ปัญหาข้อที่ 1. จงให้คำนิยามสำหรับข้อความต่อไปนี้

- 1. การหารลงตัว
- 2. จำนวนคู่
- 3. จำนวนเฉพาะ
- 4. จำนวนตรรกยะ
- 5. สับเซต
- 6. ขอบเขตบน (ของเซต S)
- 7. ขอบเขตบนน้อยสุด
- 8. ขอบเขตล่าง
- 9. ขอบเขตล่างมากสุด
- 10. อินเทอร์เซคชั่นใด ๆ $\bigcap_{i \in I} A_i$

ปัญหาข้อที่ 2. จงอธิบายทฤษฎีบทต่อไปนี้

- 1. ขั้นตอนวิธีการหาร
- 2. หลักการจัดอันดับดี
- 3. หลักอุปนัยเชิงคณิตศาสตร์
- 4. หลักอาร์คิมิเดียน
- 5. สมบัติความบริบูรณ์ของจำนวนจริง
- 6. ทฤษฎีบทหลักมูลของเลขคณิต
- 7. สมบัติขอบเขตบนน้อยสุด

ปัญหาข้อที่ 3. การอ้างเหตุผลต่อไปนี้สมเหตุสมผลหรือไม่

เหตุ 1.
$$C \rightarrow (D \rightarrow (A \lor B))$$

2.
$$\sim (A \vee B)$$

ผล
$$D
ightarrow \sim C$$

(อาร์บิทาร์รี่อินเทอร์เซคชั่น)

- 11. ยูเนียนใด ๆ $igcup_{i \in I} A_i$ (อาร์บิทาร์รี่ยูเนี่ยน)
- 12. ผลแบ่งกั้น
- 13. ผลคูณคาร์ทีเชี่ยนของ A imes B
- 14. คู่อันดับ
- 15. ความสัมพันธ์บทเซต A
- 16. ฟังก์ชันระหว่างเซต A o B
- 17. ฟังก์ชัน 1-1
- 18. ฟังก์ชันทั่วถึง

1 เซต

ปัญหาข้อที่ 4. จงแสดงว่า $A\subseteq B$ ก็ต่อเมื่อ $A\cup B=B$

ปัญหาข้อที่ 5. จงแสดงว่า $A\subseteq B$ ก็ต่อเมื่อ $A\cap B=A$

ปัญหาข้อที่ 6. จงแสดงว่า $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ และ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

ปัญหาข้อที่ 7. จงแสดงว่า $(A \cap B) \cup C = A \cap (B \cup C)$ ก็ต่อเมื่อ $C \subseteq A$

ปัญหาข้อที่ 8. จงแสดงว่า $A-(A-B)=A\cap B$ เมื่อ A-B เป็นการลบกันของเซต

ปัญหาข้อที่ 9. จงแสดงว่า $A\subseteq B$ ก็ต่อเมื่อ $A-B=\emptyset$

ปัญหาข้อที่ 10. จงแสดงว่า $A \cap (B - C) = (A \cap B) - (A \cap C)$

ปัญหาข้อที่ 11. จงแสดงว่า $\mathscr{P}(E)\cap\mathscr{P}(F)=\mathscr{P}(E\cap F)$ และ $\mathscr{P}(E)\cup\mathscr{P}(F)\subseteq\mathscr{P}(E\cup F)$ เมื่อ $\mathscr{P}(A)$ คือ พาวเวอร์เซตของ A

2 ทฤษฎีจำนวน

ปัญหาข้อที่ 12. จงแสดงว่า ถ้า a เป็นจำนวนคู่ แล้ว a^2 เป็นจำนวนคู่

ปัญหาข้อที่ 13. จงแสดงว่า n^3+3n เป็นจำนวนคู่เสมอ เมื่อ $n\in\mathbb{N}$

ปัญหาข้อที่ 14. จงแสดงว่าผลคูณของจำนวนเต็มที่เรียงติดกัน 3 ตัวจะหารด้วย 3 ลงตัว

ปัญหาข้อที่ 15. จงพิสูจน์ว่า $1^2+3^2+5^2+\cdots+(2n-1)^2=n(4n^2-1)/3$ สำหรับทุกจำนวนนับ n

