Quasi-Polynomial Growth of Betti Numbers Over Local Rings

Nicholas Packauskas

Department of Mathematics SUNY Cortland

DG Methods in Commutative Algebra and Representation Theory May 2nd, 2020

Throughout, (R, \mathfrak{m}, k) will denote a commutative local ring with maximal ideal \mathfrak{m} and residue field k and M will denote a finitely generated R-module.

Throughout, (R, \mathfrak{m}, k) will denote a commutative local ring with maximal ideal \mathfrak{m} and residue field k and M will denote a finitely generated R-module.

Definition

R is a **complete intersection** if its completion $\widehat{R} \cong Q/I$ where (Q, \mathfrak{n}, k) is a regular local ring and $I \subseteq \mathfrak{n}^2$ is generated by a regular sequence f_1, \ldots, f_c .

Throughout, (R, \mathfrak{m}, k) will denote a commutative local ring with maximal ideal \mathfrak{m} and residue field k and M will denote a finitely generated R-module.

Definition

R is a **complete intersection** if its completion $\widehat{R} \cong Q/I$ where (Q, \mathfrak{n}, k) is a regular local ring and $I \subseteq \mathfrak{n}^2$ is generated by a regular sequence f_1, \ldots, f_c .

• The codimension of R is $c := \dim Q - \dim R$.

Throughout, (R, \mathfrak{m}, k) will denote a commutative local ring with maximal ideal \mathfrak{m} and residue field k and M will denote a finitely generated R-module.

Definition

R is a **complete intersection** if its completion $\widehat{R} \cong Q/I$ where (Q, \mathfrak{n}, k) is a regular local ring and $I \subseteq \mathfrak{n}^2$ is generated by a regular sequence f_1, \ldots, f_c .

- The codimension of R is $c := \dim Q \dim R$.
- The embedding dimension of R is $e := \dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim Q$.

Throughout, (R, \mathfrak{m}, k) will denote a commutative local ring with maximal ideal \mathfrak{m} and residue field k and M will denote a finitely generated R-module.

Definition

R is a **complete intersection** if its completion $\widehat{R} \cong Q/I$ where (Q, \mathfrak{n}, k) is a regular local ring and $I \subseteq \mathfrak{n}^2$ is generated by a regular sequence f_1, \ldots, f_c .

- The codimension of R is $c := \dim Q \dim R$.
- The embedding dimension of R is $e := \dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim Q$.

Let M be a finitely generated R-module. We will examine the growth of the Betti numbers $\beta_i^R(M) := \dim_k \operatorname{Ext}_R^i(M,k)$ of finitely generated modules over complete intersection rings.

Background

Theorem (Tate '57)

Let R be a complete intersection ring of codimension c and embedding dimension e. Then the Poincaré series of the residue field is given by

$$P_k^R(t) := \sum_{i>0} \beta_i^R(k) t^i = \frac{(1+t)^e}{(1-t^2)^c} = \frac{(1+t)^{e-c}}{(1-t)^c}$$

Background

Theorem (Tate '57)

Let R be a complete intersection ring of codimension c and embedding dimension e. Then the Poincaré series of the residue field is given by

$$P_k^R(t) := \sum_{i>0} \beta_i^R(k) t^i = \frac{(1+t)^e}{(1-t^2)^c} = \frac{(1+t)^{e-c}}{(1-t)^c}$$

In particular, there exists a polynomial $b_k(n) \in \mathbb{Q}[n]$ of degree c-1 such that $\beta_n^R(k) = b_k(n)$ for large values of n.

Theorem (Gulliksen '74, Avramov '89)

Let R be a complete intersection of codimension c and M be a finitely generated R-module. Then we can write

$$P_M^R(t) = \frac{p(t)}{(1-t^2)^c}$$

Theorem (Gulliksen '74, Avramov '89)

Let R be a complete intersection of codimension c and M be a finitely generated R-module. Then we can write

$$P_M^R(t) = \frac{p(t)}{(1-t^2)^c} = \frac{h(t)}{(1-t)^d(1+t)^b}$$

for some nonnegative integer $d \le c$. polynomial h(t) with $h(1) \ne 0$ and b < d.

Theorem (Gulliksen '74, Avramov '89)

Let R be a complete intersection of codimension c and M be a finitely generated R-module. Then we can write

$$P_M^R(t) = \frac{p(t)}{(1-t^2)^c} = \frac{h(t)}{(1-t)^d(1+t)^b}$$

for some nonnegative integer $d \le c$. polynomial h(t) with $h(1) \ne 0$ and b < d.

