Chapter 3

Finding Similar Items

Finding "Similar" Items

- Many problems can be expressed as finding similar items
 - Find nearest neighbors in high dimensional space
 - One of the fundamental data mining problems

Examples

- Finding near-duplicate Web pages
 - Plagiarisms or mirrors
- Finding pages with similar words
 - Duplicate detection, classification by topic
- Finding customers who purchased similar products
 - Products with similar customers (recommender systems)
- Finding images with similar features
 - Similarly, users who visited similar websites

Problem for This Chapter

Given

- High dimensional data points $x_1, x_2, ...$
 - (ex) Image: a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- Some distance function $d(x_1, x_2)$
 - Which quantifies the "distance" between x_1 and x_2

Goal

- Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \le s$

Note

- Naïve solution would take $O(N^2)$ where N is the number of data points
- How can this be done in O(N)??

Finding "Similar" Documents

Here, we focus on finding similar documents

Goal

- Given a *large* (e.g., 10⁹) number of documents, find "near duplicate" pairs

Applications

- Mirror websites (don't want to show both in search results)
- Similar news articles (cluster articles by "same story")

Difficulties

- Many small pieces of one document can appear out of order in another
- There are too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Steps for Finding Similar Documents

1. Shingling

Convert documents to sets

2. Minhashing

Convert large sets to short signatures, while preserving similarity

3. Locality-Sensitive Hashing

- Focus on pairs of signatures likely to be from similar documents
- The results are candidate pairs

The Big Picture

Jaccard Similarity

- The similarity of sets by looking at the size of their intersection
- The Jaccard similarity of sets S and T

$$SIM(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

- Example
 - SIM(S, T) = 3/8

Similarity of Documents

- Here, we focus on character-level (i.e., textual) similarity
 - Note that "similar meaning" requires other techniques
- Testing whether two documents are exact duplicates is easy
 - However, in many applications, the documents are not identical
- Applications of textual similarity
 - Plagiarism
 - Mirror pages
 - Search engines should avoid showing two pages that nearly identical
 - Articles from the same source
 - News aggregators(e.g., Google News) should show only one for each article

Collaborative Filtering

- A process whereby we recommend to users items that were liked by other users who have exhibited similar tastes
 - Another class of applications where similarity of sets is very important

Examples

- On-line purchases (e.g., Amazon.com)
 - Two customers are similar if their sets of purchased items have a high Jaccard similarity
- Movie ratings (e.g., NetFlix)
 - Moves are similar if they were rented or rated highly by many of the same customers
 - Customers are similar if they rented or rated highly many of the same movies

Documents as Sets

- Simple approaches
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles (or grams)!

Shingling of Documents

- The most effective way to represent documents as sets
 - For the purpose of identifying lexically similar documents
- Construct from the documents the set of short strings that appear within it
 - (ex) Document = abcab \rightarrow the set of 3-shingles = {abc, bca, cab}

- Documents that share sentences (or phrases) will have many common elements in their shingling sets
 - Even if they appear in different orders in the two documents

Definition: k-Shingles (or n-Grams)

- A k-shingle for a document
 - Any substring of length k found within the document
- Then, we associate with each document the set of k-shingles that appear one or more times within that document
- Example
 - Document D = abcdabd
 - The set of 2-shingles for $D = \{ab, bc, cd, cd, da, bd\}$
 - A variation of shingling produces a bag, rather than a set

Treating White Space

White space

Blank, tab, newline, etc.

