PL3		Armindo Rivero Vázquez Prieto	Saul Juan José
Nº PLo	Fauino	Anellidos	Nombre

44.436.879-M	uo278499@uniovi.es
71.737.084-S	uo282978@uniovi.es
DNI	e-mail

	Modelado analítico del rendimiento de un servidor	
	00111001	
Nº Práctica	Título	Calificación

Comentarios sobre la corrección	

Asignatura de

CONFIGURACIÓN Y EVALUACIÓN DE SISTEMAS

Curso 2022-2023

Área de Arquitectura y Tecnología de Computadores

Departamento de Informática de la Universidad de Oviedo

Tarea 1: Modelado a nivel de sistema

El primer paso a realizar es crear el esquema del sistema (usuarios + servidor) con la herramienta JSIMGraph.

Como parámetros usaremos los indicados en la tabla de la sesión 3 de laboratorio. En nuestro caso serían lo siguientes señalados:

	TABLA 2 Equipos situados en el lado de la puerta del aula (4 procesadores)								
CPU	Lect	Escr	Mem	Z(seg)	PL1	PL2	PL3	PL4	PL5
110000	90	90	400	1,1					2
110000	90	90	400	2,4			8		
110000	90	360	400	1,1				2	
110000	90	360	400	2,4	4				
110000	360	90	400	1,1	l		_7		
110000	360	90	400	2,4		8			
110000	360	360	400	1,1					6
110000	360	360	400	2,4		6			
440000	90	90	400	1,1	2				
440000	90	90	400	2,4			6		
440000	90	360	400	1,1				6	
440000	90	360	400	2,4		2			
440000	360	90	400	1,1	6				
440000	360	90	400	2,4					4
440000	360	360	400	1,1			5		
440000	360	360	400	2,4				4	

El siguiente paso sería definir la clase Petición con una población de 5 asignada a la estación de Usuarios

Luego dentro de un excel insertamos en el campo Tsini el valor de tiempo de respuesta para 5 usuarios y multiplicarlo por 0,2 y 2,8.

Tsini	0,10859946	
Tsini x 0,2	0,02171989	0,022
Tsini x 2,8	0,30407849	0,304

A su vez miramos en nuestro Excel de la sesión 3 en la tarea 1 como nuestro punto nominal es igual a 80, por tanto, escogemos tres números siendo uno el punto nominal, el primer numero que es 5 usuarios y un punto medio entre los dos que sería 40 usuarios.

Nº usuarios	Tres(seg)	X(pet/seg)
5	0,10859946	3,94666667
40	0,10149453	32,31
80	0,16719176	60,9233333

Se asignar el valor de Tsini multiplicado por 0,2 a la distribución de peticiones del servidor en el JSIMGraph

Ejecutamos el JSIMGraph creado anteriormente con el valor de usuarios finales y un intervalo de 20.

El resultado es un archivo tsv para una población de 5 definida anteriormente en la clase Petición.

Realizaríamos la misma prueba cambiando el numero de población a los otros dos números de intervalo que hemos seleccionado y con los datos obtenidos de los archivos tsv y cálculos realizados en el excel rellenaríamos esta tabla:

Tpo Servicio	XS Modelo	Error XS	X40 Modelo	Error X40	X80 Modelo	Error X80	Tres5 Model	Error Tres5	Tres40 Mode	Error Tres40	Tres80 Mode	Error Tres80
0,022	4,88272196	0,93605529	36,7861321	4,47613213	45,4544989	-15,4688345	0,02401899	-0,08458047	0,08736629	-0,01412824	0,7600018	0,59281005
0,0361	4,799976	0,85330933	27,540549	-4,76945101	27,700831	-33,2225023	0,04167188	-0,06692759	0,45240387	0,35090934	1,888	1,72080824
0,0502	4,71154779	0,76488112	19,919808	-12,390192	19,9203187	-41,0030146	0,06122239	-0,04737707	1,00805149	0,90655695	3,016	2,84880824
0,0643	4,61781081	0,67114414	15,552098	-16,757902	15,5520995	-45,3712338	0,08276415	-0,02583531	1,57200026	1,47050573	4,144	3,97680824
0,0784	4,51927543	0,57260876	12,755102	-19,554898	12,755102	-48,1682313	0,10637205	-0,00222742	2,136	2,03450547	5,272	5,10480824
0,0925	4,41656746	0,46990079	10,8108108	-21,4991892	10,8108108	-50,1125225	0,1321009	0,02350144	2,7	2,59850547	6,4	6,23280824
0,1066	4,31040041	0,36373375	9,38086304	-22,929137	9,38086304	-51,5424703	0,15998504	0,05138558	3,264	3,16250547	7,528	7,36080824
0,1207	4,20154443	0,25487776	8,28500414	-24,0249959	8,28500414	-52,6383292	0,19003859	0,08143913	3,828	3,72650547	8,656	8,48880824
0,1348	4,09079449	0,14412782	7,41839763	-24,8916024	7,41839763	-53,5049357	0,22225646	0,113657	4,392	4,29050547	9,784	9,61680824
0,1489	3,97894065	0,03227398	6,71591672	-25,5940833	6,71591672	-54,2074166	0,25661588	0,14801642	4,956	4,85450547	10,912	10,7448082
0,163	3,86674203	-0,07992464	6,13496933	-26,1750307	6,13496933	-54,788364	0,29307825	0,18447878	5,52	5,41850547	12,04	11,8728082
0,1771	3,75490591	-0,19176075	5,64652739	-26,6634726	5,64652739	-55,2768059	0,33159129	0,22299183	6,084	5,98250547	13,168	13,0008082
0,1912	3,64407241	-0,30259426	5,23012552	-27,0798745	5,23012552	-55,6932078	0,37209129	0,26349183	6,648	6,54650547	14,296	14,1288082
0,2053	3,53480465	-0,41186201	4,8709206	-27,4390794	4,8709206	-56,0524127	0,41450532	0,30590586	7,212	7,11050547	15,424	15,2568082
0,2194	3,42758404	-0,51908262	4,55788514	-27,7521149	4,55788514	-56,3654482	0,45875344	0,35015398	7,776	7,67450547	16,552	16,3848082
0,2335	3,32280972	-0,62385694	4,28265525	-28,0273448	4,28265525	-56,6406781	0,50475062	0,39615116	8,34	8,23850547	17,68	17,5128082
0,2476	3,22080141	-0,72586526	4,03877221	-28,2712278	4,03877221	-56,8845611	0,55240866	0,4438092	8,904	8,80250547	18,808	18,6408082
0,2617	3,12180463	-0,82486203	3,82116928	-28,4888307	3,82116928	-57,1021641	0,6016377	0,49303824	9,468	9,36650547	19,936	19,7688082
0,2758	3,02599758	-0,92066909	3,62581581	-28,6841842	3,62581581	-57,2975175	0,65234765	0,54374819	10,032	9,93050547	21,064	20,8968082
0,2899	2,93349879	-1,01316788	3,44946533	-28,8605347	3,44946533	-57,473868	0,70444932	0,59584986	10,596	10,4945055	22,192	22,0248082
0,304	2,84437515	-1,10229152	3,28947368	-29,0205263	3,28947368	-57,6338596	0,75785532	0,64925586	11,16	11,0585055	23,32	23,1528082

Hallaríamos el valor del Error absoluto de productividad y de tiempo de respuesta con los valores absolutos del promedio de los errores para cada caso con sus tablas correspondientes:

ERROR ABS MEDIO X	ERROR ABS MEDIO TR
3,352215687	0,164700444
12,379548	0,668263333
17,54277518	1,235996042
20,48599723	1,807159554
22,38350683	2,379028766
23,71393697	2,951605051
24,7026245	3,524899764
25,46948243	4,098917613
26,08413675	4,673656904
26,58974197	5,249110043
27,01443977	5,825264165
27,37734644	6,402101846
27,69189218	6,979601845
27,96778471	7,557739858
28,21221522	8,136489229
28,43062659	8,715821624
28,62721805	9,295707636
28,8052856	9,876117317
28,96745693	10,45702063
29,11585685	11,03838786
29,25222583	11,62018986

Creamos una gráfica con ambas columnas y en nuestro caso nos crearía esta gráfica:

Se debería de realizar un ajuste para seguir el modelo del guion, pero en nuestro caso solo hay un punto que este próximo.

Tarea 2: Modelado a nivel de componentes

Usando el archivo del simulador que teníamos:

Definimos la clase Petición

Editamos en las opciones del Inyector la distribución de peticiones al valor de Tsini multiplicado por 0,2 que hicimos en la anterior parte.

En el Excel de la practica 3 creamos varias columnas nuevas asignando los valores de las demandas calculadas con la siguiente formula:

$$D_C = U_C / X$$
; $D_D = U_D / X$; $D_R = U_R / X$;
 $D_C = (U_C \times N^o \text{núcleos}) / X$

D. CPU	D. Disco	D. Red
0,06757425	0,01009094	2,48113E-05
0,06212771	0,00701525	2,47395E-05
0,0578925	0,00590808	2,47706E-05
0,05560993	0,00521934	2,49034E-05
0,04922785	0,00471008	2,47819E-05
0,03917455	0,00421469	2,53924E-05
0,03939574	0,00424846	2,50768E-05
0,03930979	0,00423338	2,54033E-05
0,03927993	0,00424743	2,54831E-05
0,03956161	0,0043971	2,52292E-05

Calcularíamos el promedio de las demandas, visitas y tiempo de servicio:

D. Promedio	0,05212124	0,00639937	2,49408E-05
Visitas	22	21	2
Tpo. Sevicio	0,00236915	0,00030473	1,24704E-05

Las visitas promedio de Disco estarían calculadas de estas columnas:

X. Disco 114,954341	V. Disco 29,1269444
1048,42008	17,2088431
1301,5789	15,8632407

Siendo X los valores del promedio de transferencia de disco de las pruebas realizadas en la practica 3 con dicha cantidad de usuarios (en este caso los tres que tenemos que son 5,80 y 450). Y siendo las vistas X. Disco/Productividad (Su productividad respectiva a cada uno).

