L1-MATH- SUITES ET FONCTIONS

FEUILLE DE TRAVAUX DIRIGÉS N° 4

Règle de l'Hôpital - Développements limités.

Enseignant: H. El-Otmany

A.U.: 2014-2015

Exercice n°1 Appliquer la règle de l'Hôpital pour calculer les limites suivantes :

$$\lim_{x \to 1} \left(\frac{1}{\ln(x)} - \frac{x}{x-1} \right); \quad \lim_{x \to 0} \left(\frac{1}{x^3} - \frac{x}{x \sin(x)} \right); \quad \lim_{x \to \pi} \left((x-\pi) \tan\left(\frac{x}{2}\right) \right);$$

$$\lim_{x \to +\infty} x \sin\left(\frac{1}{x}\right); \quad \lim_{x \to 0} \left(\frac{\sin(x)^2}{1 - \cos(x)}\right)^{\tan(2x)}; \quad \lim_{x \to 0} \left(\frac{2^x - 1}{x}\right); \quad \lim_{x \to 1} \left(x^{1/(1-x)}\right).$$

Exercice n°2 Soient I un intervalle ouvert de \mathbb{R} et $f:I\longrightarrow\mathbb{R}$ une fonction n fois dérivable sur I.

- 1. Donner l'expression du polynôme de Taylor de f à l'ordre n en un point $x_0 \in I$.
- 2. Rappeler l'énoncé des formules de Taylor-Young et de Taylor-Lagrange pour la fonction f au point x_0 , en indiquant soigneusement les hypothèses.

Exercice n°3

1. Montrer que
$$\forall x \in \mathbb{R}^+, x - \frac{x^3}{6} \leqslant \sin(x) \leqslant x - x - \frac{x^3}{6} + \frac{x^5}{120}$$
.

2. Montrer que
$$\forall x \in \mathbb{R}^+, x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x$$
.

3. Montrer que
$$\forall x \in \mathbb{R}^+$$
, $0 \leqslant e^x - x - 1 \leqslant \frac{x^2}{2}e^x$.

Exercice n°4

- 1. Soit n un entier strictement positif. Écrire la formule de Taylor avec reste intégrale au voisinage de 0 à l'ordre n pour la fonction cos(x).
- 2. En déduire que la suite de terme général $u_n = \sum_{k=0}^n \frac{(-1)^k}{(2k)!}$ a une limite quand n tend vers l'infini, et calculer cette limite.

Exercice n°5 Calculer les développements limités en 0 à l'ordre n des fonctions définies comme suit au voisinage de 0 :

1.
$$f(x) = \cos(x^2) + \sin(x)$$
 avec $n = 7$.

2.
$$f(x) = \cos(2x)\sqrt{1+x}$$
 avec $n = 4$.

3.
$$f(x) = \frac{1+x+x^2}{1-x-x^2}$$
, avec $n=3$.

4.
$$f(x) = (\sin(x^3))^{1/3}$$
, avec $n = 10$.

5.
$$f(x) = \ln(1 + 2x\sin(x))$$
, avec $n = 4$.

6.
$$f(x) = e^{\cos(x)}$$
, avec $n = 3$.

7.
$$f(x) = (1 + \cos(x))^{1/2}$$
, avec $n = 3$.

8.
$$f(x) = \frac{x}{e^x - 1}$$
, avec $n = 5$.

9.
$$f(x) = (1+x)^{1/x}$$
, avec $n = 3$ (avec $f(0) = e$).

10.
$$f(x) = \frac{(1+x)^{23}}{(1+2x)^{15}(1-2x)^{18}}$$
, avec $n=2$.

11.
$$f(x) = \sqrt{1 + \sin(x) \sinh(x)}$$
, avec $n = 4$.

Exercice n°6 Montrer que :

$$\lim_{x \to 0} \int_{x}^{3x} \frac{\cos(t)}{t} dt = \ln(3); \quad \lim_{x \to 1} \int_{x}^{x^{2}} \frac{1}{\ln(t)} dt = \ln(2).$$

Exercice n°7 On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{\operatorname{argsh}(x)}{\sqrt{1+x^2}}.$$

1. Montrer que f satisfait l'équation différentielle :

$$(x^2 + 1)y'(x) + xy(x) = 1.$$

2. En déduire le développement limité de f à l'ordre 7 en 0.

Exercice n°8 On considère la fonction f définie sur \mathbb{R} par $f(x) = \ln(x^2 + 2x + 2)$.

- 1. Calculer le développement limité de f à l'ordre 3 en 0.
- 2. Donner la tangente à la courbe représentative de f au voisinage du point x=0. Donner la position de la courbe par rapport à cette tangente et représenter sommairement le graphe de f au voisinage du point 0.

Exercice n°9 On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{ex-1}{x}$ si $x \neq 0$ et f(0) = 1.

- 1. Démontrer que f est dérivable sur \mathbb{R} , et calculer f'(x) pour tout x.
- 2. Montrer que f est en fait deux fois dérivable sur \mathbb{R} , et donner f''(0).
- 3. Écrire la formule de Taylor-Young en 0 à l'ordre 2 pour f. Préciser la position de la courbe représentative de f par rapport 'a sa tangente en 0.
- 4. Déterminer les variations de la fonction $\phi(x)=xe^x-e^x+1$. En déduire que f est strictement croissante sur \mathbb{R} .
- 5. Déterminer l'intervalle image J de la fonction f, et montrer que la fonction réciproque $g: J \longrightarrow \mathbb{R}$ de f est deux fois dérivable sur J.

Exercice n°10 Calculer les limites suivantes :

$$\lim_{x \to 0} \left(\frac{1}{x^2(1+x^2)} - \frac{\cos(x)}{x^2} \right); \lim_{x \to 0} \left(\frac{x\cos(x) - \sin(x)}{x\ln(1+x^2)} \right); \lim_{x \to 0} \left(\frac{x^2\sin(x)}{x - \sin(x)} \right); \lim_{x \to +\infty} \left(x - x^2\ln(1+\frac{1}{x}) \right).$$

Exercice $n^{\circ}11$ Préciser le domaine de définition et rechercher les asymptotes aux graphes des fonctions f et g définies par :

$$f(x) = \frac{x}{1 + e^{1/x}}; \quad g(x) = ((x^2 - 2)(x + 3))^{1/3}.$$