

MSc. Data Science & Artificial Intelligence

INVERSE PROBLEMS IN IMAGE PROCESSING

Faisal JAYOUSI, Laure BLANC-FERAUD & Luca CALATRONI

Assignment 2

Author: Joris LIMONIER

joris.limonier@gmail.com

Due: March 10, 2023

Contents

1	Tut	orial 5	1
	1.1	Exercise 1: Soft-thresholding	1
	1.2	Exercise 2: Hard-thresholding	2
	1.3	Exercise 3: Non-negativity constraints	4
		1.3.1 Part 1	4
		1.3.2 Part 2	4
	1.4	Exercise 4	
	Tutorial 6		
	2.1	Question 7	(

1 Tutorial 5

1.1 Exercise 1: Soft-thresholding

The proximal operator of τf is defined as:

$$\operatorname{prox}_{\tau f}(x) = \arg\min_{u \in \mathbb{R}} \frac{1}{2\tau} (u - x)^2 + f(u)$$

which we can apply to the ℓ_1 norm to get:

$$\operatorname{prox}_{\tau|\cdot|}(x) = \arg\min_{u \in \mathbb{R}} \frac{1}{2\tau} (u - x)^2 + |u|$$

Let h(u) be given by:

$$h(u) := \frac{1}{2\tau} (u - x)^2 + |u|$$

The optimality condition states that given that h is is proper, we have:

$$0 \in \partial h(u^*) \iff u^* \in \arg\min_{u \in \mathbb{R}} h(u)$$

then we have:

$$\frac{\partial}{\partial u}h(u) = \frac{\partial}{\partial u} \left[\frac{1}{2\tau} (u - x)^2 + |u| \right]$$
$$= \begin{cases} \frac{1}{\tau} (u - x) - 1, & u < 0\\ \frac{1}{\tau} (u - x) + 1, & u > 0 \end{cases}$$

We set the derivative to zero to find the critical points of h. We have three cases to consider: u > 0, u < 0 and u = 0.

Case u > 0.

$$\frac{\partial}{\partial u}h(u^*) = 0$$

$$\implies \frac{1}{\tau}(u^* - x) + 1 = 0$$

$$\implies u^* = x - \tau$$

Case u < 0.

$$\frac{\partial}{\partial u}h(u^*) = 0$$

$$\implies \frac{1}{\tau}(u^* - x) - 1 = 0$$

$$\implies u^* = x + \tau$$

Case u = 0. In this case, we cannot compute the derivative as the function is non-differentiable in u = 0. We have however that the subdifferential of h is given by:

$$\partial h(u) = [-1, 1]$$

In particular, $0 \in \partial h(u)$, so we can apply the optimality condition. Therefore, the proximal operator is given by:

$$\operatorname{prox}_{\tau|\cdot|}(x) = \begin{cases} x - \tau, & u > 0 \\ x + \tau, & u < 0 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} x - \tau, & x - \tau > 0 \\ x + \tau, & x + \tau < 0 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} x - \tau, & x > \tau \\ x + \tau, & x < -\tau \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} x - \tau, & x > \tau \\ x + \tau, & x < -\tau \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} x - \tau, & x > \tau \\ x + \tau, & x < -\tau \\ 0, & |x| \le \tau \end{cases}$$

We plot this proximal operator in the companion notebook.

1.2 Exercise 2: Hard-thresholding

We define f as the ℓ_0 norm:

$$f(x) = |x|_0 = \begin{cases} 0, & x = 0 \\ 1, & x \neq 0 \end{cases}$$

The proximal operator of τf is defined as:

$$\operatorname{prox}_{\tau|\cdot|_{0}}(x) = \arg\min_{u \in \mathbb{R}} \frac{1}{2\tau} (u - x)^{2} + |u|_{0}$$

Let h(u) be given by:

$$h(u) := \frac{1}{2\tau} (u - x)^2 + |u|_0$$

$$= \begin{cases} \frac{1}{2\tau} (u - x)^2 + 1, & u \neq 0 \\ \frac{1}{2\tau} (0 - x)^2 + 0, & u = 0 \end{cases}$$

$$= \begin{cases} \frac{1}{2\tau} (u - x)^2 + 1, & u \neq 0 \\ \frac{x^2}{2\tau}, & u = 0 \end{cases}$$

We have two cases to consider: $u \neq 0$ and u = 0.

