Document 17: Isomorphisms

In this section, we are investigating Isomorphisms. Previously, we had linearity, where we could perform transformations back and forth between two sets, isomorphisms are similar.

Definition: Isomorphisms are invertible linear transofmrations.

We say that $V \overset{\text{iso}}{\sim} W \Leftrightarrow \exists$ an isomorphism $T: V \to W$. We also know that any n-dimentional linear space V is isomorphic to \mathbb{R}^n .

Definition: Similarity between A, B exists if $\exists S, B = S^{-1}AS$.

Properties of Isomorphism:

- 1. $T: V \to W$ is an isomorphism $\Leftrightarrow \ker(T) = \{0\} \land \operatorname{im}(T) = W$
- 2. Let V, W be finite dimensional. $V \sim W \to \dim(V) = \dim(W)$.
- 3. Let $T:V\to W$ be a linear transformation where $\mathrm{Kernel}(T)=\{0\}.$ $\dim(V)=\dim(W)\to T$ is an isomorphism.

Now, lets look at a matrix representation.