

Facultad de Ingeniería

Laboratorio de Dispositivos y Circuitos Electrónicos (6654)

Profesor: Zapata Rosales Arturo Ing.

Semestre 2018-1

Práctica No. 9

Diodo Zener

Grupo 13

Brigada: 7

Vivar Colina Pablo

Ciudad Universitaria Abril de 2018.

1. Marco teórico

1.1. Valor Eficaz

Se denomina valor eficaz al valor cuadrático medio de una magnitud eléctrica. El concepto de valor eficaz se utiliza especialmente para estudiar las formas de onda periódicas, a pesar de ser aplicable a todas las formas de onda, constantes o no. En ocasiones se denomina con el extranjerismo RMS (del inglés, root mean square).(?)

Imagenes/Sine_wave_voltages.png

Figura 1: RMS

2. Material

- Circuito integrado 741
- Resistencias de 10 [10 k Ω]
- \bullet Resistencias 100 [100 k $\!\Omega]$
- Capacitor de 0.047 $[\mu F]$

3. Desarrollo

3.1. Circuito Integrador

Para el primer circuito se usó el generador de funciones con las siguientes características:

- V_{pp} 30 [V]
- Señal senoidal
- Frecuencia de 1 [kHz] Offset

Se compararon las señales de entrada y salida del osciloscopio, la señal de entrada se colocó en la entrada inversora del circuito Integrado 741.

- $R_1=10 [k\Omega]$
- $R_2 = 10 \ [kΩ]$
- $R_3 = 100 \; [k\Omega]$

Figura 2: Circuito Integrador

4. Circuito Buffer

Para éste arreglo de componentes se utilizó una señal conectada a la entrada no inversora de amplificador operacional, con las siguientes características.

- $\blacksquare V_{pp} \ 3 \ [V]$
- 1 [kHz]
- señal seno
- \bullet sin Offset

5. Circuito

Figura 3: Señal senoidal 15 Vpp

Figura 4: Circuito Buffer

Figura 5: Circuito Integrador