MAA TH X- 63637

GEOS-II AND 13th ORDER TERMS OF THE GEOPOTENTIAL

BRUCE C. DOUGLAS
JAMES G. MARSH
RONALD G. WILLIAMSON

JULY 1969

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

(ACCESSION NUMBER)

(ACCESSION NUMBER)

(PAGES)

(CODE)

(NASA dR OR TMX OR AD NUMBER)

(CATEGORY)

Reproduced by the CLEARINGHOUSE CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

GEOS-II AND 13th ORDER TERMS OF THE GEOPOTENTIAL

Bruce C. Douglas*
James G. Marsh
Ronald G. Williamson*

July 1969

GODDARD SPACE FLIGHT CENTER.
Greenbelt, Maryland

[•]Wolf Research and Development Corp., Riverdale, Md., under Contract NAS 5-9756.

GEOS-II AND 13th ORDER TERMS OF THE GEOPOTENTIAL

By Bruce C. Douglas

Wolf Research and Development Corporation Riverdale, Maryland

James G. Marsh

Goddard Space Flight Center Greenbelt, Maryland

and

Ronald G. Williamson

Wolf Research and Development Corporation Riverdale, Maryland

ABSTRACT

The resonance of GEOS-II (1968-002A) with 13th-order terms of the geopotential is analyzed. The odd-degree geopotential coefficients (13, 13), (15, 13), and (17, 13) given by Yionoulis most accurately model the resonance effects on GEOS-II of any of the published sets of 13th-order coefficients. However, this set is not adequate for precision orbit determination; additional even-degree coefficients are required.

Values of $C_{14,13}$ (= .57 \times 10⁻²¹) and $S_{14,13}$ (= 6.5 \times 10⁻²¹) to be used with the odd-degree set of Yionoulis were obtained from an analysis of the observed along-track position variation of GEOS-II. These coefficients, when used with those of Yionoulis, yield greatly improved "fits" to the data and orbital prediction capability. However, further refinement may be possible because the small effects of the remaining even-degree resonant terms were not modeled.

The composite coefficients $C_{13,13}$ (= 1.7×10⁻²⁰) and $S_{13,13}$ (= +2.7 × 10⁻²⁰) were obtained under the assumption that the (13, 13) spherical harmonic of the geopotential is responsible for all of the observed along-track variation of GEOS-II due to resonance. The good agreement of these deliberately composite values with some published values of $C_{13,13}$ and $S_{13,13}$ suggests that some of the published values may also be composite to a large extent.

Tables of eccentricity and inclination functions for resonance with 12th through 15th order terms are presented as an appendix.

CONTENTS

Abstract	ii
INTRODUCTION	1
STATUS OF DETERMINATIONS OF 13th-ORDER COEFFICIENTS	2
ANALYSIS OF RESONANT PERTURBATIONS	4
CONCLUSION	11
ACKNOWLEDGMENTS	11
References	11
Appendix - Tables of Inclination and Eccentricity Functions for Low Altitude Resonant Orbits	13

GEOS-II AND 13th ORDER TERMS OF THE GEOPOTENTIAL

by

Bruce C. Douglas
Wolf Research and Development Corporation

James G. Marsh Goddard Space Flight Center

and

Ronald G. Williamson
Wolf Research and Development Corporation

INTRODUCTION

Definitive orbit determination for satellites must allow for the possibility of a resonance with longitude dependent terms in the geopotential. Kaula (Reference 1) notes that every satellite has some perturbations with a period of two or more days. For orbits of medium to high inclination, this will result in along-track oscillations of satellite motion of about 50-100 meters or more. Such a large effect is readily observable and must be modeled if high-quality determinations of orbit elements and other parameters are to be obtained.

The GEOS-II satellite has an unperturbed orbital frequency of about 12.82 cycles/day. Using the approximation that beat frequency = $\dot{M} - m\dot{\theta}$ where \dot{M} is the orbital frequency of the satellite in revolutions per day, \dot{m} is the order of the resonant geopotential coefficient and $\dot{\theta}$ is the rotation of the earth expressed in revolutions per day, the beat frequency is (12.82 - 13) = -0.18 cycles per day giving a beat period of more than 5.5 days. The total perturbation from the 13th-order terms amounts to nearly 600 meters along track. The published values of 13th-order coefficients most accurately modeling this effect are those published by Yionoulis* of the Applied Physics Laboratory (APL) (Reference 2). However, a residual along-track oscillation of about 150 m is still observed with these terms. Analysis indicates that even-degree 13th-order coefficients (not published by Yionoulis) are important. Provisional values of $C_{14,13}$ and $S_{14,13}$ have been obtained that remove essentially all of the remaining resonance effects for GEOS-II.

The low beat-period and eccentricity of GEOS-II make the effects of the resonant terms essentially indistinguishable from one another. We have obtained values of $C_{13,13}$ and $S_{13,13}$ that have absorbed the effects of all of the resonant terms. These composite coefficients have little meaning but agree well with some published values.

^{*}These coefficients are hereinafter referred to as the APL coefficients.

STATUS OF DETERMINATIONS OF 13th-ORDER COEFFICIENTS

Table 1 gives the various published values of 13th-order geopotential coefficients. All are based on satellite data, with the Rapp and Köhnlein values also including gravimetric information.

Except for the APL and SAO-1969 coefficients, the values in Table 1 are very disparate. To illustrate the differences, Figures 1, 2, and 3 show plots of $C_{13,13}$, $S_{13,13}$, $C_{15,13}$, $S_{15,13}$, and $C_{17,13}$, $S_{17,13}$, respectively. Note that the agreement for the (13, 13), (15, 13), and (17, 13)

Table 1

Published Values for the 13th-Order Coefficients of the Model for the Geopotential.

Anderle	Yionoulis	Köhnlein .	Rapp	SAO (1966)	Kaula .	SAO (1969)
(Reference 3)	(Reference 2)	(Reference 4)	(Reference 5)	(Reference 6)	(Reference 7)	(Reference 11)
$C_{13,13}^*10 \times 10^{-19}$	24 × 10 ⁻¹⁹	25×10^{-19}	074×10^{-19}	22×10^{-19}	ļ.,	23 × 10 ⁻¹⁹
$S_{13,13} + .39 \times 10^{-19}$	+.21 × 10 ⁻¹⁹	0	+.091 × 10 ⁻¹⁹	28 × 10 ⁻ⁱ⁹	, ,	.23 × 10 ⁻¹⁹
C _{14,13}		$+.073 \times 10^{-20}$	$+.14 \times 10^{-20}$.40 × 10 ⁻²⁰
S 14,13		+.029 × 10 ⁻²⁰	+.20 × 10 ⁻²⁰	In a manage of the second		.52 × 10 ⁻²⁰
$C_{15,13}11 \times 10^{-20}$	077×10^{-20}	$+.10 \times 10^{-20}$		012×10^{-20}	06 × 10 ⁻²⁰	07×10^{-20}
S _{15,13} 10 × 10 ⁻²⁰	037×10^{-20}	06 × 10 ⁻²⁰		093×10^{-20}	14 × 10 ⁻²⁰	02 × 10 ⁻²⁰
C _{16,13}						$.34 \times 10^{-21}$
S 16,13						$.42 \times 10^{-21}$
C _{17,13}	+.16 × 10 ⁻²²					.36 × 10 ⁻²²
S _{17,13}	+.28 × 10 ⁻²²					14×10^{-22}
C _{18,13}						.88 × 10 ⁻²²
S _{18,13}						.56 × 10 ⁻²²
C _{19,13}						.06 × 10 ⁻²²
S _{19,13}	į					25×10^{-22}
C _{20,13}						.24 × 10 ⁻²²
S _{20,13}						.20 × 10 ⁻²²
C _{21,13}						34×10^{-23}
S 21,13						16 × 10 ⁻²³

^{*}Coefficients are presented in denormalized form. The denormalized coefficients are related to the normalized coefficients $(\overline{C}_{\ell,m}, \overline{S}_{\ell,m})$ as indicated below: $C_{\ell,m} = [(\ell-m)! (2\ell+1) K/(\ell+m)!]^{1/2} \overline{C}_{\ell,m}$; and similarly for $S_{\ell,m}$, where k=1 when m=0, and k=2 when $m\neq 0$.

Figure 1—Plot of values for the (13, 13) coefficients for the model of the geopotential.

Figure 2—Plot of values for the (15, 13) coefficients for the model of the geopotential.

spherical harmonics is no more than an order of magnitude in amplitude ($J\ell$, m) and not even nearest the quadrant in phase ($m\lambda\ell$, m). This may seem surprising since the effects of the geopotential are so enhanced by resonance. However, even though resonance produces large effects on an orbit, the effects of individual terms are very hard to separate from each other. A recent study by Douglas et al. (Reference 8) indicates that for single resonant satellites or multiple satellites in the same or near the same orbit planes, the coefficients of the same order (m) are almost perfectly correlated with each other and/or the orbital period. Thus it is very difficult to obtain a truly general set of coefficients from observation of even several satellites on resonant orbits.

Seven sets of gravity coefficients were used in this study. The SAO M1 set (1966) (Reference 6) was derived in 1966 by the Smithsonian Astrophysical

Figure 3—Plot of values for the (17, 13) coefficients for the model of the geopotential.

Observatory. This set was determined from precision reduced Baker-Nunn optical observations of 16 satellites. The set is complete up to 8, 8 (degree, order) with an additional 46 coefficients of higher degree making a total of 122 coefficients.

The APL 3.5 (Reference 10) set was derived from Tranet Doppler satellite observations by the Applied Physics Laboratory. This set is complete to (8, 8) with additional high degree coefficients making a total of 84 coefficients. The values for (13, 13), (15, 13) and (17, 13) were derived by Yionoulis (Reference 2) in an analysis of tracking data from three satellites after the APL 3.5 model was derived.

The NWL 5E-6 set (Reference 3) was derived by the Naval Weapons Laboratory also using Doppler data. This set is complete up to (7, 6) and has a total of 64 coefficients.

Kaula's set (Reference 7) was derived in 1967 from a combination of Doppler and optical observations of 12 satellites (7 optical, 5 Doppler). This set is complete to (7, 5) with additional higher degree coefficients.

The SAO (1969) model (Reference 11) is complete to (14, 14) with additional terms making a total of 260 coefficients. This set was derived from a combination of optical, Goddard Range and Range Rate and laser data from 24 satellites.

The following two sets were derived by combining terrestrial gravity measurements with the SAO M1 coefficients. Köhnlein's 1967 set (Reference 4), derived when he was associated with SAO, is complete to (15, 15) and Rapp's 1967 set (Reference 5) derived at the Ohio State University, is complete to (14, 14).

ANALYSIS OF RESONANT PERTURBATIONS

As noted, every satellite will have some terms with a period of at least two days. The case that minimizes resonance, an orbital frequency of j + 1/2 revs/day (where j is an integer) will have a beat frequency of 1/2 day⁻¹ with terms of order (m) j or j + 1. The beat period, the inverse of the beat frequency, is then ± 2 days.

Previously we noted that GEOS-II has a mean motion of slightly less than 13 revs/day. Including the effect of J₂, the beat period for the orbit is 6.7 days, resulting in large perturbations due to 13th-order terms. Table 2 shows the perturbations along-track that can be expected for this satellite if the normalized 13th-order coefficients follow the well-known rule

$$\overline{C}_{\ell_m}$$
, $\overline{S}_{\ell_m} = 10^{-5}/\ell^2$.

The ℓ , m quantities in Table 2 are the degree and order of a spherical harmonic. The p, q quantities are indices arising when the potential is expressed as a harmonic series in the Mean Anomaly of the satellite. Thus each spherical harmonic has a number of harmonic components

identified by the subscripts p, q. The harmonic series in mean anomaly for a spherical harmonic converges rapidly for low eccentricity (e) because the components contain a factor roughly proportional to $e^{\frac{1}{q}}$ for low e. Thus $\frac{1}{q}$ values higher than 1 are not important for GEOS-II. Note also that the $\frac{1}{q} = 1$ components are substantially smaller for GEOS-II than the components with q = 0. See Kaula (Reference 1) and Allan (Reference 9) for additional discussion.

Table 2 shows two important facts. First an extensive set of 13th-order coefficients is necessary to accurately model the resonance effects of GEOS-II. For this reason, the *partial* sets shown in the previous section could not be expected to produce highly accurate results. Also all of the resonant terms for GEOS-II have virtually the same beat period making it impossible to distinguish them from each other in a GEOS-II only orbital solution.

Table 3 shows the results of orbital solutions attempted for the various gravity models shown for a 5-day arc of MOTS camera data. The best orbital solution using published values was obtained with the SAO M1 gravity model using the APL odd degree 13th-order coefficients. Note that this solution is superior to the solution obtained with the SAO 1969 model in spite of the latters' extensive set of 13th-order coefficients. Also shown for some cases is the RMS value obtained for predicted observations covering a 4-day period subsequent to the 5-day arc. Note that prediction

Table 2

Perturbations of GEOS-II Due to 13th-Order Terms of the Geopotential.

lm pq	Beat Period (days)	Along Track, Meters (with $\overline{C}_{\ell,m}$, $\overline{S}_{\ell,m} = 10^{-5}/\ell^2$)
13 13 6 0	-6.7	400
14 13 6 1	-6.5	60
14 13 7 1	-6.9	120
15 13 7 0	-6.7	350
16 13 7 1	-6.5	, 40
16 13 8 1	-6.9	20
17 13 8 0	-6.7	. 130
18 13 8 1	-6.5	30
18 13 9 1	-6.9	20
19 13 9 0	-6.7	10
20 13 9 1	-6.5	
20 13 10 1	-6.9	20
21 13 10 0 etc.	-6.7	. 30
Root Sum Square Value	of all Resonant Terms	. 560 meters

Table 3

Gravity Model Comparisons Based Upon GEOS-II Orbital Solutions.

	RMS (Sec	s. of Are)
Coefficients	Orbital Solution 5 Days, 790 Obs.†	Prediction 4 Days, 290 Obs.‡
SAO M1 (1966)	12.6	£
SAO M1 NO 13th*	20.3	
SAO M1 + APL 13th	6.4	38.5
APL 3.5 + APL 13th	8.4	39.8
NWL 5E 6	28.4	
NWL 5E 6 + APL 13th	11.9	48.7
Kaula	16.0	83.5
Kaula + APL 13th	10.1	. 39.0
Köhnlein	10.2	
Köhnlein + APL 13th	6.2	38.1
Rapp	12.8	
Rapp + APL 13th	8.1	32.1
SAO M1 + APL 13th + D & M (14, 13)	3.8	10.6
Köhnlein NO 13th	20.0	
Rapp NO 13th	21.0	
SAO 1969 ^{††}	8.8	

^{*13}th-order coefficients set equal to zero.

††11th order coefficients set equal to zero - E. M. Gaposchkın has indicated that these terms should be ignored. (private communication)

accuracy suffers greatly when resonant terms are inadequately modeled. We did not try predictions with the SAO 1969 model because of the large RMS of fit obtained.

Table 3 also shows the partial success of the Rapp and Köhnlein values of 13th-order coefficients. These values remove much of the effect of the resonance. We believe that this fact represents a significant verification of partial success of gravimetric data in the determination of variations in the gravity field that are still of relatively long wavelength.

Figure 4 presents the results of an attempt to determine timing errors for the Goddard Range and Range Rate System (GRARR) using the SAO M1 gravity model plus the APL values of (13, 13), (15, 13) and (17, 13). GRARR residuals were computed about a five-day Minitrack Optical Tracking System (MOTS) reference orbit and a timing error was obtained for each pass. Although there is a large scatter, a sinusoidal variation with a period of about 6 days is discernable. Clearly only, one pair of coefficients can be obtained, and these must be composite or "lumped" coefficients which have absorbed the effects of all of the neglected terms. We chose to solve for $C_{14,13}$ and

[†]April 29 to May 4, 1968.

[‡]May 5 to May 8, 1968.

