Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

Primer parcial - 14 de mayo de 2014. Duración: 3 horas y media

N° de parcial	Cédula	Apellido y nombre	Salón

Primer parcial (se hace sin material y sin calculadora)

Ejercicio 1. Enunciar y demostrar el Lema de Euclides.

Ejercicio 2.

- a) Hallar el resto de dividir 11¹⁶⁰⁴ entre 1200.
- b) Hallar el resto de dividir 7^{319} entre 1200.

Ejercicio 3. Una companía compró cierto número de reliquias falsas a 46 pesos cada una y vendió algunas de ellas a 100 pesos cada una. Si la cantidad comprada originalmente es mayor que 400 pero menor que 500 y la companía obtuvo una ganancia de 1000 pesos, ¿cuántas reliquias no se vendieron?

Ejercicio 4.

a) Hallar todas las soluciones módulo 15 de la ecuación:

$$6x \equiv 9 \pmod{15}$$
.

b) Investigar si el siguiente sistema tiene solución:

$$\left\{ \begin{array}{l} x \equiv 14 \pmod{36} \\ x \equiv 23 \pmod{27} \\ x \equiv 10 \pmod{12} \end{array} \right.$$

c) Resolver el sistema:

$$\begin{cases} 5x \equiv 11 \pmod{12} \\ 2x \equiv 5 \pmod{9} \\ x \equiv 9 \pmod{10} \end{cases}$$

Ejercicio 5. Probar que existen infinitos números primos.

Ejercicio 6. Sea ϕ la función de Euler y sean m y $n \in \mathbb{Z}^+$ coprimos. Probar que $\phi(mn) = \phi(m)\phi(n)$. (Si usan alguna fórmula para $\phi(n)$ la tienen que demostrar.)