PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

18. Category \mathcal{O} for Cherednik algebras

- **Exercise 18.1.** Use gr $H_c = S(\mathfrak{h} \oplus \mathfrak{h}^*) \# W$ to show that H_c is Noetherian.
- **Exercise 18.2.** We have [h, x] = x, [h, w] = 0, [h, y] = -y for all $x \in \mathfrak{h}^*$, $w \in W$, $y \in \mathfrak{h}$.
- **Problem 18.1.** Write an action of y on $\Delta(E)$ via a 1st order differential operator with poles.
- **Exercise 18.3.** Show that $\operatorname{Hom}_{\mathcal{O}}(\Delta(E), M) = \operatorname{Hom}_{W}(E, M)$, where $M^{\mathfrak{h}} = \{m \in M | \mathfrak{h}m = 0\}$.
- **Exercise 18.4.** Show that each $\Delta(E)$ has a unique irreducible quotient, denoted L(E). Show that the natural inclusion $E \hookrightarrow \Delta(E)$ gives rise to an inclusion $E \hookrightarrow L(E)$. Further, show that the objects L(E) form a complete list of irreducible objects in \mathcal{O} .
- **Exercise 18.5.** Prove that h acts locally finitely on any object in \mathcal{O} and that any object in \mathcal{O} has finite length. Deduce that all generalized subspaces for h are finite dimensional and that any module in \mathcal{O} is finitely generated over $\mathbb{C}[\mathfrak{h}]$.
- **Exercise 18.6.** Show that (HW1) and (HW2) hold for \mathcal{O}_c .
- **Exercise 18.7.** Show that if an exact sequence $0 \to \Delta(E) \to M \to \Delta(E') \to 0$ does not split, then E' < E. Deduce that if $M_1 \oplus M_2$ is Δ -filtered, then M_1 and M_2 are Δ -filtered.