Concours Blanc n°1 – Corrigé

Exercice 1 : Encadrements et étude de fonction

Dans cet exercice, on s'intéresse à la fonction $f: x \mapsto \frac{\ln(1+x)}{x}$.

1. (a) f est définie sur le domaine $D_f =]-1, +\infty[\setminus\{0\} =]-1, 0[\cup]0, +\infty[$

Elle y est bien-sûr de classe C^1 comme quotient et composée de fonctions usuelles

- (b)
 import numpy as np
 def f(x) :
 if x > -1 and x !=0 :
 return np.log(1+x)/x
 else :
 print('Erreur')
- (c) On a $\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{\ln(1+x)}{x} = +\infty$ donc f n'est pas prolongeable par continuité en -1.

En revanche (limite usuelle), $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$

donc f est prolongeable par continuité en 0

Si on appelle toujours f la fonction prolongée, on a maintenant la définition :

$$\forall x \in]-1, +\infty[, f(x) = \begin{cases} \frac{\ln(1+x)}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

f est à présent définie et continue sur $]-1,+\infty[$.

2. (a) • Montrons déjà que : $\forall x \in [-\frac{1}{2}, +\infty[, \ln(1+x) \leqslant x - \frac{x^2}{2} + \frac{x^3}{3}]$.

Pour cela, on introduit $g: x \mapsto \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)$ qui est bien-sûr dérivable sur $[-\frac{1}{2}, +\infty[$.

On a, pour tout $x \in [-\frac{1}{2}, +\infty[$,

$$g'(x) = \frac{1}{1+x} - \left(1 - x + x^2\right) = \frac{1 - (1+x)(1-x+x^2)}{1+x} = \frac{1 - (1-x+x^2+x-x^2+x^3)}{1+x} = \frac{-x^3}{1+x}.$$

Puisque 1 + x > 0, le signe de g'(x) est celui de $-x^3$, c'est à dire positif pour x < 0 et négatif pour x > 0. De plus, on a g(0) = 0, on obtient donc le tableau de variations :

x	-1/2		0	$+\infty$
g'(x)		+	0	_
g(x)			0	•

Sur ce tableau, on lit en particulier que $\forall x \in [-\frac{1}{2}, +\infty[, \ g(x) \leqslant 0, \text{ce qui donne l'inégalité voulue}:$

$$\forall x \in [-\frac{1}{2}, +\infty[, \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.]$$

• Montrons ensuite que : $\forall x \in [0, +\infty[, \ln(1+x) \ge x - \frac{x^2}{2}]$.

Pour cela, on introduit $h: x \mapsto \ln(1+x) - \left(x - \frac{x^2}{2}\right)$ qui est bien-sûr dérivable sur $[0, +\infty[$. On a, pour tout $x \in [0, +\infty[$,

$$h'(x) = \frac{1}{1+x} - (1-x) = \frac{1 - (1+x)(1-x)}{1+x} = \frac{1 - (1-x^2)}{1+x} = \frac{x^2}{1+x} \geqslant 0.$$

De plus, on a h(0) = 0, on obtient donc le tableau de variations :

x	0	$+\infty$
h'(x)		+
h(x)	0	

Sur ce tableau, on lit en particulier que $\forall x \in [0, +\infty[, h(x) \ge 0, \text{ ce qui donne l'inégalité voulue}:$

$$\forall x \in [0, +\infty[, \ln(1+x) \geqslant x - \frac{x^2}{2}].$$

• Pour finir, montrons que : $\forall x \in [-\frac{1}{2}, 0], \ln(1+x) \geqslant x - \frac{x^2}{2} + \frac{2x^3}{3}.$

Pour cela, on introduit $\varphi: x \mapsto \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{2x^3}{3}\right)$ qui est bien-sûr dérivable sur $[-\frac{1}{2}, 0]$. On a, pour tout $x \in [-\frac{1}{2}, 0]$,

$$\varphi'(x) = \frac{1}{1+x} - \left(1 - x + 2x^2\right) = \frac{1 - (1+x)(1-x+2x^2)}{1+x} = \frac{1 - (1-x+2x^2+x-x^2+2x^3)}{1+x}$$
$$= \frac{-x^2 - 2x^3}{1+x} = \frac{x^2(-1-2x)}{1+x}.$$

On sait que $1+x>0, x^2\geqslant 0$ et également $-1-2x\geqslant 0$ car $x\geqslant -\frac{1}{2}$. Ainsi $\varphi'(x)\geqslant 0$. De plus $\varphi(0)=0$, donc on obtient le tableau de variations :

x	$-\frac{1}{2}$	0
$\varphi'(x)$		+
$\varphi(x)$	0	

Sur ce tableau, on lit en particulier que $\forall x \in [-\frac{1}{2}, 0], \ \varphi(x) \geqslant 0$, ce qui donne l'inégalité voulue :

$$\forall x \in [-\frac{1}{2}, 0], \ln(1+x) \ge x - \frac{x^2}{2} + \frac{2x^3}{3}.$$

On a bien démontré tous les encadrements spécifiés par l'énoncé.

(b) Pour montrer que f est dérivable en 0, on revient à la définition de la dérivée, c'est à dire $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ (si cette limite existe et est finie).

Pour tout $x \in]-1, +\infty[\setminus\{0\},$ (rappelons que f(0)=1 avec le prolongement par continuité!)

$$\frac{f(x) - f(0)}{x - 0} = \frac{\frac{\ln(1+x)}{x} - 1}{x} = \frac{\ln(1+x) - x}{x^2}.$$

En utilisant les encadrements du 2.(a), on voit que :

$$\begin{aligned} &\forall x \in]0, +\infty[, & -\frac{x^2}{2} \leqslant \ln(1+x) - x \leqslant -\frac{x^2}{2} + \frac{x^3}{3}, \\ &\forall x \in]-\frac{1}{2}, 0[, & -\frac{x^2}{2} + \frac{2x^3}{3} \leqslant \ln(1+x) - x \leqslant -\frac{x^2}{2} + \frac{x^3}{3}. \end{aligned}$$

