WO 09/50244

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) -

G01N 33/569, 33/564, 33/566, C07K 14/705	A1	(11) International Publication Number: WO 98/39/244 (43) International Publication Date: 30 December 1998 (30.12.98)
(21) International Application Number: PCT/GB9	8/018	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE
(22) International Filing Date: 19 June 1998 (1	9.06.9	68) GH, GM, GW, HU, ID, IL. IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW
(30) Priority Data: 9712892.0 20 June 1997 (20.06.97)	c	MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Europear
(71) Applicant (for all designated States except US): EC		

(72) Inventors; and

erdeen AB9 LAS (GB).

(75) Inventors/Applicants (for US only): FOTHERGILL. John [GB/GB]; The Granary, Shorehead AB39 2JY, Stonehaven (GB). KEMP, Graham [GB/GB]; Netherton, Sauchen AB59 7JP, Inverurie (GB). BROOKS, Tony [GB/GB]; 10 Sunnybank Place, Aberdeen AB24 3LA (GB). CARR, Frank [GB/GB]; Auris, 23 St. Machar Drive, Aberdeen AB24 3RY (GB).

(74) Agents: STEBBING, Peter, John, Hunter et al.: Ablett & Stebbing, 45 Lancaster Mews, Lancaster Gate, London W2 300 (GB).

Published

With international search report.

The state of the s

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendmente

(54) Title: IDENTIFICATION OF MHC BINDING PEPTIDES

(57) Abstract

The invention provides a method for the prediction of the binding affinity of a peptide to a major histocompatilibity (MHC) class If molecules comprising: 1) ascertaining the characteristics of a MHC molecule binding groove, 2) presenting a selected peptide to the MHC molecule and ascertaining a first conformation of each pocket bound peptide side-chain, 3) amending the conformation of each pocket bound peptide side-chain and ascertaining a second conformation score, 4) repeating step 3 with alternative conformations of each peptide pocket bound side-chain, 5) choosing the highest conformation score for each pocket bound peptide side-chain in each binding groove pockets, herein known as "the pocket", and 6) combining the highest conformation score for each pocket and ascertaining a binding score for the complete pentide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ı	AL.	Albania	ES	Spain	L.S	Lesouno	a	PROMERTY	
į	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
ı	AT	Austria	FR	Prance	LU	Luxembourg	SN	Sonegal	
ı	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ı	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	170	Chad	
J	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
ł	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
İ	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
i	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
ı	BG	Bulgaria	HU	Hongary	ML	Mali	TT	Trinidad and Tobego	
ı	BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
ı	BR	Brazil	n.	Inrael	MR	Mauritania	UG	Uganda	
ı	BY	Belanus	ES	lociand	MW	Malawi	US	United States of America	
ı	CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
١	CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam	
i	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yngoslavia	
١	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
ı	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
ı	CM	Cameroon		Republic of Korea	P1.	Poland			
	CN	China	KR	Republic of Korea	PT	Portugal .			
ı	CU	Cube	KZ	Kazakstan	RO	Romania			
ı	cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
1	DE	Germany	u	Liechtenstein	SD	Sudan			
1	DK	Denmark	LK	Sri Lanka	SE	Sweden			

- 1 -

IDENTIFICATION OF MHC BINDING PEPTIDES

The present invention relates to a new method for the prediction of peptides which bind to major histocompatibility 5 (MHC) class II molecules and to molecules created or modified through the use of these methods.

The immune system of the mammalian organism principally comprises two arms, the cellular immune system and the humoral or antibody-associated immune system. The cellular immune system is centred around the activity of T cells. There are two major classes of T cells, cytotoxic T lymphocytes (CTLs) which attack cells displaying foreign antigen complexed with MHC class I molecules, and helper T cells which react to cells displaying foreign antigens in a complex with MHC class II molecules resulting in the secretion of cytokines which can activate B cells to produce antibody molecules.

Humans express six different MHC class I genes and six 20 different MHC class II genes, which are located on three highly polymorphic loci. This leads to considerable allelic variation in MHC molecules. The MHC class I consist of a α chain and a β_2 -microglobulin, the α -chain is split into three domains α_1 , α_2 and α_3 . α_1 and α_2 form the MHC class I binding 25 groove which contains pockets that bind the side chains and the amino and carboxy termini of any peptide present in the groove. The MHC class II molecules comprise an \alpha-chain and a β -chain, it is the α_1 and β_1 domains which create the MHC class II binding groove. The MHC class II binding groove also 30 contains pockets but it does not bind the end termini of the peptide. For this reason the peptides bound by the MHC class II molecule can be longer and of a more variable length. The typical length of peptides complexed with a MHC class I or a MHC class II molecule are 8-10 amino acids and 13-20 amino 35 acids, respectively.

At present only three MHC class II structure are available but

- 2 -

it is believed that the backbone structure of all MHC class II alleles presently identified are similar to that of HLA-DR1. Structures of different alleles can be predicted by using homology modelling. This involves identifying the amino acid differences near the binding groove and using a computer to change the conformation of the side-chains to give favourable steric and electrostatic arrangements and to make the pockets as large as possible. The end result is a three dimensional structure of a MHC class II molecule, which can be used in various experiments.

The ability to predict the peptides in a protein which can bind to a given MHC molecule has great value especially for medical applications. It is known, for example, that in 15 certain auto-immune diseases, T cells react with self-peptides presented by MHC class II molecules. It would be valuable to predict which peptides from auto-immune proteins are presented by MHC class II molecules in these diseases as well as to predict the binding of analogues of these peptides synthesised 20 as potential antagonists for the presentation of selfpeptides. In the selection of peptides for synthetic vaccines, the ability to predict MHC class II binding peptides would be advantageous. In addition, where heterologous proteins are developed as medicines or diagnostic imaging 25 agents, it would be advantageous to predict potential MHC class II binding peptides in order to eliminate these from the heterologous proteins before administration to patients.

While studies of peptides complexed with MHC class I molecules
have revealed conserved "anchor" residues at certain positions
within the presented peptides, such studies with peptides
complexed with MHC class II molecules have been less
successful mainly because of the greater length variability
of such peptides and the consequent difficulty in aligning
their sequences.

Methods for accurately predicting the binding potential of

- 3 -

peptides have been restricted to MHC class I interaction with a peptide. In one method using three-dimensional structures of MHC class I molecules, peptide binding is ranked in ascending order according to the energy values determined.

5 This method requires that the MHC structure be known, or that there is an obvious molecular model for the MHC structure. An identical method is said to be available for MHC class II but it does not consider the longer average length of the peptide and the open-ended peptide binding groove of MHC class II molecules. Neither does it use the best potential

conformation of peptide amino acid side-chains and, therefore the binding energies calculated are only approximations.

Another drawback of using the same method for MHC class I and
15 MHC class II peptide binding is that the binding of peptides
to MHC class II is less dependant on strict allele-specific
binding motifs than peptides binding to MHC class I.
Individual amino acids in the peptide play a more significant
role in MHC class II binding than MHC class I such that the
20 conformation of amino acid side-chains is proportionally more
important to the accuracy of binding analysis. Therefore,
known methods do not provide a general method for analysing
the binding of peptides to three-dimensional structures of MHC
class II. There is thus a need for improved methods for
25 predicting the MHC class II binding potential of peptides.

An object of this invention is to provide a method for accurately predicting the binding affinity of a peptide fragment binding to a MHC class II molecule.

30

Another object of this invention is to provide a computer conditioned to perform the task of predicting the binding affinity of a peptide fragment binding to a MHC class II molecule.

35

A yet further object of this invention is to provide a vaccine derived from the peptide fragment whose binding affinity to MHC class II molecules has been determined.

Another object of this invention is to provide a pharmaceutical composition which comprises a peptide whose 5 binding affinity to MHC class II molecules has been determined.

According to the first aspect of this invention, there is provided a method for the prediction of the binding affinity 10 of a peptide and a major histocompatibility (MHC) class II molecules comprising;

- ascertaining the characteristics of a MHC molecule binding groove,
- presenting a selected peptide to the MHC molecule and 15 ascertaining a first conformation score for each pocket bound peptide side-chain,
 - amending the conformation of each pocket bound peptide side-chain and ascertaining a second conformation score.
- repeating step 3 with alternative conformations of each
 peptide pocket bound side-chain,
 - 5) choosing the highest conformation score for each pocket bound peptide side-chain.
- 6) combining the highest conformation score for each pocketbound peptide side-chain and then ascertaining a binding score 25 for the peptide.

It is particularly desirable to then compile information on all peptide fragments in a protein and compare the binding scores. It is preferable if the conformation of the backbone 30 of the peptide fragment is also altered and the conformation score and the binding score is then reassessed.

The method of this invention thus involves assessing a binding score for all possible candidate peptides by considering the 35 predicted three-dimensional conformations and interactions between the MHC and the peptide in the complex. The computed score indicates the predicted binding affinity for the

- 5 -

particular peptide binding with the MHC allele and can be used to predict whether the peptides are likely to bind, or not.

Preferably, the conformation score for each pocket bound 5 peptide side-chain is ascertained by considering at least one of the following parameters:

- a) the steric overlap between the pocket bound peptide residue bound in the pocket and an atom forming the pocket; this is value B.
- 10 b) the number of hydrogen bonds which can be formed between the pocket bound peptide residue and an atom forming the pocket; this is value C,
- c) the strength of electrostatic interactions between any polar atoms of the pocket bound peptide residue and any polar 15 atoms forming the pocket; this is value D, and
 - d) the number of favourable contacts between the pocket bound peptide residue and the MHC residues forming one of the pockets; this is value E.
- 20 The conformation score for each peptide is computed based upon the predicted atomic interactions between each of the pocket bound peptide residues and MHC pockets. The geometric constraints imposed on the peptide by the shape of the MHC binding groove play an important part of the scoring function.
- 25 Favourable packing arrangements between peptide and MHC sidechains are rewarded by the scoring function, whilst arrangements involving steric overlap are penalised. Alternative conformation are tried for MHC residues if an MHC residue overlaps with a peptide side chain.

30

If no preferable conformation can be found the MHC side-chain is returned to its original conformation. In the event of more than a pocket residue side-chain overlapping with a pocket bound peptide side chain, the pocket residue side 35 chains are adjusted in order of overlap severity, with the pocket residue side-chain which has the most severe overlap being adjusted first.

- 6 -

In preferred embodiments the steric overlap between the pocket bound peptide residue and the atoms forming the pocket can not be greater than 0.35 Angstroms, otherwise the residue is deemed unable to fit in the pocket.

