Universidad Nacional de Río Negro Int Partículas, Astrofísica & Cosmología - 2021

Unidad O1 – El modelo estándar

Clase U01 C04 - 04/16

Fecha 25 Ago 2021

Cont El modelo estándar

Cátedra Asorey

Contenidos: un viaje en el tiempo y el espacio

U1:Partículas, lo más pequeño 4 encuentros, del O4/Ago al 25/Ago

andidate Event:

- Dinámica Relativista.
- Fisica de particulas
 - Particulas iundamentales: leptones, hadrones, bosones mensajeros
- El modelo estándar
 - Interacciones fundamentales
- Simetrías y leyes de conservación
- Trabajo unidad → fecha máxima de entrega 12/Nov

Particle Data Group (pdg)

- Review of particle physics → todo lo que usted siempre quizo saber de física de partículas.
- Disponible en línea en https://pdglive.lbl.gov/
- Versión "booklet" (tambien app en play store → pdg)
- Se puede pedir la versión impresa del booklet cada dos años

- Los quarks son partículas elementales, sin estructura interna, de espín ½ (fermiones) y carga fraccionaria (q<1e)
- Los hadrones están compuestos por quarks
 - Bariones → 3 quarks (qqq)
 - Antibariones → 3 antiquarks (<q><q><q>)
 - Mesones → quark + antiquark (q <q>)
 - Bariones exóticos → tetraquarks, pentaquarks (medido 2017)
 - Primera propuesta: 2 quarks → up; down

Entonces los nucleones

$$p = (p)_q = \frac{2}{3} + \frac{2}{3} - \frac{1}{3} = +1$$

$$(p)_{NB} = +\frac{1}{3} \times 3 = +1$$

 $(\bar{p})_{NB} = -\frac{1}{3} \times 3 = -1$

$$(p)_{q} = \frac{2}{3} + \frac{2}{3} - \frac{1}{3} = +1$$

$$(p)_{NB} = +\frac{1}{3} \times 3 = +1$$

$$\bar{p} = \begin{pmatrix} \bar{u} \\ \bar{u} \\ \bar{d} \end{pmatrix} \qquad \bar{n} = \begin{pmatrix} \bar{u} \\ \bar{d} \\ \bar{d} \end{pmatrix}$$

$$(\bar{p})_{q} = -\frac{2}{3} - \frac{2}{3} + \frac{1}{3} = -1$$

$$(n)_{q} = \frac{2}{3} - \frac{1}{3} - \frac{1}{3} = 0$$

$$(n)_{NB} = +\frac{1}{3} \times 3 = +1$$

$$(\bar{n})_{q} = -\frac{2}{3} + \frac{1}{3} + \frac{1}{3} = 0$$

$$(n)_{NB} = -\frac{1}{3} \times 3 = -1$$

Otros bariones y mesones:

Bariones Δ:

$$\Delta^{++} = \begin{pmatrix} u \\ u \\ u \end{pmatrix} \qquad \Delta^{+} = \begin{pmatrix} u \\ u \\ d \end{pmatrix} \qquad \Delta^{\circ} = \begin{pmatrix} u \\ d \\ d \end{pmatrix} \qquad \Delta^{-} = \begin{pmatrix} d \\ d \\ d \end{pmatrix}$$

Mesones π:

$$\pi^{\dagger} = \begin{pmatrix} u \\ \overline{d} \end{pmatrix} \qquad \pi^{\overline{}} = \begin{pmatrix} d \\ \overline{u} \end{pmatrix}$$

$$\pi^{\circ} = \begin{pmatrix} u \\ \overline{u} \end{pmatrix} \qquad \acute{\circ} \qquad \pi^{\circ} = \begin{pmatrix} d \\ \overline{d} \end{pmatrix}$$

Hasta aquí, empezamos a entender algo

Interacción de Yukawa

• Y algo del beta: $n \rightarrow p^{\uparrow} + e^{\bar{}} + \bar{v_e}$ es en realidad $d \rightarrow u + e^{\bar{}} + \bar{v_e}$ (la carga se conserva: inicial:-1/3; final: +2/3-1=-1/3)

Pero no todo:

