Theoretische Informatik

Übungsblatt 6 (für die 47. Kalenderwoche)

zur Vorlesung von Prof. Dr. Till Mossakowski im Wintersemester 2016/2017

Magdeburg, 14. November 2016

- 1. Es sei M ein deterministischer endlicher Automat mit n Zuständen. Zeigen Sie: Wenn M ein Wort der Länge n akzeptiert, dann ist die von M akzeptierte Sprache unendlich.
- 2. Es sei Σ ein Alphabet. Beweisen Sie, dass die Sprache der regulären Ausdrücke über Σ nicht regulär ist.

Hinweis: Reguläre Sprachen sind unter Homomorphismen abgeschlossen.

- 3. a) Geben Sie eine rechtslineare Grammatik an, die die Sprache $\mathcal{L}(a^*bba^*)$ erzeugt.
 - b) Geben Sie eine reguläre Grammatik an, die die Menge aller Wörter $w \in \{a, b\}^*$, die höchstens zwei Vorkommen von a haben, erzeugt.
- 4. Es seien $\Sigma = \{a, b\}$ ein Alphabet und $G = (\{S, A, B\}, \Sigma, R, S)$ eine kontextfreie Grammatik mit der Regelmenge $R = \{S \to aB \mid bA, A \to a \mid aS \mid BAA, B \to b \mid bS \mid ABB\}$ gegeben.
 - a) Beweisen Sie, dass ababbaaabb zu $\mathcal{L}(G)$ gehört.
 - b) Beweisen Sie, dass alle Wörter in $\mathcal{L}(G)$ gleich viele a und b enthalten.

Hinweis: Es sei $\mathcal{SF}(G)$ die Menge der erzeugten Satzformen der Grammatik G, definiert durch $\mathcal{SF}(G) = \{w \in (V \cup \Sigma)^* \mid S \Rightarrow_G^* w\}.$

Beweisen Sie zunächst für alle Wörter w in $\mathcal{SF}(G)$ (durch vollständige Induktion über die Ableitungslänge), dass $|w|_a + |w|_A = |w|_b + |w|_B$ gilt.

- 5. Beweisen Sie, dass die folgenden Sprachen kontextfrei sind, indem Sie jeweils eine kontextfreie Grammatik angeben, die die Sprache erzeugt.
 - a) $L = \{a^n b^n c^m \mid n \ge 1, m \ge 3\}$
 - b) $L = \{a^m b^n \mid m \ge n\}$
 - c) $L = \{w \in \{a, b\}^* \mid w = w^R\}$
- 6. Es sei $G = (\{S, A, B\}, \{a, b\}, R, S)$ eine kontextfreie Grammatik mit

$$R = \{S \to SS \mid aA \mid B \mid ab, \ A \to bS, \ B \to abS\}.$$

- a) Beweisen Sie, dass G mehrdeutig ist.
- b) Geben Sie die von G erzeugte Sprache $\mathcal{L}(G)$ an.
- c) Geben Sie eine nicht-mehrdeutige Grammatik G' an, die $\mathcal{L}(G)$ erzeugt.