Options

- Replace any sequence of white-space characters by a single blank
- We may *eliminate* whitespace altogether

Example

- D_1 = "The plane was ready for touch down"
- D_2 = "The quarterback scored a touchdown"
- If we use k=9 and retain the blanks, D_1 has shingles touch down and ouch down, while D_2 has touchdown
- If we eliminated the blanks, both would have touchdown

Choosing the Shingle Size

If we pick k too small

- Even the documents that have no the same sentences or even phrases would have **high** Jaccard similarity (e.g., k = 1)

Rule of thumb

-k should be pick *large* enough that the probability of any given shingle appearing in any given document is low

Example

- k = 5 is ok for short documents (e.g., emails)
- k = 10 is better for long documents (e.g., research articles)

Compressing Shingles

- We can compress long shingles by using a hash function h
 - h maps each k-shingle to $0, \ldots, B-1$, where B is the number of buckets
 - Then, a document is represented as the set of *hash values* of its k-shingles
- Not only the data been compacted, but we can now manipulate (hashed) shingles by single-word machine operations
- Example
 - k = 2, document D = abcab
 - The set of 2-shingles = $\{ab, bc, ca\}$ (9 × 3 = 27 bytes)
 - The set of their hash values = $\{1, 5, 7\}$ (4 × 3 = 12 bytes)

Shingles Built from Words

- In many applications, we want to ignore stop words
 - (ex) "a," "and," "for," etc.
- However, for the problem of finding similar news articles, defining a shingle to be a stop word followed by the next two words forms a useful set of shingles
 - Bias the set of shingles in favor of the article, rather than its surrounding material
- Example
 - An ad: "Buy Sudzo"
 - A news article: "A spokesperson for the Sudzo Corporation revealed today that studies have shown it is good for people to buy Sudzo Product"
 - The set of shingles = {"A spokesperson for", "for the Sudzo",}
 - Note that *none* are from the ad

Motivation for Minhash/LSH

Suppose we need to find near-duplicate documents among N= 1 million documents

- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5 \times 10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

Similarity-Preserving Summaries of Sets

- Even if we hash each shingle to 4 bytes, the space needed to store all sets of shingles is still large
 - We may have millions of documents

Our goal

- Replace large sets by much smaller representations called signatures
 - (ex) 200,000 byte hashed-shingle sets \rightarrow 1,000 byte signatures
- Important property required for signatures
 - We must be able to estimate the Jaccard similarity of two sets from their signatures *alone*
 - Note that it is not possible that the signatures give the exact similarity

Matrix Representation of Sets

Characteristic matrix

- Columns: sets (documents)
- Rows: elements (shingles)
- 1 in row e and column s, if and only if e is a member of s

Example

-
$$S_1 = \{a, d\}, S_2 = \{c\}, S_3 = \{b, d, e\}, S_4 = \{a, c, d\}$$

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Minhashing (1/2)

- Goal: Find a hash function h such that
 - If $SIM(S_1, S_2)$ is **high**, then $h(S_1) = h(S_2)$ with a **high** probability
 - If $SIM(S_1, S_2)$ is **low**, then $h(S_1) \neq h(S_2)$ with a **high** probability
- Clearly, the hash function depends on the similarity metric
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity
 - It is called *minhashing*

Minhashing (2/2)

- Pick a random permutation of the rows of the characteristic matrix
 - (ex) abcde → beadc
- Minhash function h(S) for a set S
 - The index of the first row, in the permuted order, in which the column has 1

Example

– Permuted order = beadc

$$- h(S_1) = a$$

$$- h(S_2) = c$$

$$- h(S_3) = b$$

$$- h(S_4) = a$$

Element	S_1	S_2	S_3	S_4
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

Minhashing and Jaccard Similarity

- Let S_1 and S_2 be two sets
- Let $SIM(S_1, S_2)$ be the Jaccard similarity of S_1 and S_2
- Let h be the minhash function for a random permutation of rows
- Then, the probability that $h(S_1) = h(S_2)$ equals $SIM(S_1, S_2)$

Proof (1/2)

• Consider the columns for sets S_1 and S_2

	Element	S_1	S_2	
•	b	1	0	Type Y
	e	1	0	
	\boldsymbol{a}	0	1	
	d	1	1	ightharpoonup Type X
	c	0	1	

- Type X rows have 1 in both columns
- Type Y rows have 1 in one of the columns and 0 in the other
- Type Z rows have 0 in both columns
- Let x and y be the number of rows of type X and Y, respectively
- Then, $SIM(S_1, S_2) = x/(x + y)$

