第五章 方差分析

- 5.1 单因子试验的方差分析
 - 一、单因素试验
 - 二、平方和的分解
 - 三、 S_E, S_A 的统计特性
 - 四、假设检验问题的拒绝域
 - 五、未知参数的估计
 - 六、小结

一、单因素(因子)试验

方差分析——根据试验的结果进行分析,鉴别 各个有关因素对试验结果的影响程度.

试验指标——试验中要考察的指标. 因素(因子)——影响试验指标的条件.

水 平——因素所处的状态或等级.

因子A的r个水平用 A_1 , A_2 ,… A_r 表示。

单因素试验——在一项试验中只有一个因素改变. 多因素试验——在一项试验中有多个因素在改变.。 例1 设有三台机器,用来生产规格相同的铝合金薄板.取样,测量薄板的厚度精确至千分之一厘米.得结果如下表所示.

表9.1 铝合金板的厚度

机器 I	机器II	机器Ⅲ
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

试验指标: 薄板的厚度

因素: 机器

水平: 不同的三台机器是因素的三个不同的水平

假定除机器这一因素外,其他条件相同,属于 单因素试验.

试验目的: 考察各台机器所生产的薄板的厚度 有无显著的差异. 即考察机器这一因素对厚度有无 显著的影响. 例2 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计).

表9.2 电路的响应时间

类	型 I	类型 II	类型Ⅲ	类型Ⅳ
19	15	20 40	16 17	18
22	,	21	15	22
20)	33	18	19
18		27	26	

试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验

试验目的:考察电路类型这一因素对响应时间有无 显著的影响. 例3 一火箭用四种燃料。三种推进器作射程试验 每种燃料与每种推进器的组合各发射火箭两次,得 射程如下(以海里计).

表9.3 火箭的射程

推进器(B)		B_1	B_2	B_3
	A_1	58.2 52.6	56.2 41.2	65.3 60.8
燃料(A)	A_2	49.1 42.8	54.1 50.5	51.6 48.4
	A_3	60.1 58.3	70.9 73.2	39.2 40.7
	A_4	75.8 71.5	58.2 51.0	48.7 41.4

试验指标: 射程

因素: 推进器和燃料

水平: 推进器有3个,燃料有4个

双因素试验

试验目的:考察推进器和燃料两因素对射程有

无显著的影响.

表9.1 铝合金板的厚度

机器I	机器II	机器Ⅲ
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

问题分析 在每一个水平下进行独立试验,结果是一 个随机变量.将数据看成是来自三个总体的样本值. 设总体均值分别为 μ_1,μ_2,μ_3 .

检验假设 $H_0: \mu_1 = \mu_2 = \mu_3$,

 $H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

 $H_0: \mu_1 = \mu_2 = \mu_3,$ $H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

方差相等,但参数均未知.

题——检验同方差的多个正态总体均 间 值是否相等.

解决方法——方差分析法,一种统计方法.

数学模型与分布假设

设因子 A 取 r 个不同的水平 A_1, A_2, \dots, A_r 这相当于有r个总体 X_1, X_2, \dots, X_n ,又设在水平 A_n 下进行 $n_i(n_i \ge 2)$ 次独立试验,相当于从总体 X_i 抽 取了容量为 n_i 的样本 $X_{i1}, X_{i2}, \dots, X_{ini}$ $(i=1,2,\dots,r)$,

表 5.2 单因子多水平重复试验数据表

水平 样品号	1	2	 n_i
A ₁	X ₁₁	X ₁₂	 X_{1n_1}
Az	X_{21}	X22	 X_{2n_2}
÷	i i	:	 :
Α,	X_{r1}	X,2	 X,m,

 X_{ij} 就是水平 A、下第j次重复试验的试验结果数据,

单因素试验方差分析的数学模型

假设 X_{ij} 满足以下数学模型.

 $(X_{ij} = \mu_i + \epsilon_{ij}, i = 1, 2, \dots, r; j = 1, 2, \dots, n_i, \sharp \varphi$

- (1) $E(\varepsilon_{ij}) = 0$, $D(\varepsilon_{ij}) = \sigma_i^2 < \infty$, $i = 1, 2, \dots, r$; $j = 1, 2, \dots, n_i$.
- (2) ε;服从正态分布,且各ε;相互独立.
- (3) $\sigma_i^2 = \sigma^2$, $i=1, 2, \dots, r$ (称为方差齐性或等方差性).

