# INDEX

| Sr.No | Aim                                                                         | Date               | Sign |
|-------|-----------------------------------------------------------------------------|--------------------|------|
| 1     | Write a python program to plot word cloud for a Wikipedia page of any topic | 18/12/23           |      |
| 2     | Write a python program to perform Web Scrapping                             |                    |      |
|       | 01.Html scrapping- use Beautiful Soup 02.json scrapping                     | 18/12/23<br>1/1/24 |      |
| 3     | Perform Exploratory Data Analysis(EDA) of mtcars.csv in R                   | 1/1/24             |      |
| 4     | Exploratory data analysis in Python using Titanic Dataset                   | 15/1/24            |      |

| 5 | 1)Write a python program to build a regression model that could predict the salary of an employee from the given experience and visualize univariate linear regression on it. | 5/2/24  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   | 2) Write a python program to simulate linear model                                                                                                                            | 5/2/24  |
|   | Y=10+7*x+e for random 100 samples and visualize univariate linear regression on it.                                                                                           |         |
| 6 | Write a python program to implement multiple linear regression on the Dataset Boston.csv                                                                                      | 19/2/24 |
| 7 | Write a python program to implement KNN algorithm to predict breast cancer using breast cancer wisconsin dataset.                                                             | 19/2/24 |
| 8 | Introduction to NOSQL using MongoDB                                                                                                                                           | 27/2/24 |

Aim :- Write a python program to plot word cloud for a wikipedia page of any topic.

```
# Install module wikipedia
!pip install wikipedia
Collecting wikipedia
 Downloading wikipedia-1.4.0.tar.gz (27 kB)
 Preparing metadata (setup.py): started
 Preparing metadata (setup.py): finished with status 'done'
Requirement already satisfied: beautifulsoup4 in c:\users\admin\anaconda3\lib\site-packages (from wikipedia) (4.11.1)
Requirement already satisfied: requests<3.0.0,>=2.0.0 in c:\users\admin\anaconda3\lib\site-packages (from wikipedia) (2.28.1)
Requirement already satisfied: charset-normalizer<3,>=2 in c:\users\admin\anaconda3\lib\site-packages (from requests<3.0.0,>=2.
0.0->wikipedia) (2.0.4)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\admin\anaconda3\lib\site-packages (from requests<3.0.0,>=2.0.0->w
ikipedia) (2022.9.14)
Requirement already satisfied: idna<4,>=2.5 in c:\users\admin\anaconda3\lib\site-packages (from requests<3.0.0,>=2.0.0->wikiped
ia) (3.3)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\admin\anaconda3\lib\site-packages (from requests<3.0.0,>=2.0.0
->wikipedia) (1.26.11)
Requirement already satisfied: soupsieve>1.2 in c:\users\admin\anaconda3\lib\site-packages (from beautifulsoup4->wikipedia) (2.
3.1)
Building wheels for collected packages: wikipedia
 Building wheel for wikipedia (setup.py): started
Building wheel for wikipedia (setup.py): finished with status 'done'
 Created wheel for wikipedia: filename=wikipedia-1.4.0-py3-none-any.whl size=11680 sha256=29e6faaf9decd2c2c12e4104bbf1e9605829
b07f295a2fbdb32daf251b94ade2
 Stored in directory: c: \users admin appdata \local pip \cache \wheels \c2\46\f4\cache 271096d7b0cdca2f2a2af45cacf35c5760bee8f0094
Successfully built wikipedia
Installing collected packages: wikipedia
Successfully installed wikipedia-1.4.0
```

```
#Install module wordcloud
!pip install wordcloud
Collecting wordcloud
 Downloading wordcloud-1.9.3-cp39-cp39-win_amd64.whl (300 kB)
            ------ 300.6/300.6 kB 6.2 MB/s eta 0:00:00
Requirement already satisfied: numpy>=1.6.1 in c:\users\admin\anaconda3\lib\site-packages (from wordcloud) (1.21.5)
Requirement already satisfied: pillow in c:\users\admin\anaconda3\lib\site-packages (from wordcloud) (9.2.0)
Requirement already satisfied: matplotlib in c:\users\admin\anaconda3\lib\site-packages (from wordcloud) (3.5.2)
Requirement already satisfied: pyparsing>=2.2.1 in c:\users\admin\anaconda3\lib\site-packages (from matplotlib->wordcloud) (3.
0.9)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\admin\anaconda3\lib\site-packages (from matplotlib->wordcloud)
(2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\admin\anaconda3\lib\site-packages (from matplotlib->wordcloud) (1.
Requirement already satisfied: packaging>=20.0 in c:\users\admin\anaconda3\lib\site-packages (from matplotlib->wordcloud) (21.
Requirement already satisfied: fonttools>=4.22.0 in c:\users\admin\anaconda3\lib\site-packages (from matplotlib->wordcloud) (4.
Requirement already satisfied: six>=1.5 in c:\users\admin\anaconda3\lib\site-packages (from python-dateutil>=2.7->matplotlib->w
ordcloud) (1.16.0)
Installing collected packages: wordcloud
Successfully installed wordcloud-1.9.3
```

### Code:-

```
from wordcloud import STOPWORDS,WordCloud
import matplotlib.pyplot as plt
import wikipedia as wp

result = wp.page("Ramtilak")
final_result = result.content

#Define function for plotting WordCloud
def plot_wordcloud(wc):
    plt.axis("off")
    plt.figure(figsize=(10,10))
    plt.figure(figsize=(10,10))
    plt.imshow(wc)
    plt.show()

wc = WordCloud(width=500,height=500,background_color="cyan",random_state=10,stopwords=STOPWORDS).generate(final_result)
plot_wordcloud(wc)

print(STOPWORDS)
```



{'for', 'then', 'could', "didn't", 'off', 'because', 'here', 'been', 'those', 'same', "you've", 'has', 'until', 'did', 'had', 'it', 'your', "i'm", 'by', 'else', 'them', "he'd", 'therefore', 'under', 'being', 'that', 'why', 'my', 'his', "weren't", 'yours elf', 'further', 'shall', 'otherwise', 'however', "he's", 'own', 'were', "why's", "won't", 'but', 'or', 'since', 'have', 'itsel f', "you'll", 'into', "doesn't", "he'll", 'if', 'is', 'most', 'before', 'ours', 'against', 'no', 'of', 'her', 'out', 'each', "it's", "wasn't", "we'll", 'like', 'are', 'was', 'its', 'we', "hadn't", "we've", 'do', 'an', 'and', "haven't", 'ought', 'me', "shan't", "she'll", "couldn't", 'as', 'few', "there's", "don't", 'yourselves', 'from', 'over', 'when', 'on', 'be', 'hers', 'these', 'now', 'should', "you're", 'just', 'he', 'r', 'too', 'after', "ive", "isn't", 'more', 'theirs', 'between', 'myself', 'up', 'at', "you'd", "what's", 'hence', "she'd", 'all', 'doing', "i'll", 'again', 'above', 'ever', 'www', 'http', 'where', 'com', 'wh at', 'this', "we'd", 'having', "mustn't", 'ourselves', "that's", 'such', "shouldn't", 'any', "who's", 'does', 'to', 'k', 'once', 'i', "aren't", "i'd", "they'd", 'herself', 'also', 'they', 'can', "when's", 'so', 'some', 'only', 'the', "hasn't", 'than', 'through', 'which', 'would', 'with', 'not', "can't", 'about', "she's", 'both', 'while', "how's", 'himself', 'down', "they'll", 'our', "they're", 'there', "we're", 'him', 'below', 'whom', "let's", 'get', "they've", 'other', 'she', 'very', 'yours', 'canno t', "here's", 'their', 'themselves', 'in', "wouldn't", 'you', 'nor', 'am', "where's", 'during', 'a', 'who'}

#### Practical No. 2

Aim :- Write a python program to perform Web Scrapping

Description: - Web Scrapping: - Web scraping is the process of collecting and parsing raw data from the Web.

2a. HTML Web Scrapping [Use BeautifulSoup]

## Code:-

```
import pandas as pd
from bs4 import BeautifulSoup
from urllib.request import urlopen
url = "https://en.wikipedia.org/wiki/List of Asian countries by area"
page = urlopen(url)
html_page = page.read().decode("utf-8")
soup = BeautifulSoup(html page, "html.parser")
table = soup.find("table")
SrNo = []
Country = []
Area = []
rows = table.find("tbody").find_all("tr")
for row in rows:
    cells = row.find all("td")
    if(cells):
        SrNo.append(cells[0].get text().strip("\n"))
        Country.append(cells[1].get_text().strip("\xa0").strip("\n").strip("\[2]*"))
        Area.append(cells[3].get_text().strip("\n").replace(",",""))
countries_df= pd.DataFrame()
countries df["ID"] = SrNo
countries_df["Country"] = Country
countries_df["Area"] = Area
print(countries_df.head(10))
print(countries df.tail(10))
```

```
ID
            Country
                                  Area
0
   1
            Russia 13083100 (5051400)
1
   2
             China 9596961 (3705407)
2
   3
             India 3287263 (1269219)
3
   4
        Kazakhstan 2600000 (1000000)
4
   5 Saudi Arabia
                      2149690 (830000)
5
   6
              Iran
                      1648195 (636372)
6
   7
          Mongolia
                      1564110 (603910)
7
   8
          Indonesia
                      1488509 (574717)
8
   9
          Pakistan
                       881913 (340509)
9
  10
            Turkey
                       759805 (293362)
   ID
                 Country
43
   44
                   Qatar 11586 (4473)
44 45
                 Lebanon 10452 (4036)
                          9251 (3572)
45 46
                  Cyprus
46 47
               Palestine
                           6220 (2400)
47
   48
                  Brunei
                           5765 (2226)
48
       Hong Kong (China)
                           2755 (1064)
49 49
                             786 (303)
                 Bahrain
50 50
                Singapore
                             728 (281)
51 51
                Maldives
                             300 (120)
52
           Macao (China)
                             115 (44)
```

#### 2b. JSON Web Scrapping

## Code:-

```
import pandas as pd
import urllib,json
url = "https://jsonplaceholder.typicode.com/users" _
response = urllib.request.urlopen(url)
data = json.loads(response.read())
id = []
username =[]
email = []
for item in data:
    if "id" in item.keys():
        id.append(item["id"])
        id.append("NA")
    if "username" in item.keys():
        username.append(item["username"])
    else:
        username.append("NA")
    if "email" in item.keys():
        email.append(item["email"])
    else:
        email.append("NA")
users = pd.DataFrame()
users["id"] = id
users["username"] = username
users["email"] = email
users
```

|   | id | username         | email                     |
|---|----|------------------|---------------------------|
| 0 | 1  | Bret             | Sincere@april.biz         |
| 1 | 2  | Antonette        | Shanna@melissa.tv         |
| 2 | 3  | Samantha         | Nathan@yesenia.net        |
| 3 | 4  | Karianne         | Julianne.OConner@kory.org |
| 4 | 5  | Kamren           | Lucio_Hettinger@annie.ca  |
| 5 | 6  | Leopoldo_Corkery | Karley_Dach@jasper.info   |
| 6 | 7  | Elwyn.Skiles     | Telly.Hoeger@billy.biz    |
| 7 | 8  | Maxime_Nienow    | Sherwood@rosamond.me      |
| 8 | 9  | Delphine         | Chaim_McDermott@dana.io   |
| 9 | 10 | Moriah.Stanton   | Rey.Padberg@karina.biz    |

