## Oblivious Online Vector Balancing

Mehtaab Sawhney (MIT)
Joint with Ryan Alweiss (Princeton), Yang P. Liu (Stanford)

August 3, 2020

#### Six Standard Deviations Suffice

#### Theorem (Spencer, 1985)

Fix vectors  $v_1, v_2, \ldots, v_n \in \{0, 1\}^n$  for all  $i \in [n]$ . Then exist signs  $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \{-1, 1\}$  such that  $\|\varepsilon_1 v_1 + \varepsilon_2 v_2 + \cdots + \varepsilon_t v_t\|_{\infty} \le 6\sqrt{n}$ .

#### Six Standard Deviations Suffice

#### Theorem (Spencer, 1985)

Fix vectors  $v_1, v_2, \ldots, v_n \in \{0, 1\}^n$  for all  $i \in [n]$ . Then exist signs  $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \{-1, 1\}$  such that  $\|\varepsilon_1 v_1 + \varepsilon_2 v_2 + \cdots + \varepsilon_t v_t\|_{\infty} \le 6\sqrt{n}$ .

- Equivalent given n subsets of [n], one can color the elements red and blue so that that ever set has discrepancy  $6\sqrt{n}$ .
- The original proof of Spencer was not algorithmic, but this has been made algorithmic in seminal works of Bansal (2010) and Lovett, Meka (2012).
- For further work in this direction see the particularly elegant Rothvoss (2016).

## Komlós Conjecture

#### Conjecture

For vectors  $v_1, v_2, \ldots, v_t \in \mathbb{R}^n$  with  $||v_i||_2 \le 1$  for all  $i \in [t]$ , there exist signs  $\varepsilon_i \in \{-1, 1\}$  such that  $||\varepsilon_1 v_1 + \varepsilon_2 v_2 + \cdots + \varepsilon_t v_t||_{\infty} \le O(1)$ .

## Komlós Conjecture

#### Conjecture

For vectors  $v_1, v_2, \ldots, v_t \in \mathbb{R}^n$  with  $||v_i||_2 \le 1$  for all  $i \in [t]$ , there exist signs  $\varepsilon_i \in \{-1, 1\}$  such that  $||\varepsilon_1 v_1 + \varepsilon_2 v_2 + \cdots + \varepsilon_t v_t||_{\infty} \le O(1)$ .

- The current best known bound of  $O(\sqrt{\log n})$  was due to Banaszczyk (1998) not algorithmic.
- This has been made algorithmic (polynomial time) by Bansal,
   Dadush, Garg (2016) and Bansal, Dadush, Garg, Lovett (2016).

## Online Vector Balancing

#### Online Vector Balancing (Spencer 1977)

Assigns signs  $\varepsilon_1, \ldots, \varepsilon_t$  to vectors  $v_1, v_2, \ldots, v_t$  which arrive one at a time. The goal is to keep  $\|\varepsilon_1 v_1 + \cdots + \varepsilon_i v_i\|_{\infty}$  as small as possible for all i. We call the quantity  $\max_{1 \le i \le t} \|\varepsilon_1 v_1 + \cdots + \varepsilon_i v_i\|_{\infty}$  the discrepancy.

|                       | Vector | Sign | Partial Sum |
|-----------------------|--------|------|-------------|
| $v_1$                 |        |      |             |
| <i>V</i> 2            |        |      |             |
| <i>V</i> 3            |        |      |             |
| <i>v</i> <sub>4</sub> |        |      |             |
| <i>V</i> <sub>5</sub> |        |      |             |

|                       | Vector         | Sign | Partial Sum |
|-----------------------|----------------|------|-------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1) |      |             |
| <i>V</i> 2            |                |      |             |
| <i>V</i> 3            |                |      |             |
| <i>v</i> <sub>4</sub> |                |      |             |
| <i>V</i> <sub>5</sub> |                |      |             |

|                       | Vector         | Sign | Partial Sum    |
|-----------------------|----------------|------|----------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1) | 1    | (-1, 1, 1, -1) |
| <i>V</i> 2            |                |      |                |
| <i>V</i> 3            |                |      |                |
| <i>V</i> <sub>4</sub> |                |      |                |
| <i>V</i> <sub>5</sub> |                |      |                |

|                       | Vector          | Sign | Partial Sum    |
|-----------------------|-----------------|------|----------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1) |
| <i>V</i> 2            | (-1, -1, -1, 1) |      |                |
| <i>V</i> 3            |                 |      |                |
| <i>V</i> <sub>4</sub> |                 |      |                |
| <i>V</i> <sub>5</sub> |                 |      |                |

