

MS-820 Industrial Bar Code Scanner

USER'S MANUAL

OMRON

MS-820 Industrial Bar Code Scanner User's Manual

Copyright © 2003
by Microscan Systems, Inc.,

ISO 9001/Certification No. 00-1047

All rights reserved. The information contained herein is proprietary and is provided solely for the purpose of allowing customers to operate and/or service Microscan manufactured equipment and is not to be released, reproduced, or used for any other purpose without written permission.

Throughout this manual, trademarked names might be used. Rather than put a trademark (™) symbol in every occurrence of a trademarked name, we state herein that we are using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement.

Disclaimer

The information and specifications described in this manual are subject to change without notice.

Table of Contents

Chapter 1 Quick Start	
Step 1 Hardware Required.....	1-2
Step 2 Connect the System	1-3
Step 3 Install ESP	1-4
Step 4 Select Scanner Model.....	1-5
Step 5 Autoconnect.....	1-6
Step 6 Position Symbol and Scanner.....	1-7
Step 7 Test for Read Rate	1-8
Step 8 Configure the Scanner.....	1-9
Chapter 2 Using ESP	
Easy Setup Mode.....	2-2
Application Mode.....	2-3
Pulldown Menus	2-4
Making Changes in ESP	2-6
Send/Receive Options	2-7
Chapter 3 Communications	
Communications by ESP	3-2
RS-232/422 Host Port.....	3-3
RS-232 Auxiliary Port.....	3-9
Preamble.....	3-17
Postamble	3-18
LRC Status.....	3-19
Response Timeout	3-20
Intercharacter Delay.....	3-21
Chapter 4 Read Cycle	
Multisymbol	4-3
Trigger.....	4-5
Serial Trigger.....	4-11
End of Read Cycle	4-12
Good Decode Reads.....	4-15
Scanner Setup	4-16
Laser Setup.....	4-20
Chapter 5 Symbologies	
Symbologies by ESP	5-2
1D Symbologies	5-3
Stacked Symbologies.....	5-20

AIAG	5-21
Narrow Margins	5-23
Symbology ID	5-24
Background Color	5-25
Autodiscriminate	5-26
Chapter 6 I/O Parameters	
I/O Parameters by ESP	6-2
Symbol Data Output	6-3
Data Output Message Flow	6-6
Noread Message	6-7
Bad Symbol Message	6-8
No Symbol Message	6-9
Beeper	6-10
Partial Output	6-11
Serial Verification	6-12
Operation Command Output	6-14
Output 1 Parameters	6-15
Output 2 Parameters	6-19
Output 3 Parameters	6-19
Quality Output	6-20
Chapter 7 Matchcode	
Matchcode by ESP Menu	7-2
Overview of Matchcode	7-3
Matchcode Type	7-4
Sequential Matching	7-5
Match Length	7-6
Sequence On Noread	7-7
Sequence On Mismatch	7-8
New Master Pin	7-9
Chapter 8 Diagnostics	
Diagnostics by ESP Menu	8-2
Diagnostics by Serial Command	8-2
Counts	8-3
Hours Since Reset	8-4
Warning Messages	8-5
Present Operating Temperature (deg. C)	8-9
High Temperature Threshold	8-10
Low Temperature Threshold	8-11
Lifetime Hours	8-12
Chapter 9 Laser Control	
Laser Control by ESP Menu	9-2
Laser On/Off	9-3

Laser Framing	9-4
Chapter 10 Terminal Mode	
Terminal Window	10-2
Find Function	10-3
Macros	10-4
Terminal Window Functions.....	10-5
Chapter 11 Utilities	
Utilities by ESP Menu.....	11-2
Utilities by Serial Command	11-3
Read Rate	11-5
Counters.....	11-7
Device Control.....	11-9
Master Database.....	11-11
Firmware	11-16
Autodiscrimination.....	11-19
Scanner Status Requests	11-20
Appendices	
Appendix A General Specifications.....	A-2
Appendix B Electrical Specifications	A-6
Appendix C IB-131 Interface Module	A-10
Appendix D Serial Configuration Commands.....	A-13
Appendix E Serial Command Format.....	A-16
Appendix F ASCII Table.....	A-18
Appendix G Embedded Menus	A-20
Appendix H Defaulting/Saving/Initializing.....	A-21
Appendix I Position Object Detector	A-25
Appendix J Formulas for Number of Decodes	A-27
Appendix K Operational Tips	A-30
Appendix L Interface Standards	A-31
Appendix M Multidrop Communications.....	A-32
Appendix N Glossary of Terms	A-37

List of Figures

Figure 1-1 Hardware Configuration	1-2
Figure 1-2 Hardware Configuration	1-3
Figure 1-3 Symbol/Scanner Position	1-7
Figure 2-1 How Settings are Saved	2-4
Figure 4-1 Trigger Level	4-7
Figure 4-2 Trigger Edge	4-8
Figure 6-1 Read Cycle	6-5
Figure 9-1 Laser Framing	9-4
Figure 9-2 Laser On Position	9-5
Figure 9-3 Laser Off Position	9-5
Figure A-1 MS-820 Dimensions	A-2
Figure A-2 IB-131 Mechanical	A-11
Figure A-3 IB-131 Typical Setup	A-11
Figure A-4 IB-131 Multidrop Setup	A-12
Figure A-5 Scanner/IB-131 Daisy Chain Setup	A-12
Figure A-6 Object Detector	A-25
Figure A-7 Ladder	A-27
Figure A-8 Picket Fence	A-28
Figure A-9 Angled Picket Fence	A-28
Figure A-10 Polling Sequence	A-34
Figure A-11 Polling Sequence	A-35

List of Tables

Table 4-1 Maximum Number of Characters by Number of Symbols	4-3
Table 11-1 Summary of Utility Serial Commands	11-3
Table 11-2 Maximum Characters for Master Symbol Database	11-13
Table 11-3 Hex Value to Binary Conversion	11-20
Table 11-4 Scanner Status	11-20
Table A-1 MS-820 Status Lights	A-3
Table A-2 MS-820 Host Connector, 15-pin	A-6
Table A-3 Host 25-pin Connector	A-10
Table A-4 Trigger 4-pin Connector	A-10
Table A-5 Power 3-pin Connector	A-10
Table A-6 Scanner 15-pin Connector	A-10
Table A-7 Network 25-pin Connector	A-10
Table A-8 Complete List of Serial Configuration Commands	A-13
Table A-9 ASCII Table with Control Characters	A-18
Table A-10 Communication Protocol Commands	A-19
Table A-11 Multidrop Addresses	A-36

About the 820 Scanner

The MS-820 scanner can decode high density bar code symbols from 3 to 30 inches. Its IP65 and heavy industrial rating makes it ideal for applications such as conveyors, assembly lines, or embedding within machinery.

Its application code resides in an onboard flash memory chip that can be easily updated by downloads.¹ A user interface program, the ESP (Easy Setup Program), can be downloaded and runs on Microsoft Windows 95TM, Windows 98TM, Windows NTTM, Windows 2000TM, or Windows XPTM operating systems. Alternately, configuration commands can be sent from an embedded, menu-driven terminal program, or directly by host serial command strings. (Contact your Omron representative)

1. See your Omron sales representative to access the latest application codes.

About This Manual

This manual provides complete information on setting up, installing, and configuring the MS-820 scanner. The chapters follow the ESP menus which are presented in the order in which a scanner might be setup and made ready for industrial operation.

Chapter 1, “Quick Start” provides overall step-by-step instructions for getting your scanner operational with specific “go to” references to other chapters and appendices.

Chapter 3, “Communications” through **Chapter 8, “Diagnostics”** are general setup and configuration options.

Chapter 9, “Laser Control” will help you setup your raster and laser framing envelopes.

Chapter 10, “Terminal Mode” describes the use of the Terminal window.

The appendices include specifications, reference tables of serial commands, ASCII characters, multidrop setup and addresses, as well as other useful information relating to bar coding and electrical and mechanical setups for the scanner.

Highlighting

Serial commands, selections inside instructions, and menu defaults are highlighted in **red bold**. Cross-references are highlighted in **blue bold**. Web links and outside references are highlighted in **blue bold italics**. References to menu topics are highlighted in **Bold Initial Caps**. References to topic headings within this manual or other documents are enclosed in quotation marks.

Host Communications

There are three ways the scanner can communicate with a host:

1. Microscan’s Windows™ based **ESP™**, the preferred method which offers point-and-click ease of use and visual responses to user adjustments.
2. Serial commands such as **<Kr1>** can be sent from a terminal program. They can also be sent from the **Terminal** window within ESP.
3. Embedded onboard menus are accessed from a terminal window with a **<D>** command.

About ESP

ESP is composed of two basic modes **Setup Mode** and **App Mode** (applications). The icons shown here are used to move between these modes and are located in the upper left corner of the ESP window.

In the **App Mode**, click the **Configuration** icon to bring up the configuration views for **Read Cycle**, **Symbolologies**, **I/O**, **Matchcode** and **Diagnostics**.

Note: Throughout ESP, the term “reader” applies to both readers and scanners.

For more information, see “[Using ESP](#)” in chapter 2.

Approvals

This equipment is in compliance or approved by the following organizations:

- UL (Underwriters Laboratories, Inc.)
- cUL (UL mark of Canada)
- FCC (Federal Communication Commission)
- CE Compliant
- BSMI (Bureau of Standards, Metrology and Inspection)

Safety Labels

The following labels are located on the side and back of the MS-820 scanner:

11-000024-01
Safety Label

11-000031-01 S/N Label

檢驗 XXXXXXXX

Warning and Caution Summary

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

For connection to a UL listed direct plug-in power unit marked Class II and rated 10 to 28 VDC at 2.7 watts or greater.

European models must use a similarly rated Class I or Class II power supply that is certified to comply with standard for safety EN 60950.

WARNING

Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous laser light radiation exposure.

WARNING

There are no user serviceable parts in the scanner. Opening the scanner voids the warranty and could expose the user to laser diode power of up to 7 mW.

WARNING

The laser beam can be harmful to eyesight. Avoid eye contact with the laser beam. Never point the beam at other people, or in a direction where people may be passing.

Chapter

1

Quick Start

1-Quick Start

Chapter Contents

Step 1 Hardware Required	1-2
Step 2 Connect the System	1-3
Step 3 Install ESP	1-4
Step 4 Select Scanner Model	1-5
Step 5 Autoconnect	1-6
Step 6 Position Symbol and Scanner	1-7
Step 7 Test for Read Rate	1-8
Step 8 Configure the Scanner	1-9

This chapter is designed to get your scanner up and running quickly using Microscan's **ESP™** so the user can get a sense of its capabilities and test bar code symbol samples. Detailed setup information for installing the scanner into the actual application can be obtained in the subsequent chapters. **ESP™** is Microscan's proprietary **Easy Setup Program**, a Windows™ based graphic user interface that resides on the user's host computer and allows the user to fully configure, test, and operate Microscan's 1D and 2D symbology readers.

As an alternative to **ESP**, you can setup the scanner by sending serial commands or by using the scanner's embedded menus.

Step 1 – Hardware Required

(Refer to [figure 1-1](#).)

Item	Part Number	Description
1	FIS-0820-XXXX	MS-820 scanner
2		A host computer ^a
3	61-300026-01	DB-25 Null modem configuration cable plug to DB-9 socket, 6ft. ^b or a 25-pin cable to the 25-pin port
4	98-000014-01	IB-131 interface kit including (5) interface cable
5	61-000011-01	Null modem configuration cable
6	97-100004-05 (120V) 97-100004-06 (240V)	Power supply
7	99-4400021-03	Optional object detector

a. With either a terminal communications program or Microscan's ESP™ which runs under Windows™ operating system, Windows-95 or higher, including Windows NT™ and Windows XT.

b. If using another host cable, make certain it does not have RTS/CTS connected to the host.

Caution: If using your own power supply, be certain that it is wired correctly and supplies voltage is within the +10 to 28VDC limits. Incorrect wiring or voltage can cause software or equipment failures.

Figure 1-1 Hardware Configuration

Step 2 – Connect the System

(Refer to **figure 1-2**.)

1. Connect the scanner **(1)** to the IB-131 interface box **(4)** using the supplied cable **(5)**.

1. If making up your own cable, make certain that you connect transmit pins to receive pins.

2. Connect the IB-131 **(4)** at the "HOST" 25-pin connector to the computer **(2)** via a null modem cable **(3)**.¹

3. Connect the power supply **(6)** to the IB-131's POWER connector.

4. Connect power to the system.

Figure 1-2 Hardware Configuration

Caution:

1. Be sure all cables are connected **BEFORE** applying power.
2. Always power down **BEFORE** disconnecting any cables.

1. When wiring the IB-131 to a host computer which has a 25-pin connector, cross pins 2 and 3. When wiring the IB-131 to a host computer which has a 9-pin connector, do NOT cross pins 2 and 3.

Step 3 – Install ESP¹

(**ESP** is short for *Easy Setup Program*.)

With your scanner connected to a host computer with Windows™ operating system, you can use the ESP to configure and control the scanner.

1. Insert your CD into your computer's CD drive.
2. Launch **Setup.exe** under **ESP** and follow the prompts.

Contact your Omron representative for Software information.

1. You can also access the scanner through its embedded menus. See “**Embedded Menus**” on page [A-20](#).

Step 4 – Select Scanner Model

When you start the program, the following menu will appear:

Note: If you need to select another model later, you can find it in the **App Mode** under **Model** on the menu bar.

1. In the **Model** dialog box, select your model.

If you do not want to make this selection every time you load ESP, uncheck **Show this window at Startup**.

2. Select the default name, for example **MS-820-1**, or type in a file name of your choice and click **OK**.
3. Click **Yes** when the **connect to the scanner** dialog appears.

Step 5 – Autoconnect

1. In the **Connecting to...** dialog, select your communications port under **COM Port**.

2. Click the **Start** button.
3. Allow time for the autoconnect routine to test all of the combinations. You will see a blue progress bar fill across the **Connecting to...** dialog.

When connected, the **CONNECTED** message will appear in a green box in the status bar on the bottom right of the dialog.

Tip: If connection fails, enable a different Com port and try again.

Tip: If you do not see either the CONNECTED or DISCONNECTED message at the bottom of your dialog, try expanding the ESP window horizontally.

Step 6 – Position Symbol and Scanner

1. Set up a bar code symbol¹ at the scanning distance you will be using in your application.²
2. Avoid bright light or IR light from other sources, including other scanners.
3. Pitch symbol or scanner a minimum of $\pm 15^\circ$ to avoid specular reflection, the return of direct, non-diffused light.

Figure 1-3 Symbol/Scanner Position

4.

Code 39 is the default symbol type enabled. If you are uncertain as to your symbology type, enable all codes (see “[Autodiscriminate](#)” on page 5-26).

1. If using an I 2/5 symbol, verify that the number of characters in the symbol being scanned matches the symbol length enabled for the I 2/5 symbol type (default is 10 and 6). See “[Inter-leaved 2 of 5](#)” on page 5-11.
2. Consult “[LED Indicators](#)” on page A-3.

Step 7 – Test for Read Rate

If you don't have a test symbol, print out this page and use the symbol here for testing.

20 mil Code 39 Test Symbol

You can also find test symbols on the back of the Microscan Marketing CD jacket. The 20 mil refers to the width of the narrowest bar (e.g., 7.5 mil = .0075" or .1905 mm).

By ESP

After connecting to the scanner, ESP will open in **Easy Setup Mode**.

1. Click the **Test** button in Easy Setup Mode to begin the read rate test.

2. Follow the instructions in **Easy Setup Mode** screen.
3. To end the **Read Rate** test, click the **Stop** button.

Note: If the scanner is in the default **Continuous Read** mode, it will read and beep repeatedly as long as a readable symbol remains in the read range and the read cycle configuration has not changed.

Note: See "[Formulas for Number of Decodes](#)" on page A-27 for additional information on scan width and depth of field.

By Serial Commands

Send an **<C>** to begin the read rate test.

Send a **<J>** to end the read rate test.

Step 8 – Configure the Scanner

By ESP

To make change scanner settings, or to access the utilities or terminal window, click on the **App Mode** button.

To return to the **Easy Setup Mode**, click on the **Setup Mode** button.

See [Chapter 2, “Using ESP”](#) for detailed explanation of ESP features.

By Serial Commands

From your terminal program or the terminal screen in ESP, you can enter serial string commands configuration and utility commands as described herein.

See [“Serial Configuration Commands” on page A-13](#) and [“Summary of Utility Serial Commands” on page 11-3](#).

Note: You can learn the current setting of any parameter by inserting a question mark after the number, as in <KA?>. To see all “K” commands, send <K?>.

By Embedded Menu

From your terminal program you can send a <D> command to access the embedded menus.

See [“Embedded Menus” on page A-20](#).

Chapter

2

Using ESP

2-Using ESP

Chapter Contents

Easy Setup Mode	2-2
Application Mode	2-3
Pulldown Menus	2-4
Making Changes in ESP	2-6
Send/Receive Options	2-7

This section is designed to help you understand the structure, elements, and application of the ESP (Easy Setup Program).

When you start up ESP, unless otherwise specified, you will enter the **Easy Setup** mode for initial setup. From there, you move easily into the **App Mode** (application mode) where you can access several configuration and utilities menus.

Easy Setup Mode

Easy Setup Mode

In **Easy Setup Mode** you are presented with the **Test** option and if appropriate for your application, **Calibration**. After connecting to your scanner (or reader) the **Setup Mode** will first appear. This will provide you with instructions specific to your model that will help you in positioning, testing, and if appropriate, calibrating.

Test

Click the **Test** button to start the read rate test for a quick indication of the read capabilities and the limits of your application. When **Decodes per Second** is unchecked, the test will count the percentage of decodes relative to the number of actual scans. Click **Stop** to end the test.

Calibrate

Some models include a calibration routine that will optimize reads by comparing read rates at various settings in focal lengths, scan speeds, and gain settings.

Application Mode

From **Easy Setup Mode**, you can click on the **App Mode** button to access specific configuration menus, utilities, and a terminal window where serial commands can be entered.

Note that the **App Mode** and **Setup Mode** buttons appear in the same position to allow easy switching between these primary modes.

Note: For specific information on any of the icons shown above in the operations bar or configuration bar, see specific chapters in this document.

Pulldown Menus

File

New

Whenever **New** is selected, the default configuration of ESP is loaded.

Open/Save

When **Save** or **Save As** is selected, the ESP configuration is saved to the host computer's hard drive and available whenever the same file is selected under **Open**.

Important: When you save menu changes to your hard drive, these changes are not saved to your scanner. **Figure 2-1** shows how settings can be saved and received between ESP and the scanner and ESP and the host hard drive.

Import/Export

Export converts the active ESP configuration settings to an ASCII text file. **Import** converts the ASCII settings from a text file to ESP configuration settings.

Model

When you select **New Model**, you can define configuration settings for another model. When you save to the hard drive, you will be saving the settings of all the models defined in a single ESP file.

Options

You can use the **Options** menu to tell ESP how you wish it to perform at startup.

Note: The settings you select here will be saved and be loaded into ESP when ESP is opened next, whether or not you save the ESP file to the computer.

Reload Last

At startup, reloads the last file saved to the computer.

Skip ESM Mode

Skips the **Easy Setup Mode** and opens directly in the **App Mode**.

Connect Prompt (enabled by default)

At startup, asks if you would like to connect to the scanner.

Receive After Connect

At startup, loads the scanner's settings into ESP. (This is not recommended if you want to preserve your ESP settings for future use.)

Enable 'Send and Save, Including Factory'

Enables the 'Send and Save, Including Factory' option in the Send/Recv command.

Model Prompt at Startup (enabled by default)

At startup, prompts you to select a scanner model. If this is unchecked, then ESP will automatically load the last model accessed.

Connect

Generally **Autoconnect** will be the quickest way that ESP can get connected to a scanner. **Autoconnect** will try connecting at the most common communications settings and step through the various settings until they match up with the host's settings.

When you select **Connect**, you will need to manually select the communications settings from a popup dialog.

View

View tells you what view is current and allows you to quickly move to other views which are also accessed by clicking the icons on the toolbars.

Making Changes in ESP

To change scanner settings, or to access the utilities or terminal window, click on the **App Mode** button.

To return to the **Easy Setup Mode**, click on the **Setup Mode** button.

See the succeeding chapters and Appendices to see specific configuration command explanations for both ESP and serial commands.

To make changes to a configuration setting in the menu trees:

1. **Left click** on the + to expand tree
2. **Double click** on parameter and click once in selection box to view options.
3. Place your cursor in the selection box, scroll down to the setting you want to change and **click** once on the setting.
4. **Left click** again on the open screen to complete the selection.

5. **Right click** on the open screen and select **Save to Scanner** to implement the command in the scanner.

Send/Receive Options

To access save and receive options, from the **Configuration** views click the **Send/Recv** button:

You can also access this selector by right-clicking in any of the configuration views.

Saving

You have 3 choices for saving:

- 1. Send, No Save.**

This saves ESP settings to current memory.

- 2. Send and Save.**

This activates all changes in current memory **and** saves to the scanner for power-on. (Similar to the <Z> command.)

- 3. Send and Save, Including Factory.** Includes all settings including changes to factory settings.

For **Multidrop** setup, see "[Multidrop Communications](#)" on page [A-32](#).

For **Matchcode** setup, see [Chapter 7, "Matchcode."](#)

For more on defaulting and saving settings, see "[Defaulting/Saving/Initializing](#)" on [page A-21](#).

Receiving

From the **Send/Recv** selector select **Receive Reader Settings**.

This is useful if you want to receive (upload) the scanner's settings and save them as a computer file for later retrieval and to verify that your ESP settings have been saved or that you have not saved any unwanted changes that you or someone else previously made in ESP.

Defaulting

When you select **Default Current...** or **Default all ESP...** you are only defaulting the ESP settings. To default the scanner, see "[Defaulting/Saving/Resetting](#)" on [page A-21](#) for a more information.

Chapter

3

Communications

3-Communications

Chapter Contents

Communications by ESP	3-2
RS-232/422 Host Port.....	3-3
RS-232 Auxiliary Port	3-9
Preamble	3-17
Postamble	3-18
LRC Status	3-19
Response Timeout.....	3-20
Intercharacter Delay	3-21

With Microscan's ESP™ (Easy Setup Program), configuration changes can be made in the ESP menus, then sent and saved to your scanner. The user can also send serial commands to the scanner via the ESP's Terminal window.

This section includes connecting parameters and options for communicating by the auxiliary port and various interfaces.

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

Note: Default settings for establishing communications are:

Baud = **9600**

Parity = **Even**

Stop Bits = **One**

Data Bits = **Seven**

Flow Control = **None**

Communications by ESP

3-Communications

Click this button to bring up the **Communications** menu.

To open nested options,
single-click the +.

To change a setting,
double-click the
setting and use your
cursor to scroll
through the options.

Parameters	ESP Value
Communications	
RS232/422 Host Port	
Host Port Connections	
Baud Rate	9600
Parity	Even
Stop Bits	One
Data Bits	Seven
Host Protocol	Point-to-Pair
RS232 Auxiliary Port	
Preamble	Disabled
Postamble	Enabled
LRC Status	Disabled
Response Timeout	12
Intercharacter Delay	0

Communications by Serial Command

Command Title	Format
Host Port Connections	< K a baud,parity,stop bits,data bits >
Host Protocol	< K f protocol >
RS422 Status	< K b status >
Auxiliary Port	< K y aux port mode,baud,parity,stop bits,data bits,daisy chain status,daisy chain ID >
Preamble	< K d status,preamble >
Postamble	< K e status,postamble >
LRC	< K c status >
Response Timeout	< K A response timeout >
Intercharacter Delay	< K B intercharacter delay >

RS-232/422 Host Port

Includes host port connections and host protocols.

Host Port Connections

Baud Rate, Host Port

<i>Usage:</i>	Can be used to transfer data faster or to match host port settings.		
<i>Definition:</i>	The rate at which the scanner and host transfer data back and forth.		
<i>Serial Cmd:</i>	< Kbaud rate,parity,stop bits,data bits >		
<i>Default:</i>	9600		
<i>Options:</i>	0 = 600	3 = 4800	6 = 38.4K
	1 = 1200	4 = 9600	7 = 57.6K
	2 = 2400	5 = 19.2K	8 = 300

Parity, Host Port

<i>Usage:</i>	Only changed if necessary to match host setting.		
<i>Definition:</i>	An error detection routine in which one data bit in each character is set to 1 or 0 so that the total number of 1 bits in the data field is even or odd.		
<i>Serial Cmd:</i>	< Kbaud rate,parity,stop bits,data bits >		
<i>Default:</i>	Even		
<i>Options:</i>	0 = None	1 = Even	2 = Odd

Stop Bits, Host Port

<i>Usage:</i>	Only changed if necessary to match host setting.		
<i>Definition:</i>	One or two bits added to the end of each character to indicate the end of the character.		
<i>Serial Cmd:</i>	< Kbaud rate,parity,stop bits,data bits >		
<i>Default:</i>	One		
<i>Options:</i>	0 = One	1 = Two	

RS-232/422 Host Port

Data Bits, Host Port

Usage: Only changed if necessary to match host setting.

Definition: Number of bits in each character.

Serial Cmd: <**K**baud rate,parity,stop bits,**data bits**>

Default: **Seven**

Options: 0 = Seven 1 = Eight

Host Protocol

Usage: In general, the point-to-point protocols will work well in most applications. They require no address and must use RS-232 or RS-422 communications standards.

Definition: Protocols define the sequence and format in which information is transferred between the scanner and the host, or in the case of **Multidrop**, between scanners and a concentrator.

Serial Cmd: <**Kf**protocol>

Default: **Point-to-Point**

Options: 0 = Point-to-Point 4 = Polling Mode D

1 = Point-to-Point with RTS/CTS 5 = Multidrop

2 = Point-to-Point with XON/XOFF 6 = User Defined

3 = Point-to-Point with RTS/CTS & 7 = User Defined Multidrop
XON/XOFF

If selecting one of the options from 0 to 4 (**Point-to-Point**, **Point-to-Point with RTS/CTS**, **Point-to-Point with XON/XOFF**, **Point-to-Point with RTS/CTS and XON/XOFF**, or **Polling Mode D**), use the <**K140**,protocol> format.

Option 5 through 7 are special cases and discussed later in this section.

Point-to-Point (standard)

Usage: Used only with RS-232 or RS-422.

Definition: Standard **Point-to-Point** requires no address and sends data to the host whenever it is available, without any request or handshake from the host.

Serial Cmd: <**KfO**>

Point-to-Point with RTS/CTS

Usage: A scanner initiates a data transfer with an RTS (request-to-send) transmission. The host, when ready, responds with a CTS (clear-to-send) and the data is transmitted. CTS and RTS signals are transmitted over two dedicated wires as defined in the RS-232 standard.

Used only with RS-232.

Definition: **Point-to-Point with RTS/CTS** (request-to-send/clear-to-send) is a simple hardware handshaking protocol that allows a scanner to initiate data transfers to the host.

Serial Cmd: <Kf1>

Point-to-Point with XON/XOFF (Transmitter On/Off)

Usage: If an XOFF has been received from the host, data will not be sent to the host until the host sends an XON. During the XOFF phase, the host is free to carry on other chores and accept data from other devices.

Used only with RS-232.

Definition: This option enables the host to send the XON and XOFF command as a single byte transmission command of start (^Q) or stop (^S).

Serial Cmd: <Kf2>

Point-to-Point with RTS/CTS & XON/XOFF

Usage: Used only with RS-232.

Definition: This option is a combination of **Point-to-Point with RTS/CTS** and **Point-to-Point with XON/XOFF**.

Serial Cmd: <Kf3>

Polling Mode D

Usage: When in **Polling Mode D**, an address of 1 is automatically displayed on the configuration screen. However, during transmission, a 1C hex poll address (FS) and a 1D hex select address (GS) are substituted for the 1.

Definition: Like **Point-to-Point**, **Polling Mode D** requires a dedicated connection to the host; but unlike **Point-to-Point**, it requires an address and must wait for a poll from the host before sending data.

