Hugo Marquerie 24/03/2025

Esperanza condicionada a una σ -álgebra

Proposición 1 (Esperanza condicionada). Sea $X \in \mathcal{L}^1(\mathbb{P})$ en $(\Omega, \Sigma, \mathbb{P})$ espacio de probabilidad y $\mathcal{F} \subset \Sigma$ una σ -álgebra

$$\implies \exists! \ (\text{c.s.}) \ Y \in \mathcal{L}^{1}(\mathbb{P}) : Y \ es \ \mathcal{F}\text{-}medible \ _{\wedge} \ \forall Z \in \mathcal{L}^{\infty}\left(\mathbb{P}\right) : \mathbb{E}\left[YZ\right] = \mathbb{E}\left[XZ\right].$$

Esta Y se denomina esperanza condicionada de X dada \mathcal{F} y se denota por $\mathbb{E}[X \mid \mathcal{F}]$.

Demostración: Definimos $\nu \colon \mathcal{F} \longrightarrow \mathbb{R}$ dada por $\nu(A) := \int_A X(\omega) \, d\mathbb{P}(\omega)$, entonces es una medida con signo (ejercicio). Además, $\nu \ll \mathbb{P}$ en \mathcal{L} porque si $A \in \mathcal{F}$ es tal que $\mathbb{P}(A) = 0$, entonces $\nu(A) = \int_A X \, d\mathbb{P} = 0$.

Por tanto, por el teorema de Radon-Nikodym,

$$\exists ! Y \in \mathcal{L}^1(\mathbb{P}) : Y \text{ es } \mathcal{F}\text{-medible} \land \forall A \in \mathcal{F} : \nu(A) = \int_A Y \, d\mathbb{P}.$$

Veamos ahora que $\forall Z \in \mathcal{L}^{\infty}(\mathbb{P}) : \mathbb{E}[YZ] = \mathbb{E}[XZ]$:

1. Si Z es una función indicatriz, $Z = \mathbb{1}_A$ con $A \in \mathcal{F}$, entonces

$$\mathbb{E}[Y\mathbb{1}_A] = \int_A Y \, d\mathbb{P} = \nu(A) = \int_A X \, d\mathbb{P} = \mathbb{E}[X\mathbb{1}_A].$$

- 2. Si Z es una función simple, se tiene por linealidad de la integral (ejercicio).
- 3. Si $Z \in \mathcal{L}^{\infty}(\mathbb{P})$ se tiene por el teorema de la convergencia dominada.