Apontamentos das Aulas Teóricas de Álgebra Linear

para

LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec

Nuno Martins

Departamento de Matemática

Instituto Superior Técnico

Fevereiro de 2014

Índice

1. Sistemas de equações lineares e matrizes	3
2. Espaços lineares	24
3. Transformações lineares	47
4. Produtos internos. Ortogonalização	64
5. Determinantes	84
6. Valores próprios e vectores próprios. Diagonalização	93
7 Bibliografia	119

Resolução de sistemas de equações lineares

Definição 1. Uma **equação linear** com n incógnitas $x_1, x_2, ..., x_n$ é uma equação da forma

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b,$$

em que $a_1, a_2, ..., a_n$ e b são constantes (reais ou complexas). A b chama-se **termo independente**.

Definição 2. Um sistema de m equações lineares com n incógnitas $x_1, x_2, ..., x_n$ é um conjunto de equações da forma

$$\begin{pmatrix}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{pmatrix}$$

em que a_{ij} e b_k são constantes (reais ou complexas), para i, k = 1, ..., m e j = 1, ..., n.

Definição 3. Uma solução (caso exista) de um sistema de m equações lineares com n incógnitas reais, é o elemento

$$(s_1, s_2, ..., s_n) \in \mathbb{R}^n := \{(a_1, a_2, ..., a_n) : a_1, a_2, ..., a_n \in \mathbb{R}\}$$

que satisfaz as equações desse sistema quando substituímos

$$x_1 = s_1, \quad x_2 = s_2, \quad ..., \quad x_n = s_n.$$

(No caso das variáveis serem complexas ter-se-ia soluções em \mathbb{C}^n .)

Usando o produto de matrizes, a definir adiante, isso equivale a dizer que

$$S = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix}$$

satisfaz a equação matricial

$$AX = B$$
,

em que

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad e \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

isto é, fazendo X = S tem-se a condição verdadeira AS = B. Ao conjunto de todas as soluções do sistema chama-se **conjunto solução** ou **solução geral** do sistema.

Definição 4. A matriz A é a matriz dos coeficientes do sistema AX = B, X é a matriz coluna das incógnitas e B é a matriz coluna dos termos independentes. A matriz

$$[A \mid B] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & | & b_2 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & | & b_m \end{bmatrix}$$

associada ao sistema (*) chama-se matriz aumentada do sistema.

Exemplo 1. O sistema linear de duas equações e duas incógnitas

$$\begin{cases} x + 2y = 1 \\ 2x + y = 0 \end{cases}$$

pode ser escrito do seguinte modo:

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 1 \\ 0 \end{array}\right].$$

A solução geral do sistema acima é dada por

$$\{(x,y): x+2y=1 \text{ e } 2x+y=0\} = \{(-1/3,2/3)\},$$

isto é,
$$X = \begin{bmatrix} -1/3 \\ 2/3 \end{bmatrix}$$
 é a única matriz que satisfaz $AX = B$, com $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Definição 5. A um sistema de equações lineares da forma

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

chama-se sistema linear homogéneo. Este sistema pode ser escrito na forma AX = 0.

Observação 1. (i) Todo o sistema linear homogéneo $AX = \mathbf{0}$ admite pelo menos a solução trivial:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Assim, todo o sistema linear homogéneo tem solução. Além disso, como iremos ver, ou tem apenas a solução trivial ou tem um número infinito de soluções.

(ii) Num próximo capítulo, à solução geral do sistema linear homogéneo $AX = \mathbf{0}$ dar-se-á o nome de **núcleo** de A e escrever-se-á $\mathcal{N}(A)$.

Definição 6. Às seguintes operações que se podem aplicar às equações de um sistema de equações lineares, chamam-se **operações elementares.**

- (a) Trocar a posição de duas equações do sistema;
- (b) Multiplicar uma equação por um escalar diferente de zero;
- (c) Substituição de uma equação pela sua soma com um múltiplo escalar de outra equação.

Definição 7. Dois sistemas de equações lineares que se obtêm um do outro através de um número finito de operações elementares, dizem-se **equivalentes**, tendo assim o mesmo conjunto solução.

Observação 2. Quando aplicamos operações elementares às equações de um sistema de equações lineares, só os coeficientes e os termos independentes do sistema são alterados. Logo, aplicar as operações elementares anteriores às equações de um sistema linear (*) equivale a aplicar às linhas da matriz aumentada

$$[A \mid B] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & | & b_2 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & | & b_m \end{bmatrix}$$

as seguintes operações.

Definição 8. As operações elementares que podem ser aplicadas às linhas $(i \ e \ j)$ de uma matriz são:

- (i) Trocar a posição de duas linhas (i e j) da matriz: $L_i \leftrightarrow L_j$
- (ii) Multiplicar uma linha (i) da matriz por um escalar (α) diferente de zero: $\alpha L_i \to L_i$
- (iii) Substituição de uma linha (j) pela sua soma com um múltiplo escalar (α) de outra linha (i): $\alpha L_i + L_j \rightarrow L_j$

Teorema 1. Se dois sistemas lineares AX = B e CX = D são tais que a matriz aumentada $[C \mid D]$ é obtida de $[A \mid B]$ através de uma ou mais operações elementares, então os dois sistemas são equivalentes.

Definição 9. Uma matriz $A = (a_{ij})_{m \times n}$ diz-se em escada de linhas se:

- (i) Todas as linhas nulas (formadas inteiramente por zeros) estão por baixo das linhas não nulas;
- (ii) Por baixo (e na mesma coluna) do primeiro elemento não nulo de cada linha e por baixo dos elementos nulos anteriores da mesma linha, todas as entradas são nulas. Esse primeiro elemento não nulo de cada linha tem o nome de **pivot**.

Exemplo 2. As seguintes matrizes estão em escada de linhas:

Definição 10. O método de resolver sistemas de equações lineares que consiste em aplicar operações elementares às linhas da matriz aumentada do respectivo sistema de modo a que essa matriz fique em escada de linhas, chama-se método de eliminação de Gauss.

Definição 11. Um sistema de equações lineares diz-se:

- (i) impossível se não tiver soluções;
- (ii) possível e indeterminado se tiver um número infinito de soluções;
- (iii) possível e determinado se tiver uma única solução.

Definição 12. (i) O número de incógnitas livres (podem tomar valores arbitrários) de um sistema, é o número de colunas que não contenham pivots, da matriz em escada de linhas obtida de A através de operações elementares. Quando um sistema é possível e indeterminado, ao nº de incógnitas livres desse sistema chama-se grau de indeterminação do sistema.

(ii) O número de incógnitas não livres de um sistema, é o número de colunas que contenham pivots, da matriz em escada de linhas obtida de A através de operações elementares.

Exemplo 3. O sistema de equações lineares de variáveis reais $x, y \in z$

$$\begin{cases} x+z=3\\ x+2y+2z=6\\ 3y+3z=6 \end{cases}$$
 é equivalente a
$$\begin{bmatrix} 1 & 0 & 1\\ 1 & 2 & 2\\ 0 & 3 & 3 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 3\\ 6\\ 6 \end{bmatrix}.$$

Considere-se então a matriz aumentada e o consequente método de eliminação de Gauss:

$$\begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 1 & 2 & 2 & | & 6 \\ 0 & 3 & 3 & | & 6 \end{bmatrix} \xrightarrow{-L_1 + L_2 \to L_2} \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 2 & 1 & | & 3 \\ 0 & 3 & 3 & | & 6 \end{bmatrix} \xrightarrow{-\frac{3}{2}L_2 + L_3 \to L_3} \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 2 & 1 & | & 3 \\ 0 & 0 & \frac{3}{2} & | & \frac{3}{2} \end{bmatrix}.$$

Logo,

$$\begin{cases} x+z=3\\ 2y+z=3\\ \frac{3}{2}z=\frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} x=2\\ y=1\\ z=1. \end{cases}$$

Neste exemplo o sistema tem a solução única $\{(2,1,1)\}$ e diz-se possível e determinado.

6

Exemplo 4. O sistema de equações lineares de variáveis reais x, y, z e w

$$\begin{cases} 3z - 9w = 6 \\ 5x + 15y - 10z + 40w = -45 & \text{\'e equivalente a} \\ x + 3y - z + 5w = -7 \end{cases} \qquad \text{\'e equivalente a} \qquad \begin{bmatrix} 0 & 0 & 3 & -9 \\ 5 & 15 & -10 & 40 \\ 1 & 3 & -1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 6 \\ -45 \\ -7 \end{bmatrix}.$$

Considere-se então a matriz aumentada e o consequente método de eliminação de Gauss:

$$\begin{bmatrix} 0 & 0 & 3 & -9 & | & 6 \\ 5 & 15 & -10 & 40 & | & -45 \\ 1 & 3 & -1 & 5 & | & -7 \end{bmatrix} \xrightarrow[\frac{L_1 \leftrightarrow L_3}{\frac{1}{5}L_2 \to L_2}]{} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 1 & 3 & -2 & 8 & | & -9 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow[-L_1 + L_2 \to L_2]{} \xrightarrow{-L_1 + L_2 \to L_2} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow[3L_2 + L_3 \to L_3]{} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Logo,

$$\begin{cases} x + 3y - z + 5w = -7 \\ -z + 3w = -2 \end{cases} \Leftrightarrow \begin{cases} x = -3y - 2w - 5 \\ z = 3w + 2. \end{cases}$$

As incógnitas y e w são livres e as incógnitas x e z são não livres. A solução geral do sistema é:

$$\left\{ \begin{bmatrix} -3s - 2t - 5\\ s\\ 3t + 2\\ t \end{bmatrix} : s, t \in \mathbb{R} \right\}$$

isto é, o conjunto solução é dado por: $\{(-3s-2t-5,s,3t+2,t):s,t\in\mathbb{R}\}$. Neste exemplo o sistema tem **um número infinito de soluções** e diz-se **possível e indeterminado** com **grau de indeterminação** 2.

Exemplo 5. Seja $a \in \mathbb{R}$. O sistema de equações lineares de variáveis reais $x, y \in z$

$$\begin{cases} x + 2y + z = 3 \\ x + y - z = 2 \\ x + y + (a^2 - 5)z = a \end{cases}$$
é equivalente a
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & a^2 - 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ a \end{bmatrix}.$$

Considere-se então a matriz aumentada e o consequente método de eliminação de Gauss:

$$\begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 1 & 1 & -1 & | & 2 \\ 1 & 1 & a^2 - 5 & | & a \end{bmatrix} \xrightarrow{-L_1 + L_2 \to L_2} \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -1 & -2 & | & -1 \\ 0 & -1 & a^2 - 6 & | & a - 3 \end{bmatrix} \xrightarrow{-L_2 + L_3 \to L_3}$$

$$\xrightarrow{-L_2 + L_3 \to L_3} \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -1 & -2 & | & -1 \\ 0 & 0 & (a-2)(a+2) & | & a-2 \end{bmatrix}.$$

Se a=2, então o sistema é possível e indeterminado:

$$\left\{ \begin{array}{l} x+2y+z=3 \\ -y-2z=-1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=3z+1 \\ y=-2z+1, \end{array} \right.$$

a incógnita z é livre, as incógnitas x e y são não livres e a solução geral do sistema é

$$\left\{ \begin{bmatrix} 3t+1\\ -2t+1\\ t \end{bmatrix} : t \in \mathbb{R} \right\}$$

isto é, o conjunto solução é dado por: $\{(3t+1, -2t+1, t) : t \in \mathbb{R}\}.$

Assim, se a = 2, o sistema tem um número infinito de soluções e diz-se possível e indeterminado com grau de indeterminação 1.

Se a = -2, o sistema **não tem solução** e diz-se **impossível**.

Se $a \neq -2$ e $a \neq 2$, o sistema tem a solução única $\left\{\left(\frac{a+5}{a+2}, \frac{a}{a+2}, \frac{1}{a+2}\right)\right\}$ e diz-se possível e determinado.

Definição 13. (Ver-se-á mais adiante a consistência desta definição.) Seja A uma matriz em escada de linhas. Ao nº de colunas de A que não contêm pivots chama-se **nulidade** de A e escreve-se nul A. Ao nº de pivots de A, isto é, ao nº de linhas não nulas de A, dá-se o nome de **característica** de A e escreve-se car A. Se A fôr a matriz em escada de linhas obtida de C através de operações elementares então diz-se que a **característica** de C é car A, tendo-se car $C = \operatorname{car} A$ e diz-se que a **nulidade** de C é nul A, tendo-se nul $C = \operatorname{nul} A$.

Exemplo 6. Considere-se as matrizes do exemplo 2. Pivot de A_1 : 4. Pivots de A_2 : 1, -5. Pivots de A_3 : 2, -3, -5. Tem-se: $\operatorname{car} A_1 = 1$, $\operatorname{car} A_2 = 2$ e $\operatorname{car} A_3 = 3$. Além disso: $\operatorname{nul} A_1 = 1$, $\operatorname{nul} A_2 = 2$ e $\operatorname{nul} A_3 = 2$.

Observação 3. Seja $[A \mid B]$ a matriz aumentada associada a um sistema de equações lineares com n incógnitas.

- (i) Se car $A = \text{car}[A \mid B] = n$ então o sistema é **possível e determinado** (tem uma única solução).
- (ii) Se car $A = \text{car}[A \mid B] < n$ então o sistema é **possível e indeterminado** (tem um número infinito de soluções).
 - (iii) Se car $A < car [A \mid B]$ então o sistema é **impossível** (não tem solução).

Observação 4. (i) car $A = n^o$ de linhas não nulas da matriz em escada de linhas obtida de A =

= n^o de pivots = n^o de incógnitas não livres.

(ii) nul $A = n^o$ de incógnitas livres.

Teorema 2. Seja A uma matriz do tipo $m \times n$, isto é, com m linhas e n colunas Então $0 \le \operatorname{car} A \le \min\{m,n\}$ e

$$\operatorname{car} A + \operatorname{nul} A = n.$$

Matrizes: operações e suas propriedades

Definição 14. (i) Sejam $m, n \in \mathbb{N}$. Uma **matriz** A, do tipo $m \times n$ (lê-se m por n), é uma tabela de $m \times n$ números dispostos em m linhas e n columas:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Usa-se também a notação $A = (a_{ij})_{m \times n}$ ou simplesmente $A = (a_{ij})$, na qual a_{ij} é a **entrada** (i,j) da matriz A. Se m = n, diz-se que A é uma **matriz quadrada** do tipo $n \times n$ (ou de ordem n) e as entradas $a_{11}, a_{22}, ..., a_{nn}$ formam a chamada **diagonal principal** de A. Se $m \neq n$, diz-se que A é uma **matriz rectangular**.

(ii) A matriz linha i de A é: $\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$, para i=1,...,m. A matriz coluna j de A é:

$$\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

para j = 1, ..., n.

(iii) À matriz do tipo $m \times n$ cujas entradas são todas iguais a zero, chama-se **matriz** nula e representa-se por $\mathbf{0}_{m \times n}$ ou simplesmente por $\mathbf{0}$. Por exemplo

$$\mathbf{0}_{2\times 2} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \qquad \mathrm{e} \qquad \mathbf{0}_{2\times 3} = \left[\begin{array}{cc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

(iv) À matriz do tipo $n \times n$

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

tal que $a_{ij} = 0$ se $i \neq j$ para todos os i, j, isto é, à matriz cujas entradas fora da diagonal principal são todas nulas, chama-se **matriz diagonal**.

(v) À matriz (a_{ij}) do tipo $n \times n$ tal que $a_{ii} = 1$ para todo o i = 1, ..., n, e $a_{ij} = 0$ se $i \neq j$:

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

9

chama-se matriz identidade e representa-se por $I_{n\times n}$ ou simplesmente por I.

(vi) À matriz do tipo $n \times n$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$

cujas entradas por baixo da diagonal principal são todas nulas, isto é, tais que $a_{ij}=0$ se i>j, chama-se **matriz triangular superior**. À matriz do tipo $n\times n$

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

cujas entradas por cima da diagonal principal são todas nulas, isto é, tais que $a_{ij} = 0$ se i < j, chama-se **matriz triangular inferior**.

Uma matriz diz-se **triangular** se fôr triangular superior ou triangular inferior.

Exemplo 7. As matrizes

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & -2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 7 \end{bmatrix} \quad e \quad D = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

são dos seguintes tipos: A é 2×2 , B é 2×4 , C é 1×3 , D é 4×1 . Tem-se, por exemplo, $a_{21}=-2,\ b_{13}=3,\ c_{12}=0$ e $d_{41}=1$.

Observação 5. Uma matriz (real) A do tipo $m \times n$ é uma aplicação:

$$A: \{1, ..., m\} \times \{1, ..., n\} \longrightarrow \mathbb{R}$$
$$(i, j) \longrightarrow a_{ij}$$

Notação 1. O conjunto de todas as matrizes reais (complexas) do tipo $m \times n$ é denotado por $\mathcal{M}_{m \times n}(\mathbb{R})$ ($\mathcal{M}_{m \times n}(\mathbb{C})$). Tem-se $\mathcal{M}_{m \times n}(\mathbb{R}) \subset \mathcal{M}_{m \times n}(\mathbb{C})$.

Definição 15. Duas matrizes são iguais se forem do mesmo tipo e se as entradas correspondentes forem iguais, isto é, $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{p \times q}$ são **iguais** se m = p, n = q e $a_{ij} = b_{ij}$, para i = 1, ..., m e j = 1, ..., n.

Definição 16. A soma de duas matrizes do mesmo tipo

$$A = (a_{ij})_{m \times n}$$
 e $B = (b_{ij})_{m \times n}$

é a matriz

$$A + B = (a_{ij} + b_{ij})_{m \times n}.$$

Exemplo 8. Sejam

$$A = \begin{bmatrix} 1 & 4 & -1 \\ -3 & 2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -2 & 4 \\ 7 & 3 & 9 \end{bmatrix}, \quad C = \begin{bmatrix} -1 \\ 1/2 \\ -\sqrt{2} \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 1 \\ -1/2 \\ \sqrt{2} \end{bmatrix}.$$

$$A+B=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right],\,C+D=\left[\begin{array}{ccc} 0 \\ 0 \\ 0 \end{array}\right]$$
e não é possível, por exemplo, somar B com C .

Definição 17. O produto de um escalar (número real ou complexo) α por uma matriz $A = (a_{ij})_{m \times n}$ é a matriz:

$$\alpha A = (\alpha a_{ij})_{m \times n}.$$

Notação 2. A matriz (-1)A será denotada por -A.

Exemplo 9. Seja
$$A = \begin{bmatrix} 1 & 4 & -1 \\ -3 & 2 & 6 \end{bmatrix}$$
. Tem-se, por exemplo, $-2A = \begin{bmatrix} -2 & -8 & 2 \\ 6 & -4 & -12 \end{bmatrix}$.

Observação 6. 1A = A, 0A = 0 (matriz nula).

Definição 18. A diferença entre duas matrizes A e B do mesmo tipo é definida por

$$A - B = A + (-B),$$

ou seja, é a soma de A com o simétrico de B.

Definição 19. (i) O produto AB de duas matrizes A e B só pode ser efectuado se o número de colunas da 1^a matriz, A, fôr igual ao número de linhas da 2^a matriz, B. Nesse caso, o produto AB de $A = (a_{ij})_{m \times p}$ por $B = (b_{ij})_{p \times n}$ é definido por:

$$AB = (a_{i1}b_{1j} + \dots + a_{ip}b_{pj})_{m \times n} = \left(\sum_{k=1}^{p} a_{ik}b_{kj}\right)_{m \times n},$$

isto é,

$$\begin{bmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \cdots & \vdots \\ a_{i1} & \cdots & a_{ip} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ b_{p1} & \cdots & b_{pj} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{p} a_{1k} b_{k1} & \cdots & \sum_{k=1}^{p} a_{1k} b_{kn} \\ \cdots & \sum_{k=1}^{p} a_{ik} b_{kj} & \cdots \\ \sum_{k=1}^{p} a_{mk} b_{k1} & \cdots & \sum_{k=1}^{p} a_{mk} b_{kn} \end{bmatrix}$$

Note que sendo $\mathbf{b}_1,...,\mathbf{b}_n$ as colunas da matriz B, então

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_n \end{bmatrix}$$

e sendo $\mathbf{a}_1, ..., \mathbf{a}_m$ as linhas da matriz A, então

$$AB = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} B = \begin{bmatrix} \mathbf{a}_1 B \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$$

(ii) Sejam A uma matriz do tipo $n \times n$ e $p \in \mathbb{N}$. A **potência** p de A é definida por

$$A^p = \underbrace{A...A}_{p \text{ vezes}}$$
 e para $p = 0$ define-se (se A fôr não nula) $A^0 = I$.

(iii) Diz-se que duas matrizes $A \in B$ comutam se AB = BA.

Exemplo 10. (i)
$$\begin{bmatrix} 0 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ -3 & 2 & -2 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 \times 1 + (-2) \times (-3) & 0 \times 1 + (-2) \times 2 & 0 \times (-1) + (-2) \times (-2) \\ 2 \times 1 + 3 \times (-3) & 2 \times 1 + 3 \times 2 & 2 \times (-1) + 3 \times (-2) \end{bmatrix} = \begin{bmatrix} 6 & -4 & 4 \\ -7 & 8 & -8 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1/2 \\ -\sqrt{2} \end{bmatrix} = [1 \times (-1) + 1 \times \frac{1}{2} + (-1) \times (-\sqrt{2})] = [\sqrt{2} - \frac{1}{2}]$$

(iii)

$$\begin{bmatrix} -1 \\ 1/2 \\ -\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} (-1) \times 1 & (-1) \times 1 & (-1) \times (-1) \\ \frac{1}{2} \times 1 & \frac{1}{2} \times 1 & \frac{1}{2} \times (-1) \\ (-\sqrt{2}) \times 1 & (-\sqrt{2}) \times 1 & (-\sqrt{2}) \times (-1) \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\sqrt{2} & -\sqrt{2} & \sqrt{2} \end{bmatrix}$$

(iv)
$$p \in \mathbb{N}$$
,
$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}^p = \begin{bmatrix} (a_{11})^p & 0 & \cdots & 0 \\ 0 & (a_{22})^p & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & (a_{nn})^p \end{bmatrix}.$$

Observação 7. (i) O produto de matrizes não é comutativo. Por exemplo, para

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} e B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \text{ tem-se } AB = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} e BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Logo $AB \neq BA$.

(ii) $CD = \mathbf{0} \Rightarrow (C = \mathbf{0} \text{ ou } D = \mathbf{0})$, pois, por exemplo, para

$$C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 e $D = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$, $CD = \mathbf{0}$.

(iii) Se A (B) tem uma linha (coluna) nula então AB tem uma linha (coluna) nula.

(iv) MUITO IMPORTANTE: Sendo

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

então:

$$AX = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} x_2 + \dots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n.$$

Definição 20. (i) A transposta de uma matriz $A = (a_{ij})_{m \times n}$ é a matriz $A^T = (a_{ji})_{n \times m}$, isto é

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \cdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.$$

(ii) Sendo $A = (a_{ij})_{m \times n} \in \mathcal{M}_{m \times n} (\mathbb{C})$, à matriz

$$\overline{A} = (\overline{a_{ij}})_{m \times n}$$

chama-se matriz **conjugada** de A.

(iii) Sendo $A = (a_{ij})_{m \times n} \in \mathcal{M}_{m \times n} (\mathbb{C})$, à matriz

$$A^H = \overline{A}^T = (\overline{a_{ji}})_{n \times m}$$

chama-se matriz **transposta conjugada** de A.

Definição 21. Sendo $A=(a_{ij})_{n\times n}$ uma matriz quadrada, chama-se **traço** de A ao número real (ou complexo)

$$\operatorname{tr}(A) = a_{11} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}.$$

Exemplo 11. (i)
$$\begin{bmatrix} 1 & -3 \\ 4 & 2 \\ -1 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 & -1 \\ -3 & 2 & 6 \end{bmatrix}.$$

(ii)
$$\begin{bmatrix} 1+2i & -3 \\ 4 & -i \\ -1 & 6 \end{bmatrix}^H = \begin{bmatrix} 1-2i & 4 & -1 \\ -3 & i & 6 \end{bmatrix}$$
. (iii) $\operatorname{tr}\left(\begin{bmatrix} 1-2i & 4 \\ -3 & i \end{bmatrix}\right) = 1-i$.

Teorema 3. Sejam A, B, C e D matrizes de tipos apropriados, α e β escalares. São válidas as seguintes propriedades para as operações matriciais.

- (a) (Comutatividade da soma) A + B = B + A.
- (b) (Associatividade da soma) A + (B + C) = (A + B) + C. Note que esta propriedade permite generalizar a definição de **soma** de 2 matrizes à **soma** de um nº finito de matrizes, desde que as matrizes intervenientes sejam de tipos apropriados.
- (c) (Elemento neutro da soma) Existe uma única matriz $\mathbf{0}$ do tipo $m \times n$ tal que $A + \mathbf{0} = \mathbf{0} + A = A$, para toda a matriz A do tipo $m \times n$.
- (d) (Simétrico) Para cada matriz A existe uma única matriz B tal que A+B=B+A=0. Esta matriz B denota-se por -A.
 - (e) (Associatividade do produto por escalares) $\alpha(\beta A) = (\alpha \beta) A$.
 - (f) (Distributividade) $(\alpha + \beta) A = \alpha A + \beta A$.
 - (g) (Distributividade) $\alpha (A + B) = \alpha A + \alpha B$.
- (h) (Associatividade do produto de matrizes) A(BC) = (AB)C. Note que esta propriedade permite generalizar a definição de **produto** de 2 matrizes ao **produto** de um no finito de matrizes, desde que as matrizes intervenientes sejam de tipos apropriados.
 - (i) (Distributividade) A(B+C) = AB + AC e (B+C)D = BD + CD.

(j)
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$
. $\underbrace{A + ... + A}_{p \text{ vezes}} = pA$. $(A^p)^q = A^{pq}$.

- (k) $AI = A \ e \ IB = B$, para todas as matrizes $A = (a_{ij})_{m \times n} \ e \ B = (b_{ij})_{n \times m}$, onde $I \ \acute{e}$ a matriz identidade do tipo $n \times n$.
- (1) $A\mathbf{0} = \mathbf{0}$ e $\mathbf{0}B = \mathbf{0}$, para todas as matrizes $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{n \times m}$, onde $\mathbf{0}$ é a matriz nula do tipo $n \times n$.

(m)
$$(A^T)^T = A$$
. $(A^H)^H = A$.

(n)
$$(A+B)^T = A^T + B^T$$
. $(A+B)^H = A^H + B^H$.

- (o) $(A_1 + A_2 + ... + A_n)^T = A_1^T + A_2^T + ... + A_n^T$, com $A_1, A_2, ..., A_n$ matrizes de tipos apropriados.
 - (p) $(\alpha A)^T = \alpha A^T$. $(\alpha A)^H = \overline{\alpha} A^H$.

(q)
$$(AB)^T = B^T A^T$$
. $(AB)^H = B^H A^H$.

(r) $(A_1A_2...A_n)^T = A_n^T...A_2^TA_1^T$, com $A_1, A_2, ..., A_n$ matrizes de tipos apropriados. $(A_1A_2...A_n)^H = A_n^H...A_2^HA_1^H$.

(s) Sendo $A = (a_{ij})_{n \times n}$ e $B = (b_{ij})_{n \times n}$ duas matrizes quadradas e α um escalar, tem-se $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$, $\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A)$, $\operatorname{tr}(A^T) = \operatorname{tr}(A)$ e $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Definição 22. Uma matriz A do (tipo $n \times n$) diz-se **invertível** se existir uma matriz B (do tipo $n \times n$) tal que

$$AB = BA = I$$
.

À matriz B chama-se **matriz inversa** de A e denota-se por A^{-1} .

Exemplo 12.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 é invertível e $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Observação 8. (i) Sendo A^{-1} a matriz inversa de A, então A^{-1} é invertível e a sua inversa é a própria matriz A, isto é, $(A^{-1})^{-1} = A$.

- (ii) A matriz nula não é invertível. No entanto, a matriz identidade I é invertível tendo-se $I^{-1}=I$.
 - (iii) Se uma matriz quadrada tiver uma linha ou uma coluna nula então não é invertível.

Teorema 4. A inversa de uma matriz invertível é única.

Dem. Sejam $B \in C$ as inversas de A. Então, B = BI = B(AC) = (BA)C = IC = C.

Definição 23. (i) Uma matriz A diz-se **simétrica** se $A = A^T$, isto é, se $a_{ij} = a_{ji}$, para i, j = 1, ..., n. Diz-se que A é **anti-simétrica** se $A = -A^T$, isto é, se $a_{ij} = -a_{ji}$, para i, j = 1, ..., n.

- (ii) Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ diz-se hermitiana (ou hermítica) se $A^H = A$. Diz-se que A é anti-hermitiana se $A^H = -A$.
 - (iii) Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ diz-se **ortogonal** se fôr invertível e se $A^{-1} = A^T$.
 - (iv) Uma matriz $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ diz-se unitária se fôr invertível e se $A^{-1} = A^{H}$.
 - (v) Uma matriz A diz-se normal se $A^H A = AA^H$.

Exemplo 13. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ é uma matriz simétrica. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$$
 é uma matriz hermitiana.
$$\begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}^H = \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}.$$

$$\left[\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right] \text{ \'e uma matriz ortogonal } (\theta \in \mathbb{R}).$$

$$\left[\begin{array}{ccc} \frac{1}{3} - \frac{2}{3}i & \frac{2}{3}i \\ -\frac{2}{3}i & -\frac{1}{3} - \frac{2}{3}i \end{array}\right] \text{ \'e uma matriz unit\'aria. } \left[\begin{array}{ccc} 2 - 3i & 1 \\ -i & 1 - 2i \end{array}\right] \text{ \'e uma matriz normal.}$$

Teorema 5. (i) Se $A = (a_{ij})_{n \times n}$ e $B = (b_{ij})_{n \times n}$ são duas matrizes invertíveis, então AB é invertível e

$$(AB)^{-1} = B^{-1}A^{-1}.$$

(ii) Sendo α um escalar não nulo e A uma matriz invertível então αA é invertível e

$$(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}.$$

(iii) Seja $m \in \mathbb{N}$. Se $A = (a_{ij})_{n \times n}$ é uma matriz invertível, então A^m é invertível e $(A^m)^{-1} = (A^{-1})^m$ e escreve-se

$$A^{-m} = (A^m)^{-1}$$
.

- (iv) Seja $A = (a_{ij})_{n \times n}$ uma matriz. Se existir $l \in \mathbb{N}$ tal que $A^l = \mathbf{0}$ então A não é invertível.
 - (v) Sejam $A \in B$ matrizes com A invertível tais que $AB = \mathbf{0}$. Então $B = \mathbf{0}$.
 - (vi) Sejam $A \in B$ matrizes com B invertível tais que AB = 0. Então A = 0.
 - (vii) Sejam A, B e C matrizes com A invertível tais que AB = AC. Então B = C.
 - (viii) Sejam A, B e C matrizes com B invertível tais que AB = CB. Então A = C.
 - (ix) $A = (a_{ij})_{n \times n}$ é uma matriz invertível se e só se A^T é invertível e

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}.$$

(x) $A = (a_{ij})_{n \times n}$ é invertível se e só se A^H é invertível e

$$(A^H)^{-1} = (A^{-1})^H$$
.

- (xi) Se $A = (a_{ij})_{n \times n}$ é uma matriz simétrica invertível, então A^{-1} é simétrica.
- (xii) Se $A = (a_{ij})_{n \times n}$ é uma matriz hermitiana invertível, então A^{-1} é hermitiana.
- (xiii) Se $A = (a_{ij})_{n \times n}$ é uma matriz ortogonal, então A^T e A^{-1} são matrizes ortogonais.
- (xiv) Se $A = (a_{ij})_{n \times n}$ é uma matriz unitária, então A^H e A^{-1} são matrizes unitárias.
- (xv) Se A e B são duas matrizes ortogonais então AB é uma matriz ortogonal.
- (xvi) Se $A \in B$ são duas matrizes unitárias então AB é uma matriz unitária.
- (xvii) Se A e B são duas matrizes simétricas então AB é uma matriz simétrica se e só se A e B comutarem.
- (xviii) Se A e B são duas matrizes hermitianas então AB é uma matriz hermitiana se e só se A e B comutarem.

Soluções de sistemas e invertibilidade de matrizes

Teorema 6. Sejam A uma matriz do tipo $m \times n$ e B uma matriz do tipo $m \times 1$. Se o sistema de equações lineares AX = B tem duas soluções distintas X_0 e X_1 ($X_0 \neq X_1$), então terá um número infinito de soluções.

Dem. Basta verificar que $X_{\lambda} = (1 - \lambda) X_0 + \lambda X_1$ é solução do sistema AX = B, para qualquer $\lambda \in \mathbb{R}$. Além disso, se $\lambda_1 \neq \lambda_2$ então $X_{\lambda_1} \neq X_{\lambda_2}$ uma vez que $X_{\lambda_1} - X_{\lambda_2} = (\lambda_2 - \lambda_1) (X_0 - X_1)$.

Teorema 7. Se $A = (a_{ij})_{m \times n}$ é tal que m < n, então o sistema linear homogéneo $AX = \mathbf{0}$ tem um número infinito de soluções.

Dem. Como o sistema tem menos equações do que incógnitas (m < n), sendo r o nº de incógnitas não livres, tem-se n - r incógnitas livres as quais podem assumir qualquer valor. Logo, o sistema linear homogéneo $AX = \mathbf{0}$ tem um número infinito de soluções.

Teorema 8. Sejam $A = (a_{ij})_{m \times n}$ e α, β escalares.

- (i) Se Y e W são soluções do sistema $AX = \mathbf{0}$, então Y + W também o é.
- (ii) Se Y é solução do sistema $AX = \mathbf{0}$, então αY também o é.
- (iii) Se Y e W são soluções do sistema $AX = \mathbf{0}$, então $\alpha Y + \beta W$ também o é.
- (iv) Sejam Y e W soluções do sistema AX = B. Se $\alpha Y + \beta W$ (para quaisquer escalares α, β) também é solução de AX = B, então $B = \mathbf{0}$. (Sugestão: basta fazer $\alpha = \beta = 0$.)

Teorema 9. Seja A uma matriz do tipo $m \times n$ e $B \neq \mathbf{0}$ uma matriz do tipo $m \times 1$. Qualquer solução X do sistema AX = B escreve-se na forma $X = X_0 + X_1$ onde X_0 é uma solução particular do sistema AX = B e X_1 é uma solução do sistema linear homogéneo $AX = \mathbf{0}$. Assim:

solução geral de
$$AX = B$$
 = solução particular de $AX = B$ + solução geral de $AX = \mathbf{0}$.

Dem. Sendo X_0 uma solução particular do sistema AX = B e X_1 uma solução qualquer de $AX = \mathbf{0}$ então $A(X_0 + X_1) = AX_0 = B$ pelo que $X_0 + X_1$ é também uma solução de AX = B e não há solução de AX = B que não seja deste tipo uma vez que, se X' fôr uma solução qualquer de AX = B tem-se $AX' = B = AX_0 \Leftrightarrow A(X' - X_0) = \mathbf{0}$ e assim $X' - X_0 = X_1$ é solução de $AX = \mathbf{0}$ tendo-se $X' = X_0 + X_1$.

Teorema 10. Seja A uma matriz do tipo $n \times n$.

(i) O sistema AX = B tem solução única se e só se A fôr invertível. Neste caso a solução geral é $X = A^{-1}B$.

(ii) O sistema homogéneo $AX = \mathbf{0}$ tem solução não trivial se e só se A fôr não invertível.

Teorema 11. (i) Sejam A e B duas matrizes do tipo $n \times n$. Se AB é invertível, então A e B são invertíveis.

(ii) Se A é uma matriz do tipo $n \times n$ tal que AB = I então BA = I e $B = A^{-1}$.

Dem. (i) Considere o sistema $(AB)X = \mathbf{0}$. Se B não fosse invertível, então existiria $X \neq \mathbf{0}$ tal que $BX = \mathbf{0}$. Logo, $X \neq \mathbf{0}$ seria solução não trivial de $ABX = \mathbf{0}$, o que contraria o teorema anterior uma vez que por hipótese AB é invertível. Assim, B é invertível. Finalmente, A é invertível por ser o produto de duas matrizes invertíveis: $A = (AB)B^{-1}$.

(ii) Atendendo à alínea anterior, B é invertível. Logo B^{-1} também é invertível e

$$A = AI = A(BB^{-1}) = (AB)B^{-1} = IB^{-1} = B^{-1},$$

isto é, A é invertível e $A^{-1} = (B^{-1})^{-1} = B$.

Teorema 12. (Como inverter matrizes invertíveis do tipo $n \times n$). Seja A uma matriz do tipo $n \times n$ e consideremos a equação AX = B. Se A fôr invertível temos

$$AX = B \Leftrightarrow X = A^{-1}B,$$

isto é,

$$AX = IB \Leftrightarrow IX = A^{-1}B.$$

Assim, para determinar a inversa de A, iremos transformar a matriz aumentada $[A \mid I]$ na matriz $[I \mid A^{-1}]$, por meio de operações elementares aplicadas às linhas de $[A \mid I]$:

$$[A \mid I] \longrightarrow [I \mid A^{-1}]$$

Este método tem o nome de **método de eliminação de Gauss-Jordan** e consistirá na continuação do método de eliminação de Gauss agora aplicado a [matriz triangular superior |*|, efectuando-se as eliminações de baixo para cima de modo a obter-se $[I \mid A^{-1}]$.

