Efficient Transformers

Angela Fan

Overparameterized

- Overparameterized
- Redundant

- Overparameterized
- Redundant
- Overfitting

- Overparameterized
- Redundant
- Overfitting
- Too Large for Practical Applications

Train Smaller Network from Scratch

- Train Smaller Network from Scratch
- Sparsity Inducing Training

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

Caveat: this is a **brief** overview focused on **Transformers**

What to think about when talking about efficiency?

- Training Time
- Inference Time
- Model size
- Energy

What to think about when talking about efficiency?

- Training Time
- Inference Time
- Model size
- Energy

not all techniques improve all of these areas

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

Training a Smaller Model from Scratch

Training a Smaller Model from Scratch

Training a Smaller Model from Scratch

Training Time

Inference Time

Model size

Performance

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

Sparsity Inducing Training

NEURAL NETWORK WEIGHT MATRIX

Sparsity Inducing Training

NEURAL NETWORK WEIGHT MATRIX

sparsify the weight matrix to include many zeroes

- Sparse matrix multiplication takes advantage of the zeroes
- Specialized kernels everywhere you see a zero, don't need to compute that row/column, so less multiplications
- Important for on-device

Sparsity Inducing Training via Attention Matrices

GENERATING LONG SEQUENCES WITH SPARSE TRANSFORMERS
CHILD ET AL

STRATEGIES FOR STRUCTURING STORY GENERATION

FAN ET AL

ADAPTIVELY SPARSE TRANSFORMERS

CORREIA ET AL

Sparsity Inducing Training via Network Losses

penalize network for using parameters by increasing loss

ADAPTIVE ATTENTION SPAN IN TRANSFORMERS
SUKHBAATAR ET AL

Sparsity Inducing Training

Inference Time

Energy

Performance

at least, often no performance drop

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

student model learns to mimic the output of the teacher model

student model learns to mimic the output of the teacher model

CALCULATE DIFFERENCE BETWEEN THE TWO PREDICTIONS

• Flexibility over size - teacher and student can both be any size

- Flexibility over size teacher and student can both be any size
- Not limited to the training data any data can be used to distill
 - data augmentation is very powerful

- Flexibility over size teacher and student can both be any size
- Not limited to the training data any data can be used to distill
- Can also learn from intermediate layers

PATIENT KNOWLEDGE DISTILLATION FOR BERT MODEL COMPRESSION
SUN ET AL

- Flexibility over size teacher and student can both be any size
- Not limited to the training data any data can be used to distill
- Can also learn from intermediate layers

PATIENT KNOWLEDGE DISTILLATION FOR BERT MODEL COMPRESSION
SUN ET AL

Training Time

training time: need pre-trained teacher, but often state of the art large models can be downloaded

Inference Time

Performance

people love knowledge distillation!

TINYBERT: DISTILLING BERT FOR NATURAL LANGUAGE UNDERSTANDING

JIAO ET AL

DISTILBERT, A DISTILLED VERSION OF BERT: SMALLER, FASTER, CHEAPER AND LIGHTER SANH ET AL

WELL-READ STUDENTS LEARN BETTER: ON THE IMPORTANCE OF PRE-TRAINING COMPACT MODELS

TURC ET AL

MOBILEBERT: TASK-AGNOSTIC COMPRESSION OF BERT BY PROGRESSIVE KNOWLEDGE TRANSFER SUN ET AL

AND MORE!

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning remove layers from a trained model
- Weight Sharing
- Quantization
- More efficient architectures

Techniques for Smaller Networks

- Train Smaller Network from Scratch
- Sparsity Inducing Training

if you want a smaller model size, need to re-train

- Knowledge Distillation
- Pruning (with LayerDrop)
- Weight Sharing
- Quantization
- More efficient architectures

Goal: Train One Network, Prune to Any Depth at Inference Time

Goal: Train One Network, Prune to Any Depth at Inference Time

Drop Any Layer and Model Remains the Same

Train One Full Network

TRAIN TIME

Our Proposal: LayerDrop

TRAINING TIME *********** ******** ******* ******** **************** ******** ******* *************

Our Proposal: LayerDrop

Our Proposal: LayerDrop

Structured Dropout can be More General

Structured Dropout can be More General

Advantages

- Training Speed
- Regularization
- Reduction

(1) LayerDrop Increases Training Speed

(2) LayerDrop is an effective regularizer - Neural Machine Translation

(2) LayerDrop is an effective regularizer - Neural Machine Translation

(2) LayerDrop is an effective regularizer - Neural Machine Translation

(3) Our Main Focus: LayerDrop for Pruning

• Train once, prune to any desired depth

(3) Our Main Focus: LayerDrop for Pruning

- Train once, prune to any desired depth
- Robust to parameter setting
 - use the same value for all experiments

(3) Our Main Focus: LayerDrop for Pruning

- Train once, prune to any desired depth
- Robust to parameter setting
- Specific Pruning Strategy is not Important

(3) LayerDrop for Pruning - Language Modeling

Percentage Layers Pruned

(3) LayerDrop for Pruning - Language Modeling

Percentage Layers Pruned

Train BERT + LayerDrop

Different Pruning Strategies - Does it Matter?

