RECOLD COFY OTS: 60-41,331

JPRS: 5519

9 September 1960

CONVERGENT WAVE IN A PLASTIC MEDIUM

By E. I. Andriankin

- USSR

MAIN FILE

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

BETTERN TO DEED FOR

20000724 164

Distributed by:

OFFICE OF TECHNICAL SERVICES
U. S. DEPARTMENT OF COMMERCE
WASHINGTON 25, D. C.

Price: \$0.50

U. S. JOINT PUBLICATIONS RESEARCH SERVICE 205 EAST 42nd STREET SUITE 300 NEW YORK 17, N. Y.

DEIC QUALITY INSPECTED 4

Reproduced From Best Available Copy

JPRS: 5519

cso: 4361-N/b

CONVERGENT WAVE IN A PLASTIC

MEDIUM

/Following is the translation of an article by E. I. Andriankin entitled "Skhodyashch-ayasya Volna v Plasticheskoy Srede" (English version above) in Doklady Akademii Nauk SSSR (Proc. Acad. Sci. USSR) Vol. 59, No. 4, 1948, pages 659-662/

(Presented by Academician N. N. Semenov, 13 November 1959)

The problem of an explosion in a plastic compressible medium has been investigated by A. S. Kompaneyets in /l/. In this work a simplified law of compression was assumed. This made it possible to obtain simple equations for the law of motion of the front of a diverging spherical wave.

Utilizing the analogous law of compression (we will assume that the density of the medium reaches the limit value $\rho_* > \rho_0$ at any pressure different from zero), we will consider the problem of the converging plastic wave, which can be formulated as follows.

At the instant $t=\tau_0$, let there be a pressure at the free surface of a spherical layer with an initial putside radius a_0 . Let the said pressure vary according to a given pattern $P=P_0F(t/\tau_0)$ (in a more general case $F=F(t/\tau_0,x)$ can be assumed). At the inner surface of the spherical layer of initial radius b_0 the pressure is zero. At the instant the pressure is applied, a shock wave is propagated through the material.

We assume the medium behind the front to be incom-

pressible, $\rho_{\rm r} = \rho_{\star} > \rho_{\rm O}$, and the condition of plasticity to be satisfied:

$$\sigma_r - \sigma_\theta = k + m (\sigma_r + 2\sigma_\theta). \tag{1}$$

where k and m are assumed to be known constants, σ_r and σ_θ = σ_θ are the main stresses. The subscript f denotes the values at the wavefront. Further, we assume that the initial density of the material in the spherical layer depends on the radius $\rho_0 = \rho_0(r_0)$.

We shall solve the problem in Lagrangian variables, where the equations of continuity will be:

$$\frac{\partial r}{\partial r_0} = \frac{r_0^2 \rho_0 (r_0)}{r^2 \rho} , \qquad (2)$$

$$v \frac{\partial u}{\partial t} = \frac{\partial r}{\partial r_{\theta}} \frac{\partial \sigma_{r}}{\partial r_{\theta}} - \frac{2 \left(\sigma_{r} - \sigma_{\theta}\right)}{r}. \tag{3}$$

Here $u = \partial r / \partial t = r$, t is time, r and r are the variable and initial coordinates of the particles.

Using (1) and (2), we can bring Eq. (3) into the form:

$$\frac{\partial}{\partial r_0} \left[r^2 \left(\frac{k}{3m} - P \right) \right] = \rho_0 \quad (r_0) \, r_0^2 r^{\alpha - 2} \, \frac{\partial u}{\partial t} \,, \tag{4}$$

$$\alpha = -\frac{6m}{2m + 1} \leqslant 0, \quad P = -\sigma_r.$$

The boundary conditions for Eqs. (2) and (4) are the laws of conservation at the wavefront, the equality of pressure at the free surface $r_0 = a_0$, and the condition of continuity of the variable radius

$$P_{\Phi} = \rho_0(R) \varepsilon_{\Phi} \dot{R}^2, \qquad u_{\Phi} = \varepsilon_{\Phi} \dot{R}, \quad r_{\Phi} = R = r_0,$$

$$P(a_0, t) = P_0 F(t/\tau_0), \quad \varepsilon_{\Phi} = 1 - \rho_0/\rho_{\bullet}.$$
(5)

We shall introduce the dimensionless parameters

$$a = a_{\bullet}/a_{0}, \quad b = b_{\bullet}/a_{0}, \quad x = R/a_{0}, \quad s = r_{0}/a_{0}, \quad \overline{r} = r/a_{0},$$

$$\overline{\rho} = \rho/\rho_{\bullet}, \quad x = k/3mP_{0}, \quad \overline{k} = k/P_{0}, \quad \tau = t/\tau_{0}, \quad \overline{u} = \overline{\partial r}/\partial \tau, \quad (6)$$

$$dx/d\tau = -V\overline{y}, \quad y = \rho_{\bullet}R^{2}/P_{0}, \quad \tau_{0} = a_{0}V\overline{\rho_{\bullet}/P_{0}}.$$

where a_* and b_* are the outside and inside radii of the spherical layer at the instant t.

