第五节

可降阶高阶微分方程

- 一、 $y^{(n)} = f(x)$ 型的微分方程
- 二、y'' = f(x,y') 型的微分方程
- 三、y'' = f(y,y') 型的微分方程

一、 $y^{(n)} = f(x)$ 型的微分方程

令
$$z = y^{(n-1)}$$
,则 $\frac{dz}{dx} = y^{(n)} = f(x)$,因此
$$z = \int f(x) dx + C_1$$
 即
$$y^{(n-1)} = \int f(x) dx + C_1$$
 同理可得
$$y^{(n-2)} = \int [\int f(x) dx + C_1] dx + C_2$$

$$= \int [\int f(x) dx] dx + C_1 x + C_2$$

依次通过n次积分,可得含n个任意常数的通解.

例1求微分方程
$$y'' = \frac{1}{1+x^2}$$
满足初始条件

$$y|_{x=0} = 1, y'|_{x=0} = 2$$
的特解.

解(方法1) 对方程两端积分,得

$$y' = \int \frac{1}{1+x^2} dx + C_1 = \arctan x + C_1,$$

由条件 $y'|_{x=0} = 2$ 得, $C_1 = 2$.

所以 $y' = \arctan x + 2$. 两端再积分,得

$$y = \int [\arctan x + 2] dx + C_2$$

=
$$x \arctan x - \frac{1}{2} \ln(1 + x^2) + 2x + C_2$$
,

将初始条件代入,得 $C_2 = 1$.

故所求特解为

$$y = x \arctan x - \frac{1}{2} \ln(1 + x^2) + 2x + 1.$$

(方法2) 对方程两端在区间 [0, x]上取积分,

$$\int_0^x y''(x) dx = \int_0^x \frac{dx}{1+x^2},$$

$$y'(x) - y'(0) = \int_0^x \frac{\mathrm{d} x}{1 + x^2}$$

得
$$y'(x) = \int_0^x \frac{dx}{1+x^2} + y'(0)$$

= arctan $x + 2$

再取积分,得所求特解

$$y(x) = \int_0^x \left[\arctan x + 2\right] dx + y(0)$$

= $x \arctan x - \frac{1}{2} \ln(1 + x^2) + 2x + 1$.

二、y'' = f(x,y') 型的微分方程(不含有y)

设 y' = p(x),则 y'' = p',原方程化为一阶方程

$$p' = f(x, p)$$

设其通解为 $p = \varphi(x, C_1)$

则得 $y' = \varphi(x, C_1)$

再一次积分,得原方程的通解

$$y = \int \varphi(x, C_1) dx + C_2$$

例2 求解
$$(1-x^2)y''-xy'=0$$
, $y(0)=0$, $y'(0)=1$;

解 方程中不出现 y,属于 y'' = f(x, y')型,

设
$$y'=p$$
,则 $y''=p'$,

可分离变量方程 代入方程有 $(1-x^2)p' = xp$

分离变量得
$$\frac{d p}{p} = \frac{x}{1 - x^2} d x$$

 $\ln p = -\frac{1}{2}\ln(1-x^2) + \ln C_1$ 两边积分得

即
$$p = \frac{C_1}{\sqrt{1-x^2}}$$

代入初始条件 y'(0) = 1, 得 $C_1 = 1$.

所以
$$y'=p=\frac{1}{\sqrt{1-x^2}}$$

两边积分得 $y = \arcsin x + C_2$

代入初始条件 y(0) = 0, 得 $C_2 = 0$.

故所求特解为 $y = \arcsin x$.

例3 设 $u = u(\sqrt{x^2 + y^2})$ 有连续的二阶偏导数,且满足

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2,$$
試**求***u*.

