PRÁCTICA No. 1 LEYES DE KIRCHHOFF

1.1. OBJETIVO DE LA PRÁCTICA

Explicar y demostrar experimentalmente la Ley de Kirchhoff de Voltajes y la Ley de Kirchhoff de Corrientes.

1.2. REQUISITOS PREVIOS.

Se requiere el análisis analítico del circuito mostrado en la figura 1.1. Anote los resultados obtenidos en las tablas 1.1, 1.2. y 1.3.

1.3. INFORMACIÓN GENERAL

Uno de los métodos ampliamente utilizados en el análisis de circuitos eléctricos son las Leyes de Kirchhoff de voltaje y corriente, ya que con ellas se puede determinar el valor de voltaje o corriente en cualquier elemento que forme parte del circuito. Las Leyes de Kirchhoff se enuncian a continuación:

- a) Ley de Kirchhoff de Corrientes: La suma de las corrientes que entran a un nodo es igual a la suma de las corrientes que salen del mismo.
- b) Ley de Kirchhoff de Voltajes: La suma de las caídas de voltaje en una trayectoria cerrada es igual a la suma de las elevaciones de voltaje en la misma.

1.4. MARCO TEORICO

1.5. MATERIAL Y EQUIPO REQUERIDO

Cantidad	Material o Equipo					
1	Fuente de Voltaje de C.D.					
2	Multímetros Digitales					
1	Resistor de 1 kΩ					
2	Resistores de 2.2 kΩ					
1	Resistor de 1.8 kΩ					
1	Resistor de 3.9 kΩ					
1	Protoboard					

1.6. PROCEDIMIENTO

1.5.1. Arme el circuito que se muestra en la figura 1.1.

Figura 1.1. Circuito Resistivo Mixto

1.5.2. Mida el voltaje y corriente en cada uno de los elementos del circuito. Anote los resultados de las mediciones en la tabla 1.1.

Tabla 1.1. Resultados obtenidos de voltaje y corriente, en cada elemento del circuito.

VARIABLE	VALOR CALCULADO	VALOR MEDIDO			
$V_{R1}(V)$	2,054 V	2,05 V			
I _{R1} (mA)	2,05 mA	2,05 mA			
V _{R2} (V)	4,24 V	4,25 V			
I _{R2} (mA)	1,08 mA	1,09 mA			
V _{R3} (V)	2,134 V	2,12 V			
I _{R3} (mA)	0,97 mA	0,965 mA			
V _{R4} (V)	2,134 V	2,12 V			
I _{R4} (mA)	0,97 mA	0,965 mA			
V _{R5} (V)	3,698 V	3,7 V			
I _{R5} (mA)	2,05 mA	2,05 mA			

1.5.3. Verifique si se cumple la Ley de Kirchhoff de Voltajes en cada trayectoria cerrada, considerando las elevaciones de voltaje con signo positivo y las caídas de voltaje con signo negativo. Anote los resultados en la tabla 1.2.

Tabla 1.2. Verificación de la LVK.

VOLTA IE	Trayec	toria 1	Trayec	toria 2	Trayectoria 3		
VOLTAJE	Calculado	Medido	Calculado	Medido	Calculado	Medido	
$V_{T}(V)$	10 V	10 V	4,24 V	4,24 V	10 V	10 V	
V _{R1} (V)	2,05 V	2,05 V			2,05 V	2,05 V	
$V_{R2}(V)$	4,24 V	4,25 V					
V _{R3} (V)			2,13 V	2,12 V	2,13 V	2,12 V	
$V_{R4}(V)$			2,13 V	2,12 V	2,13 V	2,12 V	
V _{R5} (V)	3,69 V	3,7 V			3,69 V	3,70 V	
ΣV	9,98 V	10 V	4,26 V	4,24 V	10 V	9,99 V	

1.5.4. Verifique si se cumple la Ley de Kirchhoff de Corrientes en cada nodo, tomando con signo positivo las corrientes que entran al nodo y con signo negativo las que salen del nodo. Anote los resultados en la tabla 1.3.

Tabla 1.3. Verificación de la LCK.

CORRIENTE	Nod	lo 1	Nodo 2		Nodo 3		Nodo 4		Nodo 5	
	Calculado	Medido								
I _T (mA)	2,05mA	2,05mA	2,05mA	2,06mA	0,97mA	0,97mA	2,05mA	2,06mA	2,05mA	2,05mA
I _{R1} (mA)	2,05mA	2,05mA								
I_{R2} (mA)			1,08mA	1,09mA			1,08mA	1,09mA		
I_{R3} (mA)					0,97mA	0,97mA				
I _{R4} (mA)			0,97mA	0,97mA			0,97mA	0,97mA		
I _{R5} (mA)									2,05mA	2,05mA
$\sum I$	2,05mA	2,05mA	2,05mA	2,06mA	0,97mA	0,97mA	2,05mA	2,06mA	2,05mA	2,05mA

1.5.5. Compare los resultados medidos con los valores obtenidos al analizar el circuito analíticamente y concluya al respecto.

R= 1 + 1 R= R= R=	R6 = R3 + R4
1 1 1 1 1 1 R 2 3 Q 4 4 4	$R6 = 4.4 \times \Omega$
1 - 4,4 + 3, 98, 3 R7 17,16 17,16	
1 = 8,3 R7 (7,16	8-41-1-1-1
R7 = 17,16 8,3	4 5 0 4 4
R 7= 2,06 K D	LINES VILLE
RT = R1 + R5 + R7	321
$R_{T} = 1 \times \Omega + 1,8 \times \Omega + 2,06 \times \Omega$	7.2
RT = 41867K D	
V = 1, R	
1 = V	. 10
$V_1 = 2,05 \times 10^{-3}$ ρ	+
N. = 2 054 V	V 5-14
	= <u>V</u>
V5 = 2,05 × 10-3, 1,8 × 2	
V 5 = 3, 698 V	
V2=Vp-V1-U5	
N2 = 10 - 2,054 - 3,648	
√2 = 4,24 V	

