Definições de Aprendizado de Máquina

Prof. Jefferson T. Oliva

Aprendizado de Máquina e Reconhecimento de Padrões (AM28CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Aprendizado de Máquina
- Aprendizado Supervisionado

• O que é aprendizado de máquina?

- "O aprendizado de máquina é a novidade da moda" John L.
 Hennessy, Universidade de Stanford
- "Um avanço na aprendizagem de máquina valeria dez Microsofts" – Bill Gates, co-fundador da Microsoft
- "Aprendizado de máquina é o campo de estudo que dá aos computadores a capacidade de aprender sem serem explicitamente programados" – Arthur L. Samuel, Pioneiro em Inteligência Artificial

4

Paradigma de programação tradicional

 "Aprendizado de máquina é o campo de estudo que dá aos computadores a capacidade de aprender sem serem explicitamente programados" – Arthur L. Samuel, Pioneiro em Inteligência Artificial

- O aprendizado é a chave da superioridade da Inteligência Humana
- Os humanos estão "pré-programados" para o aprendizado
 Ampliação do conhecimento prévio
- Para que uma máquina tenha comportamento inteligente, deve-se aumentar a capacidade de aprendizado
- O computador não possui programa para encontrar informações e realizar aprendizado em geral
- Paradigmas e técnicas de AM possuem um alvo bem mais limitado do que o aprendizado humano

- "Diz-se que um programa de computador aprende a partir da experiência E com alguma classe de tarefas T e medida de desempenho P, se seu desempenho em tarefas em T, conforme medido por P, melhora com a experiência E" – Tom Mitchel, Universidade Carnegie Mellon
- Exemplo: reconhecimento de dígitos manuscritos

- Tarefa T: ?
- Medida de desempenho P: ?
- Experiência de treinamento E: ?

8

- Exemplos de aplicações de aprendizado de máquina
 - Análise de sentimentos
 - Auxílio no diagnóstico médico
 - Detecção de fraudes
 - Logística
 - Monitoramento de atletas
 - Processamento de língua natural
 - Sistemas de recomendação
 - Robótica
 - o ...

Sumário

Aprendizado de Máquina

- O aprendizado de máquina é uma subárea da inteligência artificial concentrada no desenvolvimento de métodos computacionais para a aquisição de conhecimento a partir de dados
- Hierarquia do aprendizado de máquina

Aprendizado supervisionado

- O aprendizado é feito usando um conjunto de dados rotulados
 - Durante o processo de construção do modelo, para cada entrada (conjunto de características), já existe uma saída (rótulo/classe) conhecida
 - O objetivo do modelo é aprender uma função que mapeie as entradas (reconhecimento de padrões) de acordo com as possíveis saídas para que, quando nodos dados (entradas) sejam fornecidos, o modelo seja capaz de predizer a saída correta

Aprendizado supervisionado

• O aprendizado é feito usando um conjunto de dados rotulados

Aprendizado supervisionado

- O aprendizado supervisionado é dividido em duas abordagens:
 - Classificação: a predição é realizada dentro de um conjunto limitado de classes (e.g. positivo, negativo), ou seja, os valores preditos são categóricos
 - Regressão: os modelos predizem valores numéricos

Aprendizado supervisionado

Classificação

Aprendizado supervisionado

Regressão

Aprendizado não-supervisionado

- Nessa abordagem de aprendizado, não há rótulos vinculados à entrada
- O objetivo é encontrar estruturas ocultas nos conjuntos de dados
- Enquanto no aprendizado supervisionado são construídos modelos preditivos, no não-supervisionado são gerados modelos descritivos
- Modelos descritivos têm a finalidade de sugerir partições nos conjuntos, conforme critérios de similaridade
- Também comumente aplicada na análise exploratória dos dados

Aprendizado não-supervisionado

- Exemplos de abordagens relacionados ao aprendizado não supervisionado
 - Agrupamento
 - Redução de dimensionalidade
 - Regras de associação

Aprendizado não-supervisionado

Agrupamento

Aprendizado não-supervisionado

• Redução de dimensionalidade

Aprendizado não-supervisionado

Regras de associação

Se a pessoa comprar Leite, fralda Fralda, cerveja Cerveja, leite Também comprará Cerveja Leite Fralda

Aprendizado semi-supervisionado

- Nessa abordagem, há tanto dados com rótulos quanto sem rótulos
 - Em outras palavras, os dados estão parcialmente rotulados
- O aprendizado semi-supervisionado é relevante quando a obtenção de dados rotulados suficientes, para o treinamento de modelos, é considerada uma tarefa muito difícil ou cara, mas dados não rotulados são considerados fáceis de serem obtidos
 - Nesse cenário, tanto métodos supervisionados quanto não-supervisionados podem não oferecer uma solução adequada

Aprendizado semi-supervisionado

Método propagação de rótulo

Aprendizado por reforço

- Tem a finalidade de desenvolver um sistema (agente) cujo desempenho deve ser melhorado com base nas interações com o ambiente
 - Aplicado em tomadas de decisões por agentes autônomos
- Implementa mecanismos de recompensa e punição no processamento de dados

