Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.

(a) Prove that

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right\|^2 = \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j.$$

Hint: first consider the case when k = 2. Use the fact that $\mathbf{v}_i^{\top} \mathbf{v}_j$ is 1 if i = j and 0 otherwise. Recall that $z_{ij} = \mathbf{x}_i^{\top} \mathbf{v}_j$.

(b) Now show that

$$J_k = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \lambda_j.$$

Hint: recall that $\mathbf{v}_i^{\mathsf{T}} \mathbf{\Sigma} \mathbf{v}_j = \lambda_j \mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \lambda_j$.

(c) If k = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using k < d terms is given by

$$J_k = \sum_{j=k+1}^d \lambda_j.$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{k} \lambda_j$ and $\sum_{j=k+1}^{d} \lambda_j$.

(a)

$$\begin{aligned} \left\| x_{i} - \sum_{j=1}^{k} z_{ij} v_{j} \right\|_{2}^{2} &= \left(x_{i} - \sum_{j=1}^{k} z_{ij} v_{j} \right)^{\top} \left(x_{i} - \sum_{j=1}^{k} z_{ij} v_{j} \right) \\ &= x_{i}^{\top} x_{i} - \sum_{j=1}^{k} z_{ij} v_{j}^{\top} x_{i} - x_{i}^{\top} \sum_{j=1}^{k} z_{ij} v_{j} + \left(\sum_{j=1}^{k} z_{ij} v_{j} \right)^{\top} \left(\sum_{j=1}^{k} z_{ij} v_{j} \right) \\ &= x_{i}^{\top} x_{i} - 2 \sum_{j=1}^{k} z_{ij} v_{j}^{\top} x_{i} + \left(\sum_{j=1}^{k} z_{ij} v_{j} \right)^{\top} \left(\sum_{j=1}^{k} z_{ij} v_{j} \right) \\ &= x_{i}^{\top} x_{i} - 2 \sum_{j=1}^{k} z_{ij} v_{j}^{\top} x_{i} + \sum_{j=1}^{k} v_{j}^{\top} x_{i} x_{i}^{\top} v_{j} \\ &= x_{i}^{\top} x_{i} - 2 \sum_{j=1}^{k} v_{j}^{\top} x_{i} x_{i}^{\top} v_{j} + \sum_{j=1}^{k} v_{j}^{\top} x_{i} x_{i}^{\top} v_{j} \\ &= x_{i}^{\top} x_{i} - \sum_{j=1}^{k} v_{j}^{\top} x_{i} x_{i}^{\top} v_{j} \end{aligned}$$

(b)

$$J_{k} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i}^{\top} x_{i} - \sum_{j=1}^{k} v_{j}^{\top} x_{i} x_{i}^{\top} v_{j} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{\top} x_{i} - \sum_{j=1}^{k} v_{j}^{\top} \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} x_{i}^{\top} \right) v_{j}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{\top} x_{i} - \sum_{j=1}^{k} v_{j}^{\top} \Sigma v_{j}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{\top} x_{i} - \sum_{i=1}^{k} \lambda_{j}$$

(c) Since $J_d = 0$, $\sum_{j=1}^d \lambda_j = \frac{1}{n} \sum_{i=1}^n x_i^\top x_i$. Thus,

$$J_k = \frac{1}{n} \sum_{i=1}^n x_i^\top x_i - \sum_{j=1}^d \lambda_j + \sum_{j=k+1}^d \lambda_j$$
$$= \sum_{j=k+1}^d \lambda_j$$

2 (ℓ_1 -Regularization) Consider the ℓ_1 norm of a vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|\mathbf{x}\|_1 = \sum_i |\mathbf{x}_i|.$$

Draw the norm-ball $B_k = \{\mathbf{x} : \|\mathbf{x}\|_1 \le k\}$ for k = 1. On the same graph, draw the Euclidean norm-ball $A_k = \{\mathbf{x} : \|\mathbf{x}\|_2 \le k\}$ for k = 1 behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem

minimize: $f(\mathbf{x})$

subj. to: $\|\mathbf{x}\|_p \le k$

is equivalent to

minimize: $f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_1 regularization (adding a $\lambda \|\mathbf{x}\|_1$ term to the objective) will give sparser solutions than using ℓ_2 regularization for suitably large λ .

Given the constrained optimization problem

minimize: $f(\mathbf{x})$

subject to: $\|\mathbf{x}\|_p \le k$,

we can form its Lagrangian as

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(\|\mathbf{x}\|_p - k),$$

where $\lambda \geq 0$ is a Lagrange multiplier. The equivalence to the unconstrained problem

minimize:
$$f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$$

is established by optimizing $L(\mathbf{x}, \lambda)$ under the condition that λ enforces the constraint $\|\mathbf{x}\|_p \leq k$.

 ℓ_1 regularization, represented by adding a $\lambda \|\mathbf{x}\|_1$ term, promotes sparsity in solutions due to its linear penalty on coefficients. This can lead to coefficients being exactly zero, enhancing model interpretability and reducing complexity. In contrast, ℓ_2 regularization, indicated by a $\lambda \|\mathbf{x}\|_2$ term, tends to shrink coefficients evenly but does not necessarily set them to zero, resulting in less sparse solutions. The geometrical property of the ℓ_1 norm, having corners at zero, is crucial for its sparsity-inducing effect, unlike the smooth contour of the ℓ_2 norm.

Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights θ of a model is equivelent to ℓ_1 regularization in the Maximum-a-Posteriori estimate

$$\text{maximize: } \mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}.$$

Note the form of the Laplace distribution is

$$Lap(x|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

where μ is the location parameter and b>0 controls the variance. Draw (by hand) and compare the density Lap(x|0,1) and the standard normal $\mathcal{N}(x|0,1)$ and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to ℓ_2 regularization).

Given the Maximum-a-Posteriori (MAP) estimation problem

maximize:
$$\mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}$$
,

assuming a zero-mean Laplace prior on each weight θ_i , the prior is

$$\mathbb{P}(\boldsymbol{\theta}) = \prod_{i} \frac{1}{2b} \exp\left(-\frac{|\theta_i|}{b}\right).$$

Maximizing $\mathbb{P}(\boldsymbol{\theta}|\mathcal{D})$ with this prior is equivalent to maximizing

$$\log \mathbb{P}(\mathcal{D}|\boldsymbol{\theta}) - \lambda \sum_{i} |\theta_{i}|,$$

where $\lambda = 1/b$. This demonstrates the equivalence to ℓ_1 regularization.

Comparing the Laplace distribution Lap(x|0,1) with the standard normal distribution $\mathcal{N}(x|0,1)$, the Laplace distribution has heavier tails and a sharper peak at zero. This shape makes the Laplace prior more likely to push weights exactly to zero compared to the Gaussian prior, which corresponds to ℓ_2 regularization. Thus, the Laplace prior leads to sparser solutions (graph on next page).

