NSM GPU Programming Assignment 1 Deadline: December 11, 2023, 23:55

1 Problem Statement

Write three separate CUDA C++ kernels for performing computations on two input matrices (A and B) and generating the output matrix C. In the first kernel per_row_column_kernel, each thread should process a complete row of the input matrices. In the second kernel per_column_row_kernel, each thread should process a complete column of the input matrices. In the third kernel per_element_kernel, each thread should process exactly one element from both the input matrices. For the evaluation purpose, per_row_column_kernel will be invoked with 1D grid and 1D blocks, per_column_row_kernel will be invoked with 1D grid and 2D blocks and per_element_kernel will be invoked with 2D grid and 2D blocks.

2 Input and Output

2.1 Input

- * Matrix A of size m x n
- * Matrix B of size m x n

2.2 Output

- * Output is Matrix C of size n x m
- * Output is computed as: $C = (A + B)^T (B A)^T$, where X^T is the transpose of matrix X.

2.3 Constraints

*
$$2 \leq m \leq 2^{13}$$
 , $2 \leq n \leq 2^{13}$

3 Sample TestCase

* Input Matrix A

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

* Input Matrix B

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 7 & 2 \end{bmatrix}$$

* $(A + B)^T$

$$\begin{bmatrix} 2 & 8 \\ 5 & 12 \\ 5 & 8 \end{bmatrix}$$

*
$$(B - A)^T$$

$$\begin{bmatrix} 0 & 0 \\ 1 & 2 \\ -1 & -4 \end{bmatrix}$$

*
$$C = (A + B)^T - (B - A)^T$$

$$C = \begin{bmatrix} 2 & 8 \\ 5 & 12 \\ 5 & 8 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 2 \\ -1 & -4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 8 \\ 4 & 10 \\ 6 & 12 \end{bmatrix}$$

* Output Matrix C

$$\begin{bmatrix} 2 & 8 \\ 4 & 10 \\ 6 & 12 \end{bmatrix}$$

4 Points to be noted

- * The number of threads launched for each of the three kernels will be more than or equal to the number of threads required to do the computation.
- * Do not write any print statements inside the kernel.
- * Test your code on large inputs.

5 Submission Guidelines

- * Submit your file with your full_name.cu which contains the implementation of the above-described functionality
- * For transpose don't use tiling method.
- * After submission, download the file and make sure it was the one you intended to submit.
- * Kindly adhere strictly to the above guidelines.

6 Learning Suggestions

Write a CPU-version of code achieving the same functionality. Time the CPU code and GPU code separately for large matrices and compare the performances.