# Software Testing and Quality Assurance CSC510: Software Engineering

#### Tim Menzies

prof, cs, **ncstate**, usa acm,ieee,ase fellow; eic ASEj timm@ieee.org http://timm.fyi

October 6, 2025

## Introduction: Why Test?

- Testing checks code correctness and prevents regressions
- Good manners for team: don't commit breaking changes
- Multi-stakeholder systems have competing requirements
- Functional vs non-functional requirements
- "Program testing shows presence of bugs, hopelessly inadequate for showing absence" - Dijkstra

**Discussion:** Toronto CS department information system - good if parents can track children, but good if students maintain privacy. How do you test for both?

# The V-Diagram: Software Lifecycle

- Planning down to coding
  - Planning = requirements  $\rightarrow$  design  $\rightarrow$  implementation
- Coding across to testing
- Then upwards to more and more complex tesing
  - $\bullet \ \ \text{Testing = unit test} \rightarrow \text{integration} \rightarrow \text{system test} \rightarrow \text{acceptance testing}$

- Verification: "building the system right"
- Validation: "building the right system"

 Brooks, Mythical Man Month: 1/3 planning, 1/6 coding, 1/4 unit test, 1/4 system test

More time in testing than coding

## Fault vs Failure (Fenton & Neil)

- Fault: incorrect step/process/definition in code
- Failure: when something actually goes wrong
- Key insight: pre-release faults != post-release failures

**Discussion Question:** How can a system with *few* pre-release faults have *many* post-release failures? And vice versa?

- Answer: Untested systems show few faults (none found!) but fail heavily in production
- Well-tested systems expose many faults pre-release, resulting in fewer failures post-release
- Usage patterns, defect detection capability, design effort all matter

## Testing Types: Concrete Examples

- Unit testing: Test calculateDiscount(price, percentage) function in isolation
- Integration testing: Test checkout service calling payment gateway API
- System testing: End-to-end purchase flow from cart to confirmation email
- Acceptance testing: Customer validates system meets contract requirements
- Alpha testing: Internal QA team uses prototype before release
- Beta testing: 1000 external users try new mobile app version
- A/B testgs: split some population in half
  - Grpup A gets "it"
  - Group B does not
  - Collect data, apply stats to check if "it" worked.
- Regression testing: Re-run all tests after adding shopping cart feature

warning: slow, Voluminous

## Black-Box Testing: Grammar-Based Generation

```
US_PHONE_GRAMMAR = {
    "<start>": ["<phone-number>"],
    "<phone-number>": ["(<area>)<exchange>-<line>"],
    "<area>": ["<lead-digit><digit><digit>"],
    "<exchange>": ["<lead-digit><digit><digit>"],
    "<line>": ["<digit><digit><digit><digit>"],
    "<lead-digit>": ["2","3","4","5","6","7","8","9"],
    "<digit>": ["0","1","2","3","4","5","6","7","8","9"]}}

Generates: (692)449-5179, (519)230-7422, etc.
```

```
import random
def generate(grammar, rule, depth=3):
    if depth == 0 or rule not in grammar:
        return random.choice(grammar.get(rule, [rule]))
    expansion = random.choice(grammar[rule])
    return "".join(generate(grammar, r, depth-1)
                   for r in expansion)
# Generate 5 random phone numbers
for _ in range(5):
    print(generate(US_PHONE_GRAMMAR, "<start>"))
Uniform random sampling from grammar rules.
```

```
# Weight grammar to prefer certain area codes
WEIGHTED_GRAMMAR = {
    "<start>": ["<phone-number>"],
    "<phone-number>": ["(<area>)<exchange>-<line>"],
    "<area>":
       ("919", 0.5), # 50% weight - local area
       ("212", 0.3), # 30% weight - NYC
       ("<random-area>". 0.2) # 20% other
    "<random-area>": ["<lead-digit><digit><digit>"].
    # ... rest of grammar
}
def weighted_choice(options):
    choices, weights = zip(*options)
   return random.choices(choices, weights)[0]
```

## Black-Box: Automatic Reweighting (Coverage-Guided)

```
def coverage_guided_fuzzing(grammar, test_fn, iterations=100):
    covered_branches = set()
    for _ in range(iterations):
        # Generate input
        test_input = generate(grammar, "<start>")
        # Run test, track coverage
        new_branches = test_fn(test_input)
        # Increase weight for rules that hit new branches
        if new branches - covered branches:
            increase_weight_for(rules_used_in(test_input))
            covered branches.update(new branches)
```

Automatically biases generation toward unexplored code paths.

# White-Box: Doodling State Machines

Reading documentation to infer state transitions:

Elevator Door States (inferred from docs):

- CLOSED -> OPENING (on button press)
- OPENING -> OPEN (after 2 seconds)
- OPEN -> CLOSING (after 5 second timeout OR button)
- CLOSING -> OPEN (if obstruction detected)
- CLOSING -> CLOSED (after 2 seconds)

**Discussion:** Draw a state diagram. What test cases cover all transitions? What if door stays OPEN between floors 3 and 7 - is this a violation?

## Coverage Metrics: The Differences

```
def example(x, y):
  a = x + y # Line
   if x > 0: # Line 2
   b = a * 2 # Line 3
   else:
      b = a * 3 # Line 4
   if y > 0: # Line 5
    c = b + a # Line 6
   else:
      c = b - a # Line 7
               # Line 8
   return c
```

## Coverage Examples

**Test 1:** example(1, 1) - Lines covered: 1,2,3,5,6,8 (6/8 = 75% line coverage) - Branches: T,T (2/4 = 50% branch coverage)

**Test 2:** example (-1, -1) - Lines: 1,2,4,5,7,8 (6/8 = 75% line coverage) - Branches: F,F (2/4 = 50% branch coverage)

Both tests: 100% line, 100% branch

**But:** Never tested x>0 AND y<0 interaction (du-path from line 3 to line 7 uncovered)

# Problems with Coverage Metrics

- Gopinath et al. (2014): Statement coverage best predicts mutation kills, not branch/path
- Inozemtseva & Holmes (2014): Coverage not strongly correlated with test suite effectiveness
- Kochhar et al. (2015): Real bugs in large systems coverage helps but insufficient

### **Key findings:**

- 100% coverage still misses logic errors
- Concurrency bugs evade coverage metrics
- Complex component interactions not captured

## Original Code:

```
def calculate_discount(price, rate):
    if price > 100:
        discount = price * rate
        return price - discount
    return price

AOR (Arithmetic): discount = price / rate (changed * to /)

ROR (Relational): if price >= 100: (changed > to >=)

CR (Constant): if price > 50: (changed 100 to 50)
```

# **Mutation Testing: Genetic Programming**

Beyond point mutations - swap entire code blocks:

```
# Original
def process(data):
    if validate(data):
        result = transform(data)
        return result
    return None
# Mutant (swapped if/else)
def process(data):
    if validate(data):
        return None
    result = transform(data)
    return result
```

Crossover: Take branches from two passing variants, combine them, see if combined version still passes.

Killed mutant = the test suite detects the fault - i.e. at least one test fails when run against the mutated program.

# **Mutation Score Interpretation**

Mutation Score = (Killed Mutants / Total Mutants) \* 100

Example: 100 mutants generated, 70 killed -> 70% score

#### What survives?

- Equivalent mutants (semantically identical)
- Untested edge cases
- Weak test assertions

Better indicator than coverage: test *quality* not just *quantity*.