ปัญหาข้อที่ 16. จงพิสูจน์ว่า $1^3 + 2^3 + 3^3 + \dots + n^3 = (n(n+1)/2)^3$ สำหรับทุกจำนวนนับ n

ปัญหาข้อที่ 17. มีจำนวนนับอยู่ระหว่าง 0 และ 1 หรือไม่

ปัญหาข้อที่ 18. จงแสดงว่า ถ้า $a,b,c\in\mathbb{Z}$ โดยที่ a|b และ b|c แล้ว a|c

ปัญหาข้อที่ 19. จงแสดงว่า ถ้า $a,b,c\in\mathbb{Z}$ โดยที่ a+b=c และ a|b แล้ว a|c

ปัญหาข้อที่ 20. จงแสดงว่า ถ้า $a,b,c,x,y\in\mathbb{Z}$ โดยที่ c|ax+by และ c|a แล้ว c|b

ปัญหาข้อที่ 21. (ยาก) จงแสดงว่า ถ้า p เป็นจำนวนเฉพาะ และ p|ab เมื่อ $a,b\in\mathbb{Z}$ แล้ว p|a หรือ p|b

ปัญหาข้อที่ 22. จงแสดงว่า 6 $|(7^n-1)$ ทุก ๆ $n\in\mathbb{N}$

ปัญหาข้อที่ 23. • จงแสดงว่า 3 หาร $n(2n^2+7)$ ทุกจำนวนนับ n

• จงแสดงว่า ทุกจำนวนนับ n ใด ๆ $5^{2n}+7$ หารด้วย 8 ลงตัว

• จงแสดงว่า 7 หาร $3^{2n+1}+2^{n+2}$ ลงตัวทุก ๆ $n\in\mathbb{N}$

3 ระบบจำนวนจริง

ปัญหาข้อที่ 24. ให้ $a,b\in\mathbb{R}$ ถ้าสำหรับทุก $\epsilon>0$ ใด ๆ $a+\epsilon>b$ แล้ว $a\geq b$

ปัญหาข้อที่ 25. จงแสดงว่าเซต $E = \{x \in R \mid 0 < x < 1\}$ ไม่มีค่ามากสุดในเซตนี้

ปัญหาข้อที่ 26. จงแสดงว่าถ้าเซต S มีขอบเขตบนน้อยสุด แล้วจะมีขอบเขตบนน้อยสุดเพียงค่าเดียว

ปัญหาข้อที่ 27. ใช้หลักของอาร์คิมีดีสแสดงว่า $rac{1}{n} o 0$ เมื่อ $n o \infty$

ปัญหาข้อที่ 28. จงแสดงว่าสำหรับจำนวนจริง x ใด ๆ ที่ $x \neq 0$ แล้วจะมีจำนวนจริง y ที่ทำให้ xy = x + 1

ปัญหาข้อที่ 29. จงแสดงว่าไม่มีจำนวนจริงที่มีค่ามากกว่าจำนวนนับทุกจำนวน

ปัญหาข้อที่ 30. ถ้า $\mathbb F$ เป็นเซตที่มีสมบัติขอบเขตบนน้อยสุด (LUP) ที่ว่า ถ้า $S\subseteq \mathbb F$ ไม่เป็นเซตว่าง และ ถ้า S มี ขอบเขตบน แล้วจะมีขอบเขตบนน้อยสุด

จงแสดงว่า F มีสมบัติขอบเขตล่างมากสุด

ปัญหาข้อที่ 31. กำหนดให้ $x,y\in\mathbb{R}$ โดยที่ x>0 จงแสดงว่ามีจำนวนนับ n ที่ทำให้

ปัญหาข้อที่ 32. สำหรับ $x,y \in \mathbb{R}$ ที่ x < y จะมี $p \in \mathbb{Q}$ ที่ทำให้ x