|                       | Vector          | Sign | Partial Sum    |
|-----------------------|-----------------|------|----------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1) |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)  |
| <i>V</i> 3            |                 |      |                |
| <i>v</i> <sub>4</sub> |                 |      |                |
| <i>V</i> <sub>5</sub> |                 |      |                |

|                       | Vector          | Sign | Partial Sum    |
|-----------------------|-----------------|------|----------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1) |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)  |
| <i>V</i> 3            | (-1, 1, 1, 1)   |      |                |
| <i>V</i> <sub>4</sub> |                 |      |                |
| <i>V</i> <sub>5</sub> |                 |      |                |

|                       | Vector          | Sign | Partial Sum      |
|-----------------------|-----------------|------|------------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1)   |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)    |
| <i>V</i> 3            | (-1, 1, 1, 1)   | -1   | (-1, -1, -1, -1) |
| <i>V</i> <sub>4</sub> |                 |      |                  |
| <i>V</i> <sub>5</sub> |                 |      |                  |

|                       | Vector          | Sign | Partial Sum      |
|-----------------------|-----------------|------|------------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1)   |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)    |
| <i>V</i> 3            | (-1, 1, 1, 1)   | -1   | (-1, -1, -1, -1) |
| <i>V</i> <sub>4</sub> | (-1, 1, -1, -1) |      |                  |
| <i>V</i> <sub>5</sub> |                 |      |                  |

|                       | Vector          | Sign | Partial Sum      |
|-----------------------|-----------------|------|------------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1)   |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)    |
| <i>V</i> 3            | (-1, 1, 1, 1)   | -1   | (-1, -1, -1, -1) |
| <i>V</i> <sub>4</sub> | (-1, 1, -1, -1) | -1   | (0, -2, 0, 0)    |
| <i>V</i> <sub>5</sub> |                 |      |                  |

|                       | Vector          | Sign | Partial Sum      |
|-----------------------|-----------------|------|------------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1)   |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)    |
| <i>V</i> 3            | (-1, 1, 1, 1)   | -1   | (-1, -1, -1, -1) |
| <i>V</i> <sub>4</sub> | (-1, 1, -1, -1) | -1   | (0, -2, 0, 0)    |
| <i>V</i> <sub>5</sub> | (-1, -1, 1, 1)  |      |                  |

|                       | Vector          | Sign | Partial Sum      |
|-----------------------|-----------------|------|------------------|
| <i>v</i> <sub>1</sub> | (-1, 1, 1, -1)  | 1    | (-1, 1, 1, -1)   |
| <i>V</i> 2            | (-1, -1, -1, 1) | 1    | (-2, 0, 0, 0)    |
| <i>V</i> 3            | (-1, 1, 1, 1)   | -1   | (-1, -1, -1, -1) |
| <i>V</i> <sub>4</sub> | (-1, 1, -1, -1) | -1   | (0, -2, 0, 0)    |
| <i>V</i> <sub>5</sub> | (-1, -1, 1, 1)  | -1   | (1, -1, -1, -1)  |

 The Gram-Schmidt walk (Bansal, Dadush, Garg, Lovett 2016) has been used in studying the design of randomized controlled trials (Harshaw, Sävje, Spielman, Zhang 2019).

- The Gram-Schmidt walk (Bansal, Dadush, Garg, Lovett 2016) has been used in studying the design of randomized controlled trials (Harshaw, Sävje, Spielman, Zhang 2019).
- Can reduce several problems in online geometric discrepancy (interval discrepancy, Tusnády's problem) to online vector balancing (Jiang, Kulkarni, Singla 2019 and Bansal, Jiang, Singla, Sinha 2020).

- The Gram-Schmidt walk (Bansal, Dadush, Garg, Lovett 2016) has been used in studying the design of randomized controlled trials (Harshaw, Sävje, Spielman, Zhang 2019).
- Can reduce several problems in online geometric discrepancy (interval discrepancy, Tusnády's problem) to online vector balancing (Jiang, Kulkarni, Singla 2019 and Bansal, Jiang, Singla, Sinha 2020).
- Recent results in online discrepancy theory give algorithms for online envy minimization algorithms (Jiang, Kulkarni, Singla 2019 and Bansal, Jiang, Singla, Sinha 2020).

