

9/08
JC20 Rec'd PCT/PTO 02 AUG 2005

FIRE EXTINGUISHER WITH A RESERVOIR MADE FROM A PLASTIC MATERIAL

The present invention relates to a fire extinguisher of
5 the type comprising a reservoir able to contain a pressurized extinguishing agent, and a discharge device fixed to a neck of said reservoir so as to discharge said extinguishing agent, said discharge device comprising an outlet nozzle, and a dip tube arranged in
10 said reservoir in such a way as to be able to lead said extinguishing agent from a bottom part of said reservoir at the opposite end to said neck toward said outlet nozzle.

15 It is common practice to manufacture the reservoir of such an extinguisher in steel or in aluminum. In the case of aluminum reservoirs, the manufacturing process typically consists in steps of extruding, necking to form the neck and tapping the latter. In the case of
20 steel reservoirs, the current manufacturing principles consist typically in steps of deep-drawing the bottom or body of the reservoir, machining the threaded ring or studs, manufacturing the shell ring, welding and assembling the various elements. These metal
25 embodiments have disadvantages. Metals are hard and aggressive and do nothing to assist the user in holding the extinguisher in his or her hand if the user is inexperienced. Manufacturing rejects are often high after quality control. Manufacturing efficiency is poorly controlled. The residual level set by standards
30 at 10% is often exceeded. The circular cylindrical shapes adopted by manufacturers by mutual assent are difficult to incorporate into an interior cabin, such as a motor cabin, a pleasure boat, a dwelling, which means that the extinguishers occupy excessive needless amounts of space or remain confined far from the points sensitive to and at risk from fire.
35

Document EP 283568 describes an extinguisher of the abovementioned type in which the reservoir is made of plastic by a process of stretching and blow-molding a preform. This method of manufacture makes it easier to
5 obtain reservoirs of various shapes. However, the stretching operation entails gripping the preform in order to exert a tensile force thereon. Such gripping produces a region of welding between two opposed walls of the preform, which region constitutes a weak point
10 in the container thus obtained. As a result, the working pressure of this known extinguisher is limited to 25 bar.

In this type of extinguisher, the extinguishing agent
15 may be, for example, water with additives or a powder or a foam, etc. When the extinguisher is used, the extinguishing agent is discharged through the outlet nozzle of the discharge device under the thrust of a high pressure which is either contained permanently in
20 the reservoir, in which case the discharge device comprises a valve, or released at the time of use by the puncturing of a gas cartridge within the reservoir, in which case the valve is not needed. One problem that arises in such a device is that a residual amount of
25 extinguishing agent remains in the reservoir after the store of ejection pressure is exhausted and this leads to a loss of efficiency, additional cost and wastage. It is therefore desirable to reduce this residual amount of extinguishing agent as far as possible.

30 The object of the present invention is to remedy at least some of these disadvantages.

For that, the invention provides a fire extinguisher
35 comprising a reservoir made of plastic able to contain a pressurized extinguishing agent, and a discharge device fixed to a neck of the reservoir so as to discharge the extinguishing agent, the discharge device comprising an outlet nozzle, and a dip tube arranged in

the reservoir in such a way as to be able to lead the extinguishing agent from a bottom part of the reservoir at the opposite end to the neck toward the outlet nozzle, characterized in that a wall of said reservoir
5 bears an internal rib of helical shape, the axis of winding of which is more or less parallel to said dip tube. Such a rib makes it possible to create or improve a vortex phenomenon at the time of discharge, that is to say to give the extinguishing agent a swirling movement. Such a movement is about the dip tube and ducts the flow of ejection agent toward the inlet of the dip tube while at the same time increasing the speed of the extinguishing agent as it is drawn up into the dip tube and discharged. The fluidity of the
10 extinguishing agent, for example in the case of a powder, may also be improved by this movement. This results in a reduction in the residual amount of extinguishing agent and in a gain in efficiency.
15
20 Advantageously, said neck is formed of a double wall projecting toward the inside of said reservoir, which enhances the rigidity of the neck.

As a preference, said neck comprises an internal screw
25 thread for fixing said discharge device by screwing. Such a fixing is better able to withstand the internal discharge pressure than a screw thread on the outside of the neck.
30 According to one particular embodiment of the invention, there is provided at least one external accessory molded as a projection on an exterior surface of said wall of the reservoir. Such an accessory may, for example, be a handgrip, a fixing lug, a stabilizing
35 lug, a transport support or reinforcing piece. The extinguisher may thus be easier to store and to handle.

