Teoría de Algoritmos Capitulo 3: Algoritmos Greedy Tema 8: Greedy sobre grafos

- Algoritmos para el árbol generador minimal
 - Algoritmos de Kruskal y Prim
- Algoritmos para caminos mínimos
 - Algoritmo de Dijkstra

- Se trata de encontrar el árbol generador minimal de un grafo, es decir, el árbol generador de mínima longitud.
- Suponemos un grafo conexo G = (V,A), sobre el que hay definida una matriz de pesos $L(i,j) \ge 0$.
- Queremos encontrar un árbol T ⊆ A tal que todos los nodos permanezcan conectados cuando solo se usen aristas de T, siendo la suma de los pesos de sus aristas mínima.
- Al grafo (V,T) se le llama Árbol Generador Minimal del grafo G.

- Las aplicaciones de este problema lo hacen muy importante.
 - Diseño de redes fisicas.
 - telefonos, electricas, hidraulicas, TV por cable, computadores, carreteras, ...
 - Analsis de Clusters.
 - Eliminacion de aristas largas entre vertices irrelevantes
 - Busqueda de cumulos de quasars y estrellas
 - Solucion aproximada de problemas NP.
 - PVC, arboles de Steiner, ...
 - Distribucion de mensajes entre agentes
 - Aplicaciones indirectas.
 - Plegamiento de proteinas, Reconocimiento de celulas cancerosas, ...

- El problema es resoluble con el enfoque greedy:
- Tenemos una lista de aristas: A partir de ella pueden darse las listas de candidatos o no a solución.
- Una solución será un conjunto de aristas que forme un AGM.
- La condición de factibilidad es que la arista que se vaya a incluir no forme un ciclo con las ya incluidas.
- El criterio de selección será escoger en cada momento la arista de mínimo peso.
- El objetivo es que la suma de los pesos de las aristas en el árbol sea mínima.

- Se verifica la Propiedad del AGM:
- Sea G = (V,A) un grafo no dirigido y conexo donde cada arista tiene una longitud conocida. Sea $U \subseteq V$ un subconjunto propio (lo que significa que U no puede coincidir con V) de los nodos de G. Si (u,v) es una arista tal que $u \in U$ y $v \in V U$ y, además, es la arista del grafo que verifica esa condición con el menor peso, entonces existe un AGM T que incluye a (u,v).
- Esta propiedad garantizará que el algoritmo greedy que diseñemos proporcione la solución optima del problema, y por tanto que funcione correctamente.

Demostración de la propiedad del AGM

 Demostración por contradicción: Supongamos que T es un AGM que no contiene a e = (u,v)

 Si añadimos e a T se crea un ciclo C. Si rompemos ese ciclo (eliminando una arista f conectando U y V, obtenemos u nuevo AG T* que (por incluir a e) tendria menor longitud que T. Eso es una contradicción

Algoritmo de Kruskal

- Ordenar las aristas de forma creciente de costo
- Repetir
- Coger la arista mas corta.
- Borrar la arista de E
- Aceptar la arista si no forma un ciclo en el arbol parcial, Rechazarla en caso contrario,
- Hasta que tengamos |V|-1 aristas correctas.
- Si nuestro grafo tiene n vertices y a aristas, el tiempo de este algoritmo es O(a log a)

Ejemplo

(a,b), (a,c), (a,d), (e,f), (b,c), (c,d), (b,e), (c,e), (d,e)

Implementacion del algoritmo

```
FUNCION KRUSKAL (G: GRAFO): Conjunto de aristas.
  Ordenar las aristas por longitudes crecientes
  N = |V|
  T = \emptyset
  Inicializar N conjuntos (1 elemento cada)
  Repetir
       \{U,V\} = arista mas corta aun no considerada
       COMP U = BUSCA (U)
       COMP V = BUSCA (V)
       SI COMPU = COMPV ENTONCES
              UNIR (COMPU, COMPV)
              T = T \cup (\{U,V\})
  Hasta que |T| = N - 1
  DEVOLVER (T)
```

Analisis del algoritmo

- Donde:
 - Ordenar las aristas es O(a log a) para "a" aristas.
 - N es el número de vértices en el grafo.
 - Tes el conjunto donde construiremos AGM.
 - BUSCA () lleva a cabo la búsqueda de la arista que se considere y es (si se hace con búsqueda binaria) O (log n).
 - UNION es O (log n) y lleva a cabo la unión de dos conjuntos.
- El orden del algoritmo de Kruskal es O (a log a), pero como tenemos n vértices, y en un grafo conexo siempre se verifica:

$$n-1 \le a < \frac{n(n-1)}{2}$$

• se tiene que el algoritmo es O (a log n).

