BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND **MARKENAMT**

fenlegungsschri DE 197 52 700 A 1

(21) Aktenzeichen:

197 52 700.0

(2) Anmeldetag: (43) Offenlegungstag: 28. 11. 97

2. 6.99

(51) Int. Cl. 6: C 12 N 9/88

C 12 N 15/63 C 12 Q 1/527 // (C12N 9/88,C12R 1:19)A01N 57/20,A61K 31/66

(1) Anmelder:

Hoechst Schering AgrEvo GmbH, 13509 Berlin, DE

② Erfinder:

Erfinder wird später genannt werden

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(3) 1-Desoxy-D-xylulose-5-phosphat Synthase, Verfahren zur Identifizierung von Effektoren der 1-Desoxy-D-xylulose-5-phosphat Synthase und Effektoren der 1-Desoxy-D-xylulose-5-phosphat Synthase

Beschreibung

Isoprenoide stellen eine sehr umtangreiche Klasse von Naturstoffen dar und umfassen eine Vielzahl essentieller Verbindungen wie beispielsweise Carotinoide, Steroide, Prenylchinonseitenketten oder Phytolreste in Chlorophyllen (Coolbear & Threlfall, (1989) in Biosynthesis of terpenoid lipids, ed. Ratledge & Wilkinson, (Academic Press), pp. 115–254, Bach, T. J. (1995) Lipids 30, 191–202).

Es wird postuliert, daß die Biosynthese des Isopentenyldiphosphats (IPP), dem C-5-Grundkörper aller Isoprenoide, über den Acetat-Mevalonat-Weg erfolgt (Banthorpe et al., (1972) Chem. Rev. 72, 115–155; Beyia & Porter, (1976) Annu. Rev. Biochem. 45, 113–142).

Vor kurzem wurde durch ¹³C-Markierungsversuche an Bakterien, Algen and Pflanzen die Existenz eines zum Acetat-Mevalonat-Weg alternativen Stoffwechselweges zum IPP nachgewiesen (Rohmer et al., (1993) Biochem. J 295, 517–524; Rohmer et al., (1996) J. Am. Chem. Soc. 118, 2564–2566).

Als erstes Zwischenprodukt dieses alternativen Isoprenoidbiosyntheseweges wurde 1-Desoxy-D-xylulose-5-phosphat (DXP) postuliert, das in einer Thiamindiphosphatabhängigen Reaktion aus Pyruvat und Glycerinaldehyd-3-phosphat (GA3P) synthetisiert wird.

Die DXS katalysiert den ersten Reaktionsschritt des alternativen, nicht Mevalonat-abhängigen Isoprenoidbiosyntheseweges, d. h. die Synthese von 1-Desoxy-D-xylulose-5-phosphat (DXP) aus Pyruvat und Glycerinaldehyd-3-phosphat (GA3P).

DXP bzw. 1-Desoxy-D-xylulose (DOX) sind außerdem an der Biosynthese von Thiamin (Vitamin B_1) und Pyridoxol (Vitamin B_6) beteiligt (Hill et al., (1996) J. Biol. Chem. 271, 30426–30435; Himmeldirk et al., (1996) Chem. Commun., 1187–1188).

Darüber hinaus wurde über die Klonierung und Charakterisierung des dxs-Gens aus E. coli sowie die Überexpression des dxs-Genprodukts in E. coli berichtet (Lois et al., (1997) Abstracts 3rd Terpnet Meeting on Plant Isoprenoids, p. 16, Universite de Poitiers, Frankreich). Die Bildung von DXP wurde mittels zellfreien Extrakten nachgewiesen.

Für das Enzym DXS aus E. coli wurde eine Thiamindiphosphat-Bindungsstelle postuliert, wie sie z. B. aus anderen Enzymen, wie Pyruvat-Decarboxylasen, Acetolactat-Synthasen oder Transketolasen bekannt ist.

Ein Sequenzvergleich mit Sequenzinformationen auf Aminosäure-Ebene zeigte Homologien zu Genprodukten bisher unbekannter Funktion, so daß den folgenden offenen Leserahmen (ORF) die Funktion einer DXS zugeordnet werden kann:

E. coli (EMBL Acc. No. U 82664, Bp 17765 bis 19627), Haemophilus influenzae (SwissProt Acc. No. P 45205), Bacillus subtilis (SwissProt Acc. No. P 54523); Rhodobacter capsulatus (SwissProt Acc. No. P 26242), Synechocystis sp PCC6803 (Gen Bank Acc. No. D 90903), Mycobacterium leprae (Acc. No. P 46708), Mycobacterium tuberculosis (Acc. No. Z 96072), Helicobacter pylori (Acc. No. AE 000552), Methanococcus jannaschii (Acc. No. G 64384) und dem CLA 1 (oder Def) Gen aus Arabidopsis thaliana (Gen Bank Acc. No. U 27099; Mandel et al. (1996) The Plant Journal 9, 649–658).

Weitere Recherchen in Sequenzdatenbanken ergaben für die DXS-Proteine Homologien zu Transketolase-ähnlichen Enzymen (z. B. EC 2.2.1.1) und den E1-Proteinen aus dem Pyruvatdehydrogenase-Komplex (PDH, EC 1.2.4.1) aus verschiedenen Organismen. Die DXS-Proteine sind jedoch in der Regel kleiner als bakterielle Transketolasen.

Die Nukleinsäure-Sequenzen bzw. Nukleinsäuremolküle kodierend für ein Protein mit der Funktion einer 1-Desoxy-D-xylulose-5-phosphat Synthase werden als "dxs" und die Aminosäuresequenzen bzw. Proteine mit der Funktion einer 1-Desoxy-D-xylulose-5-phosphat Synthase als "DXS" bezeichnet.

Es wurde nun überraschenderweise gefunden, daß Enzyme mit der Funktion einer DXS einen neuen, hochspezifischen Angriffspunkt für die Entwicklung pestizider, insbesondere herbizider oder antibiotisch wirksamer Verbindungen darstellen.

Erfindungsgegenstand ist daher ein isoliertes Protein mit der Funktion einer DXS, oder ein aktives Fragment daraus, vorzugsweise ausgewählt aus der Gruppe bestehend aus DXS aus E. coli, Haemophilus influenzae, Bacillus subtilis, Rhodobacter capsulatus, Synechocystis sp. PCC6803, Mycobacterium leprae, Mycobacterium tuberculosis, Helicobacter pylori, Methanococcus jannaschii und Arabidopsis thaliana.

Erfindungsgegenstand ist auch die o. g. DXS zur Verwendung als Wirkort für Herbizide oder Antibiotika.

Ein weiterer Erfindungsgegenstand ist ein Verfahren zur Herstellung eines Proteins mit der Funktion einer DXS oder eines aktiven Fragments daraus in einer rekombinanten Wirtszelle, dadurch gekennzeichnet, daß man ein Nukleinsäure-molekül kodierend für ein Protein mit der Funktion einer DXS oder eines aktiven Fragments daraus in eine für eine Wirtszelle geeignete Expressionskassette inseriert; die so erhaltene Expressionskassette in geeigneter Weise in einen für eine Wirtszelle geeigneten Vektor inseriert; eine geeignete Wirtszelle mit dem so erhaltenen Vektor transformiert; die so transformierte Wirtszelle in einem geeigneten Medium kultiviert; und das von besagter Wirtszelle produzierte Protein mit der Funktion einer DXS oder das aktive Fragment daraus in geeigneter Weise aus dem Kulturmedium und/oder der Wirtszelle isoliert.