Alm :- Perform Exploratory Data Analysis(EDA) of mtcars.csv in R

# Code & Output :-

```
cars_df = read.csv("mtcars.csv")
View(cars_df)
```

| •  | model <sup>‡</sup>  | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec <sup>‡</sup> | vs <sup>‡</sup> | am <sup>‡</sup> | gear <sup>‡</sup> | carb <sup>‡</sup> |
|----|---------------------|------------------|------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-----------------|-------------------|-------------------|
| 1  | Mazda RX4           | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.620           | 16.46             | 0               | 1               | 4                 | 4                 |
| 2  | Mazda RX4 Wag       | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.875           | 17.02             | 0               | 1               | 4                 | 4                 |
| 3  | Datsun 710          | 22.8             | 4                | 108.0             | 93              | 3.85              | 2.320           | 18.61             | 1               | 1               | 4                 | 1                 |
| 4  | Hornet 4 Drive      | 21.4             | 6                | 258.0             | 110             | 3.08              | 3.215           | 19.44             | 1               | 0               | 3                 | 1                 |
| 5  | Hornet Sportabout   | 18.7             | 8                | 360.0             | 175             | 3.15              | 3.440           | 17.02             | 0               | 0               | 3                 | 2                 |
| 6  | Valiant             | 18.1             | 6                | 225.0             | 105             | 2.76              | 3.460           | 20.22             | 1               | 0               | 3                 | 1                 |
| 7  | Duster 360          | 14.3             | 8                | 360.0             | 245             | 3.21              | 3.570           | 15.84             | 0               | 0               | 3                 | 4                 |
| 8  | Merc 240D           | 24.4             | 4                | 146.7             | 62              | 3.69              | 3.190           | 20.00             | 1               | 0               | 4                 | 2                 |
| 9  | Merc 230            | 22.8             | 4                | 140.8             | 95              | 3.92              | 3.150           | 22.90             | 1               | 0               | 4                 | 2                 |
| 10 | Merc 280            | 19.2             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.30             | 1               | 0               | 4                 | 4                 |
| 11 | Merc 280C           | 17.8             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.90             | 1               | 0               | 4                 | 4                 |
| 12 | Merc 450SE          | 16.4             | 8                | 275.8             | 180             | 3.07              | 4.070           | 17.40             | 0               | 0               | 3                 | 3                 |
| 13 | Merc 450SL          | 17.3             | 8                | 275.8             | 180             | 3.07              | 3.730           | 17.60             | 0               | 0               | 3                 | 3                 |
| 14 | Merc 450SLC         | 15.2             | 8                | 275.8             | 180             | 3.07              | 3.780           | 18.00             | 0               | 0               | 3                 | 3                 |
| 15 | Cadillac Fleetwood  | 10.4             | 8                | 472.0             | 205             | 2.93              | 5.250           | 17.98             | 0               | 0               | 3                 | 4                 |
| 16 | Lincoln Continental | 10.4             | 8                | 460.0             | 215             | 3.00              | 5.424           | 17.82             | 0               | 0               | 3                 | 4                 |
| 17 | Chrysler Imperial   | 14.7             | 8                | 440.0             | 230             | 3.23              | 5.345           | 17.42             | 0               | 0               | 3                 | 4                 |
| 18 | Fiat 128            | 32.4             | 4                | 78.7              | 66              | 4.08              | 2.200           | 19.47             | 1               | 1               | 4                 | 1                 |
| 19 | Honda Civic         | 30.4             | 4                | 75.7              | 52              | 4.93              | 1.615           | 18.52             | 1               | 1               | 4                 | 2                 |
| 20 | Toyota Corolla      | 33.9             | 4                | 71.1              | 65              | 4.22              | 1.835           | 19.90             | 1               | 1               | 4                 | 1                 |

```
'data.frame':
              32 obs. of 12 variables:
 $ model: chr "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
 $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : int 6 6 4 6 8 6 8 4 4 6 ...
 $ disp : num 160 160 108 258 360 ...
 $ hp : int 110 110 93 110 175 105 245 62 95 123 ...
 $ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
 $ qsec : num 16.5 17 18.6 19.4 17 ...
 $ vs
      : int 0011010111...
 $ am
        : int 1110000000...
 $ gear : int 4 4 4 3 3 3 3 4 4 4 ...
 $ carb : int 4 4 1 1 2 1 4 2 2 4 ...
> dim(cars_df)
[1] 32 12
> names(cars_df)
[1] "model" "mpg"
                    "cyl" "disp" "hp"
                                         "drat" "wt" "qsec" "vs"
                                                                          "am"
[11] "gear" "carb"
> row.names(cars_df)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16"
[17] "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32"
```

> str(cars\_df)

row.names(cars\_df) = cars\_df\$model
View(cars\_df)

| *                   | model <sup>‡</sup>  | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec <sup>‡</sup> | vs <sup>‡</sup> | am <sup>‡</sup> | gear <sup>‡</sup> |
|---------------------|---------------------|------------------|------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-----------------|-------------------|
| Mazda RX4           | Mazda RX4           | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.620           | 16.46             | 0               | 1               | 4                 |
| Mazda RX4 Wag       | Mazda RX4 Wag       | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.875           | 17.02             | 0               | 1               | 4                 |
| Datsun 710          | Datsun 710          | 22.8             | 4                | 108.0             | 93              | 3.85              | 2.320           | 18.61             | 1               | 1               | 4                 |
| Hornet 4 Drive      | Hornet 4 Drive      | 21.4             | 6                | 258.0             | 110             | 3.08              | 3.215           | 19.44             | 1               | 0               | 3                 |
| Hornet Sportabout   | Hornet Sportabout   | 18.7             | 8                | 360.0             | 175             | 3.15              | 3.440           | 17.02             | 0               | 0               | 3                 |
| Valiant             | Valiant             | 18.1             | 6                | 225.0             | 105             | 2.76              | 3.460           | 20.22             | 1               | 0               | 3                 |
| Duster 360          | Duster 360          | 14.3             | 8                | 360.0             | 245             | 3.21              | 3.570           | 15.84             | 0               | 0               | 3                 |
| Merc 240D           | Merc 240D           | 24.4             | 4                | 146.7             | 62              | 3.69              | 3.190           | 20.00             | 1               | 0               | 4                 |
| Merc 230            | Merc 230            | 22.8             | 4                | 140.8             | 95              | 3.92              | 3.150           | 22.90             | 1               | 0               | 4                 |
| Merc 280            | Merc 280            | 19.2             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.30             | 1               | 0               | 4                 |
| Merc 280C           | Merc 280C           | 17.8             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.90             | 1               | 0               | 4                 |
| Merc 450SE          | Merc 450SE          | 16.4             | 8                | 275.8             | 180             | 3.07              | 4.070           | 17.40             | 0               | 0               | 3                 |
| Merc 450SL          | Merc 450SL          | 17.3             | 8                | 275.8             | 180             | 3.07              | 3.730           | 17.60             | 0               | 0               | 3                 |
| Merc 450SLC         | Merc 450SLC         | 15.2             | 8                | 275.8             | 180             | 3.07              | 3.780           | 18.00             | 0               | 0               | 3                 |
| Cadillac Fleetwood  | Cadillac Fleetwood  | 10.4             | 8                | 472.0             | 205             | 2.93              | 5.250           | 17.98             | 0               | 0               | 3                 |
| Lincoln Continental | Lincoln Continental | 10.4             | 8                | 460.0             | 215             | 3.00              | 5.424           | 17.82             | 0               | 0               | 3                 |
| Chrysler Imperial   | Chrysler Imperial   | 14.7             | 8                | 440.0             | 230             | 3.23              | 5.345           | 17.42             | 0               | 0               | 3                 |
| Fiat 128            | Fiat 128            | 32.4             | 4                | 78.7              | 66              | 4.08              | 2.200           | 19.47             | 1               | 1               | 4                 |
| Honda Civic         | Honda Civic         | 30.4             | 4                | 75.7              | 52              | 4.93              | 1.615           | 18.52             | 1               | 1               | 4                 |

 $new\_cars\_df = cars\_df[,-1] \ \#row,column, \ -1 \ ignores \ first \ column \ View(new\_cars\_df)$ 

| •                   | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec <sup>‡</sup> | vs <sup>‡</sup> | am <sup>‡</sup> | gear <sup>‡</sup> | carb <sup>‡</sup> |
|---------------------|------------------|------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-----------------|-------------------|-------------------|
| Mazda RX4           | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.620           | 16.46             | 0               | 1               | 4                 | 4                 |
| Mazda RX4 Wag       | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.875           | 17.02             | 0               | 1               | 4                 | 4                 |
| Datsun 710          | 22.8             | 4                | 108.0             | 93              | 3.85              | 2.320           | 18.61             | 1               | 1               | 4                 | 1                 |
| Hornet 4 Drive      | 21.4             | 6                | 258.0             | 110             | 3.08              | 3.215           | 19.44             | 1               | 0               | 3                 | 1                 |
| Hornet Sportabout   | 18.7             | 8                | 360.0             | 175             | 3.15              | 3.440           | 17.02             | 0               | 0               | 3                 | 2                 |
| Valiant             | 18.1             | 6                | 225.0             | 105             | 2.76              | 3.460           | 20.22             | 1               | 0               | 3                 | 1                 |
| Duster 360          | 14.3             | 8                | 360.0             | 245             | 3.21              | 3.570           | 15.84             | 0               | 0               | 3                 | 4                 |
| Merc 240D           | 24.4             | 4                | 146.7             | 62              | 3.69              | 3.190           | 20.00             | 1               | 0               | 4                 | 2                 |
| Merc 230            | 22.8             | 4                | 140.8             | 95              | 3.92              | 3.150           | 22.90             | 1               | 0               | 4                 | 2                 |
| Merc 280            | 19.2             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.30             | 1               | 0               | 4                 | 4                 |
| Merc 280C           | 17.8             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.90             | 1               | 0               | 4                 | 4                 |
| Merc 450SE          | 16.4             | 8                | 275.8             | 180             | 3.07              | 4.070           | 17.40             | 0               | 0               | 3                 | 3                 |
| Merc 450SL          | 17.3             | 8                | 275.8             | 180             | 3.07              | 3.730           | 17.60             | 0               | 0               | 3                 | 3                 |
| Merc 450SLC         | 15.2             | 8                | 275.8             | 180             | 3.07              | 3.780           | 18.00             | 0               | 0               | 3                 | 3                 |
| Cadillac Fleetwood  | 10.4             | 8                | 472.0             | 205             | 2.93              | 5.250           | 17.98             | 0               | 0               | 3                 | 4                 |
| Lincoln Continental | 10.4             | 8                | 460.0             | 215             | 3.00              | 5.424           | 17.82             | 0               | 0               | 3                 | 4                 |
| Chrysler Imperial   | 14.7             | 8                | 440.0             | 230             | 3.23              | 5.345           | 17.42             | 0               | 0               | 3                 | 4                 |
| Fiat 128            | 32.4             | 4                | 78.7              | 66              | 4.08              | 2.200           | 19.47             | 1               | 1               | 4                 | 1                 |
| Honda Civic         | 30.4             | 4                | 75.7              | 52              | 4.93              | 1.615           | 18.52             | 1               | 1               | 4                 | 2                 |
| Toyota Corolla      | 33.9             | 4                | 71.1              | 65              | 4.22              | 1.835           | 19.90             | 1               | 1               | 4                 | 1                 |

```
library(dplyr)
df1 = select(new_cars_df,c(1:4))
View(df1)
```

