

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 04-03-2011		2. REPORT TYPE Journal Article		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Why are $[P(C_6H_5)_4]^+N_3^-$ and $[As(C_6H_5)_4]^+N_3^-$ Ionic Salts and $Sb(C_6H_5)_4N_3$ and $Bi(C_6H_5)_4N_3$ are Covalent Solids? A Theoretical Study Provides an Unexpected Answer. (Pre-Print)		5a. CONTRACT NUMBER			
		5b. GRANT NUMBER			
		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Karl O. Christe, Ralf Haiges (Univ. Southern Cal.), Jerry A. Boatz (AFRL/RZSP), H. Donald Brooke Jenkins (Univ. of Warwick), Edward B. Garner, David A. Dixon (Univ. of Alabama)		5d. PROJECT NUMBER			
		5f. WORK UNIT NUMBER 50260541			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Southern California Loker Hydrocarbon Research Institute and Department of Chemistry Los Angeles, CA 90089, USA		 University of Alabama Department of Chemistry Tuscaloosa, AL 35487-0336, USA		8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-RZ-ED-JA-2011-062	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RZS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-JA-2011-062	
12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited (PA #10876).					
13. SUPPLEMENTARY NOTES For publication in Inorganic Chemistry in April 2011					
14. ABSTRACT A recent crystallographic study has shown that, in the solid state, $P(C_6H_5)_4N_3$ and $As(C_6H_5)_4N_3$ have ionic $[M(C_6H_5)_4]^+N_3^-$ type structures, whereas $Sb(C_6H_5)_4N_3$ exists as a pentacoordinated covalent solid. Using the results from density functional theory, lattice energy (VBT) calculations, sublimation energy estimates, and Born-Fajans-Haber cycles, it is shown that the maximum coordination numbers of the central atom M, the lattice energies of the ionic solids, and the sublimation energies of the covalent solids have no or little influence on the nature of the solids. Unexpectedly, the main factor determining whether the covalent or the ionic structures are energetically favored, is the first ionization potential of $[M(C_6H_5)_4]$. The calculations show that at ambient temperature the ionic structure is favored for $P(C_6H_5)_4N_3$ and covalent structures are favored for $Sb(C_6H_5)_4N_3$ and $Bi(C_6H_5)_4N_3$, while $As(C_6H_5)_4N_3$ presents a borderline case.					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 75	19a. NAME OF RESPONSIBLE PERSON Mr. Wayne Kallioma
a. REPORT Unclassified					19b. TELEPHONE NUMBER (include area code) N/A
b. ABSTRACT Unclassified					
c. THIS PAGE Unclassified					

Why are $[P(C_6H_5)_4]^+N_3^-$ and $[As(C_6H_5)_4]^+N_3^-$ Ionic Salts and $Sb(C_6H_5)_4N_3$ and $Bi(C_6H_5)_4N_3$ are Covalent Solids? A Theoretical Study Provides an Unexpected Answer.[†]

**Karl O. Christe,^{*§} Ralf Haiges,[§] Jerry A. Boatz,[‡] H. Donald Brooke Jenkins,[‡]
Edward B. Garner,[#] David A. Dixon^{*#}**

[§] *Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA, [‡]Space and Missile Propulsion Division, Air Force Research Laboratory (AFRL/RZS), Edwards Air Force Base, CA 93524, USA, [‡]Department of Chemistry, University of Warwick, Coventry CV4 7AL, West Midlands, UK, and [#]Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA*

Abstract

A recent crystallographic study has shown that, in the solid state, $P(C_6H_5)_4N_3$ and $As(C_6H_5)_4N_3$ have ionic $[M(C_6H_5)_4]^+N_3^-$ type structures, whereas $Sb(C_6H_5)_4N_3$ exists as a pentacoordinated covalent solid. Using the results from density functional theory, lattice energy (VBT) calculations, sublimation energy estimates, and Born-Fajans-Haber cycles, it is shown that the maximum coordination numbers of the central atom M, the lattice energies of the ionic solids, and the sublimation energies of the covalent solids have no or little influence on the nature of the solids. Unexpectedly, the main factor determining whether the covalent or the ionic structures are energetically favored, is the first ionization potential of $[M(C_6H_5)_4]$. The calculations show that at ambient temperature the ionic structure is favored for $P(C_6H_5)_4N_3$ and covalent structures are favored for $Sb(C_6H_5)_4N_3$ and $Bi(C_6H_5)_4N_3$, while $As(C_6H_5)_4N_3$ presents a borderline case.

[†]Dedicated to Professor Herbert W. Roesky on the Occasion of his 75th Birthday.

*To whom correspondence should be addressed. E-mail: kchriste@usc.edu, dadixon@bama.ua.edu

Introduction

Numerous examples are known where molecules are covalent in the gas phase, while in the solid state they have ionic structures.^{1,2,3} Typical examples are PCl₅, N₂O₅, Cl₂O₆ or FNO. The energy difference, ΔE , between the ionic solid and the covalent gas can be determined by a simple Born-Fajans-Haber cycle, as shown for FNO in Scheme 1. This energy difference is given by the sum of the bond dissociation energy (BDE(ON-F)) of the covalent gas when it separates into two free radical fragments, the electron affinity (EA(F)) of the more electronegative fragment, the first ionization potential (1.IP(NO)) of the more electropositive fragment, and the lattice enthalpy term, $-\Delta H_L$, obtained by appropriate correction of the lattice energy, $-U_L$, released when the resulting anion and cation form the ionic solid; so $\Delta E = \text{BDE(ON-F)} - \text{EA(F)} + 1.\text{IP(NO)} - \Delta H_L$.

Scheme 1

The cases where closely related molecules can exhibit in their solid state either ionic or covalent structures are much less common and are not as well understood. It is commonly assumed that the governing factors in such cases are the maximum coordination numbers of the central atoms and the lattice and sublimation energies. To test the validity of these assumptions in a quantitative manner, we have selected the M(C₆H₅)₄N₃ series, where M = P, As, Sb, and Bi. A recent crystallographic and vibrational spectroscopic study⁴ has shown that, in the solid state, the phosphorus and

arsenic compounds are ionic $[M(C_6H_5)_4]^+N_3^-$ salts, whereas the antimony compound is a pentacoordinated covalent solid. Therefore, this series offered an excellent opportunity for an analysis using a Born-Fajans-Haber cycle similar to the one shown in Scheme 1, but adapted to this special case by adding the sublimation enthalpy, ΔH_{sub} , of the covalent solid to the covalent gas phase molecule (Scheme 2).

Scheme 2

The calculations of the sublimation energies of the covalent solids to the covalent gas, the total energies of the covalent gas and the free gaseous ions, and the lattice energies allow the prediction of the energy differences, ΔE , between the covalent and the ionic solids. Thermodynamically, ΔE is the important magnitude in the covalent-ionic isomerism reaction in Scheme 2 since the entropy change, ΔS , can be anticipated to be extremely small, the corresponding enthalpy change, ΔH ($\Delta H = \Delta E + P\Delta V$) will be approximately equal in magnitude to that of ΔE , which will also mirror the overall value of the Gibbs energy change, ΔG , for the target reaction above. For the phosphorous and arsenic compounds, the crystal structure data show that ΔE should be negative and for the antimony compound positive. Furthermore, this analysis provides insight into which

intrinsic properties of these molecules are responsible for the change from ionic to covalent structures.

Theoretical Methods

Density Functional Theory Calculations. The initial structures and harmonic vibrational frequencies of covalent $M(C_6H_5)_4N_3$, where $M = P$, As, Sb, and Bi, of the corresponding cations $[M(C_6H_5)_4]^+$, and of the azide anion $[N_3]^-$ were optimized using the B3LYP⁵ hybrid functional and the Stevens-Basch-Krauss-Jasien-Cundari (SBKJC) effective core potential and valence-only basis set,⁶ augmented with a spherical harmonic d polarization function⁷ and a diffuse s+p shell⁸ on each heavy atom. A polar coordinate grid with 96 radial, 36 theta, and 72 phi grid points was used with the GAMESS quantum chemistry package.⁹ These geometries were reoptimized with the B3LYP functional and the following basis sets: C, H, N: DZVP2,¹⁰ P: aug-cc-pVDZ,¹¹ and As, Sb, Bi: aug-cc-pVDZ-PP.¹² We abbreviate this basis set combination as DZVP2 + aVDZ-PP. The heavy element calculations were done with the small core effective core potentials and correlation consistent basis sets developed by the Peterson and Stuttgart groups. These calculations were done with the Gaussian03 program system.¹³

Lattice Energy Calculations. Lattice energies, $-U_L$ were estimated using the VBT approach¹⁴ which related the lattice energy, U_L to the ionic strength, I of the lattice and the inverse cube root of the formula unit volume, V_m . This, in turn, is related to V_{cell}/Z where V_{cell} is the volume of the crystal unit cell and Z is the number of molecules per unit cell. The expression for the lattice energy is

$$U_L = 2I(\alpha V_m^{-1/3} + \beta) \quad (1)$$

where $\alpha = 28.0$ kcal-nm/mol and $\beta = 12.4$ kcal/mol. The data to calculate V_m for our target salts can be taken from Table 1 of reference 4, noting that for the $[\text{As}(\text{C}_6\text{H}_5)_4]\text{N}_3$ ·monohydrate it was necessary to subtract the volume of the hydrated water molecule prior to calculating the lattice energy of the anhydrous parent salt. We also calculated the volumes of the anion N_3^- and the cations at the B3LYP/DZVP2 + aVDZ+PP level using the 0.001 a.u. contour.

Sublimation Energy Calculations. The B3LYP/DZVP2 + aVDZ-PP optimized geometries were subsequently used in single point calculations to predict the boiling points using the COSMO-RS formalism¹⁵ as implemented in the ADF program.^{16,17} The DFT densities in ADF for the COSMO-RS calculations of the boiling points were generated at the BP/QZ4P level.^{18,19} The rule of Pictet and Trouton²⁰ with $\Delta H_{\text{vap}} = T_{\text{BP}}\Delta S$ (ΔG of a phase change = 0), where T_{BP} is the calculated boiling point and $\Delta S = 25$ cal/mol-K was used to predict the ΔH_{vap} . The value of 25 cal/mol-K was taken from our comparison of the boiling points of a range of substituted compounds.²¹ The radii used for P, As, Sb, and Bi are 2.12, 2.16, 2.43, and 2.44 Å respectively. The heat of melting of a wide range of compounds is 3 ± 2 kcal/mol so we estimated ΔH_{sub} by adding 3 kcal/mol to the calculated ΔH_{vap} .²²

Results and Discussion

Density Functional Theory Calculations. Because of the relatively large size of the molecules of this study, density functional theory was used for these calculations. As expected from the established maximum coordination numbers of six for P(V) and As(V),^{1,2,3} and of seven for Sb(V),²³ the phosphorus, arsenic and antimony central atoms

should have no problems in accommodating four phenyl and one azido ligands in covalent, pentacoordinated, pseudo trigonal bipyramidal structures. In accord with simple VSEPR arguments,²⁴ the more electronegative azido ligand should occupy one of the axial positions. These predictions were confirmed for the pentacoordinate covalent structures by our theoretical calculations which showed vibrationally stable minimum energy structures (see Table S1 of the Supplementary Material).

For $\text{P}(\text{C}_6\text{H}_5)_4\text{N}_3$, a C_1 symmetry structure was predicted with a P-N bond length of 2.185 Å. Although this bond length is considerably longer than that of 1.79 Å, predicted for the P-N bond in $[\text{NP}(\text{N}_3)_2]_3$ ²⁵ and the sum of the covalent radii of P and N of 1.80 Å,²⁶ it is much shorter than the sum of the van der Waals radii of about 3.35 Å,²⁷ suggesting the presence of a covalent azido ligand with strong ionic contributions increasing the P-N bond length. The presence of strong ionic contributions is also reflected by the decreased difference of 0.05 Å between the $\text{N}_\alpha\text{-N}_\beta$ and the $\text{N}_\beta\text{-N}_\gamma$ bonds of the azido ligand. To investigate whether this lengthening of the P-N bond can be attributed to the influence of the four phenyl ligands, we have also calculated for comparison the structure of $\text{P}(\text{CH}_3)_4\text{N}_3$. For this molecule, three minimum energy structures were predicted which differ only by less than 1.5 kcal/mol. The lowest energy structure has C_s symmetry with a P-N bond length of 2.264 Å, somewhat longer than that of 2.185 Å, predicted for $\text{P}(\text{C}_6\text{H}_5)_4\text{N}_3$. Thus, the long P-N bond in $\text{P}(\text{C}_6\text{H}_5)_4\text{N}_3$ cannot be attributed to the steric influence of the phenyl groups. The other two minimum energy structures of $\text{P}(\text{CH}_3)_4\text{N}_3$ were predicted to have P-N bond lengths of 3.13 and 3.31 Å, respectively, approaching the value of 3.35 Å for the sum of the van der Waals radii²⁷ and, therefore, represent ion pairs.

For covalent $\text{As}(\text{C}_6\text{H}_5)_4\text{N}_3$ and $\text{Sb}(\text{C}_6\text{H}_5)_4\text{N}_3$, minimum energy structures with M-N bond lengths of 2.308 and 2.266 Å, respectively, were predicted, 0.08 to 0.12 Å longer than in $\text{P}(\text{C}_6\text{H}_5)_4\text{N}_3$. The main features of the predicted geometry of $\text{Sb}(\text{C}_6\text{H}_5)_4\text{N}_3$ agree well with those found in the crystal structure.⁴ As expected, density functional theory slightly overestimates most of the bond lengths, except for the Sb-N bond where the predicted value of 2.266 Å is significantly shorter than the experimental value of 2.373 Å. This implies that in the experimental structure the N_3^- ligand is somewhat more ionic than predicted. Further support for the increased ionicity of the azido group in the experimental structure comes from the fact that the observed difference of 0.048 Å between the N_α - N_β and the N_β - N_γ bond lengths⁴ is shorter than the predicted value of 0.062 Å. For covalent $\text{P}(\text{CH}_3)_4\text{N}_3$ and $\text{As}(\text{CH}_3)_4\text{N}_3$, a comparison of predicted and experimental geometries is not possible because of the lack of experimental covalent structures.

