基礎数学 期末テスト 略解 7/16/09 (佐藤)

1 次の各問に答えよ. (各5点)

(1) $\log_5 40 - \log_5 8$ を計算しなさい.

$$\log_5 40 - \log_5 8 = \log_5 \frac{40}{8} = \log_5 5 = \mathbf{1}.$$

(2) $\log_8 16$ を簡単にして有理数にしなさい.

$$\log_8 16 = \frac{\log_2 16}{\log_2 8} = \frac{\log_2 2^4}{\log_2 2^3} = \frac{\mathbf{4}}{\mathbf{3}}.$$

(3) $f(x) = x^2 + 3x - 1$ に対し、y = f(x) の点 (2, f(2)) における接線の方程式を求めなさい。

$$f'(x) = 2x + 3$$
, $f'(2) = 7$, $f(2) = 9$ より、接線の方程式は $y = 7(x - 2) + 9 = 7x - 5$.

(4) 不定積分 $\int (x^2 + 2x + 1) dx$ を求めなさい.

$$\frac{x^3}{3} + x^2 + x + C.$$

(5) 定積分 $\int_{-1}^{1} (2x^3 + x - 1) dx$ の値を求めなさい.

$$\int_{-1}^{1} (2x^3 + x - 1) \, dx = \left[\frac{x^4}{2} + \frac{x^2}{2} - x \right]_{-1}^{1} = -2$$

(6) 一般項が $a_n=2-5n$ で与えられる数列 $\{a_n\}$ は等差数列か等比数列か答えよ. さらに $\{a_n\}$ の公差または公比を求めよ.

公差が-5の等差数列。

② 次の図はある関数 f(x) のグラフである。各グラフの f(x) としてもっとも近いものを(ア)~(カ)の中から選べ。(各 10 点)

(1) (ウ)
$$f(x) = 2^{-x}$$

③ 漸化式 $a_{n+1}=4a_n-3$ (ただし $a_1=2$) で与えられる数列 $\{a_n\}$ の階差数列 $\{b_n\}$ の一般項を求めよ. (10 点)

 $b_{n+1}=a_{n+2}-a_{n+1}=(4a_{n+1}-3)-(4a_n-3)=4(a_{n+1}-a_n)=4b_n$. したがって、階差数列 $\{b_n\}$ は公比が 4 の等比数列である。初項は $b_1=a_2-a_1=(4a_2-3)-a_1=3a_1-3=3\times 2-3=3$. 以上のことから、 $\{b_n\}$ の一般項は $b_n=3\times 4^{n-1}$.

基礎数学 期末テスト 略解 7/16/09 (佐藤)

4
$$f(x) = -\frac{x^3}{3} + x^2 + 3x - 4$$
 について以下の問いに答えよ. (各 10 点)

- (1) f(x) の極値を求めなさい.
- (2) y = f(x) のグラフの概形を描きなさい (前間で求めた極値, y 切片の情報を図中にわかりやすく書き加えること).

 $f'(x) = -x^2 + 2x + 3 = -(x - 3)(x + 1)$. しがって、f'(x) = 0 となるのは x = -1 と x = 3 のときである。増減表は以下のようになる;

x		-1		3	
f'(x)	_	0	+	0	_
f(x)	減少	$-\frac{17}{3}$	増加	5	減少

したがって、f(x) は x=3 のとき極大値 5、x=-1 のとき極小値 $-\frac{17}{3}$ をとる。 f(0)=-4 より、グラフの y 切片は (0,-4).

 $\boxed{\mathbf{5}}$ $y=x^2-2x-3$ と y=2x+2 のグラフで囲まれる部分の面積を求めなさい. (20 点)

 $0=(2x+2)-(x^2-2x-3)=-(x^2-4x-5)=-(x-5)(x+1)$ より、2 つのグラフは x=-1 と x=5 の点で交わる。 $y=x^2-2x-3$ は下に凸の放物線だから、-1< x<5 の範囲では直線 y=2x+2 の方が y の値が大きい。 したがって、求める面積は $\int_{-1}^{5}\{(2x+2)-(x^2-2x-3)\}dx=\int_{-1}^{5}(-x^2+4x+5)\,dx=\left[-\frac{x^3}{3}+2x^2+5x\right]_{-1}^{5}=$ **36.**