Física 1

Lista de Exercícios 1

Movimento Retilíneo...

- 1. Você tem que dirigir em uma via expressa para se candidatar a um emprego em outra cidade, a uma distância de 300 km. A entrevista foi marcada para as 11h15 da manhã. Você planeja dirigir a 100 km/h e parte às 8h00 da manhã para ter algum tempo de sobra. Você dirige na velocidade planejada durante os primeiros 100 km, mas depois, um trecho da estrada em obras o obriga a reduzir a velocidade para 40,0 km/h por 40,0 km. Qual a menor velocidade que você deve manter no resto da viagem para chegar a tempo na entrevista?
- 2. Um ônibus percorreu $20\,\mathrm{km}$ a $60\,\mathrm{km/h}$ e $60\,\mathrm{km}$ a $90\,\mathrm{km/h}$. Determine a velocidade escalar média do ônibus nos $80\,\mathrm{km}$ percorridos. Considere que, em cada trecho, o ônibus sempre manteve velocidade constante.
- 3. Um automóvel faz um determinado percurso em $2,00\,h$, desenvolvendo uma velocidade escalar média de $75,0\,km/h$. Se fizesse o mesmo percurso a uma velocidade escalar média de $100\,km/h$, quanto tempo ganharia?
- **4.** Uma composição ferroviária de $200\,\mathrm{m}$ de comprimento se desloca à velocidade escalar média de $20,0\,\mathrm{m/s}$. Qual é o tempo que o trem gasta para ultrapassar:
 - a) um sinaleiro?
 - b) uma ponte de 100 m de comprimento?
- **5.** Um ciclista deve percorrer 35,0 km em 1,00 h. O ciclista observa que gastou 40,0 min para percorrer 20,0 km. Qual deverá ser a velocidade escalar média para percorrer a distância restante dentro do tempo previsto?
- **6.** Uma escola de samba, ao se movimentar numa rua reta e extensa, mantém um comprimento de 2,00 km. Se ela gasta 90,0 min para passar por uma arquibancada de 1,00 km de comprimento, qual a sua velocidade escalar média?
- 7. Se a posição de uma partícula é dada por

$$x(t) = 4,00 - 12,0t + 3,00t^2 (SI)$$

- a) Qual é a velocidade da partícula em $t = 1,00 \,\mathrm{s}$?
- b) O movimento nesse instante é no sentido positivo ou negativo do eixo x?
- c) Qual é a velocidade escalar da partícula nesse instante?
- d) A velocidade escalar está diminuindo ou aumentando nesse instante? Tente responder às duas próximas perguntas sem fazer outros cálculos

- e) Existe algum instante no qual a velocidade torna-se nula? Caso a resposta seja afirmativa, para que valor de t isso acontece?
- f) Existe algum instante após t = 3,00 s no qual a partícula está se movendo no sentido negativo de x? Caso a resposta seja afirmativa, para que valor de t isso acontece?
- 8. A posição de uma partícula que se move ao longo do eixo x é dada por:

$$x(t) = 2,00t^3 - 2,00t^2 - 3,00,$$

na qual x é medido em metros e t em segundos.

- a) Determine a posição, a velocidade e a aceleração da partícula no instante 3,00 s.
- b) Calcule a velocidade média da partícula entre os instantes t = 0 s e t = 3,00 s.
- 9. O movimento de uma partícula é definido pela relação:

$$x(t) = 1.50t^4 - 1.20t^3 + 0.900t - 0.600$$

sendo x e t expressos em metros e segundos, respectivamente. Determine para o tempo de $t=2,00\,\mathrm{s}$:

a) a posição,

- b) a velocidade e
- c) a aceleração.
- 10. O movimento de uma partícula é definido pela relação

$$x(t) = 2,00t^3 - 12,0t^2 - 72,0t - 80,0,$$

na qual x e t são expressos em metros e segundos, respectivamente.

- a) Determine instante em que a velocidade é zero.
- b) Qual a posição e aceleração da partícula no instante de tempo do item anterior?
- c) Calcule a velocidade média e a aceleração média nos primeiros dois segundos.
- 11. O movimento de uma partícula é definido pela relação

$$x(t) = 2,00t^3 - 18,0t^2 + 48,0t - 16,0,$$

na qual x e t são expressos em milímetros e segundos, respectivamente. Determine:

- a) o instante em que a partícula entra momentaneamente em repouso,
- b) a posição e a velocidade no instante em que a aceleração se anula.

