

READ JSON FILE

```
# READ JSON FILE
# This method will read a JSON file and return a JSON object
# Input: file path to JSON file
# Output: JSON object
def readJsonAtLocation(filePath):
    # Change the directory to the given path
    os.chdir(filePath[0:filePath.rindex("/")])
    # Split file path
    splitFilePath = filePath.split("/")
    # Parse out the name of the file
    fileName = splitFilePath[len(splitFilePath)-1]
    jsonFile = open(fileName)
    jsonData = json.load(jsonFile)
    # Change the directory back to the way it was...
    os.chdir("../")
    return jsonData
```

The code provided above reads a JSON file which uses human-readable text to store and transmit data objects consisting of attribute value pairs and array data types.

LNFACTORIAL JSON FILE

```
"id": 1,
   "requirement": "Method calculates the slope of a line",
   "component": "project/LinearLeastSquaresFit.java",
   "method": "calculateSlope",
   "driver": "testCasesExecutables/calculateSlopeTestCase.java",
   "input": "5 3 4 7",
   "output": "-4"
}
```

It uses the JSON file to run and execute each test case.

TESTCASE EXECUTABLE

```
public class InFactorialTestCase {
   public static void main(String[] args) {
          // Instantiate the Binomial Distribution Utility class
       BinomialDistributionUtil BinomialDistributionUtil = new BinomialDistributionUtil();
       // Test 1: Normal numerical value in range
       int testOne = Integer.parseInt(args[0]);
       // Run the actual method we are testing
       double value = BinomialDistributionUtil.lnFactorial(testOne);
       // Print test number
       System.out.println("Test:");
       System.out.println("Calculate ln(" + testOne + "!)");
       System.out.println("Result: " + value):
       // Print out test result
       double testOracle = Double.parseDouble(args[1]);
       // Test passed
       if (value == testOracle) {
          System.out.println("Oracle: " + testOracle);
           System.out.println("Pass");
       // Test failed
       else {
          System.out.println("Oracle: " + testOracle);
           System.out.println("Fail");
       } catch (Exception e) {
           System.out.println("ERROR");
   }
```

The results will be collected and compared with the expected results.

TESTCASE RSULTS

```
4 lines (4 sloc) | 51 Bytes

1    Test One:
2    ln(0!): 0.0
3    Oracle: 0.0
4    Test one passed!
```

After the test cases are ran the constructReport() method is called which combs though the temporary results files and constructs a final report as a HTML document.

constructReport() method

```
def constructReport():
   # Write the style to the HTML file
   styleFile = open("reports/style.css", "r")
   reportFile.write("<style>\n")
   for line in styleFile:
      reportFile.write(line)
   reportFile.write("\n</style>\n\n")
   # Write the first line
   reportFile.write("<h1>Test Results</h1>\n\n")
   reportFile.write("<hr>\n\n")
   reportFile.write("\n")
   # Write the table headings
   reportFile.write("\n")
   reportFile.write("" + "ID" + "")
   reportFile.write("" + "Method" + "")
   reportFile.write("" + "Requirement" + "")
   reportFile.write("" + "Input" + "")
   reportFile.write("" + "Oracle" + "")
   reportFile.write("" + "Output" + "")
   reportFile.write("" + "Result" + "")
   reportFile.write("\n")
```

The following final report is constructed after all the test cases are ran

FINAL TEST REPORT

```
IDMethodRequirementInputOracleOutputResult
1
calculateSlope
Method calculates the slope of a line
5 3 4 7
-4.0
-4.0
Pass
2
calculateSlope
Method calculates the slope of a line
-3 3 3 -3
-1.0
-1.0
Pass
3
calculateSlope
Method calculates the slope of a line
136 -38 17 -32
-0.05042016806722689
-0.05042016806722689
Pass
```

Team Term Project

Final Output

Test Results

ID	Method	Requirement	Input	Oracle	Output	Result
1	calculateSlope	Method calculates the slope of a line	5347	-4.0	-4.0	Pass
2	calculateSlope	Method calculates the slope of a line	-3 3 3 -3	-1.0	-1.0	Pass
3	calculateSlope	Method calculates the slope of a line	136 -38 17 -32	-0.05042016806722689	-0.05042016806722689	Pass
4	calculateSlope	Method calculates the slope of a line	35943 4037823 132894 650983	-34.93352311992656	-34.93352311992656	Pass
5	calculateSlope	Method calculates the slope of a line	64.2387634 64.5908703477 64.24089753 64.5906543	-0.10123448901101095	-0.10123448901101095	Pass
6	compareTo	Method sorts coordinates by their x value	5 -63 72 38	-1.0	-1.0	Pass
7	compareTo	Method sorts coordinates by their x value	0010	-1.0	-1.0	Pass
8	compareTo	Method sorts coordinates by their x value	136 -38 17 -32	1.0	1.0	Pass
9	compareTo	Method sorts coordinates by their x value	1000	1.0	1.0	Pass
10	compareTo	Method sorts coordinates by their x value	92 92 92 92	0.0	0.0	Pass
11	formatLatLngValue	Method converts double value into a fractional string with default number of decimal places	1253404.47262174 3	1253404.472	1253404.472	Pass
12	formatLatLngValue	Method converts double value into a fractional string with default number of decimal places	0.128427 4	0.1284	0.1284	Pass
13	formatLatLngValue	Method converts double value into a fractional string with default number of decimal places	-126.1253799 0	-126.0	-126.0	Pass
14	formatLatLngValue	Method converts double value into a fractional string with default number of decimal places	-54727143.0234885 2	-5.472714302E7	-5.472714302E7	Pass
15	formatLatLngValue	Method converts double value into a fractional string with default number of decimal places	9120370981409.12309714287894513 8	9.223372036854776E10	9.223372036854776E10	Pass
16	getDistance	Method returns the distance between this point and other point in phase space	5555	0.0	0.0	Pass
17	getDistance	Method returns the distance between this point and other point in phase space	7 3 4 9	6.708203932499369	6.708203932499369	Pass
18	getDistance	Method returns the distance between this point and other point in phase space	-52 -3 -23 -45	51.03920062069938	51.03920062069938	Pass
19	getDistance	Method returns the distance between this point and other point in phase space	0000	0.0	0.0	Pass
20	getDistance	Method returns the distance between this point and other point in phase space	120983 12349078 487094 430803248	4.18454330157609E8	4.18454330157609E8	Pass
21	InFactorial	Method computes the log(n!)	0	0.0	0.0	Pass
22	InFactorial	Method computes the log(n!)	-5	0.0	0.0	Pass
23	InFactorial	Method computes the log(n!)	2000000	2.701732365031526E7	2.701732365031526E7	Pass
24	InFactorial	Method computes the log(n!)	1	0.0	0.0	Pass
25	InFactorial	Method computes the log(n!)	3	1.791759469228055	1.791759469228055	Pass