## MATH 611 HOMEWORK 2 (DUE 9/11)

## HIDENORI SHINOHARA

**Exercise.** (Problem 1, Section 1.2) Show that the free product G\*H of nontrivial groups G and H has trivial center, and that the only elements of G\*H of finite order are the conjugates of finite-order elements of G and H.

*Proof.* Let  $w \in G * H$  be given. Suppose w is not the empty word.

- Suppose the leftmost element of w is in G. Let  $h \in H$  be given such that h is not the identity element of H.
  - Case 1: The rightmost element of w is an element of G. Then wh is just a concatenation, so  $wh \neq hw$  because the leftmost element of wh is in G and the leftmost element of hw is in H.
  - Case 2: The rightmost element of w is an element of H, but not  $h^{-1}$ . Let h' denote the rightmost element of w and w' denote the remaining. Then w = w'h', so wh = w'(h'h). By the definition of a reduced word, the rightmost element of w' is an element of G, so the concatenation of w' and h'h is exactly wh. The leftmost element of wh is in G and the leftmost element of hw is in H, so  $wh \neq hw$ .
  - Case 3: The rightmost element of w is  $h^{-1}$ . Then the rightmost element of w disappears in wh. In this case, the leftmost element of w stays the same. Therefore, the leftmost element of wh is in G and the leftmost element of hw is in H, so  $wh \neq hw$ .

In each case,  $wh \neq hw$ .

• Suppose that the leftmost element of w is in H. Let  $g \in G$  be given such that g is not the identity element of G. Using the exact same logic as above, we can conclude that  $wg \neq gw$ .

Therefore, w is not in the center of G\*H, so  $Z(G*H)=\{e\}$  where e denotes the empty word.

Let x be a finite-order element in G or H. Let n denote the order. Let  $w \in G * H$ . Then  $(wxw^{-1})^n = wx^nw^{-1} = ww^{-1} = e$ , so the conjugate of a finite order element in G or H is has finite order. We will show that every element of finite order in G\*H is a conjugate of a finite order element in G or H. We will consider the length of a finite-order element.

- Let  $w \in G * H$  be a nonempty word of even length. Since adjacent elements must be elements of different groups, the leftmost element of w and rightmost element of w are in different groups. In other words,  $w^k$  has the length k times the length of w. This implies that the order of w is not finite.
- We will show that every reduced word of length 2k-1 is a conjugate of a finite order element in G or H for every  $k \in \mathbb{N}$ . Let k=1. Then it is either just g or h where  $g \in G$  or  $h \in H$ . In each case, it is clear that the order g or h itself is finite. Therefore, it is a conjugate of a finite order element by the empty word.

Suppose that the claim is true for some  $k \in \mathbb{N}$ . We will consider a finite-order element of length 2k+1. Let w denote a reduced word of length 2k+1. Suppose  $w^n = e$  for some  $n \in \mathbb{N}$ .

- Case 1: The leftmost element of w is in G. Then w = gw'g' where g, g' are in G and w' is a reduced word of length 2k-1. g' must equal  $g^{-1}$ . Otherwise, the length of  $w^m$  would equal  $m \cdot (2k+1) m$ , and it would never equal 0. Consider  $g^{-1}wg = w'$ . Since  $(g^{-1}wg)^n = g^{-1}w^ng = g^{-1}g = e$ , the order of w' is finite. By the inductive hypothesis, w' is a conjugate of a finite order element in G or G. Since the length of G is odd and the end elements are in G, where G is a conjugate of a finite order element in G. In other words, G is a conjugate of a finite order element in G. In other words, G is a conjugate of a finite order element of G is a reduced word because the leftmost element of G is the same as the leftmost element of G, which is in G.
  - By induction, every reduced word of finite length whose leftmost element is in G is a conjugate of a finite order element in G.
- Case 2: The leftmost element of w is in H. By symmetry, every reduced word of finite length whose leftmost element in H is a conjugate of a finite order element in H.

Therefore, the only elements of G \* H of finite order are the conjugates of finite-order elements of G and H.

**Exercise.** (Problem 4, Chapter 1.2) Let  $X \subset \mathbb{R}^3$  be the union of n lines through the origin. Compute  $\pi_1(\mathbb{R}^3 - X)$ .