Case $u \neq 0$. In this case, h is differentiable. We will compute its derivative and set it to zero to find the critical points of h. The derivative of h is given by:

$$\frac{\partial}{\partial u}h(x) = \frac{1}{\tau}(u - x)$$

We now set this derivative to zero to find the critical points of h:

$$\frac{\partial}{\partial u}h(u^*) = 0$$

$$\implies \frac{1}{\tau}(u^* - x) = 0$$

$$\implies u^* = x$$

Therefore, we have:

$$h(u^*) = \frac{1}{2\tau} (u^* - x)^2 + |u^*|_0$$
$$= \frac{1}{2\tau} (x - x)^2 + 1$$
$$= 1$$

Case u = 0. In this case, we cannot compute the derivative as the function is non-differentiable in u = 0. We have that h is given by:

$$h(u) = \frac{x^2}{2\tau}$$

Now, the question is whether it is better to have $h(u) = \frac{x^2}{2\tau}$ or h(u) = 1. We compare the two quantities:

$$\frac{x^2}{2\tau} < 1 \implies x^2 < 2\tau$$

$$\implies x \in [-\sqrt{2\tau}, \sqrt{2\tau}]$$

So in order to minimize h, we prefer having $h(u) = \frac{x^2}{2\tau}$ as long as $x \in [-\sqrt{2\tau}, \sqrt{2\tau}]$ and h(u) = 1 otherwise. We need to choose u appropriately, which means that the proximal operator of $\tau |\cdot|_0$ is given by:

$$\operatorname{prox}_{\tau|\cdot|_0}(x) = \begin{cases} 0, & x \in [-\sqrt{2\tau}, \sqrt{2\tau}] \\ x, & \text{otherwise} \end{cases}$$

We plot this proximal operator in the companion notebook.

1.3 Exercise 3: Non-negativity constraints

1.3.1 Part 1

Let \mathbb{R}^n_+ be the set of vectors with non-negative entries. We define the indicator function of \mathbb{R}^n_+ as:

$$\delta_{\mathbb{R}^n_+}(x) = \begin{cases} 0, & x \in \mathbb{R}^n_+\\ \infty, & \text{otherwise} \end{cases}$$

Therefore the proximal operator of $\delta_{\mathbb{R}^n_{\perp}}$ is given by:

$$\operatorname{prox}_{\delta_{\mathbb{R}^{n}_{+}}}(x) = \arg\min_{u \in \mathbb{R}^{n}} \frac{1}{2} ||u - x||^{2} + \delta_{\mathbb{R}^{n}_{+}}(u)$$

We define h(u) as:

$$h(u) = \frac{1}{2} ||u - x||^2 + \delta_{\mathbb{R}^n_+}(u)$$

We understand from the definition of the indicator function that no component of u can be negative, otherwise h would be infinite.

We have two cases to consider: $u \in \mathbb{R}^n_+$ and $u \notin \mathbb{R}^n_+$.

Case $u \in \mathbb{R}^n_+$. In this case, h is differentiable. We will compute its derivative and set it to zero to find the critical points of h. The derivative of h is given by:

$$\nabla h(u^*) = 0 \implies u^* - x = 0$$
$$\implies u^* = x$$

Case $u \notin \mathbb{R}^n_+$. In this case, as mentioned above, h is infinite. We cannot choose any component u_i of u to be negative, otherwise h would be infinite because of the indicator function. However, we still want to choose u to be as close as possible to x, in order to minimize the $||u-x||^2$ component. We proceed in a component-wise fashion, thanks to the separability of h. For all i such that $x_i < 0$, we can therefore choose $u_i = 0$, which is the point in \mathbb{R}_+ which minimizes the distance to x_i .

