Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Quiz-II

- 1. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ be a real matrix. Then which of the following is NOT correct
 - (a) Eigenvalues of A are 2, 2
 - (b) A is diagonalizable
 - (c) minimal polynomial and characteristic polynomial of A are same.
 - (d) minimal polynomial of A is of degree 1

Option (c) is the answer as minimal polynomial is x - 2 which is one degree. The options (a) and (b) are abviously not the answers as 2, 2 are eigenvalues of A and A is diagonal matrix hence diagonalizable.

- 2. Let f(T) = 0 for any polynomial $f \in P(\mathbb{F})$ and $T \in L(V, V)$, dim $V(\mathbb{F}) < \infty$. Assume p(x) and m(x) ($\neq f(x)$) be the characteristic and minimal polynomial for T respectively. Then which of the following statements are correct
 - (a) roots of f(x) and m(x) are same except multiplicity
 - (b) roots of m(x) and p(x) are same except multiplicity
 - (c) degree of $m(x) \leq$ degree of f(x)
 - (d) degree of $m(x) \leq$ degree of p(x).

Options (b), (c) and (d) are correct. Counter example for (a) is: I, (identity operator) satisfies $f(x) = x^2 - x$ which has roots 0 and 1 while the minimal polynomial for I is m(x) = x - 1 which does not have 0 as a root.

- 3. Answer the following.
 - (a) Find the minimal polynomial for the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as

$$T(x, y, z) = (2x + y, 2y, 2z)$$

(b) Is T diagonalizable? Justify your answer.

(a) The matrix of T relative to the standard ordered basis of \mathbb{R}^3 namely $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ is

$$[T]_{\mathcal{B}} = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right].$$

The characteristic polynomial for T is $(x-2)^3$. Thus minimal polynomial has three choices, x-2, $(x-2)^2$ and $(x-2)^3$. As $[T]_{\mathcal{B}} \neq 2I$ and $([T]_{\mathcal{B}}-2I)^2=0$, we have minimal polynomial as $(x-2)^2$.

- (b) T is not diagonalizable as minimal polynomial is not the product of distinct linear factors.
- 4. Let T be a linear operator on a finite dimensional vector space satisfying $T^3 = T$. Show that T is diagonalizable.

Observe that $f(x) := x^3 - x = x(x-1)(x+1)$ is an annihilating polynomial for T. As minimal polynomial divides any annihilating polynomial, the choices for minimal polynomial are x, x - 1, x + 1, x(x - 1), x(x + 1), (x - 1)(x + 1), x(x - 1)(x + 1). It is obvious to see that minimal polynomial is a product of distinct linear factors for all the above choices and hence T must be diagonalizable.

5. Find out Hermitian matrices B and C such that the following matrix A can be written as A = B + iC

$$A = \left[\begin{array}{cc} 1+i & 2\\ 2+i & 1-i \end{array} \right].$$

We know (From Tutorial 3, Problem 4) that choices are
$$B = \frac{A+A^*}{2}$$
 and $C = \frac{A-A^*}{2i}$.
Thus $B = \begin{bmatrix} 1 & 2-i/2 \\ 2+i/2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1/2 \\ 1/2 & -1 \end{bmatrix}$.