Game-theoretic Foundations of Multi-agent Systems

Lecture 2: Preferences and Utilities

Seyed Majid Zahedi

Outline

- 1. Agent Preferences
- 2. von Neumann-Morgenstern Rationality
- 3. von Neumann-Morgenstern Utilities

4. Uncertainty and Risk Attitudes

ullet Let $O=\{o_1,\ldots,o_K\}$ be set of mutually exclusive outcomes

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k
 - $\sum p_k = 1$

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k
 - $\sum p_k = 1$
 - E.g., $A = 0.75o_1 + 0.25o_2$ means $P(o_1) = 0.75$ and $P(o_2) = 0.25$

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k
 - $\sum p_k = 1$
 - E.g., $A = 0.75o_1 + 0.25o_2$ means $P(o_1) = 0.75$ and $P(o_2) = 0.25$
- Compound lottery is a lottery defined based on other lotteries

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k
 - $\sum p_k = 1$
 - E.g., $A = 0.75o_1 + 0.25o_2$ means $P(o_1) = 0.75$ and $P(o_2) = 0.25$
- Compound lottery is a lottery defined based on other lotteries
 - Suppose $O = \{o_1, o_2, o_3\}$

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k
 - $\sum p_k = 1$
 - E.g., $A = 0.75o_1 + 0.25o_2$ means $P(o_1) = 0.75$ and $P(o_2) = 0.25$
- Compound lottery is a lottery defined based on other lotteries
 - Suppose $O = \{o_1, o_2, o_3\}$
 - Let $A = 0.2o_1 + 0.8o_2$ and $B = 0.4o_2 + 0.6o_3$

- Let $O = \{o_1, \dots, o_K\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A = \sum p_k o_k$ to indicate that $o_k \in O$ happens with probability p_k
 - $\sum p_k = 1$
 - E.g., $A = 0.75o_1 + 0.25o_2$ means $P(o_1) = 0.75$ and $P(o_2) = 0.25$
- Compound lottery is a lottery defined based on other lotteries
 - Suppose $O = \{o_1, o_2, o_3\}$
 - Let $A = 0.2o_1 + 0.8o_2$ and $B = 0.4o_2 + 0.6o_3$
 - C = 0.5A + 0.5B is a compound lottery:

$$C = 0.5(0.2o_1 + 0.8o_2) + 0.5(0.4o_2 + 0.6o_3) = 0.1o_1 + 0.6o_2 + 0.3o_3$$

• We define preference relation over lotteries as follows

- We define preference relation over lotteries as follows
 - $A \succ B$ means agent strictly prefers A to B

- We define preference relation over lotteries as follows
 - $A \succ B$ means agent strictly prefers A to B
 - $A \succeq B$ means agent weakly prefers A to B

- We define preference relation over lotteries as follows
 - $A \succ B$ means agent strictly prefers A to B
 - $A \succeq B$ means agent weakly prefers A to B
 - $A \sim B$ means agent is indifferent between A and B ($A \succeq B$ and $B \succeq A$)

Outline

- 1. Agent Preferences
- 2. von Neumann-Morgenstern Rationality
- 3. von Neumann-Morgenstern Utilities

4. Uncertainty and Risk Attitudes

1. Completeness

• For all lotteries A and B, either $A \succ B$ or $B \succ A$ or $A \sim B$

- 1. Completeness
 - For all lotteries A and B, either A > B or B > A or $A \sim B$
- 2. Transitivity
 - For all lotteries A, B, and C, if $A \succeq B$ and $B \succeq C$, then $A \succeq C$

- 1. Completeness
 - For all lotteries A and B, either A > B or B > A or $A \sim B$
- 2. Transitivity
 - For all lotteries A, B, and C, if $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- 3. Independence of irrelevant alternatives
 - For all lotteries A, B, and C, and $p \in [0, 1]$, then $A \succeq B \iff pA + (1 p)C \succeq pB + (1 p)C$

- 1. Completeness
 - For all lotteries A and B, either $A \succ B$ or $B \succ A$ or $A \sim B$
- 2. Transitivity
 - For all lotteries A, B, and C, if $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- 3. Independence of irrelevant alternatives
 - For all lotteries A, B, and C, and $p \in [0,1]$, then $A \succeq B \iff pA + (1-p)C \succeq pB + (1-p)C$
- 4. Continuity
 - For all lotteries A, B, and C, if $A \succeq B \succeq C$, then $\exists p \in [0,1]$ such that $B \sim pA + (1-p)C$

