

Time Series Analysis

Models of Heteroskedasticity

Models of Heteroskedasticity

Contents

Contents

- Motivation and Infrastructure
- Some Common Features of Financial Time Series
- The ARCH(1) Model
- GARCH Models
- Maximum Likelihood Estimation
- Model Diagnostics
- GARCH Modeling of CREF Returns
- Some Extensions of the GARCH Model

Models of Heteroskedasticity

Motivation and Infrastructure

Motivation

So far: Employ correlations for modeling/predicting conditional mean $E(Y_t|Y_{t-1},Y_{t-2},...)$.

Now: Modeling/predicting conditional variance $Var(Y_t|Y_{t-1},Y_{t-2},...)$.

But: ARIMA models cannot accommodate this. E.g., conditional one-step-ahead variance is always constant and equal to the innovation variance.

Application: In finance, the conditional variance of a return of a financial asset is a commonly used risk measure. Employed in pricing of assets and value-at-risk (VaR) computations.

Motivation

Approach:

- In an efficient market, the expected return (conditional mean) should be zero.
- Thus, the return series should be white noise, i.e., uncorrelated.
- Develop models for conditional heteroskedasticity in serially uncorrelated time series (e.g., ARCH, GARCH, ...).
- Combine ARIMA and (G)ARCH models to model conditional mean and variance structure simultaneously.

Required infrastructure: Computational tools for financial time series data, i.e., in particular including daily and intra-day data.

Infrastructure: Times and dates

Classes: Implementations of time/date objects that capture all necessary information of underlying conceptual entities.

- "numeric"/"integer" (base): Annual/quarterly/monthly.
- "yearqtr"/"yearmon" (zoo): Quarterly/monthly.
- "Date" (base): Daily.
- "chron" (chron): Intra-day. No time zones, daylight savings time. Slightly non-standard interface.
- "POSIXct" (base): Intra-day. With time zones, daylight savings time. Computations in GMT are straightforward.
 Other time zones might require some more attention.
- "timeDate" (timeDate): Intra-day. With time zones, daylight savings time via concept of financial centers.

Infrastructure: Times and dates

Functions/methods: Computations and extraction of relevant information.

- Set up time from numeric or character input: Class constructors.
- Extract underlying numeric scale: as.numeric() method.
- Produce character label: format() and as.character()
 Method.
- Use for plotting: Input for plot(), e.g., Axis() method.
- Sequences of times with given spacing: seq() method.
- Time differences: Group generic functions or difftime().
- Move forward/backward on time scale: Group generic functions.
- Comparison (less/greater): Group generic functions.

Infrastructure: Times and dates

Remarks:

- Use time/date class that is appropriate for your data (and not more complex). See Grothendieck and Petzoldt (2004), "R Help Desk: Date and Time Classes in R." R News, 4(1), 29–32.
- Idea for many (but not all) time/date classes: Numeric vector (e.g., corresponding to years, days, seconds since origin/epoch) plus class attribute. Method dispatch handles matching/rounding correctly and provides coercion to other classes.
- Time/date objects are usually not interesting as standalone objects but are used to annotate other data.
- The most important application of this are time series where there is for each time point a vector of (typically numeric) observations.

Types of time series:

- Irregular (unequally spaced).
- Strictly regular (equally spaced).
- With underlying regularity, i.e., created from a regular series by omitting some observations.

For strictly regular series: The whole time index can be reconstructed from start, end and time difference between two observations. The reciprocal value of the time difference is also called *frequency*.

For irregular series: All time indexes need to be stored in a vector of length *n*.

Classes: Virtually all implementations are focused on numeric data and fix some particular class for the time index.

- "ts" (base): Regular "numeric" time index (e.g., annual, quarterly, monthly),
- "its" (its): Irregular time index of class "POSIXct",
- "irts" (tseries): Irregular time index of class "POSIXct",
- "timeSeries" (timeSeries): Irregular time index of class "timeDate",
- "zoo" (zoo): Regular or irregular time index of arbitrary class.
- "xts" (xts): Built on top of "zoo", with specialized infrastructure for time indexes of class "Date", "POSIXct", "chron", "timeDate", "yearmon", "yeargtr", ...

Functions/methods:

- Visualization: plot().
- Extraction of observations or associated times: time()
 (and coredata()).
- Lags and differences: lag() (note sign!) and diff().
- Subsets in a certain time window: window().
- Union and intersection of several time series: merge().
- Aggregation along a coarser time grid: aggregate().
- Rolling computations such as means or standard deviations: (rollapply()).

Advantages of "zoo":

- Can be used with arbitrary time indexes (i.e., you could also provide your own specialized class).
- Standard interface: Employs R's standard methods and introduces only few new generics.
- Talks to all other classes: Coercion functions are available, e.g., as.ts(), as.timeSeries(), etc. that work if the time index is of the required class. The reverse as.zoo() always works.

Recommendations:

- Use "zoo" for storage and basic computations.
- If necessary, coerce to other classes for analysis etc.
- "xts" is helpful extension of "zoo" for date/time indexes.

R> data("CREF", package = "TSA")

R> tsp(CREF)

Illustration: College Retirement Equities Fund (CREF). Fund of several thousand stocks, not openly traded in the stock market. Time series for trading days from August 26, 2004, to August 15, 2006.

In R: Provided in *TSA* as "ts" series without proper date information.

```
[1] 1 501 1

R> CREF[1:5]

[1] 169.9 170.5 169.3 169.9 170.6

Alternatively: "zoo" series with "Date" index.

R> load("Data/CREF2.rda")

R> CREF2[1:5]

2004-08-26 2004-08-27 2004-08-30 2004-08-31 2004-09-01

169.9 170.5 169.3 169.9 170.6
```


Note: The simpler "ts" version can easily be produced by stripping the index from the data and adding the trivial index $1, \ldots, n$.

R> identical(CREF, ts(coredata(CREF2)))

[1] TRUE

Time coercions: "Date" objects are stored as days since 1970-01-01. Enables certain transformations. (Timezones are system-dependent).

```
R> start(CREF2)
[1] "2004-08-26"
R> as.numeric(start(CREF2))
[1] 12656
R> as.POSIXct(start(CREF2))
[1] "2004-08-26 02:00:00 CEST"
R> as.POSIXlt(start(CREF2))
[1] "2004-08-26 UTC"
R> as.POSIXlt(start(CREF2))$wday
[1] 4
```

Series coercions: "zoo" objects can be coerced to "ts" if an underlying regularity can be inferred.

Here: The underlying days since the origin are used and hence non-trading days are includes as NAs.

However: Time series from trading days are typically treated as if they were regularly spaced.

Hence: In computations, e.g., for returns, either use the regularly spaced "ts" series with auxiliary index or the irregularly spaced "zoo" series with proper index.

```
R> rcref <- 100 * diff(log(CREF))
R> tsp(rcref)
[1] 2 501 1
R> rcref[1:5]
[1] 0.3361 -0.7056 0.3987 0.3785 0.9080
R> rcref2 <- 100 * diff(log(CREF2))
R> rcref2[1:5]
2004-08-27 2004-08-30 2004-08-31 2004-09-01 2004-09-02 0.3361 -0.7056 0.3987 0.3785 0.9080
```


Models of Heteroskedasticity

Some Common Features of Financial Time Series

Goal: Model (continuously compounded) return series $\{r_t\}$ computed from the prices $\{p_t\}$ of a financial asset.

$$r_t = \log(p_t) - \log(p_{t-1})$$

Sometimes transformed to percentage points by multiplication of 100. Often easier to interpret and numerically more stable.

Stylized facts: For return series from financial assets.

- Volatility clustering: Alternating extended periods of low and high volatility, respectively.
- Heavy tails: Extreme returns occur more often than would be expected under normality.

Jargon: Volatility typically refers to the conditional standard deviation of a financial instrument, which varies with time.

Empirical evidence:

- Return series does not have significant (partial) autocorrelations.
- Absolute or squared returns are positively autocorrelated.

Thus: Distinguish independence and lack of correlation.

- If Y_t and Y_{t-k} are independent, $g(Y_t)$ and $g(Y_{t-k})$ are, too. Both for linear and nonlinear transformations $g(\cdot)$.
- Correlation is only a measure of linear dependence. Not necessarily pertained in nonlinear transformations.

Illustration: ACF and PACF for CREF returns and transformations. The overall mean is 0.0493 with standard error 0.0288.

Test: Formally test for autocorrelation in volatility.

- Employ Box-Ljung test for squared returns (if the levels are not serially correlated).
- More generally, employ squared residuals from an ARIMA model.
- Degrees of freedom do not need to be adjusted (i.e., fitdf = 0) because no correlations in the squared values are modeled.
- Test is also referred to as McLeod-Li test.

In R: Test can be easily performed graphically for varying lags.

```
R> plot(1:26, sapply(1:26, function(i)
+ Box.test(rcref^2, lag = i, type = "Ljung-Box")$p.value),
+ xlab = "Lag", ylab = "P-value", ylim = c(0, 1))
R> abline(h = 0.05, lty = 2)
```


Furthermore: To assess nonnormality, consider sample skewness and (excess) kurtosis.

Skewness: For a random variable Y with mean μ and standard deviation σ , the skewness is $E\{(Y - \mu)^3\}/\sigma^3$. It can be estimated by

$$g_1 = \frac{1}{n \widehat{\sigma}^3} \sum_{i=1}^n (Y_i - \overline{Y})^3$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

Sample is left/right-skewed for values less/greater than zero.

In R: skewness() from e1071. Various definitions of sample skewness exist. skewness() by default (type = 3) computes version with finite sample correction $g_1\sqrt{n(n-1)}/(n-2)$.

Kurtosis: Defined as $E\{(Y - \mu)^4\}/\sigma^4 - 3$, so that normal distribution has value zero. It can be estimated by

$$g_2 = \frac{1}{n \, \widehat{\sigma}^4} \sum_{i=1}^n (Y_i - \bar{Y})^4 - 3$$

Sample is light/heavy-tailed for values less/greater than zero.

