| + | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|---|---|----|----|----|----|----|----|----|----|----|
| 0 | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| 1 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 2 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| 3 | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| 4 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 |
| 5 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 6 | 6 | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 7 | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 8 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 9 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

| +       | 0       | 1       | 2       |    | 37895   | 1000000     |
|---------|---------|---------|---------|----|---------|-------------|
| 0       | 0       | 1       | 2       |    | 37895   | <br>1000000 |
| 1       | 1       | 2       | 3       |    | 37896   | <br>1000001 |
| 2       | 2       | 3       | 4       |    | 37897   | <br>1000002 |
| •••     | •••     | •••     | •••     | :: |         |             |
| 441238  | 441238  | 441239  | 441240  |    | 479133  | <br>1441238 |
|         | •••     | •••     | •••     |    |         |             |
| 1000000 | 1000000 | 1000001 | 1000002 |    | 1037895 | <br>2000000 |













| Inp | $\mathbf{out}$ : coppia di interi memorizzati nelle variabili $n \in m$ |
|-----|-------------------------------------------------------------------------|
| 1   | $k \leftarrow 2;$                                                       |
| 2   | if $(n > m)$ then                                                       |
| 3   | $p \leftarrow n$ ;                                                      |
| 4   | else                                                                    |
| 5   | $p \leftarrow m$ ;                                                      |
| 6   | while $(p \ge 2)$ do begin                                              |
| 7   | $p \leftarrow p - k;$                                                   |
| 8   | end                                                                     |
| 9   | Output: p                                                               |

Tabella 3.1: Algoritmo che calcola se il massimo fra due interi è pari o dispari.

| Input: | stringa $x_1x_2x_n$ memorizzata nell'array $N$ , con $N[i] = x_i$ per $i = 1,,n$ , |
|--------|------------------------------------------------------------------------------------|
|        | array $Q$ , $\Sigma$ , $Q_1$ , $S_1$ , $S_2$ , $Q_2$ , $M$ descritti nel testo,    |
|        | $q_0, q_A, q_R$ .                                                                  |
| 1      | $q \leftarrow q_0;$                                                                |
| 2      | $t \leftarrow 1;$                                                                  |
| 3      | $primaCella \leftarrow 1;$                                                         |
| 4      | $ultimaCella \leftarrow n;$                                                        |
| 5      | while $(q \neq q_A \ \land \ q \neq q_R)$ do begin                                 |
| 6      | $j \leftarrow 1;$                                                                  |
| 7      | $trovata \leftarrow \texttt{falso};$                                               |
| 8      | <b>while</b> $(j \le k \land trovata = falso)$ <b>do</b>                           |
| 9      | if $(q = Q_1[j] \land N[t] = S_1[j])$ then $trovata \leftarrow vero;$              |
| 10     | else $j \leftarrow j+1$ ;                                                          |
| 11     | if $(trovata = vero)$ then begin                                                   |
| 12     | $N[t] \leftarrow S_2[j];$                                                          |
| 13     | $q \leftarrow Q_2[j];$                                                             |
| 14     | $t \leftarrow t + M[j];$                                                           |
| 15     | if $(t < primaCella)$ then begin                                                   |
| 16     | $primaCella \leftarrow t;$                                                         |
| 17     | $N[t] \leftarrow \Box;$                                                            |
| 18     | end                                                                                |
| 19     | <b>if</b> $(t > ultimaCella)$ <b>then begin</b>                                    |
| 20     | $ultimaCella \leftarrow t;$                                                        |
| 21     | $N[t] \leftarrow \Box;$                                                            |
| 22     | end                                                                                |
| 23     | end                                                                                |
| 24     | else $q \leftarrow q_R$ ;                                                          |
| 25     | end                                                                                |
| 26     | Output: q                                                                          |



NT(x)  $NT_1(x)$ 







| <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | X <sub>3</sub> | f     |
|-----------------------|-----------------------|----------------|-------|
| vero                  | vero                  | vero           | vero  |
| vero                  | vero                  | falso          | vero  |
| vero                  | falso                 | vero           | vero  |
| vero                  | falso                 | falso          | vero  |
| falso                 | vero                  | vero           | falso |
| falso                 | vero                  | falso          | vero  |
| falso                 | falso                 | vero           | vero  |
| falso                 | falso                 | falso          | falso |

| Input:    | stringa $x_1x_2x_n$ memorizzata nell'array $N$ , con $N[i] = x_i$ per $i = 1,,n$ .                                                                                                                                     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Costanti: | l'insieme delle quintuple $P = \{ \langle q_{1_1}, s_{1_1}, s_{1_2}, q_{1_2}, m_1 \rangle, \langle q_{2_1}, s_{2_1}, s_{2_2}, q_{2_2}, m_2 \rangle, \dots, \langle q_{k_1}, s_{k_1}, s_{k_2}, q_{k_2}, m_k \rangle \}$ |
|           | che descrivono la macchina di Turing NT.                                                                                                                                                                               |
| 1         | $q \leftarrow q_0$ ;                                                                                                                                                                                                   |
| 2         | $t \leftarrow 1$ ;                                                                                                                                                                                                     |
| 3         | $primaCella \leftarrow t;$                                                                                                                                                                                             |
| 4         | $ultimaCella \leftarrow n;$                                                                                                                                                                                            |
| 5         | while $(q \neq q_A \land q \neq q_R)$ do begin                                                                                                                                                                         |
| 6         | $\Psi \leftarrow \{\langle q_{i_1}, s_{i_1}, s_{i_2}, q_{i_2}, m_i \rangle \in P : q_{i_1} = q \land s_{i_1} = N[t] \};$                                                                                               |
| 7         | if $(\Psi \neq \emptyset)$ then begin                                                                                                                                                                                  |
| 8         | scegli $\langle q_{i_1}, s_{i_1}, s_{i_2}, q_{i_2}, m_i \rangle \in \Psi;$                                                                                                                                             |
| 9         | $N[t] \leftarrow s_{i_2};$                                                                                                                                                                                             |
| 10        | $q \leftarrow q_{i_2};$                                                                                                                                                                                                |
| 11        | $t \leftarrow t + m_i$ ;                                                                                                                                                                                               |
| 12        | end                                                                                                                                                                                                                    |
| 13        | if $(t < primaCella)$ then begin                                                                                                                                                                                       |
| 14        | $primaCella \leftarrow t;$                                                                                                                                                                                             |
| 15        | $N[t] \leftarrow \Box;$                                                                                                                                                                                                |
| 16        | end                                                                                                                                                                                                                    |
| 17        | if $(t > ultimaCella)$ then begin                                                                                                                                                                                      |
| 18        | $ultimaCella \leftarrow t;$                                                                                                                                                                                            |
| 19        | $N[t] \leftarrow \Box;$                                                                                                                                                                                                |
| 20        | end                                                                                                                                                                                                                    |
| 21        | end                                                                                                                                                                                                                    |
| 22        | Output: q.                                                                                                                                                                                                             |

| Input: | un insieme di variabili booleane $X = \{x_1, x_2, \dots, x_n\}$ e una funzione booleana $f$ definita sulle variabili in $X$ . |
|--------|-------------------------------------------------------------------------------------------------------------------------------|
| 1      | $i \leftarrow 1;$                                                                                                             |
| 2      | while $(i \le n)$ do begin                                                                                                    |
| 3      | scegli $a(x_i) \in \{\text{vero}, \text{falso}\};$                                                                            |
| 4      | $i \leftarrow i+1;$                                                                                                           |
| 5      | end                                                                                                                           |
| 6      | $i \leftarrow 1;$                                                                                                             |
| 7      | while $(i \le n)$ do begin                                                                                                    |
| 8      | sostituisci in f ogni occorrenza di $x_i$ con $a(x_i)$ , e ogni occorrenza di $\neg x_i$ con $\neg a(x_i)$                    |
| 9      | $i \leftarrow i + 1;$                                                                                                         |
| 10     | end                                                                                                                           |
| 11     | if $(f(a(X)) = \text{vero})$ then $q \leftarrow q_A$ ;                                                                        |
| 12     | else $q \leftarrow q_R$ ;                                                                                                     |
| 13     | Output: $q$ .                                                                                                                 |

```
un grafo non orientato G = (V, E), con V = \{v_1, v_2, \dots, v_n\} e un intero k \in \mathbb{N}.
Input:
             V' \leftarrow \emptyset:
            i \leftarrow 1:
            while (i \le n) do begin
                       scegli se inserire v_i in V';
                      i \leftarrow i + 1:
            end
            trovata ← vero;
8
            i \leftarrow 1:
            while (i \le n-1) do begin
10
                      j \leftarrow i + 1;
11
                       while (j \le n) do begin
                                if (v_i \in V' \land v_j \in V' \land (v_i, v_j) \not\in E) then
12
13
                                          trovata \leftarrow falso:
14
                                j \leftarrow j + 1;
15
                       end
16
                      i \leftarrow i + 1:
17
            end
18
            if (trovata = vero \land |V'| \ge k) then q \leftarrow q_A;
19
            else q \leftarrow q_R;
20
            Output: q.
```

```
B \leftarrow T_f(|x|);
                          calcola la lunghezza della parola che deve scegliere
i ← 1:
while (i \leq B) do begin
     scegli y[i] nell'insieme {0,1};
    i \leftarrow j+1:
end
y \leftarrow y[1]y[2] ... y[B];
```

```
A \leftarrow T_g(|x|);

i \leftarrow 1;
                         calcola la lunghezza della computazione che deve simulare
while (i \le A) do begin
     simula l'esecuzione della i-esima istruzione eseguita da T(x,y);
     if (T è entrata in q_A) then accetta e termina;
     else i \leftarrow i+1;
end
```