Ainsi, en divisant par x^2 (qui est positif), on obtient les encadrements :

$$\forall x \in]0, +\infty[, -\frac{1}{2} \leqslant \frac{f(x) - f(0)}{x - 0} \leqslant \underbrace{-\frac{1}{2} + \frac{x}{3}}_{x \to 0^+},$$

$$\forall x \in]-\frac{1}{2}, 0[, \underbrace{-\frac{1}{2} + \frac{2x}{3}}_{-\frac{1}{2} \to -\frac{1}{2}} \leqslant \frac{f(x) - f(0)}{x - 0} \leqslant \underbrace{-\frac{1}{2} + \frac{x}{3}}_{-\frac{1}{2} \to -\frac{1}{2}}.$$

D'après le théorème des gendarmes, il en résulte que

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2} \quad \text{et} \quad \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2}.$$

Ceci montre bien que f est dérivable en 0 et $f'(0) = -\frac{1}{2}$

3. On cherche à montrer qu'il existe un unique $x \in]0, +\infty[$ tel que

$$f(x) = x \Longleftrightarrow \frac{\ln(1+x)}{x} = x \Longleftrightarrow \ln(1+x) = x^2 \Longleftrightarrow \ln(1+x) - x^2 = 0.$$

Pour cela, on peut montrer que la fonction $g: x \mapsto \ln(1+x) - x^2$ s'annule une seule fois sur $]0, +\infty[$. g est bien sûr dérivable et pour tout $x \in]0, +\infty[$,

$$g'(x) = \frac{1}{1+x} - 2x = \frac{1 - (1+x)2x}{1+x} = \frac{-2x^2 - 2x + 1}{1+x}.$$

Une étude rapide du polynôme $-2X^2-2X+1$ montre qu'il a deux racines :

$$x_1 = \frac{-1 - \sqrt{3}}{2} < 0 \text{ et } x_2 = \frac{-1 + \sqrt{3}}{2} > 0$$

On obtient donc le tableau de variations suivant (calculs de limites évidents):

x	0		x_2	$+\infty$
g'(x)		+		_
g(x)	0	g(x)	(2) > 0	$-\infty$

Puisque $g(x_2) > 0$ (car $\lim_{0^+} g = 0$ et g est strictement croissante sur $]0, x_2]$), d'après le TVI avec stricte monotonie, il en résulte que g s'annule une seule fois sur $]0, +\infty[$ (précisément : sur $]x_2, +\infty[$).

On a ainsi montré que f admet un unique point fixe α sur l'intervalle $]0,+\infty[$

4. (a) On <u>admet</u> que $\forall x \in]0, +\infty[, -\frac{1}{2} \leqslant f'(x) \leqslant \frac{1}{6}...$ (erreur dans l'énoncé) Le plus simple serait en fait d'étudier f'' pour déduire le sens de variation de f' (croissante) et déduire que $f'(0) \leqslant f'(x) \leqslant 0...$ (b) Soient $x, y \in]0, +\infty[$. On applique l'IAF à f qui est continue sur [x, y] et dérivable sur]x, y[. Puisqu'on a vu que : $\forall t \in]x, y[, -\frac{1}{2} \leqslant f'(t) \leqslant \frac{1}{6},$ en particulier ceci implique : $\forall t \in]x, y[, |f'(t)| \leqslant \frac{1}{2}.$

L'IAF nous apprend donc effectivement que :
$$|f(x) - f(y)| \le \frac{1}{2}|x - y|$$
.

- 5. On définit la suite u en posant : $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Attention, on veut les n premiers termes, c'est à dire que u_0 à u_{n-1} !

(b) D'abord, on montrerait par récurrence immédiate que $\forall n \in \mathbb{N}, u_n > 0$. Ensuite, pour tout $n \in \mathbb{N}$, on peut appliquer l'inégalité du 4.(b):

$$|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \leqslant \frac{1}{2} |u_n - \alpha| \quad (\operatorname{car} u_n, \alpha \in]0, +\infty[)$$

On a donc bien $|u_{n+1} - \alpha| \leq \frac{1}{2}|u_n - \alpha|$.

(c) A partir de l'inégalité précédente, on obtient par récurrence immédiate (à rédiger si pas clair) :

$$\forall n \in \mathbb{N}, |u_n - \alpha| \leqslant \left(\frac{1}{2}\right)^n |u_0 - \alpha|$$

c'est à dire $\forall n \in \mathbb{N}, |u_n - \alpha| \leq \frac{1}{2^n} |1 - \alpha|$.

Puisque $\lim_{n\to+\infty}\frac{1}{2^n}=0$, par théorème des gendarmes (version "valeur absolue"), on déduit que $\lim_{n\to+\infty}u_n=\alpha$.

Exercice 2: Une équation fonctionnelle

Dans cet exercice, on cherche à déterminer toutes les fonctions dérivables $f: \mathbb{R} \to \mathbb{R}$ satisfaisant la relation :

$$(\star) \quad \forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)} \quad (\text{et } f(x)f(y) \neq -1)$$

- 1. Quelques exemples.
 - (a) Soit f constante égale à $C \in \mathbb{R}$: $\forall x \in \mathbb{R}$, f(x) = C. Alors f satisfait (\star) si et seulement si :

$$C = \frac{C+C}{1+C^2} \iff C = \frac{2C}{1+C^2} \iff C(1+C^2) = 2C \iff C(C^2-1) = 0 \iff \boxed{C=0 \text{ ou } C=\pm 1}.$$

(b) Posons $f: x \mapsto \frac{e^x - 1}{e^x + 1}$. Pour tout $(x, y) \in \mathbb{R}^2$, on calcule:

$$f(x) + f(y) = \frac{e^x - 1}{e^x + 1} + \frac{e^y - 1}{e^y + 1} = \frac{(e^x - 1)(e^y + 1) + (e^y - 1)(e^x + 1)}{(e^x + 1)(e^y + 1)} = \frac{2e^{x+y} - 2}{(e^x + 1)(e^y + 1)}.$$

$$1 + f(x)f(y) = 1 + \frac{(e^x - 1)(e^y - 1)}{(e^x + 1)(e^y + 1)} = \frac{(e^x + 1)(e^y + 1) + (e^x - 1)(e^y - 1)}{(e^x + 1)(e^y + 1)} = \frac{2e^{x+y} + 2}{(e^x + 1)(e^y + 1)}.$$

Ainsi, en faisant le quotient des deux :

$$\frac{f(x) + f(y)}{1 + f(x)f(y)} = \frac{2e^{x+y} - 2}{2e^{x+y} + 2} = \frac{e^{x+y} - 1}{e^{x+y} + 1} = f(x+y).$$

On a montré que f satisfait la relation (\star) .

