TMT4110 KJEMI

LØSNINGSFORSLAG TIL ØVING NR. 6, Vår 2011

OPPGAVE 1

a) Sterk syre, fullstendig dissosioert. pH = -log (0.0020) = 2,7

b)
$$HCOOH \longrightarrow HCOO^{-} + H^{+}$$

Før: 0,020 0 0
 Δ -x +x +x
LV: 0,020-x x x

$$K_{a} = \frac{\left[H^{+}\right]\left[HCOO^{-}\right]}{\left[HCOOH\right]} = 10^{-3.74} = 1.8 \cdot 10^{-4}$$

$$K_{a} = \frac{x \cdot x}{0.020 - x} = 1.8 \cdot 10^{-4}$$

$$C^{o} - x \approx C^{o} = > \frac{x \cdot x}{0.020} = 1.8 \cdot 10^{-4}$$

$$x = 0.001897 = [H^{+}]$$

$$pH = 2.72$$

Avrunding ok?
$$\frac{0,001897}{0,020} \cdot 100\% = 9,5\%$$

Tallet er noe høyt (over 5%) og regnestykket bør løses uten tilnærming:

$$\frac{x \cdot x}{0,020 - x} = 1,8 \cdot 10^{-4}$$

$$x^{2} = 1,8 \cdot 10^{-4} \cdot (0,020 - x)$$

$$x^{2} + 1,8 \cdot 10^{-4} \cdot x - 3,6 \cdot 10^{-6} = 0$$

$$x = 1.809 \cdot 10^{-3} = [H^{+}]$$

$$pH = \underline{2.74}$$

c) NaHCOO → HCOO + Na⁺

HCOOH er en svak syre og likevekten er forskjøvet mot høyre. Vannets egenprotolyse vil ikke bidra mye til $[OH^-]$ og vi kan anta at $[OH^-] \approx [HCOOH]$

$$K_b = \frac{\left[OH^{-}\right]\left[HCOOH\right]}{\left[HCOO^{-}\right]} = \frac{10^{-14}}{K_a} = \frac{10^{-14}}{10^{-3,74}} = 5.495 \cdot 10^{-11}$$

$$K_b = \frac{x \cdot x}{0,020 - x} \approx \frac{x \cdot x}{0,020} = 5.495 \cdot 10^{-11}$$

$$x = 1.048 \cdot 10^{-6} = [OH^{-}]$$

pOH = 5.98 => pH = 8.02

Avrunding ok.

OPPGAVE 2

a) Løselighet:
$$s = \frac{6.8 \cdot 10^{-3} g}{78.1 g / mol \cdot 0.250 L} = 3.48 \cdot 10^{-4} M$$

 $K_{sp} = \left[Ca^{2+} \right] \left[F^{-} \right]^{2} = (3.48 \cdot 10^{-4}) \cdot (2 \cdot 3.48 \cdot 10^{-4})^{2} = 1.69 \cdot 10^{-10}$

b)
$$[Ca^{2+}] = s$$

 $[F^-] = 2s + 0.010$
 $K_{sp} = [Ca^{2+}][F^-]^2 = s \cdot (2s + 0.010)^2 = 1.69 \cdot 10^{-10}$
 $2s << 0.001 => s \cdot (0.010)^2 = 1.69 \cdot 10^{-10}$
 $s = 1.69 \cdot 10^{-6} \text{ M}$

c) Etter sammenblanding, men <u>før</u> eventuell utfelling: $[Ca^{2^+}] = c_1 \cdot V_1 / V_2 = 0,0020 \ M \cdot 1,0 \ L / 2,0 \ L = 0,0010 \ M$ $[F^-] = c_1 \cdot V_1 / V_2 = 0,0020 \ M \cdot 1,0 \ L / 2,0 \ L = 0,0010 \ M$

$$Q = [Ca^{2+}][F^{-}]^{2} = 0,0010 \cdot 0,0010^{2} = 1,0^{-9}$$

$$Q > K_{sp} = \text{ utfelling } Ca^{2+} (aq) + 2 F^{-} (aq) = CaF_{2}(s)$$

$$Ca^{2+}(aq) + 2 F^{-}(aq) \rightleftharpoons CaF_{2}(s)$$

Før: 0,0010 0,0010 LV: x 0,0010-2·(0,0010-x) = 2x-0,0010

$$K_{sp} = \left[Ca^{2+} \right] \left[F^{-} \right]^{2} = x \cdot (2x - 0,0010)^{2} = 1,69 \cdot 10^{-10}$$

