# **Spazi Vettoriali - Sommario**

Spazi e sottospazi vettoriali. Formalizzazione del linguaggio a partire dalla lezione del 31.10.2023

# A. Spazi Vettoriali

### Spazi Vettoriali

Definizione di  $\mathbb{R}$ -spazio vettoriale, gli 8 assiomi dei spazi vettoriali. L'utilità di spazi vettoriali; esempi di spazi vettoriali.

## 1. Definizione di spazio vettoriale

Cerchiamo di astrarre quanto visto in Vettori Liberi e Operazioni sui vettori liberi.

**DEF 1.** Un  $\mathbb{R}$ -spazio vettoriale (o spazio vettoriale su  $\mathbb{R}$ ) è un insieme V con 2 operazioni definiti come:

$$egin{aligned} +: V imes V &\longrightarrow V; \ (u,v) \mapsto u + v \ &\cdot : \mathbb{R} imes V \longrightarrow V; \ (\lambda,v) \mapsto \lambda \cdot v \end{aligned}$$

tali per cui  $\forall \lambda, \mu \in \mathbb{R}$  e  $\forall u, v, w \in V$  sono soddisfatte le seguenti proprietà:

$$egin{aligned} & \mathrm{v}_1: (u+v) + w = u + (v+w) \ & \mathrm{v}_2: u+v = v+u \ & \mathrm{v}_3: \exists 0 \in V \mid 0+v = v+0 = v \ & \mathrm{v}_4: \exists -v \in V \mid v + (-v) = (-v) + v = 0 \ & \mathrm{v}_5: \lambda \cdot (u+v) = \lambda u + \lambda v \ & \mathrm{v}_6: (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u \ & \mathrm{v}_7: (\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v) \ & \mathrm{v}_8: 1 \cdot v = v \end{aligned}$$

Inoltre uno spazio vettoriale può essere anche definito con la seguente

terna:

$$(V,+,\cdot)$$

**DEF 1.1.** Chiamiamo l'elemento 0 della  $v_3$  l'elemento *neutro*.

**OSS 1.1.** Notare che nella  $v_8$  non chiameremo 1 *l'elemento neutro* per ragioni di convenzione, particolarmente per quanto riguarda l'algebra astratta.

**PROP 1.1.** Ciò che abbiamo visto fino ad ora ci mostra che  $V_2$  (ovvero l'insieme dei vettori liberi nel piano) è un  $\mathbb{R}$ -spazio vettoriale.

### 1.1. Vettore

**DEF 1.1.** Sia V uno  $\mathbb{R}$ -spazio vettoriale; gli elementi  $v \in V$  si dicono **vettore** ! **ATTENZIONE** ! Si nota immediatamente che questa definizione del vettore non deve necessariamente corrispondere alla nostra idea di un vettore libero.

### PROP 1.2. L'unicità del vettore neutro 0

L'assioma  $v_3$  garantisce che *esiste* almeno un vettore neutro 0 tali che certe proprietà vengono soddisfatte; però ciò che *NON* garantisce è l'unicità del vettore neutro 0. Potrebbe esistere un altro vettore *neutro* che possiamo chiamare 0'.

Però 0' non esiste e lo dimostreremo.

**DIMOSTRAZIONE.** Voglio dimostrare che se V è un  $\mathbb{R}$ -spazio vettoriale, allora l'elemento neutro 0 è unico.

Supponiamo quindi che esistano due elementi neutri: 0 e 0'; mostreremo che con questa supposizione deve necessariamente valere 0=0', quindi da questo seguirà la tesi.

Per ipotesi,  $\forall v \in V$ ,

$$A. \ 0 + v \stackrel{\mathrm{v}_3}{=} v + 0 = v$$
  $B. \ 0' + v \stackrel{\mathrm{v}_3}{=} v + 0' = v$ 

In A. scegliamo v = 0'; allora

$$0+0'=0'+0=0'$$

In B. scegliamo invece v=0; allora

$$0' + 0 = 0 + 0' = 0$$

Quindi notiamo che

$$0 = 0 + 0' = 0'$$

per la proprietà transitiva dell'uguaglianza, 0 = 0'.

