

Matt Dancho

Founder / CEO of Business Science

Twitter: @bizScienc // @mdancho84

Github: business-science // mdancho84

Email: mdancho@business-science.io

Website: www.business-science.io

About Business Science

Business & Finance Consultancy

- Executive Leadership
- Bolt-on Data Science Team

Education & Tools

- Blog: www.business-science.io
- Open Source Software
- Courses: Coming soon!!!

Community Driven

Powered by

Adaptive Solution...

ML + Leadership = Good Decision Making

Al: Learning Built Into System

...Applied To Any Problem

OUR EXPERTISE

Data Scientists

Open Source Software

- Courses (Coming Soon!)
 - High Demand Applications
 - High Demand Tools
 - Integrated Solutions

Data Scientists

Open Source Software

- Courses (Coming Soon!)
 - High Demand Applications
 - High Demand Tools
 - Integrated Solutions

Data Scientists

Open Source Software

- Courses (Coming Soon!)
 - High Demand Applications
 - High Demand Tools
 - Integrated Solutions

Data Scientists

Open Source Software

- Courses (Coming Soon!)
 - High Demand Applications

Learn from our blog

www.business-science.io/blog

Business + Data Science

H₂O WORLD

HR Analytics

Using ML To Predict Employee Turnover

1. Employee Attrition: A HUGE PROBLEM

2. New Techniques To Predict & Explain Turnover

1. Employee Attrition: A HUGE PROBLEM

2. New Techniques To Predict & Explain Turnover

1. Employee Attrition: A HUGE PROBLEM

2. New Techniques To Predict & Explain Turnover

1. Employee Attrition: A HUGE PROBLEM

2. New Techniques To Predict & Explain Turnover

One More Reason

4. Our Article Is Popular!

Just google:
"Predict Employee
Turnover"

HR ANALYTICS: USING MACHINE LEARNING TO PREDICT EMPLOYEE TURNOVER

Written by Matt Dancho on September 18, 2017

Categories: Business

Tags: R-Project, R, h2o, lime, Employee Turnover

R-Bloggers • KDNuggets • LinkedIn

Code available in article:

http://www.business-science.io/business/2017/09/18/hr_employee_attrition.html

Competitive Advantage

"You take away our top 20 employees and overnight we become a mediocre company."

-Bill Gates

Cost Of Turnover

Organizations face huge costs resulting from employee turnover

Cost Of Turnover

Organizations face huge costs resulting from employee turnover

Most important costs are intangible

New Product Ideas
Customer Relationships
Project Management
Engineering Talent

Machine Learning Is Evolving

• **H2O**

- Automated Machine Learning
- Predict at very high accuracy
- Complex models can't be explained

LIME

- Used to explain ML classifiers
- Deep learning, stacked ensembles now explainable

IBM Watson HR Data Set

- Simulated HR Database
- Representative of real-world data
- Used for IBM Watson Case Study

Feature Set

HR Dataset

• 35 Features

1,470 Observations

Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
41	Yes	Travel_Rarely	1102	Sales	1	2	Life Science
49	No	Travel_Frequently	279	Research & Development	8	1	Life Science
37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other
33	No	Travel_Frequently	1392	Research & Development	3	4	Life Science
27	No	Travel_Rarely	591	Research & Development	2	1	Medical
32	No	Travel_Frequently	1005	Research &	2	2	Life Science

H₂O.ai

Modeling with H2O

Training the model

```
# Split data into Train/Validation/Test Sets
hr_data_h2o <- as.h2o(hr_data)

split_h2o <- h2o.splitFrame(hr_data_h2o, c(0.7, 0.15), seed = 1234 )

train_h2o <- h2o.assign(split_h2o[[1]], "train" ) # 70%
valid_h2o <- h2o.assign(split_h2o[[2]], "valid" ) # 15%
test_h2o <- h2o.assign(split_h2o[[3]], "test" ) # 15%</pre>
```

```
# Run the automated machine learning
automl_models_h2o <- h2o.automl(
    x = x,
    y = y,
    training_frame = train_h2o,
    leaderboard_frame = valid_h2o,
    max_runtime_secs = 30
)</pre>
```

Automated ML:

-Deep Learning -Ensembles -GBM

H₂O.ai

Modeling with H2O

Prediction: Test Data (Unseen)

```
# Predict on hold-out set, test_h2o
pred_h2o <- h2o.predict(object = automl_leader, newdata = test_h2o)</pre>
```

Performance: 88% Accuracy

```
## [[1]]
## [[1]]$accuracy
## [1] 0.8767773

##
## [[1]]$misclassification_rate
## [1] 0.1232227

##
## [[1]]$recall
## [[1]]$precision
## [[1]]$precision
## [[1]]$precision
## [[1]]$precision
## [[1]]$null_error_rate
## [[1]]$null_error_rate
## [[1]]$null_error_rate
## [1] 0.7914692
```


Business Implications

- Recall = 62%
 - Will correctly classify those at risk of turnover 62 of 100 times
 - Critical to the business
 - 62% of at risk employees that can be targeted preemptively
- Precision = 54%
 - Will avoid incorrectly assigning "Yes" 54 of 100 times
 - Better to target incorrectly than miss
 - Should not sacrifice Recall

Understanding Drivers Is Key

Have a great model, but...

how do we prevent turnover?

Local Interpretable Model-Agnostic Explanation

- Theory
 - LIME approximates model locally as logistic or linear model
 - Repeats process 5000X
 - Outputs features that are important to local models

Result: Data Scientists Understand Why Model Predicts

- Complex classification models can now be interpreted
 - Black Box Models
 - Neural Networks, Ensembles, Random Forests

- H2O and LIME now integrated!
 - https://github.com/thomasp85/lime

Step 1: Create explainer using lime()

```
# Run Lime() on training set
explainer <- lime::lime(
    as.data.frame(train_h2o[,-1]),
    model = automl_leader,
    bin_continuous = FALSE)</pre>
Create explainer object
```


Step 2: Create explanation using explain()

```
# Run explain() on explainer
explanation <- lime::explain(
    as.data.frame(test_h2o[1:10,-1]),
    explainer = explainer,
    n_labels = 1,
    n_features = 4,
    kernel_width = 0.5)</pre>
Explain new observations
```


Step 3: Plot Feature Importance

```
plot_features(explanation) +
    labs(title = "HR Predictive Analytics: LIME Feature Importance Visualization",
        subtitle = "Hold Out (Test) Set, First 10 Cases Shown")
```


H₂O WORLD

Step 4: Inspect Important Features

Real World: Solves Real Problems

Client Case Study

- Fortune 500 firm
- Modeled executive potential using more sophisticated process
- Our algorithm identified 16 employees that predicted as executive potential but were not targeted by client

Real World: Solves Real Problems

Client Case Study

- Fortune 500 firm
- Modeled executive potential using more sophisticated process
- Our algorithm identified 16 employees that predicted as executive potential but were not targeted by client

Machine Learning Predicted Turnover

- 88% Accuracy
- 62% Recall ← Important!

Machine Learning Explained Turnover

 Turnover greater based on Job Role & Overtime

Machine Learning Predicted Turnover

- 88% Accuracy
- 62% Recall ← Important!

Machine Learning Explained Turnover

 Turnover greater based on Job Role & Overtime

Machine Learning Predicted Turnover

- 88% Accuracy
- 62% Recall ← Important!

Machine Learning Explained Turnover

 Turnover greater based on Job Role & Overtime

Machine Learning Predicted Turnover

- 88% Accuracy
- 62% Recall ← Important!

Machine Learning Explained Turnover

 Turnover greater based on Job Role & Overtime

Data Science Risk

How do we know model is right?

Model not back-tested

Time: Cross-sectional analysis

Model not adaptive

Data Science Risk

How do we know model is right?

Model not back-tested

Time: Cross-sectional analysis

Model not adaptive

Data Science Risk

How do we know model is right?

Model not back-tested

Time: Cross-sectional analysis

Model not adaptive

What do we do when model breaks down?

Data Science Risk

How do we know model is right?

Model not back-tested

Time: Cross-sectional analysis

Model not adaptive

What do we do when model breaks down?

Remember: Adaptive Solution...

We Build Al Into System

Learning Solutions

Model System

What About Communication?

We Build Data Science Applications

Shiny, PowerBI, Tableau

www.business-science.io/demo

Twitter: @bizScienc // @mdancho84

Github: business-science // mdancho84

Email: mdancho@business-science.io

Website: www.business-science.io

