Classification

Richard Lui

Logistic Regression

Classification: Purchase or Not Purchase?

	Feat	tures	Label	
Customer ID	Age	Salary (1000)	Purchase?	
1	18	8	0	
2	25	40	0	Not buy
3	30	30	0	
4	40	10	0	
5	45	33	1	Buy
6	41	48	1	
7	25	60	1	
8	35	10	1	
9	15	0	0	
10	40	70	1	

Let's consider models with only one predictor: age.

Predict probability of purchase

- We want to predict the probability that a customer (with certain age) will purchase.
- Let *p* be the probability that a customer will purchase the product
- Can we use linear regression to predict the probability *p* a customer will purchase the product

Probabilities should be bounded by $0 \le p \le 1$!

Fitting an S-shape curve

- We want a function p = f(Age) such that
 - p must always be positive $(p \ge 0)$
 - p must be less than 1 ($p \le 1$)

Logistic Function

- Technique originated from statistics
- Logistic function/sigmoid function
 - "S" shape

$$f(x) = \frac{1}{1 + e^{-x}}$$

e is a special mathematic constant (\sim 2.71828)

https://en.wikipedia.org/wiki/Logistic regression

Decision boundary

Our model's parameters
$$z = b + w (Age)$$

- Suppose b = -34 and w = 1.
- Corresponds to the line (decision boundary)

$$-34 + (1)Age = 0$$

$$z = -34 + (1)15 = -16$$

Decision boundary

$$z = b + w (Age)$$

- The further the data points are from the left of the line, the less likely they will purchase
- The further the data points are from the right of the line, the less likely they will purchase
- At the decision boundary (z=0)
 - 50% purchase, 50% not purchase

As z decreases, p decreases p increases z=0, p =0.5

How to map z to a probability?

- z ranges from $-\infty$ to $+\infty$
- We want a function to map z to the range of probability (between 0 and 1)

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

e is a special mathematic constant (\sim 2.71828)

If z =-100,

$$\sigma(z) = \frac{1}{1+2.71828^{-(-100)}} \approx 0$$

~0% chance of purchase

$$z = b + w (Age)$$

If z = 0,

$$\sigma(z) = \frac{1}{1 + 2.71828^{-(0)}} \approx 0.5$$

50-50 chance of purchase

If z = 100,

$$\sigma(z) = \frac{1}{1 + 2.71828^{-(100)}} \approx 1$$

~ 100% chance of purchase

Customer ID	Age	Purchase?
1	18	0
2	25	0
3	30	0
4	40	0
5	45	1
6	41	1
7	25	1
8	35	1
9	15	0
10	40	1

$$z = -34 + (1) Age$$

Customer ID	Age	Purchase?
1	18	0
2	25	0
3	30	0
4	40	0
5	45	1
6	41	1
7	25	1
8	35	1
9	15	0
10	40	1

Customer ID	Age	Purchase?
1	18	0
2	25	0
3	30	0
4	40	0
5	45	1
6	41	1
7	25	1
8	35	1
9	15	0
10	40	1

$$z = -34 + (1) Age$$

Customer ID	Age	Purchase?
1	18	0
2	25	0
3	30	0
4	40	0
5	45	1
6	41	1
7	25	1
8	35	1
9	15	0
10	40	1

$$z = -34 + (1) Age$$

Prediction

$$p = \frac{1}{1 + e^{-(h+w(Age))}}$$
Our model's parameters

$$p = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Prediction

p<0.5 Customer will not purchase p>=0.5 Customer will purchase

Using age and salary as predictors

Customer ID	Age	Salary (1000)	Purchase?
1	18	8	0
2	25	40	0
3	30	30	0
4	40	10	0
5	45	33	1
6	41	48	1
7	25	60	1
8	35	10	1
9	15	0	0
10	40	70	1

$$z = b + w_1 (Age) + w_2 (Salary)$$

$$z = -6.34 + 0.14 (Age) + 0.06 (Salary)$$

Using age and salary as predictors

Customer ID	Age	Salary (1000)	Purchase?
1	18	8	0
2	25	40	0
3	30	30	0
4	40	10	0
5	45	33	1
6	41	48	1
7	25	60	1
8	35	10	1
9	15	0	0
10	40	70	1

$$z = b + w_1 (Age) + w_2 (Salary)$$

Prediction (2 predictors)

Example

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	_	STON/O2. 3101282	7.9250	NaN	S

.....

https://www.kaggle.com/c/titanic

Include more predictors

Prediction Error

$$z = -5 + 0.5 (Age)$$

Prediction Error = Actual - Predicted

This model has large error!

