Aufgabe 1.1 - Wahr oder Falsch (4 Punkte)

Sei $A = [\mathbf{a}^1, \mathbf{a}^2]$ eine Matrix mit Spaltenvektoren $\mathbf{a}^1, \mathbf{a}^2 \in \mathbb{R}^3$. Zudem sei $\mathbf{b} \in \mathbb{R}^3$ ein Vektor, von dem bekannt ist, dass es ein $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$ gibt, sodass

$$A\mathbf{x} = [\mathbf{a}^1, \mathbf{a}^2]\mathbf{x} = \begin{pmatrix} 1 & -4 \\ 0 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{b}.$$

Kreuzen Sie an, welche der folgenden Aussagen wahr und welche falsch sind.

a)
$$\mathbf{b} \in \lim \left\{ \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} \right\}.$$
 \boxtimes wahr \square falsch

Nach Voraussetzung gibt es x_1 und x_2 , sodass $A\mathbf{x} = x_1 \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + x_2 \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} = \mathbf{b}$ gilt. Also

kann **b** als Linearkombination dieser beiden Vektoren geschrieben werden und liegt somit in ihrer linearen Hülle.

b)
$$\mathbf{b} \in \lim \left\{ \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 9 \end{pmatrix} \right\}.$$
 \boxtimes wahr \square falsch

Es gilt

$$\begin{pmatrix} -2\\3\\9 \end{pmatrix} = 2 \begin{pmatrix} 1\\0\\4 \end{pmatrix} + 1 \begin{pmatrix} -4\\3\\1 \end{pmatrix}$$

und daher kann man $(-2,3,9)^T$ mit $(-4,3,1)^T$ tauschen, ohne dass sich die lineare Hülle ändert. Dies folgt aus dem Basisaustauschsatz. Somit ist

$$\lim \left\{ \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} \right\} = \lim \left\{ \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 9 \end{pmatrix} \right\}$$

und daher muss ebenfalls $\mathbf{b} \in \operatorname{lin} \left\{ \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 9 \end{pmatrix} \right\}$ gelten.

c)
$$\mathbf{x} = A^{-1}\mathbf{b}$$
. \square wahr \boxtimes falsch

Nur quadratische Matrizen können invertierbar sein. Da es sich bei A um eine 3×2 -Matrix handelt, kann A^{-1} also gar nicht existieren.

d)
$$\mathbf{a}^1$$
 und \mathbf{a}^2 sind orthogonal. \square wahr \square falsch

Es gilt

$$<\mathbf{a}^1,\mathbf{a}^2>=1\cdot(-4)+0\cdot 3+4\cdot 1=-4+4=0.$$

Daher sind \mathbf{a}^1 und \mathbf{a}^2 orthogonal.

Aufgabe 1.2 - Einfachauswahl (2 Punkte)

Es sei weiterhin

$$\mathbf{a}^2 = \begin{pmatrix} -4\\3\\1 \end{pmatrix}$$

und zusätzlich

$$\mathbf{a}^3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

gegeben. Das Skalarprodukt von \mathbf{a}^2 und \mathbf{a}^3 ist \bigotimes -7 \bigcirc -3 \bigcirc 1

 \bigcirc -1 \bigcirc 7

 \bigcirc 0 \bigcirc Keine davon

Es gilt

$$<\mathbf{a}^2,\mathbf{a}^3>=(-4)\cdot 2+3\cdot 0+1\cdot 1=-8+1=-7.$$

Aufgabe 2.1 - Einfachauswahl (2 Punkte)

In folgender Aufgabe bezeichnen wir die kanonischen Einheitsvektoren als e^1 , e^2 und e^3 .

Gegeben sei die Matrix $A=\begin{pmatrix}3&2&1\\0&1&2\\0&0&2\end{pmatrix}$ mit drei reellen Eigenvektoren $\mathbf{v}^1,\,\mathbf{v}^2$ und \mathbf{v}^3 und

jeweils zugehörigen reellen Eigenwerten λ_1 , λ_2 und λ_3 . Es ist bekannt, dass $\mathbf{v}^1 = \mathbf{e}^1$ mit zugehörigem Eigenwert $\lambda_1=3$. Zudem ist $\lambda_2=1$. Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems $A\mathbf{x} = \mathbf{b}$ mit $\mathbf{b} = (6, 0, 0)^T$.

 \bigcirc {} $\bigcirc \{\mathbf{e}^3\}$

Es gilt $Ae^1 = 3e^1$, daher gilt

$$A2e^{1} = 2Ae^{1} = 2 \cdot 3e^{1} = 6e^{1} = b.$$

Die richtige Antwort ist also $\{2e^1\}$.

Aufgabe 2.2 - Freitext (3 Punkte)

Bestimmen Sie einen Eigenvektor zum Eigenwert $\lambda_2 = 1$ mit Norm $3 \cdot \sqrt{2}$.

Um einen Eigenvektor zum Eigenwert $\lambda_2 = 1$ zu finden müssen wir das folgende homogene LGS lösen

$$(A - \lambda_2 I)\mathbf{x} = \mathbf{0} \text{ mit } (A - \lambda_2 I) = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Nach zwei Tabelauschritten (Zeile 1 durch 2 dividieren und x_3 in allen Zeilen ausser Zeile 2 eliminieren) kommt man auf ein LGS in expliziter Form gegeben durch

$$\tilde{A}\mathbf{x} = \mathbf{0} \text{ mit } \tilde{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Die Lösungsmenge ist gegeben durch

$$\mathbb{L} = \{ t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} | t \in \mathbb{R} \}.$$

Die Eigenvektoren von A zum Eigenwert $\lambda_2 = 1$ sind also gegeben durch $\mathbb{L} \setminus \{0\}$. Für einen Vektor $\mathbf{v} \in \mathbb{L} \setminus \{\mathbf{0}\}$ gilt

$$||\mathbf{v}|| = \sqrt{(-t)^2 + t^2 + 0} = \sqrt{2t^2} = \sqrt{2}|t|.$$

Setzt man diesen Ausdruck nun gleich $3 \cdot \sqrt{2}$ und löst nach |t| auf erhält man

$$\sqrt{2}|t| = 3\sqrt{2}$$
$$|t| = 3$$

Man erhält also einen Eigenvektor zum Eigenwert λ_2 mit Norm $3 \cdot \sqrt{2}$, wenn man t = 3 setzt oder t = -3 setzt. Eine richtige Lösung wäre also

$$\mathbf{v} = \begin{pmatrix} -3\\3\\0 \end{pmatrix},$$

die zweite wäre

$$\mathbf{v} = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}.$$

Aufgabe 2.3 - Einfachauswahl (2 Punkte)

Wie lautet der dritte Eigenwert λ_3 ?

\bigcirc	0
\bigcirc	4

$$\bigcirc 1$$

 $\bigcirc 6$

$$\bigotimes 2$$
 $\bigcirc 9$

Da es sich bei A um eine Matrix in Zeilenstufenform handelt, kann man die Eigenwerte einfach auf der Diagonalen ablesen. Der dritte Eigenwert muss also $\lambda_3 = 2$ sein.

Aufgabe 3.1 - Wahr oder Falsch (4 Punkte)

Es sei $A = [\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3]$ eine 3×3 Matrix, $\mathbf{b} = (1, 2, 1)^T$. Vom linearen Gleichungssystem $A\mathbf{x} = \mathbf{b}$ ist bekannt, dass die Lösungsmenge $\mathbb{L} = \{(2, 4, 2)^T + t(0, 1, 1)^T | t \in \mathbb{R}\}$ ist.

Kreuzen Sie an, welche der folgenden Aussagen wahr und welche falsch sind.

a) A ist invertierbar.

$$\square$$
 wahr \boxtimes falsch

Die Matrix A ist zwar quadratisch, aber die Lösungsmenge von $A\mathbf{x} = \mathbf{b}$ hat Dimension 1. Die Matrix ist daher nicht invertierbar, da der Rang von A somit 2 sein muss. Dies folgt aus der Formel

$$\dim(\mathbb{L}) + \operatorname{rang}(A) = n \Leftrightarrow$$

$$1 + \operatorname{rang}(A) = 3 \Leftrightarrow$$

$$\operatorname{rang}(A) = 2$$

b) 0.5 ist ein Eigenwert von A. \boxtimes wahr \square falsch Da $(2,4,2)^T \in \mathbb{L}$ ist $A \cdot (2,4,2)^T = (1,2,1)^T = 0.5 \cdot (2,4,2)^T$. 0.5 ist somit ein Eigenwert mit Eigenvektor $(2,4,2)^T$.

c) $2\mathbf{a}^1 + 5\mathbf{a}^2 + 3\mathbf{a}^3 = \mathbf{b}$ \boxtimes wahr \square falsch Da man in der Definition von \mathbb{L} den Parameter t = 1 setzen kann ist $(2, 5, 3)^T \in \mathbb{L}$ und damit gilt $A \cdot (2, 5, 3)^T = 2\mathbf{a}^1 + 5\mathbf{a}^2 + 3\mathbf{a}^3 = \mathbf{b}$.

d) Die Dimension von \mathbb{L} ist 2 \square wahr \boxtimes falsch Es handelt sich bei \mathbb{L} um einen affinen Raum, also eine verschobene lineare Hülle. Die Dimension eines affinen Raums ist per Definition die Dimension der linearen Hülle die verschoben wurde, also demnach die Dimension von $\lim\{(0,1,1)^T\}$, welche 1 ist.

Aufgabe 3.2 - Wahr oder Falsch (4 Punkte)

Es seien zusätzlich zu den Angaben in Aufgabe 3.1

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} \text{ und } C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

gegeben.

Kreuzen Sie an, welche der folgenden Aussagen wahr und welche falsch sind.

a) $B\mathbf{x} = \mathbf{c}$ ist äquivalent zu $A\mathbf{x} = \mathbf{b}$. \square wahr \boxtimes falsch Die Lösungsmenge von $A\mathbf{x} = \mathbf{b}$ ist nach Aufgabe 3.1 gegeben durch

$$\{(2,4,2)^T + t(0,1,1)^T | t \in \mathbb{R} \}.$$

Die Lösungsmenge von $B\mathbf{x} = \mathbf{c}$ ist gegeben durch

$$\{(2,4,2)^T\}$$
.

Die Lösungsmengen stimmen nicht überein und demnach können auch die linearen Gleichungssysteme nicht äquivalent sein.

- b) B ist in Zeilenstufenform. \boxtimes wahr \square falsch Es gibt keine Nullzeilen in B und die führenden Elemente sind stufenförmig angeordnet
- c) $B\mathbf{x} = \mathbf{c}$ ist ein homogenes lineares Gleichungssystem. \square wahr \boxtimes falsch Für die rechte Seite \mathbf{c} gilt $\mathbf{c} \neq \mathbf{0}$, daher ist das LGS nicht homogen.
- d) $C\mathbf{x} = \mathbf{c}$ ist äquivalent zu $B\mathbf{x} = \mathbf{c}$. \boxtimes wahr \square falsch Das lineare Gleichungssystem $C\mathbf{x} = \mathbf{c}$ ergibt sich aus dem linearen Gleichungssystem $B\mathbf{x} = \mathbf{c}$ durch Vertauschen der ersten und dritten Zeile in der erweiterten Koeffizientenmatrix. Elementare Zeilenumformungen führen zu äquivalenten linearen Gleichungssystemen.

