Logistic Regression and Bad Initialization Value

Objective

• How bad initialization value can affect the accuracy of model.

Table of Contents

In this lab, you will see what happens when you use the root mean square error cost or total loss function and select a bad initialization value for the parameter values.

- Make Some Data
- Create the Model and Cost Function the PyTorch way
- Train the Model:Batch Gradient Descent

Estimated Time Needed: 30 min

Preparation

We'll need the following libraries:

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
```

Helper functions

The class plot_error_surfaces is just to help you visualize the data space and the Parameter space during training and has nothing to do with Pytorch.

```
In [2]: # Create class for plotting and the function for plotting
    class plot_error_surfaces(object):
        # Constructor
        def __init__(self, w_range, b_range, X, Y, n_samples = 30, go = True):
```

```
W = np.linspace(-w_range, w_range, n_samples)
    B = np.linspace(-b_range, b_range, n_samples)
    w, b = np.meshgrid(W, B)
    Z = np.zeros((30, 30))
    count1 = 0
    self.y = Y.numpy()
    self.x = X.numpy()
    for w1, b1 in zip(w, b):
        count2 = 0
        for w2, b2 in zip(w1, b1):
            Z[count1, count2] = np.mean((self.y - (1 / (1 + np.exp(-1*w2 * self)))))
            count2 += 1
        count1 += 1
    self.Z = Z
    self.w = w
    self.b = b
    self.W = []
    self.B = []
    self.LOSS = []
    self.n = 0
    if go == True:
        plt.figure()
        plt.figure(figsize=(7.5, 5))
        plt.axes(projection='3d').plot surface(self.w, self.b, self.Z, rstride=
        plt.title('Loss Surface')
        plt.xlabel('w')
        plt.ylabel('b')
        plt.show()
        plt.figure()
        plt.title('Loss Surface Contour')
        plt.xlabel('w')
        plt.ylabel('b')
        plt.contour(self.w, self.b, self.Z)
        plt.show()
 # Setter
def set_para_loss(self, model, loss):
    self.n = self.n + 1
    self.W.append(list(model.parameters())[0].item())
    self.B.append(list(model.parameters())[1].item())
    self.LOSS.append(loss)
# Plot diagram
def final_plot(self):
    ax = plt.axes(projection='3d')
    ax.plot wireframe(self.w, self.b, self.Z)
    ax.scatter(self.W, self.B, self.LOSS, c='r', marker='x', s=200, alpha=1)
    plt.figure()
    plt.contour(self.w, self.b, self.Z)
    plt.scatter(self.W, self.B, c='r', marker='x')
    plt.xlabel('w')
    plt.ylabel('b')
    plt.show()
# Plot diagram
def plot_ps(self):
```

```
plt.subplot(121)
        plt.ylim
        plt.plot(self.x, self.y, 'ro', label="training points")
        plt.plot(self.x, self.W[-1] * self.x + self.B[-1], label="estimated line")
        plt.plot(self.x, 1 / (1 + np.exp(-1 * (self.W[-1] * self.x + self.B[-1]))),
        plt.xlabel('x')
        plt.ylabel('y')
        plt.ylim((-0.1, 2))
        plt.title('Data Space Iteration: ' + str(self.n))
        plt.show()
        plt.subplot(122)
        plt.contour(self.w, self.b, self.Z)
        plt.scatter(self.W, self.B, c='r', marker='x')
        plt.title('Loss Surface Contour Iteration' + str(self.n))
        plt.xlabel('w')
        plt.ylabel('b')
# Plot the diagram
def PlotStuff(X, Y, model, epoch, leg=True):
   plt.plot(X.numpy(), model(X).detach().numpy(), label=('epoch ' + str(epoch)))
   plt.plot(X.numpy(), Y.numpy(), 'r')
   if leg == True:
        plt.legend()
   else:
        pass
```

Set the random seed:

```
In [3]: # Set random seed
torch.manual_seed(0)
```

Out[3]: <torch._C.Generator at 0x2b67d7485d0>

Get Some Data

Create the Data class

```
In [4]: # Create the data class

class Data(Dataset):

    # Constructor
    def __init__(self):
        self.x = torch.arange(-1, 1, 0.1).view(-1, 1)
        self.y = torch.zeros(self.x.shape[0], 1)
        self.y[self.x[:, 0] > 0.2] = 1
        self.len = self.x.shape[0]

# Getter
```

```
def __getitem__(self, index):
    return self.x[index], self.y[index]

# Get Length
def __len__(self):
    return self.len
```

Make Data object

```
In [5]: # Create Data object
data_set = Data()
```

Create the Model and Total Loss Function (Cost)

Create a custom module for logistic regression:

```
In [6]: # Create Logistic_regression class

class logistic_regression(nn.Module):

    # Constructor
    def __init__(self, n_inputs):
        super(logistic_regression, self).__init__()
        self.linear = nn.Linear(n_inputs, 1)

# Prediction
    def forward(self, x):
        yhat = torch.sigmoid(self.linear(x))
        return yhat
```

Create a logistic regression object or model:

```
In [7]: # Create the logistic_regression result
model = logistic_regression(1)
```

Replace the random initialized variable values with some predetermined values that will not converge:

```
In [8]: # Set the weight and bias

model.state_dict() ['linear.weight'].data[0] = torch.tensor([[-5]])
model.state_dict() ['linear.bias'].data[0] = torch.tensor([[-10]])
print("The parameters: ", model.state_dict())
```

The parameters: OrderedDict($\{'linear.weight': tensor([[-5.]]), 'linear.bias': tensor([-10.])\})$

Create a plot_error_surfaces object to visualize the data space and the parameter space during training:

```
In [9]: # Create the plot_error_surfaces object
get_surface = plot_error_surfaces(15, 13, data_set[:][0], data_set[:][1], 30)
```

<Figure size 640x480 with 0 Axes>

Loss Surface

Define the dataloader, the cost or criterion function, the optimizer:

```
In [10]: # Create dataloader object, criterion function and optimizer.

trainloader = DataLoader(dataset=data_set, batch_size=3)
criterion_rms = nn.MSELoss()
learning_rate = 2
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
```

Train the Model via Batch Gradient Descent

Train the model

```
In [11]: # Train the model

def train_model(epochs):
    for epoch in range(epochs):
        for x, y in trainloader:
            yhat = model(x)
            loss = criterion_rms(yhat, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            get_surface.set_para_loss(model, loss.tolist())
        if epoch % 20 == 0:
            get_surface.plot_ps()
```

train_model(100)

Loss Surface Contour Iteration 567

Get the actual class of each sample and calculate the accuracy on the test data:

```
In [12]: # Make the Prediction

yhat = model(data_set.x)
label = yhat > 0.5
print("The accuracy: ", torch.mean((label == data_set.y.type(torch.ByteTensor)).typ
```

The accuracy: tensor(0.6500)

Accuracy is 60% compared to 100% in the last lab using a good Initialization value.