Regresi

Bahan Kuliah IF4058 Topik Khusus Informatika I

Oleh; Rinaldi Munir (IF-STEI ITB)

Pendahuluan

- Regresi adalah teknik pencocokan kurva untuk data yang berketelitian rendah.
- Contoh data yang berketelitian rendah data hasil pengamatan, percobaan di laboratorium, atau data statistik. Data seperti itu kita sebut data hasil pengukuran.
- Untuk data hasil pengukuran, pencocokan kurva berarti membuat fungsi mengampiri (approximate) titik-titik data.
- Kurva fungsi hampiran <u>tidak</u> perlu melalui semua titik data tetapi <u>dekat</u> dengannya tanpa perlu menggunakan polinom berderajat tinggi.

 Contoh: diberikan data jarak tempuh (y) sebuah kendaraaan dalam mil- setelah x bulan seperti pada tabel di bawah ini

X	1.38	3.39	4.75	6.56	7.76
у	1.83	2.51	3.65	4.10	5.01

Dari kedua pencocokan tersebut, terlihat bahwa garis lurus memberikan hampiran yang *bagus*, tetapi belum tentu yang *terbaik*. Pengertian terbaik di sini bergantung pada cara kita mengukur galat hampiran.

- Prinsip penting yang harus diketahui dalam mencocokkan kurva untuk data hasil pengukuran adalah:
 - Fungsi mengandung sesedikit mungkin parameter bebas
 - Deviasi fungsi dengan titik data dibuat minimum.
- Kedua prinsip di atas mendasari metode regresi kuadrat terkecil.
- Manfaat pencocokan kurva untuk data hasil pengukuran:
 - 1. Bagi ahli sains/rekayasa: mengembangkan formula empirik untuk sistem yang diteliti.
 - 2. Bagi ahli ekonomi: menentukan kurva kecenderungan ekonomi untuk "meramalkan" kecenderungan masa depan.

Regresi Lanjar

- Misalkan (x_i, y_i) adalah data hasil pengukuran. Kita akan menghampiri titik-titik tersebut dengan sebuah garis lurus.
- Garis lurus tersebut dibuat sedemikian sehingga galatnya sekecil mungkin dengan titik-titik data.

• Karena data mengandung galat, maka nilai data sebenarnya, $g(x_i)$, dapat ditulis sebagai

$$g(x_i) = y_i + e_i$$
 $i = 1, 2, ..., n$ (1)

• yang dalam hal ini, e_i adalah galat setiap data. Diinginkan fungsi lanjar

$$f(x) = a + bx \tag{2}$$

• yang mencocokkan data sedemikian sehingga deviasinya,

$$r_i = y_i - f(x_i) = y_i - (a + bx_i)$$
 (3)

minimum.

Total kuadrat deviasi persamaan (4) adalah

$$R = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Agar R minimum, maka haruslah

$$\frac{\partial R}{\partial a} = -2\sum (y_i - a - bx_i) = 0$$

$$\frac{\partial R}{\partial b} = -2\sum x_i(y_i - a - bx_i) = 0$$

Untuk selanjutnya, notasi ditulis " \sum " saja.

Penyelesaian:

Masing-masing ruas kedua persamaaan dibagi dengan -2:

$$\sum (y_i - a - bx_i) = 0 \qquad \Rightarrow \sum y_i - \sum a - \sum bx_i = 0$$

$$\sum x_i(y_i - a - bx_i) = 0 \qquad \Rightarrow \sum x_i y_i - \sum ax_i - \sum bx_i^2 = 0$$

Selanjutnya,

$$\sum a + \sum bx_i = \sum y_i$$

$$\sum ax_i + \sum bx_i^2 = \sum x_i y_i$$

atau

$$na + b\sum x_i = \sum y_i$$

$$a\sum x_i + b\sum x_i^2 = \sum x_i y_i$$

Kedua persamaan terakhir ini dinamakan **persamaan normal**, dan dapat dapat ditulis dalam bentuk persamaan matriks:

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$

Solusi (nilai a dan b) bisa dicari dengan metode eliminasi Gauss

Atau langsung dengan rumus:

$$b = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a = \overline{y} - b\overline{x}$$

Untuk menentukan seberapa bagus fungsi hampiran mencocokkan data, kita dapat mengukurnya dengan **galat RMS** (*Root-mean-square error*):

$$E_{RMS} = \left(\frac{1}{n} \sum_{i=1}^{n} \left| f(x_i) - y_i \right|^2\right)^2$$

Semakin kecil nilai E_{RMS} semakin bagus fungsi hampiran mencocokkan titik-titik data.