According to another particular embodiment of the invention, there is provided at least one external

handgrip molded as a recess in said wall of the reservoir. The ergonomics of the extinguisher are thus improved, particularly in the case of a hand-held extinguisher.

5

The wall thickness of the reservoir is chosen to suit the material, the shape and the working pressure of the extinguisher. The helical rib has the advantage of improving the strength of the reservoir without there being any need to increase the thickness of the entire wall. This results in an improvement in safety, a saving of material and a saving of weight. For example, said wall of the reservoir has a thickness of between 3 and 5 mm. Thus, an internal working pressure in excess of 50 bar, for example, may be used.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
94

the invention, given solely by way of nonlimiting illustration with reference to the attached drawings. In these drawings:

- figure 1 is a partial view in an axial section of a device according to a first embodiment suited to the manufacture of a reservoir of an extinguisher according to the invention, the accumulator being associated with a molding station,
- figure 2 is an enlarged detailed view of a part of the accumulator of figure 1, the accumulator being associated with an injection station,
- figure 3 is view similar to figure 1 depicting a step of extrusion by coating a mandrel,
- figure 4 is view similar to figure 3 depicting a step of bi-orientation with pre-blowing,
- figure 5 is view similar to figure 4 depicting the end of the blowing step,
- figure 6 is an enlarged detailed view of a manufacturing device according to a second embodiment, the accumulator being associated with a molding station,
- figure 7 is partial view depicting a variant embodiment of the mandrel,
- figure 8 is a diagram depicting the timing sequence in the operation of the device of figure 1,
- figure 9 depicts a portable extinguisher according to the invention, the reservoir of which can be obtained using the device of figure 6.

35

An extrusion-blow-molding machine according to the first embodiment and the way in which it works will now be described. With reference to figure 1, the machine comprises an accumulator 1 mounted on a moving support

so that it can be associated with two different workstations. In figure 1, the accumulator 1 is associated with a molding station 2.

- 5 The accumulator 1 comprises a tubular outer envelope 3 which is fixed at its upper end to a support flange 4. The support flange 4 forms part of a rotary plate known per se and not depicted allowing the accumulator 1 to be moved from one workstation to the other. The outer 10 envelope 3 has, at its lower end, a transverse rim 5 which surrounds and delimits an outlet opening 6 of the accumulator 1. Within the outer envelope 3 there is a central core 7 made of several coaxial pieces able to move relative to one another, namely a liner 8, a 15 compacting sleeve 9, a threaded sizing sleeve 10 and a central hollow rod 11. The liner 8 comprises several individual pieces which contain a circuit for circulating heat transfer fluid such as thermal oil. The circuit comprises annular ducts 13 formed near the 20 exterior surface of the liner 8. The sizing sleeve 10 and the central hollow rod 11 constitute a coating mandrel, the function of which will be explained later on.
- 25 Between the central core 7 and the internal wall of the outer envelope 3 there is an accumulation space 12 which extends as far as the outlet opening 6 and comprises an annular space closed at its upper end 15 by an extrusion piston 14. In figure 1, the extrusion 30 piston 14, the liner 8, the compacting sleeve 9, the sizing sleeve 10 and the central hollow rod 11 are depicted in a position withdrawn up inside the outer envelope 3. These various pieces may be removed axially toward the outside of the outer envelope 3 by a 35 conventional pneumatic drive.

With reference to figure 2, the central rod 11 comprises a central duct 17 which is connected at the upper end to a source of pressurized air, not depicted,

and which is closed at the lower end by a calibrated valve 18 returned to the closed position by a spring 19. The duct 17 allows bi-orientation to be achieved by blow-molding.

5

In figure 2, the accumulator 1 is depicted associated with the other workstation, which is an injection station 16. The manufacturing cycle for manufacturing a hollow body begins at this station, as will now be 10 explained.

At the injection station 16, an injection-molding machine of the known screw type is used to bring a thermoplastic resin into a malleable state and inject 15 into the accumulation space 12. Figure 2 depicts only an end part of the injection nozzle 20 which is pressed closely against the outer envelope 3 of the accumulator 1. A predetermined quantity of resin 35 is thus injected into the accumulator 1 in such a way as to 20 fill the accumulation space 12. In order to bring the resin 35 to the optimum temperature for the phase of molding with bi-orientation and to maintain that temperature, the temperature in the accumulation space 25 12 is regulated by means of a resistive electric element 21 and the circulation of fluid in the circuit of the liner 8.

Starting out from this situation, the operation of the machine will be explained with the aid of the diagram 30 of figure 8, in which each horizontal box represents a time step lasting about 0.5 s.

