DSC680 Project1: Heart Health Prediction

Assignment 4.1

Name: Madhuri Basava

Date: 06/28/2023

```
In [1]: # Import the necessary libraries
import numpy as np
import pandas as pd
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt

# Ignore warnings
import warnings
warnings.filterwarnings('ignore')

# Set the style of matplotlib
%matplotlib inline
plt.style.use('fivethirtyeight')
In [2]: # Load the heart health dataset into the data frame
heart_health_df = pd.read_csv('heart_statlog_cleveland_hungary_final.csv')
heart_health_df
```

	7	
() i i +	1 ')	
UUL		

,		age	sex	chest pain type	resting bp s	cholesterol	fasting blood sugar	resting ecg	max heart rate	exercise angina	oldpeak	ST slope	targ
	0	40	1	2	140	289	0	0	172	0	0.0	1	
	1	49	0	3	160	180	0	0	156	0	1.0	2	
	2	37	1	2	130	283	0	1	98	0	0.0	1	
	3	48	0	4	138	214	0	0	108	1	1.5	2	
	4	54	1	3	150	195	0	0	122	0	0.0	1	
	•••												
	1185	45	1	1	110	264	0	0	132	0	1.2	2	
	1186	68	1	4	144	193	1	0	141	0	3.4	2	
	1187	57	1	4	130	131	0	0	115	1	1.2	2	
	1188	57	0	2	130	236	0	2	174	0	0.0	2	
	1189	38	1	3	138	175	0	0	173	0	0.0	1	

1190 rows × 12 columns

In [3]: # Describe the dataset heart_health_df.describe()

Out[3]:

	age	sex	chest pain type	resting bp s	cholesterol	fasting blood sugar	resting ecg
count	1190.000000	1190.000000	1190.000000	1190.000000	1190.000000	1190.000000	1190.000000
mean	53.720168	0.763866	3.232773	132.153782	210.363866	0.213445	0.698319
std	9.358203	0.424884	0.935480	18.368823	101.420489	0.409912	0.870359
min	28.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000
25%	47.000000	1.000000	3.000000	120.000000	188.000000	0.000000	0.000000
50%	54.000000	1.000000	4.000000	130.000000	229.000000	0.000000	0.000000
75%	60.000000	1.000000	4.000000	140.000000	269.750000	0.000000	2.000000
max	77.000000	1.000000	4.000000	200.000000	603.000000	1.000000	2.000000

In [4]: # Display the information to understand the dataset heart_health_df.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1190 entries, 0 to 1189
         Data columns (total 12 columns):
          # Column
                                    Non-Null Count Dtype
         --- -----
                                    -----
          0 age
                                   1190 non-null int64
          1 sex
                                    1190 non-null int64
          chest pain type 1190 non-null int64
resting bp s 1190 non-null int64
cholesterol 1190 non-null int64
fasting blood sugar 1190 non-null int64
          6 resting ecg 1190 non-null int64
7 max heart rate 1190 non-null int64
8 exercise angina 1190 non-null int64
9 oldpeak 1190 non-null floate
                                   1190 non-null float64
                          1190 non-null int64
          10 ST slope
          11 target
                                    1190 non-null int64
         dtypes: float64(1), int64(11)
         memory usage: 111.7 KB
In [5]: # Check for any missing values
         heart_health_df.isna().sum()
Out[5]: age
                                  0
         chest pain type
         resting bp s
         cholesterol
                                 0
         fasting blood sugar 0
         resting ecg
         max heart rate
         exercise angina
                                0
         oldpeak
                                 0
         ST slope
         target
         dtype: int64
         There are no missing values in the dataset
In [6]: # Check if there are duplicate rows in the data set
         heart_health_df.duplicated().sum()
Out[6]: 272
         There are 272 duplicates in the dataset. So we remove them.
In [7]: # Removing the duplicate rows
         heart_health_df.drop_duplicates(inplace=True)
         heart_health_df.duplicated().sum()
Out[7]: 0
```

Exploratory Data Analysis

