$$\alpha(x) = \begin{cases} x \\ \frac{1}{1+e^{-kx}} \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{cases}$$

$$\langle x \rangle$$

$$\chi_{\rho}(ghg^{-1}) = \operatorname{Tr}(\rho_{ghg^{-1}}) = \operatorname{Tr}(\rho_{g} \circ \rho_{h} \circ \rho_{g}^{-1}) = \operatorname{Tr}(\rho_{h}) \stackrel{\operatorname{Tr}(AB) = \operatorname{Tr}(BA)}{=} \chi_{\rho}(h) \oplus_{x \in X}$$

$$\operatorname{Mat}(\rho_{g}) = (a_{ij}(g))_{\substack{1 \leq i \leq d \\ 1 \leq j \leq d}} \text{ et } \operatorname{Mat}(\rho'_{g}) = (a'_{ij}(g))_{\substack{1 \leq i' \leq d' \\ 1 \leq j' \leq d'}}$$

$$\int_{a}^{b} \mathbb{R}^2 g(u, v) \, \mathrm{d}P_{XY}(u, v) = \iint_{x \to \infty} g(u, v) f_{XY}(u, v) \mathrm{d}\lambda(u) \mathrm{d}\lambda(v)$$

$$\lim_{x \to \infty} f(x)$$

$$\iiint_{V} \mu(t, u, v, w) \, dt \, du \, dv \, dw$$

$$\sum_{1 \leq i \leq d} \sum_{j = 1}^{n} e^{-jt} = 1$$

Typesetting test $\sum_{i}^{n} \neq 60 \pm \infty \pi \triangle \neg \approx \sqrt{j} \int h \leq \ge$

Définition 1. Si X et Y sont 2 v.a. ou definit la COVARIANCE entre X et Y comme $\text{Cov}(X,Y) \stackrel{\text{def}}{=} \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

Table des matières

Résumé

Plan:

- 1. Courbes (plan + espace)
 - étude local
 - étude global
- 2. surfaces dans \mathbb{R}^3

Lesson 1

Définition 2 (Courbe et Courbe Régulière).

1. Une Courbe Paramètre dans \mathbb{R}^3 est une function $c: I \to \mathbb{R}^n$ où I est un intervalle de \mathbb{R} et c est lisse (c est infiniment différentielle, $c \in C^{\infty}$).

$$I \ni t \mapsto c(t) \in \mathbb{R}^3$$
,

t – paramètre.

2. Une courbe paramètre est régulièrement si

$$\dot{c}(t) = \frac{\mathrm{d}}{\mathrm{d}t}c(t) \neq 0,$$

pour tout $t \in I$.

Si une courbe est régulière, $c(t) \neq \text{const.}$ $\dot{c}(t)$ désigne la tangente à la courbe en c(t). Chaque régulière courbe est tangente à la ligne.

Définition 3. La trace d'une courbe paramètre $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est image :

$$\{c(t) \mid t \in I\} \subset \mathbb{R}^n.$$

Une cure paramètre est plus que sa trace.

La courbe $\mathbb{R} \ni t \mapsto \begin{pmatrix} t^3 \\ 0 \end{pmatrix} \in \mathbb{R}^2$, trace = $\{\begin{pmatrix} x \\ 0 \end{pmatrix} \mid x \in \mathbb{R}\}$. Et la courbe $R \ni t \mapsto$

$$\begin{pmatrix} t \\ 0 \end{pmatrix} \in \mathbb{R}^2$$
 a la même trace!

$$\dot{c}_1(t) = \begin{pmatrix} 3t^2 \\ 0 \end{pmatrix}, \ mais \ \dot{c}_2(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Définition 4. Si $I \ni t \mapsto c(t) \in \mathbb{R}$ est une courbe paramètre, $J \subset \mathbb{R}$ – une intervalle et $\varphi: J \to I$ une function lisse t.q. $\varphi^{-1}: J \to I$ est également lisse, on disque(?):

$$J \ni t \mapsto c^2(t) = c \circ \varphi(t) \in \mathbb{R}^n$$
,

est une reparamétrisation de c.

Remarque. $\dot{\tilde{c}}(t) = \dot{c} \circ \varphi(t) * \dot{\varphi}(t)$. Donc, \tilde{c} - régulière \iff c est régulière.

$$\frac{d}{ds}\varphi^{-1}(s) = \frac{1}{\dot{\varphi} \circ \varphi^{-1}(s)} \neq 0$$

 $\varphi: J \to I$ est un difféomorphisme comme $\dot{\varphi} \neq 0$, on a

$$\begin{cases} \begin{array}{l} \operatorname{soit}\,\dot{\varphi}(t) > 0, & \operatorname{pour}\,\operatorname{tout}\,t \in J \\ \operatorname{soit}\,\dot{\varphi}(t) < 0, & \operatorname{pour}\,\operatorname{tout}\,t \in J \end{array} , \\ \\ \left\{ \begin{array}{l} \varphi\,\operatorname{est}\,\nearrow\\ \varphi\,\operatorname{est}\,\searrow \end{array} \right. . \end{cases}$$

 $Si \varphi \ est \nearrow on \ dit \ une \ la \ reparamétrisation \ conserve \ le \ sens \ de \ parcours \ (l'orientation).$ $Si \varphi \ est \searrow$, la reparam inverse le sens de parours.

Définition 5.

1. Une courbe est une Classe d'Equivalence de Courbes Paramètre pour la relation :

 $c \sim \tilde{c} \Longleftrightarrow \tilde{c}$ est une reparamétrisation de c

2. Une courbe orientée est une classe d'equivalence des courbes paramètre pour :

 $c \sim \tilde{c} \Longleftrightarrow \tilde{c}$ est une reparamétrisation préservante la sens de parcours de c

Définition 6. Si c est une courbe paramètre t.q. $|\dot{c}(t)| = 1$ pour tout $t \in I$. On dit que c'est paramètre pur sa longueur d'arc.

Proposition 1. Si $I \ni t \mapsto c(t) \in \mathbb{R}^n$ est une courbe paramètre régulière il existe une reparamétrisation de c sa long d'arc :

$$J \ni s \mapsto \tilde{c}(s) = c \circ \varphi(s) \in \mathbb{R}^n$$

 $|\dot{\tilde{c}}(s)| = 1 \text{ pour tout } s \in J.$

Lemme 1. Si $J_1 \ni s \mapsto \tilde{c_1}(s)$ sont 2 paramètre de par long d'arc de la meme courbe $|\dot{c_1}(s)| = 1 = |\dot{c_2}(s)|$. alors $c_2(s) = c_1(s_0 \pm s)$, pour un $s_0 \in \mathbb{R}$ et si c_1 et c_2 ont un pos le meme suis de parcours. Si $c: [a, b] \to \mathbb{R}^n$ est une courbe paramètre sa longueur est :

$$L[c] = \int_a^b |\dot{c}(t)| \, \mathrm{d} t$$

$$l = \int_0^t |\dot{c}(u)| \, \mathrm{d}u = t$$

Définition 7. Une courbe paramétrique $c: R \to R^d$ est appelée PÉRIODIQUE de période p, si $c(t+p) = c(t), \ \forall t \in R$.

Définition 8. Une courbe fermée et appeler une Courbe Fermée Simple s'il existe une parametrisation régulière, périodique de période p et si : $c_{[0,p)}$ est injectif.

Définition 9. $c \in C^{\infty}(I, \mathbb{R}^2)$ est appelée Courbe Plane.

