

日本国特許庁 JAPAN PATENT OFFICE

REC'D 13 JAN 2005 WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年10月19日

出願番号 Application Number:

特願2004-303860

[ST. 10/C]:

[JP2004-303860]

出 願 人
Applicant(s):

三菱マテリアル株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月24日

BEST AVAILABLE COF

【書類名】 特許願 【整理番号】 P6428 【あて先】 特許庁長官殿

【あて先】 特計力 長音 M 【国際特許分類】 H01B 1/06

【発明者】

【住所又は居所】 茨城県那珂群那珂町向山1002-14 三菱マテリアル株式会

社 総合研究所那珂研究センター内

【氏名】 山田 雅治

【発明者】

【住所又は居所】 茨城県那珂群那珂町向山1002-14 三菱マテリアル株式会

社 総合研究所那珂研究センター内

【氏名】 星野 孝二

【発明者】

【住所又は居所】 茨城県那珂群那珂町向山1002-14 三菱マテリアル株式会

社 総合研究所那珂研究センター内

【氏名】 足立 和則

【発明者】

【住所又は居所】 茨城県那珂群那珂町向山1002-14 三菱マテリアル株式会

社 総合研究所那珂研究センター内

【氏名】 駒田 紀一

【特許出願人】

【識別番号】 000006264

【氏名又は名称】 三菱マテリアル株式会社

【代理人】

【識別番号】 100076679

【弁理士】

【氏名又は名称】 富田 和夫

【選任した代理人】

【識別番号】 100094824

【弁理士】

【氏名又は名称】 鴨井 久太郎 【電話番号】 03-3233-1676

【連絡先】 担当

【先の出願に基づく優先権主張】 【出願番号】 特願2003-37

【出願番号】 特願2003-379477 【出願日】 平成15年11月10日

【手数料の表示】

【予納台帳番号】 009173 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9708620

【魯類名】特許請求の範囲

【請求項1】

ネットワークを組んでいる骨格構造を有する多孔質ニッケルの骨格表面に、B(ただし、BはSm、Gd、Y、Caの内の1種または2種以上を示す)ドープされたセリア粒が独立して焼着していることを特徴とする固体酸化物形燃料電池用発電セルの燃料極。

【請求項2】

ネットワークを組んでいる骨格構造を有する多孔質ニッケルの骨格表面に、平均粒径: $0.2\sim0.6\mu$ mのB(ただし、BはSm、Gd、Y、Caの内の1種または2種以上を示す。以下、同じ)ドープされたセリア粒(以下、大径セリア粒という)が独立して焼着し、さらに前記大径セリア粒と大径セリア粒の隙間に平均粒径: $0.01\sim0.09\mu$ mのBドープされたセリア粒(以下、小径セリア粒という)が独立して焼着していることを特徴とする固体酸化物形燃料電池用発電セルの燃料極。

【請求項3】

前記請求項1記載のBドープされたセリア粒、または請求項2記載の大径セリア粒および 小径セリア粒を構成するBドープされたセリア粒は、一般式: $Ce_{1-m}B_mO_2$ (式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m $\leq 0.4)で表される Bドープされたセリアからなることを特徴とする固体酸化物型燃料電池用発電セルの燃料 極。$

【請求項4】

ランタンガレード系酸化物イオン伝導体からなる電解質と、前記電解質の一方の面に多孔 質の空気極が形成され、他方の面に多孔質の燃料極が成形されている固体酸化物型燃料電 池用発電セルにおいて、

前記燃料極は、請求項1、2または3記載の燃料極であることを特徴とする固体酸化物型 燃料電池用発電セル。

【請求項5】

前記ランタンガレート系酸化物イオン伝導体は、一般式: La_{1-X} Sr x Ga_{1-Y-Z} Mgr Az O_3 (式中、 $A=C_0$ 、 F_e 、 N_i 、 C_u の 1種または2種以上; $X=0.05\sim0.3$; $Y=0\sim0.29$; $Z=0.01\sim0.3$; $Y+Z=0.025\sim0.3$)で表される酸化物イオン伝導体であることを特徴とする請求項 4 記載の固体酸化物型燃料電池用発電セル。

【請求項6】

請求項4または5記載の固体酸化物型燃料電池用発電セルを組込んだ固体酸化物型燃料電池。

BEST AVAILABLE COP

【発明の名称】固体電解質型燃料電池用発電セル

【技術分野】

[0001]