Aufgabe 4.1 - Einfachauswahl (2 Punkte)

	x_1	x_2	x_3	b	
1	2	4	3	b_1	
2	4	16	2	b_2	
3	-6	-12	2a - 9	b_3	
4	1	2	$\frac{3}{2}$	$\frac{1}{2}\mathbf{b}_1$	$\frac{1}{2} \cdot \bigcirc$
5	0	8	-4	d	$2 - 2 \cdot 1$
6	0	0	2a	$3b_1 + b_3$	$3 + 3 \cdot 1$
7	1	0	$\frac{5}{2}$	$b_1 - \frac{1}{4}b_2$	$(4) - \frac{1}{4}(5)$
8	0	1	$-\frac{1}{2}$	$-\frac{1}{4}b_1 + \frac{1}{8}b_2$	$\frac{1}{8}$ · (5)
9	0	0	2a	$3b_1 + b_3$	6

Gegeben ist obiges Tableau zur Umformung eines linearen Gleichungssystems $A\mathbf{x} = \mathbf{b}$ mit $a,b_1,b_2,b_3,d \in \mathbb{R}$. Welchem Term entspricht d in Zeile 5?

$$\bigcirc b_2$$

 $\bigcirc 2b_1 + b_2$

$$\bigcirc -\frac{1}{4}b_1 + \frac{1}{8}b_2 \\ \bigcirc \frac{1}{2}b_1 + \frac{1}{8}b_2 + \frac{1}{4}b_3$$

Man zieht hier von Zeile ② zweimal Zeile ③ ab. Das bedeutet, dass man von b_2 zweimal b_1 abzieht und somit $b_2 - 2b_1 = -2b_1 + b_2$ erhält.

Aufgabe 4.2 - Einfachauswahl (2 Punkte)

Sei in Zeile 9 im Tableau aus Aufgabe 4.1 a=0. Für welche $\mathbf{b}=(b_1,b_2,b_3)^T$ ist das lineare Gleichungssystem lösbar? Gleichungssystem fosbar:

Alle **b** mit $b_1 = -b_2$ Alle **b** mit $b_1 = 3b_2$ Alle **b** mit $b_1 = -b_3$ Alle **b** mit $b_1 = -b_3$ Alle **b** mit $b_1 = -\frac{1}{3}b_3$ keines davon

$$\bigcirc$$
 Alle $\overset{\circ}{\mathbf{b}}$ mit $b_1 = -b_2$

 \bigcirc Alle **b** mit $b_2 = -b_3$ \bigcirc Alle **b** mit $b_3 = 3b_2$ \bigcirc Alle **b** $\in \mathbb{R}^3$

Die linke Seite von Zeile (9) ist 0. Daher muss auch die rechte Seite 0 sein, damit das lineare Gleichungssystem lösbar ist. Damit muss $3b_1 + b_3 = 0$ gelten, also $b_1 = \frac{-1}{3}b_3$.

Aufgabe 4.3 - Freitext (3 Punkte)

Sei in Zeile 9 im Tableau aus Aufgabe 4.1 a=0. Bestimmen Sie die Lösungsmenge des linearen Gleichungssystem für $\mathbf{b} = (8, -8, -24)^T$.

Wir haben

Dieses lineare Gleichungssystem ist in expliziter Form. Alle Vektoren der Form

$$\begin{pmatrix} 10 - \frac{5}{2}x_3 \\ -3 + \frac{1}{2}x_3 \\ x_3 \end{pmatrix}$$

mit $x_3 \in \mathbb{R}$ lösen somit das lineare Gleichungssystem. Die Lösungsmenge ist also gegeben durch

$$\mathbb{L} = \{ (10, -3, 0)^T + t \cdot (-\frac{5}{2}, \frac{1}{2}, 1)^T \mid t \in \mathbb{R} \}.$$

Aufgabe 4.4 - Einfachauswahl (2 Punkte)

Sei im Tableau aus Aufgabe 4.1 a=1. In diesem Fall erhält man im nächsten Schritt des Eliminationsverfahrens das obige Tableau. Welche Matrix entspricht A^{-1} ?

