الدورة العادية للعام 2011	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعة	

Cette épreuve est constituée de trois exercices obligatoires répartis sur deux pages L'usage des calculatrices non programmables est autorisé

Premier exercice (7 points) Réfraction et réflexion totale de la lumière

Le but de cet exercice est d'étudier le passage de la lumière d'un milieu transparent (1) à un milieu transparent (2), l'un étant le verre et l'autre l'air.

Angle limite de réfraction du système (verre- air) : $i_L = 42^{\circ}$.

- **1-** On envoie un rayon lumineux S_1I dans le milieu (1) sous une incidence i_1 . Il émerge dans le milieu (2) suivant IR_1 en faisant un angle i_2 avec la normale NN' (figure ci-contre).
 - a) Nommer le phénomène physique subi par S₁I en I.
 - **b**) S₁I représente le rayon incident. Que représente IR₁?
 - c) Comparer i₁et i₂.
 - d) i) Le milieu (2) est plus réfringent que le milieu (1). Justifier.
 - ii) Le milieu (2) est alors le verre. Pourquoi?
- **2-** On envoie maintenant, dans le milieu (2), un rayon lumineux S_2I formant avec la normale un angle $i_3 = 42^\circ$.
 - a) Le rayon émerge en rasant la surface de séparation. Pourquoi ?
 - **b**) Donner la valeur de l'angle de réfraction i₄ correspondant à i₃.
 - c) Faire le schéma correspondant.

- a) Le rayon S₃I subit alors la réflexion totale. Pourquoi?
- b) Déterminer la valeur de l'angle de réflexion r correspondant à i.

Deuxième exercice (7 points) Puissance électrique

Le circuit de la figure ci-contre comporte :

- un générateur G délivrant entre ses bornes une tension constante $U_{AB} = 12 \ V$;
- deux conducteurs ohmiques de résistances $R_1 = 30 \Omega$ et $R_2 = 60 \Omega$. On désigne par I l'intensité du courant dans la branche principale, par I_1 celle du courant traversant (R_1) et par I_2 celle du courant traversant (R_2) .
- **1- a**) Reproduire la figure ci-contre et y indiquer le sens des courants dans les différentes branches.
 - **b**) $U_{AB} = U_{CD} = U_{MN} = 12 \text{ V. Pourquoi } ?$
 - c) Déterminer la valeur de I_1 et celle de I_2 . En déduire que I = 0,6 A.

- **2- a)** Sachant que $U_{AB} = R \ I$, calculer la valeur de $\frac{1}{R}$.
 - **b)** Trouver la valeur de l'expression $\frac{1}{R_1} + \frac{1}{R_2}$.
 - c) En déduire la relation entre R₁, R₂ et R.
- **3- a)** Calculer la valeur de la puissance électrique P_1 consommée par (R_1) et celle de P_2 consommée par (R_2) .
 - b) La puissance électrique P_e fournie par G est donnée par : $P_e = U_{AB}.I$.
 - i) Calculer la valeur de Pe.
 - ii) Trouver la relation entre P_e, P₁ et P₂.

Troisième exercice (6 points) Détermination du volume d'un solide

On considère un solide (S) de masse volumique $\rho_S=1$ g/cm³. (S) est immergé dans un liquide de masse volumique ρ . (S) est en équilibre et le volume immergé est V_i (voir la figure ci-contre).

- 1- (S) flotte à la surface du liquide.
 - a) Nommer les deux forces agissant sur (S).
 - **b**) Dire pour chacune de ces deux forces s'il s'agit d'une force de contact ou d'une force à distance.
 - **c**) Donner la direction et le sens de chacune de ces deux forces.
 - **d)** Ecrire la relation vectorielle entre ces deux forces.
 - e) Reproduire la figure et représenter, sans échelle, ces deux forces.
- 2- On recommence l'expérience en plaçant (S) successivement dans des liquides différents. Le graphe ci-contre représente les variations de V_i en fonction de ρ .
 - a) D'après le graphe, le volume immergé augmente-til ou diminue-t-il quand la masse volumique du liquide augmente ?
 - **b)** Pour $\rho = 1$ g/cm³, (S) est totalement immergé dans le liquide. Pourquoi ?
 - c) Déduire graphiquement le volume de (S).

