Machine Learning Homework Sheet 07

Soft-margin SVM and Kernels

1 Soft-margin SVM

Problem 1: Assume that we have a linearly separable dataset \mathcal{D} , on which a soft-margin SVM is fitted. Is it guaranteed that all training samples in \mathcal{D} will be assigned the correct label by the fitted model? Explain your answer.

Problem 2: Why do we need to ensure that C > 0 in the slack variable formulation of soft-margin SVM? What would happen if this was not the case?

Problem 3: Sketch the decision boundary of an SVM with a quadratic kernel (polynomial with degree 2) for the data in the figure below, for two specified values of the penalty parameter C. (The two classes are denoted as \bullet 's and \times 's.)

Explain the reasoning behind your sketch of the decision boundary for both cases (one sentence for each plot).

2 Kernels

Problem 4: Show that for $N \in \mathbb{N}$ and $a_i \geq 0$, with $i \in [0, N]$ the function

$$k(oldsymbol{x}_1, oldsymbol{x}_2) = \sum_{i=1}^N a_i \left(oldsymbol{x}_1^T oldsymbol{x}_2
ight)^i + a_0$$

is a valid kernel.

Problem 5: Find the feature transformation $\phi(x)$ corresponding to the kernel

$$k(x_1, x_2) = \frac{1}{1 - x_1 x_2},$$

with $x_1, x_2 \in (0, 1)$.

Hint: Consider an infinite-dimensional feature space.

Problem 6: Consider the following algorithm.

Algorithm 1: Counting something

input: Character string x of length m (one based indexing)

input: Character string y of length n (one based indexing)

output: A number $s \in \mathbb{R}$

 $s \leftarrow 0;$

- a) Explain, in no more than two sentences, what the above algorithm is doing.
- b) Let S denote the set of strings over a finite alphabet of size v. Define a function $k: S \times S \to \mathbb{R}$ as the output of running algorithm 1 on a pair of strings x, y. Show that k(x, y) is a valid kernel.

3 Gaussian kernel

Problem 7: Can any *finite* set of points be linearly separated in the feature space of the Gaussian kernel

$$k_{\rm G}(x_1, x_2) = \exp\left(-\frac{|x_1 - x_2|^2}{2\sigma^2}\right)$$
,

if σ can be chosen freely?