Serial Cmd: <Kf4>

RS-232/422 Host Port

Multidrop

Note: See also “[Multidrop Communications](#)” on page A-32.

Usage: The MS-5000 can be used as a concentrator to a single host port connection.

Definition: **Multidrop** allows up to 50 devices to be connected to a single RS-485 host, with the scanner assigned an unique address (from 01 to 50). When **Multidrop** is selected, the protocol characters for RES, REQ, etc. are assigned automatically.

Multidrop Addresses: Each address has its own separate poll and select address (from 1C to 7F hex).

Options: 01 through 50

Serial Cmd: If selecting **Multidrop** <K140,5> fan address must be defined and appended to the command string.

Format: <**Kf5**,address[01 to 50]>Format: <**K140,5**,address[01 to 50]>

Note: Scanners linking up to a Microscan MS-5000 multidrop concentrator must be configured in standard multidrop protocol.

User Defined Point-to-Point

Usage: Used for developing custom protocols in polled or unpolled mode.

Definition: **User Defined Point-to-Point** allows the user to customize the point-to-point protocol.

Serial Cmd: <**Kf6**,RES,address,REQ,EOT,STX,ETX,ACK,NAK,from host>

User Defined Address

Definition: **User Defined** is considered to be in a polled mode only if an address has been assigned.

Serial Cmd: <**Kf6**,RES,**address**,REQ,EOT,STX,ETX,ACK,NAK,from host>

Default: No address

Options: Any ASCII character except a null.

User Defined Example

Example: An ACK/NAK protocol can be configured using **User Defined**. The scanner will transmit data to the host when an **ACK** is received. If a **NAK** or response timeout occurs, the scanner will re-send the data to the host up to 3 more times before aborting.

Tip: To use **User Defined Point-to-Point**, first select **Point-to-Point <K140,0>** and then **User Defined <K140,f6>**.

Example: To select an unpolled ACK/NAK **User Defined** protocol with LRC disabled, send **<Kf0><Kf6,.....^F,^U><Kc0>**. ACK and NAK will be displayed in the menu.**Tip:** To use **User Defined Point-to-Point**, first select **Point-to-Point <Kf0>** and then **User Defined <Kf6>**.

Example: To select an unpolled ACK/NAK **User Defined** protocol with LRC disabled, send **<Kf0><Kf6,.....^F,^U><Kc0>**. ACK and NAK will be displayed in the menu.

Serial Cmd: **<Kf6,RES,address,REQ,EOT,STX,ETX,ACK,NAK,from host>**

Default: **No assignment**

Options: Any ASCII character except a null. Control characters can be used to define RES through NAK in serial commands.

From Host

Definition: Allows the handshaking protocol to be initiated from the host, if not configured in an unpolled mode. Messages sent to the host will include the scanner's defined protocol. The status of **From Host** determines if messages sent from the host to the scanner must include the defined protocol. If **From Host** is disabled, the defined protocol is not included. If **From Host** is enabled, the defined protocol must be included.

Serial Cmd: **<Kf6,RES,address,REQ,EOT,STX,ETX,ACK,NAK,from host>**

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

RS-232/422 Host Port

User Defined Multidrop

Note: Any ASCII character except a null (00) and a ^A (01) can be assigned as an address. Control characters can be used to define RES through NAK in serial commands. See (See “[Communication Protocol Commands](#)” on page A-19.)

Usage: Used when connecting to a concentrator or other device that does not match standard multidrop protocol.

Definition: **User Defined Multidrop** allows the user to customize the polling protocol. If selecting **User Defined Multidrop** (7), complete the format by either choosing new parameters or place commas where unchanged data fields occur.

Serial Cmd: <**Kf7**,RES,address,REQ,EOT,STX,ETX,ACK,NAK>

For **User Defined Multidrop**, first select **Multidrop <KF5>**, then **User Defined Multidrop <KF7...>**.

Address: Any single character (02 hex to 7E hex) in the ASCII table can be assigned as the address character. The character chosen is used as the poll character and the subsequent ASCII character becomes the select character. For example, if a **^B** (02 hex) is selected as the address, **^C** (03 hex) becomes the select address that the host will use in sending host select commands.

Definitions of commands in **User Defined** and **User Defined Multidrop** must be duplicated in host applications to enable poll and select sequences to execute correctly during transmission.

Note: Typically, parameters in **User Defined Multidrop** are defined by first enabling **Multidrop**, then enabling **User Defined Multidrop**. This pre-loads multidrop characters into the parameters. Then changes are made to individual characters to match the host or other requirements.

Host RS-422 Status

Usage: Only changed if necessary to match host setting.

Definition: Enables RS-422. When RS-422 is enabled, RS-232 is disabled.

Serial Cmd: <**Kbstatus**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

RS-232 Auxiliary Port

Note: The aux port cannot be used when the host port is set to **RS-422** or **Multidrop**.

As with the host port parameters, the auxiliary terminal's settings (baud rate, parity, stop bits, and data bits) must be identical with those of the auxiliary device.

Usage: These commands set the communication parameters with the auxiliary port which can be used to configure menus, send data to the host, display data transmissions originating from the host of the scanner, and relay data from other scanners set in tandem (daisy chained).

Definition: An auxiliary port connects the scanner to a remote display or to other scanners that can display or transfer data.

Aux Port Connections

As with the host port parameters, the auxiliary terminal's settings (baud rate, parity, stop bits, and data bits) must be identical with those of the auxiliary device.

Baud Rate, Aux Port

Usage: Can be used to transfer data faster or match an auxiliary device.

Definition: The rate at which the scanner and host transfer data back and forth.

Serial Cmd: <**Kyaux port mode, baud rate, parity, stop bits, data bits, daisy chain ID status, daisy chain ID**>

Default: **9600**

Options:	0 = 600	3 = 4800	6 = 38.4K
	1 = 1200	4 = 9600	7 = 76.8K ^a
	2 = 2400	5 = 19.2K	8 = 300

a. Not available in ESP.

Parity, Aux Port

Usage: Only changed if necessary to match host setting.

Definition: An error detection routine in which one data bit in each character is set to 1 or 0 so that the total number of 1 bits in the data field is even or odd.

Default: **Even**

Options: <**Kyaux port mode, baud rate, parity, stop bits, data bits, daisy chain ID status, daisy chain ID**>

Serial Cmd: 0 = None	1 = Even	2 = Odd
-----------------------------	----------	---------

RS-232 Auxiliary Port

Stop Bits, Aux Port

Usage: Only changed if necessary to match host setting.

Definition: Allows the user to select the last one or two bits in each character to indicate the end of the character.

Serial Cmd: <**K**yaux port mode,baud rate,parity,**stop bits**,data bits,daisy chain ID
status,daisy chain ID>

Default: One

Options: 0 = One 1 = Two

Data Bits, Aux Port

Usage: Only changed if necessary to match host setting.

Definition: Number of bits in each character.

Serial Cmd: <**Kya**ux port mode,baud rate,parity,stop bits,**data bits**,daisy chain ID
status,daisy chain ID>

Default: **Seven**

Options: 0 = Seven 1 = Eight

Aux Port Mode

Note: The aux port interacts only with the host port via the 25-pin port except when in **Daisy Chain** mode. When in **Daisy Chain** mode, the aux port will also interact with the configuration port (9-pin port) or the wiring box network ports.

Definition: Determines the flow of data between the auxiliary port device(s), the scanner, and the host.

Serial Cmd: <**Kyaux port mode**,baud rate,parity,stop bits,data bits,daisy chain ID
status,daisy chain ID>

Default: **Disabled**

Options: 0 = Disabled 3 = Full duplex
 1 = Transparent 4 = Daisy chain
 2 = Half duplex

Transparent Mode

Usage: Often used in conjunction with handheld scanners. Employs an auxiliary readout to detect mis-applied bar code symbols.

Definition: In **Transparent** mode data is passed between the auxiliary port and the host. The scanner buffers data from the auxiliary port and echoes the keyed data on the auxiliary port. I

Data initiated from the Auxiliary Port

- Auxiliary port data is passed through to the host whenever a return key is pressed at the auxiliary port or symbol data is sent.
- Whenever aux port data is sent with symbol data, the aux port data will appear between the preamble and the symbol data.
- Auxiliary port data to the host is always sent with a preamble and a postamble.
- If the scanner is in a polled mode to the host, auxiliary port data will NOT pass through.
- <D> is the only command accepted by the scanner from the auxiliary port. All other commands will pass through to the host.

Data initiated from the Scanner

- Transmission to the auxiliary port occurs immediately upon a good read.
- Scan data to the auxiliary port does not include a preamble or a postamble.
- Communications with the auxiliary port is always in Point-to-Point protocol, even if the host is in a polled protocol mode.

Data initiated from the Host

- All host data is echoed to the auxiliary port in unpolled mode.

Serial Cmd: <**Kyaux port mode**,baud rate,parity,stop bits,data bits,daisy chain ID status,daisy chain ID>
1 = Transparent

RS-232 Auxiliary Port

Half Duplex Mode

Usage: Used to display symbol data on an auxiliary screen close to the scanner.

Definition: In **Half Duplex** mode all auxiliary port data and symbol data is sent directly to the host. Symbol data is displayed on the auxiliary port screen at the same time the data is sent to the host.

Data initiated from the Auxiliary Port

- Auxiliary port data to the host is ignored if the scanner is in a polled mode.
- Auxiliary port data or scanned data is sent to the host whenever it is received.
- Auxiliary port data is not echoed.
- Auxiliary port data to the host is always sent without a preamble or a postamble.
- <D> is the only command that is accepted by the scanner from the auxiliary port. All other commands are passed through to the host.

Data initiated from the Scanner

- Scan data is transmitted to the auxiliary port at the same time it is transmitted to the host.
- Data transmission conforms with all parameters specified in the configuration menu (e.g., **Preamble**, **Postamble**, **End of Read Cycle**).

Data is initiated from the Host

- All host data is echoed to the auxiliary port in unpolled mode.

Serial Cmd: <**Kyaux port mode**,baud rate,parity,stop bits,data bits,daisy chain ID
status,daisy chain ID>

2 = Half Duplex

Full Duplex Mode

Usage: Used when communication to and from the auxiliary port is required.

Definition: In **Full Duplex** mode all auxiliary port data and symbol data is sent directly to the host. Symbol data is not displayed on the auxiliary port screen.

Data initiated from the Auxiliary Port.

- Auxiliary port data to the host is ignored if the scanner is in a polled mode.
- Auxiliary port data or scanned data is sent to the host whenever it is received.
- Auxiliary port data is not echoed.
- Auxiliary port data to the host is always sent without a preamble or a postamble.
- <D> is the only command that is accepted by the scanner from the auxiliary port. All other commands are passed through to the host.

Data initiated from the Scanner.

- Scan data is not sent to the auxiliary port.

Data initiated from the Host

All host data is echoed to the auxiliary port in unpolled mode.

Serial Cmd: <**Kyaux port mode**,baud rate,parity,stop bits,data bits,daisy chain ID status,daisy chain ID>

3 = Full duplex

RS-232 Auxiliary Port

Daisy Chain Mode

- Usage:* Used in applications where:
- A symbol might be scanned in both ladder and picket fence directions.
 - A bar code symbol may be present on multiple sides of a package.
 - Bar code symbols are presented at different depths.
- Definition:* In a daisy chain application, scanners are connected in tandem or “daisy chain” and decoded data is relayed from one scanner to another on up to the host.
- A master scanner has its host port linked to the host computer and its auxiliary port linked to the host port of the first secondary scanner in the chain. Thereafter, each secondary's auxiliary port is linked to the host port of the secondary that is further from the host in the daisy chain.
- Each scanner in the daisy chain can be assigned an ID that accompanies any data that it sends.
- Serial Cmd:* <**Kyaux port mode**,baud rate,parity,stop bits,data bits,daisy chain ID status,daisy chain ID>
- Options:* **4 = Daisy chain**
- Function:* Before the master scanner times out, it checks its auxiliary port for data. It should be set to wait at least **20mS** for each secondary in the daisy chain. If no data is received within the read cycle timeout, the master sends a noread message to the host. Otherwise the complete data is sent.
- If for example the master scanner is set to timeout in 120mS, the first secondary scanner downstream might be set to 100mS, the next to 80mS, and so forth, thus assuring that at least 20mS elapses between transmissions.^a
- Daisy-chained scanners can send a series of symbols by enabling **Multisymbol** and a common multisymbol separator. If the master scanner does not receive the expected number of symbols, noread messages are appended to the data string to make up the difference between the number of symbols enabled in **Multisymbol** and the number of symbols read.
- For example, a master and two secondary scanners have **Number of Symbols** set to 3 and **Multisymbol Separator** defined as %. If the master and the first secondary scanner do not find symbols, but the next secondary scanner registers a good read, the transmitted results would be: symbol data % noread % noread.

a. The above example is based on the best case. Other factors such as baud rate, number of characters in a given symbol, and the number of secondaries in the daisy chain can affect timing and may need to be included in your calculations for complete accuracy.

Conditions:

The conditions for a daisy chain application are as follows:

1. The master scanner's trigger must be **Serial** or **External**; the secondary scanners' triggers are configured for **Serial**.
2. All scanners are enabled to **Daisy Chain** mode.
3. Each scanner's auxiliary port must be connected to the Host port of its secondary scanner.
4. Each secondary scanner in the daisy chain must be set to send its data no less than **20mS** before its preceding scanner.
5. All but the master scanner must have **Postamble** enabled and set to **CR (^M)** only.
6. All but the master scanner must have their noread messages disabled.
7. If **Multisymbol** is enabled, **Multisymbol Separator** characters must match in all scanners and **Number of Symbols** must be set to number large enough to include all the symbols it may itself read plus the number of symbols that it will be expected to relay to the host or the next scanner up the line.
8. **Symbology ID** enable/disable must be the same in all scanners.
9. All but the master scanner must have their diagnostic warning messages disabled.
10. **Daisy Chain ID Status** enable/disable and the number of characters in **Daisy Chain ID** must be the same in all scanners.

RS-232 Auxiliary Port

Daisy Chain ID Status

Note: Enable/disable and length must be the same in all scanners.

Usage: Used in a daisy chain setup in cases where the host needs to know which scanner in a daisy chain setup sent the data.

Definition: Each scanner in a daisy chain can be assigned a one or two character ID that will appear in front of decoded data and identify its source.

Serial Cmd: <**Ky**aux port mode,baud rate,parity,stop bits,data bits,**daisy chain ID status**,**daisy chain ID**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Daisy Chain ID

Usage: Used in a daisy chain setup in cases where the host needs to know which scanner sent the data.

Definition: A one or two character prefix which identifies the particular daisy chain scanner from which the data is being sent.

Serial Cmd: <**Ky**aux port mode,baud rate,parity,stop bits,data bits,**daisy chain ID status**,**daisy chain ID**>

Default: **1/**

Options: Any one or two ASCII characters.

Preamble

Preamble Status

<i>Usage:</i>	Used for identifying and controlling incoming data. For example, defining the preamble as a carriage return and a line feed causes each decoded message to be displayed on its own line.
<i>Definition:</i>	Up to four user defined ASCII characters, including control characters, can be defined and added to the front or end of the data string that is sent from the scanner to the host.
<i>Serial Cmd:</i>	< Kdstatus ,preamble character(s)>
<i>Default:</i>	Disabled
<i>Options:</i>	0 = Disabled 1 = Enabled (within any protocol)

Preamble Character(s)

<i>Serial Cmd:</i>	< Kdstatus , preamble character(s) >
<i>Default:</i>	^M corresponds to: carriage return/null/null/null .
<i>Options:</i>	Up to four user-defined ASCII characters, including control characters.

Within a Serial Command

To enter control characters within a serial command, hold down the control key while typing the desired character.

Example: <**Kd141,CNTL-m**> to enter **^M**

Within an Embedded Menu

Control characters entered on the command line are displayed in the menu as mnemonic characters, such as: <CR><NULL><NULL><NULL>.

To enter a control character from within an embedded menu, first type in a space (with the space key). This has the effect of allowing the control key to be recognized as a part of the control character. Next hold down the control key while typing the desired character.

Example: **Space CNTL-m** to enter **^M**.

Postamble

Postamble

Postamble Status

Usage: Used for identifying and controlling incoming data. For example, defining the postamble as a carriage return and a line feed causes each decoded message to be displayed on its own line.

Definition: Defines a one- to four-character data string that can be added to the end of the decoded data.

Serial Cmd: <**Kestatus**,postamble character(s)>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Postamble Character(s)

Serial Cmd: <**Kestatus**,**postamble character(s)**>

Default: **^M^J**. Corresponds to carriage return/line feed/null/null, as displayed in the menu.

Options: Up to four user-defined ASCII characters, including control characters.

Within a Serial Command

To enter control characters within a serial command, hold down the control key while typing the desired character.

Example: **<Ke140,CNTL-m CNTL-j>** to enter ^M^J.

Within an Embedded Menu

Control characters entered on the command line are displayed in the menu as mnemonic characters, such as: <CR><LF><NUL><NUL>

To enter a control character from within an embedded menu, first type in a space (with the space key). This has the effect of allowing the control key to be recognized as a part of the control character. Next hold down the control key while typing the desired character.

Example: **Space CNTL-m Space CNTL-j** to enter ^M^J.

LRC Status

(Longitudinal Redundancy Check)

Usage: Used when extra data integrity is required.

Definition: An error-checking routine that verifies the accuracy of transmissions. It is the exclusive OR of all characters following the **STX** (start of text) up to and including the **ETX** (end of text). What this means is that the binary representation of all the characters in a transmission are cumulatively added in a column and each resulting odd integer is assigned a 1 and each even integer a 0 (two 1s = 0, two 0s = 0, a 1 and a 0 = 1). The extra **LRC** character is then appended to the transmission and the receiver (usually the host) performs the same addition and compares the results.

Serial Cmd: <**Kcstatus**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Response Timeout

- Usage:* Used only when a response is required from the host. While in **Multi-drop**, if the scanner does not receive an **ACK** or **NAK** from the host after sending polled data, it will act on a fault. The scanner can be set to wait indefinitely by setting **Response Timeout** to zero.
- Definition:* Time the scanner will wait before timing out if **ACK**, **NAK**, and **ETX** are enabled, and a host response is expected.
- Serial Cmd:* <**K**A*response timeout*>
- Default:* **12mS** (in 1mS increments)
- Options:* 0 to 65000 (0 to 65 seconds)
(A zero (0) setting causes an indefinite wait.)

Intercharacter Delay

- Usage:* Used only when a host cannot receive data quickly enough and there is enough time between symbols to allow data to be completely transferred. It is rarely used since any setting other than zero will slow down communications. For example, a 200 setting will result in a 1/5 second delay between each character that is transmitted.
- Definition:* The time interval in milliseconds between individual characters transmitted from the scanner to the host.
- Serial Cmd:* <**KB**intercharacter delay>
- Default:* **0**
- Options:* 0 to 255 (in milliseconds). Zero (0) causes no delay between characters.

Chapter

4

Read Cycle

Chapter Contents

Multisymbol	4-3
Trigger	4-5
Serial Trigger	4-11
End of Read Cycle	4-12
Good Decode Reads	4-15
Scanner Setup	4-16

Read cycles and triggering modes are at the heart of bar code scanning. After you've established communications and completed basic read rate testing, you will need to address the spatial and timing parameters associated with your application. In a typical operation a bar coded item moves along a line past a scanner. A sensor or timer activates a read cycle during which the scanner actively searches for bar code symbols. You will need to decide how to initiate the read cycle and how and when to end it. This section addresses these issues.

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

Read Cycle by ESP

4-Read Cycle

Read Cycle by Serial Command

Command Title	Format
Multisymbol	< KL number of symbols,multisymbol separator>
Trigger Mode	< Kg trigger mode,trigger filter duration>
External Trigger State	< Kj external trigger state>
Serial Trigger	< Ki serial trigger character>
End of Read Cycle	< Kh end of read cycle,read cycle timeout>
Good Decode Reads	< Km good decode reads>
Automatic Gain Control	< KD gain,AGC sampling,AGC min,AGC max>
Transition Counter	< KH symbol detect status,transition counter>
Scan Speed	< KE scan speed>
Scanner Type	< KP density>
Laser Controls	< KC laser on/off,laser framing status,laser on position,laser off position>

Multisymbol

Usage: Commonly used in shipping applications where a shipping symbol contains individual symbols for part number, quantity, etc. This feature allows one trigger to pick up all the symbols. AIAG and EAN- 128 are two application standards that address this need.

Definition: **Multisymbol** allows the user to define up to 12 bar code symbols that can be read in a single read cycle.

Conditions The following conditions apply:

1. All noread messages are posted at the end of the data string.
2. If more than one symbol is within the scan beam at the same time, symbol data may not be displayed in the order of appearance.
3. If **Matchcode Type** is set to **Sequential** or if **Trigger** is set to **Continuous Read 1 Output**, **Number of Symbols** will default to **1** (if set to any number greater than 1).
4. The maximum number of characters in any one bar code (other than PDF417) is **64**. For PDF417 it's **2710**.
5. The maximum number of characters in a single scan line is **102** (Code 39).
6. The maximum number of characters for all symbols is **788**, including preamble, separators, and LRC.

Table 4-1 Maximum Number of Characters by Number of Symbols

Number of Symbols	Non-PDF Symbol Cumulative Maximum	PDF Symbols	
		Maximum per Symbol	Cumulative Maximum
1-5	333	2710	13563
6	398	2320	13961
7	463	2030	14225
8	528	1804	14448
9	593	1622	14615
10	658	1474	14758
11	723	1350	14869
12	788	1246	14972

Multisymbol

Number of Symbols

- Definition:** **Number of Symbols** is the number of different symbols that can be read in a single read cycle.
- Serial Cmd:** <KL**number of symbols**,**multisymbol separator**>
- Default:** **1**
- Options:** 1 to 12

Multisymbol Separator

- Usage:** Used to delimit or separate data fields with a user defined character.
- Definition:** The character that's inserted between each symbol scanned when **Multisymbol** is set to any number greater than **1**.
- ESP:** To select a new multisymbol separator, double-click on **Separator** and select a character in the popup window.

4-Read Cycle

- Serial Cmd:** <KL**number of symbols**,**multisymbol separator**>

Note: If **Multisymbol Separator** has been changed to any character other than the default comma and you wish to re-define the separator as a comma, use ESP (as shown below) or the embedded menu.

- Default:**, (comma)

- Options:** Any available ASCII character, except < > **NUL**.

Trigger

Trigger Mode

Note: This command does not need to be followed by an <A> command.

Definition: The type of trigger event that will initiate the read cycle.

Serial Cmd: <**Kgtrigger mode**,*trigger filter duration*>

Default: **Continuous Read**

Options:	0 = Continuous Read	3 = External Edge
	1 = Continuous Read 1 Output	4 = Serial Data
	2 = External Level	5 = Serial Data & Edge

Continuous Read

Usage: Useful in testing bar code symbol readability or scanner functions. It is not recommended for normal operations.

Definition: In **Continuous Read**, trigger input options are disabled, the scanner is always in the read cycle, and it will attempt to decode and transmit every scan crossing a symbol.

When To Output and **Noread** options have no affect on **Continuous Read**.

Serial Cmd: <**KgO**>

Continuous Read 1 Output

Usage: Can be useful in applications where it is not feasible to use a trigger and all succeeding symbols contain different information. It is also effective in applications where the objects are hand-presented.

Definition: In **Continuous Read 1 Output** the scanner self-triggers whenever it decodes a new bar code symbol or a timeout occurs.

If **End Of Read Cycle** is set to **Timeout** and the symbol doesn't change, the scanner will repeat the output at the end of each timeout period. For example, if **Timeout** is set to one second, the scanner sends the symbol data immediately and repeats the output at intervals of one second for as long as the symbol continues to be scanned.

If **End Of Read Cycle** is set to **New Trigger**, the scanner will send the current symbol data immediately, but send it only once. A new symbol appearing in the scanner's range will be read and sent immediately provided it is not identical to the previous symbol read.

Serial Cmd: <**Kg 1**>

Caution: In automated environments, **Continuous Read 1 Output** is not recommended because there is no one to verify that a symbol was missed.

Note: If **Trigger** is set to **Continuous Read 1 Output**, **Number of Symbols** will default back to **1** (if set to any number greater than 1).

External Trigger Level

Usage:

This mode is effective in an application where the speeds of the conveying apparatus are variable and the time the scanner spends scanning each object is not predictable. It also allows the user to determine if a noread has occurred.

Definition:

External Trigger Level allows the read cycle (active state) to begin when a trigger (change of state) from an external sensing device is received. The read cycle endures until the object moves out of the sensor range and the active trigger state changes again.

Figure 4-1 Trigger Level

Serial Cmd: <Kg2>

Important: **Level** and **Edge** apply to the active logic state (Active Open or Active Closed) that exists while the object is in a read cycle, between the rising edge and falling edge. *Rising edge* is the trigger signal associated with the appearance of an object. *Falling edge* is the trigger signal associated with the subsequent disappearance of the object.

Trigger

External Trigger Edge

Usage: Highly recommended in any application where conveying speed is constant or if spacing, object size, or timeouts are consistent.

Definition: **External Trigger Edge**, as with Level, allows the read cycle (active state) to begin when a trigger (change of state) from an external sensing device is received. However, the passing of an object out of sensor range does not end the read cycle. The read cycle ends with a good read output or, depending on **End of Read Cycle** setting, a timeout or new trigger occurs.

Figure 4-2 Trigger Edge

Serial Cmd: <**Kg3**>

Important: **Level** and **Edge** apply to the active logic state (**Active Open** or **Active Closed**) that exists while the object is in a read cycle, between the rising edge and falling edge. *Rising edge* is the trigger signal associated with the appearance of an object. *Falling edge* is the trigger signal associated with the subsequent disappearance of the object.

Serial Data

Usage: Effective in a highly controlled environment where the host knows precisely when the object is in the scan zone. It is also useful in determining if a noread has occurred.

Definition: In **Serial Data**, the scanner accepts an ASCII character from the host or controlling device as a trigger to start a read cycle. A **Serial Data** trigger behaves the same as an **External Edge** trigger.

Serial commands are entered inside corner brackets, such as <t>.

Serial Cmd: <**Kg4**>

Serial Data or Edge

Usage: **Serial Data or Edge** is seldom used but can be useful in an application that primarily uses an external sensing device but occasionally needs to be manually triggered.

An auxiliary terminal can be connected to the aux port so the user can send the serial trigger character through the scanner to the host.

Definition: In this mode the scanner accepts either a serial ASCII character or an external trigger pulse to start the read cycle.

Serial Cmd: <**Kg5**>

Trigger Filter Duration

Usage: Useful where trigger bounce could cause false triggers.

Definition: **Trigger Filter Duration** can prevent trigger bounce from falsely triggering the scanner by limiting the time in which trigger pulses can be received.

Serial Cmd: <Kgtrigger mode, trigger filter duration>

Default: **78** (x 128µS = 9984µS)

Options: **2 to 255** (corresponding to 256µS to .03s in 128µS steps)

External Trigger State

Note: External Level, External Edge, or Serial Data or Edge trigger mode must be enabled for **External Trigger** to take effect.

Usage: Users can select the trigger state that will operate with their systems. (If using the Microscan object detector, use **Active Open**.)

Definition: When enabled for **Active Closed** the triggering device imposes a current on the optoisolator to activate the read cycle. When enabled for **Active Open** the triggering device interrupts the current to the optoisolator to activate the read cycle.

Serial Cmd: <Kjexternal trigger state>

Default: **Active Closed**

Options: 0 = Active Open 1 = Active Closed

Serial Trigger

Usage: Useful in applications where a read cycle needs to be initiated and/or ended by user-defined serial characters.

Definition: An on-line host command composed of a single ASCII host serial trigger character that initiates or ends the read cycle.

Serial Trigger Character

Usage: Useful in applications where a single serial character enclosed in angle brackets initiates the read cycle.

Definition: A trigger character is one that starts the read cycle, is enclosed by delimiters < > and can only be sent when the trigger mode is set to **Serial Data** or **Serial Data & Edge**.

