A Semi-Supervised Deep Learning Framework for the Automated Detection of Online Human Trafficking

Swetha Revanur and Keanu Spies

(srevanur, keanus) @ stanford.edu

CS221: Artificial Intelligence: Principles and Techniques

Human Trafficking

• Classified advertising has facilitated the vast majority of human trafficking in the United States. The National Center for Missing and Exploited Children found that a whopping 73% of child trafficking reports occur via Backpage.com.

 This is due to a lack of robust models to identify trafficking-related classified ads. OPEN LATE Chooes 6 young girls FREE

Posted: Saturday, November 18, 2017 11:06 AM

Body Massage only \$50/hr
FREE warm table shower you will like
CALL US:
Pasadena CA91104
Choose Nice Friendly young girls% ***
Coco-19 Vivian-22 Vyoyo-22 Viucy-28 April-21 Selina-23 Vilyan-21
we offer full body oil massage, and angel touch
4 hands special available FREE body scrub
free paking
Open 7 Day a week 10:00am - 10:30pm
Copen 7 Day a week 10:00am - 10:30pm
Pasadena, 91104 Google map Vahoo map

Los Angeles, alhambra, San Gabriel, san marino, Burbank, Arcadia massage pasadena
Pasadena, 91104 Pasadena, Los Angeles, Pasadena

Post ID:

Objectives

- Design and develop an unsupervised filtering technique to identify posts likely to be related to human trafficking.
- Employ semi-supervised learning to build a more robust classifier.

Preprocessing

- A web crawler was built and deployed to recursively collect URLs for 2738 posts spanning 7 categories (Dating, MenSeekMen, MenSeekWomen, WomenSeekWomen, WomenSeekMen, Transgender, and Massage). Using batch processing, the corresponding post's ID, original text, title, date, location, phone number, and category were parsed from the HTML.
- Posts are informal and unstructured. To normalize and extract relevant textual data, preprocessing was conducted:
- 1. Strip HTML tags
- 2. Casefolding
- 3. Expand contractions
- 4. Strip phone numbers
- 5. Strip punctuations
- 6. Removal of one-character-long words
- 7. Emoji tokenization
- 8. Stop word removal

Phase I: Feature Engineering and Unsupervised Filtering

A. Feature Engineering

• Represent each post as a 19-dimensional binary feature vector:

Feature Group	Features		
Language Pattern	third-person voice, first-person plural pronouns, Shannon entropy to assess text complexity, n -grams with TF-IDF ($n = 3$)		
Keywords	[young, fresh, new, new in town, new arrival, open minded, petite, exotic, youthful, barely legal, virgin, tiny, incall, in call, new to the game, candy == 1]		
Countries of Interest	[china, vietnam, korea, thailand, asian == 1]		
Multiple Victims	[girls, women, men, boys, people, children, babes, dolls, masseuses == 1]		
Victim Weight	[victim weight ≤110]		
Spa Reference	[spa, massage == 1]		
Presence of Emojis	[* , * , * , * , * , *		

B. Unsupervised Filtering

- We obtain 1857 records from our dataset by filtering out samples that don't possess any of the binary features. This is our filtered dataset.
- fidelity of our filtering we apply the t-SNE transformation to create 2D projections of the filtered and junk feature vectors. We cluster these projections using K-means (K = 2).

Phase II cont'd.

E. Deep Ladder Networks cont'd.

Phase II: Semi-Supervised Classification

A. Expert Labeling

- Since we lack ground truth for our data, we rely on manual labels provided by experts.
- Of the 1857 records, 300 were labeled.

B. Baseline and Oracle

- The baseline is a majority algorithm for post classification. The majority algorithm classifies all the examples in the testing set as the majority class of the training set.
- The oracle is manual labeling of the entire filtered dataset.

D. Label Spreading

 Label spreading is a semi-supervised graph inference algorithm. Each unlabeled node inherits a label diffused from its similar labeled neighbors. The RBF kernel will produce a fully connected graph which is represented as a dense matrix. The KNN kernel will produce a sparse matrix which can reduce running times.

Semi-Supervised Classification Task Definition

 We have now reduced our task to a semi-supervised binary classification problem (semi-supervised due to the presence of both labeled and unlabeled data).

C. Feature Extraction with Topic Modeling

- Using Latent Dirichlet Allocation (LDA) topic modeling, we extract 7 of the most representative topics in the filtered dataset. LDA hyperparameters were tuned by evaluating the metrics proposed by Griffiths, Cao/Juan, and Arun.
- We generate a secondary 7dimensional feature vector for each post from the documenttopic distributions.

E. Deep Ladder Networks

Ladder networks

 apply deep
 neural networks
 to simultaneously
 minimize the sum
 of supervised and
 unsupervised
 cost functions by
 backpropagation
 during training.

Results

• We report the preliminary accuracies of the the various approaches when trained on a subset of the filtered dataset:

Approach	Precision	Recall	Accuracy
Baseline Majority Algorithm			56.667%
Oracle	100%	100%	100%
Label Spreading (RBF)	64%	64%	63%
Label Spreading (KNN)	70%	68%	67%
Deep Ladder Networks			80%

 We observe that our TensorFlow implementation of Deep Ladder Networks achieves the highest accuracy. On the left, is a Backpage post correctly classified as human trafficking. On the right is a post correctly classified as a consensual activity.

Selected References

- Alvari et al., A Non-Parametric Learning Approach to Identify Online Human Trafficking
- Rasmus et al., Semi-Supervised Learning with Ladder Networks