For graders only:	Question	1(a)	1(b)	1(c)	2(a)	2(b)	2(c)	3(a)	3(b)	3(c)	Total
	Marks										

MIDTERM I (CA1)

MH1812 - Discrete Mathematics

March 2024	TIME ALLOWED: 50 minutes	
Name:		
Matric. no.:	Tutor group:	

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains **THREE** (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Read the question carefully to see how to write your answers.
- 5. Clearly indicate your answers. Unclear or ambiguous answers will receive **zero** marks.
- 6. For questions that require you to **circle** to indicate your answer, the choice that you circle will be interpreted as your answer.
- 7. This IS NOT an OPEN BOOK exam.
- 8. Calculators are allowed.

(a) [1 mark] Find the remainder r of 7^{1812} after division by 8.

$$r = \boxed{}$$

- (b) Decide whether the set S is closed under the operation Δ when
 - (i) [1 mark] $S_1 = \{\text{negative integers}\}$ and Δ_1 is multiplication. S_1 is closed/not closed under the operation Δ_1 (Circle "closed" or "not closed" to indicate your answer.)
 - (ii) [1 mark] $S_2 = \{\text{non-zero rational numbers}\}\$ and Δ_2 is addition. S_2 is closed/not closed under the operation Δ_2 (Circle "closed" or "not closed" to indicate your answer.)

No justification is required.

(c) [7 marks] In the table below, mark with a 'Y' each integer $a \in \{0, 1, 2, 3, 4, 5, 6\}$ that satisfies the congruence $(5436)^a \equiv 3^{2024} \pmod{7}$ and an 'N' for those that do not.

a	0	1	2	3	4	5	6
Y/N							

-Blank Page For Rough Work -

(a) [3 marks] Show that

$$(q \lor r) \to (q \land p) \not\equiv (q \to p) \land (r \to p)$$

by finding a row where the truth tables of the LHS and RHS differ. Present

your answer by completing the table:

p	q		r	

(b) [5 marks] Show that the following argument is valid by completing the table below. You may need the following inference rules: Modus Ponens, Modus Tollens, Conjunctive Simplification, Conjunctive Addition, Disjunctive Addition, and Disjunctive Syllogism.

$$u \to r \land \neg s;$$

$$\neg w;$$

$$t \to s;$$

$$u \lor w;$$

$$\therefore t \to F.$$

- (1) $u \to r \land \neg s$
- (2) $\neg w$
- (3) $t \to s$
- (4) $u \vee w$
- \therefore (5) u
- (6) $r \wedge \neg s$
- \therefore (7)

Disjunctive Syllogism on (2) and (4)

Conjunctive Simplification on (6)

- (8) $\neg t$
- $t \to F$ \therefore (9)

Rule of Contradiction on (8)

(c) [2 marks] Find the number of critical rows and counter-examples of the following argument. No justification is required.

$$\begin{aligned} &p\\ &p\vee q;\\ &q\rightarrow (r\rightarrow s);\\ &t\rightarrow r; \end{aligned}$$

 $\therefore \neg s \rightarrow \neg t.$

Number of critical rows:

Number of counter-examples:

-Blank Page For Rough Work -

(a) [3 marks] Consider the domains

 $\mathbb{Q} = \{\text{rational numbers}\}, \mathbb{Z} = \{\text{integers}\}, \text{ and } \mathbb{N} = \{\text{positive integers}\}.$

Determine the truth value of the following statements.

(Circle "T" or "F" to indicate your answer.)

(i)
$$\forall x \in \mathbb{Q}, \ \exists y \in \mathbb{Z}, \ \exists z \in \mathbb{N}, \ xz - y \in \mathbb{N}.$$

(ii)
$$\forall x \in \mathbb{Q}, \ \forall y \in \mathbb{Z}, \ \exists z \in \mathbb{N}, \ y + xz \in \mathbb{N}.$$

(iii)
$$\exists x \in \mathbb{Q}, \ \forall y \in \mathbb{Z}, \ \forall z \in \mathbb{N}, \ xy + z \in \mathbb{N}.$$

No justification is required.

(b) [3 marks] Consider the domains

$$X = \{1, 2, 3, 4, 5\}, Y = \{-2, -1, 0, 1, 2\}, \text{ and } Z = \{-5, -4, -3, -2, -1\}.$$

Determine the truth value of the following statements.

(Circle "T" or "F" to indicate your answer.)

(i)
$$\forall x \in X, \ \exists y \in Y, \ \exists z \in Z, \ xy = z.$$

(ii)
$$\forall x \in X, \ \forall y \in Y, \ \exists z \in Z, \ xy > z.$$

(iii)
$$\forall x \in X, \exists y \in Y, \forall z \in Z, xyz < 0.$$

No justification is required.

(c) [1 mark] Consider the domains

 $P = \{\text{prime numbers}\}\ \text{and}\ Q = \{\text{integers congruent to 7 modulo 11}\}.$

Determine the truth value of the following statement.

(Circle "T" or "F" to indicate your answer.)

$$\neg (\forall x \in P, \exists y \in Q, xy \in Q).$$
 T | F

No justification is required.

-Blank Page For Rough Work -