In step 22, the accumulator 1 is moved by the support rotary plate to the bi-orientation molding station 2 35 visible in figures 1 and 3 to 5. A cover, not depicted, covers over the opening 6 during this movement. In figure 1, the material contained in the accumulation space 12 is not depicted.

The bi-orientation molding station 2 comprises an extrusion die 25 fixed to a fixed support plate 26, and a blow-molding mold 24 made up of two separate shells 24a and 24b. The shells 24a and 24b are actuated in a transverse movement by a conventional mechanism that allows the mold 24 to be opened and closed. The mold 24 contains an internal cavity 36 which has a restriction portion 37 of a diameter equal to the diameter of the orifice 28 of the extrusion die 25. Step 23, which begins simultaneously with step 22, represents the movement of closing the mold 24. As this movement is known, the mold 24 is depicted in the closed position in all the figures. Step 27 represents the blocking of the rotary support plate at the station 2. The rim 5 is then positioned closely against the upper surface of the extrusion die 25, the accumulator 1 being placed along the axis of the extrusion orifice 28. Step 29 represents the opening of the cover that was covering over the opening 6.

20

Several operations then begin almost simultaneously: step 30 represents the moving of the extrusion piston 14 to drive the resin out of the accumulation space 12 through the opening 6. Step 32 represents the movement of the pieces of the central core 7. Step 33 represents the pre-blowing of a small air pressure through the duct 17. Step 34 represents the transfer of material through the extrusion orifice 28.

30 More specifically, in step 32, the central rod 11 is moved first of all and engages through the extrusion die 25 into the mold 24, becoming coated with a uniform coat of resin 38. The forward movement of the central rod 11 is performed at twice the speed at which the resin 35 leaves the extrusion orifice 28, and this causes axial stretching of the coat of resin 38 and corresponding molecular orientation. An end portion of the central rod 11 bears a helical groove 39 on its peripheral surface, and this impresses a corresponding

helical rib on the interior surface of the coat of resin 38, as visible in figure 3. The slightly delayed pre-blowing of air through the duct 17 of the rod 11 detaches the coat of resin 38 from the rod 11, after 5 the latter has moved axially a certain distance beyond the restriction portion 37, thus avoiding excessively rapid cooling of the resin. The coat of resin 38 detached from the rod 11 is depicted in figure 4, in which the helical rib 40 is also depicted. During pre- 10 blowing the coat of resin 38 does not come into contact with the peripheral wall of the cavity 36.

With a delay on the central rod 11, the sizing sleeve 10 is also moved toward the extrusion orifice 28. The 15 sizing sleeve 10 also enters the gap between the rod 11 and the peripheral wall of the extrusion orifice 28. The sizing sleeve 10 has an exterior screw thread 41 best visible in figure 2 which impresses a corresponding screw thread on the interior surface of 20 the coat of resin 38. The sizing sleeve 10 moves as far as the restriction portion 37 of the mold 24, so as to form an internal screw thread in the neck of the hollow body that is in the process of being manufactured. For example, the ratio between the internal radius of the 25 extrusion orifice 28 and the gap is about 10.

While the rod 11 completes its movement as far as the end wall 42 of the internal cavity 36, the piston 14 and the liner 8 move until they touch the rim 5 in 30 order to completely empty the accumulation space 12. Finally, the compacting sleeve 9 slides as a close fit between the sizing sleeve 10 and the peripheral wall of the extrusion orifice 28 as far as the lower end of the extrusion orifice 28 so as to completely drive the 35 resin from the extrusion die 25 and compress the material in the gap between the sizing sleeve 10 and the restriction portion 37. The end-of-travel position of the various pieces at the end of step 32 is depicted in figure 5.

Starting out from this situation, the blow-molding step 43 is performed with a higher air pressure and this transversely dilates the coat of resin 38 until it 5 comes into contact with the walls of the internal cavity 36 and thus completes the molecular bi-orientation of the material and the forming of a hollow body 50. For example, the blowing ratio, that is to say the ratio between the diameter of the extruded parison 10 and the diameter of the hollow body 50 is about 3/4. At the same time, step 44 of returning the extrusion piston 14 to the withdrawn position is performed followed by step 45 of returning the pieces of the central punch 7 to the withdrawn position. Thus, the 15 parison is supported until it is finalized. In step 45, the sizing sleeve 9 is rotated so as to unscrew its external screw thread 41 from the corresponding screw thread formed on the interior surface of the coat of resin 38. For that, the central rod 11 is coupled to a 20 numerically-controlled rotary electric motor and the sizing sleeve 9 is coupled to the central rod 11 by a one-way ratchet transmission 66, which allows the sizing sleeve 9 to be driven in the unscrewing direction and also allows the sizing sleeve 9 to rotate 25 more quickly than the central rod 11, thus avoiding forcing the molded screw thread as the sizing sleeve 9 is withdrawn.

