An introduction to mixture modelling for unsupervised clustering Mini-tutorial

Nicole M White

Australian Centre for Health Services Innovation (AusHSI)

Queensland University of Technology

July 5, 2021

Further reading

https://github.com/nicolemwhite/anzsc-mixture-modelling

A motivating example

Distribution of body mass index (BMI) for 10,000 participants.

A motivating example

Distribution of body mass index (BMI) for 10,000 participants

Defining clustering

Unsupervised clustering \leftrightarrow Identifying subgroups

Common approaches:

- Hierarchical clustering, K-means
- Mixture models

Examples of clustering using mixture models: Image classification

Alston et al (2005) DOI: 10.1071/AR04211

Examples of clustering using mixture models: Spike sorting

Mixture model ingredients

Data are drawn from a *convex combination of components* For *K* groups/clusters:

$$p(y) = \eta_1 f(y|\boldsymbol{\theta}_1) + \ldots + \eta_K f(y|\boldsymbol{\theta}_K)$$

$$= \sum_{k=1}^K \eta_k f(y|\boldsymbol{\theta}_k)$$

Unknown parameters: $oldsymbol{
u}=(oldsymbol{\eta},oldsymbol{ heta})$

- $\eta = (\eta_1, \dots, \eta_K)$: Mixture weights; $\sum_{k=1}^K \eta_k = 1$
- $f(y|\theta_k)$: k^{th} Mixture component; same parametric family

A simple 2-component mixture model

$$y_i \sim \eta_1 \mathcal{N}\left(\mu_1, 1\right) + \eta_2 \mathcal{N}\left(\mu_2, 1\right)$$

Mixture model examples

General formulation:

$$p(y_i) = \sum_{k=1}^K \eta_k f(y_i | \boldsymbol{\theta}_k)$$

Latent class analysis (*J* items)

$$f(y_i|\boldsymbol{\theta}_k) = \prod_{j=1}^J f(y_{ij}|\theta_{jk})$$

Latent class regression: $\eta_k \to \eta_k(x_i)$

$$\eta_k(\mathsf{x}_i) = \frac{\exp\left(\mathsf{x}_i^T \beta_k\right)}{\sum_{l=1}^K \exp\left(\mathsf{x}_i^T \beta_l\right)}$$

Mixture model examples

Focus of mini-tutorial: cross-sectional data

- Finite mixture model
- Dirichlet Process mixture model
- Profile regression

Bayesian approaches to inference: Markov chain Monte Carlo (MCMC)

- 1 Finite mixture models
- ② Dirichlet Process Mixture models
- 3 Profile regression

Finite mixture model: Setup

Assume:

- K is fixed a priori
- Each observation has a probability of belonging to components $1,\ldots,K$

Likelihood for $\mathbf{y} = (y_1, \dots, y_n)$

$$p(\mathbf{y}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \eta_k f(y_i | \boldsymbol{\theta}_k)$$

Aim is to learn $\nu = (\theta_1, K, \eta_1, K)$

Finite Mixture Model: Setup

Likelihood:

$$p(\mathbf{y}|\boldsymbol{\nu}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \eta_k f(y_i|\boldsymbol{\theta}_k)$$

Priors:

$$(\eta_1, \dots, \eta_K) \sim \mathcal{D}(\gamma_1, \dots, \gamma_K)$$

 $\theta_k \sim p(\theta_k | \delta)$

How to estimate when membership of y_i to components $1, \ldots, K$ is not known?

Finite Mixture Model: Estimation

Enter data augmentation! (Tanner Wong, 1987; *JASA*) The idea:

• Introduce z_i = cluster membership for y_i and treat as missing data

$$p(y_i|\nu) = \sum_{k=1}^{K} p(y_i|z_i = k, \nu) Pr(z_i = k|\nu)$$

$$Pr(z_i = k|\nu) = \eta_k$$

$$p(y_i|z_i = k, \nu) = f(y_i|\theta_k)$$

Inference on z_i provides information on clustering

Finite Mixture Model: Estimation by MCMC

1 Sample z (Bayes' rule)

$$Pr(z_i = k|y_i, \nu) = \frac{\eta_k f(y_i|\theta_k)}{\sum_{j=1}^K \eta_j f(y_i|\theta_j)}$$
$$z_i \sim MN(1, Pr(z_i = 1|y_i, \nu), \dots, Pr(z_i = K|y_i, \nu))$$

2 Conditional on **z**: Update η_1, \ldots, η_K

$$\eta_1,\ldots,\eta_K\sim\mathcal{D}(\delta_1+n_1,\ldots,\delta_K+n_K)$$

3 Conditional on z: Update $\theta_1, \ldots, \theta_K$

$$\theta_k \sim p(\theta_k|\delta) \prod_{i:z_i=k} f(y_i|\theta_k)$$

Finite Mixture Model: Estimation by MCMC

Available approaches in R:

- R2OpenBUGS (see fmm_BUGS.R)
- bayesmix

Or code from scratch:

 see fmm_mvn.R for Multivariate Normal example

Label switching

Issue arises as likelihood is invariant to permutations of k e.g. $\mathcal{K}=3$

$$p(y_{i}|\nu) = \eta_{1}p(y_{i}|\theta_{1}) + \eta_{2}p(y_{i}|\theta_{2}) + \eta_{3}p(y_{i}|\theta_{3})$$

$$= \eta_{3}p(y_{i}|\theta_{3}) + \eta_{2}p(y_{i}|\theta_{2}) + \eta_{1}p(y_{i}|\theta_{1})$$

$$= \eta_{2}p(y_{i}|\theta_{2}) + \eta_{3}p(y_{i}|\theta_{3}) + \eta_{1}p(y_{i}|\theta_{1})$$