In R: kurtosis() from *e1071*. Again various definitions exist and kurtosis() by default computes version with finite sample correction.

```
R> library("e1071")
R> skewness(rcref, type = 1)
[1] 0.116
R> kurtosis(rcref, type = 1)
[1] 0.6274
```

Formal test: Assess the null hypothesis of zero skewness and zero excess kurtosis. Jarque-Bera test statistic is sum of two terms where each is asymptotically χ_1^2 -distributed under the null hypothesis of normality. The joint distribution is χ_2^2 .

$$JB = \frac{ng_1^2}{6} + \frac{ng_2^2}{24}$$

Summary: Results for CREF returns.

- Serially uncorrelated.
- Higher-order dependence structure: Volatility clustering and heavy tails.
- Typical for financial time series.
- Often much more extreme. Potentially also with skewness, etc.

Further illustration: Daily closing prices (regular "ts" series in business days) the German DAX stock index.

```
R> data("EuStockMarkets", package = "datasets")
R> rdax <- 100 * diff(log(EuStockMarkets[, "DAX"]))</pre>
R> coeftest(lm(rdax ~ 1))
t test of coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0652 0.0239 2.73 0.0064
R> Box.test(rdax^2)
        Box-Pierce test
data: rdax^2
X-squared = 12, df = 1, p-value = 7e-04
R> length(rdax) * c(skewness(rdax, type = 1)^2/6,
    kurtosis(rdax, type = 1)^2/24)
[1] 95.11 3054.53
```

Some common features

Some common features

Some common features

Models of Heteroskedasticity

Approach: Model changing variance of a time series.

- Assume $\{r_t\}$ is serially uncorrelated with zero mean.
- Capture conditional variance or conditional volatility

$$\sigma_{t|t-1}^2 = Var(r_t \mid r_{t-1}, r_{t-2}, \dots)$$

- Note that r_t^2 (if it is available) is an unbiased estimator of $\sigma_{t|t-1}^2$.
- Employ autoregressive model for $\sigma_{t|t-1}^2$ with past squared returns r_{t-k}^2 as regressors.

Name: Autoregressive conditional heteroskedasticity (ARCH) model.

Remark: First proposed by Engle (1982)

Example: ARCH(1).

$$r_t = \sigma_{t|t-1} \varepsilon_t$$

 $\sigma_{t|t-1}^2 = \omega + \alpha r_{t-1}^2$

with

- ω and α unknown parameters.
- $\{\varepsilon_t\}$ is an independently and identically distributed (i.i.d.) series of innovations with zero mean and unit variance.
- Innovations ε_t are independent of previous observations r_{t-k} with $k \ge 1$.
- Thus, $\sigma_{t|t-1}$ is the conditional volatility of r_t .

Formally:

$$\begin{aligned} \mathsf{Var}(r_t \mid r_{t-1}, r_{t-2}, \dots) &=& \mathsf{E}(r_t^2 \mid r_{t-1}, r_{t-2}, \dots) \\ &=& \mathsf{E}(\sigma_{t|t-1}^2 \, \varepsilon_t^2 \mid r_{t-1}, r_{t-2}, \dots) \\ &=& \sigma_{t|t-1}^2 \mathsf{E}(\varepsilon_t^2 \mid r_{t-1}, r_{t-2}, \dots) \\ &=& \sigma_{t|t-1}^2 \mathsf{E}(\varepsilon_t^2) \\ &=& \sigma_{t|t-1}^2 \end{aligned}$$

Illustration: Artificial ARCH(1) series with $\omega = 0.01$ and $\alpha = 0.9$.

In R: garch.sim() in TSA (returning a "numeric" vector).

As before: Loading *TSA* is problematic, however, as several functions are overwritten.

For replication: Simulated series g01 and g11 from Cryer & Chan (2008) are provided in garch-sim.rda.

```
R> load("Data/garch-sim.rda")
R> plot(g01)
```


Alternatively: More flexible function garchSim() in *fGarch* (returning a "timeSeries" object).

```
R> set.seed(1)
R> x <- garchSpec(model = list(omega = 0.01, alpha = 0.9, beta = 0))
R.> x
Formula:
 ~ arch(1)
Model:
omega: 0.01
alpha: 0.9
Distribution:
norm
Presample:
 time z h v
1 0 -0.6265 0.1 0
R > x < -garchSim(x, n = 500)
R> x <- ts(as.vector(coredata(as.zoo(x))))</pre>
```


Question: Can the ARCH(1) model explain the stylized facts: volatility clustering and heavy tails?

Answer 1: By construction, volatility clustering is captured.

Moreover: The series

$$\eta_t = r_t^2 - \sigma_{t|t-1}^2$$

can be shown to be serially uncorrelated with zero mean. Hence, the model equation can be written as an AR(1) for the squared returns.

$$r_t^2 = \omega + \alpha r_{t-1}^2 + \eta_t$$

Consequently: Standard model selection techniques can be applied to the squared returns r_t^2 .

Hence: Assuming stationarity, taking expectations yields

$$\sigma^2 = \omega + \alpha \sigma^2 = \frac{\omega}{1 - \alpha}$$

It can also be shown that a necessary and sufficient condition for stationarity of the ARCH(1) process is $0 \le \alpha < 1$ and $\omega > 0$.

Remarks:

- Similarly to AR processes (which are stationary but have nonconstant conditional mean) ARCH processes are stationary but have nonconstant conditional variance.
- ARCH processes are (weak) white noise.

