Data Mining and Machine Learning ID3 and Regression

Gergely Horváth

September 29, 2022

Outline

- Decision trees
 - ID3
 - ID3

2 Regression

Decision trees

Classification and regression trees (categorical & numerical data handling)

- Splits dataset into small subsets
- Final result: tree with
 - root node
 - decision nodes: branches → possible values for the attribute
 - leaf nodes: represents a classification
- Which feature splits the data better (which is the best attribute)?

- Core algorithm for building decision trees
 - top-down, greedy search to test each attribute at every node of the tree
- Which is the best attribute?
 - the one which will result in the smallest tree
 - choose the attribute that produces the "purest" nodes
 - information gain (IG)
 - information before splitting information after splitting
 - is used to construct a tree
- Entropy: a measure of randomness
 - unbiased coin toss (head and tail is equally likely): $\mathsf{E}=1$
 - biased (2 head): E = 0
 - ID3 uses entropy to calculate the homogeneity of a sample
 - $E(p_1, p_2, ..., p_N) = -p_1 log(p_1) p_2 log(p_2) ... p_N log(p_N)$

General recipe:

- Compute the overall entropy of the class distribution
- Choose a feature and compute the entropy of the class distribution for each unique value
- Calculate a weighted sum of the unique values' entropy (weight is its relative overall presence in the examined dataset)
- Subtract this value from the overall entropy to receive the information gain
- Repeat the previous 3 steps for every attribute and choose the one with the highest information gain
- Make the first split with the best performing attribute
- Split the data with respect to the chosen feature
- Where the subsets are uniform in class values, that class value should be assigned to that node which will make it a leaf node, otherwise, the previous steps should be repeated for the assigned subsets

Alcohol_content	Sweetness	Type	(Year)	Popular
low	sweet	rosé	2012	yes
low	dry	red	2009	no
low	semi-sweet	red	2008	yes
high	sweet	rosé	2013	no
low	dry	white	2013	no
low	sweet	white	2006	no
high	semi-sweet	red	2011	no
high	sweet	red	2007	yes
high	dry	red	2005	yes

Regression – I.

The "reality":

$$y = \sum_{i}^{n} (p_i \cdot x_i) + \epsilon$$

The model:

$$\hat{y} = \sum_{i}^{n} (p_i \cdot x_i)$$

Let us have matrix notations:

$$Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \qquad X = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(m)} \end{bmatrix}$$

Where $Y \in \mathbb{R}^{m \times 1}$. $X \in \mathbb{R}^{m \times n}$ and $p \in \mathbb{R}^{n \times 1}$.

Regression – II.

Notation repetition:

$$Y = X \cdot p + \epsilon$$
$$\hat{Y} = X \cdot p$$

The next step is to define the error made by the model (in this case the – arguably – simplest convex function will be used):

$$L(D, p) = ||Y - \hat{Y}||_2 = ||Y - (X \cdot p)||_2$$

The error is expressed with a 2-norm, so the next step is to minimize the loss, to find the global minimum of this function. \rightarrow This is going to be easy and trivial since we have a convex function.

Logistic regression will be a model, where our linear regression model is being fed to a sigmoid function:

$$sigmoid(model) = \frac{1}{1 + e^{-model}}$$