Mini-project #2

Practice Session 20

Changho Suh

January 30, 2024

Recap: Mini-project #1

Test-time prediction

Mercedes-Benz dataset

Recap: Data organization

Data load:

```
import pandas as pd
data=pd.read_csv("mercedes_test.csv")
```

Pre-processing:

```
# choose categorical data columns

cf = data.select_dtypes(include=['object']).columns

data[cf] = data[cf].astype('category')

data = pd.get_dummies(data)  # one hot encoding

X_df, y_df = data.drop(['ID', 'y'], axis=1), data['y']

y df = (y df<numpy.median(y df)).astype(float)</pre>
```

Recap: Data organization

Transformation to numpy data:

```
X,y = X_df.values, y_df.values
```

Train/test split:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =\
train test split(X,y,test size=0.1, stratify=y)
```

Recap: LS hyperparameter search

```
from sklearn.model selection import RandomizedSearchCV <---
alpha list = [0.001, 0.01, 0.1, 1, 10]
model = RidgeClassifier()
cv = RandomizedSearchCV (model, grid, n iter=5, cv=5) <---
cv.fit(X train, y_train) ←
cv.cv results #logs ←
cv.best params # best alpha ←
best model = cv.best estimator ←
dump(best model,'best model.joblib')
```

Recap: LR hyperparameter search

```
from joblib import dump <---
from sklearn.model selection import RandomizedSearchCV <---
alpha list = [0.001, 0.01, 0.1, 1, 10]
model = LogisticRegression(solver='liblinear, max iter=10000)
grid = { 'alpha':alpha list) -
cv = RandomizedSearchCV(model, grid, n iter=5, cv=5)
cv.fit(X train, y train) ←
cv.cv results #logs ←
cv.best_params  # best alpha ←
best model = cv.best estimator ←
dump(best model,'best model.joblib')
```

Recap: Regularization & He's initialization

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.regularizers import 12
model NN = Sequential()
model NN.add(Dense(128, activation='relu',
                   kernel regularizer=12(0.01),
                   bias regularizer=12(0.01),
                   kernel initializer='he normal'))
model NN.add(Dense(1, activation='sigmoid',
                   kernel regularizer=12(0.01),
                   bias regularizer=12(0.01))
model NN.compile(optimizer='adam',
                 loss='binary crossentropy',
                 metrics=['acc'])
```

Recap: Early stopping & learning rate decay

```
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.callbacks import LearningRateScheduler
es callback = EarlyStopping (monitor='val acc', patience=20)
# define scheduling rule
def scheduler(epoch, lr):
    if epoch in [10,20,30]: lr=lr*0.1
    return lr
lrs callback = LearningRateScheduler(scheduler)
# training w/ callbacks
model NN.fit(X train, y train,
          validation split=1/9, epochs=100,
          callbacks=[es callback,lrs callback])
```

Recap: DNN hyperparameter search

```
from sklearn.model selection import RandomizedSearchCV
from tensorflow.keras.wrappers.scikit learn import KerasClassifier
def build model(lambda):
  model = Sequential()
  model.add(Dense(128, activation='relu',
            kernel regulerizer=12(lambda ),bias regulerizer=12(lambda ))
  model.add(Dense(1, activation='sigmoid'))
  model.compile(optimizer='adam', loss='binary crossentropy',
  metrics=['acc'])
  return model
model = KerasClassifier(build model)
grid = dict(lambda = [1e-3, 1e-2, 1e-1, 1, 10])
cv = RandomizedSearchCV(model, grid, n iter=5, cv=5)
```

Recap: Logging and saving

cv.fit(X train, y train, epochs=10)

df.to csv('logs DNN.csv')

```
cv.cv_results_ #logs
cv.best_params_ # best alpha
best_model_DNN = cv.best_estimator_
import pandas as pd
df = pd.DataFrame.from dict(cv.cv results , orient='columns')
```

logging

```
best_model_DNN.model.save('best_model_DNN')
```

saving the model

Today's contents

Mini-project #2:

Weather prediction using Jena climate dataset

Task: Weather prediction

Jena climate dataset

Data:

weather features collected from 2009 to 2016 $\in \mathbf{R}^{14}$

Example: pressure, humidity, ...

