UNIVERSITY OF SOUTHAMPTON School of Electronics and Computer Science

Generative Design of Control Pulses for Magic State Preparation via Neural Quantum States Poster

Full Bibliography

Alberto Berni October 19, 2025

References

- [1] Hannah Lange, Anka Van de Walle, Atiye Abedinnia, and Annabelle Bohrdt. From architectures to applications: A review of neural quantum states. arXiv preprint, 2024.
- [2] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal clifford gates and noisy ancillas. *Physical Review A*, 71:022316, 2005.
- [3] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. *Nature*, 549:172–179, 2017.
- [4] Navin Khaneja, Timo Reiss, Christoph Kehlet, Thomas Schulte-Herbrüggen, and Steffen J. Glaser. Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms. *Journal of Magnetic Resonance*, 172:296–305, 2005.
- [5] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm. Training schrödinger's cat: quantum optimal control. *The European Physical Journal D*, 69:279, 2015.
- [6] Alberto Berni. Generative design of control pulses for magic state preparation via neural quantum states. MEng Project Proposal, University of Southampton, October 2025.
- [7] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial neural networks. *Science*, 355(6325):602–606, 2017.
- [8] Or Sharir, Yoav Levine, Giuseppe Carleo, Shashua Amnon, and Nadav Cohen. The expressive power of neural-network quantum states. *Physical Review Research*, 4:L032043, 2022.
- [9] F. Schäfer, M. Kalthoff, A. Schlimgen, M. H. Goerz, and C. P. Koch. Quantum optimal control in a differentiable programming framework. *Physical Review A*, 101:052321, 2020.
- [10] Giuseppe Carleo, Federico Becca, Marco Schirò, and Michele Fabrizio. Localization and glassy dynamics of many-body quantum systems. *Scientific Reports*, 2:243, 2012.
- [11] Ville Bergholm et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations, 2018.
- [12] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning library. In *Advances in Neural Information Processing Systems 32*, pages 8024–8035. Curran Associates, Inc., 2019.
- [13] Alberto Berni. Generative design of control pulses for magic state preparation via neural quantum states. MEng Project Proposal, University of Southampton, October 2025.
- [14] J. R. Johansson, P. D. Nation, and Franco Nori. Qutip: An open-source python framework for the dynamics of open quantum systems. *Computer Physics Communications*, 183:1760–1772, 2012.