# Analiza danych wysokoprzepustowych – sprawozdanie 1

Praca wykonana na 2 plikach fastą zawierających wyniki sekwencjonowania krótkich RNA z genomu świni.

**1.** Wygenerowanie raportu FastQC, który określa jakość uzyskanych odczytów:

marcelb@pandora:~> /home/tools/FastQC/fastqc /home/lab1/JW10s\_001.fastq -o ./
marcelb@pandora:~> /home/tools/FastQC/fastqc /home/lab1/JW10s\_002.fastq -o ./



Powyższy wykres pokazuje średnią jakość odczytu względem pozycji. Widać, że jakość odczytów jest wysoka, z wyjątkiem pozycji 70 i 71, co normalne na końcach odczytów.



Na tym wykresie przedstawiono ilość wywołań N w trakcie sekwencjonowania. N jest wstawiane kiedy nie da się poprawnie odczytać któregoś z 4 rodzajów nuklotydów. Wykes pokazuje więc na przestrzeni wszystkich sekwencji w których pozycjach wstawiano N. Widać, że było to niezwykle rzadkie o ile w ogóle obecne.



Powyżej ukazano zawartość nukleotydów GC w odczytach. Wyświetlone jest ostrzeżenie ponieważ rozkład powinien być zbliżony do normalnego.



Na tym wykresie widać rozkład długości odczytów. Wszystkie odczyty są o długości 72 z odchyleniem standardowym równym 1 (zdarzają się odczyty 71 lub 73).

2. Odcinanie adapterów, które służą tylko do przygotowania biblioteki i należy je usunąć:

Aby znaleźć sekwencje adapterową, możemy skorzystać z sekcji Overrepresented sequences w raporcie FastQC i z faktu, że takie adaptery zaczynają się od *TGGAATTC*... Wyszukana sekwencja adaptorowa:

# **Overrepresented sequences**

| Sequence                                                                                                                                                                   | Count  | Percentage          | Possible Source                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|-------------------------------------------|
| GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT <mark>TGGAATTCTCGGGTGCCAA</mark> GGAACTCCAGTCACCATGGCA                                                                                    | 413444 | 10.3361             | RNA PCR Primer, Index 34 (100% over 40bp) |
| ${\tt GTTTCCGTAGTGGTGGTTATCACGTTCGCCT} {\tt TGGAATTCTCGGGTGCCAA} {\tt GGAACTCCAGTCACCATGGC}$                                                                               | 339620 | 8.490499999999999   | RNA PCR Primer, Index 34 (100% over 39bp) |
| ${\tt TACCCTGTAGAACCGAATTTGT} \underline{{\tt TGGAATTCTCGGGTGCCAA}} {\tt GGAACTCCAGTCACCATGGCATCTCGTATGC}$                                                                 | 297227 | 7.4306750000000001  | RNA PCR Primer, Index 34 (100% over 50bp) |
| ${\tt TTTCTGTGATGAATCAAACTAGCTCACTATGAACTAACAATGAAAAGATATGAACACCTGAGATGGAATTCT}$                                                                                           | 239387 | 5.984674999999999   | No Hit                                    |
| ${\tt TTCAAGTAATCCAGGATAGGCT} {\tt TGGAATTCTCGGGTGCCAA} {\tt GGAACTCCAGTCACCATGGCATCTCGTATGC}$                                                                             | 136551 | 3.41377500000000002 | RNA PCR Primer, Index 34 (100% over 50bp) |
| ${\tt GCATTGTGGTTCAGTGGTAGAATTCTCGCCT} {\tt TGGAATTCTCGGGTGCCAA} {\tt GGAACTCCAGTCACCATGGCAT}$                                                                             | 80447  | 2.011175            | RNA PCR Primer, Index 34 (100% over 41bp) |
| ${\tt GCATTGGTGGTTCAGTGGTAGAATTCTCGCC} \\ {\tt TGGAATTCTCGGGTGCCAA} \\ {\tt GGAACTCCAGTCACCATGGCAT} \\$                                                                    | 66641  | 1.666025            | RNA PCR Primer, Index 34 (100% over 41bp) |
| ${\tt GCATGGGTGGTTCAGTGGTAGAATTCTCGCCT} {\tt TGGAATTCTCGGGTGCCAA} {\tt GGAACTCCAGTCACCATGGCAA} {\tt GGAACTCCAGTCACCATGGCAAA} {\tt GGAACTCCAGTCACCATGGCAAAAAAAAAAAAAAAAAAA$ | 58851  | 1.471275            | RNA PCR Primer, Index 34 (100% over 40bp) |
| ${\sf TGAGATGAAGCACTGTAGCT} \\ \underline{{\sf TGGAATTCTCGGGTGCCAA}} \\ \underline{{\sf GGAACTCCAGTCACCATGGCATCTCGTATGCCG}}$                                               | 47035  | 1.175875            | RNA PCR Primer, Index 34 (100% over 52bp) |

