Университет ИТМО

Факультет программной инженерии и компьютерной техники Образовательная программа системное и прикладное программное обеспечение

Лабораторная работа №2 По дисциплине "Основы профессиональной деятельности" Вариант 98806

> Выполнил студент группы Р3109 Евграфов Артём Андреевич Проверила: Бострикова Дарья Константиновна

Содержание

	ыполнение задания
2.1.	Текст исходной программы
2.2.	Описание программы
2.3.	Вычисление ОПИ и ОДЗ
2.4.	Расположение в памяти ЭВМ программы, исходных данных и результатов; адреса первой и последней команды выполняемой программы
2.5.	Таблица трассировки

1. Задание варианта

Лабораторная работа №2

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

Ход работы, содержание отчета и контрольные вопросы описаны в методических указаниях

Введите номер варианта 99806

064: + 0200
065: 0280
066: 206F
067: 206D
068: E070
069: A071
06A: 4070
06B: E06E
06C: 0100
06D: 4070
06E: 206F
06E: 206F
06E: 0280
070: E06E
071: 0280

2. Выполнение задания

2.1. Текст исходной программы

Адрес	Код	Мнемоника	Комментарии				
	команды						
064	0200	CLA	Очистить содержимое аккумулятора				
065	0280	NOT	Побитовое отрицание аккумулятора				
066	206F	AND $06F$	Выполнить операцию логического умножения				
			между ячейкой памяти 06F и аккумулятором.				
			$(06F) \& AC \rightarrow AC$				
067	206D	AND 06D	Выполнить операцию логического умножения				
			между ячейкой памяти 06D и аккумулятором.				
			$(06D) \& AC \rightarrow AC$				
068	E070	ST 070	Записать содержимое аккумулятора в ячейку 070.				
			$AC \rightarrow (070)$				
069	A071	LD 071	Записать содержимое ячейки 071 в аккумулятор.				
			$(071) \rightarrow AC$				
06A	4070	ADD 070	Записать сумму текущего значения аккумулятора				
			и значения ячейки 070 в аккумулятор.				
			$(070) + AC \rightarrow AC$				
06B	E06E	ST 06E	Записать содержимое аккумулятора в ячейку				
			06E.				
			$AC \rightarrow (06E)$				
06C	0100	HLT	Остановка программы.				

2.2. Описание программы

Назначение программы и реализуемая ею функция (формула):

A =ячейка памяти 06D;

R = ячейка памяти 06E;

С = ячейка памяти 06F;

D = ячейка памяти 070;

E = ячейка памяти 071;

AC = 0

 $AC = 1111 \ 1111 \ 1111 \ 1111$

AC = C & AC

AC = A & AC

D = AC

AC = E

AC = D + AC

R = AC

 $\mathbf{R} = (\mathbf{A} \& \mathbf{C}) + \mathbf{E}$

2.3. Вычисление ОПИ и ОДЗ

Область представления:

R - знаковое 16-ти разрядное число

А, С - набор из 16 логических однобитовых значений

D, E - знаковое 16-ти разрядное число

(А & С) - знаковое 16-ти разрядное число

(A & C) + E - знаковое 16-ти разрядное число

Для логических операций обасть представления: [0; 65535]

Для арифметических операций: [-32768; 32767]

Область допустимых значений:

$$\begin{cases} E \in [-2^{14}; 2^{14} - 1] \\ (A \& C) \in [-2^{14}; 2^{14} - 1] \\ \begin{cases} A_{15} \oplus A_{14} = 0 \\ C_{15} \oplus C_{14} = 0 \\ A_{15} \oplus C_{14} = 0 \\ C_{15} \oplus A_{14} = 0 \end{cases} \\ \forall i \in \{0; 1; \dots; 13\} \ A_i, C_i \in \{0; 1\} \end{cases}$$

$$\begin{cases} E \in [2^{14}; 2^{15} - 1] \\ \begin{bmatrix} A_{15} = C_{15} = 1 \\ \forall i \in \{0; 1; \dots; 14\} \ A_i, C_i \in \{0; 1\} \\ \forall i \in \{0; 1; \dots; 15\} \ A_i \& C_i = 0 \end{cases}$$
$$\begin{cases} E \in [-2^{15}; -2^{14} - 1] \\ \end{bmatrix}$$

$$\begin{cases} E \in [-2^{15}; -2^{14} - 1] \\ A_{15} &\& C_{15} = 0 \\ \forall i \in \{0; 1; \dots; 14\} \ A_i, C_i \in \{0; 1\} \end{cases}$$