Hvis man har en kalkulator som kan løse 3. gradsligninger eller har en solve-funksjon, får man enkelt ut svaret:

$$x = 7.40 \cdot 10^{-4}$$

$$[Ca^{2+}] = 7.40 \cdot 10^{-4} \text{ M}$$

 $[F] = 2x \cdot 0.0010 = 4.81 \cdot 10^{-4} \text{ M}$

Hvis ikke må man bruke suksessive approksimasjoners metode:

1. approx: (2x-0.0010) = 0 $x_1 = 0.0005$ M

Dvs. (tilnærmet) fullstendig utfelling av F.

$$[F^{-}]^{2} = \frac{1,69 \cdot 10^{-10}}{0,0005} = 3,38 \cdot 10^{-7}$$
$$[F^{-}] = 5,81 \cdot 10^{-4} = 2x_{2} - 0,0010$$

$$x_2 = 7,90 \cdot 10^{-4}$$

2. approx: $x_2 = 7.90 \cdot 10^{-4}$

$$[F^{-}]^{2} = \frac{1,69 \cdot 10^{-10}}{7,90 \cdot 10^{-4}} = 2,13 \cdot 10^{-7}$$
$$[F^{-}] = 4,63 \cdot 10^{-4} = 2x_{3} - 0,0010$$
$$x_{3} = 7,31 \cdot 10^{-4}$$
3. approx: $x_{3} = 7,310 \cdot 10^{-4}$

$$x_3 = 7.31 \cdot 10^{-4}$$

$$[F^{-}]^{2} = \frac{1,69 \cdot 10^{-10}}{7,31 \cdot 10^{-4}} = 2,31 \cdot 10^{-7}$$
$$[F^{-}] = 4,81 \cdot 10^{-4} = 2x_{4} - 0,0010$$
$$x_{4} = 7,40 \cdot 10^{-4}$$
3. approx: $x_{4} = 7,40 \cdot 10^{-4}$

3. approx:
$$x_4 = 7,40 \cdot 10^{-4}$$

Er tallet ok? Sjekker ved å bruke massevirkningsloven og ser om beregnede konsentrasjoner gir K_{sp} :

$$\left[Ca^{2+}\right]\left[F^{-}\right]^{2} = x \cdot (2x - 0,0010)^{2} = 7,40 \cdot 10^{-4} \cdot (2 \cdot 7,40 \cdot 10^{-4} - 0,0010)^{2} = 1,70 \cdot 10^{-10} = K_{sp}$$

K_{sp} ok og konsentrasjonene er riktige. (Kunne eventuelt fortsette en/flere runder til inntil kontrollen gir K_{sp}.)

$$[Ca^{2+}] = 7.40 \cdot 10^{-4} \text{ M}$$

 $[F^{-}] = 2x \cdot 0,0010 = 4,81 \cdot 10^{-4} \text{ M}$

OPPGAVE 3

6 L 0,1 M gir: $n = c \cdot V = 0,6 \text{ mol NaOH}$. a) 0,6 mol NaOH tilsvarer: $m = n \cdot M = 0,6 \text{ mol} \times 40 \text{ g/mol} = 24 \text{ g NaOH}.$

Løsningen inneholder 40 wt% NaOH. Massen til NaOH kan da uttrykkes som:

$$m_{\text{NaOH}} = \rho \times V \times 0,4$$

der ρ er tettheten til løsningen og V er volumet til løsningen

$$\Rightarrow V = \frac{m_{\text{NaOH}}}{\rho \cdot 0.4} = \frac{24 g}{1.43 g / mL \cdot 0.4} = 42 mL$$

b) $K_a = 10^{-4,20}$ for benzosyre

Reaksjonen NaOH + HB = NaB + H_2O tilsvarer 5×10^{-3} mol NaB løst i vann til V = 150 mL ved ekvivalenspunktet.

$$\Rightarrow C_{\rm B}^{\rm o} = \frac{5 \times 10^{-3}}{0.150} = 0.0333 \,\mathrm{M}$$

$$K_{\rm b} = \frac{x^2}{0.0333 - x} = \frac{K_{\rm w}}{K_{\rm a}} = \frac{10^{-14}}{10^{-4.20}} = 10^{-9.80}$$

$$\Rightarrow x = 2.3 \cdot 10^{-6} \Rightarrow C_{OH^{-}} = 2.3 \times 10^{-6}$$

$$\Rightarrow$$
 pOH= 5,63 \Rightarrow pH = 8,4

c) SI, tabell 23 s.144 Omslag ved pH omlag 8,4

Kresolrødt og tymolblått.

