Table of Contents

Initial Position calculations	1
Full Rotation Position Calculator	1
Circle Method	1
Plot final joint parameters	38
Static Analysis	49
Static Solution	
position analysis	51
Dynamic Analysis	
Function for plotting joint parameters	53
clear;	
-1	

Initial Position calculations

```
A=[1.4.4850];
B=[1.67 0.99 0];
C=[.255  1.035  0];
D=[.285 .055 0];
E=[.195 2.54 0];
F=[-.98 \ 2.57 \ 0];
G=[.05.20];
initalPosition = linkageAnalysis(B,C,E,F);
```

Full Rotation Position Calculator

```
%length of each link/ distance between joints
AB=norm(B-A);
BC=norm(C-B);
CD=norm(D-C);
CE=norm(E-C);
DE=norm(E-D);
BE=norm(E-B);
EF=norm(F-E);
FG=norm(G-F);
```

Circle Method

```
%now obtain the new positions
%initial angle
initialAngle\_AB=atan2(B(2)-A(2),B(1)-A(1));
%if this is negative, then we should subtract as shown below
if(initialAngle_AB<0)</pre>
```

```
angleAB_horizontal=2*pi+initialAngle_AB; %adjusting the angle to be in
 the ccw direction from the hozizontal
else
    angleAB_horizontal = initialAngle_AB;
end
%Iterate through 360 degrees
for theta=0:1:360
theta
%position analysis
%increase by 1 deg
%new position of B
B new = vpa(A+[AB*cos(angleAB horizontal+deg2rad(theta))
AB*sin(angleAB_horizontal+deg2rad(theta)) 0]);
%new position of C
[C_x,C_y]=circcirc(B_new(1),B_new(2),BC,D(1),D(2),CD);
%checking if circles are not intersecting
circIntersect_x = any(isnan(vpa(C_x))); %checking for Not-a-Number
circIntersect_y = any(isnan(vpa(C_y)));
if circIntersect_x == 0 && circIntersect_y == 0 % if the circles are not
 intersecting
    C_1=[C_x(1) \ C_y(1) \ 0]; %adding the two solutions
    C = [C \times (2) C y(2) 0];
    dist1 = norm(C_1-C);
    dist2 = norm(C_2-C);
    if(dist1<dist2) %checking which new C is closer</pre>
      C_new=vpa(C_1);
    else
      C_new=vpa(C_2);
    end
    %new position of E
    [E_x,E_y]=circcirc(C_new(1),C_new(2),CE,D(1),D(2),DE);
    %checking if circles are not intersecting
    circIntersect_x = any(isnan(vpa(E_x))); %checking for Not-a-Number
    circIntersect y = any(isnan(vpa(E y)));
    if circIntersect_x==0 && circIntersect_y==0 % if the circles are
not intersecting
         E = 1 = [E \times (1) E y(1) 0]; %adding the two solutions
         E_2 = [E_x(2) E_y(2) 0];
         dist1 = norm(E 1-E);
         dist2 = norm(E_2-E);
        if(dist1<dist2)</pre>
            E new=vpa(E 1);
        else
            E_new=vpa(E_2);
```

```
% new position of F
        [F_x,F_y]=circcirc(E_new(1),E_new(2),EF,G(1),G(2),FG);
          %checking if circles are not intersecting
        circIntersect_x = any(isnan(vpa(F_x))); %checking for Not-a-
Number
        circIntersect_y = any(isnan(vpa(F_y)));
        if circIntersect x==0 && circIntersect y==0 % if the circles
 are not intersecting
              F_1=[F_x(1) F_y(1) 0]; %adding the two solutions
              F_2=[F_x(2) F_y(2) 0];
              dist1 = norm(F_1-F);
              dist2 = norm(F_2-F);
              if(dist1<dist2)</pre>
                   F_new=vpa(F_1);
              else
                   F_new=vpa(F_2);
              end
              %storing values
              newB x(theta+1)=double(B new(1));
              newB_y(theta+1)=double(B_new(2));
              newC x(theta+1)=double(C new(1));
              newC_y(theta+1)=double(C_new(2));
              newE_x(theta+1) = double(E_new(1));
              newE_y(theta+1)=double(E_new(2));
              newF_x(theta+1)=double(F_new(1));
              newF y(theta+1)=double(F new(2));
                  %saving this into an Excel spreadsheet
            positionsMatrix = [B_new C_new E_new F_new];
            if (theta==0)
 dlmwrite('PositionsAndForceDiffPos.xls',positionsMatrix,'delimiter','\t','precisi
            else
            dlmwrite('PositionsAndForceDiffPos.xls',positionsMatrix,'-
append',...
            'delimiter', '\t', 'precision', 4);
        else
            figure
```

end

```
ax1 = subplot(2,2,1);
            plot(newB x,newB y);
            title(ax1,'Joint B')
            ax2 = subplot(2,2,2);
            plot(newC_x,newC_y);
            title(ax2,'Joint C')
            ax3 = subplot(2,2,3);
            plot(newE_x,newE_y);
            title(ax3,'Joint E')
            ax4 = subplot(2,2,4);
            plot(newF_x,newF_y);
            title(ax4,'Joint F')
            fprintf('New position cannot be determined at this angle
 from the initial: %d',theta);
            return
        end
    else
     fprintf('New position cannot be determined at this angle from
 the initial: %d',theta);
    return
    end
else
    fprintf('New position cannot be determined at this angle:
 %d',theta);
    return
end
%Calculate and record updated joint parameters
values = linkageAnalysis(B,C,E,F);
statics(:,theta+1) = values.staticSol.';
angulars(:,theta+1) = values.angSol.';
dynamics(:,theta+1) = values.dynamicSol.';
%Update joint Positions
B=B new;
C=C_new;
E=E new;
F=F_new;
end
theta =
     0
theta =
     1
theta =
```