How to reduce prediction error?

• If the point is incorrectly classified, the decision boundary should be moved closer to the point

Slightly better model:

z = -5.01 + 0.48 (Age)

Gradient Descent

How do we find the best b and w that best fits the data?

$$p = \frac{1}{1 + e^{-(b+w(Age))}}$$

- 1. We start with random w and b
- 2. Find the best direction to take one small step, in the direction of greatest descent. Take this small step to update b and w
- 3. Repeat the step many times

When should we stop the training?

- Terminate after a defined maximum number of iterations
- When the error function stop improving
 - converges to the point with minimum error

Decision Tree

Picking a good first question

Which questions are useful?

- Is it raining?
- Is it cold outside?
- Am I hungry?
- Is there a red car outside?
- Is it Monday?

Picking the next best question

- In this example, we made our decisions using our intuition and experience.
- Let's see how we may build these trees based on data

What is a decision tree?

• A machine learning model based on a set of questions

Recommend apps to users

- Consider the task of recommending to users which app to download
 - Atom Count: an app that counts the number of atoms in your body
 - Beehive Finder: an app that maps your location and finds the closest beehives
 - Check Mate Mate: an app for finding Australian chess players

Platform	Age	Арр
iPhone	Young	Atom Count
iPhone	Adult	Check Mate Mate
Android	Adult	Beehive Finder
iPhone	Adult	Check Mate Mate
Android	Young	Atom Count
Android	Young	Atom Count

Which question is the best to ask first?

Platform	Age	Арр
iPhone	Young	Atom Count
iPhone	Adult	Check Mate Mate
Android	Adult	Beehive Finder
iPhone	Adult	Check Mate Mate
Android	Young	Atom Count
Android	Young	Atom Count

Split by platform Platform= iPhone? i i A i A A No A A A

Split by age Age = young? Y A A A Y Y VS.

Measuring impurity

- In order to answer the splitting decision, one needs to define the concept of impurity or chaos.
- Decision trees will aim at minimizing the impurity in the data.

Gini Index

- Gini Index measures how diverse our data is
- If we pick two random elements from each of the node, what is the probability that they belong to different classes?

Picking the better split

- Low Gini Index: if we have a set in which all the elements are similar (lower impurity)
- Large Gini Index: if all the elements are different (higher impurity)

Continue our split

- The dataset on the right can still be divided, because it has two labels: "Beehive Count" and "Check Mate Mate."
- We've used the **age** feature already, so let's try using the **platform** feature.

Splitting the data using continuous features

Let's fit this data with decision tree

A decision tree with 100 leave nodes

- We can achieve 100% training accuracy with 100 leaves to correctly classify all the points in the training data!
- What's wrong with the model?

Overfitting

- *Overfitting* looks a lot like memorizing the entire textbook instead of studying for the exam.
- It happens when we try to train a model that is too complex, and it memorizes the data instead of learning it well.

Overfitting

Underfitting

- In machine learning, *underfitting* looks a lot like not having studied enough for an exam.
- It happens when we try to train a model that is too simple, and it is unable to learn the data.

Underfitting

Using a validation set to stop growing a decision tree

- A good model is one that neither underfits nor overfits
- Learns the data properly and can make good predictions on new data that it hasn't seen.

When to stop building the tree?

- Don't split a node if the change in accuracy/Gini index is below some threshold.
- Don't split a node if it has less than a certain number of samples.
- Split a node only if both of the resulting leaves contain at least a certain number of samples.
- Stop building the tree after you reach a certain depth.