Klausurzettel Mathematik für Informatiker III

Interpolation:

- Lagrangesches Interpolationspolynom: $p_n(x) = \sum_{k=0}^n y_k L_{k,n}(x)$ mit $L_{k,n}(x) = \prod_{j=0}^n \frac{x x_j}{x_k x_j}$ (zuerst $L_{k,n}(x)$ ausrechnen, dann in $p_n(x)$ einsetzen)
- Newtonsche Interpolationspolynom: $p_n(x) = y_0 + \sum_{i=1}^n y_i(x-x_0)...(x-x_{i-1})$, $y_i = f_{[x_0,...,x_i]}$ und $f_{[x_j,...,x_{j+k}]} = \frac{f_{[x_{j+1},...,x_{j+k}]} f_{[x_j,...,x_{j+k-1}]}}{x_{j+k}-x_j}$ + Schema Skript S. 8
 Fehlerabschätzung für Interpolationspolynome:
 - Fehlerabschätzung für Interpolationspolynome: $\max_{x \in [a,b]} \left| f(x) p_n(x) \right| \leq \max_{x \in [a,b]} \frac{\left| f^{(n+1)}(x) \right|}{(n+1)!} (b-a)^{n+1}$
- Interpolation mit linearen Splines:
 - Fehlerabschätzung: $\max_{x \in [a,b]} |f(x) s(x)| \le \frac{1}{8} \max_{x \in [a,b]} |f''(x)| h_{max}^2$
- $\quad \text{Interpolation mit kubischen Splines:} \quad s_{i} = \frac{1}{6} \left(\frac{(x_{i+1} x)^{3}}{x_{i+1} x_{i}} M_{i} + \frac{(x x_{i})^{3}}{x_{i+1} x_{i}} M_{i+1} \right) + c_{i}(x x_{i}) + d_{i},$ $d_{i} = y_{i} \frac{h_{i}^{2}}{6} M_{i}, \quad c_{i} = \frac{y_{i+1} y_{i}}{h_{i}} \frac{h_{i}}{6} (M_{i+1} M_{i})$
 - Glsystem: $\begin{vmatrix} \mu_{0} & \lambda_{0} \\ \frac{h_{0}}{6} & \frac{h_{0} + h_{1}}{3} & \frac{h_{1}}{6} \\ & \ddots & \ddots & \ddots \\ & & \frac{h_{i-1}}{6} & \frac{h_{i-1} + h_{i}}{3} & \frac{h_{i}}{6} \\ & & \ddots & \ddots & \ddots \\ & & & \lambda_{n} & \mu_{n} \end{vmatrix} = \begin{vmatrix} b_{0} \\ M_{1} \\ \vdots \\ M_{n} \end{vmatrix} = \begin{vmatrix} b_{0} \\ \frac{y_{2} y_{1}}{h_{1}} \frac{y_{1} y_{0}}{h_{0}} \\ \vdots \\ \frac{y_{i+1} y_{i}}{h_{i}} \frac{y_{i} y_{i-1}}{h_{i-1}} \\ \vdots \\ b_{n} \end{vmatrix}$
 - natürliche Randbedingungen: $M_0 = M_n = 0$
 - Vorgehen: berechne h_i s, stelle Glsystem auf, berechne damit M_i s, berechne d_i s, berechne c_i s, berechne s_i s
 - Fehlerabschätzung natürl. Randbedingungen: $|f(x)-s(x)| \le \frac{h_{max}}{h_{min}} \sup_{\xi \in [a,b]} |f^{(4)}(\xi)| h_{max}^4$
 - Fehlerabschätzung hermite Randbedingungen: $|f(x)-s(x)| \le \frac{5}{384} \sup_{\xi \in [a,b]} |f^{(4)}(\xi)| h_{max}^4$

Lineare Gleichungssysteme:

- $Gau\beta$ -Verfahren: für $k=1,...,n-1:A^{(k)}$ beschreibt Ursprungsmatrix / Iterationsmatrix \to $\tilde{A}^{(k)}$ beschreibt Matrix, bei der Zeilen vertauscht wurden $\to b^{(k)}$ beschreibt Ursprungsvektor / Iterationsvektor \to $\tilde{b}^{(k)}$ beschreibt Vektor, bei dem Zeilen vertauscht wurden $\to L^{(k)}$ beschreibt Matrix, in der die Faktoren gespeichert werden \to $\tilde{L}^{(k)}$ beschreibt die Matrix der Faktoren, bei der die Zeilen vertauscht wurden \to Ergebnis ist $R=A^{(n)}, L=I+L^{(n)}, c=b^{(n)}$
 - Matrizenklassen, die keine Pivotsuche erfordern: $A = A^T$ und A hat lauter echt positive EWe (also ist A symmetrisch positiv definit); A ist strikt diagonaldominant, A. das Diagonalelement ist immer größer als die Summe der Zeileneinträge

- Cholesky-Verfahren: Cholesky-Zerlegung
$$LL^T = A$$
, L hat positive Diagonaleinträge

Für
$$j=1,...,n$$
: $l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2}$

Für
$$i = j + 1, ..., n$$
: $l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{ii}}$

- für
$$n=3$$
: $l_{11}=\sqrt{a_{11}}$; $l_{21}=\frac{a_{21}}{l_{11}}$; $l_{31}=\frac{a_{31}}{l_{11}}$; $l_{22}=\sqrt{a_{22}-l_{21}^2}$; $l_{32}=\frac{a_{32}-l_{31}l_{21}}{l_{22}}$; $l_{33}=\sqrt{a_{33}-l_{31}^2-l_{32}^2}$

- Um $Ax = b \rightarrow LL^T x = b$ zu lösen, löse zunächst Ly = b und anschließend $L^T x = y$ Normen: euklidische Norm $||x||_2 = \sqrt{x^T x}$ induziert $||A||_2 = \sqrt{\lambda_{max}(A^T A)}$;

Spaltensummennorm
$$||x||_1 = \sum_{i=1}^n |x_i|$$
 induziert $||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$;

Zeilensummennorm
$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$
 induziert $||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|$

- Kondition: $cond(A) = ||A|| ||A^{-1}||$

$$- \quad \textit{St\"{o}reinfluss:} \quad \frac{\left\|\tilde{x} - x\right\|}{\left\|x\right\|} \leq \frac{cond\left(A\right)}{1 - cond\left(A\right)\left\|\Delta A\right\| / \left\|A\right\|} \left(\frac{\left\|\Delta A\right\|}{\left\|A\right\|} + \frac{\left\|\Delta b\right\|}{\left\|b\right\|}\right)$$

Nichtlineare Gleichungssysteme:

$$- \quad Jacobi-Matrix: \ F'(x) = \begin{vmatrix} \frac{\partial F_1}{\partial x_1}(x) & \cdots & \frac{\partial F_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1}(x) & \cdots & \frac{\partial F_n}{\partial x_n}(x) \end{vmatrix}$$

Lokales Newton-Verfahren:

Wähle Startpunkt $x^{(0)} \in \mathbb{R}^n$, für k = 0, 1, ...:

- 1. Falls $F(x^{(k)})=0$: STOP mit Ergebnis $x^{(k)}$
- 2. Berechne den Newton-Schritt $s^{(k)} \in \mathbb{R}^n$ durch Lösen der Newton-Gleichung $F'(x^{(k)})s^{(k)} = -F(x^{(k)})$ 3. Setze $x^{(k+1)} = x^{(k)} + s^{(k)}$
- Schrittweitenwahl nach Armijo: Sei $\delta \in]0, \frac{1}{2}[$ (gute Wahl $\delta = 10^{-3}$) fest gegeben. Wähle das größte $\sigma_k \in \{1, \frac{1}{2}, \frac{1}{4}, \dots\}$ mit $\|F(x^{(k)} + \sigma_k s^{(k)})\|_2^2 \le (1 - 2\delta\sigma_k) \|F(x^{(k)})\|_2^2$
- Globales Newton-Verfahren: wie lokales Newton-Verfahren, aber setze $x^{(k+1)} = x^{(k)} + \sigma_k s^{(k)}$

