Rozdział 3

Wnioskowanie statystyczne

3.1 Populacja, próbka, parametry rozkładu i estymatory

W populacji, cecha X ma rozkład F. Nieznana liczba θ jest parametrem tego rozkładu (pewną charakterystyką liczbową). $Pr\acute{o}bka$: X_1,\ldots,X_n – wartości cechy X dla n elementów wylosowanych z populacji. Jeśli losujemy ze zwracaniem lub jeśli populacja jest duża, to X_1,\ldots,X_n są niezależnymi zmiennymi losowymi o rozkładzie F. Estymator parametru θ jest to wielkość obliczona na podstawie próbki,

$$\hat{\theta} = \hat{\theta}(X_1, \dots, X_n),$$

która jest dostępnym oszacowaniem (przybliżeniem) nieznanej liczby θ .

• Cecha X jakościowa, o wartościach 0,1 (tak,nie).

Parametr p – frakcja (procent) populacji, w której cecha ma wartość 1. Inaczej: p – frakcja elementów wyróżnionych w populacji, czyli "wskaźnik struktury":

$$p = \mathbb{P}(X = 1).$$

Estymator:

$$\hat{p} = \frac{K}{n}$$

gdzie K oznacza liczbę elementów wyróżnionych w próbce (liczbę jedynek w ciągu X_1, \ldots, X_n).

• Cecha X jakościowa, o k wartościach w_1, \ldots, w_k .

Parametry — p_1, \ldots, p_k , gdzie p_i — frakcja populacji, w krórej cecha X ma wartość w_i . Zmienna losowa X ma rozkład prawdopodobieństwa dany tabelką:

wynik	w_1	 w_i	 w_k
prawdopodobieństwo	p_1	 p_i	 p_k

gdzie $p_i = \mathbb{P}(X = w_i)$. Oczywiście, $p_1 + \cdots + p_k = 1$.

Dla $pr\acute{o}bki$ n-elementowej, budujemy "tabelkę powtórzeń":

wartość cechy X	w_1	 w_i	 w_k
liczba elementów próbki	N_1	 N_i	 N_k

gdzie

 $N_i = \mbox{ liczba elementów } próbki, dla których cecha X ma wartość <math display="inline">w_i.$

Oczywiście, $N_1 + \cdots + N_k = n$.

• Cecha X ilościowa (o wartościach liczbowych).

Parametry (np.): μ – wartość średnia cechy X w populacji; σ^2 – wariancja cechy X w populacji.

$$\mu = \mathbb{E}(X); \qquad \sigma^2 = \operatorname{Var}(X).$$

Estymatory:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i; \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

3.2 Przedziały ufności

3.2.1 DEFINICJA. Niech θ będzie nieznanym parametrem, X_1, \ldots, X_n – obserwowaną próbką. Mówimy, że $[\underline{\theta}, \overline{\theta}]$ jest **przedziałem ufności** dla θ na poziomie $1 - \alpha$, jeśli $\underline{\theta} = \underline{\theta}(X_1, \ldots, X_n)$ i $\overline{\theta} = \overline{\theta}(X_1, \ldots, X_n)$ oraz

$$\mathbb{P}\left(\underline{\theta} \le \theta \le \overline{\theta}\right) \ge 1 - \alpha.$$

Cecha X ilościowa, ciągła, rozkład normalny.

Zakładamy, że cecha X ma w populacji rozkład $N(\mu, \sigma^2)$.

* Przedział ufności dla średniej μ , znana wariancja σ^2 .

$$\left[\bar{X} - \frac{\sigma z}{\sqrt{n}}, \bar{X} + \frac{\sigma z}{\sqrt{n}}\right],\,$$

inaczej: $\mu = \bar{X} \pm \sigma z/\sqrt{n}$, gdzie $z = z_{1-\alpha/2}$ – kwantyl rozkładu N(0,1) (standardowego normalnego).

