A New Deep Learning Multi-Scale Graph Neural Network approach for river flow forecasting

Dina Theodosiadou PhD student (1st year), University of Bath Supervisors: Dr Andy Barnes, Dr Thomas Kjeldsen, Prof Mike Tipping

Introduction

Flood risk analysts rely on riverflow forecasts.

There is an increasing interest in coupling AI with hydrologic models.

E.g., Recent acceptable deep learning models in hydrology are LSTMs.

But...

My current results show a prominent bias on a river station belonging to a different river.

Do I need more balanced input data?

Or do I need to add additional context data?

Or...would river connectivity solve this issue?

At the same time...

A river is part of a "river network"

Does that mean I should explore a multi-scale GNN?

GNNs (Graph Neural Networks) are suited for problems with network structure

It is claimed that leveraging diverse sources of data is making a data-driven model more powerful

My research questions are...

Can the addition of **river station connectivity** and using a GNN model reduce the river station bias?

Is bias more dependent on the balanced diversity of the input data rather than the choice of a data-driven model?

Is it worth training a multi-scale GNN as opposed to a plain GNN?

25/10/2025 5

Model...

Hydrometric areas (coarser scale)

River stations (finer scale)

Limitations...

Scalability to larger areas?

Redundancy of the coarser scaler and lower data quality "hurting" the predictions

Thank you! ©

Feel free to connect with me:

LinkedIn: https://www.linkedin.com/in/dinatheodosiadou/

Email: kt918@bath.ac.uk

