MATH-331 Introduction to Real Analysis	Ian Oga (24445161)
Homework 02	Fall 2021

Due date: 20-09-2021 1:20pm Total: /70.

Exercise	1	2	3	4	5	6	7	8	9	10
	(10)	(5)	(5)	(5)	(5)	(10)	(5)	(10)	(5)	(10)
Score										

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LATEX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

Writing problems

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- b) Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Solution:

a) (i) Define $M = \max\{n, m\}$. Note that for $y \geq x$, $[a_x, b_x] \supseteq [a_y, b_y]$. This implies that $a_y, b_y \in [a_x, b_x]$ and $a_x \leq a_y \leq b_y \leq b_x$. Since $M \geq n$ and $M \geq m$, $a_n \leq a_M$, $b_M \leq b_m$, and $a_n \leq a_M \leq b_M \leq b_m$. Therefore $a_n \leq b_m$.

- (ii) Since $a_n \leq b_m$ for all $n, m \geq 1$, $a_n \leq b_1$ for all $n \geq 1$ This proves that $\{a_n : n \geq 1\}$ is bounded from above. As $\{a_n : n \geq 1\}$ is non-empty, this set must have a supremum by the Axiom of Completeness.
- (iii) By the definition of supremum, $c \geq a_n$ for all $n \geq 1$. Now suppose towards a contradiction that there exists $b_x < c$ for $x \geq 1$. Since $a_n \leq b_m$ for all $n, m \geq 1$, $a_n \leq b_x$ for all $n \geq 1$. This would make b_x an upper bound for $\{a_n : n \geq 1\}$ that is less than c, which is a contradiction. Therefore $c \leq b_n$ for all $n \geq 1$. As $a_n \leq c \leq b_n$ for all $n \geq 1$, $c \in [a_n, b_n]$ for all $n \geq 1$ which satisfies the requirement.
- b) Suppose towards a contradiction that \mathbb{R} is countable. Then there exists a bijection $f: \mathbb{N} \to \mathbb{R}$. Define interval $[a_1, b_1] = [f(1) 2, f(1) 1]$. We now define a sequence of intervals $[a_n, b_n]$ as follows for n > 1:

```
[a_n, b_n] = [a_{n-1}, b_{n-1}] \text{ for } f(n) \notin [a_{n-1}, b_{n-1}]
[a_n, b_n] = [\frac{f(n) + b_{n-1}}{2}, b_{n-1}] \text{ for } f(n) \in [a_{n-1}, b_{n-1}] \text{ and } f(n) \neq b_{n-1}
[a_n, b_n] = [a_{n-1}, \frac{a_{n-1} + b_{n-1}}{2}] \text{ for } f(n) = b_{n-1}
```

Note how the following properties are true for all n:

$$f(n) \notin [a_n, b_n]$$

$$a_n < b_n$$

$$[a_n, b_n] \supseteq [a_m, b_m] \text{ for } n > m$$

From part a, we know that there exists some $c \in [a_n, b_n]$ for all $n \geq \mathbb{N}$. Now suppose towards a contradiction that there exists a f(N) = c. We know that $f(N) \notin [a_N, b_N]$, but $c \in [a_N, b_N]$, which is a contradiction. Since no f(N) = c, $f : \mathbb{N} \to \mathbb{R}$ is not surjective, which is a contradiction to f being a bijection. Therefore \mathbb{N} is not countable.

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Solution: Let $\varepsilon > 0$ be arbitrary. Since $a_n \to A$, there exists $N \in \mathbb{N}$ such that $|a_n - A| < \varepsilon$ for all $n \ge N$. By the reverse triangle inequality, $||a_n| - |A|| < \varepsilon$ for all $n \ge N$. Since $\varepsilon > 0$ is arbitrary, $|a_n| \to |A|$.

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$, then $c_n \to L$.

