Math 131AH – Honors Real Analysis I

University of California, Los Angeles

Duc Vu

Fall 2020

This is math 131AH – Honors Real Analysis I taught by Professor Greene, and our TA is Haiyu Huang. We meet weekly on MWF from 1:00pm – 2:00pm for lectures. There are two textbooks used for the class, *Principles of Mathematical Analysis* by *Rudin* and *Metric Spaces* by *Copson*. You can find other lecture notes at my github site. Please let me know through my email if you spot any mathematical errors/typos.

Contents

1	Lec 1: Oct 2, 2020 1.1 Introduction	4
2	Lec 2: Oct 5, 20202.1 Mathematical Induction and More on Real Numbers	
3	Lec 3: Oct 7, 20203.1 Cauchy Sequence	7 7 9
4	Lec 4: Oct 9, 2020 4.1 Bolzano – Weierstrass Theorem	9
5	Lec 5: Oct 12, 2020 5.1 Equivalence Relation	12 12
6	Lec 6: Oct 14, 2020 6.1 Continuous Functions on Closed Interval	14
7	Lec 7: Oct 16, 2020 7.1 Uniform Continuity	19
8	Lec 8: Oct 19, 2020 8.1 Convergence of Series	21 21
9	Lec 9: Oct 21, 2020 9.1 Metric Spaces	2 4

10	Lec 10: Oct 23, 2020 10.1 Metric on \mathbb{R}^n	27 27
	10.1 Metric on R 10.2 Triangle Inequality in Euclidean Space	28
11	Lec 11: Oct 26, 2020	31
	11.1 Metric Spaces Examples	31 33
12	Lec 12: Oct 28, 2020	34
	12.1 Midterm Announcement	34
	12.2 Open sets in Metric Space	34
13	Lec 13: Oct 30, 2020	38
	13.1 Open Sets (Cont'd)	38
	13.2 Topological Space	39 39
	15.5 Closed Sets	3 9
14	Lec 14: Nov 2, 2020	40
	14.1 Set, Tables, & Characteristics Functions	40 41
15	Lec 15: Nov 4, 2020	43
	15.1 More on Open and Closed Sets	43
16	Midterm 1: Nov 6, 2020	45
17	Lec 16: Nov 9, 2020	45
	17.1 Completeness (Cont'd)	45
18	Dis 1: Oct 1, 2020	47
	18.1 Induction	48
19	Dis 2: Oct 8, 2020	49
	19.1 Number System	49
	19.2 Equivalence Relation	50
20	Dis 3: Oct 13, 2020	50
	20.1 Equivalence Relation (Cont'd)	50
	20.2 Construction of \mathbb{R} via Cauchy Sequences(Cantor)	51
21	Dis 4: Oct 20, 2020	52
	21.1 Least Upper Bound and Its Applications	52
	21.2 Continuity	53
22	Dis 5: Oct 27, 2020	54
	22.1 Metric Spaces	54
23	Dis 6: Nov 3, 2020	57
	23.1 Basic Topology – Metric Space	57

24 Dis 7: Nov 10, 2020	60
24.1 Some Nice Theorems	60
24.2 Completeness	62
List of Theorems	
2.2 Fundamental Theorem of Arithmetic	6
4.1 Bolzano – Weierstrass	9
7.3 Heine – Cantor (Uniformly Continuous)	20
8.2 Absolute Convergence	23
12.4 Continuity – Open Sets	37
21.3 Nested Interval	52
21.4 (4.1)	53
22.12 Cauchy – Schwarz	57
23.7	59
23.11	59
23.15	60
24.1 Extreme Value	60
24.3 Intermediate Value	61
24.6 Heine – Cantor	61
	01
List of Definitions	_
3.1 Sequence	7
3.2 Cauchy Sequence	8
6.2 Continuity	14
7.1 Uniform Continuity	19
8.1 Convergence of Series	21
9.1 Metric Spaces	24
12.1 Open sets	34
13.2 Closed Sets	39
19.1 Least Upper Bound Property	50
19.5 Convergent Sequences	50
21.8 Monotone Sequence	53
$21.10 (6.2) \dots \dots$	54
21.11 (7.1)	54
$22.1 (9.1) \dots \dots$	55
22.5	56
22.7 Completeness of Metric Space	56
22.11Orthogonality	57
23.1 Open/Closed Sets	57
23.8 Boundedness	59
23.9 Closure	59
23.12Limit Point	59
24.10Dense Set	62

$\S1$ Lec 1: Oct 2, 2020

Overview:

 \bullet Hmwrk: 30 %

 \bullet Midterm 1: 20 %

 \bullet Midterm 2: 20 %

• Final: 30 %

§1.1 Introduction

 $\underline{\text{functions}} \to 1, 2, 3, 4, 5, 6, 7 \dots$

functions defined on $\mathbb Q$ with value in $\mathbb Q$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$$

 $a_i \in \mathbb{Q}$ $f(x) \in \mathbb{Q}$ if $x \in \mathbb{Q}$. Continuity makes sense.

$$x_0, x$$
 xclose to $x_0 \implies f(x) \operatorname{close} f(x_0)$

polynomials are continuous.

Somthing wrong: $\sqrt{2}$ is missing. What are these numbers that are not $\in \mathbb{Q}$? Choice:

- 1. Assume everything works and isolate what you need about "real numbers" (most of Rudin chap 1).
- 2. Construct the real numbers from rational numbers.

Classical argument:

$$x^2 \neq 2$$
 if $x = \frac{p}{q} \in \mathbb{Q}$

Proof. Suppose $\left(\frac{p}{q}\right)^2 = 2$

<u>Note</u>: wolog(without loss of generality)

can take $\frac{p}{q} > 0$ p > 0 q > 0

$$\left(\frac{p}{q}\right)^2 = 2$$

$$\frac{p^2}{q^2} = 2$$

$$p^2 = 2q^2$$

Now also wolog, can assume p and q are not <u>both</u> even numbers. But $p^2 = 2q^2$ means p has to be even $(p^2 \text{ odd if } p \text{ is odd})$.

$$p = 2n$$
$$p^2 = 2q^2$$
$$4n^2 = 2q^2$$

So $q^2 = 2n^2$, q is even. But it contradicts the initial assumption, p and q not both even \Box

Related to: Why functions $\mathbb Q$ to $\mathbb Q$ not ideal for analysis? – INFINITE DECIMAL

$\S2$ Lec 2: Oct 5, 2020

§2.1 Mathematical Induction and More on Real Numbers

 $P(n) \to 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$, where n is positive numbers. Math induction: Proof by two steps:

- 1. Check P(1) is true \checkmark
- 2. Assume P(n) is true for all $n \leq N$. Check that

$$P(N+1)$$
 is true

Assume $1 + \ldots + N = \frac{N(N+1)}{2}$. Check

$$1 + \ldots + N + (N+1) = \frac{(N+1)(N+1+1)}{2}$$

Induction on k:

$$1^k + 2^k + \ldots + n^k$$

2nd illustration:

$$1 + r + r^2 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r} \quad r \neq 1$$

 $r = 1 \implies 1 + r = \frac{1 - r^2}{1 - r}$

$$1 + r + r^{2} + \dots + r^{n} + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + r^{n+1}$$

$$= \frac{1 - r^{n+1} + r^{n+1} - r^{n+2}}{1 - r}$$

$$= \frac{1 - r^{n+2}}{1 - r}$$

$$(1-r)(1+r+\ldots+r^n) = 1-r^{n+1}$$
 Inspection
$$1+r+r^2+\ldots+r^n = \frac{1-r^{n+1}}{1-r}, \quad r \neq 1$$

|r| < 1 get inifite sum $\frac{1}{1-r}$

Example 2.1

Prime factors, prime = positive integers (> 1) with no factors except itself and 1, p = ab, a > 1, b > 1

Thin out as go along

Theorem 2.2 (Fundamental Theorem of Arithmetic)

Every positive integer > 1 is a product of primes.

Proof. Induction: P(n) n = 2, 3, ...

$$P(2) = 2\sqrt{}$$

Assume $P(n) \dots n \le N$ (N > 2). Every integer greater than 1 but smaller than or equal to N as a product of primes. We try to prove: N + 1 is a product of primes.

- 1. N + 1 is prime: Done N + 1 = N + 1
- 2. N+1 is not a prime

$$N+1=a\cdot b$$
 $a>1$ $b>1$

Induction assumption (a < N + 1 since b > 1), a is a product of primes $a > 1 \implies b < N + 1$, b also a product of primes. So, N + 1 = ab is a product of primes.

N+1=ab is a product of prime.

Why does induction work? If P(n) not always true, P(n) look at smallest n where P(n) is false.

n=1 not there P(1) is supposed true (checked already). N_0 smallest one where $P(N_0)$ false $N_0 > 1$. Induction step says that P(n) is true for all $n \le \underbrace{N_0 - 1}_{>0} \implies P(N_0)$ true (×

).

Let's go back to real numbers.

Last time: talked about $\sqrt{2}$ is irrational but $\sqrt{2}$ exists, so we need to enlarge our number system: \mathbb{Q} rational numbers.

$$\frac{p}{q} > \frac{r}{s} \qquad ps > rq \qquad (p, q, r, s > 0)$$
-1 \(-\frac{1}{2} \) \(\frac{1}{2} \) 1
-1 \(0 \)

x, y rational x, y > 0, x + y > 0, xy > 0

 $x^2 = 2$ no answer in \mathbb{Q} . Enlarge number system, $\mathbb{Q} \subset \mathbb{R}$. What should \mathbb{R} be like?

1. \mathbb{R} ought of have arithmetic like \mathbb{Q}

$$x+y$$
 xy $\frac{x}{y}$ 0 1

- 2. $\mathbb{Q} \subset \mathbb{R}$, arithmetic in \mathbb{R} restricted to \mathbb{Q} , $\frac{1}{2} + \frac{1}{3}$ in \mathbb{Q} ought to be $\frac{5}{6}$ in \mathbb{R} .
- 3. Order should positive in $\mathbb{Q} \implies$ in \mathbb{R} . \mathbb{R} should have an order of its own too, x y positive then x + y pos and xy pos.
- 4. want to fill in the holes in Q. Want to have Least Upper Bound Property

 $S \subset \mathbb{R}$: An upper bound for S is a number A with property $A \geq x$ if $x \in S$

 $1, 2, 3, 4, \ldots$ have no upper bound.

S is <u>bounded above</u> means that some upper bound A exists.

§2.2 Least Upper Bound Property

If S is bounded above $(S \neq \emptyset)$ then it has a "least upper bound" where a number A_0 is called the least upper bound of S if A_0 is an upper bound for S & if A is an upper bound for S then $A_0 \leq A$.

Motivation: Think about $\sqrt{2}$

Denote: l.u.b(or supremum)(sequence) = $\sqrt{2}$

Means can define an infinite decimals: least upper bound of successive truncation.

$$0.99999... \rightarrow 1.0$$

$\S3$ Lec 3: Oct 7, 2020

§3.1 Cauchy Sequence

$$\{x_n\}$$
 x_1, x_2, x_3, \dots values $x_j \in \mathbb{Q}$ $x_j \in \mathbb{R}$
 S $x_1, x_i \dots x_j \in S$

Definition 3.1 (Sequence) — A sequence with values in a set S is a function from positive integers $\{1, 2, 3...\}$ into S.

Definition 3.2 (Cauchy Sequence) — A <u>Cauchy sequence</u> is (\mathbb{Q} valued or \mathbb{R} valued) $\{x_i\}$ is sequence s.t. for every $\epsilon > 0$ there is a positive integer N_{ϵ} s.t.

$$|x_i - x_j| < \epsilon$$
 if $i, j > N_{\epsilon}$

 ϵ rational or real (same idea).

Lemma 3.3

If $\{x_j\}$ has a finite limit then it's a Cauchy sequence.

 $\{x_i\}$ has L as a limit $\lim x_j = L$ means for every $\epsilon > 0$ then there is an N_{ϵ} such that $j \geq N_{\epsilon}$, $|x_j - L| < \epsilon$

Everybody in $(L - \epsilon, L + \epsilon)$ except a finite number

Proof. Given $\epsilon > 0$, want to find N so that $i, j \geq N \implies |x_i - x_j| < \epsilon |x_i - L| \text{ small}, |x_j - L| \text{ small and } \lim x_j = L.$

$$|x_i - x_j| \le |x_i - L| + |x_j - L|$$

$$|x_i - x_j| = |L - x_i| + |L - x_j|$$

$$\xrightarrow{x_i} L x_j$$

 $i,j \geq N_{\frac{\epsilon}{2}}$:

$$|x_i - x_j| \le \underbrace{|x_i - L|}_{< \frac{\epsilon}{2}} + \underbrace{|x_j - L|}_{< \frac{\epsilon}{2}}$$

Because $\lim x_n = L$, there is an $N_{\frac{\epsilon}{2}}$ s.t. $|L - x_n| < \frac{\epsilon}{2}$ if $n \ge N_{\frac{\epsilon}{2}}$ Get $|x_i - x_j| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ if $i, j \ge N$. Cauchy sequence: there exists number N s.t.

$$|x_i - x_j| < \epsilon$$
 if $i, j \ge N$

Cauchy sequence \implies the existence of limit? Yes, for $\mathbb R$ valued sequences but NO for $\mathbb Q$ valued things.

 $\{x_n\}$ can be Cauchy seq without there being a ration number L such that $\lim x_j = L$

But allow real L then $\exists L$ s.t. $\lim x_j = L$ if $\{x_j\}$ is Cauchy sequence(no rational limit – since $\sqrt{2}$ is irrational). Because \mathbb{Q} has holes in it! (intuitive idea).

Example 3.4

 $1, 1.4, 1.41, 1.414, 1.4142\dots$ (decimal approx of $\sqrt{2}$) – Cauchy sequence. No – since $\sqrt{2}$ is irrational.

$\S 3.2$ Cauchy Completeness of $\mathbb R$

If $\{x_j\}, x_j \in \mathbb{R}$ is Cauchy sequence, then $\exists L \in \mathbb{R}$ s.t. $\lim x_j = L$.