Die vorliegende Erfindung betrifft insofern die Herstellung gereinigter DXS auf gentechnischem Wege. Z. B. können zur Herstellung von rekombinanter DXS in einem Wirtsorganismus DXS-codierende DNA-Sequenzen in eine Expressionskassette kloniert werden, welche zur heterologen Expression des Strukturgens in dem ausgewählten Wirtsorganismus geeignet sind.

Hierfür sind beispielsweise folgende DXS-kodierenden DNA-Sequenzen geeignet:

mikrobielle oder pflanzliche dxs-cDNA, mit gängigen Methoden in ihrer Sequenz veränderte pflanzliche dxs-cDNA-Moleküle, aber auch synthetische DNA-Sequenzen, abgeleitet aus mikrobieller oder pflanzlicher dxs-cDNA, die die Expression einer aktiven DXS oder deren aktiver Fragmente ermöglichen, insbesondere die oben genannten DXS-codierenden Sequenzen aus E. coli, Haemophilus influenzae, Bacillus subtilis, Rhodobacter capsulatus, Synechocystis sp.

PCC6803, Mycobacterium leprae. (Arabidopsis thaliana.

bacterium tuberculosis, Helicobacter pylori.

añococcus jannaschii und

15

25

40

45

DXS-kodierende DNA-Sequenzen sind auch verwendbar als Selektionsmarker, wie z. B. als Herbizidresistenzmarker. Die Einführung spezifischer regulatorischer Sequenzen in die Expressionskassette kann außerdem erwünscht sein, beispielsweise von Promotoren, Operatorsequenzen, Enhancern, Terminatoren, Signalsequenzen, 5'- und 3'-untranslatierter Sequenzen, oder Sequenzen kodierend für geeignete Fusionsproteine. Die Verwendung solcher regulatorischer Sequenzen ist allgemein übliche Technik, die je nach Expressionsstrategie breit variieren kann.

Die resultierende dxs-Expressionskassette, versehen mit den notwendigen regulatorischen Elementen im passenden Leserahmen des dxs-Strukturgens, kann in einen Expressionsvektor, mit welchem der ausgewählte Wirtsorganismus transformiert werden kann, inseriert werden. Geeignete Expressionsstrategien zur Herstellung rekombinanter Proteine und entsprechende Expressionsvektoren sind allgemein bekannt für Wirtsorganismen wie beispielsweise E. coli, Hefen und Insektenzellen. Der durch stabile oder transiente Transformation mit der dxs-Expressionskassette erhaltene rekombinante Organismus kann zur Gewinnung von rekombinanter DXS in gereinigter oder partiell gereinigter Form oder von Zellfraktionen, enthaltend DXS dienen. Der rekombinante Organismus kann gegebenenfalls auch direkter Bestandteil, d. h. zellulärer Bestandteil eines analytischen Testsystems sein.

Unter dem Begriff "rekombinanter Organismus" ist insofern die Zelle eines durch in vitro veränderter oder integrierter DNA modifizierten Organismus zu verstehen, beispielsweise von rekombinanten Hefe-, Bakterien-, Algen, Insektenoder Pflanzenzellen.

Ein bevorzugtes Expressionssystem ist z. B. die Verwendung von E. coli als Wirtsorganismus. Als Vektoren können alle Vektoren dienen, die über die geeigneten Expressionssignale, wie z. B. Promotoren und geeignete Selektionsmarker, wie z. B. Resistenzgene oder Gene, die eine Auxotrophie komplementieren, verfügen.

Gentechnisch hergestellte DXS kann mittels verschiedener Methoden gereinigt werden. Die Eignung einer Methode hängt jeweils vom verwendeten Wirtsorganismus, der Expressionsstategie und anderen Faktoren ab, die einem in der Expression und Reinigung rekombinanter Proteine erfahrenen Fachmann bekannt sind. Zum Zweck der Reinigung kann das rekombinante Protein auch durch entsprechende Veränderung seiner Gen-Sequenz in der Expressionskassette mit Peptidsequenzen fusioniert werden. Bevorzugt sind als Fusionspartner Peptide oder Proteine zu verwenden, die als C- oder N-terminale Fusionen der rekombinanten DXS eine Affinität zu bestimmten Säulenmaterialien verleihen. Solche Fusionen dürfen die Funktion der DXS nicht beeinflussen oder müssen z. B. durch Einbau geeigneter Proteaseschnittstellen unter Rekonstitution der Funktion abspaltbar sein. Als Beispiele für Fusionspartner seien Oligohistidin-Tails, das Strep-TagTM (Biometra GmbH, Göttingen, BRD), die Glutathion-S-Transferase (GST) oder das Maltose-bindende Protein (MalE) genannt, ohne daß diese Anwendung auf die beispielhaft angegebenen Fusionspartner oder deren Fragmente beschränkt ist.

Die rekombinante oder gentechnische Herstellung und Reinigung der DXS ermöglicht z. B. die Verwendung von DXS in biochemischen Testsystemen zur Bestimmung der Enzymfunktion der DXS in Gegenwart von auszuprüfenden Testsubstanzen, insbesondere durch automatisiertes Prüfen (z. B. High Throughput Screening) von Testsubstanzen.

Die erfindungsgemäßen Proteine weisen bestimmte gemeinsame Charakteristika von DXS-Proteinen auf. Dazu können z. B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, ehromatographisches Verhalten, Konformation, Stabilität, pH-Optimum, Temperatur-Optimum etc. gehören, sowie auch physikalische Eigenschaften wie z. B. das elektrophoretische Laufverhalten, Ladung, Sedimentationskoelfizienten, Löslichkeit, spektroskopische Eigenschaften etc.

Ein wichtiges Charakteristikum einer DXS ist z. B. ihre Fähigkeit zur Synthese von DXP unter Umsetzung von:Pyruvat und GA3P. Diese Aktivität kann z. B. wie in Beispiel Nr. 4 beschrieben bestimmt werden.

Erfindungsgegenstand ist daher auch ein Verfahren zur Identifizierung von Effektoren der DXS, dadurch gekennzeichnet, daß die enzymatische Aktivität der DXS zu einem direkt oder indirekt, qualitativ oder quantitativ meßbaren Signal führt, vorzugsweise indem man eine DXS mit geeigneten Substraten inkubiert und die enzymatische Aktivität der DXS in An- und Abwesenheit einer zu untersuchenden Testsubstanz bestimmt und vergleicht.

Erfindungsgegenstand ist daher auch ein Vertahren zur Identifizierung von Effektoren der DXS, worin man die enzymatische Aktivität der DXS in Abwesenheit einer Testsubstanz bestimmt; die enzymatische Aktivität der DXS in Anwesenheit besagter Testsubstanz bestimmt; und die ermittelten enzymatischen Aktivitäten miteinander vergleicht.

Erfindungsgegenstand ist daher auch die Verwendung eines erfindungsgem

ßen Vertahrens zur Identifizierung von Effektoren der DXS, vorzugsweise in einem automatisierten Testsystem, z. B. durch sog. "High-Throughput-Sercening", z. B. unter Verwendung von Pipettierrobotern und/oder computergest

ützten Sieuer- und Analysesystemen.

Das Verfahren ist geeignet, spezifische Inhibitoren oder Aktivatoren, d. h. Effektoren der DXS aufzufinden, so daß u. a. Stoffe identifiziert werden können, welche eine potentielle herbizide bzw. wachstumshemmende aber auch wachstumsfördernde Wirkung besitzen. Die zu untersuchende chemische Verbindung wird dabei bevorzugt in Konzentrationen zwischen 10⁻⁹ M und 10⁻³ M, und besonders bevorzugt in Konzentrationen zwischen 10⁻⁷ M und 10⁻⁴ M eingesetzt.

