VE 320 Summer 2019

Introduction to Semiconductor Devices

Instructor: Rui Yang (杨睿)

Office: JI Building 434

rui.yang@sjtu.edu.cn

Lecture 9

BJT (Chapter 12)

Previously: pn Junction Current

charge carrier transport: <u>forward bias: current ratio</u>

Assumption: No recombination-generation in depletion region.

Example: pn Junction Current

 $N_D = 10^{18} \text{ cm}^{-3}, N_A = 10^{16} \text{ cm}^{-3}$ $L_n = 0.04 \text{ cm}, L_p = 0.003 \text{ cm}$

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

10^{.3} 10⁻⁴ 10^{.5} 10⁻⁶ 0.04 cm 10⁻⁷ 10° 10^{.9} 1012 10¹⁴ 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁸ 10¹⁹ 10²⁰ Acceptor density N_g (cm⁻³)

http://www.ioffe.ru/SVA/NSM/Semicond/Siz

Example: pn Junction Current

http://www.ioffe.ru/SVA/NSM/Semicond/Si/

$$\begin{split} N_D &= 10^{18}\,\text{cm}^{-3},\, N_A \text{=} 10^{16}\,\text{cm}^{-3} \\ L_n &= 0.04\text{cm},\, L_p \text{=} 0.003\text{cm} \\ \mu_p &= 100\text{cm}^2/\text{Vs} \;\; \mu_n \text{=} \; 1300 \;\text{cm}^2/\text{Vs} \end{split}$$

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

Example: pn Junction Current

$$\begin{split} N_D &= 10^{18}\,\text{cm}^{\text{-}3},\, N_A \text{=} 10^{16}\,\text{cm}^{\text{-}3} \\ L_n &= 0.04\text{cm},\, L_p \text{=} 0.003\text{cm} \\ \mu_p &= 100\text{cm}^2/\text{Vs} \,\,\, \mu_n \text{=} \,\, 1300\,\,\text{cm}^2/\text{Vs} \end{split}$$

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p} = \frac{1300 \times 10^{18} / 0.04}{100 \times 10^{16} / 0.003} = 97.5$$

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

BJT Charateristics:

- 1. Base width smaller → higher gain
- 2. Larger emitter-base concentration ratio → higher gain

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

$$J_c \approx 96 \times J_B \rightarrow Gain \beta = 96$$

B-E junction forward biased, B-C junction reverse biased: forward-active operating mode

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

Qualitative *I-V*:

$$i_C = I_S \exp\left(\frac{\nu_{BE}}{V_t}\right)$$

The collector current is controlled by the base–emitter voltage: the current at one terminal of the device is controlled by the voltage applied to the other two terminals of the device

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

Qualitative *I-V*:

Injected holes produce i_{E2}

$$i_{E2} = I_{S2} \exp\left(\frac{\nu_{BE}}{V_t}\right)$$

Injected electrons produce i_{F1}

$$i_E = i_{E1} + i_{E2} = i_C + i_{E2} = I_{SE} \exp\left(\frac{\nu_{BE}}{V_t}\right)$$

Common-base current gain

$$\frac{i_C}{i_E} \equiv \alpha$$

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

Qualitative *I-V*:

Injected holes produce $i_{E2} = i_{Ba}$

Recombination in the base: re-supply of holes by flow of positive charge, current i_{Bb}

The number of holes per unit time recombining in the base is directly related to the number of minority carrier electrons in the base, so i_{Bb} is also proportional to $\exp(\nu_{BE}/V_t)$

Common-emitter current gain

$$\frac{i_C}{i_B} \equiv \beta$$

$$\frac{J_n}{J_p} = \frac{D_n N_D / L_n}{D_p N_A / L_p}$$

Basic facts:

- 1. Narrower base → larger gain
- 2. $\beta \approx N_d/N_a$, higher emitter-to-base doping ratio \rightarrow higher gain

Three modes of operation:

1. Cutoff: B-E zero or reverse biased, B-C reverse biased.

Emitter and collector currents are zero

2. Forward-active: B-E forward biased, B-C reverse biased. $V_{\rm cc}$ large enough, $V_{\rm R}$ small enough, $V_{\rm CB}$ >0. KVL

$$V_{CC} = I_C R_C + V_{CB} + V_{BE} = V_R + V_{CE}$$

3. Saturation: both B-E and B-C junctions are forward-biased, so that $I_{\rm C}$ is no longer controlled by $V_{\rm BE}$. $V_{\rm BE}$ increase, $V_{\rm R}$ increases and $I_{\rm C}$ increases

 I_{C} - V_{CE} :

Load line

$$V_{CE} = V_{CC} - I_C R_C$$

Small signal voltage gain

Find the electron flux Fn at x=0 and W, if

- 1) W=20um
- 2) W=2um

$$0 = D_n \frac{\partial^2 \delta n}{\partial x^2} - \frac{\delta n}{\tau} \qquad \Rightarrow \delta n = Aexp\left(-\frac{x}{L_n}\right) + Bexp\left(\frac{x}{L_n}\right)$$

$$A = (\delta n)_0 \frac{\exp\left(\frac{W}{L_n}\right)}{\exp\left(\frac{W}{L_n}\right) - \exp\left(-\frac{W}{L_n}\right)} \qquad B = -(\delta n)_0 \frac{\exp\left(-\frac{W}{L_n}\right)}{\exp\left(\frac{W}{L_n}\right) - \exp\left(-\frac{W}{L_n}\right)}$$

$$\delta n(x) = (\delta n)_0 \frac{\sinh\left(\frac{W - x}{L_n}\right)}{\sinh\left(\frac{W}{L_n}\right)}$$

$$\delta n(x) = (\delta n)_0 \frac{\sinh\left(\frac{W-x}{L_n}\right)}{\sinh\left(\frac{W}{L_n}\right)} \qquad F_n = -D_n \frac{d\delta n(x)}{dx} = \frac{D_n(\delta n)_0}{L_n} \frac{\cosh\left(\frac{W-x}{L_p}\right)}{\sinh\left(\frac{W}{L_p}\right)}$$

