Propositional Logic and Logic Inference

Propositional Logic

- Proposition (ประพจน์) เป็นส่วนที่ใช้พิสูจน์ <mark>เพื่อบ่งชี้ความจริงตามหลักเหตุผล มี</mark> 2 ชนิด คือ
 - ประพจน์เชิงเดี่ยว (Single Proposition)
 - ประพจน์เชิงซ้อน (Compound Proposition)

Propositional Logic

- ประพจน์เชิงเดี่ยว : ประโยคหรือเนื้อหาทางตรรกะที่มีเพียงใจความเดียว
 - A : นักเรียน**ทุกๆคน** อยากเรียนจบ
 - B : **ไม่มี**นักเรียนคนไหนอยากสอบตก
 - C : นักเรียน<mark>ส่วนใหญ่</mark>เรียน 4 ปีก็จบการศึกษา
 - D : คนไทย<mark>ส่วนใหญ่ไม่</mark>ยากจน

Propositional Logic

- ประพจน์เชิงซ้อน คือการนำเอาประพจน์เชิงเดี่ยวหลายประโยคมารวมกันด้วยคำเชื่อมประโยค
- **ประโยคความรวม** เป็นประโยคตรรกะที่เกิดจากคำเชื่อม <mark>"และ", "แต่", "แม้", "เมื่อ"</mark>ในตรรกะ ศาสตร์จะใช้ตัว AND (^)
 - ฉันชอบกินข้าวสวย<mark>แต่</mark>เธอชอบกินข้าวเหนียว
- **ประโยคความเลือก** คือ ประโยคตรรกะที่เกิดจากคำเชื่อม "หรือ" (V)
 - พรุ่งนี้เป็นวันพุธหรือวันพฤหัสบดี
- **ประโยคมีเงื่อนไข** เป็นประโยคตรรกะที่เกิดจากคำเชื่อม "ถ้า...แล้ว" โดยประพจน์หนึ่งจะเป็น เงื่อนไข อีกตัวจะเป็นผลสรุป (\impsi)
 - ถ้านักศึกษาทำข้อสอบได้คะแนนเต็ม**แล้ว**จะได้เกรด A
- **ประโยคสมภาค** คือ ประโยคตรรกะที่เกิดจากคำเชื่อม "..ก็ต่อเมื่อ.." (��)
 - สมชายเป็นคนด<mark>ีก็ต่อเมื่อ</mark>สมชายไม่ทำชั่ว

Models of complex sentences

ขั้นตอนการสร้างประพจน์

- เลือกสัญลักษณ์ : ตัวพิมพ์ใหญ่ (P,Q,R) คำ (Rain,Hot) หรือกลุ่มคำ (isEven,การประสมคำ
- กำหนดประโยคให้กับสัญลักษณ์ เป็นประพจน์เชิงเดี่ยว
 - P : อากาศร้อน
 - Rain : มีฝนตก
 - isEven : ตัวแปรมีค่าเป็นเลขคู่
- ใช้คำเชื่อม (S \vee T), (S \wedge T), (S \rightarrow T), (S \Leftrightarrow T) เพื่อสร้างประพจน์เชิงซ้อน

Example: Propositional Logic

- P means "It is hot."
- Q means "It is humid."
- R means "It is raining."
- (P ∧ Q) → R
 "If it is hot and humid, then it is raining"
- Q → P
 "If it is humid, then it is hot"

- A better way:
 - Hot = "It is hot"
 - Humid = "It is humid"
 - Raining = "It is raining"

Practice

p: You learn the simple things well.

q: The difficult things become easy. ຈາກເປັນເຂົ້າຮ

- You do not learn the simple things well. $\sim p$
- If you learn the simple things well then the difficult things become easy.
- If you do not learn the simple things well, then the difficult things will not become easy. $\sim 9 \rightarrow \sim 9$

• The difficult things become easy but you did not learn the simple things well.

dvab

• You learn the simple things well but the difficult things did not become easy.

