Errata list

Last updated Thursday 22nd March, 2018.

Handbook

Page 56 item 12 In the second displayed equation change the 'y =' on the left hand side of the third equation to 'z ='. The full equation should read:

$$x = x(u, v, w), \quad y = y(u, v, w), \quad z = z(u, v, w).$$

Unit 1

Page 55

Page 29 Equation 45 In the Taylor expansion of cosine the signs of the terms should alternate, so that the equation should read:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

Page 37 Paragraph In the last sentence of the paragraph the reference should be to above equation (58) rather than equation (54), so the line should read:

Section Using equation (58), we have

Page 44 Equation The argument of the cosine term on the right hand side should be preceding $x^3 + 2x$, so that the equation should read:

Example 4 $\frac{dh}{dx} = \frac{dh}{du}\frac{du}{dx} = \cos(u) \times (3x^2 + 2) = \cos(x^3 + 2x) \times (3x^2 + 2).$

Solution to The unnumbered equation on line 1 should have an integral on the

Example 6 right hand side. The full equation should read:

 $I = \int \frac{-1}{A(x-0)\left(x - \frac{1}{A}\right)} dx$

Page 74 Solution to In the first unnumbered equation the constant a should appear in Exercise 26 the exponent on the right hand side so that the equation reads:

 $\frac{d}{dx}(e^{ax}) = ae^{ax}.$

Page 80 Solution to In the first unnumbered equation, change from $\frac{du}{dx}du$ to $\frac{du}{dy}dy$ in the Exercise 40(a) right hand side so that the equation reads:

 $\frac{1}{12}\int e^u \frac{du}{dy}dy.$

Page 81 Solution to In the unnumbered equation on line 2, change from dx to dt in the Exercise 40(c) right hand side so that the equation reads:

 $-\frac{1}{2}\int \sqrt{u}\,\frac{du}{dt}dt.$

New Page 82 Solution to The final answer should include a constant of integration. Exercise 42(c)

Page 83	Solution to	In the second line of the displayed equation the variable x should
	Exercise 44	have been z , so that the second line should read:

$$= \frac{1}{4} \left[\frac{1}{3/2} \arctan \left(\frac{z}{3/2} \right) \right]_0^{3/2}$$

Unit 2

Page 116 Example 5 In the last displayed equation there is a
$$dx$$
 term missing. The equation should read:

$$y(x) = e^{-Ax} \left(\int e^{Ax} h(x) \, dx \right).$$

Which method(s) could you use to try to solve each of the following first-order differential equations?

Page 126 Unnumbered equation The right hand side of the equation should reference the numerical approximation to the solution
$$Y_1$$
 instead of y_1 , which is the exact solution at x_1 . The full equation should read:

Figure 13
$$Y_2 = Y_1 + h f(x_1, Y_1),$$

Page 135 Solution to When performing the substitution
$$u = 1 + t^2$$
 a factor of one half is Exercise 6(b) missing outside the integral sign in one of the steps after the words "we then obtain". The corrected equation should read:

$$\int \frac{t}{1+t^2} \, dt = \frac{1}{2} \int \frac{1}{u} \, \frac{du}{dt} \, dt = \frac{1}{2} \int \frac{1}{u} \, du$$

$$\frac{d}{dx}(e^x y) = e^{3x}.$$

Unit 3

Page 163	Second	In the last sentence before the unnumbered equations at the bottom
	paragraph	of the page the independent variable should be x rather than t , so
	after	the end of the sentence should read,
	Equation (19)	so substituting $y = e^{\lambda x}$ into the left-hand side of equation (19) gives

$$x(t) = Ce^{\lambda_1 t} + De^{\lambda_2 t}.$$

New Page 176 Final In the final sentence change the second occurrence of
$$\Gamma$$
 to $-\Gamma$, so that the sentence reads:

before subheading When Γ approaches ω from above, both roots approach the value $-\Gamma$, ...

