1.a. We consider the state space of the model of a car with n trailers defined as

$$\mathbf{x} := (x, y, \theta_0, \theta_1, \dots, \theta_n)^T.$$

Physically we have $x, y \in \mathbb{R}$ and $\theta_0, \dots, \theta_n \in S^1$. The n+1 dimensional torus, \mathbb{T}^{n+1} , is defined as the cross product of n+1 circles, i.e. $\mathbb{T}^{n+1} := S_1 \times \dots \times S_1$. Therefore $\mathbf{x} \in \mathcal{X} := \mathbb{R}^2 \times \mathbb{T}^{n+1}$.

1.b. Define the functions

$$f_n := 1,$$
 $f_i := \prod_{j=i+1}^n \cos(\theta_j - \theta_{j-1}), \quad 0 \le i \le n-1.$

To find the differential equations governing the model, we start with the car. We directly control the angular velocity, hence $\dot{\theta}_n = \omega$.

Now for the (n-1)st cart, consider the hitch at the center of the nth (car) axle. The car has a velocity with magnitude v, at an angle relative to the rod connecting the car and the (n-1)st cart given by $\theta_n - \theta_{n-1}$. The angular velocity of the hitch, relative to the center of the (n-1)st axle, is the same as the angular velocity $\dot{\theta}_{n-1}$, since the two axles are connected by a rigid rod. Then from basic physics the angular velocity is

$$\dot{\theta}_{n-1} = \frac{v \sin(\theta_n - \theta_{n-1})}{l} = v f_n \sin(\theta_n - \theta_{n-1}).$$

Similarly for the (n-2)nd cart, the center of the (n-1)st axle is connected by a rigid rod. The (n-1)st cart has some velocity at an angle θ_{n-1} , so the angle relative to the rod is given by $\theta_{n-1} - \theta_{n-2}$. The magnitude of the velocity of the (n-1)st cart is the portion of velocity of the nth cart (car) parallel to the wheels of the (n-1)st cart. This is precisely $\cos(\theta_n - \theta_{n-1})$ times the magnitude of the velocity of the car, that is $v\cos(\theta_n - \theta_{n-1})$. Hence the angular velocity $\dot{\theta}_{n-2}$ is given by

$$\dot{\theta}_{n-2} = \frac{v \cos(\theta_n - \theta_{n-1}) \sin(\theta_{n-1} - \theta_{n-2})}{l} = v f_{n-1} \sin(\theta_{n-1} - \theta_{n-2}).$$

We go down the chain constructing the velocities just as for the (n-2)nd cart. The velocity of the *i*th cart has magnitude of $\cos(\theta_{i+1} - \theta_i)$ times the magnitude of the velocity of the ik + 1)st cart. By induction, this is

$$\cos(\theta_{i+1} - \theta_i)v \prod_{j=i+2}^{n} \cos(\theta_j - \theta_{j-1}) = v \prod_{j=i+1}^{n} \cos(\theta_j - \theta_{j-1}) = v f_i.$$

The direction of the velocity of the *i*th cart relative to the direction of the velocity of the (i-1)st cart is $\theta_i - \theta_{i-1}$. Consequently the (i-1)st angular velocity is given by

$$\dot{\theta}_{i-1} = \frac{vf_i \sin(\theta_i - \theta_{i-1})}{l} = vf_i \sin(\theta_i - \theta_{i-1}).$$

As for \dot{x} and \dot{y} , these are the linear velocities of the 0th cart. As before, by induction the magnitude of the velocity is vf_0 . Since the wheels are constrained to be parallel to the

velocity of the cart, the direction is exactly θ_0 . Then \dot{x} is simply the x component of that velocity, and \dot{y} is simply the y component:

$$\dot{x} = v f_0 \cos \theta_0, \qquad \dot{y} = v f_0 \sin \theta_0.$$

Therefore the control system corresponding to this model can be expressed in the drift-free form

$$\dot{\mathbf{x}} = \mathbf{g}_1(\mathbf{x})u_1 + \mathbf{g}_2(\mathbf{x})u_2,$$

