R Tutorial

In R, comments are indicated in code with a "#" character.

1 Reading in Data and Basic Statistical Functions

1.1 Read in the data.

```
a) Read the data in as a .csv file.
student <- read.csv('/Users/class.csv')
```

b) Read the data in as a .xls file.

First we need to install the gdata package, and then call the package to use.

```
# The package we need to read in a .xls file (gdata) must first be
# installed and then called to use
library(gdata)

student_xls <- read.xls('/Users/class.xls', 1)</pre>
```

c) Read the data in as a .json file.

First we need to install the rjson (install.packages(pkgs='rjson')), and then call the package to use. There is more code involved in reading a .json file into R so it becomes a proper data frame, however we will not at this time dive into the explanation for all this code, but it should become evident throughout the tutorial.

1.2 Find the dimensions of the data set.

Information about an R data frame is available by calling the "dim()" function, with the data name as an argument.

```
dim(student)
## [1] 19 5
```

1.3 Find basic information about the data set.

```
str(student)
## 'data.frame': 19 obs. of 5 variables:
## $ Name : Factor w/ 19 levels "Alfred", "Alice",..: 1 2 3 4 5 6 7 8 9 10
...
## $ Sex : Factor w/ 2 levels "F", "M": 2 1 1 1 2 2 1 1 2 2 ...
## $ Age : int 14 13 13 14 14 12 12 15 13 12 ...
## $ Height: num 69 56.5 65.3 62.8 63.5 57.3 59.8 62.5 62.5 59 ...
## $ Weight: num 112 84 98 102 102 ...
```

1.4 Look at the first 5 observations.

The first 5 observations of a data frame are available by calling the "head()" function, with the data name as an argument. By default, head() returns 4 observations, but we can alter the function to return 5 observations in the way shown below. The tail() function is analogous and returns the last observations.

```
head(student, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred M 14
                    69.0 112.5
      Alice
                    56.5
## 2
             F 13
                           84.0
## 3 Barbara F 13
                    65.3
                         98.0
             F 14
                    62.8 102.5
## 4
      Carol
## 5
      Henry
             M 14
                    63.5 102.5
```

1.5 Calculate mean of numeric variables.

```
# We must apply the is.numeric function to the data set which returns a
# matrix of booleans that we then use to subset the dataset to return
# only numeric variables

# Then we can use the colMeans function to return the mean of
# column variables
colMeans(student[sapply(student, is.numeric)])

## Age Height Weight
## 13.31579 62.33684 100.02632
```

1.6 Compute summary statistics of the data set.

Summary statistics of a data frame are available by calling the "summary" function, with the data name as an argument.

```
summary(student)
##
        Name
               Sex
                                        Height
                                                       Weight
                          Age
                      Min. :11.00
## Alfred: 1
               F: 9
                                     Min.
                                           :51.30
                                                    Min.
                                                        : 50.50
## Alice : 1
               M:10
                      1st Qu.:12.00
                                     1st Qu.:58.25
                                                    1st Qu.: 84.25
## Barbara: 1
                      Median :13.00
                                     Median :62.80
                                                    Median : 99.50
                                     Mean :62.34
## Carol : 1
                      Mean :13.32
                                                    Mean
                                                          :100.03
## Henry : 1
                      3rd Qu.:14.50
                                     3rd Qu.:65.90
                                                    3rd Qu.:112.25
## James : 1
                                     Max. :72.00
                      Max. :16.00
                                                    Max.
                                                          :150.00
## (Other):13
```

1.7 Descriptive statistics functions applied to columns of the data set.

```
# Notice the subsetting of student with the $ character
sd(student$Weight)
## [1] 22.77393
sum(student$Weight)
## [1] 1900.5
length(student$Weight)
## [1] 19
max(student$Weight)
## [1] 150
min(student$Weight)
## [1] 50.5
median(student$Weight)
## [1] 99.5
```

1.8 Produce a one-way table to describe the frequency of a variable.

a) Produce a one-way table of a discrete variable.

```
table(student$Age)
##
## 11 12 13 14 15 16
## 2 5 3 4 4 1
```

b) Produce a one-way table of a categorical variable.

```
table(student$Sex)
##
## F M
## 9 10
```

1.9 Produce a two-way table to visualize the frequency of two categorical (or discrete) variables.

```
table(student$Age, student$Sex)
##
##
        F M
##
    11 1 1
##
    12 2 3
    13 2 1
##
##
    14 2 2
##
    15 2 2
##
    16 0 1
```

1.10 Select a subset of the data that meets a certain criterion.

```
# The "," character tells R to select all columns of the data set
females <- student[which(student$Sex == 'F'), ]</pre>
head(females, n=5)
##
       Name Sex Age Height Weight
      Alice F 13
                     56.5 84.0
## 2
## 3 Barbara F 13
                     65.3 98.0
            F 14
                     62.8 102.5
## 4
      Carol
## 7
      Jane F 12
                     59.8 84.5
## 8 Janet F 15
                     62.5 112.5
```

which()

1.11 Determine the correlation between two continuous variables.

```
height_weight <- subset(student, select = c(Height, Weight))
cor(height_weight, method = "pearson")

## Height Weight
## Height 1.0000000 0.8777852
## Weight 0.8777852 1.00000000
```

cor()

2 Basic Graphing and Plotting Functions

2.1 Visualize a single continuous variable by producing a histogram.

Setting student\$Weight to a new variable "Weight" cleans up the labeling of
the histogram
Weight <- student\$Weight
hist(Weight)</pre>

Histogram of Weight

2.2 Visualize a single continuous variable by producing a boxplot.

```
# points(mean(Weight)) tells R to plot the mean of the variable
# on the boxplot
boxplot(Weight, ylab="Weight")
points(mean(Weight))
```


