Econ 270 Lecture 4

Sam Gifford

2024-01-29

Descriptive vs Inferential Statistics

- What we've done so far is describe data using basic statistics
- Ideally, we want to make inferences using data
- We'll need some basic probability theory to do this

Introduction to Probability

- Probability is a mathematical framework for describing random events
- ▶ How do we define random?

Random Examples

- ► A flip of a coin
- ► Radioactive decay
- A critical hit in Pokemon
- The temperature tomorrow
- Your height

The role of information

- Random is not necessarily the opposite of deterministic
- ▶ The key element of random events is information
- ► A coin flip is random when we don't know the inputs

Subjective Probabilities

- Different individuals may assess a random event differently
 - ► The probability that you're 6 feet tall is very different from my perspective than from yours
- But this doesn't mean that probability is a subjective opinion
 - Most assessments of probability are terrible!

CIA Guidelines for probability

100% certainty			
The General Area of Possibility	93%	Give or take almost 6 %	Almost certain
	75%	Give or take about 12 %	Probable
	50%	Give or take about 10 %	Chances about even
	30%	Give or take about 10 %	Probably not
	7%	Give or take about 5 %	Almost certainly not
0% Impossibility			

Red Card

Coin Shennanigans

- You Can Load a Die, but You Can't Bias a Coin (Gelman and Nolan, 2002)
- Dynamical Bias in the Coin Toss (Diaconis, Holmes, and Montgomery, 2007)
- ► Fair coins tend to land on the same side they started: Evidence from 350,757 flips (Bartos et al 2023)

Probability: Process To Data

- In probability, we make assumptions about the data generating process
 - coin flips are independent with probability 0.5
 - > students enter a classroom at a Poisson rate of 2 per minute
- Given these, we can calculate the likelihood that different patterns of data will appear
 - ▶ 500 heads in 1000 coin flips?
- Probability is pure math the question is whether our assumptions match reality

Statistics: Data To Process

- ► In statistics, we assume some incomplete knowledge of the world
 - Coin flips are independent, but that the probability of heads is unknown
- Given the data, we then make inferences about what the 'true' proportion of heads is
- ▶ There's never a 'correct' answer in statistics.
 - Some approaches are more reasonable than others