REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD)

Broadway Viaduct - Council Bluffs, IA - TS 3 Project Number - LT - 9640-2

Prepared for: Longfellow Drilling

1260 County Highway J23

Clearfield, IA 50840

Attention: Mr. Jay Pool

Report Date: May 26, 2010

World Headquarters: 2631-D NW 41st Street, Gainesville, FL, USA 32606 Phone: 352-378-3717 ● 800-368-1138 Fax: 352-378-3934

E-mail: Info@loadtest.com Internet: www.loadtest.com

Regional Offices: Dubai • London Seoul • Singapore

May 26, 2010

Longfellow Drilling 1260 County Highway J23 Clearfield, IA 50840

Attention: Mr. Jay Pool

Load Test Report: Broadway Viaduct - Council Bluffs, IA - TS 3

Dear Mr. Pool,

The enclosed report contains the data and analysis summary for the O-cell test performed on Broadway Viaduct - Council Bluffs, IA - TS 3 (LTI project LT - 9640-2) on May 20, 2010. For your convenience, we have included an executive summary of the test results in addition to our standard detailed data report.

We would like to express our gratitude for the on-site and off-site assistance provided by your team and we look forward to working with you on future projects.

We trust that this information will meet your current project needs. If you have any questions, please do not hesitate to contact us at (800) 368-1138.

Best Regards,

Robert Simpson

LOADTEST, Inc.

EXECUTIVE SUMMARY

LOADTEST, Inc. tested a 60-inch (1524-mm) drilled shaft on May 20, 2010. Mr. Bill Ryan of LOADTEST, Inc. carried out the test. Longfellow Drilling completed construction of the 75.2-foot (22.9-meter) deep shaft (from ground surface) on May 5, 2010. Sub-surface conditions at the test shaft location consist primarily of sands and silty clay. Representatives of the lowa Department of Transportation observed construction of the shaft.

The maximum bi-directional load applied to the shaft was 1308 kips (5.82 MN). At the maximum load, the displacements above and below the O-cell were 0.812 inches (20.62 mm) and 4.65 inches (118.1 mm), respectively. Average unit shear data calculated from strain gages included a calculated net unit side shear of 4.3 ksf (205 kPa), occurring between the Level 3 Strain Gages and the O-cell. We also calculate a maximum applied end bearing pressure of 39.7 ksf (1,900 kPa).

Using the procedures described in the report text and in <u>Appendix C</u>, we constructed an equivalent top load curve for the test shaft. For a top loading of 965 kips (4.29 MN), the adjusted test data indicate this shaft would settle approximately 0.250 inches (6.35 mm) of which 0.064 inches (1.63 mm) is estimated elastic compression (see <u>Figure 8</u>).

LIMITATIONS OF EXECUTIVE SUMMARY

We include this executive summary to provide a very brief presentation of some of the key elements of this O-cell test. It is by no means intended to be a comprehensive or stand-alone representation of the test results. The full text of the report and the attached appendices contain important information which the engineer can use to come to more informed conclusions about the data presented herein.

TABLE OF CONTENTS

Site Conditions and Shaft Construction	1
Site Sub-surface ConditionsTest Shaft Construction	1 1
Osterberg Cell Testing	1
Shaft Instrumentation Test Arrangement Data Acquisition Testing Procedures	2 2
Test Results and Analyses	3
General Side Shear Resistance Combined End Bearing and Lower Side Shear Resistance Creep Limit Equivalent Top Load Shaft Compression Comparison	4 4 5
Limitations and Standard of Care	-

- Average Net Unit Side Shear Values, <u>Table A</u>.
- Summary of Dimensions, Elevations & Shaft Properties, <u>Table B</u>.
- Schematic Section of Test Shaft, Figure A.
- Osterberg Cell Load-Displacement Plots, <u>Figure 1</u>.
- Osterberg Cell Time-Displacement Plots, Figure 2.
- Osterberg Cell Time-Load Plots, Figure 3.
- Strain Gage Load Distribution Plots, Figure 4.
- Mobilized Upper Net Unit Shear Plots, Figure 5.
- Mobilized Lower Net Unit Shear Plots, Figure 6.
- Mobilized Unit End Bearing Plots, Figure 7.
- Equivalent Top Load Plots, <u>Figure 8.</u>
- Field Data & Data Reduction, Appendix A.
- O-cell and Instrumentation Calibration Sheets, Appendix B.
- Construction of the Equivalent Top-Loaded Load-Settlement Curve, Appendix C.
- O-cell Method for Determining Creep Limit Loading, Appendix D.
- Soil Boring Log, Appendix E.

SITE CONDITIONS AND SHAFT CONSTRUCTION

Site Sub-surface Conditions: The sub-surface stratigraphy at the general location of the test shaft is reported to consist of sand and silty clay. The generalized subsurface profile is included in <u>Figure A</u> and a boring log indicating conditions near the shaft is presented in <u>Appendix E</u>. More detailed geologic information can be obtained from the lowa Department of Transportation.

Test Shaft Construction: Longfellow Drilling completed construction of the test shaft on May 5, 2010. The shaft was constructed with a total length of 75.2 feet (22.91 meters) (from ground surface). The test shaft was constructed wet using polymer to a tip depth of -75.2 feet (-22.9 meters). An auger was used for drilling the shaft. The bottom of the shaft was cleaned with a cleaning bucket after drilling. Concrete was placed by tremie. <u>Table B</u> contains a summary of dimensions, elevations and shaft properties used in the data evaluations.

OSTERBERG CELL TESTING

Shaft Instrumentation: Test shaft instrumentation and assembly was carried out under the direction of Andy Skiffington of LOADTEST, Inc. The loading assembly consisted of a single 24-inch (610-mm) diameter O-cell located 14.8 feet (4.50 meters) above the tip of shaft. The Osterberg cell was calibrated to 2,940 kips (13.08 MN) and welded closed prior to shipping by American Equipment and Fabricating Corporation (see <u>Appendix B</u>).

Standard O-cell instrumentation included three LVWDTs (Linear Vibrating Wire Displacement Transducers - Geokon Model 4450 series) positioned between the lower and upper plates of the O-cell assembly to measure expansion (Appendix A, Page 2). Two lengths of ½-inch steel pipe were attached to the rebar cage, diametrically opposed, to measure compression of the shaft between the O-cell and the top of the shaft with traditional telltales that were installed on the day of the test.

Strain gages were used to assess the side shear load transfer along the shaft. One level of four and one level of three sister bar vibrating wire strain gages were installed, equally spaced on each level, in the shaft below the base of the O-cell assembly and five levels of three were installed in the shaft above it. Details concerning the strain gage placement appear in <u>Table B</u> and <u>Figure A</u>. The strain gages were positioned as directed by the lowa Department of Transportation.

The test shaft assembly also included two lines of steel pipe, starting at the top-of-shaft and terminating at the top of the bottom plate to vent the break in the shaft between upward and downward movement and the resulting annular void. If desired

they permit the application of excess fluid pressure to reduce the possibility of soil entering the void.

Test Arrangement: Throughout the load test, key elements of shaft response were monitored using the equipment and instruments described herein. Shaft compression was measured using telltales (described under Shaft Instrumentation) monitored by Linear Vibrating Wire Displacement Transducers (LVWDTs) (Geokon - 4450). Two automated digital survey levels (Leica NA3003) were used to monitor the top of shaft movement during testing from a distance of approximately 22 feet (6.7 meters) (Appendix A, Page 1).

Both a Bourdon pressure gage and a vibrating wire pressure transducer were used to measure the pressure applied to the O-cell at each load interval. We used the pressure transducer for setting and maintaining loads, data analysis and for real time plotting. The Bourdon gage was used as a check on the pressure transducer. There was close agreement between the Bourdon gage and the pressure transducer throughout the test.

Data Acquisition: All of the movement indicators, LVWDTs and strain gages were connected to a data logger (Data Electronics - Model 615 Datataker®). The data logger, in turn, was connected to a laptop computer. This arrangement allowed movement indicator, LVWDT and strain gage readings to be recorded and stored automatically at 30 second intervals during the test. It also allowed the automatic importation of all test data into a laptop computer for real-time display and additional data back-up. The Leica (NA3003) data was imported real-time directly to the same lap top computer set to the same time as the data logging system.

Testing Procedures: As with all of our tests, we begin by loading the O-cell in order to break the tack welds that hold it closed (for handling and for placement in the shaft) and to form the fracture plane in the concrete surrounding the base of the O-cell. After the break occurs, we immediately release the load and then begin the loading procedure. Zero readings for all instrumentation are taken prior to the preliminary weld-breaking load-unload cycle, which in this case involved a maximum O-cell load of 279 kips (1.2 MN).

The Osterberg cell load test was conducted as follows: The 24-inch (610-mm) diameter O-cell located 14.8 feet (4.50 meters) above the tip of shaft was loaded to assess the base resistance below the O-cell assembly and the side shear above it. The O-cell was loaded in 11 increments to 1,308 kips (5.82 MN). The loading was halted after load interval 1L-11 because the shear resistance was approaching ultimate capacity The O-cell was then depressurized in four decrements and the test was concluded. It should be noted that the final increment was half of the previous ten due to rapid displacement.

We applied the load increments using the Quick Load Test Method for Individual Piles (ASTM D1143 Standard Test Method for Piles Under Static Axial Load), holding each successive load increment constant for eight minutes by manually adjusting the O-cell pressure. We used approximately 60 seconds to move between increments. The data logger automatically recorded the instrument readings every 30 seconds, but herein we report only the one, two, four and eight-minute readings during each increment of maintained load. The various plotted results generally use the one, two, four and eight minute readings, but the creep results use the difference between the four and eight-minute readings.

TEST RESULTS AND ANALYSES

General: The loads applied by the O-cell act in two opposing directions, resisted by the capacity of the shaft above and below. Theoretically, the O-cell does not impose an additional upward load until its expansion force exceeds the buoyant weight of the shaft above the O-cell. Therefore, *net load*, which is defined as gross O-cell load minus the buoyant weight of the shaft above, is used to determine side shear resistance above the O-cell and to construct the equivalent top-loaded load-settlement curve. For this test we calculated a buoyant weight of shaft of 139 kips (0.62 MN) above the O-cell.

Side Shear Resistance: The maximum upward *net load* applied to the side shear was 1,168 kips (5.2 MN) which occurred at load interval 1L-11 (<u>Appendix A, Page 3, Figures 1, 2 and 3</u>). At this loading, the total upward movement of the top of the Ocell assembly was 0.812 inches (20.62 mm). The following net unit side shear estimates are based on the strain gage data which appear in <u>Appendix A, Pages 4</u> to 7 and the shaft stiffnesses computed below.

At the time of testing, the concrete unconfined compressive strength was reported to be 6,010 psi (41.4 MPa). We used the ACI formula (E_c =57,000 $\sqrt{f'c}$) to calculate an elastic modulus for the concrete. This, combined with the area of reinforcing steel and shaft diameter, was used to determine a weighted average shaft stiffness of 14,000,000 kips (62,300 MN) for the shaft. The unit stiffnesses vary somewhat throughout the shaft due to diameter (see caliper report) and percent steel variations. Therefore different stiffnesses are used when computing load from different strain gage levels. The various stiffnesses for each zone are given in Table B. Estimated net unit side shear values for the shaft based on the strain gage data, estimated shaft stiffnesses and shaft area are as follows:

Table A: Mobilized Average Net Unit Side Shear Values for 1L-11¹

Load Transfer Zone	Load Direction	Net Unit Side Shear ²
Top of Shaft to Strain Gage Level 7	↑ @ 0.80 inches	0.20 ksf (10 kPa)
Strain Gage Level 7 to Strain Gage Level 6	↑ @ 0.80 inches	0.31 ksf (15 kPa)
Strain Gage Level 6 to Strain Gage Level 5	↑ @ 0.80 inches	1.85 ksf (89 kPa)
Strain Gage Level 5 to Strain Gage Level 4	↑ @ 0.81 inches	1.37 ksf (65 kPa)
Strain Gage Level 4 to Strain Gage Level 3	↑ @ 0.81 inches	1.25 ksf (60 kPa)
Strain Gage Level 3 to O-cell	↑ @ 0.81 inches	4.29 ksf (205 kPa)
O-cell to Strain Gage Level 2	↓ @ 4.65 inches	3.92 ksf (188 kPa)
Strain Gage Level 2 to Strain Gage Level 1	↓ @ 4.65 inches	1.29 ksf (62 kPa)

At the maximum displacement either up or down reported herein. See <u>Figures 5 and 6</u> for net unit shear vs. displacement plots.