Answer 2: Even for normal innovations $\{\varepsilon_t\}$, the resulting ARCH(1) r_t have heavy tails.

Explanation: Assume i.i.d. standard normal ε_t .

$$\begin{split} \mathsf{E}(r_{t}^{4}) &= \mathsf{E}\{\mathsf{E}(\sigma_{t|t-1}^{4}\varepsilon_{t}^{4} \mid r_{t-1}, r_{t-2}, \dots)\} \\ &= \mathsf{E}\{\sigma_{t|t-1}^{4}\mathsf{E}(\varepsilon_{t}^{4} \mid r_{t-1}, r_{t-2}, \dots)\} \\ &= \mathsf{E}\{\sigma_{t|t-1}^{4}\mathsf{E}(\varepsilon_{t}^{4})\} \\ &= \mathsf{3}\mathsf{E}(\sigma_{t|t-1}^{4}) \end{split}$$

Assuming $\mathsf{E}(\sigma_{t|t-1}^4)$ exists, say a finite value τ , (and assuming stationarity), taking expectations in the squared model equation yields:

$$\tau = \omega^2 + 2\omega\alpha\sigma^2 + \alpha^2 3\tau = \frac{\omega^2 + 2\omega\alpha\sigma^2}{1 - 3\alpha^2}$$

Remarks:

- Thus, for finite fourth moments, $0 \le \alpha < 1/\sqrt{3}$ is needed.
- Hence, stationary ARCH models may not have finite fourth moments.
- It can be shown that $\tau > \sigma^4$ and hence $\mathrm{E}(r_t^4) > 3\sigma^4$ implying a positive excess kurtosis (also known as heavy tails).

Predictions: Recursion for ℓ -step-ahead conditional variance.

$$\begin{split} \sigma_{t+\ell|t}^2 &= & \mathsf{E}(r_{t+\ell}^2 \mid r_t, r_{t-1}, \dots) \\ &= & \mathsf{E}\{\mathsf{E}(\sigma_{t+\ell|t+\ell-1}^2 \varepsilon_{t+\ell}^2 \mid r_t, r_{t-1}, \dots) \mid r_t, r_{t-1}, \dots\} \\ &= & \mathsf{E}\{\sigma_{t+\ell|t+\ell-1}^2 \mathsf{E}(\varepsilon_{t+\ell}^2) \mid r_t, r_{t-1}, \dots\} \\ &= & \mathsf{E}(\sigma_{t+\ell|t+\ell-1}^2 \mid r_t, r_{t-1}, \dots) \\ &= & \omega + \alpha \, \mathsf{E}(r_{t+\ell-1}^2 \mid r_t, r_{t-1}, \dots) \\ &= & \omega + \alpha \, \sigma_{t+\ell-1|t}^2 \end{split}$$

with convention $\sigma_{t+\ell|t}^2 = r_{t+\ell}^2$ for $\ell < 0$.

Specifically, for $\ell=1$, weighted average of last squared return and long-run variance.

$$\sigma_{t+1|t}^2 = \omega + \alpha r_t^2 = (1 - \alpha)\sigma^2 + \alpha r_t^2$$

Models of Heteroskedasticity

Problem: Predictions only employ last observed return.

Conceivable solutions:

- Include up to q lagged squared returns: ARCH(q), Engle (1982).
- Include p lagged conditional volatilities: generalized ARCH (GARCH) effects, Bollerslev (1986) and Taylor (1986).
- Combinations of both: GARCH(p, q) model.

Model equation: GARCH(p, q).

$$\sigma_{t|t-1}^2 = \omega + \beta_1 \sigma_{t-1|t-2}^2 + \dots + \beta_p \sigma_{t-p|t-p-1}^2 + \alpha_1 r_{t-1}^2 + \dots + \alpha_q r_{t-q}^2$$

Or more compactly

$$\beta(B)\sigma_{t|t-1}^2 = \omega + \alpha(B)r_t^2$$

Note that textbooks/software may interchange p and q.

Remarks:

- Coefficients in GARCH models are often constrained to be nonnegative because the conditional variances must be nonnegative.
- However, nonnegative parameters are not necessary to obtain nonnegative conditional variances with probability 1.

Illustration: Artificial GARCH(1, 1) series with $\omega=0.02$, $\alpha=0.05$, and $\beta=0.9$. Inclusion of lagged conditional volatility increases the persistence in the volatility.

Model identification: Similarly to the ARCH(1) case, $\eta_t = r_t^2 - \sigma_{t|t-1}^2$ can be shown to be serially uncorrelated and uncorrelated with past squared returns. Thus,

$$r_t^2 = \omega + (\beta_1 + \alpha_1)r_{t-1}^2 + \dots + (\beta_{\max(p,q)} + \alpha_{\max(p,q)})r_{t-\max(p,q)}^2 + \eta_t - \beta_1\eta_{t-1} - \dots - \beta_p\eta_{t-p}$$

with $\beta_k = 0$ for k > p and $\alpha_k = 0$ for k > q.

Thus: GARCH(p, q) model for r_t implies ARMA $(\max(p, q), p)$ model for squared returns r_t^2 . Below employ $m = \max(p, q)$ for ease of notation.

