華中科技大學

数字逻辑实验报告(1)

团队成员:

姓名	班级	学号	贡献百分比

实验部分:实验完成结果、时间			总分	
(亮点、完成、基本完成、未完成)			(实验部分 70% +报告 30%)	
	第一个实验	第二个实验	第三个实验	
检查结果				
检查名次				
检查老师				

报告人:	
实验指导教师:	
报告批阅教师:	

计算机科学与技术学院

20 年 月 日

学生姓名:	学号:	所在班级:
<u> </u>	4 V ·	// E-9-1964

一、实验内容

组合逻辑电路的设计

二、实验目的

- 1. 熟悉 DICE-SEM 数字逻辑实验箱的使用方法;
- 2. 掌握逻辑门功能的测试方法;
- 3. 掌握组合逻辑电路的分析和设计方法;
- 4. 掌握组合逻辑电路的功能测试方法。

三、实验所用组件

型号	数量	备注
74LS00	2	二输入四与非门组件
74LS04	1	单输入 6 非门组件
74LS86	1	二输入四异或门组件
74LS08	1	二输入四与门组件
74LS10	1	三输入三与非门组件
74LS244	1	六总线驱动器, 三态输出、
		非反相数据输出

四、实验要求

1. 一位全加/全减法器的实现(必选)

设计一个全加全减法器,电路有四个输入 M、A、B、和 C_{in} ,两个输出 S 和 C_{o} 。要求如下:

- (1) M=0 时,电路实现加法运算。输入端 A、B、和 C_{in} 分别为被加数、加数和来自低位的进位,输出 S 和 C_{o} 为本位和和向高位的进位;
- (2) M=1 时,电路实现减法运算。输入端 A、B、和 C_{in} 分别为被减数、减数和来自低位的借位,输出 S 和 C_{o} 为本位差和向高位的借位。

2. 舍入与奇偶检测电路的设计(必选)

设计一个舍入与奇偶检测电路,该电路输入为 8421 码,输出为 F_1 和 F_2 。要求如下: F_1 为四舍五入的输出信号, F_2 为奇偶检测输出信号。当电路检测到输入的代码大于或等于(5) $_{10}$ 时,输出 F_{1} =1,否则 F_{1} =0;当输入代码中的 1 的个数为奇数个时,输出 F_2 =1,否则 F_2 =0。

3. 四路选择器的实现(可选)

设计一个四路选择器, 电路有 6 个输入端 A_1 , A_0 , \overline{OE} , D_0 , D_1 , D_2 , D_3 , 一个输出

学生姓名: _____ 学号: _____ 所在班级: _____

端Y。要求如下:

 \overline{OE} 为使能控制端, A_1 , A_0 为数据选择控制端, D_0 , D_1 , D_2 , D_3 为数据输入端。

当 \overline{OE} =1时, 电路不工作, 输出为高阻状态;

当 $\overline{OE} = 0$ 时, 电路工作, 输出Y由A₁, A₀决定, 即:

当 A₁A₀=00 时, Y= D₀;

当 A₁A₀=01 时, Y= D₁;

当 A₁A₀=10 时, Y= D₂;

当 A₁A₀=11 时, Y= D₃。

附:三态、六总线驱动器 74LS244 的管脚图和逻辑表达式如图 1 和表 1 所示。

图 1 74LS244 管脚排列图

表 1 74LS244 真值表

A	\overline{OC}	Y
L(低电平)	L	L
H(高电平)	L	Н
X(任意)	Н	Z(高阻)

741s244 有 2 组、每组四路输入、输出构成。每组有一个控制端 G,由控制端的高或低电平决定该组数据被接通还是断开。

学生姓名: 学号: 所在	在班级:
--------------	------

五、实验方案设计

- 1. 一位全加/全减法器的设计方案
- (A) 建立给定问题的逻辑描述

(B) 求出逻辑函数的最简表达式

学生姓名:	学号:	所在班级:
-------	-----	-------

(C) 选择实验给定的逻辑门进行逻辑函数的变换

(D) 画出逻辑电路图

学生姓名:	
-------	--

- 2. 舍入与奇偶检测电路的设计方案
 - (A) 建立给定问题的逻辑描述

(B) 求出逻辑函数的最简表达式

学生姓名:	学号:	所在班级:
-------	-----	-------

(C) 选择实验给定的逻辑门进行逻辑函数的变换

(D) 画出逻辑电路图

学生姓名:	学号:	所在班级:

- 3. 四路选择器的设计方案
 - (A) 建立给定问题的逻辑描述

(B) 求出逻辑函数的最简表达式

学生姓名:	学号:	所在班级:
-------	-----	-------

(C) 选择实验给定的逻辑门进行逻辑函数的变换

(D) 画出逻辑电路图

学生姓名:	学号:	所在班级:
1 <u> </u>	4	// F-9-966

六、实验结果记录

1. 一位全加/全减法器的结果记录

输入			输出				
A	В	Cin	加法 (M=0)		减法(M=1)		
			S	Co	S	Co	
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

2. 舍入与奇偶检测电路的结果记录

B ₈	B ₄	B ₂	B ₁	\mathbf{F}_2	$\mathbf{F_1}$	B ₈	B ₄	B ₂	B ₁	\mathbf{F}_2	$\mathbf{F_1}$
0	0	0	0			1	0	0	0		
0	0	0	1			1	0	0	1		
0	0	1	0			1	0	1	0		
0	0	1	1			1	0	1	1		
0	1	0	0			1	1	0	0		
0	1	0	1			1	1	0	1		
0	1	1	0			1	1	1	0		
0	1	1	1			1	1	1	1		

3. 四路选择器的结果记录

使能	选择	輸入	数据输入			输出	
\overline{OE}	\mathbf{A}_1	A_0	D_0	\mathbf{D}_1	D_2	D_3	Y
1	d	d	d	d	d	d	
0	0	0	0	d	d	d	
0	0	0	1	d	d	d	
0	0	1	d	0	d	d	
0	0	1	d	1	d	d	
0	1	0	d	d	0	d	
0	1	0	d	d	1	d	
0	1	1	d	d	d	0	_
0	1	1	d	d	d	1	

学生姓名:	学号:	所在班级:
-------	-----	-------

七、实验结果分析

八、思考题

- 1. 化简包含无关条件的逻辑函数时应注意什么?
- 2. 多输出逻辑函数化简时应注意什么?
- 3. 你所设计的电路是否达到最简? 为什么?

九、心得体会

十、意见与建议