第3讲 通算

多知识结构

A 为方阵且r(A)=1 — $A^n = [tr(A)]^{n-1}A$ ①若A=B+C, BC=CB, 则 $A^{n} = B^{n} + nB^{n-1}C + \frac{n(n-1)}{2!}B^{n-2}C^{2} + \cdots + C^{n}$ ②在"①"的条件下,若B=E,则 $A^n=E+nC+\frac{n(n-1)}{2!}C^2+\cdots+C^n$ 求 A^n ③在"①"的条件下,若BC = CB = O,则 $A^n = B^n + C^n$ 用初等矩阵知识求 $P_1'''AP_2''$ 一 若 P_1 , P_2 均为初等矩阵, m, n 为正整数, 则 $P_1'''AP_2''$ 表示先对 A作了与 P_1 相同的初等行变换,且重复m次;再对 $P_1^m A$ 作 了与P,相同的初等列变换,且重复n次 用相似理论求 A^n ①若 $A \sim B$,则 $A = PBP^{-1}$, $A^n = PB^nP^{-1}$ ② Z = A = A Find $A = PBP^{-1}$ ① $AA^* = A^*A = |A|E$ $2|A^*| = |A|^{n-1}$ ③ $(A^T)^* = (A^*)^T$ $\textcircled{4} (kA)^* = k^{n-1}A^*, (-A)^* = (-1)^{n-1}A^*$ 关于 A*, A-1 与初等矩阵 A^* 公式 $\bigcirc A^* = |A|A^{-1}$ 秩

微信公众号:神灯考研

客服微信: KYFT104

微信公众号:神灯考研

客服微信: KYFT104

定义 — 用几条横线和纵线把一个矩阵分成若干小块,每一小块称为原矩阵的子块.把 子块看作原矩阵的一个元素,就得到了分块矩阵

①转置:
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{T} = \begin{bmatrix} A^{T} & C^{T} \\ B^{T} & D^{T} \end{bmatrix}$$

②加法:
$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} + \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1 + B_1 & A_2 + B_2 \\ A_3 + B_3 & A_4 + B_4 \end{bmatrix}$$

③数乘:
$$k \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} kA & kB \\ kC & kD \end{bmatrix}$$

④乘法:
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X & Y \\ Z & W \end{bmatrix} = \begin{bmatrix} AX + BZ & AY + BW \\ CX + DZ & CY + DW \end{bmatrix}$$

⑤若
$$A$$
, B 分别为 m , n 阶方阵, 则分块对角矩阵的幂为 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}^k = \begin{bmatrix} A^k & O \\ O & B^k \end{bmatrix}$

⑥设B是r阶可逆矩阵,C是s阶可逆矩阵,则以下矩阵可逆,且

$$\begin{bmatrix} \boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{D} & \boldsymbol{C} \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{B}^{-1} & \boldsymbol{O} \\ -\boldsymbol{C}^{-1}\boldsymbol{D}\boldsymbol{B}^{-1} & \boldsymbol{C}^{-1} \end{bmatrix}, \begin{bmatrix} \boldsymbol{B} & \boldsymbol{D} \\ \boldsymbol{O} & \boldsymbol{C} \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{B}^{-1} & -\boldsymbol{B}^{-1}\boldsymbol{D}\boldsymbol{C}^{-1} \\ \boldsymbol{O} & \boldsymbol{C}^{-1} \end{bmatrix},$$

$$\begin{bmatrix} \boldsymbol{O} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix}^{-1} = \begin{bmatrix} -\boldsymbol{C}^{-1}\boldsymbol{D}\boldsymbol{B}^{-1} & \boldsymbol{C}^{-1} \\ \boldsymbol{B}^{-1} & \boldsymbol{O} \end{bmatrix}, \begin{bmatrix} \boldsymbol{D} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{O} \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{O} & \boldsymbol{C}^{-1} \\ \boldsymbol{B}^{-1} & -\boldsymbol{B}^{-1}\boldsymbol{D}\boldsymbol{C}^{-1} \end{bmatrix}$$

⑦主对角线分块矩阵
$$A=\begin{bmatrix}A_1\\&A_2\\&&\ddots\\&&A_s\end{bmatrix}$$
,若 A_i $(i=1,\ 2,\ \cdots,\ s)$ 均

可逆,则
$$A$$
可逆,且 $A^{-1}=\begin{bmatrix}A_1^{-1}&&&\\&A_2^{-1}&&\\&&\ddots&\\&&&A_s^{-1}\end{bmatrix}$; 副对角线分块矩阵

$$A = \begin{bmatrix} & & A_1 \\ & & A_2 \end{bmatrix}$$
, 若 A_i ($i = 1, 2, \dots, s$) 均可逆, 则 A 可逆, A_s

分块矩阵

运算

由 $m \times n$ 个数 a_{ij} ($i=1, 2, \dots, m; j=1, 2, \dots, n$)排成的m行n列的矩形表格

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

称为一个 $m \times n$ 矩阵,简记为A或 $(a_{ij})_{m \times n}$ 当m = n时,称A为n阶方阵.

