MATH 8510, Abstract Algebra I Fall 2016 Exercises 8-2 Due date Thu 20 Oct 4:00PM

Exercise 1 (5.2). Write a list of the non-isomorphic abelian groups of order 270 in terms of their elementary divisor decompositions. For each group in this list, write its invariant factor decomposition.

Solution:

Let G be an abelian group of order 270.

$$270 = 2 \times 3^3 \times 5.$$

Since 3 = 3, 3 = 1 + 2 and 3 = 1 + 1 + 1, we have 3 non-isomorphic abelian groups of order 270 and they are

$$\begin{split} & (\mathbb{Z}/27\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}); \\ & (\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}); \\ & (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}). \end{split}$$

Next we compute their invariant factor decomposition.

(1)

$$(\mathbb{Z}/27\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \cong \mathbb{Z}/270\mathbb{Z}$$

(2)

$$(\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \cong (\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$$

$$\cong (\mathbb{Z}/90\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$$

(3)

$$\begin{split} & (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \\ & \cong (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \\ & \cong (\mathbb{Z}/30\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \end{aligned}$$

Exercise 2 (5.4.11). Let H and K be characteristic subgroups of a group G such that $H \cap K = \{e\}$ and G = HK. Prove that $Aut(G) \cong Aut(H) \times Aut(K)$.

Proof. Since H and K be characteristic subgroups of a group G,

$$H \triangleleft G$$
 and $K \triangleleft G$.

Besides,

$$H \cap K = \{e\}.$$

Then by Theorem 5.4, we have

$$H \times K \cong HK = G$$
.

Let $\sigma \in \operatorname{Aut}(H)$ and $\tau \in \operatorname{Aut}(K)$. Define $\sigma \times \tau$ as

$$\begin{split} \sigma \times \tau : H \times K &\to H \times K \\ (h,k) &\mapsto (\sigma(h),\tau(k)) \end{split}$$

Then we show $\sigma \times \tau \in \text{Aut}(H \times K)$.

Let $(h_1, k_1), (h_2, k_2) \in H \times K$.

Since $\sigma \in Aut(H)$, and $\tau \in Aut(K)$, σ, τ are homomorphisms.

$$\begin{split} \sigma \times \tau \left((h_1, k_1)(h_2, k_2) \right) &= \sigma \times \tau (h_1 h_2, k_1 k_2) \\ &= (\sigma(h_1 h_2), \tau(k_1 k_2)) \\ &= (\sigma(h_1) \sigma(h_2), \tau(k_1) \tau(k_2)) \\ &= (\sigma(h_1), \tau(k_1)) \left(\sigma(h_2), \tau(k_2) \right) \\ &= (\sigma \times \tau(h_1, k_1)) \left(\sigma \times \tau(h_2, k_2) \right), \end{split}$$

Therefore, $\sigma \times \tau$ is a homomorphism.

Let $(h, k) \in H \times K$ where $h \in H, k \in K$.

Since $\sigma \in \operatorname{Aut}(H)$, and $\tau \in \operatorname{Aut}(K)$, σ and τ are isomomorphsims.

So $\sigma(h) = e_G$ and $\tau(k) = e_G$ if and only if $h = e_G$ and $k = e_G$.

$$\begin{split} (h,k) \in \mathrm{Ker}(\sigma \times \tau) &\Leftrightarrow \sigma \times \tau(h,k) = (e_G,e_G) \\ &\Leftrightarrow (\sigma(h),\tau(k)) = (e_G,e_G) \\ &\Leftrightarrow \sigma(h) = e_G \text{ and } \tau(k) = e_G \\ &\Leftrightarrow h = e_G \text{ and } k = e_G \\ &\Leftrightarrow (h,k) = (e_G,e_G), \end{split}$$

so

$$Ker(\sigma \times \tau) = (e_G, e_G).$$

So $\sigma \times \tau$ is 1-1.

Let $(h', k') \in (H, K)$, where $h \in H, k \in K$.

We have shown before that $\sigma^{-1} \in \operatorname{Aut}(H)$ and $\tau^{-1} \in \operatorname{Aut}(K)$ when $\sigma \in \operatorname{Aut}(H)$ and $\tau \in \operatorname{Aut}(K)$.

Then $\sigma^{-1}(h') \in H$ and $\tau^{-1}(k') \in K$.

So

$$\left(\sigma^{-1}(h'),\tau^{-1}(k')\right)\in H\times K.$$

Since by the definition of $\sigma \times \tau$,

$$\boldsymbol{\sigma}\times\boldsymbol{\tau}\left(\boldsymbol{\sigma}^{-1}(\boldsymbol{h}'),\boldsymbol{\tau}^{-1}(\boldsymbol{k}')\right)=(\boldsymbol{h}',\boldsymbol{k}'),$$

 $\sigma \times \tau$ is onto.

Therefore,

$$\sigma \times \tau \in \operatorname{Aut}(G)$$
.

Next we define ϕ as

$$\phi: \operatorname{Aut}(H) \times \operatorname{Aut}(K) \to \operatorname{Aut}(H \times K)$$
$$(\sigma, \tau) \mapsto \sigma \times \tau$$

Since we have show $\sigma \times \tau \in \operatorname{Aut}(H \times K)$, ϕ is well-defined.

Let $(\sigma_1, \tau_1), (\sigma_2, \tau_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, where $\sigma_1, \sigma_2 \in \operatorname{Aut}(H)$ and $\tau_1, \tau_2 \in \operatorname{Aut}(K)$.

Let $(h, k) \in H \times K$ where $h \in H, k \in K$.

$$((\sigma_{1}\sigma_{2}) \times (\tau_{1}\tau_{2})) (h, k) = ((\sigma_{1}\sigma_{2})(h), (\tau_{1}\tau_{2})(k))$$

$$= (\sigma_{1}(\sigma_{2}(h)), \tau_{1}(\tau_{2}(k)))$$

$$= (\sigma_{1} \times \tau_{1})(\sigma_{2}(h), \tau_{2}(k))$$

$$= (\sigma_{1} \times \tau_{1}) ((\sigma_{2} \times \tau_{2})(h, k))$$

$$= ((\sigma_{1} \times \tau_{1})(\sigma_{2} \times \tau_{2})) (h, k),$$

so

$$(\sigma_1\sigma_2)\times(\tau_1\tau_2)=(\sigma_1\times\tau_1)(\sigma_2\times\tau_2)$$

Then

$$\phi((\sigma_1, \tau_1)(\sigma_2, \tau_2)) = \phi(\sigma_1 \sigma_2, \tau_1 \tau_2)$$

$$= (\sigma_1 \sigma_2) \times (\tau_1 \tau_2)$$

$$= (\sigma_1 \times \tau_1)(\sigma_2 \times \tau_2)$$

$$= (\phi(\sigma_1, \tau_1)) (\phi(\sigma_2, \tau_2)).$$

So ϕ is a homomorphism.

Let $(\sigma, \tau) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, where $\sigma \in \operatorname{Aut}(H)$ and $\tau \in \operatorname{Aut}(K)$. Let id_H and id_K be the identity maps of H and K, respectively. Let $id_{H \times K}$ be the identity map of $\operatorname{Aut}(H \times K)$.

$$(\sigma, \tau) \in \operatorname{Ker}(\phi) \Leftrightarrow \phi(\sigma, \tau) = id_{H \times K}$$
$$\Leftrightarrow \sigma \times \tau = id_{H \times K}$$
$$\Leftrightarrow \sigma \times \tau = id_{H} \times id_{K}$$
$$\Leftrightarrow (\sigma, \tau) = (id_{H}, id_{K})$$

So ϕ is 1-1.

Let $\pi \in Aut(H \times K)$.

Define two maps $\pi_H: H \to H$ and $\pi_K: K \to K$ by $(\pi_H(h), 1) = \pi(h, 1)$ and $(1, \pi_K(k)) = \pi(1, k)$ (Not true in general for cartesian products).

Repeat the similar processes as previous ones,

we have π_H and π_K are well-defined and $\pi_H \in \operatorname{Aut}(H)$ and $\pi_K \in \operatorname{Aut}(K)$.

Let $(h, k) \in H \times K$ where $h \in H, k \in K$.

$$\begin{split} \pi(h,k) &= \pi((h,1)(1,k)) \\ &= \pi(h,1)\pi(1,k) \\ &= (\pi_H(h),1) (1,\pi_K(k)) \\ &= (\pi_H(h),\pi_K(k)) \\ &= \pi_H \times \pi_K(h,k), \end{split}$$

so $\pi = \pi_H \times \pi_K$.

Thus, ϕ is onto.

As a result,

$$\operatorname{Aut}(H) \times \operatorname{Aut}(K) \cong \operatorname{Aut}(H \times K)$$

Since we have show

$$H \times K \cong G,$$

 $\operatorname{Aut}(G) \cong \operatorname{Aut}(H \times K).$

Hence,

$$\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$$

Use this to prove that if G is a finite abelian group, then Aut(G) is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.

Proof. Let $\{P_i\}_{i=1}^n$ be the collection of all the Sylow subgroups of G_n (Use G is better, in the following just use one grp G, not the whole group).

Then $G_n = P_1 P_2 \dots P_n$.

Since G_n is abelian and $P_i \leq G_n$ for $1 \leq i \leq n$,

$$P_i \triangleleft G_n$$
.

So the Sylow $|P_i|$ -subgroup is unique for $1 \le i \le n$.

Thus, $P_i \cap P_j = \{e_{G_n}\}$ for $1 \le i, j \le n$ and $i \ne j$.

Besides, by Corollary 4.5.6, P_i is a characteristic subgroup of G_n for $1 \le i \le n$.

We will show it by induction.

Basic steps:

When n = 1, it is a trivial case since the only Sylow subgroup is G_n and $\operatorname{Aut}(G_n) \cong \operatorname{Aut}(G_n)$.

We have just showed the case for n=2.

Inductive steps:

Assume

$$\operatorname{Aut}(G_n) = \operatorname{Aut}(P_1 P_2 \dots P_n) \cong \prod_{i=1}^n \operatorname{Aut}(P_i).$$

Let $\{Q_i\}_{i=1}^{n+1}$ be the collection of all the Sylow subgroups of J_{n+1} .

Then $J_{n+1} = Q_1 Q_2 \dots Q_{n+1}$.

Similarly, we have for i = 1, 2, ..., n + 1,

$$Q_i \subseteq J_{n+1}$$
.

For 1 < i, j < n+1 and $i \neq j$,

$$Q_i \cap Q_j = \{e_{J_{n+1}}\}.$$

For $1 \le i \le n+1$, Q_i is a characteristic subgroup of J_{n+1} .

Let
$$J_n = Q_1 Q_2 \dots Q_n$$
.

Then it is obvious that $\{Q_i\}_{i=1}^n$ is the collection of all the Sylow subgroups of J_n . Let $\sigma \in \operatorname{Aut}(J_{n+1})$.

Then for i = 1, 2, ..., n, $\sigma(Q_i) = Q_i$ since Q_i is a characteristic subgroup of J_{n+1} . Since σ is a homomorphism,

$$\sigma(J_n) = \sigma(Q_1 Q_2 \dots Q_n)$$

$$= \sigma(Q_1) \sigma(Q_2) \dots \sigma(Q_n)$$

$$= Q_1 Q_2 \dots Q_n$$

$$= J_n.$$

So J_n is a characteristic subgroup of J_{n+1} .

Since for $1 \le i, j \le n+1$ and $i \ne j$,

$$Q_i \cap Q_j = \{e_{J_{n+1}}\},\$$

and $J_n = Q_1 Q_2 \dots Q_n$, we have

$$J_n \cap Q_{n+1} = \{e_{J_{n+1}}\}.$$

We already have Q_{n+1} is a characteristic subgroup of J_{n+1} . Besides,

$$J_{n+1} = J_n Q_{n+1}.$$

By the conclusion we just made,

$$\operatorname{Aut}(J_{n+1}) \cong \operatorname{Aut}(J_n) \times \operatorname{Aut}(Q_{n+1}).$$

By the inductive assumption, we have

$$\operatorname{Aut}(J_n) = \operatorname{Aut}(Q_1 Q_2 \dots Q_n) \cong \prod_{i=1}^n \operatorname{Aut}(Q_i).$$

Thus,

$$\operatorname{Aut}(J_{n+1}) \cong \left(\prod_{i=1}^n \operatorname{Aut}(Q_i)\right) \times \operatorname{Aut}(Q_{n+1}).$$

Namely,

$$\operatorname{Aut}(J_{n+1}) \cong \prod_{i=1}^{n+1} \operatorname{Aut}(Q_i).$$

Thus, the assumption also holds for J_{n+1} .

As a result, if $\{P_i\}_{i=1}^n$ is the collection of all the Sylow subgroups of a finite abelian group G, then

$$\operatorname{Aut}(G) \cong \prod_{i=1}^n \operatorname{Aut}(P_i).$$