Exception handling: unboundedness

Example. Maximize

$$z = x_1$$

subject to:

$$x_1 - x_2 \le 1 -x_1 + x_2 \le 2 x_1, \ x_2 \ge 0$$

How to detect unboundedness using the simplex method;

The equality form:

$$x_1 - x_2 + S_1 = 1$$

 $-x_2 + x_2 + S_2 = 2$
 $z = x_1 + 0x_2 + 0.3 + 0.5z$

Tableau;

The basic feasible solution

Pivot step: increase
$$x_1$$
, keep $x_2 = 0$

$$x_1 + s_1 = 1 \implies s_1 = 1 - x_1 \geqslant 0 \implies s_0: x_1 \leqslant 1$$

$$-x_1 + s_2 = 2 \implies s_2 = 2 + x_2 \geqslant 0 - \text{no restriction}$$
Upshot: x_1 becomes basic $(x_1 = 1)$
 s_1 becomes free
$$25$$

		<i>x</i> ₂				×		X2	۶۱	92	+	
	1	-1	1	0	1	1		-1	ι	0		l
(-1)	-1	1	0	1	2	0)	0	١	0		3
(-1)	1	0	0	0	Z	7)	١	-1	0)	2-1

The new basic feasible solution:

free
$$\begin{vmatrix} x_2 &= 0 \\ s_1 &= 0 \\ x_2 &= 3 \end{vmatrix}$$

The pivot step: increase x2, keep s,=0.

$$x_1 - x_2 = 1 \Rightarrow x_1 = 1 + x_2 > 0$$
 - no restrictions
 $S_2 = 3 > 0$ - no restrictions

Upshot: We can make z as large as we want by increasing x2 - there is no maximum

Note: Unboundedness happens

1-1101

if we have a free variable

00113

objective function and ell constraint coefficients (0.

Exception handling: degeneracy

Example. Maximize

$$z = x_2$$

subject to:

$$-x_1 + x_2 \le 0$$
$$x_1 \le 2$$
$$x_1, x_2 > 0$$

The equality form:

-x1+x2+S1=0 $x_1 + S_2 = 2$

Tableau:

The basic fearible solutions

We can't move this may since

it increases

x, and xz

time.

both free varieties

at the same (0,0)

(2,0)

x,=2

The pivot step: increase xz, keep x = 0. $x_2 + s_1 = 0 \Rightarrow s_1 = -x_2 > 0$ $\underline{s_0} \times_2 = 0 \leftarrow con^{\frac{1}{4}}$ increase if

The only remaining option: increase increase increase increase x_i even though this will not change the value of z_i : $-x_i + s_i = 0 \Rightarrow s_i = x_i > 0 - \text{no restrictions}$ $x_i + s_z = 2 \Rightarrow s_z = 2 - x_i > 0 \Rightarrow x_i < 2$

$$-\times_1 + S_1 = 0 \Rightarrow S_1 = \times_1 > 0 - \text{no restrictions}$$

 $\times_1 + S_2 = 2 \Rightarrow S_2 = 2 - \times_1 > 0 \Rightarrow 0: \times_1 \leqslant 2$

<u>Upshot:</u> x, becomes basic sz becomes free

A degenerate pivot step 27

The new basic feasible solution:

free
$$\begin{cases} x_2 = 0 \\ s_2 = 0 \end{cases}$$

basic $\begin{cases} s_1 = 2 \\ x_1 = 2 \end{cases}$

$$\chi_2 + S_1 = Z \Rightarrow S_1 = 2 - \chi_2 \neq 0 \quad \text{so}: \chi_2 \leq 2$$

$$x_1 = 2 > 0$$
 - no restrictions

s, becomes free

$$\times_{1} \times_{2} \times_{1} \times_{2} \times_{1} \times_{2} \times_{2$$

all coeff. <0 so we reached the maximum

Maximum at $x_1=2, x_2=2$ z=2

Upshot: Degenerate basic feasible solutions can lead to pivot steps that do not increase the objective function