Truth Tables

- ใช้อธิบายค่าความจริงทั้งหมดของประพจน์ต่างๆ
- ใช้เป็นเครื่องมือในการเทียบว่าประพจน์มีคุณสมบัติอย่างไร
 - Tautology : เป็นประโยคที่ให้ความเป็นจริงในทุกกรณี
 - Self-contradiction : เป็นประโยคที่ให้ความเป็นเท็จในทุกกรณี
 - Contingent : เป็นประโยคที่สามารถมีทั้งค่าจริงและเท็จ
 - Consistent : ประโยคเหล่านั้นมีโอกาสที่จะเป็นจริงในกรณีเดียวกันได้
 - Inconsistent : ประโยคเหล่านั้นไม่มีโอกาสที่จะเป็นจริงในกรณีเดียวกัน
- ใช้ในการพิสูจน์ความเหมือนของประพจน์ (Logically equivalent)

P	Q	P and Q
Т	T	T
Т	F	F
F	T	F
F	F	F

P	Q	P or Q
Т	T	T
Т	F	Т
F	Т	Т
F	F	F

P	not P
T	F
F	T

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	Т
F	F	Т

P	Q	P⇔Q
T	Т	T
T	F	F
F	Т	F
F	F	T

Tautology : $R \Longrightarrow ((P \Longrightarrow Q) \lor \neg (R \Longrightarrow Q))$

M1991709170 619181878 61818182

P	Q	R	$P \Rightarrow Q$	$R \Rightarrow Q$	$\neg (R \Rightarrow Q)$	$(P \Rightarrow Q) \lor \neg (R \Rightarrow Q)$	$R \Rightarrow ((P \Rightarrow Q) \lor \neg (R \Rightarrow Q))$
T	T	T	T	T	F	T	T
T	T	F	T	T	F	T	T
T	F	T	F	F	T	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	F	T	T
F	T	F	T	T	F	T	T
F	F	T	T	F	T	T	T
F	F	F	T	T	F	T	T

Self-contradiction : $\neg(P \Longrightarrow Q) \land \neg(Q \Longrightarrow P)$

P	Q	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$	$Q \Rightarrow P$	$\neg(Q \Rightarrow P)$	$\neg(P \Rightarrow Q) \land \neg(Q \Rightarrow P)$
T	T	T	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	F	T	F
F	F	T	F	T	F	F

Contingent : เป็นประโยคที่สามารถมีทั้งค่าจริงและเท็จ

• ยกตัวอย่าง....

5/2561 W 8 ZUM 57 JULY

Consistent

- ประโยคมากกว่า 1 ประโยค ที่มีโอกาสที่มีค่า จริง ในกรณีเดียวกัน
- ตัวอย่าง : (P ∨ Q) และ ¬(P ⇔ ¬Q)

P	Q	$P \vee Q$	$\neg \mathbf{Q}$	$P \Leftrightarrow \neg Q$	$\neg (P \Leftrightarrow \neg Q)$
T	T	T	F	F	T
T	F	T	T	T	F
F	T	T	F	T	F
F	F	F	T	F	T

Inconsistent

- ประโยคมากกว่า 1 ประโยค ที่ไม่มีโอกาสที่มีค่า จริง ในกรณีเดียวกัน
- ตัวอย่าง : (P ⇒ Q) ∧ P และ ¬(Q ∨ ¬P)

P	Q	$P \Rightarrow Q$	$(P \Rightarrow Q) \land P$	$\neg P$	$\mathbf{Q} \vee \neg \mathbf{P}$	$\neg (Q \lor \neg P)$
T	T	T	T	F	T	F
T	F	F	F	F	F	T
F	T	T	F	T	T	F
F	F	T	F	T	T	F

Logically equivalent

- ค่าความเป็นจริงของทั้ง 2 ประโยคเหมือนกันในทุกกรณี
- ตัวอย่าง : $\neg P \Longrightarrow \neg Q$ และ $\neg (Q \land \neg P)$

