PRÁCTICA A - LABORATORIO 5

1. Considere como entrada tres formas de onda distintas, caracterizarlas en el dominio de tiempo y frecuencia. Debe establecer los parámetros de ancho de pulso, ciclo útil y la relación de frecuencia entre los trenes de pulsos y la señal de mensaje. Se recomienda encontrar la relación entre la frecuencia de muestreo y la frecuencia de la señal cuadrada sea 100 (samp_rate/fs = 100) de tal forma que cada valor de retardo por cada muestra se asocie a un porcentaje del ciclo útil.

Sabiendo que la fórmula del ciclo útil se puede definir como:

Tras comparar para estos tres casos lo que ocurre cuando varía el ancho de pulso, se puede concluir que, entre menor ancho de pulso habrá un mayor ancho de banda.

CÁLCULOS DE CICLO ÚTIL	
fs=2000[Hz] y Ancho de pulso = 10[us]	fs=2000 [Hz] y Ancho de pulso = 20[us]
$T_p = rac{1}{Frec.depulsos}$ $T_p = rac{1}{2000}$ $T_p = 500[us]$	$T_p = rac{1}{Frec.de\ pulsos}$ $T_p = rac{1}{2000}$ $T_p = 500[us]$
Entonces:	Entonces:
$Ciclo \ útil = \frac{10*10^{-6}}{500*10^{-6}}*100$	Ciclo útil = $\frac{20 * 10^{-6}}{500 * 10^{-6}} * 100$
Ciclo útil = 2%	Ciclo útil = 4%

2. A. Describa en un párrafo el proceso para multiplexar hasta 4 canales que se muestran en la imagen anterior. Escriba los valores de sincronía D1,...D4. Muestre la evidencia de la solución a través de una captura de pantalla.

Se distribuyen los cuatro retardos a lo largo de una frecuencia de mensaje (fm) equivalente a 100[Hz], donde cada retardo va de 25[Hz] en 25[Hz]: retardo 1 en 25[Hz], retardo 2 en 50[Hz] y retardo 3 en 75[Hz]. De este modo, las señales de los canales no se van a cruzar entre sí y la señal de salida de la suma de las entradas no tendrá variaciones ni picos adicionales.

B. Inserte un nuevo canal de audio y muestre el comportamiento al multiplexar los 5 canales (escriba los valores de sincronía D1,...D5). Muestre la evidencia de la solución a través de una captura de pantalla.

Tras agregar una señal senoidal, vemos que en tal caso cada retardo va de 20[Hz] hasta llegar a los 100[Hz].

3. Osciloscopio

Medición de periodo entre pulsos

Se puede observar que dos pulsos consecutivos hay un periodo de 508,2 [us], lo que equivale a una frecuencia de aproximadamente 1,97 [kHz].

Medición de un pulso

Se puede observar que el tiempo de duración de un pulso para esta señal modulada es de 142,8[us].

COSENO

Medición de periodo entre pulsos

Se puede observar que dos pulsos consecutivos hay un periodo de 496,8 [us], lo que equivale a una frecuencia de aproximadamente 2,01 [kHz].

Medición de un pulso

Se puede observar que el tiempo de duración de un pulso para esta señal modulada es de 117,6[us].

Adicionales:

Analizador de espectros

La energía está distribuida alrededor de la fundamental con múltiples armónicos a cada lado. Esta particularidad se espera sobre todo en señales con transiciones abruptas, como se observa especialmente en la señal diente de sierra.