2.3 Visualize two continuous variables by producing a scatterplot.

Height <- student\$Height
Notice here you specify the x variable first and then the y variable
plot(Height, Weight)</pre>

2.4 Visualize a relationship between two continuous variables by producing a scatterplot and a plotted line of best fit.

```
plot(Height, Weight)

# Lm() models Weight as a function of Height and returns the parameters
# of the line of best fit
model <- lm(Weight~Height)
coeff <- coef(model)
intercept <- as.matrix(coeff[1])[1]
slope <- as.matrix(coeff[2])[1]

# abline() prints the line of best fit
abline(lm(Weight~Height))

# text() prints the equation of the line of best fit, with the first
# two arguments specifying the x and y location, respectively, of where
# the text should be printed on the graph
text(60, 140, bquote(Line: y == .(slope) * x + .(intercept)))</pre>
```


2.5 Visualize a categorical variable by producing a bar chart.

```
counts <- table(student$Sex)
# beside = TRUE indicates to print the bars side by side instead of on top of
# each other
# names.arg indicates which names to use to label the bars
barplot(counts, beside=TRUE, ylab= "Frequency", xlab= "Sex",
names.arg=names(counts))</pre>
```


2.6 Visualize a continuous variable, grouped by a categorical variable, using side-by-side boxplots.

a) Simple side-by-side boxplot without color.

```
# Subset data set to return only female weights, and then only male weights
Female_Weight <- student[which(student$Sex == 'F'), "Weight"]
Male_Weight <- student[which(student$Sex == 'M'), "Weight"]

# Find the mean of both arrays
means <- c(mean(Female_Weight), mean(Male_Weight))

# Syntax indicates Weight as a function of Sex
boxplot(student$Weight~student$Sex, ylab= "Weight", xlab= "Sex")

# Plot means on boxplots in blue
points(means, col= "blue")</pre>
```


b) More advanced side-by-side boxplot with color.

ggplot2

3 Basic Data Wrangling and Manipulation

3.1 Create a new variable in a data set as a function of existing variables in the data set.

```
# Notice here how you can create the BMI column in the data set just by
# naming it
student$BMI <- student$Weight / (student$Height)**2 * 703</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
## 1 Alfred
              Male 14
                         69.0 112.5 16.61153
      Alice Female 13
                         56.5 84.0 18.49855
## 3 Barbara Female 13
                         65.3 98.0 16.15679
## 4
      Carol Female 14
                         62.8 102.5 18.27090
## 5
      Henry Male 14
                         63.5 102.5 17.87030
```

3.2 Create a new variable in a data set using if/else logic of existing variables in the data set.

```
# Notice the use of the ifelse() function for a single if condition
student$BMI_Class <- ifelse(student$BMI<19.0, "Underweight", "Healthy")</pre>
head(student, n=5)
               Sex Age Height Weight
##
       Name
                                         BMI
                                               BMI Class
              Male 14
                         69.0 112.5 16.61153 Underweight
## 1 Alfred
## 2
      Alice Female 13
                        56.5 84.0 18.49855 Underweight
## 3 Barbara Female 13
                        65.3 98.0 16.15679 Underweight
## 4
      Carol Female 14
                         62.8 102.5 18.27090 Underweight
## 5
      Henry Male 14 63.5 102.5 17.87030 Underweight
```

ifelse()

3.3 Create a new variable in a data set using mathematical functions applied to existing variables in the data set.

Using the log() function, the exp() function, the sqrt() function, and the abs() function.

```
student$LogWeight <- log(student$Weight)</pre>
student$ExpAge <- exp(student$Age)</pre>
student$SqrtHeight <- sqrt(student$Height)</pre>
student$BMI Neg <- ifelse(student$BMI < 19.0, -student$BMI, student$BMI)</pre>
student$BMI_Pos <- abs(student$BMI_Neg)</pre>
# Create a boolean variable
student$BMI Check <- (student$BMI == student$BMI Pos)</pre>
head(student, n=5)
##
        Name
               Sex Age Height Weight
                                          BMI
                                                 BMI Class LogWeight
## 1 Alfred
              Male 14 69.0 112.5 16.61153 Underweight 4.722953
      Alice Female 13
## 2
                          56.5 84.0 18.49855 Underweight 4.430817
## 3 Barbara Female 13
                          65.3 98.0 16.15679 Underweight 4.584967
      Carol Female 14
                         62.8 102.5 18.27090 Underweight 4.629863
## 4
## 5
              Male 14
                         63.5 102.5 17.87030 Underweight 4.629863
      Henry
        ExpAge SqrtHeight BMI Neg BMI Pos BMI Check
##
## 1 1202604.3 8.306624 -16.61153 16.61153
                                                  TRUE
## 2 442413.4 7.516648 -18.49855 18.49855
                                                  TRUE
## 3 442413.4 8.080842 -16.15679 16.15679
                                                  TRUE
## 4 1202604.3 7.924645 -18.27090 18.27090
                                                  TRUE
## 5 1202604.3 7.968689 -17.87030 17.87030
                                                  TRUE
```

3.4 Drop variables from a data set.

```
Sex Age Height Weight
                                         BMI
       Name
                                              BMI Class
## 1
                        69.0 112.5 16.61153 Underweight
     Alfred
              Male
                   14
## 2
      Alice Female
                   13
                        56.5
                               84.0 18.49855 Underweight
## 3 Barbara Female 13
                               98.0 16.15679 Underweight
                        65.3
## 4
      Carol Female 14
                        62.8 102.5 18.27090 Underweight
## 5
      Henry Male 14
                        63.5 102.5 17.87030 Underweight
```

