1. Oracle property

Here we show that the estimation accuracy is just as good as if the relevant predictor groups were specified in advance.

Theorem 1.1. If
$$\sqrt{n}a_n \to 0$$
 and $\sqrt{n}b_n \to \infty$, then $\sqrt{nh^2 f(s)} \left(\hat{\beta}_{(a)}(s_i) - \beta_{(a)}(s_i) - \frac{\kappa_2 h^2}{2\kappa_0} \{ \beta_{uu}(s_i) + \beta_{vv}(s_i) \} \right) \xrightarrow{d} N(0, \Sigma_{(a)}(s_i)).$

Proof. The proof proceeds by showing that if the tuning parameter λ is chosen correctly, then the penalty term vanishes for the relevant predictor groups and becomes infinite for the irrelevant predictor groups.

Since
$$\|\tilde{\boldsymbol{\beta}}(\boldsymbol{s}_i)\|^{\gamma} = O_p\{(nh^2)^{-\gamma/2}\}$$
 and $h = O(n^{-1/6})$, in order for $\sqrt{n}a_n \to 0$ and $\sqrt{n}b_n \to \infty$, we require that $\lambda = O(n^{\alpha})$ where $\alpha \in \left(-\left\{1 + \gamma - \frac{\gamma}{6}\right\}/2, -1/2\right)$.