Contents

Ι	Set		13
1	prod	direct sum	15 15
2	Rin ₃		17 17
II	Se	equences	19
3	Sup	remum and infimum	21
4	Inte	rval	23
5	Enh	anced real line	25
6	Vec : 6.1	Kor space K-module	27 27 27 27 28 28 28 29
	6.2	sub K-module	29 29 29 29
	6.4	6.3.1 Def	29 29 29 30 30
	0.4	6.4.1 Prop	30 30 30

		6.4.3 Theorem
		6.4.4 Def 31
		6.4.5 Remark
		6.4.6 Theorem
		6.4.7 Proof:
7	Ma	notone mappings 33
'	7.1	notone mappings 33 Def
	7.1	Prop
	7.3	Def
	7.4	Prop
	7.5	Prop
	7.6	Def
	7.7	Prop
	7.8	Proof
	1.0	7.8.1 bijection
		7.8.2 uniqueness
		1
8	_	nence and series 37
	8.1	Def
	8.2	Remark
	8.3	Prop
	8.4	proof
	8.5	Prop
	8.6	limit
		8.6.1 Def
		8.6.2 Remark
		8.6.3 Prop
		8.6.4 Prop
		8.6.5 Prop
		8.6.6 Theorem
		8.6.7 Def
		8.6.8 Prop
		8.6.9 Prop
		8.6.10 Theorem
		8.6.11 Notation
		8.6.12 Corollary
		8.6.14 Theorem: Bolzano-Weierstrass
9		chy sequence 43
	9.1	Def
	9.2	Prop
	9.3	Theorem: Completeness of real number
	9.4	Absolutely converge
		0.4.1 D

10 Comparison and Technics of Computation	45
10.1 Def	45
10.2 Prop	45
10.3 Theorem	45
10.4 Prop	46
10.5 Prop	47
10.6 Theorem	47
10.7 Prop	47
10.8 Theorem	48
10.9 Remark	48
10.10Calculates on $O(),o()$	48
10.10.1 Plus	48
10.10.2 Transform	49
10.10.3 Transition	49
10.10.4 Times	49
10.11On the limit	49
10.12Prop	49
10.13Prop	50
10.14Prop	50
10.15Theorem: d'Alembert ratio test	50
10.15.1 Lemma	51
10.15.2(2)	51
10.16Prop	51
10.16.1 Corollary	52
10.16.2 Corollary	52
10.17Theorem: Cauchy root test	52
v	
	_ ~
III Axiom of choice	53
11 D	
11 Preparation	55 55
11.1 Statement of axiom of choice	55 55
11.2 Def	55 55
11.3 Theorem	
11.4 Zorn's lemma	55
11.5 Prop	55
11.6 Proof	56
11.7 Def: Initial Segment	56
11.8 Example	56
11.9 Prop	56
11.10Proof	56
11.11Prop	56
11.12Proof	56
11.13Lemma	57
11.14Prop	57
11.15Def	57

11.16Def	 57 58 58
12 Zorn's lemma 12.1 Proof	 61 61
IV Topology	63
13 Absolute value and norms	65
13.1 Def	 65
13.2 Notation	 65
13.3 Prop	 65
13.4 Def	 66
14 Quotient Structure	67
14.1 Def	67
14.2 equivalence class	67
14.3 Prop	67
14.4 Def	68
14.5 Remark	68
14.6 Prop	68
14.7 Notation on Equivalence Class	68
14.8 Proof	69
14.9 Quotient set	69
14.9.1 Example	69
14.10Def	69
14.11Remark	69
14.12Prop	69
14.13Theorem	70
14.14Def	70
14.15Prop	70
14.16Def	71
14.17Theorem	71
14.17.1 Reside Class	72
14.18Theorem	 72 73
14.19Theorem	 13
15 Topology	75
15.1 Def	 75
15.2 Remark	75
15.2.1 Example	75
15.3 Def	75
15.3.1 Example	76
15.4 Def	76

		15.4.1 Example	76
1	5.5	Prop	76
1	5.6	$\mathrm{Def} \; \ldots \; $	76
1	5.7	$\mathrm{Def} \; \ldots \; $	77
		15.7.1 Example	77
16 F	rilte	er	7 9
1	6.1	$\mathrm{Def} \; \ldots \; $	79
		16.1.1 Example	79
1	6.2	Def: Filter Basis	79
		16.2.1 Remark	79
		16.2.2 Example	80
1	6.3	Remark	80
		16.3.1 Example	80
1	6.4	$\mathrm{Def} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	80
1	6.5	Remark	81
1	6.6	Extra Episode	81
1	6.7	Prop	81
17 I	im	it point and accumulation point	83
		Def	83
		Prop	83
		Def	84
1	7.4	Def	84
1	7.5	Prop	84
		Def: dense	84
18 I	₄im	it of mappings	85
		Def	85
		Remark	85
		18.2.1 Example	85
1	8.3	Remark	85
		Remark	86
1	8.5	Prop	86
		Theorem	86
1	8.7	Prop	87
1	8.8	Def	87
1	8.9	Remark	87
		Prop	87
1	8.11	Theorem	88
1	8.12	Prop	89
		18 19 1 Proof	80

19 Continuity	91
19.1 Def	. 91
19.2 Remark	. 91
19.3 Theorem	. 91
19.4 Proof	. 91
19.5 Prop	
19.6 Def	
19.7 Prop	
19.8 Proof	
19.9 Prop	
19.10Def	
19.11Remark	
19.12Prop	
19.13Theorem	
19.13.1 Proof	
19.14Remark	
19.14.1 Example	. 97
20 Uniform continuity and convergency	99
20.1 Def	. 99
20.2 Remark	
20.3 Prop	
20.4 Def	
20.5 Prop	
20.5.1 Proof	
20.6 Def	
20.7 Prop	
20.7.1 Proof	
20.8 Def	
20.9 Theorem	
20.9.1 Proof	
20.10Theorem	. 103
20.10.1 Proof	. 103
20.10.2 Def	. 103
20.11Remark	. 103
20.12Example	. 103
1	
V Normed Vector Space	105
Troining record Space	
21 Linear Algebra	107
21.1 Def	
21.1.1 Notation	
21.2 Def	
21.2 Def	
21.3 Del	108
ALA DEUDIK	108

$\Gamma ENTS$ 7
IENTS

	21.5	5 Theorem	
	21.6	Theorem	
	21.7	Corollary	
		B Def	
) Theorem	
		.0Proof	
		1Prop	
	21.11	21.11.1 Proof	
		21.11.11 1001	
22	Mat	trices 117	•
		Def	•
		22.1.1 Example	
	22.2	2 Def	
		22.2.1 Example	
	22.3	3 Def	
		Calculate Matrices	
	22.1	22.4.1 Remind	
		22.4.1 1(climid	
23	Trai	inspose 121	
		Def	
		P. Def	
		23.2.1 Example	
	23.3	B Prop	
		4 Corollary	
		6 Remark	
	_0.0	100110111	
24	Line	ear Equation 125	
	24.1	Def	
	24.2	Prop	
	24.3	B Linear Equation	
		Prop	
		6 Prop	
		6 Def	
		Theorem	
25	Nor	rmed Vector Space 129	1
	25.1	Def	
	25.2	Prop	
		25.2.1 Proof	
		B Def	
	25.4	Page 130 Pef: The completion	ı
	25.5	5 Theorem	ı
	25.6	6 Remark	
	25.7	7 Prop	
		Theorem 139	

26 Norms	135
26.1 Def	135
26.2 Remark	135
26.3 Def	136
26.4 Prop	136
26.5 Def	137
26.6 Remark	137
26.7 Def	137
26.8 Prop	137
26.9 Def: Operator Seminorm	
26.10Prop	139
26.11Remark	
26.12Def	
26.13Theorem	
27 Differentiability	143
27.1 Def	143
27.2 Def	144
27.3 Prop	144
27.4 Example	145
27.4.1	
27.4.2	
27.4.3	
27.4.4	
27.5 Theorem:Chain rule	
27.6 Prop	
27.7 Def	
27.8 Corollary	
27.9 Corollary	
27.10 Corollary	
27.11Prop	
27.12Corollary	
27.13Def: Equivalence of Norms	
27.14Prop	
27.15Remark	
27.16Prop	
27.101 top	
27.18Prop	
27.19Theorem	154
28 Compactness	155
28.1 Def: cover	
28.2 Def: compact	
28.3 Def	
28.4 Prop	
28.5 Theorem	196

	28.6 Theorem	157
	28.7 Lemma	158
	28.8 Prop	
	28.9 Prop	
	28.10Prop	
	28.11Prop	
	28.12Theorem	
	28.13Def	
	28.14Theorem	
	28.15Def	
	28.16Prop	
	28.17Theorem	
	20.17 1 110010 11	101
29	Mean Value Theorems	167
	29.1 Rolle Theorem	167
	29.2 Mean value theorem(Lagrange)	
	29.3 Mean value inequality	
	29.4 Theorem	
	29.5 Theorem(Heine)	
	20.0 Theorem(Heine)	
30	Fixed Point Theorem	171
	30.1 Def	171
	30.2 Def	171
	30.3 Fixed Point Theorem	
V]	Higher differentials 1	73
21	Multilinear mapping	175
ЭI	31.1 Def	
	31.2 Example	
	31.3 Remark	
	31.4 Prop	
	51.4 PTOD	110
	31.5 Remark	
32	31.5 Remark	176
32	31.5 Remark	176 1 77
	Operator norm of Multilinear field 32.1 Def	176 1 77 177
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 1 32.2 Theorem 1	176 177 177 177
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 1 32.2 Theorem 1 32.3 Corollary 1	176 1 77 177 177
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 1 32.2 Theorem 1	176 1 77 177 177
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 32.2 Theorem 32.3 Corollary 32.3.1 Proof	176 1 77 177 177 178
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 3 32.2 Theorem 3 32.3 Corollary 3 32.3.1 Proof 3 Higher differentials 1	176 1 77 177 178 178
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 3 32.2 Theorem 3 32.3 Corollary 32.3.1 Proof Higher differentials 1 33.1 Def 1	176 1 77 177 178 178 1 81
	31.5 Remark 1 Operator norm of Multilinear field 1 32.1 Def 1 32.2 Theorem 1 32.3 Corollary 2 32.3.1 Proof 1 Higher differentials 1 33.1 Def 1 33.2 Remark 1	176 1 77 177 178 178 181 181
	31.5 Remark Operator norm of Multilinear field 32.1 Def 32.2 Theorem 32.3 Corollary 32.3.1 Proof Higher differentials 33.1 Def 33.2 Remark 33.3 Theorem	176 1 77 177 178 178 181 181

	33.5	Theorem
		Def
	33.7	Prop
	33.8	Theorem
9.4	Dani	nutations 187
34		Def
	54.1	
	24.9	34.1.1 Example
		Prop
	54.5	-
	24.4	911011 11001
	34.3	Theorem
	24.0	34.5.1 Remark
	34.6	Corollary
	0.4.7	34.6.1 Remark
		Def
	34.8	Corollary
	0.4.0	34.8.1 Proof
		Caybey Theorem
		Theorem
		Remark
		Exercise
		Symmetric of multilinear mapping
		Def: Symmetric and Alternating
		Prop
		Def:
		Reminder
		Theorem (Schweiz)
		Def
		Prop
	34.2	Prop
		34.21.1 Proof
	34.25	Prop
	34.23	Local Inversion Theorem
		34.23.1 Proof
VI	\mathbf{I}	ntegration 201
35	Inte	gral operators 203
50		Prop
		Def
		Example
		Dini's theorem
	5 5.5	Def

36 Riemann integral	207
36.1 Def	 207
36.2 Def	
36.3 Theorem	
37 Daniell integral	209
37.1 Prop	 209
37.1.1	 209
37.1.2	 209
37.2 Def	 210
37.3 Prop	 210
37.4 Corollary	
37.5 Prop	
37.6 Def	
37.7 Prop	
37.8 Def	
37.9 Remark	
37.10Daniell Theorem	
37.11Beppo Levi Theorem	
37.12Fatou's Lemma	
37.13Lebesgue dominated convergence theorem	
37.14Notation	

Part I

Set

product

1.1 direct sum

 \bigoplus is defined to be the direct product but with only finite non-zero elements.

$$\bigoplus_{i \in I} V_i \{ (x_i)_{i \in I} \in \prod_{i \in I} V_i \mid \exists J \subseteq I, I \setminus J \text{ is finite that } \forall j \in J, x_j = 0 \}$$

Ring

2.1 morphism

Def

Let A and B be unitary rings .We call morphism of unitary rings from A to B .only mapping $A \to B$ is a morphism of group from (A,+) to (B,+), and a morphism of monoid from (A,\cdot) to (B,\cdot)

Properties

• Let R be a unitary ting. There is a unique morphism from \mathbb{Z} to R

•

algebra

we call k-algebra any pair(R,f), when R is a unitary ring , and $f:k\to R$ is a morphism of unitary rings such that $\forall (b,x)\in k\times R, f(b)x=xf(b)$

Example: For any unitary ring R, the unique morphism of unitary rings $\mathbb{Z} \to R$ define a structure of $\mathbb{Z} - algebra$ on R (extra: \mathbb{Z} is commutative despite R isn't guaranteed)

Notation: Let k be a commutative unitary ring (A,f) be a k-algebra. If there is no ambiguity on f, for any $(\lambda,a) \in k \times A$, we denote $f(\lambda)a$ as λa

Formal power series

reminder: $n\in\mathbb{N}$ is possible infinite , so $\sum\limits_{n\in\mathbb{N}}$ couldn't be executed directly. Def:

(extended polynomial actually) Let k be a commutative unitary ring. Def : Let T be a formal symbol. We denote $k^{\mathbb{N}}$ as k[T] If $(a_n)_{n\in\mathbb{N}}$ is an element of $k^{\mathbb{N}}$, when we denote $k^{\mathbb{N}}$ as k[T] this element is denote as $\sum_{n\in\mathbb{N}} a_n T^n$ Such

element is called a formal power series over k and a_n is called the Coefficient of T^n of this formal power series Notation:

- omit terms with coefficient O
- write T' as T
- omit Coefficient those are 1;
- omit T^0

Example $1T^0 + 2T^1 + 1T^2 + 0T^3 + ... + 0T^n + ...$ is written as $1 + 2T + T^2$ Def Remind that $k[T] = \{\sum_{n \in \mathbb{N}} a_n T^n \mid (a_n)_{n \in \mathbb{N}} \in k^{\mathbb{N}} \}$, define two composition

$$\forall F(T) = a_0 + a_+ 1T + \dots \quad G(T) = b_0 + \dots$$
 let $F + G = (a_0 + b_0) + \dots$
$$FG = \sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n$$

Properties:

- $(k[T], +, \cdot)$ form a commutative unitary ring.
- $k \to k[T]$ $\lambda \mapsto \lambda T$ is a morphism

•
$$(FG)H = \left(\sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n\right) \left(\sum_{n \in \mathbb{N}} c_n T^n\right) = \sum_{n \in \mathbb{N}} \left(\sum_{p,q,l=n} a_p b_q c_l\right) T^n$$
 is a trick applied on integral

Derivative:

let
$$F(T) \in k[T]$$

We denote by $F'(T)$ or $\mathcal{D}(F(T))$ the formal power series $\mathcal{D}(F) = \sum_{n \in \mathbb{N}} (n+1)a_{n+1}T^n$
Properties:

- $\mathcal{D}(k[T], +) \to (k[T], +)$ is a morphism of groups
- $\mathcal{D}(FG) = F'G + FG'$

We denote $exp(T) \in k[T]$ as $\sum_{n \in \mathbb{N}} \frac{1}{n!} T^n$, which fulfil the differential equation $\mathcal{D}(exp(T)) = exp(T)$ (interesting)

Cauchy sequence: $(F_i(T))_{i\in\mathbb{N}}$ be a sequence of elements in k[T], and $F(T) \in$ k[T]We say that $(F_i(T))_{i\in\mathbb{N}}$ is a Cauchy sequence if $\forall l\in\mathbb{N}$, there exists $N(l)\in\mathbb{N}$ such that $\forall (i,j) \in \mathbb{N}^2_{>N(l)}, ord(F_i(T) - F_j(T)) \geq l$

Part II Sequences

Supremum and infimum

Def:

Let (X,\leq) be a partially ordered set A and Y be subsets of X, such that $A\subseteq Y$

- If the set $\{y \in Y \mid \forall a \in A, a \leq Y\}$ has a least element then we say that A has a Supremum in Y with respect to \leq denoted by $sup_{(y,\leq)}A$ this least element and called it the Supremum of A in Y(this respect to \leq)
- If the set $\{y \in Y \mid \forall a \in A, y \leq a\}$ has a greatest element, we say that A has n infimum in Y with respect to \leq . We denote by $inf_{(y,\leq)}A$ this greatest element and call it the infimum of A in Y
- Observation: $inf_{(Y,<)}A = sup_{(Y,>)}A$

Notation:

Let (X, \leq) be a partially ordered set, I be a set.

- If f is a function from I to X sup f denotes the supremum of f(I) is X.inf ftakes the same
- If $(x_i)_{i \in I}$ is a family of element in X, then $\sup_{i \in I} x_i$ denotes $\sup\{x_i \mid i \in I\}$ (inX)

If moreover $\mathbb{P}(\cdot)$ denotes a statement depending on a parameter in I then $\sup_{i \in I, \mathbb{P}(i)} x_i \text{ denotes } \sup\{x_i \mid i \in I, \mathbb{P}(i) \text{ holds}\}$

Example:

Let $A = x \in R \mid 0 \le x < 1 \subseteq \mathbb{R}$ We equip \mathbb{R} with the usual order relation.

$$\{y \in \mathbb{R} \mid \forall x \in A, x \leq y\} = \{y \in \mathbb{R} \mid y \geq 1\}$$

So $\sup A = 1$

$$\{y \in \mathbb{R} \mid \forall x \in A, y \le x\} = \{y \in \mathbb{R} \mid y \ge 0\}$$

Hence $\inf A = 0$

Example: For $n \in \mathbb{N}$, let $x_n = (-1)^n \in R$

$$\sup_{n \in \mathbb{N}} \inf_{k \in \mathbb{N}, k \ge n} x_k = -1$$

Proposition:

Let (X,\leq) be a partially ordered set, A,Y,Z be subset of X, such that $A\subseteq Z\subseteq Y$

- If max A exists, then is is also equal to $\sup_{(y,<)} A$
- If $\sup_{(y,<)} A$ exists and belongs to Z, then it is equal to $\sup A$

inf takes the same Prop.

Let X,\leq be a partially ordered set ,A,B,Y be subsets of X such that $A\subseteq B\subseteq Y$

- If $\sup_{(y,<)} A$ and $\sup_{(y,<)} B$ exists, then $\sup_{(y,<)} A \leq \sup_{(y,<)} B$
- If $\inf_{(y,\leq)} A$ and $\inf_{(y,\leq)} B$ exists, then $\inf_{(y,\leq)} A \geq \inf_{(y,\leq)} B$

Prop.

Let (X, \leq) be a partially ordered set ,I be a set and $f,g:I\to X$ be mappings such that $\forall t\in I, f(t)\leq g(t)$

- If inf f and inf g exists, then inf $f \leq \inf g$
- If $\sup f$ and $\sup g$ exists, then $\sup f \leq \sup g$

Interval

We fix a totally ordered set (X, \leq)

Notation:

If $(a, b) \in X \times X$ such that $a \leq b$, [a,b] denotes $\{x \in X \mid a \leq x \leq b\}$

Def:

Let $I \subseteq X$. If $\forall (x,y) \in I \times I$ with $x \leq y$, one has $[x,y] \subseteq I$ then we say that I is a interval in X

Example:

Let $(a,b) \in X \times X$, such that $a \leq b$ Then the following sets are intervals

- $|a,b| := \{x \in X \mid a,x,b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$

Prop.

Let Λ be a non-empty set and $(I_{\lambda})_{{\lambda} \in \Lambda}$ be a family of intervals in X.

- $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X
- If $\bigcap_{\lambda \in \Lambda} I_{\lambda} \neq \varnothing, \bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X

We check that $[a, b] \subseteq I_{\lambda} \cup I_{|}\mu$

- If $b \le x$ $[a, b] \subseteq [a, x] \subseteq I_{\lambda}$ because $\{a, x\} \subseteq I_{\lambda}$
- If $x \le a$ $[a,b] \subseteq [x,b] \subseteq I_{\mu}$ because $\{b,x\} \subseteq I_{\mu}$
- If a < x < b then $[a,b] = [a,x] \cup [x,b] \subseteq I_{\lambda} \cup I_{\mu}$

Def:

Let (X, \leq) be a totally ordered set .I be a non-empty interval of X. If $\sup I$ exists in X, we call $\sup I$ the right endpoint; inf takes the similar way. Prop.

Let I be an interval in X.

- Suppose that $b = \sup I \text{ exists. } \forall x \in I, [x, b] \subseteq I$
- Suppose that $a = \inf I$ exists. $\forall x \in I, |a, x| \subseteq I$

Prop.

Let I be an interval in X. Suppose that I has supremum b and an infimum a in X.Then I is equal to one of the following sets [a,b] [a,b[]a,b[Def

let (X, \leq) be a totally ordered set . If $\forall (x, z) \in X \times X$, such that $x < z \quad \exists y \in X$ such that x < y < z, than we say that (X, \leq) is thick Prop.

Let (X, \leq) be a thick totally ordered set. $(a,b) \in X \times X, a < b$ If I is one of the following intervals [a,b]; [a,b[;]a,b[;]a,b[Then inf I=a sup I=b (for it's thick empty set is impossible) Proof:

Since X is thick, there exists $x_0 \in]a, b[$ By definition,b is an upper bound of I. If b is not the supremum of I, there exists an upper bound M of I such that M_ib. Since X is thick , there is $M' \in X$ such that $x_0 \leq M, M' < b$ Since $[x, b] \subseteq [a, b] \in I$ Hence M and M' belong to I, which conflicts with the uniqueness of supremum.

Enhanced real line

Def:

Let $+\infty$ and -infty be two symbols that are different and don not belong to \mathbb{R} We extend the usual total order $\leq on \mathbb{R} to \mathbb{R} \cup \{-\infty, +\infty\}$ such that

$$\forall x \in \mathbb{R}, -\infty < x < +\infty$$

Thus $\mathbb{R} \cup \{-\infty, +\infty\}$ become a totally ordered set, and $\mathbb{R} =]-\infty, +\infty[$ Obviously, this is a thick totally ordered set. We define:

- $\forall x \in]-\infty, +\infty[$ $x + (+\infty) := +\infty$ $(+\infty) + x := +\infty$
- $\forall x \in [-\infty, +\infty[\quad x + (-\infty) := -\infty \quad (-\infty) + x = -\infty$
- $\forall x \in]0, +\infty]$ $x(+\infty) = (+\infty)x = +\infty$ $x(-\infty) = (-\infty)x = -\infty$
- $\forall x \in [-\infty, 0]$ $x(+\infty) = (+\infty)x = -\infty$ $x(-\infty) = (-\infty)x = +\infty$
- $-(+\infty) = -\infty$ $-(-\infty) = +\infty$ $(\infty)^{-1} = 0$
- $(+\infty) + (-\infty)$ $(-\infty) + (+\infty)$ $(+\infty)0$ $0(+\infty)$ $(-\infty)0$ $0(-\infty)$ ARE NOT DEFINED

Def

Let (X, \leq) be a partially ordered set. If for any subset A of X,A has a supremum and an infimum in X, then we say the X is order complete Example

Let Ω be a set $(\mathscr{P}(\Omega), \subseteq)$ is order complete If \mathscr{F} is a subset of $\mathscr{P}(\Omega)$, sup $\mathscr{F} = \bigcup_{A \in \mathscr{F}} A$

Interesting tip: $\inf \emptyset = \Omega \quad \sup \emptyset = \emptyset$ \mathcal{AXION} :

 $(\mathbb{R} \cup \{-\infty, +\infty\}, \leq)$ is order complete In $\mathbb{R} \cup \{-\infty, +\infty\}$ sup $\emptyset = -\infty$ inf $\emptyset = +\infty$

Notation:

- For any $A \subseteq \mathbb{R} \cup -\infty, +\infty$ and $c \in \mathbb{R}$ We denote by A+c the set $\{a+c \mid a \in A\}$
- If $\lambda \in \mathbb{R} \setminus \{0\}$, λA denotes $\{\lambda a \mid a \in A\}$
- -A denotes (-1)A

Prop.

For any $A \subseteq \mathbb{R} \cup \{-\infty, +\infty\}$, $\sup(-A) = -\inf A$, $\inf(-A) + -\sup A$ Def We denote by (R, \leq) a field \mathbb{R} equipped with a total order \leq , which satisfies the following condition:

- $\forall (a,b) \in \mathbb{R} \times \mathbb{R}$ such that a < b, one has $\forall c \in \mathbb{R}, a+c < b+c$
- $\forall (a,b) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}, ab > 0$
- $\forall A \subseteq \mathbb{R}$, if A has an upper bound in \mathbb{R} , then it has a supremum in \mathbb{R}

Prop.

Let
$$A \subseteq [-\infty, +\infty]$$

- $\forall c \in \mathbb{R}$ $\sup(A+c) = (\sup A) + c$
- $\forall \lambda \in \mathbb{R}_{>0}$ $\sup(\lambda A) = \lambda \sup(A)$
- $\forall \lambda \in \mathbb{R}_{\leq 0}$ $sup(\lambda A) = \lambda \inf(A)$

inf takes the same

Theorem:

Let I and J be non-empty sets

$$\begin{array}{l} f:I\rightarrow [-\infty,+\infty],g:J\rightarrow [-\infty,+\infty]\\ a=\sup\limits_{x\in I}f(x)\quad b=\sup\limits_{y\in J}g(y)\quad c=\sup\limits_{(x,y)\in I\times J,\{f(x),g(y)\}\neq\{+\infty,-\infty\}}(f(x)+g(y))\\ \text{If }\{a,b\}\neq\{+\infty,-\infty\}\\ \text{then }c=a+b \end{array}$$

inf takes the same if $(-\infty) + (+\infty)$ doesn't happen

Corollary:

Let I be a non-empty set, $f: I \to [-\infty, +\infty], g: J \to [-\infty, +\infty]$ Then $\sup_{x \in I, \{f(x), g(y)\} \neq \{+\infty, -\infty\}} (f(x) + g(x)) \leq (\sup_{x \in I} f(x)) (\sup_{x \in I} g(x))$

inf takes the similar($\leq \rightarrow \geq$) (provided when the sum are defined)

Vector space

In this section:
K denotes a unitary ring.
Let 0 be zero element of K
1 be the unity of K

6.1 K-module

6.1.1 Def

Let (V,+) be a commutative group. We call left/right K-module structure: any mapping $\Phi:K\times V\to V$

- $\bullet \ \forall (a,b) \in K \times K, \forall x \in V \quad \Phi(ab,x) = \Phi(a,\Phi(b,x))/\Phi(b,\Phi(a,x))$
- $\forall (a,b) \in K \times K, \forall x \in V, \Phi(a+b,x) = \Phi(a,x) + \Phi(b,x)$
- $\forall a \in K, \forall (x, y) \in V \times V, \Phi(a, x + y) = \Phi(a, x) + \Phi(a, y)$
- $\forall x \in V, \Phi(1, x) = x$

A commutative group (V,+) equipped with a left/right K-module structure is called a left/right K-module.

6.1.2 Remark

Let K^{op} be the set K equipped with the following composition laws:

- $\bullet \ K \times K \to K$
- $(a,b) \mapsto a+b$
- $\bullet \ K \times K \to K$
- $(a,b) \mapsto ba$

Then K^{op} forms a unitary ring Any left $K^{op} - module$ is a right K-module Any right $K^{op} - module$ is a left K-module $(K^{op})^{op} = K$

6.1.3 Notation

When we talk about a left/right K-module (V,+), we often write its left K-module structure as $K \times V \to V \quad (a,x) \mapsto ax$

The axioms become:

$$\forall (a,b) \in K \times K, \forall x \in V \quad (ab)x = a(bx)/b(ax)$$

$$\forall (a,b) \in K \times K, \forall x \in V \quad (a+b)x = ax+bx$$

$$\forall a \in K, \forall (x,y) \in V \times V \quad a(x+y) = ax+ay$$

$$\forall x \in V \quad 1x = x$$

6.1.4 K-vector space

If K is commutative, then $K^{op}=K$, so left K-module and right K-module structure are the same . We simply call them K-module structure. A commutative group equipped with a K-module structure is called a K-module. If K is a field, a K-module is also called a K-vector space

Let $\Phi: K \times V \to V$ be a left or right K-module structure

$$\forall x \in V, \Phi(\cdot, x) : K \to V \quad (a \in K) \mapsto \Phi(a, x)$$

is a morphism of addition groups. Hence $\Phi(0,x)=0, \Phi(-a,x)=-\Phi(a,x)$ $\forall a\in K, \Phi(a,\cdot):V\to V$ is a morphism of groups. Hence $\Phi(a,0)=0, \Phi(a,-x)=-\Phi(a,x)(\cdot \ is \ a \ var)$

6.1.5 Association:

 $\forall x \in K$

$$(f(f+g)+h)(x) = (f+g)(x)+h(x) = f(x)+g(x)+h(x)$$
$$(f+(g+h))(x) = f(x)+((g+h)(x)) = f(x)+g(x)+h(x)$$

$$\begin{array}{ll} \text{Let } 0:I\to K:x\mapsto 0 & \forall f\in K^I & f+0=f\\ \text{Let } -f:f+(-f)=0 & \end{array}$$

The mapping $K \times K^I \to K^I : (a,f) \mapsto af \quad (af)(x) = af(x)$ is a left K-module structure

The mapping $K \times K^I \to K^I$: $(a \in I) \mapsto ((x \in I) \mapsto f(x)a)$ (af)(x) = af(x) is a right K-module structure

6.1.6 Remark:

We can also write an element μ of K^I is the form of a family $(\mu_i)_{i\in I}$ of elements in K (μ_i) is the image of $i\in I$ by μ)
Then

$$(\mu_i)_{i \in I} + (\nu_i)_{i \in I} := (\mu_i + \nu_i)_{i \in I}$$

 $a(\mu_i)_{i \in I} := (a\mu_i)_{i \in I}$
 $(\mu_i)_{i \in I} a = (\mu_i a)_{i \in I}$

6.2 sub K-module

6.2.1 Def

Let V be a left/right K-module. If W is a subgroup of V. Such that $\forall a \in K, \forall x \in W \quad ax/xa \in W$, then we say that W is left/right sub-K-module of V.

6.2.2 Example

Let I be a set .Let $K^{\bigoplus I}$ be the subset of K^I composed of mappings $f: I \to K$ such that $I_f = \{x \in I \mid f(x) \neq 0\}$ is finite. It is a left and right sub-K-module of K^I

In fact,
$$\forall (f,g) \in K^{\bigoplus I} \times K^I$$
 $I_{f-g} = x \in I \mid f(x) - g(x) \neq 0 \subseteq I_f \cup I_g$
Hence $f - g \in K^{\bigoplus I}$ So $K^{\bigoplus I}$ is a subgroup of K^I $\forall a \in K, \forall f \in K^{\bigoplus I}$ $I_{af} \subseteq I_f, I_{(x \mapsto f(x)a)} \subseteq I_f$

6.3 morphism of K-modules

6.3.1 Def

Let V and W be left K-module, A morphism of groups $\phi: V \to W$ is called a morphism of left K-modules if $\forall (a,x) \in K \times V, \phi(ax) = a\phi(x)$

6.3.2 K-linear mapping

If K is commutative, a morphism of K-modules is also called a K-linear mapping. We denote by $\hom_{K-Mod}(V,W)$ the set of all morphism of left-K-module from V to W.This is a subgroup of W^V

6.3.3 Theorem

Let V be a left K-module. Let I be a set. The mapping $\hom_{K-Mod}(K^{\bigoplus I},V) \to V^I: \phi \to (\phi(e_i))_{i \in I}$ is a bijection where $e_i: I \to K: j \mapsto \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}$

6.3.4 Remark:column

In the case where I=1,2,3,...,n V^I is denoted as V^n,K^I is denoted as K^n For any $(x_1,...,x_n)\in V^n$, by the theorem, there exists a unique morphism of left K-modules $\phi:K^n\to V$ such that $\forall i\in 1,...,n\phi(e_i)=x_i$

We write this
$$\phi$$
 as a column $\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ It sends $(a_1, \dots, a_n) \in K^n$ to $a_1x_1 + \dots + a_nx_n$

6.4 kernel

6.4.1 Prop

Let G and H be groups and $f: G \to H$ be a morphism of groups

- $I_m(f) \subseteq H$ is a subgroup of H
- $\ker(f) = \{x \in G \mid f(x) = e_H\}$
- f is injection iff $ker(f) = \{e_G\}$

6.4.2 Def

ker(f) is called the kernel of f

6.4.3 Theorem

f is injection iff $\ker(f) = \{e_G\}$

Proof

Let e_G and e_H be neutral element of G and H respectively

- (1) Let x and y be element of G $f(x)f(y)^{-1} = f(x)f(y)^{-1} = f(xy^{-1}) \in Im(f)$. So Im(f) is a subgroup of H
- (2) Let x and y be element of $\ker(f)$ One has $f(xy^{-1})=f(x)f(y)^{-1}=e_H$ $e_H^{-1}=e_H$. So $xy^{-1}\in\ker(f)$ So $\ker(f)$ is a subgroup of G
- (3) Suppose that f is injection. Since $f(E_G) = e_H$ one has $\ker(f) = f^{-1}(\{e_H\}) = \{e_G\}$ Suppose that $\ker(f) = \{e_G\}$ If f(x) = f(y)then $f(xy^{-1}) = f(x)f(y)^{-1} = e_H$ Hence $xy^{-1} = e_G \Rightarrow x = y$

6.4. KERNEL 31

6.4.4 Def

Let (V,+) be a commutative group, I be a set. We define a composition law + on V^{I} as follows

$$(x_i)_{i \in I} + (y_i)_{i \in I} := (x_i + y_i)_{i \in I}$$

Then V^I forms a commutative group

6.4.5Remark

Let E and F be left K-modules

 $\hom_{K=Mod}(E,F) := \{\text{morphisms of left K-modules from E to F}\} \subseteq F^E \text{ is a}$ subgroup of F^E

In fact f and g are elements of $hom_{K-Mod}(E,F)$, then f-g is also a morphism of left K-module

$$(f-g)(x+y) = f(x+y) - g(x+y) = (f(x) + f(y)) - (g(x) + g(y)) = (f(x) - g(x)) + (f(y) - g(y)) = (f - g)(x) + (f - y)(x)$$

6.4.6Theorem

Let V be a left K-module, I be a set The mapping $\hom_{K-Mod}(K^{\bigoplus I}, V) \to$ $V^I: \phi \mapsto (\phi(e_i))_i \in I$ is an isomorphism of groups, where $e_i: I \to K: j \mapsto I$ $\int 1 \quad j = i$ $\begin{cases} 0 & j \neq i \end{cases}$

6.4.7 Proof:

One has $(\phi + \psi)(e_i) = \phi(e_I) + \psi(e_i)$ $\forall (\phi, psi) \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)^2$ Hence $\Psi(\phi, \psi) = (\phi(e_i) + \psi(e_i))_{i \in I} = \Psi(\phi) + \Psi(\psi)$ So Ψ is a morphism of groups

injectivity Let $\phi \in \text{hom}_{K-Mod}(K^{\bigoplus I}, V)$ Such that $\forall i \in I(\forall \phi \in \text{ker}(\Psi)) \quad \phi(e_i) = 0$ Let $a = (a_i)_{i \in I} \in K^{\bigoplus I}$ One has $a = \sum_{i \in I} a_i e_i$

If fact,
$$\forall j \in I$$
, $a_j = \sum_{i \in I, a_i \neq 0} a_i e_i(j)$
Thus $\phi(a) = \sum_{i \in I, a_i \neq 0} a - I \phi(e_i) = 0$

Hence ϕ is the neutral element.

surjectivity Let $x = (x_i)_{i \in I} \in V^I$ We define $\phi_x : K^{\bigoplus I} \to V$ such that $\forall a = (a_i)_{i \in I} \in K^{\bigoplus I}, \phi_x(a) = \sum_{i \in I, a_i \neq 0} a_i x_i$

This is a morphism of left K-modules

$$foralli \in I, \phi_x(e_i) = 1x_i = x_i \text{ So } \Psi(\phi_x) = x$$

Suppose that K' is a unitary ring, and V is also equipped with a right K'-module structure, Then $\hom_{K-Mod}(K^{\bigoplus I},V)\subseteq V^{K^{\bigoplus I}}$ is a right sub-k'-module , and Ψ in the theorem is a right K'-module isomorphism

Monotone mappings

7.1 Def

Let I and X be partially ordered sets, $f: I \to X$ be a mapping.

- If $\forall (a,b) \in I \times I$ such that a < b. One has $f(a) \leq f(b)/f(a) < f(b)$, then we say that f is increasing/strictly increasing. decreasing takes similar way.
- If f is (strictly) increasing or decreasing, we say that f is (strictly) monotone

7.2 Prop.

Let X,Y,Z be partially ordered sets. $f: X \to Y, g: Y \to Z$ be mappings

- If f and g have the same monotonicity, then $g \circ f$ is increasing
- If f and g have different monotonicities, then $g \circ f$ is decreasing

strict monotonicities takes the same

7.3 Def

Let f be a function from a partially ordered set I to another partially ordered set .If $f \mid_{Dom(f)} \to X$ is (strictly) increasing/decreasing then we say that f is (strictly) increasing/decreasing

7.4 Prop.

Let I and X be partially ordered sets. f be function from I to X.

- If f is increasing/decreasing and f is injection, then f is strictly increasing/decreasing
- ullet Assume that I is totally ordered and f is strictly monotone, then f is injection

7.5 **Prop**

Let A be totally ordered set, B be a partially ordered set, f be an injective function from A to B

If f is increasing/decreasing ,then so is f^{-1}

7.6 Def

Let X and Y be partially ordered sets. $f: X \to Y$ be a bijection. If both f and f^{-1} are increasing ,then we say that f is an isomorphism of partially ordered sets.

(If X is totally, then a mapping $f: X \to Y$ is an isomorphism of partially ordered sets iff f is a bijection and f is increasing)

7.7 Prop.

Let I be a subset of $\mathbb N$ which is infinite. Then there is a unique increasing bijection $\lambda_I:\mathbb N\to I$

7.8 Proof

7.8.1 bijection

```
We construct f: \mathbb{N} \to I by induction as follows. Let f(0) = \min I Suppose that f(0), ..., f(n) are constructed then we take f(n+1) := \min(I \setminus \{f(0), ..., f(n)\}) Since I \setminus \{f(0), ..., f(n-1)\} \supseteq I \setminus \{f(0), ..., f(n)\}. Therefore f(n) \le f(n+1) Since f(n+1) \notin \{f(0), ..., f(n)\}, we have f(n) < f(n+1) Hence f is strictly increasing and this is injective If f is not surjective, then I \setminus Im(f) has a element \mathbb{N}. Let m = \min\{n \in \mathbb{N} \mid N \le f(n)\}. Since N \notin Im(f), N < f(m). So m \ne 0. Hence f(m-1) < N < f(m) = \min(I \setminus \{f(0), ..., f(m-1)\}) By definition, N \in I \setminus Im(f) \subseteq I \setminus \{f(0), ..., f(m-1)\}, Hence f(m) \le N, causing contradiction.
```

7.8. *PROOF* 35

7.8.2 uniqueness

exercise: Prove that $Id_{\mathbb{N}}$ is the only isomorphism of partially ordered sets from \mathbb{N} to \mathbb{N}

sequence and series

Let $I \subseteq \mathbb{N}$ be a infinite subset

8.1 Def

Let X be a set.We call sequence in X parametrized by I a mapping from I to X.

8.2 Remark

If K is a unitary ring and E is a left K-module then the set of sequence E^I admits a left-K-module structure. If $x=(x_n)_{n\in I}$ is a sequence in E, we define a sequence $\sum(x):=(\sum_{i\in I,i\leq n}x_i)_{n\in\mathbb{N}}$, called the series associated with the sequence x.

