Chapter 9. 뉴럴튜링머신

<기계학습 개론> 강의 서울대학교 컴퓨터공학부 장 병 탁

교재: 장교수의 딥러닝, 홍릉과학출판사, 2017.

Slides Prepared by 장병탁, 한동식

Biointelligence Laboratory
School of Computer Science and Engineering
Seoul National University

목차

9.1 뉴럴튜링머신(NTM)의 구조	5
9.2 NTM의 읽기 및 쓰기 연산	10
9.3 NTM의 주소지정 메커니즘	12
9.4 메모리넷(MemNet)	16
요약	23

들어가는 질문

- 순환신경망(RNN) 모델에서 망각 문제는 왜 발생하는가?
- 학습시 망각 문제를 해결하기 위한 여러가지 방법들을 제안하시오.
- 뉴럴튜링머신(NTM)의 구조를 기술하시오. 특징은 무엇인가?
- NTM에서 읽기, 쓰기, 삭제 연산 메카니즘을 설명하시오.
- NTM에서 두 가지 주소지정 메커니즘을 설명하시오.
- NTM은 어떻게 학습하는가?
- 메모리넷(MemNet)의 구조를 기술하시오.
- 메모리넷에서 입력, 일반화, 출력, 응답 모듈의 기능을 설명하시오.
- 메모리넷의 학습 방법을 설명하시오.

Overview

- 순환신경망(Recurrent Neural Networks: RNN)
 - 순차적 정보를 하나의 고정된 은닉 뉴런에 인코딩
 - 메모리 능력의 부족에 따른 망각 문제
- 뉴럴튜링머신(Neural Turing Machine, NTM)
 - 순환신경망을 통한 제어기와 외부 메모리를 결합하는 딥러닝 모델
 - 벡터 연산으로 동작하는 미분 가능한 기계학습 기반의 튜링머신
- 메모리넷 (Memory Networks, MemNet)
 - 순환신경망의 기억 능력을 향상시키기 위한 방법
 - 입력이 들어올 때 은닉 유닛을 만들어 메모리 장치에 장기 메모리로 저장

9.1 뉴럴튜링머신(NTM)의 구조 (1/5)

- 컴퓨터 프로그램의 대표적 연산들
 - 산술 연산: 일반적인 계산, 예: 1+3
 - 논리 흐름 제어 연산: 조건부 분기를 담당
 - 메모리 연산: 데이터를 읽고 쓰는 외부 저장장치에 대한 접근을 다룸
- 튜링 완전(Turing Complete): 위의 연산들이 가능한 시스템은 모든 프로 그램을 실행 가능
 - 기계학습에서는 추상화된 표현에 사상하는 "산술연산"을 중시한 방법을 주로 사용
 - 프로그램을 완벽히 수행하기 위한 분기 및 외부 저장장치에 대한 고려 부족
- David Hilbert (1928), Entscheidungsproblem (decision problem, 결정 문제): 공리에 대한 1차 논리의 보편적 유효성을 판별하는 알고리듬이 있는가?
 - 기계적 절차(알고리듬)의 엄밀한 정의와 이를 해결할 수 있는 시스템의 정의가 필요

9.1 뉴럴튜링머신(NTM)의 구조 (2/5)

- 튜링머신: 결정 문제를 증명하기 위해 고안한 계산기계
- 정해진 절차에 따라 특정 계산을 수행하는 기계가 충분한 기억 장소와 정확한 알고리듬만 주어진다면 어떠한 계산이라도 가능함을 보여줌
- 튜링머신의 요약
 - "셀"이라 불리는 칸으로 나누어진 무한한 길이의 연속된 테이프가 있다고 가정
 - "헤드"는 기호를 읽거나 테이프에 쓸 수 있으며 한 번에 한 칸의 셀로 이동 가능
 - "상태 저장소" 존재. 상태 들은 인간이 계산을 수행할 때 인간 마음의 상태에 비유할 수 있음
 - 튜링머신이 특정 작업을 완료하기 위해 필요한 유한 개의 명령어 테이블 존재

9.1 뉴럴튜링머신(NTM)의 구조 (3/5)

