i

Question 1

Begin a new page

Marks

1

- (a) Find the value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ in terms of π .
- (b) The acute angle between the line x-2y+3=0 and the line y=mx is 45°.
 - (i) Show that $\left| \frac{2m-1}{m+2} \right| = 1$
 - (ii) Find the possible values of m.
- (c) Solve the equation $\ln(x^2 + 19) = 2\ln(x + 1)$.

3

(d)

5

ABCD is a parallelogram. E is the point on CD such that BE = BC.

- (i) Copy the diagram showing the above information.
- (ii) Show that ABED is a cyclic quadrilateral.

Question 2

Begin a new page

Marks

(a) Find $\lim_{x\to 0} \frac{\sin 2x}{x}$

1

(b) Solve the inequality $\frac{x^2+9}{x} \le 6$

3

3

(c) (i) Factorise $3x^3 + 3x^2 - x - 1$

- (ii) Solve the equation $3 \tan^3 \theta + 3 \tan^2 \theta \tan \theta 1 = 0$ for $0 \le \theta \le \pi$
- (d) $P(2t, t^2)$ is a point on the parabola $x^2 = 4y$ with focus F. The point M divides the interval FP externally in the ratio 3:1.
- 5
- (i) Show that as P moves on the parabola $x^2 = 4y$, then M moves on the parabola $x^2 = 6y + 3$.
- (ii) Find the coordinates of the focus and the equation of the directrix of the locus of M.

Question 3

Begin a new page

(a) Find the gradient of the tangent to the curve $y = \tan^{-1} \frac{1}{x}$ at the point on the curve where x = 1.

2

- (b) A function is given by the rule $f(x) = \frac{x+1}{x+2}$. Find the rule for the inverse function $f^{-1}(x)$.
 - 4
- (c) At any point on the curve y = f(x) the gradient function is given by $\frac{dy}{dx} = 2\cos^2 x + 1$. If $y = \pi$ when $x = \pi$, find the value of y when $x = 2\pi$.
- (d) Use the substitution $x = u^2$, u > 0, to express the value of $\int_{1}^{100} \frac{1}{x + 2\sqrt{x}} dx$ in the form $\ln a$ for some constant a > 0.

2

2

6

Question 4

Begin a new page

- (a) Find the exact value of $\int_{-\pi}^{\pi} \frac{1}{\sqrt{4-x^2}} dx$.
- (b) A particle is moving in a straight line. At time t seconds its displacement x metres from a fixed point O on the line is such that $t = x^2 - 3x + 2$.
 - (i) Find an expression for its velocity v in terms of x.
 - (ii) Find an expression for its acceleration a in terms of x.
- (c) Consider the function $y = 2\cos^{-1}(1-x)$.
 - 4
 - (i) Find the domain and range of the function.
 - (ii) Sketch the graph of the function.
- 4 (d) The radius r kilometres of a circular oil spill at time t hours after it was first observed is given by $r = \frac{1+3t}{1+t}$. Find the exact rate of increase of the area of the oil spill when the radius is 2 kilometres.

Question 5

Begin a new page

- (a) Consider the function $f(x) = \frac{\ln x}{x}$.
 - (i) Find the coordinates and the nature of the stationary point on the curve y = f(x).
 - (ii) Explain why $f(\pi) < f(e)$ and hence show that $\pi^e < e^{\pi}$.
 - (iii) P(X, -2) is a point on the curve y = f(x). Starting with an initial approximation of X = 0.5, use one application of Newton's method to find an improved approximation to the value of X, giving the answer correct to 2 decimal places.

Question 5 (Cont)

(b) A machine which initially costs \$49 000 loses value at a rate proportional to the difference between its current value \$M\$ and its final scrap value \$1000. After 2 years the value of the machine is \$25 000.

6

- (i) Explain why $\frac{dM}{dt} = -k (M-1000)$ for some constant k > 0, and verify that $M = 1000 + Ae^{-kt}$, A constant, is a solution of this equation.
- (ii) Find the exact values of A and k.
- (iii) Find the value of the machine, and the time that has elapsed, when the machine is losing value at a rate equal to one quarter of the initial rate at which it loses value.

Question 6

Begin a new page

(a) If α , β and χ are the roots of $3x^3 + 5x^2 - 7x + 4 = 0$, find the values of

2

- (i) $\alpha + \beta + \chi$
- (ii) $\alpha\beta + \alpha\chi + \beta\chi$
- (b) Two circles touch internally at a point P. A line through P cuts the smaller circle at A and the larger circle at B. A second line through P cuts the smaller and larger circles at C and D respectively.

4

- (i) Draw a diagram showing this information.
- (ii)Prove that AC is parallel to BD.
- (c) A particle moving in a straight line is performing Simple Harmonic Motion. At time t seconds its displacement x metres from a fixed point O on the line is given by $x = 2\sin 3t 2\sqrt{3}\cos 3t$.

