Programación Avanzada

Análisis

Especificación del Comportamiento del Sistema

Contenido

- Introducción
- Modelo de Casos de Uso
- La Clase Sistema
- Interacciones con el Sistema
- Contratos de Software

Introducción

- Durante esta actividad de análisis se busca describir en forma precisa cuál debe ser el comportamiento esperado del sistema
- Se trabaja sobre el Modelo de Casos de Uso
 - Viendo al sistema como una unidad
 - Se definen protocolos que caractericen el uso del sistema por parte de los actores en cada escenario de los casos de uso
 - El comportamiento completo del sistema es especificado al especificar cada mensaje de los protocolos

Introducción (2)

- n Cada escenario de los casos de uso a analizar es entendido en términos de una interacción entre los actores involucrados y el sistema
- n Al describir el significado de cada uno de los mensajes identificados en cada interacción se está especificando el comportamiento del sistema

Introducción (3)

- Nos enfocamos en qué es lo que debe hacer el sistema ante cada mensaje
- n La forma en cómo el sistema resuelve internamente un mensaje será definida durante la etapa de diseño

Modelo de Casos de Uso

Contenido:

- Introducción
 - Breve descripción textual que sirve como introducción al modelo
- Relevamiento de funcionalidades
 - Descripción textual de información no reflejada en el resto del modelo, por ejemplo:
 - Secuencias típicas en que los casos de uso son utilizados por los usuarios
 - Otras funcionalidades no capturadas en los casos de **USO**

Modelo de Casos de Uso (2)

- n Contenido (cont.)
 - **Actores**
 - n Todos los actores detectados para el sistema
 - Casos de uso
 - n Todos los casos de uso definidos
 - Relaciones
 - Todas las asociaciones entre actores y CU
 - Comportamiento
 - Especificación del comportamiento de cada caso de uso en el modelo, el cual está definido por: Eventos del Sistema y Contratos de Software

La Clase Sistema

- Durante esta actividad el sistema será considerado como un objeto:
 - Que es instancia de una clase Sistema
 - Que tiene operaciones (puede recibir mensajes)
 - Que tiene un estado
- n En todo Modelo de Casos de Uso se asume que existe una clase Sistema

La Clase Sistema (2)

Existe una **única instancia** de esta clase la cual representa al "sistema entero"

Sistema

: Sistema

La Clase Sistema (3)

- Las operaciones de esta clase permiten que el sistema reciba mensajes de los actores:
 - Se identifican al definir los protocolos que representan los escenarios de los diferentes casos de uso
 - Durante el análisis no se busca diseñarlas
 - Su semántica es definida en términos del efecto que deben tener sobre el estado del sistema

La Clase Sistema (4)

n Un actor puede enviar mensajes al sistema "invocando" sus operaciones

Sistema

iniciarVenta() agregarProducto() terminarVenta() realizarPago()

La Clase Sistema (5)

En esta actividad el **estado** del sistema se asume como una configuración de objetos válida respecto al Modelo de Dominio

La Clase Sistema (6)

- Dado que no todos los actores participan en todos los casos de uso la visibilidad sobre las operaciones del sistema debe ser limitada
- Por tanto la clase sistema podría realizar diferentes interfaces
- n Cada interfaz contendría las operaciones utilizadas en un (conjunto de) caso(s) de uso
- Las operaciones se encontrarían organizadas y los actores verían al sistema a través de la(s) interface(s) que le corresponde(n)

La Clase Sistema (7)

El actor Cajero usará al sistema solamente a través de esta interfaz

El actor **Supervisor** usará al sistema solamente a través de esta interfaz

Interacciones con el Sistema

- Los casos de uso describen la forma en que actores utilizan al sistema para cumplir con sus objetivos
- n Es necesario expresar estas ideas desde un punto de vista técnico
- Para ello se definen protocolos que determinan la interacción entre los actores y el sistema, ya sea para uno o varios escenarios de un caso de uso
 - Cada protocolo es expresado mediante un Diagrama de Secuencia del Sistema (DSS)

Interacciones con el Sistema (2)

Interacciones con el Sistema Eventos del Sistema

- n Un evento del sistema ...
 - Es un estímulo externo,
 - Es generado por un actor, y
 - Ante el cual el sistema debe reaccionar
- n Las acciones de los actores (sobre el sistema) descritas en los casos de uso sugieren los eventos del sistema
- n Es necesario considerar la definición de evento del sistema para identificarlos

Interacciones con el Sistema Eventos del Sistema (2)

Ejemplo:

"El Cliente llega a la caja con artículos para comprar"