Algoritmo de Prim

- El **Algoritmo de Prim**, es otro método de resolver el problema del AGM que se basa en:
 - Construcción del algoritmo en función de la propiedad del AGM.
 - En el algoritmo de Kruskal partíamos de la selección de la arista más corta que hubiera en la lista de aristas, lo que implica un crecimiento desordenado del AGM.
 - Para evitarlo, el algoritmo de Prim propone que el crecimiento del AGM sea ordenado.
 - Para ello aplica el algoritmo a partir de una raíz, lo que no implica restricción alguna.

Algoritmo de Prim

- La idea del algoritmo de Prim es la siguiente:
 - Se toma un conjunto U de nodos, que inicialmente contiene al nodo raíz.
 - Formamos el conjunto T de soluciones (aristas).
 - En cada etapa el algoritmo busca la arista más corta que conecta U con V - U, siendo V el conjunto de candidatos.
 - Añade el vértice obtenido al conjunto U y la arista obtenida a T.
 - En cada instante, las aristas que están en T constituyen un AGM para los nodos que están en U.
 - Esto lo hacemos hasta que U = n.

Implementación del Algoritmo de Prim

```
FUNCION PRIM (G = (V, A)) conjunto de aristas.
(Inicialización)
  T = \emptyset (Contendrá las aristas del AGM que buscamos).
  U = un miembro arbitrario de V
  MIENTRAS | U = N HACER
      BUSCAR e = (u,v) de longitud mínima tal que
            u \in U y v \in V - U
      T = T + e
      U = U + v
DEVOLVER (T)
```


Implementación del algoritmo de Prim

- Para estudiar la eficiencia de Prim, es necesario elaborar un poco más su implementación, por lo que suponemos:
- $L[I, J] \ge 0$ una matriz de distancias.
- MasProximo [x] es un vector que nos da el nodo U que está más cercano al vértice x.
- DistMin [x] es un vector que nos da la distancia entre x y MasProximo [x].

Implementación del algoritmo de Prim

```
Funcion Prim (L[1...n, 1...n]: conjunto de aristas
{al comienzo solo el nodo 1 se encuentra en U}
   T = \emptyset (contendrá las aristas del AGM)
   Para i = 2 hasta n hacer
        MasProximo[i] = 1; DistMin[i] = L[i, 1]
   Repetir n - 1 veces
        min = \infty
        Para j = 2 hasta n hacer
                Si 0 \le DistMin [j] < min entonces min = DistMin [j]
        T = T + (MasProximo [k], k)
        DistMin [k] = -1 (estamos añadiendo k a U)
        para j = 2 hasta n hacer
                si L [j, k] < DistMin [j] entonces
                        DistMin [k] = L[j, k];
                        MasProximo [j] = k
   Devolver T.
```

Análisis del algoritmo de Prim

- El bucle principal del algoritmo se ejecuta n 1 veces.
- En cada iteración, el bucle "para" anidado requiere un tiempo O(n). Por tanto, el algoritmo de Prim requiere un tiempo $O(n^2)$.
- Como el Algoritmo de Kruskal era O(a log n), siendo a el numero de aristas del grafo,
- ¿Que algoritmo usar Prim o Kruskal?
- Sabemos que

$$n-1 \le a < \frac{n(n-1)}{2}$$

 Luego en grafos poco densos, lo mejor seria emplear Kruskal, y si el grafo es muy denso, Prim