FIGURE 1. Transformation of  $S^2$  with holes

*Proof.* When n=1, the space can be deformation retracted to  $S^1$ . Thus  $\pi_1(\mathbb{R}^3 - X)$  is  $\mathbb{Z}$  when n=1. Suppose  $n \geq 2$ .

Figure 1 shows how we will transform the space.

- 1 First,  $\mathbb{R}^3$  can be deformation retracted to  $S^2$ .
- 1  $\rightarrow$  2. Deformation retraction. Pick one of the lines and expand the hole.
- $2 \to 3$ . Deformation retraction. Make the side thinner to create a tunnel with 2(n-1) holes on the side. The number of holes on the side is always 2(n-1) because there are n-1 lines after picking the first line and each line creates two holes.
- 3  $\rightarrow$  4. Deformation retraction. Place the 2(n-1) holes evenly and expand each hole to create a "slit".
- $\bullet$  4  $\to$  5. Deformation retraction. Expand each hole so we are remained with a graph.
- $5 \rightarrow 6$ . Homeomorphism.



FIGURE 2. Case 1: n=2

• 6  $\rightarrow$  7. Homotopy equivalence. Shrink each of the short edges so they turn into points. We end up with a graph with 2(n-1) vertices  $v_1, \dots, v_{2(n-1)}$  such that for each  $v_i$ , we draw two edges to the next vertex. In total, the graph has 4(n-1) edges. In case that 2(n-1) = 2, we draw 2 (undirected) edges from  $v_1$  to  $v_2$  and 2 (undirected) edges from  $v_2$  to  $v_1$ , so there are be 4 edges between  $v_1$  and  $v_2$ .

We will calculate the fundamental group of such a space. Let  $G_n$  denote such a graph for each n. We claim that the fundamental group of  $G_n$  is  $\mathbb{Z} * \cdots * \mathbb{Z}$  (2n-1 times).

- Let n = 2. As in Figure 2,  $G_2$  has the same fundamental group as a graph with one vertex and three loops. By Van Kampen's theorem, the fundamental group of two circles joined at a point is  $\mathbb{Z} * \mathbb{Z}$  since the intersection is just a point. Similarly, the fundamental group of three circles joined at a point is  $\mathbb{Z} * \mathbb{Z} * \mathbb{Z}$ , which is 3 = 2n 1 times.
- Suppose the statement is true for some  $n \geq 2$ . Consider  $G_{n+1}$ . As in Figure 3,  $G_{n+1}$  can be transformed into  $G_n$  with two loops attached to one vertex without changing the fundamental group. By Van Kampen's theorem, the fundamental group of such a graph is  $\pi_1(G_n) * \mathbb{Z} * \mathbb{Z}$ . In other words,  $\mathbb{Z} * \cdots * \mathbb{Z}$  (2(n+1)-1 times).

**Exercise.** (Problem 6, Chapter 1.2) Use Proposition 1.26 to show that the complement of a closed discrete subspace of  $\mathbb{R}^n$  is simply-connected if  $n \geq 3$ .

*Proof.* Let X be a closed discrete subspace of  $\mathbb{R}^n$ . Let  $f: X \to \mathbb{R}^n$  such that the open ball around x with the radius f(x) contains no



FIGURE 3. Inductive step

other points of X. This should be always possible because X is a closed discrete subspace. Consider the set of all open balls around  $x \in X$  with the radius f(x)/2,  $\{B(x,f(x)/2) \mid x \in X\}$ . Then  $\mathbb{R}^n \setminus X$  is homeomorphic to  $\mathbb{R}^n \setminus \{B(x,f(x)/2) \mid x \in X\}$ . Since the balls are disjoint from each other,  $\mathbb{R}^n \setminus \{B(x,f(x)/2) \mid x \in X\}$  are path connected. For each hole B(x,f(x)/2), we will attach an n-cell. By doing so, we obtain  $\mathbb{R}^n$ , whose fundamental group is 0. By Proposition 1.26(b), attaching n-cells do not change the fundamental group for  $n \geq 3$ . Thus the fundamental group of  $\mathbb{R}^n \setminus X$  is also 0. Thus  $\mathbb{R}^n \setminus X$  is simply-connected.

