

S Nagasundari

Department of Computer Science and Engineering

PES UNIVERSITY ON LINE

Text Book

Slides adapted from

Computer Networking: A Top-Down Approach Jim Kurose, Keith Ross Pearson, 2017, 8th Ed.

TCP/IP protocol suite, Behrouz A. Forouzan.,4th Ed

Link Layer and LAN

S Nagasundari

Department of Computer Science and Engineering

Unit – 5 Link Layer and LAN Roadmap

PES UNIVERSITY ONLINE

- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
- Physical layer
- Wireless LANs: IEEE 802.11
- A day in the life of a web request

Class 47: Intro to Link layer: Learning Objectives

- Introduction to link layer
- Error detection and correction techniques
 - Parity Checks
 - Internet Checksum
 - Cyclic Redundancy Check

network

Introduction to Link layer

Terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired
 - wireless
 - LANs
- layer-2 packet: frame, encapsulates datagram

link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

PES UNIVERSITY ONLINE

- Datagram transferred by different link protocols over different links:
 - e.g., WiFi on first link, Ethernet on next link
- Each link protocol provides different services
 - e.g., may or may not provide reliable data transfer over link

transportation analogy:

- trip from Mysore to Jaipur
 - Car: Mysore to Bangalore
 - plane: Bangalore to Delhi
 - train: Delhi to Jaipur
- tourist = datagram
- transport segment = communication link
- transportation mode = linklayer protocol
- travel agent = routing algorithm

Link layer: services

Framing:

 encapsulate datagram into frame, adding header, trailer

frame

Link access:

- channel access if shared medium
- "MAC" addresses in frame headers identify source, destination (different from IP address!)

Link layer: services

- Reliable delivery between adjacent nodes
 - we already know how to do this!
 - seldom used on low bit-error links
 - wireless links: high error rates
 - <u>Q:</u> why both link-level and end-end reliability?

Link layer: services (more)

Flow control:

 pacing between adjacent sending and receiving nodes

Error detection:

- errors caused by signal attenuation, noise.
- receiver detects errors, signals retransmission, or drops frame

Link layer: services (more)

Error correction:

- receiver identifies and corrects bit error(s) without retransmission
- Half-duplex and Full-duplex:
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- In each-and-every host
- Link layer implemented in network interface card (NIC) or on a chip
 - Ethernet, WiFi card or chip
 - implements link, physical layer
- Attaches into host's system buses
- Combination of hardware, software, firmware

Interfaces communicating

Sending side:

- encapsulates datagram in frame
- adds error checking bits, reliable data transfer, flow control, etc.

Receiving side:

- looks for errors, reliable data transfer, flow control, etc.
- extracts datagram, passes to upper layer at receiving side

Unit – 5 Link Layer and LAN Roadmap

- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
- A day in the life of a web request
- Physical layer
- Wireless LANs: IEEE 802.11

Error detection

EDC: error detection and correction bits (e.g., redundancy)

D: data protected by error checking, may include header fields

Error detection not 100% reliable!

- protocol may miss some errors, but rarely
- larger EDC field yields better detection and correction

Parity checking

Single bit parity:

detect single bit errors

Even parity: set parity bit so there is an even number of 1's

no errors: 10101 | 1 11110 | 0 01110 | 1 00101 | 0

Two-dimensional bit parity:

detect and correct single bit errors

* Check out the online interactive exercises for more examples:

http://gaia.cs.umass.edu/kurose_r oss/interactive/

Internet checksum (review)

Goal: detect errors (*i.e.*, flipped bits) in transmitted segment

Sender:

- treat contents of UDP segment (including UDP header fields and IP addresses) as sequence of 16bit integers
- checksum: addition (one's complement sum) of segment content
- checksum value put into UDP checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - not equal error detected
 - equal no error detected. *But maybe errors* nonetheless? More later

Cyclic Redundancy Check (CRC)

- More powerful error-detection coding
- D: data bits (given, think of these as a binary number)
- G: bit pattern (generator), of r+1 bits (given)

<u>Goal:</u> choose *r* CRC bits, R, such that <D,R> exactly divisible by G (mod 2)

 receiver knows G, divides <D,R> by G.

If non-zero remainder: error detected!

- can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

Cyclic Redundancy Check (CRC): example

We want:

$$D \cdot 2^r XOR R = nG$$

or equivalently:

$$D \cdot 2^r = nG XOR R$$

or equivalently:

if we divide D.2^r by G, want remainder R to satisfy:

$$R = remainder \left[\frac{D \cdot 2^r}{G} \right]$$

			1	0	1	0	1	1	
1	0	1	1	1	0	0	0	0	
1	0	0	1				\setminus		
		1		1			7	D [*]	k 7
		0	0	0					_
		1	0	1	0				
		1	0	0	1				
				1	1	0			
				0	0	0			
				1	1	0	0		
				1	0	0	1		
					1	0	1	0	
					1	0	0	1	
						0	1	1	
						_	<u> </u>		
							R		

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 0 0 1

THANK YOU

S Nagasundari

Department of Computer Science and Engineering

nagasundaris@pes.edu