The calculator and calculus packages* Scientific calculations with LATEX

Robert Fuster Universitat Politècnica de València rfuster@mat.upv.es

2014/02/20

Abstract

The calculator package allows us to use LATEX as a calculator, with which we can perform many of the common scientific calculations (with the limitation in accuracy imposed by the TEX arithmetic).

This package introduces several new instructions that allow you to do several calculations with integer and decimal numbers using LATEX. Apart from add, multiply or divide, we can calculate powers, square roots, logarithms, trigonometric and hyperbolic functions . . .

In addition, the calculator package supports some elementary calculations with vectors in two and three dimensions and square 2×2 and 3×3 matrices.

The calculus package adds to the calculator package several utilities to use and define various functions and their derivatives, including elementary functions, operations with functions, polar coordinates and vector-valued real functions.

Version 2.0 adds new capabilities to both packages. Specifically, now, calculator and calculus can evaluate the inverse trigonometric and the inverse hyperbolic functions (so that we can work with all the classic elementary functions), and also can do some additional calculation with vectors (such as the cross product and the angle between two vectors).

Contents

1	Introduction	:
Ι	The calculator package	5
2	Predefined numbers	5
	Operations with numbers 3.1 Assignments and comparisons	

^{*}This document corresponds to calculator v.2.0 and calculus v.2.0, dated 2014/02/20.

		3.2.1	The four basic operations	6
		3.2.2	Powers with integer exponent	7
		3.2.3	Absolute value, integer part and fractional part	7
		3.2.4	Truncation and rounding	8
	3.3	Integer	rs	8
	3.3.1 Integer division, quotient and remainder			
		3.3.2	Greatest common divisor and least common multiple	10
		3.3.3	Simplifying fractions	10
	3.4	Elemen	ntary functions	10
		3.4.1	Square roots	10
		3.4.2	Exponential and logarithm	10
		3.4.3	Trigonometric functions	11
		3.4.4	Hyperbolic functions	13
		3.4.5	Inverse trigonometric functions (new in version 2.0)	14
		3.4.6	Inverse hyperbolic functions (new in version 2.0)	14
4	Оре	eration	s with lengths	15
5			ithmetic	15
	5.1		operations	16
		5.1.1	Assignments	16
		5.1.2	Vector addition and subtraction	16
		5.1.3	Scalar-vector product	16
		5.1.4	Scalar (dot) product and euclidean norm	17
		5.1.5	Vector (cross) product (new in version 2.0)	17
		5.1.6	Unit vector parallel to a given vector (normalized vector)	17
		5.1.7	Absolute value (in each entry of a given vector)	18
	5.1.8 Angle between two vectors (new in version 2.0)			
	5.2		g operations	18
		5.2.1	Assignments	18
		5.2.2	Transposed matrix	19
		5.2.3	Matrix addition and subtraction	19
		5.2.4	Scalar-matrix product	20
		5.2.5	Matriu-vector product	20
		5.2.6	Product of two square matrices	20
		5.2.7	Determinant	$\frac{1}{21}$
		5.2.8	Inverse matrix	21
		5.2.9	Absolute value (in each entry)	
			Solving a linear system	22
		0.2.10		
II	\mathbf{T}	he cal	culus package	22
6	What is a function?			
7	Pre	defined	l functions	23

8	Operations with functions	24
9	Polynomial functions	26
10	Vector-valued functions (or parametrically defined curves)	27
11	Vector-valued functions in polar coordinates	28
12	Low-level instructions 12.1 The \newfunction declaration and its variants	28 28 29
II	I Implementation	30
13	calculator	30
	13.1 Internal lengths and special numbers	30
	13.2 Warning messages	31
	13.3 Operations with numbers	33
	13.4 Matrix arithmetics	56
14	calculus	69
	14.1 Error and info messages	69
	14.2 New functions	71
	14.3 Polynomials	73
	14.4 Elementary functions	76
	14.5 Operations with functions	79

1 Introduction

The calculator package defines some instructions which allow us to realize algebraic operations (and to evaluate elementary functions) in our documents. The operations implemented by the calculator package include routines of assignment of variables, arithmetical calculations with real and integer numbers, two and three dimensional vector and matrix arithmetics and the computation of square roots, trigonometrical, exponential, logarithmic and hyperbolic functions. In addition, some important numbers, such as $\sqrt{2}$, π or e, are predefined.

The name of all these commands is spelled in capital letters (with very few exceptions: the commands \DEGtorad and \RADtoDEG and the control sequences that define special numbers, as \numberPI) and, in general, they all need one or more mandatory arguments, the first one(s) of which is(are) number(s) and the last one(s) is(are) the name(s) of the command(s) where the results will be stored. The new commands defined in this way work in any LATeX mode.

By example, this instruction

\MAX{3}{5}{\solution}

¹Logically, the control sequences that represent special numbers (as \numberPI) does not need any argument.

stores 5 in the command \solution. In a similar way,

\FRACTIONSIMPLIFY{10}{12}{\numerator}{\denominator}

defines \numerator and \denominator as 5 i 6, respectively.

The *data* arguments should not be necessarily explicit numbers; it may also consist in commands the value of which is a number. This allows us to chain several calculations, since in the following example:

Observe that, in this example, we have followed exactly the same steps that we would do to calculate $\frac{2.5^2}{\sqrt{12}} + e^{3.4}$ with a standard calculator: We would calculate the square, the root and the exponential and, finally, we would divide and add the results.

It does not matter if the arguments *results* are or not predefined. But these commands act as declarations, so that its scope is local in environments and groups.

The
$$\setminus$$
sol command contains the square of 5:

Ex. 2

 $5^2 = 25$

Now, the \sol command is the square root of 5:

$$\sqrt{5} = 2.23605$$

On having gone out of the **center** environment, the command recovers its previous value: 25

\SQUARE{5}\sol
The \texttt{\textbackslash sol}
command contains the square of \$5\$:
\[5^2=\sol\]
\begin{center}
\SQUAREROOT{5}\sol
Now, the \texttt{\textbackslash sol}
command is the square root of \$5\$:
\[\sqrt{5}=\sol\]
\end{center}
On having gone out of the \texttt{center}
environment,
the command recovers its previous value:
\sol

The calculus package goes a step further and allows us to define and use in a user-friendly manner various functions and their derivatives.

For exemple, using the calculus package, you can define the $f(t) = t^2 e^t - \cos 2t$ function as follows:

- % \SCALEVARIABLEfunction{2}{\COSfunction}{\tempfunctionB}
- % \SUBTRACTfunction{\tempfunctionA}{\tempfunctionB}{\Ffunction}

Then you can compute any value of the new function \function and its derivative: typing

$$\fine {\langle num \rangle} {\langle \langle sol \rangle} {\langle \langle Dsol \rangle}$$

the values of f(num) and f'(num) will be stored in \sol and \Dsol.

Part I

The calculator package

2 Predefined numbers

The calculator package predefines the following numbers:

\numberPI	$3.14159 \approx \pi$	\numberHALFPI	$1.57079 \approx \pi/2$
\numberTHREEHALFPI	$4.71237 \approx 3\pi/2$	\numberTHIRDPI	$1.0472 \approx \pi/3$
\numberQUARTERPI	$0.78539 \approx \pi/4$	\numberFIFTHPI	$0.62831 \approx \pi/5$
\numberSIXTHPI	$0.52359 \approx \pi/6$	\numberTWOPI	$6.28317 \approx 2\pi$
\numberE	$2.71828 \approx e$	\numberINVE	$0.36787 \approx 1/e$
\numberETWO	$7.38902 \approx e^2$	\numberINVETWO	$0.13533 \approx 1/e^2$
\numberLOGTEN	$2.30258 \approx \log 10$		
\numberGOLD	$1.61803 \approx \phi$	\numberINVGOLD	$0.61803 \approx 1/\phi$
\numberSQRTTW0	$1.41421 \approx \sqrt{2}$	\numberSQRTTHREE	$1.73205 \approx \sqrt{3}$
\numberSQRTFIVE	$2.23607 \approx \sqrt{5}$		
\numberCOSXXX	$0.86603 \approx \cos \pi/6$	\numberCOSXLV	$0.70711 \approx \cos \pi/4$

3 Operations with numbers

3.1 Assignments and comparisons

The first command we describe here is used to store a number in a control sequence. The other two commands in this section determine the maximum and minimum of a pair of numbers.

 $\COPY\{\langle num \rangle\}\{\langle \backslash cmd \rangle\}\$ stores the number num to the command $\backslash cmd$.

Ex. 3 \COPY{-1.256}{\sol} \sol \-1.256

 $\label{lem:local_local_local} $$ \mathcal{(num1)}_{(num2)}_{(num2)} $$ stores in \end{the maximum of the numbers num1} and num2.$

$$\max(1.256, 3.214) = 3.214$$

 $\MIN{\langle num1\rangle}{\langle num2\rangle}{\langle num2\rangle}$ stores in $\c md$ the minimum of $\c num1$ and $\c num2$.

1.256

3.2 Real arithmetic

3.2.1 The four basic operations

The following commands calculate the four arithmetical basic operations.

 $\label{localization} $$\Delta DD(\langle num1\rangle)(\langle num2\rangle)(\langle num2\rangle) \le num1 \ and \ num2.$

$$\begin{array}{c} \texttt{Ex. 6} \\ \texttt{\$1.256} \texttt{\{3.214\} \{\$sol\}} \\ \texttt{1.256} \texttt{+3.214} \texttt{=\$sol\$} \\ \end{array}$$

 $\SUBTRACT\{\langle num1\rangle\}\{\langle num2\rangle\}\{\langle \backslash cmd\rangle\}\$ Difference num1-num2.

$$\begin{array}{c} \texttt{Ex. 7} & \texttt{\SUBTRACT\{1.256\}\{3.214\}\{\setminus sol\}\}} \\ & \texttt{\Subtract\{1.256-3.214=\setminus sol\}\}} \\ & 1.256-3.214 = -1.95801 \end{array}$$

 $\begin{tabular}{ll} $$ \MULTIPLY{\langle num1\rangle}{\langle num2\rangle}}{\langle num2\rangle} & \Product num1 \times num2. \\ \end{tabular}$

$$\begin{tabular}{ll} $\tt MULTIPLY\{1.256\}\{3.214\}\{sol\} \\ $\tt 1.256 \times 3.214 = 4.03677 \end{tabular}$$

\DIVIDE $\{\langle num1\rangle\}\{\langle num2\rangle\}\{\langle \backslash cmd\rangle\}\$ Quotient $num1/num2.^2$

²This command uses a modified version of the division algorithm of Claudio Beccari.

3.2.2 Powers with integer exponent

 $\SQUARE\{\langle num \rangle\}\{\langle \backslash cmd \rangle\}\$ Square of the number num.

 $\verb|\CUBE{|\langle num\rangle|} {\langle \c md\rangle|} \ \, \, \, \text{Cube of } \, \, num.$

 $\verb|\POWER{|\langle num\rangle}| \{\langle exp\rangle\}| \{\langle cmd\rangle\}| \text{ The } exp \text{ power of } num.$

The exponent, exp, must be an integer (if you want to calculate powers with non integer exponents, use the **\EXP** command).

3.2.3 Absolute value, integer part and fractional part

 $\ABSVALUE\{\langle num \rangle\}\{\langle \backslash cmd \rangle\}\$ Absolute value of num.

$$\label{eq:lambda} $$ \absvalue{-1.256}{\hspace{-0.07cm}\scalebox{1.256} = 1.256} = 1.256$$$

\INTEGERPART $\{\langle num \rangle\}$ $\{\langle \backslash cmd \rangle\}$ Integer part of num.³

Ex. 14	\INTEGERPART{1.256}{\sola} \INTEGERPART{-1.256}{\solb}
The integer part of 1.256 is 1, but the	The integer part of \$1.256\$ is \$\sola\$,
integer part of -1.256 is -2 .	but the integer part of \$-1.256\$ is \$\solb\$.

³The integer part of x is the largest integer that is less than or equal to x.

\FLOOR is an alias of \INTEGERPART.

```
Ex. 15 \FLOOR{1.256}{\sol}
The integer part of $1.256$ is $\sol$.
```

The integer part of 1.256 is 1.

\FRACTIONALPART $\{\langle num \rangle\}$ $\{\langle \backslash cmd \rangle\}$ Fractional part of num.

Ex. 16	\FRACTIONALPART{1.256}{\sol}
	\sol
0.256	\FRACTIONALPART{-1.256}{\sol}
0.744	\FRACIIUNALPARI(-1.250)(\SOI)
	\sol

3.2.4 Truncation and rounding

\TRUNCATE[$\langle n \rangle$] { $\langle num \rangle$ } { $\langle num \rangle$ } truncates the number num to n decimal places.

 $\verb|\ROUND[n]|{\langle num\rangle}|{\langle num\rangle}|{\langle num\rangle}| \ \, \text{rounds the number num to n decimal places.}$

The optional argument n may be 0, 1, 2, 3 or 4 (the default is 2).⁴

Ex. 17	\TRUNCATE[0]{1.25688}{\sol} \sol
1 1.25 1.2568	\TRUNCATE[2]{1.25688}{\sol} \sol
	\TRUNCATE[4]{1.25688}{\sol} \sol
Ex. 18	\ROUND[0]{1.25688}{\sol} \sol
1 1.26 1.2569	\ROUND[2]{1.25688}{\sol} \sol
	\ROUND[4]{1.25688}{\sol}

3.3 Integers

The operations described here are subject to the same restrictions as those referring to decimal numbers. In particular, although TEX does not have this restriction in its integer arithmetic, the largest integer that can be used is 16383.

\sol

 $^{^4}$ Note than \TRUNCATE[0] is equivalent to \INTEGERPART only for non-negative numbers.

3.3.1 Integer division, quotient and remainder

\INTEGERDIVISION{ $\langle num1 \rangle$ }{ $\langle num2 \rangle$ }{ $\langle num2 \rangle$ }{ $\langle num2 \rangle$ } stores in the $\backslash cmd1$ and $\backslash cmd2$ commands the quotient and the remainder of the integer division of the two integers num1 and num2. The remainder is a non-negative number smaller than the divisor.⁵

```
Ex. 19
                                          \INTEGERDIVISION{435}{27}{\sola}{\solb}
                                          435=27\times sola+solb
 435 = 27 \times 16 + 3
                                          \INTEGERDIVISION{27}{435}{\sola}{\solb}
 27 = 435 \times 0 + 27
                                          27=435\times sola+solb
 -435 = 27 \times (-17) + 24
 435 = -27 \times (-16) + 3
                                          -435 = -27 \times 17 + 24
                                          -435=27\times(sola)+solb
                                          \INTEGERDIVISION{435}{-27}{\sola}{\solb}
                                          435=-27\times(sola)+solb
                                          \INTEGERDIVISION{-435}{-27}{\sola}{\solb}
                                          -435=-27\times sola+solb
```

\INTEGERQUOTIENT{ $\langle num1 \rangle$ }{ $\langle num2 \rangle$ }{ $\langle num2 \rangle$ } Integer part of the quotient of num1 and num2. These two numbers are not necessarily integers.

Ex. 20	\INTEGERQUOTIENT{435}{27}{\sol} \sol
16 0 -17	\INTEGERQUOTIENT{27}{435}{\sol} \sol
	\INTEGERQUOTIENT{-43.5}{2.7}{\sol} \sol

\MODULO $\{\langle num1\rangle\}\{\langle num2\rangle\}\{\langle \backslash cmd\rangle\}$ Remainder of the integer division of num1 and num2.

⁵The scientific computing systems (such as Matlab. Scilab or Mathematica) do not always return a nonnegative residue —especially when the divisor is negative—. However, the most reasonable definition of integer quotient is this one: the quotient of the division D/d is the largest number q for which $dq \leq D$. With this definition, the remainder r = D - qd is a non-negative number.

3.3.2 Greatest common divisor and least common multiple

 $\GCD\{(num1)\}\{(num2)\}\{(\coloredge)\}\$ Greatest common divisor of the integers num1 and num2.

Ex. 22
$$\label{eq:gcd} $$ \gcd(435,27) = \sol$ \\ gcd(435,27) = 3$$

\LCM{ $\langle num1 \rangle$ }{ $\langle num2 \rangle$ }{ $\langle num2 \rangle$ } Least common multiple of num1 and num2.

3.3.3 Simplifying fractions

\FRACTIONSIMPLIFY{ $\langle num1 \rangle$ }{ $\langle num2 \rangle$ }{ $\langle num2 \rangle$ } { $\langle num2 \rangle$ } stores in the \cmd1 and \cmd2 commands the numerator and denominator of the irreducible fraction equivalent to num1/num2.

Ex. 24
$$\label{eq:constraint} $$ \xspace{24} \xspace{25}{\sspace{25}}\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}}\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}}\sspace{25}}\sspace{25}}\sspace{25}}\sspace{25}}\sspace{25}}\sspace{25}}\sspace{25}}\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}{\sspace{25}}\sspace{$$

3.4 Elementary functions

3.4.1 Square roots

\SQUAREROOT $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ Square root of the number num.

Ex. 25 \squareR00T{1.44}{\sol}
$$\sqrt{1.44} = 1.2$$
 \squareR00T{1.44}-\sol\$

If the argument num is negative, the package returns a warning message.

Instead of \SQUAREROOT, you can use the alias \SQRT.

3.4.2 Exponential and logarithm

The \EXP and \LOG commands compute, by default, exponentials and logarithms of the natural base e. They admit, however, an optional argument to choose another base.

\EXP $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ Exponential of the number num.

Ex. 26
$$\begin{split} & \text{EXP\{0.5\}\{sol\}} \\ & \text{exp(0.5)=sol$} \end{split}$$

The argument num must be in the interval [-9.704, 9.704]. ⁶

Moreover, the **\EXP** command accepts an optional argument, to compute expressions such as a^x :

\EXP $[\langle num1 \rangle] \{\langle num2 \rangle\} \{\langle \backslash cmd \rangle\}$ Exponential with base num1 of num2. num1 must be a positive number.

Ex. 27
$$\begin{array}{c} & \text{EXP[10]\{1.3\}\{sol\}} \\ & & \text{$10^{1.3}=sol\$} \\ & & \\ &$$

\LOG $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ logarithm of the number num.

\LOG [(num1)]{(num2)}{ $(\land cmd)$ } Logarithm in base num1 of num2.

3.4.3 Trigonometric functions

The arguments, in functions SIN, COS, ..., are measured in radians. If you measure angles in degrees (sexagesimal or not), use the DEGREESSIN, DEGREESCOS, ... commands.

\SIN $\{\langle num \rangle\}\{\langle \backslash cmd \rangle\}$ Sine of num. \COS $\{\langle num \rangle\}\{\langle \backslash cmd \rangle\}$ Cosine of num.

\TAN $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ Tangent of num.

 $^{^69.704}$ is the logarithm of 16383, the largest number that supports the TeX's arithmetic.

\COT $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ Cotangent of num.

```
Ex. 30
                                                          \SIN{\numberTHIRDPI}{\sol}
                                                          \sin \pi/3=\sqrt{3}
       \sin \pi/3 = 0.86601
                                                          \COS{\numberTHIRDPI}{\sol}
        \cos \pi / 3 = 0.5
                                                          \cos \pi/3=\
        \tan \pi/3 = 1.73201
        \cot \pi/3 = 0.57736
                                                          \TAN{\numberTHIRDPI}{\sol}
                                                          \pi \simeq \pi/3= sol
                                                          \COT{\numberTHIRDPI}{\sol}
                                                          \cot \pi/3=\
\DEGREESSIN \{\langle num \rangle\} \{\langle \backslash cmd \rangle\} Sine of num sexagesimal degrees.
\DEGREESCOS \{\langle num \rangle\} \{\langle \backslash cmd \rangle\} Cosine of num sexagesimal degrees.
\DEGREESTAN \{\langle num \rangle\} \{\langle \backslash cmd \rangle\} Tangent of num sexagesimal degrees.
Ex. 31
                                                          \DEGREESSIN{60}{\sol}
                                                          \sin 60^{\text{m}} = \sin \theta
       \sin 60^{\circ} = 0.86601
                                                          \DEGREESCOS{60}{\sol}
        \cos 60^{\circ} = 0.49998
                                                          \cos 60^{\text{textrm o}=\sol}
        \tan 60^{\circ} = 1.73201
        \cot 60^{\circ} = 0.57736
                                                          \DEGREESTAN(60)(\sol)
                                                          0^{\star} 0^{\star} 
                                                          \DEGREESCOT{60}{\sol}
                                                          \cot 60^{\text{textrm o}=\sol}
   The latter commands support an optional argument that allows us to divide the circle in an
```

The latter commands support an optional argument that allows us to divide the circle in an arbitrary number of degrees (not necessarily 360).

By example, \DEGREESCOS [400] \{50\} computes the cosine of 50 gradians (a right angle has 100 gradians, the whole circle has 400 gradians), which are equivalent to 45 (sexagesimal) degrees or $\pi/4$ radians. Or to 1 degree, if we divide the circle into 8 parts!

and two other commands to reduce arguments to basic intervals:

\REDUCERADIANSANGLE $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ Reduces the arc num to the interval $]-\pi,\pi]$. \REDUCEDEGREESANGLE $\{\langle num \rangle\} \{\langle \backslash cmd \rangle\}$ Reduces the angle num to the interval]-180,180].

3.14159 90	\MULTIPLY{\numberTWOPI}{10}{\TWENTYPI} \ADD{\numberPI}{\TWENTYPI}{\TWENTYONEPI} \REDUCERADIANSANGLE{\TWENTYONEPI}{\sol} \sol
	\REDUCEDEGREESANGLE{3690}{\sol}

3.4.4 Hyperbolic functions

3.4.5 Inverse trigonometric functions (new in version 2.0)

```
 \label{eq:local_arcsin} $$ \arcsin (\arcsin (
```

Ex. 36	\ARCSIN{0.5}{\sol} \sol
0.5236 1.04718 1.04718	\ARCCOS{0.5}{\sol} \sol
2.35619	\ARCTAN{\numberSQRTTHREE}{\sol}\sol
	\ARCCOT{-1}{\sol} \sol

3.4.6 Inverse hyperbolic functions (new in version 2.0)

Ex. 37	\ARSINH{1}{\sol} \sol
0.88138 0 0.5493	\ARCOSH{1}{\sol} \sol
0.5493	\ARTANH{0.5}{\sol} \sol
	\ARCOTH{2}{\sol} \sol

4 Operations with lengths

 $\verb|\LENGTHDIVIDE{|\langle length1 \rangle|} {\langle length2 \rangle} {\langle \backslash cmd \rangle}|$

This command divides two lengths and returns a number.

Ex. 38

Ex. 39

\LENGTHDIVIDE{1in}{1cm}{\sol}
One inch equals \$\sol\$ centimeters.

One inch equals 2.54 centimeters.

Commands \LENGTHADD and \LENGTHSUBTRACT return the sum and the difference of two lengths ($new\ in\ version\ 2.0$).

```
\LENGTHADD\{\langle length1\rangle\}\{\langle length2\rangle\}\{\langle \cmd\rangle\}
```

 $\verb|\LENGTHSUBTRACT{|\langle length1|\rangle}{\langle length2|\rangle}{\langle |cmd|\rangle}|$

(\cmd must be a predefined length).

 $\begin{array}{l}
1in + 1cm = 100.72273pt. \\
1in - 1cm = 43.81725pt.
\end{array}$

\newlength{\mylength}
\LENGTHADD{1in}{1cm}{\mylength}
\$1in+1cm=\the\mylength\$.

5 Matrix arithmetic

The calculator package defines the commands described below to operate on vectors and matrices. We only work with two or three-dimensional vectors and 2×2 and 3×3 matrices. Vectors are represented in the form (a1,a2) or (a1,a2,a3);⁷ and, in the case of matrices, columns are separated à *la matlab* by semicolons: (a11,a12;a21,a22) or (a11,a12,a13;a21,a22,a23;a31,a32,a33).

 $^{^7}$ But they are *column* vectors.

5.1 Vector operations

5.1.1 Assignments

\VECTORCOPY($\langle x,y \rangle$)($\langle cmd1, cmd2 \rangle$) copy the entries of vector ($\langle x,y \rangle$) to the \cmd1 and \cmd2 commands.

\VECTORCOPY($\langle x,y,z\rangle$)($\langle \cdot cmd1, \cdot cmd2, \cdot cmd3\rangle$) copy the entries of vector (x,y,z) to the $\cdot cmd1, \cdot cmd3$ commands.

5.1.2 Vector addition and subtraction

```
\begin{split} & \forall \mathsf{ECTORADD}(\langle x1,y1\rangle) \left(\langle x2,y2\rangle\right) \left(\langle \mathsf{c}md1, \mathsf{c}md2\rangle\right) \\ & \forall \mathsf{ECTORADD}(\langle x1,y1,z1\rangle) \left(\langle x2,y2,z2\rangle\right) \left(\langle \mathsf{c}md1, \mathsf{c}md2, \mathsf{c}md3\rangle\right) \\ & \forall \mathsf{ECTORSUB}(\langle x1,y1\rangle) \left(\langle x2,y2\rangle\right) \left(\langle \mathsf{c}md1, \mathsf{c}md2\rangle\right) \\ & \forall \mathsf{ECTORSUB}(\langle x1,y1,z1\rangle) \left(\langle x2,y2,z2\rangle\right) \left(\langle \mathsf{c}md1, \mathsf{c}md2, \mathsf{c}md3\rangle\right) \end{split}
```

5.1.3 Scalar-vector product

Ex. 42

\SCALARVECTORPRODUCT{ $\langle num
angle$ }($\langle x,y
angle$) ($\langle \cmd1, \cmd2
angle$)

$$\verb|\SCALARVECTORPRODUCT| | \langle num \rangle | (\langle x,y,z \rangle) | (\langle \cmd1, \cmd2, \cmd3 \rangle) |$$

\SCALARVECTORPRODUCT{2}(3,5)(\sola,\solb)

5.1.4 Scalar (dot) product and euclidean norm

 $\SCALARPRODUCT(\langle x1,y1 \rangle)(\langle x2,y2 \rangle)\{\langle \cmd \rangle\}$

 $\SCALARPRODUCT(\langle x1,y1,z1\rangle)(\langle x2,y2,z2\rangle)\{\langle \cmd\rangle\}$

\DOTPRODUCT is an alias of \SCALARPRODUCT (new in version 2.0).

 $\VECTORNORM(\langle x,y \rangle) \{\langle \cmd \rangle\}$

 $\VECTORNORM(\langle x,y,z\rangle)\{\langle \cmd \rangle\}$

$$\begin{array}{lll} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

5.1.5 Vector (cross) product (new in version 2.0)

 $\label{eq:vectorproduct} $$\operatorname{VECTORPRODUCT}(\langle x1,y1,z1\rangle)(\langle x2,y2,z2\rangle)(\langle \cmd1, \cmd2, \cmd3\rangle)$$$

\CROSSPRODUCT is an alias of \VECTORPRODUCT.

$$\begin{array}{lll} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ &$$

5.1.6 Unit vector parallel to a given vector (normalized vector)

 $\UNITVECTOR(\langle x,y \rangle) (\langle \cmd1, \cmd2 \rangle)$

 $\verb|\UNITVECTOR|(\langle x,y,z\rangle)|(\langle \cmd1, \cmd2, \cmd3\rangle)|$

```
5.1.7 Absolute value (in each entry of a given vector)
```

 $\VECTORABSVALUE(\langle x,y \rangle)(\langle \cmd1, \cmd2 \rangle)$

 $\VECTORABSVALUE(\langle x,y,z\rangle)(\langle \cmd1, \cmd2, \cmd3\rangle)$

(3,4)

(3, 4, 1)

\VECTORABSVALUE(3,-4,-1)(\sola,\solb,\solc) \$(\sola,\solb,\solc)\$

5.1.8 Angle between two vectors (new in version 2.0)

\TWOVECTORSANGLE($\langle x1,y1\rangle$)($\langle x2,y2\rangle$){ $\langle \setminus cmd\rangle$ }

 $\verb|\TWOVECTORSANGLE| (\langle x1,y1,z1\rangle) (\langle x2,y2,z2\rangle) \{ \langle \cmd\rangle \}$

\TWOVECTORSANGLE(1,0,0)(0,1,0){\sol} $s\s$ \RADtoDEG{\sol}{\degsol} (or \$\degsol\$ degrees)

Matrix operations

5.2.1 Assignments

 $\verb| MATRIXCOPY (| a11,a12;a21,a22|) (| cmd11, cmd12; cmd21, cmd22|) |$

Use this command to store the matrix $\begin{bmatrix} a11 & a12 \\ a21 & 22 \end{bmatrix}$ in \backslash cmm11, \backslash cmm12, \backslash cmm21, \backslash cmm22. The analogous 3×3 version is

 $\label{eq:matrixcopy} $$ (a11,a12,a13; [...],a33) ((\cmd11,\cmd12,\cmd13; [...],\cmd33)) $$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 \end{bmatrix}$$

```
3, 0, 5;
           -1, 1, 4)%
          (\sola,\solb,\solc;
           \sold,\sole,\solf;
           \solg,\solh,\soli)
$\begin{bmatrix}
       \sola & \solb & \solc \\
```

\sold & \sole & \solf \\ \solg & \solh & \soli

\end{bmatrix}\$

Henceforth, we will present only the syntax for commands operating with 2×2 matrices. In all cases, the syntax is similar if we work with 3×3 matrices. In the examples, we will work with either 2×2 or 3×3 matrices.

