

LR分析法

移进-归约过程

■ 单词序列 aaab 的分析

文法 G(S):

- $(1) S \rightarrow AB$
- $(2) A \rightarrow aA$
- $(3) A \rightarrow \varepsilon$
- $(4) B \rightarrow b$
- $(5) B \rightarrow bB$

自底向上优先分析与自顶向下技术相比

- 功能较强大

原因在于推导和归约过程有如下差别:推导时仅观察可推导出的输入串的一部分,而归约时可归约的输入串整体已全部出现

- 利于出错处理

输入符号查看后才被移进

- 构造较复杂

手工构造有难度

但存在很好的自动构造技术 (如 Yacc 工具采用 LALR 分析技术)

如: LR(0)、SLR(1)、LR(1)、LALR(1)

6.1 LR分析概述

LR分析器模型 LR分析表 LR分析算法

LR分析器模型

LR分析表

			ACT	ION			G	OTO	
	a	U	e	Ь	d	#	5	A	В
0	5 ₂						1		
1						acc			
2				S ₄				3	
3		S ₅		S ₆					
4	r ₂	r ₂	r ₂	r ₂	r ₂	r ₂			
5					S ₈				7
6	r ₃	r ₃	r ₃	r ₃	r ₃	r ₃			
7			S,						
8	r ₄	r ₄	r ₄	r ₄	r ₄	r ₄			
9	r_1	r_1	r_1	r_1	r ₁	r_1			

ACTION [i,e]= $\begin{cases} S_j \colon \text{ 移进, e} \cap \text{j进栈} \\ r_k \colon \text{用产生式 (k)A} \to X_{m-r+1} X_{m-r+2} \dots X_m 规约, 且 S=GOTO[S',A] 进栈 \\ \text{acc: 接受} \end{cases}$

步骤	符号村	え 输入符	号串 动作		状态栈	ACTION	GOTO
1)	# #a	abbcde# bbcde#	移进 移进	0 02	S₂ S₄		
3)	#a <mark>b</mark>	bcde#	归约(A→b)	024	r_2	3	
4)	#aA	bcde#	移进	023	5,		
5)	#aAb	cde#	归约(A→Ab)	0236	r ₃	3	
6)	#aA	cde#	移进	023	S ₅		
7)	#aAc	de#	移进	0235	Տ ₅ Տ ₈		
8)	# aAcd	e#	归约(B→d)	02358	r_4	7	
9)	#aAcB	e#	移进	02357	S ₉		
10)	#aAcBe	#	归约(S→aAcB	e) 02357	9 r_1	1	
11)	# S	#	接受	01	acc		

文法G[S]:

- (1) $S \rightarrow aAcBe$
- $(2) A \rightarrow b$
- (3) $A \rightarrow Ab$
- (4) $B \rightarrow d$

			E	OTO)				
	a	С	e	Ь	d	#	5	A	В
0	S ₂						1		
1						acc			
2				S ₄				3	
3		S ₅		S ₆					
4	r ₂	r ₂	r ₂	r ₂	r ₂	r ₂			
5					58				7
6	r ₃	r ₃	r ₃	r ₃	r ₃	r ₃			
7			S ₉						
8	r ₄	r ₄	r ₄	r ₄	r ₄	r ₄			
9	r ₁	r ₁	r ₁	r ₁	r ₁	r ₁			

LR分析算法

```
置ip指向输入串w的第一个符号
令S为栈顶状态
a是ip指向的符号
loop
  if ACTION[S,a]=S_i then
                          /*进栈
    PUSH j,a
    ip 前进
                          /*指向下一输入符号
                          /*第k条产生式为A→β
  else if ACTION[S,a]=r_k
      pop |β| 项
       令当前栈顶状态为S'
      push GOTO[S',A]和A /*进栈
     else if ACTION[s,a]=acc
               /*成功
          return
        else
          error
end loop
```

LR分析法特征

- □符号栈中的符号是规范句型的前缀且不 含句柄以后的任何符号(活前缀)。当它含 有句柄时,称之为可规约前缀。
- □分析决策依据: 栈顶状态和现行输入符 号
- □存在识别活前缀的DFA