Figure 4-Apparent GEOS-II GRARR timing errors SAO M1 Gravity + APL 13th-order terms 4/29/68-5/4/68.

S_{14,13}, since from Table 2 we would expect the (14, 13) term to have by far the largest effect on this orbit of all of the even degree 13th-order coefficients.

The principal effect of resonance is along-track. This occurs because the greatest effect of resonance is to cause a long-period variation in orbital period. Mathematically, the large along-track effect is caused by terms with linear and quadratic small divisors in the expression for mean anomaly. For beat periods greater than 2 or 3 days the terms with quadratic small divisors dominate the solution. For the resonant (ℓ, m, p, q) components these terms have the form (Reference 1 or the Appendix):

$$\Delta M_{\text{res}(\ell_{\text{mpq}})} = \frac{3a_{e}^{\ell} J_{\ell_{\text{mp}}} F_{\ell_{\text{mp}}}(i) G_{\ell_{\text{pq}}}(e)_{(\ell-2p^{\ell_{\text{q}}})}}{a^{\ell+3} \dot{D}_{\ell_{\text{mpq}}}^{2}} \begin{bmatrix} \sin \\ -\cos \end{bmatrix} \frac{(\ell-m) \text{ even}}{(\ell-m) \text{ odd}}$$
(1)

Where

$$D_{\ell_{mpq}} = (\ell - 2p)\omega + (\ell - 2p + q)M + m(\Omega - \theta - \lambda_{\ell_m})$$
 (2)

$$\dot{\mathbf{D}}_{\ell_{\mathrm{mpq}}} = (\ell - 2\mathbf{p})\dot{\omega} + (\ell - 2\mathbf{p} + \mathbf{q})\dot{\mathbf{M}} + \mathbf{m}(\dot{\Omega} - \dot{\theta}) \tag{3}$$

For circular or near circular orbits, a good estimate of the along-track position variation due to a resonant ($\ell m p q$) component is given by a · ΔM , where a is the orbital semi-major axis.

In considering a solution for $C_{14,13}$ and $S_{14,13}$, Table 2 shows that there are two important resonant (ℓ, m, p, q) components. These are

$$\ell_{mpq} = 14,13,7,1$$
 and 14, 13, 6, -1.

Using the formulae of Reference 1 or the tables in the Appendix for the $F_{\ell_{mp}}$ (i) and $G_{\ell_{pq}}$ (e) coefficients, and the orbital elements of GEOS-II on

April 28.739, 1968

- a 7701.011 km
- e .0326147
- i 105°783
- ω 353°681
- Ω 194°817
- м 121°007

we obtain the following for the along-track variation, AL, produced by (14, 13) on GEOS-II:

$$\Delta L_{14,13} = .145 J_{14,13} \left\{ \left(.20 \times 10^{17} \right) \cos \left[M + 13 \left(\Omega - \theta \right) - 13 \lambda_{14,13} \right] + \left(.124 \times 10^{17} \right) \cos \left[2\omega + M + 13 \left(\Omega - \theta \right) - 13 \lambda_{14,13} \right] \right\} \cdot (4)$$

Since $\dot{\omega}$ is small compared to $\dot{M}+13$ $(\dot{\Omega}-\dot{\theta})$, that is, 1.6/day vs 60°/day, we shall ignore its variation for the 5-day arc of Figure 4 to combine the terms in ΔL as

$$\Delta L_{14.13} = .46 \times 10^{16} J_{14.13} \cos (x + \psi)$$
 (5)

where

$$x = M + 13(\Omega - \theta) - 13\lambda_{14,13}$$
 (6)

 $\psi \approx 6.5$ for $2\omega = 703^{\circ}$, the value near the middle of the arc.

From Figure 4, the satellite deviates about ± 23 millisec. from the mean. The product of this figure and the satellite mean speed (about 6550 m/sec.) gives the approximate displacement along track equal to about 150 m or 2.4×10^{-5} a_e. A preliminary value of $J_{14,13}$ follows at once from Equation 5 as

$$J_{14,13} \sim 5.1 \times 10^{-21}$$

At the minimum displacement, $x \div \psi = 180^{\circ}$. This occurs as seen in Figure 4 at t = April 30.275 approximately. Using the elements at this date gives

Preliminary values of $C_{14,13}$ and $S_{14,13}$ are thus

$$C_{14,13} = J_{14,13} \cos 13\lambda_{14,13} = 2.0 \times 10^{-21}$$

$$S_{14.13} = J_{14.13} \sin 13\lambda_{13.14} = 4.6 \times 10^{-21}$$
.

These values were used with the APL odd-degree coefficients in another redetermination of apparent timing errors for the Rosman, North Carolina, observing site. This site was chosen for a refinement of the coefficients because its location is probably better determined than the others.

To remove the observed residual sinusoidal variation of apparent timing errors for Rosman it was necessary to increase $13\lambda_{14,13}$ by about 19° and to increase $J_{14,13}$ by about 1/3, yielding the improved values.

$$C_{14,13} = .57 \times 10^{-21}$$
, $S_{14,13} = 6.5 \times 10^{-21}$.

In the determination of these values, it became obvious that the apparent constant bias of 5 millisec. in Figure 4 is spurious.

These values give excellent results, as can be seen from Table 3; however, further improvement in the determination of the (14, 13) values is possible since they have absorbed the effects of all of the unmodeled even-degree resonant terms as well as any errors in the odd-degree terms. The result is that the value of $J_{14,13}$ is probably too large by only a small factor, since the total effect of all of the resonant terms is near their root-sum-of-squares and (14, 13) has by far the largest effect of the terms not reported by Yionoulis. The effect of the neglected terms on $13\lambda_{14,13}$ is random, but the quadrant of $13\lambda_{14,13}$ is likely correct again because (14, 13) should be dominant among even-degree terms. Figure 5 compares our values with those of Rapp, Köhnlein, and SAO 1969. The agreement in phase angle is good. The magnitudes are very disparate between the dynamic and combined dynamic-gravimetric determinations.

Figure 6 shows the apparent timing errors for Rosman ranges using the improved values. If the low elevation passes are excluded, it will be seen that the apparent timing errors lies along a nearly straight line with small slope. This deviation could not be attributed to unaccounted-for resonance effects. This apparent secular effect is only about ±3 millisec. (about 20 meters) over the 6-day period shown, an amount that is tolerable for activities (such as station position determinations) that use arcs of 1 to 2 days.

Composite values of $C_{13,13}$ and $S_{13,13}$ were also determined. Figure 7 shows the apparent GRARR Range timing errors when no 13th-order coefficients are included in the MOTS camera

Figure 5—Plot of values for the (14, 13) coefficients for the model of the geopotential.

NASA-GSFC-T&DS

data solution. It is obvious that attribution of the along-track displacement to more than one spherical harmonic will be very difficult. If we assume (13, 13) to be responsible, the dominant component of (13, 13)

$$\ell$$
, m, p, q = 13, 13, 6, 0

Applying Equation (1), we obtained the preliminary values

$$C_{13} = -1.7 \times 10^{-20}$$

$$S_{13,13} = +2.7 \times 10^{-20}$$

The good agreement of these deliberately composite or "lumped" values (Figure 1) with some of the published values strongly suggests that many of the published values are also composite to a large extent.

Figure 6—Apparent ROSMAN range timing errors with SAO M1 gravity, APL 13th-order coefficients and $C_{14,13} = .57 \times 10^{-21}$, $S_{14,13} = 6.5 \times 10^{-21}$ 4/29/68 to 5/4/68.

Figure 7-Apparent GRARR range timing errors with SAO M1 gravity and no resonant terms.

CONCLUSION

We conclude that resonance is likely to be a serious problem for precision orbit determination for low altitude satellites such as GEOS-II. In the specific case of GEOS-II, it was found necessary to refine published values of 13th-order coefficients to obtain accurate results. Because of the apparent difficulty in obtaining accurate estimates of high order coefficients from resonant orbits or gravimetry, accurate analysis of specific orbits probably requires a solution for one or more resonant coefficients simultaneously with the orbit elements and other parameters of the problem.

ACKNOWLEDGMENTS

The authors wish to thank Messrs. Brian O'Neill and Martin Dutcher for their assistance in GEOS-II precision orbit determination. This work was supported by the National Aeronautics and Space Administration under Contract NAS 5-9756-191.

REFERENCES

1. Kaula, W. M., Theory of Satellite Geodesy, Blaisdell, Waltham, Massachusetts, 1966.

- 2. Yionoulis, S. M., "Improved Coefficients of the Thirteenth-Order Harmonics of the Geopotential Derived from Satellite Doppler Data at Three Different Orbital Inclinations," John Hopkins/Applied Physics Laboratory Report TG-1003, May 1968.
- 3. Anderle, R., "Observations of Resonance Effects on Satellite Orbits Arising from the Thirteenthand Fourteenth-Order Tesseral Gravitational Coefficients," Journal of Geophysical Research, 70, 10, May 15, 1965.
- 4. Köhnlein, W., "The Earth's Gravitational Field as Derived from a Combination of Satellite Data with Gravity Anomalies," prepared for the XIV General Assembly International Union of Geodesy and Geophysics, International Association of Geodesy, Lucerne, Switzerland, October 1967.
- 5. Rapp, R. H., "The Geopotential to (14, 14) from a combination of Satellite and Gravimetric Data," presented at the XIV General Assembly International Union of Geodesy and Geophysics, International Association of Geodesy, Lucerne, Switzerland, October 1967.
- 6. Lundquist, C. A., and Veis, G., "Geodetic Parameters for a 1966 Smithsonian Institute Standard Earth," Smothsonian Astrophysical Observatory Special Report No. 200, Vol. 1, 1966.
- 7. Kaula, W. M., "Analysis of Geodetic Satellite Tracking Data to Determine Tesseral Harmonics of the Earth's Gravitational Field," final report NASA Contract No. NSR 05-007-060, 1968.
- 8. Douglas, B. C., Martin, C. F., Wagner, C. A., and Williamson, R. G., "Error Analyses of Resonant Orbits," NASA Document No. X-552-69-92, March 1969.
- 9. Allan, R. R., "Satellite Resonance with Longitude Dependent Gravity-II Effects Involving the Eccentricity," *Planetary and Space Science 15*, pp. 1829-1845, 1967.
- 10. Guier, W. H., and Newton, R. R., "The Earth's Gravitational Field as Deduced from the Doppler Tracking of Five Satellites," Journal of Geophysical Research, Vol. 70, No. 18, September 1965.
- 11. Gaposchkin, E. M., "Improved Values for the Tesseral Harmonics of the Geopotential and Station Coordinates," Smithsonian Astrophysical Observatory Paper presented at the XII Meeting of COSPAR, Prague, Czechoslovakia, May 1969.

Appendix

Tables of Inclination and Eccentricity Functions for Low Altitude Resonant Orbits

According to Reference 1, the resonant (ℓ, m, p, q) sets are those for which $\dot{D}_{\ell mpq}$ is zero or small, i.e.,

$$\dot{D}_{\ell mpq} = (\ell - 2p) \dot{\omega} + (\ell - 2p + q) \dot{M} + m(\dot{\Omega} - \dot{\theta}) \approx 0 . \tag{A1}$$

Since $\dot{\omega}$ and $\dot{\Omega}$ are always small compared to $\dot{\rm M}$ or $\dot{\theta}$, Equation A1 will be fulfilled when

$$(\ell - 2p + q) \dot{M} \approx m \dot{\theta} \tag{A2}$$

or, setting

$$\dot{M} = s \text{ revs/day}$$
,

$$\dot{\theta}$$
 = 1 rev/day,

then

$$\ell - 2p + q = \frac{m}{s} . \tag{A3}$$

It is from Equation A3 that the resonant (ℓ, m, p, q) sets are obtained. For example, for GEOS-II

•

14, 13, 6, -1

:

15, 13, 7, 0

etc.

The sets indicated are for m/s = 1. Values for m/s = 2 give resonances with 26th order terms, but these-2nd order resonances are not important unless the resonance is very deep.

For the beat periods usually encountered with low altitude satellites, the formulae for the perturbations of the elements given by Kaula (Reference 1) are adequate. These are

$$\begin{split} \Delta a_{\ell mpq} &= \mu a_e^{\ell} \frac{2 F_{\ell mp} \, G_{\ell pq} \, \left(\ell - 2 p + q \right) \, S_{\ell mpq}}{n a^{\ell+2} \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta e_{\ell mpq} &= \mu a_e^{\ell} \frac{F_{\ell mp} \, G_{\ell pq} \left(1 - e^2\right)^{1/2} \left[\left(1 - e^2\right)^{1/2} (\ell - 2 p + q) - (\ell - 2 p) \right] \, S_{\ell mpq}}{n a^{\ell+3} \, e \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta \omega_{\ell mpq} &= \mu a_e^{\ell} \frac{\left[\left(1 - e^2\right)^{1/2} \, e^{-1} \, F_{\ell mp} \left(\partial G_{\ell pq} / \partial e\right) - \cot 1 \left(1 - e^2\right)^{-1/2} \left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell pq} \right] \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + p) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta i_{\ell mpq} &= \mu a_e^{\ell} \frac{F_{\ell mp} \, G_{\ell pq} \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta \Omega_{\ell mpq} &= \mu a_e^{\ell} \frac{\left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell pq} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta M_{\ell mpq} &= \mu a_e^{\ell} \frac{\left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell pq} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta M_{\ell mpq} &= \mu a_e^{\ell} \frac{\left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell pq} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta M_{\ell mpq} &= \mu a_e^{\ell} \frac{\left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell pq} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta M_{\ell mpq} &= \mu a_e^{\ell} \frac{\left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell pq} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta M_{\ell mpq} &= \mu a_e^{\ell} \frac{\left(\partial F_{\ell mp} / \partial i\right) \, G_{\ell mp} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \, \left[(\ell - 2 p) \, \dot{\omega} + (\ell - 2 p + q) \, \dot{M} + m (\dot{\Omega} - \dot{\theta}) \right]} \,, \\ \Delta M_{\ell mpq} &= \mu a_e^{\ell} \frac{\partial F_{\ell mp} \, G_{\ell mp} \, \overline{S}_{\ell mpq}}{n a^{\ell+3} \, \left(1 - e^2\right)^{1/2} \, \sin i \,$$

The quantity $\overline{S}_{\ell_{mpq}}$ is the integral of $S_{\ell_{mpq}}$ with respect to its argument, where

$$S_{\ell mpq} = J_{\ell m} \begin{bmatrix} \cos \\ \sin \\ (\ell - m) \text{ odd} \end{bmatrix} \left\{ (\ell - 2p) \omega + (\ell - 2p + q) M + m \left(\Omega - \theta - \lambda_{\ell m} \right) \right\},$$

and

$$C_{\ell_m} = J_{\ell_m} \cos m \lambda_{\ell_m}$$

 $S_{\ell_m} = J_{\ell_m} \sin m \lambda_{\ell_m}$

For beat periods greater than about 50-75 days, these formulae will be increasingly inaccurate and should be used carefully if at all.

In Equations A4 - A9, there is only one term likely to be of considerable significance. This is the 2nd term of $\Delta M_{\ell_{mpq}}$. It contains the square of the beat frequency $\dot{D}_{\ell_{mpq}}$ as a denominator. Thus, a good estimate of along track displacement can be obtained from a ΔM for cases with beat period > 2 days or so using only the second term of ΔM .

The most difficult aspect of using Equations A4 through A9 is obtaining the values of the F&G coefficients or their derivatives. To this end, tables have been prepared that will yield values of the functions and their 1st derivatives to 2 significant figures over a large range of eccentricity and inclination. The coefficients needed for calculation of the effects of the principal even and odd degree geopotential coefficients only are given.

