

INTRODUCTION:: IMBALANCE

Physical and Technological Constraints

- 1. Conservation of Energy
- 2. Grid Instability
- 3. Low Ability to Store Electrical Energy

The need to match supply and demand every single moment!

Imbalance is result for false predictions of power supply and demand.

How to handle energy imbalances!?

IMBALANCING ENERGY:: REGULATIVE & QUANTITATIVE

Imbalancing Energy

- Compensate for unforeseen deviation in power demand or power generation
- Allocation is executed by Transmission Operators

Imbalancing Price

- Updated every 15 min
- Calculated by the Transmission Operators
- Published in the following month within
 10 business days

Price Range €/MWh

Year	Min	q.05	Median	q.95	Max
2018	- 1.873	- 37	46	108	2.013
2019	- 2.320	- 39	39	97	2.865
2020	- 6.504	- 61	29	118	15.859

High price range

Ø Rate of Change

|Median|: $\frac{36\%}{15 \, min}$

|Mean|: $\frac{275\%}{15 \, min}$

Extremly dynamic price development

IMBALANCING ENERGY:: REGULATIVE & QUANTITATIVE

Imbalancing Energy

- Compansate for unforeseen deviation in power demand or power generation
- Allocation is executed by Transmission Operators

Imbalencing Price

- Updated every 15 min
- Calculated by the Transmission Operators
- Published in the following month within
 10 business days

Highly delayed price information

Price Range €/MWh

Year	Min	q.05	Median	q.95	Max
2018	- 1.873	- 37	46	108	2.013
2019	- 2.320	- 39	39	97	2.865
2020	- 6.504	- 61	29	118	15.859

High price range

Ø Rate of Change

|Median|: $\frac{36\%}{15 \, min}$

|Mean|: $\frac{275\%}{15 \, min}$

Extremly dynamic price development

Business Implication

What, if we know the Imbalance Price ahead?

Responding anti-cyclically to the supply situation

OUR OBJECTIVE :: PRICE PREDICTION

OUR DATA SET:: SOURCES AND DESIGN

Insights:: Imbalance Price

"You Are The Average Of The Five People You Spend The Most Time With"

Jim Rohn

INSIGHTS:: IMBALANCE PRICE

Time Series Analysis

We didn't detect any significant repeating patterns or cycles in the Imbalance Price.

The highly delayed Imbalance Price can't be predicted from.

Data Environment

Imbalance Price :: Top 5 Correlation Feature

TIME SERIES :: RESULTS

Hours Ahead	Best Model	RMSE €/MWh
1	Encoder-Decoder	59,27
3	Bi-Directional LSTM	71,68
6	GRU	68,23
12	GRU	76,38
24	GRU	79,14

DESIGNED MODELS

- GRU
- CNN
- LSMT
- Bi-Directional LSTM
- Encoder-Decoder

GRU: Gated Recurrent Unit

TIME SERIES :: RESULTS

Hours Ahead	Best Model	RSME €/MWh	
1	Encoder-Decoder	59,27	
3	Bi-Directional LSTM	71,68	
6	GRU	68,23	
12	GRU	76,38	
24	GRU	79,14	

Reference

Year	q.05 €/MWh	Median - RMSE _{1h} €/MWh ≈	Median €/MWh	RMSE _{1h} + Median €/MWh ≈	q.95 €/MWh
2018	- 37	-14	46	106	108
2019	- 39	-20	39	99	97
2020	- 61	-30	29	99	118

DESIGNED MODELS

- GRU
- CNN
- LSMT
- Bi-Directional LSTM
- Encoder-Decoder

Observation

The RMSE is slightly less, than the difference between median an the 90% boundaries of the last three years

Conclusion:

Low precision at present stage.

GRU: Gated Recurrent Unit

TIME INDEPENDENT APPROACH

What is the *overall* performance of our best model?

Classification Setup	Accuracy
Positive and Negative Prices	83.5 %
5 Price Segements	54%

DESIGNED MODELS

- PCA + Random Forest Classifier
- Random Forest
- PCA + Gaussian Naive Bayes

DESIGNED CLASSES

- Positive and Negativ Prices
- <0 | ≤20 | ≤40 | ≤60 | ≥60

Observations

Random Forest is capable of predicting booth the lowest and highest rebap prices with close to 60% accuracy.

Conclusion: The model works very well for the classes *positive and negative prices* and acceptable for *5-Bucket classification*.

SUMMARY

Imbalance Price Characteristics

- Delayed publication,
- High price range and volality,
- Price can't be predicted from its history.
- Low correlation with given data

Regression Approach

Low precision at present stage.

Classification Approach

- Classification of positive and negative prices with a total accuracy of 83.5 %.
- Price classification with **5 price segments** leads to an **accuracy of 54%**.

OUTLOOK:: WHAT COULD LEAD TO BETTER RESULTS?

Additional Data Mining

 Expand with additional Weather Data

Feature Engineering

 Methods Technical Analysis of the Financial Markets

Modeling

Error Analysis