解 令
$$r = \sqrt{x^2 + y^2}$$
,则 $\frac{\partial u}{\partial x} = \frac{\mathrm{d} u}{\mathrm{d} r} \cdot \frac{x}{\sqrt{x^2 + y^2}}$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} \cdot \frac{x^2}{x^2 + y^2} + \frac{\mathrm{d} u}{\mathrm{d} r} \cdot \frac{y^2}{(x^2 + y^2)^{3/2}}$$

由x,y的轮换对称性得

$$\frac{\partial^2 u}{\partial y^2} = \frac{\mathrm{d}^2 u}{\mathrm{d} r^2} \cdot \frac{y^2}{x^2 + y^2} + \frac{\mathrm{d} u}{\mathrm{d} r} \cdot \frac{x^2}{(x^2 + y^2)^{3/2}}$$

代入方程
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2$$

得
$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d} u}{\mathrm{d}r} = r^2$$

上方程化为
$$\frac{\mathrm{d}\,p}{\mathrm{d}\,r} + \frac{1}{r}\,p = r^2$$

$$p = e^{-\int_{r}^{1} dr} \left[\int_{r}^{2} r^{2} e^{\int_{r}^{1} dr} dr + C_{1} \right] = \frac{1}{r} \left[\frac{1}{4} r^{4} + C_{1} \right]$$

$$\frac{\mathrm{d} u}{\mathrm{d} r} = p = \frac{1}{r} \left[\frac{1}{4} r^4 + C_1 \right] = \frac{1}{4} r^3 + C_1 \frac{1}{r}$$

积分得

$$u = \frac{1}{16}r^4 + C_1 \ln r + C_2$$

$$= \frac{1}{16}(x^2 + y^2)^2 + C_1 \ln(x^2 + y^2) + C_2$$

 $(C_1, C_2$ 为任意常数)

三、y'' = f(y, y')型的微分方程(不含有x)

故方程化为 $p\frac{\mathrm{d}p}{\mathrm{d}y} = f(y,p)$

设其通解为 $p = \varphi(y, C_1)$, 即得

$$y' = \varphi(y, C_1)$$

分离变量后积分,得原方程的通解

$$\int \frac{\mathrm{d}y}{\varphi\left(y,C_{1}\right)} = x + C_{2}$$

例4 求解 $yy'' - y'^2 = 0$.

解 设
$$y' = p(y)$$
, 则 $y'' = \frac{dp}{dx} = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy}$

代入方程得
$$yp\frac{dp}{dy}-p^2=0$$
, 即 $\frac{dp}{p}=\frac{dy}{y}$

两端积分得 $\ln |p| = \ln |y| + \ln |C_1|$, 即 $p = C_1 y$,

$$\therefore$$
 $y' = C_1 y$ 一阶齐次线性方程

故所求通解为 $y = C_2 e^{C_1 x}$.

例5 一平面曲线经过原点 O,其上任一点 M处的切线与横轴交于 T,由点 M向横轴作垂线,垂足为 P,已知三角形 MTP 的面积与曲边三角形 OMP的面积成正比(比例系 数 $k > \frac{1}{2}$),求此曲线的方程.

解 设所求曲线 L 的方程为 y = y(x) (如图) 那么, y(0) = 0, 且 L 上任意点 M(x,y)处的切

线 MT 的方程为 Y-y=y'(x)(X-x).

L: y = y(x)/

 $\overline{M(x,y)}$

$$Y - y = y'(x)(X - x)$$

 $\diamondsuit Y = 0$, 得到切线与 x 轴交点 T的横坐标

$$X = x - \frac{y}{y'}.$$
因此, 点 T 的坐标为 $(x - \frac{y}{y'}, 0).$

$$M(x, y)$$

依题意,三角形 MTP的面积是曲边三角形 OMP面积的 k倍. 即

$$\frac{1}{2} \left[x - \left(x - \frac{y}{y'} \right) \right] y = k \int_0^x y(t) dt.$$

$$\frac{y^2}{2y'} = k \int_0^x y(t) \, \mathrm{d} t$$

方程两端对 x 求导数,得

$$\frac{2yy'^2 - y^2y''}{2(y')^2} = ky,$$

消去y(y=0不合题意)

故所求曲线满足的微分方程

$$(2-2k)y'^2=yy''$$

这是y'' = f(y, y')型的可降阶方程,

$$(2-2k)y'^2 = yy'' \qquad (1)$$
令 $\frac{dy}{dx} = p$, 则 $\frac{d^2y}{dx^2} = p\frac{dp}{dy}$,
代入方程 (1), 得 $(2-2k)p^2 = yp\frac{dp}{dy}$,
消去 $p(p = \frac{dy}{dx} = 0$ 不合题意), 分离变量 并积分
 $(2-2k)\int \frac{dy}{y} = \int \frac{dp}{p}$,
得 $(2-2k)\ln|y| = \ln|p| - \ln|C|$.
 $\frac{dy}{dx} = p = Cy^{2-2k}$,

