```
1.

a) i) Buy MSFT => Sell NFLX

support = 4/[0 = 40%

confidence = 40% = 70% = 4/7 = 57.1%

Buy MSFT, Buy TSLA => Sell NFLX

support = 20%, confidence = 2/2 = 66.7%

D Buy MSFT, Buy TSLA => Buy ZM

support = 10%, confidence = 1/2 = 33-3%

D Buy MSFT, Buy TSLA => Sell NFLX, Buy ZM

support = 10%, confidence = 1/3 = 33-3%

b)
```

1-itemset count

Buy MSFT 7

Sell MSFT θ

Buy NFLX 2

Sell NFLX 5

Buy TSLA 6

Sell TSLA 1

Buy ZM 3

Sell ZM 2

2-itemset	count
Buy MSFT, Buy NFLX	1
Buy MSFT, Sell NFLX	4
Buy MSFT, Buy TSLA	3
Buy MSFT, Buy ZM	1
Buy MSFT, Sell ZM	1
Buy NFLX, Buy TSLA	1
Buy NFLX, Buy ZM	1
Buy NFLX, Sell ZM	0
Sell NFLX, Buy TSLA	3
Sell NFLX, Buy ZM	2

Sell NFLX, Sell ZM	θ
Buy TSLA, Buy ZM	3
Buy TSLA, Sell ZM	1

3-itemset	count
Buy MSFT, Sell NFLX, Buy TSLA	2
Sell NFLX, Buy TSLA, Buy ZM	2

Question 2:

		Have	smart	Like selfie	Both	Total
		balance				
Have	driver	3250		3750	2500	5000
license						
No	driver	2750		4000	2250	5000
license						

a) min_supp = 10 % i.e. 1000 people

1-itemset	count	
Have license	5000	
No license	5000	
Like selfie	7750	
Not selfie	2250	
Have BW	6000	
No BW	4000	

2-itemset	count
Have license, Like selfie	3750
Have license, Not selfie	1250
Have license, Have BW	3250
Have license, No BW	1750
No license, Like selfie	4000
No license, Not selfie	1000
No license, Have BW	2750
No license, No BW	2250
Like selfie, Have BW	4750
Like selfie, No BW	3000
Not selfie, Have BW	1250
Not selfie, No BW	1000

3-itemset	count
Have license, Like selfie, Have BW	2500
Have license, Like selfie, No BW	1250
Have license, Not selfie, Have BW	750
Have license, Not selfie, No BW	500
No license, Like selfie, Have BW	2250
No license, Like selfie, No BW	1750
No license, Not selfie, Have BW	500
No license, Not selfie, No BW	500

There are 4 frequent itemsets. For each, the strong rules are listed here:

1. { Have license, Like selfie, Have BW} support = 25%

Rule	Confidence
Have license => Like selfie, Have BW	50%
Have license, Like selfie => Have BW	66.7%
Have license, Have BW => Like selfie	76.9%
Like selfie, Have BW => Have license	52.6%

2. { Have license, Like selfie, No BW} support = 12.5%

Rule	Confidence
Have license, No BW => Like selfie	71.4%

3. { No license, Like selfie, Have BW} support = 22.5%

Rule	Confidence
No license, Like selfie => Have BW	56.3
No license, Have BW => Like selfie	81.8

4. { No license, Like selfie, No BW} support = 17.5%

Rule	Confidence
No license, No BW => Like selfie	77.8
Like selfie, No BW => No license	58.3

b)

2 - itemsets	count	support
Have license, Like selfie	3750	37.5%
Have license, Not selfie	1250	12.5%
Have license, Have BW	3250	32.5%
Have license, No BW	1750	17.5%
No license, Like selfie	4000	40%
No license, Not selfie	1000	10%
No license, Have BW	2750	27.5%
No license, No BW	2250	22.5%
Like selfie, Have BW	4750	47.5%
Like selfie, No BW	3000	30%
Not selfie, Have BW	1250	12.5%
Not selfie, No BW	1000	10%

Q3:

a)

Step 1:

User ID	Sequence
А	<(E, F), (B, E, F), (E, F)>
В	<(C, D, E), (A, C, E), (C, D)>
С	<(B, D), (B, D), (B, D)>
D	<(B, C, E, F), (C, E, F), (B, C, E)>
E	<(A, B, D, F) , (A, B, D, F) , (A, D, F)>
F	<(A, D, E) , (A, D, E) , (A, E)>

The largest itemset size is related to the min_sup:

Min_sub	Largest itemset size
>= 0/6	4
>= 2/6	2
>= 4/6	1

However, no matter in which situation, the longest sequence length should be 3.

b)

Step 2: min_sup = 40% i.e. 3 users

Frequent itemset	Mapped to
(A)	1
(B)	2
(D)	3
(E)	4
(F)	5
(B F)	6

Step 3:

User ID	Sequence	Mapping
D	<(B, C, E, F), (C, E, F), (B, C, E)>	<{2, 4, 5, 6}, {4, 5}, {2, 4}>
E	<(A, B, D, F) , (A, B, D, F) , (A, D, F)>	<{1, 2, 3, 5, 6}, {1, 2, 3, 5, 6}, {1, 3, 5}>

c)

Sequences:

length 3: 7 * 7 * 3 = 147

length 2: 7 * 7 + 7 * 2 + 4 * 3 = 75

length 1: A, C, D, E, AC, AE, CD, CE, DE, CDE, ACE: totally 11

Therefore, there are 147 + 75 + 11 = 233 possible sequences.

d)

Length 1: <(A)>, <(B)>

Length 2: <(B), (F)>, <(B, F), (F)>,

Length 3: <(E), (E), (E)> only one