Examen Final

Mecánica del Continuo

1 de octubre de 2004

NOTA: En las preguntas 1 a 3, cada cuestión puede tener **una o más** respuestas correctas. El alumno debe indicar, justificando adecuadamente, cuáles de ellas considera correcta y porqué.

- Indicar cuáles de las siguientes proposiciones referidas a la teoría de elasticidad lineal son correctas:
 - a. Si los desplazamientos son pequeños ($\mathbf{u} \approx \mathbf{0}$) las deformaciones son siempre infinitesimales.
 - b. La densidad ρ no es una incógnita
 - c. Las componentes del tensor de constantes elásticas $\mathbb C$ no varían con la orientación del sistema de ejes coordenados.
 - d. El comportamiento constitutivo queda totalmente caracterizado definiendo el módulo de deformación volumétrica K y el módulo de deformación transversal G.
- 2) Para un cierto material **elástico lineal isótropo** indicar cuales de las siguientes situaciones son posibles para las componentes de los tensores de tensión y deformación en un sistema de coordenadas cartesiano $\{x, y, z\}$:

a.
$$\sigma_y > 0$$
 ; $\sigma_x = \sigma_z = 0$ y $\varepsilon_y < 0$

b.
$$\sigma_m = \frac{1}{3} Tr(\mathbf{\sigma}) < 0 \text{ y } e = Tr(\mathbf{\varepsilon}) > 0$$

c.
$$\sigma_x > 0$$
 ; $\sigma_y = \sigma_z = 0$ y $\varepsilon_y < 0$

d.
$$\sigma = \sigma_m 1$$
 con $\epsilon' = \epsilon - \frac{1}{3} \operatorname{Tr}(\epsilon) 1 \neq 0$

- 3) Indicar cuáles de las siguientes proposiciones referidas a un **material elástico lineal isótropo** son correctas:
 - a. El tensor σ siempre es esférico.
 - b. Las componentes de σ y ε no varían con la orientación del sistema de ejes coordenados
 - c. Las componentes del tensor de constantes elásticas $\mathbb C$ no varían con la orientación del sistema de ejes coordenados.
 - d. El comportamiento constitutivo queda totalmente caracterizado definiendo el módulo de deformación volumétrica K y el módulo de deformación transversal G.

4)

- a. Probar que el tensor $B_{ik} = \varepsilon_{ijk} (\alpha + \beta) a_i$ es antisimétrico
- b. Sea B_{ij} un tensor Cartesiano antisimétrico de segundo orden. Sea además el vector $b_i = \frac{1}{2} \varepsilon_{jki} B_{jk}$. Mostrar que $B_{pq} = \varepsilon_{pqi} b_i$.
- 5) Pruebe que $\sigma_{ii}\sigma_{ik}\sigma_{km}\sigma_{mi}$ es un invariante del tensor de tensiones.