Solution: Let $\varepsilon > 0$ be arbitrary. As $a_n \to L$ and $b_n \to L$, there exists $N_1, N_2 \in \mathbb{N}$ such that $|a_n - L| < \varepsilon$ for all $n \ge N_1$ and $|b_n - L| < \varepsilon$ for all $n \ge N_2$. Define $N = \max(N_1, N_2)$. Then $|a_n - L| < \varepsilon$ and $|b_n - L| < \varepsilon$ for all $n \ge N$. We then have the following for $n \ge N$: $-\varepsilon < a_n - L < \varepsilon$ and $-\varepsilon < b_n - L < \varepsilon$

```
As a_n \le c_n \le b_n, we have a_n - L \le c_n - L \le b_n - L

-\varepsilon < a_n - L \le c_n - L \le b_n - L < \varepsilon

-\varepsilon < c_n - L < \varepsilon
```

 $|c_n - L| < \varepsilon$

As $\varepsilon > 0$ is arbitrary and $|c_n - L| < \varepsilon$ for all $n \ge N$, $c_n \to L$.

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

- 1. Consider the case A = 0.
- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Solution:

- 1. Suppose A=0. Let $\varepsilon>0$ be arbitrary. Since $a_n\to 0$, there exists $N\in\mathbb{N}$ such that $|a_n|<\varepsilon$ for all $n \geq N$. Since a_n and ε are positive, $a_n < \varepsilon$ and $\sqrt{a_n} < \sqrt{\varepsilon}$. Then $|\sqrt{a_n} - 0| < \sqrt{\varepsilon}$ for all $n \geq N$ and $\sqrt{a_n} \to 0$.
- 2. Suppose $A \neq 0$. Let $\varepsilon > 0$ be $\frac{|A|}{2}$. There exists $N_1 \in \mathbb{N}$ such that $|a_n A| < \frac{|A|}{2}$ for all $n \geq N$.

Then for all
$$n \ge N_1$$
:
$$||a_n| - |A|| < \frac{|A|}{2}$$

$$-\frac{|A|}{2} < |a_n| - |A| < \frac{|A|}{2}$$

$$|a_n| - |A| > -\frac{|A|}{2}$$

$$|a_n| > \frac{|A|}{2}$$

$$\sqrt{a_n} > \sqrt{\frac{|A|}{2}}$$

- 3. Let $\varepsilon > 0$ be arbitrary. Since $a_n \to A$, there exists $N_2 \in \mathbb{N}$ such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$ for all $n \geq N_2$.
- 4. Note that $\sqrt{a_n} \sqrt{A} = \frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and define $N = \max(N_1, N_2)$. Since $\sqrt{a_n} > \sqrt{\frac{|A|}{2}}$, we have

the following for
$$n \ge N$$
:
$$\sqrt{a_n} + \sqrt{A} > \sqrt{|A|}(1 + \frac{1}{\sqrt{2}})$$

$$\frac{1}{\sqrt{a_n} + \sqrt{A}} < \frac{1}{\sqrt{|A|}(1 + \frac{1}{\sqrt{2}})}$$
Then for $n \ge N$:

$$|\sqrt{a_n} - \sqrt{A}| = \left| \frac{a_n - A}{\sqrt{a_n} + \sqrt{A}} \right|$$

$$|\sqrt{a_n} - \sqrt{A}| = \frac{1}{\sqrt{a_n} + \sqrt{A}} |a_n - A|$$

$$|\sqrt{a_n} - \sqrt{A}| < \frac{1}{(1 + \frac{1}{\sqrt{2}})\sqrt{|A|}} \left(\frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}\right)$$

$$\left|\sqrt{a_n} - \sqrt{A}\right| < \left(\frac{3\sqrt{2}}{4\sqrt{2}+4}\right)\frac{\varepsilon}{|A|}$$

 $|\sqrt{a_n} - \sqrt{A}| < (\frac{3\sqrt{2}}{4\sqrt{2}+4})\frac{\varepsilon}{|A|}$ I do not understand why we made the choice to have $|a_n - A| < \frac{3}{4}\frac{\varepsilon}{\sqrt{|A|}}$ in part 3 since it leaves |A| in the denominator. You could define N_2 instead as being such that $|a_n - A| < 1$ $\varepsilon(1+\frac{1}{\sqrt{2}})\sqrt{|A|}$ for all $n\geq N_2$ and get the following for $n\geq N=\max(N_1,N_2)$:

$$|\sqrt{a_n} - \sqrt{A}| = \frac{1}{\sqrt{a_n} + \sqrt{A}} |a_n - A|$$

$$|\sqrt{a_n} - \sqrt{A}| < \frac{1}{(1 + \frac{1}{\sqrt{2}})\sqrt{|A|}} (\varepsilon(1 + \frac{1}{\sqrt{2}})\sqrt{|A|})$$

$$|\sqrt{a_n} - \sqrt{A}| < \varepsilon$$

This proves that $\sqrt{a_n} \to \sqrt{A}$.