Step 46 represents the closing of the cover that covers 30 over the opening 6. Step 47 represents the cooling of the hollow body 50 to the glass transition temperature of the material and beyond. Step 48 represents the phenomenon of corresponding plasticizing of the hollow body 50.

35

Next, step 49 represents the movement of opening the mold 24 to eject the finished hollow body 50. Step 51 represents the unlocking of the rotary plate and step 52 represents the movement of the rotary plate to

return the accumulator 1 to the injection station 16. In a known way, several identical accumulators are preferably provided, these operating simultaneously in hidden time at the various stations. In this case, step 5 52 is in fact a repeat of step 22 which initiates a new cycle which will be executed in absolutely the same way as the one which has just been described, with another accumulator 1 filled beforehand. Step 53 represents corresponding initialization of the control module of 10 the machine. As can be seen in figure 8, the work cycle at the station 2 lasts about 15 s.

The hollow body 50 obtained by the method which has just been described comprises a uniform wall thickness, 15 a helical rib 40 on its interior surface, which enhances its ability to withstand pressure, and an internal screw thread in its neck. Other forms of rib may be obtained in a similar way by adapting the plot of the groove or grooves on the central rod 11. For 20 example, a plurality of parallel peripheral annular grooves makes it possible to obtain a plurality of parallel annular ribs in the hollow body 50, and parallel axial grooves make it possible to obtain axial ribs in the hollow body 50.

25 In step 32, the ratio between the speed of the central rod 11 and the exit speed of the resin 35 through the extrusion orifice 28 controls the axial elongation ratio of the coat of resin 38 and may be selected 30 according to the desired properties. This ratio is equal to 2 in the example described hereinabove.

With reference to figure 6, a second embodiment of the method of manufacture and a corresponding variant of 35 the molding machine are now described. The same reference numerals are used to denote elements which are identical or similar to those of the first embodiment.

As can be seen in figure 6, in the blowing mold 24, the internal cavity 36 has a shoulder face 54 at right angles to the wall of the restriction portion 37. Figure 6 also depicts annular ducts 55 for the circulation of a heat transfer fluid in the extrusion die 25 and in the restriction portion 37, so as to regulate the temperature of the resin in these regions.

During blow-molding, with pressure being injected through the end of the central rod 11 which is in the closed end of the mold 24, the coat of resin 38 is pressed firmly against the walls of the cavity 36 from the bottom of the mold upward. The right-hand half of figure 6 depicts the coat of resin 38 more or less as obtained during the blow-molding step 43 in the first embodiment. In the second embodiment, the sizing sleeve 10 and the compacting sleeve 9 continue to be moved together toward the inside of the mold 24 during blowing. Thus, an area 56 of the coat of resin 38, which is adjacent to an end portion 58 attached to the sizing sleeve 10, is driven away from the shoulder face 54 and thus folds over toward a lower portion 57 of the coat of resin 38, which is attached to the peripheral wall of the cavity 36. The area 56 remains more supple than the remainder of the coat of resin 38 because the absence of contact with the mold 24 and the coating mandrel slows its cooling.

The left-hand part of figure 6 depicts, at numeral 56a, the area as it is approximately positioned when the sleeves 9 and 10 reach the end of their travel. In this embodiment, the compacting sleeve 9 also sweeps the restriction portion 37 of the blow-molding mold 24 and the threaded part of the sizing sleeve 10 enters the main cavity of the mold 24. Finally, blowing is completed with a higher pressure, and this folds the folded area against the end portion 58, as shown at the numeral 56b, forming an elbow of material. This then yields a neck with a double wall and an internal screw

thread. The remainder of the method is identical to the first embodiment.

Large capacity hollow bodies, for example with a
5 capacity of 200 liters, may be manufactured. In particular, it is possible to manufacture hollow bodies able to withstand high internal pressures, because of the quality of their walls and the presence of reinforcing ribs on their interior surface. The wall
10 thickness is regulated by the size of the gap around the central rod 11 in the extrusion orifice 28.

