Control computarizado - cierre

Kjartan Halvorsen

July 31, 2020

Retroalimentación examen final

- ► Comportamiento del sistema depende de la ubicación de polos en el plano z
- ► Polos del observador
 - ► El Observador y sus polos tiene el mismo significado en control polinomial (RST) como en espacio de estado
 - ► La función de sensibilidad tiene los polos del observador y los polos de la respuesta al referencia ⇒ Se puede modificar con los polos del observador, pero dentro límites.

Retroalimentación Tarea 5

- Control por retroalimentación de estados (medidos o reconstruidos) no da acción integral.
- ► Se puede complementar el control por retroalimentación de estados con acción integral.

Control en tiempo continuo

Control en la vida real

From Åström and Murray Feedback systems: An introduction for scientists and engineers

Dos maneras de obtener un controlador discreto

1. Discretizar un controlador diseñado usando métodos de tiempo continuo

2. Diseñar usando modelo discreto de la planta

Tiempo discreto vs tiempo continuo

Continuous time

y(t)

$$p y \triangleq \frac{d}{dt}y$$

$$(p+a)y = bu \Leftrightarrow \frac{d}{dt}y + ay = bu$$

$$Y(s) \triangleq \mathcal{L} \{y(t)\}\$$

 $Y(s) = G(s)U(s) = \frac{b}{s+2}U(s)$

Pole of the system: $s + a = 0 \Rightarrow s = -a$ Pole of the system: $z + \alpha = 0 \Rightarrow z = -\alpha$

Discrete time

$$y(kh)$$
 or $y(k)$

$$q y \triangleq y(kh+h)$$

$$(q + \alpha)y = \beta u \Leftrightarrow y(k+1) + \alpha y(k) = \beta u(k)$$

$$Y(z) \triangleq \mathcal{Z} \{y(kh)\}$$

$$Y(z) = H(z)U(z) = \frac{\beta}{z+\alpha}U(z)$$

Objetivos del curso

Al final del curso serás capaz de:

- 1. Analizar sistemas de control computarizado de procesos y productos.
- 2. Diseñar sistemas de control computarizado de procesos y productos.
- 3. Implementar sistemas de control computarizado de procesos y productos.
- 4. Evaluar sistemas de control computarizado de procesos y productos con un enfoque de aplicación práctica.

Tusen takk