| •                   | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> |
|---------------------|------------------|------------------|-------------------|-----------------|
| Mazda RX4           | 21.0             | 6                | 160.0             | 110             |
| Mazda RX4 Wag       | 21.0             | 6                | 160.0             | 110             |
| Datsun 710          | 22.8             | 4                | 108.0             | 93              |
| Hornet 4 Drive      | 21.4             | 6                | 258.0             | 110             |
| Hornet Sportabout   | 18.7             | 8                | 360.0             | 175             |
| Valiant             | 18.1             | 6                | 225.0             | 105             |
| Duster 360          | 14.3             | 8                | 360.0             | 245             |
| Merc 240D           | 24.4             | 4                | 146.7             | 62              |
| Merc 230            | 22.8             | 4                | 140.8             | 95              |
| Merc 280            | 19.2             | 6                | 167.6             | 123             |
| Merc 280C           | 17.8             | 6                | 167.6             | 123             |
| Merc 450SE          | 16.4             | 8                | 275.8             | 180             |
| Merc 450SL          | 17.3             | 8                | 275.8             | 180             |
| Merc 450SLC         | 15.2             | 8                | 275.8             | 180             |
| Cadillac Fleetwood  | 10.4             | 8                | 472.0             | 205             |
| Lincoln Continental | 10.4             | 8                | 460.0             | 215             |
| Chrysler Imperial   | 14.7             | 8                | 440.0             | 230             |
| Fiat 128            | 32.4             | 4                | 78.7              | 66              |
| Honda Civic         | 30.4             | 4                | 75.7              | 52              |
| Toyota Corolla      | 33.9             | 4                | 71.1              | 65              |

df2 = new\_cars\_df%>%select(c(1:4)) #Using Pipe Operator
View(df2)

| ^                   | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> |
|---------------------|------------------|------------------|-------------------|-----------------|
| Mazda RX4           | 21.0             | 6                | 160.0             | 110             |
| Mazda RX4 Wag       | 21.0             | 6                | 160.0             | 110             |
| Datsun 710          | 22.8             | 4                | 108.0             | 93              |
| Hornet 4 Drive      | 21.4             | 6                | 258.0             | 110             |
| Hornet Sportabout   | 18.7             | 8                | 360.0             | 175             |
| Valiant             | 18.1             | 6                | 225.0             | 105             |
| Duster 360          | 14.3             | 8                | 360.0             | 245             |
| Merc 240D           | 24.4             | 4                | 146.7             | 62              |
| Merc 230            | 22.8             | 4                | 140.8             | 95              |
| Merc 280            | 19.2             | 6                | 167.6             | 123             |
| Merc 280C           | 17.8             | 6                | 167.6             | 123             |
| Merc 450SE          | 16.4             | 8                | 275.8             | 180             |
| Merc 450SL          | 17.3             | 8                | 275.8             | 180             |
| Merc 450SLC         | 15.2             | 8                | 275.8             | 180             |
| Cadillac Fleetwood  | 10.4             | 8                | 472.0             | 205             |
| Lincoln Continental | 10.4             | 8                | 460.0             | 215             |
| Chrysler Imperial   | 14.7             | 8                | 440.0             | 230             |
| Fiat 128            | 32.4             | 4                | 78.7              | 66              |
| Honda Civic         | 30.4             | 4                | 75.7              | 52              |
| Toyota Corolla      | 33.9             | 4                | 71.1              | 65              |

 $\label{eq:df3} $$ df3 = cars\_df\%>\% select(c(mpg,disp,wt,gear)) $$ \#To $ randomly $ select $ columns $ View(df3) $$$ 

| ^                   | mpg <sup>‡</sup> | disp <sup>‡</sup> | wt <sup>‡</sup> | gear <sup>‡</sup> |
|---------------------|------------------|-------------------|-----------------|-------------------|
| Mazda RX4           | 21.0             | 160.0             | 2.620           | 4                 |
| Mazda RX4 Wag       | 21.0             | 160.0             | 2.875           | 4                 |
| Datsun 710          | 22.8             | 108.0             | 2.320           | 4                 |
| Hornet 4 Drive      | 21.4             | 258.0             | 3.215           | 3                 |
| Hornet Sportabout   | 18.7             | 360.0             | 3.440           | 3                 |
| Valiant             | 18.1             | 225.0             | 3.460           | 3                 |
| Duster 360          | 14.3             | 360.0             | 3.570           | 3                 |
| Merc 240D           | 24.4             | 146.7             | 3.190           | 4                 |
| Merc 230            | 22.8             | 140.8             | 3.150           | 4                 |
| Merc 280            | 19.2             | 167.6             | 3.440           | 4                 |
| Merc 280C           | 17.8             | 167.6             | 3.440           | 4                 |
| Merc 450SE          | 16.4             | 275.8             | 4.070           | 3                 |
| Merc 450SL          | 17.3             | 275.8             | 3.730           | 3                 |
| Merc 450SLC         | 15.2             | 275.8             | 3.780           | 3                 |
| Cadillac Fleetwood  | 10.4             | 472.0             | 5.250           | 3                 |
| Lincoln Continental | 10.4             | 460.0             | 5.424           | 3                 |
| Chrysler Imperial   | 14.7             | 440.0             | 5.345           | 3                 |
| Fiat 128            | 32.4             | 78.7              | 2.200           | 4                 |
| Honda Civic         | 30.4             | 75.7              | 1.615           | 4                 |
| Toyota Corolla      | 33.9             | 71.1              | 1.835           | 4                 |

df4 = filter(df3,gear==4,)
View(df4)

| ^              | mpg <sup>‡</sup> | disp <sup>‡</sup> | wt <sup>‡</sup> | gear | \$ |
|----------------|------------------|-------------------|-----------------|------|----|
| Mazda RX4      | 21.0             | 160.0             | 2.620           |      | 4  |
| Mazda RX4 Wag  | 21.0             | 160.0             | 2.875           |      | 4  |
| Datsun 710     | 22.8             | 108.0             | 2.320           |      | 4  |
| Merc 240D      | 24.4             | 146.7             | 3.190           |      | 4  |
| Merc 230       | 22.8             | 140.8             | 3.150           |      | 4  |
| Merc 280       | 19.2             | 167.6             | 3.440           |      | 4  |
| Merc 280C      | 17.8             | 167.6             | 3.440           |      | 4  |
| Fiat 128       | 32.4             | 78.7              | 2.200           |      | 4  |
| Honda Civic    | 30.4             | 75.7              | 1.615           |      | 4  |
| Toyota Corolla | 33.9             | 71.1              | 1.835           |      | 4  |
| Fiat X1-9      | 27.3             | 79.0              | 1.935           |      | 4  |
| Volvo 142E     | 21.4             | 121.0             | 2.780           |      | 4  |

df5 = cars\_df%>%filter(gear==4)%>%select(c(mpg,wt,disp,gear))
View(df5)

| ^              | mpg <sup>‡</sup> | wt <sup>‡</sup> | disp <sup>‡</sup> | gear <sup>‡</sup> |
|----------------|------------------|-----------------|-------------------|-------------------|
| Mazda RX4      | 21.0             | 2.620           | 160.0             | 4                 |
| Mazda RX4 Wag  | 21.0             | 2.875           | 160.0             | 4                 |
| Datsun 710     | 22.8             | 2.320           | 108.0             | 4                 |
| Merc 240D      | 24.4             | 3.190           | 146.7             | 4                 |
| Merc 230       | 22.8             | 3.150           | 140.8             | 4                 |
| Merc 280       | 19.2             | 3.440           | 167.6             | 4                 |
| Merc 280C      | 17.8             | 3.440           | 167.6             | 4                 |
| Fiat 128       | 32.4             | 2.200           | 78.7              | 4                 |
| Honda Civic    | 30.4             | 1.615           | 75.7              | 4                 |
| Toyota Corolla | 33.9             | 1.835           | 71.1              | 4                 |
| Fiat X1-9      | 27.3             | 1.935           | 79.0              | 4                 |
| Volvo 142E     | 21.4             | 2.780           | 121.0             | 4                 |

 $\label{eq:df6} \begin{array}{lll} df6 = cars\_df\%>\%filter(cyl == 4 \mid mpg>20)\%>\%select(c(mpg,cyl)) \\ View(df6) \end{array}$ 

| _              | mpg <sup>‡</sup> | cyl <sup>‡</sup> |
|----------------|------------------|------------------|
| Mazda RX4      | 21.0             | 6                |
| Mazda RX4 Wag  | 21.0             | 6                |
| Datsun 710     | 22.8             | 4                |
| Hornet 4 Drive | 21.4             | 6                |
| Merc 240D      | 24.4             | 4                |
| Merc 230       | 22.8             | 4                |
| Fiat 128       | 32.4             | 4                |
| Honda Civic    | 30.4             | 4                |
| Toyota Corolla | 33.9             | 4                |
| Toyota Corona  | 21.5             | 4                |
| Fiat X1-9      | 27.3             | 4                |
| Porsche 914-2  | 26.0             | 4                |
| Lotus Europa   | 30.4             | 4                |
| Volvo 142E     | 21.4             | 4                |

df7 = new\_cars\_df%>%filter(mpg<20&carb==3)%>%select(c(mpg,carb))
View(df7)

| _           | mpg <sup>‡</sup> | carb | l. |
|-------------|------------------|------|----|
| Merc 450SE  | 16.4             | 3    | 3  |
| Merc 450SL  | 17.3             | 3    | 3  |
| Merc 450SLC | 15.2             | 3    | 3  |

df8 = new\_cars\_df%>%arrange(desc(mpg))
View(df8)

| ^                 | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec <sup>‡</sup> | vs <sup>‡</sup> | am <sup>‡</sup> | gear | carb <sup>‡</sup> |
|-------------------|------------------|------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-----------------|------|-------------------|
| Toyota Corolla    | 33.9             | 4                | 71.1              | 65              | 4.22              | 1.835           | 19.90             | 1               | 1               | 4    | 1                 |
| Fiat 128          | 32.4             | 4                | 78.7              | 66              | 4.08              | 2.200           | 19.47             | 1               | 1               | 4    | 1                 |
| Honda Civic       | 30.4             | 4                | 75.7              | 52              | 4.93              | 1.615           | 18.52             | 1               | 1               | 4    | 2                 |
| Lotus Europa      | 30.4             | 4                | 95.1              | 113             | 3.77              | 1.513           | 16.90             | 1               | 1               | 5    | 2                 |
| Fiat X1-9         | 27.3             | 4                | 79.0              | 66              | 4.08              | 1.935           | 18.90             | 1               | 1               | 4    | 1                 |
| Porsche 914-2     | 26.0             | 4                | 120.3             | 91              | 4.43              | 2.140           | 16.70             | 0               | 1               | 5    | 2                 |
| Merc 240D         | 24.4             | 4                | 146.7             | 62              | 3.69              | 3.190           | 20.00             | 1               | 0               | 4    | 2                 |
| Datsun 710        | 22.8             | 4                | 108.0             | 93              | 3.85              | 2.320           | 18.61             | 1               | 1               | 4    | 1                 |
| Merc 230          | 22.8             | 4                | 140.8             | 95              | 3.92              | 3.150           | 22.90             | 1               | 0               | 4    | 2                 |
| Toyota Corona     | 21.5             | 4                | 120.1             | 97              | 3.70              | 2.465           | 20.01             | 1               | 0               | 3    | 1                 |
| Hornet 4 Drive    | 21.4             | 6                | 258.0             | 110             | 3.08              | 3.215           | 19.44             | 1               | 0               | 3    | 1                 |
| Volvo 142E        | 21.4             | 4                | 121.0             | 109             | 4.11              | 2.780           | 18.60             | 1               | 1               | 4    | 2                 |
| Mazda RX4         | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.620           | 16.46             | 0               | 1               | 4    | 4                 |
| Mazda RX4 Wag     | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.875           | 17.02             | 0               | 1               | 4    | 4                 |
| Ferrari Dino      | 19.7             | 6                | 145.0             | 175             | 3.62              | 2.770           | 15.50             | 0               | 1               | 5    | 6                 |
| Merc 280          | 19.2             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.30             | 1               | 0               | 4    | 4                 |
| Pontiac Firebird  | 19.2             | 8                | 400.0             | 175             | 3.08              | 3.845           | 17.05             | 0               | 0               | 3    | 2                 |
| Hornet Sportabout | 18.7             | 8                | 360.0             | 175             | 3.15              | 3.440           | 17.02             | 0               | 0               | 3    | 2                 |
| Valiant           | 18.1             | 6                | 225.0             | 105             | 2.76              | 3.460           | 20.22             | 1               | 0               | 3    | 1                 |
| Merc 280C         | 17.8             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.90             | 1               | 0               | 4    | 4                 |

