Introduzione Definizioni Corrispondenza Linguaggi - Espressioni Regolari Proprietà dei Linguaggi Regolari Esercizi

I metodi formali dell'Analisi Lessicale: Le Espressioni Regolari (ER)

N.Fanizzi - V.Carofiglio

6 aprile 2016

- Introduzione
- 2 Definizioni
- 3 Corrispondenza Linguaggi Espressioni Regolari
- 4 Proprietà dei Linguaggi Regolari
- 6 Esercizi

Espressioni Regolari

Dato un alfabeto finito X, una espressione regolare è una notazione per decrivere linguaggi regolari sull'alfabeto ampliato $X \cup \{\lambda, +, *, \cdot, \emptyset, (,)\}$:

ESEMPI

- $L = \{a\}$ R(L) = a
- $L = \{a, b, c\}$ R(L) = a + b + c

(+ denota UNIONE tra linguaggi)

- $L = (\{a\} \bigcup \{bc\})^* \quad R(L) = (a + b \cdot c)$
 - (* e · denotano ITERAZIONE e CONCATENAZIONE tra linguaggi)

Espressioni Regolari - definizione

Dato un alfabeto finito X, una stringa R sull'alfabeto ampliato $X \cup \{\lambda, +, *, \cdot, \emptyset, (,)\}$ è una espressione regolare di alfabeto X sse vale una delle seguenti condizioni:

- R = ∅
- $R = \lambda$
- R = a con $a \in X$
- $R = (R_1 + R_2)$ con R_1, R_2 espressioni regolari di alfabeto X
- $R = (R_1 \cdot R_2)$ con R_1, R_2 espressioni regolari di alfabeto X
- $R = (R_1)^*$ con R_1 espressione regolare di alfabeto X

L'insieme delle espressioni regolari di alfabeto X viene denotato con \mathcal{R}

Linguaggi Regolari

Dato un alfabeto finito X un linguaggio L su X è un linguaggio regolare sse:

- L è finito oppure
- L può essere ottenuto induttivamente mediante le operazioni:

 - $2 L = L_1 \cdot L_2 \quad \text{con } L_1, L_2 \text{ regolari}$

Osservazione: \emptyset e $\{\lambda\}$ sono linguaggi regolari Definiamo l'insieme di tali linguaggi come classe dei linguaggi regolari denotata con \mathcal{L}_{RFG}

Operazioni sui linguaggi (Dovere di cronaca)

Dati due linguaggi L e L' definiti sullo stesso alfabeto X: unione $L \cup L' = \{ w \in X^* \mid w \in L \lor w \in L' \}$ prodotto $L \cdot L' = \{ w = w_1 \cdot w_2 \in X^* \mid w_1 \in L \land w_2 \in L' \}$ iterazione $L^* = \{ w_1 \dots w_n \in X^* \mid \forall n \forall i : w_i \in L, \ 0 < i < n \}$ complemento $\overline{L} = \{ w \in X^* \mid w \notin L \}$ intersezione $L \cap L' = \{ w \in X^* \mid w \in L \land w \in L' \}$ potenza $L^k = \begin{cases} \{\lambda\} & k=0 \\ L^{k-1} \cdot L & k>0 \end{cases}$ chiusura (transitiva) $L^+ = \bigcup_{k>0} L^k$ (quindi si può scrivere $L^* = L^0 \cup L^+ = {\lambda} \cup L^+$)

Esempi.

Dati i linguaggi $L_1 = \{a^{2n} \mid n \geq 0\}$ e $L_2 = \{b, cc\}$

- $L_1 \cdot L_2 = \{b, cc, aab, aacc, aaaab, aaaacc, \ldots\}$
- $L_2 \cdot L_1 = \{b, cc, baa, ccaa, baaaa, ccaaaa, \ldots\}$
- $L_1 \cup L_2 = L_2 \cup L_1 = \{\lambda, b, cc, aa, aaaa, aaaaaa, \ldots\}$
- $L_1^* = \{\lambda, aa, aaaa, aaaaaaa, aaaaaaaa, ...\}$
- $L_2^* = \{\lambda, b, cc, bb, bcc, ccb, bbb, cccc, \ldots\}$
- $L_2^0 = \{\lambda\}$ $L_2^1 = \{b, cc\}$ $L_2^2 = \{bb, bcc, ccb, cccc\} \dots$
- $L_2^+ = \{b, cc, bb, bcc, ccb, bbb, cccc, \ldots\}$

Corrispondenza Linguaggi - Espressioni Regolari

Ad ogni espressione regolare R corrisponde un linguaggio regolare S(R):

espressione regolare	linguaggio regolare
Ø	Ø
λ	$\{\lambda\}$
а	{a}
(R_1+R_2)	$S(R_1) \cup S(R_2)$
$(R_1 \cdot R_2)$	$S(R_1) \cdot S(R_2)$
(R)*	(S(R))*

Proposizione.

Un linguaggio su X è regolare sse esso corrisponde ad una espressione regolare di alfabeto X ossia definita la funzione $S: \mathcal{R} \longrightarrow \wp(X^*)$, si ha che:

$$\mathcal{L}_{REG} = \{ L \in \wp(X^*) \mid \exists R \in \mathcal{R} \colon L = S(R) \}$$

Osservazioni.

- un linguaggio regolare può essere descritto da più di una espressione regolare, cioè
- la funzione S non è inettiva

Due **espressioni regolari** R_1 e R_2 si dicono **equivalenti**, e si scrive $R_1 = R_2$, sse

$$S(R_1) = S(R_2)$$

Esempio.