# Regression Testing & Test Prioritization

- Elbaum, Rothermel, Penix (FSE 2014): "Techniques for improving regression testing in continuous integration"
- Large test suites: 3-5 hours (cloud) to 30 hours (local)
- Slow feedback kills CI/CD agility

#### **APFD (Average Percentage of Faults Detected):**

- Measures how quickly tests find faults
- Higher APFD = faults found earlier
- Cost-aware variant: APFDc weights by test execution time

## Elbaum's Prioritization Heuristic (2014)

Study on continuous integration environments:

Prioritize tests that:

- Failed recently
- 4 Haven't been tested for a while (long time since last run)
- Are new functionality

**Result:** For very large suites, catches 50% of failures within first hour (vs 3-5 hours for full run)

Works well when test history available and failures cluster.

# Open vs Closed Source: The Strategies

**Ling, Agrawal, Menzies (TSE 2022):** "How Different is Test Case Prioritization for Open and Closed Source Projects?"

#### Strategies compared:

- A2 (Optimal/Omniscient): Actually knows where bugs are
   all results baselined against A2
- D1 (Diversity): Maximize coverage of different code regions
- **B1 (History fail rate):** Run tests with highest historical failure rate
- B3 (History recency): Run tests that failed most recently

# Open vs Closed Results

### **Closed-source projects:**

- D1 performs as well as A2
- Diversity-based selection optimal

#### **Open-source projects:**

- B1, B3 perform as well as A2
- History-based selection optimal

**Key insight:** Test case prioritization strategies that work best for industrial closed-source can work *worse* for open-source (and vice versa)

Context matters: release cadence, developer distribution, test characteristics differ

# All-Pairs Testing Example

Five inputs: (2, 2, 2, 7, 10) values each

Full combinatorial: 2×2×2×7×10 = 560 tests

All-pairs generates only 68 tests:

Every pair of values appears together in at least one test.

Dramatic reduction with high coverage of 2-way interactions.

## Delta Debugging: The ddmin Algorithm

**Zeller's Implementation (Fig 1 from TSE 2002):** Reduce 'inp' to a 1-minimal failing subset, using the outcome of 'test(inp, \*test\_args)', which should be 'PASS', 'FAIL', or 'UNRESOLVED'.

Systematically shrink input until nothing smaller still fails.

```
def ddmin(test: Callable, inp: Sequence[Any], *test_args) -> Sequence:
    assert test(inp, *test args) != PASS
    n = 2 # Initial granularity
    while len(inp) >= 2:
        subset length: int = int(len(inp) / n)
        some complement is failing: bool = False
        start = 0
        while start < len(inp):
            # Cut out inp[start:start + subset_length]
            complement: Sequence[Any] = inp[:start] + inp[start + subset_length:]
            if test(complement, *test args) == FAIL:
                inp = complement
                n = \max(n - 1, 2)
                some complement is failing = True
                break
            start += subset length
        if not some_complement_is_failing:
            if n == len(inp): break
            n = min(n * 2, len(inp))
    return inp
```

**Zeller's Test Function (Fig 2 from TSE 2002):** Run collected function with 'args'. Return PASS if no exception occurred, FAIL if the collected exception occurred, UNRESOLVED if some other exception occurred.

```
def test(self, args: Dict[str, Any]) -> str:
    try:
        result = self.call(args)
    except Exception as exc:
        self.last_exception = exc
        if (type(exc) == type(self.exception()) and
            str(exc) == str(self.exception())):
            return FAIL
        else:
            return UNRESOLVED # Some other failure
        self.last_result = result
        return PASS
```

**Key:** Compare exception **type AND message** to distinguish target failure from syntax errors.

# Delta Debugging: Complete SQL Example

**Initial Scenario:** Grammar-generated SQL query crashes server

```
-- Original 847-character query (simplified for slides)
SELECT users.id, users.name, users.email, products.title
FROM users LEFT JOIN products ON users.id = products.user_id
WHERE users.active = 1 OR 1=1 AND users.created > '2020-01-01'
AND products.price < 100 OR products.stock > 0
ORDER BY users.name, products.title LIMIT 50 OFFSET 10;
```

