

Modelo Lógico

Projeto de Banco de Dados

Modelagem Lógica

Abordagem Relacional

 O Banco de Dados Relacional é composto por tabelas ou relações, com chaves primárias e estrangeiras.

A chave primária é aquele atributo identificador

A chave estrangeira de uma tabela será sempre uma chave primaria de outra tabela

Modelagem Lógica

Tabela Livro

Chave Primária (PK)

Chave Estrangeira (FK)

Transformação do Modelo ER para o Relacional

Modelo ER	Modelo Relacional		
Entidade	Tabela (Relação)		
Instância de Entidade	Linha (Tupla)		
Atributo	Coluna (Campo)		
Atributo Multivalorado	Tabela Auxiliar		
Atributo Identificador	Chave		
Atributo Composto	Várias Colunas		
Relacionamento	Ligações (ou Tabela)		

Transformação Entidade e Atributos

- Cada entidade é traduzida para uma tabela.
- Cada atributo (simples) da entidade define uma coluna da tabela.
- A coluna correspondente ao atributo identificador é chave primária

Transformação Atributos Multivalorados

1º Solução: Criar uma tabela para o atributo

Cliente(id_cliente, nome, dt_nasc)
Telefone(id_cliente, id_numero, numero)
 id cliente referencia Cliente

Transformação Atributos Multivalorados

2° Solução: Criar colunas para valores do atributo

Cliente(id_cliente, nome, dt_nasc, num_telefone_01, num_telefone_02)

Transformação Atributos Compostos

Criar colunas para as partes do atributo

Pessoa (cpf, nome, rua, numero, cep, bairro)

- Depende da cardinalidade das entidades envolvidas.
- Formas básicas de transformação:
 - Tabela própria para o relacionamento
 - Colunas adicionais dentro da tabela de entidade
 - Fusão das entidades em uma

Relacionamento N:N com ou sem Atributos

- Criar sempre uma tabela própria, as chaves estrangeiras das tabelas envolvidas formar a chave primária dessa nova tabela
 - Caso o relacionamento tenha atributos, são criadas colunas para esses atributos nessa nova tabela

Relacionamento N:N SEM Atributos

NotaFiscal (<u>cod_nf</u>, cpf, data)

Produto(cod pr, nome)

Contem(cod nf, cod pr)

cod_nf referencia NotaFiscal
cod pr referencia Produto

(nota fiscal contem varios produtos e produtos podem estar contidos em varias notas fiscais)

Relacionamento N:N COM Atributos

Professor(matricula, nome, dt_nasc)
Departamento(codigo_d, nome)
Alocação(matricula, codigo_d, funcao)
 matricula referencia Professor
 codigo d referencia Departamento

Relacionamento N:N COM Atributos

Relacionamento 1:N SEM Atributos

- Adição de Coluna: Acrescentar a chave primária da tabela A como chave estrangeira na tabela B
 - OBS.: a chave estrangeira na tabela B poderá ter ou não valor nulo, dependendo da opcionalidade

Relacionamento 1:N SEM Atributos

Professor(matricula, nome, dt nasc)

Curso(codigo, nome, coordenador)

coordenador referencia Professor (matricula) chave estrangeira

(Um professor pode coordenar varios cursos mas um curso só pode ser coodernado por um professor)

Relacionamento 1:N COM Atributos

1º opção: migrar os atributos do relacionamento para a tabela B

2º opção: criar uma nova tabela para o relacionamento

Relacionamento 1:N COM Atributos

Professor(matricula, nome, dt_nasc)
Curso(codigo, nome, coordenador, data_inicio_coor)
coordenador referencia Professor(matricula)

Relacionamento 0,1:0,1 SEM Atributos

- 1º opção: Acrescentar a chave primária da tabela A como chave estrangeira da tabela B
- **2º opção:** Acrescentar a chave primária da tabela B como chave estrangeira da tabela A

