

Sysplex Data Sharing What You Need to Know for Implementing RLS and TVS

Terri Menendez STSM zSystems, IBM Corp terriam@us.ibm.com August 2024

Agenda

RLS Enhancements	_	
RLS Introduction	Ш	TVS Introduction
RLS SYSPLEX Example		RLS/TVS SYSPLEX Example
RLS Buffering		TVS Parameters
RLS Caching		TVS Commands
RLS Physical I/O		TVS Commits/Backouts
RLS Locking		TVS Auto Commits
RLS Data Sets		IDCAMS Commands
Monitoring		Forward Recovery
SMF Reporting		Peer Recovery
RLS SYSPLEX Example - Multiple Exploiters		References
RLS Performance Enhancements		
Customer Benchmarks / Performance Data		

RLS Enhancements

- □ CA Reclaim (remove needs to reorg KSDSs)
- RLS for Catalog (removes SYSIGGV2 enq)
- RLS for AMS
- Omegamon RLS Support
- □ SHCDS LISTSTAT (sysplex wide stats while DS open)
- Access Method Encryption
- USAM / VSAM RLS zHyperlink™ Exploitation
- KSDS RLS Index Record Locking (removes CI split lock)
- Primary / Secondary Extent Reduction

- VERIFY RECOVER
- TVS Auto-Commits
- RLS/TVS CDC/IIDR
- □ RLS Upgrade Locking (removes AIX upgrade lock)
- EzNoSLQ NoSQL Key: Value database
 - Native APIs
 - > C APIs
 - Java APIs (OA64018)
 - > Python APIs (OA66418)

VSAM RLS Introduction

- VSAM RLS provides full data sharing to your existing VSAM files (KSDS, ESDS,(V)RRDS), in a parallel SYSPLEX.
- □ Allows for high availability (HA) by allowing data sets to be shared cross LPARs/CECs via structures in the Coupling Facility (CF).
- Allows for high scalability by allowing many address spaces and LPARs to share the same files.
- □ Provides record level serialization, 64 bit buffering, and global caching for better performance.

RLS SYSPLEX Example

RLS Buffering

RLS Buffer Pools

System n

RLS Buffering - LRU

RLS 64 bit LRU - Modes

The LRU for the 64 bit buffer pool operates in four modes:

- **Normal Mode** Total 64 bit pool size is less than 80% of RLSAboveTheBarMaxPoolSize.
- **Maintenance Mode** Total 64 bit pool size is greater than 80% and less than 90% of RLSAboveTheBarMaxPoolSize.
- Accelerated Mode Total 64 bit pool size is greater than 90% and less than 100% of RLSAboveTheBarMaxPoolSize.
- Panic Mode Total 64 bit pool size is greater than 100% of RLSAboveTheBarMaxPoolSize

RLS Buffering – LRU (cont.)

The LRU will release buffers as follows:

- Normal Mode Buffers stay indefinitely in normal mode.
- Maintenance Mode Buffers 60 minutes or older will be released.
- Accelerated Mode Buffers 30 minutes are older will be released. Requests for new buffers will first be stolen. If there are no buffers to steal a new get block will be done.
- **Panic Mode** Buffers 5 minutes are older will be released. Requests for new buffers will first be stolen. If there are no buffers to steal, the request will sleep until LRU runs.

RLS Buffering Parameters

SYS1.PARMLIB(IGDSMSxx):

- RLS_MAX_POOL_SIZE(100/nnnn) Where nnnn = (10 to 9999), anything over 1500 is treated as a maximum of 1728M.
- RLSAboveTheBarMaxPoolSize(sysname/ALL,0/nnnn) Where nnnn is either 0 (default), or 500M to 2,000,000M. Minimum value 500M.
- RLSFixedPoolSize(sysname/ALL,0/nnnn) Where nnnn is either 0 to 80% of real storage
- Only one RLS_Max_Pool_Size for all lpars
- RLSAboveTheBarMaxPoolSize and RLSFixedPoolSize can have individual sizes for each LPAR.
 - Caution: Buffers are fixed on a first come first serve basis. For example, if the first data set opened and accessed has a 4K CISIZE, then the fixed buffers will be 4K in size for the life of this SMSVSAM instance.
 - Fixed buffers can provide a significant performance improvement since the RSM pin/unpin calls are avoided.

RLS Buffering Parameters (Cont.)

