

RS-EO: The Redstone Project – Earth Observation Earth Observation Satellite Constellation Mission Design

Hongseok Kim
Undergraduate Student in
UT Austin Aerospace Engineering

Contents

2/22

- I. Mission Design Objective
- II. Earth Observation Concept Design
 - 2.1. Why Constellation?
 - 2.2. Process of Observation
 - 2.3. Observation Mode 1: Wide Area Capture
 - 2.4. Observation Mode 2: Constant Area Capture

III. Data Transmission Concept Design

- 3.1. Communication Payload for Inter Satellite Link
- 3.2. Orbital Visualization of Inter-Satellite Links
- 3.3. Generation of Network Chart
- 3.4. MDP Structure Design
- 3.5. State Transition and Reward Matrix
- 3.6. Policy Iteration and Backward Induction
- 3.7. State Value change for Different no. of GS
- 3.8. State Value Distribution and Routing Result

IV. Future Research Plan

I. Mission Design Objective

3/22

Object 1: Earth Observation

- Maximize Observability for certain Area for surveillance (Ex: forest fire detection in California Area)
- Observability for two dimensions: Revisit Time Optimization or Ground Area Coverage Time Minimization

Object 2: Data Transmission

- Minimize Data Transmission Time duration from Imagery Data Acquisition to Ground Station
- Inter-Satellite Link Technology and Data Routing Process Demonstration

Object 3: Design Autonomous Decision Process for Satellites

Maximize imagery data generation and minimize the time duration for data transmission

II. Earth Observation Concept Design

Electronically Steerable Antenna

Observation Modes for beam steering by Steerable Phase Array Antenna (a) Standard – Stripmap (b) Wide Scan mode (C) Video imaging mode

[Characteristic of Earth Observation Payload]

- The SAR satellite is equipped with electronically beam steerable antenna, which can modify the view angle instead of tilting satellite body.
- 2. Also, satellite can operate in 3 imaging modes, (a) constant beam tilt angle, (b) moving tilt angle for wide area coverage, and (c) constant area pointing mode for video acquisition.
- 3. We will concentrate on operation mode (a).

II.1 Why Constellation?

Simulation time: 4 Hours, 4 Orbit Planes: RAAN = {0, 45, 90, 135}

1 Satellite Per Orbit

RS-4-1 RS-2-1 RS-3-1

15 Satellites Per Orbit

[Epoch/Orbit Setting]

%Initial Epoch Definition

Orbit_propagator = 'SGP4';

Year = 2025;

```
Month = 3;
Day = 21;
Hour = 1;
Minute = 0;
Seconds = 0;

% Duration and Steptime
duration = hours(4);
steptime = 15;

% Initial Orbit Settings
Altitude = 600;
SMA = Altitude * 1000 + 6378000;
ecc= 1e-5;
inc = 98;
AOP = 0;
number of SATs = 15;
```

TA = 0:360/number_of_SATs:360-360/number_of_SATs;

- Satellite constellation can achieve 'Global Coverage' Observation in shorter time
- In this simulation, theoretically we can observe whole globe every 4 hours revisit time

II.2 Process of Observation

II.3 Observation Mode 1: Wide Area Capture [1/2]

7/22

- Nadir Pointing
- Calculate Ground Coverage Length for given field of view (FOV) of Satellite

II.3 Observation Mode 1: Wide Area Capture [2/2]

8/22

ground_target = ["Paradise CA", 39.7596, -121.6219, 542] elevation_angle_condition = 45;

Field of View = 10 degrees

Ground Track of RS-3-7~14

Source	Target	StartTime	EndTime	Duration
"RS-3-7"	"Paradise CA"	2025-03-21 02:08:15	2025-03-21 02:09:00	45
"RS-3-8"	"Paradise CA"	2025-03-21 02:01:15	2025-03-21 02:03:00	105
"RS-3-9"	"Paradise CA"	2025-03-21 01:54:45	2025-03-21 01:57:00	135
"RS-3-10"	"Paradise CA"	2025-03-21 01:48:15	2025-03-21 01:50:30	135
"RS-3-11"	"Paradise CA"	2025-03-21 01:42:00	2025-03-21 01:44:15	135
"RS-3-12"	"Paradise CA"	2025-03-21 01:35:45	2025-03-21 01:37:45	120
"RS-3-13"	"Paradise CA"	2025-03-21 01:29:30	2025-03-21 01:31:15	105
"RS-3-14"	"Paradise CA"	2025-03-21 01:23:30	2025-03-21 01:24:30	60

II.4 Observation Mode 2: Constant Area Capture [1/2]

- Roll Angle Tilt Pointing
- Calculate Ground Coverage Length for given field of view (FOV) of Satellite