### **PROP 1.3.** $0 \cdot v = 0$

La proposizione

$$0 \cdot v = 0$$

sembra ovvia e banale, come ci suggerirebbe la notazione; però in realtà non lo è veramente, in quanto associamo due concetti *diversi*; da una parte abbiamo lo *scalamento* del vettore v per  $\lambda=0$ , dall'altra abbiamo il vettore neutro v.

Quindi vogliamo dimostrare che se V è un spazio vettoriale su  $\mathbb{R}$ , allora per ogni  $v \in V$  sussiste la proposizione.

**DIMOSTRAZIONE.** Per dimostrare la tesi, supponiamo che  $v \in V$  e quindi abbiamo che:

$$egin{aligned} 0 \cdot v &= (0+0) \cdot v \stackrel{\mathrm{v}_6}{=} 0 \cdot v + 0 \cdot v \ 0 \cdot v &= 0 \cdot v + 0 \cdot v \ (0 \cdot v) + (-(0 \cdot v)) &= (0 \cdot v) + (-(0 \cdot v)) + (0 \cdot v) \ 0 &= 0 \cdot v \ 0 \cdot v &= 0 \blacksquare \end{aligned}$$

**OSS 1.2.1.** Notare che in questi passaggi abbiamo fatto un *assunto* che non è dato per scontato; ovvero che il vettore opposto -v è unico ad ogni vettore v. Infatti questo assunto è ancora da *dimostrare* (che è necessario per non invalidare questa dimostrazione).

**PROP 1.4.** 
$$(-1) \cdot v = -v$$

Anche la proposizione

$$(-1) \cdot v = -v$$

sembra intuitiva, ma in realtà non è dato  $per\ scontato$  secondo gli assiomi v; infatti da un lato abbiamo lo scalamento di un vettore, invece dall'altro abbiamo il  $vettore\ opposto\ del\ vettore\ v$ .

Quindi vogliamo dimostrare che se V è un spazio vettoriale su  $\mathbb{R}$ , allora per ogni vettore  $v \in V$  vale la proposizione appena enunciata.

**DIMOSTRAZIONE.** Per dimostrare la tesi, utilizziamo la proprietà  $v_3$ ,

$$v + (-v) = -v + v = 0$$

e dimostriamo la seconda uguaglianza, assumendo che  $-v = (-1) \cdot v$ ;

$$(-1) \cdot v + (1) \cdot v \stackrel{\mathrm{v}_6}{=} (-1+1) \cdot v = 0 \cdot v = 0$$

## OSS 1.2. Il senso di studiare i campi vettoriali

Si nota che in questa pagina non abbiamo veramente imparato qualcosa di nuovo; come il filosofo F. Nietzsche criticherebbe l'uomo che produce la definizione di un mammifero poi per riconoscere un cammello come un mammifero<sup>(1)</sup>, non abbiamo veramente scoperto nulla di nuovo: infatti abbiamo solo dato definizioni poi per riconoscerle, ad esempio abbiamo definito lo spazio vettoriale e abbiamo riconosciuto  $V_2$  come uno spazio vettoriale.

In realtà il discorso del filosofo tedesco non varrebbe qui: abbiamo dato questa definizione di spazio vettoriale per un motivo ben preciso, ovvero quello di astrarre, abs-trahĕre. Astrarre nel senso che togliamo l'aspetto "accidentale" dei vettori geometrici, concentrandoci invece sull'aspetto "sostanziale".

Infatti dopo potremmo vedere che esistono molti insiemi che sono dei *spazi vettoriali*; se dimostro che un certo insieme A è uno spazio vettoriale, allora le proprietà  $\mathbf{v}_n$  saranno sicuramente vere.

(1)"Se io produco la definizione di un mammifero e poi dichiaro, alla vista di un cammello: guarda, un mammifero! certo con questo una verità viene portata alla luce, ma essa è di valore limitato, mi pare; in tutto e per tutto essa è antropomorfica e non contiene un solo singolo punto che sia «vero in sé», reale e universalmente valido, al di là della prospettiva dell'uomo." (Su verità e menzogna in senso extramorale, 1896, Friedrich Nietzsche)

# 2. Esempi di spazi vettoriali

Dopo il lungo preambolo enunciato in **OSS 1.2.**, andiamo a vedere qualche esempio di spazio vettoriale.

### **ESEMPIO 2.1. Numeri reali**

Consideriamo  $V = \mathbb{R}$ ; con l'usuale definizione di *somma* + e *moltiplicazione* ·, si verifica che anche  $\mathbb{R}$  è uno  $\mathbb{R}$ -spazio vettoriale.

## **ESEMPIO 2.1. Coppie ordinate** $V_2$

Consideriamo  $V = \mathbb{R} \times \mathbb{R}$ , ovvero

$$V = \{(a,b): a \in \mathbb{R}, b \in \mathbb{R}\}$$

con le operazioni

$$(a,b)+(c,d):=(a+c,b+d) \ \lambda\cdot(a,b):=(\lambda\cdot a,\lambda\cdot b)$$

allora  $V = \mathbb{R}^2$  è uno spazio vettoriale.

### ESEMPIO 2.2. $\mathbb{R}^n$

Generalizziamo ESEMPIO 2.1. Coppie ordinate \$V\_2\$; ovvero definiamo

$$V=\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}$$

V è l'insieme delle n-uple ordinate dei numeri reali, con le operazioni

$$egin{aligned} +: V imes V &\longrightarrow V; \ &((a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n)) \mapsto (a_1 + b_1, \ldots, a_n + b_n) \ &\cdot : \mathbb{R} imes V &\longrightarrow V; \ &\lambda \cdot (a_1, a_2, \ldots, a_n) \mapsto (\lambda \cdot v_1, \lambda \cdot v_2, \ldots, \lambda \cdot v_n) \end{aligned}$$

 $(V,+,\cdot)$  è uno spazio vettoriale su  $\mathbb{R}$ .

### ESEMPIO 2.3. Insieme delle funzioni in variabile reale.

Consideriamo l'insieme delle funzioni di variabile reale (DEF 1.1.), ovvero

$$V = \{ ext{funzioni } f : \mathbb{R} \longrightarrow \mathbb{R} \}$$

con le operazioni

$$+: V \times V \longrightarrow V; \ (f,g) \mapsto f + g$$
  
 $\cdot: \mathbb{R} \times V \longrightarrow V; \ (\lambda,f) \mapsto \lambda \cdot f$ 

**OSS 2.3.1.** Qui è importante chiarire il comportamento della somma, in quanto per noi non risulta immediatamente intuibile. Siano f,g funzioni,

quindi

$$f + g = h$$

ove

$$h:\mathbb{R}\longrightarrow\mathbb{R}$$

data dalla seguente: se  $a \in \mathbb{R}$ , allora

$$h(a) = (f+g)(a) := f(a) + g(a)$$

OSS 2.3.2. Stesso discorso vale per lo scalamento;

$$\lambda \cdot f = F$$
 $F: \mathbb{R} \longrightarrow \mathbb{R}$ 

ove per ogni a reale,

$$F := \lambda \cdot (f(a))$$

**OSS 2.3.3.** Vogliamo trovare la funzione nulla, ovvero la funzione che appartiene a V e gioca lo stesso ruolo di 0. La funzione la chiamiamo O e si definisce come

$$O:\mathbb{R}\longrightarrow \mathbb{R},\ x\mapsto 0$$

infatti, se definiamo  $f: \mathbb{R} \longrightarrow \mathbb{R}$ , allora

$$(f+O): \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f(x) + 0 = f(x)$$

Abbiamo visto che  $\forall x \in \mathbb{R}$ ,

$$(f+O)(x) = f(x)$$

pertanto

$$O + f = f$$
;  $f + O = f$ 

quindi abbiamo verificato che O è l'elemento neutro dello spazio vettoriale  $(V,+,\cdot)$ .

## **B. Sottospazi Vettoriali**

## Sottospazi Vettoriali

Sottospazio vettorali: definizione, esempi, interpretazione geometrica. Alcuni lemmi sui sottospazi vettoriali.

