

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Wave Generated Oscillatory Currents
Along the Bottom in the Eulittoral
and Sublittoral Zones

(With graphs for determining maximum horizontal velocity, maximum displacement, and mean acceleration.)

10 Lee M. Hunt

11 May \$61

(13) 3.1p.

Mine Advisory Committee

Contract No. Nonr-236008

NATIONAL ACADEMY OF SCIENCES

NATIONAL RESEARCH COUNCIL

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

231 800

449

TOB

CONTENTS

	Page
LIST OF SYMBOLS	v
LIST OF FIGURES AND TABLES	vii
INTRODUCTION	1
CHARACTERISTICS OF ORDINARY GRAVITY WAVES TRANSITING FROM "DEEP" TO "SHALLOW" WATER	2
Ordinary Gravity Waves	2
Transition from "Deep" to "Shallow" Water Waves	2
Orbital Motion of Water Particles	3
Particle Velocity, Displacement, and Acceleration	4
Effect of "Shallow" Water on Wave Form	8
EXPLANATION OF FIGURES AND TABLES	10
REFERENCES	23

LIST OF SYMBOLS

A = wave amplitude = $\frac{H}{2}$

a = mean particle acceleration

C = shallow water phase or wave velocity

Co = deep water phase or wave velocity

D = diameter of particle orbit

d = depth of water, measured from still water level to the bottom; taken as positive downward

e = base of Naperian logarithms = 2.718

g = acceleration of gravity - 32.2 ft/sec²

H = shallow water wave height

Ho = deep water wave height

k = wave number = $\frac{2\pi}{I}$.

L = shallow water wave length

Lo = deep water wave length

n = ratio of group velocity to phase velocity

T = wave period

t = time

U_d = deep water horizontal particle velocity

U_i = intermediate water horizontal particle velocity

Us = shallow water horizontal particle velocity

u_{max}	•	maximum horizontal particle velocity
$\mathbf{w_d}$	•	deep water vertical particle velocity
$\mathbf{w_i}$		intermediate water vertical particle velocity
Ws		shallow water vertical particle velocity
x	•	horizontal coordinate (arbitrary origin), positive in direction of wave advance
z	-	depth below still-water level; taken as negative downward
ξd	salt of	deep water horizontal displacement of particle from its mean position
ξi	•	intermediate water horizontal displacement of particle from its mean position
ξs		shallow water horizontal displacement of particle from its mean position
₹ _{max}	•	maximum horizontal displacement of particle from its mean position
ζd	•	deep water vertical displacement of particle from its mean position
ζi	•	intermediate water vertical displacement of particle from its mean position
ζ _s	•	shallow water vertical displacement of particle from its mean position
ζ _{max}		maximum vertical displacement of particle from its mean position
π	•	3. 1416

angular frequency = $\frac{2\pi}{T}$

LIST OF FIGURES AND TABLES

		Page
Figure	Depth of Transition from Short to Long Waves and the Depth Range over which the Stated Maximum Bottom Velocity of Water Particles Per Foot of Wave Height are Exceeded.	6
Figure	Maximum Bottom Velocity of Water Particles as a Function of Period at $d = \frac{1}{4\pi} GT^2$.	7
Figure	3	9
Figure	Showing Maximum Bottom Velocity of Water Particles as a Function of Depth and (1) H Held Equal to H _O (——), (2) H Varying under Normal Shoaling Conditions () T = 8 Seconds, H _O = 10 Feet.	11
Figure	Maximum Velocity Per Foot of Wave Height of Water Particles at the Bottom as a Function of Depth and Period.	12
Figure	Maximum Displacement Per Foot of Wave Height of Water Particles at the Bottom as a Function of Depth and Period.	14
Figure	Acceleration Per Foot of Wave Height of Water Particles on Bottom as a Function of Depth and Period.	15

	CHARACTERIA CHARACTAR AO 1017	Page
Table	<u></u>	16
	Values for Maximum Velocity, Displacement, and Accelera- tion of Bottom Particle Per Foot of Wave Height as a Function	
	of Depth and Period.	