* Przedział ufności dla średniej μ , nieznana wariancja σ^2 .

$$\left[\bar{X} - \frac{St}{\sqrt{n}}, \bar{X} + \frac{St}{\sqrt{n}}\right],$$

inaczej: $\mu = \bar{X} \pm St/\sqrt{n}$, gdzie $t = t_{1-\alpha/2}(n-1)$ – kwantyl rozkładu t(n-1) (t-Studenta z n-1 stopniami swobody).

* Przedział ufności dla wariancji σ^2 .

$$\left[\frac{(n-1)S^2}{c_2}, \frac{(n-1)S^2}{c_1}\right],\,$$

gdzie $c_1=\chi^2_{\alpha/2}(n-1)$, i $c_2=\chi^2_{1-\alpha/2}(n-1)$ są kwantylami rzędu, odpowiednio, $\alpha/2$ i $1-\alpha/2$ rozkładu chi-kwadrat z n-1 stopniami swobody.

Cecha X jakościowa, o wartościach 0,1 (tak,nie).

 \star Przedział ufności dla wskaźnika struktury p.

$$\left[\hat{p} - \frac{\sqrt{\hat{p}(1-\hat{p})}z}{\sqrt{n}}, \hat{p} + \frac{\sqrt{\hat{p}(1-\hat{p})}z}{\sqrt{n}}\right],$$

inaczej $p = \hat{p} \pm \sqrt{\hat{p}(1-\hat{p})}z/\sqrt{n}$, gdzie $z = z_{1-\alpha/2}$ – kwantyl rozkładu N(0,1) (standardowego normalnego).

Uwaga. To jest rozwiązanie przybliżone, które można stosować gdy n jest duże, zaś \hat{p} niezbyt bliskie 0 i 1, powiedzmy: $n\hat{p}(1-\hat{p}) \geq 9$.

3.3 Testy istotności

Hipoteza statystyczna – przypuszczenie na temat rozkładu prawdopodobieństwa, opisującego *populację*.

 H_0 : hipoteza zerowa;

 H_1 : hipoteza alternatywna.

 \mathbf{Test} – procedura, która na podstawie danych (próbki X_1,\ldots,X_n) prowadzi do decyzji

albo \longrightarrow odrzucić H_0 (na korzyść H_1); albo \longrightarrow nie odrzucać H_0 .

3.3.1 DEFINICJA. Test jest na poziomie istotności α , jeśli

$$\mathbb{P}_{\mathrm{H}_0}$$
 (odrzucamy H_0) $\leq \alpha$.

 $\mathbb{P}_{\mathbf{H}_0}$ – prawdopodobieństwo obliczone przy założeniu, że \mathbf{H}_0 jest $\mathit{prawdziwa}.$

Najczęściej test ma postać:

odrzucamy
$$H_0$$
, jeśli $T > c$,

gdzie $T=T(X_1,\ldots,X_n)$ jest "statystyką testową" (obliczoną na podstawie próbki), zaś c nazywa się poziomem krytycznym testu (zazwyczaj odczytanym z odpowiednich tablic). Test jest na poziomie istotności α , jeśli \mathbb{P}_{H_0} $(T>c) \leq \alpha$.

Uwaga: Niekiedy odrzucamy H_0 , jeśli T < c.

p-value.

Przypuśćmy, że obliczona na podstawie danych $X_1=x_1,\ldots,X_n=x_n$ wartość statystyki testowej jest równa liczbie $t=T(x_1,\ldots,x_n)$. Z tablic rozkładu zmiennej losowej T można odczytać wielkość

$$p = \mathbb{P}_{\mathrm{H}_0}(T > t),$$

którą nazywamy p-value. Małe p-value świadczy przeciwko hipotezie zerowej:

odrzucamy
$$H_0$$
, jeśli $p < \alpha$,

gdzie α jest założonym poziomem istotności.

