Задача А. Сумма

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Васе дали два числа A, B. Ему кажется, что эти числа были получены из некоторого натурального числа с помощью прибавления и вычитания n натуральных чисел. Причем к A все загаданные числа прибавлялись, а из B вычитались. Более конкретно:

•
$$A = X + x_1 + x_2 + \ldots + x_n$$

$$\bullet \ B = X - x_1 - x_2 - \ldots - x_n$$

Вам интересно, подходят ли какие-то натуральные числа X, x_1, \dots, x_n под Васину гипотезу.

Формат входных данных

На вход подаются три целых числа через пробел $A, B, n \ (0 \leqslant A, B, n \leqslant 10^9)$

Формат выходных данных

Выведите «YES», если Васина гипотеза верна и «NO» иначе

Примеры

стандартный ввод	стандартный вывод
3 5 1	NO
5 3 1	YES

Замечание

В данной задаче 0 не является натуральным числом.

Задача В. Покраска

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У вас есть прямоугольник $n \times m$. Вы закрашиваете в нем максимально возможный по площади квадрат таким образом, чтобы незакрашенная часть осталась связанным прямоугольником. После этого вы берете новое ведро с краской и продолжаете закрашивание оставшейся части вышеописанным способом. Сколько ведер с краской вам потребуется?

Например, если у вас есть прямоугольник 3×4 , то в нем можно закрасить квадрат 3×3 таким образом, что оставшаяся часть займет прямоугольник размером 3×1 , который получится закрасить тремя квадратами. На весь процесс понадобится четыре ведра с краской.

Формат входных данных

Даны два натуральных числа $n, m \ (1 \leqslant n, m \leqslant 10^{18})$. Обратите внимание, что вам понадобится 64-битный тип данных для ввода.

Формат выходных данных

Выведите одно число — колчество ведер с краской.

Примеры

стандартный ввод	стандартный вывод
3 4	4
5 10	2

Задача С. Операции

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Пете дали последовательность чисел a_i длины n и разрешили выбрать свое любимое целое число x.

Петя должен взять все элементы последовательности ровно по одному разу (возможно, не в исходном порядке), и для каждого элемента совершить операцию: изменить свое любимое число. Пусть Петино любимое число до операции имело значение x, после операции оно должно иметь новое значение $x^2 - a_i$. Петя расстроится, если в какой-то момент x станет меньше нуля. Найдите минимальный подходящий x, который Петя может выбрать в качестве своего любимого целого числа.

Формат входных данных

В первой строке дается целое число $n\ (1\leqslant n\leqslant 10^5)$ В следующей строке через пробел вводится n целых чисел $a_1,\ldots,a_i,\ldots,a_n\ (1\leqslant a_i\leqslant 10^{18})$ — последовательность Пети.

Обратите внимание, что для ввода чисел вам понадобится 64-битный тип данных.

Формат выходных данных

Выведите одно число — такой минимальный x, с которым Петя сможет проделать все необходимые операции и не расстроиться.

Примеры

стандартный ввод	стандартный вывод
2	2
1 2	
5	2
1 1 1 1 1	
3	3
2 1 100	

Задача D. Конь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вы — целеустремленный шахматный конь, который идет из левой нижней клетки доски до правой верхней, доска же имеет габариты $n \times m$ клеток.

От вас требуется найти количество способов пройти через доску, если ваш конь ходит либо на две клетки вправо и одну наверх, либо на две клетки вверх и одну направо за ход.

Формат входных данных

На вход даются два натуральных числа $n, m, (1 \le n, m \le 50)$.

Формат выходных данных

Выведите одно число — количество способов добраться конем до правого верхнего угла доски.

Пример

стандартный ввод	стандартный вывод
4 4	2

Задача Е. Горы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 512 мегабайт

Лягушонок Линк решил забраться на гору высотой n метров во время дождя. Поскольку в дождь горы скользкие, то после каждого прыжка Линк соскальзывает на некоторое расстояние вниз. Более формально, если Линк делает прыжок, будучи на расстоянии i метров от вершины, то он может прыгнуть на любую высоту от 0 до a_i дополнительных метров наверх. Но схватившись за скалу на расстоянии j метров от вершины, Линк проскользит вниз на b_i метров.

От вас требуется определить минимальное количество прыжков, которое потребуется Линку для подъема наверх.

Формат входных данных

В первой строке задано целое положительное число $n\ (1\leqslant n\leqslant 300\,000)$ — высота горы.

Во второй строке задано n целых чисел a_1, a_2, \ldots, a_n ($0 \leqslant a_i \leqslant i$) — максимальная высота, доступная для прыжка на заданном расстоянии от вершины.

В третьей строке вводится n целых чисел b_1, b_2, \ldots, b_n ($0 \le b_i \le n-i$) — количество метров, которые лягушонок проскользит вниз, приземлившись на расстоянии i от вершины.

Формат выходных данных

В первой строке выведите целое число k — минимально возможное количество прыжков. В случае, если Линк не сможет добраться до верха горы, выведите -1.

Примеры

стандартный ввод	стандартный вывод
3	2
0 2 2	1 0
1 1 0	
2	-1
1 1	
1 0	
10	3
0 1 2 3 5 5 6 7 8 5	9 4 0
9 8 7 1 5 4 3 2 0 0	

Замечание

В первом тесте из условия Линк за один прыжок поднимается к отметке на расстоянии 1 метр от вершины. После этого он соскальзывает вниз на метр. Следующим прыжком он запрыгнет на гору.