Corrigé du CCM 2005 Mah1 PSI Proposé par Abdelaziz KHOUTAIBI

Partie 1

- 1. C'est une question de cours (\mathcal{E}_f) est une éqution differentielle du second ordre à coefficients constants d'équation caractéristique $: r^2 + 1 = 0$ D'aprés le cours S_0 est un s.e.v de $C^2(\mathbb{R}, \mathbb{R})$ de dim 2, dont une base est S_0 où S_0 est un s.e.v de S_0 est un s.e.v de S_0 de dim 2, dont une base est S_0 où S_0 est un s.e.v de S_0 est un s.e.v de S_0 de dim 2, dont une base est S_0 où S_0 est un s.e.v de S_0 est un s.e.v de S_0 de dim 2, dont une base est S_0 où S_0 est un s.e.v de S_0 est un s.e.v de S_0 de dim 2, dont une base est S_0 où S_0 est un s.e.v de S_0 est un s.e.v de S_0 de dim 2, dont une base est S_0 où S_0 est un s.e.v de S_0 est un s.e.v de
- 2. (a) Les fonctions : $u: t \mapsto f(t) \cos t$ et $v: t \mapsto f(t) \sin t$ sont continues sur \mathbb{R} , les fonctions φ_1 et φ_2 sont respectivement les primitives de u et de v qui s'annulent en 0, dont elles sont dérivables sur \mathbb{R} et: $\varphi_1'(x) = f(x) \cos x$, $\varphi_2' x = f(x) \sin x$
 - (b) Partant de $\sin(x-t) = \sin x \cos t \cos x \sin t$ et remplacant dans l'exoressin de $\varphi_f(x)$, on obtient facilement par linéarité de l'integrale: $\varphi_f(x) = \varphi_1(x) \sin x \varphi_2(x) \cos x$. $\varphi_f(0) = 0$.
 - (c) φ_f est d'aprés la question précédente, est produit et somme de fonctions dérivables, donc elle est dérivable sur \mathbb{R} et $\varphi'_f x = \varphi_1(x) \cos x + \varphi_2(x) \sin x$
 - (d) L'expression de $\varphi'_f(x)$ montre que φ'_f est également produit et somme de fonctions dérivables ,donc elle est dérivable sur \mathbb{R} et $\varphi''_f(x) = f(x)\cos^2 x + f(x)\sin^2 x \varphi_1(x)\sin x + \varphi_2(x)\cos x = f(x) \varphi_f(x)$ Donc $\varphi''_f + \varphi_f = f$, ie φ_f est solution de l'eq diff (\mathcal{E}_f) .
 - (e) φ_f est une solution de (\mathcal{E}_f) vérifiant: $\varphi_f(0) = \varphi_f'(0) = 0$. Le théorème de cauchy lipshitz linéraire assure l'unicié de la solution de (\mathcal{E}_f) vérifiant les conditions initiales y(0) = y'(0) = 0, cette solution est donc φ_f .
- 3. D'aprés le cours l'ensemble S_f des solutions de l'eq diff (\mathcal{E}_f) est donné par: $S_f = \varphi_f + S_0 = \{y + \varphi_f/y \in S_0\}$, on en déduit d'aprés I 1 que les solutions de (\mathcal{E}_f) sont toutes de la forme : $x \mapsto \alpha \cos x + \beta \sin t + \int_0^x f(t) \sin (x t) dt$ où α et β sont des réels.
- 4. (a) h est de classe \mathbb{C}^2 sur \mathbb{R} et vérifie: $h'' + h = f_1$, donc h est une solution de (\mathcal{E}_{f_1})
 - (b) D'aprés la questoin I-3 il existe $(\alpha, \beta) \in \mathbb{R}^2$, $h(x) = \alpha \cos x + \beta \sin x + \int_0^x f_1(t) \sin (x t) dt$, donc: $h(x+\pi) + h(x) = \int_0^x f(t) \sin (x t) \int_0^{x+\pi} f(t) \sin (x t) = \int_0^x f_1(t) \sin (x t) dt \int_0^x f_1(t) \sin (x t) dt \int_0^x f_1(t) \sin (x t) dt$ $\int_x^{x+\pi} f_1(t) \sin (x t) dt.$ D'autre part, le changement de variable: u = t x donne: $\int_x^{x+\pi} f(t) \sin (x t) dt = -\int_0^\pi f_1(u + x) \sin (u) du, \text{ d'où}: h(x + \pi) + h(x) = \int_0^\pi f_1(u + x) \sin (u) du.$ $f_1 = h'' + h \ge 0 \text{ et sin } \ge 0 \text{ sur } [0, \pi], \text{ donc } \int_0^\pi f_1(u + x) \sin (u) du \ge 0$
- 5. Cas où f est 2π périodique
 - (a) i. D'aprés le cours on connait une relation entre les coefficients de fourier exponnentielle de g et g'': $c_n(g'') = (in)^2 c_n(g) = -n^2 c_n(g)$.

