AIRBNB PRICE MODELING

HENRY CARPENTER

GENERAL ASSEMBLY – DATA SCIENCE

AUGUST 27, 2019

THE PROBLEM

- You've decided to list a bed, room, or apartment on Airbnb to make some cash on the side
 - How much do you charge?
- You manage a family-run hostel and have been hurt by Airbnb's proliferation
 - What are they charging?
 - How should you price to compete?

ASSUMPTIONS OF THE MODEL

- We assume
 - There is nothing shady in the market no collusion, predatory pricing, etc.
 - The price an Airbnb settles on is its fair market value
 - That price includes all taxes, fees, and other charges

MODEL PERFORMANCE METRICS

- Since price is what we care about, our key performance metrics all relate to the predicted price's relationship to the actual price
 - The residual is the difference between the true price and the predicted price
- Three main metrics
 - Mean residual
 - Median residual
 - Standard deviation of residual

- 22,600 individual listings
 - 96 columns
- 8.23m individual listing-dates
- Reviews of listings
- Information on neighborhoods

- The table of listings was most important
 - Most of the data was unusable
 - Much of the data was useless
 - Some of the data was so extreme that it was discarded
 - Ended up using 12 predictive columns

Feature columns:

- # of people it accommodates
- # of bathrooms
- # of bedrooms
- # of beds
- # of reviews
- Host rating

- Is instantly bookable (y/n)
- # of reviews per month
- Cancellation policy
- Bed type (5 types)
- Room type (3 types)
- Neighborhood group (12 total)

- Limitations:
 - Cannot use the price of listing 'x' on day I to predict the price for that same listing on day 2
 - Must remove duplicate listings by the listing ID
 - Cuts the dataset from 1m usable rows to 5,000
 - Cannot use date of listings as a feature column
 - No usable data for the overall quality of the listing
 - A lavish penthouse could appear identical to a 196 square foot boiler room/apartment
 - Can only use the data we have

THE MODEL

- Two approaches:
 - Linear regressor
 - Random forest regressor
- Average the two predicted prices together per listing to garner a more accurate overall result

PERFORMANCE

Model	Mean of residuals	Median of residuals	Standard deviation of residuals	·
Linear Regressor	\$24.48	\$15.78	\$41.05	67.7%
Random Forest Regressor	\$24.71	\$15.88	\$41.11	69.2%
Ensemble	\$23.61	\$14.79	\$40.19	70.3%

PERFORMANCE

CONSEQUENCES

- Cannot predict perfectly, but a good approximation
- Large inaccuracies are mostly for the very expensive listings
 - The predictions are 15% more accurate on average for listings of less than \$200

DESIRED MODEL IMPROVEMENTS

- More data points
- Better representation of listing quality (penthouse v. boiler room)
- Incorporate dates into the model

ANY QUESTIONS?

THANK YOU!

