# US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250257089 A1 August 14, 2025 Kim; Haejin et al.

# ORGANOMETALLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

### Abstract

An organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic light-emitting device includes an organometallic compound represented by Formula 1. When the organometallic compound is used in an organic light-emitting device, the organic light-emitting device may have excellent effects in terms of driving voltage, efficiency, color purity, and/or lifespan: ##STR00001##

Inventors: Kim; Haejin (Yongin-si, KR), Ko; Soobyung (Yongin-si, KR), Kim; Sungbum

(Yongin-si, KR), Ahn; Eunsoo (Yongin-si, KR), Lee; Eunyoung (Yongin-si, KR),

Lee; Jaesung (Yongin-si, KR)

Applicant: SAMSUNG DISPLAY CO., LTD. (Yongin-si, KR)

Family ID: 1000008560612

Appl. No.: 19/192176

Filed: April 28, 2025

# **Foreign Application Priority Data**

KR 10-2020-0069098 Jun. 08, 2020

# **Related U.S. Application Data**

parent US continuation 17135605 20201228 parent-grant-document US 12324349 child US 19192176

### **Publication Classification**

Int. Cl.: C07F15/00 (20060101); H10K50/11 (20230101); H10K50/15 (20230101); H10K50/17 (20230101); H10K50/18 (20230101); H10K85/30 (20230101); H10K85/60 (20230101); H10K101/10 (20230101)

### **U.S. Cl.:**

CPC

**C07F15/0086** (20130101); **H10K85/346** (20230201); **H10K85/658** (20230201); H10K50/11 (20230201); H10K50/15 (20230201); H10K50/171 (20230201); H10K50/18 (20230201); H10K2101/10 (20230201)

# **Background/Summary**

CROSS-REFERENCE TO RELATED APPLICATION [0001] This application is a continuation of U.S. application Ser. No. 17/135,605, filed on Dec. 28, 2020, which claims priority to and the benefit of Korean Patent Application No. 10-2020-0069098, filed on Jun. 8, 2020, in the Korean Intellectual Property Office, the entire contents of both of which are incorporated herein by reference.

#### **BACKGROUND**

1. Field

[0002] One or more aspects of embodiments of the present disclosure relate to an organometallic compound and an organic light-emitting device including the same.

2. Description of Related Art

[0003] Organic light-emitting devices (OLEDs) are self-emission devices that, as compared with related devices, have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of luminance, driving voltage, and/or response speed, and produce full-color images.

[0004] OLEDs may include a first electrode located on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode sequentially stacked on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transition from an excited state to a ground state to thereby generate light.

#### **SUMMARY**

[0005] One or more aspects of embodiments of the present disclosure are directed towards an organometallic compound and an organic light-emitting device including the same.

[0006] Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments of the disclosure.

[0007] According to one or more embodiments, an organometallic compound is represented by Formula 1:

##STR00002## [0008] wherein, in Formula 1, [0009] M may be selected from platinum (Pt), palladium (Pd), copper (Cu), silver (Ag), gold (Au), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm), [0010] Y.sub.1 to Y.sub.4 may each independently be N or C, [0011] CY.sub.1 to CY.sub.4 may each independently be selected from a C.sub.5-C.sub.60 carbocyclic group and a C.sub.1-C.sub.60 heterocyclic group, [0012] A.sub.1 to A.sub.4 may each independently be selected from a chemical bond, O, and S, [0013] T.sub.1 to T.sub.3 may each independently be

```
selected from a single bond, *—O—*', *—S—*—Se—*', *—S(=O).sub.2—*', *—C(R.sub.5)
(R.sub.6)—*', *—C(R.sub.5)=*', *=C(R.sub.6)—*', *—C(R.sub.5)=C(R.sub.6)—*', *—C(=O)
__*', *__C(=S)__*', *__C=C__*', *__B(R.sub.5)__*', *__N(R.sub.5)__*', *__P(R.sub.5)__*', *__
Si(R.sub.5)(R.sub.6)—*', *—P(R.sub.5)(R.sub.6)—*', *—P(=O)(R.sub.5)—*', and *—
Ge(R.sub.5)(R.sub.6)—*', [0014] a1 to a3 may each independently be an integer from 0 to 3, and
the sum of a1 to a3 is 2 or more, [0015] L.sub.1 may be selected from an unsubstituted or
substituted C.sub.5-C.sub.60 carbocyclic group and an unsubstituted or substituted C.sub.1-
C.sub.60 heterocyclic group, [0016] c1 may be an integer from 0 to 5, [0017] Ar.sub.1, Ar.sub.2,
and R.sub.1 to R.sub.6 may each independently be selected from hydrogen, deuterium, —F, —Cl,
—Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a
hydrazono group, a substituted or unsubstituted C.sub.1-C.sub.60 alkyl group, a substituted or
unsubstituted C.sub.2-C.sub.60 alkenyl group, a substituted or unsubstituted C.sub.2-C.sub.60
alkynyl group, a substituted or unsubstituted C.sub.1-C.sub.60 alkoxy group, a substituted or
unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10
heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a
substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or
unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy
group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted
C.sub.1-C.sub.6a heteroaryl group, a substituted or unsubstituted monovalent non-aromatic
condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed
heteropolycyclic group, —Si(Q.sub.1)(Q.sub.2)(Q.sub.3), —N(Q.sub.1)(Q.sub.2), —B(Q.sub.1)
(Q.sub.2), --C(=O)(Q.sub.1), --S(=O).sub.2(Q.sub.1), and --P(=O)(Q.sub.1)(Q.sub.2), [0018]
any two neighboring substituents among Ar.sub.1, Ar.sub.2, and R.sub.1 to R.sub.6, or any
combinations thereof are optionally linked to each other to form a substituted or unsubstituted
C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic
group, [0019] b1 to b4 may each independently be an integer from 1 to 10, [0020] n1 may be an
integer from 1 to 5, [0021] at least one substituent of the substituted C.sub.5-C.sub.60 carbocyclic
group, the substituted C.sub.1-C.sub.60 heterocyclic group, the substituted C.sub.1-C.sub.60 alkyl
group, the substituted C.sub.2-C.sub.60 alkenyl group, the substituted C.sub.2-C.sub.60 alkynyl
group, the substituted C.sub.1-C.sub.60 alkoxy group, the substituted C.sub.3-C.sub.10 cycloalkyl
group, the substituted C.sub.1-C.sub.10 heterocycloalkyl group, the substituted C.sub.3-C.sub.10
cycloalkenyl group, the substituted C.sub.1-C.sub.10 heterocycloalkenyl group, the substituted
C.sub.6-C.sub.60 aryl group, the substituted C.sub.6-C.sub.60 aryloxy group, the substituted
C.sub.6-C.sub.60 arylthio group, the substituted C.sub.1-C.sub.60 heteroaryl group, the substituted
monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-
aromatic condensed heteropolycyclic group may be selected from: [0022] deuterium, —F, —Cl, —
Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a
hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-
C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group, [0023] a C.sub.1-C.sub.60 alkyl
group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-
C.sub.60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br,
—I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a
hydrazono group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group,
a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-
C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a
C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a
monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.11)(Q.sub.12)(Q.sub.13),
—N(Q.sub.11)(Q.sub.12), —B(Q.sub.11)(Q.sub.12), —C(=O)(Q.sub.11), —
S(=O).sub.2(Q.sub.11), and -P(=O)(Q.sub.11)(Q.sub.12), [0024] a C.sub.3-C.sub.10 cycloalkyl
group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a
```

C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, [0025] a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.1 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, — Si(Q.sub.21)(Q.sub.22)(Q.sub.23), —N(Q.sub.21)(Q.sub.22), —B(Q.sub.21)(Q.sub.22), —C(=O) (Q.sub.21), -S(=O).sub.2(Q.sub.21), and -P(=O)(Q.sub.21)(Q.sub.22), and [0026] -Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), —B(Q.sub.31)(Q.sub.32), —C(=O) (Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32), and [0027] Q.sub.1 to Q.sub.3, Q.sub.11 to Q.sub.13, Q.sub.21 to Q.sub.23, and Q.sub.31 to Q.sub.33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.

[0028] According to one or more embodiments, an organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer located between the first electrode and the second electrode and including an emission layer, and the organic light-emitting device includes an organometallic compound represented by Formula 1.

# **Description**

### BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The above and other aspects, features, and advantages of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:

[0030] FIG. **1** is a schematic cross-sectional view of an organic light-emitting device according to an embodiment;

[0031] FIG. **2** is a schematic cross-sectional view of an organic light-emitting device according to another embodiment;

[0032] FIG. **3** is a schematic cross-sectional view of an organic light-emitting device according to another embodiment; and

[0033] FIG. **4** is a schematic cross-sectional view of an organic light-emitting device according to another embodiment.

### **DETAILED DESCRIPTION**

[0034] Reference will now be made in more detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Throughout the disclosure, the expression "at least one of a, b or c" indicates only a, only b, only c, both a and b, both a and c, both b and c, all of a, b, and c, or variations thereof. Expressions such as "one of," "at least one selected from," and "selected from," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of "may" when describing embodiments of the present disclosure refers to "one or more embodiments of the present disclosure."

[0035] An embodiment of the present disclosure provides an organometallic compound represented by Formula 1:

### ##STR00003##

[0036] In Formula 1, M may be selected from platinum (Pt), palladium (Pd), copper (Cu), silver (Ag), gold (Au), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm).

[0037] In an embodiment, M may be selected from Pt, Pd, Cu, Ag, Au, Rh, Ir, Ru, and Os.

[0038] In one or more embodiments, M may be Pt, but embodiments of the present disclosure are not limited thereto.

[0039] In Formula 1, Y.sub.1 to Y.sub.4 may each independently be nitrogen (N) or carbon (C).

[0040] In an embodiment, Y.sub.1 to Y.sub.3 may each be C, and Y.sub.4 may be N; or

[0041] Y.sub.1, Y.sub.2, and Y.sub.4 may each be C, and Y.sub.3 may be N.

[0042] In Formula 1, CY.sub.1 to CY.sub.4 may each independently be selected from a C.sub.5-C.sub.60 carbocyclic group and a C.sub.1-C.sub.60 heterocyclic group.

[0043] In an embodiment, CY.sub.1 to CY.sub.4 may each independently be selected from a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a pyrene ring, a chrysene ring, a cyclopentadiene ring, a 1,2,3,4-tetrahydronaphthalene ring, a furan ring, a thiophene ring, a silole ring, an indene ring, a fluorene ring, an indole ring, a carbazole ring, a benzofuran ring, a dibenzofuran ring, a benzothiophene ring, a dibenzothiophene ring, a benzosilole ring, a dibenzosilole ring, an indenopyridine ring, an indolopyridine ring, a benzofuropyridine ring, a benzothienopyridine ring, a benzosilolopyridine ring, an indenopyrimidine ring, an indolopyrimidine ring, a benzofuropyrimidine ring, a benzothienopyrimidine ring, a benzosilolopyrimidine ring, a dihydropyridine ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, a quinazoline ring, a phenanthroline ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 2,3-dihydroimidazole ring, a 4,5-dihydroimidazole ring, a triazole ring, a 2,3-dihydrotriazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a tetrazole ring, a pentazole ring, a benzopyrazole ring, a benzimidazole ring, a 2,3-dihydrobenzimidazole ring, an imidazopyridine ring, a 2,3-dihydroimidazopyridine ring, a 4,5,6,7-tetrahydro-benzimidazole ring, a 2,3,4,5,6,7-hexahydro-benzoimidazole ring, an imidazopyrimidine ring, a 2,3dihydroimidazopyrimidine ring, an imidazopyrazine ring, a 2,3-dihydroimidazopyrazine ring, a benzoxazole ring, a benzothiazole ring, a benzoxadiazole ring, a benzothiadiazole ring, a 5,6,7,8tetrahydroisoguinoline ring, and a 5,6,7,8-tetrahydroguinoline.

[0044] In an embodiment, i) CY.sub.1 may be selected from an imidazole ring, a 2,3-dihydroimidazole ring, a 4,5-dihydroimidazole ring, a benzimidazole ring, a 2,3-dihydrobenzimidazole ring, a 4,5,6,7-tetrahydro-benzimidazole ring, and a 2,3,4,5,6,7-hexahydro-

```
benzimidazole ring, [0045] ii) CY.sub.2 may be selected from a benzene ring, a naphthalene ring,
and a pyridine ring, [0046] iii) CY.sub.3 may be selected from a benzene ring, a naphthalene ring,
and a pyridine ring, [0047] iv) CY.sub.4 may be selected from a benzene ring, a naphthalene ring,
and a pyridine ring, or [0048] CY.sub.1 to CY.sub.4 may be any combination thereof.
[0049] In one or more embodiments, CY.sub.1 may be selected from groups represented by
Formulae CY1-1 to CY1-70, CY.sub.2 may be selected from groups represented by Formulae CY2-
1 to CY2-13, CY.sub.3 may be selected from groups represented by Formulae CY3-1 to CY3-7,
and CY.sub.4 may be selected from groups represented by Formulae CY4-1 to CY4-9:
##STR00004## ##STR00005## ##STR00006## ##STR00007## ##STR00008## ##STR00009##
##STR00010## ##STR00011## ##STR00012## ##STR00013## ##STR00014## ##STR00015##
##STR00016## ##STR00017## ##STR00018## ##STR00019## ##STR00020## [0050] wherein,
in Formulae CY1-1 to CY1-70, Formulae CY2-1 to CY2-13, Formulae CY3-1 to CY3-7, and
Formulae CY4-1 to CY4-9, [0051] Y.sub.1 to Y.sub.4 may each be the same as described in the
present specification, [0052] X.sub.11 may be *"—C, C(R.sub.11) or N, X.sub.12 may be
C(R.sub.12) or N, X.sub.13 may be C(R.sub.13) or N, X.sub.14 may be C(R.sub.14) or N,
X.sub.15 may be C(R.sub.15) or N, X.sub.16 may be C(R.sub.16) or N, X.sub.17 may be
C(R.sub.17) or N, and X.sub.18 may be C(R.sub.18) or N, [0053] X.sub.19 may be C(R.sub.19a)
(R.sub.19b), Si(R.sub.19a)(R.sub.19b), N(R.sub.19), O, or S, [0054] X.sub.20 may be
C(R.sub.20a)(R.sub.20b), Si(R.sub.20a)(R.sub.20b), N(R.sub.20), O, or S, [0055] X.sub.21 may be
C(R.sub.21) or N, X.sub.22 may be C(R.sub.22) or N, X.sub.13 may be C(R.sub.23) or N,
X.sub.24 may be C(R.sub.24) or N, X.sub.25 may be C(R.sub.25) or N, X.sub.26 may be
C(R.sub.26) or N, and X.sub.27 may be C(R.sub.27) or N, [0056] X.sub.28 may be C(R.sub.28a)
(R.sub.28b), Si(R.sub.28a)(R.sub.28b), N(R.sub.28), O, or S, [0057] X.sub.31 may be C(R.sub.31)
or N, X.sub.32 may be C(R.sub.32) or N, X.sub.33 may be C(R.sub.33) or N, X.sub.34 may be
C(R.sub.34) or N, X.sub.35 may be C(R.sub.35) or N, and X.sub.36 may be C(R.sub.36) or N,
[0058] X.sub.37 may be C(R.sub.37a)(R.sub.37b), Si(R.sub.37a)(R.sub.37b), N(R.sub.37), O, or S,
[0059] X.sub.41 may be *"—C, C(R.sub.41), or N, X.sub.42 may be C(R.sub.42) or N, X.sub.43
may be C(R.sub.43) or N, X.sub.44 may be C(R.sub.44) or N, X.sub.45 may be C(R.sub.45) or N,
X.sub.46 may be C(R.sub.46) or N, and X.sub.47 may be C(R.sub.47) or N, [0060] X.sub.48 may
be C(R.sub.48a)(R.sub.48b), Si(R.sub.48a)(R.sub.48b), N(R.sub.48), O, or S, [0061] R.sub.11 to
R.sub.20, R.sub.15a to R.sub.20a, and R.sub.15b to R.sub.20b may each independently be the same
as described in connection with R.sub.1, [0062] R.sub.21 to R.sub.28, R.sub.24A TO R.sub.28A,
and R.sub.24B to R.sub.28B may each independently be the same as described in connection with
R.sub.2, [0063] R.sub.31 to R.sub.37, R.sub.33a to R.sub.37a, and R.sub.33b to R.sub.37b may
each independently be the same as described in connection with R.sub.3, [0064] R.sub.41 to
R.sub.48, R.sub.44a to R.sub.48a, and R.sub.44b to R.sub.48b may each independently be the same
as described in connection with R.sub.4, [0065] b11 may be an integer from 1 to 4, [0066] indicates
a binding site to M, [0067] *' and *" each indicate a binding site to a neighboring atom, and [0068]
*.sub.N indicates a binding site to a nitrogen atom (N).
```

[0069] In an embodiment, CY.sub.1 may be selected from groups represented by Formulae CY1-14 to CY1-26. In one or more embodiments, CY.sub.1 may be a group represented by Formula CY1-14, CY1-15, or CY1-26.

[0070] In an embodiment, a moiety represented by ##STR00021##

in Formula 1 may be selected from groups represented by Formulae CZ-1 to CZ-8: ##STR00022##

[0071] In Formulae CZ-1 to CZ-8, [0072] R.sub.31 and R.sub.32 may each be the same as described in connection with R.sub.3, [0073] R.sub.41 to R.sub.43 may each be the same as described in connection with R.sub.4, [0074] \* indicates a binding site to M, [0075] \*' indicates a binding site to T.sub.3 or CY.sub.1, and [0076] \*" indicates a binding site to T.sub.2 or CY.sub.2.

[0077] In Formula 1, A.sub.1 to A.sub.4 may each independently be selected from a chemical bond, O, and S. The chemical bond may be a covalent bond or a coordination bond.

[0078] In an embodiment, two bonds among a bond between M and either of Y.sub.1 and A.sub.1, a bond between M and either of Y.sub.2 and A.sub.2, a bond between M and either of Y.sub.3 and A.sub.3, and a bond between M and either of Y.sub.4 and A.sub.4 may each be a coordination bond, and the other two bonds may each be a covalent bond. Here, the organometallic compound represented by Formula 1 may be electrically neutral.

[0079] In an embodiment, each of A.sub.1 to A.sub.4 in Formula 1 may be a chemical bond; [0080] A.sub.1 may be O or S, and each of A.sub.2 to A.sub.4 may be a chemical bond; [0081] A.sub.2 may be O or S, and each of A.sub.1, A.sub.3, and A.sub.4 may be a chemical bond; [0082] A.sub.3 may be O or S, and each of A.sub.1, A.sub.2, and A.sub.4 may be a chemical bond; or [0083] A.sub.4 may be O or S, and each of A.sub.1, A.sub.2, and A.sub.3 may be a chemical bond. [0084] In one or more embodiments, each of A.sub.1 to A.sub.4 may be a chemical bond, a bond between Y.sub.1 and M.sub.1 may be a coordination bond, a bond between Y.sub.2 and M.sub.1 may be a covalent bond, a bond between Y.sub.2 and M.sub.1 may be a covalent bond, and a bond between Y.sub.4 and M.sub.1 may be a coordination bond; or [0085] each of A.sub.1 to A.sub.4 may be a chemical bond, a bond between Y.sub.1 and M.sub.1 may be a coordination bond, a bond between Y.sub.2 and M.sub.1 may be a covalent bond, a bond between Y.sub.3 and M.sub.1 may be a coordination bond, and a bond between Y.sub.4 and M.sub.1 may be a covalent bond. [0086] In one or more embodiments, [0087] each of Y.sub.1 to Y.sub.3 may be C, Y.sub.4 may be N, each of A.sub.1 to A.sub.4 may be a chemical bond, a bond between Y.sub.1 and M.sub.1 may be a coordination bond, a bond between Y.sub.2 and M.sub.1 may be a covalent bond, a bond between Y.sub.3 and M.sub.1 may be a covalent bond, and a bond between Y.sub.4 and M.sub.1 may be a coordination bond; or [0088] Y.sub.1, Y.sub.2, and Y.sub.4 may be C, Y.sub.4 may be N, each of A.sub.1 to A.sub.4 may be a chemical bond, a bond between Y.sub.1 and M.sub.1 may be a coordination bond, a bond between Y.sub.2 and M.sub.1 may be a covalent bond, a bond between Y.sub.3 and M.sub.1 may be a coordination bond, and a bond between Y.sub.4 and M.sub.1 may be a covalent bond.

[0089] In Formula 1, T.sub.1 to T.sub.3 may each independently be selected from a single bond, \* -O-\*', \*-S-\*', \*-S-\*', \*-S(=O).sub.2-\*', \*-C(R.sub.5)(R.sub.6)-\*', \*-C(R.sub.5)=\*', \*=C(R.sub.6)-\*', \*-C(R.sub.5)=\*', \*-C(R.sub.5)-\*', \*-C(EO)-\*', \*

[0091] In one or more embodiments, each of T.sub.1 and T.sub.3 may be a single bond, and T.sub.2 may be \*—O—\*'.

[0092] In Formula 1, a1 to a3 may each independently be an integer from 0 to 3, and the sum of a1 to a3 may be 2 or more.

[0093] When a1 is 0, CY.sub.1 and CY.sub.2 may not be linked to each other, when a2 is 0, CY.sub.2 and CY.sub.3 may not be linked to each other, and when a3 is 0, CY.sub.4 and CY.sub.1 may not be linked to each other.

[0094] In an embodiment, each of a1 and a2 may be 1, and a3 may be 0. In one or more embodiments, each of a1 and a2 may be 1, a3 may be 0, T.sub.1 may be a single bond, and T.sub.2 may be \*—O—\*'.

[0095] In Formula 1, L.sub.1 may be selected from a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group and a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group. [0096] In an embodiment, L.sub.1 may be selected from: [0097] a benzene group, a pentalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, an acenaphthalene group, a fluorene group, a spiro-bifluorene group, a spiro-benzofluorene-

fluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pyrrole group, a thiophene group, a furan group, a silole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a triazine group, a benzofuran group, a benzothiophene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a benzosilole group, a dibenzosilole group, a quinoline group, an isoquinoline group, a benzimidazole group, an imidazopyridine group, and an imidazopyrimidine group; and [0098] a benzene group, a pentalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, an acenaphthalene group, a fluorene group, a spiro-bifluorene group, a spiro-benzofluorene-fluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pyrrole group, a thiophene group, a furan group, a silole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a triazine group, a benzofuran group, a benzothiophene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a benzosilole group, a dibenzosilole group, a quinoline group, an isoquinoline group, a benzimidazole group, an imidazopyridine group, and an imidazopyrimidine group, each substituted with at least one selected from deuterium, —F, —Cl, — Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-benzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, a benzosilolyl group, a dibenzosilolyl group, a quinolinyl group, an isoquinolinyl group, a benzimidazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), – B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32), and [0099] Q.sub.31 to Q.sub.33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a C.sub.6-C.sub.20 aryl group, a C.sub.1-C.sub.20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group. [0100] In one or more embodiments, L.sub.1 may be selected from groups represented by

[0100] In one or more embodiments, L.sub.1 may be selected from groups represented by Formulae 3-1 to 3-24:

##STR00023## ##STR00024## ##STR00025## ##STR00026##

[0101] In Formulae 3-1 to 3-24, [0102] Y.sub.1 may be selected from O, S, C(Z.sub.3)(Z.sub.4), N(Z.sub.5), and Si(Z.sub.6)(Z.sub.7), [0103] Z.sub.1 to Z.sub.7 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof, a phosphoric acid or a salt thereof, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl

group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a triazinyl group, a benzimidazolyl group, a phenanthrolinyl group, —Si(Q.sub.31)(Q.sub.32) (Q.sub.33), —N(Q.sub.31)(Q.sub.32), and —B(Q.sub.31)(Q.sub.32), [0104] Q.sub.31 to Q.sub.33 may each independently be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, and [0105] d3 may be an integer from 0 to 3, [0106] d4 may be an integer from 0 to 4, [0107] d5 may be an integer from 0 to 5, [0108] d6 may be an integer from 0 to 6, [0109] d8 may be an integer from 0 to 8, and [0110] \*, \*', and \*" each indicate a binding site to a neighboring atom. [0111] In one or more embodiments, L.sub.1 may be selected from groups represented by Formulae 4-1 to 4-6:

##STR00027##

[0112] In Formulae 4-1 to 4-6, [0113] \*, \*', and \*" each indicate a binding site to a neighboring atom.

[0114] In Formula 1, c1 may be an integer from 0 to 5.

[0115] In an embodiment, c1 may be 0 or 1.

[0116] In Formula 1, Ar.sub.1, Ar.sub.2, and R.sub.1 to R.sub.6 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C.sub.1-C.sub.60 alkyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkenyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkynyl group, a substituted or unsubstituted C.sub.1-C.sub.60 alkoxy group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.2-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.1)(Q.sub.2)(Q.sub.3), — N(Q.sub.1)(Q.sub.2), —B(Q.sub.1)(Q.sub.2), —C(=O)(Q.sub.1), —S(=O).sub.2(Q.sub.1), and — P(=O)(Q.sub.1)(Q.sub.2), and [0117] any two neighboring substituents among Ar.sub.1, Ar.sub.2, and R.sub.1 to R.sub.6, or any combinations thereof may optionally be linked to each other to form a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group.

[0118] In an embodiment, Ar.sub.1 and Ar.sub.2 may each independently be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

[0119] In one or more embodiments, Ar.sub.1 and Ar.sub.2 may each independently be selected from: [0120] a cyclopentyl group, a cyclohexyl group, a cyclohexyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-fluorenebenzofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenalenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl

```
group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group,
an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group,
a pyrimidinyl group, a pyridazinyl group, a triazinyl group, an indolyl group, an isoindolyl group,
an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl
group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl
group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl
group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a
benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a
benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a
tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a carbazolyl group, a dibenzofuranyl
group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a
naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a
dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a
dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an
oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl
group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an
azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an
indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group; [0121] a
cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl
group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a
naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-fluorene-benzofluorenyl
group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl
group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a
chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a
furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an
isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a
pyrimidinyl group, a pyridazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an
indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl
group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl
group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl
group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a
benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a
benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a
tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a carbazolyl group, a dibenzofuranyl
group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a
naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a
dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a
dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an
oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl
group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an
azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an
indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted
with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, —CF.sub.3, —
CF.sub.2H, —CFH.sub.2, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a
cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl
group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a
spiro-bifluorenyl group, a spiro-fluorene-benzofluorenyl group, a benzofluorenyl group, a
dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a
fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group,
a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an
```

imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphtho silolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspirobifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), — N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31), -S(=O).sub.2(Q.sub.31),and —P(=O)(Q.sub.31)(Q.sub.32); and [0122] —Si(Q.sub.1)(Q.sub.2)(Q.sub.3), —N(Q.sub.1) (Q.sub.2), and —B(Q.sub.1)(Q.sub.2), and [0123] Q.sub.1 to Q.sub.3 and Q.sub.31 to Q.sub.33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a C.sub.6-C.sub.20 aryl group, a C.sub.1-C.sub.20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.

from groups represented by Formulae 5-1 to 5-34: ##STR00028## ##STR00029## ##STR00030## ##STR00031## ##STR00032## [0125] In Formulae 5-1 to 5-34, [0126] Y.sub.31 may be selected from O, S, N(Z.sub.33), C(Z.sub.34)(Z.sub.35), and Si(Z.sub.36)(Z.sub.37), [0127] Z.sub.31 to Z.sub.37 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, —CF.sub.3, —CF.sub.2H, —CFH.sub.2, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cyclohexyl group, a cyclohexeny group, a biphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl

[0124] In one or more embodiments, Ar.sub.1 and Ar.sub.2 may each independently be selected

cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-fluorene-benzofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenylenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinoxalinyl group, a phenanthridinyl group, a dibenzofuranyl group, a phenanthrolinyl group, a phenazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), — N(Q.sub.31)(Q.sub.32), and —B(Q.sub.31)(Q.sub.32), [0128] e2 may be 1 or 2, [0129] e3 may be an integer from 1 to 3, [0130] e4 may be an integer from 1 to 4, [0131] e5 may be an integer from 1 to 5, [0132] e6 may be an integer from 1 to 6, [0133] e7 may be an integer from 1 to 7, [0134] e9 may be an integer from 1 to 9, [0135] Q.sub.31 to Q.sub.33 may each independently be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, and [0136] \* indicates a binding site to a

neighboring atom.

[0137] In one or more embodiments, Ar.sub.1 and Ar.sub.2 may each independently be selected from groups represented by Formulae 6-1 to 6-52:

##STR00033## ##STR00034## ##STR00035## ##STR00036## ##STR00037## ##STR00038## [0138] In Formulae 6-1 to 6-52, [0139] i-Pr is an isopropyl group, [0140] t-Bu is a tert-butyl group, [0141] TMS is a trimethylsilyl group, [0142] Ph is a phenyl group, and [0143] \* indicates a binding site to a neighboring atom.

[0144] In an embodiment, R.sub.1 to R.sub.6 may each independently be selected from: [0145] hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, a C.sub.1-C.sub.20 alkyl group, and a C.sub.1-C.sub.20 alkoxy group; [0146] a C.sub.1-C.sub.20 alkyl group and a C.sub.1-C.sub.20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, and a biphenyl group; [0147] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenylene group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspirobifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group; [0148] a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenylene group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a

```
carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a
benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a
naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a
dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an
imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a
benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl
group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an
indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl
group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, cyano
group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a
cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl
group, a pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a spiro-
bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a
phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl
group, a chrysenylene group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl
group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group,
an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, pyrazinyl group, a
pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group,
a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a
phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a
quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an
acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a
benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a
benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a
tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a
dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group,
a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a
dibenzo carbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a
dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an
oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl
group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an
azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an
indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —Si(Q.sub.31)
(Q.sub.32)(Q.sub.33), -N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31),
-S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32); and [0149] -Si(Q.sub.1)(Q.sub.2)
(Q.sub.3), —N(Q.sub.1)(Q.sub.2), and —B(Q.sub.1)(Q.sub.2), and [0150] Q.sub.1 to Q.sub.3 and
Q.sub.31 to Q.sub.33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —
Br, —I, a cyano group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a
C.sub.6-C.sub.20 aryl group, a C.sub.1-C.sub.20 heteroaryl group, a monovalent non-aromatic
condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a
biphenyl group, and a terphenyl group.
[0151] In one or more embodiments, R.sub.1 to R.sub.6 may each independently be selected from:
[0152] hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C.sub.1-C.sub.20 alkyl group,
and a C.sub.1-C.sub.20 alkoxy group; [0153] a C.sub.1-C.sub.20 alkyl group and a C.sub.1-
C.sub.20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br,
—I, a cyano group, a phenyl group, and a biphenyl group; [0154] a phenyl group, a biphenyl
group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a
phenanthrenyl group, an anthracenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl
```

group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a dibenzosilolyl

group; and [0155] a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a

```
fluorenyl group, a spiro-bifluorenyl group, a phenanthrenyl group, an anthracenyl group, a
pyridinyl group, a pyrimidinyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group,
a dibenzothiophenyl group, and a dibenzosilolyl group, each substituted with at least one selected
from deuterium, —F, —Cl, —Br, —I, cyano group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-
C.sub.20 alkoxy group, —CF.sub.3, —CCl.sub.3, —CBr.sub.3, —Cl.sub.3, a phenyl group, a
biphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a phenanthrenyl
group, an anthracenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a carbazolyl
group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, —Si(Q.sub.31)
(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), and —B(Q.sub.31)(Q.sub.32).
[0156] For example, R.sub.1 to R.sub.6 may each independently be selected from: [0157]
hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a methyl group, —CF.sub.3, —
CCl.sub.3, —CBr.sub.3, —Cl.sub.3, an ethyl group, a propyl group, an isopropyl group, an n-butyl
group, an isobutyl group, a sec-butyl group, and a tert-butyl group; [0158] a phenyl group, a
biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a
pyrimidinyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a
dibenzothiophenyl group, and a dibenzosilolyl group; and [0159] a phenyl group, a biphenyl group,
a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrimidinyl group, a
triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a
dibenzosilolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br,
—I, a cyano group, a methyl group, —CF.sub.3, —CCl.sub.3, —CBr.sub.3, —Cl.sub.3, an ethyl
group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a
tert-butyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl
group, a pyrimidinyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a
dibenzothiophenyl group, a dibenzosilolyl group, and —Si(Q.sub.31)(Q.sub.32)(Q.sub.33).
[0160] In an embodiment, b1 to b4 each indicate the numbers of R.sub.1 to R.sub.4, respectively,
and may each independently an integer from 1 to 10. When b1 is 2 or more, two or more R.sub.1(s)
may be identical to or different from each other, when b2 is 2 or more, two or more R.sub.2(s) may
be identical to or different from each other, when b3 is 2 or more, two or more R.sub.3(s) may be
identical to or different from each other, and b4 is 2 or more, two or more R.sub.4(s) may be
identical to or different from each other.
```

[0161] In Formula 1, n1 indicates the number of a group represented by \*—B(Ar.sub.1)(Ar.sub.2), and may be an integer from 1 to 5.

[0162] In an embodiment, n1 may be 1.