" \mathbb{Q} is not Cauchy complete" but \mathbb{R} is. Why does this work?

Need: Least upper bound property. Assume L.U.B Property proof.

Proof. (Cauchy completeness from L.U.B Property)

Hypothesis: $\{x_i\}$ Cauchy seq

1. Prove that $\{x_i\}$ bounded $\iff \exists M > 0 \text{ s.t. } |x_i| \leq M \text{ all } i.$

Clear if take $\epsilon = 1$ in def. of Cauchy seq $\exists N$ s.t. $|x_i - x_j| < 1$ if $i, j \ge N \implies |x_N - x_j| < 1$ if $j \ge N \implies |x_j| \le |x_N| + 1$ $j \ge N$

So, $M = \max(|x_N| + 1, |x_1|, \dots, |x_{N-1}| \text{ then } |x_i| \le M \text{ all } j!$

Next stage is to show that a bounded sequence always has a subsequence (tricky!) with a limit. Then if a Cauchy seq has a subseq with limit L, then L is limit of whole seq. (Bolzano – Weierstrass Theorem)

 $\S4$ Lec 4: Oct 9, 2020

§4.1 Bolzano – Weierstrass Theorem

- implied by Least Upper Bound Property

Theorem 4.1 (Bolzano – Weierstrass)

If $\{x_n\}$ sequence $(x_1, x_2, x_3...)$ that is bounded (means: $\exists M > 0 \ni |x_n| \leq M \forall n$), then $\exists L$ and a subsequence $\{x_{n_i}\}$ s.t. $\lim x_{n_i} = L$.

Slogan: Every bounded sequence has a convergent subsequence.

Example 4.2

$$1, 2, 1, 2, 1, 2, \dots$$

The subsequence of the above sequence has either 1 or 2 as the limit.

$$1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \dots$$

Unbounded sequence – subsequence (limit 1, limit 2, limit 3...)

No claim of uniqueness of anything.

Proof - Summer 2008 Analysis Lec 4

Proof. So either [-M,0] or [0,M] (maybe both) contains x_n for infinitely many n values. If each contained x_n for only finitely many n values X.

$$-M \qquad 0 \qquad M$$

$$\vdash \qquad \vdash \qquad \vdash$$
Every x_n is in $[-M, M] - \{x_n\}$ is bounded
$$[-M, M] = [-M, 0] \cup [0, M]$$

$$I_1 = [-M, 0] \quad \text{or} \quad [0, M]$$

where chosen intervalhas x_n for infinitely many n values. Do this again!

$$I_1 = [a_1, b_1]$$
 $|b_1 - a_1| = M$

$$I_1 \leftarrow \text{length}$$

left half of I_1 , right half of I. Let $I_2 =$ one of halves that contains x_n for infinitely many n values.

$$I_2 = [a_2, b_2]$$
 $a_2 < b_2, b_2 - a_2 = \frac{M}{2}$

Continue

$$I_3 = [a_3, b_3]$$
 $a_3 < b_3, b_3 - a_3 = \frac{M}{4}$

:

$$I_k = [a_k, b_k]$$
 $b_k - a_k = \frac{M}{2^{k-1}}$

Each I_k contains x_n for infinitely many n values.

Claim $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$

Reason: $\sup a_k \in \bigcap_{k=1}^{\infty} I_k$ where $\sup = \sup$ of left hand endpoint(=greatest lower bound of bs). l.u.b of a's $\leq b_k$, b_k bigger than or \geq all a's.

$$\alpha = \text{lub a's}$$
 $\alpha \ge a_k \quad \forall k$
 $\alpha \le b_k \quad \forall k$
 $\alpha \in [a_k, b_k]$

Goal: $\alpha \in \bigcap_{k=1}^{\infty}$. Find a subsequence of $\{x_n\}$ converges to α .

Choose $x_k = x_n$ that belongs to I_k . Can also arrange successively:

$$n_1 < n_2 < n_3 < n_4$$

 $x_{n_1} \in I_1$ $x_{n_2} \in I_2$ can make $n_2 > n_1$ because infinitely possible $x'_n s$ in I_2 n value. Continue to get subsequence, $\{x_{n_k}\}$ subsequence. Claim:

$$\lim_{k \to \infty} x_{n_k} = \infty$$

Reason:

$$\operatorname{dis}(x_{n_k}, \alpha) \leq \operatorname{length} \text{ of } I_k \quad \alpha \in I_k, \quad x_{n_k} \in I_k$$

which is equivalent to

$$|x_{n_k} - \alpha| \le \frac{M}{2^{k-1}}$$
 given $\epsilon > 0$

When k is large,

$$\frac{M}{2^{k-1}} < \epsilon$$

So
$$|x_{n_k} - \alpha| < \epsilon$$

This argument (or a variant) shows something else:

If $\{x_n\}$ sequence in [0,1] then there's an $\alpha \in [0,1]$ with it never happening that

$$x_n = \alpha$$

"The real numbers in [0, 1] are uncountable." (come from the least upper bound property)

$$\begin{array}{c|c} x_1 & \swarrow \\ & & \downarrow \\ \hline & & \downarrow \\ \hline & I_1 \end{array}$$

 I_1 one of $[0, \frac{1}{3}]$ $[\frac{1}{3}, \frac{2}{3}]$ $[\frac{2}{3}, 1]$ such that $x_1 \notin I_1$,

$$[0,\frac{1}{3}]\cap [\frac{1}{3},\frac{2}{3}]\cap [\frac{2}{3},1]=\emptyset$$

 $x_1 \notin I_2$ $I_2 \subset I_1$, & $x_1 \notin I_1$. Continue. Get

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

length $I_k = \frac{1}{3^k}$ and I_k is such that $x_1, x_2, x_3 \dots x_k$ are none of the ?n? in I_k . Same as before

$$\exists \alpha \in \bigcap_{\infty}^{k=1} I_k$$

 $\alpha = \sup$ of set of left hand endpoints of I_k . Claim α cannot be an x_N value. Clear: $x_N \notin I_N$ but $\alpha \in I_n$ $\alpha \in \bigcap_{n=1}^{\infty} I_n$. But contrast:

There is a list of rational numbers in [0, 1]

$\S 5$ Lec 5: Oct 12, 2020

§5.1 Equivalence Relation

(p.10, Copson – Metric Space) R set, relation of A and B $(A \times B)$ $(a,b) \in R$ aRbFunctions: one b given a – exact one. $(A \to B)$

Example 5.1

$$A = B = Q$$

 aRb or $(a, b) \in R$ if $a > b$
(mother,child)

- (Sara, Sebastian) $\in R$
- (Sara, Alita) $\in R$

Equivalence is a special kind of relation: (on a set A; B = A = B) Properties:

- 1. aRa A = Q
- $2. \ aRb \implies bRa$
- 3. aRb & bRc then aRc

Example: \mathbb{Z} $a \sim b$ means a - b is divisible by 5

$$1 \sim 6 \quad 0 \sim 5 \dots$$

$$a \sim a$$
 $a - b$ div $\implies b - a$ div. by 5.

If a-b div. by 5, and b-c div by 5, then is a-c div. by 5 true? Sure, $a-b=5k, \quad b-c=5l \implies a-c=5(k+l)$ "Equivalence classes": set $[a]=\{$ all b such that $aRb\}$ In the example above, $[a] = \{ \text{ all b such that } a - b \text{ div. by 5} \}$

$$[2] = \{2, 7, -3, 12, -8, \ldots\}$$

 \mathbb{Z}_5 : integer mod 5.

- 1. [a] [p] either equal or have nothing in common.
- 2. $a \in [a]$ so is in some equivalence class.

A equivalence relation \sim on $A \leftrightarrow$ a partition of A into subsets which are pairwise disjoint. Q Cauchy seq. of rational numbers

$$\{x_n\} \sim \{y_n\}$$

means $\lim_{n\to\infty} |x_n - y_n| = 0$. Equivalence relation:

- 1. $\{x_n\} \sim \{x_n\} (\lim (x_n x_n) = 0)$
- 2. $\{x_n\} \sim \{y_n\} \implies \{y_n\} \sim \{x_n\}$
- 3. $\{x_n\} \sim \{y_n\} \& \{y_n\} \sim \{z_n\} \implies \{x_n\} \sim \{z_n\}$

Idea: Define a real number to be a (Cauchy seq. of rationals) equivalence class. Homework: want to check that arithmetic extends to "real numbers"

$$[\{x_n\}] + [\{z_n\}] = [\{x_n + z_n\}]$$

Check that

- 1. $\{x_n + z_n\}$ is a Cauchy seq.
- 2. Only depends on equivalence classes.

Want

$$\{x_n\} \sim \{y_n\} \qquad \{z_n\} \sim \{w_n\}$$

then $\{x_n + z_n\} \sim \{y_n + w_n\}$. So,

$$[\{x_n + z_n\}] = [\{y_n + w_n\}]$$

Example 5.2

$$[2] + [11] = [2 + 11] = [13]$$

So, $[2+1] \sim [13]([11] = [1])$. Arithmetic (addition) in \mathbb{Z}_5 thus makes sense. How about multiplication? $\frac{[1]}{[a]} \leftarrow \text{exists } [a] \neq 0$.

$$\frac{[1]}{[2]} = [3]$$
 $[2][3] = [6] = [1]$

Thus, \mathbb{Z}_5 is a field.

 $\frac{p}{q} \sim \frac{r}{s}$, $q, s \neq 0$ means ps = rq (when talking about fractions – associate it with equivalence relation). Q = set of equivalences classes. $(\frac{p}{q})$: equivalence classes).

Last time, we proved that Cauchy seq. of real numbers have limits (lub property). Also, no sequence $\{x_n\}$ such that it hits all real numbers in [0,1] – this is important. Contrast with $Q \cap [0,1]$, then there is a sequence that hits them all. Refer to the last figure in Lec 4 or math.ucla.edu/~greene – Summer 2008.

$\S 6$ Lec 6: Oct 14, 2020

Bolzano - Weierstrass:

Every bounded sequence has a convergent subsequence.

And we know about the Least Upper Bound Prop.

§6.1 Continuous Functions on Closed Interval

$$f: S \to \mathbb{R}, \quad S \subset \mathbb{R}$$

Example 6.1

$$S = [a, b]$$

$$S = \mathbb{R}$$

Definition 6.2 (Continuity) — $s_0 \in S$, f is continuous at s_0 if given $\epsilon > 0$, $\exists \delta > 0$ s.t.

$$|s - s_0| < \delta_{\epsilon} \implies |f(s) - f(s_0)| < \epsilon$$

Three properties:

$$f:[a,b]\to\mathbb{R}$$

fcontinuous

1. f is bounded on [a,b] means $\exists M$ s.t. for all $x \in [a,b], |f(x)| \leq M$

2. There exists $x_{\min}, x_{\max} \in [a, b]$ such that for all $x \in [a, b]$

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$

Slogan: f attains its maximum and minimum.

3. If $\alpha, f(x_{\min}) < \alpha < f(x_{\max})$, then $\exists x \in S = [a, b]$ s.t. $f(X) = \alpha$.

"Intermediate Value Theorem" Need the least upper bound prop – "completeness of

real numbers"

Exercise: def of continuity $\{s_n\}$ converges to $s_0 \iff$ if $s_n \to s_0$, $s_n \in S, s_0 \in S$ then $\{f(s_n)\}$ converges to $f(s_0)$.

Example 6.3

For (3),

$$f(x) = x^2 - 2$$
 on $Q \cap [1, 2]$

Then f(1) = -1, f(2) = 2, but no rational $x \in [1, 2]$ s.t. f(x) = 0.

Back to the properties:

1. f is bounded – Think about $|f| \leftarrow$ continuous if f is (exercise).

 $\exists M \text{ such } |f(x)| \leq M \text{ all } x \in [a, b].$ Suppose no such M exists.

Try
$$M = 1, 2, 3, 4, 5, 6, \dots$$
 So $\exists x_1 | |f(x_1)| > 1$

$$|f(x_2)| > 2$$

:

$$|f(x_n)| > n$$

But Bolzano – Weierstrass: subsequence $\{x_{n_i}\}$ that converges to x_0 say $|f(x_0)| \leftarrow$

finite number. So $\exists N \ni |f(x_0)| \leq N$.

Now for j large enough

$$\left| f(x_{n_i}) - f(x_0) \right| < 1$$

 x_{n_i} converges to x_0

$$|f(x_{n_j})| < |f(x_0)| + |f(x_{n_j} - f(x_0)|$$

So j is large enough that

$$|f(x_{n_j})| \le N + \text{ something less than } 1 \le N$$

2. Attains max and min

Similar: $\{f(x): x \in [a,b]\}$ bounded set, has sup where

$$\sup\left\{f(x):x\in[a,b]\right\}$$

either in the set of f-values (done if that's true), sup $f = f(x_0)$.

OR: sup f acutally not in the set $\{f(x) : x \in [a, b]\}$

Now $\{x_{n_j}\}$ converges to $x_0 \in [a, b]$

Claim 6.1. $f(x_0) = \sup \{f(x) : x \in [a, b]\}$

$$f(x_{n_j}) \leq \sup \{f(x): x \in [a,b]\}$$
 and $\lim f(x_{n_j}) = f(x_0) = f(\lim x_{n_j})$. So
$$f(x_0) = \sup f$$

3. $\alpha \in [f(x_{\min}), f(x_{\max})]$ then x such that $f(x) = \alpha$.

Proof. Wolog:

$$f(a) < 0$$
 and $f(b) > 0$

then $\exists x \in [a, b]$ with f(x) = 0.

Use l.u.b: Look at $S: \{x: f(x) < 0\}$ and $S \neq \emptyset$ because $f(a) \in S$. Also, S is bounded above $-\exists$ l.u.b for S, sup $S \in [a, b]$. Hope that $f(\sup S) = 0$.

 $\sup S \neq b$ is clear because f(b) > 0 so $f(b - \epsilon) > 0$ for small ϵ .

