Attorney Docket No.: 056203.50311US

PATENT

IN THE CLAIMS

1 - 39. (Cancelled)

40. (Currently Amended) A process for treating a fluorine compoundcontaining gas, comprising:

carbon and fluorine, (b) carbon, hydrogen and fluorine, (c) carbon, hydrogen, oxygen and fluorine, (d) SF₆, and (e) NF₃, wherein the concentration of the fluorine compound is 0.5 to 10% by volume, with a catalyst comprising alumina as an active compound and 7.2 to 49.4 wt.% of nickel oxide, said catalyst containing a composite oxide of aluminum and nickel;

adding steam or a reaction gas containing steam and oxygen to the gas stream; and

effecting a hydrolysis reaction between the at least one compound and the steam, thereby producing a treated gas containing hydrogen fluoride.

- 41. (Previously Presented) A process according to Claim 40, further comprising washing the treated gas with water to remove the hydrogen fluoride.
- 42. (Previously Presented) A process according to Claim 40, further comprising washing the treated gas with an alkaline solution or slurry to neutralize the hydrogen fluoride and other acidic compounds.
- 43. (Previously Presented) A process according to Claim 40, further comprising washing the treated gas with water and subsequently neutralizing

Attorney Docket No.: 056203.50311US

PATENT

the water that has absorbed the hydrogen fluoride with an alkaline solution or slurry.

- 44. (Currently Amended) A process according to Claim 40, wherein the catalyst further comprises 7.2 to 61.3% by weight of zinc oxide, and wherein a ratio of aluminum to a total of nickel and zinc is 50 to 99: 50 to 1 by atom.
- 45. (Previously Presented) A process according to Claim 40, wherein the catalyst consists essentially of alumina and nickel oxide and a composite oxide of aluminum and nickel.
- 46. (Previously Presented) A process according to Claim 40, wherein the at least one compound is at least one compound selected from the group consisting of CF₄, C₂F₆, C₃F₈, C₄F₈, C₅F₈, CHF₃, CH₂F₂, CH₃F, C₂H₅F, C₂H₂F₄, C₂H₃F₃, C₂H₄F₂, C₂H₅F, CH₂OCF₂, SF₆, and NF₃.
- 47. (Previously Presented) A process according to Claim 40, wherein the at least one compound is at least one compound selected from the group consisting of CF₄, C₂F₆, C₃F₈, C₄F₈, C₅F₈, CHF₃, CH₂F₂, CH₃F, C₂H₅F, C₂H₂F₄, C₂H₃F₃, C₂H₄F₂, C₂H₅F, SF₆, and NF₃.
- 48. (Currently Amended) A method of treating a gas containing a perfluoro-compound, comprising:

contacting the gas containing a fluorine compound in a concentration of 0.5 to 10% by volume at a temperature of 400 to 800°C with a catalyst comprising aluminum oxide as an active component and 7.2 to 49.4 wt.% of nickel oxide, said catalyst containing a composite oxide of aluminum and nickel, in the presence of steam, whereby the perfluoro-compound is decomposed by hydrolysis to produce a treated gas containing hydrogen fluoride and acidic compounds; and

contacting the treated gas with water to absorb the hydrogen fluoride and the acidic compounds from the treated gas.

- 49. (Previously Presented) A process according to Claim 48, wherein the perfluoro compound is at least one compound selected from the group consisting of CF₄, CHF₃, C₂F₆, C₃F₈, C₄F₈, SF₆ and NF₃.
- 50. (Previously Presented) A process according to Claim 48, wherein the catalyst further comprises zinc oxide, the balance being aluminum oxide.
- 51. (Previously Presented) A process according to Claim 48, wherein the catalyst consists essentially of alumina and nickel oxide and composite oxide of aluminum and nickel.

52 - 74. (Cancelled)

- 75. (Withdrawn)A process according to claim 40, wherein the compound in the gas stream is SF₆.
- 76. (Withdrawn) A process according to claim 40, wherein the compound in the gas stream is carbon, fluorine and hydrogen.
- 77. (Withdrawn) A process according to claim 40, wherein the compound in the gas stream is NF₃.
- 78. (Withdrawn) A process according to claim 40, wherein the compound in the gas stream is at least one member selected from the group

Attorney Docket No.: 056203.50311US

PATENT

consisting of CHF₃, CH₂F₂, CH₃F, C₂HF₅, C₂H₂F₄, C₂H₃F₃, C₂H₄F₂, C₂H₅F, CH₂OCF₂, SF₆ and NF₃.

79. (Previously Presented) A process according to claim 40, wherein the fluorine compound-containing gas to be treated is used as etchants or cleaners for semiconductors.