Analysis of Systems with State-Dependent Delay

Matthew M. Peet Arizona State University Tempe, AZ USA

American Institute of Aeronautics and Astronautics Guidance, Navigation and Control Conference Boston, MA

Systems with State-Dependent Delay

State-Dependent Delay arises which communication distance changes with time.

- Any Moving System.
 - Sonar (Speed of Sound)
 - EM (Speed of Light)

Example: Position Measurement using Sonar

- Propagation Distance: $2\Big(\hat{x}(t)=x_0+x(t)\Big)$
- Delay is $\tau(t) = 2\frac{x_0 + x(t)}{c}$.

Feedback Dynamics: neglecting inertia...

$$\dot{x}(t) = ax \left(t - \frac{2x_0}{c} - \frac{2}{c}x(t) \right)$$

Stability of Systems with State-Dependent Delay

Consider the general class of systems with state-dependent delay:

$$\dot{x}(t) = f\left(x(t), x\left(t - g(x(t))\right)\right)$$

Note: State x(t) enters into the independent argument, t.

ullet Contrast to the fixed-delay case: $\dot{x}(t) = fig(xig(t- auig)ig)$

Linear/Affine Form:

$$\dot{x}(t) = A_0 x(t) + A_1 x(t - \tau_0 - b^T x(t))$$

Question: Given $A \in \mathbb{R}^n$, $\tau_0 > 0$ and $-\tau \in \mathbb{R}^n$,

- Determine whether the system is stable.
- Estimate the rate of decay.

Why State-Dependent Delay?

The most common source of delay is **Propagation Time**.

 A time-delay system is the interconnection of an ODE with a transport PDE in the feedback channel.

$$\dot{x}(t) = A_0 x(t) + \sum_i A_i x(t - \tau_i)$$

ODE: The system G_1

$$\dot{x}_1(t) = Ax_1(t) + Bu_1(t)$$

$$y_1(t) = Cx_1(t) + Du_1(t)$$

$$\begin{bmatrix}
A & B \\
\hline
C & D
\end{bmatrix}
\begin{bmatrix}
A_0 & \begin{bmatrix} A_1 & \cdots & A_n \end{bmatrix} \\
\hline
I & 0
\end{bmatrix}$$

PDE: The system G_2

$$\frac{\partial}{\partial t}x_2(t,s) = \frac{\partial}{\partial s}x_2(t,s)$$
 $x_2(t,0) = u_2(t),$

$$y_2(t) = \begin{bmatrix} x_2(-\tau_1) & \cdots & x_2(-\tau_K) \end{bmatrix}^T$$

Of course, the solution is just $x_2(t, s) = u_2(t - s)$.

Systems with State-Dependent Delay

Restrictions on the Model:

- For physical systems:
 - ▶ Delay is always positive
 - Delay is usually affine in the state
 - Lower and upper bounds for the delay
- Other types of systems are often ill-posed or otherwise pathological [Verriest, 2013]
 - ▶ Global Stability is not a well-defined problem for this model.

Assumptions: In this talk, we use scalar systems of the form

$$\dot{x}(t) = ax(t - b - cx(t))$$

where $a, c \in \mathbb{R}$, b > 0.

- To ensure b + cx(t) > 0, we bound the state as $||x(t)|| \le d$.
 - ▶ Also leads to the bound $b + cx(t) \le \tau_m$.

Note: The extension to \mathbb{R}^n is not hard.

Lyapunov-Krasovskii Functionals

For linear fixed delay systems:

$$\dot{x}(t) = Ax(t) + Bx(t - \tau)$$

Theorem 1.

The discrete-delay system is stable if and only if there exist continuous functions M and N such that $V(\phi) \geq \alpha \|\phi\|$ and $\dot{V}(\phi) \leq 0$ where

$$V(\phi) = \int_{-\tau}^{0} \begin{bmatrix} \phi(0) \\ \phi(s) \end{bmatrix}^{T} M(s) \begin{bmatrix} \phi(0) \\ \phi(s) \end{bmatrix} ds + \int_{-\tau}^{0} \int_{-\tau}^{0} \phi(s)^{T} N(s, \theta) \phi(\theta) ds d\theta$$

Note: The functional is parameterized by unknown functions M and M. **Problem:** How to numerically compute M and N such that

$$V(\phi) > \alpha \|\phi\|$$
$$\dot{V}(\phi) < 0$$

Answer: Convex Optimization

Tractable or Intractable?

Convex Optimization

Problem:

$$\max bx$$
subject to $Ax \in C$

The problem is convex optimization if

- C is a convex cone.
- b and A are affine.

Computational Tractability: Convex Optimization over ${\cal C}$ is, in general, tractable if

- The set membership test for $y \in C$ is in P.
- x is finite dimensional.

