The group G is isomorphic to the group labelled by [16, 9] in the Small Groups library. Ordinary character table of $G \cong Q16$:

	1a	2a	4a	8a	8b	4b	4c
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1
χ_3	1	1	1	-1	-1	1	-1
χ_4	1	1	1	-1	-1	-1	1
χ_5	2	2	-2	0	0	0	0
χ_6	2	-2	0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0
χ_7	2	-2	0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0

Trivial source character table of $G \cong Q16$ at p = 2:

Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9
Representatives $n_j \in N_i$			1a						
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 2 \cdot \chi_6 + 2 \cdot \chi_7$	16	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	8	8	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	4	4	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	2	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	0	2	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	2	2	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	1

```
P_1 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2 \\ P_3 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2 \\ P_4 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong C4 \\ P_5 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong C4 \\ P_6 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12)]) \cong Q8 \\ P_7 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong Q8 \\ P_8 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong C8 \\ P_9 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong C8 \\ P_9 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong C16 \\ N_1 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong Q16 \\ N_2 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong Q16 \\ N_3 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong Q16 \\ N_4 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong Q16 \\ N_5 = Group([(1,2,5,8)(3,12,10,16
```

 $N_6 = Group([(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong Q16$ $N_7 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12)]) \cong Q16$ $N_8 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong Q16$ $N_9 = Group([(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9),(1,3,5,10)(2,6,8,13)(4,15,11,9)(7,16,14,12),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,14,11,7)(6,15,13,9)]) \cong Q16$