易知 $X_{ij} \sim N(\mu_i, \sigma^2)$, $i=1,2,\dots,r$; $j=1,2,\dots,n_i$; 所有的 X_i 相互独立.

 $\varepsilon_{ij} = X_{ij} - \mu_i$ 是水平 A_i 下第 j 次重复试验的试验误差, 是不可观测的随机变量, 称为随机误差,

 μ_i 是总体 X_i 的期望值,其实际意义是水平 A_i 下试验 结果数据的理论均值, σ^2 是总体 $X_i(i=1,2,\cdots,r)$ 的方差.

(5.1.1)

需要解决的问题

要检验的假设为

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_r;$$

 $H_1:\mu_1,\mu_2,\dots,\mu_r$ 中至少有两个不等

估计未知参数 $\mu_1, \mu_2, \dots, \mu_r, \sigma^2$.

方差分析就是要决定接受原假设还是拒绝原假设, 拒绝 H。时,就说明各水平间有显著差异, 即因子有显著影响.

数学模型的等价形式

$$\ddot{\mathcal{H}}$$

$$n = \sum_{j=1}^{r} n_j, \quad \mu = \frac{1}{n} \sum_{j=1}^{r} n_j \mu_j$$

水平 A_j 的效 $\alpha_j = \mu_j - \mu, j = 1, 2, \cdots, r.$ α_j 下的总体 $P 均值与总 \\ P 均的差异,$

总平均

$X_{ij} = \mu_i + \varepsilon_{ij}$, $i = 1, 2, \cdots, r$; $j = 1, 2, \cdots, n_i$, $\varepsilon_{ij} \sim N(0, \sigma^2)$, 且 ε_{ij} , $i = 1, 2, \cdots, r, j = 1, 2, \cdots, n_i$ 相互独立

因此,模型 (5.1.1) 可改写为

$$\begin{cases} X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \\ \sum_{i=1}^r n_i \alpha_i = 0 \end{cases}$$

故假设式

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_r;$$

 $H_1:\mu_1,\mu_2,\dots,\mu_r$ 中至少有两个不等

等价于

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$$

 $H_1: \alpha_i, i=1,2,\cdots,r$ 不全为零

二、平方和的分解

$$\overline{X}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{ij} \qquad S_{i}^{2} = \frac{1}{n_{i} - 1} \sum_{j=1}^{n_{i}} (X_{ij} - \overline{X}_{i})^{2}$$

$$n = \sum_{i=1}^{r} n_{i}$$

样本的总均值 $\bar{X} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_i} X_{ij} = \frac{1}{n} \sum_{i=1}^{r} n_i \bar{X}_i$

总的离差平方和 $S_{\mathrm{T}}=\sum_{i=1}^{r}\sum_{j=1}^{n_{i}}(X_{ij}-\overline{X})^{2}$

它反映了全体样本 X;;的波动程度的大小.

|

18

$$S_T = \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 + \sum_{i=1}^r \sum_{j=1}^{n_i} (\overline{X}_i - \overline{X})^2$$

$$=S_E+S_A$$

$$S_{\rm E} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 = \sum_{i=1}^{r} (n_i - 1) S_i^2$$

—误差平方和,组内平方

$$S_{A} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} (\overline{X}_{i} - \overline{X})^{2} = \sum_{i=1}^{r} n_{i} (\overline{X}_{i} - \overline{X})^{2}$$

—因子平方和,组间平方和

三、 S_E , S_A 的统计特性

$$S_E = \sum_{i=1}^r \sum_{j=1}^{n_j} (X_{ij} - \overline{X}_i)^2$$

$$\sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 / \sigma^2 \sim \chi^2(n_i - 1).$$

又由于各 X_{ii} 独立, 所以由 χ^2 分布的可加性知

$$S_E/\sigma^2 \sim \chi^2(\sum_{i=1}^r (n_i-1)),$$

即
$$S_E/\sigma^2 \sim \chi^2(n-r)$$
,其中 $n = \sum_{i=1}^r n_i$.