P	Q	¬P	$\neg Q$	$\neg P \Rightarrow \neg Q$	$\mathbf{Q} \wedge \neg \mathbf{P}$	$\neg (\mathbf{Q} \land \neg \mathbf{P})$
T	T	F	F	T	F	T
T	F	F	T	T	F	T
F	T	T	F	F	T	F
F	F	T	T	T	F	T

Rules of Replacement

ประโยคใน propositional logic สามารถแทนที่กันได้ ถ้า ประโยคทั้ง 2 นั้น logically equivalent

ชื่อกฎ	Logically equivalent
Double negation (DN)	$\neg \neg P \equiv P$
Commutativity (Com)	$P \lor Q \equiv Q \lor P$ $P \land Q \equiv Q \land P$
Associativity (Assoc)	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$ $(P \land Q) \land R \equiv P \land (Q \land R)$
Tautology (Taut)	$P \vee P \equiv P, P \wedge P \equiv P$
Demorgan's Law (DM)	$\neg(P \lor Q) \equiv \neg P \land \neg Q$ $\neg(P \land Q) \equiv \neg P \lor \neg Q$
Transposition (Trans)	$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$
Material Implication (Impl)	$P \Rightarrow Q \equiv \neg P \lor Q$
Exportation (Exp)	$P \Rightarrow (Q \Rightarrow R) \equiv (P \land Q) \Rightarrow R$
Distribution (Dist)	$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Material Equivalent (Equiv)	$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$ $\equiv (P \land Q) \lor (\neg P \land \neg Q)$

ตัวอย่างการพิสูจน์ด้วยตารางความเป็นจริง

จงพิสูจน์การเท่ากันของสมการต่อไปนี้ $\neg (P \Rightarrow (Q \land R)) \equiv \neg [(P \Rightarrow Q) \land (P \Rightarrow R)]$

P	Q	R	$(Q \wedge R)$	$P \Rightarrow (Q \land R)$	$\neg (P \Longrightarrow (Q \land R))$	$(P \Rightarrow Q)$	$(P \Rightarrow R)$	$(P \Rightarrow Q) \land (P \Rightarrow R)$	$\neg[(P \Rightarrow Q) \land (P \Rightarrow R)]$
T	T	T	T	T	F	T	T	T	F
T	T	F	F	F	T	T	F	F	T
T	F	T	F	F	T	F	T	F	T
T	F	F	F	F	T	F	F	F	T
F	T	T	T	T	F	T	T	T	F
F	T	F	F	T	F	T	T	T	F
F	F	T	F	T	F	T	T	T	F
F	F	F	F	T	F	T	T	T	F

Deduction: Rules of Inference and Replacement

- การแก้ไขปัญหาของ Propositional Logic โดยใช้ตารางความเป็นจริง (truth table) ตาม ทฤษฎีสามารถแก้ไขได้ทุกปัญหา
- แต่ขนาดของตารางความเป็นจริงจะ<mark>ใหญ่</mark>ขึ้นมาก <mark>ตามจำนวนของตัวแปรของประโยคนั้นๆ</mark>
- **ตัวอย่าง** ถ้ามีประโยค Propositional Logic มีตัวแปร 10 ตัว ตารางความเป็นจริงจะต้องมี ทั้งหมด 2¹⁰ = 1024 แถว
- ดังนั้นจึงมีวิธีแก้ปัญหาโดยเอาทฤษฎีต่างๆ แทนการใช้ตารางความเป็นจริง
 - Natural Deduction
 - Direct Deduction
 - Indirect Deduction

Natural Deduction (การนิรนัย)

- วิธี natural deduction พยายามที่จะลดการคิดค่าความเป็นจริงของแต่กรณี โดยหาค่า ความเป็นจริงทำตามขั้นตอนทีละขั้นตอนไปเรื่อยๆ ตามความรู้ที่มี
- ตัวอย่าง: ข้อกล่าวอ้างทั่วไป