1. A 为方阵且 r (A) =1

若
$$a_i$$
, b_i $(i=1, 2, 3)$ 不全为 0 , $A = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} b_1, b_2, b_3 \end{bmatrix} \xrightarrow{icl} \alpha \beta^T$, 则 $r(A) = 1$,
$$A^n = (\alpha \beta^T)(\alpha \beta^T) \cdots (\alpha \beta^T) = \alpha (\beta^T \alpha)(\beta^T \alpha) \cdots (\beta^T \alpha) \beta^T$$

$$= \left(\sum_{i=1}^{3} a_i b_i\right)^{n-1} A = \left[\operatorname{tr}(A)\right]^{n-1} A.$$

对于m(m>3)阶方阵,若r(A)=1,同样有 $A^n=[tr(A)]^{n-1}A$.

例 3.1 设
$$A = \begin{bmatrix} 2 & 6 & -4 \\ -1 & -3 & 2 \\ 3 & 9 & -6 \end{bmatrix}$$
, 则 $A^{10} =$ ______.

【解】应填
$$(-7)^9$$
 $\begin{bmatrix} 2 & 6 & -4 \\ -1 & -3 & 2 \\ 3 & 9 & -6 \end{bmatrix}$. ie 意这种写法,第一列元素是原矩阵各行的比例,且使得其为恒等变形

$$A^{n} = [\operatorname{tr}(A)]^{n-1}A$$

$$A^{10} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} [1, 3, -2] \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} [1, 3, -2] \cdots \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} [1, 3, -2] = (-7)^{9}A = (-7)^{9}A = (-7)^{9}\begin{bmatrix} 2 & 6 & -4 \\ -1 & -3 & 2 \\ 3 & 9 & -6 \end{bmatrix}.$$

2. 试算 A^2 (或 A^3), 找规律

(1) 若 $A^2 = kA$,则 $A^n = k^{n-1}A$.(本讲中"一"的"1"是这里的特殊情形).

亦有可能试算 A^3 , 如 $A^3 = kA$, 这些次数不会太高.

例 3.2 设
$$A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$$
, 则 $A^{11} =$ ______.

试算 A^2 , 找规律.

$$A^{2} = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E,$$

微信公众号 [神灯考研]

$$A^{11} = (A^2)^5 A = E^5 A = A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}.$$

则

7七字线性代数9的性微信公众号【神灯考研】,获取更多考研资源!

【注】(1)对于
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, 若 $a+d=0$, 且 $a^2+bc=1$, 则 $A^2=E$.

(2) 在第8讲会知道,满足 $A^2 = E$ 的实矩阵A可相似对角化.

後
$$A = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
,则 $A^9 =$ ______.

【解】应填
$$\begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

试算 A^2 , 找规律.

$$A^{2} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}^{2}$$

$$= \frac{1}{9} \begin{bmatrix} 6 & -3 & -3 \\ -3 & 6 & -3 \\ -3 & -3 & 6 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix} = A,$$

故
$$A^9 = (A^2)^4 A = A^4 A = (A^2)^2 A = A^2 A = A^2 = A = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
.

【注】在第8讲会知道,满足 $A^2=A$ 的实矩阵A可相似对角化.

例 3.4 设
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, 则 $A^{13} =$ ______.

微信公众号: 神灯考研

客服微信: KYFT104

试算
$$A^2$$
,找规律 . 由于 $A^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$,则 $A^4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E$,故

$$A^{13} = (A^4)^3 A = E^3 A = A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

3. A 一 B+C

若A=B+C, BC=CB, 则

$$A^{n} = (B+C)^{n} = B^{n} + nB^{n-1}C + \frac{n(n-1)}{2!}B^{n-2}C^{2} + \cdots + C^{n}.$$

(1) 若
$$B=E$$
, 则 $A^n=E+nC+\frac{n(n-1)}{2!}C^2+\cdots+C^n$.

(2) 若
$$BC = CB = 0$$
, 则 $A^n = B^n + C^n$.

例 3.5 设
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, 则 $A^{10} =$ ______.

记
$$\mathbf{A} = \mathbf{E} + \mathbf{B}$$
, 其中 $\mathbf{B} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{B}^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{B}^3 = \mathbf{O}$, 则

$$A^{10} = (E + B)^{10} = E^{10} + 10E^9B + \frac{10 \times 9}{2}E^8B^2$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 10 & -10 \\ 0 & 0 & 10 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 45 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 10 & 35 \\ 0 & 1 & 10 \\ 0 & 0 & 1 \end{bmatrix}.$$

= 1 10 35 0 1 10 . 考研人的精神家园

【注】由例 8.6 知,A 不可相似对角化,故不能用 $A'' = PA''P^{-1}$ 求 A''.

4. 用初等矩阵知识求P"AP"

若 P_1 , P_2 均为初等矩阵,m, n为正整数,则 $P_1^mAP_2^n$ 表示先对A作了与 P_1 相同的初等行变换,且 重复m次;再对 $P_1^m A$ 作了与 P_2 相同的初等列变换,且重复n次.

$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^3 \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^5 = \underline{\qquad}.$$

 $iction A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $D B^3 A$ 是将 A 的第 1 行的 -1 倍加到第 2 行,重复 3 次,

故 $\mathbf{B}^{3}\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -4 & -3 \end{bmatrix}$, $\mathbf{B}^{3}\mathbf{A}\mathbf{C}^{5}$ 是将 $\mathbf{B}^{3}\mathbf{A}$ 的第 1 列与第 2 列互换,重复 5 次,即只互换 1 次,故

原式 =
$$\mathbf{B}^3 \mathbf{A} \mathbf{C}^5 = \begin{bmatrix} 2 & 1 \\ -3 & -4 \end{bmatrix}$$
.

