Appunti Calcolatori Elettronici

1 Lezione del 24-02-25

1.1 Introduzione al corso

Continuiamo lo studio di una particolare architettura per calcolatori, a partire da quanto detto riguardo alle reti logiche, introducendo i concetti di **interruzione**, **protezione** e **memoria virtuale**. Questi 3 strumenti ci permetterano di realizzare il paradigma della **multiprogrammazione**, cioè di far eseguire ad una macchina con un singolo processore più programmi contemporaneamente. Non si pensi questo significhi avere più processori, in quanto il corso riguarda esclusivamente processori *single-threading*.

1.2 Architettura

L'archittettura di riferimento è quella classica, composta da **CPU**, **memoria** e **I/O** interconnessi da un **bus**.

Durante lo studio di un archiettura è oppurtuno porsi la domanda "chi fa cosa?", che fornisce determinati chi ai determinati cosa forniti da un opportuno livello di astrazione (transistor, porte logiche, diagrammi funzionali, ecc...).

La domanda che potremo porci adesso è "chi comanda?" all'interno dell'architettura vista. La risposta più giusta è quella del **software**: l'architettura è fatta per *eseguire* software.

Per convincerci di questo possiamo sostituire la domanda "chi fa cosa?" con la domanda "chi sa cosa?".

- La **CPU** conosce lo stato corrente dei registri e l'istruzione in esecuzione. Fra un'istruzione e l'altra non c'è alcun bisogno di sapere cosa è accaduto finora, e cosa accadrà in futuro, ma solamente l'istruzione corrente. Quindi si può pensare che la CPU non sa qual'è l'obiettivo della computazione, ma si limita a portarla avanti.
- La memoria è un oggetto passivo, che contiene il programma, ma si limita a restiture i dati richiesti quando sono richiesti. Notiamo che le memorie che usiamo sono ad accesso casuale, ergo nessuno scorre alla ricerca di indirizzi, ma si può leggere e scrivere in posizioni arbitrarie in tempo pressoché costante. La memoria contiene sempre qualcosa, che questo sia significativo o meno, e la sua tipizzazione dipende solamente dalle intenzioni del programmatore.
- L'I/O è il componente più variegato dell'architettura. L'unica costante che rende la comunicazione con le periferiche più facile è la presenza di un interfaccia, che riduce tale comunicazione ad una semplice lettura o scrittura nello spazio di I/O. La differenza fra le letture e scritture nello spazio di I/O e lo spazio di memoria è la possibile presenza di effetti collaterali, cioè effetti non riconducibili alla sola variazione di stato di una locazione di memoria. Inoltre la CPU non è l'unica a scrivere nello spazio di I/O, in quanto questo può essere fatto anche dalle periferiche stesse.
- Il **bus** è un insieme di linee (*fili*), che trasportano ciò che ogni componente sta comunicando in un dato momento. Ogni componente vede ciò che viene scritto sul bus in qualsiasi momento, e l'indirizzamento di locazioni specifiche nello spazio di memoria o nello spazio di I/O viene fatto attraverso **maschere** di indirizzo.

1.2.1 Flusso di controllo

Abbiamo visto come la CPU si limita a prelevare ed eseguire istruzioni nel ciclo di **fetch-execute**. L'istruzione successiva alla corrente, il cui indirizzo viene scritto nell'**instruction pointer**, viene decisa dall'istruzione corrente stessa (si pensi alle istruzioni di salto). Il **flusso di controllo** è quindi deciso dall istruzioni stesse, cioè dal programma.

1.2.2 Bootstrap

Il **bootstrap** è un processo secondo il quale si porta il sistema in un certo stato di esecuzione, apparentemente impossibile, o comunque molto difficile, da raggiungere. Ad esempio, il compilatore del linguaggio C è scritto esso stesso in linguaggio C. La domanda naturale è "come è stato compilato il compilatore?". La risposta è un processo di boostrap, usando o un compilatore presesistente, magari che implementa un sottoinsieme parziale del C, o scrivendo l'intero compilatore in linguaggio macchina, cioè assemblando codice assembler.

Il boostrap si rende necessario anche all'avvio del calcolatore, per il caricamento del programma all'interno della memoria e l'inizio dell'esecuzione. Nei calcolatori moderni questo viene fatto attraverso la **ROM**, cioè una memoria a sola lettura che contiene un programma di bootstrap. All'avvio il processore è impostato in modo che al reset prenda come indirizzo proprio quello della ROM, e quindi inizi ad eseguire il programma di boostrap. All'interno della ROM si trova, nei calcolatori moderni, il **BIOS** (o *UEFI*, nei sistemi moderni), che ha il solo compito di impostare alcune periferiche di base e caricare il sistema operativo.