df9 = new\_cars\_df%>%arrange(cyl)%>%arrange(desc(mpg))
View(df9)

| _                 | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec ‡ | vs <sup>‡</sup> | am <sup>‡</sup> | gear <sup>‡</sup> | carb <sup>‡</sup> |
|-------------------|------------------|------------------|-------------------|-----------------|-------------------|-----------------|--------|-----------------|-----------------|-------------------|-------------------|
| Toyota Corolla    | 33.9             | 4                | 71.1              | 65              | 4.22              | 1.835           | 19.90  | 1               | 1               | 4                 | 1                 |
| Fiat 128          | 32.4             | 4                | 78.7              | 66              | 4.08              | 2.200           | 19.47  | 1               | 1               | 4                 | 1                 |
| Honda Civic       | 30.4             | 4                | 75.7              | 52              | 4.93              | 1.615           | 18.52  | 1               | 1               | 4                 | 2                 |
| Lotus Europa      | 30.4             | 4                | 95.1              | 113             | 3.77              | 1.513           | 16.90  | 1               | 1               | 5                 | 2                 |
| Fiat X1-9         | 27.3             | 4                | 79.0              | 66              | 4.08              | 1.935           | 18.90  | 1               | 1               | 4                 | 1                 |
| Porsche 914-2     | 26.0             | 4                | 120.3             | 91              | 4.43              | 2.140           | 16.70  | 0               | 1               | 5                 | 2                 |
| Merc 240D         | 24.4             | 4                | 146.7             | 62              | 3.69              | 3.190           | 20.00  | 1               | 0               | 4                 | 2                 |
| Datsun 710        | 22.8             | 4                | 108.0             | 93              | 3.85              | 2.320           | 18.61  | 1               | 1               | 4                 | 1                 |
| Merc 230          | 22.8             | 4                | 140.8             | 95              | 3.92              | 3.150           | 22.90  | 1               | 0               | 4                 | 2                 |
| Toyota Corona     | 21.5             | 4                | 120.1             | 97              | 3.70              | 2.465           | 20.01  | 1               | 0               | 3                 | 1                 |
| Volvo 142E        | 21.4             | 4                | 121.0             | 109             | 4.11              | 2.780           | 18.60  | 1               | 1               | 4                 | 2                 |
| Hornet 4 Drive    | 21.4             | 6                | 258.0             | 110             | 3.08              | 3.215           | 19.44  | 1               | 0               | 3                 | 1                 |
| Mazda RX4         | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.620           | 16.46  | 0               | 1               | 4                 | 4                 |
| Mazda RX4 Wag     | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.875           | 17.02  | 0               | 1               | 4                 | 4                 |
| Ferrari Dino      | 19.7             | 6                | 145.0             | 175             | 3.62              | 2.770           | 15.50  | 0               | 1               | 5                 | 6                 |
| Merc 280          | 19.2             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.30  | 1               | 0               | 4                 | 4                 |
| Pontiac Firebird  | 19.2             | 8                | 400.0             | 175             | 3.08              | 3.845           | 17.05  | 0               | 0               | 3                 | 2                 |
| Hornet Sportabout | 18.7             | 8                | 360.0             | 175             | 3.15              | 3.440           | 17.02  | 0               | 0               | 3                 | 2                 |
| Valiant           | 18.1             | 6                | 225.0             | 105             | 2.76              | 3.460           | 20.22  | 1               | 0               | 3                 | 1                 |
| Merc 280C         | 17.8             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.90  | 1               | 0               | 4                 | 4                 |

df10 = cars\_df%>%rename(cylinders=cyl,milespergallon=mpg)
View(df10)

| ^                   | model <sup>‡</sup>  | milespergallon <sup>‡</sup> | cylinders | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec ÷ | vs <sup>‡</sup> | am <sup>‡</sup> | gear <sup>‡</sup> | carb <sup>‡</sup> |
|---------------------|---------------------|-----------------------------|-----------|-------------------|-----------------|-------------------|-----------------|--------|-----------------|-----------------|-------------------|-------------------|
| Mazda RX4           | Mazda RX4           | 21.0                        | 6         | 160.0             | 110             | 3.90              | 2.620           | 16.46  | 0               | 1               | 4                 | 4                 |
| Mazda RX4 Wag       | Mazda RX4 Wag       | 21.0                        | 6         | 160.0             | 110             | 3.90              | 2.875           | 17.02  | 0               | 1               | 4                 | 4                 |
| Datsun 710          | Datsun 710          | 22.8                        | 4         | 108.0             | 93              | 3.85              | 2.320           | 18.61  | 1               | 1               | 4                 | 1                 |
| Hornet 4 Drive      | Hornet 4 Drive      | 21.4                        | 6         | 258.0             | 110             | 3.08              | 3.215           | 19.44  | 1               | 0               | 3                 | 1                 |
| Hornet Sportabout   | Hornet Sportabout   | 18.7                        | 8         | 360.0             | 175             | 3.15              | 3.440           | 17.02  | 0               | 0               | 3                 | 2                 |
| Valiant             | Valiant             | 18.1                        | 6         | 225.0             | 105             | 2.76              | 3.460           | 20.22  | 1               | 0               | 3                 | 1                 |
| Duster 360          | Duster 360          | 14.3                        | 8         | 360.0             | 245             | 3.21              | 3.570           | 15.84  | 0               | 0               | 3                 | 4                 |
| Merc 240D           | Merc 240D           | 24.4                        | 4         | 146.7             | 62              | 3.69              | 3.190           | 20.00  | 1               | 0               | 4                 | 2                 |
| Merc 230            | Merc 230            | 22.8                        | 4         | 140.8             | 95              | 3.92              | 3.150           | 22.90  | 1               | 0               | 4                 | 2                 |
| Merc 280            | Merc 280            | 19.2                        | 6         | 167.6             | 123             | 3.92              | 3.440           | 18.30  | 1               | 0               | 4                 | 4                 |
| Merc 280C           | Merc 280C           | 17.8                        | 6         | 167.6             | 123             | 3.92              | 3.440           | 18.90  | 1               | 0               | 4                 | 4                 |
| Merc 450SE          | Merc 450SE          | 16.4                        | 8         | 275.8             | 180             | 3.07              | 4.070           | 17.40  | 0               | 0               | 3                 | 3                 |
| Merc 450SL          | Merc 450SL          | 17.3                        | 8         | 275.8             | 180             | 3.07              | 3.730           | 17.60  | 0               | 0               | 3                 | 3                 |
| Merc 450SLC         | Merc 450SLC         | 15.2                        | 8         | 275.8             | 180             | 3.07              | 3.780           | 18.00  | 0               | 0               | 3                 | 3                 |
| Cadillac Fleetwood  | Cadillac Fleetwood  | 10.4                        | 8         | 472.0             | 205             | 2.93              | 5.250           | 17.98  | 0               | 0               | 3                 | 4                 |
| Lincoln Continental | Lincoln Continental | 10.4                        | 8         | 460.0             | 215             | 3.00              | 5.424           | 17.82  | 0               | 0               | 3                 | 4                 |
| Chrysler Imperial   | Chrysler Imperial   | 14.7                        | 8         | 440.0             | 230             | 3.23              | 5.345           | 17.42  | 0               | 0               | 3                 | 4                 |
| Fiat 128            | Fiat 128            | 32.4                        | 4         | 78.7              | 66              | 4.08              | 2.200           | 19.47  | 1               | 1               | 4                 | 1                 |
| Honda Civic         | Honda Civic         | 30.4                        | 4         | 75.7              | 52              | 4.93              | 1.615           | 18.52  | 1               | 1               | 4                 | 2                 |
| Toyota Corolla      | Toyota Corolla      | 33.9                        | 4         | 71.1              | 65              | 4.22              | 1.835           | 19.90  | 1               | 1               | 4                 | 1                 |

df11 = df10%>%mutate(power=hp\*wt)
View(df11)

| _                   | model <sup>‡</sup>  | milespergallon | cylinders | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec <sup>‡</sup> | vs <sup>‡</sup> | am ‡ | gear <sup>‡</sup> | carb <sup>‡</sup> | power <sup>‡</sup> |
|---------------------|---------------------|----------------|-----------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|------|-------------------|-------------------|--------------------|
| Mazda RX4           | Mazda RX4           | 21.0           | 6         | 160.0             | 110             | 3.90              | 2.620           | 16.46             | 0               | 1    | 4                 | 4                 | 288.200            |
| Mazda RX4 Wag       | Mazda RX4 Wag       | 21.0           | 6         | 160.0             | 110             | 3.90              | 2.875           | 17.02             | 0               | 1    | 4                 | 4                 | 316.250            |
| Datsun 710          | Datsun 710          | 22.8           | 4         | 108.0             | 93              | 3.85              | 2.320           | 18.61             | 1               | 1    | 4                 | 1                 | 215.760            |
| Hornet 4 Drive      | Hornet 4 Drive      | 21.4           | 6         | 258.0             | 110             | 3.08              | 3.215           | 19.44             | 1               | 0    | 3                 | 1                 | 353.650            |
| Hornet Sportabout   | Hornet Sportabout   | 18.7           | 8         | 360.0             | 175             | 3.15              | 3.440           | 17.02             | 0               | 0    | 3                 | 2                 | 602.000            |
| Valiant             | Valiant             | 18.1           | 6         | 225.0             | 105             | 2.76              | 3.460           | 20.22             | 1               | 0    | 3                 | 1                 | 363.300            |
| Duster 360          | Duster 360          | 14.3           | 8         | 360.0             | 245             | 3.21              | 3.570           | 15.84             | 0               | 0    | 3                 | 4                 | 874.650            |
| Merc 240D           | Merc 240D           | 24.4           | 4         | 146.7             | 62              | 3.69              | 3.190           | 20.00             | 1               | 0    | 4                 | 2                 | 197.780            |
| Merc 230            | Merc 230            | 22.8           | 4         | 140.8             | 95              | 3.92              | 3.150           | 22.90             | 1               | 0    | 4                 | 2                 | 299.250            |
| Merc 280            | Merc 280            | 19.2           | 6         | 167.6             | 123             | 3.92              | 3.440           | 18.30             | 1               | 0    | 4                 | 4                 | 423.120            |
| Merc 280C           | Merc 280C           | 17.8           | 6         | 167.6             | 123             | 3.92              | 3.440           | 18.90             | 1               | 0    | 4                 | 4                 | 423.120            |
| Merc 450SE          | Merc 450SE          | 16.4           | 8         | 275.8             | 180             | 3.07              | 4.070           | 17.40             | 0               | 0    | 3                 | 3                 | 732.600            |
| Merc 450SL          | Merc 450SL          | 17.3           | 8         | 275.8             | 180             | 3.07              | 3.730           | 17.60             | 0               | 0    | 3                 | 3                 | 671.400            |
| Merc 450SLC         | Merc 450SLC         | 15.2           | 8         | 275.8             | 180             | 3.07              | 3.780           | 18.00             | 0               | 0    | 3                 | 3                 | 680.400            |
| Cadillac Fleetwood  | Cadillac Fleetwood  | 10.4           | 8         | 472.0             | 205             | 2.93              | 5.250           | 17.98             | 0               | 0    | 3                 | 4                 | 1076.250           |
| Lincoln Continental | Lincoln Continental | 10.4           | 8         | 460.0             | 215             | 3.00              | 5.424           | 17.82             | 0               | 0    | 3                 | 4                 | 1166.160           |
| Chrysler Imperial   | Chrysler Imperial   | 14.7           | 8         | 440.0             | 230             | 3.23              | 5.345           | 17.42             | 0               | 0    | 3                 | 4                 | 1229.350           |
| Fiat 128            | Fiat 128            | 32.4           | 4         | 78.7              | 66              | 4.08              | 2.200           | 19.47             | 1               | 1    | 4                 | 1                 | 145.200            |
| Honda Civic         | Honda Civic         | 30.4           | 4         | 75.7              | 52              | 4.93              | 1.615           | 18.52             | 1               | 1    | 4                 | 2                 | 83.980             |
| Toyota Corolla      | Toyota Corolla      | 33.9           | 4         | 71.1              | 65              | 4.22              | 1.835           | 19.90             | 1               | 1    | 4                 | 1                 | 119.275            |

