

Microsoft Movie Analysis

Author: A KARAOGLAN

Overview

This project represents a preliminary study of the entry into the microsoft film industry. The company, which is very new in this sector, made front studies by making use of the large database containing the data of movies such as IMDB, TMDB, ROTTEN TOMATOES. We decided to examine the director, genre and movie profit. We determined which film genres had a more successful effect on the directors' profit. Using this data, Microsoft can decide which movies it would be right to start with in its new project.

Business Problem

Microsoft is the world leader in its field, but the film industry is also very new in terms of know-how, the company should decide how much budget it has outside of this project and decide on the film it will shoot. The results of the data and analyzes I have collected show the following. Genre and profit data of the directors have determined the genre that provides the least risk for companies that have just started in the film industry.

Data Understanding

Questions to consider:

Question Where did the data come from, and how do they relate to the data analysis questions? The data is provided by Flatiron school and collected from the respective websites.

The data is collected from Box Office Mojo, IMDB, Rotten Tomatoes, and TheMovieDB.org. The data has information about movie titles, genres, directors, actors, profits, release year.

What is the target variable? Target variables are the Genre, Directors and profit.

```
In [724...
#Import the following libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

import matplotlib.pyplot as plt
%matplotlib inline
```

In [725...

Here you run your code to explore the data

bom_movie_gross = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/bom.movie_
imdb_name_basics = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/imdb.name
imdb_title_akas = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/imdb.title
imdb_title_basics = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/imdb.tit
imdb_title_principals = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/imdb
imdb_title_ratings = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/imdb.tit
tmdb_movies = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/tmdb.movies.cs
tn_movie_budgets = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/tn.movie_
imdb_title_crew = pd.read_csv('/Users/karaoglan/Desktop/PROJECT/imdb.title

In [726...

imdb_title_crew

Out[726		tconst	directors	writers
	0	tt0285252	nm0899854	nm0899854
	1	tt0438973	NaN	nm0175726,nm1802864
	2	tt0462036	nm1940585	nm1940585
	3	tt0835418	nm0151540	nm0310087,nm0841532
	4	tt0878654	nm0089502,nm2291498,nm2292011	nm0284943
	•••			
	146139	tt8999974	nm10122357	nm10122357
	146140	tt9001390	nm6711477	nm6711477
	146141	tt9001494	nm10123242,nm10123248	NaN
	146142	tt9004986	nm4993825	nm4993825
	146143	tt9010172	NaN	nm8352242

146144 rows × 3 columns

In [727... imdb name basics

	death_year	birth_year	primary_name	nconst	27	Out[727.
miscellaneous,product	NaN	NaN	Mary Ellen Bauder	nm0061671	0	
composer, music_departme	NaN	NaN	Joseph Bauer	nm0061865	1	
mis	NaN	NaN	Bruce Baum	nm0062070	2	
camera_department,cinematog	NaN	NaN	Axel Baumann	nm0062195	3	
production_designer,art_dep	NaN	NaN	Pete Baxter	nm0062798	4	
			•••		•••	
	NaN	NaN	Susan Grobes	nm9990381	606643	
	NaN	NaN	Joo Yeon So	nm9990690	606644	
	NaN	NaN	Madeline Smith	nm9991320	606645	
	NaN	NaN	Michelle Modialiani	nm9991786	606646	

606647 nm9993380

Pegasus Envoyé

NaN

NaN

606648 rows × 6 columns

In [728...

bom_movie_gross

O	[700
()11†	1 / / ×
ou c	1/20

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010
•••					•••
3382	The Quake	Magn.	6200.0	NaN	2018
3383	Edward II (2018 re-release)	FM	4800.0	NaN	2018
3384	El Pacto	Sony	2500.0	NaN	2018
3385	The Swan	Synergetic	2400.0	NaN	2018
3386	An Actor Prepares	Grav.	1700.0	NaN	2018

3387 rows × 5 columns

In [729...

imdb_title_ratings

Out[729...

	tconst	averagerating	numvotes
0	tt10356526	8.3	31
1	tt10384606	8.9	559
2	tt1042974	6.4	20
3	tt1043726	4.2	50352
4	tt1060240	6.5	21
•••			
73851	tt9805820	8.1	25
73852	tt9844256	7.5	24
73853	tt9851050	4.7	14
73854	tt9886934	7.0	5
73855	tt9894098	6.3	128

$73856 \text{ rows} \times 3 \text{ columns}$

In [730...

