试卷(二)

一、单项选择题(每题2分,共20分)

- 1. 设矩阵 $A = \begin{bmatrix} -a & b \\ b & a \end{bmatrix}$, 其中 a > b > 0, $a^2 + b^2 = 1$, 则 A 为
- (A) 正定矩阵;

(B) 初等矩阵;

(C) 正交矩阵;

- (D) 以上都不对:
- 2. 设 A, B 为 4 阶方阵, E | A | = 2, | B | = 2, 则 $| (A * B^{-1})^2 A^T | = 2$

(A) 64;

(B) 32;

(C) 8:

(D) 16.

3. 设矩阵 A 与 B 相似,则必有

()

- (A) A, B 同时可逆或不可逆;
- (B) A, B 有相同的特征向量;
- (C) A, B 均与同一个对角矩阵相似;
- (D) 矩阵 $\lambda E A = \lambda E B$ 相等.
- 4. 设 α_1 , α_2 , …, α_m 是m 个n 维向量,则命题" α_1 , α_2 , …, α_m 线性无关"与命题()不等价.
 - (A) 对任意一组不全为零的数 k_1 , k_2 , …, k_m 必有 $\sum_{i=1}^m k_i \boldsymbol{\alpha}_i \neq \mathbf{0}$;

(B) 若
$$\sum_{i=1}^{m} k_{i} \boldsymbol{\alpha}_{i} = \mathbf{0}$$
, 则必有 $k_{1} = k_{2} = \cdots = k_{m} = \mathbf{0}$;

- (C) 不存在不全为零的数 k_1, k_2, \dots, k_m , 使得 $\sum_{i=1}^{m} k_i \alpha_i = 0$;
- (D) **a**₁, **a**₂, …, **a**_m 中没有零向量.

	5. 设 A 为 n 阶 实 对 和	你矩阵, B 为 n 阶可逆矩阵, Q 为 n 阶正交知	į
阵,	则矩阵()与A有	相同的特征值.	
	(A) $\mathbf{B}^{-1}\mathbf{Q}^{\mathrm{T}}\mathbf{A}\mathbf{Q}\mathbf{B}$;	(B) $(B^{-1})^{T}Q^{T}AQB^{-1}$;	
	(C) $\boldsymbol{B}^{\mathrm{T}}\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q}\boldsymbol{B}$;	(D) $\boldsymbol{B}\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q}(\boldsymbol{B}^{\mathrm{T}})^{-1}$.	
	6. 设 A 为 n 阶矩阵,		
		()
	$(A) 4(\mathbf{A} - \mathbf{E});$	(B) $\frac{1}{4}(\boldsymbol{A}-\boldsymbol{E})$;	
	(C) $\pm \frac{1}{2}\mathbf{E}$;	(D) 不能确定.	
	7. 正定实二次型的知	E阵必是 ()
	(A) 实对称且所有元	正素为正数 ;	
	(B) 实对称且对角线	է上元素为正数;	
	(C) 实对称且各阶顺	顶序主子式为正数;	
	(D) 实反对称且行列	引式值为正数.	
	8. 设 A 为 n × m 实	矩阵, $r(A) = n$, 则 ()
	$(A) AA^{T}$ 的行列式值	直不为零;(B) AA T 必与单位矩阵相似;	
	(C) $A^{T}A$ 的行列式值	直不为零; (D) A ^T A 必与单位矩阵相似.	
	9. 设向量组 a ₁ , a ₂ ,	α_3 线性无关,向量组 α_2 , α_3 , α_4 线性相关	•
则		()
	(A) a 4 未必能被 a 2	, α ₃ 线性表出;	
	(B) a 4 必能被 a 2, o	x ₃ 线性表出;	
	(C) a 1 可被 a 2, a 3,	α,线性表出;	
	(D) 以上全不对,		
	10. 设 A 为 m × n 知	i阵, $r(A) = m$, 且方程组 $Ax = 0$ 只有零解	•
则		()
	(A) 方程组 $\mathbf{A}\mathbf{x} = \mathbf{\beta}$	K(∀β∈ ℙ") 有唯一解;	
	(B) $m \neq n$;		
	(C) A 的列向量组线	线性相关;	
	(D) 以上都不对.		

