Mathematical Methods in Engineering and Applied Science Problem Set 10.

(1). Solve the initial value problem for the advection equation

$$u_t + (1-t)u_x = 0, t > 0, x \in R$$

$$u(x,0) = \frac{1}{1+x^2}$$

Plot the characteristic curves as well as the solution u(x,t) at several different times.

$$\frac{dt}{ds} = 1, \quad \frac{dx}{ds} = 1 - t, \quad \frac{du}{ds} = 0$$

$$dt = ds, \quad x = t - \frac{t^2}{2} + c$$

For initial: x = p, t = 0, $u(p, 0) = \frac{1}{1+p^2}$:

$$x = t - \frac{t^2}{2} + p$$
, $u = \frac{1}{1 + p^2} = \frac{1}{1 + \left(x - t + \frac{t^2}{2}\right)^2}$

Characteristics:

Solutions:

u(x, 0) = u(x, 2), therefore u(x, 0) figure under u(x, 2)

(2). Use the method of characteristics to solve the initial-boundary value problem:

$$u_t + u_x = t + x,$$
 $t > 0, x > 0$
 $u(x, 0) = 0$
 $u(0, t) = t$

Plot the characteristic curves as well as the solution u(x,t) at several different times.

$$\frac{dt}{ds} = 1$$
, $\frac{dx}{ds} = 1$, $\frac{du}{ds} = t + x$

$$u(x,0) = 0$$
, $x > t$, =>initial: $t = 0$, $x = p$, $u = 0$; $t = s$, $x = s + p$

$$\frac{du}{ds} = s + s + p => u = s^2 + ps = t^2 + (x - t)t = xt$$
 $u = xt$

$$u(0,t) = 0$$
, $x < t$, =>boundary: $t = p$, $x = 0$, $u = p$; $t = s + p$, $x = s$, => $t = x + p$
$$\frac{du}{ds} = s + p + s => u = s^2 + ps + p = x^2 + (t - x)x + t - x = tx + t - x$$
 $u = tx + t - x$

Summing up:

Solution:

$$u = \frac{xt + t - x}{xt}, \quad x < t$$

Characteristics:

$$x = t + p,$$
 $x > t$
 $t = x + p,$ $x < t$

(3). Solve the initial value problem for the Hopf equation:

$$u_t + uu_x = 0$$
, $x \in R, t > 0$, $u(x, 0) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & otherwise \end{cases}$

$$\frac{dt}{ds} = 1, \qquad \frac{dx}{ds} = u, \qquad \frac{du}{ds} = 0$$

This equation means that u is speed.

From the initial cond. we have shock at x = 1, and fan at x = 0.

Shock speed:

$$\dot{s} = \frac{u_+ + u_-}{2} = \frac{1}{2} + \frac{0}{2} = \frac{1}{2} = > s = \frac{1}{2}t + p$$

Position of shock at time =0 is 1, therefore $s = \frac{1}{2}t + 1$

The fan function: $u = \frac{x}{t}$, it intersects shock when: u = 1 = x

For fan: x = t

For shock: $x = \frac{1}{2}t + 1($ - right side).

Solution is x = 2, t = 2

Summing up:

u(x,t) = 0: if $x \le 0$ – before fan, $(x > \sqrt{2t}, t > 2)$ and $(x < 1 + \frac{t}{2}, t > 2)$ - after shock.

u(x,t) = 1: only on the start: $(t < x < 1 + \frac{t}{2}, t < 2)$

 $u(x,t) = \frac{x}{t}$ -otherwise

Let's Plot:

$$t = 0$$

t < 2

(4). Determine the traveling wave solutions u = U(z), z = x - ct, of the problem

$$\left(u + \frac{u^2}{2}\right)_t = u_{xx} - u_x$$

with
$$U(-\infty) = 0$$
, $U(\infty) = 1$, $U(0) = \frac{1}{2}$.

Let's u = U(z)

$$\frac{d\left(U + \frac{U^2}{2}\right)}{dt} = \frac{d\left(U + \frac{U^2}{2}\right)}{dz}\frac{dz}{dt} = -c\frac{d}{dz}\left(U + \frac{U^2}{2}\right)$$

$$\frac{dx}{dz} = 1 \Rightarrow u_{xx} - u_x = U_{zz} - U_z$$

$$-c\frac{d}{dz}\left(U + \frac{U^2}{2}\right) = U_{zz} - U_z$$

$$-c\left(U + \frac{U^2}{2}\right) = U_z - U + C$$

as far as $U'(\pm \infty) = 0$ then:

since
$$U(-\infty) = 0 = -c(0) = 0 - 0 + C = 0$$

since
$$U(\infty) = 1 = -c\left(1 + \frac{1}{2}\right) = 0 - 1 = c = \frac{2}{3}$$
$$-\frac{2}{3}\left(U + \frac{U^2}{2}\right) = U_z - U$$

$$U_z = -\frac{2}{3}\left(U + \frac{U^2}{2}\right) + U = \frac{1}{3}U(1 - U)$$

$$\frac{dU}{U(1-U)} = \frac{1}{3}dz$$

$$\frac{dU}{U(1-U)} = \frac{1}{3}dz$$

$$\int \frac{dU}{U(1-U)} = \int \frac{1}{U} + \frac{1}{1-U}dU = \ln(U) - \ln(1-U) = \ln\left(\frac{U}{1-U}\right)$$

$$\ln\left(\frac{U}{1-U}\right) + \ln(A) = \frac{1}{2}z$$

$$\frac{U}{1-U}A = \exp\left(\frac{1}{3}z\right)$$

Since $U(0) = \frac{1}{2}$ then:

$$\frac{1/2}{1-1/2}A = \exp(0) \Longrightarrow A = 1$$
$$\frac{U}{1-U} = \exp\left(\frac{1}{3}z\right)$$