The tables are not constructed with evenly spaced tabular intervals. Rather they were constructed to permit use of Taylor's expansion for nontabular entries. To illustrate the use of the tables, consider the calculation of $F_{14,13,6}$ (105°8), needed for GEOS-II. First, locate the appropriate interval in the table, in this case the interval between 104° and 106° (XLO and XHI in the tables). We expand about XMID, in this case, 105°, yielding

$$F_{14,13,6} (105.8) = F_{14,13,6} (105^{\circ}) + (.8/57.3) (.186 \times 10^{14})$$

$$= (.59 \times 10^{13}) + (.8/57.3) (.186 \times 10^{14})$$

$$= .56 \times 10^{13}.$$

Note that the incremental angle for XMID must be converted to radians. Higher accuracy can be obtained by using the 2nd derivative also, but this will seldom be justified. The use of the tables of eccentricity functions is entirely similar, except that no conversion of the incremental eccentricity from the value at XMID is required.

References

1. Kaula, W. M., Theory of Satellite Geodesy, Blaisdell, Watham, Massachusetts, 1966.

Definition of Symbols Used in Table A1

- XLO Lower value of satellite orbital inclination.
- XMID Middle value of satellite orbital inclination.
- XHI Higher value of satellite orbital inclination.
- FXMID Value of the inclination function corresponding to the middle value of inclination.
- DFXMID Value of the first derivative of the inclination function corresponding to the middle value of inclination.
- DDFXMID Value of the second derivative of the inclination function corresponding to the middle value of inclination.

Tables of Inclination Function Coefficients for Calculation of the Effects of the Principal Even and Odd Geopotential Coefficients.

EVALUATION OF INCLINATION FUNCTION FOR L=12 M=12 P= 5

XLO*	XMID*	XHI*	FXMID	DFXMID	•	DDFXMI	D
30.00	30.50	33.00	0.2400 09	0.395D	10	0.5530	11
32.00	31.50	32.00	0.318D 09	0.501D	16	0.670D	11
32.09	32.50	33.00	9.417D 09	Q+630D	10	0.8¢3D	11
33.00	33.50	34•00	0.540D 09	0.783D	10	0.952D	11
34.09	34.50	35.90	C. 69\$D 09	0.963D	10	G.112D	12
35.00	35.50	36.00	0.877D 09	9 -117D	11	0.1300	12
36.00	36.50	37.00	0.1100 10	0.1420	11	0.150D	12
37.00	37.50	38.00	0.1370 19	0.1799	11	C+1710	12
38.00	38.50	39.20	0.170D 15	0.2020	11	Q.194D	12
39.00	40.00	41.00	0.2300 10	0.257D	11	C.229D	12
41.00	42.00	43.00	0.334D 10	0.346D	11	0.2790	12
43.00	44.00	45.00	0.473D 10	-	11	0.328D	12
45.00	46.00	48.00	0.651D 10	0 • 574D	11	C•372D	12
48.00	53.00	56.00	0.166D 11		12	0.428D	12
56 .00	58.00	60.00	0.275D 11		12	C•305D	12
60.00	61.00	62.00	0.353D 11		12	0.164D	32
62.00	63.00	64.QD	0.408D 11		12	0.409D	11
64.00	65.00	66.00	0.463D 11		12	-0.970D	11
66.00	67.00	68 • 00	0.517D 11		12		12
68.00	69.00	70.00	0.567D 11		12	-0.390D	
70.00	71 - 00	72.00	0.614D 11		12	-0.529D	12
72.00	73.00	74.50	0.653D 11		12		12
74.00	75.00	76.00	0.685D 11		11	-0.7530	
76.00	77.00	78 . 00	0.708D 11		11	-0.825D	12
78.00	81.00	82.00	0.722D 11		10		12
82.00	83.00	84.00	0.714D 11		11	-	12
84.00	85.00	85.00	0+696D 11	-	11		12
86.00	87.00	88.00	0.6680 1		11	-C.671D	12
88.00	89.00	99.00	0.632D 11		12	-C.554D	12
90.00	91.00	92.00	0.589D 11		12	-0.422D	12
92.00	93.00	94.00	0.5420 11		12	-0.282D	12
94.00	95.00	96.00	0.490D 11		12	-C•143D	12
96.00	97.00	98.00	0-438D·11		12	-0.113D	11
98.00	99.00	120.00	0.384D 11	-	12	0.107D	
100.00	101-00	102.00	0.333D 11	-	12		12
102.00	104.00	106.00	0.260D 13		12	0.319D	12
106.00	111.00	111.00	0.127D 1	-0.854D	11	0.392D	12

^{*}Values of inclination in degrees.

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=12 M=12 P= 6

ΧLO	XMID	XHI	FXMI)	DFXMI	D	DDFXM	ID
30.00	30.25	30.50	0.191D	08	0.392D	09	0.7170	3.0
30.50	30.75	31.00	C-228D	08				
31.00	31.25	31.50	0.2710	08				
31.50	31.75	32.00	0.322D	98				
32.00	32.25	32.50	0.3800	08				
32.59	33.00	33.50	0.486D	28				
33.50	34.00	34.50	Q.667D	08				
34.50	35.00	35.50	0.905D	08		10		
35.50	36.00	36.50	0.1210	09	- -			
36.50	37.00	37.50	0.1610	99				
37.50	38.00	38.50	0.2120	09	0.3250	10		
38.50	39.00	39.50	0.275D	09	0.408D	10	0.521D	
39 ₊ 50	40.00	40.5G	0.355D	09	0.5080			
40.50	41.00	41.50	C.454D	09	0.626D		0.738D	
41.50	42.00	42.50	0.575D	09	0.766D	10	C.867D	
42.50	43.00	43.50	0.722D	09	0.9290	10	0-1910	12
43.50	44.00	44.50	9.901D	09	0.112D	11	C.117D	
44.5C	45.00	45.50	0.111D	10	0.134D	11	G.134D	12
45.50	46.00	47.00	0.137D	10	0.159D	11	0.1520	12
47.00	48.00	49.00	C+505D	10	r.219D	11	0.192D	12
49.00	59.00	51.00	0.291D	10	C•293D	11	0.2360	12
51.00	52.00	53.00	ۥ409D	10	0.383D	12	0.286D	12
53.00	54 • 00	55.00	0.561D	10	G •489D	11	0.323D	12
55.00	56.00	58.00	C. 752D	10	9.609D	11	0.361D	12
58.00	63.00	66.00		11	0.1090	12	0.398D	12
66.00	68.00	69.00		11	0.140D		0.275D	12
69.00	7000	71.00	_	11	C •148D		C •186D	12
71.00	72.00	73.00	_	12	0.152D		0.756D	11
73.00	74.00	75.00	_	11			-C.509D	11
75.00	76.00	77.00		11			-0.188D	12
77.00	78.00	79.00	_	11				12
79.00	80.00	81.00		11				12
81.00	82.00	83.00		11				12
83.00 85.00	84.00	85.00		11	0.842D	11		12
87.00	86.00 88.00	87.00		11	0.5810			12
89.00	91.00	89.00 92.00		11	0.2970	11	-0.838D	_
92.00	93.00	94.00	_	11	-0.149D			12
94.00	95.CO	96.00		11	-0 •441D	11	_	12
96.00	97.00	98.00		11 11	-0.715D	11		12
98.00	99.00	100.00				11		12
100.00	101.00	102.00		11	-0.117D			12
102.00	103.00	104.00		11	-0.133D			12
164.00	105.00	106.00	_	11			-0.259D	
106.00	107.00	198.00		11	-0 •151D	12 12	-0.119D	
108.00	109.00	110.00	_	11		12	0.1410 0.1330	11
110.00	111.00	111.00		11	-0 •144D	12		12
					7 47 44 A	*~	vergou.	• <

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=13 M=12 P= 5

XLO	XMID	XHI	FXMI)	DFXMI)	DOFXM	D
30.00	30.50	31.90	-0.113D	11	-0.154D	12	-0.167D	13
31.00	31.50	32.00	-C+143D	11	-0.185D	12	-C-1890	13
32.00	90.EE	34.00	-0.198D				-0.2210	
34.00	35.00	36.00	-0.296D	11	-0.6323D	12	-0.261D	13
36.00	37.00	39.00	-0.425D		-0.420D		-0.291D	13
39.00	41.00	43.00	-0.792D	11	-0.632D	12	-0.301D	13
43.00	44.00	45.00	-C+116D	12	-0.777D	12	-0.242D	13
45.00	46.00	47.00	-0.145D	12	-0.848D	12	-C-164D	13
47.00	48.00	49.00	-0.175D	12	-0.888D	12	-0. 5670	12
49.00	50.00	51.00	-0.206D	12	-0.885D	12	0.7720	12
51.00	52.00	53.90	-0.236D	12	-0.832D	12	0.230D	13
53 . 00	54+00	54°5¢	-0.264D	12	-0 •723D	12	0.392D	13
5 4 • 5 0	55.00	55.50	-0.276D	12	-0.648D	12	0.473D	13
55.50	56.00	56.5 G			-0.558D		0.552D	13
56.50	57.00	57.50			-0.455D		0.626D	
57.50	58.00	58∙50	-C.302D		-0.340D		0. 695D	_
58.50	59.00	59.50	-0.307D		-0.213D		C.756D	
59.50	60.00	60.25	-0.309D	12	-0.765D	11	0.8080	
60.25	60.50	60.75			-0.497D		0.831D	
60.75	61-00	61.50	-C • 309D		0 •684D		0.851D	
61.50	62.00	63.00	-0.307D		0.2200		0.8810	
63.00	65.00	67.00	-0.283D		0.690D		0.896D	
67.00	68.00	69.00	-0.235D		0.1140		0.786D	
69-00	70.00	71.00	-0.1910		C-139D		0.648D	
71.00	72.00	73.00	-0.1390	-	.0.158D	-	0.468D	13
73.00 75.00	74.00 76.00	75.00	-0.811D		0.1710		0.258D	_
77.00	78.00	77•00 79•00	-0.202D	11	0.1760		0.329D	
79.00	80.00	81.00	0.9990	11			-0.192D -0.400D	
81.00	82.00	83.00	0.154D	12			-0.578D	
83.00	84.00	85.0C	0.2010	12			-0.715D	
85.00	87.90	89.22	0.255D	12			-0.830D	
89.00	90.00	91.00	0.2870	12			-0.831D	
91.00	91.50	92.00	0.294D	12			-0.793D	
92.00	92.50	92.62	0.296D	12	C.338D		-0.755D	
92.62	92.75	93.00	0.296D	12		_	-0.745D	
93.00	93.25	93.50	0.2950	12	-0.6300		-G.721D	13
93.50	93.75	94.00	0.295D	12	-0.125D		-0.696D	13
94.00	94.50	95•0 ¢	0.2920	12	-0.213D		-r.656D	13
95.00	95.50	96.00	C.288D	12	-0.3230	12	-D.596D	13
96.00	96.50	97.00	0.281D	12	-0.421D	12	-0.532D	13
97.30	97.50	98.00	0.273D	12	-0.508D	12	-0.465D	13
98.00	98.50	99.00	0.263D	12	-0.583D	12	-0.396D	13
99.00	100.90	101.09	0.247D	12	-0.673D	12	-0.292D	٤٤
101.00	102.00	103.00	0.2220	12	-0.752D	12	-0.159D	13
103.00	104.00	105.00	0. 1950				₹•389D	
105.00	106.00	197.98	0.1680		-C -781D		C+623D	12
107.00	108.00	109.00	C.141D		-0.745D		C-142D	
109.00	111.00	111.00	0.164D	12	-0.649D	12	C.216D	13

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=13 M=12 P= 6

XLO	XMID	XHI	FXMI)	DFXMI)	DDFXM	to
30.00	30.50	31.00	-0.139D	10	-0.247D	11	-0.377D	12
31.00	31,56	32.0¢	-0.189D	10	-0.320D	11	-0.465D	12
32.00	32.50	33.90					-0.566D	
33.00	33.50	34.00					-0.682D	
34.00	34.50	35.00					-C.811D	
35.00	35.50	36.00					-0.953D	
36.00	36.50	37.00	-0.716D				-0.111D	
37.00	37.50	38.00					-9.127D	
38.00	38.50	39.00					-0.145D	
39.00	39.50	40.00					-0.163D	
40.00	41.00	42.00					-0.190D	
42.00	43.00	44.00					-C.225D	
44.00	45.00	47.00					-0.254D	
47.00	50.00	52.00					-G.267D	
52.00	53.00	54.0C					-0.211D	
54.00	55.00	56•00					-0.140D	
56-00	57.00	58.90					-0.422D	
58.00	59.00	60.00			-C.825D			
60.00	61.00	62.00			-0.773D			
62.00	63.00	63.50			-0.671D		0.3680	
63.50	64.00	64.50			-0.600D		0.443D	
64.50	65.00	65.50			-0.516D		C.516D	
65.50	66.00	66•5Ω			-0.420D			
66+50	67.00	67.50			-0.312D		0.651D	
67.50	68.00	68.50			-0.193D		0.710D	
68.50	69.00	69.25			-0.648D		0.761D	
69+25	69.50	69.75	-0.298D				0.783D	
69.75	70.00	79.50	-0.297D					
70.50	71.00	72.00	-C.295D				0.834D	
72.00	74.00	76.00	-0.2720				C.857D	
76+90	77.00	78.00	-0.226D				G.764D	
78.00	79.00	80.00	-C.183D		0.134D			
80.00	81.00	82.00	-0.133D		0.153D		0.4700	
82.00	63.00	84.00	-C • 769D		0.166D		0.2700	
84.00	85.00	86.00	-C.177D		0.1720		C.521D	
86.00	87.00	88.90	0.422D				-C.169D	
88.00	89.00	90.00	0-1000				-P.377D	
90.00	91.00	92.00	0.1530				-0.558D	_
92.00	93.00	94.00	0.2000				-0.79CD	
94.00	96.00	98.00	Q.253D				-0.824D	
98.00	99.00	109.00					-0.834D	
200.00	100.50	191.90		12			-0.7960	-
101.00	101.50	101.62					-0.762D	
101.62	101.75	102.00					-0.75%D	
102.00	102.25	102.50					-C.729D	
102.50	102.75	193.00					-0.704D	
103.00	103.50	104.00					-0.663D	
104-00	104.50	105.00			-9.335D			13
105.00	105.50	196.00			-0.435D			13
106.00	106.50	107.00			-0.523D			13
107.00	107.50	108.00	•		-0.5990			13
108.00	109.00	119.00			-0.689D		_	13
110.00	111.00	111.00	0.2170				-0.155D	
							9-1-3-CD	

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=13 M=13 P= 5

XLO	XMID	хні	FXMID	DEXMID	DDFXMID	
30.00	30.50	31.00	0.9090 10	0.1470 12	0.201D 13	3
31.00	31.59	32.00	0.1200 11	0.185D 12	0.2410 13	3
32.00	32.50	33.90	0.156D 11	0.2310 12	0.286D 13	3
33.00	33.50	34.00	0.2010 11	0.285D 12	0.336D 13	3
34.00	34.50	35•00	0.256D 11	0.349D 12	0.391D 13	3
35.00	35.50	36.00	0.3230 11	0.422D 12	0.450D 13	3
36.00	36.50	37.00	0.404D 11	C.506D 12	0.513D 13	3
37.00	37.50	38.00	0.5010 11	0.602D 12	0.579D 13	3
38.00	39.00	40.00	0.6790 11	C.767D 12	0.682D 13	Š
49.00	41.00	42.00	0.9910 11	0.103D 13	0.821D 13	3
42.00	43.00	44.00	0.1400 12	0.134D 13	0.952D 13	3
44.00	45.00	47.90	0.193D 12	0.169D 13	0.106D 14	
47.00	51.00	53.00	0.432D 12	0.288D 13	0.112D 14	۶
53.00	54.00	56.00	0.597D 12	0.3430 13	0-940D 13	
56 • 00	57.00	58.00	0.788D 12	0.383D 13	0.592D 13	
58.00	59.00	60.00	0.925D 12	0.3990 13	0.277D 13	
60.00	61.00	62.90	0.196D 13	0.402D 13	-0.889D 12	
62.00	63.00	64.00	0.120D 13		-0.488D 13	3
64.00	65.00	66.00	0.134D 13	0.368D 13	-0.897D 13	3
66.00	67,00	58 . 00	0.146D 13	0.33GD 13		
68.00	69 . 00 -	70.00	0.157D 13	0.278D 13		
70.00	71.00	72.00	0.1650 13			
72.00	73.0Q	74.90	0.1710 13		-0.225D 14	
74.00	77.00	78.00	0.1760 13		-0.228D 14	
78-00	. 79.00	87.00	0.174D 13		-0.220D 14	
80.00	81.00	82.00	9.170D 13		-0-202D 14	
82.00	83.90	84.00	0.163D 13		-0.176D 14	
84.00	85.90	86.00	0.154D 13		-0.143D 14	
86+00	87.00	88.00	0.143D 13	= :	-0-107D 14	
88.00	89.00	90.00	0.131D 13		-0.687D 13	
90.00	91.00	92.00	0.118D·13			
92.00	93.00	94.00	0.104D 13		0.406D 12	
94.00	95.00	96.00	0.909D 12		0.350D 1.	
96.00	97.00	98.00		-0.360D 13		
98-00	100.00	102.00		-0.321D 13	0.876D 13	
102.00	107.00	109.00	C.282D 12		0.997D 13	
109.00	111.00	111.00	0.165D 12	-0.135D 13	C-844D 13	3

