Module-4 Part – 5 Rank Correlation

Rank Correlation

- A group of individuals may be arranged in order to merit with respect to some characteristic. The same group would give different orders for different characteristics.
- Considering the orders corresponding to two characteristics A and B, the correlation between these n pairs of ranks is called the rank correlation in the characteristics A and B for that group of individuals.

Let x_i and y_i be the ranks of the ith individuals in A and B respectively. Assuming that no two individuals are bracketed equal in either case, each of the variables taking the values $1, 2, \ldots, n$,

we have,
$$\bar{x} = \bar{y} = \frac{1+2+3+...+n}{n} = \frac{n(n+1)}{2n} = \frac{n+1}{2}$$

If X and Y be the deviations of x and y from their means, then

$$\begin{split} \Sigma \, X_i^{\ 2} &= \Sigma \Big(x_i - \overline{x} \Big)^2 = \Sigma \, x_i^{\ 2} + n \Big(\overline{x} \Big)^2 - 2 \overline{x} \, \Sigma \, x_i \\ &= \Sigma \, n^2 + \frac{n \Big(n+1 \Big)^2}{4} - 2 \bigg(\frac{n+1}{2} \bigg) \Sigma \, n \\ &= \frac{n \Big(n+1 \Big) \Big(2n+1 \Big)}{6} + \frac{n \Big(n+1 \Big)^2}{4} - \frac{n \Big(n+1 \Big)^2}{2} \\ &= \frac{1}{12} \Big(n^3 - n \Big) \end{split}$$

Similarly,
$$\Sigma Y_i^2 = \frac{1}{12} (n^3 - n)$$

Now, let
$$d_i = x_i - y_i$$
 so that $d_i = (x_i - \overline{x}) - (y_i - \overline{y}) = X_i - Y_i$

$$\sum d_i^2 = \sum X_i^2 + \sum Y_i^2 - 2\sum X_i Y_i$$

$$\Rightarrow$$

$$\sum X_i Y_i = \frac{1}{2} \left[\sum X_i^2 + \sum Y_i^2 - \sum d_i^2 \right]$$

$$\Rightarrow$$

$$\sum X_{i}Y_{i} = \frac{1}{12} \left(n^{3} - n \right) - \frac{1}{2} \sum d_{i}^{2}$$

Hence the correlation coefficient between these variables is

$$r = \frac{\sum X_i Y_i}{\sqrt{\sum X_i^2 \sum Y_i^2}} = \frac{\frac{1}{12} (n^3 - n) - \frac{1}{2} \sum d_i^2}{\frac{1}{12} (n^3 - n)}$$

$$\Rightarrow r = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)}$$

This formula is called the rank correlation coefficient or Spearman's Rank Correlation Coefficient and is denoted by ρ .

i.e.,
$$\rho = 1 - \frac{6\Sigma d_i^2}{(n^3 - n)}$$

- Spearman's rank is probably one of the most useful statistical tests that we can do in Geography to prove a relationship between two different sets of data.
- The Spearman rank correlation coefficient, is the non-parametric version of the Pearson correlation coefficient. Data must be ordinal, interval or ratio. Spearman's returns a value from -1 to 1, where:

- +1 = a perfect positive correlation between ranks
- -1 = a perfect negative correlation between ranks
 - 0 = no correlation between ranks.

Note: To assign the rank for the given set of values, order the scores from greatest to smallest; assign the rank 1 to the highest score, 2 to the next highest and so on. If ranks are tied, i.e., Tied ranks are where two items in a column have the same rank then each tied data point assigned a mean rank.

Example 4.4.1: Calculate the rank correlation coefficient and comment on the following data on sunflower:

Height of a sunflower (in cm)	183	134	234	256	190	89	112
Width of the stem (in mm)	21	14	24	32	29	18	20

We have, the rank correlation coefficient is

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)}$$

Height of a sunflower (in cm)	Rank <i>x</i> _i	Width of the stem (in mm)	Rank y _i	$d_i = x_i - y_i$	d_i^{2}
183	4	21	4	0	0
134	5	14	7	-2	4
234	2	24	3	-1	1
256	1	32	1	0	0
190	3	29	2	1	1
89	7	18	6	1	1
112	6	20	5	1	1

Here,
$$n = 7$$
, $\sum d_i^2 = 8$

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)} = 1 - \frac{6(8)}{\left(7^3 - 7\right)} = 1 - 0.143 = 0.857$$

As ρ is close to one, we can conclude that the wider the stem to higher the sunflower grows.