INTRODUCTION

Wave generated oscillatory currents along the ocean floor provide one of the more important forces participating in the erosion, transportation, and deposition of marine sediments. These currents are especially active in the eulittoral zone which ranges from the high tide level to a depth of 150 feet. Significant currents in the sublittoral zone, which continues from the lower border of the eulittoral zone to a depth of 600 feet or the edge of the continental shelf, are generated only by exceptionally long period waves. The effect of these currents has long been of importance to marine geologists and coastal engineers, and their importance can only be enhanced by the increasing amount of instruments and installations being placed on the ocean bottom in these zones.

Due to turbulence as well as the oscillatory nature of wave generated bottom currents, attempts to measure their magnitudes have met with considerable difficulty. Since observations made in controlled laboratory tests and in some field tests show reasonable agreement between actual and theoretical particle motion(1,2,3,4) these currents are usually calculated from theory. This report discusses briefly the theory upon which these calculations are based and then, in order to facilitate the use of the theory, provides graphs of maximum particle velocity, maximum particle displacement, and mean particle acceleration at the bottom as a function of depth, wave period, and wave height. The curves are drawn such that if the latter three variables are known the former three can be read directly from the graphs. If maximum particle velocity and displacement over the entire water column is required the reader is referred to GRAPHS FOR OBTAINING ORBITAL DISPLACEMENTS AND VELOCITIES, Scripps Institution of Oceanography, Wave Project No. 71, Nov. 12, 1947.

In using the graphs it should be kept in mind that the theory does not take into consideration the spectral nature of some naturally occurring waves in shallow water. The values presented then, represent a somewhat simplified picture of current characteristics under these conditions. It might be pointed out, however, that due to the filtering out of waves with periods smaller than the one considered bottom currents calculated from theory are more accurate than those higher in the water column.

CHARACTERISTICS OF ORDINARY GRAVITY WAVES TRANSITING FROM "DEEP" TO "SHALLOW" WATER

Ordinary Gravity Waves

Waves having periods ranging from 1 to 30 seconds are known as ordinary gravity waves as distinguished from ultra-gravity waves with a period range of 0.1 to 1 second, and infra-gravity waves whose period range is 30 seconds to 5 minutes. Ordinary gravity waves include the wind generated waves known as seas while under the direct influence of the wind, and swell after they have begun to decay in a region of lighter wind or calm. Seas generally have a shorter period than swell with the division being at around 9 seconds. There is, however, some overlap. This whole band of ordinary gravity waves contains a large fraction of the total wave energy and is, therefore, important to a variety of problems.

Ordinary gravity waves are generated by the pressure and tangential stresses applied to the water surface by wind action. Dimensional characteristics, therefore, depend upon wind velocity, duration, and fetch as well as the distance the waves have traveled from their area of generation. This last point is due to the decay undergone by waves once the generating force is removed. Decay may be a slow process as shown by the summer swell which breaks on the California coast after traveling more than 4000 miles from their generation area in the "Roaring Forties" and "Furious Fifties" of the South Pacific.

Transition from "Deep" to "Shallow" Water Waves

Ordinary gravity waves may be divided into deep (short) and shallow (long) water waves through a consideration of the relationship between phase velocity, wave length, and water depth. The phase velocity can be evaluated with sufficient accuracy from the classical equation for gravity waves of small steepness^(1,2,5):

$$C^2 = \frac{gL}{2\pi} \quad \tanh \, kd. \tag{1}$$

If the relative depth (d/L) is greater than 0.5, then the hyperbolic tangent can be replaced by unity to an accuracy of one per cent. Equation (1) is thereby reduced to

$$C^2 = \frac{gL}{2\pi} \,. \tag{2}$$

Waves under conditions where d/L is greater than 0.5 and where the phase velocity is independent of depth are called deep water waves, the wave length of which is given by

$$L_0 = \frac{g}{2\pi} T^2.$$
 (3)

If, on the other hand, d/L is less than 0.05, the hyperbolic tangent can be replaced by the argument $2\pi d/L$ to the same accuracy and equation (1) becomes

$$C^2 = gd. (4)$$

Waves under these conditions are independent of wave length, but dependent upon depth, and are called shallow water waves.

Waves whose relative depth lies between 0.05 and 0.5 are termed intermediate and equation (1) must be used.

Throughout the remainder of this paper, unless otherwise specified, shallow water will be used to indicate any relative depth less than the depth at the deep to shallow water wave transition point as given by

$$d = \frac{1}{4\pi} gT^2 \tag{5}$$

or 1/2 L_o.

Orbital Motion of Water Particles

Associated with the motion of waves is a motion of the water particles themselves. In the deep water case this motion is in the form of circles in

the vertical plane with the water particles moving in the direction of wave propagation under the wave crest and in the opposite direction under the trough. The time required for one complete orbit is equal to the period of the wave. The orbital diameter is given by

$$D = He^{kz}, (6)$$

hence D decreases exponentially with increasing depth. The following rule is often useful: The orbital diameter, (equal to the wave height at the surface), is reduced by one-half with each depth increase equal to one-ninth of the wave length.

As an example a deep water wave having dimensions T = 10 seconds, L_O = 512 feet, and H = 22 feet will have a surface orbit of 22 feet in diameter. At a depth equal to one-half the wave length (256 feet) the orbital diameter is 0.95 feet, and at a depth equal to the wave length (512 feet) the orbital diameter is 0.042 feet. Since the orbital diameter at 1/2 L_O is only 1/23 that of the surface orbit it can be seen that the bottom can have no significant effect on the character of the waves as long as d exceeds 1/2 L_O .

As any wave crosses its particular transition point from deep to shallow water, an increasing potential orbital diameter is brought in contact with the bottom. However, at the sea bed, the component of motion normal to the bottom must vanish, and the response of the water particles over the entire water column to this transition is a tendency toward elliptical rather than circular orbits. Moreover, the eccentricity of the elliptical orbits increases with decreasing depth.

Particle Velocity, Displacement, and Acceleration

The speed with which water particles move around their orbits — essentially uniform while they are circular — is no longer so after they are transformed into ellipses, but is greatest near the crest and trough of the wave. This discrepancy between the speeds along different parts of the elliptical orbit increases with decreasing depth, since it is proportional to the length of the major axis of the ellipse. Since the transformation of the orbit from circle to ellipse consists of an expansion of the horizontal axis, with the vertical axis changing only as much as the height of the waves, the speed with which the water particle advances in the crest and recedes in the trough grows greater as the depth decreases.

Figures 1 and 2 graphically illustrate the relative depth of transition as a function of period, the depth range over which the maximum bottom particle velocity at the transition point is exceeded, and the relationship between maximum particle velocity at the transition point and wave period.

Horizontal and vertical particle velocity for deep, intermediate, and shallow water are given by

$$U_{d} = A\sigma^{kz} \cos(kx - \sigma t)$$
 (7)

$$W_{d} = A \sigma^{kZ} \sin(kx - \sigma t)$$
 (8)

$$U_i = A\sigma \frac{\cosh k (z + d)}{\sinh kd} \cos (kx - \sigma t)$$
 (9)

$$W_i = A\sigma \frac{\sinh k (z + d)}{\sinh kd} \sin (kx - \sigma t)$$
 (10)

$$U_{S} = \frac{A\sigma}{kd} \cos(kx - \sigma t) \tag{11}$$

$$W_{S} = A\sigma \left(1 + \frac{z}{d} \sin \left(kx - \sigma t\right)\right) \tag{12}$$

respectively. The above equations apply for a water level profile which varies as A cos $(kx - \sigma t)$. At the bottom, of course, -z is equal to d, and W becomes O. If only the maximum velocity at the bottom is considered (x, t = 0) equations (9) and (11) may be rewritten as

$$U_{\text{imax}} = A\sigma \frac{1}{\sinh kd}$$
 (13)

$$U_{\text{smax}} = \frac{A\sigma}{kd} = A\sqrt{\frac{g}{d}}.$$
 (14)