```
In [8]: # Print the number of unique values for each column
        for col in heart_health_df.columns:
            print(f'{col} has {heart_health_df[col].nunique()} values')
        age has 50 values
        sex has 2 values
        chest pain type has 4 values
        resting bp s has 67 values
        cholesterol has 222 values
        fasting blood sugar has 2 values
        resting ecg has 3 values
        max heart rate has 119 values
        exercise angina has 2 values
        oldpeak has 53 values
        ST slope has 4 values
        target has 2 values
In [9]: # Target distribution
        # Set the figure size and create a count plot
        plt.figure(figsize=(8, 6))
        ax = sns.countplot(x=heart_health_df['target'], palette='pastel')
        # Add labels to each bar in the plot
        for p in ax.patches:
            ax.text(p.get_x()+p.get_width()/2, p.get_height()+3, f'{p.get_height()}', ha="c
        plt.show()
                                                                      508.0
            500
                                410.0
            400
            300
            200
            100
              0
                                  0
                                                                        1
```

target

From the above graph, we can infer that the dataset in balanced.

```
In [10]: # Distribution of numerical columns

plt.figure(figsize=(20, 16))
plotnumber = 1

for col in heart_health_df.columns:
    # Check if the number of unique values is less than 5
    if heart_health_df[col].nunique() > 5:
        plt.subplot(2, 3, plotnumber)
        sns.histplot(heart_health_df[col], kde=True, color='skyblue')
        plt.xlabel(col)

        plotnumber += 1

plt.suptitle('Distribution of Numerical Variables', fontsize=40, y=1)
plt.tight_layout()
plt.show()
```


From the above graphs, we can infer that the cholesterol has zero values which does not makes sense. So we will remove those rows.

```
In [11]: heart_health_df['cholesterol'] = heart_health_df['cholesterol'].replace(0, np.nan)
heart_health_df['cholesterol'].isnull().sum()
```

```
In [12]: from sklearn.impute import KNNImputer

# Initialize the KNN imputer
knn_imputer = KNNImputer(n_neighbors=5)
# Impute missing values using the KNN method
heart_health_df = pd.DataFrame(knn_imputer.fit_transform(heart_health_df), columns=
heart_health_df['cholesterol'].isnull().sum()
```

Out[12]: 0

```
In [13]: # Correlation matrix
#Graph I.

correlation_matrix = heart_health_df.corr()
plt.figure(figsize=(15, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5, fmt='.
plt.title("Correlation Matrix Heatmap")
plt.show()

corr = heart_health_df.corr()
target_corr = corr['target'].drop('target')

# Sort correlation values in descending order
target_corr_sorted = target_corr.sort_values(ascending=False)
```



```
In [14]: #Graph II
# Create a heatmap of the correlations with the target column
sns.set(font_scale=0.8)
sns.set_style("white")
sns.set_palette("PuBuGn_d")
sns.heatmap(target_corr_sorted.to_frame(), cmap="coolwarm", annot=True, fmt='.2f')
plt.title('Correlation with Heart attack')
plt.show()
```


Intepret the Results

Correlations

- 1. Downsloping Peak Exercise ST Segment (slp_downsloping, 0.55): The presence of a downsloping peak exercise ST segment in an ECG report is associated with a higher probability of heart disease. This feature might be indicative of ischemia, which is reduced blood flow to the heart.
- Exercise-Induced Angina (exng, 0.49): Exercise-induced angina is associated with a lower likelihood of heart disease. Similar to typical angina, individuals experiencing chest pain during exercise are more likely to seek early medical intervention, reducing the risk of advanced heart disease.
- 3. Non-anginal Chest Pain (cp_non-anginal pain, 0.47): Non-anginal chest pain also shows a significant positive correlation with heart disease. This type of chest pain is often mistaken for indigestion or muscle pain, possibly leading to delayed diagnosis and treatment.

- 4. ST Depression Induced by Exercise Relative to Rest (oldpeak, 0.40): ST depression induced by exercise, a sign of possible heart stress, shows a negative correlation with heart disease. This could suggest effective treatment and management of patients with this symptom, decreasing the likelihood of severe heart disease.
- 5. Sex (sex_male, 0.31): Males in this dataset are more likely to have heart disease compared to Females.
- 6. Maximum Heart Rate Achieved (-0.40): A high maximum heart rate achieved during testing is associated with a higher likelihood of heart disease. A high heart rate during exercise could reflect an underlying stress on the heart, which might indicate some form of cardiovascular disease.

In the above graph, 1-Male and 0-Female. Men are generally at higher risk of heart disease than women. However, after menopause, a woman's risk increases to almost match that of a man's.

