UNCLASSIFIED

AD NUMBER AD221613 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** No foreign **AUTHORITY** NRL ltr. 7103/911, 25 Aug 1999

UNCLASSITIED

AD 221613

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

2014/18

11 April 1941

NRL Ret rt No. S-1722

MAYY DURARTHEMT

Report on The Velocity of Sound in Sea Water

NAVAL RESEARCH LABORATORY ANACOSTIA STATION WASHINGTON, D. C.

Number of Pages:

Text - 6

Tables - 2

Plates - 18

1.41634

Authorization:

Problem U5-2C BuShips Ltr. C-NC/S68

(4-15-R4-6/24) of 4-27-39.

Reported by:

E. B. Stephenson, Senior Physicist

F. J. Woodsmall, Assistant Electrical Engineer

Reviewed by:

H. C. Hayes, Principal Physicist Superintendent, Sound Division

Approved by:

H. G. Bewen, Rear Admiral, USM. Director

Distribution:

CNO (Fleet Training)

(40)

BuShips

(10)

File

(50)

ect

le class.

Non. Keg 1 b. t. 76 p. n. 4+c

ABSTRACT

The purpose of this report is to present the latest available data on the velocity of sound in sea water as modified by changes in temperature, salinity, and depth. These are given in both metric and English units in a series of tables, curves, and equations for depths to 1300 feet.

The basic data have been compiled from the published reports of competent authorities who calculated the velocities from fundamental physical squations whose constants have been experimentally determined with precision. They have been checked with numerous direct measurements, and agree within an experimental error estimated to be less than 0.2%. The soundness of the theoretical basis for the calculations and the consistency of the results indicate that the calculated values are accurate to within less than 0.05% at temperatures below 70° F.

A bibliography of source materials is included.

TABLE OF CONT MIS

	1.000
Introduction	1
Definition of Salinity	1
Calculation of the Velocity of Sound in "later	1
Calculated Velocity Data	1
Velocity Tables	2
Velecity Curves	2
Velocity Equations	3
Examples in the Use of the Graphs and Equations	5
Additional Data	6
Bibliography	7
Appendix: Velocity of Sound in Various Media	
	Tables
Comparison of Several Sources of Velocity Data Velocity of Sound in Sea Water, in Metric Units	1
(From Kuwahara)	2
	Plates
Velocity of Sound in Sea Water, in Metric Units.	Plates
Velocity of Sound in Sea Water, in Metric Units. (Four Sheets)	
(Four Sheets)	<u>Plates</u> 1
(Four Sheets)	1
(Four Sheets)	
(Four Sheets)	1 2
(Four Sheets)	1 2 3
(Four Sheets)	1 2 3 4
(Four Sheets)	1 2 3
(Four Sheets)	1 2 3 4
(Four Sheets) Rate of Change of Velocity with Respect to Temperature, in Metric Units. Rate of Change of Velocity with Respect to Salinity, in Metric Units. Summary of Sea Water Data, in Metric Units. Velocity of Sound in Lake Water, in Metric Units. (Six Sheets)	1 2 3 4 5
(Four Sheets) Rate of Change of Velocity with Respect to Temperature, in Metric Units. Rate of Change of Velocity with Respect to Salinity, in Metric Units. Summary of Sea Water Data, in Metric Units. Velocity of Sound in Lake Water, in Metric Units. (Six Sheets) Rate of Change of Velocity with Respect to Temperature,	1 2 3 4 5
(Four Sheets) Rate of Change of Velocity with Respect to Temperature, in Metric Units. Rate of Change of Velocity with Respect to Salinity, in Metric Units. Summary of Sea Water Data, in Metric Units. Velocity of Sound in Lake Water, in Metric Units. (Six Sheets)	1 2 3 4 5
(Four Sheets) Rate of Change of Velocity with Respect to Temperature, in Metric Units. Rate of Change of Velocity with Respect to Salinity, in Metric Units. Summary of Sea Water Data, in Metric Units Velocity of Sound in Lake Water, in Metric Units Velocity of Sound in Sea Water, in English Units. (Six Sheets) Rate of Change of Velocity with Respect to Temperature, in English Units.	1 2 3 4 5
(Four Sheets) Rate of Change of Velocity with Respect to Temperature, in Metric Units. Rate of Change of Velocity with Respect to Salinity, in Metric Units. Summary of Sea Water Data, in Metric Units. Velocity of Sound in Lake Water, in Metric Units. (Six Sheets) Rate of Change of Velocity with Respect to Temperature, in Emplish Units. Rate of Change of Velocity with Respect to Salinity, in	1 2 3 4 5 6 7

