A Post-Quantum Round-Optimal Oblivious PRF from Isogenies

Andrea Basso

16th August, 2023 Selected Areas in Cryptography 2023

- Password-checking in Microsoft Edge
 - •OPAQUE

• ,,,,,

- Privacy pass
- Private-set intersection
 Adaptive OT

- Server doesn't learn
 anything
 Output is
 deterministic
 deterministic
- Client only learns one output -

Post-quantum OPRFs

 Generic MPC techniques many rounds (can't be optimal) round optimal VOPRF based on lattices [ADDS19] • feasibility result (> 2⁴⁰ bits of comms) six rounds VOPRF based on SIDH [BKW20] broken by attack on PR and on SIDH three rounds (OT required) OPRF based on CSIDH [BKW20] CSIDH parameters?

Post-quantum OPRFs

 Generic MPC techniques many rounds (can't be optimal) round optimal VOPRF based on lattices [ADDS19] feasibility result (> 2⁴⁰ bits of comms) six rounds VOPRF based on SIDH [BKW20] broken by attack on PR and on SIDH three rounds (OT required) OPRF based on CSIDH [BKW20] CSIDH parameters?

$$F(k, m) = H(m, j_{mk}, E')$$

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 1 Eo m E'm Em X k Emx Emx

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 2

Repeat the attack 3 times

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 2

- Repeat the attack 3 times
- Find a basis on E_k

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 2

- Repeat the attack 3 times
- Find a basis on E_k
- Evaluate the PRF on any message

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 2

- Repeat the attack 3 times
- Find a basis on E_k
- Evaluate the PRF on any message

The server can check the degree with the PoK!

Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

Part 2

- Repeat the attack 3 times
- Find a basis on E_k
- Evaluate the PRF on any message

It seems hard to prevent an attacker from recovering a basis on Ek

It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits valid message isogenies

It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits valid message isogenies

The protocol is oblivious

It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for server's computations

It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for server's computations

The PRF needs to be deterministic

It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits valid message isogenies

1

The protocol is oblivious

Update values

Use dynamic values for server's computations

The PRF needs to be deterministic

Scale parameters

Attack is sub exponential

It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for server's computations

The PRF needs to be deterministic

Scale parameters

Attack is sub exponential

 $p > 2^{16,000}$

It seems hard to prevent an attacker from recovering a basis on Ek

Idea: make the basis on Ek not enough for an attack

[BKW20]

[BKW20]

[BKW20]

[BKW20]

[BKW20]

[BKW20]

 $Ker = \langle P + H(m)Q \rangle$ E_{m} $P', Q' \text{ on } E_{k}$ Can evaluate the PRF on any message

[BKW20]

 $Ker = \langle P + H(m)Q \rangle$ E_{m} $P', Q' \text{ on } E_{k}$ Can evaluate the PRF on any message

One more attack to prevent

The SIDH attacks fully break the BKW OPRF

Need to introduce SIDH countermeasures

Need to introduce SIDH countermeasures

Longer isogenies

Need to introduce SIDH countermeasures

Longer isogenies

only works for one party

Need to introduce SIDH countermeasures

Longer isogenies

Masked-degree isogenies [Mor22,FMP23]

only works for one party

Need to introduce SIDH countermeasures

Longer isogenies

Masked-degree isogenies [Mor22,FMP23]

only works for one party

hard to build proofs

Need to introduce SIDH countermeasures

Longer isogenies

Masked-degree isogenies [Mor22,FMP23]

Masked torsion points [Fou22,FMP23]

only works for one party

hard to build proofs

Need to introduce SIDH countermeasures

Longer isogenies

Masked-degree isogenies [Mor22,FMP23]

Masked torsion points [Fou22,FMP23]

only works for one party

hard to build proofs

it works

One more attack to prevent The SIDH attacks fully break the BKW OPRF

Need to introduce SIDH countermeasures

Longer isogenies

Masked-degree isogenies [Mor22,FMP23]

Masked torsion points [Fou22,FMP23]

only works for one party

hard to build proofs

it works
needs new Polk

One more attack to prevent The SIDH attacks fully break the BKW OPRF

Need to introduce SIDH countermeasures

Longer isogenies

Masked-degree isogenies [Mor22,FMP23]

Masked torsion points [Fou22,FMP23]

only works for one party

hard to build proofs

it works

needs new Polk

needs new Polk

26000

challenges from {-1, 0, 1}

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

 $a = a_1 \times a_2 \times a_3$

challenges from {-1, 0, 1}

soundness error = 2/3 \Rightarrow need 1.7 λ repetitions

 $p \approx \text{ord } P, Q \times \text{deg } \Phi \times \text{deg} \rightarrow 29000$

[BKW20] uses 3 proofs:

[BKW20] uses 3 proofs:

[BKW20] uses 3 proofs:

[BKW20] uses 3 proofs:

[BKW20] uses 3 proofs:

[BKW20] uses 3 proofs:

Interactive (5 rounds)

to commitment

[BKW20] uses 3 proofs:

to commitment

One-more unpredictability countermeasure

One-more unpredictability countermeasure

more efficient than original new security assumption

• One-more unpredictability countermeasure

more efficient than original new security assumption

Integrated SIDH countermeasures

• One-more unpredictability countermeasure

more efficient than original new security assumption

• Integrated SIDH countermeasures novel proof of isogeny knowledge prime is still large

• One-more unpredictability countermeasure

more efficient than original new security assumption

• Integrated SIDH countermeasures

novel proof of isogeny knowledge prime is still large

New PoPI

• One-more unpredictability countermeasure

more efficient than original new security assumption

• Integrated SIDH countermeasures novel proof of isogeny knowledge prime is still large

• New Popl more efficient than original round optimal

Results

Protocol	Rounds	Bandwidth (avg.)	Verifiable	Secure
[1] (LWE)	2	>128 GB	✓	✓
[5] (CSIDH)	3	$424~\mathrm{kB}$	X	
[5] (SIDH) ^{FO}	6	1.4 MB		X
[5] (SIDH) ^{Unruh}	6	> 10.9 MB		X
$[This work]^{FO}$	2	1.9 MB		
[This work] ^{Unruh}	2	$8.7~\mathrm{MB}$		