• Contoh: Tentukan persamaan garis lurus yang mencocokkan data pada tabel di bawah ini. Kemudian, perkirakan nilai y untuk x = 1.0.

Penyelesaian:

i	x_i	y_i	x_i^2	$x_i y_i$
1	0.1	0.61	0.01	0.061
2	0.4	0.92	0.16	0.368
3	0.5	0.99	0.25	0.495
4	0.7	1.52	0.49	1.064
5	0.7	1.47	0.49	1.029
6	0.9	2.03	0.81	1.827
	$\sum x_i = 3.3$	$\sum y_i = 7.54$	$\sum x_i^2 = 2.21$	$\sum x_i \ y_i = 4.844$

Diperoleh sistem persamaan lanjar:

$$\begin{bmatrix} 6 & 3.3 \\ 3.3 & 2.21 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 7.54 \\ 4.844 \end{bmatrix}$$

Solusi SPL di atas adalah:
$$a = 0.2862$$

 $b = 1.7645$

Persamaan garis regresinya adalah: f(x) = 0.2862 + 1.7645x.

Perbandingan antara nilai y_i dan $f(x_i)$:

i	x_i	y_i	$f(x_i) = a + bx_i$	deviasi	(deviasi) ²
1	0.1	0.61	0.46261	0.147389	0.02172
2	0.4	0.92	0.99198	-0.07198	0.00518
3	0.5	0.99	1.16843	-0.17844	0.03184
4	0.7	1.52	1.52135	-0.00135	0.00000
5	0.7	1.47	1.52135	-0.05135	0.00264
6	0.9	2.03	1.87426	0.15574	0.02425
					$\Sigma = 0.08563$

Taksiran nilai y untuk x = 1.0 adalah

$$y = f(1.0) = 0.2862 + 1.7645(1.0) = 2.0507$$

Galat RMS adalah
$$E_{RMS} = (\frac{0.08563}{6})^{1/2} = 0.119464$$

Pelanjaran

- Regresi lanjar hanya tepat bila data memiliki hubungan lanjar antara peubah bebas dan peubah terikatnya.
- Gambar berikut memperlihatkan bahwa garis lurus tidak tepat mewakili kecenderungan titi-titik data. Fungsi kuadratik lebih tepat menghampiri titik-titik tersebut.

- Langkah pertama dalam analisis regresi seharusnya berupa penggambaran titik-titik data pada diagram kartesian
- Kemudian secara visual memeriksa data untuk memastikan apakah berlaku suatu model lanjar atau model nirlanjar.
- Penggambaran titik-titik ini sekaligus juga sangat membantu dalam mengetahui fungsi yang tepat untuk mencocokkan data.
- Meskipun fungsi hampiran berbentuk nirlanjar, namun pencocokan kurva dengan fungsi nirlanjar tersebut dapat juga diselesaikan dengan cara regresi lanjar.

Tiga macam fungsi nirlanjar di bawah ini:

1. Persamaan pangkat sederhana

$$y = Cx^b$$
, $C \operatorname{dan} b \operatorname{konstanta}$.

2. Model eksponensial

$$y = Ce^{bx}$$
, C dan b konstanta.

Contoh: - model pertumbuhan populasi

- model peluruhan zat radioaktif
- 3. Persamaan laju pertumbuhan jenuh (saturation growth-rate)

$$y = \frac{Cx}{d+x}$$
, C dan d konstanta.

Contoh: model pertumbuhan bakteri kondisi pembatas (misalnya dibatasi oleh jumlah makanan)

Pelanjaran Persamaan Pangkat Sederhana

Misalkan kita akan mencocokkan data dengan fungsi

$$y = Cx^b$$

Lakukan pelanjaran sebagai berikut:

$$y = Cx^b \Leftrightarrow$$

$$y = Cx^b \iff ln(y) = ln(C) + b ln(x)$$

Definisikan

$$Y = In(y);$$
 $a = In(C);$ $X = In(x)$

Persamaan regresi lanjarnya adalah:

$$Y = a + bX$$

Lakukan pengubahan dari (x_i, y_i) menjadi $(ln(x_i), ln(y_i))$, lalu hitung a dan b dengan cara regresi lanjar. Dari persamaan a = In(C), kita dapat menghitung nilai

$$C = e^{a}$$

Sulihkan nilai b dan C ke dalam persamaan pangkat $y = Cx^b$.

• **Contoh**: Cocokkan data berikut dengan fungsi $y = Cx^b$.

Penyelesaian:

i	x_i	y_i	$X_i = ln(x_i)$	$Y_i = ln(y_i)$	X_i^2	$X_i Y_i$
1	0.1500	4.4964	-1.8971	1.5033	3.5990	-2.8519
2	0.4000	5.1284	-0.9163	1.6348	0.8396	-1.4980
3	0.6000	5.6931	-0.5108	1.7393	0.2609	-0.8884
4	1.0100	6.2884	0.0100	1.8387	0.0001	0.0184
5	1.5000	7.0989	0.4055	1.9599	0.1644	0.7947
6	2.2000	7.5507	07885	2.0216	0.6217	1.5940
7	2.4000	7.5106	0.8755	2.0163	0.7665	1.7653
			$\sum X_i = -1.2447$	$\sum Y_i = 12.7139$	$\sum X_i^2 = 6.2522$	$\sum X_i Y_i = -1.0659$

Diperoleh sistem persamaan lanjar

$$\begin{bmatrix} 7 & -1.2447 \\ -1.2447 & 6.2522 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 12.7139 \\ -1.0659 \end{bmatrix}$$

Solusi SPL di atas: a = 1.8515 dan b = 0.1981.

Hitung
$$C = e^a = e^{1.8515} = 6.369366$$

Jadi, titik-titik (x, y) pada tabel di atas dihampiri dengan fungsi pangkat sederhana:

$$y = 6.369366 x^{0.1981}$$

Pelanjaran Model Eksponensial $y = Ce^{bx}$

Misalkan kita akan mencocokkan data dengan fungsi

$$y = Ce^{bx}$$

Lakukan pelanjaran sebagai berikut:

$$y = Ce^{bx} \Leftrightarrow ln(y) = ln(C) + bx ln(e)$$

 $\Leftrightarrow ln(y) = ln(C) + bx (ingat: ln(e) = 1)$

Definisikan

$$Y = In(y);$$
 $a = In(C);$ $X = x$

Persamaan regresi lanjarnya:

$$Y = a + bX$$

Lakukan pengubahan dari (x_i, y_i) menjadi $(x_i, ln(y_i))$, lalu hitung a dan b dengan cara regresi lanjar.

Dari persamaan a = ln(C), kita dapat menghitung nilai $C = e^a$. Sulihkan nilai b dan C ke dalam persamaan eksponensial $y = Ce^{bx}$.

Pelanjaran Model Laju Pertumbuhan Jenuh $y = \frac{Cx}{d+x}$

Misalkan kita akan mencocokkan data dengan fungsi

$$y = \frac{Cx}{d+x}$$

Lakukan pelanjaran sebagai berikut:

$$y = \frac{Cx}{d+x}$$

$$\frac{1}{y} = \frac{d}{C} \frac{1}{x} + \frac{1}{C}$$

Definisikan

$$Y = 1/y$$

$$a = 1/C$$

$$b = d/C$$

$$X = 1/x$$

Persamaan regresi lanjarnya:

$$Y = a + bX$$

Lakukan pengubahan dari (x_i, y_i) menjadi $(1/x_i, 1/y_i)$, lalu hitung a dan b dengan cara regresi lanjar.

Dari persamaan a = 1/C, kita dapat menghitung nilai C = 1/a. Dari persamaan b = d/C, kita dapat menghitung d = bC. Sulihkan d dan C ke dalam persamaan laju pertumbuhan jenuh y = Cx/(d+x).

Fungsi $y = f(x)$	Bentuk lanjar $y = a + bX$	Perubahan peubah dan kontanta	
y-f(x)	y = u + bX	TIO TIVE	
$y = Cx^b$	ln(y) = ln(C) + b ln(x)	$Y = ln(y), X = ln(x),$ $C = e^{a}$	
$y = Ce^{bx}$	ln(y) = ln(C) + bx	$Y = ln(y), X = x, C = e^a$	
$y = \frac{Cx}{d+x}$	$\frac{1}{y} = \frac{d}{C} \frac{1}{x} + \frac{1}{C}$	Y = 1/y, X = 1/x $C = 1/a, d = bC$	
$y = a + \frac{b}{x}$	$y = a + b\frac{1}{x}$	Y = y, X = 1/x	
$y = \frac{D}{x + C}$	$y = \frac{D}{C} + \frac{-1}{C}(xy)$	$Y = y, X = xy,$ $C = \frac{-1}{b}, D = \frac{-a}{b}$	
$y = \frac{1}{a + bx}$	$\frac{1}{y} = a + bX$	$Y = \frac{1}{y}, X = x$	
$y = (a + bx)^{-2}$	$y^{-1/2} = a + bX$	$Y = y^{-1/2}, X = x$	
$y = Cxe^{-Dx}$	$\ln(\frac{y}{x}) = \ln(C) + (-Dx)$	$Y = \ln(\frac{y}{x}), X = x$	
		$C = e^a, D = -b$	