[0163] In an embodiment, the organometallic compound may be represented by Formula 1-1: ##STR00039##

[0164] In Formula 1-1, [0165] M, Y.sub.1 to Y.sub.4, CY.sub.1, CY.sub.2, A.sub.1 to A.sub.4, T.sub.1 to T.sub.3, a1 to a3, L.sub.1, c1, Ar.sub.1, Ar.sub.2, n1, R.sub.1, R.sub.2, b1, and b2 may each be the same as described in the present specification, [0166] X.sub.31 may be C(R.sub.31) or N, X.sub.32 may be C(R.sub.32) or N, X.sub.41 may be C(R.sub.41) or N, X.sub.42 may be C(R.sub.42) or N, and X.sub.43 may be C(R.sub.43) or N, [0167] R.sub.31 and R.sub.32 may each be the same as described in connection with R.sub.3, and [0168] R.sub.41 to R.sub.43 may each be the same as described in connection with R.sub.4.

[0169] In one or more embodiments, the organometallic compound may be represented by Formula 1-2 or 1-3:

### ##STR00040##

[0170] In Formulae 1-2 and 1-3, [0171] M, Y.sub.2 to Y.sub.4, T.sub.2, L.sub.1, c1, Ar.sub.1, Ar.sub.2, and n1 may each be the same as described in connection with those in Formula 1, [0172] X.sub.12 may be C(R.sub.12) or N, X.sub.13 may be C(R.sub.13) or N, X.sub.21 may be C(R.sub.21) or N, X.sub.22 may be C(R.sub.22) or N, X.sub.23 may be C(R.sub.23) or N, X.sub.31 may be C(R.sub.31) or N, X.sub.32 may be C(R.sub.32) or N, X.sub.41 may be

C(R.sub.41) or N, X.sub.42 may be C(R.sub.42) or N, and X.sub.43 may be C(R.sub.43) or N, [0173] CY.sub.5 may be selected from a C.sub.5-C.sub.50 carbocyclic group and a C.sub.1-C.sub.60 heterocyclic group, [0174] R.sub.12 to R.sub.14 and Z.sub.1 may each be the same as described in connection with R.sub.1, [0175] k1 may be an integer from 1 to 10, [0176] R.sub.21 to R.sub.23 may each be the same as described in connection with R.sub.2, [0177] R.sub.31 and R.sub.32 may each be the same as described in connection with R.sub.3, and [0178] R.sub.41 to R.sub.43 may each be the same as described in connection with R.sub.4.

[0179] In one or more embodiments, the organometallic compound may be represented by one of Formulae 1-4 to 1-6:

##STR00041## [0180] In Formulae 1-4 to 1-6, [0181] M, T.sub.2, L.sub.1, c1, Ar.sub.1, and Ar.sub.2 may each be the same as described in the present specification, [0182] one of Y.sub.3 and Y.sub.4 may be C, and the other may be N, [0183] R.sub.12 to R.sub.18, R.sub.15a to R.sub.18a, and R.sub.15b to R.sub.18b may each be the same as described in connection with R.sub.1, [0184] R.sub.21 to R.sub.23 may each be the same as described in connection with R.sub.2, [0185] R.sub.31 and R.sub.32 may each be the same as described in connection with R.sub.3, and [0186] R.sub.41 to R.sub.43 may each be the same as described in connection with R.sub.4. [0187] At least one substituent of the substituted C.sub.5-C.sub.60 carbocyclic group, the substituted C.sub.1-C.sub.60 heterocyclic group, the substituted C.sub.1-C.sub.60 alkyl group, the substituted C.sub.2-C.sub.60 alkenyl group, the substituted C.sub.2-C.sub.60 alkynyl group, the substituted C.sub.1-C.sub.60 alkoxy group, the substituted C.sub.3-C.sub.10 cycloalkyl group, the substituted C.sub.1-C.sub.10 heterocycloalkyl group, the substituted C.sub.3-C.sub.10 cycloalkenyl group, the substituted C.sub.1-C.sub.10 heterocycloalkenyl group, the substituted C.sub.6-C.sub.60 aryl group, the substituted C.sub.6-C.sub.60 aryloxy group, the substituted C.sub.6-C.sub.60 arylthio group, the substituted C.sub.1-C.sub.60 heteroaryl group, the substituted monovalent nonaromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from: [0188] deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group, [0189] a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.1 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.11)(Q.sub.12)(Q.sub.13), —N(Q.sub.11)(Q.sub.12), -B(Q.sub.11)(Q.sub.12), -C(=O)(Q.sub.11), -S(=O).sub.2(Q.sub.11), and -P(=O)(Q.sub.11)(Q.sub.12); [0190] a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a

C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and

a monovalent non-aromatic condensed heteropolycyclic group; [0191] a C.sub.3-C.sub.10

cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, — Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a

hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.1 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent nonaromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.21)(Q.sub.22)(Q.sub.23), —N(Q.sub.21)(Q.sub.22), —B(Q.sub.21)(Q.sub.22), -C(=O)(Q.sub.21), -S(=O).sub.2(Q.sub.21), and -P(=O)(Q.sub.21)(Q.sub.22), and [0192] -Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), —B(Q.sub.31)(Q.sub.32), —C(=O) (Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32), and [0193] Q.sub.1 to Q.sub.3, Q.sub.11 to Q.sub.13, Q.sub.21 to Q.sub.23, and Q.sub.31 to Q.sub.33 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.1 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group. [0194] In one embodiment, the organometallic compound may be selected from Compounds 1 to

10:

#### ##STR00042## ##STR00043##

[0195] The organometallic compound includes a ligand including a boron-containing group represented by \*—B(Ar.sub.1)(Ar.sub.2) in (attached to) the nitrogen atom of carbazole, so that the binding between the ligand and the metal (M) may be strengthened, and accordingly, the energy level of a triplet metal centered state (.sup.3MC state) may increase, thereby increasing the stability of the organometallic compound. Furthermore, the presence ratio of the triplet metal-to-ligand charge transfer state (.sup.3MLCT state) of the organometallic compound may increase. Such an increase may be explained as follows. Because the probability of transitioning the organometallic compound from the .sup.3MLCT state to the .sup.3MC state, which is a non-luminescence state, decreases at an excited state, the stability of the organometallic compound may be increased at the excited state. Thus, the possibility of transitioning the organometallic compound to the dissociation path may accordingly decrease, thereby increasing the stability of the organometallic compound. However, the mechanism is not limited thereto. Therefore, an organic light-emitting device including the organometallic compound may have improved effects in terms of luminescence efficiency and lifespan.

[0196] Furthermore, because the organometallic compound includes a boron-containing group represented by \*—B(Ar.sub.1)(Ar.sub.2) in (attached to) the nitrogen atom of the carbazole, the presence ratio at the .sup.3MLCT state may accordingly increase. Accordingly, an organic lightemitting device including the organometallic compound may exhibit improvements in terms of quantum yield and luminescence efficiency.

[0197] In the organometallic compound according to an embodiment, ring CY.sub.1 may be coordinated to the centered metal through a carbon atom of a carbene. Because the bond strength between carbon and the centered metal is stronger than that between nitrogen and the centered metal, the organometallic compound may be more optically and/or electrically stable, thereby exhibiting a light-emitting device having a long lifespan.

[0198] Furthermore, the organometallic compound according to an embodiment may have an asymmetric molecular structure. When the organometallic compound has an asymmetric molecular structure, a lowest unoccupied molecular orbital (LUMO) energy level of the organometallic compound may be relatively high, so that the luminescence wavelength shifts to a short wavelength to emit blue light with high purity.

[0199] Regarding Compounds 1, 3, 4, and 8 and Compounds C1 and C2 according to an embodiment, the presence ratio at the .sup.3MLCT state, energy at the .sup.3MC state, and bond dissociation energy (BDE) between Pt and the pyridine ring of the ligand were evaluated using the DFT method of the Gaussian program structurally optimized at the B3LYP/6-31G(d,p) level, and the results are shown in Table 1.

TABLE-US-00001 TABLE 1 BDE .sup.3MLCT λ.sub.max.sup.sim λ.sub.max.sup.exp .sup.3MC (eV) (%) (nm) (nm) (kcal/mol) (eV) Cl 11.34 465.39 452 7.87 3.03 C2 13.02 472.12 460 8.02 3.00 1 15.02 460.15 455 10.21 3.01 3 18.15 458.35 453 11.38 3.24 4 20.01 455.26 450 15.12 3.52 8 17.69 464.78 458 14.32 3.18 Compound Cl [00044] embedded imageCompound C2 [00045] embedded image

[0200] Synthesis methods of the organometallic compound represented by Formula 1 should become recognizable by one of ordinary skill in the art by referring to Examples provided below. [0201] The organometallic compound of Formula 1 may be used between a pair of electrodes of an organic light-emitting device. In an embodiment, the organometallic compound may be included in an emission layer. The organometallic compound may act as a dopant in the emission layer. In one or more embodiments, the organometallic compound of Formula 1 may be used as a material for a capping layer located outside a pair of electrodes of an organic light-emitting device. [0202] Accordingly, another embodiment of the present disclosure provides an organic light-emitting device including: a first electrode; a second electrode facing the first electrode; and an organic layer located between the first electrode and the second electrode and including an emission layer, wherein the organic light-emitting device may include at least one organometallic compound represented by Formula 1.

[0203] In an embodiment, the organic layer of the organic light-emitting device may include the at least one compound represented by Formula 1.

[0204] The expression "(an organic layer) includes at least one organometallic compound" as used herein may include a case in which "(an organic layer) includes one or more identical organometallic compounds represented by Formula 1" and a case in which "(an organic layer) includes two or more different organometallic compounds represented by Formula 1". [0205] For example, the organometallic compound of the organic layer may include only Compound 1. Here, Compound 1 may be included in the emission layer of the organic light-emitting device. In one or more embodiments, the organometallic compound of the organic layer may include Compound 1 and Compound 2. Here, Compound 1 and Compound 2 may exist in (e.g., may be included in) the same layer (for example, Compound 1 and Compound 2 may both exist in an emission layer), or different layers (for example, Compound 1 may exist in an emission layer and Compound 2 may exist in an electron transport region).

[0206] In an embodiment, [0207] the first electrode of the organic light-emitting device may be an anode, [0208] the second electrode of the organic light-emitting device may be a cathode, [0209] the organic layer may further include a hole transport region located between the first electrode and the emission layer and an electron transport region located between the emission layer and the second electrode, [0210] the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and [0211] the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.

[0212] In an embodiment, the emission layer of the organic light-emitting device may include the organic light-emitting device.

[0213] In an embodiment, the emission layer of the organic light-emitting device may include the organometallic compound, and the emission layer may further include a host, wherein, an amount of the organometallic compound may be in a range of about 0.01 parts by weight to about 49.99

- parts by weight based on 100 parts by weight of the emission layer.
- [0214] For example, the host may be a carbazole-containing compound.
- [0215] In an embodiment, the emission layer may include the organometallic compound, and blue light having a maximum luminescence wavelength in a range of about 430 nm to about 490 nm may be emitted from the emission layer.
- [0216] In an embodiment, the electron transport region may include a phosphine oxide-containing compound.
- [0217] The term "an organic layer" as used herein refers to a single layer and/or a plurality of layers located between the first electrode and the second electrode of an organic light-emitting device. A material included in the "organic layer" is not limited to an organic material.

Description of FIG. 1

- [0218] FIG. **1** is a schematic cross-sectional view of an organic light-emitting device **10** according to an embodiment. The organic light-emitting device **10** includes a first electrode **110**, an organic layer **150**, and a second electrode **190**.
- [0219] Hereinafter, the structure of the organic light-emitting device **10** according to an embodiment and a method of manufacturing the organic light-emitting device **10** will be described in connection with FIG. **1**.

First Electrode 110

- [0220] In FIG. **1**, a substrate may be additionally located under the first electrode **110** or above the second electrode **190**. The substrate may be a glass substrate or a plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and/or water resistance.
- [0221] The first electrode **110** may be formed by, for example, depositing or sputtering a material for forming the first electrode **110** on the substrate. When the first electrode **110** is an anode, the material for forming the first electrode **110** may be selected from materials with a high work function to facilitate hole injection.
- [0222] The first electrode **110** may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In an embodiment, when the first electrode **110** is a transmissive electrode, the material for forming the first electrode **110** may be selected from indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO.sub.2), zinc oxide (ZnO), and any combination thereof, but embodiments of the present disclosure are not limited thereto. In one or more embodiments, when the first electrode **110** is a semi-transmissive electrode or a reflective electrode, the material for forming the first electrode **110** may be selected from magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), and any combination thereof, but embodiments of the present disclosure are not limited thereto.
- [0223] The first electrode **110** may have a single-layered structure or a multi-layered structure including two or more layers. For example, the first electrode **110** may have a three-layered structure of ITO/Ag/ITO, but the structure of the first electrode **110** is not limited thereto. Organic Layer **150**
- [0224] The organic layer **150** is located on the first electrode **110**. The organic layer **150** may include an emission layer.
- [0225] The organic layer **150** may further include a hole transport region located between the first electrode **110** and the emission layer and an electron transport region located between the emission layer and the second electrode **190**.

[Hole Transport Region in Organic Layer **150**]

[0226] The hole transport region may have i) a single-layered structure including (e.g., consisting of) a single material, ii) a single-layered structure including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.

[0227] The hole transport region may include at least one layer selected from a hole injection layer,

a hole transport layer, an emission auxiliary layer, and an electron blocking layer. [0228] In an embodiment, the hole transport region may have a single-layered structure including a plurality of different materials, or a multi-layered structure having a hole injection layer/hole transport layer structure, a hole injection layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein for each structure, constituting layers are sequentially stacked on the first electrode **110** in this stated order, but the structure of the hole transport region is not limited thereto. [0229] The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB(NPD),  $\beta$ -NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4',4"-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, and a compound represented by Formula 202: ##STR00046## ##STR00047## ##STR00048##

[0230] In Formulae 201 and 202, [0231] L.sub.201 to L.sub.204 may each independently be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent nonaromatic condensed heteropolycyclic group, [0232] L.sub.205 may be selected from \*—O—\*', \*— S—\*', \*—N(Q.sub.201)-\*', a substituted or unsubstituted C.sub.1-C.sub.20 alkylene group, a substituted or unsubstituted C.sub.2-C.sub.20 alkenylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group, [0233] xa1 to xa4 may each independently be an integer from 0 to 3, [0234] xa5 may be an integer from 1 to 10, and

[0235] R.sub.201 to R.sub.204 and Q.sub.201 may each independently be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

[0236] For example, in Formula 202, R.sub.201 and R.sub.202 may optionally be linked to each other via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group, and R.sub.203 and R.sub.204 may optionally be linked to each other via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.

[0237] In an embodiment, in Formulae 201 and 202, [0238] L.sub.201 to L.sub.205 may each independently be selected from: [0239] a phenylene group, a pentalenylene group, an indenylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene

group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group; and [0240] a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, — I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C.sub.1-C.sub.10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33) and — N(Q.sub.31)(Q.sub.32), and

[0241] Q.sub.31 to Q.sub.33 may each independently be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.

[0242] In one or more embodiments, xa1 to xa4 may each independently be 0, 1, or 2.

[0243] In one or more embodiments, xa5 may be 1, 2, 3, or 4.

[0244] In one or more embodiments, R.sub.201 to R.sub.204 and Q.sub.201 may each independently be selected from: [0245] a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzofuranyl group, a dibenzothiophenyl group, a

benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and [0246] a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C.sub.1-C.sub.10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q.sub.31) (Q.sub.32)(Q.sub.33), and —N(Q.sub.31)(Q.sub.32), and [0247] Q.sub.31 to Q.sub.33 may each be the same as described in the present specification.

[0248] In one or more embodiments, at least one of R.sub.201 to R.sub.203 in Formula 201 may each independently be selected from: [0249] a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzofuranyl group; and [0250] a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cyclohexyl group, a cyclohexyl group, a cyclohexyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C.sub.1-C.sub.10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, [0251] but embodiments of the present disclosure are not limited thereto.
[0252] In one or more embodiments, in Formula 202, i) R.sub.201 and R.sub.202 may be linked to each other via a single bond, and/or ii) R.sub.203 and R.sub.204 may be linked to each other via

[0253] In one or more embodiments, at least one of R.sub.201 to R.sub.204 in Formula 202 may be selected from: [0254] a carbazolyl group; and [0255] a carbazolyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cyclohexyl group, a cyclohexenyl group, a henyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl

single bond.

group, and a dibenzothiophenyl group, [0256] but embodiments of the present disclosure are not limited thereto.

