Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}.$ Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m,$ за които $\sum\limits_{k=1}^n T[k,i_k]=t?$

Докажете формално, че TABLE-SUM е **NP**-пълна задача.

Времето за работа е 1 час. Полежавам ви успех. $Imparatorum\ est\ fortunam\ sperare.$

Име:		ФН:	
------	--	-----	--

Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}.$ Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m,$ за които $\sum\limits_{k=1}^n T[k,i_k]=t?$

Докажете формално, че TABLE-SUM е \mathbf{NP} -пълна задача.

Времето за работа е 1 час. Полежавам ви успех. $Imparatorum\ est\ fortunam\ sperare.$

Име:		ФН:	
------	--	-----	--

Второ малко контролно по ДАА на група 5 $05.06.2024~\mathrm{r}.$

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише поавилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}.$ Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m,$ за които $\sum\limits_{k=1}^n T[k,i_k]=t?$

Докажете формално, че TABLE-SUM е \mathbf{NP} -пълна задача.

Времето за работа е 1 час. Полежавам ви успех. $Imparatorum\ est\ fortunam\ sperare.$

Име:	ФН:	

Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}.$ Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m,$ за които $\sum\limits_{k=1}^n T[k,i_k]=t?$

Докажете формално, че TABLE-SUM е **NP**-пълна задача.

Времето за работа е 1 час. Полежавам ви успех. Imparatorum est fortunam sperare.

Име:	ФН:
------	-----

Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}.$ Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m,$ за които $\sum\limits_{k=1}^n T[k,i_k]=t?$

Докажете формално, че TABLE-SUM е **NP**-пълна задача.

Времето за работа е 1 час. Полежавам ви успех. Fortuna solis imparatis necessis est.

Име:		ФН:	
------	--	-----	--

Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n, 1\dots m]$ и $t\in\mathbb{N}$. Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m$, за които $\sum\limits_{k=1}^n T[k,i_k]=t$?

Докажете формално, че TABLE-SUM е \mathbf{NP} -пълна задача.

Времето за работа е 1 час. Полежавам ви успех. Fortuna solis imparatis necessis est.

Име:		ФН:	
------	--	-----	--

Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише поавилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}.$ Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m,$ за които $\sum\limits_{k=1}^n T[k,i_k]=t$?

Докажете формално, че TABLE-SUM е \mathbf{NP} -пълна задача.

Времето за работа е 1 час. Полежавам ви успех. Fortuna solis imparatis necessis est.

Име:	ФН:	

Второ малко контролно по ДАА на група 5 05.06.2024 г.

Задача 1. (60 т.) Xyбаво число ще наричаме всяко естествено число от вида 2^a3^b за някои $a,b\in\mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n\in\mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът трябва да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1\dots n,1\dots m]$ и $t\in\mathbb{N}$. Въпрос: Има ли $1\leq i_1,\dots,i_n\leq m$, за които $\sum\limits_{k=1}^n T[k,i_k]=t$?

Докажете формално, че TABLE-SUM е **NP**-пълна задача.

Времето за работа е 1 час. Полежавам ви успех. Fortuna solis imparatis necessis est.