AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listing of claims in the

application.

Listing of Claims:

1. (currently amended) A piezoelectric current sensor comprising:

a piezoelectric element having a first face and a second face;

a first electrical conductor for carrying a current to be sensed, the first

electrical conductor being attached to the first face of the piezoelectric

element; and

a second electrical conductor for carrying a reference current, the

second electrical conductor being attached to the second face of the

piezoelectric element and aligned substantially parallel to the first

electrical conductor;

wherein a force between the first and second electrical conductors caused by

the current to be sensed and the reference current is applied to the

piezoelectric element and produces an electrical potential between the first

and second faces of the piezoelectric element, and wherein the sensitivity of

the piezoelectric current sensor is adjusted by adjusting the level of the

reference current.

Docket Number 200209690-1 Application No. 10/735,197

2. (original) A piezoelectric current sensor in accordance with claim 1, further comprising:

a first conductive layer attached to the first face of the piezoelectric element; and

a second conductive layer attached to the second face of the piezoelectric element.

3. (original) A piezoelectric current sensor in accordance with claim 2, further comprising:

a charge amplifier electrically coupled to the first and second conductive layers and operable to produce an output signal representative of the electrical potential between the first and second faces of the piezoelectric element.

- 4. (original) A piezoelectric current sensor in accordance with claim 2, wherein the first electrical conductor is electrically isolated from the first conductive layer and the second electrical conductor is electrically isolated from the second conductive layer.
- 5. (original) A piezoelectric current sensor in accordance with claim 1, further comprising a current source coupled the second electrical conductor and operable to produce the reference current in the second electrical conductor.

6. (currently amended) A piezoelectric current sensor in accordance with claim 5, wherein the current source in operable to adjust vary the level of the

reference current in response to a control signal.

7. (currently amended) A piezoelectric current sensor in accordance with

claim 1, comprising:

a piezoelectric element having a first face and a second face;

a first electrical conductor for carrying a current to be sensed, the first

electrical conductor being attached to the first face of the piezoelectric

element; and

a second electrical conductor for carrying a reference current, the

second electrical conductor being attached to the second face of the

piezoelectric element and aligned substantially parallel to the first

electrical conductor;

wherein a force between the first and second electrical conductors caused by

the current to be sensed and the reference current is applied to the

piezoelectric element and produces an electrical potential between the first

and second faces of the piezoelectric element, and wherein the level of the

reference current is modulated to enable measurement of a direct current in

the first conductor.

Docket Number 200209690-1

8. (currently amended) A piezoelectric current sensor in accordance with

claim 1, further comprising:

a piezoelectric element having a first face and a second face;

a first electrical conductor for carrying a current to be sensed, the first

electrical conductor being attached to the first face of the piezoelectric

element;

a second electrical conductor for carrying a reference current, the

second electrical conductor being attached to the second face of the

piezoelectric element and aligned substantially parallel to the first

electrical conductor;

a substrate; and

a compliant layer positioned between the piezoelectric element and the

substrate and attaching the piezoelectric element to the substrate,

wherein a force between the first and second electrical conductors caused by

the current to be sensed and the reference current is applied to the

piezoelectric element and produces an electrical potential between the first

and second faces of the piezoelectric element, and wherein the compliant

layer is more compliant than the piezoelectric element.

Docket Number 200209690-1 Application No. 10/735,197

9. (original) A piezoelectric current sensor in accordance with claim 1, further comprising a magnetic shield surrounding the piezoelectric current sensor.

10. (original) A piezoelectric current sensor in accordance with claim 1, wherein the magnetic shield surrounding the piezoelectric current sensor is made of Mu metal.

11. (currently amended) A piezoelectric current sensor in accordance with claim 1, comprising:

a piezoelectric element having a first face and a second face;

a first electrical conductor for carrying a current to be sensed, the first electrical conductor being attached to the first face of the piezoelectric element;

a second electrical conductor for carrying a reference current, the second electrical conductor being attached to the second face of the piezoelectric element and aligned substantially parallel to the first electrical conductor; and

a fixed resistance in series with the second conductor to form a reference circuit

wherein a force between the first and second electrical conductors caused by

the current to be sensed and the reference current is applied to the

piezoelectric element and produces an electrical potential between the first

and second faces of the piezoelectric element, and wherein the reference

current is generated by applying a reference voltage to the reference circuit.

