

What is claimed:

1. Nitrate salts of the compounds selected from the following classes:

Class (A1b) of formula (A1b):

$R_{A1}^I = -CH_2OH,$

$R_{A1}^{II} = -(CH_2)_3-CH_3, -O-CH_2-CH_3;$

$R_{A1}^{III} = H, \text{ free valence};$

$R_{A1}^{IV} = \text{free valence};$

or $R_{A1} = -O-$ and $R_{A1}^{III} = \text{free valence form with the carbon atom in 5 position a keto group,}$

or R^{IV}_{A1} , R^{III}_{A1} , R^I_{A1} and the carbon atoms in 4 and 5 position of the heterocyclic ring of the formula (A1b) form group (IXc),

or R^I_{A1} , R^{IV}_{A1} and the carbon atom in 4 position of the heterocyclic ring of the formula (A1b) form group (IXd);

and wherein R^{III}_{A1} = free valence and R^{IV}_{A1} = free valence there is a double bond between the carbon atoms in 4 and 5 position in the heterocyclic ring of the formula (A1b),

when $X_{A1} = (Ixa)$, $R_{A1} = CH_2OH$, $R^I_{A1} = Cl$, $R^{III}_{A1} = R^{IV}_{A1} = \text{free valences}$ forming a $-CH=CH-$ double bond with the carbon atoms in 4 to 5 position of the heterocyclic ring of the formula (A1b), $R^I_{A1} = -(CH_2)_3-CH_3$, Losartan residue;

as in Losartan but with $R_{A1} = -O$ and R^{III}_{A1} free valence, so as to form in combination with the carbon atom in 5 position of the heterocyclic ring of the formula (A1b) a ketonic group, R^I_{A1} with R^{IV}_{A1} and with the carbon atom in 4 position of the heterocyclic ring are such as to form the saturated ring having 5 carbon atoms (IXd), Irbesartan residue;

as in Losartan but with $R''_{A1} = -O-CH_2-CH_3$, R_{A1} together with R'_{A1} and the carbon atoms in 4 and 5 position of the heterocyclic ring with R''''_{A1} and R'''_{A1} free valences, are such as to form the aromatic radical containing a $-COOH$ group (IXc) Candesartan residue;

as in Losartan but with $X_{A1} = -COOH$, $R_{A1} = (IXb)$, $R'_{A1} = H$, and R''''_{A1} and R'''_{A1} free valence from a double bond between the carbon atoms in 4 and 5 position in the heterocyclic ring of formula (A1b), Eprosartan; class (A1c): Valsartan.

2. Nitrate salts of compounds selected from the following class (A3) of formula (A3):

R'_{B1} and R''_{B1} , equal to or different from each other, are H, CH_3 ,

wherein in the formula (XIId) $t = 0, 1$;

in the formula (XIe) $\text{Y}_{\text{B}1}$ can have the following meanings:

in the formula (XIIf) $Z = \text{H}, -\text{OCH}_3$;

in the formula (A3);

$\text{X}_{\text{B}1} = -\text{O}-, -\text{S}-$;

n and m , equal to or different from each other, are 0, 1;

wherein in the formula (XI_p):

$S_1 = H, CN, OCH_3, CH_3, -CH_2-CH_3-, -O-CH_2-CONH-CH_3, -COCH_3, -CO-(CH_2)_2-CH_3, -O-CH_2-CH=CH_2, -CH_2-CH=CH_2, cyclopentyl,$ or

$S_2 = H, CH_3, Cl, -SOCH_3, -CONH_2;$

$S_3 = H, F, Cl, OH, NO_2, -CH_2-CO-NH_2, -(CH_2)_2-OCH_3, -NH-COCH_3, -CH_2-O-CH_2-CH_2-O-CH(CH_3)_2, -CH_2-CH_2-COOCH_3, -NH-CO-N(C_2H_5)_2, -NH-CO-(CH_2)_2-CH_3, -NH-SO_2-CH_3, -NH-CO-NH-[cyclohexyl], -CH_2-CH_2-O-CH_2-[cyclopropyl];$

$S_4 = H, Cl, -CH_2-CH_2-;$

or S_1 , S_2 and the carbon atoms in 2 and 3 position of the C_6 aromatic ring of the radical (XIp) form the following ring:

wherein:

$(^*)$ designates the atom adjacent to the aromatic ring of the formula XIp^{VII}

$B = -CH_2-, -NH-, -CH=CH-, (^*)-CO-CH_2-$;

$A = -O-, (^*)-CH_2-CH(OH)-, (^*)-O-CH_2-, (^*)-S-CH_2-, -CH_2CH_2-, -CH_2-,$

$W_1 = H$, free valence;

$W_2 = \text{free valence, H, OH, } -CH_3, -ONO_2, -O-$;

or A is a tertiary carbon atom and at the same time W_1 = free valence to form a double bond $-CH=CH-$ between A and the carbon atom in $1'$ position,
or W_1, W_2 the carbon atom in $1'$ position and A form an aromatic ring having 6 carbon atoms to form the following group:

when $W_2 = -O$ and W_1 = free valence at the carbon atom in $1'$ position of radical (XIp^{VII}) it is formed a ketonic group;

or when in formula (XIp) $S_4 = -CH_2-CH_2-$, and in formula (A3) X_{B1} is oxygen, $m = n = 1$ and $(R^{VII}B_1)$ is a free valence, the following ring is formed with the carbon atoms in 1 and 6 position of the aromatic ring of radical (XIp):

or when in formula (A3) $n = m = 1$, both R^{VII}_{B1} and R^{VI}_{B1} are free valences, S_4 and the carbon atoms in 1 and 6 position of the aromatic ring of formula (XIp), S_1 being $-CH_2-CH_3$, together with the carbon atom $-|C|_n-$ and $X_{B1} =$ oxygen of formula (A3) form the following ring:

when $R^I_{B1} = H$, R^{II}_{B1} and $R^{III}_{B1} = CH_3$, $R^V_{B1} = H$, $R^{VI}_{B1} = R^{VII}_{B1} = H$, $m = n = 1$, $X_{B1} = -O-$, $R^{IV}_{B1} = (XIp)$ wherein $S_1 = S_2 = S_4 = H$, $S_3 = -CH_2-CO-NH_2$, Atenolol residue;

as in Atenolol but with $R^{IV}_{B1} = (XIs)$, Befunolol residue;

as in Atenolol, but with $S_1 = S_2 = S_4 = H$, $S_1 = -CH_2-CH=CH_2$, Alprenolol residue;

as in Atenolol, but with $S_1 = COCH_3$, $S_3 = -NH-CO-(CH_2)_2-CH_3$, $S_2 = S_4 = H$, Acebutolol residue;

as in Atenolol, but with $S_3 = -CH_2-CH_2-O-CH_2-$ (cyclopropyl), Betaxolol residue;

as in Atenolol but with $S_3 = -CH_2-O-CH_2-CH_2-O-CH(CH_3)_2$, Bisoprolol residue
as in Alprenolol but with $S_1 = (XIp^{II})$ and $R^I_{B1} = CH^3$, Bufetolol residue;

as in Bufetolol, but with $S_1 = -CN$, Bunitrolol residue;

as in Bufetolol, but with $S_1 = H$, $S_4 = Cl$, $S_2 = CH_3$, Bupranolol residue;

as in Bufetolol but with $S_1 = -CO-(CH_2)_2-CH_3$, $S_3 = F$, Butofilolol residue;

as in Mepindolol but in $R^{IV}_{B1} = (XI^{pVII})$ A = $-O-CH_2-$, B = $-CH_2-$, W2 = $-ONO_2$,
W1 = H, Nipradilol residue;

as in Alprenolol, but with $S_1 = -O-CH_2-CH = CH_2$, Oxprenolol residue;

as in Bufetolol, but with $S_1 = cyclopentyl$, Penbutolol residue;

as in Mepindolol but with W2 = H, Pindolol residue;

as in Atenolol but with $S_3 = -NH-COCH_3$, Practolol residue;

as in Bufetolol but with $S_1 = H$, $S_3 = -NH-CO-NH-(cyclohexyl)$, Talinolol
residue;

as in Nipradilol but with $R^I_{B1} = CH_3$, A = $-S-CH_2-$ and W2 = H, Tertatolol
residue;

as in Tertatolol but with $R^{IV}_{B1} = (XI^{ln})$, Tilisolol residue;

as in Bufetolol but with $R^{IV}_{B1} = (XI^{lo})$, Timolol residue;

as in Bufetolol but with $S_1 = S_2 = CH_3$, Xibenolol residue;

as in Xibenolol but with $R^I_{B1} = S_1 = H$, Toliprolol residue;

as in Toliprolol, but with $R^{II}_{B1} = H$ and $R^{III}_{B1} = (XI^{la})$, Bevantolol residue;

as in Carazolol but with $R^{II}_{B1} = H$ and $R^{III}_{B1} = (XI^{lb})$, Carvedilol residue;

when in the formula (A3) $R^I_{B1} = R^{II}_{B1} = R^{III}_{B1} = CH_3$, $R^V_{B1} = (XI^{lh})$, n = m = 1,
 $R^{VI}_{B1} = R^{VII}_{B1} = H$, $X_{B1} = -O-$, $R^{IV}_{B1} = (XI^{lg})$, Bopindolol residue;

as in Atenolol but with $R^{IV}_{B1} = (XI^{pVII})$, wherein B = $-NH-$, Carazolol residue;

as in Bufetolol, but with $R^{IV}_{B1} = (XI^{pVII})$ wherein A = $-CH_2-CH_2-$, B = $-NH-$, W2
= $-O$ which with W1 = free valence and the carbon atom in 1' position forms a
ketonic group, Carteolol residue;

as in Bufetolol but with $S_3 = -NH-CO-N(C_2H_5)_2$, $S_1 = -CO-CH_3$ Celiprolol
residue;

as in Bufetolol but with $S_1 = -O-CH_2-CONH-CH_3$, Cetamolol residue;

as in Bupranolol, but with $S_2 = Cl$ Cloranolol residue;

as in Atenolol but with $S_3 = -CH_2-CH_2-COOCH_3$, Esmolol residue;

as in Atenolol but with $R^{IV}_{B1} = (Xiu)$ Indenolol residue;

as in Carteolol, but in $R^{IV}_{B1} = (XIp^{VII})$ $A = -CH_2-$, $B = -COCH_2-$, $W1 = W2 = H$, Levobunolol residue;

as in Carteolol but with $R^I_{B1} = H$ and in $R^{IV}_{B1} = (XIp^{VII})$ A is a tertiary carbon atom and $W1$ free valence, so as to form a $-CH=CH-$ double bond between A and the carbon atom in 1' position of (XIp^{VII}) , $W2 = CH_3$, Mepindolol residue;

as in Atenolol, but with $S_3 = -(CH_2)_2-OCH_3$, Metoprolol residue;

as in Carteolol but in $R^{IV}_{B1} = (XIp^{VII})$ $A = -CH_2-CH(OH)-$, $B = -CH_2-$, $W2 = OH$, $W1 = H$, Nadolol residue;

as in Atenolol but with $S_3 = NO_2$, Nifenalol residue;

as in Bufetolol but with $R^{IV}_{B1} = (XIlt)$, Bucumolol residue;

when in the (A3) formula $m = n = 0$ and $R^{IV}_{B1} = (XIz)$ $R^I_{B1} = R^{II}_{B1} = R^{III}_{B1} = CH_3$, $R^V_{B1} = H$, Bufuralol residue;

as in Atenolol but with $R^{III}_{B1} = (XIe)$ with $Y_{B1} = H$, $n = m = 0$, $R^{IV}_{B1} = (XIi)$ Butidrine residue;

as in Butidrine, but with $R^{III}_{B1} = (XIe)$ with $Y_{B1} = (XIIf)$ with $Z = H$, $R^{IV}_{B1} = (XIp)$ wherein $S_3 = OH$ and $S_2 = CONH_2$, $S_1 = S_4 = H$, Dilevalol residue;

as in Bevantolol but with $S_2 = H$, $S_1 = CN$, $R^{III}_{B1} = (XIc)$, Epanolol residue;

as in Butidrine but with $R^{III}_{B1} = CH_3$, $R^{IV}_{B1} = (XIIm)$, wherein the naphthalenic residue is linked by the carbon atom in 2 position to the carbon atom bringing the $-OR^{IV}_{B1}$ substituent, Pronethalol residue;

as in Pronethalol but with $m = 1$ and $X_{B1} = -O-$, and R^{IV}_{B1} is the naphthalenic residue (Xlm) linked by the carbon atom in 1 position to X_{B1} Propranolol residue;

as in Pronethalol but with $R^{IV}_{B1} = (XI_p)$ with $S_1 = S_2 = S_4 = H$ and $S_3 = -NH-SO_2-CH_3$, Sotalol residue;

as in Dilevalol but with $S_2 = -SOCH_3$, and in para position to the other aromatic ring (form. XI f) $Z = -OCH_3$, Sulfinalol residue;

when in the formula (A3) $R^I_{B1} = R^{II}_{B1} = H$, $R^{III}_{B1} = (XI_d)$ with $t = 1$, $R^V_{B1} = H$, $n = m = 0$, $R^{IV}_{B1} = (XI_d)$ with $t = 0$, Nebivolol residue;

2-hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl] benzamide (Labetalol), 1-(4-amino-6, 7-dimethoxy-2-quinazolinyl)-4-[(tetrahydro-2-furanyl)carbonyl]piperazine(Terazosin), 1-(4-amino-6,7-dimethoxy-2-quinazolinyl)-4-(2-furanylcarbonyl)piperazine (Prazosin).

3. Nitrate salts of the following compounds of class (A4):

(A4a):

(2S-cis)-3-(acetyloxy)-5-[2-(dimethylamino)ethyl]-2,3-di-hydro -2-(4-methoxyphenyl)-1,5-benzothiazepin-4(5H)-one (Diltiazem), α -[3-[[2-(3, 4-dimethoxyphenyl)ethyl]-methylamino]propyl]-3, 4-dimethoxy- α -(1-methylethyl)-benzeneacetonitrile (Verapamil);

(A4b):

2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-di-hydro-6-methyl-3,5-pyridinedicarboxylic acid 3-ethyl 5-methyl ester (Amlodipine), 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid methyl ester (Felodipine) 4-(4-benzofurazanyl)-1, 4-dihydro-2,6-dimethyl-3,5-

pyridinedicarboxylic acid 5-methyl 3-(1-methyl)ethyl ester (Isradipine),
Lercanidipine, 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3, 5-pyridine-
dicarboxylic acid methyl 2[methyl(phenylmethyl)amino]ethyl ester
(Nicardipine), 1, 4-dihydro-2,6-dimethyl-4-(2-nitro-phenyl)-3, 5-
pyridinedicarboxilic acid dimethyl ester (Nifedipine), 1,4-dihydro-2,6-
dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid 2-methoxyethyl 1-
methylethyl ester (Nimodipine), 1,4-dihydro-2,6-dimethyl-4-(2-nitro-phenyl)-
3,5-pyridinedicarboxylic acid methyl 2-methyl-propyl ester (Nisoldipine) 1,4-
dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid ethyl
methyl ester (Nitrendipine);

(A4c):

(E)-1-[bis(4-fluorophenyl)methyl]4-(3-phenyl -2-propenyl) piperazine
(Flunarizine).

4. Nitrate salts of the following compounds of class (A7):

(A7a):

6-chloro-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide
(Chlorothiazide), 2-chloro-5-(2,3-dihydro-1-hydroxy-3-oxo-1H-isoindol-1-
yl)benzebesulphonamide (Chlortalidone), 6-chloro-3,4-dihydro-2H-1,2,4-
benzothiadiazine-7-sulphonamide 1,1-dioxide (Hydrochlorothiazide), 3-
(aminosulphonyl)-4-chloro-N-(2,3-dihydro-2-methyl-1H-indol-1-yl)benzamide
(Indapamide), 7-chloro-1,2,3,4-tetrahydro-2-methyl-3-(2-methylphenyl)-4-oxo-
6-quinazolinesulphonamide (Metolazone), 7-chloro-2-ethyl-1,2,3,4-tetra-
hydro-4-oxo-6-quinazolinesulphonamide (Quinethazone);

(A7d):

3,5-diamino-N-(aminoiminomethyl)-6-chloropyrazinecarboxamide
(Amiloride), 6-phenyl-2,4,7-pteridinetriamine (Triamterene), 3-
(aminosulphonyl)-5-(butylamino)-4-phenoxy-benzoic acid (Bumetanide), 5-
(amino sulphonyl)-4-chloro-2-[(2-furanyl)methyl]amino]benzoic acid
(Furosemide), N-[(1-methylethyl)amino]carbonyl]-4-[(3-methylphenyl)amino]-
3-pyridinesulphonamide (Torasemide);

(A8):

Apomorphine.

5. Nitrate salts according to claims 1-4 of the following compounds:

class A1b): Losartan;

Class A3): Atenolol, Labetalol, Timolol, Prazosin, Terazosin, Propranolol;

Class A4): Nicardipine, Nifedipine, Nimodipine;

Class A7): Chlorothiazide, Amiloride, Furosemide.

6. Salts according to claims 1-4, wherein the salts of said compounds contain at least one nitrate ion mole/compound mole.

7. Pharmaceutical compositions of the nitrate salts according to claims 1-4 and a pharmaceutically acceptable carrier.

8. A method for treating hypertension, said method comprising administering to a patient in need thereof a hypertension treating effective amount of at least one compound of claims 1-4.

9. A method for treating cardiovascular disease, said method comprising administering to a patient in need thereof a cardiovascular disease treating effective amount of at least one compound of claims 1-4.
10. A method for treating hypertension, said method comprising local administration to a patient in need thereof a hypertension treating effect amount of at least one compound of claims 1-4.