Electricité

Maxime Muller

May 30, 2025

		Abstract
Ceci est une tra	anscription des cours donné p	oar Xavier Ovido au club Phythème sur l'Electrici

Contents

1	Bobine et dipole RL			
	1.1 La bobine	2		
	1.2 Le dipôle RL			
2	Oscillation libre dans un circuit RLC	5		
	2.1 Décharge oscillante d'un condensateur dans une bobine idéale	5		
	2.2 Décharge dans un résistor	8		
3	Circuit linéaire en régime sinusoïdal forcé (RSF)			
	3.1 Notation	12		
	3.2 Indépendance complexe	13		
	3.3 Etude d'un circuit RLC en RSF			
4	Filtrage linéaire			
	4.1 Principe du filtrage linéaire	20		
	4.2 Filtre du 1er ordre			
	4.3 Filtre du deuxième ordre			

Chapter 1

Bobine et dipole RL

1.1 La bobine

1.1.1 Def et symbole

Definition 1.1.1 (Bobine). Une bobine est constituée par un enroulement d'un fil autour d'un conducteur.

Symbole:

On a r la resistance interne de la bobine, $r \sim \text{quelques}\Omega$

Pour une bobine idéale, $r = 0\Omega$

On a aussi L : inductance de la bobine, il s'agit d'une grandeur positive qui ne dépend que de la géomérrie de la bobine.

1.1.2 Modelisation d'une bobine

On peut montrer que :

$$U_{AB} = L\frac{di}{dt} + ri$$

Le terme $\frac{di}{dt}$ est caractéristique d'une bobine.

1.1.3 Exploitation de la relation

On suppose que $\approx 0\Omega \Rightarrow U_{AB} = L\frac{di}{dt}$.

1. Si
$$i(t) \uparrow \Rightarrow \frac{di}{dt} > 0 \Rightarrow U_{AB} > 0$$

2. Si
$$i(t) \downarrow \Rightarrow \frac{di}{dt} < 0 \Rightarrow U_{AB} < 0$$

3. Plus l'intensité varie rapidement dans le circuit, plus $\|U_{AB}\|$ aux bornes de la bobine est élevée.

2

Puissance et énergie aux bornes d'une bobine idéale

Par définition, on a : $p(t) = U(t) \cdot i(t)$

$$p(t) = u(t) \cdot i(t) \tag{1.1}$$

$$=L\frac{di}{dt}\cdot i(t) \tag{1.2}$$

$$= \frac{d}{dt} \left[\frac{1}{2} Li^2(t) \right] \tag{1.3}$$

$$=\frac{dE_U}{dt}\tag{1.4}$$

L'énergie emgasinée par la bobine est donc:

$$E_U(t) = \frac{1}{2}Li^2$$

Rappel: pour un condensateur on a : $P(t) = u_c(t) \cdot i_c(t) = u_c(t) \cdot C \frac{dU_c}{dt} = \frac{d}{dt} \left[\frac{1}{2} C u_c^2(t) \right]$. La tension est continue alors que l'intensité est discontinue.

Le dipôle RL 1.2

à t=0s, on ferme l'intérupteur. D'après la loi des mailles : $\sum_k u_k E_k = 0$ le long d'une maille orientée.

$$\Rightarrow E - u_k - u_l = 0 \tag{1.5}$$

$$\Leftrightarrow E = u_r + u_l \tag{1.6}$$

$$\Leftrightarrow E = R_i(t) + L\frac{di}{dt} \tag{1.7}$$

$$\Leftrightarrow \frac{di}{dt} + \frac{R}{L}i(t) = \frac{E}{L} \tag{1.8}$$

Or $U_l = L\frac{di}{d} \Rightarrow [L] = v \times s \times A^{-1}$ et $U_r = Ri \Rightarrow [R] = V \cdot A^{-1}$ D'ou on a : $\left[\frac{L}{R}\right] = s$ On pose : $\tau = \frac{L}{R}$ On a donc : $\frac{di}{dt} + \frac{i}{\tau} = \frac{E}{L}$

1. SSH: $\frac{di}{dt} + \frac{i}{\tau} = 0 \Rightarrow i_H(t) = \lambda e^{-\frac{t}{\tau}}$

2. SP: $\frac{di}{dt} = 0 \Rightarrow i_P(t) = \frac{E\tau}{L} = \frac{E}{R}$

3. SG: $i(t) = Ae^{-\frac{t}{\tau}} + \frac{E}{R}$

D'après les CI on a :

$$i(0) = 0 \Rightarrow 0 = \lambda + \frac{E}{R} \tag{1.9}$$

$$\Rightarrow \lambda = -\frac{E}{R} \tag{1.10}$$

$$\Rightarrow \lambda = -\frac{E}{R}$$

$$\Rightarrow i(t) = \frac{E}{R} (1 - e^{-\frac{t}{\tau}})$$

$$(1.10)$$

Que vaut alors la tension?

$$U_{l} = L \frac{di}{dt} \Rightarrow U_{l} = L \frac{d}{dt} \left[\frac{E}{R} (1 - e^{-\frac{t}{\tau}}) \right]$$

$$= \frac{EL}{R} \frac{d}{dt} \left[1 - e^{-\frac{t}{\tau}} \right]$$

$$= \frac{EL}{R} \cdot \frac{1}{\tau} e^{-\frac{t}{\tau}} (\text{ or } \frac{1}{\tau} = \frac{R}{L})$$

$$= \frac{EL}{R} \cdot \frac{R}{L} e^{-\frac{t}{\tau}}$$

$$= Ee^{-\frac{t}{\tau}}$$

Corollary 1.2.1 (Remarque). $U_l = L \frac{di}{dt} \approx L \frac{\Delta i}{\Delta t}$ On suppose que i passe de 1A à 0A en 1ms, $L \approx 1H$. $\Rightarrow U_l \approx 1 \times (\frac{0-1}{10^{-3}}) \approx -1000V$