3.5 Sort a data set by a variable.

a) Sort data set by a continuous variable.

```
student <- student[order(student$Age), ]</pre>
# Notice that R uses a stable sorting algorithm by default
head(student, n=5)
##
        Name
                Sex Age Height Weight
                                           BMI
                                                 BMI Class
## 11 Joyce Female 11
                          51.3
                                 50.5 13.49000 Underweight
## 18 Thomas
              Male 11
                          57.5
                                 85.0 18.07335 Underweight
## 6
              Male 12
                          57.3
                                 83.0 17.77150 Underweight
      James
## 7
        Jane Female 12
                          59.8
                                 84.5 16.61153 Underweight
## 10
       John
              Male 12
                          59.0
                                99.5 20.09437
                                                   Healthy
```

b) Sort data set by a categorical variable.

```
student <- student[order(student$Sex), ]</pre>
# Notice that the data is now sorted first by Sex and then within Sex by Age
head(student, n=5)
                 Sex Age Height Weight
##
         Name
                                            BMI
                                                  BMI Class
## 11
        Joyce Female 11
                           51.3
                                  50.5 13.49000 Underweight
## 7
         Jane Female 12
                           59.8
                                  84.5 16.61153 Underweight
## 13 Louise Female 12
                           56.3
                                  77.0 17.07770 Underweight
        Alice Female 13
                           56.5
                                  84.0 18.49855 Underweight
## 2
## 3 Barbara Female 13
                         65.3
                                  98.0 16.15679 Underweight
```

3.6 Compute descriptive statistics of continuous variables, grouped by a categorical variable.

```
# Notice the syntax of Age, Height, Weight, and BMI as a function of Sex aggregate(cbind(Age, Height, Weight, BMI) ~ Sex, student, mean)

## Sex Age Height Weight BMI

## 1 Female 13.22222 60.58889 90.11111 17.05104

## 2 Male 13.40000 63.91000 108.95000 18.59424
```

3.7 Add a new row to the bottom of a data set.

```
# Look at the tail of the data currently
tail(student, n=5)

## Name Sex Age Height Weight BMI_BMI_Class
## 1 Alfred Male 14 69.0 112.5 16.61153 Underweight
## 5 Henry Male 14 63.5 102.5 17.87030 Underweight
```

```
## 17 Ronald Male 15 67.0 133.0 20.82847
                                                Healthy
## 19 William Male 15
                        66.5 112.0 17.80451 Underweight
## 15 Philip Male 16 72.0 150.0 20.34144
                                                Healthy
# rbind.data.frame() function binds two data frames together by rows
student <- rbind.data.frame(student, data.frame(Name='Jane', Sex = 'F', Age =</pre>
14,
                                              Height = 56.3, Weight = 77.0,
                                              BMI = 17.077695
                                              BMI Class = 'Underweight'))
tail(student, n=5)
         Name Sex Age Height Weight
##
                                         BMI
                                               BMI Class
## 5
        Henry Male 14 63.5 102.5 17.87030 Underweight
                         67.0 133.0 20.82847
       Ronald Male 15
## 17
                                                 Healthy
## 19 William Male 15
                         66.5 112.0 17.80451 Underweight
## 15
       Philip Male
                    16
                         72.0 150.0 20.34144
                                                 Healthy
## 110
         Jane F 14
                         56.3 77.0 17.07769 Underweight
```

3.8 Create a user defined function and apply it to a variable in the data set to create a new variable in the data set.

```
toKG <- function(lb) {</pre>
 return(0.45359237 * 1b)
}
student$Weight_KG <- toKG(student$Weight)</pre>
head(student, n=5)
##
                Sex Age Height Weight
                                                 BMI Class Weight KG
                                           BMI
         Name
## 11
        Joyce Female 11
                          51.3
                                 50.5 13.49000 Underweight 22.90641
## 7
        Jane Female 12
                          59.8
                                 84.5 16.61153 Underweight
                                                            38.32856
## 13 Louise Female 12
                          56.3
                                 77.0 17.07770 Underweight
                                                            34.92661
       Alice Female 13
                          56.5
                                 84.0 18.49855 Underweight
## 2
                                                            38.10176
## 3 Barbara Female 13
                          65.3
                                 98.0 16.15679 Underweight
                                                            44.45205
```

4 More Advanced Data Wrangling

4.1 Drop observations with missing information.

```
# Notice the use of the fish data set because it has some missing
# observations
fish <- read.csv('/Users/fish.csv')

# First sort by Weight, requesting those with NA for Weight first
fish <- fish[order(fish$Weight, na.last=FALSE), ]
head(fish, n=5)</pre>
```

```
Species Weight Length1 Length2 Length3 Height Width
## 14
         Bream
                         29.5
                                 32.0
                   NA
                                         37.3 13.9129 5.0728
                  0.0
                         19.0
                                 20.5
## 41
         Roach
                                         22.8 6.4752 3.3516
## 73
                  5.9
                          7.5
                                  8.4
                                          8.8 2.1120 1.4080
         Perch
         Smelt
## 146
                  6.7
                          9.3
                                  9.8
                                         10.8 1.7388 1.0476
## 148
         Smelt
                  7.0
                         10.1
                                 10.6
                                         11.6 1.7284 1.1484
new fish <- na.omit(fish)</pre>
head(new fish, n=5)
##
       Species Weight Length1 Length2 Length3 Height Width
## 41
         Roach
                  0.0
                         19.0
                                 20.5
                                         22.8 6.4752 3.3516
## 73
         Perch
                  5.9
                          7.5
                                  8.4
                                          8.8 2.1120 1.4080
## 146
         Smelt
                  6.7
                          9.3
                                  9.8
                                         10.8 1.7388 1.0476
## 148
         Smelt
                  7.0
                         10.1
                                 10.6
                                         11.6 1.7284 1.1484
                  7.5
                                         11.6 1.9720 1.1600
## 147
        Smelt
                         10.0
                                 10.5
```

