\times 98. Dans \mathbb{R}^2 , le système 1. $(e^2; e^4)$ et $(e^4; e^2)$ 3. $(e^3; e)$ et $(e; e^3)$ 5. $(e^3; e^2)$ et $(e^2; e^3)$ 2. (0; e/3) et (e/3; 0) 4. $(1/2; e^3)$ et $(e^3; 1/2)$ 99. Les solutions de l'inéquation $\log_4 x > \log_{16} (3x^2 - 8)$ sont les nombres x

a pour solution les couples

 $\begin{cases} \log_x e + \log_y e = 3/4 \end{cases}$

tels que: 5. $\frac{\sqrt{3}}{2}$ < x < 2 1. x = 0 ou x > -2 3. $0 < x \le \frac{\sqrt{3}}{2}$

$$2. \frac{2\sqrt{6}}{3} < x < 2 \qquad 4. \ x \ge 3$$

$$100. \text{ L'ensemble S des solutions réelles de l'équation ln } x - \frac{3}{\ln x} = \frac{1}{2}$$

est {a, b} avec a < b. La proposition fausse est:

5. $\ln a - \ln b = -3.5$ 1. $\ln a \cdot \ln b = -3$ 3. $\ln (a + b) = 1/2$ 2. $ab = \sqrt{e}$ 4. $\ln a + \ln b = \ln \sqrt{e}$ www.ecoles-rdc.net $\sin\left(x - \frac{\pi}{3}\right)$ waut:

2. $\frac{\sqrt{3}}{3}$ 3. 0 4. $\frac{8}{\pi}$ 5. 1 (M. – 94) (102. Dans \mathbb{R}^2 , le système: $\begin{cases} e^{x+1} \cdot e^{y-2} = 2 \\ \ln x + \ln y = \ln(x-1) + \ln(y+1) \end{cases}$

solutions le couple : 3. $\left(1; \frac{3 + \ln 2}{2}\right)$ 5. $\left(\frac{2 + \ln 5}{3}; \frac{\ln 2}{3}\right)$ $1.\left(0,\frac{\ln 3}{3}\right)$ (M. - 94)2. $\left(\frac{1+\ln 2}{3}; \frac{\ln 2}{3}\right)$ 4. $\left(\frac{2+\ln 2}{2}; \frac{\ln 2}{2}\right)$

93. Les solutions de l'inéquation $\log_{1/2}(x-1) < \log_{1/4}(2x+3)$ sont les nombres tels que: $1. -2 - \sqrt{6} < x < 2 + \sqrt{6}$ $3. x > 2 + \sqrt{6}$

2. x = 0 ou $x \le \sqrt{3}$ 4. x = 1 ou $x \ge \frac{\sqrt{3}}{2}$ (M. - 0)