



WILEY

Joshua D. Angrist and Jörn-Steffen Pischke

### MAESTRÍA EN ECONOMÍA ECONOMETRÍA INTERMEDIA ECO743 – MÓDULO 2

## Sesión 4 Ecuaciones Simultáneas

Docente: Juan Palomino



- 1 Modelo de Ecuaciones Simultáneas
- 2 La Forma Estructural y Reducida
- 3 Identificación y Estimación por MCI y MC2E
- 4 Planteamiento General del MES
- 5 Identificación del Modelo General
- 6 Verificando Condiciones





#### Algunos ejemplos son:

- Modelo de oferta y demanda: hay dos ecuaciones donde se trata de determina el precio y cantidad de equilibrio
- **Modelo IS-LM**: hay dos ecuaciones, IS (equilibrio de mercado de bienes) y LM (equilibrio mercado monetario) y se trata de hallar la tasa de interés y la producción nacional.

Estos modelos de **ecuaciones simultáneas** difieren de los que hemos visto hasta ahora porque:

- Consisten en un conjunto de ecuaciones
- En cada modelo hay dos o más variables dependientes en lugar de una sola.

Los modelos de ecuaciones simultáneas, que contienen más de una variable dependiente y más de una ecuación, requieren un tratamiento estadístico especial.



#### Ejemplo 1: Modelo de Oferta y Demanda

Función de Demanda 
$$Q_t^d = \beta_1 + \gamma_1 P_t + \epsilon_t^D$$

Función de Oferta 
$$Q_t^S = \beta_2 + \gamma_2 P_t + \epsilon_t^S$$

Condición de Equilibrio 
$$Q_t^d = Q_t^s = Q$$

Basado en teoría económica, se espera que  $\gamma_1 < 0$  y  $\gamma_2 > 0$ .

Equilibrio Demanda y Oferta



Aumento de la Demanda



Disminuye la Demanda





#### Tenemos datos de precios y ventas de un bien X





Estimando el modelo de demanda.

```
> ols <- lm_robust(Ventas ~ Precio, base, se_type="stata")</pre>
> summary(ols)
Call:
lm_robust(formula = Ventas ~ Precio, data = base, se_type = "stata")
Standard error type: HC1
Coefficients:
           Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
(Intercept)
              49568 8383.1 5.913 0.0000004531 32673.3
                                                            66463.4 44
                256 293.5 0.872 0.3879687546 -335.6
Precio
                                                           847.5 44
Multiple R-squared: 0.01663, Adjusted R-squared: -0.005715
F-statistic: 0.7603 on 1 and 44 DF, p-value: 0.388
```

Coeficiente del precio es positivo. ¿No debería ser negativo? ¿Será que hemos estimado la oferta?



- Lo que se ha estimado no es ni la demanda ni la oferta.
- Cada punto del diagrama de dispersión es un punto de equilibrio.



No se puede **identificar** ni la demanda ni la oferta.



#### **Ejemplo 2:** Agregando una variable a la oferta:

Función de Demanda  $Q_t = \beta_1 + \gamma_1 P_t + \epsilon_t^D$  Función de Oferta  $Q_t = \beta_2 + \gamma_2 P_t + \beta_3 X_t + \epsilon_t^S$ 

 $X_t$  es el dato de precios de insumos y afecta solo a la oferta (materia primas, salarios).

• Se asume que  $X_t$  es exógena, es decir, no correlacionada con los errores:  $cov(X_t, \epsilon_t) = 0$ 



Asumir que  $X_t$  afecta solo a la oferta y, por lo tanto, cambio en  $X_t$  desplaza a la curva de oferta.

Estos desplazamientos dibujan a la curva de demanda.

Esta variable adicional en la oferta ayuda a **identificar** a la demanda en la dispersión.

Un parámetro está identificado si es posible obtener una estimación de él con datos.

Una ecuación está identificada si sus parámetros también lo están.





## 2. La Forma Estructural y Reducida



#### La Forma Estructural

- Vamos a estudiar en más detalle el tema de la identificación.
- En los ejemplos 1 y 2, los modelos están presentados en su forma estructural.
- En la forma estructural las ecuaciones aparecen tal como las dicta la teoría económica.
- Los parámetros ahí presentes son los parámetros estructurales.



### La Forma Estructural

En el ejemplo anterior,



$$Q_t = \beta_1 + \gamma_1 P_t + \epsilon_t^I$$



Función de Demanda 
$$Q_t = \beta_1 + \gamma_1 P_t + \epsilon_t^D$$
 Función de Oferta 
$$Q_t = \beta_2 + \gamma_2 P_t + \beta_3 X_t + \epsilon_t^S$$

- $Q_t$  y  $P_t$  son las variables endógenas.
- 1 y  $X_t$  son las variables exógenas (1 es la constante)
- $\gamma_1, \gamma_2, \beta_1, \beta_2, \beta_3$  son parámetros estructurales.
- $\epsilon_t^D$  y  $\epsilon_t^S$  son errores estructurales. Sus varianzas  $\sigma_d^2$  y  $\sigma_s^2$  y también son parámetros estructurales.

