Feynman Diagrams & QFT Notes

Keshav Balwant Deoskar

February 9, 2024

These are notes taken from lectures on Feynman Diagrams and QFT delivered by Ivan Burbano. Any errors that may have crept in are solely my fault.

Contents

1	January 26 - First meeting! Setting goals.	2
	1.1 The goal	2
	1.2 The Quantum regime	2
	1.3 The Statistical Side of Things	2
	1.4 An example from Stat. Mech: Kinetic Theory of gasses	3
2	February 2 -	Ę
	2.1 Last time	E
	2.2 Today	Ę
	2.3 Schwinger-Dyson equation	5
	2.4 Returning to our Free Theory	
	2.5 ϕ^4 Free Theory	6
3	February 9 -	8

1 January 26 - First meeting! Setting goals.

1.1 The goal

This course wll be a very first-principles, barebones experience. Our goal for the next month will be to develop the tools to solve the integral

$$\int_{-\infty}^{\infty} dx \ e^{-S(x)} O(x)$$

where $S(x) = \frac{1}{2}ax^2 + \frac{1}{3!}gx^3 + \frac{1}{4!}\lambda x^2 + \cdots$, the constants a, g, λ etc. must be positive reals and are called *coupling constants* and O(x) is a polynomial in x.

What is the physical motivation for this integral?

There are *two* sides to the physics related to this integral: Quantum (this is what we want!) and Statistical (this is what we do!).

[Insert picture]

1.2 The Quantum regime

In the Quantum regime, *fields* become *fuzzy!* We can't quite pin down what the configuration of the field is, rather we can tell what the *probability amplitude* of any given field configuration will be at a point in (space)time.

So, the fundamental question in QM is:

If at time t_i we prepare a field ϕ_i , what is the probability amplitude that, at t_f , I measure ϕ_f ?

We can say that

$$\phi_f = \langle \phi_f | U(t_f, t_i) | \phi_i \rangle$$

where $U(t_f, t_i)$ is called the propagator or the time-evolution operator.

According to feynman, the answer can be found by integrating the *action* over the space of all field configurations.

i.e.

$$= \int \mathcal{D}\Phi e^{iS(\Phi)}$$

where we are integrating over all field configurations $\Phi(x)$ such that $\Phi = \phi_i$ at t_i and $\Phi = \phi_f$ at t_f . In more formal notation, the set over which we are integrating is

$$\{\phi \in C^{\infty}([t_i, t_f] \times \Sigma) : \phi \big|_{\Sigma_i} = \phi_i; \phi \big|_{\Sigma_f} = \phi_f \}$$

where Σ denoted the space we're working on.

1.3 The Statistical Side of Things

This is what we actually do!

Suppose we have some region, say a table, T populated by some field $\phi(x)$. For instance, it could be some spin distribution i.e. the field assigns each point on the table T with some spin.

Boltzmann showed that the probability (not probability amplitude) for the field to be in configuration ϕ is proportional to

 $e^{-S(\phi)}$

where $S(\phi)$ is the energy of the field configuration.

In particular, the probablity is

 $\frac{e^{-S(\phi)}}{\mathcal{Z}}$

where

$$\mathcal{Z} = \int \mathcal{D}\phi e^{-S(\phi)}$$

is the integral over the space (of all field configurations) of probabilities. It's called the **Partition** Function.

Quick aside, what about dimensions?

The partition function is dimensionless, whereas the feynman path integral we covered in the Quantum Regime *is* dimension-ful. This is our first hint that something is amiss with the path-integral. (Has to do with renomalization).

Note: The ket $|x\rangle$ does have units. In particular, the completeness relation tells us

$$\int dx |x\rangle\langle x| = 1$$

So, $|x\rangle$ has units of $\frac{1}{\sqrt{\text{Length}}}$

1.4 An example from Stat. Mech: Kinetic Theory of gasses

Now, let's actually solve an integral! Let's compute

$$\int_{-\infty}^{\infty} d\phi e^{-S(\phi)} O(\phi)$$

where

$$S(\phi) = \frac{1}{2}\phi m^2\phi - \frac{g}{3!}\phi^3 - \frac{\lambda}{4!}\phi^4$$

where $m^2 > 0$.

