Independent Trial HSC 2009 Mathematics Extension 2 Marking Guidelines

Ouestion 1

a. Outcomes assessed: H5

Marking Guidelines

<u>Criteria</u>	Marks
• rearranges integrand into appropriate sum of terms	1
• finds primitive	1

Answer

$$\int \frac{(x+1)^2}{x} dx = \int \left(x+2+\frac{1}{x}\right) dx = \frac{1}{2}x^2 + 2x + \ln x + c$$

b. Outcomes assessed: H8, PE3, E8

Marking Guidelines

Criteria	Marks
i • writes and solves a pair of simultaneous equations for A and C	1
• writes and solves a pair of simultaneous equations for B and D	1
ii • finds and evaluates definite integral for one term	1
finds and evaluates definite integral for second term	

Answer

i.

$$\frac{x^3 + 2x^2 + 4x + 2}{(x^2 + 1)(x^2 + 4)} \equiv \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x^2 + 4}$$
$$x^3 + 2x^2 + 4x + 2 \equiv (Ax + B)(x^2 + 4) + (Cx + D)(x^2 + 1)$$

equating coefficients of x^3 : 1 = A + C (1) $(2) - (1) \Rightarrow 3 = 3A$ equating coefficients of x: 4 = 4A + C (2) $\therefore A = 1, C = 0$

equating coefficients of x^2 : 2 = B + D (3) $(4) - (3) \Rightarrow 3B = 0$ $\therefore B = 0, D = 2$ putting x = 0: $2 = 4B + D \tag{4}$

ii.
$$\int_0^2 \frac{x^3 + 2x^2 + 4x + 2}{(x^2 + 1)(x^2 + 4)} dx = \int_0^2 \left(\frac{x}{(x^2 + 1)} + \frac{2}{(x^2 + 4)} \right) dx$$
$$= \left[\frac{1}{2} \ln(x^2 + 1) + \tan^{-1} \frac{x}{2} \right]_0^2$$
$$= \frac{1}{2} \ln 5 + \tan^{-1} 1$$
$$= \frac{1}{2} \ln 5 + \frac{\pi}{4}$$

c. Outcomes assessed: H5, HE6

Marking Guidelines	
Criteria	Marks
• expresses dx in terms of dt and substitutes expressions for $\cos x$ and $\sin x$ in terms of t	1
• simplifies integrand as a function of t and finds primitive in terms of t	1
• writes primitive as a function of x	1

Answer

$$t = \tan\frac{x}{2}$$

$$dt = \frac{1}{2}\sec^{2}\frac{x}{2} dx$$

$$dx = \frac{2}{1+t^{2}} dt$$

$$= \frac{t^{2} + 6t + 9}{1+t^{2}}$$

$$= \frac{(t+3)^{2}}{1+t^{2}}$$

$$= \frac{2}{1+t^{2}} dt$$

$$= -\frac{2}{t+3} + c$$

$$= -\frac{2}{3+\tan\frac{x}{2}} + c$$

d. Outcomes assessed: H8, HE6

Marking Guidelines

<u>Criteria</u>	Marks
• expresses du in terms of dx and converts x limits to u limits	1
• simplifies integrand as a function of u	1
• uses table of integrals to write primitive then evaluates by substitution	1

Answer

$$u = \sin x \qquad x = 0 \Rightarrow u = 0$$

$$du = \cos x \, dx \qquad x = \frac{\pi}{2} \Rightarrow u = 1$$

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin^{2} x}} \, dx = \int_{0}^{1} \frac{1}{\sqrt{1 + u^{2}}} \, du$$

$$= \left[\ln \left(u + \sqrt{u^{2} + 1} \right) \right]_{0}^{1}$$

$$= \ln(1 + \sqrt{2})$$

e. Outcomes assessed: H8, HE6

Marking Guidelines

Criteria	Marks
• expresses du in terms of dx and converts x limits to u limits	1
• simplifies and rearranges integrand as function of u	1
• evaluates definite integral	1

Answer

$$u = -x$$

$$du = -dx$$

$$x = -1 \Rightarrow u = 1$$

$$x = 1 \Rightarrow u = -1$$

$$I = \int_{-1}^{1} \frac{1}{e^{x} + 1} dx$$

$$= \int_{-1}^{1} \frac{1}{e^{-u} + 1} dx$$

$$= \int_{-1}^{1} \frac{1}{e^{-u} + 1} dx$$

$$= \int_{-1}^{1} \frac{1}{e^{-u} + 1} dx$$

$$= \int_{-1}^{1} \frac{1}{1 + e^{x}} dx$$

$$= \int_{-1}^{1} 1 dx$$

$$\therefore 2I = \int_{-1}^{1} \frac{1}{1 + e^{x}} dx$$

$$= \int_{-1}^{1} 1 dx$$

$$\therefore 2I = 2$$

$$I = 1$$

Ouestion 2

a. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • finds modulus	1
ii • simplifies sum	1
iii • realises denominator to simplify quotient	1