tmdb_movies

Out[730		Unnamed: 0	genre_ids	id	original_language	original_title	popularity	rel
	0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	
	1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2
	2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2
	3	3	[16, 35, 10751]	862	en	Toy Story	28.005	
	4	4	[28, 878, 12]	27205	en	Inception	27.920	2
	•••			•••				
	26512	26512	[27, 18]	488143	en	Laboratory Conditions	0.600	:
	26513	26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2
	26514	26514	[14, 28, 12]	381231	en	The Last One	0.600	:
	26515	26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2
	26516	26516	[53, 27]	309885	en	The Church	0.600	2

26517 rows × 10 columns

In [731...

tn_movie_budgets

Out[731		id	release_date	movie	production_budget	domestic_gross	worldwide_gross
	0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
	1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
	2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
	3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
				Star Wars			

4	5	Dec 15, 2017	Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041

5782 rows × 6 columns

Data preparation

Here are the datasets that I used for analysis:

imdb datasets:

imdb_name_basics,imdb_title_akas,imdb_title_basics,imdb_title_principals,imdb_title_ratin

tmdb dataset: tmdb_movies

bom dataset: bom_movie_gross

tn dataset: tn_movie_budgets

```
In [732...
# I merged imdb related datasets on the value 'tconst'

imdb11 = pd.merge(imdb_title_basics,imdb_title_crew,how='inner',on='tconst
imdb12 = pd.merge(imdb_title_principals,imdb_title_ratings, how='inner',or
imdb13 = pd.merge(imdb11,imdb12,how='inner',on='tconst')

# I merged imdb name basics and imdb13 with nconst

IMDB = pd.merge(imdb_name_basics,imdb13,how='inner',on='nconst')

# IMDB and tmbd therefore do not have common value
# I merged it using the 'original_title'
itmb = pd.merge(tmdb_movies,IMDB, how='inner',on='original_title')
itmb.head(3)
```

Out [732...

Unnamed: genre_ids id original_language original_title popularity release_date

0	0	[12, 14, 12 10751]	2444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19
1	0	[12, 14, 12 10751]	2444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19
2	0	[12, 14, 12 10751]	2444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19

3 rows × 29 columns

In [733...
itmb.drop(['original_title','primary_title','Unnamed: 0','genre_ids','id',
 itmb.head(3)

Out[733	р	opularity	title	vote_average	primary_name	primary_profession	
	0	33.533	Harry Potter and the Deathly Hallows: Part 1	7.7	Steve Kloves	writer,producer,director	Adventure,F
	1	33.533	Harry Potter and the Deathly Hallows: Part 1	7.7	Rupert Grint	actor,producer,soundtrack	Adventure,F
	2	33.533	Harry Potter and the Deathly Hallows: Part 1	7.7	J.K. Rowling	writer,producer,soundtrack	Adventure,F

In [734...

#i merged it using 'title' bom_movie_gross and itmb
itmbom = pd.merge(bom_movie_gross,itmb, how='inner',on='title')
itmbom.head(3)

0ut [734... title studio domestic_gross foreign_gross year popularity vote_average primary_

```
Story
                      BV
                             415000000.0
                                            652000000 2010
                                                                24.445
                                                                                7.7
                                                                                      Joan C
                3
               Toy
             Story
                             415000000.0
                                            652000000 2010
                      BV
                                                                24.445
                                                                                7.7
                                                                                     John La
                3
               Toy
                             415000000.0
                                            652000000 2010
                                                                24.445
                                                                                7.7
             Story
                      ΒV
                                                                                        Tom
                3
In [735...
           #i did left join because I wanted to return data in both tables
           itmbomtn = pd.merge(itmbom, tn_movie_budgets, how='inner',left_on='title',
           itmbomtn.head(3)
Out [735...
              title studio domestic_gross_x foreign_gross year popularity vote_average primar
              Toy
                               415000000.0
          O Story
                      BV
                                              652000000 2010
                                                                  24.445
                                                                                  7.7
                                                                                        Joai
                3
               Toy
             Story
                      BV
                               415000000.0
                                              652000000 2010
                                                                  24.445
                                                                                  7.7
                                                                                       John
                3
               Toy
             Story
                      BV
                               415000000.0
                                              652000000 2010
                                                                  24.445
                                                                                  7.7
                                                                                          To
                3
In [736...
           # domestic gross is an object (str), needs to be converted to integer and
           itmbomtn['worldwide gross'] = itmbomtn['worldwide gross'].str.replace(','
           itmbomtn['worldwide gross'].head()
               1068879522
Out [736...
               1068879522
               1068879522
          2
          3
               1068879522
               1068879522
          Name: worldwide gross, dtype: int64
In [737...
           # production budget is an object (str), needs to be converted to integer a
           itmbomtn['production budget'] = itmbomtn['production budget'].str.replace(
           itmbomtn['production budget'].head()
               200000000
Out [737...
               200000000
          2
               200000000
          3
               200000000
          Name: production budget, dtype: int64
         Questions to consider
```

-what variables did you add?