ในสถานที่เกิดเหตุมีขนแมวหรือขนสุนัขตกอยู่ ถ้ามีขนสุนัขตกอยู่ในที่เกิดเหตุเจ้าหน้าที่สมชายจะเป็น โรคภูมิแพ้ ถ้าเป็นขนแมวที่ตกอยู่ในที่เกิดเหตุ แล้วสมปองเป็นฆาตกร แต่เนื่องด้วยเจ้าหน้าที่สมชาย ไม่ได้เป็นโรคภูมิแพ้ดังนั้นสมปองคือฆาตกร

Natural Deduction (การนิรนัย)

- 1) มีขนแมวตกอยู่ในที่เกิดเหตุ หรือ มีขนสุนัขตกอยู่ในที่เกิดเหตุ (สมมุติฐาน)
- 2) ถ้ามีขนสุนัขตกในที่เกิดเหตุ แล้ว เจ้าหน้าที่สมขายจะเป็นโรคภูมิแพ้ (สมมุติฐาน)
- 3) ถ้ามีขนแมวตกอยู่ในที่เกิดหตุ แล้ว สมปองเป็นฆาตกร (สมมุติฐาน)
- 4) เจ้าหน้าที่สมชาย ไม่ได้เป็นโรคภูมิแพ้ (สมมุติฐาน)
- 5) ไม่มีขนสุนัขตกอยู่ในที่เกิดเหตุ (จากข้อ 2 และ ข้อ 4)
- 6) มีขนแมวตกอยู่ในที่เกิดเหตุ (จากข้อ 1 และ ข้อ 5)
- 7) สมปองคือฆาตกร (จากข้อ 3 และข้อ 6)

ivom what we know.

Rules of Inference (กฎของการอนุมาน)

- การอนุมานด้วยวิธีการให้เหตุผลจะต้องมีการตรวจสอบความสมเหตุสมผล กฎของการอนุมานเชิง ตรรกศาสตร์ ได้แก่
 - Modus Ponens (MP)
 - Modus Tollens (MT)
 - Disjunctive Syllogism (DS)
 - Addition (Add)
 - Simplification (Simp)
 - Conjunction (Conj)
 - Hypothetical Syllogism (HS)
 - Constructive dilemma (CD)
 - Absorption (Abs)

Modus Ponens (MP)

Modus Ponens (⇒-elimination)

Р	Q	$P \Rightarrow Q$
Т	Т	T
Т	F	F
F	Т	T
F	F	T

Modus Tollens (MT)

Modus Tollens (⇒-elimination)

P	Q	$P \Rightarrow Q$	¬Q	¬P
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

Disjunctive syllogism (DS)

Disjunctive Syllogism (∨-elimination)

P	Q	$P \vee Q$	¬P
T	Т	Т	F
Т	F	Т	F
F	Т	T	T

$P \vee Q$	
<u> </u>	
Р	

P	Q	$P \vee Q$	¬Q
T	Т	Т	F
Т	F	Т	Т
F	Т	Т	F
F	F	F	Т

Addition (Add)

Addition (\scale=-introduction)

Р	Q	$P \vee Q$
Т	Τ	Т
Т	F	Т
F	Т	Т
F	F	F

P	Q	$P \vee Q$
Т	Т	Т
Т	F	Т
F	Т	T
F	F	F

Simplification (Simp)

ha P, Q

• Simplification (∧-elimination)

Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

P	Q	P \(\) Q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Conjunction (Conj)

• Conjunction (∧-introduction)

Р	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Hypothetical syllogism (HS)

• Hypothetical syllogism (chain reasoning, chain deduction)