L linguaggio delle parole su $X = \{a, b\}$ con a e b alternate, inizianti e terminanti con b L descrivibile attraverso l'espressione

$$R_1 = b(ab)^*$$

ovvero con

$$R_2 = (ba)^*b$$

pertanto
$$R_1 = R_2$$

1.
$$(R_1 + R_2) + R_3 = R_1 + (R_2 + R_3)$$
 prop. associativa di + 2. $R_1 + R_2 = R_2 + R_1$ prop. commutativa di + 3. $R + \emptyset = \emptyset + R = R$ \emptyset elem. neutro per + 4. $R + R = R$ Idempotenza $\frac{1}{2}$ $\frac{1}{$

Esercizi

- ① Data l'espressione $R = a^* \cdot (a + b)$, trovare il linguaggio associato.
- ② Data L'espressione $R = (aa)^*(bb)^*b$, trovare il linguaggio associato
- **3** Data l'espressione $R = (a + b)^*(a + bb)$, trovare il linguaggio associato
- Fissato l'alfabeto $X = \{0,1\}$ dare l'espressione regolare R, tale che:
 - $S(R) = \{w \in X^* | w \text{ ha almeno una coppia di } 0 \text{ consecutivi} \}$
 - $S(R) = \{w \in X^* | w \text{ non ha coppie di } 0 \text{ consecutivi} \}$
- Trovare tutte le stringhe di lunghezza minore di quattro in $S((a+b)^*b(a+ab)^*)$
- Trovare l'espressione regolare per:
 - $L = \{a^n b^m \mid (n+m)pari\}$
 - $L = \{a^n b^m \mid n > 4; m > 3\}$

Esercizi

- ① Scrivere le espressioni regolari per i seguenti linguaggi su $X = \{0,1\}$
 - tutte le stringhe che terminano per 01
 - tutte le stringhe che non terminano per 01
 - tutte le stringhe contenenti un numero pari di 0
 - tutte le stringhe che hanno almeno due occorrenze di sottostringhe 00 (nota che 000 contiene due occorrenze di 00)
 - tutte le stringhe che hanno al piú due occorrenze di sottostringhe 00
 - tutte le stringhe che non contengono occorrenze di 101

Esercizi

• Trovare le espressioni regolari per i seguenti linguaggi su $\{a, b\}$

•
$$L = \{ w \mid |w| \mod 3 = 0 \}$$

•
$$L = \{ w \mid n_a(w) \mod 3 = 0 \}$$

•
$$L = \{ w \mid n_a(w) \mod 5 < 0 \}$$

Esercizio1

Individuare il linguaggio
$$S(a^* \cdot (a+b))$$

$$S(a^* \cdot (a+b)) = S(a^*) \cdot S(a+b) = (S(a))^* \cdot (S(a) \cup S(b)) = \{\lambda, a, aa, aaa, ...\} \cdot \{a, b\}$$

$$\{\lambda, a, aa, aaa, ..., b, ab, aab, ...\}$$

Esercizio2

Individuare il linguaggio
$$S((a+b)^*(a+bb))$$
 $(a+b)^*$ stringhe di "a" e "b" $(a+bb)$ stringa "a" oppure stringa "bb" $S((a+b)^*(a+bb))$ é l'insieme su $\{a,b\}$ di stringhe che terminano per "a" oppure per "bb".

$$S((a + b)^*(a + bb)) = \{a, bb, aa, abb, ba, bbb,\}$$

Esercizio3

Individuare il linguaggio $S((aa)^*(bb)^*b)$

$$S((aa)^*(bb)^*b) = \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}$$

Esercizio4a

Individuare l'espressione regolare per il linguaggio su $X\{0,1\}$

$$L = \{w \in X^* \mid w \text{ ha almeno una coppia di zeri consecutivi}\}$$

Ogni stringa di L deve contenere:

- almeno un "00"
- ed é del tipo "x00y", con x e y arbitrarie stringhe su X^* ((0 + 1)*)

dunque
$$L = S((0+1)^* \ 00 \ (0+1)^*)$$

Esercizio4b

Individuare l'espressione regolare per il linguaggio

$$L = \{w \in \{0,1\}^* \mid w \text{ NON ha coppie di zeri consecutivi}\}$$

Osserviamo che

- se occorre uno "0", subito dopo ci deve essere un "1"
- la sotto-stringa "01" puó essere preceduta e seguita da"1"

Dunque:

La risposta contiene ripetiz. di "1....101.....1" (ovvero $(1^*(01)1^*)^*$

mancano le stringhe del tipo "1...101...10" ((1*(01)1*0)

Dunque:

La risposta contiene anche ripetizioni di stringhe della forma "1....101.....10" (ovvero $(1^*(01)1^*)^*$ ($\lambda + 0$)

- mancano le stringhe del tipo "1...10" ((1*0))
- mancano le stringhe del tipo "1...1" ((1*))

dunque mancano $1^*(0 + \lambda)$

dunque

$$L = S((1^*(01)1^*)^* (0 + \lambda) + (1^*(0 + \lambda)))$$

Esercizio4b-bis

Individuare l'espressione regolare per il linguaggio

$$L = \{w \in \{0,1\}^* \mid w \text{ NON ha coppie di zeri consecutivi}\}$$

•
$$S((1^*(01)1^*)^*(0+\lambda) + (1^*(0+\lambda)))$$

•
$$S((1+(01))^*(0+\lambda))$$

definiscono lo stesso linguaggio?