Variable aléatoire / Random Variable

1. Mise en situation / Setup

On lance une pièce 3 fois. Combien de fois obtient-on pile?

We toss a coin 3 times. How many heads do we get?

Les issues possibles sont : FFF, FFP, FPF, PFF, etc. À chaque issue, on peut associer un **nombre** de piles.

Possible outcomes: TTT, TTH, HTT, etc. To each outcome, we assign a **number** of heads.

Une **variable aléatoire** n'est pas un nombre, mais une **fonction** qui associe un nombre à chaque issue possible d'une expérience aléatoire. Par exemple, si on lance une pièce 3 fois, on peut définir une variable aléatoire X qui associe à chaque issue (comme PFP ou FFF) le *nombre de piles* obtenues. Ainsi, la variable aléatoire X transforme un résultat comme « PPF » en une valeur X=2.

A **random variable** is not a number, but a **function** that assigns a number to each outcome of a random experiment.

For example, in 3 coin tosses, we can define a random variable X that gives the number of heads. If the result is HTH, then X=2.

© À vous : dans les situations suivantes, quelle variable aléatoire pourriezvous définir ?

 On lance un dé à 6 faces. Quelles variables aléatoires pouvez-vous
définir ?

• On tire deux cartes d'un jeu. Quelles variables aléatoires pourrait-on utiliser?

aléatoire pourrait modéliser ses résultats ?
 Une urne contient 10 boules rouges et 5 bleues. On tire 3 boules au
hasard. Quelles variables aléatoires pourrait-on définir ?

2. O Définition

Une variable aléatoire est une **fonction** qui associe une valeur numérique à chaque issue d'une expérience aléatoire.

A random variable is a **function** that assigns a number to each outcome of a random experiment.

3. 🧩 Formalisation

• Univers Ω = ensemble des issues possibles

Sample space Ω : all possible outcomes

• Variable aléatoire : $X:\Omega o\mathbb{R}$

Random variable is a function from outcomes to real numbers

• Valeurs prises par X : $\{0,1,2,3\}$

Values taken by X: possible number of heads

• Loi de probabilité : P(X = x)

Probability law: gives the probability that X=x

4. III Exemple guidé / Guided Example

Énumérons toutes les issues possibles pour 3 lancers, puis déterminons les valeurs prises par X, le nombre de piles :

- PPP $\rightarrow X = 3$
- PPF, PFP, FPP $\rightarrow X=2$
- PFF, FPF, FFP $\rightarrow X = 1$
- FFF $\rightarrow X = 0$

En comptant les issues, on peut construire la **loi de probabilité** de la variable aléatoire X (nombre de piles obtenues en 3 lancers) :

Valeur de \boldsymbol{X}	0	1	2	3
P(X=x)	$\frac{1}{8}$	<u>3</u> 8	<u>3</u> 8	<u>1</u> 8

We count how many outcomes lead to each value of X, then compute the corresponding probability.

📚 Glossaire FR / EN

Français	Anglais
Variable aléatoire	Random variable
Issue	Outcome
Expérience aléatoire	Random experiment
Pile / Face	Heads / Tails
Dé	Die (plural: dice)
Tirer une boule	Draw a ball
Avec remise	With replacement
Probabilité	Probability
Loi de probabilité	Probability distribution
Loi binomiale	Binomial distribution
Épreuve de Bernoulli	Bernoulli trial
Succès	Success
Tirer au hasard	Draw at random

Français	Anglais
Indépendants	Independent
Fonction	Function
Événement	Event
Échantillon	Sample

\land À vous!

Pour chaque situation ci-dessous, la variable aléatoire est définie comme une **fonction** sur l'univers des issues. À vous de déterminer la **loi de probabilité** associée.

1. On lance une pièce **4 fois**. L'univers est constitué des suites de 4 lettres parmi F (face) et P (pile).

On définit la variable aléatoire $X:\Omega o\mathbb{N}$ par :

 $X(\omega)$ est le **nombre de fois où la pièce tombe sur Pile** dans l'issue $\omega.$ Trouvez la loi de probabilité de X.

2. On lance un dé équilibré **2 fois**. L'univers est $\Omega=\{1,2,3,4,5,6\}^2$. On définit la variable aléatoire X par :

X est le **nombre de fois qu'un multiple de 3 est obtenu** parmi les deux lancers.

Trouvez la loi de probabilité de X.

3. On tire au hasard **3 boules avec remise** dans une urne contenant 3 rouges (R) et 2 bleues (B).

Une issue ω est une suite de 3 lettres parmi R et B.

On définit la variable aléatoire X par :

X est le nombre de boules rouges tirées.

Trouvez la loi de probabilité de X.