Corollary 1.2.2 (Bobines en série). On prend deux bobines en série : L_1 et L_2 avec aux bornes des tensions U_1 et U_2 . On cherche la bobine L_{eq} , avec aux bornes la tension U, équivalente aux deux bobines en série. On a : $U = U_1 + U_2 = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} = (L_1 + L_2) \frac{di}{dt}$. D'ou on a : $L_{eq} = L_1 + L_2$

Corollary 1.2.3 (Bobines en dérivation). On prend deux bobines en dérivation : L_1 et L_2 traversées par des intensités i_1 et i_2 . On cherche la bobine L_{eq} , traversée par une intensité i, équivalente aux deux bobines en dérivation. On a : $U = U_1 = U_2$

$$i = i_1 + i_2$$

$$\Rightarrow \frac{U}{L_{eq}} = \frac{di}{dt} = \frac{di_1}{dt} + \frac{di_2}{dt} = \frac{U_1}{L_1} + \frac{U_2}{L_2} = (\frac{1}{L_1} + \frac{1}{L_2})U$$

$$\Rightarrow \frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$$

Chapter 2

Oscillation libre dans un circuit RLC

2.1 Décharge oscillante d'un condensateur dans une bobine idéale

2.1.1 Expression de la tension

Figure 2.1: Schema de montage

A t = Os, on a $u_c(0) = E$ et i(0) = 0A et on bascule K en position 2.

Figure 2.2: Schema du montage à t=0s

D'après la loi des mailles :

$$\begin{split} u_L + u_C &= 0 \\ \Leftrightarrow L \frac{di}{dt} + u_C &= 0 \\ \text{or } i &= C \frac{du_C}{dt} \\ \Leftrightarrow LC \frac{d}{dt} \left[\frac{d}{dt} u_c \right] + u_c &= 0 \\ \text{On pose } \omega_0^2 &= \frac{1}{LC} \\ \Rightarrow \frac{d^2 u_c}{dt^2} + \omega_0^2 u_c &= 0 \end{split}$$

On cheche l'unité de [RC] = ?

$$\begin{cases} u_l = L \frac{di}{dt} \Rightarrow [L] = V \cdot s \cdot A^{-1} \\ i = C \frac{du_c}{dt} \Rightarrow [C] = A \cdot s \cdot V^{-1} \end{cases} \Rightarrow [LC] = s^2 \Rightarrow [\omega_0] = s^{-1}$$

Theorem 2.1.1 (Résolution d'équations différentielles du second ordre). On considère une ED du second ordre, SSM, à coeficients constants :

$$ay'' + by' + cy = 0, a \neq 0$$

A cette ED, on associe le polynome caractéristique :

$$ar^2 + br + c = 0 \Rightarrow \Delta = b^2 - 4ac$$

3 cas :

• Cas 1 : $\Delta > 0$ $\exists, r_1, r_2 \in \mathbb{R}$ solutions de léquations.

$$\begin{cases} r_1 = \frac{-b + \sqrt{\Delta}}{2a} \\ r_2 = \frac{-b - \sqrt{\Delta}}{2a} \end{cases}$$

La solution de l'ED est : $y = Ae^{r_1x} + Be^{r_2x}$, avec A et B à déterminer.

• Cas $2:\Delta=0$ $\exists !r \text{ solution}: r=-\frac{b}{2a}.$ La solution de l'ED est : $y=(A'x+B')\,e^{rx}$ avec A' et B' à déterminer.

• Cas $3: \Delta < 0$ $\exists r_3, r_4 \in \mathbb{C}:$

$$\begin{cases} r_3 = \frac{-b - j\sqrt{-\Delta}}{2a} \\ r_4 = \frac{-b + j\sqrt{-\Delta}}{2a} \end{cases} \text{ avec } j^2 = -1$$

On a alors:

$$y = A''e^{r_3x} + B''e^{r_4x}$$

$$= \left(A'' \exp\left[\frac{-j - \sqrt{-\Delta}}{2a}\right] + B''e^{\frac{-j + \sqrt{-\Delta}}{2a}}\right)e^{-\frac{b}{2a}x}$$

$$= \left(\alpha \cos\left(\frac{\sqrt{-\Delta}}{2a}x\right) + \beta \sin\left(\frac{\sqrt{-\Delta}}{2a}x\right)\right)e^{-\frac{b}{2a}x}$$

On a:

$$\frac{d^2 u_C}{dt^2} + \omega_0^2 u_C = 0$$

L'équation charactéristique est donc :

$$\Rightarrow r^{2} + \omega_{0}^{2} = 0$$

$$\Rightarrow \Delta = -4\omega_{0}^{2}$$

$$\Rightarrow r = \pm j \frac{\sqrt{4\omega_{0}^{2}}}{2} = \pm j\omega_{0}$$

$$\Rightarrow u_{c}(t) = A\cos(\omega_{0}t) + B\sin(\omega_{0}t)$$

$$\Rightarrow u_{c}(t) = A\cos\omega_{0}t + B\sin\omega_{0}t$$

Pour trouver A et B, on utilise les conditions initiales :

