Лабораторная работа №1

Дисциплина: Информационная безопасность

Манаева Варвара Евгеньевна

Содержание

1	Техн	ическое оснащение:	5
2		и и задачи работы Цель	6 6
3	Teop	ретическое введение	7
	•	Соглашение об именовании	7
4	Вып	олнение лабораторной работы	8
	4.1	Создание виртуальной машины	8
	4.2	Скачивание и настройка носителя, установка CentOS	10
	4.3	Настройка пользователя и root	16
		Домашнее задание	19
5	Контрольные вопросы		
	5.1	Какую информацию содержит учётная запись пользователя?	20
	5.2	Укажите команды терминала и приведите примеры:	20
	5.3	Что такое файловая система? Приведите примеры с краткой харак-	
		теристикой	21
	5.4	Как посмотреть, какие файловые системы подмонтированы в ОС?	22
	5.5	Как удалить зависший процесс?	22
6	Выв	оды по проделанной работе	24
	6.1	Вывол	24

Список иллюстраций

4.1	начало создания виртуальнои машины	ŏ
4.2	Настройка памяти и процессоров	9
4.3	Настройка виртуального жёсткого диска	9
4.4		10
4.5	Указание носителя для виртуальной машины	10
4.6	Выбор языка установки	11
4.7	Образ установки	11
4.8	Дата и время	12
4.9	' " ' 1	12
4.10		13
		14
		14
4.13	Убрать KDUMP	15
4.14	Настройка сети и узла	15
4.15	Раскладка клавиатуры	16
4.16	Процесс установки и конфигурации	17
4.17	root пороль	17
4.18	Создание пользователя	17
4.19	Финальная настройка	18
4.20	Соглашение с лицензией	18
4.21	Подключение доп. гост. ОС	19
		19

Список таблиц

1 Техническое оснащение:

- Персональный компьютер с операционной системой Windows 10;
- Планшет для записи видеосопровождения и голосовых комментариев;
- Microsoft Teams, использующийся для записи скринкаста лабораторной работы;
- Приложение Pycharm для редактирования файлов формата *md*;
- pandoc для конвертации файлов отчётов и презентаций.

2 Цели и задачи работы

2.1 Цель

Приобретение практических навыков установки операционной системы на виртуальную машину и настройки минимально необхдимых для дальнейшей работы сервисов.

2.2 Задачи

- 1. Создать виртуальную машину через VirtualBox и настроить её;
- 2. Скачать и установить образ CentOS;
- 3. Запустить обаз диска дополнений гостевой ОС и настроить систему;
- 4. Выполнить домашнее задание.

3 Теоретическое введение

3.1 Соглашение об именовании

При выполнении работ следует придерживаться следующих правил именования: имя виртуальной машины, имя хоста вашей виртуальной машины, пользователь внутри виртуальной машины должны совпадать с логином студента, выполняющего лабораторную работу. Вы можете посмотреть ваш логин, набрав в терминале ОС типа Linux команду id -un.

4 Выполнение лабораторной работы

4.1 Создание виртуальной машины

Воспользовавшись функцией "создать" в VirtualBox, начала создавать виртуальную машину для дальнейшего выполнения лабораторных работ (рис. 4.1).

Рис. 4.1: Начало создания виртуальной машины

Настроила оперативную память и количество процессоров, выделенное для виртуальной машины (рис. 4.2).

Рис. 4.2: Настройка памяти и процессоров

Настроила виртуальный жёсткий диск и выделила на нёс 20 ГБ памяти (рис. 4.3).

Рис. 4.3: Настройка виртуального жёсткого диска

После завершения создания виртуальной машины проверила правильность её создания (рис. 4.4).

Рис. 4.4: Просмотр итога

4.2 Скачивание и настройка носителя, установка CentOS

В настройках виртуальной машины внутри виртуальной коробки установила в носители образ диска с операционной системой (рис. 4.5).

Рис. 4.5: Указание носителя для виртуальной машины

После запуска и первичной загрузки появилось меню выбора языка установки с надписью "Добро пожаловать" (рис. 4.6).

