RAISONNEMENT PAR RÉCURRENCE

I-Effectuer et rédiger un raisonnement par récurrence pour démontrer des propriétés.

On donne un nom, exemple P(n), à la propriété qu'on veut démontrer.

Ensuite, pour montrer que la propriété P(n) est vraie pour $n \ge k$, on procède en trois étapes :

Étape 1: Initialisation.

On montre que la propriété P(k) est vraie, c'est-à dire que P(n) est vraie pour n=k.

Étape 2 : Hérédité.

On suppose que la propriété P(n) est vraie et on montre que la propriété P(n+1) l'est encore.

Étape 3 : Conclusion.

On rédige alors :

Comme P(k) est vraie et qu'il y a hérédité, P(n) est vraie pour tout $n \ge k$.

II- Formules algébriques

Exemple II-1:

Démontrer par récurrence que pour tout $n \ge 1$, $1+2+3+4+5+\ldots+n = \frac{n(n+1)}{2}$

Exemple II-2:

Démontrer par récurrence que pour tout $n \ge 1$, $1+3+5+7+9+...+(2n-1)=n^2$

III-Propriétés sur des suites.

Exemple III-1:

Soit (U_n) la suite définie par $U_{n+1}=U_n+61$ et $U_0=-267$.

Démontrer par récurrence que pour tout $n \ge 0$, $U_n = -267 + 61n$

Exemple III-2:

Soit (U_n) la suite définie par $U_{n+1} = \frac{(n+1)}{n}U_n$ et $U_1 = 1$.

- a) Démontrer par récurrence que $U_n > 0$ pour tout $n \ge 1$.
- b) Déduire que la suite (U_n) est strictement croissante.

Exemple III-3:

Soit (V_n) la suite définie par $V_{n+1} = V_n \times 1,45$ et $V_0 = 316$.

Démontrer par récurrence que pour tout $n \ge 0$. $V_n = 316 \times 1,45^n$.