НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт по лабораторній роботі №6

«Моделювання систем»

«ЗАСТОСУВАННЯ АЛГОРИТМУ СТОХАСТИЧНОЇ МЕРЕЖІ ПЕТРІ ДЛЯ РЕАЛІЗАЦІЇ МОДЕЛЕЙ ДИСКРЕТНО-ПОДІЙНИХ СИСТЕМ»

Студент: Гал	<u>ько М.В.</u>	
Група: ІП-(_

3MICT

Завдання 1	2
Опис	2
Виконання	2
Завдання 2	
Опис	2
Схема	2
Верифікація моделі	3
Завдання 3	4
Опис	4
Схема	4
Верифікація моделі	5
Завдання 4	6
Опис	6
Схема	6
Завдання 5	7
Опис	7
Виконання	7
Висновок	Q

Опис

Ознайомитись з бібліотекою класів PetriObjModelPaint моделювання дискретно-подійних систем на основі стохастичних мереж Петрі та графічним редактором мережі Петрі. **10 балів**.

Виконання

Завдання було зроблено під час виконання минулої лабораторної роботи 5.

Завдання 2

Опис

З використанням алгоритму імітації стохастичної мережі Петрі класу PetriSim реалізувати модель, розроблену за текстом завдання 1 практикуму 5, та виконати її верифікацію. Зробити висновки про функціонування моделі. **25 балів**.

Схема

Верифікація моделі

Спробуємо запустити модель на 1000 при різних вхідних значеннях і продивитися результати:

Переходи	Час	Середня	Час Середня		Час	Середня	
	№ 1	заванта-	№ 2	заванта-	№3	заванта-	
		женість		женість		женість	
		тест №1		<i>№</i> 2		№3	
MoveOnLine	0.25	1.0	0.2	1.0	0.2	1.0	
WayTo2	1.0	5.6775	0.8	4.36739	0.5	3.55419	
WayTo3	1.0	4.83499	0.9	4.08789	1.0	5.84649	
WayTo4	1.0	4.02649	1.1	3.60329	0.5	2.48239	
WayTo5	1.0	3.26075	1.2	2.65599	1.0	3.85509	
WayTo1	5.0	12.6603	4.0	5.55639	0.7	2.15199	
Process1	1.0	0.88764	1.0	0.90625	1.0	0.91794	
Process2	1.0	0.85587	1.0	0.8751	0.7	0.8524	
Process3	1.0	0.81064	0.6	0.75404	1.0	0.84894	
Process4	1.0	0.76123	0.6	0.64161	0.7	0.72999	
Process5	1.0	0.67102	0.6	0.51897	0.85	0.68734	

Номер тесту	№ 1	№ 2	№3
Загальна кількість	3963	4974	4965
оброблених деталей			

Опис

З використанням алгоритму імітації стохастичної мережі Петрі класу PetriSim реалізувати модель, розроблену за текстом завдання 4 практикуму 5, та виконати її верифікацію. Зробити висновки про функціонування моделі. **25 балів**.

Схема

Верифікація моделі

Подібним чином до верифікації схеми завдання 2 побудуємо таблицю для часу симуляції 1000:

Змінні	Enters	Check	Make	Wait	Deficit	Fridges	Waiting	Lost	Purchases
\	час	Timer	Order	%	arc	mean	Ones	Customers	
Тест		час	час				mean		
1	0.2	4.0	3.0	0.2	54	33.06	0.128	411	4611
2	0.2	1.0	3.0	0.5	54	42.225	0.011	33	4878
3	0.1	1.0	2.5	0.5	54	38.086	0.439	645	9343
4	0.1	2.0	2.0	0.5	30	46.434	0.905	14	10079

Опис

Побудувати модель системи, що відтворює обробку потоку запитів головним та допоміжним сервером. Ймовірність звернення до допоміжного сервера 0,3. Часові характеристики обробки запитів задайте самостійно. **20 балів**.

