Bayesian Neural Networks

Ava, Conor, Taylor

Reed College

April 28, 2024

Figure: Example neural network neuron

Issues with Neural Networks

- Stir data and pray
- Interpretability problems
- Lots of data required
- Risk of overfitting
- Unpredictable failures to generalize
- No uncertainty quantification
- Computationally expensive

Figure: XKCD: "Machine Learning" [5]

Bayesian Neural Networks Simulation Closing References

Convolutional Neural Networks (CNN)

Convolutional Kernel Input Matrix

Output Feature Map

Ava, Conor, Taylor (Reed College)

Figure: CNN pipeline [10]

Bayesian Neural Networks

Why we use CNNs

Neural Networks

000000

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

ANSWER QUICKLY-OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

Figure: XKCD: "Self Driving" [6]

- Fewer parameters
- Encode spatial patterns
- More efficient for image tasks

April 28, 2024

eural Networks Bayesian Neural Networks Simulation Closing Reference

Bayesian Neural Network

Ava, Conor, Taylor

or (Reed College)

Bayesian Neural Networks

BNN Neuron

Neural Networks

Figure: Example BNN Neuron [2]

Ava, Conor, Taylor (Reed College)

Bayesian Neural Networks Simulation Closing References

Why we use BNN

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

Figure: XKCD: "Error Bars" [6]

- Well-calibrated uncertainty
- Handles sparse data while minimizing overfitting
- More predictable failures
- Formalizes prior knowledge and assumptions
- Inherent sequentiality

Ava, Conor, Taylor (Reed College)

Applications

Neural Networks

THE SIMPLE ANSWERS

TO THE QUESTIONS THAT GET ASKED ABOUT EVERY NEW TECHNOLOGY:

WILL MAKE US ALL GENIUSES?	NO
WILL MAKE US ALL MORONS?	NO
WILL DESTROY WHOLE INDUSTRIES?	YES
WILL MAKE US MORE EMPATHETIC?	NO
WILL MAKE US LESS CARING?	NO
WILL TEENS USE FOR SEX?	YES
WERE THEY GOING TO HAVE SEX ANYWAY?	YES
WILL DESTROY MUSIC?	NO
WILL DESTROY ART?	NO
BUT CAN'T WEGO BACK TO A TIME WHEN-	NO
WILL BRING ABOUT WORLD PEACE?	NO
WILL CAUSE WIDESPREAD ALIENATION BY CREATING A WORLD OF EMPTY EXPERIENCES?	WE WERE AUREADY ALIENATED

- Uncertainty quantification
 - Engineering, Medicine, Finance. ...
- Sparse data
 - Anywhere data is expensive
 - Medical diagnosis
 - Molecular biology
- Warnings before failing to generalize
 - Autonomous driving
 - Engineering
- Sequentiality

Figure: XKCD: "Simple Answers" [8]

Difference between BNNs and BCNNs

Figure: XKCD: "The General Problem" [9]

The relationship between BNNs and BCNNs is the same as NNs and CNNs.

leural Networks Bayesian Neural Networks Simulation Closing References

CIFAR-10

Bayesian Neural Networks Simulation Closing F

Hyperparameters

Hyperparameter	CNN	BCNN
Epochs	100	100
Learning Rate	0.001	0.003
Regularization Rate	0.001	0.001
Optimizer	Adamw	Adamw

Bayesian Neural Networks Simulation Closing Reference: 00000 0 0 00000 0

Results

Metric	CNN	BCNN
Train Accuracy	84.96%	81.27%
Validation Accuracy	61.76%	59.21%
Time to Train	16 min 11 sec	22 min 11 sec

Accuracy over time (CNN)

Simulation 00000000

Accuracy over time (BNN)

17 / 23

Confusion Matrix (CNN)

Confusion Matrix (BCNN)

Live Demo

Figure: XKCD: "Laws of Physics" [4]

Neural Networks

I HAVE A QUESTION. WELL, LESS OF A QUESTION AND MORE OF A COMMENT. I GUESS IT'S LESS OF A COMMENT AND MORE OF AN UTTERANCE REALLY IT'S LESS AN UTTERANCE. MORE AN AIR PRESSURE WAVE. IT'S LESS AN AIR PRESSURE WAVE AND MORE A FRIENDLY HAND WAVE. I GUESS IT'S LESS A FRIENDLY WAVE THAN IT IS A FRIENDLY BUG. I FOUND THIS BUG AND NOW WE'RE FRIENDS. DO YOU WANT TO MEET IT?

Figure: XKCD: "Conference Question" [7]

- [1] Jacek Fleszar. "Bayesian Neural Networks - Capturing The Uncertainty Of The Real World!!" In: (Sept. 2023).
- [2] Florian Häse et al. "How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry". In: Chemical science 10.8 (2019), pp. 2298–2307.
- [3] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. "CIFAR-10 (Canadian Institute for Advanced Research)". In: (). URL: http://www.cs.toronto.edu/~kriz/cifar.html.
- [4] Randall Monroe. XKCD: Laws of Physics. Apr. 2016.
- [5] Randall Monroe. XKCD: Machine Learning. May 2017.
- [6] Randall Monroe. XKCD: Self Driving. Oct. 2017.

22 / 23

References II

- [7] Randall Monroe. XKCD: Self Driving. Aug. 2019.
- [8] Randall Monroe. XKCD: Simple Answers. Nov. 2013.
- [9] Randall Monroe. XKCD: The General Problem. Nov. 2011.
- [10] Sumit Saha. "A Guide to Convolutional Neural Networks the ELI5 way". In: (Dec. 2018).

