ROB311 Quiz 3

Hanhee Lee

March 1, 2025

Contents

1	einforcement Learning	2
	1 Estimating Q-Star Empirically	. 2
	1.1.1 Running Average Update Rule	. 2
	2 Q-Learning Algorithm	
	3 Modified Q-Learning Algorithm	. 3
	4 Training vs. Testing	
	1.4.1 K Sims, 1 Test	. 4
	1.4.2 K Tests	. 4
2	artially Observable MDPs (POMDPs)	5
	1 Bayesian Network	. 5

Partially Observable Probabilistic Decision Problems

1 Reinforcement Learning

Summary: In a RL problem, $p(\cdot \mid \cdot, \cdot)$ and/or $r(\cdot, \cdot)$ unknown.

1.1 Estimating Q-Star Empirically

Summary:

Equation

$$0 q^*(s,a) = \lim_{K \to \infty} \bar{R}_K$$

•
$$\bar{R}_K = \frac{1}{K} \sum_{k=1}^{K} r_k$$
: empirical average reward.

- r_k : reward obtained in the k^{th} simulation.
- K: # of times action a taken in state s (# of simulations)

$$0 q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(r(s,a,s') - q^*(s,a) \right)$$

• N(s,a): # of times action a taken in state s.

$$\neq 0 \quad q^*(s,a) \leftarrow q^*(s,a) + \frac{1}{N(s,a)} \left(\left[r(s,a,s') + \gamma \max_{a'} q^*(s',a') \right] - q^*(s,a) \right)$$

• Using old q^* values to estimate.

1.1.1 Running Average Update Rule

Definition:

$$\bar{x} \leftarrow \bar{x} + \alpha (x_{\text{new}} - \bar{x}).$$

• α : learning rate

1.2 Q-Learning Algorithm

```
Algorithm:
   procedure Q_LEARNING():
         for each episode do
               set initial state s \leftarrow s_0
               while s \notin \mathcal{T} do # \mathcal{T}: terminal states
                     randomly choose an action in \mathcal{A}(s)
                     get next state, s', and reward r
                     update N(s,a) and q^{st}(s,a) as follows:
                     q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left( r(s, a, s') + \gamma \max_{a'} q^*(s', a') - q^*(s, a) \right)
                     N(s,a) \leftarrow N(s,a) + 1
12
                     s \leftarrow s'
13
               end while
14
         end for
    • Note: Possible infinite while loop if \mathcal{T} is not reached.
```

1.3 Modified Q-Learning Algorithm

```
Algorithm:
   procedure Q_LEARNING():
          for each episode do
               l \leftarrow 0
                set initial state s \leftarrow s_0
                while s \notin \mathcal{T} and l < l_{\max} do
                      randomly choose an action in \mathcal{A}(s)
                      get next state, s^\prime, and reward r
                      update N(s,a) and q^{st}(s,a) as follows:
                      q^*(s, a) \leftarrow q^*(s, a) + \frac{1}{N(s, a)} \left( r(s, a, s') + \gamma \max_{a'} q^*(s', a') - q^*(s, a) \right)
                      N(s,a) \leftarrow N(s,a) + 1
12
13
14
                      l \leftarrow l + 1
15
                end while
          end for
```

Notes: Choice of γ and l_{\max} are coupled:

- $\gamma \approx 1$ requires large $l_{\rm max}$
- $\gamma \approx 0$ requires small l_{max}

1.4 Training vs. Testing

Notes: Episodes are classified as either:

- training (sim): reward accumulated during episode does not count
- testing (test): reward accumulated during episode counts

1.4.1 K Sims, 1 Test

Notes:

- 1. select actions randomly during K simulations
- 2. extract optimal policy, π^*
- 3. use π^* during test

1.4.2 K Tests

Notes:

- \bullet maximize average reward over K tests
- must balance between exploration and exploitation
- Common ways to balance exploration and exploitation: \varepsilon-greedy strategy, UCB algorithm

Strategy Description

 ε -greedy

choose optimal action with probability $\varepsilon(k)$

- In episode k, choose the optimal action with probability $\varepsilon(k)$, where:
 - $-\varepsilon(0)\approx 0$
 - $-\varepsilon(k)$ is increasing
 - $-\varepsilon(k) \to 1 \text{ as } k \to \infty$
- Common choice for $\varepsilon(k)$ is $1 \frac{1}{k}$.

UCB algorithm choose action that maximizes $UCB(\cdot)$

$$UCB(s, a) = \begin{cases} q^*(s, a) + C\sqrt{\frac{\log k}{N(s, a)}}, & \text{if } N(s, a) > 0\\ \infty, & \text{otherwise} \end{cases}$$

- In episode k, choose the action that maximizes $UCB(\cdot)$.
- C: exploration parameter
- N(s,a): # of times a taken from s.

2 Partially Observable MDPs (POMDPs)

Summary: In a **POMDPs**, we assume that:

- \bullet environment modelled using state space, \mathcal{S}
- single agent
- S_t = state after transition t
- A_t = action inducing transition t
- stochastic state transitions with memoryless property:

$$S_T \perp S_0, A_1, \dots, A_{T-1}, S_{T-2} \mid S_{T-1}, A_T$$

- R_t = reward for transition t, i.e., (S_{T-1}, A_T, S_T)
- O_t = observation of S_t

Name	Function:
Initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
Transition distribution Reward function	$p(s' s,a) := \mathbb{P}[S_t = s' A_t = a, S_{t-1} = s]$ r(s,a,s') := reward for transition (s,a,s')

- Since actual state is unknown, so are legal actions.
- Can fix by assuming $A(s) = A(s') := A \forall s, s'$:
 - if $a \notin \mathcal{A}(s)$, then p(s'|s,a) = 0 for all $s' \neq s$
 - if $a \notin \mathcal{A}(s)$, then r(s, a, s') = 0 for all s'

Policy for choosing actions
$$\pi_t(a|o_0,\ldots,o_t) := \mathbb{P}[A_t = a|O_0 = o_0,\ldots,O_t = o_t]$$

Measurement model $m(o|s) := \mathbb{P}[O_t = o|S_t = s]$

- Observe that policy is now time-dependent.
- Special Case: If we assume the agent cannot use past observations, $A_t \perp O_0, \ldots, O_{t-1} \mid O_t$, policy becomes time-independent,

$$\pi_t(a|o_0,\ldots,o_t) = \pi_0(a|o_t).$$

- Only need to specify π_0 .

Belief after
$$t$$
 observations
$$b_t(s_t|a_{1:t},o_{0:t}) = \mathbb{P}[S_t = s_t|A_t = a_t, O_{0:t} = o_{0:t}]$$
$$b_t(s_t|a_{1:t},o_{0:t}) = m(o_t|s_t) \sum_{s_{t-1}} p(s_t|s_{t-1},a_t)b_{t-1}(s_{t-1}|a_{1:t-1},o_{1:t-1})$$

- b_t : Probability distribution
- $b_0(s_0) = \mathbb{P}[S_0 = s_0]$: Initial belief distribution
- Only holds for $t \geq 1$.
- For t=0 (assuming uniform prior): $b_0(s_0|o_0)=\frac{m(o_0|s_0)}{\sum_s m(o_0|s)}$

2.1 Bayesian Network

Notes: $S_0, O_0, A_1, R_1, S_1, O_1, A_2, R_2, S_2, O_2, ...$ form a Bayesian network:

Figure 1

• Assuming $A_t \perp O_0, \dots, O_{t-1} \mid O_t$. WHERE DOES THIS COME INTO PLAY.

Example: