

Given an intermediate layer $z^{[l]}$ (values before the activation function) of a mini-batch B of size 3:

1,27 2,54 2,72 -1,75 2,13 1,12

The intermediate layer consists of two units corresponding at the matrix rows of $z^{[l]}.$

Compute the normalized $z^{[l]}$ before adding β and γ (two learnable parameters) and insert the normalized value of $z_1^{[l](1)}$ in the form below (note: the $z_1^{[l](1)}$ before the normalization is 1,27 - see table). Epsilon = 0,0001.

Round the figure to three digits after the decimal point. Use comma as separator.

Risposta:

Domanda **2**Risposta non data

Punteggio max.: 1,00

Suppose your input is a $x^{< i>}$ vector with three elements and you use the following ResNet for a regression task, with which you want to predict a single value:

How many parameters does this network have (including the bias parameters)?

Risposta:

Risposta non data
Punteggio max.: 1,00

Suppose the temperature in Udine over the first two days of January are:

Jan 1st: $heta_1=12\,{}^{\circ}C$

Domanda 4

Jan 2nd: $\, heta_2 = 13 \, {}^{\circ}C \,$

Say you use an exponentially weighted average with $\beta=0,1$ to track the Temperature ($V_0=1$).

Compute the valute $V_2^{\ corrected}$ after day 2 with bias correction.

Round the figure to three digits after the decimal point. Use comma as separator.

Risposta:

Domanda **5**Risposta non data Punteggio max.: 1,00

Suppose you are building a Deep Learning system for Face Landmark Detection with 32 keypoints for RGB images. How many units/neurons in the last layer does this network have?

Risposta: