Aprendizado de Máquina Supervisionado –IMD3002

Aula 15 – Árvore de Decisão

João Carlos Xavier Júnior jcxavier@imd.ufrn.br

- Definição:
 - Um fluxograma com a estrutura de uma árvore.
 - * Nó interno representa um teste sobre um atributo.
 - * Cada ramo representa um resultado do teste.
 - * Folhas representam as classes.
- A geração de uma árvore consiste de duas fases:
 - * Construção da árvore (particionamento de atributos).
 - * Fase da poda (identifica e remove ruídos ou outliers).
- Uso da árvore: classificação de amostras desconhecidas.
 - * Testa os valores dos atributos da amostra "contra" a árvore.

- ☐ Algoritmo Básico:
 - * A árvore é construída recursivamente no sentido *top-down* (divisão para conquista).
 - Atributos "testes" são selecionados com base em heurísticas ou medidas estatísticas (ex., ganho de informação).
 - * Medidas utilizadas: Entropia e índice Gini.
- Condições de parada do particionamento:
 - * Todas as amostras de um nó pertencem a mesma classe.
 - * Não existem mais atributos para particionamento.

Entropia:

- *É uma medida de aleatoriedade (*impureza*) de uma variável.
- lacktriangle A entropia de uma variável nominal X que pode tomar i valores:

$$entropia(X) = -\sum_{i} p_{i} \log_{2} pi$$

☐ Conjunto de treinamento:

N° exemplar	Céu	Temperatura	Umidade	Vento	Classe
1	sol	alta	alta	não	não joga
2	sol	alta	alta	sim	não joga
3	nublado	alta	alta	não	joga
4	chuva	alta	alta	não	joga
5	chuva	baixa	normal	não	joga
6	chuva	baixa	normal	sim	não joga
7	nublado	baixa	normal	sim	joga
8	sol	suave	alta	não	não joga
9	sol	baixa	normal	não	joga
10	chuva	suave	normal	não	joga
11	sol	suave	normal	sim	joga
12	nublado	suave	alta	sim	joga
13	nublado	alta	normal	não	joga
14	chuva	suave	alta	sim	não joga

9 instâncias para jogar

◆ 5 instâncias

para não jogar

Exemplo:

- ❖ Suponha que S é uma coleção de 14 instâncias, onde 9 são positivas e 5 são negativas.
- ❖ Notação: [9+, 5-]
- ❖ A entropia de S em relação a esta classificação booleana é
- * dada por:

$$entropia([9+,5-]) = -\left(\frac{9}{14}\right)\log_2\left(\frac{9}{14}\right) - \left(\frac{5}{14}\right)\log_2\left(\frac{5}{14}\right) = 0,940$$

- ☐ Calcular o Ganho (S, Vento):
 - ❖ Valores de (Vento) = {não ou weak, sim ou strong}.
 - **S**: [9+, 5-]
 - $S_{n\tilde{a}0} = [3+, 2-]$
 - $S_{sim} = [3+, 6-]$

$$Ganho(S, Vento) = E(S) - \sum_{v \in \{n\tilde{a}o, sim\}} \frac{|S_v|}{|S|} E(Sv)$$

Ganho(S, Vento) =
$$E(S)$$
 – $(8/14)$ $E(não)$ – $(6/14)$ $E(sim)$ Ganho(S, Vento) = $-(6/8)$ * $log_2(6/8)$ – $(2/8)$ * $log_2(2/8)$ =>0,811 Ganho(S, Vento) = $-(3/6)$ * $log_2(3/6)$ - $(3/6)$ * $log_2(3/6)$ => 1,000 Ganho(S, Vento) = 0,940 – $(8/14)$ 0,811 – $(6/14)$ 1,000 = 0,048

- Qual atributo deve ser primeiro nó da árvore?
 - * Determinar o ganho de informação (Gain) para cada atributo.
 - * Selecionar aquele cujo ganho de informação é o mais alto:
 - Ganho(S, Outlook) = 0.246
 - Ganho(S, Humidity) = 0.151
 - Ganho(S, Wind) = 0.048
 - Ganho(S, Temperature) = 0.029

Ganho de informação (atributos numéricos):

- Um teste num atributo numérico produz uma partição binária do conjunto de exemplos:
 - Instâncias onde valor_do_atributo < ponto_referência;
 - Instâncias onde valor_do_atributo > ponto_referência.
- * Escolha do ponto de referência:
 - Ordenar os exemplos por ordem crescente dos valores do atributo numérico.
 - Qualquer ponto intermediário entre dois valores diferentes e consecutivos dos valores observados no conjunto de treinamento pode ser utilizado como possível ponto de referência.

