

Santande	er customer tr	ansaction pre	ediction

Contents

1	Introduction	3
	1.1 Problem Statement	3
		1.2 Data 3
2	Methodology	4
	2.1 Exploratory Data Analysis	4
	2.1.1 Missing value analysis	5
	2.1.2 Attributes Distributions and trends	6
	2.1.3 Outlier Analysis	13
	2.1.4 Feature Selection	13
	2.1.5 Feature Engineering	14
	2.2 Modeling	18
	2.2.1 Model Selection	18
	2.2.2 Logistic Regression	18
	2.2.3 SMOTE or ROSE	22
	2.2.4 LightGBM	25
3	Conclusion	28
Ŭ	3.1 Model Evaluation	28
	3.1.1 Confusion Matrix	
	3.1.2 ROC_AUC_score	
	3.2 Model Selection	38
\mathbf{A}	opendix A - Extra Figures	39
\mathbf{A}	opendix B – Complete Python and R Code	51
	Python Code	52
	R code	62
Re	erences	71

Chapter 1

Introduction

1.1 Problem Statement

At Santander, mission is to help people and businesses prosper. We are always looking for ways to help our customers understand their financial health and identify which products and services might help them achieve their monetary goals.

Our data science team is continually challenging our machine learning algorithms, working with the global data science community to make sure we can more accurately identify new ways to solve our most common challenge, binary classification problems such as: is a customer satisfied? Will a customer buy this product? Can a customer pay this loan?

In this challenge, we need to identify which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

1.2 Data

In this project, our task is to build classification models which would be used to predict which customers will make a specific transaction in the future. Given below is a sample of the Santander customer transaction dataset:

Table 1.1: Train dataset (Columns:1-202)

ID_code	target	var_0	var_1	var_2	•••••	•••••	var_199
train_01	0	8.92	-6.78	11.90	•••••		-1.09
train_02	0	11.5	-4.14	13.85			1.95
train_03	0	8.60	-2.74	12.08			0.39
train_04	0	11.06	-2.15	8.95			-8.99
train_05	0	9.83	-1.48	12.87			-8.81

Table 1.2: Test Dataset (Columns: 1-201)

ID_code	var_0	var_1	var_2	var_3	•••••	•••••	var_199
test_01	11.06	8.92	-6.78	11.90	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	-1.09
test_02	8.53	11.5	-4.14	13.85	•••••		1.95
test_03	5.48	8.60	-2.74	12.08	•••••	•••••	0.39
test_04	8.53	11.06	-2.15	8.95			-8.99
test_05	11.7	9.83	-1.48	12.87			-8.81

From the table below we have the following 16 variables, using which we have to predict the bike rental count:

Table 1.3: Predictor Variables

SL.No.	Predictor
1	ID-code
2	var0
3	var1
4	var2
5	var3
6	var4
7	var5
••••	
••••	
• • • •	
••••	
••••	
••••	
• • • •	
202	var199

Chapter 2

Methodology

2.1 Exploratory Data Analysis (EDA)

Exploratory data analysis is one of the most important step in data mining in order to know features of data. It involves the loading dataset, target classes count, data cleaning, typecasting of attributes, missing value analysis, Attributes distributions and trends. So, we have to clean the data otherwise it will effect on performance of the model. Now we are going to explain one by one as follows. In this EDAI explained with seaborn visualizations.

2.2.1 Target classes count

- We have a unbalanced data, where 90% of the data is the number of customers those will not make a transaction and 10% of the data is those who will make a transaction.
- Look at the violin plots seems that there are no relationship between the targets with the index of the train data frame. This is more dominated by the zero targets then for the ones.
- Look at the jitter plots with violin plots. We can observed that targets looks uniformly distributed over the index of the data frame.

2.2.2 Missing value Analysis

In this, we have to find out any missing values are present in dataset. If it's present then either delete or impute the values using mean, median and KNN imputation method. We have not found any missing values in both train and test data.

R and Python code as follows,

```
#Missing values in train and test data
# R code
missing_val<-data.frame(missing_val=apply(train_df,2,function(x){sum(is.na(x))}))
missing_val<-sum(missing_val)
[1] 0
missing_val<-data.frame(missing_val=apply(test_df,2,function(x){sum(is.na(x))}))
missing_val<-sum(missing_val)
[1] 0

# Python code
train_missing=train_df.isnull().sum().sum()
[1] 0
test_missing=test_df.isnull().sum().sum()
[1] 0</pre>
```

2.1.1 Attributes distributions and trends

Distribution of train attributes

Let us look distribution of train attributes from var_0 to var_99

- We can observed that there is a considerable number of features which are significantly
 have different distributions for two target variables. For example like
 var_0,var_1,var_9,var_19,var_18 etc.
- We can observed that there is a considerable number of features which are significantly have same distributions for two target variables. For example like var_3, var_7,var_10,var_17,var_35 etc.

Distribution of test attributes

Let us look distribution of test attributes from var_0 to var_99

- We can observed that there is a considerable number of features which are significantly have different distributions. For example like var_0, var_1, var_9, var_18 var_38 etc.
- We can observed that there is a considerable number of features which are significantly have same distributions. For example like var_3, var_7, var_10, var_17, var_45, var_192 etc.

Distribution of mean values in both train and test dataset

Let us look distribution of mean values per column in train and test dataset

Let us look distribution of mean values per row in train and test dataset

Distribution of standard deviation (std) values in train and test dataset

Let us look distribution of standard deviation (std) values per column in train and test dataset

Let us look distribution of standard deviation (std) values per row in train and test dataset

Distribution of skewness values in train and test dataset

Let us look distribution of skewness values per column in train and test dataset

Let us look distribution of skewness per row in train and test dataset

Distribution of kurtosis values in train and test dataset

Let us look distribution of kurtosis values per column in train and test dataset

Let us look distribution of kurtosis values per row in train and test dataset

2.1.2 Outlier analysis

In this project, we haven't perform outlier analysis due to the data is imbalanced and also not required for imbalanced data.

2.1.3 Feature Selection

Feature selection is very important for modelling the dataset. The every dataset have good and unwanted features. The unwanted features would effect on performance of model, so we have to delete those features. We have to select best features by using ANOVA, Chi-Square test and correlation matrix statistical techniques and so on. In this, we are selecting best features by using Correlation matrix.

Correlation matrix

Correlation matrix is tells about linear relationship between attributes and help us to build better models.

From correlation distribution plot, we can observed that correlation between both train and test attributes are very small. It means that all both train and test attributes are independent to each other.

2.1.4 Feature engineering

Let us do some feature engineering by using

- Permutation importance
- Partial dependence plots

Permutation importance

Permutation variable importance measure in a random forest for classification and regression. The variables which are mostly contributed to predict the model.

Python code

```
#training data
X=train df.drop(columns=['ID code', 'target'],axis=1)
test=test_df.drop(columns=['ID_code'],axis=1)
y=train_df['target']
#Split the training data
X_train,X_valid,y_train,y_valid=train_test_split(X,y,random_state=42)
#Random forest classifier
rf model=RandomForestClassifier(n estimators=10,random state=42)
#fitting the model
rf_model.fit(X_train,y_train)
#Let us calculate weights and show important features using eli5 library.
from eli5.sklearn import PermutationImportance
perm_imp=PermutationImportance(rf_model,random_state=42)
#fitting the model
perm imp.fit(X valid,y valid)
#Important features
eli5.show_weights(perm_imp,feature_names=X_valid.columns.tolist(),top=200)
```

```
Weight Feature
0.0004 ± 0.0002 var_81
0.0003 ± 0.0002 var_146
0.0003 ± 0.0002 var_109
0.0003 ± 0.0002 var_12
0.0002 ± 0.0001 var_110
0.0002 ± 0.0000 var_173
0.0002 ± 0.0001 var_174
0.0002 ± 0.0002 var_0
0.0002 ± 0.0002 var 26
0.0001 ± 0.0001 var_166
0.0001 ± 0.0001 var_169
0.0001 ± 0.0001 var_22
0.0001 ± 0.0001 var_99
0.0001 ± 0.0001 var_53
0.0001 ± 0.0001
                var 8
```

R code

```
#Split the training data
train_index<-sample(1:nrow(train_df),0.75*nrow(train_df))
train_data<-train_df[train_index,]
valid_data<-train_df[-train_index,]

#Training the Random forest classifier
set.seed(2732)
train_data$target<-as.factor(train_data$target)
mtry<-floor(sqrt(200))
tuneGrid<-expand.grid(.mtry=mtry)
rf<-randomForest(target~.,train_data[,-c(1)],mtry=mtry,ntree=10,importance=TRUE)

#Variable importance
VarImp<-importance(rf,type=2)
VarImp</pre>
```

Variable importance based on Mean Decrease Gini

	MeanDecreaseGini
var_0	178.19905
var_1	179.11005
var_2	186.08049
var_3	124.84417
var_4	115.25478
var_5	136.53634
var_6	193.64204
var_7	111.92811
var_8	109.93159
var_9	159.85075
var_10	117.02210

Take away:

• We can observed that the top important features are var_12, var_26, var_22, var_174, var_198 and so on based on Mean decrease Gini.

