MATH848G - Index Theory on Manifolds

Taught by Jonathan Rosenberg Notes taken by Haoran Li 2019 Fall

Department of Mathematics University of Maryland

Contents

1	Pseudodifferential calculus	2
2	K-theory	3
3	Atiyah-Singer index theorem	5
4	Clifford algebra	7
5	Spin group	8
Index		10

1 Pseudodifferential calculus

Definition 1.1. A differential operator P of order m is of the form $p(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$,

where $a_{\alpha}(x)$ are functions and $D_j := \frac{1}{i}\partial_j$, the symbol $p(x,\xi)$ associated with it is defined as $p(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x)\xi^{\alpha}$, then we necessarily get the estimate, the principal symbol of $p(x,\xi)$ is $\sigma(P)(x,\xi) = \sum_{\alpha} a_{\alpha}(x)\xi^{\alpha}$

If a differential operator P of order m is acting on functions on $\mathbb{C}^n \cong \mathbb{R}^{2n}$, then we may consider it as the form $p(x,D) = \sum_{|\alpha+\beta| \leq m} a_{\alpha,\beta}(x) D^{\alpha} \bar{D}^{\beta}$, and $D_j := \frac{\partial}{\partial z_j}$, $\bar{D}_j := \frac{\partial}{\partial \bar{z}_j}$, the symbol $p(x,\xi)$

associated with it is defined as $p(x,\xi) = \sum_{|\alpha+\beta| \le m} a_{\alpha,\beta}(x) \xi^{\alpha} \bar{\xi}^{\beta}$

Definition 1.2. On a manifold M, a differential operator of order m is a linear map $P: C^{\infty}(M) \to C^{\infty}(M)$ which in local charts has the above form

More generally, Let $E \to M$, $F \to M$ be vector bundles, a differential operator $P: \Gamma(E) \to \Gamma(F)$ of order m is a linear operator of the above form in local trivializations

Notice $C^{\infty}(M) = \Gamma\left(\bigwedge^0 T^*M\right)$, another example is exterior derivative $d: \Gamma\left(\bigwedge^k T^*M\right) \to \Gamma\left(\bigwedge^{k+1} T^*M\right)$ which is a first order differential operator

We can generalize the notion of differential operators (DO) to Pseudodifferential operators (ψ DO) via symbols

Definition 1.3. Let $\Omega \subseteq \mathbb{R}^n$ is an open set, the symbols of order m is the space

$$S^{m}(\Omega) := \left\{ f(x, \xi) \in C^{\infty} \left(\Omega \times \mathbb{R}^{n} \right) \middle| \begin{array}{l} \forall \alpha, \beta, K \in \Omega, \exists C_{K,\alpha,\beta}, \\ \left| D_{x}^{\alpha} D_{\xi}^{\beta} f(x, \xi) \right| \leq C_{K,\alpha,\beta} \left(1 + |\xi| \right)^{m - |\beta|} \end{array} \right\}$$

Given symbol $p(x,\xi) \in S^m(\Omega)$, it defines a pseudodifferential operator p(x,D) of order m, such that $(p(x,D)f)(x) = \frac{1}{(2\pi)^n} \int p(x,\xi) \widehat{f}(\xi) e^{ix\cdot\xi} d\xi$

All pseudodifferential operators of order m are difined this way, deonted as $\Psi^m(\Omega)$

Remark 1.4. It might be more natural to think of $f \in C^{\infty}(\Omega \times (\mathbb{R}^n)^*)$ in the manifold setting

Theorem 1.5. Let Ω, Ω' be open subsets of \mathbb{R}^n , $\Phi : \Omega \to \Omega'$ is a diffeomorphism, induces a bijection of $S^m(\Omega) \to S^m(\Omega')$

