Taxi Fare AutoNL

What's in this session?

- 1. Install ML.NET Model Builder
- Create new .NET CORE console project and add Machine Learning job
- 3. Pick a Scenario / Price Prediction
- 4. Set Data File
- 5. Train 60 seconds
- 6. Understand Train result
- 7. Understand evaluation result
- 8. Generate Code
- 9. Examine Code

Install ML.NET Model Builder

https://marketplace.visualstudio.com/items?itemName=MLNET.07

Create new .NET CORE console project and add Machine Learning

Pick a Scenario / Issue Classification

GreatFriends.Biz

Set Data File

Data / File /taxi-fare-train.csv Label column name = fare_amount

Select a file:			E:\ml\taxi-fare-train.csv Supported file formats: csv or tsv. Maximum file size: 1 GB.								
Column to Predict (Label): ①		el): ① fare a	fare amount								
Data Preview											
vendorid	ratecode	passengercount	triptime_in_secs	tripdistance	paymenttype	fareamount (Label)					
CMT	1	1	1271	3.8	CRD	17.5					
CMT	1	1	474	1.5	CRD	8					
CMT	1	1	637	1.4	CRD	8.5					
CMT	1	1	181	0.6	CSH	4.5					
CMT	1	1	661	1.1	CRD	8.5					
CMT	1	1	935	9.6	CSH	27.5					
CMT	1	1	869	2.3	CRD	11.5					

Train 600 seconds

Understand the Train result

Progress

Start training to see progress and results

Status: Done

Best Quality (RSquared): 0.9512

Best Algorithm: LightGbmRegression

Last Algorithm: FastTreeRegression

Understand evaluation result

Output

ML Task: regression

Dataset: taxi-fare-train.csv
Column to Predict (Label): fare_amount

Best Model: LightGbmRegression

Best Model Quality (RSquared): 0.9512

Training Time: 601.41 seconds

Models Explored (Total): 58

Top 5 models explored

Rank	Trainer	RSquared	Absolute-loss	Squared-loss	RMS-loss	Duration
1	LightGbmRegression	0.9512	0.41	4.50	2.12	4.3
2	LightGbmRegression	0.9506	0.43	4.56	2.14	4.2
3	LightGbmRegression	0.9502	0.43	4.60	2.14	3.2
4	LightGbmRegression	0.9497	0.41	4.64	2.15	5.4
5	FastTreeTweedieRegression	0.9491	0.44	4.70	2.17	10.0

GreatFriends.Biz

Examine Code

- Solution 'test' (3 of 3 projects)
- - Dependencies
 - ▶ c# Program.cs
- testML.ConsoleApp
 - Dependencies
 - ▶ c* ModelBuilder.cs
 - ▶ c* Program.cs
- - Dependencies
 - DataModels
 - □ MLModel.zip

Next Step

Write Code to build, train, evaluate, and use ML model