

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR MATEMÁTICA 26/06/2008

Atenção: Não é permitido o uso de calculadora nem de telemóvel.

Duração: 120m

Justifique os raciocínios utilizados na resolução das questões.

1. Considere a seguinte função real de variável real:

$$f(x) = \begin{cases} \frac{\ln(x+1)}{\sqrt[5]{9-x^2}}, & x > -1\\ \frac{x}{2e^x}, & x \le -1 \end{cases}$$

1.1.[1,0 val.] Determine o domínio da função f.

1.2.[1, 0 val.] Calcule, caso existam, os zeros de f.

1.3.[1,0 val.] Calcule, caso exista, o limite de f no ponto 3.

1.4.[1, 0 val.] Estude a continuidade de f no ponto x = -1.

1.5.[1,0 val.] Utilizando a definição de diferenciabilidade num **ponto**, prove que a função f não é diferenciavel no ponto x = -1.

2.[3, 5 val.] Seja g a função, real de variável real, com $g(x) = x \ln x$. Faça o estudo completo de g, incluindo o esboço gráfico.

$$\boxed{\mathbf{3.}[1,5 \text{ val.}]} \text{ Seja sin } \theta = -\frac{3}{5} e \theta \in \left[\pi, \frac{3}{2} \pi \right[\text{. Calcule } \frac{\cos \theta + 5 \sin \theta . \cos \theta}{\operatorname{tg} \theta . \cot g \theta}.$$

4. Considere as sucessões, com $n \ge 1$:

$$U_n = \frac{3^n}{n!}$$
 $W_n = \frac{n^2}{1+n^2} - 2$ $Y_n = \left(\frac{2n-5}{2n+7}\right)^{1-n}$

Indique o valor lógico das seguintes afirmações, justificando.

4.1.[1,0 val.] A sucessão de termo geral U_n é monótona crescente.

4.2.[1, 0 val.] A sucessão de termo geral W_n é limitada.

4.3.[1,0 val.] A sucessão de termo geral Y_n é convergente.

5.[1,0 val.] Recorrendo às propriedades dos somatórios determine o valor numérico da expressão:

$$\sum_{i=3}^{52} i^2 - \sum_{i=1}^{50} (i^2 + 4i)$$

6.[1,5 val.] Os números inteiros e positivos como 1991, que se lêem da mesma maneira da direita para esquerda e da esquerda para a direita, chamam-se capicuas. Quantas capicuas com 3 algarismos se podem escrever com os algarismos de 1 a 9?

7.[1, 5 val.] Resolva, em \mathbb{N} , a equação

$$\frac{(n+2)! - 2n!}{n!} = 4$$

8. Considere uma experiência e dois acontecimentos associados a esta, $A \in B$, tais que $P(\overline{A}) = 0.4$, P(B) = 0.5 e $P(A \cup B) = 0.8$.

8.1.
$$[1,0 \text{ val.}]$$
 Determine $P(A \cap B) \in P(B-A)$.

8.2.
$$[1, 0 \text{ val.}]$$
 Os acontecimentos $A \in B$ são incompatíveis?

 $oxed{9.[1,0\ val.]}$ Numa fábrica fez-se um teste ao tempo de vida (em horas) de 150 lâmpadas e registou-se a seguinte informação:

Classes (tempos de vida em horas)	Frequências absolutas
[0, 300[5
[300, 600[10
[600, 900[42
[900, 1200[75
[1200, 1500]	18
\overline{Total}	150

Construa a tabela das frequências absolutas acumuladas e represente-as através de um histograma.