Информациска безбедност

Предавање 2: **Криптографија – прв дел**

Проф. д-р Весна Димитрова

Вовед

Проблем:

 Како да се спречи некој што неовластено ќе ја преземе пораката да ја открие нејзината содржина?

Решение:

 Тоа се прави со "шифрирање" на пораката, така што пристап до оригиналната содржина може да има само оној кому таа му е наменета.

Елементи на криптологија

- Криптологија "наука за скриен збор"
- Криптологија е научна област која поврзува два дела:
 - Криптографија
 - Криптоанализа

Елементи на криптологија

- Криптографијата е научна област која се занимава со наоѓање и креирање на методи за шифрирање на податоци со цел да обезбеди нивната тајност и веродостојност.
- Криптоанализата, како научна област, се состои од методи за откривање на шифрата, т.е. се занимава со дешифрирање на шифрираните податоци.

- Ознаки:
- Со М (анг. message) ја означуваме оригиналната порака која сакаме да ја шифрираме и чиј текст е разбирлив за секого.
- Со С (анг. cipher) ќе ја означиме шифрираната порака која што претставува неразбирлив текст за оние за кои што не е наменета.

- Функцијата која што ја преобразува
 оригиналната порака М во шифрирана порака С
 се нарекува функција за шифрирање и се
 означува со Е (анг. encryption function).
- Функцијата што ја враќа пораката С во нејзината оригинална форма М се вика функција за дешифрирање и се означува со D (анг. decryption function).
 - Оваа функција е инверзна на функцијата за шифрирање.

- Постапката со која од некоја почетна состојба се доаѓа до решение на некој проблем се нарекува алгоритам.
 - Алгоритам за шифрирање на оригиналната порака (encryption algorithm).
 - Алгоритам за дешифрирање на шифрираната (decryption algorithm).

- Во текот на извршување на функциите за шифрирање и дешифрирање, корисниците мора да имаат:
 - единствен таен клуч К (анг. key), доколку се работи за т.н. симетрично шифрирање
 - два различни клуча: еден јавен клуч К₁, и друг таен (или приватен) клуч К₂, доколку се работи за т.н асиметрично шифрирање.

- Успешноста на шифрирањето зависи од јачината на алгоритмот, но често и од должината на клучот.
 - Подолгите клучеви обезбедуваат поголема безбедност, бидејќи на напаѓачот ќе му треба многу повеќе време да ги испита сите можни комбинации на клучеви за да го открие вистинскиот.
 - Од друга страна, за побрза комуникација, се бара клучевите да бидат што е можно покуси.

Историски примери

- Шифрирање
- Нека оригиналната порака е
 M = "Prezakazan sostanok na drzaven vrv".
- Нека за функција Е го користиме познатато Цезарово шифрирање:
 - секоја буква од оригиналната порака да се замени циклично со третата следна буква од абецедата.

A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C

Табела 1. Цезарово шифрирање

- Во табелата првиот ред ја претставува оригиналната буква, а вториот ред шифрираната буква.
- Ако се занемарат празните места, шифрираната порака би била
 - **C** = "Suhcdndcdqvrvwdqrnqdgucdyhyuy".

- Дешифрирање
- Да ја искористиме шифрираната порака
 C = "Suhcdndcdqvrvwdqrnqdgucdyhyuy".
- За функција за дешифрирање треба да го земеме Цезаровото дешифрирање:
 - секоја буква од шифрираната порака да се замени циклично со третата претходна буква од абецедата.

A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W

Табела 2. Цезарово дешифрирање

- Во табелата првиот ред ја претставува шифрираната буква, а вториот ред дешифрираната буква.
- Тогаш оригиналната порака (повторно со занемарени празни места) би била
 M= "Prezakazansostanoknadrzavenvrv".

- Разбивањето на Цезаровата шифра е многу лесно.
 - Тоа може да се направи со испитување на сите можни поместувања.
- Пример. Да се дешифрира пораката TGVGJTKZK, ако се знае дека станува збор за Цезаровата шифра.

