

Introduction to Trees

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relationship to zero or more nodes

9/12/2019

acramento State - Summer 2019 - CSc

Some Applications

- Organizational charts
- Class hierarchy
- Disk directory and subdirectories
- Structure of a program

9/12/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

Cheese Incorporated Manufacturing Retail Wheels Slices US International Europe Asia Africa 9122019 Saccamento State - Summer 2019 - C6c 130 - Cook 5

Linked Lists vs. Trees

- Linked Lists
 - linear accessing all elements is O(n)
 - nodes can only have one predecessor and/or one successor node
- Trees
 - · nonlinear and hierarchical
 - nodes can have multiple successors but only one predecessor

0/10/0010

Sacramento State - Summer 2019 - CSc 130 - Cook

Node just like in linked lists, the units of linked data are called nodes nodes usually contain data Root starting point of the tree no nodes link to it e.g. A

Branch links between tree nodes often unidirectional Branching-factor the max number of branches any node can have it can be anything from 2 to infinity (in theory)

Depth-First Transversal

- In depth-first transversal, the algorithm travels down the tree
- So, the algorithm looks at a child and it then looks at its children
- This approach lends itself to recursion
- There are several approaches of when a node is "visited"

0/10/0010

Sacramento State - Summer 2019 - CSc 130 - Cook

In a preorder traversal, a node is visited before its descendants Nodes will be visited in the order depicted on tree to the right

Binary Trees are extremely useful in data structures The two branches allow for efficient branching and is ideal for binary operations Applications: Storing arithmetic expressions decision processes searching sorting


```
class Node
{
   public Object value; //Can be anything public Node left;
   public Node right;
}

Branches are much simpler
```


Post-order: Evaluate Expressions

- A post-order traversal can be used to evaluate the tree
- Each recursive call (left, right) returns a value – the result of its calculation
- The node that applies the operator to the two returned values

019

9/12/2019

Function evaluate (Node n) if n is a leaf return n.value else x ← evaluate (n.left) y ← evaluate (n.right) ◊ ← operator stored at n return x ◊ y end if end function

In-order Depth-first Traversal In an in-order traversal a node is evaluated after its left branch and before its right branch In other words: recurse left, do something, then recurse right Security State-Surver 2019-CSc 120-Cook