于是 $y^{2k-2} dy = C dx$,

$$y^{2k-1} = C_1 x + C_2$$

 $(其中 C_1 = (2k-1)C).$

由条件 y(0) = 0, 得 $C_2 = 0$, 故所求曲线的方程为

$$y^{2k-1} = C_1 x \qquad (k > \frac{1}{2}).$$

内容小结

可降阶微分方程的解法 ——降阶法

1.
$$y^{(n)} = f(x)$$
 逐次积分

思考题

1. 方程 y'' = f(y') 如何代换求解?

一般说,用前者方便些.

有时用后者方便.例如, $y'' = e^{-(y')^2}$

- 2. 解二阶可降阶微分方程初值问题需注意哪些问题?
- 答: (1) 一般情况,边解边定常数计算简便.
 - (2) 遇到开平方时,要根据题意确定正负号.

综合题

函数f(x)在 $[0,+\infty)$ 上可导,f(0)=1,且满足等式

$$f'(x) + f(x) - \frac{1}{x+1} \int_0^x f(t) dt = 0$$

- (1) 求导数 f'(x);
- (2) 证明: 当 $x \ge 0$ 时,不等式: $e^{-x} \le f(x) \le 1$ 成立
- 解(1) 由题设知

$$(x+1)f'(x) + (x+1)f(x) - \int_0^x f(t) dt = 0$$

上式两边对 x求导,得

$$(x+1)f''(x) = -(x+2)f'(x)$$

属可降阶的微分方程,

设
$$p = f'(x)$$
, 则 $f''(x) = p'$,

代入上方程得
$$(x+1)p' = -(x+2)p$$

分离变量有
$$\frac{\mathrm{d}\,p}{p} = -\frac{x+2}{x+1}\mathrm{d}\,x$$

两边积分
$$\ln p = -x - \ln(1+x) + \ln C$$

解之得
$$f'(x) = p = \frac{Ce^{-x}}{1+x}$$

由f(0) = 1,代入题设关系式有f'(0) + f(0) = 0,

知 f'(0) = -1. 从而 C = -1.

因此
$$f'(x) = -\frac{e^{-x}}{1+x}$$

证 (2) (方法1) 当 $x \ge 0, f'(x) < 0$,

即f(x)在 $[0,+\infty)$ 上单调减少,又 f(0)=1,

所以
$$f(x) \le f(0) = 1$$

欲证 $f(x) \ge e^{-x}$, 即证 $f(x) - e^{-x} \ge 0$.

为此设
$$\varphi(x) = f(x) - e^{-x}$$

则
$$\varphi(0) = 0$$
, $\varphi'(x) = f'(x) + e^{-x} = \frac{x}{x+1}e^{-x}$

即 $\varphi(x)$ 在 $[0,+\infty)$ 上单调增加,

因而
$$\varphi(x) \ge \varphi(0) = 0$$

即有 $f(x) \ge e^{-x}$

综上所述, 当 $x \ge 0$,成立不等式 $e^{-x} \le f(x) \le 1$

(方法2) 由于
$$\int_0^x f'(t) dt = f(x) - f(0) = f(x) - 1$$
所以 $f(x) = 1 - \int_0^x \frac{e^{-t}}{1+t} dt$

注意到当 $x \ge 0$ 时

$$0 \le \int_0^x \frac{e^{-t}}{1+t} dt \le \int_0^x e^{-t} dt = 1 - e^{-x}$$

因而有

$$1 \ge f(x) = 1 - \int_0^x \frac{e^{-t}}{1+t} dt \ge 1 - (1 - e^{-x}) = e^{-x}$$

即有 $e^{-x} \leq f(x) \leq 1$.

备用题

例1-1 求解
$$y''' = e^{2x} - \cos x$$
.

解
$$y'' = \int (e^{2x} - \cos x) dx + C_1'$$

 $= \frac{1}{2}e^{2x} - \sin x + C_1'$
 $y' = \frac{1}{4}e^{2x} + \cos x + C_1'x + C_2$
 $y = \frac{1}{8}e^{2x} + \sin x + C_1x^2 + C_2x + C_3$
(此处 $C_1 = \frac{1}{2}C_1'$)

例2-1 求 $y'' \tan x = y' + 5$ 的通解.

