AKENTEN APPIAH-MENKA

UNIVERSITY OF SKILLS TRAINING AND ENTREPRENEURIAL DEVELOPMENT FACULTY OF APPLIED SCIENCES AND MATHEMATICS EDUCATION DEPARTMENT OF MATHEMATICS EDUCATION

END OF SESCOND SEMESTER EXAMINATION, AUGUST 2021

COURSE CODE	MAT 124	
COURSE TITLE	Geometry II	
DURATION	Two (2) hours	
LECTURERS	Mr. Ernest Larbi and Dr. Mohammed Kumah	
INSTRUCTION	Answer ALL questions both in section A and section B.	

INSTRUCTION	Answer ALL questions both in section A and section B.	
INDEX NO.	CLASS	

SECTION A 130 MARKSI

	SECTIO		
CI	RCLE the correct option/answer in question	ns 1 to 30.	
1.	Find the gradient of the circle $x^2 + y^2 - 10x + y - 4 = 0$ at point (1,-4).		
	(a) $-\frac{8}{9}$	(b) $-\frac{9}{8}$	
	(c) $-\frac{12}{7}$	(d) $\frac{12}{7}$	
2.	A line touches a circle with centre (1,-4	1) at a point (2,1). Find the equation of the line.	
	(a) $x - 5y - 9 = 0$	(b) $5x - y - 9 = 0$	
	(c) $5x-3y-9=0$	(d) $5x - y + 9 = 0$	
3.	Find the area of a circle described by the equation $x^2 + y^2 - 2x + 4y - 5 = 0$.		
	(a) $\sqrt{10}\pi$ sq. units	(b) 5π sq. units	
	(c) 10π sq. units	(d) $\sqrt{5}\pi$ sq. units	
4.	Determine the equation of the normal to the circle $x^2 + y^2 - 2x + 4y - 5 = 0$ at point (2,2).		
	(a) $4x - y + 6 = 0$	(b) $4x + y - 6 = 0$	
	(c) $4x - y - 6 = 0$	(d) $x-4y-6=0$	
5.	Find the radius of the circle given by the	e equation $x^2 + y^2 - 4x - 6y - 12 = 0$.	
	(a) 5	(b) $\sqrt{12}$	
	(c) 25	(d) 30	
6.	Find the equation of the parabola with v	ertex at the origin and has its focus at (0,3).	
	(a) $x^2 = -12y$	(b) $x^2 = 12y$	

(a)
$$x^2 = -12y$$

(d)
$$x^2 = 3y$$

(c)
$$x^2 = -3y$$

(d)
$$x^2 = 3y$$

The equation of a parabola is given by as $(x-\frac{1}{2})^2 = -\frac{1}{2}(y+4)$.

Use the equation to answer Questions 7 and 8.

7. Find the vertex of the parabola.

(a)
$$(-\frac{1}{2}, 4)$$

(b)
$$\left(-\frac{1}{2}, -4\right)$$

(c)
$$(\frac{1}{2}, -4)$$

(d)
$$(\frac{1}{2}, 4)$$

8.	Determine the axis of the parabola.	termi	arabola.
	(a) -4	(a) -	

(b)
$$x = \frac{1}{2}$$

(d)
$$x = -\frac{1}{2}$$

9. A parabola $y^2 = 12x$ passes through the point P(3, 6). Find the equation of the normal.

(a)
$$x + y - 9 = 0$$

(b)
$$x + y + 9 = 0$$

(c)
$$x - y + 9 = 0$$

(d)
$$x - y - 9 = 0$$

10. Find the length of the latus rectum of the parabola $y^2 = 10x$.

The equation of an ellipse is given by $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Use the equation to answer Questions 11 to 15.