The geometries predicted for the free $\text{M}(\text{C}_6\text{H}_5)_4^+$ ($\text{M} = \text{As}, \text{P}$) and N_3^- ions are in good agreement with the experimental results,²⁸ with the predicted bond lengths being about 0.02 Å longer than the experimental ones, as expected for DF theory. Our results clearly demonstrate that in the covalent $\text{M}(\text{CH}_3)_4\text{N}_3$ molecules the maximum coordination numbers of the central atoms are not reached or exceeded and, thus, do not play a role in determining whether the preferred structures are ionic or covalent.

Of the required thermodynamic values, only the electron affinity of N_3^- is known from experiment,²⁹ 2.68 ± 0.03 eV (-61.8 kcal/mol), and this is the value used in our thermodynamic cycle calculations. For comparison, our calculated value for EA(N_3^-) at the B3LYP/DZVP2 level is 59.5 kcal/mol. From the differences between the calculated

total energies of the free gaseous $[M(C_6H_5)_4]^+$ and N_3^- ions and the free gaseous covalent $M(CH_3)_4N_3$ molecules and a knowledge of the sublimation energies and the electron affinity of N_3 , the sum of the M-N bond dissociation energy and the first ionization potential of $M(C_6H_5)_4$ can be obtained. In order to be able to split this sum into its two components, the covalent $M(C_6H_5)_4-N_3$ BDE and 1.IP of $M(C_6H_5)_4$ were calculated at the B3LYP/DZVP1 + aVDZ-PP level and are given in Table 1.

Lattice Energy Calculations. On the basis of the structure refinement data reported in Table 1 of reference 4, the formula unit volumes, V_m (calculated from V_{cell}/Z), are: $V_m(P(C_6H_5)_4N_3) = 0.9876/2 = 0.4938 \text{ nm}^3$; $V_m(As(C_6H_5)_4N_3.H_2O) = 2.2221/4 = 0.5555 \text{ nm}^3$ and using the thermodynamic difference rule,^{14c} $V_m(As(C_6H_5)_4N_3) = V_m(As(C_6H_5)_4N_3.H_2O) - V_m(H_2O)^{6d} = 0.5555 - 0.0245 = 0.531 \text{ nm}^3$, and $V_m(Sb(C_6H_5)_4N_3) = 2.0415/4 = 0.5104 \text{ nm}^3$. The calculated volumes are 0.4793 (P), 0.4851 (As), 0.4756 (Sb), and 0.5033 (Bi) nm^3 using a value of 0.0575 nm^3 for $V(N_3^-)$ (Table SI 3). The calculated volumes are in reasonable agreement with the experimental values. Taking the lattice ionic strength, I , to be 1, the lattice energies can be calculated. These can be corrected to lattice enthalpies, ΔH_L , using the correction procedure described previously^{14e} ($\Delta H_L = U_L + 2RT$) where $2RT = 1.2 \text{ kcal/mol}$ at 298 K.

Sublimation Energy Calculations. The calculated boiling points for $M(C_6H_5)_4N_3$ are 643 K (P), 675 K (As), 620 K (Sb), and 693 K (Bi). The boiling points lead to predicted ΔH_{vap} values of 16.1 (P), 16.9 (As), 15.5 (Sb), and 17.3 (Bi) kcal/mol which lead to the estimated ΔH_{sub} values in Table 1.

Born-Fajans-Haber Cycles. The results from the Born-Fajans-Haber cycles for Scheme 2 are summarized in Table 1. The sublimation energies, the lattice enthalpies, and $EA(N_3^-)$

are approximately constant. For P, As, and Sb, the M-N₃ BDEs are also approximately constant, so it is the value of the first ionization potential of M(C₆H₅)₄ which determines whether these M(CH₃)₄N₃ compounds are ionic or covalent. The constant values for the M-N₃ BDEs for P, As and Sb suggest that there is some steric ligand effect compensating the expected decrease in the BDE with increasing atomic number, as shown by the fact that in P(CH₃)₄N₃ the BDE is not coupled with the long P-N bond.

For these molecules, the 1.IP of M(C₆H₅)₄ increases with increasing atomic number of the central atom. P(C₆H₅)₄ has the lowest ionization potential as it most readily gives up its electron to form the corresponding cation leading to an ionic solid. As(C₆H₅)₄N₃ is right at the border between covalent and ionic behavior with the 1.IP of As(C₆H₅)₄ being about 5 kcal/mol higher than that of P(C₆H₅)₄. The value of 1.IP substantially increases by 14 kcal/mol from As(C₆H₅)₄ to Sb(C₆H₅)₄, so Sb(C₆H₅)₄N₃ is a covalent solid. Although there is a substantial decrease in the M-N₃ BDE for Bi, it is compensated by a substantial increase in the 1.IP of Bi(C₆H₅)₄, so Bi(C₆H₅)₄N₃ is predicted to be also an ionic solid with an ionic-covalent energy difference similar to that of Sb(C₆H₅)₄N₃. Thus, the results from our Born-Fajans-Haber cycles confirm that P(C₆H₅)₄N₃ should be ionic and Sb(C₆H₅)₄N₃ and Bi(C₆H₅)₄N₃ should be covalent by relatively large margins of ΔE, while As(C₆H₅)₄N₃ represents a border line case.

Conclusion

Our study surprisingly shows that, contrary to intuition, the value of the first ionization potential of M(C₆H₅)₄ determines whether these M(CH₃)₄N₃ compounds are ionic or covalent. In agreement with the known crystal structures, P(C₆H₅)₄N₃ is found to

be ionic and $\text{Sb}(\text{C}_6\text{H}_5)_4\text{N}_3$ is predicted to be covalent, while $\text{As}(\text{C}_6\text{H}_5)_4\text{N}_3$ represents a border line case.

Acknowledgement

We gratefully acknowledge financial support of this work by the National Science Foundation, the Office of Naval Research, the Defense Threat Reduction Agency, and the Department of Energy. DAD is indebted to the Robert Ramsay Endowment of the University of Alabama. HDBJ acknowledges the University of Warwick for provision of facilities. JAB gratefully acknowledges a grant of computer time from the Department of Defense High Performance Computing Modernization Program at the Engineer Research and Development Center DoD Supercomputing Resource Center.

Supporting Information Available. Calculated geometries for $[\text{M}(\text{C}_6\text{H}_5)_4]^+\text{N}_3^-$ compounds at the B3LYP/DZVP2 +aVDZ-PP level (Table SI-1); Calculated frequencies (cm^{-1}) for $[\text{M}(\text{C}_6\text{H}_5)_4]^+\text{N}_3^-$ compounds at the B3LYP/DZVP2+aVDZ-PP level (Table SI-2) with infrared intensities (km/mol) and Raman intensities ($\text{\AA}^4/\text{amu}$); Calculated volumes ($\text{nm}^3/\text{molecule}$) for $[\text{M}(\text{C}_6\text{H}_5)_4]^+\text{N}_3^-$ compounds at the B3LYP/DZVP2 +aVDZ-PP level (Table SI-3); Calculated total energies (a.u.) for $[\text{M}(\text{C}_6\text{H}_5)_4]^+\text{N}_3^-$ compounds at the B3LYP/DZVP2 +aVDZ-PP level (Table SI-4). This material is available free of charge via the internet at <http://pubs.acs.org>.

Table 1. Components of the Born-Fajans-Haber Cycles of Scheme 2 and Energy Differences, ΔE , between the Covalent and the Ionic Solids for $M(C_6H_5)_4N_3$ ($M = P, As, Sb, Bi$) in kcal/mol.

	$P(C_6H_5)_4N_3$	$As(C_6H_5)_4N_3$	$Sb(C_6H_5)_4N_3$	$Bi(C_6H_5)_4N_3$
ΔH_{sub}	19.1	19.9	18.5	20.3
BDE(M-N)	47.3	47.6	49.3	33.6
1. IP[$M(C_6H_5)_4$]	86.4	91.2	105.0	119.2
$-\Delta H_L$	-97.6	-97.5	-97.3	-96.2
-EA(N_3)	-61.8	-61.8	-61.8	-61.8
ΔE	-6.6	-0.6	13.7	15.1

References

-
- ¹ Holleman-Wiberg, *Inorganic Chemistry*, Academic Press: San Diego, CA, **2001**.
- ² Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements, Second Edition*, Butterworth-Heinemann: Oxford, **1998**.
- ³ Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. *Advanced Inorganic Chemistry, Sixth Edition*, John Wiley and Sons, Inc., New York, **1999**.
- ⁴ Haiges, R.; Schroer, T.; Yousufuddin, M.; Christe, K. O. Z. *Anorg. Allg. Chem.* **2005**, *631*, 2691.
- ⁵ Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648-5642.; Stephens, P. J., Devlin, F. J., Chabalowski, C. F., Frisch, M. J., *J. Phys. Chem.* **1994**, *98*, 11623-11627.; Hertwig, R. H., Kock, W. *Chem. Phys. Lett.* **1997**, *268*, 345-351.
- ⁶ Stevens, W. J., Basch, H., Krauss, M., *J. Chem. Phys.* **1984**, *81*, 6026-6033.; Stevens, W.J., Krauss, M., Basch, H., Jasien, *Can. J. Chem.* **1992**, *70*, 612-630.; Cundari, T.R., Stevens, W.J., *J. Chem. Phys.* **1993**, *98*, 5555-5565.
- ⁷ The d polarization function exponents used were 0.8 (C and N), 0.55 (P), 0.293 (As), and 0.211 (Sb).
- ⁸ Clark, T., Chandrasekhar, J. Spitznagel, G.W., Schleyer, P. von R.; *J. Comput. Chem.* **1983**, *4*, 294-301.
- ⁹ Schmidt, M. W., Baldridge, K. K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.; *J. Comput. Chem.*, **1993**, *14*, 1347-1363.; Gordon, M. S., Schmidt, M. W., pp. 1167-1189, in "Theory and Applications of Computational Chemistry: the first

forty years" Dykstra, C. E., Frenking, G., Kim, K.S., Scuseria, G.E. (editors), Elsevier, Amsterdam, **2005**.

¹⁰ Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. *Can. J. Chem.* **1992**, *70*, 560-571.

¹¹ a) Dunning, T. H., Jr. *J. Chem. Phys.* **1989**, *90*, 1007. (b) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. *J. Chem. Phys.* **1992**, *96*, 6796.

¹² Metz, H.; Stoll, M.; Dolg, J. *J. Chem. Phys.* **2000**, *113*, 2563-2569; Peterson, K. A. *J. Chem. Phys.* **2003**, *119*, 11099-11112.

¹³ M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuna, G. A. Voth P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowshi, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03*, Revision C. 02, Gaussian, Inc., Wallingford, CT, 2004.

¹⁴ (a) Glasser, L ; Jenkins, H. D. B.; *Chem. Soc. Rev.*, **2005**, 34, 866. (b) Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. *Inorg. Chem.*, **1999**, 38, 3609. (c) Jenkins, H. D. B.; Glasser, L. *J. Am. Chem. Soc.*, **2004**, 126, 15809. (d) Jenkins, H. D. B.; Glasser, L. *Inorg. Chem.*, **2002**, 41, 4378. (e) Jenkins, H. D. B. *J. Chem. Ed.*, **2005**, 82, 950. (f) Glasser, L.; Jenkins, H. D. B. *J. Chem. Eng. Data*, **2010**, DOI:10.1021/je100683u.

¹⁵ Klamt, C. A. *J. Phys. Chem.* **1995**, 99, 2224; Klamt, C. A. *Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design*; Elsevier: Amsterdam, 2005; Klamt, C. A.; Jonas, V.; Burger, T.; Lohrenz, J. C. *J. Phys. Chem. A* **1998**, 102, 5074.

¹⁶ Baerends, E. J.; Austchbach, J.; Berces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; L., D.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Gotz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Gruning, M.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; van Kessel, G.; Kootstra, F.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Neugebauer, J.; Nicu, V. P.; Osinga, V. P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodriguez, J. I.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Sola, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L.; Ziegler, T., *SCM*, ADF2008.01, Amsterdam, The Netherlands, 2008.

-
- ¹⁷ Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. *Theor. Chem. Acc.* **1998**, *99*, 391; e Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. *J. Comput. Chem.* **2001**, *22*, 931-967.
- ¹⁸ Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098.
- ¹⁹ Perdew, J. P. *Phys. Rev. B* **1986**, *33*, 8822; Perdew, J. P. *Phys. Rev. B* **1986**, *34*, 7406.
- ²⁰ Pictet, R. G. *Ann. Chem. Phys.* **1876**, *183*, 180; Trouton, F. *Phil. Mag.* **1884**, *18*, 54; Hildebrand, J. H. *J. Am. Chem. Soc.* **1915**, *37*, 970; Lewis, G. N. *Thermodynamics*; McCraw Hill: New York, 1961; Waser, J. *Basic Chemical Thermodynamics*; W. A. Benjamin: New York, 1966.
- ²¹ Davis, B. L.; Dixon, D. A.; Garner, E. B.; Gordon, J. C.; Matus, M. H.; Stephens, F. H. *Angew. Chem.*, **2009**, *48*, 6812.
- ²² Lide, D. R. (Ed.), *CRC Handbook of Chemistry and Physics*, 86th Ed., Taylor and Francis, Boca Raton FL 2005.
- ²³ Drake, G. W.; Dixon, D. A. ; Sheehy, J. A. ; Boatz, J. A. ; Christe, K. O. *J. Am. Chem. Soc.* **1998**, *120*, 8392.
- ²⁴ Gillespie, R. J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*, Allyn and Bacon: Boston, **1991**.
- ²⁵ Tornieporth-Oetting, I. C.; Klapoetke, T. M. *Angew. Chem. Intl. Ed.* **1995**, *34*, 511
- ²⁶ Klapoetke, T. M.; Tornieporth-Oetting, I. C. *Nichtmetallchemie*, VCH: Weinheim, **1994**.
- ²⁷ Bondi, A. *J. Phys. Chem.* **1964**, *68*, 441.
- ²⁸ The previously published crystal structure for $[\text{As}(\text{C}_6\text{H}_5)_4]^+\text{N}_3^-$ (Crawford, M.-J.; Klapoetke, T. M. *Heteroatom Chem.* **1999**, *10*, 325) suffered from the small size of the

selected crystals and a low R-factor of 13 %, resulting in an average As-C bond length of 1.89 Å. Our more accurate crystal structure of $[\text{As}(\text{C}_6\text{H}_5)_4]^+\text{N}_3^-\cdot\text{H}_2\text{O}$ gives a value of 1.911 Å for the As-C distance which is in much better agreement with our theoretical predictions.