$$E(\epsilon_t^D) = 0,$$
  $Var(\epsilon_t^D) = \sigma_d^2$   
 $E(\epsilon_t^D) = 0,$   $Var(\epsilon_t^S) = \sigma_s^2$   
 $Cov(\epsilon_t^D, \epsilon_t^S) = 0$ 



### La Forma Estructural

• En términos matriciales:

$$Q_t - \gamma_1 P_t = \beta_1 + \epsilon_t^D \qquad \text{(demanda)}$$

$$Q_t - \gamma_2 P_t = \beta_2 + \beta_3 X_t + \epsilon_t^S \qquad \text{(oferta)}$$

• Luego:

Forma Estructural Matricial

demanda oferta demanda oferta

$$\begin{bmatrix} Q_t & P_t \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix} = \begin{bmatrix} 1 & X_t \end{bmatrix} \begin{bmatrix} \beta_1 & \beta_2 \\ 0 & \beta_3 \end{bmatrix} + \begin{bmatrix} \epsilon_t^D & \epsilon_t^S \end{bmatrix}$$

• Luego, en matrices compactas:

$$y_t \Gamma = x_t B + \epsilon$$

Siendo 
$$y_t = [Q_t \quad P_t], \ \Gamma = \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix}, \ x_t = [1 \quad X_t], \ B = \begin{bmatrix} \beta_1 & \beta_2 \\ 0 & \beta_3 \end{bmatrix}, \ \epsilon = [\epsilon_t^D \quad \epsilon_t^S]$$



### La Forma Reducida

• Despejamos las endogenas en función de todos lo demás:

$$y_t \Gamma = x_t B + \epsilon$$
 
$$y_t \Gamma \Gamma^{-1} = x_t B \Gamma^{-1} + \epsilon \Gamma^{-1}$$
 
$$y_t = x_t B \Gamma^{-1} + \epsilon \Gamma^{-1}$$

• Sea  $\Pi = B\Gamma^{-1}$  y  $\nu = \epsilon\Gamma^{-1}$ 

Forma Reducida Matricial

$$y_t = x_t \Pi + \nu$$

$$\begin{bmatrix} Q_t & P_t \end{bmatrix} = \begin{bmatrix} 1 & X_t \end{bmatrix} \begin{bmatrix} \pi_1 & \pi_3 \\ \pi_2 & \pi_4 \end{bmatrix} + \begin{bmatrix} \nu_{1t} & \nu_{2t} \end{bmatrix}$$

#### La Forma Reducida

• En ecuaciones, la forma reducida es:

$$Q_t = \pi_1 + \pi_2 X_t + \nu_{1t}$$

$$P_t = \pi_3 + \pi_4 X_t + \nu_{2t}$$

#### Comentarios:

- La forma reducida es la solución o equilibrio del sistema.
- La forma reducida tiene a cada endógena en función de las exógenas.
- Errores de la forma reducida:  $v_{1t}$  y  $v_{2t}$
- Parámetros de la forma reducida:  $\pi_1$ ,  $\pi_2$ ,  $\pi_3$ ,  $\pi_4$ , y también

$$\sigma_{1t}^2 = Var(v_{1t}), \ \sigma_{2t}^2 = Var(v_{2t}), \ \sigma_{12} = Cov(v_{1t}, v_{2t})$$



### La Forma Estructural y Reducida

Los parámetros reducidos están en función de los estructurales.

$$\Pi = B\Gamma^{-1}$$

$$\begin{bmatrix} \pi_1 & \pi_3 \\ \pi_2 & \pi_4 \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 \\ 0 & \beta_3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix}^{-1}$$

$$= \frac{1}{\gamma_1 - \gamma_2} \begin{bmatrix} \beta_1 & \beta_2 \\ 0 & \beta_3 \end{bmatrix} \begin{bmatrix} -\gamma_2 & -1 \\ \gamma_1 & 1 \end{bmatrix}$$

$$= \frac{1}{\gamma_1 - \gamma_2} \begin{bmatrix} -\beta_1 \gamma_2 + \beta_2 \gamma_1 & -\beta_1 + \beta_2 \\ \beta_3 \gamma_1 & \beta_3 \end{bmatrix}$$

$$\begin{bmatrix} \pi_1 & \pi_3 \\ \pi_2 & \pi_4 \end{bmatrix} = \begin{bmatrix} \frac{-\beta_1 \gamma_2 + \beta_2 \gamma_1}{\gamma_1 - \gamma_2} & \frac{-\beta_1 + \beta_2}{\gamma_1 - \gamma_2} \\ \frac{\beta_3 \gamma_1}{\gamma_1 - \gamma_2} & \frac{\beta_3}{\gamma_1 - \gamma_2} \end{bmatrix}$$
(1)

 $\pi_1$ : Intercepto de la ecuación de la cantidad

 $\pi_2$ : Pendiente de la ecuación de la cantidad

 $\pi_3$ : Intercepto de la ecuación del precio

 $\pi_4$ : Pendiente de la ecuación del precio



### La Forma Estructural y Reducida

• Los errores reducidos también se expresan en función de los estructurales.

$$v = \epsilon \Gamma^{-1}$$

$$[v_{1t} \quad v_{2t}] = [\epsilon_t^D \quad \epsilon_t^S] \frac{1}{\gamma_1 - \gamma_2} \begin{bmatrix} -\gamma_2 & -1\\ \gamma_1 & 1 \end{bmatrix}$$

$$[v_{1t} \quad v_{2t}] = \begin{bmatrix} \frac{-\gamma_2 \epsilon_t^D + \gamma_1 \epsilon_t^S}{\gamma_1 - \gamma_2} & \frac{-\epsilon_t^D + \epsilon_t^S}{\gamma_1 - \gamma_2} \end{bmatrix}$$

- Error reducido 1 y 2 es una combinación lineal de los errores estructurales de la oferta y demanda.
- La covarianza entre  $v_{1t}$  y  $v_{2t}$  es distinto de cero.