根据 χ² 分布的性质可以得到

 S_F 的自由度是 n-r;

$$E(S_F) = (n-r)\sigma^2.$$

 $E(S_A) = E[\sum_{i=1}^r n_i \overline{X}_i^2 - n \overline{X}^2]$

 $= \sum_{i=1}^{r} n_{i} E(\overline{X}_{i}^{2}) - nE(\overline{X}^{2})$

$S_A = \sum_{i=1}^r \sum_{j=1}^{n_i} (\overline{X}_i - \overline{X})^2 = \sum_{i=1}^r [\sqrt{n_i} (\overline{X}_i - \overline{X})]^2$

$$\begin{split} \boxtimes \sum_{i=1}^r \sqrt{n_i} [\sqrt{n_i} (\overline{X}_i - \overline{X})] &= \sum_{i=1}^r n_i (\overline{X}_i - \overline{X}) \\ &= \sum_{i=1}^r \sum_{i=1}^{n_i} X_{ij} - n\overline{X} = 0 \end{split}$$

所以 S_A 的自由度为r-1

又因
$$\mu = \frac{1}{n} \sum_{i=1}^{r} n_i \mu_i$$
, $\overline{X} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_j} X_{ij}$, X_{ij} 相互 独立

所以 $\overline{X} \sim N(\mu, \sigma^2/n)$.

21

$S_A = \sum_{i=1}^r n_i \bar{X}_i^2 - n \bar{X}^2$ 四、假设检验问题的拒绝域

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0;$$

$$H_1: \alpha_i, i=1,2,\cdots,r$$
 不全为零

$$H_0$$
为真时, $S_A/\sigma^2 \sim \chi^2(r-1)$. $E(\frac{S_A}{r-1}) = \sigma^2$

 H_1 是真的

$$E(\frac{S_A}{r-1}) = \sigma^2 + \frac{1}{r-1} \sum_{i=1}^r n_i \alpha_i^2 > \sigma^2.$$

 S_A 与 S_E 独立, H_0 为真时, $S_A/\sigma^2 \sim \chi^2(r-1)$.

 $= \sum_{i=1}^{r} n_{i} \left[\frac{\sigma^{2}}{n_{i}} + (\mu + \alpha_{i})^{2} \right] - n \left[\frac{\sigma^{2}}{n} + \mu^{2} \right]$

 $= (r-1)\sigma^{2} + 2\mu \sum_{i=1}^{r} n_{i}\alpha_{i} + n\mu^{2} + \sum_{i=1}^{r} n_{i}\alpha_{i}^{2} - n\mu^{2}$ $= (r-1)\sigma^{2} + \sum_{i=1}^{r} n_{i}\alpha_{i}^{2}$

23

24

因
$$E(S_E) = (n-r)\sigma^2$$
, 所以 $E(\frac{S_E}{n-r}) = \sigma^2$,

即不管 H_0 是否是真, $S_E/(n-r)$ 都是 σ^2 的无偏估计

$$F = \frac{S_A/(r-1)}{S_E/(n-r)}.$$

- 1. 分子和分母相互独立;
- 2. 分母 S_E 的数学期望始终是 σ^2 ;
- $3.H_0$ 为真时,分子的期望为 σ^2, H_0 不真时,分子取值有偏大的趋势.

拒绝域形如
$$F = \frac{S_A/(r-1)}{S_E/(n-r)} \ge k.$$

所以 H_0 为真时,

$$S_A / \sigma^2 \sim \chi^2(r-1), S_E / \sigma^2 \sim \chi^2(n-r),$$

 $\frac{S_A / (r-1)}{S_E / (n-r)} = \frac{S_A / \sigma^2}{(r-1)} / \frac{S_E / \sigma^2}{(n-r)} \sim F(r-1, n-r).$

给定检验水平α后

检验 H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$;

$$H_1: \alpha_i, i=1,2,\dots,r$$
 不全为零

拒绝域为:
$$F = \frac{S_A/(r-1)}{S_F/(n-r)} \ge F_{1-a}(r-1,n-r).$$

26

表 5.3 方卷分析表

	77 677 11 15						
方差来源	平方和	自由度	均方	F值	显著性		
因子	$S_{A} = \sum_{i=1}^{r} n_{i} (\overline{X}_{i} - \overline{X})^{2}$	r-1	S _A /(r-1)	$F = \frac{S_{\rm A}/(r-1)}{S_{\rm E}/(n-r)}$			
误差	$S_{\mathbb{E}} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2$	n-r	$S_{E}/(n-r)$				
总和	$S_{\mathrm{T}} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2$	n-1					

$$\begin{split} S_{\rm E} &= \sum_{i=1}^r \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 = \sum_{i=1}^r (n_i - 1) S_i^2 \\ S_{\rm A} &= \sum_{i=1}^r \sum_{j=1}^{n_i} (\overline{X}_i - \overline{X})^2 = \sum_{i=1}^r n_i (\overline{X}_i - \overline{X})^2 \\ \overline{X} &= \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij} = \frac{1}{n} \sum_{i=1}^r n_i \overline{X}_i \end{split}$$

例4 设有三台机器,用来生产规格相同的铝合金薄板.取样,测量薄板的厚度精确至千分之一厘米.得结果如下表所示.

