MAE 298 Aeroacoustics – Homework #3 Generalized Differentiation and Farassat's Formulation

Logan D. Halstrom

 $Graduate\ Student$

Department of Mechanical and Aerospace Engineering University of California, Davis, CA 95616

Nomenclature

L	Subscript for loading parameters	δ	Delta function
n	Surface normal direction	ω	Wave oscillating frequency
s	Surface coordinate variable	i	Imaginary number $\sqrt{-1}$
t	time	\exp	Exponential (e)
\vec{x}	Observer location vector	E	Exponential term: $kz + n\theta - \omega t$
r	Distance between source and observer	λ	Constant term in Bessel equation
\hat{r}	Unit vector between source and observer	J	First-order Bessel function
θ	Angle between \hat{r} and \vec{x}	Y	Second-order Bessel function
M	Mach number	$H^{(n)}$	nth-order Hankel function
W(r)	Radial distribution of mean axial velocity	x	Placeholder variable for λr
c	Speed of Sound	A, B	Arbitrary Bessel function constants
$\overline{ ho}$	Mean density	C, D	Arbitrary Hankel constants
γ	Specific heat ratio	$ec{V}$	General velocity vector
p	Pressure	V_r	Velocity component in radial direction
\widetilde{p}	Pressure (Discontinuous across data surface)	ν	Constant velocity parameter
\overline{p}	Mean pressure	χ	Constant position parameter
p'	Perturbation pressure	ζ	Position of vortex sheet dividing inner/outer solution
ΔP	Pressure difference from CFD solution	+/-	Outer/Inner solution, respectively
k	Wavenumber	,	, , , , , , , , , , , , , , , , , , , ,
$\overline{\partial}$	Generalized derivative		

Overview

Explore techniques of generalized differentiations and solve FW-H loading term with Farassat's Formulation 1A

$$r = |\vec{x} - \vec{y}|$$

I. Problem 1 – Generalized Differentiation of Wave Equation

The acoustic wave equation without considering the source is expressed as follows:

$$\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} - \nabla^2 p = 0 \tag{1}$$

We can define a new function \widetilde{p} using the imbedding technique as follows:

$$\widetilde{p} = \begin{cases} p, & f > 0 \\ 0, & f < 0 \end{cases} \tag{2}$$

where f = 0 describes the arbitrary moving body. Show that the wave equation whose sound is generated by an arbitrary moving body (f=0) can be expressed as follows:

$$\frac{1}{c^2} \frac{\overline{\partial}^2 \widetilde{p}}{\partial t^2} - \overline{\nabla}^2 \widetilde{p} = -\left[\frac{M_n}{c} \frac{\partial p}{\partial t} + p_n \right] \delta(f) - \frac{1}{c} \frac{\partial}{\partial t} \left[M_n p \delta(f) \right] - \nabla \cdot \left[p \vec{n} \delta(f) \right]$$
(3)

where \vec{n} is the unit normal vector on the surface and $p_n = \nabla p \cdot \vec{n}$. Now we can use the Greens function of the wave equation in the unbounded space, the so-called free-space Greens function, to find the unknown function $p(\vec{x},t)$ everywhere in space. The result is the Kirchhoff formula for moving surfaces.

I.A. Term 1

II. Problem 2 – Farassat Formulation 1A for Loading Noise

Farassats formulation 1 for the loading noise is given as

$$4\pi p_L' = \frac{1}{c} \frac{\partial}{\partial t} \int_{f=0} \left[\frac{L_r}{r(1-M_r)} \right]_{ret} ds + \int_{f=0} \left[\frac{L_r}{r^2(1-M_r)} \right]_{ret} ds \tag{4}$$

where $L_r = \Delta P \vec{n} \cdot \hat{r} = \Delta P \cos \theta$. This formulation 1 is difficult to compute since the observer time differentiation is outside the integrals. A much more efficient and practical formulation can be derived by carrying the observer time derivate inside the integrals (formulation 1A). Show that formulation 1A for the loading noise becomes

$$4\pi p_L' = \frac{1}{c} \int_{f=0} \left[\frac{\dot{L}_r}{r(1-M_r)^2} \right]_{ret} ds + \int_{f=0} \left[\frac{L_r - L_M}{r^2(1-M_r)} \right]_{ret} ds + \frac{1}{c} \int_{f=0} \left[\frac{L_r [r\dot{M}_r + c(M_r - M^2)]}{r^2(1-M_r)^3} \right]_{ret} ds$$
 (5)

where $L_M = \vec{L} \cdot \vec{M}$.

Conclusion

conclude