Label: celsius temperature $\in \mathbf{R}$

Measured in Jena, Germany, every 10 minutes:

420,551 samples

Download Jena climate dataset

The dataset is prepared by Max Planck Institute for Biogeochemistry.

Download 'jena_climate_2009_2016.csv' from:

https://www.kaggle.com/datasets/mnassrib/jena-climate

Load Jena climate dataset

import pandas as pd

memory usage: 48.1+ MB

```
data = pd.read_csv('jena_climate_2009_2016.csv')
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 420551 entries, 0 to 420550
Data columns (total 15 columns):
                                             pressure
                   Non-Null Count
    Column.
                   4<del>20</del>551 non-null
 0
    Date Time
                                  object
                                             temperature in celsius
   p (mbar)
                   420551 non-null
                                  float64
   T (degC)
                   420551 non-null
                                  float64
    Tpot (K)
 3
                   420551 non-null
                                  float64
                                             relative humidity
    Tdew (degC)
                   420551 non-null float64
    rh (%)
                   420551 non-null
                                  float64
                                             vapor pressure
    VPmax (mbar)
                   420551 non-null float64
    VPact (mbar)
                   420551 non-null
                                  float64
    VPdef (mbar)
                                  float64
                   420551 non-null
                                             water vapor concentration
    sh (g/kg)
                                  float64
                   420551 non-null
    H2OC (mmol/mol) <del><420551</del> non-null float64
                                             airtight
    rho (g/m**3)
                   420551 non null float64
                   420551 non-null
                                  float64
 12
    WV (M/s)
                                             wind speed
    max. wv (m/s)
                   420551 non-null
                                  <del>float64</del>
    wd (deg)
                   420551 non-null
                                  float64
dtypes: float64(14), object(1)
```

Look at first few examples

Look up the first five examples
data.head(5)

	Date Time	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
0	01.01.2009 00:10:00	996.52	-8.02	265.40	-8.90	93.3	3.33	3.11	0.22	1.94	3.12	1307.75	1.03	1.75	152.3
1	01.01.2009 00:20:00	996.57	-8.41	265.01	-9.28	93.4	3.23	3.02	0.21	1.89	3.03	1309.80	0.72	1.50	136.1
2	01.01.2009 00:30:00	996.53	-8.51	264.91	-9.31	93.9	3.21	3.01	0.20	1.88	3.02	1310.24	0.19	0.63	171.6
3	01.01.2009 00:40:00	996.51	-8.31	265.12	-9.07	94.2	3.26	3.07	0.19	1.92	3.08	1309.19	0.34	0.50	198.0
4	01.01.2009 00:50:00	996.51	-8.27	265.15	-9.04	94.1	3.27	3.08	0.19	1.92	3.09	1309.00	0.32	0.63	214.3

Data visualization

```
T_data = data['T (degC)']
date_time = pd.to_datetime(data['Date Time'],format='%d.%m.%Y %H:%M:%S')
print(T data)
print(date time)
                                2009-01-01 00:10:00
0
          -8.02
                                2009-01-01 00:20:00
1
          -8.41
                                2009-01-01 00:30:00
2
          -8.51
3
          -8.31
                                2009-01-01 00:40:00
4
                      4
                                2009-01-01 00:50:00
          -8.27
420546
          -4.05
                                2016-12-31 23:20:00
                      420546
420547
         -3.35
                      420547
                                2016-12-31 23:30:00
420548
         -3.16
                      420548
                                2016-12-31 23:40:00
420549
         -4.23
                      420549
                                2016-12-31 23:50:00
420550
          -4.82
                      420550
                                2017-01-01 00:00:00
```

Data visualization

```
import matplotlib.pyplot as plt

plt.figure(figsize=(10,3), dpi=150)
plt.plot(date_time, T_data)
plt.title('Temperature in Celsius')
plt.show()
```


Correlation analysis

Pearson correlation

$$-1 \le \rho_{ij} := \frac{\operatorname{cov}(x_i, x_j)}{\sqrt{\operatorname{var}(x_i)\operatorname{var}(x_j)}} \le 1$$

Correlation analysis

data.corr()

