Hyungrok Kim 20140174

CS 204

Discrete Mathematics

Fall 2016

Homework 3(85 pts)

Sungwon Kang

Due date

Oct 6, 2016

(10 pts) Consider the following definition of the "⊲" symbol. 1.

Definition . Let x and y be integers. Write $x \triangleleft y$ if $3x + 5y = 7k$ for some integer k.				
(a) Show that $1 \triangleleft 5$, $3 \triangleleft 1$, and $0 \triangleleft 7$.	1) x=1, 4=5 1K=3+25=28 K=4	$K = \frac{3}{10} + \frac{1}{10} = 2$;;) x=0 K=	35 = 5 n = 5

(b) Find a counterexample to the following statement:

If $a \triangleleft b$ and $c \triangleleft d$, then $a \cdot c \triangleleft b \cdot d$.

```
if) a= 2 b=3 (=5 d=4
 3 0+5b=7K.
                        adb, cdb but ac $bd
ac=10 10×3+5×12=90≠11K
 3 C+ 5d= 1K2
3 A (+56) = 1K,
      (10 pts) Let the following statements be given.
```

Definition. A triangle is scalene if all of its sides have different lengths.

P(x) = a triangle is scalene Q(x): All sides of a triangle have disserent longths

Theorem. A triangle is scalene if it is a right triangle that is not isosceles. R(x)! A triangle if a R(x) R(x)

right triangle

Suppose AABC is a scalene triangle. Which of the following conclusions are valid? Why or why not?

(a) All of the sides of ΔABC have different lengths.

(b) ΔABC is a right triangle that is not isosceles. (a) : P(x)→Q(x) (b) : P(x)→(R(x) ∧Q(x)) given statements are P(x) (-) (x(x) (b) is not valid (a) is valid (RU) A QUI) -> P(X)

(12 pts) Let P(n,x,y,z) be the predicate " $x^n + y^n = z^n$."

(a) Write the following statement in predicate logic, using positive integers as the domain.

For every positive integer n, there exist positive integers x, y, and z such that $x^n + y^n = z^n$. (Vn) (Ix) (Iy) (Iz) P(n,x,4,7)

(b) Formally negate your predicate logic statement from part (a). Simplify so (3n) (YX) (YY) (YZ)P(N,X,4,2) that no quantifier lies within the scope of a negation.

(c) In order to produce a counterexample to the statement in part (a), what, specially, would you have to find among x, y, z and n? Find a counterexample to the negated statement which is (b)

n, x,y integer > (n+yn= 7 has no solution (proven by Andrew Wiles)

 (9 pts) Consider the following theorem.
Theorem . Let x be a wamel. If x has been schlumpfed, then x is a borfin.
Answer the following questions. (a) Give the converse of this theorem. Let x be a warrel, If x' has n't been shlumpfed, then x is hot a borfin. (b) Give the contrapositive of this theorem. (c) Which statement, (a) or (b), is logically equivalent to the Theorem? (b) Let x be a warrel, If x is not a borfin, then x has not been 5 chlumpfed.
(C) (b) is logically equivalent to the Theorem.
5. (8 pts) In four-point geometry discussed in class, do triangles exist? In other words, is it possible to have three distinct points, not on the same line, such that a line passes through each pair of points? Why or why not? 1et's say there're distinct point x, 4, 2, and x, 4 on L1, 4, 2 on L2, x, 2 on L3 (Lais a line). by axiom 4, Z is not on L1, x is not on L2, y is not on L3, x, 4, 2 ll, l2, make a triangle.
Let a, b, and c be integers. If a b and b c, then a c.
K ₁ , k ₂ ! integers, $a \mid b \Rightarrow b = k_1 a$ k_3 $ba \mid c \Rightarrow b = k_1 a$ $C = k_2 b = k_1 k_2 a$ (by Det). $k_1 \cdot k_2$ is an integer k_3 (by axioms) $C = k_3 a \Rightarrow a \mid c \mid c$ 7. (8 pts) Consider the following definition.
Definition . An integer n is sane if $3 \mid (n^2 + 2n)$.
(a) Give a counterexample to the following: All odd integers are sane. (b) Give a direct proof of the following: If $3 \mid n$, then n is sane. $3 \mid n = 3 \mid n = 3 \mid k \mid (k! \text{ integer})$ $1 \mid n = 3 \mid k \mid (k!$
50 atb is a rational number.

9. (8 pts) Recall the Badda-Bing axiomatic system discussed in class. Prove:

If q and r are distinct bings, both of which are hit by baddas x and y, then x = y.

if x ty, when x y is hit by &, by axiom 3 there's no more bings that hit both x & y.

This conflict the supposition so X=Y

 (8 pts) In the axiomatic system for four-point geometry, prove the following assertion using a proof by contradiction.

Suppose that a and b are distinct points on line u. Let v be a line such that $u \neq v$. Then a is not on v or b is not on v.

wtv, is a and bare on v,

by axioms, there's only one line having
and b on it, this means w=v

so and b cannot be on varat once,
a is not on v or bis not on v.