2020

MATHEMATICS - HONOURS

Paper: CC-10

Internal Assessment

Full Marks:10

The figures in the margin indicate full marks .

Candidates are required to give their answers in their own words as far as practicable.

practicable.				
Choose the correct alternative.				5×2
1.Linear mom a)mv²	•		iss m and velocity <i>v</i> is given d)m <i>v</i>	by
2. 1 newton is a)10⁵dyne	•	c)10 ⁻³ dyne	d)100dyne	
3.The time pe $a)\frac{2\pi}{\sqrt{\mu}}a^{3/2}$		net is given b c)2μ <i>α</i>		
4."A bullet shot from a gun"- the force acting here isa) Gravitational forceb) Impulsive force				
c)Centripetal force d)			trifugal force	
			e direction of motion of one e of impact then this is calle	
a) direct impact b)line of impact c)oblique impact d)None				

2020

MATHEMATICS - HONOURS

Paper: CC-10 THEORY EXAMINATION

Full Marks: 32

The figures in the margin indicate full marks . Candidates are required to give their answers in their own words as far as practicable.

Answer any four

- **1.** A particle describes the curve $r^n = a^n \cos n\theta$ under a central force to a pole. Find the law of force.
- **2.** A particle of mass m moves in a straight line under an attractive force $m\mu x$ towards a fixed point on the line when at a distance x from it. If it be projected with a velocity V towards the centre of force from an initial distance a from it, then prove that it reaches the centre of force after a time $\frac{1}{\sqrt{\mu}} \tan^{-1} \frac{a\sqrt{\mu}}{V}$.
- **3.** A particle performing a S.H.M. of period T about a centre O passes through a point P with a velocity v in the direction \overrightarrow{OP} . If OP be equal to x and the particle returns to P in time t then show that $t = \frac{T}{\pi} \tan^{-1} \frac{vT}{2\pi x}$.
- **4.** A gun of mass M fires a shell of mass m horizontally and the energy of explosion is such as would be sufficient to project the shell vertically to a height h. Show that the velocity of the recoil of the gun is $\left\{\frac{2m^2gh}{M(m+M)}\right\}^{\frac{1}{2}}$.
- **5.** An engine draws a train along a level line starting from rest. If the pull of the engine be constant till the steam is shut off and the resistant F be constant throughout the journey, then prove that greatest rate of working is $\frac{2lF^2t}{Ft^2-2Ml}$, where M is the mass of the train, l the length of the journey and t the time occupied by it.