Lemma

Given VNM axioms, for any pair of lotteries A and B with $A \succ B$, we have

• Betweenness: for $p \in (0,1)$, $A \succ pA + (1-p)B \succ B$

Lemma

Given VNM axioms, for any pair of lotteries A and B with A > B, we have

• Betweenness: for $p \in (0,1)$, $A \succ pA + (1-p)B \succ B$

• Monotonicity: for any $p, q \in [0, 1]$, if p > q, then $pA + (1 - p)B \succeq qA + (1 - q)B$

Lemma

Given VNM axioms, for any pair of lotteries A and B with A > B, we have

• Betweenness: for $p \in (0,1)$, $A \succ pA + (1-p)B \succ B$

Proof sketch

- By independence, $A=pA+(1-p)A\succ pA+(1-p)B\succ pB+(1-p)B=B$
- Monotonicity: for any $p, q \in [0,1]$, if p > q, then $pA + (1-p)B \succeq qA + (1-q)B$

Lemma

Given VNM axioms, for any pair of lotteries A and B with $A \succ B$, we have

• Betweenness: for $p \in (0,1)$, $A \succ pA + (1-p)B \succ B$

Proof sketch

- By independence, $A = pA + (1-p)A \succ pA + (1-p)B \succ pB + (1-p)B = B$
- Monotonicity: for any $p, q \in [0,1]$, if p > q, then $pA + (1-p)B \succeq qA + (1-q)B$

Proof sketch

- Define $\delta = q/p$
- By betweenness, A > pA + (1-p)B > B
- Apply betweenness to second part with δ : $pA + (1-p)B > \delta[pA + (1-p)B] + (1-\delta)B = aA + (1-a)B > B$

Outline

- 1. Agent Preferences
- 2. von Neumann-Morgenstern Rationality
- 3. von Neumann-Morgenstern Utilities

4. Uncertainty and Risk Attitudes

von Neumann-Morgenstern Utility Theorem

Theorem (von Neumann and Morgenstern, 1944)

For any VNM-rational agent, there exists a function u that maps each lottery A to a real number u(A) such that

- $u(A) = u(\sum p_k o_k) = \sum p_k u(o_k)$ (expected utility)
- $u(A) \geq u(B) \iff A \succeq B$,

Such a function is called von Neumann-Morgenstern (VNM) utility.

• If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o

- If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o
- Otherwise, there must be most-preferred and least-preferred outcomes, \overline{o} and o

- If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o
- Otherwise, there must be most-preferred and least-preferred outcomes, \overline{o} and \underline{o}
- Set $u(o_k)$ to be p_k such that $o_k \sim p_k \overline{o} + (1 p_k) \underline{o}$ (by continuity)

- If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o
- ullet Otherwise, there must be most-preferred and least-preferred outcomes, \overline{o} and \underline{o}
- Set $u(o_k)$ to be p_k such that $o_k \sim p_k \overline{o} + (1 p_k) \underline{o}$ (by continuity)
- Part I. Show $u(\sum p'_k o_k) = \sum p'_k u(o_k)$

- If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o
- ullet Otherwise, there must be most-preferred and least-preferred outcomes, \overline{o} and \underline{o}
- Set $u(o_k)$ to be p_k such that $o_k \sim p_k \overline{o} + (1 p_k) \underline{o}$ (by continuity)
- Part I. Show $u(\sum p'_k o_k) = \sum p'_k u(o_k)$
 - Replace o_k by $u(o_k)\overline{o} + (1 u(o_k))\underline{o}$ (by independence)

$$A = \sum p'_k o_k \sim \left(\sum p'_k u(o_k)\right) \overline{o} + \left(1 - \sum p'_k u(o_k)\right) \underline{o}$$

- This is a lottery on \overline{o} and \underline{o}
- By the definition of *u*, we conclude

$$u(A) = u\left(\sum p'_k o_k\right) = \sum p'_k u(o_k)$$

• Part II. Show $u(A) \ge u(B) \Longrightarrow A \succeq B$

- Part II. Show $u(A) \ge u(B) \Longrightarrow A \succeq B$
 - $A \sim u(A)\overline{o} + (1 u(A))\underline{o}$ and $B \sim u(B)\overline{o} + (1 u(B))\underline{o}$
 - If u(A) = u(B), then A and B define identical lotteries
 - If u(A) > u(B), then by monotonicity, we have

$$A \sim u(A)\overline{o} + (1 - u(A))\underline{o} \succ u(B)\overline{o} + (1 - u(B))\underline{o} \sim B$$