$P \Rightarrow Q$
$Q \Rightarrow R$
$P \Rightarrow R$

Р	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$P \Rightarrow R$
Т	Т	Т	Т	Т	Т
Т	Т	F	T	F	F
Т	F	Т	F	Т	Т
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	T	F	Т
F	F	Т	T	Т	T
F	F	F	Т	Т	Т

Constructive Dilemma (CD)

$$(P \Rightarrow Q) \land (R \Rightarrow S)$$

$$\frac{P \lor R}{Q \lor S}$$

P	Q	R	S	$P \Rightarrow Q$	$R \Rightarrow S$	$(P \Rightarrow Q) \land (R \Rightarrow S)$	$P \vee R$	Q ∨ S
Т	Τ	Т	T	T	T	Т	Т	T
Т	Т	Т	F	T	F	F	Т	Т
Т	Т	F	Т	T	T	Т	Т	Т
Т	Т	F	F	T	T	Т	Т	Т
Т	F	Т	Т	F	T	F	Т	Т
Т	F	Т	F	F	F	F	Т	F
Т	F	F	Т	F	T	F	Т	Т
Т	F	F	F	F	Т	F	Т	F
F	Т	Т	Т	T	T	Т	Т	Т
F	Т	Т	F	T	F	F	Т	Т
F	Т	F	Т	T	T	Т	F	Т
F	Т	F	F	T	T	Т	F	Т
F	F	Т	Т	T	T	Т	Т	Т
F	F	Т	F	T	F	F	Т	F
F	F	F	Т	T	T	Т	F	Т
F	F	F	F	T	Т	Т	F	F

Absorption (Abs)

Absorption

$$(P \Rightarrow Q)$$

$$P \Rightarrow (P \land Q)$$

Р	Q	$P \Rightarrow Q$	P∧Q	$P \Rightarrow (P \wedge Q)$
Т	Т	Т	Т	Т
Т	F	F	F	F
F	Т	Т	F	Т
F	F	Т	F	Т

Direct Deduction

- Direct deduction ของข้อสรุปจากเซ็ตของสมมุติฐานประกอบไปด้วยลำดับของประโยค
 - สมมุติฐาน (premise)
 - ประโยคที่มาจากกฎของการอนุมาน (rules of inference)
 - ปร<mark>ะโยคที่มาจากกฎของการแทนที่</mark> (rules of replacement)
- ตัวอย่างมี สมมุติฐานคือ C \vee D, C \Longrightarrow O, D \Longrightarrow M, และ \multimap O มีข้อสรุป M จะพิสูจน์ว่าถูกต้อง

1.	$C \vee D$	premise
2.	$C \Rightarrow O$	premise
3.	$D \Longrightarrow M$	premise
4.	$\neg 0$	premise
5.	$\neg C$	2,4 MT
6.	D	1,5 DS
7.	M	3,6 MP

Example: Direct Deduction

• พิสูจน์ T \Longrightarrow U จากสมมุติฐาน P \Longleftrightarrow Q , (S \lor T) \Longrightarrow Q, และ \lnot P \lor (\lnot T \land R)

1.
$$P \Leftrightarrow Q$$
 premise
2. $(S \vee T) \Rightarrow Q$ premise
3. $\neg P \vee (\neg T \wedge R)$ premise
4. $(P \Rightarrow Q) \wedge (Q \Rightarrow P)$ 1 Equiv
5. $(Q \Rightarrow P)$ 4 Simp
6. $(S \vee T) \Rightarrow P$ 2,4 HS
7. $P \Rightarrow (\neg T \wedge R)$ 3 Impl
8. $(S \vee T) \Rightarrow (\neg T \wedge R)$ 6,7 HS
9. $\neg (S \vee T) \vee (\neg T \wedge R)$ 8 Impl
10. $(\neg S \wedge \neg T) \vee (\neg T \wedge R)$ 9 DM
11. $[(\neg S \wedge \neg T) \vee \neg T] \wedge [(\neg S \wedge \neg T) \vee R)$ 10 Dist