Proof (2/2)

- Now consider the probability that $h(S_1) = h(S_2)$
- Suppose we proceed from the top the rows permuted randomly
- The probability that we shall meet a type X row before we meet a type Y row
 - -x/(x+y)
 - This corresponds to the probability that $h(S_1) = h(S_2)$
- Therefore, the probability that $h(S_1) = h(S_2)$ is x/(x+y), which is also $SIM(S_1, S_2)$

Minhash Signatures

- lacktriangle Suppose we represent sets by their characteristic matrix M
- We pick at n random permutations of the rows of M
 - n = 100 or several hundreds

- Let h_1 , h_2 , ... h_n be the minhash functions for n permutations
- The minhash signature for S is the vector $[h_1(S), h_2(S), ..., h_n(S)]$
- lacktriangle Thus, we can form a signature matrix from M
 - The *i*th column of M is replaced by the minhash signature for the *i*th column

(Ex) Minhash Signatures

Characteristic matrix M 3 Permutations

This row becomes the 3rd row in the 3rd permutation **S**_4 S_2 S₁ Signature matrix () \mathbf{O}

Computing Minhash Signatures

- Picking a random permutation and permuting rows is *not* feasible
 - Permuting millions or billions of rows is time-consuming
- Instead, we can simulate a random permutation by a randomly chosen hash function
 - A hash function h that maps 0, ..., k-1 to bucket numbers 0, ..., k-1
 - (ex) $h(x) = (ax + b) \mod k$, where a and b are random integers
 - h "permutes" row r to position h(r) in the permuted order
- Thus, instead of picking n random permutations of rows, we pick n randomly chosen hash functions $h_1, h_2, ..., h_n$ on the rows
 - The signature matrix is then constructed by considering each row in their given order

Implementation

- SIG(*i*, *c*)
 - The element of the signature matrix for the ith permutation and column c

Algorithm

```
Initially, set SIG(i, c) to \infty for all i and c  
For each row r do  
Compute h_1(r), h_2(r), ..., h_n(r)  
For each column c do  
(a) If c has 0 in row r, do nothing  
(b) If c has 1 in row r, then for each i = 1, 2, ..., n  
set SIG(i, c) to the smaller of the current value  
of SIG(i, c) and h_i(r)
```

(Ex) Signature Matrix (1/7)

• Consider the following characteristic matrix and two hash functions: $h_1(x) = x + 1 \mod 5$ and $h_2(x) = 3x + 1 \mod 5$

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

• Initially, we set SIG(i, c) to ∞ for all i and c

	S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞
h_2	∞	∞	∞	∞

(Ex) Signature Matrix (2/7)

_	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
	0	1	0	0	1	1	1
	1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

• First we consider row 0

-
$$h_1(0) = 1$$
, $h_2(0) = 1$

	S_1	S_2	S_3	S_4			S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞		h_1	1	∞	∞	1
h_2	∞	∞	∞	∞	V	h_2	1	∞	∞	1
						·	· /		-	

For S_1 , row **1** (originally row 0) is the first row whose column is 1 *for now* 30

(Ex) Signature Matrix (3/7)

	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
,	0	1	0	0	1	1	1
\longrightarrow	1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

Next we consider row 1

$$- h_1(1) = 2, h_2(1) = 4$$

	S_1	S_2	S_3	S_4			S_1	S_2	S_3	S_4
h_1	1	∞	∞	1		h_1	1	∞	2	1
h_2	S_1 1 1	∞	∞	1	V	h_1 h_2	1	∞	$\begin{vmatrix} 4 \end{vmatrix}$	1
·										

For S_3 , row **4** (originally row 1) is the first row whose column is 1 **for now** 31

(Ex) Signature Matrix (4/7)

	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
	0	1	0	0	1	1	1
	1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

Next we consider row 2

$$- h_1(2) = 3, h_2(2) = 2$$

	S_1	S_2	S_3	S_4			S_1	S_2	S_3	S_4
h_1	1	∞	2	1		h_1	1	3	2	1
h_2	1	∞	4	1	V	h_2	1	2	4	1