Exemplo 14. Vejamos que
$$\begin{bmatrix} -2 & 1 \ -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
. Tem-se
$$\begin{bmatrix} -2 & 1 & | & 1 & 0 \ -1 & 2 & | & 0 & 1 \end{bmatrix} \xrightarrow{-\frac{1}{2}L_1 + L_2 \to L_2} \begin{bmatrix} -2 & 1 & | & 1 & 0 \ 0 & \frac{3}{2} & | & -\frac{1}{2} & 1 \end{bmatrix} \xrightarrow{-\frac{2}{3}L_2 + L_1 \to L_1}$$
$$\xrightarrow{-\frac{2}{3}L_2 + L_1 \to L_1} \begin{bmatrix} -2 & 0 & | & \frac{4}{3} & -\frac{2}{3} \ 0 & \frac{3}{2} & | & -\frac{1}{2} & 1 \end{bmatrix} \xrightarrow{\frac{2}{3}L_2 \to L_2} \begin{bmatrix} 1 & 0 & | & -\frac{2}{3} & \frac{1}{3} \ 0 & 1 & | & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

Isto é

$$\begin{bmatrix} -2 & 1 \\ -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

De facto

$$\begin{bmatrix} -2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} -2 & 1 \\ -1 & 2 \end{bmatrix} = I$$

Exemplo 15. (i) Seja
$$A = \begin{bmatrix} 0 & -1 & 1 \\ -1 & \frac{5}{4} & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 0 \end{bmatrix}$$
. Tem-se

$$[A \mid I] = \left[\begin{array}{ccc|ccc|c} 0 & -1 & 1 & | & 1 & 0 & 0 \\ -1 & \frac{5}{4} & -\frac{1}{2} & | & 0 & 1 & 0 \\ 1 & -\frac{1}{2} & 0 & | & 0 & 0 & 1 \end{array} \right] \xrightarrow{\dots} \left[\begin{array}{cccc|c} 1 & 0 & 0 & | & 1 & 2 & 3 \\ 0 & 1 & 0 & | & 2 & 4 & 4 \\ 0 & 0 & 1 & | & 3 & 4 & 4 \end{array} \right].$$

Logo,
$$\begin{bmatrix} 0 & -1 & 1 \\ -1 & \frac{5}{4} & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
. Verifique(!) que: $AA^{-1} = I$.

(ii) Seja
$$A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$
. Tem-se $[A \mid I] \longrightarrow \begin{bmatrix} 3 & 2 & 1 \mid 0 & 0 & 1 \\ 0 & 1 & 2 \mid 0 & 1 & -2 \\ 0 & 0 & 0 \mid 1 & -2 & 1 \end{bmatrix}$. Logo, A não é invertível.

(iii) Sejam
$$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 $B=\begin{bmatrix}-4&0\\0&8\end{bmatrix}$ $C=\begin{bmatrix}0&\frac{1}{8}\\-\frac{1}{4}&0\end{bmatrix}$. Determine-se X tal que
$$A\left(I-2X^T\right)^{-1}B^{-1}=C.$$

Tem-se
$$A \left(I - 2X^T \right)^{-1} B^{-1} = C \Leftrightarrow \left(I - 2X^T \right)^{-1} = A^{-1}CB \Leftrightarrow I - 2X^T = \left(A^{-1}CB \right)^{-1} \Leftrightarrow X^T = \frac{1}{2} \left(I - B^{-1}C^{-1}A \right) \Leftrightarrow X = \frac{1}{2} \left(I - A^T \left(C^T \right)^{-1} \left(B^T \right)^{-1} \right) \Leftrightarrow$$

$$\Leftrightarrow X = \frac{1}{2} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 0 & -\frac{1}{4} \\ \frac{1}{8} & 0 \end{bmatrix}^{-1} \begin{bmatrix} -4 & 0 \\ 0 & 8 \end{bmatrix}^{-1} \right) \Leftrightarrow X = \begin{bmatrix} -1 & -\frac{1}{2} \\ -2 & -\frac{1}{2} \end{bmatrix}.$$

Teorema 13. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e considere o sistema de equações lineares AX = B.

- (i) Existência de solução: Se $m \le n$ então o sistema AX = B tem pelo menos uma solução X para cada $B \in \mathbb{R}^m$ se e só se car A = m.
- (ii) Unicidade de solução: Se $m \ge n$ então o sistema AX = B tem no máximo uma solução X para cada $B \in \mathbb{R}^m$ se e só se car A = n, isto é, se e só se nul A = 0.
- (iii) Existência e unicidade de solução: Se m=n então: A é invertível \Leftrightarrow \Leftrightarrow car A=n \Leftrightarrow para todo o B o sistema AX=B tem uma única solução $(X=A^{-1}B)$, isto é, A não é invertível \Leftrightarrow car A< n \Leftrightarrow

 \Leftrightarrow existe pelo menos um B para o qual o sistema AX = B não tem solução.

Matrizes elementares e factorização triangular

Definição 24. Uma matriz elementar é uma matriz do tipo $n \times n$ obtida da matriz identidade I (do tipo $n \times n$) através de uma única operação elementar.

(i) A matriz P_{ij} , chamada **matriz de permutação**, é a matriz elementar obtida por troca da linha i com a linha j da matriz I. Tem-se:

(ii) A matriz $E_i(\alpha)$ é a matriz elementar obtida da matriz I através do produto do escalar $\alpha \neq 0$ pela linha i da matriz I. Tem-se:

$$E_{i}(\alpha) = \begin{bmatrix} 1 & 0 & \cdots & & \cdots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & 1 & & & & \\ & & & \alpha & & & \\ & & & 1 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & & & \cdots & 0 & 1 \end{bmatrix} \leftarrow i .$$

(iii) A matriz $E_{ij}(\alpha)$ é a matriz elementar obtida da matriz I por soma da linha j com um múltiplo escalar α da linha i. Por exemplo para i < j tem-se:

$$E_{ij}(\alpha) = \begin{bmatrix} 1 & 0 & \cdots & & \cdots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & 1 & & & & \\ & & & \ddots & & \\ & & \alpha & & 1 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & & & \cdots & 0 & 1 \end{bmatrix} \leftarrow i$$

Observação 9. (i) As matrizes elementares $E_{ij}(\alpha)$, com i < j, são matrizes triangulares inferiores.

(ii) As matrizes elementares $E_{ij}(\alpha)$ e $E_{ik}(\beta)$ comutam, isto é, $E_{ij}(\alpha)E_{ik}(\beta) = E_{ik}(\beta)E_{ij}(\alpha)$.

Exemplo 16. Sejam α, β escalares com $\alpha \neq 0$. As matrizes elementares do tipo 2×2 são:

$$P_{12} = P_{21} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_1(\alpha) = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}, E_2(\alpha) = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}, E_{12}(\beta) = \begin{bmatrix} 1 & 0 \\ \beta & 1 \end{bmatrix} e E_{21}(\beta) = \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}.$$

Teorema 14. Sejam E uma matriz elementar do tipo $m \times m$ e A uma matriz qualquer do tipo $m \times n$. Então, EA é a matriz obtida de A através da mesma operação elementar que originou E. Isto é, aplicar uma operação elementar a uma matriz corresponde a multiplicar essa matriz à esquerda por uma matriz elementar.

Exemplo 17. Considere-se a matriz aumentada $\begin{bmatrix} 0 & 0 & 3 & -9 & | & 6 \\ 5 & 15 & -10 & 40 & | & -45 \\ 1 & 3 & -1 & 5 & | & -7 \end{bmatrix}$. A operação elementar:

$$\begin{bmatrix} 0 & 0 & 3 & -9 & | & 6 \\ 5 & 15 & -10 & 40 & | & -45 \\ 1 & 3 & -1 & 5 & | & -7 \end{bmatrix} \xrightarrow[L_1 \leftrightarrow L_3]{} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 5 & 15 & -10 & 40 & | & -45 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix},$$

corresponde à seguinte multiplicação (à esquerda):

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 & -9 & | & 6 \\ 5 & 15 & -10 & 40 & | & -45 \\ 1 & 3 & -1 & 5 & | & -7 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 5 & 15 & -10 & 40 & | & -45 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix}.$$

A operação elementar:

$$\begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 5 & 15 & -10 & 40 & | & -45 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow{\frac{1}{5}L_2 \to L_2} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 1 & 3 & -2 & 8 & | & -9 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix},$$

corresponde à seguinte multiplicação (à esquerda):

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 5 & 15 & -10 & 40 & | & -45 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 1 & 3 & -2 & 8 & | & -9 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix}.$$

A operação elementar:

$$\begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 1 & 3 & -2 & 8 & | & -9 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow{-L_1 + L_2 \to L_2} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix},$$

corresponde à seguinte multiplicação (à esquerda):

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 1 & 3 & -2 & 8 & | & -9 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix}.$$

Finalmente, a operação elementar:

$$\begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} \xrightarrow{3L_2 + L_3 \to L_3} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix},$$

corresponde à seguinte multiplicação (à esquerda):

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 3 & -9 & | & 6 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Tem-se então:

$$E_{23}(3) E_{12}(-1) E_{2}\left(\frac{1}{5}\right) P_{13} \begin{bmatrix} 0 & 0 & 3 & -9 & | & 6 \\ 5 & 15 & -10 & 40 & | & -45 \\ 1 & 3 & -1 & 5 & | & -7 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1 & 5 & | & -7 \\ 0 & 0 & -1 & 3 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Teorema 15. Toda a matriz elementar é invertível e a respectiva inversa é também uma matriz elementar. Tem-se:

(i)
$$(P_{ij})^{-1} = P_{ij}$$
. (ii) $(E_i(\alpha))^{-1} = E_i(1/\alpha)$, para $\alpha \neq 0$. (iii) $(E_{ij}(\alpha))^{-1} = E_{ij}(-\alpha)$.

Teorema 16. Uma matriz A é invertível se e só se fôr igual ao produto de matrizes elementares.

Observação 10. O teorema anterior indica um modo alternativo para calcular a matriz inversa de uma matriz invertível.

Teorema 17. (i) O produto de duas matrizes triangulares inferiores (superiores) é uma matriz triangular inferior (superior).

(ii) Se uma matriz triangular superior (inferior) fôr invertível então a sua inversa é também triangular superior (inferior).

Dem. (i) Se $A = (a_{ij})$ e $B = (b_{ij})$ com $a_{ij} = b_{ij} = 0$ se i < j; então para $AB = (\sum_{k=1}^{n} a_{ik}b_{kj})$ tem-se $\sum_{k=1}^{n} a_{ik}b_{kj} = 0$ se i < j uma vez que se $k \ge j > i$ então $a_{ik} = 0$ e se j > k então $b_{kj} = 0$. Além disso a diagonal principal da matriz triangular inferior AB é dada por: $\sum_{k=1}^{n} a_{ik}b_{ki} = a_{ii}b_{ii}$, i = 1, ..., n, uma vez que se i < k então $a_{ik} = 0$ e se k < i então $b_{ki} = 0$.

Teorema 18. Seja A uma matriz do tipo $m \times n$. Então ou A admite a factorização A = LU ou existe uma matriz de permutação P tal que PA admite a factorização PA = LU, onde L é uma matriz triangular inferior com as entradas da diagonal principal todas iguais a 1 e U é uma matriz em escada.

Teorema 19. Seja A do tipo $n \times n$ uma matriz invertível. Então ou A admite a factorização **única** A = LU ou existe uma matriz de permutação P tal que PA admite a factorização **única** PA = LU, onde L é uma matriz triangular inferior com as entradas da diagonal principal todas iguais a 1 e U é uma matriz triangular superior cujas entradas da

diagonal principal são os **pivots** que resultam de aplicar o método de eliminação de Gauss à matriz A.

Exemplo 18. Seja
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 3 & 5 \end{bmatrix}$$
. Tem-se $E_{23}(1)E_{13}(-2)E_{12}(-2)A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{bmatrix}$.Logo,

$$A = (E_{12}(-2))^{-1} (E_{13}(-2))^{-1} (E_{23}(1))^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{bmatrix}.$$

Isto é,

$$A = E_{12}(2)E_{13}(2)E_{23}(-1)\begin{bmatrix} 1 & 1 & 1 \ 0 & -1 & 2 \ 0 & 0 & 5 \end{bmatrix}$$
, ou ainda, $A = LU$,

com

$$L = E_{12}(2)E_{13}(2)E_{23}(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \quad \text{e} \quad U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{bmatrix}.$$

Exemplo 19. Seja
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 10 & 6 \\ 0 & 1 & 7 & 8 \end{bmatrix}$$
. Tem-se $P_{24}A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 5 & 6 \end{bmatrix}$ e

$$E_{34}(-1/2) P_{24}A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Logo

$$P_{24}A = (E_{34} (-1/2))^{-1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Isto é,

$$P_{24}A = E_{34} (1/2) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix},$$
 ou ainda, $PA = LU$,

com

$$P = P_{24}, \qquad L = E_{34} (1/2) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/2 & 1 \end{bmatrix} \qquad e \qquad U = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 7 & 8 \\ 0 & 0 & 10 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Espaços lineares (ou Espaços vectoriais)

Definição 25. Um conjunto não vazio V é um **espaço linear** (real) se existirem duas operações associadas a V, uma soma de elementos de V e um produto de escalares (números reais) por elementos de V, com as seguintes propriedades:

(a) (Fecho da soma). Para quaisquer $u, v \in V$

$$u + v \in V$$
.

(b) (Fecho do produto por escalares). Para quaisquer $\alpha \in \mathbb{R}$ e $u \in V$

$$\alpha u \in V$$
.

(c) (Comutatividade da soma). Para quaisquer $u, v \in V$,

$$u + v = v + u$$
.

(d) (Associatividade da soma). Para quaisquer $u, v, w \in V$,

$$u + (v + w) = (u + v) + w.$$

(e) (Elemento neutro da soma). Existe um elemento de V designado por $\mathbf{0}$ tal que, para qualquer $u \in V$,

$$u + \mathbf{0} = u$$
.

(f) (Simétrico). Para cada (qualquer) $u \in V$ existe $v \in V$ tal que

$$u+v=\mathbf{0}.$$

A v chama-se o **simétrico** de u e denota-se por -u.

(g) (Associatividade do produto por escalares). Para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u \in V$,

$$\alpha (\beta u) = (\alpha \beta) u.$$

(h) (Distributividade em relação à soma de vectores). Para quaisquer $\alpha \in \mathbb{R}$ e $u, v \in V$,

$$\alpha (u+v) = \alpha u + \alpha v.$$

(i) (Distributividade em relação à soma de escalares). Para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u \in V$,

$$(\alpha + \beta) u = \alpha u + \beta u.$$

(j) Para qualquer $u \in V$,

$$1u = u$$
.

Definição 26. Aos elementos de um espaço linear (vectorial) V chamaremos vectores.

Exemplo 20. Exemplos de espaços lineares. Seja $\alpha \in \mathbb{R}$.

(i) $\mathbb{R}^n = \{(x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{R}\}$, com as operações usuais:

$$(u_1, ..., u_n) + (v_1, ..., v_n) = (u_1 + v_1, ..., u_n + v_n),$$

 $\alpha(u_1, ..., u_n) = (\alpha u_1, ..., \alpha u_n).$

- (ii) $\mathcal{M}_{m\times n}(\mathbb{R})$ (conjunto de todas as matrizes reais do tipo $m\times n$), com as operações (usuais): $A+B\in \alpha A$.
- (iii) Seja $n \in \mathbb{N}$ fixo. O conjunto $\mathcal{P}_n = \{a_0 + a_1t + ... + a_nt^n : a_0, a_1, ..., a_n \in \mathbb{R}\}$ de todos os polinómios reais de variável real e de grau menor ou igual a n, com as operações usuais.

$$(a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_nt^n) = a_0 + b_0 + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$$
$$\alpha (a_0 + a_1t + \dots + a_nt^n) = \alpha a_0 + (\alpha a_1)t + \dots + (\alpha a_n)t^n.$$

- (iv) O conjunto $\mathcal{P} = \{a_0 + a_1t + ... + a_st^s : a_0, a_1, ..., a_s \in \mathbb{R} \text{ e } s \in \mathbb{N}_0\}$ de todos os polinómios reais de variável real, com as operações usuais.
- (v) O conjunto de todas as funções reais de variável real definidas num conjunto $S \subset \mathbb{R}$, com as operações usuais:

$$(f+g)(x) = f(x) + g(x),$$
$$(\alpha f)(x) = \alpha f(x).$$

Observação 11. Existem espaços lineares com operações não usuais:

(i) O conjunto dos números reais \mathbb{R} , com a soma definida por

$$u \boxplus v = u + v + 1$$
.

e o produto por escalares definido por

$$\alpha \cdot u = \alpha u + \alpha - 1$$

é um espaço linear. (Neste caso o elemento neutro é -1.)

(ii) O conjunto dos números reais maiores do que zero, com a soma definida por

$$u \boxplus v = uv$$
.

e o produto por escalares definido por

$$\alpha \cdot u = u^{\alpha}$$
,

é um espaço linear. (Neste caso o elemento neutro é 1.)

Observação 12. Alterações nos conjuntos considerados anteriormente podem resultar em conjuntos que não são espaços lineares.

- (i) O conjunto $\{(x,y) \in \mathbb{R}^2 : x \ge 0 \text{ e } y \ge 0\}$, com as operações usuais, não é um espaço linear. Por exemplo, os simétricos não estão no conjunto.
- (ii) O conjunto $V = \{a_0 + a_1t + ... + a_nt^n : a_0, a_1, ..., a_n \in \mathbb{R} \text{ e } a_n \neq 0\}$ de todos os polinómios reais de grau igual a n, com as operações usuais, não é um espaço linear. Por exemplo, para n > 1:

$$t^{n}, -t^{n} + t \in V$$
, mas $t^{n} + (-t^{n} + t) = t \notin V$.

(iii) O conjunto $U = \{f : \mathbb{R} \longrightarrow \mathbb{R} \text{ tais que } f(1) = 2\}$, com as operações usuais, não é um espaço linear. Por exemplo, se $f_1, f_2 \in U$,

$$(f_1 + f_2)(1) = f_1(1) + f_2(1) = 2 + 2 = 4 \neq 2.$$

Logo, $f_1 + f_2 \notin U$.

Definição 27. Seja V um espaço linear. Diz-se que S é um subespaço de V se S é um subconjunto de V e se S, com as operações de V, fôr um espaço linear.

Observação 13. No entanto, para mostrar que um certo conjunto $S \subset V$ é um subespaço do espaço linear V, não será necessário verificar as 10 propriedades da definição de espaço linear, como se pode ver no seguinte teorema.

Teorema 20. Um subconjunto não vazio S de um espaço linear V é um subespaço de V se e só se as seguintes condições (i) e (ii) forem satisfeitas.

- (i) Para quaisquer $u, v \in S$ tem-se $u + v \in S$.
- (ii) Para quaisquer $\alpha \in \mathbb{R}$ e $u \in S$ tem-se $\alpha u \in S$.

Exemplo 21. Exemplos de subespaços:

- (i) Os únicos subespaços do espaço linear \mathbb{R} , com as operações usuais, são $\{0\}$ e \mathbb{R} .
- (ii) Os subespaços do espaço linear \mathbb{R}^3 , com as operações usuais, são: $\{(0,0,0)\}$, \mathbb{R}^3 , todas as rectas que passam pela origem e todos os planos que passam pela origem.
- (iii) O conjunto de todas as matrizes (reais) triangulares superiores (do tipo $n \times n$) é um subespaço do espaço linear $\mathcal{M}_{n \times n}(\mathbb{R})$, com as operações usuais.
- (iv) O conjunto de todas as funções reais definidas e contínuas em $I \subset \mathbb{R}$ (I é um intervalo) é um subespaço do espaço linear de todas as funções $f: I \to \mathbb{R}$, com as operações usuais.

Definição 28. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. O conjunto

$$C(A) = \{b \in \mathbb{R}^m : Au = b \text{ tem pelo menos uma solução } u\}$$

é um subespaço do espaço linear \mathbb{R}^m , com as operações usuais, ao qual se dá o nome de **espaço das colunas** de A.

Definição 29. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. O conjunto

$$\mathcal{N}(A) = \{ u \in \mathbb{R}^n : Au = \mathbf{0} \}$$

é um subespaço do espaço linear \mathbb{R}^n , com as operações usuais, ao qual se dá o nome de **espaço nulo ou núcleo** de A.

Teorema 21 . Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$.

A invertivel
$$\Leftrightarrow \mathcal{N}(A) = \{\mathbf{0}\}\$$

Definição 30. Seja S um subconjunto não vazio de um espaço linear V. Diz-se que um vector u é **combinação linear** finita dos elementos de S, se existir um n^o finito de elementos de S, $u_1, ..., u_k$, e de escalares $\lambda_1, ..., \lambda_k$ tais que

$$u = \lambda_1 u_1 + \dots + \lambda_k u_k = \sum_{i=1}^k \lambda_i u_i.$$

Seja

$$L(S) = \{\lambda_1 u_1 + \dots + \lambda_k u_k : \lambda_1, \dots, \lambda_k \in \mathbb{R}\},\,$$

(no caso do corpo dos escalares ser \mathbb{R}) isto é, seja L(S) o conjunto de todas as combinações lineares finitas de elementos de S. O conjunto L(S) é (verifique!) um subespaço de V. A L(S) chama-se a **expansão linear** de S ou **subespaço de** V **gerado** por S e diz-se que S **gera** L(S) ou ainda que S é um **conjunto gerador** do espaço linear L(S). Se S é o conjunto vazio \varnothing , escreve-se $L(\varnothing) = \{0\}$.

Teorema 22. (i) Seja S um subconjunto não vazio de um espaço linear V. A expansão linear L(S) de S é o menor subespaço de V que contém S.

(ii) Sejam S e T dois subconjuntos não vazios de um espaço linear V, com $S \subset T$. Se L(S) = V então L(T) = V.

Definição 31. Seja A uma matriz (real) do tipo $m \times n$. Ao subespaço linear de \mathbb{R}^n gerado pelas linhas de A dá-se o nome de **espaço das linhas** de A e designa-se por $\mathcal{L}(A)$.

Exemplo 22. (i) O espaço linear \mathbb{R}^2 é gerado por qualquer dos seguintes conjuntos de vectores:

$$\{(1,0),(0,1)\}, \{(1,2),(-1,11)\} \in \{(23,8),(6,14)\}.$$

(ii) O subespaço $\{(x,y) \in \mathbb{R}^2 : y = 2x\}$ do espaço linear \mathbb{R}^2 é gerado por qualquer dos seguintes conjuntos de vectores:

$$\{(1,2)\}, \{(-2,-4)\} \in \{(77,154)\}.$$

(iii) O espaço linear \mathcal{P}_n de todos os polinómios reais de variável real e de grau menor ou igual a n, é gerado por qualquer dos seguintes conjuntos de vectores:

$$\{1, t, t^2, ..., t^n\}, \{1, 1+t, (1+t)^2, ..., (1+t)^n\}$$
 e $\{1, \frac{t}{1!}, \frac{t^2}{2!}, ..., \frac{t^n}{n!}\}.$

(iv) O espaço linear \mathcal{P} de todos os polinómios reais de variável real, é gerado pelo conjunto infinito de vectores:

$$\{1, t, t^2, \ldots\}.$$

- (v) Seja U o espaço linear de todas as funções reais com primeira derivada contínua em \mathbb{R} (isto é, pertencentes a $C^1(\mathbb{R})$) e tais que f'(x) = af(x) (em \mathbb{R}) com $a \in \mathbb{R}$. Então U é gerado pela função $g(x) = e^{ax}$, tendo-se $U = L(\{g\})$.
 - (vi) Seja A uma matriz (real) do tipo $m \times n$. O espaço das colunas de A,

$$\mathcal{C}(A) = \{b \in \mathbb{R}^m : Au = b \text{ tem pelo menos uma solução } u\},$$

é o subespaço (do espaço linear \mathbb{R}^m) gerado pelas colunas de A, uma vez que:

$$\begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = u_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \dots + u_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

(vii)
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -3 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 2 \\ 2 & -4 \\ -2 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$. $C(A) = \{(0,0)\}, \quad \mathcal{N}(A) = \mathbb{R}^3, \quad \mathcal{L}(A) = \{(0,0,0)\}.$

$$\mathcal{C}(B) = L\left(\left\{(1,0,0), (1,7,0)\right\}\right), \quad \mathcal{N}(B) = L\left(\left\{(3,1,0)\right\}\right), \quad \mathcal{L}(B) = L\left(\left\{(1,-3,1), (0,0,7)\right\}\right).$$

$$\mathcal{C}(C) = L\left(\left\{(-1,2,-2)\right\}\right), \quad \mathcal{N}(C) = L\left(\left\{(2,1)\right\}\right), \quad \mathcal{L}(C) = L\left(\left\{(-1,2)\right\}\right).$$

$$\mathcal{C}(D) = L\left(\left\{(2,0), (0,-1)\right\}\right), \quad \mathcal{N}(D) = \left\{(0,0)\right\}, \quad \mathcal{L}(D) = L\left(\left\{(2,0), (0,-1)\right\}\right).$$

(viii) Seja $U = \{A \in \mathcal{M}_{3\times 2}(\mathbb{R}) : a_{12} = a_{21} = a_{32} = 0 \text{ e } a_{11} + 2a_{31} = 0\}.$ Tem-se, para $A \in U$,

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} -2a_{31} & 0 \\ 0 & a_{22} \\ a_{31} & 0 \end{bmatrix} = a_{31} \begin{bmatrix} -2 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix},$$

com $a_{31}, a_{22} \in \mathbb{R}$. Logo,

$$U = L\left(\left\{ \begin{bmatrix} -2 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}\right).$$

(ix) Seja $U = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathcal{P}_2 : p(1) = p(0)\}$. Tem-se, para $p(t) \in U$, $p(1) = p(0) \Leftrightarrow a_0 + a_1 + a_2 = a_0 \Leftrightarrow a_1 + a_2 = 0 \Leftrightarrow a_1 = -a_2$.

Logo, $p(t) = a_0 - a_2t + a_2t^2 = a_01 + a_2(-t + t^2)$, com $a_0, a_2 \in \mathbb{R}$. Assim,

$$U = L\left(\left\{1, -t + t^2\right\}\right).$$

Teorema 23. Se U e V subespaços do espaço linear W, então $U \cup V$ é subespaço de W se e só se $U \subset V$ ou $V \subset U$.

Teorema 24. Se U e V são subespaços do espaço linear W, então:

- (i) O conjunto $U \cap V$ é um subespaço linear de W.
- (ii) O conjunto $U+V=\{u+v:u\in U\ \text{e}\ v\in V\}$ é um subespaço de W. É o menor subespaço de W que contém $U\cup V$. O conjunto $U\cup V$ em geral não é um subespaço. Escreve-se $U+V=L(U\cup V)$.

Observação 14. (i) U é um subespaço de \mathbb{R}^n se e só se existir uma matriz A tal que $U = \mathcal{N}(A)$.

(ii) Sejam U_1 e U_2 subespaços de \mathbb{R}^n . Se $U_1 = L(S_1)$ e $U_2 = L(S_2)$ então

$$U_1 + U_2 = L\left(S_1 \cup S_2\right).$$

Se $U_1 = \mathcal{N}(A)$ e $U_2 = \mathcal{N}(B)$ então

$$U_1 \cap U_2 = \mathcal{N} \left(\begin{array}{c} A \\ B \end{array} \right).$$

(iii) U é um subespaço de $\mathcal{P}_n = \{a_0 + a_1t + ... + a_nt^n : a_0, a_1, ..., a_n \in \mathbb{R}\}$ se e só se existir uma matriz A tal que

$$U = \{a_0 + a_1t + ... + a_nt^n : (a_0, a_1, ..., a_n) \in \mathcal{N}(A)\}.$$

(iv) Sejam U_1 e U_2 subespaços de \mathcal{P}_n . Se $U_1 = L(S_1)$ e $U_2 = L(S_2)$ então

$$U_1+U_2=L\left(S_1\cup S_2\right).$$

Se

$$U_1 = \{a_0 + a_1t + ... + a_nt^n : (a_0, a_1, ..., a_n) \in \mathcal{N}(A)\}$$

e

$$U_2 = \{a_0 + a_1t + ... + a_nt^n : (a_0, a_1, ..., a_n) \in \mathcal{N}(B)\}$$

então

$$U_1 \cap U_2 = \left\{ a_0 + a_1 t + \dots + a_n t^n : (a_0, a_1, \dots, a_n) \in \mathcal{N} \begin{pmatrix} A \\ B \end{pmatrix} \right\}.$$

(v) U é um subespaço de $\mathcal{M}_{m\times n}(\mathbb{R})$ se e só se existir uma matriz B tal que $U = \{A = (a_{ij}) \in \mathcal{M}_{m\times n}(\mathbb{R}) : (a_{11}, ..., a_{m1}, ..., a_{1n}, ..., a_{mn}) \in \mathcal{N}(B)\}$

(vi) Sejam U_1 e U_2 subespaços de $\mathcal{M}_{m\times n}(\mathbb{R})$. Se $U_1=L\left(S_1\right)$ e $U_2=L\left(S_2\right)$ então $U_1+U_2=L\left(S_1\cup S_2\right).$

Se

$$U_1 = \{A = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R}) : (a_{11}, ..., a_{m1}, ..., a_{1n}, ..., a_{mn}) \in \mathcal{N}(B)\}$$

e

$$U_2 = \{A = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R}) : (a_{11}, ..., a_{m1}, ..., a_{1n}, ..., a_{mn}) \in \mathcal{N}(C)\}$$

então

$$U_1 \cap U_2 = \left\{ A = (a_{ij}) \in \mathcal{M}_{m \times n} (\mathbb{R}) : (a_{11}, ..., a_{m1}, ..., a_{1n}, ..., a_{mn}) \in \mathcal{N} \begin{pmatrix} B \\ C \end{pmatrix} \right\}.$$

Exemplo 23. (i) Em \mathbb{R}^3 , considere os subespaços:

$$U = \{(x, y, z) \in \mathbb{R}^3 : x + y - 2z = 0\}$$
 e $V = L(\{(1, 1, -1), (1, 2, 1)\})$.

Seja $v \in V$, então

$$v = \alpha(1, 1, -1) + \beta(1, 2, 1) = (\alpha + \beta, \alpha + 2\beta, -\alpha + \beta)$$

com $\alpha, \beta \in \mathbb{R}$. Para que v esteja também em U é preciso que:

$$(\alpha + \beta) + (\alpha + 2\beta) - 2(-\alpha + \beta) = 0.$$

A última equação é equivalente a $4\alpha+\beta=0 \Leftrightarrow \beta=-4\alpha.$ Logo,

$$U \cap V = \{(-3\alpha, -7\alpha, -5\alpha) : \alpha \in \mathbb{R}\} = \{\alpha(-3, -7, -5) : \alpha \in \mathbb{R}\} = L\left(\{(3, 7, 5)\}\right).$$

(ii) Em \mathbb{R}^3 , considere os subespaços:

$$U = L\left(\{(1,-1,1),(1,2,2)\}\right) \quad \text{e} \quad V = L\left(\{(2,1,1),(-1,1,3)\}\right).$$

Seja $v \in U$, então

$$v = \alpha(1, -1, 1) + \beta(1, 2, 2) = (\alpha + \beta, -\alpha + 2\beta, \alpha + 2\beta),$$

com $\alpha, \beta \in \mathbb{R}$. Para que v esteja também em V é preciso que:

$$(\alpha + \beta, -\alpha + 2\beta, \alpha + 2\beta) = \lambda(2, 1, 1) + \mu(-1, 1, 3) = (2\lambda - \mu, \lambda + \mu, \lambda + 3\mu),$$

com $\lambda, \mu \in \mathbb{R}$. Deste modo,

$$\begin{cases} \alpha + \beta = 2\lambda - \mu \\ -\alpha + 2\beta = \lambda + \mu \\ \alpha + 2\beta = \lambda + 3\mu. \end{cases}$$

Considerando a matriz aumentada tem-se

$$\begin{bmatrix} 1 & 1 & | & 2\lambda - \mu \\ -1 & 2 & | & \lambda + \mu \\ 1 & 2 & | & \lambda + 3\mu \end{bmatrix} \xrightarrow[L_1 + L_2 \to L_2 \\ -L_1 + L_3 \to L_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & | & 2\lambda - \mu \\ 0 & 3 & | & 3\lambda \\ 0 & 1 & | & -\lambda + 4\mu \end{bmatrix} \xrightarrow[-\frac{1}{3}L_2 + L_3 \to L_3]{} \begin{bmatrix} 1 & 1 & | & 2\lambda - \mu \\ 0 & 3 & | & 3\lambda \\ 0 & 0 & | & -2\lambda + 4\mu \end{bmatrix}.$$

Logo,

$$\begin{cases} \alpha + \beta = 2\lambda - \mu \\ \beta = \lambda \\ 0 = -2\lambda + 4\mu. \end{cases} \Leftrightarrow \begin{cases} \alpha = \mu \\ \beta = 2\mu \\ \lambda = 2\mu. \end{cases}$$

Assim,

$$\alpha(1, -1, 1) + \beta(1, 2, 2) = \mu(1, -1, 1) + 2\mu(1, 2, 2) = (3\mu, 3\mu, 5\mu) = \mu(3, 3, 5).$$

Logo,

$$U \cap V = \{(3\mu, 3\mu, 5\mu) : \mu \in \mathbb{R}\} = \{\mu(3, 3, 5) : \mu \in \mathbb{R}\} = L(\{(3, 3, 5)\}).$$

Resolução alternativa para determinar $U \cap V$: Seja $(x, y, z) \in U = L(\{(1, -1, 1), (1, 2, 2)\})$. Assim, existem escalares $\alpha, \beta \in \mathbb{R}$ tais que

$$(x, y, z) = \alpha(1, -1, 1) + \beta(1, 2, 2).$$

Logo, o sistema seguinte é possível

$$\left[\begin{array}{ccc|c} 1 & 1 & | & x \\ -1 & 2 & | & y \\ 1 & 2 & | & z \end{array}\right].$$

Atendendo a que

$$\begin{bmatrix} 1 & 1 & | & x \\ -1 & 2 & | & y \\ 1 & 2 & | & z \end{bmatrix} \xrightarrow[L_1+L_2\to L_2]{L_1+L_2\to L_2} \begin{bmatrix} 1 & 1 & | & x \\ 0 & 3 & | & x+y \\ 0 & 1 & | & z-x \end{bmatrix} \xrightarrow{-\frac{1}{3}L_2+L_3\to L_3} \begin{bmatrix} 1 & 1 & | & x \\ 0 & 3 & | & x+y \\ 0 & 0 & | & z-\frac{4}{3}x-\frac{1}{3}y \end{bmatrix}$$

logo $(x,y,z) \in U \Leftrightarrow z - \frac{4}{3}x - \frac{1}{3}y = 0 \Leftrightarrow 4x + y - 3z = 0$. Ou seja:

$$U = \{(x, y, z) \in \mathbb{R}^3 : 4x + y - 3z = 0\} = \mathcal{N}([4 \ 1 \ -3]).$$

Seja $(x, y, z) \in V = L(\{(2, 1, 1), (-1, 1, 3)\})$. Existem escalares $\alpha, \beta \in \mathbb{R}$ tais que $(x, y, z) = \alpha(2, 1, 1) + \beta(-1, 1, 3)$.

Logo, o sistema seguinte é possível

$$\left[\begin{array}{ccc|c} 2 & -1 & | & x \\ 1 & 1 & | & y \\ 1 & 3 & | & z \end{array}\right].$$

Atendendo a que

$$\begin{bmatrix} 2 & -1 & | & x \\ 1 & 1 & | & y \\ 1 & 3 & | & z \end{bmatrix} \xrightarrow{-\frac{1}{2}L_1 + L_2 \to L_2} \begin{bmatrix} 2 & -1 & | & x \\ 0 & 3/2 & | & y - \frac{x}{2} \\ 0 & 7/2 & | & z - \frac{x}{2} \end{bmatrix} \xrightarrow{-\frac{7}{3}L_2 + L_3 \to L_3} \begin{bmatrix} 2 & -1 & | & x \\ 0 & 3/2 & | & y - \frac{x}{2} \\ 0 & 0 & | & \frac{2}{3}x - \frac{7}{3}y + z \end{bmatrix}$$

logo $(x,y,z) \in V \Leftrightarrow z - \frac{7}{3}y + \frac{2}{3}x = 0 \Leftrightarrow 2x - 7y + 3z = 0$. Ou seja:

$$V = \{(x, y, z) \in \mathbb{R}^3 : 2x - 7y + 3z = 0\} = \mathcal{N}([2 -7 3]).$$

Logo,

$$U \cap V = \mathcal{N}\left(\begin{bmatrix} 4 & 1 & -3 \\ 2 & -7 & 3 \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} 4 & 1 & -3 \\ 0 & -5 & 3 \end{bmatrix}\right) =$$

$$= \{(3y, 3y, 5y) : \mu \in \mathbb{R}\} = \{y(3, 3, 5) : y \in \mathbb{R}\} = L\left(\{(3, 3, 5)\}\right).$$

(iii) Seja U o subespaço de $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes triangulares superiores e seja V o subespaço de $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes triangulares inferiores. Então

$$U + V = \mathcal{M}_{n \times n}(\mathbb{R})$$
 e $U \cap V =$ subespaço das matrizes diagonais.

(iv) Sejam
$$U=L(\{(1,0)\})$$
 e $V=L(\{(0,1)\})$ subespaços de \mathbb{R}^2 . O conjunto
$$U\cup V=\{(x,y)\in\mathbb{R}^2:x=0\vee y=0\}$$

não é um espaço linear pois $\underbrace{(1,0)}_{\in U} + \underbrace{(0,1)}_{\in V} = (1,1) \notin U \cup V$. No entanto, tem-se $U + V = \mathbb{R}^2$.

