

Incident report analysis - DDoS Attack

Cybersecurity Analyst

July 30, 2025

Summary

On July 30, 2025, a multimedia company providing web design, graphic design, and social media marketing services experienced a distributed denial of service (DDoS) attack, disrupting its internal network for approximately two hours. The attack involved a flood of Internet Control Message Protocol (ICMP) packets, overwhelming network resources and preventing access to services. The incident management team responded by blocking incoming ICMP packets, taking non-critical services offline, and restoring critical services. The cybersecurity team identified the cause as a malicious actor exploiting an unconfigured firewall to send excessive ICMP pings. Mitigation measures included implementing firewall rules to limit ICMP traffic, verifying source IP addresses, deploying network monitoring software, and installing an intrusion detection and prevention system (IDS/IPS). The attack disrupted business operations, but no data loss was reported.

Identify

The incident was a DDoS attack targeting the companys internal network infrastructure. The attack exploited a vulnerability in an unconfigured firewall, allowing a flood of ICMP packets to overwhelm network resources. Affected systems and components include:

Hardware/Systems: Internal network servers, routers, and firewalls handling traffic.

Processes/Business Environment: Web design, graphic design, and social media marketing services were disrupted, impacting client-facing operations and internal workflows.

	·
	People: Employees requiring access to internal network resources were unable
	to perform duties during the attack.
	The attack originated from an external malicious actor using spoofed IP
	addresses, highlighting gaps in firewall configuration and IP verification
	protocols.
Protect	To safeguard assets against future DDoS attacks, the following measures are
	recommended:
	Access Control: Implement rate-limiting rules for ICMP traffic and verify
	source IP addresses to block spoofed packets. Restrict network access to
	trusted IP ranges for critical systems.
	Awareness/Training: Conduct mandatory cybersecurity training for
	employees, focusing on recognizing DDoS attack indicators and secure
	network practices.
	Data Security: Encrypt sensitive data in transit and at rest to mitigate risks in
	future attacks, despite no data compromise in this incident.
	Information Protection and Procedures: Update firewall management
	procedures to include regular audits and configuration reviews.
	Maintenance: Regularly update firewall firmware, network devices, and
	software to address vulnerabilities.
	Protective Technology: Deploy an IDS/IPS system to filter malicious traffic and
	implement network monitoring software to detect abnormal patterns in real
	time.
Detect	To enhance detection of similar incidents, the following tools and processes
	are proposed:
	Anomalies and Events: Deploy a Security Information and Event Management
	(SIEM) system to aggregate and analyze network logs, alerting IT staff to
	unusual traffic patterns, such as excessive ICMP requests.
	Security Continuous Monitoring: Implement network monitoring software to
	track inbound and outbound traffic, identifying spikes in ICMP or other

	protocol traffic from non-trusted sources.
	Detection Process: Utilize an IDS to detect unauthorized access attempts and
	abnormal traffic behaviors. Configure alerts for high-frequency ICMP packets
	or connections from unverified IP addresses. Conduct regular audits of user
	account activity.
Respond	A response plan for future DDoS incidents includes:
	Response Planning: Develop a formal incident response plan outlining roles,
	responsibilities, and escalation procedures. Include steps to isolate affected
	systems and reroute traffic.
	Communications: Notify IT staff, management, and affected employees
	immediately upon detecting an incident. Communicate with clients if services
	are impacted, ensuring transparency and regulatory compliance.
	Analysis: Conduct a root cause analysis post-incident to identify vulnerabilities
	(e.g., firewall misconfigurations) and trace attack origins using log data and
	traffic analysis.
	Mitigation: Contain incidents by isolating affected network segments, blocking
	malicious IP addresses, and throttling traffic. Temporarily disable non-critical
	services to prioritize critical system availability.
	Improvements: Update incident response procedures based on lessons
	learned, incorporating automated tools for faster containment and regular
	tabletop exercises.
Recover	To restore operations following a DDoS incident:
	Recovery Planning: Restore affected systems by restarting services and
	verifying network integrity. Use backup configurations to restore firewall
	settings if corrupted. Prioritize critical services for restoration.
	Improvements: Enhance recovery processes by maintaining redundant
	network paths and load balancers to minimize downtime. Regularly test
	backup and restoration procedures.
	Communications: Inform employees and clients of restored services,

Reflections/Notes: The DDoS attack highlighted the critical need for robust firewall configurations and proactive network monitoring. Implementing the NIST CSF ensures a structured approach to managing cybersecurity risks, emphasizing continuous improvement. Regular training, updated policies, and advanced detection tools will strengthen the organizations resilience against future attacks. The incident underscores the importance of rapid response and recovery to minimize operational and reputational impact.