Conjunto de treinamento:

Nº exemplar	Céu	Temperatura	Umidade	Vento	Classe
1	sol	85	85	não	não joga
2	sol	80	90	sim	não joga
3	nublado	83	78	não	joga
4	chuva	70	96	não	joga
5	chuva	68	80	não	joga
6	chuva	65	70	sim	não joga
7	nublado	64	65	sim	joga
8	sol	72	95	não	não joga
9	sol	69	70	não	joga
10	chuva	75	80	não	joga
11	sol	75	70	sim	joga
12	nublado	72	90	sim	joga
13	nublado	81	75	não	joga
14	chuva	71	80	sim	não joga

9 instâncias para jogar 5 instâncias para não jogar

Calculando ganho (atributo Umidade):

$$v_p = \frac{(vi + vj)}{2}$$

$$v_p = \frac{(75+78)}{2} \Rightarrow 77$$

Calculando ganho (atributo Umidade):

Umidade	Classe	
65	sim	68
70	não	70
70	sim	70
70	sim	73
75	sim	77
78	sim	79
80	sim	80
80	sim	80
80	não	83
85	não	88
90	não	90
90	sim	93
95	não	96
96	sim	

Umidade < 77 => 5 instâncias Onde:

4/5 (sim) e 1/5 (não)

Umidade > 77 => 9 instâncias Onde:

Calculando ganho (atributo Umidade):

$$info(umidade < 77) = -\frac{4}{5}log_2(\frac{4}{5}) - \frac{1}{5}log_2(\frac{1}{5}) \Rightarrow 0,721928$$

$$info(umidade > 77) = -\frac{5}{9}log_2(\frac{5}{9}) - \frac{4}{9}log_2(\frac{4}{9}) \Rightarrow 0,991076$$

$$info(umidade) = \frac{5}{14} * 0,721928 + \frac{9}{14} * 0,991076 \Rightarrow 0,894952$$

$$Ganho(umidade) = 0.940 - 0.894952 \Rightarrow 0.045$$

Calculando ganho (atributo Umidade):

Repetir o processo para outros pontos intermediários ...

☐ **Treinamento**: Pima Indians Diabetes Database (subset)

#	Pregnant	Plasma	BloodPressure	Skin	Insulin	BodyMass	Pedigree	Age	Diagnóstico
1	6	148	72	35	0	33,6	627	50	tested_positive
2	1	85	66	29	0	26,6	351	31	tested_negative
3	8	183	64	0	0	23,3	672	32	tested_positive
4	1	89	66	23	94	28,1	167	21	tested_negative
5	0	137	40	35	168	43,1	2288	33	tested_positive
6	5	116	74	0	0	25,6	201	30	tested_negative
7	3	78	50	32	88	31,0	248	26	tested_positive
8	10	115	0	0	0	35,3	134	29	tested_negative
9	2	197	70	45	543	30,5	158	53	tested_positive
10	4	110	92	0	0	37,6	191	30	tested_negative
11	10	168	74	0	0	38,0	537	34	tested_positive
12	10	139	80	0	0	27,1	1441	57	tested_negative
13	1	189	60	23	846	30,1	398	59	tested_positive
14	5	166	72	19	175	25,8	587	51	tested_positive
15	7	100	0	0	0	30,0	484	32	tested_positive
16	0	118	84	47	230	45,8	551	31	tested_positive
17	7	107	74	0	0	29,6	254	31	tested_positive
18	1	103	30	38	83	43,3	183	33	tested_negative
19	1	115	70	30	96	34,6	529	32	tested_positive
20	3	126	88	41	235	39,3	704	27	tested_negative