Particle displacement is taken as the displacement in one direction of a particle from its mean position. Twice the maximum displacement then is the total range of particle excursion. The horizontal and vertical displacement is given by

$$\xi_{\rm d} = A_{\rm e}^{\rm kz} \cos (kx - \sigma t) \tag{15}$$

$$\zeta_{\rm d} = Ae^{\rm kz} \sin{(\rm kx - \sigma t)}$$
 (16)

$$\xi_i = A \frac{\cosh k (z + d)}{\sinh kd} \cos (kx - \sigma t)$$
 (17)

$$\zeta_i = A \frac{\sinh k (z + d)}{\sinh kd} \sin (kx - \sigma t)$$
 (18)

$$\xi_{s} = \frac{A}{kd} \cos(kx - \sigma t) \tag{19}$$

$$\zeta_{s} = A \left(1 + \frac{z}{d}\right) \sin (kx - \sigma t). \tag{20}$$

As in the case of particle velocity, particle displacement has no vertical component at the bottom and if maximum displacement is considered equations (17) and (19) can be rewritten as

$$\xi_{\text{imax}} = A \frac{1}{\sinh kd} \tag{21}$$

$$\zeta_{smax} = \frac{A}{kd} = 2\pi T A \sqrt{\frac{g}{d}}.$$
 (22)

At the bottom where the particle motion is back and forth with no vertical component a particle moves from U = O to U_{max} to U = O in any one direction and the mean acceleration over one-quarter cycle may be computed by a consideration of one-fourth of the total particle excursion. The mean acceleration of a particle at the bottom, then, is given by

$$a = \frac{4 \text{ U}_{\text{max}}}{T}.$$
 (23)

Effect of Shallow Water on Wave Form

Wave period undergoes no significant change under shoaling conditions and requires no subscript to designate deep or shallow water. At $\approx 1/2$ L_o, however, H, L, and C begin to undergo changes as shown in Figure 3. As can be seen the shallow water wave length as given by

$$L = L_0 \tanh kd$$
 (24)

and phase velocity as given by equations (1) and (4) are related such that they decrease at the same rate. Under these conditions, and with the period being constant, the shallow water wave height as given by

$$H = H_0 \sqrt{\frac{C_0}{2nc}}$$
 (25)

must undergo change. As shown in Figure 3 wave height undergoes a reduction beginning at $d/L_0 \approx .5$, reduces to about 0.914 H_0 at $d/L_0 = 0.615$, regains its deep water value at about $d/L_0 = 0.06$, and exceeds H_0 past this relative depth. Figure 4 illustrates the effect of this variability of wave height under shoaling conditions on maximum particle velocity at the bottom by plotting it against H_0 held constant. This graph represents waves undergoing no refraction. It should also be noted that equation (25), based on linear wave theory, holds only for waves of sufficiently small steepness and does not hold in the vicinity of the breaker zone. The solitary wave theory, in this zone, gives a better approximation. (6)

EXPLANATION OF FIGURES AND TABLES

Figure 5

Maximum particle velocities per foot of wave height for wave periods from two to twenty seconds have been plotted against depth in Figure 5. Since there is no close relationship between a wave's height and its length and period, equation (13) has been rewritten as

$$\frac{U_{\text{max}}}{H} = \frac{\pi}{T \text{ sinh kd}}$$
 (26)

and the actual particle velocity is obtained by multiplying the velocity value as read from the absissa by the desired wave height.

To provide a greater continuity and accuracy the formula for intermediate relative depth has been used in both figure 5 and Figure 6.

Figure 6

Maximum particle displacement per foot of wave height for periods from two to twenty seconds have been plotted against depth in Figure 6. As in the case of particle velocity equation (21) has been rewritten as

$$\frac{\xi_{\text{max}}}{H} = \frac{1}{2 \sinh kd} \tag{27}$$

and maximum particle displacement is obtained by multiplying the absissa value by the desired wave height.

Figure 7

In considering the effect of bottom particle velocity on sediments it is often desirable to know the velocity distribution over the path of particle excursion. The time range, for instance, over which a particle has exceeded a particular velocity is often useful. In order to facilitate the calculation of a velocity curve for a desired height, period, and depth the mean acceleration per foot of wave height for periods from two to twenty seconds have been plotted against depth in Figure 7. As in Figures 5 and 6 the absissa value is multiplied by the desired wave height.

Table I

The particle velocity, displacement, and acceleration values used in plotting the various curves for each depth and period used are listed in Table I.