表9.1 铝合金板的厚度

机器I	机器II	机器Ⅲ
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

$$H_0: \mu_1 = \mu_2 = \mu_3, \ H_1: \mu_1, \mu_2, \mu_3$$
不全相等.

 $\mathbf{f}\mathbf{f}\mathbf{f} \quad r = 3, n_1 = n_2 = n_3 = 5, n = 15,$

方差	き来源	平方和	自由度	均	方	F	比
因	素A	0.00105333	2	0.000	52667	32	.92
误	差	0.000192	12	0.000	016		
总	和	0.00124533	14				

 $F = 32.92 > F_{1-0.05}(2,12) = 3.89$. 在水平 0.05 下拒绝 H_0 . 各机器生产的薄板厚度有显著差异.

五、未知参数的估计

 $X_{ij} = \mu_i + \epsilon_{ij}$, $i = 1, 2, \dots, r$; $j = 1, 2, \dots, n_i$, 其中

- (1) $E(\epsilon_{ij}) = 0$, $D(\epsilon_{ij}) = \sigma_i^2 < \infty$, $i = 1, 2, \dots, r$; $j = 1, 2, \dots, n_i$.
- (2) ε; 服从正态分布,且各ε; 相互独立.
- (3) $\sigma_i^2 = \sigma^2$, $i = 1, 2, \dots, r$ (称为方差齐性或等方差性).

(1) 点估计.
$$\mu = \frac{1}{n} \sum_{i=1}^{r} n_i \mu_i \quad \alpha_i = \mu_i - \mu, i = 1, 2, \dots, r.$$

 $\hat{\mu} = \overline{X}$ 是 μ 的无偏估计, $\hat{\mu}_i = \overline{X}_i$ 是 μ_i 的无偏估计,

$$\hat{\alpha}_i = \overline{X}_i - \overline{X}$$
 是 α_i 的无偏估计,

$$\hat{\sigma}^2 = S_E/(n-r)$$
 是 σ^2 的无偏估计

30

(2) 区间估计.

为挑选效应最大的水平 (称之为优水平), 有必要对均值差 $\mu_i - \mu_j$ 做区间估计.

记
$$\theta=\sum_{i=1}^r a_i\mu_i$$
 , 其中, a_i 为常数,且 $\sum_{i=1}^r a_r=0$.
$$\hat{\theta}=\sum_i a_i\overline{X}_i$$
 是 θ 的无偏估计.

$$X_{ij} \sim N(\mu_i, \sigma^2), i=1,2,\dots,r, j=1,2,\dots,n,r$$

$$\overline{X}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} X_{ij} \sim N(\mu_i, \sigma^2/n_i), i = 1, 2, \cdots, r.$$

$$E(\sum_{i=1}^{r} a_i \overline{X}_i) = \sum_{i=1}^{r} a_i \mu_i, \ D(\sum_{i=1}^{r} a_i \overline{X}_i) = \sigma^2 \sum_{i=1}^{r} \frac{a_i^2}{n_i},$$

$U = \frac{\sum_{i=1}^{r} a_{i} \overline{X}_{i} - \sum_{i=1}^{r} a_{i} \mu_{i}}{\sqrt{\sigma^{2} \sum_{i=1}^{r} a_{i}^{2} / n_{i}}} \sim N(0,1)$

 $S_{\rm E}/\sigma^2 \sim \chi^2(n-r)$,且 $S_{\rm E}$ 与各 \overline{X} 相互独立, $S_{\rm E}$ 与 $\sum_{i}^{r} a_i \overline{X}_i$ 独立.

$$\frac{\sum\limits_{i=1}^{r}a_{i}\overline{X}_{i}-\sum\limits_{i=1}^{r}a_{i}\mu_{i}}{\sqrt{\left(\sum\limits_{i=1}^{r}a_{i}^{2}/n_{i}\right)S_{E}/(n-r)}}\sim t(n-r)$$