1. Partition Function : O = 1 For a free theory, we have $g = \lambda = \cdots = 0$

So, our integral turns into

$$\int_{-\infty}^{\infty} d\phi e^{-\frac{1}{2}m^2\phi^2}$$

This integral is intimately connected to the Kinetic Theory of Gasses. **Sol:**

$$\begin{split} \int_{-\infty}^{\infty} d\phi e^{-\frac{1}{2}m^2\phi^2} &= \sqrt{\left(\int_{-\infty}^{\infty} d\phi e^{-\frac{1}{2}m^2\phi^2}\right)^2} \\ &= \sqrt{\int_{-\infty}^{\infty} d\phi e^{-\frac{1}{2}m^2\phi^2} \int_{-\infty}^{\infty} d\psi e^{-\frac{1}{2}m^2\phi^2}} \\ &= \sqrt{\int_{\mathbb{R}^2} d\phi d\psi \ e^{-\frac{1}{2}m^2(\phi^2 + \psi^2)}} \end{split}$$

Now, we convert to polar coordinates with $r^2 = \psi^2 + \phi^2$, $u = \frac{1}{2}r^2m^2$, du = drr

$$= \sqrt{\int_{\mathbb{R}^2} \underbrace{\frac{d\phi d\psi}{e^{-\frac{1}{2}m^2(\phi^2 + \psi^2)}}}_{=rdrd\theta}$$

$$= \sqrt{2\pi} \int_0^\infty dr \ r \ e^{-\frac{1}{2}r^2m^2}$$

$$= \sqrt{\frac{2\pi}{m^2}} \int_0^\infty du \ e^{-u}$$

$$= \sqrt{\frac{2\pi}{m^2}}$$

$\underline{\text{Exercises!}}$

1.

$$\int_{-\infty}^{\infty} d\phi e^{-\frac{1}{2}m^2\phi^2 + J\phi}$$

2.

$$\int_{-\infty}^{\infty} d\phi_1 d\phi_2 e^{-\frac{1}{2}\phi^{\vec{T}} \cdot A\vec{\phi}}$$

where A is any symmetric 2×2 matrix (can generalize to $n \times n$ matrices!).

2 February 2 -

2.1 Last time

• We computed the integral $(m^2 > 0)$

$$\mathcal{Z} = \int_{-\infty}^{\infty} d\phi e^{\phi m^2 \phi} = \sqrt{\frac{2\pi}{m^2}}$$

• We called this integral the *partition function of our free theory* (the "free" tells us that the action $S(\phi) = \frac{1}{2}\phi m^2 \phi$ is quadratic).

2.2 Today

• If we have a polynomial $\mathcal{O}(\phi)$, we want to calculate the expectation value

$$\langle \mathcal{O} \rangle := \frac{1}{\mathcal{Z}} \int_{-\infty}^{\infty} d\phi e^{-\frac{1}{2}\phi m^2 \phi} \mathcal{O}(\phi)$$

2.3 Schwinger-Dyson equation

Consider the following where $S(\phi)$ and $\mathcal{O}(\phi)$ are just some polynomials and $S(\phi) \to \infty$ as $\phi \to \pm \infty$

Theorem (Version 1)

$$\int_{-\infty}^{\infty} d\phi e^{-S(\phi)} \frac{d\mathcal{O}}{d\phi} = \int_{-\infty}^{\infty} d\phi e^{-S(\phi)} \frac{dS}{d\phi} \mathcal{O}$$

We can divide both integrals by \mathcal{Z} to obtain the other form of the theorem:

 $\overline{\text{Theorem (Version 2)}}$

$$\langle \frac{d\mathcal{O}}{d\phi} \rangle = \langle \frac{dS}{d\phi} \mathcal{O} \rangle$$

Proof:

$$\int_{-\infty}^{\infty} d\phi \frac{d}{d\phi} \left(e^{-S(\phi)} \mathcal{O}(\phi) \right) = \left[e^{-S(\phi)} \mathcal{O}(\phi) \right]_{-\infty}^{\infty} = 0$$

Now, why is this useful? Our whole goal today was to compute Expectation values but we haven't been calculating a whole lot of them.

