Practical 01

200007413

Q1.

Interpretation $I: \mathcal{D} = \{0, \mathbb{N}\}.$

a.
$$\exists y. \forall x. (y < x)$$

This formula's semantics are: there exists some $y \in \mathcal{D}$, s.t. for all $x \in \mathcal{D}$, (y < x)

Given an arbitrary object $I[a] \in \mathcal{D}$, we h

b.
$$\exists x. \forall y. (y < x)$$

The semantics of this formula are: There exists some $x \in \mathcal{D}$, s.t. for all $y \in \mathcal{D}$, y < x.

Given an arbitrary object $I[a] \in \mathcal{D}$, where x = a, we are left with the formula $\forall y.(y < a)$. The formula is true if a value of a exists which makes this true.

If a = 0, then we have $\forall y . (y < 0)$, which is false by counter example of y = 1.

For all $a \in \mathbb{N}$, the definition of < means that if y = a, then (y < a) is false for all values of a, as (a < a) is false.

Therefore, by definition of \mathcal{D} , and \forall , the formula is false for all values of x, and so $\exists x. \forall y (y < x)$ is false by definition of \exists .

c.
$$\forall y. \forall x (y = x \lor y > x)$$

The semantics of this formula are: for all $y \in \mathcal{D}$, for all $x \in \mathcal{D}$, y == x or y > x.

Therefore, we can prove this to be false by counter example. If x = 1, and y = 0, then y = x is false, and y > x is false by the definition of y = x is false by the definition of y = x is false, as y = x is false, and y = x is false, as y = x is false, and y = x is false.

Therefore, we have an example x and y where the formula is false, and so $\forall y. \forall x. (y = x \lor y > x)$ is false by defintion of \forall .

d.
$$\forall x.(odd(x) \lor odd(x+2))$$

The semantics of this formula are: for all values of $x \in \mathcal{D}$, x is odd, or x + 2 is odd.

We can prove this to be false by counter example. If x = 2, then odd(2) is false by definition of odd and even.

By definition of +, 2 + 2 = 4. By definition of *odd* and *even*, odd(4) is false and so odd(2 + 2) is false and so by definition of \lor , $odd(2) \lor odd(2 + 2)$ is false.

By definition of \forall , $\forall x.(odd(x) \lor odd(x+2))$ is false by counter example of x=2.

Q2.

a.

P	$P \rightarrow P$
0	1
1	1

 $P \rightarrow P$ is a tautology

b.

P	$\neg P$	$P \rightarrow \neg P$	
0	1	1	
1	0	0	

 $P \rightarrow \neg P$ is contingent

c.

P	$P \rightarrow P$	$\neg (P \rightarrow P)$
0	1	0
1	1	0

 $\neg (P \rightarrow P)$ is contradictory

d.

P	Q	$\neg P$	$\neg Q$	$\neg P \rightarrow \neg Q$	$\neg (\neg P \to \neg Q)$	$P \vee \neg Q$	$(P \vee \neg Q) \wedge \neg (\neg P \to \neg Q)$
0	0	1	1	1	0	1	1
0	1	1	0	0	1	0	1
1	0	0	1	1	0	1	1
1	1	0	0	1	0	1	1

 $(P \lor \neg Q) \land \neg (\neg P \to \neg Q)$ is a tautology

e.

P	Q	R	$P \wedge Q$	$P \wedge Q \rightarrow R$	$P \rightarrow R$	$Q \to R$	$(P \land Q \to R) \to (P \to R)$	$(P \land Q \to R) \to (P \to R) \to (Q \to R)$
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	1	0	0	1	1	0	1	0
0	1	1	0	1	1	1	1	1
1	0	0	0	1	0	1	0	1
1	0	1	0	1	1	1	1	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	1	1	1	1

$$(P \land Q \rightarrow R) \rightarrow (P \rightarrow R) \rightarrow (Q \rightarrow R)$$
 is contingent

f.

P	Q	R	$P \lor Q$	$P \rightarrow R$	$Q \rightarrow R$	$ P \to R) \land (Q \to R) $	$P \lor Q \to R$	$(P \lor Q \to R) \Leftrightarrow ((P \to R) \land (Q \to R))$
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	1	0	1	1	0	0	0	1
0	1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	1	1	1	1
1	1	0	1	0	0	0	0	1
1	1	1	1	1	1	1	1	1

$$(P \lor Q \to R) \Leftrightarrow ((P \to R) \land (Q \to R))$$
 is tautological

g.

