Manuel Cortés Izurdiaga

Preparación Olimpiada RSME

## Combinatoria

Consiste en contar el número de elementos de un conjunto finito.

#### Combinatoria

Consiste en contar el número de elementos de un conjunto finito.

#### ¡No tan fácil

- Los conjuntos definidos por propiedades.
- ② Familia de conjuntos:  $S_n : n \in \mathbb{N}$ .

f(n) = Número de elementos de  $S_n$ .

## Ejercicio

Dado el conjunto  $[n] = \{1, ..., n\}$ , ¿cuántos subconjuntos tiene?

•  $S_n$  = Conjunto formado por todos los subconjuntos de [n]:

$$S_n = \{A : A \subseteq [n]\}$$

• f(n) = Número de elementos de  $S_n = |S_n|$ .



## Solución al problema

Encontrar la expresión de f(n).

• Explícita, en función de n

$$f(n) = 2^n$$

## Solución al problema

Encontrar la expresión de f(n).

• Explícita, en función de n

$$f(n) = 2^n$$

2 Recursiva:

$$f(n) = 2f(n-1)$$

## **TÉCNICA 1**

1 Buscar una regla de recurrencia.

$$f(n)$$
 en función de  $f(n-1), f(n-2), \ldots, f(n-k)$ 

2 Resolver la ecuación en diferencias finitas.

## **CONJUNTOS Y SUBCONJUNTOS**

## **PROBLEMA**

Partimos del conjunto  $[n] = \{1, ..., n\}$ . Pretendemos contar el número de elementos de ciertos  $S_n$  formados por subconjuntos de [n].

## **PERMUTACIONES**

#### PROBLEMA 1

¿De cuántas maneras distintas se pueden ordenar los elementos de [n]?

## **PERMUTACIONES**

#### PROBLEMA 1

¿De cuántas maneras distintas se pueden ordenar los elementos de [n]?

## Solución

Permutaciones de *n* elementos.

$$P_n = n!$$

donde

$$m! = m(m-1)(m-2)\cdots 2\cdot 1$$

## **VARIACIONES**

#### PROBLEMA 2

¿Cuántos subconjuntos ordenados de k elementos contiene [n]?

## **VARIACIONES**

#### PROBLEMA 2

¿Cuántos subconjuntos ordenados de k elementos contiene [n]?

#### Solución

Variaciones de n elementos tomados de k en k.

$$V_n^k = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

## **COMBINACIONES**

#### PROBLEMA 3

¿Cuántos subconjuntos de k elementos contiene [n]?

### Solución

Combinaciones de n elementos tomados de k en k.

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n(n-1)(n-2)\cdot(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

# VARIACIONES CON REPETICIÓN

#### PROBLEMA 4

¿Cuántos subconjuntos ordenados de k elementos contiene [n] si se pueden repetir los elementos?

# VARIACIONES CON REPETICIÓN

#### PROBLEMA 4

¿Cuántos subconjuntos ordenados de k elementos contiene [n] si se pueden repetir los elementos?

#### Solución

Variaciones con repetición de n elementos tomados de k en k.

$$VR_n^k = n^k$$

# PERMUTACIONES CON REPETICIÓN

#### PROBLEMA 5

¿Cuántos subconjuntos ordenados de k elementos ( $k \ge n$ ) de [n] hay sabiendo que 1 se repite  $m_1$  veces, 2,  $m_2$  veces, etc.?

# PERMUTACIONES CON REPETICIÓN

#### PROBLEMA 5

¿Cuántos subconjuntos ordenados de k elementos ( $k \ge n$ ) de [n] hay sabiendo que 1 se repite  $m_1$  veces, 2,  $m_2$  veces, etc.?

#### Solución

Permutaciones con repetición de n elementos repetido  $m_1$ ,  $m_2$ , etc.

$$P_n^{m_1,m_2,...,m_n} = \frac{k!}{m_1! m_2! \cdots m_n!}$$

donde

$$k = m_1 + \cdots + m_n$$

# COMBINACIONES CON REPETICIÓN

#### PROBLEMA 6

¿Cuántos subconjuntos de k elementos contiene [n] si se pueden repetir los elementos?

#### Solución

Combinaciones con repetición de n elementos tomados de k en k:

$$RC_n^k = \binom{n+k-1}{k}$$

## EN RESUMEN

#### En resumen...

- Hay repetición.
  - Influye el orden: variaciones.
  - No influye el orden: combinaciones.
- No hay repetición.
  - 1 Influye el orden: variaciones con repetición.
  - No influye el orden: combinaciones con repetición.

# APLICACIONES: COMPOSICIONES DE UN NÚMERO

#### Composiciones

Una composición de n es una suma ordenada de naturales no nulos cuya suma es n.

# APLICACIONES: COMPOSICIONES DE UN NÚMERO

#### Composiciones

Una composición de n es una suma ordenada de naturales no nulos cuya suma es n.

Composiciones de 4.

# APLICACIONES: COMPOSICIONES DE UN NÚMERO

#### Composiciones

Una composición de n es una suma ordenada de naturales no nulos cuya suma es n.

## Composiciones de 4.

$$egin{array}{lll} 1+1+1+1 & 3+1 \\ 2+1+1 & 1+3 \\ 1+2+1 & 2+2 \\ 1+1+2 & 4 \\ \end{array}$$

#### Problema

¿Cuántas composiciones tiene n?



