Lekcja 7 – Praca domowa

1. (2 pkt.) Wykorzystując poznane metody napisz program, w którym jeden proces wytwarza 32 procesy potomne. Wykorzystując polecenie pstree, przedstaw drzewo tych procesów

```
//Przykład z języka C
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
  for(int i=0;i<32;i++)
    if(fork() == 0) //Wywołujemy procesy potomne
      sleep(10);
      exit(0);
    }
  }
  for(int i=0;i<32;i++)
  wait(NULL); //Wstrzymujemy wykonanie procesu macierzystego aż wykonają się potomne
}
```

```
//Printscreen z polecenia pstree:
```

```
proces2(18522) ___proces2(18525)
                  -proces2(18526)
                  -proces2(18527)
                  -proces2(18528)
                  -proces2(18529)
                  -proces2(18530)
                  -proces2(18531)
                  -proces2(18532)
                  -proces2(18533)
                  -proces2(18534)
                  -proces2(18535)
                  -proces2(18536)
                  -proces2(18537)
                  -proces2(18538)
                  -proces2(18539)
                  -proces2(18540)
                  -proces2(18541)
                  -proces2(18542)
                  -proces2(18543)
                  -proces2(18544)
                  -proces2(18545)
                  -proces2(18546)
                  -proces2(18547)
                  -proces2(18548)
                  -proces2(18549)
                  -proces2(18550)
                  -proces2(18551)
                  -proces2(18552)
                  -proces2(18553)
                  -proces2(18554)
                  -proces2(18555)
                   proces2(18556)
```

2. (2 pkt.) Wykorzystując poznane metody napisz program, w którym proces macierzysty wytwarza 1 proces potomny, ten potomny wytwarza kolejny potomny, kolejny potomyny wytwarza kolejny potomny, itd.... tak aby wszystkich potomnych było w sumie 16. Wykorzystując polecenie pstree, przedstaw drzewo tych procesów

```
//Przykład z języka C
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{
   fork();
   fork();
   fork();
}
```

```
fork();
sleep(10);
exit(0);
}
```

//Printscreen z polecenia pstree:

```
proces5(12299)
                 -proces5(12302)
                                    -proces5(12311)
                                                      -proces5(12322)
                                                                        proces5(12324)
                                                                        -proces5(12326)
                                                      proces5(12328)
                                                                        -proces5(12331)
                                                      proces5(12329)
                                    proces5(12313)-
                                                      -proces5(12323)
                                                                        -proces5(12330)
                                                      proces5(12325)
                                    proces5(12315)
                                                      proces5(12320)
                                    proces5(12316)
                  -proces5(12303)-
                                    -proces5(12310)
                                                      -proces5(12317)—proces5(12321)
                                                      -proces5(12318)
                                    -proces5(12312)
                                                      -proces5(12319)
                                    proces5(12314)
                  proces5(12304)
                                    -proces5(12307)-
                                                     —proces5(12327)
                                    proces5(12309)
                  proces5(12305)
                                    proces5(12308)
                  proces5(12306)
```

3. (2 pkt.) Wyjaśnij różnicę między wątkiem, a procesem.

Proces (ang. task) w porównaniu z wątkiem jest bardziej złożoną i angażującą większe zasoby strukturą programistyczną. Każdy proces posiada swój osobny segment kodu, segment danych ze zmiennymi globalnymi, stertę do przydzielania pamięci operacyjnej oraz stos do wywoływania procedur i obliczeń. W porównaniu z procesem, wątek jest mniej złożoną i bardziej elastyczną strukturą. Zwykle w ramach jednego procesu współbieżnie wykonuje się kilka wątków, które współdzielą segment kodu, danych i stertę, zaś stos przydzielony jest każdemu z nich indywidualnie do swoich zadań. To współdzielenie części danych przez wątki ułatwia komunikowanie się między nimi, co w przypadku procesów byłoby o wiele trudniejsze i wymagające dodatkowych obliczeń.

4. (2 pkt.) Wykorzystując polecenie systemowe ps wyświetl wszystkie procesy, wraz z informacją o wątkach. Opisz, co jest przedstawione w konkretnej kolumnie twojego listingu. Wykorzystaj polecenie ps.

