Tema 1. Los números reales y sus propiedades

1.0. Contenido y documentación

- 1.0. Contenido y documentación
- 1.1. Números naturales e inducción matemática
- 1.2. Números racionales y su insuficiencia
- 1.3. Completitud de los números reales
 - 1.3.1. Propiedad de Arquímedes
- 1.4. La unicidad del cuerpo de los números reales

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/46307180-926f-443c-950f-875b8b5 3e196/U1 NumerosReales.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/78933d66-d588-433e-b098-ab1ff17 767ca/H1 Fundamentos.pdf

1.1. Números naturales e inducción matemática

Suponemos que P(n) es una afirmación que depende de un número n que deseamos demostrar. El principio de inducción dice que para ello, basta con:

- Demostrar que $\mathcal{P}(1)$ es verdad.
- Suponer que $\mathcal{P}(n)$ es verdad, **hipótesis de inducción**, y a partir de eso demostrar que $\mathcal{P}(n+1)$ es verdad.

Ejemplo 1. Demostrar por inducción el sumatorio de Gauss: $1+2+...+n=\frac{n(n+1)}{2}$.

Primero, planteamos el caso base, n=1, y vemos que $\dfrac{1(1+1)}{2}=\dfrac{2}{2}=1$.

A continuación desarrollamos el paso inductivo, con nuestra hipótesis de inducción: 1+2+...+n= $\frac{n(n+1)}{2}, \forall n \in \mathbb{N}.$

Comprobamos si nuestra hipótesis se cumple para
$$n+1$$
:
$$1+2+...+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}=\frac{(n+1)((n+1)+1)}{2}$$
. \square

1.2. Números racionales y su insuficiencia

En el conjunto de números racionales, \mathbb{Q} , se definen dos operaciones, suma + y producto \cdot , que verifican las siguientes propiedades algebraicas:

- 1. Propiedad asociativa de la suma. Para todo $x,y,z\in\mathbb{Q}$ se cumple (x+y)+z=x+(y+z).
- 2. Propiedad conmutativa de la suma. Para todo $x,y,z\in\mathbb{Q}$ se cumple x+y=y+x.
- 3. **Existencia del elemento neutro de la suma**. Existe un elemento de \mathbb{Q} , que denominaremos 0, tal que para todo $x \in \mathbb{Q}$ se cumple x + 0 = x.
- 4. Existencia del elemento opuesto para la suma. Para cada $x \in Q$ existe otro elemento, al que denominamos -x, tal que x + (-x) = 0.
- 5. Propiedad asociativa del producto. Para todo $x,y,z\in\mathbb{Q}$, se cumple (xy)z=x(yz).
- 6. Propiedad conmutativa del producto. Para todo $x,y,z\in\mathbb{Q}$, se cumple xy=yx.
- 7. **Existencia del elemento neutro del producto**. Existe un elemento de \mathbb{Q} , que denominaremos 1, tal que para todo $x \in \mathbb{Q}$ se cumple $x \cdot 1 = x$.
- 8. Propiedad distributiva del producto respecto de la suma. Para todo $x,y,z\in\mathbb{Q}$ se tiene x(y+z)=xy+xz.
- 9. Existencia del elemento inverso respecto del producto. Para cada $x\in\mathbb{Q}, x\neq 0$, existe otro elemento, que denominaremos x^{-1} , tal que $x\cdot x^{-1}=1$.

Sea $\mathbb K$ cualquier conjunto donde estén definidas las operaciones suma + y producto \cdot . Se dice que $\mathbb K$ es un **cuerpo** si se cumplen los axiomas 1- 9.

1.3. Completitud de los números reales

Sea \mathbb{K} un cuerpo ordenado con $A\subset \mathbb{K}, L\in \mathbb{K}$.

Definición. Decimos que L es una cota superior de A, $L \geq A$, si $L \geq a, \forall a \in A$.

Definición. Decimos que L es un máximo de A si $L \in A$ y $L \geq A$.

Definición. Decimos que A está acotado superiormente si tiene una cota superior.

Definición. Decimos que L es un supremo de A si L es la mínima cota superior de A.

Axioma de completitud de $\mathbb R$. Todo subconjunto $A\subset\mathbb R$ no vacío, acotado superiormente, tiene un supremo en $\mathbb R$. Es decir: $A\subset\mathbb R$, $A\neq\emptyset$, A acotado superiormente $\Rightarrow\exists \sup A$

Teorema. Sea $\mathbb K$ un cuerpo ordenado y $A\subset \mathbb K$, $A\neq \emptyset$ y L una cota superior de A. Entonces $L=\sup A\Leftrightarrow \forall \varepsilon>0, \exists a\in A: L-\varepsilon< a\leq L.$

Demostración.

 $L = \sup A \Leftrightarrow \forall L' < L \text{, con } L' \ngeq A \Leftrightarrow \forall \varepsilon > 0 \text{ se tiene que } L - \varepsilon \ngeq A \Rightarrow \forall \varepsilon > 0, \exists a \in A: L - \varepsilon < a \leq L. \ \Box$

1.3.1. Propiedad de Arquímedes

Propiedad de Arquímedes. Sea $\mathbb K$ un cuerpo ordenado completo, $\mathbb N$ no está acotado superiormente si $\forall x \in \mathbb K, \exists n \in \mathbb N: n > x$

Suponiendo que $\exists L \in \mathbb{K}: \mathbb{N} \leq L$, debe $\exists n \in \mathbb{N}: L-1 < n \leq L$, luego $L < n+1 \in \mathbb{N}$, luego, Lno es una cota superior de \mathbb{N} .

1.4. La unicidad del cuerpo de los números reales

Sean \mathbb{K}_1 y \mathbb{K}_2 dos cuerpos ordenados completos (se puede entender que $\mathbb{Q}\subset$ \mathbb{K}_1 y $\mathbb{Q} \subset \mathbb{K}_2$). Entonces, $\exists \varphi : \mathbb{K}_1 \to \mathbb{K}_2$, una función biyectiva tal que: 1. $\varphi(q) = q$ si $q \in \mathbb{Q}$. 2. $\varphi(x+y) = \varphi(x) + \varphi(y)$ y $\varphi(xy) = \varphi(x)\varphi(y)$, $\forall x,y \in \mathbb{K}_1$. 3. $x < y \Leftrightarrow \varphi(x) < \varphi(y)$.

1.
$$\varphi(q)=q$$
 si $q\in\mathbb{Q}$.

2.
$$arphi(x+y)=arphi(x)+arphi(y)$$
 y $arphi(xy)=arphi(x)arphi(y), orall x,y\in \mathbb{K}_1$.

3.
$$x < y \Leftrightarrow \varphi(x) < \varphi(y)$$
.