Static Games of Complete Information-Application

Nash Equilibrium-Pure Strategy

李三希, <u>lisanxi@gmail.com</u>

Renmin University

- A product is produced by only two firms: firm 1 and firm 2. The quantities are denoted by q_1 and q_2 , respectively. Each firm chooses the quantity without knowing the other firm has chosen.
- The market priced is P(Q)=a-Q, where a is a constant number and $Q=q_1+q_2$.
- The cost to firm i of producing quantity q_i is $C_i(q_i)=cq_i$.

The normal-form representation:

- > Set of players: { Firm 1, Firm 2}
- > Sets of strategies: $S_1 = [0, +\infty), S_2 = [0, +\infty)$
- > Payoff functions:

$$u_1(q_1, q_2)=q_1(a-(q_1+q_2)-c)$$

 $u_2(q_1, q_2)=q_2(a-(q_1+q_2)-c)$

- How to find a Nash equilibrium
 - Find the quantity pair (q_1^*, q_2^*) such that q_1^* is firm 1's best response to Firm 2's quantity q_2^* and q_2^* is firm 2's best response to Firm 1's quantity q_1^*
 - That is, q_1^* solves $\max u_1(q_1, q_2^*) = q_1(a (q_1 + q_2^*) c)$ subject to $0 \le q_1 \le +\infty$

and q_2^* solves Max $u_2(q_1^*, q_2) = q_2(a - (q_1^* + q_2) - c)$ subject to $0 \le q_2 \le +\infty$

- How to find a Nash equilibrium

FOC:
$$a - 2q_1 - q_2^* - c = 0$$

 $q_1 = (a - q_2^* - c)/2$

- How to find a Nash equilibrium

FOC:
$$a - 2q_2 - q_1^* - c = 0$$

 $q_2 = (a - q_1^* - c)/2$

- How to find a Nash equilibrium
 - > The quantity pair (q_1^*, q_2^*) is a Nash equilibrium if

$$q_1^* = (a - q_2^* - c)/2$$

 $q_2^* = (a - q_1^* - c)/2$

> Solving these two equations gives us $q_1^* = q_2^* = (a - c)/3$

- Best response function
 - \triangleright Firm 1's best function to firm 2's quantity q_2 : $R_1(q_2) = (a - q_2 - c)/2$ if $q_2 < a - c$; 0, othwise
 - > Firm 2's best function to firm 1's quantity q_1 : $R_2(q_1) = (a - q_1 - c)/2$ if $q_1 < a - c$; 0, othwise

- A product is produced by only n firms: firm 1 to firm n. Firm i's quantity is denoted by q_i . Each firm chooses the quantity without knowing the other firms' choices.
- The market priced is P(Q)=a-Q, where a is a constant number and $Q=q_1+q_2+...+q_n$.
- The cost to firm i of producing quantity q_i is $C_i(q_i)=cq_i$.

The normal-form representation:

- > Set of players: $\{ Firm 1, ... Firm n \}$
- > Sets of strategies: $S_i=[0,+\infty)$, for i=1,2,...,n
- > Payoff functions:

$$u_i(q_1,...,q_n)=q_i(a-(q_1+q_2+...+q_n)-c)$$

for $i=1, 2, ..., n$

- How to find a Nash equilibrium
 - Find the quantities $(q_1^*, ..., q_n^*)$ such that q_i^* is firm i's best response to other firms' quantities
 - > That is, q_1^* solves Max $u_1(q_1, q_2^*, ..., q_n^*) = q_1(a - (q_1 + q_2^* + ... + q_n^*) - c)$ subject to $0 \le q_1 \le +\infty$

and
$$q_2^*$$
 solves
 Max $u_2(q_1^*, q_2, q_3^*, ..., q_n^*) = q_2(a - (q_1^* + q_2 + q_3^* + ... + q_n^*) - c)$ subject to $0 \le q_2 \le +\infty$

.

Show that when n goes to infinity, the NE is the perfect competitive result, p=c.

- Two firms: firm 1 and firm 2.
- Each firm chooses the price for its product without knowing the other firm has chosen. The prices are denoted by p_1 and p_2 , respectively.
- The quantity that consumers demand from firm 1: $q_1(p_1, p_2) = a p_1$ if $p_1 < p_2$; $= (a p_1)/2$ if $p_1 = p_2$; = 0, ow.
- The quantity that consumers demand from firm 2: $q_2(p_1, p_2) = a p_2$ if $p_2 < p_1$; $= (a p_2)/2$ if $p_1 = p_2$; = 0, ow.
- The cost to firm i of producing quantity q_i is $C_i(q_i) = cq_i$.

