Вариант проекта для Sipeed TANG Primer

Эта плата — одна из самых необычных из всх попадавшихся мне FPGA-плат. Выглядит она так:

Эта плата основана на FPGA EG4S20BG256 китайской фирмы Anlogic (не путать с Amlogic — это совершенно разные фирмы). FPGA полностью китайской разработки, а не копия какой-либо FPGA одной из известных фирм. FPGA обладает неплохими характеристиками — 23К логических ячеек, 64К внутренней статической памяти, 270 внешних портов. Плюс встроенный блок динамической памяти SDRAM объемом 2М*32bit, что позволяет обойтись без установки на плату внешней микросхемы SDRAM. Также имеются некоторые встроенные IP-блоки — АЦП на 8 каналов, монитор напряжения питания, и т. д., что может пригодиться для реализации функций контроллера, управляющего каким-либо оборудованием.

Сама плата Tang Primer совсем небольшая, размером 60*20 мм. Это самая маленькая FPGAплата из известных мне. Она выполнена в форм-факторе DIP-40W, как многие известные модули Arduino. На плате расположен разъем MicroSD-карты, 3 светодиода (питание, активность jtag, и трехцветный пользовательский), 2 кнопки (reset и config), 2 разъема под плоские шлейфы для LCD-панели и видеокамеры. Также имеется разъем Micro-USB, через который осуществляется питание платы и ее программирование по JTAG-протоколу. Внешний программатор не требуется — он уже есть на плате.

Поскольку из полезного для данного проекта на плате имеется только SD-слот, необходимо изготовить плату ввода-вывода, содержащую разъемы VGA и PS/2, а также 4 кнопки, 4 переключателя и 5 светодиодов. Компоновка платы может быть любой, я сделал ее вот такой:

Распределение портов платы:

Общий сброс	button[0]	B10
Программа-пульт	button[1]	B15
Сброс терминала	button[2]	E16
Переключатель таймера	button[3]	J11
Выбор дискового банка	sw[1:0]	A3,A4
Выбор консольного порта	sw[2]	C5
Режим замедления процессора	sw[3]	В6
Активность диска RK	led[0]	R2
Активность диска DW	led[1]	P2
Активность диска МҮ	led[2]	N5
Активность диска DX	led[3]	C9
Признак включения таймера	led[4]	L12
PS/2 Clock	ps2_clk	Т7
PS/2 Data	ps2_data	R7
VGA R - красный	vgar	M12
VGA G - зеленый	vgag	R16
VGA B - синий	vgab	N12
VGA H — строчная синхронизация	vgah	P12
VGA V — кадровая синхронизация	vgav	N11

ИРПС2 Тх - передатчик	irps_txd	J13
ИРПС2 Rx - приемник	irps_rxd	H13

Кнопки и переключатели подключаются между портом FPGA и землей. Светодиоды — между портом FPGA и питанием 3.3V, через токоограничивающий резистор 300-560ом.

Поскольку линии PS/2 — это выходы с открытым коллектором, то обе линии клавиатуры можно подключать прямо к ножкам FPGA, что обычно и бывает сделано на всех китайских платах. Питание +5V для клавиатуры выведено на одну из ножек платы.

На данной плате имеется полноценный видео-ЦАП VGA, однако подключиться к нему не так-то просто — все сигналы выведены на разъем для плоского шлейфа. Поэтому сигналы разъема VGA подключается к обычным портам без всяких ЦАП, поскольку управление яркостью цветов в данном проекте не используется. Синхросигналы vgah и vgav следует подключить через резисторы 22-50 ом, а видеосигналы цветов — через резисторы 300-470ом. Подбирая эти резисторы, можно настраивать цветовой баланс и яркость картинки на мониторе.

Встроенная в FPGA память SDRAM имеет ширину 32 бит. Поскольку для данного проекта нужно только 16 бит, то используется только половина шины данных, при этом объем памяти ограничен 2M 16-битных слов, то есть 4Мб. Для данного проекта этого достаточно, поскольку процессоры PDP-11 используют максимум 22-битный адрес.

Для сборки прошивки и заливки ее в плату используется китайская среда разработки Anlogic TD. Официальный сайт — www.anlogic.com, однако сайт этот чисто китайский и не имеет английской страницы. Разобраться как оттуда скачать TD практически невозможно. К счастью, в интернете полно ресурсов, на которых лежат архивы этой среды разработки, в том числе и официальный сайт разработчиков этой платы - https://tang.sipeed.com/en/hardware-overview/lichee-tang/

Несмотря на китайское происхождение, плата оказалась весьма неплохой. Она продается на Aliexpress, стоит около 22\$ (меньше 2000р), и я вполне могу ее рекомендовать для запуска этого проекта с нуля. Обратите внимание, что часто вместе с этой платой, как опция, продается USB-отладчик RV Debugger. Для запуска данного проекта он НЕ НУЖЕН. Отладчик этот используется для отладки программ, запускаемых под управлением софтпроцессора RISC-V.