

# Introduction to Regression Problem

Loss, Risk, Optimal Rule

송 준

고려대학교 통계학과 / 융합데이터과학 대학원

# **Machine Learning for Prediction**



# **Supervised Learning**

**Goal**: Construct a predictor  $f: X \mapsto Y$  that minimizes a risk R(f), performance measure



✓ Classification output: a class R(Y, f) = P(Y ≠ f(X))



Regression output: a number  $R(Y, f) = E[(Y - f(X))^2]$ 

# **Performance Measure & Decision Making**

### **Performance Measures: Loss**

Prediction error of the i-th observation( $y_i$ ) and the i-th prediction( $\hat{y_i}$ )





### **Performance Measures : Risk**

#### **Performance:**

- *loss*(*Y*, *f*(*X*)) : true label Y 와 prediction *f*(*X*) 의 **가까운 정도** (이를 줄이고자 함)
- We want to perform well on any test data:  $(X,Y) \sim P_{XY}$
- Given an X drawn randomly from a distribution, how well does the predictor perform on average?

 $\textbf{Risk} \ R(f) \equiv \ \mathbb{E}_{XY}[loss\big(\,Y,f(X)\big)]$ 

### **Performance Measures**

### **Performance of supervised learning:**

Risk 
$$R(f) \equiv \mathbb{E}_{XY}[loss(Y, f(X))]$$

|               | Classification                 | Regression               |
|---------------|--------------------------------|--------------------------|
| loss(Y, f(X)) | $\mathbb{I}_{\{f(X) \neq Y\}}$ | $P(f(X) \neq Y)$         |
| Risk $R(f)$   | $(f(X)-Y)^2$                   | $\mathbb{E}[(f(X)-Y)^2]$ |

# **Bayes Optimal Rule**

#### **Ideal goal:**

```
Construct prediction rule f^*: \mathcal{X} \to \mathcal{Y}

f^* = argmin_f \mathbb{E}_{XY}[loss(Y, f(X))]
```

**Bayes optimal rule** 

#### **Best possible performance:**

$$R(f^*) \leq R(f)$$
 for all  $f$ 

**Bayes Risk** 

But Optimal rule is not computable in practice - depends on unknown  $P_{XY}$ 

# **Bayes Optimal Rule**

We can't just simply minimize the risk since  $P_{XY}$  unknown! Training data (experience) provides a glimpse of  $P_{XY}$ 

(observed)  $\{(X_i, Y_i)\}_{i=1}^n \sim i.i.d\ P_{XY}$  (unknown)

# **Supervised Learning**

#### Goal of ML:

Improve the performance on some task with experience

**Task:** Given  $X \in \mathcal{X}$ , predict  $Y \in \mathcal{Y}$ 

 $\equiv$  Construct prediction rule  $f: \mathcal{X} \rightarrow \mathcal{Y}$ 

**Performance:**  $R(f) \equiv \mathbb{E}_{XY}[loss(Y, f(X))], (X, Y) \sim P_{XY}$ 

**Experience:** Training data  $\{(X_i, Y_i)\}_{i=1}^n \sim i.i.d P_{XY}$  (unknown)

### Performance: Are we done?

#### Performance of a learning algorithm

Given a data set  $D_n = \{(X_i, Y_i)\}_{i=1}^n$ , the performance of the algorithm at a random test point (X,Y) is:

Risk: 
$$R(\widehat{f_n}) \doteq \mathbb{E}_{XY}[loss(Y, \widehat{f_n}(X))]$$

This quantity, however, depends on the data set  $D_n$ , and therefore it is random in  $D_n$ .

Often we want to discuss the average performance of the algorithm, and remove the randomness  $(D_n)$  from the performance:

#### **Expected Risk(Generalization Error)**

$$\mathbb{E}_{D_n}[\mathsf{R}(\widehat{f_n})] \doteq \mathbb{E}_{XY}[loss(Y, \widehat{f_n}(X))]$$

### Performance: Are we done?

**Ideal goal:** Construct prediction rule  $f^*: \mathcal{X} \to \mathcal{Y}$ 

$$f^* = argmin_f \mathbb{E}_{XY}[loss(Y, f(X))]$$

**Bayes optimal rule** 

**Practical goal:** Given  $\{(X_i, Y_i)\}_{i=1}^n$ , learn prediction rule  $\widehat{f}_n: \mathcal{X} \to \mathcal{Y}$ 

Often: 
$$\widehat{f}_n = argmin_{f \in F} \left(\frac{1}{n} \sum_{i=1}^{n} [loss(Y_i, f(X_i))]\right)$$
Empirical Risk minimizer

$$\frac{1}{n}\sum_{i=1}^{n}[loss(Y_i, f(X_i))] \xrightarrow{L.L.N} \mathbb{E}_{XY}[loss(Y, f(X))]$$

# Performance: 현실적 한계

**Ideal goal:** Construct prediction rule  $f^*: \mathcal{X} \to \mathcal{Y}$ 

$$f^* = \arg\min_{f} \ \mathbb{E}_{XY} \left[ loss(Y, f(X)) \right]$$

- ✓ 우리가 현실적으로 고려할 수 있는(계산할 수 있는) 함수공간 Frule
- ✓ space for 선형함수, B-spline basis 함수, Neural Network (딥러닝 모형) 등



### **Introduction to Linear Regression**

#### Data Assumption:

- $(x_1, y_1), \dots, (x_n, y_n), x_i \in \mathbb{R}^p, y_i \in \mathbb{R}$
- $(x_i, y_i)$ : a realization of  $(X_i, Y_i) \sim i.i.d.(X, Y)$
- ✓ Model Assumption: X와 Y는 선형관계를 가짐.

$$Y = f(X) + \epsilon$$

√ f 의 형태제약:

$$F = \{f: f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p, for some \beta_0, \beta_1, \dots, \beta_p\}$$
1차 목표:  $\boldsymbol{\beta_0}, \boldsymbol{\beta} = (\boldsymbol{\beta_1}, \dots, \boldsymbol{\beta_p})^T$  찾기,