The normal-form representation:

- > Set of players: { Firm 1, Firm 2}
- > Sets of strategies: $S_1 = [0, +\infty), S_2 = [0, +\infty)$
- Payoff functions:

$$u_1(p_1, p_2) = \begin{cases} (p_1 - c)(a - p_1) & \text{if } p_1 < p_2 \\ (p_1 - c)(a - p_1)/2 & \text{if } p_1 = p_2 \\ 0 & \text{if } p_1 > p_2 \end{cases}$$

$$u_2(p_1, p_2) = \begin{cases} (p_2 - c)(a - p_2) & \text{if } p_2 < p_1 \\ (p_2 - c)(a - p_2)/2 & \text{if } p_1 = p_2 \\ 0 & \text{if } p_2 > p_1 \end{cases}$$

Best response functions: $p^m = (a + c)/2$

$$B_{1}(p_{2}) = \begin{cases} \{p_{1} : p_{1} > p_{2}\} & \text{if } p_{2} < c \\ \{p_{1} : p_{1} \geq p_{2}\} & \text{if } p_{2} = c \\ \emptyset & \text{if } c < p_{2} \leq p^{m} \\ p^{m} & \text{if } p^{m} < p_{2} \end{cases}$$

$$B_{2}(p_{1}) = \begin{cases} \{p_{2} : p_{2} > p_{1}\} & \text{if } p_{1} < c \\ \{p_{2} : p_{2} \geq p_{1}\} & \text{if } p_{1} = c \\ \emptyset & \text{if } c < p_{1} \leq p^{m} \\ p^{m} & \text{if } p^{m} < p_{1} \end{cases}$$

Best response functions:

Firm 1's best response to Firm 2's p_2

Firm 2's best response to Firm 1's p_1

Best response functions:

- Two firms: firm 1 and firm 2.
- Each firm chooses the price for its product without knowing the other firm has chosen. The prices are denoted by p_1 and p_2 , respectively.
- The quantity that consumers demand from firm 1: $q_1(p_1, p_2) = a p_1 + bp_2$.
- The quantity that consumers demand from firm 2: $q_2(p_1, p_2) = a p_2 + bp_1$.
- The cost to firm i of producing quantity q_i is $C_i(q_i)=cq_i$.

The normal-form representation:

- > Set of players: { Firm 1, Firm 2}
- > Sets of strategies: $S_1=[0,+\infty), S_2=[0,+\infty)$
- > Payoff functions:

$$u_1(p_1, p_2) = (a - p_1 + bp_2)(p_1 - c)$$

 $u_2(p_1, p_2) = (a - p_2 + bp_1)(p_2 - c)$

- How to find a Nash equilibrium
 - Find the price pair (p_1^*, p_2^*) such that p_1^* is firm 1's best response to Firm 2's price p_2^* and p_2^* is firm 2's best response to Firm 1's price p_1^*
 - That is, p_1^* solves $\text{Max } u_1(p_1, p_2^*) = (a p_1 + bp_2^*)(p_1 c)$ subject to $0 \le p_1 \le +\infty$

and
$$p_2^*$$
 solves
Max $u_2(p_1^*, p_2) = (a - p_2 + bp_1^*)(p_2 - c)$ subject to $0 \le p_2 \le +\infty$

- How to find a Nash equilibrium
 - Solve firm 1's maximization problem $\text{Max } u_1(p_1, p_2^*) = (a p_1 + bp_2^*)(p_1 c)$ subject to $0 \le p_1 \le +\infty$

FOC:
$$a + c - 2p_1 + bp_2^* = 0$$

 $p_1 = (a + c + bp_2^*)/2$

- How to find a Nash equilibrium
 - Solve firm 2's maximization problem $\text{Max } u_2(p_1^*, p_2) = (a p_2 + bp_1^*)(p_2 c)$ subject to $0 \le p_2 \le +\infty$

FOC:
$$a + c - 2p_2 + bp_1^* = 0$$

 $p_2 = (a + c + bp_1^*)/2$

- How to find a Nash equilibrium
 - > The price pair (p_1^*, p_2^*) is a Nash equilibrium if

$$p_1^* = (a + c + bp_2^*)/2$$

 $p_2^* = (a + c + bp_1^*)/2$

> Solving these two equations gives us $p_1^* = p_2^* = (a + c)/(2 - b)$

Bertrand model of duopoly

- Best response function
 - Firm 1's best function to firm 2's quantity q_2 : $R_1(p_2) = (a + c + bp_2)/2$
 - \triangleright Firm 2's best function to firm 1's quantity q_1 :

$$R_2(p_1) = (a + c + bp_1)/2$$

24

Cournot vs. Bertrand

- Strategic substitutes vs. complements
 - Quantity vs. Price
- Downward-sloping vs. upward-sloping response curve
- Connection between Cournot and Bertrand?

