Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales

Dr. Ricardo Soto

[ricardo.soto@ucv.cl]
[http://www.inf.ucv.cl/~rsoto]

Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso

Marzo, 2010

1. Introducción

Un **autómata** es una máquina teórica que lee instrucciones en forma de símbolos y cambia de estado según éstas.

Áreas de aplicación de la teoría de autómatas:

- Comunicaciones.
- Teoría de Control.
- Circuitos secuenciales.

- Recocimiento de Patrones.
 - :
- Compiladores.

1. Introducción

Un **compilador** es un programa que traduce un programa escrito en un lenguaje *a* (lenguaje fuente) a un lenguaje *b* (lenguaje objeto).

2. Alfabetos y palabras

Un **alfabeto** es un conjunto finito y no vacío de elementos llamados símbolos o letras.

Una palabra o cadena sobre un alfabeto V es una cadena finita de símbolos del alfabeto.

Notaciones:

- $|\omega|$ denota la longitud de la cadena ω .
- lacktriangle λ denota a una cadena de longitud 0, también conocida como palabra vacía.
- V_n denota al conjunto de todas las palabras de longitud n sobre V
- V_0 denota al conjunto cuyo único elemento es la palabra vacía, es decir, $V_0 = \{\lambda\}$.
- ullet V* denota al conjunto de todas las cadenas de cualquier longitud sobre V.
- V⁺ denota al conjunto de todas las cadenas de cualquier longitud sobre V, excepto la vacía.
- Un elemento de V_n es una cadena del tipo $a_1 a_2 \dots a_n$ donde cada $a_i \in V$.

3. Lenguajes Formales

Llamamos **lenguaje** sobre el alfabeto V a cualquier subconjunto de V^* .

Especificación de lenguajes:

Extensión (lenguajes finitos)

```
L = \{a, aa, aaa\} es un lenguaje sobre el alfabeto V = \{a\}

L = \{aba, cab, aaabc\} es un lenguaje sobre el alfabeto V = \{a, b, c\}
```

Comprensión (lenguajes infinitos)

$$L = \{a(bc)^n | n > = 1\}$$

4. Gramáticas Formales

El uso de **gramáticas** es otra forma de describir un lenguaje en forma general y rigurosa.

Definiciones:

- Una gramática es una cuadrupla $G = (V_N, V_T, S, P)$ donde:
 - V_T es el alfabeto de símbolos terminales.
 - V_N es el alfabeto de símbolos no terminales, de forma que $V_T \cap V_N = \emptyset$, y denotamos con V al alfabeto total de la gramática, esto es, $V = V_N \cup V_T$
 - S es el símbolo inicial y se cumple que $S \in V_N$
 - P es un conjunto finito de reglas de producción.

4. Gramáticas Formales

Definiciones:

• Una regla de producción es un par ordenado (α, β) de forma que:

```
• \alpha = \gamma_1 A \gamma_2, donde:

• \gamma_1, \gamma_2 \in (V_N \cup V_T)^*

• A \in V_N

• \beta \in (V_N \cup V_T)^*
```

• Una regla de producción (α, β) se suele escribir como $\alpha \to \beta$

Ejemplo

- Definir una gramática para el lenguaje $L = \{a(bc)^n | n >= 1\}$:
- Solución:

```
S \rightarrow aB

B \rightarrow bcB|bc

donde V_N = \{S, B\} y V_T = \{a, b, c\}.
```

Ejercicios

Definir una gramática para los siguientes lenguajes:

•
$$L_1 = \{a^n b^m | n \ge 4 \ y \ m \ge 3\}$$

•
$$L_2 = \{a^n b^n | n > 0\}$$

•
$$L_3 = \{a^n b^{2n} | n > 0\}$$

$$\bullet L_4 = \{a^n b^n c^m d^m | n > 0 \ y \ m > 0\}$$

4.1 Jerarquía de Chomsky

Noam Chomsky clasificó las gramáticas en cuatro familias:

Tipo 3 (Gramáticas regulares).

Lineales por la derecha. Producciones del tipo:

Lineales por la izquierda. Producciones del tipo:

```
\begin{array}{l} \textbf{A} \rightarrow \lambda \\ \textbf{A} \rightarrow \alpha \\ \textbf{A} \rightarrow \textbf{B}\alpha \\ \textbf{donde } \textbf{A}, \textbf{B} \in \textbf{V}_{\textbf{N}} \ \textbf{y} \ \alpha \in \textbf{V}_{\textbf{T}}. \end{array}
```

• Los lenguajes generados por estas gramáticas se llaman lenguajes regulares (lenguajes de la clase \mathcal{L}_3).

