

# Towards dynamic computation graphs via sparse latent structure

Vlad Niculae Instituto de Telecomunicações

André Martins IT & Unbabel

Claire Cardie Cornell University

🖸 github.com/vene/sparsemap 🗦 āvnfrombucharest

The bears eat the pretty ones













# Latent Dependency TreeLSTM

input

X

The bears eat the pretty ones

output

V

# Latent Dependency TreeLSTM

$$p(y|x) = \sum_{h \in \mathcal{H}} p(y \mid h, x) p(h \mid x)$$



output

y

$$p(y \mid x) = \sum_{x} p(y \mid h, x) p(h \mid x)$$

 $h \in \mathcal{H}$ 

$$p(y \mid x) = \sum p_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$$

h∈H

$$p(y \mid x) = \sum_{h \in \mathcal{H}} p_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$$





Exponentially large sum!



idea 1

idea 2

idea 3



idea 2

idea 3



idea 2

idea 3





















$$= .7$$
  $+ .3$   $+ 0 + ...$ 

$$p(y \mid x) = .7$$
  $p_{\phi}(y \mid x) + .3$   $p_{\phi}(y \mid x) + .3$ 

$$p(y \mid x) = .7$$
  $p_{\phi}(y \mid x) + .3$   $p_{\phi}(y \mid x) + .3$ 

• is not a tree itself: 
$$p(y \mid x) \neq p_{\phi}(y \mid \bullet \bullet)!$$

| 8 | 85%  |  |  |  |
|---|------|--|--|--|
| 8 | 84%  |  |  |  |
| 8 | 83%  |  |  |  |
| 8 | 82%  |  |  |  |
| 8 | 81%  |  |  |  |
| , | 80 % |  |  |  |





Left-to-right: regular LSTM





Flat: bag-of-words-like





CoreNLP: off-line parser

| 80%  |  |  |  |
|------|--|--|--|
| 000/ |  |  |  |
| 81%  |  |  |  |
| 82%  |  |  |  |
| 83%  |  |  |  |
| 84%  |  |  |  |
| 85%  |  |  |  |

Flat

CoreNLP

Latent

#### **Sentiment classification (SST)**

| accuracy | 85%  |     |      |       |     |        |  |
|----------|------|-----|------|-------|-----|--------|--|
| (binary) | 84%  |     |      |       |     |        |  |
|          | 83%  |     |      |       |     |        |  |
|          | 82%  |     |      |       |     |        |  |
|          | 81%  |     |      |       |     |        |  |
|          | 80%  |     |      |       |     |        |  |
|          | 00 % | LTR | Flat | Corel | NLP | Latent |  |
|          |      |     |      |       |     |        |  |

#### **Sentiment classification (SST)**

#### Natural Language Inference (SNLI)





$$p(y \mid P, H) = \sum_{h_P \in \mathcal{H}(P)} \sum_{h_H \in \mathcal{H}(H)} p_{\phi}(y \mid h_P, h_H) p_{\pi}(h_P \mid P) p_{\pi}(h_H \mid H)$$



#### Natural Language Inference (SNLI)





#### **Reverse dictionary lookup**

given word description, predict word embedding (Hill et al, 17)

instead of 
$$p(y \mid x)$$
, we model  $\mathbb{E}_{p_{\pi}} \mathbf{g}(x) = \sum_{h \in \mathcal{H}} \mathbf{g}(x; h) p_{\pi}(h \mid x)$ 











# Syntax vs. Composition Order



# Syntax vs. Composition Order



# Syntax vs. Composition Order



#### **Conclusions**

Latent structured variables for uncertainty & compositionality

Tractable marginalization via SparseMAP inference

Flexible model: arbitrary function of discrete latent structures









Some icons by Dave Gandy and Freepik via flaticon.com.