I created the profit value with worldwide gross, production budget

-which variables did you change? i changed the primary_name to Director

```
In [738...
           #i create profit, I subtracted product expenses from world income
           itmbomtn = itmbomtn.dropna(subset=['worldwide_gross','production_budget'])
           itmbomtn['profit']=itmbomtn['worldwide gross']-itmbomtn['production budget
           itmbomtn.drop(['studio','year','domestic_gross_x','domestic_gross_y','worl
           itmbomtn.head(3)
Out [738...
              title popularity vote_average primary_name
                                                                primary_profession
               Toy
                       24.445
                                        7.7
                                               Joan Cusack
                                                            actress, soundtrack, writer Adventure, Anim
           O Story
                 3
               Toy
           1 Story
                       24.445
                                        7.7
                                             John Lasseter
                                                             producer, writer, director Adventure, Anim
                 3
               Toy
             Story
                       24.445
                                        7.7
                                                Tom Hanks producer, actor, soundtrack Adventure, Anim
                 3
```

In [739... itmbomtn.shape

Out[739... (16184, 14)

itmbom = pd.merge(bom_movie_gross,itmb, how='inner',on='title')
itmbom.head(3)

Out [740... title studio domestic_gross foreign_gross year popularity vote_average primary_ Toy 415000000.0 652000000 2010 24.445 O Story BV 7.7 Joan C Toy 1 Story BV 415000000.0 652000000 2010 24.445 7.7 John La Toy 415000000.0 652000000 2010 7.7 2 Story BV 24.445 Tom

In [741... itmbomtn.head()

out [741... title popularity vote average primary name primary profession

0	Toy Story 3	24.445	7.7	Joan Cusack	actress,soundtrack,writer	Adventure, Anin
1	Toy Story 3	24.445	7.7	John Lasseter	producer,writer,director	Adventure, Anin
2	Toy Story 3	24.445	7.7	Tom Hanks	producer,actor,soundtrack	Adventure,Anim
3	Toy Story 3	24.445	7.7	Andrew Stanton	writer,actor,producer	Adventure,Anim
4	Toy Story 3	24.445	7.7	Ned Beatty	actor,soundtrack	Adventure,Anim

```
In [742... itmbomtn.shape

Out[742... (16184, 14)
```

Data Modeling

How did you analyze or model the data? I wanted to determine the profitability ratios of different film types.

I also wanted to determine the average ratings of different movie tours.

I wanted to determine both imdb and tmdb ratings.

I wanted to identify which directors Microsoft should work with for the best profit.

What did you do to get more accurate results?

To calculate profit, I took the production budget from world Groos and determined the best genre directors with these results.

why did you use these methods?

profit and film ratings are good result data to solve our business problem.

```
In [747...

df1 = itmbomtn.groupby('genres').mean().sort_values(['profit'],ascending=F
    tg = df1[df1['profit']>0.2*(10**9)]
    tg1 = tg.reset_index()
    tg1 ['profit'] = tg1['profit']/(10**6)
    sns.set(rc = {'figure.figsize':(15,8)})
    ax = sns.barplot(x='genres',y='profit',data=tg1)
    ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
    ax.set(xlabel = "Movie Genres", ylabel = "Profit (Million $)", title = 'Pr
    None #don't show the label objects
    plt savefig('df1 png' bbox inches='tight')
```



```
In [709...
           tgl.genres.head(10)
                       Adventure, Drama, Sport
Out [709...
               Biography, Documentary, History
          2
                                        Sci-Fi
          3
                     Documentary, Drama, Sport
          4
                      Adventure, Drama, Sci-Fi
          5
                               Comedy, Mystery
          6
                     Action, Adventure, Sci-Fi
          7
                            Adventure, Fantasy
                                        Family
          8
                     Animation, Comedy, Family
          Name: genres, dtype: object
In [749...
          df2 = itmbomtn.groupby('genres').mean().sort values(['vote average'],ascer
          va = df2[df2['vote average']>7]
          va1 = va.reset_index()
          sns.set(rc = {'figure.figsize':(15,8)})
          ax = sns.barplot(x='genres',y='vote average',data=val)
          ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
          ax.set(xlabel = "Movie Genres", ylabel = "TMBD Vote Average", title = 'TME
          None #don't show the label objects
          plt.savefig('df2.png',bbox_inches='tight')
                                             TMBD Rating by Genres
```

8


```
In [711...
```

val.genres.head(10)

Out [711...

