

### TFG del Grado en Ingeniería Informática

### Identificación de Parkinson mediante visión artificial



Presentado por Álvaro Alonso Marín en Universidad de Burgos — 13 de marzo de 2022

Tutores: Álvar Arnaiz González y Alicia Olivares Gil



D. nombre tutor, profesor del departamento de nombre departamento, área de nombre área.

#### Expone:

Que el alumno D. Álvaro Alonso Marín, con DNI 71307942F, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado Identificación de Parkinson mediante visión artificial.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 13 de marzo de 2022

 $V^{\circ}$ .  $B^{\circ}$ . del Tutor:  $V^{\circ}$ .  $B^{\circ}$ . del co-tutor:

D. nombre tutor D. nombre co-tutor

#### Resumen

Descriptores

Abstract

Keywords

# Índice general

| Índice general                                                  | iii                |
|-----------------------------------------------------------------|--------------------|
| Índice de figuras                                               | iv                 |
| Índice de tablas                                                | $\mathbf{v}$       |
| Introducción  1.1. Estructura de la memoria                     | 1<br>1<br>2        |
| Objetivos del proyecto                                          | 3                  |
| Conceptos teóricos                                              | 5                  |
| Técnicas y herramientas         4.1. Herramientas de desarrollo | <b>7</b><br>7<br>7 |
| Aspectos relevantes del desarrollo del proyecto                 | 9                  |
| Trabajos relacionados                                           | 11                 |
| Conclusiones y Líneas de trabajo futuras                        | 13                 |
| Bibliografía                                                    | 15                 |

# Índice de figuras

# Índice de tablas

### Introducción

El Parkinson[6] es una enfermedad neurodegenerativa crónica, la cual tiene síntomas como el aumento del tono muscular[5] (contracción parcial, pasiva y continua de los músculos) y temblores.

Destaca como trastorno de movimiento, aunque también afecta a la función cognitiva, a la aparición de depresión y dolores, y a la función del sistema nervioso autónomo[9] (sistema nervioso que controla las funciones involuntarias de las vísceras, como la frecuencia cardíaca o la digestión).

El Parkinson es la segunda enfermedad neurodegenerativa más frecuente, ya que la primera es el Alzheimer. Es más propenso a aparecer en personas mayores de 60 años, sin embargo, podrían comenzar los síntomas desde los 40 años y que la incidencia vaya incrementándose con el paso de los años, aunque, generalmente, esto es más propenso en los hombres.

Es una enfermedad que empeora con el tiempo debido a la destrucción progresiva de las neuronas que están pigmentadas de la sustancia negra[4] (ubicadas en una parte del encéfalo), que afecta al sistema nervioso central.

Por ello, un proyecto enfocado a facilitar su identificación puede ayudar al equipo médico encargado y a los pacientes, y con ello, realizar el tratamiento correspondiente cuanto antes para disminuir los daños.

#### 1.1. Estructura de la memoria

La memoria está compuesta por los siguientes apartados:

 Introducción: se realiza una breve descripción del cometido del proyecto. 2 Introducción

- Objetivos del proyecto:
- Conceptos teóricos:
- **Técnicas y herramientas:** se indican aquellas técnicas y herramientas que han sido utilizadas para el desarrollo del proyecto.
- Aspectos relevantes del desarrollo del proyecto:
- Trabajos relacionados:
- Conclusiones y líneas de trabajo futuras:

### 1.2. Estructura de los apéndices

Los apéndices están compuestos por los siguientes apartados:

- Plan de Proyecto Software: se expone la metodología de trabajo utilizada para desarrollar el proyecto.
- Especificación de Requisitos:
- Especificación de Diseño:
- Documentación técnica de programación:

# Objetivos del proyecto

# Conceptos teóricos

### Técnicas y herramientas

#### 4.1. Herramientas de desarrollo

#### Anaconda

Anaconda es una distribución libre utilizada para los lenguajes de programación Python y R con el objetivo de realizar aprendizaje automático y ciencia de datos. Entre sus paquetes se encuentra Jupyter Notebook.

#### Jupyter Notebook

Jupyter Notebook es un entorno de programación para Python basado en la web. Se pueden crear varios notebooks con celdas de código o texto para conseguir una estructura limpia y ordenada. Además, estos notebooks pueden ser usados para otros lenguajes de programación como Julia o R.

#### 4.2. Bibliotecas

#### OpenCV

Es una biblioteca de Python utilizada para visión artificial y es considerada la más popular. Tiene diversos usos, entre ellos destacan el reconocimiento de objetos y la detección de movimiento.[2]

#### Numpy

Es una biblioteca de Python utilizada para realizar operaciones matemáticas. También se usa para crear vectores y matrices grandes multidimensionales. [7]

#### **Pandas**

Es una biblioteca de Python utilizada para el análisis de datos. Mediante dataframes se pueden recoger datos de hojas de cálculo o bases de datos, almacenarlos para ser tratados en el código y después guardarlos de nuevo. [8]

#### Mediapipe

Es una biblioteca de Pyhton utilizada para visión artificial. Una de las funcionalidades que tiene es la de reconocer y enumerar con puntos una mano.

- solutions.hands: este paquete realiza el reconocimiento de la mano para asignar unos puntos. Hay 21 puntos repartidos por toda la mano, los más interesantes para este proyecto son el 4 (dedo pulgar) y el 8 (dedo índice).
- solutions.drawing\_utils: este paquete es el que se encarga de dibujar los puntos y las conexiones entre ellos sobre la mano.

#### SciPy

Es una biblioteca de Python utilizada para realizar tareas de ciencia e ingeniería como optimización, álgebra lineal, interpolación o procesamiento de señales.[3]

■ signal: es el módulo que sirve para realizar procesados de señales como convolución o filtrado, entre otros.[1]

# Aspectos relevantes del desarrollo del proyecto

## Trabajos relacionados

# Conclusiones y Líneas de trabajo futuras

### Bibliografía

- [1] SciPy. scipy.signal. https://docs.scipy.org/doc/scipy/reference/signal.html, 2022. [Internet; descargado 07-marzo-2022].
- [2] Wikipedia. Opencv wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/OpenCV, 2021. [Internet; descargado 07-marzo-2022].
- [3] Wikipedia. Scipy wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/SciPy, 2021. [Internet; descargado 07-marzo-2022].
- [4] Wikipedia. Sustancia negra wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Sustancia\_negra, 2021. [Internet; descargado 08-marzo-2022].
- [5] Wikipedia. Tono muscular wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Tono\_muscular, 2021. [Internet; descargado 08-marzo-2022].
- [6] Wikipedia. Enfermedad de parkinson wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Enfermedad\_de\_Parkinson, 2022. [Internet; descargado 08-marzo-2022].
- [7] Wikipedia. Numpy wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/NumPy, 2022. [Internet; descargado 07-marzo-2022].
- [8] Wikipedia. Pandas (software) wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Pandas\_(software), 2022. [Internet; descargado 07-marzo-2022].

16 BIBLIOGRAFÍA

[9] Wikipedia. Sistema nervioso autónomo — wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Sistema\_nervioso\_aut%C3%B3nomo, 2022. [Internet; descargado 08-marzo-2022].