Définition 10. Soit c une courbe paramètre par longueur d'arc (donc une courbe de vitesse 1) (donc $||\dot{c}(t)|| = 1$). Son champs normale est définie par :

$$N(T) := \dot{c}^{\perp}(t), \ t \in I$$

Remarque. $N(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \dot{c}(t)$. N depend de l'orientation de la courbe.

Pour chaque t le système \dot{c} , N(t) est un base orthonormée direct de R^2 .

Lemme 2. Soit une courbe vitesse 1, N son champs normals alors $\ddot{c}(t)$ est parallèle a N(t).

Démonstration. Idee $||\dot{c}(t)|| = 1$, $\forall t \iff \ddot{c}(t) \perp \dot{c}(t)$.

Définition 11. Soit $c \in C^{\infty}(I, R^2)$ une courbe plane de vitesse 1, alors $\ddot{c}(t) = \kappa(t)N(t)$, avec $\kappa(t) := \langle \ddot{c}(t), N(t) \rangle$. $\kappa(t)$ - scalar.

Alors $\kappa \in C^{\infty}(I, R)$ et κ est appelé la courbure de c $(\kappa(t)$ la courbure du point c(t))

Theorem 1. Formulas de Frenet Soit $c \in C^{\infty}(I, \mathbb{R}^2)$ une courbe de vitesse 1.

Soit $T(t):=\dot{c}(t),\ N(t):=T^{\perp}(t)$, $\{T(t),\ N(t)\}$ - le systeme ortogonale vecteur. Est appellé le

REPÉRE DE FRENET, ou BASE DE FRENET.

FORMULES DE FRENET:

$$\dot{T}(t) = \kappa(t)N(t)$$

 $\dot{N}(t) = -\kappa(t)T(T)$

Remarque.

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left(\begin{array}{c} T\\ N \end{array}\right) = \left(\begin{array}{cc} 0 & \kappa\\ -\kappa & 0 \end{array}\right) \left(\begin{array}{c} T\\ N \end{array}\right)$$

Lemme 3. Soit $c: C^{\infty}([a, b], R^2)$ une courbe plane de vitesse, alors il existe $\nu \in C^{\infty}([a, b], R)$ t.q. $\dot{c}(t) = (\cos \nu(t), \sin \nu(t))$

Définition 12. Soit $c \in C^{\infty}(R, R^2)$ une courbe plane, périodique de période L et de vitesse 1. En particulier régulière. Soit $\nu \in C^{\infty}(R, R)$. Talque $\dot{c}(t) =$ $(\cos \nu(t), \sin \nu(t))$ (an dit : une angle de la tangente).

On define Le Nobre de rotation de la tangente de $c: n_c := \frac{1}{2\pi}(\nu(c) - \nu(o))$

Rappel. $c \in C^{\infty}(I; \mathbb{R}^2)$ reguliere. Alors $\exists \nu \in C^{\infty}(I; t, q, \dot{c}(t)) = (\cos \nu(t), \sin \nu(t))$. On définie le Nombre de Rotation de la Tangente pour une courbe periodique de p'eriode L:

$$n_c := \frac{1}{2\pi} (\nu(L) - \nu(0))$$

Lemme 4. Soient $c_1, c_2 \in C^{\infty}(\mathbb{R}; \mathbb{R}^2)$ deux courbes périodiques de période L, paramètre par longueur d'arc $S: c_1 = c_2 \circ \varphi \text{ avec } \varphi > 0 \text{ alors } :$

$$n_{c_1} = n_{c_2}$$

 $Si \ \dot{\varphi} < 0 \ alors$

$$n_{c_1} = -n_{c_2}$$

Remarque. Le nombre de rotation de la tangente est donc invariant par rapport à une

reparamétrisation que preserve l'orientation.

Démonstration. On avait vu que $\varphi(t) = \pm t + t_0$ donc $\dot{\varphi} > 0 = \varphi(t) = t + t_0$. Soit ν_2 t.q. $\dot{c}_2(t) = (\cos \nu_2(t), \sin \nu_2(t))$ alors pour $\nu_1 := \nu_2 \circ \varphi$ on a que $\dot{c}_1(t) = (\cos \nu_1(t), \sin \nu_1(t))$.

Soit
$$\bar{\nu}_1(t) := \nu_1(t+L)$$
 on a que $\dot{c}(t) = (\cos \bar{\nu}_1(t), \sin \bar{\nu}_1(t)) \operatorname{car} c_1(t) = c_1(t+L)$.

$$2\pi(n_{c_2} - n_{c_1}) = (\nu_2(L) - \nu_2(0)) - (\nu_1(L) - \nu_1(0)) = (\nu_2(L - t_0) - \nu_2(-t_0)) - (\nu_1(L) - \nu_1(0))$$
(1)

Theorem 2. Sait c une courbe plane périodique de période L et paramètre par longueur d'arc. Soit κ la courbure de c alors

$$n_c = \frac{1}{2\pi} \int_0^L \kappa(t) \, \mathrm{d}t$$

Remarque. En particulier $\int_{0}^{L} \kappa(t) dt \in 2\pi \mathbb{Z}$

Démonstration. Soit $\nu \in C^{\infty}(\mathbb{R}, \mathbb{R})$ une fonction angle pour la tangente, c.à.d. $\dot{c}(t) =$ $(\cos \nu(t), \sin \nu(t))$. $\ddot{c}(t) = \kappa(t)\dot{c}^{\perp}(t)$ donc $\kappa(t) = \langle \ddot{c}(t), \dot{c}^{\perp}(t) \rangle$ ou $\ddot{c}(t) = \dot{\nu}(t)(-\sin \nu(t), \cos \nu(t))$ et $\dot{c}^{\perp}(t) = (-\sin \nu(t), \cos \nu(t))$ donc $< \ddot{c}(t), \dot{c}^{\perp}(t) > = \dot{\nu}(t) = \kappa(t)$ ou

$$n_c = \frac{1}{2\pi} (\nu(L) - \nu(0)) = \frac{1}{2\pi} \int_0^L \dot{\nu}(t) dt = \frac{1}{2\pi} \int_0^L \kappa(t) dt.$$

Theorem 3 (Hopf. Turning tangent theorem). Une courbe plane fermée simple a un nombre de rotation (de la tangente) 1 ou -1.

Nombre de rotation
$$n = \frac{1}{2\pi} \int_{0}^{L} \kappa(t) dt = \frac{1}{2\pi} (\nu(L) - \nu(0)).$$
 $c(t+l) = c(t)$ $c(t) = (\cos \nu(t), \sin \nu(t)), \ \dot{\nu} = \kappa$

Remarque. On avait inclu dans la défini de fermée simple qu'il n'ya pas de point singulier.

Pour la preuve on aura besoin du lemme de recouvrement.

Définition 13. Sait $X \subset \mathbb{R}^d$ et $x_0 \in X$ On dit que X est ÉTOILE par rapport à x_0 , (X is star shaped). Si pour chaque $x \in X$ le segment de droite entre x_0 et x est contenu dans X. C'est dire $\forall x \{x_01-t+xt,t\in[0,1]\}\subset X$

Lemme 5. De Recouvrement Soit $X \subset \mathbb{R}^d$ étoilé par rapport à x_0 et soit

$$e: X \to S^1 = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$$
—une application continue

Alors in existe une application <u>continue</u> $\nu: X \to \mathbb{R}$ t.q. $e(x) = (\cos \nu(x), \sin \nu(x)).$ ν est unique sous la condition $\nu(x_0) = \nu_0$.

