Numeros primos

Un número primo es un número natural mayor que 1 que tiene únicamente dos divisores positivos distintos: él mismo y el 1.

Seq
$$p \in IN$$
, on número primo $P = PI$
 $a \in IN$, $a \notin IP$
 $a = 2^{P_1} \cdot 3^{P_2} \cdot 5^{P_3} \cdot 7 \cdot \dots$
 $a = P_1^{P_1} \cdot P_2^{P_2}$

T. F. A. $\forall \alpha \in IN$ $2^{p_1} \cdot 3^{p_2} \cdot 5^{p_3} \cdot ...$ $\exists [(p_1, p_2, p_3, ...) t. q) = q = 2^{p_1} \cdot 3^{p_2} \cdot 5^{p_3} ...$

Criba de Eratostenes

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Prime Numbers

2 3 5

Sieve of Eratosthenes

Factorizacion en factores primos

```
vector<int> factor(int n) {
    vector<int> ret;
    for (int i = 2; i * i <= n; i++) {
        while (n % i == 0) {
            ret.push_back(i);
            n /= i;
        }
    }
    if (n > 1) { ret.push_back(n); }
    return ret;
}
```

GCD o MCD

El MCD de dos números es el mayor divisor posible de dos números, es decir, el número más grande que divide ambos números.


```
int gcd(int a, int b) {
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
```

$$LCM(9,5) = \frac{a \cdot b}{gcd(9,b)}$$

gcd(a,5) = d a = d.a. b = d.b.

a. b/g cd(a,b) (a/gcd(9,6)).bv

ao, lo E/N/ Go, bo Son aprimos

1 d. a. b. >> multiple de a g b

mes multiple de a,b => a divide am, b divide am

m=k.a (KEIN) = K.d.a. a divisible por dibo

kas divisible por bo K divsible por bo

Aritmetica modular

```
(a+b) \mod m = (a \mod m + b \mod m) \mod m
(a-b) \mod m = (a \mod m - b \mod m) \mod m
(a \cdot b) \pmod m = ((a \mod m) \cdot (b \mod m)) \mod m
a^b \mod m = (a \mod m)^b \mod m
```

Aritmetica modular

Let
$$a,b\in\mathbb{Z}$$
 and $m\in\mathbb{Z}^+$ If $a\equiv b \pmod m$, then $b\equiv a \pmod m$ and $b\equiv c \pmod m$, then $a\equiv c \pmod m$ If $a\equiv b \pmod m$ then $ac\equiv bc \pmod m$ for $c>0$ If $a\equiv b \pmod m$ and $c\equiv d \pmod m$ then $a+c\equiv bd \pmod m$ If $a\equiv b \pmod m$ and $c\equiv d \pmod m$ then $a+c\equiv bd \pmod m$ If $a\equiv b \pmod m$ and $c\equiv d \pmod m$ then $ac\equiv bd \pmod m$ If $a\equiv b \pmod m$ and $c\equiv d \pmod m$ then $ac\equiv bd \pmod m$

Symmetric Property

Transitive Property

Scalar Multiple

Addition Property

Multiplication Property

Substraction Property

Exponenciacion modular

```
6 ll exp(ll x, ll n, ll m) {
7    assert(n >= 0);
8    x %= m; // note: m * m must be less than 2^63 to avoid ll overflow
9    ll res = 1;
10    while (n > 0) {
11         if (n % 2 == 1) { res = res * x % m; }
12         x = x * x % m;
13         n /= 2;
14    }
15    return res;
16 }
```

Inverso modular

$$ax \equiv 1 \pmod{m}$$

$$a^{p-1} = 1 \pmod{p}$$

$$a^{p-2} \cdot a = 1 \pmod{p}$$

Bezout's Identity

$$a \cdot x + b \cdot y = \gcd(a, b)$$

$$b \in IN \quad \exists x, y \in I/f. g. \quad ax + by = g c d(a, b)$$

Conjetura de Geldbech Va EIN 9>2

> JPIPZEIP A=PI+PZ