Für die Bestimmung der enzymatischen Aktivität der DXS stehen eine Reihe von geeigneten Verfähren zur Verfügung, bei denen man die DXS in einem geeigneten Reaktionspuller unter geeigneten Reaktionsbedingungen bezüglich Reaktionstemperatur und dem pH-Wert der Reaktion in Anwesenheit von die grandiphosphat mit geeigneten Substraten, wie z. B. Pyruvat und GA3P, inkubiert.

Als bevorzugte Reaktionsbedingungen der DXS seien geeignete Reaktionspalter mit einem pH-Wert zwischen pH 3 und pH 11, sowie Reaktionstemperaturen zwischen 2°C und 60°C genann

Die Quantifizierung der Enzyminhibition oder Enzymaktivierung (d. h. der ettektorischen Wirkung) kann durch einen einfachen Vergleich der katalytischen Aktivität der DXS in Abwesenhen und in Anwesenheit der zu untersuchenden Testsubstanz unter ansonsten identischen Testbedingungen geschehen. Zur Bestimmung der Aktivität der DXS können verschiedene biochemische Meß-Methoden eingesetzt werden, durch die entweder die Entstehung der Reaktionsprodukte der von der DXS katalysierten Reaktion, z. B. DXP, oder aber eine Abnahme der Konzentration der Enzymsubstrate der DXS, z. B. Pyruvat oder GA3P, gemessen werden, z. B. durch eine Endpunktbestimmung des DXP nach enzy-

matischer Umsetzung de trate Pyruvat und GA3P, die gegebenenfalls (ktiv markiert oder mit anderen gängigen Markern versehen war oder durch nachgeschaltete Reaktionen nachge werden können, z.B. durch gekoppelte enzymatische Reaktionen.

Dem in der Durchführung von Enzymtests erfahrenen Fachmann stehen viele Standardmethoden zur Bestimmung von Enzymaktivitäten zur Vertügung (s. z. B. Bergmeyer, H. U., Methoden der enzymatischen Analyse, Band 1 und 2, Verlag Chemie, Weinheim (1974), Suelter, C. H., Experimentelle Enzymologie: Grundlagen für die Laborpraxis, Fischer Stuttgart (1990)).

Die Bestimmung der enzymatischen Aktivität der DXS kann z. B. erfolgen, indem man die DXS mit [2-14C]-Pyruvat und GA3P inkubiert und nach Ablauf einer geeigneten Inkubatiohszeit die Menge des gebildeten [2-14C]-1-Desoxy-Dxylulose-5-phosphat nach Abtrennung von noch nicht umgesetzten [2-14C]-Pyruvat und GA3P qualitativ oder quantitativ bestimmt. Die Trennung des 1-Desoxy-D-xylulose-5-phosphat von Pyruvat und GA3P kann z. B. an einer geeigneten stationären Phase unter Verwendung eines geeigneten Laufmittelgemischs z.B. durch Dünnschichtchromatographie oder durch HPLC erfolgen. Zur Verbesserung der Trennung von DXP, Pyruvat und GA3P können die im Reaktionsansatz enthaltenen Phosphorsäureester vor der chromatographischen Trennung z. B. durch Behandlung mit saurer oder alkalischer Phosphatase in die korrespondierenden Alkohole überführt werden. Bei der Aktivitätsbestimmung einer DXS können aber auch andere, radioaktiv markierte Substrate, wie z.B. [U-14C]-Pyruvat, 14C-markiertes GA3P, 3H-markiertes Pyruvat oder ³H-markiertes GA3P an Stelle von [2-¹⁴C]-Pyruvat und GA3P verwendet werden.

Es ist weiterhin vorstellbar, radioaktiv markierte DXP-Derivate (z. B. ¹³C-, ¹⁴C- oder ³²P markiert u. a.), ausgehend von aufgereinigter DXS, herzustellen, um diese in Testsystemen einzusetzen. Radioaktiv markiertes DXP kann als spezifischer Metabolit zur Untersuchung von Folgeenzymen des 1-Desoxyxylulose-P-Weges eingesetzt werden und damit auch wiederum die Untersuchung von Effektoren ermöglichen. So könnte z. B. Die Bildung von ¹⁴C-IPP oder anderen ¹⁴C-Verbindungen nachgewiesen werden; jeglicher Effektor, der demnach die Umwandlung von ¹⁴C-DXP in IPP in vivo oder in vitro absenkt, kann wiederum als mögliches Herbizid/Antibiotikum des gesamten Weges angesehen werden.

Die Aktivität der DXS kann auch bestimmt werden, indem man z. B. die DXS mit [1-14C]-Pyruvat und GA3P inkubiert und nach Ablauf einer geeigneten Inkubationszeit die Menge des bei der Reaktion freigesetzten ¹⁴CO₂ bestimmt. Die Aktivität der DXS kann auch bestimmt werden, indem man z. B. die DXS mit Pyruvat und GA3P inkubiert und nach Ablauf einer geeigneten Inkubationszeit die Menge des bei der Reaktion noch nicht umgesetzten Pyruvats mit Hilfe des Enzyms Lactat Dehydrogenase zu Lactat umsetzt und die Abnahme der Konzentration des bei der Reaktion der Lactat Dehydrogenase als Cosubstrat benötigten reduzierten Nikotinamid-Dinukleotid (NADH) mit einem geeigneten Verfahren, z. B. photometrisch, bestimmt.

Die Aktivität der DXS kann auch bestimmt werden, indem man z. B. die DXS mit Pyruvat und GA3P inkubiert und nach Ablauf einer geeigneten Inkubationszeit die Menge des bei der Reaktion noch nicht umgesetzten GA3P mit Hilfe des Enzyms Glycerinaldehyd-3-phosphat Dehydrogenase zu 1,3-Bisphosphoglycerat umsetzt und die Zunahme der Konzentration der reduzierten Form des bei der Reaktion der Glycerinaldehyd-3-phosphat Dehydrogenase als Cosubstrat benötigten Nikotinamid-Dinukleotids mit einem geeigneten Verfahren direkt, z. B. photometrisch, oder nach Kopplung mit der Reduktion von Tetrazoliumverbindungen, bestimmt.

Die Aktivität der DXS kann auch bestimmt werden, indem man z. B. die DXS mit Pyruvat und GA3P inkubiert und entweder nach Ablauf einer geeigneten Inkubationszeit oder in einem gekoppelten enzymatischen Testsystem kontinuierlich die Menge das bei der Reaktion freiwerdende CO2 mit Hilfe des Enzyms Phosphoenolpyruvat Carboxylase zu Oxalacetat umsetzt und die Menge des so gebildeten Oxalacetats mit Hilfe des Enzyms Malat Dehydrogenase zu Malat umsetzt und die Abnahme der Konzentration des bei der Reaktion der Malat Dehydrogenase als Cosubstrat benötigten reduzierten Nikotinamid-Dinukleotid (NADH) mit einem geeigneten Verfahren, z. B. photometrisch, bestimmt.

Die Aktivität der DXS kann auch bestimmt werden, indem man z. B. die DXS mit Pyruvat und GA3P inkubiert und die Teilreaktion der Dekarboxylierung von Pyruvat an die Reduktion von 2.6-Dichlorphenolindophenol koppelt.

