CLAS Dihadron Measurements

Extracting the Unpolarized Fragmentation Function

Timothy B. Hayward

Dihadron Fragmentation Functions

 Similar to single hadron formalism

- Additional degree of freedom (relative momentum) allows for numerous advantages
 - Separate contributions to asymmetries
 - Existence of fragmentation functions with no single hadron correlation

Unpolarized-Unpolarized Cross Section

- D₁, the unpolarized fragmentation function, is multiplied by the well known PDF f₁
- Can be isolated from the φdependent terms
- Limited data available (Belle e⁺e⁻), extractions from fitting the single pair distribution functions from MC)

$$\begin{split} d^{9}\sigma_{OO} \; &= \; \sum_{a} \frac{\alpha^{2}e_{a}^{2}}{2\pi Q^{2}y} \left\{ \underbrace{ \begin{bmatrix} A(y)\,\mathcal{I}\,[f_{1}\,D_{1}] \\ A(y)\,\mathcal{I}\,[f_{1}\,D_{1}] \end{bmatrix}}_{-B(y)} - B(y)\,\frac{|\vec{R}_{T}|}{M_{h}} \,\cos(\phi_{h} + \phi_{R})\,\mathcal{I}\, \left[\frac{\vec{p}_{T}\cdot\hat{P}_{h\perp}}{M}\,h_{1}^{\perp}\,\vec{H}_{1}^{\triangleleft} \right] \\ &+ B(y)\,\frac{|\vec{R}_{T}|}{M_{h}} \,\sin(\phi_{h} + \phi_{R})\,\mathcal{I}\, \left[\frac{\hat{P}_{h\perp}\wedge\vec{p}_{T}}{M}\,h_{1}^{\perp}\,\vec{H}_{1}^{\triangleleft} \right] \\ &- B(y)\,\cos(2\phi_{h})\,\mathcal{I}\, \left[\frac{2(\vec{p}_{T}\cdot\hat{P}_{h\perp})(\vec{k}_{T}\cdot\hat{P}_{h\perp}) - \vec{p}_{T}\cdot\vec{k}_{T}}{MM_{h}}\,h_{1}^{\perp}\,H_{1}^{\perp} \right] \\ &+ B(y)\,\sin(2\phi_{h})\,\mathcal{I}\, \left[\frac{(\vec{p}_{T}\cdot\hat{P}_{h\perp})(\hat{P}_{h\perp}\wedge\vec{k}_{T}) + (\vec{k}_{T}\cdot\hat{P}_{h\perp})(\hat{P}_{h\perp}\wedge\vec{p}_{T})}{MM_{h}}\,h_{1}^{\perp}\,H_{1}^{\perp} \right] \right\} \end{split}$$

Bachetta, Radici. hep-ph/0212300

Motivation for Multiplicity Measurement

- Range in Q² allows for many bins to better understand z and $m_{\pi\pi}$ dependence
- Fixing the normalization of D₁ allows it to be used in the extraction of other fragmentation functions
- Study contribution from higher-waves
- No model dependent or phenomenological concerns
- See <u>E12-09-008B</u>, S. Pisano and A. Courtoy

Multiplicities

Measure the dihadron multiplicities defined by

$$M^{h}(Q^{2}, x_{B}, z, m_{\pi\pi}) = \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(Q^{2}, x_{B}) D_{1}^{q}(Q^{2}, z, m_{\pi\pi})}{\sum_{q} e_{q}^{2} f_{1}^{q}(Q^{2}, x_{B})}$$

$$= \frac{d\sigma_{UU}^{\gamma^{*}N \to (\pi^{+}\pi^{-})X}}{dQ^{2} dx_{B} dz dm_{\pi\pi}} \frac{dQ^{2} dx_{B}}{d\sigma_{UU}^{\gamma^{*}N \to X}}$$

$$= \frac{N^{DH}/\Delta Q^{2} \Delta x_{B} \Delta z \Delta m_{\pi\pi}}{N^{DIS}/\Delta Q^{2} \Delta x_{B}}$$

Event Generator

 Stephen Gliske (HERMES) developed object-oriented generator "TMDGen"

- Includes SIDIS dihadron models for angular dependence
- No beam polarizations or longitudinally polarized target cross sections programmed for dihadrons

Distribution Functions	Model Identifier
f_1	CTEQ [74]
f_1	LHAPDF [75]
f_1	BCR08 [76]
f_1	GRV98 [77]
g_1	GRSV2000 [78]
$f_{1T},h_{1T}^{\perp},h_{1}$	Torino Group [79, 80, 81, 82, 83]
$f_1,g_1,g_{1L},g_{1T},f_{1T},h_1,h_1^\perp,h_{1T}^\perp$	Pavia Spectator Model [31]

Table 3.1: Models of distribution function available in TMDGen.

