

Serial No.: 10/695,574 Replacement Sheet 12 Docket No.: 1003-DIV-01

FIG. 12 STABILIZING EFFECTS OF THE POLYMERS ON FGF1

	Γ	<u> </u>				1
TREATMENT	20°C	20°C	20°C	20°C	37°C	37°C
VALUE ED50	0 DAYS	1 DAY	7 DAYS	15 DAYS	1 DAY	7 DAYS
FGF1 ALONE	6	8	14	>20	7	>20
FGF1 + Heparin	0.8	1.2	6	16	1.4	15
FGF1 + Dextran T40	6	10	>20	>20	7	>20
FGF1 + DS commercial	6	8	>20	>20	7	>20
FGF1 + DS _{0.5} equiv	6	8	>20	>20	7	>20
FGF1 + DS _{0.125} equiv	6	10	>20	>20	7	>20
Pcoo-	8	>20	>20	>20	18	>20
P1S	3	6	10	17	5	15
P2S	1	3	9	14	3	11
FGF1 + CM ₁ D	6	9	>20	>20	7	>20
FGF1 + CM ₂ D	6	.7	>20	>20	7	>20
FGF1 + CM ₁ DS2	0.5	1.1	6	17	2.1	16
FGF1 + CM ₂ DS2	2	8	15	>20	5	>20
FGF1 + CM ₂ DPhS	8	15	>20	>20	8	>20
FGF1 + CM ₂ DPhSS1	2	6	18	>20	3	14
FGF1 + CM ₂ DES1	1	3	8	17	9	>20
FGF1 + CM ₂ DPheS2	0.9	2	4	13	8	17
FGF1 + CM ₃ DTyrS2	3	5	>20	>20	9	>20
FGF1 + CM ₁ DPalmS1	4	4	16	>20	14	>20

BIOCOMPATIBLE POLYMERS, PROCESS FOR THEIR PREPARATION AND COMPOSITIONS CONTAINING THEM

Inventors: Denis Barritault et al. Serial No.: 10/695,574 Replacement Sheet 13 Docket No.: 1003-DIV-01

FIG. 13
POTENTIATION EFFECTS ON FGF1 AND FGF2

Reference polymers	Conditions	concentrations (µg/ml)	ED50 FGF1 (ng/ml)	ED50 FGF2 (pg/ml)
	FGF ALONE	0	8	56
	Heparin	1	2	35
RGTA 2010	Pcoo-	100	4	56
RGTA 2011	P1S	100	2.5	38
RGTA 2012	P2S	100	4	41
RGTA 0040	DS commmercial	100	3	30
RGTA 1024	DS _{0.5} equiv	100	. 4	36
RGTA 1026	DS _{0.125} equiv	100	6	48
RGTA 1000	CM ₁ D	10	12	168
RGTA 1007	CM ₂ D	10	16	297
RGTA 1005	CM ₂ DS2	10	1	40
RGTA 1012	CM ₂ DS2	10	1.5	31
RGTA 1110	CM ₁ DPhS1	10	8	53
RGTA 1111	CM ₂ DES1	10	5	45
RGTA 1112	CM ₂ DPheS2	10	3	38
RGTA 1113	CM ₃ DTyrS2	10	2	30
RGTA 1114	CM ₁ DPalmS1	10	9	42

BIOCOMPATIBLE POLYMERS, PROCESS FOR THEIR PREPARATION AND COMPOSITIONS CONTAINING THEM

Inventors: Denis Barritault et al. Serial No.: 10/695,574 Replacement Sheet 16 Docket No.: 1003-DIV-01

FIG. 16

INHIBITORY EFFECTS OF THE POLYMERS ON THE ACTIVITIES OF LEUKOCYTE ELASTASE AND PLASMIN

	IC 50	mg/ml]	IC 50	ma/ml
					mg/ml
Polymers	Elastase	plasmin	Polymers	Elastase	plasmin
Heparin	1.8	1	CM ₂ DSex	5	0.07
Pcoo-	100	53	CM ₃ D	>100	>100
P1S	2	0.98	CM ₃ DS _{0.5}	8	6
P2S	4.7	0.82	CM ₃ DS ₁	6	6
CM ₁ D	>100	>100	CM ₃ DS _{1.5}	4	6
CM ₁ DS _{0.5}	37	8	CM ₃ DS ₂	2	1.5
CM ₁ DS _{0.75}	24	2.5	CM ₂ DPhS1	12	2.4
CM ₁ DS ₁	20	1	CM ₂ DES1	18	3.8
CM ₁ DS _{1.5}	3	0.15	CM ₂ DPheS2	4	0.3
CM ₁ DS ₂	1	0.08	CM ₃ DTyrS2	1.8	0.15
CM ₁ DSex	1	0.035	CM ₁ DPalmS1	1.4	6
CM ₂ D	>100	>100	CM ₁ DOleicS1	2	9
CM ₂ DS _{0.5}	7	1	DS commercial	>100	>100
CM ₂ DS _{0.75}	5	0.7	DS _{0.5} equiv	>100	>100
CM ₂ DS ₁	2	0.5	DS _{0.25} equiv	>100	>100
CM ₂ DS _{1.5}	2	0.1	DS _{0.125} equiv	>100	>100
CM ₂ DS ₂	2	0.05	Dextran T40	>100	>100