# Location-Based Interaction Euan Freeman

euan.freeman@glasgow.ac.uk



# Feedback for L3 Class Reps

Your L3 class reps are looking for feedback on semester 2 courses

Click <u>here</u> or scan the QR code to access their feedback form

CS Level 3 Semester 2 Feedback Form



## Outline

## What aspects of location can we sense?

Capabilities, strengths, limitations

## Designing location-based interactions

- What sensing is appropriate for a given application?
- How should location data be processed?
- What is the relationship between location and functionality?

## Privacy concerns

# Intended Learning Outcomes

ILO1: Explain problems associated with human-computer interaction in mobile and ubiquitous usage contexts;

ILO2: Critically analyse a proposed mobile interactive system considering its intended usage context;

ILO5: Discuss cutting edge developments in mobile humancomputer interaction, such as context-aware systems, sensorbased interaction, location-based interaction, and mixed reality;

# Location, Location, Location

Device location changes often – context!

#### Location sensing supports interaction

- Engagement
  - e.g., experiences linked to place
- Exploration
  - e.g., finding what's nearby
- Navigation
  - e.g., how to get to a restaurant
- Relevant suggestions
  - e.g., nearest coffee shop
- Location sensitive behaviour
  - e.g., turn the lights off when you leave home



## What is Location?

## Your position on the planet

- e.g., GNSS (GPS, Galileo, BeiDou, etc)
- e.g., access point trilateration

## Your position in a room/building

- e.g., you are 3m from a BTLE beacon
- e.g., you have moved 1m in this direction

## Your proximity to a known device

• e.g., you are 'at home' because your smart meter is within range



# Sensing Methods

#### Many approaches:

- GNSS: GPS ⊂ GNSS
- Access Points: e.g., cell and Wi-Fi trilateration
- Beacons / Tags: e.g., Bluetooth and UWB beacons
- Optical Sensing: e.g., fiducial markers, visual-inertial SLAM
- Multimodal: e.g., Google Fused Location, Apple Core Location

## Need to know strengths & weaknesses

- So you can make informed choices about which to use
- So you understand the constraints of the options you're working with

# Global Navigation Satellite System

## Geographic coordinates: (latitude, longitude)

- Latitude: o above/below equator (top right)
- Longitude: ° east/west from prime meridian (bottom right)

# New Orleans ATLANTIC OCEAN EQUATOR 0° SOUTH AMERICA 20° 30° 40° 50° 30° 40° 50° 50°

## We are currently at (55.871421,-4.292324)

- 55.8° above the equator
- 4.3° west of Greenwich
  - Greenwich Meridian Line is used as Prime Meridian (i.e., 0°)
- (I simplified these, but you need all digits Earth is pretty big)



# **GNSS** Accuracy

## Accuracy varies

- Best case: 10cm (BeiDou), 20cm (Galileo), 30cm (GPS)
- Average use case: 1-3m

## Device location is determined via multiple satellite signals

- With 'line of sight'
- Performance varies based on position, surroundings, atmosphere, etc
  - Generally worse in urban areas with tall buildings signals get blocked or reflected

Can accurately estimate outdoor 'location' for *most* applications

## **GNSS Elevation**

## Height above surface

- Often referred to 'above sea level' (but the sea isn't level)
- GNSS uses a reference ellipsoid and geoid



## Other Elevation Sources

## Many mobile devices have barometric pressure sensors

- Directly measure elevation via ambient air pressure
- Especially useful when GNSS is imprecise
  - e.g., climbing, skiing, mountain biking where moving a few metres in any direction changes elevation significantly

## Elevation basemaps

- Estimates elevation from topographical data using geographic coords
- e.g., Ordnance Survey, USGS
- e.g., Strava crowd-sources from user uploads with barometric pressure

## **Access Point Trilateration**

## Cross-referencing with network access point locations

- e.g., trilateration from known position of cellular signal towers
  - In conjunction with other peoples' known positions with similar signal strengths
- e.g., estimated location of Wi-Fi access points
  - Android and Apple periodically report GNSS, visible devices and signal strengths
    - A significant 'Wi-Fi Positioning System' dataset
- Typical performance 5-15m accuracy

