# Sistemas de Control II

Tarea 3: Estabilización de un Péndulo Simple

Profesor: Sergio Laboret

Alumno: Angeloff Jorge

### 1. Modelado del sistema no lineal

Se parte de la ecuación del péndulo simple:

$$ml^2\ddot{\theta} + b\dot{\theta} + mgl\sin(\theta) = T \tag{1}$$

El objetivo es estabilizar el péndulo en un ángulo  $\delta$ . Se define el error como  $e(t) = \delta - \theta(t)$ . La entrada es el torque aplicado T, y la salida es  $\theta$ .

### Código MATLAB

```
m = 2;
b = 0.3;
l = 1;
G = 10;
delta = 135;
```

#### Sistema en variables de estado

Se definen los estados como:

$$x_1 = \theta - \delta, \quad x_2 = \dot{\theta}$$

Entonces, el sistema dinámico en coordenadas desplazadas (alrededor del punto de equilibrio deseado) se escribe como:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{ml^2} \left( -bx_2 - mgl\sin(x_1 + \delta) + T \right)$$

Por lo tanto:

$$\dot{x} = f(x, u) = \begin{bmatrix} x_2 \\ \frac{1}{ml^2} (-bx_2 - mgl\sin(x_1 + \delta) + u) \end{bmatrix}, \quad y = h(x) = x_1$$

# 2. Linealización y torque de equilibrio

Para hallar el torque necesario que equilibra el sistema en  $\theta = \delta$ , se impone  $\ddot{\theta} = \dot{\theta} = 0$ , por lo tanto:

$$u_f = mgl\sin(\delta) \tag{2}$$

Luego se linealiza el sistema no lineal alrededor del punto de equilibrio  $\theta = \delta$ , resultando un modelo lineal en coordenadas locales.

### Código MATLAB

```
[A,B,C,D] = linmod('pendulo_mod_tarea', delta*pi/180);
eig(A)
rank(ctrb(A,B))
```

Los parámetros del sistema son:  $m=2\,\mathrm{kg},\ l=1\,\mathrm{m},\ b=0.3\,\mathrm{N}\,\mathrm{m}\,\mathrm{s},\ \delta=135^\circ.$ 

El torque de equilibrio se calcula como:

$$u_f = mgl\sin(\delta) = 2 \cdot 9.81 \cdot 1 \cdot \sin(135^\circ) \approx 13.87 \,\mathrm{Nm}$$

La linealización dio como resultado la siguiente representación en espacio de estados:

$$A = \begin{bmatrix} 0 & 1 \\ 7,0711 & -0,1500 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0,5 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0$$

Los autovalores del sistema linealizado son:

$$\lambda_1 = 2.5852, \quad \lambda_2 = -2.7352$$

Ambos son reales y de signo opuesto, lo cual confirma que el punto de equilibrio linealizado es un punto de silla, es decir, inestable.

Además, la matriz de controlabilidad tiene rango completo:

$$rango(\mathcal{C}) = 2$$

por lo tanto, el sistema linealizado es completamente controlable.

# 3. Controlador con acción integral

Para asegurar el seguimiento de referencia sin error en régimen permanente, se incorpora una acción integral al sistema. Se define una nueva variable de estado:

$$\sigma(t) = \int_0^t (r(\tau) - y(\tau)) d\tau$$

donde r(t) es la referencia y y(t) la salida del sistema. En este caso,  $r = \delta$  y  $y = x_1 = \theta - \delta$ , por lo que la señal de error es simplemente  $-x_1$ .

El vector de estados extendido es:

$$x_a = \begin{bmatrix} x_1 \\ x_2 \\ \sigma \end{bmatrix}$$

Y la ley de control se plantea como:

$$u = -Kx - k_i \sigma = -\begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \sigma \end{bmatrix}$$

#### Código MATLAB

```
Aa = [[A; C], zeros(3,1)];
Ba = [B; O];
eig(Aa)
rank(ctrb(Aa, Ba))
K = acker(Aa, Ba, [p p p]);
k1 = K(1);
k2 = K(2);
k3 = K(3);
eig(Aa - Ba * K)
tscalc = 7.5 / (-p);
```

La matriz del sistema extendido y el vector de entrada quedan definidos como:

$$A_a = \begin{bmatrix} 0 & 1 & 0 \\ 7,0711 & -0,15 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B_a = \begin{bmatrix} 0 \\ 0,5 \\ 0 \end{bmatrix}$$

Los autovalores del sistema extendido sin control son:

$$\lambda = \{0, -2.7352, 2.5852\}$$

Por lo tanto el sistema es inestable pero controlable, como ya se vio, lo cual permite diseñar un controlador por asignación de polos.

Se eligieron polos deseados en s = -4 (polo triple), y se obtuvo:

$$K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} = \begin{bmatrix} 110,14 & 23,70 & 128 \end{bmatrix}$$

Los autovalores del sistema cerrado resultaron:

$$\lambda_{LC} = \{-4, -4, -4\}$$

y el tiempo de establecimiento estimado con la fórmula  $t_s = \frac{7,5}{|\text{Re}(p)|}$  es:

$$t_s \approx 1.875 \text{ s}$$

Esto asegura una respuesta rápida y estable, con rechazo de error estacionario frente a cambios de referencia o perturbaciones constantes.