## 1. Sottospazio Vettoriale

**DEF 1.** Sia V un  $\mathbb{R}$ -spazio vettoriale; un sottoinsieme  $W \subseteq V$  si dice un sottospazio vettoriale se valgono le seguenti:

- 1. Il vettore *nullo* di *V* appartiene a *W*
- 2.  $\forall v, w \in W$ ; vale che  $v + w \in W$  (chiusura rispetto alla somma)
- 3.  $\forall \lambda \in \mathbb{R}$ ,  $\forall v \in W$ , vale che  $\lambda \cdot v \in W$  (chiusura rispetto allo scalamento)

Consideriamo ora l' $\mathbb{R}$ -spazio vettoriale  $V_2$ , ovvero

$$V_2:(\mathbb{R}^2,+,\cdot)$$

introdotto in precedenza (ESEMPIO 2.1.).

Ora consideriamo il seguente sottoinsieme  $W \subseteq V_2$ ;

$$W := \{(x, y) \in V_2 : x - 3y = 0\}$$

Facciamo le seguenti osservazioni.

**OSS 1.1.** In  $V_2$  esiste il vettore nullo (0,0); in questo caso il vettore nullo (0,0) vale anche in W.

**OSS 1.2.** In  $V_2$  è definita una somma + . Se v, w sono due elementi di W, allora sono in particolare elementi di  $V_2$ ; dunque  $v + w \in V_2$ . In aggiunta vale che  $v + w \in W$ . Infatti: se  $v = (v_1, v_2)$   $w = (w_1, w_2)$  allora

$$egin{aligned} v \in W \implies v_1 - 3v_2 &= 0 \ w \in W \implies w_1 - 3w_2 &= 0 \end{aligned}$$

quindi

$$(v_1-3v_2)+(w_1-3w_2)=0=0+0=0$$

ovvero

$$(v_1+w_1)-3(v_2+w_2)=0$$

ovvero  $(v+w)\in W$ 

**OSS 1.3.** Infine consideriamo  $v \in W$  e  $\lambda \in \mathbb{R}$ . Se

$$\lambda \cdot v \in V_2$$

allora vale anche

$$\lambda \cdot v \in W$$

Infatti se  $v=(v_1,v_2)$ , allora  $\lambda \cdot v=(\lambda \cdot v_1,\lambda \cdot v_2)$ ;

$$egin{aligned} v \in W \implies v_1 - 3v_2 = 0 \ ext{allora} \ \lambda \cdot (v_1 - 3v_2) = \lambda \cdot 0 = 0 \ ext{quindi} \ (\lambda \cdot v_1) - 3(\lambda \cdot v_2) = 0 \ ext{ovvero} \ \lambda \cdot v \in W \end{aligned}$$

## 2. Interpretazione geometrica

**ESEMPIO 2.1.** Consideriamo  $\mathbb{R}^2$  come l'insieme dei *punti nel piano*, ovvero il classico *piano cartesiano*  $\pi$ 

Definiamo il sottoinsieme

$$W := \{(x,y) \in \mathbb{R}^2 : x - 3y = 0\}$$

Ovviamente W è uno sottospazio vettoriale di  $\mathbb{R}^2$ ; notiamo che se rappresentiamo  $\mathbb{R}^2$  come l'insieme dei punti nel piano, allora si può rappresentare W come l'insieme dei punti nella retta r, ove  $r:x-3y=0\iff y=\frac{1}{3}x$ 



**ESEMPIO 2.2.** In  $\mathbb{R}^2$  consideriamo il seguente:

$$C := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Osserviamo subito che la proprietà caratterizzante di C non è un'equazione lineare; infatti si tratta di un'equazione di secondo grado. Precisamente nel contesto della geometria analitica, C rappresenterebbe

$$(x - \alpha)^2 + (y - \beta)^2 = \gamma^2$$

ove  $(\alpha, \beta)$ , quindi (0,0), rappresentano le coordinate dell'origine del cerchio e  $\gamma$ , quindi 1, il raggio.

Vediamo subito che C non è un sottospazio vettoriale di  $\mathbb{R}^2$ , in quanto (0,0) non appartiene a C.



## 3. Formare sottospazi a partire da due sottospazi

**LEMMA 3.1.** Sia V un K-spazio vettoriale, siano  $U, W \subseteq V$  dei sottospazi vettoriali di V.

Se voglio avere un nuovo sottospazio vettoriale a partire da U,W allora posso prendere la loro intersezione (Operazioni con gli Insiemi). Infatti

$$U \cap W$$

è sottospazio vettoriale di V.