5. 用相似理论求 A"

- (1) 若 $A \sim B$, 即 $P^{-1}AP = B$, 则 $A = PBP^{-1}$, $A^n = PB^nP^{-1}$.
- (2) 若 $A \sim \Lambda$, 即 $P^{-1}AP = \Lambda$, 则 $A = P\Lambda P^{-1}$, $A'' = P\Lambda''P^{-1}$.

例 3.7 设
$$A$$
, B , C 均是 3 阶矩阵,且满足 $AB = B^2 - BC$,其中 $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,

则 A⁹⁹=

由 $|B| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$,知 B 可逆,且由 $AB = B^2 - BC = B(B - C)$,得 $A = B(B - C)B^{-1}$,于是

$$A^{99} = B (B-C) B^{-1}B (B-C) B^{-1} \cdots B (B-C) B^{-1} = B (B-C)^{99}B^{-1}$$

又易知

$$A^{99} = B (B-C) B^{-1}B (B-C) B^{-1} \cdots B (B-C) B^{-1} = B (B-C)^{99}B^{-1}.$$

$$B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, B-C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$

$$A^{99} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & \\ & & 0 \end{bmatrix}^{99} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

第二篇关于A*, A⁻¹与初等矩阵

(1) 定义.

$$A^* = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$
, 其中 A_{ij} 是 a_{ij} 的代数余子式, A^* 叫作 A 的伴随矩阵.

(2)公式.

设A为n(n≥2)阶矩阵,其中⑤,⑥,⑦要求A可逆,则

①
$$AA^* = A^*A = |A|E$$
.

$$(2) |A^*| = |A|^{n-1}.$$

$$(\mathbf{A}^{\mathrm{T}})^* = (\mathbf{A}^*)^{\mathrm{T}}.$$

$$\textcircled{4} (kA)^* = k^{n-1}A^*, \quad (-A)^* = (-1)^{n-1}A^*.$$

$$\bigcirc A^* = |A|A^{-1}$$
.

$$(7) (A^*)^{-1} = \frac{1}{|A|} A = (A^{-1})^*.$$

(3)秩(见第4讲).

设 A, B 是 n ($n \ge 2$) 阶 方 阵, |A| = 2, |B| = -3, |A + B| = 5, 则 $|A|B^* + |B|A^*| =$ 例 3.8

7七三线性代数9岁生微信公众号【神灯考研】。获取更多考研资源

解】应填5(-6)"-1.

$$||A|B^* + |B|A^*| = ||A||B|B^{-1} + |A||B|A^{-1}| = |A|^n |B|^n |A^{-1} + B^{-1}|$$

$$= |A|^n |B|^n |A^{-1} (E + AB^{-1})| = |A|^n |B|^n |A^{-1} (B + A) B^{-1}|$$

$$= |A|^n |B|^n |A^{-1}| |A + B||B^{-1}| = |A|^{n-1} |B|^{n-1} |A + B|$$

$$= 2^{n-1} \cdot (-3)^{n-1} \cdot 5 = 5 (-6)^{n-1}.$$

例 3.9 已知 3 阶行列式 |A| 的元素 a_{ij} 均为实数,且 a_{ij} 不全为 0. 若

$$a_{ij} = -A_{ij} (i, j=1, 2, 3)$$
,

其中 A_{ii} 是 a_{ii} 的代数余子式,则 $|A| = _____$.

【解】应填-1.

曲
$$A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$
, $A^* = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$, $a_{ij} = -A_{ij}$, 得 $A^* = -A^{\mathsf{T}}$. 于是 $|A^*| = |-A^{\mathsf{T}}|$, 即 $|A|^{3-1} = |A_{12}|$

 $(-1)^3|A|$, 也即 $|A|^2 = -|A|$, 故

$$|A|(|A|+1)=0.$$
 (*)

由 a_{ij} 不全为 0 知,存在 $a_{kj} \neq 0$,将行列式 |A| 按第 k 行展开,得

$$|A| = a_{k1}A_{k1} + a_{k2}A_{k2} + a_{k3}A_{k3} = -a_{k1}^2 - a_{k2}^2 - a_{k3}^2 < 0,$$

故由(*)式知, |A|=-1.

2. A^{-1}

(1) 定义.

对于方阵A, B, 若AB=E, 则A, B 互为逆矩阵, 且 $A^{-1}=B$, $B^{-1}=A$, AB=BA.

- (2)性质.
- $(1) (A^{-1})^{-1} = A.$
- ② $(AB)^{-1}=B^{-1}A^{-1}$ (穿脱原则).
- (3) $k \neq 0$, $(kA)^{-1} = \frac{1}{k}A^{-1}$.
- $(4)(A^T)^{-1}=(A^{-1})^T.$
- $(5) |A^{-1}| = \frac{1}{|A|}.$
- (3) 求 A-1.
- ①具体型.

(i) $A^{-1} = \frac{1}{|A|} A^*$.

微信公众号【神灯考研】 考研人的精神家园

(ii) $E \rightarrow \overline{M}$ 初等行变换 $E \rightarrow \overline{M}$ $E \rightarrow \overline{M}$ \overline{M} \overline{M}

②抽象型.

- (i) 由题设式子恒等变形, 创造 AB = E, 则 $A^{-1} = B$.
- (ii) 由题设式子恒等变形, 创造 A = BC, 若 B, C 均可逆, 则 $A^{-1} = C^{-1}B^{-1}$.