Numerische Integration (interpolatorische Quadratur):

Geschlossene Newton-Cotes-Formel: $I_n(f) = h \sum_{i=0}^{n} \alpha_{i,n} f(x_i)$ mit Gewichten

$$\alpha_{i,n} = \int_{0}^{n} \prod_{j=0}^{n} \frac{s-j}{i-j} ds$$
; $h = \frac{b-a}{n}$

n	$\alpha_{i,n}$	Fehler $E_n(f)$	Name
1	$\frac{1}{2}$ $\frac{1}{2}$	$-\frac{f^{(2)}(\xi)}{12}h^3$	Trapezregel

2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{f^{(4)}(\xi)}{90}h^5$	Simpson-Regel
3	$\frac{3}{8} \frac{9}{8} \frac{9}{8} \frac{3}{8}$	$-\frac{3f^{(4)}(\xi)}{80}h^{5}$	3/8-Regel
4	14 64 24 64 14 45 45 45 45 45		Milne-Regel

- Fehlerabschätzung:
$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} p_{n}(x) dx \right| \leq \int_{a}^{b} \left| f(x) - p_{n}(x) \right| dx \leq \frac{\left| f^{(n+1)}(\xi) \right|}{(n+1)!} (b-a)^{n+2}$$

- Offene Newton-Cotes-Formel: $\tilde{I}_n(f) = h \sum_{i=1}^{n+1} \tilde{\alpha}_{i,n} f(x_i)$ mit Gewichten

$$\tilde{\alpha}_{i,n} = \int_{0}^{n+2} \prod_{j=1}^{n+1} \frac{s-j}{i-j} ds$$
; $h = \frac{b-a}{n+2}$

n	$\alpha_{i,n}$	Fehler $\tilde{E}_n(f)$	Name
0	2	$\frac{f^{(2)}(\xi)}{3}h^3$	Rechteck-Regel
1	$\frac{3}{2}$ $\frac{3}{2}$	$\frac{3f^{(2)}(\xi)}{4}h^3$	
2	$\frac{8}{3} - \frac{4}{3} \frac{8}{3}$	$\frac{28f^{(4)}(\xi)}{90}h^{5}$	

- Eine Integrationsformel J(f) heißt exakt vom Grad n, falls sie alle Polynome bis mindestens vom Grad n exakt integriert \rightarrow prüfen, ob I(f) = J(f) für Basispolynome kleiner gleich n im Intervall [-1,1]
- Summierte Newton-Cotes-Formeln: teile [a,b] in m Teilintervalle der Länge $H = \frac{b-a}{m}$

$$\rightarrow h = \frac{H}{n}$$

- Summierte geschlossene Newton-Cotes-Formel: $S_N^{(n)}(f) = h \sum_{j=0}^{m-1} \sum_{i=0}^{n} \alpha_{i,n} f(x_{jn+i})$
- Summierte Trapezregel: $S_N^{(1)}(f) = \frac{h}{2} \sum_{j=0}^{m-1} (f(x_j) + f(x_{j+1})), x_j = a + jh$; Fehler $R_N^{(1)}(f) = -\frac{f''(\xi)}{12}(b-a)h^2$
- $\quad \textit{Summierte Simpson-Regel:} \quad S_{N}^{(2)}(f) = \frac{h}{3} \sum_{j=0}^{m-1} \left(f\left(x_{2j}\right) + 4f\left(x_{2j+1}\right) + f\left(x_{2j+2}\right) \right), \\ x_{j} = a + jh \quad ; \\ \text{Fehler} \quad R_{N}^{(2)}(f) = -\frac{f^{(4)}(\xi)}{180} (b-a)h^{4}$
- Summierte Rechteck-Regel: $\tilde{S}_{N}^{(0)}(f) = 2h \sum_{j=1}^{m} f(x_{2j-1}), x_{j} = a+jh$; Fehler $\tilde{R}_{N}^{(0)}(f) = \frac{f''(\xi)}{6}(b-a)h^{2}$

