Halug Hill
Linear Algebra-lecture 1
Prof. in training Andrew "#1teach"

Physics

Vectors have magnitude and direction (M, Θ) (Kinda like arrows of some length pointing somewhere)

magnitude: the length of the vector \Rightarrow ex: the pythagorean theorem for 2D vectors $\sqrt{x^2 + y^2}$

direction: the angle the vector is pointing 9 ex: $\tan^{-1}(9/x)$

$$\overrightarrow{V} = (3,-1)$$

$$\uparrow \qquad (x,y)$$
Vector

adding vectors

- 1. slide V2 up so at tip of V1
- 2. chrow new vector V_3 that starts where V_1 and V_2 meet and stops where V_2 ends

3. $V_1 + V_2 = V_3$

NOTE: vector addition is done component-wise

$$V_3 = \begin{pmatrix} x - components & y - components \\ addid & addid \end{pmatrix}$$

*Sketchy definition, works for now!

scalars

A scalar is a number you multiply a vector by that changes scale

scalaus are usually real numbers in physics. Here, a is used to represent one

Scaling a vector a V = V scaled

Set-Builder Notation

Write a set and the things inside the set follow those rules

ex:

$$\{a,n,d,r,e,w\}/a,n \rightarrow \{d,r,e,w\}$$
remove

ex: Python list comprehension

[x for x in range (n)]
$$\rightarrow$$
 [0,1,...n]

Computer Science

vectors are like rules you can put on lists and arrays

- 4 addition
- 4 same length
- 4 Scalar multiplication

IN MATH: vectors must have the same length to add them together.

IN CS: it is possible to be Kinda Squirrely about this, since vectors are more abstract.

addition rules

$$V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $V_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

for i in range (n+1): new_vector[i] = V1[i] + V2[i] Scaled_vector[i] = Scalar · vector[i]

Math

a vector x is an element of a vectorspace

a vectorspace (v) over a field (F) is a set with 2 operations such that the following 8 rules hold.

COMMUTATIVE PROPERTY (order added doesn't matter)

$$x,y \in V$$
 \Longrightarrow $x+y=y+x$

"if x,y are "then"

elements of vector space"

ASSOCIATIVE PROPERTY (group addition however you want)

$$x,y,z \in V \implies x+(y+z)=(x+y)+z$$

IDENTITY (aka the zero vector)

3 O Such that
$$\forall x \in V$$
 $x + 0 = 0 + x = x$
"there \uparrow "where" \uparrow "x in the Vector space" to x gives back x

INVERSE (every element has one!)

SCALING IDENTITY

$$\forall x \in V \quad \exists \alpha \in F \quad s.t. \quad \alpha_{x} = x$$
"there is an
element a
in the field"

ASSOCIATIVITY FOR SCALING

$$\forall a, b \in F$$

elements

of the field

ore scalars

 $x \in V$

elements

of the

vectorspace

are vectors

$$(6)x = 2(3x)$$
scaling twice

- Scaling vector x by 6
 Scaling vector x by 3 then scaling vector x by 2

DISTRIBUTIVE 1

you can distribute a scalar across Jector sums

$$\forall a \in F$$
 $x, y \in V$ $a(x+y) = ax + ay$

DISTRIBUTIVE 2

you can distribute a Vector across a sum of scalars

$$\forall a,b \in F \quad x \in V \quad (a+b)x = ax + bx$$

$$\mathbb{R}^2$$
 is a 2-dimensional vectorspace \mathcal{R}^2 over the field so! \mathbb{R}^n is an n-dimensional vectorspace \mathcal{R}^2 (\mathbb{R})

let
$$X \in \mathbb{R}^n$$
 # of dimensions \mathbb{R}^2 length 2 tuple tuple of length n

$$\mathbb{R}^{n} = \{ x \mid x = (a_{11}a_{21}...a_{n}) \text{ for some } a_{i} \in \mathbb{R} \}$$

Under that

"The set IR" is the set of real-valued ntuples"

(a₁, a₂,...a_n)

a list of #s in parentheses

$$S \in \mathbb{R}$$
 $S \cdot X = (S \cdot a_1, S \cdot a_2, \dots S \cdot a_n)$

Scalar multiplication & Vector addition are done component - wise

Proving a Set and 2 operations don't form a vectorspace

- check Identity
 - if not true for all x > failed
- check Inverse
 if an element doesn't have one > failed

PROVE IRM FORMS A VECTOR SPACE

$$X = (a_1, a_2, ... a_n)$$
 for some $a_i \in \mathbb{R}$

Suppose we have
$$X+y = (a_1, a_2, ... a_n) + (b_1, b_2, ... b_n)$$

by the definition of addition of vectors in
$$\mathbb{R}^n$$

 $x+y=(a_1+b_1,a_2+b_2...a_n+b_n)$

by the commutativity of
$$\mathbb{R}$$

 $X+y=(b_1+a_1,b_2+a_2...b_n+a_n)$

by the definition of vectors in
$$\mathbb{R}^n$$

 $X+y=(b_1,b_2,...b_n)+(a_1,a_2,...a_n)$
 $X+y=y+X$

Proving that TR' has an Identity

let x e Rn

Consider
$$e = (0, 0, 0, ... 0) \in \mathbb{R}^{N}$$

Suppose

$$X + e = (X_1 + X_2 + ... \times_N) + (O_1 O_1 O_1 ... O)$$

 $= (X_1 + O_1 \times_2 + O_1 ... \times_N + O)$
 $= (X_1 + X_2 + ... \times_N)$
 $X + e = X$

Therefore
e is the zerovector (0)

identity for vector addition

CODING RM

add vector function expects two vectors in IRⁿ return sum

Scalar multiplication function expects one vector and one scalar return scaled vector

 \int

class Vector
add vector method
expects one vector in IRⁿ
return sum

my Vector. add (vector)

Scalar multiplication method my Vector. Scale (scalar) expects one scalar return scaled vector

using the 8 rules for a vectorspace, we can build theorems to solve problems (like facial recognition!)