

Kata BM

高密度服务器混部性能隔离方案

字节跳动STE团队工程师

高密度服务器混部面临的问题

1、传统runc容器

runc容器共用Linux内核,但随着服务器核数的增多(Genoa 384、ICELAKE 224) ,Linux内核面临性能扩展性问题。Linux内核内存管理、调度、文件系统、网络协议 栈、EBPF等子系统由于锁竞争、同步等因素影响,造成system time时间过长,导致业务 性能下降或者抖动

runc容器共用Linux内核,内核层触发的异常状态(比如,死锁、I/O hung)会影响其他容器中的业务。

runc容器基于cgroup,难以实现完全的资源隔离,仍然可能存在资源竞争

2、传统kata容器

Kata容器基于传统虚拟化将服务器做kata VM切分,每个kata容器采用独立的内核,能够解决性能扩展性的问题。但又会引入虚拟化开销和host层的性能扰动。

高密度服务器混部面临的问题

传统Kata VM的虚拟化开销和扰动(Intel/AMD)

1. 计算虚拟化

Local APIC Timer , IPI触发的VM exit开销HLT , MWAIT等指令触发的VM exit开销CPUID和读写MSR指令触发的VM exit开销Posted interrupt在硬件层仍然存在额外开销Host层内核线程、中断的性能扰动

2. 内存虚拟化

EPT walk的开销 EPT page fault的开销

3. 设备虚拟化

Virtio设备中断注入/kick触发的VM exit开销 直通设备IOMMU page table walk的开销

高密度服务器混部面临的问题

现有硬件直通方案:Directvisor(VEE′20)

方案

基于Intel posted interrupt
Local APIC timer 中断和MSR直通
IPI中断和MSR直通

问题

Posted interrupt仍在有开销
在AMD上无法实现Local APIC timer中断的直通
仅考虑了虚拟化的开销问题,没有考虑Host层的性能干扰问题

DirectVisor [1]

Kata BM总体架构

运行时硬件直通的Kata VM——>无虚拟化开销

Kata BM直接访问硬件资源,运行时无VM exit,无虚拟化开销

系统调用代理——>避免host层干扰

管控面和VMM(QEMU)运行在独立的Control BM中,不会干扰到Kata BM的运行QEMU通过系统调用代理,跨OS调用Host linux的kvm模块,拉起Kata BM

Kata BM硬件直通

1. 计算虚拟化

将Local APIC timer和IPI相关的MSR直通Kata BM所在的Nonroot模式,使得Kata BM可以直接配置Local APIC timer和IPI,不产生VM exit。

禁用apicv/avic,直接将external interrupt配置为直通到Kata BM所在的Nonroot模式,使得Kata BM可以直接收到自己的Local APIC timer中断、IPI、设备中断,不产生VM exit。

2. 内存虚拟化

Kata BM的GPA直接等于HPA,不使用EPT

3. 设备虚拟化

Virtio设备的中断注入直接将IPI直通到Kata BM,不产生VM exit; kick操作直接在Kata BM中向host发送IPI,不产生VM exit

对于直通设备, Kata BM的GPA直接等于HPA, 不使用IOMMU页表

Kata BM系统调用代理

1. 启动管控面

Host Linux通过QEMU+KVM启动Control BM

Control BM是一个特殊的硬件直通的VM,里面运行管控面和VMM

Control BM Kubelet Containerd Guest Linux kernel Host Linux KVM		Server
Guest Linux kernel Host Linux	QEMU	
Guest Linux kernel Host Linux		
Guest Linux kernel Host Linux	Control BM	
Guest Linux kernel Host Linux	Kubelet	
Host Linux	Containerd	
Host Linux		
	Guest Linux kernel	
KVM		Host Linux
KVM		
KVM		
		KVM
Host Core0 Host Core1 Host CoreN Guest Core0 Guest Core1 Guest CoreM	Host Core1 Hos	st CoreN Guest Core1 Guest CoreM

Kata BM系统调用代理

2. 启动Kata BM

运行在Control BM中的管控面通过Containerd-shim-kata启动QEMU

QEMU启动Kata BM时,并不使用本地内核的KVM,而是将对KVM的系统调用请求通过syscall proxy发送到Host linux kernel的KVM进行处理,在Host linux上启动Kata BM

Kata BM性能测试结果

测试环境

1、Kata BM容器

服务器总共128个核,管控面(Control BM)占16个核 启动7个Kata BM容器,每个占16个核,运行redis server/kernel build

2、Runc容器

服务器总共128个核,管控面占16个核 启动7个runc容器,每个占16个核,运行redis server/kernel build

测试结果

Redis测试	QPS	平均时延(ms)	P99时延(ms)
Runc容器	53200	1.21	3.12
Kata BM容器	54789	1.17	2.13
提升比	+3.4%	+3.4%	+46%

Kernel Build测试	Total Time(s)
Runc容器	140.75
Kata BM容器	135.75
提升比	+3.6%

Kata BM安全性分析

Kata VM
Container

Guest kernel

Kata VM

Container

Guest kernel

VMM+Host kernel

传统kata容器

Container

Container

Linux kernel

传统runc容器

Kata BM

Container

Guest kernel

Kata BM

Container

Guest kernel

VMM+Host kernel

Kata BM容器

字节跳动 STE 团队技术交流

该二维码7天内(10月27日前)有效,重新进入将更新