Integrating (2) and using Conditions (5), we

shall find

$$\overline{r}^{3} = x^{3} + 3 \int_{x}^{5} \overline{\rho_{0}}(s) s^{2} ds, \quad \alpha^{3} = x^{3} + 3 \int_{x}^{1} \overline{\rho_{0}} s^{2} ds,$$

$$\overline{u} = -\frac{\lambda(x)}{\overline{r}^{2}}, \quad \lambda = \varepsilon_{\Phi} x^{2} V \overline{y(x)}, \quad \varepsilon_{\Phi} = 1 - \overline{\rho_{0}}(x).$$
(7)

Integrating Eq. (4) and using (7), we get $\overline{r^2 \rho} = z (\overline{r^2} - x^2) + x^2 \overline{P}_{\phi} - \frac{d\lambda}{dx} V y \int_{x}^{\infty} \overline{\rho_0}(s) \overline{r^2} ds + 2\lambda^2 \int_{x}^{\infty} \overline{\rho_0} \overline{r^2} ds,$

$$\bar{P}_{\phi} = \bar{\rho}_{0}(x) \, \varepsilon_{\phi} y, \quad x \neq 0. \tag{8}$$

If the law of motion of the wavefront is known, the pressure and velocity distribution in the entire region $x \le s \le 1$.

An ordinary differential equation for the velocity of the wavefront can be obtained from (8), if we use the condition on the free surface. Assuming also $\rho = \rho_1 s^n$, while calculating all integrals in Eqs. (7) and (8), we shall find:

$$\frac{dz}{dx} = K(x)z + N(x,\tau), \qquad \frac{d\tau}{dx} = -\frac{x^2 \varepsilon(x)}{\sqrt{z_1 z}}, \quad \tau = 1, \quad x = z = 1. \quad (9)$$
Here
$$z = \frac{yx^3 z^2}{\varepsilon_1}, \quad z = 1 - \beta x^n, \quad z_1 = 1 - \beta, \quad \varrho_0(a_0) = \beta \varrho_*,$$

$$K = \frac{4(\alpha - 1)x^2 \varepsilon(a^{\alpha - 4} - x^{\alpha - 4})}{(\alpha - 4)(a^{\alpha - 1} - x^{\alpha - 1})} + \frac{2\beta(\alpha - 1)x^{n + \alpha - 2}}{a^{\alpha - 1} - x^{\alpha - 1}},$$

$$a = \left[x^3 + \frac{3\beta(1 - x^{n + 3})}{n + 3}\right]^{1/3},$$

$$N = \frac{2\beta(\alpha - 1)x^2 \varepsilon\left[\tilde{\nu}_1 - a^{\alpha}F(\tau, x)\right]}{\varepsilon_*(a^{\alpha - 1} - x^{\alpha - 1})}, \quad \delta_1 = x(a^{\alpha} - x^{\alpha}).$$

In order to integrate Eq. (9) it is necessary to know its asymptotic expression at $x \to 0$ and the value of the derivative dz/dx at point x = 1.

After a series of calculations, we shall find

$$3\left(\frac{dz}{dx}\right)_{1} = 4z_{1} + 8 - 2 V_{\varepsilon_{1}}^{-} \left(\frac{dF}{d\tau}\right)_{1} + \frac{2}{s_{1}\beta} \left(\frac{d\varepsilon}{dx}\right)_{1} + \delta_{2}, \quad \delta_{2} = 2\alpha\beta (z - 1); \quad (10)$$

$$\lim \tau = A, \quad z = B_{1}x^{4(z-1)/(z-1)} + \dots \quad (x \to 0, \ n > 0); \quad (11)$$

$$z = B_2 x^{\omega} + \dots, \quad \omega = \frac{2(\alpha - 1)[2s_1 - \beta(\alpha - 4)]}{\alpha - 1} \quad (n = 0, \ \alpha \leq 0). \tag{12}$$

However, if the outside pressure drops rapidly, the

wave may stop before reaching the center.

Equations (8) and (9) are true in case $\alpha \neq 0$; if m = 0, the condition of plasticity becomes $\alpha_r - \alpha_\theta = k$ and the solution is given by the same equations, in which we have to assume

$$\alpha = 0$$
, $\delta_1 = 2\overline{k} \ln (x/a)$, $\delta_2 = -4\beta \overline{k}$.

It should also be noted that Eqs. (9) give a solution to the problem of the collapse of a spherical layer of incompressible plastic material. In that case it is necessary to assume

$$r^{3} = s^{3} + x^{3} - b_{0}^{3}, \quad x = b, \quad \overline{P}_{\phi} = 0, \quad z = yx^{4},$$

$$k = \frac{4(x-1)x^{2}(a^{x-4} - x^{x-4})}{(x-4)(a^{x-1} - x^{x-1})}, \quad N = \frac{2(x-1)x^{2}[\delta_{1} - a^{x}F]}{a^{x-1} - x^{x-1}}.$$
(13)

In these cases an asymptotic solution is given by Eq. (11). At τ = 1 and x = b₀,

the boundary conditions for this problem will be y=0; in the case of initial motion in the fluid, the boundary condition will be $y=y_0$. The latter occurs, for instance, when a spherical layer of compressible material has been compressed by the outside pressure to the limit condition $\rho_f=\rho_\star$; then, after the disappearance of the shock wave (at the boundary with the empty space) the compressed material continues to collapse as if incompressible.

In Figs. 1 and 2 the results of the numerical integration of Eqs.(8) are shown. Curve 1 corresponds to

the solution of the problem, for parameter values of:

n = 0

for Curve 2, we have:

n = 0

E = -0.1

Q = 0

for Curve 3, we have:

F = 1

€_{*}= 0.2

nm = 1

X = -0.01

0 = -1.

(In the case of a constant outside pressure, or F = F(x), Eqs. (8) will be integrated in squares).

The values of A and B in the Asymptotic Expressions (11) and (12) can be determined by **MXXXX** numerical calculation. In case 2, A \approx 0.44, B \approx 1.195, ω \approx 1.9; in

case 3, $A \approx 0.166$, $B \approx 1.464$, and $\omega = 1.6$.

The concentration of the energy in the center can be investigated through the behavior of the solution at $x \rightarrow 0$. The energy per unit volume consists of kinetic energy, dissipation energy at the wavefront, and dissipation energy due to the work of the forces of plastic deformation; therefore

$$\int_{a}^{1} a^{2}F da = \frac{1}{2} \int_{x}^{1} \bar{\rho}_{0}(s) \, \bar{u}^{2}s^{2} ds + \frac{1}{2} \int_{x}^{1} \epsilon_{\phi} P_{\phi} s^{2} ds + \frac{1}{2} \int_{1}^{1} \left[\int_{x}^{1} \frac{(\bar{s}_{r} - \bar{s}_{\theta}) (1 - \epsilon_{\phi}) \bar{u} s^{2} ds}{\bar{r}} \right] d\epsilon.$$
(14)

Fig. 1

Fig. 2

It can be established, studying the behavior of these integrals at $x \to 0$ and $s \to 0$, that the final concentration of energy in the center takes place only in the base of the collapse of a spherical layer of incompressible fluid (the second integral in (14) is absent) under the condition n = mk = 0 (k is arbitrary). In other cases all integrals in (14) converge, and this means a decrease in the stored energy at the center.

In analogy to the above, the problem can be solved by assuming a variable compression of matter, depending on the amplitude of the pressure at the wavefront /2/.

However, as in /3, 4/ it would be necessary here to solve an integral differential equation for the velocity of the front of the shock wave.

Chem, Physics Institute, Acad. Sci. USSR

Submitted 13 Nov. 19..

REFERENCES

- /1/ A. M. Kompaneyets, DAN (Proc. Acad. Sci) 109, No. 1, (1956)
- /2/ A. N. Romashev, V. N. Rodionov, A. P. Sukhotin, DAN, 123, No. 4, (1958)
- /3/ Kh. A. Rakhmatulin, L. I. Stepanova. Sborp. Voprosy teorii razrusheniya gornykh porod deystviem vzryva (Coll. Problems in the Theory of the Destruction of Rocks by means of Explosions) Acad. Sci. USSR, 1958
- /4/ E. I. Andryankin, V. P. Koryavov, DAN, 128, No. 2, (1959)

END

2167