

ABOUT THIS COURSE

- Course Meeting Times:
 - Weekly: Tuesday + Wednesday: I-2-2-2-2(Irst half of the sem)
- Prerequisites:
 - CA, OS, DSD...

TAs:

- Mariam
- Ghada
- Readings:

• Course Material: Lecture notes + references + etc.

COURSE'S OUTLINE

- The Real-time paradigm and embedded concept
- Hardware and Software aspects
- RTOS: FreeRTOS
- Embedded buses: I2C, UART, ...
- RTES challenges: Security, dependability and autonomy.
- RTES standards in the Automotive industry (ECUs, CAN -intro:AUTOSAR)

TUTORIALS

- Nios II on FPGA
- Arduino standalone
- freeRTOS on Visual Studio/on Arduino
- Communication (Buses)
- Exercises and Case studies
- At home: Vector CANoe (optional)

COMPUTER?

NUMBER OF COMPUTERS IN...

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090016290.pdf

Apollo command module (CM) and Apollo Lunar Module (LM)? :

Only one! Apollo Guidance Computer (AGC): 16-bit! ~2Mhz

NUMBER OF COMPUTERS IN...

• Average cars: ~80

• Luxury cars? >= 150 ECUs

NVIDIA	Tegra .	3 CPU	board	from	S/X	MCU1
--------	---------	-------	-------	------	-----	------

Name	Area	Notes	Sets	CPUs	Sub-total
ABS (Anti-lock Braking)	?		1	1	1
AC Motor Inverter/Charger	Rear		1	2	2
Active Cruise Control	?	Cars built after 14-Sep- 2014	i	Ĩ	1
Air Suspension	?	Continental	1	1	1
AM/FM/HD radio	Dash	Panasonic	1	1	1
Audio System	Dash	PIC18f2550	1	1	1
Autopilot 1 Camera CPU*	Windshield	Mobileye EyeQ3	1	1	1
Autopilot 1 Processor*	Windshield	Freescale SPC5603	1	1	1
Autopilot 2.0 Processors*	Dash	Nvidia PX2 & one Freescale CPU	1	2	2
Battery Sub-Module	Battery	16 in 85/90 kWh, 14 in 60/70 kWh models	16	1	16
Bluetooth	Dash		1	1	1
Charger Module	Rear Seat	1-Standard, 2-optional	2	1	2
Connectivity – 3G/LTE	Dash	Sierra Wireless AR8550 (3G) later AR755X (LTF)	1	1	1

SOUBRA©2022 7

NUMBER OF COMPUTERS IN...

• Smart homes?.....

RESEARCH CLUSTER

Looking for motivated junior apprentices!

"A real-time system is any information processing system which has to respond to externally generated input stimuli within a finite and specified period"

• Soft RT systems

• Firm RT systems

• Hard RT systems...and also Weakly Hard

Soft RT systems:

- Deadline overruns are not desired, but tolerable.
- No catastrophic consequences of missing deadlines.
- There is some cost associated to overrunning.
- Often connected to Quality-of-Service(QoS)

Soft RT systems examples:

Firm RT systems

- The computation is obsolete if the job is not finished on time.
- Cost may be interpreted as loss of energy/time/money.

Firm RT systems examples:

- Hard real-time systems...
 - They are safety critical.
 - A deadline overrun leads to a catastrophe (loss of lives and/or huge damage)

- ...and also **Weakly** hard real-time
 - Systems where a fixed number of deadlines have to be at least met.
 - Probabilistic guarantees are sufficient for these systems.

• Hard real-time systems:

SOUBRA©2022

• Weakly Hard real-time systems:

SOUBRA©2022

WHAT ARE EMBEDDED SYSTEMS?

WHAT ARE EMBEDDED SYSTEMS?

"An embedded system is a computer system that is part of a larger system.

It interacts with its environment, often with real-time computing constraints"

SOUBRA©2022

EMBEDDED SYSTEMS: FACTS AND FIGURES IN 2008!

- Over 4 billion embedded processors were sold last year [2007] and the global market is worth €60 billion with annual growth rates of 14%.
- Forecasts predict more than 16 billion embedded devices by 2010 and over 40 billion by 2020.
- Within the next five years [2013], the share of embedded systems are expected to increase substantially in markets such as automotive (36%), industrial automation (22%), telecommunications (37%), consumer electronics (41%) and health/medical equipment (33%).

REAL-TIME EMBEDDED SYSTEMS: CONSTRAINTS

• Time-related: Must fulfill execution on 'strict' timing: latency, throughput

• Resources: power, size, weight, heat, etc.

• No or minimal user interface

REAL-TIME EMBEDDED SYSTEMS: DESIGN ISSUES

- 1. The selection of hardware and software, and evaluation of the tradeoff needed for a cost-effective solution
- 2. Dealing with distributed computing systems and the issues of parallelism and synchronization.
- 3. Correct representation of temporal behavior.
- 4. Understanding the nuances of the programming language(s) and the real-time implications resulting from their translation into machine code.

REAL-TIME EMBEDDED SYSTEMS: DESIGN ISSUES

- 5. Maximizing of system fault tolerance and reliability through careful design.
- 6. The design and administration of tests, and the selection of test and development equipment.
- 7. Taking advantage of open systems technology and interoperability.
- 8. Measuring and predicting response time and reducing it.
- 9. Performing a schedulability analysis, that is, determining and guaranteeing deadline satisfaction, *a priori*, is largely "just" scheduling theory.

REAL-TIME EMBEDDED SYSTEMS: DESIGN AND MODELING

Step 0:High level requirements

- Informal requirements
- Text & algorithms

Step 1: Modeling

- Functional requirements (FR)
- Non FR

Step 2: developmen

Development process

EMBEDDED SOFTWARE OR HARDWARE?