$$\begin{cases} u_c(0) = E \\ i(0) = C \frac{d}{dt}(u_c)(0) = 0 \end{cases}$$

$$i(t) = C [-A\omega_0 \sin \omega_0 t + B\omega_0 \cos \omega_0 t]$$

$$i(0) = 0 = CB\omega_0 \Rightarrow B = 0$$

De plus, $u_c(0) = E = A$

$$\Rightarrow u_C(t) = E \cos(\omega_0 t)$$

On sait que la période propre de l'oscillation T_0 est celle t.q. :

$$\begin{split} u_c(t+T_0) &= u_c(t) \\ \Rightarrow & \cos(\omega_0(t+T_0)) = \cos(t) \\ \Rightarrow & \cos(\omega_0t+\omega_0T_0) = \cos(t) \\ \text{Or cos est } 2\pi \text{ périodique} \\ \Rightarrow & \omega_0T_0 = 2\pi \Rightarrow \omega_0 = \frac{2\pi}{T_0} = 2\pi f_0 \\ \text{Or, } \omega_0 &= \frac{1}{\sqrt{LC}} = \frac{2\pi}{T_0} \\ \Rightarrow & T_0 = 2\pi\sqrt{LC}, \text{ On appelle } T_0 \text{ la période propre de l'oscillateur.} \end{split}$$

Figure 2.3: Schema de $u_c($ en V) en fonction du temps

Et pour i(t)?

$$i(t) = C\frac{d}{dt}u_c(t) = C\frac{d}{dt}E\cos(\omega_0 t)$$

$$i(t) = -\omega_0 CE\sin\omega_0 t$$

$$= -\frac{CE}{\sqrt{LC}}\sin(\omega_0 t)$$

$$i(t) = -\sqrt{\frac{C}{L}}E\sin(\omega_0 t)$$

$$i(t) = -\sqrt{\frac{C}{L}}E\cos(2\pi - \omega_0 t)$$

Lorque $u_c(t) = 0$, i(t) est maximale ou minimale. On dit que $u_c(t)$ et i(t) sont en quadrature de phase.

Figure 2.4: Représentation de u_c et i en fonction du temps

2.1.2 Approche énergétique

Pour tout instant t, E_{tot} est la somme des énergies enmagasinées par la bobine et le condensateur.

$$E_{em} = E_c + E_m$$

$$= \frac{1}{2}cu_c^2 + \frac{1}{2}Li^2$$

$$\operatorname{Or} i(t) = C\frac{d}{dt}u_c(t)$$

$$\frac{d}{dt}E_{em} = \frac{d}{dt}\left[\frac{1}{2}Cu_c^2 + \frac{1}{2}Li^2\right]$$

$$= \frac{1}{2}C2u_c\frac{d}{dt}u_c + \frac{1}{2}L2i\frac{d}{dt}i$$

$$= \left[u_c + LC\frac{d^2u_c}{dt^2}\right] \cdot i$$

$$= 0 \text{ (car le membre de gauche dans le produit est nul)}$$

$$\Rightarrow E_{em} = \frac{1}{2}Li^2 + \frac{1}{2}Cu_c^2 = \text{ cste}$$

Remark (Parallèle avec la mécanique). On peut faire un parallèle avec les oscillateurs harmoniques en mécanique (par exemple, la masse au bout du ressort) :

$$E_m = \frac{1}{2}m\dot{x} + \frac{1}{2}kx^2$$

Figure 2.5: Analogie avec le ressort

2.2 Décharge dans un résistor

A t = 0s, on bascule l'interrupteur en position 2. On a :

$$u_c(0) = E$$
$$i(0) = 0$$

Figure 2.6: Schema du montage

Figure 2.7: Schema du montage à t = 0s

D'après la loi des mailles :

$$\begin{array}{rcl} u_L + u_R + u_C & = & 0 \\ \Leftrightarrow u_C + ri + L \frac{di}{dt} & = & 0 \\ \\ \mathrm{Or} : u_C = \frac{q}{C} \ \mathrm{et} \ i & = & \frac{dq}{dt} \Rightarrow i = C \frac{du_c}{dt} \\ \Leftrightarrow LC \frac{d^2u_c}{dt^2} + RC \frac{du_c}{dt} + u_c & = & 0 \end{array}$$

Notation. A partir de maintenant on notera :

$$u = u_c \Rightarrow \dot{u} = \frac{du_c}{dt} \wedge \ddot{u} = \frac{d^2u_c}{dt^2}$$

On a:

$$\ddot{u} + \frac{R}{L}\dot{u} + \frac{1}{LC}u = 0$$

Notation. On pose : $\omega_0^2 = \frac{1}{LC}$ et $2\lambda = \frac{R}{L}$.

D'où:

$$\ddot{u} + 2\lambda\dot{u} + \omega_0^2 u = 0$$

On associe l'équation caractéristique :

$$r^{2} + 2\lambda r + \omega_{0}^{2} = 0$$

$$\Rightarrow \Delta = 4\lambda^{2} - 4\omega_{0}^{2} = 4(\lambda^{2} - \omega_{0}^{2})$$

Remark (Régime critique). Si $\Delta=0$ alors, on a le régime critique : $\lambda=\omega_0$. Alors : $\frac{R}{2L}=\frac{1}{\sqrt{LC}}\Rightarrow R=2\sqrt{\frac{L}{C}}$. C'est la valeur de la résistance pour laquelle la décharge et la plus rapide.