The Velocity of Sound in Sea Water

INTRODUCTION

- l. Experimental determination of the velocity of sound in sea water over wide ranges of temperature and salinities presents many difficulties. Consequently several computed tables have been published based on fundamental physical theory and data. These tables are more accurate and comprehensive than direct experimental determinations.
- 2. The purpose of this report is to present some of the latest available data in a form convenient for use.

DEFINITION OF SALINITY

- 3. The salinity is a measure of the salt content of the water in parts per thousand by weight and is written S = ppt. or 0/00.
- 4. The salinity of the open sea water may range from 30 to 40 ppt. "Standard" salinity is conventionally chosen as 35 ppt.

CALCULATION OF THE VELOCITY OF SOUND IN WATER

5. The velocity is given by the expression

$$v = \sqrt{\frac{dp}{dp}}$$
 (1)

where p is the pressure and P is the density. For convenience in calculation from well established physical data the formula used is

$$V = \sqrt{\frac{\gamma}{\rho^{C}}}$$
 (2)

where γ is the ratio of the specific heats at constant volume and constant pressure and C is the compressibility. The numerical values of these quantities depend on the temperature, salinity, and depth or pressure. The detailed formulae and the necessary corrections are explained fully in the references to the original data.

CALCULATED VELOCITY DATA

6. The first comprehensive tables were published by Heck and Service in 1924. They checked their tables by wire soundings, and concluded that the calculated values were probably more accurate than the experimental determinations. In 1927, the British Admiraly published an excellent set of tables for both pure and sea water that were the most extensive and accurate at that time. In 1939, Kuwahara brought cut a new set of velocity tables with

added refinements and tolder of the life the British Amirality published a revised edition of a contables which agree very closely with Kuwaharats. Next, in his "Textbook of Sound" (1932), gives an employable equation for the velocity in sea water at "zero" depth.

- 7. Table 1 shows a compaction of velocities under different conditions as given by the above authorities.
- 8. Since the tables of Kuwahara are believed to be the most accounte available at this time, they have been used in the preparation of the sea water curves and equations given in later sections of this report. For fresh water and slightly values water, the values used are those of the British Admiralty tables of 1939.

VELOCITY TABLES

9. Because the velocity tables of Kuwahara may not readily be available, a part of his data is given as Table 2. For depths less than 400 meters, a pressure correction of 0.0181 meter per second per meter of depth should be added. For greater depths, the pressure correction is not so simple, and reference should be made to the original source.

VELOCITY CURVES

- 10. Since the effect of pressure is not great, and a correction may easily be made for depths not exceeding about 400 meters or 1300 feet, the velocity curves in this report have been drawn for zero depth.
- 11. Plate 1 gives the velocity in meters per second in ordinary sea water for Centigrade temperatures. These curves are as precise as the data from which they were drawn that is, to the nearest 0.1 meter per second.
- 12. Plate 2 shows in metric units the temperature coefficient of velocity that is, the change in velocity in meters per second for a change in the temperature of one degree Centigrade. It is to be noted that this coefficient is by no means constant, decreasing from about 4.7 to about 2.0, so that it cannot be used to calculate accurately the velocity at one temperature from a knowledge of the velocity of another temperature, unless the two temperatures are quite close together. Although this curve was drawn for S = 35 ppt., little error will be introduced by using it for any salinity between 30 ppt. and 40 ppt. In case greater accuracy is required, the equations given in Paragraphs 17 to 22 inclusive, may be used.
- 13. Plate 3 shows approximately the salinity coefficient of velocity that is, the change in velocity in meters per second for a change in the salinity of one ppt. This coefficient is nearly independent of the salinity, so that for a fixed temperature, the velocity at one salinity may be calculated from a knowledge of the

velocity at some other value of salinity. For greater accuracy, the equations given in Paragraphs 17 to 22 inclusive may be used.

