Test Tema 3 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2017

Apellidos:	Nombre:		
Profesor: ⊠Jorge Civera □Carlos Martínez			
Cuestiones (0.25 puntos, 15 minutos, con apun	tes)		
C ¿Qué propiedades son deseables sobre los matriz de proyección?	s vectores	que conforman	una
A) Ortogonales entre si.B) De módulo unitario.C) Ortonormales.D) Invariantes a rotaciones.			

- B Se busca reducir un conjunto de n vectores $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^{100}$ a un espacio reducido \mathbb{R}^{20} mediante PCA (es decir, D = 100, k = 20). Indicar qué afirmación es apropiada relativa a este problema.
 - A) No tiene sentido hacer la reducción con PCA.
 - B) Si $n \ll D$, es preferible usar la diagonalización sobre $\Sigma'_x = \frac{1}{D}(\mathbf{x}_1 \bar{\mathbf{x}}, \dots, \mathbf{x}_n \bar{\mathbf{x}})^t(\mathbf{x}_1 \bar{\mathbf{x}}, \dots, \mathbf{x}_n \bar{\mathbf{x}})$.
 - C) Se podrá hacer PCA con k = 20 para cualquier valor de n.
 - D) No se podrá hacer PCA con k = 20 si $n \le 20$.
- $\boxed{\mathbb{D}}$ Se tiene un problema de clasificación con 100 clases, donde los elementos a clasificar se representan por vectores en \mathbb{R}^D , con D=200. Si se quiere aplicar LDA para reducir al espacio \mathbb{R}^k :
 - A) Como mucho se podrá reducir al espacio con k = 100.
 - B) Es imprescindible aplicar PCA antes de aplicar LDA.
 - C) No se puede aplicar, pues D es mayor al número de clases.
 - D) Puede hacerse para k < 100, pero puede ser conveniente aplicar PCA de forma previa.

Test Tema 3 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2017

Apellidos:	Nombre:			
Profesor: \square Jorge Civera \boxtimes Carlos Martínez				
Cuestiones (0.25 puntos, 15 minutos, con apuntes)				
B Dada los vectores de proyección $u = (\frac{1}{\sqrt{2}},$ las siguientes afirmaciones sobre estos vect			de	
 A) El vector u define un eje de proyección B) Los vectores u y v definen el mismo eje v escala el punto proyectado por √2. C) Los vectores u y v definen una base ort D) Los vectores u y v son vectores unitar 	e de proyectogonal.	cción, pero el vect perpendicular -> base ortogonal -> prod. escalar = 0		
proyección. unitario -> mod. = 1 -> $ \vec{v} = \sqrt{v_1^2 + v_2^2 + v_2^2}$ D Indicar cuál de las siguientes es una carac		e PCA.		

- A) Tiene información de las clases en el espacio original.
- B) Se basa en maximizar la cohesión intraclase.
- C) La proyección resultado se aplica directamente a los vectores a reducir.
- D) Construye la matriz de proyección con los vectores de mayor valor asociado.
- D ¿Qué tienen en común las técnicas PCA y LDA?
 - A) El uso de la etiqueta de clase de los datos.
 - B) La matriz sobre la cual se calculan los vectores y valores propios.
 - C) El número máximo de dimensiones al cual se puede proyectar.
 - D) La matriz de proyección está compuesta por los vectores propios ordenados por valor propio asociado.