[0257] The compound represented by Formula 201 may be represented by Formula 201-1: ##STR00049##

[0258] In an embodiment, the compound represented by Formula 201 may be represented by Formula 201-2, but embodiments of the present disclosure are not limited thereto: ##STR00050##

[0259] In one or more embodiments, the compound represented by Formula 201 may be represented by Formula 201-2(1), but embodiments of the present disclosure are not limited thereto:

##STR00051##

[0260] In one or more embodiments, the compound represented by Formula 201 may be represented by Formula 201A:

##STR00052##

[0261] In one or more embodiments, the compound represented by Formula 201 may be represented by Formula 201A(1), but embodiments of the present disclosure are not limited thereto: ##STR00053##

[0262] In one or more embodiments, the compound represented by Formula 201 may be represented by Formula 201A-1, but embodiments of the present disclosure are not limited thereto: ##STR00054##

[0263] In an embodiment, the compound represented by Formula 202 may be represented by Formula 202-1:

##STR00055##

[0264] In one or more embodiments, the compound represented by Formula 202 may be represented by Formula 202-1(1):

##STR00056##

[0265] In one or more embodiments, the compound represented by Formula 202 may be represented by Formula 202A:

##STR00057##

[0266] In one or more embodiments, the compound represented by Formula 202 may be represented by Formula 202A-1:

##STR00058##

[0267] In Formulae 201-1, 201-2, 201-2(1), 201A, 201A(1), 201A-1, 202-1, 202-1(1), 202A, and 202A-1, [0268] L.sub.201 to L.sub.203, xa1 to xa3, xa5, and R.sub.202 to R.sub.204 may each be the same as described in the present specification, [0269] L.sub.205 may be selected from a phenylene group and a fluorenylene group, [0270] X.sub.211 may be selected from O, S, and N(R.sub.211), [0271] X.sub.212 may be selected from O, S, and N(R.sub.212), [0272] R.sub.211 and R.sub.212 may each be the same as described in connection with R.sub.203, and [0273] R.sub.213 to R.sub.217 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C.sub.1-C.sub.1 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an

indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, and a pyridinyl group.

[0274] The hole transport region may include at least one compound selected from Compounds HT1 to HT48, but embodiments of the present disclosure are not limited thereto: ##STR00059## ##STR00060## ##STR00061## ##STR00062## ##STR00063## ##STR00064## ##STR00065## ##STR00066## ##STR00067## ##STR00068## ##STR00069## [0275] A thickness of the hole transport region may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes at least one selected from a hole injection layer and a hole transport layer, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example, about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within the ranges above, satisfactory (suitable) hole transporting characteristics may be obtained without a substantial increase in driving voltage. [0276] The emission auxiliary layer may increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by the emission layer, and the electron blocking layer may block the flow of electrons from the electron transport region. The emission auxiliary layer and the electron blocking layer may each independently include any of the

# P-Dopant

materials as described above.

[0277] The hole transport region may further include, in addition to the materials described herein, a charge-generation material for the improvement of conductive properties. The charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region. [0278] The charge-generation material may be, for example, a p-dopant.

[0279] In an embodiment, the p-dopant may have a LUMO energy level of equal to or less than –3.5 eV.

[0280] The p-dopant may include at least one selected from a quinone derivative, a metal oxide, and a cyano group-containing compound, but embodiments of the present disclosure are not limited thereto.

[0281] In an embodiment, the p-dopant may include at least one selected from: [0282] a quinone derivative, such as tetracyanoquinodimethane (TCNQ) and/or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ); [0283] a metal oxide, such as tungsten oxide and/or molybdenum oxide; [0284] 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN); and [0285] a compound represented by Formula 221, [0286] but embodiments of the present disclosure are not limited thereto:

### ##STR00070##

[0287] In Formula 221, [0288] R.sub.221 to R.sub.223 may each independently be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and at least one selected from R.sub.221 to R.sub.223 may have at least one substituted with selected from a cyano group, F, Cl, Br, I, a C.sub.1-C.sub.20 alkyl group substituted with —C.sub.1, a C.sub.1-C.sub.20 alkyl group substituted with —I.

Emission Layer in Organic Layer 150

[0289] When the organic light-emitting device **10** is a full-color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, according to a sub-pixel. In one or more embodiments, the emission layer may have a stacked structure of two or more layers selected from a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In one or more embodiments, the emission layer may include two or more materials selected from a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.

[0290] The emission layer may include a host and a dopant. The dopant may include at least one selected from a phosphorescent dopant and a fluorescent dopant.

[0291] An amount of a dopant in the emission layer may be, based on about 100 parts by weight of the host, in a range of about 0.01 parts by weight to about 15 parts by weight, but embodiments of the present disclosure are not limited thereto.

[0292] A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is within this range, excellent (or improved) light-emission characteristics may be obtained without a substantial increase in driving voltage.

Host in Emission Layer

[0293] The host may include a compound represented by Formula 301:

[Ar.sub.301].sub.xb11-[(L.sub.301).sub.xb1-R.sub.301].sub.xb21, Formula 301 [0294] wherein, in Formula 301, [0295] Ar.sub.301 may be a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group, [0296] xb11 may be 1, 2, or 3, [0297] L.sub.301 may be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group, [0298] xb1 may be an integer from 0 to 5, [0299] R.sub.301 may be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C.sub.1-C.sub.60 alkyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkenyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkynyl group, a substituted or unsubstituted C.sub.1-C.sub.60 alkoxy group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.1 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.301)(Q.sub.302) (Q.sub.303), —N(Q.sub.301)(Q.sub.302), —B(Q.sub.301)(Q.sub.302), —C(=O)(Q.sub.301), — S(=O).sub.2(Q.sub.301), and -P(=O)(Q.sub.301)(Q.sub.302), [0300] xb21 may be an integer from 1 to 5, and [0301] Q.sub.301 to 0303 may each independently be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto.

[0302] In an embodiment, Ar.sub.301 in Formula 301 may be selected from: [0303] a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and a dibenzothiophene group; and [0304] a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and a dibenzothiophene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, — Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), —B(Q.sub.31)(Q.sub.32), —C(=O) (Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32), and [0305] Q.sub.31 to Q.sub.33 may each independently be selected from a C.sub.1-C.sub.1 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto.

[0306] When xb11 in Formula 301 is 2 or more, two or more Ar.sub.301(s) may be linked to each other via a single bond.

[0307] In one or more embodiments, the compound represented by Formula 301 may be represented by Formula 301-1 or 301-2:

##STR00071##

[0308] In Formulae 301-1 and 301-2 [0309] A.sub.301 to A.sub.304 may each independently be selected from a benzene ring, a naphthalene ring, a phenanthrene ring, a fluoranthene ring, a triphenylene ring, a pyrene ring, a chrysene ring, a pyridine ring, a pyrimidine ring, an indene ring, a fluorene ring, a spiro-bifluorene ring, a benzofluorene ring, a dibenzofluorene ring, an indole ring, a carbazole ring, a benzocarbazole ring, a dibenzocarbazole ring, a furan ring, a benzofuran ring, a dibenzofuran ring, a naphthofuran ring, a benzonaphthofuran ring, a dinaphthofuran ring, a thiophene ring, a benzothiophene ring, a dibenzothiophene ring, a naphthothiophene ring, a benzonaphthothiophene ring, and a dinaphthothiophene ring, [0310] X.sub.301 may be O, S, or N-[(L.sub.304).sub.xb4-R.sub.304], [0311] R.sub.311 to R.sub.314 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), —B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32), [0312] xb22and xb23 may each independently be 0, 1, or 2, [0313] L.sub.301, xb1, R.sub.301, and Q.sub.31 to Q.sub.33 may each be the same as described in the present specification, [0314] L.sub.302 to L.sub.304 may each independently be the same as described in connection with L.sub.301, [0315] xb2 to xb4 may each independently be the same as described in connection with xb1, and [0316] R.sub.302 to R.sub.304 may each independently be the same as described in connection with R.sub.301.

[0317] For example, L.sub.301 to L.sub.304 in Formulae 301, 301-1, and 301-2 may each independently be selected from: [0318] a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylene group, a pertaphenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a

benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and [0319] a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), — N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31), -S(=O).sub.2(Q.sub.31),and -P(=O)(Q.sub.31)(Q.sub.32), and [0320] Q.sub.31 to Q.sub.33 may each be the same as described in the present specification.

[0321] In an embodiment, R.sub.301 to R.sub.304 in Formulae 301, 301-1, and 301-2 may each

```
independently be selected from: [0322] a phenyl group, a biphenyl group, a terphenyl group, a
naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a
dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a
triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a
hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an
indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a
dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl
group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a
thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group,
an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl
group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a
naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a
phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a
benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl
group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl
group, and an azacarbazolyl group; and [0323] a phenyl group, a biphenyl group, a terphenyl
group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a
dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a
triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a
hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an
indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a
dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl
group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a
thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group,
an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl
group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a
naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a
phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a
benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl
group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl
group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F,
—Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino
group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a
phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-
bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an
anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl
group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a
thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a
benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group,
a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an
imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an
isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl
group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a
benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a
quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a
phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a
benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an
imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q.sub.31)
(Q.sub.32)(Q.sub.33), -N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31),
—S(=O).sub.2(Q.sub.31), and —P(=O)(Q.sub.31)(Q.sub.32), and [0324] Q.sub.31 to Q.sub.33
```

may each be the same as described in the present specification.

[0325] In one or more embodiments, the host may include an alkaline earth metal complex and/or a zinc (Zn) complex. For example, the host may be selected from a Be complex (for example, Compound H55), an Mg complex, and a Zn complex.

[0326] The host may include at least one selected from 9,10-di(2-naphthyl)anthracene (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), and at least one selected from Compounds H1 to H55, but embodiments of the present disclosure are not limited thereto:

##STR00072## ##STR00073## ##STR00074## ##STR00075## ##STR00076## ##STR00077## ##STR00078## ##STR00079## ##STR00080## ##STR00081## ##STR00082## ##STR00083## ##STR00085## ##STR00085## ##STR00086##

Phosphorescent Dopant Included in Emission Layer in Organic Layer **150** [0327] The phosphorescent dopant may include the organometallic compound represented by Formula 1.

[0328] The phosphorescent dopant may include an organometallic compound represented by Formula 401:

M(L.sub.401).sub.xc1(L.sub.402).sub.xc2 Formula 401 ##STR00087##

[0329] In Formulae 401 and 402, [0330] M may be selected from iridium (Ir), platinum (Pt), palladium (Pd), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), a terbium (Tb), rhodium (Rh), and thulium (Tm), [0331] L.sub.401 may be a ligand represented by Formula 402, and xc1 may be 1, 2, or 3, wherein, when xc1 is 2 or more, two or more L.sub.401(s) may be identical to or different from each other, [0332] L.sub.402 may be an organic ligand, and xc2 may be an integer from 0 to 4, wherein, when xc2 is 2 or more, two or more L.sub.402(s) may be identical to or different from each other, [0333] X.sub.401 to X.sub.404 may each independently be nitrogen or carbon, [0334] X.sub.401 and X.sub.403 may be linked via a single bond or a double bond, and X.sub.402 and X.sub.404 may be linked via a single bond or a double bond, [0335] A.sub.401 and A.sub.402 may each independently be a C.sub.5-C.sub.60 carbocyclic group or a C.sub.1-C.sub.60 heterocyclic group, [0336] X.sub.405 may be a single bond, \*—O—\*', \*—S—\*', \*—C(=O)—\*', \*—N(Q.sub.411)\*', \*—C(Q.sub.411)(Q.sub.412)-\*', \*—C(Q.sub.411)-C(Q.sub.412)-\*', \*—C(Q.sub.411)=\*' or \*=C=\*', wherein Q.sub.411 and Q.sub.412 may each independently be hydrogen, deuterium, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, [0337] X.sub.406 may be a single bond, O, or S, [0338] R.sub.401 and R.sub.402 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C.sub.1-C.sub.20 alkyl group, a substituted or unsubstituted C.sub.1-C.sub.20 alkoxy group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.1 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.401)(Q.sub.402) (Q.sub.403), -N(Q.sub.401)(Q.sub.402), -B(Q.sub.401)(Q.sub.402), -C(=O)(Q.sub.401), -S(=O).sub.2(Q.sub.401), and —P(=O)(Q.sub.401)(Q.sub.402), and Q.sub.401 to Q.sub.403 may each independently be selected from a C.sub.1-C.sub.1 alkyl group, a C.sub.1-C.sub.10 alkoxy

group, a C.sub.6-C.sub.20 aryl group, and a C.sub.1-C.sub.20 heteroaryl group, [0339] xc11 and xc12 may each independently be an integer from 0 to 10, and [0340] \* and \*' in Formula 402 each indicate a binding site to M in Formula 401. [0341] In an embodiment, A.sub.401 and A.sub.402 in Formula 402 may each independently be selected from a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, an indene group, a pyrrole group, a thiophene group, a furan group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a quinoxaline group, a quinazoline group, a carbazole group, a benzimidazole group, a benzofuran group, a benzothiophene group, an isobenzothiophene group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a dibenzofuran group, and a dibenzothiophene group. [0342] In one or more embodiments, in Formula 402, i) X.sub.401 may be nitrogen and X.sub.402 may be carbon, or ii) X.sub.401 and X.sub.402 may each nitrogen be at the same time. [0343] In one or more embodiments, R.sub.401 and R.sub.402 in Formula 402 may each independently be selected from: [0344] hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, and a C.sub.1-C.sub.20 alkoxy group; [0345] a C.sub.1-C.sub.20 alkyl group, and a C.sub.1-C.sub.20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a phenyl group, a naphthyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, a norbornyl group, and a norbornenyl group; [0346] a cyclopentyl group, a cyclohexyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; [0347] a cyclopentyl group, a cyclohexyl group, an adamantyl group, a norbornyl group, a norbornenyl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, a norbornyl group, a norbornenyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and [0348] —Si(Q.sub.401)(Q.sub.402)(Q.sub.403), —N(Q.sub.401)(Q.sub.402), —B(Q.sub.401) (Q.sub.402), -C(=O)(Q.sub.401), -S(=O).sub.2(Q.sub.401), and -P(=O)(Q.sub.401)(Q.sub.402), and [0349] Q.sub.401 to Q.sub.403 may each independently be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto. [0350] In one or more embodiments, when xc1 in Formula 401 is 2 or more, two A.sub.401(s) in two or more L.sub.401(s) may optionally be linked to each other via X.sub.407, which is a linking group, and/or two A.sub.402(s) may optionally be linked to each other via X.sub.408, which is a linking group (see e.g., Compounds PD1 to PD4 and PD7). X.sub.407 and X.sub.408 may each independently be a single bond, \*—O—\*', \*—S—\*', \*—C(=O)—\*', \*—N(Q.sub.413)-\*', \*— C(Q.sub.413)(Q.sub.414)-\*' or \*—C(Q.sub.413)-C(Q.sub.414)-\*' (where Q.sub.413 and Q.sub.414

may each independently be hydrogen, deuterium, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group), but embodiments of the present disclosure are not limited thereto.

[0351] L.sub.402 in Formula 401 may be a monovalent, divalent, or trivalent organic ligand. For example, L.sub.402 may be selected from halogen, diketone (for example, acetylacetonate), carboxylic acid (for example, picolinate), —C(=O), isonitrile, —CN, and phosphorus group (for example, phosphine and/or phosphite), but embodiments of the present disclosure are not limited thereto.

[0352] In one or more embodiments, the phosphorescent dopant may be selected from, for example, Compounds PD1 to PD25, but embodiments of the present disclosure are not limited thereto:

##STR00088## ##STR00089## ##STR00090## ##STR00091## ##STR00092## ##STR00093## ##STR00094##

Fluorescent Dopant in Emission Layer

[0353] The fluorescent dopant may include an arylamine compound or a styrylamine compound. [0354] The fluorescent dopant may include a compound represented by Formula 501: ##STR00095##

[0355] In Formula 501, [0356] Ar.sub.501 may be a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group, [0357] L.sub.501 to L.sub.503 may each independently be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group, [0358] xd1 to xd3 may each independently be an integer from 0 to 3, [0359] R.sub.501 and R.sub.502 may each independently be selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and [0360] xd4 may be an integer from 1 to 6.

[0361] In an embodiment, Ar.sub.501 in Formula 501 may be selected from: [0362] a naphthalene group, a heptalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, and an indenophenanthrene group; and [0363] a naphthalene group, a heptalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, and an indenophenanthrene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkyl group, an anaphthyl group.

```
[0364] In one or more embodiments, L.sub.501 to L.sub.503 in Formula 501 may each
independently be selected from: [0365] a phenylene group, a naphthylene group, a fluorenylene
group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a
phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene
group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a
hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a
carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a
benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a
benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a
pyridinylene group; and [0366] a phenylene group, a naphthylene group, a fluorenylene group, a
spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a
phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene
group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a
hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a
carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a
benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a
benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a
pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —
I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a
hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl
group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl
group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl
group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a
perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group,
a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a
benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl
group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.
[0367] In one or more embodiments, R.sub.501 and R.sub.502 in Formula 501 may each
independently be selected from: [0368] a phenyl group, a biphenyl group, a terphenyl group, a
naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a
dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a
triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a
hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an
indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a
dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl
group, a dibenzosilolyl group, and a pyridinyl group; and [0369] a phenyl group, a biphenyl group,
a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl
group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl
group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl
group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl
group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a
dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl
group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected
from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino
group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20
alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl
group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a
phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl
group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl
group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl
```

group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzosthiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, and —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), and [0370] Q.sub.31 to Q.sub.33 may be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.

