Neutral Territory Decomposition for Parallel MD

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu

D. E. Shaw, <u>A fast, scalable method for the parallel evaluation of distance-limited</u> pairwise particle interactions, *J. Comput. Chem.* **26**, 1318 ('05)

Fine Granularity

Number of atoms per process $(N/P) \sim 1$ cf. Biomolecular simulations

spatial subsystem length $(L) \ll$ interaction cutoff (r_c)

Spatial (Half-Shell) vs. NT Decompositions

Locus of interaction — who does what (2-dimensional example)

Import regions or communication volume (2-dimensional example)

3D Import Regions

Scaling of Import Regions

Scaling of the Volume of Import Regions

Combine NT with ...

Cache-oblivious recursive blocking?

Cache-Oblivious Algorithms

EXTENDED ABSTRACT SUBMITTED FOR PUBLICATION. FOCS99

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139 {athena,cel,prokop,sridhar}@supertech.lcs.mit.edu

SIAM REVIEW Vol. 46, No. 1, pp. 3–45 © 2004 Society for Industrial and Applied Mathematics

Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library Software*

Combine NT with ...

Optimal data/computation layout (on Cell, GPU, multicore,...)?

Improving Memory Hierarchy Performance for Irregular Applications*

John Mellor-Crummey†, David Whalley‡, Ken Kennedy†

† Department of Computer Science, MS 132
Rice University
6100 Main
Houston, TX 77005
{johnmc,ken}@cs.rice.edu

ISC99

Computer Science Department Florida State University Tallahassee, FL 32306-4530 whalley@cs.fsu.edu phone: (850) 644-3506

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2001

Analysis of the Clustering Properties of the Hilbert Space-Filling Curve

Bongki Moon, H.V. Jagadish, Christos Faloutsos, *Member*, *IEEE*, and Joel H. Saltz, *Member*, *IEEE*

Metrics and Models for Reordering Transformations

Morton or Hilbert?

MSP04

Hypergraph

Michelle Mills Strout

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439 USA

mstrout@mcs.anl.gov

Paul D. Hovland

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439 USA

hovland@mcs.anl.gov

G.M. Morton, "A computer oriented geodetic data base & a new technique in file sequencing,"

IBM Tech. Report ('66)

Shift-Collapse (SC) Algorithm

Generalization of Shaw's eighth-cell method (non-owner-compute method on high-latency cluster) for pair computation to general dynamic range-limited *n*-

tuples

M. Kunaseth et al., IEEE/ACM Supercomputing (SC13)

Full-shell (FS) method [e.g. Rappaport, '88]

Half-shell (HS) method [e.g. Rappaport, '88]

Eighth-shell (ES) method [Bower et al., '06]

Shift-Collapse (SC) Performance

Runtime comparison on 48 Intel-Xeon nodes and 64 Blue Gene/Q nodes

- SC-MD is always faster than FS-MD
- At the smallest grain, SC-MD is 9.7- and 5.1-fold speedups over the state-ofthe-art hybrid linked-cell & neighbor list code
- Crossover of optimal algorithm from SC-MD to hybrid MD at larger granularity (i.e. N/P > 2,095 on Intel Xeon and N/P > 425)

M. Kunaseth et al., IEEE/ACM Supercomputing (SC13)

Shift-Collapse on Neighbor List (SC-NBL)

• Apply shift-collapse operations to the hybrid linked-cell & neighbor list code

(best of both)

Shift/collapse on neighbor list (SC-NBL): fast evaluation of dynamic many-body potentials in molecular dynamics simulations, M. Kunaseth, S. Hannongbua, & A. Nakano, Comput. Phys. Commun. **235**, 88 (2019)

Challenge: Expose massive data parallelism for SC on graphics processing unit (GPU)