Crash signature: SIGSEGV at address 0x0000, stack trace:
query\_parser.c:1247

# Delta Debugging: Step-by-Step

#### **Initial setup:**

- Baseline: empty string (passes no crash)
- Full input: 847 chars (fails with SIGSEGV)
- Goal: find minimal subset that crashes

### Iteration 1: Try removing first half (424 chars)

```
-- Remove chars 0-423, keep 424-846

WHERE users.active = 1 OR 1=1 AND users.created > '2020-01-01'

AND products.price < 100 OR products.stock > 0

ORDER BY users.name, products.title LIMIT 50 OFFSET 10;
```

**Result:** UNRESOLVED (syntax error: "WHERE without FROM") - ddmin tries other half

## Delta Debugging: Iteration 2

#### Try removing second half (chars 424-846)

```
SELECT users.id, users.name, users.email, products.title
FROM users LEFT JOIN products ON users.id = products.user_id
WHERE users.active = 1 OR 1=1 AND users.created > '2020-01-01'
```

**Result:** FAIL (SIGSEGV at query\_parser.c:1247) - Same crash! Keep this smaller input (423 chars) - Reduced by 50%

# Delta Debugging: Iteration 3

## Now work with 423-char input, try removing first half

WHERE users.active = 1 OR 1=1 AND users.created > '2020-01-01'

**Result:** UNRESOLVED (syntax error)

#### Try removing second half:

SELECT users.id, users.name, users.email, products.title FROM users LEFT JOIN products ON users.id = products.user\_id

**Result:** PASS (no crash) - Neither half crashes alone -> increase granularity

#### Try quarters instead. Remove first quarter:

```
name, users.email, products.title
FROM users LEFT JOIN products ON users.id = products.user_id
WHERE users.active = 1 OR 1=1 AND users.created > '2020-01-01'
```

Result: UNRESOLVED

#### Try removing second quarter:

```
SELECT users.id, users.
FROM users LEFT JOIN products ON users.id = products.user_id
WHERE users.active = 1 OR 1=1 AND users.created > '2020-01-01'
```

**Result: UNRESOLVED** 

## Delta Debugging: Iterations 5-8

## After trying various quarters, narrow down to the WHERE clause:

SELECT \* FROM users WHERE 1=1 OR users.active = 1

**Result:** FAIL (crashes!) - Now 54 characters

Continue reducing...

SELECT \* FROM users WHERE 1=1 OR 1

**Result:** FAIL - 35 characters

SELECT \* FROM users WHERE 1=1

Result: FAIL - 31 characters

## Delta Debugging: Final Result

### After ~15 iterations (each taking ~5 seconds to test):

SELECT \* FROM users WHERE 1=1

### Final minimal input:

- 31 characters (from 847)
- 96% reduction
- Still produces identical crash signature
- 1-minimal: removing any single character causes PASS or UNRESOLVED

#### Key insight revealed: Server crashes on trivial tautology WHERE 1=1

- Development team can no longer dismiss as "unrealistic"
- Bug is obviously critical

Reference: Zeller & Hildebrandt (TSE 2002): "Simplifying and isolating failure-inducing input"

```
def suspiciousness(passed, failed, total_passed, total_failed):
    """Tarantula heuristic"""
    if passed + failed == 0:
        return 0

passed_ratio = passed / total_passed if total_passed > 0 else 0
    failed_ratio = failed / total_failed if total_failed > 0 else 0
    return failed_ratio / (passed_ratio + failed_ratio)
```

For each statement: track how many passing/failing tests execute it.

