Bayesian networks Introduction and basis

Helge Langseth and Thomas Dyhre Nielsen*

Variational inference - Part I

1

^{*}Some of the introductory slides are stolen from Manfred Jaeger, Aalborg University.

Simultaneous Localization and Mapping: learn a map of the environment and locate current position

Example 2: Image Segmentation

(source: http://pubs.niaaa.nih.gov/publications/arh313/243-246.htm)

Divide image into small number of regions representing structurally similar areas

Example 3: Statistical Semantics

Given a collection of texts:

Goal: automatically learn semantic descriptors for documents and words, that support document clustering, text understanding, information retrieval ...

Example 4: Bioinformatics

Micro-array gene expression data:

Which genes are expressed under which conditions? Which are co-regulated, or functionally dependent?

Statistical Machine Learning

Common ground in 4 examples:

- Use a probabilistic model, typically learned from data (using statistical learning techniques)
- Apply probabilistic inference algorithms to use models for prediction (classification, regression), structure analysis (clustering, segmentation)

Advantages of probabilistic/statistical methods:

- Principled quantification of prediction uncertainties
- Robust and principled techniques to deal with incomplete information, missing data.

Probabilistic Graphical Models

Need: probabilistic models that

- can represent models for high-dimensional state spaces
- support efficient learning and inference techniques

Probabilistic Graphical Models

- support a structured specification of high-dimensional distributions in terms of low-dimensional factors
- structured representation can be exploited for efficient learning and inference algorithms (sometimes ...)
- graphical representation gives human-friendly design and description possibilities

Plan for this weeks

- Day 1: Bayesian networks Definition and inference
 - Definition of Bayesian networks: Syntax and semantics
 - Exact inference
 - Approximate inference using MCMC
- Day 2: Variational inference Introduction and basis
 - Approximate inference through the Kullback-Leibler divergence
 - Variational Bayes
 - The mean-field approach to Variational Bayes
- Day 3: Variational Bayes cont'd
 - Solving the VB equations
 - Introducing Exponential families
- Day 4: Scalable Variational Bayes
 - Variational message passing
 - Stochastic gradient ascent
 - Stochastic variational inference
- Day 5: Current approaches and extensions
 - Variational Auto Encoders
 - Black Box variational inference
 - Probabilistic Programming Languages

Starting-point

I will assume that these topics are (fairly) well known:

- Probabilities, P(X = x); conditional probabilities, P(X = x | Y = y).
- $\bullet \ \ \text{Independence}, \mathbf{X} \perp \!\!\! \perp \mathbf{Y}; \text{conditional independence} \ \mathbf{X} \perp \!\!\! \perp \mathbf{Y} \, | \, \mathbf{Z}.$
- "Standard" probability calculus:

```
Product: P(x,y) = P(x \mid y) \cdot P(y) = P(x) \cdot P(y \mid x). Sum-rule: P(x \lor y) = P(x) + P(y) = P(x) - P(y \land x). Total probability: P(Y = y) = \sum x' P(y \mid X = x') \cdot P(X = x'). Bayes rule: P(x \mid y) = P(x) \cdot P(y \mid x) / P(y).
```

I will assume that these topics are (somewhat) known:

- Bayesian network syntax and semantics.
- Exact inference in Bayesian networks.
- Approximate inference using MCMC.

Implementation:

- We will have some implementation tasks as we move along.
- You will be supplied partly running Python-code (in the form of Jupyter notebooks).
- You will need to have Python 3.x on your computer
 (https://www.python.org/downloads/), and a set of packages (numpy, scipy, matplotlib, jupyter).

P(E, L, G, X, C)

P(E, L, G, X, C)

P(E, L, G, X, C)

P(E, L, G, X, C)

Nondescendant Criterion

In the distribution ${\cal P}$ defined by the BN the following independence relation holds:

$$P(X_i \mid pa(X_i), rest(X_i)) = P(X_i \mid pa(X_i))$$

" X_i is independent of its non-descendants given its parents"

Bayesian network syntax

Let X_1, \ldots, X_n be a collection of random variables. A Bayesian network over X_1, \ldots, X_n consists of

- ullet a directed acyclic graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ whose nodes \mathcal{V} are the variables X_1, \dots, X_n
- a set of local conditional distributions, $\mathcal{P} = \{p(X_i \mid \operatorname{pa}(X_i)), X_i \in \mathcal{V}\}$, where $\operatorname{pa}(X_i)$ are the parents of X_i in \mathcal{G} as defined by the edges \mathcal{E} .