Values for Maximum Velocity, Displacement, and Acceleration of Bottom Particle per Foot of Wave Height as a Function of Depth and Period

TABLE I

т	(d)	U _{max} H	₹ _{max} H	a H	Т	(d)	U _{max} H	H H	a H
2	20 10 5	.007 .145 .626	.002 .046 .199	.013 .289 1.252	6	30 20	.339	. 466	.325
3	30 20 10 5	.035 .134 .488 .976	.017 .064 .233 .466	.047 .179 .651 1.301	7	140 120 100 90 80 70	.027 .044 .072 .091 .115	.030 .049 .080 .129	.015 .025 .041
4	60 50 40 30 20	.016 .034 .072 .152 .313	.010 .046 .199	.016		60 50 40 30 20	.184 .233 .297 .386 .527	. 205	.105
5	100 90 80 70 60 50 40 30 20	.009 .015 .025 .040 .065 .105 .167 .265	.007	.007	8	200 180 160 140 120 100 90 80 70 60	.017 .025 .036 .053 .076 .109 .131 .156 .187	.022 .032 .046 .067 .097 .139 .199	.009 .013 .018 .027 .038 .055 .078
6	120 100 90 80 70 60	.017 .034 .048 .067 .093 .129	.017	.011 .023 .045 .086	9	50 40 30 20 220 220	. 271 . 332 . 417 . 552	.423 .703	.166
	50 40	. 178	. 233	. 163		180	. 045	.048	. 020

TABLE I (con't)

		Umax	5 max	a H			Umax	Emax	a
T	(d)	Н	H	H	T	(d)	H	H	H
10	PEF	a so	ner			90.1		TO A TOTAL	
	160	.060	. 086	.027		220	.059	. 104	.021
	140	.080	. 115	. 036		200	.072	. 125	. 026
	120	. 107	. 153	.048		180	. 087	. 152	.032
	100	. 141	. 203	. 063	Market Street	160	. 105	. 183	.038
	90	. 163	000			140	. 127	. 222	.046
9	80	. 188	. 270	.084		120	. 153	. 268	. 056
	70	.218				100	. 186	. 327	.068
	60	. 254	. 364	. 113	11	90	. 207	004-	
	50	. 298				80	. 230	. 403	.084
	40	. 356	.511	. 158		70	. 258	054-	
	30	. 438			100	60	. 291	.509	. 106
	20	. 569	. 816	. 253		50	.332	085-	
						40	. 387	.678	. 141
						30	. 465	0	
	280	. 020	. 032	.008		20	. 592	1.036	. 215
	260	. 026	. 041	.010		14. 14		005.1	EI :
	240	. 033	. 052	.013		123		DEL	
	220	.041	.066	.016	60	400	.017	.033	. 006
	200	. 053	.084	.021	80 ; 80 ; 80 ;	380	.020	.039	.007
	180	. 066	. 106	. 026		360	.024	.046	.008
	160	.084	. 133	.034		340	.028	.054	.009
	140	. 105	. 168	.042		320	.034	.064	.011
10	120	. 132	.211	. 053	50	300	.040	.076	.013
10	100	. 167	. 266	.067		280	.047	.089	.016
7 - 11	90	. 188	. 200		100	260	.055	. 105	.018
	80	.212	. 338	. 085		240	. 065	. 123	.022
0 .	70	.240	. 556	. 005	St. I i	220	.076	. 145	.025
	60	.275	. 438	. 110		200	.089	.170	.030
0 .	50		. 430	. 110	12	180	.104	.200	.035
0 - 1	40	.318	. 596	. 150	12	160	. 122	.233	.041
9 .			. 590	. 150		140	. 144	. 275	.048
	30 20	. 454	. 927	. 233	05.	120	.170	.324	.057
	20	. 582	. 921	. 233	00.11	100	. 202	.386	.067
	151	30		+	00.			. 300	.00
	220	022	000	000	00. 1	90	. 221	144	. 081
11	320	.022	.039	.008	00 1	80	. 244	.466	.081
	300	. 027	. 047	.010	00 1	70	. 271	530	10
	280	. 033	. 058	.012	10	60	. 303	.579	. 10
7.	260	. 040	.070	.015		50	. 343		
	240	. 049	. 085	.018		40	. 397	.759	. 132

TABLE I (con't)