■ 순환신경망

- 순환신경망은 연속된 입력 패턴들의 시간적인 순서를 고려할 수 있음
- <u>이론적으로</u>, 모든 시간 단위를 고려한 연산을 모델링 할 수 있기 때문에 순환신 경망 튜링완전기계의 조건을 충족
 - <=> RNN을 학습하여 튜링 완전 언어를 시뮬레이션 할 수 있음 <=> RNN을 학습하여 튜링머신을 만들 수 있음
- <u>실제로는</u>, 모델의 크기와 학습시간 등의 조건이 제한된 상황에서는 단순 순환 신경망은 강건하지 못하고, 기억에 많은 오류가 있음을 실험적으로 보여줌

9.1 뉴럴튜링머신(NTM)의 구조 (4/5)

- 뉴럴튜링머신
 - 튜링머신의 개념에서 영감을 받아 구현된 실제적인 시스템
 - 순환신경망을 통한 제어기 + 외부 메모리
 - 벡터 연산으로 동작하는 미분 가능한 튜링머신
- 뉴럴튜링머신을 이용하여 복사, 정렬, 연관기억 연상 등의 간단한 알 고리듬이 수행될 수 있음을 실험을 통해 증명함

9.1 뉴럴튜링머신(NTM)의 구조 (5/5)

- 실수 벡터 형태의 입력과 출력
- 제어기(Controller)
 - 매개변수화된 제어기의 출력 연산들을 튜링 기계의 헤드에 비유
 - 실수 벡터의 흐름만으로 읽기, 쓰기 연산을 사용하여 메모리와 직접 상호작용
- 외부 기억장치(External Memory)
- 선택적 집중 매커니즘(attentional process)을 도입한 구성요소 학습
 - 읽기와 쓰기 연산에 일종의 가중치를 도입한 것
 - 선택적 집중 연산의 도입을 통해 전체 메모리의 일부분만을 접근

9.2 NTM의 읽기 및 쓰기 연산 (1/2)

- 제어기를 거쳐 메모리 슬롯에 대한 읽기와 쓰기 헤드 가중치를 표출
 - 읽기 가중치에 따라 현재의 출력 벡터 생성
 - 쓰기 가중치에 따라 메모리를 새로운 상태로 변환
- M_t : 모델이 주로 다루게 되는 각 시간 단계 t에서의 $M \times N$ 크기의 메모리 행렬 (N: 메모리 슬롯의 갯수, M: 데이터 벡터의 크기)
- *w,*: 시각 *t*때 읽기 헤드로부터 나온 모든 위치 *N*에 대한 가중치 벡터

$$\sum_{i} w_{t}(i) = 1, \qquad 0 \le w_{t}(i) \le 1, \forall i.$$

■ 읽기 작업

 r_t : 읽기 헤드에서 나오는 길이 M의 읽기 벡터. 메모리의 행 벡터 $M_t(i)$ 들의 convex 조합 $r_t \leftarrow \sum_i w_t(i) M_t(i)$

9.2 NTM의 읽기 및 쓰기 연산 (2/2)

■ 삭제 작업

■ e_t: 모든 요소가 0~1 사이의 값을 가지는 길이 M의 삭제 벡터

$$\tilde{M}_{t}(i) \leftarrow M_{t-1}(i)[1-w_{t}(i)e_{t}]$$

■ 1은 모든 요소 값이 1인 행 벡터를 의미하고, 메모리에 적용되는 곱셈은 요소 단위의 스칼라 곱셈을 의미

■ 쓰기 작업

■ a_:: 길이 M 의 추가 벡터

$$M_{t}(i) \leftarrow \tilde{M}_{t}(i) + w_{t}(i)a_{t}$$

- 삭제 및 추가연산을 모든 쓰기 헤드에 대해 수행하면 최종적으로 시각 t에서의 메모리 M_r 를 계산 가능
- 이러한 일련의 과정들은 모두 학습이 가능하다

