Digital Logic Design

FULL ADDER

OBJECTIVE:

To observe the working of full adder

THEORY:

<u>Full adder:</u> A full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a 'sum' and 'carry' value, which are both binary digits. It can be combined with other full adders or work on its own.

EQUATION FOR FULL ADDER:

$$S = (A \oplus B) \oplus C_i$$

$$C_o = (A \cdot B) + (C_i \cdot (A \oplus B)) = (A \cdot B) + (B \cdot C_i) + (C_i \cdot A)$$

EQUIPMENT / REQUIREMENT:

- IC 7486
- 7408 IC.
- 7432 IC.
- Breadboard
- LED
- 0-5 VOLT DC Power Supply.

PROCEDURE:

Construct the combinational circuit as diagram given figure 7.1. After constructing both of these circuits, observe the output and complete the truth table.

Digital Logic Design

Figure 7.1 Full adder circuit

OBSERVATION TABLE:

А	В	Cī	Со	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Table 7.1

QUESTIONS / RESULTS:

- 1. A full adder can be constructed from <u>CONNECTING TWO HALF</u> adders by connecting *A* and *B* to the input of <u>CARRY OUT</u> half adder
- 2. Full adder performs the arithmetic addition of <u>3</u> inputs bits.
- 3. The HALF adder is one that does not take a carry-in from another adder.

CONCLUSION:

A full adder is a digital circuit that performs addition
A full adder adds three one-bit binary numbers, two
operands and a carry bit. The adder outputs two numbers, a
sum and a carry bit. The term is contrasted with a
half adder, which adds two binary digits.