where $u_1 = v$, $u_2 = \omega$, and

$$\mathbf{g}_{1}(\mathbf{x}) = [f_{0}\cos\theta_{0}, f_{0}\sin\theta_{0}, f_{1}\sin(\theta_{1} - \theta_{0}), \dots, f_{i+1}\sin(\theta_{i+1} - \theta_{i}), \dots, f_{n}\sin(\theta_{n} - \theta_{n-1}), 0]^{T},$$

$$\mathbf{g}_2(\mathbf{x}) = \left[\underbrace{0, \dots, 0}_{(n+2) \text{ times}}, 1\right]^T.$$

1.c. Now we consider the special case n=1. In this case,

$$\mathbf{x} = (x, y, \theta_0, \theta_1)^T \in \mathbb{R}^2 \times \mathbb{T} = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1.$$

Thus the tangent space of the domain is $\mathcal{T}_{\mathbf{x}}\mathscr{X} = \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^4$. We explicitly write the dynamics as $\dot{\mathbf{x}} = \mathbf{g}_1(\mathbf{x})v + \mathbf{g}_2(\mathbf{x})\omega$ with

$$\mathbf{g}_{1}(\mathbf{x}) = \begin{bmatrix} \cos(\theta_{1} - \theta_{0})\cos\theta_{0} \\ \cos(\theta_{1} - \theta_{0})\sin\theta_{0} \\ \sin(\theta_{1} - \theta_{0}) \\ 0 \end{bmatrix}, \qquad \mathbf{g}_{2}(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Clearly \mathscr{X} is connected and both $\mathbf{g}_1(\mathbf{x})$ and $\mathbf{g}_2(\mathbf{x})$ are analytic. Then to prove that the system is globally controllable, it remains to show that $\operatorname{Lie}\{\mathbf{g}_1,\mathbf{g}_2\}$ $(\mathbf{x})=\mathcal{T}_{\mathbf{x}}\mathscr{X}=\mathbb{R}^4$ for all $\mathbf{x}\in\mathscr{X}$. First we calculate

$$\begin{split} [\mathbf{g}_1, \mathbf{g}_2] &= \frac{\partial \mathbf{g}_2}{\partial \mathbf{x}} \mathbf{g}_1 - \frac{\partial \mathbf{g}_1}{\partial \mathbf{x}} \mathbf{g}_2 \\ &= \mathbf{0}_{4 \times 4} \mathbf{g}_1 - \begin{bmatrix} 0 & 0 & \sin(\theta_1 - \theta_0) \cos\theta_0 - \cos(\theta_1 - \theta_0) \sin\theta_0 & -\sin(\theta_1 - \theta_0) \cos\theta_0 \\ 0 & 0 & \sin(\theta_1 - \theta_0) \sin\theta_0 + \cos(\theta_1 - \theta_0) \cos\theta_0 & -\sin(\theta_1 - \theta_0) \sin\theta_0 \\ 0 & 0 & -\cos(\theta_1 - \theta_0) & \cos(\theta_1 - \theta_0) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} \sin(\theta_1 - \theta_0) \cos\theta_0 \\ \sin(\theta_1 - \theta_0) \sin\theta_0 \\ -\cos(\theta_1 - \theta_0) \end{bmatrix}. \end{split}$$

