

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 60-262405

(43)Date of publication of application : 25.12.1985

(51)Int.Cl. H01F 1/36
C01G 49/00
C04B 35/38

(21)Application number : 59-119538 (71)Applicant : SUMITOMO SPECIAL METALS CO LTD

(22)Date of filing : 11.06.1984 (72)Inventor : SUENAGA YOSHIHIRO

(54) MANUFACTURE OF MN-ZN FERRITE

(57)Abstract:

PURPOSE: To obtain superior magnetic property by adding prescribed quantity of CaO or Nb₂O₅ and one sort of SiO₂, V₂O₅, Al₂O₃, CoO, CuO and ZrO₂ after heat-treatment at higher than 900° C, the calcinated material of Mn-Zn system ferrite which is prescribed constitution.

CONSTITUTION: Calcinated powder which is basic constitution of 50W70mol% Fe₂O₃, 10W40mol% MnO, 5W30mol% ZnO is provided. At least one sort of 0.005W0.3wt% CaO, 0.005W0.25wt% Nb₂O₅ and 0.001W0.2wt% SiO₂, 0.01W2wt% V₂O₅, 0.01W2wt% Al₂O₃, 0.01W2wt%, CoO, 0.01W0.2wt% CuO or 0.01W0.02wt% ZrO₂ is performed heat-treatment previously at more than 900° C in atmosphere, is composited and added to the calcinated material and is performed fine grinding, forming and sintering. By this means, additives are reacted enough each other and the additive is existed stably in grain boundary of Mn-Zn ferrite and reactivity is few, also sintering ferrite itself is controlled generation of strain. As the result, abnormal crystal texture is not generated even at high sintering temperature and low magnetic property is obtained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 昭60-262405

⑫ Int. Cl. ¹	識別記号	序内整理番号	⑬ 公開 昭和60年(1985)12月25日
H 01 F 1/36		7354-5E	
C 01 G 49/00		7202-4G	
C 04 B 35/38		7412-4G	審査請求 未請求 発明の数 1 (全4頁)

⑭ 発明の名称 Mn-Znフェライトの製造方法

⑮ 特願 昭59-119538
 ⑯ 出願 昭59(1984)6月11日

⑰ 発明者 末永 義弘 大阪府三島郡島本町江川二丁目15-17 住友特殊金属株式会社山崎製作所内
 ⑱ 出願人 住友特殊金属株式会社 大阪市東区北浜5丁目22番地
 ⑲ 代理人 弁理士 押田 良久

明細書

1. 発明の名称

Mn-Znフェライトの製造方法

2. 特許請求の範囲

1

Fe_2O_3 50~70モル%,
 MnO 10~40モル%,
 ZnO 5~30モル%。
 からなる基本組成に対し、
 CaO 0.005~0.3wt%,
 Nb_2O_5 0.005~0.25wt%と、
 SiO_2 0.001~0.2wt%, V_2O_5 0.01~2wt%,
 Al_2O_3 0.01~2wt%, CoO 0.01~2wt%,
 CuO 0.01~0.2wt%, ZrO_2 0.01~0.2wt%
 のうち少なくとも1種からなる添加物を、予め大気中で900°C以上に加熱処理した後、上記基本組成の仮焼原料に配合添加し、微粉碎したのち成型、焼結することを特徴とするMn-Znフェライトの製造方法。

3. 発明の詳細な説明

利用産業分野

この発明は、Mn-Zn系フェライトの製造方法に係り、高い焼結温度でも異常結晶組織を生成することなく、すぐれた磁気特性、特に低磁気損失特性を有するMn-Zn系フェライトの製造方法に関する。

背景技術

Mn-Zn系フェライトは、通信機器、電子計算機、VTR、磁気ヘッド等、各種民生用機器に多用され、それぞれの用途に応じた改良が施されている。今日の機器の小型化並びに高性能化のため、ますます、磁気損失の少ない磁性材料が求められている。

かかるMn-Zn系フェライトにおいて、残留損、ヒステリシス損、渦電流損の少ない材料を得る方法として、従来、 CaO と SiO_2 の複合添加により、電気抵抗を大きくし、磁気特性を向上させる手段がよく知られていた。しかし、材料の密度を向上させるために、焼結温度を高くすると、異常な焼結反応が起り、焼結組織が大きな結晶と小さな結

品との混在状態を呈し、磁気特性の劣化を招来しやすい問題があった。

そこで、出願人は、特願昭58-241607号にて、高い焼結温度でも異常結晶組織の生成がなく、低磁気損失特性を有するMn-Zn系フェライトを提案したが、さらに、磁気特性のすぐれたMn-Zn系フェライトが望まれている。

