This question paper contains 4 printed pages]

	1					1			1	
73 77 7	\ T		ı					1		
Roll I	No.	1 1	1	1						
TOOM 1	.10.		ı		1					
			!							

S. No. of Question Paper: 8075

Unique Paper Code : 2343010017

Name of the Paper : Deep Learning

Name of the Course : B.Sc. (H) (Computer Science)

Semester : VI

Duration: 3 Hours Maximum Marks: 90

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 (Section A) is compulsory.

Attempt any four questions from Section B.

Parts of a question should be attempted together.

Use of scientific calculator is allowed.

Section A

- 1. (a) Explain the internal architecture of an LSTM unit with equations for the input, forget and output gates.
 - (b) Explain RMSProp and ADAM optimizer. Also give two advantages and two disadvantages of each.6
 - (c) How does the back propagation algorithm work? Also, explain the chain rule of calculus with respect to back propagation.
 - (d) Why simple perceptron is used as linear classifier? Write the formula for MSE and Cross Entropy Error function.

,	_	١.
(6)	,
ι .	/,	

8	0	7	5

	(e)	Illustrate the concept of feature maps in CNNs. How are filters used
		to extract features from input images?
	(f)	Describe dropout regularization in neural networks. 3
	(g)	What is an RNN and how is it different from a feed forward neural
		network?
•		Section B
2.	(a)	For a simple RNN architecture given:
		$w_x = 0.4$, $w_h = 0.2$, $w_y = 1.0$, $h_0 = 0$
*		Input Sequence $x = [1, 2]$, Activation : tanh
		(i) Calculate the hidden states h1 and h2
		(ii) Calculate the outputs y1 and y2
		(iii) If targets is y = [0.5, 1], what is the total loss using MSE?
	(b)	Explain how LSTM addresses the problem of vanishing/exploding
		gradients in RNN ?
	(c)	For deep neural network with LSTM layer of 100 units and input
		vector of dimension 32, calculate parameters involved.
3.	(a)	Draw RNN architecture for time step 3.
	(b)	Explain Sigmoid, ReLU and Tanh activation functions. 6
	(c)	What are the output values of the Sigmoid, ReLU, and Tanh
		activation functions when the input $x = 4$?
1 .	(a)	What is Batch Normalization? Explain steps of batch normalization.
		List advantages of Batch Normalization. 6

- (b) Given an input of size $64 \times 64 \times 3$, compute the output size after applying:
 - (i) a convolutional layer with 16 filters of size 5×5 , stride 1, padding 2, followed by
 - (ii) a 2×2 max pooling layer with stride 2.
- (c) Describe any three optimization challenges in deep learning. 3
- 5. (a) Differentiate between sparse and denoising auto encoders. 8
 - (b) Construct the following simple auto encoder for the following. Also represent diagrammatically.

Input Vector : x = [1, 2, 3]

Encoder Weights : w = [0.2, 0.4, 0.6], bias : b = 0.5

Decoder Weights : w = [0.1, 0.5, 1], bias : b = 0.1

- (i) Calculate the encoded representation of the input.
- (ii) Reconstruct the input using the decoder.
- (iii) Calculate loss (MSE).
- 6. Write short notes on any five of the following:

15

- (i) Global Contrast Normalization
- (ii) Hierarchical Softmax
- (iii) Generative Adversarial Network
- (iv) Softmax function
- (v) Ill-Conditioned Hessian Matrix

- (vi) LSTM architecture
- (vii) Types of Recurrent Neural Networks
- (viii) Graphics Processing Unit.
- , 7. (a) An input grey scale image of dimension 5×5 is given as follows: 9

Perform convolution operation with the following kernel of dimension 3×3 with stride = 1 and no padding.

Kernel =
$$[0, 1, 0],$$

$$[1, 0, 1],$$

$$[0, 1, 0]].$$

(b) On the above obtained matrix, apply ReLU activation function and max pooling (2 × 2) with stride 1.