3. (1) $[-(A \rightarrow \exists vB) \rightarrow \exists v(A \rightarrow B)]$

方案 2: 只需证 $A \to \exists vB | \neg \forall v \neg (A \to B)$,反证法证之。

- ① $A \rightarrow \exists vB; \forall v \neg (A \rightarrow B) | \neg \forall v \neg (A \rightarrow B)$ 前提
- ② $\forall v \neg (A \rightarrow B) \rightarrow \neg (A \rightarrow B)$ 定理
- $\textcircled{3} \ A \rightarrow \exists vB; \forall v \neg (A \rightarrow B) \middle| \neg \neg (A \rightarrow B) \ \textcircled{12rmp}$
- ④ $\neg A \rightarrow (A \rightarrow B)$ 定理
- ⑤ $\neg (A \rightarrow B) \rightarrow A$ ④逆否
- ⑥ $A \rightarrow \exists vB; \forall v \neg (A \rightarrow B) | -A$ ③⑤rmp
- \bigcirc A $\rightarrow \exists vB; \forall v \neg (A \rightarrow B) \mid -\exists vB$
- ⑧ $B \rightarrow (A \rightarrow B)$ 定理
- $9 \neg (A \rightarrow B) \rightarrow \neg B$ ⑧逆否
- ① $A \rightarrow \exists vB; \forall v \neg (A \rightarrow B) | \neg B$ ③ ⑨ rmp
- \square $A \to \exists vB | \neg \forall v \neg (A \to B)$, ⑦ \square 及反证法的已证定理

3. (2) $\left| -\exists v(A \to B) \to (A \to \exists vB) \right|$

方案 2: 只需证 $[-A \rightarrow (\exists v(A \rightarrow B) \rightarrow \exists vB)]$

- ① $(A \rightarrow B) \rightarrow (A \rightarrow B)$ 定理
- ② $A \rightarrow ((A \rightarrow B) \rightarrow B)$ ①前件交换
- ③ $((A \rightarrow B) \rightarrow B) \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ 定理
- ④ $A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ ②④传递
- ⑤ $\forall \nu(A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$ ④定理全称化

- ⑥ $\forall vA \rightarrow \forall v(\neg B \rightarrow \neg (A \rightarrow B))$ ⑤+公理+rmp
- ⑦ $A \rightarrow \forall vA$ 公理 (v在A无自由出现)
- ⑧ $A \rightarrow \forall v(\neg B \rightarrow \neg (A \rightarrow B))$ ⑥⑦传递
- ⑨ $\forall v(\neg B \rightarrow \neg (A \rightarrow B)) \rightarrow (\forall v \neg B \rightarrow \forall v \neg (A \rightarrow B))$ 公理
- ⑩ $A \rightarrow (\forall v \neg B \rightarrow \forall v \neg (A \rightarrow B))$ ⑧⑨传递
- \mathbb{Q} $A \to (\neg \forall v \neg (A \to B) \to \neg \forall v \neg B)$ ⑩见传递

4. (2) $\forall x(A \to B) | \neg \exists xA \to B$, 且x在B中无自由出现。

方案 1: 根据替换原理的定理只需证 $\forall x(\neg B \to \neg A) | \neg \neg B \to \forall x \neg A$,由于 x 在 $\neg B$ 中无自由出现,故直接可由 4. (1)的证明方法即可得。

方案 2: 先证 $\forall x(A \rightarrow B) | -\exists xA \rightarrow B$

只需证: $\forall x(A \rightarrow B), \exists xA | -B$, 记 $\Gamma = \{ \forall x(A \rightarrow B), \exists xA \}$

- ①Γ|-∃*xA* 前提
- ② Γ ; $A \vdash \forall x(A \rightarrow B)$ 前提
- ③ $\forall x(A \rightarrow B) \rightarrow (A \rightarrow B)$ 定理
- $4\Gamma; A A \rightarrow B$ 23rmp
- $\mathfrak{S}\Gamma;A|-B$
- ⑥Γ-B, ①⑤及 x 在 B 中无自由出现, 存在消除

再证 $\exists xA \rightarrow B \mid \neg \forall x(A \rightarrow B)$

由于 x 在 B 中无自由出现故只需证: $\exists xA \rightarrow B | -A \rightarrow B$

- ① $\exists xA \rightarrow B \mid -A \rightarrow \exists xA$ 定理
- ② $\exists xA \rightarrow B \mid \exists xA \rightarrow B$ 前提

