CS 663: Digital Image Processing: Assignment 2

Siddharth Saha [170100025], Tezan Sahu [170100035]

Due Date :- 2nd September, 2019

Question 2: Edge-preserving Smoothing using Bilateral Filtering

• For barbara.mat:

Figure 1: Bilateral Filtering applied to corrupted barbara.mat (shrinked by factor of 2)

Optimal Parameters:

- Window size: 7

- σ_{space}^* : 1.6

- $\sigma_{intensity}^*$: 0.1

Optimal RMSD: 0.032826

Other RMSD Values:

i $0.9 * \sigma_{space}$: 0.032839

ii $1.1 * \sigma_{space}$: 0.032867

iii $0.9 * \sigma_{intensity}$: 0.033029

iv $1.1 * \sigma_{intensity}$: 0.033006

• For grass.png:

Figure 2: Bilateral Filtering applied to corrupted grass.png

Optimal Parameters:

- Window size: 7

 $- \sigma_{space}^*$: 0.77

– $\sigma^*_{intensity}$: 0.18

Optimal RMSD: 0.028513

Other RMSD Values:

i $0.9 * \sigma_{space}$: 0.028800

ii $1.1 * \sigma_{space}$: 0.028728

iii $0.9 * \sigma_{intensity}$: 0.028592

iv $1.1 * \sigma_{intensity}$: 0.028566

• For honeyCombReal.png:

Figure 3: Bilateral Filtering applied to corrupted honeyCombReal.png

Optimal Parameters:

- Window size: 15

– σ^*_{space} : 0.88

– $\sigma^*_{intensity}$: 0.162

Optimal RMSD: 0.028522

Other RMSD Values:

i $0.9 * \sigma_{space}$: 0.028888

ii $1.1 * \sigma_{space}$: 0.028531

iii $0.9 * \sigma_{intensity}$: 0.028671

iv $1.1 * \sigma_{intensity}$: 0.028584

• Spatial Gaussian used in Bilateral Filtering for each Image

Figure 4: Spatial Gaussian Mask used for each image

- barbara.mat: $\sigma^*_{spatial} = 1.6$
- grass.png: $\sigma^*_{spatial} = 0.77$
- honeyCombReal.png: $\sigma^*_{spatial} = 0.88$