例 3.10 设 n 阶方阵 A 满足 $A^3-2A^2+3A-4E=0$,则 $(A-E)^{-1}=$

【解】应填 $\frac{1}{2}(A^2-A+2E)$.

由长除法,得

$$A^{2} - A + 2E$$

$$A - E A^{3} - 2A^{2} + 3A - 4E$$

$$A^{3} - A^{2}$$

$$-A^{2} + 3A - 4E$$

$$-A^{2} + A$$

$$2A - 4E$$

$$2A - 2E$$

$$-2E$$

即

$$(A-E)(A^2-A+2E)-2E=0$$
,

所以
$$(A-E)$$
 $\left[\frac{1}{2}(A^2-A+2E)\right]=E$,故

$$(A-E)^{-1} = \frac{1}{2} (A^2-A+2E)$$
.

例 3.11 设 $A = E + \alpha \beta^{T}$, 其中 $\alpha = [a_1, a_2, a_3]^{T}$, $\beta = [b_1, b_2, b_3]^{T}$, 且 $\alpha^{T}\beta = 3$, 则 $A^{-1} =$ _______.

【解】应填
$$\begin{bmatrix} 1 - \frac{1}{4}a_1b_1 & -\frac{1}{4}a_1b_2 & -\frac{1}{4}a_1b_3 \\ -\frac{1}{4}a_2b_1 & 1 - \frac{1}{4}a_2b_2 & -\frac{1}{4}a_2b_3 \\ -\frac{1}{4}a_3b_1 & -\frac{1}{4}a_3b_2 & 1 - \frac{1}{4}a_3b_3 \end{bmatrix}.$$

 \rightarrow 由例3.1亦可直接得到 $B^2 = 3B$.

令 $\mathbf{B} = \alpha \mathbf{\beta}^{\mathrm{T}}$,则 $\mathbf{B}^2 = (\alpha \mathbf{\beta}^{\mathrm{T}}) (\alpha \mathbf{\beta}^{\mathrm{T}}) = \alpha (\mathbf{\beta}^{\mathrm{T}} \alpha) \mathbf{\beta}^{\mathrm{T}} = 3\mathbf{B}$,这里 $\mathbf{\beta}^{\mathrm{T}} \alpha = \alpha^{\mathrm{T}} \mathbf{\beta} = 3$,所以 $(A - E)^2 = 3 (A - E)$,即 $A^2 - 5A + 4E = \mathbf{O}$,故 $A \frac{5E - A}{A} = E$,得

$$\mathbf{A}^{-1} = \frac{1}{4} (5\mathbf{E} - \mathbf{A}) = \mathbf{E} - \frac{1}{4} \mathbf{\alpha} \mathbf{\beta}^{\mathrm{T}} = \begin{bmatrix} 1 - \frac{1}{4} a_1 b_1 & -\frac{1}{4} a_1 b_2 & -\frac{1}{4} a_1 b_3 \\ -\frac{1}{4} a_2 b_1 & 1 - \frac{1}{4} a_2 b_2 & -\frac{1}{4} a_2 b_3 \\ -\frac{1}{4} a_3 b_1 & -\frac{1}{4} a_3 b_2 & 1 - \frac{1}{4} a_3 b_3 \end{bmatrix}.$$

7七字线性代数9进微信公众号【神灯考研】,获取更多考研资源!

例 3.12 设 A 为 n 阶非零矩阵,E 为 n 阶单位矩阵,若 $A^3 = 0$,则().

- (A) E-A 不可逆, E+A 不可逆
- (B) E-A 不可逆, E+A 可逆

(C) E-A 可逆, E+A 可逆

(D) E-A 可逆, E+A 不可逆

【解】应选(C).

法一 因为 $A^3 = 0$,故 $E = E \pm A^3 = (E \pm A)(E \mp A + A^2)$,即分别存在矩阵 $E - A + A^2$ 和 $E + A + A^2$,使得

$$(E+A)(E-A+A^2)=E, (E-A)(E+A+A^2)=E,$$

可知 E-A 与 E+A 都是可逆的,所以应选(C).

法二 设 λ 是 A 的实特征值,由 $A^3 = 0$,得 $\lambda^3 = 0$,故 $\lambda = 0$,所以 A 的实特征值只有 0,于是 E-A 的实特征值只有 1,E+A 的实特征值只有 1,故二者均可逆,应选(C).

【注】法一是利用定义法,法二是说明0不是特征值.

3. 初等矩阵

- (1)定义 $(E_i(k), E_{ij}, E_{ij}(k))$.
- ①初等变换.
- (i)一个非零常数乘矩阵的某一行(列).
- (ii) 互换矩阵中某两行(列)的位置.
- (iii)将矩阵的某一行(列)的 k 倍加到另一行(列).
- 以上三种变换称为矩阵的初等行(列)变换,且分别称为倍乘、互换、倍加初等行(列)变换。
- ②初等矩阵.

由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵.

定义: $E_i(k)$ $(k \neq 0)$ 表示单位矩阵 E 的第 i 行(或第 i 列)乘非零常数 k 所得的初等矩阵,称为**倍乘初等矩阵**.

定义: E_{ij} 表示单位矩阵 E 交换第 i 行与第 j 行(或交换第 i 列与第 j 列)所得的初等矩阵,称为互换初等矩阵。

定义: $E_{ij}(k)$ 表示单位矩阵 E 的第 j 行的 k 倍加到第 i 行(或第 i 列的 k 倍加到第 j 列)所得的初等矩阵,称为**倍加初等矩阵**.

