Lecture 4 Multiplication and division

Computing platforms

Novosibirsk State University University of Hertfordshire

D. Irtegov, A.Shafarenko

2018

Multiplication by adding

```
    A*B
    P=0
    While B > 0 do
    P+=A
    B--
```

Wend

- For 8-bit values, 256 additions in worst case
- For 64-bit values on modern CPU, won't finish in your lifetime

Let's consider special cases

- A*2 = A+A = Ishift(A,1)
- $A*2^N$ = while N-->0 do P+=A wend = Ishift(A,N)
- $A*(2^N+2^M)=A*2^N+A*2^M$
- If we represent arbitrary number as sum of 2^N...

Algorithm of multiplication

- Any number has the binary representation
- B=Sum(b[N]*2N), where b[N] Nth bit of binary representation
- P=A*B=Sum(A*b[N]*2^N)
- So, the algorithm

```
N=0
P=0
While N<bits(B) do
P+=A*b[N]
A=Ishift(A,1)
```

Wend

Let's try to visualize it

Note that 4-bit*4bit yields 8-bit result

					1	1	0	1
X					1	1	1	0
	0	0	0	0	0	0	0	0
	0	0	0	1	1	0	1	0
	0	0	1	1	0	1	0	0
	0	1	1	0	1	0	0	0
	1	0	1	1	0	1	1	0

Looks familiar?

```
\begin{array}{c} 1 \ 1 \ 0 \ 1 \\ \times & 1 \ 1 \ 1 \ 0 \\ \hline & 0 \ 0 \ 0 \ 0 \\ \hline & 1 \ 1 \ 0 \ 1 \\ \hline & 1 \ 1 \ 0 \ 1 \\ \hline & 1 \ 0 \ 1 \ 1 \ 0 \\ \hline \end{array}
```

How to implement this in CdM-8?

- b[N] can be calculated as series of right shifts
- Shr instruction shifts the register and moves lowest bit to C
- We do not need to count to 8
- The loop can stop when reg==0 (Z flag is set)
- But how to calculate 16-bit P and 16-bit A*2^N?
- They need 2 registers each, and we have only four registers.

Let's go in other direction

```
N=7
P=0
While True do
P+=A*b[N]
if N==0 break
P=rshift(P,1)
N--
```

Wend

- Now we need a register to store N
- Or we can unroll the loop (there are only 8 iterations after all)

Demonstration in CocolDE

- http://ccfit.nsu.ru/~fat/Platforms/mult.asm
- 8-bit unsigned multiplication with 16-bit results using only registers (no memory access)

What about signed multiplication?

	$1\ 1\ 0\ 1$	_
×	1110)
	0 0 0 0)
	$1\ 1\ 0\ 1$	
	$1\ 1\ 0\ 1$	
	$1\ 1\ 0\ 1$	
	10110110)

If we treat 1101 and 1110 as two-complement signed numbers, the result is wrong.

You do not even need to convert to decimal.

The operands are both negative, but the result is positive!

Proper way of two-complement signed multiplication

Sign-extend both numbers before the multiplication

Actually, this is a disadvantage of two-complement presentation

With sign-magnitude, you just multiply unsigned and xor sign bits

```
11111101
0000000
11111010
1\ 1\ 1\ 1\ 0\ 1\ 0\ 0
1\ 1\ 1\ 0\ 1\ 0\ 0
1\ 1\ 0\ 1\ 0\ 0\ 0
10100000
0\ 1\ 0\ 0\ 0\ 0\ 0
1\ 0\ 0\ 0\ 0\ 0\ 0
00000110
```

Division

- the dividend is the number to be divided
- the divisor is the number the dividend is divided by
- the quotient is the main result of division,
- a remainder, which is the quantity left over, i.e. the difference between the dividend and product of the quotient and the divisor.

Exact definition of quotient

- a quotient, which is the whole number of times the divisor 'goes into' the dividend.
- In other words, the quotient is the maximum integer that if multiplied by the divisor gives the result not exceeding the dividend.

Let's try to divide 11(dec) to 3(dec)

- 11÷3=3 rem 2
- 11(dec)=1011
- 3=0011