Observação 15. Vejamos que se tem:

$$L(\{(1,-4,0),(0,3,1)\}) = L(\{(1,2,2),(1,-1,1)\}).$$

Como

$$(1,-4,0)) = -(1,2,2) + 2(1,-1,1)$$
 e $(0,3,1) = (1,2,2) - (1,-1,1)$

logo

$$L\left(\{(1,-4,0),(0,3,1)\}\right) \subset L\left(\{(1,2,2),(1,-1,1)\}\right).$$

Como

$$(1,2,2) = (1,-4,0) + 2(0,3,1)$$
 e $(1,-1,1) = (1,-4,0) + (0,3,1)$

logo

$$L(\{(1,2,2),(1,-1,1)\}) \subset L(\{(1,-4,0),(0,3,1)\}).$$

Assim:

$$L(\{(1,-4,0),(0,3,1)\}) = L(\{(1,2,2),(1,-1,1)\}).$$

De facto, o que se mostrou foi o seguinte:

$$\begin{bmatrix} 1 & 0 \\ -4 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 0 \\ -4 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 2 & 1 \end{bmatrix}$$

em que

$$\left[\begin{array}{cc} 1 & 1 \\ 2 & 1 \end{array}\right] = \left[\begin{array}{cc} -1 & 1 \\ 2 & -1 \end{array}\right]^{-1}.$$

Definição 32. Sejam W_1 e W_2 subespaços de um espaço linear V. Diz-se que V é a soma directa dos espaços W_1 e W_2 e escreve-se

$$V = W_1 \oplus W_2$$

se

$$V = W_1 + W_2$$
 e $W_1 \cap W_2 = \{ \mathbf{0} \}.$

Teorema 25. Sejam W_1 e W_2 subespaços de um espaço linear V tais que $V = W_1 \oplus W_2$. Então todo o vector $v \in V$ pode ser escrito de modo único na forma

$$v = w_1 + w_2$$

 $com w_1 \in W_1 \ e \ w_2 \in W_2.$

Teorema 26. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Tem-se

$$C(A) = \mathcal{L}(A^T)$$
 e $\mathcal{L}(A) \cap \mathcal{N}(A) = \{\mathbf{0}\}.$

Dem. Vejamos que $\mathcal{N}(A) \cap \mathcal{C}(A^T) = \{\mathbf{0}\}$. Seja $y \in \mathcal{N}(A) \cap \mathcal{C}(A^T)$. Então existe x tal que $Ay = \mathbf{0}$ e $y = A^Tx$. Logo $y^T = x^TA$ e $y^Ty = (x^TA)y = x^T(Ay) = x^T\mathbf{0} = 0$. Isto é $\sum_{i=1}^n y_i^2 = y^Ty = 0$ ou seja $y = (y_1, ..., y_n) = (0, ..., 0) = \mathbf{0}$. Logo, $\mathcal{N}(A) \cap \mathcal{L}(A) = \mathcal{N}(A) \cap \mathcal{C}(A^T) = \{\mathbf{0}\}$.

Observação 16. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Se A' fôr a matriz em escada que se obtem de A por aplicação do método de eliminação de Gauss, tem-se

$$C(A) \neq C(A')$$
.

Teorema 27. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. O espaço das linhas $\mathcal{L}(A)$ e o núcleo $\mathcal{N}(A)$ mantêmse invariantes por aplicação do método de eliminação de Gauss. Isto é, sendo A' a matriz em escada que se obtem de A por aplicação desse método, tem-se

$$\mathcal{L}(A) = \mathcal{L}(A')$$
 e $\mathcal{N}(A) = \mathcal{N}(A')$.

Independência linear

Definição 33. (i) Seja V um espaço linear. Seja

$$S = \{v_1, ..., v_k\} \subset V.$$

Diz-se que o conjunto S é **linearmente dependente** se e só se algum dos vectores de S se escrever como combinação linear dos restantes, isto é, se e só se existir algum $i \in \{1, ..., k\}$ e escalares $\lambda_1, ..., \lambda_{i-1}, \lambda_{i+1}, ..., \lambda_k \in \mathbb{R}$ tais que

$$v_i = \lambda_1 v_1 + \dots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} v_{i+1} + \dots + \lambda_k v_k.$$

(ii) Seja V um espaço linear. Seja

$$S = \{v_1, ..., v_k\} \subset V.$$

Diz-se que o conjunto S é **linearmente independente** se e só se nenhum dos vectores de S se puder escrever como combinação linear dos restantes, isto é, se e só a única solução do sistema homogéneo

$$\lambda_1 v_1 + \dots + \lambda_k v_k = \mathbf{0}$$

fôr a solução trivial, ou seja, $\lambda_1 = ... = \lambda_k = 0$. No caso em que $V = \mathbb{R}^n$, sendo A a matriz cujas colunas são os vectores de $S \subset V$, diz-se que S é **linearmente independente** se e só se $\mathcal{N}(A) = \{\mathbf{0}\}.$

Teorema 28. Seja A' uma matriz em escada de linhas.

- (i) As colunas de A' que contêm pivots são linearmente independentes.
- (ii) As linhas não nulas de A' são linearmente independentes.
- (iii) O n° de linhas independentes e o n° de colunas independentes (de A') são ambos iguais à característica de A'.

Observação 17. (i) Assim, atendendo ao teorema anterior, a independência linear de $S = \{v_1, v_2, ..., v_k\} \subset V$ (espaço linear) pode ser decidida aplicando o método de eliminação à matriz A cujas colunas são os vectores de S, de modo a colocá-la em escada de linhas. Sendo A' essa matriz em escada, tem-se

$$\mathcal{N}(A) = \mathcal{N}(A')$$
 (*).

Uma vez que as colunas de A' que contêm pivots são linearmente independentes então, devido a (*), as colunas de A nas posições correspondentes também serão linearmente independentes.

(ii) Em \mathbb{R} , quaisquer dois vectores são linearmente dependentes.

- (iii) Em \mathbb{R}^2 , dois vectores são linearmente independentes se não forem colineares.
- (iv) Em \mathbb{R}^3 , três vectores são linearmente independentes se não forem coplanares.
- (v) Qualquer conjunto que contenha o vector nulo (elemento neutro) é linearmente dependente. Em particular, o conjunto $\{0\}$, formado apenas pelo vector nulo, é linearmente dependente.
 - (vi) O conjunto vazio \varnothing é linearmente independente.

Teorema 29. Sejam S_1 e S_2 dois subconjuntos finitos de um espaço linear, tais que $S_1 \subset S_2$.

- (i) Se S_1 é linearmente dependente então S_2 também é linearmente dependente.
- (ii) Se S_2 é linearmente independente então S_1 também é linearmente independente.

Observação 18. Sejam S_1 e S_2 dois subconjuntos finitos de um espaço linear, tais que $S_1 \subset S_2$.

- (i) Se S_2 fôr linearmente dependente então S_1 tanto pode ser linearmente dependente como linearmente independente.
- (ii) Se S_1 fôr linearmente independente então S_2 tanto pode ser linearmente dependente como linearmente independente.

Exemplo 24. Seja $S = \{(1,0,2), (2,0,4), (0,1,2)\}$. Tem-se

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 2 & 4 & 2 \end{bmatrix} \xrightarrow{-2L_1 + L_3 \to L_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{-2L_2 + L_3 \to L_3} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = A'.$$

Logo, como apenas existem dois pivots e portanto uma variável livre, as três colunas de A são linearmente dependentes, isto é, o conjunto S é linearmente dependente. O subconjunto de S:

$$\{(1,0,2),(2,0,4)\}$$

também é linearmente dependente. No entanto, uma vez que a 1^a e 3^a colunas de A são independentes pois correspondem às colunas da matriz em escada A' que contêm os pivots, o subconjunto de S:

$$\{(1,0,2),(0,1,2)\}$$

é linearmente independente.

Bases e dimensão de um espaço linear

Definição 34. Chama-se base de um espaço linear V a qualquer subconjunto \mathcal{B} de V que verifique as duas condições:

(i) \mathcal{B} gera V, isto é,

$$L(\mathcal{B}) = V.$$

(ii) \mathcal{B} é linearmente independente.

Teorema 30. Qualquer espaço linear $V \neq \{0\}$ tem pelo menos uma base.

Teorema 31. (i) Qualquer espaço linear $V \neq \{0\}$ tem um no infinito de bases.

(ii) Seja $V \neq \{0\}$ um espaço linear. Sejam $p, q \in \mathbb{N}$ tais que $\{u_1, ..., u_p\}$ é um conjunto gerador de V e $\{v_1, ..., v_q\}$ é um subconjunto de V linearmente independente. Então

$$p \geq q$$
.

(iii) Todas as bases de um espaço linear $V \neq \{0\}$ têm o mesmo nº de vectores.

Dem. (i) Se $\mathcal{B} = \{u_1, ..., u_k\}$ fôr uma base de V então para cada $\alpha \neq 0$ o conjunto $\{\alpha u_1, ..., \alpha u_k\}$ é também uma base de V.

(ii) Suponhamos que p < q. Neste caso, como todos os vectores do conjunto $\{v_1, ..., v_q\}$ são não nulos por serem LI, poderíamos substituir sucessivamente os p vectores do conjunto $\{u_1, ..., u_p\}$ gerador de V por p vectores do conjunto $\{v_1, ..., v_q\}$, permitindo assim escrever cada vector do conjunto $\{v_{p+1}, ..., v_q\}$ como combinação linear do novo conjunto gerador de V: $\{v_1, ..., v_p\}$ e contrariando o facto dos vectores do conjunto $\{v_1, ..., v_q\}$ serem linearmente independentes.

Demonstração alternativa de (ii). Suponhamos que p < q. Como $\{u_1, ..., u_p\}$ gera V, para cada j = 1, ..., q existem escalares $a_{1j}, ... a_{pj}$ tais que

$$v_j = \sum_{i=1}^p a_{ij} u_i.$$

Seja $A = (a_{ij})_{p \times q}$. Como p < q, o sistema homogéneo $A\alpha = \mathbf{0}$ é possível e indeterminado. Seja $\alpha = [\alpha_1...\alpha_q]^T \neq \mathbf{0}$ uma solução não nula de $A\alpha = \mathbf{0}$, isto é,

$$\mathbf{0} = \sum_{j=1}^{q} a_{ij} \alpha_j = \alpha_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{p1} \end{bmatrix} + \dots + \alpha_q \begin{bmatrix} a_{1q} \\ \vdots \\ a_{pq} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{q} a_{1j} \alpha_j \\ \vdots \\ \sum_{j=1}^{q} a_{pj} \alpha_j \end{bmatrix}$$

com os α_i escalares não todos nulos. Por outro lado,

$$\sum_{j=1}^{q} \alpha_{j} v_{j} = \sum_{j=1}^{q} \alpha_{j} \sum_{i=1}^{p} a_{ij} u_{i} = \sum_{i=1}^{p} \left(\sum_{j=1}^{q} a_{ij} \alpha_{j} \right) u_{i} =$$

$$= \left(\sum_{j=1}^{q} a_{1j} \alpha_{j} \right) u_{1} + \dots + \left(\sum_{j=1}^{q} a_{pj} \alpha_{j} \right) u_{p} =$$

$$= 0 u_{1} + \dots + 0 u_{p} = \mathbf{0}$$

com os α_j não todos nulos, contrariando o facto dos vectores do conjunto $\{v_1, ..., v_q\}$ serem linearmente independentes.

(iii) Sendo $\{v_1, ..., v_q\}$ e $\{u_1, ..., u_p\}$ duas bases de V, por (i) tem-se $p \leq q$ e $q \leq p$. Logo p = q.

Definição 35. Chama-se **dimensão** de um espaço linear $V \neq \{0\}$ ao nº de vectores de uma base qualquer de V, e escreve-se dim V. Se $V = \{0\}$ então dim V = 0 uma vez que o conjunto vazio \emptyset é base de $\{0\}$. Um espaço linear terá dimensão finita se uma sua base tiver um nº finito de vectores.

Observação 19. A dimensão de um espaço linear, isto é, o nº de elementos de uma sua base é igual ao nº mínimo de vectores possam constituir um conjunto gerador desse espaço e é também igual ao nº máximo de vectores que possam constituir um conjunto linearmente independente nesse espaço.

Exemplo 25. (i) O conjunto $\{1\}$ é uma base de \mathbb{R} , chamada base canónica ou natural de \mathbb{R} . Logo,

$$\dim \mathbb{R} = 1$$
.

(ii) O conjunto $\{(1,0),(0,1)\}$ é uma base de \mathbb{R}^2 , chamada base canónica ou natural de \mathbb{R}^2 . Logo,

$$\dim \mathbb{R}^2 = 2.$$

(iii) O conjunto $\{(1,0,0),(0,1,0),(0,0,1)\}$ é uma base de \mathbb{R}^3 , chamada base canónica ou natural de \mathbb{R}^3 . Logo,

$$\dim \mathbb{R}^3 = 3.$$

- (iv) Considerando \mathbb{C} como corpo de escalares:
- (a) o espaço linear $\mathbb C$ tem dimensão 1 sendo $\{1\}$ a base canónica de $\mathbb C$ uma vez que

$$a + bi = (a + bi) 1$$

(b) o espaço linear \mathbb{C}^2 tem dimensão 2 sendo $\{(1,0),(0,1)\}$ a base canónica de \mathbb{C}^2 uma vez que

$$(a + bi, c + di) = (a + bi) (1, 0) + (c + di) (0, 1).$$

- (v) Considerando \mathbb{R} como corpo de escalares:
- (a) o espaço linear $\mathbb C$ tem dimensão 2 sendo $\{1,i\}$ a base canónica de $\mathbb C$ uma vez que

$$a + bi = a1 + bi$$

 $com a, b \in \mathbb{R}$.

(b) o espaço linear \mathbb{C}^2 tem dimensão 4 sendo $\{(1,0),(i,0),(0,1),(0,i)\}$ a base canónica de \mathbb{C}^2 uma vez que

$$(a + bi, c + di) = a(1,0) + b(i,0) + c(0,1) + d(0,i)$$

 $com a, b, c, d \in \mathbb{R}$.

(vi) O conjunto

$$\left\{ \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \right\}$$

é uma base de $\mathcal{M}_{2\times 3}(\mathbb{R})$, chamada base canónica ou natural de $\mathcal{M}_{2\times 3}(\mathbb{R})$. Logo,

$$\dim \mathcal{M}_{2\times 3}(\mathbb{R}) = 6.$$

(vii) Tem-se

$$\dim \mathbb{R}^n = n$$
 e $\dim \mathcal{M}_{m \times n}(\mathbb{R}) = mn$.

(viii) O conjunto $\{1, t, t^2, ..., t^n\}$ é uma base de \mathcal{P}_n (espaço linear de todos os polinómios reais de variável real e de grau menor ou igual a n), chamada base canónica ou natural de \mathcal{P}_n . Logo,

$$\dim \mathcal{P}_n = n + 1.$$

(ix) O conjunto $\{1, t, t^2, ...\}$ é uma base de \mathcal{P} (espaço linear de todos os polinómios reais de variável real), chamada base canónica ou natural de \mathcal{P} . Logo,

$$\dim \mathcal{P} = \infty$$
.

Teorema 32. Seja A uma matriz do tipo $m \times n$. Tem-se

$$\dim \mathcal{L}(A) = \operatorname{car} A.$$

Observação 20. Seja A uma matriz do tipo $m \times n$. Mais tarde ver-se-á (**Teorema 46** (ii) e Exemplo 35) que

$$\dim \mathbb{R}^n = \dim \mathcal{N}(A) + \dim \mathcal{L}(A)$$

o que permitirá concluir que

$$\dim \mathcal{N}(A) = \operatorname{nul} A.$$

Teorema 33. Seja A uma matriz do tipo $m \times n$. Tem-se

$$\dim \mathcal{C}(A) = \dim \mathcal{L}(A) = \operatorname{car} A.$$

Dem. Suponhamos que car A = k. Sendo A' a matriz $m \times n$ em escada (reduzida) de linhas, então A' tem exactamente k linhas não nulas. Sejam $R_1, ..., R_k$ essas linhas. Como

$$\mathcal{L}(A) = \mathcal{L}(A'),$$

então as linhas $L_1, ..., L_m$ de A podem ser expressas como combinações lineares das linhas $R_1, ..., R_k$, ou seja, existem escalares c_{ij} , com i = 1, ..., m e j = 1, ..., k tais que

$$L_1 = c_{11}R_1 + \dots + c_{1k}R_k$$
...
$$L_m = c_{m1}R_1 + \dots + c_{mk}R_k$$

Para i = 1, ..., m, sejam a_{ij} e r_{ij} as componentes j das linhas L_i e R_i respectivamente. Assim, tem-se

$$a_{1j} = c_{11}r_{1j} + \dots + c_{1k}r_{kj}$$

$$\dots$$

$$a_{mj} = c_{m1}r_{1j} + \dots + c_{mk}r_{kj}$$

ou seja, matricialmente,

$$\begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} = r_{1j} \begin{bmatrix} c_{11} \\ \vdots \\ c_{m1} \end{bmatrix} + \dots + r_{kj} \begin{bmatrix} c_{1k} \\ \vdots \\ c_{mk} \end{bmatrix}.$$

Como $\begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$ é a coluna j de A, a última igualdade mostra que os vectores

$$\left[\begin{array}{c}c_{11}\\\vdots\\c_{m1}\end{array}\right],...,\left[\begin{array}{c}c_{1k}\\\vdots\\c_{mk}\end{array}\right]$$

geram $\mathcal{C}(A)$. Logo, tem-se

$$\dim \mathcal{C}(A) \leq k = \dim \mathcal{L}(A)$$
.

Deste modo, substituindo A por A^T tem-se também

$$\underbrace{\dim \mathcal{C}\left(A^{T}\right)}_{=\dim \mathcal{L}(A)} \leq \underbrace{\dim \mathcal{L}\left(A^{T}\right)}_{=\dim \mathcal{C}(A)}.$$

Ou seja, tem-se

$$\dim \mathcal{C}(A) \leq \dim \mathcal{L}(A)$$

e

$$\dim \mathcal{L}(A) \leq \dim \mathcal{C}(A)$$
.

Isto é,

$$\dim \mathcal{C}(A) = \dim \mathcal{L}(A).$$

Observação 21. Atendendo ao teorema anterior tem-se

$$car A = car A^T$$

uma vez que

$$\operatorname{car} A = \dim \mathcal{C}(A) = \dim \mathcal{L}(A) = \dim \mathcal{C}(A^T) = \operatorname{car} A^T.$$

Teorema 34. Sejam V um espaço linear de dimensão finita e W um subespaço de V.

- (i) Seja $S = \{u_1, ..., u_k\} \subset V$. Se S é linearmente independente então S será um subconjunto de uma base de V e ter-se-á dim $V \geq k$.
- (ii) Se $\dim V = n$, então quaisquer m vectores de V, com m > n, são linearmente dependentes.
- (iii) Se dim V = n, então nenhum conjunto com m vectores de V, em que m < n, pode gerar V.
 - (iv) O subespaço W tem dimensão finita e dim $W \leq \dim V$.
 - (v) Se dim $W = \dim V$, então W = V.
- (vi) Se $\dim V = n$, então quaisquer n vectores de V linearmente independentes constituem uma base de V.
- (vii) Se dim V=n, então quaisquer n vectores geradores de V constituem uma base de V.

Exemplo 26. (i) Os seguintes conjuntos são todos os subespaços de \mathbb{R} : $\{0\}$ e \mathbb{R} .

- (ii) Os seguintes conjuntos são todos os subespaços de \mathbb{R}^2 :
 - $\{(0,0)\}$, todas as rectas que contêm a origem e \mathbb{R}^2 .
- (iii) Os seguintes conjuntos são todos os subespaços de \mathbb{R}^3 :

 $\left\{ \left(0,0,0\right)\right\} ,$ todas as rectas que contêm a origem,

todos os planos que contêm a origem e \mathbb{R}^3 .

Observação 22. O método de eliminação de Gauss permite determinar a dimensão e uma base quer para o espaço das linhas $\mathcal{L}(A)$ quer para o espaço das colunas $\mathcal{C}(A)$ de uma matriz A. Seja A' a matriz em escada que se obtem de A por aplicação do método de eliminação de Gauss. Então,

- (i) Uma base para $\mathcal{L}(A)$ será formada pelas linhas não nulas de A'.
- (ii) Uma base para $\mathcal{C}(A)$ será formada pelas colunas de A que correspondem às posições das colunas de A' que contêm os pivots.

Exemplo 27. Seja
$$A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 4 & 2 & 3 & 3 \\ -6 & -3 & 1 & 1 \end{bmatrix}$$
. Tem-se

$$A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 4 & 2 & 3 & 3 \\ -6 & -3 & 1 & 1 \end{bmatrix} \xrightarrow[{-2L_1 + L_2 \to L_2} {3L_1 + L_3 \to L_3} \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix} \xrightarrow[{-4L_2 + L_3 \to L_3} {-4L_2 + L_3 \to L_3} \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A'.$$

Logo, $\{(2, 1, 1, 1), (0, 0, 1, 1)\}$ é uma base de $\mathcal{L}(A)$ e $\{(2, 4, -6), (1, 3, 1)\}$ é uma base de $\mathcal{C}(A)$. Assim,

$$\dim \mathcal{L}(A) = 2 = \dim \mathcal{C}(A)$$

e

$$\mathcal{L}(A) = L(\{(2,1,1,1),(0,0,1,1)\}), \ \mathcal{C}(A) = L(\{(2,4,-6),(1,3,1)\}).$$

Por outro lado,

$$\mathcal{N}(A') = \left\{ (x, y, z, w) \in \mathbb{R}^4 : A' \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\} =$$

$$= \{(x, -2x, -w, w) : x, w \in \mathbb{R}\} = L\left(\{(1, -2, 0, 0), (0, 0, -1, 1)\}\right).$$

Como o conjunto $\{(1, -2, 0, 0), (0, 0, -1, 1)\}$ é linearmente independente e gera $\mathcal{N}(A')$ então é uma base de $\mathcal{N}(A')$. Finalmente, uma vez que $\mathcal{N}(A) = \mathcal{N}(A')$, o conjunto

$$\{(1, -2, 0, 0), (0, 0, -1, 1)\}$$

é uma base de $\mathcal{N}(A)$ e portanto dim $\mathcal{N}(A) = 2$, com

$$\mathcal{N}(A) = L(\{(1, -2, 0, 0), (0, 0, -1, 1)\}).$$

Exemplo 28. Seja

$$S = \{1, 2, -1\}, (2, 1, 1), (-1, -2, 1), (0, 1, 0)\} \subset \mathbb{R}^3.$$

Determinemos uma base para L(S).

Considerando a matriz cujas colunas são os vectores de S, tem-se

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 2 & 1 & -2 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow[\substack{-2L_1+L_2\to L_2 \\ L_1+L_3\to L_3}]{} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 0 & 1 \\ 0 & 3 & 0 & 0 \end{bmatrix} \xrightarrow[\substack{L_2+L_3\to L_3}]{} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -3 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Logo, $S' = \{1, 2, -1\}, (2, 1, 1), (0, 1, 0)\}$ é uma base de L(S). Como dim $\mathbb{R}^3 = 3$, então tem-se mesmo: $L(S) = \mathbb{R}^3$ e S' é uma base de \mathbb{R}^3 .

Resolução alternativa: Considerando a matriz cujas linhas são os vectores de S, tem-se

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ -1 & -2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow[-2L_1+L_3\to L_3]{-2L_1+L_2\to L_2} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow[3]{L_3\leftrightarrow L_4} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow[\frac{1}{3}L_2+L_3\to L_3]{-2L_1+L_2\to L_2} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Logo, $S'=\{1,2,-1\},(0,-3,3),(0,0,1)\}$ é uma base de L(S). Como dim $\mathbb{R}^3=3$, então tem-se mesmo: $L(S)=\mathbb{R}^3$ e S' é uma base de \mathbb{R}^3 .

Exemplo 29. Seja

$$S_{a,b} = \{1, 0, 1\}, (0, 1, a), (1, 1, b), (1, 1, 1)\} \subset \mathbb{R}^3.$$

Determinemos os valores dos parâmetros a e b para os quais $S_{a,b}$ não gere \mathbb{R}^3 .

Considerando a matriz cujas colunas são os vectores de S, tem-se

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & a & b & 1 \end{bmatrix} \xrightarrow{-L_1 + L_3 \to L_3} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & a & b - 1 & 0 \end{bmatrix} \xrightarrow{-aL_2 + L_3 \to L_3} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & b - a - 1 & -a \end{bmatrix}.$$

Logo, $S_{a,b}$ não gera \mathbb{R}^3 se e só se b-a-1=0 e -a=0, isto é, se e só se a=0 e b=1.

Teorema 35. (i) Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. As colunas de A geram \mathbb{R}^m se e só se car A = m.

- (ii) Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. As columns de A são linearmente independentes se e só se $\operatorname{car} A = n$.
- (iii) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. A matriz A é invertível se e só se as colunas de A (ou as linhas de A) formarem uma base de \mathbb{R}^n . No caso de A ser invertível tem-se

$$C(A) = L(A) = \mathbb{R}^n$$
.

Teorema 36. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e considere o sistema de equações lineares Au = b.

- (i) O sistema Au = b é impossível (não tem solução) se e só se $b \notin C(A)$, isto é, se e só se car $A < \operatorname{car} [A \mid b]$.
- (ii) O sistema Au = b é **possível e indeterminado** (tem um nº infinito de soluções) se e só se $b \in C(A)$ e as colunas de A forem linearmente dependentes, isto é, se e só se

$$\operatorname{car} A = \operatorname{car} \left[A \mid b \right] < n,$$

isto é, se e só se

$$\operatorname{car} A = \operatorname{car} [A \mid b] \quad \text{e} \quad \operatorname{nul} A \neq 0.$$

(iii) O sistema Au = b é **possível e determinado** (tem uma única solução) se e só se $b \in C(A)$ e as colunas de A forem linearmente independentes, isto é, se e só se

$$\operatorname{car} A = \operatorname{car} \left[A \mid b \right] = n,$$

isto é, se e só se

$$\operatorname{car} A = \operatorname{car} \left[A \mid b \right] \quad \text{e} \quad \operatorname{nul} A = 0.$$

Teorema 37. Sejam W_1 e W_2 dois subespaços de dimensão finita de um espaço linear V. Então,

$$\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2),$$

Dem. Sejam

$$n = \dim W_1, \quad m = \dim W_2 \quad e \quad k = \dim (W_1 \cap W_2).$$

Se k=0 a igualdade do teorema é imediata. Se $k\neq 0$, seja $\{w_1,...,w_k\}$ uma base de $W_1\cap W_2$. Sejam $u_{k+1},...,u_n\in W_1$ tais que

$$\{w_1, ..., w_k, u_{k+1}, ..., u_n\}$$

é uma base de W_1 . Sejam $v_{k+1},...,v_m \in W_2$ tais que

$$\{w_1, ..., w_k, v_{k+1}, ..., v_m\}$$

é uma base de W_2 . Vejamos que

$$\mathcal{B} = \{w_1, ..., w_k, u_{k+1}, ..., u_n, v_{k+1}, ..., v_m\}$$

é uma base de $W_1 + W_2$.

Seja $w \in W_1 + W_2$. Existem $u \in W_1$ e $v \in W_2$ tais que w = u + v. Ou seja, existem escalares (únicos) $\alpha_1, ..., \alpha_n$ e $\beta_1, ..., \beta_m$ tais que

$$w = u + v = \sum_{i=1}^{k} (\alpha_i + \beta_i) w_i + \sum_{j=k+1}^{n} \alpha_j u_j + \sum_{l=k+1}^{m} \beta_l v_l$$

pelo que \mathcal{B} gera $W_1 + W_2$.

Sejam $\gamma_1,...,\gamma_n,\xi_{k+1},...,\xi_m$ n+m-kescalares tais que

$$\mathbf{0} = \sum_{i=1}^{k} \gamma_i w_i + \sum_{j=k+1}^{n} \gamma_j u_j + \sum_{l=k+1}^{m} \xi_l v_l,$$

isto é,

$$\sum_{l=k+1}^{m} \xi_{l} v_{l} = -\left(\sum_{i=1}^{k} \gamma_{i} w_{i} + \sum_{j=k+1}^{n} \gamma_{j} u_{j}\right) \in W_{1},$$

ou seja $\sum_{l=k+1}^{m} \xi_l v_l \in W_1 \cap W_2$. Atendendo a que $\{w_1, ..., w_k\}$ é base de $W_1 \cap W_2$, existem escalares $\eta_1, ..., \eta_k$ tais que

$$\sum_{l=k+1}^{m} \xi_l v_l = \sum_{i=1}^{k} \eta_i w_i,$$

isto é, $\sum_{i=1}^{k} \eta_i w_i + \sum_{l=k+1}^{m} (-\xi_l) v_l = \mathbf{0}$. Como $\{w_1, ..., w_k, v_{k+1}, ..., v_m\}$ é uma base de W_2 , tem-se

$$\eta_1=\ldots=\eta_k=\xi_{k+1}=\ldots=\xi_m=0.$$

Logo

$$\mathbf{0} = \sum_{i=1}^{k} \gamma_i w_i + \sum_{j=k+1}^{n} \gamma_j u_j + \sum_{l=k+1}^{m} \xi_l v_l = \sum_{i=1}^{k} \gamma_i w_i + \sum_{j=k+1}^{n} \gamma_j u_j.$$

Assim, como $\{w_1,...,w_k,u_{k+1},...,u_n\}$ é uma base de W_1 , tem-se $\gamma_1=...=\gamma_n=0$. Deste modo, como

$$\gamma_1=\ldots=\gamma_n=\xi_{k+1}=\ldots=\xi_m=0$$

então o conjunto \mathcal{B} é linearmente independente.

Teorema 38. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. As seguintes afirmações são equivalentes.

- (i) A é igual ao produto de matrizes elementares.
- (ii) A é invertível.
- (iii) $A^T A$ é invertível.
- (iv) nul A = 0.
- (v) $\operatorname{car} A = n$.
- (vi) Au = 0 tem apenas a solução trivial u = 0.
- (vii) Au = b tem solução única u para cada $b \in \mathbb{R}^n$.
- (viii) $\det A \neq 0$.
- (ix) $\mathcal{N}(A) = \{0\}.$
- (x) As colunas de A geram \mathbb{R}^n .
- (xi) As colunas de A são independentes.
- (xii) As colunas de A formam uma base de \mathbb{R}^n .
- (xiii) As linhas de A geram \mathbb{R}^n .
- (xiv) As linhas de A são independentes.
- (xv) As linhas de A formam uma base de \mathbb{R}^n .
- (xvi) A transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ definida por T(u) = Au, para $u \in \mathbb{R}^n$, é sobrejectiva. (Num próximo capítulo.)
- (xvii) A transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ definida por T(u) = Au, para $u \in \mathbb{R}^n$, é injectiva. (Num próximo capítulo.)
- (xviii) A transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ definida por T(u) = Au, para $u \in \mathbb{R}^n$, é bijectiva. (Num próximo capítulo.)
- (xix) A transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ definida por T(u) = Au, para $u \in \mathbb{R}^n$, é invertível. (Num próximo capítulo.)
 - (xx) 0 não é valor próprio de A. (Num próximo capítulo.)
 - (xxi) $(\mathcal{N}(A))^{\perp} = \mathbb{R}^n$. (Num próximo capítulo.)
 - (**xxii**) $(\mathcal{L}(A))^{\perp} = \{0\}$. (Num próximo capítulo.)

Coordenadas de um vector numa base e matriz de mudança de base

Definição 36. Seja $\mathcal{B} = \{v_1, ..., v_k\}$ uma base ordenada de um espaço linear V e seja u um vector de V. Chamam-se **coordenadas** do vector u na base ordenada \mathcal{B} aos escalares $\lambda_1, ..., \lambda_k$ da combinação linear:

$$u = \lambda_1 v_1 + \ldots + \lambda_k v_k$$
.

Teorema 39. Seja V um espaço linear.

- (i) Um conjunto \mathcal{B} de vectores não nulos de V é uma base de V se e só se todo o vector de V puder ser escrito de modo único como combinação linear dos vectores de \mathcal{B} .
- (ii) Se dim V = n, então dados $u, w \in V$ e $\mathcal{B} = \{v_1, ..., v_n\}$ uma base ordenada de V, tem-se u = w se e só se as coordenadas de u e de w na base \mathcal{B} forem iguais.

Teorema 40. Seja V um espaço linear de dimensão n. Sejam $\mathcal{B}_1 = \{v_1, ..., v_n\}$ e $\mathcal{B}_2 = \{w_1, ..., w_n\}$ duas bases ordenadas de V. Seja $S_{\mathcal{B}_1 \to \mathcal{B}_2}$ a matriz cujas colunas são as coordenadas dos vectores de \mathcal{B}_1 em relação à base \mathcal{B}_2 . Isto é,

$$S_{\mathcal{B}_1 \to \mathcal{B}_2} = (s_{ij})_{n \times n}$$
 com $v_j = \sum_{i=1}^n s_{ij} w_i$ para todo o $j = 1, ..., n$.

A matriz $S_{\mathcal{B}_1 \to \mathcal{B}_2}$ é invertível e chama-se **matriz de mudança de base** (da base \mathcal{B}_1 para \mathcal{B}_2). Assim, se tivermos

$$u = \sum_{i=1}^{n} \lambda_i v_i,$$

isto é, se $(\lambda_1, ..., \lambda_n)$ forem as coordenadas do vector u na base \mathcal{B}_1 então as coordenadas $(\mu_1, ..., \mu_n)$ de u na base \mathcal{B}_2 são dadas por

$$\begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} = S_{\mathcal{B}_1 \to \mathcal{B}_2} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

Dem. Tem-se

$$u = \sum_{i=1}^{n} \mu_i w_i = \sum_{j=1}^{n} \lambda_j v_j = \sum_{j=1}^{n} \lambda_j \sum_{i=1}^{n} s_{ij} w_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} s_{ij} \lambda_j \right) w_i.$$

como as coordenadas de um vector u numa base são únicas, tem-se para todo o i=1,...,n,

$$\mu_i = \left(\sum_{j=1}^n s_{ij} \lambda_j\right). \quad \text{Isto \'e}, \quad \left[\begin{array}{c} \mu_1 \\ \vdots \\ \mu_n \end{array}\right] = S_{\mathcal{B}_1 \to \mathcal{B}_2} \left[\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_n \end{array}\right].$$

Teorema 41. Tem-se

$$S_{\mathcal{B}_2 \to \mathcal{B}_1} = \left(S_{\mathcal{B}_1 \to \mathcal{B}_2} \right)^{-1}.$$

Exemplo 30. Consideremos

$$\mathcal{B}_c = \{(1,0), (0,1)\}$$

a base canónica de \mathbb{R}^2 . Seja

$$\mathcal{B} = \{(1,2), (3,4)\}$$

uma outra base ordenada de \mathbb{R}^2 . Sejam (5,6) as coordenadas de um vector u na base canónica \mathcal{B}_c e determinemos as coordenadas de u na base \mathcal{B} usando a matriz de mudança de base $S_{\mathcal{B}_c \to \mathcal{B}}$. Tem-se

$$S_{\mathcal{B}_c \to \mathcal{B}} = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix},$$

uma vez que

$$(1,0) = -2(1,2) + 1(3,4)$$
 e $(0,1) = \frac{3}{2}(1,2) - \frac{1}{2}(3,4)$. (*)

Logo, as coordenadas de u na base \mathcal{B} são dadas por

$$S_{\mathcal{B}_c \to \mathcal{B}} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.$$

Logo, -1 e 2 são as coordenadas de (5,6) na base ordenada \mathcal{B} , isto é

$$(5,6) = -1(1,2) + 2(3,4).$$

Observação 23. Colocando os vectores em coluna, note que as duas igualdades em (*) podem ser escritas na forma:

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right] \left[\begin{array}{cc} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{array}\right]$$

sendo esta última igualdade equivalente a

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}}_{=\begin{bmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{bmatrix}^{-1}} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \Leftrightarrow \begin{cases} (1,2) = 1(1,0) + 2(0,1) \\ (3,4) = 3(1,0) + 4(0,1) \end{cases}$$

querendo isto dizer que as coordenadas dos vectores (1,2) e (3,4) relativamente à base canónica (ordenada) $\{(1,0),(0,1)\}$ são respectivamente (1,2) e (3,4).

Transformações lineares

Definição 37. Sejam U e V espaços lineares. Diz-se que

$$T:U\to V$$

é uma transformação linear se e só se verificar as duas condições:

- (i) T(u+v) = T(u) + T(v), para todos os $u, v \in U$.
- (ii) $T(\lambda u) = \lambda T(u)$, para todos os $u \in U$ e escalares λ .

Observação 24. Sejam U e V espaços lineares. Sejam $\mathbf 0$ o vector nulo de U e $\mathbf 0'$ o vector nulo de V.

- (i) Se $T: U \to V$ fôr uma transformação linear então T(U) é um subespaço de V e além disso tem-se $T(\mathbf{0}) = \mathbf{0}'$ ($T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}) \Leftrightarrow T(\mathbf{0}) = \mathbf{0}'$). Logo, se T não verificar $T(\mathbf{0}) = \mathbf{0}'$ então T não será uma transformação linear.
 - (ii) $T: U \to V$ é uma transformação linear se e só se

$$T(\lambda u + \mu v) = \lambda T(u) + \mu T(v),$$

para todos os $u, v \in U$ e escalares λ, μ .

(iii) Seja $T:U\to V$ uma transformação linear, com $U=L(\{v_1,...,v_n\})$. Seja $u\in U$. Logo, existem escalares $\lambda_1,...,\lambda_n$ tais que

$$u = \lambda_1 v_1 + \dots + \lambda_n v_n.$$

Tem-se então

$$T(u) = \lambda_1 T(v_1) + \dots + \lambda_n T(v_n).$$

Exemplo 31. Consideremos a base canónica $\{(1,0),(0,1)\}$ de \mathbb{R}^2 . Seja

$$T: \mathbb{R}^2 \to \mathbb{R}$$

uma transformação linear tal que $T\left(1,0\right)=1$ e $T\left(0,1\right)=1.$

Para qualquer $(x, y) \in \mathbb{R}^2$ tem-se

$$(x,y) = x(1,0) + y(0,1).$$

Então,

$$T(x,y) = T(x(1,0) + y(0,1)) = xT(1,0) + yT(0,1) = x + y.$$

Logo, $T:\mathbb{R}^2 \to \mathbb{R}$ é a transformação linear definida explicitamente por

$$T(x,y) = x + y.$$

Teorema 42. Sejam U e V espaços lineares e seja $\{v_1,...,v_n\}$ uma base de U. Sejam $T_1,T_2:U\to V$ duas transformações lineares.

Se
$$T_1(v_i) = T_2(v_i)$$
 para todo o $i = 1, ..., n$, então $T_1(u) = T_2(u)$,

para todo o $u \in U$, isto é, $T_1 = T_2$.

Exemplo 32. (i) Sejam U e V espaços lineares e seja $\mathbf 0$ o vector nulo de V. Seja $O:U\to V$ definida por

$$O(u) = \mathbf{0},$$

para todo o $u \in U$. O é uma transformação linear e chama-se **transformação nula**.

(ii) Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Seja

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

definida por

$$T(u) = Au,$$

para todo o $u \in \mathbb{R}^n$. T é uma transformação linear.

(iii) Sejam V um espaço linear e k um escalar (fixo). Seja $T_k: V \to V$ definida por

$$T_k(v) = kv,$$

para todo o $v \in V$.

 T_k é uma transformação linear. Diz-se que T_k é uma **homotetia**.