Numerische Behandlung von AWP gewöhnlicher Diff.-Gleichungen:

N Teilintervalle;
$$h = \frac{b-a}{N}$$

- Explizites Euler-Verfahren (Konsistenzord. 1): $u_0:=y_0$ $u_j:=y_0+h$ $f(t_j,u_j), j=0,...,N-1$
- Implizites Euler-Verfahren (Konsistenzord. 1): $u_{j+1} := u_j + h f(t_{j+1}, u_{j+1}), j = 0, ..., N-1$
- Verfahren von Heun, erstes Runge-Kutta-Verfahren 2. Ordnung (Konsistenzord. 2):

$$u_{j+1} = u_j + \frac{h}{2} (f(t_j, u_j) + f(t_{j+1}, u_j + h f(t_j, u_j))), j = 0, ..., N - 1$$

- Modifiziertes Euler-Verfahren, zweites Runge-Kutta-Verfahren 2. Ordnung (Konsistenzord. 2): $u_0 = y_0$ $u_{j+1} = u_j + h f(t_j + h/2, u_j + (h/2) f(t_j, u_j)), j = 0, ..., N-1$
- Klassisches Runge-Kutta-Verfahren 4. Ordnung (Konsistenzord. 4):

$$u_{0} = y_{0}$$

$$u_{j+1} = u_{j} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}), j = 0, ..., N-1$$

$$u_{j+1} = u_{j} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}), j = 0, ..., N-1$$

$$k_{1} = f(t_{j}, u_{j})$$

$$k_{2} = f(t_{j} + h/2, u_{j} + (h/2)k_{1})$$

$$k_{3} = f(t_{j} + h/2, u_{j} + (h/2)k_{2})$$

$$k_{4} = f(t_{j+1}, u_{j} + hk_{3})$$

$$r_{2} = t_{1} + t_{2} + t_{3} + t_{4} + t_{4} + t_{4} + t_{5} +$$

- r-stufige explizite Runge-Kutta-Verfahren (implizit, falls Summation bis r):

$$k_{i} = f\left(t + \gamma_{i}h, u + h\sum_{j=1}^{i-1} \alpha_{ij}k_{j}\right), i = 1, ..., r \text{ und } \phi(t, h; u) = \sum_{i=1}^{r} \beta_{i}k_{i};$$

$$u_{i+1} = u_{i} + h\phi(t_{i}, h; u_{i}, u_{i+1})$$

 $u_{i+1} = u_i + h \phi(t_i, h; u_i, u_{i+1})$ - Butcher-Schema:

Konsistenzordnungen: p=1, wenn $\sum_{i=1}^{r} \beta_i = 1$; p=2, wenn zusätzlich $\sum_{i=1}^{r} \beta_i \gamma_i = \frac{1}{2}$;

$$p=3$$
, wenn zusätzlich $\sum_{i=1}^{r} \beta_i \gamma_i^2 = \frac{1}{3}$ und $\sum_{i,j=1}^{r} \beta_i \alpha_{ij} \gamma_j = \frac{1}{6}$

- Modellgleichung: $y' = \lambda y$, y(0) = 1 Lösung ist $y(t) = e^{\lambda t}$
 - A-stabil, wenn Anwendung auf Modellproblem für jede Schrittweite eine Folge produziert mit $|u_{j+1}| \leq |u_j| \forall j \geq 0$
 - L-stabil, wenn A-stabil und $\lim_{j\to\infty} u_j = 0$
 - oft: $u_{j+1} = R(q)u_j$ mit $q = \lambda h \to R$ ist Stabilitätsfunktion; Stabilitätsgebiet $S = \{q \in \mathbb{C} : |R(q)| < 1\} \to A stabil \Leftrightarrow |R(q)| \leq 1$; $L stabil \Leftrightarrow |R(q)| < 1$

Verfahren zur Eigenwert- und Eigenvektorberechnung:

- Gershgorin-Kreise: es gilt $\sigma(A) \subset \bigcup_{i=1}^{n} A_i$ mit $K_i := \{ \mu \in \mathbb{C} : |\mu a_{ii}| \leq \sum_{i=1, i \neq i}^{n} |a_{ij}| \}$
- Vektoriteration nach von Mises findet größten EW: $z^{(k+1)} = \frac{1}{\|Az^{(k)}\|} Az^{(k)}, k = 0, 1, ...$
 - Rayleigh-Quotient: $R(z^{(k)}, A) = \frac{(z^{(k)})^H A z^{(k)}}{(z^{(k)})^H z^{(k)}}$

- Inverse Vektoriteration von Wielandt: $z^{(k+1)} = \frac{\hat{z}^{(k+1)}}{\|\hat{z}^{(k+1)}\|}$ mit $\hat{z}^{(k+1)}$ Lösung von $(A-\mu I)\hat{z}^{(k+1)} = z^{(k)}$
 - Rayleigh-Quotient: $R(z^{(k)}, (A-\mu I)^{-1}) = \frac{(z^{(k)})^H \hat{z}^{(k+1)}}{(z^{(k)})^H z^{(k)}} \rightarrow \text{Näherung für kleinsten EW}$ $\mu + \frac{1}{R(z^{(1)} (A-\mu I)^{-1})}$
- QR-Verfahren mit Shift: Setze $A^{(1)}$:=A, für l=1,2,... berechne $A^{(l)}$ - $\mu_l I$ =: $Q_l R_l$; $A^{(l+1)}$:= $R_l Q_l + \mu_l I$ mit unitärer Matrix Q_l und oberer Dreiecksmatrix R_l
 - $q := \max_{j=1,\dots,n-1} \left| \frac{\lambda_{j+1}}{\lambda_j} \right|$ Maß für Konvergenzgeschwindigkeit, wobei $|\lambda_1| > |\lambda_2| > \dots$
 - Verbesserung der Konvergenz der letzten Zeile durch Shift: wähle als Shift denjenigen Eigenwert von $\begin{pmatrix} a_{n-1,n-1}^{(l)} & a_{n-1,n}^{(l)} \\ a_{n,n-1}^{(l)} & a_{n,n}^{(l)} \end{pmatrix}$, der am nächsten bei $a_{n,n}^{(l)}$ liegt (im Zweifel den mit positivem Imaginärteil)

Messreihen, Lage- und Streumaßzahlen

- empirische Verteilungsfunktion: $F(z) = F(z; x_1, ..., x_n) = \frac{Zahl der x_i mit x_i \le z}{n}$
- p-Quantil: $x_P = \begin{cases} x_{(np)}, \text{ falls np ganzzahlig} \\ x_{([np]+1)}, \text{ falls np nicht ganzzahlig} \end{cases}$
- empirische Varianz: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$
- empirische Streuung: $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2}$
- empirische Kovarianz: $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})$
- empirischer Korrelationskoeffizient: $r_{xy} = \frac{S_{xy}}{S_x S_y}$
- Berechnung der Regressionsgerade: $y = \hat{a}x + \hat{b}$ mit

$$\hat{a} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} = \frac{s_{xy}}{s_{x}^{2}}, \quad \hat{b} = \overline{y} - \hat{a} \overline{x}$$

Kombinatorik:

- geordnete Probe mit Wiederholungen: n^k
- geordnete Probe ohne Wiederholungen: $n(n-1)(n-2)...(n-k+1) = \frac{n!}{(n-k)!}$
- ungeordnete Probe ohne Wiederholungen: $nCk = \binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$

Bedingte Wahrscheinlichkeit:

- bedingte Wahrscheinlichkeit von A unter der Bedingung B: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Regel von der vollständigen Wahrscheinlichkeit: vollständige Ereignisdisjunktion A_1, \dots, A_n

$$\rightarrow P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

- Formel von Bayes: vollständige Ereignisdisjunktion $A_1, ..., A_n \rightarrow P(A_i|B) = \frac{P(A_i) \cdot P(B|A_i)}{\sum_{k=1}^{n} P(A_k) \cdot P(B|A_k)} = \frac{P(A_i) \cdot P(B|A_i)}{P(B)}$