4.2 Merge two data sets together on a common variable.

a) First, select specific columns of a data set to create two smaller data sets.

```
# Notice the use of the student data set again, however we want to reload
# it without the changes we've made previously
student <- read.csv('/Users/class.csv')</pre>
student1 <- subset(student, select=c(Name, Sex, Age))</pre>
head(student1, n=5)
##
        Name Sex Age
## 1 Alfred
               M 14
## 2
       Alice
               F
                  13
## 3 Barbara
                  13
## 4
                  14
       Carol
               M 14
## 5
       Henry
student2 <- subset(student, select=c(Name, Height, Weight))</pre>
head(student2, n=5)
##
        Name Height Weight
## 1 Alfred
               69.0 112.5
## 2
               56.5
       Alice
                      84.0
## 3 Barbara
               65.3
                      98.0
## 4
       Carol
               62.8 102.5
## 5
               63.5 102.5
       Henry
```

b) Second, we want to merge the two smaller data sets on the common variable.

```
new <- merge(student1, student2)
head(new, n=5)

## Name Sex Age Height Weight
## 1 Alfred M 14 69.0 112.5</pre>
```

```
## 2
     Alice
             F 13
                    56.5
                          84.0
## 3 Barbara
               13
                    65.3
                          98.0
## 4
      Carol
             F
               14
                    62.8 102.5
                    63.5 102.5
## 5
             M 14
      Henry
```

c) Finally, we want to check to see if the merged data set is the same as the original data set.

```
all.equal(student, new)
## [1] TRUE
merge()
```

4.3 Merge two data sets together by index number only.

a) First, select specific columns of a data set to create two smaller data sets.

```
newstudent1 <- subset(student, select=c(Name, Sex, Age))</pre>
head(newstudent1, n=5)
##
        Name Sex Age
## 1 Alfred
              M 14
## 2
      Alice
              F 13
## 3 Barbara
              F 13
## 4
      Carol
             F 14
## 5
             M 14
      Henry
newstudent2 <- subset(student, select=c(Height, Weight))</pre>
head(newstudent2, n=5)
##
    Height Weight
## 1
      69.0 112.5
## 2
      56.5
             84.0
## 3
      65.3
            98.0
      62.8 102.5
## 4
## 5
      63.5 102.5
```

b) Second, we want to join the two smaller data sets.

```
new2 <- cbind(newstudent1, newstudent2)</pre>
head(new2, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred M 14
                     69.0 112.5
      Alice
                     56.5
                            84.0
## 2
              F 13
## 3 Barbara
              F
                13
                     65.3
                            98.0
## 4
      Carol
            F 14
                     62.8 102.5
## 5
      Henry M 14
                     63.5 102.5
```

c) Finally, we want to check to see if the joined data set is the same as the original data set.

```
all.equal(student, new2)
```

```
## [1] TRUE
```

cbind()

4.4 Create a pivot table to summarize information about a data set.

```
# Notice we are using a new data set that needs to be read into the
# environment
price <- read.csv('/Users/price.csv')</pre>
# The package we need to fix the ACTUAL column (dplyr) must first be
# installed and then called to use
require(dplyr)
# The following code is used to remove the "," and "$" characters from the
# ACTUAL column so that values can be summed
price$ACTUAL <- gsub('[$]', '', price$ACTUAL)</pre>
price$ACTUAL <- as.numeric(gsub(',', '', price$ACTUAL))</pre>
filtered = group by(price, COUNTRY, STATE, PRODTYPE, PRODUCT)
basic sum = summarise(filtered, REVENUE = sum(ACTUAL))
head(basic sum, n=5)
## Source: local data frame [5 x 5]
## Groups: COUNTRY, STATE, PRODTYPE [3]
##
##
  COUNTRY
                       STATE PRODTYPE PRODUCT
                                                REVENUE
##
                                 <fctr> <fctr>
     <fctr>
                       <fctr>
                                                   <dbl>
## 1 Canada British Columbia FURNITURE
                                            BED 197706.6
## 2 Canada British Columbia FURNITURE
                                          SOFA 216282.6
                                OFFICE CHAIR 200905.2
## 3 Canada British Columbia
## 4 Canada British Columbia
                                OFFICE DESK 186262.2
## 5 Canada
             Ontario FURNITURE BED 194493.6
```

dplyr

5 Regression & Modeling

5.1 Pre-process a data set using principal component analysis.

```
# Notice we are using a new data set that needs to be read into the
# environment
iris <- read.csv('/Users/iris.csv')
features <- subset(iris, select = -c(Target))

pca <- prcomp(x = features, scale = TRUE)
print(pca)</pre>
```

```
## Standard deviations:
## [1] 1.7061120 0.9598025 0.3838662 0.1435538
##
## Rotation:
## PC1 PC2 PC3 PC4
## sepal.length..cm. 0.5223716 -0.37231836 0.7210168 0.2619956
## sepal.width..cm. -0.2633549 -0.92555649 -0.2420329 -0.1241348
## petal.length..cm. 0.5812540 -0.02109478 -0.1408923 -0.8011543
## petal.width..cm. 0.5656110 -0.06541577 -0.6338014 0.5235463
```

prcomp()