Answer

$$z_{1} = 3i, \quad z_{2} = 1 + i$$

$$|z_{1} - z_{2}| = \sqrt{(-1)^{2} + 2^{2}}$$

$$= \sqrt{5}$$
ii.
$$z_{1} + \overline{z}_{2} = 3i + 1 - i$$

$$= 1 + 2i$$

$$z_{1} = \frac{3i(1 - i)}{(1 + i)(1 - i)}$$

$$= \frac{3}{2} + \frac{3}{2}i$$

b. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • writes z in modulus-argument form	1
• writes square of z in modulus-argument form	1
• writes reciprocal of z in modulus-argument form	
ii • uses a diagram or subtracts arguments to show points collinear	1

Answer

i.
$$z = 1 + i\sqrt{3}$$

$$z = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

$$z^2 = 4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

$$\frac{1}{z} = \frac{1}{2}\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$

ii. $\angle AOB = \arg z^2 - \arg \frac{1}{z} = \pi$ $\therefore A, O, B$ are collinear

c. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • explains why sides OA, OB are equal	1
• finds size of angle at O and deduces triangle equilateral	1
ii • recognizes \overrightarrow{AB} as rotation of \overrightarrow{OB} and expresses $z_2 - z_1$ as multiple of z_2	1
• expresses $z_2 - z_1$ in modulus-argument form	1

Answer

$$z_1 = 2(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}), \quad z_2 = 2(\cos\frac{7\pi}{15} + i\sin\frac{7\pi}{15})$$

i.
$$|z_1| = |z_2|$$
 $\therefore OA = OB$

$$\angle AOB = \arg z_1 - \arg z_2 = \frac{\pi}{3}$$

$$\therefore \text{ all } \angle \text{'s of } \triangle AOB \text{ are } \frac{\pi}{3}$$
($\angle \text{ sum is } \pi \text{ and } \angle \text{'s opp.}$
equal sides are equal)
$$\therefore \triangle AOB \text{ is equilateral.}$$

3

 \overrightarrow{AB} represents $z_2 - z_1$. \overrightarrow{AB} is the rotation of \overrightarrow{OB} clockwise by $\frac{\pi}{3}$.

$$\therefore z_2 - z_1 = z_2 \left(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3}\right)$$
$$= 2\left(\cos\frac{2\pi}{15} + i\sin\frac{2\pi}{15}\right)$$

d. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • shows a ray from O making angle $\frac{\pi}{3}$ with positive x-axis, excluding O	1
• restricts ray to an interval inside the circle with centre O and radius 2.	
ii • finds the lower bound for the required argument as a strict inequality	1
• finds the upper bound for the required argument	1

Answer

i. P represents z such that $\arg z = \frac{\pi}{3}$ and $|z| \le 2$. Locus of P is the interval OQ on the graph below, with O excluded.

ii. Point A represents the complex number i.

Using trigonometry, Q has coordinates $\left(2\cos\frac{\pi}{3}, 2\sin\frac{\pi}{3}\right)$, giving $Q\left(1,\sqrt{3}\right)$ as shown.

Gradient of AQ is $\sqrt{3} - 1$. $\therefore -\frac{\pi}{2} < \text{Arg}(z - i) \le \tan^{-1} \left(\sqrt{3} - 1\right)$

Question 3

a. Outcomes assessed: E6

Marking Guidelines

Criteria	Marks
i • sketches curve with correct shape and intercepts	1
ii • sketches curve with correct shape and intercepts	1
iii • shows correct shape and y-intercept for branch to left of vertical asymptote at $x = 4$	1
• shows correct shape and position of branch to right of vertical asymptote	l î
iv • shows correct shape, position and behaviour near vertical asymptote at $x = 4$	1
• shows x-intercept	1

Answer

i.

ii.

iii.

iv.

b. Outcomes assessed: E6

Marking Guidelines

Criteria	Marks
• uses differentiation to find the gradient of the tangent at P	1
• uses coordinates of O and P to find gradient of OP and hence writes equation for x_1	1
• solves this equation to find coordinates of P	1

Answer

$$y = \sqrt{x - a}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x - a}}$$
∴ tangent at P has gradient $\frac{1}{2\sqrt{x_1 - a}}$

$$\therefore \frac{1}{2\sqrt{x_1 - a}} = \frac{y_1}{x_1}$$

$$x_1 = 2y_1\sqrt{x_1 - a}$$

$$x_1 = 2(x_1 - a)$$

$$x_1 = 2x_1 - 2a$$

Hence P has coordinates $(2a, \sqrt{a})$

c. Outcomes assessed: H8, PE3

Marking Guidelines

Criteria	Marks
i • writes expression for approximate area using trapezoidal rule	1
• simplifies this expression	1
ii • differentiates given expression	1
• uses fact that integration is the inverse operation to evaluate required definite integral	1
iii • compares total area enclosed by trapezia with area under curve	1
• uses this to write and simplify inequality	1

Answer

i.

$$\int_{1}^{n} \ln x \, dx$$

$$\approx \frac{1}{2} \left\{ \ln 1 + 2 \left[\ln 2 + \ln 3 + ... + \ln (n-1) \right] + \ln n \right\}$$

$$= \ln 1 + \ln 2 + \ln 3 + ... + \ln n - \frac{1}{2} (\ln 1 + \ln n)$$

$$= \ln n! - \frac{1}{2} \ln n$$

ii.

$$\frac{d}{dx}(x \ln x - x) = 1 \cdot \ln x + x \cdot \frac{1}{x} - 1$$

$$= \ln x$$

$$\left[x \ln x - x\right]_{1}^{n} = \int_{1}^{n} \ln x \, dx$$

$$\therefore \int_{1}^{n} \ln x \, dx = n \ln n - n + 1$$

iii. The total area of the trapezia fitted under the curve is less than the area under the curve.

∴
$$\ln n! - \frac{1}{2} \ln n < n \ln n - n + 1$$

 $\ln n! < (n + \frac{1}{2}) \ln n - n + 1$

Question 4

a. Outcomes assessed: E4

Marking Guidelines

warking Guidennes		
	Criteria	Marks
	• writes division transformation of $P(x)$ when divided by $(x-2)(x-3)$ with remainder $(ax+b)$	1
	• uses remainder theorem to write simultaneous equations for a, b then finds required remainder	1

Answer

Using the division transformation, $P(x) \equiv (x-2)(x-3)Q(x) + ax + b$ for some polynomial Q(x)and real constants a, b, where (ax + b) is the remainder when P(x) is divided by (x - 2)(x - 3).

Then

$$P(2) = 9 \Rightarrow 2a + b = 9$$

$$P(3) = 4 \Rightarrow 3a + b = 4$$

$$\therefore a = -5$$

$$b = 19$$

$$\therefore \text{ remainder is } (-5x + 19) .$$

$$\therefore a = -5$$
$$b = 19$$

b. Outcomes assessed: E3, E4

Marking Guidelines

Criteria	Marks
i • finds equation of tangent to hyperbola by differentiation	1
ullet finds gradient of tangent to circle in terms of $ heta$	1
• completes equation of tangent to circle using appropriate trig. identity	1
ii • compares coefficients for two forms of equation of PQ to obtain results for $\tan \theta$, $\sec \theta$	1
• obtains quartic equation for t	1
factors then rearranges to get required cubic equation	1
iii • graphs $y = x^3 - 4x$ showing intercepts and stationary point in 4 th quadrant	1
• compares vertical translations to deduce existence of such a point on 3 rd quad. branch	1
• uses turning point to deduce existence of such points on 1^{st} quad. branch for stated c	1
iv • sketches hyperbola and circle, touching in first quadrant, with two common tangents	1
• gives coordinates of point where curves touch and equation of this common tangent	1
• gives coordinates of point of contact on hyperbola for second common tangent	1
• gives equation of this tangent and coordinates of its point of contact with circle	1

Answer

i.

$$x = ct y = \frac{c}{t}$$

$$\frac{dx}{dt} = c \frac{dy}{dt} = -\frac{c}{t^2}$$

$$\therefore \frac{dy}{dx} = -\frac{c}{t^2} \div c = -\frac{1}{t^2}$$
Tangent to hyperbola has equation
$$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$$

$$x + t^2 y = 2ct$$

$$x + t^2 y = 2ct$$

$$x = 1 + \cos \theta \qquad \qquad y = \sin \theta$$

$$\frac{dx}{d\theta} = -\sin\theta \qquad \qquad \frac{dy}{d\theta} = \cos\theta$$

$$\therefore \frac{dy}{dx} = -\frac{\cos\theta}{\sin\theta}$$

Tangent to circle has equation

$$y - \sin \theta = -\frac{\cos \theta}{\sin \theta} \left(x - 1 - \cos \theta \right)$$

$$x\cos\theta + y\sin\theta = \cos^2\theta + \sin^2\theta + \cos\theta$$

$$x\cos\theta + y\sin\theta = 1 + \cos\theta$$

ii. When these two tangents are in fact the same line, PQ is tangent to both curves. Comparing the equations $x + t^2y = 2ct$ and $x + y \tan \theta = \sec \theta + 1$ (rearrangement of tangent to circle at Q), these equations give the same line when $t^2 = \tan \theta$ and $2ct - 1 = \sec \theta$.

