Algorithmique

tosaz@lri.fr

Cormen Leiserson Rirest (référence biblique)

Froideveaux Gaudel Soria

Mr Al Khwarismi¹ fut l'inventeur de l'algorithmique (d'après son nom)

Un algo résoud des problèmes P(D) avec D en entrée.

Exemple: D => 2 entiers, P calculer la somme, le produit.

D => tableau d'entier, P = les trier

D => un texte, P = vérifier que c'est un programme C correct et fournir l'executable. D => (Programme, Entrée), P = savoir si P lancé sur E s'arrête (en supposant que la

mémoire dispo est illimitée)

DEFINITION Algorithmique

C'est un procédé de calcul automatique et effectif qui résoud un problème P et qui s'arrête sur toutes les entrées.

REMARQUES

- Pas d'ordinateur ou d'informatique dans la définitions
- « qui s'arrête sur toutes données.)
 Problème d'arrêt. Par exemple Lancer P sur E et on observe
 - Si je vois P/E s'arrête alors je dis oui
 - o Sinon ... Je ne peux pas répondre!

Ce n'est pas un algo parce que ça ne s'arrête pas toujours. Il s'agit d'un semi algo.

- Automatique executable sans réflechis. -> l'ordinateur peut le faire.
- Effectif: tout doit pouvoir être calculer effectivement.
 - o Si dieu existe
 - N=0
 - Sinon N=1

CE N'EST PAS UN ALGORITHME.

Arrêt tentative 2

¹ Savant Perse ~830

- $X_n = \{(P,E), |P| \le n, |E| \le n\}$ X_n est un ensemble fini
- F(n) = max temps d'execution de P/E (P/E)€Y_n
- Arrêt: on lance P/E.
 - Si on observe que ça s'arrete, on répond oui.
 - Si on au bout de f(max(|P|, |E|) +1 ca ne s'arrête toujours pas on répond non.

COMMENT ON CALCULE F ??
CE N'EST PAS UN ALGO. CE N'EST PAS EFFECTIF.

- Comment décrire le problème, les données et l'algo ?
 - o Le français ? C'est ambigu.
 - o Techniques formelles. C'est el génie logiciel.
 - o Pseudo code.
- Efficacité des algorithmiques : **COMPLEXITE**
 - \circ Les ordres de grandeurs pour faire que $_{\pm\infty}\pm\infty$ où à la rigueur qui retient $\geq\gamma\geq0$

F=O(g) f pas plus grand que g.

$$\exists Af \leq Ag$$

$$\frac{f}{g}$$
 majoré en 100

$$F = \Omega \ g \ \exists \lambda \geq 0$$

...

Texte en Français, sans gros chiffres. Sans plus de 6 caractère entre 2 mots.

N_b = nombre de bits

N_c= nombre de caractères

N_m= nombre de mots

N_p= nombre de paragraphes

$$N_b = 8n_c$$
 $n_b = \Theta(n_c)$

$$N_m \le n_c \le 32 n_m$$
 $n_c = \Theta (n_m)$

$$N_p \le n_m$$
 nom majorable $n_m \ne \Theta(n_p)$

- Taille d'un objet
 - o Bit_taille (objet) = nombre de bit pour le coder.
 - Une grandeur g est une taille si et seulement si (bit_taille)

N_b, n_c, n_m sont des tailles, mais pas n_p

 Remarque: Le taille d'un entier est le nombre de chiffres pour l'écrire en base 2 (ou autre base).

Il faut un log₂ n pour écrire n en base 2.

Si n s'écrit avec k chiffres en base b :

$$b^{k-1} < n < b^k$$

 $Bit_taille(n) = log_2n$

Tout log convient $log_{10}n=rac{log_2}{log_{10}}log_{10}n$

La taille de T[1..N] d'entiers.

En vrai,
$$\sum_{i=1}^{N} ln.T[i]$$

En pratique, on néglige l'impact des tailles des entiers. En info, tout int sera sur 32 ou 64 bits

On prétendra que la taille est N.

Bit taille, mais avec quel codage?

• Le codage naturel.

 $Complexité(^{algo}_{donn\'ees}, implementation, machine) = le temps de calcul$

On veut ne pas s'occuper des 2 derniers. Et on ne veut pas passer trop de temps sur chaque données.

 $complexit\'e \ en \ op\'eration \ ^{algo}_{donn\'ees} = nombres \ d'op\'erations faites.$

Exemple: compter les doublons d'une liste:

```
Cpt <- 0

Pour i de 1 à N

Pour j de i+1 à N

Si ei=ej

Alors c++

Fpour
```

Complexité en test « ei=ej »

Rendre cpt

$$\frac{N(N-1)}{2} \sim \frac{N^2}{2}$$
, en $\theta(N^2)$

Complexité en « cpt++ » entre 0 et N(N-1)/2 fois en O(N2)

La différence entre Θ et O. dans les cas, on majore mais on ne minore que dans le premier.

Complexité en augmentation de i environ n fois.

Un opération et dite fondamentale si et seulement si la complexité de cette opération est Θ de la complexité sur une machine. Exemple : « Ei=j » est une OPÉRATION FONDAMENTALE, « cpt++ » n'est pas une OPÉRATION FONDAMENTALE.

Compléxité en faonction de la taille.

