1.

	X	Υ	Х*Ү	X^2	St	Sr
	2	4,5	9	4	3,30027778	0,04192744
	4	5	20	16	1,73361111	0,01077642
	6	5,8	34,8	36	0,26694444	0,01262948
	8	6,6	52,8	64	0,08027778	0,01462948
	10	7,5	75	100	1,40027778	0,00087166
	12	8,5	102	144	4,76694444	0,02621315
Sumatoria	42	37,9	293,6	364	11,5483333	0,10704762
Promedio	7	6 31666667		•		_

$$a_1 = \frac{6 * 293,6 - 42 * 37,9}{6 * 364 - 42^2} = 0,404285714$$

$$a_0 = 6,31666667 - 0,404285714 * 7 = 3,486666667$$

$$y = 3,486666667 + 0,404285714x$$

Desviación estándar

$$s_y = \sqrt{\frac{11,5483333}{7 - 1}} = 1,387343585$$

Error estándar

$$sy_{/x} = \sqrt{\frac{0,10704762}{7-2}} = 0,14631994$$

Dado que el error estándar es menor a la desviación estándar, el modelo es adecuado

Coeficiente de correlación

$$r = \sqrt{\frac{11,5483333 - 0,10704762}{11,5483333}} * 100\% = 99,53544445\%$$

	Х	у	x^2	x^3	x^4	x*y	x^2*y	St	Sr
	2	4,5	4	8	16	9	18	3,300278	0,001033
	4	5	16	64	256	20	80	1,733611	0,004801
	6	5,8	36	216	1296	34,8	208,8	0,266944	0,000661
	8	6,6	64	512	4096	52,8	422,4	0,080278	0,000294
	10	7,5	100	1000	10000	75	750	1,400278	2,5E-05
	12	8,5	144	1728	20736	102	1224	4,766944	0,000115
Sumatoria	42	37,9	364	3528	36400	293,6	2703,2	11,54833	0,006929

$$6a_0 + 42a_1 + 364a_2 = 37,2$$

 $42a_0 + 364a_1 + 3528a_2 = 293,6$
 $364a_0 + 3528a_1 + 36400a_2 = 2703,2$

Se resuelve el sistema por el método de Gauss-Jordan

$$a0 = 3,97$$
 $a1 = 0,223035714$
 $a2 = 0,012946429$

Se obtiene la función

 $y = 3.97 + 0.223035714x + 0.012946429x^2$

Se hallan los valores estadísticos que describen el error

Desviación estándar

$$s_y = \sqrt{\frac{11,5483333}{6-1}} = 1,519758753$$

Error estándar

$$sy_{/x} = \sqrt{\frac{0,00692857}{6 - (2 + 1)}} = 0,048057505$$

Dado que el error estándar es bastante inferior a la desviación estándar se dice que el modelo es adecuado

Coeficiente de correlación

$$r = \sqrt{\frac{11,54833 - 0,006929}{11,54833}} * 100\% = 99,96999735\%$$

Halle de forma manual los polinomios de interpolación de Lagrange de grado 1 y 2 que mejor sirvan para estimar el valor de f(4,75) tomando como base los siguientes puntos. Estime además el valor de f(4,75) para los grados 1 y 2.

Х	F(x)		
0	2.8		
2	3		
4	3.5		
6	3.8		
8	4.3		
10	4.7		

$$x_0 = 2$$
 $f(x_0) = 3$
 $x_1 = 4$ $f(x_1) = 3.5$
 $x_2 = 6$ $f(x_2) = 3.8$

Para grado 1 se requieren dos puntos

$$f_1(x) = \frac{x-4}{2-4} * 3 + \frac{x-2}{4-2} * 3.5$$

$$f_1(x) = \frac{x-4}{-2} * 3 + \frac{x-2}{2} * 3.5$$

$$f_1(x) = -\frac{3x-12}{2} + \frac{7x-14}{4}$$

$$f_1(x) = \frac{x+10}{4}$$
Estimando $f(4,75)$

 $f_1(4,75) = \frac{(4,75)+10}{4} = 3,6875$

Para grado 2 se requieren tres puntos

$$f_2(x) = \frac{x-4}{2-4} * \frac{x-6}{2-6} * 3 + \frac{x-2}{4-2} * \frac{x-6}{4-6} * 3,5 + \frac{x-2}{6-2} * \frac{x-4}{6-4} * 3,8$$

$$f_2(x) = \frac{x-4}{-2} * \frac{x-6}{-4} * 3 + \frac{x-2}{2} * \frac{x-6}{-2} * 3,5 + \frac{x-2}{4} * \frac{x-4}{2} * 3,8$$

$$f_2(x) = \frac{(3x-12) * (x-6)}{8} - \frac{(7x-14) * (x-6)}{8} + \frac{(19x-38) * (x-4)}{40}$$

$$f_2(x) = \frac{3x^2 - 30x + 72}{8} - \frac{7x^2 - 56x + 84}{8} + \frac{19x^2 - 114x + 152}{40}$$

$$f_2(x) = \frac{5(3x^2 - 30x + 72) - 5(7x^2 - 56x + 84) + 19x^2 - 114x + 152}{40}$$

$$f_2(x) = \frac{15x^2 - 150x + 360 - 35x^2 + 280x - 420 + 19x^2 - 114x + 152}{40}$$

$$f_2(x) = \frac{-x^2 + 16x + 92}{40}$$
Estimando $f(4,75)$

$$f_2(x) = \frac{-(4,75)^2 + 16(4,75) + 92}{40} = 3,6359375$$

4.