6

Then

$$1 + \tan^2 \theta = \sec^2 \theta \implies 1 + t^4 = (2ct - 1)^2$$
$$t^4 - 4c^2t^2 + 4ct = 0$$
$$t(t^3 - 4c^2t + 4c) = 0$$

$$t \neq 0 \implies t^3 - 4c^2t + 4c = 0$$

$$\therefore \qquad \left(\frac{t}{c}\right)^3 - 4\left(\frac{t}{c}\right) + \frac{4}{c^2} = 0 \qquad *$$

iii.

$$y = x^{3} - 4x$$

$$\frac{dy}{dx} = 3x^{2} - 4$$

$$\frac{dy}{dx} = 0 \Rightarrow x = \pm \frac{2}{\sqrt{3}}$$

$$x = \frac{2}{\sqrt{3}} \Rightarrow y = -\frac{16}{3\sqrt{3}}$$

The graph of $y=x^3-4x+k$, k>0, is an upward vertical translation of $y=x^3-4x$. Hence for all c>0, $y=x^3-4x+\frac{4}{c^2}$ has exactly one negative x-intercept corresponding to one negative t value satisfying *, thus giving exactly one point P on the third-quadrant branch of the hyperbola where the tangent to the hyperbola is also tangent to the circle. For $\frac{4}{c^2}<\frac{16}{3\sqrt{3}}$, $y=x^3-4x+\frac{4}{c^2}$ also has two distinct positive x-intercepts. Hence for $c^2>\frac{3\sqrt{3}}{4}$, there are two distinct positive t values satisfying *, giving two such points P on the first-quadrant branch of the hyperbola.

iv. When $c^2 = \frac{3\sqrt{3}}{4}$, $x^3 - 4x + \frac{4}{c^2} = 0$ becomes $x^3 - 4x + \frac{16}{3\sqrt{3}} = 0$. From the graph, this equation has a double root $\frac{2}{\sqrt{3}}$, and a third root $\frac{-4}{\sqrt{3}}$ (since the sum of the roots is zero).

$$\frac{t}{c} = \frac{2}{\sqrt{3}} \implies \frac{ct = \frac{3}{2}}{\frac{c}{t} = \frac{\sqrt{3}}{2}} \implies \therefore \text{ curves touch at } \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) \text{ with common tangent } x + \sqrt{3} y = 3.$$

$$\frac{t}{c} = \frac{-4}{\sqrt{3}} \implies \frac{ct = -3}{\frac{c}{t} = -\frac{\sqrt{3}}{4}} \qquad \text{and} \qquad \frac{\sec \theta = 2ct - 1 = -7}{\tan \theta = t^2} \implies \therefore \text{ points of contact of second common}$$

tangent $x + 4\sqrt{3}$ y = -6 are $\left(-3, -\frac{\sqrt{3}}{4}\right)$ on the hyperbola and $\left(\frac{6}{7}, -\frac{4\sqrt{3}}{7}\right)$ on the circle.

Question 5

a. Outcomes assessed: E3

Marking Guidelines

Criteria	Marks
i • uses de Moivre's theorem to show result	I
ii • expands $(z^1 + z^{-1})(z^2 + z^{-2})(z^3 + z^{-3})$	1
• rearranges, regroups and applies result from i. to obtain required trig. identity	1
iii • uses double angle formula and identity from ii. to simplify equation	1
• obtains general solution for $\cos \theta = 0$, or obtains all solutions for $-\pi < \theta \le \pi$	1
obtains remaining general solutions	1

Answer

i.
$$z = \cos \theta + i \sin \theta$$
. By de Moivre's theorem, $z'' = \cos n\theta + i \sin n\theta$ for $n = 1, 2, 3, ...$
Then $z^{-n} = \cos(-n\theta) + i \sin(-n\theta) \implies z^{-n} = \cos n\theta - i \sin n\theta$
Hence $z'' + z^{-n} = 2\cos n\theta$

ii.
$$(z^{1} + z^{-1})(z^{2} + z^{-2})(z^{3} + z^{-3}) = (z^{3} + z^{-3} + z^{1} + z^{-1})(z^{3} + z^{-3})$$

 $= 2 + z^{2} + z^{-2} + z^{4} + z^{-4} + z^{6} + z^{-6}$
 $\therefore 2\cos\theta \cdot 2\cos 2\theta \cdot 2\cos 3\theta = 2 + 2\cos 2\theta + 2\cos 4\theta + 2\cos 6\theta$
 $4\cos\theta\cos 2\theta\cos 3\theta = 1 + \cos 2\theta + \cos 4\theta + \cos 6\theta$

iii.
$$\cos^2 \theta + \cos^2 2\theta + \cos^2 3\theta = 1$$
 $\cos \theta = 0 \Rightarrow \theta = 2m\pi \pm \frac{\pi}{2} = (4m \pm 1)\frac{\pi}{2}$ $\therefore \theta = (4m \pm 1)\frac{\pi}{2}, (4m \pm 1)\frac{\pi}{4}, (4m \pm 1)\frac{\pi}{6}$ for $m = 0, \pm 1, \pm 2, ...$ $1 + \cos 2\theta + \cos 4\theta + \cos 6\theta = 0$ $4 \cos \theta \cos 2\theta \cos 3\theta = 0$

b. Outcomes assessed: E5

Marking Guidelines

Criteria		
i • uses Newton's 2 nd law to derive equation of motion	1	
• uses $\ddot{x} \to 0$ as $v \to U$ to express equation of motion in required form	1	
ii • finds primitive function for t	1	
• evaluates constant of integration to establish required expression for t in terms of v	1	
• rearranges to find expression for v in terms of t	1	
iii \bullet integrates to find x in terms of t		
• substitutes and rearranges to obtain required expression for x	L	
iv • calculates percentage of terminal velocity gained in first second	1 1	
• calculates distance travelled in first second.	1	

