у2020-2-1. Дерево отрезков

А. Дерево отрезков на сумму

1 секунда, 1024 мегабайта

В этой задаче вам нужно написать обычное дерево отрезков на сумму.

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Следующая строка содержит n чисел a_i — начальное состояние массива ($0 \le a_i \le 10^9$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 i v присвоить элементу с индексом i значение v ($0 \leq i < n$, $0 \leq v \leq 10^9$).
- 2 l r вычислить сумму элементов с индексами от l до r-1 ($0 \leq l < r \leq n$).

Выходные данные

Для каждой операции второго типа выведите соответствующую сумму.

```
      входные данные

      5
      5

      5
      4
      2
      3

      1
      1
      1
      2
      0
      3

      1
      3
      1
      2
      0
      5

      выходные данные

      11
      8
      14
```

В. Число минимумов на отрезке

1 секунда, 1024 мегабайта

Теперь измените код дерева отрезков, чтобы кроме минимума на отрезке считалось также и число элементов, равных минимуму.

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Следующая строка содержит n чисел a_i — начальное состояние массива ($0 \le a_i \le 10^9$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 i v присвоить элементу с индексом i значение v ($0 \le i < n$, $0 \le v \le 10^9$).
- 2 l r найти минимум и число элементов, равных минимуму, среди элементов с индексами от l до r-1 ($0 \le l < r \le n$).

Выходные данные

Для каждой операции второго типа выведите два числа — минимум на заданном отрезке и число элементов, равных этому минимуму.

С. Отрезок с максимальной суммой

1 секунда, 1024 мегабайта

В этой задаче вам нужно написать дерево отрезков для нахождения подотрезка с максимальной суммой.

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Следующая строка содержит n чисел a_i — начальное состояние массива ($-10^9 \le a_i \le 10^9$). Далее следует описание операций. Описание каждой операции имеет следующий вид: i v — присвоить элементу с индексом i значения v ($0 \le i < n, -10^9 \le v \le 10^9$).

Выходные данные

Выведите m+1 строку: максимальную сумму чисел на отрезке до всех операций и после каждой операции. Обратите внимание, что этот отрезок может быть пустым (при этом сумма на нем будет равна 0)

```
      входные данные

      5 2

      5 -4 4 3 -5

      4 3

      3 -1

      выходные данные

      8

      11

      7
```

```
Входные данные
4 2
-2 -1 -5 -4
1 3
3 2
Выходные данные
0
3
3
```

D. K-я единица

1 секунда, 1024 мегабайта

В этой задаче вам нужно добавить в дерево отрезков операцию нахождения k-й единицы.

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Следующая строка содержит n чисел a_i — начальное состояние массива ($a_i \in \{0,1\}$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 i изменить элемент с индексом i на противоположный.
- 2 k найти k-ю единицу (единицы нумеруются с 0, гарантируется, что в массиве достаточное количество единиц).

Выходные данные

Для каждой операции второго типа выведите индекс соответствующей единицы (все индексы в этой задаче от 0).

Е. Первый элемент не меньше Х - 2

1 секунда, 1024 мегабайта

В этой задаче вам нужно добавить в дерево отрезков операцию нахождения по данным x и l минимального индекса j, для которого $j \geq l$ и $a[j] \geq x$.

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Следующая строка содержит n чисел a_i — начальное состояние массива ($0 \le a_i \le 10^9$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 i v изменить элемент с индексом i на v ($0 \le i < n$, $0 \le v \le 10^9$).
- 2 x l найти минимальный индекс j, для $j \geq l$ и $a[j] \geq x$ ($0 \leq x \leq 10^9$, $0 \leq l < n$). Если такого элемента нет, выведите -1. Индексы начинаются с 0.

Выходные данные

Для каждой операции второго типа выведите ответ на запрос.

```
входные данные
5 7
1 3 2 4 3
2 3 0
2 3 2
1 2 5
2 4 1
2 5 4
1 3 7
2 6 1
выходные данные
1
3
2
-1
3
```

F. Прибавление и минимум

1 секунда, 1024 мегабайта

Есть массив из n элементов, изначально заполненный нулями. Вам нужно написать структуру данных, которая обрабатывает два вида запросов:

- прибавить к отрезку от l до r-1 число v,
- ullet узнать минимум на отрезке от l до r-1 .

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 $l \, r \, v$ прибавить значение v к отрезку от l до r-1 ($0 \le l < r \le n$, $0 \le v \le 10^9$).
- 2 l r узнать минимум на отрезке от l до r-1 ($0 \le l < r \le n$).

Выходные данные

Для каждой операции второго типа выведите соответствующее значение.

G. Присваивание и минимум

1 секунда, 1024 мегабайта

Есть массив из n элементов, изначально заполненный нулями. Вам нужно написать структуру данных, которая обрабатывает два вида запросов:

- ullet присвоить всем элементам на отрезке от l до r-1 значение v,
- ullet узнать минимум на отрезке от l до r-1 .