## Interpretación de los parámetros estructurales y reducidos

Supongamos que se reduce  $(X \downarrow)$ , esto desplaza la oferta a la derecha.



$$Q_t^s = \beta_2 + \gamma_2 P_t + \beta_3 X_t + \epsilon_t^s$$

El desplazamiento horizontal es:

$$\Delta Q_t^s = \beta_3 \Delta X_t$$

$$\frac{\Delta Q_t^s}{\Delta X_t} = \beta_3$$

Cuanto cambia la **cantidad ofrecida** si hay un cambio en precio de insumos  $(\Delta X_t)$ 

$$Q_t = \pi_1 + \pi_2 X_t + \nu_{1t}$$

$$\Delta Q_t = \pi_2 \Delta X_t$$

$$\frac{\Delta Q_t}{\Delta X_t} = \pi_2$$

Cambio en la cantidad de **equilibrio de mercado** debido a un cambio en el precio de insumos  $(\Delta X_t)$ 

# 3. Identificación y Estimación por MCI y MC2E



### Estimación de la Forma Reducida

• La forma reducida puede estimarse consistentemente por MCO

$$Q_t = \pi_1 + \pi_2 X_t + \nu_{1t}$$

$$P_t = \pi_3 + \pi_4 X_t + \nu_{2t}$$

• Se asume que  $X_t$  no se correlaciona con  $\epsilon_t^D$  ni con  $\epsilon_t^S$  en el modelo estructural, y, por ello, no se correlaciona con  $\nu_{1t}$  ni con  $\nu_{2t}$  en la forma reducida.

$$Cov(X_t, \epsilon_t^D) = 0 \rightarrow Cov(X_t, \nu_{1t}) = 0$$
  
 $Cov(X_t, \epsilon_t^S) = 0 \rightarrow Cov(X_t, \nu_{2t}) = 0$ 

• Sea  $\hat{\pi}_1$ ,  $\hat{\pi}_2$ ,  $\hat{\pi}_3$  y  $\hat{\pi}_4$  los estimadores MCO de la forma reducida.



- Si no se puede estimar por MCO los parámetros estructurales, ¿Cómo podemos estimar estos?
- De acuerdo con la ecuación  $\Pi = B\Gamma^{-1}$ , hallabamos la relación entre parámetros estructurales y reducidos donde:

$$\begin{bmatrix} \pi_1 & \pi_3 \\ \pi_2 & \pi_4 \end{bmatrix} = \begin{bmatrix} \frac{-\beta_1 \gamma_2 + \beta_2 \gamma_1}{\gamma_1 - \gamma_2} & \frac{-\beta_1 + \beta_2}{\gamma_1 - \gamma_2} \\ \frac{\beta_3 \gamma_1}{\gamma_1 - \gamma_2} & \frac{\beta_3}{\gamma_1 - \gamma_2} \end{bmatrix}$$
 (1)

- Entonces es cierto que la pendiente de la demanda es:  $\gamma_1 = \frac{\pi_2}{\pi_4}$  (2)
- El estimador de la pendiente:  $\hat{\gamma}_1 = \frac{\hat{\pi}_2}{\hat{\pi}_4}$
- Este es un estimador consistente de  $\gamma_1$  pues:  $Plim\hat{\gamma}_1 = \frac{Plim\hat{\pi}_2}{Plim\hat{\pi}_4} = \frac{\pi_2}{\pi_4} = \gamma_1$
- Por lo tanto, la pendiente de la demanda está identificada y es estimable.



- En el caso del intercepto de la demanda  $\beta_1$ , a partir de la ecuación (1) no es tan directo expresarlo en función de los  $\pi$ .
- La forma de hacerlo es a partir de  $\Pi = B\Gamma^{-1}$ , si pasamos a  $\Gamma$  a la izquierda:

$$\Pi\Gamma = B$$

$$\begin{bmatrix} \pi_1 & \pi_3 \\ \pi_2 & \pi_4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 \\ 0 & \beta_2 \end{bmatrix}$$

• Multiplicando la primera fila de  $\Pi$  por la primera columna de  $\Gamma$  e igualando a la primera casilla de B.

$$\pi_1 - \pi_3 \gamma_1 = \beta_1$$

• Usando (2), se tiene que:

$$\beta_1 = \pi_1 - \pi_3 \frac{\pi_2}{\pi_4}$$



• Luego, el estimador consistente es:

$$\hat{\beta}_1 = \hat{\pi}_1 - \hat{\pi}_3 \frac{\hat{\pi}_2}{\hat{\pi}_4}$$

- Estos estimadores obtenidos a partir de los parámetros reducidos son los estimadores de **Mínimos Cuadrados Indirectos (MCI)**.
- Entonces como  $\beta_1$  y  $\gamma_1$  son estimables consistentemente, **la demanda está identificada**.
- No ocurre lo mismo con la oferta. No se puede hallar los parámetros de  $\gamma_2$ ,  $\beta_2$ ,  $\beta_3$  en función de los  $\pi$ .