8.3 Prop

 $\sum:E^I\to E^{\mathbb{N}}$ is a morphism of left-K-module

8.4 proof

Let
$$x = (x_i)_{i \in I}$$
 and $y = (y_i)_{i \in I}$ be elements of E^I

$$\sum_{i \in I, i \le n} (x_i + y_i) = (\sum_{i \in I, i \le n} x_i) + (\sum_{i \in I, i \le n} y_i), \lambda \sum_{i \in I, i \le n} x_i = \sum_{i \in I, i \le n} \lambda x_i$$

8.5 Prop

Let I be a totally ordered set . X be a partially ordered set, $f:I\to X$ be a mapping $J\in I$ Assume that J does not have any upper bound in I

- If f is increasing , then f(I) and f(J) have the same upper bounds in X
- If f is decreasing , then f(I) and f(J) have the same lower bounds in X

8.6 limit

8.6.1 Def

Let $i \subseteq \mathbb{N}$ be a infinite subset. $\forall (x_i)_{n \in I} \in [-\infty, +\infty]^I$ where $[-\infty, +\infty]$ denotes $\mathbb{R} \cup \{-\infty, +\infty\}$, we define:

$$\lim\sup_{n\in I, n\to +\infty} x_n := \inf_{n\in I} (\sup_{i\in I, i\geq n} x_i)$$

$$\lim_{n \in I, n \to +\infty} \inf x_n := \sup_{n \in I} (\inf_{i \in I, i \ge n} x_i)$$

If $\limsup_{n\in I, n\to +\infty} x_n = \liminf_{n\in I, n\to +\infty} x_n = l$, we then say that $(x_n)_{n\in I}$ tends to l and that l is the limit of $(x_n)_{n\in I}$. If in addition $(x_n)_{n\in I} \in \mathbb{R}^I$ and $l \in \mathbb{R}$, we say that $(x_n)_{n\in I}$ converges to l

8.6.2 Remark

If $J \subseteq \mathbb{N}$ is an infinite subset, then:

$$\lim_{n \in I, n \to +\infty} = \inf_{n \in J} (\sup_{i \in I, i \ge n} x_i)$$

$$\lim_{n \in I, n \to +\infty} \inf x_n = \sup_{n \in J} (\inf_{i \in I, i \ge n} x_i)$$

Therefore if we change the values of finitely many terms in $(x_i)_{i \in I}$ the limit superior and the limit inferior do not change.

In fact, if we take $J = \mathbb{N} \setminus \{0, ..., m\}$, then $\inf_{n \in J} (...)$ and $\sup_{n \in J} (...)$ only depends on the values of $x_i, i \in I, i \geq m$

8.6.3 Prop

$$\forall (x_n)_{n \in I} \in [-\infty, +\infty]^I, \ \underset{n \in I, n \to +\infty}{\lim \inf} x_n \le \underset{n \in I, n \to +\infty}{\lim \sup} x_n$$

8.6. LIMIT 39

8.6.4 Prop

Let
$$(x_n)_{n\in I} \in [-\infty, +\infty]^I$$

$$\forall c \in \mathbb{R}$$

$$\lim\sup_{n\in I, n\to +\infty} (x_n+c) = (\lim\sup_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\inf_{n\in I, n\to +\infty} (x_n+c) = (\lim\inf_{n\in I, n\to +\infty} x_n) + c$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\sup_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\inf_{n\in I, n\to +\infty} x_n$$

$$\lim\inf_{n\in I, n\to +\infty} (\lambda x_n) = \lambda \lim\sup_{n\in I, n\to +\infty} x_n$$

8.6.5 Prop

Let $(x_n)_{n\in I}$ be elements in $[-\infty, +\infty]^I$. Suppose that there exists $N_0 \in \mathbb{N}$ such that $\forall n \in I, n \geq N_0$, one has $x_n \leq y_n$ Then

$$\limsup_{n \in I, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$
$$\liminf_{n \in I, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

8.6.6 Theorem

Let $(x_n)_{n\in I}, (y_n)_{n\in I}, (z_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Suppose that

- $\exists N N \in \mathbb{N}, \forall n \in I, n \geq N_0 \text{ one has } x_n \leq y_n \leq z_n$
- $(x_n)_{n\in I}$ and $(z_n)_{n\in I}$ tend to the same limit l

Then $(y_n)_{n\in I}$ tends to l

8.6.7 Def

Let I be an infinite subset of \mathbb{N} , and $(x_n)_{n\in I}$ be a sequence in some set X. We call subsequence of $(x_n)_{n\in I}$ a sequence of the form $(x_n)_{n\in J}$, where J is an infinite subset of I

8.6.8 Prop

Let I and J be infinite subset of $\mathbb N$ such that $J\subseteq I$ $\forall (x_n)_{n\in I}\in [-\infty,+\infty]^I$,one has

$$\liminf_{n \in I, n \to +\infty} (x_n) \le \liminf_{n \in I, n \to +\infty} y_n$$

$$\lim_{n \in I, n \to +\infty} \sup_{n \in I, n \to +\infty} y_n$$

In particular, if $(x_n)_{n\in I}$ tends to $l\in [-\infty,+\infty]$, then $(x_n)_{n\in J}$ tends to l

8.6.9 Prop

 $\forall n \in \mathbb{N}, \text{one has}$

$$\liminf_{n \in J, n \to +\infty} (x_n) \ge \liminf_{n \in I, n \to +\infty} y_n$$

$$\limsup_{n \in J, n \to +\infty} (x_n) \le \limsup_{n \in I, n \to +\infty} y_n$$

8.6.10 Theorem

Let $I \subseteq \mathbb{N}$ be an infinite subset and $(x_N)_{n \in I}$ be a sequence in $[-\infty, +\infty]$

- If the mapping $(n \in I) \mapsto x_n$ is increasing, then $(x_N)_{i \in I}$ tends to $\sup_{n \in I} x_n$
- If the mapping $(n \in I) \mapsto x_n$ is decreasing, then $(x_N)_{i \in I}$ tends to $\inf_{n \in I} x_n$

8.6.11 Notation

If a sequence $(x_N)_{n\in I} \in [-\infty, +\infty]$ tends to some $l \in [-\infty, +\infty]$ the expression $\lim_{n\in I, n\to} x_n$ denotes this limit l

8.6.12 Corollary

Let $(x_n)_{n\in I}$ be a sequence in $\mathbb{N}_{\geq 0}$ Then the series $\sum_{n\in I} x_n$ (the sequence $(\sum_{i\in I, i\leq n})_{n\in \mathbb{N}}$) tends to an element in $\mathbb{N}_{\geq 0}\cup\{+\infty\}$ It converges in \mathbb{R} iff it is bounded from above (namely has an upper bound in \mathbb{R})

8.6.13 Notation

If a series $\sum_{n\in I} x_n$ in $[-\infty, +\infty]$ tends to some limit, we use the expression $\sum_{n\in I} x_n$ to denote the limit

8.6.14 Theorem: Bolzano-Weierstrass

Let $(x_n)_{n\in I}$ be a sequence in $[-\infty, +\infty]$ There exists a subsequence of $(x_n)_{n\in I}$ that tends to $\limsup_{n\in I, n\to +\infty} x_n$ There exists a subsequence of $(x_n)_{n\in I}$ that rends to $\liminf_{n\in I, n\to +\infty} x_n$

8.6. LIMIT 41

Proof

Let $J = \{ n \in I \mid \forall m \in I, \text{if } m \leq n \text{ then } x_m \leq x_n \}$

If J is infinite, the sequence $(x_N)_{n\in J}$ is decreasing so it tends to $\inf_{n\in J} x_n$

 $\forall n \in J \text{ by definition } x_n = \sup_{i \in I, i \geq n} x_i \text{ so } \limsup_{n \in I, n \to +\infty} x_n = \inf_{n \in J} \sup_{i \in I, i \geq n} x_i =$

 $\inf_{n \in J} x_n = \lim_{n \in J, n \to +\infty} x_n$

Assume that J is finite. Let $n_0 \in I$ such that $\forall n \in J, n < n_0$. Denote by $l = \sup$

 $n{\in}I, n{\geq}n_0$

Let $\overline{N} \in \mathbb{N}$ such that $N \geq n_0$. By definition $\sup_{i \in I, i > n_0} x_i \leq l$. If the strict

inequality $\sup_{i \in I, i \geq N} x_i < l$ holds, then $\sup_{i \in I, i \geq N} x_i$ is NOT an upper bound of $\{x_n \mid i \in I, i \geq N\}$

 $n \in I, n_0 \le n < N$

So there exists $n \in I$ such that $n_0 \le n < N$ such that $x_n > \sup_{i \in I, i \ge N} x_i$ We may also assume that n is largest among elements of $I \cap [n_0, N]$ that satisfies

this inequality. Then $\forall m \in I$ if $m \geq n$ then $x_m \leq x_n$ Thus $n \in J$ that contradicts the maximality of n_0

Therefore

$$l = \sup_{i \in I, i \ge N} x_i$$

, which leads to

$$\lim_{n \in I, n \to +\infty} x_n = l$$

Moreover, if $m \in I, m \geq n_0$ then $m \notin J$, so $x_m < l$ (since otherwise $x_m = \sup_{i \in I} x_i$ and hence $m \in J$)Hence, $\forall finite subset I' of <math>\{m \in I \mid m \geq n_0\}$

 $\max_{i \in I} x_i < l$ and hence $\exists n \in I$, such that $n > \max_{i \in I'} x_i < x_n$

We construct by induction an increasing sequence $(n_j)_{j\in\mathbb{N}}$ in I

Let n_0 be as above. Let $f: \mathbb{N} \to I_{\geq n_0}$ be a surjective mapping.

If n_j is chosen, we choose $n_{j+1} \in I$ such that

$$n_{j+1} > n_j, x_{n_{j+1}} > \max\{x_{f(j)}, x_{n_j}\}$$

Hence the sequence $(x_{n_j})_{j\in\mathbb{N}}$ is increasing And

$$\sup_{j \in \mathbb{N}} x_{n_j} \le \sup_{j \in \mathbb{N}} x_{f(j)} = \sup_{n \in I, n \ge n_0} x_n = l$$

$$l = \sup_{n \in I, n \ge n_0}$$

So $(x_{n_i})_{i\in\mathbb{N}}$ tends to l

Cauchy sequence

9.1 Def

Let $(x_n)_{n\in I}$ be a sequence in \mathbb{R} If $\inf_{N\in\mathbb{N}}\sup_{(n,m)\in I\times I,\ n,m\geq N}|x_n-x_m|=\lim_{N\to +\infty}\sup_{(n,m)\in I\times I,\ n,m\geq N}|x_n-x_m|=0$ then we say that $(x_n)_{n\in I}$ is a Cauchy sequence

9.2 Prop

- If $(x_n)_{i\in I}\in\mathbb{R}^I$ converges to some $l\in\mathbb{R}$, then it is a Cauchy sequence
- If $(x_N)_{i\in I}$ is a Cauchy sequence, there exists M>0 such that $\forall n\in I \ |x_n|\leq M$
- If $(x_n)_{n\in I}$ is a Cauchy sequence, then $\forall J\subseteq I$ infinite, $(x_n)_{n\in I}$ is a Cauchy sequence.
- If $(x_n)_{n\in I}$ is a Cauchy sequence, then $\forall J\subseteq I$ infinite and $l\in\mathbb{R}$ such that $(x_n)_{n\in I}$ converges to l, then $(x_n)_{n\in J}$ converges to l too.

9.3 Theorem: Completeness of real number

If $(x_n)_{n\in I}\in\mathbb{R}^I$ is a Cauchy sequence, then it converges in \mathbb{R}

Proof

Since $(x_n)_{n\in I}$ is a Cauchy sequence, $\exists M\in\mathbb{R}_{>0}$ such that $-M\leq x_n\leq M$ $\forall x\in I$ So $\limsup_{n\in I,n\to+\infty}x_n\in\mathbb{R}$. By Bolzano-Weierstrass theorem. $\exists J\subseteq I$ infinite such that $(x_n)_{n\in I}$ converges to $\limsup_{n\in I,n\to+\infty}x_n\in\mathbb{R}$. Therefore $(x_n)_{n\in I}$ converges to the same limit.

9.4 Absolutely converge

We say that a series $\sum\limits_{n\in I}x_n\in\mathbb{R}$ converges absolutely if $\sum\limits_{n\in I}|x_n|<+\infty$

9.4.1 Prop

If a series $\sum\limits_{n\in I}x_n$ converges absolutely, then it converges in $\mathbb R$

Comparison and Technics of Computation

10.1 Def

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be sequence in \mathbb{R}

- If there exists $M \in \mathbb{R}_{>0}$ and $N \in \mathbb{N}$ such that $\forall n \in I_{\geq N}, |x_N| \leq M|y_m|$ then we write $x_n = O(y_n), n \in I, n \to +\infty$
- If there exists $(\epsilon_n)_{n\in I}\in\mathbb{R}^I$ and $N\in\mathbb{N}$ such that $\lim_{n\in I, n\to +\infty}\epsilon_n=0$ and $\forall n\in I_{\geq N}, |x_N|\leq |\epsilon y_m|$, then we write $x_n=\circ (y_n), n\in I, n\to +\infty$ Example:

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

10.2 Prop.

Let I and X be partially ordered sets and $f:I\to X$ be an increasing/decreasing mapping. Let J ba a subset of I. Assume that any elements of I has an upper bound in J. Then f(I) and f(J) have the same upper/lower bounds in X

10.3 Theorem

Let I be a totally ordered set, $f: I \to [-\infty, +\infty]$ and $g: I \to [-\infty, +\infty]$ be two mappings that are both increasing/decreasing. Then the following equalities holds, provided that the sum on the right hand side of the equality is well defined.

$$\sup_{x\in I,\{f(x),g(x)\}\neq\{-\infty,+\infty\}}=(\sup_{x\in I}f(x))+(\sup_{y\in I}g(y))$$

$$\inf_{x \in I, \{f(x), g(x)\} \neq \{-\infty, +\infty\}} = (\inf_{x \in I} f(x)) + (\inf_{y \in I} g(y))$$

Proof

We can assume f and g increasing. Let $a = \sup f(I), b = \sup g(I)$ Let $A = \{(x, y) \in I \times I \mid \{f(x), g(x)\} \neq \{-\infty, +\infty\}\}$ We equip A with the following order relation.

$$(x,y) \le (x',y') \text{ iff } x \le x', y \le y'$$

Let
$$B = A \cap \Delta_I = \{(x, y) \in A \mid x = y\}.$$

Consider

$$h: A \to [-\infty, +\infty]$$
 $h(x, y) = f(x) + g(y)$

h is increasing.

Let $(x, y) \in A$. Assume that $x \leq y$

If $\{f(y), g(y)\} \neq \{-\infty, +\infty\}$ then $(y, y) \in B$ and $(x, y) \leq (y, y)$

If
$$\{f(y), g(y)\} = \{-\infty, +\infty\}$$
 and for $(x, y) \in A \Rightarrow f(y) = +\infty, g(y) = -\infty$. So $a = +\infty$, Hence $b > -\infty$

So $\exists z \in I$ such that $g(z) > -\infty$. We should have $y \leq z$ Hence f(z) + g(z) is well defined, $(z, z) \in B$ and $(x, y) \leq (z, z)$ Similarly, if $x \geq y$, (x, y) has also an upper bound in B. Therefore: $\sup h(A) = \sup h(B)$

10.4 Prop.

Let $I \subseteq \mathbb{N}$ be an infinite subset. Let $(x_n)_{n \in I}$ and $(y_n)_{n \in I}$ be elements of $[-\infty, +\infty]^I$ such that $\forall n \in I \mid \{x_n, y_n\} \neq \{-\infty, +\infty\}$. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) \le (\limsup_{n \in I, n \to +\infty} x_n) + (\limsup_{n \in I, n \to +\infty} y_n)$$

$$\lim_{n \in I, n \to +\infty} \inf (x_n + y_n) \ge (\lim_{n \in I, n \to +\infty} x_n) + (\lim_{n \in I, n \to +\infty} y_n)$$

Proof

 $\forall n \in \mathbb{N}, \text{ let } A_N = \sup_{n \in I, n \geq N} x_n \quad B_N = \sup_{n \in I, n \geq N} y_n. \ (A_N)_{N \in \mathbb{N}} \text{ and } (B_N)_{N \in \mathbb{N}}$ are decreasing, and $\limsup_{n \in I, n \to +\infty} x_n = \inf_{N \in \mathbb{N}} A_N \quad \limsup_{n \in I, n \to +\infty} y_n = \inf_{N \in \mathbb{N}} B_N$ By theorem:

$$\inf_{N\in\mathbb{N}}A_N+\inf_{N\in\mathbb{N}}B_N=\inf_{N\in\mathbb{N},\{A_N,B_N\}\neq\{-\infty,+\infty\}}(A_N+B_N)$$

Let
$$C_N = \sup_{n \in I, n \ge N} (x_n + y_n) \le A_N + B_N$$
 if $A_N + B_N$ is defined.

Therefore

$$\inf_{N\in\mathbb{N}}C_N \leq \inf_{N\in\mathbb{N},\{A_N,B_N\}\neq \{-\infty,+\infty\}}(A_N+B_N) = \inf_{N\in\mathbb{N}}A_N + \inf_{N\in\mathbb{N}}B_N$$

10.5. PROP. 47

10.5 Prop.

Let $I \subseteq \mathbb{N}$ be an infinite subset. Let $(x_n)_{n \in I}$ and $(y_n)_{n \in I}$ be elements of $[-\infty, +\infty]^I$ such that $\forall n \in I \mid \{x_n, y_n\} \neq \{-\infty, +\infty\}$. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) \ge (\limsup_{n \in I, n \to +\infty} x_n) + (\limsup_{n \in I, n \to +\infty} y_n)$$

$$\liminf_{n \in I, n \to +\infty} (x_n + y_n) \ge (\liminf_{n \in I, n \to +\infty} x_n) + (\liminf_{n \in I, n \to +\infty} y_n)$$

Proof

a tricky proof?:

$$\limsup_{n \in I, n \to} x_n = \limsup_{n \in I, n \to} (x_n + y_n - y_n) \le \limsup_{n \in I, n \to} (x_n + y_n) - \liminf_{n \in I, n \to} y_n$$

to have a true proof, only need to discuss conditions with ∞

10.6 Theorem

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be elements of $[-\infty,+\infty]^I$. Assume that $\forall n\in I,y_n\in\mathbb{R}$ and $(y_n)_{n\in I}$ converges to some $i\in\mathbb{R}$. Then:

$$\limsup_{n \in I, n \to +\infty} (x_n + y_n) = (\limsup_{n \in I, n \to +\infty} x_n) + l$$

$$\lim_{n \in I, n \to +\infty} \inf (x_n + y_n) = (\lim_{n \in I, n \to +\infty} \inf x_n) + l$$

10.7 Prop.

Let $(x_n)_{n\in I}$ and $(y_n)_{n\in I}$ be elements of $[-\infty, +\infty]^I$ Then:

$$\liminf_{n\in I, n\to +\infty} \max\{x_n,y_n\} = \max\{\liminf_{n\in I, n\to +\infty} x_n, \liminf_{n\in I, n\to +\infty} y_n\}$$

$$\lim_{n\in I, n\to +\infty} \min\{x_n, y_n\} = \min\{\lim_{n\in I, n\to +\infty} x_n, \lim_{n\in I, n\to +\infty} y_n\}$$

Proof

About the first inequality. Since $\max\{x_n, y_n\} \ge x_n \quad \max\{x_n, y_N\} \ge y_n$ By the theorem of Bolzano-Weierstrass theorem, there exists an infinite subset J of I such that

$$\lim_{n \in J, n \to +\infty} = \limsup_{n \in J, n \to +\infty} \max \{x_n, y_n\}$$

Let
$$J_1 = \{n \in J \mid x_n \geq y_n\}$$
 $J_1 = \{n \in J \mid x_n \leq y_n\}$
 $J_1 \cup J_2 = J$ So either J_1 or J_2 is infinite
Suppose that J_1 is infinite, then

$$\lim_{n\in J, n\to} \max\{x_n, y_n\} = \lim_{n\in J_1, n\to} \max\{x_n, y_n\} = \lim_{n\in J, n\to} x_n \le \limsup_{n\in I, n\to +\infty} x_n$$

If J_2 is infinite

$$\limsup_{n \in I, n \to +\infty} = \lim_{n \in J_2, n \to +\infty} \max\{x_n, y_n\} \leq \limsup_{n \in I, n \to +\infty} y_n$$

10.8 Theorem

Let $(a_N)_{n\in I} \in \mathbb{R}^I$ $l \in \mathbb{R}$. The following statements are equivalent

- $(a_N)_{n\in I}$ converges to l
- $\lim_{n \in I, n \to +\infty} |a_n l| = 0$

Proof

$$|a_n - l| = \max\{a_n - l, l - a_n\}$$

$$\lim \sup_{n \in I, n \to +\infty} |a_n - l| = \max\{\left(\lim \sup_{n \in I, n \to +\infty} a_n\right) - l, l - \left(\lim \inf_{n \in I, n \to +\infty} a_n\right)\}$$

- (1) \Rightarrow (2): If $(a_n)_{n \in I}$ converges to l, then $\limsup_{n \in I, n \to +\infty} a_n = \liminf_{n \in I, n \to +\infty} a_n = l$
- $(2) \Rightarrow (1): \\ \text{If } \limsup_{n \in I, n \to +\infty} |a_n l| = 0 \text{ ,then } \limsup_{n \in I, n \to +\infty} a_n \leq l \leq \liminf_{n \in I, n \to +\infty} a_n \\ \text{Therefore: } \limsup_{n \in I, n \to +\infty} a_n = \liminf_{n \in I, n \to +\infty} a_n = l$

10.9 Remark

Let $(a_n)_{n\in I}$ be a sequence in \mathbb{R} , $l\in\mathbb{R}$ The sequence $(a_n)_{n\in I}$ converges to l iff $a_n-l=o(1), n\in I, n\to +\infty$

10.10 Calculates on O(),o()

10.10.1 Plus

Let $(a_n)_{n\in I}$ $(a'_n)_{n\in I}$ and $(b_n)_{n\in I}$ be elements in \mathbb{R}^I

• If
$$a_n = O(b_n), a'_n = O(b_n), n \in I, n \to +\infty$$

then $\forall (\lambda, \mu) \in \mathbb{R}^2 \quad \lambda a_n + \mu a'_n = O(b_n), n \in I, n \to +\infty$

• If
$$a_n = o(b_n), a'_n = o(b_n), n \in I, n \to +\infty$$

then $\forall (\lambda, \mu) \in \mathbb{R}^2$ $\lambda a_n + \mu a'_n = o(b_n), n \in I, n \to +\infty$

10.10.2 Transform

Let $(a_n)_{n\in I}$ and $(b_n)_{n\in I}$ be two sequence in \mathbb{R} If $a_n=o(b_n), n\in I, n\to +\infty$, then $a_n=O(b_n), n\in I, n\to +\infty$

10.10.3 Transition

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$ and $(c_n)_{n\in I}$ be elements in \mathbb{R}^I

- If $a_n = O(b_n)$ and $b_n = O(c_n), n \in I, n \to +\infty$ then $a_n = O(c_n), n \in I, n \to +\infty$
- If $a_n = O(b_n)$ and $b_n = o(c_n), n \in I, n \to +\infty$ then $a_n = o(c_n), n \in I, n \to +\infty$
- If $a_n = o(b_n)$ and $b_n = O(c_n), n \in I, n \to +\infty$ then $a_n = o(c_n), n \in I, n \to +\infty$

10.10.4 Times

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$, $(c_n)_{n\in I}$, $(d_n)_{n\in I}$ be sequences in \mathbb{R}

- If $a N = O(b_n)$, $c_n = O(d_n)$, $n \in I$, $n \to +\infty$ then $a_n c_n = O(b_n d_n)$, $n \in I$, $n \to +\infty$
- If $a N = o(b_n), c_n = O(d_n), n \in I, n \to +\infty$ then $a_n c_n = o(b_n d_n), n \in I, n \to +\infty$

10.11 On the limit

Let $(a_n)_{n\in I}, (b_n)_{n\in I}$ be elements of \mathbb{R}^I that converges to $l\in\mathbb{R}$ and $l'\in\mathbb{R}$ respectively. Then:

- $(a_n + b_n)_{n \in I}$ converges to l + l'
- $(a_n b_n)_{n \in I}$ converges to ll'

10.12 Prop

Let $a \in \mathbb{R}$ then $a^n = o(n!)$ $n \to +\infty$

Proof

Let $N \in \mathbb{N}$ such that |a| < NFor $n \in \mathbb{N}$ such that $n \ge N$

$$0 \le \frac{|a^n|}{n!} = \frac{|a^N|}{N!} \cdot \frac{|a^n - N|}{\frac{n!}{N!}} \le \frac{|a^N|}{N!} (\frac{|a|}{N})^n - N$$

And $0 < \frac{|a|}{<}1 \Rightarrow \lim_{n \to +\infty} (\frac{|a|}{N})^n = 0$. Therefore:

$$\lim_{n \to +\infty} \frac{|a^n|}{n!} = 0$$

namely:

$$a^n = o(n!)$$

10.13 Prop

$$n! = o(n^n) \quad n \to +\infty$$

Proof

Let
$$N \in \mathbb{N}_{\geq 1}$$

 $0 \leq \frac{n!}{n^n} \leq \frac{1}{n} \Rightarrow \lim_{n \to +\infty} \frac{n!}{n^n} = 0$

10.14 Prop

Let $(a_n)_{n\in I}$, $(b_n)_{n\in I}$ be the elements of \mathbb{R}^I If the series $\sum_{n\in I} b_n$ converges absolutely and if $on = O(b_n)$ $n \to +\infty$ Then $\sum_{n\in I} a_n$ converges absolutely

Proof

By definition $\sum\limits_{n\in I}|b_N|<+\infty$ If $|a_N|\leq M|b_N|$ fro $n\in I, n\geq N$ where $N\in\mathbb{N}$ Then

$$\sum_{n \in I} |a_n| = \sum_{n \in I, n < N} |a_n| + \sum_{n \in I, n \ge N} |a_n| \le \sum_{n \in I, n < N} |a_n| + \sum_{n \in I, n \ge N} |b_n| < +\infty$$

10.15 Theorem: d'Alembert ratio test

Let $(a_N)_{n\in\mathbb{N}}\in(\mathbb{R}\setminus\{0\})^{\mathbb{N}}$

- If $\limsup_{n\to+\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$, then $\sum_{n\in\mathbb{N}} a_n$ converges absolutely
- If $\liminf_{n\to+\infty} |\frac{a_{n+1}}{a_n}| > 1$, then $\sum_{n\in\mathbb{N}} a_n$ does not converge (diverges)

10.16. PROP 51

Proof

(1)

Let $\alpha \in \mathbb{R}$ such that $\limsup_{n \to +\infty} |\frac{a_{n+1}}{a_n}| < \alpha < 1$, alpha isn't a lower bound of $(\sup_{n\geq N} \left| \frac{a_{n+1}}{a_n} \right|)_{N\in\mathbb{N}}$

So $\exists N \in \mathbb{N}$ such that $\sup_{n \geq N} |\frac{a_{n+1}}{a_n}| < \alpha$ Hence for $n \geq N \quad |a_n| \leq \alpha^{n-N} |a_N|$ since

$$\frac{a_n}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} ... \frac{a_n}{a_{n-1}}$$

Therefore $a_n = O(\alpha^n)$ since $\sum_{n \in \mathbb{N}} = \frac{1}{1-\alpha} < +\infty$, $\sum_{n \in \mathbb{N}} a_n$ converge absolutely.

10.15.1 Lemma

If a series $\sum_{n\in\mathbb{N}} a_n \in \mathbb{R}$ converges, then $\lim_{n\to+\infty} a_n = 0$

Proof

If $(\sum_{i=0}^n a_i)_{n\in\mathbb{N}}$ converges to some $l\in\mathbb{R}$, then $(\sum_{i=0}^{n-1} a_i)_{n\in\mathbb{N}, n\geq 1}$ converges to l, too. Hence $\left(a_n = \left(\sum_{i=0}^n a_i\right) - \left(\sum_{i=0}^{n-1} a_i\right)\right)_{n \in \mathbb{N}}$ converges to l-l=0

10.15.2 (2)

Let $\beta \in \mathbb{R}$ such that $1 < \beta < \liminf_{n \to +\infty} |\frac{a_{n+1}}{a_n}| = \sup_{N \in \mathbb{N}} \inf_{n \geq N} |\frac{a_{n+1}}{a_n}|$ So there exists $N \in \mathbb{N}$ such that $\beta < \inf_{n \geq N} |\frac{a_{n+1}}{a_n}|$

 $\forall n \in \mathbb{N}, n \geq N \quad |\frac{a_{n+1}}{a_n}| \geq \beta$

Hence $(|a_n|)_{n\in\mathbb{N}}$ is not bounded since $|a_n| \ge \beta^{n-N} |a_n|$ By the lemma: $\sum_{n\in\mathbb{N}} a_n$ diverges.

10.16 Prop

Let $a \in \mathbb{R}, a > 1$ Then $n = o(a^n), n \to +\infty$

Proof

Let $\epsilon > 0$ such that $a = (1 + \epsilon)^2$

$$a^{n} = (1 + \epsilon)^{2n} = (1 + \epsilon)^{n} (1 + \epsilon)^{n} \ge (1 + n\epsilon)(1 + n\epsilon) \ge \epsilon^{2} n^{2}$$

Hence

$$n \le \frac{a^n}{\epsilon^2 n} = o(a^n)$$

10.16.1 Corollary

Let
$$a > 1, t \in \mathbb{R}_{\geq 0}$$
 Then $n^t = o(a^n), n \to +\infty$

Proof

Let $d \in \mathbb{N}_{\geq 1}$ such that $t \leq d$ Then $n^{t-d} \leq 1$ So

$$n^t = n^d n^{t-d} = O(n^d)$$

Let
$$b = \sqrt[d]{a} > 1$$

$$n^d = o((b^n)^d) = o(a^n)$$

Hence $n^t = o(a^n)$

10.16.2 Corollary

There exists $M \ge 1$ such that $\forall x \in \mathbb{R}, x \ge M, \ln(x) \le x$

Proof

Let $a \in \mathbb{R}$ such that 1 < a < e

10.17 Theorem: Cauchy root test

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Let $\alpha = \limsup_{n\to+\infty} |a_n|^{\frac{1}{n}}$

- If $\alpha < 1$, then $\sum_{n \in \mathbb{N}} a_n$ converges absolutely.
- If a > 1 then $\sum_{n \in \mathbb{N}} a_n$ diverges

Proof

(1)

Let $\beta \in \mathbb{R}$, $\alpha < \beta < 1$. There exists $N \in \mathbb{N}$ such that $|a_N|^{\frac{1}{n}} \leq \beta$ for $n \geq N$. That means $|a_n| = O(\beta^n)$ since $0 < \beta < 1$, $\sum_{n \in \mathbb{N}} a_n$ converges absolutely.

(2)

If $\alpha > 1$ then $\forall N \in \mathbb{N} \quad \exists n \geq N$ such that $|a_n|^{\frac{1}{n}} \geq 1$, since otherwise $\exists N \in \mathbb{N} \ \forall n \geq N, |a_n|^{\frac{1}{n}} < 1$ contradiction Hence $(|a_n|)_{n \in \mathbb{N}}$ cannot converge to 0.

Part III Axiom of choice

Preparation

11.1 Statement of axiom of choice

For any set I and any family $(A_i)_{i\in I}$ of non-empty sets , there exists a mapping $f:I\to\bigcup_{i\in I}A_i$ such that $\forall i\in I, f(i)\in A_i$

11.2 Def

Let (X, \leq) be a partially ordered set If $\forall A \subseteq X$ A is non-empty, there exists a least element of A then we say that (X, \leq) is a well ordered set.

11.3 Theorem

For any set X, there exists an order relation \leq on such that (X, \leq) forms a well ordered set.

11.4 Zorn's lemma

Let (X, \leq) be a partially ordered set . If $\forall A \subseteq X$ that is totally ordered with respect to \leq , there exists an upper bound of A inside X. Then , there exists a maximal element x_0 of $X(\forall y \in X, y > x_0$ does not hold)

11.5 Prop.

Let (X, \leq) be a well ordered set , $y \notin X$. We extends \leq to $X \cup \{y\}$, such that $\forall x \in X, x < y$. Then $(X \cup \{y\}, \leq)$ is well ordered.

11.6 Proof

Let $A \subseteq X \cup \{y\}, A \neq \emptyset$. If $A = \{y\}$ then Y is the least element of A. If $A \neq \{y\}$ then $B = A \setminus \{y\}$ is non-empty. Let b be the least element of B. Since b < y it's also the least element of A

11.7 Def: Initial Segment

Let (X, \leq) be a well ordered set. $S \subseteq X$, If $\forall s \in S, x \in X$ x < s initial $x \in S(X_{\leq s} \subseteq S)$, then we say that S is an initial segment of X

If S is a initial segment such that S = X then we sat that S is a proper initial segment.

11.8 Example

 $\forall x \in X \quad X_{\leq x} = \{s \in X \mid s < x\}$ Then $X_{\leq x}$ is a proper initial segment of X.

11.9 Prop.

Let (X, \leq) be a well ordered set , If $(S_i)_{i \in I}$ is a family of initial segment of X, then $\bigcup_{i \in I} S_i$ is an initial segment of X

11.10 Proof

 $\forall s \in \bigcup_{i \in I} S_i, \exists i \in I \text{ such that } s \in S_i, i \in I \text{ Therefore } X_{\leq s} \subseteq \bigcup_{i \in I} S_i$

11.11 Prop.

Let (X, \leq) be a well ordered set.

- (1) Let S be a proper initial segment of X, $x = \min(X \setminus S)$ Then $S = X_{\leq x}$
- $(2) \begin{array}{c} X \to \wp(X) \\ x \mapsto X_{< x} \end{array}$
- (3) The set of all initial segments of X forms a well ordered subset of $(\wp(x), \subseteq)$

11.12 Proof

(1) $\forall s \in S$ if $x \leq s$ then $x \in S$ contradiction. Hence s < x, This shows $S \subseteq X_{< x}$ Conversely , if $t \in X, t \not\in X \setminus S$ Hence $t \in S$. Hence $X_{< x} \subseteq S$ 11.13. LEMMA 57

(2) Let $x,y \in X, x < y$ By definition $X_{< x} \subseteq X_{< y}$ Moreover $x \in X_{< y} \setminus X_{< x}$ So $X_{< x} \subsetneq X_{< y}$

(3) Let $\mathcal{F} \subseteq \wp(X)$ be a set of initial segments. $\mathcal{F} \neq \varnothing$. Then there exists $A \subseteq X$ such that $\mathcal{F} \setminus \{x\} = \{X_{\leq x} \mid x \in A\}$ If $A = \varnothing$ then $\mathcal{F} = \{X\}$, and $\{X\}$ is the least element of \mathcal{F} . Otherwise $A \neq \varnothing$ and A has a least element a. Then by(2) $X_{\leq a}$ is the least element of \mathcal{F}

11.13 Lemma

Let (X, \leq) be a well ordered set, $f: X \to X$ be a strictly increasing mapping. Then $\forall x \in X, x \leq f(x)$

Proof

Let $A = \{x \in X \mid f(x) < x\}$ If $A \neq \emptyset$, let a be the least element of A. By definition f(a) < a. Hence f(f(a)) < f(a) since f is strictly increasing . This shows $f(a) \in A$. But a is the least element of A, f(a) < a cannot hold: contradiction.

11.14 Prop

Let (X, \leq) be a well ordered set, S and T be two initial segment of X . If $f: S \to T$ is a bijection that's strictly increasing , then $S = T, f = Id_S$

Proof

We may assume $T\subseteq S$.Let $l:T\to S$ be the induction mapping and $g=l\circ f:S\to S$. Since g is strictly increasing , by the lemma , $\forall s\in S,s\le g(s)=f(s)\in T$. Since T is an initial segment, $s\in T$. Hence S=T Apply the lemma to f^{-1} we get $\forall s\in S,s\le f^{-1}(s)$ Hence $f(s)\le s$ Therefore f(s)=s

11.15 Def

Let (X, \leq) and (Y, \leq) be partially ordered sets. If $\exists f : X \to Y$ that's increasing and bijective, we say that (X, \leq) and (Y, \leq) are isomorphic

11.16 Def

Let (X, \leq) and (Y, \leq) be well ordered sets. If (X, \leq) is isomorphic to an initial segment of Y. We note $X \leq Y$ or $Y \succeq X$. If X is isomorphic to Y, we note $X \sim Y$. If $X \leq Y$ but $X \not\sim Y$, we note $X \prec Y$ or $Y \prec X$

11.17 Prop.

Let X and Y be well ordered sets. Among the following condition, one and only one holds.

$$X \prec Y \quad X \sim Y \quad X \succ Y$$

Proof

We construct a correspondence f from X to Y, such that $(x,y) \in \Gamma_f,$ iff $X_{< x} \sim Y_{< y}$

By the last proposition of Oct. 11, f is a function.

- If $a, b \in Dom(f)^2$, a < b, then $X_{< a} \subsetneq X_{< b}$ By definition, $Y_{< f(b)} \sim X_{< b}$ $Y_{< f(a)} \sim X_{< a}$ Hence $Y_{< f(a)}$ is isomorphic to a proper initial segment of $Y_{< f(b)}$. Therefore $Y_{f(a)}$ is a proper initial segment of $Y_{< f(b)}$. We then get f(a) < f(b). Thus f is strictly increasing.
- Let $a \in Dom(f)$ Let $x \in X, x < a$ Then $X_{< x}$ is a initial segment of $X_{< a} \sim Y_{< f(a)}$ Hence $\exists y \in Y \mid X_{< x} \sim Y_{< y}$ This shows that $x \in Dom(f)$. Hence Dom(f) is an initial segment of X. Applying this to f^{-1} , we get: Im(f) = Dom(f) is an initial segment of Y
- Either Dom(f) = X or Im(f) = Y. Assume that $x \in X \setminus Dom(f), y \in Y \setminus Im(f)$ are respectively the least elements of $X \setminus Dom(f)$ and $Y \setminus Im(f)$. Then we get $Dom(f) = X_{< x}, Im(f) = Y_{< y}$. We obtain $X_{< x} \sim Y_{< y}, (x, y) \in \Gamma_f$. Contradiction

•

Case 1
$$Dom(f) = X, Im(f) \subsetneq Y$$
 $X \prec Y$
Case 2 $Dom(f) \subsetneq X, Im(f) = Y$ $X \succ Y$
Case 3 $Dom(f) = X, Im(f) = Y$ $X \sim Y$

11.18 Lemma

Let (X, \leq) be a partially ordered set . $\mathfrak{S} \subseteq \wp(X)$. Assume that

- $\forall A \in \mathfrak{S}, (A, \leq)$ is a well-ordered set.
- $\forall (A,B) \in \mathfrak{S}^2$, either A is an initial segment of B, or B is a initial segment of A.

Let $Y = \bigcup_{A \in \mathfrak{S}} A$. Then (Y, \leq) is a well ordered set, and $\forall A \in \mathfrak{S}, A$ is an initial segment of Y.

11.18. LEMMA 59

Proof

• Let $A \in \mathfrak{S}, x \in A, y \in Y, y < x.$ Since $Y = \bigcup_{B \in \mathfrak{S}} B, \exists B \in \mathfrak{S}$, such that $y \in B$. If $y \notin A$ then $B \not\subseteq A$. Hence A is an initial segment of B. Hence $y \in A$. Contradiction

• Let $Z \subseteq Y, Z \neq \emptyset$. Then $\exists A \in \mathfrak{S}, A \cap Z \neq \mathfrak{S}$. Let m be the least element of $A \cap Z$. Let $z \in Z, B \in \mathfrak{S}$, such that $z \in B$. If $z \in A$, then $m \leq z$. If $z \notin A$, then A is an initial segment of B.

Since B is well ordered , if $m \not \leq z$ then z < m. Since $m \in A$, we het $z \in A$. Contradiction.

Therefore, m is the least element of Z.