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 l r v присвоить всем элементам на отрезке от l до r-1 значение v ($0 \leq l < r \leq n$, $0 < v < 10^9$).
- 2 l r узнать минимум на отрезке от l до r-1 ($0 \le l < r \le n$).

Выходные данные

Для каждой операции второго типа выведите соответствующее значение.

Н. Присваивание, прибавление и сумма

1 секунда, 1024 мегабайта

Есть массив из n элементов, изначально заполненный нулями. Вам нужно написать структуру данных, которая обрабатывает три вида запросов:

- присвоить всем элементам на отрезке от l до r-1 значение v,
- прибавить ко всем элементам на отрезке от l до r-1 число v,
- ullet узнать сумму на отрезке от l до r-1 .

Входные данные

Первая строка содержит два числа n и m ($1 \le n, m \le 100000$) — размер массива и число операций. Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 $l\ r\ v$ присвоить всем элементам на отрезке от l до r-1 значение v ($0 \le l < r \le n$, $0 \le v \le 10^5$).
- 2 $l \, r \, v$ прибавить ко всем элементам на отрезке от l до r-1 число $v \, (0 \le l < r \le n, \, 0 \le v \le 10^5)$.
- 3 l r узнать сумму на отрезке от l до r-1 ($0 \le l < r \le n$).

Выходные данные

Для каждой операции третьего типа выведите соответствующее значение.

```
      ВХОДНЫЕ ДАННЫЕ

      5
      7

      1
      0
      3
      3

      2
      2
      4
      2

      3
      1
      3
      3

      2
      1
      5
      1

      1
      0
      2
      2

      3
      0
      3
      3

      3
      3
      5

      Bыходные данные

      8
      10

      4
```

I. Криптография

2 секунды, 1024 мегабайта

Задано n матриц A_1, A_2, \ldots, A_n размера 2×2 . Необходимо для нескольких запросов вычислить произведение матриц $A_i, A_{i+1}, \ldots, A_i$. Все вычисления производятся по модулю r.

Входные данные

Первая строка входного файла содержит числа r ($1 \le r \le 10\,000$), n ($1 \le n \le 200\,000$) и m ($1 \le m \le 200\,000$). Следующие n блоков по две строки содержащие по два числа в строке — описания матриц. Затем следуют m пар целых чисел от 1 до n, запросы на произведение на отрезке.

Выходные данные

Выведите m блоков по две строки,по два числа в каждой — произведения на отрезках. Разделяйте блоки пустой строкой. Все вычисления производятся по модулю r

J. Землетрясения

1 секунда, 1024 мегабайта

Город представляет собой последовательность из n клеток, занумерованных числами от 0 до n-1. Изначально все клетки пустые. Далее последовательно происходят m событий одного из двух типов:

- в клетке i строится здание с прочностью h (если в этой клетке уже было здание, оно сносится и заменяется на новое),
- на отрезке от l до r-1 случается землятресение мощностью p, оно разрушает все здания, прочность которых не больше p.

Ваша задача — для каждого землятресения сказать, сколько зданий оно разрушит.

Входные данные

Первая строка содержит числа n и m — число клеток и число событий ($1 \le n, m \le 10^5$). Следующие m строк содержат описание событий. Описание каждого события имеет следующий вид:

- 1 i h в клетке i строится здание с прочностью h ($0 \le i < n, 1 \le h \le 10^9$).
- 2 $l\ r\ p$ на отрезке от l до r-1 происходит землятресение с мощностью p ($0 \le l < r \le n$, $0 \le p \le 10^9$).

Выходные данные

Для каждого события второго типа выведите, сколько зданий было разрушено.

```
    входные данные

    5 9

    1 0 3

    1 2 5

    2 0 4 3

    1 1 4

    1 2 7

    2 1 3 6

    1 3 8

    1 4 4

    2 0 5 10

    Выходные данные

    1

    1

    3
```

К. Художник

2 секунды, 256 мегабайт

Итальянский художник-абстракционист Ф. Мандарино увлекся рисованием одномерных черно-белых картин. Он пытается найти оптимальное местоположение и количество черных участков картины. Для этого он проводит на прямой белые и черные отрезки, и после каждой из таких операций хочет знать количество черных отрезков на получившейся картине и их суммарную длину.

Изначально прямая — белая. Ваша задача — написать программу, которая после каждой из таких операций выводит в выходной файл интересующие художника данные.

Входные данные

В первой строке входного файла содержится общее количество нарисованных отрезков ($1 \le n \le 100\,000$). В последующих n строках содержится описание операций. Каждая операция описывается строкой вида c x l, где c — цвет отрезка (W для белых отрезков, W для черных), а сам отрезок имеет вид W причем координаты обоих концов — целые числа, не превосходящие по модулю W длина задается положительным целым числом.

Выходные данные

После выполнения каждой из операций необходимо вывести в выходной файл на отдельной строке количество черных отрезков на картине и их суммарную длину, разделенные одним пробелом.

