AI1110 Assignment 11

Tejal Kulkarni CS21BTECH11058

May 2022 Papoullis Text Book

Example 7-8:Using the equation,

$$\phi_z(w) = E\left\{e^{jw(x_1 + x_2 +x_n)}\right\} = \phi_1(w)....\phi_n(w)$$
(1)

where x_i are independent and $\phi_i(w)$ is the characteristic function of x_i .

Prove:

- (a) Bernoulli Trials Fundamental theorem
- (b) Poisson Theorem

Solution:

(a) Bernoulli Trials:

Consider the random variable x_i as follows: $x_i = 1$ if head shows the at the ith trial and $x_i = 0$ otherwise. Thus,

$$\Pr\left(x_i = 1\right) = \Pr\left(h\right) = p \tag{2}$$

$$\Pr\left(x_i = 0\right) = \Pr\left(t\right) = q \tag{3}$$

$$\phi_i(w) = pe^{jw} + q \tag{4}$$

The random variable $z = x_1 + + x_n$ takes the values 0,1....,n and $\{z = k\}$ is the event $\{k \text{ heads in n tosses}\}$. Furthermore,

$$\phi_z(w) = E\left\{e^{jwz}\right\} = \sum_{k=0}^n \Pr\left(z = k\right) e^{jkw}$$
(5)

The random variables x_i are independent because x_i depends only on the outcomes of the ith trial. Hence,

$$\phi_i(w) = (pe^{jw} + q)^n = \sum_{k=0}^n {}^{n}C_k p^k e^{jkw} q^{n-k}$$
(6)

Comparing with (5), we get,

$$Pr(z = k) = Pr(k \text{ heads}) = {}^{n}C_{k}p^{k}q^{n-k}$$
 (7)

Hence Proved.

(b) Poisson Theorem:

We will show that if $p \ll 1$, then

$$\Pr(z=k) = \frac{e^{-np} (np)^k}{k!}.$$
 (8)

We will establish a more general result. Suppose the random variables x_i are independent and each takes values 1 and 0 with respective probabilities p_i and $q_i = 1 - p_i$. If $p_i << 1$ then,

$$e^{p_i(e^{jw}-1)} = 1 + p_i(e^{jw}-1)$$
 (9)

$$= p_i e^{jw} + q_i \tag{10}$$

$$=\phi_{i}\left(w\right) \tag{11}$$

With $z = x_1 + \dots + x_n$, it follows from (1) that,

$$\phi_Z(w) = e^{p_1(e^{jw}-1)}...e^{p_n(e^{jw}-1)} = e^{a(e^{jw}-1)}$$
(12)

where $a = p_1 + + p_n$. This leads to the conclusion that the random variable z is approximately Poisson distributed with parameter a. It can be shown that the result is exact in the limit if

$$p_i \to 0$$
 and $p_1 + \dots + p_n \to a$ as $n \to \infty$
Hence Proved