Algorithm:

- 1) Import libraries:
 Import pandas for delta handling
 Import vaniance & stder functions from statistic model
- 2) Read douta!

 Read douta from a est file into a pandais devatrame ('iff)

 create new douta frame ('deuta') with selected ecoun
- ealculate mean, median & mode using feinction. median () & .. mode () & print them
- 4) Range calculation:
 calculate Range of column using formule (man-min)
- 8) Varniance & standard deviction: colourate variance & standard variation
- 6) stempess calculation:
 calculate skewness using formula 3* (mean-medit

Algoritim:

I) Import libraries:
Import pandas for data handling
Import the mouth file for mainematical calculations.

2) Read Data:
Read csv file into pandos datatrame.

eaccuate mean fer trip-dutance (x) & total dutance (y)

calculate deviations:

5) calculate product of \$ square of devaluers (or\$)2, (y-\$)2, (y-\$).

6) eaculate correlation coefficients. $r = \frac{\sum (x - \overline{x}) \cdot y - \overline{y}}{\sqrt{\sum (x - \overline{x})^2 + \sqrt{\sum (y - \overline{y})^2}}}$

4) print kan pearsons coefficient of correlation r:

fer so corouped deuta

1) import libraries

2) Create datatrame:

create datatrame with two grouped column "pais-count" &

"hip-distance" & frequery.

3) Use corr() function to calculate correlation between data

4) mont or value

Algorithm &

1) Import libraries

Import pandas for doute bandung Import KNN imputer from solkit learn for k Neovrest Neighbors imputation

2) Read Para

read wher douta CSV file into pandas Davaframe ('df')

- g) fill NaN values with constant create new dota frame df2 by filling NaN value with a constant value of 1.
- 4) fill NaN value with previous values wing method = pad
- fill Nan with Nemet Value!

 fill new values with ment non-Nan value using method = ofill
- 6) fill Nan with Mean, Media & Mode:
 fill null vourse with "paisenger-court" column
 mean, median & Mode
- Fill Nan with Man & men Min value
 fill null values with manel & min a fanction
 on passenger-court column
- 8) fill Nan or null vare with frequently occup vain fill Nan or null vain why mode tunion & taking mon vain
- 9) fill NaN using KNN Imputation
 use KNN imputer with 2 Neighbors to impute NaN
 values in "paisenger-cont".

Date:_____

fermula for calculating t-score:
Tscore = To In
o In
where,
え → mean of sumple data
x => mean of population
c =) Standard deviation
N = The sample size.
Algontum:
Steps in conducting at T- Test "-
1) fermulate hypothesis:
Ho: There is no significant difference
HI: There is a significant diffrances.
2) severt agnificance lever (9):
select of (common choices are 0.05,0.01
3) calculate T-score:
calculate t some by putting values in formula
4) Determine conticul region:
calculate trical value using of \$ aipra
using t-table
5) Marc a deusion:
If calculated steinstics falls in ontical region
reject the nun hypothesu.
6) preuv conclusion:
Based on result make inferences about the
population

Date:	
Date.	

	outler, & more specifically though are completed
	grobal outlier.
	armany KNN rey on durance based outlier
	detection. In KNN the number of nearest
	neighbors K is a parameter that need to
	determine. There are other variants of the KNN
	algorithm supponed by py00.
	unlike supervised learning approach unsupervised
	anomaly detection does not require labeled data
	indicating which initiances are anomalies &
	which are not instead it itentify outliers solely
	based on distribution of data points in the
	teature space An appropriate timeshold is choosen
	to diffrentiate between normal data points & animalies
	while those below it are considered normal
	overall unsupervised KNN for anomaly deturion
	provides a fiemble & tatos interpretable approaus
<u> </u>	for Identifying anomalics.
	Algorithm:
	Dead derra & libraries!
	- Import numpy pandar & marpiotib.
	- read given csv file into a paraframe
	- Entrait top-distastance as nurpy array
	2) Define function:
	- create function to conculate dicrance to
	nearest neighbor to earn point
	- Jidentify those with mean durance to K
	nearest neighbor exceeding the throughold as

anomalies.

Date	;
------	---

	3) petalt anomalies:
	call function & with impeditance jonoviennos
	tmeshold
	a seporte anomalies:
	separe the points in top distrince into anomalies
	& normal points.
<u></u>	
	s) plot Romo?
	visualize anomalies & normal points.
	Concluion:
	pistance base method offer a parameter dinen
	approaun for anomary Letation in Later. Unsupermised
	ENN effectively identifier anomalies in distance.
	based dates by reveraging the concept of nearest
	neighbor. over all KNN provide a valuable. unsupovised tool for anomaly detection in various
•	
	application
	A / 10M
	4,3
	14/

	SMOTE is corretely to incime symmets enoughts anding
	Lines connecting existing minoring cross ustaile
	encuring that the experience down newer would
	boundnes of the origing distribution, this greaters
	involunce a noise & oursens was a way a most way
	atient model performance
	smort is overall validable had be maderes in
8	dass imparance usue & imposing the permitable
	of model on imbalance durages.
	Algorithm:
	stops: import necessary horanies.
	step 2: Read down throm 'ssu file 'into a countraine
	couled Days
	Step 3: Create suspion with two panels
	plot the original data in the first porce
	Step 4: Seprove teatures (x) In tanges various (4)
•	trom paratrame
	SKEPS! INHAUZO SMOTE Object.
	Step 6: Apply smort oversampling using the sample method on x &y
	acroscute synthetic samples for the Minority
	class to balance the durasas
	Step7: Concatenet reparapred fragions & forges.
	variables (no a new Darnhorn d'encorres dass
	steps: plot resample data in the second confi
	Step9: Duplay plot

Date:_____

	@ Integrated (1): pepresens the differencing of row
	observations to allow the time series to become
	glahonary
	Moving average (MA): Incorporate dependency between
36	an observation & a residual error from a moving
	avorage model applied to lagged observations,
	O
	ARIMA Parameters:
	Each component in ARIMA functions as a parameter
	with a standard notation, for ARIMA models, a
	Standara notation would be ARIMA with pid & q
	where integer values substitute for the parameters
	to indicate the type of model used. The parameters
	can be defined as.
	ep: The number of lag observations in the model
	also known as the lag orden.
	ed: The number of times the raw observations
)	are differenced also known as the differencing
	e q: The size of moving average window aus
	known as the order of moving average
	Algorithm!
	step 1:
	import necessary libraries such as pandas, numpy
	marpior libipyplot & ARIMA model from statsmodel
	Step2:
	Load the time senes delta from a cisu file into
	pandas devahame.

Date	:
Date	•

	stq3:
	visualize the time senes della using mouplotub.
	J
	step4!
*	perform augmented Dickey-fuller test (ADF) test to
	check the stationanty of time series devia
	7
	Steps:
	convert the doutre column to doute time format &
	set it as the inten of develoame
	Stap 6 '.
	Fit ARIMA model to the time series deuta with
	openfic order (Pid19)
	stp7: 6
	acorate forecasts for future time periods using the
	filted ARIMA Model.
	Conclusion:
	In conclusion, this expendent utilized ARIMA
	modelling to analyze & forecaste time senes deutaset
	representing total amount over time. This expendent
	demonstrate ARIMA modelling for time series analysis
	8 terccasting
	U V
	11/24
	[0 4