Equivalently, there exists two integer valued polynomials b_+^M, b_-^M with deg $b_+^M = \deg b_-^M < d$ such that for $i\gg 0$

$$\beta_i^M(t) = \begin{cases} b_+^M(i) & i \text{ is even} \\ b_-^M(i) & i \text{ is odd.} \end{cases}$$

Further, b_-^M and b_+^M have the same leading term. The order of the pole at t=-1 determines how many of the terms (from leading term down) b_-^M and b_+^M have in common.

• It is always the case that $b_{-}^{k} = b_{+}^{k}$.

- It is always the case that $b_{-}^{k} = b_{+}^{k}$.
- (Avramov '94) If R is a complete intersection of minimal multiplicity ($= 2^c$) then $b_-^M = b_+^M$ for all finitely generated modules M.

- It is always the case that $b_{-}^{k} = b_{+}^{k}$.
- (Avramov '94) If R is a complete intersection of minimal multiplicity (= 2^c) then $b_-^M = b_+^M$ for all finitely generated modules M.
- (Avramov, Seceleanu, Yang '16) Let R be is a graded complete intersection of codimension c. Then $b_-^M = b_+^M$ for all finitely generated M if and only if at least c-1 of the minimal generators of the defining ideal are quadrics.

Let (R, \mathfrak{m}, k) be a local ring, and $\hat{R} \cong Q/I$ a minimal Cohen presentation of R, so that (Q, \mathfrak{n}, k) is a regular local ring. Set I_2^{\square} to be the image of $I \subseteq \mathfrak{n}^2/\mathfrak{n}^3$, and let $I^{\square} \subseteq \operatorname{gr}_{\mathfrak{n}} Q$ be the ideal generated by I_2^{\square} .

Let (R, \mathfrak{m}, k) be a local ring, and $\hat{R} \cong Q/I$ a minimal Cohen presentation of R, so that (Q, \mathfrak{n}, k) is a regular local ring. Set I_2^{\square} to be the image of $I \subseteq \mathfrak{n}^2/\mathfrak{n}^3$, and let $I^{\square} \subseteq \operatorname{gr}_{\mathfrak{n}} Q$ be the ideal generated by I_2^{\square} .

Definition

The quadratic codimension q of a local ring R is the height of the ideal I^{\square} defined above.

Note that $q \leq c$.

Let (R, \mathfrak{m}, k) be a local ring, and $\hat{R} \cong Q/I$ a minimal Cohen presentation of R, so that (Q, \mathfrak{n}, k) is a regular local ring. Set I_2^{\square} to be the image of $I \subseteq \mathfrak{n}^2/\mathfrak{n}^3$, and let $I^{\square} \subseteq \operatorname{gr}_{\mathfrak{n}} Q$ be the ideal generated by I_2^{\square} .

Definition

The quadratic codimension q of a local ring R is the height of the ideal I^{\square} defined above.

Note that $q \leq c$.

Example

Let $R = k[x,y]/(xy,x^2+y^3)$. Then $I^{\square} = (\overline{xy},\overline{x}^2)$ which has height one in $gr_{\mathfrak{n}}Q = k[\overline{x},\overline{y}]$. Thus, for R, c=2 and q=1.

Let (R, \mathfrak{m}, k) be a local ring, and $\hat{R} \cong Q/I$ a minimal Cohen presentation of R, so that (Q, \mathfrak{n}, k) is a regular local ring. Set I_2^{\square} to be the image of $I \subseteq \mathfrak{n}^2/\mathfrak{n}^3$, and let $I^{\square} \subseteq \operatorname{gr}_{\mathfrak{n}} Q$ be the ideal generated by I_2^{\square} .

Definition

The quadratic codimension q of a local ring R is the height of the ideal I^{\square} defined above.

Note that $q \leq c$.

Example

Let $R = k[x,y]/(xy,x^2+y^3)$. Then $I^{\square} = (\overline{xy},\overline{x}^2)$ which has height one in $gr_{\mathfrak{n}}Q = k[\overline{x},\overline{y}]$. Thus, for R, c=2 and q=1.

In the graded setting, the quadratic codimension of a complete intersection ring measures the number of generators in a minimal generating set of *I* which are quadric.

The Main Result

Theorem (Avramov, P., Walker)

Let (R, \mathfrak{m}, k) be a complete intersection of codimension c and quadratic codimension q. Then for each finitely generated R-module M, we can write

$$P_{M}^{R}(t) = \frac{g_{M}(t)}{(1-t)^{c}(1+t)^{b}}$$

where $g_M(t) \in \mathbb{Z}[t]$, and $b = \max\{0, c - q - 1\}$.

This puts an upper bound on the degree of the discrepancy between b_-^M and b_+^M , that is, $\deg b_-^M - b_+^M \le c - q - 1$.

Homotopy Lie Algebras of Local Rings

Recall that $\operatorname{Ext}_R^*(M,k)$ is a (left) module over the associative algebra $\operatorname{Ext}_R^*(k,k)$ via the composition product. We can associate a graded Lie algebra over k to R, called its homotopy Lie algebra.

Homotopy Lie Algebras of Local Rings

Recall that $\operatorname{Ext}_R^*(M,k)$ is a (left) module over the associative algebra $\operatorname{Ext}_R^*(k,k)$ via the composition product. We can associate a graded Lie algebra over k to R, called its homotopy Lie algebra.

Theorem (Milnor-Moore '65, André '71, Sjödin '80)

For a local ring R, there exists a graded Lie algebra $\pi^*(R)$ with the following properties:

- $\dim_k \pi^i(R) = \varepsilon_i(R)$ for each $i \in \mathbb{Z}$.
- There is an isomorphism of associative algebras

$$U(\pi^*(R)) \cong Ext_R^*(k,k)$$

where $U(\pi^*(R))$ is the universal enveloping algebra of $\pi^*(R)$.

8 / 15

Homotopy Lie Algebras over Complete Intersections

For complete intersections, $\operatorname{Ext}_R^*(M,k)$ is finitely generated over $\operatorname{Ext}_R^*(k,k)$ and the homotopy Lie algebra is completely understood:

Homotopy Lie Algebras over Complete Intersections

For complete intersections, $\operatorname{Ext}_R^*(M,k)$ is finitely generated over $\operatorname{Ext}_R^*(k,k)$ and the homotopy Lie algebra is completely understood:

Theorem (Sjödin '76)

Let (R, \mathfrak{m}, k) be a complete intersection of codimension c and embedding dimension e. Let $\hat{R} \cong Q/I$, with $\mathfrak{n} = (x_1, \ldots, x_e)$, $I = (f_1, \ldots, f_c)$ and write $f_h = \sum_{i,j} a_{ij}^h x_i x_j$ with $a_{ij}^h \in Q$.

- $\bullet \ \dim_k \pi^i(R) = \begin{cases} e & i = 1 \\ c & i = 2 \\ 0 & i \neq 1, 2 \end{cases}.$
- There are k bases ξ_1, \ldots, ξ_e and χ_1, \ldots, χ_c such that

$$[\xi_i, \xi_j] = -\sum_{h=1}^c \overline{a}_{ij}^h \chi_h, \quad \xi^{[2]} = -\sum_{h=1}^c \overline{a}_{ii}^h \chi_h$$

Where \bar{a}_{ii}^h is the image of a_{ii}^h in k.

The Special Subalgebra

The heavy lifting of the proof is done by constructing a Lie sub-algebra of the homotopy Lie algebra with nice properties.

The Special Subalgebra

The heavy lifting of the proof is done by constructing a Lie sub-algebra of the homotopy Lie algebra with nice properties.

Theorem (Avramov, P., Walker)

Let R be a complete intersection of codimension c and quadratic codimension q. Then there is a Lie sub-algebra of $\lambda^* \subseteq \pi^*(R)$ with the following properties:

- $\dim_k \lambda^1 = q$
- $\lambda^i = \pi^i(R)$ for $i \neq 1$.
- $Ext_R^*(k, k)$ is free of finite rank as a left $U(\lambda^*)$ -module.
- $U(\lambda^*)$ has finite global dimension.

Idea of the Proof

Theorem (Avramov, P., Walker)

Let (R, \mathfrak{m}, k) be a complete intersection of codimension c and quadratic codimension q. Then for each finitely generated R-module, we can write

$$P_M^R(t) = \frac{g_M(t)}{(1-t)^c(1+t)^b}$$

where $g_M(t) \in \mathbb{Z}[t]$, and $b = \max\{0, c - q - 1\}$

Sketch of the Proof:

Set $\mathcal{L} := U(\lambda^*)$, Then $\mathcal{M} = \operatorname{Ext}_R^*(M, k)$ is a finite \mathcal{L} module, and there is a finite free resolution

$$0 \leftarrow \mathsf{Ext}_{R}^{*}\left(M,k\right) \leftarrow \mathcal{F}_{0} \leftarrow \cdots \leftarrow \mathcal{F}_{r} \leftarrow 0$$

Therefore

$$egin{aligned} P_M^R(t) &= H_{\mathcal{M}}(t) = \sum_{i=0}^r (-1)^i H_{\mathcal{F}_i}(t) \ &= \sum_{i=0}^r (-1)^i (\operatorname{rank} \, \mathcal{F}_i) t^i H_{\mathcal{L}}(t) \ &= h_{\mathcal{M}}(t) H_{\mathcal{L}}(t) \end{aligned}$$

For some polynomial $h_{\mathcal{M}}(t) \in \mathbb{Z}[t]$.

Therefore

$$egin{aligned} P^R_M(t) &= H_{\mathcal{M}}(t) = \sum_{i=0}^r (-1)^i H_{\mathcal{F}_i}(t) \ &= \sum_{i=0}^r (-1)^i (\operatorname{rank} \, \mathcal{F}_i) t^i H_{\mathcal{L}}(t) \ &= h_{\mathcal{M}}(t) H_{\mathcal{L}}(t) \end{aligned}$$

For some polynomial $h_{\mathcal{M}}(t) \in \mathbb{Z}[t]$. Now, by the graded version of the Poincaré Birkhoff-Witt Theorem,

$$H_{\mathcal{L}}(t) = \frac{(1+t)^q}{(1-t^2)^c} = \frac{1}{(1-t)^c(1+t)^{c-q}}$$

Therefore

$$egin{aligned} P^R_M(t) &= H_{\mathcal{M}}(t) = \sum_{i=0}^r (-1)^i H_{\mathcal{F}_i}(t) \ &= \sum_{i=0}^r (-1)^i (\operatorname{rank} \, \mathcal{F}_i) t^i H_{\mathcal{L}}(t) \ &= h_{\mathcal{M}}(t) H_{\mathcal{L}}(t) \end{aligned}$$

For some polynomial $h_{\mathcal{M}}(t) \in \mathbb{Z}[t]$. Now, by the graded version of the Poincaré Birkhoff-Witt Theorem,

$$H_{\mathcal{L}}(t) = \frac{(1+t)^q}{(1-t^2)^c} = \frac{1}{(1-t)^c(1+t)^{c-q}}$$

Thus

$$P_M^R(t) = rac{h_{\mathcal{M}}(t)}{(1-t)^c(1+t)^{c-q}}$$

We have

$$P_M^R(t) = \frac{h_{\mathcal{M}}(t)}{(1-t)^c(1+t)^{c-q}}.$$

If c=q was previously known (Avramov '94). If c>q, then one can reduce to case where R is Artinian, induce on the length of M, and use Tate's theorem for $P_k^R(t)$ to show that $h_{\mathcal{M}}(-1)=0$. Hence, one may write

$$P_M^R(t) = \frac{g_M(t)}{(1-t)^c(1+t)^{c-q-1}}$$

with $g_M(t) \in \mathbb{Z}[t]$.

Example

Let $R = k[x, y, z]/(x^2, y^3, z^3)$.

Example

Let $R = k[x, y, z]/(x^2, y^3, z^3)$. Then R is a graded complete intersection of codimension 3 and quadratic codimension 1. The theorem implies that if $b_-^M \neq b_-^M$ than they can only differ in their constant term.

Example

Let $R=k[x,y,z]/(x^2,y^3,z^3)$. Then R is a graded complete intersection of codimension 3 and quadratic codimension 1. The theorem implies that if $b_-^M \neq b_-^M$ than they can only differ in their constant term. Taking $M=(x,y,z)^2$ ann $k=\mathbb{Z}/101\mathbb{Z}$, one can compute

$$P_M^R(t) = \frac{1+3t}{(1-t)^3(1+t)}.$$

Example

Let $R=k[x,y,z]/(x^2,y^3,z^3)$. Then R is a graded complete intersection of codimension 3 and quadratic codimension 1. The theorem implies that if $b_-^M \neq b_-^M$ than they can only differ in their constant term. Taking $M=(x,y,z)^2$ ann $k=\mathbb{Z}/101\mathbb{Z}$, one can compute

$$P_M^R(t) = \frac{1+3t}{(1-t)^3(1+t)}.$$

For n > 3, one has

$$\beta_n(M) = \begin{cases} n^2 + \frac{5}{2}n + \frac{3}{2} & n \text{ is even} \\ n^2 + \frac{5}{2}n + 1 & n \text{ is odd} \end{cases}.$$

Bibliography

L. L. Avramov, *Modules of finite virtual projective dimension*, Invent. Math. **96** (1989), 71-101

L. L. Avramov, Local rings over which all modules have rational Poincaré series, J. Pure Appl. Algebra **91** (1994). 29-48

L. L. Avramov, N. Packauskas, M. Walker, *Quasipolynomial growth of Betti sequences over complete intersections*, (In preparation)

L. L. Avramov, A. Seceleanu, Z.Yang, *Polynomial growth of Betti sequences over local rings* (In preparation)

T.H. Gulliksen, A homological characterization of local complete intersections, Compositio Math. 23 (1971), 251-255

G. Sjödin, A set of generators for $\operatorname{Ext}_R(k,k)$, Math. Scand. 38 (1976), 1-12

G. Sjödin Hopf Algebras and derivations, J. Algebra 64 (1980), 218-229

J. Tate, Homology of noetherian and local rings, Illinois J. Math. 1 (1957), 14-25