Démonstration. Cas ou $e: X \to S^1$ n'est pas surjective. Supposons qu'il existe $\varphi_0 \in \mathbb{R}$ t.q. $(\cos \varphi_0, \sin \varphi_0) \notin e(X)$. $e(X) = \{z; z = e(x), x \in X\}$. La fonction $\psi: (\varphi_0, \varphi_0 + 2\pi) \to S^1 \{(\cos \varphi_0, \sin \varphi_2)\}$ est un homéomorphisme. On $\nu = \psi^{-1} \circ e$ donc ν est continue.

<u>Cas</u> $e(X) = S^1$. Dans le cas d = 1, X = [0,1], $x_0 = 0$ on a démontré le théorème $(e = \dot{c}$ dériver d'une courbe)

Cas d > 1. Soit $x \in X$. On defini $e_x : [0,1] \to S^1$, $e(x)(t) = e(tx + (1-t)x_0)$. On sait qu'il existe $\nu_x : [0,1] \to \mathbb{R}$ continue t.q. $e_x(t) = (\cos \nu_x(t), \sin \nu_x(t))$ de $\nu_x(t) = \nu(tx + (1-t)x_0)$ donc $\nu(x) = \nu_x(1)$ donc $e(x) = e_x(1) = (\cos \nu_x(1), \sin \nu_x(1))$ is est e a de monte que $\nu_x(1)$ est continue en e.

Soit $\varepsilon > 0$ et $0 = t_0 < t_1 < t_2 < \dots < t_n = 1$ une partition t.q. $e_x|_{[t_j,t_{j+1}]} \subset U_h$, $H \in \{1,2,3,4\}$. Soit y t.q. $||e_x(t) - e_y(t)|| < \varepsilon$, $\forall t \in [0,1]$. Si ε est suffisent petit. $e_y|_{[t_j,t_{j+1})} \subset U_h$. Par example dans le cas h = 4 on aura

$$\nu_x(t) = \arctan\left(\frac{e_x^2(t)}{e_x^1(t)}\right)\nu_y(t) \qquad = \arctan\left(\frac{e_y^2(t)}{e_y^1(t)}\right) \tag{2}$$

$$e = (e^1, e^2)$$

Démonstration. du théorème de Hopf Soit c une une paramétrisation de vitesse 1 de période L. Sait $x_0 := \max\{c^1(t); t \in [0, l]\}$. Soit $p = \{(z_1, z_2); z_1 = x_0\} \cap C(\mathbb{R})$ Soit la paramétrisation t.q. c(0) = p. $G = p + \mathbb{R}(1, 0)$. $C(\mathbb{R}) \cap G$ est à gauche de p. Soit $X = \{(t_1, t_2) : 0 \le t_1 \le t_2 \le L\}$ X est étoilé par rapport à (0, 0). On considère $c : X \to S^1$ Formula after an image.

$$c(t_1, t_2) = \begin{cases} \frac{c(t_1) - c(t_1)}{||c(t_1) - c(t_1)||} & t_2 > t_1 \\ \dot{c}(t) & t_2 = t_1 = t \\ -\dot{c}(0) & (t_1, t_2) = (0, L) \end{cases}$$

Alors $e \in C^0(x, S^1)$, en effet $c \in C^\infty$. $c(t_2) = c(t_1) + \dot{c}(t_1)(t_2 - t_1) + o(|t_2 - t_1|)$

$$\frac{c(t_1) - c(t_1)}{||c(t_1) - c(t_1)||} = \frac{(t_2 - t_1)(\dot{c}(t_1) - o(1))}{||(t_2 - t_1)(\dot{c}(t_1) - o(1))||} \to \frac{\dot{c}(t_1)}{||\dot{c}(t_1)||} = \dot{c}(t_1)$$

$$t_2 \to t_1$$

$$\frac{c(L-\varepsilon)-c(0)}{||c(L-\varepsilon)-c(0)||} = \frac{c(-\varepsilon)-c(0)}{c(-\varepsilon)-c(0)} = \frac{-\varepsilon(\dot{c}(0)+o(1))}{||-\varepsilon(\dot{c}(0)+o(1))||} \to -\dot{c}(0)$$
$$\varepsilon \to (down) + 0 +$$

De plus X est étoilée par rapport à (0,0). Donc il exist $\nu \in C^0(X)$ t.q. $e(t_1,t_2)=(\cos\nu(t_1,t_2),\sin\nu(t_1,t_2))$. Pour de nombre de rotation de (la tangente de) on a :

 $2\pi n_c = \nu(L, L) - \nu(0, 0) = \nu(L, L) - \nu(0, L) + \nu(0, L) - \nu(0, 0)$

(droite
$$\bot$$
 à $\dot{c}(0)$) $x_0 = \max\{c^{(1)}, \ t \in [0, L]\}\ (1, 0) \not\in im([0, 1] \ni t \mapsto e(0, t))$ car en $c(0), t \mapsto x(t)$ est maximal, donc $im([0, 1] \ni t \mapsto \nu(0, t)) \subset (0, 2\pi) + 2\pi k$ (car facile du

lemme du recouvrement). $e(0,L) = -\dot{c}(0) = (0,-1)$ donc $\nu(0,L) = \frac{3\pi}{2} + 2\pi k$ de $\nu(0,0) = \frac{\pi}{2} + 2\pi k$ donc $\nu(0,L) - \nu(0,0) = \pi$ de même : $(-1,0) \notin im(t \mapsto e(t,L)) \Rightarrow \nu(L,L) - \nu(0,L) = \pi$ donc

Définition 14. Une courbe plane est appelée Convexe si tout ses points sont sur un des cotés de sa tangente. \Leftrightarrow pour chaque $t_C < c(t) - c(t_0) > \geq (\leq)0$, $\forall t$ avec $n(t_0) \perp T_c(t_0)$.

Theorem 4. Soit une courbe plane de vitesse 1. Alors :

 $2\pi n_C = 2\pi$.

1. Si c est convexe on a pour sa courbe κ on a :

$$\kappa(t) \ge 0 \ \forall t (ou \ \kappa(t) \le 0 \forall t)$$

2. Si c est fermé simple et si $\kappa(t) \geq 0$, $\forall t \ (ou \ \kappa(t) \leq 0, \forall t) \ alors \ c \ est \ convexe$.

Démonstration. 1. Soit c convexe et supposons que
$$\langle c(t) - c(t_0), n(t_0) \rangle \geq 0, \ \forall t.$$
 On

$$\frac{\text{developpe } c(t) = c(t_0) + \dot{c}(t_0)(t - t_0) + \ddot{c}(t) \frac{(t - t_0)^2}{2} + o(|t - t_0|^2). \ 0 \le \left\langle c(t) - c(t_2), \dot{c}^{\perp}(t_0) \right\rangle}{\left\langle \ddot{c}(t_0, \dot{c}^{\perp}(t_0)) \right\rangle} \underbrace{\frac{(t - t_0)^2}{2}}_{\kappa(t_0)} + o(|t - t_0|^2). \Rightarrow \kappa(t_0) \ge 0 \text{ donc } \kappa(t) \ge 0 \forall t \in I$$

