3.2.6 – Исследование гальванометра.

Цель работы. Изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивления, конденсатор, вольметр, ключи, линейка.

Теоретическая часть. Баллистический гальванометр – электроизмерительный прибор, принцип действия которого основан на измерении отклонения рамки с большим количеством витков при пропускании тока через них в радиальном поле внешнего постоянного магнита (см. рис. 1). Если рассмотреть все моменты силы, действующие на обтекаемую током рамку, мы без особых трудностей (см. литературу) получим уравнение движения рамки:

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI, \tag{1}$$

где введены обозначения:

$$\frac{(BSN)^2}{JR} = 2\gamma, \qquad \frac{D}{J} = \omega_0^2, \qquad \frac{BSN}{J} = K.$$

Рис. 1: Рамка с током в магнитном поле

Это совершенно обычное дифференциальное уравнение движения «богатой» (на трение, внешнее воздействие, упругость и проч.) механической системы. Здесь I – пропускаемый через рамку ток, R – полное сопротивление цепи (включая сам прибор), остальное – параметры самого гальвонометра, в том числе B – поле магнита, S – площадь витка, N – число витков, J – момент инерции рамки, D – модуль кручения нити.

При измерениях баллистический гальванометр работает в двух режимах – измерение постоянного тока и электрического заряда. В первом случае в уравнении (1) $\ddot{\varphi} = \dot{\varphi} = 0$, и угол поворота рамки определяется выражением

$$\varphi = \frac{BSN}{D}I = \frac{I}{C_I},$$

где введено обозначение C_I – ∂ инамическая постоянная гальванометра. В случае же пропускания заряда делать это следует за промежуток времени меньший, чем период своодных колебаний рамки. Благо момент инерции рамки искусственно сделан весьма большим, тем самым увеличен период свободных колебаний и облегчен труд экспериментатора.

Найдем скорость, приобретаемую рамкой в результате толчка, сообщаемым пропусканием заряда, проинтегрировав уравнение (1). При этом полагаем $\varphi \approx {\rm const}$, поскольку время течения тока τ очень мало. Отсюда получаем

$$\dot{\varphi}(\tau) = Kq,$$

где q — измеряемый заряд. Наибольший угол отклонения, очевидно, также пропорционален заряду. Величину

$$C_Q = \frac{q}{\varphi_{max}}$$

называют баллистической постоянной гальванометра.

Удобнее всего работать в *критическом режиме* ($\gamma = \omega_0$), когда после начального импульса система достаточно быстро (экспоненциально) приближается к состоянию равновесия. Уравнение движения рамки при этом имеет вид $\varphi(t) = \dot{\varphi}_0 t e^{-\gamma t}$. Сравнивая максимальное отклонение зайчика в режиме свободных колебаний (трение отсутствует) и в критическом режиме, получаем, что

$$\frac{C_{Q_{\text{КРИТ}}}}{C_{Q_{\text{CBOO}}}} = e.$$

Экспериментальная установка. Для измерения отклонения рамки используется метод «зайчика». Схемы используемых экспериментальных установок приведены на рисунках ниже и не представляют собой ничего сложного – обычная электрическая цепь. При работе в баллистическом режиме источником измеряемых зарядов служит конденсатор, что является причиной обилия ключей на рис. 3.

Рис. 2: Схема установки для исследования работы гальванометра в стационарном режиме

Рис. 3: Схема установки для исследования работы гальванометра в баллистическом режиме

Определение динамической постоянной. Работаем в стационарном режиме, используя установку, описанную на рис. 2. На блоке питания постоянное напряжение $U_0 \simeq 1.5$ В. Сила тока через гальванометр определяется по формуле

$$I = U_0 \frac{R_1}{R_2} \frac{1}{R + R_0},$$

где $R_1/R_2=1/2000$ — положение делителя, R — сопротивление магазина, $R_0\simeq 610$ Ом — внутреннее сопротивление гальванометра.

Отклонение светового пятна на шкале связано с поворотом рамки выражением

$$x = a \tan(2\varphi) \simeq 2a\varphi$$
,

где мы учли малость углов; $a \simeq 140~{\rm cm}$ – расстояник от шкалы до зеркальца.

Построим зависимость I = f(x), по наклону полученной прямой определим $C_I = 2aI/x$.

R, кОм	3	3.5	4	4.5	5	6	7	10	15	20
x, cm	24.5	20.6	17.8	15.6	13.9	11.4	9.7	6.1	4.5	3.2
$I, 10^{-8} \times A$	21	18	16	15	13	11	10	7	5	4

Таблица 1: Экспериментальные данные.