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

Solution: Suppose $a_n \to A$ and let ε be arbitrary. Then there exists $N_1 \in \mathbb{N}$ such that $|a_n - A| < \frac{\varepsilon}{2}$ for all $n \ge N_1$. Since a_n converges, $a_n - A$ and $|a_n - A|$ converge by Exercise 2. Sequence $|a_n - A|$ is then bounded. Define M > 0 so that $\forall n \ge 1, |a_n - A| \le M$ for all n. Then for all $n \ge N_1$:

$$\begin{split} |\sigma_n - A| &= \left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| \\ |\sigma_n - A| &= \left| \frac{a_1 + a_2 + \dots + a_n - An}{n} \right| \\ |\sigma_n - A| &= \left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_n - A)}{n} \right| \\ |\sigma_n - A| &\leq \frac{1}{n} (|a_1 - A| + |a_2 - A| + \dots + |a_n - A|) \\ |\sigma_n - A| &\leq \frac{1}{n} (|a_1 - A| + |a_2 - A| + \dots + |a_n - A|) \\ |\sigma_n - A| &\leq \frac{1}{n} (M(N - 1) + |a_{N_1} - A| + |a_{N_1 + 1} - A| + \dots + |a_n - A|) \\ |\sigma_n - A| &\leq \frac{1}{n} (M(N_1 - 1) + \frac{\varepsilon}{2} (n - N_1)) \\ |\sigma_n - A| &\leq \frac{M(N_1 - 1)}{n} + \frac{\varepsilon}{2} (\frac{n - N_1}{n}) \\ \text{Since } N &= 0 \text{ and } N \text{ and } S \text{ for } S \text{$$

 $|\sigma_n - A| < \frac{M(N_1 - 1)}{n} + \frac{\varepsilon}{2} \left(\frac{n - N_1}{n}\right)$ Since $N_1, n > 0$, $n - N_1 < n$ and $\frac{n - N_1}{n} < 1$. Therefore $\frac{\varepsilon}{2} \left(\frac{n - N_1}{n}\right) < \frac{\varepsilon}{2}$. By the Archimedean Principle, we also know that there exists $N_2 \in \mathbb{N}$ such that $N_2 \frac{\varepsilon}{2} > M(N_1 - 1)$. We can also choose N_2 such that $N_2 \ge N_1$. Therefore $\frac{M(N_1 - 1)}{n} < \frac{\varepsilon}{2}$ for all $n \ge N_2$. Combining these, for all $n \ge N_2 \ge N_1$:

$$\begin{aligned} |\sigma_n - A| &< \frac{M(N_1 - 1)}{n} + \frac{\varepsilon}{2} \left(\frac{n - N_1}{n}\right) \\ |\sigma_n - A| &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ |\sigma_n - A| &< \varepsilon \end{aligned}$$

As ε is arbitrary, $\sigma_n \to A$.

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- b) $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Solution:

a) Let A=5 and ε be arbitrary. By the Archimedean Principle, we know that there exists an $N \in \mathbb{N}$ such that $N\varepsilon > 1$ and therefore $\varepsilon > \frac{1}{N}$. We want to prove that $|a_n - A| < \varepsilon$ for all $n \geq N$. Note that for all $n \geq N$:

$$|a_n - A| = |(5 + \frac{1}{n}) - 5|$$

$$|a_n - A| = |\frac{1}{n}|$$

$$|a_n - A| = \frac{1}{n}$$

$$|a_n - A| \le \frac{1}{N}$$

$$|a_n - A| < \varepsilon$$

Therefore $a_n \to 5$.