Рис. 4.6: Выбор языка установки

После выбора языка попала в меню настройки образа установки (рис. 4.7).

Рис. 4.7: Образ установки

Проверила часовой пояс, дату и время системы (рис. 4.8).

Рис. 4.8: Дата и время

Подключила поддержку американского английского помимо русского российского языка (рис. 4.9).

Рис. 4.9: Языковая поддержка

Проверила источник установки ОС CentOS (рис. 4.10).

Рис. 4.10: Источник установки (образ CentOS)

Выбрала сервер с GUI в качестве базового окружения и установила средства разработки для дальнейшей работы в будущем (рис. 4.11).

Рис. 4.11: Выбор базового окружения

Проверила подключение виртуального диска (рис. 4.12).

Рис. 4.12: Место установки

Отключила за ненадобностью КDUMP (рис. 4.13).

Рис. 4.13: Убрать КDUMP

Настроила сетевой доступ (рис. 4.14).

Рис. 4.14: Настройка сети и узла

Добавила английскую раскладку клавиатуры и проверила обе раскладки на правильность с помощью спецального окна (рис. 4.15).

Рис. 4.15: Раскладка клавиатуры

4.3 Настройка пользователя и root

После завершения работы с образом установки, начался процесс установки и конфигурации ОС (рис. 4.16). В процессе нужно было установить root-пароль (рис. 4.17) и создать пользователя с именем согласно соглашению о именовании (рис. 4.18).

Рис. 4.16: Процесс установки и конфигурации

Рис. 4.17: root пороль

Рис. 4.18: Создание пользователя

На этом моменте машине необходимо было перезагрузиться, после чего необходимо было через окно первой настройки (рис. 4.19) перейти в окно подтверждения согласия с лицензией (рис. 4.20) и затем, после возвращения в окно первой настройки, завершить её.

Рис. 4.19: Финальная настройка

Рис. 4.20: Соглашение с лицензией

После первой загрузки операционной системы, необходимо было установить дополнения гостевой ОС через функции виртуальной коробки. Данная функция создала и запустила в гостевой образ диска (рис. 4.21), который и установил необходимые дополнения.

Рис. 4.21: Подключение доп. гост. ОС

4.4 Домашнее задание

После установки дополнений можно было перейти к выполенению домашнего задания. С помощью команды dmesg получили следующую информацию (рис. 4.22):

- 1. Версия ядра Linux (Linux version);
- 2. Частота процессора (Detected Mhz processor);
- 3. Модель процессора (СРU0);
- 4. Объем доступной оперативной памяти (Memory available).

```
Linux version 3.10.0-1160.cl7.x86.64 (
Command Line: BOOT_IMAGE=/vmlinuz-3.10

[vemanaeva@vemanaeva ~]s dmesg | grep -i Mhz
[ 0.000000] tsc: Detected 3410.012 MHz processor

[vemanaeva@vemanaeva ~]s dmesg | grep -i CPU0
[ 1.764108] smpboot: CPU0: Intel(R) Core(TM) 17-2600 CPU @ 3.40GHz (fam: 06, model: 2a, stepping: 07)

Memory: 2012888K/2097088K available (7788k kernel code, 392k absent, 83808k reserved, 5954k data, 1984k init)
```

Рис. 4.22: Домашнее задание

5 Контрольные вопросы

5.1 Какую информацию содержит учётная запись пользователя?

Все важные данные о пользователе в системе хранятся в файлах "/etc/passwd". В учётной записи хранится в первую очередь ID пользователя (где 0 - это пользователь, обладающий гоот-правами, а 1-999 - обычные пользователи), логин, пороль, идентификатор группы, идентификатор пользователя, начальный каталог и регистрационная оболочка. Если детально расмотреть структуру хранящихся данных то у нас получится такая строка данных: "User ID": "Password": "UID": "GID": "User Info": "Home Dir": "Shell".

5.2 Укажите команды терминала и приведите примеры:

- для получения справки по команде: команда "man". Данная команда может предоставить инструкцию или справку по использованию команды или программы. Если нужна краткая информация, можно применить команду "whatis".
- для перемещения по файловой системе: команда "cd" меняет текущий каталог на указанный, при пустом вводе перемещает на уровень выше в древе каталога.