Procederíamos a calcular las probabilidades de transición:

Pcpu-red	1/Vcpu	0,04545455
Pcpu-disco	Vdisco/Vcpu	0,95454545
Pred-cpu	0,5	
Pred-inyector	0,5	

Realizamos el diagrama de dispersión que muestra la evolución de las demandas:

Creamos este esquema de sistema en el JSIMGraph:

Procederíamos ahora a realizar una prueba de 5 usuarios a nuestro número final de usuarios realizado en la practica 3 (450 usuarios) con un intervalo adecuado (en este caso hemos escogido 50 muestras).

Y sacaríamos los datos de Tpo. Respuesta y Productividad para cada número de usuarios en 50 medidas para un intervalo de 5 a 450 usuarios. Crearíamos tanto la gráfica de productividad como de tiempo de respuesta con los valores obtenidos de la ejecución del JSIMGraph como con los valores sacados de la sesión 3 de laboratorio.

Ahora, dentro del simulador asignamos a Red, CPU y Disco sus valores de Tpo. Servicio respectivo en la sección "Service Section" y ejecutaríamos hasta 450 usuarios, en este caso nosotros hemos puesto que realice 20 pruebas. Calcularíamos dentro del resultado que nos lanza el simulador las siguientes variables: Tpo. Respuesta,%CPU,%DISCO y %RED.

Tpo. Respuesta como la suma de las columnas "Residence time" que arroja el simulador.

%CPU como Utilization(CPU)/4(Nº núcleos) *100

%DISCO como Utilization(Disco)*100

%RED como Utilization(Red)*100

Y tendríamos en nuestro Excel principal estas columnas:

Resultado del Modelo Analitico Componentes					
Usuarios	Tpo. Respuesta	%CPU	%DISCO	%RED	PRODUCTIVIDAD
5	0,073003168	68,578285	33,6797826	0,13126299	52,629824
28	0,342848696	99,9999852	49,1114317	0,19140603	76,7441417
52	0,655576049	100	49,1114389	0,19140606	76,74415306
75	0,955273147	100	49,1114389	0,19140606	76,74415306
99	1,268000554	100	49,1114389	0,19140606	76,74415306
122	1,567697653	100	49,1114389	0,19140606	76,74415306
146	1,88042506	100	49,1114389	0,19140606	76,74415306
169	2,180122159	100	49,1114389	0,19140606	76,74415306
192	2,479819257	100	49,1114389	0,19140606	76,74415306
216	2,792546664	100	49,1114389	0,19140606	76,74415306
239	3,092243763	100	49,1114389	0,19140606	76,74415306
263	3,40497117	100	49,1114389	0,19140606	76,74415306
286	3,704668268	100	49,1114389	0,19140606	76,74415306
309	4,004365367	100	49,1114389	0,19140606	76,74415306
333	4,317092774	100	49,1114389	0,19140606	76,74415306
356	4,616789872	100	49,1114389	0,19140606	76,74415306
380	4,92951728	100	49,1114389	0,19140606	76,74415306
403	5,229214378	100	49,1114389	0,19140606	76,74415306
427	5,541941785	100	49,1114389	0,19140606	76,74415306
450	5,841638884	100	49,1114389	0,19140606	76,74415306

Con las que calcularíamos junto con los datos de la sesión 3 que ya teníamos las siguientes gráficas:

Una vez realizadas todas las gráficas realizamos varios ajustes. Siguiendo los modelos del guion hemos determinado que en nuestro caso todas las gráficas son ajustables y por tanto hemos decidido ajustar todas cambiando el parámetro del tiempo de servicio inicial.

Como resultado pongo la comparativa de ambas gráficas:

Para ajustar esta gráfica fuimos probando a bajar entre distintos valores del tiempo de servicio inicial hasta dar con el resultado más optimo que es 0.0115

Para esta gráfica se percibe claramente como queda bien ajustada. Para esto bajamos los valores del tiempo de servicio inicial hasta dar con el resultado más optimo que es 0.0115

En este caso hicimos lo contrario, pues fuimos subiendo los valores del tiempo de servicio inicial hasta dar con el resultado más optimo que es 1.

Hicimos lo mismo, subimos los valores del tiempo de servicio inicial hasta dar con el resultado más optimo que es 1,2.

En este caso subiendo los tiempos de servicio inicial dimos con que el valor de tiempo de servicio inicial más optimo era 1.