

INGENIERIA ELECTRONICA ESPACIO CURRICULAR INFORMATICA I PLANIFICACIÓN CICLO LECTIVO 2024

1.- DATOS ADMINISTRATIVOS DE LA ASIGNATURA

Departamento:	Ingeniería	Carrera:	Ingeniería
	Electrónica		Electrónica
Asignatura:	Ingeniería Electronica Espacio Curricular		
Nivel de la carrera:	1 Duración:		
Bloque Curricular:	Tecnologías Basicas		

Carga horaria Presencial Semanal:	1.5hs	Carga Horaria Total:	48hs
Carga Horaria No Presencial Semanal:		% Horas No Presenciales:	

Profesores/as Categoría	Profesores/as Apellido(s) y Nombre(s)	Profesores/as Dedicación
Titular	Barbuto Victor Luis	

Auxiliares Docentes Categoría	Auxiliares Docentes Apellido(s) y Nombre(s)	Auxiliares Docentes Dedicación
JTP	Corripio Jorge	

2.- PRESENTACIÓN Y FUNDAMENTACIÓN DE LA ASIGNATURA

En esta asignatura el alumno encuentra su primer contacto con la especialidad elegida, con profesores que son ingenieros electrónicos que les presentan una visión integradora de la ingeniería, su ubicación dentro del plan le permite relacionar los conceptos de la física y la matemática del primer nivel con el tronco integrador, mejorando además su situación laboral por la adquisición temprana de habilidades y destrezas típicas de la profesión.

3.- PROPÓSITO DE LA ASIGNATURA

El propósito de este espacio curricular es acercar a los estudiantes a los rudimentos de la especialidad, mejorando habilidades y generando espacios de practica para desarrollar esas tareas.

Además, convierte al ingresante en un estudiante universitario

4.- OBJETIVOS DE LA ASIGNATURA ESTABLECIDOS EN EL DISEÑO CURRICULAR

OBJ1:	Manejar lenguaje técnico, magnitudes de la profesión, y expresar correctamente las
	variables medidas
OBJ2:	Conocer los rudimentos de la profesión, conceptos de TENSION, CORRIENTE, POTENCIA
	ELECTRICA, LEY DE OHM, KIRCHHOFF, COMPONENTES PASIVOS
OBJ3:	Manejar el concepto de CORRIENTE CONTINUA y CORRIENTE ALTERNA, e interpretar
	circuitos simples.
OBJ4:	Poder manipular instrumentos de Laboratorio, MULTIMETRO, FUENTE DE ALIMENTACION,
	OSCILOSCOPIO y GENERADOR DE FUNCIONES
OBJ5:	Conocer la física del semiconductor, poder operar básicamente un DIODO, un TR BIPOLAR y
	un AMPLIFICADOR OPERACIONAL
OBJ6:	Conocer los SISTEMAS DE NUMERACIÓN, poder realizar CONVERSIONES y operaciones con
	SISTEMAS BINARIOS

5.- RESULTADOS DE APRENDIZAJE

RES1:	Que puedan manejar el lenguaje técnico, realizar y expresar correctamente las mediciones
	planteadas
RES2:	Que puedan conocer los conceptos de TENSION, CORRIENTE,POTENCIA ELKECTRICA,LEY DE
	OHM,KIRCHHOFF y los COMPONENTES PASIVOS
RES3:	Que puedan conocer los conceptos de CORRIENTE CONTINUA y AKTERNA, para interpretar
	circuitos sencillos.
RES4:	Que puedan manipular los instrumentos básicos de Laboratorios descriptos en la cátedra.
RES5:	Que puedan interpretar la física básica de los semiconductores para entender el
	funcionamiento básico
RES6:	Que puedan conocer los SISTEMAS DE NUMERACION y ´puedan realizar operaciones básicas
	con números binarios

6.- ASIGNATURAS CORRELATIVAS PREVIAS

Para cursar debe tener cursada:	Ninguna
Para cursar debe tener aprobada:	Ninguna
Para rendir debe tener aprobada:	 Ninguna

7.- ASIGNATURAS CORRELATIVAS POSTERIORES

- Informática II
- Dispositivos Electrónicos
- Técnicas Digitales I

8.- PROGRAMA ANALÍTICO

Unidad 1: Errores - Magnitudes: Ingeniería: Definición, capacidad profesional, incumbencias. Magnitud, unidad, medida. Magnitudes escalares y vectoriales. Magnitudes eléctricas, unidades, múltiplos, prefijos, abreviaturas. Proceso de medida, sensibilidad, fidelidad, exactitud y precisión. Medida directa e indirecta, cifras significativas, truncamiento y redondeo. Incertidumbre, errores sistemáticos y casuales. Propagación, errores absoluto y relativo de la medida. Muestra,

interpolación de valores, valor representativo. Valor mas probable, error aparente, varianza y error estándar. Distribución normal de una muestra.

