Hausaufgabe 5

Aufgabe 5

Wir berechnen: $r_Q(q_0, q_0)$. Mit $x = q_1$ erhalten wir:

$$r_Q(q_0, q_0) = r_{\{q_0\}}(q_0, q_0) + r_{\{q_0\}}(q_0, q_1)r_{\{q_0\}}(q_1, q_1)^*r_{\{q_0\}}(q_1, q_0)$$

Wir berechnen: $r_{\{q_0\}}(q_0, q_0)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_0, q_0) = r_{\varnothing}(q_0, q_0) + r_{\varnothing}(q_0, q_0)r_{\varnothing}(q_0, q_0)^* r_{\varnothing}(q_0, q_0)$$
$$= (a + \varepsilon) + (a + \varepsilon)(a + \varepsilon)^*(a + \varepsilon)$$
$$= a^*$$

Wir berechnen: $r_{\{q_0\}}(q_0, q_1)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_0, q_1) = r_{\varnothing}(q_0, q_1) + r_{\varnothing}(q_0, q_0)r_{\varnothing}(q_0, q_0)^*r_{\varnothing}(q_0, q_1)$$

$$= (b+c) + (a+\varepsilon)(a+\varepsilon)^*(b+c)$$

$$= (b+c) + a^*(b+c)$$

$$= a^*(b+c)$$

Wir berechnen: $r_{\{q_0\}}(q_1, q_1)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_1, q_1) = r_{\varnothing}(q_1, q_1) + r_{\varnothing}(q_1, q_0)r_{\varnothing}(q_0, q_0)^* r_{\varnothing}(q_0, q_1)$$

= $\varepsilon + a(a + \varepsilon)^*(b + c)$
= $\varepsilon + aa^*(b + c)$

Wir berechnen: $r_{\{q_0\}}(q_1, q_0)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_1, q_0) = r_{\varnothing}(q_1, q_0) + r_{\varnothing}(q_1, q_0)r_{\varnothing}(q_0, q_0)^*r_{\varnothing}(q_0, q_0)$$

= $a + a(a + \varepsilon)^*(a + \varepsilon)$
= $a + aa^*$
= aa^*

Durch Rückeinsetzen erhalten wir nun:

$$r_Q(q_0, q_0) = r_{\{q_0\}}(q_0, q_0) + r_{\{q_0\}}(q_0, q_1)r_{\{q_0\}}(q_1, q_1)^*r_{\{q_0\}}(q_1, q_0)$$

$$= a^* + a^*(b+c)(\varepsilon + aa^*(b+c))^*aa^*$$

$$= a^* + a^*(b+c)(aa^*(b+c))^*aa^*$$

Aufgabe 6

a) Angenommen, L_1 ist regulär. Wir wählen n zu L_1 gemäß Pumping-Lemma und betrachten das Wort $w=a^nb^nc^{2n}\in L_1$. Das Pumping-Lemma liefert Zerlegung

$$w = xyz$$
 mit $|xy| \le n$ und $y \ne \varepsilon$ sowie $xz = xy^0z \in L_1$

Wegen $|xy| \le n$ und $y \ne \varepsilon$ gilt $x = a^j$ mit $j \ge 0$ und $y = a^k$ mit k > 0. Jedoch:

$$xz = a^{n-k}b^nc^{2n} \notin L_1$$
 weil $k > 0 \implies n - k + n \neq 2n$

Dies führt also zu einem Widerspruch. Folglich ist L_1 nicht regulär.

b) Angenommen, L_2 ist regulär. Wir wählen n zu L_2 gemäß Pumping-Lemma und betrachten das Wort $w = b^n a^{n+1} \in L_2$. Das Pumping-Lemma liefert Zerlegung

$$w = xyz$$
 mit $|xy| \le n$ und $y \ne \varepsilon$ sowie $xy^3z \in L_2$

Wegen $|xy| \le n$ und $y \ne \varepsilon$ gilt $x = b^j$ mit $j \ge 0$ und $y = b^k$ mit k > 0. Jedoch:

$$xy^3z = a^{n+2k}b^{n+1} \notin L_2$$
 weil $k > 0 \implies 2k \ge 2 \implies n+2k \not< n+1$

Dies führt also zu einem Widerspruch. Folglich ist L_2 nicht regulär.