Aprendizado por reforço

Sumário

Aprendizado Supervisionado

Processo de aprendizado

- Pré-processamento
 - Extração de características
 - Tratamento para dados faltantes e outliers
 - Reescala, padronização, ...
 - Seleção de características
 - Redução de dimensionalidade
 - Amostragem

- Aprendizagem
 - Escolha de algoritmos de aprendizado de máquina
 - Validação-cruzada
 - Treinamento de modelos
 - Otimização de hiper-parâmetros
 - Medidas de avaliação
- Avaliação
 - Matriz de confusão
 - Acurácia, sensibilidade (revocação), especificidade, f1-score, ...
 - Erro médio quadrático, raiz do erro médio quadrado, coeficiente de determinação, ...

Algumas definições

Vetor de características

$$x^i = [x_1^i, x_2^i, x_3^i, x_4^i, ..., x_n^i]$$

onde: x^i é o i-ésimo vetor de características (ou linha de um conjunto de entrada), x^i_r é a r-ésima característica e n é a quantidade de características

 Dessa forma, o conjunto de de dados (dataset) pode ser representado por uma matriz com m linhas (vetores de características):

$$X = \begin{bmatrix} x_1^1 & x_2^1 & x_3^1 & \dots & x_n^1 \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\ x_1^3 & x_2^3 & x_3^3 & \dots & x_n^3 \\ \dots & \dots & \dots & \dots & \dots \\ x_1^m & x_2^m & x_3^m & \dots & x_n^m \end{bmatrix}$$

31

Algumas definições

Variáveis alvos (classes ou rótulos) do conjunto de dados X

$$y = \begin{bmatrix} y^1 \\ y^2 \\ y^3 \\ \dots \\ y^m \end{bmatrix}$$

• onde: $y \in \{c_1, c_2, ... c_p\}$ e c_i é a i-ésima classe

Algumas definições

• Exemplo:

	Atributos				Alvo/Classe
	sepallength	sepalwidth	petallength	petalwidth	specie
icas	5.1	3.5	1.4	0.2	Iris-setosa
	4.9	3.0	1.4	0.2	Iris-setosa
	4.7	3.2	1.3	0.2	Iris-setosa
teríst					
Vetores de características	7.0	3.2	4.7	1.4	Iris-versicolor
	6.4	3.2	4.5	1.5	Iris-versicolor
	6.9	3.1	4.9	1.5	Iris-versicolor
ores o					
etc	7.1	3.0	5.9	2.1	Iris-virginica
>	6.3	2.9	5.6	1.8	Iris-virginica
- 1	6.5	3.0	5.8	2.2	Iris-virginica

- Exemplo de treinamento: é uma linha da tabela X que representa uma observação (e.g. medidas extraídas em uma imagem)
- Característica: é a coluna da tabela X que representa, por exemplo, uma medida (e.g. média, desvio-padrão, etc) extraída no conjunto de dados crus
- Alvo: é a classe (ou rótulo) de um exemplo de treinamento
 - Representa o que desejamos predizer em uma tarefa de aprendizado supervisionado
- Saída/predição: é o resultado do processamento da entrada pelo modelo treinado
 - Essa saída é então comparada com o alvo

Algumas definições

- Exemplos de métodos de aprendizado supervisionado
 - Árvores de decisão
 - Floresta randômica
 - Máquinas de vetores de suporte
 - Naïve Bayes
 - Redes neurais artificiais
 - Regressão linear
 - Regressão logística
 - Vizinhos mais próximos

o ...

- Passos para construção de modelos utilizando aprendizado de máguina supervisionado
 - 1 Definição do problema a ser resolvido
 - 2 Coleta de dados rotulados
 - Secolha de algoritmos de aprendizado
 - Escolha de um método de otimização de parâmetros do algoritmo de aprendizado
 - Escolha de pelo menos uma métrica para a avaliação do modelo

- Funções objetivas
 - Maximizar probabilidades posteriori (e.g. naïve Bayes)
 - Maximizar a função de recompensa (aprendizado por reforço)
 - Maximizar o ganho de informação e minimizar impurezas (e.g. árvores de decisão)
 - Minimizar a raiz do erro médio quadrático (e.g. regressão linear)
 - Minimização da entropia-cruzada (função de custo/perda)
 - ...

- Métricas
 - Acurácia
 - Precisão
 - Revocação
 - Erro médio quadrado
 - Coeficiente de determinação
 - ...

- Categorização de algoritmos de aprendizado de máquina
 - Gulosos vs Preguiçosos
 - Lote (batch) vs online
 - Paramétrico vs não-paramétrico
 - Discriminativo vs generativo

Referências

- BISHOP, C. M.

 Pattern Recognition and Machine Learning.

 Springer, 2006.
- DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern classification.
 2nd ed. New York, NY: J. Wiley & Sons, 2001.
- RASCHKA, S.; MIRJALILI, V.

 Python Machine Learning.

 Packt, 2017.