Lecture notes on Markov Processes

Written by
Manuel Hinz
mh@mssh.dev or s6mlhinz@uni-boun.de

Based on the lectures of Prof. Dr. Patrik Ferrari ferrari@uni-bonn.de

University of Bonn Winter semester 2024 Last update: October 15, 2024

Contents

hap	ter 1 Continuous time Markov chains
1.1	Markov chain, transition function, infinitesimal description
1.2	Examples
1.3	From MC to Q -matrices
	1.3.1 MC \rightarrow Transition functions
	1.3.2 Transition functions to Q-matrices
1.4	From Q-matrix to the Markov Chains
	1.4.1 The backwards equation

Chapter 0: Manuel's notes

Warning

These are unofficial lecture notes written by a student. They are messy, will almost surely contain errors, typos and misunderstandings and may not be kept up to date! I do however try my best and use these notes to prepare for my exams. Feel free to email me any corrections to mh@mssh.dev or s6mlhinz@uni-bonn.de. Happy learning!

General Information

• Ecampus: Ecampus link

• Basis: Basis link

• Website: None

• Time slot(s): Tuesday 12-14 and Thursday 12-14

• Exams: Oral

• Exercises: To be handed in each **Friday** until **noon**

There are tutorials in the second week (14.10.24 and 16.10.24)!

Start of lecture 01 (08.10.2024)

Chapter 1: Continuous time Markov chains

Two motivating examples:

1.1 Markov chain, transition function, infinitesimal description

We have a **countable state space** S and define

- Ω = {right-continuous functions ω : ℝ₊ →
 S with finitely many jumps in any finite time intervals}
- σ -algebra $\mathcal{F} := \sigma(\{\omega \to \omega(t) \text{ which is measurable } \forall t \geq 0\})$
- time shift operator: $(\theta_s \omega)(t) := \omega(s+t)$

Definition 1.1. Denote $X(t,\omega) := \omega(t)$. Assume we have a collection of probability measures $\{\mathbb{P}^x, x \in \mathcal{S}\}$ on (Ω, \mathcal{F}) , a right-continuous filtration $\{\mathcal{F}_t, t \geq 0\}$ on (Ω, \mathcal{F}) . X is a continuous time Markov chain (MC) if

- (a) X is adapted to $\{\mathcal{F}_t, t \geq 0\}$
- (b) <u>Initial condition:</u> $\mathbb{P}^x(X(0) = x) = 1$
- (c) **Markov property:** $\forall x \in \mathcal{S}, Y$ measurable function on $\Omega, s \geq 0$:

$$\mathbb{E}^x (Y \circ \theta_s \mid \mathcal{F}_s) = \mathbb{E}^{X(s)}(Y), \mathbb{P}^x \ a.s.$$

Example. $Y = \max_{0 \le t \le 1} X(t) \to Y \circ \theta_s = \max_{s \le t \le s+1} X(t)$

Here: Time homogenous processes!

Definition 1.2. A transition function is function $p_t(x, y), x, y \in \mathcal{S}, t \geq 0$ s.t.

- (a) **Positivity:** $p_t(x,y) \ge 0$
- (b) Normalized: $\sum_{y \in \mathcal{S}} p_t(x, y) = 1$
- (c) Continuity: $\lim_{t\downarrow 0} p_t(x,x) = p_0(x,x) = 1$
- (d) Chapman-Kolmogorov equation: $\forall s, t \geq 0 \ \forall x, y \in \S$:

$$p_{s+t}(x,y) = \sum_{z \in \mathcal{S}} p_s(x,z) p_t(z,y)$$

Given a transition function, we can construct \mathbb{P}^x as follows:

Finite dimensional distributions, $0 < t_1 < \cdots < t_n$:

$$\mathbb{P}^{x}(X(t_{1}) = x_{1}, X(t_{2} = x_{2}), \dots, X(t_{n}) = x_{n}) \coloneqq p_{t_{1}}(x, x_{1}) \cdot p_{t_{2} - t_{1}}(x_{1}, x_{2}) \cdot \dots \cdot p_{t_{n} - t_{n-1}(x_{n-1}, x_{n})}$$

Page 3 of 11

measurable w.r.t.?

