

	plt.xlabel plt.ylabel	L('f [Hz]')
	10 ⁻²⁶ -	Hanford Livingston
	2 10 ⁻³⁵ - 10 ⁻⁴¹ -	
Out[26]:		10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³ f [Hz] smooth the noise, using the smoothing function shown in class. This function effectively takes the noise array and convolves it an filter, which has the effect of removing all the small jitters in the power spectrum, but also broadens all features.
In [27]:	n=len(x=np.a x[n//2 kernel kernel vecft= kernel vec_sm	n_vector(vec, sig): (vec) arange(n) 2:]=x[n//2:]-n l=np.exp(-0.5*x**2/sig**2) #make a Gaussian kernel l=kernel/kernel.sum() =np.fft.rfft(vec) lft=np.fft.rfft(kernel) mooth=np.fft.irfft(vecft*kernelft) #convolve the data with the kernel n vec smooth
	H_noise_sm L_noise_sm plt.figure plt.loglog plt.loglog plt.xlabel plt.ylabel	<pre>mooth = smooth_vector(H_noise,10) mooth = smooth_vector(L_noise,10) e() g(fs[:-1],np.abs(H_noise_smooth),label = 'Hanford') g(fs[:-1],np.abs(L_noise_smooth),label = 'Livingston') L('f [Hz]') L(r'\$PSD\$')</pre>
	10 ⁻²⁷ -	
	10 ⁻³¹ - 10 ⁻³³ - 10 ⁻³⁵ - 10 ⁻³⁷ -	
	10 ⁻³⁹ -	Hanford Livingston 10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³ f [Hz]
Out[29]:	We can complete because we contained these Ninv_L, Ninv_L[fs[bute our N^{-1} matrix from there. However, we will set our entries of that matrix to 0 if we are above 1500 Hz or below 20Hz, cannot understand the noise from outside these bounds. Therefore, we will not use the frequencies components coming from a bounds when performing our match filter. $\frac{1}{L} = \frac{1}{L} = $
	templates. So d is our data, We then wan	form a match filter, which is basically a way of performing a least-squares fit for every possible shift between our data and our of we want to perform our usual operations $m=(A^TN^{-1}A)^{-1}(A^TN^{-1}d)$ where A is the template, N is the noise matrix, and for every possible overlap of the data and template. However, N is not diagonal in this case because we have stationary noise to write our least squares fit in a space where N is diagonal, in other words, we want to pre whiten our data and template. for looks like the following: $m=(A^TN^{-1}A)^{-1}(A^TN^{-1}d)$
		$m = (A^T N^{-1/2} I N^{-1/2} A)^{-1} (A^T N^{-1/2} I N^{-1/2} d)$ $m = (((N^{-1/2})^T A)^T I N^{-1/2} A)^{-1} (((N^{-1/2})^T A)^T I N^{-1/2} d)$ $m = (((N^{-1/2})^T A)^T I N^{-1/2} A)^{-1} (((N^{-1/2})^T A)^T I N^{-1/2} d)$ $M = ((N^{-1/2} A)^T I N^{-1/2} A)^{-1} ((N^{-1/2} A)^T I N^{-1/2} d)$ $m = (\tilde{A}^T I \tilde{A})^{-1} (\tilde{A}^T I \tilde{d})$ $N^{-1/2} M \text{ and is the pre-whitened array}$
	every possible So using a cre We repeat this	e an expression for our least-squares fit where we can use our noise model to perform our fit as usual. We still need to do it for le shift of the data and template so $m(\tau) = (\tilde{A}(t-\tau)^T\tilde{A}(t-\tau))^{-1}(\tilde{A}(t-\tau)^T\tilde{d}(t))$ ross-correlation, we can retreive our match filter as a function of time, which is $MF(t) = IFFT(FFT(\tilde{A})^* \times FFT(\tilde{d}))$ is for every event and every detector, using the corresponding template. We can then estimate the noise by taking the absolute time series of the MFs. Because the match filter is mostly noise except at the detection time, this will give us an estimate of the
In [31]:	<pre>fig,ax = p comb_SNRs</pre>	
	ax[i][H_stra L_stra t = H_ H_stra	<pre>range(len(H_events)): [0].set_ylabel(fnames[i][10:-16]) ain = H_events[i][0] ain = L_events[i][0] events[i][1]*np.arange(len(H_strain)) ainft = np.fft.rfft(win*H_strain) ainft = np.fft.rfft(win*L strain)</pre>
	tp = t tpft = H_tp_f L_tp_f H_mf =	<pre>templates[i][0] = np.fft.rfft(tp*win) filtered = tpft[:-1]*np.sqrt(Ninv_H) filtered = tpft[:-1]*np.sqrt(Ninv_L) = np.abs(np.fft.fftshift(np.fft.irfft(np.conj(H_tp_filtered)*H_strainft[:-1]*np.sqrt(Ninv_H) = np.abs(np.fft.fftshift(np.fft.irfft(np.conj(L_tp_filtered)*L_strainft[:-1]*np.sqrt(Ninv_H)</pre>
	L_mfs. ax[i][ax[i][H_nois L_nois	<pre>append(H_mf) .append(L_mf) [0].plot(t[:-2],H_mf) [1].plot(t[:-2],L_mf) se_est = np.mean(H_mf[len(H_mf)//4:-len(H_mf)//4]) se_est = np.mean(L_mf[len(L_mf)//4:-len(L_mf)//4]) = np.max(np.abs(H_mf))/H_noise_est</pre>
	L_SNR ax[i][ax[i][comb_S TP_adj opt_SN opt_SN	<pre>= np.max(np.abs(L_mf))/L_noise_est [0].set_xlabel('Noise = {} \nSNR = {}'.format(H_noise_est, H_SNR)) [1].set_xlabel('Noise = {} \nSNR = {}'.format(L_noise_est, L_SNR)) SNRs[i] = (H_SNR+L_SNR)/2 j = tp[::2] NRs_H = np.max(np.fft.irfft(np.conj(H_tp_filtered)*H_tp_filtered))**0.5 NRs_L = np.max(np.fft.irfft(np.conj(L_tp_filtered)*L_tp_filtered))**0.5 NRs[i] = 0.5*(opt_SNRs_H+opt_SNRs_L)</pre>
	ax[0][1].s fig.tight_	Set_title('Hanford detector') Set_title('Livingston detector') _layout() Hanford detector Livingston detector 2 -
	0.6 - 0.6 -	Noise = 0.12764472109978994 SNR = 22.439123256700764 Noise = 0.13524018365841825 SNR = 16.660554249294517
	0.4 - 0.2 - 0.0 -	0.4 - 0.2 - 0.0 - 0.4 - 0.2 -
	0.6 - 0.6 -	0.5 - 0.0 - 0.0 - 0.0 -
	O.0 - 0.0 - 0.0	0.4 0.2 0.0 5 10 15 20 25 30 Noise = 0.08000550389148459 SNR = 7.819781002854369 Noise = 0.07742215481239012 SNR = 6.8182355588879
	whitened tem is not the ider We repeat thi	be above, we also computed the ideal SNR given our templates and noise, that is, what would be the SNR given that our presuplates were exactly representative of the signals. The analytical SNR would then be $\frac{A^TA}{\sqrt{A^TA}} = \sqrt{A^TA}$. In our case, our noise intity matrix, so we have to account for that and use the pre-whitened template so our optimal SNR is $\sqrt{\tilde{A}^T\tilde{A}} = \sqrt{A^TN^{-1}A}$. It is for each event and each detector, and we take the mean of both the SNR from the scatter in the MFs and the analytical SNR int, which yields the following:
In [32]:	<pre>for i in r print(print(print(print() Event GW15 combined S</pre>	<pre>cange(len(comb_SNRs)): ('Event {}:\n'.format(fnames[i][10:-16])) ('combined SNR from scatter in MF = {}'.format(comb_SNRs[i])) ('optimal SNR = {}'.format(opt_SNRs[i])) ('\n') 50914:</pre> ENR from scatter in MF = 19.54983875299764
	event GW15 combined Soptimal SN	NR = 46.689677443208126 51226: SNR from scatter in MF = 10.123747471236353 NR = 19.09940477472321
	combined Soptimal SN Event LVT1 combined S	SNR from scatter in MF = 11.392750027355737 NR = 38.06738594509822
	cannot be exact this event had e) We now want	the SNR from the scatter in the MFs is considerably smaller than the optimal SNRs, which makes sense, as the templates used act representations of the physical events. For the event GW121226, we hit about 1/2 of the optimal SNR, which means that d the most accurate template. It to determine the frequency of each event. To do so, we can take the cumulative sum of the power spectrum of each prepalate. Looking at the power spectrum of the pre-whitened templates tell us what frequency components we are effectively
In [33]:	looking for in adding up free frequency config, ax = for i in r tp = t	the data. Taking the cumulative sum of that spectrum tells us "how much" of the filtered template we are reconstructing by equency components up to this frequency. Therefore, we can look at where this cumulative sum hits its halfway point, the rresponding to that point is the frequency for which half of the weight is above, and half of the weight is below. plt.subplots(len(templates), 2, figsize = (8,8)) cange(len(templates)): templates[i][0] np.fft.rfft(tp*win)
	ps = r. ps2 = fs2 = ax[i][ps_cum ax[i][mid = diff =	<pre>ltered = tpft[:-1]*np.sqrt(np.mean([Ninv_L,Ninv_H],axis = 0)) np.abs(tp_filtered)**2 ps[ps!=0] fs[:-1][ps!=0] [0].loglog(fs2,ps2) msum = np.cumsum(ps2) [1].loglog(fs2,ps_cumsum) ps_cumsum[-1]/2 = np.abs(ps_cumsum-mid) np.where(diff==np.min(diff))</pre>
	ax[i][ax[i][ax[-1][0].	<pre>[1].axvline(fs2[idx],linestyle = '',c='k') [1].set_title('Midpoint frequency = {} Hz'.format(fs2[idx][0]),loc = 'left') [0].set_ylabel(fnames[i][10:-16]) .set_xlabel('\$f\$') .set_xlabel('\$f\$') _layout()</pre> <pre>Midpoint frequency = 110.09375 Hz</pre>
	9 10 ²	$10^{6} - 10^{4} - 10^{2} = 10^{3}$ Midpoint frequency = 92.21875 Hz
	10 ⁻² - 10 ⁻⁶ - 10 ³ -	
	7010Z 10 ⁻² - 10 ⁻⁷ - 10 ²	$10^{6} - 10^{4} - 10^{2} - 10^{3}$ $10^{2} - 10^{3}$ $10^{8} - 10^{8}$ Midpoint frequency = 92.8125 Hz
	10-3 - 10-8 -	10^{6} 10^{4} 10^{2} 10^{3} 10^{3} 10^{2} 10^{3}
	width of the p but we take the detector. The Then, we know	certainty on the detection time, we look at the width of the peak of the match filter. The 1- σ uncertainty corresponds to half the peak when it drops below its maximum minus the estimate of the noise for that match filter. The peak is generally asymmetrical, the mean of the upper and lower limit to get an estimate. This gives an estimate of the error in the detection time for an individual of time delay between both detectors is simply $\Delta t = t_H - t_L $. We can get the error on the time delay, $\sigma_{\Delta t} = \sqrt{\sigma_{t,H}^2 + \sigma_{t,L}^2}$ but that the angle that the source makes with the vertical is $\theta = \arcsin(\frac{c\Delta t}{D})$, where c is the speed of light, and D is the
In [34]:	To get the typ lower 1- σ lim	ween the detectors. We propagate the error through the derivative method and get that $\sigma_\theta = \frac{c\Delta t}{D} \frac{1}{\sqrt{1-(\frac{c\sigma_{\Delta t}}{D})^2}}$ bical uncertainty, we here average over all time delays and time delay errors. The plot shows an example on the upper and lits for the Hanford events. $\sigma_\theta = \frac{c\Delta t}{D} \frac{1}{\sqrt{1-(\frac{c\sigma_{\Delta t}}{D})^2}}$ bical uncertainty, we here average over all time delays and time delay errors. The plot shows an example on the upper and lits for the Hanford events. $\sigma_\theta = \frac{c\Delta t}{D} \frac{1}{\sqrt{1-(\frac{c\sigma_{\Delta t}}{D})^2}}$
	deltats_er for i in r H_idx L_idx AH = r AL = r BH = r	<pre>np.zeros(len(H_mfs)) cr = np.zeros(len(H_mfs)) cange(len(H_mfs)):</pre>
	L_up_i H_low_ L_low_ deltat t_H_er t_L_er	idx = np.where(AH==np.min(AH))[0][0]+H_idx idx = np.where(AL==np.min(AL))[0][0]+L_idx _idx = np.where(BH==np.min(BH))[0][0] _idx = np.where(BL==np.min(BL))[0][0] cs[i] = np.abs(t[H_idx]-t[L_idx]) cr = 0.5*(np.abs((t[H_up_idx]-t[H_idx]))+np.abs(t[H_low_idx]-t[H_up_idx])) cr = 0.5*(np.abs((t[L_up_idx]-t[L_idx]))+np.abs(t[L_low_idx]-t[L_up_idx]))
	ax[i]. ax[i]. ax[i].	<pre>cs_err[i] = np.sqrt(t_H_err**2+t_L_err**2) .plot(t[:-2],np.abs(H_mfs[i])) .set_xlim(t[H_low_idx]-50*dt,t[H_up_idx]+50*dt) .vlines([t[H_idx],t[H_low_idx],t[H_up_idx]],0,[np.abs(H_mfs[i][H_idx]),np.abs(H_mfs[i][H_low_idx]) .set_xlim(t[H_idx],t[H_low_idx],t[H_up_idx]],0,[np.abs(H_mfs[i][H_idx]),np.abs(H_mfs[i][H_low_idx])</pre>
	3	
	1 0	
	1 0 0.6 0.4 0.2	16.430 16.435 16.440 16.445 16.450
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5	16.430 16.435 16.440 16.445 16.450 5.635 16.640 16.645 16.650 16.655 16.660 5.595 16.600 16.605 16.610 16.615 16.620
	1 0 0.6 0.4 0.2 0.0 16 1.0	16.430 16.435 16.440 16.445 16.450 5.635 16.640 16.645 16.650 16.655 16.660 5.95 16.600 16.605 16.610 16.615 16.620
In [35]: In [36]:	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.6 0.4 0.2 0.0 16.0 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.650 16.655 16.660 16.430 16.435 16.440 16.445 16.450 16.430 16.435 16.440 16.445 16.450 1 deriv(x): 1 (1-x*-2)**(-0.5) typ_err_dt*c/D*arcsin_deriv(c*typ_dt/D) typ_err_dt*d*c/D*arcsin_deriv(c*typ_dt/D) typ_err_dt*d*c/D*arcsin_deriv(c*typ_dt/D) typ_err_dt*d*d*d*d*d*d*d*d*d*d*d*d*d*d*d*d*d*d*
	1 0 0.6 0.4 0.2 0.0 16 0.5 0.6 0.4 0.2 0.0 16 0.6 0.4 0.2 0.0 0.0 16 def arcsin return typ_dr = r	16.430 16.435 16.440 16.445 16.450 16.430 16.435 16.640 16.645 16.650 16.655 16.660 16.430 16.435 16.440 16.445 16.450 16.430 16.435 16.440 16.445 16.450 17. mean(deltats_err) 19. mean(deltats_err) 10. mean(deltats) 10. (1-x**2)**(-0.5) 10. typ_err_dt*c/D*arcsin_deriv(c*typ_dt/D)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)
	1 0 0.6 0.4 0.2 0.0 16 1.0 0.5 0.0 16. 0.6 0.4 0.2 0.0 typ_err_dt typ_dt = n c = 3e8 D = 1e6 def arcsin return typ_err = print(r'Th {} rad'.fc The typical	16.430 16.435 16.440 16.445 16.450 16.635 16.640 16.645 16.655 16.660 16.635 16.600 16.605 16.610 16.615 16.620 16.430 16.435 16.440 16.445 16.450 18. = np.mean(deltats_err) 19. mean(deltats) 19. mean(deltats) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. (1-x**2)**(-0.5) 10. mean(deltats) 10. mean(deltats)