Es un evento externo pero no afecta al sistema

ð No es un evento del sistema

"El Cajero ingresa el identificador del producto" Es un estímulo externo generado por un actor ante el cual el sistema debe reaccionar

ð Es un evento del sistema

Interacciones con el Sistema Operaciones del Sistema

- Los eventos del sistema disparan una operación del sistema
- n Estas operaciones son ejecutadas por la "instancia sistema" en resupuesta a la ocurrencia de un evento del sistema
- n Las operaciones del sistema relativas a uno o varios escenarios de un caso de uso permiten definir la interacción entre los actores y el sistema

Interacciones con el Sistema Operaciones del Sistema (2)

- Las operaciones del sistema pueden tener asociados parámetros
- Ejemplo:
 - "El Cajero ingresa el identificador del producto" representa un evento que dispara la operación voi d agregarProducto(i dent: String)
 - "El Cajero ... hasta terminar los productos" representa un evento que dispara la operación void terminarVenta()

Interacciones con el Sistema Diag. de Secuencia del Sistema

Es un artefacto incluido en el Modelo de Casos de Uso que define e ilustra la interacción entre los actores y el sistema en uno o varios escenarios de un CU

Incluye:

- Una instancia representando a cada participante (sistema y actores)
- Los mensajes enviados entre ellos en el/los escenario/s correspondiente/s (con sus respuestas)

Interacciones con el Sistema Diag. de Secuencia del Sistema (2)

- n Un Diagrama de Secuencia del Sistema puede ser construido para:
 - Un escenario de un Caso de Uso
 - Varios escenarios de un Caso de Uso
- Un criterio para decidir entre estas alternativas será la complejidad de estos escenarios y la simplicidad (o no) del DSS resultante

Interacciones con el Sistema Diag. de Secuencia del Sistema (3)

- Los diagramas de secuencia del sistema definen la conversación entre los actores y el sistema, enfocándose en los mensajes que el sistema recibe
- Sería posible incluir además mensajes enviados desde el sistema hacia los actores:
 - Sin embargo esto no forma parte del conjunto de servicios que el sistema brinda (y cuya especificación es el objetivo de la presente actividad)

Interacciones con el Sistema Diag. de Secuencia del Sistema (4)

Notación:

Interacciones con el Sistema Sugerencias

Definición de un DSS:

- 1. Incluir una instancia que represente al sistema como una unidad
- 2. Identificar cada actor que participe en el/los escenario/s considerado/s e incluir una instancia para cada uno
- 3. De la descripción del caso de uso identificar aquellos eventos que los actores generen y sean de interés para el sistema e incluir cada uno de ellos como un mensaje

Interacciones con el Sistema Sugerencias (2)

Límite del sistema:

- Para identificar eventos del sistema es útil pensar en el límite del sistema
- El límite suele determinarse para que coincida con el sistema de software (y el de hardware también)
- Buscar aquello que ocurra fuera de ese límite y que además lo atraviese

Interacciones con el Sistema Sugerencias (3)

Límite del sistema (cont.):

¿Es responsabilidad del sistema reaccionar

ante el evento X?

Interacciones con el Sistema Sugerencias (4)

Memoria del Sistema:

- El sistema puede (o no) tener memoria:
 - Sin memoria, los mensajes son independientes
 - Con memoria, cada mensaje puede "recordar" la información utilizada en un estado previo del sistema
- Debe indicarse claramente si el sistema tiene o no memoria, y en caso de tenerla, qué información recuerda

Interacciones con el Sistema Sugerencias (5)

Memoria del Sistema (cont.):

- Para indicar la memoria de un sistema, generalmente basta con indicarlo en el nombre del diagrama y mediante la utilización de notas en el diagrama
- Alternativamente, puede utilizarse un diagrama de estructura estática en aquellos casos en que interese indicar una estructura compleja de dicha memoria

Interacciones con el Sistema Sugerencias (6)

Ejemplo: DSS sin memoria

Interacciones con el Sistema Sugerencias (7)

Ejemplo: DSS con memoria

Interacciones con el Sistema Errores Comunes

- n Envío de mensajes hacia el usuario
- Desconocer la memoria del sistema
- No especificar data types utilizados
- Sobrecargar de información un diagrama de secuencia pudiendo realizar varios de ellos
- No indicar tipo de parámetros ni valor de retorno de los mensajes

¿Qué Sigue?

