Fuelling the Galactic Center via infall from the Central Molecular Zone

William Lucas¹ (wel2@st-andrews.ac.uk) Ian Bonnell¹, Diego Falceta-Goncalves^{1,2} ¹University of St Andrews, ²University of Sao Paulo

Star Formation around Sgr A*

Star Formation around Sgr A*

If formation of a star forming disk does result from an infalling cloud's tidal destruction, then we need a source of infalling material.

A likely source - the Central Molecular Zone

Twisted ring-like structure containing 3-7 x 10^7 M $_{\odot}$ of molecular gas.

A likely source - the Central Molecular Zone

Twisted ring-like structure containing 3-7 x 10^7 M_{\odot} of molecular gas.

Simulation setup

Initial clouds in sphNG (Bate, Bonnell & Price 1995)

- •Mass 1x10⁶ M_☉
- •Radius 16.9 pc
- •Number density of 2x10³ cm⁻³
- •Initial temperature 300K.
- •RMS turbulence 30 km s⁻¹
- Koyama & Inutsuka 2002 cooling.

Place test particles at 90 km s⁻¹ in the GC potential (Stolte et al. 2008).

Simulation setup

Initial clouds in sphNG (Bate, Bonnell & Price 1995)

- •Mass $1x10^6 M_{\odot}$
- •Radius 16.9 pc
- •Number density of 2x10³ cm⁻³
- •Initial temperature 300K.
- •RMS turbulence 30 km s⁻¹
- •Koyama & Inutsuka 2002 cooling.

Place test particles at 90 km s⁻¹ in the GC potential (Stolte et al. 2008).

Cloud simulations I - Disk

Cloud simulations II - Ribbon

Comparison to observations

- Traces similar extents to the Molinari et al. 2011 ring
- Off-centre position of the BH

• Self-intersection, similar to suggestion of Johnston et al. 2014 and

Kruijssen et al. 2015

- Gas densities can become very high 10⁷ or more cm⁻³.
- These simulations unable to resolve within clouds.

x₂ orbits - Simulating an entire gas disc

Start with an axisymmetric potential and slowly introduce the triaxial scaling factors to the log potential - end potential of Stolte et al. 2008.

248,000 particles

Disk extends to 400 pc and is 10 pc thick. 10pc hole at center.

Uniform density at 2 cm⁻³, total gas mass is $5 \times 10^5 M_{\odot}$.

Initial temperature of 10⁴ K + cooling (Koyama & Inutsuka 2002)

The Jacobi integral

Simple approximation to n body to keep things easy. From the Hamiltonian in the rotating frame (e.g. Binney & Tremaine):

$$E_{\rm J} = \frac{1}{2} |\mathbf{v}|^2 + \Phi - \frac{1}{2} |\mathbf{\Omega}_{\rm b} \times \mathbf{x}|^2$$

which is an integral of motion (a conserved quantity). But, with axis of rotation in z, i.e.:

$$\Omega_{\rm b} = \Omega_{\rm b} \hat{\mathbf{e}}_z$$

this simply becomes

$$E_{\rm J} = \frac{1}{2} |\mathbf{v}|^2 + \Phi - \frac{1}{2} \Omega_{\rm b}^2 R^2$$

The Jacobi integral

Simple approximation to n body to keep things easy. From the Hamiltonian in the rotating frame (e.g. Binney & Tremaine):

$$E_{\rm J} = \frac{1}{2} |\mathbf{v}|^2 + \Phi - \frac{1}{2} |\mathbf{\Omega}_{\rm b} \times \mathbf{x}|^2$$

which is an integral Nothingenard ty).
But, with axis of rotation in z, i.e.:

$$\Omega_{\rm b} = \Omega_{\rm b} \hat{\mathbf{e}}_z$$

this simply becomes

$$E_{\rm J} = \frac{1}{2} |\mathbf{v}|^2 + \Phi - \frac{1}{2} \Omega_{\rm b}^2 R^2$$

Identifying structures with E_J

Bracket by E_J to label:

- Disk
- Inner ring
- Outer ring
- Disc to inner ring diffuse gas
- Inner to outer ring diffuse gas

Snooker/billiard/take-your-pick ball impact

- Cumulative mass with radius.
- Lines match particle colours.
- Thick black line at top is total mass.

• Significant gas infall only at later times after multiple passes.

Direct accretion to BH sink particle

High resolution, high mass simulation

Reworking with:

- 50 million particles representing $10^8~M_{\odot}$ of gas.
- 1 sink particle (BH)
- Slightly slower transition to bar from axisymmetric
- Running in OpenMP/ MPI hybrid over 256/512 cores on DiRAC 'complexity'

A bit extra: supernova feedback!?

Take home points:

- Tidal disruption of a single large cloud -> gas ribbon, likely containing multiple clouds along its length.
- Potential + turbulence causes the ribbon to resemble the features of the observed ring.
- Easy to form an x_2 type ring. Low level of accretion from inner gas disc (10⁻⁵ M_{\odot} yr⁻¹).
- Disrupting the system increases accretion in the chaotic aftermath (10^{-3} M $_{\odot}$ yr $^{-1}$).
- •SF /AGN? but we again require input from further out into the Galaxy, and are not accounting for feedback.