Galvanometer's dynamic constant

Рис. 4: К определению динамической постоянной гальванометра

Отсюда получаем динамическую постоянную:

$$C_I = (2.23 \pm 0.05) \times 10^{-11} \frac{A}{MM/M}.$$

Определение критического сопротивления. Исследуем затухание в системе. При разомкнутой цепи имеем следующие последовательные положения зайчика при затухании:

$$x$$
, cm | 24.5 | 20.5 | 17.0 | 14.5

Отсюда

$$\Theta_0 = \log \frac{x_n}{x_{n+1}} = 0.17 \pm 0.01$$

Мы хотим найти критический режим, когда затухание происходит наиболее быстро, т. е. $\Theta \to \infty$. Для систем с трением частота есть $\omega = \sqrt{\omega_0^2 - \gamma}$, потому

$$\Theta = \gamma T = \frac{2\pi\gamma}{\sqrt{\omega_0^2 - \gamma}} = \frac{2\pi R_3}{\sqrt{(R_0 + R)^2 - R_3^2}},$$

где введено обозначение

$$R_3 = \frac{(BSN)^2}{2\sqrt{JD}} = R_0 + R_{\text{крит}}.$$

Перепишем в виде

$$\frac{1}{\Theta^2} = \frac{(R_0 + R)^2}{4\pi^2 R_3^2} - \frac{1}{4\pi^2};$$

критическое сопротивление можно определить по наклону графика $1/\Theta^2 = f[(R_0 + R)^2]$:

$$R_{\text{\tiny KDMT}} = \frac{1}{2\pi} \sqrt{\frac{\Delta X}{\Delta Y}} - R_0.$$

R, кОм	x_0	x_1	x_2	x_3
21	16.9	14.5	12.4	10.5
28	12.7	10.6	9	7.6
35	10.2	8.5	7.6	6
42	8.5	7.1	6	5.1
56	6.4	5.5	4.6	3.9
70	5.2	4.4	3.8	3.3

Таблица 2: Затухание колебаний.

On galvanometer's critical resistance

Рис. 5: К определению критического сопротивления гальванометра

Отсюда получаем:

$$R_{ ext{\tiny KDMT}} \simeq 2.6 \pm 0.2 \; ext{кOm}$$

И вот уже постфактум оказывается, что работали мы совсем не в той области...

Баллистический режим. В данном режиме мы пускаем заряд порциями, используя конденсатор C=2 нФ. Работаем при положении делителя $R_1/R_2=1/20$. Ранее было установлено, что в критическом сопротивлении максимальное отклонение зайчика в e раз меньше, чем при отсутствии затухания. Если $\gamma \ll \omega_0$, то

$$\varphi_1 = \varphi e^{\Theta_0/4},$$

где φ_1 – максимальное отклонение рамки при разомкнутой цепи, φ_0 – максимальное отклонение без затухания. Используя данные соображения, по графику $l_{\max} = f[(R_0 + R)^{-1}]$ мы можем определить критическое сопротивление.

R, кОм	2	4	8	12	16
l_{\max} , cm	5.2	9.5	12	14.5	14.5

Ballistic galvanometer

Рис. 6: К определению критического сопротивления гальванометра в баллистическом режиме

$$R_{\text{крит}} \simeq 2.7 \pm 0.5 \text{ кОм}$$

Мы видим, что полученный результат согласуется с измерением в стационарном режиме, хотя имеет большую погрешность.

Определим баллистическую постоянную гальванометра (по-прежнему a=140 см):

$$C_{Q_{\text{KDHT}}} = \frac{q}{\varphi_{\text{max}}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{l_{\text{max KDHT}}} \simeq (2.03 \pm 0.4) \times 10^{-9} \frac{\text{K}}{\text{MM/M}}.$$

Выводы. Изучена работа гальванометра в стационарном и баллистическом режимах. Найдены экспериментально его параметры:

$$C_I = (2.23 \pm 0.05) \times 10^{-11} \frac{\mathrm{A}}{\mathrm{MM/M}},$$
 $R_{\mathrm{крит\ cтац}} \simeq 2.6 \pm 0.2\ \mathrm{кOM},$
 $R_{\mathrm{крит\ балл}} \simeq 2.7 \pm 0.5\ \mathrm{кOM},$
 $C_{Q\mathrm{крит}} = (2.03 \pm 0.4) \times 10^{-9} \frac{\mathrm{K}}{\mathrm{MM/M}}.$