Statistical Inference Course Project Part1

Khalid

7/14/2020

Part ONE

The project consists of two parts:

- · A simulation exercise.
- · Basic inferential data analysis.

investigate the exponential distribution in R and compare it with the Central Limit Theorem

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter.

The mean of exponential distribution is **1/lambda** and the **standard deviation** is also **1/ lambda**.

Set **lambda = 0.2** for all of the simulations. You will investigate the distribution of averag es of **40 exponentials**.

Note that you will need to do a **thousand simulations**.

Illustrate via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponentials. You should

- Show the sample mean and compare it to the theoretical mean of the distribution.
- Show how variable the sample is (via variance) and compare it to the theoretical variance of t he distribution.
- Show that the distribution is approximately normal.

install needed packages

default ggplot2 theme anymore. To recover the previous

```
##
     behavior, execute:
     theme set(theme cowplot())
##
library(ggplot2)
```

assigning values

```
lambda <- 0.2
sample num <- 40
sim num <- 1000
```

calculate the 40 samples 1000 times

```
set.seed(2) #for reproducibility purposes
mean_sim_num <- replicate(1000, mean(rexp(sample_num, rate = lambda)))</pre>
```

Show the sample mean and compare it to the theoretical mean of the distribution.

The mean of exponential distribution is 1/lambda

```
1/lambda
## [1] 5
# The mean othe 40 samples 1000 times
mean(mean_sim_num)
## [1] 5.016356
```

visualization

```
hist(mean_sim_num, xlab = "mean", main = "Exponential Function Simulations")
```

Exponential Function Simulations

hist(mean_sim_num, xlab = "mean", main = "Exponential Function Simulations") abline(v = mean_sim_num, col = "red")

Exponential Function Simulations

hist(mean_sim_num, xlab = "mean", main = "Exponential Function Simulations") abline(v = mean_sim_num, col = "pink")

Exponential Function Simulations


```
ggplot(data = as.data.frame(mean_sim_num), aes(x = mean_sim_num)) +
        geom_histogram(binwidth = 0.1, aes(y = ..density..), alpha = 0.3) +
        geom_density(color = 'black') + #density curve of the sample distribution
        geom_vline(xintercept = mean(mean_sim_num), color = 'black') +
        stat_function(fun = dnorm, args = list(mean = 1/lambda, sd = 1/lambda/sqrt(sample_num)),
color = 'red') +
        geom_vline(xintercept = 1/lambda, color = 'red') +
        xlab('Sample mean') +
        ylab('Density') +
        ggtitle('Histogram of 1000 simulations for mean of 40 samples')
```

Histogram of 1000 simulations for mean of 40 samples

Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

standard deviation of distribution

```
sd_dv_dist <- sd(mean_sim_num)</pre>
sd_dv_dist
```

[1] 0.818004

standard deviation from analytical expression

```
sd_dv_theory <- (1 / lambda) / sqrt(sample_num)</pre>
sd dv theory
```

[1] 0.7905694

variance of distribution

variance_dist <- sd_dv_dist^2</pre> variance dist

[1] 0.6691305

variance from analytical expression

```
variance_theory <- ((1 / lambda)*(1 / sqrt(sample_num)))^2</pre>
variance_theory
```

[1] 0.625

Show that the distribution is approximately normal.

```
xfit <- seq(min(mean_sim_num), max(mean_sim_num), length=100)</pre>
yfit <- dnorm(xfit, mean=1/lambda, sd=(1/lambda/sqrt(sample_num)))</pre>
```

hist(mean_sim_num,breaks=sample_num,prob=T,col="blue",xlab = "means",main="Density of means",yla b="density")

Density of means

hist(mean_sim_num,breaks=sample_num,prob=T,col="blue",xlab = "means",main="Density of means",yla b="density") lines(xfit, yfit, pch=22, col="red", lty=5)

Density of means

compare the distribution of averages of 40 exponentials to a normal distribution

```
qqnorm(mean_sim_num)
qqline(mean_sim_num, col = 2)
```

Normal Q-Q Plot