Side shear load distribution curves generated from strain gage data are shown in <u>Figure 4</u>. A unit side shear value for the shaft between the Level 2 strain gages and the Level 1 strain gages was calculated for 1L-11 to obtain an estimate of the base shear component of resistance to the downward movement between the Level 1 strain gages and the tip of shaft.

Combined End Bearing and Lower Side Shear Resistance: The maximum O-cell load applied to the base of the shaft was 1,308 kips (5.82 MN) which occurred at load interval 1L-11 (Appendix A, Page 3, Figure 1). At this loading, the total downward movement of the O-cell base was 4.651 inches (118.1 mm). The base resistance includes a small component of base shear (as discussed above) which must be subtracted to obtain unit end bearing values. The shear component of resistance for the shaft section the between the Level 1 strain gages and the tip of shaft is calculated to be 36 kips (0.2 MN) assuming a unit side shear value of 1.29 ksf (62 kPa) and a nominal shaft diameter of 60 inches (1524 mm). The applied load to end bearing is then 805 kips (3.58 MN) and the end-bearing pressure applied at the tip of the shaft is calculated to be 39.7 ksf (1,900 kPa).

Creep Limit: See <u>Appendix D</u> for our O-cell method for determining creep limit. The upward side shear creep data (<u>Appendix A, Page 3</u>) indicate that a creep limit of 800 kips (3.56 MN) was reached at a movement of 0.23 inches (5.8 mm) (<u>Appendix D, Figure 1</u>). The combined end bearing and lower side shear creep data (<u>Appendix A, Page 3</u>) indicate that a creep limit of 470 kips (2.09 MN) was reached at a movement of 0.30 inches (7.6 mm) (<u>Appendix D, Figure 2</u>). The engineer should

²For upward loaded shear, the buoyant weight of shaft in each zone has been subtracted from the load shed in the respective zone.

come to his own conclusions with regard to the suitability of the creep limit analysis to address long term creep which may be an important design consideration.

Equivalent Top Load: Figure 2 presents the equivalent top load curve. The unadjusted lighter curve, described in Procedure Part I of Appendix C, was generated by using the measured upward top of O-cell and downward base of O-cell data. Because it can be an important component of the settlements involved, the equivalent top load curve includes an adjustment for the additional elastic compression which would occur in a top-load test. The darker curve as described in Procedure Part II of Appendix C includes such an adjustment.

We mobilized a combined end bearing and side shear resistance of 2,476 kips (11.01 MN) during the test. For a top loading of 965 kips (4.29 MN), the adjusted test data indicate this shaft would settle approximately 0.250 inches (6.35 mm) of which 0.064 inches (1.63 mm) is estimated elastic compression (see <u>Figure 2</u>).

Shaft Compression Comparison: The measured maximum shaft compression, averaged from 2 telltales, is 0.022 inches (0.57 mm). Using the nominal shaft diameter(s) (<u>Table B and Figure A</u>), a weighted average shaft stiffness of 14,000,000 kips (62,300 MN) and the load distribution in <u>Figure 3</u>, we calculated an elastic compression of 0.018 inches (0.46 mm) over the length of the compression telltales.

LIMITATIONS AND STANDARD OF CARE

The instrumentation, testing services and data analysis provided by LOADTEST, Inc., outlined in this report, were performed in accordance with the accepted standards of care recognized by professionals in the drilled shaft and foundation engineering industry.

Please note that some of the information contained in this report is based on data (i.e. shaft diameter, elevations and concrete strength) provided by others. The engineer, therefore, should come to his or her own conclusions with regard to the analyses as they depend on this information. In particular, LOADTEST, Inc. typically does not observe and record drilled shaft construction details to the level of precision that the project engineer may require. In many cases, we may not be present for the entire duration of shaft construction. Since construction technique can play a significant role in determining the load bearing capacity of a drilled shaft, the engineer should pay close attention to the drilled shaft construction details that were recorded elsewhere.

We trust that this information will meet your current project needs. If you have any questions, please do not hesitate to contact us at (800) 368-1138.

Prepared for LOADTEST, Inc. by

Robert C. Simpson Senior Engineer

Reviewed for LOADTEST, Inc. by

David J. Jakstis, P.E. Geotechnical Engineer

TABLE B: SUMMARY OF DIMENSIONS, DEPTHS, AREAS & PROPERTIES FOR ANALYSIS PURPOSES

Shaft: (TS 3, Broadway Viaduct, Council Bluffs, IA, LT-9640-2)			
Nominal shaft diameter: +0.00 ft to -11.17 ft ¹	=	66 inches	1676 mm
Nominal shaft diameter: -11.17 ft to -75.17 ft ¹	=	60 inches	1524 mm
O-cell size: (Serial no.: 24-6-00121)	=	24 inches	610 mm
Length of concrete from break at base of cell to tip	=	14.8 feet	4.5 meters
Shaft shear area from break at base of cell to tip	=	231.7 feet ²	21.52 meters ²
Shaft end area	=	19.6 feet ²	1.82 meters ²
Weight of shaft from break at base of cell to top of shaft	=	139.3 kips	0.62 MN
Estimated shaft unit stiffness: +0.00 ft to -8.00 ft	=	1.56E+07 kips	69.5 GN
Estimated shaft unit stiffness: -8.00 ft to -11.17 ft	=	1.38E+07 kips	61.6 GN
Estimated shaft unit stiffness: -11.17 ft to -22.00 ft	=	1.43E+07 kips	63.5 GN
Estimated shaft unit stiffness: -22.00 ft to -34.00 ft	=	1.38E+07 kips	61.6 GN
Estimated shaft unit stiffness: -34.00 ft to -75.00 ft	=	1.34E+07 kips	59.7 GN
Depth of top of shaft concrete	=	+0.00 feet	+0.00 meters
Depth of ground surface	=	+0.00 feet	+0.00 meters
Water depth	=	-16.00 feet	-4.88 meters
Depth of break at base of O-cell	=	-60.42 feet	-18.42 meters
Depth of shaft tip	=	-75.17 feet	-22.91 meters
		70	
Casings:			
Depth of top of inner temporary casing: 66 inches O.D.	=	+0.83 feet	0.25 meters
Depth of bottom of inner temporary casing: 66 inches O.D.	=	-11.17 feet	-3.40 meters
, , ,			
Measured Compression Zones:			
Depth of top of zone	=	+0.00 feet	+0.00 meters
Depth of bottom of telltale (bottom of zone)	=	-59.12 feet	-18.02 meters
Strain Gages:			
Depth of strain gage level 7 (AE = 15,300,000)	=	-10.50 feet	-3.20 meters
Depth of strain gage level 6 (AE = 13,800,000)	=	-25.50 feet	-7.77 meters
Depth of strain gage level 5 (AE = 13,400,000)	=	-35.42 feet	-10.80 meters
Depth of strain gage level 4 (AE = 13,400,000)	=	-45.58 feet	-13.89 meters
Depth of strain gage level 3 (AE = 13,400,000)	=	-55.42 feet	-16.89 meters
Depth of strain gage level 2 (AE = 13,400,000)	=	-65.33 feet	-19.91 meters
Depth of strain gage level 1 (AE = 13,400,000)	=	-73.42 feet	-22.38 meters
Missallanasus			
Miscellaneous:		47.75 in ab a a	1010
Top plate diameter	=	47.75 inches	1213 mm
Top plate thickness	=	2.0 inches	50.8 mm
Bottom plate diameter	=	47.75 inches	1213 mm
Bottom plate thickness	=	2.0 inches	50.8 mm
Vertical rebar size	=	# 11	36M
Number of vertical rebars	=	19	19
Hoop rebar size	=	# 4	13M
Number of hoops	=	85	85
LVWDT radii - no: 1004895	=	17.0 inches	432 mm
LVWDT orientation - no.: 1004895	=	0 degrees	400
LVWDT radii - no: 1004896	=	17.0 inches	432 mm
LVWDT orientation - no.: 1004896	=	180 degrees	E00
LVWDT radii - no: 1004900	=	20.0 inches	508 mm
LVWDT orientation - no.: 1004900	=	270 degrees	

¹Actual diameter varies based on caliper data, See caliper report.

2631-D NW 41st St. Gainesville, FL 32606 Phone: 800-368-1138 FAX: 352-378-3934

SCHEMATIC SECTION OF TEST SHAFT 3

Broadyway Viaduct — Council Bluffs, IA

DWN BY: BDH DATE: 06 Nov 2009 CHECKED BY: LT-9640-2

REVISED BY: AJS DATE: 10 May 2010 SCALE: NTS FIGURE A

Osterberg Cell Load vs.Displacement Plots

Osterberg Cell Time vs. Displacement Plots

Osterberg Cell Load vs. Time

Strain Gage Load Distribution Plots

Net Unit Shear vs. Upward Average Zone Movement

Net Unit Shear vs. Downward O-cell Movement

Downward O-cell Movement (inches)

Mobilized Unit End Bearing vs. Downward O-cell Displacement Broadway Viaduct - Council Bluffs, IA - TS 3

Derived Top Load-Displacement Plots

Derived Top Load (kips)