- □ Pool size values are a goal for which the RLS Least Recently Used (LRU) manager tries to maintain. If more buffers are required at any given time, the pool may temporarily exceed the values set.
- ☐ Total amount of buffer pools should not exceed amount of real storage. A paged out buffer is freed by the LRU.
- □ Data sets must set RLSAboveTheBar(YES) in the DATACLAS to use the above the bar pool. NO is the default.

Sizing the Pools:

- ☐ For CICS or other LSR users, start with a pool size = sum of LSR pools per lpar.
- ☐ For catalog, start with VLF MAXVIRT * 4096 per lpar or based on total catalog size.
- ☐ For exploiters with no existing buffering (ie HSM), consider starting with buffering the index CIs, and 20% of the data CIs (refer to High Used RBAs in the catalog).
- □ Buffering success is measured by BMF hit rate, average elapse and CPU time, and LRU mode.
- □I nternal IBM testing with 128 GIG above the bar pool.

RLS CF Caching

RLS Caching

SYS1.PARMLIB(IGDSMSxx):

- RLS_MaxCFFeatureLevel(Z/A) Where feature level A allows CISIZE >4K to be cached.
- RLS uses a store-thru-cache design, serialized by the CF CASTOUT lock.
- Each SMSVSAM registers interest with directory entries when reading a CI, then invalidates the entries on writing the (XI).
- Entries are reclaimed when a cache is "full" and will invalidate the associated buffers.
- Data elements can be scaled back via DATACLAS RLSCFCACHE(<u>ALL</u>/UPDATESONLY/NONE/DIR ONLY)
- RLS caches cannot be duplexed.
- RLS caches will automatically rebuild for CF issues. A new structure will be allocated empty.

RLS Cache Sizing

- The sum of all the RLS cache structures should equal the sum of all the RLS buffer pools across the sysplex.
- RLS BMF False Invalids and CF Reclaims for XI indicate the cache is too small relative to the size of the buffer pools.
- Splitting data sets with same performance requirements across multiple cache structures may lead to cache balancing problems.
- Different applications should have their own cache structures.

RLS Physical I/O Considerations

RLS Physical I/O

SHARE EDUCATE * NETWORK * INFLUENCE

- □ RLS always writes the Records (CIs) to disk.
- □ The CF castout lock serializes the write to the CF cache and to disk from each system. Readers wait for the castout lock.
- RLS supports compression, striping, and data set encryption.
- RLS supports the new zHyperlink technology for reads only.
- CI contention is measure by "REDOs" and CASTOUT lock contention/retries.

Example response times

RLS Locking Considerations

RLS Lock Structure

STATUS: REASON SPECIFIED WITH REBUILD START:

AUTO VERSION: D4C07857 A1142913

(example)

D XCF,STR,STRNAME=IGWLOCK00

METHOD: SYSTEM-MANAGED

: DISABLED

PHASE: DUPLEX ESTABLISHED EVENT MANAGEMENT: POLICY-BASED

STRNAME: IGWLOCK00

POLICY INFORMATION:
POLICY SIZE : 1000000 K

POLICY INITSIZE: N/A

POLICY MINSIZE: 0 K

FULLTHRESHOLD: 50

ALLOWAUTOALT: YES REBUILD PERCENT: nn

ALLOWREALLOCATE: YES

PREFERENCE LIST: CF1 CF2 EXCLUSION LIST IS EMPTY

Ideally <5 us

TYPE: LOCK

DUPLEX

POLICY-INITIATED DUPLEXING REBUILD

@(§)(E)

RLS Lock Structure Sizing

- Lock_Structure_Size = 10M * number_of_Systems_in_sysplex * Lock_entry_Size
 - □ Lock_entry_Size (depends on the CFRM MAXSYSTEM value):

 - o MAXSYSTEM >= 8 & <24 Lock_entry_size = 4</pre>
 - o MAXSYSTEM >=24 & <=32 Lock_entry_size = 8</pre>
- ☐ Example: MAXSYSTEM = 23 and 8 systems in sysplex
 - o IGWLOCK00 = 10M * 8 * 4 = 320M

RLS Locking

- RLS has many types of locks:
 - Record level
 - Index level
 - Data set level
 - LPAR level
 - Sysplex level
- Two types of lock management:
 - Global lock requests from different lpars.
 - Local lock requests from same system.
- Two types of lock contention:
 - True two or more requests want the same lock. Usually, can be managed by the user.
 - False two or more requests want different locks but hash to the same lock entry.
 Indication of a too small lock structure.
- Assigned data sets to different lock structures for different applications.
- All locks have SMF42 fields providing statistics on contention.

