SM II Abgabe 2

Fabio Votta

9.November 2018

Aufgabe 1

Wozu werden Standardisierungen durchgeführt und wie wird dabei vorgegangen? Erläutern Sie zudem exemplarisch wozu b* benutzt wird und wie man diesen interpretiert!

$$b^* = b * \frac{s_x}{s_y}$$

Aufgabe 2

Führen Sie eine z-Standardisierung für die Originalaltersvariable (alter_z) und die auf Null gesetzte Altersvariable (alter_0z) sowie für "unsere" Bildungsvariable (0 bis 4). [Daten: ALLBUS 2014]

```
allb_sub_z <- allb_sub %>%
select(einkommen, alter, alter0,
geschl_rec, bildung_rec) %>%
mutate(alter_z = scale(alter),
alter0_z = scale(alter0),
bildung_z = scale(bildung_rec),
einkommen_z = scale(einkommen))
allb_sub_z %>%
select(alter_z, alter0_z) %>%
descr() %>%
#select(-vars, -trimmed, -mad, -se) %>%
kable()
```

var	type	label	n	NA.prc	mean	sd	se	md	trimmed	range	
alter_z	numeric	alter_z	3468	0.0864304	0	1	0.0169809	0.0319708	-0.0110151	4.17 (-1.8-2.37)	0.
$alter 0_z$	numeric	$alter0_z$	3468	0.0864304	0	1	0.0169809	0.0319708	-0.0110151	4.17 (-1.8-2.37)	0.

Aufgabe 2a

Vergleichen Sie die Zahlenwerte, Mean und die Standardabweichung von alterz und alter_0z und erklären Sie Ihre "Beobachtung".

Aufgabe 2b

Führen Sie eine Regression von Einkommen auf Alter_0 und Bildung (Modell 1) und eine Regression von Einkommen auf alter_0z und bildung_z (Modell 2) durch und vergleichen Sie die b-Koeffizienten.

```
mod1 <- lm(einkommen ~ alter0 + bildung_rec, data = allb_sub_z)
mod2 <- lm(einkommen_z ~ alter0_z + bildung_z, data = allb_sub_z)</pre>
```

del 2
.00
.02)
4^{***}
.02)
29***
.02)
.08
.08
039
.96

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Table 2: Statistical models

Table 3:

	Dependent variable: einkommen		
	b	std.b	
	(1)	(2)	
alter0	0.039***	0.135***	
	(0.005)	(0.005)	
bildung_rec	1.199***	0.291***	
<u></u>	(0.074)	(0.074)	
Constant	7.165***	0.000	
	(0.282)	(0.282)	
Observations	3,039	3,039	
\mathbb{R}^2	0.082	0.082	
Adjusted R^2	0.081	0.081	
Residual Std. Error ($df = 3036$)	4.741	4.741	
F Statistic (df = 2 ; 3036)	135.439***	135.439***	
Note:	*p<0.1; **p<0.05; ***p<0.01		

2

Aufgabe 2c

Wie erklären Sie die Werte b und b^* in Modell 2? TIPP: Verwenden Sie bei Modell 2 das z-transformierte Einkommen als abhängige Variable.

Aufgabe 3

Erstellen Sie ein multivariates Regressionsmodell mit Y=Einkommen. Versuchen Sie dabei den R?-Wert so gro? wie nur irgendwie m?glich zu bekommen. Jeder schmutzige Trick der Sozialforschung ist erlaubt (und in diesem Fall erwünscht).

- Einzige Einschränkung: Keine Regression von Y auf Y.