Predicting hemoglobin levels in whole blood donors using transition models and mixed effects models

公衛三 梁嫚芳 b07801003

#### Contents

- Background
- Methods
  - Data
  - Training and Validation (Prediction performance)
    - · Model selection criteria
    - · Validation criteria
    - Descriptive Statistics
  - Statistical models
    - Multiple linear regression model
    - Transition model
    - · Linear mixed effects model
- Results
  - Variables
  - Model selection
- Discussion
- Conclusion

# Background

#### Blood transfusion

- Essential part of modern healthcare
  - : Helps save millions of lives each year
- Blood donations are in great need!
  - : Artificial substitute of blood has yet to be found
- Ineligibility: hemoglobin (Hb) level
  - Netherland
    - Male: < 8.4 mmol/l (135 g/l)
    - Female: < 7.8 mmol/l (125 g/l)
- Taiwan
  - Male: < 13 g/dl
  - Female: < 12 g/dl

#### Difficulties in Blood Donation

• Ineligibility  $\rightarrow$  Demotivation of donor



## How to improve?

- Predict donors' Hb level → Apply appropriate interventions
  - (e.g. planning of donors' visits)



# Methods

Data

Training and Validation (Prediction performance)

Statistical models

Multiple linear regression model

Transition model

Linear mixed effects model

#### Data

- Source: Sanquin Blood Supply, Netherlands
- Sample
  - · During the time period, first-visit Donors the blood bank and donated at least twice
  - Time period: January 1, 2007 ~ December 31, 2009
  - Donation Type: Whole blood donation
- Sample size: 15,625 (54.6% women)
- Type of data: Repeated measurement

#### Variables in the data

- Sequential number of the visit
- Outcomes
  - Hb level (Continuous, mmol/l)
- Predictors
  - Age (Continuous)
    - Hb level may decrease when aging
  - Season (cold fall & winter = 0, warm spring & summer = 1)
    - Hb level is lower on average in warm season
  - DPV: status of the previous visit (donation = 1, deferral = 0)
    - The first visit is defined to be 'no donation'
- Stratification Variable
  - Sex (Female, Male)



• **Hemoglobin levels profile.** Profile of hemoglobin levels for successive visits to the blood bank of a random sample of male and female donors. The profiles of 5 randomly selected donors are highlighted.

#### Statistical models

- Multiple linear regression model
  - As a benchmark to show the capability of transition and mixed effects models
- Transition model
- · Linear mixed effects model

#### Workflow of the research

#### Inputs

- Age
- Seaso n
- DPV

#### Statisti

- Multiple linear regression model
- Transition model
- Linear mixed effects model

#### Outputs

• Hb level Compare prediction performa nce

#### Workflow of the research



#### Tools

R version 2.15.2

- stats package for the multiple linear regression models
- nlme package for the mixed effects models
- KalmanLike and the mle functions in the stats4 package for the transition models
- mixAK and pROC packages to draw profile and ROC curve plots.

Significance level of  $\alpha$  = 0.05 and no correction for multiple testing was implemented.

# Training and Validation

Model selection criteria

Validation criteria

Descriptive Statistics

#### Training and Validation

- Randomly divide samples (n=15625) into
  - Training set (n=7709)
  - Validation set (n=7916)
- Model
  - Multiple Linear regression model
  - Transition model :  $AR(1) \sim AR(5)$
  - Mixed effects model
- · Model selection criteria
  - · AIC
  - · BIC
  - MSPE (Mean Squared Prediction Error)

- Linear regression and transition model
  - AIC = -2logL + 2p
  - $BIC = -2logL + 2p \times log(n)$

(n: sample size)

- Mixed effect model
  - $AIC = -2logL_R + 2p$
  - $BIC = -2logL_R + 2p \times log(n)$

(n : cluster number)
(LR = Restricted (Residual) log likelihood)

