Vorlesung 3. Bachelor-Studienjahr 01.11.2024

Konventionelle Radiologie Grundlagen der Diagnostik und Therapie

Institut für Diagnostische und Interventionelle Radiologie

Lernziele

Grundlagen der konventionellen Röntgenaufnahmen kennen

- Entstehung von Röntgenstrahlen
- Eigenschaften von Röntgenstrahlen
- Detektion von Röntgenstrahlen
- Speicherung und Verteilung von Röntgenaufnahmen

Grundprinzipien des Strahlenschutzes bei konv. Röntgenaufnahmen kennen

Stellenwert der konventionellen Radiologie am USZ

Untersuchungen im DIR (2018, seitdem eher zunehmend)

Total ~138'000

Konventionell ~67'000

Ionisierende Strahlen

- Strahlungen, deren kinetische Energie (bei Teilchen) bzw. Quantenenergie (bei Wellen) ausreicht, um Elektronen aus einem Atom herauszulösen (und so lonen zu erzeugen).
- Erfordert Wellenlängen < 200 nm: Gammastrahlung, Röntgenstrahlung und kurzwelligere Ultraviolettstrahlung
- Wellenlänge von Röntgenstrahlen 0.01-15 nm
- Nicht-ionisierend: Radio-, Radar-, und Mikrowellen, Infrarotstrahlung oder sichtbares Licht.

Übersicht

Hauptkomponenten

Kippbare Röhre

Verstellbarer Tisch

Röntgenröhre

Röntgenröhre schematisch

U_B: Beschleunigungsspannung, U_H: Heizspannung, K: Glühkathode, A: Anode, B: Brennfleck, R: Röhrenabschirmung, F: Strahlenaustrittsfenster

Bremsstrahlung

Bei Atomen hoher Ordnungszahl Z: Abbremsung in der Nähe des Atomkerns: Basis für Röntgenstrahlentstehung

Blende

- Bleilamellen
- Beschränken den bestrahlten Körperabschnitt
- Reduzieren Streustrahlen

Filter

- Aluminium
- Reduzieren niederenergetische Strahlen, die nur die Haut belasten würden, aber keinen Beitrag an die Bildinformation leisten
- Zusatzfilter gleichen Formunregelmässigkeiten des Körpers aus

Interaktion des Röntgenstrahls mit Materie

Elektron

Linearer Energie-Transfer (LET)

Bleilamellen / strahlendurchlässiges Material

Reduziert Streustrahlung und damit Bildrauschen

Schräge Streustrahlen werden absorbiert

Wird während Aufnahme bewegt (meistens)

Führt zu einer Dosiserhöhung

Streustrahlung

Profil

Aufsicht

Aufbau einer Röntgenanlage

Strahlengeometrie

Das Verhältnis der Fokus-Objekt-Distanz (FOD) zu der Fokus-Film-Distanz (FFD) bestimmt den **Vergrösserungsfaktor (M)**

Anterior-Posterior (AP) magnification

◆ The X-ray beam for an anterior-posterior (AP) view of the chest exaggerates heart size as the heart is relatively near to the beam source.

Near beam magnification

 A source that is too near the patient will further exaggerate the size of structures nearest to that source.

Posterior-Anterior (PA) projection

 A posterior-anterior(PA) beam view of the chest allows more accurate representation of heart size as the heart is positioned closer to the detector and is therefore less magnified.

One view

Is no view

Strahlengeometrie

Film-Folienkombinationen (kaum mehr im Gebrauch)

Computed Radiography (CR) System

Computed Radiography (CR) System

- Bestehende Röntgenanlage weiter verwendbar
- Anstelle Film-Folien-Kombination: Phosphorplatte mit photostimulierbarem Phosphorpartikeln oder -nadeln
- Exposition führt zu latenter Aufnahme
- Diese wird durch einen Laser ausgelesen (Lesegerät)
- Resultat: digitale Aufnahme, kann nachverarbeitet werden
- Phosphorplatte wird nach Auslesevorgang lichtexponiert und ist dann wieder verwendbar (bis zu mehrere Tausend mal)