theta =

3

theta =

4

theta =

5

theta =

6

theta =

7

theta =

8

theta =

9

theta =

10

theta =

11

theta =

12

theta =

14

theta =

15

theta =

16

theta =

17

theta =

18

theta =

19

theta =

20

theta =

21

theta =

22

theta =

24

theta =

25

theta =

26

theta =

27

theta =

28

theta =

29

theta =

30

theta =

31

theta =

32

theta =

33

theta =

35

theta =

36

theta =

37

theta =

38

theta =

39

theta =

40

theta =

41

theta =

42

theta =

43

theta =

44

theta =

46

theta =

47

theta =

48

theta =

49

theta =

50

theta =

51

theta =

52

theta =

53

theta =

54

theta =

55

theta =

57

theta =

58

theta =

59

theta =

60

theta =

61

theta =

62

theta =

63

theta =

64

theta =

65

theta =

66

theta =

68

theta =

69

theta =

70

theta =

71

theta =

72

theta =

73

theta =

74

theta =

75

theta =

76

theta =

78

theta =

79

theta =

80

theta =

81

theta =

82

theta =

83

theta =

84

theta =

85

theta =

86

theta =

87

theta =

89

theta =

90

theta =

91

theta =

92

theta =

93

theta =

94

theta =

95

theta =

96

theta =

97

theta =

98

theta =

100

theta =

101

theta =

102

theta =

103

theta =

104

theta =

105

theta =

106

theta =

107

theta =

108

theta =

109

theta =

111

theta =

112

theta =

113

theta =

114

theta =

115

theta =

116

theta =

117

theta =

118

theta =

119

theta =

120

theta =

122

theta =

123

theta =

124

theta =

125

theta =

126

theta =

127

theta =

128

theta =

129

theta =

130

theta =

132

theta =

133

theta =

134

theta =

135

theta =

136

theta =

137

theta =

138

theta =

139

theta =

140

theta =

141

theta =

143

theta =

144

theta =

145

theta =

146

theta =

147

theta =

148

theta =

149

theta =

150

theta =

151

theta =

152

theta =

154

theta =

155

theta =

156

theta =

157

theta =

158

theta =

159

theta =

160

theta =

161

theta =

162

theta =

163

theta =

165

theta =

166

theta =

167

theta =

168

theta =

169

theta =

170

theta =

171

theta =

172

theta =

173

theta =

174

theta =

176

theta =

177

theta =

178

theta =

179

theta =

180

theta =

181

theta =

182

theta =

183

theta =

184

theta =

186

theta =

187

theta =

188

theta =

189

theta =

190

theta =

191

theta =

192

theta =

193

theta =

194

theta =

195

theta =

197

theta =

198

theta =

199

theta =

200

theta =

201

theta =

202

theta =

203

theta =

204

theta =

205

theta =

206

theta =

208

theta =

209

theta =

210

theta =

211

theta =

212

theta =

213

theta =

214

theta =

215

theta =

216

theta =

217

theta =

219

theta =

220

theta =

221

theta =

222

theta =

223

theta =

224

theta =

225

theta =

226

theta =

227

theta =

228

theta =

230

theta =

231

theta =

232

theta =

233

theta =

234

theta =

235

theta =

236

theta =

237

theta =

238

theta =

240

theta =

241

theta =

242

theta =

243

theta =

244

theta =

245

theta =

246

theta =

247

theta =

248

theta =

249

theta =

251

theta =

252

theta =

253

theta =

254

theta =

255

theta =

256

theta =

257

theta =

258

theta =

259

theta =

260

theta =

262

theta =

263

theta =

264

theta =

265

theta =

266

theta =

267

theta =

268

theta =

269

theta =

270

theta =

271

theta =

273

theta =

274

theta =

275

theta =

276

theta =

277

theta =

278

theta =

279

theta =

280

theta =

281

theta =

282

theta =

284

theta =

285

theta =

286

theta =

287

theta =

288

theta =

289

theta =

290

theta =

291

theta =

292

theta =

294

theta =

295

theta =

296

theta =

297

theta =

298

theta =

299

theta =

300

theta =

301

theta =

302

theta =

303

theta =

305

theta =

306

theta =

307

theta =

308

theta =

309

theta =

310

theta =

311

theta =

312

theta =

313

theta =

314

theta =

316

theta =

317

theta =

318

theta =

319

theta =

320

theta =

321

theta =

322

theta =

323

theta =

324

theta =

325

theta =

327

theta =

328

theta =

329

theta =

330

theta =

331

theta =

332

theta =

333

theta =

334

theta =

335

theta =

336

theta =

338

theta =

339

theta =

340

theta =

341

theta =

342

theta =

343

theta =

344

theta =

345

theta =

346

theta =

theta =

348

theta =

349

theta =

350

theta =

351

theta =

352

theta =

353

theta =

354

theta =

355

theta =

356

theta =

357

theta =

358

theta = 359

theta = 360

Plot final joint parameters

Columns 22 through 28

jointPos = [newB_x;newB_y;newC_x;newC_y;newE_x;newE_y;newF_x;newF_y]
plotJoints(jointPos,statics,angulars,dynamics);

jointPos =						
Columns 1	through 7					
1.6700	1.6611	1.6522	1.6432	1.6341	1.6250	1.6157
0.9900	0.9946	0.9991	1.0034	1.0076	1.0116	1.0155
0.2550	0.2460	0.2369	0.2278	0.2186	0.2094	0.2001
1.0350	1.0347	1.0343	1.0338	1.0332	1.0325	1.0318
0.1950	0.2000	0.1770	0.1539	0.1306	0.1071	0.0836
2.5400	2.5402	2.5393	2.5382	2.5368	2.5353	2.5335
-0.9800	-0.9750	-0.9982	-1.0214	-1.0448	-1.0682	-1.0917
2.5700	2.5722	2.5620	2.5516	2.5408	2.5297	2.5183
Columns 8	through 1	4				
1.6064	1.5971	1.5877	1.5782	1.5687	1.5591	1.5495
1.0191	1.0227	1.0260	1.0292	1.0322	1.0351	1.0378
0.1908	0.1814	0.1720	0.1625	0.1530	0.1434	0.1338
1.0309	1.0300	1.0289	1.0278	1.0265	1.0252	1.0237
0.0599	0.0361	0.0122	-0.0119	-0.0360	-0.0603	-0.0846
2.5314	2.5291	2.5266	2.5238	2.5208	2.5175	2.5140
-1.1152	-1.1388	-1.1624	-1.1860	-1.2096	-1.2333	-1.2569
2.5065	2.4945	2.4821	2.4694	2.4563	2.4430	2.4293
Columns 15	through .	21				
1.5398	1.5301	1.5203	1.5106	1.5007	1.4909	1.4810
1.0403	1.0427	1.0449	1.0469	1.0487	1.0504	1.0519
0.1242	0.1146	0.1049	0.0952	0.0854	0.0757	0.0659
1.0222	1.0205	1.0188	1.0169	1.0149	1.0129	1.0107
-0.1091	-0.1336	-0.1582	-0.1828	-0.2075	-0.2323	-0.2571
2.5102	2.5061	2.5018	2.4972	2.4924	2.4872	2.4818
-1.2806	-1.3042	-1.3278	-1.3514	-1.3750	-1.3984	-1.4219
2.4152	2.4009	2.3862	2.3711	2.3558	2.3400	2.3240

1.4711	1.4612	1.4512	1.4413	1.4313	1.4213	1.4113
1.0532	1.0544	1.0554	1.0562	1.0568	1.0573	1.0575
0.0561	0.0463	0.0365	0.0266	0.0168	0.0069	-0.0029
1.0084	1.0060	1.0034	1.0008	0.9981	0.9952	0.9922
-0.2820	-0.3069	-0.3319	-0.3569	-0.3818	-0.4068	-0.4319
2.4761	2.4701	2.4639	2.4574	2.4505	2.4434	2.4361
-1.4453	-1.4686	-1.4918	-1.5149	-1.5380	-1.5609	-1.5837
2.3076	2.2909	2.2738	2.2564	2.2387	2.2206	2.2022
Columns 29	through	35				
1.4013	1.3913	1.3813	1.3713	1.3614	1.3514	1.3414
1.0576	1.0576	1.0573	1.0569	1.0563	1.0556	1.0546
-0.0127	-0.0226	-0.0324	-0.0422	-0.0521	-0.0619	-0.0716
0.9892	0.9860	0.9827	0.9792	0.9757	0.9721	0.9683
-0.4569	-0.4819	-0.5068	-0.5318	-0.5567	-0.5816	-0.6065
2.4284	2.4204	2.4122	2.4036	2.3948	2.3857	2.3763
-1.6064	-1.6290	-1.6514	-1.6737	-1.6959	-1.7179	-1.7397
2.1834	2.1644	2.1450	2.1252	2.1052	2.0848	2.0641
Columns 36	through	42				
1.3315	1.3216	1.3117	1.3019	1.2920	1.2822	1.2725
1.0535	1.0523	1.0508	1.0492	1.2320	1.0454	1.0433
-0.0814	-0.0911	-0.1008	-0.1105	-0.1202	-0.1298	-0.1394
0.9644	0.9604	0.9563	0.9521	0.1202	0.1238	0.9388
-0.6313	-0.6561	-0.6808	-0.7054	-0.7299	-0.7544	-0.7788
2.3666	2.3567	2.3464	2.3359	2.3251	2.3140	2.3026
-1.7613	-1.7827	-1.8040	-1.8250	-1.8459	-1.8665	-1.8869
2.0431	2.0218	2.0002	1.9782	1.9560	1.9335	1.9106
2.0431	2.0210	2.0002	1.0702	1.2500	1.7555	1.0100
Columns 43	through	49				
1.2627	1.2531	1.2434	1.2338	1.2243	1.2148	1.2054
1.0410	1.0385	1.0358	1.0330	1.0300	1.0269	1.0236
-0.1489	-0.1585	-0.1679	-0.1773	-0.1867	-0.1960	-0.2053
0.9342	0.9294	0.9246	0.9196	0.9145	0.9094	0.9041
-0.8031	-0.8272	-0.8513	-0.8753	-0.8991	-0.9228	-0.9464
2.2909	2.2790	2.2668	2.2543	2.2416	2.2286	2.2153
-1.9071	-1.9270	-1.9467	-1.9661	-1.9852	-2.0041	-2.0228
1.8875	1.8641	1.8405	1.8165	1.7923	1.7679	1.7432
Columns 50	through	56				
1.1960	1.1867	1.1775	1.1683	1.1592	1.1501	1.1412
1.0201	1.0164	1.0126	1.0087	1.0045	1.0003	0.9958
-0.2145	-0.2236	-0.2327	-0.2417	-0.2507	-0.2596	-0.2684
0.8987	0.8932	0.8876	0.8819	0.8762	0.8703	0.8643
-0.9698	-0.9931	-1.0162	-1.0392	-1.0620	-1.0846	-1.1070
2.2018	2.1880	2.1740	2.1597	2.1452	2.1305	2.1155
-2.0411	-2.0592	-2.0769	-2.0944	-2.1115	-2.1284	-2.1449
1.7182	1.6931	1.6676	1.6420	1.6162	1.5901	1.5639