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=13 M=13 P= 6

XLO	XMID	хні	FXMIC)	DFXMI	D	DDFXM	ID
30.00	30.25	30.50	0.8250	99	0.1670	11	0.3010	12
30.50	30∙75	31.00	0.983D	09	0.196D	11	0.343D	
31.00	31 • 25	31.50	0.117D	10	0.2280	11	0.3910	
31.50	31.75	32.00	0.1380	10	0 •264D	11	0-444D	12
32.00	32.50	33∙00	C.177D	10	2.3280	11	G•533D	12
33.00	33.50	34.00	0.243D	10	0.433D	11	0.675D	12
34.00	34.50	35•00	0.329D	10	0.565D	11	0.844D	12
35 .00	35.50	36.90	0.4420	10	0.7290	11	0-104D	13
36.00	36.50	. 37.00	0.586D	10	0.931D		0.128D	13
37.00	37.50	38.00		10	0.118D		G•1,55D	13
38.00	38.50	39.00		11	0.1470		0.186D	13
39.00	39.50	40.00	0.129D	11	0.183D		G.221D	13
40.00	40.50	41.00	0 - 1 64D	11	0.225D	_	C. 260D	13
41.00	41.50	42.00	0.208D	11	0 •274D	12	Ç•,393D	13
42.0C	42.50	43.00	0.260D	11	9 •331D	12	0.350D	23
43.00	43.50	44.00		11	0.3960		0-401D	13
44.00	44.50	45.00		11	0.471D		0.456D	13
45.00	45.50	46.00		11	0.555D		0.514D	
46.00	47.00	48.00		11		12	0+604D	-
48.00 50.00	49•00 51•00	50.00 52.00	0.131D	11	0.934D 0.121D		0.7290	
52.00	53.00	55.00		12	0.153D	13	0.850D	
55.00	59.00	62.00		12	0 • 262D	13	0.1070	
62.00	64.00	65.00		12	0.346D	13	6.780D	
65.00	66.00	67.00		12	0.3690	13	0.5460	
67.00	58.20	69.00		12	0.384D	13	C-251D	
69.00	70.00	71.00		13	0.3860		-0.932D	
71.00	72.00	73.00		13	9.3770		-0-471D	
73.00	74.00	75.00	0.131D	13	C-353D	13	-0.861D	13
75.00	76.00	77+00	Q.143D	13	0.317D	13	-C-124D	14
77.00	78.90	79.00	0.153D	13	0.267D	13	-0.159D	14
79.00	89 • 00	81.00	0.1620	13	0.207D	13	-0.188D	14
81.00	82.00	90.58	0.1680	13	0.1370	13	-0.209D	14
83.00	87.00	88.00			-0.549D	12	-0.221D	14
88.00	89.00	90.00		-	-0.1300	_	-0.208D.	
90.00	91.00	92.00		13	-0.199D			
92.00	93.00	94.00		13	-0.260D			14
94.00	95.00	96.00		13	-0.309D			14
96.00	97.00	98-00		13				-
98.00 160.00	99.00 101.00	100.00		-	-0.370D	-	-	_
192.00	102.00	102.00 104.00	: ·	13	-0.380D -0.379D			13
104.00	105.00	106.00		12 12		13	0.215D 0.503D	
196.00	108.00	110.00	•	12	-0.3310		C+822D	
110.00	111.00	111.00			-0.282D		0.997D	
	·							

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=14 M=13 P= 6

XLO	XMID	XHI	FXMIC	,	DFXMID	•	DDFXMID
30.00	30.50	31.00	-0.561D	11	-0 •977D	12	-0.145D 14
31.00	31.50	32.00	-Q. 755D	11	-0:126D	13	-0.177D 14
32.00	32.50	33.00			-0 -160D		
33.00	33.50	34.00	-0.132D	12	-0.200D	13	-0.254D 14
34.00	34.50	35.00	-0.171D	12	-C .248D	13	-0.298D 14
35.00	35,50	36.00	-0.219D	12	-0.3950	13	-0.346D 14
36.00	36.50	37.00	-0.278D	12	-0 •369D	13	-0.396D 14
37.00	37.50	38.00					-0.449D 14
38.00	39.00	40.00	-0.481D	12	-0.571D	13	-0.529D 14
40.00	41.00	42.00	-C.714D	12	-0 •774D	13	-0.631D 14
42.00	43.00	45.00	-0.102D	13	-0.2010	14	-0.713D 14
45.00	47.00	49.00	-0.191D	13	-0 .153D	14	-0.758D 14
49.00	50.00	51.00	-0.281D	13	-0.190D	14	-0.624D 14
51.00	52.00	53.00	-0.351D	13	-0.209D	14	-0.435D 14
53.00	54.00	55.00	-0.426D	13	-0.220D	14	-0-165D 14
55 <u>.</u> 00	56.00	57+00	-0.504D	13	-0.220D	14	0.178D 14
57.00	58 .00	59.00		-	-0'+207D		0.578D 14
59∙00	60.00	60.50	-0.646D	13	-0 •179D	14	0.101D 15
60°50	61.00	61.50	-0.676D	13	-0.160D	14	0.122D 15
∙61 •50	62.00	62.50	-0.702D	13	-0.136D	14	0.143D 15
62.50	63.00	63.50	-0.723D	13	-0.110D	14	0.163D 15
63.50	64.00	64.50	-0.740D	13	-0.794D	13	0.182D 15
64.50	65.00	65•25	-0.751D		-0.462D		0.198D 15
65-25	65∙50	65.7 5	-0.754D		-0 •286D		0.206D 15
65.75	66.30	66.12	-0.756D		-0.103D		0.212D 15
66.12	66.25	66+50	-0.756D		-0.995D	_	0.215D 15
66•50	66.75	67.00	-0.755D	13	0.1810		0-221D 15
67.00	67.50	68.00	-0.7510		0.4750		0.228D 15
68.00	70.00	72.00	-0.7¢8D		0.150D		0.237D 15
72.00	73.00	74.90		13	0.270D		0.2160 15
74.00	75.00	76.00	-0.491D		0.340D		
76+00	77.90	78.00	~0.362D		0.396D		
78.00	79.00	80.00	-0.217D		0.433D		0.800D 14
86.00	81.00	82.00	-0.620D		0.451D		0.183D 14
82.00	83.00	84.00	0.952D				-0.443D 14
84.00	85.00	86.00		13			-0-103D -15
86.00	87.00	88.00		13			-C.154D 15
88.00	89.00	90.00		13			-0.192D 15
90.00	92.00	94.00		13			-C.224D 15
94.00	95.00	95.50		13	0.853D		-0.223D 15
95.50	96.00	96.50		13	0.470D 0.102D		-0.216D 15
96.50 97.12	97.00	97.12	0.736D	13			-0.203D 15
97.50	97.25	97•50 98•00		13			-0.196D 15
98.00	97.75 98.25	98.50			-0.330D		
98.50	99.00	99.50			-0 •570D		
99.50	100.00	100.50					-0.161D 15
100.50	101.00	101.50			-0.113D		
101.50	765.00	102.50			-0.136D		
102.50	103.00	104.00					-0.104D 15
104.00	105.00	196.00					-0.648D 14
106.00	107.00	10,8.00			-0.202D		
108.00	109.00	110.00	0.450D		-9.206D		
110.00	111.00	111.00			-0.200D		

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=14 M=13 P= 7

XLO	XMID	XHI	FXMID		DFXMI	D	DOFXM	ID
30.00	30.25	30.50	-0.520D	19	-0.113D	12	-0.218D	13
30.50	30 - 75	31.00	-0.627D	10	-0 -133D	12	-0.251D	13
31.00	31.25	31.50	-0.753D					
31.50	31.75	32.00	-0.902D					
32.60	32.25	32.50	-0.108D	11	-0.215D	12	-0.3780	13
32.50	32.75	33.00	-0.128D					
33 .0 0	33-25	33.50	-0.151D	11	-0.2900	12	-0.489D	13
33.50	34.00	34.50	-0.194D	11	-0.360D	12	-C.587D	13
34.50	35.00	35.50	-0.266D	11	-0.476D	12	-0.741D	13
35.50	36.00	36.50	-0.362D	11	-0.621D	12	-0.924D	13
36.50	37.00	37.50	-0.485D :	11	-0.800D	12	-0.114D	14
37.50	38.00	38.50	-0.643D	11	-0 .10 2D	13	-0.139D	14
38.50	39.00	39.50	-0.844D	11	-0 .1 29D	13	-0.1670	24
39.50	40.00	40.50	-0.110D 1	12	-0.161D	13	-0.199D	14
40.50	41.00	41.50	-0.141D 1	12	-0.198D	13	-0.234D	14
41,.50	42.00	42.50	-0.179D	ĺ2	-0 •242D	13	-0.273D	2.4
42.50	43.00	43.50	-0.226D :	12	-0.294D	13	-0.315D	14
43.50	44.00	45.00	-0.282D S	12	-0.353D	13	-0.359D	14
45.00	46.00	47.00	-0:429D	12	-0 .494D	13	-0.452D	14
47.00	48-00	49.00	-0.6310 1	12	-0.668D	13	-0 •545D	14
49.00	50.00	51.00	-0.899D 1	12	-0.874D	13	-0.628D	14
51.00	55.00	57.00	-0.192D 1	13	-0.147D	14	-0.700D	14
57.00	58.00	59.00	-0.278D 1	lЗ	-0.181D	14	-0.581D	14
59.00	60.00	61.00	-0.345D 1	ĮЗ	-0.199D	14	-0.414D	14
61.00	62.00	63.00	-0.416D	13	-0.209D	14	-0.171D	14
63.00	64.00	65.00	-0.490D S	3	-0.210D	14	C-142D	14
65.00	66.00	67.00	-0.561D 1	lЗ	-0+199D	14	0.510D	1,4
67.00	68-00	68,50	-0.6270 1				0.911D	14
68 • 50	69.00	69•50	-0.656D 1	13	-0 •1 56D	14	0.112D	15
69 • 50	70.00	70.50	-0.681D 1				0.132D	15
70.50	71.00	72 • 50	-0.703D 1	lЗ	-0.1100	24	C-151D	15
71.50	72.00	72.50	-C.720D 1				0.169D	15
72.50	73.00	73.50	-0.731D 1				0 • 1 86D	15
73.50	74.00	74 • 25	-0.737D 1			13	6.200D	15
74 • 25	74.50	74.75	-0.738D 3		0.490D	10	0.207D	15
74.75	75.00	75.5¢	-0.7370 1		C •183D	13	0.212D	
75.50	76.00	77.00	-0.7310		0.5620		C•221D	15
77.00	79.00	81.00	-0.670D		0-175D		0.229D	1,5
81.00	82.00	83.00	-0.548D 1		0.290D		0.202D	
83.00	84.00	85-90	-0.435D 1		0.3550	-	0.167D	
85.00 87.00	86.00	87.00	-0.302D 1		0.495D	14	0.1190	
89.00	88.00	89.00	-0.155D 1		0.436D	14	0.616D	
	90.00	91.00	0.160D 5				-0.641D	
91.00	92.00	93.00		.3			-0.616D	14
93.00 95.00	94.00 96.00	95.00		. 3			-0.1190	
97.00	98.00	97•00 99•00		. 3			-0.167D	
99.00	103.00			.3			-0.202D	2.5
104.00	104.50	104.00 104.75		.3				15
104.75	105.00	105-25		.3			-0.217D	
105.25	105.50	105.75		.3			-0.212D	
105.75	106.00	106.50		.3	0.490D			15
106.50	107.00	107.50	_				-0.200D	
107.50	108.00	108.50					-0-166D	
108.50	109.00	109.50			-0.025D		-0-169D	
109.50	110.00	110.00					-0.131D	
-4200	7-44	4944	A SOOTO T		-241330	4 4	W-13EU	4.0

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=14 M=14 P= 6

XLO	XMID	XHI	FXMID		DFXMIC	>	DDFXM:	ID
39.00	30.25	30.50	0.3630 1	11	0.728D	12	¢.128D	14
30.50	30.75	31.00	0.432D 1		0.847D		0.146D	_
31.00	31.25	31.50	0.5110 1		0.983D		0.166D	
31.50	32.00	32.50	0.655D 1		0.1220		0.199D	
32.50	33.00	33.50	0.9010 1	11	0 .161D	13	0.251D	
50 ه 33	34.00	34 . 50	0.122D 1		0-210D		0.313D	
34.50	35.00	35.50	0.164D 1	i 2	0.271D	13	0.386D	
35.50	36.00	36.50	0.218D 1	2	0.345D	13	0.470D	14
36.50	37.00	37•5C	0.286D 1	12	0.436D	13	0.5670	14
37.50	38.00	38.50	0.371D 1	12	0.544D	íЗ	C.677D	14
38.50	39.00	39.50	0.477D 3	12	0.673D	13	0.8900	14
39.50	40.00	40.50	0.607D 1	12	0.824D	13	0.935D	14
40 •50	41.00	41.50	0.766D 1	7.	0-100D	14	0.1080	15
41.50	42.00	42.50	0.958D 1	12	0.120D	14	C.124D	15
42.50	43.00	44.00	0.119D 1	.3	0-143D	14	0.141D	15
44.00	45.00	46.00	0.178D 1	lЗ	0 •1 99D	14	0.1770	15
46.00	47.00	48.00	0.259D 1	lЗ	0.268D	14	0.2150	15
48.00	49.00	50.00	0.366D 1	13	© •349D	14	0.250D	15
50.00	51.00	53.00	0.50.4D 1	3	0.442D	14	0.2810	15
53.00	57.00	59.00	0.113D 1	4	0.758D	14	0.301D	15
59.00	60.00	62.00	0.157D 1		0.905D			
62.00	63.00	64.00	0.207D 1		0.1010			
64.00	65.00	66.00	0.243D i		0.105D			
66.00	67.00	68.00	0.280D 1			_	-0.3890	
68.00	69.00	70.90	0.316D 1				-0.1520	
70.00	71.00	72.00	0.351D 1				-0.267D	
72.00	73.00	74.00	0.382D 1			-	-0.378D	
74.00	75.00	76.00	0.409D 1				-G-475D	
76 • 00	77.00	78.00	0.430D 1		-		-0.554D	
78.00	79.00	80.00	0.444D 1				-0.607D	
80.00	82.00	83.00					-0.632D	
83.00	83.50	84.00					-0.618D	
84.00 86.00	85.00	86.00					-0.588D	
88.00	87•00 89•00	88•00 90•00				-	-0.440D	
90.00	91.00	92.00					-0.339D	
92.00	93.00	94.00					-0.230D	
94.00	95.00	96.00					-0.119D	
96.00	97.00	98•00					-0.142D	
98.00	99.00	100.00			-0.102D			
100.00	101.00	102.00			-0.976D		0.158D	
102.00	104.00	106.00			-0.8690		0.242D	
106.00	111.00	111.00	0.706D			14	0.280D	