5.2.2 Transposed matrix

\TRANSPOSEMATRIX ($\langle a11, a12; a21, a22 \rangle$) ($\langle \cd11, \cd12; \cd21, \cd22 \rangle$)

5.2.3 Matrix addition and subtraction

 $\label{eq:matrixadd} $$\operatorname{MATRIXADD}$ (\langle a11,a12;a21,a22\rangle) (\langle b11,b12;b21,b22\rangle) (\langle cmd11, cmd12; cmd21, cmd22\rangle) $$$

\end{bmatrix}\$

5.2.4 Scalar-matrix product

 $\verb|\SCALARMATRIXPRODUCT{| (num)| ((a11,a12;a21,a22)) ((\cmd11,\cmd12;\cmd21,\cmd22))|}$

5.2.5 Matriu-vector product

 $\verb| \mathsf{MATRIXVECTORPRODUCT} | (\langle a11, a12; a21, a22 \rangle) | (\langle x, y \rangle) | (\langle \mathsf{lcmd1}, \mathsf{lcmd2} \rangle) | (\langle \mathsf{$

5.2.6 Product of two square matrices

 $\begin{tabular}{ll} $$ \ATRIXPRODUCT ($\langle a11,a12;a21,a22 \rangle) ($\langle b11,b12;b21,b22 \rangle) ($\langle \cmd11,\cmd12;\cmd21,\cmd22 \rangle) $$ \end{tabular}$

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 3 & 5 & -1 \\ -3 & 2 & -5 \\ 1 & -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & -1 & 10 \\ 14 & 5 & 12 \\ -2 & -11 & 8 \end{bmatrix}$$

5.2.7 Determinant

Ex. 53

\DETERMINANT ($\langle a11, a12; a21, a22 \rangle$) { $\langle \backslash cmd \rangle$ }

5.2.8 Inverse matrix

\INVERSEMATRIX ($\langle a11, a12; a21, a22 \rangle$) ($\langle \cd11, \cd2; \cd21, \cd22 \rangle$)

If the given matrix is singular, the calculator package returns a warning message and the $\colon cmd11, \ldots$, commands are marqued as undefined.

5.2.9 Absolute value (in each entry)

 $\verb| \mathsf{MATRIXABSVALUE} (| (a11,a12;a21,a22)) (| \mathsf{cmd11}, \mathsf{cmd12}; \mathsf{cmd21}, \mathsf{cmd22}) | \\$

5.2.10 Solving a linear system

\SOLVELINEARSYSTEM ($\langle a11,a12;a21,a22 \rangle$) ($\langle b1,b2 \rangle$) ($\langle \cdot cmd1, \cdot cmd2 \rangle$) solves the linear system $\begin{pmatrix} a11 & a12 \\ a21 & a22 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b1 \\ b2 \end{pmatrix}$ and stores the solution in ($\cdot cmd1, \cdot cmd2 \rangle$).

 $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \\ -1 & 1 & 4 \end{bmatrix} X = \begin{bmatrix} -4 \\ 4 \\ -2 \end{bmatrix}$

we obtain
$$X = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$$

If the given matrix is singular, the package calculator returns a warning message. When system is indeterminate, in the bi-dimensional case one of the solutions is computed; if the system is incompatible, then the \sola, ..., commands are marqued as undefined. For three equations systems, only determinate systems are solved.⁸

⁸This is the only command that does not behave the same way with 2×2 and 3×3 matrices.

Part II

The calculus package

6 What is a function?

From the point of view of this package, a function f is a pair of formulae: the first one calculates f(t); the other, f'(t). Therefore, any function is applied using three arguments: the value of the variable t, and two command names where f(t) and f'(t) will be stored. For example,

```
\verb|\SQUAREfunction|| \langle num \rangle | \{ \langle sol \rangle | \{ \langle Dsol \rangle \} \}
```

computes $f(t) = t^2$ and f'(t) = 2t (where t = num), and stores the results in the commands $\slash sol$ and $\slash Dsol$.

For all functions defined here, you must use the following syntax:

```
\fine {\langle num \rangle} {\langle cmd1 \rangle} {\langle cmd2 \rangle}
```

being num a number (or a command whose value is a number), and $\c md1$ and $\c md2$ two control sequence names where the values of the function and its derivative (in this number) will be stored.

The key difference between this functions and the instructions defined in the calculator package is the inclusion of the derivative; for example, the \SQUARE{3}{\sol} instruction computes, only, the square power of number 3, while \SQUAREfunction{3}{\sol}{\Dsol} finds, also, the corresponding derivative.

7 Predefined functions

The calculus package predefines the most commonly used elementary functions, and includes several utilities for defining new ones. The predefined functions are the following:

⁹Do not spect any control about the existence or differentiability of the function; if the function or the derivative are not well defined, a T_FX error will occur.

```
\ZEROfunction
                          f(t) = 0
                                                   \ONEfunction
                                                                                f(t) = 1
\IDENTITYfunction
                          f(t) = t
                                                   \RECIPROCALfunction
                                                                               f(t) = 1/t
                          f(t) = t^2
                                                                               f(t) = t^{3}
\SQUAREfunction
                                                   \CUBEfunction
                          f(t) = \sqrt{t}
\SQRTfunction
                          f(t) = \exp t
\EXPfunction
                                                   \LOGfunction
                                                                               f(t) = \log t
\COSfunction
                          f(t) = \cos t
                                                   \SINfunction
                                                                               f(t) = \sin t
\TANfunction
                          f(t) = \tan t
                                                   \COTfunction
                                                                               f(t) = \cot t
                          f(t) = \cosh t
                                                                               f(t) = \sinh t
\COSHfunction
                                                   \SINHfunction
                          f(t) = \tanh t
\TANHfunction
                                                   \COTHfunction
                                                                                f(t) = \coth t
                          f(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1 & \text{si } t \ge 0 \end{cases}
\HEAVISIDEfunction
```

The following functions are added in version 2.0 (new in version 2.0)

```
\ARCCOSfunction
                         f(t) = \arccos t
                                               \ARCSINfunction
                                                                         f(t) = \arcsin t
                          f(t) = \arctan t
                                               \ARCCOTfunction
                                                                         f(t) = \operatorname{arccot} t
\ARCTANfunction
\ARCOSHfunction
                          f(t) = \operatorname{arcosh} t
                                               \ARSINHfunction
                                                                         f(t) = \operatorname{arsinh} t
                         f(t) = \operatorname{artanh} t
                                               \ARCOTHfunction
\ARTANHfunction
                                                                         f(t) = \operatorname{arcoth} t
```

In the following example, we use the \LOGfunction function to compute a table of the log function and its derivative.

Ex. 59		\$\begin{array}{cll}	
$\begin{array}{cccc} x & \log x \\ 1 & 0 \\ 2 & 0.69315 \\ 3 & 1.0986 \\ 4 & 1.38629 \\ 5 & 1.60942 \\ 6 & 1.79176 \end{array}$	log' x 1 0.5 0.33333 0.25 0.2 0.16666	<pre>x & \log x & \log' x \\ \LOGfunction{1}{\logx}{\Dlogx} 1 &\logx & \Dlogx\\ \LOGfunction{2}{\logx}{\Dlogx} 2 &\logx & \Dlogx\\ \LOGfunction{3}{\logx}{\Dlogx} 3 &\logx & \Dlogx\\ \LOGfunction{4}{\logx}{\Dlogx} 4 &\logx & \Dlogx\\ \LOGfunction{5}{\logx}{\Dlogx} 5 &\logx & \Dlogx\\ \LOGfunction{5}{\logx}{\Dlogx} 6 &\logx & \Dlogx\\ \LOGfunction{6}{\logx}{\Dlogx} 6 &\logx & \Dlogx\\ \LOGfunction{6}{\logx}{\Dlogx}\\ \LOGfunction{6}{\logx}{\logx}\\ \LOGFunct</pre>	

8 Operations with functions

We can define new functions using the following *operations* (the last argument is the name of the new function):

```
\label{eq:constant} $$ \CONSTANTfunction {\langle num \rangle} {\langle Function \rangle} $$ defines $$ Function as the constant function num. $$ Example. Definition of the $F(t) = 5$ function: $$ \CONSTANTfunction{5}{\F}$
```

 $\SUMfunction{\langle \langle function 1 \rangle \} {\langle \langle function 2 \rangle \} } {\langle \langle Function \rangle \} } defines \langle Function as the sum of functions \langle function 1 and \langle function 2 \rangle }$

Example. Definition of the $F(t) = t^2 + t^3$ function:

\SUMfunction{\SQUAREfunction}{\CUBEfunction}{\F}

\SUBTRACTfunction{ $\langle \langle function1 \rangle \}$ { $\langle \langle function2 \rangle \}$ } { $\langle \langle Function \rangle \}$ } defines \Function as the difference of functions \forall function1 and \forall function2.

Example. Definition of the $F(t) = t^2 - t^3$ function:

\SUBTRACTfunction{\SQUAREfunction}{\CUBEfunction}{\F}

Example. Definition of the $F(t) = e^t \cos t$ function:

\PRODUCTfunction{\EXPfunction}{\COSfunction}{\F}

Example. Definition of the $F(t) = e^t/\cos t$ function:

\QUOTIENTfunction{\EXPfunction}{\COSfunction}{\F}

 $\Composition{\langle \langle function1 \rangle \} {\langle \langle function2 \rangle \} } {\langle \langle Function \rangle \} } defines \Function as the composition of functions \frac{function1}{function2}.$

Example. Definition of the $F(t) = e^{\cos t}$ function:

\COMPOSITIONfunction{\EXPfunction}{\COSfunction}{\F}

(note than \COMPOSITIONfunction{f}{g}{\F} means \F= $f \circ g$).

\SCALEfunction{ $\langle num \rangle$ }{ $\langle \backslash function \rangle$ }{ $\langle \backslash Function \rangle$ } defines \Function as the product of number num and function \frac{function}{function}.

Example. Definition of the $F(t) = 3\cos t$ function:

\SCALEfunction{3}{\COSfunction}{\F}

\SCALEVARIABLEfunction{ $\langle num \rangle$ }{ $\langle \backslash function \rangle$ } { $\langle \backslash Function \rangle$ } scales the variable by factor num and then applies the function $\backslash function$.

Example. Definition of the $F(t) = \cos 3t$ function:

\SCALEVARIABLEfunction{3}{\COSfunction}{\F}

\POWERfunction{\langle function \rangle \langle function \rangle function to the exponent num (a positive integer). Example. Definition of the $F(t) = t^5$ function:

\POWERfunction{\IDENTITYfunction}{5}{\F}

\LINEARCOMBINATIONfunction{ $\langle num1 \rangle$ }{ $\langle num2 \rangle$ }{ \langle

Example. Definition of the $F(t) = 2t - 3\cos t$ function:

\LINEARCOMBINATIONfunction{2}{\IDENTITYfunction}{-3}{\COSfunction}{\F}

By combining properly this operations and the predefined functions, many elementary functions can be defined.

```
Ex. 60
                                                  % exp(-t)
                                                      \SCALEVARIABLEfunction
 If
                                                          {-1}{\EXPfunction}
         f(t) = 3t^2 - 2e^{-t}\cos t
                                                          {\NEGEXPfunction}
then
                                                  % exp(-t)cos(t)
            f(5) = 74.99619
                                                      \PRODUCTfunction
            f'(5) = 29.99084
                                                          {\NEGEXPfunction}
                                                          {\COSfunction}
                                                          {\NEGEXPCOSfunction}
                                                  % 3t^2-2exp(-t)cos(t)
                                                      \LINEARCOMBINATIONfunction
                                                          {3}{\SQUAREfunction}
                                                         {-2}{\NEGEXPCOSfunction}
                                                         {\myfunction}
                                                  \myfunction{5}{\sol}{\Dsol}
                                                  Ιf
                                                   ١[
                                                       f(t)=3t^2-2\mathbf{e}^{-t}\cos t
                                                  \]
                                                  then
                                                   \begin{gathered}
                                                       f(5)=\sl \
                                                       f'(5) = \Dsol
                                                   \end{gathered}
```

9 Polynomial functions

Although polynomial functions can be defined using linear combinations of power functions, to facilitate our work, the calculus package includes the following commands to define more easily the polynomials of 1, 2, and 3 degrees: \newlpoly (new linear polynomial), \newqpoly (new quadratic polynomial), and \newcpoly (new cubic polynomial):

\]

\newqpoly{\\Function\\} {\langle a\rangle} {\langle a\rangle} {\langle c\rangle} stores the $p(t) = a + bt + ct^2$ function in the \\Function command.

\newcpoly{\\Function\\}{\alpha}\{\alpha\\}{\alpha}\{\alpha\\}}{\alpha}\ stores the $p(t) = a + bt + ct^2 + dt^3$ function in the \Function command.

These declarations behave similarly to to the declaration \newcommand: If the name you want to assign to the new function is that of an already defined command, the calculus package returns an error message and do not redefines this command. To obtain any alternative behavior, our package includes three other sets of declarations:

\renewlpoly, \renewcpoly, \renewcpoly redefine the already existing command \function.

If this command does not exist, then it is not defined and an error message occurs.

\ensurelpoly, \ensureqpoly, \ensurecpoly define a new function. If the command \Function already exists, it is not redefined.

\forcelpoly, \forceqpoly, \forcecpoly define a new function. If the command \Function already exists, it is redefined.

10 Vector-valued functions (or parametrically defined curves)

The instruction

```
\label{lem:local_parametric} $$ \PARAMETRIC function $$ { \langle X function \rangle } { \langle Y function \rangle } $$
```

defines the new vector-valued function f(t) = (x(t), y(t)).

The first and second arguments are a pair of functions already defined and, the third, the name of the new function we define. Once we have defined them, the new vector functions requires five arguments:

\myvectorfunction
$$\{\langle num \rangle\} \{\langle \backslash cmd1 \rangle\} \{\langle \backslash cmd2 \rangle\} \{\langle \backslash cmd3 \rangle\} \{\langle \backslash cmd4 \rangle\}$$

where

- num is a number t,
- $\$ and $\$ and $\$ are two command names where the values of the x(t) function and its derivative x'(t) will be stored, and
- $\$ and $\$ and $\$ will store y(t) and y'(t).

In short, in this context, a vector function is a pair of scalar functions.

Instead of \PARAMETRICfunction we can use the alias \VECTORfunction.

```
For the $f(t)=(t^2,t^3)$ function we have $$ VECTOR function $$ {CUBE function} {\F{4}{\solx}{\soly}{\Dsoly}}$$ f(4)=(16,64), $f'(4)=(8,48)$$ $$ $$ ($f(4)=(\solx,\soly), f'(4)=(\solx,\soly), f'(4)=(\solx,\solx,\soly), f'(4)=(\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx,\solx
```

11 Vector-valued functions in polar coordinates

The following instruction:

```
\POLARfunction\{\langle rfunction \rangle\}\{\langle Polarfunction \rangle\}
```

declares the vector function $f(\phi) = (r(\phi)\cos\phi, r(\phi)\sin\phi)$. The first argument is the $r = r(\phi)$ function, (an already defined function). For example, we can define the *Archimedean spiral* $r(\phi) = 0.5\phi$, as follows:

```
\SCALEfunction{0.5}{\IDENTITYfunction}{\rfunction}\POLARfunction{\rfunction}{\archimedes}
```

12 Low-level instructions

Probably, many users of the package will not be interested in the implementation of the commands this package includes. If this is your case, you can ignore this section.

12.1 The \newfunction declaration and its variants

All the functions predefined by this package use the **\newfunction** declaration. This control sequence works as follows:

where the second argument is the list of the instructions you need to run to calculate the value of the function \y and the derivative \Dy in the \t point.

For example, if you want to define the $f(t) = t^2 + e^t \cos t$ function, whose derivative is $f'(t) = 2t + e^t(\cos t - \sin t)$, using the high-level instructions we defined earlier, you can write the following instructions:

```
\PRODUCTfunction{\EXPfunction}{\COSfunction}{\ffunction} \SUMfunction{\SQUAREfunction}{\ffunction}
```

But you can also define this function using the \newfunction command as follows:

```
\newfunction{\Ffunction}{%
   \SQUARE{\t}{\tempA}
                                    % A=t^2
   \EXP{\t}{\tempB}
                                    % B=e^t
   \COS{\t}{\tempC}
                                    % C=cos(t)
                                    % D=sin(t)
   \SIN{\t}{\tempD}
   \MULTIPLY{2}{\t}\tempE}
                                    % E=2t
   \MULTIPLY{\tempB}{\tempC} % C=e^t cos(t)
   \MULTIPLY{\tempB}{\tempD} % D=e^t sin(t)
   \ADD{\tempA}{\tempC}{\y}
                                      % y=t^2 + e^t \cos(t)
   \ADD{\tempE}{\tempC}{\tempC}
                                    % C=t^2 + e^t \cos(t)
   \SUBTRACT{\tempC}{\tempD}{\Dy}
                                      % v'=t^2 + e^t \cos(t) - e^t \sin(t)
}
```

It must be said, however, that the \newfunction declaration behaves similarly to \newcommand or \newlpoly: If the name you want to assign to the new function is that of an already defined command, the calculus package returns an error message and does not redefines this command. To obtain any alternative behavior, our package includes three other versions of the \newfunction declarations: the \renewfunction, \ensurefunction and \forcefunction declarations. Each of these declarations behaves differently:

\newfunction defines a new function. If the command \Function already exists, it is not redefined and an error message occurs.

\renewfunction redefines the already existing command \Function. If this command does not exists, then it is not defined and an error message occurs.

\ensurefunction defines a new function. If the command *\Function* already exists, it is not redefined.

\forcefunction defines a new function. If the command \Function already exists, it is redefined.

12.2 Vector functions and polar coordinates

You can (re)define a vector function f(t) = (x(t), y(t)) using the \newvectorfunction declaration or any of its variants \renewvectorfunction, \ensurevectorfunction and \forcevectorfunction:

 $\noindent \noindent \noindent\noindent \noindent \noindent \noindent \noindent \noindent \noin$

For example, you can define the function $f(t) = (t^2, t^3)$ in the following way:

Finally, to define the $r = r(\phi)$ function, in polar coordinates, we have the declarations \newpolarfunction, \renewpolarfunction, \ensurepolarfunction and \forcepolarfunction.

```
\mbox{\compute $$\compute $$\co
```

For example, you can define the *cardioide* curve $r(\phi) = 1 + \cos \phi$, using high level instructions,

\SUMfunction{\ONEfunction}{\COSfunction}{\ffunction} % y=1 + cos t \POLARfunction{\ffunction}{\cardioide}

or, with the \newpolarfunction declaration,

```
\newpolarfunction{\cardioide}{%
   \COS\{\t\}\{\r\}
   \Delta DD{1}{\r}{\r}
                            % r=1+cos t
   SIN{\t}{\Dr}
   MULTIPLY{-1}{Dr}{Dr} % r'=-sin t
}
```

Part III

Implementation

calculator 13

```
1 (*calculator)
2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesPackage{calculator}[2014/02/20 v.2.0]
```

Internal lengths and special numbers

\cctr@lengtha and \cctr@lengthb will be used in internal calculations and comparisons.

- 4 \newdimen\cctr@lengtha
- 5 \newdimen\cctr@lengthb

\cctr@epsilon \cctr@epsilon will store the closest to zero length in the TFX arithmetic: one scaled point (1 sp = 1/65536 pt). This means the smallest positive number will be $0.00002 \approx 1/65536 =$ $1/2^{16}$.

- 6 \newdimen\cctr@epsilon
- 7 \cctr@epsilon=1sp

\cctr@logmaxnum

The largest TeX number is $16383.99998 \approx 2^{14}$; \cctr@logmaxnum is the logarithm of this number, $9.704 \approx \log 16384$.

8 \def\cctr@logmaxnum{9.704}

13.2 Warning messages

```
9 \def\cctr@Warndivzero#1#2{%
        \PackageWarning{calculator}%
11
          {Division by O.\MessageBreak
12
           I can't define #1/#2}}
13
14 \def\cctr@Warnnogcd{%
        \PackageWarning{calculator}%
15
          {gcd(0,0) is not well defined}}
16
17
18 \def\cctr@Warnnoposrad#1{%
        \PackageWarning{calculator}%
19
20
                       {The argument in square root\MessageBreak
                        must be non negative\MessageBreak
21
22
                        I can't define sqrt(#1)}}
24 \def\cctr@Warnnointexp#1#2{%
        \PackageWarning{calculator}%
                       {The exponent in power function\MessageBreak
                        must be an integer\MessageBreak
27
28
                        I can't define #1^#2}}
30 \def\cctr@Warnbigarcsin#1{%
        \PackageWarning{calculator}%
                       {The argument in arcsin\MessageBreak
                        must be a number between -1 and 1\MessageBreak
33
34
                        I can't define arcsin(#1)}}
35
36 \def\cctr@Warnbigarccos#1{%
37
        \PackageWarning{calculator}%
38
                       {The argument in arccos\MessageBreak
39
                        must be a number between -1 and 1\MessageBreak
                        I can't define arccos(#1)}}
41
42 \def\cctr@Warnsmallarcosh#1{%
        \PackageWarning{calculator}%
43
                       {The argument in arcosh\MessageBreak
44
                        must be a number greater or equal than 1\MessageBreak
45
                        I can't define arcosh(#1)}}
46
47
48 \def\cctr@Warnbigartanh#1{%
        \PackageWarning{calculator}%
49
                       {The argument in artanh\MessageBreak
50
                        must be a number between -1 and 1\MessageBreak
51
52
                        I can't define artanh(#1)}}
54 \def\cctr@Warnsmallarcoth#1{%
        \PackageWarning{calculator}%
                       {The argument in arcoth\MessageBreak
56
                        must be a number greater than 1\MessageBreak
57
```

```
58
                         or smaller than -1\MessageBreak
59
                         I can't define arcoth(#1)}}
60
61 \def\cctr@Warnsingmatrix#1#2#3#4{%
         \PackageWarning{calculator}%
62
           {Matrix (#1 #2; #3 #4) is singular\MessageBreak
63
            Its inverse is not defined}}
64
66 \def\cctr@WarnsingTDmatrix#1#2#3#4#5#6#7#8#9{%
67
         \PackageWarning{calculator}%
           {Matrix (#1 #2 #3; #4 #5 #6; #7 #8 #9) is singular\MessageBreak
68
            Its inverse is not defined}}
69
71 \def\cctr@WarnIncLinSys{\PackageWarning{calculator}{%
         Incompatible linear system}}
72
73
74 \def\cctr@WarnIncTDLinSys{\PackageWarning{calculator}{%
         Incompatible or indeterminate linear system\MessageBreak
75
         For 3x3 systems I can solve only determinate systems}}
76
77
78 \def\cctr@WarnIndLinSys{\PackageWarning{calculator}{%
79
         Indeterminate linear system.\MessageBreak
         I will choose one of the infinite solutions}}
80
81
82 \def\cctr@WarnZeroLinSys{\PackageWarning{calculator}{%
         Ox=O linear system. Every vector is a solution!\MessageBreak
83
         I will choose the (0,0) solution}}
84
86 \def\cctr@Warninftan#1{%
                \PackageWarning{calculator}{%
87
                       {\tt Undefined\ tangent.} \\ {\tt MessageBreak}
88
                               The cosine of #1 is zero and, then,\MessageBreak
89
                               the tangent of #1 is not defined}}
90
92 \def\cctr@Warninfcotan#1{%
                \PackageWarning{calculator}{%
93
                        Undefined cotangent.\MessageBreak
94
                               The sine of #1 is zero and, then,\MessageBreak
95
                               the cotangent of #1 is not defined}}
96
   \def\cctr@Warninfexp#1{%
                \PackageWarning{calculator}{%
100
                        The absolute value of the variable\MessageBreak
                        in the exponential function must be less than
101
                        \cctr@logmaxnum\MessageBreak
102
                       (the logarithm of the max number I know)\MessageBreak
103
104
                        I can't define exp(#1)}}
105
106 \def\cctr@Warninfexpb#1#2{%
                \PackageWarning{calculator}{%
107
```

```
109
                                       in the exponential function must be positive.
                                       \MessageBreak
              110
                                       I can't define #1^(#2)}}
              111
              112
              113 \def\cctr@Warninflog#1{%
                               \PackageWarning{calculator}{%
              114
              115
                                       The value of the variable\MessageBreak
              116
                                       in the logarithm function must be positive\MessageBreak
              117
                                       I can't define log(#1)}}
              118
              119 \def\cctr@Warncrossprod(#1)(#2){%
                       \PackageWarning{calculator}%
              120
                          {Vector product only defined\MessageBreak
              121
                          for 3 dimmensional vectors.\MessageBreak
              122
                           I can't define (#1)x(#2)}
              123
              124
              125 \def\cctr@Warnnoangle(#1)(#2){%
                        \PackageWarning{calculator}%
              126
                          {Angle between two vectors only defined\MessageBreak
              127
              128
                          for nonzero vectors.\MessageBreak
              129
                           I can't define an angle between (#1) and (#2)}}
               13.3
                       Operations with numbers
               Assignements and comparisons
       \COPY \COPY{\langle \#1 \rangle}{\langle \#2 \rangle} defines the #2 command as the number #1.
              130 \def\COPY#1#2{\edef#2{#1}\ignorespaces}
 \GLOBALCOPY Global version of \COPY. The new defined command \#2 is not changed outside groups.
              131 \def\GLOBALCOPY#1#2{\xdef#2{#1}\ignorespaces}
 \@OUTPUTSOL \@OUTPUTSOL{\langle \#1 \rangle}: an internal macro to save solutions when a group is closed.
                  The global c.s. \cctr@outa preserves solutions. Whenever we use any temporary param-
              eters in the definition of an instruction, we use a group to ensure the local character of those
              parameters. The instruction \@OUTPUTSOL is a bypass to export the solution.
              132 \def\@OUTPUTSOL#1{\GLOBALCOPY{#1}{\cctr@outa}\endgroup\COPY{\cctr@outa}{#1}}
\@OUTPUTSOLS
              Analogous to \@OUTPUTSOL, preserving a pair of solutions.
              133 \def\@OUTPUTSOLS#1#2{\GLOBALCOPY{#1}{\cctr@outa}
              134
                                        \GLOBALCOPY{#2}{\cctr@outb}\endgroup
              135
                                        \COPY{\cctr@outa}{#1}\COPY{\cctr@outb}{#2}}
        \MAX \MAX\{\#1\}\{\#2\}\\delta\}\\delta\}\ defines the \#3 command as the maximum of numbers \#1 and \#2.
              136 \def\MAX#1#2#3{%
              137
                    \int \frac{1}{p} < \frac{2}{p}
                        \label{lower_self_copy} $$\COPY${#2}{#3}\le\COPY${#1}{#3}\bigg) ignorespaces}
              138
```

The base\MessageBreak

108

```
MIN \{\#1\} \{\#2\} defines the #3 command as the minimum of numbers #1 and #2.
          139 \def\MIN#1#2#3{%
         140
               \left| \frac{41}{p} \right| > \frac{42}{p}
         141
                  \COPY{#2}{#3}\else\COPY{#1}{#3}\fi\ignorespaces}
          Real arithmetic
         \ABSVALUE{\langle \#1 \rangle}{\langle \#2 \rangle} defines the \#2 command as the absolute value of number \#1.
\ABSVALUE
          142 \def\ABSVALUE#1#2{%
         143
                \  \fine #1\p@<\z@
         144
                      \MULTIPLY{-1}{#1}{#2}\else\COPY{#1}{#2}\fi}
          Product, sum and difference
\MULTIPLY \MULTIPLY{\langle \#1 \rangle}{\langle \#2 \rangle}{\langle \#3 \rangle} defines the #3 command as the product of numbers #1 and
          #2.
         145 \def\MULTIPLY#1#2#3{\cctr@lengtha=#1\p@
                   \cctr@lengtha=#2\cctr@lengtha
         146
                   \edef#3{\expandafter\strip@pt\cctr@lengtha}\ignorespaces}
         147
    148 \def\ADD#1#2#3{\cctr@lengtha=#1\p@
                   \cctr@lengthb=#2\p@
         149
                   \advance\cctr@lengtha by \cctr@lengthb
         150
                   \edef#3{\expandafter\strip@pt\cctr@lengtha}\ignorespaces}
         151
          \SUBTRACT\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}\{\langle \#3 \rangle\} defines the #3 command as the difference of numbers #1 and
\SUBTRACT
          152 \def\SUBTRACT#1#2#3{\ADD{#1}{-#2}{#3}}
          Divisions We define several kinds of divisions: the quotient of two real numbers, the integer
          quotient, and the quotient of two lengths. The basic algorithm is a lightly modified version of
          the Beccari's division.
 #2.
          153 \def\DIVIDE#1#2#3{%
         154
                 \begingroup
          Absolute values of dividend and divisor
                   \ABSVALUE{#1}{\cctr@tempD}
          155
         156
                   \ABSVALUE{#2}{\cctr@tempd}
          The sign of quotient
         157
                   \else\COPY{1}{\cctr@sign}\fi
         158
                   \else\ifdim#2\p@>\z@\COPY{1}{\cctr@sign}
         159
          160
                           \else\COPY{-1}{\cctr@sign}\fi
          161
                        \fi
```

Integer part of quotient

```
162 \@DIVIDE{\cctr@tempD}{\cctr@tempd}{\cctr@tempq}}\cctr@tempr}
163 \COPY{\cctr@tempq.}{\cctr@Q}
```

Fractional part up to five decimal places. \cctr@ndec is the number of decimal places already computed.

```
164 \COPY{0}{\cctr@ndec}
165 \Qwhilenum \cctr@ndec<5 \do{%
```

Each decimal place is calculated by multiplying by 10 the last remainder and dividing it by the divisor. But when the remainder is greater than 1638.3, an overflow occurs, because 16383.99998 is the greatest number. So, instead, we multiply the divisor by 0.1.

```
\left| \begin{array}{c} \left| \begin{array}{c} \\ \\ \end{array} \right| = 0.05 \end{array} \right|
166
167
                      \MULTIPLY{\cctr@tempr}{10}{\cctr@tempD}
168
                  \else
                      \COPY{\cctr@tempr}{\cctr@tempD}
169
                      \MULTIPLY{\cctr@tempd}{0.1}{\cctr@tempd}
170
                  \fi
171
                  \@DIVIDE{\cctr@tempD}{\cctr@tempd}{\cctr@tempq}{\cctr@tempr}
172
                  \COPY{\cctr@Q\cctr@tempq}{\cctr@Q}
173
                  \ADD{1}{\cctr@ndec}{\cctr@ndec}}%
174
```

Adjust the sign and return the solution.

```
175 \MULTIPLY{\cctr@sign}{\cctr@Q}{#3}
176 \@OUTPUTSOL{#3}}
```

\@DIVIDE The **@DIVIDE**($\langle \#1 \rangle$) ($\langle \#2 \rangle$) ($\langle \#3 \rangle$) ($\langle \#4 \rangle$) command computes #1/#2 and returns an integer quotient (#3) and a real remainder (#4).

```
177 \def\@DIVIDE#1#2#3#4{%

178 \@INTEGERDIVIDE{#1}{#2}{#3}

179 \MULTIPLY{#2}{#3}{#4}

180 \SUBTRACT{#1}{#4}{#4}}
```

\@INTEGERDIVIDE \@INTEGERDIVIDE divides two numbers (not necessarily integer) and returns an integer (this is the integer quotient only for nonnegative integers).

```
181 \def\@INTEGERDIVIDE#1#2#3{%
          \cctr@lengtha=#1\p@
182
          \cctr@lengthb=#2\p@
183
          \ifdim\cctr@lengthb=\z@
184
              \let#3\undefined
185
              \cctr@Warndivzero#1#2%
186
187
              \divide\cctr@lengtha\cctr@lengthb
188
              \COPY{\number\cctr@lengtha}{#3}
189
          \fi\ignorespaces}
190
```

\LENGTHADD The sum of two lengths. \LENGTHADD{ $\langle \#1 \rangle$ }{ $\langle \#2 \rangle$ } stores in #3 the sum of the lengths #1 and #2 (#3 must be a length).

191 \def\LENGTHADD#1#2#3{\cctr@lengtha=#1

```
\cctr@lengthb=#2
                                       192
                                       193
                                                                \advance\cctr@lengtha by \cctr@lengthb
                                                                \setlength{#3}{\cctr@lengtha}\ignorespaces}
                                       194
                                       The difference of two lengths. \LENGTHSUBTRACT\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}\{\langle \#3 \rangle\} stores in \#3 the differ-
\LENGTHSUBTRACT
                                         ence of the lengths \#1 and \#2 (\#3 must be a length).
                                        195 \def\LENGTHSUBTRACT#1#2#3{%
                                                                \LENGTHADD{#1}{-#2}{#3}}
     \LENGTHDIVIDE The quotient of two lengths must be a number (not a length). For example, one inch over one
                                         centimeter equals 2.54. \LENGTHDIVIDE{\langle \#1 \rangle}{\langle \#2 \rangle}{\langle \#3 \rangle} stores in \#3 the quotient of the
                                         lenghts \#1 and \#2.
                                        197 \def\LENGTHDIVIDE#1#2#3{%
                                       198
                                                                \begingroup
                                                                \cctr@lengtha=#1
                                       199
                                       200
                                                                \cctr@lengthb=#2
                                       201
                                                                \edef\cctr@tempa{\expandafter\strip@pt\cctr@lengtha}%
                                                                \edef\cctr@tempb{\expandafter\strip@pt\cctr@lengthb}%
                                       203
                                                                \DIVIDE{\cctr@tempa}{\cctr@tempb}{#3}
                                       204
                                                                \@OUTPUTSOL{#3}}
                                         Powers
                                      205 \def\SQUARE#1#2{\MULTIPLY{#1}{#1}{#2}}
                        \CUBE \CUBE\{\langle \#1 \rangle\}\{\langle \#2 \rangle\} stores \#1 cubed in \#2.
                                       206 \end{colored} $$ 206 \end{colored} $$ \end{colored} $$ \end{colored} $$ 206 \end{colored} $$ \end{colo
                      \POWER \POWER{\langle \#1 \rangle}{\langle \#2 \rangle}{\langle \#3 \rangle} stores in \#3 the power \#1^{\#2}
                                       207 \def\POWER#1#2#3{%
                                       208
                                                                \begingroup
                                       209
                                                                \INTEGERPART{#2}{\cctr@tempexp}
                                                                \ifdim \cctr@tempexp\p@<#2\p@
                                       210
                                                                     \cctr@Warnnointexp{#1}{#2}
                                       211
                                                                     \let#3\undefined
                                       212
                                       213
                                                                \else
                                         This ensures that power will be defined only if the exponent is an integer.
                                                                       \@POWER{#1}{#2}{#3}\fi\@OUTPUTSOL{#3}}
                                       215 \def\@POWER#1#2#3{%
                                       216
                                                             \begingroup
                                                             \left| \frac{42}{p} < 20 \right|
                                       217
                                         For negative exponents, a^n = (1/a)^{-n}.
                                                                               \DIVIDE{1}{#1}{\cctr@tempb}
                                       218
                                                                               \MULTIPLY{-1}{#2}{\cctr@tempc}
                                       219
                                                                               \@POWER{\cctr@tempb}{\cctr@tempc}{#3}
                                       220
                                                                       \else
```

```
\@whilenum \cctr@tempa<#2 \do {%
                  224
                                      \MULTIPLY{#1}{#3}{#3}
                  225
                                      \ADD{1}{\cctr@tempa}{\cctr@tempa}}%
                  226
                            \fi\@OUTPUTSOL{#3}}
                  227
                  Integer arithmetic and related things
integer quotient and a positive remainder.
                  228 \def\INTEGERDIVISION#1#2#3#4{%
                  229
                            \begingroup
                            \ABSVALUE{#2}{\cctr@tempd}
                  230
                            \@DIVIDE{#1}{#2}{#3}{#4}
                  231
                            \left( \frac{4}{p} < 20 \right)
                  232
                  233
                               \left| \frac{1}{p} \right| 
                                  \  \fi #2\p@<\z@
                                      \ADD{#3}{1}{#3}
                  235
                                   \else
                  236
                  237
                                      \SUBTRACT{#3}{1}{#3}
                                  \fi
                 238
                  239
                                  \ADD{#4}{\cctr@tempd}{#4}
                            \fi\fi\@OUTPUTSOLS{#3}{#4}}
         \MODULO \MODULO{\langle \#1 \rangle}{\langle \#2 \rangle}{\langle \#3 \rangle} returns the remainder of division \#1/\#2.
                  241 \def\MODULO#1#2#3{%
                  242
                            \begingroup
                            \INTEGERDIVISION{#1}{#2}{\cctr@temp}{#3}\@OUTPUTSOL{#3}}
\INTEGERQUOTIENT \INTEGERQUOTIENT{\langle \#1 \rangle}{\langle \#2 \rangle} returns the integer quotient of division \#1/\#2.
                  244 \def\INTEGERQUOTIENT#1#2#3{%
                            \begingroup
                            \INTEGERDIVISION{#1}{#2}{#3}{\cctr@temp}\@OUTPUTSOL{#3}}
                  246
    \INTEGERPART \INTEGERPART{\langle \#1 \rangle} returns the integer part of \#2.
                 247 \def\@@INTEGERPART#1.#2.#3)#4{\ifnum #11=1 \COPY{0}{#4}
                                                    \else \COPY{#1}{#4}\fi}
                  249 \def\@INTEGERPART#1#2{\expandafter\@@INTEGERPART#1..){#2}}
                  250 \def\INTEGERPART#1#2{\begingroup
                                           \left| \frac{1}{p} \right| < 20
                  252
                                              \MULTIPLY{-1}{#1}{\cctr@temp}
                  253
                                              \INTEGERPART{\cctr@temp}{#2}
                                              \ifdim #2\p@<\cctr@temp\p@
                  254
                                                 \SUBTRACT{-#2}{1}{#2}
                  255
                                              \else \COPY{-#2}{#2}
                  256
                  257
                                              \fi
                  258
                                           \else
                  259
                                              \@INTEGERPART{#1}{#2}
```

\COPY{0}{\cctr@tempa}

\COPY{1}{#3}

 $\frac{222}{223}$

260

\fi\@OUTPUTSOL{#2}}

```
\FLOOR \FLOOR is an alias for \INTEGERPART.
                  261 \let\FLOOR\INTEGERPART
\fractionalpart \fractionalpart{\(\psi \mu 1\)}\{\(\psi \mu 2\)\}\) returns the fractional part of \#2.
                  262 \def\@GFRACTIONALPART#1.#2.#3)#4{\ifnum #2=11 \COPY{0}{#4}
                                                           \else \COPY{0.#2}{#4}\fi}
                  264 \def\@FRACTIONALPART#1#2{\expandafter\@@FRACTIONALPART#1..){#2}}
                  265 \def\FRACTIONALPART#1#2{\begingroup
                                              \left| \frac{1}{p} \right| < 20
                  266
                  267
                                                 \INTEGERPART{#1}{\cctr@tempA}
                  268
                                                 \SUBTRACT{#1}{\cctr@tempA}{#2}
                  269
                                                 \@FRACTIONALPART{#1}{#2}
                  270
                                              \fi\@OUTPUTSOL{#2}}
                  271
      \text{TRUNCATE \TRUNCATE [\(\psi \mu\)] \{\\psi \mu\} \text{truncates } \(\psi \mu\) to \(\psi \mu\) (0, 1, 2 (default), 3 or 4) digits.
                  272 \def\TRUNCATE{\@ifnextchar[\@@TRUNCATE\@TRUNCATE}
                  273 \def\@TRUNCATE#1#2{\@@TRUNCATE[2]{#1}{#2}}
                  274 \def\@@TRUNCATE[#1]#2#3{%
                  275
                          \begingroup
                          \INTEGERPART{#2}{\cctr@tempa}
                  276
                  277
                          \left(\frac{p}{q}\right) = \frac{p}{q}
                              \expandafter\@@@TRUNCATE#2.00000) [#1] {#3}
                  278
                  279
                          \else
                              \expandafter\@@@TRUNCATE#200000.)[#1]{#3}
                  280
                  281
                          \fi
                          \@OUTPUTSOL{#3}}
                  282
                  283 \def\@@@TRUNCATE#1.#2#3#4#5#6.#7) [#8] #9{%
                  284
                          \ifcase #8
                              \COPY{#1}{#9}
                  285
                          \or\COPY{#1.#2}{#9}
                  286
                          \or\COPY{#1.#2#3}{#9}
                  287
                  288
                          \or\COPY{#1.#2#3#4}{#9}
                          \or\COPY{#1.#2#3#4#5}{#9}
          \ROUND \ROUND [\langle \#1 \rangle] {\langle \#2 \rangle} {\langle \#3 \rangle} rounds \#2 to \#1 (0, 1, 2 (default), 3 or 4) digits.
                  291 \def\ROUND{\@ifnextchar[\@@ROUND\@ROUND}
                  292 \def\@ROUND#1#2{\@@ROUND[2]{#1}{#2}}
                  293 \def\@@ROUND[#1]#2#3{%
                  294
                              \begingroup
                  295
                              \left| \frac{2}{p} \right| < 20
                                  \MULTIPLY{-1}{#2}{\cctr@temp}
                                  \@@ROUND[#1]{\cctr@temp}{#3}\COPY{-#3}{#3}
                  297
                              \else
                  298
                                 \@@TRUNCATE[#1]{#2}{\cctr@tempe}
                  299
                  300
                                 \SUBTRACT{#2}{\cctr@tempe}{\cctr@tempc}
                  301
                                 \POWER{10}{#1}{\cctr@tempb}
                                 \MULTIPLY{\cctr@tempb}{\cctr@tempc}{\cctr@tempc}
                                 \ifdim\cctr@tempc\p@<0.5\p@
                  303
```

```
305
                                        \DIVIDE{1}{\cctr@tempb}{\cctr@tempb}
                                        \ADD{\cctr@tempe}{\cctr@tempb}{\cctr@tempe}
                     306
                     307
                     308
                                    \@@TRUNCATE[#1]{\cctr@tempe}{#3}
                                 \fi
                     309
                                 \@OUTPUTSOL{#3}}
                     310
                     \GCD\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}\{\langle \#3 \rangle\}\ Greatest common divisor, using the Euclidean algorithm
                     311 \def\GCD#1#2#3{%
                     312
                                 \begingroup
                                 \ABSVALUE{#1}{\cctr@tempa}
                     313
                                 \ABSVALUE{#2}{\cctr@tempb}
                     314
                                 \MAX{\cctr@tempa}{\cctr@tempb}{\cctr@tempc}
                     315
                     316
                                 \MIN{\cctr@tempa}{\cctr@tempb}{\cctr@tempa}
                     317
                                 \COPY{\cctr@tempc}{\cctr@tempb}
                                 \ifnum \cctr@tempa = 0
                     318
                                    \left( \int \int \int dx \, dx \, dx \right) = 0
                     319
                                        \cctr@Warnnogcd
                     320
                                        \let#3\undefined
                     321
                                    \else
                     322
                                    \COPY{\cctr@tempb}{#3}
                     323
                     324
                                    \fi
                     325
                      Euclidean algorithm: if c \equiv b \pmod{a} then gcd(b, a) = gcd(a, c). Iterating this property, we
                      obtain gcd(b, a) as the last nonzero residual.
                                    \@whilenum \cctr@tempa > \z@ \do {%
                     326
                                        \COPY{\cctr@tempa}{#3}%
                     327
                     328
                                        \MODULO{\cctr@tempb}{\cctr@tempa}{\cctr@tempc}%
                     329
                                        \COPY\cctr@tempa\cctr@tempb%
                                        \COPY\cctr@tempc\cctr@tempa}
                     330
                                 \fi\ignorespaces\@OUTPUTSOL{#3}}
                     331
               \LCM \LCM{\langle \#1 \rangle}{\langle \#2 \rangle}{\langle \#3 \rangle} Least common multiple.
                     332 \def\LCM#1#2#3{%
                                 \GCD{#1}{#2}{#3}%
                     333
                     334
                                 \ifx #3\undefined \COPY{0}{#3}
                     335
                                    \DIVIDE{#1}{#3}{#3}
                     336
                                    \MULTIPLY{#2}{#3}{#3}
                     337
                                    \ABSVALUE{#3}{#3}
                     338
                                 \fi}
                     339
\FRACTIONSIMPLIFY \FRACTIONSIMPLIFY{\langle \#1 \rangle}{\langle \#2 \rangle}{\langle \#4 \rangle} Fraction simplification: \#3/\#4 is the irre-
                      ducible fraction equivalent to \#1/\#2.
                     340 \def\FRACTIONSIMPLIFY#1#2#3#4{%
                                 \ifnum #1=\z@
                     341
                                    \COPY{0}{#3}\COPY{1}{#4}
                     342
                     343
                                 \else
```

304

\else

```
344 \GCD{#1}{#2}{#3}%
345 \DIVIDE{#2}{#3}{#4}
346 \DIVIDE{#1}{#3}{#3}
347 \ifnum #4<0 \MULTIPLY{-1}{#4}\MULTIPLY{-1}{#3}{#3}\fi
348 \fi\ignorespaces}
```

Elementary functions

Square roots

```
\SQUAREROOT
                \SQUAREROOT{\langle \#1 \rangle}{\langle \#2 \rangle} defines \#2 as the square root of \#1, using the Newton's method:
                x_{n+1} = x_n - (x_n^2 - \#1)/(2x_n).
               349 \def\SQUAREROOT#1#2{%
               350
                             \begingroup
                             \left| \frac{1}{p0} = \frac{20}{2} \right|
               351
                               \COPY{0}{#2}
               352
               353
                             \else
                               \left| \frac{1}{p} < z0 \right|
               354
               355
                                     \let#2\undefined
               356
                                     \cctr@Warnnoposrad{#1}%
               357
                                 \else
```

We take #1 as the initial approximation.

```
358 \COPY{#1}{#2}
```

\cctr@lengthb will be the difference of two successive iterations.

We start with \cctr@lengthb=5\p@ to ensure almost one iteration.

```
359 \cctr@lengthb=5\p@
```

Successive iterations

```
% \@whilenum \cctr@lengthb>\cctr@epsilon \do {
```

Copy the actual approximation to \cctr@tempw

```
361 \COPY{#2}{\cctr@tempw}
362 \DIVIDE{#1}{\cctr@tempw}{\cctr@tempz}
363 \ADD{\cctr@tempw}{\cctr@tempz}{\cctr@tempz}
364 \DIVIDE{\cctr@tempz}{2}{\cctr@tempz}
```

Now, \cctr@tempz is the new approximation.

```
365 \COPY{\cctr@tempz}{#2}
```

Finally, we store in \cctr@lengthb the difference of the two last approximations, finishing the loop.

```
366 \SUBTRACT{#2}{\cctr@tempw}{\cctr@tempw}
367 \cctr@lengthb=\cctr@tempw\p@%
368 \ifnum
369 \cctr@lengthb<\z@ \cctr@lengthb=-\cctr@lengthb
370 \fi}
371 \fi\fi\@OUTPUTSOL{#2}}
```

\SQRT \SQRT is an alias for \SQUAREROOT.

```
372 \let\SQRT\SQUAREROOT
```

Trigonometric functions For a variable close enough to zero, the sine and tangent functions are computed using some continued fractions. Then, all trigonometric functions are derived from well-known formulas.

```
\SIN \SIN\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}. Sine of \#1.
               373 \def\SIN#1#2{%
                       \begingroup
               Exact sine for t \in \{\pi/2, -\pi/2, 3\pi/2\}
                       \ifdim #1\p@=-\numberHALFPI\p@ \COPY{-1}{#2}
               375
               376
                             \ifdim #1\p@=\numberHALFPI\p@ \COPY{1}{#2}
               377
              378
               379
                                    \ifdim #1\p@=\numberTHREEHALFPI\p@ \COPY{-1}{#2}
                                     \else
               380
               If |t| > \pi/2, change t to a smaller value.
                                          \ifdim#1\p@<-\numberHALFPI\p@
               381
                                              \ADD{#1}{\numberTWOPI}{\cctr@tempb}
               382
                                              \SIN{\cctr@tempb}{#2}
               383
               384
                                              \ifdim #1\p@<\numberHALFPI\p@
               385
               Compute the sine.
                                                 \@BASICSINE{#1}{#2}
               386
               387
                                              \else
                                                 \ifdim #1\p@<\numberTHREEHALFPI\p@
               388
                                                    \SUBTRACT{\numberPI}{#1}{\cctr@tempb}
               389
                                                    \SIN{\cctr@tempb}{#2}
               390
               391
                                                  \SUBTRACT{#1}{\numberTWOPI}{\cctr@tempb}
               392
                                                  \SIN{\cctr@tempb}{#2}
               393
                     \fi\fi\fi\fi\fi\@OUTPUTSOL{#2}}
               394
\@BASICSINE \@BASICSINE{\langle \#1 \rangle}{\langle \#2 \rangle} applies this approximation:
                                       \sin x = \cfrac{x}{1 + \cfrac{x^2}{2 \cdot 3 - x^2 + \cfrac{2 \cdot 3x^2}{4 \cdot 5 - x^2 + \cfrac{4 \cdot 5x^2}{6 \cdot 7 - x^2 + \cdots}}}}
              395 \def\@BASICSINE#1#2{%
               396
                           \begingroup
                           \ABSVALUE{#1}{\cctr@tempa}
               397
               Exact sine of zero
                               \ifdim\cctr@tempa\p@=\z@ \COPY{0}{#2}
               398
                               \else
               399
               For t very close to zero, \sin t \approx t.
                                  \left( \frac{0.009}{p@\COPY{#1}{#2}} \right)
                                   \else
               401
```

```
Compute the continued fraction.
                           \SQUARE{#1}{\cctr@tempa}
     403
                           \DIVIDE{\cctr@tempa}{42}{#2}
                           \SUBTRACT{1}{#2}{#2}
     404
                           \MULTIPLY{#2}{\cctr@tempa}{#2}
     405
     406
                           \DIVIDE{#2}{20}{#2}
     407
                           \SUBTRACT{1}{#2}{#2}
                           \MULTIPLY{#2}{\cctr@tempa}{#2}
     408
                           \DIVIDE{#2}{6}{#2}
     409
                           \SUBTRACT{1}{#2}{#2}
     410
                           \MULTIPLY{#2}{#1}{#2}
     411
                    fi\fi\@OUTPUTSOL{#2}
     412
\COS \COS{\langle \#1 \rangle}{\langle \#2 \rangle}. Cosine of \#1: \cos t = \sin(t + \pi/2).
     413 \def\COS#1#2{%
                  \begingroup
                  \ADD{\numberHALFPI}{#1}{\cctr@tempc}
     415
                  \SIN{\cctr@tempc}{#2}\@OUTPUTSOL{#2}}
     416
TAN \{\langle \#1 \rangle\}\{\langle \#2 \rangle\}. Tangent of \#1.
     417 \def\TAN#1#2{%
                    \begingroup
     418
      Tangent is infinite for t = \pm \pi/2
                    \ifdim #1\p@=-\numberHALFPI\p@
     419
                        \cctr@Warninftan{#1}
     420
     421
                        \let#2\undefined
     422
                    \else
     423
                        \ifdim #1\p@=\numberHALFPI\p@
                            \cctr@Warninftan{#1}
     424
                            \let#2\undefined
     425
     426
                        \else
      If |t| > \pi/2, change t to a smaller value.
                           \ifdim #1\p@<-\numberHALFPI\p@
     427
                              \ADD{#1}{\numberPI}{\cctr@tempb}
     428
                              \TAN{\cctr@tempb}{#2}
     429
                           \else
     430
                              \ifdim #1\p@<\numberHALFPI\p@
     431
      Compute the tangent.
     432
                                  \@BASICTAN{#1}{#2}
                              \else
     433
                                  \SUBTRACT{#1}{\numberPI}{\cctr@tempb}
     434
                                  \TAN{\cctr@tempb}{#2}
     435
```

\fi\fi\fi\fi\@OUTPUTSOL{#2}}

436

\@BASICTAN \@BASICTAN{ $\langle \#1 \rangle$ }{ $\langle \#2 \rangle$ } applies this approximation:

$$\tan x = \frac{1}{\frac{1}{x} - \frac{1}{\frac{3}{x} - \frac{1}{\frac{5}{x} - \frac{1}{\frac{7}{x} - \frac{1}{\frac{9}{x} - \frac{1}{\frac{11}{x} - \dots}}}}$$

```
437 \def\@BASICTAN#1#2{%
     438
                 \begingroup
                 \ABSVALUE{#1}{\cctr@tempa}
     439
      Exact tangent of zero.
                    \ifdim\cctr@tempa\p@=\z@ \COPY{0}{#2}
                    \else
     441
      For t very close to zero, \tan t \approx t.
                       \ifdim\cctr@tempa\p@<0.04\p@
     442
     443
                           \COPY{#1}{#2}
                       \else
     444
      Compute the continued fraction.
                          \DIVIDE{#1}{11}{#2}
     445
                           \DIVIDE{9}{#1}{\cctr@tempa}
     446
                           \verb|\SUBTRACT{\cctr@tempa}{#2}{#2}|
     447
                           \DIVIDE{1}{#2}{#2}
     449
                           \DIVIDE{7}{#1}{\cctr@tempa}
                           \SUBTRACT{\cctr@tempa}{#2}{#2}
     450
                           \DIVIDE{1}{#2}{#2}
     451
                           \DIVIDE{5}{#1}{\cctr@tempa}
     452
                           \SUBTRACT{\cctr@tempa}{#2}{#2}
     453
     454
                           \DIVIDE{1}{#2}{#2}
                           \DIVIDE{3}{#1}{\cctr@tempa}
                           \SUBTRACT{\cctr@tempa}{#2}{#2}
     456
                           \DIVIDE{1}{#2}{#2}
     457
                           \DIVIDE{1}{#1}{\cctr@tempa}
     458
                           \SUBTRACT{\cctr@tempa}{#2}{#2}
     459
                           \DIVIDE{1}{#2}{#2}
     460
                    \fi\fi\@OUTPUTSOL{#2}}
\COT \COT{\\(\pi\)}\{\\(\pi\)}\. Cotangent of \(\pi\)1: If \cos t = 0 then \cot t = 0; if \tan t = 0 then \cot t = \infty.
      Otherwise, \cot t = 1/\tan t.
     463
                  \begingroup
                  \COS{#1}{#2}
                  \left| \frac{42}{p0} \right| = 20
     465
                  \COPY{0}{#2}
     466
                  \else
     467
```

```
\TAN{#1}{#2}
                      468
                      469
                                  \left| \frac{42}{p0} \right| = 20
                                  \cctr@Warninfcotan{#1}
                      470
                                  \let#2\undefined
                      471
                      472
                                  \else
                                  \DIVIDE{1}{#2}{#2}
                      473
                                  \fi\fi\@OUTPUTSOL{#2}}
                      474
                      \DEGtoRAD\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}. Convert degrees to radians.
           \DEGtoRAD
                      475 \def\DEGtoRAD#1#2{\DIVIDE{#1}{57.29578}{#2}}
           \RADtoDEG
                      \RADtoDEG\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}. Convert radians to degrees.
                      476 \def\RADtoDEG#1#2{\MULTIPLY{#1}{57.29578}{#2}}
\REDUCERADIANSANGLE Reduces to the trigonometrically equivalent arc in ]-\pi,\pi].
                      477 \def\REDUCERADIANSANGLE#1#2{%
                                   \COPY{#1}{#2}
                      478
                                   \ifdim #1\p@ < -\numberPI\p@
                      479
                                            \ADD{#1}{\numberTWOPI}{#2}
                      480
                                            \REDUCERADIANSANGLE{#2}{#2}
                      481
                                   \fi
                      482
                                   \ifdim #1\p@ > \numberPI\p@
                      483
                                            \SUBTRACT{#1}{\numberTWOPI}{#2}
                      484
                                            \REDUCERADIANSANGLE{#2}{#2}
                      485
                                   \fi
                      486
                                   \reduces to the trigonometrically equivalent angle in [-180, 180].
                      488 \def\REDUCEDEGREESANGLE#1#2{%
                                   \COPY{#1}{#2}
                      489
                                   \int \frac{1}{p} dx = -180 p^0
                      490
                                            \ADD{#1}{360}{#2}
                      491
                                            \REDUCEDEGREESANGLE{#2}{#2}
                      492
                                   \fi
                      493
                      494
                                   \left| \frac{41}{p} \right| > 180 \right|
                                            \SUBTRACT{#1}{360}{#2}
                      495
                                            \REDUCEDEGREESANGLE{#2}{#2}
                      496
                                   \fi
                      497
                                   \int \frac{1}{p} = -180 p^{0} COPY{180}{\#2} fi
                      498
```

Trigonometric functions in degrees Four next commands compute trigonometric functions in *degrees*. By default, a circle has 360 degrees, but we can use an arbitrary number of divisions using the optional argument of these commands.

```
\DEGREESTAN [\langle \#1 \rangle] \{\langle \#2 \rangle\} \{\langle \#3 \rangle\}. Tangent of \#2 degrees.
 \DEGREESTAN
              501 \def\DEGREESTAN{\@ifnextchar[\@@DEGREESTAN\@DEGREESTAN}
 \DEGREESCOT \DEGREESCOT[\langle \#1 \rangle] {\langle \#2 \rangle} {\langle \#3 \rangle}. Cotangent of \#2 degrees.
              502 \def\DEGREESCOT{\@ifnextchar[\@@DEGREESCOT\@DEGREESCOT}
\@DEGREESSIN \@DEGREESSIN computes the sine in sexagesimal degrees.
              503 \def\@DEGREESSIN#1#2{%
                      \begingroup
                      505
                      \else
              506
                            \ifdim #1\p@=90\p@ \COPY{1}{#2}
              507
                            \else
              508
              509
                                     \inf #1\p@=270\p@ \COPY{-1}{#2}
              510
                            \else
                              \int \frac{1}{p} <-90 p0
              511
                                   \ADD{#1}{360}{\cctr@tempb}
              512
                                   \DEGREESSIN{\cctr@tempb}{#2}
              513
                              \else
              514
                                 \left( \frac{1}{p} \right)
              515
                                        \DEGtoRAD{#1}{\cctr@tempb}
              516
                                        \@BASICSINE{\cctr@tempb}{#2}
                                      \else
              518
                                           519
                                             \SUBTRACT{180}{#1}{\cctr@tempb}
              520
                                              \DEGREESSIN{\cctr@tempb}{#2}
              521
              522
                                                   \SUBTRACT{#1}{360}{\cctr@tempb}
              523
                                                   \DEGREESSIN{\cctr@tempb}{#2}
              524
                    \fi\fi\fi\fi\fi\fi\@OUTPUTSOL{#2}}
              525
              \@DEGREESCOS computes the cosine in sexagesimal degrees.
\@DEGREESCOS
              526 \def\@DEGREESCOS#1#2{%
              527
                          \begingroup
              528
                          \ADD{90}{#1}{\cctr@tempc}
                          \DEGREESSIN{\cctr@tempc}{#2}\@OUTPUTSOL{#2}}
              529
              \@DEGREESTAN computes the tangent in sexagesimal degrees.
              530 \def\@DEGREESTAN#1#2{%
              531
                             \begingroup
              532
                             \left| \frac{41}{p} = -90\right|
              533
                             \cctr@Warninftan{#1}
              534
                             \let#2\undefined
                             \else
              535
                               \ifdim #1\p@=90\p@
              536
                               \cctr@Warninftan{#1}
              537
                               \let#2\undefined
              538
              539
                             \else
              540
                             \left| \frac{41}{p} < -90\right| 
                               \ADD{#1}{180}{\cctr@tempb} \DEGREESTAN{\cctr@tempb}{#2}
              541
```

```
542
                             \else
               543
                                 \ifdim #1\p@<90\p@
                                      \DEGtoRAD{#1}{\cctr@tempb}
               544
                                      \@BASICTAN{\cctr@tempb}{#2}
               545
               546
                                    \else
                                        \SUBTRACT{#1}{180}{\cctr@tempb}
               547
                                        \DEGREESTAN{\cctr@tempb}{#2}
               548
               549
                     \fi\fi\fi\fi\@OUTPUTSOL{#2}}
 \@DEGREESCOT \@DEGREESCOT computes the cotangent in sexagesimal degrees.
               550 \def\@DEGREESCOT#1#2{%
               551
                          \begingroup
               552
                          \DEGREESCOS{#1}{#2}
               553
                          \left| \frac{42}{p0} = 20 \right|
                          \COPY{0}{#2}
               554
                          \else
                          \DEGREESTAN{#1}{#2}
               556
                          \left| \frac{42}{p} \right| = 20
               557
                          \cctr@Warninfcotan{#1}
               558
                          \let#2\undefined
               559
                          \else
               560
                          \DIVIDE{1}{#2}{#2}
               561
                          \fi\fi\@OUTPUTSOL{#2}}
               562
               For an arbitrary number of degrees, we normalise to 360 degrees and, then, call the former
               functions.
\@@DEGREESSIN
              \@@DEGREESSIN computes the sine. A circle has #1 degrees.
               563 \def\@@DEGREESSIN[#1]#2#3{\@CONVERTDEG{#1}{#2}
                          \@DEGREESSIN{\@DEGREES}{#3}}
              \@@DEGREESCOS computes the sine. A circle has #1 degrees.
\@@DEGREESCOS
               565 \def\@@DEGREESCOS[#1]#2#3{\@CONVERTDEG{#1}{#2}
                          \DEGREESCOS{\@DEGREES}{#3}}
              566
              \@@DEGREESTAN computes the sine. A circle has #1 degrees.
\@@DEGREESTAN
               567 \def\@QDEGREESTAN[#1]#2#3{\QCONVERTDEG{#1}{#2}
                          \DEGREESTAN{\@DEGREES}{#3}}
\@@DEGREESCOT \@@DEGREESCOT computes the sine. A circle has #1 degrees.
               569 \def\@@DEGREESCOT[#1]#2#3{\@CONVERTDEG{#1}{#2}
                          \DEGREESCOT{\@DEGREES}{#3}}
 \@CONVERTDEG \@CONVERTDEG normalises to sexagesimal degrees.
               571 \def\@CONVERTDEG#1#2{\DIVIDE{#2}{#1}{\@DEGREES}
                          \MULTIPLY{\@DEGREES}{360}{\@DEGREES}}
              572
```

Exponential functions

```
\EXP[\(\#1\)]\{\(\#2\)\}\{\\#3\)}\ computes the exponential \#3 = \#1^{\#2}. Default for \#1 is number
  \EXP
         e.
        573 \def\EXP{\@ifnextchar[\@@EXP\@EXP}
         \@@EXP[\langle \#1 \rangle] {\langle \#2 \rangle} {\langle \#3 \rangle} computes \#3 = \#1^{\#2}
\@@EXP
        574 \def\@@EXP[#1]#2#3{%
        575
                   \begingroup
         #1 must be a positive number.
                   \ifdim #1\p@<\cctr@epsilon
        576
                        \cctr@Warninfexpb{#1}{#2}
        577
                        \let#3\undefined
        578
                   \else
        579
         a^b = \exp(b \log a).
        580
                        \LOG{#1}{\cctr@log}
        581
                        \MULTIPLY{#2}{\cctr@log}{\cctr@log}
        582
                        \@EXP{\cctr@log}{#3}
                   \fi\@OUTPUTSOL{#3}}
        \ensuremath{\mathtt{QEXP}\{\langle\#1\rangle\}\{\langle\#2\rangle\}}\ \ensuremath{\mathrm{computes}}\ \#3 = \mathrm{e}^{\#2}
        584 \def\@EXP#1#2{%
        585
                   \begingroup
                   \ABSVALUE{#1}{\cctr@absval}
        586
         If |t| is greater than \cctr@logmaxnum then exp t is too large.
                   \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@
        587
                             \cctr@Warninfexp{#1}
        588
                            \let#2\undefined
        589
        590
                   \else
                        \left| \frac{1}{p} < z0 \right|
        591
         We call \QBASICEXP when t \in [-6, 3]. Otherwise we use the equality \exp t = (\exp t/2)^2.
                           \int \frac{1}{p} = -6.00002 p^{0}
        592
                              \@BASICEXP{#1}{#2}
        593
                           \else
        594
                              \DIVIDE{#1}{2}{\cctr@expt}
        595
                              \@EXP{\cctr@expt}{\cctr@expy}
        596
                               \SQUARE{\cctr@expy}{#2}
        597
                           \fi
        598
                        \else
        599
                              \int \frac{1}{p} < 3.00002 p^0
        600
                                  \@BASICEXP{#1}{#2}
        601
        602
                                  \DIVIDE{#1}{2}{\cctr@expt}
        603
        604
                                  \@EXP{\cctr@expt}{\cctr@expy}
        605
                                  \SQUARE{\cctr@expy}{#2}
        606
        607 \fi\fi\@OUTPUTSOL{#2}}
```

\@BASICEXP \@BASICEXP{ $\langle \#1 \rangle$ }{ $\langle \#2 \rangle$ } applies this approximation:

$$\begin{array}{c} \langle 2 \rangle \} \text{ applies this approximation:} \\ \exp x \approx 1 + \cfrac{2x}{2 - x + \cfrac{x^2/6}{1 + \cfrac{x^2/60}{1 + \cfrac{x^2/140}{1 + \cfrac{x^2/256}{1 + \cfrac{x^2}{396}}}}} \end{array}$$

```
608 \def\@BASICEXP#1#2{%
609
          \begingroup
           \SQUARE{#1}\cctr@tempa
610
          \DIVIDE{\cctr@tempa}{396}{#2}
611
          \ADD{1}{#2}{#2}
612
          \DIVIDE\cctr@tempa{#2}{#2}
613
          \DIVIDE{#2}{256}{#2}
614
          \ADD{1}{#2}{#2}
615
          \DIVIDE\cctr@tempa{#2}{#2}
616
617
          \DIVIDE{#2}{140}{#2}
618
          \ADD{1}{#2}{#2}
           \DIVIDE\cctr@tempa{#2}{#2}
619
           \DIVIDE{#2}{60}{#2}
620
          \ADD{1}{#2}{#2}
621
          \DIVIDE\cctr@tempa{#2}{#2}
622
          \DIVIDE{#2}{6}{#2}
623
624
          \ADD{2}{#2}{#2}
          \SUBTRACT{#2}{#1}{#2}
625
           \DIVIDE{#1}{#2}{#2}
626
           \MULTIPLY{2}{#2}{#2}
627
           \ADD{1}{#2}{#2}\@OUTPUTSOL{#2}}
628
```

Hyperbolic functions

```
\COSH. Hyperbolic cosine: \cosh t = (\exp t + \exp(-t))/2. 629 \def\COSH#1#2{%
```

```
630
          \begingroup
          \ABSVALUE{#1}{\cctr@absval}
631
          \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@
632
             \cctr@Warninfexp{#1}
633
             \left| \right| 
634
          \else
635
             \EXP{#1}{\cctr@expx}
636
637
             \MULTIPLY{-1}{#1}{\cctr@minust}
638
             \EXP{\cctr@minust}{\cctr@expminusx}
             \ADD{\cctr@expx}{\cctr@expminusx}{#2}
639
             \DIVIDE{#2}{2}{#2}
640
          fi\00UTPUTSOL{#2}
641
```

```
\SINH \SINH. Hyperbolic sine: \sinh t = (\exp t - \exp(-t))/2.
       642 \def\SINH#1#2{%
       643
                  \begingroup
       644
                  \ABSVALUE{#1}{\cctr@absval}
                  \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@
       645
       646
                     \cctr@Warninfexp{#1}
                     \let#2\undefined
       647
                  \else
       648
                     \EXP{#1}{\cctr@expx}
       649
                     \MULTIPLY{-1}{#1}{\cctr@minust}
       650
                     \EXP{\cctr@minust}{\cctr@expminusx}
       651
                     \SUBTRACT{\cctr@expx}{\cctr@expminusx}{#2}
       652
                     \DIVIDE{#2}{2}{#2}
       653
       654
                  \fi\@OUTPUTSOL{#2}}
TANH. Hyperbolic tangent: \tanh t = \sinh t/\cosh t.
       655 \def\TANH#1#2{%
       656
                  \begingroup
       657
                  \ABSVALUE{#1}{\cctr@absval}
                  \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@
       658
                     \cctr@Warninfexp{#1}
       659
                     \let#2\undefined
       660
                  \else
       661
                     \SINH{#1}{\cctr@tanhnum}
       662
                     \COSH{#1}{\cctr@tanhden}
       663
       664
                     \DIVIDE{\cctr@tanhnum}{\cctr@tanhden}{#2}
                  \fi\@OUTPUTSOL{#2}}
\COTH \COTH. Hyperbolic cotangent \coth t = \cosh t / \sinh t.
       666 \def\COTH#1#2{%
       667
                  \begingroup
       668
                  \ABSVALUE{#1}{\cctr@absval}
       669
                  \ifdim \cctr@absval\p@>\cctr@logmaxnum\p@
       670
                     \cctr@Warninfexp{#1}
       671
                     \let#2\undefined
                  \else
       672
                     \SINH{#1}{\cctr@tanhden}
       673
       674
                     \COSH{#1}{\cctr@tanhnum}
       675
                     \DIVIDE\cctr@tanhnum\cctr@tanhden{#2}
                  \fi\@OUTPUTSOL{#2}}
       Logarithm
 \LOG \LOG[\langle \#1 \rangle] {\langle \#2 \rangle} {\langle \#3 \rangle} computes the logarithm \#3 = \log_{\#1} \#2. Default for \#1 is number
       677 \def\LOG{\@ifnextchar[\@@LOG\@LOG}
\@LOG \@LOG{\langle \#1 \rangle}{\langle \#2 \rangle} computes \#2 = \log \#1
       678 \def\@LOG#1#2{%
       679
                  \begingroup
```

```
The argument t must be positive.
                       \ifdim #1\p@<\cctr@epsilon
            681
                           \cctr@Warninflog{#1}
                           \let#2\undefined
            682
                       \else
            683
                       \ifdim #1\p@ > \numberETWO\p@
            684
             If t > e^2, \log t = \log e + \log(t/e) = 1 + \log(t/e)
                          \DIVIDE{#1}{\numberE}{\cctr@ae}
            685
                           \@LOG{\cctr@ae}{#2}
            686
                           \ADD{1}{#2}{#2}
            687
                       \else
            688
                          \ifdim #1\p@ < 1\p@
            689
             If t < 1, \log t = \log(1/e) + \log(te) = -1 + \log(te)
                              \MULTIPLY{\numberE}{#1}{\cctr@ae}
            691
                              \LOG{\cctr@ae}{#2}
                              \SUBTRACT{#2}{1}{#2}
            692
                          \else
            693
             For t \in [1, e^2] we call \QQBASICLOG.
                              \@BASICLOG{#1}{#2}
            695 \fi\fi\fi\@OUTPUTSOL{#2}}
    \@@LOG \@@LOG[(\#1)] {(\#2)} {(\#3)} computes \#3 = \log_{\#1} \#2 = \log(\#2) / \log(\#1)
            696 \def\@@LOG[#1]#2#3{\begingroup
                       \@LOG{#1}{\cctr@loga}
                       \C000{#2}{\cctr@logx}
            698
                       \DIVIDE{\cctr@logx}{\cctr@loga}{#3}\@OUTPUTSOL{#3}}
            699
\@BASICLOG \@BASICLOG{\langle \#1 \rangle}{\langle \#2 \rangle} applies the Newton's method to calculate x = \log t:
                                                  x_{n+1} = x_n + \frac{t}{e^{x_n}} - 1
            700 \def\@BASICLOG#1#2{\begingroup
            701 % We take \text{textit}{\#1}-1 as the initial approximation.
                     \begin{macrocode}
                              \SUBTRACT{#1}{1}{\cctr@tempw}
            703
                We start with \cctr@lengthb=5\p@ to ensure almost one iteration.
                              \cctr@lengthb=5\p@%
            704
             Successive iterations
            705
                       \@whilenum \cctr@lengthb>\cctr@epsilon \do {%
                           \COPY{\cctr@tempw}{\cctr@tempoldw}
            706
                            \EXP{\cctr@tempw}{\cctr@tempxw}
            707
                           \DIVIDE{#1}{\cctr@tempxw}{\cctr@tempxw}
            708
                           \ADD{\cctr@tempw}{\cctr@tempxw}{\cctr@tempw}
            709
                           \SUBTRACT{\cctr@tempw}{1}{\cctr@tempw}
            710
            711
                           \SUBTRACT{\cctr@tempw}{\cctr@tempoldw}{\cctr@tempdif}
            712
                           \cctr@lengthb=\cctr@tempdif\p@%
```

```
713 \ifnum
714 \cctr@lengthb<\z@ \cctr@lengthb=-\cctr@lengthb
715 \fi}%
716 \COPY{\cctr@tempw}{#2}\@OUTPUTSOL{#2}}
```

Inverse trigonometric functions

```
717 \def\ARCSIN#1#2{%
718
           \begingroup
           \left| \frac{1}{p0} = 20 \right|
719
             \COPY{0}{#2}
720
721
           \else
              \left( \frac{1}{p} = 1\right)
722
                 \COPY{\numberHALFPI}{#2}
723
              \else
724
                  \left| \frac{1}{p0} = -1\right|
725
                    \COPY{-\numberHALFPI}{#2}
726
                  \else
727
                     \left| \frac{1}{p} \right| > 1 \right|
728
                         \let#2\undefined
729
                         \cctr@Warnbigarcsin{#1}
730
                     \else
731
                         \left| \frac{1}{p} < -1 \right|
732
                            \let#2\undefined
733
                            \cctr@Warnbigarcsin{#1}
734
                         \else
If x is close to 1 we use \arcsin x = \pi/2 - 2\arcsin \sqrt{(1-x)/2}
                            \ifdim #1\p@ >0.89\p@
736
737
                            \SUBTRACT{1}{#1}{\cctr@tempx}
                            \DIVIDE{\cctr@tempx}{2}{\cctr@tempx}
738
                            \SQRT{\cctr@tempx}{\cctr@tempxx}
739
                            \ARCSIN{\cctr@tempxx}{#2}
740
                            \MULTIPLY{2}{#2}{#2}
741
                            \SUBTRACT{\numberHALFPI}{#2}{#2}
742
                            \else
Symmetrically, for x close to -1, \arcsin x = -\pi/2 + 2\arcsin \sqrt{(1+x)/2}
                            744
745
                            \ADD{1}{\#1}{\cctr@tempx}
                            \DIVIDE{\cctr@tempx}{2}{\cctr@tempx}
746
                            \SQRT{\cctr@tempx}{\cctr@tempxx}
747
                            \ARCSIN{\cctr@tempxx}{#2}
748
                            \MULTIPLY{2}{#2}{#2}
749
                            \SUBTRACT{#2}{\numberHALFPI}{#2}
750
                            \else
We take \#1 as the initial approximation.
```

```
\ABSVALUE{#1}{\cctr@tempy}
         753
                                        \ifdim \cctr@tempy\p@ < 0.04\p@
         754
         755
          \cctr@lengthb will be the difference of two successive iterations, and \cctr@tempoldy,
          \cctr@tempy will be the two last iterations.
             We start with \cctr@lengthb=5\p@ and \cctr@tempy=16383 to ensure almost one iteration.
         756
                                            \cctr@lengthb=5\p@
         757
                                            \COPY{16383}{\cctr@tempy}
         Successive iterations
                                            \@whilenum \cctr@lengthb>\cctr@epsilon \do {%
         Copy the actual approximation to \cctr@tempw
         759
                                              \COPY{#2}{\cctr@tempw}
         760
                                              \COPY{\cctr@tempy}{\cctr@tempoldy}
         761
                                              \SIN{\cctr@tempw}{\cctr@tempz}
                                              \SUBTRACT{\cctr@tempz}{#1}{\cctr@tempz}
         762
                                              \COS{\cctr@tempw}{\cctr@tempy}
         763
                                              \DIVIDE{\cctr@tempz}{\cctr@tempy}{\cctr@tempz}
         764
         765
                                              \SUBTRACT{\cctr@tempw}{\cctr@tempz}{\cctr@tempz}
         Now, \cctr@tempz is the new approximation.
                                              \COPY{\cctr@tempz}{#2}
         Finally, we store in \cctr@lengthb the difference of the two last approximations, finishing the
         loop.
         767
                                              \SUBTRACT{#2}{\cctr@tempw}{\cctr@tempy}
         768
                                              \ABSVALUE{\cctr@tempy}{\cctr@tempy}
                                              \cctr@lengthb=\cctr@tempy\p@%
         769
                                              \ifdim\cctr@tempy\p@=\cctr@tempoldy\p@
         770
                                                 \cctr@lengthb=\z@
         771
                                              \fi\\fi\\fi\\fi\\fi\\fi\\fi\\(00UTPUTSOL{#2}\)
         772
\ARCCOS ARCCOS{\langle \#1 \rangle}{\langle \#2 \rangle} defines #2 as the arccos of #1, using the well know relation arccos x =
         \pi/2 - \arcsin x.
         773 \def\ARCCOS#1#2{%
        774
                    \begingroup
                    \left| \frac{1}{p0} = 20 \right|
         775
         776
                      \COPY{\numberHALFPI}{#2}
                    \else
         777
         778
                      \left| \frac{1}{p} \right| = 1 \right|
                          \COPY{0}{#2}
         779
         780
                       \else
                           \left| \frac{1}{p} \right| = -1 \right|
         781
                             \COPY{\numberPI}{#2}
         782
                           \else
         783
         784
                              \left| \frac{1}{p} \right| > 1 \right|
         785
                                 \let#2\undefined
         786
                                  \cctr@Warnbigarccos{#1}
         787
                              \else
```

If $-0.4 \le t \le 0.4$ then $\arcsin x \approx x$ is a good approximation. Else, we apply the Newton method

```
\left| \frac{1}{p} < -1\right| 
         788
         789
                                       \let#2\undefined
                                       \cctr@Warnbigarccos{#1}
         790
                                   \else
         791
                                       \ARCSIN{#1}{#2}
         792
                                       \SUBTRACT{\numberHALFPI}{#2}{#2}
         793
                     \fi\fi\fi\fi\@OUTPUTSOL{#2}}
         794
         \ARCTAN\{\langle \#1 \rangle\}\{\langle \#2 \rangle\}. arctan of \#1.
\ARCTAN
         795 \def\ARCTAN#1#2{%
                  \begingroup
          If |t| > 1, compute \arctan x using \arctan x = sign(x)\pi/2 - \arctan(1/x).
                                   \left| \frac{1}{p} - 1\right| 
                                       \DIVIDE{1}{#1}{\cctr@tempb}
         798
                                       \ARCTAN{\cctr@tempb}{#2}
         799
                                       \SUBTRACT{-\numberHALFPI}{#2}{#2}
         800
                                   \else
         801
                                       \left| \frac{1}{p@}1\right| 
         802
         803
                                          \DIVIDE{1}{#1}{\cctr@tempb}
                                          \ARCTAN{\cctr@tempb}{#2}
         804
                                          \SUBTRACT{\numberHALFPI}{#2}{#2}
         805
                                       \else
         806
          For -1 \le x \le 1 call \@BASICARCTAN.
         807
                                          \@BASICARCTAN{#1}{#2}
                                       \fi
         808
                                   \fi\@OUTPUTSOL{#2}}
         809
```

\@BASICARCTAN \@BASICARCTAN $\{\langle \#1 \rangle\}$ applies this approximation:

$$\arctan x = \frac{x}{1 + \frac{x^2}{3 + \frac{(2x)^2}{5 + \frac{(3x)^2}{7 + \frac{(4x)^2}{9 + \cdots}}}}$$

```
810 \def\@BASICARCTAN#1#2{%
811 \begingroup
Exact arctan of zero
```

812 \ifdim#1\p@=\z@ \COPY{0}{#2} 813 \else

Compute the continued fraction.