ปัญหาข้อที่ 33. จงแสดงว่า $|a|+|b|\geq |a+b|$ สำหรับทุก $a,b\in\mathbb{R}$

ปัญหาข้อที่ 34. จงแสดงว่า $|y-x| \ge |y| - |x|$

ปัญหาข้อที่ 35. จงแสดงว่า $\sqrt{2}$ ไม่เป็นจำนวนตรรกยะ

ปัญหาข้อที่ 36. จงพิสูจน์ว่าผลรวมของจำนวนตรรกยะและจำนวนอตรรกยะเป็นจำนวนอตรรกยะ

ปัญหาข้อที่ 37. จงแสดงว่า ถ้า $\epsilon>0$ เป็นจำนวนจริงบวกใด ๆ แล้ว จะมี $m,n\in\mathbb{N}$ ที่ทำให้ $\frac{1}{m}+\frac{1}{n}<\epsilon$

4 ฟังก์ชัน

ปัญหาข้อที่ 38. กำหนดให้ $A_n = \{1, 2, \dots, n\}$

- ullet มีความสัมพันธ์บนเซต A_1 กี่ความสัมพันธ์ทั้งหมด
- ทำเช่นกันสำหรับ A_2,A_3
- ใช้หลักอุปนัยพิสูจน์ว่า จำนวนความสัมพันธ์ทั้งหมดบน A_n คือ $2^{(n^2)}$

ปัญหาข้อที่ 39. ผลแบ่งกั้นทั้งหมดที่เป็นไปได้ของ {1, 2, 3} เป็นเท่าไหร่

ปัญหาข้อที่ 40. ให้ R เป็นความสัมพันธ์บนเซต S จะเรียก R ว่าเป็นความสัมพันธ์สมมูล ก็เมื่อ

- (สมบัติสะท้อน) aRa ทุก $a \in S$
- (สมบัติสมมาตร) ถ้า aRb แล้ว bRa สำหรับทุก ๆ $a,b\in S$
- ullet (สมบัติถ่ายทอด) ถ้า aRb และ bRc แล้ว aRc

และกำหนดให้ $[a]=\{b\in S\mid bRa\}$ จงแสดงว่า R แบ่งกั้น S โดยมีผลแบ่งกั้นคือ $\mathscr{P}=\{[a_1]\,,[a_2]\,,\ldots\}$

ปัญหาข้อที่ 41. ให้ $f: A \to B$ และ $A_0 \subseteq A, \quad B_0 \subseteq B$

- จงแสดงว่า $A_0 \subseteq f^{-1}(f(A_0))$ และสองเซตนี้เท่ากันเมื่อ f เป็นฟังก์ชันหนึ่งต่อหนึ่ง
- จงแสดงว่า $f(f^{-1}(B_0))\subseteq B_0$ และสองเซตนี้เท่ากันเมื่อ f เป็นฟังก์ชันทั่วถึง

ปัญหาข้อที่ 42. ให้ f,g,h เป็นฟังก์ชันที่ $f:A\to B,g:B\to A$ และ $h:B\to A$ โดยมีสมบัติว่า g(f(a))=a ทุก $a\in A$ และ f(h(b))=b ทุก $b\in B$ จงแสดงว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง และ $g=h=f^{-1}$

ปัญหาข้อที่ 43. ให้ $f:\,A o B$ และ $B_0,B_1\subseteq B$ จงพิสูจน์ว่า $f^{-1}(B_0\cup B_1)=f^{-1}(B_0)\cup f^{-1}(B_1)$

ปัญหาข้อที่ 44. ให้ $f:\,A o B$ และ $A_0,A_1\subseteq A$ จงพิสูจน์ว่า $f(A_0\cap A_1)\subseteq f(A_0)\cap f(A_1)$

ปัญหาข้อที่ 45. สำหรับ $f:A\to B$ จงแสดงว่า ถ้ามีฟังก์ชัน $g:B\to A$ ที่ทำให้ $g\circ f(a)=a$ ทุก $a\in A$ แล้ว f เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ปัญหาข้อที่ 46. จงแสดงว่า ถ้า $f:A\to B,g:B\to C$ เป็นฟังก์ชัน และ $g\circ f$ เป็นฟังก์ชันทั่วถึง แล้ว g เป็น ฟังก์ชันทั่วถึง

ปัญหาข้อที่ 47. จงแสดงว่า ถ้า $f:A\to B,g:B\to C$ เป็นฟังก์ชัน และ $g\circ f$ เป็นฟังก์ชันหนึ่งต่อหนึ่ง แล้ว f เป็นฟังก์ชันหนึ่งต่อหนึ่ง