

Mining Data Streams

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

References

□ Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition)

► Chapter 8

Data Streams

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering & industrial processes: power supply & manufacturing
- Sensor, monitoring & surveillance: video streams, RFIDs
- Security monitoring
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)

- Multiple, continuous, rapid, time-varying, ordered streams
- Main memory computations
- Queries are often continuous
 - Evaluated continuously as stream data arrives
 - Answer updated over time
- Queries are often complex
 - Beyond element-at-a-time processing
 - Beyond stream-at-a-time processing
 - Beyond relational queries (scientific, data mining, OLAP)
- Multi-level/multi-dimensional processing and data mining
 - Most stream data are at low-level or multi-dimensional in nature

- Query types
 - One-time query vs. continuous query (being evaluated continuously as stream continues to arrive)
 - Predefined query vs. ad-hoc query (issued on-line)
- Unbounded memory requirements
 - For real-time response, main memory algorithm should be used
 - Memory requirement is unbounded if one will join future tuples
- Approximate query answering
 - With bounded memory, it is not always possible to produce exact answers
 - High-quality approximate answers are desired
 - Data reduction and synopsis construction methods: Sketches, random sampling, histograms, wavelets, etc.

- ☐ Stream mining is a more challenging task in many cases
 - ▶ It shares most of the difficulties with stream querying
 - But often requires less "precision", e.g., no join, grouping, sorting
 - Patterns are hidden and more general than querying
 - It may require exploratory analysis, not necessarily continuous queries
- Stream data mining tasks
 - Multi-dimensional on-line analysis of streams
 - Mining outliers and unusual patterns in stream data
 - Clustering data streams
 - Classification of stream data

Processing Data

What the Methodologies for Stream Data Processing?

- Major challenges
 - Keep track of a large universe, e.g., pairs of IP address
- Methodology
 - Synopses (trade-off between accuracy and storage)
 - Use synopsis data structure, much smaller (O(log^k N) space) than their base data set (O(N) space)
 - Compute an approximate answer within a small error range (factor ε of the actual answer)
- Major methods
 - Random sampling
 - Histograms
 - Sliding windows
 - Multi-resolution model
 - Sketches
 - Radomized algorithms

Random sampling

▶ Reservoir sampling: maintain a set of s candidates in the reservoir, which form a true random sample of the element seen so far in the stream. As the data stream flow, every new element has a certain probability (s/N) of replacing an old element in the reservoir.

Sliding windows

- Make decisions based only on recent data of sliding window size w
- An element arriving at time t expires at time t + w

Histograms

- Approximate the frequency distribution of element values in a stream
- Partition data into a set of contiguous buckets
- Equal-width (equal value range for buckets) vs. V-optimal (minimizing frequency variance within each bucket)

Multi-resolution models

Popular models: balanced binary trees, micro-clusters, and wavelets

Sketches

▶ Frequency moments of a stream $A = \{a1, ..., aN\}, F_k$:

$$F_{k} = \sum_{i=1}^{v} m_{i}^{k}$$

where v: the universe or domain size, m_i : the frequency of i in the sequence

- F₀ is the number of distinct elements
- F₁ is the number of elements
- F₂ is known as repeat rate or Gini's index of homogeneity

Randomized algorithms

- ► Monte Carlo algorithm: bound on running time but may not return correct result
- Chebyshev's inequality: Let X be a random variable with mean μ and standard deviation σ

$$P(\mid X - \mu \mid > k) \leq \frac{\sigma^2}{k^2}$$

- Chernoff bound:
 - Let X be the sum of independent Poisson trials X1, ..., Xn, δ in (0, 1]
 - The probability decreases exponentially as we move from the mean

$$P[X < (1 + \delta)\mu] < e^{-\mu\delta^2/4}$$

Architectures

- A tilted time frame
 - ▶ Different time granularities: second, minute, quarter, hour, day, week, ...
- Critical layers
 - Minimum interest layer (m-layer)
 - Observation layer (o-layer)
 - User: watches at o-layer and occasionally needs to drilldown down to m-layer
- Partial materialization of stream cubes
 - Full materialization: too space and time consuming
 - ▶ No materialization: slow response at query time
 - Partial materialization: what do we mean "partial"?

- Natural tilted time frame:
 - Example: Minimal: quarter, then 4 quarters → 1 hour, 24 hours → day, ...

- Logarithmic tilted time frame:
 - ▶ Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, ...