Page 177	Exercise 10(c)	The question should state that the pendulum is released from rest, so the part of the question should read:
		If the pendulum is released from rest and the initial amplitude of the oscillation is $\theta=0.20$ (in radians), what is the amplitude at $t=100$?
Page 192	Second paragraph	The derivative should be with respect to the independent variable t , and so $dy/dy = b$ should be $dy/dt = b$ and $y'(t_0) = b$ should be $\dot{y}(t_0) = b$. The paragraph should read:
		For a second-order differential equation, the initial conditions specify the value of the dependent variable $(y=a)$ and the value of its derivative $(dy/dt=b)$, for the same given value of the independent variable $(t=t_0)$, and they are often written in the form $y(t_0)=a$, $\dot{y}(t_0)=b$.
Page 200	Unnumbered equation	The expression for p should contain a factor a_0 in the numerator, so that the full equation should read
	above Equation 60	$p = \frac{-2\Gamma\omega a_0}{(\omega_0^2 - \omega^2)^2 + 4\Gamma^2\omega^2}$
Page 201	Paragraph preceding Figure 12	Add the word 'approximately' in the sentence describing Figure 12(a), so that the sentence should read:
		In each case, the amplitude is greatest when ω is approximately equal to the natural angular frequency ω_0 of the corresponding undriven undamped oscillator.
Unit 4		
Page 5	Exercise 1	The question should ask for the displacement from Milton Keynes to London and not the reverse direction.
Page 34	Highlighted box	The text above this box has been considering $m \times n$ matrices, whereas the matrices in this box are $n \times m$ matrices. For consistency the end of the sentence in the highlighted box should read:
		$a_{ij} = b_{ij}$ for all $i = 1,, m$ and for all $j = 1,, n$.
Page 58	Solution to Example 19	In the sentence near the end of the solution that describes how to calculate the cofactor C_{14} the references should be to M_{14} rather than M_{11} , so the sentence should read:
		Further, $C_{14} = (-1)^{1+4} M_{14} = -M_{14}$, where M_{14} is the determinant of the matrix obtained by crossing out the first row and fourth column of \mathbf{A} , i.e.
Page 74	Solution to Exercise 32	The two matrices on the left hand side of the equation are transposed. The first line of the solution should read:
		$\begin{bmatrix} a & b \end{bmatrix}$ 1 $\begin{bmatrix} d & -b \end{bmatrix}$ 1 $\begin{bmatrix} ad - bc & -ab + ba \end{bmatrix}$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} ad - bc & -ab + ba \\ cd - dc & -cb + da \end{bmatrix}$$

Page 78 Solution to There is a minor sign error when calculating the magnitude of the Exercise 42(b) vector in the final line of the solution, the final line should read $|\mathbf{r}_1 \times \mathbf{r}_2| = \sqrt{(-2)^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$.

Unit 5

Page 103	Figure 10	The figures should be labelled from left to right as (a), (b) and (c)
		rather than the order (a), (c) and (b) printed on the page.

Page 103 Final In the final sentence on the page the two given eigenvectors do not correspond to the values of
$$k$$
 given. The final sentence should conclude:

with
$$k = -2$$
 and $k = \frac{1}{2}$, respectively.)

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}$$

The vectors $\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \end{bmatrix}^T$ and $\mathbf{v}_2 = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$ are linearly independent.

So
$$[1 1]^T = \frac{3}{7}[1 3]^T + \frac{2}{7}[2 -1]^T$$
.

$$[-2 \quad 1]^T + [2 \quad -1]^T = [0 \quad 0]^T,$$

Page 113 Exercise 18 In the list of three given eigenvectors the third eigenvector should be labelled
$$\mathbf{v}_3$$
, so that the list should read:

$$\mathbf{v}_1 = [-1 \quad 1 \quad 1]^T, \ \mathbf{v}_2 = [1 \quad 2 \quad 1]^T \text{ and } \mathbf{v}_3 = [0 \quad 2 \quad 1]^T$$

Page 132 Figure 18 The vector
$$\mathbf{v}_1$$
 should be pointing south east if it is representing the vector $\mathbf{i} - \mathbf{j}$.

$$\begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} 1000 \\ 1000 \end{bmatrix} = \begin{bmatrix} 1100 \\ 900 \end{bmatrix}$$

Page 146 Solution to In the last sentence should have
$$\alpha_2 = 1$$
 in order to satisfy the Exercise 15 equation, i.e. the last sentence should read:

is satisfied, for example, by the values $\alpha_1 = 1$, $\alpha_2 = 1$, $\alpha_3 = 0$, which are not all zero.