d)
$$M_{\rm HB} = 122,1$$
 g/mol $m_{\rm HB} = 0,500$ g

$$\Rightarrow n_{HB} = \frac{m}{M} = \frac{0,500 \text{ g}}{122,1 \frac{g}{\text{mol}}} = 4,095 \cdot 10^{-3} \text{ mol}$$

Vi får:

$$C_{\text{NaOH}} = \frac{n_{\text{NaOH}}}{V} = \frac{n_{\text{HB}}}{V} = \frac{4,095 \cdot 10^{-3} \, mol}{0,03840 L} = \underline{0,1066 \, M}$$

OPPGAVE 4

- a) Energi kan ikke forsvinne eller oppstå, bare omdannes. Energiøkningen i et system er tilført varme minus arbeid utført på omgivelsene. Det er flere mulige likeverdige formuleringer, for eksempel $\Delta E = q w$, energiøkningen er varme tilført minus arbeid utført på omgivelsene.
- b) At entalpiendringen er uavhengig av veien.
- c) Hvis en reaksjon **c** er summen av to reaksjoner **a** og **b**, vil $\Delta H_c = \Delta H_a + \Delta H_b$
- d) Varmeinnhold
- e) ΔH gir beskjed om varmeutviklingen fra en kjemisk reaksjon (eventuelt den varmeutviklingen som hadde funnet sted dersom reaksjonen hadde skjedd).

$$-\Delta H = q_{\text{utviklet}}$$

f)
$$\Delta H^{\circ}(rx, 25 \, ^{\circ}C) = -814 \, kJ - (-297 \, kJ + 1/2 \times 0 \, kJ - 286 \, kJ) = -231 \, kJ$$

g) $\Delta H = \sum C^{\circ}_{P} \Delta T$ for alle komponentene.

$$\Sigma C^{\circ}_{P}$$
 (reaktanter) = $(40 + 1/2 \times 29 + 75)$ J/K = 129,5 J/K
 $\Delta H = \Sigma C^{\circ}_{P} \Delta T = 129,5$ J/K $\times 75$ K = $9712,5$ J = $9,7$ kJ

h) Man tar utgangspunkt i at entalpien er en tilstandsfunksjon. Betrakt følgende reaksjon:

$$SO_2 + \frac{1}{2}O_2 + H_2O(1) (25 °C) \rightarrow H_2SO_4 (100 °C)$$

 ΔH for reaksjonen kan vi finne på to måter: enten ved at vi først varmer opp reaktantene og lar dem reagere ved 100 °C, eller ved at vi lar dem reagere ved 25 °C og så varmer opp produktene til 100 °C. Svaret må bli det samme i begge tilfellene, for ΔH er en tilstandsfunksjon. Hvis alle stoffene er i standardtilstand, får vi:

 ΔH (oppvarming av reaktanter) + $\Delta H^{\circ}(rx, 100 \, ^{\circ}C) = \Delta H^{\circ}(rx, 25 \, ^{\circ}C) + \Delta H$ (oppvarming av produkter)

Dette kan vi skrive som:

$$\Sigma C^{\circ}_{P}$$
 (reaktanter) $\times \Delta T + \Delta H^{\circ}(rx, 100 \, ^{\circ}C) = \Delta H^{\circ}(rx, 25 \, ^{\circ}C) + \Sigma C^{\circ}_{P}$ (produkter) $\times \Delta T$ Eller:

 $\Delta H^{\circ}(rx, 100 \, ^{\circ}C) = \Delta H^{\circ}(rx, 25 \, ^{\circ}C) + \Sigma C^{\circ}_{P} \text{ (produkter)} \times \Delta T - \Sigma C^{\circ}_{P} \text{ (reaktanter)} \times \Delta T$ Siden

$$\Delta C^{\circ}_{P} = \Sigma C^{\circ}_{P}$$
 (produkter) - ΣC°_{P} (reaktanter)

er

$$\Delta H^{\circ}(\text{rx}, 100 \, ^{\circ}\text{C}) = \Delta H^{\circ}(\text{rx}, 25 \, ^{\circ}\text{C}) + \Delta C^{\circ}_{P} \times \Delta T$$

som vi skulle bevise.

For å finne verdien av $\Delta H^{\circ}(rx, 100 \,^{\circ}C)$:

$$\Delta C^{\circ}_{P} = \Sigma C^{\circ}_{P}$$
 (produkter) - ΣC°_{P} (reaktanter) = 139 J/K - 129,5 J/K = 9,5 J/K
 $\Delta H^{\circ}(rx, 100 \, ^{\circ}C) = -231 \, kJ + 0,0095 \, kJ \times 75 \, K = -230,29 \, kJ \approx -230 \, kJ$

i) Forskjellen er ca 1 kJ, eller knapt 0,5 %.