```
In [16]: # Box plot for cholesterol and target
fig3 = px.box(heart_health_df, x='target', y='cholesterol', title='cholesterol')
fig3.show()
```

cholesterol

High levels of (LDL low-density lipoprotein)cholesterol are associated with an increased risk of heart disease, while high levels of HDL (high-density lipoprotein) cholesterol are protective. Cholesterol can build up in the walls of arteries, leading to atherosclerosis.

```
In [17]: # Box plot for fasting blood sugar and target
    fig4 = px.box(heart_health_df, x='target', y='fasting blood sugar', title='fasting
    fig4.show()
```

fasting blood sugar

High fasting blood sugar levels (prediabetes or diabetes) can contribute to narrowing of the arteries and increase the risk of heart disease. A fasting blood sugar level less than 100 mg/dL is considered normal. 100-125 mg/dL is considered prediabetes, and 126 mg/dL or higher on two separate tests means you have diabetes.

```
In [18]: # Box plot for resting bp s and target
fig5 = px.box(heart_health_df, x='target', y='resting bp s', title='resting bp s')
fig5.show()
```

resting bp s

Hypertension (high blood pressure) damages the arteries and makes them more susceptible to plaque buildup, increasing the risk of heart disease and stroke.

Feature Engineering

```
In [19]:
         # Create descriptive statistical features
         # Basic statistics: Providing the model with simple statistical descriptions of the
         heart_health_df['sum'] = heart_health_df[heart_health_df.columns].sum(axis=1)
         heart_health_df['std'] = heart_health_df[heart_health_df.columns].std(axis=1)
                                                                                          # S
         heart_health_df['mean'] = heart_health_df[heart_health_df.columns].mean(axis=1) # M
         heart health df['max'] = heart health df[heart health df.columns].max(axis=1)
         heart_health_df['min'] = heart_health_df[heart_health_df.columns].min(axis=1)
         heart_health_df['mode'] = heart_health_df[heart_health_df.columns].mode(axis=1)[0]
         heart_health_df['median'] = heart_health_df[heart_health_df.columns].median(axis=1)
         heart_health_df['q_25th'] = heart_health_df[heart_health_df.columns].quantile(0.25,
         heart_health_df['q_75th'] = heart_health_df[heart_health_df.columns].quantile(0.75,
         heart health df['skew'] = heart health df[heart health df.columns].skew(axis=1) # 5
         heart_health_df['kurt'] = heart_health_df[heart_health_df.columns].kurt(axis=1) # K
         heart_health_df['range'] = heart_health_df[heart_health_df.columns].max(axis=1) - h
         heart_health_df
```

Out[19]:		age	sex	chest pain type	resting bp s	cholesterol	fasting blood sugar	resting ecg	max heart rate	exercise angina	oldpeak	•••	me
	0	40.0	1.0	2.0	140.0	289.0	0.0	0.0	172.0	0.0	0.0		105.5429
	1	49.0	0.0	3.0	160.0	180.0	0.0	0.0	156.0	0.0	1.0		90.0697
	2	37.0	1.0	2.0	130.0	283.0	0.0	1.0	98.0	0.0	0.0		90.6584
	3	48.0	0.0	4.0	138.0	214.0	0.0	0.0	108.0	1.0	1.5		84.5278
	4	54.0	1.0	3.0	150.0	195.0	0.0	0.0	122.0	0.0	0.0		85.8547
	•••												
	913	45.0	1.0	1.0	110.0	264.0	0.0	0.0	132.0	0.0	1.2		91.1946
	914	68.0	1.0	4.0	144.0	193.0	1.0	0.0	141.0	0.0	3.4		91.0349
	915	57.0	1.0	4.0	130.0	131.0	0.0	0.0	115.0	1.0	1.2		72.2201
	916	57.0	0.0	2.0	130.0	236.0	0.0	2.0	174.0	0.0	0.0		98.6351
	917	38.0	1.0	3.0	138.0	175.0	0.0	0.0	173.0	0.0	0.0		86.3803

918 rows × 24 columns

Modelling