 Comme $c_n(g) = \frac{a_n(g) ib_n(g)}{2}$, $c_n(g'') = \frac{a_n(g'') ib_n(g'')}{2}$, Donc : $a_n(g'') = -n^2 a_n(g)$, et $b_n(g'') = -n^2 b_n(g)$.

 D'autre part $a_n(f) = a_n(g + g'') = a_n(g) + a_n(g'') = (1 n^2)a_n(g)$ de meme $b_n(f) = (1 n^2)b_n(g)$ ii. Les relations précédentes donnent: $a_1(f) = b_1(f) = 0$.
 - (b) $\int_{x}^{x+2\pi} f(t) \sin(x-t) = 0$:

$$\int_{x}^{x+2\pi} f(t)\sin{(x-t)}dt = \int_{x}^{0} f(t)\sin{(t-x)}dt + \int_{0}^{2\pi} f(t)\sin{(t-x)}dt + \int_{2\pi}^{2\pi+x} f(t)\sin{(t-x)}dt.$$

itre part ,le changement de variable: $u=t-2\pi$ et la 2π - périodicité de f et sin donne :

$$\int_{2\pi}^{2\pi + x} f(t) \sin(t - x) dt = \int_{0}^{x} f(u) \sin(u - x) du,$$

D'où
$$\int_{x}^{x+2\pi} f(t)\sin(x-t) = \int_{0}^{2\pi} f(t)\sin(t-x)dt = \int_{-\pi}^{\pi} f(u)\sin(u-x)du = \pi(b_1\cos x - a_1\sin x) = 0$$

$$\varphi_f(x+2\pi) - \varphi_f(x) = \int_{0}^{x+2\pi} f(t)\sin(x-t) = 0, \text{donc } \varphi_f \text{ est } 2\pi\text{-p\'eriodique.}$$

Si y est une solution de (\mathcal{E}_f) , il existe $(\alpha, \beta) \in \mathbb{R}^2$, $y(x) = \alpha \cos x + \beta \sin x + \varphi_f(x)$, comme cos sin et φ_f sontb 2π -periodique, il en est de meme de y.

(c) On a établit dans les questions a) et b)l'équivalence entre (\mathcal{E}_f) admet des solutions 2π -periodiques et $a_1(f) = b_1(f) = 0$ Si $f(x) = \sin x$, $a_1(f) = 0$ et $b_1(f) = 1$, donc (\mathcal{E}_f) n'admet pas de solutions périodiques.

Partie 2

- (a) On écrit la définition de la limite: pour $\varepsilon = 1, \exists A > 0, x \ge A, |f(x) - \ell| \le 1, \text{comme } |f(x)| = |f(x) - \ell + \ell| \le |f(x) - \ell| + |\ell|, \text{ alors pour } |f(x)| \le 1, |f(x) - \ell| \le 1$ $x \ge A, |f(x)| \le 1 + |\ell|$
 - (b) D'aprés a) f est bornée sur $[A, +\infty]$, de plus f étant continue sur le segment [0, A], est bornée sur [0, A], ainsi f est bornée sur $[0, +\infty[$.
 - (c) f est croissnte et de classe C^1 sur \mathbb{R} ,donc $f' \geq 0$ et continue sur \mathbb{R} , d'autre part: $\int_0^x f'(t)dt = f(x) - f(0) \underset{x \to +\infty}{\longrightarrow} \ell - f(0), \text{ donc } f' \text{ est intégrable sur } [0, +\infty[\text{ et } \int_0^{+\infty} f'(t)dt = \ell - f(0).$
- 2. Les fonctions $\chi: t \mapsto f'(t) \sin t$ et $\psi: t \mapsto f'(t) \cos t$ sont continues sur $\mathbb R$. $\forall t \in [0, +\infty[, |\chi(t)| \le f'(t) \text{ et } |\psi(t)| \le f'(t), \text{comme } f' \text{ est intégrable sur } [0, +\infty[$, il en est de meme des fonctions χ et ψ .
- 3. Une integration par parties donne:

$$\int_0^x f(t)\sin(x-t)dt = [f(t)\cos(x-t)]_0^x - \int_0^x f'(t)\cos(x-t)dt = f(x) - f(0)\cos x - \int_0^x f'(t)\cos(x-t)dt$$

4. D'aprés I-3 les solutions de (\mathcal{E}_f) sont de la forme:

$$y_{\alpha,\beta}(x) = \alpha \cos x + \beta \sin x + \int_0^x f(t) \sin (x - t) dt$$

En utilisant l'égalité établie dans la question précédente on obtient:
$$y_{\alpha,\beta}(x) = f(x) + \left(\alpha - f(0) - \int_0^x f'(t) \cos t\right) \cos x + \left(\beta - \int_0^x f'(t) \sin t\right) \sin x$$

5. On a montré que
$$f$$
 est bornée sur $[0, +\infty[$ ie $|f| \le M_1$. sur $[0, +\infty[$ $\forall x \in [0, +\infty[, \left| \int_0^x f'(t) \cos t \right| dt \le \int_0^x f'(t) dt \le \int_0^{+\infty} f'(t) dt = M_2$ de meme $\left| \int_0^x f'(t) \sin t \right| dt \le M_2$ Donc $|y_{\alpha,\beta}| \le M_1 + |\alpha| + |\beta| + |f(0)| + 2M_2$ sur $[0, +\infty[$

6. (a) $n\pi \xrightarrow[n\to+\infty]{} +\infty$, donc si $y_{\alpha,\beta}$ admet une limite en $+\infty$ il en est de meme de $y_{\alpha,\beta}(n\pi)$.

$$y_{\alpha,\beta}(n\pi) = f(n\pi) + (-1)^n \left(\alpha - f(0) - \int_0^{n\pi} f'(t) \cos t dt\right)$$
$$f(n\pi) \underset{n \to +\infty}{\longrightarrow} \ell \quad , \int_0^{n\pi} f'(t) \cos t dt \underset{n \to +\infty}{\longrightarrow} \int_0^{+\infty} f'(t) \cos t dt$$

Comme la suite $((-1)^n)_n$ est divergente, $(y_{\alpha,\beta}(n\pi))_n$ va admettre une limite lorsque n tend vers $+\infty$ si et seulement si $\alpha - f(0) - \int_0^{+\infty} f'(t) \cos t dt = 0$ ie $\alpha = f(0) + \int_0^{+\infty} f'(t) \cos t dt$.

(b) En étudiant de meme la suite $(y_{\alpha,\beta}(\frac{\pi}{2}+n\pi))_n$, on montre de la meme manière que dans la question a) que : $\beta = \int_{0}^{+\infty} f'(t) \sin t dt$

7. L'unicité de Y_f vient de la question précédente car : $\alpha = f(0) + \int_0^{+\infty} f'(t) \cos t dt$ et $\beta = \int_0^{+\infty} f'(t) \sin t dt$, ce qui donne $Y_f(x) = f(x) + \int_{0}^{+\infty} f'(t) \cos(x - t) dt$ Réciproquement, cette fonction est une solutoin de (\mathcal{E}_f) de limite 0 en $+\infty$.

