PROGRAMSKI PREVODIOCI

DODATNI ZADACI ZA VJEŽBU – GRUPA I

1. Aleksandar je uzeo da istražuje rimsku istoriju, i potreban mu je kalkulator rimskih brojeva. Naime, on naleti na ulaz gdje se nalazi nekoliko rimskih brojeva, i potrebno mu je da sve njih prikaže u dekadnom formatu, arapskim ciframa. Separatori su blanko prostori, novi redovi. Napisati parser koji kao ulaz ima proizvoljan broj rimskih brojeva, i prevodi ih u dekadni format, arapskih cifara. Takođe, na samom kraju, program štampa i koliko je rimskih brojeva konvertovano.

ULAZ	IZLAZ
I	1
II IV	2
LD CV	4
	450
	105
	Broj konverzija:5

2. JSONGrammar je jednostavnija verzija JSON formata, i podržava dvije vrste naredbi: deklarativnu naredbu, i naredbu prikaza. Deklarativna naredba je uvijek u sljedećem formatu: T_ID = jsonobj, gdje je T_ID token za promjenljivu, a jsonobj predstavlja objekat u json formatu. Jedan primjer ove naredbe je:

```
x = {
 a: 1,
 b: 1
};
```

Atributi u json objektu su uvijek mala ASCII slova, a vrijednosti su uvijek cijeli brojevi. Primjer naredbe prikaza je sljedeći:

x.a;

U ovoj naredbi, prvo ide token za identifikator, pa tačka, pa naziv atributa. Ova naredba može da da neki od sljedeća tri rezultata:

- Ako ta promjenljiva ne postoji štampa se poruka "Promjenljiva nije definisana"
- Ako promjenljiva postoji, ali ne i definisan atribut nad tom promjenljivom štampa "Ne postoji zadati atribut nad tom promjenljivom"
- Ukoliko postoji i promjenljiva,i atribut, štampa vrijednost koja je opisana sa tim atributom

Osmisliti parser i gramatiku koja za ulaz ima program u JSONGrammar formatu, i štampa potreban izlaz.

ULAZ	IZLAZ	
x = {	1	
a: 1, b: 1	Atribut c ne postoji n	nad
};	promjenljivom x.	

z = {};	Promjenljiva y nije definisana.
x.a;	
x.c;	
y.a;	

- 3. Stem and leaf display je na;in predstavljanja statističkih podataka numeričkog tipa. Pretpostavimo da imamo dvocifrene brojeve u određenom nizu: 11, 11, 12, 21, 23, 23, 42. Stem and leaf display se sastoji u sljedećem:
 - Prva cifra se proglašava stem vrijednošću
 - Ostatak broja predstavlja leaf vrijednost.

Tako je za broj 11 stem 1, a leaf 1, a za broj 23 stem 2, leaf 3. Dalje, ovaj display se konstruiše tako da sa lijeve strane se nalaze stem vrijednosti, posložene u sortiranom poretku, od najmanje do najveće, bez preskakanja vrijednosti. Npr. U datom primjeru stem vrijednosti su 1, 2, 3 i 4. lako ne postoji nijedan primjer koji počinje sa cifrom 3, kompletan segment se navodi. Tako stem and leaf display za zadate primjere izgleda:

- 1 | 112
- 2 | 133
- 3 |
- 4 | 2

Osmisliti i kreirati parser koji kao ulaz ima stem and leaf display podataka, a kao rezultat daje sljedeće: koji se broj najviše puta pojavio. Koliko je blokova bez brojeva (kao blok 3 u ovom primjeru), kao i koji blok ima najviše brojeva. Ukoliko ih ima više sa istim brojem, navesti ih sve (u ovom primjeru to su blokovi 1 i 2).

ULA	Σ	IZLAZ
2	1	Najčešće se pojavljuje: 32.
3	223	Broj blokova koji nema brojeva: 2.
4		Blok sa najviše brojeva: 5.
5	1234	
6		
7	4	

4. SimpleLogic je jednostavan kalkulator za logičke operacije koji ima elemente programskog jezika. U ovom kalkulatoru postoje dva tipa naredbi – naredba izraza i naredba dodjele. Naredba izraza je ustvari jedan logički izraz koji može biti T (tačan) ili F (netačan).

T i F su ključne riječi jezika.

Naredba dodjele je uvijek oblika T_VAR = exp, gdje je T_VAR token za promjenljivu. Promjenljiva se opisuje kao nekoliko velikih ili malih ASCII karaktera.

Od operacija, SimpleLogic podržava AND, OR i NOT, koji respektivno predstavljaju logičko i, ili i negaciju. Prioriteti operacija su kao u programskom jeziku C ili Java, a moguće je i koristiti zagrade pri definisanju izraza.

Napisati parser, i osmisliti gramatiku koja kao ulaz ima jedan program napisan u SimpleLogic jeziku (po jednu naredbu u redu), a kao izlaz za svaku naredbu izraza štampa njenu vrijednost.

Ukoliko se u naredbi koristi promjenljiva koja nije definisana, njena podrazumijevana vrijednost je T.

ULAZ	IZLAZ
x = T	Т
y = F	F
x AND T	Т
x AND y	Т
NOT y AND x	Т
NOT (x AND y)	F
y OR z	
(x AND y) OR NOT (y OR z)	

5. Alis i Bob svakodnevno razmjenjuju poruke preko društvenih mreža. Hakerskim napadom, jednog dana njihove poruke su se izmiješale. Svaka poruka je zadata sljedećim formatom: HH:MM:SS POŠILJALAC: TEKST PORUKE. Dakle, prvi parametar HH:MM:SS je vrijeme poslate poruke. HH, MM, SS su oznake za sate, minute i sekunde. Pretpostaviti da su sva zadata vremena ispravno unijeta. POŠILJALAC može biti A ili B, nakon čega idu dvije tačke, a nakon njih ide tekst poruke. Tekst se sastoji od slova i znakova interpunkcije. Osmisliti gramatiku i napisati parser koji kao ulazni podatak ima sve poruke konverzacije Alis i Bob, i sortira ih onako kako su se napisale. Takođe, potrebno je nakon sortiranja, ispisati koliko poruka je imala Alis, koliko Bob, i koliko karaktera ima najduža

ULAZ	IZLAZ
00:10:11 A: Poruka 1	00:10:11 A: Poruka 1
23:12:12 B: Poruka 5	11:12:13 A: Poruka 2
11:12:13 A: Poruka 2	11:12:15 A: Poruka 3
12:21:12 B: Poruka 4	12:21:12 B: Poruka 4
11:12:15 A: Poruka 3	23:12:12 B: Poruka 5
	Alis: 3, Bob: 2
	8