Autor: Raúl García Solucionario Pagina Web: MateTips Métodos Matematicos de la Fisica - Oscar Reula

Venezuela 27 de julio de 2020

Correo: rull3r@hotmail.com

Problema 1.

Prueba que el espacio métrico (X,d) posee una topología inducida por su métrica.

Solucion

Un espacio métrico (X, d) con X un conjunto de puntos y $d: X \times X \longmapsto \mathbb{R}$ que satisface las siguientes propiedades:

(i)
$$d(x, x') = 0 \Leftrightarrow x = x'$$

(ii)
$$d(x, x') = d(x', x)$$

(iii)
$$d(x, x') + d(x', x'') \ge d(x, x'')$$

Luego, sea $\tau_d = \{O | \forall x \in O, \exists \beta_d(x, r) \subset B \colon \beta_d(x, r) \subset O \}$ donde B es el conjunto de todos abiertos en X y $\beta_d(x, r)$ es una bola abierta bajo la métrica d, de centro x y radio r, solo resta demostrar las siguiente propiedades:

- (i) Como X y Ø son abiertos, entonces están en τ_d
- (ii) Sea O_i una familia de subconjuntos abiertos arbitraria de O y sea $O' = \bigcup_i O_i$. Si $O' = \emptyset$ entonces O' esta en τ_d . Si $O' \neq \emptyset$ sea $x \in O_i$ para algún i y como $O_i \subset O$ entonces $\exists \beta_d(x,r) \subset O_i$ por lo tanto $\beta_d(x,r) \subset O'$ luego O' esta en τ_d
- (iii) Sean O_1, O_2 dos subconjuntos cualesquiera de O_r sea $x \in O_1 \cap O_2$, entonces $\exists \beta_d(x, r_1) \subset O_1$ y $\exists \beta_d(x, r_2) \subset O_2$ con $r = min\{r_1, r_2\}$ tendremos que $\beta_d(x, r) \subseteq \beta_d(x, r_1)$ y $\beta_d(x, r) \subseteq \beta_d(x, r_2)$ por lo tanto $\beta_d(x, r) \subseteq O_1 \cap O_2$ esto demuestra que la intersección esta en τ_d . de modo que τ_d es la topología inducida por la métrica d