We can summarize the proximal operator of $\delta_{\mathbb{R}^n_{\perp}}$ as:

$$\forall i = 1, \dots, n, \left\{ \operatorname{prox}_{\delta_{\mathbb{R}^n_+}}(x) \right\}_i = \max(0, x_i)$$

1.3.2 Part 2

We now compute the proximal operator of $\tau |\cdot|_1 + \delta_{\mathbb{R}^n_+}(\cdot)$, which is given by:

$$\operatorname{prox}_{\tau|\cdot|_{1}+\delta_{\mathbb{R}^{n}_{+}}(\cdot)}(x) = \arg\min_{u \in \mathbb{R}^{n}_{+}} \frac{1}{2\tau} \|u - x\|^{2} + |u|_{1} + \delta_{\mathbb{R}^{n}_{+}}(u)$$

We define h(u) as:

$$h(u) = \frac{1}{2\tau} ||u - x||^2 + |u|_1 + \delta_{\mathbb{R}^n_+}(u)$$

We note that h is separable. We can therefore apply the proximal operator of $\tau |\cdot|_1$ to each component of u. Moreover, we can use the same argument as in section 1.3.1 regarding the non-negativity constraint. Indeed once again, as long as one of the component of

u is negative, h is infinite, so minimizing h means that all components of u must be non-negative. For the rest, the minimizer of $\frac{1}{2\tau}||u-x||^2+|u|_1$ is by definition equal to $\operatorname{prox}_{\tau|\cdot|_1}(x)$, that is:

$$\arg\min_{u \in \mathbb{R}^n} \frac{1}{2\tau} ||u - x||^2 + |u|_1 =: \operatorname{prox}_{\tau|\cdot|_1}(x)$$

and we computed this proximal operator in section 1.1.

Now, the indicator forces all components of u to be non-negative (this is the same argument as in section 1.3.1 really). As a result, we can summarize the proximal operator of $\tau |\cdot|_1 + \delta_{\mathbb{R}^n_+}(\cdot)$ as:

$$\forall i = 1, \dots, n, \left(\operatorname{prox}_{\tau|\cdot|_1 + \delta_{\mathbb{R}^n_+}(\cdot)}(x) \right)_i = \max \left(\left(\operatorname{prox}_{\tau|\cdot|_1}(x) \right)_i, 0 \right)$$

where the maximum is taken component-wise.

1.4 Exercise 4

Let us define f as the elastic net functional, that is:

$$f(x) = ||x||_1 + \frac{\lambda}{2} ||x||^2$$

We want ot compute $prox_f(x)$.

We define q as:

$$g(x) = ||x||_1$$

therefore, we have that:

$$f(x) = g(x) + \frac{\lambda}{2} ||x||^2$$

By proposition 3 with $c = \lambda$, we have that:

$$\operatorname{prox}_f(x) = \operatorname{prox}_{\frac{g}{\lambda+1}} \left(\frac{x}{\lambda+1} \right)$$

Now, using proposition 2 with the variable from the proposition λ_{prop} being such that $\lambda_{\text{prop}} = \lambda + 1$, we have that:

$$(\lambda + 1) \operatorname{prox}_{\frac{g}{\lambda + 1}} \left(\frac{x}{\lambda + 1} \right) = \operatorname{prox}_{(\lambda + 1)g} (x)$$

$$\implies \operatorname{prox}_{\frac{g}{\lambda + 1}} \left(\frac{x}{\lambda + 1} \right) = \frac{1}{\lambda + 1} \operatorname{prox}_{(\lambda + 1)g} (x)$$

$$\implies \operatorname{prox}_{f} (x) = \frac{1}{\lambda + 1} \operatorname{prox}_{(\lambda + 1)g} (x)$$

However, from section 1.1, we know that:

$$\operatorname{prox}_{\tau|\cdot|_1}(x) = \begin{cases} x - \tau, & x > \tau \\ x + \tau, & x < -\tau \\ 0, & |x| \le \tau \end{cases}$$

Therefore by separability of g and using $\tau := (\lambda + 1)$, we have that for all $i = 1, \ldots, n$:

$$\operatorname{prox}_{f}(x_{i}) = \frac{1}{\lambda + 1} \operatorname{prox}_{(\lambda+1)g}(x_{i})$$

$$= \frac{1}{\tau} \operatorname{prox}_{\tau g}(x_{i})$$

$$= \frac{1}{\tau} \times \begin{cases} x_{i} - \tau, & x_{i} > \tau \\ x_{i} + \tau, & x_{i} < -\tau \\ 0, & |x_{i}| \leq \tau \end{cases}$$

2 Tutorial 6

2.1 Question 7