

Lack Of Penetration in Friction Stir Welds: Effects on Mechanical Properties and NDE Feasibility

AeroMat 2000 Conference and Exposition Friction Stir Joining: Session 4

June 29, 2000

Lockheed Martin Space Systems, Michoud Operations Program and Technology Development David G. Kinchen, Dr. Glynn P. Adams New Orleans, LA

Acknowledgements and Planned Applications

NASA funded Special Development Studies 1998 and 1999

- MSFC Materials and Processes ED33
- MSFC Welding facility in Bldg. 4705
- MSFC NDE support

- M&P Test Laboratories
- NDE Development Support

Outside Contractors

- JENTEK Sensors, Inc.
- Sonic Systems International & Automated Inspection Systems
- RD/Tech
- * Kaukane

Overview of Development Activities

M40-007-B -RT

DISCAMBSTOP

M-R-100-09

AeroMat 2000LOP MechProp.ppt Rev Date: 04/12/2000

Vertical FSWelder at MSFC Bldg. 4705

- 0.32" & 0.65" AI 2195T8M4 Plate
- RPM, IPM and plunge force varied during weld development experimental designs
- Confirmation and full scale panels welded
- Demonstration hardware completed

Square Butt Joint 0.32" & 0.65" Thick

- AI2195 and Bi Metal, AI2219 to AI2195 Joints
- Tapered
- Two-Sided

M 60-007-8 M I.M 60-007-8-CI M40-007-B-RT

- Joint Gap
- Repair Methods

Mechanical Properties Tests

- Tensile, yield and elongation at room, cryogenic and elevated temperatures
- SCT and SST at room, cryogenic and elevated lemperatures

FSWeld Mechanical Properties Specimens & Tests

TYPICAL MICROSTRUCTURE OF FULL PENETRATION FSW WELD IN 0.320"2195-T8M4 PLATE

Cryogenic & Elevated Temperature Tensile Specimen

Test Temperatures

- -423°F
 - -320°F
- +200°F 70°F
- +3000F+

FSWeld Mechanical Properties Test Results

FRICTION STIR WELD SDS 3758 DOE ONLY

320 & .650 PLATE TO-PLATE

0.320" & 0.650" RT & Cryogenic Tests

- DOE, verification and full-length
- Reduction in strength vs thickness
- Elongation consistent and reproducible

• El 2" ■ Fł

423

H

0.320" & 0.650"Cryogenic **Enhancement in Strength**

FEMPERATURE/THICKNESS

320

.650

320

Ftu, Fty(ksi) & %EI(2")

- 1.5X Ftu and Fty
- Elongation consistent with RT
 - Elevated temp, Reduction
- 。 0.75% Ftu and Fty @ +300F

FSWeld Lack Of Penetration

LOP - Lack Of Penetration

- Root Side of Weldment
- Surface Breaking Defect
- Results from incomplete penetration of the DXZ
- Frequently referred to as "kissing bond"
- Requires micro examination to detect
- Range of LOP studied from 0.02 to 0.075"

D. G. Kinchen (504)-257-1454 E-Mail:david.kinchen@maf.nasa.gov

LOP in FSWeld: Mechanical Properties Results

LOP - RT and Cryo Tensile Results

- Consistent, repeatable results
- Predictable as a function of LOP depth
- UTS results compared closely to gross fracture stress at ultimate failure after simulated service tests

FSWeld Surface Crack Tension Tests

	Target F	Target Flaw Size
a/2c Ratio	a (in)	2c (in)
0.50	0.125	0.250
	0.250	0.500
0.20	0.150	0.750

- Tests conducted at RT, -320F and -423F
- · Flaws oriented parallel to the weld direction and perpendicular to the load direction
 - Initiated by EDM and increased to size under cyclic axial tension
- CL Crown and CL Root locations demonstrated lowest toughness
- Li and Ti Root locations generated wide scatter in toughness data