Iniziamo quindi ad approfondire, uno per uno, i moduli dell'architettura.

1.3 Memoria

La memoria è un insieme contiguo di locazioni di memoria, che nelle architetture moderne sono rappresentate da byte. Storicamente, la memoria era indirizzata a *parole*, cioè insiemi di bit coincidenti in dimensioni coi registri del processore. Una parola poteva essere di più byte, mentre oggi le memorie sono accessibili ai singoli byte. Ad esempio, le memorie usate nell'architettura Intel x86 sono accessibili ad 1 byte (MOVB), 2 byte (MOVW), 4 byte (MOVL), e 8 byte (MOVQ).

1.3.1 Endianess

Notiamo che la posizione in memoria del byte più significativo di una parola (in questo caso consideriamo una "parola" da 8 byte, da cui si ricavano tutte le altre misure) determina l'endianess dell'architettura. In particolare, se l'ultimo byte sta in fondo nella memoria, si dice **big-endian**, mentre se viceversa l'ultimo byte viene per primo nella memoria, si dice **little-endian**.

L'architettura Intel x86 che andiamo a considerare è little-endian, come lo sono la maggior parte delle architetture moderne. Un esempio di utilizzo del big-endian e nella trasmissione di dati attraverso il protocollo IP, usato nelle comunicazioni Internet.

1.3.2 Allineamento

Indicheremo con **offset** la distanza in byte fra due locazioni di memoria, inteso come il numero di locazioni che vanno saltate per raggiungere un indirizzo a partire dall'altro. In questo ha senso parlare anche di offset *negativi*.

Visto che lo spazio di memoria è effettivamente ciclico, cioò si ha wrap-around ai suoi capi, si ha che gli offset rimangono validi **modulo** la dimensione dello spazio di memoria, che è sempre 2^n , con n nel nostro caso uguale a 64.

Il wrap-around si comporta bene con gli offset, ma lo stesso non si può dire per quanto riguarda **intervalli** di byte. Preso un certo intervallo [x,y), quindi, si ha che questo contiene gli indirizzi $\{n \mid x \leq n < y\}$, ammesso che x < y, cosa che risulta falsa nel caso di intervalli che hanno wrap-around. Decidiamo di non considerare intervalli di questo tipo. Questo rende necessaria un'eccezione per intervalli che comprendono l'ultimo byte: in questo caso è concesso [x,0), con 0 che indica il fondo dello spazio di memoria.

Veniamo quindi all'**allineamento**. Dire che un indirizzo è allineato ad un numero n significa dire che quell'indirizzo è un multiplo di n. Chiaramente, conviene scegliere n potenze di 2. In questo caso, per riconoscere se un indirizzo è allineato a 2^k , basta guardare i suoi primi k bit.

Si dice spesso che oggetti sono *allineati alla parola*, ecc... Questo significa che sono allineati alla *dimensione* della parola specificata. Altrimenti, si può dire che un oggetto è allineato *naturalmente*, nel caso in cui sia allineato alla dimensione di stesso.

Infine, il **confine** di un oggetto è l'indirizzo che lo delimita dal resto dello spazio di memoria.

2 Lezione del 25-02-25

2.1 Interazione fra CPU e memoria

Nell'architettura Intel x86 la CPU interroga la RAM in due situazioni:

- Durante la lettura di un istruzione;
- Durante la lettura di *eventuali* operandi in memoria richiesti dall'istruzione. Notiamo che per ogni istruzione è previsto un solo indirizzo esplicito di un operando in memoria (non è permesso scrivere qualcosa come MOV (%RBP), (%RDI)). indirizzo Alcune istruzioni possono però avere comunque più di un operando in memoria (ad esempio le istruzioni di stringa, MOVS, ecc... o la stessa istruzione di pila POP).