Relacionamento 0,1:0,1 SEM Atributos

- Critérios para Escolha:
 - 1º Ver qual tabela nasce antes: se A surge primeiro, então, migrar a chave primária de A para B
 - 2º Analisar qual entidade será mais manipulada, em nível de acesso: se a tabela A será mais manipulada, colocar a chave primária de B nela
 - 3º Para desempate, observar qual a maior chave: deverá ser migrada a menor

Relacionamento 0,1:0,1 SEM Atributos


```
Computador(codigo, especificacao)
Funcionario(matricula, nome, dt_nasc, codigo_comp)
codigo_comp referencia Computador(codigo)
```

Relacionamento 0,1:0,1 COM Atributos

- 1º opção: migrar os atributos do relacionamento para uma das tabelas
- **2º opção:** Criar uma nova tabela, agregando as chaves estrangeiras de A e B com os atributos do relacionamento

Relacionamento 0,1:0,1 COM Atributos


```
Computador(codigo, especificacao)
Funcionario(matricula, nome, dt_nasc, cod_comp, dt_comp)
cod comp referencia Computador(codigo)
```

Relacionamento 1,1:0,1

- Fusão das tabelas
- Adição de Coluna: Acrescentar a chave primária da tabela A como chave estrangeira da tabela B

Relacionamento 1,1:0,1

- Esquemas Relacionais possíveis:
- a) Funcionario (matricula, nome, dt_nasc)
 Cartao_Acesso (codigo, validade, matricula)
 matricula referencia Funcionario
- b) Funcionario(matricula, nome, dt_nasc, codigo_ct, validade_ct)

Relacionamento 1,1:1,1

Fusão das tabelas

Relacionamento 1,1:1,1

Pessoa (cpf, nome, dt nasc, cod certidão, data certidão)

Resumo

Tipo de relacionamento	Regra de implementação		
	Tabela própria	Adição coluna	Fusão tabelas
Relacionamentos 1:1	33		337
(0.1)	±	1	×
(0,1)	Ŧ	±	1
(1.1) (1.1)	Ŧ	Ŧ	1
Relacionamentos 1:n			
(O,t) (O,n)	±	1	×
(0,1)	±	1	×
(1.1) (O,n)	Ŧ	1	×
(1.1) (1.n)	Ŧ	1	×
Relacionamentos n:n	-		
(On) (On)	✓	×	×
(0x) (1x)	1	×	×
(1,n) (1,n)	1	×	×

X Não usar

√ Alternativa preferida

± Pode ser usada

1º opção 7 Pode ser usada - 2º opção Fonte: Heuser, C. A. Projeto de Banco de Dados (6ª edição)

Entidade Fraca/Relacionamento Identificador

Funcionario (matricula, nome, dt_nasc)

Dependente (matricula, codigo, nome)

matricula referencia Funcionario

A chave primária da entidade fraca é **Composta**

- Etapas:
 - 1º: Considere como se fosse um relacionamento entre duas entidades, ou seja:

 A

 O,1

 R

 O,N

 A
 - 2º: Considere as regras de derivação, usando no papel das entidades A e B, a mesma entidade A

Auto Relacionamento 1:N

Funcionario(matricula, nome, dt_nasc, mat_gerente)
mat gerente referencia Funcionario(matricula)

Auto Relacionamento N:N

Aluno (matricula, nome)

Representacao (mat_representante, mat_representado)

mat_representante referencia Aluno(matricula)
mat_representado referencia Aluno(matricula)

Auto Relacionamento N:N COM atributo

Aluno (matricula, nome)

Representacao (mat representante, mat representado, duracao)

mat_representante referencia Aluno(matricula)

mat representado referencia Aluno (matricula)

Derivação de Relacionamento com grau maior que 2

Relacionamentos Ternários - N:N:1

mat alu referencia Aluno

codigo referencia Disciplina

mat prof referencia Professor

Derivação de Relacionamento com grau maior que 2

Relacionamentos Ternários - N:N:N

mat_prof referencia Professor

codigo referencia Disciplina

Derivação de Agregação/Entidade Associativa

• Etapas:

- 1º: Criar uma tabela referente ao relacionamento entre as tabelas A e B
- 2°:Analisar o relacionamento dessa tabela criada e a tabela C, para a relação essas duas tabelas considere as regras de derivação vistas

Derivação de Agregação/Entidade Associativa


```
Aluno (matricula, nome)
Projeto(cod proj, titulo, tipo)
Computador (cod comp, especificacao)
Atuacao (mat, cod proj)
    mat referencia Aluno (matricula)
    cod proj referencia projeto
Uso (mat, cod proj, cod comp)
    mat, cod proj referencia Atuacao
    cod comp referencia Computador
```

Derivação de Estruturas de Generalização/Especialização

• 1º opção: Criar uma tabela para a entidade generalizada e outra tabela para cada entidade especializada

Derivação de Estruturas de Generalização/Especialização

• 2º opção: Criar somente uma tabela para a entidade generalizada e migrar todos os atributos e relacionamentos para essa tabela

Funcionario (matricula, nome, data nasc, CREA, CRM)

Derivação de Estruturas de Generalização/Especialização

• 3º opção: Criar somente tabelas para as entidades especializadas e migrar todos os atributos e relacionamentos generalizados para cada uma dessas tabelas

Conta_Poupança(num, saldo, taxa)
Conta Corrente(num, saldo, limite)

- É o processo de decomposição de um esquema de relação em outros esquemas de relação
- Os esquemas resultantes devem preservar a semântica original (restrições de integridade, dados e relacionamentos)
- Tabelas normalizadas representam de maneira melhor uma realidade modelada e atendem ao modelo relacional.

Objetivos:

- Eliminar redundâncias
- o Minimizar anomalias de inserção, remoção e atualização
- o Garantir que as dependências entre os dados façam sentido
- Obtenção de um modelo ER

Benefícios:

- O espaço de armazenamento dos dados diminui
- A descrição do BD será imediata
- A tabela pode ser atualizada com maior eficiência
- A reversão para o modelo conceitual é possível

1FN: Uma tabela está na primeira forma normal, quando ela

NÃO CONTÉM tabelas aninhadas

(Tabela Aninhada: **Grupo repetido** ou **coluna não atômica** ou **coluna multi-valorada,** que não apresenta valores atômicos)

Normalização: 1FN

Cod_Disciplina	Nome_Disciplina	Cod_Prof	Nome_Prof	Créditos	Horas
ID 600	Banco de Dados I	IP032	Natacha Targino	06	100
IDC09	Balleo de Dados I	IP059	Gabrielle Canalle	00	100
	IDC12 Banco de Dados II	IP098	João Vicente		
IDC12		IP059	Gabrielle Canalle	04	67
		IP044	Vinícius Filho		
IDC07	Programação	IP098	João Vicente	04	67
IDC16	Estrutura de Dados	IP032	Natacha Targino	06	100
	Estructura de Dados	IPO29	Mariana Rachel	30	100

Disciplina (Cod_Disicplina, Nome_Disciplina, (Cod_Prof, Nome_Prof),
Créditos, Horas)

Normalização: 1FN

Cod_Disciplina	Nome_Disciplina	Créditos	Horas
IDC09	Banco de Dados I	06	100
IDC12	Banco de Dados II	04	67
IDC07	Programação	04	67
IDC16	Estrutura de Dados	06	100

Cod_Disciplina	Cod_Prof	Nome_Prof
IDC09	IP032	Natacha Targino
IDC09	IP059	Gabrielle Canalle
IDC12	IP098	João Vicente
IDC12	IP059	Gabrielle Canalle
IDC12	IP044	Vinícius Filho
IDC07	IP098	João Vicente
IDC16	IP032	Natacha Targino
IDC16	IP029	Mariana Rachel

```
Disciplina (Cod_Disicplina, Nome_Disciplina, Créditos, Horas)
Disciplina_Prof (Cod_Disicplina, Cod_Prof, Nome_Prof)
Cod Disciplina referencia Disciplina
```