On traite alors le cas où : $\Delta < 0$.

$$r = \frac{-2\lambda \pm 2j\sqrt{\omega_0^2 - \lambda^2}}{2}$$
$$r = -\lambda \pm j\sqrt{\omega_0^2 - \lambda^2}$$

On a un régime pseudo périodique :

$$u(t) = A \cos \left(\sqrt{\omega_0^2 - \lambda^2} t \right) e^{-\lambda t} + B \sin \left(\sqrt{\omega_0^2 - \lambda^2} t \right) e^{-\lambda t}$$

On trouve des valeurs des constantes inconnues en utilisant les conditions initiales :

$$u(0) = E \Rightarrow A = E$$

$$i(t) = \frac{du}{dt}$$

$$= \frac{d}{dt} \left[e^{-\lambda t} \left(E \cos\left(\sqrt{\omega_0^2 - \lambda^2} t\right) B \sin\left(\sqrt{\omega_0^2 - \lambda^2}\right) \right) \right]$$

$$= -\lambda e^{\lambda t} \left(E \cos\left(\sqrt{\omega_0^2 - \lambda^2} t\right) B \sin\left(\sqrt{\omega_0^2 - \lambda^2}\right) \right)$$

$$+ e^{-\lambda t} \left(-E \sqrt{\omega_0^2 - \lambda^2} \sin\left(\sqrt{\omega_0^2 - \lambda^2}\right) + B \sqrt{\omega_0^2 - \lambda^2} \cos\left(\sqrt{\omega_0^2 - \lambda^2}\right) \right)$$

$$Or: i(0) = 0$$

$$\Rightarrow B \sqrt{\omega_0^2 - \lambda^2} - \lambda E = 0$$

$$\Rightarrow B = \frac{\lambda E}{\sqrt{\omega_0^2 - \lambda^2}}$$

On peut définir une pseudo période propre :

$$T_0 = \frac{2\pi}{\sqrt{\omega_0^2 - \lambda^2}}$$

Figure 2.8: Représentation de u_c en fonction du temps

D'ou on a :

$$u(t) = \left[E \cos \left(\sqrt{\omega_0^2 - \lambda^2 t} \right) + \frac{\lambda E}{\sqrt{\omega_0^2 - \lambda^2}} \sin \left(\sqrt{\omega_0^2 - \lambda^2} t \right) \right]$$

Aspect énergétique

Definition 2.2.1 (L'énergie mécanique en électromagnétique). On définit ainsi l'énergie électro mag-

nétique du système :

$$E_{em} = E_e + E_m$$
$$= \frac{1}{2}Cu^2 + \frac{1}{2}Li^2$$

Corollary 2.2.1 (Variation de l'énergie électromagnétique). Dans le cas de la décharge dans un résistor, on a :

$$\frac{dE_{em}}{dt} = -Ri^2$$

Donc l'énergie du système tends vers 0.

Proof.

$$E_{em} = \frac{1}{2}Cu^2 + \frac{1}{2}Li^2$$

$$\Rightarrow \dot{E}_{em} = \frac{dE_{em}}{dt}$$

$$= \frac{d}{dt}\left[\frac{1}{2}Cu^2\right] + \frac{d}{dt}\left[\frac{1}{2}Li^2\right]$$

$$= \frac{1}{2}Cu\dot{u}2 + \frac{1}{2}L2i\dot{i}$$

$$= i\left[L\frac{di}{dt} + u\right]$$

$$= i\left[LC\ddot{u} + u\right]$$

Or, d'après la loi des mailles : $LC\ddot{u}+u=-RC\dot{u}=-Ri$ $\Rightarrow \dot{E}_{em} = -Ri^2=-P_J<0\,\Box$

*

Chapter 3

Circuit linéaire en régime sinusoïdal forcé (RSF)

3.1 Notation

Definition 3.1.1 (Sinusoïdal). Une sinsoidal est une fonction qui peut s'écrire :

$$x(t) = X_m \cos(\omega t + \varphi)$$

Avec X_m l'amplitude, ω la pulsation et φ la phase à l'origine.

Definition 3.1.2 (La valeur moyenne et valeur efficace). La valeur moyenne d'une sinusoïdale est donnée par la formule suivante :

$$\langle x(t)\rangle = \frac{1}{T} \int_0^T x(t)dt = 0$$

Celle-ci étant la même pour toutes les sinusoïdals, on définit alors la valeur efficace :

$$X_{eff} = \sqrt{\langle x(t)^2 \rangle}$$

Theorem 3.1.1 (Valeur efficace). La valeur efficace d'une sinusoïdale x(t) est :

$$X_{eff} = \frac{X_m}{\sqrt{2}}$$

Proof. On calule
$$X_{eff}^2$$
:

$$\begin{split} X_{eff}^2 &= \langle x(t)^2 \rangle \\ &= \frac{1}{T} \int_0^T x^2(t) dt \\ &= \frac{1}{T} \int_0^T X_m^2 \cos^2(\omega t + \varphi) dt \\ &= \frac{X_m^2}{T} \int_0^T \cos^2(\omega t + \varphi) dt \\ \text{Or} : \cos^2(\theta) &= \frac{1 + \cos(2\theta)}{2} \\ &= \frac{X_m^2}{T} \left(\int_0^T \frac{1}{2} dt + \int_0^T \frac{1}{2} \cos(2\omega t + 2\varphi) dt \right) \end{split}$$

Or l'intégrale d'un cosinus est nulle sur sa période, d'où :

$$X_{eff}^{2} = \frac{X_{m}^{2}}{T} \cdot \frac{T}{2}$$

$$= \frac{X_{m}^{2}}{2}$$

$$\Rightarrow X_{eff} = \frac{X_{m}}{\sqrt{2}} \square$$

(*)