- для просмотра содержимого каталога: команда "ls" позволяет просмотреть содержание нынешней папки. Есть так же комадна "ll", позволяющая просмотреть начинку директории.
- для определения объёма каталога: команда "sudo du" выведет занимаемое каталогом место на диске.
- для создания / удаления каталогов / файлов: для создания каталога или директории (файлов) "mkdir", а также команды для взаимодействия с ними:
 - 1. "ср" основная задача копирование и дублирование,
 - 2. "mv" перемещение и переиминовывание,
 - 3. "rm" удаление папок и файлов.
 - 4. "cat" показывает что содержит файл или стандартный ввод,
 - 5. "ln" создающая фактически ссылку как в windows ярлыки.
- для задания определённых прав на файл / каталог: команда "chmod".
- для просмотра истории команд: команда "history". Например, указав число после команды, она выведет такое количество последних команд.

5.3 Что такое файловая система? Приведите примеры с краткой характеристикой.

Одно из определений гласит "Файловая система связывает носитель информации (хранилище) с прикладным программным обеспечением, организуя доступ к конкретным файлам при помощи функционала взаимодействия программ АРІ". То есть, файловая система - это набор драйверов, встроенных в систему, которая при обращении программы к файлу по его имени (адресу) предоставляет информацию, касающуюся типа носителя, на котором записан файл, и структуры хранения данных.

Так на системах типа Linux можно увидеть много разных ФС: Ext2, Ext3, Ext4, JFS, ReiserFS, XFS, Btrfs, ZFS и т.д. А например на Windows в основном используется NTFS для внутрених файлов и FAT32 (или NTFS) для флешек и внешних носителей. Есть и другие, но они не так важны и универсальны. И на Android, особенно более современных версиях, стоит Ext4 - внутренняя, и FAT32 - внешняя.

NTFS (файловая система новой технологии) стандарт был реализован в Windows NT в 1995 году, и по сей день является основным в Windows. Система NTFS имеет допустимый предел размера файлов до 16 гигабайт и размер диска (памяти) до 16 Эксабайт, а также использует метод «прозрачного шифрования» (Encryption File System), разделяя доступ к файлам для разных пользователей и приложений.

5.4 Как посмотреть, какие файловые системы подмонтированы в OC?

На большинстве современных систем можно легко и быстро определить это в свойствах диска. Но на разных системах Linux есть свои способы это проверить через настройки системы или команды. Так, например эту информацию можно получить через утилиту Gnome Диски.

5.5 Как удалить зависший процесс?

В windows быстрее всего это сделать через диспечер задач или консоль (Win+R; cmd; tasklist; Taskkill "процесс"). В сестемах Linux есть несколько команд для этого с разной степень серьёзности:

• "SIGINT" - оправляет приложение команду правильного безопасного завершения,

- "SIGQUIT" отличается от предыдущей возможностью проигнорировать сигнал и созданием dump-памяти,
- "SIGHUP" сообщает процессу о разрыве соединения с терминалом (в основном связана с неполадками интернета),
- "SIGTERM" немедленное завершение процесса проводимого самим процессом или дочерними,
- "SIGKILL" зевершение процесса через ядро не мгновенное;

и команды для убийства:

- "kill" и тут многое зависит от опции. Если её нет то используется одна из выше указанных:
- "-TERM" то пытается принудительно или настойчиво закрыть процесс, и если это не помагает то испольуем
- "-КІLL" что направляет все силы на уничтожение процесса.

6 Выводы по проделанной работе

6.1 Вывод

В результате выполнения работы мы ознакомились с основными этапами установки виртуальных машин и их настроек, а также создали виртуальную среду для выполнения последующих лабораторных работ.

Были записаны скринкасты выполнения и защиты лабораторной работы.

Ссылки на скринкасты:

- Выполнение, Youtube
- Выполнение, Rutube
- Защита презентации, Youtube
- Защита презентации, Rutube