第三章 数据链路层

- 6. 需要在数据链路层上被发送一个比特串: 01111011111101111110。试问, 经过比特填充之后实际被发送出去的是什么?
 - **答:** 每 5 个 1 添加一个 0, 所以实际被发送出去的是 011110111110011111010。
- 9. 假设使用海明码来传输 16 位的报文。试问,需要多少个校验位才能确保接收方能同时检测并纠正单个比特错误?对于报文 1101001100110101,试给出传输的比特模式。假设在海明码中使用了偶校验。
- 答: 设数据位为 k 位,校验位为 r 位,若欲纠正单比特错误,则海明码校验位的位数 应满足:

$$(k+r+1) \le 2^r$$

在此问题中,k=16,最小的 r=5,在位置 1、2、4、8 和 16 处需要有奇偶校验位,所以不超过位 31 的报文都适合。因此,5 个奇偶校验位就足够了。

信息位	位序号	位序号展开	影响的纠错位
A16	21	16+4+1	P5、P3、P1
A15	20	16+4	P5、P3
A14	19	16+2+1	P5、P2、P1
A13	18	16+2	P5、P2
A12	17	16+1	P5、P1
A11	15	8+4+2+1	P4、P3、P2、P1
A10	14	8+4+2	P4、P3、P2
A9	13	8+4+1	P4、P3、P1
A8	12	8+4	P4、P3
A7	11	8+2+1	P4、P2、P1
A6	10	8+2	P4、P2
A5	9	8+1	P4、P1
A4	7	4+2+1	P3、P2、P1
A3	6	4+2	P3、P2
A2	5	4+1	P3、P1
A1	3	2+1	P2、P1

 $P1 = A16 \oplus A14 \oplus A12 \oplus A11 \oplus A9 \oplus A7 \oplus A5 \oplus A4 \oplus A2 \oplus A1 = 0$

 $P2 = A14 \oplus A13 \oplus A11 \oplus A10 \oplus A7 \oplus A6 \oplus A4 \oplus A3 \oplus A1 = 1$

 $P3 = A16 \oplus A15 \oplus A11 \oplus A10 \oplus A9 \oplus A8 \oplus A4 \oplus A3 \oplus A2 = 1$

 $P4 = A11 \oplus A10 \oplus A9 \oplus A8 \oplus A7 \oplus A6 \oplus A5 = 0$

 $P5 = A16 \oplus A15 \oplus A14 \oplus A13 \oplus A12 = 1$

最终的序列为:

21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
A1 6	A1 5	A1 4	A1 3	A1 2	P 5	A1 1	A1 0	A 9	A 8	A 7	A 6	A 5	P 4	A 4	A 3	A 2	P 3	A 1	P 2	P 1
1	1	0	1	0	1	0	1	1	0	0	1	1	0	0	1	0	1	1	1	0

- 17. 使用本章介绍的标准 CRC 方法传输比特流 10011101。生成多项式为 x³+1。试问实际传输的位串是什么?假设左边开始的第三个比特在传输过程中变反了。请说明这个错误可以在接受方被检测出来。给出一个该比特流传输错误的实例,使得接受方无法检测出该错误。
- 答: 传输的比特流是 10011101。CRC 生成器是 1001。加三个 0 后的信息是 10011101000。 10011101000 除以 1001 后的余数是 100, 所以实际传输的位串是 10011101100。

接收到的比特流,左边第三位有错误,是10111101100。将其除以1001会产生一个余数100,这与0不同。

因此,接收者检测到了错误,可以要求等传输。

如果传输的比特流被转换为 1001 的任何倍数,则错误将不被检测到。一个使得接收方无法检测出错误的例子是,把比特流中所有的 1 都置为 0,也就是: 01100010011。

- 20. 考虑一个具有 4kbps 速率和 20 毫秒传输延迟的信道。试问帧的大小在什么范围内,停-等式协议才能获得至少 50%的效率?
- **答:** 在停-等式协议中,默认处理时间和确认帧发送时间远小于传播时延,所以,当传输帧所需时间等于往返传播延迟时,效率将达到 50%。

在 4kbps 的传输效率下,40ms 可以传输 160bits,因此对于 160 位以上的帧大小,停止和等待是合理的效率。

- 32. 利用地球同步卫星在一个 1Mbps 的信道上发送长度为 1000 位的帧, 该信道的传播延迟为 270 毫秒。确定总是被捎带在数据帧中。帧头非常短, 序号使用了 3 位。试问, 在下面的协议中, 可获得的最大信道利用率是多少?
 - (1) 停等式?
 - (2) 协议 5?
 - (6) 协议 6?
- 答:传播时延为Tp,处理时延为Tpr,确认帧发送时间为Ta,数据帧发送时间为Tf。

两个发送成功的数据帧之间最小的时间间隔 TT = Tf + Tout = Tf + 2Tp。

本题目中 Tf = 1000 bits / 1 Mbps = 1 ms, Tp = 270 ms, 因此最小时间间隔 TT = 542 ms。 即让 t = 0 表示传输的开始。在 t = 1 毫秒时,第一帧已经完全传输完毕。在 t = 271 毫秒时,第一帧已经完全到达。在 t = 272 毫秒时,第一个确认帧已全部发送完毕。在 t = 542 毫秒,确认承载帧已完全到达。因此: 周期为 542 毫秒。

- (a) 在停-等式传输中,一个周期内仅能传输 1 帧,最大信道利用效率=1/542=0.18%。
- (b) 协议 5 中,发送窗口最大为 7,一个周期内最多传输 7 帧,最大信道利用效率 =7/542=1.29%。

- (c) 协议 6 中,接收窗口最大为 4,一个周期内最多能传输 4 帧,最大信道利用效率 =4/542=0.74%。
- 34. 考虑一个在无错的 64kbps 卫星信道上单向发送 512 字节长的数据帧,来自另一个方向反馈的确认帧非常短。对于窗口大小为 1、7、15 和 127 的情形,试问最大的吞吐量分别是多少?从地球到卫星的传播时间为 270 毫秒。

答: 当窗口大小为 1 时,传输时间 t=512*8bits/64kbps=64ms 时,传输数据需要 64ms。传播数据需要 270ms,当 t=0 时开始传输数据,当 t=334ms 是最后一位数据到达卫星。并发送一条很短的 ACK。在 t = 604 毫秒,ACK 到达地球。因此在 604ms 内传输了 4096bits 数据。吞吐量为 6781bps。

在窗口大小为 7 帧的情况下,整个窗口的传输时间为 7*64=448 毫秒,此时发送者必须停止。在 604 毫秒时,第一个 ACK 到达,循环可以重新开始。因此在 604ms 内传输了 7×4096bits 数据。吞吐量为 47470bps。

当窗口大小为 15 帧和 127 帧时,第一帧的 ACK 在 t=604ms 时被传回,此时发射机仍旧在发信号,可以持续发送,因此此时的传输速度为 64kbps。

37. 试问,使用 PPP 发送一个 IP 数据包的最低开销是多少?如果只计算 PPP 自身引入的开销,而不计 IP 头开销,试问最大开销又是多少?

答:

最小开销: 开销字节×5= 标志字节×2+协议字节×1+校验字节×2

最大开销: 开销字节 \times 10 = 标志字节 \times 2+协议字节 \times 2+校验字节 \times 4+地址 \times 1+控制 \times 1