Домашнее задание № 2. Алеся Демешко, 797

Задача 1. Докажите, что конус K, является выпуклым \Leftrightarrow он замкнут относительно суммирования, т. е. $x + y \in K$ для всех $x, y \in K$

Решение. Если K - замкнут $\Rightarrow \forall x, y \in K, \forall \alpha \in [0,1],$ будет выполняться $\alpha x + (1-\alpha)y \in K.$ Возьмём $\alpha = \frac{1}{2},$ тогда $\frac{1}{2}x + \frac{1}{2}y \in K.$ Т. к. K - конус, то $\forall t > 0 \ \forall x \in K, tx \in K \Rightarrow 2(\frac{1}{2}x + \frac{1}{2}y) = x + y \in K$

С другой стороны, поскольку K - конус $\Rightarrow \forall t > 0 \ \forall x \in K, \ tx \in K \Rightarrow \forall \alpha \in [0,1], \alpha x \in K, (1-\alpha)y \in K$ и замкнут относительно суммирования $\Rightarrow \forall z \in K, \forall w \in K, z+w \in K \Rightarrow$ возьмём $z = \alpha x$ и $w = (1-\alpha)y$, тогда $\alpha x + (1-\alpha)y \in K$.

Задача 2. Пусть C - выпуклое множество в вещественном нормированном векторном пространстве. Покажите, что замыкание \overline{C} и внутренность (C) множества C также являются выпуклыми.

Решение. Рассмотрим две последовательности точек, лежащих внутри С и x,y лежащих в замыкании \overline{C} : $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$, такие что $x_n \to x, y_n \to y$ при $n \to \infty$. Пусть $z_n(\alpha) = \alpha x_n + (1-\alpha)y_n, z(\alpha) = \alpha x + (1-\alpha)y$, тогда $z_n(\alpha) \to z(\alpha)$ при $n \to \infty$. Т. к. C - выпуклое, поэтому $\forall \alpha \in [0,1]$ выполнено $z_n(\alpha) \in C$ и $z(\alpha) \in \overline{C} \Rightarrow \overline{C}$ - выпуклое. Докажем от противного: пусть int(C) не замкнуто, тогда $\exists \alpha \in [0,1] \exists x,y \in int(C)$ такие что $z = \alpha x + (1-\alpha)y \notin int(C)$. Возьмём некоторую окрестность точки z и в ней точку $d \Rightarrow d$ не лежит в С. Возьмём точку x_1 из некоторой окрестности х и y_1 из некоторой окрестности у, так чтобы d попала в [x,y] (это всегда можно сделать так как мы выбираем окрестность произвольно). В итоге мы получим $\exists x_1y_1 \in C, \exists d \in [x_1,y_1]u \notin C$, что противоречит выпуклости C.

Задача 3. Пусть C и D - множества в вещественном векторном пространстве. Покажите, что:

- (a) $Conv(C \cup D) = Conv(Conv(C) \cup Conv(D))$.
- (b) Conv $(C \cap D) \subseteq Conv$ $(C) \cap Conv$ (D), причем равенство может не достигаться (приведите пример).

Решение. (a) Пусть $LHS = Conv(C \cup D)$, $RHS = Conv(Conv(C) \cup Conv(D))$ Пусть $x \in RHS \Leftrightarrow \forall$ выпуклого P, что $P \supset Conv(C) \cup Conv(D)$ верно, что $x \in P \Leftrightarrow \forall$ выпуклого P, что $Conv(C) \subset P$ и $Conv(D) \subset P$ верно $x \in P$. (1) Пусть $x \in LHS \Leftrightarrow \forall$ выпуклого P, что $(C \cup D) \subset P$ $x \in P \Leftrightarrow \forall$ выпуклого P, что $(C \cup D) \subset P$ $(C \cup D) \subset P$

- $\forall C$ и выпуклого P верно $C \subset P \Leftrightarrow Conv(C) \subset P \Rightarrow (1) = (2)$
- (b) Пусть $x \in RHS \Leftrightarrow x \in Conv(C)$ и $x \in Conv(D) \Leftrightarrow \forall$ выпуклого P, что $C \subset P$ $x \in P$ и \forall выпуклого P, что $D \subset P$ $x \in P$ Пусть $x \in LHS \Leftrightarrow \forall$ выпуклого $P \subset (C \cap D)$ $x \in P \Rightarrow \forall$ выпуклого $P \supset C$ $x \in P$ и \forall выпуклого $P \supset D$ $x \in P \Leftrightarrow x \in RHS$ Пример, когда равенство не достигается: Пусть C это множество из трёх точек, D аналогично, причём точки не пересекаются пересечение пустое множество. Разместим точки так, чтобы треугольники, которые они образовывают пересекались выпуклые оболочки пересекаются.

Задача 4.

Peшeнue.

Задача 5. Пусть E- выпуклое множество в вещественном нормированном векторном пространстве, и пусть $f: \overline{E} \to -$ функция, определенная на замыкании множества E. Покажите, что если f непрерывная, то из выпуклости сужения $f|_E: E \to$ следует выпуклость f.

