

Canadian strategy to include methane trait in our breeding program

Filippo Miglior
Lactanet & University of Guelph
Guelph, Ontario, Canada



## **Building Environmental Traits Capacity Over Time**

2012 - \$1.2M

#### Milk Spectral Data

 Milk MIR pipeline and storage since 2013 90% of milk recorded cows since 2018 Q

2018 - \$12.8M

### **Resilient Dairy Genome Project**

Additional international partners
 12,000 cows with FE and 3,500 with ME



2024 - \$16.2M

# Net-zero Dairy Genome Project

 Additional international partners Roadmap for GHG mitigation

#### **Efficient Dairy Genome Project**

• Feed Efficiency & Methane Emission DB 4,500 cows with FE and 1,500 with ME

2014 - \$10.3M

### New regional initiatives

 Lactanet investing in FE and ME collection CH<sub>4</sub> sniffers in Canadian commercial farms

2022 - \$6.2M

Since 2013, multiple projects (\$4.2M) to genotype cows with medium-high density chips -> over 50,000 cows



## Why we focused on MIR strategy

- Early investment in MIR storage and MIR analysis since 2013
- EDGP project built with main objective of consolidating DMI data across international partners
  - Genome reference population large enough to build genomic evaluations for FE (~5,000 cows phenotyped and genotyped)
- Additional EDGP objective was to consolidate methane data across partners ( $N^{1}$ ,300)
  - Heterogeneous CH4 recording across partners (GF, SF6, sniffers)
  - Not enough cows to build reliable genomic evaluations for methane
  - Only pathway was to focus on rigid methane collection protocol and accurate milk MIR prediction development



## Milk MIR Data – R&D and Pipeline

- NSERC & Dairy Cluster projects (2012-2018)
  - Milk Fat Globule Size (Fleming et al 2017a JDS)
  - Milk Fatty Acids (Fleming et al 2017b JDS)
  - Lactoferrin & Casein Micelle Size (Fleming et al 2019 CJAS)
  - MIR standardization (Bonfatti et al 2017a JDS)
  - Prediction calculation comparison (Bonfatti et al 2017b JDS)
  - Pipeline (Miglior et al 2016 ICAR)
- EDGP & RDGP projects and collaborations (2015-2024)
  - DMI (Shadpour et al 2022a JDS)
  - Methane production (Shadpour et al 2022b JDS; Liu et al 2022 Animal;
     Van Doormaal et al 2023 ITB Bulletin; Oliveira et al 2024 JDS Comm)
  - BCS Change (Frizzarin et al 2023, 2024; JDS)







### How we recorded methane

 Collected from the University of Guelph and University of Alberta under three international projects:

Efficient Dairy
GENOME PROJECT





Using GreenFeed system (C-Lock Inc., Rapid City, SD)







## University of Guelph – Elora dairy herd (ODRC)



## Elora dairy herd (ODRC) - Metabolic Wing



## **Methane Recording Protocol**

- First parity Holstein cows 120-150 days DIM moved in groups of 2 to 4 into a tiestall area (Metabolic Wing)
- Cows habituated to the barn and testing protocol for 3 days before test
- Late Friday they enter metabolic wing, adaptation on the weekend, first test day on Monday, last test day on Friday
- 3 times a day (8am, 12pm, 4pm), 10' each for 5 consecutive days
- GreenFeed moved away from animal and allowed to recalibrate for 3 min before testing the next animal
- DHI Test day on Wednesday (milk, fat, protein yield, lactose, BHB, MUN, SCC, MIR)
- Average daily g/d CH<sub>4</sub> production calculated for each animal (weekly average)



## **Methane Strategy Over Time**



## **Genotyping Strategy**

>75,000 Females



UNIVERSITY & GUELPH

# **MIR Data Processing**



Individual milk samples processed by FOSS Milkoscan FTIR spectrophotometers





UNIVERSITY & GUELPH

## **Predicting Methane**

- MultiLayer Perceptron Artificial Neural Network based on Bayesian regularization model
- 241 MIR spectral datapoints used as input predictors
- Collected average daily methane from 496 cows from two herds between 5-305 DIM

**Prediction accuracy of 0.70** 

**Genetic Correlation 0.92 (0.22)** 



https://doi.org/10.3168/jdsc.2023-0431 Symposium Review Genetics

Symposium Review: Development of genomic evaluation for methane efficiency in Canadian Holsteins