【注】也有教材将 $E_{ij}(k)$ 表示为 E 的第 i 行的 k 倍加到第 j 行,故考研中所有初等变换的描述均用文字描述代替,以避免出现不同教材中不同的提法所带来的不同定义,考生掌握本质即可,不必纠结于此. 考试中为统一不引起歧义,通常以"P, Q"来表示.

③矩阵等价.

设A, B均是 $m \times n$ 矩阵,若存在可逆矩阵 $P_{m \times m}$, $Q_{n \times n}$, 使得PAQ = B, 则称A, B是等价矩阵,记作 $A \cong B$. 微信公众号:神灯考研 客服微信:KYFT104 QQ群:118105451

设A是一个 $m \times n$ 矩阵,则A等价于形如 $\begin{vmatrix} E_r & O \\ O & O \end{vmatrix}$ 的矩阵 $(E_r$ 中的r等于r(A)),后者称为A的等价标准形. 等价标准形是唯一的,即若r(A)=r,则存在可逆矩阵P,Q,使得

$$PAQ = \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}.$$

【注】若A, B为同型矩阵,则A与B等价 $\Leftrightarrow r(A)=r(B)$.

(2)性质.

①
$$|E_{ij}| = -1$$
, $|E_{ij}(k)| = 1$, $|E_i(k)| = k$.

②
$$E_{ij}^{T} = E_{ij}, E_{ij}^{T}(k) = E_{ji}(k), E_{i}^{T}(k) = E_{i}(k).$$

$$\textcircled{4} \, \boldsymbol{E}_{ij}^* = |\boldsymbol{E}_{ij}| \, \boldsymbol{E}_{ij}^{-1} = -\boldsymbol{E}_{ij},$$

$$E_{ij}^{*}(k) = |E_{ij}(k)|E_{ij}^{-1}(k) = E_{ij}(-k)$$
,

$$\boldsymbol{E}_{i}^{*}(k) = |\boldsymbol{E}_{i}(k)| \boldsymbol{E}_{i}^{-1}(k) = k\boldsymbol{E}_{i}\left(\frac{1}{k}\right).$$

(3) 左行右列定理.

在矩阵A的左边乘初等矩阵P,得PA,相当于对A作了一次与P完全相同的初等行变换;在矩阵 A 的右边乘初等矩阵 P,得 AP,相当于对 A 作了一次与 P 完全相同的初等列变换.

- (4)应用.
- ①求 A^{-1} .

$$\begin{bmatrix} A \mid E \end{bmatrix} \xrightarrow{\text{初等行变换}} \begin{bmatrix} E \mid A^{-1} \end{bmatrix}, \begin{bmatrix} A \\ E \end{bmatrix} \xrightarrow{\text{初等列变换}} \begin{bmatrix} E \\ A^{-1} \end{bmatrix}.$$

②研究 $P_1^m A P_2^n = B$.

设A是3阶可逆矩阵,交换A的第1列和第2列得到B, A^* , B^* 分别是A,B的伴随 矩阵,则 B^* 可由(

- (A) A*的第1列与第2列互换得到
- $(C) A^*$ 的第 1 列与第 2 列互换得到
- (解)应选(D).

则

交换A的第1列和第2列得到B,即

- (B) A* 的第1行与第2行互换得到
- (D)-A*的第1行与第2行互换得到

 $\boldsymbol{B} = \boldsymbol{A}\boldsymbol{E}_{12}$,

 $\mathbf{B}^* = (A\mathbf{E}_{12})^* = \mathbf{E}_{12}^* A^* = -\mathbf{E}_{12} A^* = \mathbf{E}_{12} (-A^*)$,

微信公众号: 神灯考研

客服微信: KYFT104 QQ群: 118105451

故 B^* 可由 $-A^*$ 的第1行与第2行互换得到,应选(D).

B是由A的第1列的-2倍加到第3列,然后再互换第1列和第2列得到的,记

$$P_1 = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

则
$$\mathbf{B} = \mathbf{A}\mathbf{P}_1\mathbf{P}_2$$
, 于是 $\mathbf{A}^*\mathbf{B} = \mathbf{A}^*\mathbf{A}\mathbf{P}_1\mathbf{P}_2 = |\mathbf{A}|\mathbf{P}_1\mathbf{P}_2 = 3\mathbf{P}_1\mathbf{P}_2 = \begin{bmatrix} 0 & 3 & -6 \\ 3 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

1. 定义

用几条横线和纵线把一个矩阵分成若干小块,每一小块称为原矩阵的子块.把子块看作原矩阵的一个元素,就得到了分块矩阵.

如矩阵 A 按行分块:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix},$$

其中 $A_i = [a_{i1}, a_{i2}, \cdots, a_{in}]$ $(i=1, 2, \cdots, m)$ 是A 的子块.

矩阵 B 按列分块:

$$\boldsymbol{B} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} \boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \cdots, \boldsymbol{B}_{n} \end{bmatrix},$$

其中 $\mathbf{\textit{B}}_{j} = [b_{1j}, b_{2j}, \cdots, b_{mj}]^{T} (j=1, 2, \cdots, n)$ 是 $\mathbf{\textit{B}}$ 的子块.

2. 运算

①转置:
$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} & \mathbf{C}^{\mathrm{T}} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{D}^{\mathrm{T}} \end{bmatrix}.$$

【注】如 [
$$A$$
 B]^T = $\begin{bmatrix} A^T \\ B^T \end{bmatrix}$.