Table AI (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=14 M=14 P= 7

XLO	XMID	XHI	FXMID		DFXMI)	DDFXM	ID
30.00	30∙25	39.50	0.303D 2	Ô	€ •728D	12	0.158D	23
30 • 50	39.75	31.00		0	0.8780	11	Q.187D	
31.00	31.25	31.50	G.457D 1	0	0.105D	12	C.220D	13
31.50	31.75	32.60	0.558D 1	O	0.126D	12	0.257D	13
32.00	32.25	32.50	0.679D 1	0	ؕ151D	12	0.3010	13
32.50	32.75	33.00	C.822D 1	0	0 •179D	12	0.350D	13
33.00	33.25	33.50	0.9920 1	٥	0.2120	12	0.406D	13
33.50	33.75	34.00	0.1190 1	1	0.250D	12	0.470D	13
34.00	34.25	34.50	0.143D 1	1	0.294D	12	0.542D	13
34.50	34.75	35.00	0.1710 1	2	6.345D	12	0.6220	13
35.00	35.25	35.50	0.203D 1	1	0.403D	12	0.713D	13
35.50	35•75	36.00	0.2410 1	1	0 -470D	12	0.814D	13
36.00	36.25	36.50	0.286D 1		0.545D		0.9270	
36.50	36.75	37.00	-	1	0.632D			
37.00	37.50	38.00	0.429D 1		0.783D			
38.00	38.50	39.00	0.587D 1		0.193D		0.161D	
39.00	39.50	40.00		2	0 •1 35D			
40.00	40.59	41.00	0.106D 1		0-174D			
41.00	41.50	42.00	0.1410 1		0.223D			-
42.00	42.50	43.00		2	0.2820		0.374D	
43.00	43.50	44.00	0.240D 1		0.354D			
44.00	44.50	45.00	0.309D 1		C-440D		0.5390	
45.00	45.50	46.00	0.394D 1		₹•542D			
46.00	46.50	47∙0Ω	0.499D 1		0.653D	_		
47.00	47.50	48.00	0.627D 1		0.804D			
48.00	48.50	49.00	0.781D 1		0.968D			
49.00	49.50	50.00	0.966D 1		0.116D		0.1150	
					0-137D		0.130D	
50.00	50.50	51.00 53.00	0.119D 1 0.159D 1			•	0.155D	
51.00	52.00	55.00	0.230D 1		0.174D 0.234D		0.189D	
53.00	54.00 56.00	57.00	0.324D 1		0.234B		0.2230	
55.00 57.00	58•0n	60.00			0.389D			
			0.445D 1					
60.00	65.00	67.00	0.113D 1 0.171D 1		0.736D		0.288D	
67.00	69.00	70.00 72.00			0.918D			
70.00	71.00		0.239D I		0.984D			
72.00	73.00	74.00			0.1020		0.720D -0.257D	
74.00	75.00	76.00	0.2750 1					
76.00	77•00 79•00	78.00	0.311D 1				-0.134D	
78.00		80.00					-0.355D	
80.00	81.00 83.00	82.00						
82.00	85.00	84.00		-			-0.453D	
84.00	87.00	86.00 88.00	· · · · — · - •		0.519D		-0.534D	
86.00	91.00							15
88.00		92.00			-0.109D		_	15
92.00	93.00	94.00	-					15
94-00	95.00	96.00 98.00				•	-0.534D	15
96.00	97.00	98.00			-0.692D		-0.453D	-
98.00	99.00	100-00			-0.834D			15
100.00	101.00	102-00		-	-0.939D		-0.246D	15
102.00	103.00	104.00			-0.100D		-0.134D	15
104-00	105.00	106.00			-0.1030		-0.257D	
106.00	107.00	108.00				15	0.720D	_
108.00	109.00	110.00			-0.984D	_	C-155D	
110.00	111.00	111.00	0.171D 1	4	-0.918D	14	C.219D	15

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=15 M=14 P= 6

XLO	XMID	XHI	FXMIC	>	DFXMI	•	DDFXMID
30.00	30.50	31.00	-0.2320	13	-0.3970	14	-0.571D 15
31.00	31.50	32.00	-0.311D	13	-0.5070	14	-0.690D 15
32.00	32.50	33.00		13	-0.639D	14	-0.822D 15
33.00	33.50	34.00	-C.535D	13	-0.795D	14	-0.967D 15
34.00	34.50	35.00	-0.689D	13	-0.977D	14	-0.112D 16
35.00	35.50	36.00	-0.878D	13	-0.1190	15	-0.128D 16
36.00	36.50	37.00	-0 -111D	14	-0.142D	15	-0.145D 16
37.00	38.00	39.00	-0.153D	14	-0 -184D	15	-0.170D 16
39.00	40.00	41.00					-0.200D 16
41-00	43.00	47.00	-0.387D	14	-0.361D	15	-0.227D 16
47.00	48.00			14	-0.550D	15	-0.182D 16
49.00	50.00	51.00	-0.989D	14	-0.604D	15	-0.121D ,16
51.00	52.00						-0.333D 15
53.00	54 .00	55.90	-0.143D	15.	-0.6240	15	0.771D 15
55.00	56.00	56 • 5 0					0.204D 16
56•5 0	57.00	57.50	-0.173D	15	-0 o5340	15	0.270D 16
57.50	58 •00		-C.182D				
58 • 50	59.00	59•50	-0.19CD		-0.417D		
59•5 0	60.00	60.50	-0.197D		-0.341D		
6 0.50	61.00	61.50	-0.202D				
61.50	62.00	62.50	-0.206D	15	-0.158D	15	0.576D 16
62.50	63.00	63,25			-0.536D		
63.25	63.50	63.75			0.147D		
63.75	64.00	64+50	-0.207D	15	0.581D	14	0.657D 16
64.50	65.00	6 6∙00			0 •1 75D	15	0.683D 16
66.00	68.00	69 -00					
69.00	70.00	71.00		15	0.772D		
71-00	72.00	73.00	-0.133D		0.976D		
	74.00	75.00					
75.00	76.00		-0.545D				
77.00	78.00		-0.103D		0 •1 28D		
79,00	_	81.00	C.340D				-0.171D 16
81.00	82.00	83.00	0.7640				-0.344D 16
83.00	84.00	85.00	9.115D				-G.487D 16
85-00	86.00	87.00	0.147D				-0.591D 16
87.00 91.50	91.00 92.00		0.1950				-0.651D 16
92.50		92.50 93.12	0.1980 0.200D				-0.600D 16
93.12							-0.592D 16
93.37	93.44	93.50	0.200D	15	-0.1310		-0.585D 16
93.50	93.62	94.00					-0.577D 16
94.00	94.25	94 • 50	0.200D		-0.819D		
94.50	95.00	95∙50					-0.5170 16
95.5C	96.00	96.50	0.1950				-0.467D 16
96.50	97.00	97.50	`0.190D		-0.315D		
97.50	98.00	98.50	0.184D		-0.382D		
98.50	99.00	99.50	0 • 1 77D		-0.438D		-0.296D 16
99.50	100.00	101.00	0.168D		-0 -485D		
101.00	102.00	103.00	0.150D		-0.548D		-0.124D 16
103.00	104.00	105.00	0.131D		-0.573D		-0.2310 15
105.00	106.00	107.00			-0.566D	15	0.6030 15
107.00	108.00	109.00	Q.914D		-0.533D	15	0.123D 16
109.00	111.00	111.00	0.655D		-0.453D	15	9.177D 16

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=15 M=14 P= 7

XLO	XMID	XHI	FXMID)	DFXMI)	DDFXM	ID .
30.00	30.25	30.50	-0.2430	12	-0.5200	13	-0.983D	14
30.50	30.75	31.00	-0.292D	12	-0.6120	13	-0-1130	15
31.00	31.25	31.50	-0.350D	12	-9.718D	13	-0.129D	15
31.50	31.75	32.00	-0.418D	12	-0.838D	13	-0.148D	15
32.00	32, 25	32.50	-0.497D	12	-0.976D	13	-0.168D	15
32.50	33.00	33.50	-C.640D	12	-0.122D	14	-0.50SD	15
33.50	34.00	34.50	-D.886D		-0.1620	14	-0.256D	15
34.50	35.00	35.50		_			-0.320D	
35.50	36.00	36.50			-0.274D			
36.50	37.00	37.50			-0.350D			15
37.50	38.00	38.50			-0.442D			
38.50	39.00	39.50	_		-0.5520		-0.806D	
39.50 40.50	40.00	40.50 41.5¢	-0.480D -0.612D	_	-0.682D		_	_
41.50	41.00 42.00	42.50	-0.773D				-0.107D	
42.50	43.00	44.00			-0.121D			16
44.00	45.00	46.00			-0.169D		-0.151D	
46.00	47.00	48.00	-0.215D				-0.178D	
48.00	50.00	55.00			-0.328D		-0.207D	
55.00	56.00	57.90	-0.816D				-0.156D	
57.00	58.00	59.00	-0.101D			-	-0.9810	
59.00	69.00	61.00			-0.600D		-C-141D	
61.00	62.00	63.00	-0.143D	15	-0.588D	15	0.907D	15
63.00	64.00	64.50	-0.162D	15	-0.535D	15	G.210D	16
64 • 50	65 .0 0	65.50	-0.171D	15	-0.493D	15	C•273D	16
65.50	66.00	66.50	-0.1800	15	-0-440D	15	0.335D	16
66.50	67 .00	67.50	-0.187D	15	-0.376D	15	0.3970	
67•50	68.00	68.50			-0 •30 2D	15	0.456D	
68.50	69.00	69.50	-0-1970			15	0.511D	
69.50	70.00	70.25			-0.1240		0.5600	
70.25	79.50	70.75	-0.201D		-0.740D	14	0.5820	
70.75	71.00	71.12	-0.201D		-0.223D		0.6020	
71•12 71•50	71.25 71.75	71.50 72.00	-0.201D	15	0.412D 0.582D	13	0.611D	
72.00	72.50	73.00		15	0.1420		0.6490	
73.00	75.00	77.00		15	0.433D	15	0.6750	16
77.00	78.00	79.00	•	15	0.774D	15	0.6090	16
79+00	80.20	81.00		15	0.9700	•	0.5070	
81.00	82.00	83.00		14	0.1120	16	C.365D	16
00.EB	84.00	85•QC	-0.473D	14	0.1220	16	Q.194D	16
\$5 ∙00	86.00	87.90	-0•389D	13	0.126D	16	0.834D	14.
87.00	88.00	89.00	0.397D	14	9.123D		-C-178D	16
89.00	90.00	91.00		14			-0.348D	16
91.00	92.00	93.00		15				16
93.00	94.00	95.00		15			-0.593D	16
95.00	99.00	99.50		15	0.233D		-0.650D	16
99.50	100.00	100.50	_	15	_		-0.606D	16
100.50	100.75 101.00	199.87 101.06		15	0.4070		-0.597D	16
100.87 101.06	101.12	101.05		15 15			-0.5930	
101.25	101.37	101.50						
101.50	101.75	102.00		15	-0.242D -0.619D		-0.583D -0.568D	
102.00	102.25	102.50			-0.111D			
102.50	103.00	103.50			-0.180D			16
103.50	104.00	104.50			-9.265D		· ·	
104.50	105.00	105.50			-0.3400		-0.4030	16
105.50	106.00	106.50			-0.405D		_	16
106.50	107.00	197.50			-0.460D		-0.284D	16
107.50	108.00	109.00	0.164D	15	-9.504D	15	-0.224D	16
109.00	110.00	110.00	0+146D	15	-0 •562D	15	-C.109D	16

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=15 M=15 P= 6

XLD	XMID	хні	FXMI)	DFXMI	>	DDFXM	D
30.00	30.25	30.50	0.164D	13	0.323D	14	C.559D	15
30.50	30.75	31.00	0.194D	13	0.375D	14	0.634D	15
31.00	31.50	32.00	0.249D	13	9.466D	14	0.760D	15
32.00	32.50	33.00	0.3430	13	9.616D	14	0.958D	15
33.00	33.50	34.00	0.466D	13	0E 08. C	14	0.119D	16
34.00	34.50	35.00	0.626D	13	0.103D	15	0.1470	16
35.00	35.50	36.00	0.8300	13	0.1320	15	9.178D	16
36.00	36.50	37.00	0.1090	14	0.166D	15	0-214D	16
37.00	37.50	38.00	0.141D	14	0.2070	15	0.254D	16
38.00	38.50	39.00	0.181D	14	0.255D	15	0.2980	16
39.00	39.50	40.00	0.231D	14	0.3110	15	C.347D	16
40.00	40.50	41.00	0.290D	14	0.376D	15	0.399D	16
41.00	41.50	42.00	0.362D	14	0.4500	15	0 • 454D	16
42.00	42.50	43.00	C • 448D	14	0.535D	15	G.512D	16
43.00	44.00	45.00	0.607D	14	0.689D	15	0.602D	16
45.00	46.00	47.00	0.883D	14	0.9110	15	0.719D	16
47.00	48.00	49.00	0.125D	15	0.118D	16	0.825D	16
49.00	51.00	57.00	0.198D	15	0 • 1 6 4 D	16	0.932D	15
57.00	58.00	59.00	0.469D	15	0.273D	16	0.722D	16
59.00	60 - 0.0	61.00	0.568D	15	Q•295D	16	0.511D	16
61.00	62.00	63.00	Q • 674D	15	0.308D	16	0.237D	16
63.00	64.00	65.00	0.782D	15	0.311D		-0.871D	15
65.00	66.00	67.00	0.889D	15	0 •30 2D		-0.444D	16
67.00	68.00	69.00	0.991D	25	0.2800		-0.809D	16
69.00	70.00	71.00	0.198D	16	0.246D		-0.116D	17
71+00	72.00	73.00	0.1160	16	0.2000		-C.146D	17
73.00	74.00	75-99	0.1220	16	0.144D		-C.170D	17
75.00	76.00	77-00	0.126D	15	0-817D			17
77.00	79.00	80.00	0.128D		-0.179D		-0.191D	17
80.00	80.50	81.00	0.1270	_	-0.673D		-C.185D	17
81.00	82.00	83.00	0.124D		-0-1150		-0.174D	17
83.00	84.00	85.00	0.119D		-0.1720		-0.152D	17
85.00	86.00	87.00	0.1120		-0.220D		-0.124D	17
87.00	88.00	89.00	0.104D		-0 •258D		-0.913D	16
89.00	90.00	91.00	0.946D	-	-0.284D		-0.567D	16
91.00	92.00	93.00	0.844D		-0.297D		-0.227D	16
93.00	94.00	95.00	0.7390		-0.300D	16	0.864D	15
95.00	96.00	97.00	0.6360		-0.292D	16	0.357D	16
97.00	98,00	99.00	0.536D		-0.276D	16	0.572D	16
99.00 103.00	101-00	103.00	0.4010		-0.2390	16	0.782D	16
109.00	1107.00	109.00	0.196D 0.128D		-0.151D	16	0.829D	16
PANAMA	110-00	110.00	T CON	T 3	-0.110D	16	10.724D	16