RLS Lock Rate Display

D SMS,CFLS (Coupling Facility Lock Structure)

J80 12152 15:30:56.26 D SMS,CFLS IGW320I 15:30:56 Display SMS,CFLS(IGWLOCK00) PRIMARY STRUCTURE:IGWLOCK00 VERSION:C99DC09480021972 SIZE:200704K RECORD TABLE ENTRIES:434612 USED:984 SECONDARY STRUCTURE: IGWLOCK00 VERSION: C9A3EFBCF6FC3610 SIZE:200704K RECORD TABLE ENTRIES:434612 USED:984 LOCK STRUCTURE MODE: DUPLEXED STATUS: ENABLE System Interval LockRate ContRate FContRate WaitQLen J80 1 Minute 1239.1 0.065 0.042 0.33 J80 1 Hour 373.9 0.099 0.038 0.04 J80 8 Hour -----J80 1 Day -----(13)1 Minute 344.9 0.029 0.014 0.10 108.4 (13)1 Hour 0.041 0.015 0.03

Ideal contention levels are less 0.5%

RLS Data Set Considerations

Data Set Considerations

- All VSAM Record Type Data sets:
 - Maximum size with DATACLAS Extended Format (EF) and Extended Addressibility (EA). Based on CI size, for example:
 - > A CI size of 4 KB yields a maximum data set size of 16 TB
 - A CI size of 32 KB yields a maximum data set size of 128 TB
 - Maximum number of volumes per data set: 59
 - Maximum number of extents per volume 123.
 - Maximum number of extents with DATACLAS option Space Constraint Relief . . . Y :
 - 59 * 123 = 7257
 - Reduce space option in DATACLAS Reduce Space Up To percentage to for extends
 - o CISIZEs which span tracks: 14K, 20K, 22K, 28K, 30K, AND 32K
 - May want to key range very large data sets to avoid performance and recovery issues.

Data Set Considerations

KSDSs

- Most scalable type of VSAM data set when using random inserts.
- Avoid adding to the end of a KSDS (ie ascending keys) when possible.
- Avoid a high volume of inserts into an empty data set. Add/delete dummy keys to prime free space.
- Consider larger CISIZEs for data sets with high inserts / erases to avoid CI/CA splits/reclaims.
- Consider smaller CISIZEs for high updates (no record length change) to avoid CI REDO's and CASTOUT lock contention.
- Consider compressing records (DATACLAS COMPRESSION=Y) especially for large RECORDSIZEs. May also reduce CI splits/reclaims by allowing for more records per CI.
- Use CA Reclaim to improve performance, reduce space, and avoid reorganizations for fragmentation (applies to data sets with ERASEs).
- Reduce the need to extend data sets by providing adequate primary space.
- CI split/reclaims can occur concurrently in different CAs. Serialized by Component_1 Class 4 (Index) locks.
- CA split/reclaim are serial for the data set. Controlled by the Component_1 Class1 (DIWA) lock.
- o Reduce index levels when possible, through the use of CA Reclaim, more records per CI.

Data Set Considerations

ESDSs

- Not a scalable data set for high inserts, since inserts must be at the end of the data set.
- Consider sub-dividing poor performing ESDSs.
- Inserts are serial and are controlled by the Component_2 lock.

Alternate Indexes

- Prior to z/OS 2.3 inserts, erases, and updates with record length changes were serial and controlled by the Component_2 (Upgrade) lock.
- With z/OS 2.2 lower level serialization (record locks and REDOs) are used to allow concurrent writes.

RLS Monitoring

RLS Monitors

- RMF Monitor III
- □ IBM Tivoli Omegamon XE for Storage (see IBM website for more info)
- ☐ IBM Tivoli Omegamon XE for CICS (see IBM website for more info)

RMF RLS Displays

RMF III Sysplex Report Selection Menu

Selection ===>

Enter selection number or command for desired report.

Sysplex Reports

1 SYSSUM Sysplex performance summary	(SUM)
--------------------------------------	-------

2 SYSRTD Response time distribution (RTD)

3 SYSWKM Work Manager delays (WKM)

4 SYSENQ Sysplex-wide Enqueue delays (ES)

.

7 CFACT Coupling Facility activity (CA)

.