Se 0 < k < 1 diz-se que T_k é uma contracção.

Se k > 1 diz-se que T_k é uma dilatação.

Se k=1 então chama-se a T_1 a **transformação identidade** e denota-se por I. Tem-se

$$I(u) = u,$$

para todo o $u \in U$.

- (iv) $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x,y) = (1-y,2x) não é uma transformação linear.
- (v) $T: \mathbb{R}^2 \to \mathbb{R}$ definida por T(x,y) = xy não é uma transformação linear.
- (vi) Seja $T: \mathcal{P}_2 \to \mathcal{P}_3$ definida por

$$T\left(p\left(t\right) \right) =tp\left(t\right) .$$

T é uma transformação linear.

(vii) Seja $T: \mathcal{P}_3 \to \mathcal{P}_1$ definida por

$$T\left(p\right) =p^{\prime\prime}.$$

T é uma transformação linear.

(viii) Seja $T: C^{1}(\mathbb{R}) \to C(\mathbb{R})$ definida por

$$T\left(f\right) =f^{\prime },$$

onde $C^1(\mathbb{R})$ é o espaço linear de todas as funções reais com primeira derivada contínua em \mathbb{R} e $C(\mathbb{R})$ é o espaço linear de todas as funções reais contínuas em \mathbb{R} . T é uma transformação linear.

(ix) Seja $a \in \mathbb{R}$ (fixo). Seja $T: C^1(\mathbb{R}) \to \mathbb{R}$ definida por

$$T(f) = f'(a)$$
.

T é uma transformação linear.

(x) Seja $n \in \mathbb{N}$. Seja $T: C^{n}(\mathbb{R}) \to C(\mathbb{R})$ definida por

$$T\left(f\right) = f^{(n)},$$

onde $f^{(n)}$ é a derivada de ordem n de f, $C^n(\mathbb{R})$ é o espaço linear de todas as funções reais com derivada de ordem n contínua em \mathbb{R} e $C(\mathbb{R})$ é o espaço linear de todas as funções reais contínuas em \mathbb{R} . T é uma transformação linear.

(xi) Seja $T: C(\mathbb{R}) \to C^1(\mathbb{R})$ definida por

$$T\left(f\right) = \int_{0}^{x} f\left(t\right) dt.$$

T é uma transformação linear.

(xii) Seja $T: C([a,b]) \to \mathbb{R}$ definida por

$$T(f) = \int_{a}^{b} f(t) dt.$$

T é uma transformação linear.

(xiii) Seja $T: \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathcal{M}_{n \times n}(\mathbb{R})$ definida por

$$T(X) = X^T$$
.

T é uma transformação linear.

(xiv) Seja $T: \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathcal{M}_{n \times n}(\mathbb{R})$ definida por

$$T(X) = AX,$$

com $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ fixa. T é uma transformação linear.

(xv) Seja

$$\operatorname{tr}: \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathbb{R}$$

definida por

$$\operatorname{tr}(A) = a_{11} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii},$$

para todo o $A = (a_{ij})_{n \times n} \in \mathcal{M}_{n \times n}(\mathbb{R})$, isto é, $\operatorname{tr}(A)$ é a soma de todas as entradas da diagonal principal de A. O **traço**, tr, é uma transformação linear, isto é, sendo $A = (a_{ij})_{n \times n}$ e $B = (b_{ij})_{n \times n}$ duas matrizes do tipo $n \times n$ e α um escalar, tem-se

$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$$
 e $\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A)$.

Além disso, tem-se

$$\operatorname{tr}(A^T) = \operatorname{tr}(A)$$
 e $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Definição 38. Sejam U e V espaços lineares e $T_1, T_2 : U \to V$ transformações lineares. Seja λ um escalar. Sejam $T_1 + T_2, \lambda T_1 : U \to V$ definidas por

$$(T_1 + T_2)(u) = T_1(u) + T_2(u)$$
 e $(\lambda T_1)(u) = \lambda T_1(u)$,

para todo o $u \in U$.

Definição 39. Sejam U e V espaços lineares. Chama-se a $\mathfrak{L}(U,V)$ o conjunto de **todas** as transformações lineares de U em V.

Teorema 43. Sejam U e V espaços lineares e $T_1, T_2 : U \to V$ transformações lineares. Seja λ um escalar. Então:

- (i) $T_1 + T_2$ e λT_1 são transformações lineares.
- (ii) O conjunto $\mathfrak{L}(U,V)$, com as operações da definição 38, é um espaço linear.

Exemplo 33. Seja $\mathcal{B} = \{T_1, T_2, T_3, T_4\}$ com $T_1, T_2, T_3, T_4 \in \mathfrak{L}(\mathbb{R}^2, \mathbb{R}^2)$ definidas por

$$T_1(x,y) = (x,0), T_2(x,y) = (y,0), T_3(x,y) = (0,x) \in T_4(x,y) = (0,y),$$

para todo o $(x,y) \in \mathbb{R}^2$. O conjunto \mathcal{B} é uma base de $\mathfrak{L}(\mathbb{R}^2,\mathbb{R}^2)$. Logo,

$$\dim \mathfrak{L}(\mathbb{R}^2, \mathbb{R}^2) = 4.$$

Definição 40. Sejam U,V e W espaços lineares e, $T_2:U\to V$ e $T_1:V\to W$ transformações lineares. Seja $T_1\circ T_2:U\to W$ definida por

$$(T_1 \circ T_2)(u) = T_1(T_2(u)),$$

para todo o $u \in U$. Chama-se a $T_1 \circ T_2$ a **composição de** T_1 com T_2 .

Observação 25. Em geral, tem-se $T_1 \circ T_2 \neq T_2 \circ T_1$.

Teorema 44. (i) Sejam $T_2:U\to V$ e $T_1:V\to W$ transformações lineares. Então $T_1\circ T_2$ é uma transformação linear.

- (ii) Sejam $T_3:U\to V,\,T_2:V\to W$ e $T_1:W\to X$. Então, tem-se $T_1\circ (T_2\circ T_3)=(T_1\circ T_2)\circ T_3$.
 - (iii) Sejam $T_4: W \to U, T_2, T_3: U \to V \text{ e } T_1: V \to W.$ Seja $\lambda \in \mathbb{R}$. Então, tem-se $T_1 \circ (T_2 + T_3) = T_1 \circ T_2 + T_1 \circ T_3 \text{ e } T_1 \circ (\lambda T_2) = \lambda \left(T_1 \circ T_2 \right).$ $(T_2 + T_3) \circ T_4 = T_2 \circ T_4 + T_3 \circ T_4 \text{ e } (\lambda T_3) \circ T_4 = \lambda \left(T_3 \circ T_4 \right).$

Definição 41. Define-se $T^0 = I$ e $T^k = T \circ T^{k-1}$, para todo o k = 1, 2, ...

Observação 26. Tem-se $T^{m+n} = T^m \circ T^n$ para todos os $m, n \in \mathbb{N}$.

Definição 42. Sejam U e V espaços lineares e $T:U\to V$ uma transformação linear. Seja ${\bf 0}$ o vector nulo de V.

(i) Chama-se **contradomínio** ou imagem de T ao conjunto

$$T(U) = \{T(u) : u \in U\},\,$$

que também se denota por $\mathcal{I}(T)$.

Note-se que se existir $\{u_1,...,u_k\} \subset U$ tal que $U = L(\{u_1,...,u_k\})$ então

$$\mathcal{I}(T) = L\left(\left\{T\left(u_{1}\right), ..., T\left(u_{k}\right)\right\}\right).$$

(ii) Chama-se **núcleo** ou espaço nulo de T ao conjunto

$$\mathcal{N}(T) = \{ u \in U : T(u) = \mathbf{0} \}.$$

Teorema 45. Sejam U e V espaços lineares e $T:U\to V$ uma transformação linear. Então, os conjuntos $\mathcal{N}(T)$ e $\mathcal{I}(T)$ são subespaços de U e V respectivamente.

Exemplo 34. (i) Sejam U e V espaços lineares. Sejam $\mathbf{0}$ e $\mathbf{0}'$ os vectores nulos de U e V respectivamente.

Considere a transformação nula $O: U \to V$ definida por

$$O(u) = \mathbf{0}',$$

para todo o $u \in U$. Tem-se

$$\mathcal{N}(O) = U \text{ e } \mathcal{I}(O) = \{\mathbf{0}'\}.$$

(ii) Considere a transformação identidade $I: U \to U$ definida por

$$I(u) = u,$$

para todo o $u \in U$. Tem-se

$$\mathcal{N}(I) = \{\mathbf{0}\} \quad \text{e} \quad \mathcal{I}(I) = U.$$

(iii) Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Seja

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

definida por

$$T(u) = Au$$
,

para todo o $u \in \mathbb{R}^n$. Tem-se

$$\mathcal{N}(T) = \mathcal{N}(A)$$
 e $\mathcal{I}(T) = \mathcal{C}(A)$.

(iv) Seja $T: C^{1}(\mathbb{R}) \to C(\mathbb{R})$ definida por

$$T(f) = f'$$
.

Tem-se

$$\mathcal{N}(T) = \{ f : \mathbb{R} \to \mathbb{R} \text{ tal que } f \text{ \'e constante em } \mathbb{R} \}$$
 e $\mathcal{I}(T) = C(\mathbb{R})$.

(v) Seja $T: C^2(\mathbb{R}) \to C(\mathbb{R})$ definida por

$$T(f(t)) = f''(t) + \omega^2 f(t),$$

 $com \ \omega \in \mathbb{R} \setminus \{0\}$. Tem-se (pág. 72 de [1])

$$\mathcal{N}(T) = L\left(\left\{\cos\left(\omega t\right), \sin\left(\omega t\right)\right\}\right),\,$$

onde $\{\cos(\omega t), \sin(\omega t)\}$ é uma base de $\mathcal{N}(T)$. Observe-se que $\mathcal{N}(T)$ é precisamente a solução geral da equação diferencial linear homogénea

$$f''(t) + \omega^2 f(t) = 0.$$

(vi) Seja $T: C^{2}(\mathbb{R}) \to C(\mathbb{R})$ definida por

$$T(f(t)) = f''(t) - \omega^2 f(t),$$

 $\operatorname{com} \omega \in \mathbb{R} \setminus \{0\}$. Tem-se (pág. 74 de [1])

$$\mathcal{N}(T) = L\left(\left\{e^{-\omega t}, e^{\omega t}\right\}\right),$$

onde $\{e^{-\omega t}, e^{\omega t}\}$ é uma base de $\mathcal{N}(T)$. Note-se que $\mathcal{N}(T)$ é precisamente a solução geral da equação diferencial linear homogénea

$$f''(t) - \omega^2 f(t) = 0.$$

Definição 43. $T: U \to V$ diz-se **injectiva** se e só se

$$T(u) = T(w) \Rightarrow u = w,$$

para todos os $u, w \in U$, isto é, se e só se

$$u \neq w \Rightarrow T(u) \neq T(w),$$

para todos os $u, w \in U$.

Teorema 46. (i) Sejam U e V espaços lineares. Seja $T:U\to V$ uma qualquer transformação linear. Então:

$$T \text{ \'e injectiva } \Leftrightarrow \mathcal{N}(T) = \{\mathbf{0}\}.$$

(ii) Sejam U um espaço linear de dimensão finita e T uma transformação linear definida em U. Então, o subespaço $\mathcal{I}(T)$ tem dimensão finita e

$$\dim \mathcal{N}(T) + \dim \mathcal{I}(T) = \dim U.$$

- **Dem.** (i) (\Rightarrow) Suponhamos que T é injectiva. Seja $u \in \mathcal{N}(T)$. Logo $T(u) = \mathbf{0}_V$ $= T(\mathbf{0}_U)$, pelo que $u = \mathbf{0}$ uma vez que T é injectiva. Logo $\mathcal{N}(T) = \{\mathbf{0}\}$.
- (\Leftarrow) Suponhamos que $\mathcal{N}(T) = \{\mathbf{0}\}$. Sejam $u, v \in U$ tais que T(u) = T(v). Logo $T(u-v) = \mathbf{0}$, pelo que $u-v = \mathbf{0}$ uma vez que $\mathcal{N}(T) = \{\mathbf{0}\}$. Logo u = v e assim T é injectiva.
- (ii) Se dim $\mathcal{N}(T) = 0$ então T é injectiva, pela alínea (i). Suponhamos que dim U = n. Considerando uma base $\{w_1, ..., w_n\}$ de U, vamos mostrar que o conjunto de n vectores $\{T(w_1), ..., T(w_n)\}$ é uma base de $\mathcal{I}(T)$.

Seja $v \in \mathcal{I}(T)$. Existe então $u \in U$ tal que v = T(u). Como $\{w_1, ..., w_n\}$ é base de U, existem escalares (únicos) $\alpha_1, ..., \alpha_n$ tais que $u = \sum_{i=1}^n \alpha_i w_i$. Logo, como T é linear,

 $v = T(u) = \sum_{i=1}^{n} \alpha_i T(w_i)$ concluindo-se deste modo que o conjunto $\{T(w_1), ..., T(w_n)\}$ gera $\mathcal{I}(T)$.

Sejam agora $\beta_1, ..., \beta_n$ escalares tais que $\beta_1 T\left(w_1\right) + ... + \beta_n T\left(w_n\right) = \mathbf{0}$. A última igualdade é equivalente a $T\left(\beta_1 w_1 + ... + \beta_n w_n\right) = \mathbf{0}$ uma vez que T é linear. Logo, como T é injectiva, obtém-se $\beta_1 w_1 + ... + \beta_n w_n = \mathbf{0}$ e, deste modo, $\beta_1 = ... = \beta_n = 0$ uma vez que o conjunto $\{w_1, ..., w_n\}$ é linearmente independente.

Seja $n = \dim U$. Suponhamos agora que $\dim \mathcal{N}(T) \neq 0$. Seja $r = \dim \mathcal{N}(T)$ e seja $\{u_1, ..., u_r\}$ uma base de $\mathcal{N}(T)$. Considere-se os vectores $u_{r+1}, ..., u_n \in U$ de modo a que $\{u_1, ..., u_r, u_{r+1}, ..., u_n\}$ seja uma base de U. Vejamos que $\{T(u_{r+1}), ..., T(u_n)\}$ é uma base de $\mathcal{I}(T)$.

Seja $v \in \mathcal{I}(T)$. Existe então $u \in U$ tal que v = T(u). Como $\{u_1, ..., u_n\}$ é base de U, existem escalares (únicos) $\alpha_1, ..., \alpha_n$ tais que $u = \sum_{i=1}^n \alpha_i u_i$. Logo, como T é linear,

 $v = T(u) = \sum_{i=1}^{n} \alpha_i T(u_i)$ concluindo-se deste modo que o conjunto

$$\{T(u_1),...,T(u_n)\} = \{T(u_{r+1}),...,T(u_n)\}$$

gera $\mathcal{I}(T)$.

Sejam agora $\beta_{r+1},...,\beta_n$ escalares tais que $\beta_{r+1}T(u_{r+1}) + ... + \beta_nT(u_n) = \mathbf{0}$. A última igualdade é equivalente a $T(\beta_{r+1}u_{r+1} + ... + \beta_nu_n) = \mathbf{0}$ uma vez que T é linear. Logo $\beta_{r+1}u_{r+1} + ... + \beta_nu_n \in \mathcal{N}(T)$. Por outro lado, como $\{u_1,...,u_r\}$ é base de $\mathcal{N}(T)$, existem escalares (únicos) $\gamma_1,...,\gamma_r$ tais que

$$\beta_{r+1}u_{r+1} + \dots + \beta_n u_n = \sum_{i=1}^r \gamma_i u_i,$$

ou seja

$$\sum_{i=1}^{r} (-\gamma_i) u_i + \sum_{i=r+1}^{n} \beta_i u_i = \mathbf{0}$$

de onde se obtem

$$\gamma_1 = \dots = \gamma_r = \beta_{r+1} = \dots = \beta_n = 0$$

uma vez que o conjunto $\{u_1,...,u_r\}$ é linearmente independente. Assim $\beta_{r+1}=...=\beta_n=0$ e deste modo, o conjunto $\{T\left(u_{r+1}\right),...,T\left(u_n\right)\}$ é linearmente independente.

Exemplo 35. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Seja $T : \mathbb{R}^n \to \mathbb{R}^m$ tal que T(u) = Au, para todo o $u \in \mathbb{R}^n$. Tem-se $\mathcal{N}(A) = \mathcal{N}(T)$ e $\mathcal{C}(A) = \mathcal{I}(T)$. Como

$$\operatorname{car} A + \operatorname{nul} A = n = \dim \mathbb{R}^n = \dim \mathcal{C}(A) + \dim \mathcal{N}(A) = \operatorname{car} A + \dim \mathcal{N}(A)$$

tem-se

$$\operatorname{nul} A = \dim \mathcal{N}(A).$$

Por outro lado, como $\mathcal{L}(A)$ e $\mathcal{N}(A)$ são subespaços de \mathbb{R}^n então $\mathcal{L}(A) + \mathcal{N}(A) = L\left(\mathcal{L}(A) \cup \mathcal{N}(A)\right)$ é também um subepaço de \mathbb{R}^n e atendendo a que $\mathcal{L}(A) \cap \mathcal{N}(A) = \{\mathbf{0}\}$ tem-se

$$\dim \mathbb{R}^n = \dim \mathcal{C}(A) + \dim \mathcal{N}(A) = \dim \mathcal{L}(A) + \dim \mathcal{N}(A) =$$

$$= \dim (\mathcal{L}(A) + \mathcal{N}(A)) - \dim (\mathcal{L}(A) \cap \mathcal{N}(A)) =$$

$$= \dim (\mathcal{L}(A) + \mathcal{N}(A)).$$

Logo

$$\mathbb{R}^n = \mathcal{L}(A) \oplus \mathcal{N}(A).$$

Definição 44. (i) $T: U \to V$ diz-se sobrejectiva se e só se T(U) = V.

(ii) $T:U\to V$ diz-se bijectiva se e só se fôr injectiva e sobrejectiva.

Definição 45. Sejam U e V espaços lineares. Diz-se que U e V são isomorfos se e só se existir um **isomorfismo** entre U e V, isto é, se e só se existir uma transformação linear bijectiva $T: U \to V$. Sendo U e V isomorfos escreve-se

$$U \cong V$$
.

Teorema 47. Sejam U e V dois espaços lineares de dimensões finitas. Então, U e V são isomorfos se e só se dim U = dim V.

Teorema 48. (i) Qualquer espaço linear real de dimensão n é isomorfo a \mathbb{R}^n .

- (ii) Sejam U e V dois espaços lineares de dimensões finitas. A transformação linear $T:U\to V$ é sobrejectiva se e só se T transformar um qualquer conjunto gerador de U num conjunto gerador de V.
- (iii) Sejam U e V dois espaços lineares de dimensões finitas. Se a transformação linear $T: U \to V$ fôr sobrejectiva então dim $V < \dim U$.
- (iv) Sejam U e V dois espaços lineares de dimensões finitas. Se a transformação linear $T: U \to V$ fôr injectiva então dim $U \le \dim V$.

Exemplo 36. (i) A transformação linear $T: \mathbb{R}^n \to \mathcal{M}_{n \times 1}(\mathbb{R})$ definida por $T(a_1, ..., a_n) = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, é um isomorfismo. Logo $\mathbb{R}^n \cong \mathcal{M}_{n \times 1}(\mathbb{R})$.

(ii) A transformação linear $T: \mathcal{M}_{m \times n}(\mathbb{R}) \to \mathbb{R}^{mn}$ definida por

$$T\left(\left[\begin{array}{ccc} a_{11} & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{mn} \end{array}\right]\right) = (a_{11}, ..., a_{m1}, ..., a_{1n}, ..., a_{mn}),$$

é um isomorfismo. Logo $\mathcal{M}_{m \times n}(\mathbb{R}) \cong \mathbb{R}^{mn}$.

(iii) A transformação linear $T: \mathbb{R}^{n+1} \to \mathcal{P}_n$ definida por

$$T(a_0, a_1, ..., a_n) = a_0 + a_1 t + ... + a_n t^n,$$

é um isomorfismo. Logo $\mathbb{R}^{n+1} \cong \mathcal{P}_n$.

(iv) Seja A uma matriz $m \times n$. Os espaços $\mathcal{C}(A)$ e $\mathcal{L}(A)$ são isomorfos pois têm a mesma dimensão (car A).

$$C(A) \cong L(A)$$
.

Teorema 49. Sejam U e V espaços lineares de dimensões finitas tais que

$$\dim U = \dim V$$
.

Seja $T:U\to V$ uma transformação linear. Então, T é injectiva se e só se T é sobrejectiva.

Definição 46. Diz-se que $T:U\to V$ é invertível se existir $S:T(U)\to U$ tal que

$$S \circ T = I_U \text{ e } T \circ S = I_{T(U)},$$

onde I_U e $I_{T(U)}$ são as funções identidade em U e T(U) respectivamente. Chama-se a S a inversa de T e escreve-se

$$S = T^{-1}.$$

Teorema 50. Sejam U e V espaços lineares de dimensões finitas. Seja

$$T:U\to V$$

uma transformação linear. Seja $\mathbf{0}$ o vector nulo de U. As seguintes afirmações são equivalentes.

- (i) T é injectiva.
- (ii) $\mathcal{N}(T) = \{0\}.$
- (iii) T é invertível e a inversa $T^{-1}: T(U) \to U$ é linear.
- (iv) $\dim U = \dim T(U)$.
- (v) T transforma vectores linearmente independentes de U em vectores linearmente independentes de V.
 - (vi) T transforma bases de U em bases de T(U).

Teorema 51. Sejam U e V espaços lineares. Seja $T:U\to V$ uma transformação linear. Seja $b\in V$. Então:

- (i) Existência de solução: a equação linear T(u) = b tem sempre solução (para qualquer b) se e só se T fôr sobrejectiva (T(U) = V);
- (ii) Unicidade de solução: a equação linear T(u) = b a ter solução, ela é única se e só se T fôr injectiva;
- (iii) Existência e unicidade de solução: a equação linear T(u) = b tem solução única u se e só se T fôr bijectiva.

Teorema 52. Sejam U e V espaços lineares. Seja $T:U\to V$ uma transformação linear. Seja $b\in V$. A solução geral da equação linear T(u)=b obtém-se somando a uma solução particular dessa equação, a solução geral da equação linear homogénea $T(u)=\mathbf{0}$ ($\mathcal{N}(T)$).

Teorema 53. (Representação matricial de uma transformação linear). Sejam U e V espaços lineares de dimensões finitas tais que dim U = n e dim V = m. Sejam $\mathcal{B}_1 = \{u_1, ..., u_n\}$ e $\mathcal{B}_2 = \{v_1, ..., v_m\}$ duas bases ordenadas de U e V respectivamente. Seja $T: U \to V$ uma transformação linear. Considere-se a matriz $A = (a_{ij})_{m \times n}$ cuja coluna j, para cada j = 1, ..., n, é formada pelas coordenadas de $T(u_j)$ na base \mathcal{B}_2 . Isto é,

$$T(u_j) = \sum_{i=1}^m a_{ij} v_i.$$

Chama-se a esta matriz A a **representação matricial** de T em relação às bases \mathcal{B}_1 e \mathcal{B}_2 e escreve-se

$$A=M(T;\mathcal{B}_1;\mathcal{B}_2).$$

Além disso, sendo $\alpha_1, ..., \alpha_n$ as coordenadas de um vector $u \in U$ na base ordenada \mathcal{B}_1 então as coordenadas $\beta_1, ..., \beta_m$ de $T(u) \in V$ na base ordenada \mathcal{B}_2 são dadas por

$$\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} = M(T; \mathcal{B}_1; \mathcal{B}_2) \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Observação 27. MUITO IMPORTANTE. Nas condições do teorema anterior, temse

$$u = \sum_{j=1}^{n} \alpha_{j} u_{j} \in \mathcal{N}(T) \Leftrightarrow (\alpha_{1}, ..., \alpha_{n}) \in \mathcal{N}(A)$$

$$v = \sum_{i=1}^{m} \beta_i v_i \in \mathcal{I}(T) \Leftrightarrow (\beta_1, ..., \beta_m) \in \mathcal{C}(A)$$

uma vez que

$$T(u) = T\left(\sum_{j=1}^{n} \alpha_{j} u_{j}\right) \underset{T \text{ \'e linear}}{=} \sum_{j=1}^{n} \alpha_{j} T(u_{j}) = \sum_{j=1}^{n} \alpha_{j} \sum_{i=1}^{m} a_{ij} v_{i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \alpha_{j}\right) v_{i}$$

e sendo $\{v_1, v_2, ..., v_m\}$ uma base de V tem-se

$$u \in \mathcal{N}(T) \Leftrightarrow T(u) = \mathbf{0} \Leftrightarrow \left(\sum_{j=1}^{n} a_{ij}\alpha_{j} = 0, \text{ para } i = 1, ..., m\right) \Leftrightarrow (\alpha_{1}, ..., \alpha_{n}) \in \mathcal{N}(A).$$

Além disso:

$$\mathcal{I}(T) = L(\{T(u_1), ..., T(u_n)\}) =$$

$$= L(\{a_{11}v_1 + ... + a_{m1}v_m, ..., a_{1n}v_1 + ... + a_{mn}v_m\}).$$

Teorema 54. Seja V um espaço linear de dimensão finita, com dim V = n. Sejam $\mathcal{B}_1 = \{u_1, ..., u_n\}$ e $\mathcal{B}_2 = \{v_1, ..., v_n\}$ duas bases ordenadas de V. A representação matricial da transformação identidade $I: V \to V$ em relação às bases \mathcal{B}_1 e \mathcal{B}_2 é igual à matriz de mudança da base \mathcal{B}_1 para \mathcal{B}_2 . Isto é,

$$M(I; \mathcal{B}_1; \mathcal{B}_2) = S_{\mathcal{B}_1 \to \mathcal{B}_2}.$$

Teorema 55. Sejam U e V espaços lineares tais que dim U=n e dim V=m. Seja $T:U\to V$ uma transformação linear. Sejam \mathcal{B}_1 e \mathcal{B}_2 bases (ordenadas) de U e V respectivamente. Seja

$$A = M(T; \mathcal{B}_1; \mathcal{B}_2) \in \mathcal{M}_{m \times n}(\mathbb{R})$$

a matriz que representa T em relação às bases \mathcal{B}_1 e \mathcal{B}_2 . Tem-se então:

(i)
$$\dim \mathcal{N}(T) = \operatorname{nul} A$$
;

- (ii) $\dim \mathcal{I}(T) = \operatorname{car} A$;
- (iii) T é injectiva se e só se nul A = 0, isto é, se e só se car A = n;
- (iv) T é sobrejectiva se e só se car A = m.

Teorema 56. Sejam $\mathcal{B}_c^n = \{e_1, ..., e_n\}$ e $\mathcal{B}_c^m = \{e_1', ..., e_m'\}$ as bases canónicas (ordenadas) de \mathbb{R}^n e \mathbb{R}^m respectivamente. Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ uma transformação linear. Considere-se a matriz $A = (a_{ij})_{m \times n} = M(T; \mathcal{B}_c^n; \mathcal{B}_c^m) \in \mathcal{M}_{m \times n}(\mathbb{R})$ cuja coluna j, para cada j = 1, ..., n, é formada pelas coordenadas de $T(e_j)$ na base \mathcal{B}_c^m . Isto é,

$$T(e_j) = \sum_{i=1}^m a_{ij} e'_i = a_{1j} \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} + \dots + a_{mj} \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix} = \begin{bmatrix} a_{1j}\\\vdots\\a_{mj} \end{bmatrix}.$$

Então, tem-se, para todo o $u \in \mathbb{R}^n$,

$$T(u) = T(\lambda_1, ..., \lambda_n) = T\left(\sum_{j=1}^n \lambda_j e_j\right) = \sum_{j=1}^n \lambda_j T(e_j) = \sum_{j=1}^n \lambda_j \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} = Au.$$

Dem. Seja $u \in \mathbb{R}^n$. Então, existem $\lambda_1, ..., \lambda_n \in \mathbb{R}$ tais que

$$u = \lambda_1 e_1 + \dots + \lambda_n e_n = \sum_{j=1}^n \lambda_j e_j.$$

Uma vez que, para todo o j=1,...,n, $T(e_j)=\sum_{i=1}^m a_{ij}e_i',$ tem-se

$$T(u) = T\left(\sum_{j=1}^{n} \lambda_{j} e_{j}\right) \underset{\text{T \'e linear}}{=} \sum_{j=1}^{n} \lambda_{j} T(e_{j}) = \sum_{j=1}^{n} \lambda_{j} \sum_{i=1}^{m} a_{ij} e'_{i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \lambda_{j}\right) e'_{i} =$$

$$= \left(\sum_{j=1}^{n} a_{1j} \lambda_{j}, \dots, \sum_{j=1}^{n} a_{mj} \lambda_{j}\right) = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ & \dots & \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{bmatrix} = Au.$$

Observação 28. No caso em que $U = \mathbb{R}^n$, $V = \mathbb{R}^m$ e $\mathcal{B}_1 = \mathcal{B}_c^n$, $\mathcal{B}_2 = \mathcal{B}_c^m$, tem-se:

$$\mathcal{N}(T) = \mathcal{N}(A)$$
 e $\mathcal{I}(T) = \mathcal{C}(A)$,

uma vez que neste caso as coordenadas de um vector numa base coincidem com o próprio vector.

Exemplo 37. (i) Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ definida por

$$T(x, y, z, w) = (3x + y - 2z, 0, x + 4z).$$

T é uma transformação linear e a matriz $M(T; \mathcal{B}_c^4; \mathcal{B}_c^3)$ que representa T em relação às bases canónicas (ordenadas) \mathcal{B}_c^4 e \mathcal{B}_c^3 de \mathbb{R}^4 e \mathbb{R}^3 respectivamente, é dada por

$$A = M(T; \mathcal{B}_c^4; \mathcal{B}_c^3) = \begin{bmatrix} 3 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 4 & 0 \end{bmatrix},$$

uma vez que T(1,0,0,0) = (3,0,1), T(0,1,0,0) = (1,0,0), T(0,0,1,0) = (-2,0,4) e T(0,0,0,1) = (0,0,0).

Tem-se então:

$$T(x, y, z, w) = M(T; \mathcal{B}_c^4; \mathcal{B}_c^3) \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = (3x + y - 2z, 0, x + 4z).$$

Além disso, tem-se

$$\mathcal{N}(T) = \mathcal{N}(A) = \{(x, y, z, w) \in \mathbb{R}^4 : y = 14z \text{ e } x = -4z\} = \{(-4z, 14z, z, w) : z, w \in \mathbb{R}\} = L(\{(-4, 14, 1, 0), (0, 0, 0, 1)\})$$

e

$$\mathcal{I}(T) = \mathcal{C}(A) = L(\{(3,0,1), (1,0,0)\}).$$

Uma base de $\mathcal{I}(T)$: $\{(3,0,1),(1,0,0)\}$. Uma base de $\mathcal{N}(T)$: $\{(-4,14,1,0),(0,0,0,1)\}$.

(ii) Sejam $\mathcal{B}_1 = \{1, t, t^2\}$ e $\mathcal{B}_2 = \{1, t, t^2, t^3\}$ as bases canónicas (ordenadas) de \mathcal{P}_2 e \mathcal{P}_3 respectivamente. Seja $D: \mathcal{P}_2 \to \mathcal{P}_3$ tal que D(1) = 0, D(t) = 1 e $D(t^2) = 2t$. D é uma transformação linear e a matriz $M(D; \mathcal{B}_1; \mathcal{B}_2)$ que representa D em relação às bases canónicas \mathcal{B}_1 e \mathcal{B}_2 , é dada por

$$M(D;\mathcal{B}_1;\mathcal{B}_2) = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 2 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight].$$

Além disso tem-se

$$M(D; \mathcal{B}_1; \mathcal{B}_2) \left[egin{array}{c} a_0 \ a_1 \ a_2 \end{array}
ight] = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 2 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight] \left[egin{array}{c} a_0 \ a_1 \ a_2 \end{array}
ight] = \left[egin{array}{c} a_1 \ 2a_2 \ 0 \ 0 \end{array}
ight],$$

isto é, $D(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$, com $a_0, a_1, a_2 \in \mathbb{R}$. Além disso, como

$$\mathcal{N}(D) = \left\{ a_0 + a_1 t + a_2 t^2 : D\left(a_0 + a_1 t + a_2 t^2\right) = \mathbf{0} \right\} = \left\{ a_0 + a_1 t + a_2 t^2 : a_1 = a_2 = 0 \text{ e } a_0 \in \mathbb{R} \right\},$$

tem-se

$$\mathcal{N}(D) = \{a_0 : a_0 \in \mathbb{R}\} = L(\{1\})$$
 e $\mathcal{I}(D) = L(\{1, 2t\})$.

Uma base de $\mathcal{I}(D)$: $\{1, 2t\}$. Uma base de $\mathcal{N}(D)$: $\{1\}$.

(iii) Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear cuja matriz que a representa em relação às bases ordenadas $\mathcal{B}_1 = \{(1,1,1),(0,1,1),(0,0,1)\}$ e $\mathcal{B}_2 = \{(1,1),(1,-1)\}$ de \mathbb{R}^3 e \mathbb{R}^2 respectivamente, é dada por

$$A = M(T; \mathcal{B}_1; \mathcal{B}_2) = \left[egin{array}{ccc} 1 & 2 & 3 \ 2 & 4 & 6 \end{array}
ight].$$

Seja $u \in \mathbb{R}^3$ e sejam $(\alpha_1, \alpha_2, \alpha_3)$ as coordenadas de u em relação à base \mathcal{B}_1 . Tem-se

$$u \in \mathcal{N}(T) \Leftrightarrow (\alpha_1, \alpha_2, \alpha_3) \in \mathcal{N}(A)$$

e como

$$\mathcal{N}(A) = \mathcal{N}\left(\left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 0 & 0 \end{array}\right]\right) = \left\{(-2y - 3z, y, z) : y, z \in \mathbb{R}\right\} = L\left(\left\{(-2, 1, 0), (-3, 0, 1)\right\}\right),$$

logo $\{(-2,1,0),(-3,0,1)\}$ é uma base de $\mathcal{N}(A)$ (uma vez que gera $\mathcal{N}(A)$ e é linearmente independente).

$$\mathcal{N}(T) = \{(-2)(1,1,1) + 1(0,1,1) + 0(0,0,1), (-3)(1,1,1) + 0(0,1,1) + 1(0,0,1)\} = L(\{(-2,-1,-1), (-3,-3,-2)\}).$$

Logo $\{(-2,-1,-1),(-3,-3,-2)\}$ é uma base para $\mathcal{N}(T)$ (uma vez que gera $\mathcal{N}(T)$ e é linearmente independente).

Quanto ao contradomínio:

$$C(A) = L(\{(1,2)\}),$$

logo $\{(1,2)\}$ é uma base de $\mathcal{C}(A)$ (uma vez que gera $\mathcal{C}(A)$ e é linearmente independente).

$$\mathcal{I}(T) = L(\{1(1,1) + 2(1,-1)\}) = L(\{(3,-1)\}).$$

Uma base de $\mathcal{I}(T)$: $\{(3,-1)\}$ (uma vez que gera $\mathcal{I}(T)$ e é linearmente independente). **Note-se que:**

$$\dim \mathcal{N}(T) = \dim \mathcal{N}(A)$$
 $\dim \mathcal{I}(T) = \operatorname{car} A$

e

$$\dim \mathcal{N}(T) + \dim \mathcal{I}(T) = \dim U$$
 (espaço de partida).

Teorema 57. Sejam U, V e W espaços lineares de dimensões finitas. Sejam $\mathcal{B}_1, \mathcal{B}_2$ e \mathcal{B}_3 bases ordenadas de U, V e W respectivamente. Seja λ escalar. Sejam $T_1, T_2 \in \mathfrak{L}(U, V)$ e $T_3 \in \mathfrak{L}(V, W)$. Então, tem-se

$$M(T_1 + \lambda T_2; \mathcal{B}_1; \mathcal{B}_2) = M(T_1; \mathcal{B}_1; \mathcal{B}_2) + \lambda M(T_2; \mathcal{B}_1; \mathcal{B}_2)$$
$$M(T_3 \circ T_1; \mathcal{B}_1; \mathcal{B}_3) = M(T_3; \mathcal{B}_2; \mathcal{B}_3) M(T_1; \mathcal{B}_1; \mathcal{B}_2)$$

Dem. Se $A = M(T_1; \mathcal{B}_1; \mathcal{B}_2)$ e $B = M(T_2; \mathcal{B}_1; \mathcal{B}_2)$

$$(T_1 + \lambda T_2)(u_j) = T_1(u_j) + \lambda T_2(u_j) = \sum_{i=1}^m a_{ij}v_i + \lambda \sum_{i=1}^m b_{ij}v_i = \sum_{i=1}^m (a_{ij} + \lambda b_{ij})v_i$$

Logo

$$M(T_1 + \lambda T_2; \mathcal{B}_1; \mathcal{B}_2) = A + \lambda B = M(T_1; \mathcal{B}_1; \mathcal{B}_2) + \lambda M(T_2; \mathcal{B}_1; \mathcal{B}_2).$$

Sejam agora $A = M(T_3; \mathcal{B}_2; \mathcal{B}_3)$ e $B = M(T_1; \mathcal{B}_1; \mathcal{B}_2)$

$$(T_3 \circ T_1)(u_j) = T_3(T_1(u_j)) = T_3\left(\sum_{i=1}^k b_{ij}w_i\right) = \sum_{i=1}^k b_{ij}T_3(w_i) =$$

$$= \sum_{i=1}^{k} b_{ij} \sum_{l=1}^{m} a_{li} v_l = \sum_{l=1}^{m} \left(\sum_{\substack{i=1 \text{entrada } (l,j) \text{ de } AB}}^{k} v_l \right)$$

Logo

$$M(T_3 \circ T_1; \mathcal{B}_1; \mathcal{B}_3) = AB = M(T_3; \mathcal{B}_2; \mathcal{B}_3)M(T_1; \mathcal{B}_1; \mathcal{B}_2)$$

Teorema 58. Sejam U e V dois espaços lineares de dimensões finitas. Seja $T: U \to V$ uma transformação linear. Sejam \mathcal{B}_1 e \mathcal{B}_2 duas bases ordenadas de U e V respectivamente. Seja $A = M(T; \mathcal{B}_1; \mathcal{B}_2)$ a matriz que representa T em relação às bases \mathcal{B}_1 e \mathcal{B}_2 .

