

Non-Local Mean

A. Buades, B. Coll and J. -. Morel, "A non-local algorithm for image denoising"

Jingqi Zhang

Jefferson Zhong

CONTENTS

01 Problem Definition

O2 Previous Work

03 Non-Local Mean

04 Implementation

05 Comparisons

Limitations &Further Work

What is Noise

Unwanted information which deteriorates image quality

■ Due to illumination, temperature, or signal processing disturbances etc.

Common Noises

- Salt and Pepper Noise
 - Sparse white and black pixels
 - Caused by camera heat, dust etc.

Common Noises

Gaussian Noise

Gaussian distributed

Good model of noise in many images

■ Poor lighting, heat, transmissions etc.

Image Source: https://www.researchgate.net/figure/Noisy-image-Gaussian-noise-with-mean-and-variance-0005 fig2 252066070

Image Denoising

Goal

Recover the original image from noisy image.

$$v = D_h v + n(D_h, v)$$

- $\blacksquare v$ observed values
- lacksquare D_h filter, $D_h v o true \ values \ {\sf as} \ D_h o perfect \ filter$
- $\blacksquare n(D_h, v)$ noise perturbation
 - **■**Ideally would be gaussian white noise

Previous Work

Previous Work

Local Smoothing Filters

■ Collect information from adjacent pixels to smooth out disturbance.

Denoising by Averaging

Local Smoothing Filters

Gaussian Filtering

- Optimal in flat parts of the image
- Blurred around edges and texture

Anisotropic Filtering

- The straight edges are well restored
- Flat and textured regions are degraded

Neighborhood Filtering

Not robust whenimages is very noisy

Motivation

Local Filters Disadvantages

- **■Visual Quality:**
 - **■**Either edge or texture details are degraded
- **■**Method Noise:
 - ■Smooths out even when the image has not much noise

What if we consider non locally?

Non-Local Mean

Non-Local Mean

■ Denoising with weighted average across all pixels.

Definition

$$NL[v](i) = \sum_{j \in I} w(i,j)v(j)$$

- $\mathbf{v} = \{v(i) | i \in I\}$ the input, a noisy image
- \blacksquare *NL*[*v*](*i*) the estimated value
- \blacksquare w(i,j) weight of similarity between pixel i and j

Weight of Similarity Motivation

■want to smooth out patch p

■Weight of q1 should have value larger than q3, since they are similar

Image Source: A. Buades, B. Coll and J. -. Morel, "A non-local algorithm for image denoising"

Similarity Defined

 \blacksquare Q: When are two pixels *i*, *j* considered "similar" ?

■A: By euclidean distance of intensity gray level

$$\left\|v(N_i)-v(N_j)\right\|_{2,a}^2$$

- \blacksquare N_i a patch centered at pixel i
- $\mathbf{v}(N_i)$ intensity gray level vector
- $\blacksquare a > 0$ the standard deviation of the Gaussian kernel

Weight of Texture Motivation

- Also want to respect texture
- q1, q3 same intensity, but q1 preserves texture

Pixels nearby have similar texture thus should be weighted more

Image Source: A. Buades, B. Coll and J. -. Morel, "A non-local algorithm for image denoising"

Weight of Texture Motivation

■Gaussian weighting

■Centered at pixel *i*

■ As the distance increase, weighting decrease

Weights Defined

■ Patches close together with a similar grey level have larger weights.

$$w(i,j) = \frac{1}{Z(i)} e^{-\frac{\|v(N_i) - v(N_j)\|_{2,a}^2}{h^2}}$$

$$\mathbf{Z}(i) = \sum_{j \in I} e^{-\frac{\left\|v(N_i) - n(N_j)\right\|_{2,a}^2}{h^2}},$$
 the normalizing constant

 \blacksquare h, decay of exponential function, the degree of filtering

Weights Defined

■ Patches with a similar grey level have larger weights

with a similar grey level have larger weights
$$w(i,j) = \frac{1}{Z(i)} e^{-\frac{\left\|v(N_i) - v(N_j)\right\|_{2,a}^2}{h^2}}$$

Properties

- $\blacksquare 0 \leq w(i,j) \leq 1$

Non-Local Mean

■Putting together

$$NL[v](i) = \sum_{j \in I} \frac{1}{Z(i)} e^{-\frac{\|v(N_i) - v(N_j)\|_{2,a}^2}{h^2}} v(j)$$

- $\mathbf{v} = \{v(i) | i \in I\}$ the input, a noisy image
- \blacksquare NL[v](i) the estimated value

Implementation

Implementation

Code

■ **GitHub:** https://github.com/surprise777/CSC320

- **Complexity:** $O(wmN^2)$
 - w search window size, e.g. w = 441 for 21×21 pixels windows
 - $\blacksquare m$ patch size, e.g. m = 49 for 7×7 patch
 - $\blacksquare N^2$ number of pixels

Comparisons

Comparisons – Visual Quality

Preserves more detail on edge and texture

- 1) Noisy Image
- 2) Gauss Filtering
- 3) Anisotropic Filter
- 4) Total Variation
- 5) Neighborhood Filtering
- 6) Non-Local Mean

Image Source: A. Buades, B. Coll and J. -. Morel, "A non-local algorithm for image denoising"

Comparisons – Method Noise

Method noise looks like Gaussian white noise

- 1) Noisy Image
- 2) Gauss Filtering
- 3) Anisotropic Filter
- 4) Total Variation
- 5) Neighborhood Filtering
- 6) Non-Local Mean

Limitations & & Eurther Work

Limitations & Further Works

01

Efficiency Concern

- Super slow, cannot be used on device that requires instant result e.g. phone
- When number of patches is too large or the image is too noisy, will require infeasible time to detect similarities
- Further work on improving runtime:
 - Thaipanich T, Oh BT, Wu PH, Xu DR, Kuo CCJ (2010) Improved image denoising with adaptive nonlocal means (ANL-means) algorithm.
 - Karnaukhov, V.N., Mozerov, M.G. Fast Non-Local Mean Filter Algorithm Based on Recursive Calculation of Similarity Weights.

Limitations & Further Work

02

Types of Noise to Filter

- Original algorithm designed toward additive noise e.g. Gaussian noise, but not so much in multiplicative noise e.g. Speckle noise
 - Speckle noise often appear in Ultrasonic Imaging
- Further work on extension toward multiplicative noise:
 - Teuber T., Lang A. (2012) Nonlocal Filters for Removing Multiplicative Noise.
 - Radlak K., Smolka B. (2014) Adaptive Non-local Means Filtering for Speckle Noise Reduction

THANKS