We will see while constructing, that this part is tricky, might just $be \leq 1$

extend to full time \mathbb{R}_+ by the Kolmogorov(-Daniell) extension theorem, where the consistency, $\mathbb{P}^x(X(t) = y) = p_t(x, y)$, relations follow by the Chapman-Kolmogorov equation.

Example. $0 < t_2 < \cdots < t_n$

$$\sum_{x_1 \in \mathcal{S}} \mathbb{P}^x \left(X(t_1) = x_1, \dots, X(t_n) = x_n \right) = \mathbb{P}^x \left(X(t_2) = x_2, \dots, X(t_n) = x_n \right)$$

We are still in the same setting, therefore we use the same t_1 as previously

By modeling we often think at the basic biological/ physical properties of the system \rightarrow typically we have transition rates, because for $x \neq y$: $\begin{cases} p_{\epsilon}(x,y) = O(\epsilon), & p_{\epsilon}(x,x) = 1 - O(\epsilon) \\ p_{0}(x,y) = 0, & p_{0}(x,x) = 1 \end{cases}$

Definition 1.3. For a Markov chain X we define the <u>transition rates</u> from x to y $(x \neq y)$ by:

$$\tilde{q}(x,y) = := \frac{d}{dt} p_t(x,y) \mid_{t=0}$$

Definition 1.4. A Q-matrix (or generator) is a collection of numbers $\{q(x,y): x,y \in \mathcal{S}\}$ s.t.:

- (a) $q(x,y) \ge 0 \forall x \ne y$
- (b) $\sum_{y \in \mathcal{S}} q(x, y) = 0$, Notation: $c(x) := q(x, x) = \sum_{y \in \mathcal{S} \setminus \{x\}} q(x, y)$

c(x) is the rate of leaving site x

Warning

It is not automatic that transition rates gives a Q-matrix For instance: $\tilde{q}(x,y) = \infty$

For **finite** state space,

Markov chain \iff Transition function \iff Q-matrix Goal: Under which condition is the equivalence still true?

1.2 Examples

Example (Discrete to continuous MC). <u>Given:</u> Markov chain Y in discrete time $t \in \mathbb{Z}_+$, i.e. transition matrix $P = (P(x,y))_{x,y \in \mathcal{S}}$

$$\mathbb{P}(Y(n+1) = y \mid Y(n) = x) = P(x, y)$$

Consider a Poisson process(PP) with intensity 1, at each event time of the PP, there will be a jump of the continuous time MC X. The jumps follow the discrete time MC Y $\implies p_t(x,y) = \sum_{n\geq 0} \frac{e^{-t}t^n}{n!} P^n(x,y)$ in this case Q = P - 1

Example (Finite S). $p_t(x,y) = \left(e^{tQ}(x,y)\right) := \sum_{n>0} \frac{t^n}{n!} Q^n(x,y)$

Example (Birth and death processes). $S = \{0, 1, \dots, \}, X(t) = Population size at time t. Then$

- $q(k, k+1) = \rho_k, k \ge 0$
- $q(k+1,k) = \lambda_k, q > 1$
- $q(k,k) = -\rho_k \lambda_k$ with $\lambda_0 = 0$
- which implies $q(k, l) = 0 \forall |k l| \ge 2$

Depending on the choice of ρ_k, λ_k it is possible that the chain goes to ∞ in finite time.

Here will be one of the main problems: If Q is finite / a normed operator, everything is well defined. Otherwise we have to use a different definition of the exponetial . . .

Start of lecture 02 (10.10.2024)

1.3 From MC to Q-matrices

1.3.1 MC \rightarrow Transition functions

Theorem 1.5. Let X be a Markov chain. Then $p_t(x,y) := \mathbb{P}^x(X(t) = y)$.

- (a) $p_t(x,y)$ is a transition function
- (b) $p_t(x,y)$ determines uniquely \mathbb{P}^x

Proof. (a): Positivity and normalization follows by the properties of \mathbb{P}^x .