6.2 LR(0)分析

活前缀 识别活前缀的有限自动机 LR(0)分析表

定义6.1-活前缀

■设S' $\stackrel{*}{\geqslant}$ αAω $\stackrel{*}{\geqslant}$ αβω是文法G中的一个规范推导,如果符号串γ是αβ的前缀,则称是G的一个活前缀。

■S'是对原文法扩充(S'→S) 增加的非终结符,以使S'不出现在任何产生式的右部,

可归前缀与活前缀

输入串abbcde

```
文法G[S]:
```

- (1) $S' \to S[0]$
- (1) $S \rightarrow aAcBe[1]$
- (2) $A \to b[2]$
- $(3) A \rightarrow Ab[3]$
- $(4) B \rightarrow d[4]$

```
5 '⇒5[0]
```

- \Rightarrow aAcBe[1]
- \Rightarrow aAcd[4]e[1]
- \Rightarrow aAb[3]cd[4]e[1]
- \Rightarrow ab[2]b[3]cd[4]e[1]

可归前缀

S[0]

ab[2]

aAb[3]

aAcd[4]

aAcBe[1]

活前缀

E,S

ε,a,ab

ε,a,aA,aAb

ε,a,aA,aAc,aAcd

ε,a,aA,aAc,aAcB,aAcBe

6. 2. 2识别活前缀的有限自动机

■ LR分析需要构造识别活前缀的有穷自动机

我们可以文法的终结符和非终结符都看成有穷自动机的输入符号,每次把一个符号进栈看成已识别过了该符号,同时状态进行转换,当识别到可归前缀时,相当于在栈中形成句柄,认为达到了识别句柄的终态。

活前缀

ε,S

ε,a,ab

ε,a,aA,aAb

ε,a,aA,aAc,aAcd

ε,a,aA,aAc,aAcB,aAcBe

步骤	符号	栈 输入符	5号串 动	作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂		
2)	#a	bbcde#	移进	02	S ₄		
3)	#ab	bcde#	归约 (A→t	024	r2	3	
4)	#aA	bcde#	移进	023	S ₆		
5)	#aAb	cde#	归约(A→	Ab) 0236	r3	3	
6)	#aA	cde#	移进	023	S ₅		
7)	#aAc	de#	移进	0235	Տ ₅ Տ ₈		
8)	# aAcd	e#	归约(B→d) 02358	r_4	7	
9)	#aAcB	e#	移进	02357	S ₉		
10)	#aAcBe	#	归约 (5 → a/	AcBe) 02357	\mathbf{r}_1	1	
11)	# S	#	接受	01	acc		

步骤	符号栈	输入符号	·串 动作	.	状态栈	ACTION	GOTO
1) 7	# abb	cde#	移进	0	52		

步骤	符号	号栈 输入符	号串 动	作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂		
2)	# a	bbcde#	移进	02	54		

步骤	符号	号栈 输入符	号串 动作		状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂		
2) 3)	#a #ab	bbcde# bcde#	移进 归约 (A →b)	02 024	S ₄	3	

步骤	聚 符号	号栈 输入符	号串 动作	•	状态栈	ACTION	GOTO
1) 2) 3)	# #a #ab	abbcde# bbcde# bcde#	移进 移进 归约 (A→b)	0 02 024	S ₂ S ₄ r2	3	
4)	#aA	bcde#	移进	023	56	Ŭ	

步骤	符号	栈 输入符	号串 动作	Έ	状态栈	ACTION	GOTO
1) 2)	# #a	abbcde# bbcde#	移进 移进	0 02	S ₂		
3)	#ab	bcde#	归约 (A→b)	024	S ₄ r2	3	
4) 5)	#aA #aAb	bcde# cde#	移进 归约 (A→A l	023 b) 0236	S ₆	3	

步骤	符号	栈 输入符	号串 动	作	状态栈	ACTION	GOTO
	# #ab #aA #aAb #aA	abbcde# bbcde# bcde# bcde# cde# cde#	移进 移进 归约 (A → 移进 归约 (A →	0 02 b) 024 023	S ₂ S ₄ r2 S ₆ r3 S5	3	

步骤	符号	栈 输入符	号串 动	作	状态栈	ACTION	GOTO
1) 2) 3) 4)	# #a #a <mark>b</mark> #aA	abbcde# bbcde# bcde# bcde#	移进 移进 归约 (A → 移进	0 02 b) 024 023	S ₂ S ₄ r ₂ S ₆	3	
5) 6) 7)	#aAb #aA #aAc	cde# cde# de#	归约 (A — 移进 移进	Ab) 0236 023 0235	r ₃ S ₅ S8	3	