12.
$$(\neg S \land \neg T) \lor \neg T$$
 11 Simp

 13. $(\neg S \lor \neg T) \land (\neg T \lor \neg T)$
 12 Dist

 14. $\neg T \lor \neg T$
 13 Simp

 15. $\neg T$
 14 Taut

 16. $\neg T \lor U$
 15 Add

 17. $T \Rightarrow U$
 16 Impl

Indirect Deduction

- Indirect deduction มี 2 วิธี
 - Conditional proof : สมมุติค่าความเป็นจริงให้ 1 ตัวแปรเพื่อแก้ปัญหา
 - Indirect proof : กำหนดข้อสรุปเป็นเท็จ แล้วถ้ามีพิสูจน์หักล้างได้ จะทำให้ข้อสรุปนั้นเป็นจริง
- - 1. $P \Rightarrow Q$ \bigcirc premise
 - 2. $P \Rightarrow (Q \Rightarrow \neg P)$ premise
 - 3. P assumption <u>a</u>
 - 4. Q ~ ~ 1,3 MP
 - 5. $(Q \Rightarrow \overline{P})$ $\stackrel{?}{\sim} 2,3 MP$
 - 6. ¬P 5,4 MP
 - 7. P ∧ ¬P 3,6 Conj
 - 8. False 7 IP

ขัดกับ assumption

เพราะฉะนั้น **– P** เป็นจริง

Example

- จงพิสูจน์ว่าคำกล่าวต่อไปนี้ถูกต้อง ถ้าอุณหภูมิและความดันคงที่ฝนจะไม่ตก ขณะนี้อุณหภูมิคงที่ ดังนั้นถ้าฝนตกแล้วหมายความว่าความดัน ไม่คงที่
- วิธีพิสูจน์ กำหนด
 - A แทน อุณหภูมิคงที่
 - B แทน ความดันคงที่
 - C แทน ฝนตก
 - แทนประโยคด้วย propositional logic
 - Premise : ถ้าอุณฺหภูมิและความดันคงที่ฝนจะไม่ตก (A \wedge B) \Longrightarrow \neg C
 - Premise : ขณะนี้อุณหภูมิคงที่ A
 - Conclusion : ถ้าฝ[ื]นตกแล้วหมายความว่าความดันไม่คงที่ $C \Longrightarrow \neg B$

Example

ข้อสรุปคือ
$$\mathsf{C}\Longrightarrow -\mathsf{B}$$

1.
$$(A \wedge B) \Rightarrow \neg C$$

3.
$$\neg (C \Rightarrow \neg B)$$

4.
$$\neg (A \land B) \lor \neg C$$

5.
$$\neg A \lor \neg B \lor \neg C$$

6.
$$\neg B \lor \neg C$$

7.
$$\neg C \lor \neg B$$

8.
$$C \Rightarrow \neg B$$

9.
$$\neg (C \Rightarrow \neg B) \land C \Rightarrow \neg B$$

Premise

Premise

Assumption

1 Impl

4 DM

2,5 DS

6 Comm

7 Impl

3,8 Conj

9 IP

Exportation $p \rightarrow (q \rightarrow r)$ as a sum $(p \land q) \rightarrow r$ ~pv(q>r) ~pv(~qvv) $\sim (p \wedge q) \vee v$ (pnq) -> Y a(rvs), ~p -> s, p -> g prove q direct prone NKNNS NS->12

$$\sim (VVS)$$
, $\sim p \rightarrow s$, $p \rightarrow q$ as $q \equiv T$
 $\sim VVA\sim s$
 $\sim VVA\sim s$

p=(qnr), s=>r, r=>p ~1371 5=>9 · S-> (GNY) $(\sim SVQ) \wedge (\sim SVY)$ $(S\rightarrow Q) \wedge (S\rightarrow Y)$

Prq, p=r, (91r) = 1 2/3/21 5 (2/1/35) $S \rightarrow (Q \wedge V)$ ~SV(YMY