# **DIGITAL DESIGN**

CS/ECE/EEE/INSTR F215

Lecture 3 Sarang Dhongdi

## **BOOLEAN ALGEBRA**

## Axiomatic definitions of Boolean Algebra

- · Huntington Postulates
  - · Postulate 1 Closure
  - (a) Operator +
  - (b) Operator .
  - Postulate 2 Identity
    - (a) x+0 = 0 + x = x
    - (b) x.1 = 1.x = x

- Postulate 3 Commutative
- a) **x+y = y+x**
- , , ,
- b) x.y = y.x
- Postulate 4 Distributive
- a) x.(y+z) = (x.y) + (x.z)
- b) X+(y.Z) = (X+y).(X+Z)

- · Postulate 5 Complement
  - (a) x+x' = 1
  - (b) x.x' = 0
- · Postulate 6 -
- There exists at least two elements x and y in set B, such that x≠ y
- Associative law is not part of postulates, but it can be derived from other postulates.
- No inverses for addition and multiplication – i.e. no subtraction and division.
- Complement is not available for ordinary algebra.
- Postulate 4b is not valid for ordinary algebra.

# Two-valued Boolean Algebra

 It is defined over the set of two elements B={0,1}, with rules for the binary operators + and ., along with complement operator.

| Х | у | x.y |  |
|---|---|-----|--|
| 0 | 0 | 0   |  |
| 0 | 1 | 0   |  |
| 1 | 0 | 0   |  |
| 1 | 1 | 1   |  |

 x
 y
 x+y

 0
 0
 0

 0
 1
 1

 1
 0
 1

 1
 1
 1



AND

OR

Postustate 2-Complinguitative a) (a) +x = x

x= x. (\$\dd)(d

Postulate 4 – Distributive

a) x.(y+z) = (x.y) + (x.z)

b) X+(y.z) = (x+y).(x+z)

| x | у | z | y+z | x.(y+z) | x.y | x.z | (x.y) + (x.z) |
|---|---|---|-----|---------|-----|-----|---------------|
| 0 | 0 | 0 | 0   | 0       | 0   | 0   | 0             |
| 0 | 0 | 1 | 1   | 0       | 0   | 0   | 0             |
| 0 | 1 | 0 | 1   | 0       | 0   | 0   | 0             |
| 0 | 1 | 1 | 1   | 0       | 0   | 0   | 0             |
| 1 | 0 | 0 | 0   | 0       | 0   | 0   | 0             |
| 1 | 0 | 1 | 1   | 1       | 0   | 1   | 1             |
| 1 | 1 | 0 | 1   | 1       | 1   | 0   | 1             |
| 1 | 1 | 1 | 1   | 1       | 1   | 1   | 1             |
|   |   |   |     |         |     |     |               |

# Duality

- · For the dual of the algebraic expression,
  - · Interchange AND and OR
- · Replace 1's with 0's and 0's with 1's.

| Postulate   | Expression (a)          | Dual (b)              |
|-------------|-------------------------|-----------------------|
| Postulate 2 | x+0=x                   | x.1 =x                |
| Postulate 3 | X+y = y+X               | x.y = y.x             |
| Postulate 4 | X.(y+z) = (X.y) + (X.z) | X+(y.Z) = (X+y).(X+Z) |
| Postulate 5 | x+x' = 1                | x.x' = 0              |

| rneorems (                         | of Boolean Alge   | bra             |
|------------------------------------|-------------------|-----------------|
| Theorem                            | Expression (a)    | Dual (b)        |
| Theorem 1 – Idempotency (Sameness) | x+x = x           | x.x=x           |
| Theorem 2                          | x+1 = 1           | x.0 = 0         |
| Theorem 3 - Involution             | (x')' =           | = x             |
| Theorem 4 - Associative            | x+(y+z) = (x+y)+z | x(yz) = (xy)z   |
| Theorem 5 – De Morgan              | (x+y)' = x'y'     | (xy)' = x' + y' |
| Theorem 6 - Absorption             | x+xy = x          | x(x+y) = x      |
|                                    |                   |                 |

Null AND

Transfer

Transfer

Inhibition

Inhibition Ex-OR

OR

#### Theorem 1 (a) X + X = Xx+x = (x+x).12 (b) x.1 = x=(x+x)(x+x')x+x' = 15 (a) = x+xx'X+(y.Z) = (X+y).(X+Z)4 (b) = x + 0x.x' = 05 (b) = x 2 (a) x+0=x













## Complement

- Complement of the Boolean expression can be obtained using De-Morgan's theorem.
- Or simply
- Take dual
- · Invert the literals
- Ex. F = x'yz' + x'y'z
- Dual of F is = (x'+y+z')(x'+y'+z)
- Complement is F' = (x+y'+z)(x+y+z')

