Calculus Workshop

Integration Problem Set

Nathan Grimes

2023-09-19

Answer the following questions to the best of your ability. Feel free to work with anyone in the cohort, though I would encourage attempting on your own first to make sure you fully understand the concepts.

Logarithms

1) Solve for x

$$ln(x+2) = 12$$

$$e^{3x+1} = 16$$

$$6e^{4x} = 41e^{2x}$$

2) Find the derivative:

$$G(a) = \frac{2\ln(4a - 2)}{e^{3a}}$$

Reimann Sum

1) Approximate the area under the curve $f(x) = 3x^2 - 6x + 10$ on the interval [6, 12] with 6 uniform rectangles.

Does the position of the rectangle make a difference? Desribe in words, show mathmatically, or draw on the graph how evaluating the rectangle in different ways might lead to slighly different approximations.

Intergrals

1)

The marginal benefit of abatement (e.g. reducing) for carbon is given by:

$$MB = 31 - 2Q$$

However there is also a marginal cost for carbon abatement given by:

$$MC = 6 + 3Q$$

Find the total net benefit of carbon abatement to society at equilibrium. (Hint: To get equilibrium and the bounds of the integral, first set marginal benefit equal to marginal cost and solve for Q^* . Then your integral bounds should be from 0 to Q^*)

Solution: First find the equilibrium by setting the MB and MC equations equal to each other and solve for Q

$$31 - 2Q = 6 + 3Q \tag{1}$$

$$25 = 5Q5 = Q^* (2)$$

Now we can find the total benefit and cost of abatement by taking the definite integral of each curve from 0 to 5 Marginal Benefit

$$\int_{0}^{5} 30 - 2Qdq \tag{3}$$
$$30Q - Q^{2}|_{0}^{5} \tag{4}$$

$$30Q - Q^2|_0^5 \tag{4}$$

$$30(5) - (5)^2 = 125 (5)$$

Marginal Cost

$$\int_0^5 6 + 3Qdq \tag{6}$$

$$6Q + \frac{3x^2}{2}|_0^5 \tag{7}$$

$$6(5) + \frac{3(5)^2}{2} = 67.5 \tag{8}$$

Now we subtract the difference to get the total net benefits to society (in ESM 204 this will be called net welfare). 125 - 67.5 = 57.5

2)

Take the Integrals

A)
$$y = \frac{3}{x^2}, y(0) = 5$$
 B) $g(t) = 3t^5 - 2t^3 + 16t - 7$ C) $\int_2^4 \frac{1}{2}x$ (9)

Solution:

A)

$$\int \frac{3}{x^2} dx \tag{10}$$

$$x^3 + C \tag{11}$$

$$0^3 + C = 5 (12)$$

$$C = 5 \tag{13}$$

$$x^3 + 5 \tag{14}$$

B)

$$\int g(t) = 3t^5 - 2t^3 + 16t - 7dt \tag{15}$$

$$\frac{t^6}{2} - \frac{t^4}{2} + 8t^2 - 7t + C \tag{16}$$

(17)

C)

$$\int_{2}^{4} \frac{1}{2}x dx \tag{18}$$

$$\frac{1}{4}x^2|_2^4 \tag{19}$$

$$\int_{2}^{4} \frac{1}{2}x dx$$

$$\frac{1}{4}x^{2}|_{2}^{4}$$

$$\frac{1}{4}(4)^{2} - \frac{1}{4}(2)^{2} = 3$$
(18)
(19)

3)

A model for the rate of change in ozone concentrations over time between 1962-1984 is given by $\frac{dC}{dt} = 2t + 20$. Where C is the ozone concentration (ppm) and t is the elapsed time in years. Given that in 1964 the ozone concentration was 30 ppm, what was the ozone concentration in 1982?