```
In [20]: # Prepare data
         # Define independent variables
         ind_col = [col for col in heart_health_df.columns if col!='target']
         # Define dependent variable
         dep_col = 'target'
         X = heart_health_df[ind_col]
         y = heart_health_df[dep_col]
         # For later use in feature importance plotting
         dataframe = heart_health_df[ind_col]
In [21]: from sklearn.preprocessing import StandardScaler
         # Features features
         scaler = StandardScaler()
         X = scaler.fit_transform(X)
In [22]: from sklearn.model_selection import train_test_split
         # Divide the data set into training set and test set
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta
In [23]: from sklearn.metrics import confusion_matrix, classification_report
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
```

```
def evaluate_model(classifier, model_name, X_train, y_train, X_test, y_test):
   Train, predict, and evaluate a classifier.
   Parameters:
        classifier: The machine learning classifier to train and evaluate.
       model_name: A string representing the name of the model for display.
       X_train, y_train: Training data and labels.
       X_test, y_test: Testing data and labels.
   Returns:
       A dictionary with confusion matrix, accuracy, precision, recall, and F1 sco
   # Train the classifier
   classifier.fit(X train, y train)
   # Make predictions
   y_train_pred = classifier.predict(X_train)
   y_test_pred = classifier.predict(X_test)
   # Evaluate the model
   train_accuracy = accuracy_score(y_train, y_train_pred)
   accuracy = accuracy_score(y_test, y_test_pred)
   precision = precision_score(y_test, y_test_pred, average='macro')
   recall = recall_score(y_test, y_test_pred, average='macro')
   f1 = f1_score(y_test, y_test_pred, average='macro')
   conf_matrix = confusion_matrix(y_test, y_test_pred)
   class_report = classification_report(y_test, y_test_pred)
   # Print the evaluation metrics
   print(f"Training Accuracy of {model name}: {train accuracy:.5f}\n")
   print(f"Confusion Matrix:\n{conf_matrix}\n")
   print(f"Test Accuracy of {model_name}: {accuracy:.5f}")
   print(f"Test Precision of {model name}: {precision:.5f}")
   print(f"Test Recall of {model_name}: {recall:.5f}")
   print(f"Test F1 Score of {model_name}: {f1:.5f}\n")
   print(f"Classification Report:\n{class report}")
   # Return the metrics as a dictionary
   return {
        "Model Name": model_name,
        "Training Accuracy": train_accuracy,
        "Accuracy": accuracy,
        "Precision": precision,
        "Recall": recall,
        "F1 Score": f1,
        "Confusion Matrix": conf_matrix,
        "Classification Report": class_report
   }
```

Here we are evaluating 3 models (K-nearest Neighbors, Naive Bayes model and Logistic regression)

1) K-Nearest Neighbors Model

```
In [24]: from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier()
         model_name = "K-Nearest Neighbors"
         knn_results = evaluate_model(knn, model_name, X_train, y_train, X_test, y_test)
         Training Accuracy of K-Nearest Neighbors: 0.89097
         Confusion Matrix:
         [[100 12]
          [ 17 147]]
         Test Accuracy of K-Nearest Neighbors: 0.89493
         Test Precision of K-Nearest Neighbors: 0.88961
         Test Recall of K-Nearest Neighbors: 0.89460
         Test F1 Score of K-Nearest Neighbors: 0.89179
         Classification Report:
                       precision recall f1-score
                                                       support
                            0.85
                                      0.89
                                                0.87
                  0.0
                                                            112
                  1.0
                            0.92
                                      0.90
                                                0.91
                                                            164
             accuracy
                                                0.89
                                                            276
                                      0.89
                                                0.89
                                                            276
            macro avg
                            0.89
                                      0.89
                                                0.90
                                                            276
         weighted avg
                            0.90
In [25]: from sklearn import metrics
         from sklearn import metrics
         y_pred = knn.predict_proba(X_test)[:, 1]
         auc = metrics.roc_auc_score(y_test, y_pred)
         false_positive_rate, true_positive_rate, thresolds = metrics.roc_curve(y_test, y_pr
         plt.figure(figsize=(8, 6), dpi=40)
         plt.rcParams["axes.grid"] = False
         plt.axis('scaled')
         plt.xlim([0, 1])
         plt.ylim([0, 1])
         plt.title("AUC & ROC Curve")
         plt.plot(false_positive_rate, true_positive_rate, 'g')
         plt.fill_between(false_positive_rate, true_positive_rate, facecolor='lightblue', al
         plt.text(0.95, 0.05, 'AUC = %0.4f' % auc, ha='right', fontsize=12, weight='bold', c
         plt.xlabel("False Positive Rate")
         plt.ylabel("True Positive Rate")
         plt.show()
```


2) Naive Bayes Model