Hinayah R. Oliveira,12 Hannah Sweett, <sup>1</sup> Saranya Narayana, <sup>1</sup> Allison Fleming, <sup>1</sup> Saeed Shadpour, <sup>3</sup> Francesca Malchiodi,34 Janusz Jamrozik, 13 Gerrit Kistemaker, <sup>1</sup> Peter Sullivan, <sup>1</sup> Flavio Schenkel, <sup>3</sup> Dagnachew Hailemariam, <sup>5</sup> Paul Stothard, <sup>5</sup> Graham Plastow, <sup>5</sup> Brian Van Doormaal, <sup>1</sup> Michael Lohuis, <sup>4</sup> Jay Shannon, <sup>4</sup> Christine Baes, 36 and Filippo Miglior 13



## Apply prediction to MIR population

- Great potential and availability over **26M** records since 2013
- Milk MIR data on 90% of milk recorded cows since 2018



### From research to service mode



Lactanet and Semex collaborated on the development of the prediction and a new, single step genomic evaluation system

Data analysis and selection

Multi-trait evaluation model

Estimation of variance components

Data processing, single step

Data processing, single step computations, post-processing, etc.





### **Data Used for Genetic Evaluation**

- First parity Holsteins from 6,128 herds
- Between 120 and 185 DIM

| Records | 1,026,133 |  |
|---------|-----------|--|
| Cows    | 706,775   |  |
| Sires   | 11,491    |  |

| Genotyped Animals | 311,751 |
|-------------------|---------|
| Genotyped Cows    | 151,892 |
| Genotyped Sires   | 8,932   |

<sup>\*</sup>Numbers for December 2024 evaluations





## Genomic Evaluation for Methane Efficiency

- Single-step four-trait repeatability Animal Model (using MiX99)
  - MIR Predicted Methane (CH<sub>4</sub>, g/d), Milk (kg/d), Fat (kg/d), Protein (kg/d)
  - Fixed: Age at calving, DIM, Year-Season of calving
  - Random: Herd-Test-Date, Permanent Environment, Animal
- Post-evaluation, Methane Efficiency (ME) is calculated:
  - O Recursive re-parameterization, Jamrozik et al., 2017 JDS <a href="https://doi.org/10.3168/jds.2016-12177">https://doi.org/10.3168/jds.2016-12177</a>
  - Predicted CH<sub>4</sub> production genetically independent of Milk, Fat and Protein yields via linear regression

Methane Efficiency helps to reduce the methane production of the herd without impacting production levels

### **Genetic Parameters**

|                           | Predicted CH <sub>4</sub> | Milk Yield | Fat Yield | <b>Protein Yield</b> |
|---------------------------|---------------------------|------------|-----------|----------------------|
| Predicted CH <sub>4</sub> | 0.23                      | -0.13      | 0.38      | -0.11                |
| Milk Yield                | -0.06                     | 0.38       | 0.48      | 0.83                 |
| Fat Yield                 | -0.18                     | 0.66       | 0.27      | 0.71                 |
| <b>Protein Yield</b>      | 0.01                      | 0.90       | 0.74      | 0.28                 |

Heritabilities on diagonal, Genetic correlations above diagonal, Phenotypic correlations below diagonal \*all approximated SE are <0.033



## Methane Efficiency vs Methane Production

- 75% genetic correlation between Methane Efficiency and Methane Production
- Methane Efficiency is not genetically correlated with any production traits

|                    | Milk  | Fat  | Protein |
|--------------------|-------|------|---------|
| Methane Production | -0.13 | 0.38 | -0.11   |
| Methane Efficiency | 0.00  | 0.00 | 0.00    |

## Methane Efficiency is a New Trait



# Reliability of Methane Efficiency RBV

|                            | Reliability |
|----------------------------|-------------|
| Genotyped cows with data   | 86.7%       |
| Ungenotyped cows with data | 56.3%       |
| Proven bulls               | 95.9%       |
| Genotyped young bulls      | 77.7%       |
| Genotyped heifers          | 72.2%       |





## Genetic progress over time

### Bulls > 1 SD



### Bulls > 1 SD & Cows > mean



## Interpretation

Reduce CH<sub>4</sub> production by selecting for higher Methane Efficiency without impacting production traits