#### Wycięcie adapterów:

fastx\_clipper -i /home/lab1/JW10s\_001.fastq -a 'TGGAATTCTCGGGTGCCAA' -v -o ./clip

Clipping Adapter: TGGAATTCTCGGGTGCCAA

Min. Length: 5

Input: 4000000 reads. Output: 3960248 reads.

discarded 1269 too-short reads. discarded 13381 adapter-only reads.

discarded 25102 N reads.

marcelb@pandora:~>

fastx clipper -i /home/lab1/JW10s 002.fastq -a 'TGGAATTCTCGGGTGCCAA' -v -o ./clip2

Clipping Adapter: TGGAATTCTCGGGTGCCAA

Min. Length: 5

Input: 1772208 reads. Output: 1754537 reads.

discarded 528 too-short reads. discarded 5998 adapter-only reads.

discarded 11145 N reads.

Następnie sprawdzono raporty fastQC po odcięciu adapterów. Główna i porządana zmiana nastąpiła w sekcji Sequence Length Distribution:

# Sequence Length Distribution



Jest to porządana zmiana, ponieważ po odcięciu adapterów nie oczekujemy już, że nasze odczyty mają długości ok. 72 bp, gdyż są to krótsze RNA, które były sekwencjonowane i które są przedmiotem naszego zainteresowania. Np. widoczne są miRNA, siRNA i piRNA, które osiągają długości nieco ponad 20 nukleotydów. Widać również nieco dłuższe fragmenty, które mogą być fragmentami tRNA lub snRNA.

#### 3. Filtrowanie odczytów

```
marcelb@pandora:~> fastq_quality_filter -i ./clip -q 30 -p 80 -o./clip_filtered -v
Quality cut-off: 30
Minimum percentage: 80
Input: 3960248 reads.
Output: 3811404 reads.
discarded 148844 (3%) low-quality reads.
```

```
marcelb@pandora:~> fastq_quality_filter -i ./clip2 -q 30 -p 80 -o./clip2_filtered -v Quality cut-off: 30
Minimum percentage: 80
Input: 1754537 reads.
Output: 1680287 reads.
discarded 74250 (4%) low-quality reads.
marcelb@pandora:~> |
```

### 4. Łączenie plików

## marcelb@pandora:~> cat clip\_filtered clip2\_filtered > clip\_filtered\_merged

5. Łączenie tych samych sekwencji za pomocą narzędzia FastQ Collapser

```
marcelb@pandora:~> fastx_collapser -i ./clip_filtered_merged -v -o ./filtered_merged_collapsed
Input: 5491691 sequences (representing 5491691 reads)
Output: 205712 sequences (representing 5491691 reads)
```

6. Przeszukiwanie BLAST 3 najbardziej licznych sekwencji

```
marcelb@pandora:~> head filtered_merged_collapsed
>1-598816
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCT
>2-493868
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCCT
>3-436915
TACCCTGTAGAACCGAATTTGT
>4-338190
TTTCTGTGATGAATCAAACTAGCTCACTATGAACTAACAATGAAAAGATATGAACACCTGAGA
>5-195780
TTCAAGTAATCCAGGATAGGCT
```

a) Wszystkie organizmy:

Sekwencja 1 – najliczniejsza:



### Sekwencja 2:



Widać, że jest mnóstwo wyników, w których mamy 100% pokrycia ze 100% identycznością przy bardzo niskich wartościach e-value. Oznacza to, że spośród wykrytych w komórkach Świni krótkich RNA, 2 najczęstsze obecne są w wielu innych organizmach (wyniki to całe genomy lub chromosomy) i mogą to być mocno uniwersalne sekwencje RNA. Organizmy w których znaleziono te 2 sekwencje mocno się nakładają – zbliżone wyniki.

