Op-Amp Circuits: Part 3

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

Consider
$$v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$$
.

Consider $v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$.

A low-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the low-frequency component $v_1(t)$ and remove the high-frequency component $v_2(t)$.

Consider $v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$.

A low-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the low-frequency component $v_1(t)$ and remove the high-frequency component $v_2(t)$.

A high-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the high-frequency component $v_2(t)$ and remove the low-frequency component $v_1(t)$.

Consider $v(t) = v_1(t) + v_2(t) = V_{m1} \sin \omega_1 t + V_{m2} \sin \omega_2 t$.

A low-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the low-frequency component $v_1(t)$ and remove the high-frequency component $v_2(t)$.

A high-pass filter with a cut-off frequency $\omega_1 < \omega_c < \omega_2$ will pass the high-frequency component $v_2(t)$ and remove the low-frequency component $v_1(t)$.

There are some other types of filters, as we will see.

Ideal low-pass filter

$$V_o(j\omega) = H(j\omega) V_i(j\omega)$$
.

Ideal low-pass filter

Ideal low-pass filter

$$V_o(j\omega) = H(j\omega) V_i(j\omega)$$
.

All components with $\omega < \omega_c$ appear at the output without attenuation.

All components with $\omega > \omega_c$ get eliminated.

(Note that the ideal low-pass filter has $\angle H(j\omega)=1$, i.e., $H(j\omega)=1+j0$.)

Ideal filters

Ideal filters

Ideal high-pass filter: example

Ideal band-pass filter: example

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable $H(j\omega)$ that can be obtained with circuit elements. For example,

$$H(s) = \frac{1}{a_5s^5 + a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}$$

represents a 5th-order low-pass filter.

Practical filter circuits

* In practical filter circuits, the ideal filter response is approximated with a suitable $H(j\omega)$ that can be obtained with circuit elements. For example,

$$H(s) = \frac{1}{a_5s^5 + a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}$$

represents a 5th-order low-pass filter.

* Some commonly used approximations (polynomials) are the Butterworth, Chebyshev, Bessel, and elliptic functions.

* In practical filter circuits, the ideal filter response is approximated with a suitable $H(j\omega)$ that can be obtained with circuit elements. For example,

$$H(s) = \frac{1}{a_5s^5 + a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}$$

represents a 5th-order low-pass filter.

- * Some commonly used approximations (polynomials) are the Butterworth, Chebyshev, Bessel, and elliptic functions.
- * Coefficients for these filters are listed in filter handbooks. Also, programs for filter design are available on the internet.

* A practical filter may exhibit a ripple. A_{\max} is called the maximum passband ripple, e.g., $A_{\max}=1$ dB.

- * A practical filter may exhibit a ripple. A_{\max} is called the maximum passband ripple, e.g., $A_{\max}=1$ dB.
- * A_{\min} is the minimum attenuation to be provided by the filter, e.g., $A_{\min}=60$ dB.

- * A practical filter may exhibit a ripple. A_{max} is called the maximum passband ripple, e.g., $A_{\text{max}} = 1$ dB.
- * A_{\min} is the minimum attenuation to be provided by the filter, e.g., $A_{\min} = 60$ dB.
- * ω_s : edge of the stop band.

- * A practical filter may exhibit a ripple. A_{max} is called the maximum passband ripple, e.g., $A_{\text{max}} = 1$ dB.
- * A_{\min} is the minimum attenuation to be provided by the filter, e.g., $A_{\min} = 60$ dB.
- * ω_s : edge of the stop band.
- * ω_s/ω_c (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter.

- * A practical filter may exhibit a ripple. A_{max} is called the maximum passband ripple, e.g., $A_{\text{max}} = 1$ dB.
- * $A_{\rm min}$ is the minimum attenuation to be provided by the filter, e.g., $A_{\rm min}=60$ dB.
- * ω_s : edge of the stop band.
- * ω_s/ω_c (for a low-pass filter): selectivity factor, a measure of the sharpness of the filter.
- * $\omega_c < \omega < \omega_s$: transition band.

For a low-pass filter,
$$H(s) = rac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$$
 .

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

For a low-pass filter, $H(s) = rac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$.

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

Butterworth filters:

$$|H(j\omega)| = rac{1}{\sqrt{1+\epsilon^2(\omega/\omega_c)^{2n}}}$$
 .

For a low-pass filter, $H(s) = \frac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$.

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

Butterworth filters:

$$|H(j\omega)| = rac{1}{\sqrt{1+\epsilon^2(\omega/\omega_c)^{2n}}}$$
 .

Chebyshev filters:

$$|H(j\omega)| = rac{1}{\sqrt{1+\epsilon^2 C_n^2(\omega/\omega_c)}}$$
 where

$$C_n(x) = \cos\left[n\cos^{-1}(x)\right]$$
 for $x \le 1$,

$$C_n(x) = \cosh \left[n \cosh^{-1}(x) \right]$$
 for $x \ge 1$,

For a low-pass filter, $H(s) = \frac{1}{\displaystyle\sum_{i=0}^{n} a_i (s/\omega_c)^i}$.