10 RLSSC VSAM RLS activity by storage class (RLS)

11 RLSDS VSAM RLS activity by data set (RLD)

12 RLSLRU VSAM LRU overview (RLL)

RMF CF Structure Detail Display

RMF CF Structure Detail:

		COUPLING										
		ST		RE SUMM								
TYPE	STRUCTURE NAME RLSCACH1	STATUS CHG	ALLOC SIZE 7G	STOR		ALL REQ		AVG REQ/ SEC 332.48	ENTRIES TOT/CUR	ELEMENTS TOT/CUR		DIR REC/ DIR REC TOT/CUR XI'S
CACHE	RLSCACH2	ACTIVE	7G	19.8	145452	8.2	n/a	162.32	2049K 2049K 2049K	3171K 3506K 3171K	n/a	2K 23K 0K

Note: RMF CFDETAIL must be active: F RMF, MODIFY III, CFDETAIL

@(•)(\$)(=)

F RMF MONITOR III SYSPLEX RLS Activity by Storage Class (sysplex wide)

ERB3BUF RMF V1R8 VSAM RLS Activity - SYSPLEX Line 1 of 14
Command ===> CSR

LRU Status : Good Contention % : 0.0 False Cont % : 0.0

StorClas	Access	Resp		Rea	d		BN	⁄IF	Write
		Time	Rate	BMF%	CF%	DASD%	Valid%	False Inv%	rate
STORCLA	S1								
Below 2G	DIR	0.000	0.00	0.0	0.0	0.00	0.0	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.00	0.0	0.00	0.00
Above 2G	DIR	0.000	84299	100.0	0.0	0.00	100	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.00	0.0	0.00	0.00

RLS RMF Displays (cont.)

F RMF MONITOR III SYSPLEX **RLS Activity by Data Set** (sysplex wide)

ERB3BUF RMF V1R8 VSAM RLS Activity - SYSPLEX Line 1 of 14
Command ===> CSR

LRU Status : Good Contention % : 0.0 False Cont % : 0.0

Sphere/DS	Access	Resp		Rea	ad		BN	⁄IF	Write
•		Time	Rate	BMF%	CF%	DASD%	Valid%	False In	v% rate
USERCAT1									
Below 2G	DIR	0.000	2438	100	0.0	0.0	100	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
Above 2G	DIR	0.000	0.00	0.00	0.0	0.00	0.0	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
USERCAT1	.INDEX								
Below 2G	DIR	0.00	7314	100	0.0	0.0	100	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00
Above 2G	DIR	0.000	0.00	0.00	0.0	0.00	0.0	0.00	0.00
	SEQ	0.000	0.00	0.0	0.0	0.0	0.0	0.00	0.00

RLS RMF Displays (cont.)

RMF MONITOR III SYSPLEX VSAM LRU Overview

Samples: 59	Syste	ems: 1	Date:	07/27/	18 Time	: 12.38.5	0 Rar	nge: 10 S
	g CPU - īme					Re BMF%		DASD%
SYS1								
Below 2GB	0.1147	850M	952M	100	0.0	85.0	10.0	5.0
Above 2GB	0.112	20 G	17G	0.0	0.0	100	0.0	0.0
SYS2								
Below 2GB	0.1147	850M	610M	43.0	0.0	89.0	9.0	2.0
Above 2GB	0.112	20 G	16 G	0.0	0.0	100	0.0	0.0

RLS SMF Reporting

RLS SMF Reporting

- SMF 42 Subtypes 15, 16, 17, 18, 19
 - Subytpe 15 RLS statistics by Storage Class
 - Subtype 16 RLS statistics by Data set
 - Must use V SMS,MONDS(spherename),ON to collect subtype 16 statistics.
 - Must turn on data set collection when using RMF III:
 - F III, VSAMRLS(ADD(DSNAME.**))
 - Subtype 17 RLS locking statistics
 - Subtype 18 RLS caching statistics
 - Subtype 19 BMF statistics
- Note: Only one system in the sysplex collects the SMF 42 records. The system collecting the records is displayed in the D SMS,SMSVSAM operator command.