Page 150 Solution to In the penultimate displayed equation in the solution the coefficient Exercise 26(a) of
$$\lambda^2$$
 should be $b-2a$, so that the equation should read:

$$a\lambda^{3} + (b-2a)\lambda^{2} + (c-2b)\lambda - 2c = 0.$$

Page 152 Solution to The final line of the solution should refer to the the eigenvalue 1 Exercise 32 rather than
$$-1$$
, so the final line should read:

eigenvector corresponding to $\lambda = 1$ is $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$.

Page 154	Solution to	For the eigenvalue $\lambda = -2$ the eigenvector found should be
	Exercise 35	$k[-1 0 1]^T$, so the final sentence for this case should read:
		$v = k[-1 0 1]^T$, where k is an arbitrary non-zero value.

Unit 6

Page 193	Example 11(a)	In the hint given in part (a) the indices of the two eigenvalues should
		be interchanged so that eigenvalue λ_1 corresponds to eigenvector \mathbf{v}_1 ,
		the hint should read:

(*Hint*: Eigenvectors of
$$\begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}$$
 can be shown to be

$$\mathbf{v}_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$$
 with eigenvalue $\lambda_1 = -2$,

$$\mathbf{v}_2 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$$
 with eigenvalue $\lambda_2 = -4$.)

...so the left-hand mass is pushed in the opposite direction by both springs attached to it.

Page 198 Text In the third line after equation 45 the frequency
$$\omega_2$$
 should be ω_1 , so following equation 45 that the equation should read:

That is why the frequency of the in-phase normal mode, ω_1 ,

Unit 7

Page 44

equation

Page 43	Paragraph before	The word 'is' is missing from the first sentence. The sentence should begin:
	green	This is the sum of two squared terms,

heading

Second

Change 'minimum' to 'maximum' at the end of the sentence, so that

bullet the second bullet point reads:

point above Procedure 1

• When both eigenvalues are negative, Q(x,y) < 0, and the stationary point is a local maximum.

Page 47 Sentence Change the first mention of 'eigenvectors' to 'eigenvalues' so that above first the sentence begins:

This has n real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots$

Page 47 First In the paragraph describing the extension from two variables (x) and displayed y to n variables $(x_1, x_2, \dots x_n)$ the quadratic function Q(x, y) will become a function of the n variables, so the displayed equation should read:

$$Q(x_1, x_2, \dots, x_n) = c_1^2 \lambda_1 + c_2^2 \lambda_2 + \dots + c_n^2 \lambda_n$$

Unit 8

Page 105 Box In the sentence below Equation 33 the last scale factor in the list should be h_w , so the sentence reads:

Equation (33) where h_u , h_v and h_w are appropriate scale factors.

Page 112	Box containing Equation (46)	In the final sentence the range for the variable v should be from v_1 to v_2 and not from v_1 to u_2 as printed, so that the middle of the final sentence should read:
		and $v_1 \le v \le v_2$ are chosen to cover
Unit 9		
Page 141	Main text,	The word 'as' is missing from the final sentence, which should read:
	describing Figure 11	As you would expect, all the arrows point towards the centre of the star, and their length increases as they get closer to the star.
Page 147	Main text, 7 lines from bottom	Change v_y to v_ϕ so that the sentence reads:
		An expression for v_{ϕ} can be found in a similar way.
Page 162	Sentence	Change $V(x, y, x)$ to $V(x, y, z)$ so that the sentence begins:
	following Equation (39)	When this operator acts on a scalar field $V(x,y,z)$
Page 193	Solution to Eexercise 23(a)	In the first sentence change ' $F_{\phi}=0$ and $F_{z}=0$ ' to ' $F_{\theta}=0$ and $F_{\phi}=0$ ' so that the second line of text reads:
		$F_r = 4r^3$, $F_\theta = 0$ and $F_\phi = 0$, we get
Unit 10		
Page 209	Exercise 2	Change 'parabolic' to 'parametric' in the first sentence, so that the sentence reads:
		One turn of a helical path has the parametric representation
New Page 214	Caption of Figure 15	The date of birth of Albert Einstein is 14 March 1879, so the caption to Figure 15 should read:
		Albert Einstein (1879–1955)
Page 236	Solution to Example 10	When working out the flux over the surface one of the intermediate lines has an \mathbb{R}^2 factor instead of \mathbb{R}^3 . The correct line should read:
		$\mathbf{F} \cdot \mathbf{J} = R^3 \sin^2 \theta \left(\cos \phi \mathbf{i} + \sin \phi \mathbf{j}\right) \cdot \mathbf{e}_r.$
Page 252	Exercise 22	The last coordinate in the list of vertices of the given rectangle should be $(0,1)$, so the final line should read:
		\ldots at $(0,0),$ $(2,0),$ $(2,1),$ $(0,1),$ traversed in that order, and returning to $(0,0).$
Unit 11		
Page 46	Exercise 20	The range of definition of the function f should be from $-1/4$ rather than $1/4$, so that the definition should read:
		$f(x) = x$ for $-\frac{1}{4} < x \le \frac{3}{4}$, f(x+1) = f(x),