6

- (i) Express x in the form $x = R \sin(3t \alpha)$ for some constants R > 0 and $0 < \alpha < \frac{\pi}{2}$.
- (ii) Describe the initial motion of the particle in terms of its initial position, velocity and acceleration
- (iii) Find the exact value of the first time that the particle is 2 metres to the left of O and moving towards O.

Question 7

Begin a new page

- (a) Use the method of mathematical induction to prove that $7^n 5^n$ is even, for all positive integers $n \ge 1$.
- 4

(b) Given that ABCD is a cyclic quadrilateral, show that

2

 $\tan A + \tan B + \tan C + \tan D = 0$

(c)

6

A particle is projected with velocity $V \, \mathrm{ms}^{-1}$ from a point O at an angle of elevation α . Axes Ox and Oy are taken horizontally and vertically through O. The particle just clears two vertical chimneys of height h metres at horizontal distances of p metres and q metres from O. The acceleration due to gravity is taken as $10 \, \mathrm{ms}^{-2}$ and air resistance is ignored

- (i) Write down expressions for the horizontal displacement x and the vertical displacement y of the particle after time t seconds.
- (ii) Show that $V^2 = \frac{5p^2(1+\tan^2\alpha)}{p\tan\alpha-h}$.
- (iii) Show that $\tan \alpha = \frac{h(p+q)}{pq}$.

Golutions to NSGHS 1994 30 Tucae

$$(b)^{n}\chi - 2y + 3 = 0$$
 -has gradient $\frac{1}{2}$
i. $\tan 45^{\circ} = \left| \frac{m - \frac{1}{2}}{1 + \frac{m}{2}} \right|$
 $1 = \left| \frac{2m - 1}{2 + m} \right|$

(i)
$$\frac{2m-1}{m+2} = 1$$
 or $\frac{2m-1}{m+2} = -1$
 $2m-1 = m+2$ $2m-1 = -m-2$
 $m=3$ $3m=-1$
; $m=3$ or $-\frac{1}{3}$

(c)
$$dn(x^2+19) = dn(x+1)^2$$

 $x^2+19 = x^2+2x+1$
 $18 = 2x$
 $x = 9$

(ii) LBCE = LBEC (equal angles apposite equal sides in DBCE)

also LECE = LBAD (exposite angles of parallelogram)

... LBEC = LBAD

", ABED is a cyclic quadrilateral (entrior angle equal to opposite interior angle)

(2)(a)
$$\lim_{x\to 0} \frac{\sin 2x}{x} = 2 \lim_{x\to 0} \frac{\sin 2x}{2x}$$

= 2×1
= 2
(b) $\frac{x^2 + 9}{x} \times x^2 \le 6x^2$
 $x^3 + 9x \le 6x^2$
 $x^3 - 6x^2 + 9x \le 0$

$$x^{3} + 9x \le 6x^{2}$$

$$x^{3} - 6x^{2} + 9x \le 0$$

$$x(x^{2} - 6x + 9) \le 0$$

$$x(x - 3)^{2} \le 0$$

$$tan\theta = -1$$
 or $tan^2\theta = \frac{1}{3}$, $0 \le \theta \le \pi$

$$(d)(x) = 3x2t - 1x0, y = \frac{3xt^2 - 1x1}{3-1}$$

$$= \frac{6t}{2} \qquad y = 3t^2 - 1 (2)$$

$$x = 3t (1)$$

From
$$0$$
, $t = \frac{3}{3}$, so from 2 , $y = \frac{3 \cdot x^2}{4} - 1$

$$2y = \frac{3}{3} - 1$$

$$(ii) x^2 = 6/y + \frac{1}{2}$$
 Focus $(0,1)$, $(0,1)$, $(0,1)$

3 (a)
$$y = \tan \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{1}{1+\frac{1}{x^2}} \cdot \frac{-1}{x^2}$$

$$= \frac{-1}{x^2+1}$$
When $x = 1$, $\frac{dy}{dx} = -\frac{1}{2} = \text{gradient}$ of fangent

(b) 9 now exce is $x = \frac{y+1}{y+2}$

$$xy + 2x = y+1$$

$$y(x-1) = 1-2x$$

$$\therefore y = \frac{1-2x}{x-1}$$
(c) $\frac{dy}{dx} = 2 \cos^2 x + 1$

$$= 2 \cos^2 x + 1$$

$$= 3 \cos^2 x + 1$$

$$=$$

(b) (d)
$$\int_{12}^{1} \frac{dx}{\sqrt{4-x_2}} = \int_{2}^{1} \frac{1}{3} \int_{12}^{13} \frac{1}{3} \int_{12}^{13} \frac{1}{4-x_2} = \int_{12}^{13} \frac{1}{3} \int_{$$

$$\frac{1}{2}(a)(i) \frac{3y}{4x} = \frac{2 \cdot \frac{1}{2} - 4x \cdot \frac{1}{2}}{x^{2}}$$