Answer

i.

i. By Newton's
$$2^{nd}$$
 Law,
 $m\ddot{x} = mg - mkv$
 $\ddot{x} = g - kv$

$$\ddot{x} \to 0$$
 as $v \to \frac{g}{k} \implies U = \frac{g}{k} \quad \therefore k = \frac{g}{U}$
 $\therefore \ddot{x} = \frac{g}{U}(U - v)$

ii.

$$\frac{dv}{dt} = \frac{g}{U}(U - v)$$

$$-\frac{g}{U}\frac{dt}{dv} = -\frac{1}{U - v}$$

$$-\frac{g}{U}t = \ln A(U - v), A const.$$

$$t = 0$$

$$v = \frac{1}{2}U \implies A = \frac{2}{U}$$

$$\therefore -\frac{g}{U}t = \ln 2\left(1 - \frac{v}{U}\right)$$

$$e^{-\frac{g}{U}t} = 2\left(1 - \frac{v}{U}\right)$$

$$\therefore \frac{v}{U} = 1 - \frac{1}{2}e^{-\frac{g}{U}t}$$

iii.

$$v = U - \frac{1}{2}U e^{-\frac{g}{U}t}$$

$$x = Ut + \frac{U^2}{2g} e^{-\frac{g}{U}t} + c, \quad c \text{ const}$$

$$t = 0$$

$$x = 0$$

$$\Rightarrow 0 = 0 + \frac{U^2}{2g} + c \quad \therefore c = -\frac{U^2}{2g}$$

$$x = Ut + \frac{U^2}{g} \left(\frac{1}{2}e^{-\frac{g}{U}t} - \frac{1}{2}\right)$$

$$\therefore x = Ut - \frac{U^2}{g} \left(\frac{v}{U} - \frac{1}{2}\right)$$

$$\text{iv. } t = 1 \Rightarrow \frac{v}{U} - \frac{1}{2} = \frac{1}{2} \left(1 - e^{-0.1}\right) \approx 0.04758$$

$$x = 100 - 1000 \times \left(\frac{v}{U} - \frac{1}{2}\right) \approx 52.4187$$

∴ particle has gained 4.8% of its terminal velocity and travelled 52.4 metres during the first second.

Question 6

a. Outcomes assessed: E4

Marking Guidelines

Criteria	Marks
• uses relationship between coefficients and sum of roots to find one root	1
• substitutes this root into the equation to find the value of k	1

Answer

Let
$$x^3 + 3x^2 + 7x + k = 0$$
 have roots $\alpha - d$, α , $\alpha + d$. Then considering the sum of the roots $3\alpha = -3$ $\therefore \alpha = -1$
Then $(-1)^3 + 3(-1)^2 + 7(-1) + k = 0 \implies k = 5$

b. Outcomes assessed: E7

Marking Guidelines

Criteria	Marks
i \bullet finds area of square cross section in terms of x	1
expresses volume as limiting sum of slices and hence as integral	1
ii • expresses dx in terms of du	1
• converts x limits to u limits and simplifies new integrand after substitution	1
evaluates resulting definite integral	1

Answer

i. Area of square cross section is
$$A = (2y)^2 = 4\left(1 - \left|x\right|^{\frac{1}{2}}\right)^4$$
, since $y = \left(1 - \left|x\right|^{\frac{1}{2}}\right)^2$, $-1 \le x \le 1$.
Hence $V = \lim_{\delta x \to 0} \sum_{x=-1}^{1} 4\left(1 - \left|x\right|^{\frac{1}{2}}\right)^4 \delta x = 8\lim_{\delta x \to 0} \sum_{x=0}^{1} \left(1 - x^{\frac{1}{2}}\right)^4 \delta x = 8\int_0^1 \left(1 - \sqrt{x}\right)^4 dx$ (using symmetry)

ii.

$$u = 1 - \sqrt{x}$$

$$x = 0 \Rightarrow u = 1$$

$$x = (1 - u)^{2}$$

$$dx = -2(1 - u)du$$

$$x = 0 \Rightarrow u = 1$$

$$x = 1 \Rightarrow u = 0$$

$$= 16 \int_{0}^{1} (u^{4} - u^{5}) du$$

$$= 16 \left[\frac{1}{5} u^{5} - \frac{1}{6} u^{6} \right]_{0}^{1}$$

$$= \frac{8}{15}$$

c. Outcomes assessed: E5

Marking Guidelines

Criteria			
i • finds gradient of tangent by differentiation	1		
• finds gradient of normal at P and hence deduces required expression for $\tan \theta$	1		
ii • draws diagram showing forces on P	1		
iii • resolves vertically and horizontally to find simultaneous equations	1		
• finds r in terms of g and ω	1		
• finds N in terms of m, g and ω	1		
iv • considers expressions for r , N and the height of the bowl to find limits for ω			

Answer

i.
$$y^2 - x^2 = 1$$
, $P(r, \sqrt{1 + r^2})$.

$$2y\frac{dy}{dx} - 2x = 0$$

$$\frac{dy}{dx} = \frac{x}{y}$$

.. normal at P has gradient

$$\therefore \tan \theta = \frac{\sqrt{1+r^2}}{r}$$

iii. Resolving vertically and horizontally, by Newton's 2nd law

$$N\sin\theta = mg \qquad (1)$$
$$N\cos\theta = mr\omega^2 \qquad (2)$$

$$\frac{(1)}{(2)} \Rightarrow \tan \theta = \frac{g}{r\omega^2}$$

$$\frac{\sqrt{1+r^2}}{r} = \frac{g}{r\omega^2}$$

$$\therefore r = \sqrt{\frac{g^2}{\omega^4} - 1}$$

$$r = \frac{\sqrt{g^2 - \omega^4}}{\omega^2}$$

$$Then from (2)$$

$$N^2 = m^2 r^2 \omega^4 \sec^2 \theta$$

$$= m^2 r^2 \omega^4 (1 + \tan^2 \theta)$$

$$= m^2 \omega^4 (r^2 + r^2 \tan^2 \theta)$$

$$= m^2 \omega^4 \left(\frac{g^2}{\omega^4} - 1 + \frac{g^2}{\omega^4}\right)$$

$$= m^2 (2g^2 - \omega^4)$$

$$\therefore N = m\sqrt{2g^2 - \omega^4}$$

ii. Forces on
$$P$$

iv. Considering expressions for r and N, $\omega^4 \le g^2$ $\therefore \omega \le \sqrt{g}$ Also $y \le 5 \Rightarrow \sqrt{1+r^2} \le 5 \Rightarrow \frac{g}{\omega^2} \le 5$ $\therefore \sqrt{\frac{g}{5}} \le \omega \le \sqrt{g}$

Question 7

a. Outcomes assessed: E8, E9

Marking Guidelines

<u>Criteria</u>		
i • executes integration by parts	1	
• evaluates numerical term and simplifies new definite integral to obtain reduction formula	1	
ii • finds value of I_0	1	
• uses reduction formula to evaluate required integral	ı î	
iii • obtains reduction formula for $\frac{1}{r!}I_r$, $r=1,2,,n$	1	
• obtains required result by summation and simplification	1	
iv • shows integrand lies between 0 and 1 for $1 \le x \le e$ and deduces required inequality	1	
v • shows 0 is limiting value of $\frac{1}{n!}I_n$ as $n \to \infty$ then deduces required result	1	

Answer

i.
$$I_n = \int_1^e (1 - \ln x)^n dx$$
, $n = 0, 1, 2, ...$
For $n \ge 1$,

$$I_n = \left[x (1 - \ln x)^n \right]_1^e - \int_1^e x \cdot n (1 - \ln x)^{n-1} (-\frac{1}{x}) dx$$

$$= -1 + n \int_1^e (1 - \ln x)^{n-1} dx$$

$$\therefore I_n = -1 + n I_{n-1}, \quad n = 1, 2, 3, ...$$

ii.
$$I_0 = \int_1^e 1 dx = e - 1$$

 $I_3 = -1 + 3I_2$
 $= -1 + 3(-1 + 2I_1)$
 $= -4 + 6(-1 + 1I_0)$
 $= -10 + 6(e - 1)$
 $= -16 + 6e$

iii.
$$\frac{I_r}{r!} = \frac{-1}{r!} + \frac{rI_{r-1}}{r!} , r = 1, 2, ..., n$$

$$\frac{I_r}{r!} = \frac{-1}{r!} + \frac{I_{r-1}}{(r-1)!}$$

$$\sum_{r=1}^n \frac{I_r}{r!} = -\sum_{r=1}^n \frac{1}{r!} + \sum_{r=1}^n \frac{I_{r-1}}{(r-1)!}$$

$$\sum_{r=1}^n \frac{I_r}{r!} = -\sum_{r=1}^n \frac{1}{r!} + \sum_{r=0}^{n-1} \frac{I_r}{r!}$$

$$\therefore \frac{I_n}{n!} = -\sum_{r=1}^n \frac{1}{r!} + \frac{I_0}{0!}$$

$$= -\sum_{r=1}^n \frac{1}{r!} + \frac{-1}{0!} + \frac{e}{0!}$$

$$= e - \sum_{r=1}^n \frac{1}{r!}$$

iv.
$$1 \le x \le e \implies 0 \le \ln x \le 1 \implies 0 \le (1 - \ln x)^n \le 1$$

$$\therefore 0 \le \int_1^e (1 - \ln x)^n dx \le \int_1^e 1 dx$$

$$0 \le I_n \le e - 1$$
v. $0 \le \frac{I_n}{n!} \le \frac{e - 1}{n!}$
But $\lim_{n \to \infty} \frac{e - 1}{n!} = 0$ $\therefore \lim_{n \to \infty} \frac{I_n}{n!} = 0$
Then $\lim_{n \to \infty} \left(e - \sum_{r=0}^n \frac{1}{r!} \right) = \lim_{n \to \infty} \frac{I_n}{n!} = 0$

$$\therefore e - \lim_{n \to \infty} \sum_{r=0}^n \frac{1}{r!} = e$$

$$\therefore \lim_{n \to \infty} \sum_{r=0}^n \frac{1}{r!} = e$$

b. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • copies diagram, shows given information, realises a circle can be drawn through C, D, E	1
• explains why CD is a diameter of circle CDE.	1
• deduces that M is the centre of circle CDE and hence ME , MC are radii.	1
ii • uses i. to deduce $\angle ECM = \angle CEM$	1
• uses equality of vertically opposite angles to deduce $\angle NEA = \angle ECD$	Î
• uses equality of angles subtended by same arc at circumference to deduce $\angle NAE = \angle EDC$	1
• uses angle sum property of a triangle to complete proof	1

Answer

i.

A unique circle can be drawn through any set of 3 non-collinear points.

Consider the circle that passes through C, D and E. Since $\angle CED = 90^{\circ}$, CD is a diameter of this circle. Also, given M is the midpoint of DC, M is the centre of circle CDE.

 \therefore ME = MC (radii of a circle are equal)

ii. $\angle ECM = \angle CEM$

(\angle 's opp. equal sides are equal in $\triangle MEC$)

 $\angle NEA = \angle CEM$

(vert. opp. \angle 's are equal)

Also $\angle BAC = \angle BDC$

 $\therefore \angle NEA = \angle ECM = \angle ECD$ (D, M, C collinear)

(\(\angle'\)s subtended at the circumference by the same arc BC are equal)

 $\therefore \angle NAE = \angle EDC$

 $(\angle NAE, \angle BAC \text{ same angle}; \angle EDC, \angle BDC \text{ same angle})$

 $\therefore \angle ANE = \angle DEC = 90^{\circ}$

(third \angle 's of Δ 's NAE, EDC also equal since \angle sum of each is 180°)

 $\therefore MN \perp AB$

Question 8

a. Outcomes assessed: H5

Marking Guidelines

Wai king Guidennes		
Criteria	Marks	
i • uses sine rule in $\triangle CAD$ to relate sides CD , AD and opposite angles	1	
• uses sine rule in $\triangle CDB$ to relate sides CD , DB and opposite angles	1	
• combines resulting equalities to obtain ratio AD: DB in terms of sine ratios of angles	1	
• uses internal division information and trig. identity for sine to deduce required result	1	
ii • expands sine of a sum and of a difference	1	
 divides by product of cosine ratios to rearrange result in terms of tangent ratios 	1	
• rearranges to get required result	1	

Answer

i.

In $\triangle CAD$, by ext. \angle theorem, $\angle CAD = \theta - \alpha$

$$\therefore \frac{CD}{\sin(\theta - \alpha)} = \frac{AD}{\sin \alpha} \quad (1)$$

$$\frac{(1)}{(2)} \Rightarrow \frac{\sin(\theta + \beta)}{\sin(\theta - \alpha)} = \frac{AD\sin\beta}{DB\sin\alpha} \qquad \therefore \frac{\sin(\theta + \beta)\sin\alpha}{\sin(\theta - \alpha)\sin\beta} = \frac{AD}{DB} = \frac{m}{n}$$

In
$$\triangle CDB$$
, by \angle sum 180°,
 $\angle CBD = 180^{\circ} - (\theta + \beta)$

$$\therefore \frac{CD}{\sin\{180^\circ - (\theta + \beta)\}} = \frac{DB}{\sin\beta}$$
 (2)

$$\therefore \frac{\sin(\theta + \beta)\sin\alpha}{\sin(\theta - \alpha)\sin\beta} = \frac{AD}{DB} = \frac{m}{n}$$

 $n\sin\alpha(\sin\theta\cos\beta + \cos\theta\sin\beta) = m\sin\beta(\sin\theta\cos\alpha - \cos\theta\sin\alpha)$ Dividing both sides by $\cos \alpha \cos \beta \cos \theta$ gives

 $n \tan \alpha (\tan \theta + \tan \beta) = m \tan \beta (\tan \theta - \tan \alpha)$

 $(n+m)\tan\alpha \tan\beta = \tan\theta(m\tan\beta - n\tan\alpha)$

$$\tan \theta = \frac{(n+m)\tan \alpha \tan \beta}{(m\tan \beta - n\tan \alpha)}$$

b. Outcomes assessed: H5, PE3, E9

Marking Guidelines

Criteria	Marks
i • realises that the definite integral cannot be negative for any real λ	1
$ullet$ expands the integrand to write a quadratic expression in λ	1
finds the discriminant of this quadratic expression	1
• uses $\Delta \le 0$ to deduce the required result	
ii • substitutes $a = 1$ and $g(x) = 1$	1
• evaluates integral involving $\{g(x)\}^2$ to obtain required result	1
iii • squares both sides of result from ii.	
• applies result from ii. a second time with $f(x)$ replaced by $\{f(x)\}^2$	1

i. Since
$$a > 0$$
, $\int_0^a \{\lambda f(x) + g(x)\}^2 dx \ge 0$ for all real λ .

$$\int_0^a \left\{ \lambda f(x) + g(x) \right\}^2 \, dx = \lambda^2 \int_0^a \left\{ f(x) \right\}^2 \, dx + 2\lambda \int_0^a f(x) g(x) \, dx + \int_0^a \left\{ g(x) \right\}^2 \, dx$$

Considered as a quadratic in λ , this expression has discriminant $\Delta \leq 0$.

$$\therefore 4 \left\{ \int_0^a f(x)g(x) \, dx \right\}^2 - 4 \int_0^a \left\{ f(x) \right\}^2 \, dx \cdot \int_0^a \left\{ g(x) \right\}^2 \, dx \le 0$$

$$\therefore \left\{ \int_0^a f(x)g(x) \, dx \right\}^2 \le \int_0^a \left\{ f(x) \right\}^2 \, dx \cdot \int_0^a \left\{ g(x) \right\}^2 \, dx$$

ii. Let
$$a = 1$$
 and $g(x) = 1$. Then $\int_0^1 1^2 dx = 1 \implies \left\{ \int_0^1 f(x) dx \right\}^2 \le \int_0^1 \left\{ f(x) \right\}^2 dx$

iii.
$$\left\{ \int_0^1 f(x) \, dx \right\}^4 \le \left\{ \int_0^1 \left\{ f(x) \right\}^2 \, dx \right\}^2 \le \int_0^1 \left\{ \left\{ f(x) \right\}^2 \right\}^2 \, dx$$
 $\therefore \left\{ \int_0^1 f(x) \, dx \right\}^4 \le \int_0^1 \left\{ f(x) \right\}^4 \, dx$

Independent Trial Examination Mathematics Extension 2 2009 Mapping Grid

Question			Syllabus	Towards
Question		Syllabus		ous Targeted
Ancomon	Marks	Content	Outcomes	Performance
				Bands
1 a	2	Integration	H5	E2-E3
b i	2	Polynomials	PE3	E2-E3
ii	2	Integration		
	3		H8, E8	E2-E3
C		Integration	H5, HE6	E2-E3
d	3	Integration	H8, HE6	E2-E3
е	3	Integration	H8, HE6	E2-E3
2 a i	11	Complex numbers	E3	E2-E3
ii	1	Complex numbers	E3	E2-E3
iii	1	Complex numbers	E3	E2-E3
bi	3	Complex numbers	E3	E2-E3
ii	1	Complex numbers	E3	E2-E3
сi	2	Complex numbers	E3	E2-E3
ii	2	Complex numbers	E3	
d i	2	Complex numbers		E2-E3
ii	2		E3	E2-E3
11	<u> </u>	Complex numbers	E3	E2-E3
3 a i	1 1	Graphs	E6	E2-E3
ii	1	Graphs	E6	E2-E3
iii	2	Graphs	E6	E2-E3
iv	2	Graphs	E6	E2-E3
b	3	Graphs	E6	E2-E3
сi	2	Integration	H8	E2-E3
ii	2	Integration	H8	E2-E3
iii	2	Inequalities	PE3	E2-E3
				1:2-1:3
4 a	2	Polynomials	E4	E2-E3
b i	3	Conics		
ii	3	Conics	E4	E2-E3
iii	3		E4	E2-E3
	-	Conics	E3	E2-E3
iv	4	Conics	E3	E2-E3
5 a i	1	Complex numbers	E3	E3-E4
ii	2	Complex numbers	E3	E3-E4
iii ·	3	Complex numbers	E3	E3-E4
bi	2	Mechanics	E5	E3-E4
ii	3	Mechanics	E5	E3-E4
iii	2	Mechanics	E5	E3-E4
iv	2	Mechanics	E5	E3-E4
	T			100-104
6 a	2	Polynomials	EA	EQ EQ
b i	2	Volumes	E4	E2-E3
ii	3		E7	E3-E4
		Volumes	E7	E2-E3
<u>ci</u>	2	Mechanics	E5	E3-E4
ii	1	Mechanics	E5	E3-E4
iii	3	Mechanics	E5	E3-E4
iv	2	Mechanics	E5	E3-E4
	1			<u> </u>

7 a i	2	Integration	E8	E3-E4
ii	2	Integration	E8	E3-E4
iii	2	Integration	E8, E9	E3-E4
iv	1	Integration	E8	E3-E4
v	1	Integration	E9	E3-E4
b i	3	Circle geometry	PE2, PE3	E2-E3
ii	4	Circle geometry	PE2, PE3	E2-E3
8 a i	4	Trigonometry	H5	E2-E3
ii	3	Trigonometry	Н5	E2-E3
b i	4	Inequalities	PE3	E3-E4
ii	2	Integration	H5	E3-E4
iii	2	Inequalities	E9	E3-E4

			•
			*
**A A SOME CONTROL OF THE STATE			