AeroMat 2000LOP MechProp.ppt Rev Date: 04/12/2000

FSWeld SCT Gross Fracture Stress Results

- CL flaw data plotted
- Limited data
- Threshold of 0.180" suggested (a/2c = 0.5 and a/2c = 0.2)
- SST data included

SCT at -320F with CL Crown Flaw

D. G. Kinchen (504)-257-1454 E-Mail:david:kinchen@maf.nasa.gov

SCT at -320F with LI Root Flaw

AeroMat 2000LOP MectiProp.ppt Rev Date: 04/12/2000

FSWeld Simulated Service Tests

Fracture Specimen

(Use NC Tape F-4)

Sawcut dimensions to be 4.0" x 12.4

Simulated Service Test Conditions

- Pre-cracked flaws and natural LOP
- Multiple flaw locations
- RT, -423°F & +300°F
- Multiple RT proof cycles, hold at specified stress, repeated for multiple mission simulation

D. G. Kinchen (504)-257-1454 E-Mail:david.kinchen@maf.nasa.gov

FSWeld Simulated Service Tests Results

LOP - SST Results

- Consistent, repeatable results
- Predictable as a function of LOP depth
 - Superior to fusion weld results

D. G. Kinchen (504)-257-1454, E-Mail:david:kinchen@maf.nasa.gov

FSWeld NDE Feasibility for LOP Inspection

Conventional Eddy Current

• Zetec

High Sensitivity Eddy Current

- MWM sensor
- Jentek Sensors

Conventional Ultrasonics

- Contact & Immersion
- 0, 45 and 60° Transducers
- Shear wave
- Creeping wave
- **Dual Element**
- Sonic Systems/Automated Inspection Systems
- Krautkramer

Phased Array UT

- 64 element array
- Shear wave
- R/D Tech

FSWeld NDE Feasibility Results

MWM Eddy Current

- Jentek Sensors, Inc.
- 0.040" detected
- Possibility of greater detectability

Figure 3: Normalized MWM Conductivity Scans for Friction Stir Weld Specimens, with MWM Oriented Perpendicular to Weld.

D. G. Kincton (504)-257-1454 E-Mail:david.kinchen@maf.nasa.gov

AeroMat 2000LOP MechProp.ppl Rev Date: 04/12/2000

FSWeld NDE Feasibility Results

- Phased Array UT
- R/D Tech Inc.
- 0.060" LOP results shown
- Possibility of greater detectability

FSWeld NDE Feasibility Results

- **LMSS Michoud Operations**
- 0.030" and 0.060" LOP detected post proof

0.06" Deep LOP

D. G. Kinchen (504)-257-1454 E-Mail:david.kinchen@maf.nasa.gov

Results

Conventional Ultrasonics

- Sonic Systems/Automated Inspection Systems
- Creeping wave and Dual Element FAST probes detected 0.040" LOP intermittently
- Easily detected deep LOP (0.090"

- Krautkramer
- Contact & Immersion
 0, 45 and 60° Transducers, and Shear wave
- Readily detected 0.060" deep LOP

Conventional Eddy current

- Zetec
- Readily detected 0.090" LOP, but not 0.040".
- Recommended development of other NDE methods

Results

- Mechanical property tests of FSW in 0.320" Al 2195 demonstrated an average of ~10%. All of these values are above those currently attainable with fusion RT UTS of 59 ksi, with a cryogenic enhancement factor of 1.5 and elongation weld processes. 0.650" Al 2195/Al 2219 FSWelds average RT UTS is 47 ksi with similar cryo enhancement and elongation.
- Lack Of Penetration is NOT an inherent condition in FSWelds of AI 2XXX alloys. Adequate process controls preclude LOP.
- SCT and SST tests of induced cracks resulted in gross fracture stress values above the values associated with current fusion weld processes.
- Tensile and fracture test results of LOP indications demonstrate predictable results well above comparable fusion welds at RT, cryogenic and elevated temperatures
- Multiple NDE techniques exist or have shown feasibility to detect LOP in FSWelds.