## Every time you go somewhere, you're contributing to this dataset

When people pass your home, the location of your AP gets updated too

# **Indoor Positioning**

## Geographic positioning systems do not work well indoors

• Limited line of sight to satellites, signal occlusion and interference, etc

## Access point trilateration may be feasible

- Similar resolution to outdoors, though
- Signal strength is affected by posture, people, furniture, other devices, etc.
  - e.g., I measured -33 dBm to -48 dBm sitting on my couch, just moving my phone

# Indoor Positioning via Proximity

## Absolution positioning is difficult

• i.e., your exact location with respect to a frame of reference

## Indoor position can be estimated via proximity to other devices

• i.e., relative position in a building, not necessarily absolute position



# Indoor Positioning Beacons/Tags

#### Small emitters that use Bluetooth or UWB radio

- Unaware of their own location
- Mainly intended for proximity-based interactions
  - e.g., this functionality only triggers near this beacon
- Whilst not intended for precise positioning...
  - e.g., Apple iBeacon: "immediate", "near", "far"
- ... can be used for localisation
  - e.g., if I had an emitter on my office door, you could navigate to me using proximity measurements
  - e.g., if everyone had an emitter on their door, you could potentially navigate turn-by-turn using trilateration





## Indoor Beacon Measurements – RSSI

## Relative Signal Strength Indicator (RSSI)

- Measures the power of a received radio signal
- Assumes a consistent attenuation
  - i.e., the further a signal travels, the weaker it becomes
- Can be used to determine proximity to an emitter
  - Based on established relationship between RSSI and distance

Time of Flight (ToF)

Angle of Arrival (AoA)

## Indoor Beacon Measurements – ToF

Relative Signal Strength Indicator (RSSI)

## Time of Flight (ToF)

- Measures duration between signal emission and reception
- Reliable relationship between distance, speed and time
  - Radio waves travel at a known speed
- Can be used to determine proximity to an emitter
  - Based on the above assumption

Angle of Arrival (AoA)

## Indoor Beacon Measurements – AoA

Relative Signal Strength Indicator (RSSI)

Time of Flight (ToF)

## Angle of Arrival (AoA)

- Measures signal reception at the distinct elements in the antenna
- Can be used to determine angle relative to a known emitter
  - i.e., based on the direction of the received wave
- In conjunction with approximate distance, can infer position

## Bluetooth Performance

Signals are occluded and reflected by people + objects

#### Most devices use RSSI

- Noisy measurement of proximity less accurate localisation
- Approximately 2-5m

## Updated standards support AoA

- Support for improved accuracy but still gaining adoption
- Approximately 10-50cm

## **UWB** Performance

Signals can pass through solid objects (including walls)

Uses ToF for accurate proximity (and reasonable localisation)

- Generally more precise than Bluetooth
- Approximately 10-50cm

## Limited hardware support and adoption

- All iPhones have dedicated UWB chips (U1 from 2019, U2 from 2023)
- Limited number of high-end Android devices support UWB

# Fiducial Marker Tracking

## Optical detection of structured markers

- Known size and lack of symmetry ⇒ relative distance and orientation
- Unique designs that are robust against scale and orientation variation
  - i.e., can be uniquely identified from many directions even when image clarity is limited

## Examples include...

 ARTag (top left), reacTIVision (top right), STag (bottom), QR codes...





## Fiducial Marker Performance

## Accuracy and reliability varies with platform

- Affected by lens, sensor, image processing, sample rate
- Image quality affected by lighting conditions
- Marker design affects accuracy some better than others
  - e.g., QR codes less suitable for localisation too far away to decipher

## Requires direct line of sight

- Fine if you're sensing in the right direction...
- Accuracy varies with distance and angle
  - Counter-intuitively, looking 'straight on' is not always the best

# Activity (in your own time)

What approaches could you use for these applications (and why)?