- The Gram-Schmidt walk (Bansal, Dadush, Garg, Lovett 2016) has been used in studying the design of randomized controlled trials (Harshaw, Sävje, Spielman, Zhang 2019).
- Can reduce several problems in online geometric discrepancy (interval discrepancy, Tusnády's problem) to online vector balancing (Jiang, Kulkarni, Singla 2019 and Bansal, Jiang, Singla, Sinha 2020).
- Recent results in online discrepancy theory give algorithms for online envy minimization algorithms (Jiang, Kulkarni, Singla 2019 and Bansal, Jiang, Singla, Sinha 2020).
- Graph balancing and the carpooling problem (Ajtai, Aspnes, Naor, Rabani, Schulman, Waarts 1998 and Gupta, Krishnaswamy, Kumar, Singla 2020).

## Models of Online Vector Balancing

#### Models for Online Vector Balancing

- (Stochastic Model) Vectors  $v_i$  come from a fixed distribution  $\mathfrak{p}$  known to the algorithm.
- (Adaptive Model) Adversary chooses vectors depending on the algorithm run, turns out to be simple as adversary can pick orthogonal vector.
- (Oblivious Model) Vectors decided beforehand, do not change based on randomness used in the algorithm.
- (Other Variations) Other models that interpolate between these such as the prophet model, where the distribution  $\mathfrak{p}$  can depend on i.

Input vectors  $v_1, \dots, v_t \in \mathbb{R}^n$  with  $||v_i||_2 \leq 1$ .

|               | Model      | Lower Bound                     | Upper Bound        |
|---------------|------------|---------------------------------|--------------------|
| Most general  | Adaptive   | $\Omega(\sqrt{t})$              | $O(\sqrt{t})$      |
|               | Oblivious  | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\sqrt{t})$      |
|               | Prophet    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\sqrt{t})$      |
|               | Stochastic | $\tilde{\Omega}(\sqrt{\log t})$ | $O(n^{3/2}\log t)$ |
| Least general | Uniform    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log t)$        |

Input vectors  $v_1, \dots, v_t \in \mathbb{R}^n$  with  $||v_i||_2 \leq 1$ .

|               | Model      | Lower Bound                     | Upper Bound        |
|---------------|------------|---------------------------------|--------------------|
| Most general  | Adaptive   | $\Omega(\sqrt{t})$              | $O(\sqrt{t})$      |
|               | Oblivious  | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\sqrt{t})$      |
|               | Prophet    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\sqrt{t})$      |
|               | Stochastic | $\tilde{\Omega}(\sqrt{\log t})$ | $O(n^{3/2}\log t)$ |
| Least general | Uniform    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log t)$        |

 Results due to Bansal, Spencer 2019, Jiang, Kulkarni, Singla 2019, and Bansal, Jiang, Singla, Sinha 2020.

Input vectors  $v_1, \dots, v_t \in \mathbb{R}^n$  with  $||v_i||_2 \leq 1$ .

|               | Model      | Lower Bound                     | Upper Bound        |
|---------------|------------|---------------------------------|--------------------|
| Most general  | Adaptive   | $\Omega(\sqrt{t})$              | $O(\sqrt{t})$      |
|               | Oblivious  | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\sqrt{t})$      |
|               | Prophet    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\sqrt{t})$      |
|               | Stochastic | $\tilde{\Omega}(\sqrt{\log t})$ | $O(n^{3/2}\log t)$ |
| Least general | Uniform    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log t)$        |

- Results due to Bansal, Spencer 2019, Jiang, Kulkarni, Singla 2019, and Bansal, Jiang, Singla, Sinha 2020.
- Oblivious model generalizes the standard offline vector balancing problem (e.g. the setup for the Komlós conjecture).

Input vectors  $v_1, \dots, v_t \in \mathbb{R}^n$  with  $||v_i||_2 \leq 1$ .

|               | Model      | Lower Bound                     | Upper Bound   |
|---------------|------------|---------------------------------|---------------|
| Most general  | Adaptive   | $\Omega(\sqrt{t})$              | $O(\sqrt{t})$ |
|               | Oblivious  | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log nt)$  |
|               | Prophet    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log nt)$  |
|               | Stochastic | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log nt)$  |
| Least general | Uniform    | $\tilde{\Omega}(\sqrt{\log t})$ | $O(\log t)$   |

- Results due to Bansal, Spencer 2019, Jiang, Kulkarni, Singla 2019, and Bansal, Jiang, Singla, Sinha 2020.
- Oblivious model generalizes the standard offline vector balancing problem (e.g. the setup for the Komlós conjecture).
- $O(\log(nt)^4)$  results for the stochastic model were achieved (concurrently) by Bansal, Jiang, Meka, Singla, Sinha 2020.

• Vectors  $v_i$  come from a fixed distribution  $\mathfrak{p}$  known to the algorithm.

