Recording will be on Canvas in My Media REP(L) = { WET* | between every pair of successive 25 in w is a string in L } No matter what L is, we can conclude that L = 90,13# 2 each in REP(L)

REP(U) = 30,1,23* do not have a pour of successive 2s. Q: Is it true that for all sets X, Ø UX = X? Note & is not necessarily an element of sets. in particular & & D. "The empty string is not in particular at the empty set." By Jefinition $\phi \cup X = \{w \mid w \in \beta \text{ or } w \in X\} = \{w \mid w \in x\} = X$ HW Q1e "Write a template for a regular expression that describes" For example to write a template for a regular expression that describes the language that result from taking all strings in some language L over 70,13 that is dowiled by R and appending a 0 to the end of each one of them, we could use Template: RO

Notice R*O or Rost don't work
as template for this language.

Textbook references: Within a chapter, each item is numbered consecutively. Figure 1.22 is the twenty-second numbered item in chapter one; it comes right after Example 1.21 and right before Definition 1.23.

In Computer Science, we operationalize "hardest" as "requires most resources", where resources might be memory, time, parallelism, randomness, power, etc. To be able to compare "hardness" of problems, we use a consistent description of problems

Input: String

Output: Yes/No, where Yes means that the input string matches the pattern or property described by the problem.

So far: we saw that regular expressions are convenient ways of describing patterns in strings. DFA give a model of computation for processing strings and and classifying them into Yes (accepted) or No (rejected). We will see that each set of strings is described by a regular expression if and only if there is a DFA that recognizes it. Another way of thinking about it: properties described by regular expressions require exactly the computational power of DFAs.

Monday

Review: Formal definition of DFA: $M = (Q, \Sigma, \delta, q_0, F)$ multiple representations

• Finite set of states Q

• Start state q_0

• Alphabet Σ

• Accept (final) states F

• Transition function δ $\delta: \mathbb{Q} \times \mathbb{Z} \to \mathbb{Q}$ $\delta: \mathbb{Q} \times \mathbb{Z} \to \mathbb{Q}$ $\delta: \mathbb{Q} \times \mathbb{Z} \to \mathbb{Q}$ In the state diagram of M, how many outgoing arrows are there from each state?

 $M = (\{q, r, s\}, \{a, b\}, \delta, q, \{s\}) \text{ where } \delta \text{ is (rows labelled by states and columns labelled by symbols):}$ $\frac{\delta}{q} \frac{ab}{r}$ $\frac{\delta}{r} \frac{ab}{r}$ $\frac{\delta}{r} \frac{ab}{r}$ $\frac{\delta}{r} \frac{ab}{r}$ $\frac{\delta}{r} \frac{ab}{r}$

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M:

balo طاطم

Add "labels" for states in the state diagram, e.g. "have not seen any of desired pattern yet" or "sink state".

Extra example: A state diagram for DFA recognizing

 $\{w \mid w \text{ is a string over } \{0,1\} \text{ whose length is not a multiple of } 3\}$

Let n be an arbitrary positive integer. What is a formal definition for a DFA recognizing $\{w \mid w \text{ is a string over } \{0,1\} \text{ whose length is not a multiple of } n\}$?

Review: Week 2 Monday

Please complete the review quiz questions on Gradescope about the languages recognized by DFAs.

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each week are all due on Friday (with no penalty late submission open until Sunday).

Pre class reading for next time: Pages 45-47.

Suppose A is a language over an alphabet Σ . By definition, this means A is a subset of Σ^* . Claim: if there is a DFA M such that L(M) = A then there is another DFA, let's call it M', such that $L(M') = \overline{A}$, the complement of A, defined as $\{w \in \Sigma^* \mid w \notin A\}$.

Switch role of accept and not accept states from M + wild M. Proof idea:

Proof:

roof: Let A be an arbitrary language over Σ . Assume there is a DFA $M = (Q, \Sigma, S, Qo, F)$

want to build M' so that LCM')=A

Define M'= (Q, E, S, go, EgeQ/q&FJ)

Same same same same suiten

Set of
States alphabet arrows start roles!

Claim that LCM) = A

Goal WTS L(M) = A. Let w be an arbitrary string accepted by M. By definition, this means that the computation of M on wends in a state, let's call it r, and w ends in a state,

re (ÉgeQ/8×F3) i.e. r&F. Because M

and M' Share set of states, start state and transition function, computation of M on w also ends in 1. Since 1 & F

M rejects w. By definition LCM)=A.

So since w&LCM) also w&A, i.e. by

definition of complement $W \in A$.