Zorn's lemma

Let (X, \leq) be a partially ordered set. Suppose that any well-ordered subset of X has an upper bound on X, the X has a maximal element (a maximal element m of $\{x \mid x > m\} = \emptyset$)

12.1 Proof

Suppose that X doesn't have any maximal element. $\forall A \in \omega. \exists f(A)$ such that $\forall a \in A, a < f(A)$

Let

$$\omega = \{ \text{well ordered subset of X} \}$$

. (guaranteed by axiom of choice)

Let $f:\omega\to X$ such that f(A) is an upper bound of $A\in\omega.$

If $A \in \omega$ satisfies

$$\forall a \in Aa = f(A_{< a})$$

, we say that A is a f-set

Let

$$\mathfrak{S} = \{f - sets\}$$

Note that

$$\varnothing\in\mathfrak{S}$$

if

$$\forall A \in \mathfrak{S}, A \cap \{f(A)\} \in \mathfrak{S}$$

In fact, if $a \in A$, then

$$A_{< a} = (A \cup \{f(A)\})_{< a}$$

If $a = f(A) \not\in A$ then

$$(A \cup \{f(A)\})_{\leq a} = A$$

Let A and B be elements of \mathfrak{S} . Let I be the union of all common initial segments of A and B. This is also a common initial segment of A and B. If $I \neq A$ and $I \neq B$, then

$$\exists (a,b) \in A \times B, I = A_{\leq a} = B_{\leq b} \quad f(I) = f(A_{\leq a}) = f(B_{\leq b})$$

. Hence

$$a = b$$

. Then $I \cup \{a\}$ is also a common initial segment of A and B, contradiction. By the lemma ,

$$Y:=\bigcup_{A\in\mathfrak{S}}A$$

is well-ordered , and $\forall A \in \mathfrak{S}$ is an initial segment of Y. Since A is an initial segment of Y

$$\forall a \in Y, \exists A \in \mathfrak{S} \quad a \in AA_{\leq a} = Y_{\leq a}$$

. Hence

$$f(Y_{< a}) = f(A_{< a}) = a$$

. Hence

$$y \in \mathfrak{S}$$

. Thus Y is the greatest element of (\mathfrak{S},\subseteq) . However,

$$Y \cup \{f(Y)\} \in \mathfrak{S}$$

. Hence

$$f(y) \in Y$$

If f(y) is not a maximal element of X

$$\exists x \in X, f(y) < x$$

Part IV Topology

Absolute value and norms

13.1 Def

Let K be a field . By absolute value on K, we mean a mapping $|\cdot|:K\to\mathbb{R}_{\geq 0}$ that satisfies:

- (1) $\forall a \in K \quad |a| = 0 \text{ iff } a = 0$
- $(2) \ \forall (a,b) \in K^2 \quad |ab| = |a| \cdot |b|$
- (3) $\forall (a,b) \in K^2 \quad |a+b| \le |a| + |b|$ (triangle inequality)

13.2 Notation

 \mathbb{Q} Take a prime num $p \ \forall \alpha \in \mathbb{Q} \setminus \{0\}$ there exists a integer $ord_p(\alpha) \frac{a}{b}$, where $a \in \mathbb{Z} \setminus \{0\}$, $b \in \mathbb{N} \setminus \{0\}$, $p \nmid a, p \nmid b$

13.3 Prop

$$\mathbb{Q} \to \mathbb{R}_{\geq 0}$$

$$|\cdot| : \alpha \mapsto \begin{cases} p^{-ord_p(\alpha)} & \text{if } \alpha \neq 0\\ 0 & \text{if } \alpha = 0 \end{cases}$$

is a absolute value on $\mathbb Q$

Proof

(1) Obviously

(2) If
$$\alpha = p^{ord_p(\alpha)} \frac{a}{b}$$
, $\beta = p^{ord_p(\beta)} \frac{c}{d}$ $p \nmid abcd$
 $\alpha\beta = p^{ord_p(\alpha) + ord_p(\beta)} \frac{ac}{bd}$ $p \nmid ac$, $p \nmid bd$

$$(3) \quad \alpha+\beta=p^{ord_p(\alpha)}\frac{a}{b}+p^{ord_p(\beta)}\frac{c}{d}$$
 Assume $ord_p(\alpha)\geq ord_p(\beta)$
$$\alpha+\beta=p^{ord_p(\beta)}\left(p^{ord_p(\alpha)-ord_p(\beta)}\frac{a}{b}+\frac{c}{d}\right)=p^{ord_p(\beta)}\frac{p^{ord_p(\alpha)-ord_p(\beta)}ad+bc}{bd}\quad p\nmid bd$$
 So
$$ord_p(\alpha+\beta)\geq ord(\beta)$$
 Hence $ord_p(\alpha+\beta)\geq \min\{ord_p(\alpha),ord_p(\beta)\}$ So $|\alpha+\beta|_p=p^{-ord_p(\alpha+\beta)}\leq \max\{p^{-ord_p(\alpha)},p^{-ord_p(\beta)}\}=\max\{|\alpha|_p,|\alpha|_p\}\leq |\alpha|_p,|\alpha|_p$

13.4 Def

Let K be a filed and $|\cdot|$ be an absolute value. We call $(K, |\cdot|)$ a valued field.

Quotient Structure

14.1 Def

Let X be a set and \sim be a binary relation on X If :

- $\forall x \in X, x \sim x$
- $\forall (x,y) \in X \times X$, if $x \sim y$ then $y \sim x$
- $\forall (x, y, z) \in X^3$, if $x \sim y, y \sim z$ then $x \sim z$

then we say that \sim is an equivalence relation

14.2 equivalence class

 $\forall x \in X$ we denote by [x] the set $\{y \in X \mid y \sim x\}$ and call it the equivalence class of x on X.Let X/\sim be the set $\{[x] \mid x \in X\}$

14.3 Prop.

Let X be a set and \sim be an equivalence relation on X

- (1) $\forall x \in X, y \in [x] \text{ on has } [x] = [y]$
- (2) If α and β are elements of X/\sim such that $\alpha\neq\beta$ then $\alpha\cap\beta=\varnothing$
- (3) $X = \bigcup_{\alpha \in X/\sim} \alpha$

Proof

- (1) Let $z \in [y]$. Then $y \sim z$. Since $y \in [x]$ on has $x \sim y$ Therefore $x \sim z$ namely $z \in [x]$. This proves $y[] \subseteq [x]$. Moreover ,since $x \sim y$, one has $x \in [y]$. Hence $[x] \subseteq [y]$. Thus we obtain [x] = [y]
- (2) Suppose that $\alpha \cap \beta \neq \emptyset, y \in \alpha \cap \beta$ By $(1), \alpha = [y], \beta = [y]$, Thus leads to a contradiction.
- (3) $\forall x \in X \quad x \in [x] \text{ Hence } x \in \bigcup_{\alpha \in X/\sim} \alpha \text{Hence } X \subseteq \bigcup_{\alpha \in X/\sim} \alpha. \text{Conversely,}$ $\forall \alpha \in X/\sim, \alpha \text{ is a subset of } X. \text{ Hence } \bigcup_{\alpha \in X/\sim} \alpha \subseteq X. \text{Then } X = \bigcup_{\alpha \in X/\sim} \alpha$

14.4 Def

Let G be a group and X be a set We call left/right action of G on X ant mapping $G \times X \to X : (g,x) \mapsto gx/(g,x) \mapsto xg$ that satisfies:

- $\forall x \in X$ 1x = x / x1 = x
- $\bullet \ \forall (g,h) \in G^2, x \in X \quad g(hx) = (gh)x \ / \ (xg)h = x(gh)$

14.5 Remark

If we denote by G^{op} the set G equipped with the composition law:

$$G \times G \to G$$

$$(g,h) \mapsto hg$$

The a right action of G on X is just a left action of G^{op} on X.

14.6 Prop

Let G be a group and X be a set . Assume given a left action of G on X. Then the binary relation \sim on X defined as $x \sim y$ iff $\exists g \in G \quad y = gx$ is an equivalence relation

14.7 Notation on Equivalence Class

We denote by G/X the set $X/\sim \forall x\in X$ the equivalence class of x is denoted as Gx/xG or $orb_G(x)$ call the orbit of x under the action of G

14.8. PROOF 69

14.8 Proof

- $\forall x \in X \quad x = 1x \text{ so } x \sim x$
- $\forall (x,y) \in X^2$ if y = gx for same $g \in G$ then $g^{-1}y = g^{-1}(gx) = (g^{-1}g)x = 1x = x.(y \sim x)$
- $\forall (x,y,z) \in X^3$, if $\exists (g,h) \in G^2$, such that y=gx and then z=h(gx)=(hg)x So $x \sim z$

14.9 Quotient set

Let X be a set and \sim be an equivalence relation, the mapping $X \to X/\sim$: $(x \in X) \mapsto [x]$ is called the projection mapping. X/\sim is called the quotient set of X by equivalence relation \sim

14.9.1 Example

Let G be a group and H be a subgroup of G. Then the mapping

$$H \times G \rightarrow G$$

$$(h,g)\mapsto hg/(h,g)\mapsto gh$$

is a left/right action of H on G. Thus we obtain two quotient sets H/G and G/H

14.10 Def

Let G be a group and H be a subgroup of G. Ig $\forall g \in G, h \in H$ $ghg^{-1} \in H$, Then we say that H is a normal subgroup of G

14.11 Remark

 $\forall g \in G, gH = Hg$, provided that H is a normal subgroup of G. In fact $\forall h \in$,

- $\exists h' \in H$ such that $ghg^{-1} = h'$ Hence gh = h'g. This shows $gH \subseteq Hg$
- $\exists h'' \in H$ such that $g^{-1}hg = h''$ Hence hg = gh''. This shows $Hg \subseteq gH$

Thus gH = Hg

14.12 Prop

If G is commutative, any subgroup of G is normal

14.13 Theorem

Let G be a group and H be a normal subgroup of G. Then the mapping

$$G/H \times H/G \rightarrow G/H$$

$$(xH, Hx) \mapsto (xy)H$$

is well defined and determine a structure of group of quotient set G/H Moreover the projection mapping

$$\pi:G\to G/H$$

$$x \mapsto xH$$

is a morphism of groups.

Proof

- If xH = x'H, yH = y'H then $\exists h_1 \in H, h_2 \in H$ such that $x' = xh_1, y' = yh_2$ Hence $x'y' = xh_1yh_2 = (xy)(y^{-1}h_1y)h_2$. For $y^{-1}h_1y, h_2 \in H$ then (x'y')H = (xy)H. So the mapping is well defined.
- $\forall (x,y,x) \in G^3$ $(xH)(yH \cdot zH) = xH((yx)H) = (x(yz)H = ((xy)z)H = ((xy)H)zH = (xH \cdot yH)zH)$
- $\bullet \ \forall x \in G \quad 1H \cdot xH = xH \cdot 1H = xH \quad x^{-1}HxH = xHx^{-1}H = 1H$
- $\pi(xy) = (xy)H = xH \cdot yH = \pi(x)\pi(y)$

14.14 Def

Let K be a unitary ring and E be a left K-module. We say that a subgroup F og (E, +) is a left sub-K-module of E if $\forall (a, x) \in K \times F, ax \in F$

14.15 Prop

Let K be a unitary ring , E be a left K-module and F be a sub-K-module. Then the mapping

$$K \times (E/F) \to E/F$$

$$(a, [x]) \mapsto [ax]$$

is well defined , and defines a left-K-module structure on E/F. Moreover, the projection mapping $pi: E \to E/F$ is a morphism of left-K-modules

14.16. DEF 71

Proof

Let x and x' be elements of E such that [x] = [x'], that meas: $x' - x \in F$ Hence $a(x' - x) = ax' - ax \in F$ So [ax] = [ax']Let us check that E/F forms a left K-module.

- a([x] + [y]) = a([x + y]) = [a(x + y)] = [ax + ay] = [ax] + [ay]
- (a+b)[x] = [(a+b)x] = [ax+bx] = [ax] + [bx]
- 1[x] = [1x] = [x]
- a(b[x]) = a[bx] = [a(bx)] = [(ab)x] = (ab)[x]

By the provided proposition, π is a morphism of groups. Moreover $\forall x \in E, a \in K$ $\pi(ax) = [ax] = a[x] = a\pi(x)$

14.16 Def

Let A be a unitary ring . We call two-sided ideal any subgroup I of (A,+) that satisfies : $\forall x \in I, a \in A \quad \{ax, xa\} \subseteq I()$ (I is a left and right sub-K-module of A)

14.17 Theorem

Let A be a unitary ring and I be a two sided ideal of A. The mapping

$$(A/I) \times (A/I) \to A/I$$

$$([a],[b]) \mapsto [ab]$$

is well defined. Moreover, A/I becomes a unitary ring under the addition and this composition law, and the projection mapping

$$A \stackrel{\pi}{\longrightarrow} A/I$$

is a morphism of unitary ring (if is a morphism of additive groups and multiplicative monoids, namely $\pi(a+b) = \pi(a) + \pi(b), \pi(ab) = \pi(a)\pi(b), \pi(1) = 1$)

Proof

If $a' \sim a, b' \sim b$ that means $a' - a \in I, b' - b \in I$ then a'b' - ab = a'b' - a'b + a'b - ab = a'(b' - b) + (a' - a)b. For $(a' - a), (b' - b) \in I$, then $a'b' - ab \in I$ Therefore $a'b' \sim ab$

14.17.1 Reside Class

Let $d \in \mathbb{Z}$ and $d\mathbb{Z} = \{n \in \mathbb{Z} \mid \exists m \in \mathbb{Z}, n = dm\} \ d\mathbb{Z}$ is a two sided ideal of \mathbb{Z} If $m \in \mathbb{Z}$, for any $a \in \mathbb{Z}$ $adm = dma \in d\mathbb{Z}$

Denote by $\mathbb{Z}/d\mathbb{Z}$ the quotient ring. The class of $n \in \mathbb{Z}$ in $\mathbb{Z}/d\mathbb{Z}$ is called the reside class of n modulo d

If A is a commutative unitary ring, a two sided ideal of A is simply called an ideal of A

14.18 Theorem

Let $f: G \to H$ be a morphism of groups

- (1) Im(f) is a subgroup of H
- (2) $\ker(f) := \{x \in G \mid f(x) = 1_H\}$ is a normal subgroup of G
- (3) The mapping

$$\widetilde{f}: G/Ker(f) \to Im(f)$$
 $[x] \mapsto f(x)$

is well defined and is an isomorphism of groups

(4) f is injective iff $ker(f) = \{1_G\}$

Proof

- (1) Let α and β be elements of Im(f). Let $(x,y) \in G^2$ such that $\alpha = f(x), \beta = f(y)$ Then $\alpha\beta^{-1} = f(x)f(y)^{-1} = f(xy^{-1}) \in Im(f)$ So Im(f) is a subgroup
- (2) Let x and y be elements of $\ker(f)$. One has $f(xy^{-1}) = f(x)f(y)^{-1} = 1_H 1_H^{-1} = 1_H$ So $xy^{-1} \in \ker f$. Hence $\ker f$ is a subgroup of G Let $x \in \ker f, y \in G$. One has $f(yxy^{-1}) = f(y)f(x)f(y)^{-1} = f(y)f(y)^{-1} = 1_H$ Hence $yxy^{-1} \in \ker f$. So $\ker f$ is a normal subgroup
- (3) If $x \sim y$ then $\exists z \in \ker f$ such that y = xz Hence $f(y) = f(x)f(z) = f(x)1_H = f(x)$ So f is well defined. Moreover $\widetilde{f}([x][y]) = \widetilde{f}([xy]) = f(xy) = f(x)f(y) = f([x])f([y])$ Hence \widetilde{f} is a morphism of groups. By definition $Im(\widetilde{f}) = Im(f)$ If x and y are elements of x such that x such that x is a such that x such that x is a such that x

14.19. THEOREM

73

(4) If f is injective $\forall x \in \ker f$ $f(x) = 1_H = f(1_G)$, so $x = 1_G$. Therefore $\ker f\{1_G\}$ Conversely, suppose that $\ker f = \{1_G\} \quad \forall (x,y) \in G^2 \text{ if } f(x) = f(y) \text{ then } f(x)f(y)^{-1} = 1_H$. Hence $xy^{-1} = 1_G, x = y$

14.19 Theorem

Let K be a unitary ring and $f:E\to F$ be a morphism of left K-modules. Then

- (1) Im(f) is a left-sub-K-module of F
- (2) $\ker(f)$ is a left-sub-K-module of E
- (3) $\widetilde{f}:E/\ker f\to Im(f)$ is a isomorphism of left K-modules $[x]\mapsto f(x)$

Proof

- (1) $\forall x \in E$, f(ax) = af(x) So $af(x) \in Im(f)$
- (2)
- (3)

Topology

15.1 Def

Let X be a set. We call topology on X any subset \mathcal{J} of $\wp(x)$ that satisfies:

- $\emptyset \in \mathcal{J}$ and $X \in \mathcal{J}$
- If $(u_i)_{i\in I}$ is an arbitrary family of elements in \mathcal{J} , then $\bigcup_{i\in I} u_i \in \mathcal{J}$
- If u and v are elements of \mathcal{J} , then $u \cap v \in \mathcal{J}$

15.2 Remark

If $(u_i)_i^n = 1$ is a finite family of elements of \mathcal{J} , then $\bigcap_{i=1}^n u_i \in \mathcal{J}$ (by induction, this follows from (3))

15.2.1 Example

 $\{\phi, X\}$ is a topology. call the trivial topology on $\wp(X)$ is a topology called the discrete topology.

15.3 Def

Let X be a set. We call metric on X any mapping $d: X \times X \to \mathbb{R}_{\geq 0}$, that satisfies

- d(x,y) = 0 iff x=y
- $\forall (x,y) \in X^2, d(x,y) = d(y,x)$
- $\forall (x, y, z) \in X^3$ $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

(X,d) is called a metric space

15.3.1 Example

Let X be a set

$$d: X^{2} \to \mathbb{R}_{\geq 0}$$

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

is a metric

15.4 Def

Let (X,d) be a metric space. For any $x \in X$, $\epsilon \in \mathbb{R}_{\geq 0}$, let $B(x,\epsilon) := \{y \in X \mid d(x,y) < \epsilon\}$ We call the open ball of radius ϵ centered at x

15.4.1 Example

Consider (\mathbb{R}, d) with d(x, y) = |x - y|, then $B(x, \epsilon) = |x - \epsilon, x + \epsilon|$

15.5 Prop.

Let (X,d) be a metric space . let \mathcal{J}_d be the set of $U\subseteq X$ such that $\forall x\in U\exists \epsilon>0$ $B(x,\epsilon)\subseteq U$ THen \mathcal{J}_d is a topology on X

Proof

- $\varnothing \in \mathcal{J}_d \quad X \in \mathcal{J}_d$
- Let $(u_i)_{i\in I}$ be a family of elements of \mathcal{J}_d Let $U = \bigcup_{i\in I} u_i, \ \forall x\in U, \exists i\in I$ such that $x\in u_i$. Since $u_i\in \mathcal{J}_d, \exists \epsilon>0$ such that $B(x,y)\subseteq u_i\subseteq U$ Hence $U\in \mathcal{J}_d$
- Let U and V be elements of \mathcal{J}_d Let $x \in U \cap V \exists a, b \in \mathbb{R}_{\geq 0}$ such that $B(x,a) \subseteq U, B(x,b) \subseteq V$ Taking $\epsilon = \min\{a,b\}$, Then $B(x,\epsilon) = B(x,a) \cap B(x,b) \subseteq U \cap V$ Therefore $U \cap V \in \mathcal{J}_d$

15.6 Def

 \mathcal{J}_d is called the topology induced by the metric d

15.7. DEF 77

15.7 Def

We call topology space any pair (X, \mathcal{J}) where X is a set and \mathcal{J} is a topology on X

Given a topological space (X,\mathcal{J}) If $U\in\mathcal{J}$ then we say that U is an open subset of X. If $F\in\wp(X)$ such that $X\backslash F\in\mathcal{J}$, then we say that F is closed subset of X

If there exists d a metric on X such that $\mathcal{J} = \mathcal{J}_d$ then we say that \mathcal{J} is metrizable

15.7.1 Example

Let X be a set . The discrete topology on X is metrizable. In fact,m if d denote the metric defined as $d(x,y) = \begin{cases} 1 & if \ x \neq y \\ 0 & if \ x = y \end{cases}$ $\forall x \in X \quad B(x,1) = \{x\} \text{ So } \{x\} \in \mathcal{J}_d \text{ Hence } \forall A \subseteq X \quad A = \bigcup_{x \in A} \{x\} \in \mathcal{J}_d$

Filter

16.1 Def

Let Xbe a set. We call filter if X any $\mathcal{F} \subseteq \wp(x)$ that satisfies:

- (1) $\mathcal{F} \neq \emptyset, \emptyset \notin \mathcal{F}$
- (2) $\forall A \in \mathcal{F}, \forall B \in \wp(X), \text{ if } A \subseteq B, \text{ then } B \in \mathcal{F}$
- (3) $\forall (A, B) \in \mathcal{F} \times \mathcal{F}, A \cap B \in \mathcal{F}$

16.1.1 Example

- (1) Let $Y \subseteq X, Y \neq \emptyset$. $\mathcal{F}_Y := \{A \in \wp(X) \mid Y \subseteq A\}$ is a filter, called the principal filter of Y.
- (2) Let X be an infinite set.

$$\mathcal{F}_{Fr}(X) := \{ A \in \wp(X) \mid X \backslash A \text{ is infinite} \}$$

is a filter called the Fréchet filter of X.

(3) Let (X, \mathcal{J}) be a topological space, $x \in X$ We call neighborhood of x any $V \in \wp(X)$ such that $\exists u \in \mathcal{J}$, satisfying $x \in U \subseteq V$. Then $\mathcal{V} = \{\text{neighborhoods of } x\}$ is a filter.

16.2 Def: Filter Basis

Let X ba a set. $\mathscr{B} \subseteq \wp(X)$. If $\varnothing \notin \mathscr{B}$ and $\forall (B_1, b_2) \in \mathscr{B}^2, \exists B \in \mathscr{B}$, such that $B \subseteq B_1 \cap B_2$. We say that \mathscr{B} is a filter basis.

16.2.1 Remark

If \mathscr{B} is a filter basis, then $\mathcal{F}(\mathscr{B}) = \{A \subseteq X \mid \exists B \in \mathscr{B} \mid B \subseteq A\}$ is a filter

Proof

 $\varnothing \notin \mathcal{F}(\mathscr{B}), \mathcal{F}(\mathscr{B}) \neq \varnothing$ since $0 \neq B \subseteq \mathcal{F}(\mathscr{B})$. If $A \in \mathcal{F}(\mathscr{B}), A' \in \wp(X)$ such that $A \subseteq A'$, then $\exists B \in \mathscr{B}$ such that $B \subseteq A \subseteq A'$. Hence $A' \in \mathcal{F}(\mathscr{B})$ If $A_1, A_2 \in \mathcal{F}(\mathscr{B})$, then $\exists (B_1, B_2) \in \mathscr{B}^2$ such that $B_1 \subseteq A_1, B_2 \subseteq A_2$. Since \mathscr{B} is a filter basis, $\exists B \in \mathscr{B}$ such that $B \subseteq B_1 \cap B_2 \subseteq A_1 \cap A_2$ Hence $A_1 \cap A_2 \in A_1 \cap A_2 \in A_1 \cap A_2 \in \mathcal{F}(\mathscr{B})$

16.2.2 Example

- Let $Y \subseteq X, Y \neq \emptyset$ $\mathscr{B} = \{Y\}$ is a filter basis. $\mathcal{F}(\mathscr{B}) = \mathcal{F}_Y = \{A \subseteq X \mid Y \subseteq A\}$
- Let (X, \mathcal{J}) be a topological space $x \in X$. If \mathscr{B}_x is a filter basis such that $\mathcal{F}(\mathscr{B}) = \mathcal{V}_x = \{\text{neighborhood of } x\}$, then we say that \mathscr{B}_x is a neighborhood basis of x

16.3 Remark

Let \mathcal{B}_x is a neighborhood basis of x iff

- $\mathscr{B}_x \subseteq \mathcal{V}_x$
- $\forall V \in \mathcal{V}_x \quad \exists U \in \mathscr{B}_x \text{ such that } U \subseteq V$
- Let (X, d) be a metric space, $x \in X \forall \epsilon > 0$, Let

$$B(x,\epsilon) = \{ y \in X \mid d(x,y) < \epsilon \}$$

$$\overline{B}(x,\epsilon) = \{ y \in X \mid d(x,y) \le \epsilon \}$$

Then

- $-\{B(x,\epsilon) \mid \epsilon > 0\}$ is a neighborhood basis of x
- $-\{\overline{B}(x,\frac{1}{n})\mid n\in\mathbb{N}_{>1}\}$ is a neighborhood basis of x
- $\{B(x,\epsilon) \mid \epsilon > 0\}$ is a neighborhood basis of x
- $-\left\{\overline{B}(x,\frac{1}{n})\mid n\in\mathbb{N}_{\geq 1}\right\}$ is a neighborhood basis of x

16.3.1 Example

 $\mathcal{V}_x \cap \mathcal{J}$ is a neighborhood basis of x

16.4 Def

 $V \in \wp(X)$ is called a neighborhood of x if $\exists U \in \mathcal{J}$ such that $x \in U \subseteq V$

16.5. REMARK 81

16.5 Remark

Let (X, \mathcal{J}) be a topological space, $x \in X$ and \mathscr{B}_x a neighborhood basis os x. Suppose that \mathscr{B} is countable. We choose a surjective mapping $(B_n)_{n \in \mathbb{N}}$ from \mathbb{N} to \mathscr{B}_x . For any $n \in \mathbb{N}$, let $A_n = B_0 \cap B_1 \cap \ldots \cap B_n \in \mathcal{V}_x$ The sequence $(A_n)_{n \in \mathbb{N}}$ is decreasing and $\{A_n \mid n \in \mathbb{N}\}$ is a neighborhood basis of x.

16.6 Extra Episode

 $\wp(\mathbb{N})$ is NOT countable

Suppose that $f: \wp(\mathbb{N}) \to \mathbb{N}$ injective. Then $\exists g: \mathbb{N} \to \wp(\mathbb{N})$ surjective. Taking $A = \{n \in \mathbb{N} \mid n \notin g(n)\}$. Since g is surjective, $\exists a \in \mathbb{N}$ such that A = g(a).

If $a \in A$, then $a \in g(a)$, hence $a \notin A$

If $a \notin A$, then $a \in g(a) = A$

Contradiction

16.7 Prop.

Let Y and R be sets, $g: Y \to E$ be a mapping,

• If \mathcal{F} is a filter of Y, then

$$g_*(\mathcal{F}) := \{ A \in \wp(E) \mid g^{-1}(A) \in \mathcal{F} \}$$

is a filter on E

• If \mathcal{B} is a filter basis of Y, then

$$g(\mathscr{B}) := \{g(B) \mid B \in \mathscr{B}\}$$

is a filter of E, and $\mathcal{F}(g(\mathscr{B})) = g_*(\mathcal{F}(\mathscr{B}))$

Proof

- (1) $E \in g_x(\mathcal{F})$ since $g^{-1}(E) = Y$ $\varnothing \notin g_x(\mathcal{F})$ since $g^{-1}(\varnothing) = \varnothing$
 - If $A \in g_x(\mathcal{F})$ and $A' \supseteq A$, then $g^{-1}(A') \supseteq g^{-1}(A) \in \mathcal{J}$, so $g^{-1}(A') \in \mathcal{J}$, Hence $A' \in g_x(\mathcal{F})$
 - If $A_1, A_2 \in g_x(\mathcal{F})$. Then $g^{-1}(A_1) \in \mathcal{F}, g^{-1}(A_2) \in \mathcal{F}$ Hence $g^{-1}(A_1 \cap A_2) = g^{-1}(A_1) \cap g^{-1}(A_2) \in \mathcal{F}$. So $A_1 \cap A_2 \in g_x(\mathcal{F})$.
- (2) Since g is a mapping , and $\varnothing \not\in \mathscr{B}$, we get $\varnothing \not\in g(\mathscr{B})$, since $\mathscr{B} \neq \varnothing, g(\mathscr{B}) \neq \varnothing$.

Let $B_1, B_2 \in \mathcal{B}$, there exists $C \in \mathcal{B}$ such that $C \subseteq B_1 \cap B_2$. Hence $g(C) \subseteq g(B_1) \cap g(B_2)$, namely $g(\mathcal{B})$ is a filter basis.

Limit point and accumulation point

We fix a topological space (X, \mathcal{J})

17.1 Def

Let \mathcal{F} be a filter of X and $x \in X$

- If $\mathcal{V}_x \subseteq \mathcal{F}$ then we say that x is an limit point of \mathcal{F}
- If $\forall (A, V) \in \mathcal{F} \times \mathcal{V}_x, A \cap V \neq \emptyset$, we say that x is an accumulation point of \mathcal{F}

So any limit point of \mathcal{F} is necessarily a accumulation point of mathcal F

17.2 Prop

Let \mathscr{B} be a filter basis of X, $x \in X$, \mathscr{B}_x a neighborhood basis of x. Then x is an accumulation point of $\mathcal{F}(\mathscr{B})$ iff $\forall (B,U) \in \mathscr{B} \times \mathscr{B}_x, B \cap U \neq \varnothing$

Proof

Necessity

Since $\mathscr{B} \subseteq \mathcal{F}(\mathscr{B}), \mathscr{B} \subseteq \mathcal{V}_x$, the necessity is true.

Sufficiency

Let $(A, V) \in \mathcal{F}(\mathscr{B}) \times \mathcal{V}_x$. There exist $B \in \mathscr{B}, U \in \mathscr{B}_x$, such that $B \subseteq A, U \subseteq V$. Hence $\varnothing \neq B \cap U \subseteq A \cap V$

17.3 Def

Let $Y \subseteq X, Y \neq \emptyset$. W call accumulation point of Y any accumulation point of the principal filter $\mathcal{F} = \{A \subseteq X \mid Y \subseteq A\}$.

17.4 Def

We denote by $\overline{Y}=\{\text{accumulation points of }Y\}.,\text{called the closure of }Y\text{ Note that }x\in\overline{Y}\text{ iff }\forall U\in\mathscr{B}_x,Y\cap U\neq\varnothing$ By convention $\overline{\varnothing}=\varnothing$

17.5 Prop

Let $Y \subseteq X$. Then \overline{Y} is the smallest closed subset of X containing Y.

Proof

 $\forall x \in X \setminus \overline{Y}$, then there exists $U_x = \mathcal{V} \cap \mathcal{J}$, such that $Y \cap U_x = \emptyset$. Moreover, $\forall y \in U_x, U_x \in \mathcal{V}_y \cap \mathcal{J}$. This shows that $\forall y \in U_x, y \notin \overline{Y}$. Therefore $X \setminus \overline{Y} = \bigcap_{x \in X \setminus \overline{Y}} U_x \in \mathcal{J}$

Let $Z \subseteq X$ be a closed subset that contain Y. Suppose that $\exists y \in \overline{Y} \backslash Z$. Then $U = X \backslash Z \in \mathcal{V}_y \cap \mathcal{J}$ and $U \cap Y \subseteq U \cap Z = \emptyset$. So $y \notin \overline{Y}$ contradiction. Hence $\overline{Y} \subseteq Z$.

17.6 Def: dense

Let (X, \mathcal{J}) be a topological space, Y a subset of X. We call Y is dense in X if

$$\overline{Y} = Y$$

Limit of mappings

18.1 Def

Let (E, \mathcal{J}_E) be a topological space . $f: Y \to E$ a mapping , and \mathcal{F} eb a filter of Y. If $a \in E$ is a limit point of $F_*(\mathcal{F})$ namely , \forall neighborhoodV of $a, f^{-1}(V) \in \mathcal{F}$, then we say that a is a limit of the filter \mathcal{F} by f

18.2 Remark

Let \mathscr{B}_a be a neighborhood basis of a. Then $\mathcal{V}_a \subseteq f_x(\mathcal{F})$, iff $\mathscr{B} \subseteq f_*(\mathcal{F})$ Therefore, a is a limit of \mathcal{F} by f iff $\forall V \in \mathscr{B}_a, f^{-1}(V) \in \mathcal{F}$

18.2.1 Example

Let (E, \mathcal{J}_E) be a topological space. $I \subseteq \mathbb{N}$ be an infinite subset, $x = (x_n)_{n \in I} \in E^I$. If the Fréchet filter $\mathcal{F}_{Fr}(I)$ has a limit $a \in E$ by the mapping $x : I \to E$, we say that $(x_n)_{n \in I}$ converges to a ,denote as

$$a = \lim_{n \in I, n \to +\infty} x_n$$

18.3 Remark

 $a=\lim_{n\in I,n\to +\infty}x_n \text{ iff, } \forall U\in \mathscr{B}_a \text{(where } \mathscr{B}_a \text{ is a neighborhood basis of } a\text{)}, \\ \exists N\in \mathbb{N} \text{ such that } x_n\in U \text{ for any } n\in I_{\geq N}$

Suppose that \mathcal{J}_E is induced by a metric $d.\{B(a,\epsilon) \mid \epsilon > 0\}, \{\overline{B}(a,\epsilon) \mid \epsilon > 0\}\{B(a,\frac{1}{n}) \mid n \in \mathbb{N}_{\geq 1}\}\{\overline{B}(a,\frac{1}{n}) \mid n \in \mathbb{N}_{\geq 1}\}$ are all neighborhood basis of a. There fore, the following are equivalent

- $a = \lim_{n \in i, n \to +\infty} x_n$
- $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in I_{>N}, d(x_n, a) < \epsilon$

- $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in I_{>N}, d(x_n, a) \leq \epsilon$
- $\forall k \in \mathbb{N}_{\geq 1}, \exists N \in \mathbb{N}, \forall n \in I_{\geq N}, d(x_n, a) < \frac{1}{n}$
- $\forall k \in \mathbb{N}_{>1}, \exists N \in \mathbb{N}, \forall n \in I_{>N}, d(x_n, a) \leq \frac{1}{n}$

 $(x^{-1}(B(a,\epsilon)) = \{n \in I \mid d(x_n,a) < \epsilon\}$? unknown position)

18.4 Remark

We consider the metric d on \mathbb{R} defined as

$$\forall (x, x) \in \mathbb{R}^2 \quad d(x, y) := |x - y|$$

The topology of \mathbb{R} defined by this metric is called the usual topology on \mathbb{R}

18.5 Prop

Let $(x_n)_{n\in I}\in\mathbb{R}^I$, where $I\subseteq\mathbb{N}$ is an infinite subset. Let $l\in\mathbb{R}$. The following statements are equivalent:

- The sequence $(x_n)_{n\in I}$ converges to l in the topological space \mathbb{R}
- $\liminf_{n \in I, n \to +\infty} x_n = \limsup_{n \in I, n \to +\infty} x_n = l$
- $\limsup_{n \in I, n \to} |x_n l| = 0$

18.6 Theorem

Let (X,d) be a metric space .Let $I \subseteq \mathbb{N}$ be an infinite subset and $(x_n)_{n \in I}$ be an element of X^I . Let $l \in X$. The following statements are equivalent:

- $(x_n)_{n\in I}$ converges to l
- $\limsup_{n \in I, n \to +\infty} d(x_n, l) = 0$ (equivalent to $\lim_{n \in I, n \to +\infty} d(x, l) = 0$)

Proof

- (1) \Rightarrow (2) The condition (1) is equivalent to $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in I_{\geq N}, d(x_n, l) < \epsilon$. We then get $\sup_{n \in I_{geqN}} d(x, l) \leq \epsilon$. Therefore $\limsup_{n \in I, n \to +\infty} d(x_n, l) \leq \epsilon$ We obtain that $\limsup_{n \in I, n \to +\infty} 0$
- (2) \Rightarrow (1) Let $\epsilon \in \mathbb{R}_{>0}$ If $\inf_{N \in \mathbb{N}} \sup_{n \in I_{\geq N}} d(x_n, l) = 0$. Then $\exists N \in \mathbb{N}$ $\sup_{n \in I_{\leq N}} d(x_n, l) < \epsilon$. Hence $\forall n \in I_{\geq N} d(x_n, l) < \epsilon$. Since ϵ is arbitrary, (*) is true, Hence (1) is also true.

18.7. PROP 87

18.7 Prop

Let (X, \mathcal{J}) be a topological space . $Y \subseteq X, p \in \overline{Y} \setminus Y$. Then

$$\mathcal{V}_{p,Y} := \{ V \cap Y \mid V \in \mathcal{V}_p \}$$

is a filter of Y.

Proof

Y is not empty otherwise $\overline{Y} = \emptyset$.

- $Y = X \cap Y \in \mathcal{V}_{p,Y}$ $\varnothing \notin \mathcal{V}_{p,Y}$ since $p \in \overline{Y}$
- Let $V \in \mathcal{V}_p$ and $A \subseteq Y$ such that $V \cap Y \subseteq A$. Let $U = V \cup (A \setminus (V \cap Y)) \in \mathcal{V}_p$ and $U \cap Y = A \in \mathcal{V}_{p,Y}$
- Let U and V be elements of \mathcal{V}_p Let $W=U\cap V\in\mathcal{V}_p$ Then $W\cap Y=(U\cap Y)\cap (V\cap Y)\in\mathcal{V}_{p,Y}$

18.8 Def

Let (X, \mathcal{J}_x) and (E, \mathcal{J}_E) be topological spaces, $Y \subseteq X, p \in \overline{Y} \setminus Y$, and $f: Y \to E$ be a mapping . If a is a limit point of $(F_*(\mathcal{V}_{p,Y}))$, then we say that a is a limit of f when the variable $y \in Y$ tends to p, denoted as $a = \lim_{y \in Y, y \to p} f(y)$

18.9 Remark

If \mathscr{B}_a is a neighborhood basis of a. Then $a = \lim_{y \in Y, y \to p} f(y)$ is equivalent to $\forall U \in \mathscr{B}_a \quad \exists V \in \mathcal{V}_p \text{ such that } Y \cap V \subseteq f_{-1}(U) (\Leftrightarrow f(Y \cap V) \subseteq U)$

18.10 Prop

Let X be a set, \mathscr{B} be a filter basis, \mathscr{G} be a filter. If $\mathscr{B} \subseteq \mathscr{G}$, then $\mathcal{F} \subseteq \mathscr{G}$.

Proof

Let $V \in \mathcal{F}(\mathcal{B})$ By definition $\exists U \in \mathcal{B}$ such that $U \subseteq V$, since $U \in \mathcal{G}$ (for $\mathcal{B} \subseteq \mathcal{G}$) and since \mathcal{G} is a filter, $V \in G$

18.11 Theorem

Let (X, \mathcal{J}_x) and $(E < \mathcal{J}_E)$ be topological spaces. $Y \subseteq X, \ p \in \overline{T} \backslash Y, a \in E$. We consider the following conditions.

(i)
$$a = \lim_{y \in Y, y \to p} f(y)$$

(ii)
$$\forall (y_n)_{n\in\mathbb{N}}\in Y^{\mathbb{N}}$$
 if $\lim_{n\to+\infty}y_n=p$ then $\lim_{n\to\infty}f(y_n)=a$

The following statements are true

- If (i) holds, then (ii) also holds
- ullet Assume that p has a countable neighborhood basis, then (i) and (ii) are equivalent.

Proof

(1) Let $(y_n)_{n\in\mathbb{N}}\in Y^{\mathbb{N}}$ such that $p=\lim_{n\to+\infty}y_n$. For any $U\in\mathcal{V}_p,\exists N\in\mathbb{N}$ such that $\forall n\in\mathbb{N}_{\geq N}\quad y\in U\cap Y. y_n\in U\cap Y$ Therefore

$$\mathcal{V}_{p,Y} \subseteq y_*(\mathcal{F}_{Fr}(\mathbb{N}))$$

We then get

$$f_*(\mathcal{V}_{p,Y}) \subseteq f_*(y_*(\mathcal{F}_{Fr}(\mathbb{N}))) = (f \circ y)_*(\mathcal{F}_{Fr}(\mathbb{N}))$$

Condition (i) leads

$$\mathcal{V}_a \subseteq f_*(\mathcal{V}_{p,Y}) \subseteq (f \circ y)_*(\mathcal{F}_{Fr}(\mathbb{N}))$$

This means

$$\lim_{n \to +\infty} f(y_n) = a$$

(2) Assume that p has a countable neighborhood basis . There exists a decreasing sequence $(V_n)_{n\in\mathbb{N}}\in\mathcal{V}_P^{\mathbb{N}}$ such that $\{V_n\mid n\in\mathbb{N}\}$ forms a neighborhood basis of p.

Assume that (i) does not hold. Then there exists $U \in \mathcal{V}_a$ such that,

$$\forall n \in \mathbb{N} \quad V_n \cap Y \not\subseteq f^{-1}(U)$$

Take an arbitrary

$$y_n \in (V_n \cap Y) \setminus f^{-1}(U)$$

Therefore,

$$\lim_{n \to +\infty} y_n = \emptyset$$

In fact.

$$\forall W \in \mathcal{V}_p, \exists N \in \mathbb{N} \quad V_N \subseteq W$$

Hence

$$\forall n \in \mathbb{N}_{\geq N} \quad y_n \in W$$

However $f(y_n) \notin U$ for any $n \in \mathbb{N}$, so $(f(y_n))_{n \in \mathbb{N}}$ cannot converges to a.

18.12. PROP. 89

18.12 Prop.

Let X be a set. If $(\mathcal{J}_i)_{i\in I}$ is a family of topologies on X, then $\mathcal{J}=\bigcap_{i\in I}\mathcal{J}_i$ is a topology. In particular, for any $\mathcal{A}\subseteq\wp(X)$, there is a smallest topology on X that contain \mathcal{A}

18.12.1 Proof

- $\forall i \in I \quad \{\emptyset, X\} \subseteq \mathcal{J}_i \text{ So } \{\emptyset, X\} \subseteq \mathcal{J}$
- Let $(u_j)_{j \in J}$ be a family of elements of $\mathcal{J} \ \forall j \in J, i \in I \ u_i \in \mathcal{J}_i$ So $\bigcup_{j \in J} u_j \in \mathcal{J}_i$ We then get $\bigcup_{j \in J} u_j \in \mathcal{J}$
- Let U and V be elements of $\mathcal{J} \, \forall i \in I, \{u,v\} \subseteq \mathcal{J}_i \, \text{So} \, U \cap V \in \mathcal{J}_i$. Therefore we get $U \cap V \in \mathcal{J}$ Let $\mathcal{A} \subseteq \wp(X)$ Let $\mathcal{J}(\mathcal{A}) = \bigcap_{\mathcal{J} \subseteq \wp(X) \text{a topology}} \mathcal{A} \subseteq \mathcal{J}$ Then $\mathcal{J}(\mathcal{A})$ is a topology. By definition, if \mathcal{J} is a topology containing \mathcal{A} , then $\mathcal{J}(\mathcal{A}) \subseteq \mathcal{J}$ Hence $\mathcal{J}(\mathcal{A})$ is the smallest topology containing \mathcal{A}

Continuity

19.1 Def

Let $(X, \mathcal{J}_X), (Y, \mathcal{J}_Y)$ be topological spaces f be a function from X to Y, $x \in Dom(f)$. If for any neighborhood U of f(x), there exists a neighborhood V of x such that $f(V) \subseteq U$. Then we say that f is continuous at x. If f is continuous at any $x \in Dom(f)$ then we say f is continuous.

19.2 Remark

Let $\mathscr{B}_{f(x)}$ be a neighborhood basis of f(x) If $\forall U \in \mathscr{B}_{f(x)}$ there exist $V \in \mathscr{B}_{f(x)}V_x$ such that $f(V) \subseteq U$, then f is continuous at x Suppose that X and Y are metric space. Then f is continuous at x iff:

$$\forall \epsilon > 0 \exists \delta > 0 \forall y \in Dom(f) \quad d(y,x) < \delta \text{ implies } d(f(y),f(x)) < \epsilon$$

19.3 Theorem

Let $(X, \mathcal{J}_X), (Y, \mathcal{J}_Y)$ be topological spaces, f be a function from X to Y $x \in Dom(f)$ Consider the following condition

- f is continuous at x
- $\forall (x_n)_{n\in\mathbb{N}} \in Dom(f)^{\mathbb{N}}$, if $\lim_{n\to+\infty} x_n = x$, then $\lim_{n\to+\infty} f(x_n) = f(x)$ THen (i) implies (ii) Moreover, if x has a countable neighborhood basis, then (i) and (ii) are equivalent.

19.4 Proof

(i) \Rightarrow (ii) Let $(x_n)_{n\in\mathbb{N}}\in Dom(f)^{\mathbb{N}}$ that converges to $x\ \forall U\in\mathcal{V}_{f(x)}\exists V\in\mathcal{V}_x, f(V)\subseteq U$ Since $\lim_{n\to+\infty}x_n=x$, there exists $N\in\mathbb{N}$ such that $\forall n\in\mathbb{N}_{\geq N},\ x_n\in V$.

Hence
$$\forall n \in \mathbb{N}_{\geq N}, f(x_n) \in f(V) \subseteq U$$
. Thus $\lim_{n \to +\infty} f(x_n) = f(x)$

 $(ii) \Rightarrow (i)$ under the hypothesis that x has countable neighborhood basis. actually we will prove $NOT(i) \Rightarrow NOT(ii)$

Let $(V_n)_{n\in\mathbb{N}}$ be a decreasing sequence in \mathcal{V}_x such that $\{V_n\mid n\in\mathbb{N}\}$ forms a neighborhood basis of x

If (i) does not hold, then $\exists U \in \mathcal{V}_{f(x)} \forall n \in \mathbb{N}, f(V_n) \not\subseteq U$ Pick $x_n \in V_n$ such that $f(x_n) \not\in U \quad \forall N \in \mathbb{N}, n \in \mathbb{N}_{\geq N}, x_n \in V_N$. Hence $(x_n)_{n \in \mathbb{N}}$ converges to x. However, $f(x_n) \not\in U$ for any $n \text{ So } (f(x_n))_{n \in \mathbb{N}}$ does not converges to f(x). Therefore (ii) does not hold.

19.5 Prop

Let $(X, \mathcal{J}_X), (Y, \mathcal{J}_Y), (Z, \mathcal{J}_Z)$ be topological spaces. f be a function from X to Y, g be a function from Y to Z. Let $x \in Dom(g \circ f)$ If f and g are continuous at x. then $g \circ f$ is continuous at x sectionProof Let $U \in \mathcal{V}_{g(f(x))}$ Since g is continuous at f(x):

$$\exists W \in \mathcal{V}_{f(x)}, g(W) \subseteq U$$

Since f is continuous at x:

$$\exists V \in \mathcal{V}_x \quad f(V) \subseteq W$$

Therefore, $g(f(V)) \subseteq g(W) \subseteq U$ Hence $g \circ f$ is continuous at x

19.6 Def

Let (X, \mathcal{J}) be a topological space, $\mathscr{B} \subseteq \mathcal{J}$, If any element of \mathcal{J} can be written as the union of a family of sets in \mathscr{B} we say that \mathscr{B} is a topological basis of \mathcal{J}

19.7 Prop

Let (X, \mathcal{J}) be a topological space, $\mathscr{B} \subseteq \mathcal{J} \mathscr{B}$ is a topological basis iff

$$\forall x \in X, \mathscr{B}_x := \{ V \in \mathscr{B} \mid x \in V \}$$

is a neighborhood basis of x

19.8 Proof

 \Rightarrow :

$$\forall x \in X \mathscr{B}_x \subseteq \mathcal{V}_x$$

Moreover,

$$\forall U \in \mathcal{V}_x \exists V \in \mathcal{V}, x \in V \subseteq U$$

19.9. PROP 93

. Since \mathcal{B} is a topological basis of \mathcal{J} ,

$$\exists W \in \mathscr{B}, x \in W \subseteq V \subseteq U$$

Hence \mathcal{V}_x is generated by \mathscr{B}_x

$$\Leftarrow$$
 Let $U \in \mathcal{J}$

$$\forall x \in U, U \in \mathcal{V}_x$$

So

$$\exists V_x \in \mathscr{B}_x \quad x \in V_x \subseteq U$$

Hence

$$U\subseteq\bigcup_{x\in U}V_x\subseteq U$$

Hence

$$U = \bigcup_{x \in U} V_x \in \mathcal{J}$$

19.9 Prop

Let $(X, \mathcal{J}_X), (Y, \mathcal{J}_Y)$ be topological spaces. \mathscr{B}_Y be a topological basis of \mathcal{J}_Y $f: X \to Y$ be a mapping. The following conditions are equivalent:

- (1) f is continuous
- (2) $\forall U \in \mathcal{J}_Y, f^{-1}(U) \in \mathcal{J}_X$
- (3) $\forall U \in \mathcal{B}, f^{-1}(U) \in \mathcal{J}_X$

Proof

 $(1) \Rightarrow (2)$

Lemma Let (X, \mathcal{J}) be a topological space, $V \in \wp(X)$, Then $V \in \mathcal{J}$ iff $\forall x \in V, V$ is a neighborhood of x

Proof of lemma \Rightarrow is by definition

Left arrow:

$$\forall x \in V, \exists W_x \in \mathcal{J}, x \in W_x \subseteq V.$$

Hence

$$V = \bigcap_{x \in V} W - x \in \mathcal{J}$$

Let $U \in \mathcal{J}_Y$

$$\forall x \in f^{-1}(U) \quad f(x) \in U$$

Hence

$$U \in \mathcal{V}_{f(x)}$$

Hence there exists an open neighborhood W of x such that $f(W) \subseteq U$ Since f is a mapping,

$$W \subseteq f^{-1}(U)$$

Therefore

$$f^{-1}(U) \in \mathcal{V}_x$$

Since x is arbitrary,

$$f^{-1}(U) \in \mathcal{J}_X$$

 $(2) \Rightarrow (3)$ For (3) is a special situation of (2), it's natural.

$$(3) \Rightarrow (1)$$
 Let $x \in X$

$$\forall U \in \mathscr{B}_Y \ s.t. \ f(x) \in U, f^{-1}(U)$$

is an open neighborhood of x, and

$$f(f^{-1}(U)) \subseteq U$$

Hence f is continuous at x

19.10 Def

LEt X be a set $((Y_i, \mathcal{J}_i))_{i \in I}$ be a family of topological spaces. $\forall i \in I$ let $f_i : X \to Y_i$ be a mapping. We call initial topology of $(f_i)_{i \in I}$ on X the smallest topology on X making all f_i continue

19.11 Remark

If \mathcal{J} is the initial topology of $(f_i)_{i\in I}$, $\forall i\in I, U_i\in \mathcal{J}_i$ $f_i^{-1}(U_i)\in \mathcal{J}$ If $J\subseteq I$ is a finite subset, $(U_j)_{j\in J}\in\prod_{j\in J}\mathcal{J}_j$ then $\bigcap_{j\in J}f_j^{-1}(U_j)\in\mathcal{J}$

19.12 Prop

$$\mathscr{B} := \left\{ \bigcap_{j \in J} f_j^{-1}(U_j) \mid J \subseteq I \text{ is finite}(U_j)_{j \in J} \in \prod_{j \in J} \mathcal{J}_j \right\}$$

is a topological basis of the initial topology \mathcal{J}

19.12. PROP 95

Proof

First

$$\mathscr{B}\subseteq \mathcal{J}$$

Let

 $\mathcal{J}' = \{ \text{subset V of X that can be written as the union of a family of sets in} \mathcal{B} \}$

- $\varnothing \in \mathcal{J}' \quad X \in \mathscr{B} \subseteq \mathcal{J}'$
- \mathcal{J}' is stable by taking the union of any family of elements in \mathcal{J}'
- If V_1, V_2 are elements of \mathcal{J}' , then

$$V_1 \cap V_2 \in \mathcal{J}'$$

In fact, V_1, V_2 are of the form of the union of some sets of \mathscr{B}

The intersection of two elements of \mathcal{B} is still a element of \mathcal{B}

$$\left(\bigcap_{j\in J} f_j^{-1}(U_j)\right) \cap \left(\bigcap_{j\in J'} f_j^{-1}(U_j')\right)$$

$$= \bigcap_{j\in J\cup J'} f_j^{-1}(W_j) \text{ where } W_j = \begin{cases} U_j & j\in J\backslash J' \\ U_j' & j\in J'\backslash J \\ U_j\cap U_j' & j\in J\cap J' \end{cases}$$

$$\left(\bigcap_{j\in J\backslash J'} f_j^{-1}(U_j)\right) \cap \left(\bigcap_{j\in J\cap J'} f_j^{-1}(U_j)\cap f_j^{-1}(U_j')\right) \cap \left(\bigcap_{j\in J'\backslash J} f_j^{-1}(U_j')\right)$$

So \mathcal{J}' is a topology making all f_i continuous. Hence

$$\mathcal{J} \subset \mathcal{J}' \subset \mathcal{J} \Rightarrow \mathcal{J}' = \mathcal{J}$$

Example

Let $((Y_i, \mathcal{J}_i))_{i \in I}$ be topological spaces. $Y = \prod_{i \in I} Y_i$ and

$$\pi_i: \frac{Y \to Y_i}{(y_j)_{j \in I} \mapsto y_i}$$

The product topology on Y is by definition the initial topology of $(\pi_i)_{i\in I}$

19.13 Theorem

Let X be a set , $((Y_i, \mathcal{J}_i))_{i \in I}$ be a family of topological spaces,

$$((f_i:X\to Y_i))_{i\in I}$$

be a family of mappings and we equip X with the initial topology \mathcal{J}_X of $(f_i)_{i\in I}$ Let (Z,\mathcal{J}_Z) be a topological space and

$$h:Z\to X$$

be a mapping. Then h is continuous iff

 $\forall i \in I, \quad f_i \circ h$ is continuous

19.13.1 Proof

- \Rightarrow If h is continuous, since each f_i is continuous, $f_i \circ h$ is also continuous.
- \Leftarrow Suppose that $\forall i \in I, f_i \circ h$ is continuous .Hence

$$\forall U_i \in \mathcal{J}_i, (f_i \circ h)_{-1}(U_i) = h^{-1}(f_i^{-1}(U_i)) \in \mathcal{J}_Z$$

Let

$$\mathscr{B} = \left\{ \bigcap_{j \in J} f_j^{-1}(U_j) \mid J \subseteq Ifinite(U_j)_{j \in J} \in \prod_{j \in J} \mathcal{J}_j \right\}$$

 $\forall U \in \mathscr{B}$

$$h^{-1}(U) = \bigcap_{j \in J} h^{-1}(f_i^{-1}(U_i)) \in \mathcal{J}_Z$$

Therefore, h is continuous.

19.14 Remark

We keep the notation of the definition of initial topology If $\forall i \in I, \mathscr{B}_i$ is a topological basis of \mathcal{J}_i , then

$$\mathscr{B} = \left\{ \bigcap_{j \in J} f_i^{-1}(U_i) \mid J \subseteq Ifinite(U_j)_{j \in J} \in \prod_{j \in J} \mathscr{B}_j \right\}$$

is also a topological basis of the initial topology,

19.14. REMARK 97

19.14.1 Example

Let $((X_i, d_i))_{i \in \{1, ..., n\}}$ be a family of metric spaces.

$$X = \prod_{i \in \{1, \dots, n\}} X_i$$

We define a mapping

$$X \times X \to \mathbb{R}_{\geq 0}$$

$$d: ((x_i)_i \in \{1, ..., n\}(y_i)_{i \in \{1, ..., n\}}) \mapsto \max_{i \in \{1, ..., n\}} d_i(x_i, y_i)$$

d is a metric on X. If $x = (x_i)_{i \in \{1,...,n\}} \ y = (y_i)_{i \in \{1,...,n\}} \ z = (z_i)_{i \in \{1,...,n\}}$ are elements of X, then

$$d(x,z) = \max_{i \in \{1,\dots,n\}} d_i(x_i,z_i) \le \max_{i \in \{1,\dots,n\}} \left(d_i(x_i,y_i) + d(y_i,z_i) \right) \le d(x,y) + d(y,z)$$

Each

$$\pi_i: \begin{matrix} X \to X_i \\ (x_i)_{i \in \{1, \dots, n\}} \mapsto x_i \end{matrix}$$

is continuous. Hence the product topology \mathcal{J} is contained in \mathcal{J}_d Let $x = (x_i)_{i \in \{1,...,n\}} \in X, \epsilon > 0$

$$\mathcal{B}(x,\epsilon) = \left\{ y = (y_i)_{i \in \{1,\dots,n\}} \mid \max_{i \in \{1,\dots,n\}} d_i(x_i, y_i) < \epsilon \right\}$$

$$= \prod_{i \in \{1,\dots,n\}} \mathcal{B}(x_i,\epsilon)$$

$$= \bigcap_{i \in \{1,\dots,n\}} \pi_i^{-1}(\mathcal{B}(x_i,\epsilon)) \in \mathcal{J}$$

Uniform continuity and convergency

20.1 Def

Let (X, d) be a metric space. $\forall A \subseteq X$, we define

$$diam(A) := \sup_{(x,y) \in A \times A} d(x,y)$$

called the diameter of A.By convention

$$diam(\emptyset) := 0$$

If $diam(A) < +\infty$, we say that A is bounded

20.2 Remark

- If A is finite, then it's bounded
- If $A \subseteq B$ then $diam(A) \leq diam(B)$

20.3 Prop

Let (X,d) be a metric space. $A \subseteq X, B \subseteq X, (x_0,y_0) \in A \times B$. Then

$$diam(A \cup B) \le diam(A) + d(x_0, y_0) + diam(B)$$

In particular, if A,B are bounded, then $A \cup B$ is bounded.

Proof

Let
$$(x,y) \in (A \cup B)^2$$
. If $\{x,y\} \subseteq A$, then $d(x,y) \leq diam(A)$ If $\{x,y\} \subseteq B$ then $diam(B) \geq d(x,y)$ If $x \in A, y \in B$,

$$d(x,y) \le d(x,x_0) + d(x_0,y_0) + d(y_0,y) \le diam(A) + d(x_0,y_0) + diam(B)$$

Similarly if $x \in B, y \in A$

$$d(x,y) \le diam(A) + d(x_0, y_0) + diam(B)$$

20.4 Def

Let (X,d) be a metric space. $I \subseteq \mathbb{N}$ be an infinite subset, $(x_n)_{n \in I} \in X^I$. If

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \quad diam(\{x_n \mid n \in I_{\geq \mathbb{N}}\}) \leq \epsilon$$

then we say that $(x_n)_{n\in I}$ is a Cauchy sequence.

20.5 Prop

- (1) If $(x_n)_{n\in I}$ converges, then it's a Cauchy sequence.
- (2) If $(x_n)_{n\in I}$ is a Cauchy sequence, $\{x_n \mid n\in I\}$ is bounded
- (3) Suppose that $(x_n)_{n\in I}$ is a Cauchy sequence If there exists an infinite subset J of I such that $(x_n)_{n\in J}$ converges to some $x\in X$, then $(x_n)_{n\in I}$ converges to x

20.5.1 Proof

- (1) trivial
- (2) trivial
- (3) Let $\epsilon > 0, \exists N \in \mathbb{N}$

$$diam(\{x_n \mid n \in I_{\geq N}\}) \leq \frac{\epsilon}{2}$$
$$\forall n \in J_{\geq N}, d(x_n, x) \leq \frac{\epsilon}{2}$$

• Take $n_0 \in J_{\leq N} \subseteq I_{\geq N}$

$$\forall n \in I_{\geq N} \quad d(x_n, x) \le d(x_n, x_{n_0}) + d(x_{n_0}, x) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \frac{\epsilon}{2}$$

Hence $(x_n)_{n\in I}$ converges to x

20.6. DEF 101

20.6 Def

Let $(X, d_X), (Y, d_Y)$ be metric space. f be a function from X to Y. If $\forall \epsilon > 0, \exists \delta > 0$ such that

$$\forall (x,y) \in Dom(f)^2, d(x,y) \le \delta$$

implies

$$d(f(x), f(y)) \le \epsilon$$

namely

$$\inf_{\delta>0} \sup_{(x,y)\in Dom(f)^2, d(x,y)\leq \delta} d(f(x),f(y))=0$$

we say that f is uniformly continuous.

20.7 Prop

Let $(X, d_X), (Y, d_Y)$ be metric spaces f be a function from X to Y which is uniformly continuous.

- (1) If $I \subseteq \mathbb{N}$ is finite, and $(x_n)_{n \in I}$ is a Cauchy sequence in $Dom(f)^I$ then $(f(x_n))_{n \in I}$ is Cauchy sequence
- (2) f is continuous

20.7.1 Proof

(1) $\forall \epsilon > 0, \exists \delta > 0 \text{ such that}$

$$\forall (x,y) \in Dom(f)^2, d(x,y) \le \delta \Rightarrow d(f(x), f(y)) \le \epsilon$$

Since $(x_n)_{n\in I}$ is a Cauchy sequence, $\exists N\in\mathbb{N}$ such that

$$\forall (n,m) \in I_{\geq N}^2, d_X(x_n,x_m) \leq \delta$$

Hence

$$d_Y(f(x_n), f(x_m)) \le \epsilon$$

Therefore $(f(x_n))_{n\in I}$ is a Cauchy sequence.

(2) Let $(x_n)_{n\in I}$ be a sequence in $Dom(f)^{\mathbb{N}}$ that converges to $x\in Dom(f)$ We define $(y_n)_{n\in\mathbb{N}}$ as

$$y_n = \begin{cases} x & \text{if } n \text{ is odd} \\ x_{\frac{1}{2}} & \text{if } n \text{ is even} \end{cases}$$

Then $(y_n)_{n\in\mathbb{N}}$ converges to x. Hence $(y_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. Since f is uniformly continuous, $(f(y_n))_{n\in\mathbb{N}}$ is a Cauchy sequence in Y.

$$(f(y_n))_{n\in\mathbb{N},n \text{ is odd}} = (f(x))_{n\in\mathbb{N},n \text{ is odd}}$$

converges to f(x). Hence $(f(y_n))_{n\in\mathbb{N}}$ converges to f(x)

20.8 Def

Let X be a set , $Z \subseteq X$, (Y,d) be a metric space, $I \subseteq \mathbb{N}$ infinite. $(f_n)_{n \in I}$ and f be functions from X to Y, having Z as their common domain of definition.

- If $\forall x \in Z, (f_n(x))_{n \in I}$ converges to f(x), we say that $(f_n)_{n \in I}$ converges pointwisely to f
- If

$$\lim_{n \in I, n \to +\infty} \sup_{x \in Z} d(f_n(x), f(x)) = 0$$

we say that $(f_n)_{n\in I}$ converges uniformly to f

20.9 Theorem

Let X and Y be metric space, $Z \subseteq X, I \subseteq \mathbb{N}$ infinite. $(f_n)_{n \in I}, f$ be functions from X to Y, having Z as domain of definition. Suppose that

- $(f_n)_{n\in I}$ converges uniformly to f
- each f_n is uniformly continuous

Then f is uniformly continuous.

20.9.1 Proof

 $\forall n \in I \text{ let}$

$$A_n = \sup_{x \in Z} d(f_n(x), f(x))$$
$$\lim_{n \in I, n \to +\infty} A_n = 0$$

 $\forall (x,y) \in \mathbb{Z}^2, n \in \mathbb{I}$

$$d(f(x), f(y)) \leq d(f(x), f_n(x)) + d(f_n(x), f_n(y)) + d(f_n(y), f(y)) \leq 2A_n + d(f_n(x), f_n(y))$$

$$\inf_{\delta > 0} \sup_{(x,y) \in Z^2, d(x,y) \le \delta} d(f(x), f(y)) \le 2A_n + \inf_{(x,y) \in Z^2, d(x,y) \le \delta} d(f_n(x), f_n(y)) = 0$$

Hence

$$0 \le \inf_{\delta > 0} \sup_{(x,y) \in Z^2, d(x,y) \le \delta} d(f(x), f(y)) \le 2A_n$$

Take $\lim_{n\to+\infty}$, by squeeze theorem, we get

$$\inf_{\delta>0}\sup_{(x,y)\in Z^2, d(x,y)\leq \delta}d(f(x),f(y))=0$$

20.10. THEOREM 103

20.10 Theorem

Let X be a topological space, Y be a metric space, $Z \subseteq X, p \in Z, I \subseteq \mathbb{N}$ infinite. $(f_n)_{n \in I}$ and f function from X to Y, having Z as domain of definition. Suppose that:

- $(f_n)_{n\in I}$ converges uniformly to f
- each f_n is continuous at p

Then f is continuous at p

20.10.1 Proof

 $\forall n \in I \text{ let}$

$$A_n = \sup_{x \in Z} d(f_n(x), f(x))$$

$$\forall \epsilon > 0 \ \exists n \in I \quad A_n \le \frac{\epsilon}{3}$$

Since f_n is continuous $\exists U \in \mathcal{V}_p \quad f_n(U) \subseteq \overline{\mathcal{B}}(f_n(p), \frac{\epsilon}{3})$

$$\forall x \in U \cap Z \quad d(f(x)f(p))$$

$$\leq d(f(x), f_n(x)) + d(f_n(x), f_n(p)) + d(f_n(p), f(p))$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{\epsilon}{3}$$

 $f(U) \subseteq \overline{\mathcal{B}}(f(p), \epsilon)$

20.10.2 Def

Let X Y be metric spaces, f be a function from X to Y, $\epsilon > 0$. If

$$\forall (x,y) \in Dom(f)^2 \quad d(f(x),f(y)) \leq \epsilon d(x,y)$$

then we say that f is ϵ -Lipschitzian If $\exists \epsilon > 0$ such that f is ϵ -Lipschitzian, then it's uniformly continuous.

20.11 Remark

If f is Lipschitzian, then it's uniformly continuous.

20.12 Example

• Let $((X_i,d_i))_{i\in I}$ be metric space. $X=\prod_{i\in I}X_i$ where I is finite

$$d: X \times X \to \mathbb{R}_{\geq 0}$$
$$d: d((x_i), (y_i)_{i \in I}) = \max_{i \in I} d_i(x_i, y_i)$$

$$d_i(x_i, y_i) = d_i(\pi_i(x), \pi_i(y)) \le d(x, y)$$

Then

$$\pi_i:X\to X_i$$

is Lipschitzian. ($\forall x=(x_i)_{i\in I}, \forall x=(x_i)_{i\in I})$

 \bullet Let (X,d) be a metric space

$$d: X \times X \to \mathbb{R}_{\geq 0}$$

is Lipschitzian.

$$|d(x,y) - d(x',y')| \le 2 \max\{d(x,x'), d(y,y')\}$$

Part V Normed Vector Space

Linear Algebra

We fix a unitary ring K

21.1 Def

Let M be a left K-module , and let $x = (x_i)_{i \in I}$ be a family of elements of M. We define a morphism of left K-module as following:

$$\varphi_x : K^{\bigoplus I}$$
 $\rightarrow M$

$$(a_i)_{i \in I} \mapsto \sum_{i \in I} a_i x_i (:= \sum_{i \in I, i \neq 0} a_i x_i)$$

21.1.1 Notation

$$K^{\bigoplus I} := \{(a_i)_{i \in I} \in K^I \mid \exists J \subseteq I \text{finite,such that} a_i = 0 \text{ for } i \in I \setminus J\}$$
$$\varphi_x((a_i)_{i \in I} + (b_i)_{i \in I}) = \varphi_x((a_i)_{i \in I})\varphi_x((b_i)_{i \in I})$$

21.2 Def

Ler M be a left K-module, I be a set, $x = (x_i)_{i \in I} \in M^I$ If

$$\varphi_x : K^{\bigoplus I} \to M$$
$$(a_i)_{i \in I} \mapsto \sum_{i \in I} a_i x_i$$

 is

injective then we say $(x_i)_{i\in I}$ is K-linearly independent surjective then we say $(x_i)_{i\in I}$ is system of generator a bijection then we say $(x_i)_{i\in I}$ is a basis of M

Example

Let e_i be the element $(\delta_{ij})_{j \in I}$ with

$$\delta_{ij} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Then the family

$$e = (e_i)_{i \in I} \in (K^{\bigoplus I})^I$$

is a basis of $K^{\bigoplus I}$

21.3 Def

Let M be a left K-module

- If M bas a basis, we say that M is a free K-module
- If M has finite system of generated $(\exists a \text{ finite set I and a family } (x_i)_{i \in I} \in M^I \text{ that forms a system of generator}),$ then we say that M is of finite type.

21.4 Remark

Let $x = (x_i)_{i \in \{1,\dots,n\}} \in M^n$, where $n \in \mathbb{N}$

• x is linearly independent iff

$$\forall a \in K^n \quad \sum a_i x_i = 0$$

implies

$$a = 0$$

• x is a system of generator iff for any element of M can be written in the form

$$\sum b_i x_i \quad b \in K^n$$

Such expression is called a K-linear combination of $x_1, ... x_n$

21.5 Theorem

Let K be a division ring $(0 \neq 1 \text{ and } \forall k \in K \setminus \{0\} \text{ } k \text{ is invertible})$ Let V be a left K-module of finite type and $(x_i)_{i \in I}$ be a system of generators of V. Then ,there exists a subset I of $\{1,...,n\}$ such that $(x_i)_{i \in I}$ forms a basis of V. (In particular, V is a free K-module) 21.6. THEOREM 109

Proof

(By induction on n) If n = 0, then $V = \{0\}$ In this case \emptyset is a basis of V

Induction hypothesis

True for a system of generators of n-1 elements. Let $(x_i)_{i\in\{1,\dots,n\}}$ be a system of generators of V. If $(x_i)_{i\in\{1,\dots,n\}}$ is linearly independent, it's a basis. Otherwise, $\exists (a_i)_{i\in I} \in K^n$ such that

$$(a_i, ... a_n) \neq 0$$

$$\sum a_i x_i = 0$$

Without loss of generality, we suppose $a_n \neq 0$. Then

$$x_n = -a_n^{-1} (\sum_{i=1}^{n-1} a_i x_i)$$

Since $(x_i)_{i \in \{1,...,n\}}$ is a system of generators, any elements of V can be written as

$$\sum b_i x_i = \left(\sum_{i=1}^{n-1} b_i x_i\right) - b_n a_n^{-1} \left(\sum_{i=1}^{n-1} a_i x_i\right)$$
$$= \sum_{i=1}^{n-1} (b_i - b_n a_n^{-1} a_i) x_i$$

Thus $(x_i)_{i\in\{1,...n\}}$ forms a system of generators . By the induction hypothesis, there exists $I\subseteq\{1,...,n\}$ such that $(x_i)_{i\in I}$ forms a basis of V.

21.6 Theorem

Let K be a unitary ring and B be a left K-module. W be a left K-submodule of V. Let $(x_i)_{i=1}^n$ be an element of W^n

$$(\alpha_j)_{j=1}^l \in (V/W)^l$$

, where $(n,l) \in \mathbb{N}^2 \ \forall j \in \{1,...l\}$, let x_{n+j} be an element in the equivalence class α_j

- If both $(x_i)_{i=1}^n$, $(\alpha_j)_{j=1}^l$ are linearly independent, then $(x_i)_{i=1}^{n+l}$ is also linearly independent
- If both $(x_i)_{i=1}^n$, $(\alpha_j)_{j=1}^l$ are system of generators of W and V/W respectively, then $(x_i)_{i=1}^{n+l}$ is also a system of generators
- If both $(x_i)_{i=1}^n$, $(\alpha_j)_{j=1}^l$ are basis, then $(x_i)_{i=1}^{n+l}$ is also a basis

Proof

(1) Suppose that $(b_i)_{i=1}^{n+l}$ such that

$$\sum_{i=1}^{n+l} b_i x_i = 0$$

Let

$$\pi:V\to V/W$$

be the projection morphism $(\pi(x) = [x])$

$$0 = \pi(\sum_{i=1}^{n+l} b_i x_i) = \sum_{i=1}^{n+l} b_i \pi(x_i) = \sum_{j=1}^{l} b_{n+j} \pi(x_{n+j}) = \sum_{j=1}^{l} b_{n+j} \alpha_j$$

 $\{x_1,...x_n\} \subseteq W \text{ So} \forall i \in \{1,...,n\}$

$$\pi(x_i) = 0$$

Since $(\alpha_j)_{j=1}^l$ is linearly independent,

$$b_{n+1} = \dots = b_{n+j} = 0$$

Hence

$$\sum b_i x_i = 0$$

Since $(x_i)_{i=1}^n$ is linearly independent,

$$b_1 = \dots b_n = 0$$

(2) Let $y \in V$. Then $\pi(y) \in V/W$. So there exists

$$(c_{n+1},...,c_{n+l}) \in K^l$$

such that

$$\pi(y) = \sum_{j=1}^{l} c_{n+j} \alpha_j$$

$$= \sum_{j=1}^{l} c_{n+j} \pi(x_{n+j}) = \pi(\sum_{j=1}^{l} c_{n+j} x_{n+j})$$

So

$$y - (\sum_{i=1}^{l} c_{n+j} x_{n+j}) \in W$$

 $\exists c \in K^n \text{ such that }$

$$y - (\sum_{i=1}^{l} c_{n+j} x_{n+j}) = (\sum_{i=1}^{n} c_i x_i)$$

Therefore

$$y = \sum_{i=1}^{n+l} c_i x_i$$

(3) from (1)(2), proved

21.7 Corollary

Let K be a division ring and V be a left K-module of finite type. If $(x_i)_{i=1}^n$ is a linearly independent family of elements of $V(n \in \mathbb{N})$, then

$$\exists l \in \mathbb{N} \quad \exists (x_{n+j})_{j=1}^l \in V_l$$

such that

$$(x_i)_{i=1}^{n+l}$$

forms a basis of V

Proof

Let W be the image of

$$\varphi(x_i)_{i=1}^n : K^n \to V$$

$$(a_i)_{i=1}^n \mapsto \sum_{i=1}^n a_i x_i$$

It's a left K-submodule of V.

Note that $(x_i)_{i=1}^n$ forms a basis of W.

$$\varphi_{i}(x_{i})_{i=1}^{n}:K^{n}\to W$$
$$\varphi_{i}(x_{i})_{i=1}^{n}(e_{j})=x_{j}\in W$$

Moreover , since V is of finite type there exists $d \in \mathbb{N}$ and a surjective morphism of left K-modules.

$$\psi: K^d \twoheadrightarrow V$$

Since the projection morphism

$$\pi:V\to V/W$$

is surjective.

Hence the composite morphism

$$K^d \xrightarrow[\pi \circ \psi]{\psi} V \xrightarrow[\pi \circ \psi]{\pi} V/W$$

is surjective. Thus V/W is of finite type. There exist then a basis

$$(a_j)_{j=1}^l$$

of V/W.

Taking $x_{n+j} \in \alpha_j$ for $j \in \{1,...,l\}$, we get a basis of V:

$$(x_i)_{i=1}^{n+l}$$

21.8 Def

Let K be a division ring and V be a left K-module of finite type. We call rank of V the minimal number of elements of its basis, denote as

$$rk_K(V)$$

or simply

If K is a field rk(V) is also denoted as

$$dim_K(V)$$

or

called the dimension of V.

21.9 Theorem

Let K be a division ring and V be a left K-module of finite type. Let W be a left K-submodule of V.

(1) W and V/W are both of finite type, and

$$rk(V) = rk(W) + rk(V/W)$$

(2) Any basis of V has exactly rk(V) elements

21.10 Proof

(1) This proof is written twice. Both are kept.

10.30's Let $(x_i)_{i=1}^n$ be a basis of V. Let

$$\pi: V \to V/W$$
$$x \mapsto [x]$$

21.10. PROOF 113

In $(\pi(x_i))_{i=1}^n$ we extract a basis of V/W, say

$$(\pi(x_i))_{i=1}^l$$

For $j \in \{l+1, ..., n\}$,

$$\exists (b_{i,1}, ..., b_{i,l}) \in K^l$$

such that

$$\pi(x_j) = \sum_{i=1}^l b_{j,i} \pi(x_i)$$

Let

$$y_j = x_j - \sum_{i=1}^l b_{j,i} x_i \in W$$

Since

$$\pi(y_i) = 0$$

For any
$$x \in W, \exists (a_i)_{i=1}^n \in K^n, x = \sum_{i=1}^n a_i x_i$$

$$x = \sum_{i=1}^{l} a_i x_i + \sum_{j=l+1}^{n} a_j (y_j + \sum_{i=1}^{l} b_{j,i} x_i)$$
$$= \sum_{j=l+1}^{n} a_j y_j + \sum_{i=1}^{l} (a_i + \sum_{j=l+1}^{n} a_j b_{j,i}) x_i$$

Since

$$\pi(x) = \sum_{i=1}^{l} (a_i + \sum_{j=l+1}^{n} a_j b_{j,i}) \pi(x_i) = 0$$

Hence

$$x = \sum_{i=l+1}^{n} a_i y_i$$

Hence W is of finite type, and

$$rk(V) \ge rk(W) + rk(V/W)$$

Moreover the previous theorem shows that

$$rk(V) \le rk(W) + rk(V/W)$$

So

$$rk(V) = rk(W) + rk(V/W)$$

11.1's By previous theorem.

$$rk(V) \le rk(W) + rk(V/W)$$

Let $(x_i)_{i=1}^n$ be a basis of V. Then

$$(\pi(x_i))_{i=1}^n$$

is a system of generators of V/W.

We extract a subfamily, say $(x_i)_{i=1}^l$ such that

$$(\pi(x_i))_{i=1}^l$$

forms a basis of V/W.

For $j \in \{1, ..., l\}$, there exists:

$$(b_{j,1},...,b_{j,l}) \in K^l$$

such that

$$\pi(x_j) = \sum_{i=1}^l b_{j,i} \pi(x_i)$$

namely

$$y_j := x_j - \sum_{i=1}^l b_{j,i} x_i \in W$$

Let $x \in W, \exists (a_i)_{i=1}^n \in K^n$ let $x = \sum a_i x_i$, then

$$x = \left(\sum_{i=1}^{l} a_i x_i\right) + \left(\sum_{j=l+1}^{n} a_j (y_j + \sum_{i=1}^{l} b_{j,i} x + i)\right)$$

$$= \left(\sum_{i=1}^{l} a_i x_i\right) + \left(\sum_{i=1}^{l} \sum_{j=l+1}^{n} a_j b_{j,i} x_i\right) + \left(\sum_{j=l+1}^{n} a_j y_j\right)$$

$$= \sum_{i=1}^{l} \left(a_i + \sum_{j=l+1}^{n} a_j b_{j,i}\right) x_i + \sum_{j=l+1}^{n} a_j y_j$$

and

$$0 = \pi(x) = \sum_{i=1}^{l} (a_i + \sum_{j=l+1}^{n} a_j b_{j,i}) \pi(x_i)$$

Therefore $(y_j)_{j=l+1}^n$ is a system of generators

$$n-l \ge rk(W)$$

Hence

$$n \ge rk(W) + rk(V/W)$$

Thus

$$rk(V) \ge rk(W) + tk(V/W)$$

21.10. PROOF

115

(2) All basis of V have rk(V) elements.

We reason by induction on rk(V)

(1)

$$rk(V) = 0$$

In this case $V = \{0\}$ The only basis of V is \emptyset . So the statement holds

(2) Assume that there exists $e \in V \setminus \{0\}$ such that

$$V = \{ \lambda e \mid \lambda \in K \}$$

Then any basis of V is of the form

ae

where $a \in K\{0\}$

Let $(e_i)_{i=1}^m$ be a basis of V. We reason by induction on m to prove that

$$m = rk(V)$$

The cases where m=0 or 1 are proved in (1)(2) respectively. Induction hypothesis: true for a basis of < m elements Let

 $W = \{ \lambda e_i \mid \lambda \in K \}$

Let

$$\pi: V \to V/W$$
$$x \mapsto [x]$$

Then

$$(\pi(e_i))_{i=1}^m$$

forms a system of generators of V/W.