Partie 3

1. (a) • Si $x \in 2\pi\mathbb{Z}$, alors $\forall n \in \mathbb{N}, S_n(x) = 0$, donc $(S_n(0))_n$ est bornée

• Si
$$x \in 2\pi \mathbb{Z}$$
, $S_n(x) = \frac{\sin(n\frac{\pi}{2})\sin((n+1)\frac{x}{2})}{\sin\frac{x}{2}}$, donc: $\forall n \in \mathbb{N}, |S_n(x)| \le \frac{1}{|\sin\frac{x}{2}|}$

(b) C'est la fameuse **transformation d'Abel** : En posant $S_0(x)=0$,on a: $\forall k \in \mathbb{N}^*$, $\sin kx=S_k-S_{k-1}$,on a donc:

$$\sum_{k=1}^{n} b_k \sin kx = \sum_{k=1}^{n} b_k (S_k - S_{k-1}) = \sum_{k=1}^{n} b_k S_k - \sum_{k=1}^{n} b_k S_{k-1}$$

En effectuant dans la deuxiémé sommation du dernier terme le changement d'indice:k'=k-1, on obtient alors,,compte tenu de $S_0=0$:

$$\sum_{k=1}^{n} b_k \sin kx = \sum_{k=1}^{n} b_k S_k - \sum_{k=1}^{n-1} b_{k+1} S_k = b_n S_n + \sum_{k=1}^{n-1} (b_k - b_{k+1}) S_k$$

(c) Contrairement a ce que le sujet laisse criore en disant:Montrer alors..,cette question ne se déduit pas de la transformation d'Abel, mais uniquement de la question a), en effet, comme $(S_n(x))$ est bornée et $(b_p)_p$ décroissante on a:

 $\exists M > 0, \forall p \in \mathbb{N}, |(b_{p+1} - b_p)S_p(x)| \leq M(b_p - b_{p+1})$ Comme $b_p \xrightarrow[p \to +\infty]{} 0$, la série téléscopique $\sum_{p \geq 1} (b_p - b_{p+1})$ est convergente, on conclut que la série

$$\sum_{p>1} (b_p - b_{p+1}) S_p(x) \text{ est absolument convergente.}$$

(d) $b_n \xrightarrow[n \to +\infty]{} 0$ et $(S_n(x))$ bornée donc $b_n S_n(x) \xrightarrow[n \to +\infty]{} 0$, et la convergence absolue de la série

 $\sum (b_p - b_{p+1}) S_p(x)$ entraine sa convergence , et par suite la convergence de sa suite de sommes partielles

$$\left(\sum_{k=1}^{n-1}(b_k-b_{k+1})S_k\right)_n$$
, et compte tenu de la relation de la question b) on déduit que la suite $\left(\sum_{k=1}^n b_k\right)_n$

des sommes partielles de la série $\sum_{n>1} v_n$ est convergente, d'où la convergence de la série $\sum_{n>1} v_n$.

Pour tout $n \ge 1$ la fonctions v_n est 2π -périodique et impaire, il en est de meme de la fonction f.

- 2. (a) C'est encore la transformation d'Abel, on fait la meme chose que 1-b.
 - (b) Soit $x \in]0, \pi[$

D'aprés a) et et comptre tenu de $|S_n(x)| \leq \frac{1}{\sin \frac{x}{x}}$ on a:

$$\left| \sum_{k=n+1}^{q} b_k \sin kx \right| \le \frac{1}{\sin \frac{x}{2}} (b_q + \sum_{k=n+1}^{q-1} (b_k - b_{k+1}) + b_{n+1})$$

Or
$$\sum_{k=n+1}^{q-1} (b_k - b_{k+1}) = b_{n+1} - b_q$$

D'où
$$\left| \sum_{k=n+1}^{q} b_k \sin kx \right| \le 2 \frac{b_{n+1}}{\sin \frac{x}{2}}$$

3. (a) D'aprés 2-b: $\left| \sum_{k=1}^{q} b_k \sin(kx) \sin(px) \right| \le 2 \frac{b_{n+1}}{\sin \frac{x}{2}} |\sin(px)|.$

Or
$$:\frac{x}{2} \in [0, \pi/2] \Rightarrow \frac{1}{\sin \frac{x}{2}} \le \frac{\pi}{x} \text{ et } |\sin(px)| \le px, \text{donc}$$

$$\left| \sum_{k=n+1}^{q} b_k \sin(kx) \sin(px) \right| \le 2p\pi b_{n+1}$$

En faisant tendre q vers $+\infty$ et en tenant compte de la convergence de la série $\sum v_n$ établie dans la

question 1-d, on obtient:
$$\forall x \in [0, \pi], \left| \sum_{k=n+1}^{+\infty} b_k \sin(kx) \sin(px) \right| \leq 2p\pi b_{n+1}$$

D'où : $\sup_{x \in [0, \pi]} \left| \sum_{k=n+1}^{+\infty} b_k \sin(kx) \sin(px) \right| \leq 2p\pi b_{n+1}$.

