

关注微信公众号,第一 时间获取最新视频资料 课程制作 张 晔

QQ交流群: 205237137

机械人读书笔记

本课重点内容

- 1. 刚体平移现象和错误表现
- 2. 弱弹簧
- 3. 约束讲解
- 4. 分析结果解读

静力学频次最高的错误之一

很多时候并不是学习者们无法直译错误提示,而是即使翻译成了中文也不知道中文意思指的是什么,即使知道了也找不出错误的解决方法。

刚体平移可能出现的错误收集

到底什么是弱弹簧,它是怎么工作的?

下图是很常见的一种现实受力方式,板的两端各施加反向的10000N载荷,现实情况大家都知道这个板是受力平衡的,但是在有限元软件里计算却会发生很多奇怪的事情。

约束设置Displacement

网格改变的各种变形结果

电脑到底是如何处理这些数据的

假设带孔矩形板的两边分别画了90个节点和88个节点,取小数点后五位, 于是分配到每个节点的载荷分别是:

10000/90=111.11111N 10000/88=113.63636N

此时实际加载在两边的力分别为:

111.11111*90=9999.99990N 113.64*88=9999.99968N

于是两边相差0.00022N的载荷,系统如何抵消?

消除微小力的方法

一般情况下,现实中一定有产生抵消的约束或接触,只是我们没有设置上,所以仔细检查模型找出产生微小力的原因。目前多数有限元分析软件提供一种弱弹簧的功能,原则上是可以抵消这种载荷,但是经常会出现一些新手发现不了的问题,所以虽然接下来我要讲解弱弹簧功能,但是主要目的是要大家理解这种载荷产生的原因,而个人并不推荐大家使用这一功能。

UY、UZ及弱弹簧的反力启发

X Axis	ue Over Time	
☐ Y Axis	-3.195e-006 N	
☐ Z Axis	-3.1962e-006 N	
☐ Total	4.5192e-006 N	
Minimum Valu	ie Over Time	
☐ X Axis	0. N	
☐ Y Axis	-3.195e-006 N	
☐ Z Axis	-3.1962e-006 N	
Total	4.5192e-006 N	
☐ Total	1.31320 000 14	
Information		
Information Maximum Val	ue Over Time	
Information Maximum Val	ue Over Time 0. N	
Information Maximum Val X Axis Y Axis	ue Over Time 0. N -2.6243e-006 N	
Maximum Val X Axis Y Axis Z Axis Total	ue Over Time 0. N -2.6243e-006 N 5.7156e-006 N 6.2893e-006 N	
Maximum Val X Axis Y Axis Z Axis	ue Over Time 0. N -2.6243e-006 N 5.7156e-006 N 6.2893e-006 N	
Maximum Valo X Axis Y Axis Z Axis Total Minimum Valo	ue Over Time 0. N -2.6243e-006 N 5.7156e-006 N 6.2893e-006 N	
Maximum Valo X Axis Y Axis Z Axis Total Minimum Valo X Axis	ue Over Time 0. N -2.6243e-006 N 5.7156e-006 N 6.2893e-006 N ue Over Time 0. N	

	Maximum Value Over Time		
	☐ X Axis	5.7706e-011 N	
	☐ Y Axis	0. N	
	☐ Z Axis	0. N	
	□ Total	5.7706e-011 N	
⊟	Ainimum Value Over Time		
	☐ X Axis	5.7706e-011 N	
	☐ Y Axis	0. N	
	☐ Z Axis	0. N	
	☐ Total	5.7706e-011 N	
+	■ Information		

弱弹簧的作用就是抵消数值计算误差带来的微小分力!

虎钳出现刚体平移的原因

虎钳出现这样的结果原因何在?请思考。

