Expectation (continued), Variance

February 28 - March 2

(Clean Slides)

The expected value rule, for calculating E[g(X)]

- Let X be a r.v. and let Y = g(X)
- Averaging over y: $\mathbf{E}[Y] = \sum_{y} y p_{Y}(y)$
- Averaging over x:

$$E[Y] = E[g(X)] = \sum_{x} g(x)p_X(x)$$

Proof:

•
$$E[X^2] =$$

• Caution: In general, $E[g(X)] \neq g(E[X])$

Linearity of expectation:
$$E[aX + b] = aE[X] + b$$

- Intuitive
- **Derivation**, based on the expected value rule:

Variance — a measure of the spread of a PMF

- Random variable X, with mean $\mu = E[X]$
- Distance from the mean: $X \mu$
- Average distance from the mean?

- Definition of variance: $var(X) = E[(X \mu)^2]$
- Calculation, using the expected value rule, $\mathbf{E}[g(X)] = \sum_x g(x) p_X(x)$

$$var(X) =$$

Standard deviation: $\sigma_X = \sqrt{\text{var}(X)}$

Properties of the variance

• Notation: $\mu = E[X]$

$$var(aX + b) = a^2 var(X)$$

• Let Y = X + b

• Let Y = aX

A useful formula: $\operatorname{var}(X) = \operatorname{E}[X^2] - \left(\operatorname{E}[X]\right)^2$

Variance of the Bernoulli

$$X = \begin{cases} 1, & \text{w.p. } p \\ 0, & \text{w.p. } 1 - p \end{cases}$$

$$\operatorname{var}(X) = \sum_{x} (x - \operatorname{E}[X])^{2} p_{X}(x)$$

$$\operatorname{var}(X) = \operatorname{E}[X^2] - (\operatorname{E}[X])^2$$

Variance of the uniform

Conditional PMF and expectation, given an event

• Condition on an event $A \Rightarrow$ use conditional probabilities

$$p_X(x) = P(X = x)$$
 $p_{X|A}(x) = P(X = x \mid A)$
$$\sum_x p_{X|A}(x) = 1$$

$$\sum_x p_{X|A}(x) = 1$$

$$\mathbf{E}[X] = \sum_{x} x p_X(x) \qquad \qquad \mathbf{E}[X \mid A] = \sum_{x} x p_{X|A}(x)$$

$$\mathbf{E}[g(X)] = \sum_{x} g(x) p_X(x) \qquad \qquad \mathbf{E}[g(X) \mid A] = \sum_{x} g(x) p_{X|A}(x)$$

Example of conditioning

• Let
$$A = \{X \ge 2\}$$

$$\mathbf{E}[X] =$$

$$var(X) =$$

$$\mathbf{E}[X \mid A] =$$

$$var(X \mid A) =$$

Total expectation theorem

$$\mathbf{P}(B) = \mathbf{P}(A_1)\mathbf{P}(B \mid A_1) + \cdots + \mathbf{P}(A_n)\mathbf{P}(B \mid A_n)$$

Total expectation theorem

$$\mathbf{P}(B) = \mathbf{P}(A_1)\mathbf{P}(B \mid A_1) + \cdots + \mathbf{P}(A_n)\mathbf{P}(B \mid A_n)$$

$$p_X(x) = \mathbf{P}(A_1) p_{X|A_1}(x) + \dots + \mathbf{P}(A_n) p_{X|A_n}(x)$$

$$\mathbf{E}[X] = \mathbf{P}(A_1) \mathbf{E}[X \mid A_1] + \dots + \mathbf{P}(A_n) \mathbf{E}[X \mid A_n]$$

Conditioning a geometric random variable

• X: number of independent coin tosses until first head; P(H) = p

$$p_X(k) = (1-p)^{k-1}p, \qquad k = 1, 2, \dots$$

Memorylessness:

Number of **remaining** coin tosses, conditioned on Tails in the first toss, is **Geometric**, with parameter p

Conditioned on X > n, X - n is geometric with parameter p

The mean of the geometric

$$E[X] = \sum_{k=1}^{\infty} k p_X(k) = \sum_{k=1}^{\infty} k (1-p)^{k-1} p$$

Linearity of expectations

$$\mathbf{E}[aX + b] = a\mathbf{E}[X] + b$$

$$E[X + Y] = E[X] + E[Y]$$

$$\mathbf{E}[X_1 + \dots + X_n] = \mathbf{E}[X_1] + \dots + \mathbf{E}[X_n]$$

$$E[2X + 3Y - Z] =$$

The mean of the binomial

- X: binomial with parameters n, p
 - number of successes in n independent trials

$$E[X] = \sum_{k=0}^{n} k {n \choose k} p^k (1-p)^{n-k}$$

$$X_i = 1$$
 if *i*th trial is a success;

$$X_i = 0$$
 otherwise

(indicator variable)

$$X = X_1 + \dots + X_n$$

Independence

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A \mid B) = P(A)$$

• of a r.v. and an event:
$$P(X = x \text{ and } A) = P(X = x) \cdot P(A)$$
, for all x

$$\mathbf{P}(X = x \text{ and } Y = y) = \mathbf{P}(X = x) \cdot \mathbf{P}(Y = y),$$
 for all x, y
 $p_{X,Y}(x,y) = p_X(x) p_Y(y),$ for all x, y

X,Y,Z are independent if: $p_{X,Y,Z}(x,y,z) = p_X(x)\,p_Y(y)\,p_Z(z) \text{, for all } x,y,z$

Example: independence and conditional independence

Independent?

• What if we condition on $X \le 2$ and $Y \ge 3$?

Independence and expectations

- In general: $E[g(X,Y)] \neq g(E[X],E[Y])$
- Exceptions: E[aX + b] = aE[X] + b E[X + Y + Z] = E[X] + E[Y] + E[Z]

If X, Y are independent: E[XY] = E[X]E[Y]

g(X) and h(Y) are also independent: $\mathbf{E}[g(X)h(Y)] = \mathbf{E}[g(X)] \cdot \mathbf{E}[h(Y)]$

Independence and variances

- Always true: $var(aX) = a^2 var(X)$ var(X + a) = var(X)
- In general: $var(X + Y) \neq var(X) + var(Y)$

If
$$X$$
, Y are independent: $var(X + Y) = var(X) + var(Y)$

- Examples:
 - If X = Y: var(X + Y) =
 - If X = -Y: var(X + Y) =
 - If X, Y independent: var(X 3Y) =

Variance of the binomial

- X: binomial with parameters n, p
 - number of successes in n independent trials

$$X_i = 1$$
 if *i*th trial is a success; $X_i = 0$ otherwise (indicator variable)

$$X = X_1 + \dots + X_n$$