Coefficients (a_i) for various types of filters are tabulated in handbooks. We now look at $|H(j\omega)|$ for two commonly used filters.

Butterworth filters:

$$|H(j\omega)| = \frac{1}{\sqrt{1+\epsilon^2(\omega/\omega_c)^{2n}}}$$
 .

Chebyshev filters:

$$|H(j\omega)| = rac{1}{\sqrt{1+\epsilon^2 C_n^2(\omega/\omega_c)}}$$
 where

$$C_n(x) = \cos \left[n \cos^{-1}(x) \right]$$
 for $x \le 1$,

$$C_n(x) = \cosh \left[n \cosh^{-1}(x) \right] \text{ for } x \ge 1,$$

H(s) for a high-pass filter can be obtained from H(s) of the corresponding low-pass filter by $(s/\omega_c) o (\omega_c/s)$.

Practical filters (low-pass)

Practical filters (high-pass)

$$\begin{split} &H(s)=\frac{(1/sC)}{R+(1/sC)}=\frac{1}{1+(s/\omega_0)}\,,\\ &\text{with }\omega_0=1/RC\to f_0=\omega_0/2\pi=318\,\text{Hz}\\ &\text{(Low-pass filter)} \end{split}$$

$$\begin{split} H(s) &= \frac{(sL) \parallel (1/sC)}{R + (sL) \parallel (1/sC)} = \frac{s(L/R)}{1 + s(L/R) + s^2L} \\ \text{with } \omega_0 &= 1/\sqrt{LC} \rightarrow f_0 = \omega_0/2\pi = 7.96 \, \text{kHz} \\ \text{(Band–pass filter)} \end{split}$$

Passive filter example

(SEQUEL file: ee101_rlc_3.sqproj)

* Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.

- * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With op-amps, a filter circuit can be designed with a pass-band gain.

- * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With op-amps, a filter circuit can be designed with a pass-band gain.
- * Op-amp filters can be easily incorporated in an integrated circuit.

- * Op-amp filters can be designed without using inductors. This is a significant advantage since inductors are bulky and expensive. Inductors also exhibit nonlinear behaviour (arising from the core properties) which is undesirable in a filter circuit.
- * With op-amps, a filter circuit can be designed with a pass-band gain.
- * Op-amp filters can be easily incorporated in an integrated circuit.
- * However, there are situations in which passive filters are still used.
 - high frequencies at which op-amps do not have sufficient gain
 - high power which op-amps cannot handle

Op-amp filters are designed for op-amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

$$\mathbf{V_o} = -rac{R_2 \parallel (1/sC)}{R_1} \, \mathbf{V_s} \; \; (\mathbf{V_s} \; ext{and} \; \mathbf{V_o} \; ext{are phasors})$$
 $H(s) = -rac{R_2}{R_1} rac{1}{1+sR_2C}$

Op-amp filters are designed for op-amp operation in the linear region \to Our analysis of the inverting amplifier applies, and we get,

$$\mathbf{V_o} = -rac{R_2 \parallel (1/sC)}{R_1}\,\mathbf{V_s}\,\,\,(\mathbf{V_s}\,\, ext{and}\,\,\mathbf{V_o}\,\, ext{are phasors})$$

$$H(s) = -\frac{R_2}{R_1} \, \frac{1}{1 + sR_2C}$$

This is a low-pass filter, with $\omega_0=1/R_2 \, {\it C}$ (i.e., $f_0=\omega_0/2\pi=1.59\,{\rm kHz}$).

Op-amp filters are designed for op-amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

 10^{3}

f (Hz)

 10^{4}

 10^{5}

$$egin{aligned} \mathbf{V_o} &= -rac{R_2 \parallel (1/sC)}{R_1}\,\mathbf{V_s} \;\; (\mathbf{V_s} \;\; ext{and} \;\; \mathbf{V_o} \;\; ext{are phasors}) \ H(s) &= -rac{R_2}{R_1}\,rac{1}{1+sR_2C} \end{aligned}$$

This is a low-pass filter, with $\omega_0=1/R_2\,{\rm C}$ (i.e., $f_0=\omega_0/2\pi=1.59\,{\rm kHz}$).

Op-amp filters are designed for op-amp operation in the linear region \rightarrow Our analysis of the inverting amplifier applies, and we get,

 10^{2}

 10^{3}

f (Hz)

 10^{4}

 10^{5}

$$\mathbf{V_o} = -rac{R_2 \parallel (1/sC)}{R_1}\,\mathbf{V_s}\,\,\,\,(\mathbf{V_s}\,\, ext{and}\,\,\mathbf{V_o}\,\, ext{are phasors})$$
 $H(s) = -rac{R_2}{R_1}\,rac{1}{1+sR_2C}$

This is a low-pass filter, with $\omega_0=1/R_2C$ (i.e., $f_0=\omega_0/2\pi=1.59\,\mathrm{kHz}$).

(SEQUEL file: ee101_op_filter_1.sqproj)

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = -\frac{sR_2C}{1 + sR_1C}$$
.

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = -\frac{sR_2C}{1 + sR_1C}$$
.

