8 Karnaugh maps

8.1 Two input K-maps

A B	0	1
0	m_0	m_2
1	m_1	m_3

8.2 Three input K-maps

$^{\rm A}$	В ₀₀	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

8.3 Four input K-maps

CDA	B ₀₀	01	11	10
00	m_0	m_4	m_{12}	m_8
01	m_1	m_5	m_{13}	m_9
11	m_3	m_7	m_{15}	m_{11}
10	m_2	m_6	m_{14}	m_{10}

8.4 Five input K-maps

9 More Gates and notations summary

Name	C/Verilog	Boolean expr.	Truth Table	(ANSI) symbol	K-map
NAND Gate	Q = ~(x1 & x2)	$Q = \overline{x_1 \cdot x_2} = \overline{x_1 x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O M M	B 0 1 1 1 0 V
NOR Gate	Q = ~(x1 x2)	$Q = \overline{x_1 + x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bigcap_{\mathbb{R}^d}$	B 0 1 1 0 0 1
XOR Gate	Q = x1 x2	$Q=x_1\oplus x_2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bigcap_{B} \bigvee_{A}$	$\begin{bmatrix} B & A & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ \end{bmatrix}$
XNOR Gate	Q = ~(x1 ^ x2)	$Q = \overline{x_1 \oplus x_2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \rightarrow B \rightarrow B \rightarrow Out$	

Example 10. Convert the following Boolean expression into a K-map. $f = \overline{AB} + CD$

Problem 10. Convert the following logic circuit into a K-map.

10 Boolean Algebra

10.1 Axioms of Boolean algebra

- 1. $0 \cdot 0 = 0$
- 2. 1+1=1

- 3. $1 \cdot 1 = 1$
- 4. 0+0=0
- 5. $0 \cdot 1 = 1 \cdot 0 = 0$
- 6. $\bar{0} = 1$
- 7. $\bar{1} = 0$
- 8. $x = 0 \text{ if } x \neq 1$
- 9. $x = 1 \text{ if } x \neq 0$

10.2 Single variable theorems (Prove by drawing K-maps)

- 1. $x \cdot 0 = 0$
- 2. x + 1 = 1
- 3. $x \cdot 1 = x$
- 4. x + 0 = x
- 5. $x \cdot x = x$
- 6. x + x = x
- 7. $x \cdot \bar{x} = 0$

- 8. $x + \bar{x} = 1$
- $9. \ \bar{\bar{x}} = x$

Remark 2 (Duality). $Swap + with \cdot and 0$ with 1 to get another theorem

10.3 Two and three variable properties (Prove by K-maps)

1. Commutative: $x \cdot y = y \cdot x$, x + y = y + x

2. Associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, x + (y + z) = (x + y) + z

3. Distributive: $x \cdot (y+z) = x \cdot y + x \cdot z$, $x+y \cdot z = (x+y) \cdot (y+z)$

4. Absorption: $x + x \cdot y = x$, $x \cdot (x + y) = x$

5. Combining: $x \cdot y + x \cdot \bar{y}$, $(x + y) \cdot (x + \bar{y}) = x$

6. DeMorgan's theorem: $\overline{x \cdot y} = \overline{x} + \overline{y}$, $\overline{x + y} = \overline{x} \cdot \overline{y}$.

7. Concensus:

(a)
$$x + \bar{x} \cdot y = x + y$$

(b)
$$x \cdot (\bar{x} + y) = x \cdot y$$

(c)
$$x \cdot y + y \cdot z + \bar{x} \cdot z = x \cdot y + \bar{x} \cdot z$$

(d)
$$(x+y) \cdot (y+z) \cdot (\bar{x}+z) = (x+y) \cdot (\bar{x}+z)$$

Example 11 (Multiplexer). Multiplexer is a circuit used to select one of the input lines x_1 and x_2 based only select input s. When s=0, x_1 is selected, x_2 is selected otherwise. Find a boolean expression and a circuit for multiplexer

Example 12. Simplify $f = \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}\bar{C}$ using boolean algebra.

Example 13. Simplify $f = \bar{A}\bar{A}\bar{C} + \bar{A}\bar{B}C$ using K-maps.