Documentary, History Mystery, Thriller 2 Biography, Drama, Musical 3 Adventure, Drama, Sci-Fi 4 Crime, Documentary 5 Drama, Fantasy, Music 6 Adventure, Drama, Western 7 Drama, History, Thriller 8 Biography, Drama, History 9 Action, Adventure, Animation Name: genres, dtype: object

In [748...

```
df3 = itmbomtn.groupby('genres').mean().sort_values(['averagerating'],asce
ar = df3[df3['averagerating']>7.2]
ar1 = ar.reset_index()
sns.set(rc = {'figure.figsize':(15,8)})
ax = sns.barplot(x='genres',y='averagerating',data=ar1)
ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
ax.set(xlabel = "Movie Genres", ylabel = "IMBD Rating", title = 'IMBD Rating')
None #don't show the label objects
plt.savefig('df3.png',bbox_inches='tight')
```



```
In [713...
           ar1.genres.head(10)
                                Adventure
Out [713...
                             Action, Sport
          2
                       Crime, Documentary
          3
                 Adventure, Drama, Sci-Fi
          4
                        Mystery, Thriller
          5
                                     Sport
          6
                Adventure, Drama, Mystery
```

Comedy, Musical 8 Adventure, Drama, Western 9 Biography, Drama, Musical Name: genres, dtype: object

```
In [750...
```

7

```
df4 = itmbomtn.groupby('primary_name').mean().sort_values(['profit'],ascer
tg2 = df4[df4['profit']>1*(10**9)]
tg2 = tg2.reset index()
tg2 ['profit'] = tg2['profit']/(10**6)
sns.set(rc = {'figure.figsize':(15,8)})
ax = sns.barplot(x='primary_name',y='profit',data=tg2)
ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
ax.set(xlabel = "Primary Name", ylabel = "Profit (Million $)", title = 'Pr
None #don't show the label objects
plt.savefig('df4.png',bbox_inches='tight')
```



```
Primary Name
In [715...
               tg2.primary_name.head(10)
                                Michael Crichton
Out [715...
                                  Joe Robert Cole
                                         Rafe Spall
              3
                                      Idina Menzel
                                      Shane Morris
              5
                       Kristen Anderson-Lopez
              6
                                  Peter Del Vecho
                                        Peter Block
              8
                                         Adam Green
              9
                     Hans Christian Andersen
              Name: primary_name, dtype: object
In [755...
               df5 = itmbomtn.groupby('primary_name').mean().sort_values(['vote_average']
               va2 = df5[df5['vote_average']>8.5]
               va2 = va2.reset_index()
               sns.set(rc = {'figure.figsize':(15,8)})
               ax = sns.barplot(x='primary_name',y='vote_average',data=va2)
               ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
               ax.set(xlabel = "Primary People", ylabel = "TMBD Vote Average", title = 'J
               None #don't show the label objects
               plt.savefig('df5.png',bbox_inches='tight')
                                                                TMBD Rating by People
             TMBD Vote Average
                2
                                                     Craig Hall
                                      Christian Clark
                                              Laura Alexandra Ramos
                                                Jeanne Ryan
                                                   Josh Maas
                                                        Rebecca Birdsall
                                                          James L. Brown
                                                             Haydn Walker
                                                                Gary Sweet
                                                                  esh Sathiah
                                                                     Emily Meade
                                                                       Peter DiVito
                                                                          yler Langdon
                                                                            Jami Gertz
                                                                               Eddie 'Piolin' Sotelo
                                                                                 Joaquín Cosio
                                                                                    Roger L. Simon
                                                                                      Stacey Lubliner
                                                                                         Chris Weitz
                                                                                            Paul Junger Witt
                                                                                              Eric Eason
                                            Christopher Breslin
                                                                                                José Julián
                                                                                                   Emem Isong
                                                                                                      Anthony Kehinde Joseph
                                                                                                           Blye Pagon Faust
                                                                                                             Segun Arinze
                                                                                                                Sunkanmi Adebayo
                                                                                                                  Sly Monay
                                                                                                        Uche Alexmoore
                                                                                                                     Bolanle Ninalowo
                                                                   Primary People
In [751...
               df6 = itmbomtn.groupby('primary_name').mean().sort_values(['averagerating
               ar2 = df6[df6['averagerating']>8.5]
               ar2 = ar2.reset index()
               sns.set(rc = {'figure.figsize':(15,8)})
```

```
ax = sns.barplot(x='primary_name',y='averagerating',data=ar2)
ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
ax.set(xlabel = "Primary People", ylabel = "IMBD Rating", title = 'IMBD Rating", title = 'IMBD Rating', tit
```



```
In [721...
```

