Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Questions

再探快速傅里叶变换

毛啸

长沙市雅礼中学

April 28, 2016

Contents

 我的论文前两部分是FFT的基本介绍,FFT的基本应用,最 后一部分介绍了一个不是很普及的技巧,其中引入了一个仅 用4次实数DFT实现109级别的任意模数下的卷积的技巧。

Contents

- 我的论文前两部分是FFT的基本介绍,FFT的基本应用,最后一部分介绍了一个不是很普及的技巧,其中引入了一个仅用4次实数DFT实现10⁹级别的任意模数下的卷积的技巧。
- 限于时间关系这里只介绍最后一部分。

Introduction

为什么要优化FFT的常数。

Introduction

•

为什么要优化FFT的常数。

常数太大 → 被卡成暴力分 写标算 滚粗 花更长时间 → 没时间写别的题 Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Questions

• 卷积的过程:序列长度增倍,对两个序列DFT,乘起来之后IDFT。

- 卷积的过程:序列长度增倍,对两个序列DFT,乘起来之后IDFT。
- 3次2倍长度的DFT。

- 卷积的过程:序列长度增倍,对两个序列DFT,乘起来之后IDFT。
- 3次2倍长度的DFT。
- 我们分两步做优化: 2次2倍长度的DFT, 3次1倍长度的DFT。

- 卷积的过程:序列长度增倍,对两个序列DFT,乘起来之后IDFT。
- 3次2倍长度的DFT。
- 我们分两步做优化: 2次2倍长度的DFT, 3次1倍长度的DFT。
- 直观来看,常数分别是原来的 $\frac{2}{3}$, $\frac{1}{2}$ 。

Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Ouestions

• 接下来讨论DFT的次数时我们有时会不区分DFT和IDFT, 比如3次IDFT加3次DFT被称为6次DFT。

- 接下来讨论DFT的次数时我们有时会不区分DFT和IDFT, 比如3次IDFT加3次DFT被称为6次DFT。
- 我们考虑对长度为n的实多项式A(x), B(x)进行DFT, 假设n已经调整为2的整数次幂。

- 接下来讨论DFT的次数时我们有时会不区分DFT和IDFT, 比如3次IDFT加3次DFT被称为6次DFT。
- 我们考虑对长度为n的实多项式A(x), B(x)进行DFT, 假设n已经调整为2的整数次幂。
- 我们定义:

$$P(x) = A(x) + iB(x)$$

$$Q(x) = A(x) - iB(x)$$

- 接下来讨论DFT的次数时我们有时会不区分DFT和IDFT, 比如3次IDFT加3次DFT被称为6次DFT。
- 我们考虑对长度为n的实多项式A(x), B(x)进行DFT, 假设n已经调整为2的整数次幂。
- 我们定义:

$$P(x) = A(x) + iB(x)$$

 $Q(x) = A(x) - iB(x)$

• 这里i指 $\sqrt{-1}$,设 $F_p[k]$, $F_q[k]$ 分别表示对P和Q进行DFT之后得到序列的第k项,

即
$$F_p[k] = P(\omega^k), F_q[k] = Q(\omega^k), \omega \mathcal{L}n$$
次单位根。

• 接下来我们进行一系列推导:

- 接下来我们进行一系列推导:
- 由于排版问题我们用X代替 $\frac{2\pi jk}{2L}$ 这个式子,每个X所对应的j,k的含义在上下文中可以看出。conj(x)表示x的共轭复数。

• 接下来我们进行一系列推导:

•

• 由于排版问题我们用X代替 $\frac{2\pi jk}{2L}$ 这个式子,每个X所对应的j,k的含义在上下文中可以看出。conj(x)表示x的共轭复数。

$$F_{p}[k] = A(\omega_{2L}^{k}) + iB(\omega_{2L}^{k})$$

$$= \sum_{j=0}^{2L-1} A_{j}\omega_{2L}^{jk} + iB_{j}\omega_{2L}^{jk}$$

$$= \sum_{j=0}^{2L-1} (A_{j} + iB_{j})(\cos X + i\sin X)$$

$$= \sum_{j=0}^{2L-1} (A_{j} + iB_{j})\omega_{2L}^{kj}$$

$$\begin{split} F_{q}[k] &= A(\omega_{2L}^{k}) - iB(\omega_{2L}^{k}) \\ &= \sum_{j=0}^{2L-1} A_{j} \omega_{2L}^{jk} - iB_{j} \omega_{2L}^{jk} \\ &= \sum_{j=0}^{2L-1} (A_{j} - iB_{j}) \left(\cos X + i \sin X\right) \\ &= \sum_{j=0}^{2L-1} \left(A_{j} \cos X + B_{j} \sin X\right) + i \left(A_{j} \sin X - B_{j} \cos X\right) \\ &= \operatorname{conj} \left(\sum_{j=0}^{2L-1} \left(A_{j} \cos X + B_{j} \sin X\right) - i \left(A_{j} \sin X - B_{j} \cos X\right)\right) \end{split}$$

$$= \operatorname{conj} \left(\sum_{j=0}^{2L-1} (A_j \cos(-X) - B_j \sin(-X)) + i (A_j \sin(-X) + B_j \cos(-X)) \right)$$

$$= \operatorname{conj} \left(\sum_{j=0}^{2L-1} (A_j + iB_j) (\cos(-X) + i \sin(-X)) \right)$$

$$= \operatorname{conj} \left(\sum_{j=0}^{2L-1} (A_j + iB_j) \omega_{2L}^{-jk} \right)$$

$$= \operatorname{conj} \left(\sum_{j=0}^{2L-1} (A_j + iB_j) \omega_{2L}^{(2L-k)j} \right)$$

•

$$F_{p}[k] = \sum_{j=0}^{2L-1} (A_{j} + iB_{j})\omega_{2L}^{kj}$$

$$F_{q}[k] = \operatorname{conj}\left(\sum_{j=0}^{2L-1} (A_{j} + iB_{j})\omega_{2L}^{(2L-k)j}\right)$$

•

$$F_{p}[k] = \sum_{j=0}^{2L-1} (A_{j} + iB_{j})\omega_{2L}^{kj}$$

$$F_{q}[k] = \operatorname{conj}\left(\sum_{j=0}^{2L-1} (A_{j} + iB_{j})\omega_{2L}^{(2L-k)j}\right)$$

• $F_q[k] = \text{conj}(F_p[2L - k])$

• 于是我们仅用1次DFT就可以算出 F_p 和 F_q 。

- 于是我们仅用1次DFT就可以算出 F_p 和 F_q 。
- 令DFT(P[k])表示对P(x)进行DFT之后得到的序列的 第k项,相信大家都知道DFT是线性变换,所以根据P,Q的 定义:

0

- 于是我们仅用1次DFT就可以算出 F_p 和 F_q 。
- 令DFT(P[k])表示对P(x)进行DFT之后得到的序列的第k项,相信大家都知道DFT是线性变换,所以根据P,Q的定义:

$$F_p[k] = DFT(A[k]) + iDFT(B[k])$$

 $F_q[k] = DFT(A[k]) - iDFT(B[k])$

0

- 于是我们仅用1次DFT就可以算出Fp和Fq。
- 令DFT(P[k])表示对P(x)进行DFT之后得到的序列的第k项,相信大家都知道DFT是线性变换,所以根据P,Q的定义:

$$F_p[k] = DFT(A[k]) + iDFT(B[k])$$

 $F_q[k] = DFT(A[k]) - iDFT(B[k])$

• 接下来是激动人心的解二元一次方程:

$$\mathsf{DFT}(A[k]) = \frac{F_p[k] + F_q[k]}{2} \tag{1}$$

$$DFT(B[k]) = i \frac{F_p[k] - F_q[k]}{2}$$
 (2)

- 于是我们仅用1次DFT就可以算出 F_p 和 F_q 。
- 令DFT(P[k])表示对P(x)进行DFT之后得到的序列的第k项,相信大家都知道DFT是线性变换,所以根据P,Q的定义:

$$F_p[k] = DFT(A[k]) + iDFT(B[k])$$

 $F_q[k] = DFT(A[k]) - iDFT(B[k])$

• 接下来是激动人心的解二元一次方程:

$$\mathsf{DFT}(A[k]) = \frac{F_p[k] + F_q[k]}{2} \tag{1}$$

$$DFT(B[k]) = i\frac{F_p[k] - F_q[k]}{2}$$
 (2)

• 于是我们将2次DFT合并为了1次,可以减少1次DFT。

Optimization

• 我们能不能将2次DFT继续往下优化呢? 当然能!