Used to select R or G matrix

- MSPE
  - Use MSE to be the error metric:

$$MSPE_t = \sum_{i=1}^{N_t} \frac{(\hat{y}_{it} - y_{it})^2}{N_t}$$

### Training and Validation

- Randomly divide samples (n=15625) into
  - Training set (n=7709)
  - Validation set (n=7916)
- Model
  - Multiple Linear regression model
  - Transition model :  $AR(1) \sim AR(5)$
  - Mixed effects model
- · Validation criteria
  - AUC (Area under the ROC curve)
  - MSPE (Mean Squared Prediction Error)

#### • AUC

- Ability to discrimination
- Using bootstrap technique to test the difference
- MSPE
  - Use MSE to be the error metric:

$$MSPE_t = \sum_{i=1}^{N_t} \frac{(\hat{y}_{it} - y_{it})^2}{N_t}$$

## Descriptive Statistics

- The distribution of covariates is similar
- Median of visit number is 5

| Data set            | Gender | #Donor | #Deferral     | #Cold Season   | Age: Mean (SD) | Visit: Med (IQR) |
|---------------------|--------|--------|---------------|----------------|----------------|------------------|
| Training data set   | Male   | 3610   | 769 (4.58%)   | 10213 (50.05%) | 34.57 (12.9)   | 5 (3)            |
|                     | Female | 4306   | 1596 (9.62%)  | 10387 (49.71%) | 32.66 (12.8)   | 5 (1)            |
|                     | Total  | 7916   | 2365 (7.08)%  | 20600 (49.88%) | 33.53 (12.9)   | 5 (2)            |
| Validation data set | Male   | 3449   | 688 (4.27%)   | 9781 (49.95%)  | 34.28 (12.6)   | 5 (3)            |
|                     | Female | 4260   | 1729 (10.41%) | 10341 (49.54%) | 32.77 (12.8)   | 5 (2)            |
|                     | Total  | 7709   | 2417 (7.38%)  | 20122 (49.74%) | 33.45 (12.7)   | 5 (2)            |

Note: SD= Standard deviation, IQR= Interquartile range.

# Statistical models

Multiple linear regression model

Transition model

Linear mixed effects model

#### Multiple linear regression model

$$y_{it} = \alpha + \beta_1 A g e_{it} + \beta_2 S e a son_{it} + \beta_3 D P V_{it} + \epsilon_{it}, \quad (1)$$

where  $y_{it}$  is the tth observation of the ith individual,  $\alpha$  is an unknown constant (intercept),  $\beta$ 's are unknown regression coefficients. Assumed that the residuals  $\varepsilon_{it}$  are normally distributed and mutua i iid independent with mean zero and constant variance, i.e.,  $\varepsilon_{it} \stackrel{\text{iid}}{\sim} N\left(0, \sigma_{\epsilon}^2\right)$ 

Due to the fact that this model cannot take into account the intra-subject correlations and the previous Hb levels, it is only presented as a benchmark model to show the capability of transition and mixed effects models.

#### Transition model (with order q)

$$y_{it} = \alpha + \beta_1 A g e_{it} + \beta_2 S e a son_{it} + \beta_3 D P V_{it}$$

$$+ \sum_{r=1}^{q} \gamma_r (y_{it-r} - (\beta_1 A g e_{it-r}) + \beta_2 S e a son_{it-r} + \beta_3 D P V_{it-r}))$$

$$+ \epsilon_{it}, \qquad (2)$$

where Age  $_{it-r}$ , Season  $_{it-r}$ , DPV  $_{it-r}$  are rth lagged response & covariates, respectively  $\gamma_r$  is the corresponding coefficient of the rth lag.