Columns 57	through	63				
1.1323	1.1235	1.1148	1.1062	1.0977	1.0892	1.0809
0.9912	0.9865	0.9816	0.9765	0.9713	0.9660	0.9605
-0.2771	-0.2858	-0.2944	-0.3029	-0.3113	-0.3196	-0.3279
0.8583	0.8522	0.8460	0.8397	0.8333	0.8268	0.8203
-1.1293	-1.1513	-1.1732	-1.1948	-1.2163	-1.2375	-1.2585
2.1003	2.0848	2.0692	2.0533	2.0373	2.0210	2.0046
-2.1611	-2.1770	-2.1926	-2.2078	-2.2226	-2.2372	-2.2513
1.5374	1.5108	1.4840	1.4571	1.4300	1.4028	1.3754
Columns 64	through	70				
1.0726	1.0645	1.0564	1.0485	1.0406	1.0329	1.0253
0.9548	0.9491	0.9431	0.9371	0.9309	0.9245	0.9180
-0.3360	-0.3441	-0.3521	-0.3599	-0.3677	-0.3754	-0.3829
0.8137	0.8070	0.8003	0.7935	0.7866	0.7797	0.7727
-1.2793	-1.2998	-1.3201	-1.3402	-1.3600	-1.3795	-1.3988
1.9880	1.9712	1.9542	1.9371	1.9198	1.9024	1.8848
-2.2652	-2.2786	-2.2917	-2.3045	-2.3169	-2.3289	-2.3405
1.3480	1.3204	1.2928	1.2650	1.2372	1.2093	1.1814
Columns 71	through	77				
1.0178	1.0104	1.0032	0.9960	0.9890	0.9821	0.9753
0.9114	0.9047	0.8978	0.8908	0.8837	0.8765	0.8692
-0.3904	-0.3977	-0.4050	-0.4121	-0.4191	-0.4260	-0.4328
0.7657	0.7587	0.7516	0.7444	0.7373	0.7301	0.7229
-1.4178	-1.4366	-1.4550	-1.4732	-1.4911	-1.5087	-1.5260
1.8671	1.8493	1.8314	1.8134	1.7953	1.7772	1.7590
-2.3518	-2.3627	-2.3732	-2.3834	-2.3932	-2.4026	-2.4116
1.1535	1.1256	1.0976	1.0697	1.0418	1.0140	0.9862
Columns 78	through	84				
0.9687	0.9622	0.9558	0.9496	0.9435	0.9375	0.9317
0.8617	0.8541	0.8464	0.8386	0.8307	0.8227	0.8145
-0.4395	-0.4460	-0.4524	-0.4587	-0.4649	-0.4710	-0.4769
0.7156	0.7084	0.7011	0.6939	0.6866	0.6794	0.6721
-1.5430	-1.5597	-1.5761	-1.5922	-1.6079	-1.6233	-1.6384
1.7407	1.7224	1.7041	1.6858	1.6675	1.6492	1.6310
-2.4203	-2.4286	-2.4366	-2.4441	-2.4514	-2.4582	-2.4647
0.9585	0.9309	0.9034	0.8761	0.8489	0.8219	0.7950
Columns 85	through	91				
0.9260	0.9205	0.9151	0.9098	0.9047	0.8998	0.8950
0.8063	0.7980	0.7896	0.7811	0.7725	0.7638	0.7550
-0.4826	-0.4883	-0.4938	-0.4992	-0.5044	-0.5095	-0.5145
0.6649	0.6578	0.6506	0.6435	0.6365	0.6295	0.6225
-1.6532	-1.6676	-1.6817	-1.6955	-1.7089	-1.7219	-1.7346
1.6128	1.5946	1.5766	1.5587	1.5409	1.5232	1.5057
-2.4709	-2.4767		-2.4873	-2.4921	-2.4965	-2.5007
0.7684	0.7420	0.7159	0.6900	0.6644	0.6392	0.6143

Columns 92	through	98				
0.8904	0.8859	0.8816	0.8774	0.8734	0.8695	0.8659
0.7461	0.7372	0.7282	0.7191	0.7100	0.7007	0.6914
-0.5193	-0.5240	-0.5285	-0.5329	-0.5372	-0.5413	-0.5452
0.6157	0.6089	0.6022	0.5956	0.5892	0.5828	0.5766
-1.7469	-1.7589	-1.7705	-1.7817	-1.7925	-1.8030	-1.8131
1.4884	1.4713	1.4544	1.4378	1.4214	1.4054	1.3897
-2.5046	-2.5081	-2.5114	-2.5144	-2.5171	-2.5196	-2.5218
0.5898	0.5657	0.5420	0.5187	0.4960	0.4737	0.4520
Columns 99	through	105				
0.8623	0.8590	0.8558	0.8528	0.8499	0.8472	0.8447
0.6821	0.6727	0.6632	0.6537	0.6441	0.6345	0.6248
-0.5490	-0.5526	-0.5561	-0.5594	-0.5625	-0.5655	-0.5684
0.5705	0.5646	0.5589	0.5533	0.5479	0.5427	0.5378
-1.8228	-1.8321	-1.8409	-1.8494	-1.8575	-1.8652	-1.8724
1.3743	1.3594	1.3448	1.3308	1.3171	1.3041	1.2915
-2.5238	-2.5256	-2.5271	-2.5285	-2.5296	-2.5306	-2.5314
0.4309	0.4104	0.3905	0.3714	0.3529	0.3352	0.3183
Columns 10	6 through	112				
0.8423	0.8401	0.8381	0.8363	0.8346	0.8331	0.8318
0.6151	0.6053	0.5956	0.5857	0.5759	0.5660	0.5561
-0.5710	-0.5735	-0.5758	-0.5779	-0.5799	-0.5816	-0.5832
0.5331	0.5286	0.5244	0.5205	0.5168	0.5135	0.5106
-1.8792	-1.8855	-1.8915	-1.8969	-1.9019	-1.9064	-1.9104
1.2796	1.2683	1.2577	1.2477	1.2386	1.2302	1.2227
-2.5321	-2.5327	-2.5331	-2.5335	-2.5337	-2.5339	-2.5340
0.3023	0.2871	0.2729	0.2596	0.2474	0.2363	0.2264
Columns 11	3 through	119				
0.8306	0.8296	0.8288	0.8282	0.8277	0.8275	0.8274
0.5462	0.5362	0.5263	0.5163	0.5063	0.4963	0.4863
-0.5846	-0.5857	-0.5867	-0.5874	-0.5880	-0.5882	-0.5883
0.5079	0.5057	0.5038	0.5024	0.5014	0.5008	0.5007
-1.9139	-1.9169	-1.9194	-1.9213	-1.9226	-1.9233	-1.9235
1.2160	1.2104	1.2057	1.2020	1.1995	1.1980	1.1978
-2.5341	-2.5341	-2.5341	-2.5341	-2.5341	-2.5341	-2.5341
0.2176	0.2101	0.2039	0.1991	0.1957	0.1938	0.1935
Columns 12	0 through	126				
0.8274	0.8277	0.8281	0.8287	0.8294	0.8304	0.8315
0.4763	0.4663	0.4563	0.4464	0.4364	0.4264	0.4165
-0.5881	-0.5876	-0.5869	-0.5858	-0.5845	-0.5828	-0.5808
0.5011	0.5021	0.5035	0.5055	0.5081	0.5113	0.5151
-1.9229	-1.9217	-1.9198	-1.9171	-1.9137	-1.9094	-1.9043
1.1989	1.2012	1.2049	1.2100	1.2165	1.2245	1.2341
-2.5341	-2.5341	-2.5341	-2.5341	-2.5341	-2.5340	-2.5338

0.1949	0.1980	0.2028	0.2095	0.2182	0.2288	0.2415
Columns 12	27 through	133				
0.000	0.0040	0 0050	0 0075	0.000	0 0415	0.0440
0.8327	0.8342	0.8358	0.8376	0.8396	0.8417	0.8440
0.4066	0.3967	0.3869	0.3770	0.3672	0.3575	0.3477
-0.5785	-0.5757	-0.5726	-0.5691	-0.5651	-0.5607	-0.5558
0.5195	0.5245	0.5302	0.5365	0.5435	0.5511	0.5594
-1.8983	-1.9046	-1.8968	-1.8879	-1.8779	-1.8668	-1.8544
1.2452	1.2335	1.2479	1.2640	1.2818	1.3012	1.3223
-2.5335	-2.5338	-2.5334	-2.5329	-2.5320	-2.5308	-2.5292
0.2563	0.2407	0.2599	0.2814	0.3052	0.3314	0.3599
Columns 13	34 through	140				
0.8465	0.8492	0.8520	0.8550	0.8581	0.8614	0.8649
0.3381	0.3284	0.3188	0.3093	0.2998	0.2904	0.2810
-0.5503	-0.5444	-0.5379	-0.5308	-0.5232	-0.5149	-0.5060
0.5683	0.5779	0.5881	0.5988	0.6101	0.6220	0.6343
-1.8408	-1.8259	-1.8095	-1.7918	-1.7725	-1.7517	-1.7293
1.3450	1.3694	1.3952	1.4226	1.4514	1.4816	1.5130
-2.5271	-2.5244	-2.5211	-2.5169	-2.5120	-2.5060	-2.4990
0.3908	0.4241	0.4597	0.4976	0.5378	0.5802	0.6247
0.3900	0.4241	0.4597	0.4976	0.5376	0.5602	0.6247
Columns 14	11 through	147				
0.8686	0.8724	0.8763	0.8805	0.8847	0.8892	0.8938
0.2717	0.2625	0.2533	0.2442	0.2351	0.2262	0.2173
-0.4965	-0.4863	-0.4755	-0.4640	-0.4519	-0.4391	-0.4257
0.6471	0.6603	0.6739	0.6877	0.7018	0.7161	0.7304
-1.7053	-1.6797	-1.6525	-1.6236	-1.5930	-1.5608	-1.5270
1.5456	1.5792	1.6137	1.6490	1.6849	1.7212	1.7579
-2.4908	-2.4814	-2.4706	-2.4583	-2.4445	-2.4292	-2.4121
0.6712	0.7196	0.7697	0.8215	0.8747	0.9291	0.9846
Columns 14	18 through	154				
0.8985	0.9034	0.9085	0.9137	0.9190	0.9245	0.9302
0.2085	0.1998	0.1912	0.1827	0.1742	0.1659	0.1576
-0.4117	-0.3970	-0.3818	-0.3660	-0.3498	-0.3330	-0.3158
0.7449	0.7594	0.7738	0.7881	0.8022	0.8162	0.8298
-1.4916	-1.4547	-1.4163	-1.3766	-1.3355	-1.2932	-1.2497
1.7948	1.8317	1.8685	1.9050	1.9411	1.9767	2.0115
-2.3935	-2.3730	-2.3509	-2.3271	-2.3015	-2.2743	-2.2454
1.0410	1.0981	1.1557	1.2136	1.2715	1.3294	1.3870
Columns 15	, ciii ougli	TO T				
0.9359	0.9419	0.9479	0.9541	0.9605	0.9670	0.9736
0.1495	0.1414	0.1335	0.1256	0.1179	0.1103	0.1028
-0.2982	-0.2802	-0.2618	-0.2432	-0.2244	-0.2053	-0.1861
0.8432	0.8562	0.8688	0.8810	0.8928	0.9041	0.9149
-1.2052	-1.1597	-1.1134	-1.0664	-1.0187	-0.9705	-0.9220
2.0457	2.0789	2.1112	2.1424	2.1725	2.2014	2.2291