## Reducción

¿Cuántas composiciones de tamaño k tiene n?

#### Reducción

¿Cuántas composiciones de tamaño k tiene n?

#### Solución

$$k$$
-composiciones =  $\binom{n-1}{k-1}$ .

#### Reducción

¿Cuántas composiciones de tamaño k tiene n?

#### Solución

$$k$$
-composiciones =  $\binom{n-1}{k-1}$ .

## Composiciones totales

$$\sum_{k=1}^{n} \binom{n-1}{k-1} =$$

#### Reducción

¿Cuántas composiciones de tamaño k tiene n?

#### Solución

$$k$$
-composiciones =  $\binom{n-1}{k-1}$ .

## Composiciones totales

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1}$$

# TÉCNICA 2

#### **TÉCNICA 2**

Para contar los elementos de  $S_n$  puedo:

- **1** Encontrar otro conjunto  $T_n$  del que conozco cuantos elementos tiene.
- 2 Emparejar los elementos de  $S_n$  y  $T_n$  de forma que:
  - Elementos distintos de S<sub>n</sub> se emparejen con elementos distintos de T<sub>n</sub>.
  - Todos los elementos de  $T_n$  estén emparejados.

Entonces  $S_n$  y  $T_n$  tienen el mismo número de elementos.

## **APLICACIONES BIYECTIVAS**

#### Definición

Una aplicación  $f: A \rightarrow B$  es biyectiva si:

- **1** Es injectiva:  $a \neq b \Rightarrow f(a) \neq f(b)$ .
- 2 Es sobreyectiva: para todo b en B existe a en A tal que f(a) = b.

## **APLICACIONES BIYECTIVAS**

#### Definición

Una aplicación  $f: A \rightarrow B$  es biyectiva si:

- **1** Es injectiva:  $a \neq b \Rightarrow f(a) \neq f(b)$ .
- 2 Es sobreyectiva: para todo b en B existe a en A tal que f(a) = b.

#### Teorema

 $f: A \rightarrow B$  es biyectiva sí y sólo si existe  $g: B \rightarrow A$  tal que

- gf(a) = a.
- fg(b) = b.

# APLICACIONES: NÚMERO DE SOLUCIONES DE UNA ECUACIÓN

#### Problema

¿Cuántas soluciones no negativas tiene la ecuación

$$x_1 + x_2 + \cdots + x_k = n$$
?

# APLICACIONES: NÚMERO DE SOLUCIONES DE UNA ECUACIÓN

#### Problema

¿Cuántas soluciones no negativas tiene la ecuación

$$x_1 + x_2 + \cdots + x_k = n$$
?

#### Solución

Soluciones = 
$$\binom{n+k-1}{n-1}$$

# COMBINACIONES CON REPETICIÓN

#### PROBLEMA 6

¿Cuántos subconjuntos de k elementos contiene [n] si se pueden repetir los elementos?

#### Solución

Combinaciones con repetición de *n* elementos tomados de *k* en *k*:

$$RC_n^k = \binom{n+k-1}{k}$$

# **NÚMEROS COMBINATORIOS**

#### Definición

El número n sobre k con  $0 \le k \le n$  es

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n(n-1)(n-2)\cdot(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

## **PROPIEDADES**

#### Propiedades

$$k \left( \begin{array}{c} n \\ k \end{array} \right) = n \left( \begin{array}{c} n-1 \\ k-1 \end{array} \right).$$

$$k \binom{n}{k} = (n-k+1) \binom{n}{k-1}.$$

## Ejercicio

Demostrar

$$\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k+1 \end{array}\right)$$

## Ejercicio

Demostrar

$$\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k+1 \end{array}\right)$$

## **TÉCNICA 3**

Si un conjunto A tiene dos subconjuntos B y C tales que:

- 1 Todo elemento de A está en B o C.
- 2 B y C no tienen elementos comunes.

Entonces |A| = |B| + |C|.

## Cardinalidad de A

|A| = Número de elementos de A.

# TRIÁNGULO DE TARTAGLIA



Figura: Triángulo de Tartaglia

## BINOMIO DE NEWTON

#### Binomio de Newton

$$(a+b)^{n} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \cdots$$
$$\cdots + \binom{n}{n-1} ab^{n-1} + \binom{n}{n} b^{n}$$

# **Aplicaciones**

## **Ejercicios**

## Ecuaciones en diferencias finitas

#### Problema

Encontrar la expresión de una función  $f: \mathbb{N} \to \mathbb{R}$  que cumple

$$a_k f(n+k) + a_{k-1} f(n+k-1) + \cdots + a_0 f(n) = g(n)$$

donde

- $a_k, a_{k-1}, \ldots, a_0 \in \mathbb{R}$
- $g: \mathbb{N} \to \mathbb{R}$  es una función.

# Ejemplo

## Ejercicio

$$f(n+2)-4f(n)=n$$
,  $f(0)=0$ ,  $f(1)=\frac{1}{3}$ 

### **Problemas**

- (2015-2016. Viernes mañana.); De cuántas formas se pueden colorear los vértices de un polígono con  $n \ge 3$  lados usando tres colores de forma que haya exactamente m lados,  $2 \le m \le n$ , con los extremos de colores diferentes?
- Probar que

$$2014^{2013} - 1013^{2013} - 1001^{2013}$$

es múltiplo de

$$2014^3 - 1013^3 - 1001^3$$

.