③ $\exists xA \rightarrow B \mid -A \rightarrow B$ 传递

④ $\exists xA \rightarrow B \mid \neg \forall x(A \rightarrow B)$,全称推广

4. (4) $\exists x(A \lor B) | - | \exists xA \lor \exists xB$

只需证: $\exists x(\neg A \to B) | \neg | \forall x \neg A \to \exists x B$

先证 $\exists x(\neg A \rightarrow B) | \neg \forall x \neg A \rightarrow \exists x B$

方案 1: 只需证 $\neg \forall x \neg (\neg A \rightarrow B) | \neg \forall x \neg A \rightarrow \exists x B$ 只需证 $\neg \forall x \neg (\neg A \rightarrow B), \forall x \neg A | \neg \neg \forall x \neg B$,用反证法。

- ①¬ $\forall x$ ¬(¬ $A \rightarrow B$), $\forall x$ ¬A, $\forall x$ ¬B|¬ $\forall x$ ¬A 前提
- ②¬ $\forall x$ ¬(¬ $A \rightarrow B$), $\forall x$ ¬A, $\forall x$ ¬B|¬A ①全称消去定理
- ③ $\neg \forall x \neg (\neg A \rightarrow B), \forall x \neg A, \forall x \neg B \mid \neg B$ 同理②
- $(4)(\neg A \rightarrow B) \rightarrow (\neg A \rightarrow B)$ 定理
- ⑤ $\neg A \rightarrow ((\neg A \rightarrow B) \rightarrow B)$ ④前件交换
- ⑥ $((\neg A \rightarrow B) \rightarrow B) \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B))$ 定理
- $(7 \neg A \rightarrow (\neg B \rightarrow \neg (\neg A \rightarrow B)))$ ⑤⑥传递
- $\otimes \neg \forall x \neg (\neg A \rightarrow B), \forall x \neg A, \forall x \neg B | \neg (\neg A \rightarrow B)$ $\otimes \otimes \bigcirc \text{rmp}$
- $9\neg \forall x\neg (\neg A \to B), \forall x\neg A, \forall x\neg B | \neg \forall x\neg (\neg A \to B)$ ⑧全称推广
- ① $\neg \forall x \neg (\neg A \to B), \forall x \neg A, \forall x \neg B \middle| \neg \neg \forall x \neg (\neg A \to B)$ 前提

 $\mathbb{O} \neg \forall x \neg (\neg A \to B), \forall x \neg A \middle| \neg \neg \forall x \neg B$ ⑨⑩反证法定理

方案 2: 只需证 $\exists x(\neg A \to B), \forall x \neg A \mid \neg \exists x B$, 这个可用存在消除法证,较简单略。

再证 $\forall x \neg A \rightarrow \exists x B | \neg \exists x (\neg A \rightarrow B)$

只需证 $\forall x \neg A \rightarrow \exists x B | \neg \neg \forall x \neg (\neg A \rightarrow B)$,反证法证明。

① $\forall x \neg A \rightarrow \exists x B; \forall x \neg (\neg A \rightarrow B) | \neg \forall x \neg (\neg A \rightarrow B)$ 前提

②
$$\forall x \neg A \rightarrow \exists x B; \forall x \neg (\neg A \rightarrow B) | \neg \forall x \neg (\neg A \rightarrow B) \rightarrow \neg (\neg A \rightarrow B)$$
 定理

④
$$\neg A \rightarrow (A \rightarrow B)$$
 定理

⑤
$$A \rightarrow (\neg A \rightarrow B)$$
 ④前件交换

$$(6\neg(\neg A \rightarrow B) \rightarrow \neg A$$
 ⑤逆否

$$⊗ ∀x¬A → ∃xB; ∀x¬(¬A → B) | ¬∀x¬A ⑦全称推广$$

$$(9) \forall x \neg A \rightarrow \exists x B; \forall x \neg (\neg A \rightarrow B) \mid \neg \forall x \neg A \rightarrow \exists x B$$
 前提

$$(10) \forall x \neg A \rightarrow \exists x B; \forall x \neg (\neg A \rightarrow B) | \neg \exists x B$$

$$\mathbb{O}$$
 $B \to (A \to B)$ 公理

$$\mathbb{Q} \neg (\neg A \rightarrow B) \rightarrow \neg B \mathbb{Q}$$
 逆否

$$\mathbb{O} \forall x \neg A \to \exists x B; \forall x \neg (\neg A \to B) | \neg B \otimes \mathbb{O} \text{rmp}$$

$$\mathbb{G} \ \forall x \neg A \rightarrow \exists x B; \forall x \neg (\neg A \rightarrow B) | \neg \forall x \neg B \ \mathbb{G}$$
全称推广

$$\exists \exists \forall x \neg A \rightarrow \exists x B; \forall x \neg (\neg A \rightarrow B) | \neg \exists x B$$