Die erfindungsgemäßen Verfahren zur Bestimmung der effektorischen Wirkung von Testsubstanzen können mit gereinigter DXS durchgeführt werden, aber auch mit ganzen Zellen eines rekombinanten Organismus, welcher die DXS rekombinant exprimiert, mit DXS-haltigen Extrakten aus diesem Organismus oder angereicherten DXS-haltigen Fraktionen aus diesem Organismus. Als bevorzugter rekombinanter Wirtsorganismus seien Bakterien-, Insekten- und Hefezellen genannt. Alternativ kann auch eine aus Pflanzengewebe oder Pflanzenzellkulturen isolierte DXS verwendet werden. Es ist bekannt, daß DXP zu DMAPP/IPP über eine Reihe von Zwischenschritten umgesetzt wird. Die Einzelheiten, also die entstehenden Folgeenzyme sind noch nicht analysiert worden. Es ist jedoch bekannt, daß die Umsetzung über Kinasen, Oxidoreduktasen, Isomerasen und Mutasen erfolgt. Insofern ist zu erwarten, daß die Folgeenzyme ebenfalls Wirkorte für Herbizide und Antibiotika darstellen und ebenfalls als Effektoren fungieren.

Für verschiedene Anwendungen wie z. B. die Herstellung eines o.g. biochemischen Testsystems zur Bestimmung einer Proteinfunktion ist eine wesentliche Voraussetzung, daß das zu untersuchende Protein in funktionsfähigem Zustand und möglichst rein, d. h. frei von störenden Aktivitäten, gewonnen werden kann. Wie bei allen Zellproteinen kann dies im Falle der DXS dadurch geschehen, daß das Enzym mit Hilfe gängiger Verfahren der Proteinreinigung aus den Organismen oder Geweben isoliert wird. In der vorliegenden Erfindung ist dargelegt, daß eine funktionell intakte DXS isoliert werden kann, deren Sequenz beispielhaft für E. coli mit SEQ ID Nr. 1 angegeben ist und mit der Sequenz aus der EMBL

Datenbank Acc. No. U 82664 übereinstimmt.

1	MSFDIAKYPT LALV-STQEL RLLPKESLPK LCDELRRYL SVSRSSGHF
51	ASGLGTVELT VALHYVYNTP FDQLIWDVGH QAYPHKILTG RRDKIGTIRQ
101	KGGLHPFPWR GESEYDVLSV GHSSTSISAG IGIAVAAEKE GKNRRTVCVI
151	GDGAITAGMA FEAMNHAGDI RPDMLVILND NEMSISENVG ALNNHLAQLL
201	SGKLYSSLRE GGKKVFSGVP PIKELLKRTE EHIKGMVVPG TLFEELGFNY
251	IGPVDGHDVL GLITTLKNMR DLKGPQFLHI MTKKGRGYEP AEKDPITFHA
301	VPKFDPSSGC LPKSSGGLPS YSKIFGDWLC ETAAKDNKLM AITPAMREGS
351	GMVEFSRKFP DRYFDVAIAE QHAVTFAAGL AIGGYKPIVA IYSTFLQRAY
401	DQVLHDVAIQ KLPVLFAIDR AGIVGADGQT HQGAFDLSYL RCIPEMVIMT
451	PSDENECROM LYTGYHYNDG PSAVRYPRGN AVGVELTPLE KLPIGKGIVK
501	RRGEKLAILN FGTLMPEAAK VAESLNATLV DMRFVKPLDE ALILEMAASH
551	EALVTVEENA IMGGAGSGVN EVLMAHRKPV PVLNIGLPDF FIPQGTQEEM
601	RAELGLDAAG MEAKIKAWLA

15

20

40

45

50

55

60

Erfindungsgegenstand ist desweiteren die Verwendung eines Proteins mit der Funktion einer DXS oder ein aktives Fragment daraus zur Identifizierung von Effektoren der DXS.

Die Verwendung der DXS basiert im wesentlichen auf ihrer enzymatischen Aktivität. Die Bereitstellung funktionell intakter DXS ermöglicht sowohl in vitro (z. B. zellfreies Testsystem der DXS) als auch in vivo die Durchführung von biochemischen Reaktionen, beispielsweise in ein- oder mehrzelligen rekombinanten Organsimen oder Zellkulturen, insbesondere Helen, Bakterien, Algen, Insektenzellen oder Pflanzen.

Diese Reaktionen können einerseits zur Herstellung von 1-Desoxy-D-xylulose-5-phosphat (DXP) oder Folgeprodukten wie z. B. Thiamin, Pyridoxin und Isoprenoide (u. a. Carotinoide, Chlorophylle, Phytole, Lutein, Sterole, Übichinone/Menachinone/Plastochinone, Dolichol, Naturkautschuk, Paclitaxe/Docetaxel (Handelsnamen Taxol/Taxotere) genutzt werden, andererseits können diese biochemischen Reaktionen dazu verwendet werden, um in einem Testsystem die Wirkung von chemischen Verbindungen oder heterogenen Stoffgemischen in bezug auf die Funktion der DXŞ zu bestimmen.

Desweiteren kann die gentechnisch hergestellte DXS beispielsweise auch verwendet werden, um die Raumstruktur des Enzyms aufzuklüren. Zur Aufklärung der Raumstruktur können allgemein bekannte Verfahren, wie z. B. die Röntgenstrukturanalyse von Proteinkristallen oder NMR-Spektroskopie verwendet werden. Die Strukturinformationen über die DXS, können beispielsweise verwendet werden, um ein rationales Design von neuen Inhibitoren der DXS – und somit potentiellen Herbiziden – durchzuführen.

Erfindungsgegenstand sind auch Effektoren der DXS, identifizierbar durch ein erfindungsgemäßes Verfahren. Effektoren der DXS, die ein Strukturanaloges des Pyruvat, des GA3P oder des DXP sind, insbesondere antibiotisch, pestizid oder herbizid wirksame Effektoren der DXS sowie deren Verwendung als Pestizide. Herbizide oder Antibiotika.

In den nachfolgenden Beispielen, die der näheren Erläuterung der Erfindung dienen und die in keiner Weise eine Einschränkung bedeuten sollen, wurden die folgenden Materialien und Methoden verwendet:

Bakterienstämme und Plasmide

Escherichia coli K 12, W3110 Wildryp-Stamm (erhältlich von Genetic Stock Center der Yale Universität, U.S.A.) wurde als Ausgangsmaterial für die Gewinnung von chromosomaler DNA verwendet.

Zur Klonierung und Expression von dxs in E. coli DH5 (supE44 ΔlacUI69 (Φ80lacZ ΔΜ15) hsdRI7 recAl endAl gyrA96 thi-l relA1) (Hanahan (1983) J. Mol. Biol. 166, 557–580) und E. coli JM 109 (recAll supE44 endAll hsdR17 gyrA96 relA1 thi Δ(lacproAB) F [traD36 proAB+ Iacl^q lacZΔM15]) (Yanisch-Perron et al. (1985) Gene 33, 103–119) wurde der Plasmid pUCBM20 (Boehringer Mannheim, BRD) eingesetzt.

Klonierungstechniken

Zur Klonierung (Sambrook et al. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Lab. Press. Cold Spring Harbor, NY), PCR-Amplifizierung (Mullis und Faloona, (1987) Meth. Enzymol. 155, 335–350) und Transformation von DNA (Hanahan (1983) J. Mol. Biol. 166, 557–580) wurden im allgemeinen die in den Literaturstellen beschriebenen Standardtechniken verwendet.

Es ist zu erwarten, daß eine veränderte DXS-Aktivität, insbesondere eine Aktivitätserhöhung, zu einer verstärkten Bildung von DXP-Derivaten (z. B. Thiamin oder Pyridoxin) und isoprenoiden Substanzen führt. Hierzu zählen Carotinoide,

DXS ist sowohl von International als Wirkort zur Hemmung der IPP-Synthese pizide, Antibiotika). Erfindungsgegenstand ist aber auch eine Konting der DXS-Aktivität und die verstärkte Bilder von DXP-Derivaten wie Thiamin oder Pyridoxin (Vitamine B1 und B6), und vor allem von isoprenoiden Substanzen. Dazu sollen, in möglichst breitem Maße, namentlich aber nicht ausschließlich, beansprucht werden:

Carotinoide, Chlorophylle, Phytole, Lutein, Sterole, Ubichionine/Menachinone/Plastochinone, Dolichol, Naturkautschuk, Paclitaxel/Docetaxel (Handelnamen Taxol/Taxotère), u. a. kommerziell interessante Verbindungen.