- n farmers in a village. Each summer, all the farmers graze their goats on the village green.
- Let g_i denote the number of goats owned by farmer i.
- The cost of buying and caring for a goat is c, independent of how many goats a farmer owns.
- The value of a goat is v(G) per goat, where $G = g_1 + g_2 + ... + g_n$
- There is a maximum number of goats that can be grazed on the green. That is, v(G)>0 if $G < G_{max}$, and v(G)=0 if $G \ge G_{max}$.
- Assumptions on v(G): v'(G) < 0 and v''(G) < 0.
- Each spring, all the farmers simultaneously choose how many goats to own.

The normal-form representation:

- > Set of players: $\{ Farmer 1, ... Farmer n \}$
- > Sets of strategies: $S_i=[0,G_{max})$, for i=1,2,...,n
- Payoff functions:

$$u_i(g_1, ..., g_n) = g_i v(g_1 + ... + g_n) - c g_i$$

for $i = 1, 2, ..., n$.

- How to find a Nash equilibrium
 - Find $(g_1^*, g_2^*, ..., g_n^*)$ such that g_i^* is farmer i's best response to other farmers' choices.
 - > That is, g_1^* solves Max $u_1(g_1, g_2^*, ..., g_n^*) = g_1 v(g_1 + g_2^* ... + g_n^*) - c g_1$ subject to $0 \le g_1 < G_{max}$

```
and g_2^* solves 
 Max u_2(g_1^*, g_2, g_3^*, ..., g_n^*) = g_2 v(g_1^* + g_2 + g_3^* + ... + g_n^*) - cg_2 subject to 0 \le g_2 < G_{max}
```

• • • • • •

- How to find a Nash equilibrium
 - > and g_n^* solves $\max u_n(g_1^*, ..., g_{n-1}^*, g_n) = g_n v(g_1^* + ... + g_{n-1}^* + g_n) - cg_n$ subject to $0 \le g_n < G_{max}$

.

FOCs:

$$v(g_1 + g_2 * + ... + g_n *) + g_1 v'(g_1 + g_2 * + ... + g_n *) - c = 0$$

$$v(g_1 * + g_2 + g_3 * + ... + g_n *) + g_2 v'(g_1 * + g_2 + g_3 * + ... + g_n *) - c = 0$$
......
$$v(g_1 * + ... + g_{n-1} * + g_n) + g_n v'(g_1 * + ... + g_{n-1} * + g_n) - c = 0$$

- How to find a Nash equilibrium
 - $(g_1^*, g_2^*, ..., g_n^*)$ is a Nash equilibrium if

$$v(g_{1} *+g_{2} *+...+g_{n} *)+g_{1}v'(g_{1} *+g_{2} *+...+g_{n} *)-c=0$$

$$v(g_{1} *+g_{2} *+g_{3} *+...+g_{n} *)+g_{2}v'(g_{1} *+g_{2} *+g_{3} *+...+g_{n} *)-c=0$$
......
$$v(g_{1} *+...+g_{n-1} *+g_{n} *)+g_{n}v'(g_{1} *+...+g_{n-1} *+g_{n} *)-c=0$$

Summing over all *n* farmers' FOCs and then dividing by *n* yields

$$v(G^*) + \frac{1}{n}G^*v'(G^*) - c = 0$$

where $G^* = g_1^* + g_2^* + ... + g_n^*$

The social problem

Max
$$Gv(G) - Gc$$

s.t.
$$0 \le G < G_{\text{max}}$$

FOC:

$$v(G) + Gv'(G) - c = 0$$

Hence, the optimal solution G^{**} satisfies

$$v(G^{**}) + G^{**}v'(G^{**}) - c = 0$$

$$v(G^*) + \frac{1}{n}G^*v'(G^*) - c = 0$$
$$v(G^{**}) + G^{**}v'(G^{**}) - c = 0$$

$$G^* > G^{**}$$
?

- The Moral of the story
 - Externality and Property rights
 - Global governance