

Description

Image

Caption

1. Close-up of a wetsuit showing the texture of the material. © Yoruno at en.wikipedia - (CC BY-SA 3.0) 2. Surfer in a polychloroprene wetsuit. © Johntex at en.wikipedia - (CC BY-SA 3.0)

The material

Polychloroprenes (Neoprene, CR) – the materials of wetsuits – are the leading non-tire synthetic rubbers. First synthesized in 1930, they are made by a condensation polymerization of the monomer 2-chloro –1,3 butadiene. The properties can by modified by copolymerization with sulfur, with other chloro-butadienes and by blending with other polymers to give a wide range of properties. Polychloroprenes are characterized by high chemical stability, resistance to water, oil, gasoline and UV radiation.

Composition (summary)

(CH2-CCI-CH2-CH2)n

General properties

Density	76.8	-	78	lb/ft^3		
Price	* 2.4	-	2.68	USD/lb		
Date first used	1931					
Mechanical properties						
Young's modulus	1.02e-4	-	2.9e-4	10^6 psi		
Shear modulus	2.9e-5	-	9.72e-5	10^6 psi		
Bulk modulus	* 0.174	-	0.189	10^6 psi		
Poisson's ratio	0.48	-	0.495			
Yield strength (elastic limit)	0.493	-	3.48	ksi		
Tensile strength	0.493	-	3.48	ksi		
Compressive strength	0.54	-	4.18	ksi		
Elongation	100	-	800	% strain		
Fatigue strength at 10^7 cycles	* 0.222	-	1.74	ksi		
Fracture toughness	* 0.091	-	0.273	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	* 0.95	-	2.3			
Thermal properties						
Glass temperature	-54.7	-	-45.7	°F		
Maximum service temperature	215	-	233	°F		
Minimum service temperature	-63.7	-	-54.7	°F		
Thermal conductor or insulator?	Good insulator					
Thermal conductivity	0.0578	-	0.0693	BTU.ft/h.ft^2.F		
Specific heat capacity	* 0.478	-	0.525	BTU/lb.°F		

Polychloroprene (Neoprene, CR)

Thermal expansion coefficient	319	-	339	µstrain/°F		
Electrical properties						
Electrical conductor or insulator?	Good insulator					
Electrical resistivity	1e19	-	1e23	µohm.cm		
Dielectric constant (relative permittivity)	6.7	-	8			
Dissipation factor (dielectric loss tangent)	* 1e-4	-	0.001			
Dielectric strength (dielectric breakdown)	401	-	599	V/mil		
Optical properties						
Transparency	Translucent					
Refractive index	1.55	-	1.57			
Processability						
Castability	4	-	5			
Moldability	4	-	5			
Machinability	2	-	3			
Weldability	1					
Eco properties						
Embodied energy, primary production	* 6.63e3	-	7.32e3	kcal/lb		
CO2 footprint, primary production	* 1.61	-	1.78	lb/lb		

Supporting information

Design guidelines

Recycle

Polychloroprenes are characterized by exceptional chemical resistance, ability to be colored, and useful properties up to 175 C. Some have low gas permeability and low hysteresis, minimize heating when cyclically loaded, and resist burning. They are exceptionally tough, having high tear resistance due to stress induced crystallization. A number of other chlorinated hydrocarbons have similar properties and compete with Neoprene. Among them are chlorinated polyethylene (CPE or CM) and chlorosulfonated polyethylene (Hypalon, CSM).

Typical uses

Brake seals, diaphragms, hoses and o-rings, tracked-vehicle pads, footwear, wetsuits.

Links

Reference

ProcessUniverse

Producers