Групи порядку 2р

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

5 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

Групи порядку 4

Твердження

Група порядку 4 ізоморфна або \mathbb{Z}_4 , або K_4 .

Доведення.

Нехай G — група порядку 4. Якщо G містить елемент порядку 4, то $G \simeq \mathbb{Z}_4$.

2/6

Групи порядку 4

Доведення.

Нехай G не містить елементів порядку 4, тоді всі неодиничні елементи цієї групи мають порядок 2.

Побудуємо таблицю Келі для цієї групи:

Знайдемо ab: $ab \neq e$, 60 $a^2 = e$; $ab \neq a$, 60 ae = e; $ab \neq b$, 60 $eb = b \Rightarrow ab = c$.

Групи порядку $2p, p \neq 2$

Твердження

Нехай p — просте число, $p \neq 2$. Нехай |G| = 2p. Тоді $G \simeq \mathbb{Z}_{2p}$ або $G \simeq D_p$.

Доведення.

Якщо G містить елемент порядку 2p, то $G\simeq \mathbb{Z}_{2p}$. Нехай G не містить елементів порядку 2p. Тоді порядки неодиничних елементів 2 або p. Якщо всі елементи мають порядок 2, то $\{e,a,b,ab\}$, $a\neq b$, — підгрупа G, але 4 $/\!\!/ 2p$. Отже, існує елемент порядку p.

Доведення.

```
Отже, існує елемент порядку p. Нехай H < G, |H| = p. Тоді G = H \sqcup \alpha H, \alpha \in G \setminus H \Rightarrow \alpha^2 H = H \Rightarrow \alpha^2 \in H. Якщо \alpha^2 \neq e, то \operatorname{ord}(\alpha^2) = p \Rightarrow \operatorname{ord}(\alpha) = p. Тоді \langle \alpha^2 \rangle = \langle \alpha \rangle = H, але \alpha \in G \setminus H. Отже, \alpha^2 = e для всіх \alpha \in G \setminus H. Таким чином,
```

$$H \sqcup \alpha H = \{$$
елементи порядку $p\} \sqcup \{$ елементи порядку $2\}$:

$$H \longleftrightarrow$$
 повороти , $\alpha H \longleftrightarrow$ симетрії

Правило множення:

$$ah_1 \cdot ah_2 = ah_1 \cdot ah_1h_1^{-1}h_2 = h_1^{-1}h_2.$$

Наслідок

Група порядку 6 ізоморфна \mathbb{Z}_6 або $D_3 \simeq S_3$.