```
In [26]: from sklearn.naive_bayes import GaussianNB
         gnb = GaussianNB()
         model_name = "Gaussian Naive Bayes"
         gnb_results = evaluate_model(gnb, model_name, X_train, y_train, X_test, y_test)
         Training Accuracy of Gaussian Naive Bayes: 0.84268
         Confusion Matrix:
         [[104 8]
          [ 34 130]]
         Test Accuracy of Gaussian Naive Bayes: 0.84783
         Test Precision of Gaussian Naive Bayes: 0.84783
         Test Recall of Gaussian Naive Bayes: 0.86063
         Test F1 Score of Gaussian Naive Bayes: 0.84646
         Classification Report:
                       precision
                                  recall f1-score
                                                        support
                  0.0
                            0.75
                                      0.93
                                                 0.83
                                                            112
                  1.0
                            0.94
                                      0.79
                                                 0.86
                                                            164
             accuracy
                                                 0.85
                                                            276
                            0.85
                                      0.86
                                                 0.85
                                                            276
            macro avg
                                      0.85
                                                            276
         weighted avg
                            0.87
                                                 0.85
```

```
In [27]: y_pred = gnb.predict_proba(X_test)[:, 1]
auc = metrics.roc_auc_score(y_test, y_pred)

false_positive_rate, true_positive_rate, thresolds = metrics.roc_curve(y_test, y_pr

plt.figure(figsize=(8, 6), dpi=40)
plt.axis('scaled')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylim([0, 1])
plt.title("AUC & ROC Curve")
plt.plot(false_positive_rate, true_positive_rate, 'g')
```

```
plt.fill_between(false_positive_rate, true_positive_rate, facecolor='lightblue', al
plt.text(0.95, 0.05, 'AUC = %0.4f' % auc, ha='right', fontsize=12, weight='bold', c
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.show()
```


3) Logistic Regression

```
In [28]: from sklearn.linear_model import LogisticRegression
    logreg = LogisticRegression()
    model_name = "Logistic Regression"
    logreg_results = evaluate_model(logreg, model_name, X_train, y_train, X_test, y_test)
    Training Accuracy of Logistic Regression: 0.91589
```

Confusion Matrix: [[107 5]

[14 150]]

Test Accuracy of Logistic Regression: 0.93116 Test Precision of Logistic Regression: 0.92602 Test Recall of Logistic Regression: 0.93500 Test F1 Score of Logistic Regression: 0.92945

Classification Report:

	precision	recall	f1-score	support
0.0	0.88	0.96	0.92	112
1.0	0.97	0.91	0.94	164
accuracy			0.93	276
macro avg	0.93	0.93	0.93	276
weighted avg	0.93	0.93	0.93	276

```
In [29]: y_pred = logreg.predict_proba(X_test)[:, 1]
auc = metrics.roc_auc_score(y_test, y_pred)

false_positive_rate, true_positive_rate, thresolds = metrics.roc_curve(y_test, y_pred)
```

```
plt.figure(figsize=(8, 6), dpi=40)
plt.axis('scaled')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.title("AUC & ROC Curve")
plt.plot(false_positive_rate, true_positive_rate, 'g')
plt.fill_between(false_positive_rate, true_positive_rate, facecolor='lightblue', al
plt.text(0.95, 0.05, 'AUC = %0.4f' % auc, ha='right', fontsize=12, weight='bold', c
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.show()
```

