functions

Release v0.0.1

zeshu

CONTENTS:

CHAPTER

ONE

MPM_LA

1.1 mpm_la package

1.1.1 Submodules

1.1.2 mpm_la.functions module

```
mpm_la.functions.adj(a)
```

Given a martix a, return its adjugate matrix or *None* if its adjugate matrix does not exist.

Parameters

a

[np.array or list of lists] 'n x m' array

Returns

adj1

[np.ndarray or None] The determinant of a.

Examples

```
>>> a = [[1,0,-1],[-2,3,0],[1,-3,2]]

>>> d = adj(a)

>>> d

array([[6., 3., 3.],

      [4., 3., 2.],

      [3., 3., 3.]])
```

Notes

See https://en.wikipedia.org/ wiki/Gaussian_elimination for further details.

```
mpm_la.functions.det(a)
```

Given a martix a, return its determinat or *None* if its determinant does not exist.

Parameters

a

[np.array or list of lists] 'n x m' array

Returns

det

[np.float64 or None] The determinant of a.

Examples

```
>>> a = [[2, 0, -1], [0, 5, 6], [0, -1, 1]]
>>> d = det(a)
>>> d
22.0
```

```
>>> a = [[2, 0, -1], [0, 5, 6]]
>>> d = det(a)
>>> d
```

```
>>> a = [[1, 3, 2, 4], [2, 4, 5, 2], [2, 1, 3, 3], [4, 2, 1, 6]]
>>> d = det(a)
>>> d
-100.0
```

Notes

See https://en.wikipedia.org/wiki/Gaussian_elimination for further details.

```
mpm_la.functions.inv(a)
```

Given a martix a, return its inverse matrix or *None* if its inverse matrix does not exist.

Parameters

a

[np.array or list of lists] 'n x m' array

Returns

a inv

[np.ndarray or None] The determinant of a.

Examples

Notes

See https://en.wikipedia.org/ wiki/Gaussian_elimination for further details.

```
mpm_la.functions.mult(a, b)
```

Given two martices a and b, return their multipilication or None if their multipilication does not exist.

Parameters

```
a [np.array or list of lists] 'n x m' array
```

b [np.array or list of lists] 'm x l' array

Returns

mult1

[np.ndarray or None] The multipilication of a and b.

Examples

```
>>> a = [[1, 2], [3, 4]]

>>> b = [[5], [6]]

>>> d = mult(a, b)

>>> d

array([[17.],

[39.]])
```

Notes

See https://en.wikipedia.org/ wiki/Gaussian_elimination for further details.

```
mpm_la.functions.solve(a, b)
```

Given two martices a and b, for a linear system composed of them form ax = b, return its solution x or *None* if its cannot be solved.

Parameters

```
a [np.array or list of lists] 'n x m' arrayb [np.array or list of lists] 'n x 1' array
```

Returns

det b

[np.ndarray or None] The determinant of *a*.

Examples

Notes

See https://en.wikipedia.org/ wiki/Gaussian_elimination for further details.

1.1.3 Module contents

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

m

mpm_la,??
mpm_la.functions,??