Next we construct the still more heinous Lie bracket,

$$\begin{split} [\mathbf{g}_1, [\mathbf{g}_1, \mathbf{g}_2]] &= \frac{\partial [\mathbf{g}_1, \mathbf{g}_2]}{\partial \mathbf{x}} \mathbf{g}_1 - \frac{\partial \mathbf{g}_1}{\partial \mathbf{x}} [\mathbf{g}_1, \mathbf{g}_2] \\ &= \begin{bmatrix} 0 & 0 & -\cos(\theta_1 - \theta_0)\cos\theta_0 - \sin(\theta_1 - \theta_0)\sin\theta_0 & \cos(\theta_1 - \theta_0)\cos\theta_0 \\ 0 & 0 & -\cos(\theta_1 - \theta_0)\sin\theta_0 + \sin(\theta_1 - \theta_0)\cos\theta_0 & \cos(\theta_1 - \theta_0)\sin\theta_0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{g}_1 \\ &- \begin{bmatrix} 0 & 0 & \sin(\theta_1 - \theta_0)\cos\theta_0 - \cos(\theta_1 - \theta_0)\sin\theta_0 & -\sin(\theta_1 - \theta_0)\cos\theta_0 \\ 0 & 0 & \sin(\theta_1 - \theta_0)\sin\theta_0 + \cos(\theta_1 - \theta_0)\cos\theta_0 & -\sin(\theta_1 - \theta_0)\sin\theta_0 \\ 0 & 0 & -\cos(\theta_1 - \theta_0)\cos\theta_0 - \sin(\theta_1 - \theta_0)\sin\theta_0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} [\mathbf{g}_1, \mathbf{g}_2] \\ &= \begin{bmatrix} -\sin(\theta_1 - \theta_0)\cos(\theta_1 - \theta_0)\cos\theta_0 - \sin^2(\theta_1 - \theta_0)\sin\theta_0 \\ -\sin(\theta_1 - \theta_0)\cos(\theta_1 - \theta_0)\sin\theta_0 + \sin^2(\theta_1 - \theta_0)\cos\theta_0 \\ -\sin^2(\theta_1 - \theta_0) & 0 \end{bmatrix} \\ &- \begin{bmatrix} -\sin(\theta_1 - \theta_0)\cos(\theta_1 - \theta_0)\cos\theta_0 + \cos^2(\theta_1 - \theta_0)\sin\theta_0 \\ -\sin(\theta_1 - \theta_0)\cos(\theta_1 - \theta_0)\sin\theta_0 - \cos^2(\theta_1 - \theta_0)\cos\theta_0 \\ \cos^2(\theta_1 - \theta_0) & 0 \end{bmatrix} \\ &= \begin{bmatrix} -\sin\theta_0 \\ \cos\theta_0 \\ -1 \\ 0 \end{bmatrix}. \end{split}$$

Note that by computing the Jacobian $\partial[\mathbf{g}_1, \mathbf{g}_2]/\partial \mathbf{x}$, it is easy to see that $(\partial[\mathbf{g}_1, \mathbf{g}_2]/\partial \mathbf{x}) \mathbf{g}_2 = \mathbf{0}$, hence $[\mathbf{g}_2, [\mathbf{g}_1, \mathbf{g}_2]] = \mathbf{0}$. Consequently this bracket adds nothing to the span of

$$\{{\bf g}_1,{\bf g}_2,[{\bf g}_1,{\bf g}_2],[{\bf g}_1,[{\bf g}_1,{\bf g}_2]]\}.$$

It follows that $\Delta_3 = \text{span}\{\mathbf{g}_1, \mathbf{g}_2, [\mathbf{g}_1, \mathbf{g}_2], [\mathbf{g}_1, [\mathbf{g}_1, \mathbf{g}_2]]\}$. Equivalently, it is equal to the span of the columns of the matrix

$$\mathbf{M} := \begin{bmatrix} \mathbf{g}_1 & \mathbf{g}_2 & \mathbf{g}_1, \mathbf{g}_2 \end{bmatrix} & \mathbf{g}_1, \mathbf{g}_1, \mathbf{g}_1, \mathbf{g}_2 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta_1 - \theta_0) \cos \theta_0 & 0 & \sin(\theta_1 - \theta_0) \cos \theta_0 & -\sin \theta_0 \\ \cos(\theta_1 - \theta_0) \sin \theta_0 & 0 & \sin(\theta_1 - \theta_0) \sin \theta_0 & \cos \theta_0 \\ \sin(\theta_1 - \theta_0) & 0 & -\cos(\theta_1 - \theta_0) & -1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

