Statistical Machine Learning

5주차

담당: 15기 김지호

- 1. Linear SVM
- 2. Kernel SVM
- 3. Decision Tree

Support Vector Machine

- Classification

• Consider a simple (linearly separable) example.

• The line is called the classification/decision boundary or separating hyperplane.

• Decision boundary

$$f(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x} = 0$$

- $y \in \{-1, 1\}$
- Prediction of y given x $\hat{y} = \operatorname{sign}\{f(\mathbf{x})\} = \operatorname{sign}\{\beta_0 + \boldsymbol{\beta}^t \mathbf{x}\}$

Hyperplane

Optimal Separating Hyperplane

Optimal Separating Hyperplane

• Optimal Separating Hyperplane maximizes Geometric Margin, M.

Two Classes

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

choose
$$\begin{cases} C_1 & \text{if } g(\mathbf{x}) > 0 \\ C_2 & \text{otherwise} \end{cases}$$

Geometric Margin

• Geometric margin of $x^* = \frac{|\beta^T x + \beta_0|}{\|\beta\|}$

Geometric Margin

Assume $\|\boldsymbol{\beta}\| = 1$, the geometric margin M of \mathbf{x}_i to the hyperplane $\beta_0 + \beta^T \mathbf{x}$ is

$$M = y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i)$$

if
$$\mathbf{x}_i$$
 is on right (i.e. $\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i > 0$ and $y_i = 1$) $M = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i$

if
$$\mathbf{x}_i$$
 is on left (i.e. $\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i < 0$ and $y_i = 1$) $M = -(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i)$

Maximal Margin Classifier

$$\max_{\beta_0, \boldsymbol{\beta}} M$$
 subject to $y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \geq M, i = 1, \dots, n;$

- For a unique solution , fix $M \parallel \beta \parallel = 1$.
- Maximize M \Leftrightarrow minimize $\parallel \beta \parallel$ \Leftrightarrow minimize $\parallel \beta \parallel^2$

$$\min_{\beta_0, \boldsymbol{\beta}} \frac{1}{2} \boldsymbol{\beta}^T \boldsymbol{\beta}$$
 subject to $y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \geq M, i = 1, \dots, n;$

What if Nonseparable?

• Let's relax the constraints by introducing slack variables $\xi_i \geq 0$, and add penalty C for the violations.

Support Vector Machine - Soft Margin Classifier

$$\min_{\beta_0, \boldsymbol{\beta}, \boldsymbol{\xi_i}} \boldsymbol{\beta}^T \boldsymbol{\beta} + C \sum_{i=1}^n \boldsymbol{\xi_i} \quad \text{subject to} \quad y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \ge 1 - \boldsymbol{\xi_i}, \quad i = 1, \dots, n$$
$$\boldsymbol{\xi_i} \ge 0, \quad i = 1, \dots, n.$$

Computation of SVM

Lagrangian Method

• Constraint Optimization for \mathbf{x} : $\min_{\mathbf{x}} f(\mathbf{x})$ (1) subject to $h_i(\mathbf{x}) \leq 0, i = 1, \dots, n$

• The Lagrangian associated the problem (1) is $f(\mathbf{x}) + \sum_{i=1}^{n} \alpha_i h_i(\mathbf{x})$

• where $\alpha = (\alpha_1, \dots, \alpha_m)$ are called the dual variables or Lagrange multipliers associated with the problem (1).

Computation of SVM

Lagrangian function of the linear SVM is

$$L_p: \frac{1}{2}\beta^T\beta + C\sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i \{1 - y_i(\beta_0 - \beta^T \mathbf{x}_i) - \xi_i\} - \gamma_i \sum_{i=1}^n \xi_i$$
 where α_i and γ_i are (non-negative) Lagrangian multiplier. (2)

KKT Stationary conditions

Karush-Kuhn-Tucker theorem: If (w^*, α^*) is a saddle point of $L(w, \alpha)$ in $\alpha \ge 0$, then x^* is an optimal vector.

