Thomas de Jager (4489020) 11/02/2021

Supervisors:

Dr. Tim Horeman

MSc. Tomas Lenssen

ME51010 Literature and Introductory Colloquium

Categorisation

Search methodology & meta-analysis

Working principles

Gripper jaws moving in parallel

Contents

- Problem statement
- Search methodology
- GSQUIP
- Search results
- Classification
- Discussion
- Conclusion
- Graduation project

V-shape clip appliers

[1]

- V-shape clip appliers
 - Force outward
 - Peak stress

- V-shape clip appliers
 - Force outward
 - Peak stress

- V-shape clip appliers
 - Force outward
 - Peak stress
 - Avoiding fundamental problem
 - Modifying hinge [67]

- V-shape clip appliers
 - Force outward
 - Peak stress
 - Avoiding fundamental problem
 - Modifying hinge [67]
 - Pre bending tip [132]
 - Increase friction [132]

troduction M

Results

Discussion

onclusion

Graduation

Literature research question

"What are the state-of-the-art parallel closing mechanisms and how can these be classified?"

• PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

- Identification
- Screening
- Eligibility
- Included

PRISMA Flow Diagram

Identification

Screening

Eligibility

• Search engines

Search engine name	Type of database
PubMed	Subject-specific: medical
ScienceDirect	Multidisciplinary
Web of Science	Multidisciplinary
Scopus	Multidisciplinary
IEEE Xplore	Multidisciplinary
Google Scholar	Multidisciplinary

• Search engines

Search engine name	Type of database
PubMed	Subject-specific: medical
ScienceDirect	Multidisciplinary
Web of Science	Multidisciplinary
Scopus	Multidisciplinary
IEEE Xplore	Multidisciplinary
Google Scholar	Multidisciplinary

- Search engines
- Workflow

Search engine name	Type of database				
PubMed	Subject-specific: medical				
ScienceDirect	Multidisciplinary				
Web of Science	Multidisciplinary				
Scopus	Multidisciplinary				
IEEE Xplore	Multidisciplinary				
Google Scholar	Multidisciplinary				

- Search engines
- Workflow
- GitHub [3]

Search engine name	Type of database
PubMed ScienceDirect Web of Science Scopus IEEE Xplore Google Scholar	Subject-specific: medical Multidisciplinary Multidisciplinary Multidisciplinary Multidisciplinary Multidisciplinary

Sync

Keywords

WSQ	Exact phrase	And			
1	Parallel closing				
2	mechanism Parallel clamping	mechanism OR gripper OR device			
3	Parallel closing	mechanism OR gripper OR device			
4	Parallel gripper	gripper Oft device			
5	Parallel grasping	mechanism OR device OR gripper			
6	Parallel linkage	mechanism OR device OR gripper			
7	Clip applier	parallel			
8	Compliant gripper	parallel			
		,,,			
9	Origami gripper	parallel			
Total					

- Keywords
 - Inclusion
 - Exclusion

WSQ	Exact phrase	And	Year	NOT	Language
1	Parallel closing mechanism			"non-parallel"	GB, NL, DE, FR
2	Parallel clamping	mechanism OR gripper OR device	2010-20	"non-parallel"	GB, NL, DE, FR
3	Parallel closing	mechanism OR gripper OR device	2000-20	"non-parallel"	GB, NL, DE, FR
4	Parallel gripper		2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR
5	Parallel grasping	mechanism OR device OR gripper		"non-parallel"	GB, NL, DE, FR
6	Parallel linkage	mechanism OR device OR gripper	2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR
7	Clip applier	parallel	2010-20	"non-parallel"	GB, NL, DE, FR
8	Compliant gripper	parallel	2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR
9	Origami gripper	parallel		"non-parallel"	GB, NL, DE, FR
Total					

- Keywords
 - Inclusion
 - Exclusion
- Records
- GSQUIP

(Google search query uniqueness identifier program)

WS	$_{ m SQ}$	Exact phrase	And	Year	NOT	Language	Results	% Unique	% Double
1	L	Parallel closing mechanism			"non-parallel"	GB, NL, DE, FR	4	0	50
2	2	Parallel clamping	mechanism OR gripper OR device	2010-20	"non-parallel"	GB, NL, DE, FR	238	97	15
3	3	Parallel closing	mechanism OR gripper OR device	2000-20	"non-parallel"	GB, NL, DE, FR	191	94	18
4	I	Parallel gripper		2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR	1140 ¹	94	1
5	5	Parallel grasping	mechanism OR device OR gripper		"non-parallel"	GB, NL, DE, FR	186	79	4
6	5	Parallel linkage	mechanism OR device OR gripper	2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR	8111	99	3
y ₇	7	Clip applier	parallel	2010-20	"non-parallel"	GB, NL, DE, FR	413	100	8
8	3	Compliant gripper	parallel	2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR	321	86	0
9)	Origami gripper	parallel		"non-parallel"	GB, NL, DE, FR	46	96	4
Tot	tal						3350	ø 83	ø 12

