# 01 Matlab Code

#### 1. Scale Function

설명 : 스케일 변환을 도와주는 함수

```
% Scaling transformation function
function y = Scale(x, max_value, min_value) %x is image matrix
y = (255/(max_value-min_value)*(x-min_value));
end
```

#### 2. Making LPF Mask Function

설명: 반지름 50의 LPF를 만드는 함수

#### 3. Making HPF Mask Function

설명: 반지름 50의 LPF를 만드는 함수

#### 4. Main Code

```
%%% Robot Vision%%%
%%% Dept. of Electronic Engineering
%%% 201314651 Lee Wonjai
% read the targeted image
IM Rose = imread('C:\Users\user\OneDrive\'\ùAA È-\é\2019 E-\o^, 4ÇĐ3â\4ÇĐ3â
2Çбâ\·Î°¿°ñÀü\Original Images\dipum images ch02\Fig0206(a)(rose-
original).tif');
% Size of Image
S Rose = size(IM Rose);
%LPF
% Visualizing Test
LFT Rose1 = fft2(IM Rose);
LFT Rose2 = abs(LFT_Rose1);
LFT_Rose3 = Scale(LFT_Rose2, max(max(LFT Rose2)), min(min(LFT Rose2)));
LFTS_Rose_test = fftshift(LFT_Rose3);
LR Mask = LPF Round(S Rose, 50);
LF Rose test = LFTS Rose test.*LR Mask;
% Real Mask Filtering in Frequency Domain
LFTS Rose = fftshift(LFT Rose1);
LF Rose = LFTS Rose.*LR Mask;
LF Rose1 = ifftshift(LF Rose);
LPF Rose = uint8(ifft2(LF Rose1));
%HPF
% Visualizing Test
HFT Rose1 = fft2(IM Rose);
HFT Rose2 = abs(HFT Rose1);
HFT Rose3 = Scale(HFT Rose2, max(max(HFT Rose2)), min(min(HFT Rose2)));
HFTS Rose test = fftshift(HFT Rose3);
HR Mask = HPF Round(S Rose, 50);
HF Rose test = HFTS Rose test.*HR Mask;
% Real Mask Filtering in Frequency Domain
HFTS Rose = fftshift(HFT Rose1);
HF Rose = HFTS Rose.*HR Mask;
HF Rose1 = ifftshift(HF_Rose);
HPF Rose = uint8(ifft2(HF Rose1));
figure, imshow(LFTS Rose test)
figure, imshow(LF Rose test)
figure, imshow(LPF Rose)
figure, imshow(HF Rose test)
figure, imshow(HPF Rose)
```

# 02 Result 1

## 1. Original Image



## 2. Frequency Domain of Rose Image



## 3. LPF Filtered Rose Image in Frequency Domain



## 4. LPF Filtered Rose Image in Time Domain



## 5. HPF Filtered Rose Image in Frequency Domain



## **6.** HPF Filtered Rose Image in Time Domain



# Conclusion

#### 1. Matlab

- LPF, HPF  $x^2+y^2=r^2$ 의 공식을 이용하여 반지름 50의 LPF와 HPF를 구함
- 주의점
  - 1. 이미지의 주파수 대역의 형태를 확인하기 위해서 절댓값을 씌우고, 스케일 변환을 한 후 fftshift 시킨다.
  - 2. 그러나 LPF, HPF등 Mask 계산을 할 때에는 절댓값, 스케일 변환 없이 fftshift를 시킨 후 계산을 하고, 다시 ifftshift시켜 원상복귀를 해줘야 한다.
  - 3. 따라서 코드 작성시 시각화 변수 따로, 실 계산 변수 따로 나눠 계산해야 한다.