### Estimación por MC2E

Si deseamos estimar la demanda por MC2E, el instrumento es X<sub>t</sub>

$$Q_t = \beta_1 + \gamma_1 P_t + \epsilon_t^D$$
 (demanda)  

$$Q_t = \beta_2 + \gamma_2 P_t + \beta_3 X_t + \epsilon_t^S$$
 (oferta)



- La primera etapa es la estimación de la forma reducida para  $P_t$ ,  $\hat{P}_t = \hat{\pi}_3 + \hat{\pi}_4 X_t$  y en la segunda etapa se estima  $Q_t = \beta_1 + \gamma_1 \hat{P}_t + \eta_t$ .
- Notar que **NO** se puede estimar la oferta por MC2E pues  $X_t$  no es un instrumento. ¿Por qué? ¿Qué necesitamos?
- Se deduce que si queremos identificar y estimar la oferta, tenemos que agregar regresores exógenos a la demanda.



**Ejemplo 3**: Agregamos el ingreso de los consumidores  $C_t$ 

Función de Demanda



$$Q_t = \beta_1 + \gamma_1 P_t + \beta_2 C_t + \epsilon_t^D$$

Función de Oferta



$$Q_t = \beta_3 + \gamma_2 P_t + \beta_4 X_t + \epsilon_t^S$$

Forma Estructural Matricial

$$\begin{bmatrix} Q_t & P_t \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix} = \begin{bmatrix} 1 & C_t & X_t \end{bmatrix} \begin{bmatrix} \beta_1 & \beta_3 \\ \beta_2 & 0 \\ 0 & \beta_4 \end{bmatrix} + \begin{bmatrix} \epsilon_t^D & \epsilon_t^S \end{bmatrix}$$

$$y_t \quad \Gamma = x_t \quad B + \epsilon_t$$

$$2 \times 2 \qquad 3 \times 2$$

$$y_t = x_t \quad B \quad \Gamma^{-1} + \epsilon_t \Gamma^{-1}$$

$$3 \times 2 \quad 2 \times 2$$

$$y_t = x_t \Pi + \nu_t$$

$$3 \times 2$$

En ecuaciones:

$$Q_t = \pi_1 + \pi_2 C_t + \pi_3 X_t + \nu_{1t}$$
$$P_t = \pi_4 + \pi_5 C_t + \pi_6 X_t + \nu_{2t}$$

Hacemos lo mismo que en el ejemplo anterior:

$$\Pi = B\Gamma^{-1}$$
 
$$\Pi\Gamma = B$$
 
$$\begin{bmatrix} \pi_1 & \pi_4 \\ \pi_2 & \pi_5 \\ \pi_3 & \pi_6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_3 \\ \beta_2 & 0 \\ 0 & \beta_4 \end{bmatrix}$$
 demanda oferta demanda oferta



#### Para la **demanda**:

$$\pi_1 - \pi_4 \gamma_1 = \beta_1 \qquad (la)$$

$$\pi_2 - \pi_5 \gamma_1 = \beta_2 \qquad \text{(lb)}$$

$$\pi_3 - \pi_6 \gamma_1 = 0 \tag{II}$$

- De (II),  $\gamma_1 = \frac{\pi_3}{\pi_6}$
- Reemplazando en (1a),  $\beta_1 = \pi_1 \pi_4 \frac{\pi_3}{\pi_6}$
- Reemplazando en (1b),  $\beta_2 = \pi_2 \pi_5 \frac{\pi_3}{\pi_6}$

La demanda está identificada



#### Para la **oferta**:

$$\pi_1 - \pi_4 \gamma_2 = \beta_3 \qquad (la)$$

$$\pi_2 - \pi_5 \gamma_2 = 0 \tag{II}$$

$$\pi_3 - \pi_6 \gamma_2 = \beta_4 \tag{Ib}$$

- De (II),  $\gamma_2 = \frac{\pi_2}{\pi_5}$
- Reemplazando en (1a),  $\beta_3=\pi_1-\pi_4\frac{\pi_2}{\pi_5}$
- Reemplazando en (1b),  $\beta_4=\pi_3-\pi_6\frac{\pi_2}{\pi_5}$

La oferta está identificada

- En este ejemplo, tanto la oferta como la demanda están identificadas.
- Pueden ser estimadas por MCI o por MC2E.



Veamos un ejemplo en donde MCI es menos apropiado que MC2E.

**Ejemplo 4:** El modelo sigue la siguiente estructura:

Función de Demanda 
$$Q_t = \beta_1 + \gamma_1 P_t + \beta_2 C_t + \beta_3 R_t + \epsilon_t^D$$
 Función de Oferta 
$$Q_t = \beta_4 + \gamma_2 P_t + \epsilon_t^S$$

- Donde  $R_t$  es el precio de otros bienes.
- La demanda no está identificada porque no hay variables de la oferta que provoquen desplazamientos en la oferta que permitan identificarla.
- La oferta si está identificada porque hay variables en la demanda que provoca desplazamientos en la demanda, que permite identificar a la oferta.
- Aquí, la matriz  $\Gamma$  es igual a los ejemplos anteriores pero B no.

