

planetmath.org

Math for the people, by the people.

truth-value semantics for intuitionistic propositional logic is sound

 $Canonical\ name \qquad Truthvalue Semantics For Intuition is tic Propositional Logic Is Sound$

Date of creation 2013-03-22 19:31:38 Last modified on 2013-03-22 19:31:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 21

Author CWoo (3771) Entry type Definition Classification msc 03B20 **Proposition 1.** The truth-value semantics for intuitionistic propositional logic is sound.

Proof. We show that, for each positive integer n, every theorem of intuitionistic propositional logic is a tautology for V_n . This amounts to showing that, for every interpretation v on V_n ,

- each axiom is true, and
- modus ponens preserves truth.

Let us take care of the second one first. Suppose $v(A) = v(A \to B) = n$. If $v(A) \le v(B)$, then v(B) = n. Otherwise, v(B) < v(A). But this means that $n = v(A \to B) = v(B)$, forcing v(B) = n. Therefore, v(B) = n.

Now, we verify that each of the axiom schemas below are true:

- 1. $(A \wedge B) \to A$ and $(A \wedge B) \to B$. Since $v(A \wedge B) = \min\{v(A), v(B)\} \le v(A)$, we get $v((A \wedge B) \to A) = n$. The other one is proved similarly.
- 2. $A \to (A \lor B)$ and $B \to (A \lor B)$. Since $v(A) \le \max\{v(A), v(B)\} = v(A \lor B)$, we get $v(A \to (A \lor B)) = n$. The other one is proved similarly.
- 3. $A \to (B \to A)$. If $v(B) \le v(A)$, $v(B \to A) = n$, so that $v(A \to (B \to A)) = n$ as well. If v(A) < v(B), then $v(B \to A) = v(A)$, so that $v(A \to (B \to A)) = n$.
- 4. $\neg A \rightarrow (A \rightarrow B)$. If $v(A) \leq v(B)$, $v(A \rightarrow B) = n$, so that $v(\neg A \rightarrow (A \rightarrow B)) = n$ as well. If v(B) < v(A), then $v(A \rightarrow B) = v(B)$. Also, v(B) < v(A) implies that v(A) > 0, so that $v(\neg A) = 0$, and $v(\neg A \rightarrow (A \rightarrow B)) = n$ as a result.
- 5. $A \to (B \to (A \land B))$. If $v(B) = v(A \land B)$, then $v(B) \le v(A)$ and $v(B \to (A \land B)) = n$, so that $v(A \to (B \to (A \land B))) = n$ also. If on the other hand $v(A \land B) < v(B)$, then

$$v(A) = v(A \wedge B)$$
 and $v(B \to (A \wedge B)) = v(A \wedge B)$,

so that

$$v(A \to (B \to (A \land B))) = v(A \to (A \land B)) = n.$$

6.
$$(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$$
.

If $v(B) = v(A \vee B)$, then $v(A) \leq v(B)$, and

$$v((B \to C) \to ((A \lor B) \to C)) = v((B \to C) \to (B \to C)) = n,$$

so that

$$v((A \to C) \to ((B \to C) \to ((A \lor B) \to C))) = n$$

as well. Otherwise, $v(B) < v(A) = v(A \vee B)$. This means that

$$v((B \to C) \to ((A \lor B) \to C))) = v((B \to C) \to (A \to C)),$$

and therefore

$$v((A \to C) \to ((B \to C) \to ((A \lor B) \to C))) = v((A \to C) \to ((B \to C) \to (A \to C))) = n$$

by 3 above.

7.
$$(A \to B) \to ((A \to (B \to C)) \to (A \to C))$$
.

It is clear that $v(C) \leq v(B \to C)$. If $v(C) = v(B \to C)$, then

$$v((A \to (B \to C)) \to (A \to C)) = v((A \to C) \to (A \to C)) = n,$$

so that

$$v((A \to B) \to ((A \to (B \to C)) \to (A \to C))) = n$$

too. If $v(C) < v(B \to C)$, then $v(B \to C) = n$, which implies $v(B) \le v(C)$. This in turn implies that $v(A \to B) \le v(A \to C)$, so that

$$v((A \to C) \to ((A \to (B \to C)) \to (A \to C))) \le v((A \to B) \to ((A \to (B \to C)) \to (A \to C))$$

But by 3 above,

$$v((A \to C) \to ((A \to (B \to C)) \to (A \to C))) = n,$$

hence

$$v((A \to B) \to ((A \to (B \to C)) \to (A \to C))) = n$$

as a result.

8.
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
.

Pick any C such that v(C) = 0, such as $D \land \neg D$. Then $v(\neg B) = v(B \rightarrow C)$, so that

$$v((A \to B) \to ((A \to \neg B) \to \neg A)) = v((A \to B) \to ((A \to (B \to C)) \to (A \to C))) = n$$
 by 7.

Note that the proofs of the axioms employ some elementary facts, for any wff's A,B,C:

• If
$$v(B) = n$$
 or $v(A) = 0$, then $v(A \to B) = n$.

• if
$$v(B) = 0$$
, then $v(A \to B) = v(\neg A)$.

• if
$$v(A) = n$$
, then $v(A \to B) = v(B)$.

•
$$v(B) < v(A \rightarrow B)$$
.

• if
$$v(B) \leq v(C)$$
, then

$$- v(A \vee B) \le v(A \vee C),$$

$$-v(A \wedge B) < v(A \wedge C),$$

$$-v(A \to B) \le v(A \to C),$$

$$-v(C \to A) \le v(B \to A).$$

From the facts above, one readily deduces:

• if
$$v(B) \le v(C)$$
, then $v(\neg C) \le v(\neg B)$,

• if
$$v(B) = v(C)$$
, then

$$-v(A \vee B) = v(A \vee C),$$

$$-v(A \wedge B) = v(A \wedge C),$$

$$-v(A \to B) = v(A \to C),$$

$$-v(C \to A) = v(B \to A),$$

$$- v(\neg B) = v(\neg C).$$