

STATISTICS FOR DATA SCIENCE HYPOTHESIS and INFERENCE

Dr. Deepa NairDepartment of Science and Humanities

UNIT-4 HYPOTHESIS and INFERENCE

Session-3

Large-Sample Tests for a Population

Mean

Dr. Deepa Nair

Department of Science and Humanities

Large-Sample Tests for a Population Mean

- Let X_1, X_2, \ldots, X_n be a *large* (e.g., n > 30) sample from a population with mean μ and standard deviation σ .
- To test a null hypothesis of the form
- $H_0: \mu \leq \mu_0, H_0: \mu \geq \mu_0$, or $H_0: \mu = \mu_0$:

Large-Sample Tests for a Population Mean

• Compute the z-score:

$$z = \frac{\overline{X} - \mu 0}{\sigma / \sqrt{n}}$$

If σ is unknown it may be approximated with s.

Large-Sample Tests for a Population Mean

- Compute the P-value.
- The *P*-value is an area under the normal curve, which depends on the alternate hypothesis as in the table:

Large-Sample Tests for a Population Mean

Alternate Hypothesis	P-value
$H_1: \mu > \mu_0$	Area to the right of z
$H_1: \mu < \mu_0$	Area to the left of z
$H_1: \mu = \mu_0$	Sum of the areas in the tails cut off by z and $-z$

Large-Sample Tests for a Population Mean

Example:

- The mean lifetime of a sample of 100 fluorescent light bulbs produced by a company is computed to be 1570 hours with a standard deviation of 120 hours.
- If μ is the life time of all the bulbs produced by the company test the hypothesis $\mu=1600\ hours$ against the alternate hypothesis $\mu\neq1600\ hours$.

Large-Sample Tests for a Population Mean

Solution:

$$H_0$$
: $\mu = 1600$ hours

$$H_{\underline{1}}$$
: $\mu \neq 1600$ hours $\overline{X} = 1570$, $\sigma = s = 120$, $n = 100$

$$z = \frac{X - \mu 0}{\sigma / \sqrt{n}} = \frac{1570 - 1600}{120 / \sqrt{100}} = -2.51$$

P- Value is 0.012.

Which is very low . So we reject \boldsymbol{H}_0

Large-Sample Tests for a Population Mean

Example:

- A trucking firm is suspicious of the claim that the average lifetime of certain tires is at least 28,000 miles.
- To check the claim, the firm puts 40 of these tires on its trucks and gets a mean lifetime of 27,463 with a standard deviation 1,348 miles.

Find the P value for testing H_0 : $\mu \ge 28,000 \ miles H_1$: $\mu < 28,000 \ miles$?

Large-Sample Tests for a Population Mean

Solution:

$$H_0$$
: $\mu \ge 28,000$ miles

$$H_1$$
: μ < 28,000 miles

$$z = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{27,463 - 28,000}{1,348/\sqrt{40}} = -2.52 < -2.33$$

P – Value is 0.0059

Since P- Value is a very small probability we need to reject H_0

Dr. Deepa Nair

Department of Science and Humanities

deepanair@pes.edu