HOMEWORK 3: CONTRACTIBILITY DUE: MONDAY SEPTEMBER 29

- 1) Show the following are equivalent:
 - i. X is contractible
 - ii. Every map $f: X \to Y$ is null-homotopic
 - iii. Every map $q: Y \to X$ is null-homotopic.

Note: null-homotopic means homotopic to a constant map.

2) Show that S^{∞} (given by continually attaching 2 disks \mathbb{D}^n to S^{n-1} for all $n \geq 1$) is contractible.

Note: No finite dimensional sphere is contractible!

Hint: A fabulous property when working in \mathbb{R}^{∞} , or S^{∞} , is that the map translating each coordinate 1 to the right is an injective map (not surjective) preserving metrics.

3) If X is connected and a union of S^2 , with any 2 intersecting in at most 1 point, then show that X is homotopy equivalent to a wedge sum of S^1 's and S^2 's.

Hint: Try doing it for 2 and 3 S^2 's intersecting in various ways. Deduce the general method from this. Example 0.9 in Hatcher may give some assistance.

- 4) Show that a CW complex X is contractible if it is a union of 2 contractible cell complexes A, B, whose intersection is contractible.
- 5) Find a 2-dimensional cell complex which contains both $S^1 \times I$ and the mobius band M as deformation retracts.

Hint: Note that both spaces deformation retract to a copy of $S^1 \times \{\frac{1}{2}\}$. Additionally you may freely use the following:

Theorem 0.1. Given any continuous map $f: S^1 \to S^1$, the mapping cylinder M_f is a CW complex.