#### Wprowadzenie

Liczby zespolone są rozszerzeniem liczb rzeczywistych R. Zbiór liczb zespolonych oznaczamy symbolem C (ang. *complex number*).

W zbiorze liczb rzeczywistych nie można wyciągać pierwiastków z liczb ujemnych. W zbiorze liczb zespolonych można wyciągać pierwiastki z liczb ujemnych.

Pierwiastek z liczby ujemnej jest tzw. <u>liczbą urojoną</u> i zapisujemy go za pomocą jednostki urojonej *i.* 

Liczbę *i* definiujemy tak: (literka *i* - to jednostka urojona)  $i^2 = -1$ 

## Definicja liczby zespolonej

Liczbą zespoloną nazywamy liczbę postaci:

a + ib

 $gdzie: a,b \in R oraz$ 

a - część rzeczywista liczby zespolonej

b - część urojona liczby zespolonej

Liczbę zespoloną a+ib można rozważać jako uporządkowaną parę: (a,b)

Przyjmijmy, że mamy daną liczbę zespoloną  $\underline{z=a+bi}$ . Wówczas mamy:



Uwaga odnośnie zapisu części rzeczywistej i urojonej.

- Część rzeczywistą liczby zespolonej z oznaczamy symbolem: Re(z) (ang. Real).
- Część urojoną liczby zespolonej z oznaczamy symbolem: Im(z) (ang. Imaginary).

Możemy interpretować liczby zespolone jako punkty na płaszczyźnie. Na osi x-ów będziemy zaznaczać część rzeczywistą liczby zespolonej, a na osi y-ów część urojoną.



Przykłady kilku liczb zespolonych zaznaczonych w układzie współrzędnych:



W układzie współrzędnych zaznaczono również liczby sprzężone do  $z_1$ ,  $z_2$  oraz  $z_4$ , czyli  $\bar{z_1}$   $\bar{z_2}$   $\bar{z_4}$ . Są one odbiciami symetrycznymi względem osi x-ów.

Zaznaczymy teraz jeden ogólny punkt na płaszczyźnie zespolonej i określimy dla niego kilka własności.



Odległość liczby zespolonej z=a+bi od początku układu współrzędnych, wyraża się wzorem:

 $|z| = \sqrt{a^2 + b^2}$  (z tw. Pitagorasa). Jest to po prostu <u>moduł</u> tej liczby z. Kąt między osią Re, a półprostą wychodzącą z początku układu współrzędnych i przechodzącą przez punkt z oznaczamy  $\varphi$ .

Miarę kąta  $\varphi$  będziemy wyrażać w radianach (a nie w stopniach) zatem można napisać, że  $\varphi \in R$ .

Liczbę  $\varphi$  nazywamy <u>argumentem</u> liczby z i oznaczamy argz. czyli  $argz = \varphi$  . Na podstawie rysunku otrzymujemy:

$$\cos \varphi = \frac{a}{|z|}$$

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$$

$$\sin \varphi = \frac{b}{|z|}$$

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$

$$a = |z| \cos \varphi$$

$$b = |z| \sin \varphi$$

Można zatem zapisać, że:

$$z = a + bi = |z| \cos \varphi + (|z| \sin \varphi)i = |z| (\cos \varphi + i \sin \varphi)$$

Wzór :  $z = |z|(\cos \varphi + i \sin \varphi)$  jest to <u>postać trygonometryczna</u> liczby zespolonej z=a+bi.

#### Wniosek:

możemy przedstawić jedną liczbę zespoloną na trzy różne sposoby:

- w postaci ogólnej z=a+bi,
- jako punkt (a,b) na płaszczyźnie,
- w postaci trygonometrycznej  $z=|z|(\cos\varphi+i\sin\varphi)$ .

Zaletą postaci trygonometrycznej jest to, że umożliwia w łatwy sposób potęgowanie liczb zespolonych w prosty sposób.

Zadanie; Dla liczby zespolonej z wyznacz moduł, argument oraz postać trygonometryczną.

## Rozwiązanie:

Zacznijmy od zaznaczenia liczby z w układzie współrzędnych:



Obliczamy moduł z twierdzenia Pitagorasa:

$$|z| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = \sqrt{4} = 2$$

argument, korzystając z definicji sinusa:  $\sin \varphi = \frac{1}{2}$ . Zatem:  $\varphi = 30^\circ = \frac{\pi}{6}$  czyli  $\arg z = \frac{\pi}{6}$ 

Teraz zapisujemy postać trygonometryczną, podstawiając do  $z=|z|(\cos\varphi+i\sin\varphi)=2\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$  wzoru wyliczone wartości:

Możemy jeszcze sprawdzić, że obliczając wartości liczbowe funkcji trygonometrycznych w powyższym wzorze, otrzymamy wyjściową postać ogólną:

$$z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 2\left(\frac{\sqrt{3}}{2} + i\cdot\frac{1}{2}\right) = \sqrt{3} + i$$

