CS 181 Spring 2017 Section 1 Notes (Linear Regression)

1 Maximum Likelihood and Least Squares Regression

1.1 Linear Regression

The simplest model for regression involves a linear combination of the input variables:

$$h(\mathbf{x}; \mathbf{w}) = w_1 x_1 + w_2 x_2 + \ldots + w_m x_m = \sum_{j=1}^m w_j x_j = \mathbf{w}^\top \mathbf{x}$$
 (1)

where $x_j \in \mathbb{R}$ for $j \in \{1, ..., m\}$ are the features, $\mathbf{w} \in \mathbb{R}^m$ is the weight parameter, with $w_1 \in \mathbb{R}$ being the bias parameter. (Recall the trick of letting $x_1 = 1$ to merge bias.)

1.2 Least squares Loss Function

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \mathbf{w}^{\top} \mathbf{x}_i \right)^2$$
 (2)

$$\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} = \operatorname*{arg\,min}_{\mathbf{w}} \mathcal{L}(\mathbf{w})$$
(3)

where $\mathbf{X} \in \mathbb{R}^{n \times m}$, where each row is one data point (i.e. one feature vector) and each column represents values of a given feature across all the data points.

Exercise: derive \mathbf{w}^* for linear regression using non-matrix form and matrix form differentiation.

1.3 Regularized Least Squares

To penalize complexity, we add a regularization term to the error function. The total error function becomes:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \mathbf{w}^{\top} \mathbf{x}_i \right)^2 + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$
 (4)

This is known as *Ridge* regression.

$$\mathbf{w}^* = (\lambda \mathbf{I} + \mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$$
 (5)

Exercise: derive \mathbf{w}^* for Lasso and Ridge regression using non-matrix form and matrix form differentiation.

1.4 Linear Basis Function Regression

We allow $h(\mathbf{x}; \mathbf{w})$ to be a non-linear function of the input vector \mathbf{x} , while remaining linear in $\mathbf{w} \in \mathbb{R}^d$:

$$h(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^{d} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x})$$
 (6)

where $\phi_j(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}^d$ denotes the jth term of $\phi(\mathbf{x})$. To merge bias, we define $\phi_1(\mathbf{x}) = 1$.

2 Practice Questions

1. MLE Estimate of the Bias Term (Bishop (3.19))

Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be our design matrix, \mathbf{y} our vector of n target values, \mathbf{w} our vector of m-1 parameters, and w_0 our bias parameter. As Bishop notes in (3.18), the least squares error function of \mathbf{w} and w_0 can be written as follows

$$\mathcal{L}(\mathbf{w}, w_0) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - w_0 - \sum_{j=1}^{m-1} w_j X_{ij} \right)^2.$$

Show that the value of w_0 that minimizes \mathcal{L} is

$$w_0^* = \frac{1}{n} \sum_{i=1}^n y_i - \frac{1}{n} \sum_{j=1}^{m-1} w_j \left(\sum_{i=1}^n X_{ij} \right)$$
$$= \frac{1}{n} \left(\mathbf{y}^\top \mathbf{1} - \sum_{i=1}^n \mathbf{w}^\top \mathbf{x}_i \right)$$
 [compare Bishop (3.19)]

and justify the result intuitively.

2. Maximum Likelihood for the Gaussian (Sequential Estimation of Parameters)

(a) We are given a data set $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ where each observation is drawn independently from a multivariate Gaussian distribution:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|(2\pi)\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$
(7)

where μ is a m-dimensional mean vector, Σ is a m by m covariance matrix, and $|\Sigma|$ denotes the determinant of Σ .

Find the maximum likelihood value of the mean, μ_{MLE} .

(b) Let $\mu_{MLE}^{(n)}$ denote the maximum likelihood estimator of the mean based on n observations. Show that

$$\mu_{MLE}^{(n)} = \mu_{MLE}^{(n-1)} + \frac{1}{n} (\mathbf{x}_n - \mu_{MLE}^{(n-1)})$$
(8)

3. OLS on Augmented Data (HTF 3.12 & MIT 6.867 Fall '12 Recitation Problems)

Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be our design matrix and \mathbf{y} be our vector of n target values. Assume \mathbf{X} and y are both centered, that is assume the mean of each row is 0. Let $\tilde{\mathbf{X}}$ be the (n+m) by m matrix formed by vertically stacking \mathbf{X} on top of $\sqrt{\lambda}\mathbf{I}$, and let $\tilde{\mathbf{y}}$ be the (n+m)-length vector formed by vertically stacking \mathbf{y} on top of a vector of m zeros.

That is, let
$$\tilde{\mathbf{X}} = \begin{bmatrix} X_{11} & \cdots & X_{1m} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nm} \\ \sqrt{\lambda} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \sqrt{\lambda} \end{bmatrix}$$
 and $\tilde{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.

(a) Show that the least squares error function induced by viewing $\tilde{\mathbf{X}}$ as our design matrix and $\tilde{\mathbf{y}}$ as our target values can be written as

$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \mathbf{w}^{\top} \mathbf{x}_i \right)^2 + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

(b) Why is this cool?