

Zakres prac

- 1. Analiza eksploracyjna danych
 - Zmniejszenie objętości danych
 - Zapoznanie się z cechami
 - Zbadanie zakresów wartości
 - Oczyszczenie danych
 - Przeprowadzenie wizualizacji danych
 - Poszukiwanie trendów okresowych i sezonowości
 - Analiza korelacji cech
 - Postawienie hipotezy badawczej
- 2. Opracowanie modelu regresji
 - Przygotowanie danych wejściowych
 - Dobór hiperparametru regularyzacji (Lasso/Ridge)
 - Porównanie różnych modeli
 - Zastosowanie boostingu i baggingu

Zbiór danych

Celem projektu jest przeanalizowanie danych z biura U.S. Department of Transportation's (DOT) Bureau of Transportation Statistics które śledzi terminowość lotów krajowych obsługiwanych przez dużych przewoźników lotniczych.

- 1. flights.csv
 - 31 kolumn
 - 5819079 wierszy
- 2. airlines.csv
 - 2 kolumny: kod IATA i nazwa linii
 - 14 różnych linii lotniczych
- 3. airports.csv
 - 7 kolumn
 - 31 lotnisk

Cechy opisujące loty (1)

Nazwa kolumny	Opis
YEAR	Year of the Flight Trip
MONTH	Month of the Flight Trip
DAY	Day of the Flight Trip
DAY_OF_WEEK	Day of week of the Flight Trip
AIRLINE	Airline Identifier
FLIGHT_NUMBER	Flight Identifier
TAIL_NUMBER	Aircraft Identifier
ORIGIN_AIRPORT	Starting Airport
DESTINATION_AIRPORT	Destination Airport
SCHEDULED_DEPARTURE	Planned Departure Time

Cechy opisujące loty (2)

Nazwa kolumny	Opis
DEPARTURE_TIME	TAXI_OUT
DEPARTURE_DELAY	Total Delay on Departure
TAXI_OUT	Time between departure airport gate and wheels off
WHEELS_OFF	The time point that the aircraft's wheels leave the ground
SCHEDULED_TIME	Planned time amount needed for the flight trip
ELAPSED_TIME	AIR_TIME+TAXI_IN+TAXI_OUT
AIR_TIME	The time duration between wheels_off and wheels_on time
DISTANCE	Distance between two airports
WHEELS_ON	The time point that the aircraft's wheels touch on the ground
TAXI_IN	The time between wheels-on and gate arrival

Cechy opisujące loty (3)

Nazwa kolumny	Opis
SCHEDULED_ARRIVAL	Planned arrival time
ARRIVAL_TIME	WHEELS_ON+TAXI_IN
DIVERTED	Aircraft landed on airport that out of schedule
CANCELLED	Flight Cancelled (1 = cancelled)
CANCELLATION_REASON	Reason for Cancellation of flight
AIR_SYSTEM_DELAY	caused by air system
SECURITY_DELAY	caused by security
AIRLINE_DELAY	caused by the airline
LATE_AIRCRAFT_DELAY	Delay caused by aircraft
WEATHER_DELAY	caused by weather

Rozkład cechy opisującej opóźnienie lotu

Długość opóźnienia a miesiąc/dzień miesiąca

Opóźnienie a dzień tygodnia

- 1 poniedziałek
- 2 wtorek
- 3 środa
- 4 czwartek
- 5 piątek
- 6 sobota
- 7 niedziela

Liczba lotów a dzień tygodnia

- 1 poniedziałek
- 2 wtorek
- 3 środa
- 4 czwartek
- 5 piątek
- 6 sobota
- 7 niedziela

(5)

Udział linii lotniczych w zbiorze

- 1. Southwest Airlines (22%)
- 2. Delta Air Lines (15%)
- 3. American Airways (12%)
- 4. Skywest Lines (10%)
- 5. Atlantic Southeast Lines(10%)

Loty (nie)opóźnione a linia lotnicza

flights['DELAYED'] = flights.loc[:,'ARRIVAL_DELAY'].values > 0

Linia lotnicza a wartości opóźnień

American Airlines oraz Delta Air Lines zasługują na naganę.

A może po prostu latają na dłuższych trasach?

Mapa cieplna dla wybranych cech

Zastosowane metody oceny jakości modeli

1. MAE

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

- 2. MSE == RMSE^2
- 3. RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

4. R2

$$R^2 = 1 - rac{\sum\limits_{t=1}^{n}(\hat{y}_t - \overline{y})^2}{\sum\limits_{t=1}^{n}(y_t - \overline{y})^2},$$

Wyniki modeli bez uwzględnienia DEPARTURE_DELAY

Lasso

Mean Absolute Error: 15.283811704880794 Mean Squared Error: 1127.2523119337066 Root Mean Squared Error: 33.57457835824162

R2: 0.3135032425379226

Lasso

Linear

Mean Absolute Error: 15.283811713379887 Mean Squared Error: 1127.2523119569842 Root Mean Squared Error: 33.574578358588276

R2 : 0.3135032425237465

Linear

Ridge

Mean Absolute Error: 15.283811713380311 Mean Squared Error: 1127.2523119569848 Root Mean Squared Error: 33.57457835858828

R2: 0.31350324252374606

Ridge

Wyniki modeli z uwzględnieniem DEPARTURE_DELAY

Lasso

Mean Absolute Error: 0.038227810334522064 Mean Squared Error: 0.0027469982837444577 Root Mean Squared Error: 0.052411814352724496

R2: 0.9999983270778028

Lasso

Linear

Mean Absolute Error: 5.6354903758030714e-14 Mean Squared Error: 6.908454629085402e-27 Root Mean Squared Error: 8.311711393621294e-14 R2 : 1.0

Linear

Ridge

Mean Absolute Error: 2.506040217111387e-12 Mean Squared Error: 1.3768398558972216e-23 Root Mean Squared Error: 3.710579275392484e-12

R2 : 1.0

Ridge

Wyniki modeli po zastosowaniu AdaBoost

Boosted Lasso

Mean Absolute Error: 0.0119537419833688 Mean Squared Error: 0.0002607735880468408 Root Mean Squared Error: 0.016148485627043817

R2: 0.9999998411888619

Boosted Lasso

Boosted Linear

Mean Absolute Error: 3.9124343367112725e-14 Mean Squared Error: 2.426653716023703e-27 Root Mean Squared Error: 4.926107708956132e-14

R2 : 1.0

Boosted Linear

Boosted Ridge

Mean Absolute Error: 4.9134173241012714e-12 Mean Squared Error: 3.978602705309946e-23 Root Mean Squared Error: 6.307616590527634e-12

R2: 1.0

Boosted Ridge