- 2. Propriétés générales.
 - (a) Soit f satisfaisant la relation (\star) et g = -f. Pour tout $(x, y) \in \mathbb{R}^2$,

$$g(x+y) = -f(x+y) = -\frac{f(x) + f(y)}{1 + f(x)f(y)} = \frac{-f(x) - f(y)}{1 + f(x)f(y)} = \frac{-f(x) - f(y)}{1 + (-f(x))(-f(y))} = \frac{g(x) + g(y)}{1 + g(x)g(y)}.$$

Donc g satisfait également la relation (\star) .

(b) Soit f satisfaisant la relation (\star) . Supposons qu'il existe $x \in \mathbb{R}$ (fixé) tel que f(x) = 1. Alors pour tout $y \in \mathbb{R}$,

$$f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)} = \frac{1 + f(y)}{1 + f(y)} = 1.$$

Ainsi, $\forall y \in \mathbb{R}, \ f(x+y) = 1.$

Ceci revient bien-sûr à dire $\forall y \in \mathbb{R}, f(y) = 1$: f est constante égale à 1

De même, s'il existe $x \in \mathbb{R}$ (fixé) tel que f(x) = -1, pour tout $y \in \mathbb{R}$,

$$f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)} = \frac{-1 + f(y)}{1 - f(y)} = -1.$$

Ainsi, $\forall y \in \mathbb{R}, \ f(x+y) = -1.$

Ceci revient bien-sûr à dire $\forall y \in \mathbb{R}, f(y) = -1: \boxed{f \text{ est constante égale à } -1}$

- 3. Ensemble d'arrivée.
 - (a) En prenant x = y = 0 dans la relation (\star) , on obtient :

$$f(0+0) = \frac{f(0) + f(0)}{1 + f(0)f(0)} \iff f(0) = \frac{2f(0)}{1 + f(0)^2} \iff f(0) = 0 \text{ ou } f(0) = \pm 1 \text{ (comme en 1.(a))}.$$

Si on avait f(0) = 1 ou f(0) = -1, d'après 2.(b), f serait une fonction constante, ce qui est exclu par l'énoncé! Ainsi on a forcément f(0) = 0.

- (b) Raisonnons par l'absurde en supposant que l'on n'ait pas $\forall x \in \mathbb{R}, -1 < f(x) < 1$. Cela signifie qu'il existe un $x_0 \in \mathbb{R}$ tel que $f(x_0) > 1$ ou $f(x_0) < -1$.
 - Si il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) > 1$, alors comme f(0) = 0 et f est continue sur \mathbb{R} (car elle est dérivable), d'après le TVI, f doit atteindre la valeur 1 quelque part entre 0 et x_0 . D'après le 1.(b), cela implique que f est constante, ce qui est exclu par l'énoncé!
 - Si il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) < -1$, alors comme f(0) = 0, d'après le TVI, f doit atteindre la valeur -1 quelque part entre 0 et x_0 . D'après le 1.(b), cela implique que f est constante, ce qui est exclu par l'énoncé!

Ces deux cas mènent à une contradiction, c'est donc que $\forall x \in \mathbb{R}, -1 < f(x) < 1$

- 4. Equation différentielle.
 - (a) Pour tous $x, h \in \mathbb{R}$, d'après la relation (\star) , on a $f(x+h) = \frac{f(x) + f(h)}{1 + f(x)f(h)}$ donc :

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{f(x) + f(h)}{1 + f(x)f(h)} - f(x)}{h} = \frac{f(x) + f(h) - (1 + f(x)f(h))f(x)}{(1 + f(x)f(h))h} = \frac{f(h) - f(x)^2 f(h)}{(1 + f(x)f(h))h}$$

c'est à dire

$$\frac{f(x+h) - f(x)}{h} = \frac{f(h)}{h} \times \frac{1 - f(x)^2}{1 + f(x)f(h)}.$$

- (b) Soit $x \in \mathbb{R}$ fixé. Passons à la limite quand $h \to 0$ dans l'égalité précédente :
 - Puisque f est dérivable sur \mathbb{R} , par définition : $\frac{f(x+h)-f(x)}{h} \xrightarrow[h\to 0]{} f'(x)$.
 - Puisque f(0) = 0, on a $\frac{f(h)}{h} = \frac{f(h) f(0)}{h 0} \xrightarrow[h \to 0]{} f'(0) = a$.
 - Puisque f est dérivable sur \mathbb{R} , f est continue en 0, donc $\lim_{h\to 0} f(h) = f(0) = 0$.

Ainsi
$$\frac{1 - f(x)^2}{1 + f(x)f(h)} \xrightarrow[h \to 0]{} \frac{1 - f(x)^2}{1 + f(x) \times 0} = 1 - f(x)^2.$$

On obtient donc l'égalité $f'(x) = a(1 - f(x)^2)$. C'est valable quel que soit $x \in \mathbb{R}$.

Si on avait a = 0, on obtiendrait $\forall x \in \mathbb{R}, f'(x) = 0$.

fserait donc constante, ce qui exclu par l'énoncé! Ainsi on a forcément $a \neq 0$

- 5. Bijectivité.
 - (a) On a vu que $\forall x \in \mathbb{R}, f'(x) = a(1 f(x)^2).$

On a supposé a > 0 et d'après 3.(b), pour tout $x \in \mathbb{R}$, -1 < f(x) < 1, donc $1 - f(x)^2 > 0$.

Ainsi $\forall x \in \mathbb{R}, \ f'(x) = a(1 - f(x)^2) > 0$. On en déduit que f est strictement croissante sur \mathbb{R}

De plus, en rappelant à nouveau que $\forall x \in \mathbb{R}, -1 < f(x) < 1$,

f est <u>croissante et bornée</u> sur l'intervalle $\mathbb{R} =]-\infty, +\infty[$.

