# HEPS 工程工作笔记

## **HEPS Technical Note**

| 标题(Title)                   | B8 束线设计 - 第三版光学设计计算 |            |           |
|-----------------------------|---------------------|------------|-----------|
| 作者 (Author)/<br>系统 (System) | 杨福桂                 | 日期 (Date)  | 2020-2-16 |
| 编号 (Serial No.)             |                     | 页数 (Pages) | 共 页 (含附件) |

#### 摘要 (abstract):

根据 2.13-2.16 的讨论沟通,相比于 2019 年 2 月份的方案, B8 束线设计的调整思路:低能段使用四镜谐波抑制镜,这样可以减少工程造价,提高高能段光束品质(此时无谐波镜)。微米聚焦方案中,将 KB 镜后移,虽然影响了光通量,但是可以保证样品点的重合。在此思路下开展以下评估:

- (1) 谐波抑制的计算,评估有无谐波镜,影响能段及效果:\_
- (2) 束线性能的计算,评估微米聚焦和亚微米聚焦两个模式的性能。

#### 结论:

| 会 签          |             |             |             |
|--------------|-------------|-------------|-------------|
| Concurred by |             |             |             |
| 有效性          | 填表人         | 审 核         | 批准          |
| Validation   | Prepared by | Reviewed by | Approved by |
| 签名           | XX          |             |             |
| Signature    | AA          |             |             |
| 日期 Date      | XX (一定写上日期) |             |             |

#### 1 束线光学设计综述

#### 1.1 系统接收角

在讨论束线布局前,首先根据光源特征选定系统接收角。表格 1-1 给出了 10keV 下各接收角度对应的通量。可见,束线接收角为 18μrad×18μrad 接收的通量占总通量的 90%,且角度变大增益变小。因此单色光的最大接收角设置为 18μrad×18μrad。

| 接收角度<br>µrad×µrad | 接收光通量<br>ph/s/0.1%BW<br>@ 10keV |
|-------------------|---------------------------------|
| 30×30             | 7.5e14                          |
| 25×25             | 7.4e14                          |
| 20×20             | 7.0e14                          |
| 18×18             | 6.8e14                          |
| 16×16             | 6.2e14                          |
| 14×14             | 5.4e14                          |

表格 1-1 插入件不同 K 值下各接收角对应的光通量

对于白光镜,考虑到边缘效应,系统的接收角为 25μrad×25μrad。在此基础上,我们确定各反射镜的长度。

#### 1.2 反射镜反射率

为了满足束线能区范围 4.8keV - 45keV 及能扫的要求,且保证能量变化时,反射镜(不包括谐波抑制镜)的掠入射角不变。从图可以看到,Pt@1.7mrad 和 Si@1.7mrad 的组合是合适的,即反射镜以 Si 为基底,部分镀 Pt,以 1.7mrad 入射。



#### 图 1-1 Si、Pt、Rh 反射率曲线

在能量低于 17keV 时,使用 Si 作为反射面;能量在 17-45keV 时,使用 Pt 作为反射面。据此反射率曲线 Si@1.7mrad,可以看到 7keV 以下的能量段存在谐波问题。为此,可通过单色器失谐或者添加谐波抑制镜解决。在使用大光斑进行实验时,可以使用失谐;谐波抑制镜位于紧贴 SSA,减少面型误差对二次光源光斑尺寸的影响。为了确定谐波镜镀层,图 1-2 给出了 Si、Rh、Ni 和 Pt 在不同掠入射角下的反射率曲线。可以看到 Pt@8mrad或者 Rh@7mrad 即可保证反射率,又可保证 4.8-7keV 的谐波抑制比。



图 1-2 不同材料镀层的反射率

## 1.3 束线设计考虑

#### 1.3.1 束线设计的整体考虑

表格 1-2 B8 束线光学设计考虑因素

| 输入因素 问题点 设计 | 方案对策 | 输出 |
|-------------|------|----|
|-------------|------|----|