12. (currently amended) An integrated circuit comprising:

a plurality of electronic components;

a substrate supporting the plurality of electronic components;

a plurality of electrical conductors linking one or more of plurality of

electronic components;

a piezoelectric element having a first face and a second face, the first

face being attached to a first electrical conductor of the plurality of

electrical conductors; and

a second electrical conductor for carrying a reference current, the

second electrical conductor being attached to the second face of the

piezoelectric element and aligned parallel to the first electrical

conductor; and

a compliant layer positioned between the piezoelectric element and the

substrate and attaching the piezoelectric element to the substrate

wherein a force between the first and second electrical conductors is applied

to the piezoelectric element and produces an electrical potential between the

first and second faces of the piezoelectric element indicative of the current

flowing in the first electrical conductor.

13. (original) An integrated circuit in accordance with claim 12, further

comprising:

a first conductive layer attached to the first face of the piezoelectric

element; and

a second conductive layer attached to the second face of the

piezoelectric element.

14. (original) An integrated circuit in accordance with claim 12, further

comprising a charge amplifier electrically coupled to the first and second

conductive layers and operable to produce an output signal representative of

the electrical potential between the first and second faces of the piezoelectric

element.

15. (original) An integrated circuit in accordance with claim 13, wherein the

first electrical conductor is electrically isolated from the first conductive layer

8

Docket Number 200209690-1

Application No. 10/735,197

and the second electrical conductor is electrically isolated from the second

conductive layer.

16. (original) An integrated circuit in accordance with claim 12, further

comprising a current source coupled the second electrical conductor and

operable to produce the reference current in the second electrical conductor.

17. (cancelled)

18. (original) A piezoelectric current sensor comprising:

a plurality of piezoelectric elements each having a first face and a

second face;

a plurality of first electrical conductors, each of the plurality first

electrical conductors being attached to a first face of a piezoelectric

element of the plurality of piezoelectric elements and each being

capable of carrying a current to be sensed; and

a second electrical conductor for carrying a reference current, the

second electrical conductor being attached to the second face of each

of the plurality of piezoelectric elements and aligned parallel to a first

electrical conductor of the plurality of first electrical conductors,

wherein a force between a first electrical conductor and the second electrical

conductor is applied to a corresponding piezoelectric element and produces

an electrical potential between the first and second faces of the piezoelectric

element.

19. (currently amended) A method for sensing an electrical current in a first

conductor of a piezoelectric current sensor, the piezoelectric current sensor

further comprising a piezoelectric element having a first face attached to the

first conductor and second face attached to a second conductor aligned

substantially parallel to the first conductor, the method comprising:

passing a reference current though the second conductor to produce a

force between the first and second conductors that is applied to the

piezoelectric element; and

measuring the voltage potential between the first and second faces of

the piezoelectric element; and

adjusting the sensitivity of the piezoelectric current sensor by adjusting

the reference current level.

20. (original) A method in accordance with claim 19, wherein measuring the

voltage potential between the first and second faces of the piezoelectric

element comprises electrically coupling the first and second faces of the

Docket Number 200209690-1

Application No. 10/735,197

piezoelectric element to a charge amplifier and sensing the output from the charge amplifier.

21. (cancelled)

22. (currently amended) A method in accordance with claim 19, further comprising for sensing an electrical current in a first conductor of a piezoelectric current sensor, the piezoelectric current sensor further comprising a piezoelectric element having a first face attached to the first conductor and second face attached to a second conductor aligned substantially parallel to the first conductor, the method comprising:

passing a reference current though the second conductor to produce a force between the first and second conductors that is applied to the piezoelectric element;

measuring the voltage potential between the first and second faces of the piezoelectric element; and

modulating the reference current level.

23. (original) A method in accordance with claim 22, wherein the reference current level is modulated by one of a sinusoidal wave, a triangular wave, and a square wave.

24. (currently amended) A method in accordance with claim 19, further comprising for sensing an electrical current in a first conductor of a piezoelectric current sensor, the piezoelectric current sensor further comprising a piezoelectric element having a first face attached to the first conductor and second face attached to a second conductor aligned substantially parallel to the first conductor, the method comprising:

passing a reference current though the second conductor to produce a force between the first and second conductors that is applied to the piezoelectric element;

measuring the voltage potential between the first and second faces of the piezoelectric element; and

determining the current in the first conductor by multiplying the voltage potential by a calibration factor.

25. (currently amended) A method in accordance with claim 19, further comprising for sensing an electrical current in a first conductor of a piezoelectric current sensor, the piezoelectric current sensor further comprising a piezoelectric element having a first face attached to the first conductor and second face attached to a second conductor aligned substantially parallel to the first conductor, the method comprising:

passing a reference current though the second conductor to produce a

force between the first and second conductors that is applied to the

piezoelectric element;

measuring the voltage potential between the first and second faces of

the piezoelectric element; and

determining the current in the first conductor by multiplying the voltage

potential by a calibration factor and dividing by the reference current.