D'après le <u>théorème de la limite monotone</u> (pour des fonctions : oui, ça existe! Cf les chapitre sur les limites de fonctions...), on en déduit que f admet des limites finies "aux bords de l'intervalle" c'est à dire en $-\infty$ et en $+\infty$.

(b) Pour tout $x \in \mathbb{R}$, en posant x = y dans la relation (\star) , on obtient :

$$f(x+x) = \frac{f(x) + f(x)}{1 + f(x)f(x)}$$
 c'est à dire $f(2x) = \frac{2f(x)}{1 + f(x)^2}$.

Lorsque $x \to -\infty$, on obtient $\ell_1 = \frac{2\ell_1}{1+\ell_1^2}$. Lorsque $x \to +\infty$, on obtient $\ell_2 = \frac{2\ell_2}{1+\ell_2^2}$.

En résolvant (calcul déjà fait plusieurs fois!), on obtient $\ell_1, \ell_2 \in \{0, -1, 1\}$.

En se rappelant que f est strictement croissante sur \mathbb{R} et que f(0) = 0, on a donc forcément

$$\ell_1 = \lim_{x \to -\infty} f(x) = -1$$
 < $f(0) = 0$ < $\ell_2 = \lim_{x \to +\infty} f(x) = 1$.

(c) f est continue et strictement croissante sur \mathbb{R} , et admet donc le tableau de variation :

x	$-\infty$	∞
f(x)	-1	1

D'après le Théorème de la bijection, on sait que f réalise une bijection de \mathbb{R} dans f dans f de plus, f est dérivable sur \mathbb{R} et sa dérivée ne s'annule pas

(elle est strictement positive d'après ce qu'on a déjà dit au 5.(a)).

On peut donc affirmer que la réciproque f^{-1} est dérivable et (formule du cours) :

$$\forall x \in]-1,1[, (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{a(1-f(f^{-1}(x))^2)} = \boxed{\frac{1}{a(1-x^2)}}$$

6. Expression de f^{-1} .

(a) f^{-1} et $x \mapsto \frac{1}{2a} \ln \left(\frac{1+x}{1-x} \right)$ sont toutes deux définies et dérivables sur] -1,1[, donc h l'est

également. (On peut éventuellement vérifier que pour tout $x \in]-1,1[$, on a bien $\frac{1+x}{1-x} > 0.$)

On calcule:
$$\frac{d}{dx} \left(\ln \left(\frac{1+x}{1-x} \right) \right) = \frac{1-x+1+x}{(1-x)^2} \times \frac{1-x}{1+x} = \frac{2}{(1-x)(1+x)} = \frac{2}{1-x^2}$$

donc:
$$\frac{d}{dx} \left(\frac{1}{2a} \ln \left(\frac{1+x}{1-x} \right) \right) = \frac{1}{a(1-x^2)}$$

et donc pour tout $x \in]-1,1[, h'(x) = (f^{-1})'(x) - \frac{1}{a(1-x^2)} = 0].$

(b) Puisque h' = 0 sur]-1,1[, on sait que h est constante sur l'intervalle]-1,1[.

De plus on a vu que f(0)=0, ce qui montre aussi que $f^{-1}(0)=0$. (l'antécédent de 0 est 0)

Ainsi :
$$h(0) = f^{-1}(0) - \frac{1}{2a} \ln(1)$$
, c'est à dire $h(0) = 0$.

On en déduit que h est constante égale à 0 sur]-1,1[, ce qui signifie :

$$\forall x \in]-1, 1[, h(x) = f^{-1}(x) - \frac{1}{2a} \ln\left(\frac{1+x}{1-x}\right) = 0$$

et donc
$$\forall x \in]-1,1[, f^{-1}(x) = \frac{1}{2a} \ln \left(\frac{1+x}{1-x}\right)].$$

7. Expression de f.

On connait l'expression de l'application $f^{-1}:]-1,1[\to \mathbb{R}.$

Calculons celle de sa réciproque $f: \mathbb{R} \to]-1,1[$. (Méthode connue du cours)

Pour tous $x \in]-1,1[$ et $y \in \mathbb{R}$, on a les équivalences :

$$y = f^{-1}(x) \Longleftrightarrow y = \frac{1}{2a} \ln \left(\frac{1+x}{1-x} \right) \Longleftrightarrow 2ay = \ln \left(\frac{1+x}{1-x} \right) \Longleftrightarrow e^{2ay} = \frac{1+x}{1-x} \Longleftrightarrow (1-x)e^{2ay} = 1+x.$$

On poursuit:

$$y = f^{-1}(x) \iff e^{2ay} - xe^{2ay} = 1 + x \iff e^{2ay} - 1 = x(e^{2ay} + 1) \iff \frac{e^{2ay} - 1}{e^{2ay} + 1} = x \iff f(y) = x.$$

On reconnait donc l'expression $f(y) = \frac{e^{2ay} - 1}{e^{2ay} + 1}$. C'est valable pour tout $y \in \mathbb{R}$.

On a bien montré que $\forall x \in \mathbb{R}, \ f(x) = \frac{e^{2ax} - 1}{e^{2ax} + 1}$.

Problème: Matrice de transition d'une chaîne de Markov

Partie I - Contexte probabiliste

Un mobile se déplace aléatoirement entre trois sites, notés A, B et C, selon le protocole suivant :

Pour tout $n \in \mathbb{N}$, on introduit les évènements suivants :

 A_n = "Le mobile se situe en A à l'instant n", B_n = "Le mobile se situe en B à l'instant n", C_n = "Le mobile se situe en C à l'instant n".