RLS SMF Reporting

Storage Class Response Time Summary above the bar (1 of 4)

	<u>Data</u> <u>Point</u>	Description	<u>R1</u>	<u>R2</u>	<u>R3</u>
1	SMF2AFCB	Total number of direct access requests	1,222,095K	1,168,991K	6,973,985K
2	SMF2AFEB	Total number of sequential access requests	103,283K	105,129K	125,812K
3	SMF2AFCE	Total number of Write requests (direct access)	169,545K	179,824K	558,406K
4	SMF2AFEE	Total number of Write requests (sequential access)	155,880	158,052	170,564
5	SMF2AFCC	Total number of direct access Read requests - no read integrity	876,748K	843,359K	5,967,538K
6	SMF2AFCD	Total number of direct access Read Requests - Consistent reads	985,412	1,058,640	806,420
7	SMF2AFEC	Total number of sequential access read requests - NRI protocol (No Read Integrity)	47,798K	32,270K	60,857K
8	SMF2AFED	Total number of sequential access read requests - Consistent read protocol	73,883K	79,984K	65,638K
9	SMF2AFEF	Number of sequential access BMF requests	103,310K	105,150K	126,167K
10	SMF2AFCX	Average response time for all of the direct access requests in this interval (total time/number of requests)	0.00	2.00	0.00

RLS SMF Reporting

Storage Class Response Time Summary above the bar (2 of 4)

	<u>Data</u> <u>Point</u>	Description		<u>R2</u>	<u>R3</u>
11	SMF2AFEX	Average response time for all of the sequential access requests in this interval	22.00	21.00	133.00
12	SMF2AFCF	Number of direct access BMF requests.	2,032,763K	1,961,786K	12,448,776K
13	SMF2AFCK			1,411,136	2,274,008
14	SMF2AFEK			1,836,668	632,412
15	SMF2AFOA	Number of record lock requests (obtain/alter/promote)	311,500K	325,252K	451,567K
16	SMF2AFOB	Number of record lock requests that cause true contention	24,168	21,768	70,596
17	SMF2AFOC	Number of record lock requests that cause false contention	0	0	0
18	SMF2AF0E	OE Number of component_1 type lock requests		4,167,400	12,420,732
19	SMF2AFOH	Number of component_1 class_1 (DIWA) locks (obtain/alter/promote)	882,432	966,804	2,725,548
20	SMF2AFOI	Number of component_1 class_1 (DIWA) locks that cause true contention	3,832	4,996	23,964

RLS SMF Reporting

Storage Class Response Time Summary above the bar (3 of 4)

	Data Point	<u>Description</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>
21	SMF2AFOT	Number of component_2 lock requests (obtain/alter/promote)	288	304	192
22	SMF2AFOU	Number of component_2 locks that cause true contention	0	0	0
23	SMF2AFPHA	Number of component_1 class 4 (Index Record) locks (obtain/alter/promote)	2,844,884	3,328,424	9,695,184
24	SMF2AFPIA Number of component_1 class 4 (Index Record) locks that cause true contention		244,100	316,316	885,108
25	SMF2AFPJA	Number of component_1 class 4 (Index Record) locks that cause false contention	748	6,372	52
26	SMF2AFPKA	Number of component_1 class 4 (Index Record) release lock requests	2,412,848	2,201,064	8,944,280
27	SMF2AFEL	Number of requests processed by the sysplex cache manager	14,283,116	14,738,768	39,528,412
28	SMF2AFEM	Number of CF read requests		14,737,512	39,527,604
29	SMF2AFEN	Number of CF write requests		88,488	112,892
30	SMF2AFEO	Number of CF read hits		11,677,832	26,806,196

RLS SMF Reporting

Sysplex Totals Local Buffer Manager LRU Statistics Summary above the bar (1 of 3)

	<u>Data</u> <u>Point</u>	<u>Description</u>	<u>R1</u>	<u>R2</u>	<u>R3</u>
1	SMF2AJN7	Total number of write requests (sysplex totals)	85,421K	92,298K	277,871K
2	SMF2AJNL	Total number of times that BMF was called in this interval (across sysplex)	2,207,415K	2,155,090K	12,343,351K
3	SMF2AJNN			2,106,144K	12,044,872K
4	SMF2AJNO			92.00	97.00
5	SMF2AJNT	Total Sysplex Cache manager number of hits during this interval	39,772K	61,380K	244,989K
6	SMF2AJNU	Sysplex Cache manager number of hits current percentage during this interval	2.00	3.00	2.00
7	SMF2AJTO			115.00	94.00
8	SMF2AJNZ			18,011K	94,244K
9	SMF2AJOA	DASD hits current percentage during this interval	5.00	6.00	6.00
10	SMF2AJTB	Total number of SCM read requests which encountered castout lock contention	197,912	297,612	289,172