²⁹ Yang, X.; Kiran, B.; Wang, X.B.; Wang, L.S.; Mucha, M.; Jungwirth, P., *J. Phys.*

Chem. A, **2004**, 108, 7820.

Why are $[P(C_6H_5)_4]^+N_3^-$ and $[As(C_6H_5)_4]^+N_3^-$ Ionic Salts and $Sb(C_6H_5)_4N_3$ and $Bi(C_6H_5)_4N_3$ are Covalent Solids? A Theoretical Study Provides an Unexpected Answer.

*Karl O. Christe,^{*1} Ralf Haiges,¹ Jerry A. Boatz,² H. Donald Brooke Jenkins,³ Edward B. Garner,⁴ David A. Dixon^{*4}*

¹ Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA

²Space and Missile Propulsion Division, Air Force Research Laboratory (AFRL/RZS), Edwards Air Force Base, CA 93524, USA

³ Department of Chemistry, University of Warwick, Coventry CV4 7AL, West Midlands, UK

⁴Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA

Supporting Information Available. Calculated geometries for $[M(C_6H_5)_4]^+N_3^-$ compounds at the B3LYP/DZVP2 +aVDZ-PP level (Table SI-1); Calculated frequencies (cm^{-1}) for $[M(C_6H_5)_4]^+N_3^-$ compounds at the B3LYP/DZVP2+aVDZ-PP level (Table SI-2) with infrared intensities (km/mol) and Raman intensities ($\text{\AA}^4/\text{amu}$); Calculated volumes ($\text{nm}^3/\text{molecule}$) for $[M(C_6H_5)_4]^+N_3^-$ compounds at the B3LYP/DZVP2 +aVDZ-PP level (Table SI-3); Calculated total energies (a.u.) for $[M(C_6H_5)_4]^+N_3^-$ compounds at the B3LYP/DZVP2 +aVDZ-PP level (Table SI-4).

Table SI-1. Calculated geometries

Molecule	Atom	x	y	z
N ₃	N	0.000000	0.000000	1.195232
	N	0.000000	0.000000	-0.000016
	N	0.000000	0.000000	-1.195217
N ₃ ⁻	N	0.000000	0.000000	0.000000
	N	0.000000	0.000000	1.201772
	N	0.000000	0.000000	-1.201772
N ₃ P(CH ₃) ₄	P	-0.774002	-0.020727	-0.000018
	N	1.362576	1.005833	-0.000107
	N	2.280480	0.212681	-0.000051
	N	3.142700	-0.587197	0.000077
	C	-2.491152	-0.745488	0.000162
	C	-1.185476	1.764028	-0.001271
	C	-0.133093	-0.729763	-1.564413
	C	-0.133699	-0.727610	1.565620
	H	-3.042551	-0.421728	-0.888191
	H	-2.447234	-1.839053	0.001005
	H	-3.042956	-0.420370	0.887764
	H	-2.268104	1.909926	-0.000900
	H	-0.728399	2.226191	0.873816
	H	-0.729270	2.224780	-0.877565
	H	0.087664	0.091375	-2.247700
	H	0.798285	-1.267682	-1.377597
	H	-0.870478	-1.405127	-2.005408
	H	0.797844	-1.265625	1.379920
	H	0.086619	0.094492	2.247887
	H	-0.871170	-1.402500	2.007208
N ₃ P(C ₆ H ₅) ₄	P	-0.166252	0.006172	0.032492
	N	2.368552	-0.449171	1.540685
	N	3.274711	-0.290766	0.764616
	N	4.135423	-0.132842	-0.031060
	C	-0.993797	-0.318054	1.641901
	C	-2.374546	-0.072248	1.763431
	C	-0.271738	-0.819192	2.742259
	C	-3.027323	-0.319579	2.975038
	C	-0.939066	-1.067222	3.945414
	C	-2.311280	-0.818970	4.069234

C	0.766805	1.574769	0.007712
C	1.095164	2.229963	1.204900
C	1.121362	2.142210	-1.227014
C	1.763398	3.454889	1.159749
C	1.807546	3.361101	-1.262798
C	2.125469	4.019750	-0.071253
C	0.685588	-1.472345	-0.600062
C	0.226269	-2.742744	-0.202333
C	1.692341	-1.357957	-1.573709
C	0.783006	-3.889502	-0.769595
C	2.246343	-2.516232	-2.128459
C	1.792912	-3.779836	-1.737093
C	-1.545804	0.313021	-1.166575
C	-2.141193	1.585347	-1.245714
C	-2.036500	-0.726003	-1.973131
C	-3.209371	1.811988	-2.118396
C	-3.104943	-0.495235	-2.847482
C	-3.695170	0.771479	-2.921259
H	-2.948230	0.301754	0.924728
H	0.795225	-0.990293	2.643981
H	-4.092268	-0.126163	3.059303
H	-0.378221	-1.453771	4.790937
H	-2.819386	-1.014085	5.009326
H	0.857445	1.774616	2.157497
H	0.852113	1.655741	-2.158998
H	2.021636	3.957864	2.086162
H	2.095376	3.788549	-2.217959
H	2.660912	4.963993	-0.098959
H	-0.540659	-2.836792	0.559215
H	2.086901	-0.392006	-1.861329
H	0.437110	-4.868095	-0.450770
H	3.051584	-2.423916	-2.849911
H	2.231769	-4.673976	-2.169208
H	-1.766971	2.402153	-0.637339
H	-1.582643	-1.709761	-1.932858
H	-3.658367	2.798974	-2.174651
H	-3.471385	-1.303935	-3.472305
H	-4.521804	0.949616	-3.602534
P(C ₆ H ₅) ₄	P	0.000003	-0.000009
	C	-1.016227	1.060789
			-1.077902

This page is Distribution A: approved for public release; distribution unlimited. 3

C	-1.549658	2.273657	-0.577472
C	-1.549352	0.541569	-2.282971
C	-2.517391	2.974570	-1.295947
C	-2.517084	1.248961	-2.995100
C	-3.006094	2.475151	-2.514640
C	1.016010	1.077950	1.060869
C	1.549007	2.283089	0.541678
C	1.549417	0.577593	2.273778
C	2.516609	2.995339	1.249122
C	2.517034	1.296184	2.974735
C	3.005619	2.514934	2.475337
C	-1.016080	-1.060960	1.077805
C	-1.549205	-0.541843	2.282916
C	-1.549388	-2.273872	0.577350
C	-2.516844	-1.249357	2.995047
C	-2.517032	-2.974906	1.295829
C	-3.005751	-2.475576	2.514553
C	1.016275	-1.077799	-1.060869
C	1.549800	-0.577317	-2.273678
C	1.549364	-2.282892	-0.541664
C	2.517585	-1.295764	-2.974547
C	2.517134	-2.995000	-1.249021
C	3.006240	-2.514486	-2.475153
H	-1.201582	2.669005	0.371280
H	-1.200991	-0.413148	-2.663388
H	-2.899313	3.912301	-0.902427
H	-2.898772	0.840881	-3.926681
H	-3.764303	3.019972	-3.068097
H	1.200629	2.663471	-0.413048
H	1.201438	-0.371200	2.669110
H	2.898201	3.926970	0.841065
H	2.898952	0.902712	3.912486
H	3.763733	3.068482	3.020196
H	-1.200907	0.412886	2.663367
H	-1.201306	-2.669148	-0.371428
H	-2.898540	-0.841353	3.926659
H	-2.898872	-3.912659	0.902285
H	-3.763889	-3.020491	3.068013
H	1.201782	0.371465	-2.669000
H	1.200912	-2.663358	0.413003

	H	2.899585	-0.902199	-3.912227
	H	2.898781	-3.926607	-0.840959
	H	3.764484	-3.067923	-3.019943
P(C ₆ H ₅) ₄ ⁺	P	-0.000022	-0.000261	0.000391
	C	-1.067810	1.040377	1.031163
	C	-2.195182	0.465385	1.650101
	C	-0.762811	2.395477	1.245631
	C	-3.003882	1.243787	2.482206
	C	-1.579991	3.167572	2.077950
	C	-2.696514	2.594236	2.697769
	C	1.073970	-1.022379	1.043468
	C	0.766883	-1.241145	2.397399
	C	2.208426	-1.630629	0.471088
	C	1.589237	-2.067035	3.170956
	C	3.022118	-2.456579	1.250833
	C	2.712767	-2.676401	2.600141
	C	-1.062485	-1.052301	-1.024650
	C	-0.742634	-2.403253	-1.243528
	C	-2.200680	-0.489842	-1.635194
	C	-1.555963	-3.183717	-2.071812
	C	-3.005292	-1.276415	-2.463543
	C	-2.683185	-2.622703	-2.683493
	C	1.056339	1.033475	-1.049104
	C	2.187205	1.654603	-0.483479
	C	0.738705	1.248668	-2.401167
	C	2.986816	2.489663	-1.268078
	C	1.547039	2.083686	-3.179647
	C	2.666985	2.705807	-2.615532
	H	-2.454017	-0.574773	1.477163
	H	0.091782	2.854811	0.761630
	H	-3.873640	0.800041	2.956224
	H	-1.347884	4.215740	2.237200
	H	-3.329431	3.197995	3.340828
	H	-0.093390	-0.765256	2.854726
	H	2.468606	-1.454211	-0.568128
	H	1.355545	-2.229498	4.218277
	H	3.897226	-2.922511	0.809034
	H	3.349471	-3.314728	3.204944
	H	0.120810	-2.852978	-0.766091

	H	-2.470791	0.546810	-1.458688
	H	-1.312239	-4.228712	-2.234508
	H	-3.883313	-0.842293	-2.931205
	H	-3.312865	-3.232794	-3.323745
	H	2.455609	1.481154	0.554146
	H	-0.118888	0.763094	-2.853315
	H	3.859234	2.965464	-0.831524
	H	1.305224	2.243429	-4.225546
	H	3.292911	3.351116	-3.224157
N ₃ As(CH ₃) ₄	AS	-0.608705	-0.010784	0.000000
	N	1.551105	1.029243	0.000106
	N	2.455111	0.219016	0.000016
	N	3.308049	-0.589397	-0.000054
	C	-2.448638	-0.780798	-0.000043
	C	-1.061573	1.888130	-0.000053
	C	0.051779	-0.780667	-1.671450
	C	0.051668	-0.780659	1.671502
	H	-2.992114	-0.450957	-0.890164
	H	-2.398271	-1.873397	0.000115
	H	-2.992250	-0.450706	0.889902
	H	-2.145887	2.010193	0.000240
	H	-0.605548	2.337054	0.881773
	H	-0.606088	2.336861	-0.882262
	H	0.214855	0.042195	-2.367970
	H	1.004056	-1.277688	-1.483153
	H	-0.684642	-1.485142	-2.062024
	H	1.003992	-1.277617	1.483277
	H	0.214628	0.042197	2.368056
	H	-0.684750	-1.485186	2.061988
N ₃ As(C ₆ H ₅) ₄	AS	-0.006002	0.022656	-0.198836
	N	1.046107	0.579048	-2.211143
	N	2.235603	0.825291	-2.147834
	N	3.377711	1.070091	-2.098930
	C	-1.614732	-0.078397	-1.326932
	C	-2.856132	0.145627	-0.710986
	C	-1.555786	-0.364531	-2.698905
	C	-4.034542	0.077433	-1.463755
	C	-2.740465	-0.457919	-3.437142
	C	-3.980526	-0.235891	-2.826322

C	1.273295	-1.466168	-0.155790
C	1.552487	-2.221415	-1.301351
C	1.900969	-1.767408	1.060733
C	2.449436	-3.291689	-1.221109
C	2.823785	-2.818334	1.125172
C	3.093122	-3.587172	-0.012635
C	0.607552	1.808580	0.279773
C	-0.247932	2.899288	0.071938
C	1.880351	1.995107	0.833420
C	0.172285	4.183393	0.432424
C	2.292762	3.286461	1.188157
C	1.441410	4.379344	0.994815
C	-0.894193	-0.461017	1.547214
C	-1.426926	-1.753788	1.699020
C	-0.996517	0.439617	2.616116
C	-2.049693	-2.136630	2.890314
C	-1.618744	0.057993	3.815092
C	-2.147829	-1.228588	3.955119
H	-2.918046	0.362884	0.348624
H	-0.595097	-0.466994	-3.184649
H	-4.989776	0.261115	-0.981175
H	-2.690605	-0.688464	-4.497141
H	-4.895582	-0.300058	-3.408012
H	1.098291	-1.961857	-2.249335
H	1.669112	-1.204258	1.958454
H	2.659139	-3.882262	-2.107767
H	3.322692	-3.038643	2.064102
H	3.802614	-4.407609	0.039923
H	-1.225575	2.758279	-0.378675
H	2.558586	1.160356	0.972218
H	-0.487333	5.030397	0.268573
H	3.285198	3.435148	1.602454
H	1.767223	5.378387	1.267972
H	-1.355485	-2.473206	0.887069
H	-0.592271	1.442414	2.528345
H	-2.455143	-3.139340	2.991482
H	-1.687418	0.766587	4.635632
H	-2.629015	-1.524919	4.882561
As(C ₆ H ₅) ₄	AS	0.004811	-0.060412
	C	0.030057	-1.557538
			0.773154

C	1.217670	-1.898077	1.445629
C	-1.125358	-2.320653	1.011017
C	1.245576	-2.973677	2.341146
C	-1.094444	-3.399331	1.903911
C	0.089706	-3.729756	2.573689
C	-0.022056	1.528610	0.652998
C	0.107671	1.456224	2.046843
C	-0.169881	2.786544	0.045044
C	0.088840	2.624352	2.821944
C	-0.185245	3.953786	0.817751
C	-0.055509	3.875361	2.210938
C	2.100145	-0.010717	-0.943140
C	2.935829	1.060925	-0.604709
C	2.590497	-1.044207	-1.753652
C	4.267313	1.079399	-1.050303
C	3.920755	-1.030061	-2.190921
C	4.763273	0.035386	-1.840586
C	-2.105149	-0.039241	-0.941236
C	-3.046979	0.662815	-0.177868
C	-2.510797	-0.719001	-2.095411
C	-4.396276	0.665454	-0.562698
C	-3.860250	-0.720779	-2.477579
C	-4.805568	-0.027395	-1.710193
H	2.124938	-1.330489	1.268880
H	-2.053144	-2.076718	0.506283
H	2.170832	-3.221639	2.853660
H	-1.996663	-3.979669	2.075082
H	0.112839	-4.566524	3.265841
H	0.220674	0.493887	2.535307
H	-0.279167	2.862562	-1.033944
H	0.186130	2.555279	3.901750
H	-0.300003	4.920078	0.334831
H	-0.069612	4.779592	2.812267
H	2.569383	1.875921	0.011960
H	1.941932	-1.870277	-2.039928
H	4.915580	1.908157	-0.777287
H	4.298716	-1.842152	-2.806569
H	5.793293	0.052375	-2.184804
H	-2.744683	1.202811	0.714443
H	-1.779805	-1.249297	-2.702855

