$v12001\hbox{-}04\hbox{-}09 parskip\hbox{-}2001\hbox{-}04\hbox{-}09.sty}\ v22018\hbox{-}08\hbox{-}24$

mGRF Documentation

Release V0.1

Manoj

CONTENTS:

1	Alphabetical list of functions and scripts with description	1
2	Indices and tables	5

ALPHABETICAL LIST OF FUNCTIONS AND SCRIPTS WITH DESCRIPTION

contourDomainPlot (fem, domainID, userData, colourBar, varargin)

A helper function to create contourplot of a given mesh (domain) within fem structure of VRM for data specified by the user.

Parameters

- fem fem structure from VRM after loading the mesh
- domainID Domain ID of the current mesh file in the fem structure
- userdata vector of values to visualise, length = nNode X 1
- **colourBar** -0 or 1, creates a colourBar when =1
- vargin typically ax, axis to plot the figure, if empty a new axis is created

Returns: The coutourplot of the mesh with user given values ar mesh nodes

getAssembledKe (fem, domainID)

A function to assemble the stiffness matrix of a given mesh element=element strucutre

Parameters

- fem fem structure from VRM after loading the mesh
- domainID Domain ID of the current mesh file in the fem structure

Returns Ke the assemble stiffness matrix

getElementStifness(fem, eleId)

Helper function for getAssembledKe()

getMgrfDev (mGRF, meshCoord, keyPointsID, meshStiffMat, nSample)

The main function to simulate non-ideal parts using morphing-Gaussian Random Fields(mGRF). All options to the generation of non-ideal parts are to be provided in the mGRF structure. The mGRF structure has to main inputs:

- 1. mGRF.HypParmOpt.Type corresponding to the different ways to input the hyper-parameters of the Gaussian Random Field
- 2. mGRF.NIdev.Type corresponding to the type of non-ideal deviatons to be slimulated

Parameters

- meshCoord coordinates of all mesh nodes an $nNodes\ X\ 3$ matrix
- keyPointsID node ID of all the key points
- meshStiffMat The stiffness matrix for the whole mesh
- nSample Number of non-ideal part instances to be simulated
- mGRF. HypParmOpt. Type 'measData' | 'manual' | 'load'
- Options_specific_to'measData' -

- mGRF.HypParmOpt.devPatterns nInstances x nNodes matrix of non-ideal deviations
- Options_specific_to'manual' -
- mGRF. HypParmOpt.sn noise standard dev
- mGRF.HypParmOpt.lScale characteristic length scale, 3X1 vector for x,yand z directions
- mGRF.HypParmOpt.sf scaling factor (set to 1 by default)
- Options_specific_to'file' -
- mGRF.HypParmOpt.File name of the .mat file containing optimised hyper parameter values for a batch of deviations%
- mGRF.NIdev.Type 'dent'|'flange'|'bending'|'formErr', String defining the type of non-ideal deformatios
- mGRF.NIdev.Probability confidence value that max form error is less than specified value (between 0-1)
- mGRF.NIdev.MaxFormError Maximum specified form error
- mGRF.NIdev.NBasis Number of basis to use for interpolating the covariance matric for whole mesh
- Options_specific_to'bending' -
- mGRF.NIdev.Bending.ID Vector of length 2 representing two nodes forming the bending axis
- mGRF.NIdev.Bending.Theta Bending angleabout the axis in degrees
- Options_specific_to'dent'|'flange'_local_deformations -
- mGRF.NIdev.Local.ID vector containing node IDs of all nodes being manipulated
- mGRF.NIdev.Local.Dev nID X 1, vector of local deformation of key points

Returns dev - The nNodes X nSamples matrix of non-ideal part deviations

Note: The function depends on gp Toolbox and should be in the matlab path before the <code>getMgrfDev()</code> is called.

mGRF main

A script demonstrating the abilities of non-ideal part modelling and simulation using the mGRF methodology It shows the modelling and simulation of non-ideal parts of an automotive door inner for:

- 1. Local deformation of flange.
- 2. Global deformation of bending.

It also demonstrated various options to find the optimum covariance function parameters (hyper-parameters), namely:

- 1. Learn from cloud of point data
- 2. Load parameters from a file.
- 3. Set the parameters manually.
- 4. Use a default set of parameters.

setCovStruct (type, varargin)

A function to help set options of the mean and covariance fuction according to gp toolbox. Matern covariance function is used as defalult throughout

Parameters

- type 'default'|'user' string
- If_type_is'user'_three_vectors_are_expected-
- sn 1x1 scalar, noise standard dev (makes surface points pass through key points if zero). Default is 0.001
- lscale -3x1 characteristic length scale in x, y and z respectively, default is 20, 20, 10 mm
- sf 1x1 scalar, latent function standard dev or output scaling factor, Default is 1

Returns Covariance function parameters in syntax compatible with gp toolbox