图卷积神经网络

沈华伟 中国科学院计算技术研究所 2019年5月7日

>> 卷积神经网络

- 卷积神经网络(CNN)在图像、视频、语音、文本等 分布在欧式空间中的数据上取得了很大的成功
 - □ 图像分类、对象检测、人机对话、机器翻译……

■ 一个有趣的问题: 如何把卷积神经网络迁移到图数据 或者网络数据这类非欧数据上?

■ 卷积是一种关于两个函数(f和g) 的数学运算

□ 一维(连续)时域信号的卷积

$$h(t) = (f * g)(t) \stackrel{\text{def}}{=} \int f(t)g(t - \tau) d\tau$$

□ 二维(离散)空域信号的卷积

$$h(x,y) = (f * g)(x,y) \stackrel{\text{def}}{=} \sum_{m,n} f(x-m,y-n)g(m,n)$$

	g(1,1)	g(0,1)	g(-1,1)
g=	g(1,0)	g(0,0)	g(-1,0)
	g(1,-1)	g(0,-1)	g(-1,-1)

>> 理解卷积

■ 卷积的意义

□ 直观上看,卷积是函数f的加权平均,权重由卷积核g确定,因此卷积也被解释为采用模板g对函数f进行局部模板匹配

■ 卷积的性质

- □ 卷积后得到的函数一般比原函数更平滑
- □ 卷积具有平移不变性

>> 理解图卷积神经网络

Weisfeiler-Lehman isomorphism Test

$$\varphi_{WLsubtree}^{(1)}(G) = (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})$$

$$\varphi_{WLsubtree}^{(1)}(G') = (1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1)$$

>> 理解图卷积神经网络

Subtree kernel

- 单射聚合函数
 - □ 将结构和节点特征映射为子图的表达

>> 图卷积神经网络

- 设计图卷积神经网络所面临的挑战
 - □ 图数据不满足平移不变性,如何在图上定义卷积算子?

>> 图卷积神经网络的现有方法

空间域方法: Spatial Methods

 $\exp(-\frac{1}{2}(\mathbf{u} - \bar{\mathbf{u}}_j)^\top \begin{pmatrix} \bar{\sigma}_{\rho_{-\frac{1}{2}}}^2 \end{pmatrix}^{-1} (\mathbf{u} - \bar{\mathbf{u}}_j)) \qquad \exp(-\frac{1}{2}\mathbf{u}^\top \mathbf{R}_{\bar{\theta}_j} \begin{pmatrix} \bar{\alpha}_{-1} \end{pmatrix} \mathbf{R}_{\bar{\theta}_j}^\top \mathbf{u}) \quad \exp(-\frac{1}{2}(\mathbf{u} - \boldsymbol{\mu}_j)^\top \boldsymbol{\Sigma}_j^{-1} (\mathbf{u} - \boldsymbol{\mu}_j))$

- 类比的方式:类比CNN定义每个节点的感知野(同等数量的临近节点),在空间域直接定义卷积核实现参数共享
- 核函数方法:在大小不同的领域上定义多个核函数,然后将卷积核定义为核函数的系数实现参数共享

mixture model CNNs. CVPR 2017.

>> 图卷积神经网络的现有方法

空间域方法: Spatial Methods

□ GraphSAGE:邻居采样+聚合

□ GAT:采用注意力机制将聚合操作中的权重进行参数化

GraphSAGE: Inductive Learning

GAT

W. L. Hamilton, R. Ying, J. Leskovec. Inductive Representation Learning on Large Graphs. NIPS 2017P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio. Graph Attention Networks. NIPS 2018. 9

>> 图卷积神经网络的现有方法

普域方法: Spectral Graph CNN

信号

将图上的信号通过傅里叶变换映射到谱域,在谱域定义卷积核实现参数共享,然后通过傅里叶逆变换得到卷积后的

 $x_{k+1,j} = h\left(\sum_{i=1}^{f_k} U F_{k,i,j} U^T x_{k,i}\right)$ $j = 1, \dots, f_{k+1}$

第k层的信号,维度 f_k

第k层的卷积核

图傅里叶变换 $x^* = U^T x$

傅里叶逆变换

 $x = Ux^*$

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs. arXiv: 1312.6203, 2013.