		Umax	5max	a	11		Umax	5max	a
T	(d)	H	H	H	T	(d)	H	H	H
12	30	.474				360	. 045	.101	.013
	20	. 598	1.143	. 199		340	.051	.114	.015
		D 2 A				320	.058	. 129	.017
						300	. 065	. 145	.019
FO	460	.017	. 035	. 005		280	.073	. 162	.021
0	440	.020	.039	.006		260	. 082	. 183	.023
-6	420	. 023	. 047	.007		240	.092	. 205	.026
	400	. 026	. 054	.008		220	. 103	. 231	.029
	380	.030	. 062	.009		200	. 116	. 260	.033
	360	. 035	.072	.011		180	. 131	. 293	.037
in .	340	.040	. 082	.012	14	160	. 148	.331	.042
	320	. 046	. 095	.014		140	. 169	. 376	.048
	300	. 053	.109	.016		120	. 193	. 431	. 055
	280	.060	. 125	.018		100	. 224	.500	.064
	260	.069	. 143	.021		90	. 242		
	240	.079	. 164	.024		80	. 263	. 587	.075
	220	.091	. 188	.028		70	. 289		
13	200	. 104	. 215	.032		60	.320	.713	.091
	180	.119	. 246	.037		50	.359		
	160	. 137	. 283	.042		40	.411	.916	117
	140	. 158	.326	.049		30	. 486		
	120	. 183	. 378	.056		20	.607	1,355	. 173
	100	.214	. 443	.066					
8	90	. 233							
	80	. 255	.527	.078		600	.016	.038	.004
0	70	. 281				580	.018	.042	.005
	60	.312	. 647	.096		560	.020	. 047	.005
	50	. 352				540	.022	. 052	.006
0	40	.405	.838	. 125		520	.024	. 058	.006
	30	.480				500	.027	.064	.007
	20	. 603	1.249	. 186		480	.030	.071	.008
						460	. 033	.079	.009
					15	440	.037	.088	.010
14	520	.017	.038	.005		420	.041	. 098	.011
	500	.019	. 043	.005		400	. 045	. 109	.012
	480	.022	.049	.006		380	. 050	. 120	.013
	460	. 025	. 055	.007		360	. 056	. 133	.015
	440	.028	. 063	.008		340	. 062	. 148	.017
	420	.032	.071	.009		320	. 068	. 164	.018
	400	. 036	.080	.010		300	.076	. 181	.020
	380	.040	.090	.011		280	. 084	. 200	. 022

TABLE I (con't)

1	Т	(d)	$\frac{U_{\text{max}}}{H}$	$\frac{\xi_{\text{max}}}{H}$	a H	T	(d)	Umax H	ξ _{max} H	a H
=	===	(4)			===	H-	(-/		-	
1		260	. 093	.222	.025		280	.094	. 238	.024
1		240	. 103	. 246	.027		260	. 102	. 261	.026
1		220	.114	. 273	.030		240	.112	. 286	.028
1		200	. 127	.303	.034		220	. 123	.314	.031
1		180	. 141	.338	.038		200	. 136	. 346	.034
1		160	. 158	.378	.042		180	. 150	. 381	.038
1		140	. 178	.424	.047		160	. 166	.423	.042
	nna -	120	. 202	. 482	.054		140	. 185	.472	. 046
	15	100	. 231	.553	.062	16	120	. 208	.531	. 052
1		90	. 249				100	. 238	.606	.060
1		80	.270	. 646	.072		90	. 255		
1	ALD	70	. 295				80	. 276	. 703	.069
1	110	60	. 326	.779	.087		70	.301		
1	100	50	. 364				60	.331	. 843	.083
		40	.415	. 992	.111		50	. 369		
1	100	30	.489				40	.419	1.070	.105
1	MID	20	.612	1.462	. 163		.30	.493		
1			TOTAL TOTAL				20	.615	1.566	.154
1	10.0	95.0								
1		680	.015	.038	.004		7/0	015	000	0025
1		660	.016	.042	.004		760	.015	.039	.0035
1		640	.019	.049	.005		740	.016	. 043	.0037
1		620	.020	.051	.005		720	.017	. 047	.0040
1	79.1	600	.022	. 056	.006		700	.019	.051	.0047
1		580	.024	.061	.006		680	.020	.060	.0051
1	199.4	560	.026	.067	.007		660	.024	.065	.0056
1		540	.029	.074	.007		640	.026	.070	.0061
	16	520	.032	.081	.009		600	.028	.076	.0065
1	10	500 480	.035	.097	.010	17	580	.031	.083	.0072
1		460	.038	.106	.011	1	560	.033	.090	.0077
1		440	.046	.116	.012		540	.036	.098	.0084
1		420	.050	.127	.012		520	.039	.106	.0091
1		400	.055	. 139	.014		500	.042	.115	.0098
		380	.060	. 152	.015		480	.046	.124	.0108
1		360	.065	. 167	.016		460	.050	. 135	.0117
1		340	.072	. 182	.018		440	.054	.146	.0127
1		320	.078	. 199	.020	1	420	. 058	. 158	.0136
1		300	.086	.218	.022		400	.063	.171	.0148
-		300	. 000	0				7116		
-										

