图论作业 2

范潇 2254298

2024年6月13日

题目 1. (1) 对 |V| 进行数学归纳。当 |V| = 0,1 时,显然命题成立。假设当 $|V| \le k$ 时命题成立,当 |V| = k + 1 时,由于至少有一个叶子结点 v,设它与顶点 u 相邻。若对于该树存在完全匹配 P_V ,显然 $P_V = P_{V \setminus \{u,v\}} \cup \{uv\}$,且由于归纳假设 $P_{V \setminus \{u,v\}}$ 是唯一的,所以 P_V 也是唯一的。

因此, 任何树至多有一个完美匹配。

题目 2. (2) 只需证明当 $|E| = |n^2/4| + 1$ 时, $t(G) \ge |n/2|$ 即可。

当 $n \geq 3$ 时,无论 n 的奇偶性,均有 $\lfloor n/2 \rfloor \lceil n/2 \rceil = \lfloor n^2/4 \rfloor$ 。因此,取完全二部图 $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$,因为此 时 $\lceil n/2 \rceil \geq 2$,所以可以在顶点数 $\lceil n/2 \rceil$ 的一侧取两个点,并将它们连接起来,得到一个 $m = \lfloor n^2/4 \rfloor + 1$ 的图,同时,由于该图是在完全二部图的基础上得到的,选取的两个点都与另一侧的顶点相邻,从而有 $t(G) \geq \lfloor n/2 \rfloor$

题目 3. (3) 由于图 1中的着色方案的存在,所以 $R(P_3, C_4) \ge 5$ 。下面证明 $R(P_3, C_4) \le 5$ 。只需证明对于任意一个 K_5 的红蓝二着色,必能得到一个蓝色的 P_3 或红色的 C_4 。

图 1: K4 的一种二着色方案

 K_5 中,必存在一个顶点,有偶数个蓝边与其邻接。事实上,如果不存在,则蓝边与顶点相邻接的次数为奇数,与握手定理矛盾。不妨设这个顶点为 v_1 。

当有 4 条蓝边与其邻接时,若不存在蓝色的 P_3 ,则没有蓝边与 v_2,v_3,v_4,v_5 邻接,从而它们形成一个 红色的 $C_4(v_2\to v_5\to v_3\to v_4\to v_2)$ 。

当有 2 条蓝边与其邻接时,若不存在蓝色的 P_3 ,则没有蓝边与 v_2, v_5 邻接,从而它们形成一个红色的 $C_4(v_2 \to v_5 \to v_3 \to v_4 \to v_2)$ 。

当有 0 条蓝边与其邻接时,若不存在红色的 P_3 ,显然对于 v_2, v_3, v_4, v_5 ,在图 4的基础上至多分别新增一条红边与它们邻接。但是如果只与两条红色边邻接,则回到了上一种情况。所以在图 4中,其余边都是蓝边,但是这时显然存在蓝色 P_3 。

2254298 范潇 - 2 -

图 2: 有四条蓝边与 v_1 邻接

图 3: 有两条蓝边与 v_1 邻接

图 4: 有零条蓝边与 v_1 邻接

综上, $R(P_3, C_4) \ge 5$, 因此 $R(P_3, C_4) = 5$ 。

题目 4. (4)

题目 5. (22) 若一条边为某个三角形的最长边,则将其染为红色,剩余边染为蓝色。由于 R(3,3) = 6,所以必有一个蓝色三角形或红色三角形。但是因为每个三角形必有一条最长边,即必有一条红边,所以一定能得到一个红色三角形。该红色三角形的最短边便是另一个三角形的最长边。

题目 6. (23) 对于 $K_{n(r_{n-1}-1)+2}$ 中的任一顶点 v,由鸽笼原理可知,至少存在一种颜色 α ,有 r_{n-1} 条这种颜色的边与其邻接。记这些边的另一端的顶点为 $v_1, \dots, v_{r_{n-1}}, \dots$ 。若存在 $1 \le i < j$,使得 $v_i v_j$ 的颜色也为 α ,则得到一个同色三角形 $v v_i v_j$ 。否则, $v_1, \dots, v_{r_{n-1}}$ 的诱导子图中边的颜色至多有 n-1 种,因此其中必有一个同色三角形。综上, $r_n \le n(r_{n-1}-1)+2$ 。