Veamos la identificación:

$$\Pi\Gamma = B$$

$$\begin{bmatrix} \pi_1 & \pi_4 \\ \pi_2 & \pi_5 \\ \pi_3 & \pi_6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\gamma_1 & -\gamma_2 \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_4 \\ \beta_2 & 0 \\ \beta_3 & 0 \end{bmatrix}$$

- Está claro que la demanda no está identificada pues no hay exógenas en la oferta.
- En cambio la oferta sí está identificada, pues hay dos exógenas en la demanda.
- Sin embargo, existe un problema con MCI.

Para la oferta:

$$\pi_1 - \pi_4 \gamma_2 = \beta_4 \tag{I}$$

$$\pi_2 - \pi_5 \gamma_2 = 0 \tag{IIa}$$

$$\pi_3 - \pi_6 \gamma_2 = 0 \tag{IIb}$$

- De (IIa),  $\gamma_2 = \frac{\pi_2}{\pi_5}$  De (IIb),  $\gamma_2 = \frac{\pi_3}{\pi_6}$

Hay 2 respuestas para  $\gamma_2$ 

• Reemplazando  $\gamma_2$  en (I) también hay 2 respuestas para  $\beta_4$ .

La oferta está **sobreidentificada** 

- No es bueno tener dos estimaciones de la oferta y no tener ningún criterio para elegir alguna de ellas.
- Entonces MCI solo sirve cuando el procedimiento produce una respuesta única. A ese caso lo llamamos "exactamente identificado".





#### ¿Qué ocurre con MC2E?

- La sobreidentificación no la afecta.
- En la primera etapa se estima la forma reducida por MCO y se calcula la predicción  $\hat{P}_t$

$$\hat{P}_t = \hat{\pi}_4 + \hat{\pi}_5 C_t + \hat{\pi}_6 R_t$$

Y en la segunda etapa se estima por MCO,

$$Q_t = \beta_4 + \gamma_2 \hat{P}_t + \eta_t$$

• Así se obtiene una estimación única de los parámetros de la oferta:  $\hat{\beta}_4$  y  $\hat{\gamma}_2$ 



## ¿MCI o MC2E?

- MCI solo puede emplearse para el caso exactamente identificado.
- MC2E para los casos exactamente identificado y sobreidentificado.
- En la práctica es mejor usar MC2E siempre y cuando exista identificación.
- Lo que hemos aprendido de MCI nos servirá para poder definir un criterio general para decir cuándo una ecuación está o no identificada.





- Asumamos un modelo lineal que contiene *g* ecuaciones
- Asumiremos que hay g variables endógenas y todas están relacionadas entre sí
- g endógenas:  $Y_1, Y_2, ..., Y_g$
- k exógenas:  $X_1, ..., X_k$
- El sistema de ecuación se puede escribir de la siguiente manera:

$$\begin{split} Y_1 &= \gamma_{21} Y_2 + \gamma_{31} Y_3 + \dots + \gamma_{g1} Y_g + \beta_{11} + \beta_{21} X_2 + \dots + \beta_{k1} X_k + \epsilon_1 \\ Y_2 &= \gamma_{12} Y_1 + \gamma_{32} Y_3 + \dots + \gamma_{g2} Y_g + \beta_{12} + \beta_{22} X_2 + \dots + \beta_{k2} X_k + \epsilon_2 \\ Y_3 &= \gamma_{13} Y_1 + \gamma_{23} Y_2 + \dots + \gamma_{g3} Y_g + \beta_{13} + \beta_{23} X_2 + \dots + \beta_{k3} X_k + \epsilon_3 \\ Y_q &= \gamma_{1q} Y_1 + \gamma_{2q} Y_2 + \dots + \gamma_{q-1,q} Y_{q-1} + \beta_{1q} + \beta_{2q} X_2 + \dots + \beta_{kq} X_k + \epsilon_q \end{split}$$

En notación matricial:

$$[Y_{1i} \quad Y_{2i} \quad \cdots \quad Y_{gi}] \begin{bmatrix} 1 & -\gamma_{12} & \cdots & \cdots & -\gamma_{1g} \\ -\gamma_{21} & 1 & \cdots & \cdots & -\gamma_{2g} \\ -\gamma_{31} & -\gamma_{32} & \ddots & \cdots & -\gamma_{3g} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\gamma_{g1} & -\gamma_{g2} & \cdots & \cdots & 1 \end{bmatrix} = \begin{bmatrix} 1 & X_{2i} & \cdots & X_{ki} \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \cdots & \beta_{1g} \\ \beta_{21} & \beta_{22} & \cdots & \cdots & \beta_{2g} \\ \beta_{31} & \beta_{32} & \ddots & \cdots & \beta_{3g} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \beta_{k1} & \beta_{k2} & \cdots & \cdots & \beta_{kg} \end{bmatrix} + \begin{bmatrix} \epsilon_{1i} & \epsilon_{2i} & \cdots & \epsilon_{gi} \end{bmatrix}$$
 
$$Ecuación \quad Ecuación \quad Ecuación$$

Tiene la forma:

$$y_i$$
  $\Gamma = x_i$   $B + \epsilon_i$ 
 $1 \times g$   $g \times g$   $1 \times k$   $k \times g$   $1 \times g$ 



