Расчетно-графическая работа Математический Анализ Вариант 1

Казарин Андрей Максимович, Фищенко Кирилл Дмитриевич, Расшивалов Кирилл Антонович

24 Октября 2023

1 номер

Задание: С помощью метода математической индукции определить верная ли гипотеза. $n \in \mathbb{N}$.

$$2 \cdot 2 + 3 \cdot 5 + \ldots + (n+1)(3n-1) = \frac{n(2n^2 + 5n + 1)}{2}$$

Решение

1. Пусть данное утверждение равно P(n)

$$P: 2 \cdot 2 + 3 \cdot 5 + \ldots + (n+1)(3n-1) = \frac{n(2n^2 + 5n + 1)}{2}$$

Проверим базу индукции n=1

$$n = \frac{1 \cdot (2+5+1)}{2}$$

2. Допустим, что формула верна при n=k

$$2 \cdot 2 + 3 \cdot 5 + \ldots + (k+1)(3k-1) = \frac{k(2k^2 + 5k + 1)}{2}$$

3. Покажем, что формула верна при n = k + 1

$$\frac{k(2k^2 + 5k + 1)}{2} + (k+2)(3k+2) = \frac{(k+1)(2(k+1)^2 + 5k + 6)}{2}$$

$$\frac{k(2k^2 + 5k + 1)}{2} + (k+2)(3k+2) = \frac{(k+1)(2k^2 + 9k + 8)}{2} \quad \middle| \cdot 2$$
$$2k^3 + 5k^2 + k + 2(3k^2 + 8k + 4) = 2k^3 + 9k^2 + 8k + 2k^2 + 9k + 8$$
$$2k^3 + 11k^2 + 17k + 8 = 2k^3 + 11k^2 + 17k + 8$$

Таким образом, P(k+1) истинно всякий раз, когда P(k) истинно для всех натуральных чисел. Следовательно, в процессе математической индукции данный результат истинен для всех натуральных чисел. Гипотеза верна

2 номер

Задание: С помощью метода математической индукции определить верная ли гипотеза. $n \in \mathbb{N}$.

$$\lim_{n \to \infty} \left[\frac{1+3+5+7+\ldots+(2n-1)}{n+1} - \frac{2n-1}{2} \right]$$

Решение:

1. Предположим, что предел существует Заметим, что в числителе дроби арифметическая прогрессия. Сумма арифметической прогрессии вычисляется по формуле $S_n = \frac{(a_1 + a_n)*n}{2}$.

Тогда имеем:

$$\lim_{n \to \infty} \left[\frac{1+3+5+7+\ldots+(2n-1)}{n+1} - \frac{2n-1}{2} \right] = \lim_{n \to \infty} \left[\frac{(1+(2n-1)n}{2(n+1)} - \frac{2n-1}{2} \right] =$$

$$= \lim_{n \to \infty} \left[\frac{2n \cdot n - (2+1)(n+1)}{2(n+1)} \right] = \lim_{n \to \infty} \left[\frac{-3n-1}{2n+2} \right] = \left[-\frac{3}{2} \right] = -2$$

Стоит заметить, что символ квадратных скобок обозначает взятие целой части от числа внутри него, иначе говоря:

$$[n] = n_a | n_a \in \mathbb{N}, n_a < n$$

2. Докажем с помощью определения предела:

$$\left| \frac{-3n-1}{2n+2} + 2 \right| < \mathcal{E}$$

$$\left| \frac{-3n-1+4n+4}{2n+2} \right| < \mathcal{E}$$

$$\left| \frac{n+3}{2n+2} \right| < \mathcal{E}$$

Как мы видим, из-за квадратных скобок мы имеем некоторые трудности в вычислении. Опираясь на пройденный материал, можем доупстить следующее: для удобства в вычислениях докажем существование предела подставив туда не -2, а $-\frac{3}{2}$

