((a)(i) U= 150

Fonly = 25 F 1 = 15

F = Facebook I= Instagram

I only = 30 Tonly = 20 f1117=5

T = Twitter

(ii) Student does not have an account in any three sosial networks.

= 150-25-15-5-20-30-20-5

= 30 students

(iii) Student have exactly two social networks

= 15+20+5

= 40 students

(iv) student have social media account other than facebook

= 30+ 5+ 20

: 55

(iii)
$$(x B = \{(3,2), (3,3), (3,5), (3,7), (6,2), (6,3), (6,5), (6,7), (6,7), (6,9), (9,2), (9,3), (9,5), (9,7)\}$$

2a. Using truth table:

P	9	~p	(pVq)	~(pvq)	(~p1q)	~(pvq)v(~pnq)
T	T	F	T	F	F	F
T	F	F	T	F	F	F
F	T	Т	T	F	T	T
F	F	T	F	T	F	T

 $-: \sim (p \lor q) \lor (\sim p \land q) \equiv \sim p (verified)$

Using logic property law:

$$\sim (p \vee q) \vee (\sim p \wedge q) = (\sim p \wedge \sim q) \vee (\sim p \wedge q)$$

$$= \sim p \wedge (\sim q \vee q)$$

$$= \sim p \wedge \cup$$

$$= \sim p$$

$$\therefore \sim (p \vee q) \vee (\sim p \wedge q) = \sim p \text{ (verified)}$$

[De Morgan's laws] [Pistulbative laws]

bi. (r12)→p

111. ~p-> (~rn~a)

c. Negation of $\forall x () (^2 + 2x - 3 = 0) : \sim (\forall x (x^2 + 2x - 3 = 0)) = \exists x (\sim (x^2 + 2x - 3 = 0))$ Ix (~(x2+2x-3=0)) where the domain of discourse is Integer. When x=2, x2+2x-3=(2)2+2(2)-3 $= 5(\neq 0)$

.. The proposition Ix(~(x2+2x-3=0)) & TRUE.

2d. Let P(x): x is student who can speak Russian. Q(x): x is student who know C++. where the domain of discourse consist of all students at school.

1. ∃x (ρ(x) Λ~Q(x))

". ∀x (ρα) ∨Q(x))

"". ∀x (~P(x) Λ~Q(x))

3a. Let $P(X): a^2-3b$ is even Q(X): a is even and b is even $\forall x(P(X) \rightarrow Q(X))$ $P(X) \rightarrow Q(X) \equiv \sim Q(X) \rightarrow \sim P(X)$ $\sim Q(X)$ is true: $-Case \mid : a$ is odd and b is even $-Case \; 2: a$ is even and b is odd $-Case \; 3: a$ is odd and b is odd

Case 1: if a is odd and b is even, let a=2m+1, b=2n $a^2-3b=(2m+1)^2-3(2n)$ $=4m^2+4m+1-6n$ $=2(2m^2+2m-3n)+1$ $t=2m^2+2m-3n$ $a^2-3b=2t+1 \text{ (odd)}$ $\sim Q(X) \text{ is true, } \sim P(X) \text{ is true, } \sim Q(X) \rightarrow \sim P(X) \text{ is true.}$

Care 2: if a is even and b is odd, let a = 2k, b = 2l+1 $a^{2}-3b = (2k)^{2}-3(2l+1)$ $= 4k^{2}-6l-3$ $= 4k^{2}-6l-4+1$ $= 2(2k^{2}-3l-2)+1$ $s = 2k^{2}-3l-2$ $\therefore a^{2}-3b = 2s+1 \text{ (odd)}$ $\therefore \sim Q(x) \text{ is true, } \sim P(x) \text{ is true, } \sim Q(x) \rightarrow \sim P(x) \text{ is true.}$

Case 3: a is odd and b is odd, let a = 2v + 1, b = 2w + 1 $a^2 - 3b = (2v + 1)^2 - 3(2w + 1)$ $= 4v^2 + 4v + 1 - 6w - 3$ $= 2(2v^2 + 2v - 3w - 1)$ $v = 2v^2 + 2v - 3w - 1$

 $a^2-3b=2r$ (even)

: ~Q(X) is true, ~P(X) is false, ~Q(X) -> ~P(X) is false.

The statement is false because ~Q(X) -> ~P(X) is false in case 3.