Beispiel 1

Isolierung und Klonierung des dxs-Gens aus E. coli

Das dxs-Gen wurde aus E. coli K12 Wildtyp-Stamm W 3110 mittels Polymerase-Ketten-Reaktion (PCR) unter Verwendung der bekannten E. coli Genomsequenz U 82664 und dem folgenden Primer amplifiziert:

DXSEC05: 5' CCGAATTCACRGCCCCTGATGAGTTTTGAT 3' (Bp 19636-19616) und

DXSEC03: 5' TTGCATGCAGGAGTGGAGTAGGGATTATG 3' (Bp 17747-17769).

Die PCR-Primern DXSEC05 und DXSEC03 enthalten Restriktionsschnittstellen für die Enzyme EcoRI bzw. Sphl. Zur Durchführung der PCR wurden jeweils 100 pmol der Primer mit 1,6 ng chromosomaler DNA aus E. coli K-12 Wildtyp Stamm LJ 110 (W31-10) eingesetzt. Nach Denaturieren des DNA-Doppelstranges bei 95°C für 30 Sekunden, folgten 30 Zyklen von jeweils: annealing bei 60°C, Polymerisation bei 72°C und nachfolgender Denaturierung bei 95°C (1 min).

Die Sequenz des PCR-Produkts (SEQ ID Nr. 2) wurde mittels eines A.L.F. Systems (Pharmacia, Freiburg, BRD) bestimmt:

65

10

20

30

35

40

45

50

1.	ATGAGTTTTG ATA CCCAA ATACCCGACC CTGGCACTGC GACTCCAC	
51	CCAGGAGTTA CGACTGTTGC CGAAAGAGAG TTTACCGAAA CTCTGCGACG	
101	AACTGCGCCG CTATTTACTC GACAGCGTGA GCCGTTCCAG CGGGCACTTC	5
151	GCCTCCGGGC TGGGCACGGT CGAACTGACC GTGGCGCTGC ACTATGTCTA	
201	CAACACCCCG TTTGACCAAT TGATTTGGGA TGTGGGGCAT CAGGCTTATC	
251	CGCATAAAAT TTTGACCGGA CGCCGCGACA AAATCGGCAC CATCCGTCAG	10
301	AAAGGCGGTC TGCACCCGTT CCCGTGGCGC GGCGAAAGCG AATATGACGT	
351	ATTAAGCGTC GGGCATTCAT CAACCTCCAT CAGTGCCGGA ATTGGTATTG	15
401	CGGTTGCTGC CGAAAAAAA GGCAAAAATC GCCGCACCGT CTGTGTCATT	10
451	GGCGATGGCG CGATTACCGC AGGCATGGCG TTTGAAGCGA TGAATCACGC	•
501	GGGCGATATC CGTCCTGATA TGCTGGTGAT TCTCAACGAC AATGAAATGT	20
551	CGATTTCCGA AAATGTCGGC GCGCTCAACA ACCATCTGGC ACAGCTGCTT	
601	TCCGGTAAGC TTTACTCTTC ACTGCGCGAA GGCGGGAAAA AAGTTTTCTC	
651	TGGCGTGCCG CCAATTAAAG AGCTGCTCAA ACGCACCGAA GAACATATTA	25
701	AAGGCATGGT AGTGCCTGGC ACGTTGTTTG AAGAGCTGGG CTTTAACTAC	•
751	ATCGGCCCGG TGGACGGTCA CGATGTGCTG GGGCTTATCA CCACGCTAAA	
801	GAACATGCGC GACCTGAAAG GCCCGCAGTT CCTGCATATC ATGACCAAAA	30
851	AAGGTCGTGG TTATGAACCG GCAGAAAAAG ACCCGATCAC TTTCCACGCC	
901	GTGCCTAAAT TTGATCCCTC CAGCGGTTGT TTGCCGAAAA GTAGCGGCGG	
951	TTTGCCGAGC TATTCAAAAA TCTTTGGCGA CTGGTTGTGC GAAACGGCAG	. 35
1001	CGAAAGACAA CAAGCTGATG GCGATTACTC CGGCGATGCG TGAAGGTTCC	
1051	GGCATGGTCG AGTTTTCACG TAAATTCCCG GATCGCTACT TCGACGTGGC	
1101	AATTGCCGAG CAACACGCGG TGACCTTTGC TGCGGGTCTG GCGATTGGTG	40
1151	GGTACAAACC CATTGTCGCG ATTTACTCCA CTTTCCTGCA ACGCGCCTAT	
1201	GATCAGGTGC TGCATGACGT GGCGATTCAA AAGCTTCCGG TCCTGTTCGC	45
1251	CATCGACCGC GCGGGCATTG TTGGTGCTGA CGGTCAAACC CATCAGGGTG	
1301	CTTTTGATCT CTCTTACCTG CGCTGCATAC CGGAAATGGT CATTATGACC	
1351	CCGAGCGATG AAAACGAATG TCGCCAGATG CTCTATACCG GCTATCACTA	50
1401	TAACGATGGC CCGTCAGCGG TGCGCTACCC GCGTGGCAAC GCGGTCGGCG	
1451	TGGAACTGAC GCCGCTGGAA AAACTACCAA TTGGCAAAGG CATTGTGAAG	
1501	CGTCGTGGCG AGAAACTGGC GATCCTTAAC TTTGGTACGC TGATGCCAGA	55
1551	AGCGGCGAAA GTCGCCGAAT CGCTGAACGC CACGCTGGTC GATATGCGTT	
1601	TTGTGAAACC GCTTGATGAA GCGTTAATTC TGGAAATGGC CGCCAGCCAT	
1651	GAAGCGCTGG TCACCGTAGA AGAAAACGCC ATTATGGGCG GCGCAGGCAG	. 60
1701	CGGCGTGAAC GAAGTGCTGA TGGCCCATCG TAAACCAGTA CCCGTGCTGA	
1751	ACATTGGCCT GCCGGACTTC TTTATTCCGC AAGGAACTCA GGAAGAAATG	
1801	CGCGCCGAAC TCGGCCTCGA TGCCGCTGGT ATGGAAGCCA AAATCAAGGC	65
1851	CTGGCTGGCA TAA	

Expression des dxs-Gens in E. coli JM 109

Das resultierende 1,9 kb PCR-Fragment mit einer 7 bp strangaufwärts gelegenen Ribosomen-Bindungsstelle (AGG) wurde isoliert und über die EcoRl- und Sphl-Schnittstellen in den Plasmid pUCBM20 (Boehringer Mannheim, BRD) subkloniert. Nach Transformation in E. coli JM109, wurde die Integrität der Plasmide durch Restriktionsanalyse überprüft. Die Expression erfolgte durch den auf dem Plasmid gelegenen lac-Promoter.

Beispiel 3

Reinigung des Enzyms DXS aus rekombinanten E. coli JM 109 Zellen

E. coli JM109 Zellen, die das Plasmid pUCBM20 mit dem inserierten dxs-Gen enthielten, wurden in LB-Medium (insgesamt 9.6 Liter) mit Ampicillin (100 mg/l) bis zu einer optischen Dichte von 0,8 kultiviert und 4 h lang mit Isopropylbeta-D-thiogalaktosid (IPTG) (0,4 mM) induziert. Die Zellen wurden durch Zentrifugation geerntet, mit 50 mM Tris/
HCl, 1 mM Dithiothreitol, 0,5 mM Thiamindiphosphat, 5 mM MgCl₂, pH 7,5 (Puffer A) gewaschen, in Puffer A resuspendiert (2,5 ml/g Zellfeuchtgewicht), und durch 3 Passagen in einer French Press aufgeschlossen. Nach Zentrifugation
wurde die Zelldebris verworfen und dem Überstand (173 ml) zur Fällung der Proteine 225 g/l NH₄SO₄ bei 0°C zugesetzt.
Das Präzipitat wurde in Puffer A resuspendiert und ultrafiltriert.