[0371] In one or more embodiments, xd4 in Formula 501 may be 2, but embodiments of the present disclosure are not limited thereto.

[0372] For example, the fluorescent dopant may be selected from Compounds FD1 to FD22: ##STR00096## ##STR00097## ##STR00098## ##STR00100## ##STR00101## [0373] In one or more embodiments, the fluorescent dopant may be selected from the following compounds, but embodiments of the present disclosure are not limited thereto. ##STR00102##

Electron Transport Region in Organic Layer **150** 

[0374] The electron transport region may have i) a single-layered structure including (e.g., consisting of) a single material, ii) a single-layered structure including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.

[0375] The electron transport region may include at least one layer selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer, but embodiments of the present disclosure are not limited thereto.

[0376] For example, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein for each structure, constituting layers are sequentially stacked from an emission layer. However, embodiments of the structure of the electron transport region are not limited thereto.

[0377] The electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, and/or an electron transport layer in the electron transport region) may include a metal-free compound containing at least one rr electron-depleted nitrogen-containing ring. [0378] The " $\pi$  electron-depleted nitrogen-containing ring" indicates a C.sub.1-C.sub.60 heterocyclic group having at least one \*—N=\*' moiety as a ring-forming moiety. [0379] For example, the " $\pi$  electron-depleted nitrogen-containing ring" may be i) a 5-membered to 7-membered heteromonocyclic group having at least one \*—N=\*' moiety, ii) a heteropolycyclic group in which two or more 5-membered to 7-membered heteromonocyclic groups each having at

group in which two or more 5-membered to 7-membered heteromonocyclic groups each having at least one \*—N=\*' moiety are condensed with each other, or iii) a heteropolycyclic group in which at least one of 5-membered to 7-membered heteromonocyclic groups, each having at least one \*—N=\*' moiety, is condensed with at least one C.sub.5-C.sub.60 carbocyclic group.

[0380] Examples of the  $\pi$  electron-deficient nitrogen-containing ring are an imidazole ring, a pyrazole ring, a thiazole ring, an isothiazole ring, an oxazole ring, an isoxazole ring, a pyridine ring, a pyridine ring, a pyridine ring, a pyridine ring, an isoquinoline ring, a benzoquinoline ring, a phthalazine ring, a naphthyridine ring, a quinoxaline ring, a quinoxaline ring, a cinnoline ring, a phenanthridine ring, an acridine ring, a phenanthroline ring, a phenazine ring, a benzimidazole ring, an isobenzothiazole ring, a benzoxazole ring, an isobenzoxazole ring, a triazole ring, a tetrazole ring, an oxadiazole ring, a triazine ring, a thiadiazole ring, an imidazopyridine ring, an imidazopyrimidine ring, and an azacarbazole ring, but are not limited thereto.

[0381] For example, the electron transport region may include a compound represented by Formula 601:

```
[0382] wherein, in Formula 601, [0383] Ar.sub.601 may be a substituted or unsubstituted C.sub.5-
C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group,
[0384] xe11 may be 1, 2, or 3, [0385] L.sub.601 may be selected from a substituted or
unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-
C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10
cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene
group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted
C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic
condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed
heteropolycyclic group, [0386] xe1 may be an integer from 0 to 5, [0387] R.sub.601 may be
selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or
unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-
C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl
group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted
C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a
substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted
monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent
non-aromatic condensed heteropolycyclic group, —Si(Q.sub.601)(Q.sub.602)(Q.sub.603), —
C(=O)(Q.sub.601), -S(=O).sub.2(Q.sub.601), and -P(=O)(Q.sub.601)(Q.sub.602), [0388]
Q.sub.601 to Q.sub.603 may each independently be a C.sub.1-C.sub.10 alkyl group, a C.sub.1-
C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group,
and [0389] xe21 may be an integer from 1 to 5.
[0390] In an embodiment, at least one of Ar.sub.601(s) in the number of xe11 and R.sub.601(s) in
the number of xe21 may include the \pi electron-deficient nitrogen-containing ring.
[0391] In an embodiment, Ar.sub.601 in Formula 601 may be selected from: [0392] a benzene
group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a
dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a
fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group,
a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran
group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a
thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a
pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a
quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a
naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine
group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an
isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole
group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an
imidazopyrimidine group, and an azacarbazole group; and [0393] a benzene group, a naphthalene
group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group,
a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a
triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a
perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a
dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group,
an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a
pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an
isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a
quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine
group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole
group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an
oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an
```

imidazopyrimidine group, and an azacarbazole group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, — Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —S(=O).sub.2(Q.sub.31), and —P(=O)(Q.sub.31)(Q.sub.32), and [0394] Q.sub.31 to Q.sub.33 may each independently be selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.

[0395] When xe11 in Formula 601 is 2 or more, two or more Ar.sub.601(s) may be linked to each other via a single bond.

[0396] In one or more embodiments, Ar.sub.601 in Formula 601 may be an anthracene group. [0397] In one or more embodiments, the compound represented by Formula 601 may be represented by Formula 601-1:

### ##STR00103##

[0398] In Formula 601-1, [0399] X.sub.614 may be N or C(R.sub.614), X.sub.615 may be N or C(R.sub.615), and X.sub.616 may be N or C(R.sub.616), wherein at least one of X.sub.614 to X.sub.616 may be N, [0400] L.sub.611 to L.sub.613 may each independently be the same as described in connection with L.sub.601, [0401] xe611 to xe613 may each independently be the same as described in connection with xe1, [0402] R.sub.611 to R.sub.613 may each independently be the same as described in connection with R.sub.601, and [0403] R.sub.614 to R.sub.616 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.

[0404] In an embodiment, L.sub.601 and L.sub.611 to L.sub.613 in Formulae 601 and 601-1 may each independently be selected from: [0405] a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and [0406] a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a

pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, [0407] but embodiments of the present disclosure are not limited thereto.

[0408] In one or more embodiments, xe1 and xe611 to xe613 in Formulae 601 and 601-1 may each independently be 0, 1, or 2.

[0409] In one or more embodiments, R.sub.601 and R.sub.611 to R.sub.613 in Formulae 601 and 601-1 may each independently be selected from: [0410] a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; [0411] a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a

hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spirobifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; and [0412] — S(=O).sub.2(Q.sub.601) and —P(=O)(Q.sub.601)(Q.sub.602), and [0413] Q.sub.601 and Q.sub.602 may each be the same as described in the present specification. [0414] In an embodiment, the electron transport region may include at least one compound selected from Compounds ET1 to ET36, but embodiments of the present disclosure are not limited thereto: ##STR00104## ##STR00105## ##STR00106## ##STR00107## ##STR00108## ##STR00109## ##STR00110## ##STR00111## ##STR00112## ##STR00113## ##STR00114## ##STR00115## [0415] In one or more embodiments, the electron transport region may include at least one compound selected from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-

phenanthroline (Bphen), Alq.sub.3, BAlq, 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), and NTAZ:

### ##STR00116##

[0416] Thicknesses of the buffer layer, the hole blocking layer, and the electron control layer may each independently be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thicknesses of the buffer layer, the hole blocking layer, and/or the electron control layer are within any of these ranges, excellent (or improved) hole blocking characteristics and/or excellent (or improved) electron control characteristics may be obtained without a substantial increase in driving voltage.

[0417] A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within any of the ranges above, satisfactory (or suitable) electron transport characteristics may be obtained without a substantial increase in driving voltage.

[0418] The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.

[0419] The metal-containing material may include at least one selected from alkali metal complex and alkaline earth-metal complex. The alkali metal complex may include a metal ion selected from a L.sub.1 ion, a Na ion, a K ion, a Rb ion, and a Cs ion, and the alkaline earth-metal complex may include a metal ion selected from a Be ion, a Mg ion, a Ca ion, a Sr ion, and a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be selected from a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenyloxazole, a hydroxy phenylthiazole, a hydroxy phenylpyridine, a hydroxy phenylbenzimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, and a cyclopentadiene, but embodiments of the present disclosure are not limited thereto.

[0420] For example, the metal-containing material may include a L.sub.1 complex. The L.sub.1 complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) and/or Compound ET-D2:

## ##STR00117##

[0421] The electron transport region may include an electron injection layer that facilitates the injection of electrons from the second electrode **190**. The electron injection layer may directly contact the second electrode **190**.

[0422] The electron injection layer may have i) a single-layered structure including (e.g., consisting of ) a single material, ii) a single-layered structure including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials. [0423] The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal compound, an alkali metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof.

[0424] The alkali metal may be selected from Li, Na, K, Rb, and Cs. In an embodiment, the alkali metal may be Li, Na, or Cs. In one or more embodiments, the alkali metal may be Li or Cs, but embodiments of the present disclosure are not limited thereto.

[0425] The alkaline earth metal may be selected from Mg, Ca, Sr, and Ba.

[0426] The rare earth metal may be selected from Sc, Y, Ce, Tb, Yb, and Gd.

[0427] The alkali metal compound, the alkaline earth-metal compound, and the rare earth metal compound may each independently be selected from oxides and halides (for example, fluorides, chlorides, bromides, and/or iodides) of the alkali metal, the alkaline earth-metal, and the rare earth metal, respectively.

[0428] The alkali metal compound may be selected from alkali metal oxides (such as Li.sub.2O, Cs.sub.2O, and/or K.sub.2O), and alkali metal halides (such as LiF, NaF, CsF, KF, LiI, NaI, CsI, and/or KI). In an embodiment, the alkali metal compound may be selected from LiF, Li.sub.2O, NaF, LiI, NaI, CsI, and KI, but embodiments of the present disclosure are not limited thereto. [0429] The alkaline earth-metal compound may be selected from alkaline earth-metal oxides, such as BaO, SrO, CaO, BaxSr.sub.1-xO (0<x<1), and/or Ba.sub.xCa.sub.1-xO (0<x<1). In an embodiment, the alkaline earth-metal compound may be selected from BaO, SrO, and CaO, but embodiments of the present disclosure are not limited thereto.

[0430] The rare earth metal compound may be selected from YbF.sub.3, ScF.sub.3, Sc.sub.2O.sub.3, Y.sub.2O.sub.3, Ce.sub.2O.sub.3, GdF.sub.3 and TbF.sub.3. In an embodiment, the rare earth metal compound may be selected from YbF.sub.3, ScF.sub.3, TbF.sub.3, YbI.sub.3, ScI.sub.3, and TbI.sub.3, but embodiments of the present disclosure are not limited thereto. [0431] The alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may respectively include an ion of alkali metal, alkaline earth-metal, and rare earth metal

as described above, and a ligand coordinated with a metal ion of the alkali metal complex, the alkaline earth-metal complex, or the rare earth metal complex may be selected from hydroxy quinoline, hydroxy isoquinoline, hydroxy benzoquinoline, hydroxy acridine, hydroxy phenanthridine, hydroxy phenyloxazole, hydroxy phenylthiazole, hydroxy diphenyloxadiazole, hydroxy phenylbenzimidazole, hydroxy phenylbenzothiazole, bipyridine, phenanthroline, and cyclopentadiene, but embodiments of the present disclosure are not limited thereto.

[0432] The electron injection layer may include (e.g., may consist of) an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combination thereof, as described above. In one or more embodiments, the electron injection layer may further include an organic material. When the electron injection layer further includes an organic material, the alkaline earth metal, the rare earth metal, the rare earth metal, the alkali metal compound, the alkaline earth-metal compound, the rare earth metal compound, the alkali metal complex, the alkaline earth-metal complex, the rare earth metal complex, or any combination thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.

[0433] A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within any of the ranges described above, the electron injection layer may have satisfactory (or suitable) electron injection characteristics without a substantial increase in driving voltage.

## Second Electrode **190**

[0434] The second electrode **190** may be located on the organic layer **150** having the structure according to embodiments of the present disclosure. The second electrode **190** may be a cathode, which is an electron injection electrode, and in this regard, a material for forming the second electrode **190** may be selected from a metal, an alloy, an electrically conductive compound, and combinations thereof, which have a relatively low work function.

[0435] The second electrode **190** may include at least one selected from lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ytterbium (Yb), silver-ytterbium (Ag—Yb), ITO, and IZO, but embodiments of the present disclosure are not limited thereto. The second electrode **190** may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode. [0436] The second electrode **190** may have a single-layered structure or a multi-layered structure including two or more layers.

# Description of FIGS. 2 to 4

[0437] An organic light-emitting device **20** of FIG. **2** includes a first capping layer **210**, the first electrode **110**, the organic layer **150**, and the second electrode **190** which are sequentially stacked in this stated order; an organic light-emitting device **30** of FIG. **3** includes the first electrode **110**, the organic layer **150**, the second electrode **190**, and a second capping layer **220** which are sequentially stacked in this stated order; and an organic light-emitting device **40** of FIG. **4** includes a first capping layer **210**, a first electrode **110**, an organic layer **150**, a second electrode **190**, and a second capping layer **220**.

[0438] Regarding FIGS. **2** to **4**, the first electrode **110**, the organic layer **150**, and the second electrode **190** may be understood by referring to the descriptions of these elements presented in connection with FIG. **1**.

[0439] In the organic layer **150** of each of the organic light-emitting devices **20** and **40**, light generated in an emission layer may pass through the first electrode **110**, which is a semitransmissive electrode or a transmissive electrode, and the first capping layer **210** toward the outside, and in the organic layer **150** of each of the organic light-emitting devices **30** and **40**, light generated in an emission layer may pass through the second electrode **190**, which is a semi-

transmissive electrode or a transmissive electrode, and the second capping layer **220** toward the outside.

[0440] The first capping layer **210** and the second capping layer **220** may increase external luminescence efficiency according to the principle of constructive interference.

[0441] The first capping layer **210** and the second capping layer **220** may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.

[0442] At least one selected from the first capping layer **210** and the second capping layer **220** may each independently include at least one material selected from carbocyclic compounds, heterocyclic compounds, amine-based compounds, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, and alkaline earth metal complexes. The carbocyclic compound, the heterocyclic compound, and the amine-based compound may be optionally substituted with a substituent containing at least one element selected from O, N, S, Se, Si, F, Cl, Br, and I. In an embodiment, at least one of the first capping layer **210** and the second capping layer **220** may each independently include an amine-based compound. [0443] In an embodiment, at least one selected from the first capping layer **210** and the second capping layer **220** may each independently include the compound represented by Formula 201 or the compound represented by Formula 202.

[0444] In one or more embodiments, at least one of the first capping layer **210** and the second capping layer **220** may each independently include a compound selected from Compounds HT28 to HT33 and Compounds CP1 to CP5, but embodiments of the present disclosure are not limited thereto:

## ##STR00118##

[0445] Hereinbefore, the organic light-emitting device according to embodiments of the present disclosure has been described in connection with FIGS. **1** to **4**. However, embodiments of the present disclosure are not limited thereto.

[0446] Layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region may each independently be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.
[0447] When layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10.sup.–8 torr to about 10.sup.–3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec, by taking into account a material to be included in a layer to be formed and the structure of a layer to be formed.

[0448] When layers constituting the hole transport region, the emission layer, and layers constituting the electron transport region are formed by spin coating, the spin coating may be performed at a coating speed of about 2,000 rpm to about 5,000 rpm and at a heat treatment temperature of about 80° C. to 200° C., by taking into account a material to be included in a layer to be formed and the structure of a layer to be formed.

#### General Definition of Substituents

[0449] The term "C.sub.1-C.sub.60 alkyl group" as used herein refers to a linear or branched aliphatic saturated hydrocarbon monovalent group having 1 to 60 carbon atoms, and non-limiting examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a secbutyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. The term "C.sub.1-C.sub.60 alkylene group" as used herein refers to a divalent group having the same structure as the C.sub.1-C.sub.60 alkyl group.

[0450] The term "C.sub.2-C.sub.60 alkenyl group" as used herein refers to a hydrocarbon group

having at least one carbon-carbon double bond in the middle and/or at either terminus of the C.sub.2-C.sub.60 alkyl group, and non-limiting examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term "C.sub.2-C.sub.60 alkenylene group" as used herein refers to a divalent group having the same structure as the C.sub.2-C.sub.60 alkenyl group. [0451] The term "C.sub.2-C.sub.60 alkynyl group" as used herein refers to a hydrocarbon group having at least one carbon-carbon triple bond in the middle and/or at either terminus of the C.sub.2-C.sub.60 alkyl group, and non-limiting examples thereof include an ethynyl group, and a propynyl group. The term "C.sub.2-C.sub.60 alkynylene group" as used herein refers to a divalent group having the same structure as the C.sub.2-C.sub.60 alkynyl group.