| 能量范围                     | 高能反射       | 系统掠入射角                     | Pt, 1.7mrad |
|--------------------------|------------|----------------------------|-------------|
| 4. 8keV - 45keV          | 低能反射       | 镀层类型                       | Si、Pt       |
| 101101                   | ?          |                            |             |
|                          | 能扫出高变化     | 单色器前准直                     | 准直反射镜       |
| 能量扫描                     | 变能量点 CCM 出 | Channel-cut 晶体设计           | 分段式 CC      |
| (至 1keV)                 | 高变化        | 谐波镜的补偿                     | 四镜、双镜方案     |
|                          | 能扫热变形      | 布局                         | 亚微米次级聚焦方案   |
| 3時3中十四年11日と              |            | 微米快扫下谐波抑制反射镜               | 四镜、双镜方案     |
| 谐波抑制比                    | 低能谐波比不足    | 亚微米模式下单色器失谐                | DCM 方案      |
| 0. 001                   |            |                            |             |
| 聚焦性能                     |            | 亚微米: DCM VFM、sub-micron-KB |             |
| <b>聚無性能</b><br>尺寸: 300nm | 微米聚焦与亚微    | 微米: VCM、CCM、VFM、HRMs、      | 器件数量与类型     |
|                          | 米聚焦的配合     | micron-KB                  |             |
| 距离: 150mm                |            | 聚焦方案                       | 次级聚焦方案      |
| 造价                       |            |                            |             |
| 工程风险                     |            |                            |             |
| 使用性能                     |            |                            |             |
|                          |            |                            |             |

#### 1.3.2 聚焦性能优化考虑

利用相空间理论研究束线布局的优化。这里主要考虑反射镜的接收口径及工作距离因素。 很容易得到样品处的相空间尺寸为:

$$PS'_{H,V} = \frac{l_{H,V}\theta}{q_{H,V}} s'_{H,V}$$

其中, $l_H$ 是发射镜的长度, $\theta$ 是反射镜掠入射角, $q_{H,V}$ 是像距, $s'_{H,V}$ 是成像聚焦光斑尺寸。



图 1-3 光学传输系统的一般模型

首先考虑最大接收效率的问题,如果整个光学传输系统没有误差,则整个系统的传

输过程中,相空间尺寸守恒,根据 IHEP-HEPS-OS-EN-2020-001 文档中关于相空间计算的方法,可以获得系统最大传输效率:

$$EF = \frac{PS'_{H,V}}{PS_{H,V}} = \frac{PS'_{H,V}}{\alpha_{H,V}s_{H,V}}$$

其中,  $q_H = l_H/2 + W$ , W是工作距离。

当光学传输系统的器件存在误差时,为了减小分析的复杂度,可以等效到虚拟光源尺寸。例如,反射镜的位置为 37m, 面形误差为  $0.3~\mu rad$ ,则光源的展宽为  $2*2.35*37*0.3=52~\mu m$ 。

- (1) 对于 B8 束线来说,亚微米聚焦下,假设反射镜长度最大为 300mm,样品点尺寸  $0.30 \, \mu m \times 0.30 \, \mu m$ ,工作距离  $150 \, m m$ ,由此可以计算垂直和水平总的相空间尺寸为 :  $1.7 \, m r a d^* 300 \, m m^* 0.30 \, \mu m^* 0.30 \, \mu m^* 0.30 \, \mu m^* (300 \, m m^* 600 \, m m)$  =  $0.13 \, \mu m^2 \cdot m r a d^2$ ,样品处的光斑尺寸为  $44 \, \mu m \times 18 \, \mu m$ ,如果接收角  $18 \, \mu r a d \times 18 \, \mu r a d$ ,对应的相空间尺寸为  $0.25 \, \mu m^2 \cdot m r a d^2$ ,也就是说最大效率为 0.52,当按照  $200 \, m m$  光 斑设计是,效率为 0.23。也就是说,聚焦光斑尺寸的设计值,极大决定了系统效率。
- (2) 对于 B8 束线来说,微米聚焦模式下,与其他束线一样,面形误差是系统性能的重要贡献者,扩展了系统的相空间尺寸。当反射镜的长度为 600mm,掠入射角 1.7mrad , 工 作 距 离 为 1.5m , 样 品 点 的 1.7mrad\*0.6m\*1.7mrad\*0.6m\*2μm\*2μm/(1.5m\*1.8m)=1.54μm $^2$ ·mrad $^2$ ,远大于光源的相空间尺寸,说明微米聚焦模式的效率是没有问题的。
- (3)综合以上两点来看,微米聚焦和亚微米聚焦两个模式,为了优化通量,亚微米聚焦应优先考虑。需要注意这里仅仅考虑了聚焦成像效果,从器件类型及大致布局又受限于快扫微米聚焦模式。

另外一方面,根据以上,虚拟光源的尺寸 $s_{H,V}$ 确定的情况下,也可以确定光源处的最大接收角度:

$$\alpha_{H,V} = \frac{l_{H,V}\theta}{q_{H,V}} \frac{s'_{H,V}}{s_{H,V}} = \frac{l_{H,V}\theta}{M_{H,V}q_{H,V}}$$