11. Find the vertices of the equation.

(a)
$$(\pm 3, 0)$$
 and $(\pm 2, 0)$

(b)
$$(\pm 2, 0)$$
 and $(\pm 3, 0)$

(c)
$$(\pm 2,0)$$
 and $(\pm 6,0)$

(d)
$$(\pm 3, 0)$$
 and $(\pm 1, 0)$

12. Determine the foci of the equation.

(a)
$$(\pm \sqrt{8}, 0)$$

(b)
$$(\pm \sqrt{3}, 0)$$

(c)
$$(\pm \sqrt{5}, 0)$$

(d)
$$(\pm \sqrt{4}, 0)$$

13. Find the gradient of the ellipse at point (1, 4).

(a)
$$-9$$

(b)
$$\frac{1}{9}$$

(c)
$$-\frac{1}{9}$$

14. Find the equation of the normal at point (1, 4).

(a)
$$9x + y - 5 = 0$$

(b)
$$9x - y - 5 = 0$$

(c)
$$x+9y-5=0$$

(d)
$$9x + y + 5 = 0$$

15. Determine the directrices of the ellipse.

(a)
$$\pm \frac{9}{5} \sqrt{5}$$

(b)
$$\pm \frac{5}{9} \sqrt{5}$$

(c)
$$\pm \frac{5}{14} \sqrt{5}$$

(d)
$$\pm \frac{9}{8} \sqrt{5}$$

16. Compute the latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$.

(a)
$$\frac{16}{3}$$

(b)
$$\frac{8}{3}$$

(c)
$$\frac{32}{3}$$

(d)
$$\frac{3}{16}$$

17. Eliminate the parameter in the following equations $x = t^2 - 4$ and $y = t^3 - 4t$.

(a)
$$v^2 = x^3 - 4x^2$$

(b)
$$v^2 = x^3 + 4x^2$$

(c)
$$v^2 = -x^3 + 4x^2$$

(d)
$$y^2 = -x^3 - 4x^2$$

18. Convert the parameter	$x = \cos \theta$ and $y = \sin \theta$ to rectangular coordinates.
(a) $x^2 - y^2 = 1$	(b) $x^2 + y^2 = -1$
(c) $x^2 + y^2 = 1$	(d) $x^2 - y^2 = -1$
10 D : 1 1 1' 1'	$c : c : c : 1 : c : 1 : 1 : (: 1)^2$

- 19. Determine the direction of opening of the graph of the parabola $(y+1)^2 = 4(y-2)$.
 - (a) Opens to the left
- (b) Opens to the right
- (c) Opens upwards
- (d) Opens downwards
- **20.** Find the gradient of the tangent to the curve with the parametric equations $x = t^2 3$ and y = 2t 1 when t = 3.
 - (a) $\frac{2}{3}$

(b) 1

(c) $\frac{1}{3}$

- (d) -3
- **21.** Find the equation of the normal to the curve $f(x) = x^2$ and x = 3.
 - (a) x + 6y = 57

(b) 6y - x = 57

(c) x - 6y = 57

- (d) 6y + x = -57
- 22. What type of equation is the polar equation r = 4?
 - (a) A line

(b) A parabola

(c) An ellipse

- (d) A circle
- 23. Find the equations of the tangent and the normal to the parabola $y^2 = 4ax$ at the point $P(at^2, 2at)$.
 - (a) $yt + x = at^2$

- (b) $yt x = at^2$
- (c) $y+tx = 2at + at^3$
- (d) $y-tx = 2at + at^3$
- **24.** Obtain the polar equation of the Cartesian equation 3x + 5y 2 = 0.
 - (a) $\frac{-2}{3\cos\theta + 5\sin\theta}$
- (b) $\frac{20}{3\cos\theta + 5\sin\theta}$
- (c) $\frac{2}{3\cos\theta + 5\sin\theta}$
- (d) $\frac{2}{3\cos\theta 5\sin\theta}$
- 25. Which of the following equations is the standard equation of the parabola if the directrix is parallel to the y-axis in the positive quadrant?
 - (a) $y^2 = 4ax$

(b) $x^2 = 4ay$

(c) $x^2 = -4ay$

- (d) $y^2 = -4ax$
- **26.** Convert $r = \frac{2}{1 + \sin \theta}$ to rectangular form.
 - (a) $x^2 4y 4 = 0$
- (b) $x^2 + 4y + 4 = 0$
- (c) $-x^2 + 4y 4 = 0$
- (d) $x^2 + 4y 4 = 0$

27. Conv2ert the Cartesian coordinates (2, 2) to polar coordinates.

(a) $\left(2\sqrt{2}, \frac{\pi}{4}\right)$

(b) $\left(2\sqrt{2}, \frac{\pi}{2}\right)$

(b) $\left(\sqrt{2}, \frac{\pi}{4}\right)$

(d) $\left(2, \frac{\pi}{3}\right)$

28. Find the equation of a hyperbola with foci at (0, 3) and (0, -3) and vertices at (0, 2) and (0, -2).

(a) $\frac{x^2}{5} - \frac{y^2}{4} = 1$

(b) $\frac{y^2}{5} - \frac{x^2}{4} = 1$

(b) $\frac{x^2}{4} - \frac{y^2}{5} = 1$

(d) $\frac{y^2}{4} - \frac{x^2}{5} = 1$

29. Find the coordinates of the focus and the equation of the directrix of the parabola $y^2 = 2x$.

- (a) F(2,0), x = -2
- (b) F(2,0), x = 2
- (b) F(-2,0), x = -2
- (d) F(-2,0), x=2

30. Find the equation of the asymptotes of the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$.

(a) $y = \pm \frac{2}{\sqrt{3}} x$

(b) $y = \pm \frac{3}{4}x$

(b) $y = \pm \frac{4}{3}x$

(d) $y = \pm \frac{\sqrt{3}}{2} x$

SECTION B [30 MARKS]

Answer ALL questions in this section

- 16. (a) The line 2y + 3x 6 = 0 intersects the parabola $y^2 = 6x$ at K and M respectively. Find:
 - (i) the coordinates of K and M;

[5 marks]

(ii) the equation of the normal to the parabola at the point $(\frac{2}{3}, 2)$.

[5 marks]

(b) Eliminate the parameter in the following equation and identify the name of the conic section.

$$x = 4\cos t + 3$$
 and $y = 2\sin t + 1$

[5 marks]

17. (a) Write the equation $9x^2 - 4y^2 + 18x + 16y = 43$ in a standard form and identify the equation.

[4 marks]

(b) Hence, sketch the graph of the equation in 17(a).

[6 marks]

(c) Write the polar equation $r = 6\cos\theta - 8\sin\theta$ in rectangular coordinates and describe the equation obtained.

[5 marks]