Serial Cmd: <**K**iserial trigger character>

Default: **GS** (corresponds to ^] displayed in the embedded menu)

Options: Any single ASCII character, including control characters, except NUL (00H), an existing host command character, or an on-line protocol character.

Note: **Serial Data** or **Serial Data & Edge** triggering mode must be enabled for Serial Trigger Character to take effect.

End of Read Cycle

Note: When to Output must be set to End of Read Cycle before this command can be active.

Definition: The read cycle is the time during which the scanner will attempt to read and decode a bar code symbol. At the end of a read cycle the scanner stops reading symbols and sends the symbol data or noread message to the host.

End of Read Cycle Mode

Definition: A read cycle can be terminated by a new trigger, a timeout, or a combination of both.

Serial Cmd: <**Khend of read cycle mode**,read cycle timeout>

Default: **Timeout**

Options:
0 = Timeout
1 = New Trigger
2 = Timeout & New Trigger

Note: When operating in **Continuous Read** or **Continuous Read 1 Output**, the scanner is always in the read cycle.

Timeout

Usage: Typically used with **Serial** or **Edge** and **Continuous One**.

It is effective in highly controlled applications when the maximum length of time between objects can be predicted. It assures that a read cycle ends before the next bar coded object appears, giving the system extra time to decode and transmit the data to the host.

Definition: **Timeout** ends the read cycle when the time set in **Timeout** elapses or "times out."

If in **Continuous Read 1 Output**, a timeout initiates a new read cycle and allows the same symbol to be read again.

With either **External Edge**, **Serial Data**, or **Serial Data & Edge** enabled, a timeout ends the read cycle and symbol data or a noread message is sent to the host.

With **External Level** enabled, the read cycle does not end until the falling edge trigger or a timeout occurs. The next read cycle does not begin until the next rising edge trigger.

New Trigger

Usage: **New Trigger** is an effective way to end a read cycle when objects move past the scanner at irregular intervals (not timing dependent).

Definition: **New Trigger** ends the current read cycle and initiates a new one when a new trigger occurs. **New Trigger** refers only to a “rising edge” trigger.

With either **External Edge**, **Serial**, or **Serial or Edge** enabled, an edge or serial trigger ends a read cycle and initiates the next read cycle.

In the case of **External Level**, a falling edge trigger ends the read cycle but the next read cycle does not begin until the occurrence of the next rising edge trigger.

(See [Figure 4-1 on page 4-7](#) and [Figure 4-2 on page 4-8](#).)

Note: When **New Trigger** is enabled and if not in **External Level** mode, **Laser On/Off** will have no effect. When noreads occur, the laser will remain on.

Timeout or New Trigger

Usage: Used in applications that require an alternative way to end the read cycle. For example, if an assembly line should stop completely or the intervals between objects are highly irregular.

Definition: **Timeout or New Trigger** is identical to **Timeout**, except that a timeout or a new trigger (whichever occurs first) ends the read cycle.

End of Read Cycle

Read Cycle Timeout

Usage: It is useful in many tightly controlled applications which require a read cycle to end before the next object appears and therefore need the flexibility of a timeout adjustment.

Definition: **Read Cycle Timeout** is the time span of the read cycle and is represented in 10 mS increments. It is used in conjunction with **External Edge** or **Serial Trigger**.

Serial Cmd: <**Khend of read cycle mode,read cycle timeout**>

Default: **100** (Corresponds to one second or 1000 mS)

Options: 0 to 65535. (Divide any positive number entered by 100 to determine the time in seconds)

Note: A minimum setting of **2** is recommended.

Note: **Timeout** or **Timeout or New Trigger** under **End of Read Cycle** must be enabled for **Timeout Duration** to take effect.

Good Decode Reads

Usage: This is a very useful feature to increase reliability of reads for symbologies that do not have internal error checking such as Pharmacode.

Definition: The number of decodes (from 1 to 31) required per symbol before a symbol's decoded data is sent. It requires the scanner to successfully decode a symbol a designated number of times (not necessarily consecutively) before it is sent. If it doesn't achieve the number of good reads during the read cycle, then a noread will be sent.

Note: Higher settings will decrease throughput speed.

Serial Cmd: <**Kmgood decode reads**>

Default: **1**

Options: 1 to 31

Note: When setting up, be sure to determine if the scanner's scan rate is capable of scanning your longest symbol the required number of times.

4–Read Cycle

Scanner Setup

The settings in this section are typically adjusted by qualified technicians. They time are included here for special applications. Before making changes to individual commands in this section, it would be advisable to make a written record of current settings.

Gain Level

(Factory Setting)

Usage: Can be useful for fine-tuning gain or when portions of analog signals spike as in the case of specular reflection or extraneous noise.

Caution: Changes to **Gain** are typically done by qualified technicians i.

Definition: Sets a voltage amplitude value for the analog circuitry.

Serial Cmd: <**KDgain**,AGC sampling,AGC min,AGC max>

Default: **45** (nominal). Gain is optimized at the factory before shipment; the default value may not be 45.

Options: 10 to 255

Scan Speed

Usage: To ensure a minimum number of scans, faster scan speeds are typically used for fast moving symbols and/or longer symbols with larger bar widths. See "[Formulas for Number of Decodes](#)," on page A-28.

Note: Scan beams move faster across symbols further out in the scan range since the moving beam is being projected from a spinning mirror.

Definition: Allows the user to set the number of scans per second by controlling the spinning mirror motor speed.

Serial Cmd: <**KEscan speed**>

Default: **800** (scans per second)

Options: 350 to 1100

Automatic Gain Control (AGC)

Important: AGC settings apply to both AGC gain control and symbol detection.

AGC Sampling Mode

Usage: **AGC Sampling** allows you to specify how automatic gain control sampling will be done.

Definition: AGC is the acronym for Automatic Gain Control. AGC increases the depth of field by attempting to maintain signal strength at a constant level regardless of the range of the bar code symbol.

Serial Cmd: <KDgain, **AGC sampling**, AGC min, AGC max>

Default: **Continuous**

Options: 0 = Disabled 1 = Leading Edge 2 = Continuous

Disabled

Definition: When **AGC Sampling** is set to **Disabled**, gain levels can only be manually controlled by the **Gain** command.

Usage: **Disabled** is not recommended, but can be useful in certain applications in which symbols do not require a large depth of field.

Leading Edge

Usage: **Leading Edge** is rarely used, but in some cases can improve scan rates when symbols are skewed and the leading edge of a symbol is difficult to locate.

Definition: Finds the leading edge of a symbol by looking for a 40µS quiet zone followed by the number of transitions, stores the highest value of the samples, and adjusts the AGC accordingly at the end of the scan.

Continuous

Usage: **Continuous** is the default and the preferred mode for sampling analog signal amplitude.

Definition: Samples AGC throughout the scan at the rate averages the sample values, and adjusts the AGC value at the end of the scan.

AGC Minimum

Usage: Decreasing the minimum allows the AGC to compensate for brighter, closer-in symbols, but could degrade performance over the scanning area.

Definition: Limits the minimum range of the available gain.

Serial Cmd: <**KDgain**,AGC sampling,**AGC min**,AGC max>

Default: **110**

Default: **Enabled**

Options: 50 to 135

AGC Maximum

Usage: Increasing the maximum allows the AGC to compensate for darker, further-out symbols, but could degrade performance over the scanning area.

Definition: Limits the maximum range of the available gain.

Serial Cmd: <**KDgain**,AGC sampling,AGC min,**AGC max**>

Default: **144**

Options: 125 to 255

4-Read Cycle

Symbol Detect Status

Definition: During the read cycle, the scanner counts the number of bar and space transitions defined in the **Transition Counter**. If the count matches or exceeds the threshold, the scanner will perform AGC routines. The results of this test are also made known in output messages. See “[Bad Symbol Message](#),” on page 5-8 and “[No Symbol Message](#),” on page 5-9.

Serial Cmd: <**KHsymbol detect status**,transition counter>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Transition Counter

Usage: Can be useful in certain application where extraneous objects in the field of view might require a higher threshold.

Definition: Determines the number of bar/space transitions that are sampled before AGC can be resolved.

Serial Cmd: <**KHsymbol detect status**,**transition counter**>

Default: **14**

Options: 1 to 255

Scanner Type

Usage: This field is **READ ONLY**, and is set by a qualified technician during factory setup.

Definition: This field displays the current factory-set scanner density type.

Serial Cmd: <**KPdensity**>

Default: The default depends on the type of scanner that was ordered.

Options: 0 = Low/Medium Density 1 = High Density

Laser Setup

See [Chapter 9, “Laser Control”](#) for detailed list of commands and controls.

4-Read Cycle

Chapter

5

Symbologies

Chapter Contents

Symbolologies by ESP	5-2
1D Symbolologies.....	5-3
Stacked Symbolologies	5-20
AIAG	5-21
Narrow Margins	5-23
Symbology ID	5-24
Background Color	5-25
Autodiscriminate	5-26

This section describes the various symbol types that can be read and decoded by the scanner.

Code 39 is enabled by default. To enable all codes, right-click **Autodiscrimination** under **Symbol Type** in the **Utilities** menu and select **Enable**, or send a **<P>** serial command to the scanner from the Terminal window.¹

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

See www.aimusa.org/standards for additional information about symbologies.

5–Symbologies

1. If using an I 2/5 symbol, verify that the number of characters in the symbol being scanned matches the symbol length enabled for the I 2/5 symbology type (default is 10 and 6).

Symbolologies by ESP

Click this button to bring up the **Symbolologies** menu.

To open nested options, **single-click** the +.

To change a setting, **double-click** the setting and use your cursor to scroll through the options.

Parameters	ESP Values
Symbolologies	
1D Symbolologies	
Code 39	Enabled
Code 128	Disabled
Interleaved 2 of 5	Disabled
Codabar	Disabled
UPC/EAN	Disabled
Code 93	Disabled
Stacked Symbolologies	
PDF417	Disabled
AIAG	Disabled
Narrow Margin Status	Disabled
Symbology ID	Disabled
Background Color	White

Symbolologies by Serial Command

Command Title	Format
Code 39	< Kp status,check digit status,check digit output status,large intercharacter gap,fixed symbol length status,fixed symbol length,full ASCII set>
Code 128	< Kt status,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,application record separator character,application record brackets,application record padding>
Interleaved 2 of 5	< Kr status,check digit status,check digit output,symbol length 1,symbol length 2>
Codabar	< Kq status,start & stop match status,start & stop output status,large intercharacter gap,fixed symbol length status,fixed symbol length,check digit type,check digit output>
UPC/EAN	< Ks UPC/EAN status,UPC status,supplements status,separator status,separator character>
Code 93	< K! status,fixed symbol length status,fixed symbol length>
PDF417	< K[status,[usused],fixed symbol length status,fixed symbol length>
Narrow Margins/Symbology Identifier	< Ko narrow margins,symbology identifier status>
Background Color	< Kx background color>

1D Symbologies

Code 39

Usage: **Code 39** is considered the standard for non-retail symbology.

Definition: An alphanumeric symbol with unique start/stop patterns, composed of 9 black and white elements per character, of which 3 are wide.

Code 39 Status

Serial Cmd: <**Kpstatus**,**check digit status**,**check digit output status**,**large intercharacter gap**,**fixed symbol length status**,**fixed symbol length**,**full ASCII set**>

Default: **Enabled**

Note: This is the only symbol type enabled by default.

Options: 0 = Disabled 1 = Enabled

Check Digit Status (Code 39)

Serial Cmd: <**Kpstatus**,**check digit status**,**check digit output**,**large intercharacter gap**,**fixed symbol length status**,**fixed symbol length**,**full ASCII set**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Check Digit Output Status (Code 39)

Usage: **Check digit Output**, added to the symbol, provides additional security.

Definition: When enabled, the check digit character is read and compared along with the symbol data. When disabled, symbol data is sent without the check digit.

Note: With **Check Digit Output** and an **External** or **Serial** trigger option enabled, an invalid check digit calculation will cause a noread message to be transmitted at the end of the read cycle.

Serial Cmd: <**Kpstatus**,**check digit status**,**check digit output**,**large intercharacter gap**,**fixed symbol length status**,**fixed symbol length**,**full ASCII set**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Large Intercharacter Gap (Code 39)

Usage: Large Intercharacter Gap is helpful for reading symbols that are printed out of specification.

Caution: Do not use Large Intercharacter Gap with Narrow Margins enabled since a large intercharacter gap (over 3x) could cause a narrow margins (5x) to be interpreted as an intercharacter gap.

Definition: When enabled, the scanner can read symbols with gaps between symbol characters that exceed three times (3x) the narrow element width.

Serial Cmd: <**Kpstatus,check digit status,check digit output,large intercharacter gap,fixed symbol length status,fixed symbol length,full ASCII set**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Fixed Symbol Length Status (Code 39)

Definition: When enabled, the scanner will check the symbol length against the symbol length field. If disabled, any length would be considered a valid symbol.

Serial Cmd: <**Kpstatus,check digit status,check digit output,large intercharacter gap,fixed symbol length status,fixed symbol length,full ASCII set**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Symbol Length (Code 39)

Usage: Fixed Symbol Length helps prevent truncations and increases data integrity by ensuring that only one symbol length will be accepted.

Definition: Specifies the exact number of characters that the scanner will recognize (this does not include start and stop and check digit characters). The scanner ignores any symbol not having the specified length.

Serial Cmd: <**Kpstatus,check digit status,check digit output,large intercharacter gap,fixed symbol length status,fixed symbol length,full ASCII set**>

Default: **10**

Options: 1 to 64

Full ASCII Set (Code 39)

Usage: Must be enabled when reading characters outside the standard character set (0-9, A-Z, etc.)

User must know in advance whether or not to use **Full ASCII Set** option. Since **Full ASCII Set** requires two code words to encode one character, it is less efficient.

Definition: Standard Code 39 encodes 43 characters; zero through nine, capital "A" through capital "Z", minus symbol, plus symbol, forward slash, space, decimal point, dollar sign and percent symbol. When **Full ASCII Set** is enabled, the scanner can read the full ASCII character set, from 0 to 255.

Serial Cmd: <**Kpstatus,check digit status,check digit output,large intercharacter gap,fixed symbol length status,fixed symbol length,full ASCII set**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Code 128

Usage: **Code 128** is a smaller symbology useful in applications with tight spots and high security needs.

Definition: A very dense alphanumeric symbology. It encodes all 128 ASCII characters; it is continuous, has variable length, and uses multiple element widths measured edge to edge.

Code 128 Status

Serial Cmd: <**Ktstatus,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,application record separator character,application record brackets,application record padding**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Fixed Symbol Length Status (Code 128)

Definition: When enabled the scanner will check the symbol length against the symbol length field. When disabled any length would be considered a valid symbol.

Serial Cmd: <**Ktstatus,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,application record separator character,application record brackets,application record padding**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Symbol Length (Code 128)

Usage: **Fixed Symbol Length** helps prevent truncations and increases data integrity by ensuring that only one symbol length will be accepted.

Definition: Specifies the exact number of characters that the scanner will recognize (this does not include start and stop and check digit characters). The scanner ignores any symbol not having the specified length.

Serial Cmd: <**Ktstatus,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,application record separator character,application record brackets,application record padding**>

Default: **10**

Options: 1 to 64

Note: **Fixed Symbol Length Status** must be enabled for **Symbol Length** to take effect.

EAN-128 Status

Usage: Sometimes called the “shipping code,” it is used as a standard to track a product from site to site with a single symbol that contains categories of information identifiable across industries worldwide.

Definition: A subset of Code 128, with extended features utilizing application identifiers to define meaning and format of fields that immediately follow them. See the Uniform Code Council, Inc. at www.uc-council.org.

Serial Cmd: <Kt status,fixed symbol length status,fixed symbol length, **EAN-128 status**, output format,application record separator status,application record separator character,application record brackets,application record padding>

Note: Code 128 serial command fields for K precede EAN-128.

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled 2 = Required

Note: Code 128 must also be **Enabled** for EAN-128 to function.

Note: If **Enabled**, the scanner can read symbols with or without a function 1 character in the first position.

Note: The reply from a <Kt?> request may appear to have an extra field, e.g.: <Kt?><Kt0,0,10,0,0,0,,0,0>

However, the third comma from the right is actually the application record separator character in the default setting.

Output Format (EAN-128)

Usage: **Application Record** is useful in applications in which the software can utilize application record formatting to help automate the processing of its EAN-128 data.

Definition: Offers an option between **Standard EAN-128** and **Application Record** format.

Serial Cmd: <**Kt**status,fixed symbol length status,fixed symbol length,EAN-128 status,**output format**,application record separator status,application record separator character,application record brackets,application record padding>

Default: **Standard**

Options: 0 = Standard 1 = Application Record

Standard

When set to **Standard**, EAN-128 application identifiers and data fields are sent, but none of the formatting (separators, parentheses, padding) will be included.

Application Record

A variation of EAN-128 that allows the user to define separators between data fields, enclose application identifiers in parentheses, and enable padding (zeros) for variable length fields.

Note: If an illegal Application Record format is detected, the scanner will process it as a noread and output a noread message (if enabled).

Application Record Separator Status (EAN-128)

Note: **Output Format** must be set to **Application Record** before this parameter can take effect.

Definition: When enabled, a separator character is inserted between application records.

Serial Cmd: <Kt status,fixed symbol length status,fixed symbol length,EAN-128 status,output format,**application record separator status**,application record separator character,application record brackets,application record padding>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Application Record Separator Character (EAN-128)

Definition: Defines an ASCII character as an application record separator.

Serial Cmd: <Kt status,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,**application record separator character**,application record brackets,application record padding>

Default: , (comma)

Options: User Defined ASCII character

Note: **Output Format** must be set to **Application Record** before this parameter can take effect.

Application Record Brackets (EAN-128)

Definition: When enabled, parentheses () are added to enclose application identifiers.

Serial Cmd: <Kt status,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,application record separator character,**application record brackets**,application record padding>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Options: 0 = Disabled 1 = Enabled

Note: **Output Format** must be set to **Application Record** before this parameter can take effect.

Application Record Padding (EAN-128)

Definition: Padding is the insertion of zeros to make up the maximum length of a variable application record data field, except for the last field which does not require padding.

When enabled, padding is included. When disabled, padding is omitted.

Note: Padding is never added to fixed length fields or to the last data field of a symbol. Enabling or disabling **Record Padding** will have no effect on these.

Serial Cmd: <**Kt**status,fixed symbol length status,fixed symbol length,EAN-128 status,output format,application record separator status,application record separator character,application record brackets,**application record padding**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Note: **Output Format** must be set to **Application Record** before this parameter can take effect.

Interleaved 2 of 5

- Usage:** It is has been popular because it is the most dense symbology for printing numeric characters less than 10 characters in length; however Omron does not recommend this symbology for any new applications because of inherent problems such as truncation.
- Definition:** A dense, continuous, self-checking, numeric symbology. Characters are paired together so that each character has five elements, two wide and three narrow, representing numbers 0 through 9, with the bars representing the first character and the interleaved spaces representing the second character. (A check digit is highly recommended.)
- Important:** You must set **Symbol Length** in order to decode I 2/5 symbols.

Interleaved 2 of 5 Status

- Serial Cmd:** <**Krstatus**,*check digit status,check digit output,symbol length #1,symbol length #2*>
- Default:** **Disabled**
- Options:** 0 = Disabled 1 = Enabled

Check Digit Status (Interleaved 2 of 5)

- Usage:** It is typically not used but can be enabled for additional security in applications where the host requires redundant check digit verification.
- Definition:** An error correcting routine in which the check digit character is added.
- Serial Cmd:** <**Krstatus**,**check digit status**,*check digit output,symbol length #1,symbol length #2*>
- Default:** **Disabled**
- Options:** 0 = Disabled 1 = Enabled

Check Digit Output Status (Interleaved 2 of 5)

- Definition:** When enabled, a check digit character is sent along with the symbol data for added data security.
- Serial Cmd:** <**Krstatus**,*check digit status,check digit output,symbol length #1,symbol length #2*>
- Default:** **Disabled**
- Options:** 0 = Disabled 1 = Enabled

Symbol Length #1 (Interleaved 2 of 5)

Usage: With I 2/5, two symbol lengths can be defined. When using only one symbol length in an application, setting **Symbol Length #2** to 0 (zero) to ensure data integrity is recommended.

Definition: Allows user to define the symbol length. Because I 2/5 is a continuous symbology, it is prone to substitution errors. Hence, a symbol length must be defined and a symbol must contain an even number of digits.

Note: If start, stop or check digits are used, they are not included in the symbol length count.

Serial Cmd: <**Krstatus,check digit status,check digit output,symbol length #1,symbol length #2**>

Default: **10**

Options: 2 to 64, even

Since I 2/5 characters are paired, symbol length must be set to an even number. If **Check Digit** is enabled, add 2 to your symbol length. For example, if your symbol is 10 characters plus a check digit, then enable **Symbol Length** for 12.

Note: Typically, when printing an I 2/5 symbol with an odd number of digits, a 0 will be added as the first character.

Symbol Length #2 (Interleaved 2 of 5)

Usage: If using a second symbol, a zero or any even symbol length from 2 to 64 may be specified. If not using a second symbol, set **Symbol Length #2** to 0 to ensure data integrity.

Definition: Allows user to define a second symbol length for I-2 of 5.

Serial Cmd: <**Krstatus,check digit status,check digit output,symbol length #1,symbol length #2**>

Default: **6**

Options: 2 to 64, even

Since I 2/5 characters are paired, symbol length must be set to an even number. If **Check Digit** is enabled, add 2 to your symbol length. For example, if your symbol is 10 characters plus a check digit, then enable **Symbol Length** for 12.

Note: Typically, when printing an I 2/5 symbol with an odd number of digits, a 0 will be added as the first character.

Codabar

Usage: Used in photo-finishing and library applications. Formerly used in some medical applications but not typically used in newer applications.

Definition: Codabar is a 16-character set (0 through 9, and the characters \$, :, /, ., +, and -) with start/stop codes and at least two distinctly different bar widths.

Codabar Status

Serial Cmd: <**Kqstatus**,*start & stop match,start & stop match output,large intercharacter gap,fixed symbol length status,fixed symbol length,check digit type,check digit output*>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Start & Stop Match Status (Codabar)

Usage: Used to increase security of symbology.

Definition: Requires the Codabar start and stop characters (a, b, c, or d) to match before a valid read can occur.

Serial Cmd: <**Kqstatus,start & stop match,start & stop match output,large intercharacter gap,fixed symbol length status,fixed symbol length,check digit type,check digit output**>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Start & Stop Output Status (Codabar)

Usage: Used to verify matching.

Definition: Causes the start and stop characters to be transmitted with bar symbol data.

Serial Cmd: <**Kqstatus,start & stop match,start & stop match output,large intercharacter gap,fixed symbol length status,fixed symbol length,check digit type,check digit output**>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

1D Symbologies

Large Intercharacter Gap (Codabar)

Usage: It is helpful for reading symbols that are printed out of specification.

Caution: Do not use **Large Intercharacter Gap** with **Narrow Margins** enabled since enabling **Large Intercharacter Gap** (over 3x) could cause a narrow margins (5x) to be interpreted as an intercharacter gap.

Definition: Instructs the scanner to read symbols with gaps between characters exceeding three times the narrow element width.

Serial Cmd: <**Kq**status,start & stop match,start & stop output match,**large intercharacter gap**,fixed symbol length status,fixed fixed symbol length,check digit type,check digit output>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Fixed Symbol Length Status (Codabar)

Usage: **Fixed Symbol Length** helps prevent truncations and increases data integrity by ensuring that only one symbol length will be accepted.

Definition: When enabled, the scanner will check the symbol length against the fixed symbol length field. When disabled, any length would be considered a valid symbol.

Serial Cmd: <**Kq**status,start & stop match,start & stop match output,**large intercharacter gap**,**fixed symbol length status**,fixed symbol length,check digit type,check digit output>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Symbol Length (Codabar)

Definition: Specifies the exact number of characters that the scanner will recognize (this does not include start and stop and check digit characters). The scanner ignores any symbol not having the specified length.

Serial Cmd: <**Kq**status,start & stop match,start & stop match output,**large intercharacter gap**,fixed symbol length status,**fixed symbol length**,check digit type,check digit output>

Default: **10**

Options: 1 to 64

Note: Fixed Symbol Length Status must be enabled for Fixed Symbol Length to take effect.

Note: Because of symbology limitations, setting **Symbol Length** to any number less than four will produce undetermined results.

Check Digit Type (Codabar)

Definition: Allows the user to select the check digit type Codabar will use.

Serial Cmd: <**Kq***status,start & stop match,start & stop match output,large inter-character gap,fixed symbol length status,fixed symbol length,**check digit type**,check digit output*>

Default: **Disabled**

Options: 0 = Disabled 2 = NW 7
 1 = Modulus 16 3 = Both

Modulus 16

Used in the photo-finishing market.

NW 7

Used in Japanese markets.

Check Digit Output Status (Codabar)

Usage: For additional security a check digit can be added to the symbol.

Definition: When enabled, the check digit character is sent along with the symbol data. When disabled, symbol data is sent without the check digit.

Serial Cmd: <**Kq***status,start & stop match,start & stop match output,large intercharacter gap,fixed symbol length status,fixed symbol length,**check digit type**,**check digit output***>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

UPC/EAN

Usage: Used primarily in POS application in the retail industry. It is commonly used with Microscan scanners in applications in combination with **Match-code** when there is a need to verify that the right product is being placed in the right packaging.

Definition: UPC (Universal Product Code) is a fixed length numeric, continuous symbology. UPC can have two- or five-digit supplemental symbol data following the normal symbol. The U.P.C., Version A (U.P.C., A) symbol is used to encode a 12 digit number. The first digit is the number system character, the next five are the manufacturer number, the next five are the product number, and the last digit is the checksum character.

When enabled, the scanner will read UPC version A and UPC version E only.

UPC/EAN Status

Serial Cmd: <**KsUPC/EAN status**,EAN status,supplements status,separator status,separator character>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

EAN Status

Usage: **EAN** is the European version of the UPC symbology and is used in European market applications.

Note: **UPC/EAN** must be enabled for **EAN** to take effect.

Definition: EAN is a subset of UPC. When enabled, the scanner will read UPC version A, UPC version E, EAN 13, and EAN 8. It also appends a leading zero to UPC version A symbol information and transmits 13 digits. If transmitting 13 digits when reading UPC version A symbols is not desired, disable **UPC/EAN**.

Note: The extra character identifies the country of origin.

Serial Cmd: <**KsUPC/EAN status**,**EAN status**,supplements status,separator status,separator character>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Supplements Status (UPC/EAN)

<i>Usage:</i>	Reads Supplements typically used in publications and documentation.
<i>Definition:</i>	A supplemental is a 2 or 5 digit symbol appended to the main symbol. When set to Enabled or Required , the scanner reads supplemental symbol data that has been appended to the standard UPC or EAN symbols.
<i>Serial Cmd:</i>	< Ks UPC/EAN status,EAN status, supplements status ,separator status, separator character>
<i>Default:</i>	Disabled
<i>Options:</i>	0 = Disabled 1 = Enabled 2 = Required

Disabled

UPC **Supplements** will not be decoded.

Enabled

When enabled, the scanner will try to decode a main and a supplemental. However, if a supplemental is not decoded, at the end of the read cycle, the main will be sent by itself. The UPC main and supplemental symbols are considered to be one symbol and will be treated as such.

Required

When set to **Required** and either the main or supplemental symbol is not read, a single noread condition results. The UPC main and supplemental symbols are treated as one symbol.

For example, if **Supplements** is set to **Required**, **Separator** is enabled, and an asterisk is defined as the UPC separator character, then the data will be displayed as:
MAIN * SUPPLEMENTAL.

Note: Under no circumstances will supplemental symbol data be sent without a main symbol.

Note: If additional symbols—other than the main or supplemental—will be read in the same read cycle, **Number of Symbols** should be set accordingly.

1D Symbolologies

Separator Status (UPC/EAN)

Usage: Allows user to distinguish between the main and **Supplemental** symbols.

Definition: Allows the user to insert a character between the standard UPC or UPC/EAN symbolologies and the supplemental symbol when **Supplements** is set to **Enabled** or **Required**.

