## Week 7

# Reactions of Alkynes

### 7.1 Methods of Hydration

11/9: • Mukaiyama Hydration.

- A "greener" method.

• General form.

$$\mathrm{R}{-}{=} \xrightarrow{\mathrm{Co(acac)_2,\,O_2}} \mathrm{R}{-}(-\mathrm{OH}){-}$$

• Mechanism:

(a) Cobalt catalyst.

Figure 7.1: Mukaiyama hydration mechanism.

- Note that  $Co(acac)_2$  is a catalyst.
- Hydroboration/oxidation of alkene.
  - Nobel Prize (1979).
  - Discovered by a UChicago undergrad, H. C. Brown.
- General form.

$$R-=\xrightarrow[2.\,\mathrm{H}_2\mathrm{O}_2,\,\mathrm{NaOH}]{1.\,\mathrm{BH}_3}}R---\mathrm{OH}$$

- Regioselective (anti-Markovnikov).

- Stereospecific (H and OH add cis).
- Covers  $BH_3$  with its empty p orbital that makes it a good Lewis acid and dimerizes to  $B_2H_6$  with its "3C-2e" bond in the gas phase.

#### • Mechanism:

R

$$(b)$$
 Part II: Oxidative cleavage of the B-C bond.

(c) Part III: Hydrolysis of boric acid ester.

Figure 7.2: Hydroboration mechanism.

- The step in Part I is a concerted step (this is key for cis addition).
- BH<sub>3</sub> adds the way it does in part I (with the H put on the more substituted carbon) due to sterics (bulky group attaches to the less bulky side) and electronics (the  $\pi$ -bonding electrons of the alkene connecting to the boron first will create a partial positive charge, and it is more stable to have that partial positive on the more substituted position).
- The alkene does not attack an H on BH<sub>3</sub> because said H's are not acidic (it is the boron that is electron deficient).
- Each part repeats an additional two times with the product of the  $n^{\text{th}}$  run the reactant of the  $(n+1)^{\text{th}}$  run to create the reactant of the next part.
- In part II, mixing H<sub>2</sub>O<sub>2</sub> with OH<sup>−</sup> yields a deprotonated peroxide (O<sub>2</sub>H<sup>−</sup>).
- The final product of part II is the boric acid ester.
- Part III has a borate salt as a final byproduct.
- The mechanism implies that the hydrogen added comes from  $BH_3$ , and the oxygen added (as part of the hydroxide) comes from  $H_2O_2$ .
- If we add to an alkene borane, and then a strong acid and heat, we end up hydrogenating it.
- Summary of alcohol synthesis:
  - If you want Markovnikov addition, use...

- Acid-catalyzed hydration.
- Oxymercuration/reduction.
- Mukaiyama hydration.
- If you want anti-Markovnikov addition, use...
  - Hydroboration.
- Ozonolysis of alkenes.
  - An **oxidation** reaction (adding oxygen or removing hydrogen).
  - Treat an alkene with ozone and dimethyl sulfide to cleave the C=C bond and add oxygen onto each carbon, forming carbonyls (and associated groups).
  - Note that if we consider the resonance structures of ozone, we will find that charger separation is unavoidable, i.e., that the molecule must have a plus and a minus charge somewhere. This makes it very reactive.

#### • Mechanism.



Figure 7.3: Ozonolysis of alkenes.

- The first step of the reaction is a concerted 3 + 2 addition.
- The ozonide intermediate is more stable than the molozonide owing to its symmetry.
- Motivation for the last intermediate to split is eliminating charge separation.
- Dihydroxylation of alkene (creation of a 1,2-diol).
- General form.

- Stereospecific (cis).
  - Compare to bromination, which gives the trans-product (the difference is for mechanistic reasons).
- The product is a 1,2-diol, or a vicinal diol.

#### • Mechanism.

Figure 7.4: Dihydroxylation.

- The first step is concerted, once again.
- Osmium gets reduced in the first step (oxidation number goes from +8 to +6).
- In the second step, sodium bisulfite cleaves the two osmium oxygen bonds in a very complex process.
- Problems: OsO<sub>4</sub> is very expensive and very toxic.
- Solutions:
- UpJohn process (1976).
  - The same as dihydroxylation but with only 1% OsO<sub>4</sub> and NMO (N-methylmorpholine oxide) and H<sub>2</sub>O added second instead of NaHSO<sub>3</sub>.
- Sharpless asymmetric dihydroxylation.
  - Nobel prize (2001).
  - Gives high ee for each product.
  - Conditions are catalytic potassium osmium salt  $(K_2OsO_2(OH)_4)$ , potassium carbonate  $(K_2CO_3)$ , and potassium iron cyanate  $(K_3Fe(CN)_6)$ .
- Alkene dihydrogenation.