 $\tau := \inf\{t \in \mathbb{R}_+ \mid X(t) \neq X(0)\}\$ is a.s. positive. $p_t(x,x) \geq \mathbb{P}^x(\tau > t)$, which implies $1 = p_0(x, x) \ge \lim_{t \downarrow 0} p_t(x, x) \ge \lim_{t \downarrow 0} \mathbb{P}^x(\tau > t) = 1.$

We still need to verify the Chapman-Kolmogorov equation: Define

 $Y = 1_{X(t)=y} \implies Y \circ \theta_s = 1_{X(t+s)=y}$

$$p_{s+t}(x,y) = \mathbb{P}^{x}(X(s+t) = y) = \mathbb{E}^{x} \left(1_{X(s+t)=y} \right)$$

$$= \mathbb{E}^{x} \left(\mathbb{E}^{x} (1_{X(s+t)=y} \mid \mathcal{F}_{s}) \right)$$

$$\stackrel{\text{MP}}{=} \mathbb{E}^{x} \left(\mathbb{E}^{X(s) \left(1_{X(t)=y} \right)} \right)$$

$$= \sum_{z \in S} p_{s}(x,z) \underbrace{\mathbb{E}^{z} \left(1_{X(t)=y} \right)}_{=p_{t}(z,y)}$$

(b): By the Markov property $\forall 0 < t_1 < \cdots < t_n, x_1, \dots, x_n \in S$

$$\mathbb{P}^{x}\left(X(t_{1})=x_{1},\ldots X(t_{n})=x_{n}\right)=p_{t_{1}}(x_{1},x_{1})\cdot p_{t_{2}-t_{1}}(x_{1},x_{2})\cdot \cdots \cdot p_{t_{n}-t_{n-1}}(x_{n-1},x_{n})$$

using the Kolmogorov extension theorem \mathbb{P}^x is uniquely determined by p_t .

1.3.2 Transition functions to Q-matrices

Proposition 1.6. Let $p_t(x,y)$ be a transition function.

- (a) $\forall t \geq 0, x \in S, p_t(x, x) > 0$
- (b) If $p_t(x,x) = 1$ for some t > 0, then $p_s(x,x) = 1 \forall s \geq 0$
- (c) $\forall x, y \in S, p_t(x, y)$ is uniformly continuous in t, due to

$$|p_{t+s}(x,y) - p_t(x,y)| \le 1 - p_s(x,x)$$

(a) differs from the discrete time markov chain \rightarrow no issues of periodicity

(b) The M.C. if it reaches site x, stays forever in x. x is an absorbing state

Proof. (a): Since $\lim_{x\downarrow 0} p_t(x,x) = 1 \implies p_s(x,x) > 0$ for $s \in [0,t]$ for some small t. Therefore

Proof. (a): Since
$$\lim_{x\downarrow 0} p_t(x,x) = 1 \implies p_s(x,x) > 0$$
 for $s \in [0,t]$ for some small t . Therefore $\forall s \in [0,t]: p_{t+s}(x,x) \geq p_t(x,x)p_s(x,x) > 0$, which we can iterate to get the claim.

(b): $p_{s+t}(x,x) = \sum_{z \in S} p_s(x,z)p_t(z,x) \leq p_s(x,x)p_t(x,x) + \sum_{z \neq x} p_s(x,z) \cdot 1$ Then

$$p_{s+t}(x,x) \le 1 - \underbrace{p_s(x,x)}_{\substack{(a) \ \ge 0}} (1 - p_t(x,x)).$$

If
$$p_{s+t}(x,x) = 1 \implies p_t(x,x) = 1$$
.
 $\forall v \in [t+s, 2(t+s)] : p_v(x,x) \ge p_{\underbrace{v - (t+s)}_{\in [0,t+s]}}(x,x)p_{t+s}(x,x) = 1 \cdot 1 = 1$
(c):

