

Profit Maximisation of Deforestation based on Reinforcement Learning

Team SSZ: Huaxia Zhao(Speaker)
Guanqiao Sui
Zekun Song

Leibniz Universität Hannover 03.2022

Problem caused by Deforestation

every year more than 10,000 kilometers of forest are deforested 0.5 billion metric tons of carbon per year

Available in RL?

- Action_space
- Observation_space
- The complexity

- Reward_Timber
- Reward_GHG
- Fertility

A Balance Solution

Interests of landowners

Influence between plants

Reward function

reward(weighted)=

reward_timber * WEIGHT_TIMBER + Reward_greenhouse_gas *WEIGHT_GREENHOUSE_GAS

WEIGHT_TIMBER=0.5 WEIGHT_GREENHOUSE_GAS=0.01

value_of_tree_fn = lambda x: 0 if x == -1 else math.pi*((0.5*x) ** 2) value_of_greenhouse_gas_uptake_fn = lambda x: 0 if x == -1 else (x * 5)

				weighted	sum
age	timber	greenhouse gas	weighted Timber	Greenhouse gas	reward
1	0.785	5	0.785	0.5	1.285
2	3.14	10	3.14	1	4.14
3	7.065	15	7.065	1.5	8.565
4	12.56	20	12.56	2	14.56
5	19.625	25	19.625	2.5	22.125
6	28.26	30	28.26	3	31.26
7	38.465	35	38.465	3.5	41.965

Parameters

WEIGHT_TIMBER
WEIGHT_GREENHOUSE_GAS
MAX_FERTILITY
MINIMUM_REQ_GHG_10
MINIMUM_REQ_TIMBER_1
RANDOM_SEED

Algorithm

- 1. Random test
- 2. Q-Learning
- 3. DQN
- 4. Policy Gradient

Q-learning

Policy Gradient

My Work

- 1. Coding: version 1, version 1.2 and version 2
- 2. Docstring
- 3. Parameters Adjusting
- 4. Documentation(part):
 - Experimental Reproducibility and Generalization
 - Reporting

Thank you for attention!