- Helping students locate their supervisor's office
- Giving directions to departure gates in an airport
- Locating electronic components in a workshop
- Tracking number of laps completed by a runner on an outdoor track

## Relative Movement

#### We've considered location as:

- Absolute position on the planet
  - e.g., (Latitude, Longitude, Elevation) via GNSS or WPS
- Relative position to known devices or markers
  - e.g., using RSSI, ToF or AoA
  - e.g., optical sensing of visual markers

## We can also sense change in location without knowing location

- e.g., virtual reality headsets with inside-out tracking
  - We'll see more of this in the Mixed Reality units of the course

# **Movement Sensing**

#### Motion sensors are not suitable for localisation

- Inertial measurement units detect acceleration, orientation, etc
- But cannot reliably determine change in position due to drift
  - Continuous change in sensitivity and measurement characteristics
  - e.g., accelerometers are still impacted by manufacturing stress for several months

## Optical sensors can more reliably estimate relative movement

- Simultaneous Localisation and Mapping (SLAM)
  - Localisation: figuring out where 'l' am
  - Mapping: figuring out the environment 'l' am in

## Visual SLAM

## Uses optical sensors to detect features in the environment

- Including cameras, depth sensors, LIDAR
- Change in feature position builds up a model of physical space
  - Think of motion parallax: things that are closer appear to move faster
- And change in position within that space

#### Examples on next two slides:

- Google Project Tango
- Oculus Insight





## **SLAM Frame of Reference**

## SLAM tracking uses the device as the frame of reference

- Relative to self i.e., egocentric
- Looking outwards to see what is there...
- ... and discovering own motion based on how environment changes

## Could fuse with other sensing for absolute frame of reference

- e.g., markers with known absolute position in the world
- e.g., other forms of location sensing

# Room-scale Sensing

## Sensors that track objects in calibrated space

- e.g., motion capture systems use networks of optical sensors
- e.g., depth cameras can sense objects within field of view
- e.g., "outside-in" VR sensors (e.g., Vive Lighthouse)

## Better suited to spaces where sensing is unobtrusive

- e.g., using VR headset for playing games at home
- e.g., in environments where sensors can be installed permanently

## In practice, 'location' used to detect movements in virtual space

• Rather than widespread use of bespoke room-specific applications

# **Location Sensing Summary**

#### Different sensing requirements and performance trade-offs

• GNSS chip, internet access, radio emitters, optical sensors, etc

#### Different strengths and weaknesses

- 'Best' choice is application specific
  - e.g., GNSS for outdoor exercise tracking simple and sufficiently accurate
  - e.g., beacons for indoor navigation feasible, low resource requirement
  - e.g., visual SLAM for VR gaming fast and reliable sensing, resource less relevant
  - e.g., outside-in sensing when designing for a very particular space
- Key point: can you achieve sufficient accuracy to be functional?

# Requesting Location Data

## Consider trade-off between update rate and battery

- How often is updated location necessary?
  - e.g., every 1 second for recording mountain biking activities
  - e.g., every 5 seconds for pedestrian navigation
  - e.g., every 2 minutes for checking if I've entered a 200m geofence around home
  - e.g., every 1 hour for location-based weather

## Some devices restrict rate or have preset rates

• e.g., sports wearables typically range from 1 Hz to 0.1 Hz for GNSS

#### Platforms enforce sensible rate limits

• e.g., Android restricts update rate for apps not being actively used

# **Processing Location Data**

## Inherent variability and noise in location estimates

- Even when you are standing still, your location probably doesn't stay still
  - i.e., jumps around
- Even when you move in a straight line, your location probably doesn't
  - i.e., tends to zig-zag, deviate from paths or roads

## Signal processing can improve quality

- e.g., applying heuristics to remove outliers or improbable movements
- e.g., applying smoothing filters or moving averages to reduce variance
- e.g., fusing with other data to improve confidence (example next slide)

# Google FLP

Some services, e.g., FLP, do multimodal signal processing for you

Buildings block satellite 'line of sight'

