E-LSTM: Efficient Inference of Sparse LSTM on Embedded Heterogeneous System

Runbin Shi¹ Junjie Liu¹ Shuo Wang² Yun Liang² Hayden So ¹

¹Department of Electrical and Electronic Engineering The University of Hong Kong

²Center for Energy-efficient Computing and Applications School of EECS, Peking University

Design Automation Conference, June 2019

Table of Contents

- Background
 - LSTM-based Neural Networks
 - Target Embedded-Platform of E-LSTM
- 2 Method: An Area-saving Sparse Weight Format (eSELL)
- 3 Method: Optimizations for LSTM Inter-Cell Parallelism
 - Generic E-LSTM Architecture and Throughput Bottleneck
 - Optimization with Inherent Sparsity in LSTM Arithmetic
 - Scheduling with Cell-fusion
- 4 Experiments and Evaluation
- Conclusion

Iterative Cell Evaluation in LSTM Inference

An illustration of the LSTM-cell iteration.

Figure: The LSTM cell and its iterative evaluation over temporal sequence.

Iterative Cell Evaluation in LSTM Inference

An illustration of the LSTM-cell iteration.

Figure: The LSTM cell and its iterative evaluation over temporal sequence.

Arithmetic of LSTM-cell Computation

Figure: Detail dataflow in the LSTM cell.

$$f_{t} = \sigma(\mathbf{W}_{f} \times_{t} + \mathbf{U}_{f} h_{t-1} + b_{f})$$

$$i_{t} = \sigma(\mathbf{W}_{i} \times_{t} + \mathbf{U}_{i} h_{t-1} + b_{i})$$

$$c_{t} = f_{t} \cdot c_{t-1} + i_{t} \cdot \tanh(\mathbf{W}_{c} \times_{t} + \mathbf{U}_{c} h_{t-1} + b_{c})$$

$$(1)$$

$$(2)$$

$$(3)$$

$$o_t = \sigma(\frac{\mathbf{W_o} x_t}{\mathbf{V_o} h_{t-1}} + b_o) \tag{4}$$

$$h_t = o_t \cdot tanh(c_t)$$
 (5)

Heavy Workload v.s. Low Performance of Embedded CPU

Main Computational Workload of LSTM

Matrix-vector multiplication:

$$m{W}x_t, \quad m{W} = (m{W_f}, m{W_i}, m{W_c}, m{W_o})^T \in \mathbb{R}^{4n \times m}, x_t \in \mathbb{R}^m$$
 $m{U}h_t, \quad m{U} = (m{U_f}, m{U_i}, m{U_c}, m{U_o})^T \in \mathbb{R}^{4n \times n}, h_t \in \mathbb{R}^n$

In a benchmark layer for machine comprehension, m=n=1500, one sequence has 35 time steps (cell iteration). 630,000,000 MACC operations for each sequence. One LSTM layer costs 0.63 second on a CPU with 1 GOp/s.

Heavy Workload v.s. Low Performance of Embedded CPU

Main Computational Workload of LSTM

Matrix-vector multiplication:

$$m{W} x_t, \quad m{W} = (m{W}_f, m{W}_i, m{W}_c, m{W}_o)^T \in \mathbb{R}^{4n \times m}, x_t \in \mathbb{R}^m$$
 $m{U} h_t, \quad m{U} = (m{U}_f, m{U}_i, m{U}_c, m{U}_o)^T \in \mathbb{R}^{4n \times n}, h_t \in \mathbb{R}^n$

Sparsity in Weight Matrix

Sparsity(
$$W, U$$
) $\in [0.2, 0.8]$

CPU performance decreases while computing Sparse matrix-vector multiplication (SpMV).

Embedded Solution for LSTM Inference

A heterogeneous system coupling CPU and a generic LSTM accelerator.

Target Platform: Tightly-coupled Heterogeneous System

Advantages:

- **lower latency:** 30 cycles (DRAM access) *v.s.* 1 cycle (DCache access via ROCC)
- smaller area: DRAM Controller (Accel)

Limitations:

- chip-area limitation: off-chip weight storage
- ROCC bandwidth: 64bits/cycle

Figure: Tightly-coupled Arch.

