

Sportartikel*		
Aufgabennummer: B_348		
Technologieeinsatz:	möglich □	erforderlich 🗵
a) Für einen Sportartikel lassen sich die Produktionskosten mithilfe der linearen Funktion K beschreiben:		
$K(x) = 25 \cdot x + 300$		
x Anzahl der produzi $K(x)$ Kosten für x ME	ierten Mengeneinheiten (ME) E in Geldeinheiten (GE)	
Die Kapazitätsgrenze li Das Produkt kann zu e	egt dabei bei 50 ME. inem Preis von 40 GE/ME vel	rkauft werden.
Erklären Sie, warum ermittelt werden kannBerechnen Sie den m	٦.	ht mithilfe der Differenzialrechnung
 b) Die Fixkosten für die Erzeugung eines bestimmten Sportartikels betragen 2900 GE. Die Kostenkehre liegt bei 5 ME. Die Gesamtkosten bei einer Produktionsmenge von 5 ME betragen 3100 GE. Bei einer Produktionsmenge von 9 ME betragen die Gesamtkosten 3252,80 GE. Der Kostenverlauf soll mithilfe einer Kostenfunktion K mit K(x) = a·x³ + b·x² + c·x + d beschrieben werden. 		
 Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten dieser Kostenfunktion. Berechnen Sie die Koeffizienten dieser Kostenfunktion. 		

^{*} ehemalige Klausuraufgabe

c) Für die Grenzkostenfunktion K' eines anderen Sportartikels gilt:

$$K'(x) = 0.15 \cdot x^2 - 0.6 \cdot x + 5$$

Die Fixkosten betragen 30 GE.

– Ermitteln Sie die zugehörige Kostenfunktion K.

In der nachstehenden Abbildung ist der Graph der zugehörigen Stückkostenfunktion \overline{K} dargestellt.

- Lesen Sie das Betriebsoptimum ab.

d) Die Graphen einer Kostenfunktion K, einer Erlösfunktion E und der zugehörigen Gewinnfunktion G sind im nachstehenden Diagramm dargestellt.

- Beschriften Sie im obigen Diagramm diese 3 dargestellten Graphen.
- Stellen Sie die Gleichung der Erlösfunktion E mithilfe des Diagramms auf.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a) Die Gewinnfunktion ist im gegebenen Fall eine lineare Funktion mit positiver Steigung. Sie nimmt ihren maximalen Funktionswert am rechten Rand des Definitionsbereichs (Kapazitätsgrenze) an.

$$G(x) = 40 \cdot x - (25 \cdot x + 300)$$

$$G(50) = 450$$

Der maximale Gewinn beträgt 450 GE.

b) I.
$$K(0) = 2900$$

II.
$$K''(5) = 0$$

III.
$$K(5) = 3100$$

IV.
$$K(9) = 3252,80$$

Lösen dieses Gleichungssystems mittels Technologieeinsatz:

$$a = 0.2$$
; $b = -3$; $c = 50$; $d = 2900$

c)
$$K(x) = \int K'(x) dx = 0.05 \cdot x^3 - 0.3 \cdot x^2 + 5 \cdot x + C$$

 $K(0) = 30 \Rightarrow C = 30$
 $K(x) = 0.05 \cdot x^3 - 0.3 \cdot x^2 + 5 \cdot x + 30$

Betriebsoptimum: rund 8 ME *Toleranzbereich:* [7 ME; 9 ME]

d)

$$E(x) = 25 \cdot x$$

Lösungsschlüssel

- a) 1 × D: für die richtige Erklärung
 (Auch eine Argumentation, dass die Gewinnfunktion keine lokalen Extremstellen hat, an denen die Tangentensteigung null ist, ist zulässig.)
 - 1 x B: für die richtige Berechnung des maximalen Gewinns
- b) 1 × A1: für das richtige Aufstellen der Gleichung mithilfe der Information zur Kostenkehre
 - 1 × A2: für das richtige Aufstellen der 3 Gleichungen mithilfe der Informationen zu den Kosten
 - 1 x B: für die richtige Berechnung der Koeffizienten
- c) 1 × A: für das richtige Ermitteln der Kostenfunktion
 - 1 × C: für das richtige Ablesen des Betriebsoptimums im Toleranzbereich [7 ME; 9 ME]
- d) 1 × C: für die richtige Beschriftung der 3 dargestellten Funktionsgraphen
 - 1 × A: für das richtige Aufstellen der Gleichung der Erlösfunktion