Билет 102

Автор1, ..., Aвтор<math>N

22 июня 2020 г.

Содержание

0.1	Билет 102: ! Полун	сольца ячеек.	предс	тавление	OT-	крытого	множества	в вид	це	
	объединения ячеек.	Следствие								1

Билет 102 COДЕРЖАНИЕ

0.1. Билет 102: ! Полукольца ячеек. Представление от- крытого множества в виде объединения ячеек. Следствие

Определение 0.1.

 \mathcal{P}^m - все ячейки в \mathbb{R}^m

 $\mathcal{P}^m_{\mathbb{O}}$ - все такие ячейки в \mathbb{R}^m , что их вершина в рациональных точках

Теорема 0.1.

$$\mathcal{P}^m$$
 и $\mathcal{P}^m_{\mathbb{Q}}$ - полукольца.

Доказательство.

Понятно, что

$$\begin{split} \mathcal{P}^m &= \underbrace{\mathcal{P} \times \mathcal{P} \times \ldots \times \mathcal{P}}_{m} \\ \mathcal{P}^m_{\mathbb{Q}} &= \underbrace{\mathcal{P}_{\mathbb{Q}} \times \mathcal{P}_{\mathbb{Q}} \times \ldots \times \mathcal{P}_{\mathbb{Q}}}_{m} \end{split}$$

 \mathcal{P}^m и $\mathcal{P}^m_{\mathbb{Q}}$ - полуинтервалы, про них уже знаем, что они - полукольца. Уже доказали, что декартово произведение полуколец - полукольцо. Несложно видеть, что из этого следует, что мы уже доказали теорему.

Теорема 0.2.

Всякое непустое открытое множество $G \subset \mathbb{R}^n$ есть дизъюнктное объединение счетного числа ячеек таких, что их замыкания содержатся в G. Более того можно брать ячейки с рациональными вершинами.

Доказательство.

Возьмем точку $x \in G$, она содержится там с каким-то шариком с центром в точке x (ведь G открытое по условию). В этом шарике мы можем взять ячейку, которая содержит x, например, вписать туда кубик. Немного пошевелим его так, чтобы его вершины стали рациональными, он может и перестанет быть кубиком, но ячейкой он быть не престанет и все еще будет содержаться в шарике. Значит для каждой точки x из G есть такая ячейка R_x с рациональными, что $x \in R_x$, и $\operatorname{Cl} R_x \subset G$. Но всего ячеек с рациональными вершинами счетное число (задается 2m рациональными точками по m на вершину). Точек несчетное, а ячеек счетно, значит, будут повторяющиеся. Выкинем все повторы. Получили $G = \bigcup R_x$ (не по всем x, по счетному числу). Но по теореме (однйо из предыдущих) мы можем любое объединение превратить в дизъюнктное объединение, поэтому $G = \bigcup \bigcup Q$. (Рациональные концы никуда не делись, потому что мы там брали разность каких-то множеств с рациональными концами, так рациональными и осталось бы). Еще про замыкание: замыкание Q содержится в объединение R_x , которое содержится в G.

Следствие.

$$\mathcal{B}(\mathcal{P}_{\mathbb{Q}}^m)=\mathcal{B}(\mathcal{P}^m)=\mathcal{B}^m$$

Доказательство.

Покажем включения:

 $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})\subset\mathcal{B}(\mathcal{P}^m)$, ведь $\mathcal{P}^m_{\mathbb{Q}}\subset\mathcal{P}^m$, значит, в σ -алгебра, натянутая на правое, будет больше, чем σ -алгебра, натянутая на левое.

Билет 102 COДЕРЖАНИЕ

 $\mathcal{B}(\mathcal{P}^m)\subset\mathcal{B}^m$, ведь любая ячейка - счетное пересечение открытых множеств, а в \mathcal{B}^m живут все объединения открытых множеств, значит, минимальная σ -алгебра, натянутая на ячейки лежит в \mathcal{B}^m .

 $\mathcal{B}^m \subset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$, ведь любое открытое множество представляется как дизъюнктное объединение ячеек с рациональными концами, значит любое открытое множество лежит в $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$, значит оно содержит минимальную σ -алгебру, содержащую все открытые множество - \mathcal{B} .