 Δ_3 is involutive if and only if M is non-singular. To check this condition, we calculate

the determinant

$$\det \mathbf{M}(\mathbf{x}) = \begin{vmatrix} \cos(\theta_{1} - \theta_{0}) \cos \theta_{0} & 0 & \sin(\theta_{1} - \theta_{0}) \cos \theta_{0} & -\sin \theta_{0} \\ \cos(\theta_{1} - \theta_{0}) \sin \theta_{0} & 0 & \sin(\theta_{1} - \theta_{0}) \sin \theta_{0} & \cos \theta_{0} \\ \sin(\theta_{1} - \theta_{0}) & 0 & -\cos(\theta_{1} - \theta_{0}) & -1 \\ 0 & 1 & 0 & 0 \end{vmatrix}$$

$$= +1 \begin{vmatrix} \cos(\theta_{1} - \theta_{0}) \cos \theta_{0} & \sin(\theta_{1} - \theta_{0}) \cos \theta_{0} & -\sin \theta_{0} \\ \cos(\theta_{1} - \theta_{0}) \sin \theta_{0} & \sin(\theta_{1} - \theta_{0}) \sin \theta_{0} & \cos \theta_{0} \\ \sin(\theta_{1} - \theta_{0}) & -\cos(\theta_{1} - \theta_{0}) & -1 \end{vmatrix}$$

$$= \sin(\theta_{1} - \theta_{0}) \left[\sin(\theta_{1} - \theta_{0}) \cos^{2} \theta_{0} + \sin(\theta_{1} - \theta_{0}) \sin^{2} \theta_{0} \right]$$

$$- \left[-\cos(\theta_{1} - \theta_{0}) \right] \left[\cos(\theta_{1} - \theta_{0}) \cos^{2} \theta_{0} + \cos(\theta_{1} - \theta_{0}) \sin^{2} \theta_{0} \right]$$

$$- \left[\sin(\theta_{1} - \theta_{0}) \cos(\theta_{1} - \theta_{0}) \sin \theta_{0} \cos \theta_{0} - \sin(\theta_{1} - \theta_{0}) \cos(\theta_{1} - \theta_{0}) \sin \theta_{0} \cos \theta_{0} \right]$$

$$= \sin^{2}(\theta_{1} - \theta_{0}) \left(\cos^{2} \theta_{0} + \sin^{2} \theta_{0} \right) + \cos^{2}(\theta_{1} - \theta_{0}) \left(\cos^{2} \theta_{0} + \sin^{2} \theta_{0} \right) - 0$$

$$= 1 \neq 0.$$

This holds for all $\mathbf{x} \in \mathcal{X}$, so Δ_3 is involutive everywhere. Thus the Lie Algebra Rank condition is satisfied everywhere: Lie $\{\mathbf{g}_1, \mathbf{g}_2\}$ (\mathbf{x}) = $\mathcal{T}_{\mathbf{x}}\mathcal{X}$ for all $\mathbf{x} \in \mathcal{X}$, from which it follows that the system is globally controllable for n = 1.

- 1.d. For the case n=1, it is clear that Δ_3 is involutive while Δ_1 and Δ_2 , since bracketing of $\mathbf{g}_1, \mathbf{g}_2$, and $[\mathbf{g}_1, \mathbf{g}_2]$ generated vector fields outside of Δ_1 and Δ_2 , as seen from the determinant calculation in part (c). In addition, any further brackets would have to be inside the Δ_3 . This is because $\mathbf{M}(\mathbf{x})$ already has four linearly independent columns for all \mathbf{x} , and cannot gain any new ones since it only has four rows. Thus for all $k \geq 3$, $\dim(\Delta_k) = \dim(\Delta_3)$, so the degree of non-holonomy is k=3.
- **2.a.** We consider the following nonlinear system with state $\mathbf{x}=(x_1,x_2)\in\mathbb{R}^2$ and single input $u\in\mathbb{R}$:

$$\begin{cases} \dot{x}_1 = x_1 + \frac{x_2}{1 + x_1^2} \\ \dot{x}_2 = -x_2 + u \end{cases}$$
 (1)

