

HCC/HCF4098B

DUAL MONOSTABLE MULTIVIBRATOR

- RETRIGGERABLE/RESETTABLE CAPABILITY
- TRIGGER AND RESET PROPAGATION DE-LAYS INDEPENDENT OF R_X, C_X
- TRIGGERING FROM LEADING OR TRAILING EDGE
- Q AND Q BUFFERED OUTPUTS AVAILABLE
- SEPARATE RESETS
- WIDE RANGE OF OUTPUT-PULSE WIDTHS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N° 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4098B (extended temperature range) and HCF4098B (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in-line dual in-line plastic or ceramic package and plastic micropackage. The HCC/HCF4098B dual monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixedvoltage timing application. An external resistor (Rx) and an external capacitor (C_X) control the timing for the circuit. Adjustment of Rx and Cx provides a wide range of output pulse widths from the Q and Q terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of R_X and C_X. Leading-edge-triggering (+ TR) and trailing-edgetriggering (- TR) inputs are provided for triggering from either edge of an input pulse. An unused + TR input should be tied to Vss. An unused - TR input should be tied to V_{DD}. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the 4098B is not used, its RESET should be tied to VSS. See table I. In normal operation the circuit triggers (extends the output

June 1989 1/14

pulse one period) on the application of each new trigger <u>pulse</u>. For operation in the non-triggerable mode, Q is connected to -TR when leading-edge triggering (+ TR) is used or Q is connected to + TR when trailing-edge triggering (– TR) is used. The time period (T) for this multivibrator can be approximated by $T_X = 1/2 R_X C_X$ for $C_X \ge 0.01 \,\mu\text{F}$. Time periods as a function of R_X for values of R_X and R_X are given in fig. 8. Values of T vary from unit to unit and as a function of voltage, temperature, and R_X R_X . The minimum value of external resistance, R_X , is 5 kΩ. The maximum

mum value of external capacitance, C_X , is $100\mu F$. Fig.9 shows time periods as a function of C_X for values of R_X and V_{DD} . The output pulse width has variations of ± 2.5 % typically, over the temperature range of $-55^{\circ}C$ to 125° C for $C_X = 1000pF$ and $R_X = 100$ k Ω . For power supply variations of $\pm 5\%$, the output pulse width has variations of $\pm 0.5\%$ typically, for $V_{DD} = 10V$ and 15V and $\pm 1\%$ typically, for $V_{DD} = 5$ V at $C_X = 1000$ pF and $R_X = 5$ k Ω .

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
Vi	Input Voltage	-0.5 to $V_{DD} + 0.5$	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types	– 55 to + 125	°C
	HCF Types	- 40 to + 85	°C

LOGIC DIAGRAMS

Table 1: Functional Terminal Connections.

		Other						
Function	to V _{DD}		to V _{SS}		Input Pulse to		Connections	
	Mono (1)	Mono (2)	Mono (1)	Mono (2)	Mono (1)	Mono (2)	Mono (1)	Mono (2)
Leading - Edge Trigger/Retriggerable	3,5	11,13			4	12		
Leading - Edge Trigger/Non - retriggerable	3	13			4	12	5,7	11,9
Trailing - Edge Trigger/Retriggerable	3	13	4	12	5	11		
Trailing - Edge Trigger/Non - retriggerable	3	13			5	11	4,6	12,10
Unused Section	5	11	3,4	12,13			-	·

Notes: 1. A Refriggerable one-shot multivibrator has an output pulse width which is extended one full time period (Tx) after application of the last trigger pulse.

^{2.} A non-refriggerable one-shot multivibrator has a time period T_X referenced from the application of the first trigger pulse.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			т	est Con	<u>ditio</u> n	s	Value							
Symbol	Parame	ter	٧ı	۷o	I ₀	V _{DD}	ΤL	ow*		25°C		T Hi	gh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	HCC	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/ 5			5		4		0.02	4		30	
		HCF Types	0/10			10		8		0.02	8		60	
		Туроо	0/15			15		16		0.02	16		120	
V_{OH}	Output Higl	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	I	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		ША
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	1 ypes	0/15	1.5		15	4.2		3.4	6.8		2.4		A
			0/ 5	0.4		5	0.52		0.44	1		0.36		mA
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		1 ypes	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18			18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15	, ***	r ***	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	L., ,
C_1	Input Capa	citance		Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5 V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, C_L = 50pF, R_L = 200k Ω , typical temperature coefficient for all V_{DD} values is 0.3%/°C, all input rise and fall times = 20ns)

	_	Tes	t Conditions	3		Value		
Symbol	Parameter	R_X (k Ω)	C _X (pF)	V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} , t _{PHL}	Trigger Propagation Delay Time			5		250	500	
	$(+ TR, - TR to Q, \overline{Q})$	5 to 10.000	≥ 15	10		125	250	ns
				15		100	200	
t _{WH} , t _{WL}	Trigger Pulse Width			5	140	70		
		5 to 10.000	≥ 15	10	60	30		ns
				15	40	20		
t _{TLH}	Transition Time			5		100	200	
		5 to 10.000	≥ 15	10		50	100	
				15		40	80	
t _{THL}	Transition Time			5		100	200	
		5 to 10.000	15 to 10.000	10		50	100	
				15		40	80	ns
				5		150	300	115
		5 to 10.000	0.01μF to 0.1μF	10		75	150	
				15		65	130	
				5		250	500	
		5 to 10.000	0.1μF to 1μF	10		150	300	
			ιο τμε	15		80	160	
t _{PLH} , t _{PHL}	Propagation Delay Time (reset)			5		225	450	
		5 to 10.000	≥ 15	10		125	250	ns
				15		75	150	
t _W R	Pulse Width (reset)			5	200	100		
			15	10	80	40		
				15	60	30		
				5	1200	600		ns
		100	1000	10	600	300		
				15	500	250		
				5	50	250		
			0.1μF	10	30	15		μs
				15	20	10		
t _r , t _f (TR)	Rise or Fall Time (trigger)		5 to 15				100	μs
	Pulse Width Match Between			5		5	10	
	Circuits in Same Package	10	10.000	10		7.5	15	%
				15		7.5	15	

Figure 2: Typical Output Low (sink) Current Characteristics.

Figure 4: Typical Output High (source) Current Characteristics.

Figure 6 : Typical Propagation Delay Times vs. Load Capacitance, Trigger in to Q out. (All values of C_X and R_X).

Figure 3: Minimum Output Low (sink) Current Characteristics.

Figure 5 : Minimum Output High (source) Current Characteristics.

Figure 7 : Transition Time vs. Load Capacitance for $R_X = 5k\Omega$, 10000 $k\Omega$ and $C_X = 15pF$, 10000pF.

Figure 8 : Typical External Resistance vs. Pulse Width at Various V_{DD} and C_{X} .

Figure 10: Typical Minimum Reset Pulse Width vs. External Capacitance.

Figure 11: Average Power Dissipation for 100% Duty Cycle vs. One-shot Pulse width.

Figure 9: Typical External Capacitance vs.Pulse

TEST CIRCUITS

Figure 12: Quiescent -Device Current.

Figure 14: Input Leakage.

Figure 13: Input-Voltage.

TYPICAL APPLICATIONS

Figure 15: Astable Multivibrator with Restart after Reset Capability.

Figure 16: Pulse Delay.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.004		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S			8° (r	nax.)			

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