Naive estimation: ARMA(1, 1) for squared artificial GARCH(1, 1) series lead to surprisingly accurate estimates. R> arma11 <- arima(g11^2, order = c(1, 0, 1))

```
R> arma11
Call:
arima(x = g11^2, order = c(1, 0, 1))
Coefficients:
       ar1 ma1 intercept
     0.982 - 0.947 0.412
s.e. 0.013 0.022 0.074
sigma^2 estimated as 0.342: log likelihood = -441.7, aic = 891.4
R > b < - coef(arma11)[2]
R > a < - coef(arma11)[1] - b
R > o < - coef(arma11)[3] * (1 - a - b)
R > par <- c(o, a, b)
R> names(par) <- c("omega", "alpha", "beta")</pre>
R> par
  omega alpha beta
0.007241 0.035436 0.946982
```

Unconditional variance: Under the assumption of stationarity, taking expectations yields

$$\sigma^2 = \omega + \sigma^2 \sum_{i=1}^m (\alpha_i + \beta_i) = \frac{\omega}{1 - \sum_{i=1}^m (\alpha_i + \beta_i)}$$

which is finite if $\sum_{i=1}^{m} (\alpha_i + \beta_i) < 1$. This can be shown to be a necessary and sufficient condition for weak stationarity.

Conditional variance: ℓ -step-ahead prediction for $\ell > p$.

$$\sigma_{t+\ell|t}^2 = \omega + \sum_{i=1}^m (\alpha_i + \beta_i) \sigma_{t+\ell-i|t}^2$$

For $\ell \geq 1$: Formula is more involved.

$$\sigma_{t+\ell|t}^2 = \omega + \sum_{i=1}^q \alpha_i \sigma_{t+\ell-i|t}^2 + \sum_{i=1}^p \beta_i \widehat{\sigma}_{t+\ell-i|t+\ell-i-1}^2$$

with $\sigma_{t+\ell|t}^2 = r_{t+\ell}^2$ for $\ell < 0$ and

$$\widehat{\sigma}^2_{t+\ell-i|t+\ell-i-1} \; = \; \left\{ \begin{array}{ll} \sigma^2_{t+\ell-i|t} & \text{for } \ell-i-1>0 \\ \sigma^2_{t+\ell-i|t+\ell-i-1} & \text{otherwise} \end{array} \right.$$

Example: GARCH(1, 1).

$$\sigma_{t|t-1}^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$$

$$= (1 - \alpha - \beta)\sigma^2 + \alpha r_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$$

$$= \sigma^2 + \alpha (r_{t-1}^2 + \beta r_{t-2}^2 + \beta^2 r_{t-3}^2 + \dots)$$

Remarks:

- Conditional volatility is weighted average of long-run variance, previous squared return, and previous conditional volatility.
- Conditional volatility has $MA(\infty)$ representation in squared returns.
- Naive finite moving averages of squared returns have larger bias.
- If $\alpha + \beta = 1$ the model is nonstationary. Also called IGARCH (integrated GARCH).

Models of Heteroskedasticity

Maximum Likelihood Estimation

Goal: More efficient estimation of model parameters using maximum likelihood (ML).

Approach: Derive likelihood based on distributional assumption for innovations ε_t .

Example: Stationary GARCH(1, 1) with standard normal innovations.

Recursion for conditional variances

$$\sigma_{t|t-1}^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1|t-2}^2$$

for $t \geq$ 2 with initial value $\sigma_{1|0}^2 = \sigma^2 = \omega(1 - \alpha - \beta)$.

Conditional probability density function (PDF)

$$f(r_t \mid r_{t-1}, \dots r_1) = \frac{1}{\sqrt{2\pi\sigma_{t|t-1}^2}} \exp\{-1/2 \cdot r_t^2/\sigma_{t|t-1}^2\}$$

Joint PDF can be defined recursively

$$f(r_n,\ldots,r_1) = f(r_{n-1},\ldots,r_1)f(r_n \mid r_{n-1},\ldots,r_1)$$

Taking logs yields

$$\log L(\omega, \alpha, \beta) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{n} \left\{ \log(\sigma_{t-1|t-2}^{2}) + r_{t}^{2} / \sigma_{t|t-1}^{2} \right\}$$

Remarks: "As usual" for nonlinear ML problems.

- ML estimator has no closed-form solution but numerical techniques are required.
- Covariance matrix can be estimated using various types of estimators (Hessian, outer product of gradients, etc.), may be sensitive to distributional assumptions.
- Inference is typically based on central limit theorem.

In R: garch() in tseries and garchFit() in fGarch.
tseries: garch().

- GARCH(p, q) with Gaussian innovations.
- Default is GARCH(1, 1).
- Employs custom quasi-Newton optimizer.
- Standard errors are based on outer product of gradients (relying on normality).
- Rather standard interface with coef(), vcov(), logLik(), ... extractor functions.
- Coefficient naming: a0 corresponds to ω . Remaining a* coefficients correspond to α , b* to β .

fGarch: garchFit(). Contained in Rmetrics suite of packages.