5.2 Split data into training and testing data and export as a .csv file.

```
# Set the sample size of the training data
smp_size <- floor(0.7 * nrow(iris))

# set.seed() is used to specify a seed for a random integer so that the
# results are reproducible
set.seed(29)
train_ind <- sample(seq_len(nrow(iris)), size = smp_size)

train <- iris[train_ind, ]
test <- iris[-train_ind, ]

write.csv(train, file = "/Users/iris_train.csv")
write.csv(test, file = "/Users/iris_test.csv")</pre>
```

sample()

5.3 Fit a logistic regression model.

```
# Notice we are using a new data set that needs to be read into the
# environment
tips <- read.csv('/Users/tips.csv')</pre>
# The following code is used to determine if the individual left more
# than a 15% tip
tips$fifteen <- 0.15 * tips$total bill
tips$greater15 <- ifelse(tips$tip > tips$fifteen, 1, 0)
# Notice the syntax of greater15 as a function of total_bill
reg <- glm(greater15 ~ total bill, data = tips, family =
"binomial"(link='logit'))
summary(reg)
##
## Call:
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
##
       data = tips)
##
```

```
## Deviance Residuals:
##
      Min 10 Median
                                 3Q
                                        Max
## -1.6757 -1.1766 0.8145
                             1.0145
                                     2.0774
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.64772 0.35467 4.646 3.39e-06 ***
## total bill -0.07248 0.01678 -4.319 1.57e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 335.48 on 243 degrees of freedom
## Residual deviance: 313.74 on 242 degrees of freedom
## AIC: 317.74
##
## Number of Fisher Scoring iterations: 4
```

glm()

5.4 Fit a linear regression model on training data and assess against testing data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/tips_train.csv')
test <- read.csv('/Users/tips_test.csv')

# Fit a linear regression model of tip by total_bill on the training data
m <- lm(tip ~ total_bill, data = train)

# Predict the tip based on the total_bill given in the testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$tip_hat = predict(m, newdata = test)

# Compute the squared difference between predicted tip and actual tip
prediction$diff <- (prediction$tip_hat - test$tip)**2

# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$diff)
print(mean_sq_error)

## [1] 1.087594</pre>
```

5.5 Fit a decision tree model on training data and assess against testing data.

- a) Fit a decision tree model on training data and do not prune the model before assessing against testing data.
- i. Assess the model against the training data, plot the tree, and determine variable importance.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/breastcancer_train.csv')</pre>
test <- read.csv('/Users/breastcancer test.csv')</pre>
# The package we need to fit a tree model (tree) must first be
# installed and then called to use
library(tree)
# The "." character tells the model to use all variables except the response
# variabe (Target)
treeMod <- tree(Target ~ ., data = train)</pre>
# Prediction on training data
out <- predict(treeMod)</pre>
out <- unname(out)</pre>
# If the prediction probability is less than 0.5, classify this as a 0
# and otherwise classify as a 1. This isn't the best method -- a better
# method would be randomly assigning a 0 or 1 when a probability of 0.5
# occurrs, but this insures that results are consistent.
pred.response <- ifelse(out < 0.5, 0, 1)</pre>
# Determine how many were correctly classified
correct <- (train$Target == pred.response)</pre>
table(correct)
## correct
## FALSE TRUE
      12
           386
# Plot the decision tree
plot(treeMod)
text(treeMod)
```



```
# Determine variable importance
summary(treeMod)
##
## Regression tree:
## tree(formula = Target ~ ., data = train)
## Variables actually used in tree construction:
## [1] "X23" "X27" "X1" "X28" "X4"
## Number of terminal nodes: 6
## Residual mean deviance: 0.02688 = 10.54 / 392
## Distribution of residuals:
       Min. 1st Ou.
                       Median
                                   Mean 3rd Qu.
                                                      Max.
## -0.97820 -0.01575 0.02183 0.00000 0.02183 0.98430
ii. Assess the model against the testing data.
# Prediction on testing data
out <- predict(treeMod, test)</pre>
out <- unname(out)</pre>
pred.response <- ifelse(out < 0.5, 0, 1)</pre>
# Determine how many were correctly classified
correct <- (test$Target == pred.response)</pre>
table(correct)
```

```
## correct
## FALSE TRUE
## 12 159
```

b) Fit a decision tree model on training data and prune the model before assessing against testing data.

i. Assess the model against the training data, plot the tree, and determine variable importance.

```
treeMod <- tree(Target ~ ., data = train)

# Run the cross validation to determine where to prune
cvTree <- cv.tree(treeMod, rand = c(1,0), FUN = prune.tree)

# Plot to see where to prune
plot(cvTree)</pre>
```



```
# Set size corresponding to lowest value in below plot
treePrunedMod <- prune.tree(treeMod, best = 4)

# Prediction on training data
out <- predict(treePrunedMod)</pre>
```

```
out <- unname(out)

pred.response <- ifelse(out < 0.5, 0, 1)

# Determine how many were correctly classified
correct <- (train$Target == pred.response)
table(correct)

## correct
## FALSE TRUE
## 17 381

# Plot the decision tree
plot(treePrunedMod)
text(treePrunedMod)</pre>
```



```
ii. Assess the model against the testing data.
# Prediction on testing data
out <- predict(treePrunedMod, test)
out <- unname(out)
pred.response <- ifelse(out < 0.5, 0, 1)
# Determine how many were correctly classified</pre>
```

```
correct <- (test$Target == pred.response)
table(correct)

## correct
## FALSE TRUE
## 8 163</pre>
```

tree

5.6 Fit a random forest classification model on training data and assess against testing data.

a) Build a model, determine variable importance, and assess the model against the training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/iris train.csv')</pre>
test <- read.csv('/Users/iris_test.csv')</pre>
# The package we need to fit a random forest model (randomForest) must
# first be installed and then called to use
require(randomForest)
set.seed(29)
fit <- randomForest(as.factor(Target) ~ ., data = train)</pre>
# Determine variable importance
importance(fit)
##
                      MeanDecreaseGini
## sepal.length..cm.
                             7.063303
## sepal.width..cm.
                             1.680818
                           30.229582
## petal.length..cm.
## petal.width..cm.
                            30.288231
# Prediction on training data
Prediction <- predict(fit, train)</pre>
Prediction <- unname(Prediction)</pre>
# Determine how many were correctly classified
correct <- (train$Target == Prediction)</pre>
table(correct)
## correct
## TRUE
## 105
```

b) Assess the model against the testing data.