[0452] The term "C.sub.1-C.sub.60 alkoxy group" as used herein refers to a monovalent group represented by —OA.sub.101 (wherein A.sub.101 is the C.sub.1-C.sub.60 alkyl group), and non-limiting examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group. [0453] The term "C.sub.3-C.sub.10 cycloalkyl group" as used herein refers to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and non-limiting examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term "C.sub.3-C.sub.10 cycloalkylene group" as used herein refers to a divalent group having the same structure as the C.sub.3-C.sub.10 cycloalkyl group. [0454] The term "C.sub.1-C.sub.10 heterocycloalkyl group" as used herein refers to a monovalent

monocyclic group having at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 10 carbon atoms as the remaining ring-forming atoms, and non-limiting examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term "C.sub.1-C.sub.1 heterocycloalkylene group" as used herein refers to a divalent group having the same structure as the C.sub.1-C.sub.10 heterocycloalkyl group.

[0455] The term C.sub.3-C.sub.10 cycloalkenyl group used herein refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one carbon-carbon double bond in the ring thereof and no aromaticity, and non-limiting examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term "C.sub.3-C.sub.10 cycloalkenylene group" as used herein refers to a divalent group having the same structure as the C.sub.3-C.sub.10 cycloalkenyl group.

[0456] The term "C.sub.1-C.sub.10 heterocycloalkenyl group" as used herein refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, 1 to 10 carbon atoms as the remaining ring-forming atoms, and at least one carbon-carbon double bond in its ring. Non-limiting examples of the C.sub.1-C.sub.10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term "C.sub.1-C.sub.10 heterocycloalkenylene group" as used herein refers to a divalent group having the same structure as the C.sub.1-C.sub.10 heterocycloalkenyl group.

[0457] The term "C.sub.6-C.sub.60 aryl group" as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Non-limiting examples of the C.sub.6-C.sub.60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. The term "C.sub.6-C.sub.60 arylene group" as used herein refers to a divalent group having the same structure as the C.sub.6-C.sub.60 aryl group. When the C.sub.6-C.sub.60 aryl group and the C.sub.6-C.sub.60 arylene group each independently include two or more rings, the respective two or more rings may be fused to each other.

[0458] The term "C.sub.1-C.sub.60 heteroaryl group" as used herein refers to a monovalent group having a heterocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 60 carbon atoms as the remaining ring-forming atoms. The term "C.sub.1-C.sub.60 heteroarylene group" as used herein refers to a divalent group

having the same structure as the C.sub.1-C.sub.60 heteroaryl group. Non-limiting examples of the C.sub.1-C.sub.60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a carbazolyl group, and an isoquinolinyl group. When the C.sub.1-C.sub.60 heteroarylene group each independently include two or more rings, the respective two or more rings may be condensed with each other.

[0459] The term "C.sub.6-C.sub.60 aryloxy group" as used herein refers to a monovalent group represented by —OA.sub.102 (wherein A.sub.102 is the C.sub.6-C.sub.60 aryl group), and the term "C.sub.6-C.sub.60 arylthio group" as used herein refers to a monovalent group represented by — SA.sub.103 (wherein A.sub.103 is the C.sub.6-C.sub.60 aryl group).

[0460] The term "monovalent non-aromatic condensed polycyclic group" as used herein refers to a monovalent group having two or more rings condensed with each other, only carbon atoms as ringforming atoms (for example, having 8 to 60 carbon atoms), and no aromaticity in its entire molecular structure (e.g., the molecular structure as a whole does not have aromaticity). A nonlimiting example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. The term "divalent non-aromatic condensed polycyclic group" as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group. [0461] The term "monovalent non-aromatic condensed heteropolycyclic group" as used herein refers to a monovalent group having two or more rings condensed to each other, at least one heteroatom selected from N, O, Si, P, and S, other than carbon atoms (for example, having 1 to 60 carbon atoms), as a ring-forming atom, and no aromaticity in its entire molecular structure (e.g., the molecular structure as a whole does not have aromaticity). A non-limiting example of the monovalent non-aromatic condensed heteropolycyclic group is a 1,2,3,4-tetrahydroquinolinyl group. The term "divalent non-aromatic condensed heteropolycyclic group" as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.

[0462] The term "C.sub.5-C.sub.60 carbocyclic group" as used herein refers to a monocyclic or polycyclic group that includes only carbon atoms as ring-forming atoms and consists of 5 to 60 ring-forming carbon atoms. The C.sub.5-C.sub.60 carbocyclic group may be an aromatic carbocyclic group or a non-aromatic carbocyclic group. The C.sub.5-C.sub.60 carbocyclic group may be a ring (such as benzene), a monovalent group (such as a phenyl group), or a divalent group (such as a phenylene group). In one or more embodiments, depending on the number of substituents connected to the C.sub.5-C.sub.60 carbocyclic group, the C.sub.5-C.sub.60 carbocyclic group may be a trivalent group or a quadrivalent group.

[0463] The term "C.sub.1-C.sub.60 heterocyclic group" as used herein refers to a group having the same structure as the C.sub.5-C.sub.60 carbocyclic group, except that as a ring-forming atom, at least one heteroatom selected from N, O, Si, P, and S is used in addition to carbon atoms (the number of ring-forming carbon atoms may be in a range of 1 to 60).

[0464] In the present specification, at least one substituent of the substituted C.sub.5-C.sub.60 carbocyclic group, the substituted C.sub.1-C.sub.60 heterocyclic group, the substituted C.sub.3-C.sub.10 cycloalkylene group, the substituted C.sub.1-C.sub.10 heterocycloalkylene group, the substituted C.sub.1-C.sub.10 heterocycloalkenylene group, the substituted C.sub.6-C.sub.60 arylene group, the substituted C.sub.1-C.sub.60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C.sub.1-C.sub.60 alkyl group, the substituted C.sub.2-C.sub.60 alkenyl group, the substituted C.sub.1-C.sub.60 alkoxy group, the substituted C.sub.3-C.sub.10 cycloalkyl group, the substituted C.sub.1-C.sub.10 heterocycloalkyl group, the substituted C.sub.1-C.sub.10 heterocycloalkyl group, the substituted C.sub.6-C.sub.60 aryl group, the substituted C.sub.6-C.sub

C.sub.60 aryloxy group, the substituted C.sub.6-C.sub.60 arylthio group, the substituted C.sub.1-C.sub.60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from: [0465] deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group, [0466] a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, — Si(Q.sub.11)(Q.sub.12)(Q.sub.13), —N(Q.sub.11)(Q.sub.12), —B(Q.sub.11)(Q.sub.12), —C(=O) (Q.sub.11), —S(=O).sub.2(Q.sub.11), and —P(=O)(Q.sub.11)(Q.sub.12); [0467] a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group; [0468] a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.1 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, — Si(Q.sub.21)(Q.sub.22)(Q.sub.23), —N(Q.sub.21)(Q.sub.22), —B(Q.sub.21)(Q.sub.22), —C(=O) (Q.sub.21), —S(=O).sub.2(Q.sub.21), and —P(=O)(Q.sub.21)(Q.sub.22), and [0469] — Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), —B(Q.sub.31)(Q.sub.32), —C(=O) (Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32), and [0470] Q.sub.11 to Q.sub.13, Q.sub.21 to Q.sub.23, and Q.sub.31 to Q.sub.33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.

[0471] The term "Ph" as used herein refers to a phenyl group, the term "Me" as used herein refers to a methyl group, the term "Et" as used herein refers to an ethyl group, the term "ter-Bu" or "Bu.sup.t" as used herein refers to a tert-butyl group, and the term "OMe" as used herein refers to a methoxy group.

[0472] The term "biphenyl group" as used herein may refer to "a phenyl group substituted with a phenyl group." For example, the "biphenyl group" may be a substituted phenyl group having a C.sub.6-C.sub.60 aryl group as a substituent.

[0473] The term "terphenyl group" as used herein may refer to "a phenyl group substituted with a biphenyl group". For example, the "terphenyl group" may be a substituted phenyl group having, as a substituent, a C.sub.6-C.sub.60 aryl group substituted with a C.sub.6-C.sub.60 aryl group. [0474] \*, \*', and \*'', as used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula.

[0475] Hereinafter, a compound according to embodiments and an organic light-emitting device according to embodiments will be described in more detail with reference to Synthesis Examples and Examples. The wording "B was used instead of A" used in describing Synthesis Examples refers to an identical molar equivalent of B being used in place of A.

## **EXAMPLES**

Synthesis Example 1: Synthesis of Compound 1

##STR00119## ##STR00120##

1) Synthesis of Intermediate [1-A]

[0476] 2-chloro-3-nitropyridine (1 eq), (3-methoxyphenyl)boronic acid (1.5 eq),

Pd(PPh.sub.3).sub.4 (10 mol %), and K.sub.2CO.sub.3 (2 eq) were suspended in a mixed solution of DMF:H.sub.2O (at a ratio of 10:1), and stirred at a temperature of 120° for 12 hours. An extraction process was performed on the obtained reaction mixture by using chloromethane and distilled water. An organic layer extracted therefrom was washed three times with distilled water, dried with magnesium sulfate, filtered, and concentrated under reduced pressure. The concentrate was purified by column chromatography, so as to obtain Intermediate [1-A](yield: 70%).

2) Synthesis of Intermediate [1-B]

[0477] Intermediate [1-A] and PPh.sub.3 (2 eq) were suspended in o-dichlorobenzene, and stirred for 12 hours under reflux conditions. An extraction process was performed on the obtained reaction mixture by using chloromethane and distilled water. An organic layer extracted therefrom was washed three times with distilled water, dried with magnesium sulfate, filtered, and concentrated under reduced pressure. The concentrate was purified by column chromatography, so as to obtain Intermediate [1-B](yield: 50%).

3) Synthesis of Intermediate [1-C]

[0478] Intermediate [1-B] was dissolved in THF, and n-BuLi (1.2 eq) was added dropwise thereto at a temperature of  $-78^{\circ}$  C., and the resulting mixed solution was stirred for 2 hours.

Bromodimesitylborane dissolved in THE was added to the resultant mixed solution, and stirred for 30 minutes. Then, the reaction temperature was slowly increased. An extraction process was performed on the obtained reaction mixture by using NH.sub.4Cl aqueous solution and dichloromethane. An organic layer extracted therefrom was washed three times with distilled water, dried with magnesium sulfate, filtered, and concentrated under reduced pressure. The concentrate was purified by column chromatography, so as to obtain Intermediate [1-C](yield: 65%).

4) Synthesis of Intermediate [1-D]

[0479] Intermediate [1-C] was suspended in HBr (0.5 M) and acetic acid (0.5 M), and stirred for 12 hours after raising the reaction temperature to 120° C. The obtained reaction mixture was neutralized with 0.3 M NaOH aqueous solution, and a solid produced therefrom was filtered. An extraction process was performed on the filtered solid by using dichloromethane and distilled water. An organic layer extracted therefrom was washed three times with distilled water, dried with magnesium sulfate, filtered, and concentrated under reduced pressure. The concentrate was purified by column chromatography, so as to obtain Intermediate [1-D](yield: 75%).

5) Synthesis of Intermediate [1-E]

[0480] Intermediate [1-D], 1-(3-bromophenyl)-1H-imidazole (1.0 eq), copper iodide (0.1 eq), potassium phosphate (2.0 eq), and L-proline (0.1 eq) were suspended in 100 mL of a

dimethylformamide solvent 100 mL, and stirred for 12 hours after raising the reaction temperature to 120° C. An extraction process was performed on the obtained reaction mixture by using chloromethane and distilled water. An organic layer extracted therefrom was washed three times with distilled water, dried with magnesium sulfate, filtered, and concentrated under reduced pressure. The concentrate was purified by column chromatography, so as to obtain Intermediate [1-E](yield: 70%).

6) Synthesis of Intermediate [1-F]

[0481] Intermediate [1-E]was dissolved in acetone, and iodine methane (2 eq) was added thereto. Then, the obtained mixed solution was stirred at room temperature for 24 hours. After completion of the reaction, the solvent was removed under reduced pressure, and the concentrate was purified by column chromatography, so as to obtain Intermediate [1-F](yield: 80%).

7) Synthesis of Compound 1

[0482] Intermediate [1-F] (1.0 eq), sodium acetate (3.0 eq), and dichloro(1,5-cyclooctadiene)platinum(II) (1.1 eq) were suspended in 1,4-dioxane solvent. The reaction temperature was raised to 120° C., and then, the obtained reaction mixture was stirred for 12 hours. After completion of the reaction, the solvent was removed under reduced pressure. The reaction product was column-purified, so as to obtain Compound 1 (yield: 40%).

Synthesis Example 2: Synthesis of Compound 2

[0483] Compound 2 was obtained in substantially the same manner as in Synthesis Example 1, except that (4-bromophenyl)dimesitylborane was used instead of bromodimesitylborane. Synthesis Example 3: Synthesis of Compound 3

[0484] Compound 3 was obtained in substantially the same manner as in Synthesis Example 1, except that (4-bromo-2,3,5,6-tetramethylphenyl)dimesitylborane was used instead of bromodimesitylborane.

Synthesis Example 4: Synthesis of Compound 4

[0485] Compound 4 was obtained in substantially the same manner as in Synthesis Example 1, except that 1-(3-bromophenyl)-1H-benzo[d]imidazole was used instead of 1-(3-bromophenyl)-1H-imidazole.

Synthesis Example 5: Synthesis of Compound 5

[0486] Compound 5 was obtained in substantially the same manner as in Synthesis Example 1, except that 1-(3-bromophenyl)-4,5,6,7-tetrahydro-1H-benzo[d]imidazole was used instead of 1-(3-bromophenyl)-1H-imidazole.

Synthesis Example 6: Synthesis of Compound 6

[0487] Compound 6 was obtained in substantially the same manner as in Synthesis Example 1, except that 1-(3-bromo-5-(tert-butyl)phenyl)-1H-benzo[d]imidazole was used instead of 1-(3-bromophenyl)-1H-imidazole.

Synthesis Example 7: Synthesis of Compound 7

[0488] Compound 7 was obtained in substantially the same manner as in Synthesis Example 1, except that 1-chloro-2-nitrobenzene and (6-methoxypyridin-2-yl)boronic acid were used instead of 2-chloro-3-nitropyridine and (3-methoxyphenyl)boronic acid, respectively, and 1-(3-bromophenyl)-1H-benzo[d]imidazole was used instead of 1-(3-bromophenyl)-1H-imidazole.

Synthesis Example 8: Synthesis of Compound 8

[0489] d Compound 8 was obtained in substantially the same manner as in Synthesis Example 1, except that 1-chloro-2-nitrobenzene and (6-methoxypyridin-2-yl)boronic acid were used instead of 2-chloro-3-nitropyridine and (3-methoxyphenyl)boronic acid, respectively, (4-bromo-2,3,5,6-tetramethyl phenyl)dimesitylborane was used instead of bromodimesitylborane, and 1-(3-bromophenyl)-1H-benzo[d]imidazole was used instead of 1-(3-bromophenyl)-1H-imidazole. [0490] .sup.1H NMR and MS/FAB of the compounds synthesized according to Synthesis Examples 1 to 8 are shown in Table 2.

[0491] Synthesis methods of compounds other than the compounds shown in Table 2 should be

easily recognized by those of ordinary skill in the art by referring to the synthesis mechanisms and source materials described above.