解 方程不是含未知函数 y,属于y'' = f(x,y')型.

代入方程得一阶线性方 程

$$\frac{\mathrm{d}\,p}{\mathrm{d}\,x}\cdot\tan\,x=\,p+5,$$

即
$$\frac{\mathrm{d} p}{\mathrm{d} x} - \cot x \cdot p = 5 \cot x.$$

那么
$$p = e^{\int \cot x \, dx} \left[\int 5 \cot x e^{-\int \cot x \, dx} + C_1 \right]$$
$$= C_1 \sin x - 5,$$

即
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = C_1 \sin x - 5.$$

故所给方程的通解为

$$y = -C_1 \cos x - 5x + C_2.$$

例2-2 求解
$$\begin{cases} (1+x^2)y'' = 2xy' \\ y \Big|_{x=0} = 1, y' \Big|_{x=0} = 3 \end{cases}$$

解 设 y' = p(x), 则 y'' = p', 代入方程得

$$(1+x^2)p' = 2xp$$
 $\xrightarrow{\text{$\beta \in \Phi \oplus \Phi = \frac{2x dx}{p} = \frac{2x dx}{(1+x^2)}}}$

积分得 $\ln |p| = \ln(1+x^2) + \ln |C_1|$,

即
$$p = C_1(1+x^2)$$

利用
$$y'|_{x=0}=3$$
,得 $C_1=3$,

于是有
$$y' = 3(1+x^2)$$

$$y' = 3(1+x^2)$$

两端再积分得

$$y = x^3 + 3x + C_2$$

利用
$$y |_{x=0} = 1$$
,得 $C_2 = 1$,

因此所求特解为

$$y = x^3 + 3x + 1$$

例2-3 求微分方程 $y'' + 2x(y')^2 = 0$ 满足初始

条件
$$y \Big|_{x=0} = 1, y' \Big|_{x=0} = -\frac{1}{2}$$
的特解.

解 方程不显含未知函数 y.

令
$$y' = p$$
, 则 $y'' = p'$,
代入方程, 得 $p' + 2xp^2 = 0$.

分离变量并积分

$$-\int \frac{\mathrm{d} p}{p^2} = 2x \, \mathrm{d} x \qquad (p \neq 0),$$

$$\frac{1}{p} = x^2 + C_1.$$

得

由条件
$$y'|_{x=0} = -\frac{1}{2}$$
, |得 $C_1 = -2$.

于是
$$y'=\frac{1}{x^2-2}$$
,

$$y = \int \frac{\mathrm{d} x}{x^2 - 2} = \frac{1}{2\sqrt{2}} \ln \left| \frac{x - \sqrt{2}}{x + \sqrt{2}} \right| + C_2.$$

再由条件 $y|_{x=0}=1$,得 $C_2=1$.

故所求特解为
$$y = \frac{1}{2\sqrt{2}} \ln \left| \frac{x - \sqrt{2}}{x + \sqrt{2}} \right| + 1.$$

例4-1 求微分方程 $1 + yy'' + y'^2 = 0$ 的通解.

解 此方程不显含变量 x. 令 $\frac{dy}{dx} = p$,

则 $\frac{d^2 y}{d x^2} = p \frac{d p}{d v}$, 代入方程得

$$1 + yp\frac{\mathrm{d} p}{\mathrm{d} y} + p^2 = 0,$$

分离变量并积分

$$\int \frac{p \, \mathrm{d} \, p}{1 + p^2} = -\int \frac{\mathrm{d} \, y}{y},$$

得
$$\frac{1}{2}\ln|1+p^2|=-\ln|y|+\frac{1}{2}\ln|C_1|$$
, $(1+p^2)y^2=C_1$,

即
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = p = \pm \frac{\sqrt{C_1 - y^2}}{y}.$$

分离变量
$$\pm \frac{y \operatorname{d} y}{\sqrt{C_1 - y^2}} = \operatorname{d} x$$
,

两边积分,得
$$\mp \sqrt{C_1 - y^2} = x + C_2$$
.

故所给方程的通解为 $(x+C_2)^2+y^2=C_1$.

例4-2 求微分方程 $y'' = (y')^3 + y'$ 的通解.