- GARCH(q, p) (note order!) with various types of innovations: Gaussian, t, GED (generalized error distribution), and skewed generalizations.
- Default is GARCH(1, 1) with Gaussian innovations.
- Several maximization algorithms, default is nlminb(), with two methods for initializing recursions.
- Standard errors are based on Hessian.
- A constant is included by default, not possible in garch().
- Furthermore, ARMA models can be added for modeling conditional mean.
- Less standard interface, e.g., no vcov() or logLik() methods. But quantities can be extracted manually.

```
Illustration: GARCH(1, 1) with \omega = 0.02, \alpha = 0.05, \beta = 0.9.
R> g11_g1 \leftarrow garch(g11, order = c(1, 1), trace = FALSE)
R> g11_g2 \leftarrow garch(g11, order = c(2, 2), trace = FALSE)
R> g11_gf1 <- garchFit(~ garch(1,1), data = g11, trace = FALSE,</pre>
     include.mean = FALSE)
R> g11_gf2 <- garchFit(~ garch(2,2), data = g11, trace = FALSE,
+ include.mean = FALSE)
R> sapply(list(g11_gf1, g11_g1), coef)
            [,1] \qquad [,2]
omega 0.007656 0.007575
alpha1 0.047266 0.047184
beta1 0.935066 0.935377
R> sapply(list(g11_gf2, g11_g2), coef)
             \lceil .1 \rceil \qquad \lceil .2 \rceil
omega 9.266e-03 1.835e-02
alpha1 1.000e-08 9.976e-16
alpha2 5.436e-02 1.136e-01
beta1 8.790e-01 3.369e-01
beta2 4.523e-02 5.100e-01
```

```
R> summary(g11_g1)
Call:
garch(x = g11, order = c(1, 1), trace = FALSE)
Model:
GARCH(1,1)
Residuals:
    Min
             10 Median
                             30
                                     Max
-3.30703 -0.63798 0.00916 0.74198 3.01944
Coefficient(s):
   Estimate Std. Error t value Pr(>|t|)
a0 0.00757 0.00759 1.00 0.318
a1 0.04718
              0.02231 2.12 0.034
b1 0.93538
              0.03584 26.10 <2e-16
Diagnostic Tests:
```

```
Jarque Bera Test
data: Residuals
X-squared = 0.83, df = 2, p-value = 0.7
       Box-Ljung test
data: Squared.Residuals
X-squared = 0.54, df = 1, p-value = 0.5
R> summary(g11_g2)
Call:
garch(x = g11, order = c(2, 2), trace = FALSE)
Model:
GARCH(2,2)
Residuals:
    Min
              10 Median
                                30
                                       Max
-3.34683 -0.63188 0.00847 0.73611 3.20234
```

```
Coefficient(s):
   Estimate Std. Error t value Pr(>|t|)
a0 1.84e-02 1.51e-02
                         1.21
                                0.226
a1 9.98e-16 4.72e-02 0.00
                                1.000
a2 1.14e-01 5.86e-02 1.94 0.052
b1 3.37e-01 3.70e-01 0.91 0.362
b2 5.10e-01 3.58e-01 1.43 0.154
Diagnostic Tests:
       Jarque Bera Test
data: Residuals
X-squared = 0.42, df = 2, p-value = 0.8
       Box-Ljung test
      Squared.Residuals
data:
X-squared = 0.0053, df = 1, p-value = 0.9
```

```
R> logLik(g11_g1)
'log Lik.' -476 (df=3)
R> logLik(g11_g2)
'log Lik.' -475.5 (df=5)
R> AIC(g11_g1, g11_g2)
       df AIC
g11_g1 3 958
g11_g2 5 961
R> summary(g11_gf1)
Title:
GARCH Modelling
Call:
garchFit(formula = ~garch(1, 1), data = g11, include.mean = FALSE,
    trace = FALSE)
```

```
Mean and Variance Equation:
data ~ garch(1, 1)
<environment: 0x563e88ef0c10>
 [data = g11]
Conditional Distribution:
norm
Coefficient(s):
   omega alpha1
                        beta1
0.0076562 0.0472661 0.9350665
Std. Errors:
based on Hessian
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
omega 0.007656 0.006251 1.225 0.2206
alpha1 0.047266 0.020207 2.339 0.0193
beta1 0.935066 0.029441
                            31.760 <2e-16
```

```
Log Likelihood:
-476.5 normalized: -0.953
```

Description:

Mon Mar 4 15:50:03 2019 by user: zeileis

Standardised Residuals Tests:

			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	0.7971	0.6713
Shapiro-Wilk Test	R	W	0.998	0.8163
Ljung-Box Test	R	Q(10)	9.972	0.4429
Ljung-Box Test	R	Q(15)	10.87	0.762
Ljung-Box Test	R	Q(20)	18.09	0.5815
Ljung-Box Test	R^2	Q(10)	7.953	0.6334
Ljung-Box Test	R^2	Q(15)	15.57	0.4111
Ljung-Box Test	R^2	Q(20)	18.26	0.5704
LM Arch Test	R	TR^2	10.32	0.5876

Information Criterion Statistics:

AIC BIC SIC HQIC 1.918 1.943 1.918 1.928

Models of Heteroskedasticity

Model Diagnostics

Model diagnostics

Basic tool: Residuals. For GARCH model with mean μ

$$r_t = \mu + \sigma_{t|t-1}\varepsilon_t$$

the standardized residuals are

$$\hat{\varepsilon}_t = \frac{r_t - \hat{\mu}}{\widehat{\sigma}_{t|t-1}}$$

tseries:

- fitted() computes bivariate series with $\widehat{\sigma}_{t|t-1}$, $-\widehat{\sigma}_{t|t-1}$.
- residuals() computes $\hat{\varepsilon}_t$ with $\mu=0$ (as estimation of μ is not supported).

fGarch:

- volatility() computes $\hat{\sigma}_{t|t-1}$ by default. Conditional variances are also available.
- residuals() computes $r_t \hat{\mu}$ by default. $\hat{\varepsilon}_t$ is available with option standardize = TRUE.