Optimization

- 我们能不能将2次DFT继续往下优化呢? 当然能!
- 我们设 $A_0(x)$ 是A(x)的偶次项的和, $A_1(x)$ 是奇次项的和,那 $\Delta A(x) = A_0(x^2) + xA_1(x^2)$ 。

假设我们要求A(x)与B(x)的乘积,且两个多项式的次数均为n-1(假设n为2的整数次幂),则有:

$$A(x)B(x) = (A_0(x^2) + xA_0(x^2))(B_0(x^2) + xB_0(x^2))$$

$$= A_0(x^2)B_0(x^2) + xA_0(x^2)B_1(x^2) + xA_1(x^2)B_0(x^2) + x^2A_1(x^2)B_1(x^2)$$

$$= A_0(x^2)B_0(x^2) + x(A_0(x^2)B_1(x^2) + A_1(x^2)B_0(x^2)) + x^2A_1(x^2)B_1(x^2)$$

$$A_0(x^2)B_0(x^2) + x(A_0(x^2)B_1(x^2) + A_1(x^2)B_0(x^2)) + x^2A_1(x^2)B_1(x^2)$$

• 我们需要做4次多项式乘法,看作关于 x^2 的多项式,那么结果多项式的次数均不超过n-1。

$$A_0(x^2)B_0(x^2) + x(A_0(x^2)B_1(x^2) + A_1(x^2)B_0(x^2)) + x^2A_1(x^2)B_1(x^2)$$

- 我们需要做4次多项式乘法,看作关于x²的多项式,那么结果多项式的次数均不超过n-1。
- 还记得前面讲的合并DFT吗? 只要2次DFT!

$$A_0(x^2)B_0(x^2) + x(A_0(x^2)B_1(x^2) + A_1(x^2)B_0(x^2)) + x^2A_1(x^2)B_1(x^2)$$

- 我们需要做4次多项式乘法,看作关于x²的多项式,那么结果多项式的次数均不超过n-1。
- 还记得前面讲的合并DFT吗? 只要2次DFT!
- IDFT的话,式子右边的第一项和第三项,它们依然只有偶数项有系数。感觉就是能合并的!

$$A_0(x^2)B_0(x^2) + x(A_0(x^2)B_1(x^2) + A_1(x^2)B_0(x^2)) + x^2A_1(x^2)B_1(x^2)$$

- 我们需要做4次多项式乘法,看作关于x²的多项式,那么结果多项式的次数均不超过n-1。
- 还记得前面讲的合并DFT吗? 只要2次DFT!
- IDFT的话,式子右边的第一项和第三项,它们依然只有偶数项有系数。感觉就是能合并的!
- 看成关于x²的多项式,就是根据A(x)的DFT求xA(x)的DFT, xA(x)的DFT就是将A(x)的DFT的第k项乘上ω^k。

Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Questions

• 哇! 我们只要2次IDFT了啊,要是能合并IDFT多好?

• 哇! 我们只要2次IDFT了啊,要是能合并IDFT多好?

• 并不一定所有项都是实数!

- 哇! 我们只要2次IDFT了啊,要是能合并IDFT多好?
- 并不一定所有项都是实数!

$$F_p[k] = IDFT(A[k]) + iIDFT(B[k])$$

$$F_q[k] = IDFT(A[k]) - iIDFT(B[k])$$

- 哇! 我们只要2次IDFT了啊,要是能合并IDFT多好?
- 并不一定所有项都是实数!
- 我们的老朋友:

$$F_p[k] = IDFT(A[k]) + iIDFT(B[k])$$

 $F_q[k] = IDFT(A[k]) - iIDFT(B[k])$

• IDFT之后的结果是实数! 做完直接取实部和虚部!

- 哇! 我们只要2次IDFT了啊,要是能合并IDFT多好?
- 并不一定所有项都是实数!