APPENDIX A

FIELD DATA & DATA REDUCTION

Top of Shaft Movement and Compression

Broadway Viaduct - Council Bluffs, IA - TS 3 Load Time Time Afte O-cell Applied Net TOS Indicator Readings Telltale Compression Average Test Start Pressure Load Load Side A Side B Side A Side B Incremen (h:m:s) Minutes (psi) (kips) (kips) inches inches' (inches) inches inches (inches) 11 -0 10:41:00 0.000 0.000 0.00 0.000 0.000 0.000 400 131 1L -1 11:43:00 0.01 0.012 0.01 0.002 0.003 0.00 1L -1 11:44:00 2 400 0.01 0.012 0.01 0.002 0.003 0.003 131 1L -1 11:46:00 4 400 131 0.01 0.012 0.01 0.003 0.003 0.003 11:50:00 400 0.01 0.022 0.01 0.003 0.003 0.00 1L -2 11:53:00 800 255 115 0.022 0.023 0.02 0.004 0.005 0.00 255 1L -2 11:54:00 2 800 115 0.022 0.023 0.022 0.004 0.005 0.005 1L -2 11:56:00 4 800 255 115 0.022 0.023 0.022 0.004 0.005 0.00 12:00:00 0.036 0.005 1L -2 800 255 11 0.022 0.029 0.004 0.00 8 1L -3 12:02:00 1,200 379 239 0.035 0.036 0.03 0.006 0.007 0.00 1L -3 12:03:00 2 1,200 379 239 0.035 0.037 0.036 0.006 0.007 0.00 11 -3 12:05:00 4 1 200 379 239 0.036 0.037 0.037 0.006 0.007 0.007 12:09:00 1.200 379 239 0.036 0.054 0.045 0.006 0.008 0.007 1L -3 8 1L -4 1,600 363 0.054 0.057 0.056 0.008 0.010 12:11:30 503 0.009 2 12:12:30 1,600 503 363 0.054 0.057 0.056 0.008 0.010 0.009 1L -4 12:14:30 4 1,600 503 363 0.055 0.057 0.056 0.009 0.010 0.009 0.010 1L -4 12:18:30 1,600 503 363 0.056 0.077 0.067 0.009 0.009 11 -5 12:21:00 2 000 626 487 0.076 0.081 0.07 0.010 0.012 0.01 1L -5 487 626 12:22:00 2,000 0.078 0.081 0.079 0.010 0.01 2 0.012 1L -5 12:24:00 2,000 626 487 0.079 0.082 0.08 0.010 0.012 0.01 487 1L -5 12:28:00 2,000 626 0.081 0.095 0.088 0.011 0.013 0.012 8 1L -6 12:32:00 2,400 750 611 0.109 0.116 0.113 0.012 0.015 0.014 1L -6 12:33:00 2 2.400 750 61 0.112 0.117 0.11 0.012 0.015 0.01 1L -6 12:35:00 2.400 750 61 0.115 0.119 0.117 0.012 0.015 0.014 12:39:00 2,400 750 0.118 0.012 1L -6 61 0.136 0.127 0.015 0.014 12:45:00 2,800 874 73 0.163 0.170 0.167 0.014 0.018 0.016 1L -7 12:46:00 2 2,800 874 735 0.166 0.171 0.169 0.014 0.018 0.016 1L -7 12:48:00 4 2.800 874 735 0.169 0.174 0.172 0.014 0.018 0.016 11 -7 12:51:00 2 800 874 735 0.172 0.184 0.178 0.014 0.018 0.016 1L -8 859 13:01:00 3.200 998 0.24 0.250 0.24 0.015 0.020 0.01 1L -8 13:02:00 3,200 998 859 0.244 0.253 0.249 0.015 0.020 0.017 1L -8 13:04:00 4 3,200 998 859 0.248 0.256 0.252 0.015 0.020 0.018 1L -8 13:08:00 3,200 998 859 0.254 0.282 0.268 0.015 0.020 0.018 1L -9 13:15:30 3.600 1.122 983 0.344 0.362 0.35 0.016 0.021 0.019 2 1L -9 13:16:30 3.600 1.122 983 0.35° 0.368 0.360 0.016 0.021 0.019 1L -9 0.37 13:18:30 3,600 1,122 983 0.363 0.378 0.016 0.021 0.019 13:22:30 3.600 0.379 0.410 0.395 0.016 0.022 0.019 1L -10 13:34:00 4,000 1,246 1,107 0.529 0.554 0.542 0.016 0.025 0.02 1L -10 13:35:00 2 4.000 1,246 1,107 0.540 0.562 0.55 0.017 0.025 0.02 11 -10 13:37:00 4 4 000 1 246 1.107 0.554 0.575 0.564 0.016 0.025 0.02 1L -10 13:41:00 4.000 1.246 0.579 0.614 0.597 0.016 0.025 0.02 8 1.107 1L -11 13:49:00 4,200 1,308 1,168 0.733 0.759 0.746 0.017 0.02 0.028 13:50:00 2 4,200 1,308 0.756 1L -11 1,168 0.743 0.769 0.017 0.028 0.022 1L -11 13:52:00 4 4,200 1,308 1,168 0.761 0.787 0.77 0.017 0.028 0.022 1L -11 13:56:00 8 4.200 1.308 1.168 0.794 0.785 0.790.017 0.028 0.02 1U - 1 13:58:30 3 200 998 859 0.775 0.784 0.780 0.013 0.026 0.019 13:59:30 2 3.200 998 859 0.784 0.019 1U - 1 0.776 0.780 0.013 0.026 3 1U - 1 14:00:30 3,200 998 859 0.774 0.762 0.768 0.013 0.026 0.019 14:01:30 3,200 859 0.013 0.019 998 0.774 0.758 0.76 0.026 1U - 2 14:03:00 2,400 750 61 0.748 0.757 0.753 0.010 0.025 0.018 1U - 2 14:04:00 2 2.400 750 61 0.748 0.757 0.753 0.010 0.025 0.018 1U - 2 14:05:00 3 2.400 750 61 0.748 0.757 0.75 0.010 0.025 0.018 14:06:00 2,400 750 0.747 0.725 0.010 0.018 61 0.730.025 1U - 3 14:09:00 1,600 503 36 0.709 0.717 0.71 0.01 1U - 3 14:10:00 2 1,600 503 363 0.708 0.717 0.713 0.007 0.021 0.01 1U - 3 14:11:00 3 1,600 503 363 0.708 0.687 0.698 0.007 0.021 0.014 1U - 3 14.12.00 4 1.600 503 363 0.708 0.650 0.679 0.007 0.021 0.01 1U - 4 14:14:30 800 255 115 0.640 0.647 0.644 0.005 0.017 0.01 1U - 4 14:15:30 2 255 0.639 0.646 0.017 0.01 800 115 0.643 0.005 1U - 4 14:16:30 3 255 115 0.639 0.598 0.619 0.005 0.017 0.01 800 1U - 4 14:17:30 800 255 115 0.639 0.482 0.560 0.005 0.017 0.011 1U - 5 14:20:00 0.460 0.458 0.459 0.002 0.010 0.006 0.455 0.455 0.455 1U - 5 14:21:00 2 0.002 0.010 0.006 0.449 0.453 1U - 5 0.45 14:23:00 0.002 0.010 0.006 14:27:00 0.445 0.449 0.447 0.002 0.006

O-cell Expansion Broadway Viaduct - Council Bluffs, IA - TS 3

Test			Bı	oadway	Viaduct		il Bluffs, IA			
	Load	Time	Time After	O-cell	Applied	Net	L١	/WDT Readin	gs (Expansior	n)
110	Test			Pressure	Load	Load	1004895	1004896	1004900	
111	Increment	(h:m:s)	Minutes	(psi)	(kips)	(kips)	(inches)	(inches)	(inches)	(inches)
111	1L -0						0.000	0.000	0.000	0.000
111	1L -1									
111	1L -1									
11-2	1L -1					-				
112	1L -1									
11-2										
112										
113										
11-3										
113 12.09.00 4 1.200 379 239 0.254 0.257 0.256 0.255 113 12.09.00 8 1.200 379 239 0.261 0.264 0.253 0.263 114 12:11:30 1 1.600 503 363 0.401 0.407 0.407 0.407 114 12:12:30 2 1.600 503 363 0.410 0.416 0.417 0.413 114 12:14:30 4 1.600 503 363 0.420 0.422 0.428 0.428 0.425 114 12:18:30 8 1.600 503 363 0.422 0.428 0.428 0.425 115 12:21:00 1 2.000 626 487 0.593 0.601 0.603 0.597 115 12:22:00 2 2.000 626 487 0.609 0.616 0.619 0.619 0.611 15 12:22:00 2 2.000 626 487 0.609 0.616 0.619 0.619 0.611 15 12:22:00 2 2.000 626 487 0.629 0.636 0.639 0.632 115 12:23:00 1 2.400 750 611 0.868 0.877 0.884 0.873 116 12:33:00 2 2.400 750 611 0.900 0.910 0.918 0.995 116 12:35:00 4 2.400 750 611 0.900 0.910 0.918 0.995 116 12:35:00 4 2.400 750 611 0.908 0.989 0.988 0.985 117 12:45:00 1 2.800 874 735 1.366 1.368 1.379 1.362 117 12:46:00 2 2.800 874 735 1.366 1.384 1.396 1.407 1.380 117 12:46:00 4 2.800 874 735 1.366 1.384 1.396 1.407 1.380 117 12:45:00 1 3.200 988 859 2.049 2.066 2.084 2.057 118 13:01:00 1 3.200 998 859 2.049 2.066 2.084 2.057 118 13:01:00 1 3.200 998 859 2.049 2.066 2.084 2.057 118 13:01:00 1 3.200 998 859 2.049 2.066 2.084 2.057 118 13:01:00 1 3.200 998 859 2.049 2.066 2.084 2.057 118 13:04:00 4 3.200 998 859 2.049 2.090 2.096 2.084 2.057 118 13:04:00 4 3.200 998 859 2.049 2.090 2.096 2.084 2.057 118 13:04:00 4 3.200 998 859 2.049 2.090 2.096 2.084 2.057 118 13:04:00 4 3.200 998 859 2.049 2.090 2.096 2.084 2.057 118 13:04:00 4 3.200 998 859 2.049 2.090 2.096 2.084 2.057 118 13:04:00 4 3.200 998 859 2.049 2.090 2.096 2.084 2.057 119 13:15:30 1 3.600 1.122 983 3.037 3.057 3.087 3										
113										
114										
114										
114										
114										
115										
115										
115										
11_5										
11-6										
11_6										
11_6										
11_6	1L -6									
1L - 7	1L -6									
1L - 7	1L -7									
11_7	1L -7	12:46:00	2	2,800	874	735	1.384	1.396	1.407	1.390
11	1L -7	12:48:00	4	2,800	874	735	1.423	1.436	1.448	1.429
1L - 8	1L -7	12:51:00	8	2,800	874	735	1.465	1.478	1.490	1.472
1L - 8 13:04:00 4 3,200 998 859 2.124 2.140 2.159 2.132 1L - 8 13:08:00 8 3,200 998 859 2.190 2.207 2.222 2.198 1L - 9 13:16:30 2 3,600 1,122 983 2.937 2.958 2.986 2.947 1L - 9 13:18:30 4 3,600 1,122 983 3.037 3.057 3.087 3.047 1L - 9 13:34:00 1 4,000 1,246 1,107 4.71 4.195 4.233 4.183 1L - 10 13:34:00 1 4,000 1,246 1,107 4.232 4.256 4.296 4.244 1L - 10 13:35:00 2 4,000 1,246 1,107 4.332 4.356 4.296 4.241 1L - 10 13:34:00 8 4,000 1,246 1,107 4.232 4.256 4.296 4.244 1L - 11 13:49:00	1L -8	13:01:00	1	3,200	998	859	2.049	2.066	2.084	2.057
1L - 8 13:08:00 8 3,200 998 859 2.190 2.207 2.222 2.198 1L - 9 13:16:30 1 3,600 1,122 983 2.880 2.901 2.928 2.890 1L - 9 13:18:30 4 3,600 1,122 983 3.037 3.057 3.087 3.047 1L - 9 13:22:30 8 3,600 1,122 983 3.177 3.197 3.225 3.187 1L - 10 13:32:00 1 4,000 1,246 1,107 4.171 4.195 4.233 4.183 1L - 10 13:37:00 4 4,000 1,246 1,107 4.332 4.356 4.396 4.244 1L - 10 13:34:00 1 4,000 1,246 1,107 4.432 4.256 4.296 4.244 1L - 10 13:34:00 1 4,000 1,246 1,107 4.485 4.510 4.244 4.244 1.107 4.485 4.510	1L -8	13:02:00		3,200	998	859	2.078	2.094	2.114	2.086
1L - 9	1L -8	13:04:00		3,200	998	859	2.124	2.140	2.159	2.132
1L -9 13:16:30 2 3,600 1,122 983 2.937 2.958 2.986 2.947 1L -9 13:18:30 4 3,600 1,122 983 3.037 3.057 3.087 3.047 1L -9 13:32:30 8 3,600 1,122 983 3.177 3.197 3.225 3.187 1L -10 13:34:00 1 4,000 1,246 1,107 4.232 4.256 4.296 4.244 1L -10 13:37:00 4 4,000 1,246 1,107 4.232 4.256 4.296 4.244 1L -10 13:34:00 8 4,000 1,246 1,107 4.332 4.356 4.396 4.344 1L -11 13:49:00 1 4,200 1,308 1,168 5.232 5.257 5.290 5.245 1L -11 13:55:00 2 4,200 1,308 1,168 5.322 5.257 5.290 5.245 1L -11 13:55:00	1L -8			3,200						
1L -9 13:18:30 4 3,600 1,122 983 3.037 3.057 3.087 3.047 1L -9 13:22:30 8 3,600 1,122 983 3.177 3.197 3.225 3.187 1L -10 13:34:00 1 4,000 1,246 1,107 4.171 4.195 4.233 4.183 1L -10 13:35:00 2 4,000 1,246 1,107 4.332 4.366 4.296 4.241 1L -10 13:37:00 4 4,000 1,246 1,107 4.332 4.356 4.396 4.344 1L -11 13:41:00 8 4,000 1,308 1,168 5.184 5.210 5.249 4.498 1L -11 13:50:00 2 4,200 1,308 1,168 5.345 5.340 5.370 5.327 1L -11 13:56:00 8 4,200 1,308 1,168 5.456 5.448 5.405 1L -1 13:59:30 1	1L -9									
1L - 9										
1L -10										
1L -10 13:35:00 2 4,000 1,246 1,107 4.232 4.256 4.296 4.244 1L -10 13:37:00 4 4,000 1,246 1,107 4.332 4.356 4.396 4.344 1L -10 13:41:00 8 4,000 1,246 1,107 4.485 4.510 4.549 4.98 1L -11 13:40:00 1 4,200 1,308 1,168 5.232 5.257 5.290 5.245 1L -11 13:50:00 2 4,200 1,308 1,168 5.315 5.340 5.370 5.327 1L -11 13:55:00 4 4,200 1,308 1,168 5.315 5.340 5.370 5.327 1L -11 13:56:00 8 4,200 1,308 1,168 5.452 5.476 5.511 5.468 1L -11 13:59:30 2 3,200 998 859 5.392 5.418 5.469 5.405 1U - 1 14:00:30 <td></td>										
1L -10 13:37:00 4 4,000 1,246 1,107 4.332 4.356 4.396 4.344 1L -10 13:41:00 8 4,000 1,246 1,107 4.485 4.510 4.549 4.498 1L -11 13:49:00 1 4,200 1,308 1,168 5.184 5.210 5.243 5.197 1L -11 13:50:00 2 4,200 1,308 1,168 5.315 5.340 5.370 5.327 1L -11 13:56:00 8 4,200 1,308 1,168 5.451 5.340 5.370 5.327 1L -11 13:56:00 8 4,200 1,308 1,168 5.455 5.476 5.511 5.463 1U - 1 13:59:30 1 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30 4 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30										
1L -10										
1L -11										
1L -11 13:50:00 2 4,200 1,308 1,168 5.232 5.257 5.290 5.245 1L -11 13:52:00 4 4,200 1,308 1,168 5.315 5.340 5.370 5.327 1L -11 13:56:00 8 4,200 1,308 1,168 5.451 5.340 5.370 5.327 1U - 1 13:59:30 1 3,200 998 859 5.392 5.418 5.469 5.405 1U - 1 14:00:30 3 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30 4 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30 4 3,200 998 859 5.392 5.418 5.468 5.405 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.388 5.325 1U - 2 14:05:00 3										
1111										
1L -11 13:56:00 8 4,200 1,308 1,168 5.450 5.476 5.511 5.463 1U - 1 13:58:30 1 3,200 998 859 5.392 5.418 5.469 5.405 1U - 1 13:59:30 2 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:00:30 3 3,200 998 859 5.392 5.418 5.468 5.405 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.388 5.325 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.386 5.324 1U - 2 14:05:00 3 2,400 750 611 5.311 5.337 5.386 5.324 1U - 2 14:06:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 2 14:06:00 4										
1U - 1 13:58:30 1 3,200 998 859 5.392 5.418 5.469 5.405 1U - 1 13:59:30 2 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:00:30 3 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30 4 3,200 998 859 5.392 5.417 5.468 5.405 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.386 5.325 1U - 2 14:04:00 2 2,400 750 611 5.311 5.337 5.366 5.324 1U - 2 14:05:00 3 2,400 750 611 5.311 5.337 5.366 5.324 1U - 2 14:06:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 2 14:06:00 4										
1U - 1 13:59:30 2 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:00:30 3 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30 4 3,200 998 859 5.392 5.417 5.468 5.405 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.388 5.325 1U - 2 14:05:00 3 2,400 750 611 5.311 5.337 5.386 5.324 1U - 2 14:05:00 3 2,400 750 611 5.309 5.336 5.386 5.323 1U - 2 14:05:00 4 2,400 750 611 5.309 5.336 5.386 5.323 1U - 2 14:09:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:10:00 2										
1U - 1 14:00:30 3 3,200 998 859 5.392 5.418 5.468 5.405 1U - 1 14:01:30 4 3,200 998 859 5.392 5.417 5.468 5.405 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.328 1U - 2 14:04:00 2 2,400 750 611 5.307 5.366 5.323 1U - 2 14:05:00 3 2,400 750 611 5.309 5.336 5.386 5.323 1U - 2 14:05:00 4 2,400 750 611 5.308 5.335 5.386 5.323 1U - 3 14:09:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:11:00 3 1,600 503 363 5.189 5.215 5.267 5.202 1U - 3 14:14:1300 1 800 255										
1U - 1 14:01:30 4 3,200 998 859 5.392 5.417 5.468 5.405 1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.388 5.325 1U - 2 14:04:00 2 2,400 750 611 5.311 5.337 5.386 5.324 1U - 2 14:05:00 3 2,400 750 611 5.308 5.335 5.384 5.322 1U - 3 14:09:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 3 14:09:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:11:00 2 1,600 503 363 5.190 5.216 5.268 5.203 1U - 3 14:11:00 3 1,600 503 363 5.189 5.215 5.267 5.201 1U - 3 14:12:00 4	111 - 1									
1U - 2 14:03:00 1 2,400 750 611 5.311 5.338 5.388 5.325 1U - 2 14:04:00 2 2,400 750 611 5.311 5.337 5.386 5.324 1U - 2 14:05:00 3 2,400 750 611 5.308 5.336 5.386 5.324 1U - 2 14:06:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 3 14:09:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:10:00 2 1,600 503 363 5.190 5.216 5.268 5.203 1U - 3 14:11:00 3 1,600 503 363 5.189 5.216 5.268 5.203 1U - 3 14:11:200 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:230 1										
1U - 2 14:04:00 2 2,400 750 611 5.311 5.337 5.386 5.324 1U - 2 14:05:00 3 2,400 750 611 5.309 5.336 5.386 5.323 1U - 2 14:06:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 3 14:09:00 1 1,600 503 363 5.192 5.216 5.268 5.203 1U - 3 14:11:00 2 1,600 503 363 5.189 5.215 5.267 5.202 1U - 3 14:12:00 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:16:30 2 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:23:00										
1U - 2 14:05:00 3 2,400 750 611 5.309 5.336 5.386 5.323 1U - 2 14:06:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 3 14:10:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:11:00 2 1,600 503 363 5.189 5.215 5.267 5.202 1U - 3 14:12:00 4 1,600 503 363 5.189 5.215 5.267 5.202 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:16:30 2 800 255 115 4.994 5.017 5.068 5.003 1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:23:00										
1U - 2 14:06:00 4 2,400 750 611 5.308 5.335 5.384 5.322 1U - 3 14:09:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:10:00 2 1,600 503 363 5.190 5.216 5.268 5.203 1U - 3 14:11:00 3 1,600 503 363 5.189 5.215 5.267 5.201 1U - 3 14:12:00 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:15:30 2 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:16:30 3 800 255 115 4.991 5.015 5.063 5.001 1U - 4 14:17:30 4										
1U - 3 14:09:00 1 1,600 503 363 5.192 5.217 5.269 5.204 1U - 3 14:10:00 2 1,600 503 363 5.190 5.216 5.268 5.203 1U - 3 14:11:00 3 1,600 503 363 5.188 5.214 5.267 5.201 1U - 3 14:12:00 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:15:30 2 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:16:30 3 800 255 115 4.991 5.015 5.066 5.003 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0<										
1U - 3 14:10:00 2 1,600 503 363 5.190 5.216 5.268 5.203 1U - 3 14:11:00 3 1,600 503 363 5.189 5.215 5.267 5.202 1U - 3 14:12:00 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.003 1U - 4 14:15:30 2 800 255 115 4.994 5.015 5.066 5.003 1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.574 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.452 4.574 4.555 4.457 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 3									
1U - 3 14:11:00 3 1,600 503 363 5.189 5.215 5.267 5.202 1U - 3 14:12:00 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:15:30 2 800 255 115 4.991 5.015 5.066 5.003 1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.523 4.574 4.595 4.536 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 3									
1U - 3 14:12:00 4 1,600 503 363 5.188 5.214 5.267 5.201 1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:15:30 2 800 255 115 4.991 5.015 5.066 5.003 1U - 4 14:16:30 3 800 255 115 4.987 5.010 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.503 4.528 4.576 4.516 1U - 5 14:23:00 4 0 0 0 4.4528 4.556 4.555 4.497	1U - 3									
1U - 4 14:14:30 1 800 255 115 4.994 5.017 5.068 5.005 1U - 4 14:15:30 2 800 255 115 4.991 5.015 5.066 5.003 1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.516 1U - 5 14:21:00 2 0 0 0 4.503 4.528 4.576 4.516 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 3									
1U - 4 14:15:30 2 800 255 115 4.991 5.015 5.066 5.003 1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.503 4.528 4.576 4.516 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 4									
1U - 4 14:16:30 3 800 255 115 4.989 5.012 5.063 5.001 1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.503 4.528 4.576 4.516 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 4									
1U - 4 14:17:30 4 800 255 115 4.987 5.010 5.061 4.998 1U - 5 14:20:000 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.503 4.528 4.576 4.516 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 4		3							
1U - 5 14:20:00 1 0 0 0 4.523 4.547 4.595 4.535 1U - 5 14:21:00 2 0 0 0 4.503 4.528 4.576 4.516 1U - 5 14:23:00 4 0 0 0 4.485 4.509 4.555 4.497	1U - 4	14:17:30		800	255	115	4.987			4.998
1U - 5	1U - 5	14:20:00		0						
	1U - 5				0					
<u>1U - 5 14:27:00 8 0 0 0 0 4.467 4.491 4.535 4.479</u>	1U - 5									
	1U - 5	14:27:00	8	0	0	0	4.467	4.491	4.535	4.479

