Zillow's Price Data Exploration

Chan Yu Yankai Liu Yifei Bi

OverView

- 1.Program Background
- 2. Trainset Exploration
- 3. Property Exploration
- 4.Geograhic&correlation

Reporter: Yankai Liu

Program background

1.Program Background

- 2.Trainset Exploration
- 3.Property Exploration
- 4.Geograhic&correlation

Question1:What is zillow and Zestimates?

Zillow: Real estate price evaluation company

Zestimates: Using algorithms and data to estimate the price.

Question2: Why is Zestimates so important?

Zestimates can evaluate the price of real estate. But Zestimates is based on statistical and machine learning models. So the efficiency and accuracy of the model are very important.

Trainset exploration

- 1.Program Background
- 2.Trainset Exploration
- 3.Property Exploration
- 4.Geograhic&correlation

Properties exploration

1.Program Background 2.Trainset Exploration

3.Property Exploration

4.Geograhic&correlation

Geograhic&correlation

- 1.Program Background
- 2.Trainset Exploration
- 3. Property Exploration
- 4.Geograhic&correlation

Carriery Killerin, Ught SA, contraction of the Children

Zillow's Price Feature Engineering

Chan Yu Yankai Liu Yifei Bi

Procedures Guide

01=**
03=**
04-**

1.Preparation

2.Impute Data 1

3. Creating New Features

4.Impute Data 2

Reporter: Chan Yu

1.Convert Float64 to Float32

	parcelid	airconditioningtypeid	architecturalstyletypeid	basementsqft	bathrooment	bedrooment	buildingclasstypeid
0	10754147	1.0	7.0	535.0	0.0	0.0	4.0
1	10759547	1.0	7.0	535.0	0.0	0.0	4.0
2	10843547	1.0	7.0	535.0	0.0	0.0	5.0
3	10859147	1.0	7.0	535.0	0.0	0.0	3.0
4	10879947	1.0	7.0	535.0	0.0	0.0	4.0

5 rows x 54 columns

2.Group Features into Different Groups

3. Prepare Functions For Corresponding Group

1.Preparation

- 2.Impute Data 1
- 3.Creating New Features
- 4.Impute Data 2

Categorical Features

Numerical Features

Segment Features

1.Preparation2.Impute Data 13.Creating New Features4.Impute Data 2

Impute By Median

Impute By Mode

02

Missing ratio < 10%

Cluster Geo Info

г	-	-0.00	 	- Marie	-	_
٠	100	100	 -	1	75	
٠	-		 _			
		-	 	100		
	200					
٠	-		 -			

7 algrithms and each for 5 classes

elitarian de la companya de la compa	
11.000	
277	
75m	
9,000	

1.Preparation 2.Impute Data 1 3.Creating New Features 4.Impute Data 2

Date Features

-	analysis y	400	particular.	-	100
-	18		1610	1111	4
-	- 6		1610	00.00	
	18		1010	22.50	
7	***		10.12	20.00	
	**		1472	25, 64	

Can desinquencyyear

propertyzoningdesc

```
0 NaN
1 LCA11*
2 LAC2
3 LAC2
4 LAM1
Name: propertyzoningdesc, dtype: object
```

```
0 NaN
1 LCA
2 LAC
3 LAC
4 LAM
Name: propertyzoningdesc, dtype: object
```


propertycountylandusecode

```
0 010D
1 0109
2 1200
3 1200
4 1210
Name: propertycountylandusecode, dtype: object
```

```
0 D
1 NAN1
2 NAN1
3 NAN1
4 NAN1
Name: propertycountylandusecode, dtype: object
```


Cluster Geo Info

	regionidcity	regionidzip	rawcensustractandblock	censustractandblock	latitude	longitude	fips
0	37688.0	96337.0	60378004.0	6.059032e+13	34144440.0	-118654080.0	A
1	37688.0	96337.0	60378000.0	6.059032e+13	34140432.0	-118825360.0	Α
2	51617.0	96095.0	60377032.0	6.059032e+13	33989360.0	-118394632.0	Α
3	12447.0	98424.0	60371412.0	6.059032e+13	34148864.0	-118437208.0	Α
4	12447.0	96450.0	60371232.0	6.059032e+13	34194168.0	-118385816.0	Α

7 algrithms and each for 8 classes

```
charteches compagned as T resourch
                                                                                                                                                     reconvertexcondition, reconstructed body, 'basitudy, 'bogitudy, first', long
clusterlocations (clusterlocations clusterlocation, near) ( /clusterlocation, etc.)
nadel-mistacre. Sous classifications in component cvil)
 table fi ladate astind
properties of alluments returned by Practical product teleproperties.
 indefectioner. Please (surflumensel)
 (midset, saleties, section)
projective ("clume classication, be" benefit, product (classication)
prints; ... !
undelectures. Spectrol Costerling in all smersels)
 cold, fir fellet ed section).
projective ("clusteringstronger" (warde), product (clusteringstrong)
nada Leaburger, Ediklah ()
 madel, fit is hast of acetime.
 name time ["above doest me, the", each 's prefint (cinetechnic time).
print(" ... ')
Challenia ayradaylaban
nadel, fit leftet will scatime
 (criterial stackets be of the or tendered party con-
prant? ....
 and trades on Assume retrievel/horizones in position of
 nadel, fit leftart will scuttime
 Cuitsof stedicardence is net be not been been being lesi term
prant.".
  indefectures. Roofs to of satement.
  odd tiskhetelestind
properties of clume classical by by deligation (classical)
properties[f] charter location_mi_f, 'cluster location_im', 'cluster location_cm', 'cluster
```