Bayesian network semantics

A Bayesian network N with nodes X_1, \ldots, X_n defines a joint distribution

$$p_{\mathcal{N}}(X_1,\ldots,X_n) = \prod_{i=1}^n p(X_i \mid \operatorname{pa}(X_i))$$

Probability propagation

$$\left. \begin{array}{c} \mathsf{Bayesian} \ \mathsf{network} \\ + \\ \mathsf{Evidence:} \ \mathbf{X}_E = \mathbf{x}_e \end{array} \right\} \Rightarrow P(\mathbf{X}_Q | \mathbf{x}_e) ?$$

Example: Calculate P(X = x | G = g)

$$\begin{split} P(x,g) &= \sum_{e} \sum_{l} \sum_{c} P(E=e, L=l, g, X=x, C=c) \\ &= \sum_{e} \sum_{l} \sum_{c} P(e) \cdot P(l \, | \, e) \cdot P(g \, | \, e) \cdot P(x \, | \, l, g) \cdot P(c \, | \, x) \\ &= \sum_{e} P(e) \cdot P(g \, | \, e) \sum_{l} P(l \, | \, e) \cdot P(x \, | \, l, g) \sum_{c} P(c \, | \, x) \end{split}$$

Probability propagation

$$\left. \begin{array}{c} \mathsf{Bayesian} \ \mathsf{network} \\ + \\ \mathsf{Evidence:} \ \mathbf{X}_E = \mathbf{x}_e \end{array} \right\} \Rightarrow P(\mathbf{X}_Q | \mathbf{x}_e) ?$$

Example: Calculate P(X = x | G = g)

$$\begin{split} P(x,g) &= \sum_{e} P(e) \cdot P(g \mid e) \sum_{l} P(l \mid e) \cdot P(x \mid l,g) \\ P(X=x \mid G=g) &= \frac{P(x,g)}{\sum_{x'} P(X=x',g)} \propto P(x,g) \end{split}$$

Probability propagation

Bayesian network
$$+$$
 Evidence: $\mathbf{X}_E = \mathbf{x}_e$ $\Rightarrow P(\mathbf{X}_Q | \mathbf{x}_e)$?

Operations to calculate $P(\mathbf{X}_Q \mid \mathbf{x}_e)$

Restriction: Restrict domain of a potential (e.g., P(g|E) from P(G|E))

Combination: Multiplication of potentials (e.g., $P(l \mid e) \cdot P(X \mid l, g)$)

Marginalisation: Sum/integrate out a variable form a potential, e.g., the operation

 $\sum_{l} P(l \,|\, e) \cdot P(x \,|\, l,g)$, which removes L from the potential over

 $\{L,X,E,G\}$ and results in $P(x\,|\,e,g)$ over $\{X,E,G\}$.

Probability propagation

$$\left. \begin{array}{c} \mathsf{Bayesian} \ \mathsf{network} \\ + \\ \mathsf{Evidence:} \ \mathbf{X}_E = \mathbf{x}_e \end{array} \right\} \Rightarrow P(\mathbf{X}_Q | \mathbf{x}_e) ?$$

Requirements for efficient calculation of $P(\mathbf{X}_Q | \mathbf{x}_e)$

- Constraints wrt. structure:
 - Size of combined potentials
- Constraints wrt. distributions:
 - Ability to perform operations
 - Ability to represent results of operations

Inference, formalized

Bayesian network inference

Inference in the Bayesian network amounts to calculating $p(\mathbf{Z} = \mathbf{z} \mid \mathbf{X} = \mathbf{x})$, where

- ullet $\mathbf{X} \subset \mathcal{V}$ are the observed variables, currently taking the configuration $\mathbf{X} = \mathbf{x}$.
- $\mathbf{Z} \subseteq \mathcal{V} \setminus \mathbf{X}$ are our variables of interest.

Inference is therefore the tool to answer any probabilistic query we may have in our domain, given a partial (or empty) observation from the domain

- "What is the chance that Almería will move back to La Liga before 2020, given that they didn't win during the first four games of this campaign?"
- "What is the probability of Google going bankrupt before you are done with your education?"

Exact inference

Computation of conditional distributions

Given $\mathbf{X} = X_1, \dots, X_k \subset \mathcal{V}, x_i \in dom(X_i), \mathbf{Z} = Z_1, \dots, Z_l \subset \mathcal{V}$, compute

$$p(\mathbf{Z} \mid \mathbf{X} = \mathbf{x})$$

Especially: Single variable posterior distributions: for each $Z \notin \mathbf{X}$ compute $p(Z \mid \mathbf{X} = \mathbf{x})$.