S
(

- Inclusion
- Exclusion
- Records
- GSQUIP (Google search quer uniqueness identifie program)
- Selected

	WSQ	Exact phrase	And	Year	NOT	Language	Results	% Unique	% Double	Selected
	1	Parallel closing mechanism			"non-parallel"	GB, NL, DE, FR	4	0	50	2
	2	Parallel clamping	mechanism OR gripper OR device	2010-20	"non-parallel"	GB, NL, DE, FR	238	97	15	8
	3	Parallel closing	mechanism OR gripper OR device	2000-20	"non-parallel"	GB, NL, DE, FR	191	94	18	16
1	4	Parallel gripper		2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR	1140 ¹	94	1	17
	5	Parallel grasping	mechanism OR device OR gripper		"non-parallel"	GB, NL, DE, FR	186	79	4	31
	6	Parallel linkage	mechanism OR device OR gripper	2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR	8111	99	3	1
ery er	7	Clip applier	parallel	2010-20	"non-parallel"	GB, NL, DE, FR	413	100	8	2
	8	Compliant gripper	parallel	2010-20	"non-parallel", "statically balanced", "motion platform", "constant-force", "parallel manipulator"	GB, NL, DE, FR	321	86	0	9
	9	Origami gripper	parallel		"non-parallel"	GB, NL, DE, FR	46	96	4	4
_	Total						3350	ø 83	ø 12	90

Selected papers over time

- Increasing
 - Compliant
 - Soft robotics

Amount of selected papers per category with respect to their publication year

Classification

- Compliant
- Linkage
- Meta-material
- Origami
- Tendon-driven
- Industrial

Classification

• State-of-the-art

Classification

- State-of-the-art
- 2D functional scheme

ntroduction

Vlethoo

Compliant mechanisms

- Lumped
- Distributed
 - MLEM

Compliant mechanisms

- Lumped
- Distributed
 - MLEM

[57]

- Parallel motion
- Reverse motion
- Crank and slider
- Bell crank

- Parallel motion
- Reverse motion
- Crank and slider
- Bell crank

- Parallel motion
- Reverse motion
- Crank and slider
- Bell crank

- Parallel motion
- Reverse motion
- Crank and slider
- Bell crank

- Bending dominated
- Stretching dominated
- Origami inspired
- Auxetic (v < 0)

[8]

- Bending dominated
- Stretching dominated
- Origami inspired
- Auxetic (v < 0)

$$\frac{E}{Es} \sim \left(\frac{\rho}{\rho_s}\right)^2 \qquad \frac{E}{Es} \sim \left(\frac{\rho}{\rho_s}\right)$$

$$\frac{E}{Es} \sim \left(\frac{\rho}{\rho_s}\right)$$

$$\frac{\sigma}{\sigma_y} \sim \left(\frac{\rho}{\rho_s}\right)^{1.5} \qquad \frac{\sigma}{\sigma_y} \sim \left(\frac{\rho}{\rho_s}\right)$$

$$\frac{\sigma}{\sigma_y} \sim \left(\frac{\rho}{\rho_s}\right)$$

- Bending dominated
- Stretching dominated
- Origami inspired
- Auxetic (v < 0)

- Bending dominated
- Stretching dominated
- Origami inspired
- Auxetic (v < 0)

Results

Kinematic origami

- Open chain
- Network

Kinematic origami

- Open chain
- Network

Kinematic origami

- Open chain
- Network

Tendon-driven mechanisms

- Controllable
- Uncontrollable

[31]

Discussion

Literature gap/abundance

Conclusion

- PRISMA
 - 163 records
- 2D classification

Graduation project

- Double articulated parallel clip applier (DAPCA)
- Redesign end effector
- Parallel closing
- Preferably compliant

Graduation timeline

Design project (35EC)

Thomas de Jager (4489020) 11/02/2021

Supervisors:

Dr. Tim Horeman

MSc. Tomas Lenssen

ME51010 Literature and Introductory Colloquium

References

- [1] http://www.surgizip.com/ProductApplication.html
- [2] https://blog.rectorsquid.com/linkage-mechanism-designer-and-simulator/
- [3] https://github.com/thomas-de-jager?tab=repositories
- [156] Gabriel Zada et al. "Fenestrated aneurysm clips in the surgical management of anterior communicating artery aneurysms: operative techniques and strategy. Clinical article." In: Neurosurgical focus 26.5 (May 2009), E7. issn: 10920684. doi: 10.3171/2009.2.FOCUS08314. url: https://thejns.org/focus/view/journals/neurosurg-focus/26/5/article-pE7.xml
- [57] Paul S. Gollnick, Spencer P. Magleby, and Larry L. Howell. "An introduction to multilayer lamina emergent mechanisms." In: Journal of Mechanical Design, Transactions of the ASME 133.8 (Aug. 2011). issn: 10500472. doi: 10.1115/1.4004542. url: http://asmedigitalcollection.asme . org / mechanicaldesign / article pdf / 133 / 8 /081006/5926739/081006_1.pdf
- [125] Giulio Rosati, Simone Minto, and Fabio Oscari. "Design and construction of a variable-aperture gripper for flexible automated assembly." In: Robotics and Computer-Integrated Manufacturing 48 (Dec. 2017), pp. 157–166. issn: 07365845. doi: 10.1016/j.rcim.2017.03.010. url: http://dx.doi.org/10.1016/j.rcim.2017.03.010
- [140] Robert D. Sweeney. Soft squeeze clamp and expansion device. June 1998. url: https://patents.google.com/patent/US5971378A/en
- [114] Kouichi Nemoto. Article gripper assembly. Dec. 1986. url: https://patents.google.com/patent/US4735452A/en
- [142] Tomoya Takahashi et al. "Design and Control of Parallel Gripper with Linear and Curved Trajectory Consisting of only Revolute Pairs." English. In: Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII 2020. IEEE/SICE International Symposium on System Integration. 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, Jan. 2020, pp. 557–562. isbn: 9781728166674. doi: 10.1109/SII46433.2020.9025997
- [75] Gregory W. Johnson et al. ELECTROSURGICAL CUTTING AND SEALING INSTRUMENTS WITHUAWS HAVING A PARALLEL CLOSURE MOTION. 2017. url: https://patents.google.com/patent/US8709035B2/en
- [8] Rima Sabina Aouf. Metamaterials create mechanisms from a single piece of plastic. Sept. 2016. url: https://www.dezeen.com/2016/09/27/metamaterials-mechanisms-design-3d-printed-plastic-door-handle-hasso-plattner-institute-technology/%20www.youtube.com/watch?v=oMQltryhbl4
- [139] James Utama Surjadi et al. Mechanical Metamaterials and Their Engineering Applications. Mar. 2019. doi: 10. 1002 / adem . 201800864. url: https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201800864

References

- [14] Landen A. Bowen et al. "An approach for understanding action origami as kinematic mechanisms." In: Proceedings of the ASME Design Engineering Technical Conference. Vol. 6 B. American Society of Mechanical Engineers, Feb. 2013. isbn: 9780791855942. doi: 10.1115/DETC2013-13407
- [98] Shuai Liu et al. "Parallel-motion Thick Origami Structure for Robotic Design." In: Proceedings IEEE International Conference on Robotics and Automation. 2020, pp. 934–939. isbn: 9781728173955
- [31] Matei Ciocarlie, Fernando Mier Hicks, and Scott Stanford. "Kinetic and dimensional optimization for a tendondriven gripper." In: Proceedings IEEE International Conference on Robotics and Automation. Vol. 679. 4. WILLOW GARAGE Inc. 2013, pp. 2751–2758. isbn: 9781467356411. doi: 10.1109/ICRA.2013.6630956. url: https://patents.google.com/patent/US8979152B2/en
- [34] Danielle Collins. What are the main types of linear actuators? Aug. 2016. url: https://www.linearmotiontips.com/main-types-linear-actuators/
- [137] Xiantao Sun et al. "A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation." In: Review of Scientific Instruments 84.8 (Aug. 2013), p. 085002. issn: 00346748. doi: 10.1063/1.4817695. url: http://aip.scitation.org/doi/10.1063/1.4817695
- [72] Rifeng Hu. "Design and Optimization of a Compliant Parallel Robotic Surgical Instrument with Multifunctional Forceps for Minimally Invasive Surgery." In: November (2015)
- [118] Aaron M. Olsen and Mark W. Westneat. "Linkage mechanisms in the vertebrate skull: Structure and function of three-dimensional, parallel transmission systems." In: Journal of Morphology 277.12 (Dec. 2016), pp. 1570–1583. issn: 03622525. doi: 10.1002/jmor.20596. url:http://doi.wiley.com/10.1002/jmor.20596
- [101] Zhenyu Liu and Jan G. Korvink. "Using artificial reaction force to design compliant mechanism with multiple equality displacement constraints." In: Finite Elements in Analysis and Design 45.8-9 (June 2009), pp. 555–568. issn: 0168874X. doi: 10.1016/j.finel.2009.03.005
- [132] Frederick E. Shelton. METHOD FOR APPLYING A SURGICAL CLIP HAVING A COMPLIANT PORTION. Hillsboro, Sept. 2014. url: https://patentimages.storage.googleapis.com/c4/e0/69/6d694bf3872b4b/US20140018832A1.pdf
- [67] Michael Hogendijk. Clip applier tool. Jan. 1995. url: https://patents.google.com/patent/US5382253