$$\left| \frac{-3n-1}{2n+2} + \frac{3}{2} \right| < \mathcal{E}$$

$$\left| \frac{-3n-1}{2(n+1)} + \frac{3}{2} \right| < \mathcal{E}$$

$$\left| \frac{-3n-1+3n+3}{2(n+1)} \right| < \mathcal{E}$$

$$\left| \frac{2}{2(n+1)} \right| < \mathcal{E}$$

$$\frac{1}{n+1} > \mathcal{E}$$

$$n > \frac{1}{\mathcal{E}} - 1$$

Следовательно, для всех $n>N,\ N=\left[\frac{1}{\mathcal{E}}-1\right]$ выполняется условие $\left|\frac{-3n-1}{2n+2}+\frac{3}{2}\right|<\mathcal{E},$ а это по определению предела числовой последовательности означает, что $\lim_{n\to\infty}\left[\frac{1+3+5+7+\ldots+(2n-1)}{n+1}-\frac{2n-1}{2}\right]$ существует

3 номер

Задания:

- 1. Вычислить предел последовательности при $n \in \mathbb{N}$
- 2. Построить график общего члена последовательности в зависимости от номера n
- 3. Проиллюстрировать сходимость (расходимость) последовательности:
 - (a) Вспомнить определение предела последовательности, запишите его через \mathcal{E}, n_0 и неравенство
 - (b) Выбрать 3 различных положительных числа $\mathcal{E}_1 > \mathcal{E}_2 > \mathcal{E}_3$
 - (c) Для каждого такого числа изобразить на графике соответствующую $\mathcal E$ -окрестность предела $\mathbf A$ (« $\mathcal E$ -трубу»)
 - (d) Для каждого выбранного \mathcal{E} найдите на графике номер $n_0 = n_0(\mathcal{E})$, после которого все члены последовательности попадают в \mathcal{E} -окрестность, или установите, что такого номера нет

$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}$$

Решение:

1. Вычислим предел последовательности при $n \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3} = \lim_{n \to \infty} \frac{8n^3 + 8n}{2n^3 + 6n} = 4$$

2. График общего члена последовательности в зависимости от номера n в оси Oxy

3. Проиллюстрируем сходимость последовательности Определение предела: $\lim_{n\to\infty}x_n=A\Leftrightarrow \forall \mathcal{E}>0, \exists N(\mathcal{E})\in\mathbb{N}:n\geq N\Rightarrow |x_n-A|<\mathcal{E}$

Для начала вычислим первые 30 членов последовательности (см. след. стр.):

Номер члена последовательности	Значение члена последовательности
1	2.0
2	2.857142857142857
3	3.333333333333333
4	3.5789473684210527
5	3.7142857142857144
6	3.7948717948717947
7	3.8461538461538463
8	3.8805970149253732
9	3.9047619047619047
10	3.9223300970873787
11	3.935483870967742
12	3.945578231292517
13	3.953488372093023
14	3.959798994974874
15	3.9649122807017543
16	3.969111969111969
17	3.9726027397260273
18	3.9755351681957185
19	3.978021978021978
20	3.9801488833746896
21	3.981981981981982
22	3.9835728952772076
23	3.9849624060150375
24	3.9861830742659756
25	3.9872611464968153
26	3.988217967599411
27	3.989071038251366
28	3.9898348157560357
29	3.990521327014218
30	3.991140642303433

Выбираем 3 числа \mathcal{E}_1 , \mathcal{E}_2 и \mathcal{E}_3 . Для удобства дальней иллюстрации \mathcal{E} -областей выбираем небольшие значения: $\mathcal{E}_1=0.01,\,\mathcal{E}_2=0.1,\,\mathcal{E}_3=1.$

 \mathcal{E}_1 -окрестность для 12 члена

 \mathcal{E}_2 -окрестность для 10 члена

 \mathcal{E}_3 -окрестность для 3 члена

Выше мы вычислили первые 25 членов последовательности, так что допольнительных вычислений для нахождения номера n_0 члена последовательности, после которого все члены последовательности попадают в эпсилон окрестности - \mathcal{E}_1 : $n_0 = 29$; \mathcal{E}_2 : $n_0 = 9$; \mathcal{E}_3 : $n_0 = 3$