```
# Prediction on testing data
Prediction <- predict(fit, test)</pre>
```

```
Prediction <- unname(Prediction)

# Determine how many were correctly classified
correct <- (test$Target == Prediction)
table(correct)

## correct
## FALSE TRUE
## 4 41</pre>
```

randomForest

5.7 Fit a random forest regression model on training data and assess against testing data.

a) Build a model and assess the model against the training data.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/tips_train.csv')
test <- read.csv('/Users/tips_test.csv')

set.seed(29)

fit <- randomForest(tip ~ total_bill, data = train)

# Prediction on training data
Prediction <- predict(fit, train)
Prediction <- unname(Prediction)

# Determine mean squared error
diff <- (train$tip - Prediction)**2
mean(diff)

## [1] 0.349471</pre>
```

b) Assess the model against the testing data.

```
# Prediction on testing data
Prediction <- predict(fit, test)
Prediction <- unname(Prediction)

# Determine mean squared error
diff <- (test$tip - Prediction)**2
mean(diff)

## [1] 1.237201</pre>
```

randomForest

5.8 Fit a gradient boosting model on training data and assess against testing data.

a) Build a model and assess the model against the training data.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/breastcancer_train.csv')</pre>
test <- read.csv('/Users/breastcancer test.csv')</pre>
# The package we need to fit a gradient boosting model (qbm) must first
# be installed and then called to use
require(gbm)
set.seed(29)
# distribution = "bernoulli" is appropriate when there are only 2
# unique values
# n.trees = total number of trees to fit which is analogous to the number
# of iterations
# shrinkage = learning rate or step-size reduction, whereas a lower
# Learning rate requires more iterations
# n.minobsinnode = minimum number of observations in the trees terminal nodes
fit <- gbm(Target ~ ., distribution = "bernoulli", data = train,
           n.trees = 2500,
           shrinkage = .01, n.minobsinnode = 20)
# Prediction on training data
gbmTrainPredictions <- predict(object = fit, newdata = train, type =</pre>
"response",
                                n.trees = 2500)
pred <- ifelse(gbmTrainPredictions < 0.5, 0, 1)</pre>
# Determine how many were correctly classified
correct <- (pred == train$Target)</pre>
table(correct)
## correct
## TRUE
## 398
```

b) Assess the model against the testing data.

```
correct <- (pred == test$Target)
table(correct)

## correct
## FALSE TRUE
## 5 166</pre>
```

5.9 Fit a support vector classification model.

a) Build a model and assess the model against the training data.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/breastcancer_train.csv')</pre>
test <- read.csv('/Users/breastcancer_test.csv')</pre>
# The package we need to fit an svm model (e1071) must first
# be installed and then called to use
library(e1071)
## Warning: package 'e1071' was built under R version 3.3.2
# Fit a support vector classification model
model <- svm(Target ~ ., train, type = 'C-classification', kernel = 'linear')</pre>
# Evaluation on training data
predictedY <- predict(model, train)</pre>
prediction <- data.frame(matrix(ncol = 0, nrow = nrow(train)))</pre>
prediction$predY <- unname(predictedY)</pre>
# Determine how many were correctly classified
prediction$actual <- train$Target</pre>
prediction$correct <- (prediction$predY == prediction$actual)</pre>
table(prediction$correct)
##
## FALSE TRUE
      6 392
```

b) Assess the model against the testing data.

```
# Evaluation on testing data
predictedY <- predict(model, test)
prediction <- data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY <- unname(predictedY)

# Determine how many were correctly classified
prediction$actual <- test$Target
prediction$correct <- (prediction$predY == prediction$actual)
table(prediction$correct)</pre>
```

```
##
## FALSE TRUE
## 5 166
```

5.10 Fit a support vector regression model.

a) Generate random data based on a sine curve.

```
set.seed(29)
# Generate the time variable
t <- seq(from = 0, to = 0.5*pi, ,length.out=100)

# Generate the sine curve with uniform noise
y1 <- 5*sin(3*t) + runif(100)

# Create a data frame for the generated data
random_data <- data.frame(matrix(ncol=0, nrow = 100))
random_data$X <- t
random_data$Y <- y1

# Plot the generated data
plot(t,y1)</pre>
```


seq()

b) Fit a support vector regression model to the data.

```
# The package we need to fit an svm model (e1071) must first
# be installed and then called to use
library(e1071)

model <- svm(Y ~ X, random_data)
predictedY <- predict(model, random_data)
plot.new()
plot(random_data$X, random_data$Y)
points(random_data$X, predictedY, col = "red", pch = 4)</pre>
```



```
prediction = data.frame(matrix(ncol = 0, nrow = nrow(random_data)))
prediction$predY <- predictedY
prediction$actual <- random_data$Y
prediction$sq_diff <- (prediction$predY - prediction$actual)**2
print(mean(prediction$sq_diff))
## [1] 0.08052554</pre>
```

svm() points()

c) Fit a linear regression model to the data.

```
linMod <- lm(Y ~ X, data = random_data)

pred_lin <- predict(linMod, newdata = random_data)
plot.new()
plot(random_data$X, random_data$Y)
points(random_data$X, pred_lin, col = "red", pch = 4)</pre>
```



```
prediction = data.frame(matrix(ncol = 1, nrow = nrow(random_data)))
prediction$predY <- pred_lin
prediction$actual <- random_data$Y
prediction$sq_diff <- (prediction$predY - prediction$actual)**2
print(mean(prediction$sq_diff))
## [1] 4.904294</pre>
```

lm()