We can write this in the form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})u$, where

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x_1 + \frac{x_2}{1 + x_1^2} \\ -x_2 \end{bmatrix}, \quad \mathbf{g}(\mathbf{x}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

In this first part, using feedback linearization we design a controller to globally stabilize

the origin. Of course, we need to check if this is possible. To do this, first we calculate

$$[\mathbf{f}, \mathbf{g}] = \frac{\partial \mathbf{g}}{\partial \mathbf{x}} \mathbf{f} - \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{g}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 + \frac{x_2}{1 + x_1^2} \\ -x_2 \end{bmatrix} - \begin{bmatrix} 1 - \frac{2x_1x_2}{(1 + x_1^2)^2} & \frac{1}{1 + x_1^2} \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{1 + x_1^2} \\ 1 \end{bmatrix}.$$

Then we define the matrix

$$\mathbf{M} := \left[\begin{array}{c|c} \mathbf{g} \mid [\mathbf{f}, \mathbf{g}] \end{array} \right] = \begin{bmatrix} 0 & -\frac{1}{1 + x_1^2} \\ 1 & 1 \end{bmatrix},$$

and let Δ be the distribution defined by the span of the columns of M. The determinant of M is simply

$$\det \mathbf{M}(\mathbf{x}) = 0 \cdot 1 - 1 \left(-\frac{1}{1 + x_1^2} \right) = \frac{1}{1 + x_1^2} \neq 0$$

for all $\mathbf{x} \in \mathbb{R}^2$. Thus $\mathbf{M}(\mathbf{0})$ has rank 2 = n and moreoever, Δ is involutive in all of \mathbb{R}^2 . Then the system (1) is feedback linearizable.

To find this transformation, we start by solving for $\lambda(\mathbf{x})$ from the PDE system

$$L_{\mathbf{g}}\lambda(\mathbf{x}) = 0, \qquad L_{[\mathbf{f},\mathbf{g}]}\lambda(\mathbf{x}) \neq 0.$$

Written explicitly, the first (zero) condition requires

$$0 = \langle \nabla \lambda, \mathbf{g} \rangle = \frac{\partial \lambda}{\partial x_1}(0) + \frac{\partial \lambda}{\partial x_2}(1) = \frac{\partial \lambda}{\partial x_2}.$$

Thus $\lambda(\mathbf{x})$ is a function of x_1 only. Using this, the second (non-zero) condition requires

$$0 \neq \langle \nabla \lambda, [\mathbf{f}, \mathbf{g}] \rangle = \frac{\partial \lambda}{\partial x_1} \left(-\frac{1}{1 + x_1^2} \right) + \frac{\partial \lambda}{\partial x_2} (1) = -\frac{\partial \lambda}{\partial x_1} \frac{1}{1 + x_1^2}.$$

We know that $-1/(1+x_1^2)$ is non-zero everywhere, so we can pick $\lambda(\mathbf{x}) = \lambda(x_1)$ to be any function such that $\partial \lambda/\partial x_1 \neq 0$. We choose the simplest one,

$$\lambda(\mathbf{x}) = x_1.$$

To double check that this choice of λ gives us the correct relative degree, we differentiate $\dot{y} = \dot{\lambda}(x_1) = \dot{x}_1 = x_1 + x_2/(1+x_1^2)$, which does not have u explicitly, but

$$\ddot{y} = \dot{x}_1 + \frac{\dot{x}_2}{1 + x_1^2} - \frac{2x_1x_2}{(1 + x_1^2)^2} = x_1 + \frac{u}{1 + x_1^2} - \frac{2x_1x_2}{(1 + x_1^2)^2}.$$