So $\sup S = x_0$, $a < x_0 < b$. What is $f(x_0)$? If it's negative, then there are slightly bigger $x \in [a_0, b] \ni f(x) < 0$ (continuity). In addition, x_0 cannot be a limit of x with $f(x) < 0 - x_0 = \sup$ places where f < 0.

f continuous on [a, b] if it is

- 1. bounded.
- 2. attains max and min.
- 3. attains every value between max value and min value.

f([a,b]) = [c,d] where c is min of f and d is max of f.

§7 Lec 7: Oct 16, 2020

§7.1 Uniform Continuity

Definition 7.1 (Uniform Continuity) — $S \subset \mathbb{R}$, $f: S \to \mathbb{R}$. f is uniformly continuous on S if given $\epsilon > 0$ there is a $\delta > 0$ s.t. $|f(x) - f(y)| < \epsilon$ if $x, y \in S$ and $|x - y| < \delta_{\epsilon}$

Example 7.2

 $f:S\to\mathbb{R},\ S=\mathbb{R},\ f(x)=x^2.$ Continuous on \mathbb{R} but it is not uniformly continuous on \mathbb{R} .

Continuity: Given fixed x, and $\epsilon > 0$ want δ so that

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

 $|x^2 - y^2| = |x - y||x + y|$ and want it smaller than ϵ . Assume $\delta \leq 1$.

$$|x + y| \le |x| + |y|$$

 $|y| < |x| + 1$ if $|x - y| < \delta(\le 1)$

So, if $|x - y| < \delta (\leq 1)$,

$$|x^{2} - y^{2}| = |x - y||x + y|$$

 $\leq |x - y|(2|x| + 1)$

Choose $\delta < \frac{\epsilon}{2|x|+1}$ (ok since x is fixed)

$$|x^2 - y^2| < \frac{\epsilon}{2|x| + 1} (2|x| + 1)$$

= ϵ if $|x - y| < \min\left\{1, \frac{1}{2|x| + 1}\right\}$

Uniform continuity does not work on \mathbb{R} .

Claim 7.1. $\epsilon = 1 > 0$, there is no $\delta > 0$ s.t. $|x^2 - y^2| < 1 = \epsilon$ for all x, y with $|x - y| < \delta$.

Why? Look at for $\delta > 0$, consider $y = \frac{1}{\delta} + \frac{\delta}{2}$, $x = \frac{1}{\delta}$

$$|x - y| < \delta$$

Also,

$$\left| \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 - \left(\frac{1}{\delta} \right)^2 \right|$$

$$= \left| \frac{1}{\delta^2} + 2 \left(\frac{1}{\delta} \right) \left(\frac{\delta}{2} \right) + \left(\frac{\delta}{2} \right)^2 - \frac{1}{\delta^2} \right|$$

$$= 1 + \left(\frac{\delta}{2} \right)^2 > 1$$

which is a contradiction.

Exercise 7.1. $\frac{1}{x}$ on (0,1) is continuous but <u>not</u> uniformly continuous. Sugges plausibly f

continuous on [a, b] then it's uniformly continuous on [a, b] where a, b are finite.

Theorem 7.3 (Heine – Cantor (Uniformly Continuous))

A continuous function f on a closed interval is uniformly continuous.

Proof. (By contradiction) Suppose not. Then $\epsilon>0$ s.t. no δ "works". In particular, $\exists \epsilon>0$

s.t. $\delta = 1$ fails, $\delta = \frac{1}{2}$ fails, etc. So $x, y \in [a, b]$ with $|f(x_1) - (fy_1)| \ge \epsilon$ but $|x_1 - y_1| < 1$. $x_n, y_n \in [a, b]$ with $|f(x_n) - f(y_n)| \ge \epsilon$ but $|x_n - y_n| < \frac{1}{n}$. Hope this is impossible. Bolzano - Weierstrass $\implies \{n_j\}$ s.t. $\{x_{n_j}\}$ has a limit

$$x_0 = \lim, \quad x_0 \in [a, b]$$

Now, claim $\{y_{n_i}\}$ also has limit x_0 .

$$\left| x_{n_j} - y_{n_j} \right| < \frac{1}{n_j}$$

small when n_j large (j large).

$$\lim x_{n_j} = x_0$$

$$\lim y_{n_j} = x_0$$

$$\lim f(x_{n_j}) = f(x_0)$$

$$\lim f(y_{n_j}) = f(x_0)$$

So, $\lim f(x_{n_j}) - f(y_{n_j}) = 0$, but it contradicts $|f(x_{n_j} - f(y_{n_j}))| \ge \epsilon$ for all j.

$$f(x_0) \le |f(x_{n_i}) - f(x_0)| + |f(x_0) - f(y_{n_i})| \to 0$$

Ideas of continuity and uniform continuity and Bolzano - Weierstrass Theorem - all have reasons in metric spaces.

§8 Lec 8: Oct 19, 2020

§8.1 Convergence of Series

Series is "formal sum", an infinite sum

$$a_0 + a_1 + a_2 + \ldots = \sum_{j=1}^{\infty} a_j$$

A series \iff sequence a_1, a_2, a_3, \ldots add together. Associated to $a_1 + a_2 + a_3 + a_4 \ldots$ is a sequence of partial sum

$$S_N = \sum_{n=1}^N a_n, \qquad N = 1, 2, 3, 4, 5, \dots$$

number valued sequence.

Definition 8.1 (Convergence of Series) — Series converges if sequence associated $\{S_N\}$ converges (has a limit).

Lots of things are defined by series such as $(x \in \mathbb{R})$,

$$e^x = \lim_{N \to \infty} \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^N}{N!} \right)$$

Given series $a_0 + a_1 + a_2 + a_3 + \dots$, when does it converge?

$$1-2+3-4+5-6+7...$$

 $S_1 = 1, \quad S_2 = -1, \quad S_3 = 2...$

NO LIMIT! Series do not necessarily have to converge then it's okay to write

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$$

First thing to look at – Case where $a_i \geq 0$

$$S_N \leq S_{N+1}, \quad N = 1, 2, 3, \dots$$

 $S_{N+1} = S_N + a_{N+1}$ so $a_{N+1} \ge 0$ means $S_{N+1} \ge S_N$. Two cases:

Case 1: $\{S_n\}$ not bounded above.

 $\lim S_N$ does not exist \to Series diverges (sequences with limits are always bounded above and below).

Case 2: $\{S_n\}$ bounded above.

 $\lim_{n\to\infty} S_n$ always exists. Namely, it is the least upper bound of set of values of S_n .

There is an S_{n_0} in this interval $(M_0 - \epsilon, M_0]$, M_0 is lub

From that n_0 on,

$$S_n > S_{n_0}, \quad S_n < M$$

 S_n satisfies $|S_n - M_0| < \epsilon$ if $n \ge n_0$. So $\lim S_n = M_0$. This implies that S_n is a Cauchy

sequence (it has a limit). Given $\epsilon > 0, \exists N_{\epsilon} \text{ s.t. } \left| \sum_{1 \leq n_1}^{n_1} a_n - \sum_{1 \leq n_2}^{n_2} a_n \right| < \epsilon \text{ if } n_1, n_2 \geq N_{\epsilon}.$

Suppose $n_1 > n_2 \ge N_{\epsilon}$

$$\sum_{1}^{n_1} a_n - \sum_{1}^{n_2} a_n = \sum_{n_2+1}^{n_1} a_n$$

<u>Note</u>: $S_7 - S_5 = a_6 + a_7$ which explains the above expression.

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} \dots$$

converges, but so does the following series

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots < 2$$

This works for arbitrary choices of + or -.

Theorem 8.2 (Absolute Convergence)

If $|b_1| + |b_2| + |b_3| + \dots$ converges, then

$$b_1 + b_2 + b_3 + \dots$$
 converges

"Absolute convergence" \implies convergence (but not necessarily the same limit).

Proof. Assume $\underbrace{\left\{S_n^A\right\}}_{A \text{ for absolute}}$ for absoluted series has limit. So

$$\sum_{1}^{\infty} |b_n|$$
 converges

 $\implies \{S_n^A\}$ Cauchy sequence.

We hope it $\implies \{S_n\} = \left\{\sum_{j=1}^n b_j\right\}$ is a Cauchy sequence.

$$S_{n_1}^A - S_{n_2}^A = |b_{n_2+1}| + |b_{n_2+2}| + \ldots + |b_n|$$

But

$$|b_{n_2+1} + \ldots + b_n| \le |b_{n_2+1}| + \ldots + |b_n| (= S_{n_1}^A - S_{n_2}^A)$$

So,

$$|S_{n_1} - S_{n_2}| \le S_{n_1}^A - S_{n_2}^A < \epsilon \quad \text{for } n_1, n_2 \ge N_{\epsilon}$$

Then $|S_{n_1} - S_{n_2}| < \epsilon$ for $n_1, n_2 \ge N_{\epsilon}$.

This is IMPORTANT – Better understand it thoroughly.

Corollary 8.3 (Root Test)

 $|b_n| \le Cr^n, 0 < r < 1, C, r$ fixed, then $\sum b_n$ converges.

Reason: $\sum_{n=0}^{\infty} Cr^n = C \frac{1}{1-r}$ (geometric series).

Exercise 8.1. $\sum_{n=0}^{N} Cr^n = C\frac{r^{N+1}-1}{r-1}, 0 < r < 1$ has limit $\frac{C}{1-r}$. Prove by induction.

<u>Detail</u>: Hypothesis:

$$|b_n| \le Cr^n$$

$$\sum_{1}^{\infty} |b_n| \le \sum_{1}^{\infty} Cr^n < \infty$$

$$\sum_{1}^{N} |b_n| \le \sum_{1}^{N} Cr^n \le M < \infty$$

So $\sum_{0}^{N} |b_n|$ converges and bounded by Cr, and $b_1 + b_2 + \dots$ converges absolutely.

$\S{9}$ Lec 9: Oct 21, 2020

§9.1 Metric Spaces

Definition 9.1 (Metric Spaces) — A set X, elements are "points", together with a function on $\underbrace{X \times X}_{\text{ordered pairs }(x,y)}$, $x \in X, y \in Y$, $\underbrace{d(x,y)}_{\text{distance}}$ with the following properties:

- 1. $d(x,y) \ge 0$ for all x, y. $d(x,y) = 0 \iff x = y$. Or d(x,x) = 0.
- 2. d(x,y) = d(y,x).
- 3. \triangle inequality:

$$d(x,y) + d(y,z) \ge d(x,z)$$

$$d(x,z) \le d(x,y) + d(y,z)$$

Example 9.2 1. X set. Can you define a $d: X \times X \to \mathbb{R}$ to make (x, d) a metric space?

YES! Define given set X, $d(x_1, x_2) = 0$ if $x_1 = x_2$, or $d(x_1, x_2) = 1$ if $x_1 \neq x_2$. "discrete".

- $d(x, y) \ge 0$.
- d(x, y) = d(y, x). x = y both are 0. $x \neq y$ both are 1.
- $d(x, z) \le d(x, y) + d(y, z)$ $x = z \implies d = 0.$ $x \ne z \implies d(x, z) = 1.$ If x = y then $y \ne z$ so $1 \le 0 + 1$
- 2. (INTERESTING) d(x,y) = |x-y| for \mathbb{R} . $d(\frac{p}{q}, \frac{r}{s}) = |\frac{p}{q} \frac{r}{s}|$ for \mathbb{Q} .

Note: X is a metric space $Y\subset X$ then $\left(Y,d\Big|_{Y\times Y}\right)$ is a metric space.

<u>Motivation</u>: Stuff about \mathbb{R} involving e.g., continuity and limits can be transferred to metric space.

Example 9.3

 $\{x_n\}$ is a sequence in a metric space (X,d) (or X) has limit $x_0 \in X$ if for every $\epsilon > 0$, there is an N_{ϵ} s.t. $d(x,x_0) < \epsilon$ if $n \geq N_{\epsilon}$. (If $X = \mathbb{R}$, d(x,y) = |x-y| same as before)

Example 9.4

Function: $f:(X,d_1)\to (Y,d_2)$. Continuity at $x_0\in X$?

Real case: f cont at x_0 means given $\epsilon > 0$ $\exists \delta > 0$ s.t. $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \delta$

Metric space case: f cont at x_0 means given $\epsilon > 0 \exists \delta > 0$ s.t. $d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \epsilon$.

More examples:

Example 9.5

```
\mathbb{R}^{2} = \{(x_{1}, x_{2}) : x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}\}
\mathbb{R}^{3} = \{(x_{1}, x_{2}, x_{3}) : x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, x_{3} \in \mathbb{R}\}
\vdots
\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) : x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, \dots, x_{n} \in \mathbb{R}\}
```

Interesting metric on \mathbb{R}^2 $d((a_1, a_2), (b_1, b_2))$

$$d = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$

 $\mathbb{R}^n(x_1,x_2,\ldots,x_n),(y_1,\ldots,y_n)$

$$d := \sqrt{(y_1 - x_1)^2 + \ldots + (y_n - x_n)^2}$$

diff of x coord

Is this function on \mathbb{R}^n a metric?

- 1. $d(x,y) \ge 0, = 0 \iff x = y \text{ where } x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \text{ and}$ $d(x,y) = \sqrt{(x_1 y_1)^2 + \dots + (x_n y_n)^2}$
- 2. d(x,y) = d(y,x)
- 3. BUT BUT $-\Delta$ inequality is not so easy.

$$\sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2} \le \sqrt{(x_1 - z_1)^2 + \ldots + (x_n - z_n)^2} + \sqrt{(z_1 - y_1)^2 + \ldots + (z_n - y_n)^2}???$$

Does $d(x, y) \le d(x, z) + d(z, y)$ work?

YES but proof later:(

Realize that it's okay to assume $z = (0, 0, \dots, 0)$

Example 9.6

Try another metric \mathbb{R}^2 – taxicab

$$|c-a|+|d-b|=d((a,b),(c,d))$$
 min of length of taxi car

Easy to see that this d is really a metric. \triangle inequality is easy!

