EE4013 Assignment - 1

Shaik Mastan Vali EE18BTECH11039

IIT Hyderabad

October 14, 2021

Contents

1 Problem

- 2 Solution
 - QR algorithm using linked lists Complexity
 - Comparison of runtimes

Problem

Consider the following matrix:

$$X = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$$

Calculate the absolute value of the product of the Eigen values of X.

Solution

In this solution, we use the QR-algorithm to compute the Eigen values. The algorithm is as follows-

Apply the QR decomposition so that

$$X = Q_0 R_0$$

where Q_0 is an orthogonal matrix and R_0 is an upper-triangular matrix.

Compute

$$E_0 = Q_0^{-1} X Q_0 = Q_0^T X Q_0$$

Note that the Eigen values of X and E_0 are the same.

• Next, we decompose the E_0 and repeat this procedure till we obtain a triangular matrix. The Eigen values of a triangular matrix are given by the diagonal entries of the matrix.

Householder Transformation

The reflection hyperplane can be defined by a unit vector u that is orthogonal to the hyperplane, which is its normal vector. The reflection of a vector x about this hyperplane is the linear transformation:

$$y = x - 2(u^{T}x)u$$

$$= x - 2u(u^{T}x)$$

$$= x - 2(uu^{T})x$$

$$= (I - 2uu^{T})x$$

The matrix constructed from this transformation can be expressed in terms of an outer product as:

$$H = H = I - 2uu^T$$

is called as the Householder matrix.

QR decomposition

We compute the QR decomposition using the Householder transformation. Multiplying a given vector x, for example the first column of matrix X, with the Householder matrix H, which is given as

$$H = I - \frac{2}{u^T u} u u^T$$

reflects x about a plane given by its normal vector u. When the normal vector of the plane u is given as

$$u = x - ||x||_2 e_1$$

then the transformation reflects x onto the first standard basis vector

$$e_1 = \begin{bmatrix} 1 & 0 & 0 & \dots \end{bmatrix}^T$$

which means that all entries but the first become zero.

In general, if we take $u=x-s\|x\|e_1$ where $s=\pm 1$ and $v=u/\|u\|$ then

$$Hx = \left(I - 2\frac{uu^T}{u^Tu}\right)x = s||x||e_1.$$

Let us first verify that this works:

$$u^{T}x = (x - s||x||e_{1})^{T} x$$

$$= ||x||^{2} - sx_{1}||x||$$

$$u^{T}u = (x - s||x||e_{1})^{T} (x - s||x||e_{1})$$

$$= ||x||^{2} - 2sx_{1}||x|| + ||x||^{2} ||e_{1}||^{2}$$

$$= 2(||x||^{2} - sx_{1}||x||) = 2u^{T}x$$

$$Hx = x - 2u\frac{u^{T}x}{u^{T}u} = x - u = s||x||e_{1}.$$

As a byproduct of this calculation, note that we have

$$u^{T}u = -2s||x||u_{1} = -2s||x||(x_{1} - s||x||)$$

Hence, to avoid numerical cancellation errors, we take $s = -sign(x_1)$.

$$\implies Hx = -sign(x_1)||x||e_1$$

First, we multiply X with the Householder matrix H_1 we obtain when we choose the first matrix column for X. This results in a matrix H_1X with zeros in the left column (except for the first row).

$$H_1X = \begin{bmatrix} -sign(X_{11})\alpha_1 & \star & \cdots & \star \\ 0 & & & \\ \vdots & & X' & \\ 0 & & & \end{bmatrix}$$

where α_1 is the 2-norm of the first column of X.

This can be repeated for X' (obtained from H_1X by deleting the first row and first column), resulting in a Householder matrix H_2' . Note that H_2' is smaller than H_1 . Since we want it really to operate on H_1X instead of X' we need to expand it to the upper left, filling in a 1, or in general:

$$H_k = \left[\begin{array}{cc} I_{k-1} & 0 \\ 0 & H'_k \end{array} \right]$$

This is how we can, column by column, remove all sub-diagonal elements of A and thus transform it into R.

$$H_n \dots H_3 H_2 H_1 X = R$$

The product of all the Householder matrices H, for every column, in reverse order, will then yield the orthogonal matrix Q.

$$H_1H_2H_3\ldots H_n=Q$$

Complexity of the algorithm

Problem

The QR decomposition step takes $O(n^4)$ computations, because the matrix multiplication at each iteration takes $O(n^3)$ time, and there are O(n) iterations.

The matrix convergence is achieved in $O(\max_{i,j} |\lambda_i/\lambda_j|^n)$ steps. Hence the total time complexity is $O((\max_{i,j} |\lambda_i/\lambda_j|^n) \times n^4)$.

QR algorithm using linked lists

In this algorithm, we use linked lists to store the matrices. The list is defined by a *head* node. Each node has two pointers, *below* and *next*. The *below* pointer is used in traversing along the row and the *next* pointer is used in traversing along the column. The function at(head, i, j) returns the pointer to the node at i^{th} row and j^{th} column.

Example

Figure 1: A 4×4 matrix implementation using linked list

Complexity

To access the element in the i^{th} row and j^{th} column, we need O(i+j) iterations. Hence, the time complexity of accessing an element is O(n). This additional factor in the algorithm gives us $O((\max_{i,j} |\lambda_i/\lambda_j|^n) \times n^5)$ complexity. However, using lists gives us better memory management due to non-contiguous memory allocation.

Comparison of runtimes

Data Structure	Time (in ms.)
Arrays	0.472
Vectors (in C++)	0.886
Linked lists	0.925