Add LayerDrop to Your Transformer Training

```
for layer in transformer.layers:
    x = layer(x)
```

Add LayerDrop to Your Transformer Training

```
for layer in transformer.layers:
    if random(0,1) > layer_drop and self.training:
        x = layer(x)
```

Pruning with LayerDrop

Training Time

Inference Time

Performance

Model Size

Techniques for Smaller Networks

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

re-use weights in multiple places

input and output embeddings tied (common)

EXTREME LANGUAGE MODEL COMPRESSION WITH OPTIMAL SUBWORDS AND SHARED PROJECTIONS ZHAO ET AL

share the weights of chunks of layers

FAN ET AL

NEURAL NETWORK

share the weights of chunks ALL layers

ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS

LAN ET AL

UNIVERSAL TRANSFORMER
DEGHANI ET AL

Weight Sharing

Model Size

Performance

unless you increase model size

Techniques for Smaller Networks

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

Advantages of Quantization

- Easily combined with existing techniques
 - you can quantize a pruned model, quantize a distilled model, etc

Advantages of Quantization

- Easily combined with existing techniques
 - you can quantize a pruned model, quantize a distilled model, etc

- Ships with PyTorch and Tensorflow
 - easy to apply

Advantages of Quantization

- Easily combined with existing techniques
 - you can quantize a pruned model, quantize a distilled model, etc

- Ships with PyTorch and Tensorflow
 - easy to apply

Can offer drastic compression

How much Model Size do you want to decrease?

Train Smaller Network from Scratch

maybe model will be 2-4x smaller

Sparsity Inducing Training

probably less...

Knowledge Distillation

2-10x smaller

Pruning

2x smaller

Weight Sharing

2-8x smaller

Quantization

4-25x smaller
50 - 100x in combination

How does Quantization offer such extreme compression?

How does Quantization offer such extreme compression?

INFERENCE TIME QUANTIZED WEIGHT MATRIX

QUANTIZATION OPERATIONS CHANGE THE WEIGHT VALUES IN ORDER TO COMPRESS NETWORK SIZE

Different Types of Quantization

- Scalar Quantization (int8, int4, binary)
- Vector Quantization (Product Quantization)

Scalar Quantization

4x compression from int8

8x compression from int4

32x compression from binary... so far not working for Transformers

Scalar Quantization

- Neural Networks are often stored in fp32. We save space by going to int8 or int4.
- Take real numbers and instead store them as integers with scaling factors

0.0269 real number

Scalar Quantization

- Neural Networks are often stored in fp32. We save space by going to int8 or int4.
- Take real numbers and instead store them as integers with scaling factors

How to apply to an entire matrix?

INFERENCE TIME QUANTIZED WEIGHT MATRIX

QUANTIZATION OPERATIONS CHANGE THE WEIGHT VALUES IN ORDER TO COMPRESS NETWORK SIZE

Calculate Scaling Factor across all values

Vector Quantization: Product Quantization

25x compression or more

TRAINING TIME
WEIGHT MATRIX

Vector Quantization: Product Quantization

25x compression or more

Codewords

Vector Quantization: Product Quantization

can combine scalar and vector quantization

Quantization

Inference Time

if scalar quantization

Performance

depending on how compressed

Model Size

critical for on-device

Techniques for Smaller Networks

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

Variant Transformer Architectures

PAY LESS ATTENTION WITH LIGHTWEIGHT AND DYNAMIC CONVOLUTIONS

WU ET AL

Variant Transformer Architectures

ACCESSING HIGHER-LEVEL REPRESENTATIONS IN SEQUENTIAL TRANSFORMERS WITH FEEDBACK MEMORY FAN ET AL

Variant Transformer Architectures

ADABERT: TASK-ADAPTIVE BERT COMPRESSION WITH DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH CHEN ET AL

- Train Smaller Network from Scratch
- strong baseline. would not discount.

- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

important for on-device

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

a lot of recent improvements, very flexible

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

easy and straightforward gains

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

depends on how much you share

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

important for on-device. easily combinable. can be used for aggressive compression

- Train Smaller Network from Scratch
- Sparsity Inducing Training
- Knowledge Distillation
- Pruning
- Weight Sharing
- Quantization
- More efficient architectures

And of course, even more considerations...

- Latency (faster decoding)
- Models that fit on Specialized Hardware
 - specific block sizes
 - battery life and heat from device

Interested in Efficient NLP?

Simple and Efficient Natural Language Processing
Workshop at EMNLP 2020 in Punta Cana

Thanks for listening!