Dal punto di vista pratico, il collegamento fra CPU e RAM è rappresentato da:

- Un bus dati a 64 bit;
- Un certo numero di linee per il **numero di riga**. Questo non corrisponde all'indirizzo del primo byte contenuto in ogni riga, ma l'indice proprio di ogni regione (intesa come riga) da 64 bit all'interno della RAM. Si noti inoltre che queste non sono necessariamente 2⁶⁴, o 2⁵⁷ (il massimo spazio indirizzabile secondo l'architettura x86), ma più spesso intorno alle 2³⁶-2³⁷;
- Determinate linee di controllo che segnalano l'operazione in corso da parte del processore.
- 8 linee di byte enable, attive basse, che rappresentano i byte di interesse all'interno di ogni locazione da 64 bit della RAM. Dal punto di vista della lettura, queste linee non sono particolarmente utili in quanto tutta la locazione verrà comunque riportata sul bus dati, o comunque le locazioni non selezionate potranno essere invalide o in alta impedenza, senza avere effetto sulla CPU (che non le leggerà). Per quanto riguarda la scrittura, invece, la RAM lascerà inalterati i byte con byte enable alto.

2.1.1 Struttura della RAM

Modelliziamo un modulo di RAM come una rete provvista di:

- Una linea di select, attiva bassa;
- Le linee di indirizzo;
- Una linea di *memory read* e una linea di *memory write*, o comunque un certo numero di **linee di controllo** necessarie all'accesso in scrittura e lettura;
- Un bus dati di ingresso/uscita.

Dalla CPU arriveranno, come abbiamo detto, i **numeri di riga**, i **byte enable**, il **bus dati** e le **linee di controllo**.

I numeri di riga si collegano direttamente alle linee di indirizzo di ogni modulo, che rappresenterà un certo byte della locazione (avremo quindi, nell'architettura descritta, 8 moduli per 8 byte, quindi 64 bit). I byte enable dovranno quindi smistarsi nelle linee di select di ogni modulo di RAM, a selezionare il modulo corrispondente. Il bus dati verrà composto, analogamente, concatenando le linee di uscita da 8 bit di ogni modulo di RAM. Notiamo che avevamo chiamato questo montaggio **parallelo**.

Vorremo poter estendere la memoria disponibile oltre il numero di locazioni da un byte fornite da ogni modulo di RAM. Pensiamo di fare questo attraverso più banchi di memoria con locazioni da 64 bit. In questo caso avremo bisogno di montaggio in serie, e quindi di generare un segnale di select a partire non solo dalle line di byte enable, ma anche da una maschera generata a partire dal numero di riga. Questo si potrà fare agevolemnte mettendo il segnale di uscita della maschera in OR (ricordiamo segnali attivi bassi, quindi si applica De Morgan) con il byte enable di ogni modulo di RAM compreso nel banco di memoria associato a tale maschera.

2.1.2 Allineamento e RAM

Quanto discusso finora rende più chiaro l'importanza del corretto allineamento degli oggetti in memoria. Leggere un oggetto da 8 byte non allineato nel montaggio di RAM descritto, infatti, richiederà necessariamente 2 accessi, contro il singolo accesso necessario per un oggetto allineato. Inoltre, alcuni dei byte più significativi risulteranno invertiti di posto rispetto ai byte meno significativi, cioè si richiede un operazione di shift interna al processore.

Questa combinazione di operazioni, eseguite in **hardware**, rende gli accessi in memoria non allineati molto poco performanti, e quindi sconsigliati (anche se l'architettura Intel x86 li permette comunque).

Un problema che potrebbe interessarci è, data una regione di memoria [x,y)] di dimensione b uguale a un singolo banco di RAM, ottenere gli indici della prima regione in cui cade l'intervallo, e la prima in cui non cade più.

Vediamo come calcolare la prima regione di appartenenza. In **hardware**, questo può essere calcolato semplicemente prendendo gli n-b bit più significativi dei numeri di riga x e y.

In **software**, questo equivarrà ad uno shift a destra che conservi i soli n-b bit più significativi.

Vediamo come calcolare l'offset di x o y all'interno delle rispettive regioni. Mascherando gli stessi bit, invece, si può ottenere l'indirizzo all'interno del banco del confine

della regione. Per la precisione, vogliamo una maschera fatta da n-b 0 e b 1. Questa si può ricavare agevolmente prendendo 2^b come 1UL << b e sottrandogli 1, ottenendo la maschera desiderata (si avranno borrow propagati dal bit in b fino al LSB).