- Seguimos convirtiendo "hadrones" en "leptones"
- No resolvimos lo de la carga fuerte, sólo encontramos un mecanismo
- En 1947 se encuentra una barión, Λ^0 , con un tiempo de vida media de 10^{-10} s (>> ~ 10^{-23} s observados en bariones)
- A este comportamiento "extraño" se lo llamó extrañeza y se supuso que había una ley de conservación asociada
- Luego, con el modelo de los quarks, se asignó un nuevo tipo de quark: s $\Lambda^{\rm O} = (u\,d\,s)$

H. Asorey - Física IV B

Extraño y encanto

- quark s (strange)
 - Masa: 93 MeV (*)
 - Espín: 1/2
 - Carga: -1/3
 - Número bariónico: +1/3
 - Extrañeza: -1

- quark c (charm)
 - Masa: 1,27 GeV (*)
 - Espín: 1/2
 - Carga: +2/3
 - Número bariónico: +1/3
 - Encanto: +1

- F

Y ahora aparecen un montón de combinaciones

• Mesones extraños: Kaones (mesones K), τ ~ 10⁻⁸ s

$$K^{+} = \begin{pmatrix} u \\ \overline{s} \end{pmatrix} \qquad K^{-} = \begin{pmatrix} \overline{u} \\ s \end{pmatrix} \qquad K^{\circ} = \begin{pmatrix} \overline{d} \\ \overline{s} \end{pmatrix} \qquad K^{\circ} = \begin{pmatrix} \overline{d} \\ s \end{pmatrix}$$

• Bariones extraños: Sigmas (Σ)

$$\Sigma^{+} = \begin{pmatrix} u \\ u \\ s \end{pmatrix} \qquad \Sigma^{\circ} = \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad \Sigma^{-} = \begin{pmatrix} d \\ d \\ s \end{pmatrix}$$

Y además con los aceleradores...

q = -1

q = 0

- Pensemos en el barión $\Delta^{++}=(u\,u\,u)$ o el barión $\Delta^{-}=(d\,d\,d)$
- Los quarks son fermiones
 - ¿Qué pasa con el principio de exclusión de Pauli?
- → nuevo número cuántico con tres valores posibles
- Este valor no es "visible" desde el exterior → las combinaciones de quarks son "neutras"
 - Bariones: tres quarks → tres valores posibles
 - Mesones: quark-antiquark → valores opuestos → suma O
- $r+g+b = b \le c$ or c or

Los mediadores de color

- El gluón (pegamento) es el mediador de la fuerza fuerte
- Los gluones son bicolores: portan un color y un anticolor
- Hay 8 combinaciones independientes posibles
- Un quark de un color intercambia un gluón con otro quark (interacción fuerte) y cambia de color

Feynman diagram for an interaction between quarks generated by a gluon.

La foto de la familia hasta aquí

Intercambio de color como interacción fuerte

- La interacción se produce mediante el intercambio de gluones para intercambiar los colores de los quarks respectivos
- Los estados finales se presentan como combinaciones de los tres colores y sus anticolores

$$\frac{(r\,\overline{r}+b\,\overline{b}+g\,\overline{g})}{\sqrt{3}}$$

 Es decir, hay igual probabilidad de medir cada uno de esos pares

Intercambio de color como interacción fuerte

Intercambio de color como interacción fuerte

- Sea en un barión un par de quarks: u d
- El quark u emite un gluón rojo (su color) y antiverde (el anticolor del otro) Queda verde: u =>d
- El quark d recibe antiverde y rojo, queda rojo: u d
- El resultado final es el intercambio de carga de color de ambos quarks: *u d*

Consideremos el intercambio de Yukawa desde la perspectiva del intercambio de gluones

Interacción de Yukawa con piones cargados

Interacción de Yukawa con piones cargados

¿Y el decaimiento β^- ?

• Recordemos:
$$n \rightarrow p^+ e^- \overline{v}_e$$

 $(udd) \rightarrow (udu) e^- \overline{v}_e$
 $d \rightarrow ue^- \overline{v}_e$

- Este proceso es diferente a los que hemos visto:
 - La interacción EM no cambia las cargas ni los sabores
 - La interacción fuerte sólo interactúa con los quarks intercambiando su color
 - Aquí vemos un cambio de sabor
 - un quark **d** cambió de <u>sabor</u> a un quark **u**.

¿Υ el decaimiento del μ⁻?