¹LVWDT 1004900 not included in average due to its orientation. LVWDT 1004895 and 1004896 are oriented 180 degrees opposed.

Upward and Downward Movement and Creep

Broadway Viaduct - Council Bluffs, IA - TS 3 Load Time Time After O-cell Applied Net Top O-cell Upward Bottom O-cell Downward Test 0 Start Pressure Load Load Movement Creep Movement Creep (inches) (inches) Incremen (h:m:s) Minutes (psi) (kips) (kips) (inches) (inches) 11 -0 10:41:00 0.000 0.000 400 131 -0.045 1L -1 11:43:00 0.014 1L -1 11:44:00 2 400 131 0.014 -0.046 400 -0.047 1L -1 11:46:00 131 0.014 11:50:00 400 0.020 0.006 -0.042 0.000 1L -2 11:53:00 800 255 115 0.027 -0.106 11:54:00 2 800 255 1L -2 115 0.027 -0.108800 255 1L-2 11:56:00 115 0.027 -0.111 12:00:00 8 800 255 115 0.034 0.007 -0.107 0.000 1L -2 379 239 -0.200 1L -3 12:02:00 1,200 0.042 1L -3 12:03:00 2 1,200 379 239 0.043 -0.206 4 11 -3 12:05:00 1 200 379 239 0.043 -0.212 239 0.009 0.000 379 0.052 -0.21 1L -3 12:09:00 8 1.200 1L -4 1,600 503 363 0.065 -0.339 12:11:30 12:12:30 2 363 -0.348 1L -4 1,600 0.065 1L -4 12:14:30 4 1,600 503 363 0.065 -0.359 1L -4 12:18:30 8 1,600 503 363 0.076 0.011 -0.363 0.003 1L -5 12:21:00 2 000 626 487 0.090 -0.507 487 -0.521 1L -5 2 2,000 0.091 12:22:00 626 1L -5 12:24:00 2,000 626 487 0.092 -0.54 12:28:00 2,000 487 0.100 0.008 -0.556 0.016 1L -5 8 626 1L -6 12:32:00 2,400 750 611 0.126 -0.747 1L -6 12:33:00 2 2.400 750 611 0.128 -0.777 750 1L -6 12:35:00 2.400 611 0.131 -0.81212:39:00 8 2,400 750 0.141 0.010 -0.84 0.032 1L -6 61 1L -7 12:45:00 2,800 874 735 0.182 -1.180 1L -7 12:46:00 2 2,800 874 735 0.184 -1.206 1L-7 12:48:00 4 2.800 874 735 0.187 -1.242 735 0.007 -1.278 0.036 11 -7 12:51:00 8 2 800 874 0.194 -1.794 1L -8 13:01:00 3.200 998 859 0.263 1L -8 13:02:00 2 3,200 998 859 0.266 -1.820 1L -8 13:04:00 4 3,200 859 0.270 -1.862 1L -8 13:08:00 8 3,200 998 859 0.286 0.016 -1.913 0.050 1L -9 13:15:30 3.600 1.122 983 0.372 -2.519 2 983 0.378 -2.569 1L -9 13:16:30 3.600 1.122 1L -9 3,600 1,122 983 0.389 -2.658 13:18:30 13:22:30 3,600 0.413 0.024 -2.774 0.116 1L -10 13:34:00 4,000 1,246 1,107 0.562 -3.62 1L -10 13:35:00 2 4.000 1.246 1,107 0.572 -3.672 11 -10 13:37:00 4 4 000 1 246 1.107 0.585 -3 759 1,246 0.032 1L -10 13:41:00 8 4.000 1,107 0.617 -3.880 0.12 1L -11 13:49:00 4,200 1,308 1,168 0.768 -4.429 13:50:00 2 4,200 1,308 1,168 0.778 -4.466 1L -11 1L -11 13:52:00 4 4,200 1,308 1,168 0.796 -4.53° 1L -11 13:56:00 8 4,200 1.308 1,168 0.812 -4.65 1U - 1 13:58:30 3 200 998 859 0.799 -4 606 2 1U - 1 13:59:30 3.200 998 859 0.799 -4.606 3 859 1U - 1 14:00:30 3,200 998 0.787 -4.617 14:01:30 3,200 859 0.785 -4.619 1U - 2 14:03:00 2,400 750 611 0.770 -4.555 1U - 2 14:04:00 2 2.400 750 611 0.770 -4.554 750 1U - 2 14:05:00 2.400 611 0.770 -4.553 -4.568 14:06:00 2,400 750 611 0.754 1U - 3 14:09:00 1,600 50 363 0.72 -4.47 1U - 3 14:10:00 2 1,600 503 363 0.727 -4.476 1U - 3 14:11:00 3 1,600 503 363 0.712 -4.490 14.12.00 1U - 3 1.600 503 363 0.693 -4 507 255 115 1U - 4 14:14:30 800 0.654 -4.35° 1U - 4 14:15:30 2 800 255 115 0.653 -4.350 1U - 4 14:16:30 3 800 255 115 0.629 -4.37 1U - 4 14:17:30 800 255 115 0.571 -4.427 1U - 5 14:20:00 1 0.465 -4.070 2 1U - 5 14:21:00 0.461 -4.055 1U - 5 0.457 -4.040 14:23:00 14:27:00 0.453 -4.02