证明: $P(Oscar) \vee G(Oscar)$

$$= (P(Oscar) \lor G(Oscar)) \land (\neg P(Oscar) \lor \neg G(Oscar))$$

 $\exists \Gamma = \{P(Sam), G(Clyde), L(Clyde, Oscar),\}$

$$P(Oscar) \lor G(Oscar), \neg P(Oscar) \lor \neg G(Oscar), L(Oscar, Sam)$$

需证 Γ - $\exists x\exists y(G(x) \land P(y) \land L(x,y))$,考虑反证法:

$$i \exists \Gamma' = \Gamma \bigcup \{ \forall x \forall y (\neg G(x) \lor \neg P(y) \lor \neg L(x, y)) \}$$

$$= \Gamma \bigcup \{ \forall x \forall y (L(x, y) \to (G(x) \to \neg P(y))) \}$$
$$= \Gamma; \forall x \forall y (L(x, y) \to (G(x) \to \neg P(y)))$$

$$\textcircled{1} \Gamma' \middle| \neg \forall x \forall y (L(x, y) \rightarrow (G(x) \rightarrow \neg P(y)))$$

$$2\Gamma'$$
- $L(Clyde, Oscar) \rightarrow (G(Clyde) \rightarrow \neg P(Oscar))$

$$\Im \Gamma' | -L(Clyde, Oscar)$$

$$(4)\Gamma' | -G(Clyde) \rightarrow \neg P(Oscar)$$

$$\bigcirc$$
 Γ' $\neg P(Oscar)$

$$\bigcirc \Gamma' | -L(Oscar, Sam) \rightarrow (G(Oscar) \rightarrow \neg P(Sam)))$$

$$\otimes \Gamma' - L(Oscar, Sam)$$

$$\textcircled{10} \ \Gamma' | \neg P(Sam) \to \neg G(Oscar)$$

$$\mathbb{O} \Gamma' | -P(Sam)$$

$$\mathbb{Q} \Gamma' | \neg G(Oscar)$$

$$\mathbb{O}\Gamma'|-P(Oscar)\vee G(Oscar)$$

$$\square \Gamma' | \neg G(Oscar) \rightarrow P(Oscar)$$

$$\mathfrak{T}\Gamma'$$
- $P(Oscar)$

$$\mathfrak{G}\Gamma | \neg \forall x \forall y (L(x,y) \to (G(x) \to \neg P(y))),$$
 ⑥**⑤**反证法

$$\mathbb{P}\left[-\exists x\exists y(G(x)\wedge P(y)\wedge L(x,y))\right]$$

4. (6)

证明:
$$E(x) \lor O(x) = (E(x) \lor O(x)) \land (\neg E(x) \lor \neg O(x))$$

$$\forall x(N(x) \to (E(x) \leftrightarrow G(x))), \neg \forall x(N(x) \to G(x))$$

需证 $\Gamma \mid \neg \exists x (N(x) \land O(x))$,采用反证法

$$\textcircled{1} \Gamma; \forall x (\neg N(x) \lor \neg O(x)); N(x) | \neg \forall x (\neg N(x) \lor \neg O(x))$$

②
$$\Gamma$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \neg N(x) \lor \neg O(x)$

$$\textcircled{4}\Gamma; \forall x(\neg N(x) \lor \neg O(x)); N(x) | \neg N(x)$$

$$\bigcirc$$
 Γ ; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | \neg \neg O(x)$

$$\textcircled{6} \Gamma; \forall x (\neg N(x) \lor \neg O(x)); N(x) | \neg \forall x (N(x) \to E(x) \lor O(x))$$

$$\bigcirc \Gamma; \forall x (\neg N(x) \lor \neg O(x)); N(x) | \neg (N(x) \to E(x) \lor O(x))$$

$$\otimes \Gamma$$
; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -E(x) \lor O(x)$

$$\textcircled{10} \Gamma; \forall x (\neg N(x) \vee \neg O(x)); N(x) | -E(x)$$

$$\mathbb{O} \quad \Gamma; \forall x (\neg N(x) \lor \neg O(x)); N(x) | \neg \forall x (N(x) \to (G(x) \leftrightarrow E(x)))$$

$$\mathbb{Q} \ \Gamma; \forall x (\neg N(x) \lor \neg O(x)); N(x) | \neg G(x) \leftrightarrow E(x)$$