Conveniently a favourable contact occurs when an atom from an MHC residue and an atom from the peptide residue have their centres separated by no more than the sum of their radii plus 0.5 Angstroms and are not overlapping.

10

15

Preferably the values B to E are imported into a first equation to give a conformation score(Z). The first equation is $Z_n=(cK_2C)-(cK_3D)+(cK_4E)-(cK_5B)$, where cK_1 to cK_4 are constants and n is the number of the pocket.

The value of $cK_{\rm i}$ is between 50 and 150. Preferably between 75 and 125.

The value of cK_2 is between 1000 and 2000. Preferably between 20 1250 and 1750.

The value of cK_3 is between 250 and 750. Preferably between 350 and 650.

25 The Value of cK4 is between 500 and 1500. Preferably between 750 and 1250.

Conveniently the Z_s value for a pocket is multiplied by a coefficient, L, depending on the pockets importance in 30 binding, to give a second Z_n value. The value L is in the range of 0.001 to 5. Larger pockets are considered more important in determining which peptide can bind, compared with the other smaller pockets, so the scores contributed by each pocket are weighted in proportion to the amount of the peptide side-chain buried by the surface of the MHC molecule. When binding to MHC class II molecules, peptides have shown high similarity in the degree to which their side-chains are buried

- 7 -

by the MHC surface, despite having dissimilar sequences.

Preferably all the Z, values are summed to give a value J.

Value J is the overall contributing score of all the pockets

f for a certain conformation of the peptide fragment.

Conveniently the MHC residue is paired with the pocket-bound peptide residue if an atom from the MHC residue and an atom from the pocket-bound peptide residue have their centres sparated by no more than the sum of their van der Waal radii plus one Andstrom.

In a preferred embodiment a value A, is calculated by summing the pairwise interaction frequencies of paired residues. As 15 for the Z, value, preferably the value A, for a pocket is multiplied by a coefficient, X, depending on the pockets importance in binding. Preferably X is between 0.001 and 5.

Conveniently the λ_n value for the pockets are summed to give 20 a value P.

In a preferred embodiment the binding score is ascertained by at least one of the following parameters

- a) the number of groove-bound hydrophobic residues; this is 25 value F,
 - b) the number of non groove-bound hydrophilic residues; this is value G,
 - c) the number of peptide residues deemed to fit within their respective binding pocket; this is value H.

30

Preferably values F, G, H, J and P are imported into a second equation to give a first binding score, Y.

Conveniently the second equation is $Y=J*F^2*(G*H+1)+P$.

35

However, in the alternative, the term He, which evaluates the hydrophobicity of the pocket bound peptide side chains using

- 8 -

a hydrophobicity scale disclosed in Janin et al [1979] Nature, 277 pg 491, can also be used to determine the Y value. Accordingly, $Y=(bK_yC)-(bK_yD)+(bK_yE)-(bK_yB)+(bK_yB)+P$. The scale used in Janin et al to measure hydrophobicity has a range from 5 -1.8 for lysine to 0.9 for cysteine.

It is known that peptides having favourable hydrophobic/hydrophobic interactions with solvent and MHC atoms have a higher binding affinity. Accordingly, it is 10 preferable to include the term He.

The value of bK_1 is between 1 and 10. Preferably between 1 and 5.

15 The value of $b\mathrm{K}_2$ is between 20 and 60. Preferably between 30 and 50.

The value of bK_1 is between 300 and 900. Preferably between 450 and 750.

20

The value of bK_4 is between 1 and 20. Preferably between 5 and 15.

The value of bK, is in between 1 and 800. Conveniently 25 between 100 and 600. Preferably between 100 and 400.

In a preferred embodiment determination of the conformation score and the binding score are repeated for each pocket and each conformation of the peptide residue in said pocket. The 30 conformation of the peptide is altered by rotating a side chain of the peptide residue by a pre-determined amount. In this way all possible conformations of the peptide side-chain in the pocket can be studied and the best or most likely conformation can be chosen to obtain the hinding score.

35

The conformation of the backbone of the peptide fragment is changed by modelling the conformation of the backbone on any

- 9 -

one of 167 backbones which have been previously generated, based on human and murine crystallographic structures of MHC class II peptide complexes. The backbone conformation and the conformation of the peptide fragment side chains are altered 5 systematically until the conformation score and the binding score of every possible conformation has been determined.

Conveniently the steps are repeated using different peptides from a protein.

10

In preferred embodiments the binding scores (Y) for different peptides are tabulated and compared. Peptides with the highest scores are predicted to have the highest binding affinity for the particular MHC allele.

15

In a preferred embodiment the method of determining the binding affinity of a peptide residue for an MHC class II molecule is used in the manufacture of a vaccine derived from a peptide identified by said method.

20

Preferably the method of determining the binding affinity of a peptide residue for an MHC class II molecule is used to remove potentially immunogenic sequences from a protein and thus reduce said proteins immunogenicity when administered to 25 an organism.

Using the afore-detailed method it is possible to predict the peptides from an auto-immune protein which are presented by MHC class II molecules. Thereafter, it is possible to 30 synthesise peptides which would be antagonists to the presentation of such peptides by the MHC class II molecules. It is also possible to determine any proteins in a vaccine containing heterologous proteins which might result in the stimulation of T cells due to their presentation on MHC class II molecules. These proteins could then be altered or removed depending on their function in the vaccine.

- 10 -

According to a second aspect of the invention there is provided a computer conditioned to receive information characterising a peptide bound to the MHC molecule and to utilise said information to perform a procedure having the

- 5 following steps:
 - ascertaining the characteristics of a MHC molecule binding groove;
 - presenting a selected peptide, which is selected by a predetermined program, to the MHC molecule and ascertaining
- 10 a first conformation score;
 - amending the conformation of the peptide, by way of a predetermined program, and ascertaining a second conformation score;
 - 4) repeating step 3 with other conformations of the peptide;
 - 15 5) selecting the peptide conformation with the highest conformation score; and
 - 6) calculating the binding score from the conformation score.

Preferably the above detailed procedure also includes a step 20 (7) which comprises repeating steps 1-4 with other peptide fragments in the protein to generate information on all peptide fragments in a protein so that a comparison can be made of the strength of the binding between the peptide and the MHC molecule.

25

Conveniently the above detailed procedure further comprising a step (8) which comprises altering the conformation of the backbone of the peptide fragment.

- 30 The use of a computer in such a task is important because there are hundreds of calculations to perform per peptide fragment. A computer conditioned to perform the task can systematically change the conformation of the side chains and the backbone of the peptide fragment while calculating the
- 35 conformation score and the binding score.

According to a third aspect of the invention there is provided

- 11 -

a pharmaceutical composition made by determining the binding affinity of a peptide for a MHC class II molecule.

A pharmaceutical composition is thus engineered to contain a 5 peptide which is presented by an MHC class II molecule and which therefore stimulates the bodies cellular immune system. Alternatively the pharmaceutical composition is engineered so that it does not include peptides which significantly stimulate the immune system.

1.0

The invention will now be described, by way of illustration only, with reference to the following examples, tables and figures accompanying the specification.

15 Figure 1 shows a graphical representation of the binding score distribution of all 554 13-mer Influenza haemagglutinin peptides bound to HLA-DRB1*0101.

Figure 2 shows a graphical representation of the binding score 20 distribution of all 554 13-mer Influenza haemagglutinin peptides bound to HLA-DRB1*0401.

Table 1 shows the value for all the factors required to determine the binding score for the 15 peptides from Influenza 25 haemagglutinin which have the highest binding affinity for HIA-DRNIADIO.

Table 2 shows the value for all the factors required to determine the binding score for the 15 peptides from Influenza 30 haemagglutinin which have the highest binding affinity for HLA-DRB1*0401.

Table 3 lists the sequence difference between HLA-DRB1*0101 and HLA-DRB1*0401.

35

Table 4 shows the torsion angles of the mutated side chains in HLA-DRR1*0401.

Example 1

20

The following method was used to confirm that the peptide PKYVKONTLKLAT, has a high affinity binding for the MHC molecule HLA-DRB1*0101.

- 5 The conformation score was calculated as follows for an oligomeric peptide having thirteen amino acid residues, herein known as a 13-mer peptide:
- a) Calculate the steric overlap between the pocket bound 10 peptide residue in the binding groove and an atom forming the pocket; this is value B.
- b) Count the number of hydrogen bonds which could be formed between the pocket bound peptide residue and atoms forming the 15 pocket; this is value C.
 - c) Calculate the strength of electrostatic interactions between any polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.
 - d) Count the number of favourable contacts between the pocket bound peptide residue and atoms forming the pocket; this is value E.
- 25 These values were then transformed into a conformation score (2) by using the following equation:

$$Z_n = (CK_2C) - (CK_3D) + (CK_4E) - (CK_1B)$$

where cK_1 to cK_4 are constants and n is the number of the 30 pocket. CK_1 , cK_2 , cK_3 and cK_4 are equal to 100, 1500, 500 and 1000 respectively.

The conformation of each rotatable side chain of the pocket bound peptide bound residue was then altered by 30° and the 35 conformation score was recalculated.

The above steps were repeated for each of the pockets and the

- 13 -

highest conformation score for each of the pockets was used to determine the binding score.

The binding score was determined by establishing values for 5 the following parameters:

- a) the number of groove-bound hydrophobic residues; this is value F.
- b) the number of non groove-bound hydrophilic residues; this is value G.
- 10 c) the number of peptide residues deemed to fit within their respective binding groove; this is value H.

The conformational scores for pockets one and five were doubled and then all the conformational scores were summed to 15 give a value J.

The above values were then imported in to the following equation in order to determine the binding score:

20 J*F2*(G*H+1)+P

The binding scores for all the 13-mer peptides from Influenza Haemagglutinin binding with MHC molecule HLA-DRB1*0401 were calculated and the resultant top 15 binding scores are 25 presented in Table 1. PKYVKQNTLKLAT has the 8th highest binding affinity for HLA-DRB1*0101 from all 554 possible overlapping 13-mer peptides.

