- **8**
- Una bobina circolare, formata da 28 spire di diametro 11 cm, è immersa in un campo magnetico di modulo $B_0 = 92$ mT diretto parallelamente all'asse della bobina. A un certo istante di tempo, il campo magnetico inizia a variare secondo la legge $B = B_0 \cos \omega t$, dove la pulsazione è $\omega = 314$ rad/s.
- ▶ Calcola la variazione di flusso dopo un intervallo di tempo $\Delta t = 7,0$ s dall'istante in cui ha inizio la variazione del campo magnetico.

 $[-1,4 \times 10^{-2} \text{ Wb}]$

Un quadrato di lato 5,0 cm racchiude al suo interno tre fili percorsi rispettivamente dalle correnti $i_1 = 1,4$ A, i_2 = 1,8 A, i_3 = 1,1 A. La corrente i_3 circola in verso opposto a quello delle altre due correnti, e il campo magnetico che essa genera ha lo stesso verso con cui è percorso il cammino quadrato.

Quanto vale la circuitazione del campo magnetico lungo il quadrato?

$$[-2.6 \times 10^{-6} \,\mathrm{T\cdot m}]$$

$$\frac{\Gamma_{2}(\vec{B})}{=} = \mathcal{U}_{0}(-\lambda_{1} - \lambda_{2} + \lambda_{3}) =$$

$$= (4\pi \times 10^{-7} \frac{N}{A^{2}})(-1, 4A - 1, 8A + 1, 1A) =$$

$$= -26, 38... \times 10^{-7} \text{ T.m.} \approx -2, 6 \times 10^{-6} \text{ T.m.}$$