Model diagnostics

Idea: If the model is correctly specified, the $\hat{\varepsilon}_t$ are approximately i.i.d. Employ standard diagnostics.

- Autocorrelation: Ljung-Box test, . . .
- Skewness/kurtosis: Jarque-Bera test, . . .
- Normality: QQ plot, Shapiro-Wilk test, . . .

Caveat:

- Jarque-Bera test for GARCH residuals no longer has χ^2 distribution.
- Test becomes liberal, i.e., more rejections under the null hypothesis than specified significance level.
- Modified version has been suggested in the literature, however, rarely applied in practice.
- summary() methods for both "garch" and "fGARCH" objects employ the (incorrect) unmodified version.

Model diagnostics

```
R> g11_res <- na.omit(residuals(g11_g1))
R> c(skewness(g11_res), kurtosis(g11_res))
[1] -0.08824 -0.10409
R> jarque.bera.test(g11_res)
        Jarque Bera Test
     g11_res
data:
X-squared = 0.83, df = 2, p-value = 0.7
R> Box.test(g11_res^2, type = "Ljung-Box")
        Box-Ljung test
data: g11_res^2
X-squared = 0.54, df = 1, p-value = 0.5
```

Note: timeDate from Rmetrics suite has different skewness() and kurtosis() methods. Order of loading determines which is found first.

Models of Heteroskedasticity

Goal: Find a satisfactory model for returns from College Retirement Equities Fund (2004-08-27 to 2006-08-15).

Strategy:

- Consider GARCH(p, q) models with p = 0, 1, 2 and q = 1, 2, with and without mean μ .
- Estimation of $\mu = 0$ models is carried out using garch() from *tseries*.
- Estimation of models with non-zero μ is carried out using garchFit() from fGarch. Some convenience glue code is needed.
- Choose best model via information criteria (AIC, BIC).
- Assess adequacy using model diagnostics.

Set up grid of parameters.

```
R> par <- expand.grid(p = 0:2, q = 1:2)
Compute list of fitted "garch" models.
R> fm <- lapply(1:nrow(par), function(i)
+ garch(rcref, order = c(par$p[i], par$q[i]), trace = FALSE))
Combine parameter grid with information about fitted
log-likelihood, AIC, and BIC.</pre>
```

```
R> par <- cbind(par,
+ logLik = sapply(fm, logLik),
+ AIC = sapply(fm, AIC),
+ BIC = sapply(fm, AIC, k = log(length(rcref)))
+ )</pre>
```

Convenience function that generates a formula like ~ garch(1, 1) from given integers p and q (note ordering!).

```
R> garch_formula <- function(p, q)
+ as.formula(sprintf("~ garch(%f, %f)", q, p))</pre>
```

To facilitate extraction of log-likelihood (and hence AIC/BIC), provide convenience S3 logLik() method for "fGARCH" models.

```
R> logLik.fGARCH <- function(object, ...)
+ structure(-object@fit$llh, df = length(coef(object)),
+ class = "logLik")</pre>
```

Compute list of "fGARCH" models, including mean.

```
R> fm2 <- lapply(1:nrow(par), function(i)
+ garchFit(garch_formula(par$p[i], par$q[i]),
+ data = rcref, trace = FALSE))</pre>
```

Collect fitted fitted log-likelihoods, AICs, and BICs.

```
R> par <- cbind(par,

+ logLik2 = sapply(fm2, logLik),

+ AIC2 = sapply(fm2, AIC),

+ BIC2 = sapply(fm2, AIC, k = log(length(rcref)))

+ )

R> round(par, digits = 1)

p q logLik AIC BIC logLik2 AIC2 BIC2

1 0 1 -490.6 985.1 993.5 -489.7 985.3 998.0

2 1 1 -481.8 969.6 982.2 -479.8 967.6 984.5

3 2 1 -480.7 969.4 986.3 -479.8 969.6 990.7

4 0 2 -488.7 983.4 996.0 -488.3 984.6 1001.4

5 1 2 -485.1 978.2 995.0 -479.4 968.7 989.8

6 2 2 -480.2 970.3 991.4 -479.4 970.7 996.0
```

Conclusion: GARCH(1, 1) seems to be favored (both by AIC, and BIC). AIC also prefers inclusion of mean μ .