If $(a_i)_{i=2}^m \in K^{m-1}$ such that

$$\sum_{i=2}^{m} a_i \pi(e_i) = 0$$

then

$$\sum_{i=2}^{m} a_i e_i \in W$$

Hence

$$\exists a_i \in K \quad \sum_{i=2}^m a_i e_i - a_1 e_1 = 0$$

And for $(e_i)_{i=1}^m$ a basis of V,

$$a_i = 0$$

Thus

$$(\pi(e_i))_{i=2}^m$$

is a basis of V/W. We then obtain that

$$rk(V/W) \le m - 1 \le n - 1$$

By the induction hypothesis,

$$m-1 = rk(V/W)$$

By (2),
$$rk(W) = 1$$
. Hence

$$m = (m-1) + 1 = rk(V/W) + rk(W) = rk(V)$$

21.11 Prop

Let K be a unitary ring and $f:E\to F$ be a morphism of left K-modules. Let I be a set and $(x_i)_{i\in I}\in E^I$

- If $(x_i)_{i \in I}$ is linearly independent and f is injective, then $(f(x_i))_{i \in I}$ is linearly independent.
- If $(x_i)_{i\in I}$ is a system of generators and f is surjective, then $(f(x_i))_{i\in I}$ is a system of generators.
- If $(x_i)_{i\in I}$ is a basis and f is an isomorphism, then $(f(x_i))_{i\in I}$ is a basis.

21.11.1 Proof

$$\varphi_{(f(x_i))_{i\in I}} = f \circ \varphi_{(x)_{i\in I}}$$

Chapter 22

Matrices

We fix unitary ring K

22.1 Def

Let $n \in \mathbb{N}$ and V be a left K-module.

For any
$$(x_i)_{i=1}^n \in V^n$$
, we denote by $\begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$ the morphism

$$\phi_{(x_i)_{i=1}^n} : K^n \to V$$
$$(a_i)_{i=1}^n \mapsto \sum_{i=1}^n a_i n_i$$

22.1.1 Example

Suppose that $V=K^p(p\in\mathbb{N})$ Then each $x_i\in K^p$ is of the form $(x_{i,1},...,x_{i,p})$

$$\begin{pmatrix} x_{1,1} & \dots & x_{1,p} \\ \vdots & & \vdots \\ \vdots & & \ddots \\ \vdots & & \ddots \\ x_{n,1} & \dots & x_{n,p} \end{pmatrix}$$

22.2 Def

Let $(n,p) \in \mathbb{N}^2$. We call n by p matrix of coefficient in K any morphism of left K-modules from K^n to K^p

22.2.1 Example

• Denote by I_n then identity mapping. Then $(e_i)_{i=1}^n$ is a basis of K^n called the canonical basis of K^n

$$\varphi_{(e_i)_{i=1}^n} = Id_{K^n}$$

$$\varphi_{(e_i)_{i=1}^n}((a_1, ..., a_n)) = \sum_{i=1}^n a_i e_i = (a_1, ..., a_n)$$

• Let $(x_1,...,x_n) \in K^n$, Denote by

$$diag(x_1,...x_n) (= \varphi_{(x_i e_i)_{i=1}^n}) : K^n \to K^n$$

 $(a_1,...,a_n) \mapsto (a_1 x_1,...,a_n x_n)$

22.3 Def

We denote by $M_{n,p}(K)$ the set of all n by p matrices of coefficients in K. For $(n, p, r) \in \mathbb{N}^3$, we define

$$M_{n,p}(K) \times M_{p,r}(K) \rightarrow M_{n,r}(K)$$

 $(A,B) \mapsto AB := B \circ A$

22.4 Calculate Matrices

Let K be a unitary ring , and V be a left K-module. Let $n \in \mathbb{N}$ and

$$x = (x_1, ..., x_n) \in V^n$$

22.4.1 Remind

Consider a matrix

$$A = \{a_{ij}\}_{i \in \{1, \dots, p\} \times \{1, \dots, n\}} \in M_{p,n}(K)$$

A is a morphism of left K-modules from K^p to K^n Recall that

$$A \begin{pmatrix} x1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$$

is defined as

$$\varphi_x \circ A : K^p \xrightarrow{A} K^n \xrightarrow{\varphi_x} V$$

Let $(b_1,...,b_n) \in K^p$

$$A((b_1, ..., b_n)) = \sum_{i=1}^{p} b_i(a_{i,1}, ..., a_{i,n})$$

$$\varphi(A((b_1, ..., b_n))) = \sum_{i=1}^{p} b_i \varphi_x((a_{i,1}, ..., a_{i,n}))$$

$$= \sum_{i=1}^{p} b_i(a_{i,1}x_1, ..., a_{i,n}x_n)$$

Let $B = \{b_{ij}\}_{(i,j) \in \{1,...,n\} \times \{1,...,r\}} : K^n \to K^r$

$$AB = \left\{ \sum_{j=1}^{n} a_{lj} b_{jm} \right\}_{(l,m) \in \{1,\dots,p\} \times \{1,\dots,r\}}$$

Chapter 23

Transpose

We fix a unitary ring K

23.1 Def

Let E be a left-K-module. Denote by

$$E^\vee := \{\text{morphisms of left K-modules } E \to K\}$$

 $\forall (f,g) \in E^{\vee}$ let

$$f + g : E \to K$$

 $x \mapsto f(x) + g(x)$

 $(E^{\vee},+)$ forms a commutative group.

The neutral element is the constant mapping

$$0: E \to K$$
$$x \mapsto 0$$

We define

$$K \times E^{\vee} \to E^{\vee}$$

 $(a, f) \mapsto fa : x \in E \to f(x)a$

 $\forall \lambda \in K$

$$(fa)(\lambda x) = (f(\lambda f(x)))a$$
$$= (\lambda f(x))a$$
$$= \lambda (f(x)a)$$
$$= \lambda (fa)(x)$$

This mapping defines a structure of right K-module on E^\vee

23.2 Def

Let E and F be two left K-modules. $\varphi: E \to F$ be a morphism of left K-modules. We denote by

$$\varphi^{\vee}: F^{\vee} \to E^{\vee}$$

the morphism of right K-modules sending $g \in F^{\vee}$ to $g \circ \varphi \in E^{\vee}$ Actually $\forall a \in K$

$$g \circ \varphi(\cdot)a = g(\varphi(\cdot))a = (g(\cdot)a) \circ \varphi$$

23.2.1 Example

Suppose that $E = K^n, F = K^p$

$$\varphi = \begin{pmatrix} b_{1,1} & \dots & b_{1,p} \\ \vdots & & \ddots \\ \vdots & & \ddots \\ b_{n,1} & \dots & b_{n,p} \end{pmatrix}$$

 φ sends $(a_1,...,a_n)$ to $\{\sum_{i=1}^n a_i b_i j\}_{j \in \{1,...,p\}}$ Let $g \in F^{\vee}$ $g: K^p \to K$, then g is of the form

$$\begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix}, y_i \in K$$

 $g \circ \varphi$ sends $(a_1, ..., a_n)$ to $\sum_{i=1}^p (\sum_{j=1}^n a_i b_{ij} y_j)$

Assume that K is commutative. We denote by

$$\iota_p : (K^p)^{\vee} \to K^p$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \mapsto (x_1, ..., x_p)$$

$$\iota_n : (K^n)^{\vee} \to K^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto (x_1, ..., x_n)$$

are isomorphisms of K-modules

23.3. PROP 123

For any morphism of K-modules $\varphi:K^n\to K^p$, we denote by φ^τ the morphism of K-modules $K^p\to K^n$ given by $\iota_n\circ\varphi^\vee\circ\iota_p^{-1}$

$$(K^{p})^{\vee} \xrightarrow{\varphi^{\vee}} (K^{n})^{\vee}$$

$$\cong \downarrow^{\iota_{p}} \quad \circlearrowleft \quad \cong \downarrow$$

$$K^{p} \xrightarrow{\varphi^{\tau}} K^{n}$$

 φ^{τ} is called the transpose of φ

23.3 Prop

Let E,F,G be left K-modules. $\varphi: E \to F, \psi: F \to G$ be morphisms of left K-modules. Then $(\psi \circ \varphi)^{\vee}$ is equal to $\varphi^{\vee} \circ \psi^{\vee}$

Proof

$$\forall f \in G^{\vee}$$

$$(\varphi^{\vee} \circ \psi^{\vee})(f) = \varphi^{\vee}(f \circ \psi) = (f \circ \psi) \circ \varphi = f \circ (\psi \circ \varphi) = (\psi \circ \varphi)^{\vee}(f)$$

23.4 Corollary

Assume that K is commutative. Let n,p,q be neutral numbers. $A\in M_{n,p}(K), B\in M_{p,q}(K)$. Then

$$(AB)^{\tau} = B^{\tau}A^{\tau}$$

Proof

$$A^{t}au = \iota_{n} \circ A^{\vee} \circ \iota_{p}^{-1}$$

$$B^{t}au = \iota_{p} \circ B^{\vee} \circ \iota_{q}^{-1}$$

$$B^{\tau}A^{\tau} = A^{\tau} \circ B^{\tau}$$

$$= \iota_{n} \circ A^{\vee} \circ B^{\vee} \circ \iota_{q}^{-1}$$

$$= \iota_{n} \circ (B \circ A)^{\vee} \circ \iota_{q}^{-1}$$

$$= \iota_{n} \circ (AB)^{\vee} \circ \iota_{q}^{-1}$$

$$= (AB)^{t}au$$

124

23.5 Remark

- (1) For $A \in M_{n,p}(K)$, one has $(A^{\tau})^{\tau}$
- (2) We have a mapping

$$E \to (E^{\vee})^{\vee}$$

 $x \mapsto ((f \in E^{\vee}) \mapsto f(x))$

This is a K-linear mapping.

If K is a field and E is of finite dimension, this is a isomorphism of K-modules.

In fact, if $e=(e_i)_{i=1}^n$ is a basis of E over K. For $i\in\{1,...,n\},$ let

$$e_i^{\vee}: E \to K$$

 $\lambda_1 e_1, ..., \lambda_n e_n \mapsto \lambda_i$

is called the dual basis of e

$$K^{n} \overset{\cong}{\longleftarrow} (K^{n})^{\vee}$$

$$\varphi_{e} \downarrow \cong \qquad \varphi_{e^{\vee}} \cong \varphi_{e^{\vee}} \cong \varphi_{e^{\vee}} \cong E^{\vee}$$

$$E \xrightarrow{\cong} E^{\vee}$$

 $(e^{\vee})^{\vee}$ gives a basis of $(E^{\vee})^{\vee}$ Hence $E \to (E^{\vee})^{\vee}$ is an isomorphism.

Chapter 24

Linear Equation

We fix a unitary ring K.

24.1 Def

For $a=(a_1,...,a_n)\in K^n\setminus\{(0,...,0)\}$. Denote by j(a) the first index $j\in\{1,...,n\}$ such that $a_j\neq 0$.Let $(n,p)\in \mathbb{N}^2, A\in M_{n,p}(K)$. We write A as a column:

$$A = \begin{pmatrix} a^{(1)} \\ \vdots \\ a^{(n)} \end{pmatrix} \quad a^{(i)} = (a_1^{(i)}, ..., a_n^{(i)}) \in K^p$$

We say that A is of row echelon form if, $\forall i \in \{1,...,n-1\}$ one of following conditions is satisfied.

- $a^{(i+1)} = (0, ..., 0)$
- $a^{(i)}, a^{(i+1)}$ are non-zero, and $j(a^{(i)}) < j(a^{(i+1)})$

If in addition the following condition is satisfied

• $\forall i \in \{1,...,n\}$ such that $a^{(i)} \neq (0,...,0)$, one has

$$a_{j(a^{(i)})}^{(i)} = 1$$

and

$$\forall k \in \{1, ..., n\} \setminus \{i\} \quad a_{j(a^{(i)})}^{(k)} = 0$$

we say that A is of reduced row echelon form.

24.2 Prop

Suppose that
$$A = \begin{pmatrix} a^{(1)} \\ \vdots \\ a^{(n)} \end{pmatrix} \in M_{n,p}(K)$$
 is of row echelon form. Then $\{i \in \{1,...,n\} \mid a^{(i)} \neq (0,...,0)\}$ is of cardinal $\leq p$

Proof

Let
$$k = card\{i \in \{1,...,n\} \mid a^{(i)} \neq (0,...,0)\}$$
 $a^{(k+1)} = ... = a^{(n)} = (0,...,0)$ and $j(a^{(1)}) < j(a^{(2)}) < ... < j(a^{(k)})$ Hence

$$\{1, ..., k\} \to \{1, ..., p\}, i \mapsto j(a^{(i)})$$

is injection. So $k \leq p$

24.3 Linear Equation

Let $A = \{a_{ij}\}_{i \leq n, j \leq p} \in M_{n,p}(K)$. Let V be a left K-module and $(b_1, ..., b_n) \in V^n$. We consider the equation

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \tag{*}$$

The set of $(x_1,..,x_p) \in V^p$ that satisfies (*) is called the solution set of (*)

24.4 Prop

Suppose that A is of reduced row echelon form. Let

$$I(A) = \{i \in \{1, ..., n\} \mid (a_{i,1}, ..., a_{i,p}) \neq (0, ..., 0)\}$$

$$J_0(A) = \{1, ..., p\} \setminus \{j((a_{i,1}, ..., a_{i,p})) \mid i \in I(A)\}$$

- If $\exists i \in \{1, ..., n\} \setminus I(A)$ such that $b_i \neq 0$ then (*) does not have any solution in K^n
- Suppose that $\forall i \in \{1,...,n\} \setminus I(A), b_i = 0$. Then (*) has at least one solution. Moreover $V^{J_0(A)} \to V^p$

$$(z_k)_{k\in J_0(A)}\mapsto (x_1,...,x_p)$$

24.5. PROP 127

with

$$x_{j} = \begin{cases} z_{j}, & j \in J_{0}(A) \\ b_{i} - \sum_{l \in J_{0}(A)} a_{i,l} z_{l} & j = j((a_{i,1}, ..., a_{i,p})) \end{cases}$$

is an injective mapping, whose image is equal to the set of solution of (*)

24.5 Prop

Let $m \in \mathbb{N}, S \in M_{m,n}(K)$. If $(x_1,...,x_p) \in V^p$ is a solution of (*), then $(x_1,...,x_p)$ is a solution of $(*)_S$:

$$(SA) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = S \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \tag{*}$$

In the case where S is left invertible, namely there exist $R \in M_{n,m}(K)$ such that $RS = I_n \in M_{m,n}(K)$. Then (*) and (*)_S have the same solution set.

24.6 Def

Let $G_n(K)$ be the set of $S \in M_{n,n}(K)$ that can be written as $U_1...U_N$ (by convention $S = I_n$ where N = 0) where each U_i is of one of the following forms.

- P_{σ} where $\sigma \in \mathfrak{S}_n$
- $diag(r_1,...,r_n)$ where each $r_i \in K$ is left invertible
- $S_{i,c}$ with $i \in \{1,...,n\}$ $c = (c_1,...,c_n) \in K^n, c_i = 0$

Let $p \in \mathbb{N}$,we say that $A \in M_{n,p}(K)$ is reducible by Gauss elimination if $\exists S \in G_n(K)$ such that SA is of reduced row echelon form

24.7 Theorem

Assume that K is a division ring $\forall (n,p) \in \mathbb{N}$ any $A \in M_{n,p}(K)$ is reducible by Gauss elimination

Proof

The case where n=0 or p=0 is trivial. We assume $n\geq 1, p\geq 1$ We write A as

$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \text{ where } \lambda_i \in K, B \in M_{n,p-1}(K)$$

• If $\lambda_1 = \dots = \lambda_n = 0$

Applying the induction hypothesis to B, for $S \in G_n(K)$

$$SA = \left(S \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \quad SB \right) = \begin{pmatrix} 0 \\ \vdots \\ SB \end{pmatrix}$$

• Suppose that $(\lambda_1, ..., \lambda_n) \neq (0, ..., 0)$

By permuting the rows we may assume $\lambda_1 \neq 0$. As K is division ring, by multiplying the first row by λ_1^{-1} , we amy assume $\lambda_1 = 1$. We add $(-\lambda_i)$ times the first row to the i^{th} row, to reduce A to the form

$$\begin{pmatrix} 1 & \mu_2 \dots & \mu_p \\ 0 & & & \\ \vdots & C & & \\ 0 & & & \end{pmatrix} \quad C \in M_{n-1,p-1}(K) \\ (\mu_2, \dots, \mu_p) \in K^{p-1}$$

Applying the induction hypothesis to C, we say assume that C is of reduced row echelon form . For $i \in \{2,...,k\}$ we add $-\mu_{j(c_i)}$ times the i^{th} row of A to the first line to obtain a matrix of reduced row echelon form

Chapter 25

Normed Vector Space

25.1 Def

Let (X,d) be a metric space. If $(x_n)_{n\in\mathbb{N}}$ is an element of $X^{\mathbb{N}}$ such that

$$\lim_{N\to +\infty} \sup_{(n,m)\in \mathbb{N}^2_{\geq N}} d(x_n,x_m) = 0$$

we say that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. If any Cauchy sequence in X converges, then we say that (X,d) is complete.

Let Cau(X,d) be the set of all Cauchy sequences in X. We define a binary relation \sim on Cau(X,d) as

$$(x_n)_{n\in\mathbb{N}}\sim (y_n)_{n\in\mathbb{N}}$$

iff

$$\lim_{n \to +\infty} d(x_n, y_n) = 0$$

25.2 Prop

 \sim is an equivalence relation.

25.2.1 Proof

$$\lim_{n \to +\infty} d(x_n, x_n) = 0$$

$$d(x_n, y_n) = d(y_n, x_n)$$

If $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}, (z_n)_{n\in\mathbb{N}}$ be elements of Cau(X,d). For

$$0 \le d(x_n, y_n) \le d(x_n, z_n) + d(z_n, y_n)$$

130

If

$$\lim_{n \to +\infty} d(x_n, y_n) = \lim_{n \to +\infty} d(y_n, z_n) = 0$$

then

$$\lim_{n \to +\infty} d(x_n, z_n) = 0$$

25.3 Def

$$\hat{X} := Cau(X, d) \setminus \sim$$

25.4 Def: The completion

The completion of (X, d) is defined as

$$Cau(X)/\sim$$

and is denoted as

 \hat{X}

25.5 Theorem

The mapping

$$\hat{d}: \hat{X} \times \hat{X} \to \mathbb{R}_{\geq 0}$$
$$(x, y) \mapsto \lim_{n \to +\infty} d(x_n, y_n)$$

is well defined, and it's a metric on \hat{X}

Proof

TO check that \hat{d} is well defined , it suffices to prove that $\forall ([x], [y]) \in \hat{X} \times \hat{X}$, $(d(x_n, y_n))_{n \in \mathbb{N}}$ is Cauchy sequence and its limit doesn't depend on the choice of the representation x and y

For $N \in \mathbb{N}$ and $(n, m) \in \mathbb{N}_{\geq N}$ for

$$d(x_n, y_n) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n)$$
$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(y_n, y_m)$$
$$d(x_m, y_n) - d(x_n, y_n) \le d(x_n, x_m) + d(y_n, y_m)$$

one has,

$$|dd(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m)$$

then

$$\sup_{(n,m\in\mathbb{N}_{\geq N})} |d(x_n,y_n) - d(x_m,y_m)| \le (\sup_{(n,m\in\mathbb{N}_{\geq N})} d(x_n,x_m))$$
$$+(\sup_{(n,m\in\mathbb{N}_{\geq N})} d(y_n,y_m))$$

25.6. REMARK 131

Taking $\lim_{N\to+\infty}$ we obtain that $(d(x_n,y_n))_{n\in\mathbb{N}}$ is a Cauchy sequence. Hence it converges in \mathbb{R} . If $x'=(x'_n)_{n\in\mathbb{N}}\in[x], y'=(y'_n)_{n\in\mathbb{N}}\in[y]$, thus

$$\lim_{n \to +\infty} d(x_n, x'_n) = \lim_{n \to +\infty} d(y_n, y'_n) = 0$$

$$0 \le |d(x_n, y_n) - d(x'_n, y'_n)| \le d(x_n, x'_n) + d(y_n, y'_n)$$

Taking $\lim_{n\to+\infty}$ we get

$$\lim_{n \to +\infty} |d(x_n, y_n) - d(x'_n, y'_n)| = 0$$

So

$$\lim_{n \to +\infty} d(x_n, y_n) = \lim_{n \to +\infty} d(x'_n, y'_n)$$

In the following, we check that \hat{d} is a metric

- $\hat{d}([x], [y]) = 0$ iff [x] = [y]: trivial
- $\hat{d}([x], [y]) = \hat{d}([y], [x])$: trivial
- $\hat{d}([x], [y]) \le \hat{d}([x], [z]) + \hat{d}([z], [y])$:

$$\begin{split} d([x],[y]) &= \lim_{n \to +\infty} \\ &\leq \lim_{n \to +\infty} (d(x_n,z_n) + d(z_n,y_n)) \\ &= \hat{d}(x,z) + \hat{d}(z,y) \end{split}$$

25.6 Remark

Let

$$i_X: X \to \hat{X}$$

 $a \mapsto [(a, a, \ldots)]$

then

$$\hat{d}(i_X(a),i_X(b)) = d(a,b)$$

In particular, i_x is injective (if $i_X(a) = i_X(b)$ then d(a,b) = 0 hence a = b)

25.7 Prop

 $i_X(X)$ is dense in \hat{X} (the closure of $i_X(X)$ in \hat{X} is equal to $i_X(X)$ (or to say \hat{X}))

Proof

Let [x] be an equivalence class in \hat{X} . We claim that $\forall (x_n)_{n\in\mathbb{N}}\in[x]$

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} i_X(x_n)$$

For any $N \in \mathbb{N}$

$$0 \le \hat{d}(i_X(x_N), [x]) = \lim_{n \to +\infty} d(x_N, x_n)$$
$$\le \sup_{(n,m) \in \mathbb{N}^2_{>N}} d(x_n, x_m)$$

Taking $\lim_{N\to +\infty}$ we get

$$\lim_{N \to +\infty} \hat{d}(i_X(x_N), [x]) = 0$$

25.8 Theorem

 (\hat{X}, \hat{d}) is a complete metric space

Proof

Let $([x^{(N)}])_{N\in\mathbb{N}}$ be a Cauchy sequence in \hat{X} , where $\forall N\in\mathbb{N},\ x^{(N)}=(x_n^{(N)})_{n\in\mathbb{N}}$ is a Cauchy sequence $\forall \epsilon>0,\ \exists N_0\in\mathbb{N}$ such that $\forall (k,l)\in\mathbb{N}_{\geq N_0}$

$$\hat{d}([x^{(k)}], [x^{(l)}]) = \lim_{n \to +\infty} d(x_n^{(k)}, x_n^{(l)}) \le \epsilon$$

 $\forall N \in \mathbb{N}$

$$d(x_{\mu}^{(N)}, x_{\nu}^{(N)}) \le \frac{1}{N+1}$$

for any $(\mu, \nu) \in \mathbb{N}_{\geq \alpha(N)}$

Let $y_N = x_{\alpha(N)}^{(N)}$. Without loss of generality , we assume that

$$\alpha(0) \leq \alpha(1) \leq \dots$$

Let $\epsilon > 0$ Take $N_0 \in \mathbb{N}$ such that

(1)
$$\forall (k,l) \in \mathbb{N}, \ k,l \geq N_0$$

$$\hat{d}([x^{(k)}], [x^{(l)}]) \le \frac{\epsilon}{3}$$

$$\frac{1}{N_0+1} \le \frac{\epsilon}{3}$$

25.8. THEOREM

Let
$$(k, l) \in \mathbb{N}_{N_0}^2$$
,

$$d(y_k, y_l) = d(x_{\alpha(k)}^{(k)}, x_{\alpha(l)}^{(l)})$$

133

Since $\alpha(k) \geq N_0, \forall n \in \mathbb{N}_{>N_0}$

$$d(y_k, y_l) \le d(x_{\alpha(k)}^{(k)}, x_n^{(k)}) + d(x_n^{(k)}, x_n^{(k)}) + d(x_n^{(l)}, x_{\alpha(l)}^{(l)})$$

$$\le \frac{\epsilon}{3} + \frac{\epsilon}{3} + d(x_n^{(k)}, x_n^{(l)})$$

Taking $\lim_{n\to+\infty}$ get

$$d(y_k, y_l) \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

So $y = (y_N)_{N \in \mathbb{N}}$ is a Cauchy sequence. We check that

$$\lim_{N\to+\infty} \hat{d}([x^{(N)}],[y]) = 0$$

$$\begin{split} 0 & \leq \limsup_{N \to +\infty} \lim_{n \to +\infty} d(x_n^{(N)}, x_{\alpha(n)}^{(N)}) \\ & \leq \lim_{N \to +\infty} \frac{1}{N+1} = 0 \end{split}$$

 $n \ge \alpha(N)$

$$\begin{split} d(x_n^{(N)},y_n) & \leq d(x_n^{(N)},y_N) + d(y_n,y_N) \\ \limsup_{N \to +\infty} \lim_{n \to +\infty} d(x_n^{(N)},y_n) & \leq \limsup_{N \to +\infty} (\frac{1}{N+1} + \lim_{n \to +\infty} d(y_n,y_N)) \end{split}$$

Since y is Cauchy sequence

$$\leq \limsup_{N \to +\infty} \lim_{n \to +\infty} d(y_n, y_N) = 0$$

Example

Let $(K, |\cdot|)$ be a valued field.

$$|\cdot|:\mathbb{R}_{>0}$$

- $\forall a \in K, |a| = 0 \text{ iff } a = 0$
- $|ab| = |a| \cdot |b|$
- $\bullet ||a+b| \le |a| + |b|$

This is a metric space with

$$d(a,b) := |a - b|$$

Cau(K) forms a commutative unitary ring.

$$(a_n)_{n\in\mathbb{N}}\sim (b_n)_{n\in\mathbb{N}}$$

134

iff

$$\lim_{n \to +\infty} (a_n - b_n) = 0$$

Then

$$(a_n - b_n)_{n \in \mathbb{N}} \in Cau_0(K)$$

where

$$Cau_0(K) = \{ \text{Cauchy sequences that converges to } 0 \}$$

This is an ideal of Cau(K)

Hence

$$\hat{K} = Cau(K) \setminus Cau_0(K)$$

is a quotient ring of Cau(K)

 $|\cdot|$ extend to \hat{K} :

$$|[(a_n)_{n\in\mathbb{N}}]| = \lim_{n\to+\infty} |a_n|$$

that forms an absolute value.

Chapter 26

Norms

In this chapter we fix a field K and an absolute value $|\cdot|$ on K. We assume that $(K, |\cdot|)$ forms a complete metric space with respect to the metric:

$$K \times K \to \mathbb{R}_{\geq 0}$$

 $(a,b) \mapsto |a-b|$

26.1 Def

Let V be a vector space over K (K-module). We call seminorm on V any mapping

$$\|\cdot\|: V \to \mathbb{R}_{\geq 0}$$
$$s \mapsto \|\cdot\|$$

such that

- $\forall (a,s) \in K \times V, ||as|| = |a| \cdot ||s||$
- $\forall (s,t) \in V \times V, ||s+t|| \le ||s|| + ||t||$

If additionally:

• $\forall s \in V$, ||s|| = 0 iff s = 0

We say that $\|\cdot\|$ is a norm and $(V, \|\cdot\|)$ is normed space over K.

26.2 Remark

If $\|\cdot\|$ is a norm then

$$d: V \times V \to \mathbb{R}_{\geq 0}$$
$$(s,t) \mapsto \|s - t\|$$

section Def Let $(V, \|\cdot\|)$ be a vector space over K equipped with a seminorm, and W be a vector space subspace of V (sub-K-module) • The restriction of $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ to W forms a seminorm on W. It is a norm if $\|\cdot\|$ is a norm.

$$\|\cdot\|_W : W \to \mathbb{R}_{\geq 0}$$
$$x \mapsto \|x\|$$

• The mapping

$$\|\cdot\|_{V/W} : V/W \to \mathbb{R}_{\geq 0}$$

$$\alpha \mapsto \inf_{s \in \alpha} \|s\|$$

$$\|[s]\|_{V/W} = \inf_{w \in W} \|s + w\|$$

is a seminorm on V/W

Attention: Even if $\|\cdot\|$ is a norm, $\|\cdot\|_{V/W}$ might only be a seminorm

26.3 Def

 $\lVert \cdot \rVert_{V/W}$ is called the quotient seminorm of $\lVert \cdot \rVert$

26.4 Prop

Let $(V, \|\cdot\|)$ be a vector space over K, equipped with a seminorm. Then

$$N = \{ s \in V \mid ||s|| = 0 \}$$

forms a vector subspace of V. Moreover, $\|\cdot\|_{V/N}$ is a norm

Proof

If
$$(a, s) \in K \times N$$
 then $||as|| = |a| \cdot ||s|| = 0$ so $as \in N$
If $(s_1, s_2) \in N \times N$ then $0 \le ||s_1 + s_2|| \le ||s_1|| + ||s_2|| = 0$ so $s_1 + s_2 \in N$

Proof

$$\begin{split} \|\lambda\alpha\|_{V/W} &= \inf_{s \in \alpha} \|\lambda s\| = \inf_{s \in \alpha} |\lambda| \cdot \|s\| = |\lambda| \cdot \|\alpha\|_{V/W} \\ \|\alpha + \beta\| &= \inf_{s \in \alpha + \beta} \|s\| = \inf_{(x,y) \in \alpha \times \beta} \|x + y\| \\ &\leq \inf_{(x,y) \in \alpha \times \beta} (\|x\| + \|y\|) \\ &= \|\alpha\|_{V/W} + \|\beta\|_{V/W} \end{split}$$

Let $\alpha \in V/N$ such that $\|\alpha\|_{W/N} = 0$ Let $s \in \alpha, \forall t \in N$

$$\begin{split} \|s+t\| \leq \|s\| + \|t\| &= \|s\| = \|(s+t) + (-t)\| \leq \|s+t\| + \|-t\| = \|s+t\| \\ \|\alpha\|_{V/N} &= \inf_{t \in N} \|s+t\| = \|s\| \end{split}$$

Hence $\|\alpha\|_{V/N} = \|s\| = 0$ We obtain that $\alpha = N = [0]$

26.5. DEF 137

26.5 Def

Let $(V, \|\cdot\|)$ be a vector space over K, equipped with a seminorm. For any $x \in V$ and $r \geq 0$, we denote by

$$\mathcal{B}(x,r) = \{ y \in V \mid ||y - x|| < r \}$$
$$\overline{\mathcal{B}}(x,r) = \{ y \in V \mid ||y - x|| \le r \}$$

26.6 Remark

If $N = \{s \in V, ||s|| = 0\}$ then when r > 0

$$x+N\subseteq \overline{\mathcal{B}}(x,r)$$

$$x + N \subseteq \mathcal{B}(x, r)$$

26.7 Def

We equip the topology such that $\forall U \subseteq V, U$ is open iff $\forall x \in U, \exists r_x > 0, \mathcal{B}(x, r_x) \subseteq U$

26.8 Prop

Let $(V_1, \|\cdot\|_1)$ and $(V_2, \|\cdot\|_2)$ be vector spaces over K, equipped with seminorms. Let $f: V_1 \to V_2$ be a K-linear mapping

- If f is continuous, $\forall s \in V_1$ if $||s||_1 = 0$ then $||f(s)||_2 = 0$
- If there exists C > 0 such that $\forall x \in V_1, \|f(x)\|_2 \leq C\|x\|_1$ then f is continuous.

The converse is true

when $|\cdot|$ is non-trivial or $V_2/\{y \in V_2 \mid ||y||_2 = 0\}$ is of finite type

Proof

(1) Lemma If $(V, \|\cdot\|)$ is a vector space over K, equipped with a seminorm, then

$$N_{\|\cdot\|} := \{ s \in V \mid \|s\| = 0 \}$$

is closed.

Proof of lemma Let $s \in V \setminus N_{\|\cdot\|}$ Then $\|s\| > 0$.Let $\epsilon = \frac{\|s\|}{2}$, $\forall x \in \mathcal{B}(s, \epsilon)$

$$||x|| \ge |||s|| - ||s - x||| \ge ||s|| - \epsilon = \epsilon > 0$$

So

$$\mathcal{B}(s,\epsilon) \subseteq V \setminus N_{\parallel \cdot \parallel}$$

– Then $f^{-1}(N_{\|\cdot\|_2})$ is closed. Note that

$$0 \in f^{-1}(N_{\|\cdot\|_2})$$

hence

$$\overline{\{0\}} \subseteq f^{-1}(N_{\|\cdot\|_2})$$

$$\forall x \in N_{\|\cdot\|_1}, \forall \epsilon > 0$$

$$x + N_{\|\cdot\|_1} \subseteq \mathcal{B}(x, \epsilon)$$

and

$$0 \in \mathcal{B}(x, \epsilon)$$

Therefore $x \in \overline{\{0\}}$

(2) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of V_1 that converges to some $x\in V_1$ Hence

$$\lim \sup_{n \to +\infty} ||f(x_n) - f(x)||_2 = \lim \sup_{n \to +\infty} ||f(x_n - x)||$$

$$\leq \lim \sup_{n \to +\infty} C||x_n - x||_1$$

$$= C \lim \sup_{n \to +\infty} ||x_n - x||$$

$$= 0$$

So $(f(x_n))_{n\in\mathbb{N}}$ converges to f(x). Hence f is continuous at x Assume that $|\cdot|$ is non-trivial and f is continuous. Then

$$f^{-1}(\{y \in V_2 \mid ||y||_2 < 1\})$$

is an open subset of V_1 containing $0 \in V_1$

So there exists $\epsilon > 0$ such that

$${x \in V_1 \mid ||x||_1 \le \epsilon} \subseteq f^{-1}({y \in V_2 \mid ||y||_2 < 1})$$

namely $\forall x \in V_1 \text{ if } ||x||_1 < \epsilon \text{ then } ||f(x)||_2 < 1$

Since $|\cdot|$ si nontrivial, $\exists a \in K, \ 0 < |a| < 1$ We prove that $\forall x \in V_1$

$$||f(x)||_2 \le \frac{1}{\epsilon |a|} ||x||_1$$

If $||x||_1 = 0$ by (1) we obtain

$$||f(x)||_2 = 0$$

Suppose that $||x||_1 > 0$ then $\exists n \in \mathbb{Z}$ such that

$$\|a^nx\|_1 = |a|^n \|x\|_1$$

$$< \epsilon \le$$

$$\|a^{n-1}x\|_1 = |a|^{n-1} \|x\|_1$$

Thus

$$||f(a^n x)||_2 < 1$$

Hence

$$||f(x)||_2 < \frac{1}{|a|^n} = \frac{1}{|a|^{n-1}} \frac{1}{|a|}$$

 $\leq \frac{1}{\epsilon} ||x||_1 \frac{1}{|a|} = \frac{||x||_1}{\epsilon |a|}$

26.9 Def: Operator Seminorm

Let $(V_1, \|\cdot\|_1)$ and $(V_2, \|\cdot\|_2)$ be vector spaces over K, equipped with seminorm. We say that a K-linear mapping $f: V_1 \to V_2$ is bounded if there exists C > 0 that

$$\forall x \in V_1 \quad ||f(x)|| \le C||x||_1$$

For a general K-linear mapping $f: V_1 \to V_2$ we denote

$$||f|| := \begin{cases} \sup_{x \in V_1, ||x||_1 > 0} (\frac{||f(x)||_2}{||x||_1}) & \text{if } f(N_{\|\cdot\|_1} \subseteq N_{\|\cdot\|_2}) \\ + \infty & \text{if } f(N_{\|\cdot\|_1} \not\subseteq N_{\|\cdot\|_2}) \end{cases}$$

f is bounded iff

$$||f|| < +\infty$$

||f|| is called the operator seminorm of f

We denote by $\mathscr{L}(V_1,V_2)$ the set of all bounded K-linear mappings from V_1 to V_2

26.10 Prop

 $\mathcal{L}(V_1, V_2)$ is a vector subspace of $Hom_K(V_1, V_2)$. Moreover $\|\cdot\|$ is a seminorm on $\mathcal{L}(V_1, V_2)$

Proof

Let f, g be elements of $\mathcal{L}(V_1, V_2)$

$$||f + g|| = \sup_{x \in V_1, ||x||_1 \neq 0} \frac{||f(x) + g(x)||_2}{||x||_1}$$

$$\leq \sup_{x \in V_1, ||x||_1 \neq 0} \frac{||f(x)||_2 + ||g(x)||_2}{||x||_1}$$

$$\leq (\sup_{x \in V_1, ||x||_1 \neq 0} \frac{||f(x)||_2}{||x||_1}) + (\sup_{x \in V_1, ||x||_1 \neq 0} \frac{||g(x)||_2}{||x||_1})$$

$$\leq +\infty$$

Hence $f + g \in \mathcal{L}(V_1, V_2)$ Let $\lambda \in K$, $\lambda f : x \mapsto \lambda f(x)$

$$\|\lambda f\| = \sup_{x \in V_1, \|x\|_1 > 0} \frac{\|\lambda f(x)\|_2}{\|x\|_1}$$
$$= |\lambda| \sup_{x \in V_1, \|x\|_1 > 0} \frac{\|f(x)\|_2}{\|x\|_1}$$
$$= |\lambda| \|f\| < +\infty$$

26.11 Remark

Let $f \in \mathcal{L}(V_1, V_2)$. Suppose that $\exists x \in V_1$ such that $f(x) \neq 0$. Since

$$f(x) \notin N_{\|\cdot\|_2} = \{0\}$$

we obtain

$$||x||_1 = 0$$

Thus

$$||f|| \ge \frac{||f(x)||_2}{||x||_1} > 0$$

Therefore $\|\cdot\|$ is a norm

26.12 Def

Let $(V, \|\cdot\|)$ be a normed vector space. If V is complete with respect to the metric

$$d: V \times V \to \mathbb{R}_{\geq 0}$$
$$(x, y) \mapsto \|x - y\|$$

then we say that $(V, \|\cdot\|)$ is a Banach space.

26.13 Theorem

Let $(V_1, \|\cdot\|_1)$ and $(V_2, \|\cdot\|_2)$ be vector spaces over K, equipped with seminorm. If $(V_2, \|\cdot\|_2)$ is a Banach space, then

$$(\mathcal{L}(V_1, V_2), \|\cdot\|)$$

is a Banach space

Proof

Let $(f_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $\mathscr{L}(V_1,V_2)$. $\forall x\in V_1$, the mapping

$$(f \in \mathcal{L}(V_1, V_2)) \mapsto f(x)$$

is $||x||_1$ -Lipschitzian mapping:

$$||f(x) - g(x)||_2 = ||(f - g)(x)||_2 \le ||f - g|| ||x||_1$$

So $(f_n(x))_{n\in\mathbb{N}}$ is a Cauchy sequence, for V_2 is complete, that converges to some $g(x)\in V_2$ Then we obtain a mapping $g:V_1\to V_2$. We prove that g is an element of $\mathscr{L}(V_1,V_2)$

• $\forall (x,y) \in V_1^2$

$$g(x,y) = \lim_{n \to +\infty} f_n(x+y) = \lim_{n \to +\infty} f_n(x) + f_n(y)$$
$$||f_n(x) + f_n(y) - g(x) - g(y)|| \le ||f_n(x) - g(x)|| + ||f_n(y) - g(y)||$$

So

$$\lim_{n \to +\infty} f_n(x) + f_n(y) = g(x) + g(y)$$

 $= o(1) + o(1) = o(1), (n \to +\infty)$

• $\forall x \in V_1, \lambda \in K$

$$g(\lambda x) = \lim_{n \to +\infty} f_n(\lambda x) = \lim_{n \to +\infty} \lambda f_n(x)$$

$$\|\lambda f_n(x) - \lambda g(x)\| = |\lambda| \cdot \|f_n(x) - g(x)\| = o(1)(n \to +\infty)$$

So
$$g(\lambda x) = \lambda g(x)$$

• $\forall x \in V_1$

$$||g(x)|| = \lim_{n \to +\infty} ||f_n(x)|| \le (\lim_{n \to +\infty} ||f_n||) \cdot ||x||$$

(because $\forall (a, b) \in V_2^2 \quad |||a|| - ||b||| \le ||a - b||$) Then

$$|||f_n(x)|| - ||g_n(x)||| \le ||f_n(x) - g_n(x)|| = o(1) \ (n \to +\infty)$$

So $g \in \mathcal{L}(V_1, V_2)$

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall (n, m) \in \mathbb{N}_{>N}, \ \|f_n - f_m\| \le \epsilon$$

 $\forall x \in V_1$

$$||(f_n - f_m)(x)|| \le \epsilon \cdot ||x||$$

Taking $\lim_{n\to+\infty}$ we get

$$||(f_n - g)(x)|| \le \epsilon ||x||$$

So $\forall n \in \mathbb{N}, n \geq N$

$$||f_n - g|| \le \epsilon$$

Chapter 27

Differentiability

In this chapter we fix a field K and an absolute value $|\cdot|$ on K. We assume that $(K, |\cdot|)$ forms a complete metric space with respect to the metric:

$$K \times K \to \mathbb{R}_{\geq 0}$$

 $(a,b) \mapsto |a-b|$

27.1 Def

Let X be a topological space and $p \in X$. Let K be a complete valued field and $(E, \|\cdot\|)$ be a normed vector space over K.