Problem reduction

This problem can be reduced to the computation of partial distributions, i.e., functions

$$p(\mathbf{Z}, \mathbf{X} = \mathbf{x})$$

(function defined on $dom(\mathbf{Z})$) because

$$p(\mathbf{Z} \mid \mathbf{X} = \mathbf{x}) = p(\mathbf{Z}, \mathbf{X} = \mathbf{x})/p(\mathbf{X} = \mathbf{x})$$

Direct approach: denote $\mathbf{V}(=V_1,\ldots,V_m):=\mathcal{V}\setminus (\mathbf{X}\cup\mathbf{Z})$, and let \mathbf{v} range over $dom(\mathbf{V})$. Then for $\mathbf{z}\in dom(\mathbf{Z})$:

$$\begin{split} p(\mathbf{Z} = \mathbf{z}, \mathbf{X} = \mathbf{x}) &= \sum_{\mathbf{v}} p(\mathbf{Z} = \mathbf{z}, \mathbf{X} = \mathbf{x}, \mathbf{V} = \mathbf{v}) \\ &= \sum_{\mathbf{v}} \prod_{i} p(Y_{i} \mid pa(Y_{i}))(\mathbf{z}, \mathbf{x}, \mathbf{v}) \\ &= \sum_{v_{1} \in dom(V_{1})} \dots \sum_{v_{m} \in dom(V_{m})} \prod_{i} p(Y_{i} \mid pa(Y_{i}))(\mathbf{z}, \mathbf{x}, \mathbf{v}) \end{split}$$

"Algorithm": sum out the v_j one by one, move factors $p(Y_i \mid pa(Y_i))(\mathbf{z}, \mathbf{x}, \mathbf{v})$ that do not depend on current v_j (because $V_j \notin \{Y_i\} \cup pa(Y_i)$) out of the sum.

Advantage: Can be used to compute conditional distributions for arbitrary set ${\bf Z}$ of query variables.

Example

	X	1
	t	f
	.5	.5

.		X	-2
	X_1	t	f
	t	.7	.3
	f	.1	.9

		X	-3
	X_1	t	f
3	t	.7	.3
9	f	.2	.8

$$p(X_2 = x_2, X_4 = f) = \sum_{x_1, x_3 \in \{t, f\}} p(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = f)$$

$$= \sum_{x_1, x_3} \left[p(X_1 = x_1) p(X_2 = x_2 \mid X_1 = x_1) p(X_3 = x_3 \mid X_1 = x_1) \right]$$

$$p(X_4 = f \mid X_2 = x_2, X_3 = x_3)$$

Variable Elimination: Example

$$p(X_2 = x_2, X_4 = f)$$

$$= \sum_{x_1} p(X_1 = x_1) p(X_2 = x_2 \mid X_1 = x_1) \left[\sum_{x_3} p(X_3 = x_3 \mid X_1 = x_1) \right]$$

$$p(X_4 = f \mid X_2 = x_2, X_3 = x_3)$$

$$= \sum_{x_1} p(X_1 = x_1) p(X_2 = x_2 \mid X_1 = x_1) F_1(X_1 = x_1, X_2 = x_2) = F_2(X_2 = x_2)$$

where

		X	3
re	X_1	t	f
10	t	.7	.3
	f	.2	.8

)	X_4	1
X_2	X_3	t	f	
t	t	.9	.1	١.
t	f	.7	.2	ľ
f	t	.7 .8 .4	.2	
f	f	.4	.6	

	x_1	x_2	$F_1(X_1, X_2)$
	t	t	.7· .1 + .3· .3 = .16
>	t	f	$.7 \cdot .2 + .3 \cdot .6 = .32$
	f	t	$.2 \cdot .1 + .8 \cdot .3 = .26$
	f	f	$.2 \cdot .2 + .8 \cdot .6 = .52$

and

λ	1
t	f
.5	.5

	X_2	
X_1	t	.3 .9
t	.7	.3
f	.1	.9

	$F_1(X_1, X_2)$	x_2	x_1
ł	.16	t	t

	x_2	$F_2(X_2)$
\mapsto	t	
	f	

Complexity

Variable elimination is exponential in maximal number of arguments of factors $p(\ldots | \ldots)$ resp. $F_j(\ldots)$ that appear in the summation process.