Frequent patterns

- Frequent pattern mining is valuable in stream applications
 - e.g., network intrusion mining
- Many existing algorithms require to scan the dataset more than once.
- Multiple scans are not feasible in data streams, where there are two main approaches:
 - Focus on a set of predefined set of items
 - Provide an approximate answer
 - E.g., exploiting the Lossy Counting Algorithm

Predefined set of items

- The algorithm keeps track of a predefined set of items
- It requires a single scan of data to compute the exact frequency of each item
- How to choose the predefined set of items?
 - Focus on a set of "interesting" items
 - Focus on a set of item known to be frequent in the past
- This approach cannot be often used in practice:
 - ▶ A set of "interesting" items might not be available
 - Choosing items on the basis of past information does not account for future changes

24

Mining Approximate Frequent Patterns: Lossy Counting

- Approximate answers are often enough (e.g., trend/pattern analysis)
- Example: a router is interested in all flows
 - whose frequency is at least 1% (σ) of the entire traffic stream seen so far
 - \blacktriangleright and feels that 1/10 of σ (ϵ = 0.1%) error is comfortable
- How to mine frequent patterns with good approximation?
- \square Lossy Counting Algorithm is able to compute the frequency of items with an error not bigger than ϵ

 \square Divide Stream into 'Buckets' (bucket size is $1/\epsilon = 1000$)

At bucket boundary, decrease all counters by 1

At bucket boundary, decrease all counters by 1

- Inputs
 - support threshold: σ
 - error threshold: ε
 - data stream of length N
- \square Output: items with frequency counts exceeding ($\sigma \varepsilon$) N
- How much do we underestimate frequency?
 - Not more than one element is "lost" for each buket
 - ▶ The number of buckets is $N/w = \varepsilon N$
 - Frequency count underestimated by at most εΝ
- Approximation guarantee
 - ▶ No false negatives
 - ▶ False positives have true frequency count at least $(\sigma \varepsilon)N$
 - ▶ The space requirement is limited to $1/\epsilon \log(\epsilon N)$

- When applied to find frequent itemsets, the list of frequencies grows exponentially
- □ To deal with this problem, as many buckets as possible are loaded in main memory at one time
- Example: load 3 buckets into main memory

With large number of buckets in memory we delete more itemsets

Lossy Counting For Frequent Itemsets: Pruning Itemsets

If we find itemset (____) is not frequent itemset, Then we needn't consider its superset

- Strength
 - ▶ A simple idea
 - Can be extended to frequent itemsets
- Weakness:
 - Space Bound is not good
 - ▶ For frequent itemsets, they do scan each record many times
 - ▶ The output is based on all previous data. But sometimes, we are only interested in recent data

Classification

Classification in Data Streams What are the issues?

- It is impossible to store the whole data set, as traditional classification algorithms require
- It is usually not possible to perform multiple scans of the input data
- Data streams are time-varying! There is concept drift.
- Approaches
 - ▶ Hoeffding Trees
 - Very Fast Decision Tree
 - Concept-adapting Very Fast Decision Tree
 - Ensemble of Classifiers

- Initially introduced to analyze click-streams
- With high probability, lead to the same decision tree of typical algorithms
- Only uses small sample to choose optimal splitting attribute
- It is based on Hoeffding Bound principle
 - r: random variable representing the attribute selection method (e.g. information gain)
 - ▶ R: range of r
 - n: # independent observations
 - ▶ Mean of r is at least r_{avq} ε, with probability 1 δ

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$$

■ The bound is used to determine, with high probability the smallest number N of examples needed at a node to select the splitting attribute

Hoeffding Tree Algorithm

- Hoeffding Tree Input
 - S: sequence of examples
 - X: attributes
 - ▶ G(): evaluation function
 - δ: desired accuracy

```
for each example in S retrieve G(X_a) and G(X_b) if (G(X_a) - G(X_b) > \epsilon) split on X_a recurse to next node break
```

X_a and X_b are the atributes with highest values of G(), while ε is computed with the Hoeffding bound

Hoeffding Tree: Strengths and Weaknesses

Strengths

- Scales better than traditional methods
 - Sublinear with sampling
 - Very small memory utilization
- Incremental
 - Make class predictions in parallel
 - New examples are added as they come

Weaknesses

- Could spend a lot of time with ties
- Memory used with tree expansion
- Number of candidate attributes

- Modifications to Hoeffding Tree
 - Near-ties broken more aggressively
 - G computed every nmin
 - Deactivates certain leaves to save memory
 - Poor attributes dropped
 - Initialize with traditional learner (helps learning curve)
- Compare to Hoeffding Tree: Better time and memory
- Compare to traditional decision tree
 - Similar accuracy
 - Better runtime with 1.61 million examples
 - 21 minutes for VFDT
 - 24 hours for C4.5
- Still does not handle concept drift

- Concept Drift
 - ▶ Time-changing data streams
 - Incorporate new and eliminate old
- CVFDT
 - Increments count with new example
 - Decrement old example
 - Sliding window
 - Nodes assigned monotonically increasing IDs
 - Grows alternate subtrees
 - When alternate more accurate, then replace old
 - O(w) better runtime than VFDT-window

- ☐ H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining Concept-Drifting Data Streams using Ensemble Classifiers", KDD'03.
- Method (derived from the ensemble idea in classification)

train K classifiers from K chunks
for each subsequent chunk
 train a new classifier
 test other classifiers against the chunk
 assign weight to each classifier
 select top K classifiers

Clustering

Clustering Evolving Data Streams What methodologies?