Pick selected model from list.

```
R> cref_g11 <- fm2[[2]]</pre>
R> summary(cref_g11)
Title:
GARCH Modelling
Call:
garchFit(formula = garch_formula(par$p[i], par$q[i]), data = rcref,
    trace = FALSE)
Mean and Variance Equation:
data garch(1, 1)
<environment: 0x563e88830170>
 [data = rcref]
Conditional Distribution:
norm
```

```
Coefficient(s):
     mu
           omega
                   alpha1
                             beta1
0.062828 0.017698 0.049061 0.908419
Std. Errors:
based on Hessian
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
       0.06283
                  0.02743 2.291 0.0220
m11
omega 0.01770
                  0.01041 1.700 0.0890
alpha1 0.04906 0.01938 2.532 0.0114
beta1 0.90842
                  0.03687
                           24.640 <2e-16
Log Likelihood:
-479.8
         normalized: -0.9596
Description:
Mon Mar 4 15:50:03 2019 by user: zeileis
```

Standardised Residuals Tests:

```
Statistic p-Value
Jarque-Bera Test
                 R
                     Chi^2 0.8842
                                    0.6427
Shapiro-Wilk Test
                     W 0.9966
                                    0.3785
Ljung-Box Test
                     Q(10) 11.02 0.3557
                     Q(15) 19.38
                                    0.197
Ljung-Box Test
Ljung-Box Test
                     Q(20) 22.34
                                    0.3222
Ljung-Box Test
                 R^2 Q(10) 8.634
                                    0.5672
Ljung-Box Test
                 R^2 Q(15) 18.16
                                    0.2546
Ljung-Box Test
                 R^2 Q(20) 20.22
                                    0.4443
I.M Arch Test
                                    0.2098
                     TR.^2
                           15.61
```

Information Criterion Statistics:

```
AIC BIC SIC HQIC
1.935 1.969 1.935 1.948
```

GARCH(1, 1) long-run variance and sample variance are very close.

```
R> coef(cref_g11)["omega"] /
+     (1 - coef(cref_g11)["alpha1"] - coef(cref_g11)["beta1"])
    omega
0.4162
R> var(rcref)
[1] 0.4161
```

Extract standardized residuals

```
R> cref_res <- residuals(cref_g11, standardize = TRUE)
which can then be visualized using hist(), qqnorm(), acf(),
etc.</pre>
```

Furthermore, plot(cref_g11) produces various diagnostic plots (chosen from an interactive menu). Especially, a plot of $\mu \pm 1.96\sigma_{t|t-1}$ is often used for model visualization.

Remarks:

- Model fit depends on scaling of observations (such as multiplication by 100).
- garchFit() reports scaled information criteria, divided by n.

Models of Heteroskedasticity

Some Extensions of the GARCH Model

Extensions: Numerous variations and generalizations have been suggested in the literature, e.g., incorporating nonlinearities, asymmetries, links, thresholds, etc.

- GJR-GARCH: Asymmetry via threshold.
- TGARCH: Threshold GARCH.
- EGARCH: Exponential GARCH.
- ...

Generalization: APARCH (asymmetric power ARCH) comprises many GARCH-type models, including ARCH, GARCH, Taylor/Schwert GARCH, GJR-GARCH, TARCH, NARCH, log-ARCH, . . .

Furthermore: Combination of ARMA model for mean and GARCH-type model for variance.

In R: garchFit() from fGarch.

ARMA-GARCH: Mean equation is ARMA(P, Q).

$$Y_t = \theta_0 + \sum_{i=1}^{P} \phi_i Y_{t-i} + \sum_{j=1}^{Q} \theta_j e_{t-j} + e_t$$

Variance equation is GARCH(p, q).

$$egin{array}{lcl} e_t &=& \sigma_{t|t-1}arepsilon_t \ arepsilon_t &\sim& \mathcal{D}_{artheta}(\mathbf{0},\mathbf{1}) & ext{i.i.d.} \ \ \sigma_{t|t-1}^2 &=& \omega \,+\, \sum_{i=1}^q lpha_i e_{t-i}^2 \,+\, \sum_{j=1}^p eta_j \sigma_{t-j|t-j-1}^2 \end{array}$$

ARMA-APARCH: Mean equation is ARMA(P, Q).

$$Y_t = \theta_0 + \sum_{i=1}^{P} \phi_i Y_{t-i} + \sum_{j=1}^{Q} \theta_j e_{t-j} + e_t$$

Variance equation is APARCH(p, q).

$$egin{array}{lcl} e_t &=& \sigma_{t|t-1}arepsilon_t \ arepsilon_t &\sim& \mathcal{D}_{artheta}(\mathbf{0},\mathbf{1}) & ext{i.i.d.} \ \sigma_{t|t-1}^{\delta} &=& \omega &+ \sum_{i=1}^q lpha_i (|e_{t-i}| - \gamma_i e_{t-i})^{\delta} &+ \sum_{j=1}^p eta_j \sigma_{t-j|t-j-1}^{\delta} \end{array}$$

with $\delta > 0$ and leverage parameters $-1 < \gamma_i < 1$.

Remarks: For ARMA-GARCH models.

- Maximum likelihood estimators of ARMA and GARCH parameters are approximately independent if innovations ε_t are symmetric (e.g., normal or t).
- Then, also the standard errors are approximately equal to those from separate models.
- However, for skewed innovations ARMA and GARCH estimators are correlated.