Se V=T(U) então T é invertível se e só se A fôr uma matriz quadrada invertível. Tem-se então

$$A^{-1} = M(T^{-1}; \mathcal{B}_2; \mathcal{B}_1),$$

isto é, A^{-1} será a matriz que representa T^{-1} em relação às bases \mathcal{B}_2 e \mathcal{B}_1 .

Teorema 59. Sejam U e V espaços lineares de dimensões finitas respectivamente n e m. Isto é,

$$\dim U = n$$
 e $\dim V = m$.

Então, os espaços lineares $\mathfrak{L}(U,V)$ e $\mathcal{M}_{m\times n}(\mathbb{R})$ são isomorfos e escreve-se

$$\mathfrak{L}(U,V) \cong \mathcal{M}_{m \times n}(\mathbb{R}).$$

Tendo-se

$$\dim \mathfrak{L}(U,V) = mn.$$

Dem. Fixando bases ordenadas \mathcal{B}_1 e \mathcal{B}_2 para U e V respectivamente,

$$\mathfrak{L}(U,V) \to \mathcal{M}_{m \times n}(\mathbb{R})$$
 $T \to M(T; \mathcal{B}_1; \mathcal{B}_2)$

é uma transformação linear bijectiva.

Logo dim
$$\mathfrak{L}(U,V) = \dim \mathcal{M}_{m \times n}(\mathbb{R}) = mn$$

Teorema 60. Seja V um espaço linear de dimensão finita. Seja $T:V\to V$ uma transformação linear. Sejam \mathcal{B}_1 e \mathcal{B}_2 duas bases ordenadas de V. Seja $M(T;\mathcal{B}_1;\mathcal{B}_1)$ a matriz que representa T em relação à base \mathcal{B}_1 .

Então, a matriz $M(T; \mathcal{B}_2; \mathcal{B}_2)$ que representa T em relação à base \mathcal{B}_2 , é dada por

$$M(T; \mathcal{B}_2; \mathcal{B}_2) = S_{\mathcal{B}_1 \to \mathcal{B}_2} M(T; \mathcal{B}_1; \mathcal{B}_1) (S_{\mathcal{B}_1 \to \mathcal{B}_2})^{-1},$$

onde $S_{\mathcal{B}_1 \to \mathcal{B}_2}$ é a matriz de mudança da base \mathcal{B}_1 para \mathcal{B}_2 .

Isto é, o diagrama seguinte é comutativo.

$$(V, \mathcal{B}_1) \xrightarrow{M(T; \mathcal{B}_1; \mathcal{B}_1)} (V, \mathcal{B}_1)$$

$$S_{\mathcal{B}_1 \to \mathcal{B}_2} \downarrow I \qquad I \downarrow S_{\mathcal{B}_1 \to \mathcal{B}_2}$$

$$(V, \mathcal{B}_2) \xrightarrow{T} (V, \mathcal{B}_2)$$

Note-se que neste caso:

$$T \circ I = I \circ T \Leftrightarrow M(T; \mathcal{B}_2; \mathcal{B}_2) S_{\mathcal{B}_1 \to \mathcal{B}_2} = S_{\mathcal{B}_1 \to \mathcal{B}_2} M(T; \mathcal{B}_1; \mathcal{B}_1) \Leftrightarrow M(T; \mathcal{B}_2; \mathcal{B}_2) = S_{\mathcal{B}_1 \to \mathcal{B}_2} M(T; \mathcal{B}_1; \mathcal{B}_1) \left(S_{\mathcal{B}_1 \to \mathcal{B}_2}\right)^{-1}$$

Teorema 61. Caso geral. Sejam U e V dois espaços lineares de dimensões finitas. Seja $T: U \to V$ uma transformação linear. Sejam \mathcal{B}_1 e \mathcal{B}'_1 duas bases ordenadas de U. Sejam \mathcal{B}_2 e \mathcal{B}'_2 duas bases ordenadas de V. Seja $M(T; \mathcal{B}_1; \mathcal{B}_2)$ a matriz que representa T em relação às bases \mathcal{B}_1 e \mathcal{B}_2 .

Então, a matriz $M(T; \mathcal{B}'_1; \mathcal{B}'_2)$ que representa T em relação às bases \mathcal{B}'_1 e \mathcal{B}'_2 , é dada por

$$M(T; \mathcal{B}'_1; \mathcal{B}'_2) = S_{\mathcal{B}_2 \to \mathcal{B}'_2} M(T; \mathcal{B}_1; \mathcal{B}_2) \left(S_{\mathcal{B}_1 \to \mathcal{B}'_1} \right)^{-1},$$

onde $S_{\mathcal{B}_2 \to \mathcal{B}_2'}$ e $S_{\mathcal{B}_1 \to \mathcal{B}_1'}$ são as matrizes de mudança das bases \mathcal{B}_2 para \mathcal{B}_2' e de \mathcal{B}_1 para \mathcal{B}_1' respectivamente.

Isto é, o diagrama seguinte é comutativo.

$$(U, \mathcal{B}_1) \xrightarrow{M(T; \mathcal{B}_1; \mathcal{B}_2)} (V, \mathcal{B}_2)$$

$$S_{\mathcal{B}_1 \to \mathcal{B}'_1} \downarrow I \qquad I \downarrow S_{\mathcal{B}_2 \to \mathcal{B}'_2}$$

$$(U, \mathcal{B}'_1) \xrightarrow{T} (V, \mathcal{B}'_2)$$

Note-se que neste caso:

$$T \circ I = I \circ T \Leftrightarrow M(T; \mathcal{B}'_1; \mathcal{B}'_2) S_{\mathcal{B}_1 \to \mathcal{B}'_1} = S_{\mathcal{B}_2 \to \mathcal{B}'_2} M(T; \mathcal{B}_1; \mathcal{B}_2) \Leftrightarrow$$

$$\Leftrightarrow M(T; \mathcal{B}'_1; \mathcal{B}'_2) = S_{\mathcal{B}_2 \to \mathcal{B}'_2} M(T; \mathcal{B}_1; \mathcal{B}_2) \left(S_{\mathcal{B}_1 \to \mathcal{B}'_1} \right)^{-1}$$

Exemplo 38. Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por T(x,y) = (y,x,y-x). T é uma transformação linear. A matriz $M(T; \mathcal{B}_c^2; \mathcal{B}_c^3)$ que representa T em relação à base canónica (ordenada) \mathcal{B}_c^2 de \mathbb{R}^2 e à base canónica (ordenada) \mathcal{B}_c^3 de \mathbb{R}^3 , é dada por

$$M(T;\mathcal{B}_c^2;\mathcal{B}_c^3) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{array} \right].$$

Sejam $\mathcal{B}_1 = \{(1,1), (-1,1)\}$ uma base ordenada de \mathbb{R}^2 e $\mathcal{B}_2 = \{(0,0,1), (0,1,1), (1,1,1)\}$ uma base ordenada de \mathbb{R}^3

A matriz $M(T; \mathcal{B}_1; \mathcal{B}_2)$ que representa T em relação à base ordenada \mathcal{B}_1 de \mathbb{R}^2 e à base ordenada \mathcal{B}_2 de \mathbb{R}^3 , é dada por

$$M(T;\mathcal{B}_1;\mathcal{B}_2) = \left[egin{array}{ccc} -1 & 3 \ 0 & -2 \ 1 & 1 \end{array}
ight],$$

uma vez que

$$T(1,1) = (1,1,0) = -(0,0,1) + 0(0,1,1) + 1(1,1,1)$$

 $T(-1,1) = (1,-1,2) = 3(0,0,1) - 2(0,1,1) + 1(1,1,1)$.

Vamos agora verificar que se tem

$$M(T; \mathcal{B}_1; \mathcal{B}_2) = S_{\mathcal{B}_c^3 \to \mathcal{B}_2} M(T; \mathcal{B}_c^2; \mathcal{B}_c^3) \left(S_{\mathcal{B}_c^2 \to \mathcal{B}_1} \right)^{-1}.$$

Uma vez que

tem-se então
$$S_{\mathcal{B}_c^3 \to \mathcal{B}_2} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
. Logo,

$$S_{\mathcal{B}_{c}^{3} \to \mathcal{B}_{2}} M(T; \mathcal{B}_{c}^{2}; \mathcal{B}_{c}^{3}) \left(S_{\mathcal{B}_{c}^{2} \to \mathcal{B}_{1}}\right)^{-1} =$$

$$= \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} S_{\mathcal{B}_{1} \to \mathcal{B}_{c}^{2}} = \begin{bmatrix} -2 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 0 & -2 \\ 1 & 1 \end{bmatrix} = M(T; \mathcal{B}_{1}; \mathcal{B}_{2}).$$

Por exemplo, para $(2,1) \in \mathbb{R}^2$, tem-se:

coordenadas de
$$(2,1)$$
 $M(T;\mathcal{B}_{c}^{2};\mathcal{B}_{c}^{3})$ coordenadas de $T(2,1)$ na base \mathcal{B}_{c}^{2} T na base \mathcal{B}_{c}^{3} $I \downarrow S_{\mathcal{B}_{c}^{3} \to \mathcal{B}_{2}}$ coordenadas de $(2,1)$ $T \downarrow S_{\mathcal{B}_{c}^{3} \to \mathcal{B}_{2}}$ coordenadas de $(2,1)$ $T \downarrow S_{\mathcal{B}_{c}^{3} \to \mathcal{B}_{2}}$ coordenadas de $(2,1)$ na base $(2,1)$

ou seja

$$\begin{bmatrix} 2\\1 \end{bmatrix} \xrightarrow{M(T;\mathcal{B}_{c}^{2};\mathcal{B}_{c}^{3})} \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$

$$S_{\mathcal{B}_{c}^{2} \to \mathcal{B}_{1}} \downarrow I \qquad I \downarrow S_{\mathcal{B}_{c}^{3} \to \mathcal{B}_{2}}$$

$$\begin{bmatrix} \frac{3}{2}\\-\frac{1}{2} \end{bmatrix} \xrightarrow{M(T;\mathcal{B}_{1};\mathcal{B}_{2})} \begin{bmatrix} -3\\1\\1 \end{bmatrix}.$$

Produtos internos e ortogonalização

Definição 47. Sejam V um espaço linear real e ${\bf 0}$ o vector nulo de V. Chama-se ${\bf produto}$ interno em V a uma aplicação

$$\langle,\rangle:V\times V\to\mathbb{R}$$

$$(u,v) \rightarrow \langle u,v \rangle$$

que verifique as três condições seguintes.

(i) Simetria: para todos os $u, v \in V$

$$\langle u, v \rangle = \langle v, u \rangle$$
.

(ii) Linearidade: para todo o $v \in V$ (fixo) a aplicação

$$V \to \mathbb{R}$$

$$u \to \langle u, v \rangle$$

é linear.

(iii) Positividade: para todo o $u \in V$ tal que $u \neq 0$,

$$\langle u, u \rangle > 0.$$

Tendo-se $\langle u, u \rangle = 0$ se e só se $u = \mathbf{0}$.

Observação 29. (a) Um produto interno num espaço linear real é uma forma bilinear, simétrica e definida positiva.

- (b) Num espaço linear V sobre \mathbb{C} (espaço linear complexo), um produto interno é uma aplicação que a cada par de vectores $(u,v) \in V \times V$ associa o número complexo $\langle u,v \rangle$ e que verifica as seguintes condições:
 - (i) Para todos os $u, v \in V$

$$\langle u, v \rangle = \overline{\langle v, u \rangle}.$$

(ii) Para todo o $v \in V$ (fixo) tem-se

$$\langle \alpha u + \beta w, v \rangle = \overline{\alpha} \langle u, v \rangle + \overline{\beta} \langle w, v \rangle$$

para todos os $u, w \in V$ e $\alpha, \beta \in \mathbb{C}$, (onde por exemplo $\overline{\alpha} = a - bi$ se $\alpha = a + bi$) e a aplicação, para todo o $u \in V$ (fixo)

$$V \to \mathbb{C}$$

$$v \to \langle u, v \rangle$$

é linear.

(iii) Para todo o $u \in V$ tal que $u \neq \mathbf{0}$,

$$\langle u, u \rangle > 0.$$

Tendo-se $\langle u, u \rangle = 0$ se e só se $u = \mathbf{0}$.

(c) A um espaço linear real de dimensão finita com um produto interno chama-se espaço euclidiano. A um espaço linear complexo de dimensão finita com um produto interno chama-se espaço unitário.

Observação 30. (i) Seja V um espaço euclidiano. Seja $\mathcal{B} = \{w_1, w_2, ..., w_n\}$ uma base ordenada de V. Sejam $u, v \in V$. Sejam

$$\alpha_1, \alpha_2, ..., \alpha_n$$
 e $\beta_1, \beta_2, ..., \beta_n$

as coordenadas de u e de v na base ordenada \mathcal{B} respectivamente, isto é,

$$u = \sum_{i=1}^{n} \alpha_i w_i$$
 e $v = \sum_{i=1}^{n} \beta_i w_i$.

Logo,

$$\langle u, v \rangle = \left\langle \sum_{i=1}^{n} \alpha_i w_i, \sum_{i=1}^{n} \beta_i w_i \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \left\langle w_i, w_j \right\rangle =$$

$$= \begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{bmatrix} \begin{bmatrix} \langle w_1, w_1 \rangle & \langle w_1, w_2 \rangle & \dots & \langle w_1, w_n \rangle \\ \langle w_2, w_1 \rangle & \langle w_2, w_2 \rangle & \dots & \langle w_2, w_n \rangle \\ \vdots & \vdots & & \vdots & & \vdots \\ \langle w_n, w_1 \rangle & \langle w_n, w_2 \rangle & \dots & \langle w_n, w_n \rangle \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} = ([u]_{\mathcal{B}})^T G [v]_{\mathcal{B}}.$$

Assim, fixando uma base ordenada $\mathcal{B} = \{w_1, w_2, ..., w_n\}$ de V, a aplicação $\langle , \rangle : V \times V \to \mathbb{R}$ que a cada $(u, v) \in V \times V$ faz corresponder $\langle u, v \rangle$, é um produto interno em V se e só se a matriz

$$G = \begin{bmatrix} \langle w_1, w_1 \rangle & \langle w_1, w_2 \rangle & \dots & \langle w_1, w_n \rangle \\ \langle w_2, w_1 \rangle & \langle w_2, w_2 \rangle & \dots & \langle w_2, w_n \rangle \\ \vdots & \vdots & & \vdots \\ \langle w_n, w_1 \rangle & \langle w_n, w_2 \rangle & \dots & \langle w_n, w_n \rangle \end{bmatrix}$$

fôr simétrica $(G = G^T)$ e definida positiva $(([u]_{\mathcal{B}})^T G [u]_{\mathcal{B}} > 0$, para todo o $u \neq \mathbf{0})$. Note-se que atendendo às propriedades referentes às operações matriciais envolvidas, a igualdade

$$\langle u, v \rangle = ([u]_{\mathcal{B}})^T G [v]_{\mathcal{B}}$$

equivale à bilinearidade da aplicação $\langle , \rangle : V \times V \to \mathbb{R}$.

(ii) À matriz G anterior dá-se o nome de matriz de Gram ou matriz da métrica do produto interno.

(iii) Num próximo capítulo, como consequência da diagonalização ortogonal, sendo G simétrica ($G = G^T$), será estabelecida a equivalência:

 $(([u]_{\mathcal{B}})^T G [u]_{\mathcal{B}} > 0$, para todo o $u \neq \mathbf{0}) \Leftrightarrow (\text{todos os valores próprios de } G \text{ são positivos}).$

(iv) Observe-se ainda que no caso de se ter um espaço unitário, a matriz G tem os valores próprios (num próximo capítulo) todos positivos e é **hermitiana**, isto é, é tal que $G = \overline{G}^T$, (onde \overline{G} é a matriz que se obtem de G passando todas as entradas desta ao complexo conjugado), tendo-se

$$\langle u, v \rangle = \begin{bmatrix} \overline{\alpha_1} & \overline{\alpha_2} & \dots & \overline{\alpha_n} \end{bmatrix} G \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}.$$

Teorema 62. Seja V um espaço euclidiano com dim V=n. Seja $\{w_1, w_2, ..., w_n\}$ uma base ordenada de V. Então, uma aplicação

$$\langle,\rangle:V\times V\to\mathbb{R}$$

é um produto interno (em V) se e só se

$$\langle u, v \rangle = \begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{bmatrix} G \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} = ([u]_{\mathcal{B}})^T G [v]_{\mathcal{B}},$$

com

$$u = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n$$
 $v = \beta_1 w_1 + \beta_2 w_2 + \dots + \beta_n w_n.$

e G é uma matriz simétrica cujos valores próprios são todos positivos, dada por:

$$G = \begin{bmatrix} \langle w_1, w_1 \rangle & \langle w_1, w_2 \rangle & \dots & \langle w_1, w_n \rangle \\ \langle w_2, w_1 \rangle & \langle w_2, w_2 \rangle & \dots & \langle w_2, w_n \rangle \\ \vdots & \vdots & & \vdots \\ \langle w_n, w_1 \rangle & \langle w_n, w_2 \rangle & \dots & \langle w_n, w_n \rangle \end{bmatrix}.$$

Exemplo 39. (i) Seja $\langle, \rangle: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ a aplicação definida por:

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = \alpha_1 \beta_1 + \alpha_2 \beta_2,$$

com (α_1, α_2) , $(\beta_1, \beta_2) \in \mathbb{R}^2$. Esta aplicação é um produto interno em \mathbb{R}^2 a que se dá o nome de produto interno usual em \mathbb{R}^2 , uma vez que

$$\left\langle \left(\alpha_{1},\alpha_{2}\right),\left(\beta_{1},\beta_{2}\right)\right\rangle =\alpha_{1}\beta_{1}+\alpha_{2}\beta_{2}=\left[\begin{array}{cc}\alpha_{1}&\alpha_{2}\end{array}\right]G\left[\begin{array}{c}\beta_{1}\\\beta_{2}\end{array}\right]$$

com

$$G = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

A matriz G é simétrica e o único valor próprio de G é 1 > 0.

(ii) Seja $\langle , \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ a aplicação definida por:

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = -2\alpha_1\beta_1 + 3\alpha_2\beta_2,$$

com $(\alpha_1,\alpha_2),(\beta_1,\beta_2)\in\mathbb{R}^2$. Esta aplicação não é um produto interno em \mathbb{R}^2 , uma vez que

$$\left\langle \left(\alpha_{1},\alpha_{2}\right),\left(\beta_{1},\beta_{2}\right)\right\rangle =-2\alpha_{1}\beta_{1}+3\alpha_{2}\beta_{2}=\left[\begin{array}{cc}\alpha_{1}&\alpha_{2}\end{array}\right]G\left[\begin{array}{c}\beta_{1}\\\beta_{2}\end{array}\right]\qquad\text{com}\qquad G=\left[\begin{array}{cc}-2&0\\0&3\end{array}\right].$$

A matriz G é simétrica, no entanto, os valores próprios de G: -2 e 3 não são ambos positivos.

(iii) O produto interno usual em \mathbb{R}^n é dado por:

$$\langle,\rangle:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$$

$$(u,v)\ \to\langle u,v\rangle=u^Tv,$$
 onde $u^T=\left[\begin{array}{ccc}u_1&u_2&\dots&u_n\end{array}\right]$ e $v=\left[\begin{array}{ccc}v_1\\v_2\\\vdots\\v_n\end{array}\right]$.

(iv) O produto interno usual em \mathbb{C}^n é dado por:

$$\langle,\rangle:\mathbb{C}^n\times\mathbb{C}^n\to\mathbb{C}$$

$$(u,v)\ \to \langle u,v\rangle=u^Hv,$$
onde $u^H=\overline{u}^T=\left[\begin{array}{ccc}\overline{u_1}&\overline{u_2}&\ldots&\overline{u_n}\end{array}\right]$ e $v=\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix}$.

(v) Um produto interno em $\mathcal{M}_{m\times n}(\mathbb{R})$.

$$\langle , \rangle : M_{m \times n} (\mathbb{R}) \times M_{m \times n} (\mathbb{R}) \to \mathbb{R}$$

$$(A, B) \to \langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij} = \operatorname{tr} (A^{T} B).$$

(vi) Um produto interno em C([a, b]).

$$\langle , \rangle : C([a, b]) \times C([a, b]) \to \mathbb{R}$$

$$(f, g) \to \langle f, g \rangle = \int_a^b f(x) g(x) dx.$$

Prova da positividade: $\langle f, f \rangle > 0$ para toda a função não nula. Seja $f \in C([a, b])$. Seja $x_0 \in [a, b]$ tal que $f(x_0) \neq 0$. Como f^2 é contínua em [a, b], existe um intervalo $I \subset [a, b]$ tal que para todo o $x \in I$

$$(f(x))^2 \ge \frac{(f(x_0))^2}{2}.$$

Logo

$$\langle f, f \rangle = \int_{a}^{b} (f(x))^{2} dx \ge \int_{I} (f(x))^{2} dx \ge \int_{I} \frac{(f(x_{0}))^{2}}{2} dx = \frac{(f(x_{0}))^{2}}{2} \int_{I} dx = \frac{(f(x_{0}))^{2}}{2} |I| > 0$$

onde |I| denota o comprimento do intervalo I.

Exemplo 40. \mathbb{R}^2 com um produto interno não usual. Seja $\langle , \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ a aplicação definida por:

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = 2\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_1 + 3\alpha_2\beta_2,$$

com $(\alpha_1, \alpha_2), (\beta_1, \beta_2) \in \mathbb{R}^2$.

É fácil ver que esta aplicação é simétrica e linear em relação a (α_1, α_2) (fixando (β_1, β_2)). Vejamos por exemplo que a condição

$$\langle (\alpha_1, \alpha_2), (\alpha_1, \alpha_2) \rangle > 0$$
, para todo o $(\alpha_1, \alpha_2) \neq (0, 0)$,

é satisfeita.

Atendendo a que

$$\langle (\alpha_1, \alpha_2), (\alpha_1, \alpha_2) \rangle = 2\alpha_1^2 + 2\alpha_1\alpha_2 + 3\alpha_2^2 = \alpha_1^2 + (\alpha_1 + \alpha_2)^2 + 2\alpha_2^2,$$

tem-se

$$\langle (\alpha_1, \alpha_2), (\alpha_1, \alpha_2) \rangle = 0 \Leftrightarrow$$

$$\Leftrightarrow (\alpha_1 = 0 \text{ e } \alpha_1 + \alpha_2 = 0 \text{ e } \alpha_2 = 0)$$

$$\Leftrightarrow (\alpha_1 = 0 \text{ e } \alpha_2 = 0) \Leftrightarrow (\alpha_1, \alpha_2) = (0, 0).$$

Em alternativa, podemos escrever

$$\begin{split} \left\langle \left(\alpha_{1},\alpha_{2}\right),\left(\beta_{1},\beta_{2}\right)\right\rangle &=2\alpha_{1}\beta_{1}+\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1}+3\alpha_{2}\beta_{2}=\\ &=\left[\begin{array}{cc}\alpha_{1} & \alpha_{2}\end{array}\right]G\left[\begin{array}{c}\beta_{1}\\\beta_{2}\end{array}\right]\quad\text{com}\quad G=\left[\begin{array}{cc}2 & 1\\1 & 3\end{array}\right]. \end{split}$$

A matriz G é simétrica e os valores próprios de G: $\frac{5+\sqrt{5}}{2}$ e $\frac{5-\sqrt{5}}{2}$ são ambos positivos.

Definição 48. Sejam V um espaço linear com um produto interno e $\mathbf{0}$ o vector nulo de V. Sejam $u,v\in V$.

(i) Chama-se **norma** de u a:

$$||u|| = \sqrt{\langle u, u \rangle}.$$

(ii) Chama-se projecção ortogonal de v sobre $u \neq 0$ a:

$$\operatorname{proj}_{u} v = \frac{\langle u, v \rangle}{\|u\|^{2}} u.$$

No caso de V ser um espaço linear real pode escrever-se: $\operatorname{proj}_u v = \frac{\langle v, u \rangle}{\|u\|^2} u$.

- (iii) Diz-se que u e v são **ortogonais** se $\langle u, v \rangle = 0$.
- (iv) Chama-se ângulo entre dois vectores não nulos u e v tais que $\langle u, v \rangle \in \mathbb{R}$ a:

$$\theta = \arccos \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

Note que este ângulo está bem definido atendendo ao próximo teorema.

Observação 31. (i) O ângulo θ entre dois vectores não nulos u e v é $\frac{\pi}{2}$ se e só se u e v são ortogonais.

(ii) Para cada $u \in V$ (fixo) com $u \neq \mathbf{0}$, a aplicação $\operatorname{proj}_u : V \to V$ que a cada $v \in V$ faz corresponder $\operatorname{proj}_u v$, é uma transformação linear.

Teorema 63. (i) Desigualdade de Cauchy-Schwarz. Seja V um espaço linear com um produto interno. Então, para todos os $u, v \in V$,

$$|\langle u,v\rangle| \leq \|u\| \, \|v\|$$

(ii) Sejam $u, v \in V$. Tem-se:

 $|\langle u,v\rangle|=\|u\|\,\|v\|\Leftrightarrow\{u,v\}\,$ é linearmente dependente.

Dem. (i) Sejam $u, v \in V$. Se $v = \mathbf{0}$ a designal dade é satisfeita. Se $v \neq \mathbf{0}$, seja $\alpha = \frac{\langle u, v \rangle}{\langle v, v \rangle}$. Logo $\langle \overline{\alpha}v - u, v \rangle = 0$. Por outro lado, como

$$0 \leq \|\overline{\alpha}v - u\|^{2} = \langle \overline{\alpha}v - u, \overline{\alpha}v - u \rangle = \overline{\alpha} \langle \overline{\alpha}v - u, v \rangle - \langle \overline{\alpha}v - u, u \rangle =$$

$$= -\langle \overline{\alpha}v - u, u \rangle = -\alpha \langle v, u \rangle + \|u\|^{2} = -\frac{\langle u, v \rangle}{\|v\|^{2}} \langle v, u \rangle + \|u\|^{2} = -\frac{|\langle u, v \rangle|^{2}}{\|v\|^{2}} + \|u\|^{2} \Leftrightarrow$$

$$\Leftrightarrow |\langle u, v \rangle| \leq \|u\| \|v\|.$$

(ii) Suponhamos que $|\langle u,v\rangle|=\|u\|\,\|v\|.$ Se $v=\mathbf{0}$ a igualdade é satisfeita. Se $v\neq\mathbf{0},$ tem-se

$$|\langle u, v \rangle| = ||u|| \, ||v|| \Leftrightarrow \underbrace{-\frac{|\langle u, v \rangle|^2}{||v||^2} + ||u||^2}_{\stackrel{=}{=} ||\overline{\alpha}v - u||^2} = 0 \Leftrightarrow ||\overline{\alpha}v - u||^2 = 0 \Leftrightarrow u = \overline{\alpha}v$$

sendo, deste modo, o conjunto $\{u, v\}$ linearmente dependente.

Suponhamos agora que o conjunto $\{u,v\}$ é linearmente dependente. Então existe λ escalar tal que $u=\lambda v$. Pelo que

$$\left|\left\langle u,v\right\rangle \right|=\left|\left\langle \lambda v,v\right\rangle \right|=\left|\overline{\lambda}\left\langle v,v\right\rangle \right|=\left|\overline{\lambda}\right|\left\|v\right\|^{2}=\left|\lambda\right|\left\|v\right\|\left\|v\right\|=\left\|\lambda v\right\|\left\|v\right\|=\left\|u\right\|\left\|v\right\|.$$

Teorema 64. Teorema de Pitágoras. Seja V um espaço linear real com um produto interno. Sejam $u, v \in V$. Tem-se u e v ortogonais se e só se

$$||u - v||^2 = ||u||^2 + ||v||^2$$
.

Dem.

$$\|u-v\|^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - \langle v, u \rangle - \langle u, v \rangle + \langle v, v \rangle = \|u\|^2 - 2\langle u, v \rangle + \|v\|^2 = \|u\|^2 + \|v\|^2$$
se e só se

$$\langle u, v \rangle = 0,$$

isto é, se e só se u e v forem ortogonais.

Observação 32. (i) Num espaço euclidiano, o teorema de Pitágoras pode ser enunciado do seguinte modo:

$$||v||^2 = ||\operatorname{proj}_u v||^2 + ||v - \operatorname{proj}_u v||^2$$

para todos os u, v.

$$||v||^2 = ||\operatorname{proj}_u v||^2 + ||v - \operatorname{proj}_u v||^2 \ge ||\operatorname{proj}_u v||^2$$

(ii) Num espaço euclidiano, a desigualdade de Cauchy-Schwarz poderia ter sido provada recorrendo ao teorema de Pitágoras, uma vez que

$$\|\operatorname{proj}_{u} v\|^{2} = \|v\|^{2} - \|v - \operatorname{proj}_{u} v\|^{2} \le \|v\|^{2} \Leftrightarrow$$

$$\Leftrightarrow \left(\frac{|\langle v, u \rangle|}{\|u\|^2}\right)^2 \|u\|^2 \le \|v\|^2 \Leftrightarrow |\langle u, v \rangle| \le \|u\| \|v\|.$$

(iii) Em \mathbb{R}^2 com o produto interno usual, a desigualdade de Cauchy-Schwarz é dada por

$$|\alpha_1 \beta_1 + \alpha_2 \beta_2| \le \sqrt{\alpha_1^2 + \alpha_2^2} \sqrt{\beta_1^2 + \beta_2^2},$$

uma vez que

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = \alpha_1 \beta_1 + \alpha_2 \beta_2,$$

com $(\alpha_1, \alpha_2), (\beta_1, \beta_2) \in \mathbb{R}^2$.

(iv) Em \mathbb{R}^n com o produto interno usual, a desigualdade de Cauchy-Schwarz é dada por

$$\left| \sum_{i=1}^{n} \alpha_i \beta_i \right| \le \sqrt{\sum_{i=1}^{n} \alpha_i^2} \sqrt{\sum_{i=1}^{n} \beta_i^2},$$

uma vez que

$$\langle (\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n) \rangle = \alpha_1 \beta_1 + ... + \alpha_n \beta_n,$$

com $(\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n) \in \mathbb{R}^n$.

Teorema 65. Sejam V um espaço linear com um produto interno e $\mathbf{0}$ o vector nulo de V. Sejam $u,v\in V$ e λ escalar. A norma é uma aplicação $\|\cdot\|:V\to\mathbb{R}$ que satisfaz as seguintes propriedades.

- (i) Positividade: ||u|| > 0 se $u \neq 0$.
- (ii) Homogeneidade: $\|\lambda u\| = |\lambda| \|u\|$
- (iii) Desigualdade triangular: $||u+v|| \le ||u|| + ||v||$

Definição 49. Pode definir-se **norma** num espaço linear V, sem estar associada a qualquer produto interno, como sendo uma aplicação de V em \mathbb{R} que satisfaz as propriedades do teorema anterior. A um espaço linear com uma norma chama-se **espaço normado**.

Observação 33. Seja V um espaço linear real com um produto interno. Sejam $u,v\in V$. Tem-se

$$\langle u, v \rangle = \frac{1}{2} (\|u + v\|^2 - \|u\|^2 - \|v\|^2).$$

Teorema 66. Seja V um espaço normado. Sejam $u, v \in V$. Então, a norma pode dar origem a um produto interno se e só se

$$||u - v||^2 + ||u + v||^2 = 2 ||u||^2 + 2 ||v||^2$$
.

Esta última equação é conhecida por lei do paralelogramo.

Exemplo 41. Uma norma que não dá origem a um produto interno. Seja $\|\cdot\|: \mathbb{R}^2 \to \mathbb{R}$ a aplicação definida por

$$\|(\alpha_1, \alpha_2)\| = |\alpha_1| + |\alpha_2|,$$

com $(\alpha_1, \alpha_2) \in \mathbb{R}^2$. É fácil verificar que esta aplicação satisfaz as três condições da norma. Logo, é uma norma. No entanto, é também fácil verificar que esta norma não satisfaz a lei do paralelogramo. Logo, esta norma não poderá originar um produto interno.

Definição 50. Sejam V um espaço linear com um produto interno e $S \subset V$. Diz-se que S é **ortogonal** se para todos os $u, v \in S$ com $u \neq v$, se tiver

$$\langle u, v \rangle = 0.$$

Diz-se que S é **ortonormado** se fôr ortogonal e se, para todo o $u \in S$, se tiver

$$||u|| = 1.$$

Teorema 67. Sejam V um espaço linear com um produto interno e $S \subset V$. Seja $\mathbf{0}$ o vector nulo de V. Se S é ortogonal e $\mathbf{0} \notin S$ então S é linearmente independente. Em particular, se $n = \dim V$ então qualquer conjunto S ortogonal de n vectores não nulos é uma base de V.

Teorema 68. Seja V um espaço euclidiano com dim V = n. Seja $\mathcal{B} = \{u_1, ..., u_n\}$ uma base (ordenada) ortogonal de V. Então, as coordenadas de um vector $v \in V$ em relação à base (ordenada) \mathcal{B} são dadas por:

$$\alpha_j = \frac{\langle v, u_j \rangle}{\langle u_j, u_j \rangle},$$

com j=1,...,n. Se \mathcal{B} fôr ortonormada então as coordenadas de um vector $v\in V$ em relação à base (ordenada) \mathcal{B} são dadas por:

$$\alpha_i = \langle v, u_i \rangle$$
,

com j = 1, ..., n.

Teorema 69. Seja V um espaço euclidiano com dim V = n. Seja $\mathcal{B} = \{w_1, ..., w_n\}$ uma base (ordenada) ortonormada de V. Então, para todos os $u, v \in V$, tem-se

$$\langle u, v \rangle = \sum_{i=1}^{n} \langle u, w_i \rangle \langle v, w_i \rangle$$
 (fórmula de Parseval)

 \mathbf{e}

$$||u|| = \sqrt{\sum_{i=1}^{n} \langle u, w_i \rangle^2}.$$

Observação 34. Seja V um espaço euclidiano com dim V=n. Seja $\mathcal{B}=\{w_1,...,w_n\}$ uma base (ordenada) ortonormada de V. Sejam $u,v\in V$, com

$$u = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n$$
 $v = \beta_1 w_1 + \beta_2 w_2 + \dots + \beta_n w_n$.

Então a fórmula de Parseval é dada por:

$$\langle u, v \rangle = \sum_{i=1}^{n} \alpha_i \beta_i = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \dots + \alpha_n \beta_n$$

e tem-se

$$||u|| = \sqrt{\sum_{i=1}^{n} \alpha_i^2}.$$

Notação 3. Sejam V um espaço linear com um produto interno e $\mathbf{0}$ o vector nulo de V. Para qualquer $v \in V$, com $v \neq \mathbf{0}$, o vector $\frac{1}{\|v\|}v$ será denotado por $\frac{v}{\|v\|}$.

Teorema 70. Método de ortogonalização de Gram-Schmidt. Seja V um espaço euclidiano (ou unitário) não nulo. Seja U um subespaço de V. Então U tem bases ortonormadas. Mais concretamente, seja

$$\{v_1, v_2, ..., v_k\}$$

uma base de U e sejam

$$u_1 = v_1,$$

 $u_2 = v_2 - \text{proj}_{u_1} v_2,$
...
 $u_k = v_k - \text{proj}_{u_1} v_k - ... - \text{proj}_{u_{k-1}} v_k$

então

(i)
$$L(\{u_1, u_2, ..., u_k\}) = L(\{v_1, v_2, ..., v_k\}) = U;$$

- (ii) o conjunto $\{u_1, u_2, ..., u_k\}$ é uma base ortogonal de U.
- (iii) o conjunto $\left\{\frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}, ..., \frac{u_k}{\|u_k\|}\right\}$ é uma base ortonormada de U.

Exemplo 42. Considere-se \mathbb{R}^4 com o produto interno usual. Seja

$$U = L(\{(1,1,-1,-1),(1,2,3,4),(2,1,-6,-7),(1,3,7,9)\}).$$

Determinemos a dimensão de U e uma base ortonormada para U. Tem-se

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ -1 & 3 & -6 & 7 \\ -1 & 4 & -7 & 9 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 4 & -4 & 8 \\ 0 & 5 & -5 & 10 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Logo, o conjunto $\{v_1, v_2\}$, com $v_1 = (1, 1, -1, -1)$ e $v_2 = (1, 2, 3, 4)$, é uma base de U e como tal dim U = 2.

Sejam $u_1 = v_1 e u_2 = v_2 - \text{proj}_{u_1} v_2$.

Logo, o conjunto $\{u_1, u_2\}$, com $u_1 = (1, 1, -1, -1)$ e

$$u_2 = (1, 2, 3, 4) - \frac{1 + 2 - 3 - 4}{4}(1, 1, -1, -1) = (2, 3, 2, 3),$$

é uma base ortogonal de U. Uma base ortonormada para U:

$$\left\{\frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}\right\} = \left\{\left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right), \left(\frac{\sqrt{26}}{13}, \frac{3\sqrt{26}}{26}, \frac{\sqrt{26}}{13}, \frac{3\sqrt{26}}{26}\right)\right\}$$

Teorema 71. Seja $\mathcal{B} = \{u_1, u_2, ..., u_n\}$ uma base (ordenada) de um espaço euclidiano (ou unitário). A base \mathcal{B} é ortonormada se e só se a matriz da métrica G em relação a essa base fôr a matriz identidade. Em \mathbb{R}^n o produto interno usual é aquele (o único) em relação ao qual a base canónica é ortonormada.

Teorema 72. Seja $\{v_1, v_2, ..., v_n\}$ uma base (ordenada) de \mathbb{R}^n . Então, existe um único produto interno em \mathbb{R}^n para o qual esta base é ortonormada.

