

Year 11 Mathematics Specialist Units 1&2 Test 6 2022

Calculator Free **Proof & Complex Numbers**

STUDENT'S NAME

MARKING KEY

[KRISZYK]

DATE: Friday 14th October

TIME: 45 minutes

MARKS: 48

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser, approved Formula sheet

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Questions begin on the next page.

1. (7 marks)

Given w = 3 - 5i and z = i - 2, evaluate the following:

(a)
$$2w + z$$
 [1]
= $2(3-5i) + (-2+i)$
= $4-9i$

(b)
$$wz$$

= $(3-5i)(-2+i)$
= $-6+13i-5i^2$
= $-1+13i$

(c)
$$\overline{WZ}$$

$$= -1 - 13i$$

$$(d) \quad \frac{w}{z}$$

$$= \frac{3-5i}{-2+i} \times \frac{-2-i}{-2-i}$$
[3]

$$= -\frac{6 + 7i + 5i^{2}}{4 - i^{2}}$$

$$= -\frac{6+7i-5}{4+1}$$

$$= \frac{-11 + 7i}{5}$$

2. (3 marks)

Determine the complex number w if w + iw = 1 + 7i.

let
$$W = a + bi$$

 $a + bi + i(a + bi) = 1 + 7i$
 $a + bi + ai + bi^2 = 1 + 7i$
 $(a - b) + (a + b)i = 1 + 7i$
 $a - b = 1$
 $a + 4 = 7$
 $a = 4$
 $a + 4 = 7$

3. (3 marks)

Express $0.03\overline{4}$ as a rational number.

$$|ef 7C = 0.03\overline{4}$$

$$|000x = 3.\overline{4}$$

$$|000x = 34.\overline{4}$$

$$900x = 34.4 - 3.4$$

$$900x = 31$$

$$x = 31$$

$$900$$

4. (6 marks)

Prove, by contradiction, $\sqrt{7}$ is irrational.

Assume $\sqrt{7}$ is rational, hence $\sqrt{7} = P$ where $P, q \in \mathbb{Z}$ and have no common factors.

$$7 = \frac{p}{q}$$

$$7 = \frac{p^2}{q^2}$$

$$7q^2 = p^2$$
 ... p^2 is a multiple of 7 ... $p = 7k$.

$$7q^{2} = (7k)^{2}$$

$$7q^{2} = 49k^{2}$$

$$q^{2} = 7k^{2}$$

$$\therefore q^{2} \text{ is a multiple of 7}$$

$$\therefore q = 7p.$$

$$\therefore q = 7p.$$

$$7 = \frac{P}{q} = \frac{7k}{7p}$$

P has a common factor, hence a contradiction to assumed statement.

: V7 is irrational.

5. (4 marks)

Determine all exact solutions (real and complex) for the equation $x^3 - 4x^2 + 13x = 0$

$$\chi \left(\chi^2 - 4\chi + 13 \right) = 0$$

$$\chi \left(\chi^2 - 4\chi + 13 \right) = 0$$

$$\chi^{2} - 4\chi + 13 = 0$$

$$(\chi - 2)^{2} + 13 - 4 = 0$$

$$(\chi - 2)^{2} + 9 = 0$$

$$\chi - 2 = \pm \sqrt{-9}$$

$$\chi - 2 = \pm 3i$$

$$\chi = 2 \pm 3i$$

6. (6 marks)

Prove by mathematical induction, $a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$, $r \neq 1$.

For
$$n=1$$

LHS = ar^{-1}

= ar^{0}

= a
 $= a$

: Case n=1 is true.

Assume true for case n = k

$$\therefore a + ar + ar^2 + \dots + ar^{k-1} = \underline{a(1-r^k)}$$

case n=K+1

$$a + ar^2 + ... + ar^{k-1} + ar^{(k+1)-1} = \underline{a(1-r^{k+1})}$$

$$LHS = \frac{\alpha(1-r^{k}) + \alpha r^{k}}{1-r}$$

$$= \frac{\alpha(1-r^{k}) + \alpha r^{k}(1-r)}{1-r}$$

$$= \frac{a - ar^{k} + ar^{k} - ar^{k+1}}{1-r}$$

$$= \frac{a(1-r^{k+1})}{1-r}$$
: true for $n=k$ and $n=k+1$
: Statement is true.

Page 6 of 11 = RIFS

7. (6 marks)

Consider the expression $m^2 + 7$

Evaluate the expression $m^2 + 7$ for m = 1, 3, 5, 7 and 9 (a)

[1]

Use your values from (a) to state the largest integer, p, that $m^2 + 7$ is always divisible by, (b) when m is a positive odd integer.

Prove that $m^2 + 7$ is always divisible by p when m is a positive odd integer. (c) [4]

$$(2n+1)^{2} + 7$$

$$= (2n+1)(2n+1) + 7$$

$$= 4n^{2} + 4n + 8$$

$$= 4n(n+1) + 8$$

Either n or n+1 will be even : n(n+1) will be even. - 2k.

$$= 4(2K) + 8$$

$$= 8(K+1)$$

: m2+7 is always divisible by p.

- 8. (13 marks)
 - (a) Given that $p^n = -i$, where $n \in \mathbb{Z}$, determine each of the following:

(i)
$$p^{n+1}$$
 [2]
$$= p^{n} \cdot p^{1}$$

$$= -i p$$

(ii)
$$(p^{n} - p^{-n})^{2}$$

$$= (p^{n} - p^{-n})(p^{n} - p^{-n})$$

$$= (p^{n})^{2} - 2p^{n}p^{-n} + (p^{-n})^{2}$$

$$= (-i)^{2} - 2p^{o} + (\frac{1}{i})^{2}$$

$$= -1 - 2 - 1$$

$$= -4$$

[3]

(b) Two complex numbers w and z are such that their addition and subtraction are shown on the diagram below.

Add and label each of the following to the grid above.

(i)
$$zi + wi$$
 = $i(z+w)$ = $-4+i$ = $i(1+4i)$

(ii)
$$\frac{z-w}{i} = \frac{5i-2i^2}{i^2}$$

$$= \frac{5-2i}{i} \times \frac{i}{i} = -2-5i$$

(iii)
$$z$$

 $2z = 7 + w + z - w$ $z = 3 + i$
 $= 1 + 4i + 5 - 2i$
 $= 6 + 2i$

(iv)
$$W = Z+W-Z$$
 $W = -Z+3i$
= $1+4i-(3+i)$ Page 9 of 11