	H	-5.126699	1.206615	0.033304
	H	-4.171674	-1.255268	-3.371267
	H	-5.850530	-0.022172	-2.006457
As(C ₆ H ₅) ⁺	AS	0.000181	-0.000235	-0.000395
	C	-1.140860	0.812233	-1.333071
	C	-2.282524	1.517022	-0.916070
	C	-0.807169	0.721805	-2.692166
	C	-3.091380	2.138152	-1.873336
	C	-1.625996	1.345345	-3.640714
	C	-2.763011	2.054073	-3.233180
	C	1.124553	1.341805	0.820004
	C	0.779687	2.697990	0.727683
	C	2.264771	0.934560	1.532743
	C	1.585789	3.653459	1.357177
	C	3.060924	1.898662	2.159693
	C	2.721359	3.255617	2.073710
	C	-1.127326	-0.829547	1.333558
	C	-0.792669	-0.735528	2.692243
	C	-2.260129	-1.549302	0.917884
	C	-1.601420	-1.370833	3.641588
	C	-3.059007	-2.181882	1.876003
	C	-2.729522	-2.094427	3.235347
	C	1.144002	-1.325217	-0.821614
	C	2.277669	-0.900438	-1.534636
	C	0.820407	-2.686629	-0.728522
	C	3.088911	-1.852195	-2.161062
	C	1.641509	-3.629568	-1.357522
	C	2.770720	-3.214294	-2.074244
	H	-2.551998	1.574315	0.134504
	H	0.066993	0.167008	-3.016751
	H	-3.976636	2.682137	-1.559455
	H	-1.377605	1.274906	-4.694907
	H	-3.395438	2.534764	-3.973034
	H	-0.093195	3.015140	0.166677
	H	2.542829	-0.113666	1.591726
	H	1.328659	4.705450	1.285330
	H	3.945113	1.592322	2.709690
	H	3.343931	4.000756	2.559080
	H	0.074198	-0.168864	3.015921

	H	-2.530696	-1.609435	-0.132264
	H	-1.352244	-1.297912	4.695424
	H	-3.937452	-2.737379	1.563170
	H	-3.354229	-2.584055	3.975898
	H	2.539448	0.151960	-1.594041
	H	-0.047423	-3.017240	-0.167402
	H	3.968112	-1.532280	-2.711297
	H	1.400996	-4.685449	-1.285075
	H	3.404925	-3.949886	-2.559117
N ₃ Sb(CH ₃) ₄	SB	0.479310	0.003243	0.000001
	N	-1.650245	0.995113	-0.000081
	N	-2.599892	0.227366	-0.000024
	N	-3.516505	-0.497035	0.000028
	C	2.527196	-0.803349	0.000065
	C	1.020198	2.085890	-0.000253
	C	-0.144591	-0.919984	1.847676
	C	-0.144621	-0.920448	-1.847437
	H	3.065440	-0.463276	0.889945
	H	2.498378	-1.897174	0.000335
	H	3.065305	-0.463715	-0.890065
	H	2.105667	2.191635	-0.000641
	H	0.574706	2.541759	-0.885159
	H	0.575371	2.541796	0.884974
	H	-0.222542	-0.132071	2.598876
	H	-1.125803	-1.374045	1.704371
	H	0.592253	-1.666669	2.147206
	H	-1.125854	-1.374429	-1.704028
	H	-0.222521	-0.132734	-2.598852
	H	0.592198	-1.667243	-2.146755
N ₃ Sb(C ₆ H ₅) ₄	SB	0.010126	0.025673	-0.248136
	N	0.902523	0.669492	-2.289608
	N	2.060777	1.057985	-2.318271
	N	3.159788	1.434811	-2.385814
	C	-1.808730	-0.245798	-1.382051
	C	-3.014069	-0.420618	-0.684035
	C	-1.806125	-0.242899	-2.786428
	C	-4.213102	-0.593002	-1.387981
	C	-3.007175	-0.428391	-3.481406
	C	-4.211277	-0.602028	-2.787357

C	1.552601	-1.490181	-0.206573
C	2.019732	-2.075230	-1.392079
C	2.091236	-1.879290	1.029182
C	3.011304	-3.062053	-1.336690
C	3.100598	-2.849581	1.076048
C	3.556613	-3.446825	-0.105271
C	0.496450	2.028573	0.370262
C	-0.489255	3.025463	0.313795
C	1.789976	2.343640	0.809375
C	-0.181908	4.333305	0.708528
C	2.091527	3.654845	1.202532
C	1.107659	4.649044	1.156462
C	-0.842509	-0.589344	1.702175
C	-1.227312	-1.928003	1.903953
C	-1.009478	0.319373	2.758758
C	-1.767549	-2.347208	3.125216
C	-1.548859	-0.095596	3.986261
C	-1.930486	-1.428625	4.172094
H	-3.030592	-0.431580	0.399872
H	-0.879901	-0.075869	-3.321958
H	-5.142464	-0.722933	-0.841157
H	-3.001371	-0.428625	-4.567581
H	-5.140483	-0.740361	-3.332794
H	1.625036	-1.754804	-2.350183
H	1.727692	-1.444316	1.954461
H	3.365832	-3.519455	-2.255666
H	3.524296	-3.139768	2.033099
H	4.334608	-4.203767	-0.067359
H	-1.491679	2.798772	-0.039599
H	2.571652	1.590762	0.831594
H	-0.945929	5.104054	0.662030
H	3.097139	3.898135	1.532476
H	1.345313	5.664680	1.458532
H	-1.103670	-2.661426	1.110226
H	-0.718813	1.358526	2.638655
H	-2.057944	-3.385245	3.262137
H	-1.668494	0.621716	4.793607
H	-2.347421	-1.751260	5.121780
Sb(C ₆ H ₅) ₄	SB	-0.003148	-0.070485
	C	0.009125	-1.649155
			0.832573

This page is Distribution A: approved for public release; distribution unlimited. 11

C	1.217244	-2.074058	1.413549
C	-1.187534	-2.275698	1.222022
C	1.226594	-3.095951	2.371961
C	-1.177030	-3.299591	2.178519
C	0.029499	-3.712492	2.757429
C	-0.003363	1.671813	0.636949
C	0.139098	1.566203	2.029757
C	-0.138835	2.948677	0.064886
C	0.144995	2.714406	2.834613
C	-0.130806	4.097487	0.866887
C	0.011374	3.982460	2.255984
C	2.295739	-0.038402	-0.985732
C	3.117353	0.951496	-0.431773
C	2.848367	-1.010037	-1.830802
C	4.494601	0.951885	-0.704881
C	4.224631	-1.012952	-2.098151
C	5.050165	-0.029817	-1.535317
C	-2.308801	-0.036028	-0.967091
C	-3.160281	0.711248	-0.142686
C	-2.838854	-0.768934	-2.036079
C	-4.543567	0.707524	-0.379619
C	-4.222040	-0.774981	-2.270629
C	-5.076020	-0.035925	-1.441483
H	2.156052	-1.614263	1.121234
H	-2.132948	-1.969286	0.786035
H	2.167943	-3.410974	2.813785
H	-2.110390	-3.773566	2.469552
H	0.037289	-4.506927	3.498266
H	0.244014	0.591386	2.496757
H	-0.254700	3.061152	-1.010684
H	0.253046	2.617217	3.911434
H	-0.236352	5.077396	0.409565
H	0.016360	4.871585	2.879753
H	2.702014	1.718335	0.215524
H	2.217993	-1.773357	-2.282833
H	5.130771	1.717978	-0.269031
H	4.650204	-1.774573	-2.746435
H	6.115644	-0.026585	-1.746526
H	-2.761280	1.294374	0.682234
H	-2.184867	-1.339922	-2.692020

	H	-5.203167	1.284615	0.263412
	H	-4.630184	-1.349326	-3.098249
	H	-6.146813	-0.035553	-1.623886
Sb(C ₆ H ₅) ₄ ⁺	SB	-0.000083	-0.000006	-0.000714
	C	1.231697	1.192958	1.254434
	C	2.359844	1.828682	0.709233
	C	0.897791	1.355195	2.608012
	C	3.155099	2.636416	1.530604
	C	1.702190	2.164207	3.419602
	C	2.826051	2.804622	2.882210
	C	-1.261599	1.241492	-1.176681
	C	-0.945499	2.598892	-1.342454
	C	-2.391686	0.683523	-1.797705
	C	-1.769949	3.401503	-2.140169
	C	-3.207173	1.496037	-2.594121
	C	-2.896017	2.851431	-2.765876
	C	1.257511	-1.162770	-1.258512
	C	0.924430	-1.333889	-2.611211
	C	2.401876	-1.770671	-0.715486
	C	1.746201	-2.123963	-3.424114
	C	3.214438	-2.559618	-1.538127
	C	2.886378	-2.736777	-2.888811
	C	-1.227632	-1.271547	1.179234
	C	-2.369708	-0.741207	1.802499
	C	-0.876799	-2.620234	1.346193
	C	-3.162145	-1.572697	2.602589
	C	-1.678397	-3.442026	2.147670
	C	-2.816242	-2.919468	2.775654
	H	2.633188	1.696417	-0.334141
	H	0.034057	0.856642	3.038115
	H	4.029781	3.129182	1.117649
	H	1.452921	2.291634	4.468409
	H	3.446882	3.430213	3.516009
	H	-0.080563	3.038590	-0.854534
	H	-2.651085	-0.363005	-1.662267
	H	-1.534512	4.453187	-2.270243
	H	-4.083641	1.073293	-3.075273
	H	-3.532409	3.478312	-3.382726
	H	0.048052	-0.856356	-3.039608

	H	2.674241	-1.631045	0.327165
	H	1.497637	-2.258187	-4.472242
	H	4.101632	-3.031002	-1.126888
	H	3.520596	-3.347781	-3.523580
	H	-2.655445	0.298337	1.666287
	H	-0.002348	-3.038782	0.856651
	H	-4.047613	-1.171421	3.085638
	H	-1.416206	-4.487218	2.278763
	H	-3.434915	-3.561224	3.395232
N ₃ Bi(CH ₃) ₄	BI	0.381922	0.002700	0.000014
	N	-1.879387	1.075482	-0.001406
	N	-2.764755	0.251335	-0.000496
	N	-3.607763	-0.552306	0.000294
	C	2.515037	-0.897329	0.001567
	C	0.990830	2.177782	-0.004029
	C	-0.339393	-0.935110	1.930858
	C	-0.338909	-0.942642	-1.927360
	H	3.052422	-0.562341	0.897590
	H	2.441960	-1.992150	0.003569
	H	3.052320	-0.565663	-0.895754
	H	1.597217	2.346664	-0.899938
	H	0.064014	2.754888	-0.013459
	H	1.582437	2.353849	0.900356
	H	-0.371077	-0.134322	2.675655
	H	-1.343505	-1.328286	1.746703
	H	0.367348	-1.722969	2.209578
	H	-1.346233	-1.328116	-1.744548
	H	-0.362290	-0.146610	-2.677567
	H	0.363803	-1.736796	-2.198325
N ₃ Bi(C ₆ H ₅) ₄	BI	0.006275	0.064204	-0.208344
	N	1.038539	1.298566	-2.089910
	N	2.183838	1.683622	-1.919849
	N	3.279965	2.061762	-1.786111
	C	-1.882015	0.343337	-1.431005
	C	-3.100164	-0.001155	-0.834368
	C	-1.826961	0.861045	-2.730337
	C	-4.289489	0.172909	-1.557646
	C	-3.023307	1.022919	-3.442883
	C	-4.250954	0.681059	-2.861159

C	1.547020	-1.544302	-0.639013
C	2.134162	-1.644342	-1.903740
C	1.896505	-2.418271	0.396615
C	3.081163	-2.651672	-2.135881
C	2.855565	-3.412940	0.156453
C	3.443433	-3.532438	-1.108785
C	0.679664	1.800593	1.057554
C	-0.205052	2.859567	1.292760
C	1.977911	1.816574	1.579033
C	0.213535	3.942713	2.077582
C	2.388323	2.906646	2.360794
C	1.508368	3.965602	2.612411
C	-1.005894	-1.111841	1.516681
C	-1.517433	-2.400035	1.286784
C	-1.122655	-0.553325	2.797419
C	-2.136537	-3.117429	2.319322
C	-1.741802	-1.269408	3.834223
C	-2.250395	-2.551476	3.596835
H	-3.139238	-0.403016	0.172544
H	-0.875083	1.146458	-3.160817
H	-5.238872	-0.090224	-1.100230
H	-2.992998	1.423496	-4.452195
H	-5.173000	0.813151	-3.420084
H	1.870534	-0.941525	-2.686935
H	1.432985	-2.344121	1.375117
H	3.541024	-2.738614	-3.115982
H	3.137471	-4.091638	0.956372
H	4.183401	-4.306060	-1.292302
H	-1.207729	2.859365	0.874050
H	2.677239	1.010104	1.380372
H	-0.468252	4.767498	2.264380
H	3.398569	2.930598	2.758564
H	1.832317	4.809380	3.214357
H	-1.438433	-2.862153	0.304944
H	-0.733335	0.440039	3.003752
H	-2.526839	-4.113575	2.128908
H	-1.825129	-0.825602	4.822631
H	-2.729781	-3.106136	4.398306
Bi(C ₆ H ₅) ₄	BI	-0.001872	-0.076978
	C	0.010509	-1.655076
			1.002621

This page is Distribution A: approved for public release; distribution unlimited. 15

