

OM5 Page No. Sean 2 => 11,2 25% 50% 25.1. 50.1. 751 50./. Pruning & => {13} {23} {25} {35} Frequent 2-itemset (2) sup > 40%. Sean 3 ⇒ {123} - 1 -251-{125} - 1 251-{235} 2 501. Frequent 3-20 emsel (2) sup > 40%. [235] b) Association scules from {235} we will generate all the sombination of association will pluning them based on the > min - eonf = 70%.

|   | 2.7934                    |           |        |         |
|---|---------------------------|-----------|--------|---------|
|   | {23}→ {5}                 | sup (XUY) | sup(x) | conf.   |
|   |                           |           |        |         |
|   | {25}→{3}                  | 2         | 3      | 66.67 % |
|   | {35}→{2}                  | - 2 - 2   | 2 2    | 100%    |
|   | [2] -> {3]                | 2         | 3      | 66.671  |
|   | {3}→{2}                   | 2         | 3      | 66.67 1 |
|   | T. 4 . 1-4                | 3         | 3      | 1904    |
| - | {2} → {5}                 | 2         |        | 10%     |
|   | {5}→{2}                   | 3         | 3      | 100%    |
|   | $\{3\} \rightarrow \{5\}$ | 2         | 8      | 66.677. |
|   | $\{5\} \rightarrow \{3\}$ | 2         | 3      | 66.677  |
|   |                           |           | To the |         |
|   |                           |           |        |         |

final strong association such  $\{23\} \rightarrow \{5\}$  (onf = 100%.  $\{35\} \rightarrow \{2\}$  (onf = 100%.  $\{2\} \rightarrow \{5\}$  conf = 100%.

Date / / Justion L Cossonation rule mining af [hog doys] -> [hamburgers] sup ( hot doy U hamburgers ) = 2000 = 0.4 => since sup ( hot day v hamburger & > 25%. conf (hop day, -> hambwegers) = sup ( hot day v hembrugger)
sup ( hot day) = 2000 = 66.67%. since confidence (66.67+) > 50%. 80, hot days -> hamburger is a strong ossociation suche as both sup (401) > min \_ sup (261) conf (66.671) > min - conf (501) meet the threeshold.

Jo ereck for if the pourases of hot dogs frambulyers are idependent, we compande expected observed value

Emperted want = 3000 x 2500 = 1500

⇒ Since the Observed value you both is 2000 is higher than enperties value (1600) so put shows of hob doys of hamburg ou are independent.

borocelution - 2000 > 1500, there is a + Ve excelation between hob day and tramburgers.

17 Left = P(HOUH) P(HO)xP(H)

= 0.4 = 1.33 $0.6 \times 0.5$ 

1.33 > 1 so there is a + ve association.

2) borocelation

Algher than experted

20 + ve correlation bH holdogs of Bambiogers

3) All confidence (min conf)

= min ( P ( hobdag ) P ( hambwyer ) )
= min ( 0.6, 0.5.)
= 20.6

as all confidence (0.5) is lower then

bound of support across both items.

4) Non vonfidence

= man (P(hobdog) P(hamburger)) = man (0.6,0,5)

Nan conf higher then All conf but still lower there actual conf. This measure shows the potential man sup for either of items

5) bosine measure

· VP(AIB) × P(BIA)

P(AUB) X P(BUA)
PCB)

PCHO) × PCH)

=  $\frac{2000}{\sqrt{2500}} \times 2000 = 0.73$ 

0.73 indicates a strong relation ship b/b HO f H by balancing both conditional phobablities based toward either item.

All long => ionservative leaver band useful when stability buren both items is desiled.

Man conf => highest likelishood -> Overestern alion
besime reason => bolances both item set =>
no baises without favouring

gither item.

|           |                                       | aving joint independen                             |               |          |        |
|-----------|---------------------------------------|----------------------------------------------------|---------------|----------|--------|
| Love      | lation =>                             | Effers d                                           | relate        | al ins   | is toe |
|           |                                       |                                                    |               |          |        |
|           |                                       |                                                    |               |          |        |
|           |                                       |                                                    | y *** ***     | 1        |        |
| e elegano |                                       |                                                    |               |          |        |
|           | · · ·                                 |                                                    | Maria Service | ,        |        |
|           | ATP                                   | - 10 F3 C4 - 54                                    |               |          |        |
|           | , , , , , , , , , , , , , , , , , , , |                                                    | 9 - 2         | . 10 ×   |        |
|           | 3                                     |                                                    |               |          |        |
| 18, 14    | Carl New                              | 4.230.7 V                                          | o salita c    | Ver i ge | 5.     |
| j         | 1.10.                                 | in with                                            |               | 311      |        |
| 151251    | 1-12-1                                |                                                    | 334 4         |          |        |
|           |                                       |                                                    | *             |          | . \    |
|           |                                       |                                                    |               |          |        |
|           |                                       |                                                    |               |          | 3      |
|           |                                       |                                                    | 2             |          |        |
|           | y 1 2 20 .                            | V July John J. |               |          |        |
|           |                                       |                                                    |               |          |        |
|           |                                       |                                                    |               |          |        |
|           | 11- 4 J. E.                           |                                                    |               |          |        |
|           |                                       |                                                    |               |          |        |

|    | Date / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Juestion 3 Sequential pattern mining with puefin span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $S < (ab) ca >$ $S' < (ab) bc > min_sup = 3$ $S' < bcd >$ $S' < b(ab) >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a) | Length I sequential patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | (a) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |
| _  | <d>&gt; /</d>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | so length 1 part on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | > <a> <b> <c></c></b></a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 67 | Projections of dubabase < 9>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | S $< (-b)(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | S' < (-b)bc > $S' < (-b) >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | S (-b) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Property of 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Projection of detaben<br>S - < Ca>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | S' < bc >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | s² < cd>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | S, <(ab)>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Date / / Projection of <c> S, <a> S, <a> S, <a> c) perojection of <a> S < (-b) c a > S, < (-b) be > S, < (-b) > <ab/>
<ab/> project of <b> S, < car S, < bc> S, < cd> S, < cd> (bc) - 2 < bd>\_ | perojection of <c> S  $\langle a \rangle$   $\langle ca \rangle - t$  S  $\langle a \rangle$   $\langle ca \rangle - t$   $S_3^2 \langle a \rangle$ So the only frequent sequence of length -2

