Bilgisayar Mühendisliği Doktora Yeterlilik Yazılı Sınavı İçeriği

1 Zorunlu Alan Dersleri

Aşağıda listelenen her ders (İşletim Sistemleri ve Bilgisayar Ağları ile Sayısal Tasarım ve Bilgisayar Mimamarisi ders gruplarının her biri bir ders olarak değerlendirilmektedir.) için 2 soru sorulacaktır. Öğrencinin her ders için seçtiği bir soruyu yanıtlaması istenecektir. Her sorunun tam ve doğru çözümü 10 puandır. Ders kapsamında sorumlu olunan konular dersin altında listelenmiştir.

Veri Yapıları ve Algoritmalar Kaynak:

- Temel Veri yapıları: dizler, matrisler
- Bağlı Listeler
- Ağaç veri yapısı (BST, AVL, Huffman)
- Graf algoritmaları
- Temel arama ve sıralama algoritmaları
- Rekursif denklem kurma ve çözme
- Asimptotik karmaşıklıklar (Big-O, Big-omega, Little-o Little-omega, Theta) ve zaman/uzay analizleri
- Divide and Conquer problemleri ve çözümlemeler (Örnekler: QuickSort, Merge-Sort)
- Greedy (aç gözlü) problemleri ve çözümlemeler (Örnekler: event scheduling, MST (Prim's alg))
- Dinamik Programlama problemleri ve çözümlemeler (Örnekler:Fibonacci buttomup, LCS algoritması)

2. Hesaplama Teorisi

Kaynak:

- Sonlu otomatlar (deterministik (DFA) ve deterministik olmayan (NFA))
- Lambda Geçişi
- DFA-NFA denkliği

- İki yönlü FA
- Çıkış Üreten Otomatlar(Moore Mealy)
- İndirgeme Yöntemi
- Düzgün Kümeler ve Düzgün Deyimler
- Dilbilgisi ve Diller
- Bağlamdan Bağımsız Dilbilgisi, Türetme ağacı, dilbigisi yalınlaştırma, özyineli kural, yok edilebilir değişken
- Pushdown otomata
- Türing Makineleri

3. Ayrık Matematik

Kaynak: Discrete Mathematics and Its Applications, K.H. Rosen

- Matık, mantıksal eşitlikler
- Birinci derece mantık
- Mantıksal ve matematiksel çıkarımlar
- Kümeler
- Fonksiyonlar
- İlişkiler
- Sayma, permutasyon, kombinasyon, özyinelemeli ilişkiler
- Çizgeler
- Ağaçlar

4. Sayısal Tasarım ve Bilgisayar Mimarisi

Kaynak: Computer Organization and Architecture Designing for Performance, William Stallings

- Temel Bilgisayar Sistemleri ve Tasarımı
- Temel Bilgisayarların Programlanması
- Bilgisayarların Mimarisi ve Mantık
- Bilgisayar Aritmetiği
- Bellek Tasarımı
- Merkezi İşlem Birimi
- Paralel Organizasyon

Kaynak: Digital Design with an Introduction to the Verilog HDL, M.Morris Mano and Michael D. Ciletti

• Sayısal Mantık Devreleri

- Sayısal Elemanlar
- Kombinasyonel Mantık
- Senkron ve Asenkron Ardışıl Devreler
- Yazamaç ve Sayıcılar
- Hafıza ve Programlanabilir Mantık

5. İşletim Sistemleri ve Bilgisayar Ağları

Kaynak: Operating System Concepts, Silberschatz A., Galvin P., Gagne G. 9th edition

- Proses Yönetimi
- İş parçacıkları
- CPU düzenleme yöntemleri
- Prosesler arası senkronizasyon
- Ana bellek ve sanal bellek yönetimi
- G/Ç Sistemleri
- Disk ve Dosya sistemleri yönetimi

Kaynak: Computer Networking: A Top Down Approach Featuring the Internet, James, F. Kurose, and W. ROSS Keith

- Ağ Mimarileri
- Ağ topolojileri
- TCP/IP protokolleri (uygulama, taşıma, ve ağ katmanları)
- MAC ve veri bağlantı katmanı protokolleri
- Yönlendirme, adresleme, isimlendirme, anahtarlama
- Tıkanıklık/akış/hata kontrolleri

6. Veri Tabanı Tasarımı ve Yönetim Sistemleri

Kaynak: Database System Concepts, H.F. Korth, A. Silberschatz

- Veri modelleri
- Normalizasyon
- İlişkisel sorgu dilleri
- Tutarlılık ve güvenlik
- İşlem yönetimi
- Çoklu işlem çalıştırma

2 Seçmeli Alan Dersleri

Aşağıda listelenen her ders için 2 soru sorulacaktır. Öğrencinin seçtiği 2 farklı ders için birer soru cevaplaması istenecektir. Her sorunun dığru ve tam çözümü 10 puandır. Ders kapsamında sorumlu olunan konular dersin altında listelenmiştir.

1. Olasılık ve İstatistik

- Rasgele değişkenler
- Rasgele değişkenlerin momentleri
- Olasılık dağılımları (Tekdüze, Gauss)
- Merkezi eğilim ölçüleri
- Dağılım ölçüleri

2. Lineer Cebir

- Vektörler ve Uzaylar
- Matrissel işlemler
- Özdeğer, özvektör

3. Optimizasyon Teorisi

- Analitik optimizasyonun sınıflandırılması ve teknikleri..
- Sınırsız, lineer sınırlı, lineer olmayan sınırlı optimizasyon
 - Gradyan Alg., Newton Alg. Konjuge Gradyan Alg., Marquardt alg., LM Alg.
 - DFP, BFGS Alg. vb.
- Lagrange çarpanı metodu. Kuhn-Tucker şartları, ceza fonksiyonları, lineer, karesel ve lineer olmayan programlama.
- Mühendislik uygulamalar.
- Dinamik optimizasyona giriş.
- Heuristik optimizasyona giriş

3 Uzmanlık Alan Dersi

Bu bölümde öğrencinin dotora çalışma alanı ile ilgili bir soru sorulacaktır. Sprunun tam ve doğru çözümü 20 puandır.