-2.2149	-2.1830	-2.1496	-2.1148	-2.0788	-2.0417	-2.0035
1.4441	1.5006	1.5563	1.6111	1.6649	1.7175	1.7688
Columns 16	52 through	168				
0.9803	0.9872	0.9942	1.0013	1.0085	1.0158	1.0233
0.0954	0.0882	0.0810	0.0740	0.0671	0.0603	0.0537
-0.1668	-0.1474	-0.1279	-0.1085	-0.0891	-0.0697	-0.0505
0.9252	0.9350	0.9443	0.9530	0.9613	0.9690	0.9763
-0.8731	-0.8240	-0.7748	-0.7257	-0.6766	-0.6276	-0.5789
2.2555	2.2806	2.3045	2.3270	2.3482	2.3681	2.3867
-1.9643	-1.9243	-1.8836	-1.8422	-1.8004	-1.7581	-1.7155
1.8187	1.8673	1.9144	1.9599	2.0039	2.0463	2.0870
Columns 16	59 through	175				
1.0309	1.0386	1.0464	1.0543	1.0623	1.0705	1.0787
0.0472	0.0408	0.0346	0.0285	0.0225	0.0167	0.0110
-0.0314	-0.0124	0.0063	0.0249	0.0432	0.0614	0.0792
0.9830	0.9893	0.9950	1.0003	1.0052	1.0096	1.0136
-0.5306	-0.4826	-0.4351	-0.3881	-0.3416	-0.2958	-0.2506
2.4041	2.4202	2.4351	2.4488	2.4614	2.4729	2.4833
-1.6726	-1.6297	-1.5867	-1.5437	-1.5008	-1.4581	-1.4157
2.1262	2.1638	2.1998	2.2342	2.2671	2.2984	2.3283
Columns 17	76 through	182				
1.0870	1.0954	1.1039	1.1125	1.1212	1.1300	1.1389
0.0055	0.0001	-0.0052	-0.0103	-0.0152	-0.0200	-0.0246
0.0968	0.1141	0.1311	0.1478	0.1642	0.1802	0.1960
1.0172	1.0204	1.0233	1.0258	1.0280	1.0298	1.0314
-0.2060	-0.1622	-0.1192	-0.0768	-0.0353	0.0054	0.0454
2.4927	2.5011	2.5086	2.5152	2.5209	2.5259	2.5301
-1.3735	-1.3317	-1.2903	-1.2494	-1.2089	-1.1690	-1.1296
2.3567	2.3837	2.4094	2.4337	2.4567	2.4786	2.4992
Columns 18	33 through	189				
1.1478	1.1568	1.1659	1.1750	1.1843	1.1936	1.2029
-0.0291	-0.0334	-0.0376	-0.0416	-0.0455	-0.0491	-0.0527
0.2114	0.2265	0.2413	0.2557	0.2699	0.2837	0.2971
1.0327	1.0337	1.0345	1.0350	1.0353	1.0355	1.0354
0.0845	0.1228	0.1602	0.1969	0.2327	0.2677	0.3019
2.5335	2.5363	2.5385	2.5401	2.5411	2.5416	2.5416
-1.0908	-1.0526	-1.0150	-0.9781	-0.9418	-0.9062	-0.8712
2.5187	2.5371	2.5545	2.5708	2.5862	2.6007	2.6144
Columns 19	90 through	196				
1 0100	1 0010	1 0010	1 0400	1 0505	1 0000	1 0500
1.2123	1.2218	1.2313	1.2409	1.2505	1.2602	1.2699
-0.0560	-0.0592	-0.0622	-0.0651	-0.0678	-0.0703	-0.0727
0.3103	0.3231	0.3357	0.3479	0.3598	0.3714	0.3827
1.0351	1.0347	1.0341	1.0334	1.0326	1.0316	1.0306
0.3353	0.3678	0.3996	0.4306	0.4608	0.4903	0.5190

2.5411	2.5402	2.5390	2.5374	2.5354	2.5331	2.5306
-0.8370	-0.8034	-0.7705	-0.7383	-0.7067	-0.6759	-0.6457
2.6272	2.6392	2.6504	2.6610	2.6709	2.6801	2.6887
Columns 19	97 through	203				
1.2797	1.2894	1.2993	1.3091	1.3190	1.3289	1.3388
-0.0749	-0.0769	-0.0787	-0.0804	-0.0819	-0.0832	-0.0844
0.3937	0.4045	0.4149	0.4251	0.4350	0.4446	0.4540
1.0294	1.0282	1.0268	1.0254	1.0239	1.0224	1.0208
0.5470	0.5742	0.6007	0.6266	0.6517	0.6762	0.7000
2.5278	2.5248	2.5215	2.5181	2.5144	2.5107	2.5068
-0.6162	-0.5874	-0.5592	-0.5317	-0.5049	-0.4787	-0.4531
2.6968	2.7043	2.7113	2.7178	2.7239	2.7295	2.7347
Columns 20	04 through	210				
1.3488	1.3587	1.3687	1.3787	1.3887	1.3987	1.4087
-0.0854	-0.0862	-0.0868	-0.0873	-0.0875	-0.0876	-0.0876
0.4631	0.4720	0.4806	0.4890	0.4972	0.5051	0.5128
1.0191	1.0175	1.0157	1.0140	1.0122	1.0104	1.0086
0.7231	0.7456	0.7675	0.7888	0.8096	0.8297	0.8492
2.5027	2.4986	2.4944	2.4900	2.4857	2.4812	2.4768
-0.4282	-0.4038	-0.3801	-0.3570	-0.3345	-0.3125	-0.2911
2.7395	2.7440	2.7481	2.7519	2.7554	2.7586	2.7615
Columns 2	11 through	217				
4 4405						
1.4187	1.4287	1.4386	1.4486	1.4586	1.4685	1.4784
-0.0873	-0.0869	-0.0863	-0.0856	-0.0846	-0.0835	-0.0823
0.5203	0.5276	0.5346	0.5415	0.5481	0.5546	0.5608
1.0068	1.0050	1.0032	1.0013	0.9995	0.9977	0.9959
0.8682	0.8867	0.9046	0.9220	0.9389	0.9553	0.9712
2.4723 -0.2703	2.4677 -0.2501	2.4632 -0.2303	2.4587 -0.2111	2.4541 -0.1925	2.4496 -0.1743	2.4451 -0.1567
-0.2703 2.7642	-0.2501 2.7667	-0.2303 2.7689	-0.2111 2.7709	-0.1925 2.7727	-0.1743 2.7744	-0.1567 2.7759
2.7042	2.7007	2.7009	2.7709	2.//2/	2.//44	2.7759
Columns 2	18 through	224				
1.4883	1.4981	1.5080	1.5178	1.5275	1.5373	1.5469
-0.0808	-0.0792	-0.0774	-0.0754	-0.0733	-0.0710	-0.0685
0.5669	0.5728	0.5785	0.5840	0.5894	0.5946	0.5996
0.9941	0.9923	0.9905	0.9887	0.9870	0.9853	0.9836
0.9866	1.0016	1.0161	1.0302	1.0438	1.0570	1.0698
2.4406	2.4361	2.4317	2.4273	2.4230	2.4188	2.4145
-0.1395	-0.1229	-0.1067	-0.0910	-0.0757	-0.0609	-0.0466
2.7772	2.7784	2.7794	2.7803	2.7811	2.7818	2.7823
Columns 22	25 through	231				
1.5566	1.5662	1.5757	1.5852	1.5946	1.6040	1.6133
-0.0658	-0.0630	-0.0600	-0.0569	-0.0536	-0.0501	-0.0464
0.6045	0.6092	0.6138	0.6182	0.6224	0.6265	0.6305
0.9819	0.9803	0.9787	0.9771	0.9756	0.9740	0.9726

