Nirma University

Institute of Technology

Semester End Examination (IR/RPR), December - 2019 M. Tech. in Computer Science and Engineering, Semester-I / M. Tech. in Computer Science and Engineering (INS), Semester-I / M. Tech. in Computer Science and Engineering (Data Science), Semester-I 3CS1109 Complexity Theory and Algorithms Max. Marks: 100

Time: 3 HOURS

Roll No.		Supervisor's initial with date				
Instr	uctio	 Attempt all questions. Figures to right indicate full marks. Draw neat sketches wherever necessary. Assume suitable data wherever necessary and specif Use section wise separate answerbooks. 	y clearly.			
		SECTION I				
Q 1		Answer the following	[17]			
CO1, L1, L2	A.	A. Formally define various complexity classes viz. P, NP, NP-COMPLETE and NP-HARD and discuss importance of these classes in context of algorithmic complexity theory.				
	В.	Solve following recurrences (any one)	[5]			
		1. $t(n)=5t(n-1)-6t(n-2)$, if $n>=2$, $t(n)=n$, if $n=0$ or $n=1$				
		2. $t(n)=nt^2(n/2)$, if $n>=2$, $t(n)=1/3$, if $n=1$				
	C.	Solve following recurrences either by using Master's Theorem or by using Extended Master's theorem appropriately (any one) . (Answer should be asymptotically tight bound.)	[4]			
		1. $t(n)=2t(n/4)+\sqrt{n}$				
		2. $t(n) = 9t(n/3) + n^2/\log^2 n$				
Q 2		Answer the following	[17]			
CO3, L6	Α.	Develop an algorithm (with time complexity $\Theta(n)$) to find all divisors of a number n .	[9]			
	B.	Develop a recursive algorithm for Bubble Sort (<i>iterations not to be used at all</i>) and trace it on suitable example with 6 numbers.	[8]			
Q 3		Answer the following	[16]			
CO2, L3	A.	Using Limit rules prove that $2n^2 + 3n \log_3 n + 5n = O(n^3)$	[8]			
	В.	For an efficient implementation of Kruskal's Algorithm (for minimum spanning tree), which is the most suitable data structure to detect cycle. Justify your answer with a suitable example and give proper complexity analysis.	[8]			

SECTION II

- Q 4 Answer the following [16]
 CO3, A. Write Merge Sort algorithm and analyse its complexity for all the possible scenarios.
- L4 B. Develop an algorithm to solve 0/1 Knapsack Problem using [8] Greedy Strategy. Trace your algorithm on following data for knapsack capacity= 5, to maximise the value in knapsack:

Item	Weight	Value
1	2	3
2	3	4
3	4	5
4	5	6

Q 5 Answer the following

[17]

- CO3 A. Solve the following problem on the given data using Dynamic [8]

 L3 Programming approach (complete trace expected) (any one).
 - 1. To find longest common subsequence in given two strings A and B

A = abcdabcab

B = aadbabdadabc

2. To find a largest sum sub-matrix in a given two dimensional matrix M.

$$M = \begin{pmatrix} 5 & -2 & 9 & 6 \\ -2 & 4 & -3 & 2 \\ 6 & 9 & 3 & -5 \\ -8 & -2 & 1 & -6 \end{pmatrix}$$

B. Give trace of Bellman–Ford Algorithm to find shortest path from node A to all other nodes for the following graph. Find negative cycle(s), if any.

[**17]** [9]

CO3, A. Write an algorithm for Breadth First Traversal (BFT) in a graph with a trace on a suitable example. Justify that "Branch and Bound technique of development of algorithms is based on BFT".

B. Use Hungarian Algorithm and solve the following example where four jobs (*J1*, *J2*, *J3*, and *J4*) need to be executed by four workers (*W1*, *W2*, *W3*, and *W4*), one job per worker. The matrix below shows the cost of assigning a certain worker to a certain job. The objective is to minimize the total cost of the assignment. (Complete trace expected).

	J1	J2	J3	J4
W1	82	83	69	92
W2	77	37	49	92
W3	11	69	5	86
W4	8	9	98	23

OR

B. Use Backtracking Technique and write an algorithm to solve [8] 8-queen puzzle problem, also evaluate its time complexity.