- 14. Plate 4 gives a summary on one sheet of the data of the preceding plates with some loss of precision due to the smaller scale.
- 15. Plate 5 shows the velocity of sound in pure and nearly pure water, in metric units, with a precision of about 0.5 meter per second.
- 16. Plates 6 to 10 give the same data as plates 1 to 5, expressed in English units of feet and Fabrenheit degrees.

VELOCITY EQUATIONS

- 17. Two empirical equations have been set up and the constants calculated to fit the data given in the tables and curves with the precision specifiec. In order to preserve the accuracy of the equations, the variables should not fall outside the ranges indicated. The following symbols will be employed.
 - V_m welocity of sound in sea water, in meters per second
 - V_f = velocity of sound in sea water, in feet per second
 - S = salinity in ppt., between 30 and 40 ppt.
 - y_m = depth in meters below sea surface; between
 0 and 400 meters
 - y_f = depth in feet below rea surface; between 0
 and 1300 ft.
 - t_c = water temperature in ${}^{0}C$; between 0 and 32 ${}^{0}C$.
 - t_f = water temperature in ^oF; between 32 and 90°F.
- 18. For a first approximation, a quadratic function of the temperature was assumed. Using the Method of Least Squares, an expression for the velocity in meters per second as a function of the Centigrade temperature was obtained for zero depth and standard salinity of 35 ppt. Then this expression was modified to represent the velocity in feet per second for Fahrenheit temperatures. These equations are:

$$V_{\rm m} = 1445.75 + 4.506 t_{\rm c} = 0.04235 t_{\rm c}^{-2}$$
 (3)

and

$$V_{\rm f} = 248.7 + 10.96 t_{\rm f} = 0.0299 t_{\rm f}^2$$
 (4)

Values of velocity instates by envise (4) assess with the velocities by Eurahera within a maximum enter the 4 m/sec, or 0.025%, and an average error of 0.10 //ec, or 0.00 % Server, value for the

difference in velocity per degree temperature difference calculated with the aid of equation (3) may be in error by 1% to 10%. Musatles (4) is of the some percentage precision as equation (3).

19. Greater concordance with the data may be obtained from a cubic equation. Using the Method of Least Squares, an equation for the velocity in meters per second as a function of the Centigrade temperature was obtained for zero depth and standard salinity of 35 ppt. Then this equation was modified to represent the velocity in feet per second for Fahrenheit temperatures. These equations are:

$$V_{\rm m} = 1445.44 + 4.6684 t_{\rm e} = 0.056,527 t_{\rm e}^{-2} + 0.0003151 t_{\rm e}^{-3}$$
 (5)

and

$$V_f = 4742.2 + 8.509 (t_f - 32) - 0.057,239 (t_f - 32)^2 + 0.0001773 (t_f - 32)^3$$
 (6)

Values of velocity computed with the aid of equation (5) agree with the values given by Kurahara to within a maximum error of 0.1 m/sec, or 0.007%, and an average error of 0.04 m/sec, or 0.003%. Moreover, it is believed that the values for the difference in velocity per degree difference in temperature, as calculated from equation (5), are precise to 0.01 m/sec, or 0.5% or better. Equation (6) is of the same percentage precision as equation (5).

20. Having obtained the above cubic expressions for the velocity in terms of the temperature at standard salinity and zero depth, other terms for the salinity and pressure effects were added, yielding

$$\nabla_{m} = 1445.44 + 4.6684 t_{c} = 0.056527 t_{c}^{2} + 0.0003151 t_{c}^{3} + \{1.304 - 0.0106 t_{c} + 5.7 \times 10^{-8} t_{c}^{4}\}[(S-35) + 5.2 \times 10^{-5} t_{c} (S-35)^{2}] + 0.0181 y_{m}$$
(7)

and

$$V_{f} = 4742.2 + 8.509 (t_{f} - 32) - 0.057,239 (t_{f} - 32)^{2} + 0.0001773 (t_{f} - 32)^{3} + [4.278 - 0.0193(t_{f} - 32) + 1.78 \times 10^{-8}(t_{f} - 32)^{4}] [(5-35) + 2.9 \times 10^{-5} (t_{f} - 32) (5-35)^{2}] + 0.0181 y_{f} (8)$$