Zufallsvariablen und Verteilungsfunktionen:

- Verteilungsfunktion: Dichte $f \to F(x) = \int_{-\infty}^{x} f(t)dt$; $F(x) = P(X \le x)$
- diskrete Verteilungen:
 - geometrische Verteilung: $P(X=i)=(1-p)^{i-1}p$, i=1,2,... "Warten auf den 1. Erfolg"
 - Binomialverteilung (B(n, p)): $P(X=i) = \binom{n}{i} p^i (1-p)^{n-i}$, i=0,1,...,n "Anzahl Erfolge bei n Versuchen"
 - Poissonverteilung: $P(X=i) = \frac{\lambda^{i}}{i!} e^{-\lambda}$, i=0,1,2,...
 - Erwartungswert: $E(X) = \sum_{i} x_{i} P(X = x_{i})$ bzw. $E(h(X)) = \sum_{i} h(x_{i}) P(X = x_{i})$
- stetige Verteilungen:
 - Rechteckverteilung (R(a,b)): $f(t) = \begin{cases} \frac{1}{b-a}, a \le t \le b \\ 0, sonst \end{cases}$; $F(x) = \begin{cases} 0, x \le a \\ \frac{x-a}{b-a}, a < x < b \\ 1, x \ge b \end{cases}$
 - Exponential verteilung ($Ex(\lambda)$): $f(t) = \begin{cases} 0, & t < 0 \\ \lambda e^{-\lambda t}, & t \ge 0 \end{cases}$; $F(x) = \begin{cases} 0, & x < 0 \\ 1 e^{-\lambda x}, & x \ge 0 \end{cases}$
 - Normalverteilung ($N(\mu, \sigma^2)$): $f(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}$; $F_{\mu,\sigma^2}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$
 - Standard-Normalverteilung: $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$
 - Erwartungswert: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$ bzw. $E(h(X)) = \int_{-\infty}^{\infty} h(x) f(x) dx$
- Varianz: $Var(X) = E([X E(X)]^2)$
- Standardabweichung: $\sqrt{Var(X)}$
- Rechenregeln Erwartungswert: E(aX+b)=aE(X)+b; $E(h_1(X)+h_2(X))=E(h_1(X))+E(h_2(X))$; $Var(X)=E(X^2)-(E(X))^2$; $Var(aX+b)=a^2Var(X)$

, et. (et.) et , et. (11)				
Verteilung	E(X)	Var(X)		
$N(\mu,\sigma^2)$	μ	σ^2		
$Ex(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		
B(n, p)	пр	np(1-p)		

- Tschebyschevsche Ungleichung: $P(|X - E(X)| \ge c) \le \frac{Var(X)}{c^2}$, c > 0

Schätzverfahren und Konfidenzintervalle:

- Schätzer T_n heißt erwartungstreu, wenn $E_{\theta}(T_n(X_1,...,X_n)) = \tau(\theta)$

- Schätzerfolge heißt *konsistent*, wenn $\lim_{n\to\infty} P_{\theta}(|T_n(X_1,\dots,X_n)-\tau(\theta)|>\epsilon)=0$
 - bei erwartungstreuen Schätzern: wenn $\lim_{n\to\infty} Var_{\theta}(T_n(X_1,\ldots,X_n))=0$ für alle $\theta\in\Theta$
- *Maximum-Likelihood-Schätzer*: $L(\theta; x_1, ..., x_n) = f_{\theta}(x_1) \cdot f_{\theta}(x_2) \cdot ... \cdot f_{\theta}(x_n)$ \rightarrow Maximum bilden: Nullstelle von $\ln(L)$ berechnen und prüfen, ob zweite Ableitung kleiner Null \rightarrow dann ist Nullstelle ML-Schätzer
- Konfidenzintervall für μ bei bekannter Varianz $\sigma^2 = \sigma_0^2$ mit Konfidenzniveau $1-\alpha$:

$$I(X_{1},...,X_{n}) = \left[X_{(n)} - u_{1-\alpha/2} \frac{\sigma_{0}}{\sqrt{n}}, X_{(n)} + u_{1-\alpha/2} \frac{\sigma_{0}}{\sqrt{n}}\right]$$