TABLE I (con'd)

Т	(d)	Umax H	ξ _{max} Η	a H	т	(d)	$\frac{U_{\max}}{H}$	₹ _{max}	a H
	380	.068	. 185	.0160		520	. 046	. 133	.0102
	360	.074	. 200	.0174		500	. 050	. 142	.0111
	340	.080	.217	.0188		480	. 053	. 153	.0117
	320	.087	. 235	.0204		460	.057	. 164	.0126
	300	.094	. 254	.022		440	.061	. 176	.0135
	. 280	. 102	. 276	.024		420	.066	. 189	.0146
	260	.110	. 299	.026		400	.071	. 203	.0157
	240	. 120	. 325	.028		380	.076	. 218	.0168
	220	. 131	. 354	.031		360	.081	. 233	.0180
	200	. 143	. 387	.034		340	.088	. 251	.0195
	180	. 157	. 424	.037		320	.094	. 270	.0208
17	160	. 173	.477	.041		300	. 101	. 290	.0224
	140	. 191	.518	. 045		280	. 109	.312	.0242
	120	.214	.580	. 051		260	.117	. 337	.0260
	100	. 243	.658	.057	18	240	. 127	. 364	.0282
	90	。260				220	. 137	. 394	.0304
	80	. 281	.760	.066		200	. 149	. 427	.0031
	70	. 305				180	. 163	. 466	.0362
	60	. 335				160	. 178	.511	. 0395
	50	.373				140	. 197	. 564	.0437
	40	.423	1. 145	. 100		120	.219	. 628	. 0486
	30	. 496				100	. 247	. 709	. 0548
	20	.627	1.697	. 148		90	. 265		
						80	. 285	. 816	.0633
						70	.309		
	840	.014	.041	.0031		60	.338	1.031	.0751
	820	.015	.044	.0033		50	.376		
	800	.017	.048	.0037		40	. 425	1.220	.0944
	780	.018	.051	.0040		30	.499		
	760	.019	. 055	.0042	NV .	20	.619	1.775	1.375
	740	.021	.060	.0046				1984	
	720	.022	.064	.0048					
18	700	. 024	. 069	.0053		940	.013	.041	.0027
	680	.026	.074	.0057		920	.014	. 043	.0029
	660	.028	.080	.0062		900	.015	.046	.0031
	640	.030	.086	.0066		880	.016	.050	.0033
	620	.032	. 093	.0071	19	860	.018	. 053	.0037
	600	. 035	. 100	.0077		840	.019	.057	.0040
	580	.037	. 107	.0082		820	.020	.061	.0042
	560	.040	. 115	.0088		800	.021	. 065	.0044
	540	. 043	. 123	. 0095		780	.023	.069	.0048
		1							

TABLE I (con'd)