この発明は、固体電解質としてランタンガレート系電解質を用いた固体電解質型燃料電 池用発電セルに関するものであり、特に固体電解質型燃料電池用発電セルにおける燃料極 に関するものである。

【背景技術】

[0002]

一般に、固体電解質型燃料電池は、水素ガス、天然ガス、メタノール、石炭ガスなどを燃料とすることができるので、発電における石油代替エネルギー化を促進することができ、さらに廃熱を利用することができるので省資源および環境問題の観点からも注目されている。この固体電解質型燃料電池の構造は、一般に、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極および燃料極の外側にそれぞれセパレータを積層させた構造を有している。この固体電解質型燃料電池は、一般に800~1000℃で作動するが、近年、作動温度が600~800℃の低温タイプのものが提案されている。

[0003]

前記低温タイプの固体電解質型燃料電池の発電セルを構成する固体電解質の一つとして、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式: La_{1-x} Sr x Ga_{1-y-z} Mgr Az O_3 (式中、A=Co、Fe、Ni、Cuの1種または2種以上; $X=0.05\sim0.3$; $Y=0\sim0.29$; $Z=0.01\sim0.3$; $Y+Z=0.025\sim0.3$)で表される酸化物イオン伝導体であることが知られている(特許文献 1参照)。

【特許文献1】特開平11-335164号公報

【特許文献2】特開平11-297333号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

現在の固体電解質型燃料電池は大型でしかも十分な出力が得られていないところから、 さらに一層の小型化が求められると同時に一層の高出力化が求められており、前記従来の Bドープされたセリアとニッケルを含む焼結体を燃料極とした発電セルを組込んだ固体電 解質型燃料電池についても一層の小型化および高出力化が求められていた。

【課題を解決するための手段】

[0005]

そこで、本発明者等は、上述のような観点から、一層優れた固体電解質型燃料電池を開発すべく研究を行った。その結果、

(イ) 多孔質な骨格構造のニッケル表面にBドープされたセリアが粒状に焼着している組織構造を有する燃料極において、前記粒状に焼着しているBドープされたセリアは隣の粒状に焼着しているBドープされたセリアと接することなく独立して焼着しているBドープ

出証特2004-3117683

されたセリアが多く存在するほど、固体電解質型燃料電池の特性を高めることができる、 (ロ) 図1に示されるように、前記多孔質な骨格構造のニッケル表面に独立して粒状に焼着しているBドープされたセリアは、従来から知られている平均粒径: $0.2\sim0.6~\mu$ nのBドープされたセリア粒(以下、大径セリア粒という)の他に平均粒径: $0.01\sim0.09~\mu$ mのBドープされたセリア粒(以下、小径セリア粒という)が前記大径セリア 粒と大径セリア粒の隙間に独立して焼着していることにより固体電解質型燃料電池の特性を一層高めることができる、という研究結果が得られたのである。

[0006]

この発明は、かかる研究結果に基づいてなされたものであって、

- (1) ネットワークを組んでいる骨格構造を有する多孔質ニッケルの骨格表面に、Bドープされたセリア粒が独立して焼着している固体酸化物形燃料電池用発電セルの燃料極、
- (2) ネットワークを組んでいる骨格構造を有する多孔質ニッケルの骨格表面に、大径セリア粒が独立して焼着し、さらに前記大径セリア粒と大径セリア粒の隙間に小径セリア粒が独立して焼着している固体酸化物形燃料電池用発電セルの燃料極、
- (3) 前記 (1) 記載のBドープされたセリア粒、または前記 (2) 記載の大径セリア粒 および小径セリア粒を構成するBドープされたセリア粒は、一般式: $Ce_1-m_Bm_O2$ (式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≤0.4) で表されるBドープされたセリアからなる固体酸化物型燃料電池用発電セルの燃料極、
- (4) ランタンガレード系酸化物イオン伝導体からなる電解質と、前記電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形されている固体酸化物型燃料電池用発電セルにおいて、前記燃料極は前記(1)、(2)または(3)記載の燃料極である固体酸化物型燃料電池用発電セル、
- (5) 前記ランタンガレート系酸化物イオン伝導体は、一般式: La_{1-x} Sr x Ga_{1-y-z} Mgv A_{Z} O_{3} (式中、A=Co、Fe、Ni、Cu o 1 種または2種以上; $X=0.05\sim0.3$; $Y=0\sim0.29$; $Z=0.01\sim0.3$; $Y+Z=0.025\sim0.3$)で表される酸化物イオン伝導体である前記(4)記載の固体酸化物型燃料電池用発電セル、
- (6)前記(4)または(5)記載の固体酸化物型燃料電池用発電セルを組込んだ固体酸化物型燃料電池、に特徴を有するものである。

[0007]

この発明の固体電解質型燃料電池用発電セルにおける燃料極は、Bドープされたセリア 粒が前記多孔質な骨格構造のニッケル表面に独立して焼着しており、この燃料極を採用す ることにより固体電解質型燃料電池の特性を高めることができる。その理由として、以下 に示される理由が考えられる。すなわち、Bドープされたセリア粒が前記多孔質な骨格構 造のニッケル表面に独立して焼着している燃料極を採用すると、固体電解質型燃料電池の 作動時においてニッケルは局所的に発熱量が大きいので熱膨張し、一方、セリアの価数が +3価から+4価になって体積が収縮するものの、Bドープされたセリア粒が独立してい るので、膨張率差の影響がほとんど現れず、Bドープされたセリアとニッケルの剥離が生 じない。

さらに、前記Bドープされたセリア粒がニッケル表面に独立して焼着しているとニッケルの粒成長が抑制され、そのためにニッケルの粒成長に伴って発生するニッケル金属の露出面積の増加が阻止されて多孔質な骨格構造のニッケル表面に焼着しているBドープされたセリア粒の分布密度の低下が阻止され、燃料である水素との反応面積が減って固体電解質型燃料電池の特性が低下するのを防止することができる。

これに対して、図3に示される従来の固体電解質型燃料電池における燃料極は、セリアがネットワークを組んで連結しているので多孔質な骨格構造のニッケル表面がセリアで被覆され、ニッケル表面の露出面積が少なくなって導電性が阻害され、さらに膨張率差の影響を受けやすく、ネットワークを組んでいるセリアの引っ張り応力を受けて内部歪を内蔵し、またセリアとニッケルが剥離してしまう結果、所望の固体電解質型燃料電池の特性が得られなくなる。

[0008]

図1は、この発明の固体電解質型燃料電池用発電セルにおける前記(2)記載の燃料極の一層好ましい基本的組織構造を模型的に描いたものである。図1に示されるように、この発明の固体電解質型燃料電池用発電セルにおける燃料極はBドープしたセリアからなる大径セリア粒が前記多孔質な骨格構造のニッケル表面に独立して焼着しており、この独立して焼着している大径セリアと大径セリアの隙間にBドープした小径セリア粒が独立して焼着しており、かかる組織構造を有する燃料極を組込んだ発電セルを採用することにより固体電解質型燃料電池の特性を高めることができる。

その理由として、以下に示される理由が考えられる。すなわち、図1に示されるようなBドープした大径セリア粒が前記多孔質な骨格構造のニッケル表面に独立して焼着し、さらにBドープした大径セリア粒と大径セリア粒の間にBドープした小径セリア粒が独立して焼着していると、多孔質な骨格構造のニッケル表面にセリアが一層緻密に焼着し、それによって燃料である水素との反応面積が一層増加し、さらに、固体電解質型燃料電池の作動時は燃料極のニッケルは局所的に発熱量が大きいので熱膨張し、一方、セリアの価数が+3価から+4価になって体積が収縮するものの、図1のようなミクロ組織では、Bドープしたセリアがほとんどネットワークを形成していないので、膨張率差の影響がほとんど現れず、Bドープしたセリアとニッケルの剥離が生じることがない。

さらに図1のようなミクロ組織では、大径セリアと大径セリアの隙間のニッケル表面に 微細なBドープした小径セリア粒が独立して焼着しているために多孔質な骨格構造のニッ ケル表面の露出性が確保されており、そのために導電性を減少させることがないので、発 電セルの特性を一層向上させる。

[0009]