>> 谱方法的不足和改进

- 谱方法的不足
 - □ 依赖于特征分解,计算效率低
 - □ 卷积操作的局部性差

改进方法:卷积核参数化——多项式近似

$$diag(g_1, g_2, \cdots, g_n) = g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k \qquad \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

- □ 卷积核的自由参数从n降低到了K
- \Box 计算复杂性从 $O(n^3)$ 降低到O(m*K),m表示网络中的边数

基于小波变换的图卷积神经网络 Graph Wavelet Neural Network (ICLR 2019)

- Graph Wavelet Neural Network (ICLR 2019)
 - 采用<mark>图小波变换代替图傅里叶变换实</mark>现信号从节点域到谱域的映射,在谱域定义卷积核实现参数共享,进而通过图小波逆变换得到卷积后的信号

Graph Fourier transform

$$x^* = U^T x$$

Inverse Fourier transform

$$x = Ux^*$$

Graph Wavelet transform

$$x^* = \psi_s^{-1} x$$

Inverse Wavelet transform

$$x = \psi_{s} x^{*}$$

注:U是拉普拉斯矩阵的单位正交特征向量构成的矩阵 ψ_s 是图小波变换的基

■ 小波变换的优点

- □ 傅里叶变换的基是全域信号、小波变换的基是局域信号(<mark>稀疏</mark>)
- □ 傅里叶变换计算效率低、小波变换计算效率高
- 基于小波变换的图卷积局部性好

傅里叶基: U

小波基: $\psi_s = Ue^{\lambda s}U^T$

■ 基于小波变换的图卷积

$$x *_{\mathcal{G}} y = U((U^{\top}y) \odot (U^{\top}x)),$$
换基
$$x *_{\mathcal{G}} y = \psi_s((\psi_s^{-1}y) \odot (\psi_s^{-1}x))$$

■ 图小波卷积神经网络

$$x_{k+1,j} = h\left(\sum_{i=1}^{p} U F_{k,i,j} U^{T} x_{k,i}\right) \longrightarrow x_{k+1,j} = h\left(\sum_{i=1}^{p} \psi_{s} F_{k,i,j} \psi_{s}^{-1} x_{k,i}\right)$$

$$j=1,\cdots,q$$

参数复杂性:O(n*p*q)

- 创新点

- □ 传统的方法:每一组特征变换单独拥有一个卷积核,卷积 和特征变换是耦合的
- □ 我们提出:将特征变换和图卷积解耦

大大降低了参数复杂性

- □ 传统的谱方法: O(n * p * q)
- □ 多项式近似的谱方法:O(K * p * q)
- □ **图小波卷积神经网络:**O(n + p * q)

对于大规模网络,参数复杂度有数个数量级的降低

- 应用:图上的半监督分类
 - 部分节点有标签,根据节点特征和网络结构对没有标签的 节点打上标签

- 传统方法
 - □ 标签传播
 - □ 监督学习+图正则

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{reg}$$

$$\mathcal{L}_{reg} = \sum_{ij} A_{ij} ||f(X_i) - f(X_j)||^2$$

■ 图卷积神经网络

□ 完全监督

$$\mathcal{L} = f(X, A)$$

」前向进行特征扩散、 后向进行标签传播

数据集

Dataset	Nodes	Edges	Classes	Features	Label Rate
Citeseer	3,327	4,732	6	3,703	0.036
Cora	2,708	5,429	7	1,433	0.052
Pubmed	19,717	44,338	3	500	0.003

■ 结果

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg	59.5%	60.1%	70.7%
SemiEmb	59.0%	59.6%	71.7%
LP	68.0%	45.3%	63.0%
DeepWalk	67.2%	43.2%	65.3%
ICA	75.1%	69.1%	73.9%
Planetoid	75.7%	64.7%	77.2%
Spectral CNN	73.3%	58.9%	73.9%
ChebyNet	81.2%	69.8%	74.4%
GCN	81.5%	70.3%	79.0%
MoNet	$81.7 \pm 0.5\%$	_	$78.8 \pm 0.3\%$
GWNN	82.8%	71.7%	79.1%

- 基的可解释性
 - □ 以节点*i*为中心的小波体现了在*i*的视角下其他节点在空间域中的临近性
 - □ 选择合适的基相当于在空间域选择合适的核函数

>> 小结

■ 图卷积神经网络

- □ 卷积神经网络在非欧数据(例如:图)上的拓展应用
- □ 特别适合网络化数据的处理 , 实现数据在时间、空间、关 联约束下的简约计算

■ 发展趋势

- □ 参数共享和计算效率问题是未来要解决的问题
- □ 高维短时数据的建模和预测:交通、股市、社交媒体等

面向图半监督学习的热核图卷积 神经网络

Graph Convolutional Networks using Heat Kernel for Semi-supervised Learning (IJCAI 2019)