## Potegowanie liczb zespolonych. Wzór de Moivre'a

Liczby zespolone z, w  $\in$ C, o argumentach odpowiednio: a i  $\beta$ , Możemy zapisać w postaci trygonometrycznej:

$$z = |z|(\cos \alpha + i \sin \alpha)$$
$$w = |w|(\cos \beta + i \sin \beta)$$

Obliczymy teraz iloczyn tych liczb zapisanych w postaci trygonometrycznej:

$$z \cdot w = |z|(\cos \alpha + i \sin \alpha) \cdot |w|(\cos \beta + i \sin \beta) =$$

$$= |z||w|(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta) =$$

$$= |z||w|(\cos \alpha \cos \beta + i \cos \alpha \sin \beta + i \sin \alpha \cos \beta + i^{2} \sin \alpha \sin \beta) =$$

$$= |z||w|(\cos \alpha \cos \beta + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta) - \sin \alpha \sin \beta) =$$

$$= |z||w|(\cos \alpha \cos \beta - \sin \alpha \sin \beta + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)) =$$

$$= |z||w|(\cos \alpha \cos \beta - \sin \alpha \sin \beta + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)) =$$

$$= |z||w|(\cos(\alpha + \beta) + i \sin(\alpha + \beta))$$

Ostatnia równość wynika ze wzorów trygonometrycznych na

- cosinus sumy kątów oraz na
- > sinus sumy katów.

Przy mnożeniu dwóch liczb zespolonych z,w∈C otrzymujemy liczbę zespoloną, której:

- moduł jest iloczynem modułów liczb z oraz w,
- argument jest suma argumentów liczb z oraz w.

Wynika stąd wzór de Moivre'a: Dla dowolnej liczby  $z \in C$  zachodzi wzór:  $(|z|(\cos \varphi + i \sin \varphi))^n = |z|^n (\cos n\varphi + i \sin n\varphi)$ 

Przy pomocy tego wzoru można podnosić liczby zespolone do dowolnie dużych potęg.

#### Przykład

Dana jest liczba z=1-i. Oblicz  $z^{100}$ .

## Rozwiązanie:

Zapiszemy liczbę zespoloną z=1-i w postaci trygonometrycznej. W układzie współrzędnych:



Obliczamy moduł:

$$|z| = \sqrt{2}$$

$$\sin \varphi = \frac{b}{|z|} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

Obliczamy argument:

Kąt φ leży w IV ćwiartce układu współrzędnych, zatem:  $\varphi = \frac{7}{4}\pi$ 

Argument można było również odczytać z układu współrzędnych. Widać, że  $\phi=3.90$ 0+450=3150.

Zapiszmy teraz liczbę z=1-i w postaci trygonometrycznej:  $z=|z|(\cos\varphi+i\sin\varphi)=\sqrt{2}\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)$ 

Korzystając ze wzoru de Moivre'a wyliczymy, że:

$$z^{100} = |z|^{100} (\cos 100\varphi + i \sin 100\varphi) = \left(\sqrt{2}\right)^{100} \left(\cos \left(100 \cdot \frac{7\pi}{4}\right) + i \sin \left(100 \cdot \frac{7\pi}{4}\right)\right) =$$
$$= 2^{50} (\cos 175\pi + i \sin 175\pi) = 2^{50} (\cos \pi + i \sin \pi) = 2^{50} (-1 + i \cdot 0) = -2^{50}$$

## **Przykład**

Dana jest liczba z. Oblicz  $z^{67}$ .

# Rozwiązanie:

Liczba z w układzie współrzędnych:



Obliczamy moduł: |z|=2

Obliczamy argument:  $\sin \varphi = \frac{b}{|z|} = \frac{\sqrt{3}}{2}$ 

Kąt φ leży w II ćwiartce układu współrzędnych, zatem:  $\varphi = \frac{2}{3}\pi$ 

Argument można było również odczytać z układu współrzędnych. Widać, że  $\phi$ =90 $\circ$ +30 $\circ$ =120 $\circ$ .

Zapiszmy teraz liczbę z w postaci trygonometrycznej:  $z = |z|(\cos \varphi + i \sin \varphi) = 2\left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$ 

Stosując wzór de Moivre'a obliczamy, że:

$$\begin{split} z^{67} &= |z|^{67} (\cos 67 \varphi + i \sin 67 \varphi) = 2^{67} \left( \cos \left( 67 \cdot \frac{2\pi}{3} \right) + i \sin \left( 67 \cdot \frac{2\pi}{3} \right) \right) = \\ &= 2^{67} \left( \cos \frac{134\pi}{3} + i \sin \frac{134\pi}{3} \right) = 2^{67} \left( \cos \left( 44\pi + \frac{2}{3}\pi \right) + i \sin \left( 44\pi + \frac{2}{3}\pi \right) \right) = \\ &= 2^{67} \left( \cos \frac{2}{3}\pi + i \sin \frac{2}{3}\pi \right) = 2^{67} \left( -\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2} \right) = -2^{66} + 2^{66} \sqrt{3} i \end{split}$$