2. Supposons que
$$\kappa(t) \geq 0 \forall t$$
 et que c est fermée simple de période L . Si c n'était pas convexe alors il existerait un t_0 t.q. : $\varphi(t) := \langle c(t) - c(t_0), \dot{c}^{\perp}(t_0) \rangle$, a des valeurs positives et négatives. φ atteint un maximum eu point t_2 et un minimum au point t_1 donc $\varphi(t_2) \geq 0$ et $\varphi(t_1)$ et $\varphi(t_1) \leq 0 = \varphi(t_0) \leq \varphi(t_2)$ pour un t_0 . $\dot{\varphi}(t_1) = 0 \langle \dot{c}(t_1), \dot{c}^{\perp}(t_0) \rangle$ donc $\dot{c}(t_1) = \pm \dot{c}(t_0), \dot{c}(t_2) = \pm \dot{c}(t_0)$. Au moins deux des vecteurs $\dot{c}(t_0, \dot{c}(t_1), \dot{c}(t_2))$ sont donc les mêmes. Soit $s_1, s_2 \in \{t_0, t_1, t_2\}$ t.q. $s_1 < s_2$

 $\dot{c}(s_1) = \dot{c}(s_2)$. On a $\nu(s_2) - \nu(s_1) = 2\pi k$ avec $k \in \mathbb{Z}$. $0 \le \kappa(t) \le \dot{\nu}(t)$ donc ν est croissant donc $k \in \mathbb{N}$ de même. $\nu(s_1 + L) - \nu(s_2) = 2\pi l$ avec $l \in \mathbb{N}$ donc $2\pi n_c = \nu(s_1 + L) - \nu(s_1) = 2\pi(l + k) = 2\pi$ (Hopf) $\Rightarrow l = 0$ ouk = 0. Supposons que k = 0.

Donc $\nu(t)=cte \forall t \in [s_1,s_2]$ donc $c(s)=c(s_1)+\dot{c}(s_1)(s-s_1)=c(s_1)+\dot{c}(t_0)(s-s_1)$ pour $s \in [s_1,s_2]$. donc $\varphi(s)=\left\langle c(s)-c(t_0),\dot{c}^\perp(t_0)\right\rangle = \left\langle c(s_1)-c(t_0),\dot{c}^\perp(t_0)\right\rangle = cte$ ce qui n'est pas possible car au moins 2 des points t_0,t_1,t_2 sont dans $[s_1,s_2]$.

Définition 15. Une courbe plane de vitesse 1. On dit que c admet un sommet en t_0 si $\dot{\kappa}(t_0) = 0$. (sommet=vertex en anglais)

Exemple 0.1.1. On peut démontrer que l'ellipse à quatres sommets.

Remarque. De manière générale on sait qu'one fonction périodique admet deux points critiques (un maximum et un minimum).

Theorem 5. des 4 sommet (four vertex theorem) Soit $c \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$ périodique de période L de vitesse 1 et convexe c admet au moins quatre sommets.

Pour la preuve on a besoin de 2 lemmes

Lemme 6. Si l'intersection d'une courbe convexe plane fermée simple avec une droite G contient plus que deux points différents alors c contrent un segment de G.

Remarque.

Démonstration. Supposons que c est orienté positive convexe =0 $\kappa(t) \geq 0 \Rightarrow \dot{\nu}(t) \geq 0$ pour ν une angle $\dot{c}(t) = (\cos \nu(t), \sin \nu(t))$ par Hopf : $\nu(L) - \nu(0) = 2\pi$ donc $\nu : [0, L] \rightarrow [0, 2\pi] + \nu_0$ est croissante et surjective.

Exercice 2

- 1. Démontrer qu'un segment de droite est la courbe la plus courte (de classe C^1) être deux points. S : $A, B \in \mathbb{R}^d$, $c : [0,1] \to \mathbb{R}^d$, c(0) = A, c(1) = B. $L(c) = \int_0^1 ||\dot{c}(t)|| dt$. $c(1) c(0) = B A = \int_0^1 \dot{c}(t) dt$, $||B A|| = ||\int_0^1 \dot{c}(t) dt|| \le \int_0^1 ||\dot{c}(t)|| dt$.
- 2. $f(t) = \cos h(t)$ $\gamma(t) = (t, \cos h(t))$. $s(t) = \int_0^t ||\dot{\gamma}(\tau)|| d\tau = \sin ht$, $t \in [0, 2]$. On doit trouves φ t.q pour $c := \gamma \circ \varphi$ on a $||\dot{c}|| = 1$. $t(s) = \arcsin hs$, $s \in [0, \sin h2]$, $c : (0, \sin h2) \to \mathbb{R}^2$. $c(s) = \gamma(\arcsin hs)$, $s \in (o, \sinh 2)$. $c(s) = (\arcsin hs)$, $\sqrt[3]{1 + s^2}$, $s \in (0, \sinh 2)$.
- 3. $\forall t \neq 1$: γ est régulier.

Exercice 3

- 1. Démontrer que si $c: \mathbb{R} \to \mathbb{R}^n$ est une <u>paramétrisation par longueur d'arc</u> d'une courbe fermée, alors c est périodique.
 - Exemple : $t \mapsto (\cos(e^t), \sin(e^t))R = f(t)$ $(t \in \mathbb{R})$. f n'est pas périodique, $f(\mathbb{R}) = S^1$.

Dénoter : si c est une parametrisation t.q. $||\dot{c}(t)|| = 1$ alors c est périodique. Idée : d(t+T) = d(t) T est période. On definit φ en ce fonction de passage. $s(t) = \int_0^t ||\dot{d}(\tau)|| d\tau = \int_0^T ||\dot{d}(\tau)|| d\tau = L + s(t)$. $\varphi(u+L) = \varphi(s(t)+L) - \varphi(s(t+T)) = \int_0^t ||\dot{d}(\tau)|| d\tau = \int_0^T ||\dot{d}(\tau)|| d\tau = L + s(t)$.

 $t+T=\varphi(u)+T,\ u=s(t),\ s\circ\varphi(u)=u,\ \varphi$ —function inverse function reciproque. $\bar{c}:=d\circ\varphi$ est une parameter par long d'arc. $\bar{c}(u+L)=\varphi(s(t)+L)-\varphi(s(t+T))=t+T=\varphi(u)+T.$ (φ la fonction reciproque de s).

Homework all the rest.

Lemme 7. c une courbe plane fermée simple et convexe. c intersecté une droite un plus de trois points alors c contient un segment de droite.