Die Probe (63 ml) wurde anschließend auf eine Q-Sepharose HP-Säule (Pharmacia Biotech, Schweden) aufgetragen, mit Puffer A gewaschen, und mittels eines ansteigenden Salzgradienten (0–1 M NaCl in Puffer A) im Bereich zwischen 0,2 und 0,3 M NaCl eluiert.

Die Rohextrakte und (partiell) gereinigtes Enzym wurden mittels des unten beschriebenen Testverfahrens auf ihre enzymatischen Eigenschaften hin untersucht, aus Pyruvat und GA3P DXP zu bilden. Bezogen auf die rekombinanten Zellen, konnte eine ca. 17-fache Anreicherung erzielt werden (Tabelle 1).

Tabelle 1

Probe	DXS-Aktivität
	[nmol min ⁻¹ mg ⁻¹]
E. coli LJ 110	0,4
E. coli JM 109/pUCBM20dxs - IPTG	12,2
E. coli JM 109/pUCBM20dxs +	51,6
IPTG	
DXS (angereichert)	850

Im Natriumdodecylsulfat-Polyacrylamidelektrophoresegel (SDS-PAGE) besitzt das gereinigte DXS-Protein ein apparentes Molekulargewicht von ca. 66 kDa (**Fig. 3**). Die Molmasse von 66 kD stimmt mit der aus der DNA-Sequenz erwarteten Molmasse von 67.6 kD überein.

SDS-PAGE

Beispiel 4

Enzymtest der 1-Desoxy-D-xvlulose-5-phosphat Synthase

Der Test der enzymatischen Aktivität der 1-Desoxy-D-xylulose-5-phosphat Synthase wurde in Gegenwart von 200 mM Natriumcitrat-Puffer, pH 6.0, 10 mM Pyruvat, 30 mM D.L.-Glycerinaldehyd-3-phosphat, 20 mM MgCl₂, 1,5 mM Thiamindiphosphat (THDP), 1 mM Dithiothreitol (DTT), 0,4 mM Ethylendiamintetraacetat (EDTA), 1 μCi [2-¹⁴C]-Pyruvat und der zu untersuchenden Probe in einem Gesamtvolumen von 50 μl durchgeführt.

Nach einer Inkubationszeit von 1 bis 4 Stunden (h) bei 30°C wurde die Reaktion durch Zugabe von 20%iger Perchlorsäure (5 μl) gestoppt. Der Überstand wurde mit 5 molarer K₂CO₃ (8 μl) neutralisiert.

Zu einem Aliquot von 5 µl des DXS-Reaktionsüberstandes wurden 15 U alkalische Phosphatase aus Kälberdarm (1,5 µl, Boehringer Mannheim, Nr. 108138) hinzugefügt und 30 min lang bei 30°C inkubiert. Das Reaktionsprodukt, DXP, wurde nach Dephosphorylierung durch Behandlung mit alkalischer Phosphatase als 1-Desoxy-D-xylulose auf einer Aminex HPX-87H (300 × 7.8 cm) HPLC-Säule (Bio-Rad Laboratories GmbH, München, BRD) nachgewiesen, indem die Lösung anschließend auf eine Aminex HPX-87H HPLC-Säule aufgetragen und mit 6 mM H₂SO₄ bei einer Temperatur von 65°C nach Herstellerangaben eluiert wurde.

Der Nachweis des DXP und der 1-Desoxy-D-xylulose erfolgte durch einen in Reihe geschlossenen UV-Monitor

10

30

33

40

45

50

(185 nm) und einen Radiomonitor (Labeld LB506C). 1-Desoxy-D-xylulose-5-phosphere im Ausschlußvolumen der Säule. Die Konzentration und Signatpositionen wurden mittels chemisch synthetisie. Standards der jeweiligen 1-Desoxy-Xylulose-Derivate (von T. Begley, Cornell University, New York, USA) bestimmt.

1 Unit (U) der enzymatischen Aktivität der DXS wurde als die Bildung von 1 μπιοl/min DXP bei einer Temperatur von 30°C definiert.

Durch Dialyse gegen einen Puffer ohne Thiamindiphosphat (THDP) verlor das Enzym seine Aktivität. Die Aktivität konnte jedoch zu mehr als 50% rekonstituiert werden, wenn THDP hinzugefügt wurde. Das Enzym zeigte insofern eine reversible, Thiamindiphosphat-abhängige Aktivität.

Beispiel 5

Identifizierung des Reaktionsprodukts DXP

Pyruvat und GA3P wurden in Gegenwart von gereinigter DXS unter den in Beispiel 4 genannten Reaktionsbedingungen umgesetzt. Ein hochauflösendes ¹H-NMR-Spektrum bei 400,13 MHz bzw. ein ³¹P-NMR-Spektrum bei 161.97 MHz wurden an einem AMX-400 WB Spektrometer (Bruker, Karlsruhe, BRD) aufgenommen und ergab für DXP: 5.47 (d, 1,9 Hz, 1H); 4.38 (td, 6.5 Hz, 1.9 Hz, 1H); 3.90 (dd, 6.5 Hz, 7.3 Hz, 2H); 2.34 (s, 3H).

Diese Ergebnisse stimmten mit den NMR-Daten von chemisch synthetisiertem 1-Desoxy-D-xylulose-5-phosphat (DXP) überein.

Beispiel 6

Inhibition der 1-Desoxv-D-xvlulose-5-phosphat Synthase

Die gemäß Beispiel 3 gereinigte DXS (von T. Begley, Cornell University, New York, USA) wurde auf seine in vitro Aktivität wie in Beispiel 4 beschrieben getestet. Die gemessene relative Aktivität des Ansatzes in Abwesenheit von Testsubstanzen wurde in Gegenwart von 1,2 und 10 mM Pyruvat mit 100% festgelegt. Nach Zusatz des Pyruvatanalogen (jeweils 10 mM) wurde die verbliebene Aktivität der DXS in Gegenwart des Kompetitors ermittelt (Tabelle 2).

Tabelle 2

Inhibition der DXS durch Strukturanaloge des Pyruvat

	DXS-Aktivität [%]								
		or (10 mM)							
	9	Nr.1	Nr. 2						
Pyruvat (mM)	ohne Inhibitor	H ₃ C ONa P ONa	H ₃ C P CH ₃						
10	100	96	45						
2	100	95	9						
1	100	103	6						

9

,

50

15

20

30

35

40

60

6.5

SEQUENZPROTOKOLL

(1) ALGEMEINE INFORMATION:

(i) ANMELDER:

10

15

20

25

30

35

40

45

50

55

60

65

- (A) NAME: Hoechst Schering AgrEvo GmbH
- (B) STRASSE: -
- (C) ORT: Frankfurt
- (D) BUNDESLAND: -
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: 65926
- (G) TELEPHON: 069-305-7427
- (H) TELEFAX: 069-305-2200
- (I) TELEX: -
- (ii) ANMELDETITEL: 1-Desoxy-D-xylulose-5-phosphat Synthase, Verfahren zur Identifizierung von Effektoren der 1-Desoxy-D-xylulose-5-phosphat Synthase und Effektoren der 1-Desoxy-D-xylulose-5-phosphat Synthase
- (iii) ANZAHL DER SEQUENZEN: 4
- (iv) COMPUTER-LESBARE FORM:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
- (2) INFORMATION ZU SEQ ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 620 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Protein
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: Protein
 - (B) LAGE: 1..620
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