步骤	符号	栈 输入符	号串 动作	E	状态栈	ACTION	GOTO
1)	#	abbcde#		0	S ₂		
2)	#a	bbcde#	移进	02	5 ₄		
3)	#ab	bcde#	归约 (A →b)	024	r ₂	3	
4)	#aA	bcde#	移进	023	S ₆		
5)	#aAb	cde#	归约(A→Ab	0236	r ₃	3	
6)	#aA	cde#	移进	023	S ₅		
7)	#aAc	de#	移进	0235	S ₅ S ₈		
8)	# aAcd	e#	归约(B→d)	02358	r4	7	

步骤	符号	栈 输入符	号串 动作	=	状态栈	ACTION	GOTO
1)	#	abbcde#		0	S ₂		
2)	#a	bbcde#	移进	02	S ₄		
3)	#ab	bcde#	归约 (A→b)	024	r ₂	3	
4)	#aA	bcde#	移进	023	S ₆		
5)	#aAb	cde#	归约 (A→Ab) 0236	r ₃	3	
6)	#aA	cde#	移进	023	S ₅		
7)	#aAc	de#	移进	0235	Տ ₅ Տ ₈		
8)	# aAcd	e#	归约(B→d)	02358	r ₄	7	
9)	#aAcB	e#	移进	02357	59		

步骤	符号	栈 输入符	5号串 动	作	状态栈	ACTION	GOTO
1)	#	abbcde#	 移进	0	S ₂		
2)	#a	bbcde#	移进	02	54		
3)	#ab	bcde#	归约 (A →l	024	r ₂	3	
4)	#aA	bcde#	移进	023	S ₆		
5)	#aAb	cde#	归约 (A →	Ab) 0236	r ₃	3	
6)	#aA	cde#	移进	023	S ₅		
7)	#aAc	de#	移进	0235	Տ ₅ Տ ₈		
8)	# aAcd	e#	归约(B→d	l) 02358	r_4	7	
9)	#aAcB	e#	移进	02357	S ₉		
10)	#aAcBe	: #	归约 (S →a/	AcBe) 02357	9 r1		

步骤	符号	栈 输入符	i号 串 动	作	状态栈	ACTION	GOTO
1)	#	abbcde#	移进	0	S ₂		
2)	#a	bbcde#	移进	02	S ₄		
3)	#ab	bcde#	归约 (A →b) 024	r_2	3	
4)	#aA	bcde#	移进	023	S ₆		
5)	#aAb	cde#	归约 (A → A	Nb) 0236	r ₃	3	
6)	#aA	cde#	移进	023	S ₅		
7)	#aAc	de#	移进	0235	Տ ₅ Տ ₈		
8)	# aAcd	e#	归约(B→d)	02358	r_4	7	
9)	#aAcB	e#	移进	02357	S ₉		
10)	#aAcBe	#	归约(S→aA	cBe) 02357	\mathbf{r}_1	1	
11)	#S	#	接受	01	acc		

构造识别可归前缀的有限自动机

- ■活前缀和句柄的关系
 - □活前缀α不含有句柄的任何符号

可记作: **A**→ **.β**

□活前缀αβ1含有句柄的部分符号

可记作: $A \rightarrow \beta_1 \cdot \beta_2$

□活前缀αβ已含有句柄的全部符号

可记作: $A \rightarrow \beta$.

■文法的每一个产生式 A→XY 定义有下面三个项目:

 $A \rightarrow XY$

 $A \rightarrow X \cdot Y$

 $A \rightarrow XY^{\bullet}$

对于A→ε的项目只有A→• 以上项目称作LR(0)项目。 ■ 文法G'[S']:

(0) $S' \rightarrow S$

(1) $S \rightarrow aAcBe$

(2) $A \rightarrow b$

(3) $A \rightarrow Ab$

(4) $B \rightarrow d$

S'→•S S'→**S•** S→•aAcBe S→a•AcBe S→aA•cBe S→aAc•Be S→aAcB•e S→aAcBe• $A \rightarrow \bullet b$ $A \rightarrow b^{\bullet}$ $A \rightarrow \bullet Ab$ $A \rightarrow A \bullet b$ $A \rightarrow Ab^{\bullet}$ $\mathsf{B} {
ightarrow} \mathsf{d}$ $B\rightarrow d$