### > str(df11)

#### #To convert int to factor

cars\_df\$gear = as.factor(cars\_df\$gear)
View(cars\_df)

| _                   | model <sup>‡</sup>  | mpg <sup>‡</sup> | cyl <sup>‡</sup> | disp <sup>‡</sup> | hp <sup>‡</sup> | drat <sup>‡</sup> | wt <sup>‡</sup> | qsec <sup>‡</sup> | vs <sup>‡</sup> | am <sup>‡</sup> | gear <sup>‡</sup> | carb <sup>‡</sup> |
|---------------------|---------------------|------------------|------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-----------------|-------------------|-------------------|
| Mazda RX4           | Mazda RX4           | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.620           | 16.46             | 0               | 1               | 4                 | 4                 |
| Mazda RX4 Wag       | Mazda RX4 Wag       | 21.0             | 6                | 160.0             | 110             | 3.90              | 2.875           | 17.02             | 0               | 1               | 4                 | 4                 |
| Datsun 710          | Datsun 710          | 22.8             | 4                | 108.0             | 93              | 3.85              | 2.320           | 18.61             | 1               | 1               | 4                 | 1                 |
| Hornet 4 Drive      | Hornet 4 Drive      | 21.4             | 6                | 258.0             | 110             | 3.08              | 3.215           | 19.44             | 1               | 0               | 3                 | 1                 |
| Hornet Sportabout   | Hornet Sportabout   | 18.7             | 8                | 360.0             | 175             | 3.15              | 3.440           | 17.02             | 0               | 0               | 3                 | 2                 |
| Valiant             | Valiant             | 18.1             | 6                | 225.0             | 105             | 2.76              | 3.460           | 20.22             | 1               | 0               | 3                 | 1                 |
| Duster 360          | Duster 360          | 14.3             | 8                | 360.0             | 245             | 3.21              | 3.570           | 15.84             | 0               | 0               | 3                 | 4                 |
| Merc 240D           | Merc 240D           | 24.4             | 4                | 146.7             | 62              | 3.69              | 3.190           | 20.00             | 1               | 0               | 4                 | 2                 |
| Merc 230            | Merc 230            | 22.8             | 4                | 140.8             | 95              | 3.92              | 3.150           | 22.90             | 1               | 0               | 4                 | 2                 |
| Merc 280            | Merc 280            | 19.2             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.30             | 1               | 0               | 4                 | 4                 |
| Merc 280C           | Merc 280C           | 17.8             | 6                | 167.6             | 123             | 3.92              | 3.440           | 18.90             | 1               | 0               | 4                 | 4                 |
| Merc 450SE          | Merc 450SE          | 16.4             | 8                | 275.8             | 180             | 3.07              | 4.070           | 17.40             | 0               | 0               | 3                 | 3                 |
| Merc 450SL          | Merc 450SL          | 17.3             | 8                | 275.8             | 180             | 3.07              | 3.730           | 17.60             | 0               | 0               | 3                 | 3                 |
| Merc 450SLC         | Merc 450SLC         | 15.2             | 8                | 275.8             | 180             | 3.07              | 3.780           | 18.00             | 0               | 0               | 3                 | 3                 |
| Cadillac Fleetwood  | Cadillac Fleetwood  | 10.4             | 8                | 472.0             | 205             | 2.93              | 5.250           | 17.98             | 0               | 0               | 3                 | 4                 |
| Lincoln Continental | Lincoln Continental | 10.4             | 8                | 460.0             | 215             | 3.00              | 5.424           | 17.82             | 0               | 0               | 3                 | 4                 |
| Chrysler Imperial   | Chrysler Imperial   | 14.7             | 8                | 440.0             | 230             | 3.23              | 5.345           | 17.42             | 0               | 0               | 3                 | 4                 |
| Fiat 128            | Fiat 128            | 32.4             | 4                | 78.7              | 66              | 4.08              | 2.200           | 19.47             | 1               | 1               | 4                 | 1                 |
| Honda Civic         | Honda Civic         | 30.4             | 4                | 75.7              | 52              | 4.93              | 1.615           | 18.52             | 1               | 1               | 4                 | 2                 |
| Toyota Corolla      | Toyota Corolla      | 33.9             | 4                | 71.1              | 65              | 4.22              | 1.835           | 19.90             | 1               | 1               | 4                 | 1                 |

```
> str(cars_df)
```

'data.frame': 32 obs. of 12 variables:

\$ model: chr "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

\$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
\$ cyl : int 6 6 4 6 8 6 8 4 4 6 ...

\$ disp : num 160 160 108 258 360 ...

\$ hp : int 110 110 93 110 175 105 245 62 95 123 ...

\$ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

\$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

\$ qsec : num 16.5 17 18.6 19.4 17 ...

\$ vs : int 0 0 1 1 0 1 0 1 1 1 ... \$ am : int 1110000000...

\$ gear : Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...

\$ carb : int 4 4 1 1 2 1 4 2 2 4 ...

df12 = cars\_df%>%group\_by(gear)%>%summarise(no=n(),mean\_mpg=mean(mpg),mean\_wt=mean(wt)) View(df12)

| _ | gear <sup>‡</sup> | no <sup>‡</sup> | mean_mpg <sup>‡</sup> | mean_wt <sup>‡</sup> |
|---|-------------------|-----------------|-----------------------|----------------------|
| 1 | 3                 | 15              | 16.10667              | 3.892600             |
| 2 | 4                 | 12              | 24.53333              | 2.616667             |
| 3 | 5                 | 5               | 21.38000              | 2.632600             |

#### > cars\_df\$cyl = as.factor(cars\_df\$cyl)

#### > str(cars\_df)

32 obs. of 12 variables: 'data.frame':

\$ model: chr "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

\$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

\$ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...

\$ disp : num 160 160 108 258 360 ...

\$ hp : int 110 110 93 110 175 105 245 62 95 123 ...

\$ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

\$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

\$ qsec : num 16.5 17 18.6 19.4 17 ...

: int 0011010111...

\$ am : int 1110000000...

\$ gear : Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...

\$ carb : int 4411214224 ...

 $df13 = cars\_df\% > \mbox{$\%$ group\_by (cyl)} > \mbox{$\%$ summarise (no=n(), mean\_mpg=mean (mpg), mean\_wt = mean(wt), pro=mean\_mpg*mean\_wt)} > \mbox{$\%$ summarise (no=n(), mean\_mpg=mean (mpg), mean\_wt = mean(wt), pro=mean\_mpg*mean\_wt)} > \mbox{$\%$ summarise (no=n(), mean\_mpg=mean (mpg), mean\_wt = mean(wt), pro=mean\_mpg*mean\_wt)} > \mbox{$\%$ summarise (no=n(), mean\_mpg=mean (mpg), mean\_wt = mean(wt), pro=mean\_mpg*mean\_wt)} > \mbox{$\%$ summarise (no=n(), mean\_mpg=mean (mpg), mean\_wt = mean(wt), pro=mean\_mpg*mean\_wt)} > \mbox{$\%$ summarise (no=n(), mean\_mpg=mean (mpg), mean\_wt = mean(wt), pro=mean\_mpg*mean\_mpg=mean(mpg), mean\_mpg=mean(mpg), mean_mpg=mean(mpg), mean_mpg=mean(mpg),$ View(df13)

| ^ | cyl <sup>‡</sup> | no <sup>‡</sup> | mean_mpg <sup>‡</sup> | mean_wt <sup>‡</sup> | pro <sup>‡</sup> |  |
|---|------------------|-----------------|-----------------------|----------------------|------------------|--|
| 1 | 4                | 11              | 26.66364              | 2.285727             | 60.94580         |  |
| 2 | 6                | 7               | 19.74286              | 3.117143             | 61.54131         |  |
| 3 | 8                | 14              | 15.10000              | 3.999214             | 60.38814         |  |

## Miles Per Gallon



boxplot(cars\_df\$mpg,col="orange") #Diagrametic representation of summary



barplot(table(cars\_df\$gear),col="green") #Used for categorical variable



> table(cars\_df\$gear)

3 4 5 15 12 5



plot(new\_cars\_df\$mpg~new\_cars\_df\$gear,col="darkgreen")





Aim :- Exploratory data analysis in Python using Titanic Dataset

Description: - It is one of the most popular datasets used for understanding machine learning basics. It contains information of all the passengers aboard the RMS Titanic, which unfortunately was shipwrecked. This dataset can be used to predict whether a given passenger survived or not.

Seaborn: It is a python library used to statistically visualize data. Seaborn, built over Matplotlib, provides a better interface and ease of usage. It can be installed using the following command, pip3 install seaborn

Features: The titanic dataset has roughly the following types of features:

Categorical/Nominal: Variables that can be divided into multiple categories but having no order or priority. Eg. Embarked (C = Cherbourg; Q = Queenstown; S = Southampton)

Binary: A subtype of categorical features, where the variable has only two categories. Eg: Sex (Male/Female)

Ordinal: They are similar to categorical features but they have an order(i.e can be sorted). Eg. Pclass (1, 2, 3)

Continuous: They can take up any value between the minimum and maximum values in a column. Eg. Age, Fare

Count: They represent the count of a variable. Eg. SibSp, Parch

Useless: They don't contribute to the final outcome of an ML model. Here, Passengerld, Name, Cabin and Ticket might fall into this category.

