CS1231S TUTORIAL #3

Sets

My post on Forum

$$A = \{1, \{2\}, 3\}$$

Membership:

1, $\{2\}$ and 3 are members/elements of A. $1 \in A$, $\{2\} \in A$, $3 \in A$, $2 \notin A$, $\emptyset \notin A$.

Subsets:

Removing no element: {1,{2},3}

Removing one element: {{2},3}, {1,3}, {1,{2}}}

Removing two elements: {1}, {{2}}, {3}

Removing three elements: Ø


```
Power set:

$\phi$ (A) =

{\{1,\{2\},3\},

\{\{2\},3\},\{1,\{2\}\},

\{1\},\{\{2\}\},\{3\},

$\$\$\$\}
```

My post on Forum

Empty set Ø

Do not call it "null set".

In measure theory, a null set is set of measure zero (not necessarily empty)

Do not call it "null"!

An empty set is NOT equivalent to nothing. It is a set that has no members/elements.

- (a) $\emptyset \in \emptyset$
- (b) $\emptyset \subseteq \emptyset$
- (c) $\emptyset \in \{\emptyset\}$
- (d) $\emptyset \subseteq \{\emptyset\}$
- (e) $\{\emptyset, 1\} = \{1\}$
- (f) $1 \in \{\{1,2\}, \{2,3\}, 4\}$
- $(g) \{1,2\} \subseteq \{3,2,1\}$
- (h) $\{3,3,2\} \subsetneq \{3,2,1\}$

Q2. Let $A = \{1, \{1, 2\}, 2, \{1, 2\}\}$. Find |A|.

$$A = \{1, \{1,2\}, 2\}$$

$$|A| = 3$$

3.
$$A = \{0,1,4,5,6,9\}, B = \{0,2,4,6,8\}$$

Find |A|, |B|, |A ∩ B|, |A U B|

|S|: cardinality of set S (#elements in S)

$$|A| = 6$$

$$|B| = 5$$

$$A \cap B = \{0,4,6\}$$

$$|A \cap B| = 3$$

A U B=
$$\{0,1,2,4,5,6,8,9\}$$

|A U B| = 8

Q4. Let $A = \{2n + 1 : n \in \mathbb{Z}\}$ and $B = \{2n - 1 : n \in \mathbb{Z}\}$. Is A = B? Yes or No? To show A = B, we show $A \subseteq B$ and $B \subseteq A$.

- From context, this means A⊆B

 1. (⊆)
 - 1.1 Let $a \in A$
 - 1.2 Use the definition of A to find $n \in \mathbb{Z}$ such that a = 2n+1
 - 1.3 Then a = 2(n+1) 1 (basic algebra)
 - 1.4 As $n \in \mathbb{Z}$ we know that $n+1 \in \mathbb{Z}$ (by closure of integers)
 - **1.5** So $a \in B$ (by definition of B)

- From context, this means A ⊇B
 - 2.1 Let $b \in B$
 - 2.2 Use the definition of B to find $n \in \mathbb{Z}$ such that b = 2n-1
 - 2.3 Then b = 2(n-1) + 1 (basic algebra)
 - 2.4 As $n \in \mathbb{Z}$ we know that $n-1 \in \mathbb{Z}$ (by closure of integers)
 - 2.5 So b \in *A* (by definition of A)
- 3. Hence A = B by definition of set equality

Q5.
$$A = \{x \in \mathbb{Z}: 2 \le x \le 5\}, B = \{x \in \mathbb{R}: 2 \le x \le 5\}.$$
 Is $A = B$? Yes or No?

Counterexample:

- 1. Let x = 3.14.
- 2. $x \in B$ as $x \in \mathbb{R}$ and $2 \le x \le 5$
- 3. But x ∉ ℤ
- 4. So $x \notin A$ by definition of A
- 5. Lines 2 and 4 imply $A \neq B$ by the definition of set equality.

