Міністерство науки і освіти України

Звіт з практичної роботи З З дисципліни «АПЗ»

Тема «тестування обраного об'єкту »

Виконав студент: групи 123-21-2 Маймула В.М

Перевірив: Шевченко Ю.О

м. Дніпро 2024 рік

Опис об'єкта: Квадрокоптер

Квадрокоптер — це безпілотний літальний апарат з чотирма пропелерами, який може використовуватися для зйомки, досліджень та розваг.

Основні частини квадрокоптера:

1. Корпус

Корпус ϵ основною структурою, яка об'єдну ϵ всі компоненти квадрокоптера. Він забезпечу ϵ міцність і захища ϵ внутрішні елементи від пошкоджень.

2. Пропелери

Пропелери — це лопаті, які обертаються, створюючи підйомну силу, що дозволяє квадрокоптеру злітати і переміщатися у повітрі. Вони працюють попарно, щоб забезпечити стабільність і маневреність апарата.

3. Камера

Камера використовується для зйомки фото та відео під час польоту. Вона може бути фіксованою або рухомою (зі стабілізацією), щоб забезпечити якісне зображення, навіть при русі.

4. Батарея

Батарея ϵ джерелом живлення для квадрокоптера і всіх його компонентів. Від її ϵ мності залежить тривалість польоту. Більшість квадрокоптерів використовують літій-полімерні батареї, які забезпечують достатній час роботи без значного збільшення ваги.

5. Контролер (дистанційне керування)

Контролер — це пульт, за допомогою якого оператор керує квадрокоптером, подає команди на зліт, посадку та зміну напрямку руху. Багато сучасних контролерів мають інтегровані дисплеї або кріплення для смартфона.

6. Датчики (гіроскоп, акселерометр тощо)

Датчики використовуються для стабілізації квадрокоптера під час польоту. Гіроскопи та акселерометри вимірюють рух і нахили, що дозволяє квадрокоптеру автоматично підтримувати рівновагу та адаптуватися до змін у положенні.

7. Модуль GPS

Модуль GPS дозволяє квадрокоптеру визначати своє точне місцезнаходження. Завдяки цьому модулю квадрокоптер може стабільно триматися на заданій позиції, повернутися до стартової точки, а також виконувати автоматичні маршрути.

Приклади тест-кейсів для квадрокоптера

N₂	Тест-Кейс	Очікуваний результат
1	Перевірити, чи пропелери	Пропелери надійно закріплені, без
	стабільно працюють і не вібрують	зайвих вібрацій при обертах 5000
	під час роботи.	об/хв.
2	Визначити максимальну відстань,	Очікуваний результат:
	на яку можна керувати	Квадрокоптер зберігає з'єднання з
	квадрокоптером без втрати	контролером на відстані до 2000
	сигналу.	метрів на відкритій місцевості.
3	Оцінити час роботи	Час роботи складає 25 хвилин у
	квадрокоптера від однієї зарядки	режимі стабільного польоту при
	при різних режимах польоту	середній швидкості.
4	Перевірити, чи квадрокоптер	GPS відображає місцезнаходження з
	правильно визначає своє	точністю до 1-2 метрів.
	місцезнаходження за допомогою GPS.	
5	Перевірити якість зображення з	Зображення чітке, роздільна
	камери під час польоту.	здатність 4К (3840х2160),
		стабілізація працює належним
		чином.
6	Оцінити, чи квадрокоптер	Відхилення по горизонталі не
	утримує горизонтальну	перевищує 2 градуси.
	стабільність під час польоту.	
7	Перевірити, чи повертається	Квадрокоптер автоматично
	квадрокоптер до місця старту у	повертається до стартової точки з
	випадку втрати зв'язку.	точністю до 5 метрів.
8	Виявити, як датчики реагують на	Квадрокоптер розпізнає перешкоди
	перешкоди та чи правильно	на відстані до 5 метрів і успішно їх
	квадрокоптер їх обходить.	уникає.
9	Визначити максимальну	Максимальна швидкість у
	швидкість руху квадрокоптера у	спортивному режимі досягає 50
1.0	різних режимах.	км/год.
10	Перевірити якість фото та відео за	Якісні зображення при хорошої
	умов хорошої і низької	освітленні та прийнятна якість при
11	освітленості.	низької освітленності.
11	Оцінити швидкість реакції на	Затримка реакції на команди не
	команди, що подаються з	перевищує 0.1 секунди.
12	Контролера.	Крапрокоптер стабіш шай пац
12	Перевірити стабільність польоту при поривах вітру різної сили.	Квадрокоптер стабільний при поривах вітру до 10 м/с.
13	Оцінити час повної зарядки	Батарея заряджається за 90 хвилин і
13	батареї та чи не перегрівається	не перегрівається вище 45°С.
	вона.	по перегрівається вище 43 С.
14	Перевірити витривалість корпусу	Корпус витримує падіння з висоти
	під час падіння з невеликої	до 1.5 метрів без механічних
	висоти.	пошкоджень.
	Directifi.	пошкоджень.

15	Оцінити, чи квадрокоптер	Квадрокоптер зберігає
	продовжує працювати після	працездатність після 5-хвилинного
	впливу легкого дощу	впливу легкого дощу.
16	Перевірити, чи може	Квадрокоптер зупиняється в межах
	квадрокоптер точно зупинитися у	0.5 метрів від заданої точки.
	визначеній точці.	
17	Оцінити рівень шуму	Рівень шуму не перевищує 70 дБ
	квадрокоптера під час польоту на	при максимальній швидкості.
	різних швидкостях.	
18	Перевірити, чи квадрокоптер	Квадрокоптер здійснює м'яку
	може здійснювати м'яку посадку	посадку з вертикальною швидкістю
	без ударів.	не більше 0.5 м/с.
19	Перевірити, чи коректно	З'єднання стабільне на відстані до
	квадрокоптер з'єднується з	100 метрів, з мінімальними
	додатком на смартфоні.	затримками передачі даних.
20	Перевірити, чи квадрокоптер	Дані польоту записуються
	записує всі дані польоту	коректно, відображаються в додатку
	(маршрут, висоту, швидкість).	з точністю до 1 метра.

Висновок

У ході цієї роботи були розглянуті основні компоненти квадрокоптера та розроблені тест-кейси для оцінки його якості та надійності. Запропоновані тест-кейси охоплюють різні аспекти роботи квадрокоптера, зокрема стабільність і закріплення пропелерів, роботу GPS-модуля, якість зображення камери, стабільність при поривах вітру, точність утримання позиції, а також час роботи батареї. Виконання цих тестів дозволяє переконатися, що квадрокоптер відповідає технічним характеристикам і забезпечує стабільний та безпечний політ.