IN THE CLAIMS:

Please amend/replace claims 12 and 17-25 as follows:

Claims 1-11. (Withdrawn)

Claim 12. (Currently Amended) A method for controlling a temperature of a fuel cell assembly, wherein the fuel cell assembly comprises one or more thermoelectric layers, each layer comprising one or more thermoelectric devices in electrical communication with a power source, and wherein each layer is in contact with at least one of said fuel cell assemblies, the method comprising:

measuring the temperature of the fuel cell assembly adjacent to the a thermoelectric layers disposed within at one or more locations across the fuel cell assembly, the thermoelectric layer comprising one or more thermoelectric devicesies; and

adjusting a voltage of the a power source in electrical communication with the thermoelectric layer in response to the measured temperatures to heat or cool-increase or decrease the temperature of a portion of the fuel cell assembly in contact with the thermoelectric layer, wherein a direction of heat transfer of the thermoelectric layer is parallel to a surface area of the thermoelectric layer, the surface area being greater than a width of the thermoelectric layer and wherein a heat distribution of the fuel cell assembly is substantially uniform at the one or more locations of the fuel cell stack.

- Claim 13. (Original) The method according to claim 12, wherein the thermoelectric devices are Peltier devices.
- Claim 14. (Original) The method according to claim 12, wherein the power source is a battery.
- Claim 15. (Original) The method according to claim 12, wherein the power source is the fuel cell assembly.

Claim 16. (Original) The method according to claim 12, wherein the fuel cell assembly is selected from the group consisting of proton exchange membrane fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell and alkaline fuel cell.

Claim 17. (Currently Amended) The method according to claim 12, further comprising contacting a periphery of the fuel cell assembly with a heat sink to further decrease the temperature.

Claim 18. (Currently Amended) A method of controlling a temperature of a fuel cell stack, comprising:

providing one or more thermoelectric layers in between adjacent fuel cell assemblies in the fuel cell stack, wherein the thermoelectric layers each comprise one or more thermoelectric devices, each thermoelectric device in electrical communication with a power source;

providing a heat sink in thermal contact a periphery of with the fuel cell stack;

measuring the temperature of fuel cell assemblies adjacent to the thermoelectric layers at one or more locations across the fuel cell assemblies; and

adjusting the voltage of the power sources in response to the measured temperatures to heat or coolincrease or decrease the temperature at the one or more locations of the fuel cell stack, wherein a direction of heat transfer of the thermoelectric layers is parallel to a surface area of the thermoelectric layers, the surface area being greater than a width of the thermoelectric layers and wherein a heat distribution of the fuel cell assembly is substantially uniform.

Claim 19. (Currently Amended) The method according to claim <u>1718</u>, wherein each thermoelectric layer further comprises one or more temperature-sensing devices each associated with one or more thermoelectric devices and connected via control circuitry to the power sources to which the associated thermoelectric devices are connected.

- Claim 20. (Currently Amended) The method according to claim 47<u>18</u>, wherein the thermoelectric devices are Peltier devices.
- Claim 21. (Currently Amended) The method according to claim 4819, wherein the temperature sensing devices are thermocouples.
- Claim 22. (Currently Amended) The method according to claim 47<u>18</u>, wherein at least one of the one or more power sources is a battery.
- Claim 23. (Currently Amended) The method according to claim 4718, wherein at least one of the one or more power sources is a fuel cell.
- Claim 24. (Currently Amended) The method according to claim 4718, wherein the fuel cell assembly comprises a plurality of stacked fuel cells selected from the group consisting of a proton exchange membrane fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid oxide fuel cell, and an alkaline fuel cell.
- Claim 25. (Currently Amended) The method according to claim 47<u>18</u>, wherein the temperature is substantially uniform across the fuel cell assembly and the fuel cell stack.