- 1. (a) A l'instant 0, le mobile se situe en A, donc : $P(A_0) = 1$ et $P(B_0) = P(C_0) = 0$; On lit sur le schéma que $P(A_1) = p_1$, $P(B_1) = 1 p_1$ et $P(C_1) = 0$.
 - (b) On peut expliquer en distinguant les cas, ou bien utiliser la formule des probabilités totales. Puisqu'à l'instant 1, le mobile se situe forcément en A ou bien en B, (A_1, B_1) forme un système complet d'évènements. On a donc :

$$P(A_2) = P(A_1)P_{A_1}(A_2) + P(B_1)P_{B_1}(A_2) = p_1p_1 + (1 - p_1)p_2 = \boxed{p_1^2 + (1 - p_1)p_2}$$

$$P(B_2) = P(A_1)P_{A_1}(B_2) + P(B_1)P_{B_1}(B_2) = p_1(1 - p_1) + (1 - p_1) \times 0 = \boxed{p_1(1 - p_1)}$$

$$P(C_2) = P(A_1)P_{A_1}(C_2) + P(B_1)P_{B_1}(C_2) = p_1 \times 0 + (1 - p_1) \times (1 - p_2) = \boxed{(1 - p_1)(1 - p_2)}$$

2. Soit $n \in \mathbb{N}$ fixé. A l'instant n, le mobile se situe soit en A, soit en B, soit en C. Ainsi (A_n, B_n, C_n) forme un système complet d'évènements

(un et un seul de ces trois évènements est forcément réalisé).

D'après la formule des probabilités totales, on peut écrire, pour n'importe quel évènement E:

$$P(E) = P(A_n)P_{A_n}(E) + P(B_n)P_{B_n}(E) + P(C_n)P_{C_n}(E).$$

En particulier, cela permet de calculer $P(A_{n+1}), P(B_{n+1}), P(C_{n+1})$:

$$\begin{cases} P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(B_n)P_{B_n}(A_{n+1}) + P(C_n)P_{C_n}(A_{n+1}) \\ P(B_{n+1}) = P(A_n)P_{A_n}(B_{n+1}) + P(B_n)P_{B_n}(B_{n+1}) + P(C_n)P_{C_n}(B_{n+1}) \\ P(C_{n+1}) = P(A_n)P_{A_n}(C_{n+1}) + P(B_n)P_{B_n}(C_{n+1}) + P(C_n)P_{C_n}(C_{n+1}) \end{cases}$$

En remplaçant avec les probabilités de "sauts" qu'on lit sur le schéma, cela donne :

$$\begin{cases} P(A_{n+1}) = P(A_n) \times p_1 + P(B_n) \times p_2 + P(C_n) \times 0 \\ P(B_{n+1}) = P(A_n) \times (1 - p_1) + P(B_n) \times 0 + P(C_n) \times (1 - p_3) \\ P(C_{n+1}) = P(A_n) \times 0 + P(B_n) \times (1 - p_2) + P(C_n) \times p_3 \end{cases}$$

On obtient donc finalement les relations :

$$\begin{cases} P(A_{n+1}) = p_1 P(A_n) + p_2 P(B_n) \\ P(B_{n+1}) = (1 - p_1) P(A_n) + (1 - p_3) P(C_n) \\ P(C_{n+1}) = (1 - p_2) P(B_n) + p_3 P(C_n) \end{cases}$$

3. (a) On remarque que les relations établies en question 2. s'écrivent matriciellement :

$$\begin{pmatrix} P(A_{n+1}) \\ P(B_{n+1}) \\ P(C_{n+1}) \end{pmatrix} = \begin{pmatrix} p_1 & p_2 & 0 \\ 1 - p_1 & 0 & 1 - p_3 \\ 0 & 1 - p_2 & p_3 \end{pmatrix} \begin{pmatrix} P(A_n) \\ P(B_n) \\ P(C_n) \end{pmatrix}$$

c'est à dire que pour tout $n \in \mathbb{N}$, $U_{n+1} = MU_n$.

A partir de là, on obtient par récurrence immédiate : $\forall n \in \mathbb{N}, U_n = M^n U_0$,

c'est à dire effectivement : $\forall n \in \mathbb{N}, \ U_n = M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

(b) Dans le programme suivant, on définit les matrice M et U_0 en explicitant leurs coefficients, puis on calcule et on renvoie le produit $U_n = M^n U_0$.

```
import numpy as np
improt numpy.linalg as al

def calcul_proba(p1,p2,p3,n) :

    M = np.array([ [p1,p2,0],[1-p1,0,1-p3],[0,1-p2,p3] ])
    U0 = np.array([ [1], [0], [0] ])
    U = np.dot( al.matrix_power(M,n), U0)

    return U
```

Partie II - Etude du mobile symétrique

Dans cette partie, on se place dans le cas d'un mobile symétrique dont toutes les probabilités de déplacement sont égales. On suppose ainsi que $p_1 = p_2 = p_3 = \frac{1}{2}$. On introduit par ailleurs la matrice $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

4. Avec les valeurs précisées dans l'énoncé, on a ici $M = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 1 \end{pmatrix}.$

Il est donc facile de repérer que $M = \frac{1}{2}(J - S)$ avec $S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

(Attention : ce n'est pas une matrice diagonale!

Plutôt une anti-diagonale... Pas de propriétés particulières)

5. (a) En calculant on a facilement $J^2 = 3J$, puis

$$J^3 = J^2 J = (3J)J = 3J^2 = 3(3J) = 3^2 J$$

et ainsi de suite... Par récurrence immédiate, on obtient : $\forall k \in \mathbb{N}^*, \ J^k = 3^{k-1}J$. (Attention, cette formule ne fonctionne par pour k = 0, puisque $J^0 = I_3$)

(b) On a $S^0=I_3$, $S^1=S$, et ensuite $S^2=I_3$, donc $S^3=SS^2=SI_3=S$, puis $S^4=SS^3=SS=S^2=I_3$ et ainsi de suite...

Par récurrence immédiate, on obtient $\forall k \in \mathbb{N}, \ S^k = \begin{cases} I_3 \text{ si } k \text{ est pair } \\ S \text{ si } k \text{ est impair } \end{cases}$

(c) Un simple calcul montre que SJ = JS = J, donc S et J commutent. Par ailleurs, on a $JS^0 = JI_3 = J$, puis $JS^1 = JS = J$, puis $JS^2 = (JS)S = (J)S = J$ et ainsi de suite... Ainsi, par récurrence immédiate : $\forall k \in \mathbb{N}, \ JS^k = J$.