814 \SQUARE{#1}{\cctr@tempa} 815 \MULTIPLY{64}{\cctr@tempa}{#2} 816 \ADD{15}{#2}{#2} 817 \DIVIDE{\cctr@tempa}{#2}{#2} 818 \MULTIPLY{49}{#2}{#2}

```
\ADD{13}{#2}{#2}
         819
         820
                              \DIVIDE{\cctr@tempa}{#2}{#2}
                              \MULTIPLY{36}{#2}{#2}
         821
                              \ADD{11}{#2}{#2}
         822
                              \DIVIDE{\cctr@tempa}{#2}{#2}
         823
                              \MULTIPLY{25}{#2}{#2}
         824
                              \ADD{9}{#2}{#2}
         825
         826
                               \DIVIDE{\cctr@tempa}{#2}{#2}
         827
                               \MULTIPLY{16}{#2}{#2}
                              \ADD{7}{#2}{#2}
         828
                              \DIVIDE{\cctr@tempa}{#2}{#2}
         829
                              \MULTIPLY{9}{#2}{#2}
         830
                              \ADD{5}{#2}{#2}
         831
                              \DIVIDE{\cctr@tempa}{#2}{#2}
         832
                               \MULTIPLY{4}{#2}{#2}
         833
                              \ADD{3}{#2}{#2}
         834
                              \DIVIDE{\cctr@tempa}{#2}{#2}
         835
                              \ADD{1}{#2}{#2}
         836
                              \DIVIDE{#1}{#2}{#2}
         837
                        \fi\@OUTPUTSOL{#2}}
         838
\ARCCOT ARCCOT\{\langle \#1 \rangle\}\{\langle \#2 \rangle\} defines \#2 as the arccot of \#1, using the well know relation arccot x = x
         \pi/2 - \arctan x.
         839 \def\ARCCOT#1#2{%
                    \begingroup
         840
         841
                        \ARCTAN{#1}{#2}
         842
                        \SUBTRACT{\numberHALFPI}{#2}{#2}
                    \@OUTPUTSOL{#2}}
         843
         Inverse hyperbolic functions
\ARSINH \ARSINH\{\(\#1\)\}\{\(\#2\)\}. Inverse hyperbolic sine of \(#1: \arsinh x = \log \((x + \sqrt{1 + x^2}\)\)
         844 \def\ARSINH#1#2{%
                 \begingroup
         845
                           \SQUARE{#1}{\cctr@tempa}
         846
                           \ADD{1}{\cctr@tempa}{\cctr@tempa}
         847
         848
                           \SQRT{\cctr@tempa}{\cctr@tempb}
                           \ADD{#1}{\cctr@tempb}{\cctr@tempb}
         849
                           \LOG\cctr@tempb{#2}
         850
                        \@OUTPUTSOL{#2}}
         851
        \ARCOSH{\(\psi 1\)\}\{\(\psi 2\)\}. Inverse hyperbolic sine of \(\psi 1\): arcosh x = log (x + \sqrt{x^2 - 1})
         852 \def\ARCOSH#1#2{%
                 \begingroup
         If x < 1, this function is no defined
                    \ifdim#1\p@<1\p@
         854
         855
                        \let#2\undefined
                        \cctr@Warnsmallarcosh{#1}
         856
         857
                    \else
```

```
\SQUARE{#1}{\cctr@tempa}
         858
         859
                             \SUBTRACT{\cctr@tempa}{1}{\cctr@tempa}
                             \SQRT{\cctr@tempa}{\cctr@tempb}
         860
                             \ADD{#1}{\cctr@tempb}{\cctr@tempb}
         861
                             \LOG\cctr@tempb{#2}
         862
                         \fi\@OUTPUTSOL{#2}}
         863
         \ARTANH{\langle \psi 1\rangle} \{\langle \psi 2\rangle}. Inverse hyperbolic tangent of \( \psi 1\): artanh x = \frac{1}{2} \log ((1+x) - \log(1-x))
\ARTANH
         864 \def\ARTANH#1#2{%
                  \begingroup
          If |x| \geq 1, this function is no defined
                     \ifdim#1\p@<-0.99998\p@
         866
         867
                         \let#2\undefined
         868
                         \cctr@Warnbigartanh{#1}
                     \else
         869
                         \ifdim#1\p@>0.99998\p@
         870
                            \t \t 2\t defined
         871
                            \cctr@Warnbigartanh{#1}
         873
                            \COPY{#1}{\cctr@tempa}
         874
                            \ADD1\cctr@tempa\cctr@tempb
         875
                             \SUBTRACT1\cctr@tempa\cctr@tempc
         876
                             \LOG\cctr@tempb\cctr@tempB
         877
                             \LOG\cctr@tempc\cctr@tempC
         878
         879
                             \SUBTRACT\cctr@tempB\cctr@tempC{#2}
         880
                             \DIVIDE{#2}{2}{#2}
         881
                     \fi\@OUTPUTSOL{#2}}
         882
          \ARCOTH{\\\#1\\}{\\\#2\\}\. Inverse hyperbolic cotangent of \\\#1:
              \operatorname{arcoth} x = \operatorname{sign}(x) \frac{1}{2} \log \left( (x+1) - \log(x-1) \right)
             \def\ARCOTH#1#2{%
         883
                  \begingroup
         884
          If |x| < 1, this function is no defined
                     \inf #1\p0>-0.99998\p0
         885
                         \ifdim#1\p@<0.99998\p@
         886
         887
                            \let#2\undefined
         888
                             \cctr@Warnsmallarcoth{#1}
                         \else
         889
                            \left| \frac{1}{p0} \right|
         890
          For x > 1, calcule \operatorname{arcoth} x = \frac{1}{2} \log ((x+1) - \log(x-1))
                                \COPY{#1}{\cctr@tempa}
         891
                                \ADD1\cctr@tempa\cctr@tempb
         892
                                \SUBTRACT\cctr@tempa1\cctr@tempc
         893
                                \LOG\cctr@tempb\cctr@tempB
         894
                                \LOG\cctr@tempc\cctr@tempC
         895
                                \SUBTRACT\cctr@tempB\cctr@tempC{#2}
         896
         897
                                \DIVIDE{#2}{2}{#2}
```

```
\else
              898
              899
                                 \fi
                              \fi
              900
                          \else
              901
               For x < -1, calcule -\operatorname{artanh}(-x)
                              \MULTIPLY{-1}{#1}{\cctr@tempa}
              902
                              \ARCOTH{\cctr@tempa}{#2}
              903
                              \COPY{-#2}{#2}
              904
                          \fi\@OUTPUTSOL{#2}}
              905
                       Matrix arithmetics
               13.4
               Vector operations
VECTORSIZE The size of a vector is 2 or 3. VECTORSIZE (\langle \# 1 \rangle) \{\langle \# 2 \rangle\} stores in \# 2 the size of (\langle \# 1 \rangle).
                   Almost all vector commands needs to know the vector size.
              906 \def\VECTORSIZE(#1)#2{\expandafter\@VECTORSIZE(#1,,){#2}}
              907 \def\@VECTORSIZE(#1,#2,#3,#4)#5{\ifx$#3$\COPY{2}{#5}
                                                        \else\COPY{3}{#5}\fi\ignorespaces}
              VECTORCOPY (\langle \#1, \#2 \rangle) (\langle \#3, \#4 \rangle) stores \#1 and \#2 in \#3 and \#4.
```

```
\VECTORCOPY
                   VECTORCOPY ((\#1, \#2, \#3)) ((\#4, \#5\#6)) stores \#1, \#2 and \#3 in \#4 and \#5 and \#6.
                  909 \def\@@VECTORCOPY(#1,#2)(#3,#4){%
                          \COPY{#1}{#3}\COPY{#2}{#4}}
                  911
                  912 \def\@@@VECTORCOPY(#1,#2,#3)(#4,#5,#6){%
                          \COPY{#1}{#4}\COPY{#2}{#5}\COPY{#3}{#6}}
                  913
                  914
                  915 \def\VECTORCOPY(#1)(#2){%
                              \VECTORSIZE(#1){\cctr@size}
                              \ifnum\cctr@size=2
                  917
                  918
                                 \@@VECTORCOPY(#1)(#2)
                              \else \@@@VECTORCOPY(#1)(#2)\fi}
                  919
\VECTORGLOBALCOPY \VECTORGLOBALCOPY is the global version of \VECTORCOPY
                  920 \def\@@VECTORGLOBALCOPY(#1,#2)(#3,#4){%
                  921
                          \GLOBALCOPY{#1}{#3}\GLOBALCOPY{#2}{#4}}
                  923 \def\@@@VECTORGLOBALCOPY(#1,#2,#3)(#4,#5,#6){%
                  924
                          \GLOBALCOPY{#1}{#4}\GLOBALCOPY{#2}{#5}\GLOBALCOPY{#3}{#6}}
                  925
                  926 \def\VECTORGLOBALCOPY(#1)(#2){%
                  927
                              \VECTORSIZE(#1){\cctr@size}
                              \ifnum\cctr@size=2
                  929
                                 \@@VECTORGLOBALCOPY(#1)(#2)
                              \else \@@@VECTORGLOBALCOPY(#1)(#2)\fi}
                  930
```

\@OUTPUTVECTOR

931 \def\@@OUTPUTVECTOR(#1,#2){%

```
932
                       \VECTORGLOBALCOPY(#1,#2)(\cctr@outa,\cctr@outb)
               933
                       \endgroup\VECTORCOPY(\cctr@outa,\cctr@outb)(#1,#2)}
               934
               935 \def\@@@OUTPUTVECTOR(#1,#2,#3){%
                       \VECTORGLOBALCOPY(#1, #2, #3)(\cctr@outa,\cctr@outb,\cctr@outc)
               936
                       \endgroup\VECTORCOPY(\cctr@outa,\cctr@outb,\cctr@outc)(#1,#2,#3)}
               937
               938
               939 \def\@OUTPUTVECTOR(#1) {\VECTORSIZE(#1) {\cctr@size}
               940
                           \ifnum\cctr@size=2
                              \@@OUTPUTVECTOR(#1)
               941
                           \else \@@@OUTPUTVECTOR(#1)\fi}
               942
\SCALARPRODUCT Scalar product of two vectors.
               943 \def\@@SCALARPRODUCT(#1,#2)(#3,#4)#5{%
               944
                          \MULTIPLY{#1}{#3}{#5}
               945
                          \MULTIPLY{#2}{#4}\cctr@tempa
                          \ADD{#5}{\cctr@tempa}{#5}}
               946
               947
               948 \def\@@@SCALARPRODUCT(#1,#2,#3)(#4,#5,#6)#7{%
                          \MULTIPLY{#1}{#4}{#7}
               949
                          \MULTIPLY{#2}{#5}\cctr@tempa
               950
               951
                          \ADD\{\#7\}\{\ctr@tempa\}\{\#7\}
               952
                          \MULTIPLY{#3}{#6}\cctr@tempa
                          \ADD{#7}{\cctr@tempa}{#7}}
               953
               954
               955 \def\SCALARPRODUCT(#1)(#2)#3{%
               956
                           \begingroup
               957
                           \VECTORSIZE(#1){\cctr@size}
               958
                           \ifnum\cctr@size=2
                              \@@SCALARPRODUCT(#1)(#2){#3}
               959
                           \else \@@@SCALARPRODUCT(#1)(#2){#3}\fi\@OUTPUTSOL{#3}}
   \DOTPRODUCT \DOTPRODUCT is an alias for \SCALARPRODUCT.
               961 \let\DOTPRODUCT\SCALARPRODUCT
VECTORPRODUCT Vector product of two (three dimensional) vectors.
               962 \def\@@VECTORPRODUCT(#1)(#2)(#3,#4){%
                             \let#3\undefined
               964
                             \let#4\undefined
                             \cctr@Warncrossprod(#1)(#2)}
               965
               966
               967 \def\@@@VECTORPRODUCT(#1,#2,#3)(#4,#5,#6)(#7,#8,#9){%
                          \DETERMINANT(#2,#3;#5,#6){#7}
               968
                          \DETERMINANT(#3,#1;#6,#4){#8}
               969
               970
                          \DETERMINANT(#1,#2;#4,#5){#9}}
               971
               972 \def\VECTORPRODUCT(#1)(#2)(#3){%
               973
                           \begingroup
                           \VECTORSIZE(#1){\cctr@size}
               974
```

```
\ifnum\cctr@size=2
                 975
                 976
                               \@@VECTORPRODUCT(#1)(#2)(#3)
                            \else \@@@VECTORPRODUCT(#1)(#2)(#3)\fi\@OUTPUTSOL{#3}}
                977
  \CROSSPRODUCT \CROSSPRODUCT is an alias for \VECTORPRODUCT.
                978 \let\CROSSPRODUCT\VECTORPRODUCT
     \VECTORADD Sum of two vectors.
                979 \def\@@VECTORADD(#1,#2)(#3,#4)(#5,#6){%
                           \ADD{#1}{#3}{#5}
                 980
                 981
                           \ADD{#2}{#4}{#6}}
                 982
                 983 \def\@@@VECTORADD(#1,#2,#3)(#4,#5,#6)(#7,#8,#9){%
                           \ADD{#1}{#4}{#7}
                 984
                           \ADD{#2}{#5}{#8}
                 985
                           \ADD{#3}{#6}{#9}}
                 986
                 988 \def\VECTORADD(#1)(#2)(#3){%
                989
                            \VECTORSIZE(#1){\cctr@size}
                            \ifnum\cctr@size=2
                990
                               \@@VECTORADD(#1)(#2)(#3)
                 991
                            \else \@@@VECTORADD(#1)(#2)(#3)\fi}
                992
     \VECTORSUB Difference of two vectors.
                 993 \def\@@VECTORSUB(#1,#2)(#3,#4)(#5,#6){%
                 994
                           \VECTORADD(#1,#2)(-#3,-#4)(#5,#6)}
                 995
                 996 \def\@@@VECTORSUB(#1,#2,#3)(#4,#5,#6)(#7,#8,#9){%
                 997
                           \VECTORADD(#1,#2,#3)(-#4,-#5,-#6)(#7,#8,#9)}
                998
                999 \def\VECTORSUB(#1)(#2)(#3){%
                            \VECTORSIZE(#1){\cctr@size}
                1000
                            \ifnum\cctr@size=2
                1001
                               \@@VECTORSUB(#1)(#2)(#3)
                1002
                            \else \000VECTORSUB(#1)(#2)(#3)\fi}
                1003
\VECTORABSVALUE Absolute value of a each entry of a vector.
                1004 \def\@@VECTORABSVALUE(#1,#2)(#3,#4){%
                           \ABSVALUE{#1}{#3}\ABSVALUE{#2}{#4}}
                1005
                1006
                1007 \def\@@@VECTORABSVALUE(#1,#2,#3)(#4,#5,#6){%
                1008
                           \ABSVALUE{#1}{#4}\ABSVALUE{#2}{#5}\ABSVALUE{#3}{#6}}
                1009
                1010 \def\VECTORABSVALUE(#1)(#2){%
                            \VECTORSIZE(#1){\cctr@size}
                1011
                1012
                            \ifnum\cctr@size=2
                1013
                               \@@VECTORABSVALUE(#1)(#2)
                            \else \@@@VECTORABSVALUE(#1)(#2)\fi}
                1014
```

\SCALARVECTORPRODUCT Scalar-vector product.

```
1015 \def\@@SCALARVECTORPRODUCT#1(#2,#3)(#4,#5){%
                            \MULTIPLY{#1}{#2}{#4}
                            \MULTIPLY{#1}{#3}{#5}}
                 1017
                 1018
                 1019 \def\@@@SCALARVECTORPRODUCT#1(#2,#3,#4)(#5,#6,#7){%
                             \MULTIPLY{#1}{#2}{#5}
                 1020
                             \MULTIPLY{#1}{#3}{#6}
                 1021
                 1022
                             \MULTIPLY{#1}{#4}{#7}}
                 1023
                 1024 \def\SCALARVECTORPRODUCT#1(#2)(#3){%
                             \VECTORSIZE(#2){\cctr@size}
                 1025
                             \ifnum\cctr@size=2
                 1026
                                 \@@SCALARVECTORPRODUCT{#1}(#2)(#3)
                 1027
                             \else \@@@SCALARVECTORPRODUCT{#1}(#2)(#3)\fi}
                 1028
     \VECTORNORM Euclidean norm of a vector.
                 1029 \def\VECTORNORM(#1)#2{%
                             \begingroup
                 1031
                             \SCALARPRODUCT(#1)(#1){\cctr@temp}
                            \SQUAREROOT{\cctr@temp}{#2}\@OUTPUTSOL{#2}}
                 1032
     \UNITVECTOR Unitary vector parallel to a given vector.
                 1033 \def\UNITVECTOR(#1)(#2){%
                 1034
                             \begingroup
                             \VECTORNORM(#1){\cctr@tempa}
                 1035
                             \DIVIDE{1}{\cctr@tempa}{\cctr@tempa}
                 1036
                             \SCALARVECTORPRODUCT{\cctr@tempa}(#1)(#2)\@OUTPUTVECTOR(#2)}
                 1037
\TWOVECTORSANGLE Angle between two vectors.
                 1038 \def\TWOVECTORSANGLE(#1)(#2)#3{%
                 1039
                             \begingroup
                 1040
                             \VECTORNORM(#1){\cctr@tempa}
                 1041
                             \VECTORNORM(#2) {\cctr@tempb}
                 1042
                             \SCALARPRODUCT(#1)(#2){\cctr@tempc}
                             \ifdim \cctr@tempa\p@ =\z@
                 1043
                 1044
                                \let#3\undefined
                 1045
                                \cctr@Warnnoangle(#1)(#2)
                 1046
                            \else
                                \ifdim \cctr@tempb\p@ =\z@
                 1047
                                   \let#3\undefined
                 1048
                                   \cctr@Warnnoangle(#1)(#2)
                 1049
                                \else
                 1050
                                   \DIVIDE{\cctr@tempc}{\cctr@tempa}{\cctr@tempc}
                 1051
                                   \DIVIDE{\cctr@tempc}{\cctr@tempb}{\cctr@tempc}
                 1052
                 1053
                                   \ARCCOS{\cctr@tempc}{#3}
                 1054
                             \fi\fi\@OUTPUTSOL{#3}}
```

Matrix operations

Here, we need to define some internal macros to simulate commands with more than nine arguments.

```
\cctr@solCC.
                                          1055 \def\@TDMATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                                                                  \COPY{#1}{\cctr@solAA}
                                          1057
                                                                  \COPY{#2}{\cctr@solAB}
                                                                  \COPY{#3}{\cctr@solAC}
                                          1058
                                          1059
                                                                  \COPY{#4}{\cctr@solBA}
                                          1060
                                                                  \COPY{#5}{\cctr@solBB}
                                                                  \COPY{#6}{\cctr@solBC}
                                          1061
                                          1062
                                                                  \COPY{#7}{\cctr@solCA}
                                                                  \COPY{#8}{\cctr@solCB}
                                          1063
                                          1064
                                                                  \COPY{#9}{\cctr@solCC}}
             \command copies the commands \command, \command
                                              matrix. This macro is used to store the results of a matrix operation.
                                          1065 \def\@TDMATRIXSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                                                                  \COPY{\cctr@solAA}{#1}
                                          1066
                                                                  \COPY{\cctr@solAB}{#2}
                                          1067
                                                                  \COPY{\cctr@solAC}{#3}
                                          1068
                                          1069
                                                                  \COPY{\cctr@solBA}{#4}
                                          1070
                                                                  \COPY{\cctr@solBB}{#5}
                                          1071
                                                                  \COPY{\cctr@solBC}{#6}
                                                                  \COPY{\cctr@solCA}{#7}
                                          1072
                                                                  \COPY{\cctr@solCB}{#8}
                                          1073
                                                                  \COPY{\cctr@solCC}{#9}}
                                          1074
\@TDMATRIXGLOBALSOL
                                          1075 \def\@TDMATRIXGLOBALSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                                                                  \GLOBALCOPY{\cctr@solAA}{#1}
                                          1076
                                          1077
                                                                  \GLOBALCOPY{\cctr@solAB}{#2}
                                          1078
                                                                  \GLOBALCOPY{\cctr@solAC}{#3}
                                          1079
                                                                  \GLOBALCOPY{\cctr@solBA}{#4}
                                          1080
                                                                  \GLOBALCOPY{\cctr@solBB}{#5}
                                                                  \GLOBALCOPY{\cctr@solBC}{#6}
                                          1081
                                                                  \GLOBALCOPY{\cctr@solCA}{#7}
                                          1082
                                          1083
                                                                  \GLOBALCOPY{\cctr@solCB}{#8}
                                                                  \GLOBALCOPY{\cctr@solCC}{#9}}
                                          1084
        \@TDMATRIXNOSOL This command undefines a 3 \times 3 matrix when a matrix problem has no solution.
                                          1085 \def\@TDMATRIXNOSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                                          1086
                                                                        \let#1\undefined
                                          1087
                                                                        \let#2\undefined
                                          1088
                                                                        \let#3\undefined
                                                                        \let#4\undefined
                                          1089
                                                                        \let#5\undefined
                                          1090
                                                                        \let#6\undefined
                                          1091
                                          1092
                                                                        \let#7\undefined
                                          1093
                                                                        \let#8\undefined
                                          1094
                                                                        \let#9\undefined
                                                                        }
                                          1095
```

