

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	

ОТЧЕТ

по Лабораторной работе №1
по курсу «Математическая статистика»
на тему: «Гистограмма и эмпирическая функция
распределения»

Студент группы ИУ7-66Б		Мансуров В. М.
	(Подпись, дата)	(Фамилия И.О.)
Преподаватель		Андреева Т. В.
	(Подпись, дата)	(Фамилия И.О.)

Содержание

1	Задание			
	1.1	Цель работы	3	
	1.2	Содержание работы	3	
2	Теоретическая часть			
	2.1	Формулы для вычисления величин M_{max} , M_{min} , R , $\hat{\mu}$, S^2	4	
	2.2	Эмпирическая плотность и гистограмма	4	
	2.3	Эмпирическая функция распределения	5	
3	Пра	актическая часть	7	
	3.1	Результаты расчетов для выборки из индивидуального вари-		
		анта	7	

1 Задание

1.1 Цель работы

Цель работы: построение гистограммы и эмпирической функции распределения.

1.2 Содержание работы

- 1) Для выборки объёма n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - 1) вычисление максимального значения $M_{\rm max}$ и минимального значения $M_{\rm min}$;
 - 2) размаха R выборки;
 - 3) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - 4) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - 5) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - 6) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2) Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретическая часть

2.1 Формулы для вычисления величин M_{max} , M_{min} , R, $\hat{\mu}$, S^2

Пусть $\vec{x} = (x_1, \dots, x_n)$ — выборка из генеральной совокупности X.

Расположим значения x_1, \dots, x_n в порядке неубывания: $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$.

Последовательность чисел $(x_{(1)},\dots,x_{(n)})$ такую, что $x_{(1)}\leq x_{(2)}\leq\cdots\leq x_{(n)},$ называют вариационным рядом выборки \vec{x}

Минимальное значение выборки рассчитывается по формуле (2.1); максимальное – (2.2). Размах выборки рассчитывается по формуле (2.3); выборочное среднее – (2.4), исправленная выборочная дисперсия – (2.5).

$$M_{\min} = x_{(1)} = \min_{x_i \in \vec{x}} x_i \tag{2.1}$$

$$M_{\min} = x_{(n)} = \max_{x_i \in \vec{x}} x_i$$
 (2.2)

$$R = M_{\text{max}} - M_{\text{min}}. (2.3)$$

$$\hat{\mu}(\vec{x}_n) = \frac{1}{n} \sum_{i=1}^n x_i \tag{2.4}$$

$$S^{2}(\vec{x}_{n}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{\mu})^{2}$$
 (2.5)

2.2 Эмпирическая плотность и гистограмма

Пусть $\vec{x}=(x_1,\ldots,x_n)$ — реализация выборки из генеральной совокупности X, где n — объём данной выборки.

При большом объеме n (n > 50) этой выборки значения x_i группируют в интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}, x_{(n)}]$ делят на m равновеликих промежутков по формуле (2.6):

$$J_i = [x_{(1)} + (i-1) \cdot \Delta, \ x_{(1)} + i \cdot \Delta), i = \overline{1; m-1}$$
 (2.6)

Последний промежуток определяется по формуле (2.7):

$$J_m = [x_{(1)} + (m-1) \cdot \Delta, x_{(n)}]$$
(2.7)

Ширина каждого из таких промежутков определяется по формуле (2.8).

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m} \tag{2.8}$$

Интервальным статистическим рядом называют таблицу 2.1:

Таблица 2.1 – Интервальный статистический ряд

J_1	 J_i	 J_m
n_1	 n_i	 n_m

где n_i – количество элементов выборки \vec{x} , которые принадлежат J_i .

Эмпирической плотностью, отвечающей выборке \vec{x} , называют функцию:

$$\hat{f}(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in J_i, i = \overline{1; m} \\ 0, x \notin J \end{cases}$$
 (2.9)

где J_i – полуинтервал статистического ряда, n_i – количество элементов выборки, входящих в полуинтервал.

Гистограмма – это график эмпирической плотности.

2.3 Эмпирическая функция распределения

Пусть $\vec{x} = (x_1, \dots, x_n)$ — реализация выборки из генеральной совокупности X, где n — объём данной выборки.

Обозначим $n(t, \vec{x})$ – число элементов вектора \vec{x} , которые имеют значения меньше t.

Эмпирической функцией распределения называют функцию $\hat{F}_n: R \to R,$ определенную как:

$$\hat{F}_n(t) = \frac{n(t, \vec{x})}{n} \tag{2.10}$$

3 Практическая часть

3.1 Результаты расчетов для выборки из индивидуального варианта.

Согласно варианту 3, результаты расчетов для выборки приведены на формулах (3.1), (3.2), (3.3), (3.4), (3.5), (3.6).

$$M_{\min} = -0.73$$
 (3.1)

$$M_{\text{max}} = 4.3 \tag{3.2}$$

$$R = 5.03$$
 (3.3)

$$\hat{\mu}(\vec{x}_n) = 1.836 \tag{3.4}$$

$$S^2(\vec{x}_n) = 1.153 \tag{3.5}$$

$$m = 8 \tag{3.6}$$

На рисунке 3.1 представлены гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с выборочными мат. ожиданием и дисперсией.

Рисунок 3.1 – Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с выборочными мат. ожиданием и дисперсией.

На рисунке 3.2 представлены график эмпирической функции распределения и функции распределения нормальной случайной величины с выборочными мат. ожиданием и дисперсией.

Рисунок 3.2 – График эмпирической функции распределения и функции распределения нормальной случайной величины с выборочными мат. ожиданием и дисперсией.