#### **DIMOSTRAZIONE.**

Verifichiamo che  $U \cap W$  sia sottospazio vettoriale di V, quindi che soddisfa le tre proprietà elencate in **DEF.1.**.

- 1.  $0 \in (U \cap W)$  è vera perché *per ipotesi* abbiamo che 0 appartiene sia ad U che W, in quanto sono dei sottospazi vettoriali; quindi è un *elemento* comune di questi due insiemi.
- 2. Possiamo verificare la chiusura della somma: infatti

$$orall v_1, v_2 \in (U \cap W) \implies v_1, v_2 \in U; v_1, v_2 \in W$$
 per ipotesi  $\implies v_1 + v_2 \in U; v_1 + v_2 \in W$   $\implies (v_1 + v_2) \in (U \cap W)$ 

3. Ora verifichiamo la *chiusura dello scalamento* con lo stesso procedimento:

$$egin{aligned} orall \lambda \in K, orall v \in (U \cap W) &\Longrightarrow v \in U; v \in W \ & ext{per ipotesi} &\Longrightarrow \lambda v \in U; \lambda v \in W \end{aligned}$$

La dimostrazione è conclusa.

### **II vuoto**

**OSS 3.1.** Purtroppo questa *non* vale per l'unione di due sottospazi vettoriali.

Infatti, avendo V uno spazio vettoriale e U,W i suoi sottospazi vettoriali, non è sempre garantito che

$$U \cup W$$

sia anch'esso uno sottospazio vettoriale. Qui la simmetria si spezza.

**DIMOSTRAZIONE.** Per "dimostrare" questa osservazione troviamo alcuni esempi specifici di sottospazi vettoriali per cui non vale almeno una delle tre proprietà dello sottospazio vettoriale: scopriremo che non varrà la chiusura della somma per un caso specifico.

**ESERCIZIO:** Mostrare che le proprietà 1, 3 valgono comunque Considero  $U, W \subseteq \mathbb{R}^2$ ,

$$U = \{(x,y) \in \mathbb{R}^2 : 2x - y = 0\} \ W = \{(x,y) \in \mathbb{R}^2 : x - 2y = 0\}$$

Per ora mostriamo algebricamente che non vale la chiusura della somma per  $U \cup W$ .

1. Scegliamo alcuni elementi di U,W;

$$(1,2)\in U; (2,1)\in W$$

2. Ora li sommiamo

$$(1,2)+(2,1)=(3,3)$$

3. Verifichiamo che

$$(3,3)
otin (U\cup W)$$

Infatti

$$2(3)-3\neq 0; 3-3(3)\neq 0$$

Volendo si può vedere la situazione graficamente, osservando che U e W corrispondono a rette passanti per l'origine e vedendo poi che vettore libero (3,3) dato dalla somma di due vettori non appartiene alla nessuna delle due rette.

[GRAFICO DA FARE]

# Sottospazio somma

Allora vogliamo trovare un "surrogato" per questo vuoto formato dal fatto che  $U \cup W$  non sia uno sottospazio.

**DEF 3.1.** (Sottospazio Somma)

Sia V un K-spazio vettoriale, siano U,W due sottospazi vettoriali di V. Definiamo dunque il **sottospazio vettoriale somma di** U,V come

$$U+W:=\{u+w:u\in U,w\in W\}$$

**LEMMA 3.2.** U + W è sottospazio vettoriale di V.

**DIMOSTRAZIONE.** Esercizio lasciato a noi

1. L'appartenenza dell'elemento neutro Verifichiamo che

$$0 \in (U+W)$$

è vera: infatti basta scegliere  $u=0, w=0 \implies 0+0=0$ .