Proof. Since $\Phi: \Omega \to \Omega'$ is a diffeomorphism, $(\Phi_*)_x: T_x\Omega \to T_{\Phi(x)}\Omega'$ and $(\Phi^*)_x: T_{\Phi(x)}^*\Omega' \to T_x^*\Omega$ are isomorphisms

Corollary 1.6. Let M be a smooth manifold, $S^m(M) \subseteq \Gamma(T^*M)$ is well-defined

Definition 1.7. The principal symbol of symbol $p(x,\xi)$ of order m is defined as $\lim_{|\xi|\to\infty} \frac{p(x,\xi)}{|\xi|^m}$

2 K-theory

Grothendieck group

Definition 2.1. For commutative monoid M: there exists an abelian group K and $i: M \to K$

having the universal property
$$\int\limits_{K}^{M} \int\limits_{-x--x}^{y} A$$
 Where A is an Abelian group

Concrete construction: consider the set of formal differences $M \times M \cong \{m-n|m,n \in M\}$ with addition $(m_1-n_1)+(m_2-n_2):=[(m_1+m_2)-(n_1+n_2)]$ which is an Abelian group with 0-0 the identity and n-m the inverse to m-n, let $K:=M\times M/\sim$, $m_1-n_1\sim m_2-n_2$ if $m_1+n_2+m=m_2+n_1+m$ for some $m\in M$ (adding m to make sure it is an equivalence relation), and $i:M\to K, m\mapsto m-0$

Alternatively, consider the free Abelian group F(M) generated by M, let $K := F(M)/\sim$, $m+'n \sim (m+n)$, or mod the subgroup generated by m+'n-'(m+n), here +', -' are operations in F(M) More generally, for a semigroup S, there exists a group K and $i: S \to K$ having the universal

property
$$\int_{i}^{s} f$$
 Where G is a group $K \xrightarrow{g} G$

Concrete construction: consider the free group F(S) generated by S, let $K := F(S)/\sim$, $m*'n \sim (m*n)$, or mod the subgroup generated by $m*'n*'(m*n)^{-1}$, here $*',-^{-1}$ are operations in F(M)

Definition 2.2. (Alternative definition of Grothendieck group) Let R be a finite dimensional k algebra (or more generally an Artinian ring), define Grothedieck group $G_0(R)$ to be the set of all finitely generated R modules mod relation, if $0 \to A \to B \to C \to 0$ is exact, then [B] = [A] + [C], namely, $G_0(R) := \{[M]\}$, where [M] are equivalent classes of finitely generated R modules

Definition 2.3. Two vector bundles $E \to X$, $F \to X$ are stably isomorphic if $E \oplus \varepsilon^n \approx F \oplus \varepsilon^n$, denoted as $E \approx_s F$, we also denote $E \sim_s F$ if $E \oplus \varepsilon^n \approx F \oplus \varepsilon^m$ for some n, m

Remark 2.4. Here stably isomorphic does not imply isomorphic, for example, $TS^2 \approx_s \varepsilon^2$, since $\varepsilon^3 \approx T^2 \oplus NS^2 \approx T^2 \oplus \varepsilon^1$ whereas TS^2 is not trivial by the hairy ball theorem, and $NS^2 \approx \varepsilon^1$ is trivial because it is very easy to find a nonvanishing global section

Topologcial \$K\$-theory

Definition 2.5. Let X be a topological space, then the Abelian group $\tilde{K}_{\mathbb{F}}(X)$ is defined to be the \sim -equivalent classes of \mathbb{F} -vector bundles over X, since all vector bundles over X with \oplus form a commutative monoid, we can define its Grothendieck group K(X) to be the K-theory, as it turns out, K(X) also has a commutative ring structure with \otimes , $(E_1 - F_1) \otimes (E_2 - F_2) := E_1 \otimes E_2 \oplus F_1 \otimes F_2 - E_1 \otimes F_2 \oplus F_1 \otimes E_2$

$$0 \longrightarrow K(*) \stackrel{\longleftarrow}{\longrightarrow} K(X) \longrightarrow \tilde{K}(X) \longrightarrow 0 \text{ Thus } K(X) \stackrel{\simeq}{=} \tilde{K}(X) \oplus K(*) \stackrel{\simeq}{=} \tilde{K}(X) \oplus \mathbb{Z}$$

Suppose X is a locally compact Hausdorff space, think of its one point compactification X^* as a pointed space, then $K(X) \cong \ker [K(X^*) \to K(*)] \cong \ker \tilde{K}(X^*) \cong K(X,*)$ From this we have excision, if $Y \subseteq X$ are both compact Hausdorff, $\tilde{K}(X/Y) \cong \tilde{K}((X-Y)^*) \cong K(X,*)$

 $K(X - Y) \stackrel{\sim}{=} K(X, Y)$

Proof.

Remark 2.6. Normally K(X) denote $K_{\mathbb{C}}(X)$, KO(X) denote $K_{\mathbb{R}}(X)$

Theorem 2.7. K-theory form an extraordinary cohomology theory

Definition 2.8. Let X be a locally compact, Hausdorff space, consider all the complexes

$$\cdots \xrightarrow{\alpha_{-2}} E_{-1} \xrightarrow{\alpha_{-1}} E_0 \xrightarrow{\alpha_0} E_1 \xrightarrow{\alpha_1} E_2 \xrightarrow{\alpha_2} \cdots$$

with only finitely many $E_j \neq 0$, and exact off a compact set, give a semigroup structure by direct sum, then define K(X) := all such complexes/ \sim , where a complex is equivalent to the identity if it is chain homotopic to an exact sequence off a compact set, K(X,A) means an extra condition that the complex in consideration are exact over A

Proposition 2.9. The above two definitions of K(X, A) coinside

Proof. If X is compact, the every complex of vector bundles over X will be exact off a compact set and homotopic to a complex with zero maps, then define Euler characteristic map

$$K(X) \to K(X), \left[0 \to E_1 \stackrel{\alpha_1}{\to} \cdots \to E_n \stackrel{\alpha_n}{\to} 0\right] = \left[0 \to E_1 \stackrel{0}{\to} \cdots \to E_n \stackrel{0}{\to} 0\right] \mapsto \sum_{k=0}^{n} (-1)^k [E_i]$$

which would give an isomorphism

If X is locally compact and Hausdorff,
$$K(X) \cong \ker [K(X^*) \to K(*)] \cong K(X)$$

Theorem 2.10. Let X be a connected compact oriented two dimensional manifold without boundary(oriented closed surface), every complex vector bundle E is a sum of line bundles $[L_1]+\cdots+[L_n]-[L_{n+1}]-\cdots-[L_{n+m}]$, and line bundles are classified by Chern classes in $H^2(X,\mathbb{Z})\cong\mathbb{Z}$, the rank and degree of E are defined as $\mathrm{rank}E=n-m$, $\deg E=\sum_{i\leq n}\deg[L_i]-\sum_{i>n}\deg[L_i]$,

Therefore, $K(X) \xrightarrow{(\text{rank,deg})} \mathbb{Z} \oplus \mathbb{Z}$ is an isomorphism

3 Atiyah-Singer index theorem

Theorem 3.1. (Atiyah-Singer index theorem) Atiyah-Singer index theorem index theorem M is a compact manifold, $p:T^*M\to M$ is the cotangent bundle, E,F are vector bundles over $M,P:\Gamma(E)\to\Gamma(F)$ is an elliptic ψDO of order M with principal symbol $\sigma(P):p^*E\to p^*F$, M defines a Fredholm operator M is the cotangent bundle, M is the cotangent bundle, M is an elliptic M is an elliptic M of order M with principal symbol M is the cotangent bundle, M is a compact manifold, M is the cotangent bundle, M is a compact manifold, M is the cotangent bundle, M is a compact manifold, M is the cotangent bundle, M is the cotangent bundle, M is a compact manifold, M is an elliptic M is an elliptic M is the cotangent bundle, M is the cotangent bundle, M is the cotangent bundle, M is a compact manifold, M is the cotangent bundle, M is an elliptic M is the cotangent bundle, M is the cotangent M is

(1): $ind_a(P)$ is independent of the choice of s

(2): $\sigma(P)$ defines an element of $K(T^*M)$

(3): $\operatorname{ind}_a(P)$ only depends on $[\sigma(P)] \in K(T^*M)$

(4): \exists homomorphism $\operatorname{ind}_t(\operatorname{topological index}): K(T^*M) \to \mathbb{Z}$ independent of P, E, F such that $\operatorname{ind}_a(P) = \operatorname{ind}_t([\sigma(P)])$

Proof. (1): Follows from what we did about ψ DOs

(2): Since $\sigma(P)$ is an elliptic operator, at $(x, \xi) \in T^*M$, $\sigma(P)(x, \xi)$ is a linear map $(p^*E)_{(x,\xi)} \to (p^*F)_{(x,\xi)}$ which is invertible except for ξ small, thus $0 \to p^*E \xrightarrow{\sigma(P)} p^*F \to 0$ is exact off a compact set, thus $\left[0 \to p^*E \xrightarrow{\sigma(P)} p^*F \to 0\right]$ defines an element in $K(T^*M)$

(3): The K-theory class of $\sigma(P)$ only depends on $\sigma(P)$ over S^*M , which is compact, then you can extend it to T^*M just by homogeneity, $\sigma(P)(x,r\xi) = r^m\sigma(P)(x,\xi)$, varying this symbol over S^*M continuously, keeping it invertible, gives a homotopy of Fredholm operators, the index doesn't change since the index is locally constant, and such a homotopy preserves the K-theory class

 \square

Theorem 3.2. (Dolbeault theorem) Consider complex

$$\Omega^{0,0}(E) \stackrel{\bar{\partial}}{\longrightarrow} \Omega^{0,1}(E) \stackrel{\bar{\partial}}{\longrightarrow} \Omega^{0,2}(E) \stackrel{\bar{\partial}}{\longrightarrow} \cdots$$

The *j*-th cohomology will be $H^{j}(M, \mathcal{O}_{E})$

Proof.

$$0 \longrightarrow \mathfrak{O}(E) \longleftrightarrow \Omega^{0,0}(E) \stackrel{\bar{\partial}}{\longrightarrow} \Omega^{0,1}(E) \stackrel{\bar{\partial}}{\longrightarrow} \Omega^{0,2}(E) \stackrel{\bar{\partial}}{\longrightarrow} \cdots$$

is a resolution of $\mathcal{O}(E)$ by fine sheaves as defined in Definition 3.3

Fine sheaves

Definition 3.3. A fine sheaf \mathcal{F} over X is one with "partitions of unity"; more precisely for any open cover of the space X we can find a family of homomorphisms from the sheaf to itself with sum 1 such that each homomorphism is 0 outside some element of the open cover

Example 3.4. M is compact Riemann surface, $E \to M$ is a holomorphic vector bundle, E is equipped with $\bar{\partial}$ operator, $\bar{\partial}: \Gamma(E) \to \Gamma\left(E \otimes \Omega^{0,1}\right)$, $\bar{\partial}f := \frac{\partial f}{\partial \bar{z}} d\bar{z}$ (Notice when E is trivial this is the normal $\bar{\partial}$ operator), $\bar{\partial}$ is an elliptic operator since its principal symbol is given by $\sigma(\bar{\partial})(x,\xi) = \bar{\xi}$, thus $\operatorname{ind}_a(\bar{\partial}) = \dim H^0(M,E) - \dim H^1(M,E)$, $H^0(M,E)$ is space of all holomorphic sections of E.

Lemma 3.5. $E \stackrel{p}{\to} X$ is a vector bundle, then the pullback bundle $p^*(E) := E \underset{X}{\times} X$ is a trivial bundle

Proof.

Definition 3.6. Let X be a compact G space(meaning G acts on X), where G is a compact Lie group, a G-vector bundle E is a vector bundle over X which is also a G space, with $g: E_x \to E_{gx}$ a linear map on fibers. In particular, if X is a point, then a G-bundle is just a finite dimensional representation of G, and $K_G(X)$ is the K-theory of such vector bundles, thus $R(G) := K_G(*)$ is the representation ring of G, if X is a trivial G space, then a G-vector bundle is just a continuous family of G representations

Example 3.7. (Examples of representation rings R(G)) $R(G) = \mathbb{Z}$

Theorem 3.8. If X is a trivial G space, $K_G(X) \cong K(X) \otimes_{\mathbb{Z}} R(G)$ If X is a free G space, $K_G(X) \cong K(X/G)$

Theorem 3.9. (Equivariant Bott periodicity theorem) Equivariant Bott periodicity theorem where G is a compact Lie group, V is a finite dimensional representation of G, then there is an isomorphism $K_G \to K_G(V \times X)$ defined as follows Consider the complex

$$0 \longrightarrow \mathbb{C} = \bigwedge^{0} V \xrightarrow{\lambda_{v}} V = \bigwedge^{1} V \xrightarrow{\lambda_{v}} \bigwedge^{2} V \xrightarrow{\lambda_{v}} \cdots \xrightarrow{\lambda_{v}} \bigwedge^{n} V \longrightarrow 0$$

Where $\lambda_v := v \wedge -$

Theorem 3.10. (Thom isomorphism theorem in K-theory) Let X be a compact Hausdorff space, $E \to X$ is a complex vector bundle, then multiplication by λ_{E^*} give an isomorphism $K(X) \to K(E)$

Proof. Give an inner product on each fiber varying smoothly, $n = \dim E$, let G = U(n), Y be the fiber bundle over X with fiber over x the stiefel manifold of E_x , then G acts on Y and $\mathbb{C}^n \times Y$ freely, thus $K(X) = K(Y/G) \cong K_G(Y) \stackrel{\cong}{\to} K_G(\mathbb{C}^n \times Y) \cong K((\mathbb{C}^n \times Y)/G) = K(E)$ Here λ_E is the complex $\bigwedge (p^*E)$

4 Clifford algebra

Definition 4.1. Let $V = \mathbb{F}^n$ be a vector space with a quadratic form q, TV be its tensor algebra, let I be the ideal generated by elements of the form $v \otimes v + q(v,v)1$, the Clifford algebra is defined to be $Cl_n = \text{Cliff}(V,q) = TV/I$, in particular, we only consider the case when $V = \mathbb{R}^n$ is the Euclidean space with the standard inner product, if e_1, \dots, e_n are the standard basis, $e_i \otimes e_i + 1 \in I$, $(e_i + e_j) \otimes (e_i + e_j) + 2 = e_i \otimes e_i + e_j \otimes e_j + e_i \otimes e_j + e_j \otimes e_i + 2 \in I$, we have $e_i^2 = -1$ and $e_i e_j = -e_j e_i$, $i \neq j$, thus dim $Cl_n = 2^n$, $Cl_n = Cl_n^{even} \oplus Cl_n^{odd}$, dim $Cl_n^{even} = \dim Cl_n^{odd} = 2^{n-1}$, Cl_n^{even} is a module over Cl_n^{even}

Example 4.2. If
$$n = 1$$
, $Cl_1 \cong \mathbb{R}[e_1]/(e_1^2 + 1) \cong \mathbb{C}$ If $n = 2$, $Cl_2 \cong \mathbb{R}[e_1, e_2]/(e_1^2 = e_2^2 = -1, e_1e_2 = -e_2e_1) \cong \mathbb{H}$

Proposition 4.3. $Cl_{n+m} \stackrel{\sim}{=} Cl_n \otimes Cl_m$, here the tensor product is the graded tensor product

Proof.