②加法: 同型,且分法一致,则
$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$
+ $\begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$ = $\begin{bmatrix} A_1 + B_1 & A_2 + B_2 \\ A_3 + B_3 & A_4 + B_4 \end{bmatrix}$.

③数乘:
$$k \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} kA & kB \\ kC & kD \end{bmatrix}$$
.

④乘法:
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X & Y \\ Z & W \end{bmatrix} = \begin{bmatrix} AX + BZ & AY + BW \\ CX + DZ & CY + DW \end{bmatrix},$$
其中矩阵相乘、相加要满足相应的运算规律.

【注】对于④的运算要注意,分块矩阵相乘后,左边的仍在左边,右边的仍在右边.

⑤若A, B分别为m, n阶方阵, 则分块对角矩阵的幂为

$$\begin{bmatrix} A & O \\ O & B \end{bmatrix}^k = \begin{bmatrix} A^k & O \\ O & B^k \end{bmatrix}.$$

⑥已知 $A = \begin{bmatrix} B & O \\ D & C \end{bmatrix}$, 其中B是r阶可逆矩阵, C是s阶可逆矩阵, 则A可逆, 且

$$\boldsymbol{A}^{-1} = \begin{bmatrix} \boldsymbol{B}^{-1} & \boldsymbol{O} \\ -\boldsymbol{C}^{-1}\boldsymbol{D}\boldsymbol{B}^{-1} & \boldsymbol{C}^{-1} \end{bmatrix}.$$

【注】若

$$A_1 = \begin{bmatrix} B & D \\ O & C \end{bmatrix}, A_2 = \begin{bmatrix} O & B \\ C & D \end{bmatrix}, A_3 = \begin{bmatrix} D & B \\ C & O \end{bmatrix},$$

其中B, C可逆, 则有

$$A_{1}^{-1} = \begin{bmatrix} \mathbf{B}^{-1} & -\mathbf{B}^{-1}\mathbf{D}\mathbf{C}^{-1} \\ \mathbf{O} & \mathbf{C}^{-1} \end{bmatrix}, \ A_{2}^{-1} = \begin{bmatrix} -\mathbf{C}^{-1}\mathbf{D}\mathbf{B}^{-1} & \mathbf{C}^{-1} \\ \mathbf{B}^{-1} & \mathbf{O} \end{bmatrix}, \ A_{3}^{-1} = \begin{bmatrix} \mathbf{O} & \mathbf{C}^{-1} \\ \mathbf{B}^{-1} & -\mathbf{B}^{-1}\mathbf{D}\mathbf{C}^{-1} \end{bmatrix}.$$

⑦主对角线分块矩阵
$$A=\begin{bmatrix}A_1&&&&\\&A_2&&&\\&&\ddots&&\\&&&A_s\end{bmatrix}$$
,若 A_i $(i=1,\,2,\,\cdots,\,s)$ 均可逆,则 A 可逆,且

微信公众号: 神灯考研

客服微信: KYFT104

副对角线分块矩阵

$$A = \begin{bmatrix} & & & A_1 \\ & & A_2 \\ & & \ddots \end{bmatrix}$$
,

若 A_i ($i=1, 2, \dots, s$) 均可逆,则A可逆,且

⑧舒尔公式.

当 A 可逆时,

将分块矩阵的第一行的-CAT倍

7加至第二行,使C处为O.

$$\begin{pmatrix} \mathbf{i} \end{pmatrix} \begin{bmatrix} \mathbf{E}_r & \mathbf{O} \\ -\mathbf{C}\mathbf{A}^{-1} & \mathbf{E}_{n-r} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{O} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{bmatrix}.$$

$$(ii)\begin{bmatrix}A & B\\ C & D\end{bmatrix}\begin{bmatrix}E_r & -A^{-1}B\\ O & E_{n-r}\end{bmatrix} = \begin{bmatrix}A & O\\ C & D-CA^{-1}B\end{bmatrix}.$$

$$H3块矩阵的第一列的-A^{-1}B倍$$

$$m 至第二列,使B处为O.$$

【注】舒尔公式可以把一般分块矩阵 $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ 化成上三角形分块矩阵、下三角形分块矩阵或对角线分 块矩阵.

设A为n阶可逆矩阵, α 为n维列向量. 记分块矩阵 $Q = \begin{bmatrix} A & \alpha \\ \alpha^T & 1 \end{bmatrix}$, 则Q可逆的充分 必要条件是().

$$(A) \alpha^{T} A \alpha \neq 1$$

$$(B) \alpha^{T} A \alpha \neq -1$$

(A) $\alpha^{T} A \alpha \neq 1$ (B) $\alpha^{T} A \alpha \neq -1$ (C) $\alpha^{T} A^{-1} \alpha \neq 1$ (D) $\alpha^{T} A^{-1} \alpha \neq -1$

【解】应选(C).