Typowe zagadnienia, w których używa się testów istotności:

• **Porównanie z "normą".** Rozważamy cechę X, która ma w populacji rozkład F. Mamy próbkę X_1, \ldots, X_n . Testujemy hipotezę, że X ma "spodziewany" rozkład F_0 :

$$H_0: F = F_0$$

(przeciw alternatywie $H_1: F \neq F_0$). Rozważa się też nieco inne hipotezy.

• Porównanie 2 populacji. Badamy dwie populacje. Cecha X ma w pierwszej populacji rozkład F_1 , zaś w drugiej – rozkład F_2 . Mamy dwie próbki: X_{11}, \ldots, X_{1n_1} – z pierwszej populacji, X_{21}, \ldots, X_{2n_2} – z drugiej populacji. Badamy, czy rozkład cechy X jest w obu populacjach jednakowy. Testujemy hipotezę

$$H_0: F_1 = F_2$$

(przeciw alternatywie $H_1: F_1 \neq F_2$).

• Porównanie k populacji. Badamy k populacji. Cecha X ma w j-tej populacji rozkład F_j ($j=1,\ldots,k$). Mamy k próbek: X_{j1},\ldots,X_{jn_j} – jest próbką z j-tej populacji ($j=1,\ldots,k$). Badamy, czy rozkład cechy X jest we wszystkich populacjach jednakowy. Testujemy hipotezę

$$H_0: F_1 = F_2 = \cdots = F_k$$

(przeciw alternatywie H₁: nie wszystkie rozkłady są jednakowe).

Cecha X ilościowa, ciagła, rozkład normalny.

Zakładamy, że cecha X ma w populacji rozkład $N(\mu, \sigma^2)$.

Porównanie z "norma".

* Test $H_0: \mu \leq \mu_0$ przeciwko $H_1: \mu > \mu_0$, gdzie μ_0 jest ustaloną liczbą. Na poziomie istotności α , odrzucamy H_0 , gdy

$$\sqrt{n}\frac{\bar{X}-\mu_0}{S} > t, \qquad t = t_{1-\alpha}(n-1).$$

Inaczej: Odrzucamy $H_0: \mu \leq \mu_0$, jeśli $\bar{X} > \mu_0 + St/\sqrt{n}$. Czasami mówi się wtedy: "średnia \bar{X} jest istotnie większa od μ_0 .

* Test $H_0: \mu = \mu_0$ przeciwko $H_1: \mu \neq \mu_0$, gdzie μ_0 jest ustaloną liczbą. Na poziomie istotności α , odrzucamy H_0 , gdy

$$\sqrt{n} \frac{|\bar{X} - \mu_0|}{S} > t, \qquad t = t_{1-\alpha/2}(n-1).$$

Inaczej: Odrzucamy $H_0: \mu = \mu_0$, jeśli $|\bar{X} - \mu_0| > St/\sqrt{n}$. Czasami mówi się wtedy: "srednia \bar{X} jest istotnie różna od μ_0 .

 \star Test $H_0:\sigma\leq\sigma_0$ przeciwko $H_1:\sigma>\sigma_0,$ gdzie σ_0 jest ustaloną liczbą. Odrzucamy $H_0,$ gdy

$$\frac{n-1}{\sigma_0^2}S^2 > c,$$
 $c = \chi_{1-\alpha}^2(n-1).$

 \star Test $H_0:\sigma=\sigma_0$ przeciwko $H_1:\sigma\neq\sigma_0,$ gdzie σ_0 jest ustaloną liczbą. Odrzucamy $H_0,$ gdy

$$\frac{n-1}{\sigma_0^2}S^2 > c_2 \text{ lub } \frac{n-1}{\sigma_0^2}S^2 < c_1, \qquad c_1 = \chi_{\alpha/2}^2(n-1), c_2 = \chi_{1-\alpha/2}^2(n-1).$$

Porównanie 2 populacji.

Mamy dwie próbki, wylosowane (niezależnie) z dwóch populacji:

 X_{11},\ldots,X_{1n_1} – z rozkładu $N(\mu_1,\sigma^2)$,

 X_{21}, \ldots, X_{2n_2} – z rozkładu $N(\mu_2, \sigma^2)$.

