«Разделяй и властвуй»: умножение чисел

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

Сложение в столбик: O(n)

Умножение в столбик: $O(n^2)$

Рекуррентная формула

$$y = egin{cases} 2 \left \lfloor rac{y}{2}
ight
floor, & ext{если } y ext{ чётно} \ 1 + 2 \left \lfloor rac{y}{2}
ight
floor, & ext{если } y ext{ нечётно} \end{cases}$$

Рекуррентная формула

$$y = egin{cases} 2 \left \lfloor rac{y}{2}
ight
floor, & ext{если } y ext{ чётно} \ 1 + 2 \left \lfloor rac{y}{2}
ight
floor, & ext{если } y ext{ нечётно} \end{cases}$$

$$x \cdot y = egin{cases} 2(x \cdot \left \lfloor rac{y}{2}
ight
floor), & ext{если } y ext{ чётно} \ x + 2(x \cdot \left \lfloor rac{y}{2}
ight
floor), & ext{если } y ext{ нечётно} \end{cases}$$

Алгоритм

```
Функция MULTIPLY(x, y)
\{ Bxoд: два n-битовых целых числа <math>x > 0 и y > 0. \}
{Выход: ху.}
если y = 0:
  вернуть 0
z \leftarrow \text{MULTIPLY}(x, |y/2|)
если у чётно:
  вернуть 2z
иначе:
  вернуть x + 2z
```

Алгоритм

```
Функция MULTIPLY(x, y)
\{ B x o g : д в a n - 6 u t o в в x y = 0 . \}
{Выход: xy.}
если y = 0:
  вернуть 0
z \leftarrow \text{MULTIPLY}(x, |y/2|)
если у чётно:
  вернуть 2z
иначе:
  вернуть x + 2z
```

Время работы: $O(n^2)$ (число битов в записи y уменьшается на единицу с каждым рекурсивным вызовом).

Ещё одна рекуррентная формула

$$x = \begin{bmatrix} x_L \\ y \end{bmatrix} \begin{bmatrix} x_R \\ y_R \end{bmatrix} = 2^{n/2}x_L + x_R$$

 $y = \begin{bmatrix} y_L \\ y_R \end{bmatrix} = 2^{n/2}y_L + y_R$

Ещё одна рекуррентная формула

$$x = \begin{bmatrix} x_L \\ y \end{bmatrix} \begin{bmatrix} x_R \\ y_R \end{bmatrix} = 2^{n/2}x_L + x_R$$

$$y = \begin{bmatrix} y_L \\ y_R \end{bmatrix} = 2^{n/2}y_L + y_R$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R)$$

= $2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Ещё одна рекуррентная формула

$$x = \begin{bmatrix} x_L \\ y \end{bmatrix} \begin{bmatrix} x_R \\ y_R \end{bmatrix} = 2^{n/2}x_L + x_R$$

$$y = \begin{bmatrix} y_L \\ y_R \end{bmatrix} = 2^{n/2}y_L + y_R$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R)$$

= $2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

- $xy = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$
- вместо четырёх рекурсивных вызовов для вычисления $x_L y_L$, $x_L y_R$, $x_R y_L$ и $x_R y_R$, сделаем три для вычисления

$$x_L y_L$$
, $x_R y_R$, $u(x_L + x_R)(y_L + y_R)$

- $xy = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$
- вместо четырёх рекурсивных вызовов для вычисления $x_L y_L$, $x_L y_R$, $x_R y_L$ и $x_R y_R$, сделаем три для вычисления

$$x_L y_L$$
, $x_R y_R$, $u(x_L + x_R)(y_L + y_R)$

тогда

$$(x_L y_R + x_R y_L) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

- $xy = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$
- вместо четырёх рекурсивных вызовов для вычисления $x_L y_L$, $x_L y_R$, $x_R y_L$ и $x_R y_R$, сделаем три для вычисления

$$x_L y_L$$
, $x_R y_R$, $u(x_L + x_R)(y_L + y_R)$

тогда

$$(x_L y_R + x_R y_L) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

■ соответствующее рекуррентное соотношение:

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

- $xy = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$
- вместо четырёх рекурсивных вызовов для вычисления $x_L y_L$, $x_L y_R$, $x_R y_L$ и $x_R y_R$, сделаем три для вычисления

$$x_L y_L$$
, $x_R y_R$, $u(x_L + x_R)(y_L + y_R)$

тогда

$$(x_L y_R + x_R y_L) = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

• соответствующее рекуррентное соотношение:

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

■ скоро покажем, что $T(n) = O(n^{1.59})$

Алгоритм Карацубы

```
Функция KARATSUBA(x, y)
```

```
{Вход: целые числа x, y \ge 0, в двоичной записи.}
{Выход: ху.}
n \leftarrow \max(\text{pasmep } x, \text{ pasmep } y)
если n=1: вернуть xy
x_L, x_R \leftarrow левые \lceil n/2 \rceil, правые \lceil n/2 \rceil битов x
y_L, y_R \leftarrow левые \lceil n/2 \rceil, правые \lceil n/2 \rceil битов y
P_1 \leftarrow \text{KARATSUBA}(x_l, y_l)
P_2 \leftarrow \text{KARATSUBA}(x_R, y_R)
P_3 \leftarrow \text{KARATSUBA}(x_I + x_R, y_I + y_R)
вернуть P_1 \times 2^{2\lfloor n/2 \rfloor} + (P_3 - P_1 - P_2) \times 2^{\lfloor n/2 \rfloor} + P_2
```

Дерево рекурсии

$$x_L = 1011$$
, $x_R = 0010$, $y_L = 0110$, $y_R = 0011$

Дерево рекурсии

$$x_L = 1011$$
, $x_R = 0010$, $y_L = 0110$, $y_R = 0011$

$$x_L + x_R = 1101, y_L + y_R = 1001$$

Дерево рекурсии

:

:

1 1 ... 1 1

¦ уров. _¦ разм.				
$n=2^k$	0	n		
n/2 $n/2$ $n/2$	1	n/2		
	:	:		
į	i	n/2 ⁱ		
	÷	i:		
1 1 1 1	k	1		

¦ уров.¦разм.¦ #						
$n=2^k$	0	n	1			
n/2 $n/2$ $n/2$	1	n/2	3			
	:	:	:			
<u> </u>	i	<i>n</i> /2 ⁱ	3 ⁱ			
		:	:			
1 1 1 1	k	1	3 ^k			

	уров.	разм.	#	работа
$n=2^k$	0	n	1	cn
n/2 $n/2$ $n/2$	1	<i>n</i> /2	3	$3 \cdot c \cdot n/2$
	:	÷	÷	
÷	i	<i>n</i> /2 ⁱ	3 ⁱ	$3^i \cdot c \cdot n/2^i$
				:
1 1 1 1	k	1	3 ^k	$3^k \cdot c \cdot n/2^k$

	уров.	разм.	#_	работа
$n=2^k$	0	n	1	cn
n/2 $n/2$ $n/2$	1	<i>n</i> /2	3	$3 \cdot c \cdot n/2$
	:	÷	:	:
:	i	n/2 ⁱ	3 ⁱ	$3^i \cdot c \cdot n/2^i$
	÷	:	:	:
1 1 1 1	k	1	3 ^k	$3^k \cdot c \cdot n/2^k$