>> 从空间方法的角度审视谱方法

■ 联系:谱方法是空间方法的特例

- 区别:
 - □ 谱方法定义核函数时需要显式的空间映射

$$D_i = u_i u_i^T$$
, 这里 u_i 定义了显式的空间映射

□ 空间方法直接定义核函数,不需要显式的空间映射

刻画节点相似度

或距离

>> 谱方法回顾:空间方法视角

Spectral CNN

$$y = Ug_{\theta}U^{T}x = (\theta_{1}u_{1}u_{1}^{T}) + \theta_{2}u_{2}u_{2}^{T} + \dots + \theta_{n}u_{n}u_{n}^{T})x$$

ChebyNet

$$y = (\theta_0 I + \theta_1 L + \theta_2 L^2 + \dots + \theta_{K-1} L^{K-1})x$$

GCN

$$y = \theta(I - L)x$$

思考这样一个问题: GCN为什么在半监督学习任务上

能够优于ChebyNet?

>> 图信号处理:滤波

信号关于网络的平滑程度

$$x^{T}Lx = \sum_{(u,v)\in E} A_{uv} \left(\frac{x_u}{\sqrt{d_u}} - \frac{x_v}{\sqrt{d_v}} \right)^{2}$$

x表示图上的信号 , A是网络的邻接矩阵 , E是网络的边集 , L是拉普拉斯矩阵 , d_u 表示节点u的度

■基础滤波器

- $u_i u_i^T (1 \le i \le n)$ 构成一组基础滤波器, $\lambda_i = u_i^T L u_i$
- \square 对于一个信号x , $u_i u_i^T$ 只允许频率为 λ_i 的信号分量通过

$$x = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n,$$

$$u_i u_i^T x = \alpha_i u_i$$

>> 组合滤波器:高通 vs. 低通

- 组合滤波器
 - □ 由基础滤波器的线性组合构成

$$\theta_1 u_1 u_1^T + \theta_2 u_2 u_2^T + \dots + \theta_n u_n u_n^T$$

- \Box L^k 是组合滤波器的一个例子,对应的系数为: $\left\{\lambda_i^k\right\}_{i=1}^n$
- \Box L^k 赋予高频基础滤波器更大的权重,是一种高通滤波器

- GCN只考虑k=0和k=1两阶,具有更好的平滑性
 - □ 部分解释了GCN在图半监督学习任务上比ChebyNet好

思考方向:构造抑制高频信号的组合滤波器,来刻画平滑性

>> GraphHeat:热核图卷积神经网络

低通组合滤波器

 $\{e^{-skL}\}$, s是尺度参数, k是阶数

 e^{-sL} 是图的热核(Heat Kernel),该核函数通过热扩散定义节点间的相似度

$$e^{-sL} = Ue^{-s\Lambda}U^T$$
, $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$

 $u_i u_i^T (1 \le i \le n)$ 基础滤波器的系数为 $e^{-s\lambda_i}$,从而抑制了高频信号

>> GraphHeat:热核图卷积神经网络

- 方法对比

>> 邻域对比

- **GCN和GraphHeat的领域对比**
 - □ GCN:按照最短路径定义临近(颜色区分)
 - □ GraphHeat:按照热扩散距离定义临近(圆圈标记)

>> GraphHeat:热核图卷积神经网络

■ 在节点分类任务上的结果:

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg	59.5%	60.1%	70.7%
SemiEmb	59.0%	59.6%	71.7%
LP	68.0%	45.3%	63.0%
DeepWalk	67.2%	43.2%	65.3%
ICA	75.1%	69.1%	73.9%
Planetoid	75.7%	64.7%	77.2%
ChebyNet	81.2%	69.8%	74.4%
GCN	81.5%	70.3%	79.0%
MoNet	81.7±0.5%	_	$78.8 \pm 0.3\%$
GAT	$83.0 \pm 0.7\%$	$72.5 \pm 0.7\%$	$79.0 \pm 0.3\%$
GraphHeat	83.7%	72.5%	80.5%

>> 几点思考

- 应用场景还比较少,数据集也不多
 - □ 节点级
 - 半监督学习: node classification
 - 链路预测、推荐等
 - 网络级: graph classfication
 - □ 信号级:应用较少
- 规模能否上的去
 - □ PinSAGE: GraphSAGE在Pinterest真实场景上的应用
- 图神经网络(GNN)到底解决了什么问题?
 - □ 和Network Embedding孰优孰劣?

徐冰冰

曹婍

岑科廷

仇韫琦

程学旗