TABLE-US-00002 TABLE 2 Compound MS/FAB No. .sup.1H NMR (CDCl.sub.3, 400 MHz) (ppm) found calc. 1 8.65 (d, 1H), 8.59 (d, 1H), 7.97 (d, 1H), 7.90 (d, 1H), 781.26 781.63 7.36 (t, 1H), 7.06 (t, 1H), 6.97 (s, 4H), 6.77 (d, 1H), 6.45-6.55 (m, 3H), 3.67 (s, 3H), 2.33 (s, 12H), 2.18 (s, 6H) 2 8.65 (d, 1H), 8.59 (d, 1H), 7.97 (d, 1H), 7.89 (d, 2H), 857.29 857.73 7.73 (d, 2H), 7.29-7.40 (m, 2H), 7.06 (t, 1H), 6.97 (s, 4H), 6.77 (d, 1H), 6.45-6.55 (m, 3H), 3.67 (s, 3H), 2.33 (s, 12H), 2.18 (s, 6H) 3 8.65 (d, 1H), 8.59 (d, 1H), 7.97 (d, 1H), 7.29-7.40 (m, 913.35 913.84 2H), 7.06 (t, 1H), 6.97 (s, 4H), 6.77 (d, 1H), 6.45-6.55 (m, 3H), 3.67 (s, 3H), 2.37 (d, 6H), 2.33 (s, 18H), 2.18 (s, 6H) 4 8.59 (d, 1H), 7.97 (d, 1H), 7.90 (d, 1H), 7.35-7.45 (m, 831.27 831.69 3H), 7.05-7.20 (m, 2H), 6.97 (s, 4H), 6.90 (d, 1H), 6.70-6.80 (m, 3H), 3.36 (s, 3H), 2.33 (s, 12H), 2.18 (s, 6H) 5 8.59 (d, 1H), 7.97 (d, 1H), 7.90 (d, 1H), 7.36 (t, 1H), 835.30 835.72 7.06 (t, 1H), 6.97 (s, 4H), 6.77 (d, 1H), 6.52 (d, 1H), 6.46 (d, 1H), 3.67 (s, 3H), 2.33 (s, 12H), 2.18 (s, 6H), 1.72-1.98 (m, 8H) 6 8.59 (d, 1H), 7.97 (d, 1H), 7.90 (d, 1H), 7.35-7.45 (m, 887.33 887.80 3H), 7.12 (s, 1H), 7.08 (d, 1H), 6.97 (s, 4H), 6.70-6.80 (m, 3H), 3.67 (s, 3H), 2.33 (s, 12H), 2.18 (s, 6H), 1.32 (s, 9H) 7 8.03 (d, 1H), 7.94 (d, 1H), 7.35-7.45 (m, 4H), 7.05-831.27 831.69 7.10 (m, 2H), 6.97 (s, 4H), 6.70-6.75 (m, 2H), 6.54 (d, 1H), 6.47 (d, 1H), 3.36 (s, 3H), 2.33 (s, 12H), 2.18 (s, 6H) 8 8.03 (d, 1H), 7.94 (d, 1H), 7.35-7.45 (m, 4H), ), 7.05-963.36 963.90 7.10 (m, 2H), 6.97 (s, 4H), 6.70-6.75 (m, 2H), 6.54 (d, 1H), 6.47 (d, 1H), 3.36 (s, 3H), 2.37 (s, 6H), 2.33 (s, 18H), 2.18 (s, 6H)

#### **EXAMPLES**

## Example 1

[0492] As an anode, a glass substrate with 15 ΩCM.sup.2 (1,200 Å) ITO formed thereon, which was manufactured by Corning Inc., was cut to a size of 50 mm×50 mm×0.7 mm, and the glass substrate was sonicated by using isopropyl alcohol and pure water for 5 minutes each, and then ultraviolet (UV) light was irradiated for 30 minutes thereto and ozone was exposed thereto for cleaning. Then, the resultant glass substrate was loaded onto a vacuum deposition apparatus. [0493] 2-TNATA was vacuum-deposited on the ITO anode formed on the glass substrate to form a hole injection layer having a thickness of 600 Å, and then, 4,4′-bis[N-(1-naphthyl)-N-phenyl aminobiphenyl (hereinafter, NPB) was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 300 Å.

[0494] 3,3-di(9H-carbazol-9-yl)biphenyl (mCBP) as a host and Compound 1 as a dopant were codeposited (at a weight ratio of 90:10) on the hole transport layer to form an emission layer having a thickness of 300 Å.

[0495] Diphenyl(4-(triphenylsilyl)phenyl)-phosphine oxide (TSPO1) was vacuum-deposited on the emission layer to form a hole blocking layer having a thickness of 50 Å. Next, Alq.sub.3 was deposited on the hole blocking layer to form an electron transport layer having a thickness of 300 Å, LiF (which is a halogenated alkali metal) was deposited on the electron transport layer to form an electron injection layer having a thickness of 10 Å, and A.sub.1 was vacuum-deposited on the electron injection layer to form a cathode having a thickness of 3,000 Å, so as to form a LiF/A.sub.1 electrode, thereby completing the manufacture of an organic light-emitting device. Examples 2 to 4

[0496] Organic light-emitting devices were manufactured in substantially the same manner as in Example 1, except that Compounds shown in Table 3 were respectively used instead of Compound 1 as a dopant in forming an emission layer.

# Comparative Examples 1 and 2

[0497] Organic light-emitting devices were manufactured in substantially the same manner as in Example 1, except that Compounds C1 and C2 were respectively used instead of Compound 1 as a dopant in forming an emission layer.

#### ##STR00121##

[0498] Regarding the organic light-emitting devices manufactured according to Examples 1 to 4

and Comparative Examples 1 and 2, the driving voltage, luminance, luminescence efficiency, and maximum luminescence wavelength were measured using a voltammeter (Keithley SMU 236) and a luminance meter (PR650), and the lifespan (T.sub.90), which is the time taken for luminance to reduce to 90% of the initial light-emitting device, was measured. The results are shown in Table 3. TABLE-US-00003 TABLE 3 Maximum Driving Current Emission luminescence T.sub.90 Emission voltage density Luminance efficiency wavelength lifespan layer (V) (mA/cm.sup.2) (cd/m.sup.2) (cd/A) (nm) (h) Example 1 Compound 1 4.52 50 5.60 23.65 453 75 Example 2 Compound 3 4.65 50 5.38 21.01 455 81 Example 3 Compound 4 4.30 50 5.95 25.00 450 98 Example 4 Compound 8 4.72 50 5.02 18.50 458 65 Comparative Compound C1 5.52 50 4.12 11.50 465 33 Example 1 Comparative Compound C2 5.25 50 4.00 12.00 480 35 Example 2 1 [00122] embedded image3 [00123] embedded image4 [00124] embedded image8 [00125] embedded image

[0499] As shown in Table 3, it was confirmed that the organic light-emitting devices of Examples 1 to 4 using, as dopants, the compounds according to the embodiments of the present disclosure each exhibited a low driving voltage, a high efficiency, a high color purity, and/or a long lifespan, as compared with the organic light-emitting devices of Comparative Examples 1 and 2.

[0500] That is, it was confirmed that, when the compounds according to the present disclosure are used in an organic light-emitting device, the organic light-emitting device may have excellent effects in terms of driving voltage, efficiency, color purity, and/or lifespan.

[0501] According to the one or more embodiments, an organic light-emitting device including the organometallic compound of the present embodiments may have a low driving voltage, high efficiency, and may easily control the luminescence wavelength, thereby exhibiting high color purity.

[0502] As used herein, the terms "use," "using," and "used" may be considered synonymous with the terms "utilize," "utilizing," and "utilized," respectively.

[0503] In addition, the terms "substantially," "about," and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art. [0504] Also, any numerical range recited herein is intended to include all subranges of the same numerical precision subsumed within the recited range. For example, a range of "1.0 to 10.0" is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein.

[0505] It will be further understood that the terms "comprises" and/or "comprising" used herein specify the presence of stated features or components, but do not preclude the presence or addition of one or more other features or components.

[0506] It should be understood that embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims and their equivalents.

# **Claims**

1. An organic light-emitting device comprising: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer comprising an emission layer, wherein the emission layer comprises a first compound, a second compound, a third compound and a fourth compound, the first compound and the second compound each independently comprise a compound represented by Formula 301, and the third compound comprises an organometallic compound represented by Formula 1: ##STR00126## [Ar.sub.301].sub.xb11-[(L.sub.301).sub.xb1-R.sub.301].sub.xb21, and Formula 301 wherein. in Formula 1 and Formula 301, M is selected from platinum (Pt), palladium (Pd), copper (Cu), silver (Ag), gold (Au), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm), Y.sub.1 to Y.sub.4 are each independently N or C, CY.sub.1 to CY.sub.4 are each independently selected from a C.sub.5-C.sub.60 carbocyclic group and a C.sub.1-C.sub.60 heterocyclic group, A.sub.1 to A.sub.4 are each independently selected from a chemical bond, O, and S, T.sub.1 to T.sub.3 are each independently selected from a single bond, \*—O—\*', \*—S—\*', \*—Se—\*—S(=O).sub.2—\*', \*— C(R.sub.5)(R.sub.6)—\*', \*—C(R.sub.5)=\*', \*=C(R.sub.6)—\*', \*—C(R.sub.5)=C(R.sub.6)—\*', \* -C(=O)-\*', \*-C(=S)-\*', \*-C=C-\*', \*-B(R.sub.5)-\*', \*-N(R.sub.5)-\*', \*-P(R.sub.5)—\*', \*—\$i(R.sub.5)(R.sub.6)—\*', \*—P(R.sub.5)(R.sub.6)—\*', \*—P(=O)(R.sub.5)— \*', and \*—Ge(R.sub.5)(R.sub.6)—\*', a1 to a3 are each independently an integer from 0 to 3, and the sum of a1 to a3 is 2 or more, L.sub.1 is selected from an unsubstituted or substituted C.sub.5-C.sub.60 carbocyclic group and an unsubstituted or substituted C.sub.1-C.sub.60 heterocyclic group, c1 is an integer from 0 to 5, Ar.sub.1, Ar.sub.2, and R.sub.1 to R.sub.6 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C.sub.1-C.sub.60 alkyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkenyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkynyl group, a substituted or unsubstituted C.sub.1-C.sub.60 alkoxy group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.1) (Q.sub.2)(Q.sub.3), —N(Q.sub.1)(Q.sub.2), —B(Q.sub.1)(Q.sub.2), —C(=O)(Q.sub.1), — S(=O).sub.2(Q.sub.1), and -P(=O)(Q.sub.1)(Q.sub.2), any two neighboring substituents among Ar.sub.1, Ar.sub.2, and R.sub.1 to R.sub.6, or any combinations thereof, are optionally linked to each other to form a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group, b1 to b4 are each independently an integer from 1 to 10, n1 is an integer from 1 to 5, Ar.sub.301 is a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group, xb11 is 1, 2, or 3, L.sub.301 is selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group, xb1 is an integer from 0 to 5, R.sub.301

```
is selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a
nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or
unsubstituted C.sub.1-C.sub.60 alkyl group, a substituted or unsubstituted C.sub.2-C.sub.60
alkenyl group, a substituted or unsubstituted C.sub.2-C.sub.60 alkynyl group, a substituted or
unsubstituted C.sub.1-C.sub.60 alkoxy group, a substituted or unsubstituted C.sub.3-C.sub.10
cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a
substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted
C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl
group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted
C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group,
a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted
or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.301)
(Q.sub.302)(Q.sub.303), —N(Q.sub.301)(Q.sub.302), —B(Q.sub.301)(Q.sub.302), —C(=O)
(Q.sub.301), —S(=O).sub.2(Q.sub.301), and —P(=O)(Q.sub.301)(Q.sub.302), xb21 is an integer
from 1 to 5, Q.sub.301 to Q.sub.303 are each independently selected from a C.sub.1-C.sub.10 alkyl
group, a C.sub.1-C.sub.1 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a
naphthyl group, at least one substituent of the substituted C.sub.5-C.sub.60 carbocyclic group, the
substituted C.sub.1-C.sub.60 heterocyclic group, the substituted C.sub.1-C.sub.60 alkyl group, the
substituted C.sub.2-C.sub.60 alkenyl group, the substituted C.sub.2-C.sub.60 alkynyl group, the
substituted C.sub.1-C.sub.60 alkoxy group, the substituted C.sub.3-C.sub.10 cycloalkyl group, the
substituted C.sub.1-C.sub.10 heterocycloalkyl group, the substituted C.sub.3-C.sub.10 cycloalkenyl
group, the substituted C.sub.1-C.sub.10 heterocycloalkenyl group, the substituted C.sub.6-C.sub.60
aryl group, the substituted C.sub.6-C.sub.60 aryloxy group, the substituted C.sub.6-C.sub.60
arylthio group, the substituted C.sub.1-C.sub.60 heteroaryl group, the substituted monovalent non-
aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed
heteropolycyclic group is selected from: deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a
cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-
C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a
C.sub.1-C.sub.60 alkoxy group; a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group,
a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group, each substituted with at
least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro
group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.3-C.sub.10 cycloalkyl
group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a
C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60
aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a
monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed
heteropolycyclic group, —Si(Q.sub.11)(Q.sub.12)(Q.sub.13), —N(Q.sub.11)(Q.sub.12), —
B(Q.sub.11)(Q.sub.12), -C(=O)(Q.sub.11), -S(=O).sub.2(Q.sub.11), and -P(=O)(Q.sub.11)
(Q.sub.12); a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a
C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-
C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a
C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a
monovalent non-aromatic condensed heteropolycyclic group; a C.sub.3-C.sub.10 cycloalkyl group,
a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-
C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy
group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-
aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic
group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl
group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a
C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group,
```

a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, — Si(Q.sub.21)(Q.sub.22)(Q.sub.23), —N(Q.sub.21)(Q.sub.22), —B(Q.sub.21)(Q.sub.22), —C(=O) (Q.sub.21), —S(=O).sub.2(Q.sub.21), and —P(=O)(Q.sub.21)(Q.sub.22); and —Si(Q.sub.31) (Q.sub.32)(Q.sub.33), -N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31),—S(=O).sub.2(Q.sub.31), and —P(=O)(Q.sub.31)(Q.sub.32), Q.sub.1 to Q.sub.3, Q.sub.11 to Q.sub.13, Q.sub.21 to Q.sub.23, and Q.sub.31 to Q.sub.33 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.

- **2.** The organic light-emitting device of claim 1, wherein the first electrode is an anode, the second electrode is a cathode, the organic layer further comprises a hole transport region between the first electrode and the emission layer, and an electron transport region between the emission layer and the second electrode, the hole transport region comprises a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and the electron transport region comprises a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.
- **3.** The organic light-emitting device of claim 1, wherein the first compound and the second compound are each a host, and the third compound is a phosphorescent dopant.
- **4.** The organic light-emitting device of claim 1, the organic light-emitting device further comprises a fourth compound, and the fourth compound comprises a compound represented by Formula 501: ##STR00127## In Formula 501, Ar.sub.501 is a substituted or unsubstituted C.sub.5-C.sub.60 carbocyclic group or a substituted or unsubstituted C.sub.1-C.sub.60 heterocyclic group, L.sub.501 to L.sub.503 are each independently selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkylene group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenylene group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenylene group, a substituted or unsubstituted C.sub.6-C.sub.60 arylene group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group, xd1 to xd3 are each independently an integer from 0 to 3, R.sub.501 and R.sub.502 are each independently selected from a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkyl group, a substituted or unsubstituted C.sub.3-C.sub.10 cycloalkenyl group, a substituted or unsubstituted C.sub.1-C.sub.10 heterocycloalkenyl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryl group, a substituted or unsubstituted C.sub.6-C.sub.60 aryloxy group, a substituted or unsubstituted C.sub.6-C.sub.60 arylthio group, a substituted or unsubstituted C.sub.1-C.sub.60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, xd4 is an integer from 1 to 6, and at least one substituent of the substituted C.sub.3-C.sub.10 cycloalkylene group, the substituted C.sub.1-C.sub.10 heterocycloalkylene group, the substituted C.sub.3-C.sub.10 cycloalkenylene group, the substituted C.sub.1-C.sub.10 heterocycloalkenylene group, the substituted C.sub.6-C.sub.60 arylene group, the

```
substituted C.sub.1-C.sub.60 heteroarylene group, the substituted divalent non-aromatic condensed
polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the
substituted C.sub.3-C.sub.10 cycloalkyl group, the substituted C.sub.1-C.sub.10 heterocycloalkyl
group, the substituted C.sub.3-C.sub.10 cycloalkenyl group, the substituted C.sub.1-C.sub.10
heterocycloalkenyl group, the substituted C.sub.6-C.sub.60 aryl group, the substituted C.sub.6-
C.sub.60 aryloxy group, the substituted C.sub.6-C.sub.60 arylthio group, the substituted C.sub.1-
C.sub.60 heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group,
and the substituted monovalent non-aromatic condensed heteropolycyclic group is selected from:
deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group,
a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl
group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-C.sub.60 alkoxy group; a C.sub.1-C.sub.60
alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, and a C.sub.1-
C.sub.60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br,
—I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a
hydrazono group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group,
a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-
C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a
C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a
monovalent non-aromatic condensed heteropolycyclic group, —Si(Q.sub.11)(Q.sub.12)(Q.sub.13),
 -N(Q.sub.11)(Q.sub.12), -B(Q.sub.11)(Q.sub.12), -C(=O)(Q.sub.11), -
S(=O).sub.2(Q.sub.11), and -P(=O)(Q.sub.11)(Q.sub.12); a C.sub.3-C.sub.10 cycloalkyl group, a
C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-
C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy
group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl group, a monovalent non-
aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic
group; a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-
C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60
aryl group, a C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-
C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a
monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one
selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an
amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.60 alkyl group, a C.sub.2-
C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a C.sub.1-C.sub.60 alkoxy group, a
C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10 heterocycloalkyl group, a C.sub.3-C.sub.10
cycloalkenyl group, a C.sub.1-C.sub.10 heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a
C.sub.6-C.sub.60 aryloxy group, a C.sub.6-C.sub.60 arylthio group, a C.sub.1-C.sub.60 heteroaryl
group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic
condensed heteropolycyclic group, —Si(Q.sub.21)(Q.sub.22)(Q.sub.23), —N(Q.sub.21)(Q.sub.22),
-B(Q.sub.21)(Q.sub.22), -C(=O)(Q.sub.21), -S(=O).sub.2(Q.sub.21), and -P(=O)(Q.sub.21)
(Q.sub.22); and —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —N(Q.sub.31)(Q.sub.32), —B(Q.sub.31)
(Q.sub.32), -C(=O)(Q.sub.31), -S(=O).sub.2(Q.sub.31), and -P(=O)(Q.sub.31)(Q.sub.32),
and Q.sub.1 to Q.sub.3, Q.sub.11 to Q.sub.13, Q.sub.21 to Q.sub.23, and Q.sub.31 to Q.sub.33 are
each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a
cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-
C.sub.60 alkyl group, a C.sub.2-C.sub.60 alkenyl group, a C.sub.2-C.sub.60 alkynyl group, a
C.sub.1-C.sub.60 alkoxy group, a C.sub.3-C.sub.10 cycloalkyl group, a C.sub.1-C.sub.10
heterocycloalkyl group, a C.sub.3-C.sub.10 cycloalkenyl group, a C.sub.1-C.sub.10
heterocycloalkenyl group, a C.sub.6-C.sub.60 aryl group, a C.sub.6-C.sub.60 aryloxy group, a
C.sub.1-C.sub.60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a
monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl
```

group.

