CS480 – Introduction to Artificial Intelligence

TOPIC: CONSTRAINT SATISFACTION

CHAPTER: 6

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

Chapter 6 – Motivation

- Each state is described as a set of variables and their values
- There are constraints on which values can be assigned to which variables
- Examples
 - Class scheduling: Each room can host one class at a time, each instructor can be at one place at the same time, etc.
 - Map coloring: Adjacent states cannot have the same color
 - **Sudoku:** Numbers 1-9 must appear exactly once in a row, column, and block
- These are called Constraint Satisfaction Problems (CSP)
- We would like to develop general purpose and efficient solvers

OUTLINE

- Problem definition
- Constraint propagation
 - Node consistency
 - Arc consistency
 - Path consistency
 - K-consistency
 - Global constraints
- Backtracking search
 - Variable ordering
 - Value ordering
 - Forward checking
 - Maintaining arc consistency
- Local search

PROBLEM DEFINITION - CSP

- $\circ X$ is a set of variables: $\{X_1, X_2, ..., X_n\}$
- \circ \mathcal{D} is a set of domains: $\{D_1, D_2, ..., D_n\}$, one for each variable
- *C* is a set of constraints on allowable combinations of values
- Definitions
 - **Assignment**: Some or all variables are assigned a value
 - Consistent assignment: No constraint is violated
 - Complete assignment: All variables are assigned
 - Solution: A consistent and complete assignment

4

Example – Map Coloring

X={WA, NT, SA, Q, NSW, V, T}

o $D_i = \{red, green, blue\}$

C={WA≠NT, WA≠SA,
 NT≠SA, NT≠Q, SA≠Q,
 SA≠NSW, SA≠V, Q≠NSW,
 NSW≠V}

CONSTRAINT GRAPH

Variables are nodes. Two nodes are linked if they participate in a constraint.

Types of Constraints

- Unary: A variable cannot take on a value
- Binary: Constrains two variables
- Global: Constrains arbitrary number of variables
- We will consider binary CSPs
 - Unary: Modify the domain and remove the constraint
 - Global: Convert to binary constraint by introducing auxiliary variables

SOLVING CSPs

- A combination of
 - Search
 - Search for a value for a variable from its domain
 - Inference
 - Propagate constraints, reducing the domains of variables

INFERENCE: CONSTRAINT PROPAGATION

Node consistency

Unary constraints are enforced by altering the domains

Arc consistency

• X_i is arc-consistent with respect to another variable X_j if for every value in the domain of D_i , there is some value in the domain of D_j that satisfies the binary constraint on the arc (X_i, X_j) $\mathcal{A}: \mathcal{CD}: \mathcal{A}: \mathcal{CD}: \mathcal{CD}: \mathcal{A}: \mathcal{CD}: \mathcal{A}: \mathcal{CD}: \mathcal{A}: \mathcal{CD}: \mathcal{CD}: \mathcal{CD}: \mathcal{A}: \mathcal{CD}: \mathcal$

 $A = B^{\prime}$ DA: [0,1, 9] DB: 80, 1, - 93 5-1 X-42 (AB) Ux EDA Jy DB 2 - 92 A: 0,1,2,3,4,5,6,7,8,9 VVXXVXXXXX A: 50,1,4,9} B: 50,1,7,3,4,5,67,8,55 (B,A) 0,1,2,3,4,5,6,7,8,9 A: 10,1,4,5) B: 16,12,33

AC-3 ALGORITHM

- Put all arcs in a queue
- while queue is not empty
 - pick an arc (X_i, X_i) from the queue
 - make X_i arc consistent
 - if D_i is modified
 - \circ if D_i is empty
 - o return failure
 - else
 - Add all (X_k, X_i) to the queue, where X_k is a neighbor of X_i

AC-3

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_j) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then
       delete x from D_i
       revised \leftarrow true
```

return revised

EXAMPLE: AC-3 ON THE AUSTRALIA MAP

- 1. Assume $D_{WA} = \{R\}, D_V = \{G\}$
- 2. Assume $D_{WA} = \{R\}, D_{NSW} = \{G\}$

EXAMPLE: AC-3 ON THE AUSTRALIA MAP

Assume
$$D_{WA} = \{R\}, D_V = \{G\}$$

14

EXAMPLE: AC-3 ON THE AUSTRALIA MAP

Assume
$$D_{WA} = \{R\}, D_{NSW} = \{G\}$$

1 (X) (P163) (R163)

More Constraint Propagation

- Arc consistency cannot detect all inconsistencies
- Consider coloring a map of three inter-connected states with two colors. They are arc-consistent.

Path consistency

- Triples of variables
- A two-variable set $\{X_i, X_j\}$ is path-consistent with respect to a third variable X_m if, for every assignment $\{X_i=a, X_j=b\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.

More Constraint Propagation

• K-consistency

- A CSP is k-consistent if, for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any k^{th} variable.
- 1-consistency = node consistency
- 2-consistency = arc consistency
- 3-consistency = path consistency

$$\int_{X} [10,200] (X,19) \quad \forall V [0,200]_{\#}$$
BOUNDS CONSISTENCY $\exists L [0,300]$

- A CSP is *bounds consistent* if for every variable X, and for every value between its lower and upper bounds, there exist some value for Y that satisfies the constraint between X and Y.
- Useful for variables with infinite or large domains
- Example
 - D_X = [0, 200], D_Y =[0, 300]; X+Y = 400. After making X and Y bounds consistent, what are D_X and D_Y ?

SEARCHING FOR SOLUTIONS

- Rather than treating all of the variables as a single state, we will treat the variables as the nodes of the search tree
- Depth-first search: intuitively (the formal version is in the next slide)
 - Pick an unassigned variable var
 - for each value in the domain of var
 - Assign value to the var
 - Propagate constraints
 - If inconsistency is detected, backtrack

AC-3

FC

BACKTRACKING SEARCH

