Algebre Iniziali, Coalgebre Terminali e Punti Fissi di un Funtore

Candidato:
Gabriele Rastello

Relatore: Alessandro Ardizzoni

13 Aprile 2023

Gabriele Rastello Università di Torino

Il Punto di Partenza

Teorema (Knaster Tarski, 1955)

Sia (L,\leq) un reticolo completo e $f\colon L\to L$ una funzione monotona allora

 $\inf A$, $\sup B$

dove

$$A = \{x \in L : fx \le x\}, \quad B = \{x \in L : x \le fx\}$$

sono punti fissi di f.

A è l'insieme dei **pre-punti fissi di** f, B quello dei **post-punti fissi di** f.

Il Punto di Partenza

Teoria degli Ordini	Teoria delle Categorie
preordine L	categoria 🖋
funzione monotona f	funtore <i>F</i>
pre-punto fisso $fx \le x$	<i>F</i> -algebra $FX \rightarrow X$
post-punto fisso $x \le fx$	F-coalgebra $X o FX$
minimo pre-punto fisso inf A	algebra iniziale μF
massimo post-punto fisso sup B	coalgebra terminale νF

F-algebre

Definizione

Una F-**algebra** è un oggetto $A \in \mathscr{A}$ assieme ad una freccia

$$\alpha: FA \rightarrow A$$
.

Esempio

Per il funtore FX = X + 1 su Set le F-algebre sono strutture del tipo

$$X+1 \rightarrow X$$

cioè insiemi dotati di una costante e un'operazione unaria.

Gabriele Rastello

F-coalgebre

Definizione

Una F-coalgebra è un oggetto $B \in \mathscr{A}$ assieme ad una freccia

$$\beta: B \to FB$$
.

Esempio

Per il funtore FX = X + 1 su Set una F-coalgebra è un sistema con terminazione.

Morfismi di F-(co)algebre

Definizione

Un morfismo di F-(co)algebre è una freccia

$$f: A \rightarrow A'$$
 o $g: B \rightarrow B'$

di A tale che

$$FA \xrightarrow{\alpha} A$$
 $B \xrightarrow{\beta} FB$

$$\downarrow_{Ff} \qquad \downarrow_{f} \qquad 0 \qquad \downarrow_{g} \qquad \downarrow_{Fg}$$

$$FA' \xrightarrow{\alpha'} A' \qquad B' \xrightarrow{\beta'} FB'$$

commuti. In questo modo otteniamo AlgF, la categoria delle F-algebre, e CoalgF, la categoria delle F-coalgebre.

- 4日 > 4日 > 4目 > 4目 > 4目 > 990

Algebre Iniziali e Coalgebre Terminali

Definizione

In una categoria $\mathscr A$ un oggetto A è **iniziale** se per ogni $B \in \mathscr A$ esiste un'unica freccia $A \to B$, è **terminale** se per ogni $B \in \mathscr A$ esiste un'unica freccia $B \to A$.

Definizione

Una F-algebra iniziale, μF , è un oggetto iniziale in AlgF.

Una F-(co)algebra terminale, ν F, è un oggetto terminale in CoalgF.

Algebre Iniziali e Coalgebre Terminali

Esempio

L'algebra iniziale per FX=X+1 è $\mathbb N$ con costante 0 e l'operazione di successore.

Esempio

La coalgebra terminale per FX = X + 1 è il sistema con terminazione

$$0 \longleftarrow 1 \longleftarrow 2 \longleftarrow \cdots$$

II Lemma di Lambek

Un **punto fisso** per un funtore F è un oggetto $A \in \mathscr{A}$ tale che $A \cong FA$.

Lemma (Lambek, 1968)

L'algebra iniziale μF e la coalgebra terminale νF , quando esistono, sono punti fissi di F.

Osservazione

Il funtore insieme delle parti \mathcal{P} su Set non ha punti fissi e quindi non ammette algebra iniziale o coalgebra terminale.

Ricorsione ed Coricorsione

Definizione

Una freccia $f: \mu F \to A$ di $\mathscr A$ è **specificata ricorsivamente** se esiste una struttura di F-algebra su A che rende f un morfismo di F-algebre.

Esempio

Sia $FX=X\times X+1$ su Set. L'algebra terminale μF è formata dagli alberi binari finiti. Il morfismo unico da μF all'algebra $\alpha:\mathbb{N}\times\mathbb{N}+1\to\mathbb{N}$ data da $\alpha=[\alpha_1,\alpha_0]$ con

$$lpha_0 = 0$$
 $lpha_1(n, m) = 1 + \max\{n, m\}$

assegna ad ogni albero la sua altezza.

40 4 40 4 3 4 3 4 3 4 3 4 9 9

Ricorsione e Coricorsione

Teorema (Ricorsione Primitiva)

Per ogni freccia $\alpha: F(A \times \mu F) \to A$ esiste un'unica $h: \mu F \to A$ tale che

$$F(\mu F) \xrightarrow{\iota} \mu F$$

$$\downarrow^{F\langle h, id_{\mu F} \rangle} \qquad \downarrow^{h}$$

$$F(A \times \mu F) \xrightarrow{\alpha} A$$

commuti.

Come corollario otteniamo il classico teorema di ricorsione con parametri su Set.

Gabriele Rastello Università di Torino

Ricorsione e Coricorsione

Definizione

Una freccia $g: B \to \nu F$ di $\mathscr A$ è **specificata coricorsivamente** se esiste una struttura di F-coalgebra su B che rende g un morfismo di F-coalgebre.

