Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. Face verification and face recognition are the two most common names given to the task of comparing a new picture against one person's face. True/False?				
	FalseTrue			
	∠ ^N Expand ○ Correct			
	Correct. This is the description of face verification, but not of face recognition.			
2.	Why do we learn a function $d(img1,img2)$ for face verification? (Select all that apply.)	1 / 1 point		
	Given how few images we have per person, we need to apply transfer learning.			
	✓ We need to solve a one-shot learning problem.			
	✓ Correct This is true as explained in the lecture.			
	This allows us to learn to predict a person's identity using a softmax output unit, where the number of classes equals the number of persons in the database plus 1 (for the final "not in database" class).			
	This allows us to learn to recognize a new person given just a single image of that person.			
	✓ Correct Yes.			
	∠ ⁿ Expand			
3.	In order to train the parameters of a face recognition system, it would be reasonable to use a training set comprising 100,000 pictures of 100,000 different persons.	1 / 1 point		
	○ True			
	False			
	∠ ⁷ Expand			
	Correct Correct, to train a network using the triplet loss you need several pictures of the same person.			

4.	Which of the following is a correct definition of the triplet loss? Consider that $\alpha>0$. (We encourage you to figure out the answer from first principles, rather than just
	refer to the lecture.)

1/1 point

-				9
	max(f(A) -	$- f(N) ^2 -$	- f(A) -	$ f(P) ^2 + \alpha$,

$$\bigcap \max(||f(A) - f(N)||^2 - ||f(A) - f(P)||^2 - \alpha, 0)$$

$$\bigcirc \ \, max(||f(A)-f(P)||^2-||f(A)-f(N)||^2-\alpha,0)$$

5. Consider the following Siamese network architecture:

1/1 point

Which of the following do you agree with the most?

- The two neural networks depicted in the image have the same architecture, but they might have different parameters.
- The upper and lower neural networks depicted have exactly the same parameters, but the outputs are computed independently for each image.
- Although we depict two neural networks and two images, the two images are combined in a single volume and pass through a single neural network.
- This depicts two *different* neural networks with different architectures, although we use the same drawing.

 $Correct.\ Both\ neural\ networks\ share\ the\ same\ weights,\ and\ each\ image\ passes\ through\ the\ neural\ network\ in\ an\ independent\ manner.$

6. You train a ConvNet on a dataset with 100 different classes. You wonder if you can find a hidden unit which responds strongly to pictures of cats. (I.e., a neuron so that, of all the input/training images that strongly activate that neuron, the majority are cat pictures.) You are more likely to find this unit in layer 4 of the network than in layer 1.

1/1 point

○ False

✓ Correct

7.	Neural style transfer is trained as a supervised learning task in which the goal is to input two images (x) , and train a network to output a new, synthesized image (y) .	1/1 point			
	○ True				
	False				
	∠ [≯] Expand				
	 Correct Yes, Neural style transfer is about training the pixels of an image to make it look artistic, it is not learning any parameters. 				
8.	In the deeper layers of a ConvNet, each channel corresponds to a different feature detector. The style matrix $G^{[l]}$ measures the degree to which the activations of different feature detectors in layer l vary (or correlate) together with each other.	1/1 point			
	True				
	○ False				
	∠ [≯] Expand				
	$igodots$ Correct Yes, the style matrix $G^{[l]}$ can be seen as a matrix of cross-correlations between the different feature detectors.				
9.	In neural style transfer, which of the following better express the gradients used?	1/1 point			
	Neural style transfer doesn't use gradient descent since there are no trainable parameters.				
	$\bigcirc \frac{\partial J}{\partial W^{[l]}}$				
	$\bigcirc \frac{\partial J}{\partial S}$ $\swarrow^{\mathcal{P}} \text{ Expand}$				
	Correct Correct, we use the gradient of the cost function over the value of the pixels of the generated image.				
$\textbf{10.} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
	$\bigcirc \ \ 29 imes 29 imes 29 imes 3$				
	$\bigcirc \hspace{0.3cm} 31 \times 31 \times 31 \times 16 \cdot$				
	$ \bigcirc 29 imes 29 imes 29 imes 16 $				
	$\bigcirc \ \ 29 imes 29 imes 29 imes 13$				

∠⁷ Expand

⊘ Correct

Correct, we can use the formula $\lfloor \frac{n^{[l-1]}-f+2\times p}{s} \rfloor+1=n^{[l]}$ on the three first dimensions.