Determining F_{π}

Jaime Fabián Nieto Castellanos

September 9, 2021

 $\beta = 2$

(b) Fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$

(c) Fit of the form $m_\pi^R=\frac{1}{2F_\pi^2L^2}+\frac{c_2}{L^2}$. For variance $c_2=-3.52(56)$, while for chi squared $c_2=-4.30(78)$.

(e) Fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$

(f) Fit of the form $m_\pi^R=\frac{1}{2F_\pi^2L^2}+\frac{c_2}{L^2}$. For variance $c_2=-1.20(40)$, while for chi squared $c_2=-1.58(70)$.

(h) Fit of the form $m_\pi^R = \frac{1}{2F_\pi^2 L}$

(i) Fit of the form $m_\pi^R=\frac{1}{2F_\pi^2L^2}+\frac{c_2}{L^2}$. For variance $c_2=-0.88(50)$, while for chi squared $c_2=-1.56(77)$.

(j) Fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$

(k) Fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$

(l) Fit of the form $m_\pi^R=\frac{1}{2F_\pi^2L^2}+\frac{c_2}{L^2}$. For variance $c_2=-1.54(36)$, while for chi squared $c_2=-1.77(33)$.

In Table 1 we show the values of F_{π} when one fits a function of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$. In Table 2 we show the values of F_{π} by performing a fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L^{2}} + \frac{c_{2}}{L^{2}}$.

β	F_{π} variance	F_{π} chi-squared
$\overline{2}$	0.392(2)	0.393(3)
3	0.3923(8)	0.3925(11)
4	0.3937(9)	0.393(14)
5	0.3956(10)	0.3962(13)

Table 1: F_{π} obtained through a fit of the form $m_{\pi}^{R} = \frac{1}{2F_{\pi}^{2}L}$

β	F_{π} variance	F_{π} chi-squared	c_2 variance	c_2 chi-squared
2	0.3644(40)	0.3591(55)	-3.52(56)	-4.30(78)
3	0.3839(27)	0.3815(47)	-1.20(40)	-1.58(70)
4	0.3865(39)	0.381(5)	-0.88(50)	-1.56(77)
5	0.3842(26)	0.3821(25)	-1.54(36)	-1.77(33)

Table 2: F_{π} obtained through a fit of the form $m_{\pi}^R = \frac{1}{2F_{\pi}^2L} + \frac{c_2}{L^2}$