1.0822	1.0941	1.1057	1.1169	1.1277	1.1382	1.1482
2.4104	2.4063	2.4023	2.3983	2.3945	2.3907	2.3870
-0.0327	-0.0192	-0.0061	0.0065	0.0187	0.0306	0.0420
2.7828	2.7832	2.7835	2.7838	2.7840	2.7841	2.7841
Columns 23	2 through	238				
1.6225	1.6317	1.6408	1.6499	1.6588	1.6677	1.6765
-0.0426	-0.0387	-0.0345	-0.0303	-0.0258	-0.0212	-0.0165
0.6343	0.6380	0.6416	0.6450	0.6483	0.6514	0.6545
0.9711	0.9697	0.9683	0.9670	0.9657	0.9644	0.9632
1.1580	1.1673	1.1763	1.1850	1.1934	1.2014	1.2091
2.3834	2.3798	2.3764	2.3730	2.3698	2.3666	2.3635
0.0530	0.0637	0.0739	0.0838	0.0933	0.1025	0.1113
2.7841	2.7841	2.7840	2.7839	2.7838	2.7836	2.7834
_						
Columns 23	9 through	245				
1.6852	1.6938	1.7023	1.7108	1.7191	1.7274	1.7355
-0.0116	-0.0065	-0.0013	0.0040	0.0095	0.0152	0.0209
0.6574	0.6602	0.6628	0.6654	0.6678	0.6701	0.6723
0.9620	0.9608	0.9597	0.9587	0.9576	0.9567	0.9557
1.2165	1.2236	1.2304	1.2368	1.2430	1.2489	1.2545
2.3606	2.3577	2.3549	2.3522	2.3497	2.3472	2.3449
0.1197	0.1278	0.1356	0.1430	0.1501	0.1568	0.1633
2.7832	2.7830	2.7827	2.7825	2.7822	2.7819	2.7817
Columns 24	6 through	252				
1.7436	1.7515	1.7594	1.7671	1.7747	1.7822	1.7896
0.0269	0.0329	0.0391	0.0455	0.0520	0.0586	0.0653
0.6744	0.6764	0.6782	0.6800	0.6816	0.6832	0.6846
0.9548	0.9540	0.9531	0.9524	0.9517	0.9510	0.9503
1.2598	1.2648	1.2695	1.2740	1.2782	1.2821	1.2858
2.3426	2.3405	2.3384	2.3365	2.3347	2.3330	2.3314
0.1694	0.1751	0.1806	0.1857	0.1906	0.1951	0.1993
2.7814	2.7811	2.7808	2.7806	2.7803	2.7801	2.7798
Columns 25	3 through	259				
1.7968	1.8040	1.8110	1.8179	1.8247	1.8313	1.8378
0.0722	0.0792	0.0863	0.0935	0.1008	0.1083	0.1159
0.6859	0.6872	0.6883	0.6893	0.6902	0.6911	0.6918
0.9497	0.9492	0.9487	0.9482	0.9478	0.9474	0.9471
1.2891	1.2923	1.2951	1.2977	1.3001	1.3022	1.3040
2.3299	2.3285	2.3272	2.3261	2.3250	2.3241	2.3232
0.2032	0.2068	0.2101	0.2131	0.2158	0.2183	0.2204
2.7796	2.7794	2.7792	2.7790	2.7788	2.7787	2.7785
Columns 26						
	0 through	266				
1 8442			1 8625	1 8683	1 8740	1 8795
1.8442 0.1236	1.8504	1.8565	1.8625 0.1473	1.8683 0 1555	1.8740 0.1637	1.8795 0.1720
1.8442 0.1236 0.6924			1.8625 0.1473 0.6937	1.8683 0.1555 0.6940	1.8740 0.1637 0.6941	1.8795 0.1720 0.6941

0.9468	0.9466	0.9464	0.9462	0.9461	0.9460	0.9460
1.3056	1.3070	1.3081	1.3089	1.3095	1.3099	1.3100
2.3225	2.3219	2.3214	2.3210	2.3208	2.3206	2.3205
0.2222	0.2238	0.2251	0.2261	0.2268	0.2272	0.2273
2.7784	2.7783	2.7782	2.7781	2.7781	2.7781	2.7781
Columns 267	through 2	273				
1.8849	1.8902	1.8953	1.9002	1.9050	1.9096	1.9141
0.1804	0.1889	0.1975	0.2062	0.2150	0.2239	0.2328
0.6941	0.6940	0.6937	0.6934	0.6929	0.6924	0.6918
0.9460	0.9461	0.9462	0.9464	0.9466	0.9468	0.9471
1.3099	1.3095	1.3089	1.3080	1.3070	1.3056	1.3041
2.3206	2.3208	2.3210	2.3214	2.3219	2.3225	2.3232
0.2272	0.2267	0.2260	0.2251	0.2238	0.2223	0.2204
2.7781	2.7781	2.7781	2.7782	2.7783	2.7784	2.7785
Columns 274	through 2	280				
1.9184	1.9226	1.9266	1.9305	1.9341	1.9377	1.9410
0.2418	0.2509	0.2600	0.2693	0.2786	0.2879	0.2973
0.6911	0.6903	0.6894	0.6884	0.6873	0.6861	0.6848
0.9474	0.9478	0.9482	0.9486	0.9491	0.9497	0.9502
1.3022	1.3002	1.2979	1.2954	1.2926	1.2896	1.2864
2.3240	2.3250	2.3260	2.3271	2.3283	2.3297	2.3311
0.2183	0.2160	0.2133	0.2104	0.2072	0.2037	0.2000
2.7787	2.7788	2.7790	2.7792	2.7794	2.7796	2.7798
Columns 281	through 2	287				
1.9442	1.9472	1.9501	1.9528	1.9553	1.9577	1.9599
0.3068	0.3163	0.3259	0.3355	0.3452	0.3549	0.3647
0.6835	0.6820	0.6804	0.6788	0.6770	0.6752	0.6732
0.9508	0.9515	0.9522	0.9529	0.9537	0.9545	0.9553
1.2829	1.2791	1.2752	1.2710	1.2665	1.2618	1.2569
2.3326	2.3343	2.3360	2.3378	2.3397	2.3417	2.3438
0.1960	0.1917	0.1871	0.1822	0.1771	0.1717	0.1660
2.7800	2.7803	2.7805	2.7808	2.7810	2.7813	2.7815
Columns 288	through 2	294				
1.9619	1.9637	1.9654	1.9669	1.9682	1.9694	1.9704
0.3744	0.3843	0.3941	0.4040	0.4139	0.4238	0.4338
0.6712	0.6691	0.6668	0.6645	0.6621	0.6596	0.6569
0.9562	0.9571	0.9580	0.9590	0.9600	0.9611	0.9622
1.2517	1.2463	1.2406	1.2347	1.2285	1.2221	1.2154
2.3460	2.3483	2.3507	2.3531	2.3557	2.3583	2.3610
0.1601	0.1538	0.1473	0.1405	0.1335	0.1261	0.1185
2.7818	2.7821	2.7823	2.7826	2.7828	2.7830	2.7832
Columns 295	through .	301				
1.9712	1.9718	1.9723	1.9725	1.9726	1.9726	1.9723
0.4437	0.4537	0.4637	0.4737	0.4837	0.4937	0.5037

0.6542	0.6514	0.6485	0.6455	0.6424	0.6391	0.6358
0.9633	0.9644	0.9656	0.9668	0.9680	0.9693	0.9705
1.2085	1.2013	1.1939	1.1863	1.1783	1.1702	1.1617
2.3638	2.3666	2.3696	2.3726	2.3756	2.3787	2.3819
0.1106	0.1024	0.0939	0.0852	0.0762	0.0669	0.0573
2.7834	2.7836	2.7838	2.7839	2.7840	2.7841	2.7841
Columns 302	through	308				
1.9719	1.9713	1.9706	1.9696	1.9685	1.9673	1.9658
0.5137	0.5236	0.5336	0.5436	0.5535	0.5634	0.5733
0.6324	0.6289	0.6253	0.6216	0.6177	0.6138	0.6098
0.9718	0.9732	0.9745	0.9759	0.9773	0.9787	0.9801
1.1531	1.1441	1.1349	1.1255	1.1158	1.1058	1.0956
2.3852	2.3885	2.3919	2.3953	2.3987	2.4023	2.4058
0.0475	0.0373	0.0269	0.0162	0.0052	-0.0060	-0.0175
2.7841	2.7841	2.7840	2.7839	2.7838	2.7835	2.7833
Columns 309	through	315				
1.9642	1.9624	1.9604	1.9583	1.9560	1.9535	1.9508
0.5831	0.5930	0.6028	0.6125	0.6223	0.6319	0.6416
0.6057	0.6014	0.5971	0.5927	0.5881	0.5835	0.5788
0.9815	0.9830	0.9845	0.9859	0.9874	0.9889	0.9904
1.0851	1.0744	1.0634	1.0521	1.0406	1.0288	1.0167
2.4094	2.4130	2.4167	2.4204	2.4241	2.4278	2.4315
-0.0293	-0.0414	-0.0538	-0.0664	-0.0793	-0.0925	-0.1060
2.7829	2.7825	2.7821	2.7815	2.7809	2.7802	2.7794
_						
Columns 316	through	322				
	4 0450					
1.9480	1.9450	1.9419	1.9386	1.9351	1.9314	1.9276
0.6512	0.6607	0.6702	0.6796	0.6890	0.6983	0.7075
0.5739	0.5690	0.5639	0.5588	0.5535	0.5481	0.5427
0.9919	0.9934	0.9950	0.9965	0.9980	0.9995	1.0010
1.0044	0.9918	0.9790	0.9659	0.9526	0.9658	0.9519
2.4353	2.4390	2.4428	2.4466	2.4503	2.4466	2.4505
	-0.1337	-0.1480	-0.1625	-0.1774	-0.1627	-0.1781
2.7786	2.7776	2.7765	2.7754	2.7741	2.7754	2.7741
Columna 222	+ hmough	220				
Columns 323	through	329				
1.9237	1.9195	1.9153	1.9108	1.9062	1.9015	1.8966
0.7167	0.7258	0.7349	0.7438	0.7527	0.7615	0.7702
0.5371	0.5314	0.7343	0.7438	0.7327	0.5077	0.7702
1.0025	1.0040	1.0055	1.0069	1.0084	1.0098	1.0112
0.9378	0.9235	0.9088	0.8940	0.8788	0.8634	0.8478
2.4544	2.4583	2.4621	2.4659	2.4697	2.4734	2.4771
	-0.2095	-0.2257	-0.2421	-0.2587	-0.2756	-0.2927
2.7726	2.7711	2.7694	2.7676	2.7656	2.7635	2.7613
2.//20	2.//11	2./0/4	2.7070	2.7000	2.7033	2.7013
Columns 330	through	336				
	-					
1.8915	1.8863	1.8810	1.8755	1.8698	1.8641	1.8581