2. Chiusura della somma

$$egin{aligned} v_1, v_2 &\in (U+W) \Longrightarrow v_1 = u_1 + w_1, v_2 = u_2 + w_2 \ v_1 + v_2 &= v_1 + v_2 + w_1 + w_2 \ &= (v_1 + v_2) + (w_1 + w_2) \ &= v + w \ v_1 + v_2 &\in (U+W) \end{aligned}$$

3. Chiusura dello scalamento

$$egin{aligned} \lambda \in K; v \in (U+W) \ v \in (U+W) \implies v = u+w; u \in U, w \in W \ \lambda \cdot v = \lambda u + \lambda w \end{aligned}$$
 $\mathbf{per ipotesi} \ \lambda u \in U, \lambda w \in W$ 
 $\implies \lambda \cdot v \in (U+W)$ 

LEMMA 3.3. Con la notazione precisa valgono che

$$U \subseteq (U+W) \wedge W \subseteq (U+W)$$

**DIMOSTRAZIONE.** Mostrare la prima significa mostrare che per ogni

elemento u di U vale che u appartiene anche a U+W. Analogamente lo stesso discorso vale per w elemento di W.

$$u \in (U+W) \implies u = u+w \stackrel{w=0}{\Longrightarrow} u = u \implies u \in U$$

COROLLARIO 3.1. Vale che

$$(U \cup W) \subseteq (U + W)$$

inoltre si può dimostrare che U+W è il *più piccolo* sottospazio vettoriale di V che contiene  $U\cup W$ .

**DIMOSTRAZIONE.** Esercizio facoltativo

## C. Combinazione Lineare

### **Combinazione Lineare**

Definizione di combinazione lineare di un K-spazio vettoriale; definizione di span; definizione di sistema di generatori per uno sottospazio vettoriale.

## 1. Definizione di Combinazione Lineare

**DEF 1.1.** (Combinazione lineare)

Sia V un K-spazio vettoriale (Spazi Vettoriali, **DEF 1.**), siano

$$\mathrm{v}_1,\ldots,\mathrm{v}_n\in V$$

degli elementi di V. Alternativamente possiamo pensare questi elementi come il sottoinsieme  $S \subseteq V$ .

Allora definiamo **combinazione lineare** un qualsiasi *vettore* (Spazi Vettoriali, **DEF 1.1.**) della forma

$$\lambda_1 \mathbf{v}_1 + \ldots + \lambda_n \mathbf{v}_n$$

dove  $\lambda_i \in K, orall i \in \{1,\ldots,n\}$ .

**ESEMPIO 1.1.** In  $\mathbb{Q}^2$  considero

$$q_1=(1,0); q_2=(rac{1}{2},rac{1}{2}); q_3=(1,2)$$

Una combinazione lineare di  $S=(q_1,q_2,q_3)$  può essere ad esempio

$$rac{3}{4}q_1 - rac{12}{7}q_2 + 15q_3$$

# 2. L'insieme delle combinazioni lineari span

Ora voglio considerare l'insieme delle combinazioni lineari.

DEF 2.1. Span di S

Sia V un K-spazio vettoriale e sia  $S = (v_1, \dots, v_n)$ .

Allora chiamo lo span di S o di  $v_1, \ldots, v_n$  come l'insieme di tutte le combinazioni lineari di tale sottoinsieme S:

$$\operatorname{span}(\operatorname{v}_1,\ldots,\operatorname{v}_n):=\{\lambda_1\operatorname{v}_1+\ldots+\lambda_n\operatorname{v}_n:\lambda_1,\ldots,\lambda_n\in K\}$$

oppure in forma compatta

$$\operatorname{span}(S) := \{ \sum_{i=1}^n \lambda_i \mathrm{v}_i : i \in \{1,\dots,n\}, \lambda_i \in K \}$$

**LEMMA 2.1.** Lo span di un qualunque  $S = \{v_1, ..., v_n\}$  è sottospazio vettoriale di V (Sottospazi Vettoriali).

**DIMOSTRAZIONE.** Verifichiamo le tre proprietà fondamentali dello sottospazio vettoriale.

1. L'appartenenza dell'elemento 0

Verifichiamo che 0 può essere espresso come una combinazione lineare ponendo tutti i coefficienti  $\lambda_i=0$ .