(Ex) Signature Matrix (5/7)

_	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
•	0	1	0	0	1	1	1
	1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

Next we consider row 3

$$- h_1(3) = 4, h_2(3) = 0$$

	S_1	S_2	S_3	S_4			S_1	S_2	S_3	S_4
h_1	1	3	2	1		h_1	1	3	2	1
h_2	1	2	4	1	V	h_2	0	2	0	0

(Ex) Signature Matrix (6/7)

	Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
·	0	1	0	0	1	1	1
	1	0	0	1	0	2	4
	2	0	1	0	1	3	2
	3	1	0	1	1	4	0
	4	0	0	1	0	0	3

Next we consider row 4

$$- h_1(3) = 0, h_2(3) = 3$$

	S_1	S_2	S_3	S_4			S_1	S_2	S_3	S_4
h_1	1	3	2	1		h_1	1	3	0	1
h_2	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	2	0	0	V		0			

(Ex) Signature Matrix (7/7)

Estimating Jaccard similarities from the signature matrix

Row	S_1	S_2	S_3	S_4					
0	1	0	0	1	•				
1	0	0	1	0					
2	0	1	0	1					
3	1	0	1	1		1			
4	0	0	1	0	`\\ _		$SIM(S_1, S_2)$	$SIM(S_1, S_3)$	$SIM(S_1, S_4)$
'				l	`*	True	0	1/4	2/3
					, 7	Estimated	0	1/2	1
	S_1	S_2	S_3	S_4					
h_1	1	3	0	1					
h_2	0	2	0	0					

The estimates become close as the number of hash functions increases

Locality-Sensitive Hashing

Minhashing

 Compresses large documents into small signatures, while preserving the expected similarity of any pair of documents

Still, the number of pairs of documents may be too large

- (ex) 1,000,000 documents \rightarrow _{1,000,000} $C_2 \approx 500,000,000,000$ pairs

Locality-sensitive hashing (LSH)

 Allows us to focus our attention only on pairs that are likely to be similar, without investigating every pair

General Approach to LSH

- Big idea
 - Hash items several times
 - We call a pair that hashed to the same bucket for any of the hashings to be a candidate pair
 - We check only the candidate pair for similarity
- The hope is that most of the dissimilar pairs will never hash to the same bucket
 - False positives will be only a small fraction of all pairs
 - Those dissimilar pairs that do hash to the same bucket
 - False negatives will be only a small fraction of the truly similar pairs
 - Those similar pairs that do not hash to the same bucket under at least one of the hash functions

LSH for Minhash Signatures

Divide the signature matrix into b bands of r rows

- For each band, hash its portion of each column to k buckets
 - Make k as large as possible (so there are almost no collisions)
- Candidate column pairs are those that hash to the same bucket for one or more bands

(Ex) LSH for Minhash Signatures

Simplifying Assumption

 There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band

Hereafter, we assume that "same bucket" means "identical in that band"

Observation

- The more similar two columns are, the more likely they will be identical in some band
- Thus, the banding strategy makes similar columns much more likely to be candidate pairs than dissimilar pairs

Analysis of the Banding Technique (1/2)

- Let (d_1, d_2) be a pair of documents that have Jaccard similarity s
- Can we compute the **probability** that (d_1, d_2) becomes a candidate pair when we use LSH?
 - Obviously, this probability depends on their Jaccard similarity s

Example

- If the Jaccard similarity between d_1 and d_2 is 0.8, the probability of (d_1, d_2) becoming a candidate pair is 99.965%
- If the Jaccard similarity between d_1 and d_2 is 0.3, the probability of (d_1, d_2) becoming a candidate pair is 4.74%

Analysis of the Banding Technique (2/2)