- **5.** The organic light-emitting device of claim 1, wherein an amount of the organometallic compound is from 0.01 parts by weight to 49.99 parts by weight based on 100 parts by weight of the emission layer.
- **6.** The organic light-emitting device of claim 1, wherein the emission layer is to emit blue light having a maximum luminescence wavelength from 430 nm to 490 nm.
- **7**. The organic light-emitting device of claim 2, wherein the electron transport region comprises a phosphine oxide-containing compound.
- **8**. The organic light-emitting device of claim 1, wherein c1 is 0.
- **9.** The organic light-emitting device of claim 1, wherein: Y.sub.1 to Y.sub.3 are each independently C, and Y.sub.4 is N; or Y.sub.1, Y.sub.2, and Y.sub.4 are each independently C, and Y.sub.3 is N.
- **10**. The organic light-emitting device of claim 1, wherein CY.sub.1 to CY.sub.4 are each independently selected from a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a pyrene ring, a chrysene ring, a cyclopentadiene ring, a 1,2,3,4tetrahydronaphthalene ring, a furan ring, a thiophene ring, a silole ring, an indene ring, a fluorene ring, an indole ring, a carbazole ring, a benzofuran ring, a dibenzofuran ring, a benzothiophene ring, a dibenzothiophene ring, a benzosilole ring, a dibenzosilole ring, an indenopyridine ring, an indolopyridine ring, a benzofuropyridine ring, a benzothienopyridine ring, a benzosilolopyridine ring, an indenopyrimidine ring, an indolopyrimidine ring, a benzofuropyrimidine ring, a benzothienopyrimidine ring, a benzosilolopyrimidine ring, a dihydropyridine ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a quinoxaline ring, a quinazoline ring, a phenanthroline ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 2,3-dihydroimidazole ring, a 4,5-dihydroimidazole ring, a triazole ring, a 2,3-dihydrotriazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a tetrazole ring, a pentazole ring, a benzopyrazole ring, a benzimidazole ring, a 2,3-dihydrobenzimidazole ring, an imidazopyridine ring, a 2,3-dihydroimidazopyridine ring, a 4,5,6,7-tetrahydro-benzimidazole ring, a 2,3,4,5,6,7-hexahydro-benzoimidazole ring, an imidazopyrimidine ring, a 2,3dihydroimidazopyrimidine ring, an imidazopyrazine ring, a 2,3-dihydroimidazopyrazine ring, a benzoxazole ring, a benzothiazole ring, a benzoxadiazole ring, a benzothiadiazole ring, a 5,6,7,8tetrahydroisoquinoline ring, and a 5,6,7,8-tetrahydroquinoline.
- 11. The organic light-emitting device of claim 1, wherein CY.sub.1 is selected from groups represented by Formulae CY1-1 to CY1-70, CY.sub.2 is selected from groups represented by Formulae CY2-1 to CY2-13, CY.sub.3 is selected from groups represented by Formulae CY3-1 to CY3-7, and CY.sub.4 is selected from groups represented by Formulae CY4-1 to CY4-9: ##STR00128## ##STR00129## ##STR00130## ##STR00131## ##STR00132## ##STR00133## ##STR00134## ##STR00135## ##STR00136## ##STR00137## ##STR00138## ##STR00139## ##STR00140## ##STR00141## ##STR00142## ##STR00143## ##STR00144## wherein, in Formulae CY1-1 to CY1-70, Formulae CY2-1 to CY2-13, Formulae CY3-1 to CY3-7, and

Formulae CY4-1 to CY4-9, Y.sub.1 to Y.sub.4 are respectively the same as described in Formula 1, X.sub.11 is \*"—C C(R.sub.11) or N, X.sub.12 is C(R.sub.12) or N, X.sub.13 is C(R.sub.13) or N, X.sub.14 is C(R.sub.14) or N, X.sub.15 is C(R.sub.15) or N, X.sub.16 is C(R.sub.16) or N,

X.sub.17 is C(R.sub.17) or N, and X.sub.18 is C(R.sub.18) or N, X.sub.19 is C(R.sub.19a) (R.sub.19b), Si(R.sub.19a)(R.sub.19b), N(R.sub.19), O, or S, X.sub.20 is C(R.sub.20a)(R.sub.20b), Si(R.sub.20a)(R.sub.20b), N(R.sub.20a) (R.sub.20a) (R.sub.2

Si(R.sub.20a)(R.sub.20b), N(R.sub.20), O, or S, X.sub.21 is C(R.sub.21) or N, X.sub.22 is C(R.sub.22) or N, X.sub.13 is C(R.sub.23) or N, X.sub.24 is C(R.sub.24) or N, X.sub.25 is

C(R.sub.25) or N, X.sub.26 is C(R.sub.26) or N, and X.sub.27 is C(R.sub.27) or N, X.sub.28 is

C(R.sub.28a)(R.sub.28b), Si(R.sub.28a)(R.sub.28b), N(R.sub.28), O, or S, X.sub.31 is C(R.sub.31) or N, X.sub.32 is C(R.sub.32) or N, X.sub.33 is C(R.sub.33) or N, X.sub.34 is C(R.sub.34) or N,

X.sub.35 is C(R.sub.35) or N, and X.sub.36 is C(R.sub.36) or N, X.sub.37 is C(R.sub.37a)

(R.sub.37b), Si(R.sub.37a)(R.sub.37b), N(R.sub.37), O, or S, X.sub.41 is \*"—C, C(R.sub.41), or N, X.sub.42 is C(R.sub.42) or N, X.sub.43 is C(R.sub.43) or N, X.sub.44 is C(R.sub.44) or N, X.sub.45 is C(R.sub.45) or N, X.sub.46 is C(R.sub.46) or N, and X.sub.47 is C(R.sub.47) or N, X.sub.48 is C(R.sub.48a)(R.sub.48b), Si(R.sub.48a)(R.sub.48b), N(R.sub.48), O, or S, R.sub.11 to R.sub.20, R.sub.15a to R.sub.20a, and R.sub.15b to R.sub.20b are each independently the same as described in connection with R.sub.1, R.sub.21 to R.sub.28, R.sub.24a to R.sub.28a, and R.sub.24b to R.sub.28b are each independently the same as described in connection with R.sub.2, R.sub.31 to R.sub.37, R.sub.33a to R.sub.37a, and R.sub.33b to R.sub.37b are each independently the same as described in connection with R.sub.4, b11 is an integer from 1 to 4, \* indicates a binding site to M, \*' and \*" each indicate a binding site to a neighboring atom, and \*.sub.N indicates a binding site to a nitrogen atom (N).

- **12**. The organic light-emitting device of claim 1, wherein a moiety represented by ##STR00145## in Formula 1 is selected from groups represented by Formulae CZ-1 to CZ-8: ##STR00146## ##STR00147## and wherein, in Formulae CZ-1 to CZ-8, R.sub.31 and R.sub.32 are each the same as described in connection with R.sub.3, R.sub.41 to R.sub.43 are each the same as described in connection with R.sub.4, \* indicates a binding site to M, \*' indicates a binding site to T.sub.3 or CY.sub.1, and \*" indicates a binding site to T.sub.2 or CY.sub.2.
- **13**. The organic light-emitting device of claim 1, wherein a1 and a2 are each 1, and a3 is 0.
- **14**. The organic light-emitting device of claim 1, wherein L.sub.1 is selected from: a benzene group, a pentalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, an acenaphthalene group, a fluorene group, a spiro-bifluorene group, a spiro-benzofluorene-fluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pyrrole group, a thiophene group, a furan group, a silole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a triazine group, a benzofuran group, a benzothiophene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a benzosilole group, a dibenzosilole group, a quinoline group, an isoquinoline group, a benzimidazole group, an imidazopyridine group, and an imidazopyrimidine group; and a benzene group, a pentalene group, an indene group, a naphthalene group, an azulene group, a heptalene group, an indacene group, an acenaphthalene group, a fluorene group, a spiro-bifluorene group, a spiro-benzofluorene-fluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pyrrole group, a thiophene group, a furan group, a silole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, a triazine group, a benzofuran group, a benzothiophene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, a benzosilole group, a dibenzosilole group, a quinoline group, an isoquinoline group, a benzimidazole group, an imidazopyridine group, and an imidazopyrimidine group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spirobenzofluorene-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pyrrolyl group, a

```
thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a
thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a
pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a benzofuranyl group,
a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, a
benzosilolyl group, a dibenzosilolyl group, a quinolinyl group, an isoquinolinyl group, a
benzimidazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, —Si(Q.sub.31)
(Q.sub.32)(Q.sub.33), -N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31),
—S(=O).sub.2(Q.sub.31), and —P(=O)(Q.sub.31)(Q.sub.32), and Q.sub.31 to Q.sub.33 are each
independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C.sub.1-
C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a C.sub.6-C.sub.20 aryl group, a C.sub.1-
C.sub.20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent
non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.
15. The organic light-emitting device of claim 1, wherein Ar.sub.1 and Ar.sub.2 are each
independently selected from: a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a
cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a
pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group,
a spiro-fluorene-benzofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a
phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a
triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a
pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a
pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a
pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, an
indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an
isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a
quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a
cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a
phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a
benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a
benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl
group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl
group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a
naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a
dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an
imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a
benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl
group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an
indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl
group; a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a
cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an
indenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-fluorene-
benzofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a
phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl
group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl
group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group,
an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group,
a pyrimidinyl group, a pyridazinyl group, a triazinyl group, an indolyl group, an isoindolyl group,
an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl
group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl
group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl
group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a
```

```
benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a
benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a
tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a carbazolyl group, a dibenzofuranyl
group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a
naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a
dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a
dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an
oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl
group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an
azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an
indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted
with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, —CF.sub.3, —
CF.sub.2H, —CFH.sub.2, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a
cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl
group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, a fluorenyl group, a
spiro-bifluorenyl group, a spiro-fluorene-benzofluorenyl group, a benzofluorenyl group, a
dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a
fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group,
a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an
imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an
isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a
triazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a
quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a
naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a
benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a
phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a
benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a
benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl
group, an oxadiazolyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl
group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a
naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a
dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphtho silolyl group, an
imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a
thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-
bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl
group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an
indenocarbazolyl group, an indolocarbazolyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), —
N(Q.sub.31)(Q.sub.32), -B(Q.sub.31)(Q.sub.32), -C(=O)(Q.sub.31), -S(=O).sub.2(Q.sub.31),
and -P(=O)(Q.sub.31)(Q.sub.32); and -Si(Q.sub.1)(Q.sub.2)(Q.sub.3), -N(Q.sub.1)(Q.sub.2),
and —B(Q.sub.1)(Q.sub.2), and Q.sub.1 to Q.sub.3 and Q.sub.31 to Q.sub.33 are each
independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C.sub.1-
C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a C.sub.6-C.sub.20 aryl group, a C.sub.1-
C.sub.20 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent
non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.
16. The organic light-emitting device of claim 1, wherein Ar.sub.1 and Ar.sub.2 are each
independently selected from groups represented by Formulae 5-1 to 5-34: ##STR00148##
##STR00149## ##STR00150## ##STR00151## ##STR00152## wherein, in Formulae 5-1 to 5-34,
Y.sub.31 is selected from O, S, N(Z.sub.33), C(Z.sub.34)(Z.sub.35), and Si(Z.sub.36) (Z.sub.37),
Z.sub.31 to Z.sub.37 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br,
—I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a
```

hydrazono group, —CF.sub.3, —CF.sub.2H, —CFH.sub.2, a C.sub.1-C.sub.20 alkyl group, a C.sub.1-C.sub.20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a spiro-fluorene-benzofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenylenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, —Si(Q.sub.31)(Q.sub.32)(Q.sub.33), — N(Q.sub.31)(Q.sub.32), and —B(Q.sub.31)(Q.sub.32), e2 is 1 or 2, e3 is an integer from 1 to 3, e4 is an integer from 1 to 4, e5 is an integer from 1 to 5, e6 is an integer from 1 to 6, e7 is an integer from 1 to 7, e9 is an integer from 1 to 9, Q.sub.31 to Q.sub.33 are each independently selected from a C.sub.1-C.sub.10 alkyl group, a C.sub.1-C.sub.10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, and \* indicates a binding site to a neighboring atom.

- 17. The organic light-emitting device of claim 1, wherein Ar.sub.1 and Ar.sub.2 are each independently selected from groups represented by Formulae 6-1 to 6-52: ##STR00153## ##STR00154## ##STR00155## ##STR00156## ##STR00157## ##STR00158## and wherein, in Formulae 6-1 to 6-52, i-Pr is an isopropyl group, t-Bu is a tert-butyl group, TMS is a trimethylsilyl group, Ph is a phenyl group, and \* indicates a binding site to a neighboring atom.
- **18**. The organic light-emitting device of claim 1, wherein the organometallic compound is represented by Formula 1-1: ##STR00159## and wherein, in Formula 1-1, M, Y.sub.1 to Y.sub.4, CY.sub.1, CY.sub.2, A.sub.1 to A.sub.4, T.sub.1, T.sub.2, a1, a2, L.sub.1, c1, Ar.sub.1, Ar.sub.2, n1, R.sub.1, R.sub.2, b1, and b2 are respectively the same as described in connection with Formula 1, X.sub.31 is C(R.sub.31) or N, X.sub.32 is C(R.sub.32) or N, X.sub.41 is C(R.sub.41) or N, X.sub.42 is C(R.sub.42) or N, and X.sub.43 is C(R.sub.43) or N, R.sub.31 and R.sub.32 are each the same as described in connection with R.sub.3, and R.sub.41 to R.sub.43 are each the same as described in connection with R.sub.4.
- **19**. The organic light-emitting device of claim 1, wherein the organometallic compound is represented by Formula 1-2 or Formula 1-3: ##STR00160## and wherein, in Formulae 1-1 and 1-3, M, Y.sub.2 to Y.sub.4, T.sub.2, L.sub.1, c1, Ar.sub.1, Ar.sub.2, and n1 are respectively the same as described in connection with those in Formula 1, X.sub.12 is C(R.sub.12) or N, X.sub.13 is C(R.sub.13) or N, X.sub.21 is C(R.sub.21) or N, X.sub.22 is C(R.sub.22) or N, X.sub.23 is C(R.sub.23) or N, X.sub.31 is C(R.sub.31) or N, X.sub.32 is C(R.sub.32) or N, X.sub.41 is C(R.sub.41) or N, X.sub.42 is C(R.sub.42) or N, and X.sub.43 is C(R.sub.43) or N, CY.sub.5 is selected from a C.sub.5-C.sub.60 carbocyclic group and a C.sub.1-C.sub.60 heterocyclic group, R.sub.12 to R.sub.14 and Z.sub.1 are each the same as described in connection with R.sub.1, k1 is an integer from 1 to 10, R.sub.21 to R.sub.23 are each the same as described in connection with R.sub.3, and R.sub.41 to R.sub.43 are each the same as described in connection with R.sub.3, and R.sub.43 are each the same as described in connection with R.sub.4.
- **20**. The organic light-emitting device of claim 1, wherein the organometallic compound is selected from Compounds 1 to 10: ##STR00161## ##STR00162##