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=15 M=15 P= 7

XLO	XMID	хні	FXMID	DFXMID	DDFXMID
30.00	30.25	30.50	0.154D 12	0.365D 13	G.780D 14
30, 50	30.75	31.00	0.189D 12	0.439D 13	0.918D 14
31.00	31.25	31.50	0-231D 12	0.5260 13	0.108D 15
31.50	31.75	32.00	0.281D 12	0.6270 13	0.126D 15
32.00	32.25	32.50	0.341D 12	·0.746D 13	0.146D 15
32.50	32.75	33.00	0.411D 12	0.884D 13	C.170D 15
33.00	33 • 25	33.50	0.495D 12	0.104D 14	0.196D 15
33.50	33.75	34.00	0.594D 12	0.123D 14	Q.226D 15
34.00	34 • 25	34.50	0.710D 12	0.144D 14	0.260D 15
34.50	34.75	35.00	0.846D 12		0.297D 15
35.00	35.25	35.50	0.100D 13	0.196D 14	0.339D 15
35.50	35.75	36.00	0.1190 13		
36.00	36.5 0	37.00	0.152D 13		
37.00	37.50	38.00	0.209D 13	0.375D 14	0.591D 15
38.00	38.50	39.00	0.284D 13	0.491D 14	0.742D 15
39.00	39.50	40.00			
40.00	40.50	41.00	0.508D 13		0.113D 16
41.00	41.50	42.00	0.669D 13	0.103D 15	0.138D 16
42.00	42.50	43.00	0.8710 13		
43.00	43.50	44.00	0-1120 14	0.161D 15	
44.00	44.50	45.00	0.144D 14	0.1990 15	G.234D 16
45.00	45.50	46.60	G.182D 14	0.243D 15	0.273D 16
46.00	46.50	47.00		0.2950 15	
47.00	47.50	48.0C	·0.286D 14	0.354D 15	0.363D 16
48.00	48.50	49.00	0.353D 14	0.4220 15	0.413D 16
49.00	49.50	50.00	0.433D 14	0.498D 15	0.465D 16
50.00	51.00	52.90	C.581D 14	0.630D 15	C.547D 16
52.00	53.00	54.00	0.836D 14	0.840D 15	0.656D 16
54.00	55.00	56.00	0.1170 15	0.109D 16	0.758D 16
56.00	58.00	65.00	0.185D 15	0.152D '16	0.870D 16
65.00	66.00	67.00	0.482D 15	0.269D 16	0.660D 16
67.00	68.00	69.00	9.580D 15	0.289D 16	0∙453D 16
69.00	79.00	71.00	0.683D 15	0.300D 16	0.186D 16
71.00	72.00	73.00	0.788D 15		-0.129D 16
73.00	74.00	75.00	C-892D 15		-0.473D 16
75.00	76 •00	77.0₽	0.990D'15	0.258D 16	-0.825D 16
77.00	. 78. 90	79.00	0.108D 16		-G-116D 17
79.00	80.00	81.00	0.115D 16		-0.145D 17
81.00	82.00	83.00	0.1210 16		-0.168D 17
83.00	84.00	85.00			-0.183D 17
85.00	87.00	88.00	0.125D 16	-0.270D 15	
88.00	89.00	90.00		-0.9110 15	
90.00	91.00	92.00		-0.150D 16	
92.00	93.00	94.00		-9.202D 16	
94.00	95.00	96.00	-	-0.244D 16	
96.00	97-00	98.00		-0.274D 16	•
98.00	99.00	100.00		-0.292D 16	
100.00	101.00	102.00		-0.2990 16	
102.00	103.00	104-00		-0.294D 16	
	105.00	106.00		-0.280D 16	0.510D 16
106.00	108.00	119.00		-0.247D 16	0.757D 16
110.00	111.00	111.00	0.2980 15	-0.204D 16	G.865D 16

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=16 M=15 P= 7

		•						
ΧĿο	XMID	XHI	FXMI)	DFXMI)	DDFXM	ID
20 -00	20.26	30 50	-0 1160	• •	-0.0440		A 4515	• •
30.00 30.50	30•25 30•75	30.50 31.00			-0.244D			
33.30	31.25	31.50	_					
31.50	31.75	32.00			-0.334D -0.389D			
32.00								
		33.00			-0.485D			
33.00	33.50	34.00			-0.643D			
34.00	34.50	35.00			-0.841D			
35.00	35-50	36.00			-0.109D			
36.00	36.50	37.00			-0.138D			
37.00	37.50	38.00			-0.174D			
38.00	38.50	39.00		_	-0 •217D			
39.00	39.50	40.00			-0.2670			
40.00	40.50	41.00			-0.325D			
41.00	41.50	42.00			-0.391D			
42.00	43.00	44.00			-0.506D			
44.00	45.00	46.00 49.00			-0.688D			
46.00 49.00	47.00 51.00				-0.899D			
		53.00			-0.136D			
53.00 55.00	54.00	55.00			-0.166D			
57.00	56.00	57.00 59.00			-0.179D			
59.00	58.00 60.00				-0.183D			
60.50		60.50 61.50			-0.176D			
61.50	61.00 62.00				-0.168D			
62.50	63.00	62.50			-0.140D			
63.50	64.00	63.50 64.50						
64.50	65.00	65.50			-9.121D			
65.50	66.00	66.50			-0.979D -0.719D			
66.50	67.00	67.25			-0.428D		0.158D 0.174D	
67.25	67.50	67.75			-0.428D		0.1820	
67.75	68.00	68.12			-0.112D		Q.188D	
68.12	68.25	68.31			-0.288D		0.191D	
68.31	68.37	68•50			0.131D		0.193D	
68.50	68.62	69•00			0.9790		G-196D	
69.00	69.50	70.00	_		0.403D		C.204D	
70.00	72.00	74.00	-0.550D					
74.00	75.00	76.00	-0-453D					
76.00	77.00	78.00	-0.3580					
78.00	79.00	80.00					0.1070	
80.00	81.00	82.00						
82.00	83.99	84.00	0-129D				-0.103D	
84.00	85.00	86.00	0.143D	16	0.365D			
86.00	87.00	88.00			0.332D			
88.00	89.00	90.00	0.372D	16	G • 281D	17	-0.164D	18
90.00	91.00	92.00	0.460D	16	0.2190	17	-0.1920	18
92.60	95.00	95.50	0.564D	16	€ •775D	16	-0.202D	18
95.50	96.00	96.50	0.5740	16	9.428D	16	-G-195D	18
96.50	97.00	97.12	G.579D	16	0.947D	15	-0.186D	18
97.12	97.25	97.37	₽•579D	16	0.143D	15	-0.1830	18
97.37	97•50	97 •7 5	0.5790	16	-0.648D	15	-C-180D	18
97.75	98.00	98.50	0.577D	16	-0.219D	16	-0.173D	18
98.50	99.00	99.50			-0.509D			
99.50	100.00	100.50			-0.772D			
100.50	101-00	101.50	0.544D	16	-0.100D	17	-0.124D	18
101.59	102.00	102.50			-0.120D			
102.50	103.00	103.50	9.502D	16	-0.1370	17	-0.865D	17
103.50	104-00	194.50	0.477D	16	-0.151D	17	-0.675D	17
104.50	165.00	106-90			-9.161D			
106.00	107.00	108.00			-0.172D			
108.00	109.00	110.00			-0.172D			
110.00	111.00	111.00	0.2730	16	-0.163D	17	0.3580	17

Table A1 (Continued)

EVALUATION OF INCLINATION FUNCTION FOR L=16 M=15 P= 8

XLO	XMID	IHX	FXMID	:	DFXMI	Ð	DDFXM	ID
30.00	30.25	30.50	-0.1110 1	0- E	-28 0 D	14	- 9∝6360	15
30.50	30.75	31.00	-0.138D 1					
31.00	31.25	31.50	-0.171D				-0.896D	15
31-50	31.75	32.00					-0.106D	
32.00	32.25	32.50			•597D		-0.124D	16
32.50	32.75	33.00	-0.315D				-0.146D	16
33.00	33.25	33.50			852D		-0.170D	16
33.50	33.75	34.00			-101D		-0.197D	16
34.00	34.25	34.50	-0.561D i				-0-228D	16
34.50	34.75	35.00	-0.674D 1					16
35.00	35.25	35.50	-0.808D 1				-0.303D	16
35+50	35.75	36.00			194D		-0.347D	16
36.00	36.25	36.50	-0.115D 1					16
36.50	36.75	37.00	-0.136D 1				-0-450D	16
37.00	37.50	38.00			3280		-0.543D	16
38.00	38.50	39.00	-0.2410 1				-0.689D	
39.00	39.50	40.00	-0.328D 1				-0.863D	
40.00	40 • 50	41.00				15	-0.167D	17
41.00	41.59	42.00	-0.588D 1				-0.131D	17
42.00	42.50	43°90	-0.775D 1	4 -0	120D	16	-0.158D	17
43.00	43.50	44-90	-0.101D 1	5 -0 .	150D	16	-0.189D	17
44.00	44.50	45.00	-0.130D 1	5 +0	1860	16	-0.223D	17
45.00	45.50	46.00	-0.166D 1	5 -0	228D	16	-0.260D	17
46.00	46.50	47.00	-C.210D 1	5 -0	277D	16	-0.301D	17
47.00	47.50	48.00	-0.263D 1	5 -6,	OEEE.	16	-0.343D	17
48.00	48•50	49.00		5 -0.		16	-0.387D	17
49.00	50.00	51.90		5 -0.			-0.453D	17
51.00	52.00	53.00	-0.651D 1	5 -0 .	6790	16	-0.535D	17
53.00	55.00	60.00	-0.1080 1				-0.618D	17
60.00	61.00	62-00		5 -0			-0•454D	17
62.00	63.00	64+90	-0.303D 1					17
64.00	65.00	66.00		6 -0.		17	0.123D	
66.00	67.00	68.00		6 -0.		37	0.347D	17
68.00	68-50	69.00			158D	27		17
69.00 70.00	69.50 70.50	70.00		6 -0.		17		17
71.00	71.50	71.00 72.00		6 -0.		17	0.102D	18
72.00	72.50	73.00		6 -0.		17		18
73.00	73.50	74.90		6 -0.		16 16	0-140D	
74.00	74.50	74.75	-	6 - 0.		16	0.157D 0.172D	
74.75	75.00	75.25		6 -0.		16	0-179D	18
75.25	75.50	75.75	-0.581D 1			14		18
75.75	76.00	76.50	-0.580D 1			16	0-191D	
76.50	77.00	78.00	-r.574D 1		499D	16	0.200D	
78.00	80.00	82.00	-0.520D 1		1570	17	0.205D	
82.00	00.58	84.00	-0.411D 1		259D	17		18
84.90	85.00	86.00	-0.310D 1			17		18
86.00	87.00	88.70	-0.193D 1		353D	17		17
88.00	89.00	90.00	-r.656D 1			17	G.301D	
90.00	91.00	92.00	0.656D 1				-0.301D	
			_					

XLO	XMID	XHI	FXMID	DFXMID	DDFXMID
92.00	93.00	94.00	0.193D 16	0.3530 17	-0.878D 17
94.00	95.00	96.00	0.310D 16	0.314D 17	-0.138D 18
96.00	97.00	98.00	0.411D 16	0.259D 17	-0.176D 18
98.00	109.00	103.00	0.520D 16	0.157D 17	-0.2050 18
103-00	103.50	103.75	0.578D 16	0.326D 16	-0.196D 18
103.75	104+90	104+25	0.580D 16	0.157D 16	-0.191D 18
104.25	104.50	104.75	0.581D 16	-0.729D 14	-0.186D 18
104.75	105.00	105.50	C.580D 16	-0.167D 16	-0.179D 18
105.50	105.75	106.00	0.576D 16	-0.3950 16	-0.169D 18
106.00	105.50	107.00	0.570D 16	-0.608D 16	-0.157D 18
107-00	107.50	108.00	0.557D 16	-0.867D 16	-0.140D 18
108-00	108.50	109.00	0.540D 16	-0-1190 17	-0.121D 18
109.00	109.50	110.00	0.519D 16	-0.129D 17	-0.102D 18
110.00	110.50	110.50	0.495D 16	-0.145D 17	-0.823D 17

Definition of Symbols Used in Table A2

- XLO Lower value of satellite orbital eccentricity.
- XMID Middle value of satellite orbital eccentricity.
- XHI Higher value of satellite orbital eccentricity.
- FXMID Value of the eccentricity function corresponding to the middle value of eccentricity.
- DFXMID Value of the first derivative of the eccentricity function corresponding to the middle value of eccentricity.
- DDFXMID Value of the second derivative of the eccentricity function corresponding to the middle value of eccentricity.

Table 2

Tables of Eccentricity Function Coefficients for Calculation of the Effects of the Principal Even and Odd Geopotential Coefficients.

EVALUATION OF ECCENTRICITY FUNCTION FOR L=12 P= 5 Q=-1

XLO*	XMID*	хн і *	FXMID	DEXMID	DDFXMID
0.019	0.020	0.030	0.908D-01	0.4620 01	0.122D 02
0.930	0.040	0.050	0.187D 00	0.499D 01	0.253D 92
0.050	0.060	0.076	0.292D 00	9.565D 91	0.405D 02
0.070	0.080	0.090	0.415D 00	9.664D 01	0.590D 02
0.090	0.100	0.110	0.561D 00	0.804D 01	0.826D 02
0.110	0.120	0.130	0.7400 00	0.9990 01	0.1130 03
0.130	0.135	0.140	0.903D 00	0.1190 02	0.143D 03
0-140	0.145	0.150	0.103D 01	0.1350 02	0.167D 03
0.150	C-155	0.166	0.1170 01	0.153D 02	C-195D 03
9.160	0.165	0.170	0.134D 01	0 -174D 02	0.228D 03
0.170	0.175	0.180	0.152D 01	0.1980 02	0.267D 03
0.180	0.185	0.190	0.173D 01	0.2270 02	0.312D 03
9.190	0.195	0.200	0.198D 01	0.261D 02	0.366D 03
0.200	0.205	0.210	0.226D 01	0.301D 02	C.430D 03
0.210	0.215	0.220	0.258D 01	0.348D 02	0.506D 03
0.220	0.225	0.230	0.296D 01	0.4020 02	0.596D 03
0.230	0.235	0.240	0.339D 01	0.467D 02	0.704D 03
0.240	0.245	0 • 250	0.390D 01	0.544D 02	0.834D 03
0.250	0.255	0.255	0.448D 01	0.635D 02	0.990D 03

^{*}Values of eccentricity.