0.7788	0.7873	0.7958	0.8041	0.8124	0.8205	0.8286
0.4953	0.4889	0.4824	0.4758	0.4691	0.4624	0.4555
1.0126	1.0140	1.0154	1.0167	1.0180	1.0193	1.0205
0.8318	0.8157	0.7993	0.7826	0.7657	0.7485	0.7311
2.4808	2.4843	2.4879	2.4913	2.4947	2.4981	2.5013
-0.3101	-0.3278	-0.3457	-0.3638	-0.3822	-0.4008	-0.4196
2.7589	2.7564	2.7537	2.7508	2.7478	2.7445	2.7411
Columns 3	37 through	343				
1.8521	1.8459	1.8395	1.8330	1.8264	1.8197	1.8128
0.8365	0.8444	0.8521	0.8597	0.8672	0.8746	0.8818
0.4485	0.4414	0.4343	0.4270	0.4197	0.4122	0.4047
1.0217	1.0229	1.0240	1.0251	1.0262	1.0272	1.0281
0.7134	0.6955	0.6774	0.6590	0.6403	0.6215	0.6024
2.5044	2.5075	2.5105	2.5133	2.5161	2.5188	2.5213
-0.4386	-0.4579	-0.4774	-0.4971	-0.5170	-0.5371	-0.5575
2.7375	2.7337	2.7298	2.7256	2.7212	2.7166	2.7117
Columns 3	44 through	350				
1.8058	1.7987	1.7915	1.7842	1.7767	1.7691	1.7614
0.8890	0.8960	0.9029	0.9097	0.9163	0.9228	0.9292
0.3971	0.3894	0.3816	0.3737	0.3657	0.3577	0.3495
1.0290	1.0299	1.0307	1.0314	1.0321	1.0328	1.0333
0.5831	0.5635	0.5438	0.5238	0.5036	0.4831	0.4625
2.5237	2.5260	2.5281	2.5301	2.5320	2.5337	2.5353
-0.5780	-0.5987	-0.6196	-0.6407	-0.6619		-0.7050
2.7067	2.7014	2.6959	2.6901	2.6841	2.6779	2.6714
Columns 3	51 through	357				
1 5526	1 7 4 5 7	1 5055	1 5005	1 5010	1 5122	1 5046
1.7536	1.7457	1.7377	1.7295	1.7213	1.7130	1.7046
0.9354	0.9415	0.9475	0.9533	0.9590	0.9645	0.9699
0.3413	0.3330	0.3246	0.3162	0.3076	0.2990	0.2904
1.0338	1.0343	1.0347	1.0350	1.0352	1.0354	1.0354
0.4417	0.4206	0.3994	0.3780	0.3563	0.3345	0.3125
2.5367	2.5379	2.5390	2.5399	2.5406	2.5411	2.5415
-0.7267 2.6647	-0.7486 2.6576	-0.7707 2.6504	-0.7929 2.6428	-0.8152 2.6350	-0.8377 2.6269	-0.8603 2.6185
Columns 3	58 through	361				
1.6961	1.6875	1.6788	1.6700			
0.9752	0.9803	0.9852	0.9900			
0.2816	0.2728	0.2639	0.2550			
1.0355	1.0354	1.0352	1.0350			
0.2904	0.2680	0.2455	0.2228			
2.5416	2.5416	2.5413	2.5409			
-0.8830	-0.9059	-0.9288	-0.9518			
2.6098	2.6009	2.5916	2.5820			

function values = linkageAnalysis(JB,JC,JE,JF)

Static Analysis

```
%static force, static torque, dynamic force,
%dynamic torque, velocity of joints, angular velocity of links,
angular accelerations of
%links, accelerations of joints, positions of joints
% Assume assembly is made out of aluminium
%coordinates of joints
A=[1.4.4850];
B=JB;
C=JC;
D=[.285 .055 0];
E=JE;
F=JF;
G=[.05.20];
%coordinates of link's COM
Hab = [((A(1,1) + B(1,1)) / 2) ((A(1,2) + B(1,2)) / 2) 0];
Hbc = [((B(1,1) + C(1,1)) / 2) ((B(1,2) + C(1,2)) / 2) 0];
Hde = [((D(1,1) + E(1,1)) / 2) ((D(1,2) + E(1,2)) / 2) 0];
Hef = [((E(1,1) + F(1,1)) / 2) ((E(1,2) + F(1,2)) / 2) 0];
%position vectors of COM & relative points
pvHab = Hab-A;
pvHbc = Hbc-B;
pvHde = Hde-D;
pvHef = Hef-E;
%length of each link/ distance between joints
AB=norm(B-A);
BC=norm(C-B);
CD=norm(D-C);
DE=norm(E-D);
BE=norm(E-B);
EF=norm(F-E);
FG=norm(G-F);
LF=1.843; % distance between load and joint F
%position vectors
pvAB=B-A;
pvBC=C-B;
pvCD=D-C;
pvDA=A-D;
pvDE=E-D;
pvEF=F-E;
pvFG=G-F;
unit GF=-pvFG/FG;
pvFL=unit_GF*LF;
pvGL=pvFL-pvFG; %load from G to L
L=pvGL+G; %location of load
Hlg = [((L(1,1) + G(1,1)) / 2) ((L(1,2) + G(1,2)) / 2) 0]; % location
of COM
pvHlg = Hlg-G; % position of COM from G to Hlg
```

```
%without weight of each link considered
syms Ax Ay Bx By Cx Cy Dx Dy Ex Ey Fx Fy Gx Gy inTorque
fA=[Ax Ay 0];
fB=[Bx By 0];
fC=[Cx Cy 0];
fD=[Dx Dy 0];
fE=[Ex Ey 0];
fF=[Fx Fy 0];
fG=[Gx Gy 0];
Ta=[0 0 inTorque];
%weight of links in Newtons (assuming the link material is Al 6061 T6)
linkDensity = [0 2710 0]; % kg/m<sup>3</sup>
linkWidth = [0 0.10 0]; % m
linkThickness = [0 0.05 0]; % m
jointDiameter = [0 0.06 0]; % m
Wab = (linkDensity .* linkWidth .* linkThickness .* AB .* -9.8); % N
Wbc = (linkDensity .* linkWidth .* linkThickness .* BC .* -9.8); % N
Wcd = (linkDensity .* linkWidth .* linkThickness .* CD .* -9.8); % N
Wde = (linkDensity .* linkWidth .* linkThickness .* DE .* -9.8); % N
Wef = (linkDensity .* linkWidth .* linkThickness .* EF .* -9.8); % N
Wfg = (linkDensity .* linkWidth .* linkThickness .* (LF + FG) .*
 -9.8); % N
Wl = [0 -200 \ 0]; %given weight of load in NEWTONS
```

Static Solution

```
%Link AB/1
%First equation represents sum of forces
%Second Equation represents sum of moments
eqn1=fA-fB+Wab==0;
eqn2=Ta+cross(pvHab,Wab)+cross(pvAB,-fB)==0;
%Link BC
eqn3=fB-fC+Wbc==0;
eqn4=cross(pvBC,-fC)+cross(pvHbc,Wbc)==0;
%Link DEC
eqn5=fC-fD+fE+Wde==0;
eqn6=cross(pvDE,fE)+cross(pvHde,Wde)+cross(-pvCD,fC)==0;
%Link EF
eqn7 = -fE + fF + Wef = = 0;
eqn8=cross(pvEF,fF)+cross(pvHef,Wef)==0;
%Link FG with load L
eqn9=-fF+fG+Wfg+Wl==0;
eqn10=cross(-pvFG,-fF)+cross(pvGL,Wl)+cross(pvHlq,Wfq)==0;
staticsolution =
 (solve([eqn1,eqn2,eqn3,eqn4,eqn5,eqn6,eqn7,eqn8,eqn9,eqn10],
[Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Ex,Ey,Fx,Fy,Gx,Gy,inTorque]));
noWeightforce Ax=double(staticsolution.Ax);
noWeightforce_Ay=double(staticsolution.Ay);
noWeightforce_Bx=double(staticsolution.Bx);
```

```
noWeightforce_Cx=double(staticsolution.Cx);
noWeightforce_Dx=double(staticsolution.Dx);
noWeightforce_Dx=double(staticsolution.Dx);
noWeightforce_Dy=double(staticsolution.Dy);
noWeightforce_Ex=double(staticsolution.Ex);
noWeightforce_Ey=double(staticsolution.Ey);
noWeightforce_Fx=double(staticsolution.Fx);
noWeightforce_Fy=double(staticsolution.Fy);
noWeightforce_Gx=double(staticsolution.Gx);
noWeightforce_Gy=double(staticsolution.Gy);
noWeightforce_Gy=double(staticsolution.inTorque);
staticsolution =
  [noWeightforce_Ax;noWeightforce_Ay;noWeightforce_Bx;noWeightforce_Ey;noWeightforce
  noWeightforce_Gx;noWeightforce_Dy;noWeightforce_Ex;noWeightforce_Ey;noWeightforce
  noWeightforce_Gx;noWeightforce_Gy;noWeighttorque_T];
```