Aufgabe 7

Zuerst bilden teilen wir die Zustände in Endzustände und nicht-Endzustände:

$$\mathcal{B}_1 := \{q_0, q_1, q_5\} \qquad \qquad \mathcal{B}_2 := \{q_2, q_3, q_4\}$$

Wir verfeinern \mathcal{B}_2 bzgl der b-Transition und \mathcal{B}_1 :

$$\mathcal{B}_1 := \{q_0, q_1, q_5\}$$
 $\mathcal{B}_3 := \{q_2\}$ $\mathcal{B}_4 := \{q_3, q_4\}$

Wir verfeinern \mathcal{B}_1 bzgl. der a-Transition und \mathcal{B}_3 :

$$\mathcal{B}_5 := \{q_1\}$$
 $\mathcal{B}_6 := \{q_0, q_5\}$ $\mathcal{B}_3 := \{q_2\}$ $\mathcal{B}_4 := \{q_3, q_4\}$

Es lässt sich nun keine Zustandsmenge noch weiter verfeinern. Der minimale DFA ist dann:

Aufgabe 8

a)

Seien $w, v \in \Sigma^*$ mit $w \neq v$ gegeben. Es gelte o.B.d.A. $|w| \geq |v|$. Wir unterscheiden 2 Fälle:

Fall 1: es ist $v \not\sqsubset w$, also v kein echtes Präfix von w.

Dann gilt offensichtlich $ww^{\mathcal{R}} \in L$. Wäre nun $vw^{\mathcal{R}} \in L$, so folgt auch

$$vw^{\mathcal{R}} = (vw^{\mathcal{R}})^{\mathcal{R}} = wv^{\mathcal{R}} \implies v \sqsubset w$$

Dies stellt einen Widerspruch zur Annahme dar. Also gibt es ein $u = w^{\mathcal{R}} \in \Sigma^*$ sodass $wu \in L$ aber $vu \notin L$. Folglich gilt $w \not\sim_L v \implies w/_L \neq v/_L$.

Fall 2: es ist $v \subseteq w$, also v ein echtes Präfix von w, also auch |v| < |w|.

Dann sei ein $x \in \Sigma$ gegeben sodass $vx \not\sqsubset w$, also vx kein echtes Präfix mehr von w ist. Dann gilt offensichtlich $wxw^{\mathcal{R}} \in L$. Wäre nun $vxw^{\mathcal{R}} \in L$, so folgt auch

$$vxw^{\mathcal{R}} = (vxw^{\mathcal{R}})^{\mathcal{R}} = wxv^{\mathcal{R}} \implies vx \sqsubset w$$

Dies stellt einen Widerspruch zur Annahme dar. Also gibt es ein $u = xw^{\mathcal{R}} \in \Sigma^*$ sodass $wu \in L$ aber $vu \notin L$. Folglich gilt $w \not\sim_L v \implies w/_L \neq v/_L$.

Insgesamt gilt für verschiedene Worte $w, v \in \Sigma^*$ stets $w/L \neq v/L$. Dementsprechend gilt $\forall w \in \Sigma^* : w/L = \{w\}$, also auch index $(L) = \infty$. Die trennenden Wörter sind zu je zwei Wörtern $w, v \in \Sigma^*$ wie oben beschrieben je nach Fall zu finden, also w^R oder xw^R für ein $x \in \Sigma$.

b) Es gilt:

 $\varepsilon \not\sim_K a$, denn $\varepsilon b = b \in K$ jedoch $ab \notin K$. Analog gilt $\varepsilon a = a \in K$ jedoch $ba \notin K$, also $\varepsilon \not\sim_K b$. Weiter haben wir $a \not\sim_K b$ durch $aa \in K, ba \notin K$.

Dann haben wir noch ab sowie ba und es gilt:

 $\varepsilon \not\sim_K ab \text{ durch } \varepsilon\varepsilon = \varepsilon \in K, ab\varepsilon = ab \notin K. \ \varepsilon \not\sim_K ba \text{ durch } \varepsilon\varepsilon = \varepsilon \in K, ba\varepsilon = ba \notin K.$ $a \not\sim_K ab \text{ durch } a\varepsilon = a \in K, ab\varepsilon = ab \notin K. \ a \not\sim_K ba \text{ durch } a\varepsilon = a \in K, ba\varepsilon = ba \notin K.$ $b \not\sim_K ab \text{ durch } b\varepsilon = b \in K, ab\varepsilon = ab \notin K. \ b \not\sim_K ba \text{ durch } b\varepsilon = b \in K, ba\varepsilon = ba \notin K.$ $ab \not\sim_K ba \text{ durch } aba = aba \in K, baa = ba \notin K.$

Sei nun $w \in \Sigma^*$ mit $w \notin \{\varepsilon, a, b, ab, ba\}$, sonst ist die Angehörigkeit zu einer der Äquivalenzklassen offensichtlich.

Wir unterscheiden 3 Fälle:

Fall 1: $|w|_{ab} = |w|_{ba}$. Dann ist w = vc für ein $v \in \Sigma^*$ und $c \in \{a, b\}$. Für $x \in \Sigma^*$ gilt stets

$$|wx|_{ab} - |wx|_{ba} = |w|_{ab} + |cx|_{ab} - |w|_{ba} - |cx|_{ba} = |cx|_{ab} - |cx|_{ba}$$

Da jedes Infix ab bzw. ba aus wx entweder in vc, oder in cx vorkommt (da |ab| = |ba| = 2). Es folgt $wx \in K \iff cx \in K$ und damit $w \in c/_K (= a/_K \text{ oder } b/_K)$.

Fall 2: $|w|_{ab} > |w|_{ba}$.

Wenn w = cvc für ein $c \in \Sigma$ und $v \in \Sigma^*$ wäre, so hätten wir zu jedem Infix ab aus w genau ein Infix ba in w, also $|w|_{ab} = |w|_{ba}$. Weiter würde im Fall w = bva für ein $v \in \Sigma^*$ stets $|w|_{ba} > |w|_{ab}$ gelten.

Also ist w = avb für $v \in \Sigma^*$.

Für $x \in \Sigma^*$ gilt stets

$$|wx|_{ab} - |wx|_{ba} = |avbx|_{ab} - |avbx|_{ba} = |avb|_{ab} + |bx|_{ab} - |avb|_{ba} - |bx|_{ba}$$

= $1 + |x|_{ab} - |bx|_{ba} = |abx|_{ab} - |abx|_{ba}$

Analog zu Fall 1, da jedes Infix ab bzw. ba aus avbx entweder in avb oder bx vorkommen muss (da |ab| = |ba| = 2). Es folgt $wx \in K \iff abx \in K$ und damit $w \in ab/K$.

Fall 3: $|w|_{ba} > |w|_{ab}$.

Dies ist analog zu Fall 2. Es muss w = bva für ein $v \in \Sigma^*$. Dann gilt für $x \in \Sigma^*$ stets

$$|wx|_{ba} - |wx|_{ab} = |bax|_{ba} - |bax|_{ab}$$

Damit folgt $wx \in K \iff ba \in K \text{ also } w \in ba/_K$.

Insgesamt gilt für alle $w \in \Sigma^*$, dass w in eine der genannten Äquivalenzklassen gehört. Da auch alle dieser verschieden sind, haben wir index(K) = 5.