SHUBHAM SHARMA 18i190002 MSc PhD(OR)

(The preprocessing has been done in Data_preperation.ipynb to make x_train(\mathbf{D}) and x_val(\mathbf{V}) with 80-20 weightage and are saved in .npy format to be used in CNN-GAN code. Many of the images are of size (3, 256, 256). So, if the image have a different size, then those are resized to (2, 256, 256). The links of the following: x_val:

https://drive.google.com/file/d/1-JMyWk-v6eM9xi-ewWikZniM3DyplJpS/view?usp=sharing

netG:

https://drive.google.com/file/d/1iz0m3Lizv0CYxbZF7K_LvmrEoPJNzOcv/view?usp=sharing

netD:

https://drive.google.com/file/d/1-2qU7YnM89bqPtpaZaDq_QzfdWFXDHFb/view?usp=sharing

X train:

https://drive.google.com/file/d/1-BcnSV0zTU-w5HdXBUuFjZ hWUJJ31ol/view?usp=sharing

Part a) The CNN-GAN2.ipynb has the code for CNN-GAN

Part b) The network was trained for 500 epochs with Ir = 1e-4 and adam optimizer with a batch size of 64.

Part c) The CNN-GAN.ipynb has the experiments with Ir rate and batch size using the validation $set(\mathbf{V})$ x_val and the batch_size is chosen to be 64 and the Ir rate is chosen to be 1e-4

Part e) The Objective of discriminator while training The

If we add the objective of discriminator and generator then we get the following plot:

Part f)

Part g)

The generated outputs are not very sharp but still we can see that it has started generating human faces or human like faces. It can be improved with more images in the training of the network.