# MA 519: Homework 7

Max Jeter, Carlos Salinas October 13, 2016

### Problem 7.1 (Handout 10, # 4)

(*Poisson Approximation*). One hundred people will each toss a fair coin 200 times. Approximate the probability that at least 10 of the 100 people would each have obtained exactly 100 heads and 100 tails.

Solution.

### Problem 7.2 (Handout 10, # 5)

(A  $Pretty\ Question$ ). Suppose X is a Poisson distributed random variable. Can three different values of X have an equal probability?

### Problem 7.3 (Handout 10, # 6)

(*Poisson Approximation*). There are 20 couples seated at a rectangular table, husbands on one side and the wives on the other, in a random order. Using a Poisson approximation, find the probability that exactly two husbands are seated directly across from their wives; at least three are; at most three are.

### Problem 7.4 (Handout 10, # 7)

(*Poisson Approximation*). There are 5 coins on a desk, with probabilities 0.05, 0.1, 0.05, 0.01, and 0.04 for heads. By using a Poisson approximation, find the probability of obtaining at least one head when the five coins are each tossed once. Is the number of heads obtained binomially distributed in this problem?

### Problem 7.5 (Handout 10, # 8)

A book of 500 pages contains 500 misprints. Estimate the chances that a given page contains at least three misprints.

## Problem 7.6 (Handout 10, # 9)

Estimate the number of raisins which a cookie should contain on the average if it is desired that not more than one cookie out of a hundred should be without raisin.

### Problem 7.7 (Handout 10, # 10)

The terms  $\operatorname{Poisson}(k;X)$  of the Poisson distribution reach their maximum when k is the largest integer not exceeding X.

Problem 7.8 (Handout 10, # 11)

Prove

Poisson
$$(0; \lambda) + \dots + \text{Poisson}(n; \lambda) = \frac{1}{n!} \int_{\lambda}^{\infty} e^{-x} x^n dx.$$

### Problem 7.9 (Handout 10, # 12)

There is a random number N of coins in your pocket, where N has a Poisson distribution with mean  $\mu$ . Each one is tossed once.

Let X be the number of times a head shows.

Find the distribution of X.

#### Problem 7.10 (Handout 10, # 14)

Find the MGF of a general Poisson distribution, and hence prove that the mean and the variance of an arbitrary Poisson distribution are equal.

### Problem 7.11 (Handout 10, # 17 (a))

(*Poisson approximations*). 20 couples are seated in a rectangular table, husbands on one side and the wives on the other. First, find the expected number of husbands that sit directly across from their wives. Then, using a Poisson approximation, find the probability that two do; three do; at most five do.