• 我们的老朋友:

$$F_p[k] = IDFT(A[k]) + iIDFT(B[k])$$

 $F_q[k] = IDFT(A[k]) - iIDFT(B[k])$

- IDFT之后的结果是实数!做完直接取实部和虚部!
- 这样, IDFT的次数被减少到了1次。

- 哇! 我们只要2次IDFT了啊,要是能合并IDFT多好?
- 并不一定所有项都是实数!
- 开不一定所有项都定头3我们的老朋方:

$$F_p[k] = IDFT(A[k]) + iIDFT(B[k])$$

 $F_a[k] = IDFT(A[k]) - iIDFT(B[k])$

- IDFT之后的结果是实数! 做完直接取实部和虚部!
- 这样, IDFT的次数被减少到了1次。
- 3次DFT,但是要做的序列长度只有原来的一半。

Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Questions

#34. 多项式乘法

■描述

→ 提交 → 自定义测试

这是一道模板题。

给你两个多项式,请输出乘起来后的多项式。

普通方法(多于500ms):

ID	題目	提交者	结果	用时	内存	语言	文件大小	提交时间
#46959	#34. 多项式乘法	_debug	100	563ms	15684kb	C++	3.3kb	2016-02-03 16:35:50
#55790	#34. 多項式類法	y0rkllu	100	574ms	26868kb	C++	1.9kb	2016-03-21 08:15:57
#59884	#34. 多項式乘法	chongjg	100	577ms	14716kb	C++	2.5kb	2016-04-09 23:32:04
#5803	#34. 多项式乘法	fullpower	100	577ms	35332kb	C++	2.7kb	2015-01-25 20:22:28
#62685	#34. 多項式乘法	zhengtn03	100	578ms	21696kb	C++	3.9kb	2016-04-18 00:21:08
#53749	#34. 多项式乘法	NanoApe	100	580ms	9388kb	C++	1.6kb	2016-03-07 14:17:03
#41728	#34. 多項式類法	xjt	100	582ms	11652kb	C++	1.2kb	2015-12-31 13:11:00
#45380	#34. 多項式乘法	Ciki	100	583ms	15108kb	C++	1.4kb	2016-01-23 20:06:07
#53622	#34. 多项式乘法	chiyich	100	584ms	19104kb	C++	2.0kb	2016-03-06 21:05:07
#38489	#34. 多項式無法	lyxin65	100	589ms	10832kb	C++	2.0kb	2015-11-28 23:35:11

优化后的方法(最前面的几个是1.5次FFT,后面的几个是2次,300ms左右):

ID	題目	提交者	结果	用时	内存	语言	文件大小	提交时间
#58866	#34. 多项式乘法	jevb	100	255ms	21804kb	C++	12.4kb	2016-04-04 10:42:21
#58672	#34. 多项式乘法	poly_hacker	100	259ms	15772kb	C++	12.4kb	2016-04-02 21:22:03
#54294	#34. 多项式乘法	matthew99	100	279ms	11412kb	C++11	3.7kb	2016-03-11 10:54:17
#55085	#34. 多项式乘法	001	100	284ms	14876kb	C++	2.2kb	2016-03-17 16:50:36
#43431	#34. 多项式乘法	z52527	100	290ms	16300kb	C++	3.9kb	2016-01-10 22:15:02
#61996	#34. 多项式乘法	immortalCO	100	309ms	11188kb	C++	5.3kb	2016-04-16 15:18:21
#20504	#34. 多项式乘法	enot110	100	309ms	16292kb	C++11	3.9kb	2015-06-17 08:29:50
#54905	#34. 多项式乘法	alex_china	100	357ms	7272kb	C++11	3.1kb	2016-03-16 20:56:02
#54908	#34. 多项式乘法	Scape	100	358ms	7272kb	C++11	3.0kb	2016-03-16 20:57:28
#54985	#34. 多项式乘法	Saber	100	378ms	41112kb	C++	2.5kb	2016-03-16 22:04:07

• 假设我们的模数是M, M是109级别。

- 假设我们的模数是M, M是109级别。
- 我们设 $M_0 = \lceil \sqrt{M} \rceil$,根据带余除法我们可以将所有整数x表示为 $x = k[x]M_0 + b[x]$,其中k[x]和b[x]都是整数。

- 假设我们的模数是M, M是10⁹级别。
- 我们设 $M_0 = \lceil \sqrt{M} \rceil$,根据带余除法我们可以将所有整数x表示为 $x = k[x]M_0 + b[x]$,其中k[x]和b[x]都是整数。
- $597855228 \times 1294683923 = (18682 \times 32000 + 31228) \times (40458 \times 32000 + 27923)$

