

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

6/A
EW.m
3-16-04

2
3
4 In re Patent Application of:)
5)
6 Louzoun)
7) Examiner: Truong, Bao Q..
8)
9 Application No.: 10/082,434) Art Unit: 2187
10)
11 Filed: February 22, 2002) RECEIVED
12)
13 For:) MAR 12 2004
14 **SYSTEM AND METHOD FOR EFFICIENT**
15 **SCHEDULING OF MEMORY** Technology Center 2100
16

17 **AMENDMENT**
18

19 ASSISTANT COMMISSIONER FOR PATENTS
20 Washington, D.C. 20231

21
22 Dear Sir:

23
24 In response to the Office Action, dated November 3, 2003, please make the
25 following amendments and consider the following remarks:

26 | 1.(currently amended) A method comprising:
27 | receiving a plurality of commands to access at least one of a plurality of memory
28 | banks of a memory; and
29 | scheduling the plurality of commands based at least in part on a status
30 | information of at least one of the plurality of memory banks; and
31 | arbitrating between the commands to determine priority of access to the memory bus
32 | based at least in part on the status information

A |
1 | 2.(original) The method of claim 1 wherein the memory is a synchronous dynamic
2 | random access memory.

1 3. (original) The method of claim 1 wherein the status information based at least in part
2 on an idle state of the plurality of memory banks with respect to a bank based queuing
3 scheme.

1 4. (original) The method of claim 1 wherein the status information is either an idle state
2 of the plurality of memory banks.

A(1 5. (original) The method of claim 1 wherein the status information is based at least in
2 part on a type of a most recent command forwarded to the memory device via a
3 memory bus.

4
5 6. (original) The method of claim 1 wherein the plurality of commands are read and
6 write commands.

7
8
9
10
11
12
13
14
15

16 7. (currently amended) A system comprising:
17 a processor; and
18 a logic, coupled to the processor and to at least one memory device with a
19 plurality of memory banks, to receive commands to access the memory
20 device
21 and to schedule and arbitrate the commands based at least in part on a
22 status information of the plurality of memory banks.

A |
1 8. (original) The system of claim 7 wherein the commands are read and write
2 commands.

1 9. (original) The system of claim 7 wherein the status information is based
2 at least in part on a type of most recent command forwarded to the memory device via
3 a memory bus.

1 10. (original) The system of claim 7 wherein the plurality of memory banks perform in
2 parallel.

3

1 11. (original) The system of claim 7 wherein the logic is a network switch or a
2 memory controller.

1 12. (original) The system of claim 7 wherein the status information is an idle state of
2 the plurality of memory banks.

3

4 13. (original) The system of claim 7 wherein the memory is a synchronous dynamic
5 random access memory.

1

2 | 14. (currently amended) An apparatus comprising:
3 | a first logic, coupled to at least one memory device with a plurality of memory
4 | banks, to receive commands to access the memory device; and
5 | a second logic, coupled to the first logic, to schedule and arbitrate the received
6 | commands based at least in part on a status information of the plurality of
7 | memory banks.

8

9 | 15. (original) The apparatus of claim 14 further comprising a third logic to forward the
10 | schedule of the received commands to the memory device via a memory bus.

11

12 | 16. (original) . The apparatus of claim 14 wherein the apparatus is either one of a
13 | network switch or memory controller.

14

15 | 17. (original) The apparatus of claim 14 wherein the memory device is a synchronous
16 | dynamic random access memory.

17

18 | 18. (original) The apparatus of claim 14 wherein the received commands are read
19 | and write commands.

20

21 | 19. (original) The apparatus of claim 14 wherein the status information is based at least
22 | in part on a type of most recent command forwarded to the memory device via the
23 | memory bus.

24

25 | 20. (original) The apparatus of claim 14 wherein the plurality of memory banks perform
26 | in parallel.

27

A | 28 | 21. (original) The apparatus of claim 14 wherein the status information is an idle state
29 | of the plurality of memory banks.

30

31 | 22. (currently amended) A method comprising:

32 | receiving a plurality of commands to access at least one of a plurality of memory
33 | banks of a memory coupled to a memory bus;

34 | scheduling the plurality of commands based at least in part on a status
35 | information of at least one of the plurality of memory banks; and
36 | arbitrating between the commands to determine priority of access to the memory
37 | bus based at least in part on the status information.

38

39 | 23. (original) The method of claim 22 wherein the memory is a synchronous dynamic
40 | random access memory.

1 | 24. (original) The method of claim 22 wherein the status information is an idle state of
2 | the plurality of memory banks.

1 | 25. (original) The method of claim 22 wherein the plurality of memory banks perform in
2 | parallel.

3 | 26. (original) The method of claim 22 wherein the status information is based at least in
4 | part on a type of a most recent command forwarded to the memory device via a
5 | memory bus.

6 |

A | 7 | 27. (original) The method of claim 22 wherein the plurality of commands are read and
8 | write commands.

9 |

10 | 28. (currently amended) An article comprising:

11 | a storage medium having stored thereon instructions, that, when executed by a
12 | computing platform, result in forwarding a plurality of commands to a memory device by:

13 | receiving the plurality of commands to access at least one of a plurality of
14 | memory banks of the memory device; and

15 | scheduling and arbitrating the plurality of commands based at least in part on a
16 | status information of at least one of the plurality of memory banks.

17 |

18 | 29. (original) The article of claim 28 wherein the memory is a synchronous dynamic
19 | random access memory.

1 | 30. (original) The article of claim 28 wherein the status information is an idle state of
2 | the plurality of memory banks.

1 | 31_(original) The article of claim 28 wherein the plurality of memory banks perform in parallel.

2 | 32. (original) The article of claim 28 wherein the status information is based at least in part on

A | 3 | a type of a most recent command forwarded to the memory device via a memory bus.

4 |

5 | 33. (original) The article of claim 28 wherein the plurality of commands are read and write

6 | commands.

7

8

9

10

11

12

13

14