# Formulation and representative examples of 5 NP-complete problems.

## **3-Dimensional Matching**

- Let X, Y, Z be finite sets.
- Let  $T\subseteq X imes Y imes Z$ , that is T consists of triples (x,y,z) where  $x\in X$ ,  $y\in Y$ ,  $z\in Z$ .
- $M\subseteq T$  is a 3-dimensional matching if and only if for any two elements of M:  $(x_1,y_1,z_1)\in M$ ,  $(x_2,y_2,z_2)\in M$  it holds  $x_1\neq x_2,y_1\neq y_2,z_1\neq z_2.$
- The problem is: given the set T and an integer k decide whether there exists a 3-dimensional matching  $M\subseteq T$  with  $|M|\geq k$ .
- This problem is known to be strongly NP-complete.

# **Graph Vertex Cover**

- Let G = (V, E) be an undirected graph.
- Then  $V'\subseteq V$  is a vertex cover if and only if for every edge  $(u,v)\in E$  at least one of the endpoints is in V', i.e.  $(u,v)\in E\implies v\in V'\vee v\in V'$ .
- The vertex cover problem if formulated as follows: Given a graph G=(V,E) and a positive integer k decide whether G has a vertex cover of size at most k
- This problem is known to be strongly NP-complete



Example of a vertex cover



Example of minimum vertex cover

### Clique

- Given an undirected graph G=(V,E) a clique is a subset  $K\subseteq V$  such that every pair of vertices in K is connected by some edge in E.
- The problem is formulated as follows: is it possible to find a clique K with size greater than some integer k?
- This problem is known to be strongly NP-complete.

### **Hamiltonian Circuit**

- Now usually called Hamiltonian cycle problem.
- Given a directed or undirected graph G decide whether there exist a sequence of vertices connected by edges where the starting vertex is also the ending vertex and each vertex is used exactly once (except the first one).
- This is a special case of the traveling salesman problem.
- This problem is known to be strongly NP-complete.

### Set partition

- Given a list of positive integers decide whether is can be partitioned into two sub lists  $S_1$  and  $S_2$  such that the sum of the numbers in  $S_1$  equals the sum of the numbers in  $S_2$ .
- This problem is known to be WEAKLY NP-complete.