Assignment - 2

Data Visualization and Data Preprocessing

Assignment Date	24 September 2022
Student Name	Mithrha R
Student Roll Number	2019504550
Maximum Marks	2 marks

1. Load The Necessary Libraries:

```
[1] 1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
```

2. Load the Dataset

```
[2] 1 df=pd.read_csv(r"Churn_Modelling.csv")
```

3. View the Dataset

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0
10000 r	ows × 14 colu	mns										

1	df.head()		

2													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	10
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	11:
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	11
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	9:
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	7

1	df.tail()												
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	E
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	

4. Data Visualization

a. Univariate Analysis

```
list(df.columns)
    ['RowNumber',
Гэ
     'CustomerId',
     'Surname',
     'CreditScore',
     'Geography',
     'Gender',
     'Age',
     'Tenure',
     'Balance',
     'NumOfProducts',
     'HasCrCard',
     'IsActiveMember',
     'EstimatedSalary',
     'Exited']
```

```
1
    df.hist(column=[
 2
      'CreditScore',
 3
       'Age',
 4
      'Tenure',
 5
      'Balance',
 6
      'NumOfProducts',
 7
      'HasCrCard',
 8
      'IsActiveMember',
 9
      'EstimatedSalary',
10
      'Exited'], bins=30, figsize=(15, 10))
```


<matplotlib.axes._subplots.AxesSubplot at 0x7f1a7a582d50>

b. Bivariate Analysis

^{*}Diagonal Plots are Univariate Plots, rest are Bivariate

c. Multivariate Analysis

[] 1 sns.catplot(x='Exited', y='EstimatedSalary', hue='Gender', data=df)

<seaborn.axisgrid.FacetGrid at 0x7f6d36f87a90>

[] 1 sns.pairplot(df[['CustomerId', 'CreditScore', 'Geography','Gender', 'Age', 'Tenure']],hue='Geography')

5. Descriptive Statistics on Dataset

[] 1 df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.

6. Handling Missing Values

[] 1 df.isnull().any()

False RowNumber CustomerId False Surname False CreditScore False Geography False Gender False Age False Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False False Exited

dtype: bool

1 df.isnull().sum()

RowNumber CustomerId 0 Surname 0 CreditScore 0 0 Geography Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

1 df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	E
0	False	False	False	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	False	False	False	
		•••											
9995	False	False	False	False	False	False	False	False	False	False	False	False	
9996	False	False	False	False	False	False	False	False	False	False	False	False	
9997	False	False	False	False	False	False	False	False	False	False	False	False	
9998	False	False	False	False	False	False	False	False	False	False	False	False	
9999	False	False	False	False	False	False	False	False	False	False	False	False	

10000 rows × 14 columns

7. Handling Outliers

1 df.skew()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions
"""Entry point for launching an IPython kernel.
RowNumber 0.000000
CustomerId 0.001149

1 sns.boxplot(x=df['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f6d34ae7250>

1 sns.boxplot(x=df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f6d34a6e950>

1 df.boxplot(column="EstimatedSalary")

<matplotlib.axes._subplots.AxesSubplot at 0x7f6d34a566d0>

- churn_yes=df[df.Exited==1].Tenure
- churn_no=df[df.Exited==0].Tenure

```
plt.xlabel("Tenure")
```

- plt.ylabel("No. of Customers")
- 3 plt.title('Churn prediction')
- 4 plt.hist([churn_yes,churn_no],color=["green","red"],label=["churn=yes","churn=no"])
- 5 plt.legend()
- 6 plt.show()

/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py:3208: VisibleDeprecationWarning: Cre return asarray(a).size

/usr/local/lib/python3.7/dist-packages/matplotlib/cbook/__init__.py:1376: VisibleDeprecationWarning: $X = np.atleast_1d(X.T if isinstance(X, np.ndarray))$ else np.asarray(X)

1 d	f.describe()								
	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.

1 sns.kdeplot(df["Age"])

<matplotlib.axes._subplots.AxesSubplot at 0x7f6d34984750>

2 **g1**

⇒ 32.0

2 **q3**

44.0

2 igr

12.0

[42] 1 l_b

14.0

[43] 1 <u>u_b</u>

62.0

[45] 1 <u>df</u>[<u>df</u>["Age"]<l_b]

RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 🕺

[46] 1 <u>df[df</u>["Age"]>u_b]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
58	59	15623944	T'ien	511	Spain	Female	66	4	0.00	1	1	0	1643.11	1
85	86	15805254	Ndukaku	652	Spain	Female	75	10	0.00	2	1	1	114675.75	0
104	105	15804919	Dunbabin	670	Spain	Female	65	1	0.00	1	1	1	177655.68	1
158	159	15589975	Maclean	646	France	Female	73	6	97259.25	1	0	1	104719.66	0
181	182	15789669	Hsia	510	France	Male	65	2	0.00	2	1	1	48071.61	0
9753	9754	15705174	Chiedozie	656	Germany	Male	68	7	153545.11	1	1	1	186574.68	0
9765	9766	15777067	Thomas	445	France	Male	64	2	136770.67	1	0	1	43678.06	0
9832	9833	15814690	Chukwujekwu	595	Germany	Female	64	2	105736.32	1	1	1	89935.73	1
9894	9895	15704795	Vagin	521	France	Female	77	6	0.00	2	1	1	49054.10	0
9936	9937	15653037	Parks	609	France	Male	77	1	0.00	1	0	1	18708.76	0

359 rows × 14 columns

[47] 1 outlier_list = list(df[df["Age"] > u_b]["Age"])

```
1 outlier_list = list(df[df["Age"] > u_b]["Age"])
1 outlier_list
71,
66,
70,
63,
64,
65,
63,
67,
71,
67,
65,
66,
63,
73,
66,
64,
72,
71,
69,
67,
64,
81,
73,
63,
  outlier_dict = {}.fromkeys(outlier_list,u_b)
outlier_dict
  {66: 62.0,
  75: 62.0,
   65: 62.0,
   73: 62.0,
   72: 62.0,
   67: 62.0,
   79: 62.0,
   80: 62.0,
   68: 62.0,
   70: 62.0,
   63: 62.0,
   64: 62.0,
   82: 62.0,
   69: 62.0,
   74: 62.0,
   71: 62.0,
   76: 62.0,
   77: 62.0,
   88: 62.0,
   85: 62.0,
   84: 62.0,
   78: 62.0,
   81: 62.0,
   92: 62.0,
   83: 62.0}
```


RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure

8. Check for Categorical columns and perform encoding

9. Split the data into dependent and independent variables

```
1 x=df.iloc[:,3:13].values
1 x.shape
(10000, 10)
1 y=df.iloc[:,13:14].values
1 y.shape
(10000, 1)
 1 x=ct.fit_transform(x)
1 x.shape
(10000, 13)
array([[1.0, 0.0, 0.0, ..., 1, 1, 101348.88],
       [0.0, 0.0, 1.0, ..., 0, 1, 112542.58],
[1.0, 0.0, 0.0, ..., 1, 0, 113931.57],
        [1.0, 0.0, 0.0, ..., 0, 1, 42085.58],
       [0.0, 1.0, 0.0, ..., 1, 0, 92888.52],
[1.0, 0.0, 0.0, ..., 1, 0, 38190.78]], dtype=object)
1 import joblib
 joblib.dump(ct,"churnct.pkl")
['churnct.pkl']
```

10. Split the data into training and testing

11. Scale the independent variables