

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

XXV. Extract of a Letter from Mr. Lexel to Dr. Morton. Dated Petersburg, June 14, 1774.

Redde, Mar. 16, Λ S I propose to make some researches concerning the difference of the meridians of the principal Observatories of Europe, which I am persuaded can best be ascertained by the occultations of the fixed stars by the Moon; it would be of great service to me to be furnished with the observations that have been made, or that will be made, this year, of the occultations of α or of γ Tauri by the Moon. I beg, therefore, sir, you will please to desire Mr. MASKELYNE to communicate them to me, towards the beginning of the next year, directed to Mr. EULER, secretary of our Academy. It would also be of great use to me to have the observation of the occultation of the Pleiades by the Moon the 15th of March, 1766, in case it has been taken at Greenwich.

Here are some observations of Mr. Wargentin, of the occultations of α and γ Tauri.

[281]

	1	*		u		
1773, Nov.	1	11	56	12	Emersion of a, uncertain to some seconds.	
1774, Jan.	22	6	0	26 <u>1</u>	Immersion of the eye of 8, 1	·_
		7	15	51	Emersion,	III
Feb.	18	6	39	51	Immersion of 7, very cortain.	
	-	7	19	33	Immersion of the eye of 8, both very certain. Immersion of 2, very certain. Emersion, within two seconds,	

The following are my observations.

I have lately discovered two curious theorems, which I shall here communicate to the Royal Society.

THEOREM.

Let A, B, C, D, E, F, be a polygon whose fides are named a, b, c, d, e, f; and the exterior angles α , β , γ , δ , ε , ζ , so that the fide a be placed between the angles α and β , b between β , γ , &c.

1. $a \times \sin \alpha + b \times \cos \alpha + b$

2. $a \times \text{cofin.} \ a + b \times \text{cof.} \ (\alpha + \beta) + \epsilon \times \text{cof.} \ (\alpha + \beta + \gamma) + d \times \text{cof.} \ (\alpha + \beta + \gamma + \delta)$ + $\epsilon \times \text{cof.} \ (\alpha + \beta + \gamma + \delta + \epsilon) + f \times \text{cof.} \ (\alpha + \beta + \gamma + \delta + \epsilon + \zeta) = \epsilon$.

In fact it is fin. $(a+\beta+\gamma+\delta+\epsilon+\zeta) = \text{fin. } 360^\circ = 0$. and cof. $(a+\beta+\gamma+\delta+\epsilon+\zeta) = +1$; but in order to give the fame form to the two expressions, I rather chose to represent them as I have done. By means of these two theorems the solution of polygons will be as easy as that of triangles by common trigonometry.