A Book of Abstract Algebra (2nd Edition)

	Chapter 32, Problem 5EI	Bookmark	Show all steps: ON
--	-------------------------	----------	--------------------

Problem

Throughout this set of questions, let K be a root field over F, let G = Gal(K : F), and let I be any intermediate field. Prove the following:

Let I be a normal extension of F. If G is a cyclic group, then Gal(K:I) and Gal(I:F) are cyclic groups.

Step-by-step solution

Step 1 of 2

Consider a root field K over F, let G = Gal(K:F), and let I be any intermediate field which is a normal extension of F. The objective is to prove that if G is cyclic, then Gal(K:I) and Gal(I:F) are cyclic.

Comment

Step 2 of 2

Because K is cyclic over $F \to G(K:F)$ is a cyclic group.

Now G(K:I) is a subgroup of G(K:F) and is thus cyclic as a subgroup of a cyclic group . Therefore K is cyclic over I.

As I is a normal extension of $F \to G(I:F) = \frac{G(K:F)}{G(K:I)}$ so G(I:F) is isomorphic to a factor group of a cyclic group \to and is thus cyclic.

Comment