# CS & IT ENGING

Algorithms

**Algorithms** 

Lecture No. 12



# **Recap of Previous Lecture**











# **Topics to be Covered**











**Topic** 

Topic

Bellman ford Algorithm

Shortest path in DAGS





# Bellman ford Introduction: (Single Source shortest path)

Can find out whether a graph is having negative weight cycle or not.





#### **Bellman ford Introduction:**

Can find out whether a graph is having negative weight cycle or not.







#### **Bellman ford Introduction:**

Can find out whether a graph is having negative weight cycle or not.



Bellman ford algorithm is slower than Dijkstra





#### Bellman ford works on this rule:

• Shortest path between 2 nodes in the graph will not contain more than (n-1) edges if there are n vertices







The node contains n = 3 nodes, so edges are relaxed 2 times







3 2 times

The node contains n = 3 nodes, so edges are relaxed 2 times







2-limes -> all edges

The node contains n = 3 nodes, so edges are relaxed 2 times





1st time

Lenght of shortest path with atmost one edge





The node contains n = 3 nodes, so edges are relaxed 2 times (2)











The node contains n = 3 nodes, so edges are relaxed 2 times



If the nth and (n-1)th iterations give same values then there are no negative weight edge cycle present and the solution is correct else discarded





#### Example:-







#### Example:-







#### Example:-







#### Example:-









#### Example:-

nodes = 3











Relaxing time =  $O(V) \times O(E)$ = O(VE)

Time complexity = O(VE).





Example:

4 times relax all edges







#### Example:







#### Example:







Example:

4 times + 1 -ve weight cycles











#### Example:







#### Example:







#### Bellman-Ford Algorithm

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G, E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G, E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

```
Time complexity = O(V) + O(VE) + O(E)
= O(VE)
```





Shortest paths in DAG (Directed acyclic graph):





#### Shortest paths in DAG (Directed acyclic graph):

DAG is a graph with no cycles





#### Shortest paths in DAG (Directed acyclic graph):

- DAG is a graph with no cycles
- O(V+E) time takes to in order to put a DAG in topological Order





#### Shortest paths in DAG (Directed acyclic graph):

- DAG is a graph with no cycles
- O(V+E) time takes to in order to put a DAG in topological Order
- Take the vertices one by one in topological Order and then try to relax outgoing edges outgoing from them.







#### Topological order:

- Linear ordering of vertices in a DAG
- rstxyz
- Time complexity-O(V+E)







#### Example:-1

What is the shortest path from S to all the other vertices.

Topological order: rstxyz 🗸







#### Example:-1

What is the shortest path from S to all the other vertices. Topological order: rstxyz







#### Example:-1

What is the shortest path from S to all the other vertices.

Topological order: rstxyz

Relaxing from r







#### Example:-1

What is the shortest path from S to all the other vertices.

Topological order: rstxyz

Relaxing edges from S







#### Example:-1

What is the shortest path from S to all the other vertices.

Topological order: rstxyz

Relaxing edges from t







#### Example:-1

What is the shortest path from S to all the other vertices.

Topological order: rstxyz

Relaxing edges from x







#### Example:-1

What is the shortest path from S to all the other vertices.

Topological order: rstxyz

Relaxing edges from y







Topological sort = d(V + E)Total relaxion done = O(E)

Total time complexity = O(V+E) ✓





```
DAG - shortest-paths (G, W, S)
```

{

1. Topologically sort the vertices of 'G'.

 $\rightarrow$  0(V+E

1. Initialize-single-source (G, S).

 $\rightarrow 0(V)$ 

3. for each vertex u, taken in topologically sorted order

 $\rightarrow$  0(E)

4. for each vertex v ∈ G.adj [u]

5. Relax (u, v, W)

}

Time complexity = O(V+E).





#### **Example:**

```
Fibonacci series -
f(n) = f(n-1) + f(n-2)
     = 1; n = 1
     = 0; n = 0
f(n)
  if(n == 0)
     return 0;
  if (n == 1)
     return 1;
  return (f(n-1)+f(n-2));
```

$$n = 0, 2, 3,$$
  
 $f(n) = 1, 3, 5$ 











Create a table instead of calling same function so many times







Create a table instead of calling same function so many times

| 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 0 | 1 | 1 |   |   |   |





Create a table instead of calling same function so many times

| 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 0 | 1 | 1 | 2 |   |   |





Create a table instead of calling same function so many times

| 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 0 | 1 | 1 | 2 | 3 |   |





Create a table instead of calling same function so many times



# THANK - YOU