- Suppose we use b bands of r rows each
- Let (d_1, d_2) be a pair of documents that have Jaccard similarity s
 - Thus, the probability the minhash signatures for d_1 and d_2 agree in any one particular row of the signature matrix is s
- The probability that (d_1, d_2) becomes a **candidate pair**
 - P(the signatures agree in all rows of one particular band) = s^r
 - P(the signatures disagree in at least one row of a particular band) = $1 s^r$
 - P(the signatures disagree in at least one row of each of the bands) = $(1 s^r)^b$
 - P(the signatures agree in all the rows of at least one band) = $1 (1 s^r)^b$
 - This is the probability that (d_1, d_2) becomes a candidate pair

$$1-(1-s^r)^b$$

This function has the form of an S-curve

 Exactly the shape we want (i.e., pairs with similarity above threshold have a high probability of becoming a candidate, while those below the threshold have a low probability of becoming a candidate)

Threshold

- The value of similarity at which the probability of becoming a candidate is 1/2
 - Roughly where the rise is the steepest
 - Approximately $(1/b)^{1/r}$
- For large b and r
 - Pairs with similarity above the threshold are very likely to become candidates
 - Pairs with similarity blow the threshold are unlikely to become candidates

(Ex)
$$1 - (1 - s^r)^b$$

- When b = 20 and r = 5
 - Thus, the length of a signature = 100
- $-1-(1-s^5)^{20}$

s	$1 - (1 - s^r)^b$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

The probability that their signatures are identical in a particular band = $0.8^5 = 33\%$

- The threshold is just slightly more than 0.5
- If s = 0.8, the probability that their signatures are hashed into the same bucket for at least one of 20 bands is 0.9996

Picking r and b (1/4)

Ideal curve

Similarity of two sets ———

Picking r and b (2/4)

• When b = 1 and r = 1

Picking r and b (3/4)

• When b and r are large

Picking r and b (4/4)

- False negative and false positive
 - When r = 5 and b = 10

Blue area: False Negative rate

Green area: False Positive rate

Combining the Techniques (1/2)

✓ Note that false negatives or false positives can be produced

Step 1: Pick a value of k and construct from each document the set of k-shingles

Step 2: Pick a length n for the minhash signatures and compute the minhash signatures for all the documents

Step 3: Choose a threshold t that defines how similar documents have to be regarded as a similar pair. Pick a number of bands b and a number of rows r such that br = n, and the threshold t is approximately $(1/b)^{1/r}$

Combining the Techniques (2/2)

Step 5: Construct candidate pairs by applying the LSH technique

Step 6: Examine each candidate pair's signatures and determine whether the faction of components in which they agree is at least *t*

- **Step 7 (optional):** If the signatures are sufficiently similar, go to the document themselves and check that they are truly similar
 - ✓ Documents can have similar signatures by luck

Distance Measures

Distance Measures

Measure of *closeness*

- Example: Jaccard distance
 - 1 minus the Jaccard similarity
 - A distance measure for sets
 - The closer sets are, the lower the Jaccard distance
- There are a number of other distance measures that make sense in some applications
 - Euclidean distance, cosine distance, edit distance, hamming distance

Definition of a Distance Measure

- Suppose we have a set of points, called a space
- Let x and y be two points in the space
- A *distance* measure on this space is a function d(x, y) that satisfies the following condition:
 - $d(x, y) \ge 0$ (no negative distance)
 - d(x, y) = 0 if and only if x = y (distance is zero from a point to itself)
 - d(x, y) = d(y, x) (distance is symmetric)
 - $d(x, y) \le d(x, z) + d(z, y)$ (the *triangle inequality*)
 - To travel from x to y, we cannot obtain any benefit if we are forced to travel via some particular third point z

Euclidean Distance (1/2)

- The most familiar distance measure
 - The one we normally think of as "distance"
- *n*-dimensional Euclidean space
 - A space where points are vectors of n real numbers (e.g., $[x_1, x_2, ..., x_n]$)
- L_2 -norm

$$d([x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n]) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Note that all the requirements for a distance measure are satisfied

Euclidean Distance (2/2)