Serial Cmd: <**Ks**UPC status,UPC/EAN status,supplements status,**separator status**,separator character>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Separator Character (UPC/EAN)

Note: If Separator Character has been changed to any other character and you wish to re-define the separator as a comma, you will need to define it in the embedded menu or default the scanner by a <Zd> command.

Usage: As required by the application.

Definition: Allows the user to change the separator character from a comma to a new character.

Serial Cmd: <**Ks**UPC/EAN status,UPC status,supplements status,**separator status**,**separator character**>

Default: , (comma)

Options: Any ASCII character

Note: Whenever Separator Character is defined as a comma (,) sending a <**Ks?**> command will return the current settings including the separator character comma which appears after the separator status comma.

Code 93

Usage: Used occasionally in clinical industry.

Definition: Code 93 is a variable length, continuous symbology employing four element widths. Each Code 93 character has nine modules that may be either black or white. Each character contains three bars and three spaces.

Code 93 Status

Serial Cmd: <**K!status**,*fixed symbol length status,fixed symbol length*>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Fixed Symbol Length Status (Code 93)

Usage: **Fixed Symbol Length** helps prevent truncations and increases data integrity by ensuring that only one symbol length will be accepted.

Definition: When enabled, the scanner will check the symbol length against the symbol length field. When disabled, any length would be considered a valid symbol.

Serial Cmd: <**K!status,fixed symbol length status,fixed symbol length**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Symbol Length (Code 93)

Definition: Specifies the exact number of characters that the scanner will recognize (this does not include start and stop and check digit characters). The scanner ignores any symbol not having the specified length.

Serial Cmd: <**K!status,fixed symbol length status,fixed symbol length**>

Default: **10**

Options: 1 to 64

Stacked Symbologies

PDF417

- Usage:* Used where a large amount of information (over 32 characters) needs to be encoded within a symbol, typically where the symbol is transported from one facility to another. For example, an automobile assembly line might use a single symbol with multiple fields of information that will be read at several stations along the way, without reference to a database.
- Definition:* A two-dimensional, multi-row (3 to 90), continuous, variable length symbology that has high data capacity for storing up to 2700 numeric characters, 1800 printable ASCII characters, or 1100 binary character per symbol. Each symbol character consists of 4 bars and 4 spaces in a 17-module structure.

PDF417 Status (PDF417)

- Serial Cmd:* <**K**[**status**],[usused],fixed symbol length status,fixed symbol length>
- Default:* **Disabled**
- Options:* 0 = Disabled 1 = Enabled

Fixed Symbol Length Status (PDF417)

- Usage:* Used to increase data integrity by ensuring that only one symbol length will be accepted.
- Definition:* When enabled, the PDF symbol must contain the same number of characters as the symbol length setting before it can be considered a good decode. The scanner will ignore any symbol not having the specified length.
- Serial Cmd:* <**K**[**status**],[usused],**fixed symbol length** status,fixed symbol length>
- Default:* **Disabled**
- Options:* 0 = Disabled 1 = Enabled

Symbol Length (PDF417)

- Definition:* Specifies the exact number of characters the scanner will recognize.
- Serial Cmd:* <**K**[**status**],[usused],fixed symbol length status,**fixed symbol length**>
- Default:* **10**
- Options:* 1 to 2710

Note: **Fixed Symbol Length Status** must be enabled for **Fixed Symbol Length** to take effect.

AIAG

Usage: Originally created for identifying and sorting automotive parts and processes, **AIAG** is now used in a wide variety of industries for everything from quality control to data processing.

Definition: **AIAG** is not a symbol symbology, but rather a standard that enables a user to add information to symbols and to filter data according to user-defined identifiers (up to 12).

AIAG is the Automotive Industry Action Group standard and **is applicable to all symbologies**. If when **AIAG** is enabled a decoded symbol has an AIAG ID, it will be counted. Otherwise, the symbol will be rejected.

AIAG Status

Serial Cmd: <**KZAIA****G status**, ID1, status1, ID2, status2, ID3, status3, ID4, status4, *ID5a, ID5b, ID5c, status5, ID6, status6, ID7, status7, ID8, status8, ID9, status9, ID9, status10, ID11, status11, ID12, status12>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Note: **AIAG status** must be enabled before other parameters can take effect.

AIAG Identifiers

Definition: AIAG has 12 Identifiers, each of which allows you to enter up to 4 ASCII characters with the exception of ID #5 which allows you enter 3 sub-identifiers of 4 characters each.

Serial Cmd: <**KZAIA****G status**, ID1, status1, ID2, status2, ID3, status3, ID4, status4, *ID5a, ID5b, ID5c, status5, ID6, status6, ID7, status7, ID8, status8, ID9, status9, ID9, status10, ID11, status11, ID12, status12>

ESP: Each Identifier can be individually changed.

1. **Double-click** on the individual identifier to bring up the screen shown on the right.
2. Select a character and click anywhere in the **Symbol Type** ESP window.

Default: **Status 1** is **Enabled** by default. Status 2 through 12 are **Disabled**.

Options: 1 to 12 status settings; 1 to 12 user-defined identifiers.

Parameters	ESP Values
AIAG	Disabled
ID1	N
Status1	Enabled
ID2	P
Status2	Disabled
ID3	G

AIAG

Default identifiers for ID1 through ID12 are as follows:

ID1	ID2	ID3	ID4	ID5a	ID5b	ID5c	ID6	ID7	ID8	ID9	ID10	ID11	ID12
N	P	Q	V	S	M	G	H	EZ	EB	ED	EC	EL	EX

The following rules apply:

1. **Number of Symbols** <KLnumber> must be set to the number of **AIAG** symbols required per read cycle. (The number of AIAG IDs enabled has no effect.)
2. Any noread messages will be added to the end of the output with no ID prefix. For example, the following symbols—S123, N456, P678, and Q987—are scanned in order but the third symbol P678 fails to be decoded. The noread output will appear at the end of the data array, as follows: S123,N456,Q987,**NOREAD**.
3. Symbol output is not sorted.

Allows any number of symbols with same ID if the data field is different.

Narrow Margins

Usage: Used when the leading and trailing edges of the symbols are smaller than the standard margin or when other objects encroach into the margins.

Definition: Allows the scanner to read symbols with quiet zones less than 8 times the width of the narrow bar element. "Quiet zone" is the space at the leading and trailing ends of a symbol. Each quiet zone can be as narrow as only five times the width of the narrow bar element when **Narrow Margins** is enabled.

Serial Cmd: <**Konarrow margins status**,symbology identifier status>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Note: Do not use **Narrow Margins** with **Large Intercharacter Gap** enabled in **Code 39** or **Codabar**.

Symbology ID

Usage: Used when the symbology type and how it's decoded needs to be known.

Definition: Symbology ID is an AIM standard prefix set of characters that identify the symbol type.

When enabled, the scanner analyzes and identifies the symbology and adds a three character identifying prefix to the data:

1. **J** (close bracket character) indicating the presence of a symbology ID

2. **A, C, E, I, L, Q, b, d, p**

A = Code 39; C = Code 128 or EAN; E = UPC/EAN;

F = Codabar; G = Code 93; I = I-2/5; L = PDF417

3. **Modifier** (see [Explanation of Modifiers](#) below)

Serial Cmd: <**Konarrow margins, symbology identifier status**>

Default: **Disabled**

Options: **0 = Disabled 1 = Enabled**

Explanation of Modifiers for Code 39, Codabar, and I-2/5

- For **Code 39, Codabar** and **I 2/5**, the modifier indicates **Check Digit** and **Check Digit Output** status.
- For **Code 39** only, **Full ASCII** needs to be enabled to see modifiers **4, 5, and 7**.

Modifier	Check Digit	Check Digit Output	Full ASCII conversion performed (Code 39 only)
0	Disabled	N/A	No
1	Enabled	Enabled	No
3	Enabled	Disabled	No
4	Disabled	N/A	Yes
5	Enabled	Enabled	Yes
7	Enabled	Disabled	Yes

Example: **J A5** indicates a Code 39 symbol with **Check Digit** and **Check Digit Output** enabled and Full ASCII conversion performed.

For Other Symbologies

- For Code 128, a **1** indicates EAN; otherwise the modifier is a **0**.
- For all other symbologies, the modifier is **0**.

Background Color

Usage: If the background is darker than the symbol, then enable black background.

Typically the background is white; but on PCBs for example, they can be black.

Definition: Allows the user to choose which symbol background (white or black) the scanner can read.

Serial Cmd: <**Kxbackground color**>

Default: **White**

Options: 0 = White 1 = Black

Autodiscriminate

Although **Autodiscriminate** is not a configuration command, but it is included here as a convenient tool for enabling most symbol types.

Usage: Commonly used for quick setup mode to detect symbol type. This is particularly useful for users who might be unfamiliar with their application's symbology.

Note: It does not alter individual fields such as **Start/Stop, Fixed Length**, etc. These need to be setup individually.

Definition: Enables all available symbology types except PDF417, and UCC/EAN 128. The user may also individually disable/enable each symbology type.

Serial Cmd: <P> Enables all symbologies except noted above

Default: **Code 39** (only)

Other Options: <Q> Enables Code 39 only
<R> Enables Codabar only
<S> Enables I 2/5 only

Note: If using an I 2/5 symbol, verify that the number of characters in the symbol being scanned matches the symbol length enabled for the I 2/5 symbol type (default is 10 and 6).

Chapter

6

I/O Parameters

6—I/O Parameters

Chapter Contents

I/O Parameters by ESP	6-2
Symbol Data Output	6-3
Data Output Message Flow	6-6
Noread Message	6-7
Bad Symbol Message.....	6-8
No Symbol Message.....	6-9
Beeper	6-10
Partial Output.....	6-11
Serial Verification.....	6-12
Operation Command Output.....	6-14
Output 1 Parameters	6-15
Output 2 Parameters	6-19
Output 3 Parameters	6-19
Quality Output.....	6-20

This section includes instructions for setting up data and discrete I/O controls of internal and external devices.

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

I/O Parameters by ESP

Click this button to bring up the **I/O Parameters** menu.

To open nested options,
single-click the +.

To change a setting,
double-click the
setting and use your
cursor to scroll
through the options.

Parameters	ESP Values
- I/O Parameters	
+ Symbol Data Output	Good Read
+ Noread Message	Enabled
+ Bad Symbol Message	Disabled
+ No Symbol Message	Disabled
+ Beeper	On Good Read
+ Partial Output	Disabled
+ Serial Verification	
+ Operation Command Output	Enabled
+ Output 1 Parameters	
+ Output 2 Parameters	
+ Output 3 Parameters	
+ Quality Output	

I/O Parameters by Serial Command

Command Title	Format
Symbol Data Output	<KIsymbol data output mode,when to output>
Noread Message	<Kkstatus,message>
Bad Symbol Message	<KMstatus,message>
No Symbol Message	<KNstatus,message>
No Object Message ^a	<KOstatus,message>
Laser ON/OFF Status	<KClaser on/off status>
Beeper	<Kustatus,volume>
Partial Output	<KYstatus,start postion,length>
Serial Verification	<KScommand echo status,beep status,control/hex output>
Output 1	<Kvoutput on,active state,pulse width,output mode,trend analysis mode,trigger evaluation period,number to output on,reads per trigger threshold>
Output 2	<Kwoutput on,active state,pulse width,output mode,trend analysis mode,trigger evaluation period,number to output on,reads per trigger threshold>
Output 3	<K'output on,active state,pulse width,output mode,trend analysis mode,trigger evaluation period,number to output on,reads per trigger threshold>

a. For MS-710s with MS-Sensors.

Symbol Data Output

- Usage:* Used when the host needs symbol data only under certain conditions.
Definition: Defines the conditions under which decoded symbols are transmitted to the host.

Symbol Data Output Mode

- Serial Cmd:* <**KIsymboldata output mode**,when to output>
Default: **Good Read**
Options: 0 = Disabled 2 = Mismatch
 1 = Match 3 = Good Read

Disabled

- Usage:* **Disabled** is useful when an application only needs to use the discrete outputs and can allow the scanner to do the decision-making. When set to **Disabled**, the host does not need the symbol data and the communication lines are used only for setup and status checks.
Definition: When set to **Disabled**, the scanner will not transmit any data that is generated during a read cycle (symbols, noreads, etc.).

Match

- Usage:* **Match** is used in an application that requires specific symbol data information and needs to sort, route or verify based on matching the specific symbol data.
Definition: When set to **Match**, the scanner transmits symbol data whenever a symbol data matches a master symbol. However, if **Matchcode Type** is set to **Disabled**, it transmits on any good read.
Note: A noread can still be transmitted if **Enabled**.

Mismatch

- Usage:* **Mismatch** is typically used as a flag within the host system to prevent an item from being routed in the wrong container.
Definition: With **Mismatch** enabled, the scanner transmits symbol data whenever the symbol data information does NOT match the master symbol.
Note: A noread can still be transmitted if enabled.

Symbol Data Output

Good Read

Usage: **Good Read** is used when an application requires all symbol data to be transmitted. It's typically used in tracking applications in which each object is uniquely identified.

Definition: With **Good Read** enabled, the scanner transmits symbol data on any good read regardless of **Matchcode Type** setting.

Note: A noread can still be transmitted if enabled.

When to Output Symbol Data

Definition: This command allows the user to choose when symbol data can be sent to the host.

Serial Cmd: <K1symbol data output mode,**when to output**>

Default: **As Soon As Possible**

Options: 0 = As Soon As Possible 1 = End of Read Cycle

As Soon As Possible

Usage: **As Soon As Possible** is useful in applications in which symbol data needs to be moved quickly to the host, typically when the host is making decisions based on symbol data.

Definition: Enabling **As Soon As Possible** causes symbol data to be sent to the host immediately after a symbol has been successfully decoded.

Note: More than one decode might in fact be required to qualify as a good decode, depending on how **Decodes Before Output** is set.

End of Read Cycle

Note: See “[End of Read Cycle](#)” on page 4-12 for options to end the read cycle.

Usage: **End of Read Cycle** is useful in timing-based systems in which the host is not ready to accept data at the time it is decoded.

Definition: Enabling **End of Read Cycle** means that symbol data does not get sent to the host until the read cycle ends with a timeout or new trigger.

Figure 6-1 Read Cycle

Data Output Message Flow

The following flow chart shows the logic paths followed for **Noread**, **Bad Symbol**, and **No Symbol** outputs.

Noread Message

Usage: Used in applications where the host needs serial verification that a symbol has not been read and especially useful in new print verification.

Definition: When enabled, and if no symbol has been decoded before timeout or the end of the read cycle, the noread message will be transmitted to the host.

Noread Status

Serial Cmd: <**Kkstatus**,*message*>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Noread Message

Definition: Any combination of ASCII characters can be defined as the noread message.

Serial Cmd: <**Kkstatus**,*message*>

Default: **NOREAD**

Options: 0 to 7 ASCII characters.

Note: Noread Message will only be transmitted if **Symbol Data Output** ("Symbol Data Output" on page 6-3) is set to **Match**, **Mismatch** or **Good Read**.

Noread Message can be set to any ASCII characters except **NULL <>** and **,** (comma).

Bad Symbol Message

Bad Symbol Message

Note: **Bad Symbol Message** does not apply to multisymbol operations.

Usage: Used in verifying the presence of a symbol that has not been decoded.

Definition: When enabled, a message is sent to the host when a symbol is detected but not decoded. See "["Transition Counter Threshold" on page 6-8](#)".

The **Bad Symbol** output is tied to the transition counter. If during a read cycle no symbol is decoded and the required setting for the **Transition Sample Threshold** is met, a user defined message will be sent to the host. See "["Output Message Flow" on page 9-8](#)".

Bad Symbol Status

Serial Cmd: <**K'status,message**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Bad Symbol Message

Serial Cmd: <**K'status,message**>

Default: **BADCODE**

Options: Up to seven ASCII characters (except NUL)

The **Bad Symbol** output is tied to the transition counter. If during a read cycle no symbol is decoded and the required setting for the **Transition Sample Threshold** is met, a user defined message will be sent to the host.

No Symbol Message

Note: No Symbol Message does not apply to multisymbol operations.

Usage: Used in determining if an object has an attached symbol.

Definition: When enabled, sends a message to the host whenever an object is detected but no symbol is detected. See "["Transition Counter Threshold" on page 6-8](#)".

The **No Symbol** output is tied to the transition counter. If during a read cycle no symbol is decoded and the required setting for the **Transition Sample Threshold** is NOT met, a user defined message will be sent to the host. See "["Output Message Flow" on page 9-8](#)".

No Symbol Status

Serial Cmd: <**KNstatus**,*message*>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

No Symbol Message

Serial Cmd: <**KNstatus**,*message*>

Default: **NOLABEL**

Options: Up to seven ASCII characters (except NUL)

Beeper

Beeper

Usage: Can be used as an audible verification that either a good read or a noread has occurred.

Definition: A beep is emitted either after each good read of a bar code symbol or after each noread.

Note: Beeper will also sound if any of the following occur:

- the scanner is defaulted
- a send/save command from **ESP** or an **Exit** command from any embedded menu
- a <**Z**>, <**Zp**>, <**Zd**>, or <**KS,1**> command is sent

Beeper Status

Serial Cmd: <**Kustatus**,*volume*>

Default: **On Good**

Options: 0 = On Good Read

1 = On Noread

Beeper Volume

Serial Cmd: <**Kustatus**,**volume**>

Default: **Level 4**

Options: 0 = Off 3 = Level 3

1 = Level 1 4 = Level 4

2 = Level 2 5 = Level 5

Partial Output

Usage: In **Multisymbol** mode, partial output is performed on each separate symbol. For example, if **Start Position** is set to 3 and **Partial Length** is set to 5, the following symbols are transmitted as follows:
1234567890 as 34567
1234 as 34
123456789,abcde as "34567,cde" (two symbols with separator)
12 as [blank]

Definition: When enabled, allows you to pre-select portions of symbols to be transmitted by the scanner.

Partial Output Status

Serial Cmd: <**KYstatus**,*start position,length*>
Default: **Disabled**
Options: 0 = Disabled 1 = Enabled

Start Position (Partial Output)

Definition: Allows you to determine the first character from the beginning of a symbol to transmit.
Serial Cmd: <**KYstatus**,**start position**,*length*>
Default: **1**
Options: 1 to 2710

Length (Partial Output)

Definition: Allows you to determine the number of characters to be transmitted.
Serial Cmd: <**KYstatus**,*start position,length*>
Default: **63**
Options: 1 to 2710

Serial Verification

Serial Verification

- Usage:* These commands are useful in removing any doubt about the scanner's acceptance and response to host configuration commands.
For example, if the current preamble is "SOM" and <Kd1, START> is entered, the scanner will echo back <Kd1, SOM> since the attempted entry "START" exceeds the four character limit for that command. Therefore it is rejected and the existing "SOM" message is echoed back and remains the preamble message.
- Definition:* Allows the user to verify configuration command status.

Serial Command Echo Status

Important: ESP will not function whenever this command is enabled.

- Definition:* When enabled, a configuration command received from the host is echoed back to the host with the resultant settings.
- Function:* If a command with multiple fields is processed, some of the fields may have been processed properly while others were not. The changes will appear in the string echoed back so that the user will know which fields did or did not change.
- Serial Cmd:* <**K\$command echo status,command beep status,control/hex output**>
- Default:* **Disabled**
- Options:* 0 = Disabled 1 = Enabled

Serial Command Beep Status

Important: ESP will not function whenever this command is enabled.

Usage: Used to audibly verify the acceptance and validity of a command.

Definition: Causes the scanner to beep once whenever a K command is entered to indicate that the command was accepted and processed.

Function: If an invalid command is entered, the scanner beeps 5 times to indicate an invalid entry. However, this does not necessarily mean that all data fields have been entered incorrectly. Only one bad field needs to be found in order to activate the 5 beep response.

Serial Cmd: <KSserial command echo status, **serial command beep status**, control/
hex output>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Control/Hex Output

Usage: Used for viewing settings with binary characters when using serial command on a terminal.

Definition: Determines the response to a **Serial Command Echo** or status request command.

When set to **Control**, two characters are transmitted to represent a non-displayable character. For example, a carriage return will be shown as the two characters: ^M.

When set to **Hex**, the output is the hex character.

Serial Cmd: <KSserial command echo status, serial command beep status, **control/**
hex output>

Default: **Control**

Options: 0 = Control 1 = Hex

Operation Command Output

Important: This option must be enabled for ESP to operate.

Usage: Used when brackets are required to delineate certain scanner outputs such as counters.

Definition: Controls the output of command brackets.

Serial Cmd: <**K/status**>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Disabled

When set to disabled, the start and stop brackets < and > are not sent with responses to the operational commands such as <T> and <N> and utility commands such as counters and part number requests do not function.

Enabled

Directs the scanner to bracket non-bar code scanner data such as counters with command start and stop characters, and echo the command to the host.

Output 1 Parameters

- Usage:* This option provides switching to host software to control external devices such as PLCs and relays. It is useful for routing and sorting and to prevent mis-packaging and mis-routing.
- Definition:* Sets the discrete output functions for specific user-selected conditions.

Output On

- Definition:* Allows the user to set the conditions under which an output (or outputs) will be activated.
- Serial Cmd:* <**Kvoutput on**,active state,pulse width,unused,trend analysis mode,number of triggers,number to output on,decodes per trigger>
- Default:* **Noread**
- Options:* 0 = Mismatch or Noread 3 = Noread
 1 = Match 4 = Trend Analysis
 2 = Mismatch

Note: If Output On is set to **Mismatch** or **Noread**, **Match**, or **Mismatch**, a transition (switching) will not occur unless **Matchcode Type** is enabled and a master symbol is loaded into memory.

Mismatch or Noread

Activates discrete output when the symbol data does not match that of the master symbol or the symbol has not been decoded before the end of the read cycle.

Match

Activates a discrete output when the symbol data matches the master symbol.

Note: If you want to output for a good read and **Matchcode** is not enabled, you can enable any output for **Match**.

Mismatch

Activates a discrete output whenever the symbol data does not match that of the master symbol.

Noread

Activates a discrete output whenever the symbol data is not decoded before the end of the read cycle.

Trend Analysis

Activates discrete output when a trend analysis condition is met, depending on the trend analysis option enabled.

Output 1 Parameters

Active State

Definition: Sets the active state of the discrete output.

Serial Cmd: <Kvoutput on, **active state**, pulse width, unused, trend analysis mode, number of triggers, number to output on, decodes per trigger>

Default: **Normally Open**

Options: 0 = Normally Open 1 = Normally Closed

Pulse Width

Definition: Sets the time in 10mS increments that the discrete output remains active.

Serial Cmd: <Kvoutput on, **active state**, **pulse width**, unused, trend analysis mode, number of triggers, number to output on, decodes per trigger>

Default: **5** (.05 seconds). Corresponds to 50 mS displayed in the menu.

Options: 1 to 255 (0.01 to 2.55 seconds). Divide the number entered on the command line by 100 for time in seconds.

Trend Analysis Mode

Usage: Useful in cases in which the user doesn't want to shut down for one condition but wants to monitor quality and read conditions.

Definition: Sets the trend condition (**Mismatch**, **Noread**, or **Reads/Trigger**) that will activate the output.

Parameters associated with **Trend Analysis Mode** are **Number To Output On** and **Trigger Evaluation Period**. The **Number To Output On** setting allows the user to select the number of times that the selected trend condition occurs before activating the output. **Trigger Evaluation Period** sets the number of triggered events to evaluate for trend condition.

Example:

Trend analysis mode = Noread

Number to Output On =4

Trigger Evaluation Period=25

In this example, the scanner will activate the output when 4 noreads occur within a period of 25 trigger events (read cycles).

Serial Cmd: <Kvoutput on, **active state**, pulse width, unused, **trend analysis mode**, number of triggers, number to output on, decodes per trigger>

Default: **Noread**

Options: 0 = Mismatch 1 = Noread 2 = Decodes per Trigger

Mismatch

Definition: Output will be activated when the number of **Mismatches** equals the value entered for **Number to Output On** within the trigger window selected in **Trigger Evaluation Period**.

Noread

Definition: The output will be activated when the number of noreads equals the value entered for **Number to Output On** within the trigger window selected in **Trigger Evaluation Period**.

Decodes per Trigger

Definition: Monitors the number of good reads per triggered read cycle. If the number of decodes per trigger falls below the value entered in **Decodes per Trigger**, a trend condition is set. If this trend condition matches the number set in **Number to Output On**, the output will be activated.

Number of Triggers

Definition: The number of trigger events to examine within the trend analysis event.

Serial Cmd: <**Kv**output on,active state,pulse width,unused,trend analysis mode,**number of triggers**,number to output on,decodes per trigger>

Default: **0**

Options: 0 to 255

Number to Output On

Usage: For example, if **Number to Output On** is set to 3 and **Output 1** is set to **Noread**, then **Output 1** will not be activated until 3 noreads have occurred.

Definition: Sets the number of events (matches, mismatches, noreads, etc. as configured by **Output On**) that must occur before activating the associated output.

Serial Cmd: <**Kv**output on,active state,pulse width,unused,trend analysis mode,**number of triggers**,**number to output on**,decodes per trigger>

Default: **1**

Options: 1 to 255

Note: The number of matches, etc. for this setting does not need to be sequential.

Output 1 Parameters

Decodes per Trigger

Definition: When **Reads/Trigger** trend analysis mode is enabled, the **Reads per Trigger Threshold** value is the minimum number of successful reads required during a read cycle.

Helpful Hints: You can determine the expected number of scans during a read cycle by multiplying the enabled **Number of Scans** per second times the number of seconds in the read cycle.

Serial Cmd: <**Kv**output on,active state,pulse width,unused,trend analysis mode,number of triggers,number to output on,**decodes per trigger**>

Default: **0**

Options: 0 to 65,535

Output 2 Parameters

Serial Cmd: <Kwoutput on,active state,pulse width,not used,trend analysis mode,number of triggers,number to output on,decodes per trigger>

Output 2 has the same parameters and default settings as **Output 1**.

Output 2 Parameters	
Output On	Mismatch or Noread
Active State	Normally Open
Pulse Width	5
Trend Analysis	
Trend Analysis Mode	Noread
Number of Triggers	0
Number to Output On	1
Decodes per Trigger	0

Output 3 Parameters

Serial Cmd: <K'output on,active state,pulse width,not used,trend analysis mode,number of triggers,number to output on,decodes per trigger>

Output 3 has the same parameters and default settings as **Output 1**.

Output 3 Parameters	
Output On	Mismatch or Noread
Active State	Normally Open
Pulse Width	5
Trend Analysis	
Trend Analysis Mode	Noread
Number of Triggers	0
Number to Output On	1
Decodes per Trigger	0

Quality Output

Quality Output

Usage: Host system can monitor scanning performance (printing process, scanning environment changes, etc.) by setting thresholds in their processing or displaying the outputs for visual verification. For example, a certain symbol that has been averaging 00100 reads per read cycle suddenly drops to 00012, this would be a good indication that a problem has arisen even though good reads are still occurring.

Definition: Allows the host to track the number of good reads per trigger by appending a five digit numeric field to the end of bar code symbol data.

Quality Output Separator

Serial Cmd: <**KJquality output separator,reads/trigger status>**

Default: , (comma)

Options: any ASCII character

Note: If **Quality Output Separator** has been changed to any other character and you want to re-define the separator as a comma, you will need to define it in the embedded menu or default the scanner by a <Zd> command.

Note: For all serial configuration commands, the following characters cannot be used: < > **NUL**

Reads/Trigger Status

Definition: When enabled, bar code data is followed by a separator, followed by the five digits in the form of 00000.

Serial Cmd: <**KJquality output separator,reads/trigger status>**

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Chapter

7

Matchcode

7-Matchcode

Chapter Contents

Matchcode by ESP Menu	7-2
Overview of Matchcode	7-3
Matchcode Type	7-4
Sequential Matching	7-5
Match Length	7-6
Sequence On Noread	7-7
Sequence On Mismatch	7-8
New Master Pin	7-9

This section explains the matchcode output functions and setup.

See also “[Master Database](#)” on page 11-11 for more information details on using ESP for entering, requesting, and deleting master symbols.

