TD chimie des solutions

Réactions acido-basiques

1 Équilibre acido-basique et avancement

L'acide acétyl
salicylique $C_8O_2H_7$ COOH appartient à un couple acide-base avec p
 $K_a=3,5.$

- 1. Quel est le nom courant de cette molécule?
- 2. Quelle est, d'après vous, sa base conjuguée?
- 3. Le système comporte initialement C_0 d'acide acétylsalicylique en solution. Montrez que l'avancement volumique prend à l'équilibre une valeur x qui est la racine d'un certain polynôme.
- 4. Faites une approximation raisonnable pour calculer x sans résoudre le polynôme. Application numérique : calculez le pH pour $C_0 = 1 \text{ mol L}^{-1}$. Discutez la qualité de l'approximation.
- 5. Calculez le taux de dissociation de l'acide et le taux de recombinaison de la base (ces taux sont définis comme des rapports de concentration).

2 Dosage d'une solution d'ammoniac

On réalise le titrage d'une solution d'ammoniac (volume initial $V_0 = 20 \, \text{mL}$, concentration C_0) par de l'acide chlorhydrique (concentration $C_a = 0.5 \, \text{mol L}^{-1}$). La courbe de pH résultante est donnée figure 1.

FIG. 1 : Courbe de pH en fonction du volume V d'acide versé.

Donnée : l'ammoniac est la base du couple NH₄/NH₃, et c'est une base faible.

- 1. Faites un schéma du dispositif expérimental, en identifiant en particulier les solutions titrée et titrante.
- 2. Donnez la réaction de dosage. Quelles caractéristiques doit-elle avoir? Ces caractéristiques seront supposées réalisées dans la suite.
 - Faites le tableau d'avancement, en distinguant les cas avant équivalence et après équivalence.
- 3. À l'aide de la figure, déterminez la concentration C_0 de l'ammoniac dans la solution initiale.
- 4. Grâce au tableau d'avancement, justifiez que la demi-équivalence permet de déterminer le p K_a de l'ammoniac. Donnez sa valeur.

3 Dosage d'un mélange chloré

 $(Centrale\,MP\,2018)$ Une solution aqueuse de volume $V_0=20\,\mathrm{mL}$ est constituée d'acide chlorhydrique à la concentration C_1 et d'acide hypochloreux HClO à la concentration C_2 . Ce dernier est un acide très faible dans l'eau.

FIG. 2: Courbe du dosage pH-métrique.

On titre cette solution par de la soude à la concentration $C_b = 10.10^{-3} \, \text{mol L}^{-1}$, ce qui conduit à la courbe pH-métrique de la figure 2.

- 1. Déterminez C_1 et C_2 .
- 2. Déterminez le p K_a du couple faisant intervenir l'acide hypochloreux.
- 3. Soit $n(H_3O^+)$ la quantité de matière de H_3O^+ à un instant quelconque, et $n_i(H_3O^+)$ sa valeur initiale, et de même pour HClO et ClO $^-$. Donnez les allures des courbes suivantes en fonction du volume V_b de soude versée :

$$\frac{n(\mathrm{H}_3\mathrm{O}^+)}{n_i(\mathrm{H}_3\mathrm{O}^+)} \qquad \frac{n(\mathrm{HClO})}{n_i(\mathrm{HClO})} \qquad \frac{n(\mathrm{ClO}^-)}{n_i(\mathrm{ClO}^-)} \tag{1}$$