Схема

Продемонструємо результати симуляції на 1000:

Опис

Побудувати математичні рівняння, що описують побудовану за текстом завдання 4 мережу Петрі. **20 балів**.

Виконання

Для зручності перепишемо назви в схемі до базових:

$$P_1 \ge 1 \Longrightarrow Z(T_1, 0) = 1, \quad \Psi = \{T_1\} \Longrightarrow X(T_1) = 1$$

$$\begin{array}{lll} D^-\colon M_{p_1}=1-1=0 & E_{T_1}=0+5=5 \\ M_{p_2}=0 & E_{T_2}=\infty \\ M_{p_3}=1 & E_{T_3}=\infty \\ M_{p_4}=5 & & \\ M_{p_5}=0 & & \\ M_{p_6}=0 & & \\ \end{array}$$

$$S(0.0)=\left\{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 5 \\ 0 \\ 0 \end{pmatrix},\begin{pmatrix} 5 \\ \infty \\ \infty \end{pmatrix}\right\}$$

$$t_1 = \min(5, \infty, \infty) = 5$$

$$D^{+} \colon Y(T_{1}, 5) = 1 \qquad M_{p_{1}} = 0 + 1 = 1 \\ Y(T_{2}, 5) = 0 \qquad M_{p_{2}} = 0 + 1 = 1 \\ Y(T_{3}, 5) = 0 \qquad M_{p_{3}} = 1 \qquad S(0.0) = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 5 \\ 0 \end{pmatrix}, \begin{pmatrix} \infty \\ \infty \\ \infty \end{pmatrix} \right\}$$

$$E_{T_{1}} = \infty \qquad M_{p_{4}} = 5 \qquad M_{p_{5}} = 0$$

$$E_{T_{2}} = \infty \qquad M_{p_{6}} = 0$$

$$P_1 \ge 1 => Z(T_1, 5) = 1$$

$$P_2 \ge 1, P_3 \ge 1 \Longrightarrow Z(T_2, 5) = 1$$

$$P_2 \ge 1, P_4 \ge 1 => Z(T_3, 5) = 1, \quad \Psi = \{T_1, T_2, T_3\} => X(T_1) = 1, X(T_2) = 1,$$

$$P_{2} \geq 1, P_{4} \geq 1 \Rightarrow Z(T_{3}, 5) = 1, \quad \Psi = \{T_{1}, T_{2}, T_{3}\} \Rightarrow X(T_{1}) = 1, X(T_{2}) = 1,$$

$$t_1 = \min(10, 9, \infty) = 9$$

$$D^{+}: Y(T_{1}, 9) = 0 M_{p_{1}} = 0 M_{p_{2}} = 0 M_{p_{2}} = 0 M_{p_{3}} = 0 + 1 = 1 S(9.0) = \begin{cases} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 10 \\ \infty \\ \infty \end{pmatrix} \end{cases}$$

$$E_{T_{1}} = 10 M_{p_{3}} = 0 + 1 = 1 M_{p_{5}} = 0 + 1 = 1 M_{p_{6}} = 0 M_{p$$

Висновок

В ході виконання лабораторної роботи, які включали повторне застосування PetriObjModelPaint для моделювання систем на основі стохастичних мереж Петрі та використання графічного редактора мереж Петрі, я здобула нові знання щодо моделювання та взаємодії об'єктів у таких системах:

- 1. У реалізації моделей за завданнями 2 та 3 використала алгоритм імітації стохастичної мережі Петрі з класу PetriSim. За результатами верифікації отримав важливі висновки про функціонування моделей, визначивши їхню ефективність та можливі напрямки оптимізації.
- 2. У завданні 4 успішно була побудована модель системи, що відтворює обробку потоку запитів головним та допоміжним сервером. Встановила ймовірність звернення до допоміжного сервера та задала самостійно часові характеристики обробки запитів.

Далі, в завданні 5 були успішно побудовані математичні рівняння, що описують мережу Петрі, що була розроблена у попередньому завданні. Це дозволить проводити аналітичні розрахунки та оцінювати характеристики системи.