- Compute and store summaries of past data
- Apply a divide-and-conquer strategy
- Incremental clustering of incoming data streams
- Perform microclustering as well as macroclustering anlysis
- Explore multiple time granularity for the analysis of cluster evolution
- Divide stream clustering into on-line and off-line processes

- Based on the k-median method
 - Data stream points from metric space
 - ► Find k clusters in the stream s.t. the sum of distances from data points to their closest center is minimized
- Two-steps approximation algorithm:
 - 1. For each set of M records, S_i , find O(k) centers in S_1 , ..., S_l Local clustering: Assign each point in S_i to its closest center
 - 2. Let S' be centers for S₁, ..., S_I with each center weighted by number of points assigned to it Cluster S' to find k centers

data points

- Method
 - Maintain at most m level-i medians
 - On seeing m of them, generate O(k) level-(i+1) medians of weight equal to the sum of the weights of the intermediate medians assigned to them
- Drawbacks
 - Low quality for evolving data streams (register only k centers)
 - ► Limited functionality in discovering and exploring clusters over different portions of the stream over time

CluStream: A Framework for Clustering Evolving Data Streams

Design goal

- High quality for clustering evolving data streams with greater functionality
- While keep the stream mining requirement in mind
 - One-pass over the original stream data
 - Limited space usage and high efficiency

CluStream: A framework for clustering evolving data streams

- Divide the clustering process into online and offline components
- Online component: periodically stores summary statistics about the stream data
- Offline component: answers various user questions based on the stored summary statistics

Micro-cluster

- Statistical information about data locality
- Temporal extension of the cluster-feature vector
 - Multi-dimensional points $X_1 ... X_k ...$ with time stamps $T_1 ... T_k ...$
 - Each point contains d dimensions, i.e., $X = (x^1 \dots x^d)$
 - A micro-cluster for n points is defined as a (2.d + 3) tuple

$$CF 2^{x}, CF 1^{x}, CF 2^{t}, CF 1^{t}, n -$$

Pyramidal time frame

Decide at what moments the snapshots of the statistical information are stored away on disk

- Online micro-cluster maintenance
 - Initial creation of q micro-clusters
 - q is usually significantly larger than the number of natural clusters
 - Online incremental update of micro-clusters
 - If new point is within max-boundary, insert into the micro-cluster
 - O.w., create a new cluster
 - May delete obsolete micro-cluster or merge two closest ones
- Query-based macro-clustering
 - Based on a user-specified time-horizon h and the number of macro-clusters K, compute macroclusters using the k-means algorithm

Summary

Projects on DSMS (Data Stream Management System)

- Research projects and system prototypes
 - STREAM (Stanford): A general-purpose DSMS
 - Cougar (Cornell): sensors
 - Aurora (Brown/MIT): sensor monitoring, dataflow
 - ► Hancock (AT&T): telecom streams
 - ▶ Niagara (OGI/Wisconsin): Internet XML databases
 - ▶ OpenCQ (Georgia Tech): triggers, incr. view maintenance
 - Tapestry (Xerox): pub/sub content-based filtering
 - ► Telegraph (Berkeley): adaptive engine for sensors
 - ► Tradebot (<u>www.tradebot.com</u>): stock tickers & streams
 - Tribeca (Bellcore): network monitoring
 - MAIDS (UIUC/NCSA): Mining Alarming Incidents in Data Streams

- C. Aggarwal, J. Han, J. Wang, P. S. Yu. A Framework for Clustering Data Streams, VLDB'03
- C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of Evolving Data Streams, KDD'04
- C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for Projected Clustering of High Dimensional Data Streams, VLDB'04
- S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD Record, Sept. 2001
- B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Models and Issues in Data Stream Systems", PODS'02. (<u>Conference tutorial</u>)
- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. "Multi-Dimensional Regression Analysis of Time-Series Data Streams, VLDB'02
- ☐ P. Domingos and G. Hulten, "Mining high-speed data streams", KDD'00
- A. Dobra, M. N. Garofalakis, J. Gehrke, R. Rastogi. Processing Complex Aggregate Queries over Data Streams, SIGMOD'02
- J. Gehrke, F. Korn, D. Srivastava. On computing correlated aggregates over continuous data streams. SIGMOD'01
- □ C. Giannella, J. Han, J. Pei, X. Yan and P.S. Yu. Mining frequent patterns in data streams at multiple time granularities, Kargupta, et al. (eds.), Next Generation Data Mining'04

- □ S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data Streams, FOCS'00
- G. Hulten, L. Spencer and P. Domingos: Mining time-changing data streams. KDD 2001
- S. Madden, M. Shah, J. Hellerstein, V. Raman, Continuously Adaptive Continuous Queries over Streams, SIGMOD02
- □ G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams, VLDB'02
- A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent and Top-k Elements in Data Streams. ICDT'05
- S. Muthukrishnan, Data streams: algorithms and applications, Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 2003
- R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press, 1995
- S. Viglas and J. Naughton, Rate-Based Query Optimization for Streaming Information Sources, SIGMOD'02
- Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time, VLDB'02
- □ H. Wang, W. Fan, P. S. Yu, and J. Han, Mining Concept-Drifting Data Streams using Ensemble Classifiers, KDD'03