6 Model Evaluation & Selection

6.1 Evaluate the accuracy of regression models.

```
a) Evaluation on training data.
```

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/tips_train.csv')
test <- read.csv('/Users/tips_test.csv')

# 1. Linear Regression Model
linMod <- lm(tip ~ ., data = train)

# Evaluation on training data
pred_lin <- predict(linMod, newdata = train)

# Determine coefficient of determination score
r2_lin <- 1 - ( (sum((train$tip - pred_lin)**2)) / (sum((train$tip -
mean(train$tip))**2)))
print(paste0("Linear regression model r^2 score (coefficient of
determination): ", r2_lin))

## [1] "Linear regression model r^2 score (coefficient of determination):
0.496730342166266"</pre>
```

--

```
# 2. Random Forest Regression Model
set.seed(29)
rfMod <- randomForest(tip ~ ., data = train)

# Evaluation on training data
pred_rf <- predict(rfMod, train)
pred_rf <- unname(pred_rf)

# Determine coefficient of determination score
r2_rf <- 1 - ( (sum((train$tip - pred_rf)**2)) / (sum((train$tip -
mean(train$tip))**2)) )
print(paste0("Random forest regression model r^2 score (coefficient of
determination): ", r2_rf))

## [1] "Random forest regression model r^2 score (coefficient of
determination): 0.534405284634815"</pre>
```

b) Evaluation on testing data.

```
# 1. Linear Regression Model (linMod)
# Evaluation on testing data
pred_lin <- predict(linMod, newdata = test)</pre>
```

```
# Determine coefficient of determination score
r2_lin = 1 - ( (sum((test$tip - pred_lin)**2)) / (sum((test$tip -
mean(test$tip))**2)) )
print(paste0("Linear regression model r^2 score (coefficient of
determination): ", r2_lin))
## [1] "Linear regression model r^2 score (coefficient of determination):
0.270944937190937"
```

--

```
# 2. Random Forest Regression Model (rfMod)

# Evaluation on testing data
pred_rf <- predict(rfMod, test)
pred_rf <- unname(pred_rf)

# Determine coefficient of determination score
r2_rf = 1 - ( (sum((test$tip - pred_rf)**2)) / (sum((test$tip -
mean(test$tip))**2)) )
print(paste0("Random forest regression model r^2 score (coefficient of
determination): ", r2_rf))

## [1] "Random forest regression model r^2 score (coefficient of
determination): 0.330167582821381"</pre>
```

The formula used here for the coefficient score is based off the Python skearn formula for r2_score. For more information about model assessment in R, please review information about the R package caret.

6.2 Evaluate the accuracy of classification models.

a) Evaluation on training data.

```
# Notice we are re-using data sets but it is good to re-read the original
version
# back into the environment
train <- read.csv('/Users/breastcancer_train.csv')
test <- read.csv('/Users/breastcancer_test.csv')
set.seed(29)
# 1. Decision Tree Classification Model
treeMod <- tree(Target ~ ., data = train)
# Evaluation on training data
out <- predict(treeMod)
out <- unname(out)
pred_tree <- ifelse(out < 0.5, 0, 1)
# Determine accuracy score</pre>
```

```
accuracy_tree <- (1/nrow(train)) * sum(as.numeric(pred_tree == train$Target))</pre>
print(paste0("Decision tree model accuracy: ", accuracy_tree))
## [1] "Decision tree model accuracy: 0.969849246231156"
# 2. Random Forest Classification Model
rfMod <- randomForest(as.factor(Target) ~ ., data = train)</pre>
# Evaluation on training data
pred_rf <- predict(rfMod, train)</pre>
pred_rf <- unname(pred_rf)</pre>
# Determine accuracy score
accuracy_rf <- (1/nrow(train)) * sum(as.numeric(pred_rf == train$Target))</pre>
print(paste0("Random forest model accuracy: ", accuracy_rf))
## [1] "Random forest model accuracy: 1"
# 3. Gradient Boosting Classification Model
gbmMod <- gbm(Target ~ ., distribution = "bernoulli", data = train,</pre>
           n.trees = 2500,
           shrinkage = .01, n.minobsinnode = 20)
# Evaluation on training data
pred gbm <- predict(object = gbmMod, newdata = train, type = "response",</pre>
                                n.trees = 2500)
pred_gbm <- ifelse(pred_gbm < 0.5, 0, 1)</pre>
# Determine accuracy score
accuracy gbm <- (1/nrow(train)) * sum(as.numeric(pred gbm == train$Target))</pre>
print(paste0("Gradient boosting model accuracy: ", accuracy_gbm))
## [1] "Gradient boosting model accuracy: 1"
b) Evaluation on testing data.
# 1. Decision Tree Classification Model (treeMod)
# Evaluation on testing data
out <- predict(treeMod, test)</pre>
out <- unname(out)</pre>
pred_tree <- ifelse(out < 0.5, 0, 1)</pre>
# Determine accuracy score
accuracy_tree <- (1/nrow(test)) * sum(as.numeric(pred_tree == test$Target))</pre>
print(paste0("Decision tree model accuracy: ", accuracy_tree))
## [1] "Decision tree model accuracy: 0.929824561403509"
```

--