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=12 P= 5 Q= 0

XLO	CIMX	XHI	FXMID	DFXMID	DDFXMID
0.010	0.015	0.020	0.101D Q1	0.106D 01	0.712D 02
0.020	0.025	0.030	0.102D 01	C.178D 01	0.733D 02
0.030	0.040	0.050	0-106D 01	0.291D 01	C.785D 02
0.050	0.060	0-070	0-113D 01	0.459D 01	. 0.899D 02
0.070	0.080	0.090	0.124D 01	0.655D 01	0.107D 03
0.090	0.100	0.110	0.1400 01	0.8920 01	0.1320 03
0.110	0.120	0.130	0.160D 01	0.119D 02	0.167D 03
0.130	0.140	0.150	0.188D 01	0.157D 02	0-215D 03
0.150	0.155	0.160	0.214D 01	0.193D 02	C.263D 03
0-160	0.165	0-170	0.235D 01	0.2210 02	0.302D 03
0.170	0.175	0.180	0.2580 01	0.253D 02	0.348D 03
0.180	0.185	0.190	9.285D 01	0.291D 02	0.403D C3
0.190	0.195	0.200	0.3170 01	0.3340 02	C.467D 03
0.200	0.205	0.210	0.352D 01	0.3850 02	0.543D-03
0.210	0.215	0.220	0.394D 01	0.443D 02	0.634D 03
0.220	0.225	0.230	0.441D 01	0.512D 02	0.741D 03
0.230	0.235	0.240	0.497D 01	0.5920 02	G-870D 03
0.240	0.245	0.250	0.560D 01	0.687D 02	0-102D 04
0.250	0.255	0.260	0.634D 01	0.798D 02	0-121D 04
0.260	0.265	0.270	0.721D 01	0.929D 02	0-143D Q4
0.270	0.275	2.280	0.821D 01	0.108D 03	0-169D 04
0.280	0.285	0.290	0.939D 01	0.127D 03	G.201D 04
0.290	0.295	0.300	0.108D 02	0.149D 03	0.240D 04
0.300	0.305	0.310	0.1240 02	0.175D 03	0.287D 04
0.310	0.315	0.320	0.1430 02	0.207D 03	0.345D 04
0.320	0.325	0.330	C-165D 02	0.245D 03	0.415D 04
0.330	0.335	0.340	0.192D 02	0.290D 03	0.501D 04
0.340	0.345	0.350	0.224D 02	0.345D 03	0.6070 04
0.350	0.355	0.360	0.262D 02	0.412D 03	0.738D 04
0.360 0.370	0.365 0.375	0•370 0•380	0.307D 02	0.494D 03	9.899D 04
0.310	0.385	0.390	0.361D 02 0.426D 02	0.594D 03	C-110D 05
0.390	0.305	0.400	0.505D 02	0.716D 03 0.866D 03	0.135D 05 0.167D 05
0.400	0.395 0.405	0.410	0.601D 02	0.105D 04	
0.410	0.415	0.420	0.717D C2	0.128D 04	0.206D 05 0.256D 05
0.420	0.425	0.430	0.859D 02	0.157D 04	0.319D 05
0.430	0.435	0.440	0.103D 03	0.192D 04	0.398D 05
0.440	0.445	0.450	0.125D 03	0.237D 04	C.500D 05
0.450	0.455	0.460	0.151D 63	0.293D C4	0.631D 05
0.460	0.465	0.470	C.184D 03	0.365D 04	6.799D 05
9.470	0.475	9.480	0.225D 03	0.455D C4	C.102D 06
C.480	0.485	0.490	0.276D 03	0.570D 04	Q.130D 06
0 • 490	0.495	0.500	0.340D 03	0.717D 04	0.166D 06
0.500	C. 505	0.505	0-420D 03	0.906D 04	0.2140 06

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=12 P= 6 Q= 1

XLO	XMID	XHI	FXMID	DFXMID	DDFXMID
0.010	0.029	0.030	0.1310 00	0.668D 01	0.177D 02
0.030	0.040	0.050	0.269D 00	0.722D 01	0.368D 02
0.050	0.060	0.070	0.4230 00	0.8170 01	0.589D 02
0.070	0.0.80	0.090	0.599D 00	0.9600 01	0.8590 02
0.090	0.100	0.110	0.8110 00	0.116D 02	0.120D 03
0.110	0.120	0.130	Q.107D 01	0.145D 02	C.165D 03
0.130	0.135	0.140	0.1310 01	0.173D 02	0.209D 03
0.140	0.145	0.150	0.149D 01	0.1950 02	6.243D 03
0.150	0.155	0.160	0.170D 01	0.2220 02	6.284D 03
0.160	0.165	0.176	0.194D 01	0.2520 02	0.3320 03
0.170	0.175	0.180	0.2210 01	0.288D 02	0.388D 03
0.180	0.185	0.190	0.2510 01	0.330D 02	0.455D 03
0.190	0.195	0.200	0.2870 01	0.3800 02	0.5330 03
0.200	0.205	0.210	0.328D 01	'C.437D 02	0.626D 03
0.210	0.215	0.220	0.3750 01	0.505D 02	0.737D 03
0.220	0.225	0.230	0.429D 01	0.586D 02	0.869D 03
0.230	0.235	0.240	0.492D 01	0.6800 02	0.103D 04
0.240	0.245	0.250	0.566D 01	0.7920 02	0.1220 04
0.250	0.255	0.255	0.6510 01	0.925D 02	0.144D 04

EVALUATION OF ECCENTRICITY FUNCTION FOR L=13 P= 5 Q=-1

Table A2 (Continued)

XLO	XMID	хні	FXMID	DFXMID	DDFXMID
0.010	0.020	0.930	0.808D-01	0.412D 01	0.1190 02
0.030	0.040	0.050	C.166D 00	Q.448D 01	0.248D 02
0.050	0.060	0.070	0.262D 00	0.5120 02	0.399D 02
0.070	0.080	0.090	9.374D 00	0.610D 01	0.5870 02
0.090	0.100	0.110	0.509D 00	0.7510 01	0.8290 02
3.110	0.115	0.120	0.632D 00	C.8920 01	0.106D 03
0.120	0.125	0.130	0.726D 00	0.1010 02	0.125D 03
0.130	0.135	0+140	0.834D 00	C.114D 02	0.147D 03
0-140	0.145	0.150	0.956D 00	0.139D 02	0.1730 03
0.150	0.155	0.160	0.1160 61	0.149D 02	6.203D 03
0.160	0.165	0.170	0.125D 01	0.171D 02	0.239D 03
0.170	0.175	0.180	0.144D 91	0.1970 02	0.282D 03
0.180	0.185	0.190	0.165D 01	0.228D 02	0.333D 03
0.190	0.195	0.200	0.190D 01	9.264D 02	0.394D 03
0.200	0.205	0.210	0.218D.01	0.3070 02	0.467D G3
0.210	9.215	0.220	C.251D G1	0.358D 02	0.554D 03
0.220	0.225	0.230	0.290D 01	0.418D 02	0.659D 03
0.230	0.235	0.240	0.335D 01	0.490D 02	0.787D 03
0-240	0.245	0.250	0.389D 01	0.5770 02	0.941D 03
9 + 250	0.255	0.260	0.451D 01	0.680D 02	0.113D 04
0.260	0.265	0.270	0.525D 01	0.804D 02	0.136D 04
0.270	0.275	0.280	0.613D 01	0.953D 62	0-163D 04
0.280	0.285	0.290	0.717D 01 0.841D 01	0.135D 03	0-198D 04 G-240D 04
0.290 0.300	0.295 0.305	0.300 0.310	0.841D 01 0.988D 01	0.135D 03	0.240D 04 0.291D 04
0.310	0.315	0.320	0.117D 02	0.194D '03	0.356D Q4
0.310	0.325	0.330	0.138D 02	0.233D 03	0.435D 04
0.330	0.335	0.350 0.34C	0.163D 02	0.2810 93	0.534D 94
0.340	0.345	0.350	0.194D 02	0.341D 03	0.659D 04
0.350	0.355	9.360	0.232D 02	0.414D 03	0.814D 04
0.360	0.365	0.370	0.278D 02	0.505D 03	0.101D 05
9.370	0.375	0.380	0.334D 02	0.6180 03	0.126D 05
0.380	0.385	0.390	0.402D 02	0.7590 03	0.157D 05
0.390	0.395	0.400	0.487D 02	0.935D 03	0.197D 05
6.400	0.405	0.410	0.591D 02	0.1160 04	C.249D 05
0.410	0.415	0.420	0.720D 02	0.144D 04	0.314D 95
0.420	0.425	0.430	0.881D 02	0.179D 04	0.399D 05
0.430	C-435	0.440	0:108D 03	0.224D 04	0.509D 05
0.440	0.445	9.459	0-133D 03	0.282D 04	0.651D 05
0.450	0.455	0.460	0.165D 03	0.356D 04	©•837D 05
0.460	0.465	0.470	0.205D 03	0.451D 04	C-108D 06
0.470	0.475	0.480	0.256D 03	0.575D 04	0.140D 06
0.480	0.485	0.490	0.322D 03	0.735D 04	0.183D 06
0.490	0.495	0.500	0.405D 03.	0.945D 04	C.239D 06
0.500	0.505	0.505	0.513D 03	0.1220 05	0.314D 06

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=13 P= 6 Q= 0

XLO	GIMX	XHI	FXMID	DFXMID	DDFXMID
0.010	0.015	0.020	0.1010 0	0 •134D	01 0.908D 02
0.020	0.025	0.030	0.103D 0:	0.2270	01 0.940D 02
0.030	0.035	0.040	0.106D 9	0.3230	01 0.989D 02
0.040	Q-045	0.059	0.1090 0	0.425D	01 0.106D 03
0.050	0.055	0.060	0.114D 0:	0.535D	01 C.114D 03
9.060	0.065	0.070	0.120D 0	0 .655D	01 0.1250.03
U.070	9.075	0.089	0.1270 0	0.787D	01- 0.139D 03
0.080	0.085	0.090	0.136D 01	0.934D	01 0.155D 03
0.090	0.095	0.100	0.146D 0	0-110D	02 0.175D 03
0.100	0.105	9.110	0.158D 01	0.1290	02 0.199D 03
0.110	0.115	9.120	0.172D 0	0.150D	02 0.227D 03
0.120	0.125	0.130	0.188D 01	0 -1 74D	02 0.261D 03
0.130	0.135	0.140	0.207D 0	0.2020	02 0.301D 03
0.140	0+145	9.150	0.229D 0	0.235D	92 0.349D 03
0.150	0.155	0.160	C.254D 0:	0.272D	02 0.405D 03
0.160	0.165	0.170	0.283D 0	0.316D	02 0.473D 03
0.170	0.175	0.180	0.317D 0	0.367D	02 0.554D 03
0.180	C.185	0.190	0.3570 01	-0.427D	02 C.650D 03
0.190	0.195	0.200	0.403D 0:	0.498D	02 0.766D 03

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=13 P= 6 Q= 1

XLO	XMID	XHI	FXMID		DEXMI)	DDFXMI	ָ סו
0.010	0.020	0.030	0.162D	00	0 •824D	01	0.239D	02
0.030	0.040	0.050	0.333D	00	0.897D	Q1	0.500D	02
0.050	0.060	0.070	0.524D	00	0.1030	92	G-804D	02
0.070	0.080	0.098	0.748D	Q O	0.1220	02	0.11BD	03
0.090	0.100	0.110	0.1020	01	0.151D	02	0.167D	03
0.110	0.115	0.120	0.1270	01	0 •1 79D	02	G.214D	03
0.120	0.125	0.130	0.146D	01	0.2020	C 2	0.252D	03
0.130	0.135	0.140		01	0.2300	Ç2	C.297D	03
0.140	0.145	9.150	0.192D	01	0.2620	02	0.349D	53
0.150	0.155	0.160	0.2200	01	0.300D	02	Q.410D	03
0.160	0.165	0.170	0.252D	01	C.345D	02	0.483D	£Q.
0-170	0.175	0.180	0.289D	91	0.397D	02	0.570D	ივ
0-180	0.185	0.190	0.332D	01	0.459D	02	C • 673D	03
0.190	0.195	0.200	0.381D	01	0.532D	02	0.796D	03
0.200	¢.205	9.219	0.439D	01	0.619D	92	¢•943D	03
0.210	0.215	0.220	♦.5¢6D	01	0.722D	02	0.112D	04
0.220	C.225	0.230	0.584D	01	0.8440	02	C.133D	04
0.230	0.235	0.240	0675D	01	0.9900	02	0.159D	94
0-240	0.245	0.250	0.783D	01	0-116D	Q 3	0.19CD	94
0.250	0.255	0.260	0.909D	01	0.137D	QЗ	0.228D	C4
0.260	0.265	0.270	0.106D	02	9.162D	03.	0.274D	
0.270	9.275	0.280	9.124D	02	0.192D	93	C.331D	04
0.280	0.285	9.290		02	0.2290	03	0.40CD	
0-290	0.295	0.300		02	0.273D	0 З	0.485D	04
0.300	0.305	0.310		92	0 • 32 6D	¢З	0.589D	
0.310	0.315	9.320		02	C.392D	03	C•719D	94
0.320	0.325	0.330		02	0.4710	0З	0.880D	
0.330	0.335	0.340		92	0.5690	03	C.128D	
0.340	0.345	0.350		0.5	0.689D	03	0.133D	05
0.350	0.355	0.360		02	0.837D	03	0.165D	
0.360	0.365	0.370		02	0.1020	04	G-204D	05
0.370	0.375	0.380		02	0.1250		0.254D	
0.380	0.385	0.390		92	0.153D	714	(.318D	05
0.390	0.395	0.400		02	C-189D	04	0.3990	
0.400	0.405	0.410	· - -	03	0 •234D	04	0.502D	Q5
0-410	0.415	9-420		93	0.299D	04	C 635D	05
0.420	0.425	0.430		03 03	0.3620	94 04	C-806D	05 06
0.430	0.435	9.440			0.453D	-	0.103D	-
0.440	0.445	0.456		03 03	0.570D	04 04	0.131D 0.169D	06 06
0.450 0.460	C.455	0•460 0•470		03	0.911D	04	C•218D	
0.470	0.475	0.475		03 03	0.911D	65	C.283D	06
0.480	0.485	0.490		03 03	0.148D	95	C.368D	06
0.490	0.495	0.500		03	0.1910	05	Q-482D	06
0.500	0.495	0.505		03 04	0.246D	05	0.633D	
V = 300	4-343	V=3V3	444490		0 42400	4 3	V+033D	.40

Table A2 (Continued)
.
EVALUATION OF ECCENTRICITY FUNCTION FOR L=14 P= 6 Q=-1

XLO	XMID	XHI	FXMID	DEXMID	DDFXMID
0.010	0.020	0.030	0.111D 90	0.570D 01	0.198D 02
0.030	0 -0 40	9.950	0.2310 00	0.630D 01	0.416D 02
0.050	0.055	0.060	0.331D 00	0.707D Q1	0.606D 02
0.060	0+065	0.070	0.404D 00	0.775D G1	0.752D 02
0.070	0.075	0.989	0.486D 00	0.858D 01	0.9180 02
0.080	0.085	0.093	C.577D 00	0.959D 01	G.111D 03
0.090	0.095	0.100	0.678D 00	0.1080 02	0.133D 03
0.100	0.105	0.110	0.794D 00	0.1230 02	0.159D 03
0.110	0.115	0.120	0.925D 00	0.140D 02	0.189D 03
0.120	0.125	0.130	0.1070 01	0-1610 02	0.225D 03
9.130	0.135	9.146	0.125D 01	0.185D Q2	C.268D 03
0.140	0.145	0.150	0.145D 01	0.215D 02	0.319D 03
0.150	0.155	0.160	0.168D 01	0-249D 02	0.380D 03
0.160	0.165	0.176	0.195D 01	0-291D 02	0.453D 03

XLO	DIMX	XHI	FXMI	>	DFXMI	D	DDFXM	D
0.010	0.015	0.020	0.1010	01	0 -147D	01	0.991D	02.
0.020	0.025	0.030	0.103D	01	0.247D	-	C-103D	
0.030	0.035	0.040	0.106D	01		01	0.10.9D	
0.040	0.045	0.050	0-110D	01	0.466D	01	C-117D	
0.050	0.055	0.060	0.115D		0.588D		0.1270	
0.060	0.065	9.070	0.1220	02	9.722D	01	0-1410	
0.070	0.075	9.080	0.130D	01	0.870D	01	0.157D	93
0.080	0.085	0.090	0.139D	01	0 -104D	02	C-177D	03
0.090	0.095	0.100	0.151D	01	0.123D	02	0-201D	¢з
0.100	0.105	0.110	C-164D	01	0.144D	02	C.231D	03
0.110	0.115	0.120	-0.180D	01	0.159D	02	0.266D	03
0.120	0.125	0.130	0.198D	01	0.1980	02	0.3080	03
0-130	0.135	0.140	0.2190	01	0.2310	02	₽•358D	03
0-140	0.145	0.150	0 · 244D	01	€ •269D	02	0.418D	0З
0.150	0.155	0.160	C.273D	01	ۥ315D	02	0.491D	ÇЗ
0.160	0.165	0.170	0.3080	01	0.368D	02	0.578D	٥з
0.170	0.175	0.180	0.347D	01	0,431D	02	0.6830	93
0.180	0.185	0.190	0.394D	01	0.505D	02	0.810D	0.3
0.190	0.195	0.200	0.4490	01	0.594D	92	0.963D	03
0.200	G.205	0.210	0.5130	01	0.699D	02	0.115D	04
0.210	0.215	0.220	0.589D	01	0 •825D	02	0.1370	04
0.220	0.225	0.230	0.679D	01	0.975D	02	C.165D	04
0.230	0.235	0.240	0.786D	01	0.116D		0•198D	
0-240	0.245	0.250	0. 912D		0.137D	Q3	0.239D	04
0.250	0.255	0.269	C.106D		0 •164D		0+290D	
0.260	0.265	0.270	C.124D		0.196D		C.352D	
0.270	0.275	0.280		02	0.235D		0.429D	
0.280	C. 285	0.290	0.171D	02	0.282D		0.525D	
0.290	0.295	0.386	0.202D	02	C.340D	03	C.644D	
0.300	0.305	0.310	0.240D	02	0.412D		6.792D	
0.310	0.315	0.320	0.285D	02		03	0.978D	04
0.320	0.325	0.330	0.341D	02		03	0.121D	05
0.330	0.335	0.340	0.408D	02	0 • 744D	03	0.1510	
0.340	0.345	0.350	0.4910	02	0.913D	03	C+188D	05
0.350	0.355	0.360	0.592D		0.1120		0.235D	
0.360	0.365	0.370	0.7170	02	0.139D		0.2960	
0.370	0.375	0.380	0.8720	02	0.1720	04	0.373D	05
0.380	0.385	0.390	0.106D		0 • 21 4D		0.473D	05
0.390	0.395	0.400	0.1300	63	0.268D		0.601D	05
0-400	0.405	0.410	0.1600	0.3	0.336D	04	0.767D	05
0.410	0.415	0.420		03		04	C.983D	05
0.420	0.425	0.430	0.246D	03	0.534D	04	0.126D	06
0.430	0.435	0.440	0.306D	03	0.678D	04	0.163D	06
0.440	0.445	0.450	0.383D	03	0.865D	04	0.212D	00

