Санкт-Петербургский государственный технический университет Институт компьютерных наук и технологий

Кафедра компьютерных систем и программных технологий

Отчет по лаборатнорной работе $\mathbb{N}1$ Сигналы телекоммуникационных систем Телекоммуникационные технологии

> Кузьмин Н.А. 33501/1 Богач Н.В.

Санкт-Петербург 2018

Содержание

1	Цель	3
2	Постановка задачи	3
3	Ход работы	3
	3.1 Генерация синусоидального сигнала	3
	3.2 Получение спектра	5
	3.3 Генерация сигнала в Simulink	8
	3.4 Генерация прямоугольного сигнала	10
	3.5 Получение спектра	11
	3.6 Генерация сигнала в Simulink	13
4	Вывод	14

1 Цель

Познакомиться со средствами генерации и визуализации про- стых сигналов.

2 Постановка задачи

В командном окне MATLAB и в среде Simulink промоделировать синусоидальный и прямоугольный сигналы с раз- личными параметрами. Получить их спектры. Вывести на график.

3 Ход работы

3.1 Генерация синусоидального сигнала

Для генерации синусоидального сигнала использовалась фукнция sin(). Сигнал имеет следующие параметры:

А - амплитуда

f - частота

Ph - фазовый сдвиг

Функция для моделирования сигнала: $y = A*\sin(2*pi*f*t + Ph)$ Для получения частоты были смоделированы четыре синусоидальных сигнала со следующими параметрами

Рис. 1: Синусоидальный сигнал $\sin 1$. $A=1,\,f=100$ Гц, Ph=0

Рис. 2: Синусоидальный сигнал sin
2. А = 2, f = 980 Гц, Рh = 0

Рис. 3: Синусоидальный сигнал sin
3. A = 0.5, f = 2500 Гц, Ph = 0

Рис. 4: Синусоидальный сигнал $\sin 4 = \sin 1 + \sin 2 + \sin 3$

3.2 Получение спектра

Для получения спектра сигнала используем БП Φ , реализованное в matlab функцией fft().

Результаты вычисления спектра сигналов представлены на следующих рисунках.

Рис. 5: Спектр сигнала sin1

Рис. 6: Спектр сигнала sin2

Рис. 7: Спектр сигнала sin3

Рис. 8: Спектр сигнала sin4

3.3 Генерация сигнала в Simulink

Для проверки зададим в Simulink синусоидальный сигнал и с помощью блока Power Spectral Density посмотрим его спектр. В данном случае был выбран сигнал частотой 980 Γ ц (6157 Paд/c).

Рис. 9: Схема для моделирования синусоидального сигнала в Simulink

Рис. 10: Полученный спектр сигнала

3.4 Генерация прямоугольного сигнала

В matlab генерация прямоугольного сигнала выполняется функцией square(t,n), где t - время, n - скважность. В Octave у меня возникла проблема с этой функцией, которую я решить не смог, поэтому генерация сигнала происходит при помощи цикла. Результаты генерации сигналов представлены на следующих рисунках.

Рис. 11: Прямоугольный сигнал ${\it rect1}$

Рис. 12: Прямоугольный сигнал ${\rm rect2}$

3.5 Получение спектра

Для получения спектра сигнала используем БП Φ , реализованное в matlab функцией fft().

Результаты вычисления спектра сигналов представлены на следующих рисунках.

Рис. 13: Спектр прямоугольного ${\it rect1}$

Рис. 14: Спектр прямоугольного $\operatorname{rect2}$

3.6 Генерация сигнала в Simulink

Для проверки зададим в Simulink прямоугольный сигнал и с помощью блока Power Spectral Density посмотрим его спектр. В данном случае был выбран сигнал с периодом 0.16 с и со скважностью 2.

Рис. 15: Схема для моделирования прямоугольного сигнала в Simulink

Рис. 16: Полученный спектр сигнала

4 Вывод

В ходе работы были сгенерированы синусоидальные и прямоугольные сигналы. Были вычислены и выведены их спектры при помощи быстрого преобразования Фурье, а часть результатов проверена с помощью Simulink. Также были получены навыки работы в среде GNU Octave и Textmaker.