Aprendizaje por Refuerzo

Reinforcement Learning

Autor: Jesús Emmanuel Martínez García

Fecha: Octubre 2025

E Contenido

- 1. Introducción e historia
- 2. Fundamentos del Aprendizaje por Refuerzo
- 3. Conceptos técnicos y matemáticos
- 4. Principales algoritmos
- 5. Aplicaciones reales
- 6. Ejemplos de proyectos
- 7. Conclusiones y futuro

¿Qué es el Aprendizaje por Refuerzo?

El aprendizaje por refuerzo (RL) es un paradigma del aprendizaje automático en el que un agente aprende a tomar decisiones óptimas mediante interacción con un entorno, recibiendo recompensas o castigos según sus acciones.

www.aprendemachinelearning.com

Año	Acontecimiento	Descripción
1950s	Alan Turing	Propuso la idea de máquinas que aprendieran mediante recompensas.
1952	Arthur Samuel	Creó un programa de ajedrez que aprendía por refuerzo.
1980s	Richard Sutton & Andrew Barto	Formalizan el RL moderno.
1990s	Q-learning (Watkins)	Primer algoritmo RL ampliamente usado.
2010s	DeepMind (Google)	Fusión de RL con Deep Learning → Deep Reinforcement Learning.
2016	AlphaGo	RL logra vencer a campeones humanos en Go.

Fundamentos del Aprendizaje por Refuerzo

El RL se basa en tres elementos principales:

- Agente: quien aprende y actúa.
- Entorno: con el que interactúa.
- Recompensa: señal que indica qué tan buena fue una acción.

Ciclo de Aprendizaje

- 1. El **agente** observa el **estado** del entorno.
- 2. Toma una acción según su política (π).
- 3. El entorno responde con una recompensa (R) y un nuevo estado (S').
- 4. El agente ajusta su política para maximizar la recompensa acumulada.

Marco Matemático

El aprendizaje por refuerzo se modela con un Proceso de Decisión de Markov (MDP):

$$MDP = (S, A, P, R, \gamma)$$

Donde:

- (S): conjunto de estados
- (A): conjunto de acciones
- (P(s'|s,a)): probabilidad de transición
- (R(s,a)): recompensa esperada
- (\gamma): factor de descuento

Objetivo del Agente

Maximizar la **recompensa acumulada esperada**:

$$G_t = E\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}
ight]$$

El agente busca la **política óptima** π^* que maximiza este valor.

Algoritmos Principales

- 1. Métodos basados en valor
 - Q-Learning
 - SARSA
- 2. Métodos basados en política
 - REINFORCE
 - Actor-Critic

3. Métodos avanzados

- Deep Q-Networks (DQN)
- Proximal Policy Optimization (PPO)
- AlphaZero (autoaprendizaje con simulaciones)

Q-Learning

Aprende una tabla Q(s,a) que estima el valor esperado de tomar una acción en un estado.

$$Q(s,a) \leftarrow Q(s,a) + \alpha[R + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

	x0		x1		x2		х3		x4		x5		х6		x7		x8		x9	
	Subir	Bajar																		
у7	-2.4	-0.2	-0.3	-0.	-0.1	-0.	-0.	-0.	-0.	-0.	-0.1	-0.1	-0.3	-0.2	-39.6	-27.3	-16.1	-24.4	-21.2	-16.6
у6	-4.	-0.9	-0.6	-0.1	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.1	-0.3	-9.7	-0.7	-15.7	-14.	-20.7	-45.9
у5	-5.4	-3.4	-0.4	-0.1	-0.	-0.	-0.	-0.	-0.	-0.	-0.1	-0.	-0.3	-0.	-0.7	-0.7	-17.4	-1.1	-53.2	-28.5
y4	-3.4	-1.4	-0.1	-0.4	-0.	0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.1	-0.	-1.9	-0.6	-8.5	-19.5	-46.	-16.7
уЗ	-0.4	-3.4	-0.	-0.1	-0.	-0.	-0.	0.	-0.	-0.	-0.	-0.	-0.	-0.1	-23.3	-5.3	-12.4	-4.1	-2.4	-28.6
y2	0.4	-1.1	0.	-0.1	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.	-0.1	-0.4	-2.7	-14.4	1.9	-9.	3.8	-16.6
y1	-1.8	-2.2	-0.3	-0.1	-0.	-0.	-0.	0.	-0.	-0.	-0.	-0.1	-0.	-0.1	-17.6	-29.	-9.8	-4.1	-39.3	5.7
у0	-2.8	-0.7	-0.3	-0.1	-0.	0.	-0.	-0.	-0.	-0.	-0.1	-0.	-0.	-0.2	-5.7	-14.4	-16.5	0.1	-35.9	2.7

Propert Learning (DRL)

Combina redes neuronales profundas con aprendizaje por refuerzo.

Ejemplo:

- Entrada: imagen del entorno (píxeles).
- Salida: acción a tomar.

Aplicaciones Reales

- Robótica: navegación, manipulación de objetos.
- Juegos: AlphaGo, Atari, StarCraft.
- Finanzas: trading algorítmico, gestión de portafolios.
- Vehículos autónomos: toma de decisiones en tiempo real.
- Energía: optimización de consumo en redes eléctricas.

Ejemplos de Proyectos para Aprender

1. CartPole (OpenAl Gym)

→ Equilibrar una varilla sobre un carrito.

2. MountainCar

→ Empujar un auto hasta una colina.

3. Atari Pong con DQN

→ Entrenar una red neuronal a jugar Pong desde píxeles.

4. Robot simulador (PyBullet o Mujoco)

→ Aprendizaje de locomoción o manipulación.

Implementaciones Populares

- OpenAl Gym
- Stable Baselines3
- TensorFlow Agents / PyTorch RL
- Unity ML-Agents

Futuro del RL

- Integración con modelos generativos y LLMs
- Aplicaciones en energía, salud y clima
- Enfoque en aprendizaje con menos datos y más eficiencia
- Desarrollo de agentes generalistas (AGI-oriented)

Conclusiones

- ✓ El aprendizaje por refuerzo permite **descubrir estrategias óptimas** sin supervisión directa.
- ✓ Ha revolucionado campos como los videojuegos, robótica y finanzas.
- Aún presenta retos: eficiencia, exploración y estabilidad.
- Es un área con **gran proyección futura** en IA avanzada.

Referencias

- Sutton, R. & Barto, A. (2018). Reinforcement Learning: An Introduction.
- Silver, D. et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature.
- OpenAl Gym Documentation.
- DeepMind Research Publications.