- 12. Um veículo elétrico parte do repouso e acelera em linha reta a uma taxa constante de $2,00\,\mathrm{m/s^2}$ até atingir a velocidade de $20,0\,\mathrm{m/s}$. Em seguida, o veículo desacelera a uma taxa constante de $1,00\,\mathrm{m/s^2}$ até parar.
 - a) Quanto tempo transcorre entre a partida e a parada?
 - b) Qual é a distância percorrida pelo veículo desde a partida até a parada?
- 13. Considere que os freios do seu carro possam produzir uma desaceleração de $5,20\,\mathrm{m/s^2}$
 - a) Se você dirige a 137 km/h e avista um policial rodoviário, qual é o tempo mínimo necessário para que seu carro atinja a velocidade máxima permitida de 90,0 km/h?
 - b) Calcule a distância que o carro percorre durante o intervalo de tempo dado como resposta no item "a"
- **14.** Em um prédio em construção, uma chave de grifo chega ao solo com velocidade de $24.0 \,\mathrm{m/s}$.
 - a) De que altura um operário a deixou cair por descuido?
 - b) Quanto tempo durou a queda?

Dado: Aceleração da gravidade igual a $9.80\,\mathrm{m/s^2}$ e despreze a resistência do ar.

- 15. Um automóvel, partindo do repouso, atinge a velocidade de 60,0 km/h em 15,0 s.
 - a) Determine a aceleração média
 - b) Determine a distância percorrida
 - c) Considerando a aceleração constante calcule quantos segundos a mais são necessários para o carro atingir a velocidade de 80,0 km/h
 - d) Calcule a distância total percorrida pelo automóvel desde o início de seu movimento até atingir essa velocidade.
- 16. Um avião a jato de grande porte precisa atingir uma velocidade de $500 \,\mathrm{km/h}$ para decolar com uma aceleração de $4{,}00 \,\mathrm{m/s^2}$. Determine o tempo que ele leva para decolar e que distância ele percorre na pista até a decolagem.
- 17. Um móvel realiza um movimento uniforme num determinado referencial. Seus espaços variam com o tempo segundo a tabela abaixo.

t(s)	1,00	2,00	3,00	4,00
$s\left(\mathrm{m}\right)$	28,0	36,0	44,0	52,0

- a) Determine a posição inicial do móvel.
- b) Calcule sua velocidade escalar.
- c) Escreva a função horária do movimento.

18. Dois móveis A e B percorrem a mesma trajetória e seus espaços são medidos a partir da origem comum. Suas funções horárias são:

$$s_A = 10.0 + 2.00t$$

$$s_B = 40.0 - 4.00t$$

Sendo s em metros e t em segundos. Determine:

- a) o instante em que ocorre o encontro
- b) a posição em que ele acontece.
- 19. Um móvel realiza um movimento uniforme num determinado referencial. Seus espaços variam com o tempo segundo a tabela abaixo.

t(s)	1,00	2,00	3,00	4,00
$s\left(\mathrm{m}\right)$	160	120	80,0	40,0

- a) Quais são o espaço inicial e a velocidade escalar do móvel?
- b) Qual a função horária do movimento?
- c) O movimento é progressivo ou retrógrado? Justifique.
- 20. Um ponto material executa MRUV, de modo que sua velocidade escalar varia no tempo conforme os dados da tabela abaixo.

\ /		,		,	4,00	· '
$v (\mathrm{m/s})$	6,00	4,00	2,00	0,00	-2,00	-4,00

a) Qual a velocidade escalar inicial?

Determine em que intervalos de tempo o movimento $\acute{\rm e}$

- b) Acelerado
- c) Retardado
- d) Progressivo
- e) Retrógrado
- **21.** Um móvel é atirado verticalmente para cima, a partir do solo, com velocidade inicial de $50.0 \,\mathrm{m/s}$. Despreze a resistência do ar e determine:
 - a) As funções horárias de movimento
 - b) o tempo de subida
 - c) a altura máxima
 - d) a posição do móvel e seu sentido de movimento após $6{,}00\,\mathrm{s}$ do lançamento
 - e) a velocidade e o instante em que atinge o solo.

22. A velocidade de um ciclista durante um trecho de uma corrida está representada no gráfico. Determine a distância percorrida pelo ciclista durante esse trecho sabendo que o ciclista levou 7,30 s para percorrê-lo.

23. Dois trens se movem no mesmo trilho quando os condutores subitamente notam que eles estão indo um de encontro ao outro. Na figura são mostradas as velocidades v dos trens em função do tempo t enquanto estão sendo freados. A escala vertical do gráfico é definida por $v_s = 40.0 \, \text{m/s}$. O processo de desaceleração começa quando a distância entre os trens é de 200 m. Qual é a distância entre os trens depois que eles param?

24. O movimento de um caminhão está representado pelo gráfico.

Determine a velocidade média, a distância percorrida nos dez primeiros segundos e em que instante o caminhão terá percorrido $73.0\,\mathrm{m}$. A velocidade do caminhão muda entre 0 e $10.0\,\mathrm{s}$?