 $\begin{aligned} & \text{Euclidean distance} = \sqrt{2} \\ & \text{diff of x's} \leq \text{Euc dis} \\ & \text{diff of y's} \leq \text{Euc dis} \end{aligned}$

$$d(P_1, P_2) + d(P_2, P_3) \ge d(P_1, P_3)$$

$\S10$ Lec 10: Oct 23, 2020

§10.1 Metric on \mathbb{R}^n

 $\mathbb{R}^n: \{(x_1, \dots, x_n) : x_j \in \mathbb{R}\}$

We want to make \mathbb{R}^n a metric space. Last time, we defined "taxi cab metric", $d\left((x_1,\ldots,x_n),(y_1,\ldots,y_n)\right) = \sum_{i=1}^n |x_i-y_i|$ Verify $d(\vec{x},\vec{y}) \geq 0$ or = 0 if $\vec{x}=\vec{y}$ and \triangle inequality,

$$d(p,q) + d(q,r) \ge d(p,r)$$

§10.2 Triangle Inequality in Euclidean Space

New idea: Euclidean distance (or Pythagorean distance)

$$d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

For $\mathbb{R}^n : d((a_1, \dots, a_n), (b_1, \dots, b_n)) := \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}.$

We need to know:

1.
$$d(\vec{a}, \vec{b}) \ge 0$$

2.
$$d(\vec{a}, \vec{a}) = 0$$
 so $d(\vec{a}, \vec{b}) = 0 \implies \vec{a} = \vec{b}$

3.
$$d(\vec{a}, \vec{b}) = d(\vec{b}, \vec{a})$$

4. ?
$$\triangle \leq 0$$
, \vec{a} , \vec{b} , \vec{c}

$$d(\vec{a}, \vec{c}) \le d(\vec{a}, \vec{b}) + d(\vec{b}, \vec{c})$$

For \mathbb{R}^n ,

$$\sqrt{(a_1-c_1)^2+\ldots+(a_n-c_n)^2} \le \sqrt{(a_1-b_1)^2+\ldots+(a_n-b_n)^2} + \sqrt{(b_1-c_1)^2+\ldots+(b_n-c_n)^2}$$

We certainly need proof for \triangle inequality: $\operatorname{Copson}(p>1)$ – for case p=2

First step: $\alpha\beta \leq \frac{1}{2}\alpha^2 + \frac{1}{2}\beta^2$ for all real α, β . Reason:

$$2\alpha\beta \le \alpha^2 + \beta^2$$
$$\alpha^2 + \beta^2 - 2\alpha\beta \ge 0$$
$$(\alpha - \beta)^2 \ge 0\checkmark$$

"Geometric mean \leq Arithmetic mean" Let $\alpha = \sqrt{a}, \beta = \sqrt{b}, a, b \geq 0$

$$\underbrace{\sqrt{ab}}_{\text{geometric mean of a,b}} \leq \frac{1}{2}(a) + \frac{1}{2}(b) = \underbrace{\frac{1}{2}(a+b)}_{\text{arithmetic mean}}$$

$$\sqrt{ab} < \frac{1}{2}(a+b) \text{ if } a \neq b$$

$$0 \qquad a \qquad b$$

$$\frac{1}{2}(a+b)$$

Second step:

$$\vec{a} = (a_1, \dots, a_n)$$
$$\vec{b} = (b_1, \dots, b_n)$$

and we know

$$a_i b_i \le \frac{1}{2} a_i^2 + \frac{1}{2} b_i^2$$

Then,

$$\sum_{i=1}^{n} a_i b_i \le \frac{1}{2} \sum_{i=1}^{n} a_i^2 + \frac{1}{2} \sum_{i=1}^{n} b_i^2$$

So,
$$\sum a_i^2 = 1$$
, $\sum b_i^2 = 1$, $\sum a_i b_i \le 1$

Claim 10.1.

$$\sum a_i b_i \le \left(\sum a_i^2\right)^{\frac{1}{2}} \left(\sum b_i^2\right)^{\frac{1}{2}}$$

But

$$\left| \vec{a} \cdot \vec{b} \right| \leq \|\vec{a}\| \|\vec{b}\|$$

So it's okay to define θ ,

$$\cos \theta = \frac{\vec{a}\vec{b}}{\|\vec{a}\|\|\vec{b}\|} \in [-1, 1]$$

Verification of claim: $\vec{a}, \vec{b} \neq \vec{0}$

$$A_i = \frac{a_i}{\sqrt{\sum a_i^2}}, \quad B_i = \frac{b_i}{\sqrt{\sum b_i^2}}$$

And $\sum A_i^2 = 1$, $\sum B_i^2 = 1$ – also $\sum_{i=1}^n A_i B_i \le 1$ which is equivalent to $\frac{\sum a_i b_i}{\sqrt{\sum a_i^2} \sqrt{\sum b_i^2}} \le 1$.

So
$$|\sum a_i b_i| \le \sqrt{\sum a_i^2} \sqrt{\sum b_i^2}$$
.

BIG DEAL: "Cauchy Schwarz inequality" What does this have to do with \triangle inequality for Euclidean metric. Consider: \vec{a}, \vec{b}

$$\sum_{j=1}^{n} (a_j + b_j)^2 = \sum_{j=1}^{n} a_i (a_j + b_j) + \sum_{j=1}^{n} b_j (a_j + b_j)$$

Now apply Cauchy – Schwarz

$$\sum_{j=1}^{n} (a_j + b_j)^2 \le \left(\sum_{j=1}^{n} a_j^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} (a_j + b_j)^2\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} (b_j)^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} (a_j + b_j)^2\right)^{\frac{1}{2}}$$

Divide through by $\left(\sum (a_j + b_j)^2\right)^{\frac{1}{2}}$

$$\left(\sum (a_j + b_j)^2\right)^{\frac{1}{2}} \le \left(\sum a_j^2\right)^{\frac{1}{2}} + \left(\sum b_j^2\right)^{\frac{1}{2}}$$

The above inequality is indeed the triangle inequality for $\vec{0}$, \vec{a} , $\vec{a} + \vec{b}$

But of course this gives you the triangle inequality in general.

 \triangle inequality works in general

 $\frac{\text{Last step: } \vec{p}, \vec{q}, \vec{r}}{\text{Triangle inequality:}}$

$$d(0, \vec{p} - \vec{r}) \le d(0, \vec{q} - \vec{p}) + d(\vec{q} - \vec{p}, \vec{r} - \vec{p})$$

Same as \triangle ineq for $0, \vec{q} - \vec{p}, (\vec{r} - \vec{q}) + (\vec{q} - \vec{p})$ or $0, \vec{a}, \vec{a} + \vec{b}$ if $\vec{a} = \vec{q} - \vec{p}, b = \vec{r} - \vec{q}$.

§11 Lec 11: Oct 26, 2020

§11.1 Metric Spaces Examples

Last time, we prove \triangle ineq. proof, taxi-cab metric, and sup norm metric. This gives rise to same "convergence idea". Namely $x_n \in X(X,d)$ converges to $L \in X$ means

$$\lim_{n \to \infty} (x_n - L) = 0$$

In all three metrics

$$\vec{x}_j \to L$$
 $\lim \vec{x}_j = L$

means (is same as) ith coordinate of \vec{x}_j converges to ith coord of L for each $i=1,2,\ldots,n$. $\{x_n\}$ Cauchy if given $\epsilon>0 \exists N_\epsilon\ni n_1,n_2\geq N_\epsilon$

$$d(x_{n_1}, x_{n_2}) < \epsilon$$

Exercise 11.1. $\{x_n\}$ Cauchy in \mathbb{R}^n (any one of three metrics – Cauchy is the same idea in all three metrics) then $\{x_n\}$ has limit L, some L.

$$\sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2} \le \sqrt{n} \max |x_j - y_j|, j = 1, \ldots, n$$

which can be derived by the followings,

$$|x_j - y_j| \le \max |x_j - y_j|$$

$$|x_j - y_j|^2 \le \max^2 |x_l - y_l|, l = 1, \dots, n$$

$$(x_1 - y_1)^2 + \dots + (x_n - y_n)^2 \le n \max^2 |x_l - y_l|$$

$$\sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} \le \sqrt{n} \max |x_l - y_l|$$

 $l_2: \{x_j\}$ infinite sequences $j=1,2,3,\ldots$ where $\left\{\sum_{j=1}^{\infty} x_j^2 < \infty\right\}$ which means

$$\exists M \ni \sum_{j=1}^{M} x_j^2 \le M$$

$$(1, \frac{1}{2}, \frac{1}{3}, \ldots) \in l_2$$

 $(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots) \notin l_2$

because $1 + \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \dots \to \infty \ (\frac{1}{n}) \to \infty \text{ as } n \to \infty.$ vector space:

$$c \{x_j\} = \{cx_j\}$$
$$\{x_j\} \in l_2 \implies \in l_2$$
$$\sum c^2 x_j^2 = c^2 \sum x_j^2$$

Also,

$$\{x_j\} + \{y_j\} = \{x_j + y_j\}$$
$$(x_j + y_j)^2 \le 2(x_j^2 + y_j^2)$$
$$x_j y_j \le \frac{1}{2}(x_j^2 + y_j^2)$$

 $\{x_j\}, \{y_j\} \in l_2 \text{ then}$

$$d(\{x_j\}, \{y_j\}) = \left[\sum (x_j - y_j)^2\right]^{\frac{1}{2}}$$

makes sense. (l_2, d) is a metric space obvious except \triangle ineq. It's enough to check

$$d(0, \vec{x}) + d(\vec{x}, \vec{x} + \vec{y}) \ge d(0, \vec{x} + \vec{y})$$

which follows by taking limits of \triangle ineq. for truncation up to level N.

$$d(\vec{0}, (x_1, \dots, x_N)) + d((y_1, \dots, y_N), (x+y) \text{ up to } N) \ge d(\vec{0}, (x+y)_N)$$

l_2 is metric space

 l_2 is complete – Cauchy sequences have some limits.

Example 11.1

C([0,1]) := cont: R - - valued function [0,1]

$$d(f,g) = \max|f(x) - g(x)|$$
$$= \sup|f(x) - g(x)|$$

"sup norm" All properties clear. " L^2 norm" – distance on C[0,1]:

$$d_2(f,g) = \left(\int_0^1 (f(x) - g(x))^2\right)^{\frac{1}{2}}$$

where $d_2 \ge 0$, $f, g, h \in C[0, 1]$.

Imitate argument for \triangle ineq. on \mathbb{R}^n : Cauchy Schwarz ineq.

$$\int_0^1 fg \le \left(\int f^2\right)^{\frac{1}{2}} \left(\int g^2\right)^{\frac{1}{2}}$$

So,

$$f(x)g(x) \le \frac{1}{2} \left(f^2(x) + g^2(x) \right)$$
$$\int_0^1 f(x)g(x) \le \frac{1}{2} \int_0^1 f^2(x) + \frac{1}{2} \int_0^1 g^2(x)$$

Apply these, $F = \frac{f(x)}{\sqrt{\int_0^1 f^2}}$, $G = \frac{g}{\sqrt{\int_0^1 g^2}}$, $\int F^2 = 1$, $\int G^2 = 1$. Also, we know $\int fg \leq 1$ if $\int f^2 = 1$, $\int g^2 = 1$.

Remainder argument for \triangle ineq. is same as before

$$\int (f+g)^2 = \int f(f+g) + \int g(f+g)$$

Apply Cauchy – Schwartz,

$$\int (f+g)^2 \le \left(\int f^2\right)^{\frac{1}{2}} \left(\int (f+g)^2\right)^{\frac{1}{2}} + \left(\int g^2\right)^{\frac{1}{2}} \left(\int (f+g)^2\right)^{\frac{1}{2}}$$
$$\left(\int (f+g)^2\right)^{\frac{1}{2}} \le \left(\int f^2\right)^{\frac{1}{2}} + \left(\int g^2\right)^{\frac{1}{2}}$$

§11.2 A Glance at Complex Number

Special case of \mathbb{R}^n , Euclidean norm

$$\mathbb{R}^2 : \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = d((x_1, x_2), (y_1, y_2))$$

$$\mathbb{C} : \{(a + bi)\} - \text{Complex numbers}$$

 $(x_1, x_2) \leftrightarrow x_1 + ix_2$. Metric on $\mathbb{C}, z, w \in \mathbb{C}$

$$|z-w| = d(z,w)$$
 as pts in \mathbb{R}^2
$$z = a + bi$$

$$|z| = |a+bi| = \sqrt{a^2 + b^2}$$

We also define multiplication in \mathbb{C} as follows

$$(a+bi)(c+di) := (ac-bd) + (bc+ad)i$$

Example 11.2

$$\frac{1}{c+di} = \frac{c}{c^2+d^2} - \frac{d}{c^2+d^2}i$$

For z = a + bi, w = c + di we define

$$|zw| = |z||w|$$

= $\sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$
= $\sqrt{(ac - bd)^2 + (bc + ad)^2}$

verify if the above step is actually equal

§12 Lec 12: Oct 28, 2020

§12.1 Midterm Announcement

Midterm – Given out on Fri, Nov 6 at 3:00 pm. and due by Sat, Nov 7 at 11:00 pm.

§12.2 Open sets in Metric Space

Beginning of "topology": (X, d) metric space

Definition 12.1 (Open sets) — $U \subset X$ <u>open</u> if for every $x_0 \in U$ there is an $\epsilon_{x_0} > 0$ s.t.

$$\underbrace{\{x \in X : d(x, x_0) < \epsilon_{x_0}\}}_{B(x_0, \epsilon_{x_0}) - \text{ open ball}} \subset U$$

open sets in R looks like unions of open intervals

Open set in R

Lemma 12.2

 $B(x_0, \epsilon), \epsilon > 0$ open ball is open set.

Proof. Need given $y \in B(x_0, \epsilon)$, $\lambda_y > 0$ s.t. $B(y, \lambda) \subset B(x_0, \epsilon)$.

Try $\lambda = \epsilon - d(x_0, y_0)$.