```
# 2. Random Forest Classification Model (rfMod)
# Evaluation on testing data
pred_rf <- predict(rfMod, test)</pre>
pred rf <- unname(pred rf)</pre>
# Determine accuracy score
accuracy rf <- (1/nrow(test)) * sum(as.numeric(pred rf == test$Target))</pre>
print(paste0("Random forest model accuracy: ", accuracy_rf))
## [1] "Random forest model accuracy: 0.970760233918129"
# 3. Gradient Boosting Classification Model (qbmMod)
# Evaluation on testing data
pred gbm <- predict(object = gbmMod, newdata = test, type = "response",</pre>
                                n.trees = 2500)
pred_gbm <- ifelse(pred_gbm < 0.5, 0, 1)</pre>
# Determine accuracy score
accuracy gbm <- (1/nrow(test)) * sum(as.numeric(pred gbm == test$Target))</pre>
print(paste0("Gradient boosting model accuracy: ", accuracy gbm))
## [1] "Gradient boosting model accuracy: 0.970760233918129"
```

The formula used here for the accuracy score is based off the Python skearn formula for accuracy_score. For more information about model assessment in R, please review information about the R package caret.

6.3 Evaluation with cross validation.

a) KFold

```
# Notice we are using a new data set that needs to be read into the
# environment
breastcancer = read.csv('/Users/breastcancer.csv')

# The packages we need (caret & randomForest) must first
# be installed and then called to use
library(caret)
library(randomForest)

# Create the 5 cross validation folds
train_control <- trainControl(method = "cv", number = 5, savePredictions =
TRUE)

# Convert Target into a factor variable for the random forest model</pre>
```

```
breastcancer$Target <- factor(breastcancer$Target, levels = c(1,0),</pre>
                       labels = c(1, 0)
# Train the model, using the 5 cross validation folds
model <- train(Target~., data = breastcancer, trControl = train control,</pre>
method = "rf")
# Assess the accuracy of the model
tab <- model pred
tab$correct <- (tab$pred == tab$obs)</pre>
tab$correct num <- ifelse(tab$correct=="TRUE", 1, 0)</pre>
aggdata <- unname(as.matrix(aggregate(correct num ~ Resample, tab, sum)))</pre>
aggdata <- as.numeric(aggdata[,2])</pre>
counts <- unname(table(tab$Resample))</pre>
accuracy \leftarrow c(0,0,0,0,0)
for (i in 1:5) {
  accuracy[i] <- aggdata[i]/counts[i]</pre>
}
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 95.9% +/- 1.26%"
caret
b) ShuffleSplit
# Notice we are using a new data set that needs to be read into the
# environment
breastcancer = read.csv('/Users/breastcancer.csv')
# The package we need to create a data partition (caret) must first
# be installed and then called to use
require(caret)
require(randomForest)
set.seed(29)
X = subset(breastcancer, select = -c(Target))
Y = breastcancer$Target
# Create the data partition
trainIndex <- createDataPartition(Y, times = 5, p = 0.7, list = FALSE)
accuracy \leftarrow c(0, 0, 0, 0, 0)
```

for (i in 1:5) {

nam <- paste("data_train", i, sep ="")
assign(nam, breastcancer[trainIndex[,i],])
nam <- paste("data_test", i, sep ="")</pre>

assign(nam, breastcancer[-trainIndex[,i],])

```
data train <- list(data train1, data train2, data train3, data train4,
data train5)
data test <- list(data test1, data test2, data test3, data test4, data test5)
# Train the model and assess the accuracy
for (i in 1:5) {
  fit <- randomForest(as.factor(Target) ~ ., data = data_train[[i]])</pre>
  Prediction <- predict(fit, data test[[i]])</pre>
  Prediction <- unname(Prediction)</pre>
  correct <- (data_test[[i]]$Target == Prediction)</pre>
  counts <- unname(table(correct))</pre>
  accuracy[i] <- counts[2] / sum(counts)</pre>
}
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 94.24% +/- 1.05%"
createDataPartition
caret
```

Alphabetical Index

caret

caret is an R programming package of tools for training and plotting classification and regression models.

Data Frame

An R Data Frame is a two-dimensional tabular structure with labeled axes (rows and columns), where data observations are represented by rows and data variables are represented by columns.

Dictionary

A dictionary is an associative array which is indexed by keys which map to values. Therefore, a dictionary is an unordered set of key:value pairs where each key is unique. In R, a dictionary can be implemented using a named list. Please see the following example of named list creation and access:

```
student <- read.csv('/Users/class.csv')
values <- student$Age
names(values) <- student$Name
print(values["James"])
## James
## 12</pre>
```

dplyr

dplyr is an R programming package of tools for working with data frame like objects.

gbm

gbm is an R programming package useful for building and analyzing gradient boosting models.

gdata

gdata is an R programming package of tools useful for data manipulation.

List

An R list is a sequence of comma-separated objects that need not be of the same type. Please see the following example of list creation and access:

```
list1 <- list('item1', 102)
print(list1)

## [[1]]
## [1] "item1"

## [[2]]
## [1] 102
print(list1[1])

## [[1]]
## [[1]]</pre>
```

randomForest

randomForest is an R programming package of tools useful for building and analyzing classification and regression random forest models.

rjson

rjson is an R programming package of tools useful for converting R objects into JSON objects, and JSON objects into R objects.

Series/Array

A series is a one-dimensional data frame, which is also called an array in R. Please see the following example of array creation and access:

```
my_array <- c(1, 3, 5, 9)
print(my_array)
## [1] 1 3 5 9
print(my_array[1])
## [1] 1</pre>
```

tree

tree is an R programming package of tools useful for building and analyzing classification and regression decision trees.

For more information on R packages and functions, along with helpful examples, please see R.