- Una vez identificadas las operaciones del sistema es posible especificar su comportamiento
- n Esta especificación expresa el efecto que una operación tendrá sobre el sistema
- Para ello se realizará un Contrato de Software para cada operación del sistema

¿Qué Sigue? (2)

Contratos de Software

- un contrato de software especifica el comportamiento o efecto de una operación
- n La especificación es declarativa y no imperativa
- Esta técnica está basada en las ternas de Hoare en las que:
 - Se describen propiedades del resultado, en lugar de dar un conjunto de pasos o instrucciones que indiquen cómo calcularlo

Contratos de Software Enfoque de Contratos

- El contrato de una operación es un contrato entre partes
 - Consumidor de la operación: quién la invoca
 - Proveedor de la operación: quién la implementa
- Determina derechos y obligaciones para cada una de las partes

Contratos de Software Enfoque de Contratos (2)

	Obligaciones	Derechos
Consumidor	Satisfacer precondición	Obtener la postcondición satisfecha
Proveedor	Satisfacer postcondición	Procesamiento más simple al poder asumir como satisfecha la precondición

Contratos de Software Enfoque de Contratos (3)

- El Consumidor se compromete a satisfacer la precondición al invocar la operación:
 - Si la satisface: tiene derecho a exigir que la postcondición se satisfaga
 - Si no la satisface: no se le garantiza la correctitud del resultado de la invocación
- Por esta razón es responsabilidad del Consumidor saber cuándo invocar a la operación (y manejar en forma adecuada el resultado)

Contratos de Software Enfoque de Contratos (4)

- n El Proveedor se compromete a satisfacer la postcondición al finalizar la operación solamente cuando la precondición fue satisfecha al momento de la invocación
- n El compromiso no comprende el caso en que la precondición no fue satisfecha:
 - En ese caso el Proveedor puede devolver un valor arbitrario y el Consumidor tiene que aceptarlo y saber qué hacer con él

Contratos de Software Enfoque de Contratos (5)

- n Ejemplo "Autorización de Documento":
 - Precondición: el documento está en la oficina antes de la hora 10
 - Postcondición: el documento está firmado por el Gerente a la hora 18
- n Consumidor:
 - "Yo te traigo el documento a las 10, pero a las 18 lo quiero firmado"
- n Proveedor:
 - "Yo te hago firmar el documento para las 18, pero lo necesito antes de las 10"

Contratos de Software Enfoque de Contratos (6)

- n Ejemplo (cont.)
 - Caso 1 (ambos cumplen)
 - n El documento llegó a las 9:45
 - n A las 18 estaba firmado
 - Caso 2 (el consumidor no cumple)

El proveedor no tiene que cumplir

- n El documento llegó a las 11:20 →
- A las 18 no estaba firmado
- Caso 3 (el consumidor cumple pero el proveedor no)
 - n El documento llegó a las 9:10
 - n A las 18 no estaba firmado -

Esto denota un bug en la implementación del proveedor

Contratos de Software Enfoque de Contratos (7)

n Consumidor:

- Prefiere precondiciones débiles: implica menos trabajo
- Prefiere postcondiciones fuertes: implica más resultados

n Proveedor:

- Prefiere precondiciones fuertes: implica menos preocupaciones
- Prefiere postcondiciones débiles: implica menos trabajo

Contratos de Software Enfoque de Contratos (8)

Precondición:

- Es a lo que debe acceder el Consumidor para obtener el resultado deseado
- Es lo que debe exigir el Proveedor para llegar al resultado

n Postcondición:

- Es a lo que accederá el Consumidor
- Es a lo que se compromete el Proveedor

Contratos de Software Enfoque de Contratos (9)

- n Tanto las Pre- como las Post- las determina el Proveedor
- n El Consumidor:
 - Viendo la Post-sabe qué va a obtener (sin saber cómo)
 - Viendo la Pre-sabe a cambio de qué obtiene el resultado

Contratos de Software Contratos de Operaciones

- Los contratos se pueden realizar para operaciones de cualquier tipo de clase
- En esta actividad las realizaremos para operaciones del sistema
- Para una operación X tendremos {P}S{Q}
 - P es la precondición de X (especificada)
 - S es el programa que implementa X (a ser diseñado más adelante en la etapa de Diseño)
 - Q es la postcondición de X (especificada)

Contratos de Software Contratos de Operaciones (2)

- ¿Quién utiliza el contrato (partes P y Q) de una operación?
 - Un diseñador de nuestro equipo que deba diseñar S
 - Para saber qué es lo que tiene que lograr su diseño de la operación
 - En función de lo anterior para decidir cómo será el diseño de la operación (parte S)
 - Un desarrollador de otro equipo que deba invocar la operación (el diseño o implementación de S no es su responsabilidad)
 - Para saber qué es lo que la operación hace sin tener que ver el diseño o la implementación de S