Table of Contents

- Background
 - LSTM-based Neural Networks
 - Target Embedded-Platform of E-LSTM
- 2 Method: An Area-saving Sparse Weight Format (eSELL)
- Method: Optimizations for LSTM Inter-Cell Parallelism
 - Generic E-LSTM Architecture and Throughput Bottleneck
 - Optimization with Inherent Sparsity in LSTM Arithmetic
 - Scheduling with Cell-fusion
- 4 Experiments and Evaluation
- Conclusion

eSELL: Area-saving Sparse Weight Format

Access Coalescing

Figure: Column-major SpMV with Compressed Sparse Column (CSC) format, 4 MACC per cycle.

Figure: Coalesced access to result buffer, 4 MACC per cycle, 63% area reduction to CSC.

SRAM Area Estimation [?]

area $\propto (\#bits)^{0.9} \times (\#port)^{0.7}$

eSELL: Area-saving Sparse Weight Format

Weight Format Construction

Figure: Steps for eSELL weight format construction.

eSELL: Area-saving Sparse Weight Format

Alignment to ROCC Interface

Figure: eSELL storage / transmission pattern aligned with ROCC 64-bits interface.

Table of Contents

- Background
 - LSTM-based Neural Networks
 - Target Embedded-Platform of E-LSTM
- 2 Method: An Area-saving Sparse Weight Format (eSELL)
- 3 Method: Optimizations for LSTM Inter-Cell Parallelism
 - Generic E-LSTM Architecture and Throughput Bottleneck
 - Optimization with Inherent Sparsity in LSTM Arithmetic
 - Scheduling with Cell-fusion
- 4 Experiments and Evaluation
- Conclusion

Generic Accelerator Hardware for Embedded LSTM

Figure: Accelerator architecture in E-LSTM.

Throughput Bottleneck

Pipeline diagram for single SpMV-PE case.

Figure: Process cell iterations in sequence; both ROCC and PE are fully utilized.

Throughput Bottleneck

Pipeline diagram for multiple SpMV-PE case.

Figure: Process Wx_t in parallel and Uh_t in sequence.

Throughput Bottleneck

Pipeline diagram for multiple SpMV-PE case.

Figure: Process Wx_t in parallel and Uh_t in sequence.

Pipeline Stall

 $\boldsymbol{W}x_t$ and $\boldsymbol{U}h_t$ cannot be computed concurrently, as the ROCC can only load one word of \boldsymbol{W} or \boldsymbol{U} in each cycle. Thus the stall of PE is unavoidable, and $\boldsymbol{U}h_t$ becomes the throughput bottleneck.

Optimization1: Shorten Uh_t period with inherent sparsity of h_t

Backtrace of h_t computation:

$$egin{aligned} oldsymbol{o_t} &= \sigma(oldsymbol{W_o} x_t + oldsymbol{U_o} h_{t-1} + b_o) \ h_t &= oldsymbol{o_t} \cdot anh(c_t) \end{aligned}$$

Inherent sparsity of h_t

As $P(o_t < 0.1) \approx 0.32$, and $tanh(c_t) \in (-1,1)$, a considerable portion of h_t is closed to zero that can be regarded as zero in $\boldsymbol{U}h_t$ computation.

Optimization1: Shorten Uh_t period with inherent sparsity of h_t

Sparse-Matrix Sparse-Vector Multiplication (SpMSpV) in Uh_t

Figure: SpMSpV: $\boldsymbol{U}\boldsymbol{h}_t$ computation considering inherent sparsity of \boldsymbol{h}_t .

In this example, SpMSpV achieves $3\times$ speedup on $\boldsymbol{U}h_t$ computation.

Inter-cell Parallel Scheme: Cell-fusion

Cell-fusion Scheme

Assuming there are N_{pe} PEs, we set $(N_{pe}-1)$ of them process $\boldsymbol{W}x_t$ (SpMV) and the rest one process $\boldsymbol{U}h_t$ (SpMSpV). Besides, each SpMV-PE process $\boldsymbol{W}x_t$ of N_{fuse} cell iterations in interleave.

Inter-cell Parallel Scheme: Cell-fusion

Advantage: Wx_t and Uh_t are processed in concurrent. In every N_{fuse} cycles, ROCC interface is occupied by loading W for 1 cycle and loading U for $(N_{fuse} - 1)$ cycles.