D		מו	l c	1	I	1	I	I	1	I
P	Q	R	S	$P \rightarrow Q$	$R \rightarrow S$	$P \vee R$	$Q \vee S$	$P \lor R \to Q \lor S$	$(P \to Q) \land (R \to S)$	$(P \to Q) \land (R \to S) \to (P \lor R \to Q \lor S)$
0	0	0	0	1	1	0	0	1	1	1
0	0	0	1	1	1	0	1	1	1	1
0	0	1	0	1	0	1	0	0	0	1
0	0	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	0	1	1	1	1
0	1	0	1	1	1	0	1	1	1	1
0	1	1	0	1	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	0	0	1
1	0	0	1	0	1	1	1	1	0	1
1	0	1	0	0	0	1	0	0	0	1
1	0	1	1	0	1	1	1	1	0	1
1	1	0	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1
1	1	1	0	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1

$$(P \to Q) \land (R \to S) \to (P \lor R \to Q \lor S)$$
 is a tautology

Q3.

Prove: $\neg((P \land Q) \land ((P \lor (R \land P)) \land (\neg Q \land \neg P)) \land (\neg \neg P \lor (Q \lor \neg Q))) \Leftrightarrow \mathbb{T}$ Starting with:

$$\neg((P \land Q) \land ((P \lor (R \land P)) \land (\neg Q \land \neg P)) \land (\neg \neg P \lor (Q \lor \neg Q)))$$

Double negation rule $\neg \neg P = P$:

$$\neg((P \land Q) \land ((P \lor (R \land P)) \land (\neg Q \land \neg P)) \land (P \lor (Q \lor \neg Q)))$$

Complementation $Q \vee \neg Q = \mathbb{T}$:

$$\neg((P \land Q) \land ((P \lor (R \land P)) \land (\neg Q \land \neg P)) \land (P \lor \mathbb{T}))$$

Distributive law $P \lor (R \land P) = (P \lor R) \land (P \lor P)$:

$$\neg((P \land Q) \land (((P \lor R) \land (P \lor P)) \land (\neg Q \land \neg P)) \land (P \lor \mathbb{T}))$$

Idempotent law $P \vee P = P$:

$$\neg((P \land Q) \land (((P \lor R) \land P) \land (\neg Q \land \neg P)) \land (P \lor \mathbb{T}))$$

Associative law
$$(((P \lor R) \land P) \land (\neg Q \land \neg P)) = (((\neg Q \land \neg P) \land P) \land (P \lor R))$$

$$\neg((P \land Q) \land (((\neg Q \land \neg P) \land P) \land (P \lor R)) \land (P \lor \mathbb{T}))$$

Associative law $((\neg Q \land \neg P) \land P) = ((P \land \neg P) \land \neg Q)$

$$\neg((P \land Q) \land (((P \land \neg P) \land \neg Q) \land (P \lor R)) \land (P \lor \mathbb{T}))$$

Complementation $P \land \neg P = \mathbb{F}$

$$\neg((P \land Q) \land ((\mathbb{F} \land \neg Q) \land (P \lor R)) \land (P \lor \mathbb{T}))$$

Domination law $P \vee \mathbb{T} = T$ and $(\mathbb{F} \wedge \neg Q) = \mathbb{F}$:

$$\neg((P \land Q) \land (\mathbb{F} \land (P \lor R)) \land \mathbb{T})$$

Domination law $(\mathbb{F} \land (P \lor R)) = \mathbb{F}$

$$\neg((P \land Q) \land \mathbb{F} \land \mathbb{T})$$

Domination law $(P \wedge Q) \wedge \mathbb{F} = \mathbb{F}$

$$\neg(\mathbb{F}\wedge\mathbb{T})$$

Domination law $\mathbb{F} \wedge \mathbb{T} = \mathbb{F}$

$$\neg \mathbb{F}$$

$$\neg \mathbb{F} = \mathbb{T}$$
, therefore $\neg ((P \land Q) \land ((P \lor (R \land P)) \land (\neg Q \land \neg P)) \land (\neg \neg P \lor (Q \lor \neg Q))) = \mathbb{T}$ giving us $T \Leftrightarrow T$.

$$\begin{array}{ccc}
T & T \Leftrightarrow T \\
\hline
0 & 0 \\
1 & 1
\end{array}$$

QED.