RLS SYSPLEX – Multiple Exploiters

Example RLS Configuration – Multiple Exploiters

SYSTEM1

JOB1 RLS Batch //DD1 DSN=DS1,RLS=NRI JOB2 TVS_Batch //DD1 DSN=DS2,RLS=NRI //DD2 DSN=DS3,RLS=NRI CAS RLS.PROD.CAT (S1/D1) RLS.TESTCAT(S2/D3) HSM (S4) Omegamon XE for Storage CICS AOR1 DS1-3 (S3/D1) CICS AOR2 DS1-3 (S3/D1) DVM1 (DS1-DS3) Spark **SMSVSAM** 31/64 bit pool

SYSTEM2

JOB3 RLS Batch //DD1 DSN=DS2,RLS=NRI (input) JOB4 TVS Batch //DD1 DSN=DS2.RLS=NRI //DD2 DSN=DS3,RLS=NRI CAS RLS.PROD.CAT (S1/D1) RLS.TESTCAT(S2/D3) HSM (S4) Omegamon XE for Storage CICS AOR3 DS1-3 (S3/D1) CICS AOR4 DS1-3 (S3/D1) DVM2 (DS1-DS3) Spark **SMSVSAM** 31/64 bit pool

RLS Customer Benchmarks and Performance Data

RLS Catalog Customer Benchmark

RLS Catalog Customer Benchmark

@(§)(E)

RLS Catalog Customer Benchmark

RLS HSM/Catalog Customer Benchmark

SYSPLEX	Metric	NonRLS	RLS	Delta
ALL PLEXES	Elapsed Time HSM Space Mgt	19:48:18	17:22:05	12.3%
ALL PLEXES	Elapse Time HSM SMF202 (Backup/Recall/Migration)	24663434273 2	9759291356 0	60.4%
ALL PLEXES	CATSTATX Ave CPU Time	3166	869	72.5%
ALL PLEXES	CATSTATX Ave Elapse Time	12.84	2.52	80.4%

TVS Introduction

TVS Introduction

- Enhanced RLS to provide data recovery capabilities for any application exploiting VSAM RLS with LOG(UNDO/ALL) data sets.
- VSAM RLS data recovery capabilities include:
 - transactional recovery
 - data set recovery
- VSAM RLS becomes a "transactionalized" access method or is now referred to as "Transactional VSAM" (TVS).
- Now included in the z/OS 3.1 base license.

RLS/TVS Sysplex Example

RLS/TVS Sysplex Example

SYSTEM1

System1

UNDO LOG

SHUNT LOG

DataSet1

LOGSTREAMID

SYSTEMn

RLS/TVS System Parameters

TVS System Parameters

SYS1.PARMLIB(IGDSMSxx)

SMS ACDS(acds) COMMDS(commds)

INTERVAL(nnn|15) DINTERVAL(nnn|150)

REVERIFY(YES|NO) ACSDEFAULTS(YES|NO)

SYSTEMS(8|32) TRACE(OFF|ON)

SIZE(nnnnnK|M) TYPE(ALL|ERROR)

JOBNAME(jobname|*) ASID(asid|*)

SELECT(event,event....)

DESELECT(event,event....)

DSNTYPE(LIBRARY|PDS) DSSTIMEOUT(nnn|0)

RLSMAXCFFEATURELEVEL(A|Z) RLS_MAX_POOL_SIZE(nnn|100)

RLSINIT(NO|YES) SMF_TIME(NO|YES)

CF_TIME(nnn|3600) BMF_TIME(nnn|3600)

CACHETIME(nnn|3600) DEADLOCK_DETECTION(iii|15,kkk|4)

RLSTMOUT(nnn|0) SYSNAME(sys1,sys2,...)

TVSNAME(nnn1,nnn2....) MAXLOCKS(max|0,incr|0)

TV_START_TYPE(WARM|COLD,WARM|COLD...) AKP(nnn|1000,nnn|1000)

LOG_OF_LOGS(logstream) QTIMEOUT(nnn|300)