Table 1

	Rank	Seq.	Peptide	Binding Score	P	В	С	D	E	F	G	н
	1	328	NTLKLATGMRNVP	9382500	15012	0.00	1		27	4	6	5
5	2	453	IDLTDSEMNKLFE	8288922	17964	0.72	1		40	3	6	5
	3	373	NSEGTGQAADLKS	7520420	10661	0.68	0	+0.01	30	4	7	
	4	504	HDVYRDEALNNRF	7211042	15527	0.56	1	-0.05	31	3	6	5
	5	119	PDYASLRSLVASS	7174962	17351	0.68	1		40	4	4	5
	6	461	NKLFEKTRRQLRE	7049469	19407	0.79	0	+0.01	56	2	7	5
10	7	122	ASLRSLVASSGTL	6922064	16346	0.09	0		25	4	4	5
	8	322	PKYVKQNTLKLAT	6765975	18217	1.82	1		56	3	5	5
	9	458	SEMNKLFEKTRRQ	6156822	16617	0.30	4	+0.08	44	2	7	5
	10	513	NNRFQIKGVELKS	6096900	14052	1.32	3	-0.01	30	4	7	4
	11	439	YNAELLVALENQH	5890199	14198	0.60	1		33	4	4	5
15	12	63	STGKICNNPHRIL	5887908	12776	0.75	5	-0.05	31	3	6	5
	13	50	IEVTNATELVQSS	5503551	14297	0.95	2	+0.06	39	3	5	5
	14	262	NSNGNLIAPRGYF	5284475	10102	0.09	1		21	4	5	5
	15	257	DVLVINSNGNLIA	5239292	17028	1.35	2		35	3	4	5

20

Example 2

A method as described in Example 1 was used to confirm that the peptide PDYASLRSLVASS from Influenza haemagglutinin, has 25 high affinity binding for the MHC molecule HLA-DRB1*0401.

The structure of HLA-DRB1*0401 is not known but a three dimensional model was constructed based on the known structure of HLA-DRB1*0101 by homology modelling. 10 amino acid 30 differences between the two molecules were identified (see Table 2) and HLA-DRB1*0101 was mutated using the molecular modelling package 'Quanta' to produce a model of HLA-DRB1*0401.

Then the side-chain conformations of the 10 amino acids were adjusted interactively. In most cases, torsion angles were chosen which resulted in little or no steric overlap between the mutated residues and surrounding atoms. In the case of 5 non-conserved residues which were either charged or whose side-chains were able to form hydrogen bonds, the potential to form favourable interactions was also considered. placement of 13H, 28D and 71K was such that these residues were able to form a favourable electrostatic arrangement 10 whilst at the same time, having minimum steric overlap with surrounding atoms. In the case of 30Y, this residue was positioned such that its hydroxyl group was situated close to the side-chain of 9E, where a hydrogen bond may be formed. The torsion angles chosen for the 10 mutated amino acid 15 residues were calculated in accordance with the standard conventions and are listed in Table 3.

The binding scores for all 13-mer peptides from Influenza Haemagglutinin binding with MHC molecule HLA-DRB1*0401 were 20 calculated and the resultant top 15 binding scores are presented in Table 4. PDYASLRSLVASS has the 9th highest binding affinity for HLA-DRB1*0401 from all 554 possible overlapping 13-mer peptides.

Table 2

	Table c		
	Seq. Pos.	HLA-DRB1*0101	HLA-DRB1*0401
	b9	Tryptophan	Glutamic acid
	b11	Leucine	Valine
5	b13	Phenylalanine	Histidine
	b26	Leucine	Phenylalanine
	b28	Glutamic acid	Aspartic Acid
	b30	Cysteine	Tyrosine
	b31	Isoleucine	Phenylalanine
10	b33	Asparagine	Histidine
	b37	Serine	Tyrosine
	b71	Arginine	Lysine

Table 3

15

	Residue	c1	C2	c3	c4
	b9	-61°	-71°	-2°	
	b11	168°			
	b13	-38°	-63°		
20	b26	170°	57°		
	b28	-174°	-15°		
	b30	-174°	41°		
	b31	-119°	-13°		
	b33	-95°	-2°		
25	b37	-116°	-2°		
	b71	-97°	-45°	172°	9°

Table 4

	Table											
	Rank	Seq.	Peptide	Binding Score	P	В	O	D	E	F	G	н
	1	453	IDLTDSEMNKLFE	3070823	6559	0.36	0		42	3	6	5
	2	373	NSEGTGQAADLKS	2988447	4182	0.36	0	+0.01	32	4	7	5
5	3	328	NTLKLATGMRNVP	2899375	4639	0.00	1		27	4	6	5
	4	122	ASLRSLVASSGTL	2894599	6819	0.03	0		24	4	4	5
	5	72	HRILDGIDCTLID	2820446	4623	0.60	1	+0.16	28	4	6	5
	6	461	NKLFEKTRRQLRE	2662369	7203	0.36	0	-0.11	50	2	7	5
	7	119	PDYASLRSLVASS	2616648	6184	0.11	1		32	4	4	5
10	8	188	DNFDKLYIWGIHH	2615259	5429	0.58	0		29	5	6	4
	9	322	PKYVKQNTLKLAT	2515861	6407	0.46	2		44	3	5	5
	10	232	NIGSRPWVRGLSS	2488137	4818	0.41	0	-0.02	35	4	5	5
	11	504	HDVYRDEALNNRF	2353661	4965	0.05	1	-0.07	25	3	6	5
	12	135	EFITEGFTWTGVT	2208179	3543	0.07	1		20	4	5	5
15	13	251	TIVKPGDVLVINS	2176819	5259	0.10	0		16	5	5	4
	14	257	DVĻVINSNGNLIA	2107570	6673	0.71	2		40	3	4	5
	15	439	YNAELLVALENQH	2035430	4795	0.03	1		26	4	4	5

20 Example 3

A library of backbones were constructed by examining the crystal structure of the HLA-DR1 complexed with SEB superantigen. This results in a collection of homogenous peptides 25 within the MHC binding groove. The atomic positions of the peptide backbone, as shown in the PDB file produced from the crystal, were considered to be the `representative' backbone conformation of a peptide which binds to HLA-DR1.

30 Each of the peptide backbone conformations from the known MHC class II crystallographic structures are taken and after being transformed to the same frame of reference as the 'representative' peptide had the differences between their $C\alpha/C\beta$ positions and those of the 'representative' peptide

calculated. These differences summarise the variability of Ca/CB atomic positions between the known peptides and the 'representative' peptide.

5 The differences were doubled to take into account the fact that the variability of peptides thus far crystallised may not fully represent the true variability of peptides binding to MHC class II molecules. The differences were then used to define regions within which peptide Cq and CB atoms centres 10 are constrained to lie.

An exhaustive search was then made through candidate peptide Starting from the 'representative' peptide candidates are generated by adjusting backbone ϕ and ψ angles 15 in ten degree steps from the N-terminus to the C-terminus.

An adjustment was rejected if it led to any $C\alpha$ or $C\beta$ atom centre being outside the allowed region, derived above. An adjustment which did not violate the constraint results in a new backbone conformation which is stored within the peptide 20 backbone library.

The x, y, and z co-ordinates of atoms in the backbones designated 0, 14, 62, 65, 75, 93, 104, 107, 112, 118, 129, 134, 141, 144 are given in Tables 5 to 18.

Table 5

	Atom type N CA C O CB N CA C C CB N CA C O CB N CA C N C O C O C O C O C O C O C O C O C O	Position in peptide 0 0 0 0 0 0 1 1 1 1 1 1 1	19.913 19.472 18.153 18.200 19.504 16.984 15.771 15.262	86.191 86.222 85.531 84.640 87.660 85.957 85.316 84.115	20.687 22.078 22.516 23.352 22.593 22.044 22.536
0 1 2 3 4 5 6 7 8 9 10 11 12	N CA C O CB N CA C O CB N	0 0 0 0 0 0 1 1	19.472 18.153 18.200 19.504 16.984 15.771 15.262	86.222 85.531 84.640 87.660 85.957 85.316	22.078 22.516 23.352 22.593 22.044
1 2 3 4 5 6 7 8 9 10 11 12	CA C O CB N CA C O CB	0 0 0 0 1 1	19.472 18.153 18.200 19.504 16.984 15.771 15.262	86.222 85.531 84.640 87.660 85.957 85.316	22.078 22.516 23.352 22.593 22.044
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 33 34 35 36 37 37 38 39 40	CA COBNACO OBNACO OBNACO OBNACO OBNACO OBNACO	112222233334444455555666667777788	14.663 14.959 14.414 12.920 12.384 14.756 12.283 10.866 10.086 10.624 8.951 6.945 6.945 6.355 6.945 7.330 6.355 5.266 4.167 4.342 5.349 3.044 1.950 1.163 0.420 0.836 1.163 0.420 1.420 1.	84.127 86.325 81.825 81.827 82.737 80.548 82.737 80.785 79.730 82.744 80.785 79.734 79.658 80.648 79.658 80.648 77.550 77.560 77.560 77.758 77.758 77.758 77.758 77.758 77.551 77.551 77.551 77.5530 77.5530 77.5530 77.5530	22.336 21.770 20.547 22.743 22.510 21.926 21.926 22.811 20.784 20.637 20.639 20.447 19.230 21.528 21.814 20.721 20.045 21.814 20.721 20.045 21.814 20.475 21.444 20.475 21.444 21.205 21.205 21.526 21.207 21.806 21.207 21.807 21

- 20 -

Table 5 continued

	Atom	Atom	Position	×	У	z
	Number	type	in peptide		•	_
	42	С	8	-4.839	75.618	20.504
5	43	0		-4.505	74.687	21.236
-	44	CB	8	-3.924	75.908	18.149
	45	N	9	-6.093	76.041	20.436
	46	CA	9	-7.113	75.382	21.236
	47	С	9	-7.976	74.424	20.403
	48	0	8899999	-8.366	74.742	19.266
	49	CB	9	·-7.963	76.413	21.973
	50	N	10	-8.203	73.232	20.971
10	51	CA	10	-8.995	72.149	20.365
	52	υo	10	-10.492	72.527	20.200
	53	0	10	-10.962	73.563	20.702
	54	CB	10	-8.830	70.835	21.191
	55	N	11	-11.238	71.661	19.523
	56	CA	11	-12.654	71.907	19.270
	57	С	11	-13.603	71.483	20.395
	58	0	11	-13.661	70.302	20.800
15	59	CB	11	-13.072	71.269	17.940
	60	N	12	-14.360	72.481	20.852
	61	CA	12	-15.363	72.337	21.898
	62	С	12	-14.758	72.166	23.281
	63	0	12	-14.785	71.069	23.853
	64	CB	12	-16.320	71.168	21.577