Lemma 3.1.1 (Grandeur complexe associée à un régime sinusoïdal). A une grandeur réelle $x(t) = X_m \cos \omega t + \varphi$, on associe la grandeur complexe $\underline{x}(t) = X_m e^{j(\omega t + \varphi)}$ avec $j^2 = -1$ et $x(t) = \text{Re}(\underline{x}(t))$. On appelle $\underline{X}_m = X_m e^{j\varphi}$ l'amplitude complexe de \underline{x}_t . On a alors :

$$\underline{x}(t) = \underline{X}_m e^{j\omega t}$$

Ainsi,

$$\begin{cases} X_m = |\underline{X}_m| \\ \varphi = \arg(\underline{X}_m) \end{cases}$$

Remark (Equivalence des solutions). Si une grandeur x(t) est solution d'une équation linéaire différentielle, alors la grandeur complexe l'est aussi.

De plus,

$$\begin{cases} \frac{d}{dt}\underline{x}_t = j\omega\underline{x}(t) \\ \int \underline{x}(t)dt = \frac{1}{j\omega}\underline{x}(t) \end{cases}$$

3.2 Indépendance complexe

Theorem 3.2.1 (Loi d'Ohm généralisée). Soit $u(t) = U_m \cos(\omega t + \varphi_u) \Rightarrow \underline{u}(t) = \underline{U}_m e^{j\omega t}$ et $i(t) = I_m \cos(\omega t + \varphi_i) \Rightarrow \underline{i}(t) = \underline{I}_m e^{j\omega t}$.

On peut alors écire une version généralisée de la loi d'Ohm pour tous les dipoles linéaires (bobine, resistor, condensateur...) :

$$\underline{u}(t) = \underline{z} \cdot \underline{i}(t) \Leftrightarrow \underline{U}_m = \underline{Z} \cdot \underline{I}_m$$

Corollary 3.2.1 (Expression de \underline{Z}). On peut donc écrire : $\underline{Z}=R+jS$ où R est la résistance du

dipôle, S est la réactance et $|\underline{Z}|=Z$ est l'impédance du dipôle.

$$\begin{array}{rcl} \underline{Z} & = & \frac{\underline{U}_m}{\underline{I}_m} \\ & = & \frac{U_m}{I_m} e^{j(\varphi_u - \varphi_i)} \\ & = & Z e^{j\varphi} \\ \Rightarrow & \begin{cases} |\underline{Z}| = Z = \frac{U_m}{I_m} \\ \arg(\underline{Z}) = \varphi = \varphi_u - \varphi_i \end{cases} \end{array}$$

Definition 3.2.1 (admittance). On définit alors une admittance complexe :

$$\underline{Y} = \frac{1}{Z}$$

Example (Exemples). Pour un résistor, on a $\underline{Z} = R$.

Que vaut l'impédence d'une bobine?

Pour une bobine idéale, on a : $u_L = L \frac{di}{dt}$.

$$\begin{split} \Rightarrow \underline{u}_L(t) &= Lj\omega\underline{i}(t) \\ &= \underline{Z}_L\underline{i}(t) \\ \Rightarrow \underline{Z}_L &= Lj\omega \\ \Rightarrow & \begin{cases} |\underline{Z}_L| = L\omega \\ \varphi = \arg\underline{Z}_l = \frac{\pi}{2} = \varphi_u - \varphi_i \end{cases} \end{split}$$

Remark (Cas d'une bobine réelle). Pour une bobine réelle, on a $u_l(t) = L\dot{i}(t) + ri(t)$

$$\begin{split} \Rightarrow \underline{u}(t) &= (L\omega j + r)\underline{i}(t) \\ \Rightarrow \underline{Z}_l &= L\omega j + r \\ \Rightarrow |\underline{Z}_L| &= \sqrt{r^2 + L^2\omega^2} \end{split}$$

Or $\omega = 2\pi f$, donc l'impédance augmente avec la fréquence.

Que vaut l'impédance du condensateur?

Pour le condensateur idéal,

$$\begin{split} i(t) &= C\dot{u}(t) \\ \Rightarrow \underline{u}_l(t) &= \frac{1}{jc\omega}\underline{i}(t) \\ \Leftarrow \underline{Z}_C &= \frac{1}{jc\omega} \\ \Rightarrow \begin{cases} |\underline{Z}_c| &= \frac{1}{c\omega} \\ \varphi &= -\frac{\pi}{2} \end{cases} \end{split}$$

Theorem 3.2.2 (Equivalence régime continu et RSF). L'ensemble des théorèmes du régime continu (loi des noeuds, loi des mailles,...) est valable en RSF.

3.3 Etude d'un circuit RLC en RSF

Notation. Un Générateur de tension alternatif se note : (Voir Schema en dessous)

Figure 3.1: Notation d'un générateur de tension alternatif

On construit un circuit RLC avec un générateur de tension alternatif :

Figure 3.2: Schemadu montage

Theorem 3.3.1 (Loi de Pouillet). Dans un circuit en série avec : un générateur de tension E, un moteur de tension E' et de résistance r, et deux résistances R_1 et R_2 , on a :

$$I = \frac{E - E'}{R_1 + R_2 + r}$$

Figure 3.3: Schema de la Loi de Pouillet

Puisque les théorème du régime continu s'appliquent en RSF, on applique la loi de Pouillet :

$$\underline{I}_{m} = \frac{\underline{E}_{m}}{\underline{Z}_{R} + \underline{Z}_{c} + \underline{Z}_{L}}$$

$$\Rightarrow \underline{E}_{m} = \underline{I}_{m} \left(R + j(L\omega - \frac{1}{c\omega}) \right)$$