Page 55 Example 15 There are two sign errors in the denominators of fractions at the end of the solution. The final two lines should read:

$$x(t) = \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{i(-1)^n}{n} \frac{(\omega_0^2 - n^2 \omega^2) - 2\Gamma in\omega}{(\omega_0^2 - n^2 \omega^2)^2 - (2\Gamma in\omega)^2} e^{int}$$

$$= \sum_{\substack{n=-\infty\\ n\neq 0}}^{\infty} \frac{(-1)^n}{n} \frac{2\Gamma n\omega + i(\omega_0^2 - n^2\omega^2)}{(\omega_0^2 - n^2\omega^2)^2 + 4\Gamma^2 n^2\omega^2} \left(\cos(nt) + i\sin(nt)\right).$$

Page 60 Margin The exponential terms should be e^{ix} and e^{-ix} rather than e^x and note e^{-x} , so that the margin note should read:

Recall that $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$.

Page 77 Solution to In the introductory paragraph of the solution the function s'(t)Exercise 21 (mentioned twice) should be simply s(t), so that the paragraph should start:

The function c(t) is continuous, as can be seen from its graph, and s(t) is *minus* its derivative. The Fourier series for s(t) is denoted by S(t)...

Unit 12

Page 101 Displayed In the definition of the odd extension f_{odd} the definition for -L < equation x < 0 should be -f(-x), so that the equation should read

above Figure 9 $f_{\text{odd}}(x) = \begin{cases} f(x) & \text{for } 0 \le x \le L, \\ -f(-x) & \text{for } -L < x < 0, \end{cases}$

 $f_{\text{odd}}(x+2L) = f_{\text{odd}}(x)$

New Page 109 Figure 15 At the top of the figure the two formulas for the number of particles entering and leaving should include a factor ΔA , so the top of the diagram should read:

 $J_x(x,t) \Delta A \delta t$ $J_x(x + \Delta x, t) \Delta A \delta t$

particles enter \longrightarrow particles leave

Page 113 Example 2 The range of validity of the partial differential equation should be for x less than L rather than x less than 1 as stated, so the partial differential equation should read:

 $\frac{\partial^2 c}{\partial x^2} = \frac{1}{D} \frac{\partial c}{\partial t} \quad (0 < x < L, \ t > 0)$

- Page 119 Figure 16 The horizontal axis should be labelled x rather than t.
- Page 120 Step 5 In the bold heading the function should be $T_n(t)$ rather than $T_n(x)$, so the heading should read:

Step 5 Find the functions $T_n(t)$

Page 121 Step 6 In the opening sentence the function should be $X_n(x)$ rather than $X_n(t)$, so the sentence should start:

By combining $X_n(x)$ and $T_n(t)$,

Page 131 Unnumbered displayed equation

In the unnumbered displayed equation the integration should be with respect to s rather than u and the lower limit of integration should be minus infinity, so that the equation should read

$$c(x,t) = \frac{1}{\sqrt{4\pi Dt}} \int_{-\infty}^{\infty} \exp\left[-\frac{(x-s)^2}{4Dt}\right] c_0(s) \ ds$$

Unit 13

Page 187 Figure 26

The direction arrow on the separatrix just below the point labelled C should point away from the equilibrium point at $(\pi,0)$.