Department of Mathematics, Thapar Institute of Engineering & Technology, Patiala End-Term Examination, May 2024

B.E. IV Semester UMA011 : Numerical Analysis

Time Limit: 03 Hours

Maximum Marks: 40

Instructor(s): Dr. Paramjeet Singh, Dr. Vivek Sangwan

Instructions: This question paper has two printed pages. You are expected to answer any FIVE questions. Arrange your work in a reasonably neat, organized, and coherent way. Mysterious or unsupported answers will not receive full credit. Use of Calculator is permitted.

- 1. (a) Use modified Newton's method starting with $x_0 = 1$ to find the root of the equation $x^3 3x^2 + 4 = 0$ with multiplicity m = 2. Use stopping criteria $|x_k x_{k-1}| < 0.1$, where x_k denotes the approximation of the root at k-th iteration. [Marks: 4, (CLO1, L3)]
 - (b) Solve the following system of equations using Gauss elimination:

$$4x_1 + 2x_2 - x_3 = -3$$
$$x_1 - 4x_2 - 2x_3 = 3$$
$$2x_1 + x_2 + 4x_3 = 12.$$

[Marks: 4, (CLO2, L3)]

- **2.** Let us consider matrix $A = \begin{bmatrix} 4 & -3 & 5 \\ 1 & -4 & 2 \\ 3 & 5 & 2 \end{bmatrix}$.
 - (a) Apply Gram-Schmidt process to decompose A as A = QR.

[Marks: 6, (CLO2, L3)]

(b) Perform one iterations of QR algorithm to find all the eigenvalues of A.

[Marks: 2, (CLO2, L3)]

3. (a) Suppose that x_0, x_1, \dots, x_n are distinct numbers in [a, b] and $f \in C^{n+1}[a, b]$. Let $P_n(x)$ be the interpolating polynomial of degree $\leq n$ then prove that for all $x \in [a, b]$, there exists a point $c \in (a, b)$ such that

$$f(x) - P_n(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(c).$$

[Marks: 4, (CLO3, L4)]

(b) Find the Lagrange interpolating polynomial of degree 2 or less for given data points:

x	1	3	4
f(x)	1	27	64

Hence evaluate f(2).

[Marks: 4, (CLO3, L2)]

4. (a) The following data are given for a polynomial P(x) of unknown degree:

x	0	1	2	3
f(x)	4	9	15	18

Determine the coefficient of x^3 in P(x) if all fourth-order forward differences are 1.

[Marks: 4, (CLO3, L2)]

(b) Use the method of least squares to fit a curve of the form $y = a + \frac{b}{x}$ to the following data:

x	1	2	5
f(x)	10	6	2

[Marks: 4, (CLO3, L3)]

5. (a) Determine the value of the integral

$$\int_{0}^{2} \frac{1}{x+3} dx$$

using composite Simpson's rule with step-size $h = \frac{1}{3}$.

[Marks: 4, (CLO4, L2)]

(b) Evaluate the integral

$$\int_{-1}^{1} e^x \cos x \ dx$$

using the Gauss-Legendre one and two point formulae.

[Marks: 4, (CLO4, L1)]

6. (a) Find the constants c_0 , c_1 , and x_1 so that the quadrature formula

$$\int_{0}^{1} f(x)dx = c_0 f(0) + c_1 f(x_1)$$

has the highest possible degree of precision.

[Marks: 4, (CLO4, L2)]

(b) Consider the initial-value problem

$$\frac{dy}{dt} = y - t^2, \quad y(0) = 1.$$

Compute y(0.2) using fourth order Runge-Kutta method with step-size h=0.2.

[Marks: 4, (CLO4, L3)]

Marks Distribution

