An Introduction and Application of Topological Data Analysis

Olumayowa Olowomeye

Texas A&M University

2019

Topological Data Analysis

Applying topological principles to a set of data. To find the "shape" of the data and analyze it using persistent homology

Simplicial Complexes

Figure: Source:

https://umap-learn.readthedocs.io/en/latest/howumapworks.html

 k-simplexes: Nodes, edges, triangles, tetrahedron, so on into higher dimensions

Free Abelian Groups

Definition: An Abelian group is a set with "kind of" addition and additive inverse.

Definition: A free abelian group is an abelian group with "basis." For example, if $B = \{b_1, \dots, b_n\}$ is a set with n elements,

$$\mathbb{Z}B:=\{a_1b_1+\cdots+a_nb_n:a_i\in\mathbb{Z},b_i\in B\}.$$

Example: We can assign a free abelian group generated by set of (same dimensional) faces.

Chain complexes and Homomorphism

A chain complex of the simplicial complex is a collection of free abelian group over the set of *n*-dimensional simplices with the boundary homomorphism between them.

For example, the 2-simplex has 1 face, 3 edges, and 3 vertices. Thus, its chain complex is

$$0 \to \mathbb{Z} F \to \mathbb{Z} e_1 \oplus \mathbb{Z} e_2 \oplus \mathbb{Z} e_3 \to \mathbb{Z} v_1 \oplus \mathbb{Z} v_2 \oplus \mathbb{Z} v_3 \to 0$$

Boundaries

Each simplex is spanned by a lower dimension simplices; call it Boundary operator

$$\delta \triangle^n = \sum_{i=0}^n (-1)^n [v_0, \dots \hat{v_i} \dots v_n]$$
 (1)

$$\delta^2 = \delta(\delta \triangle^n) = 0 \tag{2}$$

An example of boundary operator

Figure: Source: (Hayden et al., 2016)

Kernel and Image

Let $\delta: C_k \to C_{k-1}$ be an abelian group homomorphism. Then, the kernel is defined as $\{x \in C_k : \delta(x) = 0\}$. An image of δ is defined as $\{y \in C_{k-1} : \delta(x) = y \text{ for some } x \in C_k\}$.

Concept: Homology and Betti numbers

The Homology group is the $ker(\delta_k)/Image(\delta_{k+1})$ The Betti number (b_k) is simply the rank of this group

- b₀ refers to the number of connected components
- b₁ refers to the number of holes
- b₂ refers to the number of cavities

Vietoris-Rips complex

Method for creating simplicial complexes

- lacktriangle create a ball of $\epsilon > 0$ around each point
- add a d-simplex at pairwise intersections
- makes a manifold that includes all the points and its shape

Figure: Source: (Chi et al., 2018)

Persistent Homology

Persistent Homlogy allows us to analyze the Topology of Data sets As the radius grows what changes...

Example 2d data point in a circular pattern

Mapper and Ripser

Ripser: displays resulting Persistent Homology from Vietoris-Rips Mapper: helps visualize multi-dimensional data and group the data in the simplicial complex generated from Ripser

Mapper process

Source:http://homepage.divms.uiowa.edu/ idarcy/COURSES/ TDA/SPRING17/3900mapper2017 $_01_24.pptx$

Distances

Cosine distance

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}},$$

Euclidean distance

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Soccer Analysis

We took data from Sofifa and applied TDA to it 17955 players and 35 values representing their aptitude scores in certain areas such as dribbling, speed, etc.

name	crossing	finishing	heading_accuracy	short_passing	volleys	dribbling	curve
Felipe	34	20	74	62	19	44	49
G. Buffon	13	15	13	37	17	26	20
M. Stekelenburg	18	11	14	39	11	12	13
A. Wilbraham	49	60	75	68	56	46	48
K. Ellison	59	60	61	54	63	65	63
Tarantini	62	64	77	78	69	71	65

Soccer Analysis: using the cosine distance

Soccer Analysis: Using the cosine distance

Soccer Analysis: using the Euclidean distance

Soccer Analysis: Using the Euclidean distance

Co-author

Byeoungsu Yu Texas A&M University

Thank you

Refrences

Saul, Nathaniel and Tralie, Chris. (2019). Scikit-TDA: Topological Data Analysis for Python. Zenodo. http://doi.org/10.5281/zenodo.2533369

Fraleigh, John B. A First Course in Abstract Algebra. Reading, Mass: Addison-Wesley Pub. Co. 1982. Print.

Adams, Colin Conrad, and Robert Franzosa. Introduction to Topology: Pure and Applied. Dorling Kindersley, 2009.

Chi Seng Pun, Kelin Xia, and Si Xian Lee,
Persistent-Homology-based Machine Learning and its Applications
– A Survey, Preprint in Arxiv,
2018

Refrences

Hayden, Patrick and Nezami, Sepehr and Salton, Grant and Sanders, Barry (2016). Spacetime replication of continuous variable quantum information, New Journal of Physics vol 18, doi = 10.1088/1367-2630/18/8/083043