- Не се знае колку Цезаровата шифра била безбедна во тоа време.
 - Веројатно е дека била многу безбедна, зашто многу од цезаровите непријатели не биле писмени, а оние што биле, не ни помислувале дека станува збор за шифра.
- Цезаровата шифра, како и некои други шифри коишто се појавиле подоцна, биле разбиени дури во 9 век, за време на златното доба на арапската цивилизација.

Историја на криптологијата

- Најстариот познат текст кој содржи една од основните елементи на криптографијата намерна модификација на текст, потекнува од пред 4000 години
 - хиероглифски запис на гробот на благородникот КНNUMHOTEP II.
 - о имала цел да го импресионира читателот.
- Кај подоцнежните записи се среќава и вториот елемент на криптографијата – тајноста
 - најчесто со цел да се зголеми мистеријата
 - да се прикаже магичната моќ на некои религиозни текстови.

Историја на криптологијата

- Литературата била достапна само на мал број луѓе, па поради ова не постои појава на криптографија.
- Постоеле само некои облици на стеганографија,
 - умешност на криење на пораката, така да никој не знае за нејзиното постоење
- Кај криптографијата тајна е содржината на пораката, а не нејзиното постоење.

Историја на криптологијата

Слика 1. SCYTALE

Симетрична криптографија

Криптографија со таен клуч

- вклучува користење на таен клуч познат само за учесниците во тајната комуникација
- генерално брзи и погодни за обработка на голем проток на податоци,
- о ранливи се.
- вообичаено се мешаат со алгоритми со јавни клучеви за да се добие добра комбинација од сигурност и брзина.

Основни поими

- Се делат на две категории и тоа:
 - проточни шифрувачи (stream cipher)
 - блоковски шифрувачи (block cipher)

Проточни шифрувачи

- Оригиналниот текст се криптира еднаш и притоа се врши трансформација на секој влезен бит или бајт
- Проточните алгоритми се конструирани врз принципот на единствениот теоретски докажан криптосистем кој не може да се разбие, а тоа е One-time-pad.
- Овие алгоритми користат клуч со големина од 128 бита и повеќе

One-time pad

- М-оригиналната порака
 - бинарен стринг
- К-клучот
 - бинарен стринг со должина колку што е оригиналната порака
 - о се користи само еднаш
- С=М⊕К шифрираниот текст
 - о шифрирање бит по бит
- М=С⊕К оригиналната порака
 - о добиена со дешифрирање

One-time pad

- Зошто клучот се користи само еднаш?
- Нека имаме две пораки M₁ и M₂
- Шифрираните пораки со ист клуч К се:
- $C_1=M_1\oplus K, C_2=M_2\oplus K$
- Недостаток:
- $C_1 \oplus C_2 = M_1 \oplus K \oplus M_2 \oplus K = M_1 \oplus M_2$

Генератори на клучеви

LFSR (Linear Feedback Shift Register)

 Може лесно да се имплементира хардверски и анализира математички.

LFSR

- Означеното предефинирано множество од келии може да се репрезентира како полином по модул 2 кој се нарекува карактеристичен полином или feedback полином.
- На примерот множеството е {11,13,14,16}
 па тогаш LFSR полиномот е: x¹¹ + x¹³ + x¹⁴ + x¹⁶ + 1.

LFSR

Нелинеарно комбинирање функции

- За да се подобри сигурноста на LFSR се оди кон нелинеарно комбинирање на функции.
- Еден начин е да се употребат паралелно *п LFSR* генератори и нивните излези да се
 комбинираат користејќи нелинеарна Булова
 функција *F* со *n* битни влеза, за да се добие
 комбинирачки генератор на псевдослучајни
 низи од битови.