Infine, vediamo come calcolare la prima regione di non appartenenza. In questo caso potremo calcolare la regione in cui cade y-1, e aggiungervi 1 (tenendo conto di eventuali *wrap-around*). Il -1 è richiesto dal fatto che y potrebbe cadere sul confine. In questo caso avremo ((y-1) >> b) + 1, considerata somma modulo n-b. Alternativamente, si può prendere y+b e calcolarne la regione di appartenenza.

2.2 Spazio di I/O

Veniamo quindi alla trattazione dello spazio di I/O e delle interfacce ivi connesse. L'accesso alle periferiche viene fatto attraverso le istruzioni IN e OUT, ammesso che non ci sia nessun sistema operativo in esecuzione, ma solo il nostro programma, e appositi sottoprogrammi di ingresso/uscita, la cui struttura non è al momento importante.

Le periferiche che studieremo, per semplicità di trattazione, derivano in parte da quelle disponibili sui PC **IBM AT** (famiglia *IBM 5170*). I PC di questa categoria (compresi tutti i vari *IBM compatible*) si basavano sullo standard per periferiche **ISA** (*Industry Standard Architecture*). Visto che i PC moderni derivano dai vecchi IBM compatible, anche oggi si cerca di emulare (almeno in parte) questo standard.

Le periferiche, nello specifico saranno:

- La tastiera;
- Il video su VGA;
- Il timer;
- Gli hard disk.

2.3 Tastiera

Dal punto di vista funzionale, la tastiera deve solo scoprire quali tasti sono premuti e comunicarlo al calcolatore. In particolare, noi studieremo tastiere IBM che trasmettono secondo lo standard PS/2.

Nei PC IBM il tasto non restituisce il carattere ASCII del carattere premuto, ma un codice associato ad ogni tasto che va convertito in software. Questo codice viene ottenuto per *scansione* dell'intero piano della tastiera. Dal punto di vista meccanico, ci sono **tracce** orizzontali e verticali disposte, rispettivamente, su ogni riga o colonna di tasti. La pressione di un tasto comporta una deformazione delle tracce che chiude un circuito fra la riga e la colonna del tasto corrispondente. Un **microcontrollore** (originariamente un Intel 8042) collegato sia alle tracce orizzontali che alle tracce verticali scansiona ciclicamente, con impulsi, o le righe leggendo le colonne, o le colonne leggendo rige, cercando un circuito chiuso. Un cortocircuito viene quindi rilevato dal microcontrollore, che aggiorna una (piccola) memoria interna con il tasto premuto. Di conseguenza, invia al calcolatore un segnale che codifica quali tasti sono stati premuti rispetto al precedente istante temporale, e quali tasti sono stati rilasciati rispetto al precedente istante temporale.

La tastiera non restituisce solo pressioni di tasti, ma anche i loro rilasci, cosa che può essere utile per ottenere combinazioni di tasti, pressioni estese nel tempo, ecc... I codici di pressione si dicono **make code**, mentre i codici di rilascio si dicono **break code** La

stessa pressione ripetuta di un tasto quando l'utente lo tiene premuto per un certo istante temporale era, nei PC IBM, realizzata direttamente nella tastiera (tecnologia *type-matic*), tra l'altro con periodo configurabile. Tramite il *type-matic*, su appositi tasti abilitati, si ha infatti una ripetizione dell'evento di *pressione* (non rilascio) di un tasto a frequenza costante dopo un intervallo di pressione continua.

Lato calcolatore, il segnale prodotto dal microcontrollore della tastiera viene letto da un interfaccia provvista dei seguenti registri:

- RBR, Receive Buffer Register;
- TBR, Transmit Buffer Register;
- **STR**, Status Register;
- **CMR**, Command register

RBR e TBR, come STR e CMR, condividono gli indirizzi, rispettivamente 0x60 e 0x64. Il RBR conterrà i make e break code, mentre l'STR conterrà i flag di stato sia per RBR che per TBR (rispettivamente ai bit 0 e 1).

Potremmo chiederci il significato di un registro di trasmissione TBR. Questo serve, ad esempio, a governare i led di stato per funzioni speciali quali Caps-Lock, Num-Lock, Scroll-Lock ecc... nonché a modificare le impostazioni del type-matic e, in maniera completamente slegata alla tastiera, a provocare il reset del PC, scrivendo 0xFE in CMR.

Vediamo quindi del codice C++ per l'interazione con l'interfaccia di tastiera:

```
const ioaddr iSTR = 0x64; // indirizzo di STR e CMR
const ioaddr iRBR = 0x60; // indirizzo di RBR e TBR

natb get_code() {
   natb c;
   do {
      c = inputb(iSTR); // inputb e' una funzione che sfrutta la IN dell'asm
   }
   while (!(c & 0x01)); // controlla il LSB di STR
   return inputb(iRBR);
}
```

3 Lezione del 03-03-25

3.1 Video

Il supporto principale al video e' la **memoria video**, che lato software si comporta perlopiu' come una normale memoria ad accesso casuale.

Questo e' quindi il primo esempio di un oggetto che si trova nello spazio di memoria, senza necessariamente *essere* memoria: cio' che vi viene scritto non viene memorizzato, ma visualizzato sullo schermo.

Inoltre, la memoria video supporta un accesso *bidirezionale*: cioe' vi si puo' accedere sia lato CPU che lato **adattatore video**, cioe' la rete che si occupa di gestire tale memoria e visualizzarla sul *display*. Lo standard appunti lett prevede che l'adattatore sia configurabile e utilizzabile in due modalita':

 Modalita' testo: ogni locazione viene associata ad un carattere ASCII da visualizzare sullo schermo, diviso in 80 colonne × 25 righe. E' questa la modalita' di default in cui si avvia l'adattatore. In questo caso il compito dell'adattatore e' quello di leggere i quanti KB di memoria, e convertire ogni codice nel carattere principale. Questo viene fatto consultando una ROM di caratteri che contiene quello che e' effettivamente il *font* dell'adattatore. Solitamente si puo' anche redirezionare la lettura in ROM ad una certa regione della RAM, modificando cosi' il font.

La faccenda e' veramente piu' complicata: si dedicano non 1 ma 2 byte ad ogni carattere, dove il byte piu' significativo rappresenta informazioni riguardo al **colore** del carattere:

- I 4 bit meno significativi rappresentano il colore del foreground;
- I 3 bit successivi rappresentano il colore del background<
- Il bit piu' significativo rappresenta il blinking, cioe' indica all'adattatore di far lampeggiare quel carattere nel tempo.

La modalita' testo non ha idea della posizione del cursore sullo scherm: attraverso registri si puo' indicare la posizione del cursore, e modificando la regione di memoria interessata si possono cambiare i caratteri in qualsiasi zona dello schermo. Il comportamento del cursore (spostamento, ritorno a capo, ritorno carrello, ecc...) e' quindi gestito interamente lato software.

Modalita' grafica: programmando i registri dell'adattatore si possono ottenere diverse modalita' grafiche, che permettono al progammatore di colorare singoli pixel sul display. Nella macchina virtuale usata incapsuliamo tale operazione di conversione in un apposita libreria, e scriviamo pixel con colori su 8 bit (per 256 colori diversi). Nei sistemi moderni la memoria video non viene scritta dalla CPU, ma da un coprocessore grafico che esegue un suo programma, mentre la CPU puo' dedicarsi ad altro.

3.1.1 Indirizzamento dei registri dell'adattatore video

Vediamo nel dettaglio come si possono indirizzare i registri interni dell'adattatore video. Questo dispone infatti di una vasta gamma di registri, ma una sola linea di ingresso da un byte per indirizzamento e scrittura. Le scritture vengono quindi eseguite inserie:

- Prima specificando l'indirizzo del registro da aggiornare;
- Poi inserendo i dati da scrivere a tale indirizzo.

3.2 Timer

Il timer e' realizzato come un interfaccia ad eventi, che riceve in ingresso un clock e aggiorna ciclicamente un registro contatore. Al raggiungimento di 0 da parte del contatore, si resetta e si invia un certo evento (un impulso).

Nel PC IBM in particolare troviamo 3 contatori:

- Contatore 0: e' collegata a mistero
- Contatore 1: era storicamente usato per il refreseh della RAM, oggi non viene piu' usato;
- Contatore 2: era collegato all'unico dispositivo audio presente sull'IBM, cioe' il beeper speaker.

3.2.1 Sonoro

Vediamo in parrticolare il lato sonoro del PC IBM. Essendo stato questo un calcolatore pensato per l'uso da ufficio, le capabilita' audio erano molto limitata: si disponeva di un beeper speeker a frequenza modulabile dal timer (contatore 2). Inoltre, un particolare registro in memoria era collegato direttamente in AND con l'uscita del contatore 2, permettendo la modulazione on/off del segnale allo speaker.

Qesto tipo di modulazione permetteva effettivamente di sfruttare, in maniera non prevista dalla IBM, per riprodurre segnali generici.