- Vectors  $v_i$  come from a fixed distribution  $\mathfrak{p}$  known to the algorithm.
- Trivial  $O(\sqrt{t \log t})$  bound is achievable for even the adaptive setting by randomly assigning signs.

- Vectors  $v_i$  come from a fixed distribution  $\mathfrak{p}$  known to the algorithm.
- Trivial  $O(\sqrt{t \log t})$  bound is achievable for even the adaptive setting by randomly assigning signs.
- For  $v_i$  uniform in  $[-1,1]^n$ , can guarantee  $\|\varepsilon_1 v_1 + \cdots + \varepsilon_i v_i\|_{\infty} = O(\sqrt{n} \log t)$  for all  $i \in [t]$  (Bansal, Spencer 2019).

- Vectors  $v_i$  come from a fixed distribution  $\mathfrak{p}$  known to the algorithm.
- Trivial  $O(\sqrt{t \log t})$  bound is achievable for even the adaptive setting by randomly assigning signs.
- For  $v_i$  uniform in  $[-1,1]^n$ , can guarantee  $\|\varepsilon_1 v_1 + \cdots + \varepsilon_i v_i\|_{\infty} = O(\sqrt{n} \log t)$  for all  $i \in [t]$  (Bansal, Spencer 2019).
- For arbitrary distribution  $\mathfrak p$  on  $[-1,1]^n$  and  $v_i$  iid from  $\mathfrak p$ , can can guarantee  $\|\varepsilon_1 v_1 + \cdots + \varepsilon_i v_i\|_{\infty} = O(n^2 \log t)$  for all  $i \in [t]$  (Bansal, Jiang, Singla, Sinha 2020). This was recently improved (in concurrent work) to  $O(\sqrt{n}\log(nt)^4)$  by Bansal, Jiang, Meka, Singla, Sinha 2020.
- One can also achieve a bound of  $O_n(\sqrt{\log t})$ , however the n dependence is at least exponential (Aru, Narayanan, Scott, Venkatesen 2018).

• Previous stochastic vector balancing algorithms pick a sign  $\varepsilon_i$  to minimize a potential function such as  $\Phi(w) := \sum_{i=1}^n \cosh(\lambda w_i)$ .

- Previous stochastic vector balancing algorithms pick a sign  $\varepsilon_i$  to minimize a potential function such as  $\Phi(w) := \sum_{i=1}^n \cosh(\lambda w_i)$ .
- Does not work for oblivious setting where  $v_i$  are arbitrary vectors with  $||v_i||_2 \le 1$ , as potential minimizing algorithms are deterministic.

- Previous stochastic vector balancing algorithms pick a sign  $\varepsilon_i$  to minimize a potential function such as  $\Phi(w) := \sum_{i=1}^n \cosh(\lambda w_i)$ .
- Does not work for oblivious setting where  $v_i$  are arbitrary vectors with  $||v_i||_2 \le 1$ , as potential minimizing algorithms are deterministic.
- Any deterministic algorithm must have discrepancy  $\Omega(\sqrt{t})$  as the adversary can make the next vector orthogonal to current position.

- Previous stochastic vector balancing algorithms pick a sign  $\varepsilon_i$  to minimize a potential function such as  $\Phi(w) := \sum_{i=1}^n \cosh(\lambda w_i)$ .
- Does not work for oblivious setting where  $v_i$  are arbitrary vectors with  $||v_i||_2 \le 1$ , as potential minimizing algorithms are deterministic.
- Any deterministic algorithm must have discrepancy  $\Omega(\sqrt{t})$  as the adversary can make the next vector orthogonal to current position.
- Best known oblivious bound is  $O(\sqrt{t})$ . (Simply assign signs in a greedy manner.)

### Intuition for Algorithm

#### **Desired Properties**

• Algorithm must be randomized to avoid the  $\Omega(\sqrt{t})$  lower bound.

#### Intuition for Algorithm

#### **Desired Properties**

- Algorithm must be randomized to avoid the  $\Omega(\sqrt{t})$  lower bound.
- Previous analyses of Komlós are based on subgaussianity, so the algorithm should be rotation invariant.

### Intuition for Algorithm

#### **Desired Properties**

- Algorithm must be randomized to avoid the  $\Omega(\sqrt{t})$  lower bound.
- Previous analyses of Komlós are based on subgaussianity, so the algorithm should be rotation invariant.
- Algorithm depends on current partial sum and next input vector v only.

### Intuition for Algorithm

#### **Desired Properties**

- Algorithm must be randomized to avoid the  $\Omega(\sqrt{t})$  lower bound.
- Previous analyses of Komlós are based on subgaussianity, so the algorithm should be rotation invariant.
- Algorithm depends on current partial sum and next input vector v only.