Partial dependence plots

Partial dependence plot gives a graphical depiction of the marginal effect of a variable on the class probability or classification. While feature importance shows what variables most affect predictions, but partial dependence plots show how a feature affects predictions.

Python code

```
#Create the data we will plot 'var_53'
  features=[v for v in X_valid.columns if v not in ['ID_code', 'target']]
pdp_data=pdp.pdp_isolate(rf_model,dataset=X_valid,model_features=features,feature=
'var_53')
#plot feature "var_53"
pdp.pdp_plot(pdp_data,'var_53')
plt.show()
```

PDP for feature "var_53" Number of unique grid points: 10

- The y_axis does not show the predictor value instead how the value changing with the change in given predictor variable.
- The blue shaded area indicates the level of confidence of 'var_53'.
- On y-axis having a positive value means for that particular value of predictor variable it is
 less likely to predict the correct class and having a positive value means it has positive
 impact on predicting the correct class.

```
#Create the data we will plot 'var_81'
features=[v for v in X_valid.columns if v not in ['ID_code','target']]
pdp_data=pdp.pdp_isolate(rf_model,dataset=X_valid,model_features=features,feature=
'var_81')
#plot feature "var_81"
pdp.pdp_plot(pdp_data,'var_81')
plt.show()
```

PDP for feature "var_81" Number of unique grid points: 10

- The y_axis does not show the predictor value instead how the value changing with the change in given predictor variable.
- The blue shaded area indicates the level of confidence of 'var_81'.
- On y-axis having a positive value means for that particular value of predictor variable it is less likely to predict the correct class and having a positive value means it has positive impact on predicting the correct class.

R code

```
#We will plot "var_13"
par.var_13 <- partial(rf, pred.var = c("var_13"), chull = TRUE)
plot.var_13 <- autoplot(par.var_13, contour = TRUE)</pre>
```


- The y_axis does not show the predictor value instead how the value changing with the change in given predictor variable.
- The blue shaded area indicates the level of confidence of 'var_13'.
- On y-axis having a positive value means for that particular value of predictor variable it is less likely to predict the correct class and having a positive value means it has positive impact on predicting the correct class.

```
#We will plot "var_34"
par.var_34 <- partial(rf, pred.var = c("var_34"), chull = TRUE)
plot.var_34 <- autoplot(par.var_34, contour = TRUE)</pre>
```


- The y_axis does not show the predictor value instead how the value changing with the change in given predictor variable.
- The blue shaded area indicates the level of confidence of 'var_34'.
- On y-axis having a positive value means for that particular value of predictor variable it is less likely to predict the correct class and having a positive value means it has positive impact on predicting the correct class.

2.1 Modeling

2.1.1 Model Selection

After all early stages of preprocessing, then model the data. So, we have to select best model for this project with the help of some metrics.

The dependent variable can fall in either of the four categories:

- 1. Nominal
- 2. Ordinal
- 3. Interval
- 4. Ratio

If the dependent variable is Nominal the only predictive analysis that we can perform is **Classification**, and if the dependent variable is Interval or Ratio like this project, the normal method is to do a **Regression** analysis, or classification after binning.

Handling of imbalance data

Now we are going to explore 5 different approaches for dealing with imbalanced datasets.

- Change the performance metric
- Oversample minority class
- Under sample majority class
- Synthetic Minority Oversampling Technique(SMOTE) in Python or Random Oversampling Examples(ROSE) in R
- Change the algorithm

We always start model building from the simplest to more complex.

2.1.2 Logistic Regression

We will use a Logistic Regression to predict the values of our target variable.

Python code

```
#Training data
#Training data
X=train_df.drop(['ID_code','target'],axis=1)
Y=train_df['target']

#StratifiedKFold cross validator

cv=StratifiedKFold(n_splits=5,random_state=42,shuffle=True)
for train_index,valid_index in cv.split(X,Y):
    X_train, X_valid=X.iloc[train_index], X.iloc[valid_index]
```

```
y train, y valid=Y.iloc[train index], Y.iloc[valid index]
#Logistic regression model
lr model=LogisticRegression(random state=42)
#fitting the lr model
lr_model.fit(X_train,y_train)
#Accuracy of the model
lr=lr_model.score(X_train,y_train)
Accuracy of the model : 0.914
#Cross validation prediction
cv predict=cross val predict(lr model, X valid, y valid, cv=5)
#Cross validation score
cv_score=cross_val_score(lr_model,X_valid,y_valid,cv=5)
print('cross val score :',np.average(cv score))
Cross val score: 0.9132
#Predicting the model
X test=test df.drop(['ID code'],axis=1)
lr_pred=lr_model.predict(X_test)
```

R code

Glmnet is a package that fits a generalized linear model via penalized maximum likelihood.

```
#Split the data using CreateDataPartition
train.index<-createDataPartition(train_df$target,p=0.8,list=FALSE)</pre>
train.data<-train df[train.index,]</pre>
valid.data<-train df[-train.index,]</pre>
#Training dataset
X t<-as.matrix(train.data[,-c(1,2)])</pre>
y t<-as.matrix(train.data$target)</pre>
#validation dataset
X v<-as.matrix(valid.data[,-c(1,2)])</pre>
y v<-as.matrix(valid.data$target)</pre>
#test dataset
test<-as.matrix(test_df[,-c(1)])</pre>
#Logistic regression model
set.seed(667)
lr_model <-glmnet(X_t,y_t, family = "binomial")</pre>
summary(lr_model)
#Cross validation prediction
```

```
set.seed(8909)
cv_lr <- cv.glmnet(X_t,y_t,family = "binomial", type.measure = "class")</pre>
#Plotting the missclassification error vs log(lambda) where lambda is
regularization parameter
#Minimum lambda
cv lr$lambda.min
#plot the auc score vs log(lambda)
plot(cv_lr)
#Model performance on validation dataset
set.seed(5363)
cv_predict.lr<-predict(cv_lr,X_v,s = "lambda.min", type = "class")</pre>
#Confusion matrix
set.seed(689)
#actual target variable
target<-valid.data$target
#convert to factor
target<-as.factor(target)</pre>
#predicted target variable
#convert to factor
cv predict.lr<-as.factor(cv predict.lr)</pre>
confusionMatrix(data=cv_predict.lr,reference=target)
#ROC_AUC score and curve
set.seed(892)
cv predict.lr<-as.numeric(cv predict.lr)</pre>
roc(data=valid.data[,-c(1,2)],response=target,predictor=cv_predict.lr,auc=TRUE,
plot=TRUE)
#predict the model
lr_pred<-predict(lr_model,test_df[,-c(1)],type='class')</pre>
```

Accuracy of the model is not the best metric to use when evaluating the imbalanced datasets as it may be misleading. So, we are going to change the performance metric.

Oversample minority class:

- It can be defined as adding more copies of minority class.
- It can be a good choice when we don't have a ton of data to work with.
- Drawback is that we are adding information. This may leads to overfitting and poor performance on test data.

Under sample majority class:

- It can be defined as removing some observations of the majority class.
- It can be a good choice when we have a ton of data -think millions of rows.
- Drawback is that we are removing information that may be valuable. This may leads to under fitting and poor performance on test data.

Both Oversampling and under sampling techniques have some drawbacks. So, we are not going to use this models for this problem and also we will use other best algorithms.

Synthetic Minority Oversampling Technique (SMOTE)

SMOTE uses a nearest neighbor's algorithm to generate new and synthetic data to use for training the model. In order to balance imbalanced data we are going to use SMOTE sampling method.

