python_ode

数値計算による微分方程式解法(python版)

cc by Shigeto R. Nishitani

- /Users/bob/Desktop/maple_ode/python_ode.ipynb
- origin git@github.com:daddygongon/maple_ode.git (fetch)

Table of Contents

- 1 Euler法による落下運動
- 1.1 重力場中の運動
- 1.2 Euler法
- 1.3 重力場中の運動をEuler法で解いたら
- 1.4 空気抵抗がある水滴の落下
- 2 高精度計算
- 2.1 バネの運動
- 2.2 2次のRunge-Kuttaの導出
- 2.3 Runge-Kutta2次公式
- 2.4 Runge-Kutta4次公式
- 2.5 連立方程式にRunge-Kutta4次公式を
- 3 RLC回路の応答
- 4 課題
- 4.1 雨粒
- 4.2 大砲
- 5 自由課題
- 5.1 RLC回路
- 5.2 RLC回路

Euler法による落下運動 ¶

重力場中の運動

重力場中のボールの落下を考えて、1軸で考えた運動方程式を立てます。

 $v = \frac{a}{a}$ $a = \frac{a}{a}$ Force

質量をm, 重力加速度をgとして,働く力がF=-mgであるとすると,ニュートンの運動方程式

 $F = mal_{\downarrow}$

となります.

が 対 つ と | → は 分 n

Free gravitation fall

速度 velocity

Euler法

python_ode

1次の微分方程式の一般形は

$$\frac{dx}{dt} = f(x, t)$$

と書けます。この微分方程式を簡単な近似から求めるオイラー法を示します。 $x(t+\delta t)$ をテイラー級数 展開すると,

$$x(t + \delta t) \simeq x(t) + \frac{dx}{dt}\delta t$$

となります。これらを代入すると、計算アルゴリズムはつぎのようになります。

$$x_{i+1} = x_i + f_i \, \delta t$$

ここで、 f_i は点 (x_i,t_i) における関数の値です。このアルゴリズムを適用して、 $t+\delta t$ の座標 x_{i+1} を一つ前の時間の座標 x_i から導くことができます。これを重力場中の運動方程式に適用します。

重力場中の運動をEuler法で解いたら

Euler法は一階の微分方程式に対する定式化をしています。ところが、重力場中の運動は2階の微分方程式です。このようなときには媒介変数を導入して1次連立方程式に置き直します。

媒介変数として速度vを使って、2階の運動方程式

$$\frac{d^2x}{dt^2} = -g$$

が、1階の連立方程式

$$\frac{dv}{dt} = -\frac{1}{2}$$

$$\frac{dx}{dt} = v$$

で置き換えられると考えることに相当します。アルゴリズムにすると

$$v_{i+1} = v_i - g dt$$

$$x_{i+1} = x_i + v_i dt$$

Eulerは x_i , v_i を受け取って,先ほど導いた簡単な計算によって, v_i +1, x_i +1を順次計算して返します. 結果は,

In [2]: import matplotlib.pyplot as plt

def my_plot(xx, vv, tt):
 plt.plot(tt, xx, color = 'b', linestyle='--', label="height")
 plt.plot(tt, vv, color = 'r', label="velocity")
 plt.legend()
 plt.xlabel('time')
 plt.ylabel('height and velocity')
 plt.grid()
 plt.show()

2018/06/18 17:15