4 Lezione del 04-03-25

4.1 Hard disk

Gli hard disk (dischi rigidi) sono effettivamente, seppur memorie, periferiche, collegate al bus attraverso la loro interfaccia. La CPU non puo' eseguire programmi direttamente dall'hard disk, ma deve prima caricarli in memoria principale (memoria RAM).

Questo perche' letture e scritture in hard disk vengono effettuate per **blocchi** (storicamente di 512 byte), e richiedono molto piu' tempo di quanto sia possibile aspettare al prelievo di istruzioni o operandi.

Nello standard PC AT gli hard disk usano interfacce **SATA**.

Dal punto di vista elettromeccanico venivano realizzati attraverso dischi di materiale ferromagnetico imperniati ad un asse centrale, con testine mobili che scandivano il raggio dei dischi, rilevando o modificando la loro magnetizzazione per accedere all'informazione. Il complesso di dischi e testine viene detto **drive**.

L'informazione viene disposta su ogni disco in **settori** e **tracce**. Le tracce sono concentriche e i settori formano degli "spicchi" di ogni faccia. Notiamo che entrambe le facce di ogni disco possono memorizzare informazione. Un **blocco** e' quindi formato dalla regione di una traccia compresa in un certo sensore.

I dischi vengono tenuti continuamente in rotazione (negli ordini delle centinaia/migliaia di RPM). Il tempo che la testina impiega a raggiungere una tracca viene detto **tempo di seek**, t_{seek} , il tempo che alla velocita' di rotazione del disco l'informazione si trovi sotto la testina **latenza** $t_{latency}$ e il tempo necessario ad effettuare l'operazione vera e propria **tempo di lettura/scrittura** $t_{r/w}$, per cui il tempo di lettura/scrittura complessivo risulta:

$$t_{seek} + t_{latency} + t_{r/w} \sim 1 \,\mathrm{ms}$$

nell'ordine del millisecondo, per la CPU estremamente (milioni di volte) piu' lento della RAM.

Quello che accade al tempo di lettura e' che il blocco viene copiato in un buffer di memoria nell'interfaccia che viene poi reso disponibile alla CPU. Viceversa, al tempo di scrittura il buffer viene riempito dalla CPU, e l'interfaccia si occupa poi di copiarlo all'interno del settore giusto.

Per effettuare un operazione dobbiamo quindi sapere:

- Quale testina individuare;
- Quale traccia individuare;
- Quale regione (quindi quale blocco) individuare.

Storicamente queste informazioni erano gestite lato software, concedendo la possibilita' di alterare la *formattazione* del disco. Oggi la formattazione e' definita in fabbrica, e l'interfaccia offre una sua astrazione. In questa astrazione ogni blocco e' quindi indirizzato da un indirizzo logico, il **Logical Block Address**, **LBA**.

4.1.1 Interfaccia SATA

L'interfaccia del PC IBM e' dotata di diversi registri a 8 bit e uno a 16 bit:

- Registri di selezione del blocco:
 - SNR (Sector Number);
 - CNL (Cylinder Number Low);
 - CNH (Cylinder Number High);
 - HND (Head And Drive): solo gli ultimi 4 bit di questo registro formano l'informazione sulla testina da utilizzare. Gli altri bit vengono usati diversamente, ad esempio per selezionare quale drive usare in configurazioni master/slave, o per abilitare il LBA, usando quindi i registri di selezione per specificare un indirizzo logico (su $3\cdot 8=4=28$ bit) anziche' un informazione geometrica sulla posizione del blocco desiderato.

Vediamo che dalla dimensione dell'LBA (assumiamo che per indirizzamento geometrico si trova la stessa cosa) si ha una dimensione del disco:

$$2^{28} \cdot 2^9 = 2^{37} = 128 \, \mathrm{GB}$$

Per questo si puo' abilitare la modalita' **LBA48** (che non e' un gruppo di idol giapponesi), dove ci si aspetta il LBA venga specificato in due passate, una da 24 bit e una da 20 bit sugli stessi registri.

- **SCR** (Section Counter): permette di specificare su quanti settori contigui a partire da quello specificato prima eseguire l'operazione;
- **BR** (Buffer Register): l'unico registro a 16 bit, permette di accedere al buffer 2 byte alla volta;
- **STS** (Status Register): il classico registro di stato che ci notifica se un'operazione e' conclusa o si puo' effettuare;
- **CMD** (Command): serve a specificare l'operazione da effettuare (lettura, scrittura, ecc...).