LR(0)项目分为以下几种:

设a是终结符,B是非终结符, α , $\beta \in V^*$

移进项目,形如 $A \rightarrow \alpha \cdot a\beta$ 待约项目,形如 $A \rightarrow \alpha \cdot B\beta$ 归约项目,形如 $A \rightarrow \alpha \cdot$ 或 $A \rightarrow \cdot$ 接受项目,形如 $S' \rightarrow S \cdot$

■识别活前缀的DFA

DFA = (K = {项目集规范族},
$$\Sigma = V_T \cup V_N \cup \{S'\}, M = \{Go(I,X)\}, S = Closure\{S' \rightarrow S\}, Z = {项目集规范族})$$

- 项目集闭包 设I是文法G的一个LR(0)项目集合,则 Closure(I)是用下面三条规则构造的项目集:
- 1. I中每一个项目都属于Closure(I);
- 若项目A→α·Bβ ∈Closure(I)且B→η∈P,则将 B → ·η加进Closure(I)中;
- 3. 重复执行(2)直到Closure(I)不再增大为止。

$$I_0$$
 = Closure(S' \rightarrow •S):
S' \rightarrow •S
S \rightarrow •aAcBe

$$I_1$$
=Closure(S \rightarrow a•AcBe):
S \rightarrow a•AcBe
A \rightarrow •b
A \rightarrow •Ab

■转移函数

若I是文法的一个LR(0)项目集, X∈{ $V_T \cup V_N$ }, 则 定义转移函数Go(I,X)为:

Go(I,X) =Closure(J),

$$J=\{A\rightarrow\alpha X\cdot\beta|A\rightarrow\alpha\cdot X\beta\in I\}$$

$$I_0$$
 = Closure($S' \rightarrow \bullet S$):

S'→•S

S→•aAcBe

$$Go(I_0, a) = I_1$$

a

$$I_1$$
=Closure($S \rightarrow a \cdot AcBe$):

 $A \rightarrow \bullet b$

 $A \rightarrow \bullet Ab$

■ 项目集规范族

对于构成识别一个文法活前缀的DFA项目集的全体称为这个文法的LR(0)项目集规范族。

```
PROCEDURE items(G');
BEGIN
    C:={Closure(S' \rightarrow \cdot S)};
    REPEAT
      FOR C中每一项目集I和每一文法符号x DO
       IF GO(I,x) 非空且不属于C THEN
          把 GO(I,x) 放入C中;
    UNTIL C不再增大:
END;
```


■例

G'[S']:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow aAcBe$
- $(2) A \rightarrow b$
- $(3) A \rightarrow Ab$
- $(4) B \rightarrow d$

LR(0)分析表

- 若项目A→α•aβ属于I_k且GO (I_k, a)= I_j, a为终结符,则置ACTION[k, a]为"把状态j和符号a移进栈",简记为"s_j";
- 若项目 $A \rightarrow \alpha$ •属于 I_k , 那么,对任何终结符a, 置 ACTION[k, a]为"用产生式 $A \rightarrow \alpha$ (文法G`的第j个产生式)进行规约",简记为" r_i ";
- 若项目S`→S•属于I_k,则置ACTION[k, #]为"接 受",简记为"acc";
- 若GO (I_k, A)= I_j, A为非终结符,则置GOTO(k, A)=j;
- 分析表中凡不能用上述规则填入信息的空白格均 置上"出错标志"。

对输入串abbcde#的LR分析过程

	ACTION						GOTO			
	a	C	e	Ь	d	#	5	A	В	
0	S ₂						1			
1						acc				
2				54				3		
3		S ₅		56						
4	r ₂	r ₂	r ₂	r ₂	r ₂	r ₂				
5					58				7	
6	r ₃	r ₃	r ₃	r ₃	r ₃	r ₃				
7			S ₉							
8	r ₄	r ₄	r ₄	r ₄	r ₄	r ₄				
9	r ₁	r ₁	r ₁	r ₁	r ₁	$ \mathbf{r}_1 $				

