Tabular results

Table 1: Forex rates inference results.

Method	RMSE		NLPD	
	Diffusion	Matérn	Diffusion	Matérn
Euclidean	2.17 ± 0.13	2.19 ± 0.12	2.12 ± 0.07	2.20 ± 0.18
Line-Graph Non-HC	2.43 ± 0.07 2.48 ± 0.07	2.46 ± 0.07 2.47 ± 0.08	2.28 ± 0.04 2.36 ± 0.07	2.32 ± 0.03 2.34 ± 0.04
HC	0.08 ± 0.12	0.06 ± 0.12	-3.52 ± 0.02	-3.52 ± 0.02

Table 3: WSN inference results.

Method	Node Heads		Edge Flowrates		
	RMSE	NLPD	RMSE	NLPD	
Diffusion, non-HC	0.16 ± 0.05	0.72 ± 2.06	0.32 ± 0.05	0.97 ± 1.80	
Matérn, non-HC	0.16 ± 0.04	0.71 ± 2.39	0.26 ± 0.05	0.10 ± 0.13	
Diffusion, HC	0.15 ± 0.04	-0.47 ± 0.14	0.22 ± 0.03	-0.20 ± 0.13	
Matérn, HC	0.15 ± 0.04	-0.25 ± 0.48	0.23 ± 0.03	-0.45 ± 0.49	

Table C.1: Ocean current inference results.

Method	RMSE			NLPD		
	Diffusion	Matérn	Hodge Laplacian	Diffusion	Matérn	Hodge Laplacian
Euclidean	1.00 ± 0.01	1.00 ± 0.00	_	1.42 ± 0.01	1.42 ± 0.10	_
Line-Graph	0.99 ± 0.00	0.99 ± 0.00		1.41 ± 0.00	1.41 ± 0.00	_
Non-HC	0.35 ± 0.00	0.35 ± 0.00	0.35 ± 0.00	0.33 ± 0.00	0.36 ± 0.03	0.33 ± 0.01
HC	0.34 ± 0.00	0.35 ± 0.00	0.35 ± 0.00	0.33 ± 0.01	0.37 ± 0.04	0.33 ± 0.01

Sampling gradient and curl edge GPs

Proof. We focus on the case of gradient GPs. First, we can decompose the gradient kernel in terms of $U_1 = [U_H \ U_G \ U_C]$ as

$$\boldsymbol{K}_{G} = \boldsymbol{U}_{1} \begin{pmatrix} \boldsymbol{0} & \\ \Psi_{G}(\boldsymbol{\Lambda}_{G}) & \\ \boldsymbol{0} \end{pmatrix} \boldsymbol{U}_{1}^{\top}.$$
 (B.9)

From a vector $\mathbf{v} = (v_1, \dots, v_{N_1})^{\top}$ of variables following independent normal distribution, we can draw a random sample of gradient function as

$$\mathbf{f}_G = \mathbf{U}_1 \operatorname{diag}([\mathbf{0}, \Psi_G^{\frac{1}{2}}(\mathbf{\Lambda}_G), \mathbf{0}])\mathbf{v}$$
 (B.10)

where diag([a, b, c]) is the diagonal matrix with $(a, b, c)^{\top}$ on its diagonal.

Therefore, their curls are

$$\operatorname{curl} \boldsymbol{f}_{G} = \boldsymbol{B}_{2}^{\top} \boldsymbol{U}_{1} \operatorname{diag}([\boldsymbol{0}, \boldsymbol{\Psi}_{G}^{\frac{1}{2}}(\boldsymbol{\Lambda}_{G}), \boldsymbol{0}]) = \boldsymbol{B}_{2}^{\top} \boldsymbol{U}_{G} \boldsymbol{\Psi}_{G}^{\frac{1}{2}}(\boldsymbol{\Lambda}_{G}) = \boldsymbol{0}. \tag{B.11}$$

Likewise, we can show the samples of a curl GP are div-free.