\@TDMATRIXCOPY This command copies a 3 × 3 matrix to the commands \cctr@solAA, \cctr@solAB, ...,

```
\@@TDMATRIXSOL This command stores or undefines the solution.
                  1096 \def\@@TDMATRIXSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                 1097
                             \ifx\cctr@solAA\undefined
                                \@TDMATRIXNOSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9)%
                 1098
                             \else
                 1099
                 1100
                                \@TDMATRIXSOL(#1,#2,#3;#4,#5,#6;#7,#8,#9)\fi}
      \@NUMBERSOL This command stores the scalar solution of a matrix operation.
                 1101 \def\@NUMBERSOL#1{\COPY{\cctr@sol}{#1}}
     \MATRIXSIZE Size (2 or 3) of a matrix.
                 1102 \def\MATRIXSIZE(#1)#2{\expandafter\@MATRIXSIZE(#1;;){#2}}
                 1103 \def\@MATRIXSIZE(#1;#2;#3;#4)#5{\ifx$#3$\COPY{2}{#5}
                 1104
                                                       \else\COPY{3}{#5}\fi\ignorespaces}
      \MATRIXCOPY Store a matrix in 4 or 9 commands.
                 1105 \def\@@MATRIXCOPY(#1,#2;#3,#4)(#5,#6;#7,#8){%
                          \COPY{#1}{#5}\COPY{#2}{#6}\COPY{#3}{#7}\COPY{#4}{#8}}
                 1106
                 1107
                 1108 \def\@@@MATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                 1109
                           \@TDMATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9)
                           \@TDMATRIXSOL}
                 1110
                 1111
                 1112 \def\MATRIXCOPY(#1)(#2){%
                 1113
                              \MATRIXSIZE(#1){\cctr@size}
                 1114
                              \ifnum\cctr@size=2
                                 \@@MATRIXCOPY(#1)(#2)
                 1115
                              \else \@@@MATRIXCOPY(#1)(#2)\fi}
                 1116
\MATRIXGLOBALCOPY Global version of \MATRIXCOPY.
                 1117 \def\@@MATRIXGLOBALCOPY(#1,#2;#3,#4)(#5,#6;#7,#8){%
                          \GLOBALCOPY{#1}{#5}\GLOBALCOPY{#2}{#6}\GLOBALCOPY{#3}{#7}\GLOBALCOPY{#4}{#8}}
                 1118
                 1119
                 1120 \def\@@@MATRIXGLOBALCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                           \@TDMATRIXCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9)
                 1121
                           \@TDMATRIXGLOBALSOL}
                 1122
                 1123
                 1124 \def\MATRIXGLOBALCOPY(#1)(#2){%
                              \MATRIXSIZE(#1){\cctr@size}
                 1125
                              \ifnum\cctr@size=2
                 1126
                                 \@@MATRIXGLOBALCOPY(#1)(#2)
                 1127
                              \else \@@@MATRIXGLOBALCOPY(#1)(#2)\fi}
                 1128
   \@OUTPUTMATRIX
                 1129 \def\@@OUTPUTMATRIX(#1,#2;#3,#4){%
                          \MATRIXGLOBALCOPY(#1,#2;#3,#4)(\cctr@outa,\cctr@outb;\cctr@outc,\cctr@outd)
                 1130
                 1131
                          \endgroup\MATRIXCOPY(\cctr@outa,\cctr@outb;\cctr@outc,\cctr@outd)(#1,#2;#3,#4)}
                 1132
                 1133 \def\@@@OUTPUTMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
```

```
\MATRIXGLOBALCOPY(#1,#2,#3;#4,#5,#6;#7,#8,#9)(%
                 1134
                 1135
                             \cctr@outa,\cctr@outb,\cctr@outc;
                             \cctr@outd,\cctr@oute,\cctr@outf;
                 1136
                 1137
                             \cctr@outg,\cctr@outh,\cctr@outi)
                         \endgroup\MATRIXCOPY(%
                 1138
                             \cctr@outa,\cctr@outb,\cctr@outc;
                 1139
                             \cctr@outd,\cctr@oute,\cctr@outf;
                 1140
                 1141
                             \cctr@outg,\cctr@outh,\cctr@outi)(#1,#2,#3;#4,#5,#6;#7,#8,#9)}
                 1142
                 1143 \def\@OUTPUTMATRIX(#1){\MATRIXSIZE(#1){\cctr@size}
                             \ifnum\cctr@size=2
                 1144
                                \@@OUTPUTMATRIX(#1)
                 1145
                             \else \@@@OUTPUTMATRIX(#1)\fi}
                 1146
\TRANSPOSEMATRIX Matrix transposition.
                 1147 \def\@@TRANSPOSEMATRIX(#1,#2;#3,#4)(#5,#6;#7,#8){%
                 1148
                            \COPY{#1}{#5}\COPY{#3}{#6}\COPY{#2}{#7}\COPY{#4}{#8}}
                 1149
                 1150 \def\@@@TRANSPOSEMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                            \@TDMATRIXCOPY(#1,#4,#7;#2,#5,#8;#3,#6,#9)
                 1151
                            \@TDMATRIXSOL}
                 1152
                 1153
                 1154 \def\TRANSPOSEMATRIX(#1)(#2){%
                 1155
                             \begingroup
                             \MATRIXSIZE(#1){\cctr@size}
                 1156
                 1157
                             \ifnum\cctr@size=2
                 1158
                                \QQTRANSPOSEMATRIX(#1)(#2)
                             \else \@@@TRANSPOSEMATRIX(#1)(#2)\fi\@OUTPUTMATRIX(#2)}
                 1159
      \MATRIXADD Sum of two matrices.
                 1160 \def\@@MATRIXADD(#1;#2)(#3;#4)(#5,#6;#7,#8){%
                            \VECTORADD(#1)(#3)(#5,#6)
                 1161
                 1162
                            \VECTORADD(#2)(#4)(#7,#8)}
                 1163
                 1164 \def\@@@MATRIXADD(#1;#2;#3)(#4;#5;#6){%
                            \VECTORADD(#1)(#4)(\cctr@solAA,\cctr@solAB,\cctr@solAC)
                 1165
                            \VECTORADD(#2)(#5)(\cctr@solBA,\cctr@solBB,\cctr@solBC)
                 1166
                 1167
                            \VECTORADD(#3)(#6)(\cctr@solCA,\cctr@solCB,\cctr@solCC)
                            \@TDMATRIXSOL}
                 1168
                 1169
                 1170 \def\MATRIXADD(#1)(#2)(#3){%
                             \begingroup
                 1171
                             \MATRIXSIZE(#1){\cctr@size}
                 1172
                 1173
                             \ifnum\cctr@size=2
                 1174
                                \@@MATRIXADD(#1)(#2)(#3)
                 1175
                             \else \@@@MATRIXADD(#1)(#2)(#3)\fi\@OUTPUTMATRIX(#3)}
      \MATRIXSUB Difference of two matrices.
                 1176 \def\@@MATRIXSUB(#1;#2)(#3;#4)(#5,#6;#7,#8){%
                            \VECTORSUB(#1)(#3)(#5,#6)
                 1177
```

```
1178
                                \VECTORSUB(#2)(#4)(#7,#8)}
                     1179
                     1180 \def\@@@MATRIXSUB(#1;#2;#3)(#4;#5;#6){%
                                \VECTORSUB(#1)(#4)(\cctr@solAA,\cctr@solAB,\cctr@solAC)
                     1181
                                \VECTORSUB(#2)(#5)(\cctr@solBA,\cctr@solBB,\cctr@solBC)
                     1182
                                \VECTORSUB(#3)(#6)(\cctr@solCA,\cctr@solCB,\cctr@solCC)
                     1183
                                \@TDMATRIXSOL}
                     1184
                     1185
                     1186 \def\MATRIXSUB(#1)(#2)(#3){%
                     1187
                                 \begingroup
                                 \MATRIXSIZE(#1){\cctr@size}
                     1188
                                 \ifnum\cctr@size=2
                     1189
                                    \@@MATRIXSUB(#1)(#2)(#3)
                     1190
                                 \else \@@@MATRIXSUB(#1)(#2)(#3)\fi\@OUTPUTMATRIX(#3)}
                     1191
     \MATRIXABSVALUE Absolute value (of each entry) of a matrix.
                     1192 \def\@@MATRIXABSVALUE(#1;#2)(#3;#4){%
                                \VECTORABSVALUE(#1)(#3)\VECTORABSVALUE(#2)(#4)}
                     1193
                     1194
                     1195 \def\@@@MATRIXABSVALUE(#1;#2;#3)(#4;#5;#6){%
                                \VECTORABSVALUE(#1)(#4)\VECTORABSVALUE(#2)(#5)\VECTORABSVALUE(#3)(#6)}
                     1196
                     1197
                     1198 \def\MATRIXABSVALUE(#1)(#2){%
                     1199
                                 \begingroup
                                 \MATRIXSIZE(#1){\cctr@size}
                     1200
                     1201
                                 \ifnum\cctr@size=2
                     1202
                                    \@@MATRIXABSVALUE(#1)(#2)
                     1203
                                 \else \@@@MATRIXABSVALUE(#1)(#2)\fi\@OUTPUTMATRIX(#2)}
\MATRIXVECTORPRODUCT Matrix-vector product.
                     1204 \def\@@MATRIXVECTORPRODUCT(#1;#2)(#3)(#4,#5){%
                                \SCALARPRODUCT(#1)(#3){#4}
                     1205
                     1206
                                \SCALARPRODUCT(#2)(#3){#5}}
                     1207
                     1208 \def\@@@MATRIXVECTORPRODUCT(#1;#2;#3)(#4)(#5,#6,#7){%
                                \SCALARPRODUCT(#1)(#4){#5}
                     1209
                     1210
                                \SCALARPRODUCT(#2)(#4){#6}
                     1211
                                \SCALARPRODUCT(#3)(#4){#7}}
                     1212
                     1213 \def\MATRIXVECTORPRODUCT(#1)(#2)(#3){%
                                 \begingroup
                     1214
                                 \MATRIXSIZE(#1){\cctr@size}
                     1215
                                 \ifnum\cctr@size=2
                     1216
                                     \@@MATRIXVECTORPRODUCT(#1)(#2)(#3)
                     1217
                     1218
                                 \else \@@@MATRIXVECTORPRODUCT(#1)(#2)(#3)\fi\@OUTPUTVECTOR(#3)}
\VECTORMATRIXPRODUCT Vector-matrix product.
                     1219 \def\@@VECTORMATRIXPRODUCT(#1)(#2,#3;#4,#5)(#6,#7){%
                                \SCALARPRODUCT(#1)(#2,#4){#6}
                     1220
                                \SCALARPRODUCT(#1)(#3,#5){#7}}
                     1221
```

```
1222
                     1223 \def\@@@VECTORMATRIXPRODUCT(#1,#2,#3)(#4;#5;#6)(#7){%
                                \SCALARVECTORPRODUCT{#1}(#4)(#7)
                     1224
                                \SCALARVECTORPRODUCT{#2}(#5)(\cctr@tempa,\cctr@tempb,\cctr@tempc)
                     1225
                                \VECTORADD(#7)(\cctr@tempa,\cctr@tempb,\cctr@tempc)(#7)
                     1226
                                \SCALARVECTORPRODUCT{#3}(#6)(\cctr@tempa,\cctr@tempb,\cctr@tempc)
                     1227
                                \VECTORADD(#7)(\cctr@tempa,\cctr@tempb,\cctr@tempc)(#7)}
                     1228
                     1229
                     1230 \def\VECTORMATRIXPRODUCT(#1)(#2)(#3){%
                     1231
                                 \begingroup
                                 \VECTORSIZE(#1){\cctr@size}
                     1232
                                 \ifnum\cctr@size=2
                     1233
                                    \@@VECTORMATRIXPRODUCT(#1)(#2)(#3)
                     1234
                                 \else \@@@VECTORMATRIXPRODUCT(#1)(#2)(#3)\fi\@OUTPUTVECTOR(#3)}
                     1235
\SCALARMATRIXPRODUCT Scalar-matrix product.
                     1236 \def\@@SCALARMATRIXPRODUCT#1(#2;#3)(#4,#5;#6,#7){%
                                \SCALARVECTORPRODUCT{#1}(#2)(#4,#5)
                     1237
                     1238
                                \SCALARVECTORPRODUCT{#1}(#3)(#6,#7)}
                     1239
                     1240 \def\@@@SCALARMATRIXPRODUCT#1(#2;#3;#4){%
                                \SCALARVECTORPRODUCT{#1}(#2)(\cctr@solAA,\cctr@solAB,\cctr@solAC)
                     1241
                                \SCALARVECTORPRODUCT{#1}(#3)(\cctr@solBA,\cctr@solBB,\cctr@solBC)
                     1242
                                \SCALARVECTORPRODUCT{#1}(#4)(\cctr@solCA,\cctr@solCB,\cctr@solCC)
                     1243
                                \@TDMATRIXSOL}
                     1244
                     1245
                     1246 \def\SCALARMATRIXPRODUCT#1(#2)(#3){%
                     1247
                                 \begingroup
                     1248
                                 \MATRIXSIZE(#2){\cctr@size}
                                 \ifnum\cctr@size=2
                     1249
                     1250
                                    \@@SCALARMATRIXPRODUCT{#1}(#2)(#3)
                     1251
                                 \else \@@GCALARMATRIXPRODUCT{#1}(#2)(#3)\fi\@OUTPUTMATRIX(#3)}
      \MATRIXPRODUCT Product of two matrices.
                     1252 \def\@@MATRIXPRODUCT(#1)(#2,#3;#4,#5)(#6,#7;#8,#9){%
                                \MATRIXVECTORPRODUCT(#1)(#2,#4)(#6,#8)
                     1253
                     1254
                                \MATRIXVECTORPRODUCT(#1)(#3,#5)(#7,#9)}
                     1255
                     1256 \def\@@@MATRIXPRODUCT(#1;#2;#3)(#4){%
                                \VECTORMATRIXPRODUCT(#1)(#4)(\cctr@solAA,\cctr@solAB,\cctr@solAC)
                     1257
                                \VECTORMATRIXPRODUCT(#2)(#4)(\cctr@solBA,\cctr@solBB,\cctr@solBC)
                     1258
                                \VECTORMATRIXPRODUCT(#3)(#4)(\cctr@solCA,\cctr@solCB,\cctr@solCC)
                     1259
                                \@TDMATRIXSOL}
                     1260
                     1261
                     1262 \def\MATRIXPRODUCT(#1)(#2)(#3){%
                                 \begingroup
                     1263
                                 \MATRIXSIZE(#1){\cctr@size}
                     1264
                                 \ifnum\cctr@size=2
                     1265
                                    \@@MATRIXPRODUCT(#1)(#2)(#3)
                     1266
                     1267
                                 \else \@@@MATRIXPRODUCT(#1)(#2)(#3)\fi\@OUTPUTMATRIX(#3)}
```

```
\DETERMINANT Determinant of a matrix.
               1268 \def\@@DETERMINANT(#1,#2;#3,#4)#5{%
               1269
                          \MULTIPLY{#1}{#4}{#5}
                          \MULTIPLY{#2}{#3}{\cctr@tempa}
               1270
                          \SUBTRACT{#5}{\cctr@tempa}{#5}}
               1271
               1272
               1273 \def\@@@DETERMINANT(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                          \DETERMINANT(#5,#6;#8,#9){\cctr@det}\MULTIPLY{#1}{\cctr@det}{\cctr@sol}
               1274
                          \DETERMINANT(#6,#4;#9,#7){\cctr@det}\MULTIPLY{#2}{\cctr@det}{\cctr@det}
               1275
                                                             \ADD{\cctr@sol}{\cctr@det}{\cctr@sol}
               1276
                          \DETERMINANT(#4,#5;#7,#8){\cctr@det}\MULTIPLY{#3}{\cctr@det}{\cctr@det}
               1277
                                                             \ADD{\cctr@sol}{\cctr@det}{\cctr@sol}
               1278
                          \@NUMBERSOL}
               1279
               1280
               1281 \def\DETERMINANT(#1)#2{%
                           \begingroup
               1282
                           \MATRIXSIZE(#1){\cctr@size}
               1283
                           \ifnum\cctr@size=2
               1284
               1285
                              \@@DETERMINANT(#1){#2}
               1286
                           \else \@@@DETERMINANT(#1){#2}\fi\@OUTPUTSOL{#2}}
\INVERSEMATRIX Inverse of a matrix.
               1287 \def\@@INVERSEMATRIX(#1,#2;#3,#4)(#5,#6;#7,#8){%
                          \ifdim \cctr@@det\p@ <\cctr@epsilon % Matrix is singular
               1288
                             \let#5\undefined
               1289
                             \let#6\undefined
               1290
               1291
                             \let#7\undefined
               1292
                             \let#8\undefined
                             \cctr@Warnsingmatrix{#1}{#2}{#3}{#4}%
               1293
                          \else \COPY{#1}{#8}
               1294
                             \COPY{#4}{#5}
               1295
                             \MULTIPLY{-1}{#3}{#7}
               1296
                             \MULTIPLY{-1}{#2}{#6}
               1297
                             \DIVIDE{1}{\cctr@det}{\cctr@det}
               1298
               1299
                             \SCALARMATRIXPRODUCT{\cctr@det}(#5,#6;#7,#8)(#5,#6;#7,#8)
                          \fi}
               1300
               1301
               1302 \def\@@@INVERSEMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                                 \ifdim \cctr@@det\p@ <\cctr@epsilon % Matrix is singular
               1303
               1304
                             \@TDMATRIXNOSOL(\cctr@solAA,\cctr@solAB,\cctr@solAC;
               1305
                                              \cctr@solBA,\cctr@solBB,\cctr@solBC;
                                              \cctr@solCA,\cctr@solCB,\cctr@solCC)
               1306
                             \cctr@WarnsingTDmatrix{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}%
               1307
                          \else
               1308
                             \@ADJMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9)
               1309
                             \@SCLRDIVVECT{\cctr@det}(\cctr@solAA,\cctr@solAB,\cctr@solAC)(%
               1310
                                                        \cctr@solAA,\cctr@solAB,\cctr@solAC)
               1311
               1312
                             \@SCLRDIVVECT{\cctr@det}(\cctr@solBA,\cctr@solBB,\cctr@solBC)(%
                                                        \cctr@solBA,\cctr@solBB,\cctr@solBC)
               1313
               1314
                             \@SCLRDIVVECT{\cctr@det}(\cctr@solCA,\cctr@solCB,\cctr@solCC)(%
```

```
1316
                               \fi
                               \@@TDMATRIXSOL}
                   1317
                   1318
                       \def\@SCLRDIVVECT#1(#2,#3,#4)(#5,#6,#7){%
                   1319
                                     \DIVIDE{#2}{#1}{#5}\DIVIDE{#3}{#1}{#6}\DIVIDE{#4}{#1}{#7}}
                   1320
                   1321
                   1322
                       \def\@ADJMATRIX(#1,#2,#3;#4,#5,#6;#7,#8,#9){%
                   1323
                                  \DETERMINANT(#5,#6;#8,#9){\cctr@solAA}
                                  \DETERMINANT(#6,#4;#9,#7){\cctr@solBA}
                   1324
                                  \DETERMINANT(#4,#5;#7,#8){\cctr@solCA}
                   1325
                                  \DETERMINANT(#8, #9; #2, #3) {\cctr@solAB}
                   1326
                                  \DETERMINANT(#1,#3;#7,#9){\cctr@solBB}
                   1327
                   1328
                                  \DETERMINANT(#2,#1;#8,#7){\cctr@solCB}
                                  \DETERMINANT(#2,#3;#5,#6){\cctr@solAC}
                   1329
                                  \DETERMINANT(#3,#1;#6,#4){\cctr@solBC}
                   1330
                                  \DETERMINANT(#1,#2;#4,#5){\cctr@solCC}}
                   1331
                   1332
                   1333 \def\INVERSEMATRIX(#1)(#2){%
                   1334
                                \begingroup
                   1335
                                \DETERMINANT(#1){\cctr@det}
                   1336
                                \ABSVALUE{\cctr@det}{\cctr@det}
                                \MATRIXSIZE(#1){\cctr@size}
                   1337
                                \ifnum\cctr@size=2
                   1338
                                   \@@INVERSEMATRIX(#1)(#2)
                   1339
                   1340
                                \else
                                   \@@@INVERSEMATRIX(#1)(#2)\fi\@OUTPUTMATRIX(#2)}
                   1341
\SOLVELINEARSYSTEM Solving a linear system (two equations and two unknowns or three equations and three un-
                     knowns).
                   1342 \def\@INCSYS#1#2{\cctr@WarnIncLinSys
                   1343
                               \let#1\undefined\let#2\undefined}
                   1344
                   1345 \def\@SOLPART#1#2#3#4{\cctr@WarnIndLinSys
                                               \DIVIDE{#1}{#2}{#3}
                   1346
                   1347
                                               \COPY{0}{#4}}
                   1348
                   1349 \def\@TDINCSYS(#1,#2,#3){\cctr@WarnIncTDLinSys
                                                  \let#1\undefined
                   1350
                   1351
                                                  \let#2\undefined
                                                  \let#3\undefined}
                   1352
                   1353
                   1354 \def\@@SOLVELINEARSYSTEM(#1, #2; #3, #4)(#5, #6)(#7, #8){%
                                \DETERMINANT(#1,#2;#3,#4)\cctr@deta
                   1355
                   1356
                                \DETERMINANT(#5,#2;#6,#4)\cctr@detb
                   1357
                                \DETERMINANT(#1,#5;#3,#6)\cctr@detc
                                \ABSVALUE{\cctr@deta}{\cctr@deta}
                   1358
                                \ABSVALUE{\cctr@detb}{\cctr@detb}
                   1359
                                \ABSVALUE{\cctr@detc}{\cctr@detc}
                   1360
                                \ifdim \cctr@@deta\p@>\cctr@epsilon% Regular matrix. Determinate system
                   1361
```

\cctr@solCA,\cctr@solCB,\cctr@solCC)

1315

```
\DIVIDE{\cctr@detb}{\cctr@deta}{#7}
1362
               \DIVIDE{\cctr@detc}{\cctr@deta}{#8}
1363
            \else % Singular matrix
                                          \cctr@deta=0
1364
               \ifdim \cctr@@detb\p@>\cctr@epsilon% Incompatible system
1365
                   \@INCSYS#7#8
1366
               \else
1367
                   \ifdim \cctr@@detc\p@>\cctr@epsilon% Incompatible system
1368
1369
                      \@INCSYS#7#8
1370
                   \else
                      \MATRIXABSVALUE(#1,#2;#3,#4)(\cctr@tempa,\cctr@tempb;
1371
                                                     \cctr@tempc,\cctr@tempd)
1372
                      \ifdim \cctr@tempa\p@ > \cctr@epsilon
1373
                                                      % Indeterminate system
1374
                         \@SOLPART{#5}{#1}{#7}{#8}
1375
1376
                      \else
                         \ifdim \cctr@tempb\p@ > \cctr@epsilon
1377
                                                      % Indeterminate system
1378
                            \@SOLPART{#5}{#2}{#8}{#7}
1379
                         \else
1380
                            \ifdim \cctr@tempc\p@ > \cctr@epsilon
1381
1382
                                                      % Indeterminate system
1383
                                \@SOLPART{#6}{#3}{#7}{#8}
                            \else
1384
                                \ifdim \cctr@tempd\p@ > \cctr@epsilon
1385
                                                      % Indeterminate system
1386
                                   \@SOLPART{#6}{#4}{#8}{#7}
1387
                                \else
1388
                                   \VECTORNORM(#5,#6){\cctr@tempa}
1389
                                   \ifdim \cctr@tempa\p@ > \cctr@epsilon
1390
                                                      % Incompatible system
1391
                                      \@INCSYS#7#8
1392
                                   \else
1393
                                         \cctr@WarnZeroLinSys
1394
1395
                                         \COPY{0}{#7}\COPY{0}{#8}
1396
                                                      % 0x=0 Indeterminate system
            \fi\fi\fi\fi\fi\fi\fi\fi\
1397
1398
1399 \def\@@@SOLVELINEARSYSTEM(#1)(#2)(#3){%
           \DETERMINANT(#1){\cctr@det}
1400
           \ABSVALUE{\cctr@det}{\cctr@det}
1401
1402
           \ifdim\cctr@@det\p@<\cctr@epsilon
              \@TDINCSYS(#3)
1403
1404
                  \@ADJMATRIX(#1)
1405
                  \MATRIXVECTORPRODUCT(\cctr@solAA,\cctr@solAB,\cctr@solAC;
1406
                                        \cctr@solBA,\cctr@solBB,\cctr@solBC;
1407
                                        \cctr@solCA,\cctr@solCB,\cctr@solCC)(#2)(#3)
1408
1409
                  \@SCLRDIVVECT{\cctr@det}(#3)(#3)
              \fi}
1410
1411
```

```
1412 \def\SOLVELINEARSYSTEM(#1)(#2)(#3){%
1413 \begingroup
1414 \MATRIXSIZE(#1){\cctr@size}
1415 \ifnum\cctr@size=2
1416 \@@SOLVELINEARSYSTEM(#1)(#2)(#3)
1417 \else
1418 \@@GSOLVELINEARSYSTEM(#1)(#2)(#3)
1419 \fi\@OUTPUTVECTOR(#3)}
```

Predefined numbers

```
\numberPI The number \pi
                   1420 \def\numberPI{3.14159}
      \numberTWOPI 2\pi
                  1421 \MULTIPLY{\numberPI}{2}{\numberTWOPI}
     \numberHALFPI \pi/2
                   1422 \DIVIDE{\numberPI}{2}{\numberHALFPI}
\numberTHREEHALFPI 3\pi/2
                   1423 \MULTIPLY{\numberPI}{1.5}{\numberTHREEHALFPI}
    \numberTHIRDPI \pi/3
                   1424 \DIVIDE{\numberPI}{3}{\numberTHIRDPI}
  \numberQUARTERPI \pi/4
                   1425 \DIVIDE{\numberPI}{4}{\numberQUARTERPI}
    \numberFIFTHPI \pi/5
                  1426 \DIVIDE{\numberPI}{5}{\numberFIFTHPI}
    \numberSIXTHPI \pi/6
                   1427 \DIVIDE{\numberPI}{6}{\numberSIXTHPI}
          \numberE The number e
                   1428 \def\numberE{2.71828}
       \numberINVE 1/e
                   1429 \DIVIDE{1}{\numberE}{\numberINVE}
       \mbox{\colored}
                   1430 \SQUARE{\numberE}{\numberETWO}
    \numberINVETWO 1/e^2
                   1431 \SQUARE{\numberINVE}{\numberINVETWO}
     \numberLOGTEN \log 10
                   1432 \def\numberLOGTEN{2.30258}
```

14 calculus

This package requires the calculator package. 1444 RequirePackage{calculator}

14.1 Error and info messages

For scalar functions

Error message to be issued when you attempt to define, with **\newfunction**, an already defined command:

```
1445 \def\ccls@ErrorFuncDef#1{%
1446 \PackageError{calculus}%
1447 {\noexpand#1 command already defined}
1448 {The \noexpand#1 control sequence is already defined\MessageBreak
1449 If you want to redefine the \noexpand#1 command as a
1450 function\MessageBreak
1451 please, use the \noexpand\renewfunction command}}
```

Error message to be issued when you attempt to redefine, with \renewfunction, an undefined command:

```
1452 \def\ccls@ErrorFuncUnDef#1{%
1453 \PackageError{calculus}%
```

```
1454
            {\noexpand#1 command undefined}
1455
            {The \noexpand#1 control sequence is not currently defined\MessageBreak
             If you want to define the \noexpand#1 command as a function\MessageBreak
1456
             please, use the \noexpand\newfunction command}}
1457
 Info message to be issued when \ensurefunction does not changes an already defined command:
1458 \def\ccls@InfoFuncEns#1{%
          \PackageInfo{calculus}%
1459
          {\noexpand#1 command already defined\MessageBreak
1460
           the \noexpand\ensurefunction command will not redefine it}}
1461
 For polar functions
1462 \def\ccls@ErrorPFuncDef#1{%
          \PackageError{calculus}%
1463
1464
            {\noexpand#1 command already defined}
            {The \noexpand#1 control sequence is already defined\MessageBreak
1465
1466
             If you want to redefine the \noexpand#1
1467
             command as a polar function\MessageBreak
1468
             please, use the \noexpand\renewpolarfunction command}}
1469
1470 \def\ccls@ErrorPFuncUnDef#1{%
          \PackageError{calculus}%
1471
            {\noexpand#1 command undefined}
1472
1473
            {The \noexpand#1 control sequence
1474
             is not currently defined.\MessageBreak
             If you want to define the \noexpand#1 command as a polar
1475
1476
             function\MessageBreak
             please, use the \noexpand\newpolarfunction command}}
1477
1478
1479 \def\ccls@InfoPFuncEns#1{%
1480
          \PackageInfo{calculus}%
1481
          {\noexpand#1 command already defined\MessageBreak
           the \noexpand\ensurepolarfunction command does not redefine it}}
 For vector functions
1483 \def\ccls@ErrorVFuncDef#1{%
1484
          \PackageError{calculus}%
1485
            {\noexpand#1 command already defined}
            {The \noexpand#1 control sequence is already defined\MessageBreak
1486
             If you want to redefine the \noexpand#1 command as a vector
1487
1488
             function\MessageBreak
1489
             please, use the \noexpand\renewvectorfunction command}}
1490
1491 \def\ccls@ErrorVFuncUnDef#1{%
          \PackageError{calculus}%
1492
            {\noexpand#1 command undefined}
1493
1494
            {The \noexpand#1 control sequence is not currently
1495
             defined.\MessageBreak
1496
             If you want to define the \noexpand#1 command as a vector
```

1497

function\MessageBreak

```
1498 please, use the \noexpand\newvectorfunction command}}
1499
1500 \def\ccls@InfoVFuncEns#1{%
1501 \PackageInfo{calculus}%
1502 {\noexpand#1 command already defined\MessageBreak
1503 the \noexpand\ensurevectorfunction command does not redefine it}}
```

14.2 New functions

New scalar functions

\newfunction The \newfunction{#1}{#2} instruction defines a new function called #1. #2 is the list of instructions to calculate the function \y and his derivative \Dy from the \t variable.

```
1504 \def\newfunction#1#2{%
1505 \ifx #1\undefined
1506 \ccls@deffunction{#1}{#2}
1507 \else
1508 \ccls@ErrorFuncDef{#1}
1509 \fi}
```

\renewfunction \renewfunction redefines #1, as a new function, if this command is already defined.

```
1510 \def\renewfunction#1#2{%
1511 \ifx #1\undefined
1512 \ccls@ErrorFuncUnDef{#1}
1513 \else
1514 \ccls@deffunction{#1}{#2}
1515 \fi}
```

\ensurefunction \ensurefunction defines the new function #1 (only if this macro is undefined).

```
1516 \def\ensurefunction#1#2{%

1517 \ifx #1\undefined\ccls@deffunction{#1}{#2}

1518 \else

1519 \ccls@InfoFuncEns{#1}

1520 \fi}
```

\forcefunction \forcefunction defines (if undefined) or redefines (if defined) the new function #1.

```
1521 \def\forcefunction#1#2{%
1522 \ccls@deffunction{#1}{#2}}
```

\ccls@deffunction The private \ccls@deffunction command makes the real work. The new functions will have three arguments: ##1, a number, ##2, the value of the new function in that number, and ##3, the derivative.

```
1523 \def\ccls@deffunction#1#2{%
1524 \def#1##1#2##3{%
1525 \begingroup
1526 \def\t{##1}%
1527 #2
1528 \xdef##2{\y}%
1529 \xdef##3{\Dy}%
1530 \endgroup\\ignorespaces}
```

New polar functions

\newpolarfunction The \newpolarfunction{#1}{#2} instruction defines a new polar function called #1. #2 is the list of instructions to calculate the radius \r and his derivative \Dr from the \t arc variable.

```
1531 \def\newpolarfunction#1#2{%
                                \ifx #1\undefined
                    1532
                                  \ccls@defpolarfunction{#1}{#2}
                    1533
                    1534
                    1535
                                   \ccls@ErrorPFuncDef{#1}
                                \fi}
                    1536
\renewpolarfunction \renewpolarfunction redefines #1 if already defined.
                    1537 \def\renewpolarfunction#1#2{%
                                \ifx #1\undefined
                                   \ccls@ErrorPFuncUnDef{#1}
                    1539
                    1540
                                   \ccls@defpolarfunction{#1}{#2}
                    1541
                                \fi}
                    1542
```

 $\ensuremath{\verb{Vensurepolarfunction}}$ defines (only if undefined) #1.

```
1543 \def\ensurepolarfunction#1#2{%

1544 \ifx #1\undefined\ccls@defpolarfunction{#1}{#2}

1545 \else

1546 \ccls@InfoPFuncEns{#1}

1547 \fi}
```

\forcepolarfunction \forcepolarfunction defines (if undefined) or redefines (if defined) #1.

```
1548 \def\forcepolarfunction#1#2{%
1549 \ccls@defpolarfunction{#1}{#2}}
```

\ccls@defpolarfunction

The private \ccls@defpolarfunction command makes the real work. The new functions will have three arguments: ##1, a number (the polar radius), ##2, ##3, ##4, and ##5, the x and y component functions and its derivatives at ##1.

```
1550 \def\ccls@defpolarfunction#1#2{%
             \def#1##1##2##3##4##5{%
1551
             \begingroup
1552
               \left\{ t\left\{ \#1\right\} \right\}
1553
1554
             \COS{\t}\ccls@cost
1555
             \MULTIPLY\r\ccls@cost{\x}
1556
1557
             \SIN{\t}\ccls@sint
1558
             \MULTIPLY\r\ccls@sint{\y}
             \MULTIPLY\ccls@cost\Dr\Dx
1559
             \SUBTRACT\{Dx}\{\y\}\{Dx\}
1560
             \MULTIPLY\ccls@sint\Dr\Dy
1561
             \Delta D\{D_{x}_{x}_{Dy}\}
1562
             \xdef##2{\x}
1563
             \xdef##3{\Dx}
1564
             \xdef##4{\y}
1565
             \xdef##5{\Dy}
1566
             \endgroup}\ignorespaces}
1567
```

New vector functions

\newvectorfunction The \newvectorfunction{#1}{#2} instruction defines a new vector (parametric) function called #1. #2 is the list of instructions to calculate \x, \y, \Dx and \Dy from the \t arc variable.

```
1568 \def\newvectorfunction#1#2{%
1569    \ifx #1\undefined
1570    \ccls@defvectorfunction{#1}{#2}
1571    \else
1572    \ccls@ErrorVFuncDef{#1}
1573    \fi}
```

\renewvectorfunction \renewvectorfunction redefines #1 if already defined.

```
1574 \def\renewvectorfunction#1#2{%
1575 \ifx #1\undefined
1576 \ccls@ErrorVFuncUnDef{#1}
1577 \else
1578 \ccls@defvectorfunction{#1}{#2}
1579 \fi}
```

\ensurevectorfunction \ensurevectorfunction defines (only if undefined) #1.

```
1580 \def\ensurevectorfunction#1#2{%
1581 \ifx #1\undefined\ccls@defvectorfunction{#1}{#2}
1582 \else
1583 \ccls@InfoVFuncEns{#1}
1584 \fi}
```

\forcevectorfunction \forcevectorfunction defines (if undefined) or redefines (if defined) #1.

```
1585 \def\forcevectorfunction#1#2{%
1586 \ccls@defvectorfunction{#1}{#2}}
```

\ccls@defvectorfunction

The private $\ccls@defvectorfunction$ command makes the real work. The new functions will have three arguments: ##1, a number, ##2, ##3, ##4, and ##5, the x and y component functions and its derivatives at ##1.

```
1587 \def\ccls@defvectorfunction#1#2{%
             \def#1##1##2##3##4##5{%
1588
             \begingroup
1589
                \left\{ t\left\{ \#1\right\} \right\}
1590
1591
             \xdef##2{\x}
1592
             \xdef##3{\Dx}
1593
             \xdef##4{\y}
1594
             \xdef##5{\Dy}
1595
1596
             \endgroup}\ignorespaces}
```

14.3 Polynomials

Linear (first degreee) polynomials

\newlpoly The \newlpoly{#1}{#2}{#3} instruction defines the linear polynomial

```
#1 = #2 + #3t.
             1597 \def\newlpoly#1#2#3{%
             1598
                     \newfunction{#1}{%
             1599
                         \ccls@lpoly{#2}{#3}}}
             We define also the \renewlpoly, \ensurelpoly and \forcelpoly variants.
 \renewlpoly
             1600 \def\renewlpoly#1#2#3{%
                     \renewfunction{#1}{%
             1601
             1602
                         \ccls@lpoly{#2}{#3}}}
\ensurelpoly
             1603 \def\ensurelpoly#1#2#3{%
                     \ensurefunction{#1}{%
             1605
                         \ccls@lpoly{#2}{#3}}}
 \forcelpoly
             1606 \def\forcelpoly#1#2#3{%
                     \forcefunction{#1}{%
             1607
             1608
                         \ccls@lpoly{#2}{#3}}}
 \ccls@lpoly
              The \ccls@lpoly{#1}{#2} macro defines the new polynomial function.
             1609 \def\ccls@lpoly#1#2{%
                         MULTIPLY{#2}{\t}{\y}
             1610
             1611
                         \Delta DD\{\y\}\{\#1\}\{\y\}
                         \COPY{#2}{\Dy}}
             1612
              Quadratic polynomials
              The \newqpoly{#1}{#2}{#3}{#4} instruction defines the quadratic polynomial
   \newqpoly
                  #1 = #2 + #3t + #4t^2.
             1613 \def\newqpoly#1#2#3#4{%
             1614
                     \newfunction{#1}{%
             1615
                         \ccls@qpoly{#2}{#3}{#4}}}
 \renewqpoly
             1616 \def\renewqpoly#1#2#3#4{%
                     \renewfunction{#1}{%
             1617
             1618
                         \ccls@qpoly{#2}{#3}{#4}}}
\ensureqpoly
             1619 \def\ensureqpoly#1#2#3#4{%
             1620
                     \ensurefunction{#1}{%
             1621
                         \ccls@qpoly{#2}{#3}{#4}}}
 \forceqpoly
             1622 \def\forceqpoly#1#2#3#4{%
                     \forcefunction{#1}{%
             1623
             1624
                         \ccls@qpoly{#2}{#3}{#4}}}
```

```
\ccls@qpoly The \ccls@qpoly{#1}{#2} macro defines the new polynomial function.
             1625 \def\ccls@qpoly#1#2#3{%
             1626
                          MULTIPLY{\t}{#3}{\y}
                              \MULTIPLY{2}{\y}{\Dy}
             1627
                              \Delta DD{\#2}{Dy}{Dy}
             1628
             1629
                          \ADD{#2}{\y}{\y}
             1630
                           \MULTIPLY{\t}{\y}{\y}
                          \ADD{#1}{\y}{\y}
             1631
               Cubic polynomials
               The \newcpoly{#1}{#2}{#3}{#4}{#5} instruction defines the cubic polynomial
   \newcpoly
                   #1 = #2 + #3t + #4t^2 + #5t^3.
             1632 \ensuremath{ \mbox{ lef}\mbox{ newcpoly#1#2#3#4#5{\mathcal{newcpoly}}}
                      \newfunction{#1}{%
             1633
             1634
                          \ccls@cpoly{#2}{#3}{#4}{#5}}}
 \renewcpoly
             1635 \def\renewcpoly#1#2#3#4#5{%
                      \renewfunction{#1}{%
             1636
                           \ccls@cpoly{#2}{#3}{#4}{#5}}}
             1637
\ensurecpoly
             1638 \def\ensurecpoly#1#2#3#4#5{%
             1639
                      \ensurefunction{#1}{%
             1640
                          \ccls@cpoly{#2}{#3}{#4}{#5}}}
 \forcecpoly
             1641 \def\forcecpoly#1#2#3#4#5{%
             1642
                      \forcefunction{#1}{%
             1643
                          \ccls@cpoly{#2}{#3}{#4}{#5}}}
 \ccls@cpoly The \ccls@cpoly{#1}{#2} macro defines the new polynomial function.
             1644 \ensuremath{\mbox{def\ccls@cpoly#1#2#3#4{\%}}
             1645
                          MULTIPLY{\t}{\#4}{\y}
             1646
                              MULTIPLY{3}{\y}{\Dy}
                           \ADD{#3}{\y}{\y}
             1647
                              \MULTIPLY{2}{#3}{\ccls@temp}
             1648
                              \ADD{\ccls@temp}{\Dy}{\Dy}
             1649
                          \MULTIPLY{\t}{\y}{\y}
             1650
                              \MULTIPLY{\t}{\Dy}{\Dy}
             1651
             1652
                           \ADD{#2}{\y}{\y}
                              \Delta DD{\#2}{Dy}{Dy}
             1653
                          \MULTIPLY{\t}{\y}{\y}
             1654
                           \ADD{#1}{\y}{\y}
             1655
```

}

1656

14.4 Elementary functions

```
\ONEfunction The \ONEfunction: y(t) = 1, y'(t) = 0
                    1657 \newfunction{\ONEfunction}{%
                              \COPY{1}{\v}
                    1659
                               \COPY{0}{\Dy}}
      \ZEROfunction The \ZEROfunction: y(t) = 0, y'(t) = 0
                    1660 \newfunction{\ZEROfunction}{%
                    1661
                              \COPY{0}{\y}
                    1662
                              \COPY{0}{\Dy}}
  \IDENTITY function The \IDENTITY function: y(t) = t, y'(t) = 1
                    1663 \newfunction{\IDENTITYfunction}{%
                    1664
                               \COPY{\t}{\y}
                    1665
                              \COPY{1}{\Dy}}
\RECIPROCALfunction The \RECIPROCALfunction: y(t) = 1/t, y'(t) = -1/t^2
                    1666 \newfunction{\RECIPROCALfunction}{%
                              \DIVIDE{1}{\t}{\y}
                    1667
                    1668
                               \SQUARE{\y}{\Dy}
                               MULTIPLY{-1}{Dy}{Dy}}
                    1669
    \SQUAREfunction The \SQUAREfunction: y(t) = t^2, y'(t) = 2t
                    1670 \newfunction{\SQUAREfunction}{%
                               \SQUARE{\t}{\y}
                    1671
                    1672
                              MULTIPLY{2}{\t}{\Dy}}
      \CUBEfunction The \CUBEfunction: y(t)=t^3, \ y'(t)=3t^2
                    1673 \newfunction{\CUBEfunction}{%
                    1674
                              \SQUARE{\t}{\Dy}
                    1675
                               MULTIPLY{\t}{\Dy}{\y}
                    1676
                               \MULTIPLY{3}{\Dy}{\Dy}}
      \SQRTfunction The \SQRTfunction: y(t) = \sqrt{t}, \ y'(t) = 1/(2\sqrt{t})
                    1677 \newfunction{\SQRTfunction}{%
                              \SQRT{\t}{\y}
                    1678
                              \DIVIDE{0.5}{\y}{\Dy}}
                    1679
       \EXPfunction The \EXPfunction: y(t) = \exp t, y'(t) = \exp t
                    1680 \newfunction{\EXPfunction}{%
                    1681
                              \EXP{\t}{\y}
                    1682
                              \COPY{\y}{\Dy}}
       \COSfunction The \COSfunction: y(t) = \cos t, y'(t) = -\sin t
                    1683 \newfunction{\COSfunction}{%
                    1684
                              \COS\{\t\}\{\y\}
                              SIN{t}{Dy}
                    1685
                              \MULTIPLY{-1}{\Dy}{\Dy}}
                    1686
```

```
\SINfunction The \SINfunction: y(t) = \sin t, y'(t) = \cos t
              1687 \newfunction{\SINfunction}{%
              1688
                        SIN{\t}{\y}
              1689
                        \COS\{\t\}\{\Dy\}\}
 \TANfunction The \TANfunction: y(t) = \tan t, y'(t) = 1/(\cos t)^2
              1690 \newfunction{\TANfunction}{%
                        TAN{\t}{\y}
              1691
                        \COS{\t}{\Dy}
              1692
              1693
                        \SQUARE{\Dy}{\Dy}
              1694
                        \DIVIDE{1}{\Dy}{\Dy}}
 \COTfunction The \COTfunction: y(t) = \cot t, \ y'(t) = -1/(\sin t)^2
              1695 \newfunction{\COTfunction}{%
                        \COTAN{\t}{\y}
              1696
                        SIN{t}{Dy}
              1697
              1698
                        \SQUARE{\Dy}{\Dy}
              1699
                        \DIVIDE{-1}{\Dy}{\Dy}}
\COSHfunction The \COSHfunction: y(t) = \cosh t, y'(t) = \sinh t
              1700 \newfunction{\COSHfunction}{%
              1701
                        \COSH\{\t\}\{\y\}
              1702
                        \SINH{\t}_{Dy}}
\SINHfunction The \SINHfunction: y(t) = \sinh t, y'(t) = \cosh t
              1703 \newfunction{\SINHfunction}{%
              1704
                        SINH{\t}{\y}
              1705
                        \COSH\{\t\}\{\Dy\}\}
\TANHfunction The \TANHfunction: y(t) = \tanh t, y'(t) = 1/(\cosh t)^2
              1706 \newfunction{\TANHfunction}{%
              1707
                        TANH{t}{y}
              1708
                        \COSH{\t}{\Dy}
                        \SQUARE{\Dy}{\Dy}
              1709
              1710
                        \DIVIDE{1}{\Dy}{\Dy}}
\COTHfunction The \COTHfunction: y(t) = \coth t, y'(t) = -1/(\sinh t)^2
              1711 \newfunction{\COTHfunction}{%
                        \COTANH{\t}{\y}
              1712
              1713
                        SINH{\t}_{Dy}
                        \SQUARE{\Dy}{\Dy}
              1714
                        \label{eq:divide} $$ \Dy}{\Dy}{\Dy}$
              1715
 \LOGfunction The \LOGfunction: y(t) = \log t, y'(t) = 1/t
              1716 \newfunction{\LOGfunction}{%
                        LOG\{\t\}\{\y\}
              1717
                        DIVIDE{1}{\t}{\Dy}}
              1718
```

```
 \label{eq:heavisidefunction} \mbox{ The `HEAVISIDE function: } y(t) = \begin{cases} 0 & \mbox{if } t < 0 \\ 1 & \mbox{if } t \geq 0 \end{cases}, \ y'(t) = 0 
                      1719 \newfunction{\HEAVISIDEfunction}{%
                                 \label{local_copy_0} $$  \ifdim \t\p@<\z@ \COPY_0_{\y}\le\COPY_1_{\y}\fi
                      1720
                      1721
                                  \COPY{0}{\Dy}}
   \ARCSINfunction The \ARCSINfunction: y(t) = \arcsin t, y'(t) = 1/\sqrt{1-t^2}
                      1722 \newfunction{\ARCSINfunction}{%
                      1723
                                \ARCSIN{\{t\}\{\}\}}
                                 \SQUARE{\t}{\yy}
                      1724
                                 \SUBTRACT{1}{\yy}{\yy}
                      1725
                      1726
                                 \SQRT{\yy}{\Dy}
                      1727
                                 DIVIDE{1}{Dy}{Dy}}
   \arccosfunction The \arccosfunction: y(t) = \arccos t, \ y'(t) = -1/\sqrt{1-t^2}
                      1728 \newfunction{\ARCCOSfunction}{%
                                 \ARCCOS{\t}{\y}
                      1729
                                 \SQUARE{\t}{\yy}
                      1730
                                 \SUBTRACT{1}{\yy}{\yy}
                      1731
                      1732
                                 \SQRT{\yy}{\Dy}
                      1733
                                 DIVIDE\{-1\}\{Dy\}\{Dy\}\}
   \ARCTANfunction The \ARCTANfunction: y(t) = \arctan t, y'(t) = 1/(1+t^2)
                      1734 \newfunction{\ARCTANfunction}{%
                      1735
                                 \ARCTAN{\t}{\v}
                                 \SQUARE{\t}{\yy}
                      1736
                      1737
                                 \Delta DD{1}{\yy}{\yy}
                                 \DIVIDE{1}{\yy}{\Dy}}
                      1738
   \ARCCOTfunction The \ARCCOTfunction: y(t) = \operatorname{arccot} t, y'(t) = -1/(1+t^2)
                      1739 \newfunction{\ARCCOTfunction}{%
                      1740
                                 \ARCCOT{\t}{\y}
                      1741
                                 \SQUARE{\t}{\yy}
                                 \ADD{1}{\yy}{\yy}
                      1742
                                DIVIDE{-1}{\yy}{\Dy}}
                      1743
   \ARSINHfunction The \ARSINHfunction: y(t) = \operatorname{arsinh} t, \ y'(t) = 1/\sqrt{1+t^2}
                      1744 \newfunction{\ARSINHfunction}{%
                      1745
                                 \ARSINH{\t}{\y}
                      1746
                                 \SQUARE{\t}{\yy}
                      1747
                                 \Delta DD{1}{\yy}{\yy}
                                 \SQRT{\yy}{\Dy}
                      1748
                                 \DIVIDE{1}{\Dy}{\Dy}}
                      1749
   \arcoshfunction The \arsinhfunction: y(t) = \operatorname{arcosh} t, \ y'(t) = 1/\sqrt{t^2-1}
                      1750 \newfunction{\ARCOSHfunction}{%
                      1751
                                \ARCOSH\{\t\}\{\y\}
```

```
\SQUARE{\t}{\yy}
                  1752
                  1753
                            \SUBTRACT{\yy}{1}{\yy}
                            \SQRT{\yy}{\Dy}
                  1754
                            DIVIDE{1}{Dy}{Dy}}
                  1755
  \artanhfunction The \artanhfunction: y(t) = \operatorname{artanh} t, \ y'(t) = 1/(t^2 - 1)
                  1756 \newfunction{\ARTANHfunction}{%
                  1757
                            \ARTANH\{\t\}\{\y\}
                  1758
                            \SQUARE{\t}{\yy}
                  1759
                            \SUBTRACT{1}{\yy}{\yy}
                  1760
                            DIVIDE{1}{\yy}{\Dy}}
                   The \ARCOTHfunction: y(t) = \operatorname{arcoth} t, y'(t) = 1/(t^2 - 1)
                  1761 \newfunction{\ARCOTHfunction}{%
                  1762
                            \ARCOTH{\t}{\y}
                  1763
                            \SQUARE{\t}{\yy}
                            \SUBTRACT{1}{\yy}{\yy}
                  1764
                  1765
                            DIVIDE{1}{\yy}{\Dy}}
                            Operations with functions
                    14.5
\CONSTANTfunction \CONSTANTfunction defines #2 as the constant function f(t) = \#1.
                  1766 \def\CONSTANTfunction#1#2{%
                                     \def#2##1##2##3{%
                  1767
                                                  \xdef##2{#1}%
                  1768
                  1769
                                                  \xdef##3{0}}
     \SUMfunction \SUMfunction defines \#3 as the sum of functions \#1 and \#2.
                  1770 \def\SUMfunction#1#2#3{%
                  1771
                                   \def#3##1##2##3{%
                  1772
                                    \begingroup
                  1773
                                            #1{##1}{\ccls@SUMf}{\ccls@SUMDf}%
                                            #2{##1}{\ccls@SUMg}{\ccls@SUMDg}%
                  1774
                                            \ADD{\ccls@SUMf}{\ccls@SUMg}{\ccls@SUMfg}
                  1775
                                            \ADD{\ccls@SUMDf}{\ccls@SUMDg}{\ccls@SUMDfg}
                  1776
                                                 \xdef##2{\ccls@SUMfg}%
                  1777
                                                 \xdef##3{\ccls@SUMDfg}%
                  1778
                                    \endgroup}\ignorespaces}
                  1779
\SUBTRACTfunction \SUBTRACTfunction defines #3 as the difference of functions #1 and #2.
                      \def\SUBTRACTfunction#1#2#3{%
                  1780
                  1781
                                   \def#3##1##2##3{%
                  1782
                                    \begingroup
                                            #1{##1}{\ccls@SUBf}{\ccls@SUBDf}%
                  1783
                                            #2{##1}{\ccls@SUBg}{\ccls@SUBDg}%
                  1784
                                            \SUBTRACT{\ccls@SUBf}{\ccls@SUBg}{\ccls@SUBfg}
                  1785
                                            \SUBTRACT{\ccls@SUBDf}{\ccls@SUBDg}{\ccls@SUBDfg}
                  1786
                  1787
                                                 \xdef##2{\ccls@SUBfg}%
                  1788
                                                 \xdef##3{\ccls@SUBDfg}%
                                    \endgroup}\ignorespaces}
                  1789
```

```
\PRODUCTfunction \PRODUCTfunction defines #3 as the product of functions #1 and #2.
                     1790 \def\PRODUCTfunction#1#2#3{%
                                      \def#3##1##2##3{%
                     1791
                     1792
                                       \begingroup
                                              #1{##1}{\ccls@PROf}{\ccls@PRODf}%
                     1793
                                              #2{##1}{\ccls@PROg}{\ccls@PRODg}%
                     1794
                     1795
                                              \MULTIPLY{\ccls@PROf}{\ccls@PROg}{\ccls@PROfg}
                                              \MULTIPLY{\ccls@PROf}{\ccls@PRODg}{\ccls@PROfDg}
                     1796
                                              \MULTIPLY{\ccls@PRODf}{\ccls@PROg}{\ccls@PRODfg}
                     1797
                                              \ADD{\ccls@PROfDg}{\ccls@PRODfg}{\ccls@PRODfg}
                     1798
                                                   \xdef##2{\ccls@PROfg}%
                     1799
                                                   \xdef##3{\ccls@PRODfg}%
                     1800
                                       \endgroup}\ignorespaces}
                     1801
   \QUOTIENTfunction \QUOTIENTfunction defines \#3 as the quotient of functions \#1 and \#2.
                     1802 \def\QUOTIENTfunction#1#2#3{%
                                     \def#3##1##2##3{%
                     1803
                     1804
                                       \begingroup
                                              #1{##1}{\ccls@QUOf}{\ccls@QUODf}%
                     1805
                                              #2{##1}{\ccls@QUOg}{\ccls@QUODg}%
                     1806
                                              \DIVIDE{\ccls@QUOf}{\ccls@QUOg}{\ccls@QUOfg}
                     1807
                                              \MULTIPLY{\ccls@QUOf}{\ccls@QUODg}{\ccls@QUOfDg}
                     1808
                                              \MULTIPLY{\ccls@QUODf}{\ccls@QUOg}{\ccls@QUODfg}
                     1809
                     1810
                                              \SUBTRACT{\ccls@QUODfg}{\ccls@QUOfDg}{\ccls@QUOnum}
                                              \SQUARE{\ccls@QUOg}{\ccls@qsquaretempg}
                     1811
                                              \DIVIDE{\ccls@QUOnum}{\ccls@qsquaretempg}{\ccls@QUODfg}
                     1812
                                                   \xdef##2{\ccls@QUOfg}%
                     1813
                                                   \xdef##3{\ccls@QUODfg}%
                     1814
                                       \endgroup}\ignorespaces}
                     1815
                      \COMPOSITIONfunction defines \#3 as the composition of functions \#1 and \#2.
\COMPOSITIONfunction
                     1816 \def\COMPOSITIONfunction#1#2#3{% #3=#1(#2)
                                      \def#3##1##2##3{%
                     1817
                                       \begingroup
                     1818
                                              #2{##1}{\ccls@COMg}{\ccls@COMDg}%
                     1819
                                              #1{\ccls@COMg}{\ccls@COMf}{\ccls@COMDf}%
                     1820
                                              \MULTIPLY{\ccls@COMDg}{\ccls@COMDf}{\ccls@COMDf}
                     1821
                                                   \xdef##2{\ccls@COMf}%
                     1822
                     1823
                                                   \xdef##3{\ccls@COMDf}%
                                       \endgroup}\ignorespaces}
                     1824
      \SCALEfunction \SCALEfunction defines #3 as the product of number #1 and function #2.
                     1825 \def\SCALEfunction#1#2#3{%
                                      \def#3##1##2##3{%
                     1826
                                       \begingroup
                     1827
                                              #2{##1}{\ccls@SCFf}{\ccls@SCFDf}%
                     1828
                     1829
                                              \MULTIPLY{#1}{\ccls@SCFf}{\ccls@SCFaf}
                     1830
                                              \MULTIPLY{#1}{\ccls@SCFDf}{\ccls@SCFDaf}
                     1831
                                                   \xdef##2{\ccls@SCFaf}%
                                                   \xdef##3{\ccls@SCFDaf}%
                     1832
```

```
1833
```

\SCALEVARIABLEfunction \SCALEVARIABLEfunction scales the variable by number #1 and aplies function #2.

```
1834 \def\SCALEVARIABLEfunction#1#2#3{%
                 \def#3##1##2##3{%
1835
                  \begingroup%
1836
                         \MULTIPLY{#1}{##1}{\ccls@SCVat}
1837
                         #2{\ccls@SCVat}{\ccls@SCVf}{\ccls@SCVDf}%
1838
                         \MULTIPLY{#1}{\ccls@SCVDf}{\ccls@SCVDf}
1839
                              \xdef##2{\ccls@SCVf}%
1840
                              \xdef##3{\ccls@SCVDf}%
1841
                  \endgroup}\ignorespaces}
1842
```

\POWERfunction \POWERfunction defines #3 as the power of function #1 to exponent #2.

```
1843 \def\POWERfunction#1#2#3{%
                \def#3##1##2##3{%
1844
                  \begingroup
1845
                         #1{##1}{\ccls@POWf}{\ccls@POWDf}%
1846
                         \POWER{\ccls@POWf}{#2}{\ccls@POWfn}
1847
                        \SUBTRACT{#2}{1}{\ccls@nminusone}
1848
                        \POWER{\ccls@POWf}{\ccls@nminusone}{\ccls@POWDfn}
1849
                       \MULTIPLY{#2}{\ccls@POWDfn}{\ccls@POWDfn}
1850
1851
                       \MULTIPLY{\ccls@POWDfn}{\ccls@POWDf}}\ccls@POWDfn}
1852
                              \xdef##2{\ccls@POWfn}%
                               \xdef##3{\ccls@POWDfn}%
1853
                  \endgroup}\ignorespaces}
1854
```

LINEARCOMBINATION function defines the new function #5 as the linear combination #1#2+#3#4. #1 and #3 are two numbers. #1 and #3 are two functions.

```
1855 \def\LINEARCOMBINATIONfunction#1#2#3#4#5{%
                \def#5##1##2##3{%
1856
                 \begingroup
1857
                         #2{##1}{\ccls@LINf}{\ccls@LINDf}%
1858
                         #4{##1}{\ccls@LINg}{\ccls@LINDg}%
1859
                         \MULTIPLY{#1}{\ccls@LINf}{\ccls@LINf}
1860
                         \MULTIPLY{#3}{\ccls@LINg}{\ccls@LINg}
1861
                         \MULTIPLY{#1}{\ccls@LINDf}{\ccls@LINDf}
1862
                         \MULTIPLY{#3}{\ccls@LINDg}{\ccls@LINDg}
1863
1864
                         \ADD{\ccls@LINf}{\ccls@LINg}{\ccls@LINafbg}
                         \ADD{\ccls@LINDf}{\ccls@LINDg}{\ccls@LINDafbg}
1865
                              \xdef##2{\ccls@LINafbg}%
1866
                              \xdef##3{\ccls@LINDafbg}%
1867
                  \endgroup}\ignorespaces}
1868
```

\POLARfunction \POLARfunction defines the polar curve #2. #1 is a previously defined function.

```
1869 \def\POLARfunction#1#2{%

1870 \PRODUCTfunction{#1}{\COSfunction}{\ccls@polarx}

1871 \PRODUCTfunction{#1}{\SINfunction}{\ccls@polary}

1872 \PARAMETRICfunction{\ccls@polarx}{\ccls@polary}{#2}}
```

\PARAMETRICfunction defines the parametric curve #3. #1 and #2 are the components functions (two previously defined functions).

```
1873 \def\PARAMETRICfunction#1#2#3{%

1874 \def#3##1##2##3##4##5{%

1875 #1{##1}{##2}{##3}

1876 #2{##1}{##4}{##5}}}
```

 $\verb|VECTORfunction| & VECTORfunction: an alias of \verb|VPARAMETRIC| function.$

1877 \let\VECTORfunction\PARAMETRICfunction

1878 % </calculus>

Change History

v1.0	New commands: \ARCSIN, \ARCCOS,
General: First public version 1	\ARCTAN, \ARCCOT 51
v1.0a	New commands: \ARSINHfunction,
General: calculator.dtx modified to make it	\ARCOSHfunction, \ARTANHfunction,
autoinstallable. calculus.dtx embedded	\ARCOTHfunction 78
in calculus. dtx 1	New commands: \ARSINH, \ARCOSH,
v2.0	\ARTANH, \ARCOTH 54
General: new calculator.dtx and calcula-	New commands: \DOTPRODUCT,
tor.ins files 1	\VECTORPRODUCT, \CROSSPRODUCT 57
New commands: \ARCSINfunction,	New commands: \LENGTHADD,
\ARCCOSfunction, \ARCTANfunction,	\LENGTHSUBTRACT 35
\ARCCOTfunction 78	Trivial error in documentation corrected 69

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

$\mathbf{Symbols}$	\@@@OUTPUTMATRIX 1133, 1146	\@@@VECTORADD 983, 992
\# 701	\@@@OUTPUTVECTOR 935, 942	\@@@VECTORCOPY 912, 919
\@@@DETERMINANT . 1273, 1286	\@@@SCALARMATRIXPRODUCT	$\verb \@@VECTORGLOBALCOPY 923, 930$
\@@@INVERSEMATRIX 1302, 1341	$\dots \dots 1240, 1251$	\@@@VECTORMATRIXPRODUCT
\@@@MATRIXABSVALUE 1195, 1203	\@@@SCALARPRODUCT . 948, 960	$\dots \dots 1223, 1235$
\@@@MATRIXADD 1164, 1175	\@@@SCALARVECTORPRODUCT	\@@@VECTORPRODUCT . 967, 977
\@@@MATRIXCOPY 1108, 1116	1019, 1028	\@@@VECTORSUB 996, 1003
\@@@MATRIXGLOBALCOPY	\@@@SOLVELINEARSYSTEM	\@@DEGREESCOS \dots 500, $\underline{565}$
1120, 1128	$\dots \dots 1399, 1418$	\@@DEGREESCOT \dots 502, $\underline{569}$
\@@MATRIXPRODUCT 1256, 1267	\@@@TRANSPOSEMATRIX	\@@DEGREESSIN $499, \underline{563}$
\@@@MATRIXSUB 1180, 1191	$\dots \dots 1150, 1159$	\@@DEGREESTAN \dots 501, $\underline{567}$
\@@@MATRIXVECTORPRODUCT	\@@@TRUNCATE 278, 280, 283	\@@DETERMINANT 1268, 1285
1208, 1218	$\verb \@@VECTORABSVALUE 1007, 1014 $	\@@EXP $573, \underline{574}$

\@@FRACTIONALPART . 262, 264	\@FRACTIONALPART 264, 270	753, 768, 1005, 1008,
\@@INTEGERPART 247, 249	\@INCSYS 1342, 1366, 1369, 1392	1336, 1358–1360, 1401
\@@INVERSEMATRIX 1287, 1339	\@INTEGERDIVIDE 178, <u>181</u>	\ADD 6, <u>148</u> , 152, 174,
,		226, 235, 239, 306,
\@@LOG 677, <u>696</u>	$\verb \color= 249, 259 $	
\@@MATRIXABSVALUE 1192, 1202	\@LOG 677, <u>678</u> , 697, 698	363, 382, 415, 428,
\@@MATRIXADD 1160, 1174	\@MATRIXSIZE 1102, 1103	480, 491, 512, 528,
\@@MATRIXCOPY 1105, 1115	\@NUMBERSOL <u>1101</u> , 1279	541, 612, 615, 618,
\@@MATRIXGLOBALCOPY		621, 624, 628, 639,
1117, 1127	\@OUTPUTMATRIX <u>1129</u> ,	687, 709, 745, 816,
	1159, 1175, 1191,	819, 822, 825, 828,
\@@MATRIXPRODUCT 1252, 1266	1203, 1251, 1267, 1341	
\@@MATRIXSUB 1176, 1190	\@OUTPUTSOL <u>132</u> , 176, 204,	831, 834, 836, 847,
\@@MATRIXVECTORPRODUCT .	214, 227, 243, 246,	849, 861, 875, 892,
$\dots \dots 1204, 1217$	260, 271, 282, 310,	946, 951, 953, 980,
\@@OUTPUTMATRIX . 1129, 1145		981, 984–986, 1276,
\@@OUTPUTVECTOR 931, 941	331, 371, 394, 412,	1278, 1562, 1611,
\@@ROUND 291–293, 297	416, 436, 461, 474,	1628, 1629, 1631,
	525, 529, 549, 562,	1647, 1649, 1652,
\@@SCALARMATRIXPRODUCT .	583, 607, 628, 641,	
1236, 1250	654, 665, 676, 695,	1653, 1655, 1737,
\@@SCALARPRODUCT 943, 959	699, 716, 772, 794,	1742, 1747, 1775,
\@@SCALARVECTORPRODUCT .	809, 838, 843, 851,	1776, 1798, 1864, 1865
1015, 1027		\ARCCOS 14, <u>773</u> , 1053, 1729
\@@SOLVELINEARSYSTEM	863, 882, 905, 960,	\ARCCOSfunction 1728
•	977, 1032, 1054, 1286	\ARCCOT $14, 839, \overline{1740}$
	\@OUTPUTSOLS <u>133</u> , 240	\ARCCOTfunction 1739
\@@TDMATRIXSOL 1096 , 1317	\@OUTPUTVECTOR 931,	
\@@TRANSPOSEMATRIX 1147, 1158	$1037, 1218, 123\overline{5}, 1419$	\ARCOSH 14, <u>852</u> , 1751
\@@TRUNCATE 272-274, 299, 308	\@POWER 214, 215, 220	\ARCOSHfunction $\underline{1750}$
\@@VECTORABSVALUE 1004, 1013		\ARCOTH 14, <u>883</u> , 1762
\@@VECTORADD 979, 991	\@ROUND 291, 292	\ARCOTHfunction 1761
\@@VECTORCOPY 909, 918	\@SCLRDIVVECT 1310,	\ARCSIN $14, \overline{717}, 792, \overline{1723}$
	1312, 1314, 1319, 1409	\ARCSINfunction 1722
\@@VECTORGLOBALCOPY 920, 929	\@SOLPART 1345,	
\@@VECTORMATRIXPRODUCT .	1375, 1379, 1383, 1387	\ARCTAN 14, <u>795</u> , 841, 1735
1219, 1234		\ARCTANfunction $\underline{1734}$
\@@VECTORPRODUCT 962, 976	\@TDINCSYS 1349, 1403	\ARSINH 14, <u>844</u> , 1745
\@@VECTORSUB 993, 1002	\@TDMATRIXCOPY	\ARSINHfunction 1744
\@ADJMATRIX . 1309, 1322, 1405	. <u>1055</u> , 1109, 1121, 1151	\ARTANH $14, 864, \overline{1757}$
\@BASICARCTAN 807, 810	\@TDMATRIXGLOBALSOL	\ARTANHfunction 1756
\@BASICEXP 593, 601, 608	$\dots \dots 1075, 1122$	(MICHANITUM 010H <u>1700</u>
, , , , , , , , , , , , , , , , , , , 	\@TDMATRIXNOSOL	C
\@BASICLOG 694, 700	·	C
\@BASICSINE $386, \underline{395}, 517$	<u>1085</u> , 1098, 1304	$\verb \ccls@COMDf . 1820, 1821, 1823 $
\@BASICTAN $432, \underline{437}, 545$	$\ensuremath{\texttt{QTDMATRIXSOL}}\ \dots \ \underline{1065},$	\ccls@COMDg 1819, 1821
\@CONVERTDEG	1100, 1110, 1152,	\ccls@COMf 1820, 1822
. 563, 565, 567, 569, <u>571</u>	1168, 1184, 1244, 1260	\ccls@COMg 1819, 1820
\@DEGREES	\@TRUNCATE 272, 273	\ccls@cost . 1555, 1556, 1559
•	\@VECTORSIZE 906, 907	
. 564, 566, 568, 570–572	(3.201010122 500, 301	\ccls@cpoly 1634,
\@DEGREESCOS 500, <u>526</u>		1637, 1640, 1643, <u>1644</u>
\@DEGREESCOT 502, <u>550</u>	\mathbf{A}	\ccls@deffunction 1506 ,
\@DEGREESSIN $499, \underline{503}, 564$	\ABSVALUE $7, 142, 155,$	1514, 1517, 1522, 1523
\@DEGREESTAN 501, <u>530</u>	156, 230, 313, 314,	\ccls@defpolarfunction .
\@DIVIDE 162, 172, <u>177</u> , <u>231</u>	338, 397, 439, 586,	1533,
\@EXP 573, 582, <u>584</u>	631, 644, 657, 668,	1541, 1544, 1549, <u>1550</u>
(SDAI 010, 002, <u>904</u>	001, 011, 001, 000,	1041, 1044, 1049, 1000

\ccls@defvectorfunction	\ccls@QUOg	\cctr@expy 596, 597, 604, 605
	. 1806, 1807, 1809, 1811	\cctr@lengtha
1578, 1581, 1586, <u>1587</u>	\ccls@QUOnum 1810, 1812	4, 145–148, 150,
\ccls@ErrorFuncDef 1445, 1508	\ccls@SCFaf 1829, 1831	151, 182, 188, 189,
\ccls@ErrorFuncUnDef	\ccls@SCFDaf 1830, 1832	191, 193, 194, 199, 201
	\ccls@SCFDf 1828, 1830	\cctr@lengthb
\ccls@ErrorPFuncDef	\ccls@SCFf 1828, 1829	5, 149, 150, 183, 184,
1462, 1535	\ccls@SCVat 1837, 1838	188, 192, 193, 200,
\ccls@ErrorPFuncUnDef	\ccls@SCVDf . 1838, 1839, 1841	202, 359, 360, 367,
1470, 1539	\ccls@SCVf 1838, 1840	369, 704, 705, 712,
\ccls@ErrorVFuncDef	\ccls@sint . 1557, 1558, 1561	714, 756, 758, 769, 771
$\dots \dots 1483, 1572$	\ccls@SUBDf 1783, 1786	\cctr@log 580-582
\ccls@ErrorVFuncUnDef	\ccls@SUBDfg 1786, 1788	\cctr@loga 697, 699
$\dots \dots 1491, 1576$	\ccls@SUBDg 1784, 1786	\cctr@logmaxnum . $8, 102,$
\ccls@InfoFuncEns 1458, 1519	\ccls@SUBf 1783, 1785	587, 632, 645, 658, 669
\ccls@InfoPFuncEns 1479, 1546	\ccls@SUBfg 1785, 1787	\cctr@logx 698, 699
\ccls@InfoVFuncEns $1500, 1583$	\ccls@SUBg 1784, 1785	\cctr@minust 637, 638, 650, 651
\ccls@LINafbg 1864, 1866	\ccls@SUMDf 1773, 1776	\cctr@ndec 164, 165, 174
\ccls@LINDafbg 1865, 1867	\ccls@SUMDfg 1776, 1778	\cctr@outa 132, 133, 135,
\ccls@LINDf . 1858, 1862, 1865	\ccls@SUMDg 1774, 1776	932, 933, 936, 937,
\ccls@LINDg . 1859, 1863, 1865	\ccls@SUMf 1773, 1775	1130, 1131, 1135, 1139
\ccls@LINf . 1858, 1860, 1864	\ccls@SUMfg 1775, 1777	\cctr@outb 134, 135,
\ccls@LINg . 1859, 1861, 1864	\ccls@SUMg 1774, 1775	932, 933, 936, 937,
\ccls@lpoly 1599,	\ccls@temp 1648, 1649	1130, 1131, 1135, 1139
1602, 1605, 1608, <u>1609</u>	\cctr@@det 1288,	\cctr@outc 936, 937,
\ccls@nminusone . $1848, 1849$	1303, 1336, 1401, 1402	1130, 1131, 1135, 1139
\ccls@polarx 1870, 1872	\cctr@@deta 1358, 1361	\cctr@outd
\ccls@polary 1871, 1872	\cctr@@detb 1359, 1365	. 1130, 1131, 1136, 1140
\ccls@POWDf 1846, 1851	\cctr@@detc 1360, 1368	\cctr@oute 1136, 1140
\ccls@POWDfn $1849-1851, 1853$	\cctr@absval 586,	\cctr@outf 1136, 1140
\ccls@POWf $. 1846, 1847, 1849$	587, 631, 632, 644,	\cctr@outg 1137, 1141
\ccls@POWfn 1847, 1852	645, 657, 658, 668, 669	\cctr@outh 1137, 1141
\ccls@PRODf 1793, 1797	\cctr@ae 685, 686, 690, 691 \cctr@det 1274-1278,	\cctr@outi 1137, 1141
\ccls@PRODfg 1797, 1798, 1800	1298, 1299, 1310,	\cctr@Q 163, 173, 175
\ccls@PRODg 1794, 1796	1312, 1314, 1335,	\cctr@sign 157-160, 175
\ccls@PROf . 1793, 1795, 1796	1336, 1400, 1401, 1409	\cctr@sign 167 166, 176 \cctr@size 916, 917, 927,
\ccls@PROfDg 1796, 1798	\cctr@deta	928, 939, 940, 957,
\ccls@PROfg 1795, 1799	. 1355, 1358, 1362–1364	958, 974, 975, 989,
\ccls@PROg . 1794, 1795, 1797	\cctr@detb . 1356, 1359, 1362	990, 1000, 1001, 1011,
\ccls@qpoly $\dots 1615$,	\cctr@detc . 1357, 1360, 1363	1012, 1025, 1026,
1618, 1621, 1624, 1625	\cctr@epsilon $\underline{6}$, 360, 576,	1113, 1114, 1125,
\ccls@qsquaretempg 1811, 1812	680, 705, 758, 1288,	1126, 1143, 1144,
\ccls@QUODf 1805, 1809	1303, 1361, 1365,	1156, 1157, 1172,
\ccls@QUODfg	1368, 1373, 1377,	1173, 1188, 1189,
. 1809, 1810, 1812, 1814	1381, 1385, 1390, 1402	1200, 1201, 1215,
\ccls@QUODg \dots 1806, 1808	\cctr@expminusx	1216, 1232, 1233,
\ccls@QUOf . $1805, 1807, 1808$	\dots 638, 639, 651, 652	1248, 1249, 1264,
\ccls@QUOfDg 1808, 1810	$\colone{1}{\colone{1}}\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}{\colone{1}}\colone{1}}\colone{1}}}}}}}}}}}}}}}}}} \ \ \ \ \ \ \ \ \ \ $	1265, 1283, 1284,
\ccls@QUOfg 1807, 1813	$\cctr@expx = 636, 639, 649, 652$	1337, 1338, 1414, 1415

\cctr@sol	397, 398, 400, 402,	\cctr@tempr
. 1101, 1274, 1276, 1278	403, 405, 408, 439,	. 162, 166, 167, 169, 172
\cctr@solAA	440, 442, 446, 447,	\cctr@tempw 361-363,
1056, 1066, 1076,	449, 450, 452, 453,	366, 367, 703, 706,
1097, 1165, 1181,	455, 456, 458, 459,	707, 709–711, 716,
1241, 1257, 1304,	610, 611, 613, 616,	759, 761, 763, 765, 767
1310, 1311, 1323, 1406	619, 622, 814, 815,	\cctr@tempx 737-739, 745-747
\cctr@solAB 1057, 1067,	817, 820, 823, 826,	\cctr@tempx
1077, 1165, 1181,	829, 832, 835, 846–	\cctr@tempxx 739, 740, 747, 748
1241, 1257, 1304,	848, 858–860, 874–	\cctr@tempy 753, 754, 757,
1310, 1311, 1326, 1406	876, 891–893, 902,	
	903, 945, 946, 950-	$760, 763, 764, 767-770$ \cctr@tempz $362-$
\cctr@solAC 1058, 1068,	953, 1035–1037, 1040,	<u> </u>
1078, 1165, 1181,	1043, 1051, 1225–	365, 761, 762, 764–766
1241, 1257, 1304,	1228, 1270, 1271,	\cctr@Warnbigarccos
1310, 1311, 1329, 1406	1371, 1373, 1389, 1390	
\cctr@solBA 1059, 1069,		\cctr@Warnbigarcsin
1079, 1166, 1182,	\cctr@tempB 877, 879, 894, 896	30, 730, 734
1242, 1258, 1305,	\cctr@tempb	\cctr@Warnbigartanh
1312, 1313, 1324, 1407	. 202, 203, 218, 220,	48, 868, 872
\cctr@solBB 1060, 1070,	301, 302, 305, 306,	\cctr@Warncrossprod 119, 965
1080, 1166, 1182,	314-317, 319, 323, 329	\cctr@Warndivzero 9, 186
1242, 1258, 1305,	328, 329, 382, 383,	\cctr@WarnIncLinSys 71, 1342
1312, 1313, 1327, 1407	389, 390, 392, 393,	\cctr@WarnIncTDLinSys
\cctr@solBC 1061, 1071,	428, 429, 434, 435,	$\dots \dots $
1081, 1166, 1182,	512, 513, 516, 517,	\cctr@WarnIndLinSys $78, 1345$
1242, 1258, 1305,	520, 521, 523, 524,	\cctr@Warninfcotan
1312, 1313, 1330, 1407	541, 544, 545, 547,	$\dots \dots 92, 470, 558$
\cctr@solCA 1062, 1072,	548, 798, 799, 803,	\cctr@Warninfexp 98,
1082, 1167, 1183,	804, 848–850, 860–	588, 633, 646, 659, 670
1243, 1259, 1306,	862, 875, 877, 892,	\cctr@Warninfexpb . $106,577$
1314, 1315, 1325, 1408	894, 1041, 1047, 1052,	\cctr@Warninflog 113, 681
\cctr@solCB 1063, 1073,	1225–1228, 1371, 1377	\cctr@Warninftan
1083, 1167, 1183,	\cctr@tempC 878, 879, 895, 896	86, 420, 424, 533, 537
1243, 1259, 1306,	\cctr@tempc	\cctr@Warnnoangle
1314, 1315, 1328, 1408	. 219, 220, 300, 302,	$\dots 125, 1045, 1049$
\cctr@solCC 1064, 1074,	303, 315, 317, 328,	$\colone{1}$
1084, 1167, 1183,	330, 415, 416, 528,	\c 24, 211
1243, 1259, 1306,	529, 876, 878, 893,	$\colone{1}$
1314, 1315, 1331, 1408	895, 1042, 1051–1053,	\cctr@Warnsingmatrix 61,1293
\cctr@tanhden	1225-1228, 1372, 1381	\cctr@WarnsingTDmatrix .
663, 664, 673, 675	\cctr@tempD	66, 1307
\cctr@tanhnum	. 155, 162, 167, 169, 172	\cctr@Warnsmallarcosh 42,856
662, 664, 674, 675	\cctr@tempd $156, 162, 170,$	\cctr@Warnsmallarcoth 54,888
\cctr@temp 243, 246, 252-	172, 230, 239, 1372, 1385	\cctr@WarnZeroLinSys 82, 1394
254, 296, 297, 1031, 1032	\cctr@tempdif 711, 712	\COMPOSITIONfunction 25, 1816
\cctr@tempA 267, 268	\cctr@tempe 299, 300, 306, 308	\CONSTANTfunction . 24, $\overline{1766}$
\cctr@tempa 201,	\cctr@tempexp 209, 210	\COPY 5, <u>130</u> , 132, 135, 138,
203, 222, 224, 226,	\cctr@tempoldw 706, 711	141, 144, 157–160,
276, 277, 313, 315,	\cctr@tempoldy 760, 770	163, 164, 169, 173,
316, 318, 326–330,	\cctr@tempq 162, 163, 172, 173	189, 222, 223, 247,
010, 010, 020 000,	,, 100, 112, 110	100, 110, 110,

248, 256, 262, 263,	346, 362, 364, 403,	\ensureqpoly 27, <u>1619</u>
285–289, 297, 317,	406, 409, 445, 446,	\ensurevectorfunction
323, 327, 329, 330,	448, 449, 451, 452,	
334, 342, 352, 358,	454, 455, 457, 458,	\EXP 11, <u>573</u> , 636,
361, 365, 375, 377,	460, 473, 475, 561,	638, 649, 651, 707, 1681
379, 398, 400, 440,	571, 595, 603, 611,	\EXPfunction 23, <u>1680</u>
443, 466, 478, 487,	613, 614, 616, 617,	
489, 498, 505, 507,	619, 620, 622, 623,	${f F}$
509, 554, 706, 716,	626, 640, 653, 664,	\FLOOR 8, <u>261</u>
720, 723, 726, 752,	675, 685, 699, 708,	\forcecpoly 27 , $\underline{1641}$
757, 759, 760, 766,	738, 746, 764, 798,	\forcefunction 29,
776, 779, 782, 812,	803, 817, 820, 823,	<u>1521</u> , 1607, 1623, 1642
874, 891, 904, 907,	826, 829, 832, 835,	\forcelpoly 27, <u>1606</u>
908, 910, 913, 1056-	837, 880, 897, 1036,	\forcepolarfunction $30, \underline{1548}$
1064, 1066-1074,	1051, 1052, 1298,	\forceqpoly 27, <u>1622</u>
1101, 1103, 1104,	1320, 1346, 1362,	\forcevectorfunction 29, 1585
1106, 1148, 1294,	1363, 1422, 1424-	\FRACTIONALPART 8, 262
1295, 1347, 1395,	1427, 1429, 1667,	\fractionsimplify . $10, 340$
1612, 1658, 1659,	1679, 1694, 1699,	${f G}$
1661, 1662, 1664,	1710, 1715, 1718,	\GCD 10, <u>311</u> , 333, 344
1665, 1682, 1720, 1721	1727, 1733, 1738,	\GLOBALCOPY
\cos $11, \frac{413}{413}, 464, 763,$	1743, 1749, 1755,	. 131, 132–134, 921,
1555, 1684, 1689, 1692	1760, 1765, 1807, 1812	924, 1076–1084, 1118
\COSfunction . 23, 1683, 1870	\DOTPRODUCT	- , ,
\COSH 13, <u>629</u> , 663,	\Dr 1559, 1561	Н
674, 1701, 1705, 1708	\Dx 1559, 1560, 1564, 1593	\HEAVISIDEfunction . 23 , 1719
		WILLIAM IDED LITTLE COOK . $20, 1110$
\COSHfunction 23 , $\underline{1700}$	\Dy $1529, 1561, 1562,$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612,	I
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646,	I \IDENTITY function . 23, $\underline{1663}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653,	I \IDENTITYfunction . 23, 1663 \ifcase
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665,	$ \begin{array}{cccc} & & & & & & I \\ \texttt{\label{IDENTITY}function} & & & & & 23, \underline{1663} \\ \texttt{\label{IDENTITY}function} & & & & & 284 \\ \texttt{\label{INTEGERDIVISION}} & & & & & & \\ \end{array} $
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672,	I \IDENTITYfunction . 23, 1663 \ifcase 284 \INTEGERDIVISION
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674–1676, 1679,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674–1676, 1682, 1685, 1686,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674–1676, 1679, 1682, 1685, 1686, 1689, 1692–1694,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\COSHfunction	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\COSHfunction	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\COSHfunction	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738,	I \IDENTITYfunction
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738, 1743, 1748, 1749,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1689, 1692-1694, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738, 1743, 1748, 1749,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674–1676, 1679, 1682, 1685, 1686, 1689, 1692–1694, 1697–1699, 1702, 1705, 1708–1710, 1713–1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738, 1743, 1748, 1749, 1754, 1755, 1760, 1765	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy \cdots 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738, 1743, 1748, 1749, 1754, 1755, 1760, 1765 \end{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \lambda 1521, 1726, 1727, 1732, 1733, 1738, 1743, 1748, 1749, 1754, 1755, 1760, 1765 \end{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \lambda 1612, 1638 \\ 1754, 1755, 1760, 1765 \end{align*} \end{align*}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy \cdots 1529, 1561, 1562, 1566, 1595, 1612, 1627, 1628, 1646, 1649, 1651, 1653, 1659, 1662, 1665, 1668, 1669, 1672, 1674-1676, 1679, 1682, 1685, 1686, 1697-1699, 1702, 1705, 1708-1710, 1713-1715, 1718, 1721, 1726, 1727, 1732, 1733, 1738, 1743, 1748, 1749, 1754, 1755, 1765 \end{align*} \begin{align*} \mathbb{E} \text{\lensurecpoly} 27, 1638 \\ \ensurecpoly 29, 1461, \end{align*}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy \cdots 1529, 1561, 1562, \\ 1566, 1595, 1612, \\ 1627, 1628, 1646, \\ 1649, 1651, 1653, \\ 1659, 1662, 1665, \\ 1668, 1669, 1672, \\ 1674-1676, 1679, \\ 1682, 1685, 1686, \\ 1689, 1692-1694, \\ 1697-1699, 1702, \\ 1705, 1708-1710, \\ 1713-1715, 1718, \\ 1721, 1726, 1727, \\ 1732, 1733, 1738, \\ 1743, 1748, 1749, \\ 1754, 1755, 1760, 1765 \end{array} \textbf{E} \tensurecpoly \cdots 27, \\ 1638\tensurefunction \(29, 1461, \\ 1516, 1604, 1620, 1639\)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy \cdots 1529, 1561, 1562, \\ 1566, 1595, 1612, \\ 1627, 1628, 1646, \\ 1649, 1651, 1653, \\ 1659, 1662, 1665, \\ 1668, 1669, 1672, \\ 1674-1676, 1679, \\ 1682, 1685, 1686, \\ 1689, 1692-1694, \\ 1697-1699, 1702, \\ 1705, 1708-1710, \\ 1713-1715, 1718, \\ 1721, 1726, 1727, \\ 1732, 1733, 1738, \\ 1743, 1748, 1749, \\ 1754, 1755, 1760, 1765 \end{array} \textbf{E} \tensurecpoly \cdots 27, \\ 1638 \\ \tensurefunction \(29, 1461, \\ \\ \\ 1516, 1604, 1620, 1639 \\ \\ \tensurelpoly \cdots 27, \\ \\ 1603	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\Dy \cdots 1529, 1561, 1562, \\ 1566, 1595, 1612, \\ 1627, 1628, 1646, \\ 1649, 1651, 1653, \\ 1659, 1662, 1665, \\ 1668, 1669, 1672, \\ 1674-1676, 1679, \\ 1682, 1685, 1686, \\ 1689, 1692-1694, \\ 1697-1699, 1702, \\ 1705, 1708-1710, \\ 1713-1715, 1718, \\ 1721, 1726, 1727, \\ 1732, 1733, 1738, \\ 1743, 1748, 1749, \\ 1754, 1755, 1760, 1765 \end{array} \textbf{E} \tensurecpoly \cdots 27, \\ 1638\tensurefunction \(29, 1461, \\ 1516, 1604, 1620, 1639\)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
\MAX 6, <u>136</u> , 315	\numberCOSXXX 5, <u>1439</u>	Q
\MIN 6, <u>139</u> , 316	\numberE 5, 685, 690, <u>1428</u> , 1429, 1430	\QUOTIENTfunction . 25 , $\underline{1802}$
\modulo \cdots \cdots \cdots \text{MULTIPLY} \cdots \cdot \cdots \cdots \text{144}, \text{145}, \text{167}, \text{170}, \text{179}, \text{225}, \text{296}, \text{337}, \text{347}, \text{405}, \text{408}, \text{411}, \text{476}, \text{572}, \text{581}, \text{627}, \text{637}, \text{650}, \text{690}, \text{741},	$\begin{array}{llllllllllllllllllllllllllllllllllll$	R \r
${f N}$	O \ONEfunction 23, <u>1657</u>	1224, 1225, 1227, 1237, 1238, 1241–1243
$\verb \NeedsTeXFormat 2, 1442 $	\or 286–289	\SCALEfunction 25 , $\underline{1825}$
\newcpoly 27, <u>1632</u>	P	\SCALEVARIABLEfunction .
\newfunction 29, 1457, 1504, 1598,	P \PackageError 1446, 1453,	
1401, 1504, 1596, 1614, 1633, 1657, 1660, 1663, 1666,	1463, 1471, 1484, 1492 \PackageInfo 1459, 1480, 1501	\SIN 11, <u>373</u> , 416, 761, 1557, 1685, 1688, 1697

\SINfunction . 23, <u>1687</u> , 1871	1557, 1590, 1610,	\VECTORMATRIXPRODUCT
\SINH 13, <u>642</u> , 662,	1626, 1630, 1645, 1650, 1651, 1654,	<u>1219</u> , 1257–1259
673, 1702, 1704, 1713 \SINHfunction 23, 1703	1664, 1667, 1671,	\VECTORNORM 17, <u>1029</u> ,
\SOLVELINEARSYSTEM . 22, <u>1342</u>	1604, 1607, 1671, 1672, 1674, 1675,	1035, 1040, 1041, 1389
\SQRT 10, 372, 739,	1672, 1674, 1675, 1678, 1681, 1684,	\VECTORPRODUCT . 17, 962, 978
	, , , , , , , , , , , , , , , , , , , ,	\VECTORSIZE <u>906</u> , 916, 927,
747, 848, 860, 1678,	1685, 1688, 1689,	939, 957, 974, 989,
1726, 1732, 1748, 1754	1691, 1692, 1696, 1697, 1701, 1702,	1000, 1011, 1025, 1232
\SQRTfunction 23, <u>1677</u>	, , , , , ,	\VECTORSUB 16, <u>993</u> ,
\SQUARE 7, <u>205</u> , 402,	1704, 1705, 1707, 1708, 1712, 1713	1177, 1178, 1181–1183
597, 605, 610, 814,	1708, 1712, 1713, 1717, 1718, 1720	
846, 858, 1430, 1431,	1717, 1718, 1720, 1722, 1724, 1722, 1724	\mathbf{X}
1668, 1671, 1674,	1723, 1724, 1729, 1726	\x 1556, 1562, 1563, 1592
1693, 1698, 1709,	1730, 1735, 1736,	
1714, 1724, 1730, 1736, 1746	1740, 1741, 1745,	${f Y}$
1736, 1741, 1746,	1746, 1751, 1752,	\y 1528, 1558, 1560,
1752, 1758, 1763, 1811	1757, 1758, 1762, 1763	1565, 1594, 1610,
\SQUAREfunction 23, <u>1670</u>	\TAN 11, <u>417</u> , 468, 1691	1611, 1626, 1627,
\SQUAREROOT 10, 349, 372, 1032	\TANfunction 23, <u>1690</u>	1629–1631, 1645–
\SUBTRACT $6, \underline{152},$	\TANH 13, <u>655</u> , 1707	1647, 1650, 1652,
180, 237, 255, 268,	\TANHfunction 23 , $\underline{1706}$	1654, 1655, 1658,
300, 366, 389, 392,	\textit 701	1661, 1664, 1667,
404, 407, 410, 434,	\TRANSPOSEMATRIX 19, 1147	1668, 1671, 1675,
447, 450, 453, 456,	\TRUNCATE 8, <u>272</u>	1678, 1679, 1681,
459, 484, 495, 520,	\TWOVECTORSANGLE $18, \underline{1038}$	1682, 1684, 1688,
523, 547, 625, 652,	TI	1691, 1696, 1701,
692, 703, 710, 711,	U	1704, 1707, 1712,
737, 742, 750, 762,	\UNITVECTOR 17, <u>1033</u>	1717, 1720, 1723,
765, 767, 793, 800,	\mathbf{V}	1729, 1735, 1740,
805, 842, 859, 876,	\VECTORABSVALUE	1745, 1751, 1757, 1762
879, 893, 896, 1271,	18, <u>1004</u> , 1193, 1196	\yy 1724–1726, 1730–
1560, 1725, 1731,	\VECTORADD 16, 979,	1732, 1736–1738,
1753, 1759, 1764,	994, 997, 1161, 1162,	1741–1743, 1746–
1785, 1786, 1810, 1848	1165–1167, 1226, 1228	1748, 1752–1754,
\SUBTRACTfunction . $25, \underline{1780}$	\VECTORCOPY 16, 909, 933, 937	1758–1760, 1763–1765
\SUMfunction 25, <u>1770</u>	\VECTORCUP1 10, 909, 933, 937 \\VECTORfunction 28, 1877	1100 1100, 1100 1100
Т	\VECTORGLOBALCOPY	${f z}$
\t 1526, 1553, 1555,		-
,	$\dots \dots \underline{920}, 932, 930$	\ZEROfunction 23, <u>1660</u>