Applying the CDC's Building Resilience Against Climate Effects (BRACE) Framework in Massachusetts

Bucaday, July 15, 2014

MIT Endicott House, Dedham, MA

Marc A. Nascarella, Ph.D. Director, Environmental Toxicology Program

Outline

- Climate Change Health Hazards
- 2. Introduction to the CDC BRACE Framework
- 3. Applying BRACE to Evaluate Public Health Risk
- Available Tools
- 5. Questions

Climate Change Hazards

(Source: Nicholas Stern (2006), "Stern Review on the Economics of Climate Change")

Climate Change Effects

(Source: Nicholas Stern (2006), "Stern Review on the Economics of Climate Change")

Climate Change Health Effects

(Source: NIEHS "A Human Health Perspective on Climate Change", EHP, 2010)

BRACE Framework

PURPOSE: Couple climate projections with health data to more effectively anticipate, prepare, and respond to climate sensitive health impacts.

STEP 1: Forecast Climate Impact and Assess

Vulnerabilities

STEP 2: Project Disease Burdens from Climate Change

STEP 3: Assess Public Health Interventions

STEP 4: Develop & Implement Climate Adaptation Plan

STEP 5: Evaluate Impact and Improve Framework

BRACE Framework

Int. J. Environ. Res. Public Health 2014, 11, 6433-6458; doi:10.3390/ijerph110606433

OPEN ACCESS

International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph

Article

Building Resilience against Climate Effects—A Novel Framework to Facilitate Climate Readiness in Public Health Agencies

Gino D. Marinucci ¹, George Luber ¹, Christopher K. Uejio ^{1,2}, Shubhayu Saha ¹ and Jeremy J. Hess ^{1,3,4,±}

- Climate and Health Program, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; E-Mails: ipx1@cdc.gov (G.D.M.); gcl4@cdc.gov (G.L.); cuejio@fsu.edu (C.K.U.); hsf5@cdc.gov (S.S.)
- Department of Geography, Florida State University, 113 Collegiate Loop, Tallahassee, FL 32306, USA
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA 30322, USA
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
- * Author to whom correspondence should be addressed; E-Mail: jhess@emory.edu; Tel.: +1-404-251-8851; Fax: +1-404-688-6351.

Received: 8 April 2014; in revised form: 3 June 2014 / Accepted: 6 June 2014 / Published: 20 June 2014

Assessing the health effects of climate change...where to begin?

Basic Public Health Risk Assessment

- Public health risks are a function of the type of hazard and our exposure to them.
- e.g., health hazard such as an air contaminant:
 - STEP 1 Determine inherent toxicity of the contaminant (e.g., "imminent hazard value")
 - STEP 2 Determine **exposure** (i.e., what level are people breathing).
 - Estimate risk based on:

RISK = HAZARD X EXPOSURE

Climate Risk Assessment

- Public health risks of climate change are similar
- Risks are directly related to specific climate hazards and our exposure to them.
- Using the CDC BRACE framework we:
 - Predict climate-related hazards
 - Predict human vulnerability of exposure
 - Estimate risk based on:

RISK = HAZARD X EXPOSURE

Risk of Climate Effects

HAZARD

Probability Magnitude

EXPOSURE

Vulnerability Susceptibility

RISK

Damage Valuation

Hazard x Exposure = Risk

Example: Risk of Flooding

RISK = HAZARD x VULNERABILITY

Risk = Flooding in a Coastal Home

Hazard = Sea Level

Vulnerability = Elevation of Home

Predicting Hazards

1. Current Health Effects

Determine relationship between suspected hazard (i.e., extreme heat) and population experiencing adverse heath outcomes.

2. Future Health Effects

Based on relationship between vulnerable population and number of hot days in the future (i.e., population and temperature in 2030).

Predicting Hazards: Extreme Heat

RISK = HAZARD x VULNERABILITY

Risk = Acute Heat Injury Requiring Medical Services

Hazard = Days where Temp. ≥ 93°F

Vulnerability = Social Isolation + Age ≥ 65 years old*

*see Health Vulnerability Index; Reid et al. (2012). Environmental Health Perspectives, 120(5), 715-719.

