Algebraic quantum field theory

Ikhan Choi

May 13, 2024

Contents

1	2
1.1	 2

Chapter 1

Axiomatic: Osterwalder-Schrader, Wightman, Haag-Kastler

CFT

Statistical physics: Gibbs state by DLR equation, Lieb-Robinson bound, quantum theory

1.1

1.1 (Wightman axioms). Let $\mathbb{R}^{1,d-1}_x$ be the Minkowski space and \mathcal{P}^{\uparrow}_+ the connected component of the Poincaré group. A *Wightman field* is a linear map $\phi: \mathcal{S}(\mathbb{R}^{1,d-1}_x) \to \operatorname{End}(\mathcal{D})$, where \mathcal{D} is an inner product space with completion \mathcal{H} , such that

- (i) Covariance: there is a representation $U: \mathcal{P}_+^{\uparrow} \to U(\mathcal{H})$ such that $\operatorname{Ad} U(\gamma)\phi(f) = \phi(\gamma^* f)$,
- (ii) Causality: if the supports of f and g are space-like separated, then $[\phi(f), \phi(g)] = 0$ on D,
- (iii) Conicality:
- (iv) Cyclicity: there is a Poincaré invaraint cyclic vector Ω in the sense that the span of the set $\{\phi(f_1)\cdots\phi(f_n)\Omega\}$ is dense in \mathcal{D} .
- **1.2** (Free massive bosonic fields). Let m>0, called the mass of a scalar particle, and let d=1+1 be a positive integer, called the dimension. Note $\mathcal{P}_+^{\uparrow}=\mathbb{R}^{1,1}\rtimes\mathbb{R}$. On the mass shell $H_m:=\{p\in\mathbb{R}_p^{1,1}:(p,p)=p_0^2-p_1^2=m^2,\ p_0>0\}$, the induced metric is Riemannian with the volume form $(p_1^2+m^2)^{-\frac{1}{2}}dp_1$, so we can define $L^2(H_m)$.

For $f \in \mathcal{S}(\mathbb{R}^{1,1}_x)$, consider the restriction of the Fourier transform $\hat{f} \in L^2(H_m)$.

$$\widehat{f}(p) = \int_{\mathbb{R}^{1,1}} e^{i(x,p)} f(x) d^2 x, \qquad p \in H_m,$$

where d^2x is the Lebesgue measure on $\mathbb{R}^{1,1}$, which is Lorentz invariant. Via the Bosonic Fock space construction $\mathcal{F}^+(L^2(H_m))$, we define a operator-valued distribution

$$\phi: f \mapsto a^{\dagger}(\hat{f}) + a(\hat{f}),$$

 $\phi(f)$ is defined densely on $\mathcal{F}^+(L^2(H_m))$.

- (a) ϕ is covariant.
- (b) ϕ is local.
- (c) ϕ has positive energy.
- (d) ϕ admits a vaccum.
- (e) ϕ has linear energy bound. In particular, it defines a Araki-Haag-Kastler net.

Proof. (a) Consider a representation $U_m: \mathcal{P}_+^{\uparrow} \to U(L^2(H_m))$ on $L^2(H_m)$, defined by

$$(U_m(a,\Lambda)\Psi)(p) := e^{i(a,p)}\Psi(\Lambda^{-1}p), \qquad (a,\Lambda) \in \mathcal{P}^{\uparrow}_+, \ \Psi \in L^2(H_m).$$

The action $U_m: \mathcal{P}_+^{\uparrow} \to U(L^2(H_m))$ is extended to $\Gamma(U_m): \mathcal{P}_+^{\uparrow} \to U(\mathcal{F}^+(L^2(H_m)))$, called the second quantization. Then, since $\mathcal{F}(a,\Lambda)\mathcal{F}^{-1}$ maps

$$(p \mapsto \int e^{i(x,p)} f(x) d^2x) \quad \text{to} \quad (p \mapsto \int e^{i(x,p)} f(\Lambda^{-1}(x-a)) d^2x = e^{i(a,p)} \int e^{i(x,\Lambda^{-1}p)} f(x) d^2x),$$

so it is covariant.

(b) Define the left and right wedges

$$W_L := \{ x \in \mathbb{R}^{1,1} : |x_0| \le -x_1 \}, \qquad W_R := \{ x \in \mathbb{R}^{1,1} : |x_0| \le x_1 \}.$$

Suppose f and g are Schwartz functions supported on W_L and W_R respectively. Write

$$[\phi(f),\phi(g)] = [a^{\dagger}(\widehat{f}),a(\widehat{g})] + [a(\widehat{f}),a^{\dagger}(\widehat{g})].$$

analytic continuation and residue theorem... If $f(x) \neq 0$ and $g(y) \neq 0$, then x and y are contained in the interior of W_L and W_R , so (x, y) > 0.