Zakładamy równość wariancji w obu populacjach. Znaczenie symboli $\bar{X}_1, \, \bar{X}_2, \, S_1^2$ i S_2^2 jest oczywiste.

* Test $H_0: \mu_1 \leq \mu_2$ przeciwko $H_1: \mu_1 > \mu_2$. Zakładamy, że $\sigma_1^2 = \sigma_2^2$. Testujemy więc hipotezę o wartościach oczekiwanych, nie kwestionując założenia o równości wariancji. Odrzucamy H_0 , gdy

$$\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}} \sqrt{\frac{n_1 n_2}{n_1 + n_2} (n_1 + n_2 - 2)} > t,$$

$$t = t_{1-\alpha} (n_1 + n_2 - 2).$$

Uwaga: Oczywista jest modyfikacja procedury testowania, gdy testujemy $H_0: \mu_1 = \mu_2$ przeciwko $H_1: \mu_1 \neq \mu_2$.

* Test $H_0: \sigma_1^2 \leq \sigma_2^2$ przeciwko $H_1: \sigma_1^2 > \sigma_2^2$. Odrzucamy H_0 , gdy

$$\frac{S_1^2}{S_2^2} > f, \qquad f = \mathcal{F}_{1-\alpha}(n_1 - 1, n_2 - 1).$$

Jeśli testujemy $H_0: \sigma_1^2 = \sigma_2^2$ przeciw $H_1: \sigma_1^2 \neq \sigma_2^2$, to test na poziomie istotności α odrzuca H_0 gdy

$$\frac{S_1^2}{S_2^2} > f_2 \text{ lub } \frac{S_1^2}{S_2^2} < f_1,$$

 $f_1={\rm F}_{\alpha/2}(n_1-1,n_2-1), f_2={\rm F}_{1-\alpha/2}(n_1-1,n_2-1)$ są kwantylami rozkładu F-Snedecora.

Porównanie r populacji: Analiza wariancji.

Rozważmy r niezależnych próbek:

próbka 1:
$$Y_{11}, \ldots, Y_{1n_1}$$
 z rozkładu $N(\mu_1, \sigma^2)$; ... próbka j : Y_{j1}, \ldots, Y_{jn_j} z rozkładu $N(\mu_j, \sigma^2)$; ... próbka r : Y_{r1}, \ldots, Y_{rn_r} z rozkładu $N(\mu_r, \sigma^2)$.

Zakładamy tu równość wariancji wszystkich rozkładów. Interesować nas będzie hipoteza

$$H_0: \mu_1 = \cdots = \mu_r.$$

Hipoteza ta sprowadza się do stwierdzenia, że wszystkie próbki pochodzą z tego samego rozkładu.

Oznaczenia:

$$\bar{Y}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} Y_{ji}, \quad \bar{Y} = \frac{1}{n} \sum_{j=1}^r n_j \bar{Y}_j = \frac{1}{n} \sum_{j=1}^r \sum_{i=1}^{n_j} Y_{ji}$$

są to odpowiednio – średnia dla j-tej próbki i średnia globalna.

Niech

$$SST = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (Y_{ji} - \bar{Y})^2,$$

SSB =
$$\sum_{j=1}^{r} n_j (\bar{Y}_j - \bar{Y})^2$$
, SSW = $\sum_{j=1}^{r} \sum_{i=1}^{n_j} (Y_{ji} - \bar{Y}_j)^2$.

SSB jest sumą kwadratów pomiędzy próbkami (ang. "Sum of Squares, Between"), SSW jest sumą kwadratów wewnątrz próbek (ang. "Within"), zaś SST jest całkowitą sumą kwadratów (ang. "Total").

Tożsamość analizy wariancji: SST = SSB + SSW.