Higher suspiciousness  $\rightarrow$  more likely to contain fault.

```
def ochiai(passed, failed, total_failed):
    """Ochiai heuristic - often more effective"""
    import math
    if failed == 0:
        return 0

    return failed / math.sqrt(total_failed * (failed + passed))

Alternative heuristics: - Jaccard: failed / (total_failed + passed) -
Dstar: failed^2 / (passed + (total_failed - failed))

Reference: Jones, Harrold, Stasko (ICSE 2002): "Visualization of test information to assist fault localization"
```

# Automated Program Repair: GenProg

- Run tests, identify failing tests
- Use fault localization (e.g., Tarantula) to find suspicious code regions
- Apply genetic programming only in suspicious regions:
  - Mutation: Change operator, swap statement, delete line
  - Crossover: Swap code blocks between variants
- Evaluate: does mutated code pass all tests?
- Repeat until repair found or budget exhausted

**Key insight:** Don't search entire program space - localize first, then repair.

Reference: Le Goues et al. (TSE 2012): "GenProg: A generic method for automatic software repair"

# Metamorphic Testing Example

Testing a hotel booking site without complete specification:

**Query 1:** "Hotels in Sydney" → 1,671 results

Metamorphic Relation: Filtering should not increase results

**Query 2:** "Hotels in Sydney, 4-star or higher"  $\rightarrow$  423 results

**Check:** results(Q2) within results(Q1)

If Q2 returned 1,800 results ==> **BUG DETECTED** 

Reference: Zhou, Tse, Witheridge (TSE 2019): "Metamorphic Robustness

Testing: Exposing Hidden Defects in Citation Statistics"

## Symbolic Execution: BigTest

Problem: Testing big data analytics on gigabytes of data

Naive approach: Need tests for all data combinations

BigTest insight: Only need to cover code branches, not data combinations

```
def analyze_sales(records):
    total = 0
    for record in records:
        if record.amount > 1000:  # Branch 1
            total += record.amount * 0.9
        else:  # Branch 2
            total += record.amount
    return total
```

Need only 2 test inputs: one with amount>1000, one with amount <= 1000.

Reference: Marinescu & Cadar (ICSE 2013)

#### Formal Methods: Product Lines

**Problem:** Which Linux kernel configurations are valid?

Feature model with 4000 variables, 300,000 constraints.

Solution: Express as CNF (Conjunctive Normal Form), use SAT solver

import pycosat

```
# Example: 5 variables, 3 constraints

cnf = [[1, -5, 4],  # x1 OR NOT x5 OR x4

[-1, 5, 3, 4],  # NOT x1 OR x5 OR x3 OR x4

[-3, -4]]  # NOT x3 OR NOT x4
```

```
solution = pycosat.solve(cnf)
print(solution) # [1, -2, -3, -4, 5]
```

Each solution = valid configuration. Can enumerate all solutions via itersolve.

#### Minimal install problem:

```
# Add costs to each package
costs = {1: 100, 2: 50, 3: 200, 4: 150, 5: 75}

solutions = []
for sol in pycosat.itersolve(cnf):
    cost = sum(costs[abs(x)] for x in sol if x > 0)
    solutions.append((cost, sol))

minimal = min(solutions, key=lambda x: x[0])
print(f"Cheapest install: {minimal}")
```

**User preferences:** If user dislikes solution, negate it and add as constraint. Future solutions avoid that configuration.

Reference: Lerner et al. (FSE 2008): "Opium: Optimal Package Install/Uninstall Manager"

URL= timm.fyi/esem25.pdf

#### AWS AuthV2: Formal Verification at Scale

**Challenge:** 1 billion requests/second authorization engine. Changes risk security/availability.

#### Approach (4-year effort):

- Reverse-engineer formal spec from AuthV1 (Java) in Dafny
- Write verified implementation in Dafny, prove correct vs spec
- Oustom compiler to idiomatic Java (DafnyLite)
- Shadow testing: 10<sup>15</sup> production requests

**Result:** 3x faster, proved correct, increased development agility

**Key lesson:** Rewrite in verification-aware language beats verifying legacy code.

URL= timm.fyi/esem25.pdf 38/57

# AuthV2: Why Shadow Testing?

Question: If code is formally verified, why test with 10 15 samples?