	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
p (mbar)	1.000000	-0.045375	-0.124718	-0.066755	-0.018352	-0.031546	-0.054370	-0.003401	-0.069762	-0.069804	0.307640	-0.005701	-0.007760	-0.063258
T (degC)	-0.045375	1.009000	0.996827	0.895708	-0.572416	0.951113	0.867673	0.761744	0.866755	0.867177	-0.963410	-0.004689	-0.002871	0.038732
Tpot (K)	-0.124718	0.996827	1:000000	0.894911	-0.567127	0.947293	0.866205	0.756962	0.866533	0.866955	-0.981345	-0.004195	-0.002224	0.043599
Tdew (degC)	-0.066755	0.895708	0.894911	1:000000	-0.156615	0.799271	0.968344	0.435752	0.967599	0.968044	-0.885232	-0.008718	-0.009091	0.049877
rh (%)	-0.018352	-0.572416	-0.567127	-0.156615	1.000000	-0.615842	-0.151494	-0.843835	-0.150841	-0.150969	0.514282	-0.005020	-0.009921	-0.015912
VPmax (mbar)	-0.031546	0.951113	0.947293	0.799271	-0.615842	1:000000	0.824865	0.875588	0.824460	0.824493	-0.901536	-0.004018	-0.002213	-0.009583
VPact (mbar)	-0.054370	0.867673	0.866205	0.968344	-0.151494	0.824865	1.000000	0.449154	0.999851	0.999856	-0.850241	-0.009600	-0.010316	0.018418
VPdef (mbar)	-0.003401	0.761744	0.756962	0.435752	-0.843835	0.875588	0.449154	1.000900	0.448641	0.448689	-0.698290	0.001852	0.005317	-0.030881
sh (g/kg)	-0.069762	0.866755	0.866533	0.967599	-0.150841	0.824460	0.999851	0.448641	1.000000	0.999997	-0.853325	-0.009479	-0.010163	0.019376
H2OC imol/mol)	-0.069804	0.867177	0.866955	0.968044	-0.150969	0.824493	0.999856	0.448689	0.999997	1.090000	-0.853769	-0.009477	-0.010158	0.019607
rho (g/m**3)	0.307640	-0.963410	-0.981345	-0.885232	0.514282	-0.901536	-0.850241	-0.698290	-0.853325	-0.853769	1.000900	0.003240	0.001086	-0.058072
wv (m/s)	-0.005701	-0.004689	-0.004195	-0.008718	-0.005020	-0.004018	-0.009600	0.001852	-0.009479	-0.009477	0.003240	1.000000	0.948477	-0.015322
max. wv (m/s)	-0.007760	-0.002871	-0.002224	-0.009091	-0.009921	-0.002213	-0.010316	0.005317	-0.010163	-0.010158	0.001086	0.948477	1.000000	-0.014471
wd (deg)	-0.063258	0.038732	0.043599	0.049877	-0.015912	-0.009583	0.018418	-0.030881	0.019376	0.019607	-0.058072	-0.015322	-0.014471	1.000000

Data statistics

data.describe()

1st quartile (Q1) 2nd quartile 3rd quartile

	p (mbar)	T (dege)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)
count	420551.000000	420581.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000
mean	989.212776	9.450147	283.492743	4.955854	76.008259	13.576251	9.533756
std	8.358481	8.423365	8.504471	6.730674	16.476175	7.739020	4.184164
min	813.600000	23.010000	250.800000	-25.010000	12.950000	0.950000	0.790000
25%	984.200000	3,360000	277.430000	0.240000	65.210000	7.780000	6.210000
50% 4	989.580000	9.420000	283.470000	5.220000	79.300000	11.820000	8.860000
75% -	994.720000	15.470000	289.530000	10.070000	89.400000	17.600000	12.350000
max	1015.350000	37.280000	311.340000	23.110000	100.000000	63.770000	28.320000

	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
count	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000
mean	4.042412	6.022408	9.640223	1216.062748	1.702224	3.056555	174.743738
std	4.896851	2.656139	4.235395	39.975208	65.446714	69.016932	86.681693
min	0.000000	0.500000	0.800000	1059.450000	-9999.000000	-9999.000000	0.000000
25%	0.870000	3.920000	6.290000	1187.490000	0.990000	1.760000	124.900000
50%	2.190000	5.590000	8.960000	1213.790000	1.760000	2.960000	198.100000
75%	5.300000	7.800000	12.490000	1242.770000	2.860000	4.740000	234.100000
max	46.010000	18.130000	28.820000	1393.540000	28.490000	23.500000	360.000000

missing entries

Missing entries in wind speed

```
import matplotlib.pyplot as plt

plt.figure(figsize=(10,3), dpi=150)
wv = data['wv (m/s)']
plt.plot(date_time, wv)
plt.title('Wind speed (m/s)')
plt.show()
```