2. Chiusura della somma

Siano  $u,w\in \mathrm{span}\,(v_1,\ldots,v_n)$ . Allora per ipotesi abbiamo

$$u = \sum_{i=1}^n \lambda_i v_i \mid w = \sum_{i=1}^n \mu_i v_i$$

Allora sommandoli abbiamo

$$u+w=\sum_{i=1}^n (\lambda_i+\mu_i)v_i \implies u+w$$
 è combinazione lineare

3. Chiusura dello scalamento

Sia  $\lambda \in K$ ,  $w \in \operatorname{span}\left(v_1, \ldots, v_n\right)$ . Allora

$$\lambda \cdot w = \lambda \sum_{i=1}^n \mu_i v_i = \sum_{i=1}^n (\lambda \mu_i) v_i \in \mathrm{span}\,(v_1,\ldots,v_n)$$
  $lacksquare$ 

# 3. Sistema di generatori

**DEF 3.1.** Sia V un K-spazio vettoriale,  $U \subseteq V$  un qualunque sottospazio vettoriale di V.

Un insieme di elementi  $\{u_1,\ldots,u_n\}\subseteq U$  si dice un **sistema di generatori di/per** U se ogni vettore  $u\in U$  è una combinazione lineare dell'insieme di elementi stesso; equivalentemente

$$\{u_1,\ldots,u_n\}$$
 è sistema di generatori  $\iff U=\mathrm{span}(\{u_1,\ldots,u_n\})$ 

ovvero se ogni vettore di U è una combinazione lineare di quell'insieme di elementi, allora quell'insieme è un sistema di generatori.

**ESEMPIO 3.1.** Consideriamo  $V=\mathbb{R}^2$ ,  $U=\mathbb{R}^2$  (ovvero V=U) e i vettori

$$u_1 = (1,0) \mid u_2 = (0,1)$$

Vale che  $\{u_1,u_2\}$  è un sistema di generatori per U.

Infatti dato un vettore  $(a,b)\in U$  abbiamo  $(a,b)=a(1,0)+b(0,1)=au_1+bu_2.$ Notiamo inoltre che se definiamo

$$u_3=(1,1)$$

allora anche  $\{u_1,u_2,u_3\}$  è un sistema di generatori per U.

**OSS 3.1.** Osserviamo che se  $\{u_1,\ldots,u_n\}$  è un *sistema di generatori per U* allora

$$\forall u \in U, \{u_1, \dots, u_n, u\}$$

anche questo è un sistema di generatori per U.

In parole, dato un *sistema di generatori* per un certo sottoinsieme allora possiamo aggiungerci qualsiasi elemento del sottoinsieme, dandoci comunque un altro *sistema di generatori* per lo stesso sottoinsieme.

Da questo discende che la definizione di *sistema di generatori* presenta in sé molta flessibilità e variabilità; tuttavia secondo una specie di *"legge meta-matematica"*, troppa flessibilità è un segno di un ente matematico meno forte.

Infatti introdurremmo un po' di "rigidità" con le basi (Base).

# D. Dipendenza e Indipendenza Lineare

### Dipendenza e Indipendenza Lineare

Definizione di dipendenza o indipendenza lineare per degli elementi di uno spazio vettoriale.

## 1. Dipendenza lineare

**DEF 1.1.** (Vettori linearmente dipendenti)

Sia V un K-spazio vettoriale, siano  $v_1,\ldots,v_n$  elementi (o vettori) di V (Spazi Vettoriali).

Allora gli elementi/vettori  $v_1,\ldots,v_n$  si dicono **linearmente dipendenti** se possiamo scrivere il vettore nullo  $0\in V$  come la combinazione lineare (Combinazione Lineare) di  $v_1,\ldots,v_n$  in cui non tutti i coefficienti  $\lambda_i$  in K sono nulli. Ovvero

$$0 = \lambda_1 v_1 + \ldots + \lambda_n v_n : \exists \lambda_i \neq 0$$

**PROP 1.1.** Sia V un K-spazio vettoriale, siano  $v_1, \ldots, v_n \in V$ . Allora questi vettori  $v_1, \ldots, v_n$  sono linearmente dipendenti se e solo se uno di essi può essere scritto come combinazione lineare di altri vettori.

Equivalentemente, se e solo se

$$\exists j \in \{1,\ldots,n\}: v_j \in \operatorname{span}(v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_n)$$

NOTAZIONE. Per poter compattare la scrittura sopra si può scrivere

$$(v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_n)$$

come

$$(v_1,\ldots,\hat{v}_j,\ldots,v_n)$$

e il "cappello" su  $v_j$  vuol dire che lo escludiamo dalla n-upla.

