

XM125 Test

Taehun Kim bigteach0508@pusan.ac.kr Embedded Systems Lab. School of AI, PNU 2025. 03. 12

Contents

- **4** Schematic
- Installation
- **GUI** results
- CLI installation
- CLI results
- Conclusion

Schematic

Sparkfun XM125

Figure 1. Sparkfun XM125

Schematic (cont'd)

♣ XM125 block diagram

Figure 2. XM125 block diagram

Schematic (cont'd)

- **4** A121
 - 1 Tx antenna and 1 Rx antenna
 - Serial Peripheral Interface(SPI) communication with MCU

5

Installation

- Install CH340 driver
 - https://www.arduined.eu/ch340-windows-10-driver-download/
- Download Acconeer Exploration Tool
 - https://developer.acconeer.com/download/portable_exploration_tool/
- Double click the update.bat file and the run_app.bat

Figure 4. Acconeer Exploration Tool

Installation (cont'd)

- Flashing firmware
 - Click the flash menu
 - Click Get latest binary Get latest bin file
 - Register at https://developer.acconeer.com/register/
 - Download the firmware
 - Click the flash button to flashing firmware

Figure 5. Download the firmware

Installation (cont'd)

- Baud rate setting
 - Click the setting(cogwheel) button
 - Setting the baudrate to 115200

Figure 6. Setting the baudrate

GUI results

♣ Sparse IQ

Figure 7. Sparse IQ

GUI results (cont'd)

Distance detector

Figure 8. Distance detector

GUI results (cont'd)

Presence detector

Figure 9. Presence detector

GUI results (cont'd)

Speed detector

CLI installation

- Get example source code
 - https://github.com/acconeer/acconeer-pythonexploration/tree/master/examples
- Double click the cmd_with_path.bat in portable_exploration_tool
- Set client information
 - Serial port and baudrate
- Run the source code
 - python examples/a121/basic.py

```
client = a121.Client.open(
    # ip_address="<ip address or
    # or
    # serial_port="<serial port
    # or
    # usb_device=True,
    # or
    # mock=True,
    serial_port='COM4',
    override_baudrate=115200
)</pre>
```

Figure 11. Serial Configuration

CLI results

- Basic.py
 - print real parts and imaginary parts of the receive signals
 - Sweep_per_frame x num_points

```
::\Users\ESLAB\Desktop\xm125\portable_exploration_tool>python examples/a121/ba
sic.py
Server Info:
ServerInfo:
 rss_version ...... a121-v1.9.0
 sensor_count ..... 1
 ticks_per_second ..... 1000
 hardware_name ...... xm125
 max_baudrate ...... 2000000
 sensor infos:
   SensorInfo @ slot 1:
     connected ..... True
     serial ..... None
Result(data_saturated=False, frame_delayed=False, calibration_needed=False, t
(-291, 113),
       (-220, 64)].
      [(-129, 240), ( -79, 203), (-191, 163), (-275, 95), (-255, 96),
      [(-216, 142), (-152, 130), (-218, 176), (-266, 98), (-285, 36),
      [(-131, 209), (-178, 246), (-239, 207), (-262, 29), (-258, 81),
            55)]], dtype=[('real', '<i2'), ('imag', '<i2')]), tick=1555
context=ResultContext(metadata=Metadata(_frame_data_length=24, _sweep_data_le
gth=6, _subsweep_data_offset=array([0]), _subsweep_data_length=array([6]),
libration_temperature=15, _tick_period=0, _base_step_length_m=0.0025022740010
721, _max_sweep_rate=8902.890625, _high_speed_mode=True), ticks_per_second=100
```

Figure 12. Real and imaginary part of signals

CLI results

basic_plot.py

basic_plot.py

Figure 14. real and imaginary value by sweep and distance point

Basic_plot.py

Figure 15. real and imaginary heatmap by sweep and distance point

- Basic_plot.py

18

basic_plot.py

Figure 17. Amplitude and phase value by frame and distance point

Plot_analog.py

Figure 18. plot I/Q data, magnitude heatmap, phase heatmap, and I Q line plot

Plot_analog.py

Figure 19. plot magnitude, phase, i_values, q_values after flattening signal

plot_analog2.py

Figure 20. Distance point of sweep 1

plot_analog2.py

Figure 21. Sweep of distance 1

- Distance measurement
 - Modify examples/a121/algo/distance/processor.py

```
C:\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Union\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Union\Users\Users\Users\Union\Users\Users\Users\Union\Users\Union\Users\Users\Union\Union\Users\Union\Union\Users\Union\Union\Union\Users\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Union\Uni
```


Figure 22. Distance measurement

- Speed measurement
 - Modify examples/a121/algo/speed/processor.py

Figure 23. Speed measurement

- Sparse IQ
 - Modify example/a121/algo/sparse_iq/sparse_iq.py
 - Range-doppler heatmap
 - ▶ Range: from start_point*0.0025 to start_point*step_size*num_points
 - Step_size = step_length*0.0025
 - Velocity: +- wavelength/(4*sweep_period)
 - Sweep_period=1.0/sweep_rate
 - Step_size=sweeps_per_frame

26

Conclusion

- XM125 sensor cannot measure the Angle of Arrival(AoA) because it has only one Rx antenna
- Analog data may not be directly extracted from the sensor
- However, digital signal I + Qj can be extracted from the sensor of sweep and distance point
- Using the complex number, amplitude and phase can be calculated
- Heatmap can be created from the digital signal
- Distance and speed data can be calculated

References

- Manual
 - XM125 datasheet
 - XM125 schematic
- Online
 - https://github.com/acconeer/acconeer-python-exploration
 - https://docs.acconeer.com/en/latest/exploration_tool/api/a121.html
 - https://matplotlib.org/stable/users/index.html
 - https://matplotlib.org/stable/gallery/mplot3d/index.html

Appendix

- Acconeer software offers
 - Service output is radar data with some pre-processing
 - Detector output is based on service output but uses further processing to create a result such as a distance or presence detection

Figure 25. Acconeer software offers

Appendix (cont'd)

Custom Range FFT

Figure 26. Range FFT

Appendix (cont'd)

Custom range-doppler heatmap

Figure 27. Range-Doppler FFT heatmap