 \ddot{y} depends explicitly on u for all $\mathbf{x} \in \mathbb{R}^2$, hence the relative degree is indeed r = 2 = n globally, as expected. Next we set the control $u = \alpha(\mathbf{x}) + \beta(\mathbf{x})v$ for a new input v, where

$$\begin{split} &\alpha(\mathbf{x}) = -\frac{L_{\mathbf{f}}^{2}\lambda(\mathbf{x})}{L_{\mathbf{g}}L_{\mathbf{f}}\lambda(\mathbf{x})} \\ &= -\frac{\langle \nabla \langle \nabla \lambda, \mathbf{f} \rangle, \mathbf{f} \rangle}{\langle \nabla \langle \nabla \lambda, \mathbf{f} \rangle, \mathbf{g} \rangle} \\ &= -\frac{\left\langle \nabla \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}^{T} \begin{bmatrix} x_{1} + x_{2}/(1 + x_{1}^{2}) \\ -x_{2} \end{bmatrix} \right), \mathbf{f} \right\rangle}{\langle \nabla \langle \nabla \lambda, \mathbf{f} \rangle, \mathbf{g} \rangle} \\ &= -\frac{\langle \nabla [x_{1} + x_{2}/(1 + x_{1}^{2})], \mathbf{f} \rangle}{\langle \nabla \langle \nabla \lambda, \mathbf{f} \rangle, \mathbf{g} \rangle} \\ &= -\frac{\left[1 - 2x_{1}x_{2}/(1 + x_{1}^{2})^{2} \right]^{T} \begin{bmatrix} x_{1} + x_{2}/(1 + x_{1}^{2}) \\ -x_{2} \end{bmatrix}}{\begin{bmatrix} 1 - 2x_{1}x_{2}/(1 + x_{1}^{2})^{2} \end{bmatrix}^{T} \begin{bmatrix} 0 \\ 1 \end{bmatrix}} \\ &= -\frac{x_{1} + x_{2}/(1 + x_{1}^{2}) - 2x_{1}^{2}x_{2}/(1 + x_{1}^{2})^{2} - 2x_{1}x_{2}^{2}/(1 + x_{1}^{2})^{3} - x_{2}/(1 + x_{1}^{2})}{1/(1 + x_{1}^{2})} \\ &= -x_{1}(1 + x_{1}^{2}) + \frac{2x_{1}x_{2}}{1 + x_{1}^{2}} \left(x_{1} + \frac{x_{2}}{1 + x_{1}^{2}} \right), \end{split}$$

and

$$\beta(\mathbf{x}) = \frac{1}{L_{\mathbf{g}}L_{\mathbf{f}}\lambda(\mathbf{x})} = \frac{1}{1/(1+x_1^2)} = 1+x_1^2.$$

The state transformation $\mathbf{z} = \boldsymbol{\tau}(\mathbf{x})$ is given by

$$\boldsymbol{\tau}(\mathbf{x}) = \begin{pmatrix} \lambda(\mathbf{x}) \\ L_{\mathbf{f}}\lambda(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 + \frac{x_2}{1 + x_1^2} \end{pmatrix}.$$

This gives us transformed dynamics

$$\begin{cases} \dot{z}_1 = z_2 \\ \dot{z}_2 = v \end{cases} \tag{2}$$

To stabilize the linearized system (2), we let $v = -k_1z_1 - k_2z_2$ and use the characteristic equation of the closed loop system to design the feedback gains:

$$0 = \det[s\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})]$$

$$= \det\begin{bmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} k_1 & k_2 \end{pmatrix} \end{bmatrix} \end{bmatrix}$$

$$= \det\begin{pmatrix} s & -1 \\ k_1 & s + k_2 \end{pmatrix}$$

$$= s^2 + k_2 s + k_1.$$

This gives us the locations of the closed-loop poles:

$$s_{1,2} = \frac{-k_2 \pm \sqrt{k_2^2 - 4k_1}}{2}.$$

We only care about stability, so it suffices to choose $k_2 > 0$ and $k_1 \neq 0$. For example, we could pick $k_2 = 2$ and $k_1 = 1$ so that $s_1 = s_2 = -1$, both in the left-half plane. This gives us stability. The linear controller is then

$$v = -z_1 - 2z_2 = -x_1 - 2\left(x_1 + \frac{x_2}{1 + x_1^2}\right) = -3x_1 - \frac{2x_2}{1 + x_1^2}.$$

