<u>POWER MANAGEMENT INTEGRATED CIRCUITS</u> <u>PROJECT - 1</u>

Linear Dropout Voltage Regulator

By: Raj Patel

• Circuit Diagram

Fig 1: Schematic layout

Parameters	Values
Vin	1.8 V
Miller Capacitance(C _c)	6p F
Load Capacitance	500p F
Vref	1 V
R ₁	60k Ω
R ₂	100k Ω
Load Current	100m A

Table 1: Basic Parameters

Transistor Ratios

Transistor	Width (W)	Length (L)	Multiplier (m)	W/L Ratio	Vov(V)
M0(Nmos Differntial Pair)	7 µm	1 µm	8	56/1	37m
M1(Nmos Differntial Pair)	7 µm	1 µm	8	56/1	36m
M2(Pmos Current Mirror)	10 µm	1 µm	10	100/1	112m
M3(Pmos Current Mirror)	10 µm	1 µm	10	100/1	112m
M4(Pass Transistor)	100 μm	0.18 μm	200	20000/0.18	66m
M5(Tail Transistor)	7 μm	5 µm	6	42/5	269m
M6(Tail current Mirror)	0.525 μm	0.18 μm	1	0.525/0.18	284m

Table 2: Transistor ratios

• Size of Transistors

kn = 270 upA/ v2 70=1/2 Kn W/ (Vov)2 50 x186 = 1 x 270 x 106 x W1 x 0.01 100 = W|L W1 = 37 + Now pros current Mirror To = 112 KOWIL (VOV) 2 =) taking ID = 50 MA, VOV = 0.2 M1 = 50 + Ar Tall Transistor 30=112 Kn W, (Vov)2 taking vov = 2.74, 20 = 50 MA 4 W = 8.4 and (WIL) tail = (WIL) the count Mirror

• Stability Summary

Load(mA)	Phase Margin	Gain Margin	BandWidth	Loop Gain
20m	61.75 °	16.441 dB	5.92 MHz	71.95 dB
50m	66.75 °	19.97 dB	5.72 MHz	69.67 dB
100m	70.186 °	22.96 dB	5.22 MHz	69.362 dB

Table 3: stability summary

• Block wise power consumption

Blocks	Light Load	Nominal Load	Full Load
Feedback	17μ W	17µ W	17μ W
ОТА	152.468µ W	152.47µ W	152.471µ W
Pass transistor	4m W	10m W	20m W

Table 4: Power Consumption

• Loop Gain

1. At Light Load(20mA)

Fig 2: Loop Gain at Light load

2. At Nominal load(50mA)

Fig 3: Loop Gain at Nominal load

3. At Full Load(100mA)

Fig 4: Loop Gain at Full load

PSRR(Power Supply Rejection Ratio)

Fig 5: PSRR at light load

Efficiency

Fig 6: Efficiency across load range(Light to Nominal)

• Line Regulation

Fig 7: Line Regulation

Load Regulation

Fig 8: Line Regulation

Transient Response(At Light Load - Nominal Load)

Fig 9: Transient response

• Settling time(Transient response)

Fig 10: Settling time(< 200n s)

Load Range	Overshoot	Undershoot	Settling Time
20m A → 50m A	-	140m V	200n s
50m A → 20m A	117 mV	-	200n s

Table 5: Transient response

Final Results

Parameters	Behaviour	
PSRR	-36.21 dB at 100KHz	
Load Regulation	≤ 0.05% Across Load Range	
Line Regulation	≤ 0.00125 for ± 2.5% of Input voltage	
Phase Margin	≥ 61.75% across Load Range	
Efficiency	≥ 88.46% across Load Range	
Transient response	Settling time(< 200n s)	
	Overshoot/Undershoot ≤ 140m V	

Table 6: Final summary