给定置信水平1-α,得

$$\sum_{i=1}^{r} a_{i} \overline{X}_{i} - t_{1-\frac{s}{2}}(n-r) \sqrt{\left(\sum_{i=1}^{r} a_{i}^{2}/n_{i}\right) S_{E}/(n-r)} \leqslant \sum_{i=1}^{r} a_{i} \mu_{i}$$

$$\leqslant \sum_{i=1}^{r} a_{i} \overline{X}_{i} + t_{1-\frac{s}{2}}(n-r) \sqrt{\left(\sum_{i=1}^{r} a_{i}^{2}/n_{i}\right) S_{E}/(n-r)}$$

取 $a_i=1$, 其余的 $a_j=0$, 得 μ_i 的区间估计为

$$\overline{X}_{i} - t_{1-\frac{a}{2}}(n-r)\sqrt{\frac{S_{E}}{n-r}/n_{i}}, \quad \overline{X}_{i} + t_{1-\frac{a}{2}}(n-r)\sqrt{\frac{S_{E}}{n-r}/n_{i}}$$

取 $a_i=1$, $a_j=-1$, 其余的 $a_k=0$, 得均值差 $\mu_i-\mu_j$

$$\overline{X}_{i} - \overline{X}_{j} - t_{1-\frac{\sigma}{2}}(n-r)\sqrt{\frac{S_{E}}{n-r}\left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)},$$

$$\overline{X}_{i} - \overline{X}_{j} + t_{1-\frac{\sigma}{2}}(n-r)\sqrt{\frac{S_{E}}{n-r}\left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)}$$

例 5.1.4 某化工厂用钡泥制取硝酸钡试验中,考虑到溶钡的溶出率随 酸度的增大而提高, 今将酸度从 pH=4 降至 pH=1, 每次作 4 次试验, 测 得废水中硝酸钡的含量 (%) 见表 5.4.

表 5.4 废水中硝酸钡含量/%

样晶pH值	1	2	3	4
4	6. 17	6. 73	6. 45	6. 53
3	5. 89	5. 73	5.50	5. 61
. 2	5. 01	5. 19	5.37	5. 26
1	4. 28	4. 75	4. 79	4. 50

试问溶钡酸度对废水中硝酸钡含量是否有显著影响?

解 假设在一定的溶钡酸度下硝酸钡的含量服从正态分布,各总体的均

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$; H_1 : μ_1 , μ_2 , μ_3 , μ_4 不全相等

由表 5.4 的数据计算所得结果列于下面的方差分析表中,

方差来源	平方和	自由度	均方	F值	显著性
因子	S _A =7.6211	3	2. 5404	63. 07	* *
误差	S _E =0. 4831	12	0.0403		
总和	S _T =8. 1042	15			

取检验水平 α =0.01, $F_{0.99}(3,12)=5.95$ 小于 F 值=63.07, 故拒绝 H_0 , 即 认为溶钡酸度对废水中硝酸钡含量的影响是高度显著的.

各总体均值的估计值,经计算得 $\hat{\mu_1}=\overline{X_1}=\frac{1}{4}\sum_{j=1}^4 X_{ij}=\frac{1}{4}\times 25.88=6.47$,

 $\hat{\mu}_2 = \overline{X}_2 = 5.68$, $\hat{\mu}_3 = 5.21$, $\hat{\mu}_4 = 4.58$.

均值差 μ1-μ2 的 95%置信区间为

$$\begin{split} & \left[\overline{X}_1 - \overline{X}_2 \pm t_{1-\frac{r}{2}} (n-r) \sqrt{\frac{S_E}{n-r} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} \right] \\ = & \left[6.47 - 5.68 \pm 2.179 \sqrt{\frac{2}{4} \times 0.0403} \right] \\ = & \left[0.48, 1.10 \right] \end{split}$$

由于置信区间不含零,故可知在水平 $\alpha=0.05$ 上, μ_1 显著地大于 μ_2 . 若 β 得均值差 $\mu_i - \mu_j$ 的置信区间含零,则认为 μ_i 与 μ_j 无显著差异.

六、小结

- 1. 随机试验: 单因素试验、多因素试验
- 2. 单因素试验方差分析步骤
 - (1) 建立数学模型;
 - (2) 分解平方和;
 - (3) 研究统计特性;
 - (4) 进行假设检验;
 - (5) 估计未知参数.

作业

P144: 2, 3, 7