If w is the current partial sum, and v is next vector, the probability that the sign of v will be -1 or +1 respectively will depend only on the inner product  $\langle v, w \rangle$ .

### **Algorithm:** Balance $(v_1, \dots, v_t, \delta)$

```
\begin{aligned} & w_0 \leftarrow 0. \\ & c \leftarrow 30 \log(nt/\delta). \\ & \textbf{for } 1 \leq i \leq t \textbf{ do} \\ & | \textbf{ if } |\langle w_{i-1}, v_i \rangle| > c \textbf{ or } \|w_{i-1}\|_{\infty} > c \textbf{ then} \\ & | \textbf{ Fail. Algorithm terminates with failure.} \\ & p_i \leftarrow \frac{1}{2} - \frac{\langle w_{i-1}, v_i \rangle}{2c}. \\ & \varepsilon_i \leftarrow 1 \textbf{ with probability } p_i, \textbf{ and } \varepsilon_i \leftarrow -1 \textbf{ with probability } 1 - p_i. \\ & w_i \leftarrow w_{i-1} + \varepsilon_i v_i. \end{aligned}
```

#### **Algorithm:** BALANCE $(v_1, \dots, v_t, \delta)$

• Maintain the current partial sum w<sub>i</sub>.

### **Algorithm:** Balance $(v_1, \dots, v_t, \delta)$

- Maintain the current partial sum w<sub>i</sub>.
- The sign  $\varepsilon_i$  is determined by a random Bernoulli with probability  $\frac{1}{2} \frac{\langle w_{i-1}, v_i \rangle}{2c}$ .

#### **Algorithm:** Balance $(v_1, \dots, v_t, \delta)$

- Maintain the current partial sum w<sub>i</sub>.
- The sign  $\varepsilon_i$  is determined by a random Bernoulli with probability  $\frac{1}{2} \frac{\langle w_{i-1}, v_i \rangle}{2c}$ .
- Algorithm must fail if  $|\langle w_{i-1}, v_i \rangle| > c$ , or else probability isn't in [0,1]!

## Self-Balancing Walk Theorem

### **Algorithm:** Balance $(v_1, \dots, v_t, \delta)$

# Self-Balancing Walk Theorem

### **Algorithm:** Balance $(v_1, \dots, v_t, \delta)$

### Theorem (Alweiss, Liu, S. 2020)

For any vectors  $v_1, v_2, \cdots, v_t \in \mathbb{R}^n$  with  $\|v_i\|_2 \leq 1$  for all  $i \in [t]$ , algorithm  $\text{BALANCE}(v_1, \cdots, v_t, \delta)$  maintains  $\|w_i\|_{\infty} = O\left(\log(nt/\delta)\right)$  for all  $i \in [t]$  with probability  $1 - \delta$ .

#### Corollaries of Main Theorem

#### Corollary

Given a matrix  $A \in \mathbb{R}^{n \times t}$  with columns with  $\ell_2$ -norm at most 1, we can find with high probability in O(nnz(A)) time a vector  $x \in \{-1,1\}^t$  such that  $||Ax||_{\infty} = O(\sqrt{\log t \cdot \log n})$ .

Makes progress towards giving input sparsity / linear time algorithms for discrepancy problems.

#### Corollaries of Main Theorem

#### Corollary

Given a matrix  $A \in \mathbb{R}^{n \times t}$  with columns with  $\ell_2$ -norm at most 1, we can find with high probability in O(nnz(A)) time a vector  $x \in \{-1,1\}^t$  such that  $\|Ax\|_{\infty} = O(\sqrt{\log t \cdot \log n})$ .

Makes progress towards giving input sparsity / linear time algorithms for discrepancy problems.

- Obtain improvements to several online geometric discrepancy problems (online Tusnády's problem, online interval discrepancy).
- "Nearly" match best known offline bounds for Tusnády's problem.

## Steps in the Analysis

- Let  $w_i = \varepsilon_1 v_1 + \ldots + \varepsilon_i v_i$ .
- We consider the distribution of  $w_i$  and how it evolves at every step.

## Steps in the Analysis

- Let  $w_i = \varepsilon_1 v_1 + \ldots + \varepsilon_i v_i$ .
- We consider the distribution of  $w_i$  and how it evolves at every step.
- Decompose each step into "a shift in expectation" and "variance between  $w_i$  and  $w_{i+1}$ "

## Steps in the Analysis

- Let  $w_i = \varepsilon_1 v_1 + \ldots + \varepsilon_i v_i$ .
- We consider the distribution of  $w_i$  and how it evolves at every step.
- Decompose each step into "a shift in expectation" and "variance between  $w_i$  and  $w_{i+1}$ "
- Using this decomposition achieve the necessary concentration.