Met Ser Phe Asp Ile Ala Lys Tyr Pro Thr Leu Ala Leu Val Asp Ser 1

Thr Gln Glu Leu Arg Leu Leu Pro Lys Glu Ser Leu Pro Lys Leu Cys

Asp Glu Leu Arg Arg Tyr Leu Leu Asp Ser Val Ser Arg Ser Ser Gly 40

His Phe Ala Ser Gly Leu Gly Thr Val Glu Leu Thr Val Ala Leu His 50

						,							- 1				
Tyr 65	Val	Tyr	Asn	Thr	Pro 70	Phe	Asp	Gln	Leu	Ile 75	Trp	Asp	Val	Gly	His 80		
Gln	Ala	Tyr	Pro	His 85	Lys	Ile	Leu	Thr	90 Gly	Arg	Arg	Asp	Lys	Ile 95	Gly		3
Thr	Ile	Arg	Gln 100	Lys	Gly	Gly	Leu	His 105	Pro	Phe	Pro	Trp	Arg 110	Gly	Glu		10
Ser	Glu	Tyr 115	Asp	Val	Leu	Ser	Val 120	Gly	His	Ser	Ser	Thr 125	Ser	Ile	Ser		
Ala	Gly 130	Ile	Gly	Ile	Ala	Val 135	Ala	Ala	Glu	Lys	Glu 140	Gly	Lys	Asn	Arg		15
Arg 145	Thr	Vai	Cys	Val	Ile 150	Gly	Asp	Gly	Ala	Ile 155	Thr	Ala	Gly	Met	Ala 160		20
Phe	Glu	Ala	Met	Asn 165	His	Ala	Gly	Asp	Ile 170	Arg	Pro	Asp	Met	Leu 175	Val		
Ile	Leu	Asn	Asp 180	Asn	Glu	Met	Ser	Ile 185	Ser	Glu	Asn	Val	Gly 190	Ala	Leu		25
Asn	Asn	His 195	Leu	Ala	Gln	Leu	Leu 200		Gly	Lys	Leu	Tyr 205	Ser	Ser	Leu		30
Arg	Glu 210	Gly	Gly	Lys	ГЛЗ	Val 215	Phe	Ser	Gly	Val	Pro 220	Pro	Ile	ГЛа	Glu		
Leu 225	Leu	Lys	Arg	Thr	Glu 230	Glu	His	Ile	Lys	Gly 235	Met	Val	Val	Pro	Gly 240	-	35
Thr	Leu	Phe	Glu	Glu 245	Leu	Gly	Phe	Asn	Tyr 250	Ile	Gly	Pro	Val	Asp 255	Gly	•	40
His	Asp	Val	Leu 260	Gly	Leu	Ile	Thr	Thr 265	Leu	Lys	Asn	Met	Arg 270	Asp	Leu		
ГÀЗ	Gly	Pro 275	Gln	Phe	Leu	His	Ile 280	Met	Thr	Lys	Lys	Gly 285	Arg	Gly	Tyr		45
Glu	Pro 290	Ala	Glu	Lys	Asp	Pro 295	Ile	Thr	Phe	His	Ala 300	Val	Pro	ГÀа	Phe		50
Asp 305	Pro	Ser	Ser	Gly	Cys 310	Leu	Pro	Lys	Ser	Ser 315	Gly	Gly	Leu	Pro	Ser 320		
Tyr	Ser	Lys	Ile	Phe 325	Gly	Asp	Trp	Leu	Cys	Glu	Thr	Ala	Ala	Lys 335	Asp		55
Asn	Lys	Leu	Met 340	Ala	Ile	Thr	Pro	Ala 345	Met	Arg	Glu	Gly	Ser 350	Gly	Met		60
Val	Glu	Phe 355	Ser	Arg	Lys	Phe	Pro 360	Asp	Arg	Tyr	Phe	Asp 365	Val	Ala	Ile		

) .								, .				
		Ala	370) . ·	His	Ala	. Val	. Thr 375		e Ala	a Ala	GLY	Leu 380		ılle	Gly	Gly
5		Ty: 385	Lys	Pro	Ile	val	Ala 390		Туг	: Ser	Thr	Phe 395		Gln	Arg	Ala	Tyr 400
10		Asp	Gln	Val	Leu	His 405		Val	Ala	ı Ile	Gln 410		Leu	Pro	Val	Leu 415	
		Ala	lle	Asp	Arg 420		Gly	Ile	Val	. Gly 425		Asp	Gly	Gln	Thr 430	His	Gln
.5		Gly	Ala	Phe 435	Asp	Leu	Ser	Tyr	Leu 440		Суз	Ile	Pro	Glu 445		Val	Ile
:0		Met	Thr 450	Pro	Ser	Asp	Glu	Asn 455	Glu	Cys	Arg	Gln	Met 460	Leu	Tyr	Thr	Gly
		Tyr 465	His	Tyr	Asn	Asp	Gly 470	Pro	Ser	Ala	Val	Arg 475	Tyr	Pro	Arg	Gly	Asn 480
5		Ala	Val	Gly	Val	Glu 485	Leu	Thr	Pro	Leu	Glu 490	Lys	Leu	Pro	Ile	Gly 495	
0		Gly	Ile	Val	Lys 500	Arg	Arg	Gly	Glu	Lys 505	Leu	Ala	Ile	Leu	Asn 510	Phe	Gly
-		Thr	Leu	Met 515	Pro	Glu	Ala	Ala	Lys 520	Val	Ala	Glu	Ser	Leu 525	Asn	Ala	Thr
5		Leu	Val 530	Asp	Met	Arg	Phe	Val 535	Lys	Pro	Leu	Asp	Glu 540	Ala	Leu	Ile	Leu
0		Glu 545	Met	Ala	Ala	Ser	His 550	Glu	Ala	Leu	Val	Thr 555	Val	Glu	Glu	Asn	Ala 560
		Ile	Met	Gly	Gly	Ala 565	Gly	Ser	Gly	Val	Asn 570	Glu	Val	Leu	Met	Ala 575	His
5		Arg	Lys	Pro	Val 580	Pro	Val	Leu	Asn	Ile 585	Gly	Leu	Pro	Asp	Phe 590	Phe	Ile
Ď.	-	Pro	Gln	Gly 595	Thr	Gln	Glu	Glu	Met 600	Arg	Ala	Glu.	Leu	Gly 605	Leu	Asp	Ala
		Ala	Gly 610	Met	Glu	Ala		Ile 615	Lys	Ala	Trp		Ala 620				-
s										•					-		

(2) INFORMATION ZU SEQ ID NO: 2:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 29 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel

 - (D) TOPOLOGIE: linear

65

(ii) ART DES MOLEKÜLS: DNS (genomisch)		
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 129		5
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:		10
CCGAATTCAC GCCCCTGATG AGTTTTGAT	29	
(2) INFORMATION ZU SEQ ID NO: 3:		15
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 29 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 		20
(ii) ART DES MOLEKÜLS: DNS (genomisch)		25
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 129		30
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:		
TTGCATGCAG GAGTGGAGTA GGGATTATG	29	35
(2) INFORMATION ZU SEQ ID NO: 4:		40
(i) SEQUENZ CHARAKTERISTIKA:(A) LÄNGE: 1863 Basenpaare(B) ART: Nukleinsäure		
(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear		45
(ii) ART DES MOLEKÜLS: DNS (genomisch)		
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 11863		50
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:		55
ATGAGTTTTG ATATTGCCAA ATACCCGACC CTGGCACTGG TCGACTCCAC CCAGGAGTTA	60	
CGACTGTTGC CGAAAGAGAG TTTACCGAAA CTCTGCGACG AACTGCGCCG CTATTTACTC	120	60
GACAGCGTGA GCCGTTCCAG CGGGCACTTC GCCTCCGGGC TGGGCACGGT CGAACTGACC	180	