$$\mathbb{O}\Gamma$$
; $\forall x(\neg N(x) \lor \neg O(x))$; $N(x) - E(x) \to G(x)$

$$\square$$
 Γ ; $\forall x (\neg N(x) \lor \neg O(x))$; $N(x) | -G(x)$

$$\mathfrak{G}\Gamma; \forall x (\neg N(x) \vee \neg O(x)) \mid -\forall x (N(x) \to G(x))$$

$$\mathbb{O}\Gamma; \forall x (\neg N(x) \vee \neg O(x)) \mid -\neg \forall x (N(x) \to G(x))$$

$$\mathfrak{O}\Gamma \mid \neg \neg \forall x (\neg N(x) \lor \neg O(x))$$

$$\exists \Gamma | \neg \exists x (N(x) \land O(x))$$

4. (7)

证:由于结论中有全称化的形式及变元 y 不在前提中自由出现,故考虑用全称推广来做,故只须证:

 $\exists x [P(x) \land \forall y (D(y) \to L(x, y))],$

$$\forall x \forall y [P(x) \to (Q(y) \to \neg L(x, y))] | -D(y) \to \neg Q(y)$$

下面记此处的前提为 Γ .

- 1) $\Gamma \mid \neg \exists x [P(x) \land \forall y (D(y) \rightarrow L(x, y))]$, 前提
- 2) Γ , $P(x) \land \forall y (D(y) \to L(x, y)) \mid -\forall x \forall y [P(x) \to (Q(y) \to \neg L(x, y))]$
- 3) Γ , $P(x) \land \forall y(D(y) \to L(x,y)) | -P(x) \to (Q(y) \to \neg L(x,y))$, 由 2)+公理+rmp
- 4) Γ , $P(x) \land \forall y(D(y) \rightarrow L(x, y)) | -P(x)$ (容易证 $A \land B$) | -A)
- 5) Γ , $P(x) \land \forall y (D(y) \rightarrow L(x, y)) | -Q(y) \rightarrow -L(x, y)$, 3), 4) rmp
- 6) Γ , $P(x) \land \forall y (D(y) \rightarrow L(x, y)) | L(x, y) \rightarrow \neg Q(y)$
- 7) Γ , $P(x) \land \forall y(D(y) \rightarrow L(x, y)) | -\forall y(D(y) \rightarrow L(x, y))$, 同理 4)
- 8) Γ , $P(x) \land \forall y (D(y) \rightarrow L(x, y)) | -D(y) \rightarrow L(x, y)$, 同理 3)
- 9) Γ , $P(x) \land \forall y (D(y) \rightarrow L(x, y)) \mid -D(y) \rightarrow \neg Q(y)$, 6)、8) 传递
- 10) $\Gamma \mid -D(y) \rightarrow \neg Q(y)$, 由 1)、9) 及存在消除定理
- 11) $\Gamma \mid \neg \forall y (D(y) \rightarrow \neg Q(y))$, 全称推广

5. (1) $P_1^{(1)}(v_1) |_{\neq_T} \forall v_1 P_1^{(1)}(v_1)$

证明: $\diamondsuit D = R$, $P_1^{(1)}(v_1)$: $v_1 < 5$

在指派 $s(v_1) = 3$ 下公式 $P_1^{(1)}(v_1)$ 为真,但是公式 $\forall v_1 P_1^{(1)}(v_1)$ 为假。

5. (2) $\not\models_T P_1^{(1)}(v_1) \to \forall v_1 P_1^{(1)}(v_1)$

证明:直接由1)即可得。

5. (3) $\models_{\mathsf{T}} \exists v_1(P_1^{(1)}(v_1) \to \forall v_1 P_1^{(1)}(v_1))$ (要求从语义角度来证明)

证明: $\models_{\mathsf{T}} \exists v_1(P_1^{(1)}(v_1) \to \forall v_1P_1^{(1)}(v_1))$ (注意 $\forall v_1P_1^{(1)}(v_1)$ 中的约束变元与 $\exists v_1$ 中的 v_1

没有关系,完全可以把 $\forall v_1 P_1^{(1)}(v_1)$ 中的 v_1 看作是另一个变元符号)

iff 对任意的结构U和指派s,有 $=_U \exists v_1(P_1^{(1)}(v_1) \to \forall v_1P_1^{(1)}(v_1))[s]$ 成立

iff $\exists d' \in D$, 使得 $|\neq_U P_1^{(1)}(v_1)[s(v_1|d')]$ 或 $|=_U \forall v_1 P_1^{(1)}(v_1)[s]$