Date Features

	assessmentyear	yearbuilt
0	2016.0	1963.0
1	2015.0	1963.0
2	2016.0	1959.0
3	2016.0	1948.0
4	2016.0	1947.0

	assessmentyear	yearbuilt
0	1.0	62.0
1	2.0	62.0
2	1.0	58.0
3	1.0	69.0
4	1.0	70.0

taxdelinquencyyear

1.Preparation 2.Impute Data 1 3.Creating New Features

4.Impute Data 2

Zillow's Price Training

Chan Yu Yankai Liu Yifei Bi

Procedures Guide

1.XGBoost

2.LightGBM

3. Neural Network

4.Linear Regression

Reporter: Chan Yu

XGBoost - Extreme Gradient Boosting

- Regularization
- Parallel Processing
- High Flexibility
- Handling Missing Values

Tree Pruning

XGBoost - First Personal State Control Cat XXXDoc of Typer Parameters conductive contracts of the contract of the co Court Company of the

ton and the

1.XGBoost

2.LightGBM

3.Neural Network

4.Linear Regression

XGBoost - First

Set XGBoost Hyper Parameters

```
xgb params = {
    'eta': 0.037,
    'max depth': 5,
    'subsample': 0.80,
    'objective': 'reg:linear',
    'eval metric': 'mae',
    'lambda': 0.8,
    'alpha': 0.4,
    'base score': y mean,
    'silent': 1
num_boost_rounds = 250
```

```
First XGBoost predictions:

0
0 0.003354
1 0.008021
2 -0.002644
3 0.009713
4 -0.001039
```

Validate For First XGBoost:

Combined XGBoost Predictions

```
Combined XGBoost predictions:

0
0.003386
1 0.008179
2 -0.002297
3 0.009634
4 -0.000765
```

Validate For Combined XGBoost:

LightGBM

1.XGBoost 2.LightGBM

3.Neural Network

4.Linear Regression

- Optimization in Speed and Memory Usage
- Optimization in Accuracy
- Optimization in Network Communication
- Optimization in Parallel Learning

Unadjusted LightGBM predictions:

-0

0 0.021860

1 0.022435

2 0.022740

3 0.021015

4 0.022069

Validate For LightGBM

Fitting neural network model...

0.0699696842884

Neura	al Network	prediction	S.				
	parcelid	201607	201608	201609	201707	201708	201709
782	14677191	0.004404	0.004402	0.004400	0.004405	0.004403	0.004401
968	11183209	0.004399	0.004403	0.004407	0.004400	0.004403	0.004407
1165	11554091	0.004373	0.004375	0.004378	0.004376	0.004377	0.004379
1351	11742566	0.004386	0.004388	0.004393	0.004387	0.004389	0.004394
1,609	14667297	0.004405	0.004404	0.004403	0.004406	0.004405	0.004404

Validate For NN

0.06760387642306702

1.XGBoost 2.LightGBM 3.Neural Network 4.Linear Regression

Model Structure

Input
400 hidden units
relu
dropout 0.4
160 hidden units
relu
dropout 0.6
64 hidden units
relu
dropout 0.5
26 hidden units
relu
dropout 0.6

1 hidden units

1.XGBoost

2.LightGBM

3.Neural Network

4.Linear Regression

OLS predictions:

	parcelid	201607	201608	201609	201707	201708	201709
782	14677191	-0.006553	-0.008514	-0.010476	-0.002206	-0.004168	-0.006130
968	11183209	0.013480	0.011519	0.009557	0.017826	0.015865	0.013903
1165	11554091	-0.005324	-0.007286	-0.009248	-0.000978	-0.002940	-0.004901
1351	11742566	0.023170	0.021208	0.019246	0.027516	0.025554	0.023593
1609	14667297	-0.017631	-0.019592	-0.021554	-0.013284	-0.015246	-0.017208

Validate For OLS

Combination

- Combining XGBoost, LightGBM, and baseline predictions...
- XGB_WEIGHT = 0.6200
- BASELINE_WEIGHT = 0.0100
- OLS_WEIGHT = 0.0620
- NN_WEIGHT = 0.0800

```
Combined XGB/LGB/baseline predictions:

0
0.007198
1.0.010301
2.0.003876
3.0.010879
4.0.004672
```

Combination

- Combining with XGB/LGB/NN/OLS/baseline predictions...
- XGB_WEIGHT = 0.6200
- BASELINE_WEIGHT = 0.0100
- OLS_WEIGHT = 0.0620
- NN_WEIGHT = 0.0800

```
Combined XGB/LGB/NN/baseline/OLS
                                    predictions:
      parcelid
                 201607
                          201608
                                   201609
                                            201707
                                                     201708
                                                              201709
      14677191
782
                 0.0080
                          0.0079
                                   0.0077
                                            0.0083
                                                     0.0082
                                                              0.0080
                                            0.0132
968
      11183209
                 0.0129
                          0.0127
                                   0.0126
                                                     0.0130
                                                              0.0129
1165
      11554091
                 0.0044
                          0.0042
                                   0.0041
                                            0.0047
                                                     0.0045
                                                              0.0044
1351
      11742566
                 0.0142
                          0.0141
                                   0.0139
                                            0.0145
                                                     0.0144
                                                              0.0142
1609
      14667297
                 0.0044
                          0.0043
                                   0.0041
                                            0.0047
                                                     0.0046
                                                              0.0044
```