2. Principe du maximum (mite). (Rq: ii) soit (x,p): IR -> IR sol. de l'EDO "hamiltonienne"
puivante: $a = \sqrt{x(t)} = \sqrt{y(t)} + (x(t), y(t))$ $a = \sqrt{y(t)} = -\sqrt{y(t)}, y(t)$ $a = \sqrt{x(t)} + \sqrt{x(t)}, y(t)$ $a = \sqrt{x(t)} + \sqrt{x(t)}, y(t)$ $a = \sqrt{y(t)} + \sqrt{y(t)}, y(t)$ $a = \sqrt{y(t)} + \sqrt{y(t$

En effet, on a

$$\frac{d}{dt} \left[H(\pi(t), p(t)) \right] = \frac{\partial H}{\partial x} (\pi(t), p(t)) \times (t) + \frac{\partial H}{\partial p} (\pi(t), p(t)) \cdot p(t)$$
 $\frac{d}{dt} \left[H(\pi(t), p(t)) \right] = \frac{\partial H}{\partial x} (\pi(t), p(t)) \times (t) + \frac{\partial H}{\partial p} (\pi(t), p(t)) \cdot p(t)$
 $= \sum_{i=1}^{NB} x_i \cdot y_i$
 $= \sum_{i=1}^{$

Dans les conclusions du PMP, on a bien le pt i) qui indique $\dot{p}(t) = -\nabla_x H(x(t), p(t), u(t))$, et $\dot{x}(t) = f(x(t), u(t))$ $= \nabla_p H(x(t), p(t), u(t))$

avec une lépendance supplémentaire en ult. Pour autant, la condition de maximisation ii) implique que la même conclusion reste vaie (p.p.): () CEIR) (11, te [o, tf]): H(z(t), p(t), u(t)) = c iii) on novra plus tard une version du PMP " avec conditions de transversalité " qui permet de traiter des conditions aux leux bouts plus générales (ex: h(x(+f))=0...) accélér

On fixe les conditions aux leux bouts: avec $f: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$, $f(x, y) := (x_2, y)$, et $x(y) = x_0 := (90, 90) \in \mathbb{R}^2$.

Finalement, Ult) EU:= [-1,1]. On admet la contrôlabilité (ie on peut bien revenier à l'origine et s'y annêten) et l'existence (il existe au moins une stratégie temps min). Bient x, u et et pune trajectoire optimale, le contrôle et le temps minimal associé, (x, u) et et vérifient le PMP: $\exists (p,q) + (o,o)$ avec $p \leq o$ et p: [o,tf] \rightarrow |R Lipschitz tq: i) requation adjointe: H(x,p,u) = p.1 + ([p] | f(x,x,x,u))= P + Px x 2 + P2. W

p, (t) = -
$$\frac{\partial H}{\partial x_{\lambda}}$$
 (x(t), p(t), u(t))

= 0 => p, (t) = cte

|2(t) = - $\frac{\partial H}{\partial x_{\lambda}}$ (x(t), p(t), u(t))

= - p, (t)

= cte => p2 aff he

ii) maximisation du hamiltonien: ayant fixé x it p, n

 $p^{\circ} + p_{\lambda} \cdot x_{2} + p_{2} \cdot u \longrightarrow max$ $u \in (-1, \lambda)$

n: ayant fixe x et p, résolvens le plr

Son, solution:

- soit $p_2 \neq 0$, et $u = Som p_2 = p_2/|p_2|$ Soit $p_2 \neq 0$, tout $u \in C-1$ in est sel.

Comme pe est une fonction affine, elle s'annule au =) $p_1 = -p_2 = 0$: $p = (p_1, p_2) = (o_1o_1)$. Mais along, le long de l'extrémale $D = H(x(t), y(t), u(t)) = p^2 + p_1(t), x_2(t) + p_2(t), u(t)$ $=) p^2 = 0 \quad \text{fonction}$ $P = 0 \quad \text{fonction}$ $P = 0 \quad \text{fonction}$ P.P. teloitf] =) (p°,p)=(0,0): abounde (car intendit par le PMP).

Conclusion: pe est une fonction affihe mon identiquemmille et a lonc au plus un zéns, t E [0, tf) (ille change de signe au plus une fois sur [0,+f]. Donc, comme u(t) = som p2(t) pp. t e lo, HJ, on a our plus une commutation (une discontinuité) du contrôle: - sit u=+1 puis-1, ie y+y-] chacun des deux ance pouvant être - set n=-n bries +v' je l- lt right

Il q: comparer au ple de navigation pour lequel on a trois ans (d'après le numérique) et trois valeurs possibles: U E L-1,0,1}.