Well, notice the following:

- $\langle 1 \rangle = 1$
- $\deg \frac{d\mathcal{O}}{d\phi} = \deg \mathcal{O} 1$

•
$$\deg\left(\frac{dS}{d\phi}\cdot\mathcal{O}\right) = \deg S + \deg\mathcal{O} - 1$$

s By proving the Schwniger-Dyson equation, we've gotten a relation between something of higher of degree and something of lower degree. So, we can go recursively until we reach a polynomial of degree 1, whose expectation value will be piss easy to calculate since $\langle 1 \rangle = 1$.

Also, quick side note, $\frac{dS}{d\phi}$ give us the **Lagrange Equations**, and so are called the **Equations** of motion!

Note: We call anything that's a function of ϕ an operator. We'll relate this to the more familiar notion of an operator in Quantum Mechanics later.

2.4 Returning to our Free Theory

Now, returning to our free theory with action $S(\phi) = \frac{1}{2}\phi m^2 \phi$ (Equations of motion $\frac{dS}{d\phi} = m^2 \phi$). To calculate the expectation value $\langle \phi^2 \rangle$ we express it as

$$\langle \phi^2 \rangle = \frac{1}{m^2} \langle \underbrace{m^2 \phi}_{dS/d\phi} \underbrace{\phi}_{\mathcal{O}} \rangle$$

$$= \frac{1}{m^2} \langle \underbrace{\frac{dS}{d\phi}}_{\mathcal{O}} \mathcal{O} \rangle$$

Then, applying the Schwinger-Dyson Equation, we get

$$\langle \phi^2 \rangle = \underbrace{\frac{1}{m^2}}_{\langle \phi \phi \rangle} \langle \frac{d\phi}{d\phi} \rangle = \frac{1}{m^2}$$

This term $1/m^2$ is "contracted" from the $\langle \phi \phi \rangle$ term, and is called the **propagator**.

2.5 ϕ^4 Free Theory

Let's now do something similar for ϕ^4 .

$$\begin{split} \langle \phi^4 \rangle &= \frac{1}{m^2} \langle m^2 \phi \ \phi^3 \rangle \\ &= \frac{1}{m^2} \langle \frac{d}{d\phi} (\phi^3) \rangle \ \text{(By Schwinger-Dyson)} \\ &= \underbrace{\frac{1}{m^2}} \langle \frac{d\phi}{d\phi} (\phi\phi\phi) \rangle \\ &= \frac{1}{m^2} \langle \frac{d\phi}{d\phi} \phi\phi \rangle + \frac{1}{m^2} \langle \phi \frac{d\phi}{d\phi} \phi \rangle + \frac{1}{m^2} \langle \phi \phi \frac{d\phi}{d\phi} \rangle \\ &= \langle \phi \phi \phi \rangle + \langle \phi \phi \phi \rangle + \langle \phi \phi \phi \rangle \\ &= [\text{Draw feynman diagrams}] \end{split}$$

[WATCH RECORDING AND ADD THE FEYNMAN DIAGRAM REPRESENTATIONS OF THESE TERMS – IMPORTANT

• Every ϕ is a dot with a line coming out of It

• When we contract two ϕ 's we connect their lines

]

Exercises:

1. Show that

$$\langle \phi^4 \rangle = \frac{(n-1)!!}{m^n}$$

where the double exclaimation is the double-factorial.

2. Write the diagrams for $\langle \phi^6 \rangle$ in a few different ways:

3.

$$\begin{split} \langle \phi^6 \rangle &= \langle \phi \phi \phi \phi \phi \phi \rangle \\ &= \langle \phi^2 \phi^4 \rangle \\ &= \langle \phi^3 \phi^3 \rangle \\ &= \langle (\phi^6) \phi^0 \rangle \end{split}$$

4. Compute the partition function

$$\mathcal{Z} = \frac{1}{h} \int_0^L \mathrm{d}x \int_{-\infty}^\infty \mathrm{d}p \; e^{-\frac{-\beta p^2}{2m}}$$

explicitly (Hint: Convert into the same form as we've solved in class using the substitution $\phi = \frac{Lp}{h}$ and then figure out what the action $S(\phi)$ should be.)

5. Also Compute the free Energy F, where $e^{-\beta F} = \mathcal{Z}$.

- Note that F = E TS, dF = -SdT pdV
- $p = -\left(\frac{\partial F}{\partial V}\right)_{\beta} \implies \text{Ideal Gas Law}$

3 February 9 -