Istnieje wiele metod rozwiązywania układów równań liniowych. Jednak większość z nich ma zastosowanie jedynie dla układów oznaczonych, a często układy takie muszą spełniać dodatkowe warunki.

Istnieją również metody, dzięki którym rozwiązywać możemy dowolne układy równań liniowych AX=B. Do takich metod należą m.in. metody oparte na metodzie Kaczmarza, w której wybierając dowolne rozwiązanie początkowe X^0 proces iteracyjny zbieżny jest do rozwiązania X^* tego układu:

$$X^{k+1} = X^k + \frac{b_{k+1} - a^{k+1} \circ X^k}{\|a^{k+1}\|^2} a^{k+1}, \quad k \geqslant 0,$$
 (1)

gdzie b_i jest *i*-tym elementem wektora wyrazów wolnych B, a^i jest *i*-tym wierszem macierzy współczynników A, \circ jest klasycznym iloczynem skalarnym wektorów, a $\|\cdot\|$ oznacza jedną z klasycznych norm wektora – w tym przypadku jest to długość tego wektora.

W formule (1) związek pomiędzy i oraz k jest następujący: ponieważ formuła ta oznacza rzutowanie poprzedniego rozwiązania (jako punktu z przestrzeni \mathbb{R}^n , gdzie n jest liczbą niewiadomych rozwiązywanego układu równań) na odpowiednią hiperpłaszczyznę (hiperpłaszczyzną z przestrzeni \mathbb{R}^n jest tu każdy wiersz macierzy A), to dla k=0, wyznaczając pierwsze przybliżenie X^1 we wzorze (1) wykorzystujemy pierwszy (b_1) element wektora B i pierwszy (a^1) wiersz macierzy A. Podobnie jest dla przybliżeń X^2, X^3, \ldots, X^m , gdzie m jest liczbą wierszy rozwiązywanego układu. Natomiast dla przybliżenia kolejnego wykorzystujemy już ponownie obiekty b_1 i a^1 , itd.

Proces iteracyjny potrzebuje warunku stop. W naszym przypadku będzie to dokładność rozwiązania. Jeżeli rozwiązanie X^{k+1} spełniało będzie warunek:

$$||AX^{k+1} - B|| < \varepsilon,$$

gdzie ε jest zadaną dokładnością, to przerywamy procedurę, a jako rozwiązanie przyjmujemy rozwiązanie przybliżone X^{k+1} .

Napisz program, który dla zadanych argumentów: A – macierz współczynników, B – wektor wyrazów wolnych, X^0 – przybliżenie początkowe i ε – dokładność, rozwiązywał będzie układ równań liniowych AX=B z zadaną dokładnością. Program ma wypisać rozwiązanie oraz liczbę wykonanych kroków.

Uwaga: Projekt należy przesyłać jako plik imię_nazwisko_projekt_4.nb