# Why is My Classifier Discriminatory?

Irene Y. Chen, Fredrik D. Johansson, and David Sontag NeurIPS 2018

**Spotlight Presentation** 

As narrated by Dany Haddad, Alan Gee

### The Cost of Fairness

- Most research has suggested sacrificing model accuracy for the sake of fairness
- Often, sacrificing predictive accuracy is difficult to justify
- Almost too obvious: This work suggests additional data collection as a strategy to improve a model's fairness rather than constraining model

#### Where does unfairness come from?

Best to understand where the discrimination may originate from so a proper solution can be applied...but prior work\* has focused mainly on models

| Modeling Considerations    | Data Considerations        |  |
|----------------------------|----------------------------|--|
| Loss function constraints* | Pre-processing*            |  |
| Modeling the Data*         | Population/Group Diversity |  |
| Regularization*            | Feature Selection          |  |
| Trade-offs*                | Sample Size                |  |

### **Notation**

A = a, is the protected attribute

 $\hat{Y}_d := h(X, A)$  are predictions learned from dataset d

 $\overline{\cdot} := E_D[\cdot]$ 

main prediction  $\tilde{y}(x, a) = \arg\min_{y'} \mathbb{E}_D[L(\hat{Y}_D, y') \mid X = x, A = a]$ 

(Bayes) optimal prediction  $y^*(x,a) = \arg\min_{y'} \mathbb{E}_Y[L(Y,y') \mid X = x, A = a]$ 

### **Decomposition of Error**



# **Estimating Bias, Variance and Noise**

$$V(\hat{Y}, x, a) = \mathbb{E}_D[L(\tilde{y}(x, a), \hat{y}_D(x, a))]$$

$$N(x,a) = \mathbb{E}_Y[L(y^*(x,a),Y) \mid X = x, A = a]$$

$$B(\hat{Y}, x, a) = L(y^*(x, a), \tilde{y}(x, a))$$

#### **Definitions of Discrimination Level**

$$\begin{aligned} & \operatorname{FNR}_a(\hat{Y}) \coloneqq \mathbb{E}_X[1 - \hat{Y} \mid Y = 1, A = a] \\ & \operatorname{FPR}_a(\hat{Y}) \coloneqq \mathbb{E}_X[\hat{Y} \mid Y = 0, A = a] \\ & \operatorname{ZO}_a(\hat{Y}) \coloneqq \mathbb{E}_X[\mathbb{1}[\hat{Y} \neq Y] \mid A = a] \end{aligned}$$

$$\gamma_a \in \{\text{ZO}, \text{FPR}, \text{FNR}\}$$

$$\Gamma^{\gamma}(\hat{Y}) := \left| \gamma_0(\hat{Y}) - \gamma_1(\hat{Y}) \right|$$
 Level of discrimination

## **Discrimination Level Decomposition**

$$\overline{\gamma}_{a}(\hat{Y}) = \underbrace{\overline{N}_{a}}_{Noise} + \underbrace{\overline{B}_{a}(\hat{Y})}_{Bias} + \underbrace{\overline{V}_{a}(\hat{Y})}_{Variance}$$

The discrimination level decomposes as:

$$\overline{\Gamma} = \left| (\overline{N}_0 - \overline{N}_1) + (\overline{B}_0 - \overline{B}_1) + (\overline{V}_0 - \overline{V}_1) \right|$$

- Test for statistical significance of discrimination using a two-tailed z-test
  - The class specific error is approximately normally distributed for a large number of samples

# **Error Decomposition and Discrimination**



Groups are identically distributed wrt features, X. Discrimination is only due to **predictor variance.** 



Groups are NOT identically distributed.
Difference in **noise** across values of X leads to

discrimination.



One group may be harder to predict for than another. Errors due to **bias** will affect one group more than another.

# **Discrimination Level Decomposition**

$$\overline{\Gamma} = \left| (\overline{N}_0 - \overline{N}_1) + (\overline{B}_0 - \overline{B}_1) + (\overline{V}_0 - \overline{V}_1) \right|$$

- The magnitude of each difference shows the sources of discrimination due to modeling error
- ullet  $(\overline{N}_0-\overline{N}_1)$  Reduce by measuring additional features
- $\bullet$   $(\overline{B}_0-\overline{B}_1)$  Reduce by selecting a more appropriate model class
- ullet  $(\overline{V}_0-\overline{V}_1)$  Reduce by increasing the training set size

# **Implications**

$$\overline{\Gamma} = \left| (\overline{N}_0 - \overline{N}_1) + (\overline{B}_0 - \overline{B}_1) + (\overline{V}_0 - \overline{V}_1) \right|$$

- If the noise N<sub>a</sub> differs across the protected attribute, a, then:
  - No classifier can have 0 discrimination, must have bias or variance larger than the Bayes optimal classifier
- Otherwise:
  - Noise is homoskedastic
  - Discrimination is only a result of the Bias and Variance terms

# Mitigation of Discrimination Through Data

 Model performance as function of samples n behave like inverse power-law curves (a.k.a. Type II learning curves):



Can be used to extrapolate discrimination learning curve:

$$\overline{\Gamma}(\hat{Y},n) := |\overline{\gamma}_0(\hat{Y},n) - \overline{\gamma}_1(\hat{Y},n)|$$

# Mitigation of Discrimination Through Data

• When discrimination  $\overline{\Gamma}(\hat{Y},n)$  is dominated by a difference in noise,  $(\overline{N}_0-\overline{N}_1)$  fairness may not be improved through model selection

• If the variance in outcomes within a cluster is not explained by the available feature set, additional variables may be used to further distinguish its members.  $\rho_a^{\rm ZO}(c) := \mathbb{E}_X[\mathbb{1}[\hat{Y} \neq Y] \mid A = a, C = c],$ 

$$|\rho_0(c)-\rho_1(c)|$$

## **Experiments**

| Dataset                    | Objective                     | Protected Group |
|----------------------------|-------------------------------|-----------------|
| UCI's Census Income        | Predict Income over/under 50k | Gender          |
| MIMIC III's Clinical Notes | Predict Mortality             | Race            |
| Goodread's Book Reviews    | Predict Review Score          | Author Gender   |

- Analyze the level of discrimination for the full data
- Estimate the value of increasing training set size by fitting Type II learning curves
- Use clustering to identify subgroups where discrimination is high.

# **Experimental Results: Income Prediction**



Key Takeaway: Differences in false negative rate (discrimination) decreases as training set size increases.

# Identifying Discrimination in Sub-groups

- Income prediction at managerial level
   FNR<sub>Women</sub> = 0.412 > FNR<sub>men</sub> = 0.157
- For other positions:FNR<sub>Women</sub> = 0.543 > FNR<sub>men</sub> = 0.461

# **Experimental Results: Mortality Prediction**



Statistically significant racial differences in zero-one loss

Shows benefit of fitting more data to reduce variance (discrimination levels decrease significantly)

Identify sub-groups were more features would help reduce noise (data-augmentation)

# **Paper Contributions**

- (1) Decompose unfairness into three categories: bias, variance, and noise.
- (2) Show how to estimate these quantities.
- (3) Experimentally show their methods can help identify subpopulations experiencing discrimination and suggest steps to counter the unfairness without sacrificing model accuracy.