- Device receives reflections instead
- Which throw off calculations

Google (right) use photogrammetry to create 3D models of urban areas

Applies corrections based on predicted interference from tall buildings



# Simple Filtering Methods

## Moving average

- Smooths signal by taking average of previous *n* samples
- Introduces latency as a linear function of 'window size' (n)

## Weighted moving average

- Applies weighting to a moving average, rather than equal weighting
- e.g., so that recent samples affect average more than older samples

## Exponential weighted moving average

- A subset of WMA where newer samples are exponentially weighted
  - Potentially reducing latency by creating better impulse response



# Kalman Filtering

#### Commonly used with 'fast' movements at low sample rates

- Fuses data with predictions about future expected movements
- Sometimes incorporates inertial measurement data

#### Initially developed for automotive applications

- Cars tend to make smooth movements on mostly straight trajectories
- Use this assumption to correct subtle deviations in GNSS

### You can make application-specific assumptions

• e.g., what kinds of movements are expected if user is cycling?

# Interaction Techniques

## **Proximity**

- Functionality based on being near points-of-interest
- e.g., if distance < 10m ...

### Geofencing

- Functionality based on being within a defined region
  - inside a polygon or within a circle around a point-of-interest
- e.g., if inside(poi) ...



# Unit 6 Lab Exercise

### Uses proximity and geofencing

- Proximity triggers when user position is within n metres of POI
- Geofence triggers when user position is inside rectangle region
  - Simple geometry to determine if user is 'inside' or 'outside' the fence

### Is not smoothing or filtering data

- Just uses the camera position
- Skips processing to keep it simple





# **Location Ambiguity**

#### Reveal uncertainty through feedback:

- So users know ambiguity is present and might affect system behaviour
- So users know if their corrective actions are having a positive effect
- Why? Users are often forgiving of systems that are honest...



# Privacy Case Study: Strava

## Widely used social app for activity tracking

- Users upload primarily location data
  - But also includes physiological data, photos, etc

## Many privacy concerns related to location data

- In part due to how data gets used by Strava
- And lack of user engagement with privacy controls
  - Arguably also an app's responsibility to educate its users



All media

Edit



# Strava Heatmap

## Strava heatmap (www.strava.com/heatmap)

- Aggregates all activity data over long term
- Shows where its users are riding and running

## Useful for finding popular cycling routes

• Especially in unfamiliar areas – e.g., abroad

### Integrated into route creation tools:

Prioritises roads where most people ride or run



# Aggregated Data Concerns

#### Individual users/households identifiable

Especially in lower density activity areas

### Revealing users' homes

• ... to bike thieves?



# **Human Error**

#### Heatmap revealed US Army base:

- Users overlooked implications of sharing
  - Or were unaware of how their data might be used
- Strava mostly used by westerners...
  - Revealing sensitive areas in places without local users



# Location + Time

### Concerns with timestamped location

- e.g., knowing when you are in a place
- e.g., shows when your house is empty
- e.g., shows your habits
  - Ukrainian Intelligence Services allegedly assassinated a Russian naval commander because he uploaded his daily run to Garmin Connect
- e.g., shows when you're outside cycling during working hours
  - Oops



# **Unknown Features?**

### Strava "Fly-By":

- Users you 'flew by' on your activity
- See full route of people whose activities would otherwise not be discoverable to you



# **Shared Responsibility**

#### Who is responsible for privacy?

- Users?
  - Have not engaged with, or have misunderstood, privacy settings
  - ... but probably didn't expect their data to be publicly shared!
- Strava?
  - Lack of sensible defaults: all users were opted-in by default
  - Ignored privacy settings in their aggregated data
  - Not pro-active about educating users or promoting privacy controls

# **Privacy Summary**

#### Privacy violations may occur in future, not just 'now':

- Data creates opportunities for future privacy violation
- Violations that might not even be imaginable when features first launch

## Partly due to ambiguity over data scope, use, and access:

- What data is collected?
- What else is it being used for (that users aren't immediately aware of)?
- Who can access that data (in what format)?
- What can users do to control access to data?