LFSRs

*A*5/1

A5/1

- е широко употребуваниот симетричен, проточен алгоритам.
- Се употребува во мобилните уреди за доверливост
- Користи три LFSR X (19 бита), Y(22 бита), Z(23 бита) и 64 битен клуч К.
- Лесен за имлементација во хардвер.
- На почетокот проточните шифрувачи биле лидери во симетричната криптографија.
- Денес таа улога ја имаат блок шифрувачите.

RC4

- RC-4 (ARC4 или ARCFOUR)
 - е најшироко употребуваниот симетричен, проточен алгоритам.
 - Се употребува во многу популарни протоколи како што се
 - SSL (Secure Sockets Layer) за да се заштити мрежниот сообраќај и
 - WEP (Wireless Encoding Protocol) за да се заштити бежичната мрежа.
 - Генерира псевдослучајни протоци од битови (проточен клуч)
 - Оптимизиран за софтверска имплементација.

Искористенот на проточните алгоритми

- Безбедна безжична (wireless) комуникација.
- Во воената криптографија

Блоковски шифрувачи

- Трансформираат блок со фиксна големина од оригиналната порака во ист таков блок на шифрираната порака.
- Блоковите на кои се дели пораката обично се со големина:
 - 64, 128, 256, ... итн бита.
- Покрај стандардните постојат и итеративни блок шифрувачи (постапката на енкрипција на блок од оригиналната порака трае во повеќе циклуси).

Блоковски шифрувачи

DES

- Кратенка е од Data Encryption Algorithm
- Развиен е од страна на фирмата IBM со поддршка од NBS (US National Bureau of Standards)
- Публикуван е во 1977 година како US FIPS 46 стандард.
- Во дизајнирањето на овој алгоритам, се содржани два многу важни принципи:
 - о конфузија и дифузија.
- Големината на блоковите е 64 бита или 8 бајти колку што е и големината на тајниот клуч за криптирање .

- DES алгоритамот се состои од 16 рунди или циклуси, каде секој циклус е блок добиен со субституција и пермутација на текстот од оригиналната порака.
- Влезната порака се дели на блокови од по 64 бита и поминувајќи низ повеќе серии на комплексни операции дава шифриран текст со исто толкава големина.

- DES алгоритамот е Феистелов шифрувач со 16 рунди
- Големината на блокот е 64
- Користи 56 битен клуч
- Секоја рунда користи 48 битен подклуч (земени од 56 битниот клуч)

- Чекор 1. блокот од 64-бита се дели на два дела по 32-бита
- Чекор 2. на десниот дел се применува Feistel - овата функција
- Чекор 3. на излезот од чекор 2 и левиот дел се применува XOR
- Како влезови во наредниот циклус се: излезот од чекор 3 и десниот 32-битен дел само што сега местата им се заменати.

- Feistel овата функција се состои од четири дела и тоа:
 - о проширување,
 - о мешање на битови,
 - о субституција и
 - о пермутација.

Феистелов шифрувач

Феистелов шифрувач

-Структура на DES функцијата F

Подклучевите се добиваат од главниот клуч со користење на алгоритамот за распределба на клучеви (key schedule)

- Advanced Encryption Standard -RijnDael
- Се користат 3 големини на блокот: 128, 192 или 256 бита
- Се користат 3 големини за должина на клучот: 128, 192 или 256 бита
- Бројот на рунди е 10 до 14 во зависност од должината на клучот
- Секоја рунда се состои од 4 функции

- Advanced Encryption Standard -RijnDael
- AES оперира над поле од 4х4 бајти, наречено матрица на состојба.
- За енкрипција секоја рунда на AES со исклучок на последната се состои од четири дела и тоа:
 - AddRoundKey
 - SubBytes
 - ShiftRows
 - MixColumns

AddRoundKey

- SubBytes
- ShiftRows

MixColumns

Модови на работа

- Постојат неколку модови на работа:
 - ECB Electronic Code Book
 - CBC Cipher Block Chaining
 - OFB Output FeedBack
 - CFB Cipher FeedBack

ECB – Electronic Code Book

CBC - Cipher Block Chaining

OFB – Output FeedBack

CFB – Cipher FeedBack