(c):

$$p_{s+t}(x,y) - p_t(x,y) = \sum_{z \in S} p_s(x,z) p_t(s,y) - p_t(x,y)$$

$$= \underbrace{(p_s(x,x) - 1) p_t(x,y)}_{\leq 0} + \underbrace{\sum_{z \neq x} p_s(x,z) p_t(z,y)}_{>0}$$

still good, since $p_s(x,z)$ will be 0

Since

$$|p_s(x,x) - 1|p_t(x,y) \le 1 - p_s(x,x)$$

and

$$\sum_{z \neq x} p_s(x, z) \underbrace{p_t(z, y)}_{\leq 1} \leq 1 - p_s(x, x)$$

$$\implies |p_{s+t}(x, y) - p_t(x, y)| \leq 1 - p_s(x, y)$$

Theorem 1.7. Let $p_t(x,y)$ be a transition function.

(a) $\forall x \in S$ the right derivative

$$\tilde{c}(x) = -\tilde{q}(x,x) = -\frac{d}{dt}p_t(x,x)\mid_{t=0} \in [0,\infty]$$

exists and $p_t(x,x) \geq e^{-\tilde{c}(x)t}, \forall t > 0$

(b) $I \ tildec < \infty \implies \forall y \neq x$, the right-derivative

$$\tilde{q}(x,y) \coloneqq \frac{d}{dt} p_t(x,y) \mid_{t=0} \in [0,\infty]$$

exists and $\sum_{y \in S} \tilde{q}(x, y) \leq 0$

(c) If for some $x \in S$, $\tilde{c}(x) < \infty$ and $\sum_{y \in S} \tilde{q}(x, y) = 0$, then $p_t(x, y)$ is C^1 in time for this x and $y \in S$. Moreover, it satisfies the **Kolmogorov-backwards equation**:

$$\frac{d}{dt}p_t(x,y) = \sum_{z \in S} \tilde{q}(x,z)p_t(z,y)$$
(1.1)

Proof. (a) Let $f(t) := -\ln(p_t(x,x)) \ge 0$. By $p_{s+t}(x,x) \ge p_s(x,x)p_t(x,x)$ it follows

$$f(t+s) \le f(s) + f(t),$$

the function f is subadditive, which implies

$$\lim_{t \downarrow 0} \frac{f(t)}{t} = \sup_{t > 0} \frac{f(t)}{t} \in [0, \infty]$$

$$\implies \lim_{t \downarrow 0} \frac{f(t)}{t} = \frac{d}{dt} f(t) \mid_{t=0} = \frac{-\frac{d}{dt} p_t(x, x)}{\underbrace{p_t(x, x)}_{\rightarrow 1}} \mid_{t=0} = \tilde{c}(x)$$

$$\implies \tilde{c}(x) \ge \frac{f(t)}{t} = -\frac{\ln p_t(x,x)}{t} \to p_t(x,x) \ge e^{-\tilde{c}(x)t}$$

(b) by (a): $1 - p_t(x, x) \le 1 - e^{-\tilde{c}(x)t} \le \tilde{c}(x)t$, which implies

$$\sum_{y \neq x} p_t(x, y) \le \tilde{c}(x)t.$$

$$\implies \tilde{q}(x,y) \coloneqq \limsup_{t \downarrow 0} \frac{p_t(x,y)}{t} \in [0, \underbrace{\tilde{c}(x)}_{\text{opt}}]$$

Let $\delta > 0, n \in \mathbb{N}$: Let $p_{\delta} = \{p_{\delta}(x,y)\}_{x,y \in S}$ be a discrete time chain.

$$p_{n\delta}(x,y) \ge \sum_{k=0}^{n-1} \underbrace{p_{\delta}(x,x)^{k}}_{\ge p_{\delta}(x,x)^{n} \ge e^{-\tilde{c}(x)n\delta}} p_{\delta}(x,y) p_{(n-k-1)\delta}(y,y)$$

$$\implies \frac{p_{n\delta}(x,y)}{n\delta} \ge \frac{p_{\delta(x,y)}}{\delta} e^{-\tilde{c}(x)n\delta} \cdot \inf_{0 \le s \le n\delta} p_{s}(y,y)$$