C	1.224328	-2.127764	1.528189
C	-1.196422	-2.182870	1.490084
C	1.230604	-3.106674	2.532267
C	-1.189564	-3.162183	2.493658
C	0.023777	-3.626392	3.017555
C	-0.004206	1.735958	0.735515
C	0.085321	1.613206	2.130628
C	-0.090953	3.018948	0.169678
C	0.087066	2.754704	2.945978
C	-0.088856	4.161381	0.982796
C	0.000326	4.030641	2.374788
C	2.448232	-0.043218	-0.954306
C	3.241021	0.922981	-0.328435
C	3.019322	-0.996170	-1.803241
C	4.629142	0.922187	-0.545428
C	4.407332	-0.995264	-2.014577
C	5.211941	-0.035537	-1.385816
C	-2.458192	-0.054523	-0.938853
C	-3.266485	0.803597	-0.187630
C	-3.015392	-0.906811	-1.896606
C	-4.656428	0.795166	-0.391390
C	-4.405489	-0.913448	-2.095282
C	-5.225383	-0.061991	-1.342703
H	2.170316	-1.738867	1.162761
H	-2.147282	-1.835996	1.096186
H	2.176306	-3.462357	2.932445
H	-2.130172	-3.561302	2.863716
H	0.028812	-4.385773	3.794339
H	0.152943	0.631955	2.591412
H	-0.162792	3.145965	-0.908506
H	0.155075	2.646022	4.025145
H	-0.157008	5.147517	0.531390
H	0.001425	4.913907	3.006958
H	2.800185	1.669886	0.325648
H	2.406158	-1.744431	-2.300827
H	5.251152	1.668689	-0.058118
H	4.856388	-1.738007	-2.668983
H	6.285329	-0.032601	-1.552117
H	-2.835799	1.473771	0.550886
H	-2.389677	-1.569685	-2.490287

	H	-5.290834	1.457661	0.191935
	H	-4.844146	-1.577582	-2.835589
	H	-6.300332	-0.064733	-1.498641
Bi(C ₆ H ₅) ₄ ⁺	BI	0.000164	0.000318	-0.000431
	C	1.317856	1.445083	1.074621
	C	2.444731	1.956139	0.417461
	C	0.990562	1.829315	2.380615
	C	3.258977	2.877764	1.089729
	C	1.815622	2.750521	3.039890
	C	2.944109	3.273827	2.396059
	C	-1.326281	1.089278	-1.426454
	C	-0.991395	2.392167	-1.814616
	C	-2.466328	0.443441	-1.922603
	C	-1.821909	3.059651	-2.724946
	C	-3.285881	1.123786	-2.833511
	C	-2.963321	2.426985	-3.233621
	C	1.297464	-1.440284	-1.105834
	C	0.936615	-1.833136	-2.400400
	C	2.444874	-1.941481	-0.477198
	C	1.748191	-2.753629	-3.077009
	C	3.245404	-2.862457	-1.166602
	C	2.896861	-3.267284	-2.461659
	C	-1.288376	-1.092657	1.457303
	C	-2.422689	-0.453316	1.974495
	C	-0.936027	-2.391719	1.842860
	C	-3.218788	-1.136686	2.903801
	C	-1.743092	-3.062255	2.771757
	C	-2.878826	-2.436329	3.301157
	H	2.705810	1.647954	-0.591256
	H	0.122734	1.423290	2.892210
	H	4.137005	3.280432	0.594172
	H	1.576625	3.055212	4.054080
	H	3.579244	3.986556	2.912876
	H	-0.113180	2.894979	-1.420179
	H	-2.733857	-0.562415	-1.610571
	H	-1.576790	4.071390	-3.032888
	H	-4.173804	0.636898	-3.224847
	H	-3.602398	2.950072	-3.938199
	H	0.053307	-1.434239	-2.890567

H	2.731645	-1.625804	0.522186
H	1.483147	-3.065152	-4.082612
H	4.138754	-3.257862	-0.693111
H	3.521378	-3.979468	-2.991969
H	-2.702987	0.549867	1.665155
H	-0.063064	-2.890030	1.431370
H	-4.102239	-0.654945	3.311341
H	-1.484906	-4.071502	3.077208
H	-3.500110	-2.961984	4.019596

Table SI-2. Calculated frequencies (cm^{-1}), Infrared intensities (km/mol) and Raman intensities ($\text{\AA}^4/\text{amu}$).

Molecule	Frequency	IR	Raman
N_3	459.9(π_u)	9.9	0.0
	1347.6(Σ_g^+)	0.0	8.1
	1658.6(Σ_u^+)	222.3	24.0
N_3^-	626.3(π_u)	19.4	0.0
	1326.7(Σ_g^+)	0.0	33.5
	2041.2(Σ_u^+)	971.6	0.0
$\text{N}_3\text{P}(\text{C}_6\text{H}_5)_4$	19.9	0.3	1.4
	26.6	6.1	4.6
	39.3	1.6	9.2
	40.6	0.5	3.5
	42.3	3.5	2.0
	51.2	6.9	3.8
	54.7	1.9	6.6
	63.9	1.7	5.1
	71.4	0.2	4.1
	75.0	1.4	4.3
	100.1	0.7	6.5
	114.6	26.8	3.0
	130.1	10.3	3.2
	146.0	18.0	3.9
	192.2	2.2	2.5
	205.2	1.5	3.3
	208.5	3.7	9.3
	241.7	0.5	12.9
	245.5	1.1	4.3

250.2	0.6	5.5
260.8	3.9	2.6
269.8	0.6	1.3
277.8	0.6	2.3
401.5	0.5	0.2
403.9	0.0	0.3
405.0	0.3	0.1
410.1	1.0	0.8
429.1	19.1	3.9
448.0	3.1	0.6
461.0	10.2	4.1
473.2	4.5	4.1
507.9	87.3	12.4
533.9	75.5	3.4
538.0	72.2	2.4
611.7	5.4	0.2
620.2	6.9	1.8
623.3	0.3	5.1
624.7	0.2	2.1
625.4	0.7	7.1
627.2	2.0	7.5
680.7	2.1	8.7
690.6	38.4	5.1
693.8	19.1	4.4
699.0	27.8	0.8
702.6	23.6	0.7
707.9	54.9	5.1
723.5	60.8	3.6
729.7	35.8	7.4
739.9	30.1	3.6
745.4	18.2	2.3
757.4	13.9	1.5
761.0	16.0	0.7
831.1	3.5	1.0
837.8	0.8	1.5
857.3	0.2	0.8
867.8	1.2	1.5
905.9	0.3	0.4
921.9	1.2	6.4
938.5	0.1	2.8
955.7	0.3	1.8
966.2	0.2	1.0

968.7	0.1	0.4
985.9	0.1	0.4
988.1	0.2	1.6
991.3	0.3	0.2
996.1	0.3	0.5
1001.9	0.1	1.2
1005.2	2.0	15.5
1006.5	2.8	21.1
1008.2	3.7	19.3
1009.9	3.6	90.8
1033.3	1.6	8.2
1040.4	2.7	105.7
1041.6	0.2	20.9
1042.1	3.1	37.3
1044.5	3.3	34.6
1102.5	19.7	10.0
1104.3	20.8	13.6
1105.0	3.2	2.8
1108.1	2.4	1.4
1111.5	13.7	6.8
1114.1	25.5	20.0
1114.7	57.0	27.3
1119.8	26.8	17.6
1180.3	0.6	2.1
1181.0	0.9	0.3
1181.4	0.2	6.8
1182.4	2.1	1.8
1207.6	3.3	10.5
1208.9	7.1	6.4
1211.1	2.6	6.4
1218.2	20.0	3.5
1320.8	1.8	3.0
1323.1	1.7	3.6
1328.2	1.0	0.6
1334.1	4.6	1.6
1356.8	4.5	9.5
1357.3	2.6	0.1
1360.0	0.1	2.8
1361.2	2.0	11.3
1370.0	15.5	15.0
1464.0	26.5	1.4
1464.7	26.2	1.1

	1466.3	0.3	5.7
	1470.1	30.9	3.0
	1512.7	12.4	5.9
	1515.6	19.0	4.4
	1515.9	12.5	0.8
	1516.9	2.6	1.4
	1615.8	3.8	6.7
	1617.4	3.3	23.6
	1621.5	0.5	16.0
	1623.4	0.8	18.2
	1635.3	6.0	80.8
	1636.7	5.2	41.9
	1637.1	1.6	27.9
	1638.9	0.2	25.3
	2078.5	663.8	34.4
	3196.3	34.0	52.9
	3198.4	0.8	44.2
	3199.2	0.0	29.7
	3199.6	0.3	19.1
	3202.9	91.4	43.0
	3207.7	2.8	71.7
	3208.5	3.1	118.1
	3210.3	4.3	89.0
	3211.9	5.0	78.5
	3217.5	7.8	44.3
	3218.0	7.7	72.0
	3219.3	7.8	45.7
	3221.6	21.7	254.1
	3224.4	4.1	78.9
	3226.8	5.1	386.9
	3227.1	13.1	95.8
	3229.8	10.7	263.8
	3241.1	5.0	92.4
	3249.1	1.1	61.3
	3252.2	1.5	62.0
P(C ₆ H ₅) ₄	33.7	0.0	0.1
	44.1	0.0	101.1
	45.6	0.4	22.4
	47.4	0.6	73.2
	47.4	0.6	73.1
	57.0	0.0	3.9
	83.0	0.5	19.4

83.0	0.5	19.4
98.7	0.0	38.9
147.0	183.2	1347.8
179.9	1.4	0.2
179.9	1.4	0.2
206.2	0.0	0.1
220.0	0.0	471.1
242.7	0.0	48.4
263.5	0.1	45.3
263.5	0.1	45.2
304.9	0.0	28.4
393.1	381.5	3010.5
403.7	0.0	0.0
407.1	4.7	66.9
407.1	4.7	66.4
412.8	0.0	2.8
421.9	30.5	1287.9
422.0	30.5	1286.1
435.8	71.8	1178.6
484.4	0.0	2960.7
499.8	0.5	1581.1
499.9	0.5	1578.9
623.1	0.0	0.0
625.8	0.4	57.5
625.8	0.4	57.5
626.3	0.0	10.5
673.5	0.0	519.6
673.9	140.5	1726.7
675.5	90.4	1216.3
675.5	90.4	1215.3
694.2	0.0	1202.2
699.9	1.1	1171.2
699.9	1.1	1169.9
701.4	428.0	588.4
712.1	177.0	3.7
729.3	34.2	33.1
729.3	34.2	32.8
744.1	0.0	980.6
829.1	0.0	0.0
838.6	4.2	6.5
838.6	4.2	6.6
842.8	0.0	17.3

885.3	65.1	228.3
892.8	4.0	109.7
892.8	4.0	109.8
904.1	0.0	195.6
964.9	817.9	6235.4
968.7	0.0	0.0
970.9	15.1	296.2
970.9	15.0	292.0
974.7	0.0	6.0
975.2	0.0	2.9
975.6	83.2	3349.0
975.6	83.0	3339.2
979.9	0.0	146.7
981.1	123.2	6151.5
981.1	123.4	6159.8
1004.4	0.0	717.4
1028.0	87.6	2655.4
1028.0	87.6	2655.0
1028.8	189.7	1123.7
1034.5	0.0	1124.3
1050.3	236.3	1865.3
1058.8	74.8	3495.0
1058.8	74.8	3498.9
1096.0	0.0	1.4
1098.2	0.0	213.6
1102.5	11.3	33.0
1102.5	11.3	33.1
1105.3	0.0	2.0
1170.4	0.0	9.9
1170.4	0.0	9.8
1171.0	0.0	0.0
1174.2	0.0	0.7
1193.5	106.2	796.2
1199.9	38.8	1336.5
1199.9	38.8	1336.5
1206.7	0.0	517.2
1300.9	0.0	0.0
1316.4	3.5	93.4
1316.4	3.5	93.4
1326.8	0.0	84.7
1347.7	12.3	265.8
1347.7	12.3	265.4

	1350.4	0.0	0.0
	1359.2	0.0	16.1
	1452.2	0.0	0.0
	1458.8	15.8	22.2
	1458.8	15.8	22.2
	1468.4	0.0	2.8
	1496.2	107.2	802.9
	1496.2	107.2	802.8
	1499.6	242.8	229.4
	1503.5	0.0	437.8
	1576.2	0.0	0.0
	1578.9	8.9	671.2
	1578.9	9.0	671.7
	1585.6	0.1	245.4
	1595.9	1240.9	7653.2
	1603.0	431.6	12750.1
	1603.0	431.6	12749.3
	1638.4	0.0	830.7
	3190.5	49.8	13.5
	3190.7	16.8	152.5
	3190.7	16.8	152.2
	3191.5	0.0	51.8
	3196.0	0.0	0.0
	3196.9	7.9	31.5
	3196.9	7.8	31.8
	3197.3	0.0	188.9
	3210.0	0.0	22.5
	3210.4	4.4	16.3
	3210.4	4.4	16.3
	3212.6	0.0	134.1
	3213.1	0.0	0.6
	3214.8	20.8	281.0
	3214.8	20.8	281.3
	3215.1	0.0	120.4
	3223.3	4.0	17.6
	3223.5	4.0	71.9
	3223.5	4.0	72.2
	3224.1	0.0	775.7
P(C ₆ H ₅) ₄ ⁺	35.9	0.0	0.0
	40.5	0.0	3.6
	40.6	0.0	3.2
	41.5	0.1	10.4

61.3	0.0	13.3
67.3	0.1	2.2
67.4	0.1	2.2
71.9	0.0	0.9
77.1	0.1	6.9
186.6	0.0	2.6
191.4	2.5	0.9
191.5	2.5	0.9
239.7	0.7	3.2
245.8	0.0	14.2
256.5	1.9	1.3
256.5	1.9	1.3
272.9	0.0	0.1
282.9	1.1	4.3
401.0	0.4	0.1
401.0	0.4	0.1
401.6	0.0	0.1
410.0	0.1	0.0
441.0	1.3	0.5
441.1	1.3	0.5
458.0	7.5	0.8
471.0	0.0	0.1
530.5	90.7	0.0
530.5	90.7	0.0
538.4	75.2	0.7
623.1	0.0	7.2
624.0	0.1	1.9
624.0	0.1	1.9
625.0	0.0	9.5
687.6	0.0	18.4
700.2	32.8	0.4
700.3	37.0	0.1
700.3	36.0	0.2
703.7	0.0	0.2
731.4	53.2	4.9
731.4	53.3	4.9
732.1	61.9	0.5
756.9	0.0	0.0
757.9	25.9	0.8
757.9	25.9	0.8
763.0	26.7	0.2
855.9	0.0	0.9