Legg merke til at benevningen i denne beregningen refererer til reaksjonsligningene slik de er skrevet. Vi skriver derfor kJ og ikke kJ/mol fordi antall mol varierer fra specie til specie. Husk at ΔH for en reaksjon aA + bB = cC + dD er

 $c \mod \times \Delta H_{\rm f,C} \ {\rm kJ/mol} + d \mod \times \Delta H_{\rm f,D} \ {\rm kJ/mol} - a \mod \times \Delta H_{\rm f,A} \ {\rm kJ/mol} - b \mod \times \Delta H_{\rm f,B} \ {\rm kJ/mol}$ Den endelige benevning for ΔH er derfor kJ.

OPPGAVE 5

- a) $K_a = [H^+] [Ac^-]/[HAc] \Rightarrow [Ac^-]/[HAc] = K_a/[H^+] = 10^{-4,76}/10^{-7,76} = 10^3$ (Husk: $10^a \times 10^b = 10^{a+b}$)
- b) [HAc] << [Ac $^-$], slik at [Ac $^-$] \approx ([Ac $^-$] + [HAc]) = 0,100 mol/L \Rightarrow $K_a = [H^+]$ [Ac $^-$]/[HAc] \Rightarrow [HAc] = [H $^+$] [Ac $^-$]/ $K_a = 10^{-7.76} \times 0,100 / 10^{-4.76} = 10^{-4}$
- c) [Ac¯] er uendret mens [HAc] minker med en faktor 10 for hver pH-enhet for pH > 7. Det betyr at log [HAc] mot pH blir en rett linje med stigningstall –1.
- d) [HAc]/[Ac⁻] = [H⁺]/ K_a = $10^{-1.76}/10^{-4.76}$ = 10^3
- e) [HAc] er uendret mens [Ac⁻] øker med en faktor 10 for hver pH-enhet for pH < 2.
- f) Diagrammet skal se ut som nedenfor.

- g) pH er en variabel, og kan være alt fra 0 til 14.
- h) Fordi $HAc \rightarrow H^+ + Ac^-$, og vi får dermed dannet like mye av hver. Se krysningspunktet ved ca. pH 2,9, der $[H^+] = [Ac^-]$.
- i) Tilsetter sterk syre.
- j) Fordi $Ac^- + H_2O \rightarrow HAc + OH^-$, og vi får dermed dannet like mye HAc og OH $^-$. Se krysningspunktet ved ca. pH 9, der [HAc] = [OH $^-$].
- k) Tilsetter sterk base.
- 1) $[HAc] = [Ac^{-}]$ der linjene krysser hverandre, ved $pH = pK_a$.

OPPGAVE 6

Oppgaven kan løses ved hjelp av **halvreaksjonsmetoden** (men andre metoder også mulig, jf forelesningene):

- 1. Skriv ligningene for oksidasjons- og reduksjons-halvreaksjonene.
- 2. For hver halvreaksjon:
 - a. Balanser alle elementene unntatt hydrogen og oksygen
 - b. Balanser oksygen ved å bruke H₂O
 - c. Balanser hydrogen ved å bruke H⁺
 - d. Balanser ladningen ved å bruke elektroner.
- 3. Hvis nødvendig multipliser en eller begge halvreaksjonene med et heltall slik at antall elektroner blir det samme i oksidasjons og reduksjonsreaksjonen.
- 4. Summer halvreaksjonene og stryk det som er likt på begge sider av ligningen.
- 5. Hvis løsningen er basisk, tilsettes OH til begge sider av ligningen (slik at H og OH reagerer til H₂O) og eliminerer antall H₂O molekyler som er likt på begge sider av ligningen.
- 6. Sjekk at elementene og ladningene balanserer.

a)
$$+5 +4 0 +6$$

 $IO_3^- + SO_3^{2-} = I_2 (aq) + SO_4^{2-}$

Balansere i sur løsning (dvs. tilgang på H⁺ og H₂O)

1. Halvreaksjonene

Oksidasjon (svovel går fra +4 til +6)

$$SO_3^{2-} = SO_4^{2-}$$
 (1)