$$\begin{pmatrix}
-\frac{11}{4} & -\frac{1}{4} & -\frac{5}{4} \\
\frac{1}{2} & \frac{1}{8} & \frac{1}{4} \\
0 & \frac{3}{2} & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{5}{4} & -\frac{1}{4} & -\frac{11}{4} \\
\frac{1}{4} & \frac{1}{8} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{3}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{11}{4} & -\frac{1}{4} & -\frac{5}{4} \\
\frac{1}{2} & \frac{1}{8} & \frac{1}{4} \\
\frac{3}{2} & 0 & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{11}{4} & -\frac{1}{4} & -\frac{5}{4} \\
\frac{1}{2} & \frac{1}{8} & \frac{1}{4} \\
\frac{3}{2} & 1 & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \frac{5}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{2} & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{16} & \frac{1}{2} \\
-\frac{1}{6} & -\frac{1}{12} & -\frac{1}{7}
\end{pmatrix}$$

$$\begin{pmatrix}
\text{keine davon} \\
-\frac{1}{4} & \frac{1}{12} & -\frac{1}{2} \\
-\frac{1}{6} & -\frac{1}{12} & -\frac{1}{7}
\end{pmatrix}$$

Wir haben

Die Inverse von A kann von den Koeffizienten von b_1,b_2 und b_3 abgelesen werden:

$$A^{-1} = \begin{pmatrix} -\frac{11}{4} & -\frac{1}{4} & -\frac{5}{4} \\ \frac{1}{2} & \frac{1}{8} & \frac{1}{4} \\ \frac{3}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

Aufgabe 5.1 - Einfachauswahl (2 Punkte)

Sei $f: \mathbb{R}^4 \to \mathbb{R}^4$ mit $f(\mathbf{x}) = A\mathbf{x}$ und

$$A = [\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3, \mathbf{a}^4] = egin{pmatrix} lpha & 0 & 0 & 0 \ 0 & 1 & 2 & 0 \ 0 & 2 & 1 & 0 \ 0 & 0 & 0 & 3 \end{pmatrix}$$

Für welchen Wert von α gilt rang(A) = 3?

 \bigcirc -6 \bigcirc 1

 \bigcirc -3 \bigcirc 3

 \bigcirc -1 \bigcirc 6

 $\bigotimes 0$ \bigcirc Keines davon

Da die Spalten \mathbf{a}^2 , \mathbf{a}^3 und \mathbf{a}^4 linear unabhängig sind und \mathbf{a}^1 für alle $\alpha \neq 0$ ebenfalls linear unabhängig von den letzten dreien wäre, ist die richtige Antwort $\alpha = 0$.

Aufgabe 5.2 - Freitext (2 Punkte)

Sei in der Matrix aus Aufgabe 5.1 $\alpha = 2$. Berechnen Sie die Determinante $\det(A)$.

Durch Entwickeln nach der ersten Spalte ergibt sich

$$|A| = 2 \cdot \begin{vmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{vmatrix}.$$

Entwickelt man diese 3 \times 3-Matrix nun nach der dritten Spalte ergibt sich

$$|A| = 2 \cdot \begin{vmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 2 \cdot 3 \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 2 \cdot 3 \cdot (1 - 4) = 2 \cdot 3 \cdot (-3) = -18.$$

Analog hätte man zur Berechnung auch das Eliminationsverfahren verwenden können.

Aufgabe 5.3 - Wahr oder Falsch (4 Punkte)

Sei in der Matrix A aus Aufgabe 5.1 $\alpha=1$ und weiterhin $f(\mathbf{x})=A\mathbf{x}$. Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind.

a)
$$f((1,1,0,0)^T) = f((1,1,1,0)^T)$$

 \square wahr

ĭ falsch

Es gilt

$$f((1,1,0,0)^T) = (1,1,2,0)^T \neq (1,3,3,0)^T = f((1,1,1,0)^T)$$

⊠ wahr

□ falsch

Der Rang von A ist 4. Die Matrix A ist also regulär, daher ist f bijektiv und damit insbesondere injektiv.

c)
$$f((5,10,0,15)^T) = 5 \cdot f((1,2,0,3)^T)$$

⊠ wahr

 \square falsch

Da f eine lineare Abbildung ist und

$$(5, 10, 0, 15)^T = 5 \cdot (1, 2, 0, 3)^T$$

gilt folgt die Korrektheit aus der Linearität.

d) Die zweite Hauptunterdeterminante von A ist -1

□ wahr

⊠ falsch

Die zweite Hauptunterdeterminante von A ist

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

Aufgabe 5.4 - Einfachauswahl (2 Punkte)

Es sei weiter $\alpha = 1$, die Matrix

$$A = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

und ausserdem die Matrix B gegeben durch

$$B = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Seite 10 von 16

Sei $C = A \cdot B$ mit $C = (c_{ij})$. Was ist der Wert des Elements c_{32} der Matrix C?

 $\bigcirc 0$ $\bigcirc 4$ $\bigcirc 1$ $\bigcirc 6$ $\bigcirc 2$ $\bigcirc 9$

Die Matrix C ist gegeben durch:

$$C = AB = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 4 & 5 & 0 \\ 0 & 5 & 4 & 0 \\ 0 & 0 & 0 & 9 \end{pmatrix}.$$

Der Eintrag in der dritten Zeile und zweiten Spalte ist also 5. Um nur den Eintrag c_{32} zu berechnen reicht es aber wenn man lediglich die dritte Zeile von A mit der zweiten Spalte von B skalarmultipliziert, also

$$<(0,2,1,0)^T,(0,2,1,0)^T>=4+1=5.$$

Aufgabe 5.5 - Wahr oder Falsch (4 Punkte)

Sei $g: \mathbb{R}^4 \to \mathbb{R}$ eine Funktion mit stationärer Stelle $\mathbf{x}^0 \neq (0,0,0,0)^T$ und positiv definiter Hesse-Matrix

$$H_g(\mathbf{x}^0) = B = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Kreuzen Sie an, welche der folgenden Aussagen wahr und welche falsch sind.

a) Ist $\alpha = 1$, dann gilt $\det(B) = -\frac{1}{3}\det(A)$

□ wahr

⊠ falsch

Es gilt

$$|A| = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{vmatrix} = - \frac{1}{3} \begin{vmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{vmatrix} = - \frac{1}{3} |B|$$

b) Alle Eigenwerte von B sind grösser als Null

⊠ wahr

 \square falsch

Da wir wissen, dass B positiv definit ist müssen alle Eigenwerte echt grösser Null sein.

c) $\nabla g(\mathbf{x}^0) = B\mathbf{x}^0$

 \square wahr

⊠ falsch

Wir wissen, dass \mathbf{x}^0 eine stationäre Stelle ist daher gilt $\nabla g(\mathbf{x}^0) = \mathbf{0}$. Weiters gilt rang(B) = 4 und B ist daher invertierbar. Obiger Ausdruck ist also äquivalent zu

$$B^{-1}\mathbf{0} = \mathbf{x}^0$$
.

Da für alle Matrizen M gilt, dass $M\mathbf{0}=\mathbf{0}$ ist, müsste also $\mathbf{x}^0=\mathbf{0}$ gelten. Dies steht aber im Widerspruch zur Angabe $\mathbf{x}^0\neq\mathbf{0}$. Analog hätte man auch das homogene LGS

$$B\mathbf{x}^0 = \mathbf{0}$$

nach \mathbf{x}^0 lösen können und hätte gesehen, dass die einzige Lösung der Nullvektor ist, was wiederum im Widerspruch zur Angabe gestanden hätte.

d) g hat an der Stelle \mathbf{x}^0 ein Maximum

 \square wahr

ĭ falsch

Da wir wissen, dass $\nabla g(\mathbf{x}^0) = \mathbf{0}$ gilt und $H_g(\mathbf{x}^0)$ positiv definit ist, handelt es sich bei \mathbf{x}^0 um ein lokales Minimum.

Aufgabe 6.1 - Wahr oder Falsch (4 Punkte)

Sei $\mathbf{x} = (x_1, x_2)^T$. Gegeben sei die Funktion $f : \mathbb{R}^2 \to \mathbb{R}$ mit $f(\mathbf{x}) = x_1^2 - 3x_2^2$. Der Gradient und die Hesse-Matrix von f an der Stelle \mathbf{x} sind gegeben durch

$$\nabla f(\mathbf{x}) = (2x_1, -6x_2)^T$$

und

$$H_f(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & -6 \end{pmatrix}.$$

Kreuzen Sie an, welche der folgenden Aussagen wahr und welche falsch sind.

a) Der Vertikalschnitt von f ausgehend von $\mathbf{x}^0 = (1,1)^T$ in Richtung \square wahr $\mathbf{e}^1 = (1,0)^T$ ist gegeben durch $f_{\mathbf{x}^0,\mathbf{e}^1}(t) = t^2$.

