Assignment 9 (Mathematics II –MA10002)

- (1) Find the gradient and the unit normal vector to the surface
 - (i) $x^2 + y z = 4$ at the point (2, 0, 0)
 - (ii) $x^2 + 2y^2 + 3z^2 = 0$ at the point $(\sqrt{10}, 0, 0)$.
- (2) Find the directional derivative of the following scalar valued functions
 - (i) $f(x,y) = e^x \cos y$ at $(0,\pi/4)$ in the direction of $(\hat{\mathbf{i}} + 3\hat{\mathbf{j}})/\sqrt{10}$
 - (ii) $f(x, y, z) = e^x + yz$ at (1, 1, 1) in the direction of $\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$
 - (iii) $f(x,y,z) = \frac{1}{x^2+y^2+z^2}$ at (2,3,1) in the direction of $\hat{\mathbf{i}} + \hat{\mathbf{j}} 2\hat{\mathbf{k}}$
 - (iv) $f(x,y) = \frac{y}{x^2+y^2}$ at (0,1) in the direction of a vector which makes an angle of 30° with the positive x-axis.
- (3) If $r = |\mathbf{r}|$, where $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then prove that
 - (i) $\nabla(\frac{1}{r}) = -\frac{\mathbf{r}}{r^3}$ (ii) $\nabla(\log(|\mathbf{r}|)) = \frac{\mathbf{r}}{r^2}$ (iii) $\nabla r^n = nr^{n-2}\mathbf{r}$.
- (4) For any vector fields \mathbf{F}, \mathbf{G} , show that
 - (i) $\nabla \cdot (\nabla \times \mathbf{F}) = 0$
 - (ii) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl}(\mathbf{F}) \mathbf{F} \cdot \operatorname{curl}(\mathbf{G}).$
- (5) Let $\mathbf{F} = 2xz^2\hat{\mathbf{i}} + \hat{\mathbf{j}} + xy^3z\hat{\mathbf{k}}$ and $f = x^2y$. Compute the following
 - (i) $\operatorname{curl}(\mathbf{F})$ (ii) $\mathbf{F} \times \nabla f$ (iii) $\mathbf{F} \cdot (\nabla f)$.
- (6) Evaluate the line integral $\int_C y dx + x dy$, where C is the path $(t^9, \sin^9(\pi t/2)), 0 \le t \le 1$.
- (7) Evaluate the line integral $\int_C x^2 dx + xy dy + dz$, where C is the curve $t\hat{\mathbf{i}} + t^2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ for $0 \le t \le 1$.
- (8) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = (x^2, xy)$ and C is the perimeter of the unit square joining the points (0,0), (1,0), (1,1), (0,1) in the counter clockwise direction.
- (9) Prove that a necessary and sufficient condition that $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed curve C is that $\nabla \times \mathbf{F} = \mathbf{0}$ identically.
- (10) Check whether the line integral $\int_C (1 \sin x \sin y) dx + (1 + \cos x \cos y) dy$ is independent of the path C joining the points $(\pi/4, \pi/4), (\pi/2, 0)$.
- (11) If $\mathbf{F} = (4xy 3x^2z^2, -2x^2, -2x^3z)$ then show $\oint_C \mathbf{F} \cdot d\mathbf{r}$ is independent of the curve C joining to given points.
- (12) Check whether **F** is a conservative vector field or not. If it is, find the potential function, where
 - (i) $\mathbf{F} = (2xy, x^2 + 2yz, y^2)$
 - (ii) $\mathbf{F} = (2xy + z^3, x^2, 3xz^2).$

- (13) Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dS$, where $\mathbf{F} = z\hat{\mathbf{i}} x\hat{\mathbf{j}} + 3y^2z\hat{\mathbf{k}}$ and S is the surface of the cylinder $x^2 + y^2 = 16$, included in the first octant between z = 0, z = 5.
- (14) If $\mathbf{F} = (y, x 2xz, -xy)$, then evaluate $\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS$, where S is the surface $x^2 + y^2 + z^2 = a^2$, above the xy-plane.
- (15) Verify the Green's theorem for $\oint_C (xy + y^2) dx + x^2 dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$.
- (16) Using Green's theorem, evaluate $\oint_C y dx x dy$, where C is the boundary of the square joining the points (1, -1), (1, 1), (-1, 1), (-1, -1) in the counterclockwise direction.
- (17) Verify the Gauss divergence theorem for $\mathbf{F} = (4xz, -y^2, yz)$ over the surface S of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- (18) Using Gauss divergence theorem, evaluate $\iint_S x^3 dydz + x^2y dzdx + x^2z dxdy$, where S is the closed surface bounded by $x^2 + y^2 = 4, z = 0, z = 3$.
- (19) Using Stokes' theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.
- (20) Verify the Stokes' theorem for $\mathbf{F} = (3x+3z, x+3y, 2y-3z)$, where S is the surface 6x+3y+4z=12 bounded by the coordinate planes and C is the boundary of it.