### Difficulties in Achieving Concentration

• We wish to achieve high probability bounds on the position of  $w_i$ .

## Difficulties in Achieving Concentration

- We wish to achieve high probability bounds on the position of  $w_i$ .
- Does not seem doable with classical martingale concentration inequalities.
- In particular,  $v_i$  may be orthogonal to  $w_i$ , which prevents us from arguing that some potential is decreasing pointwise, which is necessary for Azuma's inequality, etc.

## Difficulties in Achieving Concentration

- We wish to achieve high probability bounds on the position of  $w_i$ .
- Does not seem doable with classical martingale concentration inequalities.
- In particular,  $v_i$  may be orthogonal to  $w_i$ , which prevents us from arguing that some potential is decreasing pointwise, which is necessary for Azuma's inequality, etc.
- Therefore, we require more global control over the distribution of  $w_i$ .

# Spreading



Figure 1: Spreading jam on a piece of bread

## (Actual) Spreading

The key idea in our analysis is the following definition.

#### Definition

We say that random variables Y on  $\mathbb{R}^n$  is a spread of random variable X on  $\mathbb{R}^n$  if there exists a coupling of X and Y such that  $\mathbb{E}[Y|X] = X$ .

## (Actual) Spreading

The key idea in our analysis is the following definition.

#### Definition

We say that random variables Y on  $\mathbb{R}^n$  is a spread of random variable X on  $\mathbb{R}^n$  if there exists a coupling of X and Y such that  $\mathbb{E}[Y|X] = X$ .

- A more intuitive definition is that Y can be sampled by first sampling X, and then adding mean 0 noise (conditional on X).
- The univariate notion of the definition above appears in mathematical economics literature under the names "mean-preserving spread" and is closely related to "second-order stochastic dominace".

Spreading satisfies several useful and intuitive properties.

• (Linearity) If Y is a spread of X, then for any linear transformation M on  $\mathbb{R}^n$  we have that MY is a spread of MX.

- (Linearity) If Y is a spread of X, then for any linear transformation M on  $\mathbb{R}^n$  we have that MY is a spread of MX.
- (Transitivity) If Z is a spread of Y and Y is a spread of X, then Z is a spread of X.

- (Linearity) If Y is a spread of X, then for any linear transformation M on  $\mathbb{R}^n$  we have that MY is a spread of MX.
- (Transitivity) If Z is a spread of Y and Y is a spread of X, then Z is a spread of X.
- (Convexity) Let distribution Y be a spread of X. For any convex function  $\Phi: \mathbb{R}^n \to \mathbb{R}$ , we have that  $\mathbb{E}_{x \sim X} \Phi(x) \leq \mathbb{E}_{y \sim Y} \Phi(y)$ .

- (Linearity) If Y is a spread of X, then for any linear transformation M on  $\mathbb{R}^n$  we have that MY is a spread of MX.
- (Transitivity) If Z is a spread of Y and Y is a spread of X, then Z is a spread of X.
- (Convexity) Let distribution Y be a spread of X. For any convex function  $\Phi: \mathbb{R}^n \to \mathbb{R}$ , we have that  $\mathbb{E}_{x \sim X} \Phi(x) \leq \mathbb{E}_{y \sim Y} \Phi(y)$ .
- (Spreading real variables by Gaussians) Let X be a real-valued random variable with  $\mathbb{E}[X] = 0$  and  $|X| \leq C$ . Then  $G = \mathcal{N}(0, \pi C^2/2)$  is a spread of X.
- If PSD matrices A, B satisfy  $A \leq B$  then  $\mathcal{N}(0, A)$  is spread by  $\mathcal{N}(0, B)$ .

#### Spreading of Gaussians

If PSD matrices A, B satisfy  $A \leq B$  then  $\mathcal{N}(0, A)$  is spread by  $\mathcal{N}(0, B)$ .

#### Spreading of Gaussians

If PSD matrices A, B satisfy  $A \leq B$  then  $\mathcal{N}(0, A)$  is spread by  $\mathcal{N}(0, B)$ .

#### Proof.

Note that  $\mathcal{N}(0,B) = \mathcal{N}(0,A) + \mathcal{N}(0,B-A)$  and  $B-A \succeq 0$ .



### Spreading of Gaussians

If PSD matrices A, B satisfy  $A \leq B$  then  $\mathcal{N}(0, A)$  is spread by  $\mathcal{N}(0, B)$ .