Fine-tuning fusion factor (N_{fuse}) in Cell-fusion

Fine-tuning N_{fuse} for the minimum computation period.

Fine-tuning fusion factor (N_{fuse}) in Cell-fusion

Fine-tuning N_{fuse} for the minimum computation period.

Optimization target:

$$\underset{N_{\mathit{fuse}}}{\mathsf{minimize}} \quad T(N_{\mathit{fuse}}) = T_{\mathit{prolog}} + T_{\mathit{main}} + T_{\mathit{epilog}}$$

with time consumption model: $T = f(N_{fuse}, N_{pe}, ts, len(x), len(h), Sp_w, Sp_u, Sp_h)$

Table of Contents

- Background
 - LSTM-based Neural Networks
 - Target Embedded-Platform of E-LSTM
- 2 Method: An Area-saving Sparse Weight Format (eSELL)
- Method: Optimizations for LSTM Inter-Cell Parallelism
 - Generic E-LSTM Architecture and Throughput Bottleneck
 - Optimization with Inherent Sparsity in LSTM Arithmetic
 - Scheduling with Cell-fusion
- Experiments and Evaluation
- Conclusion

Implementation Methods

- Sparse LSTM benchmark layers: PyTorch
- Heterogeneous system with LSTM accelerator: CPP behavioral model in Spike (a gem5-like simulator in RISC-V eco-system)
- Scripts for eSELL-format model translation and N_{fuse} fine-tuning: Python
- Source code: https://github.com/rbshi/elstm

Evaluation of eSELL Sparse Format

Bit-volume comparison between sparse formats in different sparsity.

(matrix size: 768×768)

Competitive bit volume, but 63% reduction on SRAM area-cost due to less port usage.

Sparse LSTM Benchmark Layers

Table: Benchmark LSTM layers from three real-world applications.

Name	Layer	len(x)	len(h)	ts	Sp_w	Spu	Sp_h	Score
OCR	LSTM1	28	128	28	0.3	0.5	0.22	98.68/98.61/98.11
(MNIST)	LSTM2	128	128	28	0.2	0.4	0.29	the higher, the better
LM	LSTM1	800	800	35	0.2	0.5	0.56	81.33/81.67/88.52
(PTB)	LSTM2	800	800	35	0.2	0.6	0.41	the lower, the better
LM	LSTM1	1500	1500	35	0.4	0.5	0.37	101.63/102.15/106.5
(Wikitext)	LSTM2	1500	1500	35	0.3	0.4	0.39	the lower, the better

 $\mathsf{Sp}_{\mathsf{w}/\mathsf{u}}$: sparsity of weight matrix $oldsymbol{W}, oldsymbol{U}$

 Sp_h : sparsity of hidden state (h_t)

len(x/h): size of input vector (x_t) or hidden state vector (h_t)

ts: time steps (length) of a sequence

Performance Comparison

Accelerator hardware configuration: 3 PEs (12 MACC Ops/cycle)

Schemes in comparison: Original v.s. Sparse h_t v.s Cell fusion + Sparse h_t

Max. Speedup: 1.52 \times in Sparse h_t scheme; 2.2 \times in Cell fusion + Sparse h_t scheme.

Table of Contents

- Background
 - LSTM-based Neural Networks
 - Target Embedded-Platform of E-LSTM
- 2 Method: An Area-saving Sparse Weight Format (eSELL)
- Method: Optimizations for LSTM Inter-Cell Parallelism
 - Generic E-LSTM Architecture and Throughput Bottleneck
 - Optimization with Inherent Sparsity in LSTM Arithmetic
 - Scheduling with Cell-fusion
- Experiments and Evaluation
- Conclusion

Conclusion

- E-LSTM provides a solution for LSTM acceleration in *embedded heterogeneous system* considering the latency and chip-area cost.
- E-LSTM leverages the *inherent sparsity* in algorithm and proposes the *cell-fusion* scheme.
 With the fine-tuned fusion factor, a significant speed up is achieved. This scheme is also suitable to all LSTM accelerators.
- The open sourced framework contributes to the RISC-V heterogeneous system community.