Lecture 4: 50P & POS

50P: -> Sum of Product

> Logical sum of several product term

Example: x+yz', xy'+x'yz, AB+A'B' each of them are called

POS: -> Product of Sum

> Logical product term of several sum terms

Frample: X(y+z'), (X+y') (X'+y+z), (A+B) (A'+B')

called sun term

4 Every boolean expression can be expressed using SOP or POS expression.

Min terms ;

→ For boolean function, minterms of a function are the terms for which, the results is 1.

Max terms:

For boolean function, minterms of a function are the terms for which, the results is 0.

Boolean functions can be represent as sum of minterms or product of max terms (like SOP & POS)

Example:

A. B. C. F. Minterms = 0,1,4,5 [000,001,100,101]

0. 0. 0. 0. 1

1.
$$F = \geq (0,1,4,5)$$

2. 0. 1. 0. 0. Maxterms = 2,3,6,7 [010,011,110,111]

4. 1. 0. 0. 1

5 1 0 1 1 ... F = TT(2,3,6,7)6 1 0 0

7 1 1 0

Now,	from	the	minterms &	maxterms,	we can find	I sut the function
in	50P	& PC	15 form	respectively	. The rules	are,
$\frac{\text{Min/SOP}}{0 \Rightarrow \text{Prime}} \frac{\text{Max/SOP}}{0 \Rightarrow \text{No Prime}} 1 \Rightarrow \text{Prime}$						
0 -> Prime 1-> No Prime				O→ No Prime	1 > Prime	
AND among literals OR among terms				OR among liter AND among lit	rals	
	OR L	lmond	ter ms		AND among lit	eral
from the above example:						
	A.	B C	F Min	Mox	Minte	erms = 0,1,4,5
٥	\Diamond (5 0	1 A'B'C	/		F = 2(0,1,4,5)
1	0 ()	1 A'B'C	,		
2	0 (\Box	O	A+B'+C		
3	0 1	(A + B'+C'	Manda	rms = 2,3,6,7
5		0 0	AB'C' AB'C		11000	F = TT(2,3,6,7)
6		0		A'+B'+C	•	(2,3,6,7)
- マ マ	1		0	A'+B'+C'		
/						
We can write,						
	F=	A'B'c'	+ A' B'C + A	B'C'+ AB'C	. 4	OP form of F
$F = (A + B' + e) (A + B' + e') (A' + B' + e') (A' + B' + e') \iff POS \text{ form of } F$						
* Each	Min	erm	is the	complement	of the eorresp	onding Maxterm.
	y -		minterm	Designation	Maxterms	
Z	7	2	X'y'z'	mo	x+y+2	Designation Mo
	6	0	x/y/ 2	M,	x+y+2/	M,
0	ı		x' y z ´	m _Z	x+y'+2	M _Z
\circ	1	(X' y Z	m_3	x + y' + Z'	M ₃
	6	0	x y'z'	m_4	x'+y+=	M ₄
	0	1	xy'z	m5	x'+ y+ z'	Ms
		0	n y z'	MG	X48/+2/	Mc
		1	x y z	M7	x' + 3+ Z'	MA
Example:	la .	2/10/		\		
$m_1 = \chi' y' \ge Dual(m_1) = (\chi' + y' + z) : (m_1) = (\chi + y + z')$						
	Simi		can prove	for all min	term & maxterns.	

So for, we saw how to derive 500 & 105 from given truthtable.

We can also derive SOP & POS from a function.

SOP Rule:

1. Check if each term contains all variables, if not AND (x+x') if x is the missing terms.

2. Minimize the redundant term.

$$= A \left(B + B' \right) \left(C + C' \right) + B' C \left(A + A' \right)$$

$$= \frac{111}{7} + \frac{101}{5} + \frac{110}{6} + \frac{100}{4} + \frac{100}{4}$$

$$= \sum (7, 5, 6, 4, 1)$$

$$= \Sigma (1,4,5,6,7)$$

Similarly, POS Rule:

- 1. Check if we can apply, (x+yz) = (x+y)(x+z)
- 2. When can't apply, add missing term x by OR xx' + xx'

3. Go to step 1 again

4. Minimize redundant terms.

Example:
$$F(A,B,c) = A+B'c$$

$$= (A+B')(A+c)$$

$$= (A+B'+cc')(A+C+BB')$$

$$= (A+B'+c)(A+B'+c')(A+B+c)$$

$$= (A+B'+c)(A+B'+c')(A+B+c)$$

$$= (A+B'+c)(A+B'+c')(A+B+c)$$

$$= (O+I+o)(O+I+I)(O+O+O)$$

$$= TT(Q, 2, 3)$$
fore Examples:

More Examples:

* Express $F(w, \chi, \chi, z) = wy + \chi z$ in cannonical 50P.

$$= wy(x+x')(z+z') + x'z(w+w')(y+y')$$

$$= wy(xz+x'z+xz'+x'z')+x'z(wy+wy'+w'y+w'y')$$

$$=$$
 $\Sigma(15, 11, 14, 10, 9, 3, 1)$

$$= 2(1,3,9,10,11,14,15)$$

Express
$$F(w, x, y, z) = wy + x/z$$
 in cannonical POS

Po it yourse f. Solution can be found in Slides.

In such case, we have to consider (2) as missing variable.

$$F(A,B,C) = AB(C+C') + A'(B+D')(C+C')$$

$$= ABC + ABC' + A'BC + A'BC' + A'B'C + A'B'C'$$

$$= \sum (7, 6, 3, 2, 1, 0)$$

Similarly,

$$F(A,B,C,0) = A + BC$$

$$= (A + B) (A + C)$$

$$= (A + B + CC')(A + C + BB')$$

$$= (A+B+C+DD') (A+B'+C+DD') (A+B+C'+DD')$$

$$= (A + B + C + D) (A + B + C + D') (A + B' + C + D') (A + B' + C + D')$$

$$(A + B + C' + D) (A + B + C' + D')$$

$$=\pi(0,1,4,5,2,3)$$