DEVOIR MAISON 5 - ESPACES PRÉHILBERTIENS

On se place dans un espace euclidien $(E, (\cdot|\cdot))$ de dimension n.

On se donne un vecteur e unitaire, et pour tout réel α non nul, on pose :

$$\forall x \in E, f_{\alpha}(x) = x + \alpha(x|e)e$$

- **1.** Montrer que $f_{\alpha} \in \mathcal{L}(E)$.
 - Clairement, $\forall x \in E, f_{\alpha}(x) \in E$.
 - $\forall (x, y, \lambda) \in E^2 \times \mathbb{R}$: $f_{\alpha}(\lambda x + y) = (\lambda x + y) + \alpha(\lambda x + y|e)e = (\lambda x + y) + \lambda \alpha(x|e)e + \alpha(y|e)e = \lambda f_{\alpha}(x) + f_{\alpha}(y)$. f_{α} est donc linéaire.
- **2.** Montrer que $\forall x \in E, \forall y \in E$ on a : $(x|f_{\alpha}(y)) = (f_{\alpha}(x)|y)$.

```
\forall (x,y) \in E^2:
```

 $(x|f_{\alpha}(y))=(x|y+\alpha(y|e)e)=(x|y)+\alpha(y|e)(x|e)$ (par linéarité du produit scalaire par rapport à la deuxième variable)

 $(f_{\alpha}(x)|y) = (x + \alpha(x|e)e|y) = (x|y) + \alpha(x|e)(e|y)$ (par linéarité du produit scalaire par rapport à la première variable).

Par symétrie du produit scalaire (e|y) = (y|e) d'où $(x|f_{\alpha}(y)) = (f_{\alpha}(x)|y)$.

Remarque :On dit que l'endomorphisme f_{α} est un endomorphisme symétrique.

3. Montrer que si F est stable par f_{α} , alors F^{\perp} est également stable par f_{α} .

Soient $x \in F^{\perp}$ et $y \in F$. D'après la question précédente, $(f_{\alpha}(x)|y) = (x|f_{\alpha}(y))$; si F est stable par f_{α} , alors $f_{\alpha}(y) \in F$ et $(f_{\alpha}(x)|y) = (x|f_{\alpha}(y)) = 0$.

On a donc $f_{\alpha}(x) \in F^{\perp}$, c'est-à-dire F^{\perp} stable par f_{α} .

4. Montrer que 1 est une valeur propre de f_{α} , et donner l'espace propre associé.

1 est valeur propre de f_{α} si, et seulement s'il existe $x \in E$, $x \neq 0_E$, tel que $f_{\alpha}(x) = x$.

$$f_{\alpha}(x) = x \Leftrightarrow \alpha(x|e)e = 0 \Leftrightarrow (x|e) = 0 \Leftrightarrow x \in \text{Vect}\{e\}^{\perp}$$

(car e est un vecteur unitaire, donc non nul, et $\alpha \neq 0$.)

Ainsi, 1 est valeur propre de f_{α} et son sous-espace propre est $E_1 = \text{Vect}\{e\}^{\perp}$.

5. Montrer que e est un vecteur propre de f_{α} , et déterminer la dimension du sous-espace propre associé.

 $f_{\alpha}(e) = (1 + \alpha)e$ (car e est unitaire donc ||e|| = 1).

Ainsi e est un vecteur propre de f_{α} associé à la valeur propre $1 + \alpha$.

On a montré que 1 est une valeur propre de f_{α} de sous-espace propre $E_1 = \text{Vect}\{e\}^{\perp}$.

On sait que dans un espace euclidien E, pour tout sev F, on a $F \oplus F^{\perp} = E$;

on sait de plus, que les espaces propres d'un endomorphisme sont en somme directe.

 $\alpha \neq 0$, donc $1 + \alpha \neq 1$. Ainsi,le sous-espace propre associé à la valeur propre $1 + \alpha$ est $E_{1+\alpha} = \text{Vect}(e)$, il est de dimension 1.

6. f_{α} est-il diagonalisable?

On a $E_1 \oplus E_{1+\alpha} = E$, donc f_{α} est diagonalisable.

7. Montrer que f_{α} est une isométrie c'est-à-dire, $\forall x \in E, ||f_{\alpha}(x)|| = ||x||$) si et seulement si $\alpha = -2$, et que dans ce cas c'est une symétrie.

Soit $x \in E$; $||f_{\alpha}(x)||^2 = (f_{\alpha}(x)|f_{\alpha}(x)) = ||x||^2 + (\alpha^2 + 2\alpha)(x|e)^2$

 $\forall x \in E, ||f_{\alpha}(x)|| = ||x|| \Leftrightarrow \forall x \in E, (\alpha^2 + 2\alpha)(x|e)^2 = 0$

En prenant en particulier x = e, on a : $\alpha^2 + 2\alpha = 0$. Comme $\alpha \neq 0$, on en déduit que $\alpha = -2$.

Pour $\alpha = -2$, on a : $E = E_1 \oplus E_{-1} = \operatorname{Ker}(f_{\alpha} - \operatorname{Id}) \oplus \operatorname{Ker}(f_{\alpha} + \operatorname{Id})$.

 f_{α} est donc la symétrie par rapport à E_1 parallèlement à E_{-1} .

Remarque : on peut aussi vérifier que $\forall x \in E, f_{\alpha} \circ f_{\alpha}(x) = x$