Strain Gage Readings and Loads at Levels 1 and 2 Broadway Viaduct - Council Bluffs, IA - TS 3

Load	Time	Time After	O-cell	Applied	Toauway	viauuci -	Council B Level 1	iuiis, iA -	133		Lev	el 2	
Test	111110	Start	Pressure	Load	1004816	1004817	1004818	1004819	Av. Load	1004823	1004824	1004825	Av. Load
Increment	(h:m:s)	Minutes	(psi)	(kips)	με	με	με	με	(kips)	με	με	με	(kips)
1L -0	10:41:00	0	0	0	0	0	0	0	0	0	0	0	0
1L -1	11:43:00	1	400	131	2	3	4	3	40	8	7	9	105
1L -1 1L -1	11:44:00 11:46:00	2 4	400 400	131 131	2 2	3 2	4 4	4	40 38	8 8	7 7	9	105 105
1L -1	11:50:00	8	400	131	2	2	4	3	39	8	7	9	103
1L -2	11:53:00	1	800	255	4	5	8	7	82	14	13	15	188
1L -2	11:54:00	2	800	255	4	5	8	7	80	15	13	15	188
1L -2	11:56:00	4	800	255	4	5	8	7	81	15	13	15	191
1L -2 1L -3	12:00:00 12:02:00	<u>8</u> 1	800 1,200	255 379	4 7	5 8	8 13	7 10	82 127	15 22	13 18	15 21	191 272
1L -3 1L -3	12:02:00	2	1,200	379 379	7	8	13	10	127	22	18	21	272
1L -3	12:05:00	4	1,200	379	7	8	13	10	128	22	18	21	275
1L -3	12:09:00	8	1,200	379	7	8	13	10	127	22	18	21	276
1L -4	12:11:30	1	1,600	503	9	10	18	14	171	29	24	27	360
1L -4 1L -4	12:12:30	2 4	1,600	503 503	9	10 11	18 18	14	172 172	30 30	24 24	27 27	362 363
1L -4 1L -4	12:14:30 12:18:30	8	1,600 1,600	503	9	11	18	14 13	172	30	24	28	367
1L -5	12:21:00	1	2,000	626	12	13	22	17	217	37	29	33	442
1L -5	12:22:00	2	2,000	626	13	13	22	17	219	37	29	33	444
1L -5	12:24:00	4	2,000	626	12	14	23	17	218	37	29	33	447
1L -5	12:28:00	8	2,000	626	13	14 18	23 28	17	220	37	29	34 39	449 530
1L -6 1L -6	12:32:00 12:33:00	1 2	2,400 2,400	750 750	16 17	18 19	28 28	20 21	278 283	45 45	34 35	39 40	530 534
1L -6	12:35:00	4	2,400	750 750	17	19	28	21	285	46	35	40	536
1L -6	12:39:00	8	2,400	750	17	19	29	21	290	46	35	40	540
1L -7	12:45:00	1	2,800	874	23	26	35	26	368	53	40	46	623
1L -7	12:46:00	2	2,800	874	23	26	35	26	370	53	40	46	623
1L -7 1L -7	12:48:00 12:51:00	4 8	2,800 2,800	874 874	23 24	27 27	35 36	26 26	374 379	54 54	40 40	47 47	628 629
1L -8	13:01:00	1	3,200	998	32	36	44	33	485	61	46	54	720
1L -8	13:02:00	2	3,200	998	32	36	44	33	488	61	46	54	720
1L -8	13:04:00	4	3,200	998	32	37	45	33	493	62	46	55	725
1L -8	13:08:00	<u>8</u> 1	3,200	998	33	37	45	33 40	501	62	46	55	731 821
1L -9 1L -9	13:15:30 13:16:30	2	3,600 3,600	1,122 1,122	41 42	46 46	55 55	40	610 616	70 71	52 52	62 62	821 824
1L -9	13:18:30	4	3,600	1,122	42	47	56	41	624	71	52	63	834
1L -9	13:22:30	8	3,600	1,122	43	48	57	42	636	72	53	63	840
1L -10	13:34:00	1	4,000	1,246	50	55	68	49	745	80	59	69	931
1L -10	13:35:00	2 4	4,000	1,246	50	55 56	68 69	50	750 756	80	59	69 70	936 940
1L -10 1L -10	13:37:00 13:41:00	8	4,000 4,000	1,246 1,246	51 51	56 57	70	50 51	767	81 81	60 60	70 70	940
1L -11	13:49:00	1	4,200	1,308	55	62	77	55	834	86	63	74	1002
1L -11	13:50:00	2	4,200	1,308	55	62	77	55	833	86	63	74	1002
1L -11	13:52:00	4	4,200	1,308	55	62	77	55	834	86	63	74	1002
1L -11	13:56:00	8	4,200	1,308	55	63	78 65	55	842	87	64	74	1006
1U - 1 1U - 1	13:58:30 13:59:30	1 2	3,200 3,200	998 998	47 47	53 53	65 65	47 47	714 712	71 71	52 52	60 60	818 819
10 - 1 1U - 1	14:00:30	3	3,200	998	47	53	65	47	712	71	52	60	818
1U - 1	14:01:30	4	3,200	998	47	53	65	47	710	71	52	60	818
1U - 2	14:03:00	1	2,400	750	40	44	54	39	591	57	41	48	655
1U - 2	14:04:00	2	2,400	750 750	40	44	54	39	592	57	41	48	654
1U - 2 1U - 2	14:05:00 14:06:00	3 4	2,400 2,400	750 750	40 40	44 44	54 53	39 39	591 590	57 57	41 41	48 48	654 654
1U - 2 1U - 3	14:06:00	1	1,600	503	30	33	40	39	452	41	31	35	482
1U - 3	14:10:00	2	1,600	503	31	33	40	31	453	42	31	36	485
1U - 3	14:11:00	3	1,600	503	31	33	40	31	453	41	31	36	482
1U - 3	14:12:00	4	1,600	503	31	33	40	31	452	41	31	36	482
1U - 4 1U - 4	14:14:30 14:15:30	1 2	800 800	255 255	20 20	22 22	26 26	20 20	294 295	25 25	20 20	23 23	303 305
1U - 4 1U - 4	14:15:30	3	800	255 255	20	22	26 26	20	295 294	25 25	20	23 23	305
1U - 4	14:17:30	4	800	255	20	22	26	20	294	25	20	23	301
1U - 5	14:20:00	1	0	0	7	8	11	8	112	7	8	10	112
1U - 5	14:21:00	2	0	0	7	8	10	8	111	7	8	9	110
1U - 5 1U - 5	14:23:00 14:27:00	4 8	0	0 0	6 7	8 8	10 10	8 8	109 108	7 7	8 8	9	108 107
10-5	14.21.00	0	U	U	/	ō	10	0	108		8	9	107

Strain Gage Readings and Loads at Levels 3 and 4 $\,$

Strain Gage Readings and Loads at Levels 5 and 6 Broadway Viaduct - Council Bluffs, IA - TS 3

Land I	T:	T: A4	0 11		way viaut		cil Bluffs,	, IA - 133	1	1	-1.0	
Load	Time	Time After	O-cell	Applied		Lev					el 6	
Test	(h.ma)	Start	Pressure	Load	1004841	1004842	1004843	Av. Load	1004847	1004848	1004849	Av. Load
Increment	(h:m:s) 10:41:00	Minutes	(psi)	(kips)	με	με	με	(kips)	με	με	με	(kips)
1L -0 1L -1	11:43:00	0	400	0 131	0 4	<u>0</u> 5	0 4	59	3	0	0	25
1L -1	11:44:00	2	400	131	5	4	4	57	3	3	0	25
1L -1	11:46:00	4	400	131	5	4	4	57	3	3	0	25
1L -1	11:50:00	8	400	131	4	5	4	58	3	3	0	25
1L -2	11:53:00	1	800	255	8	8	7	102	5	5	0	44
1L -2	11:54:00	2	800	255	8	8	8	105	5	5	0	44
1L -2	11:56:00	4	800	255	8	8	7	104	5	5	0	45
1L -2	12:00:00	8	800	255	8	8	8	105	5	5	0	44
1L -3	12:02:00	1	1,200	379	12	11	12	156	7	7	0	66
1L -3	12:03:00	2	1,200	379	12	11	12	158	7	8	0	66
1L -3	12:05:00	4	1,200	379	12	11	12	156	7	8 7	0	66
1L -3 1L -4	12:09:00 12:11:30	8 1	1,200 1,600	379 503	12 16	11 14	12 16	158 210	7 9	10	0	66 89
1L -4 1L -4	12:11:30	2	1,600	503	16	15	16	210	9	10	0	90
1L -4	12:14:30	4	1,600	503	17	15	16	213	10	10	0	91
1L -4	12:18:30	8	1,600	503	17	15	17	214	10	10	0	92
1L -5	12:21:00	1	2,000	626	21	18	20	262	12	12	0	113
1L -5	12:22:00	2	2,000	626	21	18	21	264	12	12	0	113
1L -5	12:24:00	4	2,000	626	21	18	21	263	12	12	0	114
1L -5	12:28:00	. 8	2,000	626	21	18	21	269	12	13	0	115
1L -6	12:32:00	1	2,400	750	25	21	25	313	15	14	0	136
1L -6	12:33:00	2	2,400	750	25	20	25	313	15	14	0	137
1L -6	12:35:00	4	2,400	750	25	20	25	313	15	15	0	138
1L -6 1L -7	12:39:00 12:45:00	8 1	2,400	750 874	25 29	21 23	25 29	318 358	15 18	14 16	0	137 156
1L -7 1L -7	12:45:00	2	2,800 2,800	874 874	29 29	23	29 29	358 358	18	16	0	156
1L -7 1L -7	12:48:00	4	2,800	874	29	22	29	357	18	16	0	156
1L -7	12:51:00	8	2,800	874	29	23	29	360	18	16	0	157
1L -8	13:01:00	1	3,200	998	33	23	33	398	20	17	0	171
1L -8	13:02:00	2	3,200	998	33	23	33	399	20	17	0	170
1L -8	13:04:00	4	3,200	998	33	23	33	399	20	17	0	170
1L -8	13:08:00	8	3,200	998	33	23	34	404	20	16	0	169
1L -9	13:15:30	1	3,600	1,122	36	23	37	435	23	16	0	181
1L -9	13:16:30	2	3,600	1,122	37	23	38	438	23	16	0	181
1L -9	13:18:30	4	3,600	1,122	37	23	38	440	23	16	0	181
1L -9 1L -10	13:22:30 13:34:00	8 1	3,600 4,000	1,122 1,246	37 41	23 22	39 43	441 474	23 26	16 15	0	180 188
1L -10 1L -10	13:35:00	2	4,000	1,246	41	23	43	474	26	15	0	188
1L -10	13:37:00	4	4,000	1,246	41	22	43	476	26	15	0	187
1L -10	13:41:00	8	4,000	1,246	41	22	44	476	26	14	0	186
1L -11	13:49:00	1	4,200	1,308	43	21	47	499	27	13	0	188
1L -11	13:50:00	2	4,200	1,308	43	21	47	499	27	13	0	188
1L -11	13:52:00	4	4,200	1,308	43	21	47	499	27	13	0	188
1L -11	13:56:00	8	4,200	1,308	44	21	48	502	28	13	0	186
1U - 1	13:58:30	1	3,200	998	37	15	43	425	25	10	0	160
1U - 1	13:59:30	2	3,200	998	37	16	43	428	25	10	0	160
1U - 1 1U - 1	14:00:30 14:01:30	3 4	3,200	998 998	37 37	15 16	42 43	425 427	25 25	10 10	0	161 160
10 - 1 1U - 2	14:01:30	1	3,200 2,400	750	37	11	38	362	25 22	7	0	136
1U - 2	14:03:00	2	2,400	750 750	32	11	38	359	22	7	0	136
1U - 2	14:05:00	3	2,400	750	31	11	38	356	22	7	0	135
1U - 2	14:06:00	4	2,400	750	31	11	38	358	22	8	0	136
1U - 3	14:09:00	1	1,600	503	25	6	32	283	19	5	0	108
1U - 3	14:10:00	2	1,600	503	25	7	32	285	19	5	0	109
1U - 3	14:11:00	3	1,600	503	25	7	32	284	19	5	0	109
1U - 3	14:12:00	4	1,600	503	25	7	32	286	19	5 3	0	110
1U - 4	14:14:30	1	800	255	18	3	24	200	14	3	0	77
1U - 4	14:15:30	2	800	255	17	3	24	197	14	3	0	78
1U - 4 1U - 4	14:16:30	3 4	800	255 255	17 17	3	24 24	196	14	3	0	78 77
1U - 4 1U - 5	14:17:30 14:20:00	1	800	255	17 6	1	14	197 93	14 6	3 2	0	77 35
1U - 5 1U - 5	14:20:00	2	0	0	5	1	14	90	6		0	35 35
1U - 5	14:23:00	4	0	0	6	1	14	91	6	2 2	0	35
1U - 5	14:27:00	8	0	0	127	1	14	634	6	2	0	35 36
			- 1	-								

