

Machine Learning - Détecteur de Faux billets bancaires

• Contexte d'étude :

• Mission de consulting au sein de l'Organisation nationale de lutte contre le faux-monnayage (ONCFM).

• Objectif:

• Créer un modèle prédictif capable d'identifier automatiquement les faux billets en analysant les dimensions géométriques et les caractéristiques constitutives.

Sommaire

• Données	4
Analyse Exploratoire des Données	5
Méthodes de classification – Supervisées	11
Clustering – Non Supervisée	15
Réduction de dimensionalité	18
• Conclusion	22

Données (ONCFM)

Composition du dataset :

- 1 variable binaire (Vrai, Faux billet)
 - ls_genuine
- 6 variables géométriques quantitatives
 - Diagonal
 - Height_left
 - Height_right
 - Margin_low
 - Margin-up
 - Length

Analyse Exploratoire des Données (AED)

Process (EAD)

Analyse Exploratoire des Données

Proportion des billets par type (Vrai / Faux)

- 37 Valeurs manquantes
- 29 vrais billets
- 8 faux billets

Ordre de grandeurs des variables

Distribution des Vrais / Faux billets

Corrélation

Méthodes de classification Supervisées

Support Machine Classifier (SVC) / Régression logistique

Process (Machine learning)

Evaluation des 2 Méthodes de Classifications

Matrice de confusion - Régression logistique

Score: 0,989

Marge d'erreur : 1,08%

4 Faux postif (FP)

Score: 0,992

Marge d'erreur : 0,75%

2 Faux postif (FP)

Learning Curve – Régression logistique vs SVC

Boundary decision plot

Clustering Non - Supervisée

K-means

Clustering – K-means

Combien de clusters avons-nous ?

Bien que nous n'ayons de fait que 2 classes, vérifions que l'algorithme du K-means converge:

N_cluster = 2

Evaluation du modèle K-means

Score: 0,987

Marge d'erreur : 1,27%

12 Faux postif (FP)

7 Faux négatif (FN)

Réduction de dimensionalité

Analyse en Compoantes Principales (ACP)

Analyse en Composantes Principales (ACP)

Visualisation des individus en 2D, 3D

Plans factoriels

Conclusion – Choix du modèle

	SVC	Régression logistique	K-means
Score	0.992	0.989	0.987
Marge d'erreur	0.75%	1.08%	1.27%
Faux positif (FP)	2	4	12
Faux négatif (FN)	0	0	7
Performance	450	250	

Compararaison des scores :

- SVC plus performante que la Régression Logistique (différence minime de 0.33%).
- La classification faite avec le K-means est en revanche non adaptée.

Performance des modèles :

• Learning Curve en faveur de la régression logistique.

Le modèle de régression de SVC est celui qu'il faut prendre en compte.