857.3	0.2	0.3
857.3	0.2	0.3
865.4	0.0	1.0
942.1	0.0	2.2
944.7	0.1	1.3
944.7	0.1	1.3
949.9	0.0	1.9
988.7	0.0	0.0
990.1	0.2	0.2
990.1	0.2	0.2
993.6	0.1	0.5
1006.1	11.2	9.7
1006.7	7.8	9.7
1006.7	7.8	9.7
1008.5	0.0	99.4
1014.4	0.2	0.3
1014.8	0.1	0.0
1014.8	0.1	0.0
1015.2	0.0	0.8
1041.0	0.0	136.2
1042.2	0.2	9.3
1042.2	0.2	9.2
1042.6	0.2	11.2
1107.0	6.5	0.4
1107.1	6.5	0.4
1107.6	0.0	0.6
1110.7	0.9	1.0
1119.4	0.0	27.4
1126.4	79.6	15.4
1127.4	73.7	6.6
1127.4	73.8	6.7
1188.4	0.7	0.7
1188.4	0.7	0.5
1188.5	0.5	3.6
1188.8	0.0	3.1
1209.6	5.5	3.4
1209.6	5.5	3.3
1209.9	5.1	6.1
1212.4	0.0	0.6
1322.3	3.7	0.2
1322.3	3.7	0.2
1328.3	0.0	0.4

	1332.4	4.0	0.1
	1359.2	0.2	3.3
	1359.5	3.4	1.2
	1359.5	3.2	1.3
	1360.5	0.8	2.5
	1466.4	31.1	0.5
	1466.4	31.1	0.5
	1468.4	0.0	3.1
	1472.4	38.2	1.9
	1515.6	7.9	0.3
	1516.0	0.1	0.5
	1516.4	7.6	0.4
	1516.5	7.4	0.4
	1620.1	0.5	7.1
	1620.1	0.5	7.1
	1621.3	0.0	11.3
	1623.6	1.9	18.0
	1634.5	3.8	40.2
	1635.4	5.5	47.8
	1635.4	5.5	48.0
	1635.6	0.1	16.7
	3205.3	1.0	4.0
	3205.3	1.0	3.3
	3205.8	0.1	32.9
	3206.1	0.0	35.8
	3213.3	0.0	42.6
	3213.4	0.6	63.6
	3213.4	0.6	63.6
	3213.8	0.3	103.6
	3221.6	0.4	122.9
	3221.9	1.1	61.3
	3221.9	1.1	63.2
	3222.4	0.0	73.5
	3229.2	0.2	76.2
	3229.4	1.1	33.8
	3229.4	0.9	41.9
	3229.7	1.2	18.9
	3235.4	2.3	97.5
	3235.5	3.4	116.4
	3235.5	2.6	153.5
	3235.8	0.3	836.3
N ₃ As(C ₆ H ₅) ₄	22.9	1.1	0.8

This page is Distribution A: approved for public release; distribution unlimited. 27

32.6	0.5	0.9
38.2	0.6	5.5
39.5	0.4	5.9
49.5	2.0	7.4
52.2	0.1	4.8
56.8	0.5	3.5
57.5	0.5	5.1
64.0	0.2	4.4
70.2	0.4	5.4
84.0	5.4	5.5
136.3	25.7	3.0
159.5	46.0	0.6
168.1	7.6	1.7
195.8	5.7	2.9
208.5	1.8	3.6
212.7	1.1	6.3
228.6	2.6	7.1
232.0	12.6	17.5
237.8	8.8	3.8
253.0	13.9	3.5
257.6	1.0	1.4
262.8	12.8	4.7
303.9	60.9	4.5
357.0	36.0	0.3
360.8	31.4	0.9
398.7	0.0	0.1
399.6	0.2	0.3
406.3	0.3	0.1
409.4	0.3	0.4
468.1	15.2	1.0
479.9	21.7	0.5
485.0	54.8	0.9
491.0	26.8	0.3
602.9	5.2	0.3
621.8	0.1	4.5
622.8	0.1	5.1
624.4	0.3	6.1
625.0	0.0	4.8
635.8	7.2	1.9
668.0	3.2	23.9
669.7	3.2	3.0
678.1	0.9	0.7

681.2	0.8	3.1
694.3	10.6	0.9
696.5	71.1	1.3
699.1	16.9	0.2
705.9	36.2	0.2
740.8	36.6	0.2
742.1	27.7	0.5
746.2	51.9	0.2
747.7	23.5	0.1
841.5	0.3	0.5
846.3	0.9	0.6
851.5	1.3	1.4
857.8	0.0	0.8
912.1	1.3	2.4
925.7	0.4	3.5
926.5	0.1	2.2
938.0	0.7	2.3
971.3	0.1	0.5
974.6	0.1	1.9
981.6	0.3	0.4
982.8	0.4	3.3
991.8	0.4	1.4
995.1	0.0	0.4
996.7	0.0	0.1
997.9	0.1	1.7
1005.2	7.9	9.9
1006.2	6.0	18.4
1007.3	3.2	32.7
1010.5	2.2	66.5
1035.5	0.0	7.3
1036.5	2.1	96.8
1036.8	3.7	21.1
1038.0	2.5	48.4
1085.7	22.9	0.6
1087.3	10.3	3.0
1093.1	29.6	2.1
1097.6	2.4	2.8
1099.7	5.5	1.4
1101.8	0.6	1.3
1102.9	1.8	0.9
1107.6	3.9	1.6
1177.9	0.2	1.4

1179.2	0.2	1.9
1179.3	0.1	2.5
1179.9	0.7	2.4
1204.5	6.9	4.0
1207.3	1.9	4.4
1209.2	4.6	5.3
1212.1	11.7	4.2
1319.5	6.3	0.5
1323.1	1.9	0.4
1325.4	5.0	1.3
1331.4	6.7	3.0
1349.1	42.0	16.9
1351.9	13.8	12.9
1355.1	14.4	6.0
1355.7	0.5	2.1
1357.6	3.3	2.2
1461.4	20.4	0.9
1464.0	1.2	1.3
1466.0	24.2	2.1
1467.8	23.4	1.7
1509.3	25.8	0.3
1511.1	3.3	3.4
1512.4	14.3	1.8
1513.8	6.7	2.2
1620.9	0.2	9.5
1622.4	2.0	13.2
1623.6	1.9	11.2
1626.4	2.6	14.1
1629.6	1.5	21.9
1631.1	6.0	28.3
1632.3	3.9	10.1
1632.7	0.8	16.7
2116.0	875.9	49.3
3183.2	2.2	15.1
3194.2	0.0	60.4
3195.6	0.3	29.8
3195.7	0.2	37.4
3197.0	0.0	28.6
3204.3	0.4	88.9
3204.4	10.1	92.8
3207.0	3.3	105.9
3207.5	8.6	126.0

	3212.7	7.2	60.1
	3215.9	8.1	61.8
	3216.7	9.5	38.8
	3219.4	12.6	223.8
	3221.6	8.4	105.2
	3222.4	16.2	320.5
	3224.6	12.9	189.2
	3229.0	6.8	251.6
	3232.8	5.6	118.0
	3246.8	3.8	40.0
	3256.3	16.3	81.2
As(C ₆ H ₅) ₄	15.3	0.1	0.8
	22.0	0.0	0.8
	29.3	0.0	2.6
	37.2	0.0	10.6
	45.9	0.1	7.5
	47.5	0.2	8.2
	50.7	0.2	9.1
	55.7	0.2	3.4
	59.6	0.3	1.3
	129.5	14.6	2.4
	157.7	0.2	8.6
	159.4	3.0	2.7
	165.7	0.4	4.4
	178.2	1.5	3.0
	190.4	2.2	3.4
	219.8	2.2	5.7
	228.1	1.9	0.7
	231.9	0.6	3.6
	286.5	34.7	1.3
	310.7	14.3	1.1
	313.5	15.8	1.9
	394.3	0.1	0.2
	395.1	0.1	0.2
	399.9	0.1	0.2
	403.8	0.5	0.1
	451.9	13.1	2.3
	463.6	11.2	14.5
	475.7	20.0	1.0
	486.6	31.3	0.3
	604.9	2.5	3.3
	618.8	0.0	7.3

619.2	0.1	3.2
624.5	0.0	4.2
625.2	0.0	5.9
635.5	0.7	11.9
671.9	0.3	5.1
675.8	0.3	7.3
698.8	12.1	2.6
699.8	44.5	6.2
701.3	33.1	0.3
705.2	32.5	0.3
728.6	12.0	3.0
732.0	90.8	43.3
745.9	35.8	0.7
746.1	35.8	0.2
846.2	0.0	0.6
848.3	0.1	2.1
853.6	0.1	0.5
857.4	0.2	1.5
908.3	1.5	10.1
910.3	0.4	8.9
922.6	0.0	2.4
929.8	0.2	2.4
970.3	0.1	0.7
970.7	0.1	2.2
978.2	5.6	1.3
978.9	13.2	2.0
983.6	0.5	0.3
988.1	0.3	1.2
988.9	0.0	1.9
994.1	0.0	0.0
995.1	0.7	4.5
996.5	1.9	27.8
1005.9	3.7	34.1
1007.4	2.4	61.1
1011.5	2.6	27.5
1018.2	0.4	170.0
1036.6	3.9	10.2
1037.2	1.6	88.5
1053.1	16.0	0.7
1059.6	3.8	0.9
1087.4	2.0	1.6
1089.2	12.4	8.2

1089.9	2.9	2.8
1095.8	3.0	0.7
1099.9	0.6	1.2
1101.2	8.7	3.4
1173.0	0.1	4.1
1173.0	0.0	1.7
1176.7	0.2	2.6
1176.9	0.3	1.9
1194.6	3.6	3.1
1196.7	2.8	5.6
1205.6	4.7	4.0
1207.4	1.9	0.9
1316.7	3.7	0.7
1317.2	4.8	1.4
1320.2	0.5	0.5
1321.9	2.2	0.3
1341.1	0.7	5.4
1343.7	0.3	5.0
1351.6	0.3	4.9
1352.6	0.9	2.3
1456.1	7.1	2.3
1456.7	21.7	3.3
1460.8	10.2	2.4
1462.7	13.5	2.0
1492.3	17.3	3.1
1495.7	5.3	2.9
1509.6	14.1	0.6
1512.1	9.6	1.3
1608.8	31.0	41.5
1611.1	3.8	39.1
1617.4	4.4	14.0
1617.9	0.1	13.7
1619.9	0.9	21.3
1621.5	0.2	17.1
1630.1	5.6	69.1
1633.0	2.6	11.4
3165.6	2.6	15.1
3167.9	3.5	13.9
3183.2	2.1	17.2
3184.6	2.8	63.0
3184.7	0.5	54.6
3190.3	0.1	29.3

	3193.1	0.1	64.4
	3194.7	1.0	108.1
	3195.0	21.0	156.7
	3200.3	8.0	114.9
	3203.5	9.7	97.1
	3204.5	13.1	41.9
	3206.3	11.4	29.4
	3213.5	13.4	24.4
	3213.9	3.0	97.0
	3215.3	48.9	164.1
	3215.6	13.6	555.7
	3220.6	18.4	264.7
	3221.6	9.5	161.9
	3227.2	10.2	170.3
As(C ₆ H ₅) ₄ ⁺	34.8	0.0	1.5
	35.4	0.0	3.2
	35.7	0.0	1.9
	37.7	0.0	11.2
	52.5	0.0	12.8
	55.8	0.0	2.2
	55.8	0.0	2.2
	59.5	0.0	2.3
	61.6	0.1	5.4
	168.7	0.0	3.0
	174.8	3.1	1.1
	174.8	3.1	1.1
	221.1	1.8	2.6
	225.6	0.0	21.0
	237.6	2.4	2.2
	237.6	2.4	2.2
	254.1	0.0	0.1
	260.7	0.3	6.0
	350.1	26.9	0.8
	350.1	26.9	0.8
	358.1	34.6	1.5
	401.1	0.1	0.1
	401.1	0.1	0.1
	401.5	0.0	0.1
	407.0	0.2	0.1
	459.9	0.0	0.4
	467.0	41.6	0.4
	467.0	41.7	0.4

480.8	26.1	0.1
621.0	0.0	6.7
621.4	0.0	1.8
621.4	0.0	1.8
622.3	0.0	8.6
675.6	0.0	27.7
686.2	0.3	0.0
686.8	1.4	4.3
686.8	1.4	4.3
697.8	32.5	0.4
697.9	32.5	0.4
698.7	29.9	1.0
699.8	0.0	0.4
748.8	64.8	0.5
748.8	64.9	0.5
751.1	0.0	0.2
751.9	65.9	0.4
854.1	0.0	1.0
854.6	0.1	0.3
854.7	0.1	0.3
861.1	0.0	0.9
936.0	0.0	2.4
937.1	0.1	1.4
937.1	0.1	1.4
941.6	0.0	2.2
986.9	0.0	0.2
987.7	0.0	0.1
987.7	0.0	0.1
990.1	0.2	0.5
1004.9	14.3	9.6
1005.3	10.8	10.0
1005.3	10.8	10.0
1007.8	0.0	96.8
1013.6	0.2	0.4
1013.9	0.1	0.1
1013.9	0.1	0.1
1014.2	0.0	1.1
1036.2	0.0	133.3
1036.4	0.1	13.0
1036.4	0.2	8.7
1036.5	0.2	8.6
1094.7	30.5	7.9