2.4. Расположение в памяти ЭВМ программы, исходных данных и результатов; адреса первой и последней команды выполняемой программы

Вся программа занимает 064-071 адреса

Исходный код программы занимает 064-06С адреса

Переменные занимают 06D - 071 адреса:

A = ячейка памяти 06D;

R = ячейка памяти 06E;

C = ячейка памяти 06F;

D = ячейка памяти 070;

E = ячейка памяти 071;

Промежуточный результат хранится в ячейке 070

Итоговый результат хранится в ячейке 06Е

Адрес первой команды выполняемой программы: 064 Адрес последней команды выполняемой программы: 06C

2.5. Таблица трассировки

Адр	Знч	IP	$\mathbf{C}\mathbf{R}$	AR	\overline{DR}	SP	BR	AC	NZVC	Адр	Знч
064	0200	064	0000	000	0000	000	0000	0000	0100		
064	0200	065	0200	064	0200	000	0064	0000	0100		
065	0280	066	0280	065	0280	000	0065	FFFF	1000		
066	206F	067	206F	06F	0280	000	0066	0280	0000		
067	206D	068	206D	06D	4070	000	0067	0000	0100		
068	E070	069	E070	070	0000	000	0068	0000	0100	070	0000
069	A071	06A	A071	071	0280	000	0069	0280	0000		
06A	4070	06B	4070	070	0000	000	006A	0280	0000		
06B	E06E	06C	E06E	06E	0280	000	006B	0280	0000	06E	0280

2.6. Программа с меньшим числом команд

Адрес	Код	Мнемоника	Комментарии
	команды		
066	A06F	LD 06F	Записать содержимое ячейки 06F в аккумулятор.
			$(06F) \rightarrow AC$
067	206D	AND 06D	Выполнить операцию логического умножения
			между ячейкой памяти 06D и аккумулятором.
			$(06D) \& AC \rightarrow AC$
068	4071	ADD 071	Записать сумму текущего значения аккумулятора
			и значения ячейки 071 в аккумулятор.
			$(071) + AC \rightarrow AC$
069	E06E	ST 06E	Записать содержимое аккумулятора в ячейку
			06E.
			$AC \rightarrow (06E)$
06A	0100	HLT	Остановка программы.

$$\mathbf{R} = (\mathbf{A} \ \& \ \mathbf{C}) + \mathbf{E}$$

2.7. Трассировка с новыми числами

 $A = (0x0123)_{16}$

 $C = (0x0666)_{16}$

 $E = (0xFFFF)_{16}$

Адр	Знач	ΙP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знач
064	0200	064	0000	000	0000	000	0000	0000	0100		
064	0200	065	0200	064	0200	000	0064	0000	0100		
065	0280	066	0280	065	0280	000	0065	FFFF	1000		
066	206F	067	206F	06F	0666	000	0066	0666	1000		
067	206D	068	206D	06D	0123	000	0067	0022	0000		
068	E070	069	E070	070	0022	000	0068	0022	0000	070	0022
069	A071	06A	A071	071	FFFF	000	0069	FFFF	1000		
06A	4070	06B	4070	070	0022	000	006A	0021	0001		
06B	E06E	06C	E06E	06E	0021	000	006B	0021	0001	06E	0021

```
Проверка трассировки вручную:
```

 $\begin{array}{l} A = 00000\,0001\,0010\,0011_2\\ C = 00000\,0110\,0110\,0110_2\\ E - 1111\,1111\,1111\,1111_2\\ A \& C = 0000\,0000\,0010\,0010 = 0022_{16}\\ (A \& C) + E = 0000\,0000\,0010\,0001 = 0021_{16} \end{array}$

Результат, полученный во время выполнения программы совпадает с результатом, полученным при ручной проверке, значит ограничение значений задано верно.

3. Вывод

Во время выполнения данной лабораторной работы я научился работать с некоторыми команадами ЭВМ с абсолютной адрессацией. Изучил, как определять область представления и область допустимых значений исходных данных и результата, составлять таблицу трассировки и переписывать исходный код программы с меньшим числом команд.