令
$$P = \begin{bmatrix} E & 0 \\ -\alpha^{T}A^{-1} & 1 \end{bmatrix}$$
, 则 舒尔公式(i). 将 5 块矩阵的第一行的 $\alpha^{T}A^{-1}$ 倍 か加至第二行 か此矩阵的形状为 $\begin{bmatrix} A & \alpha \\ -\alpha^{T}A^{-1} & 1 \end{bmatrix}$ で $\begin{bmatrix} E & 0 \\ -\alpha^{T}A^{-1} & 1 \end{bmatrix}$ に $\begin{bmatrix} A & \alpha \\ \alpha^{T} & 1 \end{bmatrix} = \begin{bmatrix} A & \alpha \\ 0 & 1-\alpha^{T}A^{-1}\alpha \end{bmatrix}$ に 118105451

于是 $|PQ| = |A| (1-\alpha^T A^{-1}\alpha)$, 而 |PQ| = |P||Q|, 且 $|P| = 1 \neq 0$, 故 $|Q| = |A| (1-\alpha^T A^{-1}\alpha)$.

由此可知, $|\mathbf{Q}| \neq 0$ 的充分必要条件为 $\mathbf{\alpha}^T \mathbf{A}^{-1} \mathbf{\alpha} \neq 1$,即矩阵 \mathbf{Q} 可逆的充分必要条件是 $\mathbf{\alpha}^T \mathbf{A}^{-1} \mathbf{\alpha} \neq 1$. 选(C).

[注] | Q| 如何求出,是本题的难点.

例 3.16 设 A, B, C 均为 3 阶矩阵, A^* , B^* 分别为 A, B 的伴随矩阵, $\ddot{A}|=2$, |B|=3, 则 分块矩阵 $\begin{bmatrix} C & A \\ B & O \end{bmatrix}$ 的伴随矩阵为 ().

$$(A) \begin{bmatrix} A^* C B^* & 2A^* \\ 3B^* & O \end{bmatrix}$$

$$(B) \begin{bmatrix} -A^* C B^* & 2B^* \\ 3A^* & O \end{bmatrix}$$

$$(C) \begin{bmatrix} O & -2A^* \\ -3B^* & A^* C B^* \end{bmatrix}$$

$$(D) \begin{bmatrix} O & -2B^* \\ -3A^* & A^* C B^* \end{bmatrix}$$

【解】应选(D).

因为
$$\begin{vmatrix} C & A \\ B & O \end{vmatrix} = (-1)^{3\times3} |A||B| = -6 \neq 0$$
,所以

$$\begin{bmatrix} C & A \\ B & O \end{bmatrix}^* = \begin{vmatrix} C & A \\ B & O \end{vmatrix} \begin{bmatrix} C & A \\ B & O \end{bmatrix}^{-1}$$

$$= -|A||B| \begin{bmatrix} O & B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{bmatrix}$$

$$= \begin{bmatrix} O & -|A||B|B^{-1} \\ -|A||B|A^{-1} & |A||B|A^{-1}CB^{-1} \end{bmatrix}^{B^*}$$

$$= \begin{bmatrix} O & -2B^* \\ -3A^* & A^*CB^* \end{bmatrix}.$$

1. 定义

含有未知矩阵的方程称为矩阵方程.

2. 化简

微信公众号【神灯考研】

解矩阵方程,应先根据题设条件和矩阵的运算规则,将方程进行恒等变形,使方程化成 AX=B, XA=B 或 AXB=C 的形式,其化简手段如下.

- (1)消公因式,即若 CA = CB,且 C 可逆,则 A = B.
- (2) 提取公因式,即 CA+CB=C(A+B).

微信公众号: 神灯考研 客服微信: KYFT104

7七亨伐性代数9姓微信公众号【神灯考研】, 获取更多考研资源

- (3)移项,即将已知表达式与未知表达式分别移至方程的两边.
- (4) 利用公式.
- ① $AA^* = |A|E$, A 可逆时, $A^* = |A|A^{-1}$, $(A^*)^* = |A|^{n-2}A$ $(n \ge 2)$.
- ② $A^2-E=(A+E)(A-E)=(A-E)(A+E)$, $A^3-E=(A-E)(A^2+A+E)$.
- ③ $A^{T}B^{T} = (BA)^{T}$, A, B 可逆时, $A^{-1}B^{-1} = (BA)^{-1}$, $A^{*}B^{*} = (BA)^{*}$.
- ④ A 可逆时, $(A^{-1})^* = (A^*)^{-1}$, $(A^{-1})^T = (A^T)^{-1}$, $(A^*)^T = (A^T)^*$.

3. 求解

- (1) 若A可逆或B可逆,或A,B均可逆,则分别可得解为 $X=A^{-1}B$, $X=BA^{-1}$, $X=A^{-1}CB^{-1}$.
- (2) 若A不可逆, 如AX=B, 则将X和B按列分块, 得

$$A\left[\xi_1, \xi_2, \cdots, \xi_n\right] = \left[\beta_1, \beta_2, \cdots, \beta_n\right], \quad \text{Iff } A\xi_i = \beta_i, \quad i = 1, 2, \cdots, n.$$

求解上述线性方程组,得解 ξ_i ,从而得 $X=[\xi_1,\xi_2,\cdots,\xi_n]$.

(3)若无法化成上述几种形式,则应该设未知矩阵为 $X=(x_{ij})$,直接代入方程得到含未知量为 x_{ij} 的线性方程组,求得X的元素 x_{ij} ,从而求得未知矩阵(即用待定元素法求X).

例 3.17] 设

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix},$$

且满足 $A^*B\left(\frac{1}{2}A^*\right)^* = 8A^{-1}B + 16E$,求矩阵B.