• Part III. Show $A \succeq B \Longrightarrow u(A) \ge u(B)$

- Part II. Show $u(A) \ge u(B) \Longrightarrow A \succeq B$
 - $A \sim u(A)\overline{o} + (1 u(A))\underline{o}$ and $B \sim u(B)\overline{o} + (1 u(B))\underline{o}$
 - If u(A) = u(B), then A and B define identical lotteries
 - If u(A) > u(B), then by monotonicity, we have

$$A \sim u(A)\overline{o} + (1 - u(A))\underline{o} \succ u(B)\overline{o} + (1 - u(B))\underline{o} \sim B$$

- Part III. Show $A \succeq B \Longrightarrow u(A) \ge u(B)$
 - If u(A) < u(B), then by (Part II), B > A
 - By completeness, this is a contradiction

Outline

- 1. Agent Preferences
- 2. von Neumann-Morgenstern Rationality
- 3. von Neumann-Morgenstern Utilities
- 4. Uncertainty and Risk Attitudes

Example

• More money makes people happier (?) but with diminishing marginal returns!

Example

• More money makes people happier (?) but with diminishing marginal returns!

- Based on this utility function, which one is more preferred?
 - \$500K with probability 0.8, and \$5M with probability 0.2
 - \$1.4M with probability 1

Example

• More money makes people happier (?) but with diminishing marginal returns!

- Based on this utility function, which one is more preferred?
 - \$500K with probability 0.8, and \$5M with probability 0.2
 - \$1.4M with probability 1

• Let *u* be utility of an investor

- Let *u* be utility of an investor
- Lottery A pays x with probability p and y with probability y with probability y

- Let u be utility of an investor
- Lottery A pays x with probability p and y with probability (1-p)
- By utility theorem, u(A) = pu(x) + (1 p)u(y)

- Let u be utility of an investor
- Lottery A pays x with probability p and y with probability (1-p)
- By utility theorem, u(A) = pu(x) + (1 p)u(y)
- Let z = (px + (1 p)y)

- Let u be utility of an investor
- Lottery A pays x with probability p and y with probability (1-p)
- By utility theorem, u(A) = pu(x) + (1 p)u(y)
- Let z = (px + (1 p)y)
- For a risk-neutral investor, u(A) = u(z)

- Let u be utility of an investor
- Lottery A pays x with probability p and y with probability (1-p)
- By utility theorem, u(A) = pu(x) + (1 p)u(y)
- Let z = (px + (1 p)y)
- For a risk-neutral investor, u(A) = u(z)
- For a risk-averse investor, u(A) < u(z)

- Let u be utility of an investor
- Lottery A pays x with probability p and y with probability (1-p)
- By utility theorem, u(A) = pu(x) + (1 p)u(y)
- Let z = (px + (1 p)y)
- For a risk-neutral investor, u(A) = u(z)
- For a risk-averse investor, u(A) < u(z)
- For a risk-seeking investor, u(A) > u(z)

Are You a Risk-taker or Risk-seeker?

- Which one do you prefer?
 - Lottery A: \$50 with prob 0.1 and \$0 otherwise
 - Lottery B: \$5 with prob 1

Are You a Risk-taker or Risk-seeker?

- Which one do you prefer?
 - Lottery A: \$50 with prob 0.1 and \$0 otherwise
 - Lottery B: \$5 with prob 1
- How about these?
 - Lottery A: \$5,000,000 with prob 0.1 and \$0 otherwise
 - Lottery B: \$500,000 with prob 1

ullet Blue has constant marginal utility \longrightarrow risk-neutral

- Blue has constant marginal utility → risk-neutral
- ullet Green has decreasing marginal utility \longrightarrow risk-averse

- Blue has constant marginal utility → risk-neutral
- Green has decreasing marginal utility → risk-averse
- ullet Red has increasing marginal utility \longrightarrow risk-seeking

- Blue has constant marginal utility → risk-neutral
- ullet Green has decreasing marginal utility \longrightarrow risk-averse
- ullet Red has increasing marginal utility \longrightarrow risk-seeking
- Gray neither risk-averse nor risk-seeking

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
 - Asu Ozdaglar [MIT 6.254]
 - Vincent Conitzer [Duke CPS 590.4]