Computed Radiography (CR) System

Digital Radiography (DR) Systeme

- Erfordert in den meisten Fällen neue Anlage
- Hoher Preis
- Anstelle Phosphorplatte: Flachdetektor
- Detektor: Amorphes Silicium (a-Si): Verwandelt Röntgenstrahl in Licht.
- Photodioden erzeugen ein digitales Signal
- Resultat: digitale Aufnahme, kann nachverarbeitet werden
- Bild sofort (<10 sec) sichtbar
- Kein separates Lesegerät notwendig
- Keine Kabel (WLAN in modernen Geräten)

Picture Archiving and Communication System (PACS)

Voraussetzung: alle Bilddaten digital

Format: DICOM 3*

Vorteile

- Austauschbarkeit von Bilddaten
- Workflow-Unterstützung (Worklist)
- Vollständige Identifikation und Rückverfolgbarkeit der Aufnahmen

Enge Beziehungen zu RIS (Radiologieinformationssystem), HL7 Standard (HL 7**), jpeg Standard,

*Digital Imaging and Communications in Medicine

^{**}Health Level 7, Datenaustausch im Gesundheitswesen

Preis (am Beispiel einer Knie-Untersuchung)

Methode	Kosten
Röntgen	CHF 120 (inkl. Patella) / CHF 110 (nur Knie)
MRI	CHF 360
СТ	CHF 260
Ultraschall	CHF 130

Strahlenschutz (Patient)

- Indikationsstellung
- Vermeiden von Wiederholuntersuchungen
- Röntgentechnik (Filter, Strahlenhärte, ...).
- Einblenden
- Bleiabdeckungen
- Fokus-Haut-Abstand möglichst gross
- CR/DR statt alte Film-Folien-Kombination
- Digitale Nachverarbeitung
- Qualitätssicherung

ALARA

« as low as reasonable achievable»

Bleischutz

Abstandsquadratgesetz

Strahlenschutz (Personal)

- Raum verlassen
- Falls im Raum: Abstand-Quadrat-Gesetz anwenden
- Dosimetrie

Bleischürzen/Halsschutz/Bleibrillen/Bleihandschuhe

Die Intensität oder Dosis der von einer Strahlenquelle ausgehenden Strahlung verringert sich mit dem Quadrat ihrer Entfernung von der Quelle.

Strahlenschutz

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenössisches Departement des Innern EDI

Bundesamt für Gesundheit BAG Direktionsbereich Verbraucherschutz

Seite 1/3

Abteilung Strahlenschutz www.str-rad.ch Referenz / Aktenzeichen: Erstellt: Revisions-Nr. 4

hen: R-06-04md.doc 10.04.2006 01.07.2011

Merkblatt R-06-04

Diagnostische Referenzwerte (DRW) in der Projektionsradiologie

Röntgenaufnahme	Oberflächendosis am Patienteneintritt pro Einzelaufnahme [mGy]	Dosis-F Produkt [cGy x cm²]	
Thorax (pa)	0.15	15	
Thorax (lateral)	0.75	60	
Lendenwirbelsäule (ap oder pa)	7	235*	
Lendenwirbelsäule (lateral)	10	415	
Becken (ap)	3.5	250	
Schädel (ap oder pa)	2.5	65	
Schädel (lateral)	1.5	50	

ap: antero-posterior; pa: postero-anterior

Interkontinentalling

V. IJ IIIJV

^{*} Die DRW-Angabe für das Dosis-Flächenprodukt bezieht sich auf ein übliches Feld am Patienteneintritt von 30x15cm². Bei grösseren Strahlenfeldern (z.B. ausgeblendete Aufnahme mit Darstellung des Beckenkamms und der Hüftköpfe bei spezifischer, indizierter Fragestellung) resultieren entsprechend höhere Dosis-Flächenprodukte.

Strahlenschutz

Untersuchung R = Röntgenaufnahmen/-untersuchungen N = Nuklearmedizinische Untersuchungen	Dosis [mSv]	entspricht x-mal der Strahlendosis einer Röntgenaufnahme der Lunge	
Aufnahme von Gliedmassen	R	0.005	0.25
Aufnahme eines Zahns	R	0.02	1
Aufnahme des gesamten Kiefervolumens	R	0.2	10