9.3 NTM의 주소지정 메커니즘 (1/4)

두 개의 주소지정 매커니즘을 적절히 조합해서 가중치 갱신에 사용

- *w_f*: 가중치 벡터
 - 메모리 내 벡터들 중 적절한 위치를 특정하여 사상
 - 두 가지 주소지정 매커니즘을 고려하여 그 값이 계산됨
- 내용기반 주소지정 매커니즘
 - 메모리 내의 실수 벡터 중 제어기의 값과 유사한 벡터의 위치에 헤드에 집중
 - 메모리에 저장된 원하는 내용을 그대로 불러올 수 있다는 장점
- 위치기반 주소지정 메커니즘
 - 메모리 내의 유사도를 비교하는 등의 번거로움 없이 단순히 값이 저장된 위치에 직접 접근하는 것이 효율적일 경우 사용

9.3 NTM의 주소지정 메커니즘 (2/4)

■ 내용기반 주소지정

■ 읽기 또는 쓰기 헤더는 먼저 길이 M의 키 벡터 k_t 를 생성

$$K[u,v] = \frac{u \cdot v}{\|u\| \cdot \|v\|}$$

■ 집중도를 증폭시키기 위한 키 강도 β_t 와 함께 현재의 M_t 내에서 $\underline{k_t}$ 와 가장 비슷한 벡터를 찾아 곱한 후 정규화

$$w_t^{i}(i) \leftarrow \frac{\exp(\beta_t K[k_t, M_t(i)])}{\sum_{j} \exp(\beta_t K[k_t, M_t(j)])}$$

9.3 NTM의 주소지정 메커니즘 (3/4)

■ 위치기반 주소지정

■ 보간(interpolation): 이전 가중치 w_{t-1} 와 현재 내용기반 가중치 w_{t-1}° 를 0~1 사이의 값을 가지는 보간 게이트 g_t 를 사용하여 혼합

$$w_t^g \leftarrow g_t w_t^c + (1 - g_t) w_{t-1}$$

■ 회선(convolutional): 이동 가중치에 의해 회선이동(convolutional shift)

$$w_t(i) \leftarrow \sum_{i=0}^{N-1} w_t^g(j) s(i-j)$$

■ 샤프닝(sharpening): 샤프닝 가중치 $\gamma \geq 1$ 에 의해 최종적으로 샤프닝되어 주소지정이 완료 $w_{i}(i)^{\gamma_{i}}$

 $w_t(i) \leftarrow \frac{w_t(i)^{\gamma_t}}{\sum_j w_t(j)^{\gamma_t}}$

9.3 NTM의 주소지정 메커니즘 (4/4)

■ 주소지정 메커니즘의 시각화

Interpolation

$$\mathbf{w}_t^g \longleftarrow g_t \mathbf{w}_t^c + (1 - g_t) \mathbf{w}_{t-1}$$

Convolutional shift

$$\tilde{w}_t(i) \longleftarrow \sum_j w_t^g(j) \cdot s_t(i-j)$$

Sharpening

$$w_t(i) \propto \tilde{w}_t(i)^{\gamma_t}$$

9.4 메모리넷(MemNet) (1/7)

- 기억 기제를 모사하기 위해 메모리를 장기 메모리로 활용
- 기존 딥러닝 모델의 기억 용량 한계를 극복하려는 시도
 - 각 시간 순서마다 은닉 벡터를 새로 만들어서 장기 메모리에 저장함
- 순환신경망의 고정된 크기의 은닉 유닛의 문제
 - 입력의 길이가 길어질수록 은닉 유닛의 크기도 커져야 함
 - 은닉 유닛의 업데이트가 이루어질수록 이전 정보가 손실됨

9.4 메모리넷(MemNet) (2/7)

- /: (입력 특징 모듈) 들어오는 입력 x를 특징 벡터 /(x)로 변환시킨다.
 - 일반적인 전처리 과정 포함 (파싱, 엔티티 분석 등)
 - 임베딩 행렬을 통한 분산 정보 표현 가능
- G: (일반화 모듈) 오래된 메모리를 업데이트하거나 새로 추가
 - 예) /(x)를 메모리의 한 슬롯에 저장
 - $m_{H(x)} = I(x)$ 이 때, H는 슬롯을 선택하는 함수
 - G는 메모리 m의 인덱스 H(x)를 업데이트
- O: (출력 특징 모듈) 입력과 현재 메모리 상태를 바탕으로 새로운 출력을 생성
- R: (응답 모듈) 벡터 공간 상에서 표현된 출력을 적절한 포맷으로 변환