#### **Answer:**

- Formal proof: implementation matches **specification**
- Testing: specification matches intended behavior
- Found 7 specification errors missed by proof
- Specification != Requirements

Proof connects impl ==> spec. Testing connects spec ==> reality.

Reference: Amazon Science (2024): "Formally verified cloud-scale authorization"

URL= timm.fyi/esem25.pdf 39/57

# ARIMA Forecasting: Issues ==> Bugs

**Study (832 projects):** Can raw issue counts predict bug/enhancement workload?

**ARIMA model:** AutoRegressive Integrated Moving Average

- AR: current value depends on past values
- I: differencing to make stationary
- MA: current value depends on past errors

### Methodology:

- Rolling window: train on 20 weeks, forecast 4 weeks
- Slide forward by 1 week, repeat
- Metric: MAE (Mean Absolute Error)

URL= timm.fyi/esem25.pdf 40/57

# **ARIMA Results: Surprising Finding**

**RQ1:** Do issues/bugs/enhancements show temporal trends? **YES** (low MAE)

**RQ2:** Are trends correlated? **YES** (moderate positive correlation)

**RQ3:** Can issues forecast bugs/enhancements? **YES** (low MAE)

**RQ4:** As accurate as using bug history? **YES** (statistically similar)

**Practical implication:** Skip labeling effort. Use easily collected issue counts to forecast workload.

Reference: Krishna et al. (arXiv 2017): "What is the Connection Between Issues, Bugs, and Enhancements? (Lessons Learned from 800+ Software Projects)"

URL= timm.fyi/esem25.pdf 41/57

# TERMINATOR: Active Learning for TCP

(TCP= test case priorization.)

Problem: UI test suites take 3-30 hours. Black-box only (no coverage).

Approach: Frame as Total Recall problem

- Find all failures (positives) with minimum cost (running tests)
- Use Active Learning with SVM

#### **Features:**

- Text: TF from test descriptions
- History: past pass/fail/skip rates
- Hybrid: text + history (best)

URL= timm.fyi/esem25.pdf 42/57

### TERMINATOR Algorithm

- Start with empty executed set L, empty failed set LR
- While tests remain:
  - If |LR| < 30: Uncertainty sampling (near SVM boundary)
  - If |LR| >= 30: Certainty sampling (confident failures)
  - Select batch of 10 tests
  - Execute batch, update L and LR
  - If failures found: train/update SVM
  - Use aggressive undersampling for balance
- Continue until all tests run or budget exhausted

URL= timm.fyi/esem25.pdf 43/57

#### **TERMINATOR Results**

#### **Performance:**

- Hybrid features achieved ~75% of optimal (A2)
- Found 60% of failures in 20% of test time
- Next best method: ~30% failures in 20% time
- Computational overhead: 0.33% of total test time

Key insight: Dynamic adaptation via active learning beats static prioritization.

**Comparison:** Simple history methods beat complex text-only methods, but active learning hybrid beats both.

Reference: Bertolino et al. (FSE 2020): "Learning-to-rank vs ranking-to-learn"

URL= timm.fyi/esem25.pdf 44/57

## Non-Functional Requirements: Testing Challenges

#### How do you test for:

- Maintainability? -> Years of observation needed
- Usability? -> Subjective, user studies required
- Security? -> Adversarial thinking, penetration testing
- Performance? -> Load testing, profiling
- Scalability? -> Simulate production-scale traffic
- Availability? -> Chaos engineering, fault injection

Trade-offs common: security vs usability, performance vs maintainability.