 $M_{H,V}$ 是整个系统的缩放比。例如,对于亚微米聚焦,如果考虑仅有两个垂直反射镜的相空间扩展至 52  $\mu$ m\*1.414 = 73 $\mu$ m,那么,系统最大接收角为 0.13/73/42 = 42 $\mu$ rad²。目前亚微米聚焦模式采用 8.3 $\mu$ rad\*5.6 $\mu$ rad = 46 $\mu$ rad²。即当前的设计,相空间已达到理论极限。

## 1.4 束线布局配置

束线布局如图 1-4 所示, 水平方向采用直接聚焦方式, 垂直方向采用二级聚焦方式。

首先,确定系统的接收角度,亚微米模式的接收角为  $0.3*1.7/61=8.3\mu rad$  (水平),  $0.3*1.7/11*4.5/37=5.6\mu rad$  (垂直)。如表格 1-1 所示,18  $\mu rad \times 18 \mu rad$  基本接收了大部分的通量,考虑到相空间的尺寸不是问题,因此设定微米聚焦模式的接收角为 18  $\mu rad \times 18 \mu rad$ 。



图 1-4 仿真布局图

## 2 亚微米聚焦方案性能

对于亚微米聚焦,水平方向采用直接聚焦的方案,这样主要由缩放比来决定水平聚焦的光学布局。根据光源尺寸 42um,保证一定冗余下,设计样品点尺寸为 200nm,由此可以计算水平缩放比 M 要达到 210(。





# 图 2-1 反射镜面形误差 VCM 和 VDM 反射镜的面形误差曲线,在全口径内的斜率误 差为 0.3 μrad rms

追迹亚微米模式,次级光源点处的光斑分布。



图 2-2 无误差时的二次光源处的追迹结果

加载面形误差后,在 49.5m 处和偏离 49.9m 处的光斑尺寸,即离焦 0.4m。在实际操作中,该误差通过调节 VCM 的压弯量补偿,为了简化问题,这里调节 VFM 的焦距至 4.2m,将最小光斑焦点移动到 49.5m 附近,见图(d)。但是我们要认识到在能扫过程中面形误差的会发生变化,进而导致这种最佳焦点位置的移动,因此应避免这类问题。



图 2-3 VFM 和 VCM 加载面形误差后的追迹结果,二次光源处。(a) 0mm, (b) 300mm, (c) 聚焦变化曲线



图 2-4 VFM 焦距调整后的追迹结果,二次光源处。(a)-300mm,(b)0mm,(c)聚焦变化曲线

亚微米聚焦光斑的情况,下图分别给出了,光源尺寸、发散角、VCM-footprint,单色器出光(d)、VFM-footprint(e)、二次光源分布、VKB-footprint(g)和HKB-footprint(h)以及样品处的光斑(i)。







图 2-5 亚微米聚焦情况,各器件上的光场分布

谐波情况的计算情况如下,表中给出了各个器件后的通量追迹结果。同时,R\_ratio\_mirr是理论计算的反射镜反射率的谐波比,它是决定器件谐波抑制贡献能力的体现,与追迹结果一致。阴影部分是起到谐波抑制的主要部件。可见单色器和反射镜共同构成了谐波抑制的主体。当能量小于 6keV 时,只有单色器和光源对谐波有抑制作用,满足不了谐波抑制的要求。当能量点在 7keV 时,反射镜 VCM 和 VFM 共同贡献下逐渐满足谐波要求。7.5keV 已能够满足谐波抑制的需求。

|              | 光源      | VCM     | DCM      | VFM               | VKB      | HKB      |
|--------------|---------|---------|----------|-------------------|----------|----------|
| 5@1st        | 3.13e14 | 3.03e14 | 2.8e13   | 2.7e13            | 1.50e13  | 1.40e13  |
| 3rd          | 1.3e14  | 1.28e14 | 1.08e12  | 1.06e12           | 5.72e11  | 5.49e11  |
| 谐波比          | 0.415   | 0.42    | 0.038    | 0.039             | 0.038    | 0.039    |
| R_ratio_mirr |         | 1.01    | 0.090    | 1.01              | 1.02     | 1.02     |
| 6@1st        | 3.12e14 | 3.03e14 | 3.13e13  | 3.05e13           | 1.66e13  | 1.53e13  |
| 3rd          | 8.61e13 | 8.17e13 | 7.33e11  | 6.96e11           | 3.67e11  | 3.47e11  |
| 谐波比          | 0.28    | 0.27    | 0.023    | 0.023             | 0.021    | 0.023    |
| R_ratio_mirr |         | 0.97    | 0.078    | <mark>0.97</mark> | 1.02     | 1.02     |
| 7@3st        | 1.49e14 | 1.45e14 | 1.62e13  | 1.58e13           | 8.75e12  | 8.06e12  |
| 9th          | 5.42e13 | 6.38e12 | 5.55e10  | 6.54e9            | 3.73e9   | 3.39e9   |
| 谐波比          | 0.36    | 0.044   | 3.43E-03 | 4.14E-04          | 4.26E-04 | 4.21E-04 |
| R_ratio_mirr |         | 0.12    | 0.078    | 0.12              | 1.01     | 1.01     |
| 7.5@3rd      | 1.54e14 | 1.51e14 | 1.76e13  | 1.72e13           | 9.42e12  | 8.66e12  |
| 9th          | 5.10e13 | 3.58e12 | 3.52e10  | 2.48e9            | 1.49e9   | 1.38e9   |
| 谐波比          | 0.33    | 0.024   | 0.002    | 1.44e-4           | 1.58e-4  | 1.59e-4  |
| R_ratio_mirr |         | 0.07    | 0.083    | 0.07              | 1.01     | 1.01     |