Esempio

Sia FX = X + 1. Il morfismo unico dalla seguente coalgebra su $\nu F \times \nu F$

$$(0,2) \longleftarrow (1,2) \longleftarrow (2,2) \longleftarrow \cdots$$

$$\downarrow$$

$$(0,1) \longleftarrow (1,1) \longleftarrow (2,1) \longleftarrow \cdots$$

$$\downarrow$$

$$(0,0) \longleftarrow (1,0) \longleftarrow (2,0) \longleftarrow \cdots$$

in νF è l'addizione.

Ricorsione e Coricorsione

Teorema (Coricorsione Primitiva)

Per ogni freccia $\beta: B \to F(B + \nu F)$ esiste un'unica $h: B \to \nu F$ tale che

$$B \xrightarrow{\beta} F(B + \nu F)$$

$$\downarrow h \qquad \qquad \downarrow F[h, id_{\nu F}] \cdot$$

$$\nu F \xrightarrow{\tau} F(\nu F)$$

commuti.

13 / 20

Gabriele Rastello Università di Torino 13 Aprile 2023

Induzione e Bisimulazione

Teorema (Principio di Induzione)

L'algebra iniziale μF non ha sottoalgebre proprie.

Esempio

Sia FX = X + 1. Non ci sono sottoinsiemi di $\mathbb N$ contenenti 0 e chiusi per successore diversi da $\mathbb N$ stesso.

Teorema (Principio di Coinduzione)

Non ci sono bisimulazioni proprie sulla coalgebra terminale νF .

Esempio

Sia FX = X + 1. Non ci sono due stati differenti di νF che si comportano nello stesso modo.

Teorema di Adámek

Teorema (Kleene)

Se P è un ordine parziale completo con un minimo globale \bot allora ogni funzione continua $f: P \to P$ ha un punto fisso $\mu f = \sup_{n < \omega} f^n(\bot)$.

Generalizzando si ottiene il Teorema di Adámek.

Teorema (Adámek, 1974)

Se $\mathscr A$ ha un oggetto iniziale 0, ω -colimiti e F preserva gli ω -colimiti allora F ha un'algebra iniziale e μF è il colimite dell' ω -catena dell'algebra iniziale

$$0 \xrightarrow{\quad !\quad } F0 \xrightarrow{\quad F!\quad } F^20 \xrightarrow{\quad F^2!\quad } F^30 \xrightarrow{\quad F^3!\quad } \cdots.$$

4□ > 4□ > 4 = > 4 = > = 90

Teorema di Adámek

Teorema

Se $\mathscr A$ ha un oggetto terminale 1, ω -limiti e F preserva gli ω -limiti allora F ha una coalgebra terminale e νF è il limite dell' ω op-catena della coalgebra terminale

$$1 \longleftarrow F1 \longleftarrow F^2 1 \longleftarrow F^3 1 \longleftarrow \cdots$$

Osservazione

Le ipotesi del Teorema di Adámek per le coalgebre sono più difficili da soddisfare. Ad esempio $\mathcal{P}_{\rm f}$, il funtore insieme delle parti finito, non preserva gli ω -limiti.

Iterazione Transfinita

Le catene si possono estendere oltre ad ω .

$$egin{array}{lll} W_0 = 0 & {
m caso \ base} & V_0 = 1 \ W_{j+1} = FW_j & {
m j \ ordinale \ successore} & V_{j+1} = FV_j \ W_j = {
m colim}_{i < j} \, W_i & {
m j \ ordinale \ limite} & V_j = {
m lim}_{i < j} \, V_i \ \end{array}$$

Teorema (Adámek, 1974)

Se la catena della (co)algebra (terminale) iniziale converge, allora F ha una (co)algebra (terminale) iniziale.

17/20

Gabriele Rastello Università di Torino 13 Aprile 2023

F-algebre: condizioni equivalenti

Definizione

Una classe di monomorfismi \mathcal{M} è **liscia** se $Sub_{\mathcal{M}}(A)$ è un preordine con sup di catene calcolati come colimiti in \mathscr{A} .

Teorema

Se \mathscr{A} ha una classe \mathscr{M} di monomorfismi lisci, ogni oggetto ha solo un insieme di \mathscr{M} -sottoggetti e F preserva \mathscr{M} allora le seguenti condizioni sono equivalenti.

- 1. La catena dell'algebra iniziale di F converge.
- 2. F ha un'algebra iniziale.
- 3. F ha un punto fisso.
- 4. F ha un \mathcal{M} -pre-punto fisso.

F-coalgebre: condizioni sufficienti

Osservazione (Adámek, Koubek, 1995)

Esiste un funtore F su Set che ha un punto fisso, ma non una coalgebra terminale.

Definizione

Sia λ un cardinale regolare. Un funtore F su Set è λ -accessibile quando per ogni $x \in FX$ esiste un $m : M \rightarrowtail X$ tale che $|M| < \lambda$ e $x \in \text{im}(Fm)$.

Teorema (Worrell, 2005)

La catena della coalgebra terminale di un funtore λ -accessibile converge in $\lambda + \lambda$ passi.

F-coalgebre: condizioni sufficienti

Teorema (Adámek, Koubek, 1995)

Sotto GCH, se F su Set ha un punto fisso di cardinalità λ e uno di cardinalità λ^+ allora F ha una coalgebra terminale.

Teorema

L'ipotesi del continuo (CH) vale se e solo se ogni funtore su Set con un punto fisso di cardinalità \aleph_0 e uno di cardinalità \aleph_1 ha una coalgebra terminale.