発明の目的

この発明は、上記のMn-Zn系フェライトの現状に鑑み、高い焼結温度でも異常結晶組織を生成することなく、すぐれた磁気特性が得られ、特に低磁気損失特性を有するMn-Zn系フェライトを目的として、Mn-Zn系フェライトの磁気特性を向上させることができる製造方法を目的としている。

発明の構成と効果

この発明は、特願昭58-241607号で提案したMn-Zn系フェライトの磁気特性向上を目的に、一般に実施されているMn-Zn系フェライトの製造工程、すなわち、基本組成の原料に対して、添加物を仮焼前の混合時に添加するか、あるいは基本組成原

料粉碎時に添加し、ついで成型、焼結あるいは、さらに熱間静水圧プレス処理する工程について、特に、添加物原料の配合処理について種々検討した結果、添加物原料を事前に、反応化の加熱処理した後、基本組成の仮焼原料の粉碎時に配合添加し、これを微粉碎したのち、成型、焼結あるいは、さらに、熱間静水圧プレス処理することにより、従来の製造方法に比べて一段と磁気特性が向上することを知見したものである。

すなわち、この発明は、

Fe_2O_3 50~70モル%，

MnO 10~40モル%，

ZnO 5~30モル%，

からなる基本組成に対し、

CaO 0.005~0.3wt%，

Nb_2O_5 0.005~0.25wt%と、

SiO_2 0.001~0.2wt%， V_2O_5 0.01~2wt%，

Al_2O_3 0.01~2wt%， CoO 0.01~2wt%，

CuO 0.01~0.2wt%，

ZrO_2 0.01~0.2wt%

- 3 -

のうち少なくとも1種からなる添加物を、予め大気中で900°C以上に加熱処理した後、上記基本組成の仮焼原料に配合添加し、微粉碎したのち成型、焼結することを特徴とするMn-Znフェライトの製造方法である。

この発明において、すぐれた磁気特性のMn-Zn系フェライトが得られる理由は、添加物原料の事前の反応化により、添加物がMn-Znフェライトの結晶粒界に安定して存在し、反応性が少なく、焼結フェライト自身の歪殖生を抑制するためと考えられる。

この発明において、基本組成の仮焼原料の粉碎時に、添加する添加物原料の事前反応化条件として、大気中で900°C以上に加熱処理する理由は、900°C未満では添加物同士の反応が不十分で、磁気特性の向上効果が得られないためであり、また、加熱温度としては高湯程よいが、作業性の点から、適宜選定する必要があり、また、加熱雰囲気としては、大気中でよく、加熱速度は、50°C/hr~200°C/hrが好ましく、冷却速度としては徐冷が

- 4 -

望ましい。

組成の限定理由

この発明による鐵化物磁性材料において、組成を限定した理由を以下に説明する。

Mn-Zn系フェライトの基本組成を、 Fe_2O_3 50~70モル%， MnO 10~40モル%， ZnO 5~30モル%とした理由は、これ以外の組成では、透磁率が極めて小さくなり、また、保磁力も大きくなりすぎて軟質磁性材料として実用的でないためである。

CaO は、低磁気損失を得るために添加するが、0.005wt%未満では電気抵抗が小さくなり、所要の磁気特性が得られず、また、0.3wt%を越える添加では、高密度化のため焼結温度を高くすると、異常組織が発生しやすくなるため、0.005~0.3wt%とする。

Nb_2O_5 は、 CaO との複合添加により、 CaO 単独の場合よりもさらにすぐれた磁気特性が得られるため添加するが、0.005wt%未満では上記効果が得られず、また、0.25wt%を越えると、焼結時に異常組織が発生しやすくなるため、0.005~

- 5 -

-26-

- 6 -

0.25wt %の添加とする。

また、 SiO_2 、 V_2O_5 、 Al_2O_3 、 CoO 、 CuO 、 ZrO_2 のうち少なくとも1種を含有することは、Mn-Zn系フェライトの磁気損失特性の改善に著しい効果があるが、 SiO_2 0.001wt%未満。

V_2O_5 0.01 wt%未満、 Al_2O_3 0.01 wt%未満、 CoO 0.01 wt%未満、 CuO 0.01 wt%未満、 ZrO_2 0.01 wt%未満では、電気抵抗が小さくなり、

磁気損失が大きくなり好ましくなく、また、 SiO_2 0.2wt%， V_2O_5 2wt%， Al_2O_3 2wt%， CoO 2wt%， CuO 0.2wt%， ZrO_2 0.2wt%をそれぞれ越えると、焼成時に異常結晶が生成し、磁気損失も大きくなるため好ましくないため、