b) Let $A = \frac{3}{2}$ and ε be arbitrary. Let $X = \frac{1}{\varepsilon} - 0.5$. We know from Theorem 0.21 that there exists $N \in \mathbb{N}$ such that $N \geq X$. Note that for all $n \geq N$:

$$n \ge X$$

$$2n + 1 \ge 2X + 1$$

$$\frac{1}{2n+1} \le \frac{1}{2X+1}$$

$$\frac{1.5}{2n+1} \le \frac{1.5}{2X+1}$$

$$\frac{1.5}{2n+1} \le \frac{1.5}{2*(\frac{1}{\varepsilon} - 0.5) + 1}$$

$$\frac{1.5}{2n+1} \le 0.75 * \varepsilon$$

$$\frac{1.5}{2n+1} < \varepsilon$$

We want to prove that $|a_n - A| < \varepsilon$ for all $n \ge N$. Note that for all $n \ge N$:

we want to prove that
$$|a_n - A| = \left| \frac{3n}{2n+1} - \frac{3}{2} \right|$$
 $|a_n - A| = \left| \frac{3n}{2n+1} - \frac{3n+1.5}{2n+1} \right|$
 $|a_n - A| = \left| \frac{-1.5}{2n+1} \right|$
 $|a_n - A| = \frac{1.5}{2n+1}$
 $|a_n - A| < \varepsilon$
Therefore $a_n \to \frac{3}{2}$.

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Solution: We want to prove that a_n converges since all converging sequences are Cauchy by Theorem 1.3. Let A=2 and ε be arbitrary. By the Archimedean Principle, we know that there exists an $N \in \mathbb{N}$ such that $N\varepsilon > 1$ and therefore $\varepsilon > \frac{1}{N}$. We want to prove that $|a_n - A| < \varepsilon$ for all $n \geq N$. Note that for all $n \geq N$:

$$|a_n - A| = |\frac{2n+1}{n} - 2|$$

$$|a_n - A| = |\frac{2n+1-2n}{n}|$$

$$|a_n - A| = |\frac{1}{n}|$$

$$|a_n - A| = \frac{1}{n}$$

$$|a_n - A| \le \frac{1}{N}$$

$$|a_n - A| < \varepsilon$$

Therefore a_n converges and is Cauchy.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

a)
$$(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$$
.

b)
$$(a_n)_{n=1}^{\infty} = (\sin(\frac{2n+1}{2}\pi))_{n=1}^{\infty}.$$

Solution:

a) Suppose towards a contradiction that a_n converges. This means that $\exists A \in \mathbb{R}, \forall \varepsilon \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, |a_n - A| < \varepsilon$. Let A and N be arbitrary and $\varepsilon = 1$. Note that if N is even, $a_N = 1$ and $a_{N+1} = -1$. Similarly, if N is odd, $a_N = -1$ and $a_{N+1} = 1$. Regardless of N, we must have $|1 - A| < \varepsilon$ and $|-1 - A| < \varepsilon$. Therefore:

$$|1 - A| < 1$$
 and $|-1 - A| < 1$
 $-1 < 1 - A < 1$ and $-1 < -1 - A < 1$

$$-2 < -A < 0$$
 and $0 < -A < 2$
 $0 < A < 2$ and $-2 < A < 0$

A cannot satisfy both of these requirements at once. This is a contradiction. Therefore a_n does not converge and must diverge.

b) If n is even we can express n as 2k for integer k. Then $a_n = \sin(\pi \frac{4k+1}{2}) = \sin(2k\pi + \frac{\pi}{2}) = 1$. If n is odd we can express n as 2k+1 for integer k. Then $a_n = \sin(\pi \frac{4k+2+1}{2}) = \sin(2k\pi + \frac{3\pi}{2}) = -1$. This means that for all integers n, $a_n = (-1)^n$ which we know diverges. Since convergence is only concerned with integer indices of sequences, a_n must diverge.

Exercise 9. (5 pts) Give an examples of two sequences (a_n) and (b_n) such that (a_n) and (b_n) don't converge, but $(a_n + b_n)$ converge.

Solution: From Exercise 8, we know that the sequence $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$ diverges. We know that sequence αa_n converges iff a_n converges for $\alpha \in \mathbb{R}$. By the contrapositive, since a_n diverges, $(b_n)_{n=1}^{\infty} = (-a_n)_{n=1}^{\infty}$ also diverges. We then have:

$$(a_n + b_n)_{n=1}^{\infty} = (a_n + (-a_n))_{n=1}^{\infty}$$

$$(a_n + b_n)_{n=1}^{\infty} = (0)_{n=1}^{\infty}$$

As this sequence is a constant at 0, $(a_n + b_n)$ clearly converges.