Figure 7 depicts a variant embodiment of the central rod 11, in which this rod has two portions 11a and 11b
15 having a smaller diameter by comparison with the remainder of the rod 11, so as to form, by coating, a parison which has a stepped thickness and so as thus to obtain a hollow body which has a peripheral wall which
20 is stepped in terms of its thickness and/or in terms of its diameter. The thinner portions 11a and 11b thus make it possible to obtain a greater thickness of the walls at the bottom and at the top of the hollow body
25 50, which are the regions where the greatest pressure is exerted when the hollow body is used as a pressurized reservoir.

Figure 9 depicts a hollow body obtained using a device according to the second embodiment described and used as a reservoir 60 of a portable extinguisher 61. The
30 reservoir 60 is manufactured, for example, in a polymer resin crosslinked by ion bonds known by the trade name Surlyn® and manufactured by DuPont®. This material has excellent transparency, good resistance to scratching, a broad range of operating temperatures and very good
35 resistance to organic solvents. The wall 62 has a more or less uniform thickness e of between 3 and 5 mm, to contain a pressure of 55 bar. Its interior surface bears a helical rib 63, having, for example, a height of about 1 mm. The neck 64 of the reservoir 60 has a

double wall and an internal screw thread 68 for screwing on a discharge device 65.

The discharge device 65 comprises a hollow sleeve 73 of which the lower portion has a screw thread designed to screw into the interior screw thread 68 of the neck 64. A peripheral rim 74 bears against the upper surface 75 of the reservoir 60 in the assembled state. The sleeve 73 comprises an interior bore 76 in which a plunger 77 equipped with a seal 78 slides in a sealed manner. A fixed handgrip 79 is fixed to the top of the sleeve 73. A discharge control lever 81 is also fixed to the top of the sleeve 73 such as to pivot about an axis 82. A lower surface of the lever 81 bears against the top of the plunger 77.

A dip tube 69 is pushed into the sleeve 73 and extends from the lower end thereof down to a bottom part 80 of the reservoir 60, near the bottom wall 84. A transverse support 85 is arranged mid-way along the tube 69 in its internal section. A first cartridge of pressurized gas 86, for example carbon dioxide, is placed in the tube 69 resting between the plunger 77 and the support 85 by means of a compression spring 92. A second cartridge of pressurized gas 87 is placed in the tube 69 resting between the support 85 and a rib 88. A puncturing insert 89 is arranged in the support 85 with two cutting ends directed along the axis A of the tube 69 toward respective blanking disks of the cartridges 87 and 86.

The extinguisher 61 is a portable hand-held disposable extinguisher, the operation of which is explained hereinbelow. Figure 9 depicts the state of the extinguisher ready for use. The extinguishing agent contained in the reservoir 60 is not depicted. In order to force the extinguishing agent to be discharged, the lever 81 is manually lowered toward the handle 79, and this pushes the plunger 77 against the bottom of the

cartridge 86. The cartridge 86 comes into contact with the insert 89 which pierces its blanking disk and thus releases the pressurized gas. The movement of the cartridge 86 continues, pushing the insert 89 against 5 the blanking disk of the cartridge 87 in order also to puncture that. The pressurized gas, for example, at 55 bar, becomes concentrated in the top of the reservoir 60 as a result of the difference in density and exerts on the extinguishing agent, for example, a 10 powder, a thrust force directed overall toward the bottom part 80 of the reservoir, as depicted by the arrow P. The extinguishing agent is driven toward the end opening 90 of the dip tube and at the same time is driven in a swirling movement around the tube 69 15 because of the orientation of the rib 63, the axis of winding of which coincides with the axis A of the tube 69. The extinguishing agent rises up inside the tube 69, crosses the support 85 via passages 91 situated outside the plane of figure 9, and rises up inside the 20 interior bore 76 of the sleeve 73 as far as the outlet nozzle 70, through which it is discharged in the form of a divergent jet. Discharge lasts until the store of pressurized gas has been exhausted. At this final stage, the residual amount of extinguishing agent in 25 the reservoir 60 is very small.

The shape of the reservoir 60 may be chosen at will by adapting the shape of the blow-molding mold. For example, the cross section of the reservoir 60 may be 30 circular or polygonal. In the same way, ergonomic shapes are produced in the wall of the reservoir 60, such as a hollow handgrip 71 and a projecting tab 72, so as to obtain a complete finish of the reservoir of the extinguisher according to its use.

35

The extinguisher 61 may also be of the type with permanent pressure without there being any need to modify the reservoir 60. The plastic of the reservoir 60 may also be colored, particularly in accordance with

fire-safety standards.

Although the invention has been described in conjunction with one particular embodiment, it is
5 obvious that it is not in any way restricted thereto and that it comprises all the technical equivalents of the means described and combinations thereof if the latter fall within the scope of the invention.