Note: The characters **NULL** <> and , can only be entered through embedded menus, not through ESP or serial commands.

Matchcode by ESP Menu

7-Matchcode

Click this button to bring up the Matchcode menu.

To change a setting, **double-click** the setting and use your cursor to scroll through the options.

Parameters	ESP Values
Matchcode Type	Disabled
Sequential Matching	Increment
Match Start Position	0
Match Length	1
Wild Card	*
Sequence on Noread	Enabled
Sequence on Mismatch	Disabled
New Master Pin	Disabled

Matchcode by Serial Command

Command Title	Format
Master symbol database size	<KM number of master symbols>
Matchcode Type	<Kn type,sequential matching,match start position,match length,wild card character,sequence on noread,sequence on mismatch>
New Master Pin	<Kzstatus>
Enter data to database	<M master symbol number,data>
Request all Master Symbol information	<M?>
Request Master Symbol information	<M master symbol number?>
Delete Master Symbol	<M master symbol number,>

Related Utility Commands	Format
Set Matchcode Type to Enabled	<E>
Set Matchcode Type to Disabled	<F>
Enter data as master symbol #1	<)data>
Scan in next symbol as Master Symbol	<G>
Request master symbol #1	<J>
Delete master symbol #1	<JJ>

Overview of Matchcode

Usage:

Matchcode is used in applications to sort, route, or verify data based on matching the specific symbol in a variety of ways as defined in this section. For example, a manufacturer might sort a product based on dates that are embedded in the symbol.

Definition:

With **Matchcode** you can store master symbol data in the scanner's memory, compare this data against the scanned symbols, and define how symbol data and/or discrete signal output will be directed. A master symbol database can be set up for up to 10 master symbols. See "[Master Database](#)" on page 11-11.

Using Master Symbols

1. Set **Triggering Mode** to **External** or **Serial** (see "[Trigger](#)" on page 4-5).
2. Set **Matchcode Type** to an option that fits your application (see "[Matchcode Type](#)" on page 7-4).
3. Define the output you want with your matchcode setup:
 - a) Data output ("[Symbol Data Output](#)" on page 6-3).
 - b) Discrete output (see [Chapter 6, "Output 1 Parameters"](#)) "[Output 1 Parameters](#)" on page 6-15).
4. Select the number of master symbols you want to create, if more than one send a <K224,*number of master symbols*> command (see "[Master Database](#)" on page 11-11).
5. Enter master symbol data in one of the following ways:
 - a) Use **ESP** to type in master symbol data directly into the **Utilities** menu.
 - b) Send a serial command with symbol data in the form of <**M***master symbol#*,*data*> (or <**1** *data*>) for single master symbol only).
 - c) Send a <**G***master symbol number*> command to scan next symbol in as the master symbol.

Enable the **New Master Pin** command and activate a discrete input to store the next symbol scanned as the master symbol (see "[New Master Pin](#)" on page 7-9).

See also "[Master Database](#)" on page 11-11 for more information details on using ESP for entering, requesting, and deleting master symbols.

Matchcode Type

Note: If Matchcode is set to **Wild Card** or **Sequential**, **Number of Symbols** will default back to **1** (if set to any number greater than 1).

Definition: Allows the user to choose the way that master symbols will be compared with subsequently scanned symbols.

Note: First set **Triggering Mode** to **External** or **Serial**.

Serial Cmd: <**Knmatchcode type**,sequential matching,match start position,
match length,wild card,sequence on noread,sequence on mismatch>

Default: **Disabled**

Options: 0 = Disabled 2 = Wild Card
 1 = Enabled 3 = Sequential

Options

Has no effect on operations.

Enabled

Instructs the scanner to compare symbols or portions of symbols with the master symbol.

Wild Card

Allows the user to enter user defined wild card characters in the master symbol.

Sequential

Instructs the scanner to sequence after each match (numeric only) and compare symbols or portions of symbols for sequential numbers.

Sequential Matching

<i>Usage:</i>	Used in tracking product serial numbers that increment or decrement sequentially.
<i>Definition:</i>	With Sequential enabled under Matchcode Type , Sequential Matching determines if a count is in ascending (incremental) or descending (decremental) order.
<i>Serial Cmd:</i>	<Knmatchcode type, sequential matching , match start position, match length, wild card, sequence on noread, sequence on mismatch>
<i>Default:</i>	Increment
<i>Options:</i>	0 = Increment 1 = Decrement

7-Matchcode

Match Start Position

<i>Usage:</i>	Match Start Position is useful in defining specific portions of a symbol for comparisons. For example, if a symbol contains a part number, manufacturing date, and lot code info but the user is only interested in the part number information, Match Start Position can be set to only sort on the part number and ignore the rest of the characters.
<i>Definition:</i>	Match Start Position determines the portions of symbols that will be matched by defining the first character in the symbol (from left to right) that will be compared with those of the master symbol, when Matchcode Type is set to Enabled or Sequential .
<i>Example:</i>	For example, if Match Start Position is set to 3, the first 2 characters read in the symbol will be ignored and only the 3rd and subsequent characters to the right will be compared, up to the number of characters specified by Match Length .
<i>Serial Cmd:</i>	<Knmatchcode type, sequential matching, match start position , match length, wild card, sequence on noread, sequence on mismatch>
<i>Default:</i>	0
<i>Options:</i>	0 to 50

Note: **Match Start Position** must be set to **1** or greater to enable this feature. A **0** (zero) setting will disable this feature.

Match Length

Usage: For example, if **Match Length** is set to **6** in a 10 character symbol, and **Match Start Position** is set for **2**, only the 2nd through 7th characters (from left to right) will be compared.

Definition: Defines the length of the character string that will be compared with that of the master symbol when **Match Start Position** is set to **1** or greater. When **Match Start Position** is set to **0**, no comparison will occur.

Serial Cmd: <**Kn**matchcode type,sequential matching,match start position,
match length,wild card,sequence on noread,sequence on mismatch>

Default: **1**

Options: 1 to 50

Wild Card

Usage: For example, with **Wild Card** character defined as the default asterisk, defining **CR*34** as the master symbol will result in matches for CR**1**34, CR**2**34, but not CR2345. Entering the wild card at the end of the master symbol as in **CR*** will result in matches for variable symbol lengths such as CR**1**, CR**23**, CR**358**, etc.

Definition: **Wild Card** character allows a user to define a wild card character as part of the master symbol.

Serial Cmd: <**Kn**matchcode type,sequential matching,match start position,
match length,**wild card**,sequence on noread,sequence on mismatch>

Default: * (asterisk)

Options: Any valid ASCII character

Sequence On Noread

<i>Usage:</i>	Sequence On Noread is useful when the scanner needs to stay in sequence even if no decode occurs.
<i>Definition:</i>	When Sequence On Noread is Enabled and Matchcode is set to Sequential , the scanner sequences on every match or noread. When disabled, it does not sequence on a noread.
<i>Serial Cmd:</i>	< Knmatchcode type,sequential matching,match start position, match length,wild card,sequence on noread,sequence on mismatch >
<i>Default:</i>	Enabled
<i>Options:</i>	0 = Disabled 1 = Enabled

When **Sequence On Noread** is enabled, the master symbol will increment by one if either a match or a noread occurs.

If both **Sequence On Noread** and **Sequence On Mismatch** are enabled, the master symbol will increment in every event (match, mismatch, or noread).

In the special case, where the expected number is missed by only 1, the sequence skips over the next number in order to resume the sequence. For example, a 002 is expected but a 003 is read. The next master symbol will be 004. See the tables under "["Sequence On Mismatch" on page 7-8](#) for examples of this.

Sequence On Mismatch

Sequence On Mismatch

Note: **Matchcode** must be set to **Sequential** for this command to function.

Usage: Enable this parameter if every trigger event should have a decode *and* more than one consecutive mismatch may occur.

Disable this parameter if every trigger event should have a decode but no more than one consecutive mismatch may occur.

Definition: When set to **Enabled**, the master symbol sequences on every decode, match or mismatch. When set to **Disabled**, the master symbol will not sequence whenever consecutive mismatches occur.

Serial Cmd: <**Knmatchcode type,sequential matching,match start position, match length,wild card,sequence on noread,sequence on mismatch**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

As an example of **Sequence On Mismatch Enabled**, consider the following decodes:¹

Master Symbol	Decoded Symbol	Master After Decode	Action
001	001	002	Sequenced on match
002	abc	003	Sequenced on mismatch
003	def	004	Sequenced on mismatch
004	005	006	Sequence skipped
006	ghi	007	Sequenced on mismatch
007	007	008	Sequenced on match

As an example of **Sequence On Mismatch Disabled**, consider the following decodes:

Master Symbol	Decoded Symbol	Master After Decode	Action
001	001	002	Sequenced on match
002	abc	003	Sequenced because of previous match
003	def	003	Not sequenced
003	003	004	Sequenced on match
004	005	006	Sequence skipped
006	006	007	Sequenced on match

You can access **Master Symbol Database** operations from the **Utilities** menu.

1. In both tables, when the expected number is missed by only 1, the sequence skips over the next number in order to resume the sequence.

New Master Pin

Usage: Some applications require the line worker to change the master symbol. This can be done by installing a switch at the location of the scanner. It is very common to have a keyed switch so that accidental switching does not occur.

Definition: After **New Master Pin** is enabled, a pulse can be received on the new master pin which will cause the scanner to record the next decoded symbol symbol(s) as the new master symbol(s).

It is important to note that the enabling **New Master Pin** does not in itself cause a master symbol to be recorded. The master pin must then be activated momentarily (for a minimum of 10 ms) before a master symbol can be scanned into memory. (See "["Electrical Specifications" on page A-6.](#))

Serial Cmd: <**Kzstatus**>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

7-Matchcode

After **New Master Pin** has been enabled and the pin activated, decodes will be saved in the master database beginning with master symbol #1. If the scanner is configured for a multisymbol read cycle (**Number of Symbols** is greater than 1), the remaining decodes will be saved in each consecutive master symbol location. For example, if **Number of Symbols** is set to **3** and **New Master Pin** is then activated, at the end of the next read cycle, the decoded symbol symbols will be saved as master symbols 1, 2, and 3.

7-Matchcode

Chapter

8

Diagnostics

Chapter Contents

Diagnostics by ESP Menu	8-2
Diagnostics by Serial Command.....	8-2
Counts.....	8-3
Hours Since Reset	8-4
Warning Messages	8-5
Present Operating Temperature (deg. C)	8-9
High Temperature Threshold	8-10
Low Temperature Threshold.....	8-11
Lifetime Hours.....	8-12

8-Diagnostics

Important: Since **Warning Messages** and **NOVRAM Messages** are not enabled by default, these messages will not be displayed. However, if you suspect that erroneous defaults are occurring, enable **Warning Messages** and **NOVRAM Messages** by sending **<K"1,,1>**.

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

Diagnostics by ESP Menu

Diagnostics by Serial Command

Command Title	Format
Counts	<K_?> (read only: power-ons, resets)
Hours Since Last Reset	<K@?> (read only: hours, minutes)
Warning Message Status	<K"warning message status,laser high status,laser low status,novram corrupt warning status>
Laser High Warning	<K;laser high message>
Laser Low Warning	<K:laser low message>
Present Operating Temperature	<K% degrees Celsius>
High Temperature Threshold	<K+degrees,message>
Low Temperature Threshold	<K-degrees,message>
Lifetime Hours	<K\$hours10,message>

Counts

(These commands are READ ONLY.)

Power-on

Usage: Used for detecting unwanted resets caused by power supply problems or ESD transients.

Definition Returns the number of times the scanner has been re-powered or a watchdog reset occurs.

Serial Cmd: Send <**K_?**>
Returns <**K_power-ons, resets**>

Read Only 0 to 65,535 power-ons.

Ranges:

Resets

Usage: Used for detecting unwanted resets caused by power supply problems or ESD transients.

Definition Resets include watchdog reset, <A>, <Z>, <Zd>, and hardware defaults. A watchdog reset is a reset that is forced whenever the software locks-up.

Serial Cmd: Send <**K_?**>
Returns <**K_power-ons, resets**>

Read Only 0 to 65,535 resets.

Ranges:

Hours Since Reset

(This command is READ ONLY.)

Usage: Used as a troubleshooting tool that can help pinpoint the cause of a reset.

Definition: Records the number of hours and minutes of operation since the last system reset.

Serial Cmd: Send <**K@?**>

 Returns <**K@hours,minutes**>

Read Only 0 to 23 hours, 0 to 59 minutes.

Ranges:

Warning Messages

Important Note: **Warning Message Status** must be enabled before any warnings in this menu can be displayed.

Usage: These messages serve as a flag to service a scanner or as an early warning that potential problems could arise. They are particularly useful in factories that run 24/7 and can't afford down time.

Definition: Warning messages that relate to the environment and condition of the scanner can be defined and set to activate specific outputs.

Note: When enabled, the error condition will override all other operational modes configured for the output.

When enabled, laser current and NOVRAM warning messages will be transmitted to the host or any active port whenever the pre-defined conditions are met.

Function: When enabled, warning messages will be transmitted to the host or any active port.

Note: This option must be enabled before any other warning messages can be transmitted.

Warning Message Status

Serial Cmd: <K"warning message status,laser high status,laser low status,
novram corrupt warning status>

Default: **Disabled**

Options: 0 = Disabled 1 = Enabled

Warning Messages

Laser High

When enabled, a message is transmitted whenever the laser current exceeds a factory-calibrated reference value which cannot be altered. The message repeats once every 30 minutes until the condition is corrected.

Laser High Status

Usage: Alerts the user to impending laser failure. (Contact Omron Service.)

Definition: Enables the **Laser High** message.

Serial Cmd: <**K**" warning message status, **laser high status**, laser low status,
novram corrupt warning status>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Laser High Message

Definition: Defines the **Laser High** message.

Serial Cmd: <**K;laser high message**>

Default: **HI-LASR**

Options: Any 1 to 10 character ASCII string except **NUL**, <, or >.

Laser Low

When enabled, a message is transmitted whenever the laser current falls below a factory-calibrated reference value which cannot be altered. The message repeats once every 30 minutes until the condition is corrected.

Laser Low Status

Usage: Alerts the user to impending laser failure. (Contact Omron Service.)

Definition: Enables the **Laser Low** message.

Serial Cmd: <**K**"warning message status,laser high status,**laser low status**,
novram corrupt warning status>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Laser Low Message

Definition: Defines the **Laser Low** message.

Serial Cmd: <**K:laser low message**>

Default: **LO-LASR**

Options: Any 1 to 10 character ASCII string except **NUL**, <, or >.

Warning Messages

NOVRAM Corrupt Warning Status

When enabled, a 7 character message is sent whenever the system detects a warning condition.

Important Note: **Warning Corrupt Message Status** must be enabled before the **NOVRAM** message in this menu can be transmitted.

Usage: Alerts the user to NOVRAM failure. (Contact Omron.)

Serial Cmd: <**K**"warning message status,laser high status,laser low status,
novram corrupt warning status>

Default: **Enabled**

Options: 0 = Disabled 1 = Enabled

Note: If you suspect that erroneous defaults are occurring, enable **NOVRAM Messages** by sending <**K"1,,1**>. This will allow the **NOVRAM** messages, if present, to be viewed.

Warning messages for NOVRAM can appear in one of five formats:

<NVRAM-C>

This message indicates an error in user settings. The message repeats once every 30 minutes. If this message is received, restore customer settings and send a <**Z**> command.

If the condition persists, contact your Omron representative.

<NVBAD-D>

Indicates that diagnostic lifetime hours, power-on counts, and reset counts have been lost. The message repeats once every 30 minutes. (Contact your Omron representative)

<NVBAD-L>

Indicates a problem with laser current factory reference. The message repeats once every 30 minutes. (Contact your Omron representative)

<DFALT-C>

Indicates that the customer NOVRAM settings have been defaulted either by a customer initiated default or by a problem with the scanner. This message is sent ONLY ONCE.

<DFALT-F>

Indicates that the factory NOVRAM settings have been defaulted. This message is sent ONLY ONCE upon reset. (Contact your Omron representative.)

Present Operating Temperature (deg. C)

(This command is READ ONLY.)

Usage: Used for setting **Over Temperature Threshold** and **Under Temperature Threshold**.

Definition: Indicates temperature of the environment immediately outside of the scanner.

A thermal sensor on the main PCB measures the internal temperature of the scanner. From this, a case-differential constant is subtracted to yield an estimated external temperature.

Serial Cmd: Send: <**K%**?>

Returns: <**K%**degrees Celsius>.

Note: When viewing the **Present Operating Temperature**, allow at least 20 minutes after startup for the scanner's inside and outside temperatures to stabilize.

High Temperature Threshold

High Temperature Threshold

A message can be defined that will display when a user-set **High Temperature Threshold** has been reached. The message repeats once every 30 minutes until the condition is corrected. This value is a reference to the external ambient temperature in the environment around the scanner.

High Temperature Degrees

Usage: Helps ensure that the scanner is being used within its temperature specification. Also, since hotter environments tend to shorten the life of electronics components, a user may want to set the temperature threshold closer to the nominal temperature of 25°.

Definition: A user can set a temperature value that when exceeded will cause a high temperature message to be displayed. If **High Temperature Threshold** is set to zero, then the warning message will be disabled

Serial Cmd: <**K+degrees**,**message**>

Default: **50° Celsius**

Options: 0° to 50°, zero disables.

High Temperature Message

Definition: The user can enter a message of up to 10-characters that will be displayed whenever **High Temperature Threshold** is exceeded.

Serial Cmd: <**K+degrees**,**message**>

Default: **HI-TEMP**

Options: Any 1 to 10 character ASCII string except **NUL**, <, or >.

Low Temperature Threshold

A message can be defined that will display when a user-set **Low Temperature Threshold** has been reached. The message repeats once every 30 minutes until the condition is corrected. This value is a reference to the external ambient temperature in the environment around the scanner.

Low Temperature Degrees

Usage: Helps ensure that the scanner is being used within its temperature specification.

Definition: The user can set a low temperature value that, whenever the ambient temperature falls below it, causes a low temperature message to be displayed. If **Low Temperature Threshold** is set to zero, the warning message will be disabled.

Serial Cmd: <**K-degrees**,**message**>

Default: **1°** Celsius

Options: 0° to 50°, zero disables.

Low Temperature Message

Definition: The user can enter a message of up to 10-characters that will be displayed whenever the ambient temperature falls below the **Low Temperature Threshold**.

Serial Cmd: <**K-degrees**,**message**>

Default: **LO-TEMP**

Options: Any 1 to 10 character ASCII string except **NUL**, <, or >.

Lifetime Hours

A message can be defined that will be transmitted whenever the scanner's elapsed time clock exceeds the set hours threshold. The message repeats one time every 30 minutes.

Hours Threshold

Usage: Used for setting up a preventive maintenance program.

Definition: A user can set a time in hours that will cause a message to be sent whenever the scanner's run time exceeds this value.

The elapsed time is the time the scanner is powered up.

Serial Cmd: <**K\$hours10,message**>

Default: **2500** (x 10 = 25,000 hours)

Options: 0 to 65534

Note: Hours entered are 1/10 of the actual hours.

Message

Definition: The user can enter a message of up to 10-characters that will be displayed whenever the hours threshold is reached or exceeded.

Serial Cmd: <**K\$hours10,message**>

Default: **SERVICE**

Options: Any 1 to 10 character ASCII string except **NUL**, <, or >.

Chapter

9

Laser Control

Chapter Contents

Laser Control by ESP Menu	9-2
Laser On/Off	9-3
Laser Framing.....	9-4

By regulating the time that the laser is on during each scan, the laser beam width can narrowed to a precise arc. This is called “laser framing” and it is very useful when there is a need to avoid highly reflective objects, to filter out unwanted signals, or to avoid scanning the wrong symbols. In addition, the laser can be set so that it only turns on during a read cycle.

9-Laser Control

Laser Control by ESP Menu

Click this icon to bring up the **Laser Control** view.

You can also adjust laser parameters from the **Read Cycle** menu.

└─ Laser Setup	
└─ Laser On/Off	Disabled
└─ Laser Framing Status	Enabled
└─ Laser On Position	20
└─ Laser Off Position	80

Laser On/Off

Usage:

Laser On/Off extends the life of the laser. It is useful where there are significant time gaps between symbols. It also provides visual confirmation of a read cycle duration and minimizes laser exposure to people.

Definition:

When enabled, the laser is ON only during the read cycle. When disabled, the laser operates continuously.

Check this box to enable **Laser On/Off**

Serial Cmd: <KC**laser on/off**,laser framing status,laser on position,laser off position>

Default:

Disabled

Options:

0 = Disabled, 1 = Enabled

Laser Framing

To adjust laser framing, click the **Laser Control** button, and **Laser On/Off** arrows up or down as shown here.

Usage: This is useful to avoid highly reflective objects, for filtering out unwanted signals, and avoiding the wrong symbols.

Definition: Sets the percentage of time the laser is ON during each scan so that only a selected portion of the scan width is effectively scanned.

When **Laser Framing** is disabled, the laser is ON during the full scan arc.

Serial Cmd: <KC_{laser on/off status}, **laser framing status**, _{laser on position}, _{laser off position}>

Default: **Disabled**

Figure 9-1 Laser Framing

Laser On Position

Definition: Percentage of the full scan arc that the scan beam moves through before the laser turns ON. For example, if set for 30, the laser will be off during the first 30 percent of the scan.

When **Laser Framing** is disabled, the laser is ON for 100 percent of the full scan. When **Laser Framing Status** is enabled, the laser remains OFF from the start of the scan and remains OFF for the specified percentage of the scan, which is up to 70 percent of the scan, as specified by this command.

Figure 9-2 Laser On Position

Serial Cmd: <KC_{laser on/off status,laser framing status,laser on position,laser off position>}

Default: **10**

Options: 1 to 80

Laser Off Position

Definition: Percentage of the full scan arc that the scan beam moves through before the laser turns OFF.

Notes:

The combined values of **Laser On Position** and **Laser Off Position** cannot exceed 100 percent, the total arc of one scan.

Laser Off Position must always exceed the value of **Laser On Position** for an actual laser scan to take place.

Figure 9-3 Laser Off Position

Serial Cmd: <KC_{laser on/off status,laser framing status,laser on position,laser off position>}

Default: **90**

Options: 20 to 100

Laser Framing

9-Laser Control

Chapter

10

Terminal Mode

Chapter Contents

Terminal Window	10-2
Find Function	10-3
Macros	10-4
Terminal Window Functions.....	10-5

This section describes the terminal window and macro functions.

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

Terminal Window

To use the terminal mode, click on the **Terminal** button.

You will see the following window:

The terminal screen allows you to enter serial commands (in red) from the macro box, by copying, or directly from your keyboard.

The terminal screen also displays symbol data or information from the scanner (in blue).

You can also right click in the terminal screen to bring up a handy option box.

Find Function

The **Find** box allows you to enter text strings to be searched for in the terminal window. For example a series of symbols have been scanned into the terminal view and you want to determine if a particular symbol starting with ABC has been read.

1. Type **ABC** into the **Find** box.

2. Press the **return key**.

The first instance of **ABC** will be high-lighted in the terminal window.

3. Press the **F3** key to search again for the next instance of **ABC**.
4. Press **Shift-F3** to search for the previous instance of **ABC**.

Macros

Macros can be stored in a macro selection bar, edited in a separate window, and executed by clicking on the macro name.

When you click on the macro name, the macro is executed in the terminal window.

If this is a serial command, the command is also sent to the scanner at the same time it is displayed.

Editing a Macro

When you click the arrow next to a any macro and select **Edit**, the following appears:

You can edit an existing macro or type in a new macro name and define it in the **Macro Value** text box. Click **OK**.

Terminal Window Functions

Right-click on the terminal window to display the following:

- **Copy** selected text to clipboard.
- **Paste** from terminal or computer text.
- **Clear** all text in terminal window.
- **Select All** text in the terminal window.
- **Save...** brings up a save as dialog box.
- **Change Font...** of data text, brings up a text dialog.
- **Change Echo Font...** to change typed in text or commands.
- **Change Background Color** of terminal window.
- **Default Settings** changes all the above back to default settings.

Terminal Pulldown Menu

The pulldown **Terminal** menu has **Capture and Save Current Text** as well as the functions defined above.

- **Capture** lets you append data in real time to a text file of your choice. While in operation, the text file cannot be opened. You can select **Pause** to interrupt the capture flow or **Stop** to end the flow and open the file.
- **Save Current Text...** saves all text in the terminal window to a text file of your choice.

Chapter

11

Utilities

Chapter Contents

Utilities by ESP Menu	11-2
Utilities by Serial Command	11-3
Read Rate.....	11-5
Counters	11-7
Device Control	11-9
Master Database	11-11
Firmware.....	11-16
Autodiscrimination	11-19
Scanner Status Requests	11-20

Utility commands are generally commands that are performed during scanner operations to check read rates, determine read rates or perform miscellaneous operations on scanner hardware. Serial utility commands are not prefaced with a "K", nor do they require an initialization command (<A> and <Z>). They can be entered from within any terminal program or from within the **Terminal** window.

Note: The characters **NULL <>** and **,** can only be entered through embedded menus, not through ESP or serial commands.

Utilities by ESP Menu

Click this button to
bring up the **Utilities**
menu

Utilities by Serial Command

Table 11-1 Summary of Utility Serial Commands

Command Type	Command	Name
Read Rate	<Cp>	Enter Single Symbol Percent Rate Test
	<C>	Enter Single Symbol Decode Rate Test
	<Cm>	Enter Multisymbol Percentage Rate Test
	<Cs>	Enter Multisymbol Decode Rate Test
	<a1>	PDF Information
	<Ce>	Extended Read Rate
	<J>	Exit Decode Rate and Percent Rate Test
Counters	<T>	Trigger Counter
	<U>	Trigger Counter Reset
	<V>	Good Read/Match Counter
	<W>	Good Read/Match Counter Reset
	<N>	Noread Counter
	<O>	Noread Counter Reset
	<X>	Mismatch Counter
	<Y>	Mismatch Counter Reset
Device Control	<L1>	Output #1 Pulse
	<L2>	Output #2 Pulse
	<L3>	Output #3 Pulse
	<I>	Disable Scanner
	<H>	Enable Scanner
	<KF>	Send Motor Off
	<KE>	Send Motor On
Master Database	<#>	Master Symbol Database Size
	<E>	Enable Master Symbol
	<F>	Disable Master Symbol
	<) data)>	Enter symbol data as master symbol.
	<Mmaster symbol number,data>	Enter Data to Database for Specified Symbol. Note: <K231,#,data> does the same.
	<M#?>	Request Master Symbol Data For Specific Symbol Note: <K231,#,?> does the same.
	<M?>	Request all Master Symbol Information Note: <K231,?> does the same.
	<)>	Request Information for Master Symbol #1
	<))>	Delete Master Symbol #1
	<Mmaster symbol number,>	Delete Master Symbol Note: <K231,#,> does the same.
Firmware	<!>	Display Checksums of EPROM
	<!b>	Display Checksum for Boot Code
	<!a>	Display Checksum for Application Code
	<#>	Display Part Number
	<#b>	Display Boot Code Part Number
	<#a>	Display Application Code Part Number

Utilities by Serial Command

Table 11-1 Summary of Utility Serial Commands

Symbol Types	<P>	Autodiscriminate All Codes
	<Q>	Enable Code 39 Only
	<R>	Enable Codabar Only
	<S>	Enable I 2/5 Only
Trigger	<char>	Serial Trigger Character
Restore/Save ^a	<A>	Reset (does not save for power-on)
	<Ad>	Restore Default Settings
	<An>	Restore Saved Settings
	<Z>	Reset/Save (for power-on)
	<Zp>	Save Factory Settings
	<Zd>	Save/Restore Factory Defaults
Status Requests	<?>	Scanner Status
	<?1>	Extended Scanner Status
	<K?>	Configuration Status

a. See [Appendix H — “Defaulting/Saving/Initializing”](#).

Read Rate

By ESP

You can access **Read Rate** from the **Utilities** menu.

To start or end a read rate test, right-click **Read Rate** and select **Start** or **Stop**.