SiO_2 0.001～0.2wt%。

V_2O_5 0.01～2wt%， Al_2O_3 0.01～2wt%，

CoO 0.01～2wt%， CuO 0.01～0.2wt%，

ZrO_2 0.01～0.2wt%とする。

なお、この発明の主原料、添加物には、焼成により酸化物となり得る化合物を使用できることは当然である。

- 7 -

第2表に示す。

なお、第2表におけるコア損失は、上記リング状焼成品を巻線し、100kHzの交流電流を流し、2000Gのときのコア損失を測定した。

第2表より明らかに如く、この発明の特徴である添加物原料を事前に反応化処理し、基本組成粉碎時に添加配合することにより、Mn-Zn系フェライトは、一段とコア損失の低減、磁気特性の改善に著しい効果があることが分る。

以下余白

実施例

Fe_2O_3 53モル%， MnO 31モル%， ZnO 16モル%，からなる基本組成の原料を配合、混合したのち、850°Cで仮焼成した。

ついで、 CaO 、 Nb_2O_5 及び SiO_2 、 V_2O_5 、 Al_2O_3 、 CoO 、 CuO 、 ZrO_2 のうち少なくとも1種を、第1表に示す基本組成に対する配合量及び加熱条件で、大気中にて反応化処理した。

上記の基本組成仮焼原料を、ポールミルで粉碎する際に、反応化処理した上記添加物原料を配合、混合粉碎し、外径36mm×内径24mm×高さ6mm寸法のリング状に成型し、その後、酸素濃度を制御した窒素ガス雰囲気で、1250°C、3時間の条件で焼成した。得られた焼成品の磁気特性を測定し、その結果を第2表に示す。

また、比較のため、添加物原料を未反応化のまま、基本組成の仮焼原料の粉碎時に、添加粉碎する以外は、基本組成、添加物配合量及び成型、焼成条件を本発明例（No.1～10）と同一条件として、焼成した第1表の比較焼成品の磁気特性を測定し、

- 8 -

No.	CoO	Nb_2O_5	SiO_2	V_2O_5	Al_2O_3	CoO	Nb_2O_5	SiO_2	V_2O_5	Al_2O_3	第1表 (wt%)		加熱速度 100°C/hr 加熱条件 1250°C×3hr 冷却：急冷	加熱速度 100°C/hr 加熱条件 1350°C×3hr 冷却：急冷	加熱速度 100°C/hr 加熱条件 1300°C×3hr 冷却：急冷
											1	2			
本	0.1	0.05	0.01	-	-	0.01	-	-	-	-	0.1	0.1	0.05	0.02	0.05
実験1	0.05	0.1	-	0.02	-	0.4	1	1	1	1	0.7	1	0.1	0.1	0.1
実験2	0.05	0.1	-	0.02	-	0.4	1	1	1	1	0.7	1	0.1	0.1	0.1
実験3	0.05	0.05	-	0.05	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験4	0.1	0.05	-	0.02	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験5	0.1	0.1	-	0.05	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験6	0.1	0.1	-	0.05	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験7	0.05	0.05	-	0.02	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験8	0.05	0.05	-	0.02	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験9	0.05	0.05	-	0.02	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
実験10	0.05	0.05	-	0.02	-	0.05	1	1	1	1	0.7	1	0.1	0.1	0.1
比1	0.1	0.05	0.01	-	-	0.05	1	1	1	1	0.7	1	0.2	0.2	0.2
比2	0.05	0.05	0.01	-	-	0.05	1	1	1	1	0.7	1	0.05	0.05	0.05
比3	0.05	0.05	0.01	-	-	0.05	1	1	1	1	0.7	1	0.05	0.05	0.05
比4	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比5	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比6	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比7	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比8	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比9	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比10	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比11	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比12	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比13	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比14	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比15	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比16	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5
比17	0.1	0.1	0.01	-	-	0.1	1	1	1	1	0.7	1	0.5	0.5	0.5

- 9 -

-27-

-10-

第2表

No.	磁気特性			
	μ_i	B _r (G)	cH (Gs)	コア損失 (mW/g)
本 発 明 1	4000	700	0.15	330
2	4500	750	0.13	320
3	4300	800	0.16	340
4	3900	900	0.16	350
5	4200	850	0.14	330
6	4000	650	0.18	320
7	3400	700	0.17	340
8	3000	800	0.18	350
9	3000	800	0.17	330
10	2500	800	0.19	360
比 較 11	3200	1800	0.19	380
12	3600	1300	0.16	360
例 13	3500	1400	0.18	380
14	3600	1450	0.18	380
15	3600	1550	0.18	370
16	3000	1050	0.19	380
17	2000	1950	0.23	450

出願人 住友特殊金属株式会社

代理人 押田良久

-11-