Python code

```
from imblearn.over sampling import SMOTE
#Synthetic Minority Oversampling Technique
sm = SMOTE(random state=42, ratio=1.0)
#Generating synthetic data points
X_smote,y_smote=sm.fit_sample(X_train,y_train)
X smote v,y smote v=sm.fit sample(X valid,y valid)
#Logistic regression model for SMOTE
smote=LogisticRegression(random state=42)
#fitting the smote model
smote.fit(X smote,y smote)
smote_score=smote.score(X_smote,y_smote)
print('Accuracy of the smote model :', smote score)
Accuracy of the model: 0.798
#Cross validation prediction
cv pred=cross val predict(smote, X smote v, y smote v, cv=5)
#Cross validation score
cv score=cross_val_score(smote,X_smote_v,y_smote_v,cv=5)
print('cross_val_score :',np.average(cv_score))
cross val score: 0.80
#Predicting the model
X_test=test_df.drop(['ID_code'],axis=1)
smote_pred=smote.predict(X_test)
```

R code

Random Oversampling Examples (ROSE)

It creates a sample of synthetic data by enlarging the features space of minority and majority class examples. In order to balance imbalanced data we are going to use SMOTE sampling method.

```
#Random Oversampling Examples(ROSE)
set.seed(699)
#train.data$target<-as.factor(train.data$target)
train.rose <- ROSE(target~., data =train.data[,-c(1)],seed=32)$data
table(train.rose$target)
valid.rose <- ROSE(target~., data =valid.data[,-c(1)],seed=42)$data
table(valid.rose$target)</pre>
```

```
#Baseline logistic regression model
set.seed(462)
lr rose <-glmnet(as.matrix(train.rose),as.matrix(train.rose$target),</pre>
family = "binomial")
summary(lr rose)
#Cross validation prediction
set.seed(473)
cv_rose = cv.glmnet(as.matrix(valid.rose),as.matrix(valid.rose$target),
family = "binomial", type.measure = "class")
#Minimum lambda
cv rose$lambda.min
#plot the auc score vs log(lambda)
plot(cv rose)
#Model performance on validation dataset
set.seed(442)
cv_predict.rose<-predict(cv_rose,as.matrix(valid.rose),s = "lambda.min",</pre>
type = "class")
cv predict.rose
#Confusion matrix
set.seed(478)
#actual target variable
target<-valid.rose$target</pre>
#convert to factor
target<-as.factor(target)</pre>
#predicted target variable
#convert to factor
cv_predict.rose<-as.factor(cv_predict.rose)</pre>
confusionMatrix(data=cv predict.rose,reference=target)
#ROC_AUC score and curve
set.seed(843)
cv_predict.rose<-as.numeric(cv_predict.rose)</pre>
roc(data=valid.rose[,-c(1,2)],response=target,predictor=cv_predict.rose,auc=TRUE,
plot=TRUE)
#predict the model
set.seed(6543)
rose_pred<-predict(lr_rose,test_df[,-c(1)],type='class')</pre>
```

LightGBM

LightGBM is a gradient boosting framework that uses tree based learning algorithms. We are going to use LightGBM model.

Python code

Let us build LightGBM model

```
#Training the model
#training data
lgb_train=lgb.Dataset(X_train,label=y_train)
#validation data
lgb_valid=lgb.Dataset(X_valid,label=y_valid)
#Selecting best hyper parameters by tuning of different parameters
params={'boosting_type': 'gbdt',
         'max_depth' : -1, #no limit for max_depth if <0</pre>
         'objective': 'binary',
         'boost from average':False,
         'nthread': 8,
         'metric':'auc',
         'num leaves': 100,
         'learning_rate': 0.03,
         'max bin': 950,
                              #default 255
         'subsample_for_bin': 200,
         'subsample': 1,
         'subsample freq': 1,
         'colsample bytree': 0.8,
         'reg_alpha': 1.2, #L1 regularization(>0)
         'reg lambda': 1.2,#L2 regularization(>0)
         'min split gain': 0.5, #>0
         'min child weight': 1,
         'min child samples': 5,
         'is_unbalance':True,
         }
num rounds=3000
lgbm= lgb.train(params,lgb_train,num_rounds,valid_sets=[lgb_train,lgb_valid],
verbose_eval=100,early_stopping_rounds = 1000)
X_test=test_df.drop(['ID_code'],axis=1)
#predict the model
#probability predictions
lgbm_predict_prob=lgbm.predict(X_test,random_state=42,
num iteration=lgbm.best iteration)
#Convert to binary output 1 or 0
lgbm_predict=np.where(lgbm_predict_prob>=0.5,1,0)
```

```
Training until validation scores don't improve for 5000 rounds.
[1000] training's auc: 0.939079
                                         valid_1's auc: 0.882655
[2000] training's auc: 0.958502
                                         valid_1's auc: 0.887842
[3000] training's auc: 0.971937
                                         valid_1's auc: 0.889724
[4000] training's auc: 0.981492
                                         valid_1's auc: 0.890474
[5000] training's auc: 0.988242
                                         valid_1's auc: 0.890772
[6000] training's auc: 0.992813
                                         valid_1's auc: 0.890549
[7000] training's auc: 0.995775
                                         valid_1's auc: 0.890488
[8000] training's auc: 0.997627
                                         valid_1's auc: 0.890549
[9000] training's auc: 0.998739
                                         valid_1's auc: 0.890309
[10000] training's auc: 0.999359
                                         valid_1's auc: 0.889882
Did not meet early stopping. Best iteration is:
[10000] training's auc: 0.999359
                                         valid_1's auc: 0.889882
description <- color="block">lightgbm.basic.Booster at 0x7f8b795edac8>
```

R code

```
#Convert data frame to matrix
X_train<-as.matrix(train_data[,-c(1,2)])</pre>
y_train<-as.matrix(train_data$target)</pre>
X valid<-as.matrix(valid data[,-c(1,2)])</pre>
y_valid<-as.matrix(valid_data$target)</pre>
test_data<-as.matrix(test_df[,-c(1)])
#training data
lgb.train <- lgb.Dataset(data=X train, label=y train)</pre>
#Validation data
lgb.valid <- lgb.Dataset(data=X_valid,label=y_valid)</pre>
#Choosing parameters
lgb.grid = list(objective = "binary",
                metric = "auc",
                boost ="gbdt"
                min_sum_hessian_in_leaf = 1,
                feature fraction = 0.7,
                bagging_fraction = 0.7,
                bagging_freq = 5,
                learning rate=0.05,
                num leaves=80,
                num_threads=10,
                min data = 100,
                \max bin = 200,
                lambda 11 = 8,
```

```
[1]:
       val1's auc:0.594625
                             val2's auc:0.586947
[1001]: val1's auc:0.922163
                            val2's auc:0.895506
[2001]: val1's auc:0.928038 val2's auc:0.898477
[3001]: val1's auc:0.929811 val2's auc:0.899515
[4001]: val1's auc:0.930609
                             val2's auc:0.899988
[5001]: val1's auc:0.931106 val2's auc:0.900336
[6001]: val1's auc:0.931368 val2's auc:0.900598
[7001]: val1's auc:0.931604
                             val2's auc:0.900685
[8001]: val1's auc:0.931813 val2's auc:0.900826
[9001]: val1's auc:0.931982 val2's auc:0.900869
[10000]:
              val1's auc:0.93215
                                     val2's auc:0.900892
```

Important features plot

Python code

```
#plot the important features
lgb.plot_importance(lgbm,max_num_features=150,importance_type="split",figsize=(20, 50))
```


R code

```
tree_imp <- lgb.importance(lgbm.model, percentage = TRUE)
lgb.plot.importance(tree_imp, top_n = 50, measure = "Gain")</pre>
```

Feature Importance

Chapter 3

Conclusion

3.1 Model Evaluation

Now, we have a three models for predicting the target variable, but we need to decide which model better for this project. There are many metrics used for model evaluation. Classification accuracy may be misleading if we have an imbalanced dataset or if we have more than two classes in dataset.

For classification problems, the confusion matrix used for evaluation. But, in our case the data is imbalanced. So, roc_auc_score is used for evaluation.

In this project, we are using two metrics for model evaluation as follows,

Confusion Matrix: - It is a technique for summarizing the performance of a classification algorithm.

The number of correct predictions and incorrect predictions are summarized with count values and broken down by each class.

Accuracy: - The ratio of correct predictions to total predictions

$$Accuracy = \frac{TP + TN}{Total\ Predictions}$$

Misclassification error: - The ratio of incorrect predictions to total predictions

Error rate =
$$\frac{FN + FP}{Total \ predictions}$$

Accuracy=1-Error rate

True Positive Rate (TPR) =
$$\frac{TP}{TP+FN} \leftrightarrow \text{Recall}$$

Precision =
$$\frac{TP}{TP+FP}$$

True Negative Rate (TNR) = $\frac{TN}{TN+FP} \leftrightarrow$ Specificity
False Positive Rate (FPR) = $\frac{FP}{FP+TN}$
False Negative rate (FNR) = $\frac{FN}{FN+TP}$

F1 score :- Harmonic mean of precision and recall, used to indicate balance between them.