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=14 P= 7 Q= 1

XLO	XWID	XHI	FXMID	DFXMID	DDFXMID
0.010	Ç.020	0.030	0.152D 00	0.777D 01	0.2710 02
0.030	0.040	0.050	9.315D 00	0.860D 01	0.570D 02
0.050	0.055	9.060	0.451D 00	0.9650 01	0.831D 02
0.060	0.065	0.070	0.5520 20	0.106D 02	0.103D 03
0.070	0.075	0.080	0.663D 00	0.1170 02	0.126D 03
0.080	0.085	0.090	0.787D 00	0.131D 02	0.1520 03
0.090	0.095	0.100	0.926D 00	0-148D 02	0.183D 03
0.100	0.105	0.110	0.108D 01	0.168D 02	0.218D 03
0-110	0.115	0.120	0.126D 01	0.192D 02	0.260D 03
0.120	0.125	0.130	0.147D 01	0.220D 02	0.309D 03
0-130	0.135	0.140	0.171D 01	0.254D 02	E@ G88E.0
0.140	0.145	0.150	0.1980 01	0.294D 02	0.438D 03
0.150	0.155	0.169	0.230D 91	0.342D 02	6.522D 03
0.160	0.165	0.170	0'-267D 01	0.399D 02	G.623D 03

EVALUATION OF ECCENTRICITY FUNCTION FOR L=15 P= 6 Q=-1

Table A2 (Continued)

, XLO	XMID	XHI	FXMID	DFXMID	DDFXMID
0.010	0 • 0 20	0.030	0.101D 00	0.519D 01	0.196D 02
0.030	0.035	0.040	0.182D 00	0.5610 01	0.356D 02
0.040	0.045	0.050	0.240D 00	Q.602D 01	G-474D 02
0.050	0.055	0.060	0.303D 00	0.656D 01	0.606D 02
0.060	0.065	0.070	. 0:372D 00	0.724D 01	0.755D 02
0.070	0.075	0.080	0+448D 00	0.8080 01	0.926D 02
0.080	0.085	0.090	0.534D 00	0.910D 01	-C-112D 03
0.090	0.095	0.100	0.631D 00	0.103D 02	0.1360 03
9.200	0.105	0.110	0.741D 00	0.1180 02	0.163D 03
01K.0	0.115	0.120	0.868D 00	9.136D 02	G.196D 03
0.120	0.125	0.130	0.101D 91	0.158D 02	0.234D 03
0-130	0.135	0-140	0.118D 01	0.1830 02	0.281D 03
9.140	0.145	0.150	0.138D 01	0.214D 02	0.337D 03
0.150	0.155	0.160	0.161D 01	0.251D 02	6.404D 03
0.160	0.165	0-170	0.1890 01	0.295D 02	C.486D 03
0.170	0.175	0.180	0.221D 01	0.349D 02	0.586D 03
0.180	0.185	0.190	0.259D 01	0.413D 02	0.707D 03
0.190	0.195	0.200	0.304D 01	0.491D C2	0.856D 03
0.200	0.205	0.210	0.358D 01	0.585D 02	0.100D 04
0.210	0.215	0.220	0.422D 01	0.700D 02	0.126D 04
0.220	0.225	0.230	0.498D 01	0.840D C2	0.154D Q4
0.230	0.235	0.240	0.591D 01	C-101D 03	0.188D 04
0.240	9.245	0.250	0.702D 01	0.122D 03	0.231D 04
0.250	0.255	0.260	0.836D 01	0.148D 03	G.284D 04
0.260	0.265	0.270	0.999D 01	0.179D 03	0.351D 04
¢.270	0.275	0.280	0.120D 02	0.2180 03	0.434D 04
0.280	0.285	0.290	0.144D 02	0.267D 03	0.539D 04
0.290	0.295	0.300	0.173D 02	0.327D 03	C.672D 04
0.300	0.305	0.310	0.210D 02	0.402D 03	0.841D 04
0.310	0.315	0.320	0.255D 02	0.497D 03	0.105D 05
0.320	0.325	0.330	0.3100 02 0.3790 02	0.615D 03	0.133D 05
0.330 0.340	0.335 0.345	0.340 0.350	0.464D 02	0.765D 03	0.100D 05
0.350	0.355	9.360	C.571D 02	0.120D 04	0.272D 05
0.360	0.365	0.370	0.706D 02	0.150D 04	7.347D 05
0.370	0.375	0.380	0.875D 02	0.190D 04	C.446D 05
0.380	0.385	0.390	0.109D 03	0.241D 04	0.575D 05
0.390	0.395	0.400	0.136D 03	0.306D C4	C.744D 05
0.400	0.405	0.410	Q.171D 03	0.391D 04	0.967D 05
0.410	0.415	0.420	0.215D 03	0.502D 04	0.126D 06
0.420	0.425	0.430	0.272D 03	0.647D 04	C.165D 06
0.430	0.435	0.440	C.346D 03	0.637D 04	0.218D 06
0.440	0.442	0.445	0.415D 03	0.1020 05	0.268D 06
0.445	0.447	0.450	0.470D 03	0.116D G5	0.309D 06

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=15 P= 7 Q= 0

XLO	XMID	XHI	FXMID	DFXMID	DDFXMID
0.010	0.915	0.020	0-101D 01	C.179D 01	0.1210 03
0.020	0.025	0.030	0.104D 01	0.302D 01	0.1270 03
0.030	0.035	0 • 04 0	0.107D 01	0.433D C1	0-1350 03
0.040	0.045	0.050	0.112D 01	0.573D 01	0.147D 03
0.050	0.055	0.060	0.1190 01	0.7270 01	0.162D 03
0.060	0.065	0.070	0.127D 01	0.898D 01	0.181D 03
0.070	0.075	0.080	0.137D 01	0.1090 02	0.205D 03
0.080	0.085	0.090	0.149D 01	0.131D 02	0.235D 03
0.090	0.095	0.100	0.163D 01	0.156D 02	0.271D 03
0.100	0.105	9.110	0.180D 01	0.186D 02	0.315D 03
-0.110	0.115	0.120	0.201D 01	0.220D 02	0.369D 03

EVALUATION OF ECCENTRICITY FUNCTION FOR L=15 P= 7 Q= 1

Table A2 (Continued)

XLO	XMID	хні	FXMID	DFXMID	DDFXMID
	,				
0.010	0.015	0.020	0.136D 00	0.920D 01	0.264D 02
0.020	0.025	0.030	0.2300 00	0.9550 01	C.449D 02
0.030	0.935	0.040	0.3280 00	0.1010 02	0.646D 02
0.040	0.045	0.050	Q.432D DO	0.109D 02	0.861D 02
0.050	0.055	0.060	0.5450 00	0.118D 02	0.110D 03
0.060	0.065	0.070	0.6700 00	0.1310 02	0.1370 03
0.570	0.975	0.080	0.808D 00	0.146D 02	0.168D 03
Q+08 0	0 • 0 85	0.090	0.962D 00	0.1640 02	0.2040 03
0.090	0.095	0.100	0.114D 01	0.1870 02	C.246D 03
0-100	0.105	0.110	0.1340 01	0.214D 02	0.2960 03
0-110	0.115	0.120	0.157D 01	0.246D 02	0.355D 03
0.120	0.125	0.130	0.183D Q1	0.2850 02	C-426D 03
0.130	0.135	0.140	0.2140 01	9.332D 02	0.511D 03
0-140	6.145	0.150	0.2500 01	0.3880 02	0.6130 03
0.150	0.155	9.160	0.2920 01	0.4550 02	0.736D 03
0.160	0.165	0.170	0.342D 01	0.536D 02	0.885D 93
0.170	0.175	0.180	0.400D 01	0.633D C2	C-107D 04
08k•0	0.185	0.190	0.469D 01	0.7510 02	6-129D 04
0.190	0.195	0.200	0.5510 01	0.893D 02	0.156D 04
0.200	0.205	0.210	0.648D 01	0.1060 03	C-189D 04
0.210	0.215	0.220	0.765D 01	0.1270 03	0.230D 04
0.220	0.225	0.230	0.905D 01	0.1530 C3	0.281D 94
0.230	0.235	0.240	0.107D 02	0.184D Q3	0.343D 04
0.240	0.245	0.250	0.127D 02	0.222D 03	D.421D 04
0.250	0.255	0.260	0.152D.02	0.2690 03	0.518D 04
0.260	0.265	0.270	0.182D 02	0.326D 03	0.640D 04
0.270	0.275	0.280	0.218D 02	C.398D 03	0.792D 04
0.280	0.285	0.290	0.262D 02	0.4860 03	0.984D 04
0-296	0.295	0.300	0.316D 02	0.596D 03	0.123D 05
0.300	0.305	0.310	0.382D 02	0.734D 03	0.153D 05
0.310	0.315	0.320	0.464D 02	0.906D 03	0-193D 05
0.320	0.325	0.330	0.565D 02	0.1120 04	0.2430 05
0.330	0.335	0.340	0.690D 02	0.1400 04	0.3070 05
0.340	0.345	0.350	0.846D 02	0.174D 04	0.389D 05
0.350	0.355	0.360	0.104D 03	0.218D 04	0.496D 05
C • 360	0.365	0.370	0.129D 03	0.274D 04	0.634D 05
0.370	0.375	0.380	0.160D 03	0.346D 04	0.814D 05
0.380	0.385	D. 390	0.199D 03	0.439D Q4	0.105D 06
0.390	0.395	0.400	0.248D 03	0.559D 04	0.136D 06
0.400	0.405	0.410	0.312D 03	0.714D 04	C.177D 06
0.410	0.415	0.420	0.393D 03	0.916D 04	0.230D 06
0.420 0.430	0.425	0.430	0.497D 03	0.1180 05	0.302D 06
0.430	0-435	0-440	0.632D 03	0.153D 05	0.397D 06
0.440	0.442	0.445	C.758D 03	0.186D 05	0.490D 06
0.445	0.447	9.450	0.858D ©3	0.212D 05	0.564D 06

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=16 P= 7 Q=-1

XLO	XMID	XHI	FXMID	CFXMID	DDFXMID
0.010	0.015	0.020	0.9830-01	0.667D 01	0.2230 02
0.020	0.025	0.030	0.166D 00	0.6970 01	0.3800.02
0.036	0.035	0.040	0.238D 00	0.743D 01	0.548D 02
0.040	0.045	0.050	0.316D 00	0.807D C1	0.7350 02
0.050	0.055	9.060	0.400D 00	0.891D 01	0.945D 02
0.060	0.96 5	0.070	0.494D 00	0.997D 01	0-119D 03
0.070	0.975	0.080	0.601D 00	0.1130 02	0.147D 03

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=16 P= 7 Q= 0

x∟o	XMID	XHI	FXMID	DFXMID	DDFXMID
0.010	0.015	0.020	0.1010 01	0.194D 01	0-1320 03
0.020	0.025	0.030	0.104D 01	0.328D 01	0.138D 93
0.030	0.035	0.040	0.108D 01	0.471D 01	0.148D 03
0.040	0.045	0.050	0.1140 01	0.626D 01	0.162D 03
0.050	0.055	0.060	C-1210 01	0.796D 01	0.180D 93
0.060	0.065	0.070	0.129D 01	0.987D 01	0.203D Q3
0.070	0.075	0.080	0.140D 01	0.1200 02	0.232D 03
0.080	0.085	0.090	0.1540 01	0.145D 02	0.268D 03
0.090	0.095	0.100	C.170D 01	0.174D 02	0.312D 03
0.100	0.105	0.110	0.189D 01	0.208D 02	0.365D 03
0.110	0.115	0.120	0.2110 01	0.248D 02	0.431D 03
0.120	0.125	0.130	C.2380 01	0.295D 02	0.512D 03
0.130	0.135	0.14C	0.2710 01	0.351D 02	0.610D 03
0.140	0.145	0.150	0.309D 01	0.417D Q2	0.730D 03
0-150	0.155	0.160	0.355D 01	0.497D 02	0.877D G3
0-160	0.165	0.170	0.409D 01	0.594D 02	0.106D 04
0.170	0.175	0.180	0.474D 01	0.7110 02	0-128D 04
G-180	0.185	0.190	C.552D 01	0.852D 02	0-156D 04
0.190	0.195	0.200	0.645D 01	0.192D 03	0.190D 04
0.200	0.205	0.210	0.758D 01	0.123D 03	0.2320 04
0.210	0.215	0.220	0.894D 01	0.149D 03	0.284D 04
0.220	0.225	ウ • 230	0.106D 02	0.1810 03	0.350D 04
0.230	0.235	0.240	0.126D 02	C.220D 03	0.432D 04
0-240	0.245	0.250	0.150D 02	0.268D 03	0.535D 04
0.250	0.255	0.260	0.180D 02	0.328D 03	0.666D 04
0 • 260	0.265	0.270	0.2160 02	0.402D 03	0.830D 04
0.270	0.275	0.280	0.2610 02	0.495D 03	0-104D 05
0.280	0.285	0.290	0.316D 02	0.612D 03	0-131D 05
0-290	0.295	0.300	0.384D 02	0.759D 03	0-165D 05
0•300	G•305	0.310	C.469D 02	0.944D 03	0.208D 05
0.310	0.315	9.320	0.575D 02	C.118D 04	0.265D 05
0.320	Q.325	0.330	0.7070 02	0.148D 04	0.337D 05
0.330	0.335	9.349	9.873D 92	0.186D 04	0.432D 95
0.340	0.345	0.350	0.108D 03	6.235D 04	C-555D 05
0.350	C.355	0.360	0.1350 03	0.2980 04	0.716D 05
0.360	0.365	0.370	0.169D 03	0.380D 04	0.926D 05
0.370	0.375	0.380	0.212D 03	0.486D 04	0.120D C6
0.380	0.385	0.390	0.267D 03	G •624D 04	0.157D 06
9.390	0.395	0.400	0.338D 03	0.804D 04	0.206D 06

Table A2 (Continued)

EVALUATION OF ECCENTRICITY FUNCTION FOR L=16 P= 8 Q= 1

XLO	ZMID	XHI	FXMID	DEXMID	DOFXMID
0.010	0.015	0.020	0.1290 00	0.872D 01	r.293D 02
0.020	C.025	0.030	0.2180 00	0:9110 01	0.499D 02
0.030	0.035	0.040	0.312D 00	0.972D 01	0.7210 02
0.040	0.045	0.050	0.413D 00	0.106D 02	0.965D 02
0.059	0.055	0.060	0.5240 00	9.117D 02	0.124D 03
0.060	0.065	0.070	0.647D 99	0.131D 02	C.156D 03
0.070	0.075	0.080	0.786D 00	0.148D 02	0.193D 03