#### Proof.

Note that  $\mathcal{N}(0,B) = \mathcal{N}(0,A) + \mathcal{N}(0,B-A)$  and  $B-A \succeq 0$ .

• In particular,  $\mathbb{E}_{x \sim \mathcal{N}(0,B)}$  can be sampled by first sampling  $\mathbb{E}_{x \sim \mathcal{N}(0,A)}$ , and then adding the mean-zero random variable  $\mathcal{N}(0,B-A)$ .

### Spreading of Gaussians

If PSD matrices A, B satisfy  $A \leq B$  then  $\mathcal{N}(0, A)$  is spread by  $\mathcal{N}(0, B)$ .

#### Proof.

Note that  $\mathcal{N}(0,B) = \mathcal{N}(0,A) + \mathcal{N}(0,B-A)$  and  $B-A \succeq 0$ .

- In particular,  $\mathbb{E}_{x \sim \mathcal{N}(0,B)}$  can be sampled by first sampling  $\mathbb{E}_{x \sim \mathcal{N}(0,A)}$ , and then adding the mean-zero random variable  $\mathcal{N}(0,B-A)$ .
- For general spreading, the mean-zero random variable can differ between samples.

#### Distributions under Consideration

- Let  $w_i$  be the position of vector at time i. Note that this is not precisely defined when the algorithm has failed, we will remedy this momentarily.
- If the algorithm has not failed at step i, one can verify that

$$\mathbb{E}[w_{i+1}|w_i] = w_i + (2p_{i+1} - 1)v_{i+1}$$

$$= w_i - c^{-1}v_{i+1}v_{i+1}^Tw_i$$

$$= (I - c^{-1}v_{i+1}v_{i+1}^T)w_i.$$

Given this we can write

$$w_{i+1} = \mathbb{E}[w_{i+1}|w_i] + R(v_{i+1}, w_i)v_{i+1}$$
  
=  $(I - c^{-1}v_{i+1}v_{i+1}^T)w_i + R(v_{i+1}, w_i)v_{i+1}$ 

### Increment Step

• We see by direct computation that

$$R(w_i,v_{i+1}) = \begin{cases} 0 & \text{if algorithm has failed} \\ 1+c^{-1}\langle w_i,v_{i+1}\rangle & \text{with prob. } p_{i+1} \text{ otherwise} \\ -1+c^{-1}\langle w_i,v_{i+1}\rangle & \text{with prob. } 1-p_{i+1} \text{ otherwise} \end{cases}$$

- Thus we now have a well defined notion for the position of vector  $w_i$  even if we the algorithm has failed before this step.
- The key thing to note is that if the algorithm has not failed then  $w_i$  is by construction the position of the current signed sum.

## Properties of Increment Steps

Recall

$$R(w_i,v_{i+1}) = \begin{cases} 0 & \text{if algorithm has failed} \\ 1+c^{-1}\langle w_i,v_{i+1}\rangle & \text{with prob. } p_{i+1} \text{ otherwise} \\ -1+c^{-1}\langle w_i,v_{i+1}\rangle & \text{with prob. } 1-p_{i+1} \text{ otherwise} \end{cases}$$

Note that by construction

$$\mathbb{E}[R(w_i,v_{i+1})|w_i]=0.$$

Furthermore note that

$$|R(w_i,v_{i+1})|\leq 2$$

by construction.

# **Deduction Given Spreading**

Recall  $c = O(\log nt/\delta)$ .

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

# **Deduction Given Spreading**

Recall  $c = O(\log nt/\delta)$ .

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Convexity

Let distribution Y be a spread of X. For any convex function  $\Phi: \mathbb{R}^n \to \mathbb{R}$ , we have that  $\mathbb{E}_{x \sim X} \Phi(x) \leq \mathbb{E}_{y \sim Y} \Phi(y)$ .

# **Deduction Given Spreading**

Recall  $c = O(\log nt/\delta)$ .

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Convexity

Let distribution Y be a spread of X. For any convex function  $\Phi: \mathbb{R}^n \to \mathbb{R}$ , we have that  $\mathbb{E}_{x \sim X} \Phi(x) \leq \mathbb{E}_{y \sim Y} \Phi(y)$ .

#### Proof.

We need to verify that the algorithm does not fail whp; in particular we need to verify  $|\langle w_i, v_{i+1} \rangle| \leq c$  and that  $\|w_i\|_{\infty} \leq c$ . The lemma above implies that  $w_i$  is O(c)-subgaussian, so by the convexity property with  $\Phi(x) := \exp(\langle x, u \rangle^2/8\pi c)$  we get that at most  $O(\delta/t)$ -fraction fraction of samples fail at each stage. Summing over the t-steps gives the desired result.