This is a high-pass filter, with $\omega_0=1/R_1C$ (i.e., $\mathit{f}_0=\omega_0/2\pi=1.59\,\mathrm{kHz}$).

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = -\frac{sR_2C}{1 + sR_1C}$$
.

This is a high-pass filter, with $\omega_0=1/R_1C$ (i.e., $f_0=\omega_0/2\pi=1.59\,\mathrm{kHz}$).

$$H(s) = -\frac{R_2}{R_1 + (1/sC)} = -\frac{sR_2C}{1 + sR_1C}$$
.

This is a high-pass filter, with $\omega_0=1/R_1C$ (i.e., $\mathit{f}_0=\omega_0/2\pi=1.59\,\mathrm{kHz}$).

(SEQUEL file: ee101_op_filter_2.sqproj)

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1 + sR_1C_1)(1 + sR_2C_2)}.$$

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1 + sR_1C_1)(1 + sR_2C_2)}.$$

This is a band-pass filter, with $\omega_L=1/R_1\,C_1$ and $\omega_H=1/R_2\,C_2$. \to $f_L=20$ Hz, $f_H=20$ kHz.

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1 + sR_1C_1)(1 + sR_2C_2)}.$$

This is a band-pass filter, with $\omega_L=1/R_1\,C_1$ and $\omega_H=1/R_2\,C_2$. $\to f_L=20\,{\rm Hz},\, f_H=20\,{\rm kHz}.$

$$H(s) = -\frac{R_2 \parallel (1/sC_2)}{R_1 + (1/sC_1)} = -\frac{R_2}{R_1} \frac{sR_1C_1}{(1 + sR_1C_1)(1 + sR_2C_2)}.$$

This is a band-pass filter, with $\omega_L=1/R_1\,C_1$ and $\omega_H=1/R_2\,C_2$.

$$\rightarrow f_L = 20 \text{ Hz}, f_H = 20 \text{ kHz}.$$

(SEQUEL file: ee101_op_filter_3.sqproj)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

* Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation) around a centre frequency.

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

- * Equalizers are implemented as arrays of narrow-band filters, each with an adjustable gain (attenuation) around a centre frequency.
- * The circuit shown above represents one of the equalizer sections.
 (SEQUEL file: ee101_op_filter_4.sqproj)

(Ref.: S. Franco, "Design with Op Amps and analog ICs")

$$\mathbf{V}_{+} = \mathbf{V}_{-} = \mathbf{V}_{o} \frac{R_{A}}{R_{A} + R_{B}} \equiv \mathbf{V}_{o} / K$$
.

Also, $\mathbf{V}_{+} = \frac{(1/sC_{2})}{R_{2} + (1/sC_{2})} \mathbf{V}_{1} = \frac{1}{1 + sR_{2}C_{2}} \mathbf{V}_{1}$.

$$\begin{split} \mathbf{V}_{+} &= \mathbf{V}_{-} = \mathbf{V}_{o} \, \frac{R_{A}}{R_{A} + R_{B}} \equiv \mathbf{V}_{o} / \mathcal{K} \, . \\ \text{Also, } \mathbf{V}_{+} &= \frac{(1/sC_{2})}{R_{2} + (1/sC_{2})} \, \mathbf{V}_{1} = \frac{1}{1 + sR_{2}C_{2}} \, \mathbf{V}_{1} \, . \\ \text{KCL at } \mathbf{V}_{1} &\to \frac{1}{R_{1}} (\mathbf{V}_{s} - \mathbf{V}_{1}) + sC_{1} (\mathbf{V}_{o} - \mathbf{V}_{1}) + \frac{1}{R_{2}} (\mathbf{V}_{+} - \mathbf{V}_{1}) = 0 \, . \end{split}$$

$$\mathbf{V}_+ = \mathbf{V}_- = \mathbf{V}_o \, rac{R_A}{R_A + R_B} \equiv \mathbf{V}_o / K \, .$$

Also,
$$\mathbf{V}_{+}=rac{(1/s\mathcal{C}_{2})}{R_{2}+(1/s\mathcal{C}_{2})}\,\mathbf{V}_{1}=rac{1}{1+sR_{2}\mathcal{C}_{2}}\,\mathbf{V}_{1}\,.$$

$$\mathsf{KCL} \; \mathsf{at} \; \boldsymbol{\mathsf{V}}_1 \to \frac{1}{R_1} (\boldsymbol{\mathsf{V}}_s - \boldsymbol{\mathsf{V}}_1) + s \mathcal{C}_1 (\boldsymbol{\mathsf{V}}_o - \boldsymbol{\mathsf{V}}_1) + \frac{1}{R_2} (\boldsymbol{\mathsf{V}}_+ - \boldsymbol{\mathsf{V}}_1) = 0 \; .$$

Combining the above equations,
$$H(s) = \frac{K}{1 + s[(R_1 + R_2)C_2 + (1 - K)R_1C_1] + s^2R_1C_1R_2C_2}$$

(SEQUEL file: ee101_op_filter_5.sqproj)

Sixth-order Chebyshev low-pass filter (cascade design)