ar2.primary_name.head(10)

Out [721...

Tara Fitzgerald Andrew Swarbrick 1 2 Richard Heap 3 Mark Addy Scott Nicol 5 Lee Boardman 6 Mario Roberto 7 Mark Thomas 8 Laura Perez Phil Wood Name: primary name, dtype: object

Evaluation

Questions to consider:

Question: How do you interpret the results?

in terms of genres and directors We have a general knowledge using profit and rating results

Question: How confident are you that your results would generalize beyond the data you have?

imdb and tmdb is a channel that gives direction to the film industry

Question: How confident are you that this model would benefit the business if put into use?

I think this analysis will be helpful in choosing genres and people to work with.

Conclusions

Questions to consider:

Question: What would you recommend the business do as a result of this work?

In terms of best imdb movie genres for the highest profit, here are the top 10 genres that I would recommend:

```
1
              Adventure, Drama, Sport
2
     Biography, Documentary, History
3
                               Sci-Fi
4
            Documentary, Drama, Sport
5
             Adventure, Drama, Sci-Fi
6
                      Comedy, Mystery
7
            Action, Adventure, Sci-Fi
8
                  Adventure, Fantasy
9
                               Family
10
             Animation, Comedy, Family
```

Writers, directors and actors in the most profitable genre should be worked with, the top 10 people with the highest profit

```
Michael Crichton
1
2
             Joe Robert Cole
3
                  Rafe Spall
4
                Idina Menzel
5
                Shane Morris
6
      Kristen Anderson-Lopez
             Peter Del Vecho
7
8
                 Peter Block
9
                  Adam Green
10
      Hans Christian Andersen
```

IMDB and TMBD had different results on the best genres.

Top 10 genres vote average TMDB

```
Documentary, History
Mystery, Thriller
Biography, Drama, Musical
Adventure, Drama, Sci-Fi
Crime, Documentary
```

```
Drama, Fantasy, Music
Adventure, Drama, Western
Drama, History, Thriller
Biography, Drama, History
Action, Adventure, Animation
```

Top 10 genres vote average IMDB

```
1
                     Adventure
2
                 Action, Sport
3
            Crime, Documentary
      Adventure, Drama, Sci-Fi
4
5
             Mystery, Thriller
6
                         Sport
7
     Adventure, Drama, Mystery
8
               Comedy, Musical
9
     Adventure, Drama, Western
10
      Biography, Drama, Musical
```

IMDB and TMBD had different results on the best people to work with.

```
Top 10 people by average votes on TMDB:
         Ben Sollee
1
2
     Allison Shearmur
3
        Neal Kingston
        Georgina Haig
4
5
         Miles Heizer
6
        Sebastien Guy
7
            Nina Dior
8
            Ben Evans
9
      Christian Clark
10
          J.R. Sawyers
```

Top 10 people by averagevotes on IMDB:

```
Tara Fitzgerald
1
2
     Andrew Swarbrick
3
         Richard Heap
4
            Mark Addy
5
          Scott Nicol
6
         Lee Boardman
7
        Mario Roberto
8
          Mark Thomas
9
          Laura Perez
             Phil Wood
10
```

Question: What are some reasons why your analysis does not fully address the business problem?

More data can be collected, they should address global economic problems over the years, natural disasters, infectious diseases, the interest of countries in cinema should also be investigated.

Question: What else could you do in the future to improve this project?

The correlation between the minimum wage and the movie ticket prices of each country should be checked, at the same time, it should be determined that the advertising budgets and how many theaters were released.

In []:			
In []:			