Q6. Let $U = \{5,6,7...,12\}$ and $M_k = \{n \in \mathbb{Z}: n = km \text{ for some } m \in \mathbb{Z}\}, \forall k \in \mathbb{Z}$

(a) $\{n \in U : n \text{ is even}\}$

(b) $\{n \in U: n = m^2 \text{ for some } m \in \mathbb{Z}\}$

(c) $\{-5, -4, -3, ..., 5\} \setminus \{1, 2, 3, ..., 10\}$

Q6. Let $U = \{5,6,7...,12\}$ and $M_k = \{n \in \mathbb{Z}: n = km \text{ for some } m \in \mathbb{Z}\}, \forall k \in \mathbb{Z}$

(d) $\overline{\{5,7,9\}} \cup \{9,11\}$ (U is the universal set)

What is this called? (e)
$$\{x, y \in \{1,3,5\} \times \{2,4\}: x + y \ge 6\}$$

(f) $\mathcal{S}(\{2,4\})$

```
\{1,3,5\} \times \{2,4\} = \{ (1,2), (1,4), (3,2), Ordered (3,4), pairs (5,2), (5,4) \}
Is (3,2) = (2,3)?
```

Q7. Show that for all sets A,B, C A \cap (B \ C) = (A \cap B) \ C

1.
$$A \cap (B \setminus C) = \{x : x \in A \land x \in B \setminus C\}$$
 by the definition of \cap

2. $= \{x : x \in A \land (x \in B \land x \notin C)\}$ by the definition of \setminus

3. $= \{x : (x \in A \land x \in B) \land x \notin C\}$ by associativity of \wedge

4. $= \{x : x \in A \cap B \land x \notin C\}$ by the definition of \cap

5. $= (A \cap B) \setminus C$ by the definition of \wedge

Q8. Prove that for all sets A and B, $(A \cup \overline{B}) \cap (\overline{A} \cup B) = (A \cap B) \cup (\overline{A} \cap \overline{B})$

$$(A \cup \overline{B}) \cap (\overline{A} \cup B)$$

$$= ((A \cup \overline{B}) \cap \overline{A}) \cup ((A \cup \overline{B}) \cap B)$$

$$= ((A \cap \bar{A}) \cup (\bar{B} \cap \bar{A})) \cup ((A \cap B) \cup (\bar{B} \cap B))$$

$$= (\emptyset \cup (\overline{B} \cap \overline{A})) \cup ((A \cap B) \cup \emptyset)$$

$$=(\bar{B}\cap\bar{A})\cup(A\cap B)$$

$$=(A\cap B)\cup(\bar{A}\cap\bar{B})$$

Distributive law

Distributive law

Complement law

Identity Law

Commutative Law

Q9. Let A, B be sets. Show that $A \subseteq B$ iff $A \cup B = B$

```
This is the "only if" part
```

- 1. (\Rightarrow) Suppose $A \subseteq B$
 - 1.1 (To show $A \cup B \subseteq B$)
 - **1.1.1** Let z ∈ A ∪ B.
 - **1.1.2** Then $z \in A$ or $z \in B$ (by defin of \cup)
 - 1.1.3 Case 1: Suppose $z \in A$ 1.1.3.1 Then $z \in B$ as $A \subseteq B$ (from 1)
 - 1.1.4 Case 2: Suppose $z \in B$ 1.1.4.1 Then $z \in B$
 - 1.1.5 In all cases, we have $z \in B$

- 1.2 (To show $B \subseteq A \cup B$)
 - 1.2.1 Let $z \in B$.
 - **1.2.2** Then $z \in A \lor z \in B$ (by defin of \lor)
 - **1.2.3** So $z \in A \cup B$ (by definition of \cup)
- 1.3 Lines 1.1 and 1.2 imply $A \cup B = B$ (by definition of set equality)

Q9. Let A, B be sets. Show that $A \subseteq B$ iff $A \cup B = B$

- This is the "if" part
- 2. (\Leftarrow) Suppose $A \cup B = B$
 - 2.1 Let $z \in A$
 - 2.2 Then $z \in A \lor z \in B$ (by definition of \lor)
 - 2.3 So $z \in A \cup B$ (by definition of U)
 - 2.4 This implies $z \in B$ as $A \cup B = B$ (by line 2)
 - 2.5 Therefore, $A \subseteq B$ (by definition of ⊆)

Q10. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$

(a) Let A = $\{1, 4, 9, 16\}$ and B = $\{2, 4, 6, 8, 10, 12, 14, 16\}$. Find $A \oplus B$.

$$A \backslash B =$$

$$B \backslash A =$$

$$A \oplus B =$$

Q10. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$

(b) Show that for all sets A, B: $A \oplus B = (A \cup B) \setminus (A \cap B)$.