Strain Gage Readings and Loads at Level 7

Broadway Viaduct - Council Bluffs, IA - TS 3 Load Time O-cell Applied Level 7 1004949 Test 0 Start Pressure Load 1004853 1004948 Av. Load Incremen (h:m:s) Minutes (psi) (kips) (kips) 11 -0 10:41:00 400 131 1L -1 11:43:00 0 0 1L -1 11:44:00 2 400 131 10 1L -1 11:46:00 400 131 0 0 11:50:00 400 16 1L -2 11:53:00 800 255 255 1L -2 11:54:00 15 2 800 255 15 1L -2 11:56:00 800 1L -2 12:00:00 8 800 255 16 12:02:00 1,200 379 26 1L -3 24 24 1L -3 12:03:00 2 1,200 379 2 11 -3 12:05:00 1 200 379 8 24 12:09:00 379 1L -3 1.200 33 1L -4 12:11:30 1,600 503 1L -4 12:12:30 1,600 1L -4 12:14:30 1,600 503 3 34 34 43 1L -4 12:18:30 1,600 503 3 3 3 1L -5 2 12:21:00 2 000 626 2 626 44 1L -5 2,000 12:22:00 2 43 1L -5 12:24:00 2,000 626 1L -5 12:28:00 2,000 44 8 626 1L -6 12:32:00 2,400 750 53 2 2 2 1L -6 12:33:00 2 2,400 750 53 12:35:00 2.400 750 54 1L -6 1L -6 12:39:00 8 2,400 750 1L -7 12:45:00 2,800 874 62 1L -7 12:46:00 2 2,800 874 3 62 5 1L -7 12:48:00 4 2.800 874 4 63 12:51:00 3 1L -7 2.800 874 61 5 69 3.200 998 1L -8 13:01:00 1L -8 13:02:00 3,200 998 3 5 67 1L -8 13:04:00 3,200 998 68 1L -8 13:08:00 3,200 998 66 1L -9 13:15:30 3.600 1.122 4 71 72 5 5 5 5 5 5 5 5 13:16:30 2 3.600 1L -9 1,122 1L -9 13:18:30 3,600 1,122 72 13:22:30 3,600 70 1L -10 13:34:00 4,000 1,246 5 5 5 73 1L -10 13:35:00 2 4.000 1,246 5 73 1,246 11 -10 13:37:00 4 4 000 5 73 72 73 1,246 4,000 1L -10 13:41:00 8 5 1,308 5 1L -11 13:49:00 4,200 5 1L -11 13:50:00 2 4,200 1,308 6 73 1L -11 13:52:00 4,200 1,308 6 73 1L -11 13:56:00 4,200 1,308 6 74 65 1U - 1 13:58:30 3.200 998 3 4 4 4 5 5 5 64 1U - 1 13:59:30 2 3.200 998 1Ū - 1 3 3,200 65 14:00:30 998 1U - 1 14:01:30 3,200 998 66 1U - 2 14:03:00 2,400 750 57 1U - 2 14:04:00 2 2,400 750 4 5 58 59 750 1U - 2 14:05:00 3 2.400 2,400 58 1U - 2 14:06:00 750 1U - 3 503 48 1U - 3 14:10:00 2 1,600 503 48 1U - 3 14:11:00 3 1,600 503 47 14.12.00 49 1U - 3 1.600 503 3 3 255 36 1U - 4 14:14:30 800 3 3 2 37 1U - 4 14:15:30 800 255 1U - 4 14:16:30 3 800 255 37 1U - 4 14:17:30 800 255 35 2 2 2 2 12 11 1U - 5 14:20:00 0 0 0 0 -1 1U - 5 14:21:00 2 10 1U - 5 14:23:00 1U - 5 14:27:00

APPENDIX B

O-CELL AND INSTRUMENTATION CALIBRATION SHEETS

STROKE:	1 INCH	3 INCH	5 INCH	
PRESSURE PSI	LOAD KIPS	LOAD KIPS	LOAD KIPS	
0	0	0	0	
500	149	150	148	
1000	306	307	307	
1500	469	468	466	
2000	624	623	622	
2500	786	784	784	
3000	940	941	939	
3500	1098	1099	1097	
4000	1254	1254	1252	
4500	1408	1411	1407	
5000	1563	1566	1563	
5500	1718	1721	1716	
6000	1870	1872	1867	
6500	2026	2027	2022	
7000	2178	2181	2177	
7500	2331	2334	2328	
8000	2481	2484	2479	
8500	2636	2636	2631	
9000	2787	2788	2784	
9500	2939	2940	2935	

24" O-CELL, SERIAL # 24-6-00121

LOAD CONVERSION FORMULA LOAD = PRESSURE * 0.3097 + (7.15)

Regression Output:

Constant	7.1529 kips
X Coefficient	0.3097 kip/psi
R Square	0.9999
No. of Observations	57
Degrees of Freedom	55
Std Err of Y Est	7.25
Std Err of X Coeff	0.0004

CALIBRATION STANDARDS:

All data presented are derived from 6" dia. certified hydraulic pressure gauges and electronic load transducer, manufactured and calibrated by the University of Illinois at Champaign, Illinois. All calibrations and certifications are traceable through the Laboratory Master Deadweight Gauges directly to the National Institute of Standards and Technology. No specific guidelines exist for calibration of load test jacks and equipment but procedures comply with similar guidelines for calibration of gages, ANSI specifications B40.1.

* AE & FC CUSTOMER: LOADTEST Inc

* AE & FC JOB NO: SO5813

* CUSTOMER P.O. NO.: LT9640

* CONTRACTOR .: LONGFELLOW DRILLING

* JOB LOCATION: CLEARFIELD, IA

* DATED: 03/23/10

SERVICE ENGINEER:

2 DATE: 3-23-10

Vibrating Wire Displacement Transducer Calibration Report

Range: 150 mm Calibration Date: February 25, 2010

Kolgen

Serial Number:

1004895

Temperature: 24.2 °C

Calibration Instruction: CI-4400

Technician:

GK-401 Reading Position B

Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2592	2591	2592	-0.38	-0.26	-0.04	-0.03
30.0	3561	3561	3561	30.16	0.11	30.09	0.06
60.0	4516	4516	4516	60.25	0.16	59.98	-0.02
90.0	5468	5467	5468	90.22	0.15	89.96	-0.03
120.0	6416	6414	6415	120.07	0.05	120.01	0.01
150.0	7355	7354	7355	149.67	-0.22	150.01	0.01

(mm) Linear Gage Factor (G): 0.03150 (mm/ digit)

Regression Zero:

Polynomial Gage Factors: A: 1.11702E-07

0.03039

-79.555

(inches) Linear Gage Factor (G): 0.001240 (inches/ digit)

Polynomial Gage Factors:

A: 4.39773E-09

B: 0.001197

C: -3.1321

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

GK-401 Pos. B:

Temp(T₀): 23.2 °C

March 24, 2010

Vibrating Wire Displacement Transducer Calibration Report

Range: 150 mm Calibration Date: February 25, 2010

Serial Number:

1004896

Temperature: 24.2 °C

Calibration Instruction: CI-4400

15 Logers

Technician:

GK-401 Reading Position B

011 ,01 100						12	
Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2632	2625	2629	-0.42	-0.28	-0.03	-0.02
30.0	3602	3597	3600	30.14	0.09	30.06	0.04
60.0	4558	4558	4558	60.30	0.20	59.99	-0.01
90.0	5511	5510	5511	90.28	0.19	89.97	-0.02
120.0	6460	6454	6457	120.07	0.04	120.00	0.00
150.0	7396	7396	7396	149.62	-0.25	150.01	0.01

(mm) Linear Gage Factor (G): 0.03147 (mm/ digit)

Regression Zero:

Polynomial Gage Factors: A: 1.28659E-07

0.03018 B:

-80.249

(inches) Linear Gage Factor (G): 0.001239 (inches/ digit)

Polynomial Gage Factors:

A: 5.06532E-09

B: 0.001188

C: -3.1594

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

GK-401 Pos. B:

Temp(T₀): 23.1 °C

March 24, 2010

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1. This report shall not be reproduced except in full without written permission of Geokon Inc.

Vibrating Wire Displacement Transducer Calibration Report

150 mm Range:

Calibration Date: February 25, 2010

Serial Number:

1004900

Temperature: 24.2 °C

Calibration Instruction: CI-4400

15 Logue

Technician:

GK-401 Reading Position B

Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2631	2627	2629	-0.35	-0.24	-0.04	-0.03
30.0	3596	3593	3595	30.16	0.10	30.09	0.06
60.0	4547	4545	4546	60.22	0.15	59.98	-0.02
90.0	5495	5495	5495	90.21	0.14	89.97	-0.02
120.0	6440	6439	6440	120.05	0.03	120.00	0.00
150.0	7378	7378	7378	149.71	-0.20	150.02	0.01

(mm) Linear Gage Factor (G): 0.03160 (mm/ digit)

Regression Zero:

Polynomial Gage Factors: A: 1.0207E-07

0.03058

C: -81.135

(inches) Linear Gage Factor (G): 0.001244 (inches/ digit)

Polynomial Gage Factors: A: 4.01848E-09

B: 0.001204

C: -3.1943

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

GK-401 Pos. B:

 $Temp(T_0)$:

22.4 °C

March 24, 2010

Sister Bar Calibration Report

Model Number: 4911-4

Date of Calibration: March 9, 2010

Serial Number: 1004816

Cable Length: 93 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7037

Temperature: 21.4 °C

Regression Zero: 7064

Calibration Instruction: CI-VW Rebar

Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7112	7116	7114		
1,500	7770	7773	7772	658	-0.12
3,000	8485	8486	8486	714	-0.01
4,500	9201	9200	9201	715	0.13
6,000	9905	9908	9907	706	-0.04
100	7116				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.354 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number: 4911-4

Date of Calibration: March 9, 2010

Serial Number: 1004817

Cable Length: 93 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6881

Temperature: 21.7

 $^{\circ}C$

Regression Zero: 6892

Calibration Instruction: CI-VW Rebar

Technician: Elica

Applied Load: (pounds)		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6949	6945	6947		
1,500	7605	7606	7606	659	-0.20
3,000	8328	8329	8329	723	-0.07
4,500	9050	9052	9051	723	0.05
6,000	9772	9772	9772	721	0.11
100	6945				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.351 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Sister Bar Calibration Report

Model Number: 4911-4

Date of Calibration: March 9, 2010

Serial Number: 1004818

Cable Length: 93 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7067

Temperature: 21.8 °C

Regression Zero: 7076

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load: (pounds)		Linearity			
	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7123	7124	7124		
1,500	7787	7787	7787	664	0.08
3,000	8494	8492	8493	706	-0.02
4,500	9205	9205	9205	712	0.10
6,000	9913	9909	9911	706	0.00
100	7123				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.354 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Model Number: 4911-4

Date of Calibration: March 9, 2010

Serial Number: 1004819

Cable Length: 93 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6994

Temperature: 21.8 °C

Regression Zero: 7010

Calibration Instruction: CI-VW Rebar

Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7070	7067	7069		
1,500	7729	7726	7728	659	-0.26
3,000	8452	8450	8451	724	-0.31
4,500	9192	9183	9188	737	0.09
6,000	9916	9913	9915	727	0.16
100	7068				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.349 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Temperature: 21.7

Date of Calibration: March 9, 2010

Serial Number: 1004823

Cable Length: 85 ft.