Finally:

$$U = \frac{\exp\left(\frac{1}{3}z\right)}{1 + \exp\left(\frac{1}{3}z\right)}$$

Where z = x - ct, $c = \frac{2}{3}$

(5). Consider the reaction-diffusion system

$$u_t = Du_{xx} + u + v, 0 < x < \pi$$

 $v_t = 3u - v,$

with no-flux boundary conditions.

(a) Analyze first the spatially homogeneous case with D = 0.

$$u_t = u + v, \quad 0 < x < \pi$$
 $v_t = 3u - v,$
 $J = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$

Fixed point: (0,0)

$$\tau = 0, \Delta = -4 => sadle point$$

Nullclines: (u = -v), (v = 3u)

(b) Determine the growth rate σ of the normal modes, $w = [u, v]^T = a(t) \cos nx$, n = 0, 1, 2, ...

Lecture formula:
$$\det(J - \sigma I - n^2 A)$$
, where $J = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$, $A = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$
$$\det(J - \sigma I - n^2 A) = \det\begin{bmatrix} 1 - \sigma - n^2 D & 1 \\ 3 & -1 - \sigma \end{bmatrix} = (1 - \sigma - n^2 D)(-1 - \sigma) - 3$$
$$= \sigma^2 + \sigma n^2 D + n^2 D - 4 = 0$$

Find roots:

$$\sigma_{1,2} = \frac{-n^2D \pm \sqrt{n^4D^2 - 4n^2D + 16}}{2}$$

(c) For a given D, which modes are unstable? Discuss the behavior at large D and at small D. Unstable modes if $Re(\sigma) > 0$.

Consider:

$$n^4D^2-4n^2D+16 \text{ which is always}>0 => -n^2D-\sqrt{n^4D^2-4n^2D+16}<0$$

$$Re(\sigma_2)<0$$

$$-n^2D+\sqrt{n^4D^2-4n^2D+16}<0 \text{ if } n>\frac{2}{\sqrt{D}}$$

Modes unstable if $n < \frac{2}{\sqrt{D}}$ and $Re(\sigma_1) > 0$.

For large D all modes are stable(except n=0), because $n<\frac{2}{\sqrt{D}}\ll 1$

For small D number of unstable modes more, because $\frac{2}{\sqrt{D}} \gg 1$

- (d) What is the largest value of D such that spatially non-uniform perturbations grow with time? $\frac{2}{\sqrt{D}} = 1$ if D = 4 => spatially non-uniform perturbations grow with time if D < 4
- (e) Plot the neutral curve, i.e. D (n) dependence for zero growth rate, $Re(\sigma) = 0$, and indicate the regions in the D n plane where the solution is stable and where it is

unstable

As we found before
$$\sigma^2 + \sigma n^2 D + n^2 D - 4 = 0$$

 $Re(\sigma) = 0 \Rightarrow \sigma = 0 \Rightarrow n^2 D - 4 = 0$

Let's plot

$$D = \frac{4}{n^2}$$

Under line zone of instability Above line zone of stability.

(6). (Extra credit). Equation $u_t + c(x,t)u_x = 0$ describes variable-speed advection in a certain non-uniform medium. Explain how to solve it by the method of characteristics for general c(x,t) and initial data u(x,0) = f(x). Next, specialize to $c = 1 + \epsilon \sin x$ with small parameter $\epsilon \to 0$ and find an explicit form of the solution including terms up to $O(\epsilon)$. Let $f = e^{-x^2}$ and plot the solution at $\epsilon = 0.1$ at several different t or as a surface in the (x,t)-plane. What happens if $c = 1 + \sin x$?

$$u_t + c(x,t)u_x = 0$$

$$\frac{dt}{ds} = 1, \frac{dx}{ds} = c(x,t), \frac{du}{ds} = 0$$

$$u(x,0) = f(x) = \text{sinitial: } t = 0, x = p, u = f(p)$$

$$\frac{dt}{ds} = 1 = \text{s} t = s$$

$$\frac{dx}{ds} = c(x,s) = \text{solve this with respect to } x, \text{ and we get } x = w(s) - w(0) + p$$

$$p = x - w(s) + w(0)$$

$$\frac{du}{ds} = 0 = \text{solve this with respect to } x, \text{ and we get } x = w(s) - w(0) + p$$

$$p = x - w(s) + w(0)$$

$$u = f(x - w(t) + w(0)), \text{ where } w(s) \text{ is the solution of } \frac{dx}{ds} = c(x,s)$$