Statistiques: Synthèse

Exercice 1:

Dans tout l'exercice, on étudie les performances réalisées par les athlètes qui ont participé aux finales du 100 m masculin des Jeux Olympiques de 2016 et de 2012.

On donne ci-dessous des informations sur les temps mis par les athlètes pour parcourir 100 m.

Finale du 100 m aux Jeux Olympiques de 2016 :

Temps réalisés par tous les finalistes :

10,04 s	9,96 s	9,81 s	9,91 s	10,06 s	9,89 s	9,93 s	9,94 s

Finale du 100 m aux Jeux Olympiques de 2012 :

Nombre de finalistes	 8
Temps le plus long	 11,99 s
• Étendue des temps	 2,36 s
Moyenne des temps	 10,01 s
Médiane des temps	 9,84 s

- 1 Quel est le temps du vainqueur de la finale en 2016?
- 2 Lors de quelle finale la moyenne des temps pour effectuer 100 m est-elle la plus petite?
- 3 Lors de quelle finale le meilleur temps a-t-il été réalisé?
- 4 L'affirmation suivante est-elle vraie ou fausse?

Affirmation: «Seulement trois athlètes ont mis moins de 10 s à parcourir les 100 m de la finale de 2012.»

5 C'est lors de la finale de 2012 qu'il y a eu le plus d'athlètes ayant réussi à parcourir le 100 m en moins de 10 s.

Combien d'athlètes ont réalisé un temps inférieur à 10 s lors de cette finale de 2012?

Source: Amérique du Sud, 2018

Exercice 2:

Parmi les nombreux polluants de l'air, les particules fines sont régulièrement surveillées.

Les PM10 sont des particules fines dont le diamètre est inférieur à 0,01 mm. En janvier 2017, les villes de Lyon et Grenoble ont connu un épisode de pollution aux particules fines. Voici des données concernant la période du 16 au 25 janvier 2017 :

Données statistiques sur les concentrations journalières en PM10 du 16 au 25 janvier 2017 à Lyon

Moyenne: $72.5 \mu g/m^3$ Médiane: $83.5 \mu g/m^3$

Concentration minimale : $22 \mu g/m^3$ Concentration maximale : $107 \mu g/m^3$

Source: http://www.air-rhonealpes.fr

Relevés des concentrations journalières en PM10 du 16 au 25 janvier 2017 à Grenoble

Date	Concentration PM10 en µg/m³			
16 janvier	32			
17 janvier	39			
18 janvier	52			
19 janvier	57			
20 janvier	78			
21 janvier	63			
22 janvier	60			
23 janvier	82			
24 janvier	82			
25 janvier	89			

- Laquelle de ces deux villes a eu la plus forte concentration moyenne en PM10 entre le 16 et le 25 janvier ?
- Calculer l'étendue des séries des relevés en PM10 à Lyon et à Grenoble. Laquelle de ces deux villes a eu l'étendue la plus importante ? Interpréter ce dernier résultat.
- L'affirmation suivante est-elle exacte? Justifier votre réponse. « Du 16 au 25 janvier, le seuil d'alerte de 80 μg/m³ par jour a été dépassé au moins 5 fois à Lyon. »

Source: France Métropolitaine, 2018

Exercice 3:

Un sablier est composé de :

- deux cylindres C₁ et C₂ de hauteur 4,2 cm et de diamètre
 1,5 cm ;
- un cylindre C₃;
- deux demi-sphères S_1 et S_2 de diamètre 1,5 cm. On rappelle le volume V d'un cylindre d'aire de base B et de hauteur h:

$$V = B \times h$$

11 a. Au départ, le sable remplit le cylindre C_2 aux deux tiers. Montrer que le volume du sable est environ $4,95 \text{ cm}^3$.

- **b.** On retourne le sablier. En supposant que le débit d'écoulement du sable est constant et égal à 1,98 cm³/min, calculer le temps en minutes et secondes que va mettre le sable à s'écouler dans le cylindre inférieur.
- En réalité, le débit d'écoulement d'un même sablier n'est pas constant. Dans une usine où on fabrique des sabliers comme celui-ci, on prend un sablier au hasard et on teste plusieurs fois le temps d'écoulement dans ce sablier.

Voici les différents temps récapitulés dans le tableau suivant :

Temps mesuré	2 min 22 s	2 min 24 s	2 min 26 s	2 min 27 s	2 min 28 s	2 min 29 s	2 min 30 s
Nombre de tests	1	1	2	6	3	7	6

Exercice 3 (suite):

Temps mesuré	2 min 31 s	2 min 32 s	2 min 33 s	2 min 34 s	2 min 35 s	2 min 38 s
Nombre de tests	3	1	2	3	2	3

- a. Combien de tests ont été réalisés au total ?
- **b.** Un sablier est mis en vente s'il vérifie les trois conditions ci-dessous, sinon il est éliminé :
- l'étendue des temps est inférieure à 20 s ;
- la médiane des temps est comprise entre 2 min 29 s et 2 min 31 s;
- la moyenne des temps est comprise entre 2 min 28 s et 2 min 32 s.

Le sablier testé sera-t-il éliminé?

Source : France Métropolitaine, 2019