Report Sleep Deprivation

giugno 01, 2018

Contents

Description	1
Importing data	1
Control Genes Negative control genes	2 2
positive control genes	2
Normalizations	3
TMM + RUVs Normalization	3
edgeR Differential Expression Analysis	5
Shank3 Home Cage control VS Wild Type Home Cage Controls	6
DE TABLE + Positive Controls table	
Venn Diagram S3HC5-WTHC5 vs S3SD5-WTSD5	10
S3HC5-WTHC5 vs S3SD5-WTSD5	10
Heatmaps	11
heatmap gene by gene organized as kmeans cluster	12
Group gene profiles	14
Group gene profiles by genotype	14

Description

This is the report of the analysis made for the paper (TITLE) AND AUTHORS. INSERT ABSTRACT

Importing data

Importing data and filtering out those genes with cpm lesser than 1. We use the filtered.data method in NOISeq package.

method.type="Proportion")

```
## Filtering out low count features...
## 14454 features are to be kept for differential expression analysis with filtering method 3
```

Control Genes

Negative control genes

Loading Negative Control Genes to normalize data

positive control genes

Loading Positive Control Genes to detect them during the differential expression step.

Normalizations

TMM + RUVs Normalization

Normalizing data with TMM, as implemented in edgeR package, and applying a RUVs method of RUVSeq package on normalized data, in order to adjust the counts for the unwanted variation. We plot a PCA and an RLE plot on these data.

[1] FALSE

edgeR Differential Expression Analysis

Making differential expression analysis with edgeR package on four different contrasts.

Here is a brief legend:

- WTSD5: Wild Type Sleep Deprivation 5 days.
- S3HC5: Shank3 Home Cage Control 5 days.
- S3SD5: Shank3 Sleep Deprivation 5 days.

```
padj.thr <- 0.05
venn.padgj.thr <- 0.1
desMat <- cbind(designMatrix, ruvedSExprData$W)
colnames(desMat) <- c(colnames(designMatrix), colnames(ruvedSExprData$W))</pre>
```

Shank3 Home Cage control VS Wild Type Home Cage Controls

volcano plot

A volcano plot of differential expressed genes.

S3HC5 - WTHC5 Volcano Plot


```
de <- sum(res.o$FDR < padj.thr)
nde <- sum(res.o$FDR >= padj.thr)
detable <- cbind(de,nde)
rownames(detable) <- names(rescList1)[1]
ddetable <- detable

tot.ctrls <- dim(sd.pos.ctrls)[1]
idx.pc <- which(tolower(res.o$gene) %in% tolower(sd.pos.ctrls[,1]))
tot.pc.de <- sum(res.o$FDR[idx.pc] < padj.thr)
tot.pc.nde <- length(idx.pc) - tot.pc.de

wt <- res.o[which(res.o$FDR < padj.thr),]
wt.sign.genes.entrez <- rownames(res.o)[which(res.o$FDR < venn.padgj.thr)]</pre>
```

```
kowthc5 <- res.o[which(res.o$FDR < padj.thr),]
kowthc5.sign.genes.entrez <- rownames(res.o)[which(res.o$FDR < venn.padgj.thr)]</pre>
```

Shank3 Sleed Deprivation VS Wild Type Sleep Deprivation

volcano plot

A volcano plot of differential expressed genes.

DE TABLE + Positive Controls table

We present a summarization of the results. The first table is a summarization on how many genes are Differentially Expressed. The second table explains on the first column how many positive controls we have, on the second column how many positive controls have been identified over the differentially expressed genes, and, finally, on the third column how many positive controls have beed identified on the NOT differentially expressed genes.

Venn Diagram

S3HC5-WTHC5 vs S3SD5-WTSD5

We take the results of the two contrasts. Shank3 Sleed Deprivation VS Wild Type Sleep Deprivation and Shank3 Home Cage control VS Wild Type Home Cage Controls. And plot the results in a Venn Diagram

S3HC5_WTHC5 venn S3SD5_WTSD5

Heatmaps

Setting up the data structures for the heatmap.

```
de.genes.symb <- attachGeneColumnToDf(as.data.frame(de.genes.entr,</pre>
                                                      row.names=de.genes.entr),
                                     genesMap=gene.map,
                                     rowNamesIdentifier="ENTREZID",
                                     mapFromIdentifier="ENTREZID",
                                     mapToIdentifier="SYMBOL")
# de.genes.symb[which(is.na(de.genes.symb$gene)),]
de.genes.symb$gene[which(de.genes.symb$de.genes.entr=="100039826")] <- "Gm2444" ## not annotated in no
de.genes.symb$gene[which(de.genes.symb$de.genes.entr=="210541")] <- "Entrez:210541" ## not annotated in
de.genes.counts <- normExprData[match(de.genes.symb$de.genes.entr, rownames(normExprData)),]</pre>
rownames(de.genes.counts) <- de.genes.symb$gene</pre>
de.gene.means <- computeGeneMeansOverGroups(counts=de.genes.counts,</pre>
                             design=designMatrix, groupColumn="gcondition")
library(gplots)
library(clusterExperiment)
color.palette = clusterExperiment::seqPal3#c("black", "yellow")
pal <- colorRampPalette(color.palette)(n = 1000)</pre>
library(pheatmap)
filter2 <- rowMeans(de.gene.means)>0
filter <- apply(de.gene.means, 1, function(x) log(x[4]/x[3]) * log(x[2]/x[1]) < 0)
filter[is.na(filter)] <- FALSE</pre>
```

heatmap gene by gene organized as kmeans cluster

```
idx <- which(!(rownames(de.genes.counts) %in% c("Nr1d1", "Fabp7", "Per3",
                         "Jun", "Elk1", "Fosl2", "Mapk1", "Mapk3", "Mapk11")))
de.genes.counts1 <- de.genes.counts</pre>
rownames(de.genes.counts1)[idx] <- ""</pre>
ann.col <- desMat[, c(1:2)]
de.heatmap <- de.genes.counts[filter2,]</pre>
ph1 <- pheatmap(log(de.heatmap+1), cluster_cols=TRUE, scale="row",</pre>
            color=pal, border_color=NA, fontsize_row=10, kmeans_k=4, annotation_col=ann.col,
            silent=TRUE)
clusterized.genes <- as.data.frame(ph1$kmeans$cluster)</pre>
gene.map <- convertGenesViaMouseDb(gene.list=rownames(clusterized.genes), fromType="SYMBOL")</pre>
converted.clusterized.gens <- attachGeneColumnToDf(mainDf=clusterized.genes, genesMap=gene.map,</pre>
                    rowNamesIdentifier="SYMBOL", mapFromIdentifier="SYMBOL", mapToIdentifier="ENTREZID"
converted.clusterized.gens$gene[which(rownames(converted.clusterized.gens)=="Gm2444")] <- "100039826" :
converted.clusterized.gens$gene[which(rownames(converted.clusterized.gens)=="Entrez:210541")] <- "2105"
converted.clusterized.gens <- converted.clusterized.gens[order(converted.clusterized.gens$`ph1$kmeans$c</pre>
ord.de.genes.counts <- de.heatmap[match(rownames(converted.clusterized.gens), rownames(de.heatmap)),]
```


Group gene profiles

Group gene profiles by genotype

```
res.o=de.genes.symb, show.plot=TRUE, plotly.flag=FALSE, log.flag=TRUE)
# ggplotly(g)
plot(g)
```