To change from percent read rate to decodes per second, first end the read rate by selecting **Stop**, then right-click select **Decodes/Sec**.

Read Rate by Serial Command

Enter Single Symbol Percent Test

Sending **<Cp>** instructs the scanner to transmit the percentage of decodes and any scanned symbol data.

Enter Multisymbol Percent Enter Single Symbol Decodes/Second Test

Sending **<C>** instructs the scanner to transmit the decodes per second and symbol data (if any). The decode rate can vary dramatically due to the angle and location of the symbol in relation to the scan line. This test is very useful in aligning and timing the scanning device during installation.

Test

Sending **<Cm>** instructs the scanner to transmit the percentage of scans decoded and symbol data (if any) for multiple symbols.

Enter Multisymbol Decode Rate Test

Sending **<Cs>** instructs the scanner to transmit the decode rate and symbol data (if any) for multiple symbols.

Read Rate

Enable PDF Information

Sending the **<a1>** check box will cause PDF417 symbology data to be prefaced with information consisting of error correction level, number of rows, number of columns, number of informative code words and the number of data characters.

This feature can be disabled by using the exit read rate command **<J>**.

Enable Extended Rate Test for Single and Multisymbol

Sending **<Ce>** after **<C>** or **<Cs>** will generate a an extended mode that applies to both single and multiple symbols.

Extended mode instructs the scanner to output the decode rate, the symbol data, and the transition data.

Note: The **<Ce>** command has no immediate effect if not preceded by **<C>** or **<Cs>**.

End Read Rate Test

Sending **<J>** ends both the **Percent** test and the **Decodes/Second** test for both single and multi-symbol.

Counters

Counter commands can be a numeric value from 00000 to 65,535. After reaching the maximum numeric limit of 65,535, the counter will automatically roll-over and start counting again at 00000. To obtain the cumulative total of counts after the roll-over has occurred, add 65,536 per each roll-over (the scanner does not keep track of the number of roll-overs) to the current count.

Note: All counter values will be lost if power is recycled to the scanner or the scanner receives a reset or save command.

Counters By ESP

You can access **Counters** from the **Utilities** menu.

Click **Request All** or **Request** for a specific counter to display count. Click **Clear** to set counter to zero.

Counters by Serial Command

Trigger Counter

Sending <**T**> displays the total number of triggers since the last reset.

Trigger Counter Reset

Sending <**U**> sets the trigger counter to 00000.

Good Read/Match Counter

Sending <**V**> displays the total number of good reads matching the master symbol or, if Master Symbol is not enabled, the number of good reads since the last reset. This counter is always enabled, but will only work as a match count when Master Symbol is enabled. If Master Symbol is not enabled, this counter records the number of good reads. This count can be requested at any time.

Good Read/Match Counter Reset

Sending <**W**> sets the Match Counter to 00000.

Noread Counter

Sending <**N**> displays the total number of noreads that have occurred since the last reset.

Noread Counter Reset

Sending <**O**> sets Noread Counter to 00000.

Mismatch Counter

With Matchcode enabled, sending <**X**> displays the number of decoded symbols since the last reset that do not match the master symbol.

Mismatch Counter Reset

Sending <**Y**> sets the Mismatch Counter to zero.

Device Control

By ESP

Device Control By Serial Command

Output #1 Pulse

Sending <L1> activates the link between Output 1(+) and Output 1(−) (regardless of Master Symbol or Output 1 status).

Output #2 Pulse

Sending <L2> activates the link between Output 2(+) and Output 2(−) (regardless of Master Symbol or Output 2 status).

Output #3 Pulse

Sending <L3> activates the link between Output 3(+) and Output 3(−) of the host connector (regardless of Master Symbol or Output 3 status).

Disable Reader

Sending <I> will turn the laser off and end the current read cycle. This feature is useful during extended periods of time when no symbols are being scanned or the scanner is being configured. Disabling laser scanning will not affect any downloaded commands to the scanner.

Note: **Disable Laser Scanning** does not relate to **Laser On/Off**, which when enabled also turns off the laser but only between read cycles.

Device Control

Enable Reader

Sending <H> will turn the laser on continuously.

Note: Enable Laser Scanning does not relate to Laser On/Off command.

Send Motor Off

Sending <KF> turns the spinning mirror motor off. This command is useful for long idle periods.

Note: Laser turns off whenever motor is off.

Send Motor On

Sending <KE> turns the spinning mirror on (if not already running).

Note: The spinning mirror reaches full speed after a short time delay.

see [Chapter 7, "Matchcode."](#)

Master Database

Important: **Master Database** is used only for comparing entire symbols, when **Sequential** and **Wild Card** are NOT enabled, and **Start Position** is equal to **0**.

Master Database Overview

Usage: Used where more than one master symbol is required, as in a **Multisymbol** setup, for matching and other matchcode operations.

Definition: Allows you to define up to 10 master symbols as the master symbol database, which can be entered by keyboard, scanned in, displayed, or deleted by serial or ESP commands.

Master Symbol Database Size

Definition: **Master Symbol Database Size** allows you to select 1 to 10 master symbols for the master symbol database.

ESP: First set the number of master symbols you want to include by using **Master Symbol Database Size** and entering the number.

Serial Cmd: <**KMmaster symbol database size**>

Default:

1

Options: 1 to 10

Enter Master Symbol Data

Definition: Allows you to enter master symbol data for a specific master symbol index number (1 to 10) provided the index number is not larger than the number of symbols enabled by the **Master Symbol Database Size** (see [page 11-11](#)). For example, if **Master Symbol Database Size** is set to 2, you will not be able to enter data for symbols 3 through 10.

ESP:

1. Set the number of master symbols you want to create in **Master Symbol Database Size**.
2. **Double-click** in the row of the index number you want to setup.

3. Copy or type data into the Master Symbol dialog box and click **OK**.
4. Click **Send Database to Reader** to save to the scanner.

Serial Cmd: <Master symbol number, master symbol data>

Default:

Options: 1 to 10 (any combination of ASCII text up to the maximum in [Table 11-2](#)).

For example, to enter data for master symbol 9, after making certain that master symbol database size is enabled for 9 or more symbols, send <M9,data>.

Caution: Since the total number of characters available for the master symbol database is **2045**, changes to the **Master Symbol Database Size** will re-allocate the number of characters available for each master symbol and could cause existing master symbols to be deleted (except master symbol #1 unless it also exceeds the size limitation.)

Table 11-2 specifies the maximum number of characters available to each symbol according to the number of master symbols defined, from 1 through 10.

See “[Master Symbol Database Size](#)” on page 11-11.

Table 11-2 Maximum Characters for Master Symbol Database

Number of Master Symbols	Maximum Characters	Number of Master Symbols	Maximum Characters
#1	2045	#6	340
#2	1022	#7	291
#3	681	#8	254
#4	510	#9	226
#5	408	#10	203

Store Next Symbol Scanned as Master Symbol

Definition: After you've set the size in the database, you can order the scanner to store the next symbol decoded as the master symbol

Serial Cmd: <**G**master symbol number>
To store the next symbol scanned as master symbol #1 send: <G> or <G1>. For all symbols numbers except 1, the number must be included.

Options: 1 to 10

ESP: In the **Master Database** tab in the **Utilities** menu:

1. Select the master symbol index number in which you want to store the symbol data.
2. Click **Read Symbol into Selected Index**.

Read Symbol into Selected Index

The next symbol decoded will be read into the selected index.

Request Master Symbol Data

Definition: Returns master symbol data for any enabled master symbols from 1 to 10.

For example, for a database in which the master symbol database size has been set to 5 or more, send <M5?> to request master symbol data for #5. The scanner transmits master symbol #5 data in the following format: <5/data>.

If no master symbol data is available, the output will be: <5/>.

ESP:

1. Click the **Utilities** button and the **Master Database** tab.
2. Click on the **Receive Reader's Database** button.

Serial Cmd: <M_master symbol number?> (Returns all master symbols if no number is added before the question mark)

Caution: Be sure to add the ? or you will delete the master symbol(s).

Default: Returns all master symbols if no number is included.

Options: 1 to 10

Delete Master Symbol Data

Definition: This command will delete the master symbol data for a selected master symbol number.

- ESP:*
1. Click the **Utilities** button to access the master symbol.
 2. Click the **Master Database** tab and **double-click** the symbol number you want to delete.
 3. Delete text and click **OK** to delete in ESP.

4. Click **Send Database to Reader** to save in the scanner.

Serial Cmd: <**M**aster symbol number,> deletes the master symbol for the selected symbol index.

Caution: If no number is added before the question mark, all master symbols will be deleted.

Options: 1 to 10

Firmware

Firmware Update

Application code versions are specific to your scanner. Consult with your sales representative before downloading application code. If needed, an application code will be sent to you in the form of a ***.mot** file.

To download application code:

1. First make sure the host is connected to your scanner.
2. Apply power to the scanner.
3. Before updating, you should verify the current firmware (see **"Firmware Verification — Part Number" on page 11-17**).
4. Click in the **Firmware Update** text box and select the file type you want to download. This will open a file locator box.
5. Navigate to the appropriate file (a ***.mot** file) and open the file.

As application code begins to download to the scanner, the scanner will go silent, the scanner's RDY and GD/RD LEDs will flash intermittently, and a progress indicator at the bottom of the ESP window will let you know when the download is complete.

Caution: Do not interrupt power or disconnect the host cable while download is in progress.

Firmware Verification – Part Number

You can send a request for scanner's current firmware part numbers.

By ESP

1. From the **Utilities** menu you can access **Firmware Verification** from the **Firmware** tab.
2. Select the firmware code you want to check and click **Request Part No.** to see the associated part number.

By Serial Command

Upon sending <#> the scanner returns software part numbers for application code <#a/> and boot code <#b/>.

Individual part numbers for **Application Code** and **Boot Code** are returned when their respective commands <#a> and <#b> are sent.

Firmware Verification – Checksum

A checksum verifies a scanner's flash memory.

By ESP

1. From the **Utilities** menu you can access **Firmware Verification** from the **Firmware** tab.
2. Select the firmware code you want to check and click **Request Checksum** to see the associated part number.

By Serial Command

Upon sending **<!>** the scanner returns two 4-digit hex numbers that are the checksums for boot code and the application code.

Individual checksums for **Boot Code** and **Application Code** are returned when their respective commands **<!b>** and **<!a>** are sent.

Autodiscrimination

You can enable most or specific symbol types by the following operational commands.

Default: **Code 39 (only)**

Options: <P> Enables most symbol types.

 <Q> Enable Code 39 only

 <R> Enable Codabar only

 <S> Enable I 2/5 only

Scanner Status Requests

<?> Scanner Status Byte

The scanner responds to a status request <?> with a single ASCII character, for example a symbol F. To determine the status:

1. Look up the hex conversion in an ASCII to hex table, [Table A-9, "ASCII Table with Control Characters," on page A-18](#). The ASCII F character corresponds to 46 in hex.

2. Look up the binary conversion for 46 in [table 11-3](#).

For example, the 4 in binary would be 0100 as read from binary digits 3 through 0; the 6 the binary digits 7 through 4 which is 0110. Note that for this example, the binary bits are read from left to right.

3. Next, enter your binary values in [table 11-4](#) in the "Binary" column next to the appropriate bit.

Table 11-4 Scanner Status

Bit	Binary	Scanner Status
0	0	Command error detected
1	1	Command received
2	0	Communication error detected
3	0	Flash sector unprotect failure
4	0	Scan motor or reading disable
5	1	Scanner is in a read cycle
6	1	Always 1
7	0	Always 0

4. Under "Binary," interpret 1s as true and the 0s as not true. For example, bit 1 has a 1 in the "Binary" column, indicating "Command Received." Bit 5 is also a 1 indicating that the "Scanner is in a read cycle."

<?1> Extended Status

The scanner responds to an extended status request <?1> with several fields, for example: <?/F><?1/35-338200-12,35-338201-14,476C,33,33>.

These represent: the status byte discussed above, the boot part number (35-338200-12), the application part number (35-338201-14), the fpga part number (5-559001-18), flash checksum (476C), current RAM parameter checksum (33), and flash parameter checksum (33).

<K?> Configuration Command Status

Returns the current status of all configuration commands.

Table 11-3 Hex Value to Binary Conversion

Hex Value	Binary Bit Digits			
	7	6	5	4
3	2	1	0	
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
A	1	0	1	0
B	1	0	1	1
C	1	1	0	0
D	1	1	0	1
E	1	1	1	0
F	1	1	1	1

Appendices

Appendix

Chapter Contents

Appendix A General Specifications	A-2
Appendix B Electrical Specifications.....	A-6
Appendix C IB-131 Interface Module.....	A-10
Appendix D Serial Configuration Commands	A-13
Appendix E Serial Command Format	A-16
Appendix F ASCII Table	A-18
Appendix G Embedded Menus.....	A-20
Appendix H Defaulting/Saving/Initializing	A-21
Appendix I Position Object Detector	A-25
Appendix J Formulas for Number of Decodes.....	A-27
Appendix K Operational Tips.....	A-30
Appendix L Interface Standards	A-31
Appendix M Multidrop Communications	A-32
Appendix N Glossary of Terms.....	A-37

Appendix A — General Specifications

Key Features

- Multiple symbol and symbology reading
- Industrial IP65 rated enclosures

Mechanical

Depth: 2.59" (65.8mm)

Width: 3.47" (88.1mm)

Height: 1.38" (35.0mm)

Weight: 7.5 oz. (212g)

Environmental

Ambient Light Immunity:

450 foot candles (indoor: fluorescent, incandescent, mercury vapor, sodium vapor); 1800 foot candles (soft outdoors)

Enclosure rating: IP65 Operating temperature: 0° to 50°C (32° to 122°F)

Storage Temperature: -29° to 70°C (-20° to 158)

Humidity: Up to 90% (non-condensing)

Emissions and Immunity

General immunity for ITE equipment: EN 55024:98

General immunity for heavy industry: EN 61000-6-2:98

Radiated and conducted emissions of ITE equipment: EN 55022:98, Class A

Laser Light

Type: Laser Diode

Output Wavelength: 650nM nominal

Infrared Option: 780nM nominal

Safety class:

Visible laser: CDRH Class II, 650nM

Infrared laser: CDRH Class 1, 780nM

Operating Life: 50,000 hours @25°C

Figure A-1 MS-820 Dimensions

Scanning Parameters

Scanning mirror type: Rotating, 10-faceted

Scans rate: 350 to 1100 scans per second (default is 800)

Options: Single line/raster

Scan width angle: Typically 60°; Pitch: ±50°

Communication

RS-232, RS-422/485, Daisy chain, DeviceNet and Ethernet can be used with an accessory
IB-131 Interface

Symbolologies

Standard offering: Code 128, Code 39, Code 93, Codabar, Interleaved 2 of 5, UPC/EAN,
PDF417

Application Standards: AIAG, UCC/EAN-128

FIS Options

FIS #	Light	Density	Line
001	Visible	Low Density	Single Line
002	Visible	High Density	Single Line
003	Visible	Low Density	Raster
004	Visible	High Density	Raster
009	Visible	Medium Density	Single Line
010	Visible	Medium Density	Raster

LED Indicators

Table A-1 MS-820 Status Lights

LED	State	Status
PWR	Red On	Scanner has power
RDY	Green On	Scanner is ready to read
GD/RD	Green On	Label is qualified as good

Appendix

Read Ranges

High Density

Symbol Density ^a	Inside		Outside	
	mm	inches	mm	inches
.005" (.127mm)	102	4	140	5.5
.0075" (.191mm)	89	3.5	171	6.75
.010" (.254mm)	83	3.25	203	8
.015" (.381mm)	76	3	229	9

a. For .0033" (.884mm) symbols, call Omron

Medium Density

Symbol Density	Inside		Outside	
	mm	inches	mm	inches
.0075" (.191mm)	64	2.5	140	5.5
.010" (.254mm)	51	2	152	6
.015" (.381mm)	51	2	191	7.5
.020" (.508mm)	51	2	254	10

Low Density***Safety Certifications***

FCC, CDRH, CE, UL/cUL, TÜV, BSMI

Product specifications are given for typical performance at 25°C (77°F) using grade A symbols. Some performance characteristics may vary at high temperatures or other environmental extremes.

© Microscan Systems, Inc. Specifications subject to change.

Appendix B – Electrical Specifications

Maximum Operating Power: 3.6 Watts

Cabling: Power Input: 10 to 28VDC, 200mV p-p max. ripple, 120mA @ 24VDC (typical)

Trigger, New Master: 4.5 to 28 VDC (optoisolated)

Outputs (1,2,3): 1 to 28VDC (optoisolated) rated
($I_{CE} < 100\text{mA}$ @24VDC, current limited by user)

Table A-2 MS-820 Host Connector, 15-pin

Pin	Host RS232	Host & Aux RS232	Host RS422/485	In/Out
1	Power +10 to 28 VDC			In
2	TxD	TxD	TxD (-)	Out
3	RxD	RxD	RxD (-)	In
4	Power/Signal ground			
5	Trigger (-) ^a			In
6	RTS	Aux TxD	TxD (+)	Out
7	Output 1 (+) ^b			Out
8	Default configuration ^c			In
9	Trigger (+)			In
10	CTS	Aux RxD	RxD (+)	In
11	Output 3 (+) ^b			Out
12	New master pin			In
13	Chassis ground ^d			
14	Output 2 (+) ^b			Out
15	Outputs 1, 2, 3 (-) ^b			Out

a. See “[IB-131 Interface Module](#)” on page [A-10](#) for more trigger information.

b. See “[IB-131 Interface Module](#)” on page [A-10](#) for more output information.

c. The default is activated by connecting pin 8 to ground pin 4. See “[By Hardware Default](#)” on [page A-22](#).

d. Chassis ground: used to connect chassis body to earth ground only. Not to be used as power or signal return.

Caution:

1. Be sure all cables are connected **BEFORE** applying power.
2. Always power down **BEFORE** disconnecting any cables.

Caution: If using your own power supply, verify correct connection of power and ground lines. Incorrect connections or use of “Chassis ground,” “Power ground,” and “Signal ground” lines could cause equipment and/or software failure.

Optoisolator Outputs

Optoisolator circuits can transfer pulses between the scanner and peripherals with no direct connection with the scanner's internal circuitry. However, not every optoisolator configuration provides complete isolation. The following diagrams show both fully optoisolated and non-optoisolated circuits. They are only examples and do not represent all the possible wiring configurations.

	$I_{load} = 5\text{mA}$	$I_{load} = 50\text{mA}$	$I_{load} = 100\text{mA}$
V_{Out-On}^a	0.5V	0.5V	1.0V
t_{On-Typ}	5mS	0.7mS	0.8mS
$t_{Off-Typ}$	5μS	5μS	5μS

a. Voltage drop across output when activated.

Output Circuit Examples

Fully Optoisolated

This circuit is fully optoisolated and is the recommended configuration. It allows the user to apply 1 to 28 VDC to the circuit.

Caution: The maximum current that can pass through the optoisolator is 100mA.

Not Optoisolated, Scanner Grounded

In this diagram, power is applied externally, but the scanner's power ground is used to complete the circuit. This setup involves some risk to the optoisolator if excessive voltages are applied.

Caution: The maximum current that can pass through the optoisolator is 100mA.

Additional Isolated Output Circuit Examples

Optoisolator Inputs

All discrete inputs can be fully isolated pulses as PNP or NPN circuits.

	Minimum	Maximum
$V_{IN-HIGH}/I_{IN-HIGH}$	4.5 V/3.0mA	28V/23mA
V_{IN-LOW}/I_{IN-LOW}	0V/0mA	2.0V/1mA
Pulse Width _{min}	48 μ s	

New master pin input (-) is internally grounded.

Input Examples

Fully Optoisolated

New master pin input (-) is internally grounded.

Not Optoisolated

New master pin input (-) is internally grounded.

Appendix C – IB-131 Interface Module

The IB-131 interface module simplifies connecting to the scanner by providing separate ports for the host, power supply, trigger and network. The network port is used for multidrop or daisy chain configurations. See the following pages for configuration diagrams and a list of cables offered for ease of connectivity when using the IB-131.

Table A-3 Host 25-pin Connector

1	External ground
2	Transmit data (RS-232)
3	Receive data (RS-232)
4	RTS
5	CTS
6	Output 2 (+)
7	Signal ground
8	Output 1 (+)
9	Trigger (-)
10	Trigger (+)
11	Default configuration
13	Receive data RS-422 (+)
14	Transmit data RS-422 (-)
15	Output 3 (+)
16	Receive data RS-422 (-)
17	Output 1/2/3 (-)
19	Transmit data RS-422 (+)
25	New master/OMR (in)

Table A-4 Trigger 4-pin Connector

1	Power + 10 to 28VDC (out) ^a
2	Trigger (-) (in) ^b
3	Power Ground
4	Trigger (+) (in) ^a

a. For NPN type, connect pins 1 and 4, send signal to pin 2

b. For PNP type, connect pins 2 and 3, send signal to pin 4.

Table A-5 Power 3-pin Connector

1	Power Ground
3	Power + 10 to 28VDC (in)

Table A-6 Scanner 15-pin Connector

1	Power + 10 to 28 VDC (out)
2	Transmit RS-232/RS-422 (-)
3	Receive RS-232/RS-422 (-)
4	Power/Signal Ground
5	Trigger (-) (out)
6	RTS/Aux Transmit/RS-232/RS-422 (+)
7	Output 1 (+)
8	Default configuration
9	Trigger (+) (out)
10	CTS/Aux Receive RS-232/RS-422 (+)
11	Output 3 (+)
12	New master/OMR (out)
13	External ground
14	Output 2 (+)
15	Output 1/2/3 (-)

Table A-7 Network 25-pin Connector

1	Ground
2	Aux Receive RS-232
3	Aux Transmit RS-232
6	Output 2 (+)
7	Signal ground
8	Output 3 (+)
13	Receive data/RS-422 (+)
14	Transmit data/RS-422 (-)
15	Output 3 (+)
16	Receive data/RS-422 (-)
17	Output 1/2/3 (-)
19	Transmit data (RS-422+)

IB-131 Specifications

Electrical:

Voltage Input: Regulated +10 to 28VDC

Cabling:

RS-232 Cable: 61-300026

Multidrop Cable: 61-100030

Daisy Chain Cable: 61-100029

Mechanical:

Length: 3.2 in. (8.13 cm)

Width: 3.15 in. (8 cm)

Height: 0.75 in. (1.9 cm)

Figure A-2 IB-131 Mechanical

Scanner to IB-131

With this configuration the scanner communicates directly with the host through the IB-131.

IB-131: 99-400005-02
(1 per MS-820)

Host RS-232 Serial Cable:
61-300026 (for PC)

Power Supply: 97-10004-05 (for each scanner)

Trigger: 99-440001-10
(for each scanner)

Figure A-3 IB-131 Typical Setup

Multidrop

This setup allows the user to link multiple scanners together, using only one host.

IB-131: 99-400005-02
(1 per MS-820)

Multidrop Cable: 61-100030
(connects multiple IB-131s)

Power Supply: 97-10004-05
(for each scanner)

Trigger: 99-440001-10 (for
each scanner)

Figure A-4 IB-131 Multidrop Setup

This setup allows the user to link multiple scanners together, using only one host.

IB-131: 99-400005-02
(1 per MS-820)

Daisy Chain Cable: 61-
100029 (connects multiple
IB-131s)

Power Supply: 97-10004-05
(for each scanner)

Trigger: 99-440001-10
(for each scanner)

Figure A-5 Scanner/IB-131 Daisy Chain Setup

Appendix D – Serial Configuration Commands

The following table is a list of all the available serial configuration commands (also called “K commands”). These commands are also listed at the beginning of each applicable chapter. For utility (operational) commands see [Table 11-1, “Summary of Utility Serial Commands,” on page 11-3.](#)

Table A-8 Complete List of Serial Configuration Commands

Command Title	Format
COMMUNICATIONS	
Host Port Connections	< Ka baud,parity,stop bits,data bits>
Host Protocol	< Kf protocol>
RS422 Status	< Kb status>
Auxiliary Port	< Ky aux port mode,baud,parity,stop bits,data bits,daisy chain status,daisy chain ID>
Preamble	< Kd status,preamble>
Postamble	< Ke status,postamble>
LRC	< Kc status>
Response Timeout	< KA response timeout>
Intercharacter Delay	< KB intercharacter delay>
READ CYCLE	
Multisymbol	< KL number of symbols,multisymbol separator>
Trigger Mode	< Kg trigger mode,filter time>
External Trigger State	< Kj external trigger state>
Serial Trigger Character	< Ki serial trigger character>
End of Read Cycle	< Kh end of read cycle,read cycle timeout>
Good Decode Reads	< Km good decode reads>
Automatic Gain Control	< KD gain,AGC sampling,AGC min,AGC max>
Scan Speed	< KE scan speed>
Transition Counter	< KH symbol detect status,transition counter>
Scanner Type	< KP density>
Laser Controls	< KC laser on/off,laser framing status,laser on position,laser off position>
SYMOLOGIES	
Code 39	< Kp status,check digit status,check digit output status,large inter-character gap,fixed symbol length status,fixed symbol length,full ASCII set>
Code 128	< Kt code 128 status,fixed symbol length status,symbol length,UCC/EAN-128 status,output format,application record separator status,application record separator character,application record brackets,application record padding>
Interleaved 2 of 5	< Kr status,check digit status,check digit output,symbol length 1,symbol length 2>

Table A-8 Complete List of Serial Configuration Commands

Command Title	Format
Codabar	< Kq status,start & stop match status,start & stop output status,large intercharacter gap,fixed symbol length status,symbol length,check digit type,check digit output>
PDF417	< Kl status,raster sweeps before decode attempt,fixed length status,symbol length>
UPC/EAN	< Ks UPCstatus,EAN status,supplements status,separator status,separator character>
Code 93	< Kl status,fixed symbol length status,symbol length>
PDF417	< Kl status,raster sweeps before decode attempt[usused],fixed symbol length status,symbol length>
AIAG	< KZ AIAG status, ID1, status1, ID2, status2, ID3, status3, ID4, status4, *ID5a, ID5b, ID5c, status5, ID6, status6, ID7, status7, ID8, status8, ID9, status9, ID9, status10, ID11, status11, ID12, status12>
Narrow Margins/ Symbology Identifier	< Ko narrow margins,symbology identifier status>
Background Color	< Kx background color>
I/O PARAMETERS	
Symbol Data Output	< Kl symbol output status,when to output>
No read Message	< KK status,message>
Bad Symbol Message	< KM status,message>
No Symbol Message	< KN status,message>
No Object Message ^a	< KO status,message>
Laser On/Off Status	< KC laser on/off status>
Beeper	< Ku status,volume>
Partial Output	< KY status,start postion,length>
Serial Verification	< KS command echo status,command beep status,control/hex output>
Output 1	< Kv output on,active state,pulse width,output mode,trend analysis mode,trigger evaluation period,number to output on,reads per trigger threshold>
Output 2	< Kw output on,active state,pulse width,output mode,trend analysis mode,trigger evaluation period,number to output on,reads per trigger threshold>
Output 3	< Kt output on,active state,pulse width,output mode,trend analysis mode,trigger evaluation period,number to output on,reads per trigger threshold>
MATCHCODE	
Master symbol database size	< KM number of master symbols>
Matchcode	< Kn matchcode type,sequential matching,match start position,match length,wild card character,sequence on noread,sequence on mismatch>
New Master Pin	< Kz status>

Table A-8 Complete List of Serial Configuration Commands

Command Title	Format
DIAGNOSTICS	
Counts	<K_?> (returns: <i>power-ons, resets</i>)
Hours Since Last Reset	<K@?> (returns: <i>hours, minutes</i>)
Warning Message Status	<K"warning message status,laser high status,laser low status,novram corrupt warning status>
Laser High Warning	<K;laser high message>
Laser Low Warning	<K:laser low message>
Present Operating Temperature	<K%?> (returns: <i>degrees Celsius</i>)
High Temperature Threshold	<K+ <i>degrees,message</i> >
Low Temperature Threshold	<K- <i>degrees,message</i> >
Lifetime Hours	<K\$ <i>hours10,message</i> >

a. For MS-710s with MS-Sensors.