TVS System Commands

TVS Display TRANVSAM Command

SYSTEM1

- 13.19.03 SYSTEM1 d sms,tra	nysam					
•						
13.19.04 SYSTEM1 IEE932I 02	23					
IGW800I 13.19.04 DISPLAY SMS,TR	RANSACTIONAL VSAM	М				
DISPLAY SMS,TRANSACTIONAL VS	SAM - SERVER STATU	JS				
System TVSNAME State Rrs	#Urs Start	AKP QtimeOut				
SYSTEM1 IGWTV001 ACTIVE REG	G 0 WARM/V	VARM 200 400				
DISPLAY SMS,TRANSACTIONAL VSAM - LOGSTREAM STATUS						
LogStreamName	State Type	Connect Status				
IGWTV001.IGWLOG.SYSLOG	Enabled UnDoLog	Connected				
IGWTV001.IGWSHUNT.SHUNTLOG	S Enabled ShuntLog	Connected				

TVS Display URID Command

SYSTEM1

2.33.44 SYSTEM1 d sms,urid(all)

12.33.44 SYSTEM1 IEE932I 337 C

IGW802I 12.33.44 DISPLAY SMS,URID

TRANSACTIONAL VSAM URID Status For System: SYSTEM1

Urid Ur Status JobName StepName # Locks

DF686D297DCA7000000000001010000 InFlight IBMUSERA LOAD 2

TVS Explicit/Implicit Commits/Backouts

Application Requirements - Explicit Commit Example

//ddname DD DSN=Recoverabledatasetname, DISP=SHR, RLS=NRI //step1 EXEC PGM=vsamrlspgm Begin JOB Step ----- No locks held OPEN ACB MACRF=(RLS,OUT) (UR1) GET UPD record 1----- Obtain an exclusive lock on record 1 PUT UPD record 1 ----- Lock on record 1 remains held GET repeatable read record n----- Obtain a shared lock on record n PUT ADD record n+1------ Obtain an exclusive lock on record n+1 GET UPD record 2 ----- Obtain an exclusive lock on record 2 GET UPD record 2 ----- Lock on record 2 remains held Call SRRCMIT ----- Commit changes, all locks released . (UR2) CLOSE End of JOB Step

Application Requirements - Implicit Commit Example

//ddname DD DSN=Recoverableda	atasetname,DISP=SHR, RLS=NRI
//step1 EXEC PGM=vsamrlspgm	
Begin JOB Step	No locks held
OPEN ACB MACRF=(RLS,OUT)	
(UR1)	
GET UPD record 1	Obtain an exclusive lock on record 1
PUT UPD record 1	Lock on record 1 remains held
GET repeatable read record n	Obtain a shared lock on record n
PUT ADD record n+1	Obtain an exclusive lock on record n+1
GET UPD record 2	Obtain an exclusive lock on record 2
GET UPD record 2	Lock on record 2 remains held
CLOSE	All Locks are retained
End of JOB Step (normal)	Commit changes release all locks

ddname DD DSN=Recoverabledatasetname,DISP=SHR,RLS=NRI					
EC PGM=vsamrlspgm					
Step	No locks held				
MACRF=(RLS , OUT)					
ecord 1	Obtain an exclusive lock on record 1				
ecord 1	Lock on record 1 remains held				
able read record n	Obtain a shared lock on record n				
ecord n+1	Obtain an exclusive lock on record n+1				
ecord 2	Obtain an exclusive lock on record 2				
ecord 2	Lock on record 2 remains held				
ACK	Undo changes, all locks released				
Step					
	EC PGM=vsamrlspgm Step MACRF=(RLS,OUT) ecord 1 ecord 1 able read record n ecord n+1 ecord 2 ecord 2				

Application Requirements - Implicit Backout Example

//ddname DD DSN=Recoverabledatasetname,DISP=SHR,RLS=NRI
//step1 EXEC PGM=vsamrlspgm
Begin JOB Step No locks held
OPEN ACB MACRF=(RLS,OUT)
(UR1)
GET UPD record 1 Obtain an exclusive lock on record 1
PUT UPD record 1 Lock on record 1 remains held
GET repeatable read record n Obtain a shared lock on record n
PUT ADD record n+1 Obtain an exclusive lock on record n+1
GET UPD record 2 Obtain an exclusive lock on record 2
GET UPD record 2 Lock on record 2 remains held
Cancel
End of JOB Step (abnormal) Undo changes release all locks

TVS Auto Commits

TVS Auto Commits Benefits

- Avoids re-design of batch jobs
- Easier transition to Transactional VSAM
- Avoids a job step as a single transaction
 - Avoid locks held (UPDATES, READ CRE)
 - Avoid large undo logs
 - Avoid deadlocks and time-out problems with other CICS applications
- Avoids long backout/recovery times if a job is cancelled

