Лекция 7. равнения движения и основные законы динамики механической системы

Принцип детерминированности и уравнение Ньютона

Пусть $\overrightarrow{r_i}$, $i \in [1:n]$ — радиус-векторы точек M_i рассматриваемой системы из n точек относительно некоторого репера. $\overrightarrow{r} = \overrightarrow{r}(t) = (\overrightarrow{r_1}(t), ..., \overrightarrow{r_n}(t))$ для положения этой системы в момент t.

Принцип детерминированности - движение любой такой системы точек однозначно определяется ее положением $\vec{r}(t)$ и скоростью $\dot{\vec{r}}(t)$ в любой момент t. Существует функция $\ddot{\vec{r}}=\vec{F}(\vec{r},\dot{\vec{r}},t)$ - уравнение Ньютона. Эта функция условиям существования и единственности решения задачи Коши, состоящей из уравнения Ньютона и $\vec{r}(t_0)=\vec{r}_0,\,\dot{\vec{r}}(t_0)=\dot{\vec{r}}_0$.

Инерциальные системы координат

Ускорение тел может вызываться двумя причинами: действием на них других тел и/или свойствами системы координат. Закон инерции Галилея-Ньютона состоит в том, что существуют системы координат К, удовлетворяющие следующему свойству: точка, не подверженная действию других тел, движется относительно системы координат К прямолинейно и равномерно (по инерции).

Принцип относительности Галилея

 $\vec{r} = \vec{r}(t)$, $\vec{r}' = \vec{r}'(t)$ – положение M относительно двух реперов (O, \vec{e}_1 , \vec{e}_2 , \vec{e}_3), (O, \vec{e}'_1 , \vec{e}'_2 , \vec{e}'_3). Взаимное положение этих реперов определяется формулами, связывающими их начала и орты: O' = O,

$$\left(\overrightarrow{e_1}' \atop \overrightarrow{e_2}' \atop \overrightarrow{e_3}' \right)$$
 = $P\left(\overrightarrow{e_1} \atop \overrightarrow{e_2} \atop \overrightarrow{e_3} \right)$, $O' = O + \vec{a}$, $\overrightarrow{e_i}' = \overrightarrow{e_i}$, $O' = O + t \cdot \overrightarrow{u}$, i =1,2,3, $t \in \mathbb{R}$, где \vec{a} , $\vec{u} \in \mathbb{R}^3$ - любые постоянные

векторы, а Р — любая ортогональная матрица. Данные формулы описывают соответственно поворот репера $(0,\vec{e}_1,\vec{e}_2,\vec{e}_3)$ вокруг своего начала, его сдвиг на вектор \vec{a} и семейство его сдвигов на векторы $t\cdot\vec{u}$ при t \in R. Далее выводим формулы для преобразования координат M: $\vec{r}'=P^T\vec{r},\vec{r}'=\vec{r}-\vec{a},\vec{r}'=\vec{r}-t\cdot\vec{u}$ и t' = t – t₀ (сдвиг). Суперпозиция этих преобразований - преобразованиями Галилея. Множество преобразований Галилея - группой Галилея. Принцип относительности Галилея - существует система координат K, удовлетворяющая следующему свойству: правая часть уравнения Ньютона в системе координат K инвариантна относительно преобразований группы Галилея. Системы координат, удовлетворяющие двум вышеописанным свойствам — инерциальные.

Следствия из принципа относительности:

- 1. Законы механики Ньютона не меняются во времени: Если $\vec{r} = \vec{\varphi}(t)$ решение уравнения Ньютона, то при любом $\tau \in R$ его решением также является $\vec{\rho} = \vec{\phi}(t+\tau)$, то есть уравнение для $\ddot{\vec{r}}$ автономное: $\ddot{\vec{r}} = \Phi(\vec{r}, \dot{\vec{r}})$
- 2. Пространство однородно: если $\vec{r_l} = \vec{\varphi_l}(t)$, i=1, ...,n движения точек M₁, ..., M_n, удовлетворяющее уравнению Ньютона, то при любом $\vec{a} = E^3$ движение $\vec{e_l} = \vec{\varphi_l}(t) + \vec{a}$, i=1, ...,n также является решением уравнения Ньютона.
- 3. $\vec{F}(\vec{r},\dot{\vec{r}},t)$ может быть записана как функция величин $\dot{\vec{r}_j}$ $\dot{\vec{r}_k}$, j,k=1, ..., n. Таким образом: $\ddot{\vec{r}_l} = f_i(\{\vec{r_l} \vec{r_k}\}, \{\dot{\vec{r}_l} \dot{\vec{r}_k}\})$, i,j,k=1, ..., n.
- 4. Пространство изотропно инвариантность уравнения Ньютона относительно преобразования $\vec{r}' = P^T \vec{r}$.