Ejercicios de evaluación de la asignatura "Métodos probabilistas"

Tema 1. Fundamentos de redes bayesianas

⊳ Fecha de entrega: 17 de diciembre de 2022.

Las instrucciones para la entrega de los ejercicios se encuentran en Innova. Por favor, léalas de nuevo detenidamente antes de enviar las soluciones.

Ejercicio 1.1.

Sea un grafo no dirigido G que contiene cinco nodos y los siguientes enlaces: A–B, A–C, B–C, B–D, C–E y D–E.

- 1. Indique cuáles de las siguientes relaciones son verdaderas y cuáles son falsas, y qué caminos entre las dos primeras variables de cada relación están activos o bloqueados.
 - a) $I_G(A,B)$
 - b) $I_G(B,C)$
 - c) $I_G(A, E)$
 - d) $I_G(D,E)$
 - e) $I_G(B,C|A)$
 - f) $I_G(C,D|A)$
 - g) $I_G(C,D|B)$
 - h) $I_G(C,D|A,B)$
 - i) $I_G(A, E|B, C)$
 - j) $I_G(A, E|B, D)$
 - k) $I_G(C,D|A,B,E)$

Sugerencia: El vídeo "Separación en grafos", disponible en http://www.ia.uned.es/~fjdiez/docencia/videos-prob-dec, le ayudará a resolver este problema.

Ejercicio 1.2.

Sea un grafo dirigido G que contiene 7 nodos y los siguientes enlaces: $A \to D$, $B \to D$, $B \to E$, $C \to E$, $D \to F$, $E \to F$ y $E \to G$.

- 1. Indique cuáles de las siguientes relaciones son verdaderas y cuáles son falsas, y qué caminos entre las dos primeras variables de cada relación están activos o inactivos.
 - a) $I_G(A,B)$
 - b) $I_G(A,C)$

- c) $I_G(A,D)$
- d) $I_G(A, E)$
- e) $I_G(A,F)$
- f) $I_G(D,E)$
- g) $I_G(A,G)$
- h) $I_G(D,G)$
- 2. Indique cuáles de las siguientes relaciones son verdaderas y cuáles son falsas, y qué caminos entre las dos primeras variables de cada relación están activos, inactivos o bloqueados.
 - a) $I_G(A, B|D)$
 - b) $I_G(A, B|E)$
 - c) $I_G(A, B|F)$
 - d) $I_G(A,D|B)$
 - e) $I_G(A, E|B)$
 - f) $I_G(C, B|G)$
 - g) $I_G(C,D|E)$
 - h) $I_G(A, F|D)$
 - i) $I_G(A, F|D, E)$
 - j) $I_G(C, F|D, E)$
 - k) $I_G(A,G|B,D)$
 - l) $I_G(A,G|C,D,F)$

Ejercicio 1.3.

La distribución de probabilidad P viene dada por la siguiente tabla.

a	b	c	P(a,b,c)
+a	+b	+c	0,12
+a	+b	$\neg c$	0,03
+a	$\neg b$	+c	0,48
+a	$\neg b$	$\neg c$	0,12
$\neg a$	+b	+c	0,02
$\neg a$	+b	$\neg c$	0,08
$\neg a$	$\neg b$	+c	0,03
$\neg a$	$\neg b$	$\neg c$	0,12

- 1. Señale cuáles de estas relaciones son verdaderas y cuáles son falsas. Para la primera y la cuarta, indique detalladamente los cálculos que ha realizado.
 - a) $I_P(A,B)$
 - b) $I_P(A,C)$
 - c) $I_P(B,C)$
 - d) $I_P(B,C|A)$

- e) $I_P(A,C|B)$
- f) $I_P(A,B|C)$
- 2. Dibuje **todos** los grafos no dirigidos que sean mapas de independencia (*I*-maps) de *P. Sugerencia*: El grafo tiene que tener un nodo por cada variable de *P.* Preste atención, porque hay más grafos de los que uno pueda pensar en principio.
- 3. Dibuje **todos** los grafos grafos dirigidos acíclicos que sean mapas de independencia (I-maps) de P.

Ejercicio 1.4.

Entre los adultos, la enfermedad A está asociada a haber padecido la enfermedad T en la infancia: el 70 % de quienes padecieron T desarrollan A, mientras que sólo el 1 % de quienes no padecieron T desarrollan A. La probabilidad de que una persona (de la que aún no sabemos si tiene A o no) haya padecido T en su infancia es del 5 %. La enfermedad A produce el síntoma S en el 80 % de los casos y la enfermedad B, cuya prevalencia es del 3 %, lo produce en el 90 %. Entre las personas que no presentan ni A ni B la prevalencia del síntoma es del 1 %. Hay además una prueba de laboratorio L que detecta B con una sensibilidad del 80 % y una especificidad del 94 %. Queremos construir un modelo probabilista para el diagnóstico diferencial de A y B.

- 1. Dibuje el grafo de una red bayesiana para este problema. (En el ejercicio siguiente tendrá que dibujar el grafo para el método bayesiano ingenuo.)
- 2. Indique qué valores toma cada variable.
- 3. Indique las probabilidades condicionadas, en forma de tablas, que definen el modelo. Puede serle útil aplicar la puerta OR, que se explica en la sección 3.2 de [1].
- 4. Señale las hipótesis que está utilizando para resolver este problema y discuta si son razonables o no, es decir, si parecen ser una buena aproximación.
- 5. Indique en una tabla cuál es el diagnóstico para cada una de las posibles combinaciones de hallazgos: síntoma presente, síntoma ausente, prueba positiva, prueba negativa, síntoma presente y prueba positiva, síntoma presente y prueba negativa, síntoma ausente y prueba positiva, y síntoma ausente con prueba negativa. Si lo desea, puede utilizar el programa OpenMarkov para completar la tabla, pero en ese caso debe realizar "a mano" y mostrar los cálculos detallados para dos de esas combinaciones.

Ejercicio 1.5.

Imagine que estamos en los años 1960 o en los 1970, en que aún no se habían inventado las redes bayesianas y el único método de diagnóstico probabilista era el bayesiano ingenuo. Resuelva el ejercicio anterior, señalando para cada apartado las diferencias entre este método y la red bayesiana.

Referencias

[1] F. J. Díez. Introducción a los modelos gráficos probabilistas. UNED, Madrid, 2007.