position analysis

noWeightforce_By=double(staticsolution.By);

```
omegaAB=[0\ 0\ (7450/7)/3600*2*pi]; % 7450 parts per 7 hours assuming 1
 revolution is 1 part
alphaAB=[0 0 0]; % input link rotating at a constant velocity
syms omegaBCz omegaDEz omegaEFz omegaFGz alphaBCz alphaDEz alphaEFz alphaFGz
omegaBC=[0 0 omegaBCz];
omegaDE=[0 0 omegaDEz];
omegaEF=[0 0 omegaEFz];
omegaFG=[0 0 omegaFGz];
alphaBC=[0 0 alphaBCz];
alphaDE=[0 0 alphaDEz];
alphaEF=[0 0 alphaEFz];
alphaFG=[0 0 alphaFGz];
eqn11=cross(omegaAB,pvAB)+cross(omegaBC,pvBC)+cross(omegaDE,pvCD)==0;
eqn12=cross(alphaAB,pvAB)+cross(omegaAB,cross(omegaAB,pvAB))+cross(alphaBC,pvBC)+c
eqn13=cross(omegaDE,pvDE)+cross(omegaEF,pvEF)+cross(omegaFG,pvFG)==0;
eqn14=cross(alphaDE,pvDE)+cross(omegaDE,cross(omegaDE,pvDE))+cross(alphaEF,pvEF)+c
positionsolution= (solve([eqn11,eqn12,eqn13,eqn14],
[omegaBCz,omegaDEz,omegaEFz,omegaFGz,alphaBCz,alphaDEz,alphaEFz,alphaFGz]));
angvel_BCz=double(positionsolution.omegaBCz);
angvel DEz=double(positionsolution.omegaDEz);
angvel_EFz=double(positionsolution.omegaEFz);
angvel_FGz=double(positionsolution.omegaFGz);
angacc_BCz=double(positionsolution.alphaBCz);
angacc_DEz=double(positionsolution.alphaDEz);
angacc EFz=double(positionsolution.alphaEFz);
angacc_FGz=double(positionsolution.alphaFGz);
```

```
positionsolution = [angvel_BCz;angvel_DEz;angvel_EFz;angvel_FGz;
                    angacc BCz; angacc DEz; angacc EFz; angacc FGz;
 angvel BCz*BC;angvel DEz*DE;angvel EFz*EF;angvel FGz*FG;
 angacc BCz*BC;angacc DEz*DE;angacc EFz*EF;angacc FGz*FG];
%extra acceleration values
angvel_BC=[0 0 angvel_BCz];
angvel_DE=[0 0 angvel_DEz];
angvel EF=[0 0 angvel EFz];
angvel_FG=[0 0 angvel_FGz];
angacc BC=[0 0 angacc BCz];
angacc_DE=[0 0 angacc_DEz];
angacc_EF=[0 0 angacc_EFz];
angacc_FG=[0 0 angacc_FGz];
accH_AB=cross(alphaAB,pvHab)+cross(omegaAB,cross(omegaAB,pvHab));
accH_BC=cross(angacc_BC,pvHbc)+cross(angvel_BC,cross(angvel_BC,pvHbc));
accH_DE=cross(angacc_DE,pvHde)+cross(angvel_DE,cross(angvel_DE,pvHde));
accH_EF=cross(angacc_EF,pvHef)+cross(angvel_EF,cross(angvel_EF,pvHef));
accH GL=cross(angacc FG,pvHlq)+cross(angvel FG,cross(angvel FG,pvHlq));
```

Dynamic Analysis

```
JAB A=1/12*(Wab(2)/-9.8)*(linkWidth(2)^2+AB^2)+(Wab(2)/-9.8)*norm(pvHab)^2;
JBC_B=1/12*(Wbc(2)/-9.8)*(linkWidth(2)^2+BC^2)+(Wbc(2)/-9.8)*norm(pvHbc)^2;
JDE_D=1/12*(Wde(2)/-9.8)*(linkWidth(2)^2+DE^2)+(Wde(2)/-9.8)*norm(pvHde)^2;
JEF_E=1/12*(Wef(2)/-9.8)*(linkWidth(2)^2+EF^2)+(Wef(2)/-9.8)*norm(pvHef)^2;
JLG_G=1/12*(Wfg(2)/-9.8)*(linkWidth(2)^2+(LF)
+FG)^2+(Wfg(2)/-9.8)*norm(pvHlg)^2;
eqn15=fA-fB+Wab==(Wab(2)/-9.8)*accH_AB;
eqn16=Ta+cross(pvHab,Wab)+cross(pvAB,-fB)==JAB_A*alphaAB;
eqn17=fB-fC+Wbc==(Wbc(2)/-9.8)*accH_BC;
eqn18=cross(pvBC,-fC)+cross(pvHbc,Wbc)==JBC_B*angacc_BC;
%Link DEC
eqn19=fC-fD+fE+Wde==(Wde(2)/-9.8)*accH_DE;
eqn20=cross(pvDE,fE)+cross(pvHde,Wde)+cross(-
pvCD,fC)==JDE_D*angacc_DE;
%Link EF
eqn21=-fE+fF+Wef==(Wef(2)/-9.8)*accH_EF;
eqn22=cross(pvEF,fF)+cross(pvHef,Wef)==JEF_E*angacc_EF;
%Link FG with load L
eqn23=-fF+fG+Wfg+Wl==(Wfg(2)/-9.8)*accH_GL;
eqn24=cross(-pvFG,-
fF)+cross(pvGL,Wl)+cross(pvHlg,Wfg)==JLG_G*angacc_FG;
```

```
dynamicsolution =
 (solve([eqn15,eqn16,eqn17,eqn18,eqn19,eqn20,eqn21,eqn22,eqn23,eqn24],
[Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Ex,Ey,Fx,Fy,Gx,Gy,inTorque]));
dynamicforce_Ax=double(dynamicsolution.Ax);
dynamicforce Ay=double(dynamicsolution.Ay);
dynamicforce_Bx=double(dynamicsolution.Bx);
dynamicforce By=double(dynamicsolution.By);
dynamicforce_Cx=double(dynamicsolution.Cx);
dynamicforce_Cy=double(dynamicsolution.Cy);
dynamicforce_Dx=double(dynamicsolution.Dx);
dynamicforce_Dy=double(dynamicsolution.Dy);
dynamicforce Ex=double(dynamicsolution.Ex);
dynamicforce_Ey=double(dynamicsolution.Ey);
dynamicforce Fx=double(dynamicsolution.Fx);
dynamicforce_Fy=double(dynamicsolution.Fy);
dynamicforce Gx=double(dynamicsolution.Gx);
dynamicforce_Gy=double(dynamicsolution.Gy);
dynamictorque_T=double(dynamicsolution.inTorque);
dynamicsolution =
 [dynamicforce_Ax;dynamicforce_By;dynamicforce_Bx;dynamicforce_By;dynamicforce_Cx;
dynamicforce Dx;dynamicforce Ex;dynamicforce Ex;dynamicforce Fx;d
    dynamicforce_Gx;dynamicforce_Gy;dynamictorque_T];
values.staticSol = staticsolution;
values.angSol = positionsolution;
values.dynamicSol = dynamicsolution;
end
```