Compléxité au pire : $n \mapsto max_{d=n} complexité sin d$ ou $d \le n$

Complexité moyenne : $n \mapsto moyenne_{d=n}$ complexité sur d

Il faut une proba pas évident si les données est une graphe pour le tri si on peut avoir multioccurrences

Vocabulaire

Complexité

- Constante Θ(1)
- Logarithmique Θ(Inn)
- Linéaire Θ (n)
- Quadratique Θ(n²)
- Polynomiale $\Theta \exists comp = 0 \ n^p \ lnn, \ \overline{n}, nlnn, \ c'est \ polynomial$

• Exponentiel.

o C est exponentiel si et seulement si C n'est pas polynomiale.

$$\exists q \ln C = O \quad n^q$$

F(n)/n	10	30	100	1000	10 ⁶	10 ⁹
N	*	*	*	0.001	1	16 minutes
NInn	*	*	*	0.007	14	5h
N ²	*	0.001	0.01	1 j	11J	32 000 ans
2 ⁿ	0.001	18minutes	4.10 ¹⁶	10 ²⁸⁷	10 ³⁰⁰⁰⁰⁰	10 ³⁰⁰⁰⁰⁰⁰⁰⁰
2 ²ⁿ	10 ²⁹⁴	10 ³⁰⁰⁰⁰⁰	10 ³⁰⁰⁰⁰⁰⁰⁰⁰	*	*	*

F le nombre d'opérations à faire.

P un problème.

Y a-t-il un algorithme pour ce problème?

Vendredi 24 septembre 2010

Algo récursif

Le fait qu'une fonction puisse s'appeler elle-même.

Exemple: Factorielle(n)

Si n= 0 alors rendre 1 sinon rendre n*Factorielle (n-1)

Comment ça se passe?

Quid si je lance fact(-1)?

- Sur une marchine de Turing : ne s'arrête pas.
- Sur un ordinateur réèl : Arret brutal : « out of memory »

Chercher x dans une liste. : chercher (X,L)

```
Si L vide alors rendre faux // X n'est pas dedans !
Sinon
Si X=teteDeListe(L)
alors rendre vrai
Sinon
Rendre chercher(X, Suite(L))
```

```
Fibonacci : F_0 = F_1 = 1;
Pour tout n \ge 2, F_n = F_{n-1} + F_{n-2}
```

```
Fibo(n)

If n=0 ou n=1

alors rendre 1

sinon rendre fibo(n-1)+fibo(n-2)
```

X_n = Complexité en appels terminaux (Appele F₀, F₁)

Chaque calcul refait tous les calculs avants. (pas de mémoires des résultats précédants). Donc donc F100 prendra 2 fois plus de temps que F99

$$\overline{2}^n = 2^{n/2} \le Xn \le 2^n$$

X_n est exponentiel

X0=1

X1=1

 $X_n = X_{n-1} + X_{n-2}$ avec $X_{n-1} = le$ nombre d'appele quand je lance l'appelle F(n-1)

D'où $X_n = F1$

Yn = le nombre d'appeks

 $Y_0 = Y_1 = 1$

 $Y_n = 1 + Y_{n-1} + Y_{n-2}$

Zn = Yn + 1

Z0 = Z1 = Z

 $Z_n = Z_{n-1} + Z_{n-2}$

 $Z_n = 2F_n$

 $Y_n = 2F_{n-1}$

Complexité de notre fonction Ffubonacci avec une complexité de :

$$\Theta = \frac{1+B}{2}$$

Est-ce que Fibo(100) produit un outOfMemory?

Non, car il y a uniquement 100 appels récursif. Les re-calculs utilisent des appels, mais la mémoires utilisés par ceux-ci sont rendu en même temps que le résultat. La mémoire est réutilisé.

Comment calculer F(n)?

On mémorise les resultats.

(ici complexité en temps en n et en espace en 1)

```
T[0.n]

Pour i de 0 à n

T[i] \leftarrow -1

Fpour

T[0] \leftarrow 1

T[1] \leftarrow 1

F(n, inoutT[], out res)

Render res.
```

Mieu: Quitte à remplir T[], autant le faire itérativement et stocker chaque résultat dans une case.

Mais Fibonacci n'a pas besoin de tous les résultats précédents, uniquement des 2 dernier. Donc Mieu :

Ou en recursif:

```
F(p, Fp, Fsuiv, n)
Si p=n alors
Render Fp
Sino
Rendre F(p+1, Fsuiv, Fp+Fsuiv, n)
Fsi
Fibonacci (nà
Rendre (O,1,1,n)
```

Quand appel recursif est <u>Terminal</u> (il n'y a rien à faire derrière), l'appelant peut se fermer directement et demander de l'appelé de passer le résultat directement dessus.

La complexité en espace est $\Theta(n)$ si le compilateur ne le fait pas. $\Theta(1)$ sinon.

Propreté du pseudo-code

Expression: Quelque chose qui a une valeur.

Par exemple: 0, Fact(7), P.val (le champs val de l'objet P)

Instruction : quelque chose à faire, une action.
exemple : Affectation, If, then, else, print(-)

Interdiction de faire la confusion!

I← j++

c'est une expression, on met dans I la valeur que j aura après l'incrémentation

c'est une instruction, elle stocke J+1 dans j.

c'est un truc batard à ne pas faire!

Fonction (Argument₁ à Argument_n) \rightarrow de retour.

prend des arguments. Et REND un résultat. (exemple : Factorielle)

elle ne modifie PAS ses argument.

Procedure (Argument₁ à Argument_n)

elle Agit et ne rend pas de résultat.

Argument (passage de)

in f(nà

données de l'appelant à l'appelé.

002:5

en pratique il y a copie des variables

l'appelant donne une variabible que l'appelé peut modifier. Passage

par référence.

k'appelant envoie une var à l'appelé que l'appelé va re-initialiser

par var.