F1 score =
$$\frac{2*Precision*Recall}{Precision+Recall}$$

Receiver operating characteristics (ROC)_Area under curve(AUC) Score

roc_auc_score :- It is a metric that computes the area under the Roc curve and also used metric for imbalanced data.

Roc curve is plotted true positive rate or Recall on y axis against false positive rate or specificity on x axis. The larger the area under the roc curve better the performance of the model.

Logistic Regression

```
#Confusion matrix
cm=confusion_matrix(y_valid,cv_predict)
#Plot the confusion matrix
plot_confusion_matrix(y_valid,cv_predict,normalize=False,figsize=(15,8))
```



```
#ROC_AUC curve

plt.figure()
false_positive_rate,recall,thresholds=roc_curve(y_valid,cv_predict)
roc_auc=auc(false_positive_rate,recall)
plt.title('Reciver Operating Characteristics(ROC)')
plt.plot(false_positive_rate,recall,'b',label='ROC(area=%0.3f)' %roc_auc)
plt.legend()
plt.plot([0,1],[0,1],'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall(True Positive Rate)')
plt.xlabel('False Positive Rate')
plt.show()
print('AUC:',roc_auc)
```


When we compare the roc_auc_score and cross validation score, conclude that model is not performing well on imbalanced data.

Classification report

```
#Classification report
scores=classification_report(y_valid,cv_predict)
print(scores)
```

		precision	recall	f1-score	support
	9	0.92	0.99	0.95	35980
	1	0.67	0.27	0.38	4019
micro	avg	0.91	0.91	0.91	39999
тасго	avg	0.80	0.63	0.67	39999
weighted	avg	0.90	0.91	0.90	39999
			7557		(00000000

We can observed that f1 score is high for number of customers those who will not make a transaction then who will make a transaction. So, we are going to change the algorithm.

R code

Logistic Regression

```
#Cross validation prediction
set.seed(8909)
cv_lr <- cv.glmnet(X_t,y_t,family = "binomial", type.measure = "class")

#Plotting misclassification error vs log(lambda)
#Minimum lambda-Regularization parameter
cv_lr$lambda.min
#plot the auc score vs log(lambda)
plot(cv_lr)</pre>
```


We can observed that miss classification error increases as increasing the log(Lambda).

```
#Confusion matrix
set.seed(689)
#actual target variable
target<-valid.data$target
#convert to factor
target<-as.factor(target)
#predicted target variable
#convert to factor
cv_predict.lr<-as.factor(cv_predict.lr)
confusionMatrix(data=cv_predict.lr,reference=target)</pre>
```

```
Confusion Matrix and Statistics
         Reference
Prediction
             1
                    2
        1 35618 2973
        2 434
                  975
              Accuracy: 0.9148
                95% CI : (0.912, 0.9175)
    No Information Rate: 0.9013
    P-Value [Acc > NIR] : < 2.2e-16
                 Карра : 0.3292
 Mcnemar's Test P-Value : < 2.2e-16
           Sensitivity: 0.9880
           Specificity: 0.2470
        Pos Pred Value : 0.9230
        Neg Pred Value : 0.6920
            Prevalence: 0.9013
        Detection Rate: 0.8904
  Detection Prevalence : 0.9648
      Balanced Accuracy : 0.6175
       'Positive' Class : 1
```

Reciever operating characteristics(ROC)-Area under curve(AUC) score and curve

```
#ROC_AUC score and curve
set.seed(892)
cv_predict.lr<-as.numeric(cv_predict.lr)
roc(data=valid.data[,-c(1,2)],response=target,predictor=cv_predict.lr,auc=TRUE,
plot=TRUE)</pre>
```

```
Call:
roc.default(response = target, predictor = cv_predict.lr, auc = TRUE, plot = TRUE, data = v
alid.data[, -c(1, 2)])

Data: cv_predict.lr in 36052 controls (target 1) < 3948 cases (target 2).

Area under the curve: 0.6175
```


Python code

Synthetic Minority Oversampling Technique (SMOTE)

```
#Confusion matrix
cm=confusion_matrix(y_smote_v,cv_pred)
#Plot the confusion matrix
plot_confusion_matrix(y_smote_v,cv_pred,normalize=False,figsize=(15,8))
```


Reciever operating characteristics (ROC)-Area under curve (AUC) score and curve

```
#ROC_AUC curve
plt.figure()
false_positive_rate,recall,thresholds=roc_curve(y_smote_v,cv_pred)
roc_auc=auc(false_positive_rate,recall)
plt.title('Reciver Operating Characteristics(ROC)')
plt.plot(false_positive_rate,recall,'b',label='ROC(area=%0.3f)' %roc_auc)
plt.legend()
plt.plot([0,1],[0,1],'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall(True Positive Rate)')
plt.xlabel('False Positive Rate')
plt.show()
print('AUC:',roc_auc)
```


Classification report

```
#Classification report
scores=classification_report(y_smote_v,cv_pred)
print(scores)
```

```
precision
                            recall f1-score
                                                support
           0
                    0.81
                              0.79
                                         0.80
                                                  35980
                    0.80
                              0.82
                                         0.81
                                                  35980
                    0.80
                              0.80
                                         0.80
                                                  71960
   micro avg
                    0.80
                              0.80
                                                  71960
   macro avg
                                         0.80
weighted avg
                    0.80
                              0.80
                                         0.80
                                                  71960
```

We can observed that smote model is performing well on imbalance data compare to baseline logistic regression.

R code Random Oversampling Examples (ROSE)

```
#Plotting misclassification error vs log(lambda)
#lambda-Regularization parameter
#Minimum lambda
cv_rose$lambda.min
#plot the auc score vs log(lambda)
plot(cv_rose)
```



```
#Confusion matrix
set.seed(478)
#actual target variable
target<-valid.rose$target
#convert to factor
target<-as.factor(target)
#predicted target variable
#convert to factor
cv_predict.rose<-as.factor(cv_predict.rose)
#Confusion matrix
confusionMatrix(data=cv_predict.rose, reference=target)</pre>
```

```
Confusion Matrix and Statistics
         Reference
Prediction 1
        1 20012
        2
              0 19988
              Accuracy : 1
                95% CI: (0.9999, 1)
   No Information Rate: 0.5003
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 1
 Mcnemar's Test P-Value : NA
           Sensitivity: 1.0000
           Specificity: 1.0000
        Pos Pred Value : 1.0000
        Neg Pred Value : 1.0000
            Prevalence: 0.5003
        Detection Rate: 0.5003
   Detection Prevalence: 0.5003
      Balanced Accuracy : 1.0000
       'Positive' Class: 1
```

Reciever operating characteristics (ROC)-Area under curve(AUC) score and curve

```
#ROC_AUC score and curve
set.seed(843)
#convert to numeric
cv_predict.rose<-as.numeric(cv_predict.rose)</pre>
```

```
roc(data=valid.rose[,-c(1,2)],response=target,predictor=cv_predict.rose,auc=TR
UE,
plot=TRUE)
```

```
Call:
roc.default(response = target, predictor = cv_predict.rose, auc = TRUE, plot = TRUE, data = valid.rose[, -c(1, 2)])

Data: cv_predict.rose in 20012 controls (target 1) < 19988 cases (target 2).

Area under the curve: 1
```


I tried different ways to get good accuracy like changing count of one target class variable. Finally got area under ROC curve is 1 but this may not be possible.

3.2 Model Selection

When we compare scores of area under the ROC curve of all the models for an imbalanced data. We could conclude that below points as follow,

- 1. Logistic regression model is not performed well on imbalanced data.
- 2. We balance the imbalanced data using resampling techniques like SMOTE in python and ROSE in R.
- 3. Baseline logistic regression model is performed well on balanced data.
- 4. LightGBM model performed well on imbalanced data.