Contratos de Software Condiciones

- ¿En qué términos se expresan las pre- y postcondiciones? ¿Y para el caso particular de operaciones del sistema?
- n En términos generales estas condiciones refieren al estado del sistema antes y después de la invocación a la operación
 - Las precondiciones refieren además a los argumentos de la operación
 - Las postcondiciones refieren además al valor retornado por la operación (si existe)

Contratos de Software Condiciones (2)

- Las Precondiciones refieren al momento previo a la invocación y expresan condiciones sobre
 - Los valores de los parámetros de la operación
 - El estado del sistema:
 - n La creación de objetos
 - La destrucción de objetos
 - La conexión de objetos
 - La desconexión de objetos
 - La modificación del valor de atributos de objetos

Contratos de SoftwareCondiciones (3)

- Las Postcondiciones refieren al momento posterior a la invocación expresan condiciones sobre
 - El valor de retorno (si corresponde)
 - El estado del sistema:
 - n La creación de objetos
 - La destrucción de objetos
 - La conexión de objetos
 - La desconexión de objetos
 - La modificación del valor de atributos de objetos

Contratos de Software Condiciones (4)

Creación de objetos:

Pre: Declarar que el objeto no existe

Post: Declarar que el objeto existe

Destrucción de objetos:

Pre: Declarar que el objeto existe

Post: Declarar que el objeto no existe y que todos los objetos que estaban conectados a él ya no lo están

Contratos de Software Condiciones (5)

Conexión de objetos:

- Pre: Declarar que los objetos no están conectados
- Post: Declarar que los objetos están conectados

Desconexión de objetos:

- Pre: Declarar que los objetos están conectados
- Post: Declarar que los objetos no están conectados

Modificación del valor de atributos de objetos:

- Pre: Declarar que el objeto exista
- Post: Declarar que el atributo del objeto tiene el valor dado

Contratos de Software Condiciones (6)

- Ejemplo para operación contratar()
 - Precondición: No existe un objeto de tipo Empleado con el valor '6150' en el atributo 'codigo', existe un objeto de tipo Empresa con valor 'BROU' en el atributo 'nombre'
 - Postcondición: Existe un nuevo objeto de tipo Empleado con el valor '6150' en el atributo 'codigo' que está conectado a uno de tipo Empresa que tiene el valor 'BROU' en el atributo 'nombre'
 - De esto se puede derivar que la operación crea al objeto de tipo Empleado y lo conecta con el de tipo **Empresa**

Contratos de SoftwareCondiciones (7)

Se pasa del estado σ_1 al estado σ_2 mediante la ejecución de contratar ("BROU", 6150);

Contratos de Software Condiciones (8)

- Notar que el contrato NO dice cómo debe implementarse la operación del sistema contratar()
- n Expresa condiciones sobre el estado inicial y sobre el estado final que indican qué es lo que la operación hace, pero no cómo lo hace

Contratos de Software Estructura de Contratos

- Un contrato es un artefacto textual que se incluye en la sección 'Comportamiento' del Modelo de Casos de Uso
- n Está estructurado de la siguiente forma:
 - Firma: Cabezal sintáctico de la operación
 - Parámetros: Descripción de los parámetros de la operación
 - Responsabilidades: Descripción de las responsabilidades, una idea de lo que debe realizar la operación

Contratos de Software Estructura de Contratos (2)

- n Estructura (cont.)
 - Referencias cruzadas: Caso(s) de Uso a los que pertenece la operación
 - Salida: Resultado de la operación (sólo si es una función)
 - Precondición: Descripción del estado de la instancia del sistema a la que se le aplicará la operación, y otras condiciones que sea necesario asumir previo a la aplicación (por ejemplo, con respecto a los parámetros)

Contratos de Software Estructura de Contratos (3)

- Estructura (cont.)
 - Postcondición: Descripción del estado de la instancia del sistema a la que se le aplicó la operación
 - **Snapshots:** (Opcional)
 - Pares de *snapshots* que ejemplifiquen el estado de la instancia a la que se le aplicó la invocación, previo y posterior a la invocación
 - La invocación concreta que produce el cambio ejemplificado (mostrando los parámetros efectivos)

Contratos de SoftwareErrores Comunes

- Incluir invariantes como postcondiciones
- n Omitir el resultado de una operación como postcondición

¿Qué Sigue?

- Hasta el momento se tienen identificadas y especificadas las operaciones del sistema para todos los casos de uso definidos
- Es posible ahora realizar un diseño en el que
 - Se identifiquen los objetos que realmente participarán en la solución
 - Se definan interacciones entre dichos objetos tal que cada una cumpla un contrato correspondiente a una operación del sistema