Interface maître et esclave d'un robot ★ -Sujet

Mise en situation

La téléopération consiste à mettre en relation deux manipulateurs appelés communément maître et esclave. Le manipulateur maître permet au chirurgien de donner sa consigne de déplacement à l'aide d'un levier de commande tandis que l'esclave l'exécute au contact de l'environnement (l'organe à opérer). Les deux sous-systèmes échangent des informations de déplacement et d'effort au travers d'un ou plusieurs canaux de communication. Un retour visuel est également mis en place en parallèle à ce dispositif.

Modélisation de l'interface maître

Ce mécanisme est constitué de 4 barres reliées par des liaisons pivots.

Objectif

Vérifier que l'exigence « Linéarité couple/effort » (id 1.3.2.2) peut être satisfaite par le mécanisme de HOEKEN.

- ► Solide S_0 , repère $\Re_0 \left(A; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0} \right)$, $\overrightarrow{AB} = L_0 \overrightarrow{x_0}$ avec $L_0 = 50$ mm.
- ▶ Solide S_1 , repère $\Re_1(B; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$, $\overrightarrow{BC} = L_1 \overrightarrow{x_1}$ avec $L_1 = 25$ mm, $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) =$ $(\overrightarrow{y_0},\overrightarrow{y_1}).$
- ▶ Solide S_2 , repère $\Re_2\left(A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0}\right)$, $\overrightarrow{AD} = L_2\overrightarrow{x_2}$ avec $L_2 = 62,5 \,\mathrm{mm}$, $\theta_2 = 62,5 \,\mathrm{mm}$ $(\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}).$
- ► Solide S_3 , repère $\Re_3\left(C; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_0}\right)$, $\overrightarrow{ED} = \overrightarrow{DC} = L_2\overrightarrow{x_3}$ avec $\theta_3 = \left(\overrightarrow{x_0}, \overrightarrow{x_3}\right) = 0$ $(\overrightarrow{y_0}, \overrightarrow{y_3}).$
- ► On notera $\{\mathcal{T}(S_i \to S_j)\} = \begin{cases} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{cases}$ l'expression l'expression au point P, en projection dans la base \mathcal{B}_0 , du torseur de l'action mécanique exercée

par le solide S_i sur le solide S_j ; toutes les inconnues seront exprimées dans la base \mathfrak{B}_0 .

- ▶ L'action mécanique exercée par le moteur sur *S*₁ sera modélisée par un couple $C_m(t)\overrightarrow{z_0}$.
- L'action mécanique exercée par l'opérateur sur S₃ sera modélisée par une force $F(t)\overrightarrow{x_0}$ appliquée au point E.
- ► L'accélération de la pesanteur sera négligée.
- ▶ Les inerties des solides en mouvement et les frottements dans les guidages seront négligés.

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

CCP PSI 2015.

B2-14

C1-05

C2-07

Question 2 #CCINP Déterminer les équations algébriques issues du développement des 4 relations suivantes :

- ▶ théorème du moment statique en B appliqué à l'équilibre de S_1 , en projection sur $\overrightarrow{z_0}$;
- ▶ théorème du moment statique en A appliqué à l'équilibre de S_2 , en projection sur $\overrightarrow{z_0}$;
- ▶ théorème du moment statique en D appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{z_0}$:
- ▶ théorème de la résultante statique appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{y_2}$.

Question 3 #CCINP Montrer que:

$$C_m = \frac{L_1 F}{\sin(\theta_2 - \theta_3)} \left(\sin \theta_1 \sin(\theta_2 + \theta_3) - 2 \cos \theta_1 \sin \theta_2 \sin \theta_3 \right).$$

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point E

Question 4 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

Question 5 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

(a) Rapport couple/effort

(b) $X_E \in [-60 \,\mathrm{mm}, 40 \,\mathrm{mm}]$