- Konfidenzintervall für μ bei unbekannter Varianz σ^2 mit Konfidenzniveau $1-\alpha$:

$$I(X_{1},...,X_{n}) = \left[\overline{X}_{(n)} - t_{n-1;1-\alpha/2} \sqrt{\frac{S_{(n)}^{2}}{n}}, \overline{X}_{(n)} + t_{n-1;1-\alpha/2} \sqrt{\frac{S_{(n)}^{2}}{n}}\right]$$

- Konfidenzintervall für σ^2 bei bekanntem Erwartungswert $\mu = \mu_0$ mit Konfidenzniveau

$$1-\alpha: I(X_{1,...}, X_{n}) = \left[\frac{\sum_{i=1}^{n} (X_{i} - \mu_{0})^{2}}{X_{n;1-\alpha/2}^{2}}, \frac{\sum_{i=1}^{n} (X_{i} - \mu_{0})^{2}}{X_{n;\alpha/2}^{2}}\right]$$

- Konfidenzintervall für σ^2 bei unbekanntem Erwartungswert mit Konfidenzniveau $1-\alpha$:

$$I(X_{1},...,X_{n}) = \left[\frac{(n-1)S_{(n)}^{2}}{\chi_{n-1;1-\alpha/2}^{2}},\frac{(n-1)S_{(n)}^{2}}{\chi_{n-1;\alpha/2}^{2}}\right]$$

Tests bei Normalverteilungsannahmen:

- Fehler 1. Art: H_0 wird abgelehnt, obwohl H_0 zutrifft
- Fehler 2. Art: H_0 wird nicht abgelehnt, obwohl H_0 nicht zutrifft
- Gauβ-Test:
 - 1. X_1, \dots, X_n unabhängig, identisch $N(\mu, \sigma_0^2)$ -verteilt, σ_0^2 bekannt
 - 2. a) $H_0: \mu = \mu_0$, b) $H_0: \mu \leq \mu_0$, c) $H_0: \mu \geq \mu_0$
 - 3. Testgröße $T(X_{1,\dots},X_n) = \frac{\sqrt{n}}{\sigma_0}(\overline{X}_{(n)} \mu_0)$
 - 4. Ablehnung, falls a) $|T| > u_{1-\alpha/2}$, b) $T > u_{1-\alpha}$, c) $T < u_{\alpha}$
- t -Test:
 - 1. X_1, \dots, X_n unabhängig, identisch $N(\mu, \sigma_0^2)$ -verteilt, σ_0^2 unbekannt
 - 2. a) $H_0: \mu = \mu_0$, b) $H_0: \mu \le \mu_0$, c) $H_0: \mu \ge \mu_0$
 - 3. Testgröße $T(X_1, ..., X_n) = \sqrt{n} \frac{\overline{X}_{(n)} \mu_0}{\sqrt{S_{(n)}^2}}$
 - 4. Ablehnung, falls a) $|T| > t_{n-1;1-\alpha/2}$, b) $T > t_{n-1;1-\alpha}$, c) $T < t_{n-1;\alpha}$
- χ^2 -Streuungstest:
 - 1. X_1, \dots, X_n unabhängig, identisch $N(\mu, \sigma_0^2)$ -verteilt, μ unbekannt
 - 2. a) $H_0: \sigma^2 = \sigma_0^2$, b) $H_0: \sigma^2 \le \sigma_0^2$, c) $H_0: \sigma^2 \ge \sigma_0^2$
 - 3. Testgröße $T(X_1, \dots, X_n) = \frac{n-1}{\sigma_0^2} \cdot S_{(n)}^2$
 - 4. Ablehnung, falls a) $T < \chi^2_{n-1;\alpha/2}$, b) $T > \chi^2_{n-1;1-\alpha/2}$, c) $T < \chi^2_{n-1;\alpha}$

evt. Formel partielle Integration

evt. Logarithmengesetze