Machine learning and Cybersecurity: Challenges, and Solutions in a Hyper-Digital Post-Pandemic Society

By Dr. ARINDAM SARKAR

Ex. INSPIRE FELLOW, DST, Govt. of India, New Delhi

Asst. Professor, Dept. of Computer Science and Electronics,

RAMAKRISHNA MISSION VIDYAMANDIRA

(A Residential Autonomous College under University of Calcutta with CPE status)

Class-Os

All About Confusion Matrix

- Confusion Matrix
- Accuracy
- Precision
- Recall
- F1 Measure
- · Harmonic Mean
- Specificity
- Sensitivity
- AUC Curve
- ROC Curve

True positive (TP).

Equivalent with hit.

True negative (TN).

• Equivalent with correct rejection.

False positive (FP).

 Equivalent with false alarm, type I error or underestimation.

False negative (FN).

Equivalent with miss, type II error or overestimation.

		Actual	
		Positive	Negative
Predicted	Positive	True Positive Predicted has cancer Has Cancer	False Positive Predicted has cancer/Does not have cancer
	Negative	False Negative Predicted not cancer Has cancer	True Negative Predicted not cancer Does not have cancer

Confusion Matrix

Confusion Matrix and ROC Curve

		Predicted Class	
		No	Yes
Observed Class	No	TN	FP
	Yes	FN	TP

TN True Negative
FP False Positive
FN False Negative
TP True Positive

Model Performance

Accuracy = (TN+TP)/(TN+FP+FN+TP)

Precision = TP/(FP+TP)

Confusion Matrix

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

$$TP = True positive$$

$$TN = True negative$$

$$FP$$
 = False positive

$$FN =$$
False negative

Accuracy

- Accuracy = (TP + TN) / (TP + FP + TN + FN)
- Condition positive (P).
 - The number of real positive cases in the data.
- Condition negative (N).
 - The number of real negative cases in the data.

Precision or Positive Predictive Value (PPV)

PPV = True Positive / (True Positive + False Positive)

Sensitivity, Recall, Hit Rate, or True Positive Rate (TPR)

TPR = True Positive / (True Positive + False Negative)

False Positive Rate (FPR)

FPR = FP / (FP + TN)

F1 Measure

F1 Measure = (Precision + Recall) / 2

Harmonic Mean, F1 Score

F1 = (2 * Precision * Recall) / (Precision + Recall)

Specificity, Selectivity or True Negative Rate (TNR)

Specificity = True Negative / (True Negative + False Positive)

Threat Score (TS) or Critical Success Index (CSI)

CSI = TP / (TP + FN + FP)

False Discovery Rate (FDR)

FDR = FP / (TP + FP)

accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

balanced accuracy (BA)

$$BA = \frac{TPR + TNR}{2}$$

informedness or bookmaker informedness (BM)

$$BM = TPR + TNR - 1$$

markedness (MK) or deltaP (Δp)

$$MK = PPV + NPV - 1$$

Matthews correlation coefficient (MCC)

$$\mathrm{MCC} = \frac{\mathrm{TP} \times \mathrm{TN} - \mathrm{FP} \times \mathrm{FN}}{\sqrt{(\mathrm{TP} + \mathrm{FP})(\mathrm{TP} + \mathrm{FN})(\mathrm{TN} + \mathrm{FP})(\mathrm{TN} + \mathrm{FN})}}$$

Fowlkes-Mallows index (FM)

$$\mathrm{FM} = \sqrt{\frac{TP}{TP + FP} \times \frac{TP}{TP + FN}} = \sqrt{PPV \times TPR}$$

ROC & AUC Curve

Receiver Operating Characteristic (ROC): Since, TPR is equivalent to Sensitivity and FPR is equal to 1 – specificity, the ROC graph is sometimes called the sensitivity vs (1 – specificity) plot.

ROC & AUC Curve

Predicted Result
0.89
0.57
0.51
0.25
0.69
0.58

Sensitivity,
TPR = TP / (TP + FN), and
FPR = FP / (FP + TN)

Threshold Value = [0. 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70

ROC & AUC Curve

Actual	Predicted Result	Predicted (0)
Result		
Yes	0.89	1
Yes	0.57	1
No	0.51	1
No	0.25	1
Yes	0.69	1
Yes	0.58	1

Sensitivity,
TPR = TP / (TP + FN), and
FPR = FP / (FP + TN)

Threshold Value = 0

ROC & AUC Curve

Actual Result	Predicted Result	Predicted (0)	Predicted (.30)	Predicted (.50)	Predicted (.60)
Yes	0.89	1	1	1	1
Yes	0.57	1	1	1	0
No	0.51	1	1	1	0
No	0.25	1	0	0	0
Yes	0.69	1	1	1	1
Yes	0.58	1	1	1	0

Sensitivity, TPR = TP / (TP + FN), and FPR = FP / (FP + TN)

Threshold Value = 0.60

ROC & AUC Curve

Actual	Predicted Result	Predicted (0)	
Result			
Yes	0.89	1	
Yes	0.57	1	
No	0.51	1	
No	0.25	1	
Yes	0.69	1	
Yes	0.58	1	

ROC & AUC Curve

ROC & AUC Curve

Performance

```
In [50]: pred = model.predict(x_test)
In [52]: pred
Out[52]: array([0, 0, 0, ..., 1, 0, 0], dtype=int64)
In [53]: from sklearn.metrics import accuracy_score
In [54]: accuracy_score(ytest,pred)
Out[54]: 0.9868305531167691
In [55]: from sklearn.metrics import confusion matrix
In [ ]: confusion matrix()
In [ ]:
In [ ]:
```

```
In [55]: from sklearn.metrics import confusion matrix
In [56]: confusion_matrix(ytest,pred)
Out[56]: array([[892, 12],
              [ 3, 232]], dtype=int64)
In [57]: from sklearn.metrics import classification report
In [59]: print(classification_report(ytest,pred))
                                 re all f1-score
                     precision
                                                  support
                         1.00 0.99 0.99
                                                     904
                         0.95 0.99
                                            0.97
                                                      235
                                            0.99
                                                     1139
            accuracy
                                  0.99
                                           0.98
                         0.97
                                                     1139
           macro avg
        weighted avg
                         0.99
                                  0.99
                                           0.99
                                                     1139
```

Thank You