【解】

$$|A| = \begin{vmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 4,$$

$$\left(\frac{1}{2}A^*\right)^* = \left(\frac{1}{2}\right)^{3-1} (A^*)^* = \frac{1}{4}|A|^{3-2}A = \frac{1}{4} \cdot 4A = A,$$

故 $A^*B\left(\frac{1}{2}A^*\right)^* = 4A^{-1}BA$, 因此有

$$4A^{-1}BA = 8A^{-1}B + 16E$$
,

即

$$A^{-1}B(A-2E) = 4E = 4A^{-1}A$$
,

也即

$$B(A-2E)=4A.$$

由 |A-2E|=-4,知 A-2E 可逆,且 $(A-2E)^{-1}=-\frac{1}{2}\begin{bmatrix}1&1&0\\0&1&1\\1&0&1\end{bmatrix}$,于是

$$\mathbf{B} = 4\mathbf{A} \ (\mathbf{A} - 2\mathbf{E})^{-1} = -2 \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -4 & 0 \\ 0 & 0 & -4 \\ -4 & 0 & 0 \end{bmatrix}.$$

例 3.18 已知
$$a$$
 是常数,且矩阵 $A = \begin{bmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{bmatrix}$ 可经初等列变换化为矩阵 $B = \begin{bmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$.

- (1) 求 a;
- (2) 求满足 AP = B 的可逆矩阵 P.
- [H] (1) 对矩阵 A, B 分别施以初等行变换, 得

$$A = (-1)$$
倍加至

$$\begin{bmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & -a \\ 0 & 3 & -3a \end{bmatrix} \xrightarrow{2 \text{ (a)}} \begin{bmatrix} 1 & 0 & 3a \\ 0 & 1 & -a \\ 0 & 0 & 0 \end{bmatrix},$$
 $B = (-2)$ 倍加至

$$\begin{bmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ 0 & a+1 & 3 \end{bmatrix} \xrightarrow{2 \text{ (a)}} \begin{bmatrix} 1 & 0 & 2-a \\ 0 & 1 & 1 \\ 0 & 0 & 2-a \end{bmatrix} \rightarrow (-1)$$
倍加至

由题设知r(A) = r(B),故a = 2.

(2)由(1)知a=2.对矩阵[A | B]施以初等行变换,得

记 $B = [\beta_1, \beta_2, \beta_3]$,由于

$$A \begin{bmatrix} -6 \\ 2 \\ 1 \end{bmatrix} = \mathbf{0}, \ A \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} = \boldsymbol{\beta}_1, \ A \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} = \boldsymbol{\beta}_2, \ A \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} = \boldsymbol{\beta}_3,$$

故 AX = B 的解为

$$X = \begin{bmatrix} 3 - 6k_1 & 4 - 6k_2 & 4 - 6k_3 \\ -1 + 2k_1 & -1 + 2k_2 & -1 + 2k_3 \\ k_1 & k_2 & k_3 \end{bmatrix},$$

其中 k_1 , k_2 , k_3 为任意常数.

由于 $|X|=k_3-k_2$,因此满足 AP=B 的可逆矩阵为

$$P = \begin{bmatrix} 3 - 6k_1 & 4 - 6k_2 & 4 - 6k_3 \\ -1 + 2k_1 & -1 + 2k_2 & -1 + 2k_3 \\ k_1 & k_2 & k_3 \end{bmatrix},$$

其中 k_1 , k_2 , k_3 为任意常数, 且 $k_2 \neq k_3$.

【注】事实上,有如下定理:

设A为 $m \times n$ 矩阵,B为 $m \times s$ 矩阵,则矩阵方程AX = B有解的充分必要条件为

$$r(A) = r([A \mid B]).$$

将 X, B 按 列 分 块: X = [x_1 , x_2 , …, x_s], B = [β_1 , β_2 , …, β_s].

$$AX = B$$
 有解⇔ $A[x_1, x_2, \dots, x_s] = [\beta_1, \beta_2, \dots, \beta_s]$ 有解
⇔ $Ax_i = \beta_i (i = 1, 2, \dots, s)$ 有解

$$\Leftrightarrow r(A) = r([A \mid \beta_i]) (i=1, 2, \dots, s)$$

$$\Leftrightarrow r(A) = r([A \mid \beta_1, \beta_2, \dots, \beta_s])$$

$$\Leftrightarrow r(A) = r([A \mid B]).$$

其中(*)处的理解:从左至右是显然的,从右至左的思路如下:

$$\begin{cases} r(A) = r([A \mid \beta_1, \beta_2, \dots, \beta_s]), \\ r(A) \leq r([A \mid \beta_i]) \leq r([A \mid \beta_1, \beta_2, \dots, \beta_s]) \end{cases} \Rightarrow r(A) = r([A \mid \beta_i]), (i=1, 2, \dots, s).$$

上述定理在考研时可直接使用.

例 3.19 若
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, 求所有可逆矩阵 P , 使得 $P^{-1}AP = B$.

【解】设可逆矩阵
$$P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,其中 $ad-bc \neq 0$.

由 $P^{-1}AP = B$, 得AP = PB, 即

$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$$

得

从而

$$\begin{bmatrix} a-2c & b-2d \\ c & d \end{bmatrix} = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix},$$

$$\begin{cases} a - 2c = a, \\ b - 2d = a + b \end{cases}$$

$$\int_C = c$$
,

$$d = c + d,$$

解得a+2d=0, c=0, b 为任意常数.故

$$P = \begin{bmatrix} -2k_1 & k_2 \\ 0 & k_1 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}$$

其中 $k_1 \neq 0$, k_2 为任意常数.

考研人的精神家园