	GTGGCGCTGC. A	CTAIL CTA	CAACACCCCG	TTTGACCAAT	TGAT	TGTGGGGCAT	240
_	CAGGCTTATC CO	GCATAAAAT '	TTTGACCGGA	CGCCGCGACA	AAATCGGCAC	CATCCGTCAG	300
	AAAGGCGGTC TO	GCACCCGTT	CCCGTGGCGC	GGCGAAAGCG	AATATGACGT	ATTAAGCGTC	360
	GGGCATTCAT C	AACCTCCAT	CAGTGCCGGA	ATTGGTATTG	CGGTTGCTGC	CGAAAAAGAA	420
0	GGCAAAAATC G	CCGCACCGT	CTGTGTCATT	GGCGATGGCG	CGATTACCGC	AGGCATGGCG	480
	TTTGAAGCGA T	GAATCACGC	GGGCGATATC	CGTCCTGATA	TGCTGGTGAT	TCTCAACGAC	540
5	AATGAAATGT C	GATTTCCGA	AAATGTCGGC	GCGCTCAACA	ACCATCTGGC	ACAGCTGCTT	600
	TCCGGTAAGC T	TTACTCTTC	ACTGCGCGAA	GGCGGGAAAA	AAGTTTTCTC	TGGCGTGCCG	660
20	CCAATTAAAG A	GCTGCTCAA	ACGCACCGAA	GAACATATTA	AAGGCATGGT	AGTGCCTGGC	720
,	ACGTTGTTTG A	AGAGCTGGG	CTTTAACTAC	ATCGGCCCGG	TGGACGGTCA	CGATGTGCTG	780
	GGGCTTATCA C	CACGCTAAA	GAACATGCGC	GACCTGAAAG	GCCCGCAGTT	CCTGCATATC	840
25	ATGACCAAAA A	AGGTCGTGG	TTATGAACCG	GCAGAAAAAG	ACCCGATCAC	TTTCCACGCC	900
	GTGCCTAAAT I	TGATCCCTC	CAGCGGTTGT	TTGCCGAAAA	GTAGCGGCGG	TTTGCCGAGC	960
30	TATTCAAAAA T	CTTTGGCGA	CTGGTTGTGC	GAAACGGCAG	CGAAAGACAA	CAAGCTGATG	1020
	GCGATTACTC C	CGGCGATGCG	TGAAGGTTCC	GGCATGGTCG	AGTTTTCACG	TAAATTCCCG	1080
35	GATCGCTACT	CGACGTGGC	AATTGCCGAG	CAACACGCGG	TGACCTTTGC	TGCGGGTCTG	1140
	GCGATTGGTG C	GTACAAACC	CATTGTCGCG	ATTTACTCCA	CTTTCCTGCA	ACGCGCCTAT	1200
40	GATCAGGTGC 1	rgcatgacgt	GGCGATTCAA	AAGCTTCCGG	TCCTGTTCGC	CATCGACCGC	1260
+0	GCGGGCATTG	TTGGTGCTGA	CGGTCAAACC	CATCAGGGTG	CTTTTGATCT	CTCTTACCTG	1320
	CGCTGCATAC (CGGAAATGGT	CATTATGACC	CCGAGCGATG	; AAAACGAATG	TCGCCAGATG	1380
45	CTCTATACCG (GCTATCACTA	TAACGATGGC	CCGTCAGCGG	TGCGCTACCC	GCGTGGCAAC	1440
	GCGGTCGGCG 1	TGGAACTGAC	GCCGCTGGAA	AAACTACCAA	TTGGCAAAGG	CATTGTGAAG	1500
50	CGTCGTGGCG	AGAAACTGGC	GATCCTTAAC	TTTGGTACGC	TGATGCCAGA	A AGCGGCGAAA	1560
	GTCGCCGAAT	CGCTGAACGC	CACGCTGGTC	GATATGCGT	TTGTGAAACC	CGCTTGATGAA	1620
55	GCGTTAATTC	TGGAAATGGC	CGCCAGCCAI	GAAGCGCTGC	TCACCGTAGE	A AGAAAACGCC	1680
	ATTATGGGCG	GCGCAGGCAG	CGGCGTGAAC	GAAGTGCTG	A TGGCCCATCO	TAAACCAGTA	1740
(0)	CCCGTGCTGA	ACATTGGCCT	GCCGGACTTC	TTTATTCCG	C AAGGAACTC	A GGAAGAAATG	. 1800
60	CGCGCCGAAC	TCGGCCTCGA	TGCCGCTGGT	T ATGGAAGCC	A AAATCAAGG	C CTGGCTGGCA	1860
	ለ ልጥ						.186

Patentansprüche

15

25

30

40

- 1. Isoliertes Protein, gekennzeichnet durch die Funktion einer DXS oder ein aktives Fragment daraus,
- 2. Verfahren zur Herstellung eines Proteins mit der Funktion einer DXS oder eines aktiven Fragments daraus in einer rekombinanten Wirtszelle, dadurch gekennzeichnet, daß man
 - a) ein Nukleinsäuremolekül kodierend für ein Protein mit der Funktion einer DXS oder eines aktiven Fragments daraus in eine für eine Wirtszelle geeignete Expressionskassette inseriert;
 - b) die so erhaltene Expressionskassette in geeigneter Weise in einen für die Wirtszelle geeigneten Vektor inseriert;
 - c) eine geeignete Wirtszelle mit dem so erhaltenen Vektor transformiert;
 - d) die so transformierte Wirtszelle in einem geeigneten Medium kultiviert; und
 - e) das von besagter Wirtszelle produzierte Protein mit der Funktion einer DXS oder das aktive Fragment daraus in geeigneter Weise aus dem Kulturmedium oder der Wirtszelle isoliert.
- 3. Isoliertes Protein mit der Funktion einer DXS oder ein aktives Fragment daraus, herstellbar nach einem Verfahren gemäß Anspruch 2.
- 4. Verfahren zur Identifizierung von Effektoren der DXS, worin man
 - a) die enzymatische Aktivität der DXS in Abwesenheit einer Testsubstanz bestimmt;
 - b) die enzymatische Aktivität der DXS in Anwesenheit besagter Testsubstanz bestimmt; und
 - c) die unter a) und b) ermittelten enzymatischen Aktivitäten miteinander vergleicht.
- 5. Verwendung eines Proteins mit der Funktion einer DXS oder eines aktives Fragments daraus zur Identifizierung von Effektoren der DXS.
- 6. Verwendung eines Verfahrens gemäß Anspruch 4 zur Identifizierung von Effektoren der DXS.
- 7. Verwendung gemäß Anspruch 6 in einem automatisierten Testsystem.
- 8. Effektor der DXS, identifizierbar durch ein Verfahren gemäß Anspruch 4.
- 9. Effektor der DXS, der ein Strukturanloges des Pyruvats, des GA3P oder des DXP ist.
- 10. Pestizid wirksamer Effektor gemäß einem oder mehreren der Ansprüche 8 und 9.
- 11. Antibakteriell wirksamer Effektor gemäß einem oder mehreren der Ansprüche 8 und 9.
- 12. Herbizid wirksamer Effektor gemäß einem oder mehreren der Ansprüche 8 und 9.

- Leerseite -

THIS PAGE BLANK (USPTO)