Example 4.4.2: The scores for 9 students in Physics and Maths are as follows:

Physics:	35	23	47	17	10	43	9	6	28
Mathematics:	30	33	45	23	8	49	12	4	31

Compute the ranks of students in the two subjects and compute the Spearman's rank correlation.

We have, the rank correlation coefficient is

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)}$$

Physics	Rank <i>x</i> _i	Mathematics	Rank Vi	$d_i = x_i - y_i$	d_i^2
35	3	30	5	-2	4
23	5	33	3	2	4
47	1	45	2	-1	1
17	6	23	6	0	0
10	7	8	8	-1	1
43	2	49	1	1	1
9	8	12	7	1	1
6	9	4	9	0	0
28	4	31	4	0	0

Σ 12

Here,
$$n = 9$$
, $\Sigma d_i^2 = 12$

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)} = 1 - \frac{6(12)}{\left(9^3 - 9\right)} = 1 - 0.1 = 0.9$$

Example 4.4.3: Ten participants in a contest are ranked by two judges as follows:

X	1	6	5	10	3	2	4	9	7	8
Y	6	4	9	8	1	2	3	10	5	7

Calculate the rank correlation coefficient.

We have, the rank correlation coefficient is

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)}$$

Rank	Rank	$d_i = x_i - y_i$	d_i^2
x_i	y_i	$\alpha_i \alpha_i \gamma_i$	u_i
1	6	-5	25
6	4	2	4
5	9	-4	16
10	8	2	4
3	1	2	4
2	2	0	0
4	3	1	1
9	10	-1	1
7	5	2	4
8	7	1	1

Σ 60

Here, n = 10, $\Sigma d_i^2 = 60$

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)} = 1 - \frac{6(60)}{\left(10^3 - 10\right)} = 1 - 0.36 = 0.64$$

Example 4.4.4: Three judges A, B and C give the following ranks. Find which pair of judges has common approach

A	1	6	5	10	3	2	4	9	7	8
В	3	5	8	4	7	10	2	1	6	9
С	6	4	9	8	1	2	3	10	5	7

We have, the rank correlation coefficient is

$$\rho = 1 - \frac{6\Sigma d_i^2}{\left(n^3 - n\right)}$$

Ranks	Ranks	Ranks	d_1	d_2	d_3			
by A	by B	by C				d_1^2	d_2^2	d_3^2
x_i	y_i	z_i	$x_i - y_i$	$y_i - z_i$	$z_i - x_i$			
1	3	6	-2	-3	5	4	9	25
6	5	4	1	1	-2	1	1	4
5	8	9	-3	-1	4	9	1	16
10	4	8	6	-4	-2	36	16	4
3	7	1	-4	6	-2	16	36	4
2	10	2	-8	8	0	64	64	0
4	2	3	2	-1	-1	4	1	1
9	1	10	8	-9	1	64	81	1
7	6	5	1	1	-2	1	1	4
8	9	7	-1	2	1	1	4	1
					Σ	200	214	60

Here, n = 10

$$\rho(x,y) = 1 - \frac{6\Sigma d_1^2}{\left(n^3 - n\right)} = 1 - \frac{6(200)}{\left(10^3 - 10\right)} = -0.2$$

$$\rho(y,z) = 1 - \frac{6\Sigma d_2^2}{\left(n^3 - n\right)} = 1 - \frac{6(214)}{\left(10^3 - 10\right)} = -0.3$$

$$\rho(z,x) = 1 - \frac{6\Sigma d_3^2}{(n^3 - n)} = 1 - \frac{6(60)}{(10^3 - 10)} = 0.6$$

Since $\rho(z, x)$ is maximum, the pair of judges A and C have the nearest common approach.

EXERCISE

1. Find the rank correlation for the following data:

x	56	42	72	36	63	47	55	49	38	42	68	60
y	147	125	160	118	149	128	150	145	115	140	152	155

2. Calculate the rank correlation coefficient from the following data showing ranks of 10 students in two subjects:

Maths:	3	8	9	2	7	10	4	6	1	5
Physics:	5	9	10	1	8	7	3	4	2	6

3. Find the rank correlation coefficient for the following data

x	68	64	75	50	64	80	75	40	55	64
y	62	58	68	45	81	60	68	48	50	70

(VTU 2018)