Soluciones al examen de Teoría de autómatas y lenguajes formales del 25 de Noviembre del 2016.

1. (3 ptos.)

Calcular el AFD mínimo equivalente al siguiente autómata finito:

$$R^0 = \{\{1, 2, 3, 4\}, \{5, 6\}\}$$

$$R^1 = \{\{1, 2\}, \{3\}, \{4\}, \{5, 6\}\}$$

$$R^2 = R^1 = R^{\infty}$$

2. (3 ptos.) Sea
$$L = \{xay : x, y \in \{a, b\}^* \land |y| \neq 2|x|\}$$
. ¿Es L regular?

Sea la secuencia infinita $\langle b^ia\rangle_{i>0}$ y sean b^ja y b^ka con $j\neq k$ dos palabras cualesquiera de la misma. Consideremos además la palabra b^{2j} . Podemos observar que

 $b^ja.b^{2j} \notin L$ pues contiene una única a y las palabras a su izquierda, x, y derecha, y, son tales que |y|=2j=2|x|, mientras que

 $b^k a.b^{2j} \in L$ pues puede expresarse en la forma $xay: |y| = 2j \neq 2|x| = 2k$.

Por tanto b^ja y b^ka tendrían que llevarnos a estados diferentes en cualquier AFD que aceptara a L. Puesto que esto es cierto para cada par de palabras de la serie infinita, cualquier autómata que aceptara a L tendría que tener infinitos estados y no sería, por tanto, un AFD. Con esto queda demostrado que no existe ningún AFD que acepte a L y, por definición, que L no es regular.

3. (3 ptos.)

Sea h el homomorfismo tal que $h(0) = \underset{h}{aab}, h(1) = \underset{h}{b}a$. Dados los autómatas

calcular un AFD para cada uno de los siguientes lenguajes:

i)
$$L(A_1) \cup L(A_2)$$

4. (1 pto.)

Sea $L \subseteq \{a,b\}^*$. Sabiendo que $\{a\}$ y $\{b\}$ son lenguajes regulares y que \mathfrak{L}_3 es cerrada, entre otras operaciones, bajo CONCATENACION, derivadas y unión, demuestre que si $L \in \mathfrak{L}_3$ entonces también $P(L) \in \mathfrak{L}_3$, siendo P(L) el lenguaje formado por las palabras de L de longitud mayor o igual que 2 tras eliminar el segundo símbolo de cada una de ellas.

 $(ab)^{-1}L$ son las palabras resultantes de quitar a las palabras de L que comienzan por ab sus dos primeros símbolos. $\{a\}(ab)^{-1}L$ son, por tanto, las palabras resultantes de quitar a las palabras de L que comienzan por ab su segundo símbolo.

Por tanto
$$P(L) = \{a\}((aa)^{-1}L \cup (ab)^{-1}L) \cup \{b\}((ba)^{-1}L \cup (bb)^{-1}L)$$
. Ahora: $L \in \mathfrak{L}_3 \Rightarrow$

(por ser \mathfrak{L}_3 cerrada bajo derivadas)

$$(aa)^{-1}L, (ab)^{-1}L, (ba)^{-1}L, (bb)^{-1}L \in \mathfrak{L}_3 \Rightarrow$$

(por ser
$$\mathfrak{L}_3$$
 cerrada bajo unión) $(aa)^{-1}L \cup (ab)^{-1}L, (ba)^{-1}L \cup (bb)^{-1}L \in \mathfrak{L}_3 \Rightarrow$

(por ser
$$\mathfrak{L}_3$$
 cerrada bajo concatenación y $\{a\}, \{b\} \in \mathfrak{L}_3$)

$${a}((aa)^{-1}L \cup (ab)^{-1}L), {b}((ba)^{-1}L \cup (bb)^{-1}L) \in \mathfrak{L}_3 \Rightarrow$$

(por ser
$$\mathfrak{L}_3$$
 cerrada bajo unión)

$$\{a\}((aa)^{-1}L \cup (ab)^{-1}L) \cup \{b\}((ba)^{-1}L \cup (bb)^{-1}L) \in \mathfrak{L}_3 \Rightarrow P(L) \in \mathfrak{L}_3$$