Massachusetts Weather Data

Maximum Temperature in MA

Combine Weather and Health Data

Massachusetts Health Data

Heat-related Health Burden in MA Communities

- Community level heat-related hospital admissions, per community, per day
 - Population Data
 - Percent age 65 or older
 - Percent > 65 and live alone
 - Percent of homes with no Air Conditioning
 - Health Data
 - Heat related illness
 - Electrolyte imbalance
 - Diabetes
 - Nephritis and nephritic syndrome
 - Respiratory Disease

Risk of Heat-Related Hospital Visits

- Estimated 1°- 3°F temperature increase by 2030
- 0 162 additional heat-related hospital visits/town/year

Planning for Climate Adaptation

Parameter	Current Conditions (1961–1990)	Predicted Range of Change by 2050	Predicted Range of Change by 2100
Annual temperature: (°C/°F)	8/46	2 to 3 / 4 to 5	3 to 5/5 to 10**
Winter temperature¹ (°C/°F)	-5/23	1 to 3 / 2 to 5	2 to 5 / 4 to 10**
Summer temperature: (°C/°F)	20/68	2 to 3 / 4 to 5	2 to 6 / 4 to 10**
Over 90 °F (32.2 °C) temperature² (days/yr)	5 to 20	_	30 to 60
Over 100 °F (37.7° C) temperature² (days/yr)	0 to 2	_	3 to 28
Ocean pH ^{3,4}	7 to 8	_	-0.1 to -0.3*
Annual sea surface temperature (°C/°F)	12/535	2/3 (in 2050) ⁵	4/8
Annual precipitation ¹	103 cm/41 in.	5% to 8%	7% to 14%**
Winter precipitation:	21 cm/8 in.	6% to 16%	12% to 30%**
Summer precipitation ¹	28 cm/11 in.	-1% to −3%	-1% to 0%**
Streamflow—timing of spring peak flow: (number of calendar days following January 1)	85	-5 to -8	-11 to -13**
Droughts lasting 1-3 months1 (#/30 yrs)	13	5 to 7	3 to 10**
Snow days (number of days/month):	5	-2	-2 to −4**
Length of growing season¹ (days/year)	184	12 to 27	29 to 43

Table 1: Changes in Massachusetts' Climate

Sources: 1-Hayhoe et al., 2006; 2-Frumhoff et al., 2007; 3-IPCC, 2007; 4-MWRA, unpublished; 5-Nixon et al., 2004 Note: All numbers have been rounded to the nearest whole number. Unless otherwise indicated, the predictions for the year listed as 2050 are for the period between 2035–2064. * Global data; **Predictions for period between 2070-2099

Massachusetts Climate Change Adaptation Report

6 Human Health and Welfare

Introduction

Changes in climate will undoubtedly affect human health and welfare in Massachusetts—both directly via extreme heat events and indirectly through increases in vector-borne diseases. Climate change will affect the quality of the air we breathe, the shelter we rely on, the quality and quantity of the healthy, and resilient population, and responsive local health systems, adaptation efforts for human health should build on conventional and existing medical and public health standards, using a variety of approaches. These approaches may include using health surveillance systems to track disease occurrence and identifying locations and population groups at greatest risk for specific health threats. These efforts may also include assessing

Capacity to Respond to Climate Adaptation

"...comprehensive survey aimed at assessing the capacity of local health departments in Massachusetts to respond to the public health impacts of climate change..."

MA Environmental Public Health Tracking

https://matracking.ehs.state.ma.us/#

Research

Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tracking Study

Colleen E. Reid, J. Jennifer K. Mann, Ruth Alfasso, Paul B. English, Galatea C. King, Rebecca A. Lincoln, Helene G. Margolis, Dan J. Rubado, Joseph E. Sabato, Nancy L. West, Brian Woods, Kathleen M. Navarro, and John R. Balmes. A

¹Environmental Health Sciences, School of Public Health, University of California-Berkeley, Berkeley, California, USA; ²Massachusetts Department of Public Health, Bureau of Environmental Health, Broton, Massachusetts, USA; ²Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, USA; ⁴Department of Health and Human Services, Maine Center for Disease Control and Prevention, Augusta, Maine, USA; ⁴Department of Health and Human Services, Maine (Center for Disease Control and Prevention, Augusta, Maine, USA; ⁴Department of Health, Authority, Portland, Oregon, USA; ⁵Division of Environmental Public Health, Oregon, Health Authority, Portland, Oregon, USA; ⁵Division of Environmental Health, Washington, USA; ²Environmental Health Epidemiology Bureau, New Mexico Department of Health, Santa Fe, New Mexico, USA; ⁵Division of Occupational and Environmental Medicine, Division; Of California, USA

BACKGROUND: Extreme hot weather conditions have been associated with increased morbidity and mortality, but risks are not evenly distributed throughout the population. Previously, a heat vulnerability index (HVI) was created to geographically locate populations with increased vulnerability to heat in metropolitan areas throughout the United States.

OBJECTIVES: We sought to determine whether areas with higher heat vulnerability, as characterized by the HVI, experienced higher rates of morbidity and mortality on abnormally hot days.

for specific metropolitan areas (Johnson et al. 2009; Lindley et al. 2006; Loughnan et al. 2009; Rinner et al. 2009; Sister et al. 2009; Vescovi et al. 2005), the HVI is the only vulnerability map that is national in scope. The HVI suggests substantial variability in heat

Thank you

Questions?

Marc A. Nascarella, Ph.D. Director, Environmental Toxicology Program

