RÉUNION 20/12/24 PROJET CLIPS

FALK Anthonin & HAMIE Bachar

SOMMAIRE

- Présentation du travail
- Discussion des prochaines étapes
- Prévision de la prochaine date de réunion

PRÉCISIONS SUR : CL FOR IMPROVED SEGMENTATION

- Boostraping score/function?
- Self-paced score/function?

PRÉCISIONS SUR CL FOR IMPROVED SEGMENTATION

Boostraping score/function

Self-paced score/function

Basés sur le coût associé à chaque image dans la function de perte

Coût défini par rapport au Ground Truth

Coût défini par rapport à la sortie d'un modèle

(X. Wang, Y. Chen, and W. Zhu, "A Survey on Curriculum Learning," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 44, no. 9, pp. 4555–4576, Sep. 2022.)

4

Curriculum Learning by Smoothing

Table 4: **Transfer Learning**. Results for transfer learning on a different task on the Pascal VOC Dataset. For all semantic segmentation experiments we use Fully Convolutional Network with VGG-16 network, trained on ImageNet from Section 4. For all Object Detection experiments we use Fast-RCNN with the same VGG-16 backbone.

	Semantic Segmentation (% mIoU)	Object Detection (% mAP)
CNN	55.7 ± 0.2	67.9 ± 0.4
CBS	57.9 ± 0.3	70.0 ± 0.2

Table 7: **Ablation study**. Applying smoothing to different components of the network. We report the mean and standard deviation over 5 random seeds using a ResNet-18. We see that applying Gaussian smoothing on the images or without decaying the value of σ , the network is unable to learn effective representations.

	Image Only	Image + Features	Constant $\sigma = 1$	Network	CBS
CIFAR-10	80.0 ± 0.3	84.1 ± 0.2	85.3 ± 0.4	87.1 ± 0.3	90.2 \pm 0.3
CIFAR-100	45.7 ± 0.3	49.6 ± 0.3	54.0 ± 0.2	62.4 ± 0.3	65.4 ± 0.2

Curriculum Learning "classique"

- Différence statistique au niveau des performances en mesurant avec le Dice Score (p<0,001)
- Test de Kolmogorov-Smirnov (α =0.05) (erreur des fonctions de répartitions) "indicated that the different performances of CL approaches were all statistically different from each other (p-value<0.05)"
- bootstrapping was statistically significantly better than all other curriculum approaches (p-value<0.05).

CONCLUSION: ce sera à nous de comparer les performances des deux méthodes

LE CODE

Objectifs:

- Faire un diagramme du code afin de mieux le comprendre (seulement un tree pour le moment)
- Se familiariser avec Docker

PROCHAINES ÉTAPES

Suggestions:

- Lire le code en profondeur
- Accéder au CHU

PRÉCISION SUR TMTV-NET : SOFTVOTING

"By soft voting (**probability** averaging) of the multi-resolution predictions in this step, we aimed to ensure that the majority of outputs have a greater influence on the final prediction of Step I."

DATE DE LA PROCHAINE RÉUNION