Appendix E – Serial Command Format

Serial commands are of two types: utility and configuration.

Rules that apply to both utility and configuration commands

- A less than < and greater than > characters enclose the commands.
- Commands and data are “case sensitive.” That is, characters must be entered as upper or lower case, as specified.

Serial Utility Commands

These are sent during operations and are not followed by a <A> or <Z>. See [Table 11-1, “Summary of Utility Serial Commands,” on page 11-3](#).

Serial Configuration “K” Commands

These begin with a single **K** character followed by a single character, data fields, and an initializing command, as follows:

<**K**parameterdata,data,...etc.><initializing command>

An initializing command <A> or <Z> may follow the command. A <Z> initializes the scanner’s memory and saves for power-on; an <A> initializes the scanner’s memory but does not save for power-on.

For example, to enable **UPC** and save the change for power-on, send <**K 1**><**Z**>.

To change **Baud Rate** and reset without saving changes for power-on, send
<**Ka 3**><**A**>.

Note: Allow a **1** second delay after sending the <A> command before resuming communications.

Serial Configuration Command Conventions:

- All data fields (except the last) must be followed by a comma (without a space).
- The following characters cannot be used: , < > NUL.
- All fields preceding a modified field must be included.
- If there is no change in preceding fields, then commas alone can be entered in these fields. For example, if only the last field in the following command is changing, <**Ka 4,1,0,0**> can be entered as <**Ka,,,0**>.
- All fields following a modified field can be omitted. For example, to change **Baud Rate**, send <**Ka3**>.

Concatenating Configuration Commands

Commands can be concatenated (added together) in a single string or data block.

Serial Command Status Request

To ensure that any command was received and accepted, you can send the **Show Scanner Status** command: <?>.

The status of a specific serial command can be requested by entering the command followed by a question mark.

Entering Special Characters in Serial Commands

To enter control characters within a serial command, hold down the control key while typing the desired character.

Entering Special Characters in Embedded Menus

Control Characters

Control characters entered on the command line are displayed in the menu as mnemonic characters, such as: <CR><LF><NUL><NUL>.

Press **SP** (the space bar) once, then enter the control character by holding down the control key and simultaneously pressing the desired character. For example to define a line feed, press **SP**, then **Control** and **J** simultaneously. It is displayed as ^J on the command line and as <LF> in the menu when the screen is refreshed.

To Define a Carriage Return as a Character

Press **SP**, then **CR**. It is displayed as ^M on the command line and as <CR> in the menu when the screen is refreshed.

To Define a Space as a Character

Press **SP** twice. It is displayed as a blank space in the menu when the screen is refreshed. While it appears that nothing has been assigned, the hex value 20 will be sent during data transmission.

To Select NUL as the Character

Press **SP**, then a **0** (zero). It is displayed as <NUL> in the menu when the screen is refreshed.

Appendix F – ASCII Table

Table A-8 ASCII Table with Control Characters

Dec	Hex	Mne	Ctrl	Dec	Hex	Ch	Dec	Hex	Ch	Dec	Hex	Ch
00	00	NUL	^@	32	20	SP	64	40	@	96	60	`
01	01	SOH	^A	33	21	!	65	41	A	97	61	a
02	02	STX	^B	34	22	"	66	42	B	98	62	b
03	03	ETX	^C	35	23	#	67	43	C	99	63	c
04	04	EOT	^D	36	24	\$	68	44	D	100	64	d
05	05	ENQ	^E	37	25	%	69	45	E	101	65	e
06	06	ACK	^F	38	26	&	70	46	F	102	66	f
07	07	BEL	^G	39	27	'	71	47	G	103	67	g
08	08	BS	^H	40	28	(72	48	H	104	68	h
09	09	HT	^I	41	29)	73	49	I	105	69	i
10	0A	LF	^J	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	^K	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	^L	44	2C	,	76	4C	L	108	6C	l
13	0D	CR	^M	45	2D	-	77	4D	M	109	6D	m
14	0E	SO	^N	46	2E	.	78	4E	N	110	6E	n
15	0F	SI	^O	47	2F	/	79	4F	O	111	6F	o
16	10	DLE	^P	48	30	0	80	50	P	112	70	p
17	11	DC1	^Q	49	31	1	81	51	Q	113	71	q
18	12	DC2	^R	50	32	2	82	52	R	114	72	r
19	13	DC3	^S	51	33	3	83	53	S	115	73	s
20	14	DC4	^T	52	34	4	84	54	T	116	74	t
21	15	NAK	^U	53	35	5	85	55	U	117	75	u
22	16	SYN	^V	54	36	6	86	56	V	118	76	v
23	17	ETB	^W	55	37	7	87	57	W	119	77	w
24	18	CAN	^X	56	38	8	88	58	X	120	78	x
25	19	EM	^Y	57	39	9	89	59	Y	121	79	y
26	1A	SUB	^Z	58	3A	:	90	5A	Z	122	7A	z
27	1B	ESC	^[59	3B	;	91	5B	[123	7B	{
28	1C	FS	^\`	60	3C	<	92	5C	\	124	7C	
29	1D	GS	^]	61	3D	=	93	5D]	125	7D	}
30	1E	RS	^^	62	3E	>	94	5E	^	126	7E	~
31	1F	US	^_	63	3F	?	95	5F	_	127	7F	D

Table A-9 Communication Protocol Commands

Protocol Command (Mnemonic displayed on Microscan menu)	Control Characters (Entered in menu or serial command)	Hex Code	Effect of Command
RES	^D	04	Reset
REQ	^E	05	Request
EOT	^D	04	Reset
STX	^B	02	Start of Text
ETX	^C	03	End of Text
ACK	^F	06	Acknowledge
NAK	^U	15	Negative Acknowledge
XON	^Q	11	Begin Transmission
XOFF	^S	13	Stop Transmission

Appendix G – Embedded Menus

In addition to **ESP**, you can also use a communications menu such as Microsoft's HyperTerminal™ to establish communication with Microscan's embedded menus.¹

1. With your host connected to the configuration port, set your host communications settings as follows: **9600, 7, 1**, and **Even**.
2. Set **Flow Control** to **None**.
3. Make the communications port selection. (Usually **COM 1** or **COM 2** for desktops and **COM 1** for laptops.)

Upon connection, send a **<D>** command to bring up the main menu.

4. Press the return key (**CR**) to see the communications menu:

Menu navigation commands are case sensitive. Use the space bar or N to advance to the next item, CR (return key) to select a highlighted item, B to return to the previous item, M to return to the previous menu, and ESC to return to the Main menu or to exit the program. When exiting the program, you will be prompted to save your active settings for power up (Y or N). Typing Y will be equivalent to saving with a **<Z>** command.

1. If you are using Microsoft's HyperTerminal program, you may find that the initial screen is unviewable when you call up the program with the **<D>** command. If this occurs, simply exit the embedded menu with a **ESC, E, and N** sequence and repeat the **<D>** command.

Appendix H – Defaulting/Saving/Initializing

Active Memory is where the scanner's settings are stored during current use and are initialized by an <A> command.

Microscan **Defaults** are where the scanner's default application/boot programs are stored. They can only be changed by changing the application/boot codes.¹

User-Saved Settings are where user-defined settings are saved for power-on.

Defaulting

Defaulting occurs when default settings (either Microscan or user-saved) are restored. Defaulting might be necessary if you have to make temporary changes, communications between the scanner and another device are lost or interrupted, or you are using incompatible equipment (for example, a terminal that is set at 9600 baud communicating with a scanner that is set at 38.4K baud).

Restore User-saved Settings to Active Memory

- Restores user-defined settings to active memory.
- Initializes serial configuration commands in active memory and resets counters to zero.

By Serial Command

Send <An> command to the scanner.

By ESP (There is no equivalent ESP command.)

Restore Microscan Defaults to Active Memory

- Restores Microscan defaults to active memory.
- Initializes serial configuration commands in active memory and resets counters to zero.
- Does not save settings for power-on.

By Serial Command

Send <Ad> command to the scanner.

By ESP

Right-click in the configuration window and select **Default all ESP Settings**.

1. See your Omron sales representative to access the latest application codes.

Restore Microscan Defaults to Active Memory and for Power-on

Caution: Defaulting the scanner to Microscan default settings will overwrite user-saved settings.

- Restores Microscan defaults to memory.
- Restores Microscan defaults to user-saved settings for power-on.
- Initializes serial configuration commands in active memory and resets counters to zero.

By Serial Command

Send **<Zd>** command to the scanner.

By ESP

1. **Right-click** in the configuration window and select **Default all ESP Settings**.
2. **Right-click** and select **Save to Reader** and **Send and Save**.

By Hardware Default

If a software default reset is not possible, it may be necessary to reset the scanner by shorting (connecting) specific pins. This procedure has the same effect as the **<Zd>** software command.

1. Apply power to the scanner.
2. If using an IB-131, locate pins 7 and 11 on the host connector (see "[IB-131 Interface Module" on page A-10](#)).

Caution: Be certain that the correct pins are located. Connecting the wrong pins could cause serious damage to the unit.

3. Momentarily connect these wires (or pins) and listen for a series of short beeps.
4. Within 3 seconds, connect them again. A longer beep should be heard. If not, repeat the process.

Saving

Power-on settings are those that are saved by a **<Z>** or **<Zp>** command and are loaded into active memory whenever power to the scanner is recycled.

Save Active Settings, except Factory, for Power-on

- Initializes serial configuration commands into active memory and resets counters to zero.
- Saves all current settings except factory settings to user-saved settings for power-on.

By Software Command

Send **<Z>** command to the scanner.

By ESP

Right-click in the configuration window and select **Save to Reader**, then **Send and Save**.

Note: Allow a **1** second delay after sending the **<Z>** command before resuming operations.

Save Only Factory Settings for Power-on

- Initializes serial configuration commands in active memory and resets counters to zero.
- Saves all factory settings for power-on (factory settings include but are not limited to Focus, Gain, Tracking, and Scan Speed).

By Serial Command

Send **<Zp>** command to the scanner.

By ESP

Right-click in the configuration window and select **Save to Reader**, then **Send and Save, Including Factory**.

Note: Allow a **1** second delay after sending the **<Z>** command before resuming operations.

Initializing

Initializing occurs whenever any command or set of commands is implemented.

Initializing is a part of all save and default functions. It is also used as a follow-on to implement serial configuration commands.

- Initializes serial configuration commands into active memory and resets counters to zero.
- Does not save settings for power-on.

By Serial Command

Send **<A>** after a serial configuration command or a string of serial configuration commands, for example, **<Kd1><A>**.

By ESP

Right-click in the configuration window and select **Save to Reader, Send No Save**.

This will initialize all serial configuration changes that have been made in the current ESP session.

Note: Allow a **1** second delay after sending the **<A>** command before resuming communications.

Loss of Communications

Making changes to communications with the host such as **Baud Rate, Parity, Stop Bits, LRC**, etc. without corresponding changes in linked device(s) can result in the loss of menu access through If this should occur, you should restore the scanner's defaults. (See "**Defaulting**" on page **A-21**.)

Appendix I – Position Object Detector

In a typical operation, a scanner will wait for bar code data only during a triggered read cycle. A read cycle is initiated by a “trigger” and can be in the form of a serial command from the host (internal trigger) or a signal from an object detector (external trigger).

When an object detector (also called a sensor, package detector, etc.) is used, it is set up so that its beam will bounce off the approaching object and the resulting pulse will be sent to the scanner to begin the read cycle. Typically, a detector is positioned so that it will detect the presence of an object before its symbol can be scanned.

An object detector is mounted in almost any position relative to the object as long as (1) the object passes within range of the detector and (2) direct or reflected light from the detector does not interfere with the scanner's reception.

As the item continues to move down the line, its symbol moves into the scanner beam and is read by the scanner.

The drawing below shows a symbol in the picket fence direction with the object detector positioned so as not to cause interference.

Figure A-6 Object Detector

By Serial Command

1. Position a stationary symbol in front of a functioning scanner at the scan distance used in your application.
2. Enter a **<C>** command to see the decodes per second.

The decode rate is the number of decoded scans per total number of scan. It will appear at the beginning of the data strings.

Note: You can also enter a **<Cp>** command to see the percentage of decodes per scans.

3. Make a note of the decode rate. You will need this when calculating the number of decodes (see "[Formulas for Number of Decodes](#)" on page A-27).
4. End the test by sending the **<J>** command.

By ESP

See "[Read Rate](#)" on page 11-5.

Testing with a Moving Symbol

Before testing with a moving symbol, it is highly recommended that you calculate the expected number of decodes by using the formulas in "[Formulas for Number of Decodes](#)" on page A-27.

Once you've mounted the scanner, established a good read rate with a stationary symbol, and calculated the number of decodes for your symbol speed, you can begin decoding with moving symbols.

Number of Decodes

To ensure reliable scanning, you need to apply a minimum of five decodes to each symbol. This means that all variables, symbol speed, read range, etc. are significant.

Note: Variations between symbols are common. For this reason, the greater number of sample symbols tested, the more likely you are to achieve optimum decode rates.

In general, the number of decodes of a given symbol can be increased by:

- Increasing symbol height
- Decreasing symbol length
- Increasing scan rate (spinning mirror speed)
- Slowing symbol speed

Appendix J – Formulas for Number of Decodes

To ensure reliable scanning, the scanner should apply a minimum of *five* scans to each symbol. Use the formulas below to predict the number of decodes that your symbol will receive.

If the number of decodes you derive from one of these calculations is less than the minimum, plug in the minimum number of decodes (5) and solve for another parameter that might be changed such as symbol speed or scans per second.

Note: While the formulas given here solve for the predicted number of decodes, you may also use the formulas to solve for other parameters that might be changed, such as symbol speed, symbol length, etc.

Single Line Ladder Calculation

For single scan line ladder scanning, use the following formula:¹

$$ND = \left(\frac{SH}{SS} \times DR \right) - 3$$

ND (*Number of Decodes*) is the number of decodes that a given symbol can be expected to achieve in a given application.

SH (*Symbol Height*) is a measurement of the height of individual bars.

SS (*Symbol Speed*) is the distance per second that a symbol moves through the scan.

DR (*Decode Rate*) is the number of scans per second that a given symbol receives (as derived from a stationary scan test).

Example:

$$SH = 1 \text{ inch}$$

$$SS = 100 \text{ inches per second}$$

$$DR = 900 \text{ decodes per second}$$

$$ND = \left(\frac{1}{100} \times 900 \right) - 3 = 6 \text{ complete decodes}$$

Figure A-7 Ladder

1. The -3 component in the formula is included to allow for AGC acquisition, an incomplete first scan, and an incomplete last scan. This applies only if the number inside the parentheses equals 4 or more. If the number equals 3, then only subtract 2 to derive 1 good scan.

Single Scan Line Picket Fence Calculation

For single scan line picket fence scanning use the following formula:

$$ND = \left(\frac{(SW - SL)}{SS} \times DR \right) - 3$$

Example:

SL = 2 inches (including quiet zones)

SS = 100 inches per second

SW = 4 inches

DR = 1000 decodes per second

$$\left(\frac{(4 - 2)}{100} \times 1000 \right) - 3 = 17 \text{ complete decodes}$$

Figure A-8 Picket Fence

Angled Picket Fence Calculation

The number of complete scans for angled picket fence is calculated the same as that for picket fence, with the exception that the scan width is shortened in proportion to scan tilt.

Figure A-9 Angled Picket Fence

Improving the Number of Decodes

After changing any of the parameters described here, recalculate number of decodes.

Scan Speed

Scan speed is a function of motor speed and is adjustable. A slower scan rate may allow greater symbol range and/or higher decode rates, but at the cost of a lower decode rate scans. When you lower scan speed, you lower the decode rate.

Range

Adjusting the symbol's range, if possible, is one of the quickest and most effective ways to improve decode rates. However, in some applications you may need to select a less than optimum range, or one that is beyond the fringes of the ranges.

Scan Width

Increasing scan width will increase the number of scans in a picket fence oriented application. Scan width is linked with scan range and changing one will usually require a change in the other.

Symbol Speed

Applies to both picket fence and ladder oriented symbols. If your application allows it, slowing symbol speed (the time in seconds that a symbol is fully within the scan width of the scanner) is an effective way to increase the number of decodes.

Laser Framing

Narrowing the laser frame may not increase the decode rate, but it will minimize the opportunity of extraneous reads.

Symbol Dimensions, Symbol Density, and Symbol Ratio

Not usually an option in most applications, but changes to symbol parameters can affect number of decodes calculations and possibly decode rates.

If your application allows, shortening the length of a picket fence symbol means the symbol will be in the read range longer and hence receive a greater number of scans.

Increasing the height of a ladder symbol means it will receive more scans. Changing symbol density and/or symbol ratio is another way ranges, decode rates can be altered.

Gain

This adjustment, typically made by qualified technicians, is referenced in the Scanner Setup menu under Read Cycle. (See "[Scanner Setup](#)" on page [4-16](#).)

Appendix K – Operational Tips

Do:

- Check inputs (symbol speed, length, height, etc.) to ensure the desired number of decodes per symbol.
- For optimum decodes, mount scanner so that your symbols pass through the center of the depth-of-field (minimum/maximum range). You find the center by moving your symbol in and out during a read rate test.
- Avoid excessive tilt, pitch, and skew of the bar code symbol.
- Check the bar code symbol for readability by doing a decode rate test. If there is any question about the symbol's readability, contact your Omron representative.
- After changing any parameter that might affect decode rate, repeat decode rate test.
- Clean the scanner window with a clean, dry Q-tip or cotton cloth on a regular basis.

Do Not:

- Aim the scanner into direct light or sunlight.
- Aim the scanner into an external object detector or other light-emitting device.
- Obstruct the scanner window with mounting hardware or other objects.
- Connect chassis of scanner and host to different ground potentials.
- Operate the scanner in excessive temperature environments.

Appendix L – Interface Standards

Interface Standards, established by the Electronic Industries Association (EIA), specify such things as the signaling voltage levels, maximum cable lengths, and number of drivers. With Microscan devices, selection of interface is made by pin assignment and, in the case of the host communications, by software switching between RS-232 and RS-422. Microscan devices use RS-232, RS-422, and RS-485 multidrop.

RS-232

RS-232 defines an interface between two devices, such as the scanner and host. It differs from the other interfaces by dedicating individual pins to specific functions and by requiring both devices to share a common ground line. Since both device chassis are connected to a common ground, a ground loop potential and the possibility of noise interference exists; therefore, cable lengths are limited to a maximum of 50 feet (19.7m). Despite being the most limited, this interface is used frequently because of the large installed base of RS-232 equipment.

RS-422

RS-422, unlike RS-232, measures signals deferentially; that is, the receiver looks at the potentials between the two receive (or transmit) wires rather than the potential between signal and ground. As a result, cables, if shielded, can be up to 4000 feet (1219m) in length. Like RS-232, RS-422 communication is designed for only two devices on a single line and must have a common ground. It can be used wherever RS-232 is used.

RS-485

RS-485, like RS-422, can transmit up to 4000 feet (1219 m) using differential voltages, but unlike RS-422, its transmitters are turned off until a request for data is received from the host. RS-485 is used exclusively in multidrop protocol.

Appendix M – Multidrop Communications

This appendix describes the rules for setting up a concentrator or controller to communicate with a scanner in standard Multidrop protocol.

The diagram to the right shows a typical Multidrop network in which 1 to 50 scanners can communicate with a host via an intermediary device, a concentrator or a controller.

Configure the Scanner for Multidrop

- With the scanner connected to the host, do **Retrieve Scanner Settings**.
 - Select **Multidrop** in the **Protocol** configuration menu.
- You will see the following message:
- Important.** You must change your preamble and postamble characters so that they are not CR or NULL.
- This allows data to move through the concentrator without interference.
- Click **OK**.
 - Next, go to **Preamble Characters** (still in the **Protocol** menu) and double-click on **Characters**.
 - This will open up an ASCII character table. Select any character other than **CR**. For example, select **LF**.
 - Repeat the above for **Postamble**.
 - Check the multidrop address. Enter a number from **01** to **50**.
 - Right-click in the window and select **Save to Scanner** and **Send and Save**.
 - Your scanner is now in multidrop. From here on, you will need to use the concentrator to relay commands and data between the scanner or scanners and the host.
 - Next, go to **"Connect to Scanner via the Concentrator" on page A-33**.

Connect to Scanner via the Concentrator

You will need a multidrop concentrator and the required power supplies and cabling to communicate with your scanner(s).

1. From the **Communications** drop down menu, select **Configure Multidrop** to bring up the **Multidrop Settings** dialog.
2. If necessary, change the default address to match the address of your multidropped scanner and click **OK**.

If the host serial port is not connected in ESP, you will see the following popup message:

ESP is not currently connected to the multidrop concentrator. Do you wish to establish a connection now?

3. Click **Yes**.

You will see a **Serial Communication Parameters** dialog as shown.

Notice that the **Force Connection** option is checked. Do not change this.

4. Select the concentrator's host port communications settings.

When you click **Connect**, you will be connecting to your concentrator, which can then relay commands to the scanner whose address was set in the **Multidrop Settings** dialog.

5. Click **Connect**.
6. You should see the **CONNECTED** message in green at the bottom of the window along with the scanner's **Multidrop** address.

7. Click **Retrieve Scanner Settings** to upload scanner's configuration. If upload fails, return to the **Serial Communication Parameters** dialog and make the corrections.
8. Follow the same procedure for connecting other scanners to your multidrop network.

Note: For more information, see your scanner user's manual or Microscan's [MS-5000 Multidrop Concentrator User's Manual, 83-005000](#).

Polling Sequence

Data that is transmitted to the host (symbol data, noread messages, counters, etc.) via concentrators is solicited by poll requests from the host.

The polling sequence example is by poll address 1E (ASCII hex value for Scanner 02) and a REQ (request). The scanner responds by first transmitting its own address, 1E, followed by a STX (start of text) character, and then the data. Next it transmits an ETX (end of text) character and an LRC (longitudinal redundancy check) character.

If the concentrator (or controller) receives the data from the scanner and is able to validate it with an LRC calculation, it responds with an ACK (acknowledgment). If the scanner in turn receives the ACK, the scanner ends this exchange with a RES (reset).

Figure A-10 Polling Sequence

Polling Reset

- If the scanner has no information, it responds to a poll request by transmitting a RES (reset).
- If the scanner receives a NAK instead of the ACK after transmitting its data string, it will re-attempt to send the data string up to three times. If the scanner still does not receive an ACK, it will send a RES (reset) and discard the data in its buffers.
- If the scanner transmits data to the concentrator and the concentrator responds with an ACK or NAK, but the scanner doesn't receive the concentrator's response, the scanner will timeout and send a REQ to the concentrator and request another response. If after three retries (the number of times it transmits a REQ to the concentrator) the scanner receives no response, it ends the transmission with a RES (reset).

Select Sequence

Unlike poll requests, select commands always originate from the host and consist of serial configuration or operation commands to devices that are configured in Multidrop. The scanner complies with the command when it is polled during the cycle.

Figure A-11 Polling Sequence

A RES (reset) is the first command in the select sequence. The 1F hex is the select address associated with Scanner 02 address. It is followed by a REQ (request). The scanner responds with its own select address, 1F hex, and an ACK (acknowledge). The concentrator then transmits an STX (start of text), the data (in this case a <T>), an ETX (end of text), and an LRC character.

The scanner replies by transmitting its own address, followed by an ACK, acknowledging receipt of the command. Upon receipt of an ACK, the concentrator concludes the successful exchange with a RES.

In the example above, the scanner only acknowledges a trigger counter request from the concentrator. It does not respond to the trigger counter request until a subsequent poll. For example, if the scanner's trigger count was 12 at the time the trigger counter request was received, on a subsequent poll it would send 02T/00012. (The 02 at the beginning of the string is the scanner's address.)

Select Reset

If the scanner receives bad data from the concentrator, it transmits a SEL (its select address) and a NAK to the concentrator. The concentrator re-transmits the data up to three times. The concentrator will end the sequence with a RES (reset) if no ACK is received.

Appendix

Table A-10 Multidrop Addresses

Multidrop Address	Poll Character		Select Character	
	ASCII	HEX	ASCII	HEX
01	^\	1C	^]	1D
02	^^	1E	^-	1F
03	SP	20	!	21
04	"	22	#	23
05	\$	24	%	25
06	&	26	'	27
07	(28)	29
08	*	2A	+	2B
09	,	2C	-	2D
10	.	2E	/	2F
11	0	30	1	31
12	2	32	3	33
13	4	34	5	35
14	6	36	7	37
15	8	38	9	39
16	:	3A	;	3B
17	<	3C	=	3D
18	>	3E	?	3F
19	@	40	A	41
20	B	42	C	43
21	D	44	E	45
22	F	46	G	47
23	H	48	I	49
24	J	4A	K	4B
25	L	4C	M	4D
Multidrop Address	Poll Character		Select Character	
	ASCII	HEX	ASCII	HEX
26	N	4E	O	4F
27	P	50	Q	51
28	R	52	S	53
29	T	54	U	55
30	V	56	W	57
31	X	58	Y	59
32	Z	5A	[5B
33	\	5C]	5D
34	^	5E	_	5F
35	`	60	a	61
36	b	62	c	63
37	d	64	e	65
38	f	66	g	67
39	h	68	i	69
40	j	6A	k	6B
41	l	6C	m	6D
42	n	6E	o	6F
43	p	70	q	71
44	r	72	s	73
45	t	74	u	75
46	v	76	w	77
47	x	78	y	79
48	z	7A	{	7B
49		7C	}	7D
50	~	7E	D	7F

Appendix N – Glossary of Terms

Active Closed. An optoisolated input that's logically "on" when current flows through the connection points.

Active Open. An optoisolated input that's logically "on" when *no* current flows through the connection points.

Analog Gain Adjustment (AGC). Adjustment to signal strength that seeks to maintain a constant level regardless of the range of the symbol.

Application Record. A variation of UCC/EAN-128 which adds an application identifier to symbol data, including user-definable separators, brackets, and padding.

Autodiscriminate. The ability to decode several different symbologies without changing configuration.

Auxiliary Port. Provides RS-232 connections to an auxiliary terminal or device for remote viewing, for the transfer of data to and from the host, and under certain conditions as a configuration port.

Bar Code. The medium or symbol on which a symbol is printed or etched.

Bar Code Data. The information that is transmitted from a decoded bar code symbol.

Baud Rate. The number of discrete signal events per second. Bits per second.

Capture. The act of grabbing or recording a frame by a sensor. A frame or succession of frames that are captured.

Check Digit. A Modulus 43 or Modulus 10 digit that is added to the symbol message for additional data integrity.

Configuration. A setup or process of changing a scanner's settings to conform to a specific application. A physical arrangement of components.

Concentrator. Intermediary device that relays data from scanners to a host and commands from the host to the scanner or other devices.

Connector. Physical device (plug or socket) on a device or cable to provide in/out connectivity for various circuits and pins.

Counter. Memory space provided to keep track of scanner events.

Daisy Chain. Linkage of master and secondary scanners to allow data to be relayed up to the host via auxiliary port connections.

Decode. A good read. The successful scanning and decoding of the information encoded in symbol.

Default. (verb) Restore Microscan or customer default settings, initialize serial commands and reset all counters.

Defaults. (noun) The settings that are restored whenever a default takes place.

Delimited. A command or field that is bracketed by pre-defined characters.

Decode Rate (DR) The number of decodes per second that a given scanner is capable of receiving.