In particular, the limit exists

Take a subsequence of $\delta \downarrow 0$ such that $n\delta \to t$ and $\lim_{\delta \downarrow 0} \frac{p_{\delta}(x,y)}{\delta} = \tilde{q}(x,y)$

$$\implies \liminf_{t\downarrow 0} \frac{p_t(x,y)}{t} \ge \tilde{q}(x,y) \cdot 1 \cdot 1$$

which implies that the limit exists.

$$\sum_{y \neq x} \frac{p_t(x, y)}{t} \leq \tilde{c}(x)$$

$$\tilde{c}(x) \geq \liminf_{t \downarrow 0} \sum_{y \neq x} \frac{p_t(x, y)}{t} \stackrel{\text{Fatou}}{\geq} \sum_{y \neq x} \liminf_{t \downarrow 0} \frac{p_t(x, y)}{t} = \sum_{y \neq x} \tilde{q}(x, y)$$

$$\implies \sum_{y \neq x} \tilde{q}(x, y) \leq 0$$

(c) By Chapman-Kolmogorov:

$$\frac{p_{t+\epsilon}(x,y) - p_t(x,y)}{\epsilon} - \sum_{z} \tilde{q}(x,z) p_t(z,y)$$

$$= \sum_{z \in S} \underbrace{\left(\frac{p_{\epsilon}(x,z) - \overbrace{p_0(x,z)}^{\delta_{x,z}}}{\epsilon} - \widetilde{q}(x,z)\right)}_{=(\star)} p_t(z,y)$$

For all $z : \lim_{\epsilon \to 0} (\star) = 0$ Take $T \subset S$, $|T| < \infty \implies \lim_{\epsilon \downarrow 0} \sum_{z \in T} (\star) \cdot p_t(z, y) = 0$. Let $x \in T$.

$$\begin{split} & \sum_{z \notin T} \left| \frac{p_{\epsilon}(x,z)}{\epsilon} - \tilde{q}(x,z) \right| \underbrace{p_{(z,y)}}_{\leq 1} \\ & \leq \sum_{z \notin T} \frac{p_{\epsilon}(x,z)}{\epsilon} + \sum_{z \notin T} \tilde{q}(x,z) \stackrel{\sum q(\tilde{x},\tilde{z}) = 0}{=} \frac{1}{\epsilon} \left(1 - \sum_{z \in T} p_{\epsilon}(x,z) \right) - \sum_{z \in T} \tilde{q}(x,z) \end{split}$$

But
$$\sum_{x} \tilde{q}(x,z) = 0 \stackrel{\epsilon \downarrow 0}{\rightarrow} -2 \sum_{z \in T} \tilde{q}(x,z) \stackrel{T \uparrow S}{\rightarrow} 0$$

Remark. For M.C. also the <u>strong Markov property</u> holds: Let τ be a stopping time and $\overline{Y} : \mathbb{R}_+ \times \Omega \mapsto Y_t(\omega)^a$ measurable, then

$$\mathbb{E}^x(Y \circ \theta_\tau \mid \mathcal{F}_t) = \mathbb{E}^x(Y_\tau), \mathbb{P} - a.s.$$

on the set $\{\tau < \infty\}$.

 $^a {\rm shorthand}$ notation \dots

$$\frac{d}{dt}p_t(x,y) = \lim_{\epsilon \downarrow 0} \frac{p_{t+\epsilon}(x,y) - p_t(x,y)}{\epsilon}$$

using $\sum_z p_t(x,z)p_\epsilon(z,y)$ instead of $\sum_z p_\epsilon(x,z)p_t(z,y)$ we get the **Kolmogorov Forward Equation**

$$\frac{d}{dt}p_t(x,y) = \sum_{z \in \mathcal{S}} p_t(x,z)q(z,y)$$

Start of lecture 03 (15.10.2024)

(1.2)

They are almost always equivalent. In computation one often uses the forward equation, in construction the backwards equation is preffered

1.4 From Q-matrix to the Markov Chains

Let $Q = (q(x, y))_{x,y \in \mathcal{S}}$ be a Q-matrix.