Function for plotting joint parameters

```
function plotJoints(jointPos, statics, angulars, dynamics)
%Plot Joint Positions
theta = 0:1:360
ax1 = subplot(2,2,1);
plot(jointPos(1,:),jointPos(2,:));
title(ax1, 'Joint B')
xlabel('X Position [m]')
ylabel('Y Position [m]')
ax2 = subplot(2,2,2);
plot(jointPos(3,:),jointPos(4,:));
title(ax2, 'Joint C')
xlabel('X Position [m]')
ylabel('Y Position [m]')
ax3 = subplot(2,2,3);
plot(jointPos(5,:),jointPos(6,:));
title(ax3,'Joint E')
xlabel('X Position [m]')
ylabel('Y Position [m]')
ax4 = subplot(2,2,4);
```

```
plot(jointPos(7,:),jointPos(8,:));
title(ax4, 'Joint F')
xlabel('X Position [m]')
ylabel('Y Position [m]')
%Plot Static Forces/Torque
figure('name','Static Joint Forces/Torque');
ax1 = subplot(3,3,1);
plot(theta, statics(1,:), theta, statics(2,:));
title(ax1, 'Forces on Joint A')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,2);
plot(theta, statics(3,:), theta, statics(4,:));
title(ax1,'Forces on Joint B')
legend('X Force','Y Force','Location','northeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,3);
plot(theta, statics(5,:), theta, statics(6,:));
title(ax1, 'Forces on Joint C')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deq]')
ylabel('Force [N]')
ax1 = subplot(3,3,4);
plot(theta,statics(7,:),theta,statics(8,:));
title(ax1,'Forces on Joint D')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deq]')
ylabel('Force [N]')
ax1 = subplot(3,3,5);
plot(theta,statics(9,:),theta,statics(10,:));
title(ax1,'Forces on Joint E')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,6);
plot(theta, statics(11,:), theta, statics(12,:));
title(ax1,'Forces on Joint F')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,7);
plot(theta,statics(13,:),theta,statics(14,:));
title(ax1, 'Forces on Joint G')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deq]')
ylabel('Force [N]')
ax1 = subplot(3,3,8);
plot(theta,statics(15,:));
title(ax1, 'Torque on Joint A')
legend('Torque','Location','southeast');
xlabel('Angular Displacement [deg]')
```

```
ylabel('Torque [N-m]')
%Dynamic Graphs
figure('name','Dynamic Joint Forces/Torque');
ax1 = subplot(3,3,1);
plot(theta,dynamics(1,:),theta,dynamics(2,:));
title(ax1,'Forces on Joint A')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deq]')
ylabel('Force [N]')
ax1= subplot(3,3,2);
plot(theta,dynamics(3,:),theta,dynamics(4,:));
title(ax1, 'Forces on Joint B')
legend('X Force','Y Force','Location','northeast');
xlabel('Angular Displacement [deq]')
ylabel('Force [N]')
ax1 = subplot(3,3,3);
plot(theta,dynamics(5,:),theta,dynamics(6,:));
title(ax1, 'Forces on Joint C')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,4);
plot(theta,dynamics(7,:),theta,dynamics(8,:));
title(ax1,'Forces on Joint D')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,5);
plot(theta,dynamics(9,:),theta,dynamics(10,:));
title(ax1, 'Forces on Joint E')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,6);
plot(theta,dynamics(11,:),theta,dynamics(12,:));
title(ax1, 'Forces on Joint F')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,7);
plot(theta,dynamics(13,:),theta,dynamics(14,:));
title(ax1, 'Forces on Joint G')
legend('X Force','Y Force','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Force [N]')
ax1 = subplot(3,3,8);
plot(theta, dynamics(15,:));
title(ax1,'Torque on Joint A')
legend('Torque','Location','southeast');
xlabel('Angular Displacement [deg]')
ylabel('Torque [N-m]')
%Angular Accel/Velocity Graphs
```

```
figure('name','Angular Accelerations and Velocities');
%Plot velocities
ax1 = subplot(2,4,1);
plot(theta,angulars(1,:));
title(ax1,'Angular Vel of link BC')
xlabel('Angular Displacement [deg]')
ylabel('Angular Velocity [rad/s]')
ax1 = subplot(2,4,2);
plot(theta,angulars(1,:));
title(ax1,'Angular Vel of link DE')
xlabel('Angular Displacement [deg]')
ylabel('Angular Velocity [rad/s]')
ax1 = subplot(2,4,3);
plot(theta,angulars(3,:));
title(ax1,'Angular Vel of link EF')
xlabel('Angular Displacement [deg]')
ylabel('Angular Velocity [rad/s]')
ax1 = subplot(2,4,4);
plot(theta,angulars(4,:));
title(ax1,'Angular Vel of link FG')
xlabel('Angular Displacement [deg]')
ylabel('Angular Velocity [rad/s]')
%Plot accelerations
ax1 = subplot(2,4,5);
plot(theta,angulars(5,:));
title(ax1, 'Angular Accel of link BC')
xlabel('Angular Displacement [deg]')
ylabel('Angular Acceleration [rad/s^2]')
ax1 = subplot(2,4,6);
plot(theta,angulars(6,:));
title(ax1,'Angular Accel of link DE')
xlabel('Angular Displacement [deg]')
ylabel('Angular Acceleration [rad/s^2]')
ax1 = subplot(2,4,7);
plot(theta,angulars(7,:));
title(ax1,'Angular Accel of link EF')
xlabel('Angular Displacement [deg]')
ylabel('Angular Acceleration [rad/s^2]')
ax1 = subplot(2,4,8);
plot(theta,angulars(8,:));
title(ax1, 'Angular Accel of link FG')
xlabel('Angular Displacement [deg]')
ylabel('Angular Acceleration [rad/s^2]')
%Linear Accel/Velocity Graphs
figure('name','Linear Accelerations and Velocities');
ax1 = subplot(2,4,1);
plot(theta,angulars(9,:));
title(ax1,'Linear Vel of link BC')
xlabel('Angular Displacement [deg]')
ylabel('Linear Velocity [m/s]')
ax1 = subplot(2,4,2);
```

```
plot(theta,angulars(10,:));
title(ax1, 'Linear Vel of link DE')
xlabel('Angular Displacement [deg]')
ylabel('Linear Velocity [m/s]')
ax1 = subplot(2,4,3);
plot(theta,angulars(11,:));
title(ax1,'Linear Vel of link EF')
xlabel('Angular Displacement [deg]')
ylabel('Linear Velocity [m/s]')
ax1 = subplot(2,4,4);
plot(theta,angulars(12,:));
title(ax1,'Linear Vel of link FG')
xlabel('Angular Displacement [deg]')
ylabel('Linear Velocity [m/s]')
%Plot acceleration
ax1 = subplot(2,4,5);
plot(theta,angulars(13,:));
title(ax1, 'Linear Accel of link BC')
xlabel('Angular Displacement [deg]')
ylabel('Linear Acceleration [m/s^2]')
ax1 = subplot(2,4,6);
plot(theta,angulars(14,:));
title(ax1, 'Linear Accel of link DE')
xlabel('Angular Displacement [deg]')
ylabel('Linear Acceleration [m/s^2]')
ax1 = subplot(2,4,7);
plot(theta,angulars(15,:));
title(ax1,'Linear Accel of link EF')
xlabel('Angular Displacement [deq]')
ylabel('Linear Acceleration [m/s^2]')
ax1 = subplot(2,4,8);
plot(theta,angulars(16,:));
title(ax1,'Linear Accel of link FG')
xlabel('Angular Displacement [deq]')
ylabel('Linear Acceleration [m/s^2]')
end
theta =
  Columns 1 through 13
                       3
           1
                                    5
                                          6
                                                                  10
       12
 11
  Columns 14 through 26
    13
                15
                      16
                            17
                                   18
                                         19
                                               20
                                                     21
                                                            22
                                                                  23
          14
 24
       25
  Columns 27 through 39
```

26 27 37 38	28 29	30	31	32	33	34	35	36
Columns 40 th	nrough 52							
39 40 50 51	41 42	43	44	45	46	47	48	49
Columns 53 th	nrough 65							
52 53 63 64	54 55	56	57	58	59	60	61	62
Columns 66 th	nrough 78							
65 66 76 77	67 68	69	70	71	72	73	74	75
Columns 79 th	nrough 91							
78 79 89 90	80 81	82	83	84	85	86	87	88
Columns 92 th	nrough 104							
91 92 102 103	93 94	95	96	97	98	99	100	101
Columns 105 t	through 117							
104 105 115 116	106 107	108	109	110	111	112	113	114
Columns 118 t	through 130							
117 118 128 129	119 120	121	122	123	124	125	126	127
Columns 131 t	through 143							
130 131 141 142	132 133	134	135	136	137	138	139	140
Columns 144 t	through 156							
143 144 154 155	145 146	147	148	149	150	151	152	153
Columns 157 t	through 169							
156 157 167 168	158 159	160	161	162	163	164	165	166
Columns 170 t	through 182							

169 170 180 181	171 172	173	174	175	176	177	178	179		
Columns 183 through 195										
182 183 193 194	184 185	186	187	188	189	190	191	192		
Columns 196 through 208										
195 196 206 207	197 198	199	200	201	202	203	204	205		
Columns 209 through 221										
208 209 219 220	210 211	212	213	214	215	216	217	218		
Columns 222 through 234										
221 222 232 233	223 224	225	226	227	228	229	230	231		
Columns 235 through 247										
234 235 245 246	236 237	238	239	240	241	242	243	244		
Columns 248 through 260										
247 248 258 259	249 250	251	252	253	254	255	256	257		
Columns 261 through 273										
260 261 271 272	262 263	264	265	266	267	268	269	270		
Columns 274 through 286										
273 274 284 285	275 276	277	278	279	280	281	282	283		
Columns 287 through 299										
286 287 297 298	288 289	290	291	292	293	294	295	296		
Columns 300 through 312										
299 300 310 311	301 302	303	304	305	306	307	308	309		

Column	ns 313	throug	h 325							
	313 324	314	315	316	317	318	319	320	321	322
Colum	ns 326	throug	h 338							
325 336	326 337	327	328	329	330	331	332	333	334	335
Columns 339 through 351										
	339 350	340	341	342	343	344	345	346	347	348
Columi	ns 352	throug	h 361							
351	352	353	354	355	356	357	358	359	360	

Angular Displacement/(tology) ar Displacement/(tology) ar Displacement/(tology) ar Displacement (deg)

Linear Accel of link Bunear Accel of link Dillinear Accel of link Ellinear Accel of link FG Linear Acceleration [m/s²] Linear Acceleration [m/s²] Linear Acceleration [m/s²] Linear Acceleration [m/s²] -10 -5 -5 20 10 -20 -10 -30 200 400 200 400 200 400

Angular Displacement/(thegu) ar Displacement/(thegu) ar Displacement/(thegu) ar Displacement (deg)