- 21. The precision of equations (7) and (8) is not as great as the precision of equations (5) and (6). However, in about 100 well—distributed trials over a temperature range of 0 to 30° C, over a salinity range of 30 to 40 ppt. and over a depth range of 0 to 400 meters, the velocities computed from equation (7) agreed with the velocities given by Kuwahara's tables to 0.1 meter per second or better. The larger discrepancies were found at the extremes of temperature, salinity and depth. The percentage precision of equation (8) is the same as that of equation (7).
 - 22. To obtain the rate of change of velocity with respect to

temperature, salinity, or depth, equations (7) and (8) may be differentiated, obtaining:

$$\frac{dV_m}{dt_c} = 4.6684 - 0.113,054 t_c + 0.0009453 t_c^2 + [-0.0106 + 0.23 \times 10^{-6} t_c^3] (s-35) + [6.8 \times 10^{-5} - 0.110 \times 10^{-5} t_c + 1.5 \times 10^{-11} t_c^4] (s-35)^2$$
(constant salinity and depth) (9)

$$\frac{dV_{m}}{ds} = [1.304 - 0.0106 t_{c} + 5.7 \times 10^{-8} t_{c}^{4}][1 + 1.04 \times 10^{-4} t_{c}(S-35)]$$
(constant temperature and depth) (10)

$$\frac{dv_m}{dy_m} = 0.0181$$
 (constant temperature and salinity)

$$\frac{dV_{f}}{dt_{f}} = 8.509 - 0.114,478(t_{f} - 32) + 0.0005318) (t_{f} - 32)^{2}
+ [-0.0193 + 7.1 \times 10^{-8} (t_{f} - 32)^{3}] (S-35)
+ [12.4\times 0^{-5} - 0.112 \times 10^{-5} (t_{f} - 32) + 25.8 \times 10^{-13} (t_{f} - 32)^{4}]
(S-35)^{2}
(constant salinity and depth)$$
(12)

$$\frac{dV_{f}}{ds} = [4.278-0.0193 (t_{f}-32) + 1.78 \times 10^{-8} (t_{f}-32)^{4}][1$$
+5.8 x 10⁻⁵(t_f - 32) (S-35)] (13)
(constant temperature and depth)

$$\frac{dV_{f}}{dy_{f}} = 0.0181$$
(constant temperature and salinity)

EXAMPLES IN THE USE OF THE GRAPHS AND EQUATIONS

Example 1

23. To find the approximate velocity in meters per second for a temperature of 16.5°C , a salinity of 34.2 ppt. and a depth of zero.

24. At 16.5° C, the curves on Plate 1 show V = 1506.2 for S=33, and V = 1508.6 for S=35. Since equation (7) these that the salinity correction varies approximately linearly with salinity, we have that the velocity for S = 34.2 is

$$V = 15\%.2 + \frac{34.2 - 33.0}{35.0 - 33.0}$$
 (150%.6 - 150%.2)
= 1507.6, neter or record.

Example 2

25. Union the curves on Plate 4, determine the velocity in metern jet needed for the same data as in Example 1.

26. At 16.5°C, Curve 1 of Flate 4 shows a velocity of 1508.5 for 3=35.0. At 16.5°C, Curve 3 shows a salinity coefficient of 1.132. Hence, the desired velocity is

 $V = 1508.5 - (35.0 - 34.2) \times 1.137 = 1507.6$ Meters per second.

Example 3

- 27. For the same temperature and salinity data as in Example 1, but for a depth of 275 meters, find the velocity.
- 28. Since the velocity correction is 0.0181 m/sec per meter of depth (see equation 7), the desired velocity is

 $V = 1507.6 + 0.0181 \times 175 = 1510.8 \text{ meters per second.}$

Example 4

- 29. At a temperature of 8.8°C, and a salinity of 35 ppt., determine the temperature rate of variation of velocity.
- 30. From Plate 2, the answer is found to be 3.741 meters per degree Centigrade. From equation (9) the calculated value is 3.747 meters per second per degree Centigrade.

ADDITIONAL DATA

31. The Naval Research Laboratory is collecting data in this field and would appreciate contributions from any source, theoretical or experimental, or suggestions as to convenient forms of presentation.