1.4.1 The backwards equation

Proposition 1.8. Let $p_t(x,y)$ be a uniformly bounded function of x,y,t, then (a) is equivalent to (b):

- (a) $p_t(x,y)$ is C^1 in t, satisfies the KBE $^{\mathbf{a}}$, with initial condition $p_0(x,y) = \delta_{x,y}$
- (b) $p_t(x,y)$ is C^0 in t, and satisfies:

$$p_t(x,y) = \delta_{x,y}e^{-c(x)t} + \int_0^t ds e^{-c(x)(t-s)} \sum_{z \in S \setminus \{x\}} q(x,z)p_s(z,y)$$
 (1.3)

 a Kolmogorov Backwards Equation

Proof. (a) \Longrightarrow (b): KBE \Longleftrightarrow

$$\frac{d}{dt}p_t(x,y) = -c(x)p_t(x,y) + \sum_{z \in S \setminus \{x\}} q(x,z)p_t(z,y)$$

$$\implies \frac{d}{dt} \left(e^{c(x)t}p_t(x,y) \right) = c(x)e^{c(x)t}p_t(x,y) + e^{c(x)t} \left(-c(x)p_t(x,y) + \sum_{z \neq x} q(x,z)p_t(z,y) \right)$$

$$= e^{c(x)t} \sum_{z \neq x} q(x,z)p_t(z,y)$$

$$\stackrel{\int_0^t}{=} e^{c(x)t}p_t(x,y) - p_0(x,y) = \int_0^t e^{c(x)s} \sum_{z \neq x} q(x,z)p_s(z,y)$$

(b) \Longrightarrow (a): The RHS of the equation is C^1 in t. The initial condition is also satisfied. Taking the derivate yields the $\frac{d}{dt}p_t(x,y) = -c(x)p_t(x,y) + \sum_{z \in S \setminus \{x\}} q(x,z)p_t(z,y)$ which is equivalent to the KBE.

We use proposition 1.8 to show existence of positive solution of the KBE. Idea: Use a **fixed point argument**:

- $p_t^{(0)}(x,y) = 0 \forall x, y \in \mathcal{S}, t \ge 0$
- For $n \ge 0$: $p_t^{(n+1)}(x,y) = \delta_{x,y}e^{c(x)t} + \int_0^t ds e^{-c(x)(t-s)} \sum_{z \ne x} q(x,z)p_s^{(n)}(z,y)$

Lemma 1.9. $\forall n \geq 0$:

(a)
$$p_t^{(n)}(x,y) \ge 0 \forall x, y \in \mathcal{S}$$

(b)
$$\sum_{y \in \mathcal{S}} p_t^{(n)}(x, y) \le 1 \forall x \in \mathcal{S}, t \ge 0$$

(c)
$$p_t^{(n+1)}(x,y) - p_t^{(n)}(x,y) \ge 0 \forall x, y \in \mathcal{S}, t \ge 0$$

Proof. By induction. n = 0 is clearly satisfied for (a),(b),(c).

(a) is obvious, since RHS are all positive terms.

$$\begin{split} \sum_{y \in \mathcal{S}} p_t^{(n+1)}(x,y) &= e^{-c(x)t} + \int_0^t ds e^{-c(x)(t-s)} \sum_{z \neq x} q(x,z) \underbrace{\sum_{y \in \mathcal{S}} p_s^{(n)}(z,y)}_{\leq 1} \\ &\leq e^{-c(x)t} + \int_0^t ds e^{-c(x)(t-s)} \underbrace{\sum_{z \neq x} q(x,z)}_{=c(x)} \\ &= e^{-c(x)t} + e^{-c(x)t} c(x) \int_0^t ds e^{c(x)s} &= 1 \end{split}$$

$$p_t^{(n+2)}(x,y) - p_t^{(n+1)}(x,y) = \int_0^t e^{-c(x)(t-s)} \sum_{z \neq x} q(x,z) \underbrace{\left(p_s^{(n+1)}(z,y) - p_s^{(n)}(z,y)\right)}_{\geq 0} \geq 0 \qquad \Box$$

- $\implies \forall x, y, t \text{ we have } 0 \le p_t^0(x, y) \le p_t^1(x, y) \le \dots \le 1.$
- there exists a limit, which we denote by $p_t^*(x,y)$

 $p_t^*(x,y) := \lim_{n\to\infty} p_t^n(x,y)$ is Definition 1.10. Thelimitcalledtheminimal solution of the KBE.

