Question 3 (a) Let n be a positive integer and p and q be the following propositions:

$$p : n \le 12$$

 $q : nisodd.$

(i) Express each of the three following compound propositions concerning positive integers symbolically by using p, q and appropriate logical symbols.

$$n \leq 12$$
andniseven.
 $ifn \leq 12$ thenniseven
 $n > 12$ andnisodd.

- (ii) Construct the truth table for the statement $q \to p$. Hence find a value of n that makes this statement false.
- (iii) Write in logical symbols the contrapositive of the statement:

$$ifnisoddthenn \leq 12.$$

[6]

(b) Construct a logic network that accepts as inputs p and q, which may independently have the value 0 or 1, and gives as final output

$$\neg(\neg p \land q).$$

Show the truth table for this output and hence give a simple expression (without using negation) that is equivalent to $\neg(\neg p \land q)$. [4]

Question 4

- (a) Given $u_k = 5k + 1$ and $s_n = \sum_{k=1}^n (5k + 1)$ for all positive integers n.
 - (i) Calculate u_1 , u_2 , u_3 and u_4 .
 - (ii) Calculate s_1 s_2 and s_3 .
 - (iii) Use the formula $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ to find a formula for $s_n = \sum_{k=1}^{n} (5k+1)$ in terms of n. Use this formula to find this sum when n = 10. [6]
- (b) Prove by induction that

$$3+7+11+15+...+(4n-1)=n(2n+1)$$
 for all positive integers n .

[4]

CIS102w 2007

3

TURN OVER