URL= timm.fyi/esem25.pdf 45/57

## Context Switching Costs

Weinberg (1992): Context switching between projects is expensive

Modern reality: Agile teams, multiple simultaneous projects

#### Cost factors:

- Mental context rebuild: 15-30 minutes per switch
- Tool/environment switching
- Re-familiarization with codebase

**Forecasting helps:** Predict upcoming bug/enhancement spikes, staff proactively, minimize thrashing.

URL= timm.fyi/esem25.pdf 46/57

### TDD in Practice: The Reality

#### TDD= test driven development

- write (a few) tests before (a little) coding
- intially tests fail (red)
- repeat: fix tests till all green
  - then write some more tests
- sometimes, pause and reogranize
- mantra: red, green, refactor

## Karac & Turhan (2018): "What Do We Really Know about TDD?"

### **Findings:**

- Only 12% of projects claiming TDD actually write tests first
- GitHub study: o.8% truly TDD
- No clear evidence for higher velocity or quality
- TDD hard to define rigorously
- Success confounded with better tools (IDEs, languages)

**Discussion:** Is TDD itself the benefit, or is it proxy for other good practices (small functions, clear interfaces, refactoring discipline)?

URL= timm.fyi/esem25.pdf 47/57

# Take-Home Messages

- Coverage necessary but insufficient use mutation testing
- Test prioritization strategies are context-dependent
- Active learning effective for large black-box test suites
- Delta debugging automates input minimization
- Formal verification increasingly practical at scale (but needs testing too)
- Issue trends forecast workload without expensive labeling
- Symbolic execution enables white-box testing of data-intensive systems

• TDD effectiveness debatable; good testing habits matter more

URL= timm.fyi/esem25.pdf 48/57

#### Question 1: Fault vs Failure

- (a) [1 mark] Define "fault" and "failure" and explain the key difference between them
- **(b)** [2 marks] Using the Fenton & Neil causal model, explain how a system with extensive pre-release testing could show many pre-release faults but few post-release failures. Sketch the causal factors involved.
- **(c)** [3 marks] A startup releases software with minimal testing, observes few reported bugs in the first month, and concludes their code quality is excellent. Critique this reasoning using concepts from reliability engineering. What alternative explanations might account for the low bug reports?

URL= timm.fyi/esem25.pdf 49/57

### Question 2: Coverage Metrics

(a) [1 mark] For the following code, explain why one test achieving 100% line coverage might still have 50% branch coverage:

```
def func(x):
    if x > 0:
        return x * 2
    return x
```

- **(b)** [2 marks] Write a function with 2 if-statements where achieving 100% branch coverage requires 4 tests, but 100% line coverage requires only 2 tests. Show your test cases.
- **(c)** [3 marks] Research shows statement coverage best predicts mutation kills (Gopinath 2014), yet coverage alone poorly correlates with test effectiveness (Inozemtseva & Holmes 2014). Reconcile these findings. When is coverage useful and when is it misleading?

URL= timm.fyi/esem25.pdf 50/57

# Question 3: Mutation Testing

(a) [1 mark] What is a "mutation operator" and list three types (AOR, ROR, CR, etc.) with examples.

(b) [2 marks] Given this code:

```
def discount(price, rate):
    if price > 100:
        return price - (price * rate)
    return price
```

Generate 3 mutants using different operators and explain whether your test suite [discount(50, 0.1), discount(150, 0.2)] kills each mutant.

**(c)** [3 marks] A test suite has 90% line coverage but only 60% mutation score. Another has 70% coverage but 85% mutation score. Which indicates higher quality testing? Justify your reasoning considering what each metric measures and their practical implications for fault detection.

URL= timm.fyi/esem25.pdf

### Question 4: Test Case Prioritization

- **(a)** [1 mark] Define APFD (Average Percentage of Faults Detected) and explain why it's more informative than simply measuring "time to find first fault."
- **(b) [2 marks]** You have 4 tests: A (passed 10 runs ago, execution time 5s), B (failed yesterday, 10s), C (new test, 2s), D (passed yesterday, 15s). Apply the Elbaum heuristic to prioritize these tests. Show your reasoning.
- **(c)** [3 marks] Ling et al. (2022) found optimal TCP strategies differ for open-source vs closed-source projects (diversity-based optimal for closed-source, history-based for open-source). Propose three hypotheses explaining why this difference exists. Design an experiment to test one hypothesis.