为了更直观体现谐波贡献,这里计算



假设光源和单色器在 6-8keV 处不存在谐波抑制的跳变,设光源的谐波比为 0.42, 单色器的谐波比为 0.09, 为了达到 1e-3 的谐波抑制, 要求反射镜的谐波抑制为 0.034。

当亚微米聚焦模式选择 VFM 和 VCM 是 Si - 1.7mrad, KB 是 Rh-2mrad 镀层,那么只能要求 VFM 和 VCM 的谐波抑制比例为 0.16,对应的能量点底线为 6.7keV。当能量小于 6.7keV 时,需要考虑其他谐波抑制方案。

当亚微米聚焦模式选择 VFM、VCM 和 KB 均为 Si - 1.7mrad, 对应的谐波抑制比为 0.4, 对应的能量点为 6.3keV。—这种情况对应的微米聚焦的情形。

## 3 微米聚焦方案性能

## 3.1 反射镜误差对聚焦的影响

在亚微米聚焦中,光斑只是用了反射镜 <u>VCM、VFM</u>的一个部分,而反射镜的误差选择是按照全局设计的。下图给出了 0 点位置和偏移 50mm 位置的光斑形状。以及焦点变化,此时 VFM 的焦距已调整为 4.5m。





# 3.2 谐波情况

|     | 교로 가면 지점 |          | /bl/ vl/ Hz Ab |          |
|-----|----------|----------|----------------|----------|
|     | 亚微米      | T        | 微米聚焦           | T        |
|     | 光源       | 单色器      | 光源             | 单色器      |
| 7.5 | 1.55E+14 | 1.78E+13 | 7.55E+14       | 8.66E+13 |
|     | 5.11E+13 | 4.98E+11 | 2.05E+14       | 1.78E+12 |
|     | 3.30E-01 | 2.80E-02 | 2.72E-01       | 2.05E-02 |
|     |          | 8.48E-02 |                | 7.55E-02 |
| 7   | 1.49E+14 | 1.69E+13 | 7.58E+14       | 8.39E+13 |
|     | 5.45E+13 | 4.37E+11 | 2.17E+14       | 1.86E+12 |
|     | 3.65E-01 | 2.59E-02 | 2.87E-01       | 2.22E-02 |
|     |          | 7.09E-02 |                | 7.73E-02 |
| 6.8 | 1.48E+14 | 1.65E+13 | 7.58E+14       | 8.39E+13 |
|     | 5.49E+13 | 5.19E+11 | 2.26E+14       | 2.05E+12 |
|     | 3.71E-01 | 3.14E-02 | 2.98E-01       | 2.45E-02 |
|     |          | 8.47E-02 |                | 8.21E-02 |
| 6.6 | 2.96E+14 | 3.20E+13 | 9.79E+14       | 1.06E+14 |
|     | 6.01E+13 | 5.39E+11 | 1.56E+14       | 1.49E+12 |
|     | 2.03E-01 | 1.69E-02 | 1.59E-01       | 1.41E-02 |
|     |          | 8.32E-02 |                | 8.84E-02 |
| 6.4 | 3.03E+14 | 3.24E+13 | 1.02E+15       | 1.11E+14 |
|     | 6.83E+13 | 6.56E+11 | 1.82E+14       | 1.57E+12 |
|     | 2.26E-01 | 2.02E-02 | 1.78E-01       | 1.42E-02 |
|     |          | 8.96E-02 |                | 7.96E-02 |
| 6.2 | 3.08E+14 | 3.23E+13 | 1.06E+15       | 1.11E+14 |
|     | 7.73E+13 | 7.24E+11 | 2.05E+14       | 2.05E+12 |
|     | 2.51E-01 | 2.24E-02 | 1.93E-01       | 1.86E-02 |
|     |          | 8.95E-02 |                | 9.60E-02 |

