Bài tập về nhà 1

Toán học cho Trí tuệ nhân tạo

31 Tháng 3, 2025

1 Trường (field)

Định nghĩa 1. Một trường là một tập hợp F cùng với hai phép toán, ký hiệu là + và \cdot . Mỗi phép toán là một ánh xạ: $F \times F \to F$. Hai phép toán này phải thỏa mãn các tính chất sau với mọi $a,b,c \in F$:

1. Tính kết hợp của phép cộng và phép nhân:

$$a + (b + c) = (a + b) + c$$
, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

2. Tính giao hoán của phép công và phép nhân:

$$a + b = b + a$$
, $a \cdot b = b \cdot a$

3. **Phần tử trung hòa của phép cộng và phép nhân**: Tồn tại hai phần tử khác nhau 0 và 1 trong *F* sao cho:

$$a + 0 = a$$
, $a \cdot 1 = a$

4. **Phần tử đối của phép cộng**: Với mọi $a \in F$, tồn tại một phần tử $-a \in F$, gọi là **phần tử đối của** a, sao cho:

$$a + (-a) = 0$$

5. **Phần tử nghịch đảo của phép nhân**: Với mọi $a \neq 0$ trong F, tồn tại một phần tử a^{-1} hoặc $\frac{1}{a}$ trong F, gọi là **phần tử nghịch đảo của** a, sao cho:

$$a \cdot a^{-1} = 1$$

6. Tính phân phối của phép nhân đối với phép cộng:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Bài tập:

- 1. (1 điểm) Giả sử F là một trường. Chứng minh rằng $0 \cdot a = 0$ với mọi $a \in F$.
- 2. (2 điểm) Chứng minh rằng tồn tại đúng một cách xây dựng trường trên một tập có 3 phần từ phân biệt $F = \{0, 1, \alpha\}$.

2 Không gian véc-tơ và hình học trong \mathbb{R}^n

Trong phần này, ta sử dụng định nghĩa không gian véc-tơ ở **Định nghĩa 6.20**, chương **6.4**, tài liệu Đại số tuyến tính.

Bài tập:

- 1. (1 điểm) Cho không gian véc-tơ V trên trường F. Chứng minh rằng nếu $a \in F$, $\vec{v} \in V$ sao cho $a \cdot \vec{v} = \vec{0}$ thì a = 0 hoặc $\vec{v} = \vec{0}$.
- 2. (1 điểm) Giả sử $\{\vec{v}_1, \ldots, \vec{v}_n\}$ là cơ sở của không gian véc-tơ V. Chứng minh rằng với mọi $\vec{v} \in V$, tồn tại duy nhất các hệ số $\alpha_1, \ldots, \alpha_n$ sao cho $\vec{v} = \alpha_1 \vec{v}_1 + \cdots + \alpha_n \vec{v}_n$.
- 3. (1 điểm) Cho không gian véc-tơ V và $\mathcal S$ là một tập hợp các không gian gian con của V. Chứng minh rằng

$$\bigcap_{W \in S} W$$

cũng là một không gian con của V (ký hiệu ở trên là giao của tất cả các phần tử trong \mathcal{S} .

4. (1 điểm) Cho không gian véc-tơ V, không gian con $W \subset V$, và $\vec{v} \in V$. Chứng minh rằng proj $_W \vec{v}$ là nghiệm của bài toán cực trị: Tìm $\vec{w} \in W$ sao cho $\|\vec{v} - \vec{w}\|$ đạt giá trị nhỏ nhất.

3 Ý nghĩa hình học của mô hình hồi quy tuyến tính

Trong mục này, ta sẽ tìm hiểu ý nghĩa hình học của việc tìm đường thẳng hồi quy tuyến tính.

Hồi quy tuyến tính: Cho tập điểm dữ liệu $\theta = \{(x_1, y_1), \dots, (x_N, y_N)\} \subset \mathbb{R}^2$. Giả sử các giá trị x_i là đôi một khác nhau. Tìm đường thẳng y = ax + b sao cho hàm mất mát

$$L = \sum_{i=1}^{N} [y_i - (ax_i + b)]^2$$

đạt giá trị nhỏ nhất.

Đặt $S = \{x_1, \ldots, x_N\}$. Do mỗi hàm số $f : S \to \mathbb{R}$ tương ứng với việc chọn N giá trị thực, tập hợp tất cả hàm số như vậy $V := \{f : S \to \mathbb{R}\}$ có cấu trúc không gian véc-tơ tương đương với \mathbb{R}^N . Như vậy, $(y_1, \ldots, y_N) \in \mathbb{R}^N$ tương đương với hàm số $f : S \to \mathbb{R}$, $f(x_i) = y_i$

$$W := \{ f : S \to \mathbb{R} \mid \exists a, b \in \mathbb{R} : f(x_1, \dots, x_N) = a(x_1, \dots, x_N) + b(1, \dots, 1) \}.$$

Mô tả bằng lời, tập W là những hàm số từ S đến $\mathbb R$ sao cho tồn tại $a,b\in\mathbb R$ thỏa mãn

$$f(x_1,...,x_N) = a(x_1,...,x_N) + b(1,...,1).$$

Câu hỏi:

- 1. (1 điểm) Chứng minh rằng W là không gian con của V.
- 2. (1 điểm) Chứng minh rằng $\dim(W) = 2$.
- 3. (1 điểm) Chứng minh rằng nghiệm của bài toán hồi quy tuyến tính với bộ dữ liệu θ tương ứng với hình chiếu của (y_1, \ldots, y_N) lên W.