 $\angle \mathsf{AFI} = \phi \; (\mathsf{Tilted Angle}), \; \angle \mathsf{IFQ} = \theta, \; \angle \mathsf{POJ} = \alpha, \; \angle \mathsf{OPF} = \beta, \; \angle \mathsf{HOJ} = \gamma, \; \angle \mathsf{OJF} = \delta$ $\overline{\mathsf{FI}} = f, \; \overline{\mathsf{FH}} = h, \; \tan \theta = \frac{x}{f}, \; \overline{\mathsf{AF}} = \frac{\overline{\mathsf{IF}}}{\cos \phi} \; \overline{\mathsf{PJ}} = y$ $1) \; \overline{\mathsf{PH}}$ $\mathsf{From} \; \triangle \mathsf{FOP} \; \Rightarrow \; \angle \mathsf{HFP} = \theta + \phi, \; \overline{\mathsf{FO}} = h + r, \; \overline{\mathsf{PO}} = r$ $\frac{r}{\sin(\theta + \phi)} = \frac{h + r}{\sin \beta} \Rightarrow \sin \beta = \frac{h + r}{r} \sin(\theta + \phi)$ $\beta = \sin^{-1} \left\{ \frac{h + r}{r} \sin(\theta + \phi) \right\}, \; \gamma + \alpha = \pi - \beta - \theta - \phi$ $2) \; \overline{\mathsf{HJ}}$ $\mathsf{From} \; \triangle \mathsf{FOJ} \; \Rightarrow \; \angle \mathsf{HFJ} = \phi, \; \overline{\mathsf{FO}} = h + r, \; \overline{\mathsf{JO}} = r$ $\frac{r}{\sin \phi} = \frac{h + r}{\sin \delta} \Rightarrow \; \sin \delta = \frac{h + r}{r} \sin \phi$ $\delta = \sin^{-1} \left\{ \frac{h + r}{r} \sin \phi \right\}, \; \gamma = \pi - \phi - \delta$ $\Rightarrow \alpha = (\pi - \beta - \theta - \phi) - (\pi - \phi - \delta) = \delta - \beta - \theta$

Input

 θ : Half of FOV

 ϕ : Satellite off point Roll Angle

h: altitude of the satellite

r : radius of Earth

 \overrightarrow{r} , \overrightarrow{v} of satellite

 \Rightarrow we use \overrightarrow{v} for determine direction of \overrightarrow{JP}

Assumption: Earth is perfect sphere

Output

Location of J, P, P'

Length of $\overline{P'J}$, \overline{PJ} , $\overline{P'P}$

II.4 Observation Mode 2: Constant Area Capture [2/22]

		RS-3-7	RS-3-8	RS-3-9	RS-3-10	RS-3-11	RS-3-12	RS-3-13	RS-3-14
1	Time of Minimum Range	'02:08:37'	'02:02:14'	'01:55:50'	'01:49:28'	'01:43:05'	'01:36:43'	'01:30:21'	'01:24:00'
2	SAT Latitude (deg)	38.9176	39.1360	39.3676	39.6237	39.8985	40.1914	40.5086	40.8444
3	SAT Longitude(deg)	-127.0072	-125.4593	-123.9160	-122.3804	-120.8511	-119.3278	-117.8126	-116.3041
4	SAT Altitude(km)	602.4325	602.4437	602.4567	602.4714	602.4869	602.5042	602.5236	602.5459
5	Minimum Range (km)	779.4538	697.7765	637.8891	605.9707	606.1053	637.8868	696.6011	775.7521
6	SAT Roll Angle(deg)	37.3335	28.8720	18.4102	6.2905	-6.4607	-18.4757	-28.7823	-37.0905

III. Data Transmission Concept Design

11/22

III.1 Communication Payload for Inter Satellite Link^{2/22}

III.2 Orbital Visualization of Inter-Satellite Links

13/22

III.3 Generation of Network Chart

III.4 MDP Structure Design

III.5 State Transition and Reward Matrix

16/22

State Transition Matrix

State Reward Matrix

Transition Structure

- Row: Transmit State (Define Starting States)
- Column: Receive State (Define Available Actions)
- SAT-to-SAT / SAT-to-GS: From Orbit Config
- GS to SAT: Deactivate
- GS to GS: Stay Current State

Reward Structure

- SAT to SAT inside orbit: -1
- SAT to SAT inter-orbit: normalized distance
- · Staying in Current SAT: -2
- SAT to GS: +2
- GS -to GS: 0

III.6 Policy Iteration and Backward Induction

17/22

Take Last Timestep's Information

Policy Iteration for Last Timestep

- 1. Initialization: Initial Policy and State Value $V(s) \in R$ and $\pi(s) \in A(s)$ arbitrarily for all $s \in S$
- 2. Policy Evaluation: Continue until state value converges

State Value :
$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$

3. Policy Improvement: Continue until policy function converges

Action Value :
$$q(s, a) = \sum_{r} p(s', r|s, a)[r(s, a, s') + \gamma V(s')]$$

Policy Function : $\pi(s|a) \stackrel{s,r}{=} \arg \max q(s,a,t)$

Backward Induction for the Other Timesteps

Process: Get state value information of t (V(s)) from t+1 (V(s'))

Action Value : $q(s, a) = \sum_{s', r} p(s', r|s, a)[r(s, a, s') + \gamma V(s')]$

State Value : $V(s) = \max q(s, a)$

Policy Function : $\pi(s|a) = \arg \max q(s, a, t)$

Converged State Value and Policy for Last Timestep

Output:

State Value, Action Value, and Policy Function for each timestep

Take the other Timestep's Information

Policy: 4 -> Value Iteration: 3

III.7 State Value Change for Different no. of GS

18/22

- More GS makes less no. of Value Iteration (Calculation Time) and higher State Value Distribution
- Change of GS contact Status makes rapid change of State Value Distribution
- From timestep 1 ~ 300 we can show ever start state (satellite) can reach to the ground station for both GS settings!

Policy: 4 -> Value Iteration: 3

III.8 State Value Distribution and Routing Result

More Ground Stations Makes higher state value distribution and shorter length of routing path

IV. Future Research Plan

Object 3: Design Autonomous Decision Process for Satellites

- Maximize imagery data generation and minimize the time duration for data transmission
- We will combine the concept of Earth Observation and Data Transmission into one system, design autonomous decision system from given multiple ground target points.
- Given ground target points, satellite constellation system will decide when to capture, how long to capture, and the strategy to transmit the data autonomously