Factory Zero Reading: 7075

Prestress: 35,000 psi

Regression Zero: 7099

Calibration Instruction: CI-VW Rebar

 $^{\circ}C$

Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7149	7148	7149		
1,500	7814	7814	7814	666	-0.01
3,000	8528	8528	8528	714	-0.06
4,500	9248	9247	9248	720	0.09
6,000	9961	9960	9961	713	0.01
100	7149				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.352 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI 2540-1.

Model Number : 4911-4

Date of Calibration: March 9, 2010

Serial Number: 1004824

Cable Length: 85 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7080

Temperature: 21.7 °C

Regression Zero: 7112

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7165	7161	7163		
1,500	7832	7835	7834	671	-0.04
3,000	8554	8553	8554	720	-0.13
4,500	9282	9279	9281	7 27	0.02
6,000	10003	10006	10005	724	0.06
100	7161				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.349 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: March 9, 2010

Serial Number: 1004825

Cable Length: _____85 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6811

Temperature: 21.6 $^{\circ}C$ Regression Zero: 6824

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6885	6881	6883	1	
1,500	7531	7533	7532	649	-0.46
3,000	8263	8263	8263	731	-0.12
4,500	8994	8989	8992	729	0.13
6,000	9712	9710	9711	720	0.06
100	6882				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.350 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number:	4911-4	Date of Calibration:	March 10, 2010

Serial Number: 1004829 Cable Length: 70 ft.

Prestress: 35,000 psi Factory Zero Reading: 7016

Temperature: 22.3 °C Regression Zero: 7048

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7101	7101	7101		
1,500	<i>777</i> 1	7768	7770	669	-0.09
3,000	8495	8493	8494	725	-0.07
4,500	9223	9223	9223	729	0.10
6,000	9945	9947	9946	723	0.06
100	7100				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.349 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4 Date of Calibration: March 10, 2010

Serial Number: 1004830 Cable Length: 70 ft.

Prestress: 35,000 psi Factory Zero Reading: 7060

Temperature: 22.2 °C Regression Zero: 7079

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7132	7134	7133		
1,500	7797	7795	7796	663	-0.23
3,000	8526	8523	8525	729	-0.07
4,500	9252	9254	9253	729	0.09
6,000	9976	9974	9975	722	0.03
100	7133				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.349 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number:	4911-4	Date of Calibration:	March 10, 2010

Serial Number: 1004831 Cable Length: 70 ft.

Prestress: 35,000 psi Factory Zero Reading: 6888

Temperature: 22.5 °C Regression Zero: 6917

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6974	6972	6973		
1,500	7645	7645	7645	672	-0.26
3,000	8387	8385	8386	741	-0.09
4,500	9125	9127	9126	740	0.06
6,000	9863	9861	9862	736	0.06
100	6972				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.345 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: March 10, 2010

Serial Number: 1004835

Cable Length: 60 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6934

Temperature: 22.3 °C

Regression Zero: 6947

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7005	7006	7006		
1,500	7652	7652	7652	647	-0.27
3,000	8363	8363	8363	711	-0.34
4,500	9088	9086	9087	724	0.05
6,000	9804	9804	9804	717	0.20
100	7006				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.353 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Model Number: 4911-4

Date of Calibration: March 10, 2010

Serial Number: 1004836

Cable Length: 60 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7130

Temperature: 22.4 °C

Regression Zero: 7161

Calibration Instruction: CI-VW Rebar

Technician: Elica

	Readings				
Cycle #1	Cycle #2	Average	Change	% Max.Load	
7219	7222	7221			
7858	7863	7861	640	-0.38	
8576	8572	8574	714	-0.26	
9295	9294	9295	721	0.10	
10007	10006	10007	712	0.17	
7222					
	7219 7858 8576 9295 10007	Cycle #1 Cycle #2 7219 7222 7858 7863 8576 8572 9295 9294 10007 10006	Cycle #1 Cycle #2 Average 7219 7222 7221 7858 7863 7861 8576 8572 8574 9295 9294 9295 10007 10006 10007	Cycle #1 Cycle #2 Average Change 7219 7222 7221 7858 7863 7861 640 8576 8572 8574 714 9295 9294 9295 721 10007 10006 10007 712	

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.354 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4 Date of Calibration: March 10, 2010

Serial Number: 1004837 Cable Length: 60 ft.

Prestress: 35,000 psi Factory Zero Reading: 6809

Temperature: 22.5 °C Regression Zero: 6831

Calibration Instruction: CI-VW Rebar Technician: Elico

	Linearity			
Cycle #1	Cycle #2	Average	Change	% Max.Load
6888	6888	6888		
7555	7551	7553	665	-0.20
8282	8279	8281	728	-0.20
9017	9014	9016	735	0.05
9748	9745	9747	731	0.16
6888				
	6888 7555 8282 9017 9748	Cycle #1 Cycle #2 6888 6888 7555 7551 8282 8279 9017 9014 9748 9745	6888 6888 6888 7555 7551 7553 8282 8279 8281 9017 9014 9016 9748 9745 9747	Cycle #1 Cycle #2 Average Change 6888 6888 6888 7555 7551 7553 665 8282 8279 8281 728 9017 9014 9016 735 9748 9745 9747 731

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.348 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4 Date of Calibration: March 10, 2010

Serial Number: 1004841 Cable Length: 50 ft.

Prestress: 35,000 psi Factory Zero Reading: 6903

Temperature: 22.0 °C Regression Zero: 6918

Calibration Instruction: CI-VW Rebar___ Technician:

Applied Load:		Linearity			
(pounds)			Average	Change	% Max.Load
100	6971	6972	6972		
1,500	7643	7643	7643	672	-0.05
3,000	8368	8367	8368	725	-0.12
4,500	9098	9097	9098	730	0.00
6,000	9828	9828	9828	731	0.14
100	6972				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.348 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4 Date of Calibration: March 10, 2010

Serial Number: 1004842 Cable Length: 50 ft.

Prestress: 35,000 psi Factory Zero Reading: 7128

Temperature: 22.3 °C Regression Zero: 7143

Calibration Instruction: CI-VW Rebar Technician: Elica

e #1 Cycle #2	Average	Change	% Max.Load	
7195	7193			
55 7870	7868	675	-0.02	
00 8595	8593	725	-0.02	
1, 500 9319 9322 9321 728	728	0.09		
041 10044 10043		722	-0.01	
94				
	7870 90 8595 9 9322 41 10044	7870 7868 7870 7868 8595 8593 9 9322 91 10044 10043	7870 7868 675 7870 8595 8593 725 7870 9322 9321 728 7870 10044 10043 722	

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.349 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: March 10, 2010

Serial Number: 1004843

Cable Length: ____ 50 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7069

Temperature: 22.3 °C

Regression Zero: 7062

Calibration Instruction: CI-VW Rebar

Technician: Elice

Applied Load:		Linearity				
(pounds)			Average	Change	% Max.Loa	
100	7118	7118	7118			
1,500	7777	7778	7778	660	-0.18	
3,000	8496	8496	8496	719	-0.26	
4,500	9228	9225	9227	731	0.09	
6,000	9951	9946	9949	722	0.13	
100	7118					

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.350 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI 2540-1.

Model Number :	4911-4	Date of Calibration:	March 10, 2010

Serial Number: 1004847 Cable Length: 40 ft.

Prestress: 35,000 psi Factory Zero Reading: 6951

Temperature: 22.3 °C Regression Zero: 6969

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity				
(pounds)			Average	Change	% Max.Load	
100	7027	7028	7028			
1,500	7677	7679	7678	651	-0.28	
3,000	8394	8400	8397	719	-0.21	
4,500	9119	9121	9120	723	-0.01	
6,000	9841	9846	9844	724	0.22	
100	7028					

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.351 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4 Date of Calibration: March 10, 2010

Serial Number: 1004848 Cable Length: 40 ft.

Prestress: 35,000 psi Factory Zero Reading: 6881

Temperature: 22.3 °C Regression Zero: 6897

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity				
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load	
100	6958	6958	6958			
1,500	7622	7624	7623	665	-0.34	
3,000	8358	8360	8359	736 748	736	-0.33
4,500	9107	9106	9107		0.06	
6,000	9847	9845	9846	740	0.18	
100	6958					

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.345 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4 Date of Calibration: March 10, 2010

Serial Number: 1004849 Cable Length: 40 ft.

Prestress: 35,000 psi Factory Zero Reading: 7017

Temperature: 22.0 °C Regression Zero: 7039

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity					
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load		
100	7088	7093	7091				
1,500			7768	677	-0.10		
3,000		8500	734	-0.02			
4,500		9232	9234	733	0.01		
6,000	9967	9965	9966	732	0.03		
100	7093						

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.346 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Date of Calibration: March 10, 2010 Model Number: 4911-4

Cable Length: 30 ft. Serial Number: 1004853

Factory Zero Reading: 7019 Prestress: 35,000 psi

Temperature: 23.1 Regression Zero: 7040

Technician: Elica Calibration Instruction: CI-VW Rebar

Applied Load:		Linearity				
(pounds)			Cycle #1 Cycle #2 Average			
100	7096	7099	7098			
1,500	7754	7755	7755	657	-0.25	
3,000	8479	8480	8480	725	-0.14	
4,500	9206	9203	9205	725	-0.02	
6,000	9934	9931	9933	728	0.20	
100	7099					

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.350 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number:	4911-4	Date of Calibration:	March 16, 2010

Serial Number: 1004948 Cable Length: 30 ft.

Prestress: 35,000 psi Factory Zero Reading: 7101

Temperature: 23.8 °C Regression Zero: 7105

Calibration Instruction: CI-VW Rebar Technician: Elico

	Linearity			
polied Load: pounds) Cycle #1		Average	Change	% Max.Load
7163	7161	7162		
7824	7825	7825	663	-0.24
8553	8551	8552	728	-0.20
9287	9283	9285	733	0.03
10014	10016	10015	730	0.15
7161				
	7163 7824 8553 9287 10014	Cycle #1 Cycle #2 7163 7161 7824 7825 8553 8551 9287 9283 10014 10016	7163 7161 7162 7824 7825 7825 8553 8551 8552 9287 9283 9285 10014 10016 10015	Cycle #1 Cycle #2 Average Change 7163 7161 7162 7824 7825 7825 663 8553 8551 8552 728 9287 9283 9285 733 10014 10016 10015 730

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.348 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: March 16, 2010

Serial Number: 1004949

35 m Cable Length:

Prestress: 35,000

7093 Factory Zero Reading:

Temperature: 22.5

Regression Zero:

Calibration Instruction: CI-VW Rebar

Technician: ERica

Applied Load:		Linearity			
(pounds)	Cycle #1 Cycle #2 Average Chang		Change	% Max.Load	
100 1,500 3,000 4,500 6,000 100	7156 7815 8528 9247 9964 7156	7157 7813 8529 9248 9963	7157 7814 8529 9248 9964	658 715 719 716	-0.12 -0.11 0.05 0.11

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.352 microstrain/digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

APPENDIX C

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE

CONSTRUCTION OF THE LOADTEST TOP LOAD PLOT FROM THE RESULTS OF AN O-CELL TEST (March, 2009)

<u>Introduction</u>: The specific advantage of the O-cell load test method is that it separates load displacement responses into multiple zones. End bearing and side shear are separated in many cases. Some engineers find it useful to see the results of an O-cell load test in the more traditional form of a plot showing the load versus displacement of a shaft loaded from the top. Simplified and advanced methods of constructing the top load displacement for this test shaft are described below.

<u>Assumptions</u>: We make the following assumptions, which we consider both reasonable and usually conservative:

- 1. The upward and downward load displacement plots generated by the O-cell test accurately represent the load bearing capacity for the given shaft installation technique and dimensions, and are similar to load displacement plots which would be generated by a traditional compression or tension load test. For upward O-cell loading, the net load is used to compute the load displacement plot for a given zone (subtract buoyant weight of the given shaft zone above the O-cell).
- 2. The load displacement plot in a top loaded shaft has the same net shear multiplied by an adjustment factor 'F', for a given downward displacement as occurred in the O-cell test for that same displacement at the top of the O-cell in the upward direction. Unless noted otherwise, we use the following adjustment factors: (a) F = 1.00 in all rock sockets and for primarily cohesive soils in compression (b) F = 0.95 in primarily cohesionless soils (c) F = 0.80 for all soils in top load tension tests.

<u>Simplified Method</u>: Refer to the attached <u>Figure C-1</u> showing the O-cell test results and to <u>Figure C-2</u>, the calculated top load displacement plot. Note that each of the plots shown in <u>Figure C-1</u> has points numbered from 1 to 8 such that the same point number on each plot has the same magnitude of displacement. For example, point 5 (load increment 1L-11) has an upward and downward displacement of 0.810 inches in <u>Figure C-1</u> and the same 0.810 inches downward in <u>Figure C-2</u>.

Using the above assumptions construct the top load plot as follows: Select an arbitrary displacement such as 0.810 inches to give point 5 on the upward load displacement plot in <u>Figure C-1</u> and record the 1,168 kip load at that displacement. Because we have assumed a rigid shaft, the top of shaft must move downward the same as the bottom. Therefore, find point 5 with 0.810 inches of displacement on the downward plot in <u>Figure C-1</u> and record the corresponding load of 737 kips. Adding these two loads will give the total load of 1,905 kips at the same displacement and thus gives point 5 on the <u>Figure C-2</u> derived top load displacement plot.

One can use the above procedure to obtain all the points in <u>Figure C-2</u> up to the component that moved the least at the end of the test, in this case point 5 of upward displacement in <u>Figure C-1</u>. The upward displacement can be extrapolated using a suitable hyperbolic method to the maximum downward displacement and the top load

plot then extended to that displacement. The results, shown in <u>Figure C-2</u> as points 6 to 8 (dashed line) signify that this part of the calculated top load displacement plot depends partly on extrapolated data.

Figure C- 1

Figure C- 2

Advanced Method: Using the advantages of the O-cell load test method to full benefit, a more exact solution of the calculated top load displacement plot can be derived using the t-z method (see references below). The shaft is sub-divided into a number of distinct zones, based on data collected from the embedded strain gauges and load displacement plots. The input for the t-z analysis is the unit shear and end bearing plots presented in Figures 5, 6 & 7 of the Data Report.

<u>Figure C-3</u> above illustrates a sample shaft segment zone. The zone has an associated unit shear capacity plot t_i (which is a non-linear function of displacement), shaft dimensions and properties L_i and AE_i , computed elastic compression δ_i , and computed loads and displacements at the top and bottom of the zone, Δ_i , Q_i and Δ_{i+1} , Q_{i+1} , respectively. For each zone i, the following three equations are solved in an iterative fashion until the output displacement and load Δ_{i+1} and Q_{i+1} match the input.

$$I) \quad \delta_i = \frac{\left(Q_i + Q_{i+1}\right)}{2} \cdot \frac{L_i}{AE_i} \qquad \quad II) \quad \Delta_{i+1} = \Delta_i + \delta_i \qquad \quad III) \quad Q_{i+1} = Q_i + t \left(\frac{\Delta_i + \Delta_{i+1}}{2}\right) \cdot A_i = \Delta_i + \delta_i = \Delta_i + \delta$$

The next zone i+1 is then analyzed, until the load transfer mechanism of the full shaft length is modeled. Additionally, there is an end-bearing capacity plot q which must also be considered. For comparison purposes, at a shaft head displacement of 0.810 inches at the sample calculation point 5 from the Simplified Method, the t-z method calculated load capacity is 1,770 kips.

Extrapolation: The TZ curves above the O-cell that are used to generate the LOADTEST top load plot contain a small extrapolation. This was done to extend the plot given that the lower shear and end bearing displaced more than the upper shear during the test.

<u>Limitations</u>: The engineer using these results should judge the conservatism, or lack thereof, of the aforementioned assumptions and extrapolation(s) before utilizing the results for design purposes. For example, brittle failure behavior may produce displacement plots with abrupt changes in curvature (not hyperbolic). The presentation of the *Estimated Top Load Plot* in this report is meant to simulate a load test where load is applied from the top for this test shaft only.

References:

Lee, Jong-Sub and Park, Yung-Ho "Equivalent Shaft Load-Head Settlement Curve Using a Bi-Directional Shaft Load Test", *Computers and Geotechnics*, Volume 35, Issue 2, March 2008, Pages 124-133.

Meyer, P. L., Holmquist, D. V. and Matlock, H. "Computer predictions for axially-loaded Shafts with Nonlinear Supports", *Proceedings of the 7th Offshore Technology Conference*, Paper No. 2186, Houston, Texas 1975.

APPENDIX D

O-CELL METHOD FOR DETERMINING CREEP LIMIT LOADING

O-CELL METHOD FOR DETERMINING A CREEP LIMIT LOADING ON THE EQUIVALENT TOP-LOADED SHAFT (September, 2000)

Background: O-cell testing provides a sometimes useful method for evaluating that load beyond which a top-loaded drilled shaft might experience significant unwanted creep behavior. We refer to this load as the "creep limit," also sometimes known as the "yield limit" or "yield load".

To our knowledge, Housel (1959) first proposed the method described below for determining the creep limit. Stoll (1961), Bourges and Levillian (1988), and Fellenius (1996) provide additional references. This method also follows from long experience with the pressuremeter test (PMT). Figure 8 and section 9.4 from ASTM D4719-94, reproduced below, show and describe the creep curve routinely determined from the PMT. The creep curve shows how the movement or strain obtained over a fixed time interval, 30 to 60 seconds, changes versus the applied pressure. One can often detect a distinct break in the curve at the pressure $P_{\rm e}$ in Figure 8. Plastic deformations may become significant beyond this break loading and progressively more severe creep can occur.

<u>Definition</u>: Similarly with O-cell testing using the ASTM Quick Method, one can conveniently measure the additional movement occurring over the final time interval at each constant load step, typically 4 to 8 minutes. A break in the curve of load vs. movement (as at P_e with the PMT) indicates the creep limit.

We usually indicate such a creep limit in the O-cell test for either one, or both, of the side shear and end bearing components, and herein designate the corresponding movements as M_{CL1} and M_{CL2} . We then combine the creep limit data to predict a creep limit load for the equivalent top loaded shaft.

Procedure if both M_{CL1} and M_{CL2} available: Creep cannot begin until the shaft movement exceeds the M_{CL} values. A conservative approach would assume that creep begins when movements exceed the lesser of the M_{CL} values. However, creep can occur freely only when the shaft has moved the greater of the two M_{CL} values. Although less conservative, we believe the latter to match behavior better and therefore set the creep limit as that load on the equivalent top-loaded movement curve that matches the greater M_{CL} .

<u>Procedure if only M_{CL1} available</u>: If we cannot determine a creep limit in the second component before it reaches its maximum movement M_x , we treat M_x as M_{CL2} . From the above method one can say that the creep limit load exceeds, by some unknown amount, that obtained when using $M_{CL2} = M_x$.

<u>Procedure if no creep limit observed</u>: Then, according to the above, the creep limit for the equivalent top-loaded shaft will exceed, again by some unknown amount, that load on the equivalent curve that matches the movement of the component with the maximum movement.

<u>Limitations</u>: The accuracy in estimating creep limits depends, in part, on the scatter of the data in the creep limit plots. The more scatter, the more difficult to define a limit. The user should make his or her own interpretation if he or she intends to make important use of the creep limit interpretations. Sometimes we obtain excessive scatter of the data and do not attempt an interpretation for a creep limit and will indicate this in the report.

Excerpts from ASTM D4719 "Standard Test Method for Pressuremeter Testing in Soils"

9.4 For Procedure A, plot the volume increase readings (V_{60}) between the 30 s and 60 s reading on a separate graph. Generally, a part of the same graph is used, see Fig. 8. For Procedure B, plot the pressure decrease reading between the 30 s and 60 s reading on a separate graph. The test curve shows an almost straight line section within the range of either low volume increase readings (V_{60}) for Procedure A or low pressure decrease for Procedure B. In this range, a constant soil deformation modulus can be measured. Past the so-called creep pressure, plastic deformations become prevalent.

FIG. 8 Pressuremeter Test Curves for Procedure A

References

Housel, W.S. (1959), "Dynamic & Static Resistance of Cohesive Soils", <u>ASTM STP 254</u>, pp. 22-23. Stoll, M.U.W. (1961, Discussion, Proc. 5th ICSMFE, Paris, Vol. III, pp. 279-281.

Bourges, F. and Levillian, J-P (1988), "force portante des rideaux plans metalliques charges verticalmement," Bull. No. 158, Nov.-Dec., des laboratoires des ponts et chaussees, p. 24.

Fellenius, Bengt H. (1996), Basics of Foundation Design, BiTech Publishers Ltd., p.79.

Side Shear Creep Limit

Broadway Viaduct - Council Bluffs, IA - TS 3

Base Creep Limit

Broadway Viaduct - Council Bluffs, IA - TS 3

APPENDIX E

SOIL BORING LOG

3/29/10 POST TEST GROLLED

	LOG OF BOI	RING	NO	. T	S- 3	ı				Pa	age 1 of 2
CLI	IENT Longfellow Drilling Inc.										
SIT	Ē	PRO	JEC	T							
	Council Bluffs, IA				SAN	B 1PLES	roadw	ay Vi	aduct	TESTS	
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N ** BLOWS / ft.	WATER CONTENT, %	DRY UNIT WT pcf	UNCONFINED STRENGTH, psf	
	(FILL) LEAN CLAY			.,	нѕ						
	Dark grayish brown	-									
\bowtie		5 =		1	SS HS	6	4				
		1 =									
	Trace brick fragments, grayish brown at	10=		2	SS	12	10				
	\about 8.5 feet FINE SAND with silt				HS						
八字 (2)	Grayish brown, loose ∇		SP	3	SS	: 18	4				
	<u>*</u>	15 =			HS						
ww	18.5	1 =			00	00		-			
	SILTY CLAY Grayish brown, soft	20 =	CL	4	SS HS	20	3				
	23.5										
77777	FINE SAND	25 =	SP	5	SS	12	10				
	Grayish brown, medium dense				HS						
		=	SP	6	SS	18	14				
		30-			HS			-			
	Very loose at about 33.5 feet		SP	7	SS	10	2				
	very loose at about 55.5 leet	35 =		<u> </u>	HS						
	Loose at about 38.5 feet	40-	SP	8	SS HS	20	5				ekremekerey danay
					110						***************************************
	Trace lignite below about 43.5 feet	45	SP	9	SS	15	12				-
		** =		Serve berminde bermin	HS						
			SP	10	SS	15	10		<u> </u>		
		50			HS	, 0		 	 		1
			<u> </u>								
4	Continued Next Page	55 =	SP	11	SS	18	13				Times of the same
The	Continued Next Page e stratification lines represent the approximate boundary lines	<u> </u>		<u> </u>	<u> </u>			*(L Calibrate	ed Hand	l Penetrometer
betv	ween soil and rock types: in-situ, the transition may be gradual.	and all and an arranged at a transfer and are		<u> </u>	T	.	INC C		**CN		natic Hammer

WATER LEVEL OBSERVATIONS, ft

WL |□ 15 WD 🛣 ŊĹ WL

lerracon

BORING STA	3-26-10		
BORING CON	3-26-10		
RIG	96	FOREMAN	JM
APPROVED	DAM	JOB#	05105037

LOG OF BORING NO. TS-3 Page 2 of 2												
CLI	ENT Longfellow Drilling Inc.											
SIT			PROJECT Broadway Viaduct									
	Council Dialis, IA		SAMPLES TESTS									
GRAPHIC LOG	DESCRIPTION		DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N ** BLOWS / ft.	WATER CONTENT, %	DRY UNIT WT pof	UNCONFINED STRENGTH, psf	
						HS						
	FINE SAND, trace grayish brown fat c layers, trace gravel Gray	lay	60	SP	12	SS	20	11				•
	Loose at about 63.5 feet Becoming fine to coarse sand, trace s clay layers, trace gravel below about 6 feet	andy 33.5	65	SP	13	SS	12	7				
	1861		70-	SP	14	SS	20	11				
								10				
			75 <u>=</u>	SP	15	SS HS	15	10				
			80—	SP	16	SS	18	17				
			=			HS				To the state of th		
			85 —	SP	17	SS HS	15	13				
	90			SP	18	SS	12	11				
	BOTTOM OF BORING		90									
							-					
01/62												
2 100.10												
ENERGY												
7 The	stratification lines represent the approximate bounds	ary lines				,			*(Calibrat	ed Hand	Penetrometer
j betv	veen soil and rock types: in-situ, the transition may b	e gradual.	·····	. Ned girt gaing early	VIIII 1011 11111111111111111111111111111		R∧₽	וווכ פי	ΤΔΡΤ		ME Auton	natic Hammer 3-26-10
WL.	TER LEVEL OBSERVATIONS, ft ☐	6	19									3-26-10
WL.	<u>Ā</u>	less	a)(c				RIG				OREMAN	
Ž WL						_	APP	ROVE	ת מ	AM J	OB#	05105037