さらに、一般式:La_{1-x} Sr x Ga_{1-y-z} Mgy Az O₃ (式中、A=Co、Fe、Ni、Cuの1種または2種以上; X=0.05~0.3; Y=0~0.29; Z=0.01~0.3; Y+Z=0.025~0.3)で表されるランタンガレート系酸化物イオン伝導体を固体電解質とし、また一般式:Ce_{1-m}B_mO₂、(式中、BはSm、Gd、Y、Caの1種または2種以上、mは 0 < m \leq 0.4)で表されるBドープされたセリアとニッケルを含み、ネットワークを組んでいる多孔質なニッケル骨格構造の表面に前記Bドープされたセリア粒が多孔質な骨格構造のニッケル表面に独立して焼着している燃料極としてこれらを組み合わせたこともこの発明の特徴の一つである。Bドープしたセリアはランタンガレート系電解質と相性が良く、1350℃以下の条件でランタンガレート系電解質に焼きつけると、燃料極として有効に作用し、高特性を有する固体電解質型燃料電池用発電セルを製造することができる。

[0010]

この発明の固体電解質型燃料電池用発電セルにおける燃料極は、前述の如くBドープされたセリア粒が多孔質な骨格構造のニッケル表面に独立して焼着していることを特徴とするものであるが、前記多孔質な骨格構造のニッケル表面に独立して焼着しているBドープされたセリア粒は、大径セリア粒と小径セリア粒からなり、前記大径セリア粒と大径セリア粒の隙間のニッケル表面に微細な小径セリア粒が焼着していることが一層好ましく、前記大径セリア粒の平均粒径は $0.2\sim0.6\mu$ mとし、従来から知られているBドープしたセリアの平均粒径($0.1\sim2\mu$ m)の範囲内にあってもよいが、小径セリア粒の平均粒径は格段に微細な $0.01\sim0.09\mu$ mとすることが一層好ましい。

小径セリア粒の平均粒径を $0.01\sim0.09\mu$ mに定めたのは、小径セリア粒の平均粒径が 0.01μ m未満となるような独立した小径セリア粒を形成することは困難である理由によるものであり、一方、 0.09μ mを越えると、前記大径セリア粒と大径セリア粒の隙間に独立して焼着することが困難となるからである。なお、これら大径セリア粒および小径セリア粒の平均粒径は画像解析により求めることができる。

【発明の効果】

[0011]

この発明の燃料極を設けてなる発電セルを組込んだ固体酸化物型燃料電池は、固体酸化物形燃料電池の低温作動化に適用でき、さらに燃料電池発電モジュールのコンパクト化、高効率化が可能となる。

[0012]

実施例

まず、発電セルを作製するための原料の製造方法を説明する。

(a) ランタンガレート系電解質原料粉末を製造:

酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトのそれぞれ試薬級の粉体を用意し、(Lao.8 Sro.2)(Gao.8 Mgo.15 Coo.05)03 で示される組成となるよう秤量し、ボールミル混合の後、空気中、1350 Cに3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.3 μ mのランタンガレート系電解質原料粉末を製造した。

[0013]

- (b) サマリウムをドープしたセリア (以下、SDCという) の超微粉を含むエタノール 溶液の製造:
- 0.5 mol/L の硝酸セリウム水溶液8部と 0.5 mol/L の硝酸サマリウム水溶液2部の混合水溶液に 1 mol/L の水酸化ナトリウム水溶液を攪拌しながら滴下し、酸化セリウムと酸化サマリウムを共沈させた。次いで、生成した粉末を遠心分離機を用いて沈降させ、上澄みを捨て、蒸留水を加えて攪拌・洗浄し、遠心分離機を用いて再度沈降させ、この操作を 6 回繰り返して洗浄した。次いで、遠心分離機で沈降させ、エタノールを加えて攪拌し、遠心分離機を用いて再度沈降させ、この操作を 3 回繰り返して溶液を水からエタノールに置換し、SDCの超微粉を含むエタノール溶液を作製した。得られた SDCの超微粉を含むエタノール溶液の一部を取りだし、セリアの超微粉の粒径をレーザー回折法で測定したところ、平均粒径0.04μmであった。

[0014]

(b-1) ドープした大径セリア粉の製造:

0.5 mol/L の硝酸セリウム水溶液8部と0.5 mol/L の硝酸サマリウム水溶液2部の混合水溶液1 mol/L の水酸化ナトリウム水溶液を攪拌しながら滴下し、酸化セリウムと酸化サマリウムを共沈させ、ろ過した後、純水での攪拌洗浄とろ過を6回繰返して水洗し、酸化セリウムと酸化サマリウムの共沈粉を製造し、これを空気中、1000 に3時間加熱保持して、($Ce_{0.8}$ Sm_{0.2}) O_{2} の組成を有する平均粒径約 $O_{1.8}$ μ mのドープしたセリア粉 1 を製造した。