Finally we substitute this back into the equation for u, giving us the controller which stabilizes the origin of the full nonlinear system (1):

$$u_{fl} = \alpha(\mathbf{x}) + \beta(\mathbf{x})v$$

$$= -x_1(1+x_1^2) + \frac{2x_1x_2}{1+x_1^2} \left(x_1 + \frac{x_2}{1+x_1^2} \right) - (1+x_1^2) \left(3x_1 + \frac{2x_2}{1+x_1^2} \right)$$

$$= -2x_1(1+x_1^2) - 2\left(x_1 + \frac{x_2}{1+x_1^2} \right) \left(1 + x_1^2 - \frac{x_1x_2}{1+x_1^2} \right). \tag{3}$$

2.b. As an alternative method, we use integrator backstepping to design a stabilizing controller for (1). To write it in a form suitable for integrator backstepping design, we let $v := -x_2 + u$, so

$$\begin{cases} \dot{x}_1 = f(x_1) + g(x_1)x_2 = x_1 + \frac{1}{1 + x_1^2} x_2 \\ \dot{x}_2 = v \end{cases}$$
(4)

Taking x_2 as an input for the scalar equation $\dot{x}_1 = x_1 + \frac{1}{1+x_1^2}x_2$, we observe that we can stabilize x_1 using

$$x_2 = \phi(x_1) = -2x_1(1+x_1^2),$$

since this input gives

$$\dot{x}_1 = x_1 + \frac{1}{1 + x_1^2} [-2x_1(1 + x_1^2)] = -x_1.$$

Define a candidate Lyapunov function $V(x) := x_1^2/2$, which is positive definite and radially unbounded with

$$\dot{V}(x) = x_1 \dot{x}_1 = -x_1^2.$$

Hence the origin of $\dot{x}_1 = x_1 + \frac{1}{1+x_1^2}x_2$ with $x_2 = \phi(x_1) = -2x_1(1+x_1^2)$ is G.A.S. Now we use the change of variables

$$z_2 = x_2 - \phi(x_1) = x_2 + 2x_1(1 + x_1^2),$$

which transforms (4) into the form

$$\begin{cases} \dot{x}_1 = x_1 + \frac{1}{1 + x_1^2} [z_2 + \phi(x_1)] = -x_1 + \frac{1}{1 + x_1^2} z_2 \\ \dot{z}_2 = \dot{x}_2 - \dot{\phi}(x_1) = v + 2(1 + 3x_1^2) \dot{x} = v + 2(1 + 3x_1^2) \left(-x_1 + \frac{1}{1 + x_1^2} z_2 \right) \end{cases}$$
(5)

Next we consider a candidate composite Lyapunov function,

$$V_c(x_1, z_2) := \frac{1}{2}x_1^2 + \frac{1}{2}z_2^2.$$

 $V_c(\cdot)$ is clearly positive definite and radially unbounded. Further,

$$\dot{V}_c(x_1, z_2) = x_1 \dot{x}_1 + z_2 \dot{z}_2
= x_1 \left(-x_1 + \frac{1}{1 + x_1^2} z_2 \right) + z_2 \left[v + 2(1 + 3x_1^2) \left(-x_1 + \frac{1}{1 + x_1^2} z_2 \right) \right]
= -x_1^2 + z_2 \left[v + \frac{x_1 z_2}{1 + x_1^2} + 2(1 + 3x_1^2) \left(-x_1 + \frac{z_2}{1 + x_1^2} \right) \right].$$