Unidad 2: Conceptos básicos eléctricos: Carga y campo eléctrico, potencial eléctrico, tensión y corriente, potencia eléctrica. Ley de Ohm, Leyes de Kirchhoff, Ley de Joule, Ley de Faraday. Elemento y componente de circuito, resistores, capacitores, circuito RC, inductores, circuito RL, inductor mutuo, transformador ideal, fuentes de tensión y corriente. Circuitos básicos de CC

Unidad 3: Señales: Clasificación, Señales periódicas: valores característicos, valor medio y eficaz. Senoidal, triangular, cuadrada, Régimen senoidal, números complejos y fasores. Métodos de resolución con fasores. Circuito resonante. Impedancia y admitancia. Potencia activa, reactiva y aparente. Factor de potencia. Circuitos de CA, Análisis.

Unidad 4: Instrumentos: Descripción y funcionamiento. Multímetro, Osciloscopio, Generador de funciones, Fuente de laboratorio Clase teórico/Práctica.

Unidad 5: Semiconductores: Semiconductor tipo N, tipo P. Diodo, descripción, curva característica, recta de carga. Clasificación y descripción de los diferentes tipos de diodos. Diodo rectificador, principales especificaciones, circuitos rectificadores. Transistor bipolar, descripción, curvas características, polarización, recta de carga, análisis estático.

Unidad 6: Amplificador operacional: Descripción, características principales a lazo abierto Configuraciones y circuitos básicos, uso y aplicaciones.

Unidad 7: Sistemas Numéricos - Lógica digital básica. Sistemas posicionales (decimal y binario), sistemas en base 8 y 16, conversión, módulo de los sistemas. Magnitudes, complemento a 1 y a 2, congruencia, suma módulo 2. Operaciones: suma, carry, resta, borrow. 3 Variable y función lógica. Funciones básicas combinadas, compuertas descripción y funcionamiento. Algebra de Boole Introducción al análisis y síntesis de circuitos combinacionales.

9.- METODOLOGÍA DE ENSEÑANZA

Como estrategia general se espera que presentemos los contenidos y actividades de un modo motivador para generar la empatía necesaria en cada clase.

Es fundamental trabajar la centralidad en el estudiante teniendo en cuenta que se debe:

- 1. Escuchar inquietudes y necesidades de cada estudiante
- 2. Promover el trabajo en grupo
- 3. Observar si las aclaraciones a dudas y consultas son suficientes.
- 4. Evaluar la curiosidad en base a sus preguntas y participación.

Se debe presentar cada tema con precisión, acudiendo, de ser necesario, a metáforas de la vida cotidiana para su mayor comprensión. Se debe tener certeza de la comprensión plena, lo que requiere un chequeo, por un camino alternativo por parte del docente.

Otro de los aspectos centrales de la estrategia de enseñanza, es promover la participación de los/as estudiantes asignándole un rol protagónico. A través de la presentación de preguntas disparadoras vinculadas a los contenidos de cada clase y a los saberes e intereses de los/as estudiantes, se pretende iniciar un intercambio

de experiencias que ponga en relieve la diversidad de miradas que compone al grupo total.

Se plantea como estrategia retomar saberes de encuentros anteriores.

10.- RECOMENDACIONES PARA EL ESTUDIO

A partir del contenido en el Aula Virtual, se pone a disposición de los y las estudiantes apuntes de todas las Unidades.

Se recomienda la mirada previa de los videos de clase, para mejorar la dinámica del comienzo de los temas, para tener un coloquio grupal de los mismos.

11.- METODOLOGÍA DE EVALUACIÓN

La Evaluación constituye una parte fundamental de la estrategia de enseñanza.

Se plantea desde el comienzo del curso y se discute con los/as estudiantes cual va a ser la metodología de evaluación.

Se comparte una rubrica donde consta las diferentes herramientas que utiliza la catedra para dar cuenta del avance y la comprensión de los temas, los saberes adquiridos y competencias desarrolladas por los/as estudiantes.

Las herramientas serán: evaluación continua, desarrollo de la comunicación individual y grupal, exámenes presenciales y conversatorios tanto individuales como grupales.

12.- CRONOGRAMA DE CLASES/TRABAJOS PRÁCTICOS/EXÁMENES (TENTATIVO)

CLASE	FECHA	UNIDAD TEMÁTICA /
		BLOQUE DE CONTENIDOS /
		TEMA
1		Unidad 1
2		Unidad 1

Campus: Ramón Franco 5050 • Villa Domínico • Avellaneda • www.fra.utn.edu.ar

2	Haidad 2
3	Unidad 2
4	Unidad 2
5	Unidad 2
6	Unidad 2
7	Unidad 2
8	TP N°1
9	Unidad 3
10	Unidad 3
11	Unidad 3
12	TP N° 2
13	Clase repaso/consulta
14	Parcial 1
15	Clase repaso/consulat
16	Recuperatorio
17	Unidad 4
18	Unidad 4
19	Unidad 5
20	Un idad 5
21	Unidad 5
22	Unidad 5
23	Unidad 6
24	Unidad 6
25	Unidad 6
26	TP N° 3
27	Unidad 7
28	Unidad 7
29	Clase repaso/consulta
30	Parcial 2
31	Clase repaso/consulta
32	Recuperatorio

12.1.- DESCRIPCIÓN DE TRABAJOS PRÁCTICOS O PRÁCTICA DE LABORATORIO

TP / PL	DENOMINACIÓN DE LA ACTIVIDAD	OBJETIVOS	DESCRIPCIÓN SINTÉTICA DE LA ACTIVIDAD A REALIZAR POR LAS Y LOS ESTUDIANTES	INSTRUMENTO DE EVALUACIÓN
1	TP N° 1	Mediante los ensayos propuestos sobre un resistor, un capacitor, y un inductor, se familiarizará al alumno con las magnitudes eléctricas, sus unidades, prefijos, y abreviaturas. Se hará uso del multímetro para las mediciones de resistencia, tensión y corriente. Se reconocerá la presencia de errores en el proceso de medición, y se estudiarán los procesos energéticos que se desarrollan en dichos elementos.	Reconocimiento de los componentes. Montaje de los circuitos bajo prueba. Armar la disposición de los instrumentos para alimentar circuitos y realizar las mediciones. Levantar las mediciones. Realizar un informe grupal	Rubrica

2	TP N° 2	Se pretende el reconocimiento del instrumental básico de laboratorio y su aplicación en los ensayos propuestos. En los mismos, se manejarán distintos tipos de señales periódicas para el análisis de formas de onda, parámetros principales, y valores característicos.	Reconocimiento de los componentes. Montaje de los circuitos bajo prueba. Armar la disposición de los instrumentos para alimentar circuitos y realizar las mediciones. Levantar las mediciones. Realizar un informe grupal	Rubrica
3	TP N° 3	Se analizará y observarán las características y el funcionamiento de un diodo y un Tr. Bipolar real. Se estudiarán las hojas de datos, y se harán ensayos en circuitos.	Reconocimiento de los componentes. Montaje de los circuitos bajo prueba. Armar la disposición de los instrumentos para alimentar circuitos y realizar las mediciones. Levantar las mediciones. Realizar un informe grupal	Rubrica

13.- REFERENCIAS BIBLIOGRÁFICAS

Título	Autor (es)	Editorial	Año de Edición
FISICA II	Resnick - Halliday	CECSA	1995
FISICA	Tipler	Reverte	1996
MEDICIONES FISICAS	Balseiro	Hachette SA	
TEORIA DE ERRORES DE MEDICIONES	Cernuschi-Galloni	EUDEBA	1974
ELECTRICIDAD Y MAGNETISMO	Sears	Aguilar	1980
FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO	Kip	McGraw-Hill	1972
INTRODUCCION A LA INGENIERIA	Wright	Addison Wesley	1994
ELECTRONICA GENERAL	Gomez	RA-MA	1994
PRINCIPIOS DE ELECTRONICA	Malvino	McGraw-Hill	2000
ANALISIS DE CIRCUITOS EN INGENIERIA	Hayt	McGraw-Hill	2000
PRINCIPIOS DE	Daponte	Mitre	1983

ELECTROTECNIA			
MECANICA GENERAL	Roederer	EUDEBA	1986
TEORIA DE CIRCUITOS	Carlson	Thomson	2002
ANALISIS DE CIRCUITOS (tomo1)	Marco – Pueyo	ARBO	2002
INTRODUCCION A LAS MEDICIONES ELECTRICAS	Rodriguez	Alsina	2007
CIRCUITOS ELECTRICOS Y ELECTRONICOS	Nahvi	MacGraw-Hill	1997
CIRCUITOS ELECTRICOS Y	Nahvi	MacGraw-Hill	1997