**Exercise.** (Problem 8, Chapter 1.2) Compute the fundamental group of the space obtained from two tori  $S^1 \times S^1$  by identifying a circle  $S^1 \times \{x_0\}$  in one torus with the corresponding circle  $S^1 \times \{x_0\}$  in the other torus.

*Proof.* We consider a torus that is on another of the identical size such that they contact each other on the circle  $S^1 \times \{x_0\}$  for some  $x_0$ . Let  $T_1$  denote one of the tori and  $T_2$  the other. Let  $X = T_1 \cup T_2$ . (Figure 4) Each torus is path connected, and the intersection  $S^1 \times \{x_0\}$  is also path connected. Let  $p = (0, x_0)$ .

- Let  $w_1$  be a loop that goes around  $S^1 \times \{x_0\}$  based at p in  $T_1$ .
- Let  $w_2$  be a loop that goes around  $\{0\} \times S^1$  based at p in  $T_1$ .
- Let  $w_3$  be a loop that goes around  $S^1 \times \{x_0\}$  based at p in  $T_2$ .
- Let  $w_4$  be a loop that goes around  $\{0\} \times S^1$  based at p in  $T_2$ .

Since  $\pi_1(S^1 \times S^1) = \pi(S^1) \times \pi(S^1)$ ,  $\pi_1(T_1, p) = \{[w_1], [w_2] \mid [w_1][w_2] = [w_2][w_1]\}$  and  $\pi_1(T_2, p) = \{[w_3], [w_4] \mid [w_3][w_4] = [w_4][w_3]\}$ . The fundamental group of the intersection  $S^1 \times \{0\}$  is the group generated by  $[w_1]$ , (or alternatively  $[w_3]$ ). Let  $i_1, i_2$  denote the injections from  $\pi_1(T_1, p)$  and  $\pi_1(T_2, p)$  into  $\pi_1(T_1, p) * \pi_1(T_2, p)$ , respectively. By Van Kampen's theorem,  $\pi_1(T_1 \cup T_2, p) = \pi_1(T_1, p) * \pi_1(T_2, p)/\langle i_1([w_1])i_2([w_3])^{-1}\rangle$ . To



FIGURE 4. Two tori

simplify the notations, let  $a = [w_1], b = [w_2], c = [w_3], d = [w_4]$  and  $N = \langle i_1(a)i_2(c)\rangle$ . Then  $\pi_1(T_1 \cup T_2, p) = \langle a, b \mid ab = ba\rangle * \langle c, d \mid cd = dc\rangle/\langle ac^{-1}\rangle$ .

Since a and c are identified, this group is isomorphic to  $\langle a, b, d \mid ab = ba, ad = da \rangle$ . Thus this is a free group generated by two elements, b, d, with another element that commutes with every element, so this is isomorphic to  $(\mathbb{Z} * \mathbb{Z}) \times \mathbb{Z}$ .

**Exercise.** (Problem 9, Chapter 1.2) In the surface  $M_g$  of genus g, let C be a circle that separates  $M_g$  into two compact subsurfaces  $M_h$  and  $M_k$  obtained from the closed surfaces  $M_h$  and  $M_k$  by deleting an open disk from each. Show that  $M_h$  does not retract onto its boundary circle C, and hence  $M_g$  does not retract onto C. But show that  $M_g$  does retract onto the nonseparating circle C in the figure.

*Proof.*  $M_g$  is homeomorphic to  $X_3$  as shown in Figure 5. Then every point  $X_3$  can be "pushed" to the left edge.

Let  $g: X_4 \to X_4$  be a function such that g(x, y) = (0, y). Such a map is continuous in the subspace topology of  $\mathbb{R}^2$ .

g is constant on  $p^{-1}(\{(x,y)\})$  for every  $(x,y) \in X_3$ . Thus there exists an induced map  $f: X_3 \to X_4$  such that  $f \circ p = g$ . (Theorem 22.2, Topology by Munkres)

Since p is continuous,  $p \circ f$  maps  $X_3$  into  $X_3$  continuously while projecting every point on the "left edge." In other words,  $p \circ f$  is a retract of  $M_q$  into C.



FIGURE 5. Problem 9