### Code:-

```
from re import A
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
titanic = pd.read csv("train.csv")
titanic.head()
titanic.info() # str() of R
titanic.describe() #similar to summary() of R
titanic.isnull().sum() #is.na() of R
titanic_clean = titanic.drop(['PassengerId','Name','Ticket','Cabin','Fare'],axis=1)
print(titanic_clean)
sns.catplot(x='Sex',hue='Survived',kind='count',data=titanic_clean)
titanic clean.groupby(['Sex','Survived']).count()
group1 =titanic_clean.groupby(['Sex','Survived'])
gender survived = group1.size().unstack()
sns.heatmap(gender survived,annot=True,fmt='d')
group2 =titanic clean.groupby(['Pclass','Survived'])
Pclass_survived = group2.size().unstack()
sns.heatmap(Pclass_survived,annot=True,fmt='d')
sns.violinplot(x='Sex',y='Age',hue='Survived',data=titanic_clean,split=True)
```

```
print("Oldest person on board : ",titanic_clean['Age'].max())
print("Youngest person on board : ",titanic_clean['Age'].min())
print("Average age of people on board : ",titanic_clean['Age'].mean())
def impute(cols):
    Age = cols[0]
    Pclass = cols[1]
    if pd.isnull(Age):
        if Pclass == 1:
            return 32
        elif Pclass==2:
            return 29
        else:
            return 24
    else:
        return Age
titanic_clean['Age'] = titanic_clean[['Age','Pclass']].apply(impute,axis=1)
titanic_clean.isnull().sum()
titanic_clean.corr('pearson')
sns.heatmap(titanic_clean.corr('pearson'),annot=True,vmax=1)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890

| Data | columns (tot                            | al 12 columns): |         |  |  |  |  |  |  |  |
|------|-----------------------------------------|-----------------|---------|--|--|--|--|--|--|--|
| #    | Column                                  | Non-Null Count  | Dtype   |  |  |  |  |  |  |  |
|      |                                         |                 |         |  |  |  |  |  |  |  |
| 0    | PassengerId                             | 891 non-null    | int64   |  |  |  |  |  |  |  |
| 1    | Survived                                | 891 non-null    | int64   |  |  |  |  |  |  |  |
| 2    | Pclass                                  | 891 non-null    | int64   |  |  |  |  |  |  |  |
| 3    | Name                                    | 891 non-null    | object  |  |  |  |  |  |  |  |
| 4    | Sex                                     | 891 non-null    | object  |  |  |  |  |  |  |  |
| 5    | Age                                     | 714 non-null    | float64 |  |  |  |  |  |  |  |
| 6    | SibSp                                   | 891 non-null    | int64   |  |  |  |  |  |  |  |
| 7    | Parch                                   | 891 non-null    | int64   |  |  |  |  |  |  |  |
| 8    | Ticket                                  | 891 non-null    | object  |  |  |  |  |  |  |  |
| 9    | Fare                                    | 891 non-null    | float64 |  |  |  |  |  |  |  |
| 10   | Cabin                                   | 204 non-null    | object  |  |  |  |  |  |  |  |
| 11   | Embarked                                | 889 non-null    | object  |  |  |  |  |  |  |  |
| dtyp | dtypes: float64(2), int64(5), object(5) |                 |         |  |  |  |  |  |  |  |

memory usage: 83.7+ KB

|     | , ,      |        |        |      |       |       |          |
|-----|----------|--------|--------|------|-------|-------|----------|
|     | Survived | Pclass | Sex    | Age  | SibSp | Parch | Embarked |
| 0   | 0        | 3      | male   | 22.0 | 1     | 0     | S        |
| 1   | 1        | 1      | female | 38.0 | 1     | 0     | C        |
| 2   | 1        | 3      | female | 26.0 | 0     | 0     | S        |
| 3   | 1        | 1      | female | 35.0 | 1     | 0     | S        |
| 4   | 0        | 3      | male   | 35.0 | 0     | 0     | S        |
|     |          |        |        |      |       |       |          |
| 886 | 0        | 2      | male   | 27.0 | 0     | 0     | S        |
| 887 | 1        | 1      | female | 19.0 | 0     | 0     | S        |
| 888 | 0        | 3      | female | NaN  | 1     | 2     | S        |
| 889 | 1        | 1      | male   | 26.0 | 0     | 0     | C        |
| 890 | 0        | 3      | male   | 32.0 | 0     | 0     | Q        |
|     |          |        |        |      |       |       |          |

[891 rows x 7 columns]

Out[23]: <AxesSubplot:xlabel='Sex', ylabel='Age'>



Oldest person on board: 80.0 Youngest person on board: 0.42

Average age of people on board : 29.69911764705882

### Out[24]: <AxesSubplot:>



Aim: - 5a. Write a python program to build a regression model that could predict the salary of an employee from the given experience and visualize univariate linear regression on it.

Description: The package scikit-learn is a widely used Python library for machine learning, built on top of NumPy and some other packages, It provides the means for preprocessing data, reducing dimensionality, implementing regression, classification, clustering, and more. Like NumPy, scikit-learn is also open source.

It is used as sklearn in python

### Code:-

```
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import pandas as pd
x,y,coef = datasets.make_regression(n_samples=100,n_features=1, n_informative=1,noise=10,coef=True,random_state=10)
x = np.interp(x,(x.min(),x.max()),(0,20))
y = np.interp(y,(y.min(),y.max()),(20000,160000))
plt.plot(x,y,'*',label="Training Data")
plt.xlabel("Years Of Experience")
plt.ylabel("Salary")
plt.title("Experience vs Salary")
reg_mode = LinearRegression()
reg_mode.fit(x,y)
y_pred = reg_mode.predict(x)
plt.plot(x,y_pred,color='red')
data = {'Experience':np.round(x.flatten()), 'Salary':np.round(y)}
df = pd.DataFrame(data)
df.head()
x1 = [[31.0]]
y1 = reg_mode.predict(x1)
print(np.round(y1))
```



Aim :- 5b. Write a python program to simulate linear model

Y=10+7\*x+e for random 100 samples and visualize univariate linear regression on it.

```
reg_model1 = LinearRegression()
x = np.random.rand(100,1)
yintercept = 10
slope = 7
error = np.random.rand(100,1)
y = yintercept + slope * x + error
reg_model1.fit(x,y)
y_predicted = reg_model1.predict(x)
plt.scatter(x,y,s=10)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("X vs Y")
plt.plot(x,y_predicted,color='red')
```

Out[16]: [<matplotlib.lines.Line2D at 0x14992af03d0>]



Aim :- Write a python program to implement multiple linear regression on the Dataset Boston.csv

Description :- The dataset provides Housing Values in Suburbs of Boston

The medv(Price) variable is the target /dependent variable.

Data description

The Boston data frame has 506 rows and 14 columns.

This data frame contains the following columns:

crim per capita crime rate by town.

zn proportion of residential land zoned for lots over 25,000 sq.ft.

indus proportion of non-retail business acres per town.

chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox nitrogen oxides concentration (parts per 10 million).

rm average number of rooms per dwelling.

age proportion of owner-occupied units built prior to 1940.

dis weighted mean of distances to five Boston employment centres.

rad index of accessibility to radial highways.

tax full-value property-tax rate per dollor 10,000.

ptratio pupil-teacher ratio by town.

black 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.

Istat lower status of the population (percent).

Medv(Price) median value of owner-occupied homes in \$1000s.

### Code:-

```
import pandas as nd
import matplotlib.pyplot as plt
import sklearn
boston = pd.read_csv("Boston.csv")
hoston head()
boston.info()
boston = boston.drop(columns="Unnamed: 0") #Removing particular column
boston.info()
boston_x = pd.DataFrame(boston.iloc[:,:13]) # Ceating a DataFrame with independent variables
boston_y = pd.DataFrame(boston.iloc[:,-1]) # Creating a DataFrame with dependent variable
boston_x.head()
boston_y.head()
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(boston_x,boston_y,test_size=0.3)
print(f'XTrain\ Shape\ :\ \{x\_train.shape\} \setminus nYTrain\ Shape\ :\ \{y\_train.shape\} \setminus nXTest\ Shape\ :\ \{x\_test.shape\} \setminus nYTest\ Shape\ :\ \{y\_test.shape\} \setminus nYTest\ Shape\ :\ \{x\_test.shape\} \setminus nYTest.shape\ :\ \{x\_test.shape\} \setminus nYTest\ Shape\ :\ \{x\_test.shape\} \setminus nYTest.shape\ :\ \{x\_test.shape\} \setminus nYTest.shape\
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
 regression.fit(x_train,y_train)
 predicted_y = regression.predict(x_test)
predicted_y_df = pd.DataFrame(predicted_y,columns=["Predicted"])
predicted_y_df.head()
plt.scatter(y_test,predicted_y_df,c="blue")
plt.xlabel("Actual Price(medv)")
plt.ylabel("Predicted Price(medv)")
plt.title("Actual vs Predicted")
plt.show()
plt.scatter(y_test,predicted_y,c="green")
plt.xlabel("Actual Price(medv)")
plt.ylabel("Predicted Price(medv)")
plt.title("Actual vs Predicted")
plt.show()
```

```
<class 'pandas.core.frame.DataFrame'>
                                          RangeIndex: 506 entries, 0 to 505
                                          Data columns (total 14 columns):
                                           # Column Non-Null Count Dtype
<class 'pandas.core.frame.DataFrame'>
                                          ---
                                              -----
                                                       -----
RangeIndex: 506 entries, 0 to 505
                                           0
                                              crim
                                                       506 non-null
                                                                      float64
Data columns (total 15 columns):
                                                       506 non-null
                                                                      float64
                                              zn
                                           1
#
   Column
               Non-Null Count Dtype
                                                       506 non-null
                                                                      float64
                                           2
                                              indus
---
                -----
                                           3
                                              chas
                                                       506 non-null
                                                                      int64
0
    Unnamed: 0 506 non-null
                               int64
                                           4
                                                       506 non-null
                                                                      float64
                                              nox
                506 non-null
                               float64
 1
    crim
                                                       506 non-null
                                           5
                                              rm
                                                                      float64
 2
    7n
                506 non-null
                               float64
                                           6 age
                                                       506 non-null
                                                                      float64
 3
    indus
                506 non-null
                             float64
                                          7 dis
                                                       506 non-null
                                                                      float64
 4
    chas
                506 non-null
                             int64
                                          8 rad
                                                       506 non-null
                                                                      int64
 5
                506 non-null float64
    nox
                                          9 tax
                                                       506 non-null
                                                                      int64
                506 non-null float64
 6
    rm
                                          10 ptratio 506 non-null
                                                                      float64
 7
                506 non-null float64
    age
                                          11 black
                                                       506 non-null
                                                                      float64
 Q
                506 non-null float64
    dis
                                          12 lstat
                                                       506 non-null
                                                                      float64
 9
                506 non-null
                              int64
    rad
                                          13 medv
                                                       506 non-null
                                                                      float64
 10 tax
                506 non-null
                               int64
                                          dtypes: float64(11), int64(3)
 11
    ptratio
                506 non-null
                               float64
                                          memory usage: 55.5 KB
 12
    black
                506 non-null
                               float64
                                          XTrain Shape : (354, 13)
 13
    lstat
                506 non-null
                               float64
                                          YTrain Shape: (354, 1)
14 medv
                506 non-null
                               float64
                                          XTest Shape : (152, 13)
dtypes: float64(11), int64(4)
                                          YTest Shape : (152, 1)
memory usage: 59.4 KB
```





Aim :- K Nearest Neighbor classification Algorithm

Write a python program to implement KNN algorithm to predict breast cancer using breast cancer wisconsin dataset .

Description :- Data Set Information:

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Attribute Information:

1) ID number 2) Diagnosis (M = malignant, B = benign) (3-32) Ten real-valued features are computed for each cell nucleus: a) radius (mean of distances from center to points on the perimeter) b) texture (standard deviation of gray-scale values) c) perimeter d) area e) smoothness (local variation in radius lengths) f) compactness (perimeter^2 / area - 1.0) g) concavity (severity of concave portions of the contour) h) concave points (number of concave portions of the contour) i) symmetry j) fractal dimension ("coastline approximation" - 1)

### Code:-