### **Definitions**

- Literal –Ex. If x is the variable, both x and x' are literals.
- $\, \cdot \,$  Product term –Ex. Terms such as x, xy, x'yz
- ${\scriptstyle \bullet}$  Sum term Ex. Terms such as x, x'+y, x'+y+z
- Sum of products SOP is the logical OR of multiple product terms.
- Ex. xy'+x'+xy'z'
- Product of sum POS is the logical AND of the multiple OR terms
- $^{\circ} \ \mathsf{Ex.} \ (x{+}y')(x{+}y{+}z')(y'{+}z')$

#### **Definitions**

- Minterms Special case product (AND) term. A minterm is a product term that contains all of the input variables that make up a Boolean expression. – Each literal no more than once.
- Maxterm Special case sum (OR) term. A maxterm is a sum term that contains all of the input variables that make up a Boolean expression. – Each literal no more than once.

## **Definitions**

- Canonical sum of products It is a complete set of minterms that defines when an output variable is a logical 1.
- Each minterm corresponds to the row in the truth table where the output function is 1.
- Canonical product of sums It is a complete set of maxterms that defines when an output variable is a logical 0.
- Each maxterm corresponds to the row in the truth table where the output function is 0.

## Minterms and Maxterms

| Α | В | Minterms     | Maxterms        |
|---|---|--------------|-----------------|
| 0 | 0 | $m_0 = A'B'$ | $M_0 = A+B$     |
| 0 | 1 | $m_1 = A'B$  | $M_1 = A+B$     |
| 1 | 0 | $m_2 = AB'$  | $M_2 = A' + B$  |
| 1 | 1 | $m_3 = AB$   | $M_3 = A' + B'$ |

## Minterms and Maxterms - Properties

- · Maxterm is logical complement of minterm (and vice-versa)
- For  $m_0 = A'B' \rightarrow m_0' = (A'B')' = A + B = M_0$
- Logical OR of all 2<sup>n</sup> minterms is equal to logical 1.

$$\sum_{i=0}^{2^{n}-1} m_{i} = 1$$

• Sum = A'B' + A'B + AB' + AB = A'(B'+B) + A(B'+B)= A' + A= 1

## Minterms and Maxterms - Properties

 Logical product of all the maxterms is equal to logical zero.

$$\prod_{i=0}^{2^n-1} M_i = 0$$

• Product = (A' + B') (A' + B)(A+B')(A+B)= (A')(A)= 0

## Three variable

| Α | В | С |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 1 |

| Minterms |                |  |  |
|----------|----------------|--|--|
| Term     | Designation    |  |  |
| A'B'C'   | $m_0$          |  |  |
| A'B'C    | m <sub>1</sub> |  |  |
| A'BC'    | m <sub>2</sub> |  |  |
| A'BC     | m <sub>3</sub> |  |  |
| AB'C'    | m <sub>4</sub> |  |  |
| AB'C     | m <sub>5</sub> |  |  |
| ABC'     | m <sub>6</sub> |  |  |
| ABC      | m <sub>7</sub> |  |  |
|          |                |  |  |

| Ma       | xterms         |
|----------|----------------|
| Term     | Designation    |
| A+B+C    | $M_0$          |
| A+B+C'   | M <sub>1</sub> |
| A+B'+C   | $M_2$          |
| A+B'+C'  | $M_3$          |
| A'+B+C   | $M_4$          |
| A'+B+C'  | $M_5$          |
| A'+B'+C  | $M_6$          |
| A'+B'+C' | M <sub>7</sub> |
|          |                |

## Canonical SOP and POS



- F(A,B,C) = A'B'C + AB'C' + AB'C + ABC' + ABC'=  $m_1 + m_4 + m_5 + m_6 + m_7$ 
  - $= \sum (m_1 m_4 m_5 m_6 m_7)$ =  $\sum (1,4,5,6,7)$
- $$\begin{split} * & \ F' = A'B'C' + A'BC' + A'BC \\ & = \sum \left( 0,2,3 \right) \end{split}$$
    $F' = m_0 + m_2 + m_3$
- $$\begin{split} & \cdot \ F = (A + B + C) \ (A + B' + C) (A + B' + C') \\ & = \ M_0 M_2 M_3 \\ & = \ \Pi \ (M_0 M_2 M_3) \\ & = \ \Pi \ (0.2.3) \end{split} \qquad \begin{array}{l} F = \ (m_0 + m_2 + m_3) \\ & = \ m_0' \ m_2' \ m_3' \\ & = \ M_0 M_2 M_3 \end{split}$$

# Expressing a given equation in "Sum of minterms" • F = A+B'C • F = A+B'C(A+A') • = A + AB'C+A'B'C • = A(B+B')+ AB'C+A'B'C • = AB+AB'+ AB'C+A'B'C • = AB(C+C') + AB'(C+C')+AB'C+A'B'C • = ABC + ABC'+AB'C+A'B'C • = Σ(1, 4, 5, 6, 7)