Departamento de Matemática	Universidade do Minho
Tópicos de Matemática	Exame de recurso – 8 fev 2023
Lic. em Ciências de Computação - 1º ano	duração: duas horas
Nome	Número
GRUPO I. Em cada uma das questões seguintes, diga se é verdadeira (Vassinalando a opção conveniente:) ou falsa (F) a proposição,
1. Para quaisquer proposições p,q,r e s , se as proposições $q\Rightarrow r$, $q\lor p\Rightarrow \sim s$ são verdadeiras, então, a proposição r é verdadeira.	> <i>s</i> e
 O contrarrecíproco de "Se faço o exame e tiro positiva, então, aprovo à curricular" é logicamente equivalente a "Se falto ao exame ou tiro nega- reprovo à unidade curricular." 	
3. Para toda a condição $p(n)$, em \mathbb{N} , se $p(n)$ é hereditária e $p(2)$ e $p(4)$ sã verdadeiras, então $p(3)\Rightarrow p(1)$ é uma proposição verdadeira.	áo proposições V□ F□
4. Para quaisquer conjuntos A , B e C , $(A \cup B) \cap C \subseteq A \cup (B \cap C)$.	V□ F□
5. Se o produto cartesiano de dois conjuntos tem exatamente 7 elementos, conjuntos tem um único elemento.	, então um dos V□ F□
6. Para qualquer conjunto A , se $\mathcal R$ é uma relação de equivalência em A , e $A/\mathcal R\subseteq \mathcal P(A)$.	ntão, V□ F□
7. Sejam $A=\{a,b,c\}$ e $\mathcal R$ uma relação de equivalência em A . Se $[a]_{\mathcal R}\cap$ então, $\mathcal R$ é a relação identidade.	$[b]_{\mathcal{R}} \cap [c]_{\mathcal{R}} = \emptyset$ $\bigvee \Box \ F \Box$
8. Para qualquer c.p.o. (A,\leq) e quaisquer $x,y\in A$ com $x\neq y$, se x e y s maximais de A então não existe ínfimo de \emptyset em A .	são elementos V□ F□

GRUPO II. Dê exemplo, ou justifique que não existe, de:

1. um conjunto A tal que $\{1,\{1\}\}\in A$ e $\{1,\{1\}\}\subseteq A$;

2. uma condição em $\mathbb N$ que seja hereditária mas não universal;

3. um conjunto A e uma função $f:A\to A$ tal que $f^\to(\{1,2\})=\{5\}$ e $f^\leftarrow(\{1,3\})=\{5,4,2\}.$

4. uma relação de equivalência $\mathcal R$ em $A=\{1,2,3,4\}$ tal que $[1]_{\mathcal R}=\{1,2,3\}$ e $[4]_{\mathcal R}=\{3,4\}$;

GRUPO III. Para $\alpha \in \mathbb{Z} \setminus \{0\}$, seja $f_{\alpha} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ a aplicação definida por $f_{\alpha}(x,y) = \alpha(x+y)$.

- 1. Determine:
 - $f_{\alpha}(\{0,2\} \times \{0,2\});$
 - $f_{\alpha}^{\leftarrow}(\{0\})$.

GRUPO IV. Considere o c.p.o. (A, \leq) definido pelo diagrama de Hasse apresentado.

Indique, caso exista:

1. o conjunto dos majorantes de $X=\{b,c,d\}$;

- 3. os elementos minimais de $Z=\{b,d,g,i\}$;
- 4. o ínfimo e o supremo do conjunto vazio;
- 5. um subsconjunto X com 6 elementos que seja uma cadeia para a ordem parcial induzida pela ordem do c.p.o. A.
- 6. um subsconjunto X com 6 elementos que seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. A.