 $\begin{array}{l} D\acute{e}monstration. \ \mbox{Soit} \ c; [0,1] \leftarrow \mathbb{R} \ \mbox{la courbe. Supposons que pour la droite} \ G = p_0 + \mathbb{R}\nu. \\ c([0,1]) \cap G = \{c(0),c(t_1),c(t_2)\}. \ \mbox{Supposons que} \ \kappa \geq 0 \ \mbox{donc pour l'angle} \ \nu \ \mbox{t.q.} \ \dot{c}(t) = (\cos\nu(t),\sin\nu(t)) \ \mbox{an a que} \ \dot{\nu} = \kappa \geq 0 \ \mbox{et} \ \nu(L) = \nu(0) = 2\pi \ \mbox{donc} \ \nu : [0,L] \leftarrow [0,2\pi] + \nu_0 \\ \mbox{est croissante et surjective. Soient} \ I_j = [t_j,t_{j+1}] \ \ ([0,t_1],[t_1,t_2],[t_2,L]). \ \mbox{Supposons que} \\ c(I_j) \cap G \neq c(I_j). \ \mbox{Soit} \ G_S = G + s\nu^{\perp}. \ \mbox{Soit} \ s_1 = \sup\{s > 0; \ G_s \cap c(I_j) \neq 0\}. \ \mbox{Soit} \ \tau_j \ \mbox{define} \\ \mbox{par } c(I_j) \cap G_{s_1} = \{c(\tau_j)\} \ \mbox{donc} \ \dot{c}(\tau_j) = \pm \nu. \ \mbox{Donc} \ \exists \tau_n \ \mbox{t.q.} \ 0 < \tau_1 < t_1 < \tau_2 < t_2 < \tau_3 < L \\ \mbox{t.q.} \ c(\tau_n) = \pm \nu \ \forall k. \ \mbox{Soit} \ \theta_1 \in \theta_0 + [0,2\pi) \ \mbox{t.q.} \ \ (\cos\theta_n,\sin\theta_n) = \nu. \ \mbox{Supposons que} \ \theta_2 = \theta_1 + \pi \\ \mbox{et} \ \ \mbox{(cos} \ \nu_2,\sin\nu_2) = -\nu \ \mbox{donc} \ \ c(\tau_k) \in \{\theta_1,\theta_2\}, \forall k \in \{1,2,3\}. \ \ t \mapsto \theta(t) \ \mbox{est croissant donc} \\ \mbox{\exists } j \ \mbox{t.q.} \ \theta|_{[t_j,t_{j+1}]} \ \mbox{est constant.} \end{array}$

Lemme 8. Soit une courbe plane fermée et sample et convexe. G une droite t.q. $G \cap im(c) = \{p_1, p_2\}$ t.q. $T_{p_1}(c) = T_{p_2}(c)$ colinéaire G alors c contient un segment de G.

 $D\acute{e}monstration.$ $G=T_{p_1}(c)$ donc apr
 convexité la courbe est situé d'un seul coté de G donc supposons :

$$\langle c(t) - p_1, \dot{c}^{\perp}(t_1) \rangle > 0$$

Soit $G_{\varepsilon} = G + \varepsilon \dot{c}^{\perp}(t_1)$. Pout ε suffisent petit $G_{\varepsilon} \cap im(G) = \{q_1, q_2, q_3, q_4\}$ avec $q_j \neq q_k, j \neq k, q_j \in im(c)$. le résultat suit du lemme précédent.

Theorem 6 (des 4 sommets). soit c une courbe plane, convexe fermé simple alors c admet quatre sommet.

Démonstration. Supposons que c est paramétrique par longueur d'arc et de période L. Pour sa courbure κ on sait que κ atteint son maximum et son minimum dans [0,L] donc il existent $t_0,t_1\in[0,L)$ t.q. $\dot{\kappa}(t_j)=0$ $j\in\{1,2\}$. Supposons que $t_0=0$. Soit $G=Aff(c(0),c(t_1))$ la droite affine passant parce points. S'il existerait un trois ème point d'intersection de G avec c alors la courbe contiendrait un segment de G (lemme précédant) donc on aurait fini car $\dot{\kappa}=0$ sur ce segment. Si l'intersection éteint tangentielle en c(0) et $c(t_1)$ alors c on tiendrait un segment de droite parle lemme précédant pour $G=p_0+\mathbb{R}\nu$ on peut donc supposer que :

$$\langle c(t) - c(t_0), \mu^{\perp} \rangle > 0 \ t \in (0, t_1)$$
 (3)

$$\left\langle c(t) - c(t_0), \mu^{\perp} \right\rangle < 0 \ t \in (t_1, L) \tag{4}$$

 κ est périodique de période L donc $\int_0^L \dot{\kappa} = 0$. Si $\dot{\kappa}(t) \neq 0 \ \forall t \in \{0, t_1\}$. Alors on peut supposer que :

$$\dot{\kappa}(t) > 0 \ t \in (t_1, L)$$

 $\dot{\kappa}(t) < 0 \ t \in (0, t_1)$

 $=> \dot{\kappa}(t) \left\langle c(t) - c(0), \nu^{\perp} \right\rangle > 0, \ t \in (t_1, L) \text{ et } t \in (0, t_1) \text{ or } \int \dot{\kappa}(t) (c(t) - c(0)) \, \mathrm{d}t = -\int_{0}^{L} \kappa(t) \dot{c}(t) \, \mathrm{d}t$

or on sait que $\dot{n}(t) = \kappa(t)\dot{c}(t)$ équation de Frenet $n = \dot{c}^{\perp}$

$$\dot{T} = \kappa n$$
$$\dot{N} = -\kappa T$$

$$\int_{0}^{L} \dot{\kappa}(t) \left\langle c(t) - c(0), \nu^{\perp} \right\rangle dt = \left\langle 0, \nu^{\perp} \right\rangle = 0$$

C'est une contradiction donc il existe un $t_2 \in \{0, t_1\}$ t.q. $\dot{\kappa}(t_2) = 0$.

Supposons que $t_2 \in (t_1, L)$. S'il n'y avait pas de quartier sommet. Il existe donc une droite qui sépare les regions $\dot{\kappa} > 0$ et $\dot{\kappa} < 0$. Par le même argument pour ces regions on conclut qu'il existe un 4ème sommet.

Remarque. Le théorème reste vrai sans l'hypothèse de la convexité.

0.2 Inégalité isopérimetrique

l'aire du cerclée rayon $R = \pi \mathbb{R}^2 = A$ —area la lonqueur $2\pi \mathbb{R} = L$ $L^2 = 4\pi^2 \mathbb{R} = 4\pi A$.

Theorem 7. Soit $G \subset \mathbb{R}^2$ une region bornée par une courbe fermé simple de longueur L. Alors pour l'aire A de G on a:

$$4\pi A < L^2$$

et $4\pi A = L^2 \Leftrightarrow la \ courbe \ est \ un \ cercle$.

Démonstration. Soit c une paramétrisation de la courbe de vitesse 1, de période L orientée positive. Pour déterminer A à partir de c on utilise le théorème de Stoks. Pour $F \in C'(G, \mathbb{R}^2)$ un champs de vecteurs on a :

$$\int_{G} \operatorname{rot} F(x, y) \, \mathrm{d}(x, y) = \int_{G} \langle F, \mathrm{d}s \rangle := \int_{0}^{L} \langle F(c(t)), \dot{c}(t) \rangle \, \mathrm{d}t$$

Un F t.q. rot F = 1 $F(x,y) = \frac{1}{2}(-y,x)$

$$rot F(x,y) = \partial_x F2 - \partial_y F_1 = 1$$

donc $\int \operatorname{rot} F = \int_G 1 = A = \int \langle F, \operatorname{cot} c \rangle = \int_0^L (x\dot{y} - \dot{x}y) dt$ avec c(t) = (x(t), Y(t))On utilise un l'analyse de Fourier. Soit

$$z: \mathbb{R} \leftarrow \mathbb{C}^2$$

$$z(t) := x(\frac{L}{2\pi}t) + iy(\frac{L}{2\pi}t)$$

alors $x \in C^{\infty}$ et $z(t+2\pi) = z(t)$ par Fourier on sait $z(t) = \sum_{k \in \mathbb{Z}} c_k e^{ikt} \ \forall t$.