BIBLIOGRAPHY

- Velocity of Sound in Sea Water, by N. H. Heck and J. H. Service, USC and OS Special Publication No. 108, 1924.
- Tables of the Velocity of Sound in Pure Water and Sea Water for Use in Echo-Sounding and Sound Ranging, by D. J. Mathews, British Admiralty Publication H.D. 282, first edition 1927 and second edition 1939.
- 3. Velocity of Sound in Sea Water and Calculation of the Velocity for Use in Sonic Sounding, by S. Kuwahara, the Hydrographic Review, vol. XVI, No. 2, Nov. 1939, pp. 123 - 140.
- 4. A Textbook of Sound, by A. B. Wood, G. Bell and Sons, London, 1932, pp 245 250.
- Velocity of Sound in Sea Water, by E. B. Stephenson, Physical Review, vol. 21, pp. 181-185, February, 1923.
- 6. Recent Acoustic Work of the U.S. Coast and Geodetic Survey, by P. A. Smith, Field Engineers Bulletin No. 8, December, 1934, pp. 60 75.
- 7. Velocity and Ray Paths of Sound Waves in Sea Water, by O. W. Swainson, Field Engineers Bulletin No. 10, December, 1936.

A pendix

The following table gives approximate values for the velocity of sound in several media. These values have been taken from table purelished in handbooks and textbooks, and are relieved to a reliable within 1% to 5%.

Temperature = 20° C. = 68° F., unless off rwise not 1.

-				7
ı		Meters	ir at	ŧ
t	Material	rper	$\mathbf{p} \cdot \mathbf{r}$	ſ
1_		rSecond_	iSc cond	
1		1	1	1
1	Aluminum	5100	16,700	1
ŧ	Brass	1 3500	11,500	•
t	Copper	1 3560	11,700	1
1	Iron, cast	1 4700	15,400	ı
7	Lead	' 1230	4,030	7
1	Nickel	1 4970	16,300	1
1	Silver	' 2610	1 8,560	•
ŧ	Stee1	1 5000	1 16,400	ı
1	Tin	1 2500	1 8,200	t
ŧ	Zinc	· 3700	1 12,100	1
1		1	i	1
1	Brick	1 3650	1 12,000	•
11	Cork	1 430-530	1400-1740	1
t	Glass	15000-6000	116,400-19,700	t
,	Ice, 0° C.	1 3200	r 10,500	1
•	Paraffin, 15° C.	1 1300	4,260	1
,	Quartz	1 5500	18,000	ŧ
1	Rubber	1 30-70	· 98 - 230	1
1	Wood	11000-4700	13300-15,400	f
ı		f	1	ŧ
1	Alcohol, 12.5° C.	1 1240	1 4,070	1
1	Castor oil	† 1555	5,100	1
1	Benzol, 17° C.	1170	3,840	Ť
4	Mercury	1410	4,625	,
t	•	1		1
t	Air (dry, 760 mm.)	344	1,128	1
ŧ	Carbon dioxide, 0° C	1 258	1 846	1
t	Hydrogen, 0° C.	1 1270	1 4,170	Í
1	Methane, 0° C.	1 432	1 1,417	ŧ
t	Oxygen, 0° C.	1 317	1 1,040	ŧ
t	Steam, 100° C	1 405	1,328	3
•	Air, 0°C. (dry, CO ₂ free, 760 mm)	331.4	1,087.3	1
	2 - 1 - 2 2 22003 700 min	JJ±64	10101	•

TABLE 1 *
VELOCITY OF SOUND IN SEA WATER
(From various tables and formulas)

			Mete	Meters per Second						
Depth in Meters	Temp.	Sal. ppt.	Heck & Service	Wood	Br.Adm. 1927	Br.Adm. 1939	Kuwahara			
0	0	31	1445	1445	1440.3	1440.2	1440.3			
£8	10	11	1482	1484	1481.9	1481.9	1482.0			
if	20	H	1508	1515	1514.3	1514.3	1514.3			
11	30	11		1538	1539.0	1538.9	1539•1			
0	0	35	1450	1450	1445.3	1445.4	1445.5			
11	10	11	1489	1488	1486.6	1486.7	1486.8			
Ħ	20	Ħ	1514	1519	1518.6	1518.7	1518.7			
н	30	Ħ		1543	1543.0	1543.1	1543.2			
400	0	35	1454		1452.6	1452.7	1452.8			
11	10	11	1492		1493.8	1493.9	1494.1			
**	20	11	1518		1525.8	1525.9	1525.9			
11	30	11			1550.3	1550.4	1550.6			
3000	0	31	1490		1494.7	1494.6	1494.4			
11	11	35	1498		1499.7	1499.8	1499.8			