When sampling z_i , components can be relabelled \rightarrow affects clustering inference

Label switching example

Label switching: Possible solutions

Prior constraints (not a good idea):

$$\eta_1 < \eta_2 < \ldots < \eta_K$$

Relabelling algorithms:

- Loss functions: minimise over all MCMC samples of z (Stephens, 2000)
- MAP estimate \hat{z} as 'pivot' (Marin et. al, 2005)

Label switching: Possible solutions

Similarity matrix, S:

$$S_{ii'}^{(d)} = \begin{cases} 1 & \text{if } z_i^{(d)} = z_{i'}^{(d)} \\ 0 & \text{otherwise.} \end{cases}$$
$$\overline{S} = \frac{1}{D} \sum_{d=1}^{D} S^{(d)}$$

R packages: mcclust, label.switching

Label switching

Example: Spike sorting, K = 4 clusters

Common information criteria:

• Akaike's Information Criterion (AIC)

$$AIC_K = -\log p(y|\boldsymbol{\eta}^*, \boldsymbol{\theta}^*) + 2p_k$$

Bayesian Information Criterion (BIC)

$$BIC_K = -\log p(y|\boldsymbol{\eta}^*, \boldsymbol{\theta}^*) + p_k \log n$$

Deviance Information Criterion (DIC)

$$DIC_{K} = -4E_{\eta,\theta|y} [\log p(y|\eta,\theta)] + 2\log f(y)$$
$$f(y) = \prod_{i=1}^{n} \frac{1}{D} \sum_{d=1}^{D} \sum_{k=1}^{K} \eta_{k}^{(d)} f(y_{i}|\theta_{k}^{(d)})$$

- 1 Finite mixture models
- 2 Dirichlet Process Mixture models
- 3 Profile regression

Dirichlet Process mixture model: Motivation

General formulation:

$$p(y_i|\boldsymbol{\nu}) = \sum_{k=1}^K \eta_k f(y_i|\boldsymbol{\theta}_k)$$

In a finite mixture - assume K as fixed o model comparison problem

Alternative: Infer K as part of modelling

$$p(y_i|\boldsymbol{\nu}) = \sum_{k>1} \eta_k f(y_i|\boldsymbol{\theta}_k)$$

Dirichlet Process mixture model: Setup

- Nonparametric approach to mixture modelling
- Does not estimate K directly; focus on clustering of individual parameters, θ_i

Dirichlet process (DP) prior:

$$G \sim DP(\alpha, G_0)$$

 $G_0 = E(G)$; Base distribution
 $\alpha > 0$; Concentration parameter

Dirichlet Process mixture model: Setup

Each draw from a DP is itself a distribution:

$$G(A_1),\ldots,G(A_k)|\alpha,G_0\sim D(\alpha G_0(A_1),\ldots,\alpha G_0(A_k))$$

"Discreteness property": multiple draws from $DP(\alpha, G_0)$ can take the same value; induces clustering behaviour

Dirichlet Process mixture model: Setup

DP as prior within mixture setting:

$$egin{aligned} y_i | oldsymbol{ heta}_i &\sim p(y_i | oldsymbol{ heta}_i) \ oldsymbol{ heta}_i | G &\sim G \ G &\sim DP(lpha, G_0) \end{aligned}$$

- *G* is the mixing distribution
- *G*⁰ prior distribution on unknown components
- α controls variation around G_0

Dirichlet Process mixture model: Estimation

How to sample from $DP(\alpha, G_0)$?! What happened to η_k ?!

- Stick breaking representation
- Pòlya Urn scheme/Chinese restaurant process

Stick breaking representation

G replaced by an infinite sum of weighted point masses:

$$G \sim DP(\alpha, G_0)$$

$$G = \sum_{k=1}^{\infty} \eta_k \delta_{\theta_k}$$

$$\theta_k \sim G_0.$$
 (1)

 η_k ; k = 1, ... are the "stick breaking weights". Weights are drawn sequentially:

$$egin{array}{lcl} w_k | lpha & \sim & \textit{Beta}(1,lpha) \ \eta_1 & = & w_1 \ \eta_k & = & w_k \prod_{l=1}^{k-1} (1-w_l). \end{array}$$

Stick breaking process

1

• Draw $w_1 \sim Beta(1, \alpha)$ and set $\eta_1 = w_1$

 $w_1 = 1 - w_1$

• Draw $w_2 \sim \textit{Beta}(1, \alpha)$ and compute $\eta_2 = w_2(1 - w_1)$

$$w_1$$
 w_2 $(1-w_2)(1-w_1)$

• Draw $w_3 \sim \textit{Beta}(1, lpha)$ and compute $\eta_3 = w_3(1-w_1)(1-w_2)$

$$w_1$$
 w_2 w_3 $(1-w_3)(1-w_2)(1-w_1)$

As $K \to \infty$

$$p(y_i|\nu) = \sum_{k=1}^K \eta_k p(y_i|\theta_k)$$

Good analogy for implied clustering behaviour Begin with α red balls in an urn:

If a red ball is drawn, record colour and replace with a ball of a new colour:

If a non-red ball is drawn, record colour and replace with a ball of the same colour:

• The more often a colour is drawn, the more likely it is to

Dirichlet Process mixture model: Estimation

R packages

dirichletprocess

•

https://rdrr.io/cran/NPflow/man/DPMGibbsN_S eqPrior.htm/PReMiuM

- 1 Finite mixture models
- 2 Dirichlet Process Mixture models
- 3 Profile regression