AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1-7. (canceled).
- 8. (currently amended): <u>AnA porous</u> insulating film formed by <u>using thermally</u> <u>treating</u> a film-forming composition comprising a hydrolysis product and/or a condensation product of a compound <u>having a repeating unit</u> represented by Formula (1) below:

$$P = \begin{pmatrix} H & R^{6} \\ C & C \\ R^{5} & (L^{1} - Y^{1}) \\ X & \end{pmatrix} \times \begin{pmatrix} H & R^{8} \\ C & C \\ R^{7} & (L^{2} - Y^{2}) \\ Y & \end{pmatrix}$$
 (1)

(in the formula, wherein at least one of P and Q is a silane coupling group represented by -L³-Si(R³)_m(OR⁴)_{3-m}, R³, R⁴, R⁵, R⁶, Rⁿ, and R³ independently denote a hydrogen atom or a hydrocarbon group having 1 to 8 carbons, m denotes 0, 1, or 2, x denotes a range of 100 to 1 mol %, y denotes a range of 0 to 99 mol %, and P and Q denote terminal groups; L¹, L², and L³ independently denote a single bond or a divalent organic linking group, Y¹ and Y² independently denote -N(R³)(R¹⁰), -OH, -NR⁰COR³, -CON(R³)(R¹⁰), -OR³, -CONR³₂, -COR³, -CO₂M, -COOR³, or -SO₃M, in which R⁰, R³, and R¹⁰ independently denote a hydrogen atom or an alkyl group having 1 to 8 carbons, R⁰ and R³ may form a ring structure, and M denotes a hydrogen atom, an alkali metal, an alkaline earth metal, or onium},

wherein said insulating film is porous.

- 9. (currently amended): The porous-insulating film according to Claim 8, wherein L¹ and L² in Formula (1) are single bonds and L³ is an alkylenethio group.
- 10. (currently amended): The porous-insulating film according to Claim 8, wherein the film-forming composition comprises a hydrolysis product and/or a condensation product of a compound represented by Formula (1) and at least one type of silane compound selected from the group consisting of a compound represented by Formula (2) below and a compound represented by Formula (3) below:

 $Si(OR^{11})_4$ (2)

(in the formula, wherein R11 denotes a monovalent organic group),

 $R^{12}_{a}Si(OR^{13})_{4-a}$ (3)

(in the formula, wherein R¹² denotes a hydrogen atom, a fluorine atom, or a monovalent organic group, R¹³ denotes a monovalent organic group or an organosilicon group, and a denotes an integer of 1 or 2).

- 11. (currently amended): The porous-insulating film according to Claim 10, wherein R^{11} in Formula (2) is an alkyl group having 1 to 5 carbons.
- 12. (currently amended): The porous insulating film according to Claim 10, wherein R^{12} and R^{13} in Formula (3) independently denote an alkyl group having 1 to 5 carbons.
- 13. (new): The insulating film according to Claim 8, wherein said film has a porosity of at least 20 vol% to at most 80 vol%.

- 14. (new): The insulating film according to Claim 8, wherein said film has a permittivity of 2.1 or less.
- 15. (new): A process for producing an insulating film, comprising the steps of providing a film-forming composition comprising a hydrolysis product and/or a condensation product of a compound represented by Formula (1) below:

wherein at least one of P and Q is a silane coupling group represented by -L³-Si(R³)_m(OR⁴)_{3-m}, R³, R⁴, R⁵, R⁶, Rⁿ, and Rⁿ independently denote a hydrogen atom or a hydrocarbon group having 1 to 8 carbons, m denotes 0, 1, or 2, x denotes a range of 100 to 1 mol %, y denotes a range of 0 to 99 mol %, and P and Q denote terminal groups; L¹, L², and L³ independently denote a single bond or a divalent organic linking group, Y¹ and Y² independently denote -N(R³)(R¹⁰), -OH, -NR⁰COR³, -CON(R³)(R¹⁰), -OR³, -CONR³₂, -COR³, -CO₂M, -COOR³, or -SO₃M, in which R⁰, R³, and R¹⁰ independently denote a hydrogen atom or an alkyl group having 1 to 8 carbons, R⁰ and R³ may form a ring structure, and M denotes a hydrogen atom, an alkali metal, an alkaline earth metal, or onium;

adding to the film-forming composition a porosifying compound that is compatible with or dispersible in the film-forming composition and has a boiling point or a decomposition temperature ranging between 250°C to 450°C, thereby forming a resulting composition;

coating a substrate with the resulting composition comprising the film-forming composition and the porosifying compound to obtain a coated substrate;

heating the coated substrate at a temperature that is less than the boiling point or the decomposition temperature of the porosifying compound so as to partially cure the resulting film-forming composition, and

subsequently heating the coated substrate at a temperature that is equal to or higher than the boiling point or the decomposition temperature of the porosifying compound so as to further cure the resulting film-forming composition while generating a gas as a result of boiling or decomposition to obtain said insulating film, wherein said insulating film is porous.

- 16. (new): The process of claim 15, wherein L¹ and L² in Formula (1) are single bonds and L³ is an alkylenethio group.
- 17. (new): The process of claim 15, wherein the film-forming composition comprises a hydrolysis product and/or a condensation product of a compound represented by Formula (1) and at least one type of silane compound selected from the group consisting of a compound represented by Formula (2) below and a compound represented by Formula (3) below:

Q80448

$$Si(OR^{11})_4$$
 (2)

wherein R¹¹ denotes a monovalent organic group,

$$R^{12}_{a}Si(OR^{13})_{4-a}$$
 (3)

wherein R^{12} denotes a hydrogen atom, a fluorine atom, or a monovalent organic group, R^{13} denotes a monovalent organic group or an organosilicon group, and a denotes an integer of 1 or 2.

18. (new): The process of claim 15, wherein the porosifying compound is a compound having a polyalkylene oxide structure.