- (b) $\forall x \in \mathbb{R}, w_n(x) = v_n(x) \sin px$, comme la série $\sum_{n \ge 1} v_n$ converge simplement sur \mathbb{R} vers f alors la série $\sum_{n} w_n \text{ converge simplement vers } w: x \mapsto f(x)\sin(px).$
 - pour tout $n \in \mathbb{N}^*$, la fonction w_n est 2π periodique et paire, donc il suffit de montrer la convergence uniforme de la série de fonction $\sum_{x \in \mathbb{N}} w_n(x)$ sur $[0, \pi]$.
 - Pour $x \in \mathbb{R}$ le reste d'ordre n de la série $\sum_{n \geq 1} w_n(x)$ est $R_n(x) = \sum_{k=n+1}^{+\infty} b_k \sin(kx) \sin(px)$ D'aprés la question 3-a: $\sup_{x \in [0,\pi]} |R_n(x)| \leq 2p\pi b_{n+1} \underset{n \to +\infty}{\longrightarrow} 0$, donc la suite de fonction (R_n) convege uniformément vers 0, d'où la convergence uniforme de la série de fonction $\sum_{n\geq 1} w_n(x)$ sur $[0,\pi]$
- (c) On applique les théorèmes de continuité de la somme d'une série de fonction et d'integration terme à terme d'une série de fonctione fonctions, vérifions les hypothéses de ces théorème:
 - Pour tout $n \in \mathbb{N}^*$ la fonction w_n est continue sur $[-\pi, \pi]$
 - La série de fonctions $\sum_{n\geq 1} w_n$ converge uniformément sur $[-\pi,\pi]$ vers $w:x\mapsto f(x)\sin(px)$

Donc
$$w$$
 est continue sur \mathbb{R} et $\int_{-\pi}^{\pi} w(x) = \sum_{n=1}^{+\infty} \int_{-\pi}^{\pi} w_n(x) dx$
Or $\int_{-\pi}^{\pi} w_n(x) dx = \begin{cases} \pi b_p & \text{si } n = p \\ 0 & \text{si } n \neq p \end{cases}$
D'où $b_p = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin{(pt)} dt$

$$F(\theta+2\pi) = \int_0^{\theta+2\pi} f(t)dt = \int_0^{2\pi} f(t)dt + \int_{2\pi}^{\theta+2\pi} f(t)dt$$
 Or la périodicité et l'imparité de f donne :
$$\int_0^{2\pi} f(t)dt = 0$$
, et
$$\int_{2\pi}^{\theta+2\pi} f(t)dt = \int_0^{\theta} f(t)dt$$

• deuxième méthode Soit $G: \theta \mapsto F(\theta+2\pi) - F(\theta)$, alors G est dérivable sur $\mathbb R$ et $G'(x) = f(\theta+2\pi) - f(\theta) = 0$, donc G est constante sur $\mathbb R$ et $G(0) = F(2\pi) = 0$, donc G = 0.

(b)
$$F' = f$$
, donc $c_n(f) = inc_n(F)$, on en déduit $a_n(F) = \frac{-1}{n}b_n(f) = \frac{-1}{n}b_n$ et $b_n(F) = 0$ car F est paire.

(c) F est 2π -periodique de classe C^1 sur \mathbb{R} , le théorème de convergence normale de dirichlet affirme que la série de fourier de F converge normalement vers F sur \mathbb{R} .

On a
$$\forall x \in \mathbb{R}, F(x) = \frac{a_0(F)}{2} + \sum_{n=1}^{+\infty} a_n(F) \cos(nx) = \frac{a_0(F)}{2} - \sum_{n=1}^{+\infty} b_n \cos(nx)$$
, pour $x = 0$ on obtient:
$$\sum_{n=1}^{+\infty} b_n = \frac{a_0(F)}{2}$$

(a) $\varphi_f(x) = -\varphi_2(x)\cos x$ Il suffit de montrer que φ_1 est paire et φ_2 est impaire.