- 1) 若 $\exists d' \in D$, 使得 $|\neq_{ll} P_1^{(1)}(v_1)[s(v_1|d')]$ 成立,那么原命题得证。
- 2) 若 不 存 在 $d' \in D$, 使 得 $|\neq_U P_1^{(1)}(v_1)[s(v_1|d')]$ 成 立 , 即 对 $\forall d \in D$, 均 有 $|=_U P_1^{(1)}(v_1)[s(v_1|d)]$ 成立,

即有: $\models_{U} \forall v_{1} P_{1}^{(1)}(v_{1})[s]$ 成立

综合 1)、2) 知 $\models_{\mathbf{U}} \exists v_{\mathbf{I}}(P_{\mathbf{I}}^{(1)}(v_{\mathbf{I}}) \to \forall v_{\mathbf{I}}P_{\mathbf{I}}^{(1)}(v_{\mathbf{I}}))[s] 成立。$

7. (1)
$$\Gamma; A \models_T B$$
 当且仅当 $\Gamma \models_T A \to B$

证明: 充分性 \Rightarrow : 若 $\Gamma =_{T} A \rightarrow B$, 则需证 Γ ; $A =_{T} B$ 。

只需证对任意的使得 Γ 中的公式 A_i 及公式A为真的U,S必有 $=_U$ B[S]。

而由 $\Gamma \models_{\mathbf{T}} \mathbf{A} \to \mathbf{B}$,则必有 $\models_{U} (A \to B)[S]$,即 $\not\models_{U} A[S]$ 或 $\models_{U} B[S]$,而U,S 使得A为真,故必有 $\models_{U} B[S]$ 。

必要性 \leftarrow : 若 Γ ; $A \models_T B$, 则需证 $\Gamma \models_T A \to B$ 。

只需证对任意的使得 Γ 中的公式 A_i 为真的U,S必有 $\models_U (A \rightarrow B)[S]$ 。

①若 $\not\models_U A[S]$, 则显然有 $\not\models_U (A \to B)[S]$ 成立。

②若 $|=_U A[S]$,则由 Γ ;**A** $|=_T B$ 及在U,S的作用下 Γ 中的公式 A_i 为真,从而有 $|=_U B[S]$,所以 $|=_U (A \to B)[S]$ 。

7. (2) $\models_{\mathsf{T}} \mathbf{A}$ 当且仅当 $\models_{\mathsf{T}} \forall \mathbf{v} \mathbf{A}$ (\mathbf{v} 为任一变元)

证明:不妨设变元v在A中自由出现。

必要性 \Rightarrow : 若 $|=_{\mathsf{T}} \mathsf{A}$,需证 $|=_{\mathsf{T}} \forall \mathsf{v} \mathsf{A}$ 。

由 $\models_{\mathsf{T}} \mathsf{A}$ 知对任意的U,S及对 $\forall d \in D$ 有 $\models_{\mathsf{U}} \mathsf{A}[S(v \mid d)]$ (假设变元v在A中自由出现),即 $\models_{\mathsf{U}} \forall v \mathsf{A}[S]$,所以 $\models_{\mathsf{T}} \forall v \mathsf{A}$ 。

充分性 \leftarrow : 若 $|=_T \forall vA$,需证 $|=_T A$ 。

即需证对任意的U, S有 $=_{U}$ A[S(v|d)], $\forall d \in D$

由 $|=_{\mathsf{T}} \forall \mathsf{vA}$ 知对任意的 $U, S \neq =_{\mathsf{U}} \forall \mathsf{vA}[S]$,即对 $\forall d \in D \neq :$

 $=_{\mathrm{U}} \mathrm{A}[S(v \mid d)]$

7. (3) $\forall v(A \rightarrow B), \forall vA \models_T \forall vB$

证明: 只需证对任意的U,S若 $\models_U \forall v(A \rightarrow B)[S]$ 且 $\models_U \forall vA[S]$,则必有 $\models_U \forall vB[S]$ 。

由 $\models_U \forall v(A \rightarrow B)[S]$ 知对任意 $d \in D$,有 $\models_U (A \rightarrow B)[S(v|d)]$,即有 $| \neq_U A[S(v|d)] \stackrel{}{\text{id}} | =_U B[S(v|d)], \quad \text{又由} | =_U \forall vA[S] \text{知任意} d \in D, \quad \text{有} | =_U A[S(v|d)],$ 综上 $| =_U B[S(v|d)], \quad \text{即} | =_U \forall vB[S].$