Volocity of Touristic Lore Later - Despite 6 ()

Volocity of Touristic Lore Later - Despite 6 ()

Postpoop Part •	Meters Per Record							
	S=31 ppt	5*33 ppt	5=35 ppt	9 =37 ppt	S-30 ppt			
0	1440.3	1447.9	1445.5	1448.1	1450.7			
1	44.8	47.4	50.0	52.6	55.2			
2	49.4	51.9	54.5	57.1	59.6			
3	53.8	56.4	58.9	61.4	64.0			
4	58.1	60.6	63.1	65.6	68.1			
5	1462.3	1464.8	1467.3	1469.8	1472.3			
6	66.5	68.9	71.4	73.9	76.3			
7	70.5	73.0	75.4	77.9	80.3			
g	74.5	76.9	79.3	81.7	84.2			
ò	78.3	'80.7	83.1	85.5	87.9			
10	1482.0	1484.4	1486.8	1489.2	1491.6			
11	85.7	88.0	90.4	92.8	95.1			
12	89.2	91.6	93.9	96.3	98.6			
13	92.7	95.0	97.3	99.6	1502.0			
14	96.0	98.3	1500.6	1502.9	05.2			
15	1499.3	1501.6	1503.9	1506.2	1508.5			
16	1502.5	04.7	07.0	09.3	11.5			
17	05.6	07.9	10.1	12.3	14.6			
18	08.6	10.8	13.0	15.2	17.5			
19	11.5	13.7	15.9	18.1	20.3			
20	1514.3	1516.5	1518.7	1520.9	1523.1			
21	17.2	19.3	21.5	23.7	25.9			
22	19.8	22.0	24.1	26.3	28.4			
23	22.4	24.6	26.7	28.8	31.0			
24	25.0	27.1	29.2	31.3	33.5			
25	1527.5	1529.6	1531.7	1533.8	1535.9			
26	29.9	32.0	34.1	36.2	38.3			
27	32.3	34.3	36.4	38.5	40.6			
28	34.6	36.6	38.7	40.8	42.9			
29	36.9	39.0	41.0	43.1	45.1			
30	1539.1	1541.2	1543.2	1545.3	1547.3			

2840 horas

YELOGITY OF SOUND IN WATER

ZERO DEPTH

.

PLATE S

DEGREES CENTIGRALL

<i>y</i>
v
6

		: :	** *** *** *** *** *** *** *** *** ***				ELOGITY OF BOUND	ZERO BEC		
				Egy sate sa ga	22		•			
· very man · · · · · · · · · · · · · · · · · · ·				·		:				ii
		: 	†		:	· · · · ·				100 (1) 100 (1) 100 (1) 100 (1)
			•			: •••				
and the second s	·			:		•				
	! -			·						: ·
d .	*			<i>;</i>		÷.		₹0} 	ć,	

SECALES CENTILARADE

IS MUST BE TOP. IF SHEET IS READ THE OTHER WAY O

PERTON READ THIS WAY HORIZONTALE

PLATE 6-F

MALLO THIS MUST BE LEFT-HAND MIDE.

PLATE

TIBHNESS FAHRENHEIT

memorandum

7103/911

DATE: 25 August 1999

FROM: Burton G. Hurdle (Code 7103)

SUBJECT: REVIEW OF REFS. (a) THROUGH (c) FOR REMOVAL OF RESTRICTIONS

Code 1221.1 2 8/27/99

Code 7100

(a) NRL Report S-1204, 16 Oct 1935, E.B. Stephenson AD-491 5FY REF:

(b) NRL Report S-1670, 3 Dec 1940, E.B. Stephenson AD-135 780

(c) NRL Report S-1722, 11 April 1941, E.B. Stephenson and F.J. Woodsmall AD 22/6/3

- 1. References (a) through (c) are a series of reports and documents in underwater acoustics. Refs. (a-c) have been declassified earlier, but restrictions still exist.
- The science, technology, equipment and operational utility of these reports have long been superseded. The current value of these reports is historical.
- 3. Based on the above, it is recommended that references (a) through (c) be available with no restrictions.

Acoustics Division

CONCUR:

Edward R. Franchi 8/26/99 EDWARD R. FRANCHI Date

Superintendent

Acoustics Division