Computational Analytical Mechanics

COORDENADAS GENERALIZADAS | LIGADURAS | ENERGÍAS CINÉTICA Y POTENCIAL

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Péndulo con punto de suspensión libre [Landau §5 ej. 2]

La partícula de masa m_2 pende de una barra rígida de longitud ℓ de masa despreciable. En su otro extremo hay un dispositivo de masa m_1 enhebrado en una barra rígida horizontal y que se mueve libremente a lo largo de su eje \hat{x} . El dispositivo permite que la barra que pende de él forme con la vertical cualquier ángulo φ .

landauS52_fig2.png

- (a) Escriba la energía cinética, T y potencial, V, en función de las coordenadas generalizadas sugeridas por las figura.
- (b) Verifique que al fijar la masa m_1 recupera las expresiones de T y V de un péndulo ideal.

2. **Péndulo doble** [Landau §5 ej. 1]

Una barra rígida de longitud ℓ_1 tiene una masa despreciable respecto a la de la partícula de masa m_1 fija a su extremo. A su vez de esta última pende otra barra rígida, de longitud ℓ_2 que en su extremo tiene otra partícula de masa m_2 , también mucho mayor que aquella de la barra.

landauS52_fig1.png

- (a) Escriba la energía cinética, T y potencial, V, en función de las coordenadas generalizadas sugeridas por las figura.
- (b) Verifique que recupera T y V de un péndulo simple si establece $m_1 = 0$, $\varphi_1 = \varphi_2 = \varphi$ y $\ell_1 = \ell_2 = \frac{\ell}{2}$.

3. (*) Péndulo con punto de suspensión en rotación [Marion (e) ex. 7.5] [Landau §5 ej. 3]

Una partícula de masa m pende de una barra rígida de longitud b. El punto de suspensión engarzado en un aro de radio a dispuesto verticalmente rota respecta a su centro con una frecuencia ω constante. Se asume que todas las posiciones se encuentran en un único plano bidimensional y que la masa de la barra rígida tiene masa despreciable frente a m.

Calcule la energía cinética, T y potencial, V de la partícula con masa m.

marion_fig7_3.png

4. (*) Pesas acopladas rotando en torno a eje [Landau §5 ej. 4]

La partícula con m_2 se desplaza sobre un eje vertical, y todo el sistema gira con una velocidad angular constante Ω en torno a ese eje. Dicha partícula está unida por barras de longitud a y masa despecible a otras dos de masa m_1 que a su vez pendend de sendas barras idénticas del punto fijo A que describen un ángulo de apertura respecto al eje θ que es variable.

Calcule la energía cinética para cada una de las tres masas y exprese en la forma más compacta posible la del sistema en su conjunto.

landauS52_fig4.png