Exemplo 43. Considere em \mathbb{R}^2 a base (ordenada) $\mathcal{B} = \{v_1, v_2\}$, com $v_1 = (1, 0)$ e $v_2 = (1, 1)$. Vejamos que existe um e um só produto interno para o qual a base \mathcal{B} é ortonormada. Seja $\mathcal{B}_c^2 = \{(1, 0), (0, 1)\}$ a base canónica de \mathbb{R}^2 . Sejam $u, v \in \mathbb{R}^2$, com $u = (\alpha_1, \alpha_2)$ e $v = (\beta_1, \beta_2)$, onde α_1, α_2 e β_1, β_2 são as coordenadas na base \mathcal{B}_c^2 de u e v respectivamente. Logo, a aplicação $\langle , \rangle : \mathbb{R}^2 \times \mathbb{R}^2$ definida por

$$\begin{split} \langle u,v\rangle &= \langle \left(\alpha_{1},\alpha_{2}\right),\left(\beta_{1},\beta_{2}\right)\rangle = \left(S_{B_{c}^{2}\rightarrow\mathcal{B}}\begin{bmatrix}\alpha_{1}\\\alpha_{2}\end{bmatrix}\right)^{T}\begin{bmatrix}1&0\\0&1\end{bmatrix}\left(S_{B_{c}^{2}\rightarrow\mathcal{B}}\begin{bmatrix}\beta_{1}\\\beta_{2}\end{bmatrix}\right) = \\ &= \left(\begin{bmatrix}1&-1\\0&1\end{bmatrix}\begin{bmatrix}\alpha_{1}\\\alpha_{2}\end{bmatrix}\right)^{T}\begin{bmatrix}1&0\\0&1\end{bmatrix}\left(\begin{bmatrix}1&-1\\0&1\end{bmatrix}\begin{bmatrix}\beta_{1}\\\beta_{2}\end{bmatrix}\right) = \alpha_{1}\beta_{1} - \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1} + 2\alpha_{2}\beta_{2} = \\ &= \begin{bmatrix}\alpha_{1}&\alpha_{2}\end{bmatrix}\begin{bmatrix}1&-1\\-1&2\end{bmatrix}\begin{bmatrix}\beta_{1}\\\beta_{2}\end{bmatrix}\end{split}$$

é um produto interno e é o único para o qual a base $\mathcal B$ é ortonormada, onde

$$S_{B_c^2 \to \mathcal{B}} = \left(S_{\mathcal{B} \to B_c^2} \right)^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$

NOTE QUE: sendo $G = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ (é simétrica e os valores próprios $\frac{3+\sqrt{5}}{2}$ e $\frac{3-\sqrt{5}}{2}$ são ambos positivos) a matriz da métrica em relação a \mathcal{B}_c^2 e $G' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (é simétrica e o único valor próprio 1 é positivo) a matriz da métrica em relação a \mathcal{B} , tem-se

$$G = \left(S_{B_{2}^{2} \to \mathcal{B}}\right)^{T} G' S_{B_{2}^{2} \to \mathcal{B}}$$

É fácil verificar que para este produto interno a base $\mathcal B$ é ortonormada:

$$\langle (1,0), (1,1) \rangle = 0 \text{ e } \langle (1,0), (1,0) \rangle = \langle (1,1), (1,1) \rangle = 1.$$

Em particular, a matriz da métrica é invertível.

Definição 51. Sejam V um espaço linear com produto interno e U um subespaço de V. Diz-se que um elemento de V é **ortogonal a** U se fôr ortogonal a todos os elementos de U. Ao conjunto de todos os elementos ortogonais a U chama-se **complemento ortogonal** de U e designa-se por U^{\perp} ,

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ para todo o } u \in U \}.$$

Teorema 73. Seja V um espaço linear com produto interno. Qualquer que seja o subespaço U de V, também U^{\perp} é um subespaço de V.

Definição 52. Sendo S um subconjunto de V, não necessariamente um subespaço de V, (também) pode definir-se S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ para todo o } u \in S \}.$$

Observação 35. Apesar de S não ser necessariamente um subespaço de $V,\,S^\perp$ é sempre um subespaço de $V,\,$ tendo-se

$$S^{\perp} = (L(S))^{\perp}$$
.

Teorema 74. Seja V um espaço linear com produto interno.

(i) Seja U um subespaço de V. Tem-se

$$U\cap U^{\perp}=\{\mathbf{0}\}.$$

(ii) Seja S um subconjunto de V. Então

$$S \subset \left(S^{\perp}\right)^{\perp}$$
.

No próximo teorema ver-se-á que no caso de se ter dim $V < \infty$, então

$$L\left(S\right) = \left(S^{\perp}\right)^{\perp}$$

ou ainda, sendo U um subespaço de V com dim $V<\infty,$ então

$$U = \left(U^{\perp}\right)^{\perp}$$
.

(iii) Sejam S_1, S_2 subconjuntos de V. Então

$$S_1 \subset S_2 \Rightarrow (S_2)^{\perp} \subset (S_1)^{\perp}$$

(iv) Seja U um subespaço de V. Se $\{v_1,...,v_n\}$ é uma base de U então

$$U^{\perp} = \{ v \in V : \langle v, v_1 \rangle = \dots = \langle v, v_n \rangle = 0 \}.$$

(v) Sejam U_1, U_2 subespaços de V. Tem-se

$$(U_1 + U_2)^{\perp} = (U_1)^{\perp} \cap (U_2)^{\perp}$$

e

$$(U_1 \cap U_2)^{\perp} \supset (U_1)^{\perp} + (U_2)^{\perp}$$
.

Se dim $V < \infty$ tem-se

$$(U_1 \cap U_2)^{\perp} = (U_1)^{\perp} + (U_2)^{\perp}.$$

Exemplo 44. (i) Se $U \subset \mathbb{R}^3$ é um plano que passa pela origem, então U^{\perp} é uma recta que passa pela origem e é perpendicular ao plano.

- (ii) Se $U \subset \mathbb{R}^3$ é uma recta que passa pela origem, então U^{\perp} é um plano que passa pela origem e é perpendicular à recta.
 - (iii) Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então, usando o produto interno usual, tem-se

$$\mathcal{N}(A) = (\mathcal{L}(A))^{\perp} = (\mathcal{C}(A^T))^{\perp}$$

e

$$\mathcal{N}(A^T) = (\mathcal{L}(A^T))^{\perp} = (\mathcal{C}(A))^{\perp}$$
.

(iv) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é invertível. Então, $(\mathcal{N}(A))^{\perp} = \mathbb{R}^{n}$ e $(\mathcal{L}(A))^{\perp} = \{\mathbf{0}\}$.

Teorema 75. Se U é um subespaço de um espaço euclidiano V, então V é a soma directa de U e U^{\perp} , isto é,

$$V = U \oplus U^{\perp}$$
.

Logo, cada elemento $v \in V$ pode ser escrito de modo único como soma de um elemento de U com um elemento de U^{\perp} :

$$v = v_U + v_{U^{\perp}}, \quad \text{com} \quad v_U \in U \quad \text{e} \quad v_{U^{\perp}} \in U^{\perp}.$$

À transformação linear $P_U: V \to V$ definida por

$$P_U(v) = v_U$$

chama-se projecção ortogonal de V sobre U. Note que P_U satisfaz

$$P_U = P_U \circ P_U = (P_U)^2$$
 e $P_U(v) = \begin{cases} v & \text{se } v \in U \\ \mathbf{0} & \text{se } v \in U^{\perp} \end{cases}$

e

$$\mathcal{I}(P_U) = U$$
 e $\mathcal{N}(P_U) = U^{\perp}$.

Á transformação linear $P_{U^{\perp}}: V \to V$ definida por

$$P_{U^{\perp}}(v) = v_{U^{\perp}}$$

chama-se projecção ortogonal de V sobre U^{\perp} . Note que $P_{U^{\perp}}$ satisfaz

$$P_{U^{\perp}} = P_{U^{\perp}} \circ P_{U^{\perp}} = (P_{U^{\perp}})^2 \qquad e \qquad P_{U^{\perp}}(v) = \begin{cases} v & \text{se } v \in U^{\perp} \\ \mathbf{0} & \text{se } v \in U \end{cases}$$

e

$$\mathcal{I}(P_{U^{\perp}}) = U^{\perp}$$
 e $\mathcal{N}(P_{U^{\perp}}) = U$

e tal que chama-se **projecção ortogonal de** V **sobre** U^{\perp} .

Tem-se

$$I = P_U + P_{U^{\perp}}$$

$$\dim V = \dim U + \dim U^{\perp}$$

$$\left(U^{\perp}\right)^{\perp} = U$$

Se $\{w_1, w_2, ..., w_l\}$ fôr uma base ortogonal de U, então

$$P_U(v) = \sum_{i=1}^{l} \frac{\langle v, w_i \rangle}{\|w_i\|^2} w_i = \sum_{i=1}^{l} \text{proj}_{w_i} v = v_U$$

para todo o $v \in V$.

Se $\{u_1, u_2, ..., u_k\}$ é uma base ortogonal de U^{\perp} , então, para todo o $v \in V$

$$P_{U^{\perp}}(v) = \sum_{j=1}^{k} \frac{\langle v, u_j \rangle}{\|u_j\|^2} u_j = \sum_{j=1}^{k} \operatorname{proj}_{u_j} v = v_{U^{\perp}}$$

Neste caso, $\{w_1, w_2, ..., w_l, u_1, u_2, ..., u_k\}$ é uma base ortogonal de V.

Tem-se ainda:

(i)
$$\langle P_{U}(u), v \rangle = \langle u, P_{U}(v) \rangle, \quad \langle P_{U^{\perp}}(u), v \rangle = \langle u, P_{U^{\perp}}(v) \rangle,$$

para todos os $u, v \in V$;

(ii)
$$||u||^2 = ||P_U(u)||^2 + ||P_{U^{\perp}}(u)||^2,$$

para todo o $u \in V$ (Teorema de Pitágoras);

Teorema 76. Seja U um subespaço de um espaço euclidiano V. Seja $v \in V$. Então, tem-se

$$||v - P_U(v)|| \le ||v - u||,$$

para todo o $u \in U$, e a igualdade verifica-se se e só se $u = P_U(v)$.

Dem.

$$||v - P_{U}(v)||^{2} \le ||v - P_{U}(v)||^{2} + ||P_{U}(v - u)||^{2} = \sup_{v - P_{U}(v) = (v - u) - P_{U}(v - u)}$$

$$= ||(v - u) - P_{U}(v - u)||^{2} + ||P_{U}(v - u)||^{2} = \sup_{\text{Pitágoras}} ||v - u||^{2} \Leftrightarrow$$

$$\Leftrightarrow ||v - P_{U}(v)|| \le ||v - u||.$$

Definição 53. Seja U um subespaço de dimensão finita de um espaço linear V com produto interno. Seja $v \in V$. Então, o elemento de U mais próximo de v é a projecção ortogonal $P_U(v)$ de v sobre U.

Definição 54. Seja U um subespaço de um espaço euclidiano V. A **distância** d **de um ponto** $v \in V$ a um subespaço U é dada por:

$$d(v, U) = ||P_{U^{\perp}}(v - \mathbf{0})|| = ||P_{U^{\perp}}(v)|| = ||v - P_{U}(v)||.$$

Definição 55. Seja V um espaço euclidiano. Seja U um subespaço de V com dim U=k. Seja $q\in V$. Chama-se ao conjunto

$${q} + U$$

um k-plano. A distância d de um ponto $p \in V$ a um k-plano $\mathcal{P} = \{q\} + U$ é dada por:

$$d\left(p,\mathcal{P}\right) = \left\|P_{U^{\perp}}\left(p - q\right)\right\|.$$

Definição 56. (i) A distância entre dois k-planos paralelos

$$\mathcal{P}_1 = \{p\} + U \text{ e } \mathcal{P}_2 = \{q\} + U$$

é dada por:

$$d\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right) = \left\|P_{U^{\perp}}\left(p - q\right)\right\|.$$

(ii) A distância entre duas rectas paralelas

$$r = \{p\} + L(\{u\})$$
 e $s = \{q\} + L(\{u\})$

é dada por:

$$d\left(r,s\right)=\left\Vert P_{L\left(\left\{ u\right\} \right)^{\perp}}\left(p-q\right)\right\Vert .$$

Exemplo 45. Considere-se \mathbb{R}^3 com o produto interno usual.

(i) Seja \mathcal{P} o plano (em \mathbb{R}^3) que passa pelos pontos: $(1,2,1),\,(1,0,-1)$ e (1,1,1). Tem-se

$$\mathcal{P} = \{(1,2,1)\} + L(\{(0,-2,-2),(0,-1,0)\})$$

uma vez que

$$(0,-2,-2) = (1,0,-1) - (1,2,1)$$
 e $(0,-1,0) = (1,1,1) - (1,2,1)$.

Equação vectorial de \mathcal{P} : $(x, y, z) = (1, 2, 1) + \alpha(0, -2, -2) + \beta(0, -1, 0)$, com $\alpha, \beta \in \mathbb{R}$.

Equações paramétricas de \mathcal{P} :

$$\begin{cases} x = 1 \\ y = 2 - \beta - 2\alpha \\ z = 1 - 2\alpha \end{cases}$$

 $com \ \alpha, \beta \in \mathbb{R}.$

Equação cartesiana de \mathcal{P} : x = 1.

Podemos determinar a equação cartesiana de \mathcal{P} do seguinte modo. Atendendo a que

$$\mathcal{P} = \{(1,2,1)\} + L(\{(0,-2,-2),(0,-1,0)\})$$

seja

$$U = L(\{(0, -2, -2), (0, -1, 0)\}).$$

Logo,

$$U = (U^{\perp})^{\perp} = \left(\mathcal{N} \left(\begin{bmatrix} 0 & -2 & -2 \\ 0 & -1 & 0 \end{bmatrix} \right) \right)^{\perp} =$$

$$= (L(\{(1,0,0)\}))^{\perp} = \left\{ (x,y,z) \in \mathbb{R}^3 : \langle (x,y,z), (1,0,0) \rangle = 0 \right\}$$

e assim, a equação cartesiana do plano \mathcal{P} que passa pelo ponto (1,2,1) é dada por:

$$(\langle (x-1, y-2, z-1), (1, 0, 0) \rangle = 0) \Leftrightarrow (1(x-1) + 0(y-2) + 0(z-1) = 0),$$

ou seja por

$$x = 1$$
.

(ii) Determinemos a equação cartesiana da recta que passa pelos pontos (1,1,0) e (1,2,1). Tem-se

$$r = \{(1,1,0)\} + L(\{(0,1,1)\}),$$

uma vez que

$$(0,1,1) = (1,2,1) - (1,1,0).$$

Seja

$$U = L(\{(0,1,1)\}).$$

Logo,

$$U = \begin{pmatrix} U^{\perp} \end{pmatrix}^{\perp} = \begin{pmatrix} \mathcal{N} \left(\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \right) \end{pmatrix}^{\perp} = \left(L \left(\left\{ (1, 0, 0), (0, 1, -1) \right\} \right) \right)^{\perp}$$

e assim, a equação cartesiana da recta r é dada por:

$$(\langle (x-1,y-1,z),(1,0,0)\rangle = 0 \text{ e } \langle (x-1,y-1,z),(0,1,-1)\rangle = 0) \Leftrightarrow$$

$$\Leftrightarrow (1(x-1) = 0 \text{ e } 1(y-1) - 1z = 0),$$

ou seja por

$$\begin{cases} x = 1 \\ y - z = 1. \end{cases}$$

Mínimos quadrados

Existem aplicações relativamente às quais os erros cometidos nas medições das entradas de A ou de b podem levar a que o sistema de equações lineares Au = b não tenha solução, quando teoricamente deveria ter. Em tais casos é natural a procura da "melhor solução aproximada" para esse problema.

Considera-se o produto interno usual.

Definição 57. Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $b \in \mathbb{R}^m$. Então, a $\widehat{u} \in \mathbb{R}^n$ chama-se melhor solução aproximada ou **solução de mínimos quadrados** de Au = b se

$$||b - A\widehat{u}|| < ||b - Au||$$
,

para qualquer $u \in \mathbb{R}^n$. Ao vector $b - A\widehat{u}$ chama-se vector erro de mínimos quadrados e ao escalar $||b - A\widehat{u}||$ chama-se erro de mínimos quadrados.

Observação 36. Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $b \in \mathbb{R}^m$. Procuremos então um método para determinar as soluções de mínimos quadrados de Au = b. Atendendo a que $Au \in \mathcal{C}(A)$ para todo o $u \in \mathbb{R}^n$, então a distância ||b - Au|| é mínima se

$$Au = P_{\mathcal{C}(A)}(b),$$

onde $P_{\mathcal{C}(A)}$ é a projecção ortogonal de \mathbb{R}^m sobre $\mathcal{C}(A)$. Como $P_{\mathcal{C}(A)}(b) \in \mathcal{C}(A)$, a equação $Au = P_{\mathcal{C}(A)}(b)$ tem sempre solução e essas soluções são as soluções de mínimos quadrados de Au = b. Deste modo, qualquer sistema de equações lineares tem sempre pelo menos uma solução de mínimos quadrados.

Por outro lado, pode escrever-se a equação $Au = P_{\mathcal{C}(A)}(b)$ na forma

$$b - Au = b - P_{\mathcal{C}(A)}(b) = P_{\mathcal{N}(A^T)}(b)$$

tendo-se

$$A^{T}\left(b-Au\right)=A^{T}\left(b-P_{\mathcal{C}(A)}\left(b\right)\right)=A^{T}\left(P_{\mathcal{N}(A^{T})}\left(b\right)\right)=\mathbf{0},$$

pois
$$(\mathcal{C}(A))^{\perp} = \mathcal{N}(A^T)$$
. Logo

$$A^T A u = A^T b.$$

A esta equação chama-se equação normal associada a Au = b.

Teorema 77. Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $b \in \mathbb{R}^m$.

(i) As soluções de mínimos quadrados do sistema de equações lineares

$$Au = b$$

são as soluções da equação normal

$$A^T A u = A^T b.$$

(ii) Se car A = n então a equação normal

$$A^T A u = A^T b$$

tem a solução única

$$u = \left(A^T A\right)^{-1} A^T b$$

e tem-se

$$P_{\mathcal{C}(A)}(b) = Au = A (A^{T}A)^{-1} A^{T}b,$$

isto é,

$$A\left(A^{T}A\right)^{-1}A^{T}$$

é a matriz que representa a projecção ortogonal $P_{\mathcal{C}(A)}$ na base canónica \mathcal{B}_c^m de \mathbb{R}^m , isto é, $A\left(A^TA\right)^{-1}A^T=M\left(P_{\mathcal{C}(A)};\mathcal{B}_c^m;\mathcal{B}_c^m\right)$.

Teorema 78. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então

$$\operatorname{car} A = \operatorname{car} \left(A^T A \right).$$

Dem. Basta para isso, mostrar que

$$\mathcal{N}(A) = \mathcal{N}(A^T A)$$
.

Seja $u \in \mathcal{N}(A)$. Como $Au = \mathbf{0}$ então $A^TAu = A^T\mathbf{0} = \mathbf{0}$ e assim $u \in \mathcal{N}(A^TA)$. Reciprocamente, seja $u \in \mathcal{N}(A^TA)$ e vejamos que $u \in \mathcal{N}(A)$. Tem-se $A^TAu = \mathbf{0}$, logo

$$Au \in \mathcal{N}\left(A^{T}\right) = \left(\mathcal{L}\left(A^{T}\right)\right)^{\perp} = \left(\mathcal{C}\left(A\right)\right)^{\perp}$$

e como tal

$$\langle Au, Au \rangle = 0,$$

ou seja $||Au||^2 = 0$ e então $Au = \mathbf{0}$, isto é, $u \in \mathcal{N}(A)$.

Observação 37. Vejamos agora o modo como se pode determinar uma curva (ou recta) específica que se possa "ajustar" a um conjunto de pontos determinados experimentalmente.

(i) A partir de dois ou mais pontos dados

$$(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m),$$

pretende-se determinar uma recta $y = a_0 + a_1 x$ que seja a recta que "melhor aproxime" ou a recta de mínimos quadrados de melhor ajuste aos pontos dados (recta de regressão). Isto é, pretende-se determinar as soluções de mínimos quadrados de

$$\begin{cases} y_1 = a_0 + a_1 x_1 \\ y_2 = a_0 + a_1 x_2 \\ \vdots \\ y_m = a_0 + a_1 x_m \end{cases}$$

ou seja de

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

Sejam

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}, \quad u = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \quad e \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

Atendendo a que car $A = \operatorname{car}(A^T A)$, se houver pelo menos dois pontos distintos, tem-se car A = 2 e nesse caso, a equação normal

$$A^T A u = A^T b$$

tem como única solução de mínimos quadrados

$$u = \left(A^T A\right)^{-1} A^T b.$$

Assim, a recta de mínimos quadrados y=a+bx é a recta que torna mínimos os quadrados cuja soma

$$(y_1 - (a_0 + a_1x_1))^2 + (y_2 - (a_0 + a_1x_2))^2 + \dots + (y_m - (a_0 + a_1x_m))^2$$

é dada por

$$\|b - Au\|^2$$

onde ||b - Au|| é o erro de mínimos quadrados.

(ii) A partir de m pontos dados $(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)$, pretende-se determinar um polinómio cujo gráfico esteja tão perto quanto possível desses m pontos dados. Isto é, com $m \in \mathbb{N}$ previamente fixo, pretende-se determinar as soluções de mínimos quadrados do sistema de m equações a n + 1 incógnitas $(a_0, a_1, a_2, \ldots, a_n)$

$$\begin{cases} y_1 = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n \\ y_2 = a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_n x_2^n \\ \vdots \\ y_m = a_0 + a_1 x_m + a_2 x_m^2 + \dots + a_n x_m^n \end{cases}$$

ou seja de

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

Sejam

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^n \end{bmatrix}, \quad u = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} \quad e \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}.$$

Note-se que se n + 1 = m e se os pontos dados forem distintos, então existe um único polinómio de grau n (o chamado polinómio interpolador) que passa por todos esses m pontos.

Por outro lado, atendendo a que car $A = \operatorname{car}(A^T A)$, se n < m e pelo menos n+1 pontos forem distintos, tem-se car A = n+1 e então a equação normal

$$A^T A u = A^T b$$

tem como única solução de mínimos quadrados

$$u = \left(A^T A\right)^{-1} A^T b.$$

Exemplo 46. Determinemos a recta de mínimos quadrados relativa aos pontos

$$(0,1),(1,3),(2,4) \in (3,4).$$

Sejam

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \quad \text{e} \quad b = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 4 \end{bmatrix}.$$

Tem-se car A=2 e como tal a solução de mínimos quadrados é única e dada por:

$$u = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = (A^T A)^{-1} A^T b =$$

$$= \left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 3/2 \\ 1 \end{bmatrix},$$

tendo-se

$$y = \frac{3}{2} + x.$$

O vector b-Au é o vector erro de mínimos quadrados, sendo o erro de mínimos quadrados dado por:

$$||b - Au|| =$$

$$= \sqrt{(y_1 - (a_0 + a_1 x_1))^2 + (y_2 - (a_0 + a_1 x_2))^2 + (y_3 - (a_0 + a_1 x_3))^2 + (y_4 - (a_0 + a_1 x_4))^2} =$$

$$= \sqrt{\left(1 - \left(\frac{3}{2} + 0\right)\right)^2 + \left(3 - \left(\frac{3}{2} + 1\right)\right)^2 + \left(4 - \left(\frac{3}{2} + 2\right)\right)^2 + \left(4 - \left(\frac{3}{2} + 3\right)\right)^2} =$$

$$= \sqrt{\frac{25}{16} + \frac{1}{4} + \frac{1}{16} + \frac{1}{4}} = \frac{\sqrt{34}}{4}.$$

Determinantes

Definição 58. Dados os números naturais 1, 2, ..., n chama-se **permutação** desses n números a qualquer lista em que os mesmos sejam apresentados por ordem arbitrária.

Definição 59. Seja $(i_1i_2...i_n)$ uma permutação dos números naturais 1, 2, ..., n. Diz-se que um par (i_ji_k) é uma **inversão** quando $(j-k)(i_j-i_k)<0$ (isto é, quando i_j e i_k aparecerem na permutação por ordem decrescente).

Definição 60. Uma permutação $(i_1i_2...i_n)$ diz-se **par** (**impar**) quando o nº máximo de inversões incluídas fôr par (impar).

Exemplo 47. A permutação (21453) é impar pois o n^o máximo de inversões nela incluídas é impar: (21), (43) e (53).

Definição 61. Seja A uma matriz do tipo $n \times n$. Chama-se **determinante** de A, e escreve-se |A| ou det A, o número que se obtém do seguinte modo:

- (i) Formam-se todos os produtos possíveis de n factores em que intervenha um elemento de cada linha e, simultaneamente, um elemento de cada coluna de A.
- (ii) Afecta-se cada produto do sinal + ou do sinal conforme as permutações (dos números naturais 1, 2, ..., n) que figuram nos índices de linha e de coluna tenham a mesma paridade ou não.
 - (iii) Somam-se as parcelas obtidas.

Em resumo: fixando, por exemplo, a permutação $(i_1i_2...i_n)$ de 1, 2, ..., n

$$|A| = \sum_{\substack{(j_1 j_2 \dots j_n) \\ \text{permutação de } 1, 2, \dots, n}} (-1)^{\sigma} a_{i_1 j_1} a_{i_2 j_2} \dots a_{i_n j_n},$$

em que

$$\sigma = \begin{cases} 0 & \text{se } (i_1 i_2 ... i_n) \text{ e } (j_1 j_2 ... j_n) \text{ têm a mesma paridade} \\ \\ 1 & \text{se } (i_1 i_2 ... i_n) \text{ e } (j_1 j_2 ... j_n) \text{ têm paridade diferente.} \end{cases}$$

Observação 38. Pode ainda escrever-se

$$|A| = \sum_{\substack{(j_1 j_2 \dots j_n) \\ \text{permutate odd de } 1 ? \\ n}} (-1)^{\sigma} a_{1j_1} a_{2j_2} \dots a_{nj_n} \quad \text{onde} \quad \sigma = \begin{cases} 0 & \text{se } (j_1 j_2 \dots j_n) \text{ \'e par} \\ 1 & \text{se } (j_1 j_2 \dots j_n) \text{ \'e impar.} \end{cases}$$

ou

$$|A| = \sum_{\substack{(i_1 i_2 \dots i_n) \\ \text{permutação de 1 2} }} (-1)^{\sigma} a_{i_1 1} a_{i_2 2} \dots a_{i_n n} \quad \text{onde} \quad \sigma = \begin{cases} 0 & \text{se } (i_1 i_2 \dots i_n) \text{ \'e par} \\ 1 & \text{se } (i_1 i_2 \dots i_n) \text{ \'e impar.} \end{cases}$$

Teorema 79. (i) Se A é do tipo 2×2 , então

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

(ii) Se A é do tipo 3×3 , então

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

 $= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

Observação 39. (i) Se A é uma matriz do tipo $n \times n$ então |A| tem n! parcelas.

(ii) O determinante de cada um dos três tipos de matrizes elementares é dado por

$$\det P_{ij} = -1,$$

$$\det E_i(\alpha) = \alpha$$
,

$$\det E_{ij}\left(\alpha\right)=1.$$

Exemplo 48. (i)

$$\left| \begin{array}{cc} 1 & -1 \\ 2 & -2 \end{array} \right| = 1(-2) - (-1)2 = 0.$$

(ii)
$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & 2 \\ 2 & 1 & -3 \end{vmatrix} = 1(-1)(-3) + 3 + 8 - 1(-1)2 - 6(-3) - 2 = 32.$$

Definição 62. Seja $A = (a_{ij})$ uma matriz do tipo $n \times n$, com n > 1. Seja A_{ij} a matriz do tipo $(n-1) \times (n-1)$ que se obtem de A suprimindo a linha i e a coluna j de A. Chama-se a A_{ij} o **menor-**ij da matriz A.

Teorema 80. (Fórmula de Laplace.) Seja A uma matriz do tipo $n \times n$, com n > 1. Tem-se

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij}, \quad \text{com } i \in \{1, ..., n\} \text{ fixo.}$$

Observação 40. Seja A uma matriz do tipo $n \times n$, com n > 1. Tem-se

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij}, \quad \text{com } j \in \{1, ..., n\} \text{ fixo.}$$

Exemplo 49.

$$\begin{vmatrix} 1 & 0 & -2 & 3 \\ 2 & 1 & -1 & 4 \\ 0 & -1 & 0 & -2 \\ 1 & 0 & -2 & -3 \end{vmatrix} = (-1)(-1)^{3+2} \begin{vmatrix} 1 & -2 & 3 \\ 2 & -1 & 4 \\ 1 & -2 & -3 \end{vmatrix} + (-2)(-1)^{3+4} \begin{vmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ 1 & 0 & -2 \end{vmatrix} =$$

$$= (-1)(-3) + (-2)4 + 2(-2)3 - (-1)3 - (-2)2(-3) - 4(-2) + 2[(-2) - (-2)] = -18.$$

Teorema 81. Sejam $A \in B$ matrizes do tipo $n \times n$. Seja λ um escalar.

- (i) $\det(A^T) = \det A$.
- (ii) Se A fôr uma matriz diagonal, triangular superior ou triangular inferior então o determinante de A é igual ao produto dos elementos da diagonal principal de A.
 - (iii) Se A tiver uma linha (ou coluna) nula então $\det A = 0$.
 - (iv) Se B fôr obtida de A trocando duas linhas (ou colunas) de A então det $B = -\det A$.
- (v) Sendo B, A_1 e A_2 matrizes do tipo $n \times n$ com as n-1 linhas (colunas): 1, 2, ..., i-1, i+1, ..., n iguais, se a linha (coluna) i de B fôr obtida somando as linhas (colunas) i de A_1 e de A_2 então det $B = \det A_1 + \det A_2$.
- (vi) Sendo B fôr obtida de A multiplicando uma linha (ou coluna) de A por um escalar λ então det $B = \lambda \det A$.
 - (vii) Se duas linhas (ou colunas) de A forem iguais então det A=0.

- (viii) Se B fôr obtida de A somando a uma linha (ou coluna) de A um múltiplo escalar λ de uma outra linha (ou coluna) de A então det $B = \det A$.
 - (ix) $\det(\lambda A) = \lambda^n \det A$.
 - (x) $\det(EA) = \det E \det A$, onde $E \in \operatorname{uma\ matriz\ elementar\ } (P_{ij}, E_i(\alpha))$ ou $E_{ij}(\alpha)$).
 - (xi) $\det A \neq 0 \Leftrightarrow A$ é invertível.
 - (xii) $\det(AB) = \det A \det B$.
- (xiii) $\det(A_1A_2...A_l) = \det A_1 \det A_2... \det A_l$, onde $A_1, A_2, ..., A_l$ são l ($l \in \mathbb{N}$) matrizes do tipo $n \times n$.
 - (xiv) Se A fôr invertível, $\det(A^{-1}) = \frac{1}{\det A}$.
 - (xv) $\det(AB) = 0 \Leftrightarrow (\det A = 0 \text{ ou } \det B = 0).$
 - (xvi) $\det(AB) = \det(BA)$.

Exemplo 50.

$$= \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 & 4 \\ 0 & 0 & 2 & 4 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{vmatrix} = 2^4 = 16.$$

Observação 41. (i) Sendo $A \in B$ matrizes do tipo $n \times n$, em geral:

$$|A+B| \ \neq \ |A|+|B| \qquad \mathrm{e} \qquad |A-B| \neq |A|-|B| \,.$$

Por exemplo, se n é par, A = I e B = -I, tem-se

$$|A + B| = 0 \neq 2 \underset{n \text{ \'e par}}{=} 1 + (-1)^n = |A| + |B|.$$

(ii) Sendo A uma matriz do tipo $n \times n$, se fixarmos n-1 linhas (colunas), o determinante de A é uma função linear em relação à linha (coluna) não fixada.

Definição 63. Seja $A = (a_{ij})$ uma matriz do tipo $n \times n$, com n > 1. Seja A_{ij} o menor-ij da matriz A. Chama-se a $(-1)^{i+j} \det A_{ij}$ o **cofactor-**ij da matriz A e à matriz cof $A = ((-1)^{i+j} \det A_{ij})$ do tipo $n \times n$, com n > 1, a matriz dos cofactores de A.

Teorema 82. Para qualquer matriz A do tipo $n \times n$, com n > 1, tem-se

$$A (\operatorname{cof} A)^{T} = (\operatorname{cof} A)^{T} A = (\det A) I.$$

Se det $A \neq 0$ então A é invertível e

$$A^{-1} = \frac{1}{\det A} \left(\operatorname{cof} A \right)^{T} = \left(\underbrace{\frac{1}{\det A} (-1)^{j+i} \det A_{ji}}_{\text{entrada } (i,j) \det A^{-1}} \right)_{n \times n}.$$

Exemplo 51. (i) Seja $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que det $A \neq 0$. Então A é invertível e

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

Note que $ad - bc = \det A$.

(ii) Podemos usar o teorema anterior para calcular não só a inversa de uma matriz (invertível) mas também (e sobretudo) entradas concretas dessa inversa. Seja

$$A = \left[\begin{array}{ccc} 1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

A entrada (1,2) da matriz A^{-1} é dada por

$$(A^{-1})_{12} = \frac{1}{\det A} \left((\cot A)^T \right)_{12} = \frac{1}{\det A} \left((-1)^{2+1} \det A_{21} \right) = \frac{1}{-12} \left(-\det \left(\begin{bmatrix} 0 & 3 \\ 8 & 9 \end{bmatrix} \right) \right) = -2.$$

Note que apesar da entrada (1,2) de A ser nula, a entrada (1,2) de A^{-1} não é nula.

(iii) Para calcular A^{-1} a partir do teorema anterior, é preciso calcular $(\cot A)^T$. Assim, usando por exemplo A da alínea anterior, tem-se

$$cof A = \begin{bmatrix}
\begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} & - \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} & \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} \\
- \begin{vmatrix} 0 & 3 \\ 8 & 9 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} & - \begin{vmatrix} 1 & 0 \\ 7 & 8 \end{vmatrix} \\
\begin{vmatrix} 0 & 3 \\ 5 & 6 \end{vmatrix} & - \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 4 & 5 \end{vmatrix} \end{bmatrix} = \begin{bmatrix}
-3 & 6 & -3 \\ 24 & -12 & -8 \\ -15 & 6 & 5
\end{bmatrix}$$

pelo que

$$(\cot A)^T = \begin{bmatrix} -3 & 24 & -15 \\ 6 & -12 & 6 \\ -3 & -8 & 5 \end{bmatrix}$$

e assim

$$A^{-1} = \frac{1}{\det A} \left(\cot A \right)^{T} = \frac{1}{-12} \begin{bmatrix} -3 & 24 & -15 \\ 6 & -12 & 6 \\ -3 & -8 & 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & -2 & \frac{5}{4} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ \frac{1}{4} & \frac{2}{3} & -\frac{5}{12} \end{bmatrix}.$$

De facto

$$\begin{bmatrix} \frac{1}{4} & -2 & \frac{5}{4} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ \frac{1}{4} & \frac{2}{3} & -\frac{5}{12} \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Teorema 83. (Regra de Cramer.) Seja A uma matriz do tipo $n \times n$ tal que A é invertível. Então a única solução do sistema de equações lineares AX = B é dada por

$$X = A^{-1}B = \frac{1}{\det A} \left(\operatorname{cof} A\right)^T B.$$

Isto é, sendo $X = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$ e $B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix}^T$ tem-se, para $i = 1, \dots, n$,

$$x_i = \frac{1}{\det A} \sum_{k=1}^{n} (-1)^{k+i} \det A_{ki} b_k = \frac{\det C_i}{\det A},$$

onde C_i é a matriz obtida de A substituindo a coluna i de A pela matriz coluna B dos termos independentes.

Exemplo 52. O sistema de equações lineares

$$\begin{cases} y + 2z = 8 \\ 4x + 2y - z = 7 \\ x - z = 1 \end{cases}$$

pode ser resolvido usando a regra de Cramer:

$$x = \frac{\begin{vmatrix} 8 & 1 & 2 \\ 7 & 2 & -1 \\ 1 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 & 2 \\ 4 & 2 & -1 \\ 1 & 0 & -1 \end{vmatrix}} = 14, \quad y = \frac{\begin{vmatrix} 0 & 8 & 2 \\ 4 & 7 & -1 \\ 1 & 1 & -1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 & 2 \\ 4 & 2 & -1 \\ 1 & 0 & -1 \end{vmatrix}} = -18 \quad e \quad z = \frac{\begin{vmatrix} 0 & 1 & 8 \\ 4 & 2 & 7 \\ 1 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} 0 & 1 & 2 \\ 4 & 2 & -1 \\ 1 & 0 & -1 \end{vmatrix}} = 13.$$

Produto externo e produto misto

Definição 64. Sejam $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) \in \mathbb{R}^3$. Considere-se em \mathbb{R}^3 o produto interno usual. Então o **produto externo** (vectorial) de u por v, denotado por $u \times v$, é o vector de \mathbb{R}^3 definido por

$$u \times v = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1),$$

isto é,

$$u \times v = \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right) =$$

$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} e_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} e_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} e_3 = \begin{vmatrix} e_1 & e_2 & e_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix},$$

onde $\{e_1, e_2, e_3\}$ é a base canónica de \mathbb{R}^3 .

