MANEJO DEL RIEGO

M Sc Ing. Rocío Hernández M Sc Ing. Leandro Martin

UNIVERSIDAD NACIONAL DE CUYO MENDOZA - ARGENTINA

Irrigation management

Analizar y evaluar la producción del cultivo y el manejo y uso del agua bajo 2 condiciones: de secano o de riego.

Selección de los modos de crecimiento del cultivo

□ Rainfed cropping (no irrigation in season) ☐ Determination of Net irrigation water requirement when irrigation applications.....user defined □ Irrigation schedule quantity quality (salt content) when Generation of irrigation applications...... Irrigation schedule quantity quality (salt content) 3 Fuente: Aquacrop-Training module, FAO (2016)

Necesidades o requerimientos netos de riego

$$Nn = ETc - Ppef$$

No considera el agua extra que tiene que ser aplicada al cultivo para compensar las pérdidas por conducción o desigual distribución del agua de riego en el campo.

RAW: máxima cantidad de agua que el cultivo puede extraer sin inducir al cierre de los estomas y la reducción de la transpiración.

SIMULACIÓN AQUACROP

TOMATE: Clima Valenzano

Suelo Silty clay

Fecha de transplante: 1/10

Secano y con riego

Tomato page 192 - 198

Dry matter content of fresh fruit ranges from 4.0 to 7.0 percent

Dry yield ≈ 10 ton per hectare Fresh yield ≈ 10/0.070 ≈ 145 ton per hectare

PROGRAMA DE RIEGO

Irrigation schedule

Mode Irrigation method Irrigation events

Irrigation method

adjustment for partial wetting

Percentage of soil surface wetted.

· .. 9/

	Evaluated schedule	
Biomass [ton/ha]	14.3	
Dry yield [ton/ha]	7.5	
Irrigation [mm]	525	
WP _{ET} [kg/m³]	1.44	
Harvest Index [%]	52.5	

Nuevo programa de riego

- Reducir láminas de riego en días 5 y 15
- Agregar un riego en el día 30.

1º alternativa de riego

	Evaluated schedule	1 st update	
Biomass [ton/ha]	14.3	15.4	
Dry yield [ton/ha]	7.5	7.7	Leve inc
Irrigation [mm]	525	525	
WP _{ET} [kg/m³]	1.44	1.37	ET wate
Harvest Index [%]	52.5	50.2	

Leve incremento del rendimiento

ET water productivity

0.00 kg (yield) per m3 water evapotranspired

Menor WP, porque es mayor el incremento de la ET respecto al del rendimiento.

• Dejar solamente 1 riego al inicio de la temporada (día 15)

	Evaluated schedule	1 st update	2 nd update
Biomass [ton/ha]	14.3	15.4	14.3
Dry yield [ton/ha]	7.5	7.7	<u>7.5</u>
Irrigation [mm]	525	525	425
WP _{ET} [kg/m ³]	1.44	1.37	1.48
Harvest Index [%]	<u>52.5</u>	50.2	<u>52.5</u>

CRITERIOS PARA PROGRAMAR EL RIEGO

	CRITERIO	PARAMETRO			
	AGOTAMIENTO ADMISIBLE	Regar cuando se alcanza un umbral específico			
	AGOTAIVIIENTO ADIVIISIBLE	(mm o % de RAW)			
CUANDO?	LÁMINA DE AGUA ENTRE	Lámina de agua a mantener por encima de un			
COANDO:	BORDOS	determinado valor			
	INTERVALO FIJOS (DIAS)	Regar cada un cierto periodo de tiempo (puede ser			
	INTERVALO FIJOS (DIAS)	variable a lo largo de la temporada)			
	HASTA CAPACIDAD DE	Cantidad agua extra necesaria para lograr que la			
CUANTO?	CAMPO	zona radical esté encapacidad de campo			
	LÁMINA FIJA DE RIEGO	Seleccionada en función del método de riego, tipo			
	LAIVIINA FIJA DE RIEGO	de suelo y cultivo			

AGOTAMIENTO ADMISIBLE

LAMINA DE AGUA ENTRE BORDOS

Irrigatio	Application depth [mm]		
Surface	□ Basin	50 – 150	
	□ Border		
	30 – 60		
Sprinkler	30 – 80		
Center pivot, linear move, travelling gun (if infiltration allows)		15 – 35 (up to 80)	
Control Control	(up to 00)		
Localized	Drip, micro-sprinkler,	5 – 25	

Fuente: Aquacrop-Training module, FAO (2016)

Soil	TAW		
textural class	mean	range	
Sand	70	55 – 75	
Loamy sand	80	65 - 85	
Sandy loam	120	110 – 130	
Loam	160	155 – 185	
Silt loam	200	170 - 225	
Silt	240	225 - 250	
Sandy clay loam	120	90 - 135	
Clay loam	160	145 – 175	
Silty clay loam	210	195 – 215	
Sandy clay	120	100 - 125	
Silty clay	180	175 - 190	
Clay	150	ente: Aquaerop Training module	, FAO (2016)

Tomate regado por surcos

1° Programa de riego

2º Programa de riego bajo un periodo de escasez hídrica

d _{net} = 30 mm	Full irrigation		ative strategies aving water	
RAW depleted (%)	40	100		
Irrigation off	15 August			
Irrigation - amount (mm) - events (number)	reference 600 20	25% 450 15		saved
Yield (ton/ha)	10.0	9.8		
WP _{ET} (kg/m³)	1.46	1.56		

Fuente: Aquacrop-Training module, FAO (2016)

3° Programa de riego bajo un periodo de escasez hídrica post floración

d _{net} = 30 mm	Full irrigation	Alternative strategies saving water			
RAW depleted (%)	40	100 100 130 (at 1 July)		t 1 July)	
Irrigation off	15 Aug	ust			
Irrigation	reference	ence 25% 30%			saved
- amount (mm)	600	450	420		
- events (number)	20	15	14		
Yield (ton/ha)	10.0	9.8	9.5		
WP _{ET} (kg/m³)	1.46	1.56	1.55		

4° Programa de riego: reducir la cantidad de agua aplicar durante la maduración

Time and depth criteria

Depth Criteria

Texcellent

Cortar el riego 15 días antes

40 % de ahorro de agua para el riego del cultivo 10% de disminución del rendimiento

10% de disminución del rendimiento						
d _{net} = 30 mm	iı	Full rrigation				
RAW depleted	(%)	40	100	(at 1 Jı	100 uly) 130	
Irrigation off		15 Aug	ust		1 Aug	
Irrigation	r	eference	25%	30%	40%	saved
- amount (mm)	600	450	420	360	
- events (num	ber)	20	15	14	12	
Yield (ton/ha)		10.0	9.8	9.5	9.0	
WP _{ET} (kg/m³)		1.46	1.56	1.55	1.54	deficit
for each 6,000 m³ available irrigation water irrigation						
Irrigated ar	ea	1 ha	(6,000/	3,600 =	1.67 ha	
Dry yield		10 ton	(1.6	67 x 9 =	15 ton	

50 % yield increase

En riegos deficitarios, se riega en los periodos de mayor sensibilidad al estrés hídrico.