• En el caso de los errores, la matriz de varianzas y covarianzas entre ecuaciones:

$$Var(\epsilon_i) = E[\epsilon_i' \epsilon_i] = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sigma_q^2 \end{bmatrix} = \Sigma$$

• Notar que si g = 1, entonces  $\Gamma = 1$  y B solo tiene una columna. Entonces:

$$y_i = x_i \beta + \epsilon_i$$

$$Var(\epsilon_i) = \sigma^2$$

La forma reducida es:

$$y_i = x_i B \Gamma^{-1} + \epsilon_i \Gamma^{-1}$$
 
$$y_i = x_i \prod_{1 \le k} Var(v_i) = \Omega$$
 
$$y_i = x_i \prod_{1 \le k} Var(v_i) = \Omega$$
 
$$y_i = x_i \prod_{1 \le k} Var(v_i) = \Omega$$

- Estudiar la identificación observando cuantos parámetros existen.
- En  $\Pi$  hay  $k \times g$  parámetros reducidos en función de los estructurales y en  $\Omega$  hay g(g+1)/2 parámetros reducidos más.
- La cantidad de parámetros reducidos:

$$k \times g + g(g+1)/2$$

• La cantidad de parámetros estructurales:

$$g^2 - g + k \times g + g$$
En  $\Gamma$  En  $B$  En  $B$ 

Hay más parámetros estructurales que reducidos



- En efecto, hay más parámetros estructurales que reducidos.
- Por ello, es imposible que podamos despejar a los parámetros estructurales en función de los reducidos.
- Dejando de lado las varianzas, vimos que la identificación de las pendientes puede estudiarse a partir de  $\Pi = B\Gamma^{-1}$  o de  $\Pi\Gamma = B$ .
- Hay más incógnitas que ecuaciones (notar que cada  $\pi_i$  en  $\Pi$  es una ecuación).

$$k \times g$$
 ecuaciones y  $g^2 - g + k \times g$  incógnitas

Por tanto, el modelo donde "todo depende de todo" no está identificado.





- Para alcanzar identificación se debe agregar información adicional:
  - Restricciones de exclusión: Quitar algunas exógenas o endógenas de algunas ecuaciones.
  - **Restricciones lineales**: Son del tipo  $\beta_{21} + \beta_{31} = 1$ , por ejemplo.
- En los ejemplos que hemos visto, hemos aplicado restricciones de exclusión, que son las más comunes.
- Vamos a aplicar restricciones de exclusión ("quitar variables").



#### Definamos:

- g =número de endógenas en el modelo
- $g_i$  =número de endógenas incluidas en la ecuación j
- k =número de exógenas en el modelo
- $k_i$  =número de exógenas incluidas en la ecuación j

Sea la j - ésima ecuación así (omitimos los subíndices i)

$$y_j = \gamma_j Y_j + x_j \beta_j + \epsilon_j$$

•  $Y_i$  =vector de endógenas incluidas en el lado derecho de "=".

En matrices, la ecuación j:

$$\begin{bmatrix} y_j & \vdots & Y_j & \vdots & Y_{-j} \end{bmatrix} \begin{bmatrix} 1 \\ \cdots \\ -\gamma_j \\ \cdots \\ 0 \end{bmatrix} = \begin{bmatrix} x_j & \vdots & x_{-j} \end{bmatrix} \begin{bmatrix} \beta_j \\ \cdots \\ 0 \end{bmatrix} + \begin{bmatrix} \epsilon_j \end{bmatrix}$$

#### Donde:

- $Y_{-i}$  =Endógenas excluidas de j
- $x_{-j}$  =Exógenas excluidas de j

 Si colocamos a la ecuación j en primer lugar (el orden de las ecuaciones es arbitrario en los MES), el modelo completo es:



- $-\gamma_j$  es una columna  $(g_j 1) \times 1$ .
- $\beta_j$  es una columna  $k_j \times 1$  y el 0 debajo es  $k k_j \times 1$

- Veamos la identificación de la ecuación j con  $\Pi\Gamma = B$ ,
- Como  $\Gamma$  es particionada  $3 \times 2$  y B es particionada  $2 \times 2$ , entonces  $\Pi$  es particionada  $2 \times 3$ .