Question: Is p^* a transition function?

Theorem 1.11. p^* satisfies:

- (a) $p_{t}^{*}(x,y) \geq 0$
- (b) $\sum_{y \in S} p_t^*(x, y) \le 1$
- (c) The Chapman-Kolmogorov equation
- (d) satisfies (1.3) and thus the KBE

Proof. (a) and (b) follow directly from lemma 1.9.

(d): Take the limits of $p_t^{(n)}(x,y)$ and use monotone convergence. (c): Define $\Delta_t^{(n)} \coloneqq p_t^{(n+1)}(x,y) - p_t^{(n)}(x,y) \ge 0$. Notice $p_t^*(x,y) = \sum_{n \ge 0} \Delta_t^{(n)}(x,y)$ In lemma 1.12:

 $Delta_{t+s}^{(n)}(x,y) = \sum_{z \in \mathcal{S}} \sum_{k=0}^{n} \Delta_s^{(k)}(x,z) \Delta_t^{(n-k)}(z,y)$ which then implies

$$p_{t+s}^{*}(x,y) = \sum_{n\geq 0} \Delta_{t+s}^{(n)}(x,y) = \sum_{z\in\mathcal{S}} \sum_{n\geq 0} \sum_{k=0}^{n} \Delta_{s}^{(k)}(x,z) \Delta_{t}^{(n-k)}(z,y)$$

$$= \sum_{z\in\mathcal{S}} \sum_{k\geq 0} \Delta_{s}^{(k)}(x,z) \sum_{n=k}^{\infty} \Delta_{t}^{(n-k)}(z,y)$$

$$= \sum_{z\in\mathcal{S}} p_{s}^{*}(x,z) p_{t}^{*}(z,y)$$

using monotone convergence.

Lemma 1.12.
$$\Delta_{t+s}^{(n)}(x,y) = \sum_{z \in S} \sum_{k=0}^{n} \Delta_{s}^{(k)}(x,z) \Delta_{t}^{(n-k)}(z,y)$$

Proof. Consider the Laplace transform of the equation w.r.t. s, t, since the functions are all positive!

$$\int_{0}^{\infty} ds \int_{0}^{\infty} dt e^{-\lambda s} e^{-\mu t \Delta_{s+t}^{(n)}} \stackrel{?}{=} \sum_{z \in \mathcal{S}} \sum_{k=0}^{n} \underbrace{\left[\int_{0}^{\infty} ds e^{-\lambda s} \Delta_{s}^{(k)}(x,z) \right]}_{\Psi_{k,\lambda}(x,z)} \underbrace{\left[\int_{0}^{t} e^{-\mu t} \Delta_{t}^{(n-k)}(z,y) \right]}_{\Psi_{n-k,\mu}(z,y)}$$

Define $\int_0^t ds e^{-\lambda s} \Delta_s^{(n)}(x,y) = \Psi_{n,\lambda}(x,y)$. Then for the RHS:

$$= \sum_{z \in \mathcal{S}} \sum_{k=0}^{n} \Psi_{k,\lambda}(x,z) \Psi_{n-k} \mu(z,y)$$