-LR(0)文法

对于一个上下文无关文 法,如果能够构造一张LR(0) 分析表, 使得它的每一个条 目均是唯一的,则称该上下 文无关文法为LR(0)文法。

练习

- **G**[S']:
- (0) S'→E
- (1) $E \rightarrow aA$
- (2) E →bB
- (3) $A \rightarrow cA$
- $(4) A \rightarrow d$
- (5) $B \rightarrow cB$
- (6) $B \rightarrow d$

(6) B \rightarrow d

		A	GOTO					
	a	b	c	d	#	Е	A	В
0	S2	S3				1		
1					acc			
2			S4	S10			6	
3			S5	S11				7
4			S4	S10			8	
5			S5	S11				9
6	r1	r1	r1	r1	r1			
7	r2	r2	r2	r2	r2			
8	r3	r3	r3	r3	r3			
9	r5	r5	r5	r5	r5			
10	r4	r4	r4	r4	r4			
11	r6	r6	r6	r6	r6			

引例 向前查看一个符号,看其是否是S'的后继符 号(FOLLOW(S'))。 若否,则移进; 若是,则归约。 **G**[S']: (0) S' \rightarrow E $\mathbf{I}_1:_{\mathbb{S}'} \to_{\mathbb{E}} \bullet$ [6:E→E+ • T $I_0:S' \to \bullet E$ $(1) E \rightarrow E+T$ $T \rightarrow T * F$ $E \rightarrow E - + L$ → E+T T→ • F $F \rightarrow \bullet (E)$ $(2) E \rightarrow T$ → T*F F→ • i I₃:T⇒F• **→** • F $(3) T \rightarrow T*F$ $\rightarrow \bullet$ (E) $(4) T \rightarrow F$ $I_4: \mathbb{F} \to (\bullet \mathbb{E})$ $I_8: \mathbb{F} \to (\mathbb{E} \bullet)$ $(5) F \rightarrow (E)$ $E \rightarrow E - + T$ $E \rightarrow \bullet E + T$ $I_2: \mathbb{E} \to \mathbb{T}$ $E \rightarrow T$ $(6) F \rightarrow I$ $T \rightarrow T * F$ $T \rightarrow T = *F$ T→ • F $I_{11}\colon F \to (E)$ • $F \rightarrow \bullet (E)$ $F \rightarrow \bullet i$ I₅:r→i I9: E→E+T • $T \rightarrow T = *F$ 17: T→T* • F $\mathbb{F} \to \bullet (\mathbb{E})$ $I_{10}:T\rightarrow T*F$ $F \rightarrow i$

6.3 SLR(1)分析

■ 一个LR(0)规范族中含有如下的项目集(状态)

$$I = \{X \rightarrow \alpha \bullet b\beta, A \rightarrow \gamma \bullet, B \rightarrow \delta \bullet \}$$
 若有FOLLOW(A) \cap FOLLOW(B) = Ø FOLLOW(B) $\cap \{b\} = \emptyset$

则当状态I面临输入符号a时,

- 1) 若a=b,则移进;
- 2) 若a∈FOLLOW(A), 则用产生式 A →γ 进行归约;
- 3) 若a∈FOLLOW(B), 则用产生式 B → δ 进行归约;
- 4) 此外,报错。
- 若一个文法的LR(0)分析表中所含有的动作冲突都能用上 述方法解决,则称这个文法是SLR(1)文法。

SLR(1)分析表的构造步骤:

- 若项目A→α•aβ属于I_k, 且转换函数GO(I_k,a)= I_j, 当a 为终结符时,则置ACTION[k,a]为S_j
- □ 若项目 $A\to \alpha$ •属于 I_k ,则对a为任何终结符或'#',且满足a∈FOLLOW(A)时,置ACTION[k,a] = r_j ,j为产生式在文法G'中的编号
- □ 若GO(I_k,A)= I_j ,则置GOTO[k,A]=j,其中A为非终结符, j为某一状态号
- □ 若项目S'→S•属于I_k,则置ACTION[k,#] = acc
- □ 其它填上"报错标志"

- $(1) E \rightarrow E + T$
- (2) $E \rightarrow T$
- $(3) T \rightarrow T*F$
- $(4) T \rightarrow F$
- $(5) F \rightarrow (E)$
- (6) $F \rightarrow I$

