Fonctions

William Hergès ¹

4 octobre 2024

Table des matières

1	Ensemble de définition et continuité	2
2	Propriétés des applications	2
3	Grands théorèmes	4
4	Dérivation	5

Ensemble de définition et continuité

Une fonction f de A dans B prend toutes les valeurs dans A et lui associe une unique valeur dans B.

On appelle A le domaine de définition de f et B l'ensemble d'arrivée de f. On dit que f est de $\mathbb R$ dans $\mathbb R.$

Définition 2

Une fonction $f:I\to E$ est continue si et seulement si : $\forall x\in I,\quad \lim_{n\to x_0}f(x)=f(x_0)$

$$\forall x \in I, \quad \lim_{n \to x_0} f(x) = f(x_0)$$

2. Propriétés des applications

Définition 3

Une fonction f de A dans B est surjective si et seulement si :

$$\forall y \in B, \quad \exists x \in A, \quad f(x) = y$$

Tous les éléments de ${\cal B}$ sont atteints, comme la tarte.

Définition 4

Une fonction f de A dans B est injective si et seulement si :

$$\forall (x_1, x_2) \in A^2, \quad f(x_1) = f(x_2) \implies x_1 = x_2$$

Chaque élément de A possède une image unique.

Définition 5

Une fonction f de A dans B est bijective si et seulement si elle est injective et surjective.

Tous les éléments de B sont atteints et est l'image d'un unique antécédent de A.

Définition 6

Une fonction f de A dans B est paire si et seulement si :

$$\forall x \in \mathbb{R}, \quad f(x) = f(-x)$$

Définition 7

Une fonction f de A dans B est impaire si et seulement si :

$$\forall x \in \mathbb{R}, \quad f(x) = -f(x)$$

Définition 8

Si f de A dans B est bijective, alors il existe une fonction réciproque notée f^{-1} de B dans A tel que :

$$\forall a \in A, \quad f^{-1}(f(a)) = a$$

☐ Démonstration. AQT

Définition 9

On dit que f est T-périodique si et seulement si : $\forall x \in A, \quad f(x) = f(x+T)$

$$\forall x \in A, \quad f(x) = f(x+T)$$

Grands théorèmes

Théorème des valeurs intermédiaires

Théorème 9.1 Théorème des valeurs intermédiaires Si f est continue sur [a,b], si pour tout y inclus entre f(a) et f(b), il existe $c \in [a,b]$ tel que f(c)=y.

☐ *Démonstration*. Admis

Théorème 9.2

Théorème de la bijection

Soit f une fonction de $\left[a,b\right]$ dans E. Si f est strictement croissante (resp. strictement décroissante), alors :

$$\forall y \in [f(a), f(b)], \quad \exists ! c \in [a, b], \quad f(c) = y$$

☐ *Démonstration*. Admis

Dérivation

Définition 10

La dérivée de f de A dans B est :

$$f'$$

$$\begin{cases}
A \to b \\
x \longmapsto \lim_{t \to x_0} \frac{f(t) - f(x)}{t - x}
\end{cases}$$

si la limite est définie.

Proposition 10.1

Soient deux fonctions f et g dérivables.

$$(f+g)' = f' + g'$$

$$(fg)' = f'g + g'f$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

☐ Démonstration. AQT

Définition 11

Soient $f:A\to B$ et $g:B\to C.$ On définit $g\circ f$ la composée de f par g tel que :

$$g \circ f \begin{cases} A \to C \\ x \longmapsto g(f(x)) \end{cases}$$

Proposition 11.1

La dérivée de $g\circ f$ est

$$g \circ f' \times f'$$

☐ Démonstration. Chiant mais AQT

Théorème 11.2

La dérivée de f^{-1} est (si elle est dérivable) :

$$f^{-1}'(x) = \frac{1}{f'(f^{-1}(y))}$$

 \square Démonstration. Chiant, mais très intuitif graphiquement