Всеволод Заостровский, 409 группа

Отчёт по задаче "Итерационные методы решения систем линейных уравнений".

1 Задача.

Для построения приближенного решения задачи

$$y'(x) + Ay(x) = 0$$
, $y(0) = 1$, $x \in [0, 1]$

с известным точным решением $y(x)=e^{-Ax}$ рассматриваются следующие схемы: 1) $\frac{y_{k+1}-y_k}{h}+Ay_k=0, y_0=1.$ 2) $\frac{y_{k+1}-y_k}{h}+Ay_{k+1}=0, y_0=1.$ 3) $\frac{y_{k+1}-y_k}{h}+A\frac{y_{k+1}+y_k}{2}=0, y_0=1.$ 4) $\frac{y_{k+1}-y_{k-1}}{2h}+Ay_k=0, y_0=1, y_1=1-Ah.$ 5) $\frac{1.5y_k-2y_{k-1}+0.5y_{k-2}}{h}+Ay_k=0, y_0=1, y_1=1-Ah.$ 6) $\frac{-0.5y_{k+2}+2y_{k+1}-1.5y_k}{h}+Ay_k=0, y_0=1, y_1=1-Ah.$

Найти порядок аппроксимации, исследовать α-устойчивость предложенных схем. Реализовать указанные схемы и заполнить таблицу:

No॒	E_1	E_2	E_3	E_6	m	A

Здесь в первом столбце указывается номер схемы; $E_n = \max_{x_k} |y(x_k) - y_k|$, y_k - решение соответствующей схемы при $h = 10^{-n}$; m - порядок сходимости, т.е. $E_n \sim O(h^m)$; параметр задачи A = 1, 10, 1000.

Решение. Реализацию кода см. [здесь]