Building complex expressions

- Our relational-model queries may become quite complex
- Readability is improved by building expression up in a manner similar to our notation used in and around programming
- Combine operators with parentheses and precedence rules
- Three approaches possible:
 - 1. Sequences of assignment statements
 - 2. Expressions with several operators
 - 3. Expressions trees

1. Sequences of Assignments

- We've seen this used informally already
- Principle: Create temporary relation names
- Renaming can be implied by giving relations a list of attributes
- Example:

$$R3 = R1 \bowtie_{\mathbb{C}} R2$$

can be written as:

$$R4 = R1 \times R2$$

$$R3 = \sigma_c(R4)$$

2. Expressions in a single assignment

- Instead of one operator per assignment, we combine all operators in a single expression
- To evaluate such an expression, we must be clear about operator precedence
- Example:

R3 = R1
$$\bowtie_{\mathsf{C}}$$
 R2
can be written as:
R3 = σ_c (R1 \times R2)

• Precedence: highest to lowest

 $- [\sigma, \pi, \rho]$ $- [\times, \bowtie]$ $- \cap$ $- [\cup, -]$

3. Expression Trees

- Leaves = operands
 - Variables standing in for relations
 - Constant-value relations
- Interior nodes = operators/operations
 - Operators are applied to children of node
 - In effect, the node will evaluate to a relation
- Expression trees are similar to those used to visualize operator precedence in Java or C
 - Order of an operation is clearly indicated by its position in the tree
 - Tree eliminates any ambiguity

- Using the two relations Pub(name, addr, URL) and Sells(pub, beer, price):
 - Find the names of all the pubs that are either on
 Fort on sell "Blue Buck" for less than \$3
- Even before drawing an expression tree:
 - What is our strategy (denoted using either of the two previous schemes)?

Recall....

Sells

pub	beer	price
Rob's	Amnesiac	7.50
Rob's	Blue Buck	3.25
Pat's	Amnesiac	7.50
Pat's	Blue Buck	2.95

Pubs

name	addr	URL
Rob's	Fort	http://robsplace.com
Pat's	Broughton	http://patspub.ca

- Using the relation Sells(pub, beer, price):
 - Find the pubs that sell two different beers at the same price
- Even before drawing an expression tree:
 - What is our strategy?
 - Hint: Could use something that looks like a "self join"

Schemas for results: a recap

- ∪, ∩, −
 - Schemas of two operands must be the same
 - Use that schema for the result
- ullet σ
 - Schema of the result is same as schema of the operand
- \bullet π
 - List of attributes tells us the schema

Schemas for results: summary

- ×
 - Schema consists of the attributes of both relations
 - We distinguish between two attributes having the same name by prefixing with a source relation (e.g., R.A for A, etc.)
- ⋈_C
 - Same as for product
- M
 - Union of the attributes of the two relations
- ullet ρ
 - The operator's list argument gives us the schema

Relational Algebra on Bags

- Bag
 - Also called a multiset
 - Is like a set, yet an element may appear more than once in a bag
- Example of a bag:
 - $-\{1, 2, 1, 3\}$
- Example of a bag that is also a set:
 - $\{1, 2, 3\}$
- Why???
 - SQL is actually a bag language
 - Some operations (e.g., \pi) are more efficient on bags than on sets

Operations on bags

- \bullet σ
 - Applies to each tuple
 - Therefore effect on bags is like its effect on sets
- \bullet π
 - Also applies to each tuple
 - However, when used as a bag operator, duplicates are not eliminated
- ★, ⋈
 - Performed on each pair of tuples
 - Duplicates in bags will have no effect on the way we perform these operations

Example: bag selection

R

Α	В
1	2
5	6
1	2

 $\sigma_{A+B<5}(R)$

Α	В
1	2
1	2

Example: bag projection

 \mathbf{R}

Α	В
1	2
5	6
1	2

 $\pi_A(R)$

Α	
1	
5	
1	

Example: bag theta-join

R

Α	В
1	2
5	6
1	2

S

В	C
3	4
7	8

 $T = R \bowtie_{R.B < S.B} S$

A	R.B	S.B	С
1	2	3	4
1	2	7	8
5	6	7	8
1	2	3	4
1	2	7	8

Operations on bags: union & intersection

- An element appears in the union of two bags the sum of the number of times it appears in each bag
 - Example: $\{1, 2, 1\} \cup \{1, 1, 2, 3, 1\} = \{1, 1, 1, 1, 1, 2, 2, 3\}$
- An element appears in the intersection of two bags the minimum of the number of times it appears in either bag
 - Example: $\{1, 2, 1\} \cap \{1, 2, 1, 3\} = \{1, 1, 2\}$

Operations on bags: difference

- An element appears in the difference of A-B
 - as many times as it appears in A...
 - minus the number of times it appears in B.
 - However, elements never appear less than zero times.
 - Examples:

$$\{1, 2, 1\} \longrightarrow \{1, 1, 2, 3, 1\} = \{\}$$

 $\{1, 2, 1, 1\} \longrightarrow \{1, 2, 3\} = \{1, 1\}$

Achtung: Bag Laws ≠ Set Laws

- Set union is idempotent
 - Means: $S \cup S = S$
- However, bag union is not idempotent
 - If "1" appears n times in S...
 - ... then it appears 2n times in $S \cup S$
- Thus S ∪ S ≠ S in general
 - Example: $\{1\} \cup \{1\} = \{1,1\} \neq \{1\}$

Summary

- Operators in relational algebra:
 - Selection, projection, renaming
 - Set operations
 - Joins
- Some extended operations
- Techniques for building up complicated expressions
- Bag version of operations