6. (a) Puisque $M = \frac{1}{2}(J - S)$, on a pour tout $n \in \mathbb{N}$,

$$M^n = \left(\frac{1}{2}(J-S)\right)^n = \left(\frac{1}{2}\right)^n (J-S)^n = \frac{1}{2^n}(J-S)^n.$$

Pour calculer $(J - S)^n = (J + (-S))^n$, on peut utiliser la formule du binôme (possible car les matrices J et -S commutent):

$$(J-S)^n = (J+(-S))^n = \sum_{k=0}^n \binom{n}{k} J^k (-S)^{n-k} = \sum_{k=0}^n \binom{n}{k} J^k (-1)^{n-k} S^{n-k} = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} J^k S^{n-k}.$$

Puisque la formule obtenue pour J^k ne fonctionne que pour $k \geqslant 1$, on isole le terme où k=0 dans la somme :

$$(J-S)^n = (-1)^n S^n + \sum_{k=1}^n \binom{n}{k} (-1)^{n-k} (3^{k-1}J) S^{n-k}$$

On rappelle enfin qu'on a toujours $JS^{n-k} = J$ (quel que soit l'exposant n-k) donc :

$$(J-S)^{n} = (-1)^{n} S^{n} + \sum_{k=1}^{n} \binom{n}{k} (-1)^{n-k} 3^{k-1} (JS^{n-k})$$

$$(-1)^{n} S^{n} + \sum_{k=1}^{n} \binom{n}{k} (-1)^{n-k} 3^{k-1} J$$

$$= (-1)^{n} S^{n} + \left(\sum_{k=1}^{n} \binom{n}{k} (-1)^{n-k} 3^{k-1}\right) J \quad \text{(en mettant } J \text{ en facteur)}$$

En revenant à notre epression $M^n = \frac{1}{2^n}(J-S)^n$,

on obtient donc bien :
$$M^n = \frac{1}{2^n} \left((-1)^n S^n + \left(\sum_{k=1}^n \binom{n}{k} (-1)^{n-k} 3^{k-1} \right) J \right).$$

(b) Pour obtenir l'expression voulue dans cette question, il reste juste à montrer que

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^{n-k} 3^{k-1} = \frac{2^n - (-1)^n}{3}.$$

C'est un exercice sur les sommes de réels, qui fait penser à la formule du binôme... On peut écrire :

$$\begin{split} \sum_{k=1}^{n} \binom{n}{k} (-1)^{n-k} 3^{k-1} &= 3^{-1} \sum_{k=1}^{n} \binom{n}{k} (-1)^{n-k} 3^{k} \quad (\text{ on factorise par } 3^{-1}) \\ &= 3^{-1} \left(\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} 3^{k} - (-1)^{n} \right) \quad (\text{ on ajoute/soustrait le terme } k = 0) \\ &= 3^{-1} \Big(((-1) + 3)^{n} - (-1)^{n} \Big) \quad (\text{ on reconnait la formule du binôme}) \\ &= \frac{1}{3} \Big(2^{n} - (-1)^{n} \Big) \end{split}$$

Ainsi, on obtient bien : $\boxed{M^n = \frac{1}{2^n} \left((-1)^n S^n + \frac{2^n - (-1)^n}{3} J \right)}.$

7. (a) Soit $n \in \mathbb{N}$ fixé.

On rappelle que d'après 3.(a), $U_{2n}=M^{2n}U_0$. La matrice M^{2n} est ici :

$$M^{2n} = \frac{1}{4^n} \left(S^{2n} + \frac{4^n - 1}{3} J \right) = \frac{1}{4^n} \left(I_3 + \frac{4^n - 1}{3} J \right) = 4^{-n} I_3 + \frac{1 - 4^{-n}}{3} J$$

$$= 4^{-n} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1 - 4^{-n}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} + \frac{2}{3} 4^{-n} & \frac{1}{3} - \frac{1}{3} 4^{-n} & \frac{1}{3} - \frac{1}{3} 4^{-n} \\ \frac{1}{3} - \frac{1}{3} 4^{-n} & \frac{1}{3} + \frac{2}{3} 4^{-n} & \frac{1}{3} + \frac{2}{3} 4^{-n} \end{pmatrix}.$$

L'égalité $U_{2n}=M^{2n}U_0$ donne donc :

$$\begin{pmatrix}
P(A_{2n}) \\
P(B_{2n}) \\
P(C_{2n})
\end{pmatrix} = \begin{pmatrix}
\frac{1}{3} + \frac{2}{3}4^{-n} & \frac{1}{3} - \frac{1}{3}4^{-n} & \frac{1}{3} - \frac{1}{3}4^{-n} \\
\frac{1}{3} - \frac{1}{3}4^{-n} & \frac{1}{3} + \frac{2}{3}4^{-n} & \frac{1}{3} - \frac{1}{3}4^{-n} \\
\frac{1}{3} - \frac{1}{3}4^{-n} & \frac{1}{3} - \frac{1}{3}4^{-n} & \frac{1}{3} + \frac{2}{3}4^{-n}
\end{pmatrix} \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
\frac{1}{3} + \frac{2}{3}4^{-n} \\
\frac{1}{3} - \frac{1}{3}4^{-n} \\
\frac{1}{3} - \frac{1}{3}4^{-n}
\end{pmatrix}$$

On obtient donc bien $P(A_{2n}) = \frac{1}{3} + \frac{2}{3}4^{-n}$ et $P(B_{2n}) = P(C_{2n}) = \frac{1}{3} - \frac{1}{3}4^{-n}$

On peut faire de même avec $U_{2n+1} = M^{2n+1}U_0$, avec cette fois

$$\begin{split} M^{2n+1} &= \frac{1}{2^{2n+1}} \left(-S + \frac{2^{2n+1} + 1}{3} J \right) = -\frac{4^{-n}}{2} S + \left(\frac{1}{3} + \frac{4^{-n}}{6} \right) J \\ &= -\frac{4^{-n}}{2} \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix} + \left(\frac{1}{3} + \frac{4^{-n}}{6} \right) \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{3} + \frac{4^{-n}}{6} & \frac{1}{3} + \frac{4^{-n}}{6} & \frac{1}{3} - \frac{4^{-n}}{3}\\ \frac{1}{3} + \frac{4^{-n}}{6} & \frac{1}{3} - \frac{4^{-n}}{3} & \frac{1}{3} + \frac{4^{-n}}{6}\\ \frac{1}{3} - \frac{4^{-n}}{3} & \frac{1}{3} + \frac{4^{-n}}{6} & \frac{1}{3} + \frac{4^{-n}}{6} \end{pmatrix} \end{split}$$

et on obtient alors : $P(A_{2n+1}) = P(B_{2n+1}) = \frac{1}{3} + \frac{1}{6}4^{-n}$ et $P(C_{2n+1}) = \frac{1}{3} - \frac{1}{3}4^{-n}$.

