BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION)

CLASS: BTECH BRANCH: CS/IT SEMESTER: III SESSION: MO/2022

SUBJECT: MAZOS DISCRETE MATHEMATICS

TIME:

2 HOURS

FULL MARKS: 25

INSTRUCTIONS:

- 1. The total marks of the questions are 25.
- 2. Candidates attempt for all 25 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

	Show that $(\sim p \land (p \lor q)) \Rightarrow q$ is a tautology Find the least n for which the statement is true and then using mathematical induction prove that $(1+n^2) < 2^n$	[2]	CO CO1 CO1	BL BT4 BT1
Q2 (a)	Find whether $(p \wedge q) \to q$ and $\overline{(p \wedge q)} \vee q$ is logically equivalent or not.	[2]	CO1	BT1
Q2(7b)	Prove or disprove. $\forall x \in R$, $x^3 > x^2$.	[3]	CO1	BT5
Q3 (d)	Solve $a_{r+1} - Cos\alpha a_r + a_{r-1} = 0$	[2]	CO1	втз
03 46)	Find the solution of the following recurrence relation $a_{r+1}-a_r=r^2$	[3]	C01	BT1
Q4 (a1)	Solve the recurrence relation $a_r-2a_{r-1}+a_{r-2}=2^r$; $r\geq 2$ by the method of generating function satisfying the boundary conditions $a_0=2$, $a_1=1$	[2]	CO1	ВТ3
04 169	Solve the recurrence relation $a_{r+3} + 16a_{r-1} = 0$	[3]	CO1	BT3
Q5 48T	Let $A = \{1, 2, 3, 4, 5\}$ and R be the relation defined by a R b if and only if a < b. Compute R^2 and R^3	[2]	COZ	втз
Q5 (b)	Determine whether the relation S on the set A is symmetric, antisymmetric and transitive. Set A = $\mathbb{R}^2 \setminus (0,0)$. The relation S is defined as (x_1,y_1) S (x_2,y_2) if only if $x_1.y_2=x_2.y_1$	[3]	C02	BT4

:::::: 30/09/2022 ::::::M