3.3.1 Résonance en intensité aux bords d'un condensateur

D'après la relation précédente, on a :

$$I_m = |\underline{I}_m| = \frac{E_m}{\sqrt{R^2 + (L\omega - \frac{1}{c\omega})^2}}$$

Lorsque $\omega \to 0, \, I_m \to 0$ et lorsque $\omega \to \infty, \, I_m \to 0.$

Le numérateur est indépendant de la pulsation ω , donc l'intensité ne circule que lorsque le dénominateur est minimal, ce qui est le cas pour $L\omega_r-\frac{1}{c\omega_r}=0$

$$\Rightarrow \omega_r^2 = \frac{1}{LC} = \omega_0^2$$

L'équation différentielle du cirquit RLC donne (on note $u_c(t)=u$) :

$$L\dot{i} + Ri + u = e(t)$$

$$LC\ddot{u} + RC\dot{u} + u = e(t)$$

$$\Rightarrow \ddot{u} + \frac{R}{L}\dot{u} + \frac{u}{LC} = \frac{e(t)}{LC}$$
On pose : $\omega_0 = \frac{1}{\sqrt{LC}}$ et $\frac{\omega_0}{Q} = \frac{R}{L}$

$$\Rightarrow Q = \omega_0 \frac{L}{R} = \frac{L}{R} \frac{1}{\sqrt{LC}} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Il semble me manquer du contenu ici dans la partie sur la résonance en intensité

$$I_m = \frac{E_m}{\sqrt{R^2 + (L\omega - \frac{1}{c\omega})^2}}$$

$$\Rightarrow U_m = R \cdot I_m = \frac{E}{D}$$

$$\text{avec } D = \sqrt{1 + Q^2(x - \frac{1}{x})^2} \text{ avec } x = \frac{\omega}{\omega_0} \text{ et } Q = \frac{L\omega_0}{R}$$

Il y a donc une résonance en intensité pour toute valeur de Q et la pulsation de résonance est indépendante de Q

Definition 3.3.1 (Bande passante). Soient ω_1 et ω_2 définis par :

$$I_m(\omega = \omega_1) = I_m(\omega = \omega_2) = \frac{I_{\text{max}}}{\sqrt{2}}$$

et:

$$I_{m,\text{max}} = I_m(\omega = \omega_0) = \frac{E}{R}$$

Remark (rem).

$$I_m = \frac{E}{\sqrt{R^2 + (L\omega - \frac{1}{c\omega})^2}}$$

Corollary 3.3.1 (Valeurs de ω_1 et ω_2). On cherche à calculer ω_1 et ω_2

$$I_{m}(\omega) = \frac{E_{m}}{\sqrt{L}R}$$

$$\Rightarrow R\sqrt{2} = \sqrt{R^{2} + (L\omega - \frac{1}{c\omega})^{2}}$$

$$\Rightarrow 2R^{2} = R^{2} + (L\omega - \frac{1}{c\omega})^{2}$$

$$\Rightarrow R^{2} = (L\omega - \frac{1}{c\omega})^{2}$$

$$\Rightarrow (L\omega - \frac{1}{c\omega}) = \pm R$$

$$\Rightarrow Lc\omega^{2} \pm RC\omega - 1 = 0$$

$$\Rightarrow \omega^{2} \pm \frac{R}{L}\omega - \omega_{0}^{2} = 0$$

$$\Rightarrow \qquad 2 \text{ solutions :}$$

$$\Rightarrow \omega = \frac{-\frac{R}{L} \pm \sqrt{(\frac{R}{L})^2 + 4\omega^2}}{2}$$
or $\omega = 2\pi f \ge 0$

$$\Rightarrow w_1 = -\frac{R}{2L} + \frac{1}{2}\sqrt{\frac{R^2}{L} + 4\omega_0^2}$$
De même :
$$\omega^2 - \frac{R}{L}\omega - \omega_0^2 = 0$$

$$\Rightarrow \omega = \frac{\frac{R}{L} \pm \sqrt{\frac{R^2}{L} + 4\omega_0^2}}{2} = 0$$

$$\Rightarrow \omega_2 = \frac{R}{2L} + \frac{1}{2}\sqrt{\frac{R^2}{L} + 4\omega_0^2}$$

Definition 3.3.2 (Largeur de la bande passante). On définiy la lageur de la bande passante comme suit :

$$\Delta\omega = \omega_2 - \omega_1 = \frac{R}{L}$$

On peut en déduire une version adimensionnée :

$$\frac{\Delta\omega}{\omega_0} = \frac{R}{L} \times \sqrt{LC} = \frac{R\sqrt{C}}{\sqrt{L}}$$

Or : $Q = \frac{L\omega_0}{R} = \frac{L}{R} \times \frac{1}{\sqrt{LC}} = \frac{\sqrt{L}}{R\sqrt{C}}$ D'où :

$$\frac{\Delta\omega}{\omega_0} = \frac{1}{Q}$$

Figure 3.4: Représentation de I_m en fonction de ω

$$\varphi = \arg \underline{I_m}$$

$$\underline{I_m} = \frac{E}{R + j(L\omega - \frac{1}{c\omega})}$$

$$\varphi = \arg(\frac{E}{R + j(L\omega - \frac{1}{c\omega})})$$

$$\varphi = -\arg(R + j(L\omega - \frac{1}{c\omega}))$$

$$\phi = -\varphi$$

$$\Rightarrow \tan \phi = \tan\left(\frac{(L\omega - \frac{1}{c\omega})}{R}\right)$$

$$\Rightarrow \tan \varphi = \tan\frac{\frac{1}{c\omega} - L\omega}{R}$$

$$\Rightarrow \varphi \in [-\frac{\pi}{2}; \frac{\pi}{2}]$$

Remark (Analogie mécanique).

