# Lecture 2: Basic Artificial Neural Networks

Lan Xu SIST, ShanghaiTech Fall, 2024



### **Outline**

- Single layer neural networks
  - Network models
  - Example: Logistic Regression
- Multi-layer neural networks
  - □ Limitations of single layer networks
  - □ Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes



### Mathematical model of a neuron

input features  $\underbrace{1}_{x_1} \underbrace{w_{eights}}_{x_2}$  sum non-linearity output  $\underbrace{x_2}_{x_M}$ 



# Single neuron as a linear classifier

Binary classification





### **Outline**

- Artificial neuron
  - □ Perceptron algorithm
- Single layer neural networks
  - Network models
  - Example: Logistic Regression
- Multi-layer neural networks
  - □ Limitations of single layer networks
  - Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes



# Single layer neural network





### Single layer neural network

input



layer: parallelized weighted sum and non-linearity

one sum per weight vector 
$$s_j = \mathbf{w}_j^\intercal \mathbf{x}$$
  $\longrightarrow$   $\mathbf{s} = \mathbf{W}^\intercal \mathbf{x}$  from weight matrix

$$\mathbf{h} = \sigma(\mathbf{s})$$









### What is the output?

- Element-wise nonlinear functions
  - □ Independent feature/attribute detectors





### What is the output?

- Nonlinear functions with vector input
  - Competition between neurons



$$h_i = g(\mathbf{s}) = g(\mathbf{w}_1^\mathsf{T} \mathbf{x}, \cdots, \mathbf{w}_m^\mathsf{T} \mathbf{x})$$



### What is the output?

- Nonlinear functions with vector input
  - □ Example: Winner-Take-All (WTA)



$$\mathbf{h} = [h_j]$$

$$h_j = g(\mathbf{s}) = \begin{cases} 1 & \text{if } j = \arg\max_i \mathbf{w}_i^\mathsf{T} \mathbf{x} \\ 0 & \text{if otherwise} \end{cases}$$



### A probabilistic perspective

Change the output nonlinearity



□ From WTA to Softmax function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $s=f(x_i;W)$ 

# Multiclass linear classifiers

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



The WTA prediction: one-hot encoding of its predicted label

$$y = 1 \Leftrightarrow y = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad y = 2 \Leftrightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad y = 3 \Leftrightarrow y = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



### Probabilistic outputs

#### scores = unnormalized log probabilities of the classes.



$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where 
$$s=f(x_i;W)$$

#### unnormalized probabilities

cat 
$$\begin{bmatrix} 3.2 \\ 5.1 \\ -1.7 \end{bmatrix}$$
 exp  $\begin{bmatrix} 24.5 \\ 164.0 \\ 0.18 \end{bmatrix}$  normalize  $\begin{bmatrix} 0.13 \\ 0.87 \\ 0.00 \end{bmatrix}$  frog  $\begin{bmatrix} -1.7 \\ 0.18 \end{bmatrix}$  probabilities



### How to learn a multiclass classifier?

- Define a loss function and do minimization
  - Given training data  $\{(x_i, y_i): 1 \le i \le n\}$  i.i.d. from distribution D
  - Find  $y = f(x) \in \mathcal{H}$  that minimizes  $\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
  - s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

**Empirical loss** 

# Learning a multiclass linear classifier

- Design a loss function for multiclass classifiers
  - □ Perceptron?
    - Yes, see homework
  - ☐ Hinge loss
    - The SVM and max-margin (see CS231n)
  - □ Probabilistic formulation
    - Log loss and logistic regression
- Generalization issue
  - □ Avoid overfitting by regularization



### **Example: Logistic Regression**

Learning loss: negative log likelihood

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $egin{aligned} oldsymbol{s}=f(x_i;W) \end{aligned}$ 

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$



### Logistic Regression

Learning loss: example





### Logistic Regression

Learning loss: questions





### Logistic Regression

Learning loss: questions





# Learning with regularization

- Constraints on hypothesis space
  - Similar to Linear Regression

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data



Regularization: Model should be "simple", so it works on test data



### Learning with regularization

Regularization terms

#### In common use:

**L2 regularization**  $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization  $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2)  $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Max norm regularization (might see later)

- Priors on the weights
  - □ Bayesian: integrating out weights
  - Empirical: computing MAP estimate of W

# L1 vs L2 regularization



https://www.youtube.com/watch?v=jEVh0uheCPk



### L1 vs L2 regularization

### Sparsity

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \ w_2 &= [0.25,0.25,0.25,0.25] \ w_3 &= [0.5,0.5,0,0] \end{aligned}$$

$$f(x) = w^{\mathsf{T}} x$$

$$w_1^{\mathsf{T}} x = w_2^{\mathsf{T}} x = w_3^{\mathsf{T}} x$$

$$\|w_1\|^2 = |w_1| = 1$$

$$\|w_2\|^2 = 4/16 = 1/4, |w_2| = 1$$

$$\|w_3\|^2 = 2/4 = 1/2, |w_3| = 1$$

#### A L1 regularization



#### B L2 regularization



### Optimization: gradient descent

Gradient descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

### Learning rate matters





# Optimization: gradient descent

### Stochastic gradient descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

# Optimization: gradient descent

### Stochastic gradient descent



- ▶ the objective does not always decrease for each step
- comparing to GD, SGD needs more steps, but each step is cheaper
- mini-batch, say pick up 100 samples and do average, may accelerate the convergence

### Interpreting network weights

What are those weights?



$$f(x,W) = Wx + b$$



Array of **32x32x3** numbers (3072 numbers total)



### **Outline**

- Single layer neural networks
  - □ Network models
  - □ Example: Logistic Regression
- Multi-layer neural networks
  - Limitations of single layer networks
  - Networks with single hidden layer

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes



- Binary classification
  - $\square$  A neuron estimates  $P(y=1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$
  - □ Its decision boundary is linear, determined by its weights





Can solve linearly separable problems

$$\mathcal{D} = \mathcal{D}^{+} \cup \mathcal{D}^{-}$$
$$\exists \mathbf{w}^{*}, \mathbf{w}^{*\mathsf{T}} \mathbf{x} > 0, \ \forall \mathbf{x} \in \mathcal{D}^{+}$$
$$\mathbf{w}^{*\mathsf{T}} \mathbf{x} < 0, \ \forall \mathbf{x} \in \mathcal{D}^{-}$$

Examples



Can't solve non linearly separable problems



Can we use multiple neurons to achieve this?



- Can't solve non linearly separable problems
- Unless the input is transformed in a better representation





Can't solve non linearly separable problems



Unless the input is transformed in a better representation

# Adding one more layer

- Single hidden layer neural network
  - 2-layer neural network: ignoring input units



Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input units, 4 hidden units and 2 output units

Q: What if using linear activation in hidden layer?



- Single hidden layer neural network
  - □ Partition the input space into regions





- Single hidden layer neural network
  - □ Form a stump/delta function



### Capacity of neural network

Single hidden layer neural network





### Multi-layer perceptron

- Boolean case
  - □ Multilayer perceptrons (MLPs) can compute more complex Boolean functions
  - MLPs can compute any Boolean function
    - Since they can emulate individual gates
  - □ MLPs are universal Boolean functions





### Capacity of neural network

- Universal approximation
  - □ Theorem (Hornik, 1991)

A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.

- The result applies for sigmoid, tanh and many other hidden layer activation functions
- Caveat: good result but not useful in practice
  - How many hidden units?
  - How to find the parameters by a learning algorithm?



#### General neural network

Multi-layer neural network



Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second hidden layer and 1 output unit

- Naming conventions; a N-layer neural network:
  - N − 1 layers of hidden units
  - One output layer

### Multilayer networks



network: sequence of parallelized weighted sums and non-linearities

define 
$$\mathbf{x}^{(0)} \equiv \mathbf{x}$$
,  $\mathbf{x}^{(1)} \equiv \mathbf{h}$ , etc.

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)} \mathbf{T} \mathbf{x}^{(0)}$$
  $\mathbf{s}^{(2)} = \mathbf{W}^{(2)} \mathbf{T} \mathbf{x}^{(1)}$   $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$   $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$ 

### Multilayer networks







### Why more layers (deeper)?

- A deep architecture can represent certain functions more compactly
  - ☐ (Montufar et al., NIPS'14)
    - Functions representable with a deep rectifier net can require an exponential number of hidden units with a shallow one.









### Why more layers (deeper)?

- A deep architecture can represent certain functions more compactly
  - □ Example: Boolean functions
    - There are Boolean functions which require an exponential number of hidden units in the single layer case
    - require a polynomial number of hidden units if we can adapt the number of layers
  - Example: multivariate polynomials (Rolnick & Tegmark, ICLR'18)
    - Total number of neurons m required to approximate natural classes of multivariate polynomials of n variables
    - grows only linearly with n for deep neural networks, but grows exponentially when merely a single hidden layer is allowed.

### Why more layers (deeper)?



https://youtu.be/aircAruvnKk?list=PLZHQObOWTQDN U6R1\_67000Dx\_ZCJB-3pi

## Other network connectivity

sequential connectivity: information must flow through the entire sequence to reach the output



information may not be able to propagate easily make shorter paths to output

residual & highway connections



Deep residual learning for image recognition, He et al., 2016 Highway networks, Srivastava et al., 2015 dense (concatenated)
connections



Densely connected convolutional networks, Huang et al., 2017

### Modern MLP as Implicit Representation



Generative Query Networks [Eslami et al. 2018]



[Flynn et al., 2016; Zhou et al., 2018b; Mildenhall et al. 2019]



RenderNet [Nguyen-Phuoc et al. 2018]

**Voxel Grids + CNN decoder** 

#### **Multiplane Images (MPIs)**



DeepVoxels [Sitzmann et al. 2019]



Neural Volumes [Lombardi et al. 2019]

SRN NeRF IDR [Sitzmann et al. 2019b] 2020] Implicit Fields

**Voxel Grids + Ray Marching** 

### Modern MLP in NeRF

- Color + Density
- Positional Encoding
- Volume Rendering



Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall et al., ECCV 2020 Oral - Best Paper Honorable Mention





### Modern MLP in NeRF

#### NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall\* UC Berkeley Pratul P. Srinivasan\* UC Berkeley Matthew Tancik\* UC Berkeley Jonathan T. Barron Google Research Ravi Ramamoorthi UC San Diego Ren Ng UC Berkeley

\* Denotes Equal Contribution







https://youtu.be/JuH79E8rdKc

# м

#### **Outline**

- Single layer neural networks
  - □ Network models; Example: Logistic Regression
- Multi-layer neural networks
  - □ Limitations of single layer networks
  - □ Neural networks with single hidden layer
  - Sequential network architecture and variants
- Inference and learning
  - Forward and Backpropagation
  - Examples: one-layer network
  - General BP algorithm



### Computation in neural network

- We only need to know two algorithms
  - □ Inference/prediction: simply forward pass
  - □ Parameter learning: needs backward pass
- Basic fact:
  - □ A neural network is a function of composed operations

$$f_L(\mathbf{w}_L, f_{L-1}(\mathbf{w}_{L-1}, \dots f_1(\mathbf{w}_1, \mathbf{x}) \dots))$$

 □ All the f functions are linear + (simple) nonlinear (differentiable a.e.) operators

### Inference example: Forward Pass

What does the network compute?



Output of the network can be written as:

$$h_j(\mathbf{x}) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji})$$
 $o_k(\mathbf{x}) = g(w_{k0} + \sum_{j=1}^{J} h_j(\mathbf{x}) w_{kj})$ 

(j indexing hidden units, k indexing the output units, D number of inputs)

### Forward Pass in Python

Example code for a forward pass for a 3-layer network in Python:



hidden layer 1 hidden layer 2

```
# forward-pass of a J-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Can be implemented efficiently using matrix operations



### Parameter learning: Backward Pass

- Supervised learning framework
  - Find weights:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where  $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$  is the output of a neural network

- Define a loss function, eg:
  - Squared loss:  $\sum_{k} \frac{1}{2} (o_{k}^{(n)} t_{k}^{(n)})^{2}$
  - Cross-entropy loss:  $-\sum_{k} t_{k}^{(n)} \log o_{k}^{(n)}$
- Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}$$

where  $\eta$  is the learning rate (and E is error/loss)



### Backward pass

- Backpropagation
  - □ An efficient method for computing gradients in NNs
  - □ A neural network as a function of composed operations

$$f_L(\mathbf{w}_L, f_{L-1}(\mathbf{w}_{L-1}, \dots f_1(\mathbf{w}_1, \mathbf{x}) \dots))$$

and the loss  ${\cal L}$  is a function of the network output

→ use <u>chain rule</u> to calculate gradients

### Backward pass



https://www.youtube.com/watch?v=Ilg3gGewQ5U

#### Gradient descent iteration

#### Forward pass

$$\mathbf{s}^{(1)} = \mathbf{W}^{(1)\intercal}\mathbf{x}^{(0)}$$
  $\mathbf{s}^{(2)} = \mathbf{W}^{(2)\intercal}\mathbf{x}^{(1)}$   $\mathbf{x}^{(1)} = \sigma(\mathbf{s}^{(1)})$   $\mathbf{x}^{(2)} = \sigma(\mathbf{s}^{(2)})$ 

#### Backward pass

calculate  $\nabla_{W^{(1)}}\mathcal{L}, \nabla_{W^{(2)}}\mathcal{L}, \dots$  let's start with the final layer:  $\nabla_{W^{(L)}}\mathcal{L}$ 

to determine the chain rule ordering, we'll draw the dependency graph



### Gradient descent iteration

#### Backward pass



note 
$$\nabla_{\mathbf{W}^{(L)}}\mathcal{L}\equiv rac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}}$$
 is notational convention

#### Gradient descent iteration

#### Backward pass

now let's go back one more layer...

again we'll draw the dependency graph:



$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{x}^{(L-1)}} \frac{\partial \mathbf{x}^{(L-1)}}{\partial \mathbf{s}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{W}^{(L-1)}}$$

The order needs to be reversed for Jacobians! See LN04 for details



Let's take a single layer network





Let's take a single layer network and draw it a bit differently





Output of unit k

Output layer activation function

Net input to output unit k

Weight from input i to k

Input unit i





$$\frac{\partial E}{\partial w_{ki}} =$$





Error gradients for single layer network:

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$

• Error gradient is computable for any continuous activation function g(), and any continuous error function





$$\frac{\partial E}{\partial w_{ki}} = \underbrace{\frac{\partial E}{\partial o_k}}_{\delta_k^o} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$





$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} = \delta_k^o \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}}$$





$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} = \underbrace{\delta_k^o \cdot \frac{\partial o_k}{\partial z_k}}_{\delta_k^z} \frac{\partial z_k}{\partial w_{ki}}$$





$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{ki}} = \delta_k^z \frac{\partial z_k}{\partial w_{ki}} = \delta_k^z \cdot x_i$$



#### **Outline**

- Multi-layer neural networks
  - Limitations of single layer networks
  - □ Neural networks with single hidden layer
  - □ Sequential network architecture and variants
- Inference and learning
  - □ Forward and Backpropagation
  - □ Examples: one-layer network
  - □ General BP algorithm

## An implementation perspective

Example: Univariate logistic least square model

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^2$$





#### Univariate chain rule

- A structured way to implement it
  - The goal is to write a program that efficiently computes the derivatives

#### Computing the loss:

$$s = wx + b$$
$$y = \sigma(s)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

#### Computing the derivatives:

$$\frac{d\mathcal{L}}{dy} = y - t$$

$$\frac{d\mathcal{L}}{ds} = \frac{d\mathcal{L}}{dy}\sigma'(s)$$

$$\frac{d\mathcal{L}}{dw} = \frac{d\mathcal{L}}{ds}x$$

$$\frac{d\mathcal{L}}{db} = \frac{d\mathcal{L}}{ds}$$



### Computation graph

- Represent the computations using a computation graph
  - Nodes: inputs & computed quantities
  - □ Edges: which nodes are computed directly as function of which other nodes





### Univariate chain rule

- A shorthand notation
  - $\square$  Use  $\delta_y := d\mathcal{L}/dy$  , called the error signal
  - Note that the error signals are values computed by the program

#### Computing the loss:

$$s = wx + b$$

$$y = \sigma(s)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$





Compute Derivatives

#### Computing the derivatives:

$$\delta_y = y - t$$

$$\delta_s = \delta_u \sigma'(s)$$

$$\delta_w = \delta_s x$$

$$\delta_b = \delta_s$$



### Multivariate chain rule

The computation graph has fan-out > 1

#### L<sub>2</sub>-Regularized regression



$$z = wx + b$$
  
 $y = \sigma(z)$   
 $\mathcal{L} = \frac{1}{2}(y - t)^2$   
 $\mathcal{R} = \frac{1}{2}w^2$   
 $\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$ 

#### Multiclass logistic regression



$$z_{\ell} = \sum_{j} w_{\ell j} x_{j} + b_{\ell}$$

$$y_{k} = \frac{e^{z_{k}}}{\sum_{\ell} e^{z_{\ell}}}$$

$$\mathcal{L} = -\sum_{j} t_{k} \log y_{k}$$



### Multivariable chain rule

Recall the distributed chain rule



The shorthand notation:

$$\delta_t = \delta_x \frac{dx}{dt} + \delta_y \frac{dy}{dt}$$



### Given a computation graph

Let  $v_1, \ldots, v_N$  be a topological ordering of the computation graph (i.e. parents come before children.)

 $v_N$  denotes the variable we're trying to compute derivatives of (e.g. loss)

forward pass 
$$\begin{bmatrix} & \text{For } i=1,\ldots,N \\ & \text{Compute } v_i \text{ as a function of } \mathrm{Pa}(v_i) \end{bmatrix}$$
 backward pass 
$$\begin{bmatrix} & \delta_{v_N}=1 \\ & \text{For } i=N-1,\ldots,1 \\ & \delta_{v_i}=\sum_{j\in \mathrm{Ch}(v_i)} \delta_{v_j} \frac{\partial v_j}{\partial v_i} \end{bmatrix}$$

Example: univariate logistic least square regression



#### Forward pass:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$\mathcal{R} = \frac{1}{2}w^{2}$$

$$\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$$

#### Backward pass:

$$\delta_{\mathcal{L}_{\text{reg}}} =$$

$$\delta_{\mathcal{R}} =$$

$$=$$

$$=$$

$$\delta_{w} =$$

Example: Multilayer Perceptron (multiple outputs)



#### Forward pass:

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$
 $h_i = \sigma(z_i)$ 
 $y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)}$ 
 $\mathcal{L} = \frac{1}{2} \sum_i (y_k - t_k)^2$ 

#### Backward pass:

$$\overline{\mathcal{L}} = 1$$
 $\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k)$ 
 $\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$ 
 $\overline{b_k^{(2)}} = \overline{y_k}$ 
 $\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$ 
 $\overline{z_i} = \overline{h_i} \sigma'(z_i)$ 
 $\overline{w_{ij}^{(1)}} = \overline{z_i} x_j$ 
 $\overline{b_i^{(1)}} = \overline{z_i}$ 

Backprop as message passing:



- Each node receives a set of messages from its children, which are aggregated into its error signal, then it passes messages to its parents
- Modularity: each node only has to know how to compute derivatives w.r.t. its arguments – local computation in the graph



### Patterns in backward flow

### Multiplicative node



$$\frac{\partial L}{\partial y_j^{(k-1)}} = \frac{\partial L}{\partial o_i^{(k)}} \frac{\partial o_i^{(k)}}{\partial y_j^{(k-1)}} = y_l^{(k-1)} \frac{\partial L}{\partial o_i^{(k)}}$$

# .

### Patterns in backward flow

#### Max node



- Vector equivalent of subgradient
  - 1 w.r.t. the largest incoming input
    - Incremental changes in this input will change the output
  - 0 for the rest
    - · Incremental changes to these inputs will not change the output



## Computation cost

- Forward pass: one add-multiply operation per weight
- Backward pass: two add-multiply operations per weight



 For a multilayer network, the cost is linear in the number of layers, quadratic in the number of units per layer



# Backpropagation

- Backprop is used to train the majority of neural nets
  - Even generative network learning, or advanced optimization algorithms (second-order) use backprop to compute the update of weights
- However, backprop seems biologically implausible
  - □ No evidence for biological signals analogous to error derivatives
  - All the existing biologically plausible alternatives learn much more slowly on computers.
  - So how on earth does the brain learn???



# Coding examples

- Getting familiar with Pytorch
  - Python Tutorial: https://cs231n.github.io/python-numpy-tutorial/
  - PyTorch in 60 mins: https://pytorch.org/tutorials/beginner/deep\_learning\_60min\_blitz. html
- Predicting house prices
  - https://d2l.ai/chapter\_multilayer-perceptrons/kaggle-houseprice.html



# Summary

- Artificial neurons, Single-layer network
- Multi-layer neural networks
- Inference and learning
  - □ Forward and Backpropagation
- Next time ...
  - Modern topics about MLP, CNN

#### Reference:

- □ d2l.ai: 4.1-4.3, 4.7
- □ DLBook: Chapter 6