

COMODCoordenação de Modelagem Computacional

Relatório de Atividades

Servidor: Marcio Borges

Petrópolis-RJ September 9, 2023

1 Introdution

Variational auto-encoder (VAE) model is a stochastic inference and learning algorithm based on variational Bayes (VB) inference proposed by Kingma and Welling (2014). This is a generative technique whose central idea is the development of representations in a low-dimensional latent space that can be mapped back into a realistic-looking image.

Higgins et al. (2016) introduced the β -VAE, a modification of the original VAE, that introduces an adjustable hyperparameter β to balance latent channel capacity and independence constraints with reconstruction accuracy. They demonstrate that with tuned values of β ($\beta > 1$) the β -VAE outperforms VAE ($\beta = 1$).

Makhzani et al. (2016); Louizos et al. (2017); Burda et al. (2016); Zheng et al. (2019); Vahdat and Kautz (2020)

2 ZHANG ET AL. (2022)

Variational auto-encoder (VAE) model is a generative network based on variational Bayes (VB) inference proposed by Kingma and Welling (2014).

Zhang et al. (2022) proposed a method to reconstruct porous media based on VAE and Fisher information with good quality and efficiency.

Consider the input data $\mathbb{X} = \left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{\mathsf{N}}$ consisting of N *i*ndependent and *i*dentically *d* istributed (*i.i.d.*) samples of the continuous (or discrete) variable \boldsymbol{x} .

$$\mathbb{Z} = \mu_{\mathbb{Z}} + \sigma_{\mathbb{Z}} \cdot \varepsilon, \quad \text{where} \quad \varepsilon \sim \mathbb{N}(0, 1)$$
 (1)

The Kullback–Leibler divergence (also called relative entropy and I-divergence) is a measure of divergence between two distributions (Kullback and Leibler, 1951; Csiszar, 1975):

$$\mathcal{D}_{\mathsf{KL}}\left(f_{\mathbb{P}}||f_{\mathbb{Q}}\right) = \int_{-\infty}^{\infty} \tag{2}$$

Zheng et al. (2019) proposed a Fisher autoencoder

3 FISHER INFORMATION

Let $f(x; \theta)$ be the probability density function of the random variable \mathbb{X} conditioned on the parameter θ . The Fisher information measures the amount of information that an observation of \mathbb{X} carries about the unknown parameter θ . The partial derivative of the natural logarithm of the likelihood function is called **score** (S):

$$S(x,\theta) = \frac{\partial}{\partial \theta} \log [f(x;\theta)]. \tag{3}$$

Fisher information is defined as the variance of the score S:

$$\mathcal{I}(\theta) = \mathsf{E}[\mathsf{S}^{2}|\theta] = \mathsf{E}\left[\left(\frac{\partial}{\partial \theta}\log\left[f\left(x;\theta\right)\right]\right)^{2}\Big|\theta\right]$$

$$= \int_{\mathbb{R}}\left(\frac{\partial}{\partial \theta}\log\left[f\left(x;\theta\right)\right]\right)^{2}f\left(x;\theta\right)\,\mathrm{d}x$$
(4)

If $\log [f(x; \theta)]$ is twice differentiable with respect to θ and under certain regularity conditions, Fisher information can be written as

$$\mathcal{I}(\theta) = \mathsf{E}\left[-\frac{\partial^{2}}{\partial \theta^{2}}\log\left[f\left(x;\theta\right)\right]\middle|\theta\right]. \tag{5}$$

Let \mathbb{X} be a scalar Gaussian random variable *i.e.* $\mathbb{X} \sim \mathbb{N}(\mu, \sigma^2)$. Then the probability density function is parameterized by the parameters μ and σ :

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]. \tag{6}$$

Substituting Eq. (6) in Eq. (5) where $\theta = \mu$ or σ we can compute de Fisher information for a Gaussian variable as:

$$\mathcal{I}(\mu) = \mathsf{E}\left[-\frac{\partial^{2}}{\partial\mu^{2}}\left[\log\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{1}{2}\left(\frac{\mathbb{X} - \mu}{\sigma}\right)^{2}\right] \Big| \mu\right]$$

$$= \mathsf{E}\left[-\frac{\partial}{\partial\mu}\left(-\frac{\mathbb{X} - \mu}{\sigma^{2}}\right) \Big| \mu\right]$$

$$= \mathsf{E}\left[\frac{1}{\sigma^{2}}\right] = \frac{1}{\sigma^{2}}$$
(7)

$$\mathcal{I}(\sigma) = \mathsf{E}\left[-\frac{\partial}{\partial \sigma} \left[-\frac{1}{\sigma} + \frac{(\mathbb{X} - \mu)^2}{\sigma^3} \right] \middle| \sigma\right]$$

$$= \mathsf{E}\left[-\frac{1}{\sigma^2} + \frac{3(\mathbb{X} - \mu)^2}{\sigma^4} \middle| \sigma\right]$$

$$= -\frac{1}{\sigma^2} + \frac{3\sigma^2}{\sigma^4} = \frac{2}{\sigma^2}$$
(8)

4 KLE

Table 1: Number of KL expansion terms needed to obtain an given energy level

Energy	M		
(%)	Exponential	Squared exp.	
80	201	83	
90	781	120	
94	1928	148	
96	3416	170	
98	6111	208	
100	~30,000	~	

REFERENCES

REFERENCES

- Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2016.
- I. Csiszar. *I*-Divergence Geometry of Probability Distributions and Minimization Problems. *The Annals of Probability*, 3(1):146 158, 1975. doi: 10.1214/aop/1176996454. URL https://doi.org/10.1214/aop/1176996454.
- Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In *International Conference on Learning Representations*, 2016.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In *International conference on learning representations*, pages 14–27, 2014.
- S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79 86, 1951. doi: 10.1214/aoms/1177729694. URL https://doi.org/10.1214/aoms/1177729694.
- Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair autoencoder, 2017.
- Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders. In *International Conference on Learning Representations*, 2016. URL http://arxiv.org/abs/1511.05644.
- Arash Vahdat and Jan Kautz. Nvae: a deep hierarchical variational autoencoder. In *NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems*, number 1650, page 19667–19679, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
- Ting Zhang, Tu Hongyan, Xia Pengfei, and Du Yi. Reconstruction of porous media using an information variational auto-encoder. *Transport in Porous Media*, 143(2):271–295, 2022. doi: 10.1007/s11242-022-01769-5. URL https://doi.org/10.1007/s11242-022-01769-5.
- Huangjie Zheng, Jiangchao Yao, Ya Zhang, Ivor Tsang, and Jia Wang. Understanding vaes in fisher-shannon plane. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33: 5917–5924, 07 2019. doi: 10.1609/aaai.v33i01.33015917.

INDEX variational auto-encoding, 1				