- Linear quadratic estimation (Kalman filter)
  - Calculate the exact likelihood function
- Including the information of donors who have made fewer visits than the order of the transition model

#### Linear mixed effects model

- Apply the empirical Bayes method (EB, not MME) to predict random effect
- Use a likelihood ratio test to choose random intercept model or random intercept and slope model

MME: Mixed model quation

$$\begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\gamma}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{Z} \\ \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{Z} + \boldsymbol{G}^{-1} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{y} \\ \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{y} \end{bmatrix} \qquad \text{var} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\gamma}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{Z} \\ \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{Z} + \boldsymbol{G}^{-1} \end{bmatrix}^{-1}$$

$$\operatorname{var}\begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\gamma}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{R}^{-1}\boldsymbol{Z} \\ \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{R}^{-1}\boldsymbol{Z} + \boldsymbol{G}^{-1} \end{bmatrix}^{-1}$$

#### Linear mixed effects model

• Random intercept model - Male

$$y_{it} = \alpha + b_{0i} + \beta_1 A g e_{it} + \beta_2 S eason_{it} + \beta_3 DPV_{it} + \epsilon_{it}, \quad (3)$$

where  $\beta$ 's are regression coefficients (fixed effects),

 $b_{io}$  is the random intercept, the deviation of the *i*th subject-specific mean from the population mean of Hb levels.

Assumed that  $b_{0i}$  and  $\varepsilon_{it}$  are normally distributed and mutually independent with mean zero and different constant variances, i.e.,

#### Linear mixed effects model

• Random intercept and slope model - Female

$$y_{it} = \alpha + b_{0i} + (b_{1i} + \beta_1)Age_{it} + \beta_2Season_{it} + \beta_3DPV_{it} + \epsilon_{it},$$
(4)

where  $\beta$ 's contains population-specific parameters.  $b_i = (b_{i0}, b_{i1})$  contains subject-specific parameters (intercept and the effects of age)  $b_{i1} =$  deviation of the ith subject-specific slope from the population mean of Hb levels,  $\varepsilon i = (\varepsilon i1,...,\varepsilon ini)'$  is a vector containing the common error components, with  $\varepsilon_i \sim N(o,\Sigma_i)$ .

# Results

Variables

Model selection

# Variables

Age

Season

DPV

Table 2 Parameter estimates (standard errors) of the models estimated using the training data set for male donors

| Parameter    | Model LR | AR(1)    | AR(2)    | AR(3)    | AR(4)    | AR(5)    | Model LME |
|--------------|----------|----------|----------|----------|----------|----------|-----------|
| intercept    | 9.6448   | 9.6309   | 9.6441   | 9.6560   | 9.6617   | 9.6633   | 9.6719    |
|              | (0.0142) | (0.0206) | (0.0231) | (0.0243) | (0.0246) | (0.0247) | (0.0243)  |
| Age          | -0.0045  | -0.0043  | -0.0044  | -0.0045  | -0.0047  | -0.0047  | -0.0049   |
|              | (0.0003) | (0.0005) | (0.0006) | (0.0006) | (0.0006) | (0.0007) | (0.0006)  |
| Season(Warm) | -0.0627  | -0.0615  | -0.0681  | -0.0699  | -0.0693  | -0.0694  | -0.0698   |
|              | (0.0089) | (0.0074) | (0.0066) | (0.0066) | (0.0067) | (0.0067) | (0.0067)  |
| DPV          | -0.0610  | -0.0469  | -0.0350  | -0.0385  | -0.0440  | -0.0474  | -0.0636   |
| (Donation)   | (0.0092) | (0.0089) | (0.0079) | (0.0074) | (0.0072) | (0.0072) | (0.0068)  |
| γ1           | _        | 0.5158   | 0.3685   | 0.3053   | 0.2746   | 0.2630   | _         |
|              | _        | (0.0061) | (0.0068) | (0.0076) | (0.0082) | (0.0087) | _         |
| $\gamma_2$   | _        | _        | 0.2888   | 0.2080   | 0.1766   | 0.1621   | _         |
|              | _        | _        | (0.0078) | (0.0087) | (0.0084) | (0.0091) | _         |
| <b>γ</b> 3   | _        | _        | _        | 0.2207   | 0.1730   | 0.1581   | _         |
|              | _        | _        | _        | (0.0095) | (0.0104) | (0.0109) | _         |
| <b>γ</b> 4   | _        | _        | _        | _        | 0.1488   | 0.1257   | _         |
|              | _        | _        | _        | _        | (0.0123) | (0.0129) | _         |
| γ5           | _        | _        | _        | _        | _        | 0.0829   | _         |
|              | _        | _        | _        | _        | _        | (0.0167) | _         |