Table 6

	Backbone 14					
	Atom	Atom	Position	x	У	z
5	Number	type	in peptide			
	0 1	N CA	0	0.000 18.281	0.000 86.637	0.000 22.405
10	1 2 3 4 5 6 7 8 9	C O CB N CB N	0 0 1 1 1 1 2	16.799 16.250 0.000 16.174 14.768 14.098 13.053 14.090 14.723	86.756 87.880 0.000 85.601 85.553 84.393 84.588 86.846 83.223	22.715 22.720 0.000 22.931 23.287 22.569 21.908 22.869 22.680
15	11 12 13 14 15 16	CA C O CB N CA	1 2 2 2 2 2 3 3 3 3 3 4	14.182 12.659 11.952 14.470 12.242 10.845 10.219	82.013 82.164 82.431 80.825 82.022 82.086 80.681	22.093 21.901 22.884 22.994 20.649 20.317 20.423
20	18 19 20 21 22 23 24 25	O CB N CA C O CB N	4	10.898 10.669 8.980 8.245 6.863 6.283 8.071 6.427 5.135	79.694 82.621 80.660 79.430 79.586 80.680 79.059 78.504 78.479	20.101 18.906 20.898 21.010 20.344 20.413 22.472 19.710 19.082
25	26 27 28 29 30 31 32 33	CA C O CB N CA C	4 4 5 5 5 5 5 6 6 6 6 6 7 7 7	4.084 4.171 5.174 3.174 2.100 1.349 1.703	77.942 76.770 77.593 78.832 78.470 77.248 76.776 79.635	20.074 20.468 17.848 20.452 21.336 20.769 19.678 21.492
30	35 35 36 37 39 40 41 42 43	CB N CA C CB N CA C	7 7 7 7 8 8 8 8 8 8 8 8	0.381 -0.441 -1.906 -2.505 -0.346 -2.392 -3.758 -4.704	76.781 75.677 76.139 76.533 74.551 76.101 76.454 75.537 74.404 76.313	21.550 21.137 21.008 22.020 22.153 19.773 19.498 20.299 20.618 18.013

SUBSTITUTE SHEET (RULE 26)

Table 6 continued

Atom Number	Atom type	Position in peptide	×	У	z
45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64	N CC C C C C C C C C C C C C C C C C C	9 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12 12 12 12	-5.873 -6.881 -7.500 -7.243 -7.964 -8.250 -8.934 -10.393 -11.075 -8.914 -10.781 -12.127 -13.058 -13.254 -12.180 -13.551 -14.474 0.000 18.356 0.000	76.084 75.338 74.287 74.336 76.275 73.372 72.354 72.786 73.192 71.043 72.710 73.032 71.846 70.984 73.341 71.840 70.984 70	20.610 21.313 20.371 19.159 21.818 20.978 20.929 19.976 20.928 20.996 18.730 18.630 19.631 19.872 73.032 -12.127 0.000

Table 7

Backbone 62					
Atom	Atom	Position	×	У	z
Number	type	in peptide			
0	N	0	0.000	0.000	0.000
1 2 3 4 5	CA	0	18.315	86.971	22.396
2	0 0	0	16.796	86.979	22.404
3	CB	0	16.173	87.867 0.000	21.780
4	N	1	16.231	85.979	0.000 23.075
5	CA	1	14.791	85.876	23.075
7	c	1	14.286	84.665	22.451
8	o	ī	13.659	84.820	21.380
9	CB	1	14.132	87.123	22.652
10	N	2	14.595	83.487	22.989
11	CA	2	14.144	82.241	22.404
12	С	2	12.614	82.280	22.212
13	0	2	11.890	82.495	23.195
14	CB	2	14.518	81.077	23.305
15	N	1 2 2 2 2 2 3 3 3 3	12.208	82.108	20.960
16	CA	3	10.810	82.071	20.629
17	С	3	10.289	80.623	20.734
18	O CB	3	11.105	79.691	20.783
19 20	N	4	10.596	82.591	19.218
21	CA	4	8.967 8.328	80.514	20.800
22	C	4	6.861	79.228 79.356	20.852
23	ŏ	4	6.157	80.256	20.395 20.876
24	СВ	7	8.377	78.680	22.268
25	N	5	6.490	78.478	19.470
26	CA	5	5.140	78.440	18.978
27	С	5	4.171	78.141	20.139
28	0	5	4.543	77.392	21.055
29	CB	5	5.006	77.369	17.909
30	N	6	3.002	78.765	20.060
31	CA	6	1.975	78.549	21.042
32	CO	6	1.039	77.416	20.577
33	CB	6	1.276	76.842	19.503
34 35	N	4 5 5 5 5 6 6 6 6 6 7 7	1.174 0.052	79.824	21.246
35	CA	,		77.131	21.418
36 37	CA	7	-0.931	76.132	21.102
38	ō	7	-2.325 -2.553	76.784	21.008
39	СВ	7	-2.553	77.814 75.055	21.661
40	N	8	-3.166	76.177	22.174 20.179
41	CA	8	-4.518	76.638	20.179
42	c c	8	-5.491	75.631	20.020
43	ō	8	-5.155	74.441	20.754

Table 7 continued

Atom	Atom	Position	×	У	z
Number	type	in peptide			
44	CB	8	-4.845	76.793	18.545
4.5	N	9	-6.623	76.163	21.113
46	CA	9	-7.650	75.345	21.696
47	С	9	-8.161	74.329	20.655
48	0	9 9 9 9	-8.197	74.658	19.460
49	CB		-8.802	76.215	22.170
50	N	10	-8.492	73.143	21.153
51	CA	10	-9.030	72.107	20.315
52	С	10	-10.518	72.390	20.029
53	ō	10	-11.258	72.730	20.964
54	СБ	10	-8.887	70.758	21.000
55	N	11	-10.869	72.271	18.754
56	CA	11	-12.232	72.455	18.336
57	С	11	-13.047	71.182	18.641
58	ō	11	-13.155	70.312	17.764
59	CB	11	-12.284	72.752	16.847
60	N	12	-13.544	71.124	19.871
61	CA	12	-14.366	70.022	20.291
62	C	12	0.000	-12.232	72.455
63	o	12	18.332	0.000	-12.232
64	CB	12	0.000	0.000	0.000

Table 8

Backbone 65						
Atom	Atom	Position	×	У	z	
Number	type	in peptide		-		
0 1 1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 100 11 12 13 14 4 15 16 17 118 119 220 221 223 224 225 226 227 228 239 30 31 1 32 2 33 3 34 35 36 37 38 39 40 41 42	м C c o C n C n C c o C n C n C c o C n C n C n C n C n C n C n C n C n C	0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8	0.000 18.487 16.990 16.510 0.000 16.279 14.844 14.178 13.234 14.301 14.699 14.144 12.616 11.950 14.457 12.150 10.891 9.029 8.3766 6.930 6.309 8.365 6.484 5.139 4.150 4.487 4.985 3.002 1.959 0.861 0.134 -0.959 -1.983 1.700 -1.631 -3.087 -4.156 -5.496	0.000 86.641 86.870 0.000 85.796 85.866 84.664 84.83 82.241 82.223 81.109 82.065 81.109 82.065 80.624 79.773 80.419 79.322 80.35 80.419 79.322 80.35 80.624 79.773 87.140 79.322 80.357 80.419 77.274 78.737 78.737 78.737 77.634 77.533 76.942 76.952 76.952 76.242	0.000 22.418 22.533 22.287 0.000 23.668 23.065 22.417 21.612 22.444 22.248 22.249 23.038 23.032 20.895 20.608 419.902 20.484 19.902 20.484 19.902 20.484 19.902 20.484 19.912 20.363 21.286 21.573 21.2628 21.573 20.366 20.0366 20.0366	

- 26 -

Table 8 continued

	Atom Number	Atom type	Position in peptide	x	У	z
5	43 44 45 46 47 48 49	O CB N CA C O CB	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-6.146 -3.906 -5.817 -7.058 -7.606 -7.311 -8.071	75.692 76.820 76.283 75.736 74.721 74.855 76.849	18.775 17.831 20.964 21.439 20.416 19.219 21.649
LO	50 51 52 53 54	N CA C O CB	10 10 10 10	-8.339 -8.959 -10.421 -10.685 -8.919 -11.294	73.746 72.751 73.147 73.773 71.398 72.734	20.940 20.108 19.824 18.787 20.799 20.735
15	55 56 57 58 59 60 61 62 63	N CA C O CB N CA C O	11 11 11 11 11 12 12 12	-12.689 -13.474 -13.031 -12.873 -14.572 -15.436 0.000 18.675	73.067 71.860 71.253 74.262 71.556 70.486 -12.689	20.735 20.635 20.085 19.099 19.715 20.766 20.348 73.067 -12.689

WO 98/59244

PCT/GB98/01801

- 27 -

Table 9

Backbone 7	5				
Atom	Atom	Position	x	У	z
Number	type	in peptide		•	_
0	N	0	0.000	0.000	0.000
1 2	CA	0	18.442	86.539	22.377
3	C	0	16.947	86.419	22.136
4	0	0	16.452	86.839	21.066
5	CB	0	0.000 16.265	0.000 85.822	0.000 23.109
6	N CA	1 1	14.823	85.676	23.109
7	CA	1 1	14.466	84.417	22.277
8	0	1	14.197	84.487	21.057
9	СВ	1 1	14.218	86.875	22.338
10	N	2	14.505	83.290	22.985
11	CA	2	14.144	82.013	22.404
12	c	2	12.615	81.942	22.214
13	0	2	11.895	81.727	23.200
14	CB	2	14.601	80.882	23.308
15	N	2 3 3 3 3 3	12.201	82.159	20.971
16	CA	3	10.808	82.078	20.626
17	С	3	10.331	80.615	20.726
18	0	3	11.176	79.709	20.772
19	СВ	3	10.592	82.592	19.213
20 21	N	4	9.013	80.465	20.789
21	CA	4	8.414	79.160	20.836
23	С	4	6.944	79.245	20.377
24	0	4	6.322	80.304	20.544
25	CB	4	8.478 6.482	78.609	22.251
26	N CA	5	5.116	78.145	19.793
27	CA	5	4.181	78.053 77.969	19.354 20.577
28	Ö	2	4.609	77.470	21.629
29	СВ	4 5 5 5 5 5 6	4.932	76.823	18.483
30	N	5	2.974	78.490	20.389
31	CA		1.974	78.445	21.420
32	c	6	0.736	77.679	20.910
33	o	6	0.349	77.867	19.748
34	СВ	6	1.576	79.855	21.821
35	N	6 6 7 ?	0.206	76.836	21.788
36	CA.	7	-0.980	76.086	21.478
37	С	7	-1.844	76.872	20.470
38	0	7	-1.448	77.977	20.071
39	CB	7	-1.778	75.828	22.745
40 41	N	8	-2.952	76.249	20.088
41	CA	8	-3.885	76.873	19.189