$$m\frac{d^2x}{dt^2} + \lambda \frac{dx}{dt} + kx \Rightarrow x = F_m \cos(\omega t)$$

On a le même type d'équations qu'en mécanique classique :

$$\begin{array}{ccc}
m & \leftrightarrow & L \\
\lambda & \leftrightarrow & R \\
k & \leftrightarrow & \frac{1}{C}
\end{array}$$

3.3.2 Resonance en tension aux bornes d'un condensateur

Remark (Pont diviseur de tension).

$$u_{2} = R_{2} \cdot I$$
et $I = \frac{E}{R_{1} + R_{2}}$

$$\Rightarrow u_{2} = \frac{R_{2}}{R_{1} + R_{2}}E$$

Figure 3.5: Schema du pont diviseur de tension

Figure 3.6: Schema du montage

On a un pont diviseur de tension:

$$u_{cm} = \frac{Z_c}{Z_R + Z_L + Z_c} E$$

$$= \frac{\frac{1}{jc\omega}}{R + j(L\omega - \frac{1}{c\omega})} E$$

$$= \frac{E}{1 + jRc\omega - LC\omega^2}$$

$$\Rightarrow U_{cm} = |u_{cm}| = \frac{E}{\sqrt{(1 - LC\omega)^2 + (RC\omega)^2}}$$

$$U_m(\omega 0) = E$$

$$U_m(\omega \to \inf) = 0$$
On pose $\omega_0 \frac{1}{\sqrt{LC}}$; $Q = \frac{L\omega_0}{R}$ et $x = \frac{\omega}{\omega_0}$

$$u_{cm} = \frac{E}{\sqrt{(1 - \frac{\omega}{\omega_0}^2)^2 + \frac{\omega}{Q\omega_0}^2}}$$

$$\Rightarrow u_{cm} = \frac{E}{\sqrt{(1 - x^2)^2 + \frac{\omega}{Q^2}}}$$

$$\Rightarrow u_{cm} = \frac{E}{D}$$

$$\Rightarrow \frac{d}{dx}D^2 = -4x(1 - x^2) + \frac{2x}{Q^2}$$

$$\Rightarrow \frac{d}{dx}D^2 = 0 \Rightarrow 1 - x^2 = \frac{1}{2Q^2} \Rightarrow \omega_r = \omega_0\sqrt{1 - \frac{1}{2Q^2}}$$

On peut avoir résonance que si :

$$1 - \frac{1}{2Q^2} > 0$$

$$\Rightarrow 2Q^2 > 1$$

$$\Rightarrow Q > \frac{1}{\sqrt{2}}$$

Remark (Existance de la résonance). ATTENTION : La résonance en intensité existe toujours mais la résonance en tension n'existe que pour $Q > \frac{1}{\sqrt{2}}$.

Chapter 4

Filtrage linéaire

4.1 Principe du filtrage linéaire

Definition 4.1.1 (Un filtre). 1 filtre est un quadrupôle admettant une tension d'entrée et délivrant une tension de sortie.

On dit que le filtre est linéaire si :

$$\frac{\underline{s}(t)}{\underline{e}(t)} = \underline{H}(j\omega) \Rightarrow \underline{s}(t) = \underline{H}(j\omega)\underline{e}(t)$$

Où $\underline{H}(j\omega)$ est une fraction rationelle.

Definition 4.1.2 (Gain). On appelle le gain du filtre : $G(\omega) = |H(j\omega)|$.

On définit le gain en décibels : $G_{db} = 20 \log |\underline{H}(j\omega)|$.

On définit le déphasage $\phi(\omega)$:

$$\phi(\omega) = \arg \underline{H}(j\omega) \cdot \underline{e}(\omega)$$
$$= \arg(\underline{H}(j\omega)) + \arg(\underline{e}(\omega))$$

On peut toujours prendre $\arg(\underline{e}(\omega)) = 0$

Definition 4.1.3 (Types de filtres). On a quatres types de filtres :

- 1. Passe haut
- 2. Passe bas
- 3. passe bande
- 4. coupe bande

4.2 Filtre du 1er ordre

4.2.1Passe bas du 1er ordre

Exemple: cirstuit RC

On cherche la fonction de transfert :

$$\underline{H}(j\omega) = \frac{\underline{s}(t)}{\underline{e}(t)}$$

$$= \frac{\underline{Z}_c}{\underline{Z}_R + \underline{Z}_C}$$

$$= \frac{\frac{1}{jc\omega}}{R + \frac{1}{jc\omega}}$$

$$\underline{H}(j\omega) = \frac{1}{1 + Rjc\omega}$$

Or $\underline{Z}_c = \frac{1}{jc\omega} \to \infty$ quand $\omega \to 0$. C'est un interupteur ouvert.

$$\Rightarrow \underline{s}(t) = \underline{e}(t)$$

Si $\omega \to \infty$:

$$\underline{Z}_c = \frac{1}{jc\omega} \to 0$$

$$\Rightarrow \underline{s}(t) = 0$$

On a bien un filtre passe bas. RC doit être homogène à un temps. On pose $RC = \frac{1}{\omega_0}$ Donc :

$$G(\omega) = |\underline{H}(j\omega)| = \frac{1}{\sqrt{1 + (\frac{\omega}{\omega_0})^2}}$$

$$\Rightarrow G_{dB} = 20 \log |\underline{H}(j\omega)| = -10 \log [1 + (\frac{\omega}{\omega_0})^2]$$

et:

$$\phi(\omega) = -\arg[1 + j\frac{\omega}{\omega_0}] = -\arctan\left(\frac{\omega}{\omega_0}\right)$$

Si $\omega \to 0$: $G_{dB} \to 0$.