For the LHS:

$$\begin{split} \int_0^\infty ds ds & \int_0^\infty dt e^{-\lambda(s+t)} e^{-t(\mu-\lambda)} \Delta_{\underbrace{s+t}}^{(n)}(x,y) = \int_0^\infty ds \int_s^\infty du e^{-\lambda u} e^{-\mu(u-s)} \Delta_u^{(n)}(x,y) \\ & = \int_0^\infty du \int_u^\infty ds e^{-(\lambda-\mu)s} e^{-\mu u} \Delta_u^{(n)}(x,y) = \frac{\Psi_{n,\mu}(x,y) - \Psi_{n,\lambda}(x,y)}{\lambda - \mu} \\ & \stackrel{?}{=} \sum_{k=0}^n \sum_{x \in S} \Psi_{k,\lambda}(x,y) \Psi_{n-k,\mu}(z,y) \end{split}$$

Another identity: $\Psi_{n+1,\lambda}(x,y) = \sum_{z \neq x} \frac{q(x,z)}{\lambda + c(x)} \Psi_{n,\lambda}(z,y)$ Define the matrix $A_{\lambda}(x,y) \coloneqq \frac{q(x,y)}{\lambda + c(x)} \mathbf{1}_{z \neq x}$, then

$$\Psi_{n,\lambda} = (A_{\lambda})^n \Psi_{0,\lambda}$$

where $\Psi_{0,\lambda}(x,y) = \int_0^\infty ds e^{-\lambda s} p_s^{(1)}(x,y)$ and $p_s^{(1)}(x,y) = \delta_{x,y} e^{-c(x)s}$. Then $\Psi_{0,\lambda}(x,y) = \delta_{x,y} \frac{1}{\lambda + c(x)}$.

$$\begin{split} \frac{\Psi_{n,\mu} - \Psi_{n,\lambda}}{\lambda - \mu} &= \frac{(A_{\mu})^n \Psi_{0,\mu} - (A_{\lambda})^n \Psi_{0,\lambda}}{\lambda - \mu} \\ &= \frac{(A_{\lambda})^n (\Psi_{0,\mu} - \Psi_{0,\lambda})}{\lambda - \mu} \sum_{k=0}^{n-1} (A_{\lambda})^k \frac{A_{\mu} - A_{\lambda}}{\lambda - \mu} A^{n-k-1} \Psi_{0,\mu} \end{split}$$

$$\frac{\Psi_{0,\mu} - \Psi_0, \lambda}{\lambda - \mu}(x, y) = \frac{\delta_{x,y}}{\lambda - \mu} \left(\frac{1}{c(x) + \mu} - \frac{1}{c(x) + \lambda} \right) = \Psi_{0,\mu}(x, y) \cdot \Psi_{0,\lambda}(x, y).$$

Similarly

$$\frac{A_{\mu} - A_{\lambda}}{\lambda - \mu}(x, y) = (\Psi_{0, \lambda} A_{\mu})(x, y)$$

Then

$$\frac{(A_{\lambda})^{n}(\Psi_{0,\mu} - \Psi_{0,\lambda})}{\lambda - \mu} \sum_{k=0}^{n-1} (A_{\lambda})^{k} \frac{A_{\mu} - A_{\lambda}}{\lambda - \mu} A^{n-k-1} \Psi_{0,\mu} = [(A_{\lambda})^{n} \Psi_{0,\mu}](x,y) + \sum_{k=0}^{n-1} \sum_{z} \underbrace{\left[A_{\lambda}^{k} \Psi_{0,\lambda}\right]}_{=\Psi_{k,\lambda}(x,z)} (x,z) \underbrace{\left(A_{\mu}^{n-k} \Psi_{0,\mu}\right)(z,y)}_{=\Psi_{n-k,\mu}(z,y)} = \sum_{k=0}^{n} \sum_{\varepsilon,S} \Psi_{k,\lambda}(x,z) \Psi_{n-k,\mu(z,y)} \qquad \Box$$

Above the second equation is wrong, but the skip from the RHS to the 3rd line is correct

Reminder: For matrices $X^n - Y^n = (X - Y)X^{n-1} + Y(X - Y)X^{n-1} + \cdots + Y^{n-1}(X - Y)$, since they don't commute

List of Lectures

- Lecture 01: Introduction, elementary definitions of continuous time markov chains, examples
- \bullet Lecture 02: From a markov chain to the infinitesimal description
- Lecture 03: