Prettify RMD

Thomas Gaertner

February 7, 2023

Contents

1 R Markdown General Introduction						
2	Exa	Example Analysis				
	2.1	Data preprocessing	1			
	2.2	Some insights from the data set	2			
	2.3	Linear Model	:			

1 R Markdown General Introduction

- R Markdown cheat sheet
- Guide for PDF
- Guide for HTML

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document.

2 Example Analysis

In this example, we investigate a linear regression model to predict the Sepal.Length in the iris data set.

2.1 Data preprocessing

First, we have to load the data. Furthermore, we are transforming the variables into our target format.

```
# Loading the data
data(iris)
dat <- iris</pre>
```

As the data preprocessing might not be not so important for the interpretation, we can exclude them from the report with include=FALSE.

2.2 Some insights from the data set

First, we investigate, how many species we have. Below, you can see a table with species and their counts.

setosa versicolor virginica ## 50 50 50

But of course, we can create a table 1 with e.g. the qwraps2 package:

	setosa ($N = 50$)	versicolor ($N = 50$)	virginica ($N = 50$)
Sepal Length			
Min	4.3	4.9	4.9
Mean (SD)	5.01 ± 0.35	5.94 ± 0.52	6.59 ± 0.64
Max	5.8	7	7.9
Sepal Width			
Min	2.3	2	2.2
Mean (SD)	3.43 ± 0.38	2.77 ± 0.31	2.97 ± 0.32
Max	4.4	3.4	3.8

If you want to print a data frame, you can use knitr::kable, which will reformat the table nicely in the report.

Table 2: Table with Mean Sepal Length among species

	Mean (Sepal.Length)
setosa	5.006
versicolor	5.936
virginica	6.588

Great, it seems that the sample mean is different between the groups. ¹

In the next step, we are looking into the density plots. We will create them with ggplot2.

 $^{^{1}\}mathrm{This}$ is not a formal test. For comparing the mean, a t-test should be applied.

Cool, we have included a nice graph.

2.3 Linear Model

In the next step, we will fit a linear model, which is estimating the Sepal.Length. As variables, we include the species, the petal values and the Sepal.Width. We will also print the summary. We assume for the analysis a significance level of $\alpha=0.05$

```
fit <- lm(Sepal.Length ~ Species + Sepal.Width, data = dat)
summary(fit)</pre>
```

```
##
## Call:
## lm(formula = Sepal.Length ~ Species + Sepal.Width, data = dat)
##
## Residuals:
##
        Min
                       Median
                                             Max
                  1Q
                                     ЗQ
   -1.30711 -0.25713 -0.05325
                                0.19542
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       2.2514
                                   0.3698
                                            6.089 9.57e-09 ***
                                   0.1121
                                          13.012 < 2e-16 ***
## Speciesversicolor
                       1.4587
## Speciesvirginica
                       1.9468
                                   0.1000
                                           19.465 < 2e-16 ***
                                            7.557 4.19e-12 ***
## Sepal.Width
                       0.8036
                                   0.1063
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.438 on 146 degrees of freedom
## Multiple R-squared: 0.7259, Adjusted R-squared: 0.7203
## F-statistic: 128.9 on 3 and 146 DF, p-value: < 2.2e-16</pre>
```

We can also print out a single output from our summary, if we want. We can call for instance in the summary some values. For that, we are using print and paste (for string concatenation).

[1] "R-Squared: 0.726"

And again, we are including a nice table of the coefficients with knitr::kable.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.2513932	0.3697543	6.088890	0
Speciesversicolor	1.4587431	0.1121079	13.011954	0
Speciesvirginica	1.9468166	0.1000150	19.465255	0
Sepal.Width	0.8035609	0.1063390	7.556598	0

Table 3: Coefficients table from fit.

Findings (some example interpretations)

- 1) The model has a p-value of < 2.2e-16, which is less than our significance level of $\alpha = 0.05$.
- 2) The R-squared values is 0.726, so $\sim 73\%$ of the variance of sepal length can be explained by our model.
- 3) All coefficients has a p-value $< \alpha$ and are significant.
- 4) The sepal length of species "versicolor" are expected to be 1.45 larger than the species setosa.
- 5) With a sepal width increase of 1, we can expect an increase of 0.8 for the sepal length.