

Undergraduate Research Symposium

Enhancing miscible fluid mixing using Golden ratio spiral Microchannel

Kommalapati Sahil¹, Amit Agrawal²

Introduction:

- Mixing of fluids has numerous applications.
- It is crucial in maintaining a homogenous environment for chemical and biological experimentation.
- Particularly with micro channels, it is used in lab-on-a-chip applications.[2]
- Every chemical reaction among various components on the chip are governed by understanding the physics behind mixing.
- Mixing of miscible fluids using a T-shaped microchannel has been a standard.[1]
- W.R. Dean's works on the fluid behavior in curved channels revolutionized mixing.[2]
- The anomalous behavior of the golden ratio[4] spiral microchannel and the physics behind it is analyzed.

Figure 1. Mixing at the inlet position

Figure 2. Lungs on chip [5]

Literature:

- The effect of miniaturization of dimension to a micrometer scale increases the ratio of surface area relative to fluid volume. This enhances mixing as well as the heat transfer between the fluids.[2]
- The inertial forces enable the inter and intra molecular diffusion, which upon formulation results in the species transport equation.[1][3]
- The introduction of curvature in the microchannel path leads to the generation of a net shear force along the axial plane.[1][2][3]
- Balancing this force, keeping the conservation of mass in mind results in the formation of vortices knows as Dean's vortices in the fluid.
- These vortices enhance the mixing properties, by introducing a localized swirling motion. This was previously absent in the straight microchannel.

Figure 3. Primary dean vortices (Archimedean spiral, Re: 40)

Figure 4. Secondary dean vortices (Archimedean spiral, Re: 1000)

Methods:

- In order to obtain a comparative on the various curved microchannel geometries, a study was done on various spiral geometries.
- Archimedean, Hyperbolic and golden ratio spirals were utilized.
- The governing equations along with the STE were solved in FLUENT.
- A grid Independence test was carried ensure the accuracy of the solutions.
- The contours and data exportation was done from POST. MATLAB was utilized to calculate the mixing efficiency.

Results:

Figure 5. Mixing efficiency over Reynolds number

Figure 6. Poiseuille number over Reynolds number

Table 1. Comparison among straight, Archimedean and Golden ratio spiral microchannel

 All contours above are plotted at Re-10. Red and blue dyed water is passed through inlets in a vertical configuration. Green indicates complete mixing.

Conclusions:

- The anomalous behavior of the golden ratio spiral can be attributed to the sudden change in the radius of curvature of the spiral (for every quarter turn).
- A sudden change in the dean's number(Re.√(2.R/D)) is observed.
- A dispersion of the dean's vortices is observed, which also lead to an increase in the swirling strength.
- The golden ratio[4] spiral gives us an insight on how fluid mixing can be enhanced through a crude approximation of the growth rate as the golden ratio.

Important References:

- [1] V. S. Duryodhan, R. Chatterjee, S. G. Singh and A. Agrawal, "Mixing of Planar Spiral Microchannel," Experimental Thermal Fluid Science, vol. 89, pp. 119-127, 2017
- [2] Di D Carlo, Inertial Microfluidics, Lab on a chip (9) 2009, 3038.
- [3] A. Alam, K.Y. Kim, Analysis of mixing in curved microchannel with rectangular grooves, Chem. Eng. J. 181–182 (2012) 708.
- [4] Omotehinwa T, Ramon S.O Fibonacci Numbers and Golden Ratio in Mathematics and science, International Journal of Computer and Information Technology (ISSN: 2279-- 0764)
- [5] openwetware.org/wiki/Sythetic_Organs_on_a_Chip,_by_Manuel_Escanciano_and_Chris_Lowe

