COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

April 5, 2023

Lecture 27: Reductions 2

Recap

Undecidability

Recap

Undecidability

$$A_M = \{\langle M, w \rangle \mid w \in L(M)\}$$

$$E_M = \{\langle M \rangle \mid L(M) = \emptyset\}$$

$$EQ_M = \{\langle M_1, M_2 \rangle \mid L(M_1) = L(M_2)\}$$

$$REG = \{\langle M \rangle \mid L(M) \text{ is regular}\}$$

Recap

Undecidability

$$A_M = \{\langle M, w \rangle \mid w \in L(M)\}$$

$$E_M = \{\langle M \rangle \mid L(M) = \emptyset\}$$

$$EQ_M = \{\langle M_1, M_2 \rangle \mid L(M_1) = L(M_2)\}$$

$$REG = \{\langle M \rangle \mid L(M) \text{ is regular}\}$$

Reduction via computation histories

Definition

For a TM M on input w, C_1, C_2, \ldots, C_r is the accepting computation history (aka accepting run) of M on w if C_1 is the start configuration and C_r is an accepting configuration. Similarly define rejecting computation history (rejecting run). Define graph of configurations.

Reduction via computation histories

Definition

For a TM M on input w, C_1, C_2, \ldots, C_r is the accepting computation history (aka accepting run) of M on w if C_1 is the start configuration and C_r is an accepting configuration. Similarly define rejecting computation history (rejecting run). Define graph of configurations.

- Versatile technique used to prove (un)decidability.
- ▶ (Un) decidability = reachability problem on configuration graph.

Reduction via computation histories

Definition

For a TM M on input w, C_1, C_2, \ldots, C_r is the accepting computation history (aka accepting run) of M on w if C_1 is the start configuration and C_r is an accepting configuration. Similarly define rejecting computation history (rejecting run). Define graph of configurations.

- Versatile technique used to prove (un)decidability.
- (Un) decidability = reachability problem on configuration graph.
- Used in the proof of Hilbert's 10th problem (testing integer roots of polynomials) and is a useful technique.

Definition

An LBA is a TM where the tape heard is not allowed to move off the portion of the tape containing the input, i.e. TMs with limited amount of memory(|w| bits?)

Definition

An LBA is a TM where the tape heard is not allowed to move off the portion of the tape containing the input, i.e. TMs with limited amount of memory(|w| bits?)

- Using a tape alphabet larger than input alphabet, memory available can be O(n) hence LBA.
- ▶ Verifying exercise: The following algorithms from the previous reading exercise $(A_{DFA}, A_{CFG}, E_{DFA}, E_{CFG})$ can be implemented using a LBA.

Definition

An LBA is a TM where the tape heard is not allowed to move off the portion of the tape containing the input, i.e. TMs with limited amount of memory(|w| bits?)

- Using a tape alphabet larger than input alphabet, memory available can be O(n) hence LBA.
- ▶ Verifying exercise: The following algorithms from the previous reading exercise $(A_{DFA}, A_{CFG}, E_{DFA}, E_{CFG})$ can be implemented using a LBA.
- Let

$$A_{LBA} = \{(M, w) \mid M \text{ accepts } w\}$$

▶ Is A_{LBA} undecidable?

Membership for LBA is decidable

Lemma

Given an LBA with q states and $|\Gamma| = g$ there are exactly, qng^n distinct configurations of the LBA.

Configurations are strings specified by Q, head position and tape contents.

An easy algorithm for A_{LBA} : On input $\langle M, w \rangle$

- lacksquare Simulate M on w for qng^n steps or until it halts.
- lacktriangledown If M halts accept (with accept/reject based on M) else reject

What about E_{LBA} ?

$$E_{LBA} = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

• Reduce A_{TM} to E_{LBA} .

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?
- Idea: Language that B recognizes should be language of accepting runs (computation histories) of M on w.

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?
- ▶ Idea: Language that B recognizes should be language of accepting runs (computation histories) of M on w.
- Assume computation histories are specified as $\#C_1\#C_2\#...C_r\#$.

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?
- Idea: Language that B recognizes should be language of accepting runs (computation histories) of M on w.
- Assume computation histories are specified as $\#C_1\#C_2\#...C_r\#$.
- ▶ The LBA has to check if C_i's satisfy

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?
- Idea: Language that B recognizes should be language of accepting runs (computation histories) of M on w.
- Assume computation histories are specified as $\#C_1\#C_2\#\ldots C_r\#$.
- ▶ The LBA has to check if C_i's satisfy

 - \circ C_{i+1} legally follows from C_i .
 - \odot C_r is an accepting configuration.

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?
- Idea: Language that B recognizes should be language of accepting runs (computation histories) of M on w.
- Assume computation histories are specified as $\#C_1\#C_2\#\ldots C_r\#$.
- ▶ The LBA has to check if C_i 's satisfy

 - \circ C_{i+1} legally follows from C_i .
- lacktriangle Remember B has M's code and w hard-coded (as input!) (Condition 1 is easy)

- Reduce A_{TM} to E_{LBA} .
- ▶ I.e., Given $\langle M, w \rangle$ can we build a LBA B such that L(B) is empty if and only if M accepts w?
- ▶ Idea: Language that B recognizes should be language of accepting runs (computation histories) of M on w.
- Assume computation histories are specified as $\#C_1\#C_2\#\ldots C_r\#$.
- ▶ The LBA has to check if C_i's satisfy

 - \circ C_{i+1} legally follows from C_i .
- Remember B has M's code and w hard-coded (as input!) (Condition 1 is easy)
- ▶ C_{i+1} cannot be too different from C_i : except the spots near the head of the machine (easy to verify from the code of M mark with dots, zig-zag).

- $\,\blacktriangleright\,$ Assume there exists an LBA B that correctly identifies accepting runs of TM M on input w.
- Let R be algorithm (assumed) to exist for deciding E_{LBA}

- $\,\blacktriangleright\,$ Assume there exists an LBA B that correctly identifies accepting runs of TM M on input w.
- Let R be algorithm (assumed) to exist for deciding E_{LBA}

Here is the algorithm

On input $\langle M, w \rangle$,

- Construct LBA B
- \bigcirc Run R on $\langle B \rangle$
- lacktriangle If R rejects, accept, else if R accepts, reject.

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Lemma

 $\mathsf{ALL}_{CFG} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \} \text{ is undecidable.}$

Proof Strategy

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*)

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w. Formally,

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

Lemma

 $ALL_{CFG} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

Lemma

 $\mathsf{ALL}_{CFG} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \} \text{ is undecidable.}$

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Lemma

 $\mathsf{ALL}_{CFG} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \} \text{ is undecidable.}$

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all strings (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Input $(M, w) \longrightarrow N_{M,w}$

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \mbox{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \mbox{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \ \mbox{s.t.} \ x \not\in L(N_{M,w}) \end{array}$$

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

Assume that ALL_{CFL} is decidable.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Assume that ALL_{CFL} is decidable.

 ${\cal C}$ be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

 $\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$

Assume that ALL_{CFL} is decidable.

 ${\cal C}$ be the TM deciding it.

Design A as follows:

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

If *C* accepts then reject;

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

 ${\cal C}$ be the TM deciding it.

If C accepts then reject;

else accept.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

 ${\cal C}$ be the TM deciding it.

If C accepts then reject;

else accept.

 Q_1 How should we design $N_{M,w}$?

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations: C_1, C_2, \ldots, C_ℓ such that

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \dots, C_ℓ such that

 C_1 is a start configuration.

 C_ℓ is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations: C_1, C_2, \ldots, C_ℓ such that

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_ℓ is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_ℓ is a rejecting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - ightharpoonup x is a computational history, but C_1 is not a start configuration

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - ightharpoonup x does not have the pattern of a computational history of x OR
 - lacktriangledown is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown x is a computational history, but C_1 is not a start configuration OR
 - ** x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .
- If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x}

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown x is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .
- ${\blacktriangleright}$ If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - lacktriangledown x does not have the pattern of a computational history of x OR
 - lacktriangledown x is a computational history, but C_1 is not a start configuration OR
 - ** x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR
 - ** x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell 1$ and C_i does not yield C_{i+1} .
- If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

• If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x

- ▶ Interpret input x to $N_{M,w}$ as a computational history of M on w.
- ▶ Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:
 - x does not have the pattern of a computational history of x OR
 - \triangleright x is a computational history, but C_1 is not a start configuration OR
 - x is a computational history, C_1 is a start configuration, but C_{ℓ} is not an accepting configuration OR
 - x is a computational history, C_1 is a start configuration, C_{ℓ} is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell - 1$ and C_i does not yield C_{i+1} .
- If M accepts w, let \tilde{x} be a accepting computation history of M on w.

 $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

▶ If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x, i.e. $L(N_{M,w}) = \Sigma^*$.