**DIMOSTRAZIONE.** Dimostro che vale l'implicazione da ambi i lati.

"  $\Longrightarrow$  ": Suppongo che  $v_1,\ldots,v_n$  siano *linearmente* dipendenti. Allora

$$egin{aligned} \exists \lambda_i 
eq 0, i \in \{1,\ldots,n\}: \lambda_1 v_1 + \ldots + \lambda_n v_n = 0 \ & \Longrightarrow \ -\lambda_i v_i = \lambda_1 v_1 + \ldots + \lambda_n v_n \ & \Longrightarrow \ v_i = rac{(\lambda_1 v_1 + \ldots + \lambda_n v_n)}{-\lambda_i} \ & \Longrightarrow \ v_i = -rac{\lambda_1}{\lambda_i} v_1 + \ldots + (-rac{\lambda_n}{\lambda_i} v_n) \ & \Longrightarrow \ v_i \in \operatorname{span}(v_1,\ldots,\hat{v}_i,\ldots,v_n) \end{aligned}$$

"  $\iff$  ": Suppongo che  $\exists i \in \{1,\ldots,n\}: v_i \in \operatorname{span}(v_1,\ldots,\hat{v}_j,\ldots,v_n)$ . Allora

$$egin{aligned} v_i &= \mu_1 v_1 + \ldots + \mu_{i-1} v_{i-1} + \mu_{i+1} v_{i+1} + \ldots + \mu_n v_n \ 0 &= \mu_1 v_1 + \ldots + \mu_{i-1} v_{i-1} - v_i + \mu_{i+1} v_{i+1} + \ldots + \mu_n v_n \ \Longrightarrow \ \exists \lambda_i = -1 
eq 0 : \mu_1 v_1 + \ldots + \mu_n v_n = 0 \end{aligned}$$

# 2. Indipendenza lineare

Ora siamo pronti per definire l'indipendenza lineare.

**DEF 2.1.** (Indipendenza lineare)

Sia V un K-spazio vettoriale,  $v_1, \ldots, v_n$  dei vettori di V.

Dichiamo che questi vettori  $v_1, \ldots, v_n$  sono **linearmente indipendenti** se non sono linearmente dipendenti.

Equivalentemente,  $v_1,\ldots,v_n$  sono linearmente indipendenti se e solo se l'unico modo di scrivere 0 è quello di porre tutti i coefficienti  $\lambda_i=0$  Alternativamente,

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0 \implies \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

**ESEMPIO 2.1.** Considero in  $V = \mathbb{R}^2$  i seguenti vettori:

$$v_1 = egin{pmatrix} 1 \ 0 \end{pmatrix} \mid v_2 = egin{pmatrix} 0 \ 1 \end{pmatrix} \mid v_3 = egin{pmatrix} 1 \ 1 \end{pmatrix}$$

Vale che  $v_1, v_2, v_3$  sono linearmente dipendenti dal momento che

$$v_3 = 1v_1 + 1v_2$$

Invece vale che  $v_1,v_2$  sono linearmente indipendenti in quanto se suppongo

$$\lambda_1 v_1 + \lambda_2 v_2 = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

allora vale che

$$egin{pmatrix} \lambda_1 \ \lambda_2 \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix} \implies \lambda_1 = \lambda_2 = 0$$

In parole l'unico modo di scrivere il vettore nullo come la combinazione lineare di  $v_1, v_2$  è quello di porre  $\lambda_1 = \lambda_2 = 0$ .

### E. Base

### **Base**

Definizione di base.

## 1. Definizione di base

**DEF 1.1.** Sia V un K-spazio vettoriale (Spazi Vettoriali, **DEF 1.**) e sia  $U \subseteq V$  un sottospazio vettoriale di V (Sottospazi Vettoriali, **DEF 1.**).

Allora una **base di** U è un *insieme*  $\{u_1,\ldots,u_n\}$  formato da *vettori* di U tali che:

- ullet  $\{u_1,\ldots,u_n\}$  è un sistema di generatori per U
- $u_1, \ldots, u_n$  sono linearmente indipendenti