	Written Problem
	•3 $n^2+10n+1$ Let $k=5$ and $n_0=10$ This will be true for any $n=n_0$ $3(10)^2+10(10)+1 = 5(10)^2$ $3(20)^2+10(20)+1 = 5(20)^2$ 401 = 500 $1401 = 2000$
0	As ninereases, the difference between 3n2+10n+1 and kn2 increases, showing the function to be 0(n2).
	There will be no witness for 2" to be $O(n^2)$ Let $k = 100$ and $n_0 = 10$ This, however, will not be true for any $n = n_0$ $2'' \le 100(10)^2$ $2'' \le 100(20)^2$ $1048576 \not \le 40000$
0	There will never be a k and no where & kn2 will always be greater than 2, so the function is not O(n2).
	enign Let $k = 1$ and $n_0 = 10$ This will be frue for any $n = n_0$ $10 g(10) \le 10^2$ $10 \le 100$ $10 \le 100$ $10 \le 100$
	Since the difference between the functions is increasing and staying true, the function is O(n2).

	• n ³ /lgn
	TI MI I I I I MAN ACON
	There will be no witness for n3/1gn to be O(n2)
	let k=100 and n=10 This will not be true for any n=no
	$10^{3}/ g 0 = 100(10)^{2}$ $1000^{3}/ g 000 = 100(1000)^{2}$
	$\frac{10^{3}/g/0 = 100(10)^{2}}{1000} \frac{1000^{3}/g/000 = 100(1000)^{2}}{333333333333333333}$
	The will agree to a be god or whose how will always be nexten
	There will never be a k and no where know will always be greated
	than n3/1gn, so the function is not O(n).
0	
	·f(n)+h(h), where each of f(h) and h(h) are O(n2)
	Let ke and no represent the intresses for fal.
	Let kg and not represent the intresses for f(h). Let ky and not represent the intresses for h(h).
	Chi al () I I I I S a lb) il la la Garage
	f(n) = k + g(n) and h(n) = k, g(n) will be true for some
	nznae and nznae
	Adding the two inequalities, we get f(h)+h(n)=(kg+kn)g(n), which will be true for any n=nog and n=nop
	f(h) +h(n) =(ks+kn) q(n), which will be true for any n=n, g grd n=nop
	The U 1 of Plat + 1/21 . IN 1 . b = k at b and n = 1 a greater of n and n
()	Thus, the nitness of f(n)+h(n) will be k=kg+kg and n= the greater of nop and nok.
	The function B therefore O(x2).