

WHAT IS CLAIMED IS:

1. A method for treating neuropathic pain comprising administering to a patient in need of such treatment a therapeutically effective amount of a CCR-2 antagonist.

5

2. A method for treating neuropathic pain comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of the formula:

10 wherein:

X is selected from the group consisting of:

-O-, -NR²⁰-, -S-, -SO-, -SO₂-, and -CR²¹R²²-, -NSO₂R²⁰-,

-NCOR²⁰-, -NCO₂R²⁰-, -CR²¹CO₂R²⁰-, -CR²¹OCOR²⁰-, -CO-,

where R²⁰ is selected from: hydrogen, C₁-6 alkyl, benzyl, phenyl,

15 C₃-6 cycloalkyl where the alkyl, phenyl, benzyl, and cycloalkyl groups can be unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, C₁-3alkyl, C₁-3alkoxy, -CO₂H, -CO₂-C₁-6 alkyl, and trifluoromethyl,

where R²¹ and R²² are independently selected from: hydrogen, hydroxy,

20 C₁-6 alkyl, -O-C₁-6alkyl, benzyl, phenyl, C₃-6 cycloalkyl where the alkyl, phenyl, benzyl, and cycloalkyl groups can be unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, C₁-3alkyl, C₁-3alkoxy, -CO₂H, -CO₂-C₁-6 alkyl, and trifluoromethyl;

25 R¹ is selected from:

-C₁-6alkyl, -C₀-6alkyl-O-C₁-6alkyl-, -C₀-6alkyl-S-C₁-6alkyl-,

-(C₀-6alkyl)-(C₃-7cycloalkyl)-(C₀-6alkyl), hydroxy, -CO₂R²⁰, heterocycle,

-CN, -NR²⁰R²⁶-, -NSO₂R²⁰-, -NCOR²⁰-, -NCO₂R²⁰-, -NCOR²⁰-,

-CR²¹CO₂R²⁰-, -CR²¹OCOR²⁰-, phenyl and pyridyl,

where R²⁶ is selected from: hydrogen, C₁₋₆ alkyl, benzyl, phenyl, C₃₋₆ cycloalkyl where the alkyl, phenyl, benzyl, and cycloalkyl groups can be unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy, -CO₂H, -CO₂-C₁₋₆ alkyl, and trifluoromethyl

5 where the alkyl and the cycloalkyl are unsubstituted or substituted with 1-7 substituents where the substituents are independently selected from:

- (a) halo,
- (b) hydroxy,
- 10 (c) -O-C₁₋₃alkyl,
- (d) trifluoromethyl,
- (f) C₁₋₃alkyl,
- (g) -O-C₁₋₃alkyl,
- (h) -CO₂R²⁰,
- 15 (i) -SO₂R²⁰,
- (j) -NHCOC₂H₅,
- (k) -NSO₂CH₃,
- (l) -heterocycle,
- (m) =O,
- 20 (n) -CN,

and where the phenyl and pyridyl are unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, C₁₋₃alkyl, C₁₋₃alkoxy and trifluoromethyl;

25 R² is selected from:

- (a) hydrogen,
- (b) hydroxy,
- (c) halo,
- (d) C₁₋₃alkyl, where the alkyl is unsubstituted or substituted with 1-6
30 substituents independently selected from: fluoro, and hydroxy,
(e) -NR²⁰R²⁶,
(f) -CO₂R²⁰,
(g) -CONR²⁰R²⁶,
(h) -NR²⁰COR²¹,
35 (i) -OCONR²⁰R²⁶,

- (j) -NR₂CONR₂R₂₆,
- (k) -heterocycle,
- (l) -CN,
- (m) -NR₂-SO₂-NR₂R₂₆,
- (n) -NR₂-SO₂-R₂₆,
- (o) -SO₂-NR₂R₂₆, and
- (p) =O, where R₂ is connected to the ring via a double bond;

R^3 is selected from:

10	(a) hydrogen, (b) hydroxy, (c) halo, (d) C ₁ -6alkyl, (e) -O-C ₁ -6alkyl,
15	(f) -NR ₂₀ R ₂₁ , (g) -NR ₂₀ CO ₂ R ₂₁ , (h) -NR ₂₀ CONR ₂₀ R ₂₁ , (i) -NR ₂₀ -SO ₂ -NR ₂₀ R ₂₁ , (j) -NR ₂₀ -SO ₂ -R ₂₁ ,
20	(k) heterocycle, (l) -CN, (m) -CONR ₂₀ R ₂₁ , (n) -CO ₂ R ₂₀ , (o) -NO ₂ ,
25	(p) -S-R ₂₀ , (q) -SO-R ₂₀ , (r) -SO ₂ -R ₂₀ , and (s) -SO ₂ -NR ₂₀ R ₂₁ ;

30 R⁴ is selected from:

(a) hydrogen,
(b) C₁-6alkyl,
(c) trifluoromethyl,
(d) trifluoromethoxy,
(e) chloro,

- (f) fluoro,
- (g) bromo, and
- (h) phenyl;

