

[12] 实用新型专利说明书

[21] ZL 专利号 93212977.3

[51]Int.Cl⁵

H01S 3/02

1451授权公告日 1994年2月16日

|22|申请日 93.5.21 |24|類证日 94.1.2 |73|专利权人 熊 麒 地址 台湾省台北市 |72|设计人 龍 蹴 [21]申请号 93212977.3 [74]专利代理机构 北京师范学院专利事务所 代理人 林 强

说明书页数:

附图页数:

[54]实用新型名称 激光二极管调整固定结构 [57]攜要

本实用新型为激光二极管调整固定结构,它是由 光投射座、O型环、镜片、调整套筒、激光二极管电 路板、调整卡座等所组成,其中,调整套筒的小筒体 外设有可与光投射座的内螺纹螺合的外螺纹,藉此调 整镜片焦距及固定夹紧,电路板则与激光二极管垂直 相交,且插置于激光二极管的接脚间,并相粘合,电 路板另一端部则插于调整卡座的板槽内,由插销销合 为一体,旋动卡座则可调整投射光束的投射角度,使 之正确成像。

1、 一种激光二极管调整固定结构, 其包括:

光投射座,为一管状座体,其一端处为呈锥状的盖体,并于中央设有一透光孔,另端处开有一镜片孔,孔端附有内螺纹,又镜片孔与透光孔相交处为一内肩部;

0型环,设于光投射座的内肩部上;

镜片,设在光投射座的镜片孔内,为一模塑成型体,其端处具 有凸弧面,可供聚光;

调整套筒,为一大、小相连的筒体,其中,小筒体外部设有外螺纹,可与光投射座镜片孔的内螺纹相螺合,另外大、小筒体内分别开有大、小圆孔,而大圆孔端处设有一凹缘,周边上设有一折脚;

激光二极管,套在调整套筒的大圆孔内,而该外凸缘则嵌合于 调整套筒处;

电路板,为一矩形板体,其厚度恰为激光二极管接脚的间距,可将板体插置在接脚间,并将接脚焊接于板体上、下方处,另外板体另一端处则具有二弯角插销;

调整卡座,为一圆形块体,其端面设有板槽及销孔,可供电路板及弯角插销插配使用;

上项元件经组装配合后,即为一可调整固定的激光二极管投光结构,其特征在于:

激光二极管导电后,其所投射出的光束呈椭圆锥状,此光束经小简体内的小圆孔射向镜片,再经透光孔投射出圆柱形光束,且其外围光晕为光投射座的内肩部所遮蔽,故其成像为一圆形光点;又旋动调套筒的外螺纹,使其于光投射座内作螺进,并藉0形环较小

的挠性,得使镜片迫紧或旋松一调整螺距,进而让投射光束的焦距作一调整,使圆柱光束之成像更清晰明确,并于调整好后以点胶粘固,另外,激光二极管其投射光束的轴线与镜片不在同一轴线上时,所投射光束的成像会产生圆弧偏移现象,必须旋动调整卡座,使激光二极管作周向旋动,进而使其与镜片的轴心趋于一致,并留记号标注位置,使易于辩识。

激光二极管调整固定结构

本实用新型涉及一种激光二极管调整固定结构。

现今激光二极管已被广泛地应用于聚光装置上,如枪枝的激光 瞄准器及指标笔等,均利用激光二极管作为发光元件。已有的激光 二极管聚光结构,如图1、2所示,系两种可调整式激光二极管聚光 结构剖示图,其系由光投射座1b、1c、固定板7b、7c、本体4b、4c、 激光二极管5b、5c、电路板6b、6c、镜片3b、3c等组成,其中镜片 3设在光投射座1b、1c内,并藉固定板7b、7c将其固定,而激光二 极管5b、5c则设于本体4b、4c的另一端处,且其接脚与电路板6b、 6c彼此垂直焊合,当欲调整激光投射的成像焦距时,只须旋动光投 射座1b或本体4c的螺纹部,即可作微调整焦距,使其投射出圆形光 点,达到瞄准目标的目的,然而,此种结构设计不尽理想仍存在有 若干缺点,现分述如下:

- 1、该镜片是靠固定板夹持固定于正确位置, 而固定板则赖点 胶胶合亦或螺纹螺合, 当指标笔或瞄准器内部结构受到振动, 发生 变形椭圆光点时, 欲调整镜片焦距极为不易, 且制作装配费工费时, 所需成本颇高极不划算。
- 2、该激光二极管与电路板系相互平行安置于套管8b内, 当投射角度偏斜时,欲作周向旋动调整,极为困难,必须拆卸套管才可调整,调整动作耗费工时,不符经济效益。

本实用新型的目的是提供一种改进的激光二极管调整固定结构,以克服上述缺点。

根据本实用新型的一种激光二极管调整固定结构,其包括:

光投射座,为一管状座体,其一端处为呈锥状的盖体,并于中央设有一透光孔,另端处开有一镜片孔,孔端附有内螺纹,又镜片孔与透光孔相交处为一内肩部;

0型环,设于光投射座的内肩部上;

镜片,设在光投射座的镜片孔内,为一模塑成型体,其端处具 有凸弧面,可供聚光;

调整套筒,为一大、小相连的筒体,其中,小筒体外部设有外螺纹,可与光投射座镜片孔的内螺纹相螺合,另外大、小筒体内分别开有大、小圆孔,而大圆孔端处设有一凹缘,周边上设有一折脚,

激光二极管,套在调整套筒的大圆孔内,而该外凸缘则嵌合于调整套筒处;

电路板,为一矩形板体,其厚度恰为激光二极管接脚的间距,可将板体插置在接脚间,并将接脚焊接于板体上、下方处,另外板体另一端处则具有二弯角插销;

调整卡座,为一圆形块体,其端面设有板槽及销孔,可供电路板及弯角插销插配使用;

上项元件经组装配合后,即为一可调整固定的激光二极管投光 结构,其特征在于:

激光二极管导电后,其所投射出的光束呈椭圆锥状,此光束经小筒体内的小圆孔射向镜片,再经透光孔投射出圆柱形光束,且其外围光晕为光投射座的内肩部所遮蔽,故其成像为一圆形光点;又旋动调套筒的外螺纹,使其于光投射座内作螺进,并藉0形环较小的挠性,得使镜片迫紧或旋松一调整螺距,进而让投射光束的焦距作一调整,使圆柱光束之成像更清晰明确,并于调整好后以点胶粘

固,另外,激光二极管其投射光束的轴线与镜片不在同一轴线上时,所投射光束的成像,会产生圆弧偏移现象,必须旋动调整卡座,使激光二极管作周向旋动,进而使其与镜片的轴心趋于一致,并留记号标注位置,使易于辩识。

现结合附图,详细说明本实用新型,其中:

图1是现有的激光二极管投光结构之剖视图(一);

图2是现有的激光二极管投光结构之剖视图(二);

图3是本实用新型的激光二极管结构投射聚光原理图(一);

图4是本实用新型的激光二极管结构投射聚光原理图(二);

图5是本实用新型的激光二极管结构投射聚光原理图(三);

图6是本实用新型的激光二极管结构投射聚光原理图(四);

图7是本实用新型的激光二极管结构投射聚光原理图(五);

图8是本实用新型的分离体图;

图9是本实用新型的剖示图(一);

图10是本实用新型的剖示图(二);

图11是本实用新型的立体外观图。

本实用新型的激光二极管结构的投射聚光原理如下:

1、激光二极管放射光束的形状:

如图3、4所示,其激光二极管1a所投射出的光束呈椭圆锥状2a, 且其成像乃为一椭圆形光点3a,而该椭圆长轴两端点处a、a'分别 与发射点0相交并呈一θ'角(即垂直放射角),角度约为20~40。该 椭圆短轴,两端点处b、b'分别与发射点0相交并呈一θ''角(即水 平放射角),角度约为6~12。

2、平凸镜置于点光源前端, 其投射光束的形状:

如图5所示,当点光源的光束照射至平凸镜4a时,光束经折射后成平行的圆柱光束21a,而其成像乃为一圆形光点31a。

3、激光二极管前端置有一平凸镜,外围罩以套管6a, 其投射 光束的形状:

如图6所示,激光二极管所发射出的光源,为一面光源, 利用前端的平凸镜将其聚为一平行光束, 但因前述1项内曾提及激光二极管并非理想的点光源,其乃为一椭圆锥状的面光源,故其所聚出的光束,除中央的圆形光占32a外,外围尚有光晕7a存在。

4、激光二极管前端置一平凸镜,而平凸镜前端则为透光孔8a, 其投射光束的形状。

如图7所示,激光二极管所发射出的椭圆锥光束, 投射至平凸镜上,形成一中央为圆形光点外有光晕的光束,当该光束经透光孔 8a,则原有的外围光晕,悉被遮去,成为一平行圆柱状光束, 故其成像乃为一圆形光点。

如图所示,本实用新型为激光二极管调整固定结构的改进,其包括:

光投射座1,为一管状座体,其一端处为呈锥状的盖体11,并 在中央设有一透光孔12,另端处开有一镜片孔13,孔端附有内螺纹 14,镜片孔与透光孔相交处为一内肩部15;

0型环2,设在光投射座1的内肩部15上;

镜片3,设在光投射座1的镜片孔13内,是一模塑成型体,其端处具有凸弧面,可达聚光功效;

调整套筒4,是一大、小相连的筒体41、42,其中,小筒体42 外部设有外螺纹43,可与光投射座镜片孔的内螺纹14相螺合、另外 大、小简体内分别开有大、小圆孔411、421, 而大圆孔411端处设有一凹缘44, 周边上设有一折脚45,

激光二极管5,套在调整套筒的大圆孔411内,而该外凸缘51则 嵌合在调整套筒44处;

电路板6,为一矩形板体,其厚度为激光二极管接脚52的间距,可将板体插置在接脚间,接脚521、522焊接于板体上方处,而接脚523则灶接于板体下方处,又板体另端处则为弯角插销61.

调整卡座7,为一圆形块体,其端面设有板槽72及销孔73,可 供电路板6及弯角插端61插配使用;

上述元件的组装程序如下:

将0型环2置于光投射座1的内肩部15处,镜片3则置于镜片孔13内,再将调整套筒4的外螺纹43与之相螺合,另外激光二极管5的接脚521、522、523系焊接于电路板6的上、下面处,将电路板6插置于板槽72内,并使插销61销合于销孔73内,再使激光二极管5置入调整套筒4的大圆孔411内,结合成一体即为本实用新型。

又其作动原理及调整步骤如下:

当激光二极管5导电后,其所投射出的光束呈椭圆锥状,此光束经小简体42内的小圆孔421射向镜片3,又经透光孔12投射出圆柱形光束,且其外围光晕激光投射座1的内肩部15遮蔽,故其成像为一圆形光点;又旋动调整套筒4的外螺纹43,使其在光投射座1向内螺进,并藉0型环2的较小的挠性,得使镜片3迫紧或旋松一调整螺距,进而让投射光束的焦距作正确地调整,使圆柱光束的成像更清晰明确,并在调整好后以点胶粘固,另外,激光二极管5投射光束的轴线与镜片3不在同一轴线上时,投射光束的成像会产生圆弧偏

移现象,必须旋动调整卡座7,使激光二极管5作周向旋动,进而使其与镜片3的轴心趋于一致,并留下记号标注位置,易于辩认。

本实用新型的功效及优点如下:

- 1、该调整套筒的小筒体端部用于定位抵紧镜片, 而外螺纹则用于调整焦距, 充分提供兼具定位调整焦于一体的设计, 易于组装拆卸, 节省工时、降低成本。
- 2、本实用新型的激光二极管其接脚处分别粘合在电路板的上、下面,且该板体与激光二极管垂直设置,另其板体端部则插置于调整卡座的板槽内,结合一体;当光投射角度偏斜时,仅旋动调整卡座,即可作适当的投射角度调整,缩短调整工时,充分提供一省时省工且合于经济效益的结构。
- 3、本实用新型的另一特色在于: 弯角插销为弯折平贴于调整卡座的端面处,提供一电池负极接触端,而正极则为套管处,可防止电池反装将激光二极管烧毁,防护结构设计充分保障使用结构的安全。

图4

图1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.