2FN: Uma tabela está na segunda forma normal, quando ela **está na 1NF** e todo atributo não-chave é plenamente dependente da chave primária, ou seja,

NÃO Contém Dependência Funcional Parcial

(Dependência Funcional Parcial: Ocorre quando uma coluna depende apenas de parte de uma chave primária composta)

Normalização: 2FN

Cod_Disciplina	Cod_Prof	Nome_Prof
IDC09	IP032	Natacha Targino
IDC09	IP059	Gabrielle Canalle
IDC12	IP098	João Vicente
IDC12	IP059	Gabrielle Canalle
IDC12	IP044	Vinícius Filho
IDC07	IP098	João Vicente
IDC16	IP032	Natacha Targino
IDC16	IP029	Mariana Rachel

Disciplina_Prof(Cod_Disicplina, Cod_Prof, Nome_Prof)
Cod Disciplina referencia Disciplina

Normalização: 2FN

Cod_Prof	Nome_Prof
IP032	Natacha Targino
IP059	Gabrielle Canalle
IP098	João Vicente
IP044	Vinícius Filho
IP029	Mariana Rachel

Cod_Disciplina	Cod_Prof
IDC09	IP032
IDC09	IP059
IDC12	IP098
IDC12	IP059
IDC12	IP044
IDC07	IP098
IDC16	IP032
IDC16	IP029

Prof (Cod_Prof, Nome_Prof)

Disciplina_Prof (Cod_Disicplina, Cod_Prof)

Cod_Disciplina referencia Disciplina

Cod_Prof referencia Prof

3FN: Uma tabela está na segunda forma normal, quando ela **está na 2NF** e nenhum atributo não-chave é transitivamente dependente da chave primária ou seja,

NÃO Contém Dependência Funcional Transitiva

(Dependência Funcional Transitiva: Ocorre quando uma coluna, além de depender da chave primária da tabela, depende de outra coluna ou conjunto de colunas da tabela)

Normalização: 3FN

Cod_Disciplina	Nome_Disciplina	Créditos	Horas
IDC09	Banco de Dados I	06	100
IDC12	Banco de Dados II	04	67
IDC07	Programação	04	67
IDC16	Estrutura de Dados	06	100

Disciplina (Cod Disicplina, Nome Disciplina, Créditos, Horas)

Normalização: 3FN

Créditos	Horas
06	100
04	67

Cod_Disciplina	Nome_Disciplina	Créditos
IDC09	Banco de Dados I	06
IDC12	Banco de Dados II	04
IDC07	Programação	04
IDC16	Estrutura de Dados	06

```
Creditos (creditos, horas)

Disciplina (Cod_Disicplina, Nome_Disciplina, Créditos)

Creditos referencia Creditos
```

Antes

Cod_Disciplina Nome_Disciplina Cod_Prof Nome_Prof Créditos Horas IP032 Natacha Targino IDC09 Banco de Dados I 06 100 IP059 Gabrielle Canalle IP098 João Vicente IDC12 Banco de Dados II IP059 Gabrielle Canalle 04 67 IP044 Vinícius Filho IDC07 Programação IP098 João Vicente 04 67 IP032 Natacha Targino IDC16 Estrutura de Dados 06 100 IP029 Mariana Rachel

X

Depois

Cod_Disciplina	Nome_Disciplina	Créditos
IDC09	Banco de Dados I	06
IDC12	Banco de Dados II	04
IDC07	Programação	04
IDC16	Estrutura de Dados	06

Cod_Prof	Nome_Prof
IP032	Natacha Targino
IP059	Gabrielle Canalle
IP098	João Vicente
IP044	Vinícius Filho
IP029	Mariana Rachel

Cod_Disciplina	Cod_Prof
IDC09	IP032
IDC09	IP059
IDC12	IP098
IDC12	IP059
IDC12	IP044
IDC07	IP098
IDC16	IP032
IDC16	IP029

Créditos	Horas
06	100
04	67

Dúvidas?

Gabrielle K. Canalle gkc@cesar.school

Natacha Targino ntrsb@cesar.school

