Master's Thesis: MuZero

Deep Reinforcement Learning with MuZero: Theoretical Foundations, Variants, and Implementation for a Collaborative Game

Content

Overview	3
AlphaZero	7
MuZero	26
Multiplayer Modifications	49
Evaluation	
Questions	57

Overview

MuZero

- Model-based deep Reinforcement Learning algorithm
- Developed by Google DeepMind
- Games: Go, shogi, chess, Atari
- Evolution:
 - AlphaGo
 - · AlphaGo Zero
 - AlphaZero
 - MuZero

AlphaZero and MuZero

• Learn from scratch using selfplay

•

Training Data

AlphaZero and MuZero

- Learn from scratch using selfplay
- Use Monte Carlo Tree Search (MCTS) to plan ahead

AlphaZero

Neural Network

• Input: 2D image of game board

· Residual CNN

• Two output heads:

• value: Scalar

How good is the current position?

• policy: Distribution over actions

What are promising moves to try in the search?

Monte Carlo Tree Search

- Builds (game) tree of possible future actions
- Stochastic algorithm: Random samples in the action space
- Tree grows iteratively:
 - 1. **Selection**: Find the most urgent node

Guided by:

- network policy predictions
- exploration
- · exploitation
- 2. **Expansion**: Add a new node, query network
- 3. **Backpropagation**: *Update statistics in the tree*
- New search tree at every game state to find a move
- Search results are used as policy training target
 - \rightarrow Policy improvement

MCTS: Root Node

MCTS: Root Node: Network Inference

MCTS: Root Node

MCTS: Iteration 1: Selection

MCTS: Iteration 1: Expansion

MCTS: Iteration 1: Expansion (Network inference)

MCTS: Iteration 1: Backpropagation

MCTS: Iteration 1

MCTS: Iteration 2: Selection

MCTS: Iteration 2: Selection

MCTS: Iteration 2: Expansion

MCTS: Iteration 2: Expansion (Network inference)

MCTS: Iteration 2: Backpropagation

MCTS: Iteration 2

MCTS: After many Iterations

Selfplay and Neural Network Training

Play games using MCTS for both players

• Record training data (s, π, z) for each game state

• s: Game state Observation image

• π : MCTS policy Distribution over actions

Which actions of the root node were visited by the search?

• z: Game Outcome Scalar Ended the game in a win, loss or draw?

• Supervised training on this data

MuZero

Summary

- Like AlphaZero, but no simulator in the tree search
- Instead: Learns a model of the environment dynamics
- Represents game states in a latent space

Neural Networks

• 3 Networks:

• Representation: Observation $\longrightarrow h \longrightarrow$ Latent

• Prediction: Latent \longrightarrow Policy, Value

MCTS: Observation

MCTS: Representation Network

MCTS: Root Node

MCTS: Root Node: Network Inference

MCTS: Root Node

MCTS: Iteration 1: Selection

MCTS: Iteration 1: Expansion

MCTS: Iteration 1: Expansion (Network inference)

MCTS: Iteration 1: Backpropagation

MCTS: Iteration 1

MCTS: Iteration 2: Selection

MCTS: Iteration 2: Selection

MCTS: Iteration 2: Expansion

MCTS: Iteration 2: Expansion (Network inference)

MCTS: Iteration 2: Backpropagation

MCTS: Iteration 2

MCTS: After many Iterations

Selfplay

• Play games using MCTS for both players

- Record training data (s,a,r,π,G) for each game state

• s: Game state Observation image

• *a*: Action taken Onehot tensor

• *r*: Reward experienced Scalar

• π : MCTS policy Distribution over actions

• G: n-step return Scalar

Neural Network Training

- Sample *K* consecutive training steps from buffer
- Start with observation
- Then unroll dynamics network for K-1 steps using actions
- Backpropagation-through-time
- End-to-end learning of policies, values and rewards K steps ahead

Neural Network Training (ii)

Multiplayer Modifications

Goals / Improvements over MuZero

- Multiplayer support
- Arbitrary turn order
- General-sum games
- Chance events / Stochasticity

Multiplayer MCTS

- At each node: Maximize current player's profit
- Requires:
 - Current player at turn
 - Predicted by the dynamics network
 - Trained on ground-truth labels from the game simulator
 - Per-player values and rewards
 - $v, r \in \mathbb{R}^n$ for n players
 - Trained on ground-truth labels from the game simulator

Stochasticity

- Add special chance player to the set of players
- Is at turn when chance events occur
- Policy targets are the chance outcome probabilities (ground-truth from simulator)
- MCTS selects actions according to predicted chance policy when the chance player is at turn

Evaluation

Carchess

- Cars spawn and drive along roads
- Cars may crash at intersections
- Players control traffic with barriers
- Goals:
 - Bring cars to their destination
 - Avoid crashes
- 10 Rounds of:
 - Each player toggles one barrier
 - Traffic advances for 5 steps
 - Spawn counts are updated randomly
- Collaboration: All players receive same reward

Carchess: Results

- Single training run
- 100.000 environment steps of random play at the beginning
- Mean score + 95% CI over last 30 plotted data points

Thanks

Questions