

Principles of Digital Signal Processing

Dr. B. Niranjana Krupa

Department of Electronics and Communication.

DSP

Frequency domain sampling: DFT

Dr. B. Niranjana Krupa

Department of Electronics and Communication.

Frequency domain sampling and reconstruction of DT signals

 Sampling of FT of an aperiodic discret e-time sequence

 Establish the relationship between the sampled FT and DFT

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n} \qquad ----(1)$$

Frequency domain sampling

Frequency domain sampling and reconstruction of DT signals

If we evaluate at $w=2\pi kn/N$

$$X\left(\frac{2\pi}{N}k\right) = \cdots + \sum_{n=-N}^{-1} x(n)e^{-j2\pi kn/N} + \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$

$$+ \sum_{n=N}^{2N-1} x(n)e^{-j2\pi kn/N} + \cdots$$

$$= \sum_{l=-\infty}^{\infty} \sum_{n=l}^{lN+N-1} x(n)e^{-j2\pi kn/N}$$

Frequency domain sampling and reconstruction of DT signals

Changing index of inner summation from n to n-IN

$$X\left(\frac{2\pi}{N}k\right) = \sum_{n=0}^{N-1} \left[\sum_{l=-\infty}^{\infty} x(n-lN)\right] e^{-j2\pi kn/N} \qquad ----(3)$$

for k = 0, 1, 2, ..., N - 1. The signal

$$x_p(n) = \sum_{l=-\infty}^{\infty} x(n-lN) \qquad ----(4)$$

Frequency domain sampling and reconstruction of DT signals

$$x_p(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}, \qquad n = 0, 1, \dots, N-1$$
 ----(5)

with Fourier coefficients

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p(n) e^{-j2\pi kn/N}, \qquad k = 0, 1, \dots, N-1 \qquad ----(6)$$

$$c_k = \frac{1}{N} X\left(\frac{2\pi}{N}k\right), \qquad k = 0, 1, \dots, N-1$$
 ----(7)

Therefore,

$$x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X\left(\frac{2\pi}{N}k\right) e^{j2\pi kn/N}, \qquad n = 0, 1, \dots, N-1$$
 ----(8)

Frequency domain sampling and reconstruction of DT signals

Relationship between $x_p(n)$ and x(n)

- Reconstruction of periodic signal $x_p(n)$ from samples of the spectrum
 - equation (8), proved
- However, reconstruction of x(n) and X(ω) from the samples yet to be done
- Hence, establish a relationship b/n x_p(n) and x(n)

- x(n) can be recovered from its periodic repetition $x_p(n)$
 - If no aliasing in time-domain
 i.e., x(n) is time limited to a period less than No f x_n(n), say, N ≥ L

Frequency domain sampling and reconstruction of DT signals

$$x(n) = x_p(n)$$
 $0 \le n \le N - 1$ (9)

We can conclude that the spectrum of aperiodic discrete –time signal with finite duration L can be exactly recovere d from its samples at frequencies $\omega_k = 2\pi k / N$, if $N \ge L$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X\left(\frac{2\pi}{N}k\right) e^{j2\pi kn/N}, \qquad 0 \le n \le N-1$$
 ----(10)

$$X(\omega) = \sum_{n=0}^{N-1} \left[\frac{1}{N} \sum_{k=0}^{N-1} X\left(\frac{2\pi}{N}k\right) e^{j2\pi kn/N} \right] e^{-j\omega n} \qquad ----(11)$$

$$= \sum_{k=0}^{N-1} X\left(\frac{2\pi}{N}k\right) \left[\frac{1}{N} \sum_{n=0}^{N-1} e^{-j(\omega - 2\pi k/N)n} \right]$$

Frequency domain sampling and reconstruction of DT signals

Basic interpolation function shifted by $2k\pi n/N$

$$P(\omega) = \frac{1}{N} \sum_{n=0}^{N-1} e^{-j\omega n} = \frac{1}{N} \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}}$$

$$=\frac{\sin(\omega N/2)}{N\sin(\omega/2)}e^{-j\omega(N-1)/2} \qquad \qquad ----(12)$$

$$X(\omega) = \sum_{k=0}^{N-1} X\left(\frac{2\pi}{N}k\right) P\left(\omega - \frac{2\pi}{N}k\right), \qquad N \ge L$$

- •The linear interpolation formula in (13) gives exactly the sample values $X(2\pi k/N)$ for $\omega=2\pi k/N$.
- At all other frequencies equation (13) provides a properly weighted linear combination of the original spectral samples.

THANK YOU

Dr. B. Niranjana Krupa

Department of Electronics and Communication

bnkrupa@pes.edu

+91 80 6666 3333 Ext 777