Q4.

a. $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$ 1 (1) $P \rightarrow Q$ Premise
2 (2) $Q \rightarrow R$ Premise

3 (3) P Assumption $(\rightarrow E, \rightarrow I)$

1,3 (4) Q 1,3, $\rightarrow E$ 1,2,3 (5) R 2,4, $\rightarrow E$

1,2 (6) $P \rightarrow R$ 3,5, $\rightarrow I$

QED.

b.

1 (1) RAssumption (for $\rightarrow I$) 2 (2) *P* Assumption (for $\rightarrow I$) 3 (3) *Q* Assumption (for $\rightarrow I$) 1 (4) $P \rightarrow R$ $1, 2 \rightarrow I$ (5) $Q \rightarrow R$ $1, 3 \rightarrow I$ 1 (6) $(P \to R) \land (Q \to R)$ 1 $4, 5, \land I$ 2 (7) $P \lor Q$ $2, \forall I_1$ 1 (8) $(P \lor Q) \to R$ $1, 7, \rightarrow I$ $(9) \quad ((P \lor Q) \to R) \to ((P \to R) \land (Q \to R)) \quad 6, 8, \to I$

QED.

c.

Assumption (for $\rightarrow I$) 1 (1) *R* 2 (2) *P* Assumption (for $\land I$) 3 (3) QAssumption (for $\land I$) 2,3 (4) $P \wedge Q$ $2,3, \wedge I$ $(5) \quad (P \land Q) \rightarrow R$ $1, 4, \rightarrow I$ 1 1 (6) $Q \rightarrow R$ $1, 3, \rightarrow I$ (7) $P \rightarrow (Q \rightarrow R)$ 1 $2, 6, \rightarrow I$ (8) $(P \to (Q \to R) \to ((P \land Q) \to R) \quad 5, 7, \to I$

QED.

d.

1 $P \vee Q$ Premise (1) 2 (2) \boldsymbol{P} Assumption (for $\vee E$) 3 (3) Assumption (for $\vee E$) Q4 $\neg P \wedge \neg Q$ Assumption (for $\neg E$) (4) 4 $\neg P$ $4, \wedge E$ (5) 2,4 (6) false $2, 5, \neg E$ 2 $\neg(\neg P \land \neg Q)$ $4, 6, \neg I$ (7) 4 $4, \wedge E$ (8) $\neg Q$ 3,4 (9) false $3, 8, \neg E$ 3 (10) $\neg (\neg P \land \neg Q) \quad 4, 9, \neg I$ 1 (11) $\neg (\neg P \land \neg Q)$ 1, 2, 3, 7, 10, $\lor E$

QED.

Q5.

- **a.** $\forall x. (P(x) \to Q) \vdash ((\exists x. P(x)) \to Q)$ 1 (1) $\forall x. (P(x) \to Q)$ Premise
- 1 (2) $P(a) \rightarrow Q$ 1, $\forall E[a/x]$ 3 (3) P(a) Assumtion (for $\rightarrow E$)
- 1,3 (4) Q 2,3, $\rightarrow E$ 3 (5) $\exists x.P(x)$ 3, $\exists I[a/x]$
- 1 (6) $(\exists x. P(x) \rightarrow Q)$ 4, 5, $\rightarrow I$

QED.

b. $((\exists x.P(x)) \rightarrow Q) \vdash \forall x.(P(x) \rightarrow Q)$

- 1 (1) $(\exists x.P(x)) \rightarrow Q$ Premise
- 2 (2) $\exists x.P(x)$ Assumption (for $\rightarrow E, \exists E$)
- $1,2 \quad (3) \quad Q \qquad \qquad 1,2,\rightarrow E$
- 4 (4) P(a) Assumption (for $\exists E$)
- 2 (5) P(a) 2, 4, $\exists E$
- 1 (6) $P(a) \rightarrow Q$ 3, 5, $\rightarrow I$
- 1 (7) $\forall x.(P(x) \rightarrow Q)$ 6, $\forall I$

QED.