Proposition 4.4. $Cl_n \otimes_{\mathbb{R}} \mathbb{C}$ is semisimple over \mathbb{C} of dimension 2^n , and

$$Cl_n \otimes_{\mathbb{R}} \mathbb{C} = egin{cases} M_{2^{rac{n}{2}}}(\mathbb{C}), & ext{if } n ext{ is even} \\ M_{2^{\lfloor n/2 \rfloor}}(\mathbb{C}) \oplus M_{2^{\lfloor n/2 \rfloor}}(\mathbb{C}), & ext{if } n ext{ is odd} \end{cases}$$

Proof.

5 Spin group

Definition 5.1. Spin(n) is a subgroup of Cl_n^{even} consisting of elements of norm 1

Example 5.2. $Spin(2) = \mathbb{T}$ is the circle group, Since $Cl_3^{even} \cong Cl_2 \cong \mathbb{H}$, $SU(2) \cong Spin(3)$ are the corresponding subgroups

Definition 5.3. Spin(n) naturally acts on \mathbb{R}^n by $g \cdot v = gvg^{-1}$, then it is easy to see that $Spin(n) \to SO(n)$ is a double covering, if M is a Riemannian manifold, it has a principal bundle

$$P(O(n) \longrightarrow P$$
 where P_m are the oriented orthonormal frames on T_mM A spin structure on M

M is a lifting of P to a principal bundle for Spin(n), note this may or may not exist

Example 5.4. $\mathbb{C}P^{2n}$ doesn't have a spin structure

Proposition 5.5. If spin structures exist, the set of such structures is acted on transitively by $H^1(M, \mathbb{Z}/2\mathbb{Z})$

Proof. Consider the long exact sequence

$$H^1(M, \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^1(M, Spin(n)) \longrightarrow H^1(M, SO(n)) \xrightarrow{w_2} H^2(M, \mathbb{Z}/2\mathbb{Z})$$

Proposition 5.6. If n is even and M has a spin structure, fix it, then since $Spin(n) \subseteq Cl_n^{even} \subseteq Cl_n \subseteq Cl_n \otimes \mathbb{C} \cong M^{2^{\frac{n}{2}}}(\mathbb{C})$, and $Cl_n \otimes \mathbb{C}$ has a unique irreducible representation of dimension $2^{\frac{n}{2}}$, called the spin representation Δ , so we get a (comple) spin vector bundle $S = P_{Spin(n)} \times_{Spin(n)} \Delta$

Definition 5.7. There is an elliptic operator acting on S via $\sum_{j=1}^{n} e_j \cdot \nabla e_j$, where e_1, \dots, e_n is a local orthonormal frame, the symbol is $\sum e_j \xi_j$, this is called the Dirac operator D

Theorem 5.8. Assume M is a closed Riemannian spin manifold of dimension n = 2l, $ind \mathbb{D} = \langle \widehat{A}(M), [M] \rangle$, here $\widehat{A}(M)$ is a polynomial in Pontryagin classes defined as follows: suppose $TM \otimes \mathbb{C} \cong L_1 \oplus \cdots \oplus L_l$ where L_j are complex line bundle with Chern class x_j , then $\widehat{A}(M) = \prod_j \frac{x_j}{2 \sinh \frac{x_j}{2}}$

References

Index

G-vector bundle, 5

Atiyah-Singer index theorem, 5

 $\begin{array}{c} \text{differential operator, 2} \\ \text{Dolbeault theorem, 5} \end{array}$

Fine sheaf, 5

Principal symbol, 2 Pseudodifferential operator, 2

Stably isomorphic, 3 Symbol, 2

Topologcial K-theory, 3