Filtrage spatial

pierre-louis.frison@u-pem.fr

Convolution spatiale

$$R(m,n) = I * K(m,n) = \sum_{i=m-p}^{m+p} \sum_{j=n-q}^{n+q} I(m-i,n-j) K(i,j)$$

<i>I</i> (<i>m</i> -1,	n-1)	I(m-1, n)	I(m-1, n+1)
I(m, 1	ı-1)	I(m-1, n)	I(m-1, n+1)
I(m+1,	n-1)	<i>I</i> (<i>m</i> -1, <i>n</i>)	<i>I</i> (<i>m</i> -1, <i>n</i> +1)

	K(-1, -1)	K(-1, 0)	K(-1, 1)
:	K(0, -1)	K(0, 0)	K(0, 1)
	K(1,-1)	K(1, 0)	K(1, 1)

Image

 $egin{array}{c|cccc} I_1 & I_2 & I_3 \\ I_4 & I_5 & I_6 \\ I_7 & I_8 & I_9 \\ \hline \end{array}$

Noyau

$$* \begin{array}{c|c} K_1 & K_2 & K_3 \\ \hline K_4 & K_5 & K_6 \\ \hline K_7 & K_8 & K_9 \end{array}$$

$$r\acute{e}sultat = \sum_{i=1}^{9} I_i . K_i$$

Convolution spatiale

Exemple:

10	10	10	10	10	10	10
10	10	10	10	10	10	10
10	10	100	10	10	10	10
10	10	10	10	10	10	10
10	10	10	10	60	10	10
10	10	10	10	10	10	10
10	10	10	10	10	10	10

20	20	20	10	10
20	20	20	10	10
20	20	25	15	15
10	10	15	15	15
10	10	15	15	15

Autre exemple:

0	0	0	10	10	10	10
0	0	0	10	10	10	10
0	0	0	10	10	10	10
0	0	0	10	10	10	10
10	10	10	10	10	10	10
10	10	10	10	10	10	10
10	10	10	10	10	10	10

0	30	30	0	0
0	30	30	0	0
0	20	20	0	0
0	10	10	0	0
0	0	0	0	0

filtres « passe-bas »

moyenne

1	1	1	1
$\frac{1}{9}$	1	1	1
9	1	1	1

	1	1	1
$\frac{1}{10}$	1	2	1
10	1	1	1

 $\begin{array}{c|ccccc}
1 & 2 & 1 \\
\hline
2 & 4 & 2 \\
\hline
1 & 2 & 1
\end{array}$

plus de poids au pixel central

privilégie directions horiz. & verticales

adoucissent l'image (réduisent fluctuations de niveau de gris) préservent basses fréquences Introduisent flou sur les bords des objets

Filtre médian

65	96	223
10	76	125
187	92	78

adoucissent l'image (réduisent fluctuations de niveau de gris) flou moins important que filtre « moyenne » Adapté pour bruit de type poivre-sel

Exemples de filtres « passe-bas »

Image originale

Filtre « moyenne » 3x3

Filtre médian 3x3

Source: Gonzalez & Woods

filtres « passe-haut »

$$f'(x) = f(x+1) - f(x)$$

Filtres directionnel

-1	0	1
-1	0	1
-1	0	1

-1	-1	0
-1	0	1
0	1	1

-1	-1	-1
0	0	0
1	1	1

Gradient directionnel de Sobel

Laplacien

$$f''(x) = f(x+1) + f(x-1) - 2f(x)$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	-1	0
-1	4	-1
0	-1	0

Image originale

Filtre Sobel directionnel vertical: $\frac{\partial}{\partial t}$

$$\left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right|$$

filtres « passe-haut »

Filtre de Sobel: $\left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right|$

Filtre laplacien

|Filtre laplacien|

Comparaison entre f'(x) et f''(x)

Comparaison entre f'(x) et f''(x)

f"(x): contours plus fins plus efficace sur points isolés