URL= timm.fyi/esem25.pdf 52/57

# Question 5: Delta Debugging

- **(a)** [1 mark] Explain what "1-minimal" means in the context of delta debugging's ddmin algorithm.
- **(b)** [2 marks] You have a 16-character input "ABCDEFGHIJKLMNOP" that crashes a program. Walk through the first 3 steps of ddmin assuming: removing "ABCDEFGH" still crashes, but removing "IJKLMNOP" passes. What does ddmin try next?
- **(c) [3 marks]** The "oracle problem" requires distinguishing the target failure from other failures. Design a test oracle for a compiler that should detect "segmentation fault" as the target failure while ignoring "syntax error" and "type error". Show code and explain how it handles ambiguous cases.

URL= timm.fyi/esem25.pdf 53/57

## Question 6: Black-Box Testing

- (a) [1 mark] Write a simple grammar (in any notation) that generates arithmetic expressions with numbers 1-9 and operators +, -, \*.
- **(b)** [2 marks] Extend your grammar with probability weights such that + is chosen 50% of the time, while and \* are each chosen 25%. Show Python code implementing weighted random selection.
- **(c)** [3 marks] Coverage-guided fuzzing automatically reweights grammar rules to explore uncovered code paths. Compare this to manual weighting (where domain experts specify weights). Under what circumstances would each approach be more effective? Consider factors like: domain knowledge availability, code complexity, and testing budget.

URL= timm.fyi/esem25.pdf 54/57

#### Question 7: Formal Verification

- **(a)** [1 mark] What is the difference between formal verification and traditional testing, and why might formal verification provide stronger correctness guarantees?
- **(b)** [2 marks] AWS rewrote their authorization engine in Dafny rather than verifying the existing Java code. Explain two technical reasons why rewriting might be more practical. Consider proof brittleness, legacy code complexity, and verification tool limitations.
- **(c) [3 marks]** The AuthV2 project performed 1o<sup>15</sup> shadow tests despite having formally verified code. Explain the relationship between proof and testing: what errors does each approach catch, why are both necessary, and what does this tell us about the role of specifications in formal methods?

URL= timm.fyi/esem25.pdf 55/57

## Question 8: ARIMA Forecasting

- **(a)** [1 mark] Describe the three components of ARIMA (AutoRegressive, Integrated, Moving Average) in the context of time series forecasting.
- **(b)** [2 marks] A project has these weekly issue counts for 4 weeks: [10, 15, 12, 18]. Using a simple moving average (MA(2)), forecast the next week. Then explain how ARIMA's "integrated" component would handle a non-stationary trend.
- **(c)** [3 marks] Research found issue counts predict bugs as accurately as bug history itself. Evaluate the practical implications for organizations: what does this enable, what are the risks/limitations, and under what conditions might this approach fail? Consider factors like project maturity, issue quality, and labeling accuracy.

URL= timm.fyi/esem25.pdf 56/57

## Question 9: Active Learning (TERMINATOR)

- **(a)** [1 mark] Explain the difference between "uncertainty sampling" and "certainty sampling" in active learning.
- **(b)** [2 marks] TERMINATOR uses uncertainty sampling early (|LR| < 30 failures) then switches to certainty sampling. Explain the rationale for this adaptive strategy. What would go wrong if it used only uncertainty sampling throughout?
- **(c)** [3 marks] TERMINATOR frames test prioritization as a "Total Recall" problem. Evaluate this framing: what assumptions does it make about the testing goal, how does this differ from traditional coverage-based approaches, and when might this framing be inappropriate (i.e., when is finding *all* failures quickly not the right objective)?

URL= timm.fyi/esem25.pdf 57/57