Algorytmy On-Line Lista 4

Adrian Herda 2025-05-05

1. Treść zadania

Rozważmy probelm Page Migration na dwóch grafaach 64 wierzchołkowych, torusie trzywymiarowym i hiperkostce z wagami krawędzi 1. Niech $D \in \{16, 32, 64, 128, 256\}$.

Ciągi żądań długości 65536 generujemy zgodnie z następującymi rozkładami na zbiorze

- jednostajny $\Pr[x=i] = \frac{1}{64}$,
- harmoniczny $\Pr[X=i]=\frac{1}{i\cdot H_{64}}$, gdzie H_{64} jest 64-tą liczbą harmoniczną, dwuharmoniczny $\Pr[X=i]=\frac{1}{i^2\cdot \hat{H}_{64}}$, gdzie $\hat{H}_{64}=\sum_{i=1}^{64}\frac{1}{i^2}$ jest 64-tą liczbą dwuharmoniczną.

Roważmy dwa następujące algorytmy online dla problemu:

- deterministyczny Move-To-Min,
- losowy Coin-Flip.

Przeprowadź eksperymenty dla podanych algorytmów, grafów i rozkładów. Porównaj koszty obu podanych algorytmów dla różnych wartości D.

2. Wyniki eksperymentów

Rysunek 1: Average cost of page migration with Uniform distribution

Rysunek 2: Average cost of page migration with Harmonic distribution

Rysunek 3: Average cost of page migration with Double Harmonic distribution

Jak widać na powyższych wykresach algorytm Move
To Min jest lepszy od algorytmu CoinFlip dla rozkładu harmonicznego i dwuharmoniczego. W przypadku rozkładu jednostajnego algorytm
 CoinFlip jest lepszy od algorytmu MoveToMin. Można zauważyć, że dla grafu o kształcie hiperkostki średnie koszty mają asymptotykę zbliżoną do O(D), a dla rozkładu kształtu trójwymiarowego torusa wydaje się to być zbliżone do $O(\log D)$. Wyjątkiem jest rozkład harmoniczny gdzie algorytm MoveToMin na grafie w kształcie torusa maleje wraz ze wzrostem D.

Algorytm Move To
Min na grafie w kształcie torusa trójwymiarowego daje najlepsze wyniki szczególnie dla coraz większych wartości
 ${\cal D}$