Parametrization of Lyapunov-Krasovskii Functionals

Problem 1: Is the set of decision variables finite-dimensional?

ullet Decision variables are the functions M and N

$$V(\phi) = \int_{-\tau(\phi(t))}^{0} Z\left(\begin{bmatrix} \phi(0) \\ \phi(s) \end{bmatrix}\right)^{T} M(s) Z\left(\begin{bmatrix} \phi(0) \\ \phi(s) \end{bmatrix}\right) ds + \int_{-\tau(\phi(t))}^{0} \int_{-\tau(\phi(t))}^{0} Z(\phi(s))^{T} N(s, \theta) Z(\phi(\theta)) ds d\theta$$

Solution: Suppose M and N are polynomials of bounded degree.

$$M(s) = c_1^T Z(s), \qquad N(s, \theta) = c_2^T Z(s, \theta)$$

Problem 2: How to enforce positivity of the L-K functional?

• Need constraints on c_1 and c_2 .

Positivity Constraints for Polynomials

Sum-of-Squares: $p(x) \ge 0$ if

$$p(x) = \sum_{i} g_i(x)^2$$
, denoted $p \in \Sigma_s$

Lemma 2 (Parametrization of Sums-of-Squares).

Given multivariate polynomial p of degree 2d, $p \in \Sigma_s$ $(p(x) \ge 0$ for all $x \in \mathbb{R}^n)$ if and only if there exists a positive matrix $M \in \mathbb{S}^q$ such that

$$p(x) = Z_d(x)^T M Z_d(x)$$

where z_d is the vector of monomials of degree d or less.

Lemma 3 (Polynomial Positivity on a Subset of \mathbb{R}^n).

Given polynomial $p, p(x) \ge 0$ for all $x \in \{x: g_i(x) \ge 0\}$ if there exist $s_i \in \Sigma_s$ such that

$$p(s) = s_0(x) + \sum_{i} g_i(x)s_i(x)$$

Positivity Constraints for Lyapunov Functionals

Lemma 4.

Suppose there exist $S \in \Sigma_s$ and polynomial T such that

$$V(\phi(0),\phi(s),s) - \phi(0)^2 = S(\phi(0),\phi(s),s) + T(\phi(0),s)$$

with $\int_{-\tau(x(t))}^{0} T(\phi(0), s) ds = 0$. Then

$$\int_{-\tau(\phi(t))}^{0} V(\phi(0), \phi(s), s) ds \ge \alpha \phi(0)^{2}$$

for any $\phi \in \mathcal{C}[-\tau_m, 0]$

We can tighten this a bit

• Restrict $s \in [-\tau(\phi(s)), 0]$

$$\{s, \phi : g_1(s, \phi(s)) = -s(s + \tau(\phi(s))) \ge 0\}$$

• Restrict $\|\phi(s)\| \le d$

$$\{s, \phi : g_2(s, \phi(s)) = d - \phi(s)^2 \ge 0\}$$

Positivity Constraints for Lyapunov Functionals

Lemma 5.

Suppose there exist $S, S_1, S_2, S_3 \in \Sigma_s$ and polynomial T such that

$$V(\phi(0), \phi(s), s) - \phi(0)^{2}$$

$$= S + g_{1}(s, \phi(s))S_{1}$$

$$+ g_{2}(s, \phi(s))S_{2} + g_{2}(s, \phi(0))S_{3} + T(\phi(0), s)$$

with $\int_{-\tau(x(t))}^{0} T(\phi(0), s) ds = 0$. Then

$$\int_{-\tau(\phi(t))}^{0} V(\phi(0), \phi(s), s) ds \ge \alpha \phi(0)^{2}$$

for any $\|\phi\|_{\infty} \leq d$.

Where Recall

- S, S₁, S₂, S₃, T and V are the decision variables
 - Represented using positive matrices.
- Constraints are equalities and matrix positivity (SDP).

Positivity Constraints for Lyapunov Functionals

Lemma 6.

Suppose there exists a positive matrix $Q \geq 0$ such that

$$V_2(\phi(s), \phi(\theta), s, \theta) = Z(s, \phi(s))^T Q Z(\theta, \phi(\theta))$$

Then

$$\int_{-\tau(\phi(t))}^{0} \int_{-\tau(\phi(t))}^{0} V_2(\phi(s), \phi(\theta), s, \theta) \, ds \, d\theta \ge 0$$

for any $\phi \in \mathcal{C}[-\tau_m, 0]$.

Positivity Constraints

• Constraints are equalities and matrix positivity (SDP).

Convex Optimization

 Positive Lyapunov Functionals are represented using vectors and matrix positivity constraints.

