Stat 140: More Probability Examples

Diabetes and hypertension

Diabetes and hypertension are two of the most common diseases in Western, industrialized nations. In the United States, approximately 9% of the population have diabetes, while about 30% of adults have high blood pressure. The two diseases frequently occur together: an estimated 6% of the population have both diabetes and hypertension.

1. Are having diabetes and having hypertension disjoint?	
2. Draw a Venn diagram summarizing the variables and their associated probabilities.	
3. Let A represent the event of having diabetes, and B the event of having hyperter Calculate $P(A \text{ or } B)$.	ension.
4. What percent of Americans have neither hypertension nor diabetes?	
2 Las persons or removation in persons in a diabotics.	

Drug Testing

Mandatory drug testing in the workplace is common practice for certain professions, such as air traffic controllers and transportation workers. A false positive in a drug screening test occurs when the test incorrectly indicates that a screened person is an illegal drug user. Suppose a mandatory drug test has a false positive rate of 1.2% (i.e., has probability 0.012 of indicating that an employee is using illegal drugs when that is not the case).

1. A company gives all 150 of its employees drug tests, and in reality all 150 employees are not drug users. Assume that the drug tests are independent: the outcome of one drug test has no effect on the others. Define the events:

 $A_1=$ the 1st employee tests positive $A_2=$ the 2nd employee tests positive : $A_{150}=$ the 150th employee tests positive

- a. Find the probability that a particular employee tests negative
- b. Find the probability that all 150 employees test negative

c. Find the probability that at least one employee (falsely) tests positive

2.

Because of the high likelihood of at least one false positive in company wide drug screening programs, an individual with a positive test is almost always re-tested with a different screening test: one that is more expensive than the first, but has a lower false positive probability. Suppose the second test has a false positive rate of 0.8%.

What is the probability that an employee who is not using illegal drugs will test positive on both tests? Assume the two tests are independent of each other.