$A \oplus B$

- $= (A \backslash B) \cup (B \backslash A)$
- $=(A\cap \bar{B})\cup (B\cap \bar{A})$
- $= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$
- $= (A \cup B) \cap (\bar{B} \cup B) \cap (A \cup \bar{A}) \cap (\bar{B} \cup \bar{A})$
- $= (A \cup B) \cap U \cap U \cap (\bar{B} \cup \bar{A})$
- $= (A \cup B) \cap U \cap (\overline{B \cap A})$
- $= (A \cup B) \cap (\overline{B \cap A})$
- $= (A \cup B) \cap (\overline{A \cap B})$
- $= (A \cup B) \setminus (A \cap B)$

definition of ⊕

Set Difference law

Distributive law

Distributive law

Complement law

De Morgan's law

Identity law

Commutative law

Set Difference law

11. (2015/16 Semester 1 exam question 16(a)) Denote by |x| the absolute value of the integer x, i.e.,

$$|x| = \begin{cases} x, & \text{if } x \geqslant 0; \\ -x, & \text{if } x < 0. \end{cases}$$

Given the set $S = \{-9, -6, -1, 3, 5, 8\}$, for each of the following statements, state whether it is true or false, with explanation.

(a)
$$\exists z \in S \ \forall x, y \in S \ z > |x - y|$$
.

False

- 1. It suffices to show its negation is true $\forall z \in S \ \exists x, y \in S \ z \le |x y|$.
- 2. Take any $z \in S$.
- 3. Let x = 8 and y = -9.
- 4. Then $x, y \in S$ and |x y|= $|8 - (-9)| = 17 > 8 = \max S \ge z$.
- 5. Since this is true, the original statement is false.

(b) $\exists z \in S \ \forall x, y \in S \ z < |x - y|$.

True

- 1. $-1 \in S$
- 2. $|x y| \ge 0 > -1$ for all $x, y \in S$

Q12. For sets
$$A_{m,}A_{m+1}, \dots A_n$$
 define
$$\bigcup_{i=m}^n A_i = A_m \cup A_{m+1} \cup \dots \cup A_n \text{ and }$$

$$\bigcap_{i=m}^n A_i = A_m \cap A_{m+1} \cap \dots \cap A_n$$

(a) Let $A_i = \{x \in \mathbb{Z} : x \ge i\}$ for each $i \in \mathbb{Z}$. Write down $\bigcup_{i=2}^5 A_i$ and $\bigcap_{i=2}^5 A_i$ in roster notation.

$$\bigcup_{i=2}^{5} A_i = \bigcap_{i=2}^{5} A_i =$$

(b) Let $B_1, B_2, ..., B_k, C_1, C_2, ..., C_l$ be sets such that $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$

```
For sets A_m, A_{m+1}, \dots, A_n define \bigcup_{i=m}^n A_i = A_m \cup A_{m+1} \cup \dots \cup A_n and \bigcap_{i=m}^n A_i = A_m \cap A_{m+1} \cap \dots \cap A_n
```

Show that $B_i \subseteq C_j$ for all $i \in \{1,2,...,k\}$ and all $j \in \{1,2,...,l\}$

- 1. Let $B_1, B_2, \dots, B_k, C_1, C_2, \dots, C_l$ be sets such that $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$
- 2. 2.1 Let $r \in \{1, 2, ..., k\}$ and $s \in \{1, 2, ..., l\}$
 - 2.2 Take any $z \in B_r$
 - 2.3 Then $z \in B_1$ or $z \in B_2$ or ... or $z \in B_k$ by definition of "or", as $r \in \{1,2,...,k\}$
 - 2.4 So $z \in B_1 \cup B_2 \cup \cdots \cup B_k = \bigcup_{i=1}^k B_i$ by definition of \cup and \cup
 - 2.5 Hence $z \in \bigcap_{j=1}^l C_j = C_1 \cap C_2 \cap \cdots \cap C_l$ as $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$ by line 1
 - 2.6 Thus $z \in C_1$ and $z \in C_2$ and ... and $z \in C_l$ by the definition of \cap
 - 2.7 In particular, we know that $z \in C_s$ as $s \in \{1,2,...,l\}$
- 3. So $B_i \subseteq C_j$ for any $i \in \{1, 2, ..., k\}$ and any $j \in \{1, 2, ..., l\}$

THE END