Решение. По определению $\forall x, y \in \overline{E} \ \exists \{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \in E$, такие что $x_n \to x, y_n \to y$ при $n \to \infty$. Так как f выпукла на $E \Rightarrow \forall \alpha \in [0,1] \ f(\alpha x_n + (1-\alpha)y_n) \le \alpha f(x_n) + (1-\alpha)f(y_n)$ (определение выпуклости). По условию f непрерывна $\Rightarrow f(\alpha x_n + (1-\alpha)y_n) \to f(\alpha x + (1-\alpha)y), f(x_n) \to f(x), f(y_n) \to f(y)$. В итоге получим $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y) \Rightarrow$ f - выпукла на \overline{E}

Задача 6. Докажите, что функция $f(x) = ln(\sum_{i=1}^n e^{x_i})$ является выпуклой.

Решение. x выпуклая функция $\Rightarrow \exp(x)$ тоже выпукла как монотонная суперпозиция $\Rightarrow \sum_{i=1}^{n} e^{x_i}$ выпукла как положительная взвешенная сумма с $c_i = 1 \Rightarrow ln(\sum_{i=1}^{n} e^{x_i})$ выпукла как монотонная суперпозиция.

Задача 7. Опираясь на стандартные примеры выпуклых функций и утверждение об операциях, сохраняющих выпуклость, объясните, почему каждая из следующих функций f является выпуклой:

- (a) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \max\{0, \langle a, x \rangle b\}$, где $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
- (b) $f: R^n \to R$ функция $f(x) := \sum_{i=1}^n c_i \ln(1 + e^{\langle a_i, x \rangle}) + \frac{\mu}{2} ||x||^2$, где $\mu, c_1, \ldots, c_n \ge 0$, $a_1, \ldots, a_n \in \mathbb{R}$.
- $(c) \ f: R^n \to R \$ функция $f(x) := \max_{1 \le i \le n} c_i \ln(1 + e^{|x_i|}), \$ г $\theta e \ c_1, \dots, c_n \ge 0.$
- (d) $f: E \to R$ функция $f(x) := -\ln(B x_1A_1 \dots x_nA_n)$, где $A_1, \dots, A_n, B \in \S^n$, $E:=\{x \in \mathbb{N}: x_1A_1 + \dots + x_nA_n \prec B\}$.

Решение. (a) f(x) = x выпуклая, афинное преобразование сохраняет выпуклость, значит $f(x) = \langle a, x \rangle - b$ выпуклая. Мах тоже сохраняет выпуклость $\Rightarrow f(x) := \max\{0, \langle a, x \rangle - b\}$ выпуклая.

- (b) $f(x) = \langle a_i, x \rangle$ выпуклая, монотонная суперпозиция сохраняет выпуклость $\Rightarrow f(x) = e^{\langle a_i, x \rangle}$ выпуклая. Афинное преобразование сохраняет выпуклость $\Rightarrow f(x) = 1 + e^{\langle a_i, x \rangle}$ выпуклая. Монотонная суперпозиция сохраняет выпуклость $\Rightarrow f(x) = \ln(1 + e^{\langle a_i, x \rangle})$ выпуклая. $f(x) = \mu/2 \|x\|^2$ выпуклая, также положителная взвешенная сумма сохраняет выпуклость $\Rightarrow f(x) = \sum_{i=1}^n c_i \ln(1 + e^{\langle a_i, x \rangle}) + \mu/2 \|x\|^2$ выпукла.
- (c) $f(x) = e^x + 1$ выпуклая, монотонная суперпозиция сохраняет выпуклость $\Rightarrow f(x) = ln(1 + e^{|x_i|})$ выпуклая. Монотонная суперпозиция сохраняет выпуклость $\Rightarrow f(x) = c_i ln(1 + e^{|x_i|})$) выпукла. Мах сохраняет выпуклость $\Rightarrow f(x) = max_{1 \le i \le n} (c_i ln(1 + e^{|x_i|}))$ выпуклая.

Задача 8. Пусть $f: \to R$ — функция $f(x) := \sum_{i=1}^k x_{[i]}$, где $1 \le k \le n$, а символ $x_{[i]}$ обозначает i-ую компоненту отсортированного по убыванию вектора x. Покажите, что функция f выпуклая. (Подсказка: Представьте f в виде максимума линейных функций.)

Решение. Зафиксируем на месте все координаты вектора. Количество способов выбрать из n координат k это C_k^n . Возьмём C_k^n функций, каждая из которых равна сумме этих k координат. Так как координаты зафиксированны, то все функции линейны. Теперь наша задача свелась k нахождению максимума среди этих линейных функций, а это выпуклая функция так как это частный случай супремума.

Задача 9.

Решение.

Задача 10. Покажите выпуклость функции

адача 10. Покажите выпук.
$$f(x) := \frac{1}{x_1 - \cfrac{1}{x_2 - \cfrac{1}{x_n}}},$$
 оппеделенной на подмноже

определенной на подмножестве R^n , где каждый знаменатель строго положительный. (Подсказка: Используйте индукцию и утверждение об операциях, сохраняющих выпуклость.)

Решение. Докажем по индукции: База x_1 : $f(x) = \frac{1}{x_1}$ является выпуклой. Переход: пусть верно при x_n , докажем, что функция будет выпукла при x_{n+1} . Получим $f(x) = \frac{1}{x_{n+1} - F(x)}$, где F(x) это выпуклая функция. x_{n+1} выпукла вниз и вверх, F(x) - выпукла, -F(x) вогнута $\Rightarrow x_{n+1} - F(x)$ - вогнута. Функция $\frac{1}{y}$ является монотонно невозрастающей. Получим композицию вогнутой и монотонно невозрастающей, что является выпуклой функцией.