Reduksjon (jod går fra +5 til 0)

$$IO_3^-=I_2 \tag{2}$$

2a. Balanserer elementene unntatt H og O

$$SO_3^{2-} = SO_4^{2-}$$
 (1)

$$2IO_3^-=I_2 \tag{2}$$

2b. Balanserer oksygen ved å bruke vann

$$H_2O+SO_3^{2-}=SO_4^{2-}$$
 (1)

$$2IO_3^-=I_2+6H_2O$$
 (2)

2c. Balanserer hydrogen ved å bruke H⁺

$$H_2O+SO_3^{2-}=SO_4^{2-}+2H^+$$
 (1)

$$12H^{+} + 2IO_{3}^{-} = I_{2} + 6H_{2}O$$
 (2)

2d. Balanserer ladningen ved å bruke elektroner

$$H_2O+SO_3^{2-}=SO_4^{2-}+2H^++2e^-$$
 (1)

$$12H^{+} + 2IO_{3} + 10e^{-} = I_{2} + 6H_{2}O$$
 (2)

3. Multipliserer (1) med 5 slik at antall elektroner blir likt for (1) og (2)

$$5H_2O+5SO_3^{2-}=5SO_4^{2-}+10H^++10e^-$$
 (1)

4. Summerer (1) og (2), og stryker det som er likt på begge sider.

$$5H_2O+5SO_3^{2-}=5SO_4^{2-}+10H^++10e^-$$
 (1)

$$12 H^{+} + 2 IO_{3}^{-} + 10 e^{-} = I_{2} + 6 H_{2} O$$
 (2)

$$2H^{+}+2IO_{3}^{-}+5SO_{3}^{2-}=I_{2}(aq)+5SO_{4}^{2-}+H_{2}O$$
 (3)

Punkt 5 faller bort da vi har en sur løsning.

6. Ser at elementene og ladningene balanserer.

+

Balansere i sur løsning. Utfører samme trinn som i a) og får: (Oksidasjon karbon går fra -1 til 0. Reduksjon: krom går fra +6 til +3)

$$C_2H_4O + H_2O = C_2H_4O_2 + 2 H^+ + 2 e^-$$
 |×3
+ $14 H^+ + Cr_2O_7^{2-} + 6e^- = 2 Cr^{3+} + 7 H_2O$

$$3 C_2 H_4 O + 8 H^+ + C r_2 O_7^{2-} = 3 C_2 H_4 O_2 + 4 H_2 O + 2 C r^{3+}$$

c)
$$+4$$
 -1 $+1$ $+2$
PbO₂ (s) + Cl⁻ = ClO⁻ + Pb(OH)₃

Balansere i basisk miljø (tilgang på OH og H₂O). Utfører punkt 1 til 4 og får: (Oksidasjon: Klor går fra -1 til +1. Reduksjon: Bly går fra +4 til +2.)

$$H_2O + Cl^- = ClO^- + 2 H^+ + 2 e^-$$

+ $PbO_2 + H_2O + H^+ + 2e^- = Pb(OH)_3^-$

$$PbO_2 + 2 H_2O + Cl^- = Pb(OH)_3^- + H^+ + ClO^-$$

Utfører nå punkt 5 der det tilsettes OH til begge sider av ligningen slik at H og OH reagerer til vann. Vi får da:

$$OH^{-} + PbO_2 + H_2O + Cl^{-} = Pb(OH)_3^{-} + ClO^{-}$$

Elementene og ladningene balanserer.

d)
$$+2$$
 $+5$ $+6$ -1 $+5$ $+6$ -1 $+10^{-}$ $+10^{-}$ $+10^{-}$ $+10^{-}$ $+10^{-}$

Vi har her indirekte oppgitt at det er basisk løsning. Utfører punkt 1 til 4 og får: (Oksidasjon: Krom går fra +2 til + 6. Jod går fra + 5 til -1)

$$Cr(OH)_3^- + H_2O = CrO_4^{2-} + 5H^+ + 4e^- | \cdot 3$$

 $6H^+ + IO_3^- + 6e^- = I^- + 3H_2O | \cdot 2$

$$3 \text{ Cr}(OH)_{3}^{-} + 2 \text{ IO}_{3}^{-} = 3 \text{ Cr}O_{4}^{2-} + 2 \text{ }\Gamma + 3 \text{ }H^{+} + 3 \text{ }H_{2}O$$

Tilsetter OH til begge sider av ligningen slik at H $^+$ og OH reagerer til vann. Vi får da: $3 \text{ OH}^- + 3 \text{ Cr}(\text{OH})_3^- + 2 \text{ IO}_3^- = 3 \text{ Cr}\text{O}_4^{2^-} + 2 \text{ }\Gamma + 6 \text{ H}_2\text{O}$ Elementene og ladningene balanserer.