1095.7	33.1	1.0
1095.7	33.1	1.0
1098.2	0.0	6.7
1104.1	0.9	1.0
1104.1	0.9	1.0
1104.4	0.0	0.6
1107.1	0.7	1.4
1187.3	0.4	0.6
1187.4	0.4	0.9
1187.4	0.4	3.1
1187.7	0.0	3.0
1206.8	5.2	5.7
1206.9	5.5	2.9
1207.0	5.5	3.2
1210.0	0.0	0.2
1327.5	2.1	0.1
1327.6	2.1	0.1
1332.0	0.0	0.1
1333.9	2.9	0.2
1356.2	0.0	4.0
1356.6	3.9	1.4
1356.6	3.9	1.4
1358.2	1.8	3.6
1467.8	28.2	0.5
1467.8	28.2	0.5
1469.7	0.0	3.3
1472.9	36.8	2.2
1511.3	11.6	0.0
1511.9	0.1	3.1
1512.4	11.5	0.5
1512.4	11.4	0.5
1623.3	0.1	6.9
1623.3	0.1	6.9
1624.4	0.0	13.9
1626.4	0.8	26.1
1628.1	0.0	24.4
1628.6	0.5	37.8
1628.6	0.5	37.8
1629.3	0.0	6.6
3202.0	0.9	4.1
3202.1	0.9	4.0
3202.6	0.0	33.5

	3202.8	0.0	42.4
	3211.5	0.0	33.4
	3211.7	0.4	40.5
	3211.8	0.4	41.8
	3212.1	0.2	86.4
	3218.9	0.3	82.8
	3219.2	0.3	81.4
	3219.3	0.3	80.3
	3219.7	0.0	75.5
	3226.4	0.3	59.0
	3226.5	2.0	30.3
	3226.6	2.3	25.8
	3226.8	1.3	51.1
	3234.9	2.7	131.6
	3234.9	3.1	112.9
	3234.9	3.3	113.1
	3235.0	0.0	967.1
N ₃ Sb(C ₆ H ₅) ₄	23.0	0.2	3.1
	25.4	0.6	4.0
	27.8	0.2	2.7
	35.4	0.3	3.3
	41.5	0.2	10.2
	44.8	0.2	7.2
	48.9	0.3	4.0
	52.5	0.4	3.6
	59.3	0.4	1.9
	67.6	0.0	5.1
	81.1	2.7	5.6
	137.0	0.7	2.1
	151.6	4.6	2.0
	164.9	12.6	2.8
	181.5	6.4	1.5
	183.2	1.1	3.7
	189.6	4.6	8.7
	207.4	4.3	8.6
	217.6	7.3	14.0
	222.2	10.4	7.1
	228.5	17.4	2.6
	238.1	0.6	0.9
	268.2	58.6	2.4
	286.0	43.6	1.2
	287.2	33.7	3.0

294.7	59.4	11.6
396.3	0.0	0.2
398.3	0.1	0.3
405.1	0.1	0.3
408.9	0.2	0.2
450.0	11.1	1.0
457.9	30.2	1.3
466.2	19.7	0.7
473.1	30.8	0.3
595.1	5.4	0.3
621.7	0.0	5.3
622.5	0.1	4.4
623.4	0.3	4.6
624.5	0.1	5.7
635.9	7.5	3.2
658.4	2.9	32.2
661.7	1.1	8.3
664.8	0.2	1.6
666.2	0.1	3.6
697.2	25.0	1.8
700.6	23.4	1.5
702.2	33.7	0.2
707.4	29.5	0.7
736.1	50.7	0.3
736.8	34.2	0.6
738.6	18.9	0.6
745.7	53.3	0.1
850.1	0.6	0.6
852.5	1.0	0.7
860.3	0.6	1.1
863.8	0.6	1.2
915.7	0.9	3.3
925.9	0.2	2.9
927.3	0.1	2.3
945.2	0.1	2.5
974.7	0.2	0.2
979.7	0.2	1.5
982.3	0.3	0.6
992.0	0.2	3.3
994.8	0.5	1.5
996.2	0.1	1.3
996.6	0.0	0.1

1002.5	5.9	16.7
1003.6	11.4	10.1
1004.7	4.2	29.4
1006.3	2.3	70.9
1009.7	1.8	18.6
1032.3	0.0	52.4
1032.6	0.5	49.8
1033.3	2.2	23.5
1033.6	1.7	24.3
1078.8	18.2	0.7
1080.0	13.4	1.4
1087.9	25.9	2.0
1089.3	4.5	1.1
1095.2	2.3	1.0
1096.0	0.8	0.7
1098.0	1.5	1.2
1102.8	2.0	1.7
1177.3	0.2	1.8
1178.7	0.2	2.4
1178.8	0.1	1.7
1179.3	0.7	2.0
1204.9	5.6	3.2
1207.5	1.8	4.2
1211.4	11.7	5.3
1213.1	7.1	2.7
1316.7	5.8	0.3
1319.8	4.2	0.4
1322.8	11.6	1.6
1325.5	5.1	1.2
1343.4	80.0	22.9
1351.1	1.7	5.0
1354.9	3.7	2.9
1356.6	9.7	6.9
1357.8	1.1	3.4
1457.2	19.4	0.8
1461.6	8.6	1.7
1462.1	16.8	1.7
1463.4	27.7	1.5
1507.3	10.6	2.9
1508.7	15.7	4.7
1509.9	12.7	2.8
1512.0	4.0	1.8

	1617.6	0.7	12.1
	1620.0	2.0	17.1
	1621.9	1.0	8.4
	1622.6	3.6	16.1
	1624.9	3.7	17.7
	1626.1	3.6	21.9
	1627.6	0.8	12.7
	1628.4	4.7	11.9
	2139.7	868.0	63.5
	3174.7	3.7	19.0
	3187.8	0.6	21.2
	3189.5	0.0	51.4
	3193.3	0.3	36.5
	3193.6	0.0	27.1
	3197.3	0.1	53.6
	3199.7	7.0	105.5
	3203.2	3.1	108.3
	3204.8	9.8	131.7
	3205.2	4.0	82.8
	3208.8	10.7	21.5
	3212.4	5.3	42.9
	3213.8	10.4	49.3
	3217.1	9.6	218.6
	3218.1	23.1	280.1
	3219.9	8.0	112.4
	3223.5	15.2	324.0
	3225.7	15.9	229.7
	3227.6	9.7	170.5
	3241.9	20.8	89.8
Sb(C ₆ H ₅) ₄	18.0	0.0	1.2
	26.4	0.0	1.4
	30.8	0.0	7.5
	33.4	0.0	6.6
	38.6	0.0	7.7
	39.7	0.0	4.2
	44.3	0.0	6.7
	47.3	0.0	2.7
	50.6	0.1	4.9
	146.1	2.3	3.0
	147.3	2.8	1.2
	150.6	1.0	28.9
	152.1	3.1	1.9

157.9	2.0	8.7
163.9	3.7	2.5
198.2	2.5	6.9
206.7	2.6	0.6
212.2	0.2	5.6
247.0	28.8	1.0
253.2	15.3	2.4
258.7	17.4	5.4
394.1	0.0	0.1
395.2	0.1	0.2
397.4	0.2	0.2
401.9	0.2	0.2
444.1	7.9	1.8
447.9	11.2	14.5
458.3	14.6	2.8
467.8	19.7	0.2
607.0	11.5	0.7
618.5	0.1	8.4
618.8	0.1	2.0
624.4	0.0	4.4
624.7	0.0	5.3
634.2	0.6	38.6
662.4	0.3	7.4
664.0	0.2	9.1
698.2	17.7	11.0
699.6	29.6	10.5
703.5	28.3	0.7
705.9	32.8	0.1
727.4	41.8	15.0
728.0	72.1	11.9
737.9	33.5	0.1
739.7	44.0	1.1
848.4	0.0	0.4
849.8	0.1	1.5
856.6	0.0	0.6
861.4	0.1	1.0
911.5	0.5	7.3
913.1	0.3	4.0
920.8	0.1	2.5
928.5	0.2	2.3
972.7	0.0	0.6
973.3	0.1	1.4

975.6	48.8	0.6
978.8	0.2	0.2
985.7	0.1	0.4
990.0	0.3	0.4
991.0	0.0	1.5
994.5	2.2	59.1
994.6	0.1	1.6
995.9	0.1	3.3
1004.4	4.7	37.2
1006.1	3.9	56.2
1013.0	1.9	12.7
1018.3	0.1	112.2
1032.9	1.9	16.7
1033.8	0.8	58.5
1055.5	13.2	0.3
1062.0	2.2	10.8
1084.8	13.9	1.8
1086.9	0.7	0.7
1087.9	5.1	0.6
1092.3	9.1	0.8
1093.1	2.7	0.4
1096.7	0.3	1.0
1173.9	0.0	4.5
1174.0	0.0	0.5
1176.5	0.4	2.3
1176.7	0.2	2.0
1197.0	4.7	2.5
1197.7	4.1	3.6
1208.1	5.1	4.5
1209.7	2.3	0.7
1316.3	3.1	0.6
1317.1	3.1	0.2
1318.6	0.3	1.0
1319.2	2.5	0.4
1341.5	1.4	7.7
1341.9	0.7	3.7
1352.7	1.2	1.9
1353.8	0.1	5.0
1455.1	4.2	2.5
1455.4	24.1	0.6
1458.3	11.0	2.0
1459.0	13.5	1.5

1492.4	22.5	1.1
1495.2	2.9	17.5
1508.6	8.8	0.5
1509.6	8.0	2.4
1606.8	43.8	12.8
1610.1	2.7	13.9
1616.7	0.4	15.3
1616.9	2.2	22.9
1618.1	0.3	13.8
1618.6	0.1	14.9
1626.5	4.3	39.8
1628.5	2.4	8.4
3167.7	1.8	12.1
3169.5	4.0	12.5
3176.5	2.7	19.9
3184.5	1.7	55.1
3184.6	0.5	47.2
3187.6	0.1	24.3
3189.3	0.0	49.9
3194.4	3.9	128.4
3194.8	16.1	150.1
3196.7	6.3	115.5
3199.5	6.5	103.8
3203.3	7.9	62.2
3203.6	18.7	26.4
3207.8	11.9	21.7
3208.3	0.8	40.4
3214.1	2.3	14.4
3215.3	54.5	191.6
3215.6	18.3	562.9
3218.2	23.3	304.0
3219.4	22.5	410.8
Sb(C ₆ H ₅) ₄ ⁺	25.3	0.0
	25.5	0.0
	30.8	0.0
	31.8	0.0
	36.9	0.0
	41.2	0.0
	41.3	0.0
	43.0	0.0
	47.5	0.1
	146.0	0.0
		3.5

152.0	4.0	0.9
152.0	4.0	0.9
192.5	4.0	2.1
206.5	0.0	31.0
215.5	3.9	3.7
215.6	3.9	3.7
224.6	0.0	0.2
233.9	0.4	8.2
286.7	30.8	1.4
286.7	30.8	1.4
291.8	35.8	1.5
397.4	0.1	0.1
397.4	0.1	0.1
397.8	0.0	0.1
401.9	0.2	0.2
444.7	0.0	0.8
447.1	29.4	1.2
447.1	29.4	1.2
456.9	19.3	0.8
620.0	0.0	6.0
620.4	0.0	1.7
620.4	0.0	1.8
620.9	0.0	7.7
665.1	0.0	43.7
671.4	0.0	0.9
671.7	0.2	4.3
671.7	0.1	4.0
697.0	26.2	0.6
697.0	26.5	0.6
697.4	23.1	2.1
697.8	0.2	1.1
739.4	73.1	0.9
739.5	73.1	0.9
741.4	71.8	0.9
741.5	0.7	0.5
852.3	0.0	0.3
852.4	0.0	0.3
852.7	0.0	1.0
858.4	0.1	0.8
929.8	0.0	2.8
930.4	0.1	1.5
930.4	0.1	1.5

933.9	0.0	2.3
983.8	0.0	0.2
984.0	0.0	0.1
984.0	0.0	0.1
986.4	0.2	0.3
1002.0	20.3	11.9
1002.1	16.5	12.4
1002.1	16.4	12.4
1005.2	0.0	101.7
1011.7	0.2	0.6
1011.8	0.1	0.1
1011.9	0.1	0.1
1012.1	0.0	1.2
1031.8	0.0	127.5
1032.3	0.0	13.0
1032.6	0.1	7.4
1032.6	0.1	7.4
1085.4	19.3	4.2
1085.8	21.2	0.5
1085.9	21.0	1.0
1086.9	0.2	0.1
1101.6	0.3	0.5
1101.8	1.2	0.7
1101.8	0.9	0.6
1103.6	1.4	1.4
1187.3	0.3	3.0
1187.4	0.3	1.0
1187.4	0.3	0.6
1187.5	0.0	3.0
1209.1	4.9	5.3
1209.4	5.3	2.4
1209.5	5.4	2.4
1211.7	0.0	0.1
1327.0	1.8	0.1
1327.0	1.7	0.1
1329.9	0.0	0.2
1330.4	3.0	1.0
1356.7	0.7	5.0
1356.8	4.6	2.0
1356.9	4.2	2.2
1358.1	3.4	5.6
1465.1	29.1	0.5

1465.2	29.1	0.5
1466.4	0.0	4.0
1468.7	37.3	2.9
1509.1	9.7	0.5
1509.2	0.4	7.5
1510.1	10.1	1.1
1510.1	10.1	1.1
1621.5	0.0	5.3
1621.5	0.0	5.3
1621.8	0.0	15.6
1623.1	0.2	19.3
1623.4	0.2	31.0
1623.4	0.2	35.0
1623.5	0.2	34.7
1624.3	0.0	3.5
3195.2	1.1	6.8
3195.3	1.0	6.6
3196.0	0.1	29.3
3196.3	0.0	44.0
3202.3	0.7	27.8
3202.3	0.3	35.2
3202.5	0.6	30.7
3202.8	0.3	39.6
3214.0	0.0	78.3
3214.0	0.0	73.9
3214.1	0.0	86.8
3214.2	0.0	56.3
3223.2	1.5	79.0
3223.2	2.6	51.7
3223.3	2.4	71.9
3223.4	2.5	103.6
3233.0	3.5	122.8
3233.0	3.0	189.5
3233.0	3.1	215.8
3233.1	0.6	829.9
$\text{N}_3\text{Bi}(\text{C}_6\text{H}_5)_4$	16.6	1.5
	22.4	4.8
	23.2	7.9
	25.2	1.1
	35.3	8.5
	37.7	9.9
	41.8	1.6