(b) On note que $\lim_{n \to +\infty} P(A_{2n}) = \lim_{n \to +\infty} P(A_{2n+1}) = \frac{1}{3}$

Il en résulte (convergence des termes pairs et impairs) que $\lim_{n \to +\infty} P(A_n) = \frac{1}{3}$

De même, on obtient $\lim_{n \to +\infty} P(B_n) = \lim_{n \to +\infty} P(C_n) = \frac{1}{3}$.

 \overline{A} , en B ou en C. C'est cohérent que les trois sites aient la même probabilité d'accueil puisque les mouvements du mobile sont "symétriques" et ne privilégient aucun site en particulier.

Partie III - Etude d'un mobile asymétrique

Dans cette partie, on se place dans le cas d'un mobile asymétrique ayant les probabilités de déplacement :

$$p_1 = \frac{1}{2}, \quad p_2 = \frac{3}{4}, \quad p_3 = \frac{1}{2}.$$

On introduit par ailleurs le polynôme $P(X) = 4X^3 - 4X^2 - X + 1$.

8. (a) Avec les valeurs proposées par l'énoncé, la matrice est cette fois : $M = \begin{pmatrix} \frac{1}{2} & \frac{3}{4} & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$.

On souhaite calculer : $P(M) = 4M^3 - 4M^2 - M + I_3$.

```
import numpy as np
import numpy.linalg as al
M = np.array([ [1/2,3/4,0],[1/2,0,1/2],[0,1/4,1/2] ])
A = 4*al.matrix_power(M,3) - 4*al.matrix_power(M,2) - M + eye(3)
print(A)
```

(b) On admet, comme le précise l'énoncé que P(M) = 0, on sait donc que :

$$4M^{3} - 4M^{2} - M + I_{3} = 0 \iff 4M^{3} - 4M^{2} - M = -I_{3}$$

$$\iff -4M^{3} + 4M^{2} + M = I_{3}$$

$$\iff (-4M^{2} + 4M + I_{3})M = I_{3}$$

Ceci montre que M est inversible et que $M^{-1} = -4M^2 + 4M + I_3$.

(c) On a $P(X) = 4X^3 - 4X^2 - X + 1$.

On note facilement que 1 est une racine de P: on peut donc factoriser P par (X-1).

En posant la division euclidienne, on trouve facilement :

$$P = (X - 1)(4X^{2} - 1) = 4(X - 1)(X^{2} - \frac{1}{4}) = 4(X - 1)(X^{2} - (\frac{1}{2})^{2})$$

d'où finalement la factorisation :
$$P = 4(X - 1)(X - \frac{1}{2})(X + \frac{1}{2})$$
.

P a donc 3 racines simples qui sont 1, $\frac{1}{2}$ et $-\frac{1}{2}$.

9. (a) E_1 est l'ensemble des matrices colonnes $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ telles que MX = X. Résolvons cette équation :

$$\begin{split} MX &= X \Longleftrightarrow \begin{pmatrix} \frac{1}{2} & \frac{3}{4} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{4} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Longleftrightarrow \begin{cases} \frac{1}{2}x & +\frac{3}{4}y & = x \\ \frac{1}{2}x & +\frac{1}{2}z & = y \\ \frac{1}{4}y & +\frac{1}{2}z & = z \end{cases} \\ & \iff \begin{cases} -\frac{1}{2}x & +\frac{3}{4}y & = 0 \\ \frac{1}{2}x & -y & +\frac{1}{2}z & = 0 \\ & \frac{1}{4}y & -\frac{1}{2}z & = 0 \end{cases} \Longleftrightarrow \begin{cases} -\frac{1}{2}x & +\frac{3}{4}y & = 0 \\ & -\frac{1}{4}y & +\frac{1}{2}z & = 0 \\ & \frac{1}{4}y & -\frac{1}{2}z & = 0 \end{cases} \\ & \iff \begin{cases} -\frac{1}{2}x & +\frac{3}{4}y & = 0 \\ & -\frac{1}{4}y & +\frac{1}{2}z & = 0 \end{cases} \Longleftrightarrow \begin{cases} x & =\frac{3}{2}y \\ y & = 2z \end{cases} \Longleftrightarrow \begin{cases} x & = 3z \\ y & = 2z \end{cases} \end{split}$$

Les solutions sont donc les matrices colonnes de la forme $X=\begin{pmatrix}3z\\2z\\z\end{pmatrix}$ avec $z\in\mathbb{R}.$

Ainsi : $E_1 = \left\{ \begin{pmatrix} 3z \\ 2z \\ z \end{pmatrix}, z \in \mathbb{R} \right\}$. On note effectivement qu'en particulier, $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \in E_1$.

(b) Un simple calcul montre que $M { -1 \choose 0} = { -\frac{1}{2} \choose 0} = \frac{1}{2} { -1 \choose 0}$, donc par définition, $\overline{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}} \in E_{\frac{1}{2}}$ De même, $M { 3 \choose -4 \choose 1} = { -\frac{3}{2} \choose -\frac{1}{2}} = -\frac{1}{2} { 3 \choose -\frac{1}{4}}$, donc par définition, $\overline{ \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}} \in E_{-\frac{1}{2}}$.

