Recall: Periodic Law

- Elements are arranged in order of increasing atomic number
- Elements with similar properties occur at regular intervals

Recall: Groups in the periodic table

i.e. Alkali metals

- -Alkali metals have one half-filled s orbital
- -Hence they readily lose an electron to achieve stability

K

Recall: Groups in the periodic table

i.e. Transition metals

-Transition metals are elements where the highest-energy electrons are in **d** orbitals

-They may lose electrons in their **d** and **s** orbitals when forming ions to achieve stability

GROUPS

13 14 15 16 17 18

Recall: Groups in the periodic table

i.e. **Halogens**

-Halogens are missing one electron to achieve a stable **p** sub-shell

Recall: Valence electrons

-electrons in the outermost principal quantum level of an atom

How many valence electrons are there in each group?

How many valence electrons are there in each group:									
1A			ъ.			0.43			noble
н	Abr	idged	Perio	dic Ta	able of	the E	leme 1	1ts	He
1s ¹	2.4			2.4	4.4	= 1			1s ²
18	2A			3A 5	4A	5A.	6A	7A.	18
Li	Be T			В	C	N	o	F	Ne
1s ² 2s ¹	1s ² 2s ²		1s ²	$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	2s ² 2p ⁴	2s ² 2p ⁵	2s ² 2p ⁶
Na 11	Mg ¹²	1B	2B	AI 13	Si ¹⁴	15 P	S 16	CI 17	Ar 18
	_	ID		3s ² 3p ¹	3s ² 3p ²	3s ² 3p ³	3s ² 3p ⁴	3s ² 3p ⁵	3s ² 3p ⁶
[Ne]3s ¹	[Ne] 3s ²		[Ne]					·	
K ¹⁹		Cu ²⁹	Zn ³⁰	Ga ³¹	Ge ³²	As ³³	Se ³⁴	Br ³⁵	Kr ³⁶
[Ar] 4s ¹	[Ar]3d ¹⁰	4s ¹	4s ²	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	4s ² 4p ⁵	$4s^24p^6$
Rb ³⁷		47 A ct	Cd 48	49 in	50 Sn	51 Sb	Te ⁵²	53	Xe ⁵⁴
	10	Ag						- 2 - 5	
[Kr] 5s ¹	[Kr]4d ¹⁰	5s ¹	5s ²	5s ² 5p ¹	5 s²5p²	5 ջ² 5թ³	5s ² 5p ⁴	5s ² 5p ⁵	5 ջ ² 5թ ⁶
55		79	80	81	82	83	84	85	86
Cs	[Xe]	Au	Hg	TI	Pb	Bi	Po	At [Rn
[Xe] 6s ¹	$4f^{14}5d^{10}$	6s ¹	6s ²	6s ² 6p ¹	6s²6p²	6s ² 6p ³	6s ² 6p ⁴	6s ² 6p ⁵	6s ² 6p ⁶

Recall: Trends

Trend: Atomic Radius - Down a group

Electrons are attracted by the nucleus (+), but repelled by other electrons (-).

Thus electrons 'shield' other electrons from the attraction of the nucleus.

This shielding reduces the full nuclear charge to an **effective nuclear charge** (**Z**_{eff}), the nuclear charge an electron actually experiences.

ANALOGY: The aromas from a cookie factory

Trend: Atomic Radius – **Down a group**

- -The more energy levels there are, the more the nucleus is shielded from the outermost electrons
- -Force of attraction between nucleus and outermost electrons becomes weaker, making the atomic radius bigger

Trend: Atomic Radius – Across a period

- -Electrons within the same valence level contribute minimally to shielding each other from the nuclear charge
- -Thus the more protons there are, the greater the attraction between the nucleus and the outermost electrons

Trend: Ionization energy

Energy required to remove the most weakly held (outermost) electron

Trend: Ionization energy – **Down a group**

-The less shielding between the nucleus and outermost electrons, the greater the force of attraction (.: greater ionization energy)

Trend: Ionization energy – Across a period

-The greater the force of attraction between the nucleus and the outermost electron, the more energy it requires to remove it

Trend: Ionization energy

Graphing the first ionization energy reveals exceptions

Trend: Ionization energy - Exceptions

It requires much more energy to remove the outermost electron of helium than lithium

This will destabilize a full orbital

.: greater ionization energy is required This will not destabilize a full orbital

.: less ionization energy is required

Trend: Ionization energy - Exceptions

If removing the outermost electron destabilizes a sub-shell, then the ionization energy is abnormally higher

Trend: Ionization energy - Exceptions

The third electron in the p subshell requires more energy to remove than the fourth electron

$$\uparrow$$
 \uparrow \uparrow vs \uparrow \uparrow

Removing the third electron produces this:

Having all three half-full orbitals is more stable than having one orbital completely empty

Stability: Rank the following from most to least stable

Trend: Ionization energy - Exceptions

4s and 3d are close in energy, so there is no great change in ionization energy in between.

RECALL:

ELECTRONEGATIVITY

Trend: Electronegativity

Ability of an atom to attract electrons in a chemical bond

The trend may be explained by the effect of shielding of the nucleus, which makes its effective nuclear charge weaker when there are more energy levels or fewer protons.

ELECTRON AFFINITY

Trend: Electron Affinity

Amount of energy released when an atom gains an electron.

Atoms that gain stability when an electron is added will release more

energy

This trend has several exceptions. Why?

ELECTRON AFFINITY

Trend: Electron Affinity

SUMMARY

Trends:

Calculated atomic radius (pm)

First ionization energy (kJ/mol)

Magnitude of electron affinity (kJ/mol)