-
- Depth of Field.** The distance between the minimum and maximum range in which symbols have been read.
- Discrete I/O.** Inputs and outputs characterized by discrete signal transitions from one voltage level to another so that digital switching can occur.
- Dynamic Setup.** Testing and configuration done with symbols in motion.
- EPROM.** Erasable, programmable, read only memory.
- Embedded Memory.** Onboard memory device such as EPROM or flash.
- End of Read Cycle.** The time or condition at which the scanner stops expecting symbol information to decode.
- Edge.** Allows a read cycle to be initiated by a trigger signal from an object detector when it detects the appearance of an object (rising edge). The read cycle ends with a good read, a timeout, or a new trigger.
- ESP.** Easy Setup Program. A portable proprietary Windows/NT based program developed by Microscan Systems, Inc.
- Falling Edge.** A change of state (to inactive) associated with a level trigger in which the scanner stops searching for symbols. (See **Rising Edge**.)
- Fixed Code Length.** Increases data integrity by ensuring that only one symbol length will be accepted.
- Flash Memory.** Memory that can be changed by downloading new code and recalled on power-on.
- Focal Length.** The distance measured from the scanner to the center of the depth of field, or *focal* point.
- Focus.** The point at which the tip of the scan beam is at its narrowest.
- Full Duplex.** Auxiliary port data is sent directly to the host but not displayed on the auxiliary port screen.
- Gain.** Optimal signal strength.
- Good Match.** The event occurring when a scanned symbol matches the master symbol information that is stored in the memory of the device.
- Good Read.** A decode. The successful scanning and decoding of the information encoded in a symbol.
- Half Duplex.** Auxiliary port data is sent directly to the host and displayed on the auxiliary port screen.
- Host.** A computer, PLC, or other device that is used to execute commands and process data and discrete signals.
- Host Port.** The pins or connections on a scanner or other device that physically connect with a host and—using the RS-232, RS-422, or RS-485 standards—pass data and serial commands from one device to another.
- Initialize.** Implement serial configuration commands into the scanner's active memory.
- Input.** A channel or communications line. Decoded data or a discrete signal that is received by a device. See **Output**.

Intercharacter Delay. The time interval in milliseconds between individual characters transmitted from the scanner to the host.

Intercharacter Gap. The extra space between the last element of one character and the first element of the adjacent character of a specific bar code symbol.

Ladder Symbol Orientation. A bar code symbol in which the bars are parallel to the symbol's direction of travel.

Large Intercharacter Gap. Allows the scanner to read symbols with gaps between symbol characters that exceed three times (3x) the narrow element width.

Laser Framing. Setting scan width size by adjusting the on/off duration of the laser beam.

Laser On/Off. When enabled, the laser is ON only during the read cycle, provided the scanner is enabled for a Serial or External trigger.

LED. Light emitting diode.

Level. The condition in which a read cycle initiated by a trigger signal from an object detector remains active and ends when the object moves out of the detector's range.

Longitudinal Redundancy Check (LRC). An error-checking routine that verifies the accuracy of transmissions.

Master Symbol. A symbol or symbol data that is stored in a scanner or reader's memory and is compared with subsequently read symbols.

Master Scanner. First scanner in a daisy chain mode and linked directly to the host and in tandem to secondary scanners.

Matchcode. The ability to compare symbol data being scanned against a master symbol that is stored in the memory of the scanner.

Embedded Menu. Configuration options embedded in the scanner's erasable memory.

ESP Menu. Easy Setup Program. Configuration program that runs in Windows-based operating systems 95 and above.

Mil. One thousandths of an inch or 0.0254 mm. In bar-coding, a measurement standard that identifies a symbol by the width of its narrowest element.

Mismatch. An event that occurs when the scanned symbol does not match the master symbol that is stored in the memory of the scanner.

Multisymbol. A scanner mode which allows a scanner to read more than one symbol in a single read cycle.

Multidrop. A communications protocol for networking two or more scanners or other devices with a concentrator (or controller) and characterized by the use of individual device addresses and the RS-485 standard.

Narrow-bar-width. The width of the narrowest bar of a specific bar code symbol, expressed in thousands of an inch (or mils) as defined by standard code types.

Narrow Margins. Allows the scanner to read symbols with quiet zones less than 8 times the width of the narrow bar element.

Non-delimited. A command that is not bracketed by pre-defined characters.

-
- Noread.** A non-read. A condition that occurs when the scanner is set up to decode symbols but no symbol is scanned during the read cycle.
- Normally Closed.** A discrete output state that is only active when open.
- Normally Open.** A discrete output state that is only active when closed.
- NOVRAM.** Non-volatile random access memory. Data that is "saved for power-on" is saved to NOVRAM.
- Null.** Also spelled "Nul." A non-printed ASCII character that acts as a space-holder.
- Number of Decodes.** The number of times a symbol is scanned by the scanner during one pass through the laser beam.
- Object Detector.** A photo electric device used to sense the presence or absence of an object (also referred to as a package detector).
- Output.** A channel or communications line. Data or discrete signals that are transmitted or displayed by a device.
- Output Format.** The modification of data output according to a user-defined index of Extraction and Insertion commands.
- Parity.** An error detection routine in which one data bit in each character is set to 1 or 0 (zero) so that the total number of 1 bits in the data field is even or odd.
- Picket Fence Symbol Orientation.** A bar code symbol in which the bars are perpendicular to the symbol's direction of travel.
- Pitch.** Symbol (or scanner) rotation around the center of a line parallel to the scan beam.
- Point-to-Point.** A protocol consisting of a single communications event, typically used to connect a bar code scanner to a terminal or host computer.
- Port.** Logical circuit for data entry and exit. (One or more ports may be included within a single connector.)
- Protocol.** The rules for communication between devices, providing a means to control the orderly flow of information between linked devices.
- Quiet Zones.** Specified "clear" (non printed) areas immediately before and after the bar code symbol. The area is usually white (for black and white symbol) and at least 10 times the width of the narrowest bar, as measured in thousands of an inch. The zones can be other than white as long as their densities remain consistent and they have the required contrast relative to the bars.
- RAM.** (Random Access Memory) Memory that is lost after power is recycled to the unit.
- Raster.** Multiple, stacked scans produced by a separate oscillating mirror or by a spinning mirror with varying facet angles.
- Read Cycle.** A programmed period of time or condition during which the scanner will accept symbol input.
- Reader.** (1) A scanner. A bar code device that can read and decode symbols.
(2) A device that reads and decodes 2D matrix codes.
- Read Range.** The distances in which a symbol can be reliably read, as measured from the front of the scanner. See "Depth of Field."

Reed-Solomon Error Correction Code. A linear, error correcting block code, suited to the correction of character errors which could be, in bar or matrix codes, the obliteration or removal of part of the symbol.

Read Range. The distances in which a symbol can be reliably read, as measured from the front of the scanner. See "Depth of Field."

Relay. An electrical switch that allows a low power to control a higher one.

Reset. Sets all counters to zero.

Rising Edge. A change of state (to active) that initiates (and in some cases ends) a read cycle with a new trigger, an edge trigger, or the leading edge of a level trigger. (See **Falling Edge**.)

ROM. (Read Only Memory) Memory that cannot be changed.

Scanner. A reader. A scanning device that is comprised of a scan head and a decoder integrated in one package.

Scan Speed. The number of scans per second that a scanner projects from the spinning mirror.

Scan Width (SW) is the width across the scan beam at a given distance from the scanner in which a symbol can be read.

Secondary Scanner. A scanner linked to the master or preceding scanner in a daisy chain which relays symbol data to the host. See "Daisy Chain."

Send. Transmit data from one device to another.

Separator. A character that separates data fields.

Serial Commands. Online data strings such as <D> or <P> sent from a host or auxiliary terminal to a scanner or other device.

Serial Configuration (Host Configuration). Serial commands that change configuration; distinguished from operational command by the fact that they can modify non-volatile memory for power-on configuration.

Skew. Symbol (or scanner) rotation around the center of the skew axis which is perpendicular to the plane of the scan beam.

Specular Reflection. The direct, mirror-like reflection of light back to the source causing saturation and bad reads.

Supplemental. A character or data string that is appended to the main bar code symbol.

Symbol. A one or two dimensional decodable pattern that can be recognized and decoded by a bar code scanner or 2D reader.

Symbology. A code type, such as Code 39 or Code 128, with special rules to define the widths and positions of bars and spaces to represent specific numeric or alphanumeric information.

Symbol Density. Symbol size as measured by the narrow bar width.

Symbol Height. (SH) Regardless of orientation, the measurement taken along the length of a symbol's individual bars.

-
- Symbol Length.** (SL) Regardless of orientation, the measurement taken across the symbol's bars from one end to the other, including the quiet zone.
- Symbol Speed.** (SS) the distance per second that a symbol moves in a dynamic application.
- Symbol Transitions.** The transition of bars and spaces on a symbol, used to detect the presence of a symbol on an object.
- Tilt.** Symbol (or scanner) rotation around the centerline of the scan beam.
- Timeout.** The termination of a read cycle or other routine by time.
- Timeout Duration.** The actual time that elapses during a read cycle or other timed routine.
- Tracking.** Adjustment of the precision of analog-to-digital conversion.
- Transmit.** Send or convey signals or information from one device to another.
- Transparent.** Data that passed between the auxiliary port and the host with keyed data echoed to the auxiliary port
- Trigger.** A signal, transition, or character string that initiates a read cycle.
- Watchdog Timer.** A security device that detects system crashes and attempts to reset the scanner.
- Watchdog Reset.** A reset that is forced whenever the software locks up.
- Wild Card.** User-defined character entered into a master symbol to permit matches with variable characters.

Index

Numerics

1D Symbologies 5-3

A

Active State, I/O Parameters 6-16

AGC 4-17

AGC Maximum 4-18

AGC Minimum 4-18

AGC Sampling Mode 4-17

AIAG 5-21

AIAG Identifiers 5-21

App Mode 1-9, 2-3, 2-6

App Mode button 1-9, 2-6

Application Mode 2-3

Application Record

EAN-128 5-8

Application Record Brackets, EAN-128 5-9

Application Record Padding, EAN-128 5-10

Application Record Separator

EAN-128 5-8

Approvals 1-x

As Soon As Possible, output 6-4

ASCII Table, including control characters
A-18

Autoconnect 1-6

Autodiscriminate 11-19

Autodiscriminate, Symbology Types 5-26

Automatic Gain Control 4-17

Automotive Industry Action Group 5-21

Aux Port Connections 3-9

Aux Port Mode 3-10

Auxiliary Port 3-9

B

Background Color 5-25

Baud Rate

aux port 3-9

host port 3-3

Beeper 6-10

BSMI 1-x

C

Calibrate 2-2

Caution Summary 1-xii

CE Compliance 1-x

Changes in ESP 2-6

Check Digit

Code 39 5-3

I 2 of 5 5-11

Check Digit Output Status

Codabar 5-15

Checksum 11-18

Codabar 5-13

Code 128 5-6

Code 39 5-3

Code 93 5-19

Command Beep Status 6-13

Command Echo Status 6-12

Communication Protocol Commands A-19

Communications 3-1

by ESP menu 3-2

by Serial Command 3-2

Communications, loss of A-24

Communications, Specifications A-3

Configuration

by ESP A-26

by Serial Command A-26

Connect 2-5

Connect the System 1-3

Continuous Read 4-5

Continuous Read 1 Output 4-6

Continuous, AGC Mode 4-17

Control Characters A-17

Control/Hex Output 6-13

Counts 8-3

Counts, power-ons 8-2

cUL 1-x

Index

Index

D

Daisy Chain ID 3-16
Daisy Chain Mode 3-14
Daisy Chain, IB-131 A-12
Data Bits
 aux port 3-10
 host port 3-4
Data Output 6-3
Data Output Message Flow 6-6
Decode Rate A-27
Decodes 4-15
Decodes per Trigger 6-18
Decodes per Trigger, Trend Analysis 6-17
Decodes/Second Test 11-5
Default Commands A-21
Defaulting 2-7
Defaulting/Saving/Initializing A-21
Defaults A-21
Device Control 11-9
DFALT-C 8-8
DFALT-F 8-8
Diagnostics
 by ESP menu 8-2
Disclaimer 1-ii

E

EAN Status 5-16
EAN-128 5-10
Easy Setup Mode 1-9, 2-2, 2-6
Easy Setup Program 1-viii, 1-4
Electrical Specifications A-6
Electrical, IB-131 A-11
Emissions, Specifications A-2
End of Read Cycle 4-12
End of Read Cycle, output 6-5
End Read Rate Test 11-6
Enter Master Symbol Data 11-12
Environmental, Specifications A-2
ESP (Easy Setup Program) 1-viii
Extended Rate Test 11-6
Extended Status 11-20
External Trigger Edge 4-8

Index

External Trigger Level 4-7
External Trigger State 4-10

F

FCC 1-x
File 2-4
Find Function, Terminal 10-3
Firmware 11-16
Firmware Verification 11-17
Firmware Verification, checksum 11-18
FIS Options A-3
Fixed Symbol Length
 Code 128 5-6
 Code 39 5-4
 Code 93 5-19
Fixed Symbol Length Status
 Codabar 5-14
Formulas for Number of Decodes A-27
From Host 3-7
Full ASCII Set 5-5
Full Duplex Mode 3-13
Fully Optoisolated circuit A-7

G

Gain A-29
Gain Level 4-16
General Specifications A-2
Glossary of Terms A-37
Good Decode Reads 4-15
Good Read
 Symbol Data Output 6-4
Good Read/Match Counter 11-8
Good Read/Match Counter Reset 11-8

H

Half Duplex Mode 3-12
Hardware Required 1-2
Hex Output 6-13
High Temperature Threshold 8-10
Highlighting 1-ix
Host Communications 1-ix
Host Connector (25-pin), IB-131 A-10
Host Port Connections 3-3

Host Port Parameters 3-3
Host Protocol 3-4
Host RS-422 Status 3-8
Hours Since Reset 8-4
Hours Threshold 8-12

I

I 2/5 5-11
I/O Parameters
 by ESP Menu 6-2
 by Serial Command 6-2
IB-131 Interface Module A-10
Immunity, Specifications A-2
Initializing (resetting) Commands A-24
Install ESP 1-4
Intercharacter Delay 3-21
Interface A-3
Interface Standards A-31
Interleaved 2 of 5 5-11

K

K Commands A-16

L

Ladder Calculation, single line A-27
Large Intercharacter Gap
 Codabar 5-14
 Code 39 5-4
laser beam 1-xii
Laser Control
 by ESP menu 9-2
Laser Framing 9-4, A-29
Laser High Warning 8-6
Laser Light, Specifications A-2
Laser Low Warning 8-7
Laser Off Position 9-5
Laser On Position 9-5
Laser On/Off Status 9-3
Leading Edge, AGC Mode 4-17
LED Indicators A-3
Lifetime Hours 8-12
Linear Symbologies 5-3
Longitudinal Redundancy Check 3-19

Low Temperature Threshold 8-11
LRC 3-19

M

Macros 10-4
Master Database 11-11
Master Symbol Data
 Enter 11-12
Master Symbol Data, Delete 11-15
Master Symbol Data, Request 11-14
Master Symbol Database Size 11-11
Master Symbol, store next symbol 11-13
Master Symbols, using 7-3
Match Counter 11-8
Match Length, Matchcode 7-6
Match Start Position 7-5
Match, I/O Parameters 6-15
Matchcode
 by ESP menu 7-2
 by Serial Command 7-2
Matchcode Type 7-4
Matchcode, overview 7-3
Mechanical A-2
Microscan Defaults A-21
Mirror motor 4-16
Mirror Type A-3
Mismatch
 Symbol Data Output 6-3
Mismatch Counter 11-8
Mismatch Counter Reset 11-8
Mismatch or Noread, I/O Parameters 6-15
Mismatch, I/O Parameters 6-15
Model Selection 1-5
Motor Off 11-10
Motor On 11-10
Multidrop 3-6
Multidrop Addresses A-36
Multidrop Communications A-32
Multidrop, IB-131 A-12
Multisymbol 4-3
Multisymbol Decode Rate Test 11-5
Multisymbol Percent Test 11-5
Multisymbol Separator 4-4

Index

N

Narrow Margins 5-23
Network Connector (25-pin), IB-131 A-10
New Master Pin 7-9
New Trigger 4-13
No Symbol Message 6-9
Noise Interference A-31
Noread Counter 11-8
Noread Counter Reset 11-8
Noread Message 6-7
Noread, I/O Parameters 6-15
Normally Closed 6-16
Normally Open 6-16
Not Optoisolated A-9
NOVRAM Corrupt Warning Status 8-8
Null Modem Cable 1-2
NULs, defining A-17
Number of Decodes A-26
Number of Symbols 4-4
Number to Output On 6-17
NVRAM-C 8-8
NVRAM-D 8-8

O

Object Detector A-25
Operating Life A-2
Operation Command Output 6-14
Operational Serial Commands 11-3
Operational Tips A-30
Optoisolator Inputs A-9
Output 1 11-9
Output 2 11-9
Output 2 Parameters 6-19
Output 3 11-9
Output 3 Parameters 6-19
Output Circuit Samples A-7
Output Format
 EAN-128 5-8
Output On, I/O Parameters 6-15

P

Package detector A-25

Padding, Application Record, EAN-128 5-10

Parity
 aux port 3-9
 host port 3-3

Part Number, firmware 11-17

Partial Output 6-11

PDF Information 11-6

PDF417 5-20

PDF417 Status 5-20

Percent Test 11-5

Picket Fence Calculation
 Angled A-28
 Single Scan Line A-28

Pitch 1-7

Point-to-Point
 standard 3-4
 with RTS/CTS 3-5
 with RTS/CTS & XON/XOFF 3-5
 with XON/XOFF 3-5

Polling Mode D 3-5

Polling Sequence A-34

Position Symbol and Scanner 1-7

Postamble Characters 3-18

Power Connector (3-pin), IB-131 A-10

Power Supply 1-2

Power-on 8-2, 8-3

Preamble Characters 3-17

Present Operating Temperature 8-9

Protocol Commands A-19

Pulldown Menus 2-4

Pulse Width, I/O Parameters 6-16

Q

Quality Output 6-20

R

Range A-29

Read Cycle 4-12
 by ESP Menu 4-2
 by Serial Command 4-2

Read Cycle Timeout 4-14

Read Ranges A-3

Read Rate 1-8, 11-5

Reads/Trigger Status 6-20
Reset A-24
Resets 8-3
Response Timeout 3-20
Restore Commands A-21
Restore Microscan Defaults A-21, A-22
Restore User-saved Settings A-21
RS-232 A-31
RS-232 Auxiliary Port 3-9
RS-232/422 Host Port 3-3
RS-422 A-31
RS-422 Status 3-8
RS-485 A-31

S

Safety Certifications A-5
Safety Class A-2
Safety Labels 1-xi
Save Active Settings except Factory for Power-on A-23
Save Active Settings including Factory for Power-on A-23
Save Commands A-21
Saving 2-7
Saving settings A-23
Scan Rate A-29
Scan Speed 4-16
Scan Width A-29
Scanner Connector (15-pin), IB-131 A-10
Scanner Setup 4-16
Scanner Status Byte 11-20
Scanner Status Requests 11-20
Scanner Type 4-19
Scanning Parameters A-3
Select Sequence A-35
Send/Receive Options 2-7
Sensor A-25
Separator Character
 EAN-128 5-8
 UPC/EAN 5-18
Separator, Quality Output Separator 6-20
Sequence On Mismatch 7-8
Sequence On Noread, Matchcode 7-7

Sequential Matching, Matchcode 7-5
Serial Command Beep Status 6-13
Serial Command Echo Status 6-12
Serial Command Format A-16
Serial Command Status Request A-17
Serial Commands
 Utilities 11-3
Serial Commands, concatenating A-17
Serial Configuration Commands A-16
Serial Configuration Summary
 Protocol 3-2
Serial Data 4-9
Serial Data or Edge 4-9
Serial Trigger 4-11
Serial Trigger Character 4-11
Serial Utility Commands A-16
Serial Verification 6-12
Setup Mode 1-9, 2-6
Skew 1-7
Special Characters in Embedded Menus A-17
Special Characters in Serial Commands A-17
Specular reflection 1-7
Stand Alone, IB-131 A-11
Start & Stop Match
 Codabar 5-13
Start Position 6-11
Stop Bits
 aux port 3-10
 host port 3-3
Supplements
 UPC/EAN 5-17
Supplements Status
 UPC/EAN 5-17
Symbol Data Output 6-3
Symbol Data Output Mode 6-3
Symbol Density A-29
Symbol Dimensions A-29
Symbol Height A-27
Symbol Length
 Codabar 5-14
 Code 128 5-6
 Code 39 5-4
 Code 93 5-19

Index

- PDF417 5-20
- Symbol Length #1
 - 12 of 5 5-12
- Symbol Length #2 5-12
- Symbol Ratio A-29
- Symbol Speed A-27, A-29
- Symbol Type 11-19
- Symbolologies A-3
 - by ESP menu 5-2
- Symbology ID 5-24
- T**
- Terminal 1-ix
- Terminal Mode 10-1
- Terminal Window 10-2
- Terminal Window Functions 10-5
- Test 2-2
- Test for Read Rate 1-8
- Tilt 1-7
- Timeout 4-12
- Timeout or New Trigger 4-13
- Transition Counter 4-18
- Transparent Mode 3-11
- Trend Analysis Mode 6-16
- Trend Analysis, I/O Parameters 6-15
- Trigger Connector (4-pin), IB-131 A-10
- Trigger Counter 11-8
- Trigger Counter Reset 11-8
- Trigger Filter Duration 4-10
- Trigger Input (4-pin) A-10
- Trigger Mode 4-5
- Trigger State 4-10
- Trigger Threshold 6-18
- U**
- UL 1-x
- UPC Status 5-16
- UPC/EAN 5-16
- User Defined Multidrop 3-8
- User Defined Point-to-Point 3-6
- Utilities
 - by ESP Menu 11-2
 - by Serial Command 11-3
- Utility Serial Commands, summary 11-3
- V**
- View 2-5
- W**
- Warning Messages, diagnostics 8-5
- Warning Summary 1-xii
- Warranty Statement 1-iii
- When to Output Symbol Data 6-4
- Wild Card Character, Matchcode 7-6
- Windows 1-4

Terms and Conditions of Sale

1. **Offer; Acceptance.** These terms and conditions (these "Terms") are deemed part of all quotes, agreements, purchase orders, acknowledgments, price lists, catalogs, manuals, brochures and other documents, whether electronic or in writing, relating to the sale of products or services (collectively, the "Products") by Omron Electronics LLC and its subsidiary companies ("Omron"). Omron objects to any terms or conditions proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms.
2. **Prices; Payment Terms.** All prices stated are current, subject to change without notice by Omron. Omron reserves the right to increase or decrease prices on any unshipped portions of outstanding orders. Payments for Products are due net 30 days unless otherwise stated in the invoice.
3. **Discounts.** Cash discounts, if any, will apply only on the net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if (i) the invoice is paid according to Omron's payment terms and (ii) Buyer has no past due amounts.
4. **Interest.** Omron, at its option, may charge Buyer 1-1/2% interest per month or the maximum legal rate, whichever is less, on any balance not paid within the stated terms.
5. **Orders.** Omron will accept no order less than \$200 net billing.
6. **Governmental Approvals.** Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Products.
7. **Taxes.** All taxes, duties and other governmental charges (other than general real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Omron or required to be collected directly or indirectly by Omron for the manufacture, production, sale, delivery, importation, consumption or use of the Products sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Omron.
8. **Financial.** If the financial position of Buyer at any time becomes unsatisfactory to Omron, Omron reserves the right to stop shipments or require satisfactory security or payment in advance. If Buyer fails to make payment or otherwise comply with these Terms or any related agreement, Omron may (without liability and in addition to other remedies) cancel any unshipped portion of Products sold hereunder and stop any Products in transit until Buyer pays all amounts, including amounts payable hereunder, whether or not then due, which are owing to it by Buyer. Buyer shall in any event remain liable for all unpaid accounts.
9. **Cancellation; Etc.** Orders are not subject to rescheduling or cancellation unless Buyer indemnifies Omron against all related costs or expenses.
10. **Force Majeure.** Omron shall not be liable for any delay or failure in delivery resulting from causes beyond its control, including earthquakes, fires, floods, strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the requirements of any government authority.
11. **Shipping; Delivery.** Unless otherwise expressly agreed in writing by Omron:
 - a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship except in "break down" situations.
 - b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall constitute delivery to Buyer;
 - c. All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Omron), at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products until the full purchase price is paid;
 - d. Delivery and shipping dates are estimates only; and
 - e. Omron will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.
12. **Claims.** Any claim by Buyer against Omron for shortage or damage to the Products occurring before delivery to the carrier must be presented in writing to Omron within 30 days of receipt of shipment and include the original transportation bill signed by the carrier noting that the carrier received the Products from Omron in the condition claimed.
13. **Warranties.** (a) **Exclusive Warranty.** Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied. (b) **Limitations.** OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) **Buyer Remedy.** Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See <http://oeweb.omron.com> or contact your Omron representative for published information.
14. **Limitation on Liability; Etc.** OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.
15. **Indemnities.** Buyer shall indemnify and hold harmless Omron Companies and their employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, investigation, litigation or proceeding (whether or not Omron is a party) which arises or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Products. Without limiting the foregoing, Buyer (at its own expense) shall indemnify and hold harmless Omron and defend or settle any action brought against such Companies to the extent based on a claim that any Product made to Buyer specifications infringed intellectual property rights of another party.
16. **Property; Confidentiality.** Any intellectual property in the Products is the exclusive property of Omron Companies and Buyer shall not attempt to duplicate it in any way without the written permission of Omron. Notwithstanding any charges to Buyer for engineering or tooling, all engineering and tooling shall remain the exclusive property of Omron. All information and materials supplied by Omron to Buyer relating to the Products are confidential and proprietary, and Buyer shall limit distribution thereof to its trusted employees and strictly prevent disclosure to any third party.
17. **Export Controls.** Buyer shall comply with all applicable laws, regulations and licenses regarding (i) export of products or information; (ii) sale of products to "forbidden" or other proscribed persons; and (ii) disclosure to non-citizens of regulated technology or information.
18. **Miscellaneous.** (a) **Waiver.** No failure or delay by Omron in exercising any right and no course of dealing between Buyer and Omron shall operate as a waiver of rights by Omron. (b) **Assignment.** Buyer may not assign its rights hereunder without Omron's written consent. (c) **Law.** These Terms are governed by the law of the jurisdiction of the home office of the Omron company from which Buyer is purchasing the Products (without regard to conflict of law principles). (d) **Amendment.** These Terms constitute the entire agreement between Buyer and Omron relating to the Products, and no provision may be changed or waived unless in writing signed by the parties. (e) **Severability.** If any provision hereof is rendered ineffective or invalid, such provision shall not invalidate any other provision. (f) **Setoff.** Buyer shall have no right to set off any amounts against the amount owing in respect of this invoice. (g) **Definitions.** As used herein, "including" means "including without limitation"; and "Omron Companies" (or similar words) mean Omron Corporation and any direct or indirect subsidiary or affiliate thereof.

Certain Precautions on Specifications and Use

1. **Suitability of Use.** Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases but the following is a non-exhaustive list of applications for which particular attention must be given:
 - (i) Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
 - (ii) Use in consumer products or any use in significant quantities.
 - (iii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
 - (iv) Systems, machines and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to this Product.
- NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON'S PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

2. **Programmable Products.** Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.
3. **Performance Data.** Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.
4. **Change in Specifications.** Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.
5. **Errors and Omissions.** Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

OMRON ELECTRONICS LLC

1 Commerce Drive
Schaumburg, IL 60173
847.843.7900
For US technical support or
other inquiries: 800.556.6766

OMRON CANADA, INC.

885 Milner Avenue
Toronto, Ontario M1B 5V8
416.286.6465

OMRON ON-LINE

Global - <http://www.omron.com>
USA - <http://www.omron.com/oei>
Canada - <http://www.omron.ca>

UNITED STATES

To locate a Regional Sales Office, local Distributor or
to obtain product information, call: 847.843.7900

CANADA REGIONAL SALES OFFICES

Ontario	Toronto	416.286.6465
	Kitchener	519.896.1144
	Kingston	613.376.3968
Quebec	Montreal	514.636.6676
British Columbia	Vancouver	604.522.8855
Alberta	Edmonton	403.440.0818
	Calgary	403.257.3095

BRAZIL SALES OFFICE

Sao Paulo 55.11.5564.6488

ARGENTINA SALES OFFICE

Cono Sur 54.114.787.1129

MEXICO SALES OFFICES

Florida 954.227.2121 **Ciudad Juarez** 656.623.7083
Mexico, D.F. 555.534.1195 **Monterrey, N.L.** 818.377.4281