

VOC Composition and OH Reactivity Observed Over Long Beach, California

Presented By: Joshua Lozano, Sonoma State University, Computer Science

Volatile Organic Compounds (VOCs)

- VOCs are released into the air and react with other compounds which can create ozone
- Ozone in the troposphere can cause negative health effects such as
 - increased risk of respiratory infections
 - o reproductive issues
 - Cancer risk

Platform

DC-8 (retired in 2024)

Methods

WAS Instrument (DC-8)

Credit: Sam Hall, Rebecca Hornbrook

Area Of Interest

- Summer and Winter
- Long Beach area
- Within the boundary layer
- Missed Approaches
- 22 data points
- QGIS

Why Long Beach?

Summer 2022 Observed O3 emissions

Summer VS Winter VOC Composition

- ~50 VOCs were studied
- Overall higher VOC concentrations in the
 - Less Sunlight

Winter

- Less water vapor
- Lower Temperature (Reacts Slower)
- Lower Boundary layer

Summer 2014 flight data

- About the same amount of points as summer 2022
- Missed approach
- Within the boundary layer
- QGIS

Total Mixing Ratios

- All mixing ratios for the VOCs decreased
- Propane decreased by a factor of 3.3
- Where Ethane only decreased by a factor of 1.5
- n-Butane decreased the most by a factor of about 4
- Something changed
 between 2014 and 2022
- The total mixing ratios decreased by a factor of about 2.5

Have concentrations really changed over time?

Unable to look into this due to time constraints

1. Any larger datasets indicating overall changes in VOC emissions?

3. Boundary Layer Height? • • • indicate this

Would need to investigate other datasets

2014: ~ NW 2022: ~ SE

5. Wind direction?

Avg Mixing

 $(cm^3 molec^{-1} s^{-1})$

(s⁻¹)

X OH Rate Constant = OH Reactivity

(ppt) $(cm^3 molec^{-1} s^{-1})$ (s^{-1})

Avg Mixing Ratio X OH Rate Constant = OH Reactivity

Comparing Trend of Mixing Ratios and OH Reactivity 2014 vs 2022

Total OH Reactivity

- Downward trend for everything except Isoprene
- Increased isoprene could be caused by:
 - Increased temperature
 - More vegetation
 - More overall stress on vegetation
- Accounted for about 30% of reactivity

Conclusions

- Overall decrease in the average VOC concentrations observed in summers of 2014 to 2022
 - Possible cause: wind direction
 - Other possible causes: COVID-19, temperature, regulation changes, etc..
- Isoprene accounted for ~30% of OH reactivity in summer 2022
 and ~11% in summer 2014
 - Indications of more reactive VOCs, like isoprene and ethene for example, are dominating in recent years

Future Work

- Study every year from summer 2014 to summer 2022 to see if the trend of increased isoprene that was shown in this study is true.
- Extend study area to include most of the LA basin or other missed approach regions

Acknowledgements

- Dr. Don Blake (Faculty Mentor)
- Katie Paredero (Grad Mentor)
- Earth Science Division at the Science Mission Directorate in NASA Headquarters in Washington, D.C.
- Dr. Karen St. Germain
- Dr. Julie Robinson
- Dr. Jack Kaye
- Dr. Barry Lefer
- Dr. Melissa Martin
- NASA's Early Career Research (ECR)
- Coding lead (Rachel Wegener) and coding mentor (Dr. Disha Sardana)
- University of California, Irvine Campus
- Maddie Landi (Grad Mentor)
- Lori Berberian (Grad Mentor)
- Megan Ward-Baranyay (Grad Mentor)
- All of the WAS group
- The Pilots of the P-3 and B-200
- Stephanie Olaya (Program Manager)
- Mullen Family
- Rafe Day

JOSHUA TREE