Kinematics and Dynamics of Mechatronic Systems

4th laboratory task

Piotr Bury, Maciej Paczocha

For vectors of joint variables Q1, Q2, ... QN corresponding to the prepared motion paths plan the spline joint trajectory of the type 5-(5)-5.

```
%planning of 10 segment polynomial spline joint trajectories
%corresponding to the assumed path
Q1=[1.570796 1.570796 1.570796 1.19029 0.785398 0 -0.5586 -0.7854 -1.49949 -1.5708];
Q2=[-0.7854 -0.34162 \ 0.420663 \ 0.789412 \ 0.723839 \ 0.694738 \ 0 \ -0.25614 \ -0.44343 \ -0.7854];
Q3=[0.636396 0.477598 0.416293 0.535257 0.45299 0.31241 0.377359 0.394715 0.466154 0.749533];
Q4=[-0.32503 -0.7846 0.333245 0.134268 0.055229 -0.41462 -0.49983 0.627971 0.505613 0.220485];
% setting the duration time of each trajectory segment (in seconds)
T=[0.2,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.2];
% setting values of initial and final joint velocity as well as
% the initial and final joint acceleration (usually they are set to Os)
V=[0 \ 0]; A=[0 \ 0];
% planning of the initial trajectory of type 555 (evaluation of the
% coefficients)
y1=fun_path(Q1,T,V,A);
y2=fun_path(Q2,T,V,A);
y3=fun_path(Q3,T,V,A);
y4=fun_path(Q4,T,V,A);
% setting the time axis resolution
dt=0.01;
% calculate joint displacements, velocities and accelerations for 3 joints
wb1=waitbar(0,'calculate joint displacement');
[q1,v1,aa1,tt,ti]=fun_graph(y1,T,dt,'r');
i=1;waitbar(i/3,wb1)
[q2,v2,aa2,tt,ti]=fun_graph(y2,T,dt,'b');
i=2;waitbar(i/3,wb1)
[q3,v3,aa3,tt,ti]=fun_graph(y3,T,dt,'g');
i=3;waitbar(i/3,wb1)
[q4,v4,aa4,tt,ti]=fun_graph(y4,T,dt,'g');
i=4; waitbar(i/3, wb1)
close(wb1);
```


Evaluate, present graphically and assess the resultant Cartesian path and the broken line resulting from composition of Q1, Q2, ... QN vectors for the both paths

```
syms th1 d2 th3 th4 a2 a3
% calculate displacement in 3D - formulas
XX=cos(th1)*(a2+a3*cos(th3));
YY=sin(th1)*(a2+a3*cos(th3));
ZZ=d2-a3*sin(th3);
% calculate the 3D path
X=double(subs(XX,{th1,d2,th3,th4,a2,a3},{q1,q2,q3,q4,0.1,0.5}));
Y=double(subs(YY,{th1,d2,th3,th4,a2,a3},{q1,q2,q3,q4,0.1,0.5}));
% calculate the 3D broken line
XQ=double(subs(XX,{th1,d2,th3,th4,a2,a3},{Q1,Q2,Q3,q4,0.1,0.5}));
YQ=double(subs(YY,{th1,d2,th3,th4,a2,a3},{Q1,Q2,Q3,q4,0.1,0.5}));
ZQ=double(subs(ZZ,{th1,d2,th3,th4,a2,a3},{Q1,Q2,Q3,q4,0.1,0.5}));
%Draw the paths
figure(4)
plot3(X',Y',Z','--g');
figure(5)
plot3(xQ, YQ, ZQ, '--r');
```



```
%Concatenating coodinate vectors to form data for both paths
Path3D=[X,Y,Z];
BrokenLine3D=[XQ',YQ',ZQ'];

Path3DLength = sum( sqrt( sum( diff(Path3D,1,1).^2 ,2)) ,1)
BrokenLine3DLength = sum( sqrt( sum( diff(BrokenLine3D,1,1).^2 ,2)) ,1)
```

```
Path3DLength =
4.5189

BrokenLine3DLength =
```

4.3293