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

- a) $\frac{n^2+4n}{n^2-5}$.
- b) $\frac{n}{n^2-3}$.
- c) $\frac{\cos n}{n}$. [You can use what you know on the cosine function.]
- d) $(\sqrt{4-\frac{1}{n}}-2)n$.

Solution: For these problems, call the sequence f_n

- a) Note that $f_n = \frac{1+(4/n)}{1-(5/n^2)}$. Now define sequences $a_n = 1 + \frac{4}{n}$ and $b_n = 1 \frac{5}{n^2}$. Since sequence $\frac{1}{n}$ converges to 0, $\frac{4}{n}$ converges to 0 and $a_n \to 1$. Similarly, since sequence $\frac{1}{n^2}$ converges to 0, $\frac{-5}{n^2}$ converges to 0 and $b_n \to 1$. We know that for $a_n \to A$ and $b_n \to B$, $\frac{a_n}{b_n} \to \frac{A}{B}$. Therefore $f_n \to 1$.
- **b)** Note that $f_n = \frac{1/n}{1-(3/n^2)}$. Now define sequences $a_n = \frac{1}{n}$ and $b_n = 1 \frac{3}{n^2}$. Similar to part a, we can see that $a_n \to 0$ and $b_n \to 1$. Therefore $f_n \to \frac{0}{1} = 0$.
- c) We will prove that the limit is 0. To do this, we will prove that for arbitrary ε , there exists $N \in \mathbb{N}$ such that $|f_n| < \varepsilon$ for all $n \ge N$. Note that since $-1 \le \cos(n) \le 1$, $|\cos(n)| \le 1$ and $\left|\frac{\cos(n)}{n}\right| \le \frac{1}{n}$. Therefore: $|f_n| = \left|\frac{\cos(n)}{n}\right|$ $|f_n| \le \frac{1}{n}$

$$|f_n| = \left| \frac{\cos(n)}{n} \right|$$

$$|f_n| < \frac{1}{n}$$

By the Archimedean Principle, we know that there exists N such that $1 < N\varepsilon$. Then $\frac{1}{n} < \varepsilon$

for all $n \geq N$. We then have that for all $n \geq N$:

$$\begin{aligned} |f_n| &\leq \frac{1}{n} \\ |f_n| &< \varepsilon \end{aligned}$$

$$|f_n| < \varepsilon$$

This proves that the limit of f_n is 0.

d) Note that for $f_n = \left(\sqrt{4 - \frac{1}{n}} - 2\right)n$:

$$f_n = \frac{\sqrt{4 - \frac{1}{n}} - 2}{\frac{1}{n}}$$

$$f_n = \frac{\sqrt{4 - \frac{1}{n}} - 2}{\frac{1}{n}}$$

$$f_n = \frac{\sqrt{4 - \frac{1}{n}} - 2}{\frac{1}{n}} \left(\frac{\sqrt{4 - \frac{1}{n}} + 2}{\sqrt{4 - \frac{1}{n}} + 2}\right) \left(\frac{n}{n}\right)$$

$$f_n = \frac{(4 - \frac{1}{n} - 4)n}{\sqrt{4 - \frac{1}{n}} + 2}$$

$$f_n = \frac{-1}{\sqrt{4 - \frac{1}{n}} + 2}$$

$$f_n = \frac{(4-\frac{1}{n}-4)n}{\sqrt{4-\frac{1}{n}+2}}$$

$$f_n = \frac{\sqrt{4 - \frac{1}{n} + 2}}{\sqrt{4 - \frac{1}{n} + 2}}$$

Now consider the sequence $a_n = \sqrt{4 - \frac{1}{n}} + 2$. Since sequence $\frac{1}{n}$ converges to 0, $4 - \frac{1}{n}$ converges to 4. From Exercise 4, the sequence $\sqrt{4-\frac{1}{n}}$ converges to $\sqrt{4}=2$, and thus $\sqrt{4-\frac{1}{n}}+2$ converges to 4. Since the denominator of f_n converges to 4, $f_n \to \frac{-1}{4}$