UID	PID	PPID	LWP	С	NLWP STIME	TTY	TIME CMD
root	1	0	1	0	1 23:44	?	00:00:02 /sbin/init
root	2	0	2	0	1 23:44	?	00:00:00 [kthreadd]
root	3	2	3	0	1 23:44	?	00:00:00 [ksoftirgd/0]
root	4	2	4	0	1 23:44	?	00:00:00 [kworker/0:0]
root	5	2	5	0	1 23:44	?	00:00:00 [kworker/0:0H]
root	7	2	7	0	1 23:44	?	00:00:00 [rcu_sched]
root	8	2	8	0	1 23:44	?	00:00:00 [rcuos/0]
root	9	2	9	0	1 23:44	?	00:00:00 [rcuos/1]
root	10	2	10	0	1 23:44	?	00:00:00 [rcuos/2]
root	11	2	11	0	1 23:44	?	00:00:00 [rcuos/3]
root	12	2	12	0	1 23:44	?	00:00:00 [rcuos/4]
root	13	2	13	0	1 23:44	?	00:00:00 [rcuos/5]
root	14	2	14	0	1 23:44	?	00:00:00 [rcuos/6]
root	15	2	15	0	1 23:44	?	00:00:00 [rcuos/7]
root	16	2	16	0	1 23:44	?	00:00:00 [rcuos/8]
root	17	2	17	0	1 23:44	?	00:00:00 [rcuos/9]
root	18	2	18	0	1 23:44	?	00:00:00 [rcuos/10]
root	19	2	19	0	1 23:44	?	00:00:00 [rcuos/11]
root	20	2	20	0	1 23:44	?	00:00:00 [rcuos/12]
root	21	2	21	0	1 23:44	?	00:00:00 [rcuos/13]
root	22	2	22	0	1 23:44	?	00:00:00 [rcuos/14]
root	23	2	23	0	1 23:44	?	00:00:00 [rcuos/15]
root	24	2	24	0	1 23:44	?	00:00:00 [rcuos/16]
root	25	2	25	0	1 23:44	?	00:00:00 [rcuos/17]
root	26	2	26	0	1 23:44	?	00:00:00 [rcuos/18]
root	27	2	27	0	1 23:44	?	00:00:00 [rcuos/19]
root	28	2	28	0	1 23:44	?	00:00:00 [rcuos/20]
root	29	2	29	0	1 23:44	?	00:00:00 [rcuos/21]
root	30	2	30	0	1 23:44	?	00:00:00 [rcuos/22]

W powyższym listingu polecenie ps –eLf wyświetlone są szczegółowe informacje o procesach i wątkach. W kolumnach mamy informację o user id procesu (UID), numerze procesu (PID, PPID), numerze wątku (LWP). Kolumna TTY podaje informację o terminalu związanym z procesem, TIME podaje skumulowany czas poświęcony przez procesor, CMD podaje informację o nazwie procesu/wątku.

5. (2 pkt.) Zaloguj się na komputer mushelka.pjwstk.edu.pl i wykorzystując polecenie systemowe pstree wyświetl drzewo wszystkich procesów z tego komputera. Odnajdź PID procesu swojej powłoki i wskaż go. Czy są tam cztery pierwsze procesy, z drzewa procesów przedstawionych w bloku 4 (rysunek z drzewem procesów systemu Unix)?

```
-acpid(1311)
-avahi-daemor
avahi-daemon(//----
-bluetoothd(/47)
-colord(2043)-+-{colord}(2086)
--{colord}(2086)
                        n(774)---avahi-daemon(775)
-{colord}(:
-cron(1274)
-cups-browsed(1351)
-cupsd(2210) - · · dbus(2214)
-dbus-daemon(672)
-getty(1196)
-getty(1200)
-getty(1206)
-getty(1207)
-getty(1207)
-irqbalance(1278)
-kerneloops(1261)
-lightdm(1308)-+-
                                ,
Xorg(1336)
-lightdm(1590)-+-init(2231)-+-at-spi-bus-laun(2328)-+
                                                                                           at-spi2-registr(2364)
bamfdaemon(2326)-+-{b
                                                                                          evolution-sourc(2566)
                                                                                          gconfd-2(2697)
gnome-session(2380)
                                                                                                                                      telepathy-indic(2767)-+
                                                                                                                                       unity-fallback-(2619)-+
                                                                                                  me-terminal(2872)
                                                                                                                                                                 -less(3211)
-pstree(3210)
```

Powyżej przedstawiono częściowy zrzut ekranu z polecenia pstree –p | less, wyświetlającego drzewko wszystkich procesów wraz z numerami PID. Użyto komendy less, by łatwiej było przeglądać całe drzewko procesów. Poniżej zaznaczono w obramowaniu PID mojej powłoki bash (2882). Na tym drzewku widać jedynie pierwszy (init) z czterech procesów drzewa procesów systemu Unix.

Przygotował: Jakub Woźniak 4135@pja.edu.pl