4.1 Jerarquía de Chomsky

Tipo 2 (Gramáticas libres de contexto).

Producciones del tipo:

```
A \rightarrow \alpha donde A \in V_N y \alpha \in (V_N \cup V_T)^*.
```

- Los lenguajes generados por estas gramáticas se llaman lenguajes libres de contexto (lenguajes de la clase \mathcal{L}_2).
- La mayoría de los lenguajes de programación pertenecen a esta categoría.

Tipo 1 (Gramáticas sensibles al contexto).

Producciones del tipo:

$$\begin{split} &\alpha \textit{A}\beta \rightarrow \alpha \gamma \beta \\ &\textit{S} \rightarrow \lambda \\ &\textit{donde A, S} \in \textit{V}_\textit{N}, \\ &\alpha,\beta \in \textit{V}^* \; \textit{y} \; \gamma \in \textit{V}^+. \end{split}$$

- Los lenguajes generados por estas gramáticas se llaman lenguajes sensibles al contexto (lenguajes de la clase £₁).
- La sensibilidad al contexto se puede interpretar en la 1era regla de producción: A puede ser reemplazada por γ sólo cuando A aparezca en el contexto de α y β.

4.1 Jerarquía de Chomsky

- Tipo 0 (Gramáticas sin restricciones o Gramáticas con estructura de frase).
 - Producciones del tipo:

$$\alpha \to \beta$$
 donde $\alpha \in (V^* \cdot V_N \cdot V^*)$ y $\beta \in V^*$

• Los lenguajes generados por estas gramáticas se llaman lenguajes libres de contexto (lenguajes de la clase \mathcal{L}_0).

Clases de lenguajes

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$

4.2 Notación BNF (Backus-Naus-Form)

- BNF es una metasintaxis utilizada para definir gramáticas
- BFN y sus extensiones son ampliamente utilizadas para definir gramáticas de lenguajes de programación.
- En BNF, símbolos no terminales se definen entre ángulos ((\(\rightarrow\)) y producciones se definen utilizando el símbolo ::=.

Ejemplos

4.3 Notación EBNF (Extended BNF)

- EBNF introduce el uso de paréntesis cuadrados para símbolos opcionales y llaves para repeticiones.
- El uso de ángulos para símbolos no terminales no es obligatorio.
- Introduce el uso de comillas en terminales para evitar ambigüedad con símbolos reservados de EBNF.

Símbolo opcional

Repetición

```
number ::= {digit}
```

4.4 Otras convenciones

- * denota desde cero a n repeticiones
- + denota desde una a n repeticiones
- () para agrupaciones

Repetición

```
number ::= digit+
```

Opción y repetición

```
import-dec ::= identifier ("." identifier ) \star ["." "\star"] ";"
```

Ejercicios

- Utilize EBNF para construir las siguientes gramáticas:
 - Número entero.
 - Número real.
 - Letra.
 - Palabra.
 - Dirección Postal.

```
Ej: Juan Maldonado Perez,
6 norte 1234,
Viña del Mar,
Chile
```

- Una expresión.
- if-else **en Java**.
- for en Java.
- Clase Java.

4.5 Expresiones Regulares

- Las expresiones regulares también permiten especificar lenguajes regulares.
- Las expresiones regulares son de gran utilidad en editores de texto y aplicaciones para buscar y manipular textos.
- En la actualidad existe gran soporte para el uso de expresiones regulares (Perl, PHP, bibliotecas Java, bibliotecas .NET, shell Unix, etc).
- Similar a EBNF:
 - * denota desde cero a n repeticiones
 - + denota desde una a n repeticiones
 - $\{n\}$ denota n repeticiones
 - $\{m, n\}$ denota de m a n repeticiones
 - ? denota elemento opcional
 - () para agrupaciones

Ejercicios

Defina los siguientes lenguajes mediante expresiones regulares:

- $L_1 = \{(ab)^n | n > 1\}$
- $L_2 = \{a^n b^m | n \ge 4 \ y \ m \ge 3\}$
- Todas las palabras que empiezen con a y terminen con o
- Todas las palabras que empiezen con a, tengan una s y terminen con o
- Todas las palabras que tengan entre 5 y 8 letras