26. (currently amended) A method in accordance with claim 19, further

comprising for sensing an electrical current in a first conductor of a

piezoelectric current sensor, the piezoelectric current sensor further

comprising a piezoelectric element having a first face attached to the first

conductor and second face attached to a second conductor aligned

substantially parallel to the first conductor, the method comprising:

passing a reference current though the second conductor to produce a

force between the first and second conductors that is applied to the

piezoelectric element;

measuring the voltage potential between the first and second faces of

the piezoelectric element; and

determining the current in the first conductor by multiplying the voltage

potential by a calibration factor and dividing by a reference voltage.

27. (currently amended) A method in accordance with claim 19, further

comprising for sensing an electrical current in a first conductor of a

piezoelectric current sensor, the piezoelectric current sensor further

comprising a piezoelectric element having a first face attached to the first

conductor and second face attached to a second conductor aligned

substantially parallel to the first conductor, the method comprising:

passing a reference current though the second conductor to produce a

force between the first and second conductors that is applied to the

piezoelectric element;

measuring the voltage potential between the first and second faces of

the piezoelectric element; and

determining a voltage applied across the first conductor dependent

upon the electrical resistance of the first conductor and the current in

the first sensor.

28. (cancelled)

29. (currently amended) A piezoelectric current sensor in accordance with

claim 28, further comprising:

Docket Number 200209690-1

a piezoelectric element having a first face and a second face;

a first electrical conductor for carrying a current to be sensed, the first

electrical conductor being attached to the first face of the piezoelectric

<u>element;</u>

a means for generating a reference current;

a second electrical conductor for carrying the reference current, the

second electrical conductor being attached to the second face of the

piezoelectric element and aligned substantially parallel to the first

electrical conductor;

a means for measuring the electrical potential between the first and

second faces of the piezoelectric element produced by a force between

the first and second electrical conductors that is applied to the

piezoelectric element; and

a means for modulating the reference current to facilitate measurement

of direct currents in the first conductor.

30. (currently amended) A piezoelectric current sensor in accordance with

claim 28, further comprising:

a piezoelectric element having a first face and a second face;

a first electrical conductor for carrying a current to be sensed, the first

electrical conductor being attached to the first face of the piezoelectric

element;

a means for generating a reference current;

a second electrical conductor for carrying the reference current, the

second electrical conductor being attached to the second face of the

piezoelectric element and aligned substantially parallel to the first

electrical conductor;

a means for measuring the electrical potential between the first and

second faces of the piezoelectric element produced by a force between

the first and second electrical conductors that is applied to the

piezoelectric element; and

a means for varying the level of the reference current.

31. (original) A piezoelectric current sensor in accordance with claim 30,

wherein the means for varying the level of the reference current is operable to

16

vary the level in response to the level of the current to be sensed.

Docket Number 200209690-1

Application No. 10/735,197

32. (currently amended) A piezoelectric current sensor in accordance with

claim 29 28, wherein the means for measuring the electrical potential between

the first and second faces of the piezoelectric element includes first and

second conductive layers electrically coupled to the first and second faces of

the piezoelectric element respectively and an means for amplifying the charge

difference between the first and second conductive layers.

33. (currently amended) A piezoelectric current sensor in accordance with

claim 29 28, further comprising means for electrically coupling the current to

be sensed to the first conductor.

34. (currently amended) A piezoelectric current sensor in accordance with

claim 29 28, wherein the piezoelectric element comprises one of quartz

crystal, lead zirconate titanate (PZT) ceramic and polyvinylidene fluoride

(PVDF) polymer.

35. (currently amended) A method for calibrating a piezoelectric current

sensor, comprising:

passing a known direct current I₀ through a first electrical conductor

attached to a first face of a piezoelectric element;

passing a modulated reference current IREF through a second electrical

conductor attached to a second face of the piezoelectric element; and

measuring the level V_0 of the output signal from a charge amplifier operable to amplify the electrical potential across the piezoelectric element.

36. (original) A method in accordance with claim 35, further comprising dividing the product of the known current and the reference current by the level of the output signal to obtain a calibration constant. $\alpha = \frac{I_0.I_{REF}}{V_0}$, such that in operation the current I in the first conductor is given by $I = \alpha \frac{V_0}{I_{REF}}$.