# 4. Simulación en Simulink y resultados

## Código MATLAB

```
sim('pendulo_pid_tarea')
figure(1), plot(tout, yout)
figure(2), plot(yout, velocidad)
figure(3), plot(tout, torque)
figure(4), plot(tout, -accint)
ymax = max(yout);
S = (ymax - delta) / delta * 100;
erel = (delta - yout) / delta;
ef = erel(end);
ind = find(abs(erel) > 0.02);
tss = tout(ind(end));
yte = yout(ind(end));
uf = torque(end);
Intf = -accint(end);
```

#### Análisis de resultados

Se simula el sistema con el controlador diseñado para estabilizar el péndulo en el ángulo de referencia  $\delta=135^{\circ}$ . Los principales resultados obtenidos son:

- Sobrepaso:  $y_{\text{máx}} = 160.52^{\circ} \Rightarrow S = 18.9\%$
- Error en régimen permanente:  $e_{\infty} \approx 2.88 \times 10^{-14} \Rightarrow \text{ess} = 0$
- Tiempo de establecimiento (2 %):  $t_s = 1.804 \text{ s}$
- Valor final del torque aplicado:  $u_f = 14,14$
- Valor final de la acción integral:  $\sigma_{\text{final}} = 14{,}14$

Estos resultados confirman que el sistema alcanza rápidamente el régimen estacionario con error cero, como se esperaba por la inclusión de la acción integral. El sobrepaso observado es moderado y aceptable para esta aplicación.

## Descripción de las figuras



Figura 1: Respuesta del sistema.

**Figura 1: Respuesta del sistema.** Se observa que la salida parte desde 0 y alcanza el valor deseado de  $135^\circ$ , con un sobrepaso hasta  $160,52^\circ$  a los 0,735 s. El error cae por debajo del  $2\,\%$  antes de los 1,8 s.



Figura 2: Plano de fases.

Figura 2: Plano de fases. Se representa la evolución del sistema en el espacio de estados  $(x_1, x_2) = (\theta - \delta, \dot{\theta})$ . El sistema describe una espiral hacia adentro, lo que indica una trayectoria típicamente subamortiguada pero estable, convergiendo al punto de equilibrio.



Figura 3: Torque aplicado.

Figura 3: Torque aplicado. El torque arranca desde un valor alto ( $\sim 259,5\,Nm$ ), luego presenta un mínimo negativo de  $-25,18\,Nm$  a los 0,35 s, y finalmente se estabiliza en  $15,55\,Nm$ , muy cerca del valor de equilibrio teórico calculado  $u_f = mgl\sin(\delta) = 13,87\,Nm$ .



Figura 4: Acción integral.

Figura 4: Acción integral. Muestra un sobrepico de 61,87 a los 0,41 s, para luego estabilizarse en 15,55. Esto refleja cómo la acción integral acumula el error inicial y contribuye a corregirlo, asegurando el rechazo total del error en régimen.

## 5. Análisis de robustez

Se evalúa la robustez del controlador frente a variaciones en la masa m. Se analiza cómo afectan al sobrepaso, el tiempo de establecimiento, el valor final del torque y la acción integral. En particular, se prueba el sistema con masas del 90 %, 100 % y 110 % de la nominal.

## Código MATLAB

```
m_nom = 2;
  variaciones_masa = [0.9, 1.0, 1.1];
  resultados = zeros(3, 4);
  for i = 1:3
      m = variaciones_masa(i) * m_nom;
      sim('pendulo_pid_tarea');
      ymax = max(yout);
      S = (ymax - delta)/delta * 100;
      erel = (delta - yout)/delta;
      ind = find(abs(erel) > 0.02);
11
12
      tss = tout(ind(end));
      uf = torque(end);
13
      Intf = -accint(end);
      resultados(i,:) = [S, tss, uf, Intf];
15
16 end
```

#### Tabla de resultados

| Masa  | Sobrepaso (%) | $T_s$ (s) | $u_f$ | $\sigma$ final |
|-------|---------------|-----------|-------|----------------|
| 1.8 m | 17.90         | 1.87      | 12.73 | 12.73          |
| 2.0 m | 18.91         | 1.80      | 14.14 | 14.14          |
| 2.2 m | 20.01         | 1.73      | 15.56 | 15.56          |

#### Análisis

Se observa que:

- El tiempo de establecimiento disminuye levemente al aumentar la masa. Esto es esperable ya que el torque requerido para estabilizar es mayor, lo que provoca una respuesta más enérgica.
- El **sobrepaso** se incrementa con la masa, aunque dentro de un rango aceptable, lo que indica que el controlador mantiene buen desempeño a pesar de la variación.
- El valor final del torque y de la acción integral crecen proporcionalmente con la masa, lo que refleja correctamente la relación  $u_f = mgl\sin(\delta)$ . Esto demuestra que la acción integral compensa adecuadamente la variación de carga estática.

# Graficos



Figura 5: Respuesta del sistema.



Figura 6: Plano de fases.



Figura 7: Torque aplicado.



Figura 8: Acción integral.

En conjunto, los resultados muestran que el sistema controlado es robusto frente a variaciones moderadas de masa.

## 6. Conclusiones

En esta tarea se diseñó y analizó un controlador con acción integral para estabilizar un péndulo simple en un ángulo arbitrario. A partir de la linealización del modelo no lineal, se aplicó asignación de polos sobre el sistema extendido, garantizando estabilidad y seguimiento exacto de la referencia.

Las simulaciones mostraron buen desempeño dinámico: tiempo de establecimiento menor a 2 segundos, sobrepaso moderado ( $\approx 19\%$ ) y error estacionario nulo. La acción integral fue clave

para alcanzar el equilibrio deseado.

Además, se evaluó la robustez ante variaciones del  $10\,\%$  en la masa, observando un comportamiento estable con cambios leves en la dinámica. Esto confirma que el controlador es robusto frente a perturbaciones en la carga.

En resumen, el controlador cumple con los objetivos de estabilidad, seguimiento y robustez frente a variaciones paramétricas.