Сумма геометрической прогрессии: формула

п геометрическая прогрессия: $1 + c + c^2 + \cdots + c^n$

Сумма геометрической прогрессии: формула

- **п** геометрическая прогрессия: $1 + c + c^2 + \cdots + c^n$
- lacktriangle если домножить на (c-1) и раскрыть скобки, почти всё сократится:

$$(c + c^2 + c^3 + \dots + c^{n+1})$$

- $(1 + c + c^2 + \dots + c^n) = c^{n+1} - 1$

Сумма геометрической прогрессии: формула

- **п** геометрическая прогрессия: $1 + c + c^2 + \cdots + c^n$
- lacktriangle если домножить на (c-1) и раскрыть скобки, почти всё сократится:

$$(c + c^2 + c^3 + \dots + c^{n+1})$$

- $(1 + c + c^2 + \dots + c^n) = c^{n+1} - 1$

 $lue{}$ поэтому при c
eq 1 верно равенство

$$1 + c + c^{2} + \dots + c^{n} = \frac{c^{n+1} - 1}{c - 1}$$

Сумма геометрической прогрессии: скорость роста

$$1+c+c^2+\cdots+c^n=egin{cases} \Theta(1) & ext{если } c<1\ \Theta(n) & ext{если } c=1\ \Theta(c^n) & ext{если } c>1 \end{cases}$$

Сумма геометрической прогрессии: скорость роста

$$1+c+c^2+\cdots+c^n=egin{cases} \Theta(1) & ext{если } c<1\ \Theta(n) & ext{если } c=1\ \Theta(c^n) & ext{если } c>1 \end{cases}$$

■ Если *c* < 1,

$$1 < \frac{c^{n+1} - 1}{c - 1} = \frac{1 - c^{n+1}}{1 - c} < \frac{1}{1 - c}$$

Сумма геометрической прогрессии: скорость роста

$$1+c+c^2+\cdots+c^n=egin{cases} \Theta(1) & ext{если } c<1\ \Theta(n) & ext{если } c=1\ \Theta(c^n) & ext{если } c>1 \end{cases}$$

■ Если c < 1,</p>

$$1 < \frac{c^{n+1} - 1}{c - 1} = \frac{1 - c^{n+1}}{1 - c} < \frac{1}{1 - c}$$

■ Если *c* > 1,

$$c^n < \frac{c^{n+1}-1}{c-1} < \frac{c}{c-1}c^n$$

$$\sum_{i=0}^{k} 3^{i} \cdot c \cdot n/2^{i} = cn \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$\sum_{i=0}^{k} 3^{i} \cdot c \cdot n/2^{i} = cn \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$
$$= cn \sum_{i=0}^{\log_{2} n} \left(\frac{3}{2}\right)^{i}$$

$$\sum_{i=0}^{k} 3^{i} \cdot c \cdot n/2^{i} = cn \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= cn \sum_{i=0}^{\log_{2} n} \left(\frac{3}{2}\right)^{i}$$

$$= cn \cdot \Theta\left(\frac{3^{\log_{2} n}}{2^{\log_{2} n}}\right)$$

$$\sum_{i=0}^{k} 3^{i} \cdot c \cdot n/2^{i} = cn \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= cn \sum_{i=0}^{\log_{2} n} \left(\frac{3}{2}\right)^{i}$$

$$= cn \cdot \Theta\left(\frac{3^{\log_{2} n}}{2^{\log_{2} n}}\right)$$

$$= \Theta(n^{\log_{2} 3})$$

$$\sum_{i=0}^{k} 3^{i} \cdot c \cdot n/2^{i} = cn \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= cn \sum_{i=0}^{\log_{2} n} \left(\frac{3}{2}\right)^{i}$$

$$= cn \cdot \Theta\left(\frac{3^{\log_{2} n}}{2^{\log_{2} n}}\right)$$

$$= \Theta(n^{\log_{2} 3})$$

$$= \Theta(n^{1.584...})$$

Почему можно считать, что $n = 2^k$?

В отрезке [n,2n] всегда найдётся степень двойки.

Заключение

■ сложение двух n-битовых чисел: O(n)

Заключение

- **•** сложение двух n-битовых чисел: O(n)
- умножение двух n-битовых чисел в столбик: $O(n^2)$

Заключение

- **•** сложение двух n-битовых чисел: O(n)
- умножение двух n-битовых чисел в столбик: $O(n^2)$
- **■** алгоритм Карацубы умножения двух n-битовых чисел: $O(n^{1.59})$