T	(d)	U _{max} H	₹ _{max}	a H	Т	(d)	$\frac{\mathrm{U_{max}}}{\mathrm{H}}$	ξ _{max} Η	a H
Re .	760	.024	.074	.0050	en i	1040	.013	.041	.0026
	740	.026	.079	.0054		1020	.014	. 043	.0028
80.	720	.028	.084	.0058		1000	.014	. 046	.0028
	700	.030	.090	.0063		980	. 015	. 049	.0030
80 -	680	.032	. 096	.0067		960	.016	. 052	.0032
	660	.034	. 102	.0071		940	.017	. 055	.0034
ST.	640	. 036	.109	.0075		920	.018	.059	.0036
	620	.038	.116	.0080		900	.020	. 062	.0040
	600	.041	. 124	. 0086		880	.021	.066	.0042
	580	. 044	. 132	.0092		860	. 022	. 070	.0044
	560	.047	. 141	.0098		840	. 023	.074	.0046
	540	.050	. 150	.0105		820	. 025	.079	.0050
	520	. 053	. 160	.0111		800	. 026	.084	.0052
	500	. 056	. 171	.0117		780	.028	. 089	.0056
	480	.060	. 182	.0126		760	.030	. 094	.0060
	460	. 064	. 194	.0134		740	.031	. 100	.0062
	440	.068	. 206	.0143		720	. 033	. 106	.0066
	420	. 073	. 220	.0153		700	. 035	. 112	.0070
	400	.077	. 234	.0162		680	.037	.119	.0074
	380	. 083	. 250	.0174		660	.040	. 126	.0080
19	360	.088	. 267	.0185	20	640	.042	. 133	.0084
	340	. 094	. 285	.0197		620	.044	. 141	.0088
	320	. 100	.304	.0210		600	. 047	. 150	.0094
	300	. 107	. 325	. 0225		580	.050	. 158	.0100
	280	. 115	. 348	.0242		560	. 052	. 166	.0104
	260	. 123	.373	.0258		540	. 056	. 178	.0112
	240	. 133	.401	.0280		520	. 059	. 188	.0118
	220	. 143	. 432	.0301		500	. 063	. 199	.0126
	200	. 154	. 477	. 0324		480	. 066	. 211	.0132
	180	. 168	.507	.0353		460	.070	. 223	.0140
	160	. 183	. 554	. 0385		440	.074	. 237	.0148
	140	. 201	.608	. 0423		420	.079	. 251	.0158
	120	. 223	. 675	.0469		400	. 083	. 266	.0166
	100	. 251	. 760	. 0528		380	. 089	. 282	.0178
	90	. 268				360	. 094	. 299	.0188
	80	. 288	. 872	. 0606		340	.100	.318	. 0200
	70	.312				320	. 106	.338	.0212
	60	. 341	1.033	.0717		300	.113	. 359	. 0226
	50	.378				280	.120	. 383	.024
	40	. 428	1.296	.0901		260	. 128	.409	.026
	30	. 500				240	. 137	. 438	. 027
	20	.620	1.876	1.305		220	. 148	.470	.030

TABLE I (con'd)

т	(d)	U _{max} H	ξ _{max} Η	a H	Т	(d)	U _{max} H	†max H	a H
	200	. 159	.506	.032	10.	80	. 291	. 927	. 058
	180	. 172	. 548	.034		70	. 315		
	160	. 187	.596	.037		60	. 344	1.096	. 069
20	140	. 205	.653	.041	20	50	. 380		
	120	. 227	.723	.045		40	.430	1.370	. 086
	100	. 254	.810	.051		30	.503		
	90	. 271				20	. 623	1.984	. 125

REFERENCES

- Wiegel, R. L., and Johnson, J. R., Elements of Wave Theory, Proceedings of First Conference on Coastal Engineering, pp 5 21, 1951.
- Mason, Martin A., <u>The Transformation of Waves in Shallow Water</u>, Proceedings of First Conference on Coastal Engineering, pp 22 - 32, 1951.
- Inman, Douglas L., and Nasu, Noriyuki, Orbital Velocity Associated with Wave Action Near the Breaker Zone, Beach Erosion Board, Tech. Memo No. 79, March 1956.
- 4. Morison, Jack R., and Crooke, R.C., The Mechanics of Deep Water, Shallow Water, and Breaking Waves, Beach Erosion Board, Tech. memo No. 40, 1953.
- 5. Lamh, H., Hydrodynamics, Dover Pub., New York., pp 363 370, 1945.
- Munk, Walter H., The Solitary Wave Theory and its Application to Surf Problems, Annals of the New York Academy of Sciences, Vol., 51, pp 376 424, 13 May 1949.