Frag. Functions	Final State	Model Identifier
D_1	pseudo-scalar	fDSS [84, 85]
D_1	pseudo-scalar	Kretzer [86]
D_1,H_1^\perp	dihadron	Spectator Model (Section 2.4)
D_1,H_1^\perp	dihadron	Set given partial wave proportional
		to any other partial wave

Table 3.2: Models of fragmentation function available in TMDGen.

Gliske thesis (HERMES)

Event Generator

• Gliske comparisons between Pythia and TMDGen for e' $\pi^+\pi^-X$

Configurations and Channel Selection

CLAS software

gemc 4a.2.3

coatjava-5c.3.4

Configurations

Torus +1.0

Solenoid -1.0

Runs analyzed: 3222, 3973 and 3975, ~ 2300

files

Channel Selection

DIS

 $Q^2 > 1.0 \text{ GeV}^2$

W > 2.0 GeV

SIDIS

 $m_X > 1.05 \text{ GeV}$

Particles

EventBuilder

Highest energy e', π^+ , π^-

CLAS Acceptance Analysis

• Reconstructed rate for Q², x_B , z and $m_{\pi\pi}$ with +1.0/-1.0 configuration

Monte Carlo Comparison with SIDIS Data

3 files chosen at random from run 3222

0.20

0.40

Z

0.4

0.6

0.8

mππ (GeV)

Event Generator Experimental

0.60

Bin Limits

- Q² limits chosen by evaluating the effects from the evolution of f₁
- x_B and z bins chosen for statistics

 $\max(\text{GeV}^2)$

1.32

1.65

2.09 2.86

11.0

- $m_{\pi\pi}$ chosen from two-pion spectra, avoiding bins centered in meson resonances
- Again, see <u>E12-09-008B</u>, <u>S. Pisano and A. Courtoy</u>

x_B bin	IIIIII	max	z bin	IIIII	max
1	0.0	0.08	1	0.0	0.31
2	0.08	0.1	2	0.31	0.37
3	0.1	0.12	3	0.37	0.43
4	0.12	0.14	4	0.43	0.48
5	0.14	0.16	5	0.48	0.53
6	0.16	0.19	6	0.53	0.58
7	0.19	0.22	7	0.58	0.63
8	0.22	0.26	8	0.63	0.69
9	0.26	0.31	9	0.69	0.76
10	0.31	0.8	10	0.76	1.0

$m_{\pi^+\pi^-}$ bin	min (GeV)	max (GeV)
1	0.0	0.38
2	0.38	0.44
3	0.44	0.5
4	0.5	0.56
5	0.56	0.64
6	0.64	0.72
7	0.72	0.78
8	0.78	0.86
9	0.86	1.06
10	1.06	3.0

 Q^2 bin

3

 $\min (GeV^2)$

1.0 1.32

1.65

2.09 2.86

Selected Results (chosen at random)

To Do

- Fiducial cuts in DC and PCAL (etc?)
- Improve hadron PID with beta/p check (cut out protons)
- Error bars should really be larger (currently just statistics)
 - Enhanced PID cuts will reduce statistics
 - Include systematic resolution effects in error bars
 - Adjust for acceptance (need acceptance for DIS events)
- Other?

