Sampling Design mit R

CAS FAB: Räumliche Daten in R

Nils Ratnaweera

Forschungsgruppe Geoinformatik

2021-11-30

Sampling Desing mit R

CAS Vegetationsanalyse & Feldbotanik Modul 2 – Vegetationsanalyse: Tag 01 Feil C: Typische Fragen & Sampling Design

(2) Räumliche Verteilung der Plots Empfehlungen

→ traditionelle pflanzensoziologische Flächenauswahl für Monitoring nicht sinnvoll!

- → Zufallsflächen (innerhalb der statistischen Grundgesamtheit)
 - streng genommen erforderlich für statistische Auswertungen (aber systematische Probeflächen i.d.R. OK und einfacher zu lokalisieren)
 - ABER: seltene Einheiten fehlend oder unterrepräsentiert
- → stratifiziert-zufällig (oder stratifiziert-systematisch)
 - statistisch angemessen
 - man kann Repräsentanz seltener Einheiten im Datensatz sicherstellen
 - ABER: es werden vorab GIS-Daten für sinnvolle Straten benötigt
- → Regeln zum Verschieben/Verwerfen von Plots
 - hängen von der Fragestellung ab
 - müssen klar definiert werden
 - sollten keine Verzerrung (bias) in die Daten bringen

15

Ausgangslage

```
library(sf)
library(terra)
library(tmap)
tmap_mode("plot")

tww_landquart <- read_sf("_data/processed/tww_landquart.gpkg")</pre>
```

- Gleich viele samples (10) pro *Multi*polygon
- Samples sind zufällig verteilt

```
tww_landquart$equal_samples <- 10
sample_plots1 <- st_sample(tww_landquart, size = tww_landquart$equal_samples)</pre>
```


- Gleich viele samples (10) pro Multipolygon
- Samples sind zufällig verteilt

```
tww_landquart_polygon <- st_cast(tww_landquart, "POLYGON")</pre>
```

- Gleich viele samples (10) pro Multipolygon
- Samples sind zufällig verteilt

```
tww_landquart_polygon <- st_cast(tww_landquart, "POLYGON")</pre>
```

tww_landquart (12 Zeilen):

Name	geom
Hinter Wals	MULTIPOLYGON (((2759519 120
Frettis	MULTIPOLYGON (((2759987 120
Prafieb	MULTIPOLYGON (((2759525 120
Gissübel	MULTIPOLYGON (((2759970 120
Unter Vajuoza	MULTIPOLYGON (((2758686 120
Jerätsch	MULTIPOLYGON (((2758287 120

- Gleich viele samples (10) pro Multipolygon
- Samples sind zufällig verteilt

```
tww_landquart_polygon <- st_cast(tww_landquart, "POLYGON")</pre>
```

tww_landquart (12 Zeilen):

Name	geom
Hinter Wals	MULTIPOLYGON (((2759519 120
Frettis	MULTIPOLYGON (((2759987 120
Prafieb	MULTIPOLYGON (((2759525 120
Gissübel	MULTIPOLYGON (((2759970 120
Unter Vajuoza	MULTIPOLYGON (((2758686 120
Jerätsch	MULTIPOLYGON (((2758287 120

tww_landquart_polygon (25 Zeilen):

Name	geom
Hinter Wals	POLYGON ((2759519 1203997,
Frettis	POLYGON ((2759987 1203832,
Frettis	POLYGON ((2760100 1203679,
Frettis	POLYGON ((2760247 1203553,
Frettis	POLYGON ((2759998 1203769,
Prafieb	POLYGON ((2759525 1202646,

- Anzahl Samples ist abhängig von der Flächengrösse (1 Sample pro 4'000 m2)
- Samples sind zufällig verteilt

```
tww_landquart_polygon$SHAPE_Area <- st_area(tww_landquart_polygon) # Flächengrösse muss aktuala
tww_landquart_polygon$relative_samples <- as.integer(round(tww_landquart_polygon$SHAPE_Area/406)</pre>
```

- Anzahl Samples ist abhängig von der Flächengrösse (1 Sample pro 4'000 m2)
- Samples sind zufällig verteilt

```
tww_landquart_polygon$SHAPE_Area <- st_area(tww_landquart_polygon) # Flächengrösse muss aktual1
tww_landquart_polygon$relative_samples <- as.integer(round(tww_landquart_polygon$SHAPE_Area/406)</pre>
```

Name	SHAPE_Area	${\bf relative_samples}$	geom
Hinter Wals	10908.772 [m^2]	3	POLYGON ((2759519 1203997,
Frettis	9207.345 [m^2]	2	POLYGON ((2759987 1203832,
Frettis	8849.699 [m^2]	2	POLYGON ((2760100 1203679,
Frettis	6833.655 [m^2]	2	POLYGON ((2760247 1203553,
Frettis	6640.134 [m^2]	2	POLYGON ((2759998 1203769,
Prafieb	37675.214 [m^2]	9	POLYGON ((2759525 1202646,

- Anzahl Samples ist abhängig von der Flächengrösse (1 Sample pro 4'000 m2)
- Samples sind zufällig verteilt

```
tww_landquart_polygon$SHAPE_Area <- st_area(tww_landquart_polygon) # Flächengrösse muss aktuala
tww_landquart_polygon$relative_samples <- as.integer(round(tww_landquart_polygon$SHAPE_Area/406)</pre>
```

Name	SHAPE_Area	relative_samples	geom
Hinter Wals	10908.772 [m^2]	3	POLYGON ((2759519 1203997,
Frettis	9207.345 [m^2]	2	POLYGON ((2759987 1203832,
Frettis	8849.699 [m^2]	2	POLYGON ((2760100 1203679,
Frettis	6833.655 [m^2]	2	POLYGON ((2760247 1203553,
Frettis	6640.134 [m^2]	2	POLYGON ((2759998 1203769,
Prafieb	37675.214 [m^2]	9	POLYGON ((2759525 1202646,

sample_plots2 <- st_sample(tww_landquart_polygon, size = tww_landquart_polygon\$relative_samples</pre>

Gleichmässig verteilt

- Regelmässige Verteilung der Samples (auf einem "Raster")
- Implizit abhängig von der Flächengrösse (grosse Polygone erhalten mehr Samples)

```
sample_plots3 <- st_sample(tww_landquart, size = 200, type = "regular")</pre>
```

Gleichmässig verteilt

- Regelmässige Verteilung der Samples (auf einem "Raster")
- Implizit abhängig von der Flächengrösse (grosse Polygone erhalten mehr Samples)

```
sample_plots3 <- st_sample(tww_landquart, size = 200, type = "regular")</pre>
```


Übung (Open End, ohne Musterlösung)

- Wähle einen kleineren Kanton oder eine Gemeinde aus
- Selektiere die TWW Standorte dieser Gemeinde / dieses Kantons
- Wähle ein sinnvolles Sampling Design und setze es mit R um
- Extrahiere die Höhenwerte für jeden Sample
- Visualisere in einer Karte:
 - o die TWW Flächen
 - Gemeinde- / Kantonsgrenze
 - Sampling Standorte
 - Swissimage Hintergrund Karte
 - Nordpfeil, Scalebar