Finally LightGBM is best choice for identifying which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

Appendix A - Extra Figures

ggploT2 VISualizations

Target classes count

Distribution of train attributes

Distribution of test attribiutes

Page 1

Page 3

Appendix B – Co mp let e Python a nd R Code Python Code

Exploratory Data Analysis

```
import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 from sklearn.linear model import LogisticRegression
from sklearn.model selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split, cross val predict, cross val
score
from sklearn.metrics import roc_auc_score,confusion_matrix,make_scorer,classifica
tion_report,roc_curve,auc
from sklearn.model selection import StratifiedKFold
from imblearn.over sampling import SMOTE, RandomOverSampler
from imblearn.under_sampling import ClusterCentroids,NearMiss, RandomUnderSampler
 import lightgbm as lgb
 import eli5
 from eli5.sklearn import PermutationImportance
 from sklearn import tree
 import graphviz
 from pdpbox import pdp, get_dataset, info_plots
 import scikitplot as skplt
 from scikitplot.metrics import plot confusion matrix, plot precision recall curve
 from scipy.stats import randint as sp_randint
 import warnings
 warnings.filterwarnings('ignore')
 random state=42
 np.random.seed(random state)
 #importing the train dataset
 train_df=pd.read_csv('../input/train.csv')
 train_df.head()
 #Shape of the train dataset
 train_df.shape
#Summary of the dataset
 train df.describe()
```

Target classes count

```
%%time
#target classes count
target_class=train_df['target'].value_counts()
print('Count of target classes :\n',target_class)
#Percentage of target classes count
per_target_class=train_df['target'].value_counts()/len(train_df)*100
print('percentage of count of target classes :\n',per_target_class)
#Countplot and violin plot for target classes
fig,ax=plt.subplots(1,2,figsize=(20,5))
sns.countplot(train df.target.values,ax=ax[0],palette='husl')
sns.violinplot(x=train_df.target.values,y=train_df.index.values,ax=ax[1],
palette='husl')
sns.stripplot(x=train df.target.values,y=train df.index.values,jitter=True,
color=' black',linewidth=0.5,size=0.5,alpha=0.5,ax=ax[1],palette='husl')
ax[0].set_xlabel('Target')
ax[1].set_xlabel('Target')
ax[1].set ylabel('Index')
```

Distribution of train attributes

```
%%time
def plot train attribute distribution(t0,t1,label1,label2,train attributes):
   sns.set_style('whitegrid')
  fig=plt.figure()
   ax=plt.subplots(10,10,figsize=(22,18))
  for attribute in train attributes:
       i+=1
       plt.subplot(10,10,i)
       sns.distplot(t0[attribute],hist=False,label=label1)
       sns.distplot(t1[attribute],hist=False,label=label2)
       plt.legend()
       plt.xlabel('Attribute',)
       sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})
   plt.show()
Let us see first 100 train attributes
%%time
t0=train_df[train_df.target.values==0]
t1=train_df[train_df.target.values==1]
train attributes=train df.columns.values[2:102]
plot_train_attribute_distribution(t0,t1,'0','1',train_attributes)
Next 100 train attributes
train_attributes=train_df.columns.values[102:203]
plot_train_attribute_distribution(t0,t1,'0','1',train_attributes)
```

Distribution of test attributes

```
#importing the test dataset
test_df=pd.read_csv('../input/test.csv')
test df.head()
#Shape of the test dataset
test df.shape
def plot_test_attribute_distribution(test_attributes):
   sns.set_style('whitegrid')
  fig=plt.figure()
  ax=plt.subplots(10,10,figsize=(22,18))
  for attribute in test attributes:
       i+=1
       plt.subplot(10,10,i)
       sns.distplot(test_df[attribute],hist=False)
       plt.xlabel('Attribute',)
       sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})
   plt.show()
#Let us see first 100 test attributes
test attributes=test df.columns.values[1:101]
plot_test_attribute_distribution(test_attributes)
#Next 100 test attributes
test attributes=test df.columns.values[101:202]
plot_test_attribute_distribution(test_attributes)
```

Distribution of mean values in train and test dataset

```
%%time
#Distribution of mean values per column in train and test dataset
plt.figure(figsize=(16,8))
#train attributes
train attributes=train df.columns.values[2:202]
#test attributes
test_attributes=test_df.columns.values[1:201]
#Distribution plot for mean values per column in train attributes
sns.distplot(train df[train attributes].mean(axis=0),color='blue',kde=True,bins=15
0,label='train')
#Distribution plot for mean values per column in test attributes
sns.distplot(test df[test attributes].mean(axis=0),color='green',kde=True,bins=150
,label='test')
plt.title('Distribution of mean values per column in train and test dataset')
plt.legend()
plt.show()
```

```
#Distribution of mean values per row in train and test dataset
plt.figure(figsize=(16,8))
#Distribution plot for mean values per row in train attributes
sns.distplot(train_df[train_attributes].mean(axis=1),color='blue',kde=True,bins=15
0,label='train')
#Distribution plot for mean values per row in test attributes
sns.distplot(test_df[test_attributes].mean(axis=1),color='green',kde=True, bins=15
0, label='test')
plt.title('Distribution of mean values per row in train and test dataset')
plt.legend()
plt.show()
```

Distribution of standard deviation (std) in train and test dataset

```
%%time
#Distribution of std values per column in train and test dataset
plt.figure(figsize=(16,8))
#train attributes
train_attributes=train_df.columns.values[2:202]
#test attributes
test attributes=test_df.columns.values[1:201]
#Distribution plot for std values per column in train attributes
sns.distplot(train_df[train_attributes].std(axis=0),color='red',kde=True,
bins=150,label='train')
#Distribution plot for std values per column in test attributes
sns.distplot(test df[test attributes].std(axis=0),color='blue',kde=True,bins=150,
label='test')
plt.title('Distribution of std values per column in train and test dataset')
plt.legend()
plt.show()
#Distribution of std values per row in train and test dataset
plt.figure(figsize=(16,8))
#Distribution plot for std values per row in train attributes
sns.distplot(train df[train attributes].std(axis=1),color='red',kde=True,bins=150
, label='train')
#Distribution plot for std values per row in test attributes
sns.distplot(test df[test attributes].std(axis=1),color='blue',kde=True, bins=150
   label='test')
plt.title('Distribution of std values per row in train and test dataset')
plt.legend()
```

Distribution of skewness in train and test dataset

```
%%time
#Distribution of skew values per column in train and test dataset
plt.figure(figsize=(16,8))
#train attributes
train_attributes=train_df.columns.values[2:202]
#test attributes
test_attributes=test_df.columns.values[1:201]
#Distribution plot for skew values per column in train attributes
sns.distplot(train_df[train_attributes].skew(axis=0),color='green',kde=True,
```

```
bins=150,label='train')
#Distribution plot for skew values per column in test attributes
sns.distplot(test df[test attributes].skew(axis=0),color='blue',kde=True,bins=150
,label='test')
plt.title('Distribution of skewness values per column in train and test dataset')
plt.legend()
plt.show()
#Distribution of skew values per row in train and test dataset
plt.figure(figsize=(16,8))
#Distribution plot for skew values per row in train attributes
sns.distplot(train_df[train_attributes].skew(axis=1),color='green',kde=True,
bins=150,label='train')
#Distribution plot for skew values per row in test attributes
sns.distplot(test df[test attributes].skew(axis=1),color='blue',kde=True,
bins=150, label='test')
plt.title('Distribution of skewness values per row in train and test dataset')
plt.legend()
plt.show()
```

Distribution of kurtosis values in train and test dataset

```
%%time
#Distribution of kurtosis values per column in train and test dataset
plt.figure(figsize=(16,8))
#train attributes
train_attributes=train_df.columns.values[2:202]
#test attributes
test attributes=test df.columns.values[1:201]
#Distribution plot for kurtosis values per column in train attributes
sns.distplot(train_df[train_attributes].kurtosis(axis=0),color='blue',kde=True,
bins=150,label='train')
#Distribution plot for kurtosis values per column in test attributes
sns.distplot(test df[test attributes].kurtosis(axis=0),color='red',kde=True,
bins=150,label='test')
plt.title('Distribution of kurtosis values per column in train and test dataset')
plt.legend()
plt.show()
#Distribution of kutosis values per row in train and test dataset
plt.figure(figsize=(16,8))
#Distribution plot for kurtosis values per row in train attributes
sns.distplot(train_df[train_attributes].kurtosis(axis=1),color='blue',kde=True,
bins=150,label='train')
#Distribution plot for kurtosis values per row in test attributes
sns.distplot(test df[test attributes].kurtosis(axis=1),color='red',kde=True,
bins=150, label='test')
plt.title('Distribution of kurtosis values per row in train and test dataset')
plt.legend()
plt.show()
```