2254298 范潇 - 3 -

因此

$$r_{n} \leq n(r_{n-1} - 1) + 2$$

$$\leq n[(n-1)(r_{n-2} - 1) + 1] + 2$$

$$= n(n-1)(r_{n-2} - 1) + n + 2$$

$$\leq \cdots$$

$$\leq n(n-1) \cdots 2(r_{1} - 1) + n(n-2) \cdots 3 + \cdots + n + 2$$

$$= 2n! + \frac{n!}{2!} + \cdots + \frac{n!}{(n-1)!} + 1$$

$$= n! \left[\frac{1}{n!} + \frac{1}{(n-1)!} + \cdots + \frac{1}{2!} + \frac{1}{1!} + \frac{1}{0!} \right] + 1$$

$$\leq |en!| + 1 = [en!]$$

在三着色的 K_{17} 中,任取一个顶点 v,至少有 6 条与它邻接的边同色,记该颜色为 α ,这些边另一端上的顶点为 v_1, \dots, v_6, \dots 。若存在 $1 \le i < j$,使得 $v_i v_j$ 的颜色也为 α ,则 $v v_i v_j$ 为同色三角形。否则, v_1, \dots, v_6 的诱导子图中边的颜色至多有 2 种,而 r(3,3)=6,所以必有一个同色三角形。综上,三着色的 K_{17} 中必有一个同色三角形,所以 $r_3 \le 17$.

题目 7. (25) $\{1,2,\cdots,s_{n-1}-1\}$ 可以划分为 n-1 个子集,各子集中没有 x+y=z 的解。记这些子集为 A_1,\cdots,A_{n-1} 。

下面把 $\{1, 2, \dots, 3s_{n-2} - 2\}$ 划分为不满足要求的 n 个子集。

$$\exists B_i = \{j \mid j \in A_i \lor j - (2s_{n-1} - 1) \in A_i\}, i = 1, \dots, n - 1; B_n = \{s_{n-1}, s_{n-1} + 1, \dots, 2s_{n-1} - 1\}.$$

因为任取 $i, j \in B_n, i+j \geq 2s_{n-1}$,所以 B_n 中没有 x+y=z 的解。对于 $B_i, i \neq n$,任取 $a, b \in B_i$,若 $a, b \in B_i - A_i$,则 $a+b \geq 4s_{n-1}$,所以 $a+b \notin B_i$;若 $a, b \in A_i$, $a+b \leq 2s_{n-1}-2$,所以 $a+b \notin B_i - A_i$ 又因为 A_i 中没有 x+y=z 的解,所以 $a+b \notin B_i$;若 a, b 一个属于 A_i ,令一个属于 $B_i - A_i$,不妨 设 $x \in B_i - A_i, y \in A_i$ 若存在 $z \in B_i, s.t.x+y=z$,则 $(x-(2s_{n-1}-1))+y=z-(2s_{n-1}-1)$,而 $x-(2s_{n-1}-1) \in A_i, z \leq 2s_{n-1}-2$,所以 $z \in A_i$,而这与 A_i 的构造相矛盾。

因此,可以把 $\{1,2,\cdots,3s_{n-2}-2\}$ 划分为不满足要求的n个子集。从而 $s_n \geq 3s_{n-1}-1$ 。

当 n=1 时, $s_1=2\geq \frac{1}{2}(3+1)$ 。假设当 n=k 时不等式成立,则当 n=k+1 时有

$$s_{k+1} \ge 3s_k - 1 \ge \frac{3}{2}(3^n + 1) - 1 = \frac{1}{2}(3^{n+1} + 1)$$

因此不等式成立。