Za statystykę testową przyjmujemy iloraz

$$F = \frac{\text{MSB}}{\text{MSW}} = \frac{\text{SSB}/(r-1)}{\text{SSW}/(n-r)}.$$

Test ANOVA: Hipoteze H₀ odrzucamy, jeśli

$$F > F_{1-\alpha}(r-1, n-r),$$

gdzie $F_{1-\alpha}(r-1,n-r)$ oznacza kwantyl rozkładu F-Snedocora z r-1 stopniami swobody w liczniku i n-r-w mianowniku.

Cecha X jakościowa, o wartościach 0,1 (tak,nie).

Porównanie z "normą".

Niech p oznacza wskaźnik struktury, \hat{p} – jego estymator.

* Test $H_0: p \leq p_0$ przeciw alternatywie $H_1: p > p_0$.

odrzucamy H₀, jeśli
$$\sqrt{n} \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}} > z_{1-\alpha}$$
,

gdzie z_{1-\alpha} oznacza kwantyl rozkładu N(0,1). Inaczej: odrzucamy H₀, jeśli $\hat{p} > p_0$) + z_{1-\alpha} $\sqrt{p_0(1-p_0)}/\sqrt{n}$ (\hat{p} jest ,,istotnie większe" od p_0 .

* Test $H_0: p = p_0$ przeciw alternatywie $H_1: p \neq p_0$.

odrzucamy
$$H_0$$
, jeśli $\sqrt{n} \frac{|\hat{p} - p_0|}{\sqrt{p_0(1 - p_0)}} > z_{1-\alpha/2}$,

gdzie $z_{1-\alpha/2}$ oznacza kwantyl rozkładu N(0, 1). Inaczej: odrzucamy H₀, jeśli $|\hat{p}-p_0| > +z_{1-\alpha/2}\sqrt{p_0(1-p_0)}/\sqrt{n}$ (\hat{p} jest "istotnie różne" od p_0 . Uwaga: To są rozwiązania przybliżone. Można je stosować gdy, powiedzmy, $np_0 \geq 5$ i $n(1-p_0) \geq 5$.

Porównanie 2 wskaźników struktury.

Niech p_1 i p_2 oznaczają wskaźniki struktury w dwóch populacjach. Pobieramy próbki rozmiarów n_1 i n_2 z obu populacji i obserwujemy w próbkach odpowiednio K_1 i K_2 elementów wyróżnionych. Niech $\hat{p}_1 = K_1/n_1$ i $\hat{p}_2 = K_2/n_2$ – będą estymatorami obu wskaźników struktury, zaś $\hat{p} = (K_1 + K_2)/(n_1 + n_2)$.

* Test $H_0: p_1 \leq p_2$ przeciw alternatywie $H_1: p_1 > p_2$.

odrzucamy
$$H_0$$
, jeśli $\sqrt{\frac{n_+ n_2}{n_1 n_2}} \frac{\hat{p}_1 - p_2}{\sqrt{\hat{p}(1-\hat{p})}} > z_{1-\alpha}$,

gdzie $z_{1-\alpha}$ oznacza kwantyl rozkładu N(0,1). (\hat{p}_1 jest "istotnie większe" od \hat{p}_2 .

Cecha k-wartościowa, porównanie z "normą".

Jakościowa cecha X ma k ma wartości w_1, \ldots, w_k .

Hipoteza H_0 : rozkład cechy X w populacji jest dany tabelka:

wartość	w_1	 w_i	 w_k
prawdopodobieństwo	p_1	 p_{i}	 p_k

gdzie $p_i = \mathbb{P}(X = w_i)$. Oczywiście, $p_1 + \cdots + p_k = 1$.

Dane maja postać "tabelki powtórzeń":

wartość cechy X	w_1	 w_i	 w_k
liczba elementów próbki	N_1	 N_i	 N_k

gdzie N_i – liczba elementów próbki, dla których $X=w_i$ (oczywiście, $N_1+\cdots+N_k=n$).