$$= \frac{1 - 4x \cdot \frac{1}{2}}{x^{2}}$$

$$= \frac{1 - 4x \cdot \frac{1}{2}}{x^{2}}$$

$$= \frac{2x \ln x - 3x}{x^{3}}$$

$$\frac{dy}{dx} = 0 \Rightarrow \frac{1 - 4x}{x^{2}} = 0$$

$$\tan x = i$$

$$\tan x = e, \frac{d^{2}x}{dx^{2}} = -\frac{1}{2} < 0$$

$$i \cdot \text{Max. turning pt at } (e, \frac{1}{e})$$

$$(ii) \text{ Quive there is a maximum at } x = e,$$

$$\tan \frac{dy}{dx} < 0 \text{ for } x > e, \text{ then, since } \pi > e,$$

$$f(\pi) < f(e)$$

$$ie \frac{\ln \pi}{\pi} < \ln e$$

$$e \ln \pi < \ln e$$

$$\ln \pi^{e} < \ln e^{\pi}$$

$$(iii) \frac{\ln x}{\pi} = -2$$

$$\ln x = -2x$$

$$\ln x = -2x$$

$$\ln x + 2x = 0$$

$$\text{Let } P(x) = \ln x + 2x$$

$$P^{1}(x) = \frac{1}{x} + 2$$

$$= 0.42(2dp)$$

(b) (c)
$$\frac{dM}{dt} \approx M - 1000$$
 and $\frac{dM}{dt} \approx 0$
 $\frac{dM}{dt} = -k(M - 1000)$ $(ik > 0)$
 $M = 1000 + Ae^{-kt}$
 $\frac{dM}{dt} = -Ake^{-kt}$
 $\frac{dM}{dt} = -48000$

Then $M = 1000 + 48000e^{-kt}$

When $t = 2$, $M = 25000$
 $25000 = 1000 + 48000e^{-2k}$
 $24000 = 48000e^{-2k}$
 $24000 = 48000e^{-2k}$
 $\frac{dM}{dt} = -\frac{1}{2}(49000 - 1000)$
 $\frac{dM}{dt} = -\frac{1}{2}(49000 - 1000)$
 $\frac{dM}{dt} = -\frac{24000}{4}(2000 = 1000)$
 $\frac{dM}{dt} = -\frac{24000}{4}(2000 = 1000)$

When $M = 13000$, $130000 = 10000 + 48000e^{-kt}$
 $\frac{12000}{t} = -kt$
 $\frac{12000}{t} = -kt$

$$(4)(4) & + \beta + 8 = -\frac{5}{3}$$

$$(4) & + \beta + \beta + 8 = -\frac{7}{3}$$

(ii) Draw common tangent through P. Call it XY.

Then LXPC = LPAC (angle between tangent and chard equal to angle inalturnate and LXPC = LPBD for large circle

i. LPAC=LPBD

... AC 1/BD (corresponding angles equal)

(c)(i) Let $2 \sin 3t - 253 \cos 3t = R \sin (3t - 2)$ = $R(\sin 3t \cos 2 - \cos 3t \sin 2)$

 $1.8\cos z = 2$ $2\cos z = 2\sqrt{3}$

 $R^2 = 2^2 + (253)^2$ and $\tan 2 = 53$ = 4+12

1.R=4 and $d=\frac{I}{3}$

:. x = 4 xin (3t-1)

(ii) x = 12 cos (3t-1)

x = - 36 sin (3t -]

When t = 0, $x = -2\sqrt{3}$

x = 6

z = 18 \square

i. Initially, the parente is dus in to the reft of v, moving at $6\,\text{m/s}$ to the right, speeding up at a rate of $18\,\sqrt{3}\,\text{m/s}^2$.

(iii) When x = 2, $-2 = 4 \sin (3t - \frac{\pi}{3})$ $\sin (3t - \frac{\pi}{3}) = -\frac{1}{2}$ $3t - \frac{\pi}{3} = -\frac{\pi}{6}$, $\frac{7\pi}{6}$, ... $3t = \frac{\pi}{6}$, $\frac{3\pi}{2}$, ... $t = \frac{\pi}{12}$, $\frac{\pi}{2}$, ...

When $b = I_{18}$, $\dot{z} = 12 \cos(I_{6} - I_{3})$ = $6\sqrt{3} > 0$

.. trast time is I seconds.

 $\Theta(a)$ When n=1, 7'-5'=2, which is even i. True for n=1

Assume true for n=k, ie $7^{k}-5^{k}=2p$, where f is a positive integer

when n=k+1, 7k+1_5k+1= 4.7k_5.5k
=7(20+5k)-5.5k weing the

= 14p + 2.5k = 14p + 2.5k

= 2(7p+5k)

which is divisible by 2, as $7p+5^k$ is a postinit. I'. True for n=k+1 if true for n=k. Dennée true for n=1, then true for all entegers $n\geq 1$.

B C=180-A and D=180°-B (opposite angles of cyclic quadrileteral supplementary intan A + tan B + tan C + tan B

=tan A + tan B - tan A - tan B