Missing value analysis and Correlations

```
%%time
#Finding the missing values in train and test data
train missing=train df.isnull().sum().sum()
test_missing=test_df.isnull().sum().sum()
print('Missing values in train data :',train missing)
print('Missing values in test data :',test_missing
%%time
#Correlations in train attributes
train attributes=train df.columns.values[2:202]
train correlations=train df[train_attributes].corr().abs().unstack().sort_values(k
ind='quicksort').reset index()
train correlations=train correlations[train correlations['level 0']!=train correla
tions['level 1']]
print(train correlations.head(10))
print(train_correlations.tail(10))
%%time
#Correlations in test attributes
test attributes=test df.columns.values[1:201]
test correlations=test df[test attributes].corr().abs().unstack().sort values(kind
='quicksort').reset index()
test correlations=test correlations[test correlations['level 0']!=test correlation
s['level 1']]
print(test correlations.head(10))
print(test correlations.tail(10))
#Correlation plot
%%time
#Correlations in train data
train_correlations=train_df[train_attributes].corr()
train correlations=train correlations.values.flatten()
train correlations=train correlations[train correlations!=1]
test correlations=test df[test attributes].corr()
#Correlations in test data
test correlations=test correlations.values.flatten()
test correlations=test correlations[test correlations!=1]
plt.figure(figsize=(20,5))
#Distribution plot for correlations in train data
sns.distplot(train_correlations, color="Red", label="train")
#Distribution plot for correlations in test data
sns.distplot(test_correlations, color="Blue", label="test")
plt.xlabel("Correlation values found in train and test")
plt.vlabel("Density")
plt.title("Correlation distribution plot for train and test attributes")
plt.legend()
```

Feature engineering

```
#training data
X=train_df.drop(columns=['ID_code', 'target'], axis=1)
test=test df.drop(columns=['ID code'],axis=1)
y=train_df['target']
#Split the training data
X train, X valid, y train, y valid=train test split(X,y,random state=42)
print('Shape of X_train :',X_train.shape)
print('Shape of X_valid :',X_valid.shape)
print('Shape of y_train :',y_train.shape)
print('Shape of y valid :',y valid.shape)
%%time
#Random forest classifier
rf_model=RandomForestClassifier(n_estimators=10,random_state=42)
#fitting the model
rf model.fit(X train,y train)
#Permutation importance
%%time
from eli5.sklearn import PermutationImportance
perm imp=PermutationImportance(rf model,random state=42)
#fitting the model
perm_imp.fit(X_valid,y_valid)
%%time
#Important features
eli5.show weights(perm imp,feature names=X valid.columns.tolist(),top=200)
#partial dependence plots
%%time
#Create the data we will plot 'var 81'
features=[v for v in X valid.columns if v not in ['ID code', 'target']]
pdp data=pdp.pdp isolate(rf model,dataset=X valid,model features=features,feature=
var 81')
#plot feature "var_81"
pdp.pdp plot(pdp data,'var 81')
plt.show()
%%time
#Create the data we will plot
pdp data=pdp.pdp isolate(rf model,dataset=X valid,model features=features,feature=
var 109')
#plot feature "var_109"
pdp.pdp_plot(pdp_data,'var_109')
plt.show()
```

Handling of imbalanced data

```
#Training data
X=train_df.drop(['ID_code', 'target'],axis=1)
Y=train_df['target']
#StratifiedKFold cross validator
cv=StratifiedKFold(n splits=5,random state=42,shuffle=True)
for train_index,valid_index in cv.split(X,Y):
   X_train, X_valid=X.iloc[train_index], X.iloc[valid_index]
   y_train, y_valid=Y.iloc[train_index], Y.iloc[valid index]
print('Shape of X_train :',X_train.shape)
print('Shape of X_valid :',X_valid.shape)
print('Shape of y_train :',y_train.shape)
print('Shape of y_valid :',y_valid.shape)
%%time
#Logistic regression model
lr model=LogisticRegression(random state=42)
#fitting the lr model
lr_model.fit(X_train,y_train)
#Accuracy of the model
lr_score=lr_model.score(X_train,y_train)
print('Accuracy of the lr_model :',lr_score)
%%time
#Cross validation prediction
cv_predict=cross_val_predict(lr_model,X_valid,y_valid,cv=5)
#Cross validation score
cv_score=cross_val_score(lr_model,X_valid,y_valid,cv=5)
print('cross val score :',np.average(cv score))
#Confusion matrix
cm=confusion matrix(y valid,cv predict)
#Plot the confusion matrix
plot confusion matrix(y valid,cv predict,normalize=False,figsize=(15,8))
#ROC AUC score
roc score=roc auc score(y valid,cv predict)
print('ROC score :',roc_score)
#ROC AUC curve
plt.figure()
false positive rate,recall,thresholds=roc curve(y valid,cv predict)
roc_auc=auc(false_positive_rate,recall)
plt.title('Reciver Operating Characteristics(ROC)')
plt.plot(false positive rate, recall, 'b', label='ROC(area=%0.3f)' %roc auc)
plt.legend()
plt.plot([0,1],[0,1],'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.0])
plt.ylabel('Recall(True Positive Rate)')
plt.xlabel('False Positive Rate')
```

```
plt.show()
 print('AUC:',roc auc)
 #Classification report
 scores=classification_report(y_valid,cv_predict)
 print(scores)
 %%time
 #Predicting the model
 X_test=test_df.drop(['ID_code'],axis=1)
 lr pred=lr model.predict(X test)
 print(lr pred)
 #Synthetic Minority Oversampling Technique
 sm = SMOTE(random state=42, ratio=1.0)
 #Generating synthetic data points
 X_smote,y_smote=sm.fit_sample(X_train,y_train)
 X smote v,y smote v=sm.fit sample(X valid,y valid)
 #Logistic regression model for SMOTE
 smote=LogisticRegression(random state=42)
 #fitting the smote model
 smote.fit(X_smote,y_smote)
 #Accuracy of the model
 smote_score=smote.score(X_smote,y_smote)
 print('Accuracy of the smote_model :',smote_score)
 #Cross validation prediction
 cv pred=cross val predict(smote, X smote v, y smote v, cv=5)
 #Cross validation score
 cv score=cross val score(smote, X smote v, y smote v, cv=5)
 print('cross val score :',np.average(cv score))
 #Confusion matrix
 cm=confusion matrix(y smote v,cv pred)
 #Plot the confusion matrix
 plot_confusion_matrix(y_smote_v,cv_pred,normalize=False,figsize=(15,8))
#ROC AUC score
roc_score=roc_auc_score(y_smote_v,cv_pred)
print('ROC score :',roc_score)
 #ROC AUC curve
 plt.figure()
 false_positive_rate,recall,thresholds=roc_curve(y_smote_v,cv_pred)
 roc auc=auc(false positive rate, recall)
 plt.title('Reciver Operating Characteristics(ROC)')
 plt.plot(false positive rate, recall, 'b', label='ROC(area=%0.3f)' %roc auc)
 plt.legend()
 plt.plot([0,1],[0,1],'r--')
 plt.xlim([0.0,1.0])
 plt.ylim([0.0,1.0])
 plt.ylabel('Recall(True Positive Rate)')
```

```
plt.xlabel('False Positive Rate')
plt.show()
print('AUC:',roc_auc)
#Classification report
scores=classification_report(y_smote_v,cv_pred)
print(scores)
%%time
#Predicting the model
X test=test df.drop(['ID code'],axis=1)
smote pred=smote.predict(X test)
print(smote pred)
 LightGBM
#Training the model
#training data
lgb_train=lgb.Dataset(X_train,label=y_train)
#validation data
lgb_valid=lgb.Dataset(X_valid,label=y_valid)
#Selecting best hyperparameters by tuning of different parameters
params={'boosting_type': 'gbdt',
          'max_depth' : -1, #no limit for max_depth if <0</pre>
          'objective': 'binary',
          'boost from average':False,
          'nthread': 8,
          'metric':'auc',
          'num_leaves': 100,
          'learning_rate': 0.03,
          'max_bin': 950,
                               #default 255
          'subsample_for_bin': 200,
          'subsample': 1,
          'subsample_freq': 1,
          'colsample_bytree': 0.8,
          'reg_alpha': 1.2, #L1 regularization(>0)
          'reg_lambda': 1.2,#L2 regularization(>0)
          'min_split_gain': 0.5, #>0
          'min child weight': 1,
          'min_child_samples': 5,
          'is unbalance':True,
          }
num rounds=3000
lgbm= lgb.train(params,lgb_train,num_rounds,valid_sets=[lgb_train,lgb_valid],
verbose eval=100,early stopping rounds = 1000)
X_test=test_df.drop(['ID_code'],axis=1)
#predict the model
#probability predictions
lgbm predict prob=lgbm.predict(X test,random state=42,num iteration=lgbm.best iter
ation)
```

```
#Convert to binary output 1 or 0
lgbm_predict=np.where(lgbm_predict_prob>=0.5,1,0)
print(lgbm_predict_prob)
print(lgbm_predict)

#plot the important features
lgb.plot_importance(lgbm,max_num_features=150,importance_type="split",figsize=(20,50))

#final submission
sub_df=pd.DataFrame({'ID_code':test_df['ID_code'].values})
sub_df['lgbm_predict_prob']=lgbm_predict_prob
sub_df['lgbm_predict']=lgbm_predict
sub_df['smote_predict']=lgbm_predict
sub_df['smote_predict']=smote_pred
sub_df.to_csv('submission.csv',index=False)
sub_df.head()
```