10. Pour tous $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, on a les équivalences suivantes :

$$QX = Y \Longleftrightarrow \begin{pmatrix} 3 & -1 & 3 \\ 2 & 0 & -4 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Longleftrightarrow \begin{cases} 3x - y + 3z & = a \\ 2x & -4z & = b \\ x + y + z & = c \end{cases}$$

...et après résolution de ce système, on trouve :

$$\iff \left\{ \begin{array}{ll} x = & \frac{1}{6}a + \frac{1}{6}b + \frac{1}{6}c \\ y = & -\frac{1}{4}a & +\frac{3}{4}c \\ z = & \frac{1}{12}a - \frac{1}{6}b + \frac{1}{12}c \end{array} \right. \iff \left(\begin{matrix} x \\ y \\ z \end{matrix} \right) = \left(\begin{matrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ -\frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{12} & -\frac{1}{6} & \frac{1}{12} \end{matrix} \right) \left(\begin{matrix} a \\ b \\ c \end{matrix} \right) \iff X = Q^{-1}Y.$$

Ces équivalences montrent que Q est inversible et $Q^{-1} = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ -\frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{12} & -\frac{1}{6} & \frac{1}{12} \end{pmatrix}$.

11. (a) On cherche une matrice diagonale $D=\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ telle que :

$$\begin{split} MQ &= QD \Longleftrightarrow \begin{pmatrix} \frac{1}{2} & \frac{3}{4} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{4} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 & -1 & 3 \\ 2 & 0 & -4 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 3 \\ 2 & 0 & -4 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \\ &\iff \begin{pmatrix} 3 & -\frac{1}{2} & -\frac{3}{2} \\ 2 & 0 & 2 \\ 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 3a & -b & 3c \\ 2a & 0 & -4c \\ a & b & c \end{pmatrix} \end{split}$$

Il faut et il suffit de choisir $a=1,\ b=\frac{1}{2}$ et $c=-\frac{1}{2},$ c'est à dire $D=\begin{pmatrix}1&0&0\\0&\frac{1}{2}&0\\0&0&-\frac{1}{2}\end{pmatrix}$

(b) Puisque Q est inversible, on a :

$$MQ = QD \iff MQQ^{-1} = QDQ^{-1} \iff MI_3 = QDQ^{-1} \iff \boxed{M = QDQ^{-1}}$$

- 12. (a) Montrons par récurrence que pour tout $n \in \mathbb{N}$, $M^n = QD^nQ^{-1}$.
 - <u>Initialisation</u>: On a bien $M^0 = QD^0Q^{-1}$ car $M^0 = I_3$ et $QD^0Q^{-1} = QI_3Q^{-1} = QQ^{-1} = I_3$.
 - <u>Hérédité</u>: Soit $n \in \mathbb{N}$ fixé. Supposons que $M^n = QD^nQ^{-1}$ et montrons que $M^{n+1} = QD^{n+1}Q^{-1}$. On a vu en 11.(b) que $M = QDQ^{-1}$, donc :

$$M^{n+1} = MM^n = (QDQ^{-1})(QD^nQ^{-1}) = QD\underbrace{(Q^{-1}Q)}_{=I_3}D^nQ^{-1} = QDD^nQ^{-1} = QD^{n+1}Q^{-1}.$$

Ceci achève la récurrence.

(b)
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}$$
 est une matrice diagonale donc le calcul est immédiat :
$$D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (\frac{1}{2})^n & 0 \\ 0 & 0 & (-\frac{1}{2})^n \end{pmatrix}$$

13. (a) On rappelle que d'après 3.(a), pour tout $n \in \mathbb{N}$, $U_n = M^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, ce qui donne ici :

$$\begin{pmatrix} P(A_n) \\ P(B_n) \\ P(C_n) \end{pmatrix} = QD^n Q^{-1} \begin{pmatrix} \frac{1}{0} \\ 0 \end{pmatrix} = QD^n \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ -\frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{12} & -\frac{1}{6} & \frac{1}{12} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = QD^n \begin{pmatrix} \frac{1}{6} \\ -\frac{1}{4} \\ \frac{1}{12} \end{pmatrix}$$

$$= Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & (\frac{1}{2})^n & 0 \\ 0 & 0 & (-\frac{1}{2})^n \end{pmatrix} \begin{pmatrix} \frac{1}{6} \\ -\frac{1}{4} \\ \frac{1}{12} \end{pmatrix} = Q \begin{pmatrix} \frac{1}{6} \\ -\frac{1}{4} (\frac{1}{2})^n \\ \frac{1}{12} (-\frac{1}{2})^n \end{pmatrix}$$

$$= \begin{pmatrix} 3 & -1 & 3 \\ 2 & 0 & -4 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{6} \\ -\frac{1}{4} (\frac{1}{2})^n \\ \frac{1}{12} (-\frac{1}{2})^n \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{4} (\frac{1}{2})^n + \frac{1}{4} (-\frac{1}{2})^n \\ \frac{1}{3} - \frac{1}{3} (-\frac{1}{2})^n \\ \frac{1}{6} - \frac{1}{4} (\frac{1}{2})^n + \frac{1}{12} (-\frac{1}{2})^n \end{pmatrix}$$

On obtient donc finalement:

$$P(A_n) = \frac{1}{2} + \frac{1}{4} \left(\frac{1}{2}\right)^n + \frac{1}{4} \left(-\frac{1}{2}\right)^n, \quad P(B_n) = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^n, \quad P(C_n) = \frac{1}{6} - \frac{1}{4} \left(\frac{1}{2}\right)^n + \frac{1}{12} \left(-\frac{1}{2}\right)^n$$

(b) On en déduit facilement que
$$\lim_{n \to +\infty} P(A_n) = \frac{1}{2}, \lim_{n \to +\infty} P(B_n) = \frac{1}{3}, \lim_{n \to +\infty} P(C_n) = \frac{1}{6}$$

<u>Interprétation</u>: Au bout d'un temps très long, le mobile aura environ 1 chance sur 2 de se situer en A, 1 chance sur 3 de se situer en B, et seulement 1 chance sur 6 de se situer en C.

Cette asymétrie est cohérente avec les valeurs de p_1, p_2, p_3 choisies dans cette partie : puisque $p_2 = \frac{3}{4}$, à chaque fois qu'il se situe en B, le mobile a 3 chance sur 4 de sauter vers A et seulement 1 chance sur 4 de sauter vers C. Le site A est donc "privilégié" lors des déplacements, et le site C a tendance à être délaissé!