

TRABALHO DE OTIMIZAÇÃO

Alberto Francisco Kummer Neto

INF05010 - Otimização Combinatória — Outubro, 2019

- 1. Requisitos do trabalho
- 2. Problemas propostos
 - PFSP (Permutational Flowshop Scheduling Problem)
 - PMSP (Parallel Machines Scheduling Problem)
 - TSP-DL (Traveling Salesman Problem with Draft Limits)
- 3. Organização dos grupos
- 4. Chamada

Desenvolvimento

- Leitura dos arquivo de instâncias
- Modelagem com GLPK/MathProg
- Implementação da heurística
- Testes com o modelo e heurística
- Escrita do relatório

Entrega

• Relatório + código fonte

Apresentação

• ± 20 minutos para cada grupo

Propostas de problema para 2019/2

- Mirrored Traveling Tournment Problem (mTTP)
- 2. Maximally Diverse Grouping Problem (MDGP)
- Home Health Care Routing and Scheduling Problem (HHCRSP)

Organizar a agenda de um campeonato esportivo

- Conjunto de n equipes (e n cidades-sede)
- Dois turnos
- Confronto completo por turno
- (n-1) rodadas por turno
- Turnos são espelhados

Objetivo: Minimizar os custos de deslocamento das equipes entre as cidades-sede.

Mais informações: veja no Github.

Campeonato brasileiro "adaptado"

- SPO (São Paulo, SP)
- FLA (Rio de Janeiro, RJ)
- CRU (Belo Horizonte, BH)
- GRE (Porto Alegre, PoA)

Primeiro turno							
Equipe	R1	R2	R3				
SPO	GRE	CRU	-FLA				
FLA	CRU	GRE	SPO				
CRU	-FLA	-SPO	GRE				
GRE	-SPO	-FLA	-CRU				

Segundo turno							
Equipe	R1	R2	R3				
SPO	-GRE	-CRU	FLA				
FLA	-CRU	-GRE	-SPO				
CRU	FLA	SPO	-GRE				
GRE	SPO	FLA	CRU				

Rota da equipe CRU: BH \rightarrow (Turno 1) \rightarrow RJ \rightarrow SP \rightarrow BH \rightarrow (Turno 2) \rightarrow BH \rightarrow BH \rightarrow PoA \rightarrow BH

Formar grupos de diversidade máxima

- Conjunto de indivíduos
- Conjunto de grupos
- Tamanho mínimo e máximo dos grupos
- Diversidade definida por valor numérico

Objetivo: Preencher os grupos, maximizando a diversidade total da solução.

Mais informações: veja no Github.

Diversidade por gosto musical

- Rock: Sam, Melvin, Thais
- Funk: Izak, Kamila, Pamella
- K-Pop: Carol, Viviane, Wesley

Solução pouco diversa

G1: Sam, Thais, Izak, Kamila, Pamella (2)

G2: Melvin, Carol, Viviane, Wesley (2)

Solução mais diversa

G1: Sam, Pamella, Carol, Wesley (3)

G2: Melvin, Thais, Izak, Kamila,

Viviane (3)

Atribuir médicos ao atendimento domiciliar

- Conjunto de pacientes
- Conjunto de especialidades médicas
- Conjunto de veículos
- Tempos de serviço dos pacientes
- Faixa de horário para atendimentos (início hard)
- Distâncias entre todos os pontos

Objetivo: Elaborar a rota mais curta de cada veículo, atendendo a todos os pacientes e minimizando os atrasos de atendimento.

Mais informações: veja no Github.

Especialidades

V1: Fisio, Nutri ; V2: Oftalmo, Dermato

P1: Oftalmo; P2: Fisio, Nutri; P3: Fisio

Faixas de horário

P1: 08:20–10:30

P2: 10:15–11:10

P3: 14:15–15:15

Veículo	Origem	H. Part.	Dest	H. Chegada	H. saída	Atraso
V1	Gar	08:00	P3	08:25	09:40	0
V1	P3	09:40	P2	10:18	11:21	11 mins.
V1	P2	11:21	Gar	11:41	-	_
V2	Gar	13:40	P1	14:15	14:45	0
V2	P1	14:45	Gar	15:18	-	_

Organização dos grupos