[0015]

(c)酸化ニッケル粉の製造:

1 mol/L の硝酸ニッケル水溶液に1 mol/L の水酸化ナトリウム水溶液を攪拌しながら滴下し、水酸化ニッケルを沈殿させ、ろ過した後、純水での攪拌洗浄とろ過を6回繰返して水洗し、これを空気中、900 に 3 時間加熱保持して、平均粒径 1.1μ mの酸化ニッケル粉を製造した。

[0016]

(d) サマリウムストロンチウムコバルタイト系空気極原料粉末の製造:

酸化サマリウム、炭酸ストロンチウム、酸化コバルトのそれぞれ試薬級の粉体を用意し、 $(Sm_0.5Sr_0.5)$ CoO_3 で示される組成となるよう秤量し、ボールミル混合の後、空気中、10 00 $\mathbb C$ $\mathbb C$ 3 時間加熱保持し、得られた粉体をボールミルで微粉砕して、平均粒径 $\mathbb C$ \mathbb

[0017]

次に、作製した原料を用いて、下記のごとき方法により発電セルを製造した。

まず、前記(a)で製造したランタンガレート系電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルプチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450 に4時間加熱保持して焼結し、厚さ 200 μ m、直径 120 mmの円板状のランタンガレート系電解質を製造した。

前記(c)で作製した酸化ニッケル粉と前記(b)で作製したSDCの超微粉を含むエタ

出証特2004-3117683

ノール溶液を体積比率で酸化ニッケル:SDC=60:40になるように混合し、さらにトルエン-エタノール混合溶媒にポリビニルプチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法により前記円板状のランタンガレート系電解質の上に、厚さ:30 μ mのスラリー膜を成形し乾燥させ、次いで、空気中、1250 Γ に3時間加熱保持して、燃料極を前記円板状のランタンガレート系電解質の上に成形・焼き付けた。

なお、湿式(共沈)による粉末は分散した超微粉(ナノ粒子)であるが、乾燥すると直ちに凝集してしまうところから、凝集を避けて微細粉のまま酸化ニッケルと混合してスラリーとするために、SDCの超微粉を含むエタノール溶液を用いる。成形後、乾燥時にSDCは酸化ニッケル粉表面で凝集し、独立したセリアの状態を形成する。それを焼成すると、本発明燃料極が得られる。このようにして得られた本発明燃料極のミクロ組織の一部を走査形電子顕微鏡により観察し、その走査形電子顕微鏡による組織写真を図2に示した。この組織写真に示される骨格構造の多孔質ニッケル表面に独立して焼着している大径セリア粒および小径セリア粒の粒径を画像解析法により測定したところ、サマリウムをドープした平均粒径:0.4 μ mの大径セリア粒と大径セリア粒の隙間にサマリウムをドープした平均粒径:0.05 μ mの小径セリア粒が独立して焼着した構造を有していることが分かった。

[0018]

さらに、前記(d)で作製したサマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーを燃料極を焼付けたランタンガレート系電解質の他方の面に、スクリーン印刷法により厚さ: 30μ mになるように成形し乾燥させたのち、空気中、1100 に 5 時間加熱保持して、空気極を成形・焼き付けた。

このようにして、固体電解質、燃料極および空気極からなる本発明固体電解質型燃料電池用発電セル(以下、本発明発電セルという)を製造し、得られた本発明発電セルの燃料極の上に厚さ1mmの多孔質Niからなる燃料極集電体を積層し、一方、本発明発電セルの空気極の上に厚さ1.2mmの多孔質Agからなる空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にそれぞれセパレータを積層することにより図4に示される構成の本発明固体電解質型燃料電池を作製した。

[0019]

従来例

さらに比較のために、下記に示される方法で従来固体電解質型燃料電池を作製した。まず、1N-硝酸ニッケル水溶液、1N-硝酸セリウム水溶液を1N-硝酸サマリウム水溶液をそれぞれ用意し、NiOと($Ceo.8\,Smo.2$) O_2 が体積比率で60:40のになるように秤量し、混合して、霧化器で溶液を霧化し、空気をキャリヤーガスとして縦型管状炉に導入、1,000℃に加熱して、NiOと($Ceo.8\,Smo.2$) O_2 が体積比率で60:40となる酸化物複合粉末を得た。この酸化物複合粉末を用いてスラリーを作製し、このスラリーを用いて実施例で作製したランダンガレート系固体電解質の一方の面に塗布し焼結して燃料極を形成し、さらに空気極を実施例と同様にして形成して発電セルを製造した。この発電セルに形成された燃料極は、図3に示されるように、サマリウムをドープしたセリア(SDC)が多孔質な骨格構造のニッケル表面を取り囲むネットワーク構造を有していた。この発電セルの片面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セルの他方の片面に空気極集電体を積層しさらにセパレータを積層することにより図4に示される従来固体電解質型燃料電池を作製した。