Der Vertikalschnitt von f ausgehend von $\mathbf{x}^0 = (1,1)^T$ in Richtung $\mathbf{e}^1 = (1,0)^T$ ist gegeben durch $f_{\mathbf{x}^0,\mathbf{e}^1}(t) = f(\mathbf{x}^0 + t\mathbf{e}^1) = f((1+t,1)^T) = (1+t)^2 - 3$.

b) Die Richtungsableitung von f an der Stelle $\mathbf{x}^0 = (0,0)^T$ in be- \boxtimes wahr \square falsch liebige Richtung \mathbf{r} ist 0.

Es gilt $\nabla f(\mathbf{x}^0) = (0,0)^T$. Weiters gilt nach Definition, dass die Richtungsableitung von f an der Stelle \mathbf{x}^0 in Richtung \mathbf{r} gleich $f'_r(\mathbf{x}^0) = \nabla f(\mathbf{x}^0)^T \mathbf{r}$ ist. Da $\nabla f(\mathbf{x}^0)$ der Nullvektor ist gilt damit $f'_r(\mathbf{x}^0) = 0$ für alle Richtungen \mathbf{r} .

c) f hat in $\mathbf{x}^0 = (0,0)^T$ ein lokales Minimum.

□ wahr ⊠ falsch

Es handelt sich bei \mathbf{x}^0 um eine stationäre Stelle, da $\nabla f(\mathbf{x}^0) = \mathbf{0}$ gilt. Die Hesse-Matrix ist unabhängig von der betrachteten Stelle gegeben durch

$$H_f(\mathbf{x}^0) = \begin{pmatrix} 2 & 0 \\ 0 & -6 \end{pmatrix}.$$

Die Eigenwerte dieser Matrix sind $\lambda_1 = 2$ und $\lambda_2 = -6$. Da $\lambda_1 > 0$ und $\lambda_2 < 0$ gilt, ist die Hesse-Matrix von f indefinit. Es handelt sich bei \mathbf{x}^0 also um einen Sattelpunkt.

d) f ist konvex auf \mathbb{R}^2 .

 \square wahr

⊠ falsch

Aus (c) wissen wir bereits, dass die Hesse-Matrix von f unabhängig von der betrachteten Stelle indefinit ist. Wäre f konvex müsste die Matrix zumindest positiv semidefinit sein.

Aufgabe 6.2 - Einfachauswahl (2 Punkte)

Sei $\mathbf{x}^0 = (1,1)^T$. Die Tangentialebene an f an der Stelle \mathbf{x}^0 wird beschrieben durch $t_{1,\mathbf{x}^0}(\mathbf{x}) =$

Die Tangentialebene wird allgemein beschrieben durch

$$f(\mathbf{x}^0) + \nabla f(\mathbf{x}^0)^T (\mathbf{x} - \mathbf{x}^0).$$

Es gilt $f(\mathbf{x}^0) = -2$ und $\nabla f(\mathbf{x}^0) = (2, -6)^T$. Daher ist die Tangentialebene an f an der Stelle \mathbf{x}^0 gegeben durch

$$-2 + (2, -6) \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} = -2 + 2(x_1 - 1) - 6(x_2 - 1)$$

Aufgabe 6.3 - Einfachauswahl (2 Punkte)

Sei $\mathbf{x}^0 = (1,1)^T$. Das Taylorpolynom zweiter Ordnung von f an der Stelle \mathbf{x}^0 ist gegeben durch $t_{2\mathbf{x}^0} =$

Da es sich bei f um ein Polynom zweiten Grades handelt ist das Taylorpolynom zweiten Grades durch f selbst gegeben. Die richtige Antwort ist also

$$x_1^2 - 3x_2^2$$
.