解 方程即不显含 x,也不显含 y故既属于 y'' = f(x,y')型方程,也属于 y'' = f(y,y')型方程.若看成 y'' = f(y,y')型方程,

则 设
$$\frac{\mathrm{d} y}{\mathrm{d} x} = p$$
, $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d} p}{\mathrm{d} x}$,

方程化为 $\frac{d p}{d x} = p^3 + p.$ 方程即不显含 x, 也不显含 y

分离变量,并积分 $\int \frac{\mathrm{d} p}{p(p^2+1)} = \int \mathrm{d} x$

$$\ln \left| \frac{p}{\sqrt{p^2 + 1}} \right| = x + \ln |C|, \quad \frac{p}{\sqrt{p^2 + 1}} = Ce^x,$$

即 $\frac{y'}{\sqrt{y'^2+1}} = Ce^x$,解此一阶方程较困难.

若看成y'' = f(y, y')型方程,

则设
$$\frac{\mathrm{d} y}{\mathrm{d} x} = p$$
, $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = p \frac{\mathrm{d} p}{\mathrm{d} y}$,

所给方程化为 $p\frac{dp}{dy} = p^3 + p$,

$$p = 0$$
时, $y = C$; $p \neq 0$ 时, $\frac{d p}{d y} = p^2 + 1$.

分离变量并积分
$$\int \frac{\mathrm{d} p}{p^2 + 1} = \int \mathrm{d} y$$
得

arctan
$$p = y + C_1$$
, $\frac{dy}{dx} = p = \tan(y + C_1)$.

并分离变量

$$\cot(y+C_1)dy=dx,$$

积分得所给方程的通解

$$\ln\left|\sin(y+C_1)\right|=x+\ln\left|C_2\right|,$$

$$\mathbb{P} \quad \sin(y+C_1)=C_2e^x.$$

例4-3 解初值问题
$$\begin{cases} y'' - e^{2y} = 0 \\ y|_{x=0} = 0, y'|_{x=0} = 1 \end{cases}$$

则
$$y'' = p \frac{dp}{dy}$$
, 代入方程得 $p dp = e^{2y} dy$

积分得
$$\frac{1}{2}p^2 = \frac{1}{2}e^{2y} + C_1$$

利用初始条件,得 $C_1 = 0$,

$$\therefore \quad \frac{1}{2}p^2 = \frac{1}{2}e^{2y}$$

根据 $p|_{y=0}=y'|_{x=0}=1>0$,

得
$$\frac{\mathrm{d}y}{\mathrm{d}x} = p = e^y$$

积分得
$$-e^{-y} = x + C_2$$
,

再由
$$y|_{x=0}=0$$
, 得 $C_2=-1$

故所求特解为 $1-e^{-y}=x$

例4-4 求解: $y'' = \sin y \cos y$, $y(0) = \frac{\pi}{2}$, y'(0) = -1.

解 方程中不出现 x,属于 y'' = f(y,y')型,

故令
$$y'=p$$
, 则 $y''=p\frac{\mathrm{d} p}{\mathrm{d} v}$,

代入方程得
$$p \frac{\mathrm{d} p}{\mathrm{d} y} = \sin y \cos y$$

分离变量 $p d p = \sin y \cos y d y$

两边积分得
$$\frac{1}{2}P^2 = \frac{1}{2}\sin^2 y + \frac{1}{2}C_1$$

即
$$p^2 = \sin^2 y + C_1$$

代入初始条件 $p(0) = y'(0) = -1$,
得 $C_1 = 0$
所以 $p^2 = \sin^2 y$
即 $p = \pm \sin y$

又由初始条件 $y(0) = \frac{\pi}{2}, y'(0) = -1$ 知,

要使上式满足初始条件,

上式只能取负号,故 $y' = p = -\sin y$

分离变量得

$$\frac{\mathrm{d} y}{\sin y} = -\mathrm{d} x$$

两边积分得

$$\ln\left|\tan\frac{y}{2}\right| = -x + C_2$$

代入初始条件 $y(0) = \frac{\pi}{2}$, 得 $C_2 = 0$

故所求特解为

$$|x| = -\ln\left|\tan\frac{y}{2}\right| = -\ln\left|\csc x - \cot x\right|$$