This number can depend strongly on the order in which we sum out the variables!

Approximate inference using sampling

Approximate Inference using sampling

Problem Structure

Input: Evidence X = x, random variable Z, value $z \in dom(Z)$.

Output: Find approximation q for $p := P(Z = z \mid \mathbf{X} = \mathbf{x})$.

Grand plan

• Somehow sample instantiations from the domain Y; $X \cup Z \subseteq Y$.

Somehow use the samples to find the approximation q.

Forward Sampling

Observation: can use Bayesian network as random generator that produces full instantiations $\mathbf{Y} = \mathbf{y}$ according to distribution $P(\mathbf{Y})$.

Example:

- Generate random numbers r_1, r_2 uniformly from [0,1].
- Set A = t if $r_1 \leq .2$ and A = f else.
- Depending on the value of A and r₂ set B to t or f.

Generation of one random instantiation: linear in size of network.

Sample Estimate

Given a sample y_1, \dots, y_N of complete instantiations generated (independently) by the sampling algorithm, approximate $P(\mathbf{X} = \mathbf{x})$ as

$$q^* := \frac{1}{N} |\{i \in 1, \dots, N \mid \mathbf{X} = \mathbf{x} \text{ in } \mathbf{y}_i\}|$$

Similarly, the sample provides an estimate for $P(Z = z, \mathbf{X} = \mathbf{x})$.

Put together, we can estimate $P(Z=z\,|\,\mathbf{X}=\mathbf{x})=P(Z=z,\mathbf{X}=\mathbf{x})/P(\mathbf{X}=\mathbf{x}).$

Forward Sampling: Illustration

Sampling from the Conditional

Problem of forward sampling: samples with $\mathbf{X} \neq \mathbf{x}$ are useless!

Goal: find algorithm that samples according to $P(\mathbf{Z} \mid \mathbf{X} = \mathbf{z})$:

Approximate inference – Gibbs Sampling

- Principle: obtain new sample from previous sample by randomly changing the value of only one selected variable.
- Notation: Let $\mathbf{Y}=(\mathbf{Z},\mathbf{X})$ denote all variables in the domain, where $\mathbf{X}=\mathbf{x}$ is observed.

Gibbs sampling

```
\begin{split} \mathbf{z}_0 &:= \text{arbitrary instantiation of } \mathbf{Z}. \\ \mathbf{y}_0 &:= (\mathbf{z}_0, \mathbf{x}). \\ t &:= 1. \\ \text{repeat forever} \\ &\quad \text{choose } Z_k \in \mathbf{Z} \\ &\quad \text{set } y_{t,j} := y_{t-1,j} \text{ for all } Y_j \text{ except the chosen } Z_k. \\ &\quad \text{generate randomly } z_{t,k} \text{ according to } P\left(Z_k \,|\, \mathbf{Y} \setminus \{Z_k\} = \mathbf{y}_t^{\downarrow \mathbf{Y} \setminus \{Z_k\}}\right) \\ &\quad \text{Store the sampled value in } Z_k' \text{s location in } \mathbf{y}_t. \\ &\quad t := t+1. \end{split}
```

Resampling Z_k

$$P(Z_{k} = z_{k} \mid \mathbf{Y} \setminus \{Z_{k}\} = \mathbf{y}_{t}^{\downarrow \mathbf{Y} \setminus \{Z_{k}\}})$$

$$\propto P(Z_{k} = z_{k}, \mathbf{Y} \setminus \{Z_{k}\} = \mathbf{y}_{t}^{\downarrow \mathbf{Y} \setminus \{Z_{k}\}})$$

$$\propto P(Z_{k} = z_{k} \mid \operatorname{pa}(Z_{k}) = \mathbf{y}_{t}^{\downarrow \operatorname{pa}(Z_{k})}).$$

$$\prod_{i: Y_{i} \in \operatorname{ch}(Z_{k})} P(Y_{i} = y_{t,i} \mid \operatorname{pa}(Y_{i}) \setminus \{Z_{k}\} = \mathbf{y}_{t}^{\downarrow \operatorname{pa}(Y_{i}) \setminus \{Z_{k}\}}, Z_{k} = z_{k}) \quad (*),$$

where \propto means: equals up to a constant that does not depend on z_k .