$$k_{j} \left\{ \begin{bmatrix} \Pi_{1} & \vdots & \Pi_{2} & \vdots & \Pi_{3} \\ \dots & \dots & \dots \\ \Pi_{4} & \vdots & \Pi_{5} & \vdots & \Pi_{6} \end{bmatrix} \begin{bmatrix} 1 & \vdots & \Gamma_{0} \\ \dots & \dots & \dots \\ -\gamma_{j} & \vdots & \Gamma_{1} \\ \dots & \dots & \dots \\ 0 & \vdots & \Gamma_{2} \end{bmatrix} = \begin{bmatrix} \beta_{j} & \vdots & B_{1} \\ \dots & \dots \\ 0 & \vdots & B_{2} \end{bmatrix} \right\} k_{j}$$

$$1 \qquad g_{j} - 1 \qquad g - g_{j}$$

$$\Pi_1 - \Pi_2 \gamma_j = \beta_j \tag{I}$$

$$\Pi_4 - \Pi_5 \gamma_j = 0 \tag{II}$$



• De la ecuación (II),

$$\Pi_4 = \Pi_5 \gamma_j \tag{II'}$$

- Para despejar a  $\gamma_j$ , notar que  $\Pi_5$  es dimensión  $k k_j \times g_j 1$ .
- Si ven con cuidado, (II') es un sistema de ecuaciones con  $k-k_j$  ecuaciones (pues  $\Pi_4$  es  $k-k_j\times 1$ ) y  $g_j-1$  incógnitas (las  $\gamma$ ).
- Evidentemente si  $k k_j < g_j 1$  (# ecuaciones < # incógnitas) no habrá solución para los  $\gamma$ .



5.1 Condición de Orden



### Condición de Orden

• Condición de Orden: es una condición necesaria para la identificación:

$$k - k_i \ge g_i - 1$$

- En palabras, el número de exógenas excluidas de la ecuación *j* debe ser **mayor o igual** al número de endógenas incluidas en el lado derecho del signo "=".
- Si  $k k_j < g_j 1 \rightarrow$  la ecuación j está **subidentificada**.
- Si  $k k_j = g_j 1 \rightarrow$  la ecuación j está **exactamente identificada**.
- Si  $k k_j > g_j 1 \rightarrow$  la ecuación j está **sobreidentificada**.

### Condición de Orden

#### **Ejemplo 1**: En el modelo:

$$Q_t = \beta_1 + \gamma_1 P_t + \epsilon_t^D$$
 (Demanda) 
$$Q_t = \beta_2 + \gamma_2 P_t + \epsilon_t^S$$
 (Oferta)

En ninguna de las dos se cumple la condición de orden pues:

$$k - k_i = 1 - 1 = 0$$
 y  $g_i - 1 = 2 - 1 = 1$  en ambas ecuaciones  $\rightarrow$  subidentificadas.

#### **Ejemplo 2**: En el modelo:

$$Q_t = \beta_1 + \gamma_1 P_t + \epsilon_t^D$$
 (Demanda)  

$$Q_t = \beta_2 + \gamma_2 P_t + \beta_3 X_t + \epsilon_t^S$$
 (Oferta)

Para la demanda:  $k - k_j = 2 - 1 = 1$  y  $g_j - 1 = 2 - 1 = 1$  exactamente identificada

Para la oferta:  $k - k_j = 2 - 2 = 0$  y  $g_j - 1 = 2 - 1 = 1 \rightarrow$  subidentificada

## Condición de Orden

**Ejemplo 3**: En el modelo:

$$Q_t = \beta_1 + \gamma_1 P_t + \beta_2 C_t + \beta_3 R_t + \epsilon_t^D \qquad \text{(Demanda)}$$

$$Q_t = \beta_4 + \gamma_2 P_t + \epsilon_t^S \qquad \text{(Oferta)}$$

Para la demanda:  $k - k_j = 3 - 3 = 0$  y  $g_j - 1 = 2 - 1 = 1 \rightarrow$  subidentificada

Para la oferta:  $k - k_j = 3 - 1 = 2$  y  $g_j - 1 = 2 - 1 = 1$  sobreidentificada

5.2 Condición de Rango



## Condición de Rango

- Cuango g = 2 (2 ecuaciones), la condición de orden es suficiente para determinar la identificación.
- Pero para modelos con g > 2, se hace necesario tener en cuenta una condición más.
- De (II'),  $\Pi_4 = \Pi_5 \gamma_1$ , en el caso exactamente identificado  $\Pi_5$  es cuadrada, por lo que podría existir su inversa si no es singular. Luego:

$$\gamma_1 = \Pi_5^{-1} \Pi_4$$



## Condición de Rango

• En el caso sobreidentificado  $k-k_j>g_j-1$  ( $\Pi_5$  no es cuadrada), se multiplica (II') por  $\Pi_5'$  y luego se invierte.

$$\Pi_5'\Pi_4 = \Pi_5'\Pi_5\gamma_1$$

$$\gamma_1 = (\Pi_5'\Pi_5)^{-1}\Pi_5'\Pi_4$$

• En ambos casos, para que existan las inversas se requiere que:

$$rango(\Pi_5) = g_j - 1$$

- Esta es la condición de rango, la cual es necesaria y suficiente.
- No es fácil verificar esta condición analizando a Π<sub>5</sub>
- $\Pi_5$  es una matriz  $k k_j \times g_j 1$  con elementos que son combinaciones no lineales de los  $\gamma$  y  $\beta$ .