Goal (C) WTS $\overline{A} \subseteq L(M')$ (keeps going next page)
A useful (optional) bit of terminology: the **iterated transition function** of a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is defined recursively by

$$\delta^*(\ (q,w)\) = \begin{cases} q & \text{if } q \in Q, w = \varepsilon \\ \delta(\ (q,a)\) & \text{if } q \in Q, \, w = a \in \Sigma \\ \delta(\ (\delta^*(q,u),a)\) & \text{if } q \in Q, \, w = ua \text{ where } u \in \Sigma^* \text{ and } a \in \Sigma \end{cases}$$

Using this terminology, M accepts a string w over Σ if and only if $\delta^*((q_0, w)) \in F$.

Let y be an arbitrary string in A.

We want to snow y elim', namely

that M' accepts y. By assumption

A = L(M) so y eA means y & A

and y & L(M). In other words, M

rejects y. Using the iterated transition

function terminology, 8* ((2054)) & F.

By definition of M' (naving same

8 and 80 as M, and fripped

accept states). This mean 8* ((2014) is

an accept state in M' so M' accepts y,

as required.

Since we proved $L(M') \subseteq \overline{A}$ and $L(M') \supseteq \overline{A}$, we have $L(M') = \overline{A}$, so M' is a DFA that recognizes \overline{A} , as required.

Notice: (S = S = S = 30.1) M = (383, 50.13, 5, 80.78) S(---) M' = (383, 50.13, 5, 90.8) M' = (383, 50.13, 5, 90.8) S(---) S(---)

Fix $\Sigma = \{a, b\}$. A state diagram for a DFA that recognizes $\{w \mid w \text{ has } ab \text{ as a substring and is of even length}\}$: Notice this language is Sulwhasah 3 of My ever kingth M_1 with $L(M_1) = A_1$ (90) a (91) a (92) a 3-6 Suppose A_1, A_2 are languages over an alphabet Σ . Claim: if there is a DFA M_1 such that $L(M_1) = A_1$ and DFA M_2 such that $L(M_2) = A_2$, then there is another DFA, let's call it M, such that $L(M) = A_1 \cap A_2$. Proof idea: Run computation of My and Mz in panalle! Formal construction: **Application**: When $A_1 = \{w \mid w \text{ has } ab \text{ as a substring}\}$ and $A_2 = \{w \mid w \text{ is of even length}\}$. Proof of correctness of formal construction left as exercise.

Suppose A_1, A_2 are languages over an alphabet Σ . Claim: if there is a DFA M_1 such that $L(M_1) = A_1$ and DFA M_2 such that $L(M_2) = A_2$, then there is another DFA, let's call it M , such that $L(M) = A_1 \cup A_2$. Sipser Theorem 1.25, page 45
Proof idea:
Formal construction:
Application : A state diagram for a DFA that recognizes $\{w \mid w \text{ has } ab \text{ as a substring or is of even length}\}$:

Review: Week 2 Wednesday

Please complete the review quiz questions on Gradescope about the languages recognized by DFAs.

Recall: Review quizzes based on class material are assigned each day. These quizzes will help you track and confirm your understanding of the concepts and examples we work in class. Quizzes can be submitted on Gradescope as many times (with no penalty) as you like until the quiz deadline: the three quizzes each week are all due on Friday (with no penalty late submission open until Sunday).

Pre class reading for next time: Introduction to Section 1.2

Friday

Page 53

Nondeterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$	
Finite set of states Q	Can be labelled by any collection of distinct names. Default: $q0, q1, \ldots$
Alphabet Σ	Each input to the automaton is a string over Σ .
Arrow labels Σ_{ε}	$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}.$
	Arrows in the state diagram are labelled either by symbols from Σ or by ε
Transition function δ	$\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ gives the set of possible next states for a transition
	from the current state upon reading a symbol or spontaneously moving.
Start state q_0	Element of Q . Each computation of the machine starts at the start state.
Accept (final) states F	$F \subseteq Q$.
M accepts the input string	if and only if there is a computation of M on the input string
	that processes the whole string and ends in an accept state.

The formal definition of the NFA over $\{0,1\}$ given by this state diagram is:

The language over $\{0,1\}$ recognized by this NFA is:

Change the transition function to get a different NFA which accepts the empty string.

The state diagram of an NFA over $\{a,b\}$ is below. The formal definition of this NFA is:

The language recognized by this NFA is:

Review: Week 2 Friday

Please complete the review quiz questions on Gradescope about NFA.

Pre class reading for next time: Theorem 1.47, Theorem 1.49