$$rac{\partial}{\partialoldsymbol{eta}}L_p: \quad oldsymbol{eta} = \sum_{i=1}^n lpha_i y_i \mathbf{x}_i$$

$$rac{\partial}{\partial eta_0} L_p: \quad \sum_{i=1}^n lpha_i y_i = 0$$
 $rac{\partial}{\partial \xi_i} L_p: \quad lpha_i = C - \gamma_i$

$$\frac{\partial}{\partial \xi_i} L_p : \quad \alpha_i = C - \gamma_i$$

Dual Problem of SVM

• Dual function for the linear SVM:
$$g(\alpha) = \sum_{i=1}^{\infty} \alpha_i - \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

Dual problem of the linear SVM :

$$\max_{m{lpha}} \ g(m{lpha})$$
 subject to $0 \leq lpha_i \leq C, \quad i=1,\cdots,n;$ $\sum_{i=1}^n lpha_i y_i = 0.$

• In Matrix notation:

$$\max_{\boldsymbol{\alpha}} \ \mathbf{1}^T \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{K}^* \boldsymbol{\alpha}$$

subject to $1 \le \alpha \le C1$,

$$\mathbf{y}^T \boldsymbol{\alpha} = 0$$

Where $\{\mathbf{K}^*\}_{ij} = y_i y_j \mathbf{x}_i^T \mathbf{x}_j = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$

Computation of SVM

• Primal problem of the linear SVM: $\min_{\beta_0, \beta} \frac{1}{2} \boldsymbol{\beta}^T \boldsymbol{\beta}$ subject to $y_i(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) \geq M, i = 1, \dots, n;$

• Dual problem of the linear SVM : $\max_{\pmb{\alpha}} g(\pmb{\alpha})$ subject to $0 \le \alpha_i \le C, \quad i=1,\cdots,n;$ $\sum_{\pmb{\alpha}}^n \alpha_i y_i = 0.$

• SVM Solution:
$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i^T \mathbf{x} = \beta_0 + \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$

Computation of SVM

• Decision boundary:
$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i^T \mathbf{x} = \beta_0 + \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$

• SVM solution depends on x_i s only through their inner products.

Extension to Nonlinear Classification

- Using Kernel Trick

Kernel Trick

Input Space

Feature Space

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \cdots, \phi_n(\mathbf{x}))$$

Kernel Trick

• decision function on space of x is

• decision function on feature space is

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n y_i \alpha_i \langle \mathbf{x}_i, \mathbf{x} \rangle$$

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^n y_i \alpha_i \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}) \rangle$$

• Thus what we need is not the feature ϕ , but its inner product: Kernel Function

$$K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

Kernel Trick

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^{n} y_i \alpha_i K(\mathbf{x}_i, \mathbf{x})$$

$$K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma(\mathbf{x}_i - \mathbf{x}_j)^T(\mathbf{x}_i - \mathbf{x}_j))$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma + \gamma \, \mathbf{x}_i^T \mathbf{x}_j)^p$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(k_1 \mathbf{x}_i^T \mathbf{x}_j + k_2)$$

Linear Kernel

Gaussian Kernel (Radial Basis function)

polynomial Kernel

Sigmoid Kernel

Support Vector Machine

- Regression

SVM - Regression

SVM - Regression

Decision Tree

Decision Tree

Classification

Decision Tree

• Regression

(a) Partitioned Predictor Space

(b) Fitted Model

Impurity

- Minimize the impurity of leaf node
- "Best Split" = Minimize the total impurity
- Measure of Impurity \rightarrow Classification : Entropy $\sum_k p_k^{\ell} (1 p_k^{\ell})$ or $\sum_k p_k^{\ell} \log p_k^{\ell}$

ightharpoonup Regression: MSE $\sum_i (y_i^{\ell} - \bar{y}^{\ell})^2$

Pruning Trees

Size of tree is a tuning parameter.

- Too large Tree: Overfitting (High Variance/Low Bias)
- Too small Tree: Underfitting (Low Variance/High Bias)

Pruning methods

- Prepruning: Early stopping
- Postpruning : Grow the whole tree then prune subtrees