Aufgabe 7.1 - Freitext (2 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(\mathbf{x}) = e^{x_1} + x_2$. Berechnen Sie den Gradienten von f an der Stelle $\mathbf{x}^0 = (2, 2)$.

Der Gradient von f an einer Stelle \mathbf{x} ist gegeben durch

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \end{pmatrix} = \begin{pmatrix} e^{x_1} \\ 1 \end{pmatrix}.$$

Ausgewertet an der Stelle \mathbf{x}^0 ist der Gradient also gegeben durch $(e^2, 1)^T$.

Aufgabe 7.2 - Wahr oder Falsch (4 Punkte)

Die Hesse Matrix von f an der Stelle $\mathbf{x}^0 = (2, 2)$ ist gegeben durch

$$H_f(\mathbf{x}^0) = \begin{pmatrix} e^2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Kreuzen Sie an, welche der folgenden Aussagen wahr und welche falsch sind.

a) $H_f(\mathbf{x}^0)$ ist symmetrisch. \boxtimes wahr \square falsch

Die Hesse-Matrix einer zweimal stetig differenzierbaren Funktion ist immer symmetrisch. Sollte man das vergessen haben überprüft man dennoch einfach, dass $H_f(\mathbf{x}^0) = H_f(\mathbf{x}^0)^T$ gilt.

b) $H_f(\mathbf{x}^0)$ ist positiv definit. \square wahr \boxtimes falsch

Die Eigenwerte von $H_f(\mathbf{x}^0)$ sind $\lambda_1 = e^2$ und $\lambda_2 = 0$. Da λ_2 nicht echt grösser als null ist, ist die Hesse Matrix lediglich positiv semidefinit.

c) $H_f(\mathbf{x}^0)$ ist invertierbar. \square wahr \boxtimes falsch

Da $H_f(\mathbf{x}^0)$ eine Nullspalte hat ist der Rang echt kleiner als 2 und damit ist sie nicht invertierbar.

d) f ist konkav. \square wahr \boxtimes falsch

Aus der Vorlesung weiss man, dass f konkav ist genau dann wenn

$$\mathbf{r}^T H_f(\mathbf{x}^0) \mathbf{r} \le 0 \quad \forall \mathbf{x}^0 \in D, \mathbf{r} \in \mathbb{R}^n$$

Da aber für das gegebene \mathbf{x}^0 die Hesse-Matrix gegeben ist durch

$$\begin{pmatrix} e^2 & 0 \\ 0 & 0 \end{pmatrix}$$

und

$$(1,0)\begin{pmatrix} e^2 & 0\\ 0 & 0 \end{pmatrix}\begin{pmatrix} 1\\ 0 \end{pmatrix} = e^2 > 0$$

gilt, kann f nicht konkav sein.

Aufgabe 7.3 - Einfachauswahl (2 Punkte)

Sei $\mathbf{x} = (x_1, x_2)^T$ und $g : \mathbb{R}^2 \to \mathbb{R}$ mit $g(\mathbf{x}) = x_1^4 x_2^2$. Der Gradient von g an der Stelle \mathbf{x} ist gegeben durch

$$\nabla g(\mathbf{x}) = \begin{pmatrix} 4x_1^3 x_2^2 \\ 2x_1^4 x_2 \end{pmatrix}.$$

Die Hesse-Matrix von g an der Stelle $\mathbf{x}^0 = (1,2)^T$ ist gegeben durch

Die Hesse Matrix von g ist gegeben durch

$$H_g(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 x_2} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_2 x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 12x_1^2 x_2^2 & 8x_1^3 x_2 \\ 8x_1^3 x_2 & 2x_1^4 \end{pmatrix}.$$

Ausgewertet an der Stelle \mathbf{x}^0 ist sie also gegeben durch

$$\begin{pmatrix} 12 \cdot 1 \cdot 4 & 8 \cdot 1 \cdot 2 \\ 8 \cdot 1 \cdot 2 & 2 \cdot 1 \end{pmatrix} = \begin{pmatrix} 48 & 16 \\ 16 & 2 \end{pmatrix}.$$