```
from sklearn.datasets import load breast cancer
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import confusion matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import seaborn as sns
breast_cancer_df = load_breast_cancer()
x = pd.DataFrame(breast_cancer_df.data,columns=breast_cancer_df.feature_names)
x.head()
x = x[["mean area", "mean compactness"]]
x.head()
y = pd.Categorical.from_codes(breast_cancer_df.target,breast_cancer_df.target_names)
print(y)
y = pd.get_dummies(y,drop_first=True)
print(v)
x_train, x_test, y_train ,y_test = train_test_split(x,y,random_state=1)
print(f'XTrain Shape : {x_train.shape}\nYTrain Shape : {y_train.shape}\nXTest Shape : {x_test.shape}\nYTest Shape :
     {y_test.shape}')
Knn = KNeighborsClassifier(n neighbors=5,metric="euclidean")
Knn.fit(x_train,y_train)
sns.scatterplot(x="mean area",y="mean compactness", hue="benign",data=x_test.join(y_test,how="outer"))
predicted_y = Knn.predict(x_test)
plt.scatter(x_test["mean area"],x_test["mean compactness"],c=predicted_y,cmap="coolwarm",alpha=0.7)
```

```
cf = confusion_matrix(y_test,predicted_y)
print(cf)

labels = ["True Positive", "True Negative", "False Positive", "False Negative"]
labels = np.asarray(labels).reshape(2,2)
categories = ["Zero", "One"]
ax = plt.subplot()
sns.heatmap(cf,annot=True,ax=ax)
ax.set_xlabel("Predicted Values")
ax.set_ylabel("Actual Values")
ax.set_title("Confusion Matrix")
ax.xaxis.set_ticklabels(["Malignant", "Benign"])
ax.yaxis.set_ticklabels(["Malignant", "Benign"])
```

## Output:-

return self.\_fit(X, y)

```
['malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'malignant', 'ben
ign']
Length: 569
Categories (2, object): ['malignant', 'benign']
     benign
0
          0
1
          0
2
          0
          0
4
          0
        ...
..
564
565
          0
566
          0
567
          0
568
[569 rows x 1 columns]
XTrain Shape : (426, 2)
YTrain Shape : (426, 1)
XTest Shape : (143, 2)
YTest Shape : (143, 1)
{\tt C:\Users\admin\anaconda3\lib\site-packages\sklearn\neighbors\classification.py:198:\ DataConversionWarning:\ A\ column-vector\ y\ w}}
```

as passed when a 1d array was expected. Please change the shape of y to (n\_samples,), for example using ravel().

<AxesSubplot:xlabel='mean area', ylabel='mean compactness'>



<matplotlib.collections.PathCollection at 0x149906fe850>



Out[21]: [Text(0, 0.5, 'Malignant'), Text(0, 1.5, 'Benign')]



True Postive : 79
True Negative : 42
False Positive : 13
False Negative : 9

Accuracy: 0.8461538461538461 Precision: 0.8586956521739131 Recall: 0.89772727272727 F1Score: 0.8777777777778

0.87777777777778

Out[22]: 0.8306818181818182

#### Practical No. 8

Aim :- Introduction to NOSQL using MongoDB

Perform the following:

1.Create a database Company ,Create a Collection Staff and Insert ten documents in it with fields: empid, empname, salary and designation.

```
> use Company;
switched to db Company
```

Display all documents in Staff and display only empid and designation

```
db.Staff.find({},{empid:1,designation:1})
"_id" : ObjectId("65e9f979257325a977e114cd"),
                                                                                    "E001",
                                                                     "empid"
                                                                                                "designation"
                                                                                                                        "Manager" }
         : ObjectId("65e9f979257325a977e114ca"),
: ObjectId("65e9f979257325a977e114ca"),
: ObjectId("65e9f979257325a977e114d0"),
                                                                                   "E002",
"E003",
__id"
"_id"
                                                                     "empid"
                                                                                                "designation"
                                                                                                                        "Accountant" }
                                                                     "empid"
                                                                                                "designation"
                                                                                                                        "Python Developer" }
                                                                                   "E004",
                                                                     "empid"
                                                                                                                       "Manager" }
                                                                                                "designation"
         : ObjectId("65e9f979257325a977e114d0"),
: ObjectId("65e9f979257325a977e114d1"),
: ObjectId("65e9f979257325a977e114d2"),
: ObjectId("65e9f979257325a977e114d3"),
                                                                                   "E005",
  _id"
                                                                     "empid"
                                                                                                "designation"
                                                                                                                        "Data Analyst" }
                                                                     "empid"
                                                                                                "designation"
                                                                                    "E006",
                                                                                                                        "Java Developer"
                                                                                    "E007",
                                                                                                "designation"
                                                                     "empid"
                                                                                                                        "dotNET Developer" }
                                                                                    "E008",
  _id"
           ObjectId("65e9f979257325a977e114d4"),
                                                                     "empid"
                                                                                                "designation"
                                                                                                                        "Andriod Developer" }
         : ObjectId("65e9f979257325a977e114d5"),
: ObjectId("65e9f979257325a977e114d6"),
                                                                     "empid"
                                                                                                "designation"
                                                                                    "E009"
                                                                                                                        "Accountant"
                                                                     "empid"
                                                                                   "E010".
                                                                                                "designation"
                                                                                                                        "Manager" }
```

Sort the documents in descending order of Salary

```
> db.Staff.find().sort({salary:-1});
{ "_id" : ObjectId("65e9f979257325a977e114cd"), "empid" : "E001", "empname" : "Employee1", "salary" : 122000, "designation" : "Manager" }
{ "_id" : ObjectId("65e9f979257325a977e114ce"), "empid" : "E002", "empname" : "Employee2", "salary" : 112000, "designation" : "Accountant" }
{ "_id" : ObjectId("65e9f979257325a977e114cf"), "empid" : "E003", "empname" : "Employee3", "salary" : 102000, "designation" : "Python Developer" }
{ "_id" : ObjectId("65e9f979257325a977e114d0"), "empid" : "E004", "empname" : "Employee4", "salary" : 92000, "designation" : "Manager" }
{ "_id" : ObjectId("65e9f979257325a977e114d1"), "empid" : "E005", "empname" : "Employee5", "salary" : 82000, "designation" : "Data Analyst" }
{ "_id" : ObjectId("65e9f979257325a977e114d2"), "empid" : "E006", "empname" : "Employee6", "salary" : 72000, "designation" : "Java Developer" }
{ "_id" : ObjectId("65e9f979257325a977e114d3"), "empid" : "E007", "empname" : "Employee7", "salary" : 62000, "designation" : "dotNET Developer" }
{ "_id" : ObjectId("65e9f979257325a977e114d3"), "empid" : "E008", "empname" : "Employee8", "salary" : 52000, "designation" : "Andriod Developer" }
{ "_id" : ObjectId("65e9f979257325a977e114d5"), "empid" : "E008", "empname" : "Employee9", "salary" : 52000, "designation" : "Andriod Developer" }
{ "_id" : ObjectId("65e9f979257325a977e114d5"), "empid" : "E009", "empname" : "Employee9", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65e9f979257325a977e114d5"), "empid" : "E009", "empname" : "Employee9", "salary" : 45000, "designation" : "Accountant" }
{ "_id" : ObjectId("65e9f979257325a977e114d6"), "empid" : "E009", "empname" : "Employee10", "salary" : 32000, "designation" : "Accountant" }
{ "_id" : ObjectId("65e9f979257325a977e114d6"), "empid" : "E010", "empname" : "Employee10", "salary" : 32000, "designation" : "Manager" }
```

Display employee with designation with "Manager" or salary greater than Rs. 50,000/-.

Update the salary of all employees with designation as "Accountant" to Rs.45000

```
> db.Staff.updateOne({designation:"Accountant"},{$set :{salary : 45000}});
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }
> db.Staff.find().pretty();
         "_id" : ObjectId("65e9f979257325a977e114cd"),
        "empid" : "E001",
        "empname" : "Employee1",
         "salary" : 122000,
        "designation" : "Manager"
کہ کی
        "_id" : ObjectId("65e9f979257325a977e114ce"),
        "empid" : "E002",
        "empname" : "Employee2",
"salary" : 45000,
         "designation" : "Accountant"
        "_id" : ObjectId("65e9f979257325a977e114cf"),
        "empid" : "E003",
         "empname" : "Employee3",
        "salary" : 102000,
         "designation" : "Python Developer"
         "_id" : ObjectId("65e9f979257325a977e114d0"),
        "empid" : "E004",
         "empname": "Employee4",
        "salary" : 92000,
"designation" : "Manager"
```

```
"_id" : ObjectId("65e9f979257325a977e114d1"),
        "empid" : "E005",
        "empname" : "Employee5",
        "salary" : 82000,
        "designation" : "Data Analyst"
کار الر
        "_id" : ObjectId("65e9f979257325a977e114d2"),
        "empid" : "E006",
        "empname" : "Employee6",
        "salary" : 72000,
        "designation" : "Java Developer"
        "_id" : ObjectId("65e9f979257325a977e114d3"),
        "empid" : "E007",
        "empname": "Employee7",
        "salary" : 62000,
        "designation" : "dotNET Developer"
        "_id" : ObjectId("65e9f979257325a977e114d4"),
        "empid" : "E008",
        "empname" : "Employee8",
        "salary" : 52000,
        "designation" : "Andriod Developer"
        "_id" : ObjectId("65e9f979257325a977e114d5"),
        "empid" : "E009",
        "empname": "Employee9",
        "salary" : 45000,
        "designation" : "Accountant"
        "_id" : ObjectId("65e9f979257325a977e114d6"),
        "empid" : "E010",
        "empname" : "Employee10",
        "salary" : 32000,
        "designation" : "Manager"
```

Remove the documents of employees whose salary is greater than Rs100000.

