8 MCMC pour le débruitage d'image

On considère une image $(Y(x))_x$: pour chaque pixel x, Y(x) est un vecteur de $[0,1]^3$. Pour débruiter l'image Y on se propose de simuler un vecteur aléatoire $Z=(Z(x))_x$ de densité

$$\pi(z) = C \exp\left(-\sum_{\substack{x \text{ x'voisins}}} \beta \|z(x) - z(x')\| - \sum_{\substack{x \text{ }}} \|z(x) - Y(x)\| / \sigma\right)$$

où $\beta > 0$, $\sigma > 0$ sont à choisir, et la constante C est telle que $\int \pi(z)dz = 1$.

Pour ce faire on utilise l'algorithme de de Metropolis-Hastings : il consiste à simuler une chaîne de Markov $Z^{(m)}$, $m \in \mathbb{N}$, de la façon suivante :

On se donne une fonction q(z' | z), dont les deux arguments z et z' sont des images, telle que pour tout z fixé, $z' \mapsto q(z' | z)$ est une densité de probabilité.

- Initialisation : choisir $Z^{(0)}$ arbitraire
- Mettre à jour $Z^{(m)}$ comme suit :
 - 1. Générer ξ de densité $q(\cdot \mid Z^{(m)})$
 - 2. Poser

$$\rho(Z^{(m)}, \xi) = \frac{\pi(\xi) q(Z^{(m)} \mid \xi)}{\pi(Z^{(m)}) q(\xi \mid Z^{(m)})} \wedge 1$$

3. Poser

$$Z^{(m+1)} = \begin{cases} \xi & \text{avec proba } \rho \\ Z^{(m)} & \text{sinon} \end{cases}$$

La chaîne de Markov $(Z^{(m)})_{m\geq 0}$ admet π comme probabilité invariante et sous certaines hypothèses sur $q(\cdot,\cdot)$ on peut montrer que la loi de $Z^{(m)}$ converge vers π quand $m\to\infty$. C'est le cas par exemple si $q(\cdot,z)$ est la densité l'image aléatoire ξ construite ainsi : ξ est égale à z sauf en un pixel choisi au hasard où la valeur de ξ est choisi suivant la loi uniforme sur $[0,1]^3$. De plus on a alors $q(z'\mid z)=q(z\mid z')$ ce qui simplifie le calcul de $\rho(Z^{(m)},\xi)$ dans l'algorithme.

Sur Moodle on trouvera le script mcmc. py quit met en œuvre cet algorithme.

- 1. Bruiter l'image initiale en rendant 50000 pixels noirs. Tester.
- 2. Prendre $\beta = 10$. Expliquer le résultat.
- 3. Bruiter l'image initiale en lui ajoutant des variables uniformes sur [-1/4, 1/4]. Tester.
- 4. Coder la variante suivante : ξ est généré à partir de $Z^{(m)}$ en choisissant un pixel de $Z^{(m)}$ au hasard et en remplaçant sa couleur par la couleur de l'un de ses voisins. (il n'y a plus de densité de transition q mais on calcule ρ comme dans le cas q=1)