

Introduction to machine learning (lecture 3)

Lesson Outline

- Case studies that use machine learning
- Using ML to predict a book's genre
- Using ML to detect spills

Example1: House price prediction

Details:

- Room count
- Lot size

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Step 2: Build the Dataset

Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Details:

- Room count
- Lot size

Model

House Value

Dataset:

- Collected
- Explored
- Cleaned
- Visualization
- Split

# of Rooms	Lot Size (ft²)	House Value (\$)
///4/	10,454	339,900
3	9,147	239,000
3	10,890	250,000
10	25,877	877,000

Step 2: **Build the** Dataset

Step 3: Train the Model

Step 4: Evaluate the Model

Step 5: Use the Model

Details:

House Model Room count Value Lot size

Dataset: Collected, Explored, Cleaned, Visualization and Split

Model:

- Linear
- Python M.L. libraries

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Details:

- Room count
- Lot size

Model House Value

Dataset: Collected, Explored, Cleaned, Visualization and Split

Model: Linear

Evaluation:

- Root Mean Square (RMS)
- Manual Threshold Check

$$RMS = \sqrt{rac{1}{n}\sum_i x_i^2}$$

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Details:

Room count

Lot size

Model House Value

Dataset: Collected, Explored, Cleaned, Visualization and Split

Model: Linear

Evaluation: RMS & Manual Threshold Check

Inference: Try your model with real data

Example2: Microgenre Exploration

- Identify book trends
- Identify micro-genres

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Step 2: Build the Dataset

Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset (800 Romance books):

- Collected
- Explored
- Cleaned
- Vectorized (transformed into numbers)

"Little did he know, she was secretly a vampire."

['little', 'does', 'he', 'know', 'she', 'is', 'secretly', 'vampire']

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset: Collected, Explored, Cleaned, Vectorized

Model: k-means

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Evaluation metrics:

V-measure

Silhouette coefficient

Completeness

Rand index

Mutual information

Fowlkes-Mallows

Contingency Matrix

Homogeneity

Pair confusion matrix

Calinski-Harabasz index

Davies-Bouldin index

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset: Collected, Explored, Cleaned, Vectorized

Model: k-means

Evaluation:

- Silhouette Coefficient
- Manual Inspection

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset: Collected, Explored, Cleaned, Vectorized

Model: k-means

Evaluation:

Silhouette Coefficient

Manual Inspection

Cluster Label	Book Description	
7	"Susan's crush just moved away"	
7	"Can Gurpuran and Jorge keep their relationship together three hundred miles apart?"	
7	"When Ali's fiance got offered a new job in New York"	

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset: Collected, Explored, Cleaned, Vectorized

Model: k-means

Evaluation:

- Silhouette Coefficient
- Manual Inspection

Example3: Spill Detection From Video

- Fast response time needed
- Automated detection

"contains spill"

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

"does not contain spill"

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset:

- Collected
- Explored and cleaned
- Split
- Vectorized

Spilled liquid

Step 2: Build the Dataset

Step 3: Train the Model

Step 4: Evaluate the Model Step 5: Use the Model

Input layer Hidden layer Output layer

Dataset: Collected, Explored, Cleaned, Split,

and Vectorized

Model: Convolutional Neural Network (CNN)

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Evaluation Metrics:

ROC curve

Accuracy

Precision

Confusion matrix

Recall

False positive rate

False negative rate

Negative predictive value

Log Loss

Specificity

F1 Score

Step 2: Build the Dataset Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset: Collected, Explored, Cleaned, Split,

and Vectorized

Model: CNN

Evaluation:

- Value of "accuracy"
- Precision
- Recall
- Manual testing

Step 2: Build the Dataset

Step 3: Train the Model Step 4: Evaluate the Model Step 5: Use the Model

Dataset: Collected, Explored, Cleaned, Split, and Vectorized

Model: CNN

Evaluation: Precision and Recall

Thank you

Any Question?

