Name: Solutions

1. Find a number $\lambda \in \mathbb{C}$ such that

$$\lambda(1+i,2-3i,3+4i) = (3+i,5-10i,6+7i),$$

or explain why no such number can exist.

(Note: the numbers above are different from the original quiz, because (a) I'm working from home and don't have a hard copy of the quiz with me, and (b) I accidentally overwrote the file while making the second quiz.)

Solution: Using the rule for scalar multiplication in \mathbb{C}^3 , the vector on the left must be $(\lambda(1+i), \lambda(2-3i), \lambda(3+4i))$, and this must equal (3+i, 5-10i, 6+7i). Equating the first entries, we have

$$\lambda(1+i) = 3+i.$$

If we multiply both sides by 1-i, we get $2\lambda = 4-2i$, so $\lambda = 2-i$. Thus, looking at the second entry, on the left we have $\lambda(2-3i) = (2-i)(2-3i) = 1-8i$, which does not equal 5-10i. Therefore, no such λ can exist.

2. Let V be a vector space over a field \mathbb{F} . Prove that for any $a \in \mathbb{F}$ and $v \in V$, if av = 0, then a = 0 or v = 0.

Proof: Given $a \in \mathbb{F}$, either a = 0 or $a \neq 0$. If a = 0, then we're done. If $a \neq 0$, then from av = 0 we have

$$v = 1v = \left(\frac{1}{a} \cdot a\right)v = \frac{1}{a}(av) = \frac{1}{a}(0) = 0.$$