

Problem Statement

Cybersecurity attacks can result in credit card information, customer addresses, customer emails, logins, and other proprietary documents being accessed by unauthorized attackers. This is an increasingly growing problem that, when unchecked, can potentially result in entire companies collapsing. This project hopes to use digital packet and payload behavior to create an effective network intrusion detection system (IDS) to identify when an unauthorized attacker is probing a server.

Teen suspected of being mastermind behind Lapsus\$ hacks that hit giant tech companies

March 23, 2022 at 4:00 pm | Updated March 23, 2022 at 11:44 pm

Lapsus\$ has befuddled cybersecurity experts as it has embarked on a rampage of high-profile hacks. A teen is suspected of being behind... (Oliver Nicolaas Ponder/EyeEm via Getty Images) More V

By Jordan Robertson and William Turton

Bloomberg

Cybersecurity researchers investigating a string of hacks against technology companies, including Microsoft and Nvidia, have traced the attacks to a 16-year-old living at his mother's house near Oxford, England.

Four researchers investigating the hacking group Lapsus\$, on behalf of companies that were attacked, said they believe the teenager is the mastermind.

Elements of the Dataset

Data Dictionary, Cleaned Dataset

Feature	Туре	Description
down_up_ratio	float	Ratio of download/uploaded data
fwd_header_size_min	int	Minimum header size from user to server (in bytes)
fwd_header_size_max	int	Maximum header size from user to server (in bytes)
bwd_header_size_min	int	Minimum header size from server to user (in bytes)
bwd_header_size_max	int	Maximum header size from server to user (in bytes)
flow_FIN_flag_count	int	Amount of FIN flags sent and recorded in any given communication
flow_SYN_flag_count	int	Amount of SYN flags sent and recorded in any given communication
flow_RST_flag_count	int	Amount of RST flags sent and recorded in any given communication
fwd_pkts_payload.min	int	Minimum amount of packets being sent in any given payload, from user to server
fwd_pkts_payload.min	int	Maximum amount of packets being sent in any given payload, from user to server

Size of packet/payloads sent

Rate at which data is sent back and forth

TSP Flags

Comparing ROC Curves 0.9 0.8 0.7 True positive rate 0.6 0.5 0.4 0.3 Worthless 0.2 Good 0.1 Excellent 0 0.5 8.0 0.9 0 0.3 0.6 0.7 0.4 False positive rate

Classification Problem

Overall goal: To create a model that can successfully identify the difference between an authorized user and an attacker probing a server.

Definition of success for this problem: To have a model with an overall accuracy rate of 99.7% or higher.

Approach

Methodology

Feature Engineering

Quantitative, automated feature engineering

Exploratory Data Analysis

Primary finding: attackers try to mimic the digital behavior of authorized users while retrieving as much information as possible, and leaving behind the least amount of data as possible

Modeling

Neural network deployment

Scatterplot - down_up_ratio vs. flow_RST_flag_count flow_RST_flag_count 01 down_up_ratio

Neural Network

Next Step: Improvement

Model almost perfectly identifies cybersecurity threats but classifies authorized users as threats 18% of the time

Model is not production-ready, but still has the potential to be if we were to integrate more models into the process, but that takes time

Next steps would be integrating other models on top of the current working model in order to compensate for false positives