5 R⁵ is selected from:

- (a) C₁-6alkyl, where alkyl may be unsubstituted or substituted with 1-6 fluoro and optionally substituted with hydroxyl,
- (b) -O-C₁-6alkyl, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
- 10 (c) -CO-C₁-6alkyl, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
- (d) -S-C₁-6alkyl, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
- (e) -pyridyl, which may be unsubstituted or substituted with one or more substituents selected from the group consisting of: halo, trifluoromethyl, C₁-4alkyl, and CO₂R²⁰,
- (f) fluoro,
- (g) chloro,
- (h) bromo,
- 20 (i) -C₄-6cycloalkyl,
- (j) -O-C₄-6cycloalkyl,
- (k) phenyl, which may be unsubstituted or substituted with one or more substituents selected from the group consisting of : halo, trifluoromethyl, C₁-4alkyl, and CO₂R²⁰,
- (l) -O-phenyl, which may be unsubstituted or substituted with one or more substituents selected from the group consisting of : halo, trifluoromethyl, C₁-4alkyl, and CO₂R²⁰,
- 25 (m) -C₃-6cycloalkyl, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
- (n) -O-C₃-6cycloalkyl, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
- (o) -heterocycle,
- (p) -CN, and
- 30 (q) -CO₂R²⁰;

R⁶ is selected from:

- (a) hydrogen,
- (b) C₁₋₆alkyl, and
- (c) trifluoromethyl
- 5 (d) fluoro
- (e) chloro, and
- (f) bromo;

R⁷ is selected from:

- 10 (a) hydrogen, and
- (b) C₁₋₆alkyl, which is unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, -CO₂H, -CO₂C₁₋₆alkyl, and -O-C₁₋₃alkyl;

15 R⁸ is selected from:

- (a) hydrogen,
- (b) C₁₋₆alkyl, where alkyl may be unsubstituted or substituted with 1-6 substituents where the substituents are chosen from the group: fluoro, C₁₋₃alkoxy, hydroxy, -CO₂R²⁰,
- 20 (c) fluoro,
- (d) -O-C₁₋₃alkyl, where alkyl may be unsubstituted or substituted with 1-3 fluoro, and
- (e) C₃₋₆ cycloalkyl,
- (f) -O-C₃₋₆cycloalkyl,
- 25 (g) hydroxy,
- (h) -CO₂R²⁰,
- (i) -OCOR²⁰,

or R⁷ and R⁸ may be joined together via a C₂₋₄alkyl or a C₀₋₂alkyl-O-C₁₋₃alkyl chain to form a 5-7 membered ring;

30

R⁹ is selected from:

- (a) hydrogen,
- (b) C₁₋₆alkyl, where alkyl may be unsubstituted or substituted with 1-6 substituents where the substituents are chosen from the group: fluoro, C₁₋₃alkoxy, hydroxy, -CO₂R²⁰,

5

- (c) CO_2R^{20} ,
- (d) hydroxy, and
- (e) $-\text{O}-\text{C}_{1-6}\text{alkyl}$, where alkyl may be unsubstituted or substituted with 1-6 substituents where the substituents are chosen from the group: fluoro, $\text{C}_{1-3}\text{alkoxy}$, hydroxy, $-\text{CO}_2\text{R}^{20}$, or R^8 and R^9 may be joined together by a $\text{C}_{1-4}\text{alkyl}$ chain or a $\text{C}_{0-3}\text{alkyl-O-C}_{0-3}\text{alkyl}$ chain to form a 3-6 membered ring;

R^{10} is selected from:

10

- (a) hydrogen, and
- (b) $\text{C}_{1-6}\text{alkyl}$, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
- (c) fluoro,
- (d) $-\text{O}-\text{C}_{3-6}\text{cycloalkyl}$, and
- 15
- (e) $-\text{O}-\text{C}_{1-3}\text{alkyl}$, where alkyl may be unsubstituted or substituted with 1-6 fluoro,
or R^8 and R^{10} may be joined together by a $\text{C}_{2-3}\text{alkyl}$ chain to form a 5-6 membered ring, where the alkyl are unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, $-\text{CO}_2\text{R}^{20}$, $\text{C}_{1-3}\text{alkyl}$, and $\text{C}_{1-3}\text{alkoxy}$,
or R^8 and R^{10} may be joined together by a $\text{C}_{1-2}\text{alkyl-O-C}_{1-2}\text{alkyl}$ chain to form a 6-8 membered ring, where the alkyl are unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, $-\text{CO}_2\text{R}^{20}$, $\text{C}_{1-3}\text{alkyl}$, and
25 $\text{C}_{1-3}\text{alkoxy}$,
or R^8 and R^{10} may be joined together by a $-\text{O}-\text{C}_{1-2}\text{alkyl-O-}$ chain to form a 6-7 membered ring, where the alkyl are unsubstituted or substituted with 1-3 substituents where the substituents are independently selected from: halo, hydroxy, $-\text{CO}_2\text{R}^{20}$, $\text{C}_{1-3}\text{alkyl}$, and
30 $\text{C}_{1-3}\text{alkoxy}$;

n is selected from 0, 1 and 2;

the dashed line represents a single or a double bond;

and pharmaceutically acceptable salts thereof and individual diastereomers thereof.

3. A method of claim 2, wherein X is oxygen.

4. A method for treating neuropathic pain comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound of the
5 formula:

and,

10

15

20

25