Le changement de variable : u = -t donne compte tenu de l'imparité de f: $\varphi_1(-x) = \int_0^x f(t) \cos(t) dt =$

$$\int_0^x f(u)\cos(u)du = \varphi_1(x)$$
de la meme facon on a $\varphi_2(-x) = -1$

de la meme facon on a: $\varphi_2(-x) = -\varphi_2(x)$.

- (b) Si φ_f est 2π -per alors $0 = \varphi_f(0) = \varphi_f(2\pi) = -\varphi_2(2\pi) = -2\pi b_1$ d'où $b_1 = 0$. Réciproquement si $b_1 = 0$, alors $\varphi_2(x + 2\pi) = \varphi_2(2\pi) + \int_{2\pi}^{x+2\pi} f(t) \sin(t) dt$. Or $\varphi_2(2\pi) = \pi b_1 = 0$, et $\int_{2\pi}^{x+2\pi} f(t) \sin(t) dt = \varphi_2(x)$ d'où φ_2 est 2π périodique et parsuite φ_f est 2π périodique.
- 6. (a) φ_f étant impaire, $\forall n \in \mathbb{N}, a_n(\varphi_f) = 0$.
 - (b) φ_f est une solution 2π -periodique de (\mathcal{E}_f) , d'aprés la question I-5a-i, $\forall n \geq 2, b_n(\varphi_f) = \frac{b_n}{1-n^2}$.
 - (c) φ_f est 2π -periodique de classe C^2 , d'aprés le théorème de dirichlet, la série de fourier de φ_f converge normalement sur \mathbb{R} vers φ_f , ie : $\forall x \in \mathbb{R}, \varphi_f(x) = \sum_{n=1}^{\infty} b_n(\varphi_f) \sin(nx) = \sum_{n=1}^{\infty} \frac{b_n}{1-n^2} \sin(nx)$ Donc , la série $\sum_{n\geq 2} \frac{b_n}{1-n^2} \sin(nx)$ est convergente et : $\sum_{n=2}^{\infty} \frac{b_n}{1-n^2} \sin(nx) = \varphi_f(x) - b_1(\varphi_f) \sin(x)$
 - (d) Vérifions les hypothéses du théorème de dérivation terme à terme
 - $\forall n \geq 2, h_n : x \mapsto \frac{b_n}{1-n^2}$ est de classe C^1 sur \mathbb{R} et $h'_n(x) = \frac{nb_n}{1-n^2} \cos(nx)$
 - la série de fonction $\sum_{n\geq 2} h_n(x)$ converge simplement sur \mathbb{R} vers $h: x \mapsto \varphi_f(x) b_1(\varphi_f)\sin(x)$.
 - $\forall n \geq 2, \forall x \in \mathbb{R}, |h'_n(x)| \leq \frac{nb_n}{1-n^2}$, de plus: $\frac{nb_n}{1-n^2} \sim \frac{b_n}{n} \text{ et } \sum_{n \geq 2} \frac{b_n}{n} \text{ est convergente d'aprés 4-c.}$

d'où $\sum_{n\geq 2} h'_n(x)$ converge normalement , donc uniformément , sur $\mathbb{R}.$

Le théorème affirme donc , que h est de classe C^1 sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, h'(x) = \sum_{n=2}^{+\infty} h'_{(x)}, \text{ soit en remplacant } , \varphi'_{f}(x) = b_{1}(\varphi_{f}) \cos x + \sum_{n=2}^{+\infty} \frac{nb_{n}}{1 - n^{2}} \cos(nx)$$

(e) En faisant x = 0 dans la relation précédente on obtient:

$$0 = \varphi_f'(0) = b_1(\varphi_f) + \sum_{n=2}^{+\infty} \frac{nb_n}{1 - n^2}$$

D'où
$$:b_1(\varphi_f) = \sum_{n=2}^{+\infty} \frac{nb_n}{n^2 - 1}$$