Chamblandes 2013 — Problème 2

Il s'agit de maximiser le volume de l'étui : $2 x \cdot x \cdot y = 2 x^2 y$.

La condition porte sur la somme des longueurs des deux barres et des quatre cadres :

$$12 = 2 \cdot y + 4 \cdot (x + 2x + x) = 16x + 2y.$$

En divisant par 2 cette condition, on en tire 6 = 8x + y, puis y = 6 - 8x.

En substituant cette dernière expression dans la formule du volume, on obtient :

$$f(x) = 2x^{2}(6 - 8x) = 12x^{2} - 16x^{3}$$

Il nous faut à présent étudier la croissance de la fonction f pour déterminer son maximum.

$$f'(x) = (12 x^2 - 16 x^3)' = 24 x - 48 x^2 = 24 x (1 - 2 x)$$

	() {	<u>l</u>
24 x	- (+	+
1-2x	+	+ () —
f'	l	+	-
\overline{f}) m		ax 📐

On conclut que le volume de l'étui est maximal si $x = \frac{1}{2}$.

Dans ce cas, $y = 6 - 8 \cdot \frac{1}{2} = 2$.