二、填空题(每题2分,共12分)

1. 设 A, B, C, D 均为 n 阶方阵, 且 ABCD = E, 则 $(BC)^T$ $(DA)^T =$.

2.
$$\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,$$

3. 设 A 为 n 阶方阵,且 $A^2-5A+6E=O$,则 A 的特征值只能是

4. 设V为全体 3 阶实方阵构成的线性空间,则由所有 3 阶反对称 实方阵构成的子空间的一组基为 .

5. 向量
$$\alpha = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\beta = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\gamma = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 是3的一组基,则向量

$$\boldsymbol{\xi} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$$
在该基下的坐标为_____.

6. 设 V 为线性空间, $\alpha_i \in V$ ($i = 1, 2, \dots, 5$), V 的 3 个线性子空间 $W_1 = L(\alpha_1, \alpha_2, \alpha_3)$, $W_2 = L(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, $W_3 = L(\alpha_1, \alpha_2, \alpha_3, \alpha_4 + \alpha_5)$ 的维数分别为 3, 3, 4,则 $W_4 = L(\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \alpha_5 - \alpha_4 - \alpha_1 - \alpha_2 - \alpha_3)$ 的维数为______.

三、计算题(每题 9 分,共 45 分)

1. 计算分块矩阵 B 的行列式,其中

$$\mathbf{B} = \begin{bmatrix} \mathbf{O} & \mathbf{A} \\ 2\mathbf{A} & \mathbf{O} \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ -1 & 0 & 3 & \cdots & n \\ -1 & -2 & 0 & \cdots & n \\ \vdots & \vdots & \vdots & \vdots \\ -1 & -2 & -3 & \cdots & 0 \end{bmatrix}.$$

2. 矩阵
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
,且满足方程 $A^*BA = 2BA - 9E$,其中

 A^* 为 A 的伴随矩阵,试求矩阵 B.

3. 问:a 为何值时,线性方程组

$$\begin{cases} x_1 - ax_2 - 2x_3 = -1, \\ x_1 - x_2 + ax_3 = 2, \\ 5x_1 - 5x_2 - 4x_3 = 1 \end{cases}$$

有唯一解、无解、有无穷多解?并在有无穷多解的情况下用基础解系表示其通解.

4. 用正交变换 x = Py 化二次型

$$f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$

为标准形,并写出相应的正交矩阵 P.

5. 在线性空间影中给定两组基:

$$\boldsymbol{\varepsilon}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \boldsymbol{\varepsilon}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \boldsymbol{\varepsilon}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \mathcal{R} \ \boldsymbol{\eta}_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \ \boldsymbol{\eta}_2 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \ \boldsymbol{\eta}_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

- (1) 求由基 ε_1 , ε_2 , ε_3 到基 η_1 , η_2 , η_3 的过渡矩阵C;
- (2) 若向量 α 在基 η_1 , η_2 , η_3 下的坐标为 $\begin{bmatrix} 2\\2\\-2 \end{bmatrix}$, 求 α 在基 ϵ_1 ,

 ϵ_2 , ϵ_3 下的坐标.

四、证明题(每题8分,共16分)

- 1. 设 A 为 n 阶实对称方阵, $k \ge 2$ 为正整数, $A^k = O$. 证明: A = O.
- 2. 设 n 阶方阵 A 满足 $A^2 + 2A + 2E = O$. 证明:对任意实数 k,矩阵 (A + kE) 是可逆矩阵,并求其逆矩阵.

五、应用题(本题7分)

设某省人口总数保持不变,每年有20%的农村人口流入城镇,有10%的城镇人口流入农村. 试问:该省的城镇人口和农村人口的分布最终是否会趋于一个稳定状态? 并说出你的理由.

(提示:设 $x_n = \begin{bmatrix} a_n \\ b_n \end{bmatrix}$ 为该省第n年人口分布情况,其中 a_n , b_n 分别代表第n年农村与城镇人口数,利用矩阵乘法建立第n年与第一年人口分布关系式,然后判断 x_n 的极限是否存在,极限 $\lim_{n \to \infty} x_n$ 定义为

$$\begin{bmatrix} \lim_{n\to\infty} a_n \\ \lim_{n\to\infty} b_n \end{bmatrix}.)$$