#	Pregnant	Plasma	BloodPressure	Skin	Insulin	BodyMass	Pedigree	Age	Diagnóstico
7	3	78	50	32	88	31,0	248	26	tested_positive
2	1	85	66	29	0	26,6	351	31	tested_negative
4	1	89	66	23	94	28,1	167	21	tested_negative
15	7	100	0	0	0	30,0	484	32	tested_positive
18	1	103	30	38	83	43,3	183	33	tested_negative
17	7	107	74	0	0	29,6	254	31	tested_positive
10	4	110	92	0	0	37,6	191	30	tested_negative
8	10	115	0	0	0	35,3	134	29	tested_negative
19	1	115	70	30	96	34,6	529	32	tested_positive
6	5	116	74	0	0	25,6	201	30	tested_negative
16	0	118	84	47	230	45,8	551	31	tested_positive
20	3	126	88	41	235	39,3	704	27	tested_negative
5	0	137	40	35	168	43,1	2288	33	tested_positive
12	10	139	80	0	0	27,1	1441	57	tested_negative

#	Pregnant	Plasma	BloodPressure	Skin	Insulin	BodyMass	Pedigree	Age	Diagnóstico
1	6	148	72	35	0	33,6	627	50	tested_positive
14	5	166	72	19	175	25,8	587	51	tested_positive
11	10	168	74	0	0	38,0	537	34	tested_positive
3	8	183	64	0	0	23,3	672	32	tested_positive
13	1	189	60	23	846	30,1	398	59	tested_positive
9	2	197	70	45	543	30,5	158	53	tested_positive

☐ Geração de regras:

Teste	#	Pregnant	Plasma	BloodPressure	Skin	Insulin	BodyMass	Pedigree	Age	Diagnóstico
IF Plasma > 139	1	6	148	72	35	0	33,6	627	50	tested_positive
	14	5	166	72	19	175	25,8	587	51	tested_positive
	11	10	168	74	0	0	38,0	537	34	tested_positive
	3	8	183	64	0	0	23,3	672	32	tested_positive
	13	1	189	60	23	846	30,1	398	59	tested_positive
	9	2	197	70	45	543	30,5	158	53	tested_positive
IF Plasma <= 139	8	10	115	0	0	0	35,3	134	29	tested_negative
and	4	1	89	66	23	94	28,1	167	21	tested_negative
Pedigree <= 201	18	1	103	30	38	83	43,3	183	33	tested_negative
	10	4	110	92	0	0	37,6	191	30	tested_negative
	6	5	116	74	0	0	25,6	201	30	tested_negative
IF Plasma <= 139 and	2	1	85	66	29	0	26,6	351	31	tested_negative
Pedigree > 201 and	12	10	139	80	0	0	27,1	1441	57	tested_negative
BodyMass <= 28.1	-	-	-	-	-	-	-	•	•	-
IF Plasma <= 139	17	7	107	74	0	0	29,6	254	31	tested_positive
and	15	7	100	0	0	0	30,0	484	32	tested_positive
Pedigree > 201	7	3	78	50	32	88	31,0	248	26	tested_positive
and	19	1	115	70	30	96	34,6	529	32	tested_positive
BodyMass > 28.1	20	3	126	88	41	235	39,3	704	27	tested_negative
	5	0	137	40	35	168	43,1	2288	33	tested_positive
	16	0	118	84	47	230	45,8	551	31	tested_positive

☐ Como classificar a seguinte instância:

7 103 66 32 0 39.1 344 33	7	103	66	32	0 39.1	344	31
---------------------------	---	-----	----	----	--------	-----	----

Como classificar a seguinte instância:

Como classificar a seguinte instância:

Como classificar a seguinte instância:

Como classificar a seguinte instância:

|--|

7 103 66 32 0 39.1 344 31 tested_positive

- ☐ Sobre-ajustamento ou Overfitting:
 - * O algoritmo de partição recursiva gera estruturas que podem obter um ajuste **perfeito** aos exemplos de treinamento.
 - ❖ O aprendizado é muito específico ao conjunto de treinamento, não permitindo generalizar para o conjunto de teste.

Overfitting:

☐ Problema de Overfitting:

- ❖ Para melhorar o modelo, utilizam-se métodos de poda (*pruning*) na árvore, cujo objetivo é melhorar a taxa de acerto do modelo para novas amostras que não foram utilizadas no treinamento.
- Existem diversas formas de realizar uma poda, e todas elas são classificadas como:
 - Pré-poda
 - Ou
 - Pós-poda

Poda:

- * Pré-Poda: durante a geração da árvore (baseada em critérios).
 - Ganho de informação for menor que um valor préestabelecido, então um determinado nó n vira folha;
 - Número mínimo de instâncias em um nó n a ser considerado para divisão;
 - Número mínimo de instâncias em um nó terminal (folha);
 - Profundidade máxima da árvore.