R Code

Exploratory Data Analysis

```
#Load the libraries
library(tidyverse)
library(moments)
library(DataExplorer)
library(caret)
library(Matrix)
library(mlbench)
library(caTools)
library(randomForest)
library(glmnet)
library(mlr)
library(unbalanced)
library(vita)
library(rBayesianOptimization)
library(lightgbm)
library(boot)
library(pROC)
library(DMwR)
library(ROSE)
library(yardstick)
#loading the train data
train_df<-read.csv('../input/train.csv')</pre>
head(train df)
#Dimension of train data
dim(train_df)
#Summary of the dataset
str(train_df)
#convert to factor
train_df$target<-as.factor(train_df$target)</pre>
```

Target classes count in train data

```
require(gridExtra)
#Count of target classes
table(train_df$target)
#Percenatge counts of target classes
table(train_df$target)/length(train_df$target)*100
#Bar plot for count of target classes
plot1<-ggplot(train_df,aes(target))+theme_bw()+geom_bar(stat='count',fill='lig
htgreen')
#Violin with jitter plots for target classes
plot2<-ggplot(train_df,aes(x=target,y=1:nrow(train_df)))+theme_bw()+geom_violi
n(fill='lightblue')+</pre>
```

```
facet_grid(train_df$target)+geom_jitter(width=0.02)+labs(y='Index')
grid.arrange(plot1,plot2, ncol=2)
```

Distribution of train attributes

```
#Distribution of train attributes from 3 to 102
for (var in names(train_df)[c(3:102)]){
    target<-train_df$target
    plot<-ggplot(train_df, aes(x=train_df[[var]],fill=target)) +
    geom_density(kernel='gaussian') + ggtitle(var)+theme_classic()
    print(plot)
}

#Distribution of train attributes from 103 to 202
for (var in names(train_df)[c(103:202)]){
    target<-train_df$target
    plot<-ggplot(train_df, aes(x=train_df[[var]], fill=target)) +
    geom_density(kernel='gaussian') + ggtitle(var)+theme_classic()
    print(plot)
}</pre>
```

Distribution of test attributes

```
#loading test data
test_df<-read.csv('../input/test.csv')
head(test_df)

#Dimension of test dataset
dim(test_df)

#Distribution of test attributes from 2 to 101
plot_density(test_df[,c(2:101)], ggtheme = theme_classic(),
geom_density_args = list(color='blue'))

#Distribution of test attributes from 102 to 201
plot_density(test_df[,c(102:201)], ggtheme = theme_classic(),
geom_density_args = list(color='blue'))</pre>
```

Distribution of mean values in train and test dataset

```
#Applying the function to find mean values per row in train and test data.
train_mean<-apply(train_df[,-c(1,2)],MARGIN=1,FUN=mean)
test_mean<-apply(test_df[,-c(1)],MARGIN=1,FUN=mean)
ggplot()+
#Distribution of mean values per row in train data
geom_density(data=train_df[,-c(1,2)],aes(x=train_mean),kernel='gaussian',
show. legend=TRUE,color='blue')+theme_classic()+</pre>
```

```
#Distribution of mean values per row in test data
geom density(data=test df[,-c(1)],aes(x=test mean),kernel='gaussian',
show.legend=TRUE,color='green')+
labs(x='mean values per row',title="Distribution of mean values per row in
train and test dataset")
#Applying the function to find mean values per column in train and test data.
train mean<-apply(train df[,-c(1,2)],MARGIN=2,FUN=mean)
test mean<-apply(test df[,-c(1)],MARGIN=2,FUN=mean)</pre>
ggplot()+
#Distribution of mean values per column in train data
geom_density(aes(x=train_mean),kernel='gaussian',show.legend=TRUE,
color='blue')+theme classic()+
#Distribution of mean values per column in test data
geom density(aes(x=test mean),kernel='gaussian',show.legend=TRUE,
color='green')+
labs(x='mean values per column',title="Distribution of mean values per row
in train and test dataset")
```

Distribution of standard deviation in train and test dataset

```
#Applying the function to find standard deviation values per row in train
and test data.
train sd<-apply(train df[,-c(1,2)],MARGIN=1,FUN=sd)
test sd<-apply(test df[,-c(1)],MARGIN=1,FUN=sd)</pre>
ggplot()+
#Distribution of sd values per row in train data
geom_density(data=train_df[,-c(1,2)],aes(x=train_sd),kernel='gaussian',
show.le gend=TRUE,color='red')+theme classic()+
#Distribution of mean values per row in test data
geom density(data=test_df[,-c(1)],aes(x=test_sd),kernel='gaussian',
show.legend=TRUE,color='blue')+
labs(x='sd values per row',title="Distribution of sd values per row in
train and test dataset")
#Applying the function to find sd values per column in train and test data.
train_sd<-apply(train_df[,-c(1,2)],MARGIN=2,FUN=sd)</pre>
test_sd<-apply(test_df[,-c(1)],MARGIN=2,FUN=sd)</pre>
ggplot()+
#Distribution of sd values per column in train data
geom density(aes(x=train sd),kernel='gaussian',show.legend=TRUE,color='red')+
theme classic()+
#Distribution of sd values per column in test data
geom_density(aes(x=test_sd),kernel='gaussian',show.legend=TRUE,color='blue')+
labs(x='sd values per column',title="Distribution of std values per column
in train and test dataset")
```

Distribution of skewness values in train and test dataset

#Applying the function to find skewness values per row in train and test data.

```
train_skew<-apply(train_df[,-c(1,2)],MARGIN=1,FUN=skewness)</pre>
test skew<-apply(test df[,-c(1)],MARGIN=1,FUN=skewness)</pre>
ggplot()+
#Distribution of skewness values per row in train data
geom density(aes(x=train skew),kernel='gaussian',show.legend=TRUE,
color='green')+theme classic()+
#Distribution of skewness values per column in test data
geom density(aes(x=test skew),kernel='gaussian',show.legend=TRUE,
color='blue') +labs(x='skewness values per row',title="Distribution of
skewness values per row in train and test dataset")
#Applying the function to find skewness values per column in train and
test data.
train skew<-apply(train df[,-c(1,2)],MARGIN=2,FUN=skewness)
test_skew<-apply(test_df[,-c(1)],MARGIN=2,FUN=skewness)</pre>
ggplot()+
#Distribution of skewness values per column in train data
geom density(aes(x=train skew),kernel='gaussian',show.legend=TRUE,
color='green')+theme_classic()+
#Distribution of skewness values per column in test data
geom_density(aes(x=test_skew),kernel='gaussian',show.legend=TRUE,
color='blue')+labs(x='skewness values per column',title="Distribution of
skewness values per column in train and test dataset")
```

Distribution of kurtosis values in train and test dataset

```
#Applying the function to find kurtosis values per row in train and test data.
train_kurtosis<-apply(train_df[,-c(1,2)],MARGIN=1,FUN=kurtosis)</pre>
test_kurtosis<-apply(test_df[,-c(1)],MARGIN=1,FUN=kurtosis)</pre>
ggplot()+
#Distribution of sd values per column in train data
geom density(aes(x=train kurtosis),kernel='gaussian',show.legend=TRUE,
color='b lue')+theme classic()+
#Distribution of sd values per column in test data
geom_density(aes(x=test_kurtosis),kernel='gaussian',show.legend=TRUE,
color='red')+labs(x='kurtosis values per row',title="Distribution of
kurtosis values per row in train and test dataset")
#Applying the function to find kurtosis values per column in train and
test data.
train_kurtosis<-apply(train_df[,-c(1,2)],MARGIN=2,FUN=kurtosis)</pre>
test kurtosis<-apply(test df[,-c(1)],MARGIN=2,FUN=kurtosis)</pre>
ggplot()+
#Distribution of sd values per column in train data
geom density(aes(x=train kurtosis),kernel='gaussian',show.legend=TRUE,
color='blue')+theme_classic()+
#Distribution of sd values per column in test data
geom density(aes(x=test kurtosis),kernel='gaussian',show.legend=TRUE,
color='red')+
labs(x='kurtosis values per column',title="Distribution of kurtosis values
per column in train and test dataset")
```