9.4 메모리넷(MemNet) (3/7)

■ 모델의 흐름

- *x*를 특징 벡터 <u>/(</u>*x*)로 변환한다.
- 새로운 입력에 따라서 메모리 m_i 를 업데이트 시킨다.

$$m_i = G(m_i, I(x), m)$$

■ 입력과 메모리 상황에 따라 출력 특징 o를 계산한다.

$$o = (I(x), m)$$

■ 마지막으로 o를 최종 응답 r로 디코딩한다.

$$r = R(o)$$

입력

- 입력들은 메모리 상에서 다음으로 가능한 슬롯에 저장이 된다
- 예) H(x)는 다음으로 비어 있는 메모리 슬롯 N을 반환하고 $m_N = x$, N = N+1이 된다.

■ 일반화

■ G모듈은 새로운 입력을 메모리 에 저장하고 다른 저장되어 있는 메모리는 변경하지 않는다

■ 추론

- O와 R 모듈에서 일어난다
- O모듈은 입력 x가 주어졌을 때 k개의 관련 메모리들을 찾아서 출력을 생성한다.

9.4 메모리넷(MemNet) (4/7)

메모리넷의 구현

■ k가 1일 때 가장 높은 매칭 점수를 얻는 관련 메모리가 선택된다

$$o_1 = O_1(x, m) = \arg\max_{i=1,...,N} s_O(x, m_i)$$

- 이 때 s_0 는 문장 x와 메모리 m_i 의 쌍을 비교하고 점수를 매기는 함수
- k가 2인 경우, 선택한 관련 메모리와 입력을 바탕으로 두 번째 관련 메모리를 찾는다

$$o_2 = O_2(x, m) = \arg\max_{i=1,...,N} s_O([x, m_{o1}], m_i)$$

- 관련 후보 메모리 *m;*는 입력과 첫번째 관련 메모리에 기반하여 점수가 매겨짐
- 출력 o는 [x, m_{o1}, m_{o2}]고 모듈 R의 입력이 된다.

9.4 메모리넷(MemNet) (5/7)

- R 모듈은 텍스트 응답 *r*을 생성한다.
 - 가장 간단한 응답은 *m*_{ok}를 반환하는 것
 - 문장생성을 하려면 이 모듈에서 RNN을 사용
 - 출력이 한 단어일 경우 후보 단어들에 점수를 매겨서 선택

$$r = \arg\max_{w \in W} s_R([x, m_{o1}, m_{o2}], w)$$

- W는 가능한 단어의 집합이고, s_R 은 매치에 점수를 매기는 함수이다.
- 신경망을 사용하는 함수 s_0 와 s_R 은 다음과 같이 모델링될 수 있다.

$$s(x, y) = \phi_x(x)^T U^T U \phi_y(y)$$

- *U*: *n*× *D* 크기의 행렬
 - *D*: 특징 개수
 - n: 임베딩 크기
- ϕ_x , ϕ_y 는 입력 문장을 크기 *D*의 특징 공간에 매핑시켜주는 함수이다. 간단한 특징 공간은 단어 주머니(bag-of-words)를 사용하는 것이다.

9.4 메모리넷(MemNet) (6/7)

메모리넷 학습

- 훈련데이터에 주어진 입력과 최종 응답 및 관련 문장 정보를 통해 감독학습
- 훈련은 마진기반 랭킹 함수와 확률적 경사 하강법 (stochastic gradient descent, SGD)를 사용
- ullet 주어진 입력 x와 출력 r과 관련 메모리 m_{o1} 과 m_{o2} 가 있을 때, 모델 파라미터 U_{O} 와 U_{R} 을 최소화시키는 방향으로 학습이 이루어짐

$$\begin{split} &\sum_{\overline{f} \neq m_{o1}} \max(0, \gamma - s_{o}(x, m_{o1})) + s_{o}(x, \overline{f})) + \\ &+ \sum_{\overline{f}' \neq m_{o2}} \max(0, \gamma - s_{o}([x, m_{o1}], m_{o2})) + s_{o}([x, m_{o1}], \overline{f}')) \\ &+ \sum_{r \neq r} \max(0, \gamma - s_{r}([x, m_{o1}, m_{o2}], r)) + s_{r}([x, m_{o1}, m_{o2}], \overline{r})) \end{split}$$