- Poda:
 - * Pós-Poda: realizada após a construção da árvore.
 - Para cada nó interno da árvore, é calculada a taxa de erro, e caso esse nó vire folha (e tudo abaixo dele seja eliminado).

Tenho como saber se uma AD está ou não apresentando Overfitting?

Overfitting:

- Por padrão, o modelo de árvore de decisão pode crescer até sua profundidade total.
- A poda refere-se a uma técnica para remover as partes da árvore de decisão para evitar o crescimento em toda a sua profundidade.
- Ao ajustar os hiperparâmetros do modelo de árvore de decisão, pode-se podar as árvores e evitar que elas sejam superajustadas.

Overfitting:

Pós-Poda:

Acc = 0,7662

Pós-Poda:

 $max_depth = 5$

Acc = 0,7682

Poda:

 $max_depth = 4$

Acc = 0,7712

Pós-Poda:

Acc = 0,7545

Dúvidas ...

Algoritmos mais conhecidos

- ☐ ID3 (Iterative Dichotomiser 3) (Quilan,1986):
 - Os atributos devem ser obrigatoriamente categóricos.
- ☐ C4.5 (J48 no Weka) (Quilan, 1993):
 - Um algoritmo para geração de árvores de decisão, sucessor do algoritmo ID3.
 - Considera atributos numéricos e categóricos.
- ☐ CART (Classification And Regression Trees) (Breiman et al., 1984):
 - Produz árvores de classificação ou regressão, dependendo se as variáveis são categóricas ou numéricas.

Overview

- Vantagens:
 - Estrutura de fácil manipulação;
 - Produzem modelos que podem ser facilmente interpretados por humanos;
 - Muito rápido para classificar amostras desconhecidas.
- Desvantagens:
 - Pouca robustez a dados de grande dimensão;
 - Acurácia afetada por atributos pouco relevantes.

Árvore de Decisão Prática

Parâmetros e valores default para Árvore de Decisão:

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0) [source]

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Parâmetros e valores default para Árvore de Decisão:

Parameters:

criterion: {"gini", "entropy", "log_loss"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see Mathematical formulation.

splitter: {"best", "random"}, default="best"

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.

max_depth: int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

- If int, then consider min_samples_split as the minimum number.
- If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Configurando a AD:

```
# Create Decision Tree classifer object
clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)

# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.7705627705627706

Utilizando DecisionTreeClassifier (Holdout):

```
[1] ### Carregar as Libraries
    import numpy as np
    import pandas as pd
    ### Importing Dataset
    dataset = pd.read csv('Diabetes.csv',encoding='utf-8')
[2] # Obtendo os nomes das colunas Numéricas
    tipos numericos = ['int32', 'int64', 'float16', 'float32', 'float64']
    cols num = dataset.select dtypes(include=tipos numericos)
    ## Selecionando os atributos numéricos
    colunas_numericas = list(cols_num.columns)
    ## Pegar a classe
    coluna classe = dataset['classe']
    ## Separando os atributos da classe
    X = dataset[colunas numericas] # Features
    v = dataset.classe
                                   # Target variable (classe)
```

Utilizando DecisionTreeClassifier:

```
[3] ## Carregando o algoritmo / método / técnica Decision Tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import confusion_matrix
```

```
[4] # Separando dataset em duas partes: treinamento e teste
    # 70% training and 30% test
    X_train_70, X_test_30, y_train_70, y_test_30 = train_test_split(X, y, test_size=0.3, random_state=1)
```

Utilizando **DecisionTreeClassifier**:

```
[6] # Create Decision Tree classifer object
dtc = DecisionTreeClassifier(criterion="entropy", max_depth=3)

# Train Decision Tree Classifer
dtc = dtc.fit(X_train_70,y_train_70)

#Predict the response for test dataset
y_pred = dtc.predict(X_test_30)