входные	данные
7	
W 2 3	
B 2 2	
B 4 2	
B 3 2	
B 7 2	
W 3 1	
W 0 10	
выходны	е данные
	е данные
0 0	е данные
0 0 1 2	е данные
0 0 1 2 1 4	е данные
0 0 1 2 1 4 1 4	е данные
0 0 1 2 1 4	е данные

L. Запросы о взвешенной сумме

1 second, 256 megabytes

В этой задаче вам надо обрабатывать запросы о взвешенной сумме для заданного массива. Формально, пусть задан массив $a[1\dots n]$ длины n. Ваша задача уметь обрабатывать запросы двух видов:

- запрос изменения на отрезке: запрос характеризуется тремя числами l, r, d и обозначает прибавление d ко всем элементам i массива, таким что l < i < r,
- запрос взвешенной суммы: запрос характеризуется двумя числами l,r и обозначает вывод значения $a[l]\cdot 1+a[l+1]\cdot 2+\dots \ a[r]\cdot (r-l+1)$.

Входные данные

В первой строке записана пара целых чисел n,m ($1\leq n,m\leq 10^5$), n — длина массива, а m — количество запросов. Во второй строке записаны значения в массиве $a[1],a[2],\ldots,a[n]$ ($-100\leq a[i]\leq 100$). Далее в m строках записаны запросы по одному в строке. Запрос первого вида записан в форме « $1\ l\ r\ d$ » ($1\leq l\leq r\leq n,-100\leq d\leq 100$), а запрос второго вида в форме « $2\ l\ r$ » ($1\leq l\leq r\leq n$).

Выходные данные

На каждый запрос второго типа выведите ответ в отдельной строке.

```
    входные данные

    5 4

    1 2 3 4 5

    1 2 3 1

    2 1 3

    1 2 3 -1

    2 1 5

    выходные данные

    19

    55
```

М. Окна

2 секунды, 256 мегабайт

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

Входные данные

В первой строке входного файла записано число окон n ($1 \leq n \leq 50000$). Следующие n строк содержат координаты окон $x_{(1,i)}$ $y_{(1,i)}$ $x_{(2,i)}$ $y_{(2,i)}$, где $(x_{(1,i)},y_{(1,i)})$ — координаты левого верхнего угла i-го окна, а $(x_{(2,i)},y_{(2,i)})$ — правого нижнего (на экране компьютера y растет сверху вниз, а x — слева направо). Все координаты — целые числа, по модулю не превосходящие $2\cdot 10^5$.

Выходные данные

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенные пробелом — координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т.е. покрывающими свои граничные точки.

```
    входные данные

    2

    0 0 3 3

    1 1 4 4

    выходные данные

    2

    1 3
```

```
входные данные

1
0 0 1 1

выходные данные

1
0 1
```

N. Звезды

2 секунды, 256 мегабайт

Вася любит наблюдать за звездами. Но следить за всем небом сразу ему тяжело. Поэтому он наблюдает только за частью пространства, ограниченной кубом размером $n \times n \times n$. Этот куб поделен на маленькие кубики размером $1 \times 1 \times 1$. Во время его наблюдений могут происходить следующие события:

- 1. В каком-то кубике появляются или исчезают несколько звезд.
- 2. К нему может заглянуть его друг Петя и поинтересоваться, сколько видно звезд в части пространства, состоящей из нескольких кубиков.

Входные данные

Первая строка входного файла содержит натуральное число $1 \le n \le 128$. Координаты кубиков — целые числа от 0 до n - 1. Далее следуют записи о происходивших событиях по одной в строке. В начале строки записано число m. Если m равно:

- 1, то за ним следуют 4 числа x, y, z ($0 \le x$, y, z < N) и k ($20000 \le k \le 20000$) координаты кубика и величина, на которую в нем изменилось количество видимых звезд;
- 2, то за ним следуют 6 чисел $x_1, y_1, z_1, x_2, y_2, z_2$ ($0 \le x_1 \le x_2 < N, 0 \le y_1 \le y_2 < N, 0 \le z_1 \le z_2 < N$), которые означают, что Петя попросил подсчитать количество звезд в кубиках (x, y, z) из области: $x_1 \le x \le x_2, y_1 \le y \le y_2, z_1 \le z \le z_2$;
- 3, то это означает, что Васе надоело наблюдать за звездами и отвечать на вопросы Пети. Эта запись встречается во входном файле только один раз и будет последней.

Количество записей во входном файле не больше 100 002.

Выходные данные

Для каждого Петиного вопроса выведите искомое количество звезд.

```
ВХОДНЫЕ ДАННЫЕ

2
2 1 1 1 1 1 1 1
1 0 0 0 1
1 0 1 0 3
2 0 0 0 0 0 0
2 0 0 0 0 1 0
1 0 1 0 -2
2 0 0 0 0 1 1 1
3

ВЫХОДНЫЕ ДАННЫЕ

0
1 4
4 2
```