装 订线,线内请勿答题

杭州电子科技大学学生考试卷()卷

考试课程	线性代	数甲	考试日期	年月	日	成绩	
课程号	A070237	考场、座号		任课教师			
考生姓名		学号(8位)		专业		班级	

题			三		四	五	<u> </u>	Ŧ	1/	总分		
号	1	2	3	1	2	3	K4	Д.	/\			
得												
分												

得分

一、填空题 (每小题3分,共18分)

1. [3分]

在行列式
$$D = \begin{vmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 2 & k & -1 & 0 \\ 1 & 3 & 1 & 0 \end{vmatrix}$$
中,当 k=_____时,行列式之值为零.

2. [3分]

设
$$\alpha_1 = [1,0,2], \alpha_2 = [0,1,-1]$$
,且 $A = \alpha_1^T \alpha_2$,则设 $A^3 =$ _______

- 3. [3分]
- . 设向量组 $\alpha_1 = [1,1,1]^T, \alpha_2 = [1,2,1]^T, \alpha_3 = [2,3,t]^T,$ 若 $L(\alpha_1,\alpha_2,\alpha_3)$ 的维数为 2

4. [3分]

若 7 元齐次线性方程组 AX = 0 的基础解系由 4 个向量组成,则 A 的秩为_____.

5. [3分]

设三阶方阵 A 的特征值为 1, 2, 3, 且 $B = A^3 - 2A^2$, 则 |B| = _____.

6. [3分]

与向量 $\alpha_1 = [1,0,1]^T, \alpha_2 = [1,1,0]^T$ 都正交的一个单位向量是______.

姓名

二、试解下列各题(本题共3小题,每小题5分,共15分)

得分

1. [5 分] 计算行列式 $D = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$

得分

得分

3. [5分]试判别二次型

 $f(x_1, x_2, x_3) = x_1^2 + 6x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$ 是否是正定二次型.

三、试解下列各题(本题共3小题,每小题6分,共18分)

得分

1. [6分] 求齐次线性方程组

$$\begin{cases} x_1 - x_2 - x_3 - x_4 = 0 \\ 2x_1 - 2x_2 - x_3 + x_4 = 0 & \text{in \mathbb{Z} all \mathbb{M} \mathbb{R}.} \\ 3x_1 - 3x_2 - 4x_3 - 6x_4 = 0 \end{cases}$$

得分

2. [6分] 设A相似于对角矩阵 Λ ,其中

$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & x & 4 \\ 2 & 4 & -2 \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -7 \end{pmatrix}$, 求 x, y 的值

装 订线,线内请勿答题

得分

3. $[6 \, \text{分}]$ 设 $a_1 = [1, 2, 3, 4]^T$, $a_2 = [2, 3, 4, 5]^T$, $a_3 = [3, 4, 5, 6]^T$, $a_4 = [4, 5, 6, 7]^T$,求出该向量组的秩及一个极大线性无关组.

得分

四、[本题8分]

设 $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 而 B 满足关系式 AB = A + B,试求矩阵 B.

得分

五、[本题 12 分]

设向量组 $\alpha_1,\alpha_2,\alpha_3$ 是 R^3 的一组基,而 $\beta_1=\alpha_1+\alpha_2,\beta_2=\alpha_2$

 $eta_3 = lpha_1 + lpha_2 + lpha_3$.(1) 试证 eta_1, eta_2, eta_3 也是 R^3 的一组基; (2) 求由基 $lpha_1, lpha_2, lpha_3$ 到基 eta_1, eta_2, eta_3 的过渡矩阵; (3) 设向量 lpha 在第一组基下的坐标为 $[\![1,2,3]\!]$,求它在基 eta_1, eta_2, eta_3 下的坐标.

得分

六、[本题 10 分]

设 3 阶实对称方阵 A 的特征值为 $l_1=0, l_2=l_3=1, A$ 的属于特征值

$$l_1 = 0$$
的特征向量为 $x_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, (1)求 $l_2 = l_3 = 1$ 所对应的特征向量; (2)求 A .

得分 七、[本题 10 分]

当 λ 为何值时,线性方程组 $\begin{cases} x_1+x_2+x_3+x_4=0\\ x_2+2x_3+2x_4=1\\ -x_2+(l-3)x_3-2x_4=-1\\ 3x_1+2x_2+x_3+l\ x_4=-1 \end{cases}$ 有解,并在有解时求出其

解.

姓名

得分

八、证明题(本题共2小题,共9分)

1. $[5 \, \beta]$ 设 A 和 B 均为 n 阶可逆矩阵,其中 A^* 是 A 的伴随矩阵, B^*

是 B 的伴随矩阵,证明 $(AB)^* = B^*A^*$,其中 $(AB)^*$ 是 AB 的伴随矩阵

2. $[4\, \beta]$ 设 $a = [a_1, a_2, L, a_n], b = [b_1, b_2, L, b_n]$ 为相互正交的非零向量,而 $A = \alpha^T \beta$,试证明 A 的特征值只能为零.