Disciplina: Arquitetura de redes de computadores

Professor: M. Sc. Rodrigo Ronner T. da Silva

E-mail: rodrigo.tertulino@ifrn.edu.br

#### Capítulo 3

### Camada de transporte



© 2014 Pearson. Todos os direitos reservados.

#### Introdução e serviços de camada de transporte



RUROSE | ROSS

Redes de computadores e a internet

6ª edição

A camada de transporte fornece comunicação lógica, e não física, entre processos de aplicações:

## Propósito de camada de transporte

Permitir que aplicativos em dispostivos se comuniquem



#### Relação entre as camadas de transporte e de rede

- Um protocolo de camada de transporte fornece comunicação lógica entre processos que rodam em hospedeiros diferentes.
- Um protocolo de camada de rede fornece comunicação lógica entre hospedeiros.
- Uma rede de computadores pode disponibilizar vários protocolos de transporte.
- Os serviços que um protocolo de transporte pode fornecer são muitas vezes limitados pelo modelo de serviço do protocolo subjacente da camada de rede.

# Visão geral da camada de transporte na Internet

- serviço de entrega IP entre dois sistemas finais para um serviço de A responsabilidade fundamental do UDP e do TCP é ampliar o entrega entre dois processos que rodam nos sistemas finais.
- A ampliação da entrega hospedeiro a hospedeiro para entrega denominada multiplexação/demultiplexação de camada de transporte. processo processo
- O UDP e o TCP também fornecem verificação de integridade ao incluir campos de detecção de erros nos cabeçalhos de seus segmentos.

#### Multiplexação e demultiplexação Transporte de dados

#### Segmentar os dados

- Habilita muitas comunicações diferentes, de vários usuários diferentes, que podem ser intercaladas (multiplexadas) na mesma rede, ao mesmo tempo.
- Fornece os meios para enviar e receber dados ao executar várias aplicações.
- O cabeçalho adicionado em cada segmento para identificá-lo.





## Multiplexação e demultiplexação

- A tarefa de entregar os dados contidos em um segmento da camada de transporte ao socket correto é denominada demultiplexação.
- O trabalho de reunir, no hospedeiro de origem, partes de dados provenientes de diferentes sockets, encapsular cada parte de dados esses segmentos para a camada de rede é denominada com informações de cabeçalho para criar segmentos, e passar multiplexação.



## Separando várias comunicações

Os números de porta são usados pelo TCP e pelo UDP diferenciar entre aplicativos.





Os dados de diferentes aplicativos são direcionados para o aplicativo correto porque cada aplicativo tem um número de porta único.

## Endereço de porta do TCP e UDP



# Endereço de porta do TCP e UDP

#### Números de portas

| Intervalo do números da porta | Grupo de portas                |
|-------------------------------|--------------------------------|
| 0 a 1023                      | Portas conhecidas              |
| 1024 a 49151                  | Portas registradas             |
| 49152 a 65535                 | Portas dinâmicas e/ou privadas |

### Portas TCP registradas: Portas TCP registradas: 1863 MSN Messenger 2000 Cisco SCCP (VolP) 2000 Alternate HTTP 8080 Alternate HTTP 143 IMAP 194 Internet Relay Chat (IRC) 443 Secure HTTP (HTTPS)

| Portas UDP registradas:<br>1812 RADIUS Authentication Protocol<br>5004 RTP (Voice and Video Transport | Portas UDP conhecidas:<br>69 TFTP<br>520 RIP |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Protocol)<br>5040 SIP (VoIP)                                                                          |                                              |



# Transporte não orientado para conexão: UDP

- O UDP, definido no [RFC 768], faz apenas quase tão pouco quanto um protocolo de transporte pode fazer.
- À parte sua função de multiplexação/demultiplexação e de alguma verificação de erros simples, ele nada adiciona ao IP.
- Se o desenvolvedor de aplicação escolher o UDP, em vez do TCP, a aplicação estará "falando" quase diretamente com o IP.
- O UDP é não orientado para conexão.

# Transporte não orientado para conexão: UDP

Aplicações populares da Internet e seus protocolos de transporte subjacentes:

| Aplicação                  | Protocolo da camada de aplicação | Protocolo de transporte subjacente |
|----------------------------|----------------------------------|------------------------------------|
| Correio eletrônico         | SMTP                             | TCP                                |
| Acesso a terminal remoto   | Telnet                           | TCP                                |
| Web                        | HTTP                             | TCP                                |
| Transferência de arquivo   | FTP                              | TCP                                |
| Servidor de arquivo remoto | NFS                              | Tipicamente UDP                    |
| Recepção de multimídia     | Tipicamente proprietário         | UDP ou TCP                         |
| Telefonia por Internet     | Tipicamente proprietário         | UDP ou TCP                         |
| Gerenciamento de rede      | SNMP                             | Tipicamente UDP                    |
| Protocolo de roteamento    | RIP                              | Tipicamente UDP                    |
| Tradução de nome           | DNS                              | Tipicamente UDP                    |

### Estrutura do segmento UDP

Aplicações populares da Internet e seus protocolos de transporte subjacentes:



© 2014 Pearson. Todos os direitos reservados.

# Transporte orientado a conexão TCP

- Uma conexão TCP provê um serviço full-duplex.
- A conexão TCP é sempre ponto a ponto.
- Uma vez estabelecida uma conexão TCP, dois processos de aplicação podem enviar dados um para o outro.
- O TCP combina cada porção de dados do cliente com um cabeçalho TCP, formando, assim, segmentos TCP.

## Transferência confiável de dados

- O TCP cria um serviço de transferência confiável de dados sobre o serviço de melhor esforço do IP.
- O serviço de transferência garante que a cadeia de bytes é idêntica à cadeia de bytes enviada pelo sistema final que está do outro lado da conexão.
- gerenciamento de temporizadores TCP utilizam apenas um único Os procedimentos recomendados no [RFC 6298] temporizador de retransmissão.