Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

- A function f: R \rightarrow R is such that $f\left(\frac{1-x}{1+x}\right) = x$ for all $x \neq -1$. Prove the following. 7.
 - (a) f(f(x)) = x
 - (b) $f(1/x) = -f(x), x \neq 0$ (c) f(-x-2) = -f(x) 2

- Let $f(x) = \frac{3}{2} + \sqrt{x \frac{7}{4}}$ and g(x) be the inverse function of f(x) then the value of $(f^{-1}og^{-1})(17)$ 6. is equal to
 - (A) $\frac{3+\sqrt{61}}{2}$

- (B) 242 (C) 17 (D) $\frac{3-\sqrt{61}}{2}$

If $h(x) = Ax^5 + B\sin x + C\ln \left(\frac{1+x}{1-x}\right) + 7$, where A, B, C are non-zero real constants and 10. $h\left(\frac{-1}{2}\right) = 6$, then find the vale of $h\left(\frac{\text{sgn}(e^{-x})}{2}\right)$.

Daily Work Sheet-4

SINGLE CORRECTTYPE

(-4) (4)

Let $f(x) = \sin x - \cos^2 x$. If f(x) = a has at least one solution in $\left[0, \frac{\pi}{2}\right]$, then find the number of 10. integral values of a. EXERCISE-2

INTERGER TYPE QUESTION

 $(Min.\{f(t): 0 < t < x\} : 0 < x < 1$

- Let f be a function defined as f: $\left(0, e^{\frac{x}{2}}\right) \rightarrow \left|\frac{-1}{4}, \infty\right|$, $f(x) = (\ln x)^2 + 3\ln x + 2$ then $f^{-1}(x)$ 7. equals
 - (A) $\log \left(\frac{-3+\sqrt{4x+1}}{2} \right)$

(B) $\log \left(\frac{-3-\sqrt{4x+1}}{2} \right)$

(C) $e^{\frac{-3+\sqrt{4x+1}}{2}}$

(D) $e^{\frac{-3-\sqrt{4x+1}}{2}}$

Quadratic Equation:

9. α , β are the roots of the equation $K(x^2-x)+x+5=0$. If K_1 & K_2 are the two values of K for which the roots α , β are connected by the relation $(\alpha/\beta)+(\beta/\alpha)=4/5$. Find the value of $(K_1/K_2)+(K_2/K_1)$.

22. Let $P(x) = x^2 + bx + c$ be a quadratic polynomial with real coefficients such that $\int_0^x P(x) dx = 1$ and P(x) and P(x) leaves remainder 5 when it is divided by (x - 2). Then the value of P(x) is equal to [JEE-MAIN-2021]

- (A) 9
- (B) 15
- (C) 7
- (D) 11

10. If roots of the equation $(x-\alpha)(x-4+\beta)+(x-2+\alpha)(x+2-\beta)=0$ are p and q then find the absolute value of the sum of the roots of the equations $2(x-p)(x-q)-(x-\alpha)(x-4+\beta)=0$ and $2(x-p)(x-q)-(x-2+\alpha)(x+2-\beta)=0$.

12. If the product of the roots of the equation $x^2 - 3kx + 2e^{2\log k} - 1 = 0$ is 7, then the roots of the equation are real if k equals-

- (A) 1
- (B) 2

- (C) -2
- (D) pm 2

27. The sum of all the roots of the equation $|x^2 - 8x + 15| - 2x + 7 = 0$ is:

[JEE-MAIN-2023]

(A) $11 - \sqrt{3}$

(B) $9 - \sqrt{3}$

(C) $9 + \sqrt{3}$

(D) 11√3

EXERCISE - 4