Table 2 Parameter estimates (standard errors) of the models estimated using the training data set for male donors

|              |          |             |              | _           |           |          |           |
|--------------|----------|-------------|--------------|-------------|-----------|----------|-----------|
| Parameter    | Model LR | AR(1)       | AR(2)        | AR(3)       | AR(4)     | AR(5)    | Model LME |
| intercept    | 9.6448   | 9.6309      | 9.6441       | 9.6560      | 9.6617    | 9.6633   | 9.6719    |
|              | (0.0142) | (0.0206)    | (0.0231)     | (0.0243)    | (0.0246)  | (0.0247) | (0.0243)  |
| Age          | -0.0045  | -0.0043     | -0.0044      | -0.0045     | -0.0047   | -0.0047  | -0.0049   |
|              | (0.0003) | (0.0005)    | (0.0006)     | (0.0006)    | (0.0006)  | (0.0007) | (0.0006)  |
| Season(Warm) | -0.0627  | -0.0615     | -0.0681      | -0.0699     | -0.0693   | -0.0694  | -0.0698   |
|              | (0.0089) | (0.0074)    | (0.0066)     | (0.0066)    | (0.0067)  | (0.0067) | (0.0067)  |
| DPV          | -0.0610  | -0.0469     | -0.0350      | -0.0385     | -0.0440   | -0.0474  | -0.0636   |
| (Donation)   | Hb level | statistical | ly significa | antly decre | ases when | aging    | (0.0068)  |
| <b>γ</b> 1   |          | 0.5158      | 0.3685       | 0.3053      | 0.2746    | 0.2630   | _         |
|              | _        | (0.0061)    | (0.0068)     | (0.0076)    | (0.0082)  | (0.0087) | _         |
| <b>γ</b> 2   | _        | _           | 0.2888       | 0.2080      | 0.1766    | 0.1621   | _         |
|              | _        | _           | (0.0078)     | (0.0087)    | (0.0084)  | (0.0091) | _         |
| <b>γ</b> 3   | _        | _           | _            | 0.2207      | 0.1730    | 0.1581   | _         |
|              | _        | _           | _            | (0.0095)    | (0.0104)  | (0.0109) | _         |
| <b>γ</b> 4   | _        | _           | _            | _           | 0.1488    | 0.1257   | _         |
|              | _        | _           | _            | _           | (0.0123)  | (0.0129) | _         |
| <b>γ</b> 5   | _        | _           | _            | _           | _         | 0.0829   | _         |
|              | _        | _           | _            | _           | _         | (0.0167) | _         |

Table 2 Parameter estimates (standard errors) of the models estimated using the training data set for male donors