- 假设我们的模数是M, M是109级别。
- 我们设 $M_0 = \lceil \sqrt{M} \rceil$,根据带余除法我们可以将所有整数x表示为 $x = k[x]M_0 + b[x]$,其中k[x]和b[x]都是整数。
- $597855228 \times 1294683923 = (18682 \times 32000 + 31228) \times (40458 \times 32000 + 27923)$
- 这样拆系数可以起到避免精度问题的作用。

Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Ouestions

我们假设多项式A(x)的系数序列为ai,多项式B(x)的系数序列为bi,那么我们把k[ai],b[ai],k[bi],b[bi]形成的四个序列两两做1次卷积。

•

• 我们假设多项式A(x)的系数序列为 a_i ,多项式B(x)的系数序列为 b_i ,那么我们把 $k[a_i]$, $b[a_i]$, $k[b_i]$, $b[b_i]$ 形成的四个序列两两做1次卷积。

$$(A_0(x) \times 32000 + A_1(x))(B_0(x) \times 32000 + B_1(x))$$
= 32000²(A₀(x)B₀(x)) + 32000(A₀(x)B₁(x) + A₁(x)B₀(x)) + A₁(x)B₁(x)

• 我们假设多项式A(x)的系数序列为 a_i ,多项式B(x)的系数序列为 b_i ,那么我们把 $k[a_i]$, $b[a_i]$, $k[b_i]$, $b[b_i]$ 形成的四个序列两两做1次卷积。

•

$$(A_0(x) \times 32000 + A_1(x))(B_0(x) \times 32000 + B_1(x))$$
= 32000²(A₀(x)B₀(x)) + 32000(A₀(x)B₁(x) + A₁(x)B₀(x)) + A₁(x)B₁(x)

● 预处理四个DFT,乘起来之后3个IDFT,用前面所述的合并DFT和IDFT的技巧,容易优化到4次。

• 3模数NTT: 1585-4022 2016-02-07 11:33:52 matthew/9 6226-Transforming Seasonice GAU C++11 Accepted 3213 ms 3000 KB 3213 ms

- 3模数NTT: | 1585-8022 | 2016-02-07 11:33-52 | matthew/9 | 622E-Transforming Sequence | CHU C++11 | Accepted | 3213 ms | 3000 kB | 3213ms
- 无优化: 10983551 2016-03-28 10-39-16 TakanashiRikka \$228-Transforming Seasonce GNU C++11 Accepted 1996 ms 6700 KB 1996ms

- 3模数NTT: 15854022 2016-02-07 11:33:92 matthew99 6226-Trensforming Sequence GNU C++11 Accepted 3213 ms 3000 KB 3213 ms
- 无优化: 16883551 2016-03-28 10.139-16 TalamashiRibka 622E-Transforming Sequence CNU C++11 Accepted 1996 ms 6700 KB 1996ms
- 4次DFT: 15989812 2016-02-13 19:11:42 enot.1:10 623E.-Transforming Sequence GNU C++11 Accepted 420 ms 8100 KB 420 ms

- 3模数NTT: 13854022 2016-02-07 11:33-52 mathrew/9 6226-Transforming Sequence GNU C++11 Accepted 2213 ms 3000 KB 32213 ms
 无优化: 18683551 2016-02-28 10:39-16 Takanashifilika 8228-Transforming Sequence GNU C++11 Accepted 1996 ms 6700 KB 1996 ms
- 4次DFT: 15989812 2016-02-13 19:11:42 enot.1.10 622E-Transforming Sessions GNU C++11 Accepted 420 ms 8100 KB 420ms
- 优化快速幂: 16044780 2016-02-16 06:38:50 matthew/9 622E-Transforming Sequence GNU C++11 Accepted 374 ms 16800 KB 374ms

Summary

Acknowledgements

感谢中国计算机学会提供学习和交流的平台。 感谢雅礼中学的汪星明老师多年来给予的关心和指导。 感谢大家的聆听。 Contents
Introduction
Optimization
Convolution taking modulo by arbitrary numbers
Summary
Acknowledgements
Questions

Questions

欢迎提问。