# Cancelable Biometrics Based on Deep Learning

Using Electrocardiogram Data.

Arturo Calvera Tonin.

## What's Cancelable Biometrics?

# The transformation of Biometric signals in a useful, covert and irreversible template.

- → **Non-invertibility:** the recovery of original biometric data should be impossible.
- → **Efficiency**: satisfying the requirements imposed by cancelable biometrics should not deteriorate recognition performance.
- → **Diversity**: Many protected templates from the same biometric feature need to be generated.
- $\rightarrow$  **Revocability**: there should be straightforward revocation and reissue procedures in the event of compromise.













(c)

(c)

## **Motivation & Use Case**

# The infamous *WorldCoin* and the widespread *FaceID*

<u>"Sam Altman & Alex Blania's CryptoProject banned in several countries".</u>

 Why should I comply with Apple keeping "pictures" of my face?

Is there an alternative to today's landscape?
 YES! Use cancelable biometric templates!





## Why ECG? Prior work?

<u>Electrocardiogram (ECG)</u> has been widely studied as a promising biometrics for authentication, identification and liveness validation.
 It has presented great possibilities for its strength against counterfeit. However, the ECG feature templates are completely irreplaceable.

• <u>Sakr et al., 2022:</u> in this article, the authors propose a novel cancelable ECG method using DNA and Amino Acid data combined with deep learning. They are the first to propose a cancelable ECG system that employs deep learning for human authentication yet their approach is too complex for widespread implementation.



#### The ECG-ID Database









## Harnessing the Neural Network's inner knowledge



- <del>(m)</del> -

- Used with signals. Very common in the BioSignal Industry.
- <u>IDEA:</u> Build a good ECG classifier and harness the inner knowledge.



#### Overview Activation Maximization (AM)





### Applied in the current environment:





- Invertible? Diverse?
- Efficient?

| Model                    | Recognition Rate | Weighted F1-Score |
|--------------------------|------------------|-------------------|
| Original DL              | 95.062%          | 94.99%            |
| Random Forest Classifier | 96.296%          | 95.02%            |
| Peng-Tzu et al., 2017    | 97.58%           | -                 |
| Kim & Chun, 2019         | 93%              | -                 |
| Sakr et al., 2022        | 98.60%           | -                 |

## What about revocability?

- Something to work on in the future...
- "low-cost" solution:
  - Revocation Authority + Watermarks embedded within the templates.
  - O Did this template come from the original system?
  - o Is this template still valid?
  - (Adi et al., 2018), (Uchida et al., 2017) and (Pagnotta et al., 2022).
  - Resilient against tampering.

## **Use Case?**

## Collaborative Neural Network Training

- A star topology of smartwatches training a 1D-CNN.
- "Train the model with a mini-batch of my data and forward to the next random node".
- Distribute the final "Template Generator". Use my templates as I wish.



## Closing Statement

Simple yet effective.

- Room for improvement:
  - Revocability.
  - Robustness and efficiency.
  - Better Deep Learning models.
- A stepping stone for future work on cancelable biometrics, user privacy and liberty.