

공유경제로 풀어내는 공휴일 택배 물동량 해결법

: RNN LSTM 알고리즘을 사용한 공휴일 택배 접수량 예측

INDEX

```
0 1
    문제 인식
02
    분석 개요
03
    모델링
04
    아이디어
05
    기대효과 & 한계점
```

01 문제 인식

택배 산업 현황

- 택배 산업의 지속적 성장

- 인력 배치 문제

1인 가구의 증가 → 인터넷 쇼핑 증가로 인한 택배량 증가

우체국은 특수 시즌(명절) 택배 접수 가능 → 발송 예정 택배량 급증

특수 시즌의 택배량 급증 → 효율적 인력 배치 필요

01 문제 인식

무엇이 문제인가?

공휴일 전후로 급증하는 택배 물량
 → 택배 기사 업무 몰림 현상

왜 문제인가?

- 배송 지연으로 인한 고객 만족도 감소
- 과중한 업무로 인한 작업자의 피로도 증가
- 장기적인 관점에서 비용 발생

어떻게 해결해야 하는가?

• 공휴일 배송

02 분석 개요 【 🦠

데이터 현황

제공된 데이터

Training_new.csv

Training.csv	발신일자	발송우체국	도착구	수량
FORMAT	Date	Varchar(30)	INT	INT
	20181130	국제우편물류 센터	22	513

Training_raw.csv

Training_raw.csv	발신일자	발신	발송우체국
FORMAT	DATE	Varchar(10)	varchar(30)
예시	20181109	충청청	청주우체국

발송우체국(2)	발송지 (고객)	도착구	집배원코드
Varchar(30	Varchar(50)	INT	varchar(20)
남성우체국	충청북도 청주시 청원구	11	B41220231

외부 데이터

우정사업본부) 발송지역별 무게 및 부피 관련 정보

서울 열린 데이터 광장)

지역별 인구밀도 구별 우체국 수 고령인구 남자 비율 고령인구 여자 비율 노령화 지수

02 분석 개요 【

분석 단계

- 1. EDA
- 2. 데이터 전처리
- 3. 목표변수
- 4. 모델링
- 5. 평가

최종 목표

I 서울지역 하반기 법정 공휴일 (총 17일)의 도착 지역별 접수 수량 예측

Ⅱ 경인지역 추석 직전 열흘간 (0911~0920) 접수일/ 접수 우체국별 접수 수 량 예측

02.1 EDA

X: 20171201 - 20180325 기간

Y: 일일 택배 총합

02.1 EDA

X: 20180818 - 20181130 기간

Y: 일일 택배 총합

02.2 데이터 전처리

* 캘린더 변수는 그래프 패턴 확인 후 변수 생성

02.2 데이터 전처리

데이터 & 모델링 선택의 이유

타겟변수을 예측하기 위해 패턴을 가지는 데이터를 변수로 생성 : 유사한 패턴을 띄는 데이터로 대체

추석은 설날 데이터로 대체, 공휴일 전은 금요일, 공휴일 후는 월요일 과 유사한 패턴을 띄는 것을 발견함

RNN LSTM 딥러닝 알고리즘 사용

: 배열과 시퀀스를 기반으로 패턴을 기억하 여 예측을 수행하는 기법

학습에 사용된 구조의 패턴들을 기억하고 있는 구조로 이전 시점의 자료를 이용한 시 계열 분석방법을 통해 우리는 타겟 변수의 접수량을 예측해보고자 함

02.3 목표변수 설정

2018년 추석(5일)

2018년 개천절(3일)

2018년 한글날(3일)

• 예측 타겟 공휴일 (총 17일)

2017년 크리스마스(3일)

2018년 광복절(3일)

20171224~20171226

03 모델링

```
In [219]: model.fit(x train, y train, epochs=2**13, batch size = 31)
     Epoch 6655/8192
     Epoch 6656/8192
     330/330 [======
                       ≔=1 - 0s 721us/step - loss: 649499.6073
     Epoch 6657/8192
     Epoch 6658/8192
     Epoch 6659/8192
                       ==] - 0s 726us/step - loss: 366266.5023
     330/330 [========
     Epoch 6660/8192
     330/330 [======
                Epoch 6661/8192
     330/330 [======
                   =======] - Os 736us/step - Loss: 197939.7612
     Epoch 6662/8192
     Epoch 6663/8192
     330/330 [======
                Epoch 6664/8192
     330/330 [-----
```

04 아이디어 《《

공휴일에 급증하는 택배 물량 → non stop 택배 시스템 구축의 필요성 <u>공휴일에 접수된 택배는 어디에 둘 것인가? 누가 배달할 것인가?</u>

SK에너지와의 인프라 공유

: 주유소 시설을 활용, 복합네트워크 창출. 우체국의 물류 및 정보 등을 주유소와 공유해 공휴일 택배 수령이 가능토록 만듦

SHARE

We- economy : 경제와 상호 관계적인 신뢰를 기반으로 한 새로우 배소 시스템 새로운 배송 시스템

04 아이디어

내용:

공휴일동안 접수된 택배는 새로운 배송 플랫폼을 통해 개인이 개인에게 배송

기대효과:

공휴일로 인해 급격하게 증가하는 택배 물량을 조절할 수 있는 능력

공유경제 활성화

SK에너지와의 인프라 공유를 통한 상호 시너지 창출

미래형 복합네트워크를 통한 새로운 수익 창출

05 결론

공휴일에 택배 접수 물량을 예측을 통해 알게 되면,

- → 택배 배송 업무 인력의 효율적 배치가 가능하다.
- → SK에너지와의 인프라공유 사업을 기반으로 한 새로운 배송 플랫폼 사업의 근거가 될 수 있다.
- → 고객 만족도 증가, 택배 배송 작업자의 피로 감소로 이어질 수 있다.

THANKYOU 감사합니다 POSTMAN