Recordemos:

$$\mu \rightarrow e \overline{\nu_e \nu_\mu}$$

- Como antes:
 - La interacción EM no cambia las cargas ni los sabores
 - Son todos leptones, no hay interacción fuerte
 - Y nuevamente vemos un cambio de sabor
 - un leptón μ^{-} cambió de <u>sabor</u> a un leptón e^{-}
 - el resto es por conservación de los números leptónicos

¿Y el decaimiento del π ?

• Recordemos:

$$\pi \rightarrow \mu \overline{\nu}_{\mu}$$

$$\begin{pmatrix} d \\ \overline{u} \end{pmatrix} \rightarrow \mu \overline{\nu}_{\mu}$$

- Como antes:
 - La interacción EM no cambia las cargas ni los sabores
 - En el miembro derecho son todos leptones, no hay interacción fuerte
 - Y nuevamente vemos un cambio de sabor:
 - Dos quarks cambian por dos leptones

La interacción débil

- Cuarta interacción fundamental (+QED, QCD, Grav)
- Hay dos tipos de mediadores de la interacción débil:
 - Cargados: W⁺, W⁻, τ ~10⁻²⁴ s;
 - Neutros: Z^o
- Responsable de
 - Cambios de sabor entre partículas del mismo tipo
 - Conexión entre quarks y leptones
- Interacciónes de corriente cargada implica cambio de carga eléctrica en emisores y receptores
- Mediadores muy masivos → corto alcance, interacción muy débil (QED ~ 0.01; QCD ~ 1; EWT ~10⁻⁷)

Mediadores débiles: Bosones W+, W- y Zº

- Bosones W±
 - Masa: 80,38 GeV
 - Espín: 1
 - Carga: ± 1
 - Color: 0
 - Vida media: ~10⁻²⁵ s

- Boson Z^o
 - Masa: 91,18 GeV
 - Espín: 1
 - Carga: 0
 - Color: O
 - Vida media: ~10⁻²⁵ s

Vértices débiles

Corriente cargada

- Interacciones que implican cambio de carga entre sabores o tipos (fermiones)
- Tienen carga eléctrica, se acoplan con los fotones
- Admite cambios de masa

Corriente neutra

- Todos los fermiones se acoplan con el bosón Zº
- No hay cambio de carga
- Son responsables de las interacciones de los neutrinos con la materia

Vértices débiles autointeracturantes

Decaimiento del muón

Proceso electrodébil de corriente cargada

$$\mu \rightarrow e \overline{\nu}_e \nu_\mu$$

- Un muón se acopla con un bosón W⁻ y emite un neutrino muónico
- El bosón W⁻ decae en electrón y un antineutrino electrónico

Decaimiento beta (al fin!)

Proceso electrodébil de corriente cargada

$$(n \rightarrow p e^{-} \overline{v_e}) \qquad d \rightarrow u e^{-} \overline{v_e}$$

- Un quark d se acopla con un bosón W⁻ y se emite un quark u. (notar que el color no cambia)
- El W⁻ decae

- Física IV B

30/53

Decaimiento extraño Λ°

Proceso electrodébil de corriente cargada. Dos posibles

$$\Lambda^{\circ} \rightarrow p \mu^{-} \overline{\nu_{\mu}} : s \rightarrow u \ \mu^{-} \overline{\nu_{\mu}}$$

$$\Lambda^{\mathsf{O}} \to p \, \pi^{-} : s \to u \, (\bar{u} \, d)$$

Decaimiento del pión cargado

Proceso electrodébil de corriente cargada

$$\pi \rightarrow \mu \overline{\nu_{\mu}}$$

- Un quark d interactúa débilmente y se aniquilan emitiendo un bosón W⁻
- El W⁻ decae en un par electron antineutrino

Interacciones débiles de corriente neutra

• Imaginemos la aniquilación – creación de un par, p ej: $e^-e^+ \rightarrow \mu^- \mu^+$

Dos formas posibles: Electromagnética o débil

Interacciones

H. Asorey - Física IV B

Charged current

Neutral current

La foto de la familia hasta aquí

Paridad

- El operador de Pardiad transforma a un objeto en su imagen especular: $\wp \Psi(x) = P \Psi(-x)$, P es una constante
- Las leyes físicas son invariantes al marco de referencia. Si aplico dos veces:

$$\wp^2\Psi(x) = \wp(\wp(\Psi(x))) = P\wp(\Psi(-x)) = P^2\Psi(x) \rightarrow P = \pm 1$$

