Project Title: Apply Data Pre-processing on a Dataset

Project Overview:

The following dataset contains statistics in arrests per 100,000 residents for assault and murder, in each of the 50 US states, in 1973. Also given is the percentage of the population living in urban areas.

1.Data cleaning:

Import dataset from excel to R-studio: At first I have to set the working directory. By using setwd("My Location") command.

```
> getwd()
[1] "C:/Users/new/Documents"
> setwd("C:/Users/new/Desktop/r")
> |
```

Here, I can set my directory where I can work. After set directory now i should insert table from excel file to R-STUDIO using R-language code.

If you can see that datasets is my excel csv file name and using this code I'm transfer excel dataset to R.

Here is my imported table:

Next step-(Dealing with missing values):

Here we can see that in the table inside the Assults column, in number ten value is missing (NA). Now, we can replace the missing values by the mean values of the respective variables. By using this code I can find my missing value. Inside the code datasets is my csv file name. Inside ifelse conditions Assults is my table column name. FUN is a function of x that calculates the mean excluding NA values (na.rm=TRUE).

I find missing value by using sum of assults column value then divided into total state(49). After that I find missing value(182).

	Murder	Assults	Urban popu	lations(9
Alabama	13.2	236	58	
Alaska	10	263	48	
Arizona	8.1	294	80	
Arkansas	8.8	190	50	
California	9	276	91	
Colorado	7.9	204	78	
Connectic	3.3	110	77	
Delaware	5.9	238	72	
Florida	15.4	335	80	
Georgia	17.4	182	60	
Hawaii	5.3	46	83	
Idaho	2.6	120	54	
Illinois	10.4	249	83	
Indiana	7.2	113	65	
Lowa	2.2	56	570	
Kansas	6	115	66	
kentucky	9.7	109	52	
Louisiana	15.4	249	66	
Maine	2.1	83	51	
Maryland	11.3	300	67	
Massachus	4.4	149	85	
michigan	12.1	255	74	
Minnesota	2.7	72	66	
mississippi	16.1	259	44	

2. Data integration:

By using this code I can combine data from different source. We can easily integrate data by using rbind function. If i want to add Dhaka dataset then i use this function for integrate data.

3. Data Transformation:

In the dataset, we can see that the Murder variable in the dataset contains decimal value in the data .But I'm not interested in having decimal places for Murder variable, i can round it up.

Code:

dataset.csv\$Murder =
 as.numeric(format(round(dataset.csv\$Murder, 0)))

_	x =	Murder ÷			
1	Alabama	13			
2	Alaska	10	\top		
3	Arizona	8	\top		
4	Arkansas	9			
5	California	9	Т		
6	Colorado	8	Т		
7	Connecticut	3	Т		
8	Delaware	6	Т		
9	Florida	15			
10	Georgia	17	Т		
11	Hawaii	5	Т		
12	Idaho	3	Т		
13	Illinois	10	Т		
14	Indiana	7	Т		
15	Lowa	2	Т		
16	Kansas	6	Т		
17	kentucky	10	Т		
18	Louisiana	15			
19	Maine	2			
20	Maryland	11			
21	Massachusetts	4			
22	michigan	12			
23	Minnesota	3			
24	mississippi	16			
25	Missouri	9			
26	Montana	6			
27	Nebraska	4	L		
28	Nevada	12	L		
29	New Hampshire	2	L		
30	New Jersey	7	L		
31	New Mexico	11	╙		
3.3					
Showing 1 to 32 of 50 entries, 4 total colur					
Console					
Type here to sea					

By using data transformations formula, decimal values are gone from the dataset.

Categorical Data:

```
> dataset.csv$X = factor(dataset.csv$X,
+ levels = c('Alabama'),
+ labels = c(1))
> |
```

By using this code I convert the categorical features as numerical codes.

*	X ÷	Murder [‡]	Assults [‡]	Urban.populations	÷
1	1	13	236		58

Here i change Alabama state name as state code. Now code 1 is for Alabama state. It's help to recognize state very easily.

4. Data Reduction:

Data reduction is the process of reducing the amount of capacity required to store data by using this we can reduce data without changing information.

5. Data Discretization:

Is a process to convert data in categorical using this code we can make it more easier or make it grouping. In the ifelse condition I implement that <50 urban population is small ,same as <60 is medium and <70 is large .

Code:

datasetss.csv<transform(datasetss.csv,type=ifelse(Urbanpop<50,'Small',ifelse (Urbanpop<60,'Medium',ifelse(Urbanpop<70,'Large',"Extra

large"))))					
1		Murder	Assults	urbanpop	type
2	Alabama	13.2	236		Medium
3	Alaska	10	263		Small
4	Arizona	8.1	294		Extra large
5	Arkansas	8.8	190		Medium
6	California	9	276		Extra large
7	Colorado	7.9	204		Extra large
8	Connectic		110		Extra large
9	Delaware	5.9	238		Extra large
10	Florida	15.4	335		Extra large
11	Georgia	17.4	182		Large
12	Hawaii	5.3	46		Extra large
13	Idaho	2.6	120		Medium
14	Illinois	10.4	249		Extra large
15	Indiana	7.2	113		Large
16	Lowa	2.2	56	57	
17	Kansas	6	115		Large
18	kentucky	9.7	109		Medium
19	Louisiana	15.4	249		Large
20	Maine	2.1	83		Medium
21	Maryland	11.3	300		Large
22	Massachus		149		Extra large
23	michigan	12.1	255		Extra large
24	Minnesota		72		Large
25	mississippi		259		Small
26	Missouri	9	178	70	Large
27	Montana	6	109		Medium
28	Nebraska	4.3	102		Large
29	Nevada	12.2	252		Extra large
30	New Hamp	2.1	57		Medium

Discussion and Conclusion:

After doing the data pre- processing, data cleaning, Smooth Noisy Data, Handling Missing Data, Data Wrangling we find a clean dataset and by removing NA from dataset. NA are replace with average value. In data transformation process from dataset, i can removing decimal places for Murder variable, i can round it up from data transformations I find a good dataset and it's easy to human understandable value not float value. In data discretization i can convert data in categorical from type column now we can show data as categorically . Form completed all steps we can find a perfect dataset and datatable.