3) Given that a jar contains 20 candies such that 11 are red and 9 are green. John selects a candy notes its colour and returns it to the jar. He then selects another candy from the jar.

[5]

[2]

[2]

(a) Draw a tree diagram showing the respective probabilities for each of his selection(s)

Solution

With replacement

P(R)=11/20

P(G) = 9/20

(b) Determine the probability that (i) John selected a red candy followed by a green candy

(ii) John selects 2 green candies

Solution

(i)

$$=>P(RG)=rac{11}{20}*rac{9}{20}=rac{99}{400}=0.2475$$

(ii)

$$=> P(GG) = \frac{9}{20} * \frac{9}{20} = \frac{81}{400} = 0.2025$$

(c) Draw a tree diagram showing all the respective probabilities if John did NOT return the first candy from his selection, and then selected another candy. [6]

Solution

Without replacement

$$P(G) = 9/20$$

(d) Using your diagram from part (c), determine the probability that John got at least one (1) red candy. [4]

=>
$$P(atleast\ 1\ red\ candy) = P(RR) + P(RG) + P(GR)$$

=> $(\frac{11}{20} * \frac{10}{19}) + (\frac{11}{20} * \frac{9}{19}) + (\frac{9}{20} * \frac{11}{19})$
=> $\frac{11}{38} + \frac{99}{380} + \frac{99}{380} = \frac{77}{95}$

1) The table shows the number of college students who prefer a given core course.

Toppings	Year 1	Year 2	Year 3
Stat 120	10	13	21
Libs 130	20	19	13
Comm 117	13	10	20

(a) Find the probability that a randomly selected student prefers Stat 120 [3]

Solution

Toppings	Year 1	Year 2	Year 3	Total
Stat 120	10	13	21	44
Libs 130	20	19	13	52
Comm 117	13	10	20	43
Total	43	42	54	139

$$=> P(Stat\ 120) = \frac{44}{139}$$

(b) Find the probability that a student prefers Comm 117 given that the student is in year 2 [4]

$$=> P(Comm~117|~Year~2) = rac{rac{10}{139}}{rac{42}{139}} = rac{10}{42} = rac{5}{21}$$

2) Suppose that the PDF for the number of years it takes to earn a Bachelor of Science (B.Sc.) degree is given below.

X	P(X = x)
3	0.05
4	0.40
5	X
6	0.15
7	0.10

(a) Find the value of
$$x$$
, $P(X = 5)$.

[1]

Solution

$$=> 0.05 + 0.40 + x + 0.15 + 0.10 = 1$$

 $=> x + 0.70 = 1$
 $=> x = 0.30$

(b) On average, how many years do you expect it to take for an individual to earn a B.Sc.? [4]

$$=>E(X)=\sum_{k=1}^n x_k.\,p_k \ =>E(X)=(3*0.05)+(4*0.40)+(5*0.30)+(6*0.15)+(7*0.10)=4.85$$

(c) Find the standard deviation of the Random Variable, X.

[4]

Solution

$$egin{aligned} => \sigma^2(X) = \sum_{k=1}^n x_k^2 \cdot p_k \ => \sigma^2(X) = (3-4.85)^2 * (0.05) + (4-4.85)^2 * (0.40) + (5-4.85)^2 * (0.30) + \dots \ => +(6-4.85)^2 * (0.15) + (7-4.85)^2 * (0.10) = 1.1275 \ => \sigma = \sqrt{1.1275} = 1.0618 \end{aligned}$$

5. Massy stores recently opened a new branch in Chaguanas. A survey shows that the probability that a shopper chooses the new branch is 0.29

From a sample of 10 shoppers chosen at random, find the probability that:

(a) three shoppers will choose the Chaguanas branch

[4]

Solution

This is a binomial distribution with parameters, p=0.29 and n=10

$$egin{align} => P(X=k) = inom{n}{k} \,.\, p^k .\, (1-p)^{n-k} \,, for \, k=0,1,2... \ => P(X=3) = inom{10}{3} \,.\, (0.29)^3 .\, (1-0.29)^7 = 0.2662 \ \end{array}$$

(b) at least seven will choose the Chaguanas branch

[8]

THE END