• L_r -norm (general form)

$$d([x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n]) = (\sum_{i=1}^n |x_i - y_i|^r)^{1/r}$$

- L_1 -norm (called **Manhattan distance**)
 - The distance one would have to travel between points if one were constrained to travel among the streets of a city such as Manhattan
- L_{∞} -norm

$$d([x_1, x_2, ..., x_n], [y_1, y_2, ..., y_n]) = \max_{i} |x_i - y_i|$$

- The maximum of $|x_i y_i|$ over all dimensions i
- As r gets larger, only the dimension with the largest difference matters

(Ex) Euclidean Distance

- Consider the two-dimensional Euclidean space and the two points (2, 7) and (6, 4)
- L_2 -norm

$$- (|2-6|^2 + |7-4|^2)^{1/2} = 5$$

• L_1 -norm

$$- |2-6|+|7-4|=7$$

- L_{∞} -norm
 - $\max(|2-6|, |7-4|) = 4$

Jaccard Distance

- $d(x, y) = 1 SIM(x, y) = 1 |x \cap y|/|x \cup y|$
 - In other words, the probability that a random minhash function does not send x and y to the same value
- Note that all the requirements for a distance measure are satisfied
 - $-d(x,y) \ge 0$, because $|x \cap y| \le |x \cup y|$
 - d(x, y) = 0 iff x = y, because $x \cap x = x \cup x = x$
 - d(x, y) = d(y, x), because $x \cup y = y \cup x$ and $x \cap y = y \cap x$
 - $d(x, y) \le d(x, z) + d(z, y)$
 - We show $P(h(x) \neq h(y)) \le P(h(x) \neq h(z)) + P(h(z) \neq h(y))$
 - This is true because whenever $h(x) \neq h(y)$, at least one of h(x) and h(y) must be different from h(z)

Cosine Distance

The cosine distance between two points $x = [x_1, x_2, ..., xn]$ and $y = [y_1, y_2, ..., yn]$ measures the **angle** that the vectors to those points make

$$\cos(\theta) = \frac{x \cdot y}{||x|| \cdot ||y||} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

- This angle will be in the range 0° to 180°

Note that all the requirements for a distance measure are satisfied

Edit Distance (1/2)

- A distance measure for *strings*
- The edit distance between two strings $x = x_1x_2...x_n$ and $y = y_1y_2...y_n$ is the **smallest** number of insertions and deletions of single characters that will convert x to y
- Example
 - The edit distance between x = abcde and y = acfdeg is 3
 - To convert *x* to *y*
 - 1. Delete b
 - 2. Insert f after c
 - 3. Insert g after e
 - No sequence of fewer than 3 insertions and/or deletions will convert x to y

Edit Distance (2/2)

- Calculation of the edit distance d(x, y)
 - Compute a longest common subsequence (LCS) of x and y
 - d(x, y) = |x| + |y| 2|LCS of x and y|

- Example
 - $d(abcde, acfdeg) = |abcde| + |acfdeg| 2|acde| = 5 + 6 2 \cdot 4 = 3$
 - $-d(aba, bab) = |aba| + |bab| 2|ab| = 3 + 3 2 \cdot 2 = 2$
 - Or, $|aba| + |bab| 2|ba| = 3 + 3 2 \cdot 2 = 2$
- Note that all the requirements for a distance measure are satisfied

Hamming Distance

- A distance measure for *vectors*
- The Hamming distance between two vectors is the number of components in which they differ
 - (ex) d([2, 1, 7], [2, 2, 3]) = 2, d(10101, 111110) = 3
- Note that all the requirements for a distance measure are satisfied
 - d(x, y) ≥ 0 (it is clear)
 - d(x, y) = 0 iff x = y (if the distance is zero, then the vectors are identical)
 - d(x, y) = d(y, x) (the distance doesn't depend on the order of two vectors)
 - $d(x, y) \le d(x, z) + d(z, y)$
 - If x and z differ in m components, and z and y differ in n components, then x and y cannot differ in more than m+n components