Exercice 1

Montrer l'existence et calculer l'intégrale

$$I := \int_0^{+\infty} t \left[\frac{1}{t} \right] dt$$

Exercice 2

On considère une suite d'épreuves de Bernoulli indépendantes, chaque épreuve conduisant au succès avec la probabilité $p \in]0,1[$. Soit X la variable aléatoire prenant comme valeur le rang du premier succès, et Y celle prenant comme valeur le rang du deuxième succès.

- 1. Déterminer la loi conjointe du couple (X, Y).
- 2. Déterminer la loi de X ainsi que son espérance. Idem pour Y.
- 3. Les variables X et Y sont-elles indépendantes?
- 4. Pour tout entier $n \geq 2$, déterminer la loi conditionnelle de X sachant que Y vaut n.
- 5. Calculer la covariance de X et Y.

Exercice 3

Soit $n \geq 2$, on note H un hyperplan de $M_n(\mathbb{R})$ ne contenant aucune matrice inversible.

- 1. Rappeler rapidement pour quoi une matrice non inversible M admet forcément un élément non nul dans son noyau.
- 2. Montrer que H contient toutes les matrices nilpotentes.
- 3. En déduire que tout hyperplan de $M_n(\mathbb{R})$ rencontre $GL_n(\mathbb{R})$.

Exercice 4

On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par $U_0\neq 1$ et pour tout $n\in\mathbb{N},\ U_{n+1}=f(U_n)$ où f est définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{x^2+1}{x-1}$.

- 1. Etudier les variations de f, et représenter graphiquement sa courbe, ainsi que sa position par rapport à la droite y=x.
- 2. Justifier que la suite (U_n) est bien définie, et étudier graphiquement son comportement.
- 3. (a) Etudier la convergence de (U_n) quand $U_0 > 1$.

(b) Etudier l'autre cas. On pourra distinguer le cas où il existe $p \in \mathbb{N}$ tel que $U_p \leq 1$ et le cas contraire.

EXERCICE $\frac{5}{2}$ Soit $I := \int_0^{\frac{\pi}{2}} \sqrt{\tan(t)} dt$

- 1. Montrer l'existence de I.
- 2. Montrer que $I = \frac{1}{\sqrt{2}} \int_0^{+\infty} \frac{u}{u^2 u\sqrt{2} + 1} \frac{u}{u^2 + u\sqrt{2} + 1} du$.
- 3. En déduire que $I = \frac{\pi}{\sqrt{2}}$.

Exercice 6

Une société de distribution reçoit des boîtes, qui peuvent être endommagées au cours du transport. Quand une boîte est endommagée, elle a une chance sur 6 d'être invendable. On note X le nombre de boîtes invendables parmi les boîtes reçues.

- 1. Si la société reçoit 6 boîtes endommagées, quelle est la loi de X?
- 2. On suppose que le nombre de boîtes endommagées suit une loi de Poisson, et on note Y le nombre de boîtes endommagées.
 - (a) Déterminer son paramètre si P(Y=5) = P(Y=6).
 - (b) Soit $n \in \mathbb{N}^*$, calculer $P((X = k) \cap (Y = n))$.
 - (c) En déduire la loi de X.