Suppose $y \in B(y_0, \epsilon) \iff d(y_0, y) < \epsilon - d(x_0, y_0)$

$$d(y_0, y) + d(x_0, y_0) < \epsilon$$

So,

$$d(x_0, y) \le d(x_0, y_0) + d(y_0, y) < \epsilon$$

So $y \in B(x_0, \epsilon)$.

Reason why people care about open sets:

Remember: $f(X,d) \to (Y,d)$ continuous means given $\epsilon > 0, x_0 \in X$ there exists $\delta > 0$ s.t.

$$d_X(x_0, x) < \delta \implies d_Y(f(x_0), f(x)) < \epsilon$$

 \rightarrow Direct transcription of number – continuity of f can be described in terms of open sets in X and in Y. For this: $f: X \rightarrow Y$ and $V \subset Y$, then $f^{-1}(V) = \{x \in X : f(x) \in V\}$ f does not need to be invertible.

Example 12.3

$$f: \underbrace{X}_{\text{people}} \to \mathbb{Z}, \quad f(x) = \text{ integer age of x}$$

$$f^{-1}(\{20, 21, 22\}) = \text{everybody that's age } 20,21, \text{ or } 22$$

Theorem 12.4 (Continuity – Open Sets)

 $f:(X,d_x)\to (Y,d_y)$ is continuous if and only if (in δ,ϵ sense) $f^{-1}(V)$ is open in X for every V open in Y.

Slogan: continuity means inverses of open sets are open.

 $f: X \to Y, g: Y \to Z \to g(f(x))$ compositions of f and g.

Claim 12.1. If f, g continuous then the composition is continuous

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

Proof. (of Theorem) Suppose $f^{-1}(V)$ is open when V is open. Given $x_0 \in X$, $\epsilon > 0$ want $\delta > 0 \ni \underbrace{x \in B(x_0, \delta)}_{d(x,x_0) < \delta} \implies d(f(x), f(x_0)) < \epsilon$

$$\{y: d(y, f(x_0) < \epsilon\} = B(f(x_0), \epsilon)$$

Know that it's open by the above lemma. So,

$$f^{-1}(B(f(x_0),\epsilon))$$
 open

and $x_0 \in (B(f(x_0), \epsilon))$. So $f^{-1}(B(f(x_0), \epsilon))$ being open

$$\implies \delta > 0 \quad B(x_0, \delta) \subset f^{-1}(B(f(x_0), \epsilon))$$

says $d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon \checkmark$

Took care of f^{-1} (open) is open \implies continuity. Now,

Does continuity $(\epsilon, \delta \text{ sense}) \implies f^{-1} \text{ (open)}$ is open?

This also works: Suppose V open, and $x_0 \in f^{-1}(V)$. Need $\delta > 0$ s.t. $B(x_0, \delta) \subset f^{-1}(V)$. $f(x_0) \in V$ (meaning of $x_0 \in f^{-1}(V)$) $\exists \epsilon$ s.t. $B(f(x_0), \epsilon) < V$ (V is open). Then ϵ, δ defin of continuity $\exists \delta$ s.t. $f(B(x_0, \delta)) \subset B(f(x_0), \epsilon) \subset V$. So $B(x_0, \delta) \subset f^{-1}(V)$. \checkmark

Forward continuous images of open sets are not necessarily open.

Example 12.5

 $f(x) = x^2$, f((-1,1)) = [0,1) which is not open.

<u>Note</u>: A notion to help understand the concept of open sets is thinking about how a map sends a point to a point but its inverse can send a point to a set.

§13 Lec 13: Oct 30, 2020

§13.1 Open Sets (Cont'd)

Recall: U open means $\forall x \in U$, $\exists \epsilon > 0$ s.t. $B(x, \epsilon) \subset U - \{y : d(x, y) < \epsilon\}$ (open ball) $f: X \to Y$, $f^{-1}(V)$ open in X if V open in $Y \iff f$ continuous $-\delta, \epsilon$ sense (p.91, Copson)

Properties of being open: (finiteness is important)

- 0. ϕ, X open sets "trivial"
- 1. $U_{\lambda}, \lambda \in \Lambda$, open for each $\lambda, \bigcup_{\lambda \in \Lambda} U_{\lambda}$ is open.
- 2. U_1, \ldots, U_n open then

$$\bigcap_{j=1}^{n} U_j$$
 open

U open does not imply X - U is open (not necessarily true).

3. U_1, U_2, U_3, \dots open

$$\bigcup_{j=1}^{\infty} U_j \text{ open}$$

Example 13.1

$$U_n = \left(-\frac{1}{n}, \frac{1}{n}\right) \subset \mathbb{R}$$

$$\bigcap_{n=1}^{\infty} U_n = \{0\} \text{ one point }$$

which is not open.

 $U_{\lambda}, \lambda \in \Lambda$ open (assume). We want $\bigcup U_{\lambda}$ is open.

Proof. Suppose $x \in \bigcup_{\lambda \in \Lambda} U_{\lambda} \implies x \in U_{\lambda_1}$ open. So $\exists \epsilon > 0 \ni B(x, \epsilon) \subset U_{\lambda_1}$

$$\implies B(x,\epsilon) \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

 u_1,\ldots,u_n open (finitely many U's). If $x\in\bigcap_{j=1}^n U_j,x\in U_j$ for each $j=1,\ldots,n$. So for $\epsilon_j>0$

$$B(x, \epsilon_j) \subset U_j$$
 (U_j open)

Let $\epsilon = \min(\epsilon_1, \dots, \epsilon_n) > 0$. Then $B(x, \epsilon) \subset B(x, \epsilon_j) \subset U_j$. So $B(x, \epsilon) \subset U_j$ for all j. So $B(x, \epsilon) \subset \bigcap_{j=1}^n U_j$. Therefore, $\bigcap_{j=1}^n U_j$ is open. Contrast this with $U_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ example.

§13.2 Topological Space

Set S with some sets specified as open with

- 0. ϕ, X open.
- 1. \cup open is open.
- 2. \cap open is open.

This is a Topological Space.

We know (X, d) with our definition of $U \subset X$ open is a topological space.

$\S13.3$ Closed Sets

Back to metric space (but also works in topological spaces)

Definition 13.2 (Closed Sets) — $C \subset X$ is <u>closed</u> if and only if X - C is open.

<u>Note</u>: Being closed does not necessarily mean the opposite of open. For example, X is both closed and open – X open and $X - X = \emptyset$ open. Also, \emptyset both closed and open – \emptyset open & $X - \emptyset = X$ is open.

Closed sets:

- 0. ϕ , X closed (checked already)
- 1. $C_{\lambda}, \lambda \in \Lambda$ closed then $\bigcap_{\lambda \in \Lambda} C_{\lambda}$ is closed
- 2. C_1, \ldots, C_n are closed then

$$\bigcup C_i = C_1 \cup \ldots \cup C_n$$
 is closed

watch out for $\left[-1+\frac{1}{n},1-\frac{1}{n}\right]X=\mathbb{R},\,\mathbb{R}-\left[-1+\frac{1}{n},1-\frac{1}{n}\right]$ which is equivalent to $(-\infty,-1+\frac{1}{n})\cup(1-\frac{1}{n},+\infty)$. On the other hand,

$$\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = (-1, 1) \text{ not closed}$$

Proof. (1) $-\bigcap_{\lambda\in\Lambda} C_{\lambda}$ is it closed? Closed means $X-\bigcap_{\lambda\in\Lambda}$ open – True? According to August de Morgan

$$X - \left(\bigcap_{\lambda \in \Lambda} C_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} (X - C_{\lambda})$$

A notion to understand this is people - (dog owners \cap cat owners) = people who do not own both a dog and cat = (people who do not own a dog) \cup (people who do not own a cat) = (people - dog owners) \cup (people - cat owners).

Slogan: Complements of intersections is the union of complements. Or complements of unions is the intersection of complements – De Morgan's Laws.

Now, back to the closed sets, we have $X - \cap C_{\lambda}$ where C_{λ} closed then $= \cup (X - C_{\lambda})$ open because C_{λ} are closed. So $\cup (X - C_{\lambda})$ open (by prop(1) for open sets). So $\cap C_{\lambda}$ closed if each C_{λ} is closed.

Prop (2) for closed sets

$$C_1 \cup \ldots C_n$$

is closed if each $C_j j$ is closed. We need openness of X- union:

$$X - (C_1 \cup \ldots \cup C_n) = \bigcap_{j=1}^n (X - C_j)$$

which is open by C_j being closed for each j and also is the finite intersection of open sets. So it's open by prop (2) of open sets. So $C_1 \cup \ldots \cup C_n$ closed (its complement is open). <u>Note</u>: Continuity can be defined for functions from (S, Q_S) to $(T, Q_T) : f : S \to T$ continuous by definition if $f^{-1}(V) \forall V \subset T$ open is open in S.

$\S14$ Lec 14: Nov 2, 2020

§14.1 Set, Tables, & Characteristics Functions

 $A \subset X$, X_A is called characteristics function where

$$X_A: X \to \{0, 1\}$$

 $X_A(x) = 1 \text{ if } x \in A$
 $X_A(x) = 0 \text{ if } x \notin A$
 $A = \{x: X_A(x) = 1\}$
 $X_{X-A}(x) = 1 - X_A(x)$

$$\begin{array}{c|ccc}
X_{(X-A)\cap(X-B)} & X_{X-(A\cup B)} \\
\hline
1 & 1 & 1 \\
0 & \longleftarrow & 0 \\
0 & 0 & 0
\end{array}$$

De Morgan's Law:

$$X_{(X-A)\cap(X-B)} = X_{X-(A\cup B)}$$

$$\iff (X-A)\cap(X-B) = X - (A\cup B)$$

Exercise 14.1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Reason: So, $(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$.

 $X_{\liminf\{A_n\}} = 1$ if only 1's some n onward.

 $X_{\limsup\{A_n\}} = 1$ for x such that table for x contains infinitely many 1s. – A way to do homework.

§14.2 Closed Sets in Metric Spaces

 $C \subset X$, (X, d) metric space. It is closed if X - C is open.

De Morgans' Laws: $\cap C_{\lambda}$ closed if C_{λ} are closed $-C_1 \cup \ldots \cup C_n$ closed if C_1, \ldots, C_n are closed.

Corollary 14.1

There is a minimal closed (closure) of a set containing a given A

$$A^- = \cap C$$

C closed, $A \subset C$ closed.

We can describe the closure of A in terms of limits of sequences. A point x is a limit point of A (Copson: adherent point) if

$$\exists \{a_n\} \in A \text{ s.t. } \{a_n\} \text{ converges and } \lim a_n \text{ is the point } x$$

If $x \in A$ then x is a limit point:

 $x = \text{limit of sequence}, a_n = x, \text{ for all } n = 1, 2, 3, \dots$

- Set of limit points $\supset A$.
- Set of limit points is a closed set.

In order to understand that, we have to understand the characterization of a set being closed in terms of convergence of sequence:

A set A is closed \iff every limit point of A is in A.

Proof. (of characterization) (\rightarrow) closed \implies contains limit points

 $\lim a_n = a_0$ want to know that a_0 must be in A. Suppose not: Then X - A is open $\exists \epsilon > 0 B(a_0, \epsilon) \subset X - A$ which is impossible $\lim a_n = a_0$.

 (\leftarrow) A contains all limit points \implies A closed.

Suppose X-A is not open and \exists some $a_0 \in X-A$ s.t. $B(a_0,\epsilon) \not\subset X-A$ for every $\epsilon > 0$. For $\epsilon = \frac{1}{n}, n = 1, 2, 3, \ldots, \exists x_n \in B(a_0, \frac{1}{n})$ with $x_n \in X-A$ so $x_n \in A$.

$$d(a_0, x_n) < \frac{1}{n}$$

 $x_n \in A$, $\lim x_n = a_0$ where x_n is a sequence in A but $\lim \notin AX$. So X - A is open. \square

think carefully through this proof

Back to set of limit points of A is always closed:

$$\lim x_n = x_0$$

 $\underbrace{\{x_n\}}$. Hope x_0 is a limit point of A. To be a limit point each is a limit point of A

$$x_n = \lim_{n \to \infty} a_{m,n}$$

Passing to a subsequence, we can suppose for each n, choose $d(x_n,x_0)<\frac{1}{2n}$. Watch out! To get from $d(x_n,x_0)\to 0$ that $d(x_n,x_0)<\frac{1}{2n}$, we need to pass to a subsequence! For each n, there is an $x_{N(n)}$ with $d(x_N,x_0)<\frac{1}{2n}$. Relabel that as x_n , i.e., (new) $x_n=$ (old) $x_{N(n)}$. So x_0 an A-limit implies x_0 is a limit of sequence $\{x_n\}$, $x_n\in A$ with $d(x_n,x_0)<\frac{1}{2n}$. Choose $a_{m,n}$ such that $d(x_n,a_{m,n})<\frac{1}{2n}$. Consider the sequence $\{a_{m,n}\}$, $n=1,2,3,\ldots$

$$d(x_0, a_{m,n}) \le d(x_0, x_n) + d(x_n, a_{m,n})$$

$$< \frac{1}{2n} + \frac{1}{2n} < \frac{1}{n}$$

So x_0 is a limit of seq of points in a.

subsequence of original $\{x_n\}$ limit point of an A - sequence

A set of limit points is closed. C closed \supset A. Then limit points of A in C. $C \supset$ set of limit points of A. So set points is a closed set \supset A and every closed set that contains A contains set of limit points. So A^- = set of limits of A.

Example 14.2

 $\mathbb{Q}^- = \mathbb{R}$

 $\sqrt{2}$ is a limit point of \mathbb{Q} . Every real number is a limit of sequence of rationals – " \mathbb{Q} is dense in \mathbb{R} ".

$\S15$ Lec 15: Nov 4, 2020

$\S15.1$ More on Open and Closed Sets

 $x_n \to x_0$ where x_n is limit of a seq in A then $x_0 = A$ limit $\left[d(x_n, x_0) < \frac{1}{2n}\right]$. Alternative view:

 $x_n \to x_0$, $\lim d(x_n, x_0) = 0$. For each n, $\exists a_n \in A$ s.t. $d(a_n, x_n) < \frac{1}{n} \leftarrow \text{because } x_n \text{ is limit pt. So } \exists \text{ a seq in } A \text{ converging to } x_n$. Then

$$\lim d(a_n, x_0) = 0$$

because $d(a_n, x_0) \le d(a_n, x_n) + d(x_n, x_0)$ as $n \to \infty$.

Closure of A = set of sequence limits of sequences in A. Closed sets can be complicated. Open sets (at least in \mathbb{R}) seem simple. Open sets in \mathbb{R} :

U open in $\mathbb{R} \iff U$ possibly infinite pairwise disjoint collection of (a,b) or $(-\infty,a)$ or $(a,+\infty)$ or \mathbb{R}

maximal open interval
$$\subset U$$

$$(-\infty)$$
 $(+\infty)$

U = pairwise disjoint union of these

Number of intervals in U is countable (each contains a rational number). U_{λ} max open intervals $\subset U$ fixed. Pick λ_1 rational in $U_{\lambda}, U_{\lambda_1} \neq U_{\lambda_2}$ then $r_{\lambda_1} \neq r_{\lambda_2}$.

$$\begin{array}{ccc}
 & r_{\lambda_2} & r_{\lambda_1} \\
 & & \\
 & \lambda_2 & \lambda_1
\end{array}$$

So rational numbers $\implies \{U_{\lambda}\}'$ s are countable (Λ is countable) if each max interval has one λ only.

Cantor set(closed set):

$$\begin{array}{c|ccccc}
0 & \frac{1}{3} & \frac{2}{3} & 1 \\
\hline
(-\infty,0) & & & & & & & & & & \\
\end{array}$$

$$(1,+\infty)$$

complement of $C = (+1, \infty), (-\infty, 0), (\frac{1}{3}, \frac{2}{3}), (\frac{1}{9}, \frac{2}{9}), (\frac{7}{9}, \frac{8}{9})$

At each stage, we remove open middle third of closed intervals that are left from previous stage. C is closed – complement is a union of open intervals hence open. C is not empty – $0 \in C$, $1 \in C$, $\frac{1}{3} \in C$, $\frac{2}{3} \in C$. All the endpoint of [0,1] and the removed open intervals $\subset C$.

<u>C inifite</u>: C contains some points that not endpoints.

Reason: set of endpoints is countable (can make a list of them) – (countable union of a finite sets). But C itself is uncountable. Why? We prove later a generalization of this!

 x_1 L if $x_1 \in \text{down side of } [0,1) - \left(\frac{1}{3}, \frac{2}{3}\right)$, $x_1 \in \text{upside of } [0,1) - \left(\frac{1}{3}, \frac{2}{3}\right)$ x_2 L if in downside – R if in upside.

Knowing x depends on a single LR valued sequence associated to unique $x \in C$ one and only $x \in C$ with that LR sequence being sequence for x. LRL ... determined a sequence of closed intervals of successive length $\frac{1}{3^n}$, $n = 1, 2 \ldots$ Each is contained in previous ones "nested intervals".

Proofs earlier:

$$[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\dots$$

(nested intervals) of length $[a_n, b_n] \to 0$ as $n \to \infty$. \exists one and one point in

$$\bigcap_{n=1}^{\infty} [a_n, b_n]$$

$$x \in C \to L, R \text{ seq}$$

L,R seq comes from exactly one $x \in C$. So to know C is uncountable just to have to know set of all L,R sequences is uncountable.

Proof. $\{L, R \text{ sequences}\}\$ is countable.

- 1. L,R sequences no 1.
- $2.\ \, \mathrm{L,R}$ seq no 2.

:

 $\exists L, R$ sequences not in list: first element is L if first element here is R, if first element is L. 2nd: L if second element is R. R is second element of is L. New sequence is not in the list. Think about this – similar to subdivision argument to prove the accountability of [0,1], powersets.

Baire Category Theorem: later! Sierpinski Carpet: (Check Wikipedia)

Figure 1: Sierpinski Carpet

interior (also interior of C) = \emptyset . Closed uncountable set with interior = \emptyset .

§16 | Midterm 1: Nov 6, 2020

Review for midterm 1, and it's distributed at 3:00 pm :D

$\S17$ Lec 16: Nov 9, 2020

§17.1 Completeness (Cont'd)

Recall: (X, d) is complete means, by definition, Cauchy sequences have limits (in X). Cauchy sequence – Given $\epsilon > 0, \exists N_{\epsilon} \ni n_1, n_2 \ge N_{\epsilon} \implies d(x_{n_1}, x_{n_2}) < \epsilon$). $\{x_n\} \to x_m$ means given $\epsilon > 0, \exists N_{\epsilon} \ni d(x_n, x_m) < \epsilon \text{ if } n \ge N_{\epsilon}$.

 \mathbb{R} is complete but \mathbb{Q} is not.

<u>Note</u>: (X, d) is complete or not \leftarrow depends on d as well as X. Any discrete metric space is, Cauchy \iff eventually constant, complete. \checkmark

Example 17.1

 $C\left([0,1]\right)$ is complete in $d(f,g)=\sup\left(f(x),g(x)\right)$ (sup norm) but not complete in $l^2,d(f,g)=\left(\left|f(x)-g(x)\right|^2\right)^{\frac{1}{2}}$. We will look at this later.

(X,d) metric space, $Y \subset X$, then $d\Big|_{Y \times Y}$ is a metric on $Y - (Y,d\Big|_{Y \times Y}, Y$ is a subspace of X.

$$\underbrace{d_Y(y_1, y_2)}_{y_1, y_2 \in Y} = \underbrace{d_X(y_1, y_2)}_{y_1, y_2 \in X}$$

Lemma 17.2

If (X, d) is complete, then $(Y, d|_{Y \times Y})$ is complete if and only if Y is closed in (X, d).

Proof. Left as exercise.

Example 17.3

 \mathbb{R} is complete but not $[0,1) \subset \mathbb{R}$.

Completeness is not a topological property not determined by knowing which sets are open.

f preserves open sets – homomorphism – 1-1 and onto mapping s.t. open sets are preserved. Define a new metric on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ has usual metric $d(\alpha, \beta) - |\alpha - \beta|$ in which it is not complete.

$$d(\alpha, \beta) = d(f(\alpha), f(\beta))$$
$$(|\alpha - \beta - \text{old}|) \stackrel{\text{new}}{=} d(\alpha, \beta) = |\tan \beta - \tan \alpha|$$

This new metric on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is complete.

f "isometric" by definition, distances are preserved (by f). means ((), new metric) and (\mathbb{R} , usual metric), () new metric has same open sets (), old metric not complete. \mathbb{R} usual metric is complete.

(*) Completeness is a metric property, not topological property.

Example 17.4

(Complete)

- 1. Discrete metric space
- $2. \mathbb{R}$
- 3. \mathbb{R}^n in any of the three metric
 - $d(\vec{x}, \vec{y}) = \sqrt{(x_1 y_1)^2 + \ldots + (x_n y_n)^2}$
 - sup metric $d(\vec{x}, \vec{y}) = \max |x_i y_1|$
 - taxicab metric $d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i y_i|$

All are complete metrics.

Proof. $d(\vec{x}_{n_1}, \vec{x}_{n_2} < \epsilon \implies$

$$|j|$$
 th coord of $\vec{x}_{n_1} - j$ th coord of $\vec{x}_{n_2}| < \epsilon, j = 1, \ldots, n$

Cauchy seq $\{\vec{x}_j\}$. Cauchy seq in \mathbb{R}^n , $l=1,\ldots,n-l$ th coord of $\{\vec{x}_j\}\leftarrow$ numbers, is a Cauchy sequence. So it has a limit $\vec{L}\in\mathbb{R}^n$, $L=(L_1,\ldots,L_n)$ is the limit of $\{\vec{x}_n\}$

"Component-wise convergent (or Cauchyness) \iff convergence or Cauchyness of vector sequences.

<u>Issue</u>: What l_2 infinite sequence? – Yes, Complete! Completeness of l_2 : next time.

§18 Dis 1: Oct 1, 2020

Notation:

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$$

$$\mathbb{Q} = \left\{\frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0\right\}$$

$$\mathbb{R} = \text{real numbers}$$

$$\mathbb{C} = \{a + bi, \quad a, b \in \mathbb{R}\}$$

Set theory:

- $A \subset B$ (or $A \subseteq B$) means $x \in A \implies x \in B$
- $x \in A \cap B$ means $x \in A$ and $x \in B$
- $x \in A \cup B$ means $x \in A$ or $x \in B$
- $x \in A \setminus B \iff x \in A \text{ and } x \notin B$
- $A = B \iff A \subset B \text{ and } B \subset A$

§18.1 Induction

Given a sequence of mathematical statement P(n) indexed by \mathbb{N} . If P(1) is true and $P(k) \implies P(k+1)$ is true $\forall k \in \mathbb{N}$, then P(n) is true $\forall n \in \mathbb{N}$.

Example 18.1

Prove $\sum_{k=1}^{n} (2k-1) = n^2$ (*) using induction.

Base case $n = 1: 1 = 1^2$

Induction step: assume as induction hypothesis that (*) holds

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1$$
$$= n^2 + 2n + 1$$
$$= (n+1)^2$$

Or we can prove it the following way

$$S = 1 + 3 + 5 + \dots + (2n - 1)$$

$$S = (2n - 1) + (2n - 3) + \dots + 3 + 1$$

$$2S = 2n \cdot n$$

$$S = n^{2}$$

Example 18.2

 $a_{n+1} = \sqrt{2 + a_n}$, $a_1 = 1$. Prove $a_n > 0$ and a_n increasing. $a_1 > 0$ assume $a_n > 0$, $a_{n+1} = \sqrt{2 + a_n} > 0$

$$a_2 = \sqrt{3} \approx 1.732 > 1 = a_1$$

Assume $a_n \le a_{n+1}$, want to show $a_{n+1} \le a_{n+2} \iff \sqrt{a_n+2} \le \sqrt{a_{n+1}+2} \iff a_n \le a_{n+1}$

Example 18.3

 $(1+x)^n \ge 1 + nx$: Bernoulli Inequality

$$x \ge -1, \quad n \ge 0$$

base case $1 \ge 1$

Assume $(1+x)^n \ge 1 + nx$

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2$$
$$= 1 + (n+1)x$$

Strong Induction:

If P(1) true and $P(1), P(2), \dots P(k) \implies P(k+1)$ true $\forall k \in \mathbb{N}$ then P(n) holds for all $n \in \mathbb{N}$

Remark 18.4. Induction \iff strong induction

Example 18.5

Every integer greater than 1 is a product of primes.

Assume 2, 3, ..., n is a product of primes. n+1 is either a prime or a composite, in which case n+1=ab, 1 < a, b < n+1.

By strong induction hypothesis, both a and b are product of primes, hence so is n+1=ab.

Exercise 18.1. Every integer greater than 1 has a prime divisior.

Proof of infinitude of primes by Euclid:

Proof. Assume on the contrary there are finitely many primes $\{p_1, p_2, \ldots, p_k\}$. Define $N = p_1 \ldots p_k + 1 > 1$ and (by above exercise) let p be a prime divisior of N but $p \neq p_j$ for any $1 \leq j \leq k$ otherwise if $p = p_j$ then $p|p_2 \ldots p_k$ also $p|N \implies p|N - p_1 \ldots p_k \implies p|1$, a contradiction. (no primes divide 1)

§19 Dis 2: Oct 8, 2020

§19.1 Number System

- $(\mathbb{N}, +, \cdot, <) : + : \mathbb{N} \times \mathbb{N} = \mathbb{N}^2 \to \mathbb{N}$ satisfies commutativity and associativity. Note that 0 is the identity with respect to addition, but \mathbb{N} has no additive inverse.
- $(\mathbb{Z}, +, \cdot, <) : (\mathbb{Z}, +)$ is a commutative group (associativity, identity, inverse). (\mathbb{Z}, \cdot) satisfies commutativity, associativity with 1 as mult identity but 2 has no mult inverse.
- $(\mathbb{Q}, +, \cdot, <) : (\mathbb{Q}, +)$ and (\mathbb{Q}, \cdot) are commutative group(i). + and \cdot are compatible with distributive law: a(b+c) = ab + ac (ii). Both (i) and (ii) mean $(\mathbb{Q}, +, \cdot)$ is a FIELD. (Q, <) is an ordered set with < satisfying trichotomy and transitivity. $+, \cdot$ are compatible: $y < z \implies x + y < x + z \forall x, x > 0, y > 0 \implies xy > 0$. With the above compatibility, $(\mathbb{Q}, +, \cdot, <)$ is an ordered field. Even though \mathbb{Q} is additivity adn multiplicatively complete, \mathbb{Q} is not satisfying in that
 - 1. \mathbb{Q} is not algebraically closed, $x^2 2$ is a polynomial with no root in \mathbb{Q} .
 - 2. \mathbb{Q} is not complete in a metric space: there exists subsets of \mathbb{Q} bounded above but with no least upper bound (supremum), e.g. $A := \{p \in \mathbb{Q} : p < 0 \text{ or } p^2 < 2\}$ and $B = \mathbb{Q} \setminus A$. A contains no largest number and B contains no smallest.

$$\forall p \in A \exists q \in A \quad q > p$$

Let $p \in A$. Define $q := p - \frac{p^2 - 2}{p + 2} > p$

$$q^{2} - 2 = \left(\frac{2p+2}{p+2}\right)^{2} - 2 = \frac{2(p^{2}-2)}{(p+2)^{2}} < 0 \implies q^{2} < 2$$

If A has an upper bound α , $\alpha \notin A$: then $\alpha \in B$. It follows that B is the set of all upper bounds for A. Since B contains no smallest number, A has no least upper bound in \mathbb{Q} .

Definition 19.1 (Least Upper Bound Property) — S has the least-upper-bound property if $\forall E \subset S$ nonempty, bounded above $\sup E \in S$.