## Condición de Rango

• Se puede demostrar que la condición de rango tiene esta expresión equivalente:



# 6. Verificando Condiciones



## Verificando ambas condiciones

#### Ejemplo 1: En el modelo keynesiano

$$Y_t = C_t + I_t + G_t$$

$$C_t = \beta_1 + \gamma_1 Y_t + \epsilon_t^C$$

$$I_t = \beta_2 + \gamma_2 Y_t + \beta_3 Y_{t-1} + \epsilon_t^I$$

En matrices,

$$[Y_t \quad C_t \quad I_t] \begin{bmatrix} 1 & -\gamma_1 & -\gamma_2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = [1 \quad G_t \quad Y_{t-1}] \begin{bmatrix} 0 & \beta_1 & \beta_2 \\ 1 & 0 & 0 \\ 0 & 0 & \beta_3 \end{bmatrix} + [0 \quad \epsilon_t^C \quad \epsilon_t^I]$$

## Verificando ambas condiciones

- Para el consumo:
  - Condición de Orden: Se cumple con holgura pues

| $k-k_j$ | $g_j-1$ |
|---------|---------|
| 3 – 1   | 2 – 1   |

Condición de Rango



$$rango\begin{pmatrix} -1 & 1\\ 1 & 0\\ 0 & \beta_3 \end{pmatrix} = 2$$

Es igual a g - 1 = 3 - 1 = 2. Por lo tanto, se cumple.

La ecuación de consumo está sobreidentificada.

## Verificando ambas condiciones

- > Para la inversión:
  - Condición de Orden: Se cumple exactamente pues

| $k-k_j$ | $g_j-1$ |
|---------|---------|
| 3 - 2   | 2 – 1   |

Condición de Rango



$$rango\begin{pmatrix} -1 & 1\\ 1 & 0 \end{pmatrix} = 2$$

Es igual a g - 1 = 3 - 1 = 2. Por lo tanto, se cumple.

La ecuación de la inversión está exactamente identificada.

## No cumplimiento de la condición de rango pero sí la de orden

**Ejemplo 2**: En este ejemplo, se puede comprobar que en la ecuación (II) no se cumple la condición de rango pero sí la de orden.

$$Y_1 = \beta_1 + \gamma_1 Y_2 + \beta_2 X_1 + \beta_3 X_3 + \epsilon_1 \tag{I}$$

$$Y_2 = \beta_4 + \gamma_2 Y_1 + \gamma_3 Y_3 + \beta_5 X_2 + \epsilon_2 \tag{II}$$

$$Y_3 = \beta_6 + \gamma_4 Y_2 + \epsilon_3 \tag{III}$$



## No cumplimiento de la condición de rango pero sí la de orden

Matricialmente,  $\Pi\Gamma = B$ 

$$\begin{bmatrix} \pi_1 & \pi_5 & \pi_9 \\ \pi_2 & \pi_6 & \pi_{10} \\ \pi_3 & \pi_7 & \pi_{11} \\ \pi_4 & \pi_8 & \pi_{12} \end{bmatrix} \begin{bmatrix} 1 & -\gamma_2 & 0 \\ -\gamma_1 & 1 & -\gamma_4 \\ 0 & -\gamma_3 & 1 \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_4 & \beta_6 \\ \beta_2 & 0 & 0 \\ 0 & \beta_5 & 0 \\ \beta_3 & 0 & 0 \end{bmatrix}$$

Para la ecuación (II), verificando la condición de orden:

| $k-k_j$ | $g_j-1$ |
|---------|---------|
| 4 - 2   | 3 – 1   |

Entonces, se cumple la condición de orden.

## No cumplimiento de la condición de rango pero sí la de orden

Verificando la condición de rango:



$$rango\begin{pmatrix} \beta_2 & 0\\ \beta_3 & 0 \end{pmatrix} = 1$$

- Pero g = 3 en este modelo, por lo que g 1 = 2.
- Entonces no se cumple la condición de rango.
- Por lo tanto, la ecuación (II) no está identificada.

## Resumen de las condiciones

| Orden                 | Rango                                                         | Resultado                |
|-----------------------|---------------------------------------------------------------|--------------------------|
| $k - k_j > g_j - 1$   | $rango \begin{pmatrix} \Gamma_2 \\ B_2 \end{pmatrix} = g - 1$ | Sobreidentificado        |
| $k - k_j = g_j - 1$   | $rango \begin{pmatrix} \Gamma_2 \\ B_2 \end{pmatrix} = g - 1$ | Exactamente identificado |
| $k - k_j < g_j - 1$   |                                                               | Subidentificado          |
| $k - k_j \ge g_j - 1$ | $rango \begin{pmatrix} \Gamma_2 \\ B_2 \end{pmatrix} < g-1$   | No identificado          |



### Referencias

- Capítulo 18, 19 y 20 Gujarati, D., & Porter, D. (2010). Econometría (Quinta edición ed.). & P. Carril Villareal, Trad.) México: Mc Graw Hill educación.
- > Capítulo 16 Wooldridge, J. M. (2010). Introducción a la Econometría. 4ta. Edición. Cengage Learning.
- ➤ Hill, R.C., Griffiths, W. E., & Lim, G. C. (2018). Chapter 11 Simultaneous Equations Model. In *Principles of Econometrics (pp. 531-562)*. 5th Edition. John Wiley & Sons.
- ➤ Greene, W (2018). Chapter 10.4 Simultaneous Equations Models. In *Econometric Analysis (pp. 346-365)*. 8th Edition. New York: McMillan.



