A New Dimension-Reduction Method for Complex Dynamical Networks

SIAM

E. Laurence, N. Doyon, L.J. Dubé, and P. Desrosiers

July 12, 2018

Département de physique, de génie physique, et d'optique Université Laval. Ouébec, Canada

Dynamical complex networks

Nodes

Activity $x_i(t)$

Edges

Weights $A = \{a_{ij}\}$

Dynamics

$$\dot{x}_i = F(x_i) + \sum_{j=1}^N a_{ij} G(x_i, x_j)$$

1-dimensional reduction

Red node activity = Weighted average activity

$$\langle x \rangle_w = \sum_{i=1}^N w_i x_i$$

w must be the **dominant eigenvector** of A.

Gao et al. (2016) reduction is found as an approximation.

Star networks

of eigenvalues on the spectral radius $\rightarrow \#$ of dimensions

Star networks

Structural parameter

Modular networks | A combined method

Predicting breakdowns

The combined method predicts accurately the critical edges.

FURTHERMORE

Predicting global state using a low dimensional representation of dynamical complex networks

Available soon

- Many dynamics : SIS, Neural, Lotka-Voltera, Genes
- Critical transition of scale-free networks
- Error estimations

Take home message

- Systematic method
- Based on spectral properties of networks

COLLABORATORS

Louis J. Dubé

Patrick Desrosiers

Nicolas Doyon

dynamica.phy.ulaval.ca edwardlaurence.me