Test zgodności chi-kwadrat. Obliczamy statystykę "chi-kwadrat":

$$\chi^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i}.$$

Test na poziomie istotności α (w przybliżeniu):

odrzucamy H₀ jeśli
$$\chi^2 > c$$
,

gdzie $c=\chi_{1-\alpha}^2(k-1)$ jest kwantylem rzędu $1-\alpha$ rozkładu chi-kwadrat z k-1stopniami swobody.

Ogólny schemat budowania statystyki chi-kwadrat:

$$\chi^2 = \sum \ \frac{(\text{wielkość obserwowana - wielkość oczekiwana})^2}{\text{wielkość oczekiwana}}.$$

Dwie cechy jakościowe, badanie niezależności.

Dla pojedynczego elementu obserwujemy pare cech (X,Y), przy czym X ma możliwe wartości $1, \ldots, r$, zaś Y – wartości $1, \ldots, s$ (te wartości należy traktować jako umowne "etykietki", kodujące cechy jakościowe, nie jako liczby). Rozkład jest opisany dwuwymiarowa tabelką (p_{ij}) o wierszach $i=1,\ldots,r$ i kolumnach $j=1,\ldots,s$, gdzie

$$p_{ij} = \mathbb{P}(X = i, Y = j).$$

Rozkłady "brzegowe" cech X i Y, rozpatrywanych oddzielnie:

$$\mathbb{P}(X=i) = p_{i\bullet} = \sum_{j=1}^{s} p_{ij},$$

$$\mathbb{P}(Y=j) = p_{\bullet j} = \sum_{i=1}^{r} p_{ij}.$$

Jeśli obserwujemy cechy (X,Y) dla n elementów próbki, możemy zbudować dwuwymiarową tabelkę (N_{ij}) , gdzie

 $N_{ij} = \text{liczba elementów próbki, dla których } (X, Y) = (i, j).$

Jest to tablica kontyngencji. Wielkości "brzegowe" w tej tabelce oznaczymy

$$N_{i\bullet} = \sum_{j=1}^{s} N_{ij}, \qquad N_{\bullet j} = \sum_{i=1}^{r} N_{ij}.$$

Test niezależności chi-kwadrat. Rozpatrzymy hipotezę, która stwierdza niezależność zmiennych X i Y:

$$\mathbb{P}(X = i, Y = j) = \mathbb{P}(X = i)\mathbb{P}(Y = j),$$

czyli

$$H_0: p_{ij} = p_{i\bullet}p_{\bullet j}, \quad (i = 1, \dots, r; j = 1, \dots, s).$$

Statystyka do testowania hipotezy o niezależności jest następująca:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(N_{ij} - N_{i\bullet} N_{\bullet j}/n)^2}{N_{i\bullet} N_{\bullet j}/n}.$$

Test:

odrzucamy
$$H_0$$
 jeśli $\chi^2 > c$,

gdzie $c = \chi_{1-\alpha}^2((r-1)(s-1))$ jest kwantylem rzędu $1-\alpha$ rozkładu chi-kwadrat.

Porównanie r wskaźników struktury.

Niech p_1, \ldots, p_k będą wskaźnikami struktury w r populacjach (mamy cechę jakościową X o wartościach 0, 1). Pobieramy próbkę rozmiaru n_i z i-tej populacji ($i = 1, \ldots, r$). Niech K_i będzie liczbą elementów wyróżnionych w próbce z i-tej populacji.

Hipoteza

$$H_0: p_1 = \cdots = p_r.$$

Statystyka testowa chi-kwadrat przybiera tu postać:

$$\chi^2 = \sum_{i=1}^r \frac{(K_i - n_i \hat{p})^2}{n_i \hat{p}(1 - \hat{p})},$$

gdzie $\hat{p} = \sum_{i} K_i / \sum_{i} n_i$.

Test:

odrzucamy
$$H_0$$
 jeśli $\chi^2 > c$,

gdzie $c = \chi_{1-\alpha}^2(r-1)$ jest kwantylem rzędu $1-\alpha$ rozkładu chi-kwadrat.