

FH3400C

N-Channel Enhancement Mode MOSFET

Description

The FH3400C uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and high density cell Design for ultra low on resistance. This device is suitable for use as a load switch or in PWM applications.

Application

- PWM applications
- ◆ Load switch

General Features

- $V_{DS} = 30V$, $I_D = 4.7A$ $R_{DS(ON)}(Typ.) = 27mΩ$
- $@V_{GS} = 10V$
- $R_{DS(ON)}(Typ.)=39m\Omega$
- $@V_{GS} = 2.5V$
- High power and current handing capability
- ◆ Lead free product is acquired
- ◆ Surface mount package

Marking and Pin Assignment

SOT-23 top view

Absolute Maximum Ratings (TA=25 ℃ unless otherwise noted)

parameter	symbol	limit	unit
Drain-source voltage	V _{DS}	30	V
Gate-source voltage	V _{GS}	±12	V
Drain current-continuous ^a @Tj=125℃	I _D	4.7	А
-pulse d^b	I _{DM}	19	А
Drain-source Diode forward current	Is	2	А
Maximum power dissipation	P _D	1.4	W
Operating junction Temperature range	Tj	-55 – 150	$^{\circ}$

Thermal Characteristics

r		†	1
Thermal Resistance junction-to ambient	Rth JA	109	°C/W

Electrical Characteristics (TA=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
OFF Characteristics							
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	30	-	-	V	
Zero gate voltage drain current	I _{DSS}	V _{DS} =30V, V _{GS} =0V	-	-	1	μA	
Gate-body leakage	I _{GSS}	V _{DS} =0V, V _{GS} =±12V	-	-	±100	nA	
ON Characteristics	<u>.</u>						
Gate threshold voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.6	0.9	1.5	V	
Drain-source on-state resistance		V _{GS} = 10V, I _D =4A	-	27	35		
	R _{DS(ON)}	V_{GS} =4.5V, I_D =4A	_	30	36	mΩ	
		V_{GS} =2.5V, I_D =2A		39	52		
Forward transconductance	gfs	V_{GS} =5V, I_D =4.7A	-	35	-	S	
Dynamic Characteristics					,		
Input capacitance	C _{ISS}		-	490	-	pF	
Output capacitance	Coss	V _{DS} =15V ,V _{GS} =0V f=1.0MHz	-	66	-		
Reverse transfer capacitance	C _{RSS}	1 - 1.01/11/2	-	42	-		
Switching Characteristics				•			
Turn-on delay time	t _{D(ON)}	\/ 15\/	-	3	-		
Rise time	tr	- V _{DS} =15V V _{GS} =10V	-	2.5	-	ns	
Turn-off delay time	t _{D(OFF)}	R _L =2.6 ohm	-	25	-		
Fall time	tf	R _{GEN} =3ohm	-	4	-		
Total gate charge	Qg		-	6	-		
Gate-source charge	Qgs	$V_{DS}=15V, I_{D}=4.7$ $AV_{GS}=4.5V$	-	1.3	-	nC	
Gate-drain charge	Qgd	7 / V GS = 4.0 V	-	1.8	-		
DRAIN-SOURCE DIODE CHARACTERISTICS							
Diode forward voltage	V_{SD}	V _{GS} =0V,Is=1A	-	0.76	1.16	V	

Notes:

- a. surface mounted on FR4 board,t≤10sec
- b. pulse test: pulse width≤300µs,duty≤2%
- c. guaranteed by design, not subject to production testing

Typical Performance Characteristics

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature
(Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Information: SOT-23

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	