# High-Level Design(HLD): Phishing Domain Detection

#### 1. Overview

Phishing is a prevalent cyber threat where attackers masquerade as legitimate entities to deceive users into revealing sensitive data. This project uses machine learning to develop a system that automatically detects phishing URLs before users interact with them.

This HLD outlines the problem, proposed solution, system architecture, technical requirements, and recommendations for implementation.

### 2. Goals of the HLD

- 1. **Define the Problem Statement**: Highlight the challenges posed by phishing and its effects on organizations and individuals.
- 2. **Propose a Solution**: Present a machine learning-based approach to detecting phishing domains.
- 3. **Technical Framework**: Define the architecture, technologies, and tools required for implementation.
- 4. **Provide Strategic Insights**: Offer recommendations for security and system scalability.

### 3. Problem Statement

# **Phishing Attacks**

- Definition: Phishing involves deceptive practices, such as sending fraudulent emails or messages, to trick victims into providing sensitive information or clicking on malicious links.
- Methods of Attack:
  - Email-based phishing (96% of attacks).
  - Social engineering through instant messages or websites.
  - Spear phishing targeted at specific individuals or organizations.

# **Impact**

#### Financial Losses:

Average cost of a phishing attack is \$4.65 million per breach.



 Organizations may experience a 5% drop in stock prices after a breach.

# Operational Damage:

- Downtime and reduced productivity.
- Loss of intellectual property and customer trust.

# Increased Threat with Remote Work:

 Employees working remotely face a 37% higher risk of phishing attacks.

### **Statistics**

- 31% of employees click on phishing links, and 67.5% provide credentials.
- Phishing websites increased significantly between 2016 and 2023 (Google Safe Browsing).



# 4. Proposed Solution

The project's solution leverages machine learning to identify malicious URLs. This automated system will classify URLs into two categories: *phishing* and *legitimate*.

# **Key Objectives**

#### 1. Prevent User Interaction with Malicious Links:

Analyze URLs before users engage with them.

#### 2. Automate Detection:

o Reduce dependency on manual identification.

# 3. Scalable Integration:

 Enable deployment in browsers, email filters, and enterprise security systems.



# 5. System Architecture

# **5.1 Architecture Components**

# 1. Frontend (Web Interface)

 A Simple HTML, CSS and JavaScript -based user interface for inputting URLs and displaying results.  Features: Input field, Submit button, and Result display with probability scores.

### 2. Backend (REST API)

- o Built with FastAPI or Flask to connect the frontend with the ML model.
- Processes user inputs and communicates with the model for predictions.

# 3. Machine Learning Model

- A binary classifier trained to predict phishing URLs based on extracted features.
- Models used: Random Forest, Neural Networks, and Gradient Boosting.

# 4. Database (Optional)

 Stores previously analyzed URLs and their classifications for quick retrieval.

### 5. **Deployment Infrastructure**

 Hosted on cloud platforms like Heroku or AWS for scalability and reliability.

#### 5.2 Data Flow

- 1. User inputs a URL through the web interface.
- 2. The frontend sends a request to the REST API.
- 3. The backend validates the URL and extracts features.
- 4. The ML model predicts whether the URL is phishing or legitimate.
- 5. The result is returned to the frontend for user display.

### 5.3 High-Level Architecture Diagram

Include a diagram illustrating:

 User → Frontend → REST API → ML Model → Database (Optional) → Response → User.

# 6. Technical Requirements

### **6.1 Software Requirements**

- Backend Framework: FastAPI or Flask (Python).
- Frontend Framework: ReactJS, CSS.
- Machine Learning Libraries:

- Scikit-learn, TensorFlow, Pandas, NumPy.
- Visualization Tools: Matplotlib, Seaborn, Plotly.
- Database: SQLite, MongoDB (Optional).



# 6.2 Hardware Requirements

- Server Specifications:
  - o CPU: Quad-core, 2.5 GHz.
  - o RAM: 8 GB or higher.
  - Storage: 50 GB SSD.

# 6.3 Deployment Requirements

- Platform: Heroku, AWS, or Google Cloud.
- Security:
  - SSL/TLS for secure communication.
  - API authentication for backend access.

# 7. Security Considerations

- 1. **HTTPS Enforcement**: Secure data communication between the user and server.
- 2. **Input Validation**: Prevent injection attacks by sanitizing user inputs.
- 3. Rate Limiting: Mitigate DDoS attacks on the REST API.
- 4. **Error Logging**: Log errors for debugging without exposing sensitive information.
- 5. **Employee Training**: Complement the solution with cybersecurity training for users.

# 8. Data Requirements

#### **Dataset Characteristics:**

- Balanced representation of phishing and legitimate URLs.
- Diversity in features to improve model robustness.
- Real-world data with minimal artificially generated samples.

### Sources:

- 1. UNB URL 2016 Dataset.
- 2. ScienceDirect Phishing Websites Dataset.



# 9. Future Enhancements

# 1. Real-Time Integration:

 Embed the solution in web browsers and email filters for real-time protection.

# 2. Mobile Compatibility:

Develop mobile apps to detect phishing links on-the-go.

# 3. Advanced Features:

 Incorporate WHOIS lookups and Natural Language Processing (NLP) to analyze webpage content.

# 4. User Authentication:

Add login functionality for personalized results and analytics.

# 10. Conclusion

The Phishing Domain Detection project combines machine learning and user-friendly interfaces to tackle phishing attacks effectively. By automating URL analysis, the system reduces dependency on human judgment, providing a scalable and robust solution for organizations and individual users.