DIS Counts

x_b bins

S	1 033 259	929 317	713 771	563 473	441 494	485 456	332 144	287 072	87 261	6911
.⊑	43 677	530 328	482 244	405 891	344 131	422 420	332 814	341 451	300 969	89 522
9	0	32 913	330 754	338 479	281 226	372 458	310 957	333 225	322 203	310 020
2	0	0	2566	131 887	240 886	346 452	278 527	318 201	325 244	548 314
Ö	0	0	0	0	155	69 512	155 016	234 790	289 020	986 932

SIDIS Counts, $1.00 < Q^2 < 1.32$

$0.00 < x_B < 0.08$												C).10) <	X _B ·	< 0.	12				
					m_{π}	_π bins	S									m.	$_{\pi}$ bin	s			
z bins	6991 304 159 75 31 31 11 9	4912 279 175 84 56 38 24 20 9	5367 300 188 107 54 41 30 23 18	6054 333 201 113 66 46 32 26 15	8259 561 325 167 111 73 49 37 28	8341 723 433 229 162 101 59 38 44 53	6270 716 404 222 152 78 65 41 33 48	7247 979 593 290 195 135 87 72 56	11 472 2409 1394 763 535 341 248 183 141	7110 3556 3058 2113 1760 1424 1118 1108 886 1249	z bins	5019 479 300 166 104 79 48 40 34 23	3313 408 319 162 124 94 67 61 45	3594 478 334 196 136 89 75 63 50	3827 562 364 205 136 113 64 78 51	4695 935 605 323 218 155 109 100 77	4415 1091 696 425 297 233 163 131 97 193	2969 877 623 371 280 237 155 139 121 220	2964 1224 834 525 401 298 227 204 163 267	3651 2218 1830 1211 897 710 508 495 341 450	968 1383 1662 1472 1355 1271 1135 1214 1144 1712
			C).14			< 0.	16							0.2		< χ _Ε m _{ππ} b	3 < ().26	5	
					m_{π}	$_{\pi}$ bin	S						1397	793	753			37 120	54	20	0
	2755								501	38			456	312	320			15 235		96	8
40	490 318	400	406 307	451					855 961	208		S	324	247	268	292	384 3	66 250	277	236	45
<u>S</u>	170	258 174	218	343 222					778	381 467		\subseteq	198	159	180			04 191		324	51
.⊑	111	119	125	148					623	522		-=	150	136	143			163 190		348	104
\overline{Q}	89	72	110	111	158	230	197	284	592	570		9	109 78	111 79	106 90			.90 159 .53 133		344 331	125 156
	50	71	72	75	124	1.00		001	450				, ,		-	100	110	.55	101	331	100
Ν	63	62	60	75 75	134 101				452 418	529 641		Ν	56	53	76	87	115 1	.64 125	163	346	210

SIDIS Counts, $1.65 < Q^2 < 2.09$

	$0.00 < x_B < 0.08$ $m_{\pi\pi}$ bins								$0.10 < x_B < 0.12$ $m_{\pi\pi}$ bins													
z bins			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			z bins	2183 95 51 25 19 5 6 2 2	1602 77 53 36 21 14 15 7 7	1769 94 63 31 24 19 10 11 5	1957 130 54 38 35 28 7 7 4	2702 196 113 44 33 27 12 10 11	2646 222 132 64 46 40 22 23 15	2088 200 146 78 46 46 33 15 16	236 302 168 105 58 49 26 31 25 21	2 7 8 4 5 2 1 1 9 5	3603 746 440 233 170 117 96 51 34	2337 1157 894 639 492 428 349 328 328 346
			0	.14		K _B <		16							0.2		< χ _Ε n _{ππ} b		0.2	26		
z bins	1923 150 110 69 54 23 20 16	1281 148 112 61 44 35 28 29	1493 191 134 82 59 43 32 31	1615 193 132 91 56 46 32 30 24	2235 330 206 110 68 78 39 39 28	2034 401 272 158 121 59 60 62 34	1422 308 222 104 103 68 51 51	1508 449 333 161 134 97 73 72 44	2102 890 687 460 305 250 164 163 122	780 759 803 665 569 524 450 469		z bins	2017 291 236 137 109 78 57 44 28 32	1237 247 156 106 65 60 48 45 34	1318 271 194 128 103 79 57 56 42 64	1456 328 249 160 96 82 66 32 42	1645 467 368 231 167 117 94 93 54	1421 566 388 290 229 165 117 118	405 325 219 161 141 108 97 85	781 474 415 297 223 157 144 141 107	795 742 770 575 502 382 312 294 246 314	142 289 463 453 441 499 459 488 467 761

SIDIS Counts, $2.86 < Q^2 < 11.0$

