PEA-m6A User Manual (version 1.0)

- PEA-m6A is an ensemble learning framework for predicting m6A modifications at regional-scale.
- PEA-m6A consists of four modules: **Sample Preparation, Feature Encoding, Model Development and Model Assessment**, each of which contains a comprehensive collection of functions with prespecified parameters available.
- PEA-m6A was powered with an advanced packaging technology, which enables compatibility and portability.
- PEA-m6A project is hosted on http://github.com/cma2015/PEA-m6A
- PEA-m6A docker image is available at http://hub.docker.com/r/malab/peam6a
- PEA-m6A server can be accessed via http://peam6a.omstudio.cloud

PEA-m6A Features Encoding

This module transfers the sample sequences into a numerical feature matrix, using different encoding strategies.

Functions	Description	Input	Output	Reference
Pretrain WeakRM*	A weakly supervised learning framework, WeakRM*; it is a modified version of WeakRM(Huang et al., 2021) that can be used to capture deep learning-driven features.	Positive and negative samples in FASTA format	A deep learning- driven features extractor	In-house scripts
Feature Matrix Generation	Characterize each sample with numeric features.	Sequences in FASTA format	Feature matrix seperated by	In-house scripts

Pretrain WeakRM*

This function can be used to pre-train a **WeakRM*** model to capture motifs from long sequences and learn local dependencies. Using a gated attention mechanism, the output of the penultimate layer in **WeakRM*** is extracted as deep learning-driven features.

Input

- Positive samples genome sequence: sequences in FASTA format
- Negative samples genome sequence: sequences. in FASTA format

Output

• A WeakRM* model in binary format

How to use this function

The following screenshot to run this function

Feature Matrix Generation

This function can be used to encode RNA modifications regions sequences into a feature matrix. To be specific, **Statistic-based features** integrated several commonly used feature encoding strategies including **Nucleic acid composition related features** and **Pseudo nucleotide composition**. **Deep learning-driven features** were generated by pre-trained **WeakRM*** models.

Input

RNA modification in FASAT format: which can be generated by function Sample Generation

Output

• Feature matrix with rows indicating samples, columns representing feautres