5-point ↑ in a sire's RBV for ME, daughters are expected to produce 3kg less CH<sub>4</sub> per year



Herd owners selecting for ME can achieve 20-30% reduction in CH<sub>4</sub> emissions from their herd by 2050





## **GE Validation – MIR predicted methane**



UNIVERSITY & GUELPH

### **GE Validation – GreenFeed Methane**







### A Team Effort

Allison Fleming
Janusz Jamrozik
Gerrit Kistemaker
Filippo Miglior
Saranya Narayana
Hinayah Oliveira
Hannah Sweett
Brian Van Doormaal



Christine Baes
Flavio Schenkel
Saeed Shadpour
And over 100 grad
students and post-docs
that every day, three
times a day have been
collecting CH4 data since
2016



Francesca Malchiodi Mike Lohuis Jay Shannon



Dagnachew Hallemariam Graham Plastow Paul Stothard





# **2023 International Dairy Federation Innovation in Climate Action Award**





# 2024 ADSA J.D. Lush Award in Animal Breeding



2023 University of Guelph Innovation of the Year Award awarded to team



**2025 Genome Canada Genomics Impact Award for Industry Collaboration** 







## **Development of GHG index**





Breeding for sustainability: development of an index to reduce GHG in dairy cattle Invited talk at EAAP 2024 — Florence, Italy
2024 Dairy Cattle Industry Forum - Toronto
Caeli Richardson, P. Amer, T. Oliveria, K. Grant J.
Crowley, C. Quinton, A. Fleming, F.M. Miglior
and F. Malchiodi



## **Trait Relative Emphasis in a GHG Index**



## Genetic Gains in GHG Emission Reductions (kg CO<sub>2</sub>e)



### Trait Relative Emphasis in a GHG Index (w/o Herd Life)







## **Modernized LPI - April 2025**





## **Net-zero Dairy Genome Project**

#### **Genome**Canada

#### **GOALS**

- Consolidation of existing methane emissions data (including beef)
- Estimate animal and herd-level emissions
- Quantify potential GHG reductions through genetic and nutrition strategies
- Enhance CH<sub>4</sub> genomic evaluations
- Understand public attitudes/behaviours to emissions reductions
- Develop and implement CH<sub>4</sub> herd monitoring and benchmarking tools
- Develop a roadmap for CH<sub>4</sub> mitigation



## MooLoggers in Alberta - RDAR/Alberta Innovates

#### 5 farms – 11 sniffers

- 2-3 MooLoggers each
- 4 Holstein
- 1 Jersey
- Lely robots







### **MooLoggers in Quebec – Methane Quebec**

#### 14 farms – 24 sniffers

- 1-2 MooLoggers each
- 10 Holstein farms
- 2.5 Jersey farm
- 1.5 Ayrshire farm
- Lely robots





## **Moologgers in Ontario – NDGP & Dairy Cluster**

#### 13 farms – 26 sniffers

- 2 MooLoggers each
- 7 Holstein farms
- 5 Jersey farm
- 1 Ayrshire farm
- Lely robots





## **Moologgers in British Columbia – NDGP**

#### 2 farms - 10 sniffers

- 4-6 MooLoggers each
- 2 Holstein farms
- Lely robots







## Just to put things in perspective ... ©



## **Proposals in the Pipeline**



#### **Agriculture Funding Consortium - \$1.3M**

- Estimate the relationship between adaptability (heat tolerance) and mitigation (methane production)
- · Optimize relationships between adaptation and mitigation traits within a genetic breeding strategy
- Quantify risk/benefit associated with breeding for reduced emissions on adaptable and suitable animals for future production systems



#### Agriculture Agri-food Canada Methane Reduction Challenge - \$2 M

- Quantify change in methane production from daughters sired by low emitting bulls
- Validation of ME evaluations by applying ME breeding value predictions to external populations
- Include breeding values in herd calculators and national inventories



#### **Global Methane Genetics**

- Methane phenotyping and breeding in Jerseys \$1.7M 6 sniffers for CAN
- Methane phenotyping and breeding in Ayrshires \$3.4M Nordic data to CAN

### International Outlook - Launch Date



UNIVERSITY & GUELPH

## **Acknowledgements**





















































































