Remark 19.2. Q does not satisfy the least-upper-bound property.

 $(\mathbb{R}, +, \cdot, <)$ there exists an ordered field with the l.u.b property that contains an isomorphic copy of \mathbb{Q} .

§19.2 Equivalence Relation

An equivalence relation given \sim on $A \times A$ satisfies

- $x \sim x$ reflexity
- $x \sim y \iff y \sim x \text{ symmetry}$
- $x \sim y \cdot y \sim z \implies x \sim z$ transitivy

Example 19.3

 \mathbb{Q} Define \sim on $\{(a,b): a,b\in\mathbb{Z},b\neq0\}$ by $(a,b)\sim(c,d)$ if ad=bc

$$A = \mathbb{Z}^2 \setminus \{(a,0) : a \in \mathbb{Z}\}\$$

 $\mathbb{Q}=$ the set of all equivalence classes of A write \sim

$$=A/\sim=\{[x]:x\in A\}$$

In this construction, $\mathbb{Z} \to \mathbb{Q}$, $n \to \lceil (n,1) \rceil$

 $+ \setminus : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$: note that + and \cdot need to be well-defined on \mathbb{Q}^2 . (need to show $\frac{a}{b} + \frac{c}{d} = \frac{a'}{b'} + \frac{c'}{d'}$ if $\frac{a}{b} \sim \frac{a'}{b'}$ and $\frac{c}{d} \sim \frac{c'}{d'}$.

Example 19.4

$$S' = \left[0, 1\right] / 0_m$$

Definition 19.5 (Convergent Sequences) — $\{a_n\}_{n\geq 1}\subseteq \mathbb{R}$ is said to be convergent to l if $\forall \epsilon>0$ $\exists N(\epsilon)>0$ s.t. $\forall n\geq N, \quad |a_n-l|<\epsilon$

§20 Dis 3: Oct 13, 2020

§20.1 Equivalence Relation (Cont'd)

Example 20.1

Define $\sim p$ on \mathbb{Z} by $a \sim pb$ if $a - b \in p\mathbb{Z}(p|a - b)$. $\forall a \exists ! b \in \mathbb{Z}, \quad 0 \le r$

$$F_p = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}/\sim p = \{[0]_p, [1]_p, [2]_p, \dots, [p-1]_p\}$$

$$[a]_p + [b]_p = [a+b]_p$$
 & $[a]_p[b]_p = [ab]_p$

Remark 20.2. $(F_p, +, \cdot)$ is a finite field. F_p cannot be ordered: $1 > 0, 1 + 1 > 0, \dots, p - 1 > 0$ but p - 1 = -1

Example 20.3

$$\begin{split} T &= \mathbb{R}/\mathbb{Z} \quad a \sim b \text{ if } ab \in \mathbb{Z} \\ &[0,1]/0 \sim 1 \\ \forall a \in \mathbb{R}, \quad \exists b = \underbrace{\{a\}}_{\text{fractional part of } a} \in [0,1) \text{ s.t. } a \sim b \end{split}$$

§20.2 Construction of \mathbb{R} via Cauchy Sequences (Cantor)

S = set of rational Cauchy sequences.

 $\sim \text{ on } S: \{x_n\} - \{y_n\} \text{ if } \lim (x_n - y_n) = 0 \text{ (Q3 - Homework 2)}$

 $Q = S/\sim = \{[\{x_n\}] : \{x_n\} \in S\}$. First we need to define arithmetic on Q.

$$\begin{aligned} & [\{p_n\}] + [\{q_n\}] = [\{p_n + q_n\}] \\ & [\{p_n\}] - [\{q_n\}] = [\{p_n - q_n\}] \\ & [\{p_n\}] \cdot [\{q_n\}] = [\{p_n q_n\}] \\ & [\{p_n\}] / [\{p_n/q_n\}] = [\{p_n/q_n\}], \quad [\{q_n\}] \neq 0, = [\{0, 0, 0, \dots\}] \end{aligned}$$

 $+: Q \times Q \to Q$. Check well-defined

- $\{x_n\} \cdot \{y_n\}$ cauchy then so is $\{x_n + y_n\}(Q4)$
- $\{x_n\} \sim \{y_n\}$ & $\{z_n\} \sim \{w_n\}$ then $\{x_n + z_n\} \sim \{y_n + w_n\}$ (Q5) Commutativity, assoc, identity, $\{0 = [\{0, 0, 0, \dots\}], \text{ inverse.}$
- Well-defined: $\{x_n\}, \{y_n\}$ so is $\{x_ny_n\}$ (Q4).
- {x_n} ~ {y_n} & {z_n} ~ {w_n} (Q6, Q7) comm, assoc, iden, (1 = [{1,1,...,1}] mult. inverse (Q9,Q10).
 <: trichotomy (Q11), transitivity various compatibility (distributivity, etc) l.u.b property (Q12)

Note:All the Q used above is assumed to be Q^{hat}

Remark 20.4.

$$\begin{aligned} Q &\to Q^{\text{hat}} \\ q &\mapsto [q^*] \\ p &< q \iff [p^*] < [q^*] \end{aligned}$$

Sequences:

- Cauchy seq. are bounded.
- Convergent seq. is Cauchy.

Theorem: in \mathbb{R} , every Cauchy seq. is convergent.

Example 20.5

$$a_n = \frac{1}{n}$$

$$\forall \epsilon > 0 \exists N \text{ s.t. } \epsilon N > 1.$$

$$\forall n \ge N \quad \left| \frac{1}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

$\S21$ Dis 4: Oct 20, 2020

§21.1 Least Upper Bound and Its Applications

Remark 21.1 (ϵ – Principle). $a, b \in \mathbb{R}, \forall \epsilon > 0, a \leq b + \epsilon \implies a \leq b$.

• $x, y \in \mathbb{R} \quad \forall \epsilon > 0, \ |x - y| \le \epsilon \implies x = y.$

Supremum: $E \subset S$ bounded above. Suppose $\sup E \in S$

- $e \le \sup E \forall e \in E$.
- $\begin{array}{l} \bullet \ \, \forall \beta < \sup E, \quad \exists e \in E \text{ s.t. } \beta < e < \sup E \\ \\ \underline{OR} \\ \forall \epsilon > 0, \exists e \in E \text{ s.t. } \sup E \epsilon < e \leq \sup E. \end{array}$

Example 21.2

$$\sup\left\{\frac{1}{n}\right\}_{n\geq 1} = 1, \ \inf\left\{\frac{1}{n}\right\} = 0.$$

- $0 \le \frac{1}{n} \forall n \in \mathbb{N}$.
- $\forall \epsilon > 0, \exists n \in \mathbb{N} \text{ s.t. } 0 \leq \frac{1}{n} < \epsilon \text{ by Archimedean Prop.}$

Theorem 21.3 (Nested Interval)

 $\{I_n = [a_n, b_n]\}_{n \geq 1} \subset \mathbb{R}, I_n \supset I_{n+1} \implies \bigcap_{n=1}^{\infty} I_n \neq \emptyset.$ Moreover, if $|I_n| \to 0$, then $\bigcap I_n$ is a singleton (a set with exactly one element).

Proof. sup $a_n \in \bigcap I_n$.

Theorem 21.4 ((4.1))

(Bolzano – Weierstrass): Every bounded sequence in $\mathbb R$ has a convergent subsequence.

Proof. $I_0 = [-M, M] \supset I_1 \supset I_2 \supset \dots$

$$|I_n| = (2M) \cdot 2^{-n} \to 0$$
 as $n \to \infty$

From Nested Interval Thm, $\bigcap_{n=0}^{\infty} I_n = \{x\}$. Choose $x_{n_k} \in I_k, x_{n_k} \to x$.

Remark 21.5. l.u.b property of $\mathbb{R} \implies \text{Nested Interval} \implies \text{Bolzano} - \text{Weierstrass} \stackrel{(*)}{\Longrightarrow} \text{Cauchy Completeness.}$

(*) Exercise: $\{x_n\}$ Cauchy. $x_{n_k} \to x \implies x_n \to x$.

Remark 21.6. In \mathbb{R} , to check convergence, it suffices to check Cauchyness. Useful especially when you don't have a candidate for the limit. Cauchy criterion for series $\sum_{n=1}^{\infty} a_n$ converges $(\lim_{n\to\infty}\sum_{k=0}^n a_k)$ exists. $\iff \sum a_n$ Cauchy $(\forall \epsilon>0 \exists N \mid \sum_{k=n}^m a_k \mid <\epsilon \quad \forall m\geq n\geq N)$.

Corollary 21.7

Absolute convergence \implies convergence. $(\sum |a_n| \text{ converges } \implies \sum a_n \text{ converges}).$

Monotone convergence theorem, $\{a_n\}$ monotone. Then $\{a_n\}$ bounded $\iff \{a_n\}$ convergent. (HW 3 – Q1).

Definition 21.8 (Monotone Sequence) — $\{a_n\}$ monotone if $a_n \leq a_{n+1} \forall n$ or $a_n \geq a_{n+1} \forall n$.

Corollary 21.9

 $\sum |a_n| < \infty \iff \sum |a_n|$ converges.

§21.2 Continuity

Definition 21.10 ((6.2)) — $f: X \to \mathbb{R}$ is continuous at x (local prop) if

- 1. $(\epsilon \delta \operatorname{def}) \ \forall \epsilon > 0, \exists \delta(\epsilon, x) > 0 \text{ s.t. } \forall y \in X, \ |x y| < \delta \implies |f(x) f(y)| < \epsilon.$
- 2. (Sequential def) $\forall \{x_n\} \subset X, x_n \to x \implies f(x_n) \to f(x)$ (f preserves sequential convergence).
- 3. $\lim_{y \to x} f(y) = f(x)$

 $f: X \to \mathbb{R}$ is continuous if f is continuous at all $x \in X$.

Definition 21.11 ((7.1)) — f is uniformly continuous on X (global prop) if

- 1. $(\epsilon \delta) \ \forall \epsilon > 0, \exists \delta(\epsilon) > 0 \text{ s.t. } \forall x, y \in X \ |x y| < \delta \implies |f(x) f(y)| < \epsilon.$
- 2. (Sequential) $\forall \{x_n\} \subset X$, $\{x_n\}_{n\geq 1}$ Cauchy $\Longrightarrow \{f(x_n)\}_{n\geq 1}$ Cauchy. (f preserves Cauchy seq).

Remark 21.12. Uniform continuity \implies continuity.

Example 21.13

 $f:(0,\infty)\to\mathbb{R},\,f(x)=\frac{1}{x}$ is continuous.

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \frac{|x - y|}{xy} < \frac{|x - y|}{x \cdot \frac{x}{2}} = |x - y| \cdot 2x^{-2} < \epsilon$$

 $\delta = \min\left\{\frac{x}{2}, \frac{\epsilon x^2}{2}\right\}.$

Remark 21.14. $x \mapsto \frac{1}{x}$ is uniformly continuous on $(a, \infty) \forall a > 0$. $x \mapsto \frac{1}{x}$ is NOT uniformly continuous on $(0, \infty)$.

- $x_n = \frac{1}{n}, y_n = \frac{1}{n+1}$ $|x_n y_n| \to 0$ but $|\frac{1}{x_n} \frac{1}{y_n} = 1 \forall n$.
- $\left\{\frac{1}{n}\right\}_{n>1}$ Cauchy but $\{n\}$ is not.

$\S22$ Dis 5: Oct 27, 2020

§22.1 Metric Spaces

Definition 22.1 ((9.1)) — A metric on a set X is a function $d: X \times X \to [0, \infty]$ s.t.

- $d(x,y) = 0 \iff x = y$ d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z) \quad \forall x,y,z \in X$

Thus (X, d) is called a metric space.

• $(X,d), A \subset X$. $d\Big|_{A \times A}$ is a metric on A.

• (Discrete metric) Given any set X, define

$$d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

Check d is a metric on X.

Remark 22.3 (norm). Given a vector space X. A norm on X is a function $\|\cdot\|: x \to [0, \infty)$

$$\begin{split} \bullet & \quad \|x\| = 0 \iff x = 0 \\ \bullet & \quad \|\alpha x\| = |\alpha| \|x\| \\ \bullet & \quad \|x + y\| \le \|x\| + \|y\| \end{split}$$
 Then $d(x,y) = \|x - y\|$ is a metric on X.

Example 22.4 • \mathbb{R}^d , $|\cdot| = ||\cdot||_2$ where $|x| = ||x||_2 = \sqrt{\sum_{i=1}^d |x_i|^2}$

• On \mathbb{R}^d , define $||x||_p = \left(\sum_{i=1}^d ||x_i||^p\right)^{\frac{1}{p}}, 1 \le p < \infty$

Inequalities:

• Young's Inequality:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}, a, b \ge 0, \frac{1}{p} + \frac{1}{q} = 1$$

• Holden's Inequality:

$$||xy||_1 \le ||x||_p ||y||_q, \quad \frac{1}{p} + \frac{1}{q} = 1, 1$$

• Minkowski's Inequality (triangle inequality for $\|\cdot\|_p$)

$$||x+y||_p \le ||x||_p + ||y||_p$$

Define $||x||_{\infty} = \max_{i=1}^{d} |x_i|$. Then

$$||xy||_1 \le ||x||_1 ||y||_{\infty}$$

 $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$

Hence $(\mathbb{R}^d, \|\cdot\|_p)$ is a metric space $\forall 1 \leq p \leq \infty$. <u>Note</u>:

- p = 1: taxicab / Manhattan metric
- p = 2: Euclidean metric
- $p = \infty$: sup metric

Notation: $\mathbb{R}^N = \{(x_i)_{i \geq 1} : x_i \in \mathbb{R}\} = \{f : \mathbb{N} \to \mathbb{R}\}\$

Definition 22.5 — Given $x \in \mathbb{R}^N$, $||x||_p = (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}}$, $1 \le p < \infty$. $||x||_{\infty} = \sup |x_i|$

Example 22.6

 $l^p(\mathbb{N}) = \{f : \mathbb{N} \to \mathbb{R}, ||f||_p < \infty\}, \ 1 \le p \le \infty.$ So $(l^p, ||\cdot||_p)$ is a metric space and a vector space.

