NGS for protein variants - exercise 2

Goal: parse real-world mutagenesis data (including clean-up) and calculate log odds ratios

Background in https://www.biorxiv.org/content/10.1101/274753v1.full

	Read in the "dim" and "bright" datasets as uploaded to Absalon. This file is tab
	separated, not in fasta format, so you may have to switch the fasta reader to a csv/table
	reader. If using R, the flag stringsAsFactors=F is recommended for reading.
	Initially, process each of them separately. We will only combine them at the log odds stage.
	☐ During code development, it may be a good idea to only work with the first 10-20
	lines to reduce run times. Note that the Biostrings translate() function
	is not particularly fast and will need several minutes if applied to thousands of
	sequences.
	Therefore it may be a good idea to store the translated sequences in a file
	and, for start from that file for development of downstream analyses (e.g.
	matrices analysing and summarising the differences between the protein sequences)
	Some issues (such as short or rare sequences) might only pop up with
	sequences that appear later in the file, so, not all debugging is done if it works for the first 10.
	The reference (wild-type) DNA is the same native_DNA.fa as in Exercise 1.
	The first column in each file is the count how often this DNA sequence has been
	observed. We will only use it for filtering out very rare sequences (you'll get to determine
	what exactly the threshold is yourselves). Technical aspects like PCR amplification can distort this number, so we will not use it for interpretation of variant fitness.
	Each of these sequences is a variant. Problems like sequencing errors mean that there
_	might be more unique sequences than actual unique variants in the sample. Again,
	discarding what was seen rarely is a good idea to remove uncertain variants.
	Data clean-up
	Omit sequences that have gaps - these typically lead to frameshifts
	☐ Similarly, remove sequences that are shorter than the native DNA sequence
	☐ You can also choose to omit sequences that have a different length than the wild
	type for easier comparison Check for DNA sequences that contain non-DNA letters
	Omit sequences with premature STOP, like before
	If you want to use <code>lapply()</code> for translation, try a construct like
	ngs_data\$protein <- as.character(lapply(ngs_data\$DNA,
	<pre>function(s) toString(translate(DNAString(s))))</pre>
	Determine differences of the variant sequences to the wild-type sequence in protein
	space just like you did in Exercise 1. You will need both the identity of the change

