Homological algebra, cultinating in a proof of the M-V exact sequence

Def: A cochain complex (C, d) is a sequence of vector spaces C, i = Z along with maps di; Ci -> Ci+1

-> ---- di-1 ci di ci+1 di+1 ci+2 di+2

Substying di+1 · di = 0 for ever i. (*)

The cohomology of a cochain complex, H°(C,d) is the servere of vector Spaces $H^{k}(C,d) := \frac{\ker d_{k}}{\ln d_{k-1}} \quad \left(\text{note in } d_{k-1} \leq \ker d_{k} \leq C \right)$ for every k by (*)

Exaple: M narifold, its de Rhan cochain capter is:

C':= SL'(M) di := d exteror differental, & H*(10°(M), d) =: H* (M).

Def: A co-chain mp for (cide) -> (Di, dD) is a collection of linear maps fici ci > Di for each i making this diagram commute Vi:

ci fi Di i.e., do f = fitode Tac a Tab City -> Ditl

A cochain map induces a map $f: H^k(C^{\bullet}) \to H^k(D^{\bullet})_{\mathcal{A}}$ sometrus we'll call this map [f] or f*

(exercise; very this).

e-ye, a smooth mp \$: M > N induces a co-chain map

•
$\phi^*: (\Omega^*(N), d) \rightarrow (\Omega^*(M), d)$, & here an aduced map
ϕ^* : $H^k(N) \rightarrow H^k(N)$ for every k .
Des: A short exact sequence (SES) of co-chain complexes, written
$0 \to C^{\bullet} \xrightarrow{\phi} \mathcal{D} \xrightarrow{\psi} E^{\bullet} \to 0.$
is a pair of cochain maps $\phi:(C,d) \rightarrow (D,d_D), \ \psi:(D,d_D) \rightarrow (E,d_E)$
s.t. for every i, $O \rightarrow C^i \xrightarrow{\phi^i} D^i \xrightarrow{\psi^i} E^i \rightarrow O$ is a short exact siquence.
(=> \$\psi injecture, \$\psi' sujecture, and in \$\psi' = ker \$\psi' induces on
(=> ϕ^i injective, ψ^i sujective, and in $\phi^i = \ker \psi^i$ i.e., ψ^i induces on 750. $D^i_{im}(\phi^i) \stackrel{\cong}{=} \inf \psi^i = E^i$)
NL NL
key example:
•
Prop: Say M = UV where U, V open. Then the following is a
SES of chair complexes:
$(1) O \longrightarrow \Omega^{\bullet}(M) \xrightarrow{i^{*}} \Omega^{\bullet}(M) \oplus \Omega^{\bullet}(V) \xrightarrow{i_{u}^{-}i_{v}^{*}} \Omega^{\bullet}(u_{n}V) \rightarrow O$
D. (MIN)
where i: UIV -> M. moduled by UC>M, VC>M
·iu: Unv col
· iv: Unvery.
V I U

Pf sketch:

who wly.

(i) straightformed verification that ix: 12k(M) -> 1k(u) & 1k(V) is injective. (uly? exercise)

(ii) Prove in -in is surecture. Let $\omega \in \Omega^k(u \cap V)$ Fix a partition of unity I pu, pv3 suborduck + Eu, V) (so gu + fr = 1), Look at Syluw & Dk (U) (extend by O attick UnV) & -Sulwe sik (V) (extend by O other unv). Claim is that (in-in) (pluw, pull w) is exactly w. (check). (iii) Exactness at Si(U) @ Si(V), r.e., that $\ker(i_{v}^{*}-i_{v}^{*})=i_{N}(i_{v}^{*}).$ (straightforms exercise). Prop: (SES => LES) Given a SES of chain conplexes $0 \rightarrow 0^{\circ} \rightarrow 0^{\circ} \rightarrow 0^{\circ} \rightarrow 0^{\circ}$, there is always an induced LES of culturally grops: 8 (c) \$\frac{\phi}{\phi} H'(D) \frac{\phi}{\phi} H'(E))

Cor: Cof above two Props): Proof of the M-V LES:

Given M=UVV open cover, the SES (1) induces (by above Prop.)

the M-V LES:

团

Shetch of proof of Prop SES => LES:

First, we need to construct all the mils in cohomological LES: \$4, 4* defined, what's S?

I T with $\Psi_{k}(z) = e$ by sweethers of Ψ_{k} (not unique!)

Take do (t) & Dk+1.

By co-chain map condition, 4kH(dk(t)) = dic(4k(t)) = dk(e) = 0.

=)
$$\exists$$
!, element X with $\phi_{k+1}(X) = d_k(z)$
2 conque by myechnely of ϕ_{k+1} .

want:
$$K$$
 is closed:

Note $\phi_{k+2}(d^C X) = d^D(\phi_{k+1} X) = d^D(d^D T)$

Note $\phi_{k+2}(d^C X) = d^D(\phi_{k+1} X) = d^D(d^D T)$

Since ϕ_{k+2} is injective ϕ_{k+2} .

Def:
$$S([e]) = [x]$$
 $H^{k}(D^{0}) = [x]$
 $H^{k+1}(C^{0})$

Need to check this is well-defined? (exercise).

For a given e,
$$K$$
 depends on a choice of $E \vdash_{\psi_{lk}} e$.

Claim: if choose a different E' , to get K' then

 $[X] = [K']$, i.e, $K' = K + d$ (something).

· Given a different representative e' of [e] so e'= e+d(vonething),
need to check autome is 'automologies' to K meaning it differes
from K by sweetling exact. (exercise)

Next time: some words about proof of exactness.