Let $f: X \to E$ be a mapping and $g: X \to \mathbb{R}_{\geq 0}$ be a non-negative mapping.

• We say that

$$f(x) = O(g(x)) \ x \to p$$

if there is a neighborhood V of p in X and a constant C>0 such that $\forall x\in V$

$$||f(x)|| \le Cg(x)$$

• We say that

$$f(x) = o(g(x)) \ x \to p$$

if there exists a neighborhood V of p in X and a mapping $\epsilon:V\to\mathbb{R}_{\geq 0}$ such that

$$\lim_{x \in V, x \to p} \epsilon(x) = 0$$

which is equivalent to

 $\forall \delta > 0, \exists$ neighborhood U of $p \ U \subseteq V$ and $\forall x \in U, 0 \le \epsilon(x) \le \delta$

and $\forall x \in V$

$$||f(x)|| \le \epsilon(x)g(x)$$

27.2 Def

Let E and F be normed vector space over K $U \subseteq E$ be an open subset, $f: U \to F$ be a mapping and $p \in U$ If there exists $\varphi \in \mathcal{L}(E, F)$ such that

$$f(x) = f(p) + \varphi(x - p) + o(||x - p||) \quad x \to p$$

we say that f is differentiable at p, and φ is the differential of φ at p Suppose that $|\cdot|$ is not trivial. $\varphi(x-p)$ also written as

$$d_p f$$

Reminder

$$f(x) = f(p) + \varphi(x - p) + o(||x - p||) \quad x \to p$$

means there exists an open neighborhood V of p with $V\subseteq U$ and a mapping $\epsilon V\to\mathbb{R}_{\geq 0}$ such that $\lim_{x\to p}\epsilon(x)=0$ and that $\forall x\in V$

$$||f(x) - f(p) - \varphi(x - p)|| \le \epsilon(x) \cdot ||x - p||$$

27.3 Prop

If f is differentiable at p, then its differential at p is unique

Proof

Suppose that there exists φ and ψ in $\mathcal{L}(E,F)$ such that

$$f(x) = f(p) + \varphi(x - p) + o(||x - p||)$$

$$f(x) = f(p) + \psi(x - p) + o(||x - p||)$$

then

$$(\varphi - \psi)(x - p) = o(\|x - p\|)$$

 $\forall \delta > 0$

$$\|\varphi - \psi\| = \sup_{y \in E \setminus \{0\}} \frac{\|\varphi - \psi\|}{\|y\|} = \sup_{y \in E \setminus \{0\}, \|y\| \le \delta} \frac{\|(\varphi - \psi)(y)\|}{\|y\|}$$

Therefore

$$\|\varphi - \psi\| = \inf_{\delta > 0} \sup_{y \in E, 0 < \|y - p\| \le \delta} \frac{\|\varphi - \psi\| (y - p)}{\|y - p\|}$$

$$\leq \inf_{\delta > 0} \sup_{y \in E, 0 < \|y - p\| \le \delta} \epsilon(y)$$

$$= \limsup_{y \to p} \epsilon(y) = 0$$

27.4. EXAMPLE

145

27.4 Example

27.4.1

$$f: U \to F: f(x) = y_0 \ \forall x \in U$$

 $\forall p \in U$

$$f(x) - f(p) = 0 = 0 + o(||x - p||)$$

Hence $\forall x \in E$

$$d_p(f(x)) = 0$$

27.4.2

Let
$$f \in \mathcal{L}(E, F)$$

$$f(x) - f(p) = f(x - p)$$

Hence $d_p f = f$

27.4.3

$$A: E \times E \to E$$

$$(x,y) \mapsto x + y$$

Let E be a normed space. Then $\forall (p,q) \in E \times E$

$$d_{(p,q)}A = A$$

27.4.4

$$m:K\times E\to E$$

$$(\lambda, x) \mapsto \lambda x$$

Let $(a, p) \in K \times E$

$$\lambda x - ap = \lambda x - ax + ax - ap$$

$$= (\lambda - a)x + a(x - p)$$

$$= (\lambda - a)p + a(x - p) + (\lambda - a)(x - p)$$

• when $(\lambda, x) \to (a, p)$

$$||(\lambda - a)(x - p)|| = |\lambda - a| \cdot ||x - p||$$

= $o(\max\{|\lambda - a|, ||x - p||\})$

• The mapping

$$((\mu, y) \in K \times E) \mapsto \mu p + ay \in E$$

is a K-linear mapping.

$$- (\mu_1 + \mu_2)p + a(y_1 + y_2) = (\mu_1 p + ay_1) + (\mu_2 p + ay_2)$$

$$- b\mu p + a(by) = b(\mu p + ay)$$

$$- \|\mu p + ay\| \le |\mu| \|p\| + |a| \|y\|$$

$$\le \max\{|\mu|, \|y\|\}(|a| + \|p\|)$$

Hence m is differentiable and $\forall (\mu, y) \in K \times E$

$$d_{(a,p)}m(\mu,y) = \mu p + ay$$

27.5 Theorem:Chain rule

Let E, F, G be normed vector spaces, $U \subseteq E, V \subseteq F$ be open subsets.

Let $f:U\to F,\ g:V\to G$ be mappings such that $f(U)\subseteq V$ Let $p\in U$ Assume that f is differentiable at p and g differentiable at f(p) Then $g\circ f$ is differentiable at p and

$$d_p(g \circ f) = d_{f(p)}g \circ d_p f$$

Proof

Let $x \in U$ By definition

$$f(x) = f(p) + d_p f(x - p) + o(||x - p||)$$

$$f(x) - f(p) = O(||x - p||)$$

and

$$\begin{split} (g \circ f)(x) &= g(f(p)) + d_{f(p)}g(f(x) - f(p)) + o(\|f(x) - f(p)\|) \\ &= g(f(p)) + d_{f(p)}g(d_pf(x-p) + o(\|x-p\|)) + o(\|x-p\|) \\ &= g(f(p)) + d_{f(p)}g(d_pf(x-p)) + o(\|x-p\|) \end{split}$$

So $g \circ f$ is differentiable at p and

$$d_p(g \circ f) = d_{f(p)}g \circ d_p f$$

27.6 Prop

Let n be a positive integer $E, (F_i)_{i \in \{1,\dots,n\}}$ be normed vector spaces over K. $U \subseteq E$ an open subset, $p \in U$

 $\forall i \in \{1,...,n\} \text{ let } f_i: U \to F_i \text{ be a mapping. Let}$

$$f: U \to F = \prod F_i$$

be the mapping that sends $x \in U$ of $(f_i(x))_{i \in \{1,...,n\}}$ We equip F with the norm $\|\cdot\|$ defined as :

$$\|(y_i)_{i\in\{1,\dots,n\}}\| = \max_{i\in\{1,\dots,n\}} \|y_i\|$$

27.7. DEF 147

Then f is differentiable at p iff each f_i is differentiable at p. Moreover, when this happen, one has

$$\forall x \in E \quad d_p f(x) = (d_p f_i(x))_{i \in \{1, \dots, n\}}$$

Proof

 \Leftarrow Suppose that $(f_i)_{i \in \{1,\dots,n\}}$ are differentiable at p

$$f(x) - f(p) = (f_i(x) - f_i(p))_{i \in \{1, \dots, n\}}$$

= $(d_p f_i(x - p))_{i \in \{1, \dots, n\}} + o(||x - p||)$

Therefore f is differentiable at p and

$$d_p f(\cdot) = (d_p f_i(\cdot))_{i \in \{1, \dots, n\}}$$

 \Rightarrow Let

$$\pi_i : F \to F_i$$
$$(x_i)_{i \in \{1, \dots, n\}} \mapsto x_i$$

is a bounded linear mapping, one has $||\pi_i|| \le 1$ because

$$||x_i|| \le \max_{i \in \{1,\dots,n\}} ||x_i|| = ||(x_i)_{i \in \{1,\dots,n\}}||$$

 π_i is differentiable at p then $\pi_i \circ f = f_i$ is differentiable at p

27.7 Def

Let U be an open subset of K and $(F, \|\cdot\|)$ be a normed vector space. If $f: U \to F$ is a mapping that is differentiable at some $p \in U$. We denote by f'(p) the element

$$d_p f(1) \in F$$

called the derivative of f at p

27.8 Corollary

Let U and V be open subsets of K, $(F, \|\cdot\|)$ be a normed vector space over K. $f: U \to K$, $g: V \to F$ be mappings such that $f(U) \subseteq V$. Let $p \in U$. If f is differentiable at p and g is differentiable at f(p) then

$$(g \circ f)'(p) = f'(p)g'(f(p))$$

Proof

By definition

$$d_{p}(g \circ f)(1) = d_{f(p)}g(d_{P}(f)(1))$$

$$= d_{f(p)}g(f'(p))$$

$$= d_{f(p)}g(f'(p) \cdot 1)$$

$$= f'(p) \cdot d_{f(p)}g(1)$$

$$= f'(p)g'(f(p))$$

27.9 Corollary

Let E and F be normed vector spaces, $U\subseteq E$ an open subset. $f:U\to L$ and $g:U\to F$ be mappings and $p\in U$ If both f,g differentiable at p then

$$fg: U \to F$$

 $x \mapsto f(x)g(x)$

is also differentiable at p and

$$\forall l \in E \quad d_p(fg)(l) = f(p)d_pf(l) + g(p)d_pf(l)$$

Proof

Consider

$$m: K \times F \to F$$

 $(a, y) \to ay$

We have shown m is differentiable and

$$d_{a,y}m(b,z) = by = az$$

fg is the following composite:

$$U \xrightarrow{h} K \times F \xrightarrow{m} F$$

$$fg$$

$$x \longmapsto (f(x), g(x)) \longmapsto f(x)g(x)$$

$$d_p(fg)(l) = d_p(m \circ h)(l)$$

$$= d_{h(p)}m(d_ph(l))$$

$$= d_{(f(p),g(p))}m(d_pf(l), d_pg(l))$$

$$= f(p)d_pg(l) + d_pf(l)g(p)$$

27.10 Corollary

Let U be an open subset of K, f,g be mappings from U to K and to a normed space F respectively. If f,g are differentiable at $p \in U$ then

$$(fg)'(p) = d_p(fg)(1) = d_pf(1)g(p) + f(p)d_pg(1) = f'(p)g(p) + f(p)g'(p)$$

Example

$$f_n: K \to K$$

 $x \mapsto x^n$

is differentiable at any $x \in K$

$$f_n'(x) = nx^{n-1}$$

Proof

 $f_1: K \to K$ is differentiable $\forall x \in K$

$$d_x f_1 = f_1$$

If $f'_n(x) = nx^{n-1}$ then

$$f'_{n+1}(x) = (f_n f_1)'(x)$$

$$= f_n(x)f'_1(x) + f'_n(x)f_1(x)$$

$$= x^n + x'_n(x) = x^n + xnx^{n-1}$$

$$= (n+1)x^n$$

and

$$d_x f_n(l) = l d_x f_n(1)$$
$$= l n x^{n-1}$$

27.11 Prop

Let E, F, G be normed vector spaces. $U \subseteq E$ be an open subset, $\varphi \in \mathcal{L}(F,G), p \in U$ if $f: U \to E$ is differentiable at p then so is $\varphi \circ f$. Moreover

$$d_p(\varphi \circ f) = \varphi \circ d_p(f)$$

Proof

 φ is differentiable at f(p) nad $d_{f(p)}\varphi = \varphi$

27.12 Corollary

Let E and F be normed vector spaces $U \in E$ be an open subset, $p \in U$. Let $f: U \to F$ and $g: U \to F$ be mappings that are differentiable at $p, (a, b) \in K \times K$. Then af + bg is differentiable at p and

$$d_n(af_bg) = ad_nf + bd_ng$$

Proof

af + bg is composite:

$$U \xrightarrow{h} K \times F \xrightarrow{m} F$$

$$ay+bz$$

$$x \longmapsto (f(x), g(x)) \longmapsto af(x) + bg(x)$$

$$||ay + bz|| \le |a| \cdot ||y|| + |b| \cdot ||z||$$

$$\le (|a| + |b|) \max\{||y||, ||z||\}$$

27.13 Def: Equivalence of Norms

Let E be a vector space over K and $\|\cdot\|_1$, $\|\cdot\|_2$ be norms on E. We say that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if there exist constants $C_1, C_2 > 0$ such that $\forall s \in E$

$$C_1 \|S\|_1 \le \|s\|_2 \le C_2 \|s\|_1$$

27.14 Prop

If $\|\cdot\|_1$, $\|\cdot\|_2$ are equivalent, then

$$Id_E: (E, \|\cdot\|_1) \to (E, \|\cdot\|_2)$$

$$Id_E: (E, \|\cdot\|_2) \to (E, \|\cdot\|_1)$$

are bounded linear mappings. Moreover $\left\|\cdot\right\|_1,\left\|\cdot\right\|_2$ defines the same topology on E.

Proof

$$||s||_2 \le C_2 \quad ||s||_1 \le C_1^{-1} ||s||_2$$

So the linear mappings are bounded. Hence

$$Id_E: (E, \|\cdot\|_1) \to (E, \|\cdot\|_2)$$

27.15. REMARK 151

$$Id_E: (E, \|\cdot\|_2) \to (E, \|\cdot\|_1)$$

are continuous. So \forall open subset U of $(E, \|\cdot\|_2)$

$$Id_E^{-1}(U) = U$$

is open in $(E, \|\cdot\|_1)$. Conversely if V is open in $(E, \|\cdot\|_1)$ then

$$V = Id_E^{-1}(V)$$

is open in $(E, \|\cdot\|_2)$

27.15 Remark

If $\|\cdot\|_1$, $\|\cdot\|_2$ are two norms on E that define the same topology on E, then they are equivalent (under the assumption that $|\cdot|$ is not trivial)

27.16 Prop

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be normed vector spaces $\|\cdot\|_E'$ and $\|\cdot\|_F'$ be norms on E and F that are equivalent to $\|\cdot\|_E$, $\|\cdot\|_F$ respectively. Let $U\subseteq E$ be an open subset and $f:U\to F$ be a mapping.

Let $p \in U$ Then f is differentiable at p with respect to $\|\cdot\|_E$ and $\|\cdot\|_F$ iff it's differentiable with respect to $\|\cdot\|_E'$ and $\|\cdot\|_F'$. Moreover the differentiable of f at p is not changed in the change of norms

Moreover the differentiable of f at p is not changed in the change of norms from $(\|\cdot\|_E, \|\cdot\|_F)$ to $(\|\cdot\|_E', \|\cdot\|_F')$

Proof

$$U \xrightarrow{Id_U} U \xrightarrow{f} F \xrightarrow{Id_F} F$$

$$(E, \|\cdot\|_E') \qquad (E, \|\cdot\|_E) \qquad \|\cdot\|_F \qquad \|\cdot\|_F'$$

$$d'_p f = d_{f(p)} I d_F \circ d_p f \circ d_p I d_U$$

$$= I d_F \circ d_p f \circ I d_E$$

$$= d_p f$$

 $d'_{p}f:(E,\|\cdot\|'_{E})\to(F,\|\cdot\|'_{F})$

27.17 Theorem

Let V be a finite dimensional vector space over K. Then all norms on V are equivalent. Moreover V is complete with respect to any norm on V.

Proof

Let $(e_i)_{i=1}^n$ be a basis of V(linear independent system of generators)The the mapping:

$$\sum_{i \in \{1,\dots,n\}} a_i e_i \mapsto \max_{i \in \{1,\dots,n\}} \{|a_i|\}$$

is a norm on V

Let $\left\| \cdot \right\|$ be another norm on V. One has

$$\left\| \sum_{i \in \{1, \dots, n\}} a_i e_i \right\| \le \sum_{1 \in \{1, \dots, n\}} |a_i| \|e_i\|$$

$$\le \left(\sum_{i \in \{1, \dots, n\}} \|e_i\| \right) \max_{i \in \{1, \dots, n\}} \{|a_i|\}$$

We reason by induction that there exists C > 0 such that

$$\max_{i \in \{1, \dots, n\}} \{|a_1|\} \le C \left\| \sum_{i \in \{1, \dots, n\}} a_i e_i \right\|$$

The case where n=0 is trivial.

n=1

$$||a_1e_1|| = |a_1| ||e_1|| \quad |a_1| = ||e_1||^{-1} \cdot ||a_1e_1||$$

Induction hypothesis true for vector spaces of dimension < n

Let

$$W = \{ \sum_{i \in \{1, \dots, n-1\}} a_i e_i \mid (a_i)_{i \in \{1, \dots, n-1\}} \in K^{n-1} \}$$

equipped with $\|\cdot\|$ restricted to W

The induction hypothesis shows that W is complete. Hence it's closed in V. Let Q = V/W and $\|\cdot\|_Q$ be the quotient norm on Q that's defined as

$$\forall \alpha \in Q \quad \|\alpha\|_Q = \inf_{s \in \alpha} \|s\|$$

- If $s \in V \setminus W, \exists \epsilon > 0$ such that

$$\overline{B}(s,\epsilon) \cap W = \phi$$

 $\forall t \in W$,

$$s + t \not\in \overline{B}(0, \epsilon)$$

since otherwise

$$-t \in W \cap \overline{B}(s, \epsilon)$$

Therefore

$$\|[s]\|_Q = \inf_{i \in W} \|s + t\| \ge \epsilon > 0$$

$$\begin{split} -\ \forall \lambda \in K \\ \|\lambda \alpha\|_Q &= \inf_{s \in \alpha} \|\lambda s\| = |\lambda| \\ \inf_{s \in \alpha} \|s\| &= |\lambda| \cdot \|s\|_Q \\ - \\ \|\alpha + \beta\|_Q &= \inf_{s \in \alpha + \beta} \|s\| \\ &= \inf_{(x,y) \in \alpha \times \beta} \|x + y\| \\ &\leq \inf_{(x,y) \in \alpha \times \beta} (\|x\| + \|y\|) \end{split}$$

Applying the induction hypothesis then we obtain the existence of some A > 0 such that $\forall (a_i)_{i \in \{1,\dots,n-1\}} \in K^{n-1}$

 $= \inf_{x \in \alpha} \|x\| + \inf_{y \in \beta} \|y\|$

$$\max_{i \in \{1, \dots, n-1\}} \{|a_i|\} \le A \left\| \sum_{i \in \{1, \dots, n-1\}} a_i e_i \right\|$$

Take

$$s = \sum_{i \in \{1, \dots, n\}} a_i e_i \in V$$

Let
$$\alpha = [s] = a_n[e_n] \in Q$$

$$\left\| \sum_{i \in \{1, \dots, n-1\}} a_i e_i \right\| = \|s - a_n e_n\| \le \|s\| + |a_n| \cdot \|e_n\| \le \max_{i \in \{1, \dots, n-1\}} \{|a_i|\}$$

$$\|\alpha\|_{Q} = |a_{n}| \|[e_{n}]\|_{Q} = |a_{n}| \inf_{t \in W} \|e_{n} + t\|$$

Take $e_n' \in V$ such that $[e_n'] = [e_n]$ and $\|e_n'\| \le \|[e_n]\|_Q + \epsilon$

Note that $(e_1, ..., e_{n-1}, e'_n)$ forms also basis of V over K. Hence by replacing e_n by e'_n we may assume that $||e_n|| \le ||[e_n]||_Q + \epsilon$

$$s = a_n e_n + t \in V \text{ with } t \in W$$

$$||s|| \ge ||[a_n e_n]||_Q = |a_n| ||[e_n]||_Q \ge B^{-1} |a_n| \cdot ||e_n||$$

- If
$$||a_n e_n|| < \frac{1}{2} ||t||$$

$$||s|| \ge ||t|| - ||a_n e_n|| > \frac{1}{2} ||t|| \ge \frac{1}{2} \max_{i \in \{1, \dots, n-1\}} \{|a_i|\}$$

$$- \text{ If } \|a_n e_n\| \ge \frac{1}{2} \|t\|$$

$$||s|| \ge B^{-1} |a_n| \cdot ||e_n|| \ge \frac{B^{-1}}{2} ||t|| \ge \frac{B^{-1}A}{2} \max_{i \in \{1, \dots, n-1\}} \{|a_i|\}$$

We take
$$C = \max\{B^{-1} \|e_n\|, \frac{A}{2}, \frac{B^{-1}A}{2}\}$$
 Then
$$\|s\| \ge C \max_{i \in \{1, \dots, n\}} \{|a_i|\}$$

Another proof

completeness Under the norm $\max_{i\in\{1,\dots,n\}}$, a sequence $(a_i^{(k)}e_i)_{k\in\mathbb{N},i\in\{1,\dots,n\}}$ is a Cauchy sequence iff $\forall i\in\{1,\dots,n\}$ $(a_i^{(k)})_{k\in\mathbb{N}}$ is a Cauchy sequence. Since K is complete each $(a_i^{(k)})_{k\in\mathbb{N}}$ converges to some $a_i\in K$ Hence $(a_i^{(k)}e_i)_{k\in\mathbb{N},i\in\{1,\dots,n\}}$ converges.

27.18 Prop

Let $(E, \|\cdot\|_E), (F, \|\cdot\|_F)$ be normed vector spaces over K. Assume that E is finite dimensional. Then any K-linear mapping $\varphi: E \to F$ is bounded.

Proof

Let $(e_i)_{i=1}^n$ be a basis of E. For any two norms on E are equivalent. $\forall (a_1,...,a_n) \in K$

$$\left\| \sum_{i=1}^{n} a_i e_i \right\|_{E} = \max_{i \in \{1, \dots, n\}} \{|a_i|\}$$

Then for any $s = \sum_{i=1}^{n} a_i e_i$

$$\|\varphi(s)\|_F = \left\|\sum_{i=1}^n a_i e_i\right\| \le \sum_{i=1}^n |a_i| \|\varphi(e_i)\| \le (\sum_{i=1}^n \|\varphi(e_i)\|_F) \|s\|_E$$

27.19 Theorem

Let E,F be normed vector spaces over a complete valued field, $U\subseteq E$ be an open subset and $f:U\to F$ be a mapping . If f is differentiable at p then f is continuous at p

Proof

$$f(x) = f(p) + d_p f(x - p) + o(||x - p||)$$

$$= f(p) + O(||x - p||)$$

$$= f(p) + o(1) \quad x \to p$$

$$\Rightarrow \lim_{x \to p} f(x) = f(p)$$

Chapter 28

Compactness

28.1 Def: cover

Let X be a topological space, $Y \subseteq X$ we call open cover of Y any family $(U_i)_{i \in I}$ open subset of X such that

$$Y \subseteq \bigcup_{i \in I} U_i$$

If I is finite set, we say that $(U_i)_{i\in I}$ is a finite open cover. If $J\subseteq I$ such that

$$Y\subseteq\bigcup_{j\in J}U_j$$

then we say that $(U_j)_{j\in J}$ is a sub cover of $(U_i)_{i\in I}$

28.2 Def: compact

If any open cover of Y has a finite subcover , we say that Y is quasi-compact. If in addition X is Hausdorff, namely $\forall (x,y) \in X \times X$ with $x \neq y \exists$ open neighborhoods U and V of x and y such that $U \cap V = \varnothing$, we say that Y is compact

28.3 Def

Let X be a set and \mathcal{F} be a filter on X. If there does not exists any filter \mathcal{F}' of X such that $\mathcal{F} \subsetneq \mathcal{F}'$, then we say that \mathcal{F} is an ultrafilter.

Zorn's lemma implies that $\forall \mathcal{F}$, of X there exist an ultrafilter \mathcal{F} if X containing \mathcal{F}_0

156

28.4 Prop

Let \mathcal{F} be a filter on a set X. The following statements are equivalent.

- (1) \mathcal{F} is an ultrafilter
- (2) $\forall A \subseteq X$ either $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$
- (3) $\forall (A, B) \in \wp(X)^2 \text{ if } A \cap B \in \mathcal{F} \text{ then } A \in \mathcal{F} \text{ or } B \in \mathcal{F}$

Proof

 $(1) \Rightarrow (2)$ Suppose that $A \in \wp(X)$ such that $A \notin \mathcal{F}$ and $X \setminus A \notin \mathcal{F} \ \forall B \in \mathcal{F}$ one has

$$B \cap A \neq \emptyset$$

since otherwise $B \subseteq X \setminus A$ and hence $X \setminus A \in \mathcal{F}$ contradiction.

 $(2) \Rightarrow (3)$ Suppose that $B \notin \mathcal{F}$ then $X \setminus B \in \mathcal{F}$

$$(A \cup B) \cap (X \setminus B) = A \setminus B \in \mathcal{F}$$

So $A \in \mathcal{F}$

(3) \Rightarrow (1) Suppose that \mathcal{F}' is a filter such that $\mathcal{F} \subsetneq \mathcal{F}'$ Take $A \in \mathcal{F}' \setminus \mathcal{F}$ Then by $X = A \cup (X \setminus A) \in \mathcal{F}$ Hence

$$X \setminus \mathcal{F} \subseteq \mathcal{F}' \quad \varnothing = A \cap (X \setminus A) \in \mathcal{F}'$$

which is impossible.

28.5 Theorem

Let (X, \mathcal{J}) be a topological space. The following are equivalent

- (1) X is quasi-compact
- (2) Any filter of X has an accumulation point
- (3) Any ultrafilter of X is converges.

Proof

(1) \Rightarrow (2) Assume that a filter \mathcal{F} of X does not have any accumulation point. $\forall x \in X \ \exists A_x \in \mathcal{F} \ \exists$ open neighborhood V_x of x such that $A_x \cap V_x = \emptyset$ Since $X = \bigcup_{x \in X} V_x$ there is

$$\{x_1, ..., x_n\} \subseteq X$$

28.6. THEOREM

157

such that

$$X = \bigcup_{i=1}^{n} V_{x_i}$$

Take
$$B = \bigcap_{i=1}^{n} A_{x_i} \in \mathcal{F}$$

$$B \cap X = B = \emptyset$$

Since $\forall i \ B \cap V_x = \emptyset$ contradiction.

- (2) \Rightarrow (3) Let \mathcal{F} be an ultrafilter of X. By (2) there exist $x \in X$ such that $\mathcal{F} \cup \mathcal{V}_x$ generates a filter \mathcal{F}' Since \mathcal{F} is an ultrafilter $\mathcal{F} = \mathcal{F}'$ and hence $\mathcal{V}_x \subseteq \mathcal{F}$
- (3) \Rightarrow (1) Let $(U_i)_{i \in I}$ be an open cover of X we suppose that this have no finite subcover. $\forall i \in I$ let

$$F_i = X \setminus U_i$$

For any $J \subseteq I$ finite

$$F_J = \bigcap_{j \in J} F_j = X \setminus \bigcup_{j \in J} U_j \neq \emptyset$$

Let \mathcal{F} be the smallest filter on X that contains

$$\{\mathcal{F}_J \mid J \subseteq I \text{ finite}\}$$

Let \mathcal{F}' be ultrafilter containing \mathcal{F} . It has a limit point x There exist $i \in I$ such that $x \in U_i$. Since U_i is a neighborhood of x and $\mathcal{V}_x \subseteq \mathcal{F}'$ we get $U_i \in \mathcal{F}'$ This is impossible since $F_i \in \mathcal{F}'$

28.6 Theorem

Let (X, d) be a metric space. The following statements are equivalent:

(1) X is complete and $\forall \epsilon > 0 \; \exists X_{\epsilon} \subseteq X$ finite such that

$$X = \bigcup_{x \in X_{\epsilon}} \mathcal{B}(x, \epsilon)$$

(2) X is compact

Proof

 $(1) \Rightarrow (2)$ Let \mathcal{F} be an ultrafilter Let $\epsilon > 0$ and $\{x_1, ..., x_n\} \subseteq X$ such that

$$X = \bigcup_{i=1}^{n} \mathcal{B}(x, \epsilon)$$

There exists some $i \in \{1,...,n\}$ such that $\mathcal{B}(x_i,\epsilon) \in \mathcal{F}$ That means \mathcal{F} is a Cauchy filter (namely $\forall \delta > 0 \ \exists A \in \mathcal{F}$ of diameter $\leq \delta$) Since X is complete \mathcal{F} has a limit point. So \mathcal{F} is compact.

 $(2) \Rightarrow (1)$ Let $\epsilon > 0$ One has

$$X = \bigcup_{x \in X} \mathcal{B}(x, \epsilon)$$

Since X is compact $\exists X_{\epsilon} \subseteq X$ finite such that

$$X = \bigcup_{x \in X_{\epsilon}} \mathcal{B}(x, \epsilon)$$

 \mathcal{F} is an ultrafilter

$$\Leftrightarrow \forall A \subseteq X \ A \in \mathcal{F} \text{ or } X \setminus A \in \mathcal{F}$$

$$\Leftrightarrow \forall y \in \mathcal{F} \text{ if } y = A \cup B \text{ either } A \in \mathcal{F} \text{ or } B \in \mathcal{F}$$

$$\Leftrightarrow \forall Y \in \mathcal{F} \text{ if } Y = A_1 \cup A_2 \cup ... \cup A_n \ \exists i \in \{1,...,n\}, A_i \in \mathcal{F}$$

Let \mathcal{F} be a Cauchy filter Let $x \in X$ be an accumulation point of \mathcal{F} $\forall \epsilon > 0 \ \exists A \in \mathcal{F}$ with diameter $\leq \frac{\epsilon}{2}$ Note that $A \cup \mathcal{B}x, \frac{\epsilon}{2} \neq \emptyset$ Take $y \in A \cap \mathcal{B}(x, \frac{\epsilon}{2}) \ \forall z \in A$

$$d(x,z) \le d(x,y) + d(y,z)$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore $A \subseteq \mathcal{B}(x, \epsilon)$ So $\mathcal{B}(x, \epsilon) \in \mathcal{F}$ This implies $\mathcal{V}_x \subseteq \mathcal{F}$

28.7 Lemma

Let (X, d) be a metric space

- (1) Let $\mathcal F$ be a Cauchy filter on X. Any accumulation point $\mathcal F$ a limit point of $\mathcal F$
- (2) X is complete iff any Cauchy filter of X has a limit point

Proof

(1)

- Let $\mathcal F$ be a Cauchy filter on X. Any accumulation point of $\mathcal F$ is a limit point of $\mathcal F$
- (2) Suppose that X is complete.Let \mathcal{F} be a Cauchy filter. $\forall n \in \mathbb{N}_{\geq 1}$ let $A_n \in \mathcal{F}$ such that $diam(A_n) \leq \frac{1}{n}$ Take $x_n \in \bigcap_{k=1}^n A_k \in \mathcal{F}$ Then $(x_n)_{n \in \mathbb{N}_{\geq 1}}$ is a Cauchy sequence since $\forall \epsilon > 0$ if we take $N \in \mathbb{N}$ with $\frac{1}{N} \leq \epsilon$ then $\forall (n,m) \in \mathbb{N}_{\geq N} d(x_n, x_m \leq \frac{1}{N})$ Hence $(x_n)_{N \in \mathbb{N}_{\geq 1}}$ converges to some $x \in X$ Note that x is an limit point of \mathcal{F} since $\forall \epsilon > 0 \exists n \in \mathbb{N}$ with $A_n \subseteq \mathcal{B}(x,\epsilon)$ It suffices to take n such that $\frac{1}{n} < \frac{\epsilon}{2}$

28.8. PROP 159

 \Leftarrow Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in X. Let

$$\mathcal{F} = \{ A \subseteq X \mid \exists N \in \mathbb{N}, \{x_N, x_{N+1}, ...\} \subseteq A \}$$

This is a Cauchy filter on X since

$$\lim_{N \to +\infty} diam\{x_N, x_{N+1}, \ldots\} = 0$$

Hence \mathcal{F} has a limit point $x \in X$ By definition $\forall U \in \mathcal{V}_x \; \exists N \in \mathbb{N}$

$$\{x_N, x_{N+1}, ...\} \subseteq U$$

So
$$x = \lim_{n \to +\infty} x_n$$

28.8 Prop

Let $f: X \to Y$ be a continuous mapping of topological spaces. If $A \subseteq X$ is quasi-compact then $f(A) \subseteq Y$ is also quasi-compact.

Proof

Let $(V_i)_{i\in I}$ be an open cover of f(A) Then

$$(f^{-1}(V_i))_{i\in I}$$

is an open cover of A So $\exists J \subseteq I$ such that

$$A \subseteq \bigcup_{j \in J} f^{-1}(V_i)$$

This implies

$$f(A) \subseteq \bigcup_{j \in J} V_j$$

So f(A) is quasi-compact.

28.9 Prop

Let X be a topological space and $A\subseteq X$ be a quasi-compact subset. For any closed subset F of X $A\cap F$ is quasi-compact.

Proof

Let $(U_i)_{i\in I}$ be an open cover of $A\cap F$. Then

$$A \subseteq (\bigcup_{i \in I} U_i) \cup (X \setminus F)$$

Since A is quasi-compact there exist $J \subseteq I$ finite such that

$$A \subseteq (\bigcup_{j \in J} U_j) \cup (X \setminus F)$$

Hence $A \cap F \subseteq \bigcup_{j \in J} U_j$

28.10 Prop

Let X be a Hausdorff topological space. Any compact subset A of X is closed.

Proof

Let $x \in X \setminus A \ \forall y \in A, \exists$ open subsets U_y nad V_y such that $y \in U_y, x \in V_y$ and $U_y \cap V_y = \emptyset$ Since $A \subseteq \bigcup_{y \in A} U_y \ \exists \{y_1, ..., y_n\} \subseteq A$ such that

$$A \subseteq \bigcup_{i=1}^{n} U_{y_i}$$

Let

$$U = \bigcup_{i=1}^{n} U_{y_i} \quad V = \bigcap_{i=1}^{n} V_{y_i}$$

These are open subset Moreover $A \subseteq U, x \in V$ and $U \cap V = \bigcup_{i=1}^{n} (U_{y_i} \cap V) = \emptyset$ In particular $x \in V \subseteq X \setminus A$ So $X \setminus A$ is open

28.11 Prop

Let X be a Hausdorff topological space and A and B be compact subsets of X such that $A \cap B = \emptyset$ Then there exists open subsets U and V such that

$$A \subseteq U, B \subseteq BandU \cap V = \emptyset$$

proof

We have seen in the proof of the previous proposition that $\forall x \in B, \exists U_x, V_x$ open such that $A \subseteq U_x, x \in V_x$ and $U_x \cap V_x = \emptyset$ Since

$$B \subseteq \bigcup_{x \in B} V_x$$

 $\exists \{x_1, ..., x_m\} \subseteq B \text{ such that }$

$$B \subseteq \bigcup_{i=1}^{n} V_{x_i}$$

We take

$$U = \bigcap_{i=1}^{m} U_{x_i} \quad V = \bigcup_{i=1}^{m} U_{x_i} V_{x_i}$$

One has

$$A\subseteq U, B\subseteq U \quad U\cap V=\varnothing$$

28.12 Theorem

Let (X, \mathcal{J}) be a Hausdorff topological space If $(A_n)_{n \in \mathbb{N}}$ is a sequence of non-empty compact subsets of X such that

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$$

Then

$$\bigcap_{n\in\mathbb{N}}A_n\neq\varnothing$$

Proof

Suppose that

$$\bigcap_{n\in\mathbb{N}} A_n = \varnothing$$

then

$$A_0 \subseteq \bigcup_{n \in \mathbb{N}} (X \setminus A_n)$$

Since A_0 is compact, $\exists N \in \mathbb{N}$ such that

$$A_0 \subseteq \bigcup_{n=0}^{N} (X \setminus A_n)$$
$$= X \setminus \bigcap_{n=0}^{N} A_n$$
$$= X \setminus A_n$$

So

$$A_n = \emptyset$$

28.13 Def

Let (X, τ) be a topological space if any sequence in X has a convergent subsequence, we say that X is sequentially compact.

Example

By Bolzano-Weierstrass, any bounded sequence in $\mathbb R$ has a convergent subsequence. So any bounded and closed subset of $\mathbb R$ is sequentially compact.

Note

bounded and closed together implies sequentially compact.

28.14 Theorem

Let (X, d) be a metric space. Then the following statements are equivalent:

- (1) (X,d) is compact
- (2) (X,d) is sequentially compact

Proof

(1) \Rightarrow (2) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. Assume that no subsequence of $(x_n)_{n\in\mathbb{N}}$ converges in X. For any $p\in X$ there exists $\epsilon_p>0$ such that

$$\{n \in \mathbb{N} : d(p, x_n) < \epsilon\}$$

is finite.

Otherwise we can construct a strictly increasing sequence $(n_k)_{k\in\mathbb{N}}$ such that

$$d(p, x_{n_k}) \le \frac{1}{k}$$

For X is compact $\exists (p_i)_{i \in \{1,...,n\}}$

$$X \subseteq \bigcup_{i=1}^{n} \mathcal{B}(p_i, \epsilon_{p_i})$$

then

$$\mathbb{N} = \bigcup_{i=1}^{n} \{ n \in \mathbb{N} \ d(p_i, x_n) \le \epsilon_{p_i} \}$$

is finite. Contradiction.

$$(2) \Rightarrow (1)$$

prove (X,d) is complete Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence. For it's sequentially compact it contains a convergent subsequence. Therefore by a fact proved that its subsequences $(x_{k_n})_{n\in\mathbb{N}}$ must converges to the same limit. So (X,d) is complete

28.15. DEF 163

If X is not covered by finitely many balls of radius ϵ we can construct a sequence $(x_{k_n})_{n\in\mathbb{N}}$ such that

$$x_{n+1} \in X \setminus \bigcup_{k=0}^{n} \mathcal{B}(x_k, \epsilon)$$

then any subsequence of this sequence is not Cauchy, then not convergent.

28.15 Def

Let X be a Hausdorff topological space. If for any $x \in X$ there exist a compact neighborhood C_x we say that X is locally compact.

Example

 \mathbb{R} is locally compact.

28.16 Prop

Assume that $(K, |\cdot|)$ is a locally compact non-trivial valued field. Let $(E, ||\cdot||)$ be a finite dimensional normed K-vector space. A subset $Y \subseteq E$ is compact iff it's closed and bounded.

Proof

 \Rightarrow Let $Y\subseteq X$ be compact. Then for Y is Hausdorff, Y is closed. Moreover

$$Y\subseteq\bigcup_{n\in\mathbb{N}_{\geq 1}}\mathcal{B}(0,n)$$

We can find finitely many positive integers

$$n_1 \leq \ldots \leq n_k$$

such that

$$Y \subseteq \bigcup_{i=1}^{n} \mathcal{B}(0, n_i)$$

 \Rightarrow Y is bounded.

