

IN THE CLAIMS

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

- 1 1. (Original) A wireless transceiver device, comprising:
2 modulation circuitry for modulating and demodulating signals that are transmitted over the
3 airwaves;
4 frequency conversion circuitry for up converting and down converting between radio frequency
5 signals and baseband frequency signals;
6 digital-to-analog conversion circuitry for converting from analog to digital and from digital to
7 analog; a radio controller; and
8 baseband processing circuitry including a first in, first out memory structure for storing addresses
9 for accessing data blocks.

- 1 2. (Original) The wireless transceiver of claim 1 further including a plurality of command blocks
2 formed within a memory structure, which command blocks include addresses of data blocks stored within
3 random access memory.

- 1 3. (Original) The wireless transceiver of claim 2 wherein the first in, first out memory structure
2 includes pointers that define addresses of the command blocks.

- 1 4. (Original) The wireless transceiver of claim 2 further forming a memory portion for storing an
2 indicator for indicating whether a command block is in use.

- 1 5. (Previously presented) The wireless transceiver of claim 1 wherein the modulation circuitry
2 includes Gaussian Phase Shift Keying modulation and demodulation circuitry.

- 1 6. (Previously presented) The wireless transceiver of claim 1 wherein the frequency conversion
2 circuitry converts directly between radio frequency and baseband.

1 7. (Original) A method for storing and transmitting data, comprising:
2 storing a data block in random access memory; and
3 storing a pointer that corresponds to the data block in a first in, first out memory structure.

1 8. (Original) The method of claim 7 wherein the pointer comprises an address of a command
2 block.

1 9. (Original) The method of claim 8 further including the step of storing an address of the data
2 block in the command block.

1 10. (Original) The method of claim 9 further including the step of setting a signal in a defined
2 memory location, which signal indicates that the address in the command block is for data that has yet to
3 be successfully transmitted and therefore that the command block is busy.

1 11. (Original) The method of claim 10 wherein an address for a data block is only stored in a
2 command block if an indicator reflects that the command block does not contain the address of a data
3 block that has yet to be successfully transmitted.

1 12. (Original) The method of claim 7 further including the step of evaluating a command block
2 address stored within a FIFO pointer.

1 13. (Original) The method of claim 12 further including examining the contents of the command
2 block specified by the pointer to determine a data block address.

1 14. (Original) The method of claim 13 further including the step of evaluating at least the first
2 memory location of the data block whose address is specified in the command block to determine the size
3 of the data block.

1 15. (Original) The method of claim 14 further including the step of retrieving an amount of data
2 corresponding to the size data block specified in claim 14 and transmitting that data to a radio modem for
3 transmission over a wireless airwaves.

1 16. (Original) The method of claim 15 further including the step of resetting the indicator signal if
2 the transmission was successful.

1 17. (Original) A memory structure formed within a baseband processing system, comprising: a
2 random access memory portion for storing data blocks that are to be transmitted in a first in, first out
3 order; and a first in, first out memory structure for storing pointers that correspond to the data blocks.

1 18. (Original) The memory structure of claim 17 wherein a plurality of command blocks are
2 defined within the random access memory wherein each command block is for specifying an address of a
3 data block that is to be transmitted.

1 19. (Original) The memory structure of claim 18 further including a defined memory portion for
2 storing command block indicators for each command block, which indicators specify whether its
3 corresponding command block includes the address of a data block that has yet to be transmitted
4 successfully.

1 20. (Original) The memory structure of claim 19 wherein the memory portions for storing the
2 indicators are each one bit in length.

1 21. (Original) The memory structure of claim 18 wherein the memory portions for storing the
2 command blocks are each four bytes in length.

1 22. (Original) The memory structure of claim 17 wherein the first in, first out memory structure
2 defines a plurality of first in, first out memory blocks wherein each first in, first out memory relates to
3 data blocks that are to be transmitted to a particular device.