| Parameter    | Model LR | AR(1)       | AR(2)       | AR(3)      | AR(4)    | AR(5)    | Model LME |
|--------------|----------|-------------|-------------|------------|----------|----------|-----------|
| intercept    | 9.6448   | 9.6309      | 9.6441      | 9.6560     | 9.6617   | 9.6633   | 9.6719    |
|              | (0.0142) | (0.0206)    | (0.0231)    | (0.0243)   | (0.0246) | (0.0247) | (0.0243)  |
| Age          | -0.0045  | -0.0043     | -0.0044     | -0.0045    | -0.0047  | -0.0047  | -0.0049   |
|              | (0.0003) | (0.0005)    | (0.0006)    | (0.0006)   | (0.0006) | (0.0007) | (0.0006)  |
| Season(Warm) | -0.0627  | -0.0615     | -0.0681     | -0.0699    | -0.0693  | -0.0694  | -0.0698   |
|              | (0.0089) | (0.0074)    | (0.0066)    | (0.0066)   | (0.0067) | (0.0067) | (0.0067)  |
| DPV          | -0.0610  | -0.0469     | -0.0350     | -0.0385    | -0.0440  | -0.0474  | -0.0636   |
| (Donation)   | Hb level | is lower or | n average d | during war | m season |          | (0.0068)  |
| <b>γ</b> 1   |          | 0.5158      | 0.3685      | 0.3053     | 0.2746   | 0.2630   | _         |
|              | _        | (0.0061)    | (0.0068)    | (0.0076)   | (0.0082) | (0.0087) | _         |
| <b>γ</b> 2   | _        | _           | 0.2888      | 0.2080     | 0.1766   | 0.1621   | _         |
|              | _        | _           | (0.0078)    | (0.0087)   | (0.0084) | (0.0091) | _         |
| <b>γ</b> 3   | _        | _           | _           | 0.2207     | 0.1730   | 0.1581   | _         |
|              | _        | _           | _           | (0.0095)   | (0.0104) | (0.0109) | _         |
| <b>Y</b> 4   | _        | _           | _           | _          | 0.1488   | 0.1257   | _         |
|              | _        | _           | _           | _          | (0.0123) | (0.0129) | _         |
| <b>γ</b> 5   | _        | _           | _           | _          | _        | 0.0829   | _         |
|              | _        | _           | _           | _          | _        | (0.0167) | _         |

Table 2 Parameter estimates (standard errors) of the models estimated using the training data set for male donors

| Parameter      | Model LR  | AR(1)                    | AR(2)    | AR(3)       | AR(4)        | AR(5)    | Model LME |
|----------------|-----------|--------------------------|----------|-------------|--------------|----------|-----------|
| intercept      | 9.6448    | 9.6309                   | 9.6441   | 9.6560      | 9.6617       | 9.6633   | 9.6719    |
|                | (0.0142)  | (0.0206)                 | (0.0231) | (0.0243)    | (0.0246)     | (0.0247) | (0.0243)  |
| Age            | -0.0045   | -0.0043                  | -0.0044  | -0.0045     | -0.0047      | -0.0047  | -0.0049   |
|                | (0.0003)  | (0.0005)                 | (0.0006) | (0.0006)    | (0.0006)     | (0.0007) | (0.0006)  |
| Season(Warm)   | -0.0627   | -0.0615                  | -0.0681  | -0.0699     | -0.0693      | -0.0694  | -0.0698   |
|                | (0.0089)  | (0.0074)                 | (0.0066) | (0.0066)    | (0.0067)     | (0.0067) | (0.0067)  |
| DPV            | -0.0610   | -0.0469                  | -0.0350  | -0.0385     | -0.0440      | -0.0474  | -0.0636   |
| (Donation)     | (0.0092)  | (0.0089)                 | (0.0079) | (0.0074)    | (0.0072)     | (0.0072) | (0.0068)  |
| γ1             | _         | 0.5158                   | 0.3685   | 0.3053      | 0.2746       | 0.2630   | _         |
| <b>γ</b> 2     |           | $\frac{1}{1}$ in the pre |          | t has a neg | rative effec | ton      | _<br>_    |
|                | the curre | ent Hb leve              | 21<br>   |             |              |          | _         |
| <b>γ</b> 3     | _         | _                        | _        | 0.2207      | 0.1730       | 0.1581   | _         |
|                | _         | _                        | _        | (0.0095)    | (0.0104)     | (0.0109) | _         |
| <b>Y</b> 4     | _         | _                        | _        | _           | 0.1488       | 0.1257   | _         |
|                | _         | _                        | _        | _           | (0.0123)     | (0.0129) | _         |
| γ <sub>5</sub> | _         | _                        | _        | _           | _            | 0.0829   | _         |
|                | _         | _                        | _        | _           | _            | (0.0167) | _         |

Table 2 Parameter estimates (standard errors) of the models estimated using the training data set for male donors

| Parameter    | Model LR | AR(1)                                                    | AR(2)       | AR(3)    | AR(4)    | AR(5)    | Model LME |  |  |  |
|--------------|----------|----------------------------------------------------------|-------------|----------|----------|----------|-----------|--|--|--|
| intercept    | 9.6448   | 9.6309                                                   | 9.6441      | 9.6560   | 9.6617   | 9.6633   | 9.6719    |  |  |  |
|              | (0.0142) | (0.0206)                                                 | (0.0231)    | (0.0243) | (0.0246) | (0.0247) | (0.0243)  |  |  |  |
| Age          | -0.0045  | -0.0043                                                  | -0.0044     | -0.0045  | -0.0047  | -0.0047  | -0.0049   |  |  |  |
|              | Transiti |                                                          | (           |          | +        | (T)      | (0.0006)  |  |  |  |
| Season(Warm) |          |                                                          | (regression |          | _        |          | -0.0698   |  |  |  |
|              |          | values) are significant, although the effect of previous |             |          |          |          |           |  |  |  |
| DPV          | Hb level | decreases                                                | with the l  | ag       |          | 1        | -0.0636   |  |  |  |
| (Donation)   | (0.0092) | (0.0089)                                                 | (0.0079)    | (0.0074) | (0.0072) | (0.0072) | (0.0068)  |  |  |  |
| <b>γ</b> 1   | _        | 0.5158                                                   | 0.3685      | 0.3053   | 0.2746   | 0.2630   | _         |  |  |  |
|              | _        | (0.0061)                                                 | (0.0068)    | (0.0076) | (0.0082) | (0.0087) | _         |  |  |  |
| <b>γ</b> 2   | _        | _                                                        | 0.2888      | 0.2080   | 0.1766   | 0.1621   | _         |  |  |  |
|              | _        | _                                                        | (0.0078)    | (0.0087) | (0.0084) | (0.0091) | _         |  |  |  |
| <b>γ</b> 3   | _        | _                                                        | _           | 0.2207   | 0.1730   | 0.1581   | _         |  |  |  |
|              | _        | _                                                        | _           | (0.0095) | (0.0104) | (0.0109) | _         |  |  |  |
| $\gamma_4$   | _        | _                                                        | _           | _        | 0.1488   | 0.1257   | _         |  |  |  |
|              | _        | _                                                        | _           | _        | (0.0123) | (0.0129) | _         |  |  |  |
| <b>γ</b> 5   | _        | _                                                        | _           | _        | _        | 0.0829   | _         |  |  |  |
|              | _        | _                                                        | _           | _        | _        | (0.0167) | _         |  |  |  |

Table 3 Parameter estimates (standard errors) of the models estimated using the training data set for female donors

| Parameter    | Model LR | AR(1)    | AR(2)    | AR(3)    | AR(4)    | AR(5)    | Model LME |
|--------------|----------|----------|----------|----------|----------|----------|-----------|
| intercept    | 8.2737   | 8.2394   | 8.2555   | 8.2678   | 8.2698   | 8.2702   | 8.2832    |
|              | (0.0123) | (0.0164) | (0.0180) | (0.0186) | (0.0187) | (0.0187) | (0.0181)  |
| Age          | 0.0042   | 0.0044   | 0.0042   | 0.0040   | 0.0040   | 0.0040   | 0.0037    |
|              | (0.0003) | (0.0004) | (0.0005) | (0.0005) | (0.0005) | (0.0005) | (0.0005)  |
| Season(Warm) | -0.0347  | -0.0405  | -0.0415  | -0.0413  | -0.0415  | -0.0415  | -0.0411   |
|              | (0.0078) | (0.0062) | (0.0060) | (0.0062) | (0.0061) | (0.0061) | (0.0062)  |
| DPV          | -0.1106  | -0.1411  | -0.1273  | -0.1307  | -0.1335  | -0.1346  | -0.1387   |
| (Donation)   | (0.0079) | (0.0075) | (0.0067) | (0.0064) | (0.0063) | (0.0063) | (0.0060)  |
| <b>γ</b> 1   | _        | 0.4669   | 0.3457   | 0.3012   | 0.2878   | 0.2830   | _         |
|              | _        | (0.0062) | (0.0067) | (0.0074) | (0.0080) | (0.0084) | _         |
| <b>γ</b> 2   | _        | _        | 0.2573   | 0.1963   | 0.1793   | 0.1693   | _         |
|              | _        | _        | (0.0080) | (0.0088) | (0.0089) | (0.0099) | _         |
| <b>γ</b> 3   | _        | _        | _        | 0.1742   | 0.1486   | 0.1360   | _         |
|              | _        | _        | _        | (0.0100) | (0.0112) | (0.0121) | _         |
| <b>Y</b> 4   | _        | _        | _        | _        | 0.0831   | 0.0623   | _         |
|              | _        | _        | _        | _        | (0.0157) | (0.0182) | _         |
| <b>γ</b> 5   | _        | _        | _        | _        | _        | 0.0681   | _         |
|              | _        | _        | _        | _        | _        | (0.0264) | _         |

