Stephan Dörfler

Collective mapping and movement in a swarm of highly unreliable individuals in unknown environments



#### Intelligent Cooperative Systems

#### Master's Thesis

# Collective mapping and movement in a swarm of highly unreliable individuals in unknown environments

Author: Stephan Dörfler

Professor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Examiner: Another Professor

Examiner: Someone from Industry

Advisor: Dipl.-Inform. Christoph Steup

Winter term 2017

Stephan Dörfler: Collective mapping and movement in a swarm of highly unreliable individuals in unknown environments
Otto-von-Guericke-Universität
Magdeburg, 2017.

# **Abstract**

Foo Bar Baz \_\_\_\_\_

this will be written at the very end of the project

# Todo list

| this will be written at the very end of the project | 1 |
|-----------------------------------------------------|---|
| write out the list below                            | 1 |
| write out the list below                            | 1 |
| write out the list below                            | 2 |
| write out the list below                            | 2 |
| write out the list below                            | 3 |
| write out the list below                            | 3 |
| write out the list below                            | 3 |
| write out the list below                            | 4 |
| write out the list below                            | 4 |
| write out the list below                            | 5 |
| write out the list below                            | 5 |
| write out the list below                            | 5 |
| write out the list below                            | 6 |
| write out the list below                            | 6 |
| write out the list below                            | 7 |
|                                                     | 7 |
|                                                     | 9 |
| write out the list below                            | 1 |

# Contents

| To | odo I | ist                                                             | 111 |
|----|-------|-----------------------------------------------------------------|-----|
| 1  | Intr  | oduction                                                        | 1   |
|    | 1.1   | Motivation                                                      | 1   |
|    | 1.2   | Goal                                                            |     |
|    | 1.3   | Structured approach                                             | 2   |
| 2  | Bac   | kground/Basics                                                  | 3   |
|    | 2.1   | Spherical Robot: Orbotix Sphero                                 | 3   |
|    | 2.2   | Probabilistic robot movement and perception                     | 3   |
|    | 2.3   | Requirements                                                    | 4   |
|    | 2.4   | Related work                                                    | 4   |
| 3  | Con   | cept                                                            | 5   |
|    | 3.1   | Measurement of error                                            | 5   |
|    | 3.2   | Separation of environmental influences from inherent inaccuracy | 5   |
|    | 3.3   | Continuous improvement                                          | 6   |
|    | 3.4   | Data-Distribution                                               | 6   |
| 4  | Exe   | mplary implementation                                           | 7   |
|    | 4.1   | Ros Nodes                                                       | 7   |
| 5  | Eva   | luation                                                         | 9   |
| 6  | Et    | uro works                                                       | 11  |

#### 1 Introduction

write out the list below

- Importance of robotics
- Importance of swarm-robotics
- We can't measure true/exact values -> probabilistic approach
- Combination of "swarm" and "probabilistic" to find good solutions despite of the problems

#### 1.1 Motivation

- ullet simple individuals
  - cheap
  - robust
  - easy to use/initialize
  - very limited capabilities
  - highly inaccurate
- try to overcome the weaknesses
  - additional external sensors (camera tracking)
  - additional external computing (by commands via bluetooth)
  - probabilistically learn the inaccuracy and compensate accordingly
- combine multiple individuals in a swarm for better results
  - higher quality & quantity probabilistic data for learning
  - get the differences between multiple individuals

- get a better/faster impression of the environment's effects
- in most use-cases: single individual's minor inaccuracies are compensated for by the swarm

#### 1.2 Goal

write out the list below

- Find an effective way to measure and quantify the error/inaccuracy
- From a single measurement differentiate the own error from the environment's error
- Publicly share the information about the measured inaccuracy
- As a swarm: continuously & collectively improve the knowledge about inaccuracy
- Find a way to use the knowledge of the inaccuracy to take countermeasures

#### 1.3 Structured approach

- Figure out the required knowledge and technologies
- Draft the (measurable/verifiable) measure for success
- Related work: which similar problems are already (partly) solved?
- Design a concept
- Evaluate the concept theoretically
- Exemplary show the realization of the concept to confirm the theoretical evaluation

# 2 Background/Basics

- Basics to mobile robotics
- Basics to probabilistic robotics
- Basics to swarm behavior
- Basics to distributed mapping
- Basics to ROS as development framework

#### 2.1 Spherical Robot: Orbotix Sphero

- Definition: spherical robot
- Sphero: specifics and limitations
  - Movement: differential drive
  - Sensors: accelerometer
  - sources of inaccuracy (slip, orientation through odometry)

# 2.2 Probabilistic robot movement and perception

- uncertainty is inevitable in real-world use-cases
- instead of unrealistic simplifications use best-effort with probabilities
- approaches to minimize uncertainty

write out the list below

write out the list be-

#### 2.3 Requirements

write out the list below

- There is an error model to evaluate the error/inaccuracy by quantity and quality
- Each individual's movement is subject to a smaller error when it has knowledge vs. when it hasn't
- Each individual is able to use data from locations any individual has visited
- Statistically: increase in accuracy after a small amount of time/iterations

#### 2.4 Related work

write out the list below Topics:

- distributed mapping
- error-correction

# Concept

- Error-data are collected
- Error-data get evaluated (statistically)
- Error-data are shared throughout the swarm
- Error-data are used to improve quality of movement
- New movements feed back into measurement-loop

#### 3.1 Measurement of error

- Error is measured by error in position and error in movement
- Error is measured for each individual
- Error-data are scored by quality
- Error-data about environment and it's quality is fed into a centralized map
- Existing error-data are used to improve each individual's movement

### 3.2 Separation of environmental influences from inherent inaccuracy

• Error-data get separated by error from environment and error from individual

write out the list be-

write out the list be-

- Constant/linear error probably originates from individual
- Dynamic error *probably* originates from environment
- Comparison with existing measurements to statistically improve separation
- Environmental influences are shared with every other individual
- Individual error is kept and continually improved

#### 3.3 Continuous improvement

write out the list below

- Respect existing data
  - per individual
  - from environment
- generate new data from movement
- feed back new data into the map
- improve data (accuracy/quality) using Kalman Filter

#### 3.4 Data-Distribution

- Error-data about the individual are not shared
- Error-data about the environment are shared
  - A single centralized map with error-data for each coordinate
  - Each update is used to statistically improve a single coordinate's quality of data (*Kalman-Filter*)

# 4 Exemplary implementation

- $\bullet\,$  plan, goals, restrictions of implementation
- outline general structure of implementation
- used environment and tools

#### 4.1 Ros Nodes

- existing ROS libs
  - camera tracking
  - bluetooth-control
  - ros-sphero-driver
  - simones error-correction
- newly developed nodes
  - centralized map
  - error-distinction (self vs. env)

write out the list below

## 5 Evaluation

- ullet evaluation-approach
- formally evaluate math/statistics
  - probabilistic data increase in accuracy
  - time/effort needed single vs. swarm
- evaluate via real-world tests
  - explain setting/arena
  - raw data from multiple runs
  - processing of recorded data
  - insights obtained from experiment
- evaluate via simulation
  - diff. simulation vs. real-world
  - raw data from multiple runs
  - processing of recorded data
  - insights obtained from experiment
- explain results rl vs. sim

# 6 Future works

• unanswered questions -> unexplained experimental data?

- overcome simplifications used in this work
  - static vs. dynamic environments
- transfer this approach to different levels of reliability
- map to imaginable use-cases (firefighter...)