- $= \overline{f}, \overline{f'}, \overline{r} :$ 정답 레이블이 아닌 다른 선택 값들이고 γ 는 마진
- R 모듈에서 RNN을 사용하여 문장을 생성하는 경우, 위의 식을 일반적인 언어모델에서 사용하는 일반적인 로그우도 함수를 사용할 수 있다

9.4 메모리넷(MemNet) (7/7)

Table 1: Sample statements and questions from tasks 1 to 10.

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway.

Mary travelled to the office. Where is Mary? A:office

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office. John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen? A:office

Task 5: Three Argument Relations

Mary gave the cake to Fred. Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A: Mary Who did Fred give the cake to? A: Bill

Task 7: Counting

Daniel picked up the football. Daniel dropped the football.

Daniel got the milk.

Daniel took the apple.

How many objects is Daniel holding? A: two

Task 9: Simple Negation

Sandra travelled to the office. Fred is no longer in the office.

Is Fred in the office? A:no

Is Sandra in the office? A:yes

Task 2: Two Supporting Facts

John is in the playground.

John picked up the football. Bob went to the kitchen.

Where is the football? A:playground

Task 4: Two Argument Relations

The office is north of the bedroom.

The bedroom is north of the bathroom.

The kitchen is west of the garden.

What is north of the bedroom? A: office

What is the bedroom north of? A: bathroom

Task 6: Yes/No Questions

John moved to the playground. Daniel went to the bathroom.

John went back to the hallway.

Is John in the playground? A:no

Is Daniel in the bathroom? A:yes

Task 8: Lists/Sets

Daniel picks up the football.

Daniel drops the newspaper. Daniel picks up the milk.

John took the apple.

What is Daniel holding? milk, football

Task 10: Indefinite Knowledge

John is either in the classroom or the playground.

1. A가 사과를 집었다.

2. **A**가 **사무실**로 갔다.

3. **A**가 **부엌**으로 갔다.

4. **A**가 **사과**를 놓았다.

Q. **사과**는 **부엌** 전에 어디 있었는가? **사무실**

추론 과정: 4 (사과,부엌) → 3 (A,부엌) → 2 (A)

13 - Compound Coref.
14 - Time Reasoning
15 - Basic Deduction
16 - Basic Induction
17 - Positional Reasoning
18 - Size Reasoning
19 - Path Finding
20 - Agent's Motivations

Mean Performance

Sandra is in the garden.

Is John in the classroom? A:maybe Is John in the office? A:no

13 John III die Office. 7 kilo										
	26	94	99	100	100	100	100	100	250 ex.	100
	19	27	99	99	100	99	100	99	500 ex.	99
	20	21	96	74	73	100	77	100	100 ex.	100
	43	23	24	27	100	100	100	100	100 ex.	94
	46	51	61	54	46	49	57	65	FAIL	72
	52	52	62	57	50	74	54	95	1000 ex.	93
	0	8	49	0	9	3	15	36	FAIL	19
- [76	91	95	100	100	100	100	100	250 ex.	100
+	2.4	40	70	75	79		97	02		02
	34	49	/9	/3	/9	83	8/	93		92

요약

■ NTM의 구조

■ 신경망으로 이루어진 제어기와 메모리, 그리고 메모리를 조작할 수 있는 벡터들의 연산 방식

■ NTM의 읽기 및 쓰기 연산

- 메모리 슬롯에 대한 읽기와 쓰기 헤드에 대한 가중치를 표출
- 선택적 집중 메커니즘을 도입한 미분 가능한 연산

■ NTM의 주소지정 메커니즘

- 내용기반 주소지정
- 위치기반 주소지정

■ 메모리넷

- 입력, 일반화, 출력, 응답 모듈
- 1회 이상의 메모리 검색을 통한 추론