[0020]

このようにして得られた本発明固体電解質型燃料電池および従来固体電解質型燃料電池を 用いて、次の条件で発電試験を実施し、その結果を表1に示した。

<発電試験>

温度:750℃、

DEST AVAILABLE COPY

燃料ガス:水素、

燃料ガス流量:1.02L/min (=9 c c/nin/cm²)、

酸化剤ガス:空気、

酸化剤ガス流量:5.1L/min (=45 c c/nin/cm²)、

の発電条件で発電させ、負荷電流密度、燃料利用率、セル電圧、出力、出力密度、および 発電効率を測定し、その結果を表1に示した。

[0021]【表1】

132.17		
発電効率 LHV (%)	37.9	30.1
出力密度 (W/cm²)	0.604	0.480
曲力 (W)	68.3	54.2
セル電圧 (V)	0.695	0.533
燃料利用率 (%)	80	70
負荷電流密度 (A/cm²)	1.015	06:0
種別	本発明固体電解質型 燃料電池	従来固体電解質型燃 料電池

表1に示される結果から、本発明固体電解質型燃料電池と従来固体電解質型燃料電池とは 、燃料極の構成が相違するのみで、その他の構成は同じであるが、本発明固体電解質型燃 料電池は従来固体電解質型燃料電池と比べて、負荷電流密度、燃料利用率、セル電圧、出 力、出力密度、および発電効率がいずれも優れた値を示すことがわかる。 【図面の簡単な説明】

[0022]

- 【図1】この発明の燃料極の組織を示す説明図である。
- 【図2】この発明の燃料極の走査型電子顕微鏡組織写真である。
- 【図3】従来の燃料極の組織を示す説明図である。
- 【図4】 固体電解質型燃料電池の説明図である。

BEST NAMABLE CORY

BEST AVAILABLE CON

【図3】

TO AVAILABLE COPY

【要約】

【課題】固体電解質としてランタンガレート系電解質を用いた高燃料利用率下で高出力密度を得ることができる固体電解質型燃料電池用発電セルにおける燃料極を提供する。

【解決手段】ランタンガレード系酸化物イオン伝導体を電解質として用い、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形される発電セルを有する固体電解質型燃料電池において、

前記燃料極は、ドープされたセリアとニッケルを含む焼結体からなり、この焼結体におけるニッケルはネットワークを組んでいる多孔質な骨格構造を有し、この多孔質な骨格構造を有するニッケルの表面にドープされたセリアからなる平均粒径: $0.2\sim0.6\mu n$ の大径セリア粒が独立して焼着しており、さらに大径セリア粒と大径セリア粒の間に平均粒径: $0.01\sim0.09\mu n$ の小径セリア粒が独立して焼着している。

【選択図】

図 1

1/E

認定・付加情報

特許出願の番号 特願2004-303860

受付番号 50401780255

書類名 特許願

担当官 第五担当上席 0094

作成日 平成16年10月22日

<認定情報・付加情報>

【提出日】 平成16年10月19日

【特許出願人】

【識別番号】 000006264

【住所又は居所】 東京都千代田区大手町1丁目5番1号

【氏名又は名称】 三菱マテリアル株式会社

【代理人】 申請人

【識別番号】 100076679

【住所又は居所】 東京都千代田区内神田1丁目11番4号 藤吉ビ

ル4階

【氏名又は名称】 富田 和夫

【選任した代理人】

【識別番号】 100094824

【住所又は居所】 東京都千代田区内神田1丁目11番4号 藤吉ビ

ル4階

【氏名又は名称】 鴨井 久太郎

BEST AVAILABLE COPY

出願人履歴情報

識別番号

[000006264]

1. 変更年月日

1992年 4月10日

[変更理由]

住所変更

住 所

東京都千代田区大手町1丁目5番1号

氏 名

三菱マテリアル株式会社