Table 9 continued

Atom Number	Atom type	Position in peptide	x	У	z
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	C O CB N CA C O CB N CA C O CB N CA C C O CB N CA C C O CB N CA C C C C C C C C C C C C C C C C C	8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12	-5.324 -6.195 -3.604 -5.491 -6.786 -7.424 -7.209 -7.681 -8.142 -8.840 -10.312 -11.149 -12.546 -13.321 -14.483 -15.343 0.000 18.817 0.000	73.833 71.532 72.774 73.108 72.011 71.509 74.445 71.674 70.702 -12.546	19.579 18.693 17.762 20.865 21.391 20.535 19.314 21.388 21.219 20.556 20.334 19.314 21.394 21.275 21.233 20.475 19.460 20.5540 21.023 20.475 19.460 73.108 -12.546 0.000

Table 10

Backbone 93					
Atom	Atom	Position	x 7	, ;	z
Number	type	in peptide			
0 1 2 3 4 5 6 6 7 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 29 30 31 32 33 34 35 36 37 37 38 39 40 41 42 43	N CA C O CB N CA C	0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8	0.000 18.249 16.910 16.646 0.000 14.782 14.078 12.999 13.932 14.712 14.144 12.179 10.775 10.163 10.712 10.564 9.085 8.374 7.026 6.568 8.130 6.482 5.203 4.087 4.298 5.163 2.980 1.833 1.164 1.603 0.839 0.169 0.585 -2.092 2.657 -0.300 -4.853 -4.853		0.000 21.629 22.345 23.139 0.000 22.622 22.027 22.662 22.127 21.505 22.345 22.345 22.345 22.929 20.300 20.176 19.439 19.005 20.925 20.036 22.292 19.690 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300 20.726 20.300

Table 10 continued

Atom Number	Atom type	Position in peptide	x	У	z
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64	CB N CA C O CB	8 9 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12 12	-4.445 -6.082 -6.974 -8.018 -7.679 -8.002 -8.947 -10.274 -10.348 -9.194 -11.256 -12.539 -13.542 -13.428 -14.678 -15.731 0.000 18.616 0.000	75.782 75.791 75.97 74.312 74.928 76.089 72.199 72.187 70.899 72.533 73.179 72.288 74.524 72.054 71.281 71.2539 0.000	18.223 20.882 21.769 20.948 20.163 22.679 21.144 20.269 19.356 21.332 21.087 21.038 20.278 19.167 20.348 20.278 19.167 20.346 73.179

Table 11

table 11						
Backbone 10	4					
Atom	Atom	Position	x	У	z	
Number	type	in peptide				
0	N	0	0.000	0.000	0.000	
1	CA	0	18.400	86.585	22.355	
2	С	0	16.914	86.850	22.523	
3	0	0	16.453	87.991	22.296	
4	CB	0	0.000	0.000	0.000	
5 6	N CA	1	16.189	85.793	22.880	
7	CA	1 1	14.763	85.897	23.128	
8	0	i	14.059 12.980	84.662 84.778	22.593 21.971	
9	СВ	1	14.210	87.122	22.421	
10	N	2	14.693	83.511	22.810	
11	CA	2	14.125	82.241	22.404	
12	C	2	12.594	82.372	22.277	
13	0	2	11.945	82.807	23.241	
14	CB	2	14.465	81.169	23.424	
15	N	2 2 2 2 3 3 3 3	12.104	82.026	21.093	
16	CA	3	10.690	82.048	20.837	
17	С	3	10.159	80.604	20.723	
18	0	3	10.919	79.713	20.317	
19 20	CB N	3	10.406	82.801	19.548	
21	CA	4	8.902	80.444	21.120	
22	C	4	8.250	79.166	21.029	
23	Ö	4	6.905 6.415	79.319 80.450	20.290 20.160	
24	CB	4	8.009	78.605	22.420	
25	N	ξ.	6.401	78.185	19.817	
26	CA	5	5.130	78.158	19.147	
27	С	5	4.011	77.862	20.165	
28	0	5	4.164	76.935	20.975	
29	CB	5 5 5 5 6	5.135	77.091	18.066	
30	N	6	2.968	78.68Ò	20.096	
31 32	CA	6	1.823	78.502	20.947	
32	CO	6	1.166	77.138	20.656	
34	CB	6 6	1.718	76.360	19.864	
35	N CD	7	0.819	79.617 76.906	20.708	
36	CA	7	-0.707	75.699	21.334 21.135	
37	c c	7	-2.213	76.030	21.133	
38	ō	7	-2.793	76.357	22.129	
39	СВ	7	-0.435	74.724	22.267	
40	N	8	-2.754	75.961	19.873	
41	CA	8	-4.157	76.194	19.670	
.42	C	8	-4.974	75.368	20.684	
43	0	8	-4.444	74.387	21.228	

- 32 -

Table 11 continued

	x 7	7 z	
45	4.550 6.200 7.100 8.146 8.997 7.800 8.007 8.007 8.003 8.003 8.181 1.243 3.529 3.514 2.537 3.529 4.310 0.000 8.422	75.824 2: 75.134 2: 74.358 2: 74.991 2: 73.038 2: 72.919 2: 73.752 1: 70.924 2: 72.294 2: 72.297 1: 74.537 74.537 2: 71.549 2: 70.695 2: 70.000 -1	8.256 0.911 1.794 0.969 0.328 2.704 1.000 0.320 0.320 9.177 0.850 0.860 0.086 8.847 0.152

Table 12

Backbone 10	17				
Atom Number	Atom type	Position in peptide	x	У	z
0 1 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 12 13 14 11 15 16 17 18 19 20 21 22 22 22 24 22 5 26 27 27 28 29 30 31 32 23 33 34 35 5 36 37 38 39 40 41 42 43	N CA C O CB N CA C	0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8	0.000 18.468 16.971 16.491 0.000 16.260 14.825 14.159 13.215 14.282 14.680 14.125 14.131 10.723 10.187 10.876 10.472 9.010 8.346 6.465 5.120 4.131 4.469 0.842 0.843 0.846 0.842	0.000 86.641 87.990 0.000 85.796 84.664 84.830 87.132 83.484 82.241 82.2381 82.265 80.624 79.730 82.035 82.065 80.624 79.730 79.140 79.322 80.350 79.140 79.322 80.350 79.140 79.322 80.350 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.533 79.534 76.952 76.952 76.952 76.952 76.952	0.000 22.418 22.533 22.287 0.000 22.868 23.065 22.417 21.612 22.424 22.746 22.22.48 22.089 23.038 20.481 19.902 20.895 20.491 20.891 21.20364 19.718 19.212 20.363 21.128 20.275 21.280 22.2422 20.048

Table 12 continued

Atom Number	Atom type	Position in peptide	x	У	z
44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63 64	CB CB CC CB CC CC CC CC CC CC CC CC CC C	8 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12	-3.925 -5.836 -7.077 -7.625 -7.330 -8.990 -8.158 -8.977 -10.440 -10.703 -8.938 -11.313 -12.706 -13.493 -13.050 -12.892 -14.591 -15.455 0.000 -18.675	71.556 70.486 -12.708	17.831 20.964 21.439 20.416 19.219 20.940 20.940 20.108 19.824 18.787 20.735 20.635 19.099 19.715 20.766 20.348 73.067 -12.708

Table 13

Backbone 11	2	_			
Atom	Atom	Position	×	У	z
Number	type	in peptide			
0	N	0	0.000	0.000	0.000
2	CA	0	18.408 16.919	86.726 86.606	22.399
2 3 4	C		16.449	87.028	22.121
4	CB	0	0.000	0.000	0.000
5	N	1	16.215	86.005	23.077
5 6	CA	1	14.774	85.858	22.981
7	c c	i	14.438	84.649	22.125
8	ŏ	ī	14.190	84.795	20.907
9	СВ	ī	14.176	87.097	22.337
10	N	2	14.470	83.480	22.761
11	CA	2	14.125	82.241	22.093
12	l c	2	12.600	82.176	21.872
13	0	2	11.849	82.152	22.858
14	CB	2 2 2 3 3 3 3	14.572	81.057	22.932
15	N	3	12.224	82.187	20.598
16	CA	3	10.839	82.083	20.230
17	С	3	10.319	80.669	20.557
18 .	0	3	11.133	79.744	20.692
19	CB	3	10.674	82.359	18.745
20	N	4	9.001	80.583	20.701
21	CA	4	8.361	79.323	20.960
22	С	4	6.868	79.411	20.585
23	0	4	6.126	80.158	21.239
24	CB	4	8.500	78.961	22.429
25	N		6.516	78.676	19.537
26	CA	5 5 5	5.150	78.615	19.095
27	С	5	4.229	78.301	20.291
28	0	5	4.706	77.734	21.285
29	CB	5 6	4.995	77.540	18.033
30	N	6	2.976	78.716	20.149
31	CA	6	1.986	78.455	21.158
32	С	6	0.948	77.449	20.621
33	0	6	1.060	77.031	19.459
34 ·	CB	6	1.291	79.747	21.552
35	N	7	0.020	77.088	21.499
36 37	CA	7	-1.045	76.194	21.133
38	C	7	-2.219	76.999	20.540
38 39	0	7	-2.062	78.205	20.301
40	CB	7	-1.517	75.422	22.353
41	N CP	8	-3.314	76.286	20.301
42	CA	8	-4.508	76.904	19.793
43	C	8	-5.720	75.987	20.056
44	O CB	8	-5.881	74.984	19.345
45		. 8	-4.369	77.156	18.302
43	N	9	-6.483	76.357	21.078

Table 13 continued

Atom Number	Atom type	Position in peptide	×	У	z
46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64	CA C O CB N CA C O CB N CA C O CB N CA C O CB N CA C O CB N CA C O CB O CB O CB O CB O CB O CB O CB	9 9 9 9 10 10 10 10 11 11 11 11 11 11 12 12 12 12	-7.676 -7.858 -7.297 -8.883 -8.598 -10.415 -11.204 -8.455 -10.740 -12.112 -12.669 -12.384 -12.211 -13.459 -14.109 0.000 18.708 0.000	72.400	21.417 20.447 19.341 21.338 20.920 20.116 19.842 20.832 18.569 18.695 18.695 18.695 16.648 19.770 0.000

- 37 -

Table 14

Backbone 1	18				
Atom	Atom	Position	×	У	z
Number	type	in peptide			
0	N	0	0.000	0.000	0.000
	CA	0	18.471	86.536	22.407
2	C	0	16.968	86.701	22.266
3	0	0	16.498	87.742	21.755
1 2 3 4 5 6 7 8	CB	0	0.000	0.000	0.000
5	N	1	16.246	85.665	22.686
6	CA	1	14.795	85. 69 0	22.663
7	C	1	14.271	84.435	21.986
8	0	1	13.620	84.525	20.922
9	CB	1 1	14.318	86.904	21.884
10	N O	2	14.591	83.292	22.589
11	CA	2	14.125	82.013	22.093
12	C	2	12.591	82.045	21.934
13	O CB	2	11.881	82.067	22.951
14	N	2	14.518	80.907	23.057
15	CA	1 2 2 2 2 2 3 3 3 3 3	12.165	82.081	20.677
16	CA	3	10.762	82.064	20.366
17 18	0	3	10.221	80.625	20.479
19	СВ	1 3	11.005 10.536	79.674	20.343
20	N N	1 7	8.925	82.588	18.958
21	CA	4	8.263	80.541 79.268	20.756
22	c	4	6.879	79.268	20.845
23	ŏ	4	6.325	80.457	20.171
24	СВ	1 4	8.101	78.868	22.301
25	N	5	6.413	78.195	19.716
26	CA	5	5.115	78.103	
27	l c	5	4.061	77.755	20.177
28	0	5	4.217	76.737	20.866
29	CB	5	5.122	77.034	18.027
30	N	6	3.069	78.632	20.282
31	CA	4 4 5 5 5 5 5 6 6 6 6	1.984	78.421	21.202
32	С	6	1.060	77.308	20.670
33	. 0	6	1.327	76.771	19.584
34	CB	6	1.192	79.706	21.374
35	N	7	0.048	76.997	21.472
36	CA	7	-0.928	76.012	21.093
37	C	6 7 7 7 7	-2.316	76.673	20.976
38	0_	7	-2.546	77.708	21.619
39	CB	7	-0.975	74.902	22.128
40	N	8	-3.150	76.066	20.139
41	CA	8	-4.496	76.535	19.959
42	C O	8	-5.484	75.538	20.596
43	СВ	8	-5.163	74.343	20.680
44	L CB	1 8	-4.801	76.684	18.479

Table 14 continued

Atom Number	Atom type	Position in peptide	x	У	z
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	N CA C O CB N CA C O CB N CA C C CB CCB CCB CCB CCB CCB CCB CCB C	9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12	-6.612 -7.652 -8.169 -8.200 -8.795 -8.513 -9.059 -10.544 -11.281 -8.931 -12.254 -13.135 -13.091 -12.328 -13.091 -12.328 -13.754 0.000	76.081 75.273 74.268 74.604 76.156 73.083 72.056 73.703 70.703 70.703 72.239 71.287 70.187 70.187 70.490 71.586 70.632 -12.254 0.000	19.925 20.859 20.892 18.649 18.229 18.754 18.183 16.713 19.828 20.406

Table 15

Backbone 12	9				
Atom	Atom	Position	x	У	z
Number	type	in peptide			
0	N	0	0.000	0.000	0.000
1	CA	0	18.495	86.291	22.091
2	С	0	17.099	86.364	22.686
3	0	0	16.668	87.449	23.137
4	CB	0	0.000	0.000	0.000
5 6	N	1	16.409	85.228	22.645
6	CA	1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4	15.079	85.125	23.217
7	С	1	14.331	83.972	22.570
8	0	1	13.400	84.204	21.766
9	CB	1	14.313	86.412	22.964
10	N	2	14.767	82.758	22.900
11	CA	2	14.125	81.558	22.404
12	С	2	12.611	81.805	22.245
13	0	2	11.911	81.927	23.261
14	CB	2	14.358	80.407	23.367
15	N	3	12.194	81.901	20.988
16	CA	3	10.803	82.082	20.676
17	C	3	10.173	80.727	20.297
18	0	3	10.650	80.085	19.349
19	CB	3	10.652	83.058	19.522
20	N	4	9.165	80.348	21.074
21	CA	4	8.445	79.131	20.819
22	С	4	7.047	79.462	20.257
23	0	4	6.608	80.615	20.376
24	CB	4	8.305	78.330	22.102
25	N	5	6.442	78.450	19.647
26	CA.	455555666	5.114	78.588	19.113
27	C	.5	4.079	78.178	
28	0	5	4.373	77.289	20.180
29	CB	5	4.955	77.714	17.881
30	N	6	2.945	78.866	20.145
31	CA	6	1.864	78.568	21.044
32	С	6	1.193	77.243	20.630
33	0	6	1.658	76.606	
34	CB	6	0.841		19.673
35	N	6 7 7	0.165	79.690 76.881	21.018
36	CA	1 7	-0.594		21.388
37	c	, i		75.695	21.099
38	0	7	-2.093	76.044	21.014
39	СВ	7	-2.691	76.384	22.046
40	N	8	-0.369	74.657	22.184
41	CA	8	-2.610	75 977	19.793
42	c c	8	-4.006	76.226	19.560
43	ŏ	8	-4.854	75.414	20.559
44	СВ	8	-4.305	74.533	21.237
45	N	9	-4.374	75.835	18.139
46	CA	9	-6.130	75.774	20.624
47	c	9	-7.058	75.079	21.473
47		, ,	-8.093	74.330	20.610

Table 15 continued

5	48 49	0				
10	50 51 52 53 54 55 56 57 58 59 60 61 62 63	CB N CA C O CB N CA C O CB N CA	9 9 10 10 10 10 10 11 11 11 11 12 12 12 12 12	-8.797 -7.768 -8.107 -9.049 -10.3558 -10.355 -9.337 -11.409 -13.537 -12.609 -13.742 -13.537 -12.603 -14.788 -15.877 0.000	74.974 76.066 73.013 72.181 72.962 73.921 70.929 72.493 73.142 72.155 71.595 74.353 71.968 71.114 -12.689 0.000	19.819 22.384 20.781 20.083 19.848 19.062 20.893 20.510 20.432 19.889 18.802 19.519 20.684 20.295 73.142

PCT/GB98/01801

Table 16

Backbone 134								
Atom	Atom	Position	×	У	z			
Number	type	in peptide						
0	N	0	0.000	0.000	0.000			
1	CA	0	19.230	86.312	21.629			
2 3	С	0	16.891	86.341	22.345			
3	0	0	16.627	87.271	23.139			
4	CB	0	0.000	0.000	0.000			
5 6	N	1	16.061	85.351	22.027			
6	CA	1	14.763	85.213	22.662			
7	C	1 1	14.059	83.978	22.127			
8	0		12.980	84.095	21.505			
9	CB	1	13.913	86.434	22.357			
10	N	2	14.693	82.828	22.345			
11	CA	2	12.594	81.558 81.689	21.938			
12	C	2	11.893	81.568	21.812 22.828			
13	СВ	2 2	14.465	80.486	22.828			
14	N	3	12.160	81.964	20.587			
15 16	CA	3	10.756	82.068	20.307			
17	c c	3	10.144	80.658	20.176			
18	ŏ	3	10.693	79.826	19.439			
19	СВ	1 2 2 2 2 2 3 3 3 3 3	10.545	82.834	19.005			
20	N	4	9.066	80.454	20.925			
21	CA	4	8.355	79.206	20.882			
22	С	4	7.007	79.401	20.159			
23	0	4	6.549	80.546	20.036			
24	CB	4	8.111	78.697	22.292			
25	N	5	6.463	78.283	19.690			
26	CA	5	5.184	78.295	19.035			
27	С	5	4.068	78.033	20.066			
28	0	5	4.279	77.235	20.991			
29	CB	5	5.144	77.229	17.954			
30	N	6	2.961	78.741	19.876			
31	CA	6	1.814	78.572	20.726			
32	C	6	1.146	77.213	20.434			
33	CB	4 5 5 5 5 6 6 6 6 6 7 7	1.584 0.820	76.513 79.695	19.510			
34 35	N N	9	0.150	76.899	20.486			
	CA	1 4	-0.604	75.687	21.254			
36 37	CA	1 4	-2.110	76.013	21.080			
38	0	1 4	-2.686	76.338	21.037			
39	СВ	7 7 7 7	-0.319	74.729	22.086 22.223			
40	l N	6	-2.658	75.944	19.829			
41	CA	8	-4.064	76.173	19.635			
42	c c	8	-4.872	75.344	20.653			
43	l ŏ	8	-4.333	74.368	21.198			
44	CB	l š	-4.463	75.782	18.223			
45	N	8 9	-6.101	75.791	20.882			
	CA	9						

Table 16 continued

	Atom Number	Atom type	Position in peptide	x	У	z
	47	С	9	-8.036	74.312	20.948
5	48	0	9	-8.773	74.928	20.163
-	49	CB	9	-7.698	76.089	22.679
	50	N	10	-8.021	72.999	21.144
	51	CA	10	-8.966	72.137	20.488
	52	C .	10	-10.293	72.891	20.269
	53	0	10	-10.367	73.727	19.356
	54	CB	10	-9.213	70.899	21.332
	55	N	11	-11.275	72.533	21.087
_	56	CA	11	-12.558	73.179	21.038
0	57	С	11	-13.561	72.288	20.278
- 1	58	0	11	-13.243	71.836	19.167
1	59	CB	11	-12.437	74.524	20.343
	60	N	12	-14.696	72.054	20.925
	61	CA	12	-15.750	71.281	20.326
	62	С	12	0.000	-12.558	73.179
	63	0	12	18.616	0.000	
	64	CB	12	0.000	0.000	0.000
5					0.000	0.000

Table 17

Backbone 1	41				
Atom	Atom	Position	x	У	z
Number	type	in peptide		•	-
0	N	0	0.000	0.000	0.000
1	CA	0	18.454	86.485	22.460
2	С	0	16.950	86.573	22.266
3	0	0	16.481	87.224	21.305
1 2 3 4 5 6 7	CB	0	0.000	0.000	0.000
5	N CA	1	16.227	85.893	23.151
7		1	14.776	85.918	23.128
8	C 0	1	14.252	84.663	22.452
9	СВ	1	13.601	84.752	21.387
10	N	1 1	14.299	87.132	22.349
11	CA	2	14.573	83.520	23.055
12	c	1 5	12.572	82.241	22.559
13	Ö	1 5	11.868	82.273	22.400
14	CB	2	14.499	82.483	23.398
15	N	1 2	12.141	81.135	23.523
16	CA	3	10.736	82.099	21.156
17	c	2 2 2 2 2 3 3 3 3 3	10.736	82.054	20.855
18	Ö	3	11.035	80.605	20.973
19	CB	1 3	10.489	79.698	21.214
20	N	1 4	8.911	82.573	19.449
21	CA	4	8.289	80.468	20.833
22	c	4	6.823	79.172	20.868
23	Ŏ	4	6.108	79.286 80.179	20.405
24	СВ		8.338	78.611	20.882
25	N		6.465	78.404	22.279
26	CA	4 5 5 5 5 5	5.118	78.352	19.478
27	c	5	4.147		18.981
28	0	5	4.521	78.042 77.295	20.138
29	СВ	5	4.999	77.280	21.054
30	N	6	2.972	78.656	17.911
31	CA	6	1.943	78.430	20.055 21.033
32	С	6	1.020	77.288	20.562
33	0	6	1.265	76.719	19.488
34	CB	6	1.130	79.697	21.234
35	N	7	0.034	76.991	21.401
36	CA	7	-0.938	75.983	21.081
37	С	7	-2.338	76.622	20.985
38	0	7	-2.577	77.649	21.637
39	CB	7	-0.939	74.903	22.150
40	N	9	-3.173	76.006	20.156
41	CA	8	-4.529	76.453	19.995
42	С	8	-5.492	75.437	20.641
43	0	8	-5.144	74.250	20.729
44	CB	8	-4.856	76.604	18.520
45	N	9	-6.629	75.957	21.087
46	CA	9	-7.649	75.129	21.670
47	С	9	-7.625	73.734	21.014

- 44 -

Table 17 continued

Atom Number	Atom type	Position in peptide	x	У	z
48 49 50 51 52 53 54 55 57 58 59 60 61 62 63	O CB N CA C C CB CA C C CB C CA C C CB C CB	9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 12	-6.531 -9.013 -8.822 -8.965 -10.460 -11.065 -8.334 -10.983 -12.353 -12.732 -12.400 -12.548 -13.373 -13.836 0.000 18.541	73.205 75.766 73.200 71.925 71.616 70.945 70.845 70.845 71.910 70.452 69.551 72.168 70.294 69.000 -12.353 0.000	20.765 21.470 20.803 20.155 19.939 20.788 21.005 18.840 18.805 18.020 16.992 19.958 20.380 71.910

Table 18

Backbone 14	4				
Atom	Atom	Position	×	У	z
Number	type	in peptide		•	-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 41 41 41 41 41 41 41 41 41 41 41 41 41	x 60 00 00 x	0000111 11222233333444455555666667777778888888	0.000 18.480 16.967 16.431 0.000 16.306 14.262 13.512 14.341 14.630 12.555 11.968 14.581 12.006 10.578 10.880 10.177 6.338 8.236 6.422 5.148 6.327 6.422 1.134 1.406 8.192 3.184 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.134 1.406 1.313 0.109 -0.965 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167 -3.167	0.000 86.428 86.551 87.361 0.000 85.727 84.643 84.919 87.091 82.221 82.207 82.501 80.628 79.754 80.432 80.628 80.432 80.628 80.635 77.434 80.653 77.348 76.532 77.348 76.084 77.048 76.084 76.084 76.084 74.391 76.735	0.000 22.392 22.343 21.553 0.000 23.153 23.256 22.416 21.454 22.767 22.092 23.158 22.796 20.2796 20.796 20.793 20.0667 20.167 21.020 20.292 20.167 22.424 20.190 20.737 18.081 20.423 21.553 21.1552 21.027 22.15152 22.174 20.357 20.198 20.843 20.993 20.843 20.9931 18.722

PCT/GB98/01801

.

Table 18 continued

Atom Number	Atom type	Position in peptide	x	У	z
45 46 47 48 49 50 51 52 53 54 55 57 58 59 61 62 64	и с с о с в и с о с в и с с о с в и с о с в	9 9 9 9 9 10 10 10 11 11 11 11 11 12 12 12	-6.623 -7.669 -8.201 -8.407 -8.801 -8.360 -8.894 -10.383 -11.124 -8.745 -10.734 -12.097 -12.907 -12.150 -13.575 -14.414 0.000 18.465 0.000	76.144 75.348 74.343 74.731 76.243 73.106 72.067 72.344 72.644 72.403 71.126 70.178 72.700 71.155 70.059 -12.097 0.000	21.290 21.873 20.832 19.672 22.347 21.286 20.162 21.097 21.133 18.886 18.469 18.774 17.977 16.980 19.921 20.322 72.403 -12.097 0.000

Example 4

The following method was used to identify high affinity binding peptides from Myelin Basic Protein (MBP). The binding 5 affinities for a set of MBP peptides to HLA-DRB1*0401 have been experimentally determined and published. includes all possible 13 amino acid peptides from the MBP sequence which have a hydrophobic anchor residue at the P3 position. It is known that only such peptides bind to HLA-DR 10 molecules with detectable affinity.

The same homology model of HLA-DRB1*0401 was used for this example as was used in Examples 1 and 2.

- 15 For each of the 13-mer peptides from the experimental determined set, a binding score was calculated as follows:
- a) Calculate the steric overlap between the pocket bound peptide residue in the binding groove and an atom forming the 20 pocket; this is value B.
 - b) Count the number of hydrogen bonds which could be formed between the pocket bound peptide residue and atoms forming the pocket; this is value C.
- 25
- c) Calculate the strength of electrostatic interactions between any polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.
- 30 d) Count the number of favourable contacts between the pocket bound peptide residue and atoms forming the pocket; this is value E.
- e) These values were then transformed into a conformation 35 score (Z) by using the following equation:

Zn=cK2C-cK1D+cK4E-cK1B

- 48 -

Where K_i to K_i are constants and n is the sequence position of the peptide residue (numbered from 1 to the N-terminus to 13 at the C-terminus). K_i , K_j , K_j , and K_i are equal to 100, 1500, 500 and 1000, respectively.

The conformation of each rotatable side-chain of the peptide residue was then altered by 15 degrees and the conformation score was recalculated.

10 The above steps were repeated for each residue of the peptide and the highest conformation score for each peptide residue was sued to determine the conformation score for the peptide.

At the point, the entire proceedings for establishing the 15 conformation score for the peptide were repeated another 166 times, each time using a different peptide backbone form the library of peptide backbones.

The combination of peptide backbone and peptide side-chain 20 conformations which gave the best conformation was then used to determine a binding score for the peptide.

The binding score was determined by establishing values of the following parameters:

25

- a) Calculate the steric overlap between the pocket bound peptide residue in the binding groove and an atom forming the pocket; this is value B.
- 30 b) Count the number of hydrogen bonds which could be formed between the pocket bound peptide residue and atoms forming the pocket; this is value C.
- c) Calculate the strength of electrostatic interactions 35 between any polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.

- 49 -

- d) Count the number of favourable contacts between the pocket bound peptide residue and atoms forming the pocket; this is value E.
- 5 e) Calculate the hydrophobicity of the pocket bound peptide side chains using a hydrophobicity scale disclosed in Janin et al.
- f) Calculate the number of MHC pocket residues which are 10 paired with the pocket bound peptide residues. Pairing takes place if the centre of an atom from the MHC pocket residue and the centre of an atom from the pocket bound peptide residues are no more than the sum of their van der wall radii plus one Angstrom. The value λ_n is calculated by summing the number of 15 paired residues, where n is the number of the pocket. The values of λ_n taking into account the pockets importance in binding are summed to give a value P.

The above values were then imported in to the following 20 equation in order to determine the binding score (Y):

$Y=P+bK_2C-bK_3D+bK_4E-bK_1B+bK_5He$

Wherein the values $bK_1,\ bK_2,\ bK_3,\ bK_4$ and bK_5 are 2, 40, 600, 25 10 and 200 respectively.

As can be seen from the results in Table 19 the top four predicted scores pertain to four peptides which appear within the top five best binders.

- 50 **-**

Table 19

вв	PEPTIDE A	FINITY	BINDING SCORE	D	E	F	В	P	н
104	HFFKNIVTPRTPP	40	4729	-0.12	11	17	97.7	3580	1.5
107	VHFFKNIVTPRTP	135	2125	-0.19	12	15	284.5	2255	0.2
104	PVVHFFKNIVTPR	161	4528	-0.06	15	12	337.6	4565	1.4
104	FSWGAEGQRPGFG	298	5205	-0.15	12	10	169.7	4670	-0.3
104	KGFKGVDAQGTLS	460	4353	-0.09	9	13	66.2	3145	1.9
112	KYLATASTMDHAR	479	2672	-0.09	13	15	106.8	1480	2.4
129	SKYLATASTMDHA	601	498	-0.06	11	13	275.7	620	0.4
141	RGLSLSRFSWGAE	1213	4140	-0.05	17	15	81.4	3455	1.7
62	TGILDSIGRFFGG	2942	337	0.04	21	17	25.3	-8	-0.0
0	RFFGGDRGAPKRG	3403	3218	-0.24	20	14	369.1	3100	1.6
104	NIVTPRTPPPSQG	6615	1971	0	10	11	306	2090	0.8
14	DSIGRFFGGDRGA	7268	1904	-0.08	8	15	37.3	1640	0.2
0	SRFSWGAEGQRPG	8352	1735	-0.08	20	13	466.8	1965	0.8
104	SKIFKLGGRDSRS	8494	1387	-0.1	10	10	149.2	825	2.8
118	SDYKSAHKGFKGV	8510	1864	-0.27	14	14	14.2	775.	0.7
66	STMDHARHGFLPR	8860	1886	-0.21	14	15	191.3	1410	2.2
104	NPVVHFFKNIVTP	12870	1347	-0.11	12	10	332.5	1690	0.2
104	GTLSKIFKLGGRD	16000	4152	-0.11	17	10	118	3775	1.1
93	GRFFGGDRGAPKR	18467	244	-0.11	8	9.	161	-175	2.3
75	KIFKLGGRDSRSG	25358	2185	-0.13	19	12	279.4	2060	1.4
0	FGYGGRASDYKSA	26397	1301	-0.12	15	15	306.1	1530	-0.4
0	PGFGYGGRASDYK	35200	3485	0.01	14	13	183.5	3155	1.4
144	GILD8IGRFFGGD	44400	2031	-0.09	21	14	32.1	1745	-0.
134	KNIVTPRTPPPSQ	59000	1077	-0.04	9	10	45.9	340	3.1
0	KGVDAQGTLSKIF	100000	2067	-0.11	24	15	695.2	2795	0.3

KEY - BB = NUMBER OF THE BACKBONE CHOSEN FROM THE LIBRARY

- 51 -

PCT/GB98/01801

CLATMS

20

WO 98/59244

- A method for the prediction of the binding affinity of a peptide to a major histocompatibility (MHC) class II
 molecules comprising;
 - a) ascertaining the characteristics of a MHC molecule binding groove.
- b) presenting a selected peptide to the MHC molecule and ascertaining a first conformation score for each pocket bound 10 peptide side-chain.
 - c) amending the conformation of each pocket bound peptide side-chain and ascertaining a second conformation score,
 - d) repeating step 3 with alternative conformations of each peptide pocket bound side-chain,
- 15 e) choosing the highest conformation score for each pocket bound peptide side-chain in each binding groove pockets, herein known as 'the pocket', and
 - f) combining the highest conformation score for each pocket and ascertaining a binding score for the complete peptide.
 - A method according to claim 1 which further comprises the step of compiling information on all peptide fragments in a protein and comparing the binding scores.
- 25 3. A method according to any preceding claim wherein the conformation score is ascertained by at least one of the following parameters:
- a) the number of favourable contacts between MHC residues forming one of the pockets and the pocket bound peptide 30 residue; this is value E
 - b) the steric overlap between the pocket bound peptide residue bound in the pocket and an atom forming the pocket; this is value B,
- c) the number of hydrogen bonds which could be formed between 35 the pocket bound peptide residue and an atom forming the pocket; this is value C,
 - d) the strength of electrostatic interactions between any

polar atoms of the pocket bound peptide residue and any polar atoms forming the pocket; this is value D.

- 4. A method according to claim 3 wherein the steric overlap 5 between the pocket bound peptide residue and the atoms forming the pocket can not be greater than 0.35 Angstroms.
- 5. A method according to claim 3 wherein a favourable contact occurs when an atom from an MHC residue and an atom 10 from the peptide residue have their centres separated by no more than the sum of their radii plus 0.5 Angstroms and are not overlapping.
- A method according to the preceding claims wherein values
 B to E are imported into a first equation, to give a conformation score (Z)
- 7. A method according to claim 6 wherein the first equation is $Z_n=(CK_2C)-(CK_3D)+(CK_4E)-(CK_1B)$, where CK_1 to CK_4 are 20 constants and n is the number of the pocket.
 - 8. A method according to claim 7 wherein cK_1 is between 50 and 150.
- 25 9. A method according to claim 7 wherein cK₂ is between 1000 and 2000.
 - 10. A method according to claim 7 wherein cK_3 is between 250 and 750.
- 30
- 11. A method according to claim 7 wherein cK_4 is between 500 and 1500.
- 12. A method according to any preceding wherein the Z_n value 35 for a pocket is multiplied by a coefficient, L, depending on the pockets importance in binding, to give a second Z_n value.

- 53 -

- 13. A method according to any of the preceding claims wherein all the Z values are summed to give a value J.
- 14. A method according to any of the preceding claims wherein 5 the MHC residue is paired with the pocket-bound peptide residue if an atom from the MHC residue and an atom from the pocket-bound peptide residue have their centres separated by no more than the sum of their van der Waal radii plus one Angstrom.

10

- 15. A method according to claim 14 wherein a value A_n is calculated by summing the pairwise interaction frequencies of paired residues.
- 15 16. A method according to either claim 14 or 15 wherein the value A, for a pocket is multiplied by a coefficient, X, depending on the pockets importance in binding.
- 17. A method according to claim 16 wherein the A_n value for 20 the pockets are summed to give a value P.
 - 18. A method according to any preceding claim wherein the binding score is ascertained by at least one of the following parameters
- 25 a) the number of groove-bound hydrophobic residues; this is value F,
 - b) the number of non groove-bound hydrophilic residues; this is value $\ensuremath{\mathsf{G}},$
- c) the number of peptide residues deemed to fit within their 30 respective binding pocket; this is value H.
 - 19. A method according to any one of claims 13 to 18 wherein values F, G, H, J and P are imported into a second equation to give a first binding score, Y.

35

20. A method according to claim 19 wherein the second algorithm is $Y=J*F^2*(G*H+1)+P$.

- 54 -

- 21. A method according to claim 1-17 wherein the hydrophobicity of the pocket bound peptide side chains is evaluated using a hydrophobicity scale; this is value He.
- 5 22. A method according to claim 21 wherein the hydrophobicity scale ranges from -1.8 for lysine to 0.9 for cysteine.
 - 23. A method according to either of claims 21 or 22 wherein $Y=(bK_2C)-(bK_3\ D)+(bK_4E)-(bK_1B)+(bK_5He)+P.$
 - 24. A method according to claim 23 wherein bK_1 is between 1 and 5.
- 25. A method according to claim 23 wherein bK_2 is between 20 15 and 60.
 - 26. A method according to claim 23 wherein bK_3 is between 300 and 900.
- 20 27. A method according to claim 23 wherein bK_{ϵ} is between 1 and 20.
 - 28. A method according to claim 23 wherein bK_{S} is between 1 and 800.

25

10

- 29. A method according to any preceding claim wherein the steps in claim 3 are repeated for each pocket and each conformation of the peptide residue in said pocket.
- 30 30. A method according to claim 29 wherein the conformation of the peptide is altered by rotating a side chain of the peptide residue by a pre-determined amount.
- 31. A method according to either claim 29 or 30 where in the 35 conformation of the peptide is altered by changing the conformation of the peptide backbone.

32. A method according to any preceding claim wherein the steps are repeated using different peptides from a protein.

- 33. A method according to any of the preceding claim wherein the binding scores (Y) for different peptides are tabulated and compared.
- 34. A method according to any of the preceding claim which is used in the manufacture of a vaccine derived from a peptide 10 identified by said method.
- 35. A method according to any of the preceding claims which is used to remove potentially immunogenic sequences from a protein and thus reduce said proteins immunogenicity when 15 administered to an organism.
- 36. A computer conditioned to receive information characterising a peptide bound to the MHC molecule and to utilise said information to perform a procedure having the 20 following steps;
 - a) ascertaining the characteristics of a MHC molecule binding groove:
 - b) presenting a selected peptide, which is selected by a predetermined program, to the MHC molecule and ascertaining
- 25 a first conformation score;c) amending the conformation of the peptide, by way of a predetermined program, and ascertaining a second conformation
- score;
 d) repeating step 3 with other conformations of the peptide;
 30 e) selecting the peptide conformation with the highest
 - conformation score; and

 f) calculating the binding score from the conformation score.
- 37. A computer according to claim 36 further comprising a 35 step (7) which comprises repeating steps 1-4 with other peptide fragments in the protein
 - to generate information on all peptide fragments in a protein

- 56 -

so that a comparison can be made of the strength of the binding between the peptide and the $\ensuremath{\mathsf{MHC}}$ molecule.

- 38. A computer according to either claim 36 or 37 further 5 comprising a step (8) which comprises altering the conformation of the backbone of the peptide fragment.
 - 39. A pharmaceutical composition produced resultant upon to a method as claimed in anyone of claims 1 to 35.

10

15

20

25

SUBSTITUTE SHEET (RULE 26)

			GB 98/01801
IPC 6	SIFICATION OF SUBJECT MATTER G01N33/569 G01N33/564 G01N3	33/566 C07K14/705	
	to International Patent Classification (IPC) or to both national cla	ssrication and IPC	
Minimum o	S SEARCHED documentation searched (classification system followed by classification	fication symbols:	
IPC 6	GOIN CO7K		
Document	ation searched other than minimum documentation to the extent t	hat such documents are included in the	fields searched
Flactor			
Electronic	data base consulted during the international search (name of da	ta base and where practical, search ten	ms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document with indication, where appropriate of the	relevant passages	Relevant to claim No.
A	110.05.01.11		
А	WO 95 31483 A (ECLAGEN LTD) 23 November 1995		1-35
	see page 2, line 23 - line 28 see page 5, line 5 - line 12		
X	occ page 5, Time 5 - Time 12		39
X,P	WO 97 40852 A (ANERGEN INC)		39
	6 November 1997 see claims 31,32		39
A,P	31,32		1-35
		-/	
			r=
	ner documents are listed in the continuation of box C.	X Palent family members are	Seted in annex.
	regories of cited documents :	T later document published after 8	the intermational filtrop data
Conside	rit defining the general state of the art which is not seed to be of particular relevance occurrent but published on or after the international	or priority date and not in conft cited to understand the principl invention	
		"X" document of particular relevanor cannot be considered novel or	
	nt which may throw doubts on priority claim(s) or a cited to establish the publication date of another or other special reason (as apecified)	"Y" document of particular missessor	the document is taken alone
" documer	M Cublished prior to the Internetional Pro-	cannot be considered to involve document is combined with one ments, such combination being in the art.	
	an the priority date claimed citual completion of theinternational search	"&" document member of the same	patent family
		Date of mailing of the internation	nal search report
	October 1998	05/11/1998	
ame and mu	aling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 Nt 2280 HV Rimetr	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Van Rohemen C	

Form PCT/ISA/210 (second sheet) (July 1992)

Van Bohemen, C

Internetical Application No PCT/GB 98/01801

		PCT/GB 98/01801
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No
Т	T.E. JOHANSEN ET AL.: "Peptide binding to MHC class I is determined by individual pockets in the binding groove." SCANDINAVIAN JOURNAL OF IMMUNOLOGY, vol. 46, no. 2, 1 August 1997, pages 137–146, XP002081826 oxford uk see the whole document	1-35,39

international application No

INTERIOR TOTAL CENTRAL TERM	FC1/ GB 90/ 01001
Box i Observations where certain claims were found unsearchable (Continu	uation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under	Arbcle 17(2)(a) for the following reasons:
1 X Claims Nos. 36-38 because they relate to subject matter not required to be searched by this Authority Rule 39.1(i) PCT - Mathematical method	namely
Claims Noc.: because they relate to parts of the International Application that do not comply with an extent that no meaningful International Search can be carried out, specifically.	the prescribed requirements to such
Clayers Note: because they are dependent claims and are not drafted in accordance with the set.	
Box II Observations where unity of Invention is lacking (Continuation of its	em 2 of first sheet)
This International Searching Authority found multiple inventions in this international applica	ation, as follows:
As all required additional search fees were smally paid by the applicant, this inter- searchable claims.	national Search Report covers all
As all searchable claims could be searched without effort justifying an additional oil any additional fee.	tee, this Authority did not invite payment
As only some of the required additional search tess were timely paid by the applications only productions for which tests were paid, specifically claims float.	scant, this International Search Report
No required additional search fees were briefly paid by the applicant. Consequence restricted to the invention first mannoved in the claims; if is covered by claims in	nnsky, tvis intermetalonal Search Report is Jos.
	s were accompanied by the applicant's protest. the payment of additional search fees.

	information on patent family men		98/01801	
Patent document cited in search report	Patent famil member(s)	<u> </u>	Publication date	
WO 9531483 A	23-11-1995	CA 2190	195 A 101 A 944 A 670 T	05-12-1995 23-11-1995 05-03-1997 20-01-1998
WO 9740852 A	06-11-1997	AU 2421	397 A	19-11-1997
				-