Umetna inteligenca

Pregled metod strojnega učenja:

- Kaj je strojno učenje
- Osnovne metode strojnega učenja za napovedovanje

Kaj je strojno učenje?

Prišel bo čas, ko bomo morali pozabiti vse, kar smo se naučili. (Ramana Maharshi)

- Strojno učenje (machine learning)
- Odkrivanje zakonitosti v podatkovnih bazah (knowledge discovery in databases)
- Podatkovno rudarjenje (data mining)

Strojno učenje

- Učenje iz podatkov podatki so opisi problemov in njihove rešitve
- Modeliranje neznanega procesa, ki generira podatke.
- Rezultat je model, ki nudi razlago podatkov.
- Model (hipoteza, teorija) razlaga podatke in se lahko uporabi za:
 - napovedovanje
 - simulacijo
 - preverjanje
 - nadzor
 - diagnostiko
 - itd.
 - SKRATKA: za podporo odločanju

Strojno učenje

- Model (hipoteza, teorija) je podana v različnih oblikah:
 - pravila, odločitvena drevesa,
 - relacije,
 - enačba, sistemi enačb,
 - verjetnostne porazdelitve,
 - umetne nevronske mreže,
 - (prečiščeni) podatki npr. izbrani tipični primeri rešenih problemov
 - itd.

Odkrivanje znanja iz podatkov

- 1. Razumevanje problemskega področja:
 - metodologije,
 - cilji,
 - kriteriji uspešnosti.
- 2. Razumevanje podatkov:
 - spoznavanje,
 - preverjanje kvalitete,
 - iskanje izjem.
- 3. Priprava podatkov:
 - zbiranje,
 - vrednotenje, vizualizacija,
 - poenotenje,
 - čiščenje, filtriranje,
 - transformiranje (diskretizacija, preslikave...).

- 4. Modeliranje, strojno učenje:
 - izbor ustrezne metode za strojno učenje,
 - gradnja in interno vrednotenje modelov,
 - ponavljanje postopkov.
- 5. Vrednotenje rezultatov:
 - vrednotenje glede na različne kriterije,
 - sprejem najboljših modelov,
 - ocena celotnega procesa in odločitev o naslednjem koraku.
- 6. Uporaba:
 - kdo in kdaj bo uporabljal rezultate,
 - problem prenosljivosti modela (na nove podatke),
 - praktična uporaba znanja.

Podatkovno rudarjenje (data mining)

- napovedovanje: klasifikacija in regresija in povezovalna pravila
- rudarjenje besedil (text mining)
- rudarjenje slik (image mining)
- rudarjenje grafov (graph mining)
- rudarjenje videa
- rudarjenje glasbe

•

Pregled metod strojnega učenja

- nadzorovano učenje (supervised learning)
 - uvrščanje = klasifikacija (classification)
 - regresija (regression)
- nenadzorovano učenje (unsupervised learning)
 - razvrščanje = gručenje (clustering)
 - povezovalna pravila (association rules)
 - asociativne nevronske mreže
 - matrična faktorizacija (matrix factorization)
- učenje relacij (relational learning)
 - induktivno logično programiranje (inductive logic programming)
 - učenje sistemov (diferencialnih) enačb
- spodbujevano učenje (reinforcement learning)

Nadzorovano učenje: atributna predstavitev učnih primerov

- podana: množica učnih primerov $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N),$ kjer je vsak y_i vrednost neznane funkcije y = f(x)
- naloga: najdi funkcijo h, ki je najboljši približek funkciji f
- x_i so atributi ali značilke (vrednost ali vektor) ali neodvisne spremenljivke
- y je ciljna (target) ali odvisna spremenljivka
- funkcijo *h* imenujemo **hipoteza, teorija, model**
- primeri hipotez skozi dve množici točk:

The Data

Provided by the Institute of Oncology, Ljubljana

Post-surgery data for about 1000 breast cancer patients.

+

Recurrence and time of recurrence.

The Data

	class1	class2	menop	stage	grade	hType	PgR	inv	nLymph	cTh	hTh	famHist	LVI	ER	maxNode	posRatio	age
300	11.82	0	1	2	2	1	0	0	1	1	0	3	0	1	2	3	2
301	4.89	1	0	1	2	1	0	0	2	1	0	0	0	2	1	4	3
302	14.63	0	1	1	4	2	0	0	0	0	0	1	0	1	1	1	3
303	21.83	0	0	1	4	2	1	0	1	0	0	9	0	4	1	2	2
304	19.87	0	0	1	2	1	0	0	0	0	0	0	0	1	2	1	2
305	7.54	0	1	2	3	1	9	2	1	0	1	1	0	3	3	3	4
306	15.15	0	0	1	4	2	1	0	0	0	0	2	0	4	1	1	2
307	0.30	1	0	2	2	1	0	0	3	0	0	9	0	1	1	4	2
308	12.49	0	1	2	2	3	1	0	0	0	0	0	0	4	1	1	5
309	1.77	1	0	2	3	1	1	2	2	1	0	9	1	3	3	3	2

Each patient is described with 17 values:

- 15 patient's features
- 2 values, which describe the outcome

1 instance = 1 patient

	class1	class2	menop	stage	grade	hType	PgR	inv	nLymph	cTh	hTh	famHist	LVI	ER	maxNode	posRatio	age
300	11.82	0	1	2	2	1	0	0	1	1	0	3	0	1	2	3	2
301	4.89	1	0	1	2	1	0	0	2	1	0	0	0	2	1	4	3
302	14.63	0	1	1	4	2	0	0	0	0	0	1	0	1	1	1	3
303	21.83	0	0	1	4	2	1	0	1	0	0	9	0	4	1	2	2
304	19.87	0	0	1	2	1	0	0	0	0	0	0	0	1	2	1	2
305	7.54	0	1	2	3	1	9	2	1	0	1	1	0	3	3	3	4
306	15.15	0	0	1	4	2	1	0	0	0	0	2	0	4	1	1	2
307	0.30	1	0	2	2	1	0	0	3	0	0	9	0	1	1	4	2
308	12.49	0	1	2	2	3	1	0	0	0	0	0	0	4	1	1	5
309	1.77	1	0	2	3	1	1	2	2	1	0	9	1	3	3	3	2

- Menopause?
- Tumor stage
- Tumor grade
- Histological type
- Progesterone receptor lvl.
- Invasive tumor type
- Number of positive lymph nodes

- Chemotherapy?
- Family medical history
- Lymphovascular invasion?
- Estrogen receptor Ivl.
- Size of max. removed node
- Ratio of positive lymph nodes
- Age group

Primer: gobe

- razpoznavanje užitnih gob
- atributa (x): W (width) in H (height)
- razred (y): strupena (-), užitna (+)

IF W>2 and W<4 and H<2
THEN "edible" ELSE "poisonous"</pre>

Primer: gobe

• ali pa ...

Primer: gobe

- prostor hipotez vsebuje več hipotez
- vse prikazane hipoteze so konsistentne z učno množico
- dobra hipoteza je dovolj splošna (**general**), kar pomeni, da pravilno napoveduje vrednost y za nove (še nevidene) primere

- kako izbrati primerno hipotezo? Princip Ockhamove britve (Ockham's razor) (William o Ockham, 1320, angleški filozof):
 - najbolj verjetna hipoteza je najbolj preprosta hipoteza
 - Given two explanations of the data, all other things being equal, the simpler explanation is preferrable.

Primer

• podoben problem je tudi pri drugačnih primerih (iskanje funkcije, ki opisuje podane točke)

Vrste problemov

- klasifikacija in regresija
- klasifikacija:
 - y pripada končnem naboru vrednosti (je diskretna spremenljivka)
 - npr. $y \in \{u\check{z}itna, strupena\}, y \in \{sonce, obla\check{c}no, de\check{z}\}, y \in \{zdrav, bolan\}$
 - y imenujemo razred (angl. class)
 - primeri:
 - napovedovanje vremena iz podatkov prejšnjih let
 - diagnosticiranje novih pacientov na osnovi znanih diagnoz za stare paciente
 - klasifikacija neželene elektronske pošte

napovedovanje vračila kredita

Vrste problemov

regresija:

- y je število (običajno $y \in \mathbb{R}$, je zvezna spremenljivka)
- npr. y je temperatura,
- y imenujemo označba (angl. label) ali regresijska spremenljivka
- primeri:
 - napovedovanje razmnoževanja alg
 - medicinska prognostika
 - napovedovanje količine padavin
 - napovedovanje koncentracije ozona
 - napovedovanje gibanja cen delnic

Mid 1980s, Danish lake Glumso

zakonitosti razmnoževanja alg

Prostor hipotez

- denimo, da imamo
 - binarno klasifikacijo
 - n binarnih atributov
- sledi:
 - \rightarrow 2ⁿ različnih učnih primerov
 - \rightarrow 2^{2ⁿ} hipotez (denimo, da lahko hipotezo opišemo s tabelo napovedi za vse primere)
- primer:
 - za 10 atributov izbiramo med 10³⁰⁸ možnimi hipotezami
 - za 20 atributov izbiramo med 10^{300.000} možnimi hipotezami
 - v resnici: hipotez je že več, izračunavajo lahko isto funkcijo
- potrebujemo:
 - zavedanje o pristranosti hipotez
 - algoritme za gradnjo "dobrih" hipotez
 - metode za ocenjevanje hipotez / ocenjevanje učenja

Evalviranje hipotez

- pomembni kriteriji:
 - konsistentnost hipotez s primeri
 - razumljivost (interpretability, comprehensibility) hipotez
 - točnost hipotez:
 - točnost na učnih podatkih? (pristranost hipotez?)
 - točnost na novih podatkih?
 - točnost na testnih podatkih?
- ocenjevanje uspešnosti pri klasifikaciji:

TP – pravilno pozitivno klasificirani primeri (angl. true positive)

TN – pravilno negativno klasificirani primeri (angl. true negative)

FP – napačno pozitivno klasificirani primeri (angl. false positive)

FN – napačno negativno klasificirani primeri (angl. false negative)

klasifikacijska točnost (angl. classification accuracy):

$$CA = rac{TP + TN}{TP + TN + FP + FN} = rac{TP + TN}{N}$$

pravi (ciljni, neznani) pojem

naučena hipoteza

Pregled metod strojnega učenja

- klasifikacija:
 - Odločitvena drevesa
 - naivni Bayesov klasifikator
 - Klasifikator z najbližjimi sosedi
 - Diskriminantne funkcije
 - metoda podpornih vektorjev (SVM)
 - Naključni gozdovi
 - Umetne nevronske mreže
 - Globoke nevronske mreže

- regresija:
 - Regresijska drevesa
 - Linearna regresija
 - Lokalno utežena regresija
 - Regresijske funkcije
 - Metoda podpornih vektorjev
 - Naključni gozdovi
 - Umetne nevronske mreže
 - Globoke nevronske mreže