25. A aceleração de uma partícula nos primeiros dez segundos é visualizada no gráfico.

- a) Qual a aceleração média nos cinco primeiros segundos?
- b) E nos cinco últimos segundos?
- c) Qual a aceleração média nos dez primeiros segundos?
- **26.** No instante inicial um móvel tem velocidade de $2,00\,\mathrm{m/s}$. O gráfico apresenta a aceleração do móvel em função do tempo.

- a) Qual a aceleração média nos dez primeiros segundos?
- b) Qual a velocidade do móvel no instante 5,00 s?
- c) Qual a velocidade do móvel no instante 10,0 s?
- **27.** No gráfico é ilustrada a velocidade de uma partícula que se move sobre o eixo x em função do tempo t. Conhecido que no instante 2,00 s a partícula encontra-se na posição $x=5,00\,m$, calcule:

- a) a posição da partícula nos instantes inicial, $5{,}00\,\mathrm{s}$ e $8{,}00\,\mathrm{s}$. Considerando o intervalo de $2{,}00\,\mathrm{s}$ a $8{,}00\,\mathrm{s}$, determine
- b) Considerando o intervalo de $2,00\,\mathrm{s}$ a $8,00\,\mathrm{s}$, determine a velocidade média e a aceleração média da partícula.

Exercícios ENADE

28. Com o avanço das ciências, tornou-se necessário agrupar as unidades formando os sistemas, para unificar os métodos de trabalho em todo o mundo. Atualmente, o sistema mais usado é o Sistema Internacional de Unidades (SI), padronizado em 1960 na XI Conferência Internacional de Pesos e Medidas. Esse sistema se compõe de sete unidades de base, algumas unidades derivadas, múltiplos e submúltiplos de todas elas. A importância das unidades de medida se torna clara, quando necessitamos identificar valores em diferentes unidades.

TT		1	-	D
Ur	าเต	ades	de	Base

0 333332 333 3					
Grandezas	Unidade	Símbolo			
Comprimento	Metro	m			
Massa	Quilograma	kg			
Tempo	Segundos	s			
Intensidade de Corrente Elétrica	Ampère	A			
Quantidade de matéria	Mol	mol			
Intensidade Luminosa	Candela	cd			
Temperatura Termodinâmica	Kelvin	K			

O profissional engenheiro deve dominar os princípios matemáticos envolvidos em processos de conversões de unidades, uma vez que na indústria, o mesmo pode deparar-se com equipamentos importados, que na maioria das vezes trabalham com sistemas de medidas diferentes dos quais é acostumado. Um determinado tipo de cabo diz suportar no máximo uma força de $3.75 \cdot 10^9 \, \text{g.cm/s}^2$. Qual seria esse valor expresso em unidades do S.I.?

- a) $3.75 \cdot 10^6 \,\mathrm{kg.cm/s^2}$
- b) $3.75 \cdot 10^7 \, \text{g.m/s}^2$
- c) $3,75 \cdot 10^14 \, \mathrm{kg.m/s^2}$
- d) $3.75 \cdot 10^4 \,\mathrm{kg.m/s^2}$
- e) $3,75 \cdot 10^9 \, \text{kg.m/s}^2$

29. O trânsito nas cidades está cada vez mais caótico. Apenas na cidade de São Paulo existem 7 milhões de veículos, circulando por 17 mil quilômetros de ruas e avenidas pavimentadas. O uso de aplicativos pode ajudar a evitar um pouco de stress no trânsito. Eles informam a melhor rota para chegar ao seu destino, as condições do tráfego nos locais que lhe interessam, acidentes nas vias, notícias sobre o trânsito etc. Para definir a melhor rota, estes aplicativos utilizam informações tais como a distância a ser percorrida e a velocidade média atual em cada via. Uma pessoa deseja ir de casa (ponto A) ao trabalho (ponto E). A figura abaixo ilustra as possíveis vias de acesso, identificadas com seu comprimento e velocidade média na qual os carros atualmente passam por ela. Com base nestas informações, supondo que não há perda de tempo na transição entre uma via e outra, e que as vias possam ser trafegadas em ambos os sentidos, avalie:

- a) Qual o caminho mais curto? (Justifique sua resposta)
- b) Qual o caminho mais rápido? (Justifique sua resposta)
- c) Quanto tempo será economizado utilizando o caminho mais rápido em relação ao caminho mais curto?
- **30.** Um transporte público de qualidade é um fator importante para o bom funcionamento das grandes cidades. Um dos fatores importantes para garantir a qualidade do transporte é a pontualidade dos mesmos. Uma composição do metrô irá percorrer a distância de 1 km entre duas estações. Considerando que as acelerações e desacelerações máximas são de 2 m/s^2 e que a velocidade máxima da composição é de 80 km/h, determine o menor tempo que esta composição poderá percorrer a distância entre as estações.
- 31. Em um rali de regularidade, vence a equipe que cumprir um determinado trajeto em um determinado intervalo de tempo especificado. Caso a equipe chegue antes ou depois do tempo proposto, sofrerá penalizações. O copiloto é responsável por informar ao piloto a atual situação e informar qual deve ser a média de velocidade a ser seguida para atingir o objetivo. Em um trajeto que deve ser percorrido em um total de 45 min, dividido em três trechos, a equipe percorreu os dois primeiros trechos conforme ilustrado na figura abaixo. Qual deve ser a velocidade média do terceiro trecho para que a equipe não sofra penalizações?

32. A equipe do Formula SAE está se preparando para uma das provas. Nesta prova o veículo deve percorrer um trajeto de 1,00 km em menos de 40 s. Sabendo-se que ele parte do repouso e possui uma velocidade máxima de 108 km/h, determine o menor valor que o veículo deve possuir de aceleração (considerando que ela é constante) para percorrer o trajeto no tempo estipulado?

Respostas

- **1.** 128 km/h
- **2.** $80.0 \, \text{km/h}$
- **3.** 30 min
- **4.** a) 10,0 s b)15,0 s
- 5. $45.0 \, \text{km/h}$
- 6. $2,00 \, \text{km/h}$
- 7. a) $-6.00\,\mathrm{m/s}$ b) negativo c) $6.00\,\mathrm{m/s}$ d) valor absoluto diminuindo e) Sim, $t=2.00\,\mathrm{s}$ f) não
- **8.** a) $33.0 \,\mathrm{m}$, $42.0 \,\mathrm{m/s}$, $32.0 \,\mathrm{m/s^2}$ b) $12.0 \,\mathrm{m/s}$
- **9.** a) $15.6 \,\mathrm{m}$ b) $34.5 \,\mathrm{m/s}$ c) $57.6 \,\mathrm{m/s^2}$
- **10.** a) $6.00 \,\mathrm{s}$ b) $-512 \,\mathrm{m} \,\mathrm{e} \,48.0 \,\mathrm{m/s^2}$ c) $-88.0 \,\mathrm{m/s} \,\mathrm{e} \,-12.0 \,\mathrm{m/s^2}$
- **11.** a) 2,00 s = 4,00 s b) 20,0 mm = -6,00 m/s
- **12.** a) 30,0 s b) 300 m
- **13.** a) 2,51 s b) 79,2 m
- **14.** a) 29,4 m b) 2,45 s
- **15.** a) $1.11 \,\mathrm{m/s^2}$ b) $125 \,\mathrm{m}$ c) $5.00 \,\mathrm{s}$ d) $223 \,\mathrm{m}$
- **16.** 34,7 s; 2,41 km
- **17.** a) 20,0 m b) 8,00 m/s c) s = 20 + 8t em unidades SI
- **18.** a) 5,00 s b) 20,0 m
- **19.** a) $200 \,\mathrm{m}$ e $40 \,\mathrm{m/s}$ b) s = 200 40.0t, em unidades SI c) Retrógrado, pois a velocidade é negativa.
- **20.** a) 6,00 m/s b) de 3,00 s a 5,00 s c) De 0,00 s a 3,00 s d) De 0,00 s a 3,00 s e) De 3,00 s a 5,00 s
- **21.** a) $y = 50.0t 4.90t^2$ e v = 50.0 9.8t, em unidades SI e com y = 0 no solo e positivo para cima b) $5.10 \,\mathrm{s}$ c) $128 \,\mathrm{m}$ d) $124 \,\mathrm{m}$, para baixo e) $-50.0 \,\mathrm{m/s}$ e $10.2 \,\mathrm{s}$
- **22.** 73,0 s
- **23.** 40,0 m
- **24.** 2,00 m/s; 20,0 m e 36,5 s. Não, pois a velocidade é constante (+2,00 m/s)
- **25.** a) $1.50 \,\mathrm{m/s^2}$ b) $4.50 \,\mathrm{m/s^2}$ c) $3.00 \,\mathrm{m/s^2}$

- **26.** a) $-500 \,\mathrm{mm/s^2}$ b) $22.0 \,\mathrm{m/s}$ c) $-3.00 \,\mathrm{m/s}$
- **27.** a) $3,00 \,\mathrm{m}, -3,00 \,\mathrm{m} = 1,00 \,\mathrm{m}$ b) $-667 \,\mathrm{mm/s} = 1,00 \,\mathrm{m/s^2}$

- **28.** d
- **29.** a) ADE
- b) ADBCE
- c) 3,40 min

- **30.** 56,1 s
- **31.** $50.5 \, \text{km/h}$
- **32.** $2,25 \,\mathrm{m/s^2}$