Si $\omega \to \infty$: $G_{db} \to -20 \log \left(\frac{\omega}{\omega_0}\right)$ Pour $\phi(\omega)$: Si $\omega \to 0$: $\phi(\omega) \to 0$

Si $\omega \to \infty$: $\phi(\omega) \to -\frac{\pi}{2}$

Definition 4.2.1 (Bande passante). La bande passante à -3dB est l'ensemble des pulsations telles que : $G(\omega) \ge \frac{G_{\max}}{\sqrt{2}} \Rightarrow G_{dB} \ge G_{\max dB} - 3dB$.

Dans notre cas : $G(\omega = \omega_0) = \frac{1}{\sqrt{2}}$

4.2.2 Passe haut du premier ordre

On fait la même chose que la partie précédent mais on invertit le résistor et le condensateur.

$$H(j\omega) = \frac{s(t)}{e(t)}$$

$$= \frac{R}{R + \frac{1}{jRc\omega}}$$

$$= \frac{jRc\omega}{1 + jRc\omega}$$

$$= \frac{j(\frac{\omega}{\omega_0})}{1 + j(\frac{\omega}{\omega_0})}$$

$$\Rightarrow G = |\underline{H}(j\omega)| = \frac{\frac{\omega}{\omega_0}}{\sqrt{1 + (\frac{\omega}{\omega_0})^2}}$$

$$\Rightarrow G_{dB} = 20 \log|\underline{H}(j\omega)|$$

$$= 20 \log\left(\frac{\omega}{\omega_0}\right) - 10 \log\left[1 + (\frac{\omega}{\omega_0})^2\right]$$

4.3 Filtre du deuxième ordre

4.3.1 Passe bas du 2nd ordre

Etude asymptotique

A basse fréquence, un condensateur est équivalent à un interrupteur ouvert et la bobine est équivalente à un fil passant. A haute fréquence, on a l'opposé.

A basse fréquence $s(t) \neq 0$ et à haute fréquence, s(t) = 0.

On cherche la fonction de tranfert :

$$e(t) = H(j\omega)s(t)$$

On a un pont diviseur de tension :

$$\begin{split} \underline{H}(j\pi) &= \frac{\underline{Z}_c}{\underline{Z}_R + \underline{Z}_L + \underline{Z}_C} \\ \underline{H}(j\omega) &= \frac{\frac{1}{jc\omega}}{R + Lj\omega + \frac{1}{jc\omega}} \\ &= \frac{1}{1 + jRc\omega - Lc\omega^2} \end{split}$$

On cherche la forme canocique, on pose : $\omega_0^2 = \frac{1}{LC}$ et $\frac{1}{Q\omega_0} = RC \Rightarrow Q = \frac{1}{RC\omega_0} = \frac{1}{R}\sqrt{\frac{L}{C}}$. On a donc :

$$H(j\omega) = \frac{1}{1 - \frac{\omega^2}{\omega_0^2} + j\frac{\omega}{\omega_0 Q}}$$

$$\Rightarrow G = |H(j\omega)| = \frac{1}{\sqrt{(1 - \frac{\omega^2}{\omega_0^2})^2 + \frac{\omega}{\omega_0 Q}}}$$

$$\Rightarrow G_{dB} = 20 \log G = -10 \log \left[(1 - \frac{\omega^2}{\omega_0^2})^2 + \frac{\omega}{\omega_0 Q} \right]$$

A basse fréquence :

$$\omega \to 0 \Rightarrow G_{db} \to 0$$

A haute fréquence :

$$\omega \to \infty \Rightarrow G_{dB} \approx -10 \log \left(\frac{\omega^4}{\omega_0^4}\right) \approx -40 \log \omega \Rightarrow \text{ Pente de 40 décibels par décade.}$$

Pour $\omega = \omega_0$: $G_{dB} = 20 \log (Q)$

Coupe bande du seconde ordre

Pour $\omega \to 0$ et $\omega \to \infty$, on a bien $s \neq 0$.

$$\begin{array}{rcl} \underline{H}(j\omega) & = & \frac{\underline{Z}_c + \underline{Z}_L}{\underline{Z}_c + \underline{Z}_L + \underline{Z}_R} \\ & = & \frac{jL\omega + \frac{1}{jc\omega}}{R + jL\omega + \frac{1}{jcR\omega}} \\ & = & \frac{j\frac{L}{R}\omega + \frac{1}{jcR\omega}}{1 + j\frac{L}{R}\omega + \frac{1}{jRc\omega}} \end{array}$$

On pose : $\omega_0 = \frac{1}{\sqrt{LC}}$ et $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$. Et on trouve :

$$\frac{jQ(\frac{\omega_0}{\omega} - \frac{\omega_0}{\omega})}{1 + jQ(\frac{\omega_0}{\omega} - \frac{\omega_0}{\omega})}$$

D'où:

$$\begin{split} \Rightarrow G &= \frac{|Q(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})|}{\sqrt{1 + Q^2(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})^2}} \\ \Rightarrow G_{dB} &= 20 \log G \\ &= 20 \log |Q(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})| - 10 \log \left[1 + Q^2(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})^2\right] \end{split}$$