Teorema 84. Considere-se \mathbb{R}^3 com o produto interno usual. Sejam $u, v, w \in \mathbb{R}^3$ e $\alpha \in \mathbb{R}$. Então, tem-se:

- (i) $e_1 \times e_2 = e_3$
- (ii) $e_2 \times e_3 = e_1$
- (iii) $e_3 \times e_1 = e_2$
- (iv) $u \times v = -(v \times u)$
- (v) $u \times (v + w) = u \times v + u \times w$
- (vi) $(u+v) \times w = u \times w + v \times w$
- (vii) $\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$
- (viii) $u \times \mathbf{0} = \mathbf{0} \times u = \mathbf{0}$
- (ix) $u \times u = 0$
- (x) Se u e v forem linearmente dependentes então $u \times v = 0$
- (xi) $u \times (v \times w) = \langle u, w \rangle v \langle u, v \rangle w$
- (xii) $(u \times v) \times w = \langle w, u \rangle v \langle w, v \rangle u$
- (xiii) $||u \times v||^2 + \langle u, v \rangle^2 = ||u||^2 ||v||^2$ (identidade de Lagrange)
- (xiv) $u \times (v \times w) + w \times (u \times v) + v \times (w \times u) = 0$ (identidade de Jacobi)

Teorema 85. Considere-se \mathbb{R}^3 com o produto interno usual. Sejam $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$ e seja $\theta \in [0, \pi]$ o ângulo formado por u e v. Então tem-se:

(i)
$$||u|| \, ||v|| \operatorname{sen} \theta = ||u \times v||.$$

(ii) A área do paralelogramo de lados adjacentes u e v é dada por:

$$A = \|u \times v\|.$$

Dem. (i) Como $\theta \in [0, \pi]$, tem-se sen $\theta = \sqrt{1 - \cos^2 \theta}$ e deste modo,

$$||u|| \, ||v|| \operatorname{sen} \theta =$$

$$= ||u|| ||v|| \sqrt{1 - \cos^{2}\theta} =$$

$$= ||u|| ||v|| \sqrt{1 - \frac{\langle u, v \rangle^{2}}{||u||^{2} ||v||^{2}}} =$$

$$= \sqrt{||u||^{2} ||v||^{2} - \langle u, v \rangle^{2}} =$$

$$= \sqrt{(u_{1}^{2} + u_{2}^{2} + u_{3}^{2})(v_{1}^{2} + v_{2}^{2} + v_{3}^{2}) - (u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3})^{2}}} =$$

$$= \sqrt{(u_{2}v_{3} - u_{3}v_{2})^{2} + (u_{3}v_{1} - u_{1}v_{3})^{2} + (u_{1}v_{2} - u_{2}v_{1})^{2}}} =$$

$$= ||(u_{2}v_{3} - u_{3}v_{2}, u_{3}v_{1} - u_{1}v_{3}, u_{1}v_{2} - u_{2}v_{1})|| = ||u \times v||.$$

(ii)
$$A = (base)(altura) = ||u|| \, ||v|| \operatorname{sen} \theta.$$

Definição 65. Considere-se \mathbb{R}^3 com o produto interno usual. Sejam $w=(w_1,w_2,w_3)$, $u=(u_1,u_2,u_3)$, $v=(v_1,v_2,v_3)\in\mathbb{R}^3$. À expressão

$$\langle w, u \times v \rangle$$

chama-se **produto misto** de $w, u \in v$.

Teorema 86. Considere-se \mathbb{R}^3 com o produto interno usual. Sejam $w=(w_1,w_2,w_3)$, $u=(u_1,u_2,u_3)$, $v=(v_1,v_2,v_3)\in\mathbb{R}^3$. Então, tem-se:

(i)
$$\langle w, u \times v \rangle = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

(ii)
$$\langle u, u \times v \rangle = 0 \qquad \langle v, u \times v \rangle = 0 \qquad \langle w, u \times v \rangle = \langle w \times u, v \rangle.$$

(iii) Sendo ξ o ângulo formado por w e $u \times v$, o volume do paralelepípedo com um vértice em (0,0,0) e arestas w,u,v, é dado por

$$= \underbrace{\|u \times v\|}_{\text{área da face determinada por } u \text{ e } v} \underbrace{\|w\| |\cos \xi|}_{\text{altura}} =$$

$$= \|u \times v\| \|w\| \frac{|\langle w, u \times v \rangle|}{\|w\| \|u \times v\|} =$$

$$= |\langle w, u \times v \rangle| = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

(iv) Considere-se \mathbb{R}^n com o produto interno usual. Sendo V o volume do hiperparalelepípedo determinado pela base ordenada $\{w_1, ..., w_n\}$, tem-se

$$V^{2} = \left(\det \begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix}\right)^{2} =$$

$$= \det \begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix} \det \begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix} =$$

$$= \det \left(\begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix}^{T} \right) \det \begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix} =$$

$$= \det \left(\begin{bmatrix} w_{1} \end{pmatrix}^{T} \\ \vdots \\ w_{n} \end{bmatrix}^{T} \begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix} \right) =$$

$$= \det \left(\begin{bmatrix} (w_{1})^{T} \\ \vdots \\ (w_{n})^{T} \end{bmatrix} \begin{bmatrix} w_{1} & \cdots & w_{n} \end{bmatrix} \right) =$$

$$= \det \left(\begin{bmatrix} (w_{1})^{T} w_{1} & \cdots & (w_{1})^{T} w_{n} \\ \vdots \\ (w_{n})^{T} w_{1} & \cdots & (w_{n})^{T} w_{n} \end{bmatrix} \right) =$$

$$= \det \left(\begin{bmatrix} (w_{1}, w_{1}) & \cdots & (w_{1}, w_{n}) \\ \vdots \\ (w_{n}, w_{1}) & \cdots & (w_{n}, w_{n}) \end{bmatrix} \right) = \det G.$$

Logo

$$V^2 = \det G$$
.

(v) A distância entre duas rectas disjuntas $r \in s$ não paralelas definidas por:

$$r = \{a\} + L\{u\}$$
 e $s = \{b\} + L\{v\}$

é dada por:

$$d(r,s) = \frac{V}{A} = \frac{\left|\left\langle b - a, u \times v \right\rangle\right|}{\left\|u \times v\right\|}$$

onde os vectores b-a, u e v determinam o paralelepípedo cuja altura é a distância entre as duas rectas, V é o volume desse paralelepípedo e A é a área do paralelepípedo.

Valores próprios e vectores próprios. Diagonalização.

Definição 66. Seja V espaço linear. Seja $T:V\to V$ uma transformação linear. Diz-se que um escalar λ é um **valor próprio** de T se existir um vector não nulo $v\in V$ tal que

$$T(v) = \lambda v$$
.

Aos vectores não nulos v que satisfaçam a equação anterior chamam-se **vectores próprios** associados ao valor próprio λ . Dado um valor próprio λ de T, o conjunto

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \} = \mathcal{N}(T - \lambda I)$$

é um subespaço linear de V. Chama-se a E_{λ} o subespaço próprio associado ao valor próprio λ . À dimensão de E_{λ} chama-se multiplicidade geométrica de λ e denota-se por $m_q(\lambda)$, isto é,

$$\dim \mathcal{N}(T - \lambda I) = m_g(\lambda).$$

Exemplo 53. (a) Seja V um espaço linear e $I:V\to V$ a transformação identidade. Então todos os vectores de V, exceptuando o vector nulo, são vectores próprios de T associados ao valor próprio 1.

(b) Seja V o espaço linear das funções reais indefinidamente diferenciáveis em \mathbb{R} e T: $V \to V$ a (transfomação) função derivada. Como, por exemplo

$$T\left(e^{2x}\right) = 2e^{2x}$$

então e^{2x} é vector próprio de T associado ao valor próprio 2.

Observação 42. (i) Sejam V um espaço linear e $\mathbf{0}$ o vector nulo de V. Seja $T:V\to V$ uma transformação linear. Um escalar λ é um valor próprio de T se e só se $\mathcal{N}(T-\lambda I)\neq \{\mathbf{0}\}$.

(ii) Se o espaço linear V tiver dimensão finita n e se $A = M(T; \mathcal{B}; \mathcal{B})$ fôr a matriz $n \times n$ que representa T em relação a uma base ordenada \mathcal{B} de V, então um escalar λ é um valor próprio de T se e só se esse escalar λ fôr solução da equação

$$\det(A - \lambda I) = 0,$$

uma vez que se tem, para $v \in V$,

$$(T - \lambda I) v = \mathbf{0} \Leftrightarrow (A - \lambda I) \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \mathbf{0}.$$

onde $\alpha_1, ..., \alpha_n$ são as coordenadas de v na base ordenada \mathcal{B} , daí que

 λ é um valor próprio de $T \Leftrightarrow \mathcal{N}(T - \lambda I) \neq \{\mathbf{0}\} \Leftrightarrow \mathcal{N}(A - \lambda I) \neq \{\mathbf{0}\} \Leftrightarrow \det(A - \lambda I) = 0$

isto é

$$\lambda$$
 é um valor próprio de $T \Leftrightarrow \det(A - \lambda I) = 0$

Além disso, tem-se

v é um vector próprio de $T \Leftrightarrow v \in \mathcal{N}(T - \lambda I) \setminus \{\mathbf{0}\} \Leftrightarrow (\alpha_1, ..., \alpha_n) \in \mathcal{N}(A - \lambda I) \setminus \{\mathbf{0}\}$ isto é

v é um vector próprio de $T \Leftrightarrow (\alpha_1, ..., \alpha_n) \in \mathcal{N}(A - \lambda I) \setminus \{\mathbf{0}\}$

 \mathbf{e}

$$m_q(\lambda) = \dim \mathcal{N}(T - \lambda I) = \dim \mathcal{N}(A - \lambda I).$$

(iii) No caso em que $V = \mathbb{R}^n$ e $A = M(T; \mathcal{B}_c^n; \mathcal{B}_c^n)$, como (neste caso) $v = (\alpha_1, ..., \alpha_n)$, tem-se

$$\mathcal{N}(T - \lambda I) = \mathcal{N}(A - \lambda I).$$

Definição 67. Seja A uma matriz $n \times n$. Chama-se ao polinómio

$$p(\lambda) = \det(A - \lambda I)$$

o **polinómio característico** da matriz A. Este polinómio tem grau n, o coeficiente do termo de grau n é $(-1)^n$, o coeficiente do termo de grau n-1 é $(-1)^{n-1}$ tr A e o termo constante é $p(0) = \det A$.

Definição 68. Seja A uma matriz $n \times n$. Chama-se **valor próprio** de A a qualquer escalar λ tal que $A - \lambda I$ seja não invertível, isto é, tal que $\det(A - \lambda I) = 0$. Ao conjunto de todos os valores próprios de A chama-se **espectro** de A. À multiplicidade de λ como raíz do polinómio $\det(A - \lambda I)$ chama-se **multiplicidade algébrica** de λ e denota-se por $m_a(\lambda)$. Chama-se **vector próprio** de A, associado ao valor próprio λ de A, a qualquer vector não nulo v que verifique

$$(A - \lambda I)v = \mathbf{0},$$

isto é, a qualquer vector

$$v \in \mathcal{N}(A - \lambda I) \setminus \{\mathbf{0}\}$$
.

Teorema 87. Seja A uma matriz $n \times n$. O escalar 0 é valor próprio de A se e só se A fôr não invertível. Isto é, a matriz A é invertível se e só se 0 não fôr valor próprio de A.

Teorema 88. Seja A uma matriz $n \times n$. Então o polinómio característico de A pode ser escrito na forma:

$$p(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)^{m_1} (\lambda_2 - \lambda)^{m_2} \cdots (\lambda_k - \lambda)^{m_k},$$

onde $\lambda_1, \lambda_2, \dots, \lambda_k$ são os valores próprios distintos de A e m_1, m_2, \dots, m_k são tais que $m_1 + m_2 + \dots + m_k = n$.

Definição 69. Se

$$p(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)^{m_1} (\lambda_2 - \lambda)^{m_2} \cdots (\lambda_k - \lambda)^{m_k}$$

onde $\lambda_1, \lambda_2, \ldots, \lambda_k$ são os valores próprios distintos de A, aos expoentes m_1, m_2, \ldots, m_k chamam-se as **multiplicidades algébricas** desses valores próprios respectivamente. Escreve-se

$$m_a(\lambda_k) = m_k$$
.

Teorema 89. Seja A uma matriz $n \times n$, com os valores próprios $\lambda_1, \lambda_2, \ldots, \lambda_n$ (repetidos de acordo com a respectiva multiplicidade algébrica). Então, atendendo à alínea anterior e à definição anterior tem-se

$$\det A = \lambda_1 \lambda_2 \cdots \lambda_n$$
 e $\operatorname{tr} A = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Definição 70. Sejam $A \in B$ matrizes $n \times n$. As matrizes $A \in B$ dizem-se **semelhantes** se existir uma matriz S invertível tal que

$$B = SAS^{-1}$$
.

Teorema 90. Duas matrizes são semelhantes se e só se existirem bases ordenadas em relação às quais essas matrizes representem a mesma transformação linear.

Teorema 91. Sejam $A \in B$ matrizes $n \times n$. Se $A \in B$ forem semelhantes **então** $A \in B$ têm o(a) mesmo(a):

- (i) determinante; (ii) característica; (iii) nulidade; (iv) traço;
- (v) polinómio característico, e portanto têm os mesmos valores próprios com as mesmas multiplicidades algébricas e geométricas.

Dem. (Matrizes semelhantes têm o mesmo polinómio característico.)

$$\det(B - \lambda I) = \det(SAS^{-1} - \lambda I) = \det(SAS^{-1} - \lambda SS^{-1}) =$$

$$= \det(S(A - \lambda I)S^{-1}) = \det S \det(A - \lambda I) \det(S^{-1}) =$$

$$= \det S \det(A - \lambda I) \frac{1}{\det S} = \det(A - \lambda I).$$

- **Teorema 92.** (i) Seja V um espaço linear. Seja $T: V \to V$ uma transformação linear. Se T tiver valores próprios $\lambda_1, ..., \lambda_k$ distintos dois a dois e se para cada i = 1, ..., k considerarmos o conjunto S_i dos vectores próprios de T linearmente independentes e associados a λ_i , então $S_1 \cup ... \cup S_k$ é um conjunto linearmente independente.
- (ii) Seja A uma matriz $n \times n$. Se A tiver valores próprios $\lambda_1, ..., \lambda_k$ distintos dois a dois e se para cada i = 1, ..., k considerarmos o conjunto S_i dos vectores próprios de A linearmente independentes e associados a λ_i , então $S_1 \cup ... \cup S_k$ é um conjunto linearmente independente.
 - (iii) Seja A uma matriz $n \times n$. Tem-se

$$m_g(\lambda_i) \leq m_a(\lambda_i)$$
,

para qualquer valor próprio λ_i de A.

Dem. (ii) Vejamos que a afirmação é válida para k=2. O caso geral prova-se por indução. Sejam λ_1 e λ_2 dois valores próprios distintos e sejam $S_1 = \{u_1, ..., u_r\}$ e $S_2 = \{v_1, ..., v_s\}$ dois conjuntos de vectores próprios de A linearmente independentes e associados respectivamente a λ_1 e a λ_2 . Suponhamos que se tinha

$$\alpha_1 u_1 + \dots + \alpha_r u_r + \beta_1 v_1 + \dots + \beta_s v_s = \mathbf{0}. \ (*)$$

Logo

$$\mathbf{0} = A(\alpha_1 u_1 + \dots + \alpha_r u_r + \beta_1 v_1 + \dots + \beta_s v_s) =$$

$$= \alpha_1 \lambda_1 u_1 + \dots + \alpha_r \lambda_1 u_r + \beta_1 \lambda_2 v_1 + \dots + \beta_s \lambda_2 v_s. \quad (**)$$

Multiplicando (*) por λ_1 e subtraindo a (**) obtem-se

$$\beta_1 (\lambda_2 - \lambda_1) v_1 + \cdots + \beta_s (\lambda_2 - \lambda_1) v_s = \mathbf{0},$$

e atendendo a que $\lambda_1 \neq \lambda_2$ e ao facto de S_2 ser linearmente independente, conclui-se que $\beta_1 = \cdots = \beta_s = 0$. Finalmente, como S_1 é linearmente independente, então $\alpha_1 = \cdots = \alpha_r = 0$ e deste modo $S_1 \cup S_2$ é um conjunto linearmente independente.

(iii) Seja λ_i um qualquer valor próprio de A. Seja $r = m_g(\lambda_i) = \dim \mathcal{N}(A - \lambda_i I)$. Seja $\{u_1, ..., u_r\}$ uma base de $\mathcal{N}(A - \lambda_i I)$. Seja $\{u_1, ..., u_r, u_{r+1}, ..., u_n\}$ uma base de \mathbb{R}^n (ou de \mathbb{C}^n). Considere-se a matriz invertível $S^{-1} = [u_1...u_r u_{r+1}...u_n]$. Tem-se

$$SAS^{-1} = \begin{bmatrix} \lambda_i I_{r \times r} & * \\ \mathbf{0}_{(n-r) \times r} & ** \end{bmatrix}.$$

Logo, como SAS^{-1} e A têm o mesmo polinómio característico, então λ_i é uma raíz do polinómio característico de A com multiplicidade algébrica pelo menos igual a r.

Definição 71. (i) Seja A uma matriz $n \times n$. Se existir uma matriz P^{-1} invertível tal que

$$D = PAP^{-1},$$

com D matriz diagonal, então diz-se que A é uma matriz diagonalizável e que P^{-1} é a matriz diagonalizante. No caso de A ser uma matriz diagonal, a matriz diagonalizante é a matriz identidade.

(ii) Seja V um espaço linear tal que dim V = n. Seja $T : V \to V$ uma transformação linear. Diz-se que T é diagonalizável se existir uma base ordenada \mathcal{B} de V em relação à qual a matriz $M(T; \mathcal{B}; \mathcal{B})$ que representa T nessa base seja uma matriz diagonal.

Teorema 93. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. A matriz A é diagonalizável se e só se existir uma base \mathcal{B}_{vp} de \mathbb{R}^n apenas constituída por vectores próprios de A. Neste caso, as entradas da

diagonal principal da matriz diagonal D serão os valores próprios de A apresentados pela ordem dos vectores próprios correspondentes na base ordenada \mathcal{B}_{vp} . Além disso, a matriz P^{-1} será a matriz cujas colunas serão os vectores próprios de A, da base \mathcal{B}_{vp} de \mathbb{R}^n dispostos pela mesma ordem, tendo-se

$$D = PAP^{-1}.$$

O mesmo se aplica a \mathbb{C}^n .

Teorema 94. Seja A uma matriz $n \times n$. Sendo $\lambda_1, ..., \lambda_k$ os valores próprios distintos de A, então as afirmações seguintes são equivalentes:

- (i) A é diagonalizável.
- (ii) A tem n vectores próprios linearmente independentes.

(iii)
$$\sum_{i=1}^{k} m_g(\lambda_i) = n$$
.

(iv) $m_q(\lambda_i) = m_a(\lambda_i)$ para todo o i = 1, ..., k...

Dem. (i) \Leftrightarrow (iii) Sejam $\lambda_1, ..., \lambda_k$ os valores próprios de A distintos dois a dois.

 (\Rightarrow) Suponhamos que A é diagonalizável. Então A terá n vectores próprios linearmente independentes. Suponhamos que l_i dos vectores próprios de A estão associados ao valor próprio λ_i . Logo, para cada i=1,...,k

$$\dim \mathcal{N}(A - \lambda_i I) \ge l_i.$$

Seja

$$r = \dim \mathcal{N} (A - \lambda_1 I) + ... + \dim \mathcal{N} (A - \lambda_k I)$$
.

Então

$$r \ge l_1 + \dots + l_k = n.$$

Para cada i = 1, ..., k seja S_i uma base de $\mathcal{N}(A - \lambda_i I)$. Logo $S_1 \cup ... \cup S_k$ é um conjunto de r vectores linearmente independentes, pelo que se tem $r \leq n$. Logo r = n.

(\Leftarrow) Suponhamos que $n = \dim \mathcal{N}(A - \lambda_1 I) + ... + \dim \mathcal{N}(A - \lambda_k I)$. Para cada i = 1, ..., k sendo $m_i = \dim \mathcal{N}(A - \lambda_i I)$, existirá então um conjunto S_i formado por m_i vectores próprios de A linearmente independentes associados ao valor próprio λ_i . Assim, conclui-se que $S_1 \cup ... \cup S_k$ é um conjunto de n vectores próprios de A linearmente independentes, sendo deste modo A diagonalizável.

Observação 43. (i) Se todos os valores próprios de A forem raízes simples do polinómio característico, então A é diagonalizável.

(ii) Se $A \in \mathcal{M}_{n \times n}$ (\mathbb{R}) então A é é diagonalizável se e só se:

$$\mathbb{R}^{n} = \mathcal{N}(A - \lambda_{1}I) \oplus ... \oplus \mathcal{N}(A - \lambda_{k}I).$$

(iii) Seja V um espaço linear tal que dim V = n. Seja $A = M(T, \mathcal{B}, \mathcal{B})$ a matriz $n \times n$ que representa a transformação linear $T: V \to V$ em relação à base ordenada \mathcal{B} . No caso de

haver uma base \mathcal{B}_{vp} (ordenada) de V apenas constituída por vectores próprios de T, então tem-se

$$M\left(T, \mathcal{B}_{vp}, \mathcal{B}_{vp}\right) = PAP^{-1},$$

onde $P^{-1} = S_{\mathcal{B}_{vp} \to \mathcal{B}}$, sendo deste modo $M\left(T, \mathcal{B}_{vp}, \mathcal{B}_{vp}\right)$ a matriz diagonal cujas entradas da diagonal principal são os valores próprios de A apresentados pela ordem dos vectores próprios correspondentes na base \mathcal{B}_{vp} . Assim, T é representada relativamente a uma base ordenada por uma matriz diagonal, isto é, T é diagonalizável.

(iv) No caso de se ter $D = PAP^{-1}$, com P^{-1} invertível e D matriz diagonal, tem-se, para $k \in \mathbb{N}$,

$$D^{k} = PA^{k}P^{-1}$$
, ou seja, $A^{k} = P^{-1}D^{k}P$.

Exemplo 54. Nos exemplos que se seguem as matrizes A consideradas poderão ser vistas como matrizes que representam transformações lineares T relativamente à base canónica (ou outras) ordenada de \mathbb{R}^3 , tendo-se no caso da base canónica, para todo o $v \in \mathbb{R}^3$,

$$T(v) = Av$$
.

Deste modo, os valores próprios e vectores próprios de T serão respectivamente os valores próprios e vectores próprios de A.

(i) Uma matriz com valores próprios distintos. $A = \begin{bmatrix} 1 & 5 & -1 \\ 0 & -2 & 1 \\ -4 & 0 & 3 \end{bmatrix}$. O polinómio característico é dado por

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 5 & -1 \\ 0 & -2 - \lambda & 1 \\ -4 & 0 & 3 - \lambda \end{vmatrix} =$$

$$= (1 - \lambda)(-2 - \lambda)(3 - \lambda) - 20 + 4(2 + \lambda) =$$

$$= (1 - \lambda)(-2 - \lambda)(3 - \lambda) + 4\lambda - 12 =$$

$$= (3 - \lambda)[(\lambda - 1)(\lambda + 2) - 4] =$$

$$= (3 - \lambda)(\lambda^2 + \lambda - 6) =$$

$$= (3 - \lambda)(\lambda - 2)(\lambda + 3).$$

Os valores próprios de A são os valores de λ para os quais $\det(A - \lambda I) = 0$. Logo, os valores próprios de A são

$$\lambda_1 = 3$$
, $\lambda_2 = 2$ e $\lambda_3 = -3$.

Os vectores próprios de A associados ao valor próprio λ são os vectores não nulos $v \in \mathbb{R}^3$ para os quais

$$(A - \lambda I) v = 0,$$

isto é, são os vectores não nulos de $\mathcal{N}(A - \lambda I)$.

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_1 = 3$. Tem-se

$$\mathcal{N}(A - \lambda_1 I) = \mathcal{N}\left(\begin{bmatrix} -2 & 5 & -1 \\ 0 & -5 & 1 \\ -4 & 0 & 0 \end{bmatrix}\right) = L\left(\{(0, 1, 5)\}\right).$$

Logo, o subespaço próprio E_{λ_1} é dado por

$$E_{\lambda_1} = \mathcal{N}(A - \lambda_1 I) = L(\{(0, 1, 5)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_1 = 3$ são

$$v = (0, s, 5s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_2 = 2$. Tem-se

$$\mathcal{N}(A - \lambda_2 I) = \mathcal{N}\left(\begin{bmatrix} -1 & 5 & -1 \\ 0 & -4 & 1 \\ -4 & 0 & 1 \end{bmatrix}\right) = L\left(\{(1, 1, 4)\}\right).$$

Logo, o subespaço próprio E_{λ_2} é dado por

$$E_{\lambda_2} = \mathcal{N}(A - \lambda_2 I) = L(\{(1, 1, 4)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_2 = 2$ são

$$v = (s, s, 4s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_3 = -3$. Tem-se

$$\mathcal{N}(A - \lambda_3 I) = \mathcal{N}\left(\left[egin{array}{ccc} 4 & 5 & -1 \ 0 & 1 & 1 \ -4 & 0 & 6 \end{array}
ight]
ight) = L\left(\left\{ (3, -2, 2)
ight\}
ight).$$

Logo, o subespaço próprio E_{λ_3} é dado por

$$E_{\lambda_3} = \mathcal{N}(A - \lambda_3 I) = L(\{(3, -2, 2)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_3 = -3$ são

$$v = (3s, -2s, 2s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Atendendo a que os valores próprios de A são distintos, os vectores próprios de A associados a esses valores próprios são linearmente independentes. Como dim $\mathbb{R}^3 = 3$, então 3 vectores em \mathbb{R}^3 linearmente independentes formarão desde logo uma base de \mathbb{R}^3 . Logo, o conjunto

$$\mathcal{B} = \{(0, 1, 5), (1, 1, 4), (3, -2, 2)\}$$

é uma base de \mathbb{R}^3 . Deste modo, temos uma base de \mathbb{R}^3 formada só por vectores próprios de A. Logo, a matriz A é diagonalizável, isto é, existe uma matriz invertível P^{-1} diagonalizante tal que a matriz PAP^{-1} é diagonal, tendo-se

$$D = PAP^{-1} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \quad \text{com} \quad P^{-1} = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 1 & -2 \\ 5 & 4 & 2 \end{bmatrix}.$$

Note que cada coluna de P^{-1} é formada pelo vector próprio associado ao valor próprio respectivo e na posição respectiva. Além disso, tem-se

$$\begin{array}{ccc}
(\mathbb{R}^3, \mathcal{B}_c^3) & \xrightarrow{M(T; \mathcal{B}_c^3; \mathcal{B}_c^3)} & (\mathbb{R}^3, \mathcal{B}_c^3) \\
S_{\mathcal{B}_c^3 \to \mathcal{B}} \downarrow I & I \downarrow S_{\mathcal{B}_c^3 \to \mathcal{B}} \\
(\mathbb{R}^3, \mathcal{B}) & \xrightarrow{T} & (\mathbb{R}^3, \mathcal{B})
\end{array}$$

com

$$S_{\mathcal{B}_c^3 \to \mathcal{B}} = P$$
, $M(T; \mathcal{B}; \mathcal{B}) = D$ e $M(T; \mathcal{B}_c^3; \mathcal{B}_c^3) = A$.

(ii) Uma matriz com valores próprios repetidos mas diagonalizável.

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{array} \right].$$

O polinómio característico é dado por

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 & 1 \\ 2 & 3 - \lambda & 2 \\ 3 & 3 & 4 - \lambda \end{vmatrix} =$$

$$= (2 - \lambda)(3 - \lambda)(4 - \lambda) + 6 + 6 - 3(3 - \lambda) - 6(2 - \lambda) - 2(4 - \lambda) =$$

$$= -\lambda^{3} + 9\lambda^{2} - 15\lambda + 7 =$$

$$= -(\lambda - 1)(\lambda - 1)(\lambda - 7).$$

Os valores próprios de A são os valores de λ para os quais $\det(A - \lambda I) = 0$. Logo, os valores próprios de A são

$$\lambda_1 = 1$$
 e $\lambda_2 = 7$.

Os vectores próprios de A associados ao valor próprio λ são os vectores não nulos $v \in \mathbb{R}^3$ para os quais

$$(A - \lambda I) v = 0,$$

isto é, são os vectores não nulos de $\mathcal{N}(A - \lambda I)$.

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_1 = 1$. Tem-se

$$\mathcal{N}(A - \lambda_1 I) = \mathcal{N}\left(\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}\right) = L\left(\left\{(-1, 1, 0), (-1, 0, 1)\right\}\right).$$

Logo, o subespaço próprio E_{λ_1} é dado por

$$E_{\lambda_1} = \mathcal{N}(A - \lambda_1 I) = L(\{(-1, 1, 0), (-1, 0, 1)\}).$$

Os vectores próprios de A associados ao valor próprio $\lambda_1 = 1$ são

$$v = (-s - t, s, t)$$
, com $s \neq 0$ ou $t \neq 0$.

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_2 = 7$. Tem-se

$$\mathcal{N}(A - \lambda_2 I) = \mathcal{N}\left(\begin{bmatrix} -5 & 1 & 1 \\ 2 & -4 & 2 \\ 3 & 3 & -3 \end{bmatrix}\right) = L\left(\{(1, 2, 3)\}\right).$$

Logo, o subespaço próprio E_{λ_2} é dado por: $E_{\lambda_2} = \mathcal{N}(A - \lambda_2 I) = L(\{(1, 2, 3)\})$. Os vectores próprios de A associados ao valor próprio $\lambda_2 = 7$ são

$$v = (s, 2s, 3s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Atendendo a que dim E_{λ_1} + dim E_{λ_2} = 3, podemos ter a seguinte base de \mathbb{R}^3 formada só por vectores próprios de A

$$\mathcal{B} = \{(-1, 1, 0), (-1, 0, 1), (1, 2, 3)\}.$$

Logo, a matriz A é diagonalizável, isto é, existe uma matriz invertível P^{-1} diagonalizante tal que a matriz PAP^{-1} é diagonal, tendo-se

$$D = PAP^{-1} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}, \quad \text{com} \quad P^{-1} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}.$$

Note que cada coluna de P^{-1} é formada pelo vector próprio associado ao valor próprio respectivo e na posição respectiva. Além disso, tem-se

$$(\mathbb{R}^{3}, \mathcal{B}_{c}^{3}) \xrightarrow{M(T; \mathcal{B}_{c}^{3}; \mathcal{B}_{c}^{3})} (\mathbb{R}^{3}, \mathcal{B}_{c}^{3})$$

$$S_{\mathcal{B}_{c}^{3} \to \mathcal{B}} \downarrow I \qquad I \downarrow S_{\mathcal{B}_{c}^{3} \to \mathcal{B}}$$

$$(\mathbb{R}^{3}, \mathcal{B}) \xrightarrow{T} (\mathbb{R}^{3}, \mathcal{B})$$

com

$$S_{\mathcal{B}_{c}^{3}\to\mathcal{B}}=P, \quad M(T;\mathcal{B};\mathcal{B})=D \quad \text{e} \quad M(T;\mathcal{B}_{c}^{3};\mathcal{B}_{c}^{3})=A.$$

(iii) Uma matriz com valores próprios repetidos e não diagonalizável.

$$A = \left[\begin{array}{rrr} 7 & 5 & -1 \\ 0 & -2 & 1 \\ 20 & 0 & 3 \end{array} \right].$$

O polinómio característico é dado por

$$\det(A - \lambda I) = \begin{vmatrix} 7 - \lambda & 5 & -1 \\ 0 & -2 - \lambda & 1 \\ 20 & 0 & 3 - \lambda \end{vmatrix} =$$

$$= (7 - \lambda)(-2 - \lambda)(3 - \lambda) + 100 - 20(2 + \lambda) =$$

$$= (3 - \lambda)[(7 - \lambda)(-2 - \lambda) + 20] =$$

$$= (3 - \lambda)(\lambda^2 - 5\lambda + 6) =$$

$$= (3 - \lambda)(\lambda - 3)(\lambda - 2).$$

Os valores próprios de A são os valores de λ para os quais $\det(A-\lambda I)=0$. Logo, os valores próprios de A são

$$\lambda_1 = 3$$
 e $\lambda_2 = 2$.

Os vectores próprios de A associados ao valor próprio λ são os vectores não nulos $v \in \mathbb{R}^3$ para os quais

$$(A - \lambda I) v = 0,$$

isto é, são os vectores não nulos de $\mathcal{N}(A - \lambda I)$.

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_1 = 3$. Tem-se

$$\mathcal{N}(A - \lambda_1 I) = \mathcal{N}\left(\begin{bmatrix} 4 & 5 & -1 \\ 0 & -5 & 1 \\ 20 & 0 & 0 \end{bmatrix}\right) = L\left(\{(0, 1, 5)\}\right).$$

Logo, o subespaço próprio E_{λ_1} é dado por: $E_{\lambda_1} = \mathcal{N}(A - \lambda_1 I) = L(\{(0, 1, 5)\})$. Os vectores próprios de A associados ao valor próprio $\lambda_1 = 3$ são

$$v = (0, s, 5s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Determinemos os vectores próprios de A associados ao valor próprio $\lambda_2=2$. Tem-se

$$\mathcal{N}(A - \lambda_2 I) = \mathcal{N}\left(\begin{bmatrix} 5 & 5 & -1 \\ 0 & -4 & 1 \\ 20 & 0 & 1 \end{bmatrix}\right) = L\left(\{(1, -5, -20)\}\right).$$

Logo, o subespaço próprio E_{λ_2} é dado por: $E_{\lambda_2} = \mathcal{N}(A - \lambda_2 I) = L(\{(1, -5, -20)\})$. Os vectores próprios de A associados ao valor próprio $\lambda_2 = 2$ são

$$v = (s, -5s, -20s), \text{ com } s \in \mathbb{R} \setminus \{0\}.$$

Atendendo a que

$$\dim E_{\lambda_1} + \dim E_{\lambda_2} = 2 < 3,$$

não é possível ter uma base de \mathbb{R}^3 formada só por vectores próprios de A. Logo, a matriz A não é diagonalizável, isto é, não existe uma matriz invertível P^{-1} diagonalizante tal que a matriz PAP^{-1} seja diagonal.

(iv) Uma matriz com apenas um valor próprio real. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$. O polinómio característico é dado por

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & -\lambda & -1 \\ 0 & 1 & -\lambda \end{vmatrix} =$$
$$= \lambda^2 (1 - \lambda) + (1 - \lambda) =$$
$$= (1 - \lambda) (\lambda^2 + 1).$$

Os valores próprios de A são os valores de λ para os quais $\det(A-\lambda I)=0$. Logo, os valores próprios de A são

$$\lambda_1 = 1$$
, $\lambda_2 = i$ e $\lambda_3 = -i$.

Logo, a matriz A não é diagonalizável numa matriz de entradas reais, isto é, não existe uma matriz invertível P^{-1} diagonalizante tal que a matriz PAP^{-1} seja diagonal com entradas reais. No entanto e atendendo a que os três valores próprios são distintos, a matriz A é diagonalizável numa matriz de entradas complexas:

$$\left[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}
\right]$$

Exemplo 55. A sucessão de Fibonacci (Leonardo de Pisa, 1202). Seja $(v_n)_{n\in\mathbb{N}}$ tal que

$$v_1 = 1$$
, $v_2 = 1$ e $v_{n+2} = v_n + v_{n+1}$, $n \in \mathbb{N}$.

Considerando a igualdade $v_{n+1} = v_{n+1}$, podemos escrever o sistema

$$\left\{\begin{array}{ll} v_{n+1}=v_{n+1} \\ v_{n+2}=v_n+v_{n+1} \end{array}\right. \quad \text{isto \'e} \quad \left[\begin{array}{l} v_{n+1} \\ v_{n+2} \end{array}\right] = \left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{l} v_n \\ v_{n+1} \end{array}\right]$$

para todo o $n \in \mathbb{N}$. Aplicando sucessivamente a igualdade anterior tem-se

$$\begin{bmatrix} v_{n+1} \\ v_{n+2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_n \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_{n-1} \\ v_n \end{bmatrix} =$$

$$= \cdots = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Calculemos agora os valores próprios de $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$:

$$\det \begin{bmatrix} -\lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} = 0 \Leftrightarrow \lambda^2 - \lambda - 1 = 0 \Leftrightarrow \left(\lambda = \frac{1 + \sqrt{5}}{2} \quad \text{ou} \quad \lambda = \frac{1 - \sqrt{5}}{2}\right).$$

Valores próprios: $\lambda_1 = \frac{1+\sqrt{5}}{2}$ e $\lambda_2 = \frac{1-\sqrt{5}}{2}$. Atendendo a que

$$\mathcal{N}\left[\begin{array}{cc} -\lambda_1 & 1 \\ 1 & 1-\lambda_1 \end{array}\right] \ = \ \mathcal{N}\left[\begin{array}{cc} 0 & 1+\lambda_1-\lambda_1^2 \\ 1 & 1-\lambda_1 \end{array}\right] = \mathcal{N}\left[\begin{array}{cc} 0 & 0 \\ 1 & \frac{1-\sqrt{5}}{2} \end{array}\right] = L\left(\left\{\left(\frac{-1+\sqrt{5}}{2},1\right)\right\}\right)$$

 $\left(\frac{-1+\sqrt{5}}{2},1\right)$ é um vector próprio associado ao valor próprio $\frac{1+\sqrt{5}}{2}$, sendo todos os vectores próprios associados ao valor próprio $\frac{1+\sqrt{5}}{2}$ dados por $L\left(\left\{\left(\frac{-1+\sqrt{5}}{2},1\right)\right\}\right)\setminus\{(0,0)\}$.

Atendendo a que

$$\mathcal{N}\left[\begin{array}{cc} -\lambda_2 & 1 \\ 1 & 1-\lambda_2 \end{array}\right] = \mathcal{N}\left[\begin{array}{cc} 0 & 1+\lambda_2-\lambda_2^2 \\ 1 & 1-\lambda_2 \end{array}\right] = \mathcal{N}\left[\begin{array}{cc} 0 & 0 \\ 1 & \frac{1+\sqrt{5}}{2} \end{array}\right] = L\left(\left\{\left(-\frac{1+\sqrt{5}}{2},1\right)\right\}\right)$$

 $\left(-\frac{1+\sqrt{5}}{2},1\right)$ é um vector próprio associado ao valor próprio $\frac{1-\sqrt{5}}{2}$, sendo todos os vectores próprios associados ao valor próprio $\frac{1-\sqrt{5}}{2}$ dados por $L\left(\left\{\left(-\frac{1+\sqrt{5}}{2},1\right)\right\}\right)\setminus\{(0,0)\}$.

Como existe uma base de \mathbb{R}^2 formada só por vectores próprios (os dois valores próprios são distintos logo os vectores próprios correspondentes são linearmente independentes) então a matriz $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ é diagonalizável. Assim, fazendo

$$P^{-1} = \begin{bmatrix} \frac{-1+\sqrt{5}}{2} & -\frac{1+\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \quad \text{tem-se} \quad P = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{5+\sqrt{5}}{10} \\ -\frac{\sqrt{5}}{5} & \frac{5-\sqrt{5}}{10} \end{bmatrix}$$

$$D = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix} = P \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} P^{-1} \Leftrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = P^{-1} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix} P.$$

Logo

$$\begin{bmatrix} v_{n+1} \\ v_{n+2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{pmatrix} P^{-1} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix} P \end{pmatrix}^n \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

$$= P^{-1} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix}^n P \begin{bmatrix} 1 \\ 1 \end{bmatrix} = P^{-1} \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n \end{bmatrix} P \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{-1+\sqrt{5}}{2} & -\frac{1+\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n \end{bmatrix} \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{5+\sqrt{5}}{10} \\ -\frac{\sqrt{5}}{5} & \frac{5-\sqrt{5}}{10} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{5-\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2}\right)^n + \frac{5+\sqrt{5}}{10} \left(\frac{1+\sqrt{5}}{2}\right)^n \\ \frac{5-3\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2}\right)^n + \frac{3\sqrt{5}+5}{10} \left(\frac{1+\sqrt{5}}{2}\right)^n \end{bmatrix}.$$

Isto é,

$$v_{n+1} = \frac{5 - \sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2} \right)^n + \frac{5 + \sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2} \right)^n$$

para todo o $n \in \mathbb{N}$, com $v_1 = 1$.

