

Tobias Ritschel

Remember: we want to remove facets

Example cg.cs.ucl.ac.uk

Bezier Surfaces Introduction

- Constructing a surface relies very much on the ideas behind constructing curves
- Surfaces can be thought of as 'Bezier curves in all directions' across the surface
- Tensor products of Bezier curves
- Teapot most famous example
 - produced entirely by Bezier surfaces

Tensor Product

Tensor product of two vectors

$$\mathbf{a} \otimes \mathbf{b} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \end{bmatrix}$$

Tensor Product

Tensor product of two functions

Bicubic Bezier Patch

Let

$$\mathbf{c}(t|\mathbf{p}_0,\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3)$$

be a 1D spline at t through the control points $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$

Then the surface is

Bicubic Bezier Patch

1D Basis Functions

2D Basis Functions

to Carlino Zino

Patch Modelling

Original Teapot specified with Bezier Patches

Alternative Splines Surfaces

- You can make surfaces from B-Splines in a similar way
- A particular types of B-Spline generalisation, Non-uniform rational Basis spline (NURBS) surfaces are particularly common

Geri's game by Pixar

Spline domain

- Splines are defined to map from (0,1)^2 to 3D
- Not every 3D shape can be represented like this
 - Homeomorphism
 - You cannot take every shape and map it to (0,1)^2
 - Counter example seen right

Splines on non-disk topology

Splines on non-disk topology

- Lets consider a simple case with high genus
- Non-disk topology

1 DE 165 590

Best to think 2D again

Step 1: Split edges

Step 2: Re-topologize

Step 3: Relax

(average with neighbour)

Done

Does not look like much, but ...

... repeat forever ...

Does not look like much, but ...

.. Is the key to high-quality 3D geometry

Conclusions

- Surfaces are a simple extension to curves
- Really just a tensor-product between two curves
 - One curve gets extruded along the other
- Subdivision surfaces are another way of generating curves
 - Particularly amenable to GPU implementation!