48.9	0.3	6.0
55.0	0.8	3.2
64.1	0.0	4.5
70.6	3.9	5.9
127.9	3.0	1.2
135.3	3.4	3.8
148.8	13.7	2.6
163.9	7.7	1.6
165.6	1.4	5.1
172.7	9.8	15.4
185.4	10.1	4.8
192.5	3.9	30.5
201.8	13.2	13.6
206.8	20.0	4.3
219.5	2.5	1.8
230.5	33.7	3.0
235.2	34.7	1.6
238.4	26.9	2.3
260.3	31.8	19.6
395.0	0.0	0.3
396.7	0.2	0.2
406.2	0.1	0.3
407.7	0.1	0.3
439.0	9.3	1.5
445.3	27.4	2.4
452.6	17.0	1.4
457.2	27.8	1.1
597.1	4.2	0.8
617.8	0.1	4.9
618.7	0.1	4.2
619.0	0.4	3.3
622.5	0.0	4.8
627.5	5.1	3.7
648.8	1.0	56.6
650.5	3.8	7.8
653.2	1.2	8.7
655.1	1.3	14.5
692.9	8.5	2.0
693.3	19.6	3.0
694.4	23.7	0.8
703.5	22.1	1.3
728.2	35.9	1.4

730.3	55.6	0.5
734.7	28.6	0.6
739.8	62.2	0.2
840.6	0.7	0.5
849.4	0.8	0.8
854.7	1.5	1.6
859.0	0.1	0.9
909.0	1.4	3.4
920.7	0.4	3.0
928.7	0.0	3.2
938.1	0.0	3.5
969.4	0.2	0.3
978.4	0.0	0.1
980.7	1.3	4.1
986.7	3.3	9.7
991.8	27.7	23.0
992.2	7.1	4.9
994.4	14.2	25.3
994.7	0.4	0.6
998.3	9.7	5.8
999.4	8.5	44.2
1003.4	4.9	69.9
1006.4	1.6	9.5
1026.7	3.3	10.7
1026.9	0.6	84.9
1027.4	1.2	7.3
1028.2	2.1	25.3
1067.1	7.9	2.9
1069.6	4.9	8.6
1076.9	14.6	6.6
1079.7	1.8	7.6
1091.5	2.0	0.5
1093.6	1.0	1.4
1094.5	1.6	0.5
1098.3	2.4	1.3
1176.5	0.1	2.0
1177.6	0.2	2.1
1178.0	0.4	1.6
1178.7	0.1	1.4
1199.4	6.7	2.5
1205.2	9.4	4.5
1205.9	3.2	5.7

1207.0	4.7	1.0
1316.7	4.1	0.3
1323.4	6.7	1.8
1324.4	8.6	2.2
1325.6	2.9	1.4
1340.2	56.6	14.9
1345.0	2.9	7.5
1350.3	9.5	4.9
1350.8	5.6	8.5
1351.2	2.4	3.1
1456.5	18.8	1.1
1462.2	3.1	3.4
1462.3	26.6	2.2
1463.1	32.5	2.1
1500.0	19.8	10.5
1502.2	26.5	16.2
1504.2	14.2	9.9
1506.3	4.8	3.5
1612.2	29.1	1.9
1614.2	19.2	8.2
1617.4	7.1	6.7
1617.8	2.4	12.0
1619.9	3.8	7.3
1621.9	1.6	21.3
1623.8	1.7	12.6
1624.0	3.4	18.7
2116.2	873.0	87.9
3172.2	2.5	17.0
3185.9	0.0	35.0
3189.6	0.1	14.0
3192.8	0.3	29.8
3193.0	0.1	30.1
3195.6	1.5	98.0
3197.5	0.0	48.0
3202.7	4.1	118.5
3203.6	15.2	73.8
3203.7	11.1	123.1
3204.9	2.3	82.3
3211.8	3.1	51.5
3213.4	9.6	66.5
3215.2	2.6	150.5
3217.1	24.7	295.7

	3219.2	5.9	133.1
	3222.3	19.3	273.6
	3223.5	17.0	361.1
	3224.6	22.8	290.0
	3240.9	28.2	69.8
Bi(C ₆ H ₅) ₄	4.7	0.0	2.5
	21.3	0.0	3.5
	23.2	0.0	5.5
	26.7	0.0	5.2
	30.7	0.0	1.9
	34.2	0.0	11.2
	36.3	0.0	5.8
	40.7	0.0	4.1
	42.6	0.1	5.2
	79.7	0.0	0.0
	128.4	1.0	2.2
	131.5	0.6	4.1
	135.5	2.2	12.6
	138.2	1.9	39.2
	147.8	1.8	8.5
	162.6	3.5	27.3
	186.3	2.0	0.1
	196.8	0.2	10.8
	212.2	12.2	5.2
	213.6	10.8	0.6
	223.1	13.0	7.5
	393.8	0.0	0.0
	394.0	0.1	0.2
	396.3	0.1	0.1
	400.3	0.2	0.3
	435.4	11.1	11.3
	436.9	4.8	4.4
	451.6	9.7	1.4
	455.1	12.9	0.2
	578.6	99.1	1.1
	614.2	0.1	6.9
	614.6	0.1	2.4
	623.1	0.0	4.3
	623.4	0.0	4.8
	629.3	1.1	59.5
	653.3	0.2	9.7
	655.0	0.0	18.0

692.2	0.5	0.5
692.5	34.7	24.8
703.5	26.6	0.9
704.5	26.4	0.2
722.2	107.6	10.6
723.1	22.0	1.3
732.6	45.8	1.1
732.8	42.3	0.0
841.8	0.0	0.1
842.6	0.1	1.1
854.8	0.0	0.6
858.8	0.0	0.9
906.8	0.1	3.8
907.3	0.2	4.8
917.4	0.8	2.0
923.3	0.1	2.4
951.5	187.4	1.2
969.1	0.0	0.0
969.5	0.1	0.9
976.8	0.0	0.1
982.1	0.1	0.3
988.1	1.8	10.6
988.7	0.1	0.1
989.6	3.0	60.7
992.5	0.0	0.8
994.2	0.0	0.1
1001.8	9.1	39.3
1004.0	5.8	67.8
1012.0	1.0	10.9
1017.1	0.2	95.3
1028.2	1.8	10.8
1029.6	0.7	48.6
1053.1	4.2	0.2
1060.7	1.5	15.0
1078.7	9.9	4.1
1083.0	5.3	3.4
1083.7	4.3	1.1
1084.6	3.8	0.9
1090.5	2.6	0.3
1092.3	1.0	0.4
1173.3	0.0	2.5
1173.6	0.0	1.8

1175.4	0.3	2.0
1175.9	0.1	2.2
1194.3	3.9	2.6
1195.5	3.9	3.8
1205.7	4.3	4.5
1207.4	1.6	1.9
1316.3	1.8	0.4
1316.8	1.4	0.2
1318.5	1.1	1.9
1319.3	0.8	2.5
1337.0	1.4	9.8
1337.5	1.4	7.3
1349.0	1.3	2.3
1350.8	0.4	4.3
1453.1	14.1	1.5
1453.8	9.1	2.3
1456.6	12.8	2.2
1457.3	10.9	1.4
1486.1	52.6	0.3
1490.7	3.1	58.5
1504.7	6.8	4.7
1505.4	8.8	3.8
1596.3	115.5	4.1
1603.2	4.2	16.4
1616.5	0.2	13.1
1617.2	0.1	41.0
1617.5	0.6	7.5
1617.7	0.2	16.5
1620.6	9.0	14.2
1622.3	3.7	5.1
3171.5	3.6	20.4
3171.8	0.6	7.1
3172.5	3.0	7.3
3184.1	0.1	16.5
3184.6	1.2	51.3
3184.9	0.5	48.5
3187.3	0.1	44.8
3191.4	4.4	98.7
3194.3	4.3	131.3
3194.8	18.3	169.3
3197.4	8.0	111.2
3201.5	0.1	39.3

	3202.6	4.4	110.5
	3202.8	20.7	18.7
	3206.1	10.1	26.5
	3206.7	9.8	15.5
	3215.5	67.4	56.0
	3215.7	11.7	625.7
	3216.1	27.6	463.3
	3216.9	20.6	524.1
Bi(C ₆ H ₅) ₄ ⁺	14.4	0.0	1.8
	14.8	0.0	1.7
	18.8	0.0	7.4
	26.5	0.0	10.2
	28.3	0.0	6.1
	30.4	0.0	5.7
	31.1	0.0	4.6
	31.1	0.0	4.7
	34.4	0.1	5.1
	135.9	0.0	3.6
	139.8	4.5	0.8
	139.8	4.5	0.8
	177.5	6.4	2.1
	189.3	0.0	55.5
	198.6	4.8	7.4
	198.7	4.9	7.4
	209.6	0.0	0.3
	215.6	0.0	12.3
	237.3	23.3	2.4
	237.3	23.3	2.4
	242.1	26.1	1.5
	398.0	0.0	0.2
	398.0	0.0	0.2
	398.4	0.0	0.2
	401.2	0.2	0.3
	437.5	0.2	1.2
	438.2	26.7	2.3
	438.3	26.5	2.3
	447.2	18.2	1.8
	616.3	0.0	5.1
	616.7	0.0	1.5
	616.7	0.0	1.5
	617.1	0.0	6.3
	654.6	0.0	73.9

657.1	4.0	4.6
657.9	3.1	7.3
657.9	3.1	7.2
690.9	17.3	1.0
690.9	17.1	1.0
691.4	11.2	3.5
691.4	2.3	2.3
733.4	81.4	1.5
733.4	81.7	1.5
735.2	75.1	1.4
735.6	0.1	0.8
843.2	0.0	0.5
843.3	0.0	0.2
843.3	0.0	0.6
847.8	0.1	0.9
921.8	0.4	2.2
921.8	0.4	2.2
922.0	0.2	3.1
925.0	0.0	2.4
979.1	0.0	0.2
979.3	0.0	0.1
979.3	0.0	0.1
981.0	0.1	0.2
994.1	43.8	22.8
994.2	38.5	22.8
994.2	38.5	22.8
1001.3	0.0	105.6
1008.4	0.1	0.8
1008.5	0.1	0.4
1008.5	0.1	0.5
1008.7	0.0	1.4
1027.0	0.0	113.0
1027.1	0.0	12.5
1027.4	0.1	5.9
1027.4	0.1	6.2
1071.1	6.4	6.1
1071.6	5.9	3.3
1071.7	5.9	3.5
1073.9	0.0	8.8
1097.7	2.6	0.8
1097.7	2.7	0.8
1098.1	0.0	0.4

1099.5	1.4	1.2
1185.9	0.1	1.0
1185.9	0.1	0.5
1185.9	0.1	2.6
1186.1	0.0	2.6
1203.9	4.0	2.2
1203.9	4.0	2.0
1204.3	4.1	4.5
1206.8	0.0	1.1
1326.3	1.7	0.4
1326.3	1.7	0.4
1328.4	0.0	0.4
1328.5	2.4	2.0
1348.6	4.7	3.7
1348.7	6.0	2.4
1349.0	1.3	7.1
1350.1	5.3	8.5
1464.8	29.2	0.6
1464.9	29.2	0.6
1465.9	0.1	6.0
1467.7	38.5	4.5
1502.5	15.8	2.9
1502.6	0.3	25.3
1503.0	17.1	3.9
1503.1	16.9	4.0
1612.3	10.5	6.8
1612.4	9.6	12.0
1612.4	9.7	11.5
1615.4	0.0	1.8
1623.4	0.3	9.6
1623.4	0.3	9.6
1623.8	0.0	18.5
1625.0	0.0	27.2
3195.8	0.2	8.2
3195.9	0.2	8.1
3196.4	0.4	18.0
3196.7	0.0	32.8
3201.9	0.2	26.8
3202.0	0.8	18.8
3202.1	0.6	22.4
3202.3	0.2	39.8
3213.7	0.2	68.3

3213.8	0.2	85.0
3213.8	0.2	76.2
3214.0	0.0	81.7
3222.3	1.5	93.5
3222.3	2.7	62.3
3222.4	1.7	89.1
3222.5	2.4	121.4
3232.9	3.4	240.9
3232.9	3.8	139.3
3232.9	2.5	441.4
3233.0	1.6	689.2

Table SI-3. Calculated volumes (nm³/molecule)

Compounds	Volume
N ₃	0.0509
N ₃ ⁻	0.0575
N ₃ P(C ₆ H ₅) ₄	0.4793
P(C ₆ H ₅) ₄	0.4284
P(C ₆ H ₅) ₄ ⁺	0.4200
N ₃ As(C ₆ H ₅) ₄	0.4851
As(C ₆ H ₅) ₄	0.4394
As(C ₆ H ₅) ₄ ⁺	0.4232
N ₃ Sb(C ₆ H ₅) ₄	0.4756
Sb(C ₆ H ₅) ₄	0.4517
Sb(C ₆ H ₅) ₄ ⁺	0.4265
N ₃ Bi(C ₆ H ₅) ₄	0.5033
Bi(C ₆ H ₅) ₄	0.4644
Bi(C ₆ H ₅) ₄ ⁺	0.4508

Table SI-4. Calculated energies (Hartrees)

Compounds	ΔH (0K)	ΔH (298K)
N ₃	-164.158728	-164.154975
N ₃ ⁻	-164.253440	-164.249832
N ₃ P(CH ₃) ₄	-665.106838	-665.093822
N ₃ P(C ₆ H ₅) ₄	-1431.933779	-1431.907774
P(C ₆ H ₅) ₄	-1267.699888	-1267.677401
P(C ₆ H ₅) ₄ ⁺	-1267.561640	-1267.539645
N ₃ As(CH ₃) ₄	-656.246786	-656.232838
N ₃ As(C ₆ H ₅) ₄	-1423.062454	-1423.035955
As(C ₆ H ₅) ₄	-1258.828905	-1258.805121
As(C ₆ H ₅) ₄ ⁺	-1258.682623	-1258.659783
N ₃ Sb(CH ₃) ₄	-564.054487	-564.039338
N ₃ Sb(C ₆ H ₅) ₄	-1330.872829	-1330.845682

Sb(C ₆ H ₅) ₄	-1166.636528	-1166.612207
Sb(C ₆ H ₅) ₄ ⁺	-1166.468689	-1166.444919
N ₃ Bi(CH ₃) ₄	-538.347983	-538.332012
N ₃ Bi(C ₆ H ₅) ₄	-1305.209587	-1305.181618
Bi(C ₆ H ₅) ₄	-1140.998284	-1140.973150
Bi(C ₆ H ₅) ₄ ⁺	-1140.807646	-1140.783141