4.2 Caching

Abbiamo detto che la memoria RAM e' molto piu' veloce dei dischi rigidi. Questo e' vero, ma non significa che non ci sia comunque un certo dislivello tra la velocita' della CPU e la velocita' della RAM: un operazione puo' comunque richiedere nel'ordine dei ~ 100 circa cicli di clock.

Per questo motivo si inframezzano fra la CPU e la RAM piu' memorie, relativamente piccole ma veloci, dette **memorie di cache**.

L'idea e' che la RAM in se' e' costituita da memoria dinamica (DRAM), quindi a condensatori, relativamente lenta e con tempo di refresh, mentre le memorie di cache vengono implementate con memorie statiche, piu' veloci ma piu' costose da realizzare su larga scala (per cui le dimensioni ridotte).

4.2.1 Principi di localita'

Le piccole dimensioni delle memorie vengono aiutate dalla **localita**' del codice in memoria: istruzioni che compongono le stesse funzioni avranno istruzioni vicine fra di loro, le strutture definite dal programmatore conterranno dati locali, ecc... In particolare, potremo distinguere fra due **principi di localita**':

- Localita' temporale: una volta visto un indirizzo, e' probabile che questo o indirizzi ad esso vicini siano visti di nuovo;
- Localita' spaziale: solitamente si accede ad indirizzi vicini fra di loro.

La cache avra' quindi il compito di memoizzare i valori prelevati con frequenza dalla DRAM. Possiamo immaginare che la prima lettura di un dato richiedera' il tempo completo di accesso, ma la lettura successiva, ammesso che quel dato sia stato salvato nella cache, richiedera' un tempo di accesso significativamente minore.

L'importante e' che questo processo sia **trasparente** per la CPU, cioe' che questa non si debba preoccupare di quali indirizzi sono stati visti dalla cache e memoizzati e quali no. Il risultato finale e' la velocizzazione di un qualsiasi programma senza dover agire in nessun modo sul programma stesso. Di contro, non e' detto che il programmatore non possa sfruttare la presenza della memoria cache, cercando di sviluppare algoritmi e strutture dati che rispettano il piu' possibile i principi di localita' (tecniche *data driven*).

4.2.2 Cache ad indirizzamento diretto

Vediamo un primo esempio di memoria cache. Abbiamo che lato processore ci arriveranno le linee di byte enable (BE) e le linee di indirizzo (A). Inoltre avremo a disposizione un bus dati (D) di un certo numero di linee.

Vorremo porre fra CPU e DRAM una cache, connessa a quest'ultima da una **cacheli- ne** da 64 byte.

In fase di lettura, invece di leggere l'unica riga richiesta dal processore, si procedera' alla lettura di un certo numero di righe (poniamo 8). Questo significa che per un tempo di lettura di riga di t, ci vorra' un tempo $\sim 8t$ (solitamente meno). La speranza e' che queste righe verranno lette successivamente dal processore.

Inoltre, ad ogni "blocco" di memoria letto dalla cache si dovra' associare dell'informazione riguardo alla posizione in memoria (informazione che viene contenuta nella **memoria delle etichette**). E' quindi piu' conveniente leggere regioni relativamente piu' grandi di memoria, in modo da non sprecare *overhead* per piccole quantita' di dati.

La divisione della DRAM in cacheline e' quindi realizzata giocando sulle scomposizioni degli indirizzi. Per ottenere la regione corrispondente ad un indirizzo (il numero di cacheline) si realizza una sorta di *funzione di hash*, prendonendo gli *n* bit piu' significativi della linea di indirizzo A e usandoli come chiave per la regione di dati corrispondente. Inoltre, alla regione selezionata si associa un singolo bit di validita'. Un comparatore fra etichetta e gli *n* bit piu significativi messo in AND a questo bit di validita' ci assicurera' quindi la presenza nella cacheline del dato richiesto, detta **hit/miss**. A questo punto bastera' ricavare una linea di offset dai bit meno significativi di A, e leggere dalla memoria cache a tale offset, all'indice indicato dall'etichetta. riguarda bene

Notiamo che questa cache soffre di problemi di **collisione**: infatti ci sara' un numero di regioni con lo stesso indice (etichetta ?) pari alla dimensione della RAM fratto la dimensione della cache.