# Model Accuracy
acuracia = metrics.accuracy_score(y_test_30, y_pred)
print('Accuracy: %.3f' % acuracia)

# Matriz de confusão p/ 30%
confusion_matrix(y_test_30, y_pred)
```

```
Accuracy: 0.771
array([[124, 22],
[ 31, 54]])
```

Utilizando **DecisionTreeClassifier**:

```
[7] # Mostrando (plotando) a árvore gerada
    from sklearn import tree
    import matplotlib.pyplot as plt
    plt.figure(figsize=(12,12)) # set plot size (denoted in inches)
    tree.plot_tree(dtc, fontsize=10)
    plt.show()

# Matriz de confusão p/ 30%
    confusion_matrix(y_test_30, y_pred)
```

Visualizando a árvore gerada:

Utilizando DecisionTreeClassifier (k fold cv):

```
[3] ## Carregando o algoritmo / método / técnica Decision Tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
```

```
[4] # 10-fold CV
kf = KFold(n_splits=10, random_state=1, shuffle=True)

# Create Decision Tree classifer object
dtc = DecisionTreeClassifier(criterion="entropy", max_depth=3)

# Model Accuracy
scores = cross_val_score(dtc, X, y, scoring='accuracy', cv=kf)
print('Accuracy: %.3f (%.3f)' % (scores.mean(), scores.std()))

# Matriz de confusão p/ k fold
y_pred = cross_val_predict(dtc, X, y, cv=kf)
confusion_matrix(y, y_pred)
```

```
Accuracy: 0.752 (0.042)
array([[424, 76],
[114, 154]])
```

Utilizando **DecisionTreeClassifier** (k fold cv):

```
[9] cnt = 1
    # split() method generate indices to split data into training and test set.
     for train index, test index in kf.split(X, y):
         print(f'Fold:{cnt}, Train set: {len(train index)}, Test set:{len(test index)}')
         cnt += 1
     print()
     # Model Accuracy
     scores = cross_val_score(dtc, X, y, scoring='accuracy', cv=kf)
     print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))
     Fold:1, Train set: 691, Test set:77
    Fold:2, Train set: 691, Test set:77
    Fold:3, Train set: 691, Test set:77
    Fold:4, Train set: 691, Test set:77
    Fold:5, Train set: 691, Test set:77
    Fold:6, Train set: 691, Test set:77
     Fold:7, Train set: 691, Test set:77
    Fold:8, Train set: 691, Test set:77
    Fold:9, Train set: 692, Test set:76
    Fold:10, Train set: 692, Test set:76
     Accuracy: 0.752 (0.042)
```

Tenho como saber se uma AD está ou não apresentando Overfitting?

Overfitting:

Pós-poda:

```
# usar Decision Tree Classifier no sklearn
# Load libraries
from sklearn.tree import DecisionTreeClassifier # # Import Decision Tree Classifier
from sklearn.model selection import train test split # Import train test split function
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
from sklearn.metrics import confusion matrix
#split dataset in features and target variable
feature_cols = ['preg','plas','pres','skin','insu','mass','pedi','age']
X = dados[feature cols] # Features
y = dados.classe # Target variable
# Split dataset into training set and test set
X_train_70, X_test_30, y_train_70, y_test_30 = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
vals = [2,3,4,5,6,7,8,9,10]
for i in vals:
  # Create Decision Tree classifer object
  dtc = DecisionTreeClassifier(criterion="entropy", max depth=i)
  dtc = dtc.fit(X train 70,y train 70)
  y_pred = dtc.predict(X_test_30)
  print(f'Acuracia:{metrics.accuracy_score(y_test_30, y_pred)},Max_depth:{i}')
```

DT_pos-poda.py

☐ Pós-poda:

```
Acuracia:0.7705627705627706, Max_depth:2
Acuracia:0.7705627705627706, Max_depth:3
Acuracia:0.7748917748917749, Max_depth:4
Acuracia:0.7705627705627706, Max_depth:5
Acuracia:0.7662337662337663, Max_depth:6
Acuracia:0.787878787878787878, Max_depth:7
Acuracia:0.757575757575757576, Max_depth:8
Acuracia:0.7229437229437229, Max_depth:9
Acuracia:0.7142857142857143, Max_depth:10
```

DT_pos-poda.py

Obrigado!!!