| 6 | 3.12E+14 | 3.27E+13 | 1.11E+15 | 1.17E+14 |
|---|----------|----------|----------|----------|
|   | 8.57E+13 | 8.47E+11 | 2.39E+14 | 2.28E+12 |
|   | 2.75E-01 | 2.59E-02 | 2.15E-01 | 1.94E-02 |
|   |          | 9.41E-02 |          | 9.02E-02 |

首先计算光源一定口径接收角下,插入件谐波比的情况。



接着光线追迹光源-单色器的谐波抑制效率。

|        | 亚微米      |          | 微米聚焦     |          |
|--------|----------|----------|----------|----------|
| 能量 keV | 光源       | 单色器      | 光源       | 单色器      |
| 7.5@3  | 1.55E+14 | 1.78E+13 | 7.55E+14 | 8.66E+13 |
|        | 5.11E+13 | 4.98E+11 | 2.05E+14 | 1.78E+12 |
|        | 3.30E-01 | 2.80E-02 | 2.72E-01 | 2.05E-02 |
|        |          | 8.48E-02 |          | 7.55E-02 |
| 7@3    | 1.49E+14 | 1.69E+13 | 7.58E+14 | 8.39E+13 |
|        | 5.45E+13 | 4.37E+11 | 2.17E+14 | 1.86E+12 |
|        | 3.65E-01 | 2.59E-02 | 2.87E-01 | 2.22E-02 |
|        |          | 7.09E-02 |          | 7.73E-02 |
| 6.8@3  | 1.48E+14 | 1.65E+13 | 7.58E+14 | 8.39E+13 |
|        | 5.49E+13 | 5.19E+11 | 2.26E+14 | 2.05E+12 |
|        | 3.71E-01 | 3.14E-02 | 2.98E-01 | 2.45E-02 |
|        |          | 8.47E-02 |          | 8.21E-02 |
| 6.6@1  | 2.96E+14 | 3.20E+13 | 9.79E+14 | 1.06E+14 |
|        | 6.01E+13 | 5.39E+11 | 1.56E+14 | 1.49E+12 |
|        | 2.03E-01 | 1.69E-02 | 1.59E-01 | 1.41E-02 |
|        |          | 8.32E-02 |          | 8.84E-02 |
| 6.4@1  | 3.03E+14 | 3.24E+13 | 1.02E+15 | 1.11E+14 |
|        | 6.83E+13 | 6.56E+11 | 1.82E+14 | 1.57E+12 |
|        | 2.26E-01 | 2.02E-02 | 1.78E-01 | 1.42E-02 |
|        |          | 8.96E-02 |          | 7.96E-02 |
| 6.2@1  | 3.08E+14 | 3.23E+13 | 1.06E+15 | 1.11E+14 |
|        | 7.73E+13 | 7.24E+11 | 2.05E+14 | 2.05E+12 |

|     | 2.51E-01 | 2.24E-02 | 1.93E-01 | 1.86E-02 |
|-----|----------|----------|----------|----------|
|     |          | 8.95E-02 |          | 9.60E-02 |
| 6@1 | 3.12E+14 | 3.27E+13 | 1.11E+15 | 1.17E+14 |
|     | 8.57E+13 | 8.47E+11 | 2.39E+14 | 2.28E+12 |
|     | 2.75E-01 | 2.59E-02 | 2.15E-01 | 1.94E-02 |
|     |          | 9.41E-02 |          | 9.02E-02 |

从表中可以看出这两个设备的谐波比总贡献基本上在 0.02 的水平。单色器的谐波抑制性能基本在 10%-7%的水平。大接收口径和小接收口径中,单色器和单色器的比重各有不同。

## 3.3 聚焦光斑性能

单色器后和二次光源处的光斑分布,通量分别为7.76e13 和7.61e13phs/s。



KB镜加载误差如下图所示。



有无误差时,聚焦光斑的分布:





改变观察平面位置,我们看到0平面基本上时最小光斑位置,即焦点位置。



## 4聚焦位置的确定

## 5 存在问题

反射镜的面形误差局域与全局的不同,给仿真带来了不确定性。本仿真过程中,将居于面形误差补偿至最佳,但是对于能量扫描应用,出高问题有可能会带来不确定的结果。