TVS Auto Commits Parameters

- New parameter in the job step JCL
- //stepname EXEC positional-parm, TVSAMCOM=({minval},{maxval})
- New system level parameter in the IGDSMSxx member of sys1.parmlib
 - TVSAMCOM=({minval},{maxval})
- The JCL overrides the value in IGDSMSxx

Minval: Minimum number of update requests Maxval: Maximum number of update requests

Transactional VSAM will adjust the commit frequency to a number between *minvalue* and *maxvalue* based on record lock contention analysis for the current unit of recovery

TVSAMCOM Keyword Examples

- \square Example 1: //TVSSTEP01 EXEC PGM=VSAMPGM, TVSAMCOM = (10,10)
 - Transactional VSAM will issue a commit after 10 record updates have been performed
- □ Example 2: //TVSSTEP02 EXEC PGM=VSAMPGM, TVSAMCOM = (10,100)
 - ➤ Transactional VSAM will dynamically adjust the commit frequency to a number between 10 and 100 based on record lock contention. If no critical record lock contention for the unit of recovery (UR) is found, an auto commit will be issued when 100 record updates have been processed
- \square Example 3: //TVSSTEP03 EXEC PGM=VSAMPGM, TVSAMCOM = (10,0)
 - Transactional VSAM will issue a commit based on record lock contention analysis for the unit of recovery after 10 records has been updated. If Transactional VSAM does not find a critical record lock contention for the UR a commit will not be issued
- Example 4: //TVSSTEP04 EXEC PGM=VSAMPGM, TVSAMCOM = (,)
 - Transactional VSAM will issue a commit point as soon as the threshold criteria based on record lock contention analysis for the UR is met. If Transactional VSAM does not find a critical record lock contention for the UR a commit will not be issued

IDCAMS Commands

IDCAMS SHCDS Commands


```
IDCAMS SHCDS {{LISTDS(base_cluster_name) {JOBS}} |
     {LISTSUBSYS(subsystem_name|ALL)} |
     {LISTSUBSYSDS(subsystem_name)} |
     {LISTRECOVERY(base_cluster_name|ALL)} |
    LISTSHUNTED {SPHERE(base_cluster_name) |
       URID(urid)
       DATA(urid)}}
    {RETRY {SPHERE(base_cluster_name) |
       URID(urid)}}
    {PURGE {SPHERE(base_cluster_name) |
       URID(urid)}}
```

SHCDS Example

==> SHCDS LISTDS('recoverabledataset*') JOBS									
LISTING FR	LISTING FROM SHCDS IDCSH02								
DATA SET NAM	- DATA SET NAMErecoverabledataset								
CACHE STRU	CACHE STRUCTURECACHE01								
LOCK STRUC	ΓURELOCK01								
RETAINED LO	CKSYES NO	ON-RLS UPDAT	E PERMIT	TEDNO					
LOST LOCKS-	NO PERI	MIT FIRST TIME	≣	NO					
LOCKS NOT B	OUNDNO F	ORWARD REC	OVERY RE	EQUIREDNO					
RECOVERABL	RECOVERABLEYES								
	SHARING SUBSYSTEM STATUS								
SUBSYSTEM	SUBSYSTEM	RETAINED	LOST	NON-RLS UPDAT	E				
NAME	STATUS	LOCKS	LOCKS	PERMITTED					
IGWTV001	ONLINEFAILED	YES	NO	NO					
JOB NAMES:									
IBMUSERA									
**									

Data Set Forward Recovery

The CICSVR utility automates the steps necessary to forward recover a data set (does not include retrying shunted work).

System Failure - Peer Recovery

- With "Peer Recovery", another SMSVSAM instance (peer) performs backouts for the failed URs which were being processed by the failed SMSVSAM instance.
- Peer recovery will restart automatically if Transactional VSAM has been included in the ARM policy.
- If ARM is not used, the following command can be issued immediately on a peer system following a failure:
 - V SMS,TRANSVSAM(tvsname),PEERRECOVERY,ACTIVE

References:

- ➤ DFSMStvs Planning and Operating Guide: Abstract for DFSMStvs Planning and Operating Guide IBM Documentation
- > VSAM Demystified: VSAM Demystified (ibm.com)
- ➤ TVS Administration Guide: Abstract for DFSMStvs Administration Guide IBM Documentationb

Questions ???

Your feedback is important!

Submit a session evaluation for each session you attend:

www.share.org/evaluation