```
> db.Staff.remove({salary : {$gt : 100000}});
WriteResult({ "nRemoved" : 2 })
> db.Staff.find().pretty();
        "_id" : ObjectId("65e9f979257325a977e114ce"),
        "empid" : "E002",
        "empname" : "Employee2",
        "salary" : 45000,
        "designation" : "Accountant"
مہ ہم
        "_id" : ObjectId("65e9f979257325a977e114d0"),
        "empid" : "E004",
        "empname" : "Employee4",
        "salary" : 92000,
        "designation" : "Manager"
مہ ہم
        "_id" : ObjectId("65e9f979257325a977e114d1"),
        "empid" : "E005",
        "empname" : "Employee5",
        "salary" : 82000,
        "designation" : "Data Analyst"
        "_id" : ObjectId("65e9f979257325a977e114d2"),
        "empid" : "E006",
        "empname": "Employee6",
        "salary" : 72000,
        "designation" : "Java Developer"
```

```
"_id" : ObjectId("65e9f979257325a977e114d3"),
        "empid" : "E007",
        "empname" : "Employee7",
"salary" : 62000,
         "designation" : "dotNET Developer"
مہر بہر
        "_id" : ObjectId("65e9f979257325a977e114d4"),
        "empid" : "E008",
"empname" : "Employee8",
        "salary" : 52000,
        "designation" : "Andriod Developer"
         "_id" : ObjectId("65e9f979257325a977e114d5"),
         "empid" : "E009",
        "empname": "Employee9",
        "salary" : 45000,
        "designation" : "Accountant"
{
         "_id" : ObjectId("65e9f979257325a977e114d6"),
        "empid" : "E010",
        "empname" : "Employee10",
        "salary" : 32000,
        "designation" : "Manager"
```

2. Create a database Institution . Create a Collection Student and Insert ten documents in it with fields: RollNo, Name, Class and TotalMarks(out of 500).

```
> use Institution;
switched to db Institution
> db.Student.insertManv([
    {RollNo : "S001", Name :
                               "Ramtilak", Class: "MSC", TotalMarks: 500},
                               "Ram", Class: "MSC", TotalMarks: 499},
    {RollNo : "S002", Name :
    {RollNo : "S003", Name
                               "Tilak", Class: "MSC", TotalMarks: 498},
    {RollNo : "S004", Name :
                               "RAMTILAK", Class: "TYBSc CS", TotalMarks: 497},
    {RollNo : "S005", Name :
                               "RAM", Class: "TYBSc CS", TotalMarks: 496},
    {RollNo : "S006", Name :
                               "TILAK", Class: "TYBSc CS", TotalMarks: 495},
    {RollNo : "S007", Name :
                               "Ayaan", Class: "MSC", TotalMarks: 402},
                               "Aryan", Class: "TYBSc CS", TotalMarks: 201},
"Ananya", Class: "MSC", TotalMarks: 196},
"Arya", Class: "TYBSc CS", TotalMarks: 193}
    {RollNo : "S008", Name :
    RollNo : "S009", Name :
    {RollNo : "S010", Name :
...]);
{
         "acknowledged" : true,
         "insertedIds" : [
                 ObjectId("65eabe8d257325a977e114d7"),
                 ObjectId("65eabe8d257325a977e114d8"),
                 ObjectId("65eabe8d257325a977e114d9"),
                 ObjectId("65eabe8d257325a977e114da"),
                 ObjectId("65eabe8d257325a977e114db"),
                 ObjectId("65eabe8d257325a977e114dc"),
                 ObjectId("65eabe8d257325a977e114dd"),
                 ObjectId("65eabe8d257325a977e114de"),
                 ObjectId("65eabe8d257325a977e114df")
                 ObjectId("65eabe8d257325a977e114e0")
        ]
```

## Display all documents in Student

```
db.Student.find();
{ "_id" : ObjectId("65eabe8d257325a977e114d7"), "RollNo" : "S001", "Name" : "Ramtilak", "Class" : "MSC", "TotalMarks" : 500 }
{ "_id" : ObjectId("65eabe8d257325a977e114d8"), "RollNo" : "S002", "Name" : "Ram", "Class" : "MSC", "TotalMarks" : 499 }
{ "_id" : ObjectId("65eabe8d257325a977e114d9"), "RollNo" : "S003", "Name" : "Tilak", "Class" : "MSC", "TotalMarks" : 498 }
{ "_id" : ObjectId("65eabe8d257325a977e114da"), "RollNo" : "S004", "Name" : "RAMTILAK", "Class" : "TYBSc CS", "TotalMarks" : 497 }
{ "_id" : ObjectId("65eabe8d257325a977e114db"), "RollNo" : "S006", "Name" : "RAM", "Class" : "TYBSc CS", "TotalMarks" : 496 }
{ "_id" : ObjectId("65eabe8d257325a977e114dc"), "RollNo" : "S006", "Name" : "TILAK", "Class" : "TYBSc CS", "TotalMarks" : 495 }
{ "_id" : ObjectId("65eabe8d257325a977e114dd"), "RollNo" : "S006", "Name" : "Ayaan", "Class" : "MSC", "TotalMarks" : 402 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S008", "Name" : "Aryan", "Class" : "TYBSc CS", "TotalMarks" : 201 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S009", "Name" : "Aryan", "Class" : "MSC", "TotalMarks" : 196 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S009", "Name" : "Aryan", "Class" : "MSC", "TotalMarks" : 196 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S009", "Name" : "Aryan", "Class" : "TYBSc CS", "TotalMarks" : 196 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S009", "Name" : "Aryan", "Class" : "TYBSc CS", "TotalMarks" : 196 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S009", "Name" : "Aryan", "Class" : "TYBSc CS", "TotalMarks" : 196 }
{ "_id" : ObjectId("65eabe8d257325a977e114de"), "RollNo" : "S009", "Name" : "Aryan", "Class" : "TYBSc CS", "TotalMarks" : 196 }
}
```

## Sort the documents in descending order of TotalMarks.

```
"Ramtilak", "Class" : "MSC", "TotalMarks" : 500 }
"Ram", "Class" : "MSC", "TotalMarks" : 499 }
"Tilak", "Class" : "MSC", "TotalMarks" : 498 }
"RAMTILAK", "Class" : "TYBSc CS", "TotalMarks" : 496 }
"RAMT, "Class" : "TYBSc CS", "TotalMarks" : 495 }
"TILAK", "Class" : "TYBSc CS", "TotalMarks" : 495 }
"Ayaan", "Class" : "MSC", "TotalMarks" : 402 }
"Aryan", "Class" : "TYBSc CS", "TotalMarks" : 201 }
"Aryan", "Class" : "TYBSc CS", "TotalMarks" : 196 }
"Arya", "Class" : "TYBSc CS", "TotalMarks" : 193 }
                 ObjectId("65eabe8d257325a977e114d7"),
                                                                                                          "RollNo"
                                                                                                                                    "S001",
                                                                                                                                                       "Name"
                ObjectId("65eabe8d257325a977e114d8")
ObjectId("65eabe8d257325a977e114d9")
                                                                                                                                   "S002",
"S003",
                                                                                                                                                      "Name"
                                                                                                          "RollNo"
" id"
                                                                                                          "RollNo"
                                                                                                                                                      "Name"
" id"
                ObjectId("65eabe8d257325a977e114da")
                                                                                                          "RollNo"
                                                                                                                                    "S004",
                                                                                                                                                      "Name"
                ObjectId("65eabe8d257325a977e114db")
ObjectId("65eabe8d257325a977e114db")
ObjectId("65eabe8d257325a977e114dd")
                                                                                                                                    "S005",
"S006",
                                                                                                          "RollNo"
                                                                                                          "RollNo"
 id"
                                                                                                                                                      "Name"
                                                                                                           "RollNo"
__id"
                                                                                                                                                      "Name"
                                                                                                                                    "S007"
                                                                                                          "RollNo"
                 ObjectId("65eabe8d257325a977e114de")
                                                                                                                                    "S008"
                                                                                                                                                      "Name"
                ObjectId("65eabe8d257325a977e114df"),
ObjectId("65eabe8d257325a977e114e0"),
                                                                                                                                   "S009",
                                                                                                                                                       "Name"
                                                                                                          "RollNo"
                                                                                                                                                      "Name"
```

Display students of class "MSc" or marks greater than 400.

```
> db.Student.find({$or: [{Class:"MSC"},{TotalMarks: {$gt: 400}}]});
{ "_id": 0bjectId("65eabe8d257325a977e114d7"), "RollNo": "S001", "Name": "Ramtilak", "Class": "MSC", "TotalMarks": 500 }
{ "_id": 0bjectId("65eabe8d257325a977e114d8"), "RollNo": "S002", "Name": "Ram", "Class": "MSC", "TotalMarks": 499 }
{ "_id": 0bjectId("65eabe8d257325a977e114d9"), "RollNo": "S003", "Name": "Tilak", "Class": "MSC", "TotalMarks": 498 }
{ "_id": 0bjectId("65eabe8d257325a977e114da"), "RollNo": "S004", "Name": "RAMTILAK", "Class": "TYBSc CS", "TotalMarks": 497 }
{ "_id": 0bjectId("65eabe8d257325a977e114db"), "RollNo": "S005", "Name": "RAMT, "Class": "TYBSc CS", "TotalMarks": 496 }
{ "_id": 0bjectId("65eabe8d257325a977e114dc"), "RollNo": "S006", "Name": "TILAK", "Class": "TYBSc CS", "TotalMarks": 495 }
{ "_id": 0bjectId("65eabe8d257325a977e114dd"), "RollNo": "S006", "Name": "Ayaan", "Class": "MSC", "TotalMarks": 402 }
{ "_id": 0bjectId("65eabe8d257325a977e114df"), "RollNo": "S009", "Name": "Ayaan", "Class": "MSC", "TotalMarks": 196 }
```

### Remove all the documents with TotalMarks<200

```
> db.Student.remove({TotalMarks : {$lt : 200}})
WriteResult({ "nRemoved" : 2 })
> db.Student.find();
{ ".id" : 0bjectId("65eabe8d257325a977e114d7"), "RollNo" : "S001", "Name" : "Ramtilak", "Class" : "MSC", "TotalMarks" : 500 }
{ ".id" : 0bjectId("65eabe8d257325a977e114d8"), "RollNo" : "S002", "Name" : "Ram", "Class" : "MSC", "TotalMarks" : 499 }
{ ".id" : 0bjectId("65eabe8d257325a977e114d8"), "RollNo" : "S003", "Name" : "Tilak", "Class" : "MSC", "TotalMarks" : 498 }
{ ".id" : 0bjectId("65eabe8d257325a977e114da"), "RollNo" : "S004", "Name" : "RAMTILAK", "Class" : "TYBSc CS", "TotalMarks" : 497 }
{ ".id" : 0bjectId("65eabe8d257325a977e114dc"), "RollNo" : "S006", "Name" : "RAM", "Class" : "TYBSc CS", "TotalMarks" : 496 }
{ ".id" : 0bjectId("65eabe8d257325a977e114dc"), "RollNo" : "S006", "Name" : "TILAK", "Class" : "TYBSc CS", "TotalMarks" : 495 }
{ ".id" : 0bjectId("65eabe8d257325a977e114dd"), "RollNo" : "S007", "Name" : "Ayaan", "Class" : "MSC", "TotalMarks" : 402 }
{ ".id" : 0bjectId("65eabe8d257325a977e114de"), "RollNo" : "S008", "Name" : "Ayaan", "Class" : "TYBSc CS", "TotalMarks" : 402 }
{ ".id" : 0bjectId("65eabe8d257325a977e114de"), "RollNo" : "S008", "Name" : "Ayaan", "Class" : "TYBSc CS", "TotalMarks" : 402 }
}
```



# Sion(W), Mumbai – 400 022.

### CERTIFICATE

This is to certify that Mr. / Miss. NADAR RAMTILAK SAIT SANKARALINGAM.

Roll No. TCS2324047 Has successfully completed the necessary course of experiments in the subject of during the academic year 2023 – 2024 complying with the requirements of University of Mumbai, for the course of T.Y.BSc. Computer Science [Semester-VI]

Prof. In-Charge MAYA NAIR

Examination Date: Examiner's Signature & Date:

Head of the Department **Prof. Manoj Singh** 

College Seal And Date