

# **Snakebite Detection & Identification With Snakebite Mark Using Machine Learning Approach**

**Department of CSE Jyothi Engineering College** 





GROUP NUMBER : 23

GUIDE NAME : Dr Aswathy S U

GROUP MEMBERS : Saranya K (JEC17CS090)

Mary Jose (JEC17CS064)

Sijin K (JEC17CS096)

Yashif V S (JEC17CS106)

PRESENTATION DATE : 16/6/20216/7/2021/06/2021

NAME OF THE PROJECT : Snakebite Detection & Identification With

Snakebite Mark Using Machine Learning Approach

PROJECT REPOSITORY: https://github.com/MARY2726/group-no-23-main-project



#### Vision of the Department

•Creating eminent and ethical leaders in the domain of Computational Sciences through quality professional education with a focus on holistic learning and excellence.

#### **Mission of the Department**

- •To create technically competent and ethically conscious graduates in the field of Computer Science and Engineering by encouraging holistic learning and excellence.
- ◆To prepare students for careers in Industry, Academia and the Government.
- •To instill Entrepreneurial Orientation and research motivation among the students of the department.
- •To emerge as a leader in education in the region by encouraging teaching, learning, industry and societal connect.



## **ABSTRACT**

- $\bullet$  Estimates of 81,410 1,37,880 deaths and 4,00,000 cases of disability globally every year
- Complements the current approach to snakebite envenoming
- Bite mark is considered to speed up the process of pinpointing the species before being late
- Avoids fake panicking situations
- Identification of the bite mark to perform anti-venom administration





- Snakes are one of the dangerous reptiles due to their venoms
- Snakebite envenoming needs urgent attention
- A great deal of damage occurs following the delay in medical services
- Misidentification can lead to inadequate treatment for the victim
- Currently, a syndromic approach is widely used but, this strategy has limitations



#### **OBJECTIVE**

- Speed up the process of pinpointing the species before being late
- To collect snake bite cases and identify the clinical effects of snake bites
- Immediate medication can be administered

#### **MOTIVATION**

Identification and recognition of distinct snake bite at the earliest ,resulting in antivenom administration ,which in turn narrows the mortality rate due to envenomation

## LITERATURE SURVEY



1. <u>Image processing for snake identification based on bite using Local Binary Pattern and Support Vector Machine method</u>

The system only classifies venomous and non-venomous snakes without knowing the type of snake

#### **Advantages**

- Classifies the venomous and non venomous snakes
- It can help in reducing the fake alarming situations.

### **Disadvantages**

- Wrinkled or hairy skin or bruising on the bite or wound area affect calculated result
- Blood clots on the bite marks causes classification errors because the system incorrectly detects snake bite, resulting in poor accuracy
- This system only determines whether the snake is venomous or not



#### 2. A Development of Snake Bite Identification System (N'viteR) using NEURO-GA

- Differentiate between venomous and non-venomous snake
- Enables early identification of snake
- Immediate medication can be administered

#### Advantages

 Even better than BPNN, this is a combination with GA yields a high accuracy to identify a venomous and non-venomous snake based on cases provided

#### Disadvantages

- This technique may give higher accuracy but it will take a longer time to finish the training process
- Data will not determine any specific feature other than info about venom

# **PROPOSED SYSTEM**



- The system is to detect the snakebite from the bite image and identify the snake, which helps to get faster medical aid
- Speeds up the process of pinpointing the species before being late
- Concepts of Machine Learning and Image Processing for the identification and classification of snakebites
- Doctors also can use our system to identify the snake and start administering medication



# FEATURE OF PROPOSED SYSTEM

- The system provide necessary information regarding the snake using the snake bite mark
- Identifying snakes by using bite mark helps the doctor to diagnose the victim with proper anti venom
- Helps to decrease the snakebite envenoming deaths to a certain length



# **MODULE - WISE Description**

- 1. Data Acquisition and Pre-processing
- The captured image is taken and subjected to the preprocessing stages
- Python language
- Implemented using Google Colab

The pre-processing stages are :-

- Denoise the image
- Grayscaling
- Adaptive Gaussian Thresholding segmentation

# **MODULE - WISE Description**



#### 2. Detection and Identification Module

Three main processes involved in this Module are::

#### 1. Building the Neural Network

- -Convolutional Neural Network Used
- -Inception v3 for classification

#### 2. Training the Models

- -Dataloader function used to load datasets
- -Perform the training process

#### 3. Testing the Model

- -Testing the trained area
- -Also testing the Unknown samples
- -Score is generated





ARCHITECTURAL DIAGRAM





# IMPLEMENTATION DETAILS



### Methodology

- Obtained image is denoised using cv2.fastNlMeansDenoisingColored() and it is converted to grayscale image
- Segmentation using adaptive gaussian thresholding function cv2.adaptiveThreshold()
- Conversion to JPG format and storing the image to a path defined using os.path.basename(sub\_dir)
- Convolutional neural network based inception v3 architecture is used for classification.

# IMPLEMENTATION DETAILS



### **Algorithm**

- 1. Start
- 2. Capture the image
- 3. Do the image preprocessing methods
- 4. Get the segmented image
- 5/ Input the segmented image to train and test using the DataLoader
- 6. Convolutional neural network based inception v3 architecture provide the Inception v3 library and add preprocessing layers
- 7. Model is trained for a specified number of epochs ,calculate the accuracy of the image
- 8. Trained model is then tested and also test the unknown samples.
- 9. Get the score of the model

# **RESULTS**







Denoised Image



Grayscaled Image



# **RESULTS**



### Segmentation









## **RESULTS**



```
+ Code + Text
                                                                                                                                 Editing
    graph_uer = cr.uraphber()
    graph def.ParseFromString(f.read())
    = tf.import graph def(graph def, name='')
with tf.Session() as sess:
    # Feed the image data as input to the graph and get first prediction
    softmax tensor = sess.graph.get tensor by name('final result:0')
    predictions = sess.run(softmax tensor, \
             {'DecodeJpeg/contents:0': image data})
    # Sort to show labels of first prediction in order of confidence
    top k = predictions[0].argsort()[-len(predictions[0]):][::-1]
    for node id in top k:
        human string = label lines[node id]
        score = predictions[0][node_id]
        print('%s (score = %.5f)' % (human string, score))
cobra (score = 0.98216)
viper (score = 0.01331)
sea snake (score = 0.00262)
kingcobra (score = 0.00190)
```

# CONCLUSION



- It is possible to identify which snake has bitten and give the appropriate treatment
- Mortality rate due to envenoming can be decreased
- Implementation of this system avoids future medical negligence
- High accuracy
- Cross checking can help in pinpointing the species
- Use CNN makes it more efficient

## REFERENCES



- https://docs.opencv.org/master/d7/d4d/tutorial\_py\_thresholding.html
- https://colab.research.google.com/github/Blaizzy/BiSeNet-Implementation/blob/master/Preprocessing.ipynb#scrollTo=8po-oTzUTukf
- <a href="https://towardsdatascience.com/image-pre-processing-c1aec0be3edf">https://towardsdatascience.com/image-pre-processing-c1aec0be3edf</a>
- https://www.programcreek.com/python/example/89391/cv2.fastNIMeans Denoising
- https://ieeexplore.ieee.org/document/6291349
- https://ieeexplore.ieee.org/document/9104200
- https://www.researchgate.net/publication/333168691 Image processing for snake indentification based on bite using Local Binary Pattern and Support Vector Machine method
- http://ijcsit.com/docs/aceit-conference-2016/aceit201618.pdf



