In last section, we discussed the relationship of zeroes and coefficients of quadratic polynomial In this section, we form a polynomial if zeroes are given:

If $\alpha \& \beta$ are zeroes of a quadratic polynomial then quadratic polynomial $p(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - Sx + P$ where $S = Sum \ of \ zeroes = \alpha + \beta \ \& \ P = Product \ of \ zeroes = \alpha\beta$

1. Form a quadratic polynomial whose zeroes are as follows:

- (i) 3.1
- (ii) -5.2
- (iii) -2. -3
- (iv) 5. $\sqrt{3}$
- (v) 4.-1

Sol:- (i) Given zeroes = 3.1

 \therefore S = sum of zeroes = 3 + 1 = 4 and P = product of zeroes = 3 × 1 = 3 Given polynomial= $x^2 - Sx + P = x^2 - 4x + 3$

(ii) Given zeroes = -5.2

 \therefore S = sum of zeroes = -5 + 2 = -3 and P = product of zeroes = $-5 \times 2 = -10$ Given polynomial= $x^2 - Sx + P = x^2 - (-3)x + (-10) = x^2 + 3x - 10$

(iii) Given zeroes = -2, -3

 \therefore S = sum of zeroes = -2 + (-3) = -5 and P = product of zeroes = $(-2) \times (-3) = 6$ Given polynomial = $x^2 - Sx + P = x^2 + (+5)x + 6 = x^2 + 5x + 6$

(iv) Given zeroes = $5.\sqrt{3}$

 \therefore S = sum of zeroes = $5 + \sqrt{3}$ and P = product of zeroes = $5 \times \sqrt{3} = 5\sqrt{3}$ Given polynomial = $x^2 - Sx + P = x^2 - (5 + \sqrt{3})x + 5\sqrt{3}$

(v) Given zeroes = 4, -1

 \therefore S = sum of zeroes = 4 + (-1) = 4 - 1 = 3 and P = product of zeroes = 4 × (-1) = -4 Given polynomial= $x^2 - Sx + P = x^2 - 3x + (-4) = x^2 - 3x - 4$

2. Form a quadratic polynomial whose sum of zeroes and product of zeroes are as follows:

- (i) 3, -4
- (ii) $\frac{1}{2}$, $\frac{1}{2}$ (iii) $\sqrt{3}$, 4
- (iv) -2, -5
- $(\mathbf{v})^{\frac{-2}{2}}, 1$

Sol:- (i) Given sum of zeroes(S) = 3 and product of zeroes(P) = -4 Given polynomial= $x^2 - Sx + P = x^2 - 3x + (-4) = x^2 - 3x - 4$

(ii) Given sum of zeroes(S) = $\frac{1}{2}$ and product of zeroes (P) = $\frac{1}{3}$

Given polynomial= $x^2 - Sx + P = x^2 - \frac{1}{2}x + \frac{1}{3}$

(iii) Given sum of zeroes(S) = $\sqrt{3}$ and product of zeroes (P) = 4 Given polynomial= $x^2 - Sx + P = x^2 - \sqrt{3}x + 4$

(iv) Given sum of zeroes(S) = -2 and product of zeroes (P) = -5Given polynomial= $x^2 - Sx + P = x^2 - (-2)x + (-5) = x^2 + 2x - 5$

(v) Given sum of zeroes(S) = $\frac{-2}{3}$ and product of zeroes (P) = 1

Given polynomial=
$$x^2 - Sx + P = x^2 - \left(\frac{-2}{3}\right)x + 1 = x^2 + \frac{2}{3}x + 1$$

3. Find the zeroes of a polynomial $x^2 - 17x + 60$ and verify the relation between zeros and coefficients.

Sol:.
$$p(x) = x^2 - 17x + 60 = x^2 - 12x - 5x + 60$$

= $x(x - 12) - 5(x - 12) = (x - 12)(x - 5)$

So zeroes of polynomial p(x) are

If
$$x - 12 = 0$$
 and $x - 5 = 0$ i.e. $x = 12, x = 5$

Verification

Zeroes of polynomial $x^2 - 17x + 60$ are 12& 5

Sum of zeroes =
$$12 + 5 = 17 = \frac{-b}{a}$$

Product of zeroes =
$$12 \times 5 = 60 = \frac{c}{a}$$

EXERCISE

1. Form a quadratic polynomial whose zeroes are as follows:

(ii)
$$-2, -5$$
 (iii) $-6,3$ (iv) $3,\sqrt{2}$

$$(iii) -6,3$$

(iv)
$$3, \sqrt{2}$$

$$(v) 4, -4$$

2. Ex 2.2, Q 2

