Homework 1

Problem 1. Show the Venn-diagram representation for the following sets:

- (a) $(A \cup B) C$
- (b) $\overline{A \oplus (B \cap C)}$

Problem 2. For any sets A, B and C, prove that

$$A \cup B = A \cup C, A \cap B = A \cap C$$
 implies $B = C$.

Solution. If $B \neq C$, then there must be an element, say x, such that $x \in B$ but $x \notin C$. (if $x \in C$ but $x \notin B$, it can be proofed in the same way.) Since $A \cup B = A \cup C$, we have $x \in A$. Thus $x \in (A \cap B)$, but $x \notin (A \cap C)$, this contradicts that $A \cap B = A \cap C$. Thus we can conclude that B = C.

Problem 3. Show that a nonempty set has the same number of odd subsets (i.e., subsets with an odd number of elements) as even subsets.

Solution. Assume the set has n elements, it has 2^n subsets. These subsets can form 2^{n-1} pairs, each pair contains an odd subset and an even subset. The element appears in the very beginning of the set is denoted as a_0 , then each pair is constructed in the fllowing way, randomly selecting a subset B, if it is \emptyset then pair it with $\{a_0\}$, if it is $\{a_0\}$ pair it with \emptyset . For other cases if

 $a_0 \notin B$, pair B with the subset that formed by adding a_0 at the very begining of B. In this way we can construt 2^{n-1} pairs, each containing an odd subset and an even subset. Thus, the set has the same number of odd subsets as even subsets.

Problem 4. A, B, C are three sets. and two functions $g: A \to B, f: B \to C$

- a) If $f \circ g$ is an injective function and g is surjective, show that f is injective.
- b) If $f \circ g$ is an surjective function and f is injective, show that g is surjective.

(Note that $f \circ g(x) = f(g(x))$.)

Solution.

a) If f is not injective, then $\exists y_1, y_2 \in B, y_1 \neq y_2 \land f(y_1) = f(y_2)$. Since g is surjective, we have $\forall y \in B \longrightarrow \exists x \in A \land g(x) = y$. Thus

$$\exists x_1, x_2 \in A, x_1 \neq x_2 \land g(x_1) = y_1, g(x_2) = y_2$$

$$\exists x_1, x_2 \in A, x_1 \neq x_2 \land f(g(x_1)) = f(g(x_2))$$

This contradicts that $f \circ g$ is an injective function. Thus we can conclude that f is injective.

b) If g is not surjective, then $\exists y_0 \in B \land \forall x \in A, g(x) \neq y_0$. Since f is injective, then $\forall y_1, y_2 \in B, y_1 \neq y_2 \longrightarrow f(y_1) \neq f(y_2)$. Suppose that $f(y_0) = z_0 \in C$, since $\forall x \in A, g(x) \neq y_0$, we have $\forall x \in A, f(g(x)) \neq z_0$. This contradicts that $f \circ g$ is an surjective function. Thus we can conclude that g is surjective.

Problem 5. \mathcal{R} is a binary relation,

- 1. Show that \mathcal{R} is symmetric iff $\mathcal{R}^{-1} \subseteq \mathcal{R}$.
- 2. Show that \mathcal{R} is transitive iff $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

2

Solution.

1. If \mathcal{R} is symmetric, then $\forall (x,y) \in \mathcal{R}^{-1} \longrightarrow (y,x) \in \mathcal{R} \longrightarrow (x,y) \in \mathcal{R}$, thus $\mathcal{R}^{-1} \subset \mathcal{R}$.

If $\mathcal{R}^{-1} \subseteq \mathcal{R}$, then $\forall (x,y) \in \mathcal{R} \longrightarrow (y,x) \in \mathcal{R}^{-1} \longrightarrow (y,x) \in \mathcal{R}$, thus \mathcal{R} is symmetric.

2. If \mathcal{R} is transitive, then $\forall (x,y) \in \mathcal{R} \circ \mathcal{R} \longrightarrow \exists z, (x,z) \in \mathcal{R} \land (z,y) \in \mathcal{R} \longrightarrow (x,y) \in \mathcal{R}$.

If $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$, then $\forall (x, z), (z, y) \in \mathcal{R} \longrightarrow (x, y) \in \mathcal{R} \circ \mathcal{R} \longrightarrow (x, y) \in \mathcal{R}$.

Problem 6. Prove that $\mathcal{P}(A) \approx 2^A$, where A is any set and $2^A = \{f \mid f : A \to \{0,1\} \text{ is a function.}\}$

Solution. To prove $\mathcal{P}(A) \approx 2^A$, we try to find out a one-to-one correspondence f between $\mathcal{P}(A)$ and 2^A . For any subset B of A, we have

$$f(B) = g(x) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B \end{cases}$$

Thus given any subset B of A, we can construct a funcation from A to $\{0,1\}$, and for any funcation from A to $\{0,1\}$, we can construct a subset B of A. Then we may conclude that $\mathcal{P}(A) \approx 2^A$.

Problem 7. A and B are countable sets. Prove that

- 1. $A \cup B$ is countable
- 2. $A \times B$ is countable

Solution.

- 1. Since the cardinality of $A \cup B$ is at most $\aleph_0 + \aleph_0$, which is equal to \aleph_0 , we can conclude that $A \cup B$ is countable.
- 2. Since the cardinality of $A \times B$ is at most $\aleph_0 \cdot \aleph_0$, which is equal to \aleph_0 , we can conclude that $A \times B$ is countable.