$$\dot{x}(t) = \frac{L}{2\pi} (\dot{x}(\frac{l}{2\pi}) + i\dot{y}(\frac{l}{2\pi}))$$
$$|\dot{z}(t)|^2 = \frac{L^2}{(2\pi)^2} (\dot{x}^2 + \dot{y}^2)(\frac{L}{2\pi}t)$$

$$\int_{0}^{2\pi} |\dot{z}(t)|^{2} = \frac{l^{2}}{2\pi}$$

$$\dot{z}(t) = \sum_{c} c_{k}(ik)e^{iht} \,\forall t \,|\dot{z}|^{2}(t) = \sum_{k,l} (inc_{n})(-il\bar{c}_{e})e^{i(k-l)t} \int_{0}^{2\pi} |\dot{z}|^{2}(t) = \sum_{k,l} \int (...)e^{i(h-l)t} dt$$

donc:
$$\int_0^{2\pi} |\dot{z}|^2(t) dt = \sum_{k \in \mathbb{Z}} k^2 |c_n|^2 donc \frac{L^2}{2\pi} = \sum_{k \in \mathbb{Z}} k^2 |c_n|^2$$
. $Im \dot{z}\bar{z}(t) = (\dot{y}x - x\dot{y})(\frac{L}{2\pi})\frac{L}{2\pi}$.

$$2A = \frac{L}{2\pi} \int_{0}^{2\pi} \operatorname{Im} \dot{z}\bar{z} = \sum k|c_k|^2 \cdot 2\pi$$
$$4\pi A = 4\pi^2 \sum k|c_k|^2$$
$$L^2 = 2\pi \cdot \sum k^2|c_k|^2$$

or $\sum_{k\in\mathbb{Z}}k|c_k|^2\leq\sum_{k\in\mathbb{Z}}k^2|c_k|^2$ avec égalité $\Leftrightarrow c_k=0$ pour $k\not\in\{0,1\}$ donc égalité $\Leftrightarrow z(t)=c_0+c_1e^{it}\Leftrightarrow t\mapsto (x(t),y(t))$ est un cercle.

0.3 Courbes dans \mathbb{R}^3

Définition 16. Soit $c \in C^{\infty}(I; \mathbb{R}^3)$ une courbe paramétrie et régulière.

1. $\nu \in C^{\infty}(I; \mathbb{R}^3)$

$$\nu(t) := \frac{\dot{c}(t)}{||\dot{c}(t)||}$$

est appelée Champs Tangent. c est appelé une courbe paramétrie Bireguliere si $\dot{v}(t) \wedge \ddot{c}(t) \neq 0, \ \forall t \in I$. (produit vectoriel). Dans ce cas on difinit :

$$b(t) := \frac{\dot{c}(t) \wedge \ddot{c}(t)}{||\dot{c}(t) \wedge \ddot{c}(t)||}$$

le Champs Binormalte et le plan Osculateur :

$$\mathbb{P}_c(t) = \{ p \in \mathbb{R}^3 : \langle p - c(t), b(t) \rangle = 0 \}$$

plan affine passant perpendiculaire avec vecteur normale b(t). Le Champs Normale est définie par $n(t) := b(t) \wedge \nu(t)$.

2. Pour une courbe paramétrie birégulière le repére orthomal directe $\{\nu(t), n(t), b(t)\}$ est appelé le REPÉRE DE FRENET de la courbe c au point c(t).

$$\kappa(t) := \frac{1}{||\dot{c}(t)||} \left\langle \dot{\nu}(t), n(t) \right\rangle$$

est appelée Courbure de coube de c en t :

$$\tilde{c}(t) := \frac{1}{||\dot{c}(t)||} \langle \dot{n}(t), b(t) \rangle$$

est appelée la Torsion de c en t.

Remarque. 1. la biregular assure que le plan osculaleur est bien definie.

$$\mathbb{P}_c(t) := c(t) + \text{vect}\{\dot{c}(t), \ddot{c}(t)\}\$$

- 2. le vecteur $b(t) \perp \mathbb{P}_c(t)$.
- 3. $n(t) \in \text{vect}\{\dot{c}(t), \ddot{c}(t)\}$
- 4. $\operatorname{vect}\{\dot{c}(t), \ddot{c}(t)\} = \operatorname{vect}\{\nu(t), n(t)\}\$
- 5. Si c est de vitesse 1 alors c biréguliére $\Leftrightarrow ||\ddot{c}(t)|| \neq 0$, $\forall t$ car dans ce cas $\langle \dot{c}(t), \ddot{c}(t) \rangle = 0$ donc $||\dot{c}(t) \wedge \ddot{c}(t)|| = ||\dot{c}(t)|| \cdot ||\ddot{c}(t)|| \neq 0$ de plus $\kappa(t) = ||\ddot{c}(t)||$ (car $\kappa(t) = \langle \dot{\nu}, n(t) \rangle = \langle \dot{c}(t), \frac{\ddot{c}(t)}{||\ddot{c}(t)||} \rangle = ||\ddot{c}(t)||$).
- 6. En particulier pour une courbe dans l'espace $\kappa(t) \geq 0 \ \forall$
- 7. $Sic(I) = imc \subset plan \subset \mathbb{R}^3$ la courbure de c n'est pas même que la courbure definie pour la $xstihon \ \hat{c}$ au plan on a $\kappa = |\hat{\kappa}|$.
- 8. Ce plan osculateur est indipendant de la parametrisation. $\check{c} = c \circ \varphi; \dot{c} = \dot{c} \circ \varphi \cdot \varphi; \dot{c} = \dot{c} \circ \varphi$

Proposition 2. Equations de Frenet pour une courbe birégulière.

$$\dot{\nu}(t) = \frac{1}{||\dot{c}(t)||} \kappa(t) n(t)$$

$$\dot{n}(t) = \frac{1}{||\dot{c}(t)||} (-\kappa(t)\nu(t) + \tau(t)b(t))$$

$$\dot{b}(t) = -\frac{1}{||\dot{c}(t)||} \tau(t) n(t)$$

Démonstration. $\kappa = \frac{1}{||\dot{c}||} \langle \dot{\nu}, n \rangle = 0$ (1)

$$\langle \dot{\nu}, b \rangle = 0 \text{ car } \dot{\nu} \in \text{vect}\{\dot{c}, \ddot{c}\}. \ \langle \nu, b \rangle = 0 \Rightarrow \langle \dot{\nu}, b \rangle + \left\langle \nu, \dot{b} \right\rangle = 0 \text{ donc } \dot{b} \perp \nu. \ \tau = \frac{1}{||\dot{c}||} \langle \dot{n}, b \rangle$$

 $\langle n, b \rangle = 0 \ \langle \dot{n}, b \rangle + \left\langle n, \dot{b} \right\rangle = 0 \Rightarrow (3). \ (2) \text{ découle donc de } \langle \dot{n}, \nu \rangle = -\langle n, \dot{\nu} \rangle \text{ car } \langle \nu, n \rangle = 0$
 $\langle \dot{n}, b \rangle \text{ definition de } \tau.$

Theorem 8 (foundammentale de la théorie de Frenet). Soit I un intervalle et $\kappa, \tau \in C^{\infty}(I,\mathbb{R})$, $\kappa(t) \geq 0$. Alors il existe une courbe paramétrie de vitesse $1 \ c \in C^{\infty}(I;\mathbb{R}^3)$ tq. sa courbure et sa torsion sont τ et κ . Toute autre courbe qui ales mémes propriétés est de la forme : $\hat{c} = F \circ c$ avec F(x) = Ax + b avec $A \in SO(3)$.

Démonstration. Ce système d'équations differentielles :

$$\dot{\nu} = \kappa n$$

$$\dot{n} = -\kappa \nu + \tau b$$

$$\dot{b} = -\tau n$$

est lineaire et d'ordre 1. Pour tout systeme orthonue diuct et $\forall t_0 \in I : \{e_1, e_2, e_3\}$ il existe une solution t.q.

$$\nu(t_0) = e_1$$

$$n(t_0) = e_2$$

$$b(t_0) = e_3$$

on define $c(t_0) + \int_{t_0}^t \nu$ pour un $c(t_0) \in \mathbb{R}^3$

Exemple 0.3.1 (Pour courbure et
$$\bar{c}osion$$
). $\kappa = \frac{1}{||\dot{c}||} \langle \dot{\nu}, n \rangle$; $\tau = \frac{1}{||\dot{c}||} \langle \dot{n}, b \rangle$. Soit
$$c(t) := (\cos t, \sin t, t), \ t \in \mathbb{R}$$

$$\dot{c}(t) = (-\sin t, \cos t, 1); \ ||\dot{c}(t)||^2 = 2$$

$$\ddot{c}(t) = (-\cos t, -\sin t, 0)$$

$$\nu(t) = \frac{1}{\sqrt{2}} (-\sin t, \cos t, q)$$

$$b(t) = \frac{\dot{c} \wedge \ddot{c}}{||\dot{c} \wedge \ddot{c}||} (t) = \frac{(\sin t, -\cos t, 1)}{\sqrt{2}}$$

$$n(t) = -(\cos t, \sin t, 0)$$

$$\dot{\nu}(t) = \frac{1}{\sqrt{2}} (-\cos t, -\sin t, 0)$$

$$\langle \dot{\nu}, n \rangle = \frac{1}{\sqrt{2}} \Rightarrow \kappa = 1$$

$$\dot{n}(t) = -(-\sin t, \cos t, 0)$$

$$\langle \dot{n}, b \rangle = \frac{1}{\sqrt{2}} \Rightarrow \tau = 1$$

Remarque (Theoreme foundamentalle dans le plan). Soit $\kappa \in C^{\infty}(I;\mathbb{R})$ pour un intervalle I. Alors il existe une courbe paramétrie par lagueur d'arc c t.g. sa courbure est κ . Toute autre courbe set un \hat{c} avec les mêmes proprietes est de forme :

$$\hat{c}(t) = F \circ c(t + t_0),$$

pour $t_0 \in \mathbb{R}$ et F une isometrie directe \Leftrightarrow deplacement.

Image

Deux résultats sur la géométrie globale des courbes dans l'espace.

Définition 17 (courbure totale). Soit $c \in C^{\infty}(\mathbb{R}; \mathbb{R}^3)$ une courbe paramétrie par longueur d'arc et périodique de période L, $\kappa \in C^{\infty}(I; \mathbb{R})$ est sc courbure. Alors $\kappa(c) := \int_0^L \kappa(t) \, \mathrm{d}t$ est appelé COURBURE TOTALE de c.

Remarque. Dans le p'au on sait (Hopf) que $\kappa(c) = \pm 1$ si c est simple.

On peut dénoutrer

Theorem 9 (Fenchel). Soit $c \in C^{\infty}(\mathbb{R}; \mathbb{R}^3)$ une courbe fermée simple. Alors pour sa courbure totale:

$$\kappa(c) \ge 2\pi$$
.

De plus on a $\kappa(c) = 2\pi \Leftrightarrow c$ est un courbe plane et convexe.

On peut dénouter

Theorem 10 (Fary-Tlilnor). Soit $c \in C^{\infty}(\mathbb{R}; \mathbb{R}^3)$ une courbe fermée simple. Si c admet un noeud alors pour la courbure totale on a

$$\kappa(c) > 4\pi$$
.

Remarque. Si c admet un noeud, c'est à dire on ne peut définir c d'une manière continue en une courbe plane fermée simple.

Définition 18. Une Isotopie de \mathbb{R}^3 est une application.

$$\varphi \in C^0([0,1] \times \mathbb{R}^3; \mathbb{R}^3)$$

t.q. $\forall t \in [0,1] \ \varphi(t,\cdot)$ est un homeomorphism.

Définition 19. Deux courbes fermeies simples c_1, c_2 sont appélé Isotope. S'il existe une isotopie φ t.q.

$$\varphi(0,X) = X \ \forall x \in \mathbb{R}^3; \ \varphi(1,\operatorname{img}(c_0)) = \operatorname{img}(c_1).$$

Définition 20.

- Un noeud est une class l'equivalence d'une isotopie.
- Une courbe fermé simple est Sans Noeud, si elle est isotope à une courbe plane fermée simple.

surfaces 0.4

Définition 21 (Surface régulière). Soit $S \subset \mathbb{R}^3$. S est appelé SURFACE RÉGU-LIÈRE. Si pour chaque $p \in S$ il existe un ouvert $V \subset \mathbb{R}^3$ t.q. $p \in V$ et s'il existe un ouvert $U \subset \mathbb{R}^2$ et un $F : \underbrace{U}_{\subset \mathbb{R}^2} \to \mathbb{R}^3$ C^{∞} t.q.

- 1. $F(U) = S \cap V$ et $F: U \to S \cap V$ est un homéomorphisme (c.a.d. $F|_U$ continue et son inverse $F^{-1}|_U$ est continue)
- 2. Le Jacobien DuF a rank $2 \forall u \in U$

Remarque. La matrice jacobienne dans U repère standard :

$$F(X_1, X_2) = (F_1(X_1, X_2), F_2(X_1, X_2), F_3(X_1, X_2))$$

$$DuJ = \begin{pmatrix} \partial_{x_1} F_1 & \partial_{x_2} F_1 \\ \partial_{x_1} F_2 & \partial_{x_2} F_2 \\ \partial_{x_2} F_2 & \partial_{x_3} F_2 \end{pmatrix}$$

$$U = (x_1, X_2) \ \partial_{x_j} F = \begin{pmatrix} \partial_{x_j} F_1 \\ \partial_{x_j} F_2 \\ \partial_{x_i} F_3 \end{pmatrix}$$

 $donc \ rang \ DuF = 2 \Leftrightarrow \partial_{x_1} F, \partial_{x_2} F \ sont \ indépendants \ \dim \mathrm{vect} \{\partial_{x_1} F, \partial_{x_2} F\} = 2$ \Leftrightarrow deux vecteurs tangents à S au point F(u) qui sont indépendant c'est a dire : on peut définir l'espace tangent $\Leftrightarrow ||\partial_{x_1} F \wedge \partial_{x_2} F|| \neq 0.$

 $u_1 = (x_1, x_2)$ la ligne $x_2 = \text{const}$ qui passe par U. $\mathbb{R} \ni t \mapsto (x_1, x_2 + t) =: c(t)$, $c(0) = u. \ t \mapsto F(c(t))$ est la courbe correspondante sur S.

 $\frac{\partial}{\partial F}(c(t))|_{t=0} = \frac{\partial}{\partial F}(x_1, x_2 + t)|_t = 0 = \partial_{x_2} F(x_1, x_2)$

Définition 22. Pour une surface régulière l'application $F:U\to S\cap V$ (on encore (U, F, V)) PARAMÉTRISATION LOCALE de Sau point p. $S \cap V$ est appelé un Voisinage de Coordonnées et les composantes (u_1, u_2) de u t.g. F(u) = ples Coordonnées de p par Rapport à F.

Exemple 1. Pour $p \in \mathbb{R}3$ et $X_1, X_2 \in \mathbb{R}^3$ le plan affine $S := \{X, X = p + u_1X_1 + u_2X_2\}$ est une surface régulière. Car : On peut prendre (pour tout $p \in S$) $V := \mathbb{R}^3; U := \mathbb{R}^2$ $F(u_1, u_2) = p + u_1 X_1 + u_2 X_2$

F es une fonction affine donc F est différentiable. (en tout que fonction de $\mathbb{R}^2 \to \mathbb{R}^3$) $F(U) = S = S \cap \mathbb{R}^3 F : U \to S$ est un homéomorphisme.

Exemple 2. graphe d'une fonction (Une seule paramétrisation!) Soit $U \subset \mathbb{R}^2$ ouvert $f: U \to \mathbb{R}$ différentiable. $S = \{x = (x_1, x_2, x_3) : (x_1, x_2) \in U, x_3 = f(x_1, x_2)\}$

On peut prendre de nouveau $V = \mathbb{R}^3 \ U$ (est U) $F(u_1, u_2) := (u_1, u_2, f(u_1, u_2))$ $F:U\to\mathbb{R}^3$ est différentiable. $F:U\to F(U)=S$ est continue $F|_n^{-1}$ est la projec-

tion orthogonale donc continue. La surface est régulière car $\partial_{u_1} F = (1, 0, \partial_{u_1} f(u_1, u_2))$ $\partial_{u_2} F = (0, 1, \partial_{u_2} f(u_1, u_2)) \ \partial_{u_1} \wedge \partial_{u_1} = (., ., 1) \neq 0$

Addendum : le plan affine est régulier $X=p+u_1X_1+u_2X_2$ $\partial_{u_1}F=X_1,$ $\partial_{u_2}F=X_2$ $\partial_{u_1} F \wedge \partial_{u_2} F = X_1 \wedge X_2 \neq SiX_1, X_2 \text{ sont indépendantes } \Leftrightarrow \dim \text{vect}\{X_1, X_2\} = 2.$

Exemple 3. $S(=S^2) = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$ S est une surface régulière? Soit $p = (p_1, p_2, p_3) \in S$ t.q. $p_3 > 0$ $F(X, Y) = (X, Y, \sqrt{1 - x^2 - y^2})$ $(x^2 + y^2 < 1)$ $U := \{(X, Y); \ x^2 + y^2 < 1\}; V := \{(x, y, z); z > 0\}$

 $S \cup V_3$ est le graphe de $(X,Y) \mapsto \sqrt{1-x^1-y^2}$ qui est C^{∞} par l'exemple du graphe on a que F est une paramétrisation en ppour chaque $p \in S \cap V_+$

Soit $p \in S$; $p_3 < 0$ on choisi $U := \{(x,y); x^2 + y^2 < 1\}$ $V_- = \{(x,y,z); z < 0\}$ $F_-(x,y) := (x,y,-\sqrt{1-x^2-y^2})$ $(x,y) \in U$ $V_- = \{(x,y,z); z < 0\}$ parce que $S \cap V_-$ est le graphe de $U \ni (x,y) \mapsto -\sqrt{1-x^2-y^2}$ qui est différentiel. Par le précédent (U,F_-,V_-)

le graphe de $U \ni (x,y) \mapsto -\sqrt{1-x^2-y^2}$ qui est différentiel. Par le précédent (U,F_-,V_-) est un voisinage de coordonnées pour chaque point $p \in S$ t.q. $p_3 < 0$.

 $\{p \in S \text{ t.q. } p_2 > 0\}$ est le graphe $U \in (x,y) \mapsto \sqrt{1-y^2-z^2}$ donc par le précédent $(U,F_{1\pm},V_{1\pm})$ avec $V_{1\pm} = (x,y,z), x >_< 0$ et $F_{1\pm} = (y,z,\pm\sqrt{1-y^2-x^2})$ De même : $(U,F_{2\pm},V_{2\pm})$ avec $V_{2\pm} = \{x,y,zx>0 \ y<0\}$ $F_{2\pm}(X,z) = (x,z,\pm\sqrt{1-x^2-z^2})$ est un voisinage de coordonnées pour $\{p \in S; p_2>_< 0\}$

En résumé : S^2 est une surface régulière.

Remarque. Il nous a falloir 6 paramétrisations pour monter que S est la une surface régulière. On peut faire avec 2 paramétrisations mais pas avec 1.

Proposition 3. Soit $V_0 \subset \mathbb{R}^3$ ouvert $f \in C^{\infty}(V_0; \mathbb{R})$ $S := \{(x, y, z) \in V_0; f(x, y, z) = 0\}$ $Si \nabla f(p) \neq 0 \forall p \in S$ alors S est une surface régulière.

Remarque. $-S^2 = f^{-1}(0) \ pour \ f(x, y, z) = x^2 + y^2 + z^2 - 1$

— S — le plan affine = $f^{-1}(0)$ de $f(X) = \langle X - P, n \rangle$ pour un $p \in S$ et n un vecteur normale à S.

Démonstration. Soit $p = (X_0, Y_0, Z_0)$ $gradf(p) = (\partial_x f(p), \partial_y f(p), \partial_z f(p)) \neq (0, 0, 0)$

Supposons que $\partial_z f(p) \neq 0$. Par le théorème des fonctions implicites il existe un voisinage $V \subset V_b$ de p un voisinage $U \subset \mathbb{R}^2$ de (X_0, Y_0) et une fonction $g \in C^{\infty}(U, \mathbb{R})$ t.q. $S \cap V = \{(x, y, g(x, y)); x, y \in U\}$ donc on conclure en utilisant l'exemple du graphe d'une fonction (cad f(x, y, g(x, y)) = 0).

Attention : la condition $\nabla f(p) \neq 0 (p \in S)$ est suffisante mais pas nécessaire. Par exemple $S^2 = \tilde{f}^{-1}(0)$ pour $\tilde{f}(x,y,z) = (x^2+y^2+z^2-1)^2 \nabla \tilde{f}(x,y,z) = 2(x^2+y^2+z^2-1)^2 (x,y,z) = 0$ si $x^2+y^2+z^2=1$

Exemple 4. $f(x,y,z) = x^2 + y^2 - z^2(x,y,z) \in \mathbb{R}^3$ $S = f^{-1}(0)$ $\nabla f(x,y,z) = 2(x,y,-z) = 0 \Leftrightarrow (x,y,z) = (0,0,0)(0,0,0) \in S$

In faut donc examine S autour (=dans un voisinage) de (0,0,0) $S=\{(x,y,z); |z|=\sqrt{x^2+y^2}\}$

S est un double-cône

Remarque. rotation de la courbe $X \mapsto (X, Z)$ avec |x| = |y| autour de l'axe des z

Il ne eut exister de voisinage $V \subset \mathbb{R}^3$ de (0,0,0) et $U \subset \mathbb{R}$ ouvert t.q. $F|_U: U \to S \cap V$ soit homeomorphe avec $F: U \to \mathbb{R}^2$ t.q. DuF est de rang2 car pour $p \in S \cup V$ avec $p_3 > 0$ et $q \in S \cap V$ avec $q_3 < 0$ et toute courbe $c: [0,1] \to S \cap V$ avec c(0) = p, c(1) = q. $\exists t_0$ t.q. $c(t_0) = (0,0,0)$ or dans U il existent des courbes qui évitent l'origine. C'est à dire $\gamma \in C^0([0,1],U)$ $\gamma(0) = F^{-1}(q)$ $\gamma(1) = F^{-1}(p)$ $\gamma(t) \neq F^{-1}(0) \forall t \in [0,1]$.