Seminar course Modern Data Center Systems

(aka "sys-seminar")
Preliminary meeting
https://dse.in.tum.de/

Dr. Atsushi Koshiba Harshavardhan Unnibhavi Prof. Pramod Bhatotia

Course instructors

Chair of Decentralized Systems Engineering

https://dse.in.tum.de/team/

Dr. Atsushi Koshiba Postdoc

Harshavardhan Unnibhavi
PhD student

Prof. Pramod Bhatotia

Three important trends

Data-driven intelligent applications

Intelligent applications

Consumer devices

Manufacturing

Healthcare

Logistics

Transportation

Defense

System design

Need high-performance computing infrastructure

System stack

Design, build & deploy

Applications

Application programmer

Distributed systems, data analytics, databases, KV stores

Middleware, compiler and run-time system

Filesystem

I/O stack (network + storage)

Operating system

Virtualization

Data center systems

100s-1000s of machines

The computing landscape

- Core data centers
- Edge Points of Presence (PoPs)
- Edge caching and services nodes (Google Global Cache, or GGC)

Source: https://peering.google.com/#/

System stack

Applications

Distributed systems, data analytics, databases, KV stores

Compiler, middleware, run-time system

Filesystem

I/O stack (network + storage)

Operating system

Virtualization

Data center systems

Scalability
Performance
Reliability
Security

Tentative topics

Papers from top systems conferences: ASPLOS, NSDI, OSDI, USENIX ATC/FAST, EuroSys, and SOSP

Tentative topics		
Distributed systems		
Data analytics/ML systems		
Operating systems and virtualization		
Storage systems		
Networked systems		
Systems security		
Multicores/accelerators, parallelism, and synchronization		
Systems reliability		
		

Bird's eyes view

Team (2 students per team)

Research papers
(Top systems conferences)

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design Implement (Bonus)

Report Peer-review

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

2

Team formation (2 students per team)

Paper selection (Top systems conferences)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Understand the paper(s)

Focus

- Understand the paper and related work
- 2. Also **explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus:

(Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Focus

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Peer-review

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

END.

Overall timeline

Phase I Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design

Implement (optional)

Report

Peer-review

1

3 weeks

2 weeks

Milestone #2:

Paper

presentations

3 weeks

2 weeks

Meeting

Meeting

Milestone #4:
Report
submission

Milestone #5: Peer-reviewing

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings
 - **Meeting #1:** Kick-off
 - **Meeting #2:** Paper presentation

Learning goals

- Learn about the cutting-edge research in computer systems
- Promote critical thinking
- Cultivate an environment for innovation
 - To push the boundaries by advancing the state-of-the-art
- Improve scientific skills
 - Presentation
 - Writing
 - Communication: discussion and arguing
 - Mentorship: giving feedback and moderating discussion
- Encourage system building and evaluation
 - Learn by building, breaking, and benchmarking systems
- Importantly, to have fun!

Interested?

Sign up on the TUM matching platform

Contacts

- Dr. Atsushi Koshiba
 - atsushi.koshiba@tum.de
- All seminar-related info: https://github.com/TUM-DSE/seminars

Workspace: http://ls1-courses-tum.slack.com/

Channel: #ss-23-sys-seminar

Join us with TUM email address (@tum.de)

Notes

(Please go over them for details!)

NOTE

Grading

Grading

Category	Details	Points
Research ideas	Novelty of research ideas and approach	30%
Presentation	1 Presentation	30%
Report	1 report (summarizing paper and research)	20%
Peer-reviewing	Peer-reviewing of the reports and participation in the seminar	20%

NOTE

Paper selection and reading

Note: Paper selection

Reading list:

- A list of papers will be provided from the top conferences in this area
- Students can also nominate their papers (with due permission from the instructor)

Paper assignment:

- FCFS bidding process
- Two students per paper/topic (see the list)
- Please indicate your preference by semester's 1st week

Guidelines for paper reading

- Follow Keshav's three-pass approach (see references)
 - First pass: Get the general idea (5-10 minutes)
 - Read the abstract, introduction, conclusions
 - Check section headings, and references
 - Second pass: Grasp the paper's content (1 hour)
 - Read the full paper, ignore proofs/details
 - Carefully read the figures, identify key points
 - Mark important references
 - Third pass: Understand the paper in depth (4-5 hours)
 - Try to understand everything and reconstruct the approach
 - Be critical, challenge assumptions, validate the state-of-the-art
 - Possible generate your own ideas

References

- How to read a paper
 - S. Keshav: How to Read a Paper
 - http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
 - Philip Fong: How to Read a CS Research Paper
 - http://www2.cs.uregina.ca/~pwlfong/CS499/reading-paper.pdf

NOTE

Presentation

Format

- Structure your presentation across four dimensions

20 mins per team

- 1. Why? ~5 mins
- 2. **How?** ~5 mins
- 3. Research ideas ~5 mins
- 4. Discussion ~5 mins

Presentation guidelines

- Context of the work ("Why"?)
 - a. What is the problem?
 - b. Why is it important or interesting?
 - c. What is the state-of-the-art? What is the "research gap"?
 - d. Why is it difficult? Or what are the challenges?
- Contributions of the work ("How"?)
 - a. What is the proposed solution?
 - b. What are the key insights?
 - c. Or what are the novel aspects?
- 3. Potential of future work ("Research ideas")
 - a. How can you improve the solution or evaluation?
 - b. Are there any other interesting problems or alternative approaches?
 - c. Can the proposed techniques or solutions applicable for different problems/context?