Definition 22.7 (Completeness of Metric Space) — A metric space (X, d) is complete if every Cauchy sequence with respect to d is convergent with respect to d.

Example 22.8 • $(\mathbb{Q}, |\cdot|)$ is not complete; $(\mathbb{R}, |\cdot|)$ is complete.

- $(\mathbb{R}^d, \|\cdot\|_p)$ is complete.
- $(l^p(\mathbb{N}), \|\cdot\|_p)$ is complete $(1 \le p \le \infty)$.
- $([0,1],\mathbb{R}) = \{f : [0,1] \to \mathbb{R}\}$ continuous

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)| \to ||f - g|| = \sup_{x \in [0,1]} |f(x) - g(x)|$$

 $(C([0,1]), \|\cdot\|_{\infty})$ is a complete metric space.

Special structure when p=2

Inner product space:

Given vector space X/\mathbb{R} a real inner product on X is $\langle \cdot, \cdot \rangle : x \succ x \to [0, \infty]$ s.t.

- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle, \forall a, b \in \mathbb{R}, x, y, z \in X.$
- $\bullet \langle x, y \rangle = \langle y, x \rangle$
- $\langle x, x \rangle \in (0, \infty)$ and is $0 \iff x = 0$.

With the inner product: $||x|| = \sqrt{(x,x)}$ is a norm, then $(X, ||\cdot||)$ is a metric space.

Example 22.9

$$\mathbb{R}^{d} : \langle x, y \rangle = x \cdot y = \sum_{i} x_{i} y_{i}$$
also, $\|x\|_{2} = \sqrt{\sum_{i} x_{i}^{2}} = \sqrt{\langle x, x \rangle}$

Example 22.10

$$l^{2}: \langle f, g \rangle = \sum_{i=1}^{\infty} f(i)g(i) \text{ and } ||f||_{2} = \sqrt{\langle f, f \rangle} = \sqrt{\sum_{i=1}^{\infty} |f(i)|^{2}}$$

Definition 22.11 (Orthogonality) —
$$x \perp y \iff \langle x, y \rangle = 0$$

Theorem 22.12 (Cauchy – Schwarz)

 $|\langle x,y\rangle \leq ||x|| \cdot ||y|||$ and equality holds $\iff x,y$ are linearly dependent.

 $\forall x, y \in X, \alpha \in \mathbb{R}$

$$\langle x - \alpha y \cdot x - \alpha y \rangle = ||x - \alpha y||^2 > 0$$

Goal: find α that minimize $||x - \alpha y||$

The intuition here is $||x - \alpha y||$ is shortest when $x - \alpha y \perp y$.

$$\langle x - \alpha y \cdot x - \alpha y \rangle = ||x||^2 + \alpha^2 ||y||^2 - 2\alpha \langle x, y \rangle$$

is minimal when $\alpha = \frac{\langle x, y \rangle}{\|y\|^2}$. Let us set α to such value, so

$$= ||x||^2 + \frac{|\langle x, y \rangle|^2}{||y||^2} - \frac{2 |\langle x, y \rangle|^2}{||y||^2}$$
$$= ||x||^2 - \frac{|\langle x, y \rangle|^2}{||y||^2} \ge 0$$

$\S23$ Dis 6: Nov 3, 2020

§23.1 Basic Topology - Metric Space

(X,d) metric space. If $x \in X$, the (open) ball of radius r about x is denoted $B_r(x) = B(r,x) = \{y \in X : d(x,y) < r\}$ where r is radius and x is the center.

Definition 23.1 (Open/Closed Sets) — $E \subset X$ open if $\forall x \in E \exists r > 0$ s.t. $B(r,x) \subset E$. E is closed if $E^c = X \setminus E$ is open.

Example 23.2

B(r,x) is open: $\forall y \in B(r,x), B(r-d(x,y),y) \subset B(r,x)$

Example 23.3

 X, \emptyset is both open and closed, also known as clopen.

Example 23.4

Subsets of \mathbb{R}

$$\begin{array}{c|cccc} & \text{open} & \text{closed} \\ [0,1] & \times & \checkmark \\ (0,1) & \checkmark & \times \\ (0,1] & \times & \times \\ \mathbb{Z} & \times & \checkmark \\ \left\{\frac{1}{n}\right\}_{n\geq 1} & \times & \times \end{array}$$

We can observe for the last case, $\left\{\frac{1}{n}\right\}_{n\geq 1}$ is not closed since any neighborhood around 0 intersects $\left\{\frac{1}{n}\right\}_{n\geq 1} \implies \left\{\frac{1}{n}\right\}_{n\geq 1}^c$ is not open.

Example 23.5

Subset of \mathbb{R}^2

	open	closed
$\{x^2 + y^2 < 1\} = B(1,0)$	✓	×
$\left\{x^2 + y^2 \le 1\right\}$	×	✓
A where $ A < \infty$	×	✓
$\{(x,y): x=1\}$	×	✓
$(0,1) = \{(x,0) : x \in (0,1)\}$	×	×

Remark 23.6. Open/Closed is relative: (0,1) open in \mathbb{R} but not open in \mathbb{R}^2 .

- $\{V_{\alpha}\}_{{\alpha}\in A}$ open $\Longrightarrow \bigcup_{{\alpha}\in A} V_{\alpha}$ is open $\{F_{\alpha}\}_{{\alpha}\in A}$ closed $\Longrightarrow \bigcap_{{\alpha}\in A} F_{\alpha}$ is closed.
- V_1, \ldots, V_n open $\Longrightarrow \bigcap_{i=1}^n V_i$ is open F_1, \ldots, F_n closed $\Longrightarrow \bigcup_{j=1}^m F_j$ is closed.
- Infinite intersection (union) of open (closed) sets need <u>not</u> be open (closed, respectively).

$$\bigcap_{n>1} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\} \quad \bigcup_{n>1} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0, 1)$$

Theorem 23.7

f is continuous $(X_1, d_1) \to (X_2, d_2) \iff f^{-1}(U)$ is open in $X_1 \forall U$ open in X_2 .

Remember to prove this

Definition 23.8 (Boundedness) — Diameter of E: diam $E = \sup \{d(x,y) : x,y \in E\}$. E is bounded if diam $E < \infty$.

An alternative definition: E is bounded if $\exists x \in E, R > 0$ s.t. $E \subset B_R(x)$

Definition 23.9 (Closure) — $E \subset X$. The closure of E in X is denoted $\overline{E} = \bigcap_{E \subset F, F \text{closed}}^F$. Note \overline{E} is closed.

The interior of E in X is denoted

$$\mathring{E} = \bigcup_{E \supset G, G \text{ open}} G \qquad \mathring{E} \text{ is open}$$

Remark 23.10. E closed $\iff E = \overline{E}$. E open $\iff E = \mathring{E}$.

Theorem 23.11

The followings are equivalent

- 1. $x \in \overline{E}$
- 2. $\forall r > 0, B_r(x) \cap E \neq \emptyset$
- 3. $\exists \{x_n\}_{n\geq 1} \subset E \text{ s.t. } x_n \to x$

Proof. (1) \iff (2) $\equiv x \notin \overline{E} \iff r > 0 B_r(x) \cap E = \emptyset \iff \exists r > 0, B_r(x) \subset E^c$. So this implies $x \in (\overline{E})^c$. $\exists r > 0, B_r(x) \subset (\overline{E})^c \subset E^c$

 \iff $\exists r > 0, B_r(x) \subset E^c \iff E \subset B_r(x)^c \implies \overline{E} \subset B_r(x)^c \implies x \notin \overline{E}$

Note: above argument shows $\left(\overline{E}\right)^c = \left(\mathring{E}^c\right)$

$$(2) \iff (3)$$
 – obvious.

Definition 23.12 (Limit Point) —

$$E' = \{x \in X : \exists r > 0 (B(r, x) \setminus \{x\}) \cap E \neq \emptyset\}$$

:= \{x \in X : \Beta \{x_n\} \Circ E \\ \{x\} \ighta x_n \righta x\}

Example 23.13

$$E = \left\{\frac{1}{n}\right\}_{n \ge 1}$$

$$E' = \{0\}$$

$$\overline{E} = \left\{\frac{1}{n}\right\}_{n \ge 1} \cup \{0\}$$

$$(\overline{E})' = Ex$$

$$(E')' = Ex$$

Remark 23.14. $\overline{E} = E \cup E'$.

Theorem 23.15

The followings are equivalent

- 1. E closed (E^c is open).
- 2. $\overline{E} \subset E \iff E = \overline{E}$
- 3. $E' \subset E$ Rudin Definition
- 4. $\underbrace{\forall \{x_n\} \subset E \text{ if } x_n \to x}_{x \in \overline{E}} \text{ then } x \in E.$

§24 Dis 7: Nov 10, 2020

§24.1 Some Nice Theorems

Theorem 24.1 (Extreme Value)

 $f:[a,b]\to\mathbb{R}$ continuous $\Longrightarrow \exists x_n,x_m\in[a,b] \text{ s.t. } f(x_n)\leq f(x)\leq f(x_m) \forall x\in[a,b].$

Remark 24.2. 1. $f: X \to \mathbb{R}$ continuous and if X is sequentially compact then f attains its extrema in X.

Proof. Suppose $f(x_n) \to \sup_{x \in X} f(x)$ (allowing infinity), then by sequential compactness of X, $\exists x_{n_k} \to x \in X$. By continuity, $f(x_{n_k}) \to f(x)$ but $f(x_{n_k}) \to \sup_{x \in X} f(x)$ as well. By uniqueness of limit, $f(x) = \sup_{y \in Y} f(y) < \infty$.

- 2. [a, b] is sequentially compact (HW)
- 3. Sequential compactness \implies closed and bounded (HW). In \mathbb{R}^n , the converse is true by (high-dimensional) Bolzano-Weierstrass. So, in \mathbb{R}^n , sequential compactness \iff closed and bounded.

Theorem 24.3 (Intermediate Value)

 $f:[a,b]\to\mathbb{R}$ continuous. For every λ between f(a),f(b), then $\exists c\in(a,b)$ s.t. $f(c)=\lambda.$

Remark 24.4. Image of connected set under continuous mapping is connected (later).

Example 24.5 • $\exists \alpha \in \mathbb{R} \ni \alpha^2 = 2$.

- Every odd polynomial p(x) has a root in \mathbb{R} . Note: all polynomials are continuous.
- $f: [0,1] \to [0,1]$ continuous has a fixed point x s.t. f(x) = x. Show g(x) = f(x) x has a root. Note that g is also continuous g(0) = f(0) = 0: $g(1) = f(1) 1 \le 0$. If f(0) = 0 or f(1) = 1, we have the fixed point; if not, g(0) > 0, g(1) < 0 so IVT $\implies \exists c \in (0,1) \text{ s.t. } g(1) = f(1) c = 0$.

Theorem 24.6 (Heine - Cantor)

 $f:[a,b]\to\mathbb{R}$ continuous $\Longrightarrow f$ is uniformly continuous.

Remark 24.7. This also generalizes to any sequentially compact space.

Example 24.8

 $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x \neq 0 \\ c, & x = 0 \end{cases}$$

f is not continuous: $x_n = \frac{1}{\frac{\pi}{2} + n\pi}$ so that $\sin\left(\frac{1}{x_n}\right) = (-1)^n$. $x_n \to 0$ but $\sin\left(\frac{1}{x_n}\right) = (-1)^n$ does not converge. For any $c \in \mathbb{R}$, f is not continuous. So there exists no

continuous extension of $\sin\left(\frac{1}{x}\right)$ to the origin.

Remark 24.9. $f:[a,b]\to\mathbb{R}$ uniformly continuous. Then $\exists !\mathscr{F}:[a,b]\to\mathbb{R}$ continuous s.t. $\mathscr{F}|_{(a,b)}=f$. Exercise!

§24.2 Completeness

- $\bullet \ A \subset B \implies \overline{A} \subset \overline{B} : A \subset B \subset \overline{B} \implies \overline{A} \subset \overline{B}$
- $\bullet \ A \subset B \implies A^{\circ} \subset B^{\circ}$
- $\overline{A \cup B} = \overline{A} \cup \overline{B} \iff (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ} (\overline{X}^{c} = \overset{\circ}{X^{c}})$ $\supset : \overline{A} \subset \overline{A \cup B}, \overline{B} \subset \overline{A \cup B} \implies \overline{A} \cup \overline{B} \subset \overline{A \cup B}$ $\subset : A \cup B \subset \overline{A} \cup \overline{B} \implies \overline{A \cup B} \subset \overline{A} \cup \overline{B}.$
- $\bigcup_{k=1}^{\infty} \overline{A_k} \subset \overline{\bigcap_{n=1}^{\infty} A_k}$, however, let $A_k = \{q_k\}$ where $Q = \{q_k\}_{k \geq 1}$ is enumeration of Q.

$$\bigcup_{k=1}^{\infty}\overline{A_k}=\bigcup_{k=1}^{\infty}\left\{q_k\right\}=Q\subsetneq\overline{\bigcup_{k=1}^{\infty}A_k}=\overline{Q}=\mathbb{R}$$

Similarly, $(\bigcap_{k=1}^{\infty} A_k)^{\circ} \subset \bigcap_{k=1}^{\infty} A_k^{\circ}$ but in general not equal.

• $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$; however,

$$\emptyset = \overline{\emptyset} = \overline{(-1,0) \cap (0,1)} \subsetneq \overline{(-1,0)} \cap \overline{(0,1)} = [-1,0] \cap [0,1] = \{0\}$$

Similarly, $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$ but in general not equal.

Definition 24.10 (Dense Set) — $A \subset X$ is dense if $\overline{A} = X$ ($x \in X = \overline{A} \implies \forall r > 0, B_r(x) \cap A \neq \emptyset$).

Example 24.11

 $\overline{\mathbb{Q}} = \mathbb{R}$.