

UNIVERSIDADE FEDERAL DE UBERLÂNDIA – UFU FACULDADE DE ENGENHARIA ELÉTRICA - FEELT CIRCUITOS ELÉTRICOS II – FEELT31403

Professor: Paulo Henrique Oliveira Rezende

1ª Lista de Exercício de Circuitos Elétricos II

Capítulo 1: Circuitos magneticamente acoplados

QUESTÃO 1: Traçar o circuito com ponto equivalente ao das bobinas da figura abaixo e determinar a reatância indutiva equivalente.

 $R: Z=j12 \Omega$

QUESTÃO 2: Determine as correntes I_1 , I_2 , I_3 no circuito abaixo. Encontre a energia armazenada devido ao acoplamento das bobinas para t = 2ms. Considere $\omega = 1000 rd/s$.

QUESTÃO 3: Considere o circuito representado abaixo. O coeficiente de acoplamento é k = 0,75. Se $i_s = 5cos200t$ mA, calcule a energia total armazenada para t = 0 e t = 5 ms se:

- a) a e b estão em aberto;
- b) a e b estão curto-circuitados.

QUESTÃO 4: No circuito mostrado, encontre o valor de "X" que dará a máxima transferência de potência no resistor de carga de 20 Ω .

UNIVERSIDADE FEDERAL DE UBERLÂNDIA – UFU FACULDADE DE ENGENHARIA ELÉTRICA - FEELT CIRCUITOS ELÉTRICOS II – FEELT31403

Professor: Paulo Henrique Oliveira Rezende

QUESTÃO 5: O circuito mostrado abaixo é projetado para alimentar um alto-falante simples de 8Ω . Qual o valor de M resulta em 1 W de potência média sendo entregue ao alto-falante?

<u>QUESTÃO 6:</u> Para o circuito da figura, $V_s = 117 sen 500 t V$. Calcule v_2 se os terminais marcados a e b estão (a) deixados aberto; (b) curto circuitados; (c) conectados por um resistor de 2Ω .

QUESTÃO 7: Encontre V₀ na rede da figura.

QUESTÃO 8: Determine I₁, I₂, V₁ e V₂ do circuito abaixo:

$$\begin{split} \mathbf{I}_1 &= 3.08 /\!\!-\!13.7^{\circ} \, \mathrm{A}; \\ \mathbf{I}_2 &= 1.54 /\!\!166.3^{\circ} \, \mathrm{A}; \\ \mathbf{V}_1 &= 0.85 /\!\!20^{\circ} \, \mathrm{V}; \\ \mathbf{V}_2 &= 1.71 /\!\!-\!160^{\circ} \, \mathrm{V}. \end{split}$$