Листок № 2

- **1.** Пусть $A = \{1, 2\}$ и $B = \{2, 3\}$. Используя определение упорядоченной пары множеств, «распишите» каждый элемент множества $A \times B$ и убедитесь непосредственно, что все они принадлежат $\mathcal{P}(\mathcal{P}(A \cup B))$.
 - **2.** Когда множество (a, b) одноэлементное?
 - **3.** Как устроены множества $A \times \emptyset$ и $A \times \{\emptyset\}$?
- **4.** Приведите пример множеств A и B, т. ч. $A \times B \neq B \times A$. (Напомним, что внутреннее устройство чисел и т. п. как множеств, мы не уточняли.)
 - **5.** При каких условиях из $A \times B = C \times D$ следует A = C и B = D?
 - 6. Проверьте тождества:
 - a) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D);$
 - 6) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- 7. Докажите, что если A и B непусты, то $A\subseteq C$ и $B\subseteq D\iff A\times B\subseteq C\times D$. Существенно ли условие непустоты?
- **8.** Докажите, что если множества A и B непусты и $(A \times B) \cup (B \times A) = C \times D$, то A = B = C = D. Существенно ли условие непустоты?
- **9.** Рассмотрим бинарное отношение $R = \{(1,2), (2,3), (3,1), (4,5)\}$. «Вычислите» $\cup \cup R$, dom R и rng R.
 - **10.** Докажите, что для любых множеств R, A и B верно:
 - а) если $R \subseteq A \times B$, то R бинарное отношение, причем dom $R \subseteq A$ и rng $R \subseteq B$;
 - б) если R бинарное отношение, то $R \subseteq \text{dom } R \times \text{rng } R$.
- **11.** Пусть A некоторая группа мужчин и aPb означает, что a сын b. Как понимать отношения $P \circ P$, P^{-1} и $P^{-1} \circ P$?
 - 12. Для обычных неравенств натуральных чисел «вычислите»:
 - $a) \leqslant 0 \leqslant 0$
 - б) < 0 <;
 - $B) < \circ \leqslant;$
 - Γ) $\leqslant \circ \geqslant$;
 - д) < 0 >;
 - e) > 0 < .
 - **13.** Пусть $P \subseteq A \times B$, Q и R бинарные отношения. Докажите:
 - a) $(P^{-1})^{-1} = P;$

- 6) $(P \cup Q)^{-1} = P^{-1} \cup Q^{-1}$;
- в) $(\bar{P})^{-1} = \overline{P^{-1}};$
- $\Gamma) \ (P \cup Q) \circ R = (P \circ R) \cup (Q \circ R);$
- д) $(P \cap Q) \circ R \subseteq (P \circ R) \cap (Q \circ R)$.
- **14.** Всегда ли можно ли заменить равенством последнее включение предыдущей задачи?
 - 15. Используя утверждения задачи 13, покажите, что:
 - a) $(P \cap Q)^{-1} = P^{-1} \cap Q^{-1}$;
 - б) если $P \subseteq Q$, то $P \circ R \subseteq Q \circ R$;
 - B) $R \circ (P \cap Q) \subseteq (R \circ P) \cap (R \circ Q)$.
 - **16.** Пусть $R \subseteq A \times B$, причем множества A и B непустые. Тогда $R^{-1} \neq \bar{R}$.
 - **17.** Пусть $R \subseteq A^2$. Всегда ли верно $R^{-1} \circ R = \mathrm{id}_A$?
 - **18.** Докажите, что для любых отношений R, Q и множеств X, Y верно:
 - a) $R[X \cup Y] = R[X] \cup R[Y];$
 - б) если $X \subseteq Y$, то $R[X] \subseteq R[Y]$;
 - в) $R[X \cap Y] \subseteq R[X] \cap R[Y]$ (всегда ли можно это включение заменить равенством?);
 - $\Gamma) \ R[\varnothing] = \varnothing;$
 - д) $(R \circ Q)[X] = R[Q[X]].$