ANALYSE STATISTIQUE & LANGAGE R

Modélisation et évaluation

Déroulement

- Biais / variance
- Régression logistique
- Métriques
 - Matrice de confusion
 - Courbes ROC / précision
 - AUC
 - Probabilité d'appartenance à une classe
- Exercice
 - Régression logistique sur une variable (avec affichage de graphiques)
 - Régression logistique multivariables
- Analyses factorielles
 - PCA

Biais / variance

■ Biais faible et variance élevé :

- peu d'erreurs en apprentissage
- modèle complexe
- modèle sur-entraîné
- adaptation moindre aux nouvelles entrées

■ Biais élevé / variance faible :

- beaucoup d'erreurs en apprentissage
- modèle sous-entraîné
- meilleure adaptation aux nouvelles entrées

La régression logistique

- Problème de régression / classification
- Fonction logistique = fonction sigmoïde [0; 1]
- Régression logistique binomiale : prédire la variable à expliquer 0/1
- N variables explicatives X $_{\rho}\beta_{0+B1*x1+B2*x2}$

$$\frac{1 + e^{\beta 0 + B1 * x1 + B2 * x2}}{1 + e^{\beta 0 + B1 * x1 + B2 * x2}}$$

 Ajuster l'équation en fonction des données, maximiser la probabilité d'observer l'échantillon

Matrice de confusion

•	FALSE		Vrais négatifs (VN)	Faux positifs (FP)
O	7076	3929	F(V!!!!f- (VD)
1	358	994	Faux negatifs (FN)	Vrais positifs (VP)

- Sensibilité (VP) = TP / (TP+FN) ~ 73%
 - Proportion de positifs prédits parmi tous les positifs avérés
- False Positive Rate (FP) = FP / (FP+TN) ~ 36%
 - Proportion de faux positifs, parmi tous les négatifs avérés
- Precision = TP / (FP+TP) ~ 20%
 - Précision du modèle avec les vrais positifs prédits, sur tous les positifs prédits (bon ou mauvais)

AUC – area under curve

Seuil de classification

- Aire sous la courbe ROC
 - Aire à 0,5 => algo inefficace
 - Aire à 1 => algo parfait
- Abscisse : taux de faux positif
- Ordonné : taux de vrais positif

Courbe de précision

- Ordonné : la précision TP / (FP+TP)
- Abscisse : recall/sensibilité TP / (TP+FN)

lci la précision diminue au détriment de la sensibilité, on cherche donc à classifier le plus de positifs possibles, quitte à classifier des FP.

Si l'on dispose de peu de VP, cette métrique est plus révélatrice

Exercice de régression logistique

- Jeu de données : https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
- Réaliser une régression logistique une variable
 - Split train / test : sample()
 - Entrainer le modèle : glm()
 - Tester le modèle : predict()
 - Tracer la régression
 - Matrice de confusion, modifier le seuil de classification
- Réaliser une régression logistique avec **l'ensemble des variables**
 - Matrice de confusion
 - Afficher une courbe ROC
 - Afficher une courbe de précision
 - Afficher l'aire sous la courbe ROC

=> Librairie ROCR pour la courbe ROC

Analyses factorielles

- Chercher des éléments représentant la diversité des données, et identifier les facteurs descriptifs principaux
- Créer de nouveaux axes principaux, dits « synthétiques », expliquant au mieux la variance des données
- Calculer des combinaisons linéaires, matrices de variance / covariance, diagonalisation des matrices
- PCA: Principal Component Analysis
 - Matrice de distances euclidiennes : $\sqrt{\sum (xi yi)^2}$
 - Variables quantitatives
- Objectifs:
 - Réduire le nombre de variables
 - Combiner des variables corrélées, pour créer de nouvelles variables indépendantes

Cercle des corrélations

- Mettre en évidence la ou les variables les plus discriminantes, celles expliquant le mieux la distribution / l'inertie des données (variance...)
- Déterminer les variables les plus contributrices
- Visualiser les variables positivement / négativement corrélées, qui sont regroupées.
- Les axes partent de l'ordonnée à l'origine (0,0), ensuite chaque axe possède une coordonnée