Table 3 Parameter estimates (standard errors) of the models estimated using the training data set for female donors

| Parameter    | Model LR | AR(1)         | AR(2)     | AR(3)        | AR(4)       | AR(5)    | Model LME |
|--------------|----------|---------------|-----------|--------------|-------------|----------|-----------|
| intercept    | 8.2737   | 8.2394        | 8.2555    | 8.2678       | 8.2698      | 8.2702   | 8.2832    |
|              | (0.0123) | (0.0164)      | (0.0180)  | (0.0186)     | (0.0187)    | (0.0187) | (0.0181)  |
| Age          | 0.0042   | 0.0044        | 0.0042    | 0.0040       | 0.0040      | 0.0040   | 0.0037    |
|              | (0.0003) | (0.0004)      | (0.0005)  | (0.0005)     | (0.0005)    | (0.0005) | (0.0005)  |
| Season(Warm) | -0.0347  | -0.0405       | -0.0415   | -0.0413      | -0.0415     | -0.0415  | -0.0411   |
|              | (0.0078) | (0.0062)      | (0.0060)  | (0.0062)     | (0.0061)    | (0.0061) | (0.0062)  |
| DPV          | -0.1106  | -0.1411       | -0.1273   | -0.1307      | -0.1335     | -0.1346  | -0.1387   |
| (Donation)   | Contrary | to male de    | onors. Hb | level of fen | nale donors | S        | (0.0060)  |
| <b>γ</b> 1   |          | ally signific |           |              |             |          | _         |
|              |          | (0.0002)      | (0.0007)  | (0.0074)     | (0.0000)    | (0.0004) | _         |
| <b>γ</b> 2   | _        | _             | 0.2573    | 0.1963       | 0.1793      | 0.1693   | _         |
|              | _        | _             | (0.0080)  | (0.0088)     | (0.0089)    | (0.0099) | -         |
| <b>γ</b> 3   | _        | _             | _         | 0.1742       | 0.1486      | 0.1360   | _         |
|              | _        | _             | _         | (0.0100)     | (0.0112)    | (0.0121) | _         |
| γ4           | _        | _             | _         | _            | 0.0831      | 0.0623   | _         |
|              | _        | _             | _         | _            | (0.0157)    | (0.0182) | _         |
| γ5           | _        | _             | _         | _            | _           | 0.0681   | _         |
|              | _        | _             | _         | _            | _           | (0.0264) | _         |

