Week 4: - Attenuators

Attenuators:

- Attenuator is a four terminal network, inserted between an input and output.
- It produces a specific amount of loss for current and voltage.

Figure shows the attenuator circuit where,

Vo →Output voltage in volts, Vi →Input voltage in volts

Io →Output current in amps, Ii →Input current in amps

Po→Power output in watts, Pi→Power input in watts

Classification of attenuators: Attenuators can be classified as

1. Symmetrical attenuator:

It is resistive network installed between source and load having equal input and output resistance. Symmetrical attenuator is further classified as:

- i) T type
- ii) Π type

2. Asymmetrical attenuator:

It is resistive network installed between source and load having unequal input and output resistance.

3. Fixed attenuator:

Fixed attenuator provides fixed amount of attenuation. It is also called as pad.

4. Variable attenuator:

Variable attenuator are attenuators whose attenuation can be varied.

Applications of attenuator: Attenuators are used

- In radio communication and transmission line to weaken a stronger signal.
- As volume controls in broadcasting stations
- For matching circuits
- To enhance the input impedance of equipment or instruments.

Bel, Decibel and Neper:

Decibel: Decibel (dB):

- Decibel is unit for expressing the ratio between two physical quantities like acoustic or electrical power or loudness of sounds.
- One decibel equals 10 times the common logarithm of the power ratio.

Decibel (dB) =
$$10 \log (P_2/P_1)$$

Where,
$$\frac{p_2}{p_1}$$
 represents power ratio.

Bel(B):

- Bel is a unit used for measuring sound intensity equal to 10 decibels.
- One Bel equals logarithm of the power ratio.

Bel (B) =
$$\log (P_2/P_1)$$

Where,
$$\frac{P2}{p_1}$$
 represents power ratio.

Neper:

- Neper is unit for expressing the ratio between two physical quantities like acoustic or electrical power or loudness of sounds.
- Neper is natural logarithm of the power ratio.

$$Neper = ln (P_2/P_1)$$

Where,
$$\frac{p_2}{p_1}$$
 represents power ratio.

• 1Neper =8.68dB.

Symmetric T attenuator: The symmetrical T-type attenuator is as shown below

$$R_1 = R_0 * (N-1) / (N+1)$$

$$R_2 = R_0 *2N / (N^2 - 1)$$

Where, N is attenuation factor

Symmetric π attenuator: The symmetrical T-type attenuator is as shown below

$$R_1 = R_0 * (N+1) / (N-1)$$

$$R_2 = R_0 * (N^2-1) / 2N$$

Where, N is attenuation factor

Problems:

1. Design a T-type pad to give 25dB attenuation and to have characteristic impedance of 600 ohms.

Solution: Given, attenuation D = 25 dB, $R_0 = 600 ohms$

$$D = 20log N$$

$$\log N = D/20 = 25/20$$

N= antilog
$$(25/20) = 10^{(25/20)}$$

$$N=17.78$$

w.k.t.
$$R_1 = [R_0 * (N-1)] / (N+1)$$

$$R_1 = [600 * (17.78 - 1)] / (17.78 + 1)$$

$$R_1 = 536.10\Omega$$

$$R_2 = [R_0 *2N] / (N^2 -1)$$

$$R_2 = [600*2*17.78] / (17.78^2 - 1)$$

$$R_2 = 6.770\Omega$$

2. Design a π -type symmetrical attenuator to be inserted between 600 Ω for an attenuation of 10dB.

Solution: Given, attenuation D = 10dB, $R_0 = 600ohms$

$$D = 20\log N$$

$$\log N = D/20 = 10/20$$

N= antilog
$$(10/20) = 10^{(10/20)}$$

$$N=3.162$$

w.k.t.
$$R_2 = [R_0 * (N+1)] / (N-1)$$

$$R_1 = (N^2 - 1)/[R_0 *2N]$$

$$R_2 = [600 * (3.162 + 1)] / (3.162 - 1)$$

$$R_1 = (3.162^2 - 1) / [600*2*3.162]$$

$$R_2 = 1155.04 \Omega$$

$$R_1 = 853.72 \Omega$$

Activity:

- 1. An item in telecom system has an input resistance of 600Ω and correctly terminated. When an input voltage of 1.5 V is applied a current of 15mA flows in the load. Calculate the loss or gain of the system.
- 2. Design a T-type pad to give 10dB attenuation and to have characteristic impedance of 600 ohms.