Problem on Integration

Created by Mr. Francis Hung

Last updated: 26 February 2023

Consider the following improper integral: $\int_a^b \left[(x-a)(b-x)^2 \right]^{-\frac{1}{3}} dx$, a < b.

This is a hard problem on integration. It involves the use of substitutions.

- By using substitution $x = a \cos^2\theta + b \sin^2\theta$, prove that is equal to $2\int_0^{\frac{\pi}{2}} \tan^{\frac{1}{3}} \theta d\theta$.
- By using the substitution $t = \tan^{\frac{1}{3}} \theta$, prove that the integral is equal to $6 \int_0^\infty \frac{t^3}{1+t^6} dt$, hence prove that is also equal to $3\int_0^\infty \frac{u}{1+u^3} du$.
- Prove that $\int_0^\infty \frac{v}{1+v^3} dv = \int_0^\infty \frac{1}{1+v^3} dv$. Hence find the integral in part (a).
- Use the substitution $x = \frac{a + bu}{1 + u}$ to do part (a) again.

Solution

(a)
$$x = a \cos^2 \theta + b \sin^2 \theta; x = a, \theta = 0; x = b, \theta = \frac{\pi}{2}.$$

 $x - a = (b - a) \sin^2 \theta; b - x = (b - a) \cos^2 \theta; dx = 2(b - a) \sin \theta \cos \theta d\theta$
 $I = \int_0^{\frac{\pi}{2}} \left[(b - a) \sin^2 \theta (b - a)^2 \cos^4 \theta \right]^{-\frac{1}{3}} 2(b - a) \sin \theta \cos \theta d\theta$
 $= 2 \int_0^{\frac{\pi}{2}} \tan^{\frac{1}{3}} \theta d\theta$

(b)
$$t = \tan^{\frac{1}{3}} \theta$$
; $\theta = 0$, $t = 0$, $\theta \to \frac{\pi}{2}$, $t \to \infty$

$$dt = \frac{1}{3} \tan^{-\frac{2}{3}} \theta \sec^2 \theta d\theta \Rightarrow d\theta = \frac{3t^2 dt}{1 + t^6}$$

$$I = 2 \int_0^\infty t \cdot \frac{3t^2 dt}{1 + t^6} = 6 \int_0^\infty \frac{t^3}{1 + t^6} dt$$

$$Let \ u = t^2; \ t = 0, \ u = 0; \ t \to \infty, \ u \to \infty; \ du = 2t \ dt$$

$$I = 3 \int_0^\infty \frac{t^2}{1 + (t^2)^3} \cdot 2t dt = 3 \int_0^\infty \frac{u}{1 + u^3} du$$

(c)
$$J = \int_{0}^{\infty} \frac{v}{1+v^{3}} dv. \text{ Let } w = \frac{1}{v}; v \to 0, w \to \infty; v \to \infty, w \to 0; dv = -\frac{1}{w^{2}} dw$$

$$J = \int_{\infty}^{\infty} \frac{1}{1+\left(\frac{1}{w}\right)^{3}} \left(-\frac{1}{w^{2}}\right) dw.$$

$$J = \int_{0}^{\infty} \frac{1}{1+w^{3}} dw = \int_{0}^{\infty} \frac{1}{1+v^{3}} dv$$

$$I = 3J = 3 \int_{0}^{\infty} \frac{1}{1+v^{3}} dv + \int_{0}^{\infty} \frac{v}{1+v^{3}} dv$$

$$2I = 3 \int_{0}^{\infty} \frac{1}{1-v+v^{2}} dv$$

$$= 3 \int_{0}^{\infty} \frac{1}{1-v+v^{2}} dv$$

$$= 3 \int_{0}^{\infty} \frac{1}{\left(v-\frac{1}{2}\right)^{2} + \frac{3}{4}} dv$$

$$= 3 \int_{0}^{\infty} \frac{1}{\left(v-\frac{1}{2}\right)^{2} + \frac{3}{4}} dv$$

$$= 2\sqrt{3} \tan^{-1} \left(\frac{2v-1}{\sqrt{3}}\right) \Big|_{0}^{\infty}$$

$$= 2\sqrt{3} \left(\frac{\pi}{2} + \frac{\pi}{6}\right) = \frac{4\sqrt{3}\pi}{3}$$

$$\int_{a}^{b} \left[(x-a)(b-x)^{2} \right]^{-\frac{1}{3}} dx = I = \frac{2\sqrt{3}\pi}{3}$$

(d)
$$x = \frac{a+bu}{1+u}$$
; $x = a$, $u = 0$; $x \to b$, $u \to \infty$
 $x - a = \frac{(b-a)u}{1+u}$, $b - x = \frac{b-a}{1+u}$, $dx = \frac{(b-a)du}{(1+u)^2}$
 $I = \int_0^\infty \left[\frac{(b-a)u}{1+u} \cdot \left(\frac{b-a}{1+u} \right)^2 \right]^{-\frac{1}{3}} \cdot \frac{(b-a)du}{(1+u)^2}$
 $= \int_0^\infty \frac{u^{-\frac{1}{3}}}{1+u} du$
 $= -\int_0^\infty \frac{3v^3}{1+v^{-3}} dv$; $v = u^{-\frac{1}{3}}$
 $= \int_0^\infty \frac{3}{1+v^3} dv$

= 3J, same as the answer in part (c)