Then we select

$$v = -z_2 - \left[\frac{x_1 z_2}{1 + x_1^2} + 2(1 + 3x_1^2) \left(-x_1 + \frac{z_2}{1 + x_1^2} \right) \right],$$

which gives us

$$\dot{V}_c(x_1, z_2) = -x_1^2 - z_2^2 \le 0$$

for all $(x_1, z_2) \in \mathbb{R}^2$, with equality if and only if $(x_1, z_2) = (0, 0)$. Hence this choice of v makes the origin of the transformed system (5) G.A.S. Moreover, since $\phi(0) = 0$, it follows that $z_2 = 0$ if and only if $x_2 = 0$, so this same choice of v globally stabilizes the origin of (4). Finally, for the original system this gives us

$$u_{bs} = v + x_2 = x_2 - z_2 - \left[\frac{x_1 z_2}{1 + x_1^2} + 2(1 + 3x_1^2) \left(-x_1 + \frac{z_2}{1 + x_1^2} \right) \right]$$

$$= x_2 - \left[x_2 + 2x_1(1 + x_1^2) \right]$$

$$- \left[\frac{x_1 \left[x_2 + 2x_1(1 + x_1^2) \right]}{1 + x_1^2} + 2(1 + 3x_1^2) \left(-x_1 + \frac{x_2 + 2x_1(1 + x_1^2)}{1 + x_1^2} \right) \right]$$

$$= -2x_1(2 + x_1 + 4x_1^2) - \frac{x_2}{1 + x_1^2} (2 + x_1 + 6x_1^2). \tag{6}$$

2.c. Lastly we compare the performance of the two controllers derived, u_{fl} (3) and u_{bs} (6). Fig. 1 shows the trajectories $(x_1(t), x_2(t))$ of the system (1) with these two controllers. Both x_1 and x_2 are zeroed, as we designed. There is also some overshoot, particularly with the x_2 variable, that was present for all initial conditions except (0,0). We note that u_{bs} , however, has significantly less overshoot, but approximately the same settling time as u_{fl} . Thus our integrator backstepping design has achieves better performance.

To guage the efficiency, we plot the control u against $\|\mathbf{x}\|_2$. This is a rather strange way of plotting the control effort. To do this, we chose \mathbf{x} along the line $x_2 = x_1$ for $x_1 \in (-3/\sqrt{2}, 0)$, then calculated u_{fl} and u_{bs} for these \mathbf{x} values. We plotted the controls against the norms for those \mathbf{x} values. Fig. 2 shows this plot.

Even though u is not a function of $\|\mathbf{x}\|_2$ directly, fig. 2 does give us a good idea of the control effort at any given point, and other graphs with different choices of \mathbf{x} values yield qualitatively similar results. Fig. 2 that in general, for any given \mathbf{x} , the control effort of u_{bs} is higher than that of u_{fl} . This suggests that u_{fl} is more efficient.

On the other hand, it is possible that the speed of the integrator backstepping controller drives it into more efficient regions more quickly. Fig. 2 also gives a plot of total control $\int_0^t |u(\tau)| d\tau$ versus t for the representative trajectory shown in fig. 1. This shows the total control effort to be roughly the same for both u_{bs} and u_{fl} . Note, however, that peak effort for u_{bs} is still, in general, higher. We conclude that the controller u_{bs} has better performance than u_{fl} , without needing more control effort overall.

Figure 1: Trajectories of the system (1) with controllers u_{fl} derived by feedback linearization (3) and u_{bs} derived by integrator backstepping (6). The initial condition used is $x_0 = (1,3)$; similar results hold for other initial conditions. Left: $x_1(t)$. Right: $x_2(t)$.

Figure 2: Control efforts u_{fl} derived by feedback linearization (3) and u_{bs} derived by integrator backstepping (6). Left: controls u_{fl} and u_{bs} plotted against $\|\mathbf{x}\|_2$ for \mathbf{x} on the line $x_2 = x_1$ for $x_1 \in \left(-3/\sqrt{2}, 0\right)$. Similar results hold for other \mathbf{x} . We see that in general, $|u_{fl}| < |u_{bs}|$ for given \mathbf{x} . Right: total control effort $\int_0^t |u(\tau)| d\tau$ versus t for initial condition used is $x_0 = (1, 3)$; similar results hold for other initial conditions. This shows that u_{bs} ends up requiring less total effort than u_{fl} in general.