#### Sekwencja 3:

Nie znaleziono wyników. Przy zmianie parametrów na 'Somewhat similar sequences' uzyskujemy poniższe wyniki:

| <b>~</b> | PREDICTED: Bos taurus homeobox D4 (HOXD4), transcript variant X2, mRNA | Bos taurus        | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 5015     | XM_010801892.4 |
|----------|------------------------------------------------------------------------|-------------------|------|------|------|------|---------|----------|----------------|
| <b>~</b> | PREDICTED: Bos taurus homeobox D4 (HOXD4), transcript variant X1, mRNA | Bos taurus        | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 5018     | XM_010801891.4 |
| <b>~</b> | Conger conger genome assembly, chromosome: 17                          | Conger conger     | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 40826945 | OY741330.1     |
| <b>~</b> | Conger conger genome assembly, chromosome: 3                           | Conger conger     | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 83289512 | OY741316.1     |
| <b>~</b> | Conger conger genome assembly, chromosome: 14                          | Conger conger     | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 47674658 | OY741327.1     |
| <b>~</b> | Chelon labrosus genome assembly, chromosome: 10                        | Chelon labrosus   | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 30637012 | OY741298.1     |
| <b>~</b> | Chelon labrosus genome assembly, chromosome: 5                         | Chelon labrosus   | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 31571676 | OY741293.1     |
| <b>~</b> | Eutrigla gurnardus genome assembly, chromosome: 12                     | Eutrigla gurnard  | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 28466340 | OY741275.1     |
| <b>~</b> | Eutrigla gurnardus genome assembly, chromosome: 8                      | Eutrigla gurnard  | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 30675866 | OY741271.1     |
| <b>~</b> | Raja brachyura genome assembly, chromosome: 7                          | Raja brachyura    | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 95332520 | OY740787.1     |
| <b>~</b> | Fringilla coelebs genome assembly, chromosome: 7                       | Fringilla coelebs | 44.1 | 44.1 | 100% | 0.14 | 100.00% | 38678189 | OY740731.1     |

Graphics Distance tree of results

62.1 62.1 100% 2e-09 100.00% 182046 CT009664.17

Max Total Query E Per.

<u>GenBank</u>

Tym sposobem otrzymaliśmy wyniki ale z wysokim E-value, nie są one wiarygodne, choć patrząc np. na przewidywaną sekwencje pochodzącą z Bos Taurus – bydła domowego, jest ona sekwencją miRNA. Być może po głębszej analizie tym tropem możnaby dojść do jakiś wniosków.

# b) Organizm Sus scrofa – dzik azjatycki

Pig DNA sequence from clone CH242-113D8 on chromosome 7, complete sequence

select all 3 sequences selected

|                                                                                  |                 | Description                                                                 | Scientific Name   |              | Score | Score | Cover    | value<br>• | Ident   | Acc. Len        | Access        |
|----------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------|-------------------|--------------|-------|-------|----------|------------|---------|-----------------|---------------|
|                                                                                  |                 | Sus scrofa DNA, contains BIRC6, YIPF4, NLRC4, SLC30A6 genes, clone: L442I04 | Sus scrofa        |              | 60.2  | 60.2  | 100%     | 8e-09 1    | 00.00%  | 193453          | LC14494       |
|                                                                                  | $ lap{\square}$ | Sus scrofa scrofa breed NS chromosome 12                                    | Sus scrofa scrofa |              | 60.2  | 60.2  | 100%     | 8e-09 1    | 00.00%  | 63073457        | CP07156       |
|                                                                                  |                 | Sus scrofa scrofa breed NS chromosome 16                                    | Sus scrofa scrofa |              | 52.8  | 52.8  | 87%      | 1e-06 1    | 00.00%  | 81227385        | CP07156       |
|                                                                                  |                 |                                                                             |                   |              |       |       |          |            |         |                 |               |
| ✓ select all 3 sequences selected   GenBank Graphics Distance tree of results MS |                 |                                                                             |                   |              |       |       | ISA View |            |         |                 |               |
|                                                                                  |                 | Description                                                                 | Scientific Name   | Max<br>Score |       | Query |          | Per.       | Acc. L  | en A            | ccession      |
|                                                                                  |                 | PREDICTED: Sus scrofa actin related protein T3 (ACTRT3), mRNA               | Sus scrofa        | 62.1         | 62.1  | 100%  | 2e-09    | 100.009    | 6 371   | 3 <u>XM_0</u>   | 03358668      |
|                                                                                  |                 | Sus scrofa scrofa breed NS chromosome 10                                    | Sus scrofa scrofa | 62.1         | 62.1  | 100%  | 2e-09    | 100.009    | 6 71502 | 313 <u>CP07</u> | <u>1561.1</u> |