Algoritmos de Camino Mínimo

- El problema de determinar el camino mínimo (de longitud mínima) entre dos vértices de un grafo es de una importancia extraordinaria en todas las ramas de las Ingenierías, y en particular en Inteligencia Artificial
- El algoritmo que resuelve este problema de manera mas eficiente es el conocido Algoritmo de Dijkstra, que diseño el mismo Edsger W. Dijkstra en 1959, cuando tenia 29 años

El problema del Camino Mínimo

- Suponemos:
- Un grafo dirigido G = (V,E) con E un conjunto de arcos y V un conjunto de vértices.
 - Una distancia definida entre los nodos que viene dada por una matriz $L[1...n, 1...n] \ge 0$.
- Se trata de hallar la distancia de los caminos mínimos desde un nodo raíz (el nodo 1) a todos los demás.
- Es un problema típicamente Greedy, en el que se identifican fácilmente las seis características.
- La aplicación del enfoque greedy conduce al Algoritmo de Dijkstra, del que las principales características son las siguientes

Algoritmo de Dijkstra

- Llamamos S al conjunto de los nodos elegidos.
 S contendrá los nodos cuya distancia desde el origen es mínima
- Inicialmente, S solo contiene el origen y cuando finalice el algoritmo, S contendrá todos los nodos del grafo.
- En cada etapa, elegiremos aquel nodo cuya distancia al origen sea menor, para ponerlo en S.

Algoritmo de Dijkstra

- Diremos que un camino del origen a otro nodo es especial si todos los nodos intermedios están en S.
- En cada etapa del algoritmo se emplea un vector D que contiene la longitud del camino especial más corto a cada nodo del grafo, de manera que en cada etapa, como añadimos un vértice nuevo a S, todos los valores de D[V] se actualizan.
- Para la actualización vemos si con el nuevo vértice introducido en S podemos llegar al vértice v por un camino de longitud más corta que el que había. Si es posible, se actualiza D[V].

Algoritmo de Dijkstra

```
FUNCION DIJKSTRA
  C = \{2, 3, ..., N\}
  PARA I = 2 HASTA N HACER D[I] = L [1, I]
  I = 2, ..., N
  P[I] = 1
  REPETIR N - 2 VECES
       V = algún elemento de C que minimice D[V]
       C = C - (V)
       PARA CADA W E C HACER
               SI D[w] > D[V] + L[v, w] ENTONCES
               D[w] = D[V] + L[v, w]
              P[w] = v
```

DEVOLVER D

Donde P es un vector que nos permite conocer por donde pasa cada camino de longitud minima desde el origen

Ejemplo (Solo entre a y z)

Inicialización

Primera Iteración

Tercera Iteración

Cuarta (y ultima) Iteración

Demostración de la corrección

Hipotesis de Inducción T(i):

- en la i-esima iteracion del lazo del algoritmo, el valor D[V] del vertice v se hace permanente
- D[v] siempre es el valor minimo entre los valores temporales
 El valor D[v] da el camino minimo desde el origen hasta el vertice v
- Base (i = 1).
 - Inicialmente D[a] = 0, y todos los demas D's son mayores que cero, por tanto se elige el origen a
 - D[a] es el camino mas corto desde a hasta a
 - T(1) es cierta.

Demostración de la corrección

- Supongamos que T(k) es cierto para todo k < i.
 - En al iteracion k+1, seleccionamos el nodo v.
 ¿ Es D(v) el camino mas corto desde a a v?

Demostración de la corrección

- La hipotesis de induccion era:
 - En la iteracion k+1 seleccionar el nodo v.
 ¿Es D(v) el camino mas corto de a a v?
 - La respuesta es SI.
 - Por tanto, T(k+1) es cierta.
- Como la base y la hipotesis de induccion son ciertas, T(i) es cierta para todo i.
- Otra demostración puede (y debe) verse en el libro de Brassard y Bratley

Analisis de la eficiencia

- El algoritmo es obvio que consume un tiempo en O(n²) en el peor caso
- La hipótesis de que las distancias sean no negativas es esencial
 - Si hay alguna distancia negativa el algoritmo no funciona correctamente: La hipótesis de inducción no puede demostrarse porque no se verifica la propiedad triangular.
- El algoritmo puede extenderse fácilmente para que de la distancia entre todos los pares de vértices: O(n³).