The Derivative

Now Recall the dynamics:

$$\dot{x}(t) = ax(t - \tau_0 + bx(t)) \qquad \qquad \tau(x(t)) = \tau_0 + bx(t)$$

With Lyapunov Functional

$$V(t) = \int_{-\tau(x(t))}^{0} V_1(x(0), x(s), s) ds + \int_{-\tau(x(t))}^{0} \int_{-\tau(x(t))}^{0} V_2(x(s), s, x(\theta), \theta) ds d\theta$$

The derivative is

$$\dot{V}(t) = \int_{-\tau(x(t))}^{0} V_3(x(t), x(t - \tau(x(t))), x(t + s), s) ds + \int_{-\tau(x(t))}^{0} \int_{-\tau(x(t))}^{0} V_4(x(t + s), x(t + \theta), s, \theta) ds d\theta$$

where

$$V_4(x_{\theta}, x_{\xi}, \theta, \xi) = \frac{\partial}{\partial \theta} V_2(x_{\theta}, x_{\xi}, \theta, \xi) + \frac{\partial}{\partial \xi} V_2(x_{\theta}, x_{\xi}, \theta, \xi). \tag{1}$$

The Derivative

$$\dot{x}(t) = ax(t - \tau_0 + bx(t)) \qquad \tau(x(t)) = \tau_0 + bx(t)$$

$$\dot{V}(t) = \int_{-\tau(x(t))}^{0} V_3(x(t), x(t - \tau(x(t))), x(t+s), s) ds$$

$$+ \int_{-\tau(x(t))}^{0} \int_{-\tau(x(t))}^{0} V_4(x(t+s), x(t+\theta), s, \theta) ds d\theta$$

$$\begin{split} V_{3}(x_{t},x_{\tau},x_{s},s) = & \frac{1}{\tau(x_{t})}(abx_{\tau}-1)V_{1}(x_{t},x_{\tau},-\tau(x_{\tau})) + \frac{1}{\tau(x_{t})}V_{1}(x_{t},x_{t},0) \\ & + ax_{\tau}\frac{\partial}{\partial x}V_{1}(x_{t},x_{s},s) - \frac{\partial}{\partial \theta}V_{1}(x_{t},x_{s},\theta) \\ & + (2abx_{\tau}-2)V_{2}(x_{\tau},x_{s},-\tau(x_{t}),\theta) + 2V_{2}(x_{t},x_{s},0,\theta) \end{split}$$

Stability Test

Suppose there exist $S_i\in\Sigma_s$ for i=1,2,3, $L_i\in\Sigma_s$ for i=1,2,3,4, some $\epsilon_j>0$ for j=1,2, polynomial $R_1(x_0,\theta),$ $R_2(x_0,x_1,\theta)$ and matrices M,N>0, such that

- 1) $V_1(x_0, x_2, \theta) + R_1(x_0, \theta) \epsilon_1 x_0^2 \sum_{i=1}^3 S_i(x_0, x_2, \theta) g_i(x_0, x_2, \theta) \in \Sigma_s$
- 2) $-V_3(x_0, x_1, x_2, \theta) + R_2(x_0, x_1, \theta) \epsilon_2 x_0^2 \sum_{i=1}^4 L_i(x_0, x_1, x_2, \theta) g_i(x_0, x_1, x_2, \theta) \in \Sigma_s$,
- 3) $V_2(x_2, x_3, \theta, \xi) = Z_d^T(x_2, \theta) M Z_d(x_3, \xi),$
- 4) $V_4(x_2, x_3, \theta, \xi) = Z_d^T(x_2, \theta) N Z_d(x_3, \xi),$
- 5) $\int_{-\tau(x_0)}^0 R_1(x_0,\theta)d\theta = 0$,
- 6) $\int_{-\tau(x_0)}^0 R_2(x_0, x_1, \theta) d\theta = 0$,

Then the system is asymptotically stable for all $x_t \in \Omega$, where Ω is defined as

$$\Omega := \{ x_t \in \mathbb{C} : ||x_t|| \le \tau_0/(2b) \}.$$

Numerical Validation

$$\dot{x}(t) = ax(t - \tau_0 + bx(t))$$

	a = -0.1	a = -0.5	a=-1
$\tau_0 = 0.1$	$b \in [4e-4, 1]$	$b \in [1e-4, 1]$	$b \in [2e-4, 1]$
$\tau_0 = 0.5$	$b \in [6e-4, 2]$	$b \in [3e-4, 2]$	$b \in [3e-3, 0.02]$
$\tau_0=1$	$b \in [7e-4, 3]$	$b \in [8e-4, 2]$	$b \in [3e-3, 0.02]$

Table: The minimum and maximum stable values of b for a fixed a and τ_0 .

Numerical Validation

Figure: Simulation Results using $a=-0.1, b=1, \tau_0=6$, and initial condition $\phi(\theta)=0.5\sin(\theta)$

Conclusions:

A Difficult Problem:

- Lyapunov Stability Test
 - Convexifies the problem
 - Relies on SDP.
 - Complexity depends on Accuracy.

- Practical Implications
 - ► The effect is small, but finite

Numerical Code Produced:

- Not currently posted
- Must generalize to multidimensional systems

- Future Work
 - Joint Positivity
 - Controller Synthesis

Will be Available for download at http://control.asu.edu