 \rightsquigarrow **Note:** To sample a value we only need to consider the **Markov blanket** for $Z_k!$

To sample $Z_{t,k}$

- $\bullet \ \, \mathsf{Normalize} \ (*) \ \mathsf{to} \ \mathsf{obtain} \ P\left(Z_k \,|\, \mathbf{Y} \setminus \{Z_k\} = \mathbf{y}_t^{\downarrow \mathbf{Y} \setminus \{Z_k\}}\right)$
 - $P\left(Z_k = z_k \mid \mathbf{Y} \setminus \{Z_k\} = \mathbf{y}_t^{\downarrow \mathbf{Y} \setminus \{Z_k\}}\right)$ is called the *full conditional* for Z_k .
- Sample value $z_{t,k}$ according to the resulting distribution

Gibbs Random Walk

The process of Gibbs sampling can be understood as a *random walk* in the space of all instantiations with $\mathbf{X} = \mathbf{x}$:

Reachable in one step: instantiations that differ from current one by value assignment to at most one variable (assume randomized choice of variable \mathbb{Z}_k).

Code Task: Exact and approximate inference

Something nice.

A more elaborate example: Factor analysis

- Factor analysis is a statistical model used to summarize
 a high-dimensional observation X of correlated
 variables by a smaller set Z of factors that a priori are
 assumed independent.
- **Example:** X is a set of scores a subject gets from some intelligence-test, Z models different types of intelligence (e.g., sense of logics, verbal skills, . . .).

Mathematical formulation:

- $\mathbf{v}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$
- $\bullet X_{i,j} \mid \{\mathbf{z}_i, \mathbf{w}_j, \theta_j\} \sim \mathcal{N}(\mathbf{w}_j^\mathsf{T} \mathbf{z}_i, 1/\theta_j).$
- Bayesian setting: Add priors for W_j 's and θ .

Relevant questions given a dataset $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$:

- Learning: $p(\mathbf{w}, \boldsymbol{\theta}, \gamma \mid \mathcal{D})$.
- "Understanding" a new example \mathbf{x}^* : $p(\mathbf{z} \mid \mathbf{X} = \mathbf{x}^*, \mathcal{D})$.
- ...

Unfolded model

FA model "unfolded" for three data instances $(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3)$

Recall local model

Observations

Inspecting the independence properties of unfolded model we see that the

- number of variables (\mathbf{W} and θ) in "separating factor" are manageable.
- posterior cannot be calculated in closed-form because the priors (assumed a priori independent) are not conjugate. (More on this later.)
- → Approximate inference required.

Gibbs sampling: Example

Full conditional for
$$p(\mathbf{w}_j | \mathbf{w}_{-j}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z}, \gamma)$$

Let $\mathbf{w}_{-j}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z}, \gamma$ be a configuration over all variables except \mathbf{w}_j . Then

$$p(\mathbf{w}_j \mid \mathbf{w}_{-j}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z}, \gamma) \propto p(\mathbf{w}_j \mid \gamma) \prod_{i=1}^{N} p(x_{ij} \mid \mathbf{W}_j, \mathbf{z}_i, \boldsymbol{\theta}_j)$$

With a bit of pencil pushing we find that:

$$p(\mathbf{w}_j | \mathbf{w}_{-j}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z}, \gamma) = \mathcal{N}(\mathbf{w}_j | \boldsymbol{\mu}, \mathbf{Q}^{-1}),$$

where

$$\mathbf{Q} \leftarrow \gamma \mathbf{I} + \theta_j \sum_{i=1}^N \mathbf{z}_i \mathbf{z}_i^{\mathsf{T}}$$

$$\bullet \ \boldsymbol{\mu} \leftarrow \mathbf{Q}^{-1} \theta_j \sum_{i=1}^N x_{ij} \mathbf{z}_i$$

Gibbs sampling: Example

Full conditional for $p(\gamma \,|\, \mathbf{w}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z})$

$$p(\gamma \mid \mathbf{w}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z}) \propto p(\gamma) \prod_{j=1}^{M} p(\mathbf{w}_j \mid \gamma)$$

We find that

$$p(\gamma \mid \mathbf{w}, \boldsymbol{\theta}, \mathbf{x}, \mathbf{z}) = \mathsf{Gamma}(\gamma \mid shape, rate),$$

where

- $shape \leftarrow prior_shape + \frac{M \cdot D}{2}$
- $rate \leftarrow prior_rate + \frac{1}{2} \sum_{j=1}^{M} \mathbf{w}_{j}^{\mathsf{T}} \mathbf{w}_{j}$