1. Problem Statement: MNIST HAND WRITTEN DIGITS

2. Practical Applications of this Work:

- Postal Sorting Systems: Automating mail sorting by reading handwritten digits.
- Banking and Check Processing: Automating cheque recognition and verification.
- OCR Systems: Converting handwritten documents into digital text.
- Captcha Solving: Recognizing digits in CAPTCHA challenges.
- Assistive Technologies: Helping visually impaired individuals by converting handwritten digits into speech.
- Educational Tools: Tracking and improving handwriting in education.
- Robotics: Enabling robots to read handwritten labels and interact with the environment.
- Medical Data Digitization: Automating the extraction of handwritten numbers in medical records.

3. Project Links:

- a. Dataset Link: https://www.kaggle.com/competitions/digit-recognizer/data
- b. Github Repo: https://github.com/Bhanusatish2704/HandwrittenDigitRecognizer

4. Exploratory Data Analysis:

1. Data Overview

- The MNIST dataset consists of 60,000 training images and 10,000 test images of handwritten digits (0-9), with each image having a size of 28x28 pixels.
- Training set shape: (60000, 28, 28)
- Test set shape: (10000, 28, 28)
- The dataset is divided into training (80%) and validation (20%) sets after flattening the images for training.

2. Visualization

We visualize a few samples of the handwritten digits to understand the dataset better.

Example of a few images displayed with their labels: python

Copy code

```
plt.figure(figsize=(10, 5))
for i in range(10):
    plt.subplot(2, 5, i + 1)
    plt.imshow(X_train[i], cmap='gray')
    plt.title(f"Label: {y_train[i]}")
    plt.axis('off')
```

```
plt.show()
```

•

3. Data Preprocessing

- Flattening: Images are flattened into vectors of size 784 (28x28) for each image.
- Normalization: Scaling pixel values from 0-255 to 0-1 to improve model performance.
- Shape: Flattened training set shape is (60000, 784), and test set shape is (10000, 784).
- Train/Test Split: A further split of 80/20 is applied for training and validation sets.

4. Model Evaluation

- KNN (K-Nearest Neighbors):
 - KNN model is trained with k=3 neighbors.
 - Validation Accuracy: ~97.27%
 - Confusion Matrix: Confirms correct digit predictions with high precision.
 - Classification Report: Shows metrics such as precision, recall, and F1-score for each class.

```
python
Copy code
knn_model = KNeighborsClassifier(n_neighbors=3)
knn_model.fit(X_train_split, y_train_split)
y_val_pred_knn = knn_model.predict(X_val)
```

•

- SVM (Support Vector Machine):
 - o SVM model uses a linear kernel.
 - Validation Accuracy: ~93.52%
 - Confusion Matrix: Highlights correct and incorrect predictions.
 - Classification Report: Shows metrics for each class, with a macro and weighted average.

```
python
Copy code
svm_model = SVC(kernel='linear')
svm_model.fit(X_train_split, y_train_split)
y_val_pred_svm = svm_model.predict(X_val)
```

•

- Test Accuracy:
 - KNN Test Accuracy: ~97.2%SVM Test Accuracy: ~93.5%

5. Confusion Matrices

- Both models (KNN and SVM) have confusion matrices to display misclassified digits.
- KNN Confusion Matrix: Using sns.heatmap() for visualization.
- SVM Confusion Matrix: Similarly, SVM confusion matrix can be visualized using sns.heatmap().

Example:

```
python
Copy code
sns.heatmap(confusion_matrix(y_val, y_val_pred_knn), annot=True,
fmt='d', cmap='Blues')
plt.title("KNN Confusion Matrix")
plt.show()
```

6. Key Insights

- KNN Model: Higher accuracy (~97%) compared to SVM. Better suited for digit classification with fewer support vectors.
- SVM Model: Slightly lower accuracy (~93.5%), but still strong with the ability to handle high-dimensional data effectively.
- Classification Performance: Both models perform well in terms of precision, recall, and F1-score for most digits, with minor misclassifications in some numbers like '2', '5', and '8'.

7. Further Steps

- Exploring more advanced models like Deep Learning (CNNs) for improved accuracy.
- Hyperparameter tuning for both KNN and SVM models to further enhance performance..

5. Data Preprocessing techniques:

Reshape: Flatten 28x28 images to 784-length vectors.

Normalize: Scale pixel values to the [0, 1] range.

Train/Test Split: Split data into training and test sets (80/20).

One-Hot Encoding: Convert class labels to one-hot encoded format.

Augmentation (for CNN): Rotate, zoom, and shift images to create diverse training data.

Class Balancing: Adjust for class imbalance by oversampling or using class weights.

Noise Reduction: Apply filters to smooth images and reduce noise.

PCA: Reduce dimensionality to speed up training (optional).

Shuffling: Shuffle data to avoid order-related biases.

6. ML Models Applied:

- 1. K-Nearest Neighbors (KNN)
- Accuracy (Validation): ~97.27%
- Description: Classifies based on the majority label of k nearest neighbors. Simple but computationally expensive during prediction.

2. Support Vector Machine (SVM)

- Accuracy (Validation): ~93.52%
- Accuracy (Test): ~93.51%
- Description: Finds the optimal hyperplane to separate classes. Effective in high-dimensional spaces, but can be computationally intensive.

3. Logistic Regression

- Accuracy (Validation): ~91.8% (approx.)
- Description: A linear classifier that works well for simple classification tasks, though it
 may not perform as well on more complex datasets like MNIST compared to KNN or
 SVM.

7. BEST MODEL APPLIED:

In summary, KNN achieved the highest validation accuracy (~97%), followed by SVM (~93%), and Logistic Regression (lower, ~91%).

8. Table Comparing Performance of different models:

Model	Validation Accuracy	Test Accuracy	Precision	Recall	F1- Score	Notes
K-Nearest Neighbors (KNN)	~97.27%	N/A	~97%	~97%	~97%	Simple, easy to implement; computationally expensive for large datasets.
Support Vector Machine (SVM)	~93.52%	~93.51%	~93-95%	~90- 97%	~91- 94%	Effective in high- dimensional space, but computationally expensive.
Logistic Regression	~91.8%	N/A	~90-92%	~90- 92%	~90- 92%	Less effective for MNIST compared to KNN and SVM. Linear model.

9. Best model and why:

K-Nearest Neighbors (KNN)

- Validation Accuracy: ~97.27%
- Why it's the best:
 - Highest Accuracy: KNN achieved the highest validation accuracy compared to other models (SVM and Logistic Regression).
 - Simplicity: Easy to implement and understand; makes predictions based on the majority class of k nearest neighbors.
 - Interpretability: The decision-making process is transparent—based on the proximity of data points.
 - **Suitability for MNIST**: Works well with MNIST, as it doesn't require complex training, and performs well on the dataset's relatively simple structure.

• Limitations:

- Computational Cost: KNN can be slow during prediction time as it calculates distances to all training data points.
- Sensitive to Feature Scaling: Requires proper normalization (e.g., scaling pixel values) to perform optimally.

10. Extension and Future Work:

Future work includes optimizing model hyperparameters, exploring deep learning models like CNNs for improved accuracy, and testing on diverse datasets. Additionally, integrating hybrid approaches, real-time applications, and feature engineering techniques can enhance performance and scalability.