UM-SJTU JI VE215 Lab #2

We will evaluate the Thevenin equivalent in this lab.

- Please hand in your post-lab assignment before the due date. Please do your post-lab assignment following the requirements in each problem.
 Both hand-written and printed are accepted.
- You are encouraged to print this lab manual and then finish the post-lab questions on it. For pictures or diagrams, you may print it in a paper, cut it down and paste on this worksheet.

Instruments

DC power supply (Agilent E3631A or MOTECH LPS 305)

Multi-meter

Breadboard and Wires

Resistors of 50Ω and 100Ω

Rheostat of 200Ω (or 500Ω)

Instruments Introduction

For the **rheostats**, please connect the middle port and one of the sided ports inside the circuit (refer to the diagram). Please rotate the button at the top of rheostat using a mini-screwdriver to change its resistance.

Problem #1 Thevenin Equivalent

Please connect the circuit on your breadboard based on the schematic.

After the connection, please turn on the voltage source and measure the open-loop voltage V_{ab} between port a and port b by multi-meter. Then, please replace the DC voltage power supply by a wire and measure the equivalent resistance R_{ab} between port a and port b by multi-meter. Please record your data in the table:

Term	Open loop voltage Vab	Equivalent resistance R _{ab}
Value	1525V	101.42

Post-Lab Questions for (P1)

(1) Please calculate the theoretical values of the Thevenin's equivalent voltage and the equivalent resistance between port a and port b. Then, please compare the experimental values with the theoretical ones and explain how this experiment verifies the Thevenin theorem.

It verifies the The verin theorem in that it has similar open lop witage and Equivalentsistan

Problem #2 Application of Thevenin Equivalent

Based on Thevenin theorem, most of linear circuits could be replaced by equivalent models composed of an equivalent voltage source V_{TH} connected in series with equivalent resistance R_{TH} , which is represented by the following diagram:

By adopting Thevenin transformation, the amount of calculation could be reduced significantly when analyzing complex circuits. For a linear circuit, suppose the Thevenin equivalent voltage is V_{TH} and the equivalent resistance is R_{TH} . If we connect a load resistance R_L

between the two reference ports (please refer to the following schematics), the load voltage V_L will be:

$$V_{L} = V_{TH} \frac{R_{L}}{R_{L} + R_{TH}}$$

$$R_{TH}$$

$$V_{TH}$$

$$R_{L}$$

$$V_{L}$$

Please connect a 50Ω resistor and an 100Ω resistor respectively between port a and port b as the load in the following circuit (same as the circuit in problem 1). Then, please turn on the source, measure the load voltage V_{ab} (the voltage between port a and port b) by multi-meter and fill in the table next page:

Load Resistance	50Ω	100Ω
V _{ab}	2692N	27250

Post-Lab Questions for (P2)

(1) Please calculate the theoretical values of the load voltage V_{ab} for the 50Ω and 100Ω loads. Then, please compare the experimental results with the theoretical ones.

According to the maximum power transformation theorem, for a linear circuit with Thevenin voltage V_{TH} and equivalent resistance R_{TH} , the power transformed to the load will reaches its maximum if the load resistance $R_L = R_{TH}$ and the maximum power absorbed by the load is:

$$P_{max} = \frac{V_{TH}^2}{4R_{TH}}$$

In order to evaluate the maximum power transformation theorem, please connect a 200Ω (or 500Ω) rheostat between port **a** and port **b** in the schematic.

Please set your rheostat at its minimum resistance (about 0Ω) at first, use multi-meter to measure the load resistance (resistance of rheostat) R_L and the load voltage V_L . Then, please increase the resistance by 10Ω or 20Ω each time, measure R_L and V_L following the same procedure. Please record the data of R_L , V_L in the table and calculate the power transformed to the load P_L for each R_L .

Rheostat Resistance	Load Voltage	Power absorbed by load
R _L	$\mathbf{V_L}$	P _L
0Ω	975 o' 000	V 0- 3016W
PISC	OIZZV	J. 1016W
18.90	0.238	2.003000
29,12	0.352V	J.3038W
28.12	0, 426 V	a wpsw

			7
	4642	0520V	2' 2078 M
/3	46070	マトナフレ	0.00500
	18.8r	0.601V	2,0053W
	79.50	0.661V	2.2055W
	gabr	27010	2,102 km
	96.92	5-735V	2 0056m
	\$109.WR	2787~	2,0057W
	++120.2D	0.809 V	o, sustem
	131.25	0.844~	or solkin
	1.3 /42.002	02602	J, 30 K ZW
	15362	v921V	antim
	161-952	U.933V	2, 205km
	170.95	0.9550	2013W
	181.12	29581	3. 305 /W
	190.952	0968V	ว, งบิดใก
	200Ω	5.9880	س مهادي

Post-Lab Questions for (P2)

(1) Please calculate the theoretical values of the maximum power transferred to the load and the corresponding load resistance.

(2) Please plot the curve of P_L and R_L . What is the maximum power transferred to the load and the corresponding load resistance based on the

curve you obtained? Is it consistent with the expected?

δ 0 2 1 0 0 20 40 60 80 100 120 140 160 180 200 R, /Ω

Based on the curve (except for an error), the maximum probable probable probable probable is 1-9.41. It is basically consistent with my exceptation

Post-Lab Reflection Questions

(1) Is your experimental result the same as your analysis (Need data as proof)? If not, how do you interpret this difference? What do you think is the source of the experimental error?

(2) What do you learn from this experiment? (e.g. what experimental procedures, how to debug, etc.)

theoratically yes, For example, in procedure 1, Vol was LEV theoratically and LESTV experimentally. The relative error was less than 2%. On top of that, except the 46.452 dates, the outcome of procedure 3 highly complies with the theoratical curve, and the data of maximum power and corresponding ban resistance was high close to the theoratical ones.

When the resistance was test measured in the circuit, it is in parallel with other resistances,

of the rheostor was a zoon c. Thus every time it is moved it can be used to measure two groups of data, one in with and and