At this stage: It's OK to have a laundry list of potential ideas! We will jointly brainstorm and pick one idea for the research exploration phase

Presentation template

- Please prepare your presentation using the following template:
 - https://docs.google.com/presentation/d/iuR1TtARibgV4iEaoorx7tP5leyjZlSkwdpl Pyn6cso/edit?usp=sharing
- If you hesistate to use Google docs for personal/data protection issues, please feel free to use a different software.

References

- How to give presentation
 - Markus Puschel: How to give good technical presentations
 - https://people.inf.ethz.ch/markusp/teaching/guides/guide-presentations-new.pdf
 - Simon Peyton Jones: How to give a great research talk
 - https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/

NOTE

Report

preparation and submission

Report

- We require a report covering two parts:
 - Part A: Paper summary
 - Part B: Research proposal
- Report format
 - Short and sweet
 - At most 4 pages (2 pages for each part), excluding references
 - USENIX format:

https://www.usenix.org/conferences/author-resources/paper-templates

Part A: Paper summary (2 pages)

Context of the work ("Why"?)

- a. What is the problem?
- b. Why is it important or interesting?
- c. What is the state-of-the-art? What is the "research gap"?
- d. Why is it difficult? Or what are the challenges?

Contributions of the work ("How"?)

- a. What is the proposed solution?
- b. How it works at a high-level?
- c. What are the key insights?
- d. Or what are the novel aspects?

Part B: Research proposal (2 pages)

- Context of your research ("Why"?)
 - a. What is the problem?
 - b. Why is it important or interesting?
 - c. Why is it difficult? Or what are the challenges?
- Approach of your research work ("How"?)
 - a. What is the proposed solution? How does it work?
 - b. What are the key insights?
 - c. Or what are the novel aspects?
- 3. "Bonus"!
 - a. Did you implement the solution?
 - b. Show us the demo/results!!

Report submission

HotCRP portal

- Standard portal used in conferences for submission and reviewing
- HotCRP portal link will be shared on Slack
- Create an account in HotCRP (same account is valid for submission and reviewing)

Submission fields in HotCRP

- Single PDF for the report
- Specify conflicts (your team members)
- GitHub link for the system code (optional)

References

- How to write report
 - Simon Peyton Jones: How to write a great research paper
 - https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/
 - How to write a great research proposal
 - <u>https://www.microsoft.com/en-us/research/academic-program/how-to-write-a-great-research</u> -<u>proposal/</u>

Peer-reviewing

Note: Peer-reviewing

- Reviewing reports (comment on paper summary and research proposal)
 - Positive aspects (3-4 points)
 - Critical aspects (3-4 points)
 - Grade recommendation

HotCRP portal

- Standard reviewing portal used in conferences
- "Single-blind" reviewing: Reviewers are anonymous

References

- How to write reviews
 - Timothy Roscoe: Writing reviews for systems conferences
 - https://people.inf.ethz.ch/troscoe/pubs/review-writing.pdf
 - Shriram Krishnamurthi: How to Write Technical Paper Reviews
 - https://cs.brown.edu/~sk/Memos/Paper-Reviews/

Class participation

Seminar participation

- Participants

- Active participation: Read, discuss, and analyze papers
- Jointly brainstorm: Limitations, possible extensions, or alternative approaches
- Provide constructive feedback to the presenters

Moderator (Optional)

- You can volunteer to be a moderator
- Shepherd and manage the session
- Encourage active participation
- Summarize the discussion

Code of conduct

- University plagiarism policy
 - https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-co-nduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

System building/evaluation

System building/evaluation

Optional BONUS component!

- Goal: To learn by building and breaking stuff!
- Possible options:
 - Implement paper's key ideas from scratch (or using open-source software)
 - Extend/modify the system to support new features
 - Validate and compare w/ alternative approaches
 - Benchmark the system
 - Evaluate system under different assumptions or workloads

References

- Systems research:
 - Peter Druschel: How to do systems research
 - http://conferences.inf.ed.ac.uk/EuroDW2018/keynotes/Peter-Druschel-Keynote.pdf
 - Steve Hand: Doing a Systems PhD
 - http://homepage.tudelft.nl/8e79t/files/StevenHand.pdf
 - James Mickens: The Night Watch
 - https://www.usenix.org/system/files/1311_05-08_mickens.pdf

Research presentation

Format: Presentation #2

- Structure your "research" presentation across four dimensions

15 mins per team

- 1. A quick recap! ~2 mins
- 2. Why? ~5 mins
- 3. **How?** ~5 mins
- 4. Let's discuss! ~3 mins
- 5. **BONUS!** (optional)

Research presentation guideline

"A quick recap"

- a. Briefly remind your paper
- Context of your research ("Why"?)
 - a. What is the problem?
 - b. Why is it important or interesting?
 - c. Why is it difficult? Or what are the challenges?
- Approach of your research work ("How"?)
 - a. What is the proposed solution? How does it work?
 - b. What are the key insights?
 - c. Or what are the novel aspects?
- 4. "Bonus"!
 - a. Did you implement the solution?
 - b. Show us the demo/results!!

Important dates

Meetings	Date (Thu at 13:00h)
Kick-off	28th April 2022
Presentation	26th May and 2nd June, 2022

Submission dues	Date
Report	7th July 2022
Peer-reviews	21st July 2022