#### Proof of Main Lemma

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Proof of Main Lemma

#### Lemma

 $\mathcal{N}(0, 2\pi c l)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Proof.

Recall the random variables

$$R(w_i,v_{i+1}) = \begin{cases} 0 & \text{if algorithm has failed} \\ 1+c^{-1}\langle w_i,v_{i+1}\rangle & \text{with prob. } p_{i+1} \text{ otherwise} \\ -1+c^{-1}\langle w_i,v_{i+1}\rangle & \text{with prob. } 1-p_{i+1} \text{ otherwise} \end{cases}$$

so that

$$w_{i+1} = \mathbb{E}[w_{i+1}|w_i] + R(w_i, v_{i+1})v_{i+1}$$
  
=  $(1 - c^{-1}v_{i+1}v_{i+1}^T)w_i + R(w_i, v_{i+1})v_{i+1}.$ 

#### Lemma

 $\mathcal{N}(0, 2\pi c l)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

## Spreading real variables by Gaussians

If  $\mathbb{E}[X] = 0$  and  $|X| \leq C$ , then  $G = \mathcal{N}(0, \pi C^2/2)$  is a spread of X.

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

### Spreading real variables by Gaussians

If  $\mathbb{E}[X] = 0$  and  $|X| \leq C$ , then  $G = \mathcal{N}(0, \pi C^2/2)$  is a spread of X.

#### Proof.

Recall that  $R(w_i, v_{i+1})$  is mean 0, and always supported on [-2, 2], so it is spread by  $\mathcal{N}(0, 2\pi)$  even given  $w_i$ . Furthermore by induction and linearity we have that

$$\mathcal{N}(0, (I - c^{-1}v_{i+1}v_{i+1}^T)2\pi cI(I - c^{-1}v_{i+1}v_{i+1}^T))$$

is a spread of  $\mathbb{E}[w_{i+1}|w_i] = (I - c^{-1}v_{i+1}v_{i+1}^T)w_i$ .

#### Lemma

 $\mathcal{N}(0, 2\pi cI)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Lemma

 $\mathcal{N}(0, 2\pi cl)$  is a spread of the distribution of  $w_i$  for all times  $i \in [t]$ .

#### Proof.

Therefore  $w_{i+1} = (I - c^{-1}v_iv_i^T)w_i + R(w_i, v_{i+1})v_{i+1}$  is spread by

$$\mathcal{N}(0, (I - c^{-1}v_{i+1}v_{i+1}^T)2\pi cI(I - c^{-1}v_{i+1}v_{i+1}^T) + 2\pi v_{i+1}v_{i+1}^T).$$

To finish simply note that

$$(I - c^{-1}v_iv_i^T)2\pi cI(I - c^{-1}v_iv_i^T) + 2\pi v_iv_i^T \leq 2\pi cI.$$



 Algorithm achieving logarithmic bounds for the online Komlós problem against oblivious adversaries.

- Algorithm achieving logarithmic bounds for the online Komlós problem against oblivious adversaries.
- Based on randomly choosing signs  $\varepsilon_i$  with probability as a linear function of the inner product of the current partial sum  $w_i$  and next input vector  $v_i$ .

- Algorithm achieving logarithmic bounds for the online Komlós problem against oblivious adversaries.
- Based on randomly choosing signs  $\varepsilon_i$  with probability as a linear function of the inner product of the current partial sum  $w_i$  and next input vector  $v_i$ .
- Analysis is based on the concept of spreading and bounds on the covariance.

- Algorithm achieving logarithmic bounds for the online Komlós problem against oblivious adversaries.
- Based on randomly choosing signs  $\varepsilon_i$  with probability as a linear function of the inner product of the current partial sum  $w_i$  and next input vector  $v_i$ .
- Analysis is based on the concept of spreading and bounds on the covariance.

### Open Question

Can a similar algorithm achieve a  $O(\sqrt{\log nt})$  bound?

### The End

• The paper is available at https://arxiv.org/abs/2006.14009 with title "Discrepancy Minimization via a Self-Balancing Walk"

### The End

- The paper is available at https://arxiv.org/abs/2006.14009 with title "Discrepancy Minimization via a Self-Balancing Walk"
- Thank you for you attention!

### The End

- The paper is available at https://arxiv.org/abs/2006.14009 with title "Discrepancy Minimization via a Self-Balancing Walk"
- Thank you for you attention!
- Questions?