Preprocessing

Fill up the missing entries with the mean:

```
wv = data['wv (m/s)']
wv_missing_idx = (wv == -9999.00) returns corresponding indices
wv_mean = wv[~wv_missing_idx].mean()
wv[wv_missing_idx] = wv_mean

max_wv = data['max. wv (m/s)']
missing_idx = (max_wv == -9999.00)
max_wv_mean = max_wv[~missing_idx].mean()
max_wv[missing_idx] = max_wv_mean
```

The processed wind speed

```
import matplotlib.pyplot as plt

plt.figure(figsize=(10,3), dpi=150)
plt.plot(date_time, wv)
plt.title('Wind speed (m/s)')
plt.show()
```


Check if missing entries are filled up

data.describe()

	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)
count	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000
mean	989.212776	9.450147	283.492743	4.955854	76.008259	13.576251	9.533756
std	8.358481	8.423365	8.504471	6.730674	16.476175	7.739020	4.184164
min	913.600000	-23.010000	250.600000	-25.010000	12.950000	0.950000	0.790000
25%	984.200000	3.360000	277.430000	0.240000	65.210000	7.780000	6.210000
50%	989.580000	9.420000	283.470000	5.220000	79.300000	11.820000	8.860000
75%	994.720000	15.470000	289.530000	10.070000	89.400000	17.600000	12.350000
max	1015.350000	37.280000	311.340000	23.110000	100.000000	63.770000	28.320000

	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
count	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000	420551.000000
mean	4.042412	6.022408	9.640223	1216.062748	2.130282	3.532242	174.743738
std	4.896851	2.656139	4.235395	39.975208	1.542271	2.340355	86.681693
min	0.000000	0.500000	0.800000	1059.450000	0.000000	0.000000	0.000000
25%	0.870000	3.920000	6.290000	1187.490000	0.990000	1.760000	124.900000
50%	2.190000	5.590000	8.960000	1213.790000	1.760000	2.960000	198.100000
75%	5.300000	7.800000	12.490000	1242.770000	2.860000	4.740000	234.100000
max	46.010000	18.130000	28.820000	1393.540000	28.490000	23.500000	360.000000

Remove 'date_time' column

data.pop('Date Time')
data

	p (mbar)	T (degC)	Tpot (K)	Tdew (degC)	rh (%)	VPmax (mbar)	VPact (mbar)	VPdef (mbar)	sh (g/kg)	H2OC (mmol/mol)	rho (g/m**3)	wv (m/s)	max. wv (m/s)	wd (deg)
0	996.52	-8.02	265.40	-8.90	93.30	3.33	3.11	0.22	1.94	3.12	1307.75	1.03	1.75	152.3
1	996.57	-8.41	265.01	-9.28	93.40	3.23	3.02	0.21	1.89	3.03	1309.80	0.72	1.50	136.1
2	996.53	-8.51	264.91	-9.31	93.90	3.21	3.01	0.20	1.88	3.02	1310.24	0.19	0.63	171.6
3	996.51	-8.31	265.12	-9.07	94.20	3.26	3.07	0.19	1.92	3.08	1309.19	0.34	0.50	198.0
4	996.51	-8.27	265.15	-9.04	94.10	3.27	3.08	0.19	1.92	3.09	1309.00	0.32	0.63	214.3
420546	1000.07	-4.05	269.10	-8.13	73.10	4.52	3.30	1.22	2.06	3.30	1292.98	0.67	1.52	240.0
420547	999.93	-3.35	269.81	-8.06	69.71	4.77	3.32	1.44	2.07	3.32	1289.44	1.14	1.92	234.3
420548	999.82	-3.16	270.01	-8.21	67.91	4.84	3.28	1.55	2.05	3.28	1288.39	1.08	2.00	215.2
420549	999.81	-4.23	268.94	-8.53	71.80	4.46	3.20	1.26	1.99	3.20	1293.56	1.49	2.16	225.8
420550	999.82	-4.82	268.36	-8.42	75.70	4.27	3.23	1.04	2.01	3.23	1296.38	1.23	1.96	184.9

Look ahead

Will preprocess data further.