Verifique que (por exemplo) $v_2 = 1$, $v_3 = 2$, $v_4 = 3$.

Exemplo 56. (Um processo de difusão.) Considere duas células adjacentes separadas por uma membrana permeável e suponha que um fluído passa da 1^a célula para a 2^a a uma taxa (em mililitros por minuto) numericamente igual a 4 vezes o volume (em mililitros) do fluído da 1^a célula. Em seguida, passa da 2^a célula para a 1^a a uma taxa (em mililitros por minuto) numericamente igual a 5 vezes o volume (em mililitros) do fluído da 2^a célula.

Sejam $v_1(t)$ e $v_2(t)$ respectivamente o volume da 1^a célula e o volume da 2^a célula no instante t. Suponha que inicialmente a primeira célula tem 10 mililitros de fluído e que a segunda tem 8 mililitros de fluído, isto é $v_1(0) = 10$ e $v_2(0) = 8$.

Determinemos o volume de fluído de cada célula no instante t.

Tem-se

$$\begin{cases}
v'_{1}(t) = -4v_{1}(t) \\
v'_{2}(t) = 4v_{1}(t) - 5v_{2}(t)
\end{cases} isto \acute{e} \begin{bmatrix} v'_{1}(t) \\ v'_{2}(t) \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} v_{1}(t) \\ v_{2}(t) \end{bmatrix}. (*)$$

-4 e -5 são os valores próprios da matriz $\begin{bmatrix} -4 & 0 \\ 4 & -5 \end{bmatrix}$, sendo os vectores próprios associados (1,4) e (0,1) respectivamente.

Como existe uma base de \mathbb{R}^2 formada só por vectores próprios (os dois valores próprios são distintos logo os vectores próprios correspondentes são linearmente independentes) então a matriz $\begin{bmatrix} -4 & 0 \\ 4 & -5 \end{bmatrix}$ é diagonalizável. Assim, fazendo

$$P^{-1} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \quad \text{tem-se} \quad P = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix}$$

e

$$\Leftrightarrow D = \left[\begin{array}{cc} -4 & 0 \\ 0 & -5 \end{array} \right] = P \left[\begin{array}{cc} -4 & 0 \\ 4 & -5 \end{array} \right] P^{-1} \Leftrightarrow \left[\begin{array}{cc} -4 & 0 \\ 4 & -5 \end{array} \right] = P^{-1} \left[\begin{array}{cc} -4 & 0 \\ 0 & -5 \end{array} \right] P.$$

o sistema (*) é equivalente a

$$\begin{bmatrix} v_1'\left(t\right) \\ v_2'\left(t\right) \end{bmatrix} = \begin{pmatrix} P^{-1} \begin{bmatrix} -4 & 0 \\ 0 & -5 \end{bmatrix} P \end{pmatrix} \begin{bmatrix} v_1\left(t\right) \\ v_2\left(t\right) \end{bmatrix} \Leftrightarrow P \begin{bmatrix} v_1'\left(t\right) \\ v_2'\left(t\right) \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & -5 \end{bmatrix} \begin{pmatrix} P \begin{bmatrix} v_1\left(t\right) \\ v_2\left(t\right) \end{bmatrix} \end{pmatrix}$$

Assim, considerando a mudança de variável

$$\begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = P \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix}$$

$$P \begin{bmatrix} v_1'(t) \\ v_2'(t) \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & -5 \end{bmatrix} \left(P \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} \right) \Leftrightarrow \begin{bmatrix} u_1'(t) \\ u_2'(t) \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} u_1'(t) = -4u_1(t) \\ u_2'(t) = -5u_2(t) & \Leftrightarrow \\ u_2'(t) \neq 0, \forall t \end{cases} \begin{cases} \frac{u_1'(t)}{u_1(t)} = -4 \\ \frac{u_2'(t)}{u_2(t)} = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} \log|u_1(t)| = -4t + k_1 \\ \log|u_2(t)| = -5t + k_2 \end{cases} \Leftrightarrow \begin{cases} u_1(t) = c_1 e^{-4t} \\ u_2(t) = c_2 e^{-5t} \end{cases}$$

com $c_1, c_2 \in \mathbb{R}$. De facto, se u(t) fôr solução de $u'(t) = \alpha u(t)$ então $u(t) e^{-\alpha t} = c$ (constante) uma vez que $(u(t) e^{-\alpha t})' = 0$. Logo $u(t) = ce^{\alpha t}$.

Assim

$$\begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = P^{-1} \begin{bmatrix} c_1 e^{-4t} \\ c_2 e^{-5t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} c_1 e^{-4t} \\ c_2 e^{-5t} \end{bmatrix} = \begin{bmatrix} c_1 e^{-4t} \\ 4c_1 e^{-4t} + c_2 e^{-5t} \end{bmatrix}.$$

Como

$$\begin{cases} v_1(0) = 10 \\ v_2(0) = 8 \end{cases}$$

então $c_1 = 10$ e $c_2 = -32$ e assim a solução geral do sistema de equações diferenciais lineares

$$\begin{cases} v'_{1}(t) = -4v_{1}(t) \\ v'_{2}(t) = 4v_{1}(t) - 5v_{2}(t) \end{cases}$$

com os valores iniciais

$$\begin{cases} v_1(0) = 10 \\ v_2(0) = 8 \end{cases}$$

é dada por

$$\begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \begin{bmatrix} 10e^{-4t} \\ 40e^{-4t} - 32e^{-5t} \end{bmatrix} = 10 \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{-4t} - 32 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t}.$$

Diagonalização unitária e diagonalização ortogonal

Considera-se o produto interno usual.

Definição 72. Seja $A = (a_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{C})$. Denota-se por A^H a matriz \overline{A}^T , isto é, a transposta da matriz conjugada $\overline{A} = (\overline{a_{ij}})$, onde $\overline{a_{ij}}$ é o complexo conjugado de a_{ij} . Ou seja, escreve-se $A^H = \overline{A}^T$. A matriz A diz-se **hermitiana** se

$$A^H = A$$
.

Observação 44. (a) Sejam $\alpha, \beta \in \mathbb{C}, A, C \in \mathcal{M}_{m \times n}(\mathbb{C})$ e $B \in \mathcal{M}_{n \times r}(\mathbb{C})$. Tem-se:

(i)
$$(A^H)^H = A$$
 (ii) $(\alpha A + \beta B)^H = \overline{\alpha} A^H + \overline{\beta} B^H$ (iii) $(AC)^H = C^H A^H$

(b) Sendo A hermitiana tal que $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, então A é simétrica $(A^T = A)$. Reciprocamente, se $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ fôr hermitiana então A é simétrica. Ou seja, para matrizes reais quadradas os conceitos de matriz simétrica e matriz hermitiana coincidem.

Teorema 95. Todos os valores próprios de uma matriz hermitiana são reais. Além disso, os vectores próprios associados a valores próprios distintos, de uma matriz hermitiana, são ortogonais.

Dem. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ tal que A é hermitiana. Seja λ um valor próprio de A e seja u um vector próprio associado. Seja $\alpha = u^H A u$. Então, tem-se

$$\overline{\alpha} = \alpha^H = (u^H A u)^H = u^H A^H (u^H)^H = u^H A u = \alpha.$$

Ou seja, α é real. Por outro lado, como

$$\alpha = u^H A u = u^H \lambda u = \lambda \sum |u_i|^2,$$

tem-se

$$\lambda = \frac{\alpha}{\sum |u_i|^2} \in \mathbb{R}.$$

Sejam agora u_1 e u_2 vectores próprios associados respectivamente a valores próprios distintos λ_1 e λ_2 . Então, tem-se

$$(Au_1)^H u_2 = u_1^H A^H u_2 = u_1^H A^H u_2 = \lambda_2 u_1^H u_2$$

e

$$(Au_1)^H u_2 = (\lambda_1 u_1)^H u_2 = \overline{\lambda_1} u_1^H u_2 = \sum_{\lambda_1 \in \mathbb{R}} \lambda_1 u_1^H u_2.$$

Logo, tem-se

$$\lambda_1 u_1^H u_2 = \lambda_2 u_1^H u_2 \Leftrightarrow (\lambda_1 - \lambda_2) u_1^H u_2 = 0.$$

E assim, como $\lambda_1 \neq \lambda_2$, então

$$\underbrace{u_1^H u_2}_{=\langle u_1, u_2 \rangle} = 0,$$

ou seja, u_1 e u_2 são ortogonais.

Observação 45. Todos os valores próprios de uma matriz simétrica real são reais. Além disso, os vectores próprios associados a valores próprios distintos, de uma matriz simétrica, são ortogonais.

- **Definição 73.** (i) Seja $U \in \mathcal{M}_{n \times n}(\mathbb{C})$. A matriz U diz-se unitária se se tiver $U^H U = I$, isto é, se $U^H = U^{-1}$, ou seja, se as colunas de U constituirem uma base ortonormada de \mathbb{C}^n .
- (ii) Seja $P \in \mathcal{M}_{n \times n}(\mathbb{R})$. A matriz P diz-se **ortogonal** se se tiver $P^T P = I$, isto é, se $P^T = P^{-1}$, ou seja, se as colunas de P constituirem uma base ortonormada de \mathbb{R}^n .
- Definição 74. (i) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. A matriz A diz-se unitariamente diagonalizável se existir U^H unitária tal que UAU^H é uma matriz diagonal, isto é, se as colunas de U^H formarem uma base ortonormada de \mathbb{C}^n constituída só por vectores próprios de A.
- (ii) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. A matriz A diz-se **ortogonalmente diagonalizável** se existir P^T ortogonal tal que PAP^T é uma matriz diagonal, isto é, se as colunas de P^T formarem uma base ortonormada de \mathbb{R}^n constituída só por vectores próprios de A.
- Observação 46. (i) Seja U unitária tal que $U \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então $U^H = U^T$, isto é, toda a matriz unitária real é ortogonal. Reciprocamente, se $P \in \mathcal{M}_{n \times n}(\mathbb{R})$ fôr ortogonal então P é unitária. Ou seja, para matrizes reais quadradas os conceitos de matriz ortogonal e matriz unitária coincidem.
- (ii) Seja A uma matriz hermitiana. Se todos os valores próprios de A forem raízes simples do polinómio característico, então existe uma matriz unitária que diagonaliza A, isto é, existe U^H unitária tal que UAU^H é uma matriz diagonal, ou seja, A é unitariamente diagonalizável.
- (iii) Como se vai ver a seguir, a afirmação anterior (ii) continua válida mesmo se os valores próprios não forem todos raízes simples do polinómio característico.
- **Teorema 96.** (**Teorema de Schur**). Seja A uma matriz $n \times n$. Então, existe uma matriz unitária U^H tal que UAU^H é triangular superior (inferior).
- **Dem.** A demonstração será efectuada por indução em n. O resultado é óbvio para n=1. Suponhamos que a hipótese é válida para matrizes $k \times k$ e seja A uma matriz $(k+1) \times (k+1)$. Sejam λ_1 um valor próprio de A e w_1 um vector próprio associado de norma 1. Aplicando o método de ortogonalização de Gram-Schmidt, seja $\{w_1, \ldots, w_{k+1}\}$ uma base ortonormada para \mathbb{C}^{k+1} . Seja W^H a matriz cuja coluna i é igual ao vector w_i , para $i=1,\ldots,k+1$. Então, por construção, a matriz W^H é unitária. Por outro lado, a primeira coluna de WAW^H é igual a WAw_1 , tendo-se

$$WAw_1 = W\lambda_1 w_1 = \lambda_1 Ww_1 = \lambda_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

e assim

$$WAW^{H} = \begin{bmatrix} \lambda_{1} & | & * & \cdots & * \\ - & | & - & - & - \\ 0 & | & & & \\ \vdots & | & M & & \\ 0 & | & & & \end{bmatrix},$$

onde M é uma matriz $k \times k$.

Pela hipótese de indução, existe uma matriz $k \times k$ unitária $(V_1)^H$ tal que $V_1 M (V_1)^H = T_1$, onde T_1 é uma matriz triangular superior. Seja

$$V^{H} = \begin{bmatrix} 1 & | & 0 & \cdots & 0 \\ - & | & - & - & - \\ 0 & | & & & \\ \vdots & | & & (V_{1})^{H} & & \\ 0 & | & & & \end{bmatrix}.$$

Então V^H é unitária e tem-se

$$(VW) A (VW)^{H} = VWAW^{H}V^{H} =$$

$$= \begin{bmatrix} \lambda_{1} & | & * & \cdots & * \\ - & | & - & - & - \\ 0 & | & & & \\ \vdots & | & V_{1}M(V_{1})^{H} & | & \begin{bmatrix} \lambda_{1} & | & * & \cdots & * \\ - & | & - & - & - \\ 0 & | & & & \\ \vdots & | & T_{1} & \\ 0 & | & & \end{bmatrix} = T,$$

onde T é uma matriz triangular superior. Como a matriz $(VW)^H$ é unitária, pondo $U^H = (VW)^H$, tem-se

$$UAU^H = T$$
,

com Ttriangular superior e $U^{\cal H}$ unitária.

Exemplo 57. Seja $A = \begin{bmatrix} 2 & 1 \\ -2 & 5 \end{bmatrix}$. Os valores próprios de A são: 3 e 4. Como $\mathcal{N}(A-3I) = L\left(\{(1,1)\}\right)$ e $\mathcal{N}(A-4I) = L\left(\{(1,2)\}\right)$ então, aplicando Gram-Schmidt, o conjunto $\left\{\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right),\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\right\}$ é uma base ortonormada de \mathbb{R}^2 onde $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ é um vector próprio de A associado ao valor próprio 3. Tem-se

$$UAU^H = T$$
 com $U^H = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$.

Isto é

$$T = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 0 & 4 \end{bmatrix}.$$

Teorema 97. Seja A uma matriz hermitiana. Então existe uma matriz unitária U^H que diagonaliza A, isto é, A é unitariamente diagonalizável. Ou seja, existe U^H unitária tal que a matriz UAU^H é diagonal.

Dem. Pelo teorema anterior, existe uma matriz unitária U^H tal que a matriz UAU^H é triangular. Seja $T=UAU^H$. Tem-se então

$$T^H = (UAU^H)^H = (U^H)^H A^H U^H = _{A \text{ \'e hermitiana}} UAU^H = T.$$

Logo, como $T = T^H$ e T é triangular então T é diagonal.

Teorema 98. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é simétrica. Então existe uma matriz ortogonal P^T que diagonaliza A, isto é, A é ortogonalmente diagonalizável. Ou seja, existe P ortogonal tal que a matriz PAP^T é diagonal.

Observação 47. Sendo $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é simétrica, então existe P^T ortogonal tal que a matriz PAP^T é diagonal, isto é, existe uma base ortonormada de \mathbb{R}^n formada só por vectores próprios de A, e a matriz P^T é a matriz cujas colunas são os vectores próprios de A que formam essa base ortonormada de \mathbb{R}^n , sendo PAP^T a matriz diagonal onde se coloca na entrada i da diagonal principal o valor próprio correspondente ao vector próprio da coluna i da matriz P^T .

Teorema 99. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. A é ortogonalmente diagonalizável $\Leftrightarrow A$ é simétrica

Dem. (\Rightarrow) Suponhamos que A é ortogonalmente diagonalizável. Sejam D diagonal e P^T ortogonal tais que $A=P^TDP$. Então

$$A^{T} = (P^{T}DP)^{T} = P^{T}D^{T}(P^{T})^{T} = P^{T}DP = A.$$

 (\Leftarrow) Teorema anterior e o facto de todos os valores próprios de uma matriz simétrica real serem reais

Teorema 100. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é simétrica. Tem-se:

$$A$$
 é definida positiva, isto é, $u^T A u > 0$ para todo o $u \neq \mathbf{0} \Leftrightarrow$

 \Leftrightarrow todos os valores próprios de A são positivos

Dem. Sendo A simétrica então A é ortogonalmente diagonalizável, isto é, existem D diagonal e P^T ortogonal tais que $D = PAP^T$. Assim

$$(u^T A u > 0 \text{ para todo o } u \neq \mathbf{0}) \Leftrightarrow$$

$$\Leftrightarrow ((P^T u)^T A P^T u > 0 \text{ para todo o } u \neq \mathbf{0}) \Leftrightarrow$$

$$\Leftrightarrow (u^T (PAP^T) u > 0 \text{ para todo o } u \neq \mathbf{0}) \Leftrightarrow$$

 $\Leftrightarrow (u^T Du > 0 \text{ para todo o } u \neq \mathbf{0}) \Leftrightarrow$

$$\Leftrightarrow (\sum_{i=1}^{n} (u_i)^2 \lambda_i > 0 \text{ para todo o } u \neq \mathbf{0}) \Leftrightarrow (\lambda_i > 0 \text{ para todo o } i = 1, ..., n)$$

onde $\lambda_1, ..., \lambda_n$ são os valores próprios de A são positivos.

Observação 48. (i) Existem matrizes não hermitianas que são unitariamente diagonalizáveis, como por exemplo as matrizes anti-hermitianas $(A^H = -A)$ e as matrizes anti-simétricas $(A^T = -A)$.

(ii) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Suponhamos que A é unitariamente diagonalizável. Sejam D diagonal e U^H unitária tais que $A = U^H DU$. Como em geral se tem $D^H \neq D$, então

$$A^{H} = (U^{H}DU)^{H} = U^{H}D^{H}U \neq U^{H}DU = A.$$

Logo A não tem que ser necessariamente hermitiana.

(iii) O próximo teorema diz quais são as matrizes unitariamente diagonalizáveis.

Definição 75. Uma matriz A diz-se **normal** se

$$AA^H = A^H A$$
.

Observação 49. Se $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ então A dir-se-á normal se

$$AA^T = A^T A$$
.

Teorema 101. (i) Sendo $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ uma matriz normal tem-se para todo o vector u

$$||Au|| = ||A^H u||.$$

Em particular, sendo $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ uma matriz normal, para qualquer escalar λ , a matriz $A - \lambda I$ também é normal tendo-se

$$\|(A - \lambda I) u\| = \|(A - \lambda I)^H u\| = \|(A^H - \overline{\lambda}I) u\|$$

e assim, se λ fôr um valor próprio de A e u um vector próprio de A associado a esse valor próprio então $\overline{\lambda}$ é um valor próprio de A^H e u um vector próprio de A^H associado a esse valor próprio, isto é,

$$Au = \lambda u$$
 e $A^H u = \overline{\lambda} u$.

(ii) Os vectores próprios associados a valores próprios distintos, de uma matriz normal, são ortogonais.

Dem. (i) Sendo $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ uma matriz normal tem-se para todo o vector u

$$||Au||^2 = (Au)^H Au = u^H A^H Au = u^H A^H Au^H = (A^H u)^H A^H u = ||A^H u||^2$$

logo

$$||Au|| = ||A^H u||.$$

Sendo $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ uma matriz normal, para qualquer escalar λ , a matriz $A - \lambda I$ também é normal:

$$(A - \lambda I)(A - \lambda I)^{H} = (A - \lambda I)(A^{H} - \overline{\lambda}I) = AA^{H} - \lambda A^{H} - \overline{\lambda}A + |\lambda|^{2}I = A^{H}A - \lambda A^{H} - \overline{\lambda}A + |\lambda|^{2}I =$$

$$= A^{H}(A - \lambda I) - (A - \lambda I)\overline{\lambda} = (A^{H} - \overline{\lambda}I)(A - \lambda I) = (A - \lambda I)^{H}(A - \lambda I).$$

Logo

$$\|(A - \lambda I) u\| = \|(A - \lambda I)^H u\| = \|(A^H - \overline{\lambda}I) u\|$$

e assim, se λ fôr um valor próprio de A e u um vector próprio de A associado a esse valor próprio então $\overline{\lambda}$ é um valor próprio de A^H e u um vector próprio de A^H associado a esse valor próprio, isto é,

$$Au = \lambda u$$
 e $A^H u = \overline{\lambda} u$.

(ii) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ tal que A é normal. Sejam λ_1, λ_2 valores próprios de A tais que $\lambda_1 \neq \lambda_2$ e sejam v_1 e v_2 vectores próprios de A associados respectivamente a λ_1 e λ_2 . Tem-se

$$Av_1 = \lambda_1 v_1$$
 e $A^H v_1 = \overline{\lambda_1} v_1$
 $Av_2 = \lambda_2 v_2$ e $A^H v_2 = \overline{\lambda_2} v_2$

e

$$(\lambda_{1} - \lambda_{2}) \langle v_{1}, v_{2} \rangle = (\lambda_{1} - \lambda_{2}) (v_{1})^{H} v_{2} = \lambda_{1} (v_{1})^{H} v_{2} - \lambda_{2} (v_{1})^{H} v_{2} =$$

$$= (\overline{\lambda_{1}} v_{1})^{H} v_{2} - (v_{1})^{H} (\lambda_{2} v_{2}) = (A^{H} v_{1})^{H} v_{2} - (v_{1})^{H} (A v_{2}) = (A^{H} v_{1})^{H} v_{2} - (A^{H} v_{1})^{H} v_{2} = 0.$$
Assim, como $\lambda_{1} \neq \lambda_{2}$, tem-se $\langle v_{1}, v_{2} \rangle = 0$.

Teorema 102. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. A é unitariamente diagonalizável $\Leftrightarrow A$ é normal

Dem. (\Leftarrow) Suponhamos que A é normal. Existe uma matriz unitária U^H e uma matriz triangular superior (inferior) T tais que $T = UAU^H$. Vejamos que T é normal. Tem-se

$$T^H T = (UAU^H)^H UAU^H = UA^H U^H UAU^H = UA^H AU^H \underset{A \in \text{normal}}{=} UAA^H U^H = UAU^H UA^H U^H = TT^H.$$

Logo T é normal. Seja $T=(t_{ij})$ do tipo $n\times n$. Comparando as entradas das diagonais principais de TT^H e T^HT tem-se:

$$|t_{11}|^{2} + |t_{12}|^{2} + |t_{13}|^{2} + \dots + |t_{1n}|^{2} = |t_{11}|^{2}$$

$$|t_{22}|^{2} + |t_{23}|^{2} + \dots + |t_{2n}|^{2} = |t_{12}|^{2} + |t_{22}|^{2}$$

$$\vdots$$

$$|t_{nn}|^{2} = |t_{1n}|^{2} + |t_{2n}|^{2} + |t_{3n}|^{2} + \dots + |t_{nn}|^{2}$$

e assim, $t_{ij}=0$ sempre que $i\neq j$. Logo T é diagonal e portanto A é unitariamente diagonalizável.

(⇒) Suponhamos agora que A é unitariamente diagonalizável. Queremos mostrar que A é normal. Sejam D diagonal e U^H unitária tais que $D=UAU^H$, ou seja, $A=U^HDU$. Tem-se

$$AA^{H} = U^{H}DU (U^{H}DU)^{H} = U^{H}DUU^{H}D^{H}U = U^{H}(DD^{H})U$$

е

$$A^{H}A = (U^{H}DU)^{H} U^{H}DU = U^{H}D^{H}UU^{H}DU = U^{H} (D^{H}D) U.$$

Como

$$DD^{H} = D^{H}D = \begin{bmatrix} |\lambda_{1}|^{2} & 0 & \cdots & 0 \\ 0 & |\lambda_{2}|^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & |\lambda_{n}|^{2} \end{bmatrix},$$

então tem-se $AA^H = A^HA$ e assim A é normal.

Exemplo 58. Seja $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. A matriz A não é simétrica logo não é ortogonal-

mente diagonalizável. Mas:

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

isto é $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ é normal e como tal é unitariamente diagonalizável. Tem-se

$$\underbrace{\begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{2} - \frac{1}{2}i\sqrt{3} & 0 \\ 0 & 0 & \frac{1}{2} + \frac{1}{2}i\sqrt{3} \end{bmatrix}}_{D} = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{6} + \frac{1}{2}i & -\frac{\sqrt{3}}{6} - \frac{1}{2}i & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{6} - \frac{1}{2}i & -\frac{\sqrt{3}}{6} + \frac{1}{2}i & \frac{\sqrt{3}}{3} \end{bmatrix}}_{D} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} - \frac{1}{2}i & -\frac{\sqrt{3}}{6} + \frac{1}{2}i \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{6} + \frac{1}{2}i & -\frac{\sqrt{3}}{6} - \frac{1}{2}i \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{bmatrix}}_{U^{H}}$$

onde 2, $\frac{1}{2} - \frac{1}{2}i\sqrt{3}$ e $\frac{1}{2} + \frac{1}{2}i\sqrt{3}$ são os valores próprios de A e

$$\left\{ \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right), \left(-\frac{\sqrt{3}}{6} - \frac{1}{2}i, -\frac{\sqrt{3}}{6} + \frac{1}{2}i, \frac{\sqrt{3}}{3}\right), \left(-\frac{\sqrt{3}}{6} + \frac{1}{2}i, -\frac{\sqrt{3}}{6} - \frac{1}{2}i, \frac{\sqrt{3}}{3}\right) \right\}$$

são respectivamente vectores próprios associados a esses valores próprios, normalizados e ortogonais entre si.

Teorema 103. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é simétrica. Então, as seguintes afirmações são equivalentes.

(i) A é definida positiva.

(ii) Existe uma matriz simétrica definida positiva B tal que $A = B^2$. À matriz B chama-se **raíz quadrada** simétrica e definida positiva de A e escreve-se

$$B = \sqrt{A}$$
.

(iii) Existe uma matriz invertível S tal que $A = S^T S$.

Dem. (i) \Rightarrow (ii) Supondo que A é definida positiva, vejamos que existe uma matriz simétrica definida positiva B tal que $A = B^2$.

Como A é simétrica, então A é ortogonalmente diagonalizável, isto é, existe uma matriz ortogonal P tal que

$$PAP^{T} = D = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{n} \end{bmatrix}$$

onde $\lambda_1, ..., \lambda_n$ são os valores próprios de A, os quais são todos positivos por A ser definida positiva, tendo-se

$$D = (D')^2$$

com

$$D' = \begin{bmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \sqrt{\lambda_n} \end{bmatrix}.$$

Assim

$$A = P^{T}DP = P^{T}(D')^{2}P = (P^{T}D'P)(P^{T}D'P) = B^{2}$$

com

$$B = P^T D' P$$

simétrica:

$$B^{T} = (P^{T}D'P)^{T} = P^{T}(D')^{T}(P^{T})^{T} = P^{T}D'P = B$$

e definida positiva uma vez que os valores próprios de $P^TD'P$ são os de D'.

(ii) \Rightarrow (iii) Supondo que existe uma matriz simétrica definida positiva B tal que $A = B^2$, vejamos que existe uma matriz invertível S tal que

$$A = S^T S.$$

Como B é simétrica e definida positiva, basta fazer S=B para ter-se

$$A = B^2 = BB = S^T S$$

com S simétrica e invertível uma vez que sendo B definida positiva, 0 não é valor próprio de B.

(iii) \Rightarrow (i) Supondo que existe uma matriz invertível S tal que $A = S^T S$, vejamos que A é definida positiva, isto é, vejamos que

$$u^T A u > 0,$$

para todo o $u \neq \mathbf{0}$. Tem-se

$$u^{T}Au = u^{T}S^{T}Su = (Su)^{T}Su = ||Su||^{2} > 0$$

para todo o $u \neq \mathbf{0}$, uma vez que S é invertível.

Observação 50. Sendo A matriz simétrica e definida positiva do tipo $n \times n$, existe uma única raíz quadrada simétrica e definida positiva B de A, isto é, existe uma única matriz B simétrica e definida positiva tal que $A = B^2$. No entanto, poderão existir pelo menos 2^n raízes quadradas de A, isto é, 2^n matrizes B para as quais se tem $A = B^2$.

Exemplo 59. Seja $A = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. Os valores próprios de A são: 3 e 5. Os vectores próprios associados ao valor próprio 3 são todos os vectores de $L(\{(-1,1)\})\setminus\{\mathbf{0}\}$. Os vectores próprios associados ao valor próprio 5 são todos os vectores de $L(\{(1,1)\})\setminus\{\mathbf{0}\}$. Tem-se

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = PAP^{T}$$

com

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \quad \mathbf{e} \quad P^T = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

onde

$$\left\{ \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \right\}$$

são vectores próprios normalizados e ortogonais entre si respectivamente associados aos valores próprios 3 e 5. Logo

$$B = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \\ = \begin{bmatrix} \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5} & \frac{1}{2}\sqrt{5} - \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{5} - \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5} \end{bmatrix} = A^{1/2}$$

ou seja

$$B = \begin{bmatrix} \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5} & \frac{1}{2}\sqrt{5} - \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{5} - \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5} \end{bmatrix}$$

é a única matriz simétrica e definida positiva tal que

$$B^{2} = \begin{bmatrix} \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5} & \frac{1}{2}\sqrt{5} - \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{5} - \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{3} + \frac{1}{2}\sqrt{5} \end{bmatrix}^{2} = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} = A.$$

Formas quadráticas

Considera-se o produto interno usual.

Definição 76. Uma equação quadrática em duas variáveis x_1 e x_2 é uma equação da forma

$$ax_1^2 + bx_2^2 + 2cx_1x_2 + dx_1 + ex_2 + f = 0$$

a qual pode ser escrita na forma

$$\left[\begin{array}{cc} x_1 & x_2 \end{array}\right] \left[\begin{array}{cc} a & c \\ c & b \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] + \left[\begin{array}{cc} d & e \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] + f = 0.$$

Sejam

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 e $A = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$.

(A 'e uma matriz real sim'etrica). À função real a duas variáveis reais $Q : \mathbb{R}^2 \to \mathbb{R}$ definida por $Q(x) = x^T A x$, com

$$x^T A x = ax_1^2 + bx_2^2 + 2cx_1x_2$$

chama-se forma quadrática real a 2 variáveis reais associada à equação quadrática anterior.

Podem haver equações do 2^o grau e formas quadráticas com um n^o de variáveis superior a 2. Uma equação quadrática em n variáveis x_1, x_2, \ldots, x_n é uma equação da forma

$$x^T A x + B x + \alpha = 0,$$

onde
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $A = (a_{ij})$ é uma matriz real simétrica do tipo $n \times n$, $B \in \mathcal{M}_{1 \times n}(\mathbb{R})$ e α

é um escalar. À função real a n variáveis reais $Q:\mathbb{R}^n\to\mathbb{R}$ definida por

$$Q(x) = x^{T} A x = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) x_{i}$$

chama-se **forma quadrática** real a n variáveis reais associada à equação quadrática anterior. Se a matriz A não fôr simétrica considera-se

$$B = \frac{A + A^T}{2}$$

e tem-se a mesma expressão, isto é

$$x^{T}Bx = x^{T}\frac{A+A^{T}}{2}x = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}A^{T}x = \frac{1}{2}x^{T}Ax + \frac{1}{2}x^{T}Ax = x^{T}Ax$$

uma vez que tendo-se $x^TAx \in \mathbb{R}$ obtém-se

$$x^T A x = \left(x^T A x\right)^T = x^T A^T x.$$

Teorema 104. (Teorema dos eixos principais). Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é simétrica. Então existe uma mudança de variáveis ortogonal que transforma a forma quadrática $x^T A x$ na forma quadrática $y^T D y$ sem termos cruzados. Isto é, se P^T diagonalizar A ortogonalmente $(D = PAP^T)$, então a mudança de variáveis $x = P^T y$ transforma a forma quadrática $x^T A x$ na forma quadrática $y^T D y$:

$$x^{T}Ax = y^{T}PAP^{T}y = y^{T}Dy = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2} + \lambda_{n}y_{n}^{2} + \dots + \lambda_{n}y_{n}^{2} + \lambda_{n}y_{n}^{2} + \dots + \lambda_{n}y_{n}^{2}$$

$$= \left[\begin{array}{cccc} y_1 & y_2 & \cdots & y_n \end{array}\right] \left[\begin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array}\right],$$

onde $\lambda_1, \lambda_2, \dots, \lambda_n$ são os valores próprios de A associados respectivamente aos vectores próprios que constituem as colunas de P^T e que formam uma base ortonormada de \mathbb{R}^n .

Definição 77. (i) Chama-se cónica ou secção cónica à curva plana obtida por meio de um corte efectuado por um plano relativamente a uma superfície cónica. As secções cónicas que se obtêm quando o plano que efectua o corte não passa pelo vértice da superfície cónica, são elipses (os valores próprios têm o mesmo sinal) (podendo ter-se circunferências: quando o corte é efectuado perpendicularmente ao eixo de simetria do cone), parábolas (um dos dois valores próprios é zero) e hipérboles (os dois valores próprios têm sinais contrários).

(ii) Em \mathbb{R}^3 tem-se

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \qquad A = \begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix} \qquad \qquad e \qquad \qquad B = \begin{bmatrix} g \\ h \\ i \end{bmatrix}$$

 \mathbf{e}

$$ax_1^2 + bx_2^2 + cx_3^2 + 2dx_1x_2 + 2ex_1x_3 + 2fx_2x_3 + gx_1 + hx_2 + ix_3 + \alpha = 0.$$

À superficie resultante da equação anterior chama-se **quádrica**. Existem quatro tipos de quádricas não degeneradas): elipsóides, hiperbolóides (de uma ou duas folhas), cones e parabolóides (elípticos ou hiperbólicos).

Exemplo 60. Considere-se a forma quadrática $Q: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$Q(x,y) = 3x^2 + 4xy + 3y^2.$$

Tem-se

$$Q(x,y) = \left[\begin{array}{cc} x & y \end{array} \right] A \left[\begin{array}{c} x \\ y \end{array} \right],$$

com

$$A = \left[\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array} \right].$$

Os valores próprios de A são $\lambda_1=1$ e $\lambda_2=5$. Tem-se então a seguinte forma quadrática diagonal (isto é, sem termos cruzados)

$$Q(x',y') = \left[\begin{array}{cc} x' & y' \end{array} \right] D \left[\begin{array}{c} x' \\ y' \end{array} \right] = \left[\begin{array}{cc} x' & y' \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 5 \end{array} \right] \left[\begin{array}{c} x' \\ y' \end{array} \right]$$

com

$$D = PAP^T, \qquad \left[egin{array}{c} x' \ y' \end{array}
ight] = P \left[egin{array}{c} x \ y \end{array}
ight],$$

 \mathbf{e}

$$P^{T} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix}, \quad P = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix},$$

em que P^T é a matriz diagonalizante obtida colocando na 1^a coluna um vector próprio de norma 1 associado ao valor próprio λ_1 e na 2^a coluna um vector próprio de norma 1 associado ao valor próprio λ_2 , de tal modo que ambos os vectores próprios constituam uma base ortonormada de \mathbb{R}^2 . Observe-se que a matriz P é ortogonal, isto é, tem-se $P^T = P^{-1}$.

Tem-se então

$$Q(x,y) = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} P^T D P \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} P^T D P \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} D P \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' & y' \end{bmatrix} D \begin{bmatrix} x' \\ y' \end{bmatrix} = Q(x',y').$$

Por exemplo, relativamente à equação quadrática

$$3x^2 + 4xy + 3y^2 = 4$$

tem-se a elipse:

$$(x')^2 + 5(y')^2 = 4 \Leftrightarrow \left(\frac{x'}{2}\right)^2 + \left(\frac{y'}{\frac{2\sqrt{5}}{5}}\right)^2 = 1.$$

Definição 78. Seja A uma matriz real simétrica do tipo $n \times n$. Diz-se que A e a forma quadrática $Q: \mathbb{R}^n \to \mathbb{R}$ dada por

$$Q(x) = x^T A x$$

são:

(i) definidas positivas se

$$x^T A x > 0,$$

para todo o $x \neq 0$;

(ii) definidas negativas se

$$x^T A x < 0$$
,

para todo o $x \neq 0$;

(iii) semidefinidas positivas se

$$x^T A x \ge 0$$
,

para todo o x;

(iv) semidefinidas negativas se

$$x^T A x < 0$$
,

para todo o x;

(v) indefinidas se existirem pontos onde $x^T A x$ seja positiva e pontos onde $x^T A x$ seja negativa.

Teorema 105. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que A é simétrica. Então,

- (i) A é definida positiva se e só se todos os valores próprios de A forem positivos;
- (ii) A é definida negativa se e só se todos os valores próprios de A forem negativos;
- (iii) A é semidefinida positiva se e só se todos os valores próprios de A forem não negativos;
- (iv) A é semidefinida negativa se e só se todos os valores próprios de A forem não positivos;
- (v) A é **indefinida** se e só se A tiver pelo menos um valor próprio positivo e outro negativo.

Bibliografia

- 1. Howard Anton and Robert C. Busby, Contemporary Linear Algebra, John Wiley & Sons, Inc., 2002.
- 2. Luís Barreira e Clàudia Valls, exercícios de álgebra linear, IST Press, 2011.
- 3. Bernard Kolman, Introductory Linear Algebra with Applications, Prentice Hall, 1996.
- 4. Steven J. Leon, Linear Algebra with Applications, 8th edition, Pearson, 2009.
- 5. Seymour Lipschutz, Linear Algebra, Schaum's Outline Series, 4th edition, McGraw-Hill, 2009.
- 6. Luis T. Magalhães, Álgebra Linear como Introdução à Matemática Aplicada, 9^a edição, Texto Editora, 2001.
- 7. Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- 8. António Monteiro e Gonçalo Pinto, Álgebra Linear e Geometria Analítica, McGraw-Hill, 1997.
- 9. Ana Paula Santana e João Filipe Queiró, Introdução à Álgebra Linear, Gradiva, 2010.
- 10. Gilbert Strang, Linear Algebra and its Applications, 3rd edition, Thomson Learning, 1988.