状	ACTION							GOTO			
态	i	+	*	()	#	E	T	F		
0	s 5			s4			1	2	3		
1		s6				acc					
2		r2	s 7		r2	r2					
3		r4	r4		r4	r4					
4	s 5			s4			8	2	3		
5		r6	r6		r6	r6					
6	s 5			s4				9	3		
7	s 5			s4					10		
8		s6			s11						
9		r1	s 7		r1	r1					
10		r3	r3		r3	r3					
11		r5	r5		r5	r5					

例文法G为:

(1) $S \rightarrow aAd$

 $(2) S \rightarrow bAc$

 $(3) S \rightarrow aec$

 $(4) S \rightarrow bed$

 $(5) A \rightarrow e$

不是所有的文法都是SLR(1)的。 为确定一个句型的句柄,引进

LR(1)项目:

 $[U \rightarrow x.y,a]$

a为向前搜索符,它只对归约项目 [U→x.,a]有意义,表示当它所属 状态处于栈顶,且下一个输入符 号为a时,才可以将栈顶符号串x 归约为U。在其它项目中,a只是 起到传递作用。 将这些状态合并后得到的新状态若没有冲突出现, 则按新状态构造分析表。这就是LALR(1)分析法。

```
E \to (.L,E), ,//#
F \to (.F), ,//#
L \to .L,E, ,
L \to .E, ,
F \to .(F), ,//
E \to .(L,E), ,
E \to .F,
```

```
同芯状态合并
```

```
I<sub>3</sub>: E \to (.L,E), #

F \to (.F), #

L \to .L,E,,

L \to .E,,

F \to .(F),,/)

F \to .d,,/)

E \to .(L,E),,

E \to .F,
```

```
I<sub>8</sub>: E \rightarrow (.L,E),,

F \rightarrow (.F),,/)

L \rightarrow .L,E,,

L \rightarrow .E,,

F \rightarrow .(F),,/)

F \rightarrow .d,,/)

E \rightarrow .(L,E),,

E \rightarrow .F,
```

```
I_{13}: E \rightarrow (.L,E) , , /)
F \rightarrow (.F) , , /)
L \rightarrow .L,E , ,
L \rightarrow .E , ,
F \rightarrow .(F) , , /)
F \rightarrow .d , , /)
E \rightarrow .(L,E) , ,
E \rightarrow .F , ,
```

6.6 二义性文法在LR分析中的应用

■ 例

G'[E']:

- (0) $E' \rightarrow E$
- (1) $E \rightarrow E+E$
- (2) $E \rightarrow E^*E$
- $(3) E \rightarrow (E)$
- (4) $E \rightarrow id$

$$I_0: E' \to \cdot E$$

 $E \to \cdot E + E$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$
$$E \to \cdot \mathbf{id}$$

$$I_1: E' \to E \cdot E \to E \cdot + E$$

$$E \to E \cdot + E$$

 $E \to E \cdot * E$

$$I_2$$
: $E \to (\cdot E)$

$$E \rightarrow \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \to -\mathbf{id}$$

$$I_3: E \to id$$

$$I_4: \quad E \to E + \cdot E$$

$$E \to \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \rightarrow \cdot \mathbf{id}$$

$$I_5: E \to E * \cdot E$$

$$E \rightarrow \cdot E + E$$

$$E \to \cdot E * E$$

$$E \to \cdot (E)$$

$$E \rightarrow \cdot id$$

$$I_6$$
: $E \to (E \cdot)$

$$E \to E \cdot + E$$

$$E \to E \cdot * E$$

$$I_7$$
: $E \to E + E$.

$$E \to E \cdot + E$$

$$E \to E \cdot * E$$

$$I_8: E \to E * E$$

$$E \to E \cdot + E$$

$$E \to E \cdot * E$$

$$I_9: E \to (E)$$

几类分析文法之间的关系

练习

- 文法D[S]为:
- \blacksquare (1) S \rightarrow AB
 - (2) $A \rightarrow aBa | \epsilon$
 - (3) B \rightarrow bAb ϵ
- 1.该文法是SLR(1)的吗?
- 2.若是构造它的分析表;
- 3.给出输入串baab#的分析过程。

设有拓广文法 G[S']:

- (0) S'→S
- (1) S→SbAb
- (2) S→A
- (3) A→a
- (4) $A \rightarrow \varepsilon$
- ■1.该文法是SLR(1)的吗?
- -2.若是构造它的分析表;
- ■3.给出输入串bb#的分析过程。