1 Indicate whether the following statements are true(**T**) or false(**F**). You do **not**3+3+4 need to justify your answer.

- (a) Let A be a 2×2 matrix. If det(A) = 0, then one column of A is a scalar multiple of the other one.
- (b) The cross product of two unit vectors is an unit vector.
- (c) Let A be an $n \times n$ matrix whose column vectors are $\mathbf{a}_1, \dots, \mathbf{a}_n$. For any \mathbf{b} in \mathbf{R}^n , let B be the matrix that results when the nth column of A is replaced by \mathbf{b} , *i.e.*, $B = [\mathbf{a}_1 \cdots \mathbf{a}_{n-1} \mathbf{b}]$. If $A\mathbf{x} = \mathbf{b}$ has a nontrivial solution, then $\det(B) = 0$.

Solution.

- (a) True. Let \mathbf{a}_1 and \mathbf{a}_2 are two column vectors of A. If det A=0, then \mathbf{a}_1 and \mathbf{a}_2 are linearly dependent by Theorem 4.2.7. Therefore, one column of A should be a scalar multiple of the other one.
- (b) False. Let $\mathbf{u} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ and $\mathbf{v} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. Then \mathbf{u} and \mathbf{v} are unit vectors, but $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- (c) False. Let $A = I_n$ and $\mathbf{b} = \mathbf{e}_n$. Then, $A\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} = \mathbf{e}_n$. The matrix B that results when the last column of $A = I_n$ is replaced by $\mathbf{b} = \mathbf{e}_n$ is equal to I_n , since \mathbf{e}_n is the last column of I_n . Then $\det(B)$ is not zero.

2 Find the value of k for which the matrix M is singular.

10 points

$$M = \begin{bmatrix} k+1 & -1 & 2 & 1 & 3 \\ -2 & k & 1 & 0 & -1 \\ 0 & 0 & k & 0 & 1 \\ 0 & 0 & 0 & k & 0 \\ 0 & 0 & 2 & 0 & k-2 \end{bmatrix}$$

(Hint: If a square matrix M is partitioned into block trainingular form as

$$M = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$$
 in which A and B are square, then $\det(M) = \det(A) \det(B)$.)

Solution.

By Theorem 4.2.4, we should find the value of k such that $\det(M) = 0$. Since the matrix M is partitioned into the form of $\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$ where $A = \begin{bmatrix} k+1 & -1 \\ -2 & k \end{bmatrix}$ and

$$B = \begin{bmatrix} k & 0 & 1 \\ 0 & k & 0 \\ 2 & 0 & k - 2 \end{bmatrix}, \text{ we get}$$

 $\det M = \det A \det B$

$$= \begin{vmatrix} k+1 & -1 \\ -2 & k \end{vmatrix} \begin{vmatrix} k & 0 & 1 \\ 0 & k & 0 \\ 2 & 0 & k-2 \end{vmatrix}$$
$$= [k(k+1) - 2][k^2(k-2) - 2k]$$
$$= k(k-1)(k+2)(k^2 - 2k - 2)$$

by using the hint. Therefore, k = 0, 1, -2, or $k = 1 \pm \sqrt{3}$.