1.6: RULES OF INFERENCE

Example 1: Consider the following argument.

Name	Rule of Inference
Addition	<i>p</i> ∴ <i>p</i> ∨ <i>q</i>
Simplification	<i>p</i> ∧ <i>q</i> ∴ <i>p</i>
Conjunction	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>
Modus ponens	$ \begin{array}{c} p \\ p \to q \\ \hline \dots q \end{array} $

Name	Rule of Inference
Modus tollens	$ \begin{array}{c} \neg q \\ p \to q \\ \hline \vdots \neg p \end{array} $
Hypothetical syllogism	$p \to q$ $q \to r$ $$ $\therefore p \to r$
Disjunctive syllogism	$p \lor q$ $\neg p$ $$ $\therefore q$
Resolution	$p \lor q$ $\neg p \lor r$ $$ $\therefore q \lor r$

Example 2: Prove the following argument is valid. Justify each step by citing the rule of inference needed.

Using WordsUsing SymbolsIf the car is not full, then it is not sunny. $\neg F \rightarrow \neg S$ It is sunny or lunchtime. $S \lor L$ It is not lunchtime. $\neg L$ Therefore, the car is full. $\therefore F$

The solution written for Example 2 is an example of a *valid proof* (a.k.a. a *formal proof*).

Given some hypotheses and some conclusion q, form the chain

$$p_1, p_2, ..., p_n, q$$

of propositions where each p_i is

- a hypothesis,
- a logical equivalence, or
- a consequence using a rule of inference.

Example 4: Determine if the following is a valid argument.

Penguins are birds.

All birds are able to fly.

Therefore, penguins are able to fly.

Example 5: Determine if the following is a valid argument.

Giraffes have four legs.

Cows have four legs.

Therefore, giraffes are taller than cows.

Example 6: Determine if the following is a valid argument.

If Joe wins the state lottery, he can afford a new car.

Joe did not win the state lottery.

Therefore, Joe cannot afford a new car.

Example 7: Prove that -1 = 1.

SECTION 1.6 – RULES OF INFERENCE

Example 1: Consider the following argument.

Using Words	Using Symbols
If it works, then use it.	$W \rightarrow U$
It works.	W
Therefore, use it.	
	$\therefore U$

RULES OF INFERENCE

Name	Rule of Inference
Addition	<i>p</i> ∴ <i>p</i> ∨ <i>q</i>
Simplification	<i>p</i> ∧ <i>q</i> ∴ <i>p</i>
Conjunction	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>
Modus ponens	$ \begin{array}{c} p \\ p \to q \\ \hline \dots \\ q \end{array} $

Name	Rule of Inference
Modus tollens	
Hypothetical syllogism	$p \to q$ $q \to r$ $$ $\therefore p \to r$
Disjunctive syllogism	$p \lor q$ $\neg p$ $$ $\therefore q$
Resolution	$p \lor q$ $\neg p \lor r$ $$ $\therefore q \lor r$

VALID ARGUMENTS

Example 2: Prove the following argument is valid. Justify each step by citing the rule of inference needed.

<u>Using Words</u>	Using Symbols
If the car is not empty, then it is not sunny.	$\neg F \rightarrow \neg S$
It is sunny or lunchtime.	$S \vee L$
It is not lunchtime.	$\neg L$
Therefore, the car is empty.	
	$\therefore F$

Class Notes for Discrete Math I (R	Rosen)
------------------------------------	--------

The solution written for Example 2 is an example of a This is an example of a *valid proof* (a.k.a. a *formal proof*).

Given some hypotheses and some *conclusion* q, form the chain $p_1, p_2, ..., p_n, q$ of propositions where each p_i is

- a hypothesis,
- a logical equivalence, or
- a consequence using a rule of inference.

Example 3: From hypotheses $(p \rightarrow q) \land r$, $\neg (r \land q)$ and $s \rightarrow p$, conclude $\neg s$.

Class Notes for Discrete Math I (Rosen)

FALLACIES

Example 4:

Penguins are birds.
All birds are able to fly.
Therefore, penguins are able to fly.

Example 5:

Giraffes have four legs.
Cows have four legs.
Therefore, giraffes are taller than cows.

Example 6:

If Joe wins the state lottery, he can afford a new car. Joe did not win the state lottery.

Therefore, Joe cannot afford a new car.

Example 7: Prove that -1 = 1.

EQUIVALENCES AND IMPLICATION EQUIVALENCES

Double negation law: $\neg (\neg p) \equiv p$

Identity laws: $p \vee \mathbf{F} \equiv p$, $p \wedge \mathbf{T} \equiv p$

Domination laws: $p \vee \mathbf{T} \equiv \mathbf{T}, p \wedge \mathbf{F} \equiv \mathbf{F}$

Negation laws: $p \lor \neg p \equiv \mathbf{T}, p \land \neg p \equiv \mathbf{F}$

Idempotent laws: $p \lor p \equiv p$, $p \land p \equiv p$

Commutative laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

Associative laws: $p \lor (q \lor r) \equiv (p \lor q) \lor r$,

 $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$

Distributive laws: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$,

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption laws: $p \lor (p \land q) \equiv p$, $p \land (p \lor q) \equiv p$

 $DeMorgan's\ laws: \ \neg \ (p \lor q) \equiv \neg p \land \neg q,$

$$\neg \ (p \land q) \equiv \neg p \lor \neg q$$

- 1. $p \rightarrow q \equiv \neg p \lor q$
- 2. $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- 3. $p \lor q \equiv \neg p \rightarrow q$
- 4. $p \land q \equiv \neg (p \rightarrow \neg q)$
- 5. $\neg (p \rightarrow q) \equiv p \land \neg q$
- 6. $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$
- 7. $(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$
- 8. $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$
- 9. $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$
- 10. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- 11. $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- 12. $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- 13. $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

RULES OF INFERENCE
p
$\therefore p \lor q$ (Addition)
$p \wedge q$
\therefore p (Simplification)
p
q
$\therefore p \wedge q$ (Conjunction)
p
$p \rightarrow q$
∴ q (Modus ponens)
$\neg q$
$p \rightarrow q$
∴ ¬p (Modus tollens)
$p \rightarrow q$
<i>q</i> → <i>r</i>
$\therefore p \rightarrow r$ (Hypothetical syllogism)
$p \lor q$
$\neg p$
∴ q (Disjunctive syllogism)
$p \lor q$ $\neg p \lor r$
$\therefore q \lor r$ (Resolution)