Table 3 Parameter estimates (standard errors) of the models estimated using the training data set for female donors Model LR AR(1) AR(3) AR(4) AR(5) Model LME **Parameter** AR(2)8.2832 intercept The directions of other variables' effect on Hb level in (0.0181)female donors are the same as those in male donors. 0.0037 Age U.UUTU (0.0003)(0.0004)(0.0005)(0.0005)(0.0005)(0.0005)(0.0005)Season(Warm) -0.0347 -0.0405 -0.0415 -0.0413 -0.0415 -0.0415 -0.0411 (0.0078)(0.0062)(0.0060)(0.0062)(0.0061)(0.0061)(0.0062)DPV -0.1106-0.1411-0.1273-0.1307-0.1335 -0.1346 -0.1387 (0.0079)(0.0064)(0.0060)(Donation) (0.0075)(0.0067)(0.0063)(0.0063)0.3457 0.3012 0.2878 0.2830 0.4669  $\gamma_1$ (0.0062)(0.0067)(0.0074)(0.0080)(0.0084)0.2573 0.1963 0.1793 0.1693  $\gamma_2$ (0.0080)(0.0088)(0.0089)(0.0099)0.1742 0.1486 0.1360  $\gamma_3$ (0.0100)(0.0112)(0.0121)0.0831 0.0623  $\gamma_4$ (0.0157)(0.0182)0.0681  $\gamma_5$ (0.0264)

# Model selection

AIC

BIC

**MSPE** 

AUC

## On the training data (AIC, BIC)

Male: Transition model AR(5)

Female: Random slope and intercept model

Table 4 AIC, BIC, and MSEP values for different models for both genders based on the training data set

|                   |         | Male donors |      | Female donors |         |      |  |
|-------------------|---------|-------------|------|---------------|---------|------|--|
| Model             | AIC     | BIC         | MSPE | AIC           | BIC     | MSPE |  |
| Linear Regression | 37087.8 | 37127.2     | 4.14 | 35968.9       | 36008.6 | 2.29 |  |
| Mixed Effects     | 30524.3 | 30571.6     | 2.90 | 30058.0       | 30113.6 | 1.75 |  |
| AR(1)             | 32051.0 | 32098.3     | 3.07 | 31559.1       | 31606.7 | 1.81 |  |
| AR(2)             | 30936.4 | 30991.6     | 2.85 | 30664.7       | 30720.3 | 1.73 |  |
| AR(3)             | 30471.9 | 30535.0     | 2.78 | 30375.1       | 30438.7 | 1.71 |  |
| AR(4)             | 30342.5 | 30413.4     | 2.78 | 30341.7       | 30413.2 | 1.72 |  |
| AR(5)             | 30321.4 | 30400.2     | 2.79 | 30325.1       | 30404.5 | 1.72 |  |

Note: Lower values of AIC, BIC, and MSEP indicate better model fit.

### On the validation data (MSPE)

- Transition model provides a better prediction than the mixed effects model, especially at high visit numbers
- At first visit number, all data are independent, so linear regression model's MSPE closes to others.
- As visit number increases, data become correlated, so linear regression model's MSPE also increases. (poor accuracy)





**Figure 2 Mean squared prediction error.** Mean squared prediction error of the linear regression model, the linear mixed effects model, and the 5th order transition model, as a function of the visit number. The included numbers of individuals are displayed above the horizontal axis.

## On the validation data (AUC)

- Transition model has a larger AUC than mixed effects model (p <.001), and thus offers a better trade-off between sensitivity and specificity.
- Clinical cut-off value is not the best one in both ROC curve



**Figure 3 ROC curves for male donors.** ROC curves of the prediction of eligibility for donation in male donors, for two different models. The standard errors of the AUCs are shown in parentheses. Different cut-off points for the predicted value are displayed on the curves.

# Discussion

Advantage of transition model

Limitations

### Advantage of transition model

- Transition model offers better predictions for longer time series
- Transition model is convenient in practice and needs less historical information compared to the mixed effects model

#### Limitations

- Data set used is unbalanced in the sense that the time intervals between visits vary considerably
- More factors that are possibly associated with Hb level
  - such as physical activity, race, nutrition and smoking status
- The ultimate purpose of is not the prediction of the future Hb value, but rather to determine the best time for the donor to return for donation
  - Future work: focus on the optimal timing of future donations

# Conclusion

#### Conclusion

- Transition model provides a better prediction than the mixed effects model, especially at high visit numbers.
- The paper shows the capabilities of using longitudinal models for prediction and that our findings may help reduce the number of deferred candidate in the blood banks.