```
return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variable}(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
     if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow \texttt{Inference}(csp, var, value)
         if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
            if result \neq failure then
              return result
     remove \{var = value\} and inferences from assignment
```

function BACKTRACKING-SEARCH(csp) **returns** a solution, or failure

return failure

IMPORTANT CHOICES

- 1. Which variable to choose?
- 2. How to order its values?
- 3. What inference to use for propagating constraints?

VARIABLE ORDERING

Minimum remaining values (MRV) heuristic

- Also called "most-constrained" or "fail-first" 10/12 branchil
- Prunes early
- Might not help initially where domains are large

Degree heuristic

- Choose the variable that is involved in the most number of constraints with the remaining unassigned variables
- A good tie-breaker for MRV

VALUE ORDERING

- Least-constraining value (LCV) heuristic
 - Prefers the value that rules out the fewest choices for the neighboring variables
- MRV chooses the most-constrained variable and LCV chooses the least-constraining value. Why?

Interleaving Search and Inference

Forward checking

- When a variable *X* is assigned a value, make all the connected variables, *Y*, arc-consistent with *X*.
- Fast but does not detect all inconsistencies

Maintaining arc consistency (MAC)

• When a variable X_i is assigned a value, call AC-3 with the queue = (X_i, X_i) .

AN EXAMPLE

- The map coloring CSP with
 - MRV
 - Degree
 - Forward checking

CRYPTARITHMETIC

- \circ TWO + TWO = FOUR
- Every letter represents a different digit
- Let's solve an easier version, where F=1, O is less than 5, and W is less than 5, and 1 removed from every variables' domains
 - F=1 (already assigned)
 - O: {0, 2, 3, 4}
 - R: {0, 2, 3, 4, 5, 6, 7, 8, 9}
 - T: {0, 2, 3, 4, 5, 6, 7, 8, 9}
 - U: {0, 2, 3, 4, 5, 6, 7, 8, 9}
 - W: {0, 2, 3, 4}

[0=0	0=2	T=6	R=4	W=0	\ w=3	0:4	T=7	R=8	M=0	U=2	-16	7-3
Τ {0,29} ω {0,2,3,4} Ο {0,2,3,4} μ {0,29}	0	867 80,3,47 2 80,393	6 80,3,47 2 80,35,797	6 80133 2	6 0 2 8	6 3 2 8 4	177 19,2,37 4 50,2,3,597 587	7 50,23} 4 50,2,3,5,6,8,93 883	7 50,2,37 4 50,2,3,5,6,93 8	D	S.	\$ C	73463
R 50,293	Ø	547	143	4	14	·		(l	•			

SUDOKU – AC-3 CAN SOLVE THIS

6						2	1	
		8		1				4
	5	4	6					
		7			9	8	2	
	4			5	1	9		3
9			3	7			5	
		9		8				
3		5		2			6	
7	8							

SUDOKU – AC-3 CAN ALMOST SOLVE THIS

6						2	1	
		8		1				4
	5	4	6					
		7			9	8	2	
	4			5	1	9		3
9			3	7			5	
		9		8				
3		5		2			6	
7								

SUDOKU – AC-3 CONVERTS THE PREVIOUS PROBLEM INTO THIS

6	9	3	8	4	7	2	1	5
2	7	8	5	1	3	6	9	4
1	5	4	6	9	2	3	8	7
5	3	7	4	6	9	8	2	1
8	4	6	2	5	1	9	7	3
9	{1,2}	{1,2}	3	7	8	4	5	6
4	{1,6}	9	{1,7}	8	{5,6}	{1,5,7}	3	2
3	{1,8}	5	{1,7,9}	2	4	{1,7}	6	{8,9}
7	{1,2,6,8}	{1,2}	{1,9}	3	{5,6}	{1,5}	4	{8,9}

Non-Binary to Binary

- a+b=2*c
- \circ c+d=12
- \circ a = $\{0,1,2,3,4\}$
- \circ b = $\{0,1,2\}$
- \circ c = {0,1,2,3,4}
- $o d = \{0..9\}$
- All are distinct

Original constraint graph Define a new variable. Call it anything you like. I'll call it ab. abis domain is Dab = Da & Db ab is a tuple; not a single number. New constraints: ab[0] = a ab[1]=b ab(0) + ab[1) = 2 × C C+d=12 a, b, c, and I are distinct.

LOCAL SEARCH

- Start with an initial guess
- Pick a variable that violates constraints and choose a value for it
- Min-conflicts heuristic
 - Pick a value that results in the minimum number of conflicts with the other variables

MIN-CONFLICTS

MIN-CONFLICTS EXAMPLE

So Far

- Agent-based modeling Chapter 2
- Search for problem solving
 - Goal-based Chapter 3
 - DFS, BFS, ..., A*
 - Utility-based Chapter 5
 - o Minimax, alpha-beta
 - Constraint satisfaction Chapter 6
 - Backtracking

NEXT

- Knowledge Representation and Reasoning Logic
 - Chapters 7, 8, 9