 \Leftarrow We prove sequentially compact by a theorem proved before. Let $(e_i)_{i=1}^d$ be a basis of E. Again we assume

$$\left\| \sum_{i=1}^{d} a_i e_i \right\| = \max_{i \in \{1, \dots, d\}} \{|a_i|\}$$

Then any sequence could be written as

$$(x_n)_{n\in\mathbb{N}} = (\sum_{i=1}^d a_i^{(n)} e_i)_{n\in\mathbb{N}}$$

Since Y is bounded for any $i \in \{1, ..., d\}$ the sequence $(a_i^{(n)})$ is bounded. In particular we find M > 0 such that $\forall i \in \{1, ..., n\}$

$$\left| a_i^{(n)} \right| < M$$

Since $(K, |\cdot|)$ is locally compact, there exists a compact set $\mathcal{C} = \mathcal{C}_0 \subseteq K$ that's a neighborhood of 0. Let $\epsilon > 0$

$$\overline{\mathcal{B}}(0,\epsilon) \subseteq \mathcal{C}$$

Since K is not trivially valued, then exists $a \in K$ such that

$$|a| \geq \frac{M}{\epsilon}$$

Then

$$\overline{\mathcal{B}}(0,M) \subseteq a\mathcal{C}$$

 $\mathcal{C} \subseteq K$ is compact. We have the K-linear mapping

$$K \rightarrow K$$

 $y \mapsto ay$

is bounded, then continuous. Hence $a\mathcal{C}$ is compact. So

$$\overline{\mathcal{B}} \subseteq a\mathcal{C}$$

is a closed subspace of a compact. So it's compact, additionally sequentially compact.

Therefore we can find $(I_i)_{i=1}^d$ are infinite subsets of \mathbb{N} with

$$I_1 \supseteq ... \supseteq I_d$$

such that $(a_j)_{j\in I_i}^{(n)}$ converges to some $a_i \in K$. It follows that our original sequence has a convergent subsequence converges to $\sum_{i=1}^d a_i e_i$.

So Y is sequentially compact.

28.17 Theorem

Let X be a topological space and $f:X\to\mathbb{R}$ be a continuous mapping. If $Y\subseteq X$ is a quasi-compact subset, then there exists $a\in Y$ and $b\in Y$ such that $\forall x\in Y$

$$f(a) \le f(x) \le f(b)$$

Namely the restriction of f to y attains its maximum and minimum.

Proof

 $f(Y)\subseteq \mathbb{R}$ is a non-empty compact subset since Y is quasi-compact and \mathbb{R} is Hausdorff. Moreover, since \mathbb{R} is locally compact. SO f(Y) is bounded and closed.

Note that there exists sequences $(\alpha_n)_{n\in\mathbb{N}}$ and $(\beta_n)_{n\in\mathbb{N}}$ is f(Y) that tends to $\sup f(Y)$ and $\inf f(Y)$ respectively. Since f(Y) is closed, $\sup f(Y)$, $\inf f(Y)$ belongs to f(Y). So f(Y) has a greatest and a least element.

Chapter 29

Mean Value Theorems

29.1 Rolle Theorem

Let a, b be real numbers such that a < b Let $f : [a, b] \to \mathbb{R}$ be a continuous mapping that is differentiable on [a, b] If f(a) = f(b) then $\exists t \in [a, b]$ such that

$$f'(t) = 0$$

Proof

Since [a, b] is closed and bounded then it's compact, f attains its maximum and minimum. Let $M = \max f([a, b]), m = \min f([a, b]), l = f(a) = f(b)$

If $M \neq l \ \exists t \in [a, b[$ such that f(t) = M

$$f(t+x) = f(t) + f'(t)x + o(|X|)$$

$$f(t-x) = f(t) - f'(t)x + o(|X|)$$

$$0 \le (f(t+x) - f(t))(f(t-x) - f(t))$$

$$= -f'(t)^2 x^2 + o(|x|^2)$$

$$0 \le -f'(t)^2 + o(1) \quad x \to 0$$

Taking the limit when $x \to 0$ we get $f'(t)^2 = 0$

If $m \neq l$ then any $t \in]a,b[$ such that f(t)=m verifies f'(t)=0

If m = l = M f is constant, so $\forall t \in]a, b[, f'(t) = 0]$

29.2 Mean value theorem(Lagrange)

Let a, b be real numbers $a < b, f : [a, b] \to \mathbb{R}$ be a continuous mapping differentiable on]a, b[, then $\exists t \in]a, b[$ such that

$$f(b) - f(a) = f'(t)(b - a)$$

Proof

Let $g:[a,b]\to\mathbb{R}$ be defined as

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

Then g(a) = f(a) g(b) = f(a) then apply Rolle Theorem to g we get the proof.

29.3 Mean value inequality

Let a, b be real numbers such that a < b $(E, \|\cdot\|)$ be a normed vector space over \mathbb{R} $f: [a, b] \to E$ be a continuous mapping such that f is differentiable on [a, b] Then

$$||f(b) - f(a)|| \le (\sup_{x \in [a,b[} ||f'(x)||)(b-a)$$

Proof

Suppose that

$$\sup_{x \in]a,b[} \|f'(x)\| < +\infty$$

Let $M \in \mathbb{R}$ such that

$$M > \sup_{x \in]a,b[} \|f'(x)\|$$

Let

$$J = \{x \in [a, b] \mid \forall y \in [a, x], ||f(y) - f(a)|| \le M(y - a)\}$$

By definition J is an interval containing a, so J is of form [a, c[or [a, c] Since f is continuous by taking a sequence $(c_n)_{n\in\mathbb{N}}$ in [a, b[that converges to c we obtain

$$||f(c) - f(a)|| = \lim_{n \to +\infty} ||f(c_n) - f(a)||$$

$$\leq \lim_{n \to +\infty} M(c_n - a)$$

$$= M(c - a)$$

Hence $c \in J$ namely J = [a, c]

c > a We will prove that c = b by contradiction

Suppose that $c < b \ \forall h \in]0, b - c[$

$$||f(c+h) - f(c)|| = ||h \cdot f'(c) + o(h)||$$

$$\leq ||f'(c)|| h + o(h)$$

Since $M > ||f'(c)||, \exists h_0 > 0$ such that $\forall 0 < h < h_0$

$$|| f(c+h) - f(c) || \le Mh$$

29.4. THEOREM

Hence

$$||f(c+h)f(c)|| \le ||f(c+h) - f(c)|| + ||f(c) - f(a)||$$

$$\le M(c_h - c + c - a)$$

$$= M(c + h - a)$$

169

So $c + h_0 \in J$ Contradiction. Thus

$$||f(b) - f(a)|| \le M(b - a)$$

for any $M > \sup_{x \in]a,b[} \|f'(x)\|$ since M is arbitrary the expected inequality holds

c=a In general, we apply the particular case (fis-extendable to a differentiable mapping at a) to $\left[\frac{a+b}{2},b\right]$ and $\left[a,\frac{a+b}{2}\right]$ to get

$$\left\| f(b) - f(\frac{a+b}{2}) \right\| \le C \frac{b-a}{2}$$

$$\left\| f(\frac{a+b}{2}) - f(a) \right\| \le C \frac{b-a}{2}$$

with
$$C = \sup_{x \in]a,b[} \|f'(x)\|$$

Remark If f is defined on an open neighborhood of a and is differentiable at a the the same arguments hold without the assumption

29.4 Theorem

Let I be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ be a continuous mapping, then f(I) is an interval.

Proof

Let $x \neq y$ be two elements of f(I) Let a,b elements of I such that x=f(a) y=f(b) without loss of generality, we assume a < b Let $z \in \mathbb{R}$ such

$$(z-x)(z-y) \le 0$$

We construct by induction three sequences $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}}$ such that

- $a_0 = a, b_0 = b, c_0 = \frac{a+b}{2}$
- If a_n, b_n, c_n are constructed, satisfying

$$c_n = \frac{1}{2}(a_n + b_n)$$

$$(z - f(a_n))(z - f(b_n)) \le 0$$

$$(a_{n+1}, b_{n+1}) = (a_n, c_n) \quad \text{if } (z - f(a_n))(z - f(c_n)) \le 0$$

$$(a_{n+1}, b_{n+1}) = (c_n, b_n) \quad \text{if } (z - f(a_n))(z - f(c_n)) > 0$$

$$((z - f(c_n))(z - f(b_n)) \le 0)$$

$$c_{n+1} = \frac{a_{n+1} + b_{n+1}}{2}$$

The sequence $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ are increasing and decreasing respectively and bounded, hence converges to some $l, m \in [a, b]$ Note that

$$|b_n-a_n|=\frac{1}{2^n}\,|b-a|\to 0 (n\to +\infty)$$
 So $l=m,$ by $(z-f(a_n))(z-f(b_n))\leq 0$ we obtain by letting $n\to +\infty$
$$(z-f(l))^2\leq 0$$

So z = f(l)

Theorem(Heine) 29.5

Let I be an open interval of \mathbb{R} and $f:I\to\mathbb{R}$ be a differentiable mapping. Then f'(I) is an interval.

Proof

Let $(a, b) \in I^2$ such that a < b. Consider the following mappings:

$$g: [a,b] \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{f(x) - f(a)}{x - a} & x \neq a \\ f'(a) & x = a \end{cases}$$

$$h: [a,b] \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{f(b) - f(x)}{b - x} & x \neq b \\ f'(b) & x = b \end{cases}$$

g,h are continuous $(\frac{f(x)-f(a)}{x-a}=f'(a)+o(1)\ x\to a)$ So g([a,b]) and h([a,b]) are intervals . Moreover, by mean value theorem,

$$g([a,b]) \subseteq f'(I)$$

 $h([a,b]) \subseteq f'(I)$

So

$$\{f'(a), f'(b)\}\subseteq g([a,b])\cup h([a,b])\subseteq f'(I)$$

Note that g(b) = h(a) so

$$g([a,b]) \cup h([a,b])$$

is an interval. Hence f'(I) is an interval.

Chapter 30

Fixed Point Theorem

30.1 Def

Let X be a set and $T: X \to X$ be a mapping. If $x \in X$ satisfies T(x) = x we say that x is a fixed point of T.

30.2 Def

Let (X,d) be a metric space and $T:X\to X$ be a mapping. If $\exists\epsilon\in[0,1[$ such that T is ϵ -Lipschitzian then we say that T is a contraction.

30.3 Fixed Point Theorem

Let (X, d) be a COMPLETE non-empty metric space, and $T: X \to X$ eb a contraction. Then T has a unique fixed point. Moreover, $\forall x_n \in X$ if we let

$$x_{n+1} = T(x+n), x_0 \in X$$

then $(x_n)_{n\in\mathbb{N}}$ converges to the fixed point.

Proof

If p and q are two fixed point of T, then

$$d(p,q) = d(T(p), T(q)) \le \epsilon d(p,q)$$

So d(p,q) = 0. Let

$$x_{n+1} = T(x+n), x_0 \in X$$

 $\forall n \in \mathbb{N}$

$$d(x_n, x_{n+1}) \le \epsilon^n d(x_0, x_1)$$

$$d(T(x_{n-1}), T(x_n)) \le \epsilon d(x_{n-1}, x_n)$$

For any $N \in \mathbb{N}, \forall (n, m) \in \mathbb{N}^2_{\geq N} \quad n < m$

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d(x_k, x_{k+1})$$

$$\le \sum_{k=n}^{m-1} \epsilon^n d(x_0, x_1)$$

$$\le \frac{\epsilon^n}{1 - \epsilon} d(x_0, x_1)$$

$$\le \frac{\epsilon^n}{1 - \epsilon} d(x_0, x_1)$$

So

$$\lim_{N \to +\infty} \sup_{(n,m) \in \mathbb{N}^2_{\geq N}} d(x_n, x_m) = 0$$

 $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence, hence converges to some $p\in X$

$$d(T(p), p) = \lim_{n \to +\infty} d(T(x_n), x_n) = 0$$

since $d: X^2 \to \mathbb{R}_{\geq 0}$ is continuous.

Part VI Higher differentials

Chapter 31

Multilinear mapping

Let K be a commutative cenitary ring.

31.1 Def

Let $n \in \mathbb{N},\ V_1,...,V_n,W$ be K-modules. We call n-linear mapping from $V_1 \times ... \times V_n$ to W any mapping $f: V_1 \times ... \times V_n \to W$ such that $\forall i \in \{1,...,n\} \ \forall (x_1,...,x_{i-1},x_{i+1},...,x_n) \in V_1 \times ... \times V_{i-1} \times V_{i+1} \times ... \times V_n$ the mapping

$$f(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) : V_i \to W$$

 $x_i \mapsto f(x_i)$

is a morphism of K-modules

We denote by $Hom^{(n)}(V_1 \times ... \times V_n, W)$ the set of all n-linear mappings from $V_1 \times ... \times V_n$ to W.

31.2 Example

$$K \times K \to K$$

 $(a,b) \mapsto ab$

is a 2-linear mapping (bilinear mapping)

31.3 Remark

$$Hom^{(0)}(\{0\},W):=W(\text{by convention})$$

$$Hom^{(1)}(V_1,W)=Home(V_1,W)=\{\text{morphism of K-module from }V_1\text{ to }W\}$$

31.4 Prop

Suppose that $n \geq 2$ For any $i \in \{1, ..., n-1\}$

$$Hom^{(n)}(V_1 \times ... \times V_n, W) \xrightarrow{\Phi} Hom^{(i)}(V_1 \times ... \times V_i, Hom^{(n-i)}(V_{i+1} \times ... \times V_n))$$
$$f \mapsto ((x_1, ..., x_i) \mapsto ((x_{i+1}, ..., x_n) \mapsto f(x_1, ..., x_n)))$$

is a bijection

Proof

The inverse of Φ is given by

$$g \in Hom^{(i)}(V_1 \times ... \times V_i, Home^{(n-i)}(V_{i+1} \times ... \times V_n), W) \mapsto (((x_1, ..., x_n) \in V_1 \times ... \times V_n) \mapsto g(x_1, ..., x_i)(x_{i+1}, ... \times V_n))$$

31.5 Remark

 $Hom^{(n)}(V_1\times\ldots\times V_n,W)$ is a sub-K-module of $W^{V_1\times\ldots\times V_n}$ and Φ is an isomorphism of K-modules.

Chapter 32

Operator norm of Multilinear field

Let $(K, |\cdot|)$ be a complete valued field

32.1 Def

Let $V_1 \times ... \times V_n$ and W be normed vector spaces over K. We define

$$\|\cdot\|: Hom^{(n)}(V_1 \times ... \times V_n, W) \to [0, +\infty]$$

as

$$\|f\| := \sup_{(x_1, \dots, x_n) \in V_1 \times \dots \times V_n, x_1 \dots x_n \neq 0} \frac{\|f(x_1, \dots, x_n)\|}{\|x_1\| \dots \|x_n\|}$$

If $||f|| < \infty$ we say that f is bounded. We denote by $\mathscr{L}^{(n)}(V_1 \times ... \times V_n, W)$ the set of bounded n-linear mappings from $V_1 \times ... \times V_n$ to W.

32.2 Theorem

For any $i \in \{1,...,n-1\}$, $\forall f \in \mathcal{L}^{(n)}(V_1 \times ... \times V_n,W) \ \forall (x_1,...,x_i) \in V_1 \times ... \times V_i$ the (n-i)-linear mapping

$$f(x_1, ..., x_i, \cdot) : V_{i+1} \times ... \times V_n \to W$$

 $(x_{i+1}, ..., x_n) \mapsto f(x_1, ..., x_n)$

belongs to $\mathscr{L}^{(n-i)}(V_{i+1}\times ... \times V_n, W)$. Moreover

$$||f|| = \sup_{(x_1,...,x_n) \in V_1 \times ... \times V_n, x_1 ... x_n \neq 0} \frac{||f(x_1,...,x_n)||}{||x_1|| \cdots ||x_n||}$$

Proof

$$\begin{aligned} \forall (x_{i+1},...,x_n) \in V_{i+1} \times ... \times V_n \\ \|f(x_1,...,x_n)\| &\leq \|f\| \, \|x_1\| \ldots \|x_n\| \\ &= (\|f\| \, \|x_1\| \ldots \|x_i\|) \, \|x_{i+1}\| \ldots \|x_n\| \end{aligned}$$

So

$$||f(x_1,...,x_i,\cdot)|| \le ||f|| ||x_1||,...,||x_i||$$

If we define

$$||f||' := \sup_{(x_1,...,x_i) \in V_1 \times ... \times V_i, x_1...x_i \neq 0} \frac{||f(x_1,...,x_i,\cdot)||}{||x_1|| \cdots ||x_i||}$$

then

$$\left\|f\right\|' \le \left\|f\right\|$$

32.3 Corollary

- (1) $\mathscr{L}^{(n)}(V_1 \times \cdots \times V_n, W)$ is a vector subspace of $Hom^{(n)}(V_1 \times \cdots \times V_n, W)$
- (2) $\|\cdot\|$ is a norm on $\mathscr{L}^{(n)}(V_1 \times \cdots \times V_n, W)$
- $(3) \ \forall i \in \{1,...,n\}$

$$\mathcal{L}^{(n)}(V_1 \times \cdots \times V_n, W) \stackrel{\Phi}{\to} \mathcal{L}^{(n)}(V_1 \times \cdots \times V_i, \mathcal{L}^{(n-i)}(V_{i+1} \times \cdots \times V_n, W))$$

is a K-linear isomorphism that preserves operator norms.

$$||f|| = ||\Phi(f)||$$

32.3.1 Proof

Conversely $\forall (x_1, \cdot, x_n) \in V_1 \times \cdots \times V_n$ such that $x_1 \cdots x_n \neq 0$

$$||f(x_1,...,x_n)|| \le ||f(x_1,...,x_i,\cdot)|| ||x_{i+1}|| \cdots ||x_n||$$

Hence

$$\frac{f(x_1, ..., x_n)}{\|x_1\| \cdots \|x_n\|} \le \frac{\|f(x_1, ..., x_i, \cdot)\|}{\|x_1\| \cdots \|x_i\|} \le \|f\|'$$

Taking sup, we get

$$||f|| \le ||f||'$$

We reason by induction on n

n = 1

$$\mathscr{L}^{(1)}(V_1,W) = \mathscr{L}(V_1,W)$$

 $i \in \{1,...,n-1\}$ Suppose that the corollary is true for m-linear mappings with m < n We consider the following diagram of mapping

To show that $\mathcal{L}^{(n)}(V_1 \times \cdots \times V_n, W)$ is a vector subspace, it suffices to check that $\forall g \in \mathcal{L}^{(i)}(V_1 \times \cdots \times V_i, \mathcal{L}^{(n-i)}(V_{i+1} \times \cdots \times V_n, W))$ one has $\|\Phi^{-1}(g)\| = \|g\| < +\infty$

$$\mathcal{L}^{(i)}(V_{i+1} \times \dots \times V_n, \mathcal{L}^{(n-i)}(V_{i+1} \times \dots \times V_n, W)) \subseteq Hom^{(i)}(V_1 \times \dots \times V_i, \mathcal{L}^{(n-i)}(V_{i+1} \times \dots \times V_n, W))$$

$$\subseteq Hom^{(i)}(V_1 \times \dots \times V_i, Hom^{(n-i)}(V_{i+1} \times \dots \times V_n, W))$$

For any $(x_1, ..., x_n) \in V_1 \times \vdots \times V_n$

$$\|\Phi^{-1}(g)(x_1,...,x_n)\| = \|g(x_1,...,x_i)(x_{i+1},...x_n)\|$$

$$\leq \|g(x_1,...,x_i)\| \|x_{i+1}\| \cdots \|x_n\|$$

$$\leq \|g\| \|x_1\| \cdots \|x_i\| \|x_{i+1}\| \cdots \|x_n\|$$

Therefore

$$\|\Phi^{-1}(g)\| \le \|g\| = \|\Phi^{-1}(g)\|$$

Chapter 33

Higher differentials

We fix a complete non-trivial valued field $(K, |\cdot|)$ and normed K-vector space E and F.

33.1 Def

Let $U \subseteq E$ be an open subset and $f: U \to F$ be a mapping

- (1) If f is continuous, we say that f is of class C^0 and f is 0-times differentiable
- (2) If f is differentiable on an open neighborhood $V\subseteq U$ of some point $p\in U$ and

$$df: V \to \mathscr{L}(E, F)$$
$$x \mapsto d_x f$$

is n-times differentiable at p, then we say that f is (n+1)-times differentiable at p. If f is (n+1)-times differentiable at any point $p \in U$, we denote by

$$D^{n+1}f:U\to\mathscr{L}^{(n+1)}(E^{n+1},F)$$

the mapping that sends $x \in U$ to the image of $D^n(df)(x)$ by the K-linear bijection

$$\mathscr{L}^{(n)}(E^n,\mathscr{L}(E,F)) \to \mathscr{L}^{(n+1)}(E^{n+1},F)$$

$$df: U \to \mathcal{L}(E, F)$$

$$D^n(df): U \to \mathcal{L}^{(n)}(E^n, \mathcal{L}(E, F)) \xrightarrow{\Phi} \mathcal{L}^{(n+1)}(E^{n+1}, F)$$

If $D^{n+1}f$ is continuous, we say that f is of class $C^{n+1}(n \geq 0)$ (Any mapping $f: U \to F$ is considered as o-times differential $D^0f := f$)

33.2 Remark

If f is n-times differentiable $\forall i \in \{1, ..., n-1\}$ $\forall p \in U, (h_1, ..., h_n) \in E^n$ one has

$$D^{i}(D^{n-i}f)(p)(h_{1},...,h_{i})(h_{i+1},...,h_{n}) = D^{n}f(p)(h_{1},...,h_{n})$$

$$D^{n-i}f: U \to \mathcal{L}^{(n-i)}(E^{n-i},F)$$

$$D^{i}(D^{n-i}f): \qquad U \longrightarrow \mathcal{L}^{(i)}(E^{i},\mathcal{L}^{(n-i)}(E^{n-i},F)) \ U \to \mathcal{L}^{(n)}(E^{n},F)$$

33.3 Theorem

Assume that $(K, |\cdot|) = (\mathbb{R}, |\cdot|)$

Let $f:U\to F$ be a mapping that is (n+1)-times differentiable on U. Let $p\in U$ and $h\in E$ such that $p+th\in U$ $\forall t\in [0,1]$ Then

$$\left\| f(p+h) - f(p) - \sum_{k=1}^{n} \frac{1}{k!} D^{k} f(p)(h, ..., h) \right\| \le \left(\sup_{t \in [0,1[} \frac{(1-y)^{n}}{n!} \left\| D^{n+1} f(p+th) \right\| \right) \cdot \left\| h \right\|^{n+1} \right)$$

(Taylor-Lagrange formula)

33.4 Prop(Gronwall inequality)

Let F be a normed vector space over \mathbb{R} $(a,b) \in \mathbb{R}^2, a < b$ Let $f : [a,b] \to F$ and $g : [a,b] \to \mathbb{R}$ be continuous mappings that are differentiable on]a,b[Suppose that $\forall t \in [a,b[$

$$||f'(t)|| \le g'(t)$$

then

$$||f(b) - f(a)|| \le g(b) - g(a)$$

Proof

Let $c \in]a, b[$ Let $\epsilon > 0$ Let

$$J = \{ t \in [c, b] \mid \forall s \in [c, t], ||f(s) - f(c)|| \le g(s) - g(c) \}$$

By definition J is an interval.

33.5. THEOREM 183

Since f, g are continuous, J is a closed interval, hence J is of the form [c, t]. If t < b then for h > 0 Sufficiently small.

$$f(t+h) - f(t) = hf'(t) + o(h)$$

$$g(t+h) - g(t) = hg'(t) + o(h)$$

 $\exists \delta > 0 \ \forall h \in [0, \delta]$

$$||f(t+h)|| \le ||f'(t)|| \cdot h + \frac{\epsilon}{2}h$$
$$g(t+h) - g(t) \ge g'(t)h - \frac{\epsilon}{2}h$$

So

$$||f(t+h) - f(t)|| \le g(t+h) - g(t) + \epsilon h$$

Moreover

$$||f(t) - f(c)|| \le g(t) - g(c) + \epsilon(t - c)$$

 \Rightarrow

$$||f(t+h) - f(c)|| \le g(t+h) - g(c) + \epsilon(t+h-c)$$

 \Rightarrow

$$J \supseteq [c, t + \delta]$$

Contradiction, hence

$$||f(b) - f(c)|| \le g(b) - g(c) + \epsilon(b - c)$$

For the same reason

$$||f(c) - f(a)|| \le g(c) - g(a) + \epsilon(c - a)$$

Hence

$$||f(b) - f(a)|| \le g(b) - g(a) + \epsilon(b - a)$$

Since $\epsilon > 0$ is arbitrary

$$||f(b) - f(c)|| \le g(b) - g(c)$$

Mean value theorem:

$$g(t) = (\sup(\|f'(\cdots)\|))$$

33.5 Theorem

Let $n \in \mathbb{N}$, E, F be normed vector spaces over \mathbb{R} $U \subseteq E$ open and $f: U \to F$ be a mapping that is (n+1)-times differentiable. Let $p \in U$ and $h \in E$. Assume that $\forall \epsilon \in [0,1], p+th \in U$

Let

$$M = \sup_{t \in]0,1[} \|D^{n+1} f(p+th)\|$$

Then

$$\left\| f(p+h) - \sum_{k=0}^{n} \frac{1}{k!} D^{k} f(p)(h, \dots, h) \right\| \leq \frac{M}{(n+1)!} \left\| h \right\|^{n+1}$$

If $E = \mathbb{R}$ Then the formula become

$$\left\| f(p+h) - \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(p) h^{k} \right\| \le \frac{M}{(n+1)!} |h|^{h+1}$$

Proof

Consider $\phi:[0,1]\to F$

$$\phi(t) = \sum_{k=0}^{n} \frac{(1-t)^{k}}{k!} D^{k} f(p+th)(h, \dots, h)$$

$$\phi(1) = f(p+h)$$

$$\phi(0) = \sum_{k=0}^{n} \frac{1}{k!} D^{k} f(p)(h, \dots, h)$$

$$\phi'(t) = \sum_{k=0}^{n} \frac{(1-t)^{k}}{k!} D^{k+1} f(p+th)(\underbrace{h, \dots, h}_{k+1 \text{ copies}}) - \sum_{k=1}^{n} \frac{(1-t)^{k-1}}{(k-1)!} D^{k} f(p+th)(h, \dots, h)$$

$$= \frac{(1-t)^{n}}{k!} D^{k+1} f(p+th)(h, \dots, h)$$

then

$$\|\phi'(t)\| \le M \frac{(1-t)^n}{n!} = \left(-M \frac{(1-t)^{n+1} \|h\|^{n+1}}{(n+1)!}\right)'$$

By Gronwall inequality,

$$\|\phi(1) - \phi(0)\| \le \frac{M}{(n+1)!} \|h\|^{n+1}$$

33.6 Def

Let $n \in \mathbb{N}$ E_1, \dots, E_n and F be normed vector spaces over a complete non-trivial valued field $(K, |\cdot|)$ Let $U \in E_1 \times \dots \times E_n$ be an open subset. $p = (p_1, \dots, p_n) \in U$ $i \in \{1, \dots, n\}, f : U \to F$ If there exists an open neighborhood U_i of p_i in E_i such that

$$U_i \to F$$

 $x_i \mapsto f(p_1, \dots, p_{i-1}, x_i, p_{i+1}, \dots, p_n)$

is well defined and is differentiable at p_i

We denote by $\frac{\partial f}{\partial x_i}(p)$ the differential of this mapping $U_i \to F$ and say that f admits the i^{th} partial differentials at p

33.7. PROP 185

33.7 Prop

Suppose that $(K, |\cdot|)$ and f has all partial differentials on U and

$$\frac{\partial f}{\partial x_i}: U \to \mathcal{L}(E_i, F)$$

is continuous for any $i\in\{1,\cdots,n\}$ Then f is of class C^1 and $\forall h=(h_1,\cdots,h_n)\in E_1\times\cdots\times E_n$

$$\forall p \in U \quad d_p(h) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(p)(h_i)$$

Proof

By induction, it suffices to treat thr case where n=2 $\forall \epsilon>0$ $\exists \delta>0$

$$\forall (h, k) \in E_1 \times E_2 \quad \max\{|h|, |k|\} \leq \delta$$

one has

$$\left\|\frac{\partial f}{\partial x_i}(a+h,b+k) - \frac{\partial f}{\partial x_2}(a,b)\right\| \leq \epsilon (\text{by continuity of } \frac{\partial f}{\partial x_2})$$

Consider the mapping $\phi:[0,1]\to F$

$$\phi(t) = f(a+h,b+tk) - f(a+b,b) - t\underbrace{\frac{\partial f}{\partial x_2}(a+h,b)}_{\in \mathcal{L}(E_2,F)}(k)$$

$$\|\phi'(t)\| = \left\|\frac{\partial f}{\partial x_2}(a+h,b+tk)(k) - \frac{\partial f}{\partial x_2}(a+h,b)(k)\right\|$$

$$\leq 2\epsilon \|k\|$$

$$\|\phi(1) - \phi(0)\| \leq 2\epsilon \|k\|$$

then

$$\left\| f(a+h,b+k) - f(a+h,b) - \frac{\partial f}{\partial x_2}(a+h,b)(k) \right\| \leq 2\epsilon \left\| k \right\|$$

So

$$\left\| f(a+h,b+k) - f(a+h,b) - \frac{\partial f}{\partial x_2}(a+h,b)(k) \right\| = o(\max\{\|h\|,\|k\|\})$$

f has 1^{st} partial differential

$$\left\| f(a+h,b) - f(a,b) - \frac{\partial f}{\partial x_1}(a,b)(k) \right\| = o(\max\{\|h\|, \|k\|\})$$

by continuity of $\frac{\partial f}{\partial x_i}$

$$\left\| \frac{\partial f}{\partial x_2}(a+h,b)(k) - \frac{\partial f}{\partial x_2}(a,b)(k) \right\| = o(\max\{\|h\|,\|k\|\})$$

take the sum of above three statements, we get:

$$\left\| f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x_1}(a,b)(h) - \frac{\partial f}{\partial x_2}(a,b)(k) \right\| = o(\max\{\|h\|,\|k\|\})$$

33.8 Theorem

Let E, F be normed vector spaces over \mathbb{R} $U \subseteq E$ open $(f_n)_{n \in \mathbb{N}}$ be a sequence of differentiable mapping form U to F Let $g: U \to \mathcal{L}(E, F)$ Suppose that

- (1) $(df_n)_{n\in\mathbb{N}}$ converges uniformly to g
- (2) $(f_n)_{n\in\mathbb{N}}$ converges pointwisely to some mapping $f:U\to F$

Then f is differentiable and df = g

Proof

Let
$$p \in U, \forall (m,n) \in \mathbb{N}^2, \forall x \in \mathcal{B}(p,r) \in U(r>0)$$

$$||f_n(x) - f(m(x) - (f_n(p) - f_m(p)))|| \le (\sup_{\xi \in U} ||d_{\xi} f_m - d_{\xi} f_n||) \cdot ||x - p||$$
 (mean value inequality)

Take $\lim_{m\to +\infty}$ we get:

$$||(f_n(x) - f(x)) - (f_n(p) - f(p))|| \le \epsilon_n ||x - p||$$

where $\epsilon_n = \sup_{\xi \in U} \|d_{\xi} f_m - g\|.$

So

$$||f(x) - f(p) - g(p)(x - p)|| \le ||(f(x) - f_n(x)) - (f(p) - f_n(p))|| + ||f_n(x) - f_n(p) - d_p f_n(x - p)|| + ||d_p f_n(x - p) - g(p)(x - p)|| \le \epsilon_n ||x - p|| + ||f_n(x) - f_n(p) - d_p f_n(x - p)|| + \epsilon_n ||x - p||$$

$$\limsup_{x \to p} \frac{\|f(x) - f(p) - g(p)(x - p)\|}{\|x - p\|} \le 2\epsilon_n$$

Take $\lim_{n\to+\infty}$ we get:

$$\limsup_{x \to p} \frac{\|f(x) - f(p) - g(p)(x - p)\|}{\|x - p\|} = 0$$

Chapter 34

Permutations

34.1 Def

Let X be a set. We denote with \mathfrak{S}_X the set of all bijections from X to itself. The elements of \mathfrak{S}_X are called permutations if the set X is finite. If $x_1, \dots, x_n \in X$ are distinct elements then

$$(x_1,\cdots,x_n)\in\mathfrak{S}_X$$

such that

$$x_i \mapsto x_{i+1}$$
$$x_n \to x_1$$

this is called an n-cycle. A 2-cycle is called a transposition.

34.1.1 Example

$$X = \{1, \cdots, 7\}$$

$$1 \mapsto 4$$

$$2 \mapsto 1$$

$$3 \mapsto 2$$

$$(2 \ 3)(4 \ 2 \ 1) = 4 \mapsto 3$$

$$5 \mapsto 5$$

$$6 \mapsto 6$$

$$7 \mapsto 7$$

$$= (1 \ 4 \ 3 \ 2)$$

34.2 Def

We denote with

$$orb_{\sigma}(x) = \{\underbrace{\sigma \circ \cdots \circ}_{\text{n-times}} \quad n \in \mathbb{N}\}$$

 $x \in X, \sigma \in \mathfrak{S}_X$

34.3 Prop

If $orb_{\sigma}(x)$ is a finite set of d elements, then one has

$$\sigma^d(x) = x$$
 $orb_{\sigma}(x) = \{x, \sigma(x), \cdots, \sigma^{d-1}(x)\}$

moreover

$$\sigma^{-1}(x) \in orb_{\sigma}(x)$$

34.3.1 Proof

The set

$$\{(n,m) \in \mathbb{N}^2, n < m, \sigma^n(X) = \sigma^m(x)\}$$

is not empty. Let

$$d' := \min\{m - n \ (n, m) \in \mathbb{N}^2, n < m, \sigma^n(x) = \sigma^m(x)\}$$

therefore $x, \sigma(x), \cdots, \sigma^{d'-1}(x)$ are all distinct.

Now use the each deass division

$$h = qd' + r \quad r < d'$$

$$\sigma^h(x) = \sigma^r(x) \quad 0 \le r < d'$$

then

$$d' \ge d$$

and for

$$\{x, \sigma(x), \cdots, \sigma^{d'-1}(x)\} \subseteq orb_{\sigma}(x)$$

 \Rightarrow

then

$$d' = d$$

34.4 Remark

Let $Y \subseteq X$, then we have a homomorphism of groups:

$$\mathfrak{S}_Y \to \mathfrak{S}_X$$

$$\sigma \mapsto \left(x \to \begin{cases} \sigma(x) & \text{if } x \in Y \\ x & \text{if } x \in X \setminus Y \end{cases} \right)$$

34.5. THEOREM 189

If Y and Z are subset of X

$$Y \cap Z = \emptyset, \sigma \in \mathfrak{S}_Y, \tau \in \mathfrak{S}_Z$$

then

$$\sigma \circ \tau = \tau \circ \sigma$$

If X is finite with n elements $\mathfrak{S}_X = S_n$ permutation group of n elements.

34.5 Theorem

Let X be a finite set and let $\sigma \in \mathfrak{S}_X$ then exist $d \in \mathbb{N}$ and $(n_1, \dots, n_d) \in \mathbb{N}^d_{\geq 2}$ and pairwise disjoint subsets X_1, \dots, X_d of X of cardinalities n_1, \dots, n_d , together with n_i -cycle τ_i of X_i such that

$$\sigma = \tau_1 \circ \cdots \circ \tau_d$$

In other words. Any permutation can be decomposed in composition of finitely many cycles on disjoint subsets.

Proof

By induction on the cardinality of X.

The case $\sigma = id_X$ is trivial. (d = 0) So the case when N = 0, 1 is clear.

Assume $N \geq 2$. Take $x \in X$ such that $\sigma(x) \neq x$ and let $X_1 = orb_{\sigma}(x)$ $Y = X \setminus X_1 \ \forall y \in Y$ we have $\sigma(y) \in Y$ (because if $\sigma(y) \in X$ by the previous proposition $\sigma(y) \in X_1$)

Let $\tau = \sigma \mid_{Y} \in \mathfrak{S}_{Y}$ Use the induction hypothesis, we get X_{2}, \dots, X_{d} of cardinalities n_{2}, \dots, n_{d} and n_{i} -cycle τ_{1} such that

$$\tau = \tau_2 \circ \cdots \circ \tau_d$$

Consider $\tau_1 = \sigma \mid_{X_1}$ then τ_1 is a n_1 -cycle of $X_1 \Rightarrow$

$$\tau = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_d$$

34.5.1 Remark

This theorem say that the groups of permutation si generated by cycles.

34.6 Corollary

Let X be a finite set. Then \mathfrak{S}_X is generated by transpositions.

Proof

Note that

$$(x_1, \cdots, x_n) = (x_1, x_2) \circ (x_2, \cdots, x_n)$$

By induction

$$(x_1, \dots, x_n) = (x_1, x_2) \circ \dots \circ (x_{n-1}, x_n)$$

34.6.1 Remark

The decomposition of transposition in unique.

34.7 Def

Let $\tau \in \mathfrak{S}_n := G_{\{1,\dots,n\}}$ is called adjacent if τ is of the form (j,j+1) for $j=1,\dots,n-1$

34.8 Corollary

 \mathfrak{S}_n si generated by adjacent transposition.

34.8.1 Proof

Note that

$$(i, j) = (i, i+1) \circ (i+1, i+2) \circ \cdots \circ (j-1, j) \circ (j-2, j-1) \circ \cdots \circ (i+2, i+1)$$

Some other information on \mathfrak{S}_n

34.9 Caybey Theorem

Any finite group can be embedded (injective morphism) in a \mathfrak{S}_n for some $n \in \mathbb{N}$

Proof

Let G be a finite group and n = card(G). Let

$$\varphi:G\to\mathfrak{S}$$

$$g\mapsto l_g$$

be the mapping sends $g \in G$ to $l_g(x) = gx, \forall x \in G$

34.10 Theorem

Let X be a finite set. Assume that $\sigma \in \mathfrak{S}_X$ can be written as

$$\sigma = \tau_1 \circ \cdots \circ \tau_d$$

where τ_1 is transposition.

We put

$$sgn(\sigma) := (-1)^{\sigma}$$

This is a well-define function. Moreover sgn is a morphism from \mathfrak{S}_X to $(\{-1,1\},\times)$

Proof

Let's define the mapping:

$$\phi: \mathfrak{S}_n \to \mathbb{Q}^{\times}$$

$$\sigma \mapsto \prod_{(i,j) \in \{1, \dots, n\}^2, i < j} \frac{\sigma(i) - \sigma(j)}{i - j}$$

To show that ϕ is a morphism of groups. Let

$$\begin{split} \theta &= \{U \in \wp(\{1, \cdots, n\}) \mid \ card(U) = 2\} \\ \phi(\sigma \circ \tau) &= \prod_{(i,j) \in \theta} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{i - j} \\ &= (\frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}) \times (\prod_{(i,j) \in \theta} \frac{\tau(i) - \tau(j)}{i - j}) \\ &= \phi(\sigma)\phi(\tau) \end{split}$$

When τ is a transition, $\phi(\tau) = -1$. Therefore

$$\phi(\sigma) = \prod_{i=1}^{d} \phi(\tau_1)$$

since

$$\sigma = \tau_1 \circ \cdots \circ \tau_d$$

34.11 Remark

Let $A_n \subsetneq \mathfrak{S}_n$ such that

$$A_n = \{ \sigma \in \mathfrak{S}_n \mid sgn(\sigma) = 1 \}$$

is an alternating symmetric group.

34.12 Exercise

Let X be a set of cardinality n. Let $\sigma: X \to \{1, \dots, n\}$ be a bijection. Prove that

$$\phi: \mathfrak{S}_X \to \mathfrak{S}_n$$
$$\tau \mapsto \sigma^{-1} \circ \tau \circ \sigma$$

is an isomorphism.

34.13 Symmetric of multilinear mapping

We fix a commutative unitary ring K and K-modules E, F

34.14 Def: Symmetric and Alternating

symmetric Let $n \in \mathbb{N}$ and $f \in Hom^{(n)}(E^n, F)$. If for any $\sigma \in \mathfrak{S}_n$ one has $\forall x \in E^n$

$$f(x_1, \cdots, x_n) = f(x_{\sigma(1)}, \cdots, x_{\sigma(n)})$$

Then we say f is symmetric

alternating If for any $(i, j) \in \{1, \dots, n\}^2$ such that $i \neq j$ and any $(x_1, \dots, x_n) \in E^n$ such that $x_i = x_j$

$$f(x_1,\cdots,x_n)=0$$

then we say that f is alternating.

34.15 Prop

Suppose that $f \in Hom^{(n)}(E^n, F)$ is alternating, then $\forall (x_1, \dots, x_n) \in E^n$, $\sigma \in \mathfrak{S}_n$

$$f(x_1, \dots, x_n) = sgn(\sigma)f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

Proof

By corollary 34.8, it's enough to prove the proposition for adjacent transitions. Let $i\in\{1,,\cdots,n-1\}$ then

$$0 = f(x_1, \dots, x_{i-1, x_i + x_{i+1}, x_{i+2}, \dots, x_n})$$

$$= f(x_1, \dots, x_{i-1}, x_i, x_{i+2}, \dots, x_n)$$

$$+ f(x_1, \dots, x_{i-1}, x_{i+1}, x_{i+1}, x_{i+2}, \dots, x_n)$$

$$+ f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, x_{i+2}, \dots, x_n)$$

$$+ f(x_1, \dots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \dots, x_n)$$

The adjacent transition σ is (i, i+1)

34.16. DEF: 193

34.16 Def:

 Hom_s and Hom_a

We denote with $Hom_s^{(n)}(E^n, F)$ and $Hom_a^{(n)}(E^n, F)$ the set of symmetric and alternating *n*-linear mappings from E to F. $Hom_s^{(n)}(E^n, F)$ and $Hom_a^{(n)}(E^n, F)$ are sub-K-modules of $Hom^{(n)}(E^n, F)$ and when n = 1, by convention

$$Hom_s^{(1)}(E,F) = Hom_a^{(1)}(E,F) = Hom(E,F)$$

34.17 Reminder

Let E,F be two normed vector spaces over \mathbb{R} $f:E\to F$ is differentiable (twice)

$$df: E \to \mathcal{L}(E, F)$$
$$D^2d: E \to \mathcal{L}(E, \mathcal{L}(E, F))$$
$$A \mapsto ((x, y) \to A(x)(y))$$

34.18 Theorem(Schweiz)

 $U\subseteq E$ is an open set, $f:U\to F$ is a function of class $C^n.$ Then for any $p\in U$

$$D^n f(p) \in \mathcal{L}^n(E^n, F)$$

is symmetric

Proof

By induction and by the fact that permutation are decomposed in transpositions, we can reduce to prove only the case n=2

$$d_{p+u}f - d_pf = D^2f(p)(u, \cdot) + o(u)$$

 $\forall \epsilon > 0, \exists \delta > 0 \text{ such that } 0 < ||u|| < \delta, \text{then}$

$$||d_{p+u}f - d_pf - D^2f(p)(u, \cdot) + o(u)|| \le \epsilon ||u||$$

For any $x \in \mathcal{B}(p, \frac{\epsilon}{2})$ let's introduce the following function

$$\varphi(x) = f(x+k) - f(x) - D^2 f(p)(k,x)$$

We use the mean value inequality on φ

$$\begin{split} &\|\varphi(p+h)-\varphi(p)\|\\ &= \left\|f(p+h+k)+f(p)-f(p+h)-D^2f(p)(k,p+h)-f(p+k)-f(p)-D^2f(p)(k,p)\right\|\\ &= \left\|f(p+h+k)+f(p)-f(p+h)-f(p+k)-D^2f(p)(k,h)\right\|\\ &\leq &(\sup_{t\in[0,1]}\|d_{p+th}\varphi\|)\,\|h\| \end{split}$$

$$||d_{p+th}(\varphi)|| = ||d_{p+th+k}f - d_{p+th}f - D^2f(p)(k, \cdot)||$$

add and subtract $d_p f, D^2 f(p)(th, \cdot)$ then by triangle inequality

$$\begin{aligned} & \left\| d_{p+th+k}f - d_{p+th}f - D^{2}f(p)(k,\cdot) \right\| \\ & \leq \left\| d_{p+th+k}(f) - d_{p}f - D^{2}f(p)(k+th,\cdot) \right\| \\ & + \left\| d_{p+th}f - d_{p}f - D^{2}f(p)(th,\cdot) \right\| \\ & \leq \epsilon \left\| th + k \right\| + \epsilon(th) \\ & \leq 2\epsilon(\|h\| + \|k\|) \end{aligned}$$

then

$$||f(p+h+k) + f(p) - f(p+k) - f(p+h) - D^2 f(p)(k,h)||$$

$$= o(\max\{||h||, ||k||\}^2)$$

exchange the role of h, k then we get

$$||f(p+h+k) + f(p) - f(p+k) - f(p+h) - f(p+k) - D^2 f(p)(h,k)||$$

$$\leq o(\max\{||h||, ||k||\}^2)$$

then

$$\underbrace{\|D^2 f(p)(k,h) - D^2 f(p)(h,k)\|}_{\text{bilinear function}} = o(\underbrace{\max\{\|h\|,\|k\|\}^2}_{\text{quachetic}})$$

this implies that the LHS is 0

34.19 Def

Let E;F be normed vector spaces over a complete value field $(K, |\cdot|)$ let $U \subseteq E, V \subseteq F$ be open subsets and $f: U \to V$ is a bijection.

- (1) If f and f^{-1} are both continuous we say that f is a homeomorphism
- (2) If a f and f^{-1} are both of class C^n we say that f is a e^n -diffeomorphism
- If (2) is true for any $n \in \mathbb{N}$ we say that f is a C^{∞} -diffeomorphism

34.20 Prop

Let E,F be two normed Banach spaces. Let $I(E,F) \in \mathcal{L}(E,F)$ be the set of linear continuous and invertible mappings such that $norm\varphi^{-1} \leq +\infty$. Then I(E,F) is open in $\mathcal{L}(E,F)^{\vee}$ Moreover the mapping

$$I(E, F) \to I(F, E)$$

 $\phi \mapsto \varphi^{-1}$

is a e^1 -diffeomorphism

34.21. PROP 195

Proof

Let $\varphi \in I(E, F)$ we want to show that

$$\varphi - \psi \in I(E, F)$$

for $\psi \in \mathscr{E}, \mathscr{F}$ such that $\|\psi\| < \frac{1}{\|\varphi^{-1}\|}$ Notice that

$$\varphi - \psi = \varphi \circ (Id_E - \varphi^{-1} \circ \psi)$$

Since

$$\left\|\varphi^{-1}\psi\right\| \le \left\|\varphi^{-1}\right\| \left\|\psi\right\| < 1$$

This means that the series

$$\sum_{n\in\mathbb{N}} (\varphi^{-1}\circ\psi)^{\circ n}$$

is absolutely convergent in $\mathcal{L}(E,E)$ This series is the inverse of $(Id_E - \varphi^{-1}\psi)$

$$(Id_e - \varphi^{-1}\psi) \circ \sum_{n=0}^{N-1} (\varphi^{-1} \circ \psi) \xrightarrow{\text{composite n times}} = Id_E - (\varphi^{-1} \circ \psi)^{\circ N}$$

take $\lim_{N\to+\infty}$, then

$$(\varphi - \psi)^{-1} = \sum_{n \in \mathbb{N}} (\varphi^{-1} \circ \psi)^{\circ n} \circ \varphi^{-1}$$

and

$$(\varphi - \psi)^{-1} = \varphi^{-1} + \varphi^{-1} \circ \psi \circ \varphi^{-1} + o(\|\psi\|)$$

replace the inverse with i

$$i(\varphi - \psi) - i(\varphi) = \varphi^{-1} + \varphi^{-1} \circ \psi \circ \varphi^{-1} + o(\|\psi\|)$$

then

$$d_{\varphi}i(\psi) = i(\varphi) \circ (-\psi) \circ i(\varphi)$$

so i is differentiable. Moreover i and i^{-1} are continuous.

Remark

By induction we can show that i is a $C^{+\infty}$ -diffeomorphism

34.21 Prop

Let $n \in \mathbb{N} \cup \{\infty\}$ Let E F G be normed vector spaces over a complete valued field $(K, |\cdot|)$ $U \subseteq E, V \subseteq F$ be open sets. $f: U \to V$ $g: V \to G$ be mappings of class C^n , then $g \circ f$ also of class C^n

34.21.1 Proof

The case where n = 0 is known Denote by

$$\Phi: \mathscr{L}(E,F) \times E \to F$$
$$(\beta,\alpha) \mapsto \beta \circ \alpha$$

 Φ is a bounded bilinear mapping

$$\|\Phi(\beta,\alpha)\| \le \|\beta\| \cdot \|\alpha\|$$

Suppose that $n \ge 1$ and the statement is true for mappings of class C^{n-1} $g \circ f$ is differentiable.

$$\forall p \in U \quad d_p(g \circ f) = d_{f(p)}g \circ d_p f$$

$$D^1(g \circ f) : U \to \mathcal{L}(E, G)$$

$$D^1 = \Phi \circ (D^1 g \circ f, D^1 f)$$

$$(D^1 g \circ f, D^1 f) : U \to \mathcal{L}(F, G) \times \mathcal{L}(E, F)$$

$$p \mapsto (d_{f(p)}g, d_p f)$$

$$d_{\beta_0, \alpha_0} \Phi(\beta, \alpha) = \beta_0 \circ \alpha + \beta_0 \circ \alpha$$

$$D^1 \Phi : \mathcal{L}(F, G) \times \mathcal{L}(E, F) \to \mathcal{L}(\mathcal{L}(F, G) \times \mathcal{L}(E, F), \mathcal{L}(E, G))$$

$$(\alpha_0, \beta_0) \mapsto ((\alpha, \beta) \mapsto \beta_0 = \alpha + \beta_0 \alpha_0)$$

Since g, f are of class C^n D^1f, D^1g are of class C^{n-1} Thus, by induction hypothesis,

$$(D^1g \circ f, D^1f)$$

is of class C^{n-1} Since Φ is of class C^{∞} , we obtain that

$$D^1(g \circ f)$$

is of class C^{n-1} then

$$g \circ f$$

is of class C^n

34.22 Prop

Let E and F be Banach space over a complete valued field $(K, |\cdot|)$. U and V be open subsets of E and F respectively. $n \in \mathbb{N} \cup \{\infty\}$ and $f: U \to V$ be a bijection. If f is of class C^n , then f^{-1} is differentiable, then f^{-1} is of class C^n

Proof

$$f \circ f^{-1} = Id_V$$

 $\forall y \in V$

$$d_y(f \circ f^{-1}) = d_{f^{-1}(p)}f \circ d_y f^{-1} = Id_F$$

For $x \in U, y = f(x)$

$$d_y(f \circ f^{-1}) = d_x f \circ d_y f^{-1} = Id_F$$

$$d_x(f^{-1} \circ f) = d_y f \circ d_x f^{-1} = Id_E$$

So

$$d_u f^{-1} - (d_x f)^{-1}$$

that is

$$D^1 f^{-1} = \iota \circ (D^1 f \circ f^{-1})$$

where

$$\iota: I(E,F) \to I(F,E)$$

 $\phi \mapsto \phi^{-1}$

Suppose that f^{-1} is of class C^{n-1} then

$$D^1 f^{-1} = \iota D^1 f \circ f^{-1}$$

is of class C^{n-1}

34.23 Local Inversion Theorem

Let E and F be Banach space over \mathbb{R} $U \in E$ open, $f: U \to F$ be a mapping of class C^n and $a \in U$. Suppose that $d_a f \in I(E, F)(d_a f)$ is invertible and of bounded inverse) Then there exists open neighborhoods V and W of a and f(a) respectively, such that

- $V \subseteq U$ and $f(V) \subseteq W$
- \bullet The restriction of f to V defines a bijection from V to W

•

$$(f|_V)^{-1}W \to V$$

is of class C^n

34.23.1 Proof

For $y \in F$ consider the mapping:

$$\phi_y: U \to F$$
$$x \mapsto x - (d_a f)^{-1} (f(x) - y)$$

f(x) = y iff $\phi_y(x) = x$ i.e. x is a fix point of ϕ_y ϕ_y is of class C^1 and

$$d_x \phi_y(v) = v - d_a f^{-1}(d_x f(v))$$

 $\forall v$

$$d_a \phi y^{(v)} = 0$$

By the continuity of D^1f there exists r > 0 such that

$$\overline{\mathcal{B}}(a,r) \subseteq U$$

and $\forall y \in F, \forall x \in \overline{\mathcal{B}}(a, r)$

$$||d_x \phi_y|| \le \frac{1}{2}$$

By the mean value inequality. $\forall (x_1, x_2) \in \overline{\mathcal{B}}(a, r)$

$$\|\phi_y(x_1) - \phi_{=y(x_2)}\| \le \frac{1}{2} \|x_1 - x_2\|$$

Hence ϕ_y is contraction.

By the boundedness of $(d_a f)^{-1} \exists \delta > 0$ such that

$$\forall y \in \overline{\mathcal{B}}(f(a), \delta) \quad \left\| (d_a f)^{-1} (f(a) - y) \right\| \le \frac{r}{2}$$

Then $\forall x \in \overline{\mathcal{B}}(a,r) \ y \in \overline{\mathcal{B}}(f(a),\delta)$

$$\begin{aligned} \|\phi_y(x) - a\| &\leq \|\phi_y(x) - \phi_y(a)\| + \|\phi_y(a) - a\| \\ &\leq \frac{1}{2} \|x - a\| + \frac{r}{2} \\ &\leq \frac{r}{2} + \frac{r}{2} = r \end{aligned}$$

 $\phi_y(\overline{\neg}, \overline{\nabla}) \in \overline{\mathcal{B}}(a, r)$. By the fixed point theorem

$$\exists g : \overline{\mathcal{B}}(f(a), \delta) \to \overline{\mathcal{B}}(a, r)$$

sending y to the fixed point of ϕ_y Let $W = \mathcal{B}(f(a), g)$, then

$$g \mid_W : W \to V$$

is the inverse of $f|_V:V\to W$ Hence $f^{-1}(W)=V$ is open.

In the following, we prove that g is of class C^n on an open neighborhood of f(a). By reducing V and W, we may assume that $\forall x \in V$

$$d_x f \in I(E, F)$$

Let
$$x_0 \in V \ y_0 = f(x_0) \ x_0 = g(y_0)$$

$$y - y_0 = f(g(y)) - f(g(y_0)) = d_{x_0} f(g(y) - g(y_0)) + o(||g(y) - g(y_0)||)$$

So

$$g(y) - g(y_0) = (d_x f)^{-1} (y - y_0) + o(||g(y) - g(y_0)||)$$

Thus leads to

$$g(y) - g(y_0) = O(||y - y_0||)$$

$$(\exists \epsilon > 0 \quad (1 - \epsilon) \|g(y) - g(y_0)\| \le \|d_{x_0} f\|^{-1} \text{ when } \|y - y_0\| \text{ is sufficiently small})$$

$$d_{y_0}g = (d_x f)^{-1}$$

By the previous proposition, g is of class C^n

Part VII Integration

Chapter 35

Integral operators

We fix a set Ω and a vector subspace S of \mathbb{R}^Ω over \mathbb{R} We suppose that $\forall (f,g)\in S^2$

$$f \wedge g: \Omega \to \mathbb{R}$$

 $\omega \mapsto \min\{f(\omega), g(\omega)\}$

belongs to S

35.1 Prop

$$(1) \ \forall (f,g) \in S^2$$

$$f \vee g: \Omega \to \mathbb{R}$$

$$\omega \mapsto \max\{f(\omega), g(\omega)\}$$

$$f\vee g\in S$$

 $(2) \ \forall f \in S$

$$|f|: \Omega \to \mathbb{R}$$

 $\omega \mapsto |f(\omega)|$

 $|f| \in S$

Proof

(1)

$$f \vee g = f + g - f \wedge g$$

(2)

$$|f| = f \vee (-f)$$

35.2 Def

We call integral operator on S any \mathbb{R} -linear mapping $I:S\to\mathbb{R}$ that satisfies the following conditions:

- (1) If $f \in S$ is such that $\forall \omega \in \Omega, f(\omega) \geq 0$ then $I(f) \geq 0$
- (2) If $(f_n)_{n\in\mathbb{N}}$ is a decreasing sequence of elements in S such that $\forall \omega \in \Omega \lim_{n\to+\infty} f_n(\omega) = 0$ then

$$\lim_{n \to +\infty} I(f_n) = 0$$

$$(\forall \omega \in \Omega, n \in \mathbb{N}, f_n(\omega) \ge f_{n+1}(\omega))$$

35.3 Example

(1) $\Omega=\mathbb{R}$ S=vector subspace of $\mathbb{R}^{\mathbb{R}}$ generated by mappings of the form $\mathbb{1}_{[a,b]}$ $(a,b)\in\mathbb{R}^2, a< b$

$$\mathbb{1}_{]a,b]} = \begin{cases} 1, x \in]a,b] \\ 0,else \end{cases}$$

Any element of S is of the form

$$\sum_{i=1}^n \mathbb{1}_{]a_i,b_i]}$$

 $I: S \to R$ is defined as

$$I(\sum_{i=1}^{n} \lambda \mathbb{1}_{]a_i,b_I]}) = \sum_{i=1}^{n} \lambda_i (b_i - a_i)$$

More generally if $\varphi: \mathbb{R} \to R$ is increasing and right continuous $(\forall x \in \mathbb{R}, \lim_{\epsilon>0, \epsilon\to 0} \varphi(x+\epsilon) = \varphi(x))$ We define

$$I_{\varphi}: S \to \mathbb{R}$$

$$I(\sum_{i=1}^{n} \lambda \mathbb{1}_{]a_i,b_I]}) = \sum_{i=1}^{n} \lambda_i (\varphi(b_i) - \varphi(a_i))$$

(2) (Radon measure)

Let Ω be a quasi-compact topological space

$$S = C^0(\Omega) := \{ f\Omega \to \mathbb{R} \text{ continuous} \}$$

Let $I:S \to \mathbb{R}$ \mathbb{R} -linear, such that $\forall f \in S, f \geq 0$ one has $I(f) \geq 0$

35.4 Dini's theorem

Let $(f_n)_{n\in\mathbb{N}}$ be a decreasing sequence in $C^0(\Omega)$, that converges pointwisely to some $f\in C^0(\Omega)$ Then $(f_n)_{n\in\mathbb{N}}$ converges uniformly to f

Proof

Let
$$g_n = f_n - f > 0$$
 Fix $\epsilon > 0 \forall n \in \mathbb{N}$ let

$$U_n = \{ \omega \in \Omega \mid g_n(\omega) < \epsilon \}$$

is open

Moreover

$$\bigcup_{n\in\mathbb{N}} U_n = \Omega \quad (U_0 \subseteq U_1 \subseteq \cdots)$$

Since Ω is quasi-compact, $\exists N \in \mathbb{N}, \Omega = U_N$ Therefore $\forall n \in \mathbb{N}, n \geq N, \forall \omega \in \Omega$

$$g_n(\omega) < \epsilon$$

Consequence. If $(f_n)_{n\in\mathbb{N}}\in S^{\mathbb{N}}$ is decreasing and converges pointwisely to 0, then

$$||f_n||_{\sup} := \sup_{\omega \in \Omega} |f_n(\omega)|$$

converges to 0 when $n \to +\infty \ \forall n \in \mathbb{N}$

$$f_n \leq \|f_n\|_{\sup} \cdot \mathbb{1}_{\Omega}$$

So

$$0 \le I(f_n) \le \|f_n\|_{\sup} I(\mathbb{1}_{\Omega}) \to 0 \quad (n \to +\infty)$$
 (If $f \le g$ then $g - f \ge 0$ so $I(g - f) = I(g) - I(f) \ge 0$ $I(g) \ge I(f)$)

35.5 Def

We call σ -algebra any subset $\mathscr A$ of $\wp(\Omega)$ that satisfies the following conditions:

- $\varnothing \in \mathscr{A}$
- If $A \in \mathscr{A}$ then $\Omega \setminus A \in \mathscr{A}$
- If $(A_n)_{n\in\mathbb{N}} \in \mathscr{A}^{\mathbb{N}}$ then $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{A}$

Given a σ -algebra $\mathscr A$ on Ω , we mean by measure on $(\Omega,\mathscr A)$ any mapping $\mu:\mathscr A\to [0,+\infty]$ such that :

- $\mu(\varnothing) = 0$
- If $(A_n)_{n\in\mathbb{N}}\in\mathscr{A}^{\mathbb{N}}$ such that A_i are pairwisely disjoint, then

$$\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

Chapter 36

Riemann integral

36.1 Def

Let Ω be a non-empty set and S be a vector subspace of \mathbb{R}^{Ω} If $\forall (f,g) \in S^2, f \land g \in S$, we say that S is a Riesz space.

In this section, we fix a Riesz space and an integral operator $I: S \to \mathbb{R}$

36.2 Def

For any $f: \Omega \to \mathbb{R}$ let

$$I^*(f) := \inf_{\mu \in S, \mu \ge f} I(\mu)$$

$$I_*(f) := \sup_{l \in S, l \le f} I(f)$$

If $I^*(f) = I_*(f)$ then we say that f is I-Riemann integral, and denote by I(f) the value $I^*(f)$ (or $I_*(f)$)

36.3 Theorem

The set \mathscr{R} of all I-Riemann integral mappings form a vector space of \mathbb{R}^{Ω} that contains S. Moreover, $I: \mathscr{R} \to \mathbb{R}$ is an \mathbb{R} -linear mapping extending $I: S \to \mathbb{R}$

Proof

 $\forall h \in S$

$$I^*(h) = I_*(h) = I(h)$$

So $h \in \mathcal{R}$

Let $(f_1, f_2) \in \mathcal{R}$ If $(\mu_1, \mu_2) \in S^2, \mu_1 \geq f_1, \mu_2 \geq f_2$ then

$$\mu_1 + \mu_2 \in S, \mu_1 + \mu_2 \ge f_1 + f_2$$

Hence

$$I(\mu_1) + I(\mu_2) \ge I^*(f_1 + f_2)$$

Take the infimum with respect to (μ_1, μ_2) we get

$$I^*(f_1) + I^*(f_2) \ge I^*(f_1 + f_2)$$

Similarly

$$I_*(f_1) + I_*(f_2) \le I_*(f_1 + f_2)$$

Hence

$$I^*(f_1 + f_2) = I_*(f_1 + f_2) = I(f_1) + I(f_2)$$

Let $f:\Omega\to\mathbb{R}$ be a mapping , $\lambda\in\mathbb{R}_{>0}$

$$I^*(\lambda f) = \inf_{\mu \in S, \mu \ge \lambda f} I(\mu) = \inf_{\nu \in S, \nu \ge f} I(\lambda \nu) = \lambda I^*(f)$$

Similarly

$$I_*(\lambda f) = \lambda I_*(f)$$

Hence if $f \in \mathcal{R}$ then $\lambda f \in \mathcal{R}$ and $I(\lambda f) - \lambda I(f)$

$$I^*(-f) = \inf_{\mu \in S, \mu \geq -f} I(\mu) = \inf_{l \in S, l \leq f} I(-l) = -\sup_{l \in S, l \leq f} I(l) = -I_*(f)$$

Similarly

$$I_*(-f) = -I^*(f)$$

Hence if $f \in \mathcal{R}$ then $-f \in \mathcal{R}$ and I(-f) = -I(f)

Chapter 37

Daniell integral

We fix an integral operator $I: S \to \mathbb{R}$

37.1 Prop

37.1.1

Let $(f_n)_{n\in\mathbb{N}}$ be an increasing sequence in S that converges pointwisely to some $f\in S$. Then

$$\lim_{n \to +\infty} I(f_n) = I(f)$$

Proof

Let $g_n = f - f_n \in S$ $(g_n)_{n \in \mathbb{N}}$ is decreasing and converges pointwisely to 0.

$$\lim_{n \to +\infty} I(g_n) = 0$$

Hence

$$\lim_{n \to +\infty} I(f_n) = I(f)$$

37.1.2

Let $(f_n)_{n\in\mathbb{N}}$ be an increasing sequence in S, $f\in S$ If $f\leq \lim_{n\to+\infty}f_n$, then

$$I(f) \le \lim_{n \to +\infty} I(f_n)$$

Proof

$$f = \lim_{n \to +\infty} f \wedge f_n$$

So

$$I(f) = \lim_{n \to +\infty} I(f \land f_n) \le \lim_{n \to +\infty} I(f_n)$$

37.2 Def

Let

$$S^{\uparrow} = \left\{ f : \Omega \to \mathbb{R} \cup \{+\infty\} \mid \begin{array}{c} \exists (f_n)_{n \in \mathbb{N}} \in S^{\mathbb{N}} \text{ increasing such that} \\ f = \lim_{n \to +\infty} f_n \text{ pointwisely} \end{array} \right\}$$

37.3 Prop

Let f,g be elements of S^{\uparrow} such that $f\leq g$ Let $(f_n)_{n\in\mathbb{N}}$ and $(g_m)_{n\in\mathbb{N}}$ be increasing sequences in S such that $f=\lim_{n\to+\infty}f_n, g=\lim_{n\to+\infty}g_n$ THen

$$\lim_{n \to +\infty} I(f_n) \le \lim_{n \to +\infty} I(g_n)$$

Proof

For any $m \in \mathbb{N}$

$$f_m \le f \le g$$

Hence

$$I(f_m) \le \lim_{n \to +\infty} I(g_n)$$

Taking $\lim_{m \to +\infty}$ we get

$$\lim_{m \to +\infty} I(f_m) \le \lim_{n \to +\infty} I(g_n)$$

37.4 Corollary

Let $f \in S^{\uparrow}$ If $(f_n)_{n \in \mathbb{N}}$ and $(\widetilde{f}_n)_{n \in \mathbb{N}}$ be increasing sequence in S such that

$$f = \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \widetilde{f}_n$$

then

$$\lim_{n \to +\infty} I(f_n) = \lim_{n \to +\infty} I(\widetilde{f_n})$$

We denote by I(f) the limit $\lim_{n\to+\infty} I(f_n)$

Thus we obtain a mappign $I: S^{\uparrow} \to \mathbb{R} \cup \{+\infty\}$ such that

• If $(f_n)_{n\in\mathbb{N}}\in S^{\mathbb{N}}$ is increasing then

$$I(\lim_{n \to +\infty} f_n) = \lim_{n \to +\infty} I(f_n)$$

- If $(f,g) \in S^{\uparrow 2}$ $f \leq g$ then $I(f) \leq I(g)$
- If $(f,g) \in S^{\uparrow 2}$ then $f+g \in S^{\uparrow}$ and

$$I(f+q) = I(f) + I(q)$$

• If $f \in S^{\uparrow}, \lambda \geq 0$ then $\lambda f \in S^{\uparrow}$ and $I(\lambda f) = \lambda I(f)$

37.5. PROP 211

37.5 Prop

Let $(f_n)_{n\in\mathbb{N}}\in (S^{\uparrow})^{\mathbb{N}}$ be an increasing sequence and $f=\lim_{n\to+\infty}f_n$. Then

$$f \in S^{\uparrow}$$

and

$$I(f) = \lim_{n \to +\infty} I(f_n)$$

Proof

For $k \in \mathbb{N}$ let $(g_{k,m})_{m \in \mathbb{N}} \in S^{\mathbb{N}}$ be an increasing sequence such that

$$f_k = \lim_{m \to +\infty} g_{k,m}$$

For $n \in \mathbb{N}$ let $h_n = g_{0,n} \vee \cdots \vee g_{n,n} \in S$ The sequence $(h_n)_{n \in \mathbb{N}}$ is increasing. Moreover

$$f_n \ge k_n \ge g_{k,n} \quad (k \le n)$$

Hence

$$f_n \ge h_n$$

Taking $\lim_{n\to+\infty}$ we get $\forall k\in\mathbb{N}$

$$f = \lim_{n \to +\infty} f_n \ge \lim_{n \to +\infty} h_n \ge \lim_{n \to +\infty} g_{k,n} = f_k$$

Taking $\lim_{k\to+\infty}$ we get

$$f = \lim_{n \to +\infty} h_n$$

Hence $f \in S^{\uparrow}$ and

$$I(f) = \lim_{n \to +\infty} I(h_n) \le \lim_{n \to +\infty} I(f_n)$$

Conversely, $\forall n \in \mathbb{N}, f \geq f_n$ Hence

$$I(f) \ge \lim_{n \to +\infty} I(f_n)$$

37.6 Def

Let $S^\downarrow=\{-f\mid f\in S^\uparrow\}$ We extend I to $I:S^\downarrow\to\mathbb{R} U-\infty$ by letting I(-f):=-I(f) for $f\in S^\uparrow$

37.7 Prop

Let
$$(f,g) \in (S^{\uparrow} \cup S^{\downarrow})^2$$
 If $f \leq g$ then

$$I(f) \le I(g)$$

Proof

It suffices to treat the cases where $(f,g) \in S^{\uparrow} \times S^{\downarrow}$ and $(f,g) \in S^{\uparrow} \times S^{\downarrow}$ If $(f,g) \in S^{\uparrow} \times S^{\downarrow}$ then $-f \in S^{\downarrow}$ and hence $g-f \in S^{\uparrow}, g-f \geq 0$ In both cases,

$$0 \le I(g - f) = I(g) + I(-f) = I(g) - I(f)$$

37.8 Def

Let $f: \Omega \to \mathbb{R}$ be a mapping. We define

$$\overline{I}(f) := \inf_{\mu \in S^{\uparrow}, \mu > f} I(\mu) \le \inf_{\mu \in S, \mu \ge f} I(\mu) = I^{*}(f)$$

$$\underline{I}(f) := \sup_{\mu \in S^\downarrow, \mu \leq f} I(\mu) \geq \sup_{\mu \in S, \mu \leq f} I(\mu) = I_*(f)$$

If $\overline{I}(f) = \underline{I}(f)$ then we say that f is I-integrable(in the sense of Daniell)

37.9 Remark

If f is I-integrable in the sense of Riemann, then it is I-integrable in sense of Daniell

37.10 Daniell Theorem

The set $L^1(I)$ of all I-integrable mappings forms a vector subspace of $\mathbb R.$ Moreover

- $\forall (f,g) \in L^1(I) \ f \land g \in L^1(I)$
- $I: L^1(I) \to \mathbb{R}$ is an integral operator extending $I: S \to \mathbb{R}$

Proof

Let $(f_1, f_2) \in L^1(I)^2$ let $(l_1, l_2) \in S^{\downarrow 2}, l_1 \leq f_1, l_2 \leq f_1$ Let $(\mu_1, \mu_2) \in S^{\uparrow 2}, f_1 \leq \mu_1, f_2 \leq \mu_2$ We have

$$l_1 + l_2 \le f_1 + f_2 \le \mu_1 + \mu_2$$

Taking the supremum with respect to (l_1, l_2) , we get

$$I(f_1) + I(f_2) (= \underline{I}(f_1) + \underline{I}(f_2)) \le \underline{I}(f_1 + f_2)$$

Taking the infimum with respect to (l_1, l_2) , we get

$$\overline{I}(f_1 + f_2) \le I(f_1) + I(f_2)$$

Then

$$\overline{I}(f_1 + f_2) = \underline{I}(f_1 + f_2)$$

So $f_1 + f_2 \in L^1(I)$ and $I(f_1 + f_2) = I(f_1) + I(f_2)$ Similarly, if $f \in L^1(I), \lambda \ge 0$ then

$$\begin{split} \underline{I}(\lambda f) &= \sup_{l \leq \lambda f, l \in S^{\downarrow}} I(l) \\ &= \sup_{l \leq f, l \in S^{\downarrow}} I(\lambda l) \\ &= \lambda \underline{I}(f) = \lambda I(f) \end{split}$$

$$\overline{I}(\lambda f) = \lambda \overline{I}(f) = \lambda I(f)$$

So $\lambda f \in L^1(I)$ and $I(\lambda f) = \lambda I(f)$ Moreover, if $f \in L^1(I), \mu \in S^{\uparrow}, l \in S^{\downarrow}, l \leq f \leq \mu$ then

$$-\mu \in S^{\downarrow}, -l \in S^{\uparrow}, -\mu \le -f \le -l$$

Hence

$$\overline{I}(-f) = -\underline{I}(f) = -I(f)$$
 $\underline{I}(-f) = -\overline{I}(f) = -I(f)$

So $-f \in L^1(I)$ and I(-f) = -I(f)We proved that $\forall (f_1, f_2) \in L^1(I)^2$

$$f_1 \wedge f_2 \in L^1(I)$$

Let $(f_1, f_2) \in L^1(I)^2$, for any $\epsilon > 0$ $\exists (l_1, l_2) \in S^{\downarrow^2}$, $(\mu_1, \mu_2) \in S^{\uparrow^2}$ such that

$$l_1 \le f_1 \le \mu_1$$
 $l_2 \le f_2 \le \mu_2$

such that

$$I(\mu_1 - l_1) \le \frac{\epsilon}{2}$$
 $I(\mu_2, l_2) \le \frac{\epsilon}{2}$

One has $l_1 \wedge l_2 \leq f_1 \wedge f_2 \leq \mu_1 \wedge \mu_2$

$$\mu_1 \wedge \mu_2 - l_1 \wedge l_2 \le (\mu_1 - l_1) + (\mu_2 - l_2)$$

$$\begin{pmatrix}
\operatorname{If}\mu_{1}(\omega) \leq \mu_{2}(\omega), l_{1} \leq l_{1}(\omega) \\
LHS = \mu_{1}(\omega) - l_{1}(\omega) \\
RHS = \mu_{1}(\omega) - l_{2}(\omega) + \mu_{2}(\omega) - l_{1}(\omega) \geq \mu_{1}(\omega) - l_{2}(\omega)
\end{pmatrix}$$

37.11 Beppo Levi Theorem

Let $(f_n)_{n\in\mathbb{N}}$ be a monotone sequence of elements of $L_1(I)$, which converges pointwisely to some $f:\Omega\to\mathbb{R}$ If $(I(f_n))_{n\in\mathbb{N}}$ converges to a real number α Then $f\in L^1(I)$ and $I(f)=\alpha$

Proof

Assume that $(f_n)_{n\in\mathbb{N}}$ is increasing. Moreover, by replacing f_n by f_n-f_0 we may assume that $f_0=0$

Let $\epsilon > 0 \ \forall n \in \mathbb{N}$ let $\mu_n \in S^{\uparrow}$ such that $f_n - f_{n-1} \leq \mu_n$ and

$$I(f_n - f_{n-1}) \ge I(\mu_n) - \frac{\epsilon}{2}$$

the existence

$$I(f_n - f_{n-1}) = \inf_{\mu \in S^{\uparrow}, \mu \ge f_n - f_{n-1}} I(\mu)$$

If $\forall \mu \in S^{\uparrow}, \mu \geq f_n - f_{n-1}$ one has

$$I(\mu) > I(f_n - f_{n-1}) + \frac{\epsilon}{2}$$

then

$$I(f_n - f_{n-1}) + \frac{\epsilon}{2} \le I(f_n - f_{n-1})$$

contraction.

Thus

$$f_n = \sum_{k=1}^n (f_k - f_{k-1}) \le \mu_1 + \dots + \mu_n$$

and

$$I(f_n) \ge \sum_{k=1}^n (I(\mu_k) - \frac{\epsilon}{2^k}) \ge I(\mu_1) + \dots + I(\mu_n) - \epsilon$$

Let $\mu = \mu_1 + \dots + \mu_n + \dots \in S^{\uparrow}$

$$I(\mu) = \sum_{n \in \mathbb{N}} I(\mu)$$

One has $\mu \geq f$

$$\lim_{n \to +\infty} \ge I(\mu) - \epsilon \ge \overline{I}(f) - \epsilon$$

Similarly, one can choose $l_n \in S^{\downarrow}, l_n \leq f_n, I(l_n) \geq I(f_n) - \epsilon$

$$\liminf_{n \to +\infty} I(l_n) \ge \alpha - \epsilon$$

Note that $l_n \leq f_n \leq f$, so

$$\alpha - \epsilon \le \liminf_{n \to +\infty} I(l_n) \le \underline{I}(f)$$

Thus

$$\alpha - \epsilon \leq \underline{I}(f) \leq \overline{I}(f) \leq \alpha + \epsilon$$

Let $\epsilon \to 0$ we get

$$\overline{I}(f) = I(f) = \alpha$$

37.12 Fatou's Lemma

Let $(f_n)_{n\in\mathbb{N}}\in L^1(I)^{\mathbb{N}}$ Assume that there is $g\in L^1(I)$ such that

$$\forall n \in \mathbb{N} \quad f_n \ge g$$

If $\liminf_{n\to+\infty} f_n$ is a mapping from Ω to $\mathbb R$ and $\liminf_{n\to+\infty} I(f_n)<+\infty$, then $\liminf_{n\to+\infty} f_n\in L^1(I)$ and

$$I(\liminf_{n \to +\infty} f_n) \le \liminf_{n \to +\infty} I(f_n)$$

Proof

For any $n \in \mathbb{N}$, let

$$g_n = \lim_{k \to +\infty} (f_n \wedge f_{n+1} \wedge \dots \wedge f_{n+k})$$

Then

$$\liminf_{n \to +\infty} f_n = \lim_{n \to +\infty} g_n$$

For any k one has

$$f_n \wedge \cdots \wedge f_{n+k} \geq g$$

Hence

$$I(f_n) \ge \lim_{n \to +\infty} I(f_n \wedge \dots \wedge f_{n+k}) \ge I(g)$$

By the theorem of Beppo Levi,

$$g_n \in L^1(I)$$
 and $I(g_n) = \lim_{n \to +\infty} I(f_n \wedge \cdots \wedge f_{n+k}) \leq I(f_n)$

Note that $(g_n)_{n\in\mathbb{N}}$ is increasing and $\liminf_{n\to+\infty}I(f_n)<+\infty$ Hence

$$\lim_{n \to +\infty} I(g_n) = \liminf_{n \to +\infty} I(g_n) \le \liminf_{n \to +\infty} I(f_n) < +\infty$$

By the theorem of Beppo Levi,

$$\lim_{n \to +\infty} g_n \in L^1(I)$$

and

$$I(\liminf_{n \to +\infty} f_n) = I(\lim_{n \to +\infty} g_n) = \lim_{n \to +\infty} I(g_n) \le \liminf_{n \to +\infty} I(f_n)$$

37.13 Lebesgue dominated convergence theorem

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $L^1(I)$ that converges pointwisely to some $f:\Omega\to\mathbb{R}$ Assume that there exists $g\in L^1(I)$ such that $\forall n\in\mathbb{N}, |f_n|\leq g$ Then $f\in L^1(I)$ and $I(f)=\lim_{n\to+\infty}I(f_n)$

Proof

Apply Fatou's lemma to $(f_n)_{n\in\mathbb{N}}$ adn $(-f_n)_{n\in\mathbb{N}}$ to get

$$I(f) \le \liminf_{n \to +\infty} I(f_n)$$

and

$$I(-f) \le \liminf_{n \to +\infty} I(-f_n)$$

$$= \lim_{n \to +\infty} \sup_{n \to +\infty} I(f_n)$$

$$\le \lim_{n \to +\infty} \sup_{n \to +\infty} I(f_n) \le I(f)$$

37.14 Notation

Let $\varphi: \mathbb{R} \to \mathbb{R}$ be an increasing and right continuous mapping. Let S be the vector subspace of $\mathbb{R}^{\mathbb{R}}$ generated by $\mathbbm{1}_{]a,b]}$ with $(a,b) \in \mathbb{R}^2, a < b$ For any $f \in L^1(I_\varphi)$ $I_\varphi(f)$ is denoted as

$$\int_{\mathbb{R}} f(x) d\varphi(x)$$

For any subset A of \mathbb{R} if $\mathbb{1}_A f \in L^1(I)$ then

$$\int_A f(x) d\varphi(x) \text{ denotes } \int_{\mathbb{R}} \mathbbm{1}_A(x) f(x) d\varphi(x) = I(\mathbbm{1}_A f)$$

If $(a, b) \in \mathbb{R}^2$, aa < b

$$\int_{a}^{b} f(x)d\varphi(x) \text{ denotes } \int_{]a,b]} f(x)d\varphi(x)$$

$$\int_{b}^{a} f(x)d\varphi(x) \text{ denotes } -\int_{]a,b]} f(x)d\varphi(x)$$

If $\varphi(x) = x$ for any $x \in \mathbb{R}$ we replace $d\varphi(x)$ by dx.