Missing value analysis and Correlations

```
#Finding the missing values in train data
missing_val<-data.frame(missing_val=apply(train_df,2,</pre>
function(x){sum(is.na(x))}))
missing val<-sum(missing val)</pre>
missing val
#Finding the missing values in test data
missing val<-data.frame(missing val=apply(test df,2,
function(x){sum(is.na(x))}))
missing val<-sum(missing val)</pre>
missing_val
#Correlations in train data
train df$target<-as.numeric(train df$target)</pre>
train correlations<-cor(train df[,c(2:202)])
train correlations
#Correlations in test data
test_correlations<-cor(test_df[,c(2:201)])
test correlations
```

Feature Engineering

```
#Split the training data
train_index<-sample(1:nrow(train_df),0.75*nrow(train_df))</pre>
train data<-train df[train index,]</pre>
valid_data<-train_df[-train_index,]</pre>
dim(train data)
dim(valid data)
#Training the Random forest classifier
set.seed(2732)
train data$target<-as.factor(train data$target)</pre>
mtry<-floor(sqrt(200))</pre>
tuneGrid<-expand.grid(.mtry=mtry)</pre>
rf<-randomForest(target~.,train_data[,-c(1)],mtry=mtry,ntree=10,</pre>
importance=TRUE)
#Variable importance
VarImp<-importance(rf,type=2)</pre>
VarImp
#Partial dependence plot
#We will plot "var 81"
partialPlot(rf,valid_data[,-c(1,2)],valid_data$var_81,xlab='var_81
#We will plot "var 12"
partialPlot(rf,valid_data[,-c(1,2)],valid_data$var_12,xlab='var_12')
```

Handling of imbalanced data

```
#Split the data using CreateDataPartition
set.seed(689)
train.index<-createDataPartition(train df$target,p=0.8,list=FALSE)
train.data<-train_df[train.index,]</pre>
valid.data<-train_df[-train.index,]</pre>
dim(train.data)
dim(valid.data)
#training dataset
set.seed(682)
X_t<-as.matrix(train.data[-c(1,2)])</pre>
y t<-as.matrix(train.data$target)</pre>
#validation dataset
X_v<-as.matrix(valid.data[-c(1,2)])</pre>
y_v<-as.matrix(valid.data$target)</pre>
#test data
test<-as.matrix(test_df[,-c(1)])</pre>
#Logistic regression model
set.seed(667)
lr_model <-glmnet(X_t, y_t, family = "binomial")</pre>
summary(lr_model)
#Cross validation prediction
set.seed(8909)
cv_lr <- cv.glmnet(X_t,y_t,family = "binomial", type.measure = "class")</pre>
cv lr
#Minimum lambda
cv lr$lambda.min
#plot the auc score vs log(lambda)
plot(cv lr)
#Model performance on validation dataset
set.seed(5363)
cv_predict.lr<-predict(cv_lr,X_v,s = "lambda.min", type = "class")</pre>
cv predict.lr
```

```
#Confusion matrix
set.seed(689)
#actual target variable
target<-valid.data$target
#convert to factor
target<-as.factor(target)
#predicted target variable
#convert to factor
cv_predict.lr<-as.factor(cv_predict.lr)
confusionMatrix(data=cv_predict.lr,reference=target)</pre>
```

```
#ROC AUC score and curve
set.seed(892)
cv_predict.lr<-as.numeric(cv_predict.lr)</pre>
roc(data=valid.data[,-c(1,2)],response=target,predictor=cv_predict.lr,
auc=TRUE,plot=TRUE)
#predict the model
set.seed(763)
lr pred<-predict(lr model,test,type='class')</pre>
lr pred
#Random Oversampling Examples(ROSE)
set.seed(699)
#train.data$target<-as.factor(train.data$target)</pre>
train.rose <- ROSE(target~., data =train.data[,-c(1)],seed=32)$data</pre>
table(train.rose$target)
valid.rose <- ROSE(target~., data =valid.data[,-c(1)],seed=32)$data</pre>
table(valid.rose$target)
#Logistic regression model
set.seed(462)
lr_rose <-glmnet(as.matrix(train.rose),as.matrix(train.rose$target), family =</pre>
"binomial")
summary(lr_rose)
#Cross validation prediction
set.seed(473)
cv rose = cv.glmnet(as.matrix(valid.rose),as.matrix(valid.rose$target),
family = "binomial", type.measure = "class")
cv rose
#Minimum lambda
cv rose$lambda.min
#plot the auc score vs log(lambda)
plot(cv rose)
#Model performance on validation dataset
set.seed(442)
cv predict.rose<-predict(cv rose,as.matrix(valid.rose),s = "lambda.min",</pre>
type = "class")
cv predict.rose
#Confusion matrix
set.seed(478)
#actual target variable
target<-valid.rose$target
#convert to factor
target<-as.factor(target)</pre>
#predicted target variable
#convert to factor
```

```
cv_predict.rose<-as.factor(cv_predict.rose)</pre>
confusionMatrix(data=cv predict.rose,reference=target)
#ROC AUC score and curve
set.seed(843)
cv predict.rose<-as.numeric(cv predict.rose)</pre>
roc(data=valid.rose[,-c(1,2)],response=target,predictor=cv_predict.rose,
auc=TRUE,plot=TRUE)
#predict the model
set.seed(6543)
rose_pred<-predict(lr_rose,test,type='class')</pre>
rose_pred
#Convert data frame to matrix
set.seed(5432)
X train<-as.matrix(train.data[,-c(1,2)])</pre>
y train<-as.matrix(train.data$target)</pre>
X_valid<-as.matrix(valid.data[,-c(1,2)])</pre>
y valid<-as.matrix(valid.data$target)</pre>
test_data<-as.matrix(test_df[,-c(1)])</pre>
#training data
lgb.train <- lgb.Dataset(data=X_train, label=y_train)</pre>
#Validation data
lgb.valid <- lgb.Dataset(data=X_valid,label=y_valid)</pre>
set.seed(653)
lgb.grid = list(objective = "binary",
                metric = "auc",
                min sum hessian in leaf = 1,
                feature fraction = 0.7,
                bagging_fraction = 0.7,
                bagging_freq = 5,
                learning rate=0.1,
                num leaves=100,
                num threads=8,
                min data = 100,
                max_bin = 200,
                lambda 11 = 8,
                lambda_12 = 1.3,
                min_data_in_bin=150,
                min gain to split = 20,
                min data in leaf = 40,
                is_unbalance = TRUE)
set.seed(7663)
lgbm.model <- lgb.train(params = lgb.grid, data = lgb.train, nrounds =3000,</pre>
eval_freq =100, valids=list(val1=lgb.train, val2=lgb.valid),
early_stopping_rounds = 1000)
```

```
#lgbm model performance on test data
set.seed(6532)
lgbm_pred_prob <- predict(lgbm.model,test_data)
print(lgbm_pred_prob)
#Convert to binary output (1 and 0) with threshold 0.5
lgbm_pred<-ifelse(lgbm_pred_prob>0.5,1,0)
print(lgbm_pred)

set.seed(6521)
tree_imp <- lgb.importance(lgbm.model, percentage = TRUE)
lgb.plot.importance(tree_imp, top_n = 150, measure = "Gain")

sub_df<-data.frame(ID_code=test_df$ID_code,lgb_predict_prob=lgbm_pred_prob,
lgb _predict=lgbm_pred,smote_predict=smote_pred)
write.csv(sub_df,'submission.CSV',row.names=F)
head(sub_df)</pre>
```

References

- [1]. https://www.kaggle.com
- [2]. http://rprogramming.net/
- [3]. https://medium.com/
- [4]. **Practical Machine learning with Python** book by by Dipanjan Sarkar , Raghav Bali and Tushar Sharma
- [5]. https://stackoverflow.com/
- [6]. https://www.analyticsvidhya.com/blog