- Si P=+1 \rightarrow par; si P=-1 \rightarrow impar
- Aplicado a una partícua, α es la paridad intrínseca o paridad
- Por convención, quarks y leptones cargados, P=+1.
- Neutrinos no tienen paridad. Y: $\wp(antifermión) = -\wp(fermión)$ $\wp(bosón) = +\wp(bosón)$

El Universo izquierdo

 En la decada del '50 Yang y Lee → las interacciones débiles no preservan la paridad

$$\wp v = ?$$

$$\wp v_L = +1$$

$$\wp v_R = ?$$

$$\wp \overline{v_L} = ?$$

$$\wp v_R = ?$$

$$\wp \overline{v_L} = ?$$

$$\wp \overline{v_R} = -1$$

$$\mathbf{v} \to \begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R \end{pmatrix}$$

$$\overline{\mathbf{v}} \rightarrow \begin{pmatrix} \overline{\mathbf{v}}_R \\ \overline{\mathbf{v}}_L \end{pmatrix}$$

Ángulo de Cabibbo

- Leptones (e, μ, ν_e, ν_μ) y quarks (u, d, c, s)
- Hipótesis: hay autoestados que interactúan débilmente,
 d' y s', que no son autoestados de masa d y s.
- d' es un estado de mezcla entre d y s, y se relaciona con la probabilidad de que d y s se transformen en u (y s' → c)

$$d' = V_{ud} d + V_{us} s \rightarrow d' = \cos \theta_c d + \sin \theta_c s$$

$$s' = V_{cd} d + V_{cs} s \qquad s' = -\sin \theta_c d + \cos \theta_c s$$

Matriz de Cabibbo θ_c

$$\begin{bmatrix} d' \\ s' \end{bmatrix} = \begin{bmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{bmatrix} \begin{bmatrix} d \\ s \end{bmatrix}$$

Ángulo de Cabibbo θ_c

$$\tan \theta_c = \frac{\sin \theta_c}{\cos \theta_c} = \frac{0.22534}{0.97427} \Rightarrow \theta_c = 13.02^\circ$$

Tercera generación

- Kobayashi y Maskawa generalizan el modelo por razones teóricas a tres generaciones de quarks.
- Proponen dos nuevos quarks (t, b)
 - top (arriba) y bottom (abajo)
- Tsai (1971) propopne una nueva generación de leptones:
 - Tau y neutrino tau : τ ν_{τ}

Top y Bottom

- Masa: 172.76 GeV (*)
- Espín: 1/2
- Carga: +2/3
- Número bariónico: +1/3
- Número top: +1

Quark b (bottom)

Masa: 4,18 GeV (*)

Espín: 1/2

• Carga: -1/3

Número bariónico: +1/3

• Número bottom: -1

Tau y neutrino

- τ (tau)
 - Masa: 1,777 GeV
 - Espín: 1/2
 - Carga: -1
 - Número leptónico: +1
 - Número leptónico tau: +1
 - Vida media: 2.9 x 10⁻¹³ s

- v_{τ} (neutrino tau)
 - Masa: >0
 - Espín: 1/2
 - Carga: O
 - Número leptónico: +1
 - Número leptónico tau: +1

La foto d<u>e la familia hasta aquí</u> Con ustedes, los

Matriz CKM: Cabibbo-Kobayashi-Maskawa

La foto de la familia hasta aquí

El bosón de Higgs → la masa

El vacío está lleno de un campo escalar

Las partículas interactúan con ese campo: a mayor interacción → más masa (efectiva)

El campo de Higgs autointeractúa...

El bosón de Higgs tiene masa

El bosón de Higgs

- Hº (bosón de Higgs)
 - m= 125,10 GeV/c²
 - espín: 0
 - Carga eléctrica: 0
 - Color: 0
 - Vida media: 1,56 x 10⁻²² s
 - Coeficientes de Yukawa
 - Interacción con partículas masivas

El modelo estándar y sus interacciones

Gravitón → bosón mediador de la gravedad (volvemos en la UO3)

- G (Gravitón)
 - m= 0
 - espín: 2
 - Carga eléctrica: 0
 - Color: O
 - Vida media: estable
 - Teorizada: 1930
 - Observada: ¿?

El modelo estándar

H. Asorey - Física IV B