Sus scrofa

Dla obu pierwszych sekwencji znaleziono po 3 wyniki.

Dla 3 ponownie nie znaleziono i zmieniono kryteria wyszukiwania jak poprzednio:

| select all 100 sequences selected                                           | aces selected <u>GenBank</u> <u>Graphics</u> |              |      |                |                 | ance tree     | MSA Viewer |                |
|-----------------------------------------------------------------------------|----------------------------------------------|--------------|------|----------------|-----------------|---------------|------------|----------------|
| Description                                                                 | Scientific Name                              | Max<br>Score |      | Query<br>Cover | E<br>value<br>▼ | Per.<br>Ident | Acc. Len   | Accession      |
| Sus scrofa DNA, contains BIRC6, YIPF4, NLRC4, SLC30A6 genes, clone: L442I04 | Sus scrofa                                   | 59.0         | 59.0 | 100%           | 1e-08           | 100.00%       | 193453     | LC144946.1     |
| Sus scrofa scrofa breed NS chromosome 12                                    | Sus scrofa scrofa                            | 59.0         | 4189 | 100%           | 1e-08           | 100.00%       | 63073457   | CP071563.1     |
| PREDICTED: Sus scrofa hes family bHLH transcription factor 7 (HES7), mRNA   | Sus scrofa                                   | 54.5         | 54.5 | 100%           | 6e-07           | 96.88%        | 2508       | XM_021067858.1 |
| Sus scrofa scrofa breed NS chromosome 16                                    | Sus scrofa scrofa                            | 51.8         | 4864 | 100%           | 2e-06           | 100.00%       | 81227385   | CP071567.1     |
| Pig DNA sequence from clone CH242-277K20 on chromosome X, complete sequence | Sus scrofa                                   | 50.0         | 50.0 | 100%           | 7e-06           | 93.75%        | 186329     | CU606856.13    |
| Pig DNA sequence from clone CH242-38319 on chromosome 4, complete sequence  | Sus scrofa                                   | 48.2         | 48.2 | 81%            | 2e-05           | 100.00%       | 197356     | CU207284.5     |
| Sus scrofa scrofa breed NS chromosome 10                                    | Sus scrofa scrofa                            | 46.4         | 4930 | 100%           | 9e-05           | 93.75%        | 71502813   | CP071561.1     |
| Sus scrofa scrofa breed NS chromosome 17                                    | Sus scrofa scrofa                            | 45.5         | 4602 | 100%           | 3e-04           | 90.62%        | 65056060   | CP071568.1     |
| Pig DNA sequence from clone CH242-187M17 on chromosome X, complete sequence | Sus scrofa                                   | 45.5         | 45.5 | 100%           | 3e-04           | 90.62%        | 89986      | FP085570.5     |
| Pig DNA sequence from clone CH242-228D7 on chromosome 2, complete sequence  | Sus scrofa                                   | 45.5         | 72.0 | 84%            | 3e-04           | 96.30%        | 205791     | FP101995.17    |
| Sus scrofa scrofa breed NS chromosome 18                                    | Sus scrofa scrofa                            | 42.8         | 3247 | 100%           | 0.001           | 92.86%        | 57355364   | CP071569.1     |

2 pierwsze sekwencje wydają się faktycznie być krótkimi RNA, natomiast 3 sekwencja budzi obawy. Być może jest to jakieś krótkie RNA lub fragment dłuższego, specyficznie występujący w komórkach świni.