Recursion

Recursion is a programming technique where a method calls itself to solve the smaller version of original problem.

To solve recursion problems we always need a base condition which helps to stop the process.

If we don't provide base condition then it leads to stackoverflow error.

1. WAP to print numbers from 1-50.

```
public static void printNumberFrom1to50(int count)
{
    if(count>50)
        return;
    System.out.println(count);
    printNumberFrom1to50(++count);
}
```

Method Tracing: sumOfNumberFrom1toN(int n)

Purpose

This method calculates the sum of all integers from 1 to n using recursion.

Base Case

• When n == 0 , returns 0 (terminates recursion)

Recursive Case

• Returns n + sumOfNumberFrom1toN(n - 1)

Tracing Steps

Example 2: n = 5

Call Stack Depth	n Value	Evaluation	Return Value
1	5	5 + sumOfNumberFrom1toN(4)	5 + 10 = 15
2	4	4 + sumOfNumberFrom1toN(3)	4 + 6 = 10
3	3	3 + sumOfNumberFrom1toN(2)	3 + 3 = 6
4	2	2 + sumOfNumberFrom1toN(1)	2 + 1 = 3
5	1	1 + sumOfNumberFrom1toN(0)	1 + 0 = 1
6 (Base Case)	0	return 0	0

```
Final Return Value: 15 (5 + 4 + 3 + 2 + 1 + 0 = 15)
```

Key Characteristics

1. Recursive Pattern:

- Each call adds current n to sum of all previous numbers
- o Decrements n until reaching base case

2. Stack Behavior:

- Maximum stack depth = n + 1 (including base case)
- Stack unwinds from base case upward
- 3. **Time Complexity**: O(n)

(Performs exactly n recursive calls)

4. Space Complexity: O(n)

(Due to call stack memory usage)

Visual Representation (n=3)

Limitations

- 1. **Stack Overflow Risk**: For large n (typically > 10,000 in Java)
 - 2. WAP to print number from 1-n.

```
public static void printNumberFrom1toN(int n)
{
    if(n==0)
        return;
    printNumberFrom1toN(--n);
    System.out.println(n+1);
}
```

3. WAP to print number from n-1.

```
public static void printNumberFromNto1(int n)
{
```

```
if(n==0)
    return;
System.out.println(n);
printNumberFromNto1(--n);
}
```

4. WAP to print sum of number from 1-n.

```
public static int sumOfNumberFrom1toN(int n)
{
    if(n==1)
        return 1;
    return n + sumOfNumberFrom1toN(--n);
}
```

5. WAP to print multiplication of number from 1-n(Factorial).

```
public static int findFactorial(int n)
{
    if(n==1)
        return 1;
    return n*findFactorial(--n);
}
```

6. WAP to print the sum of even number from 1-n.

```
public static int evenSum(int n)
{
    if(n==1)
        return 0;
    if(n==2)
        return 2;
    if(n%2==0)
        return n+evenSum(--n);
    else
        return evenSum(--n);
}
```

Method Tracing: evenSum(int n)

Purpose

This method calculates the sum of all even numbers from 1 to $\,$ n $\,$ using recursion.

Base Cases

- n == 1 \rightarrow returns 0 (no even numbers)
- n == 2 \rightarrow returns 2 (only even number)

Recursive Cases

```
If n is even: n + evenSum(n-1)If n is odd: evenSum(n-1)
```

Tracing Steps

Example 1: n = 6

Call Stack Depth	n Value	Condition Evaluation	Action	Return Value
1	6	n%2 == 0 (even)	6 + evenSum(5)	6 + 6 = 12
2	5	n%2 != 0 (odd)	evenSum(4)	6
3	4	n%2 == 0 (even)	4 + evenSum(3)	4 + 2 = 6
4	3	n%2 != 0 (odd)	evenSum(2)	2
5	2	n == 2 (base case)	return 2	2

Final Return Value: 12

(6 + 4 + 2 = 12, odd numbers 5 and 3 are skipped)

Key Characteristics

1. Recursive Pattern:

```
    Even n: Adds current n and processes n-1
    Odd n: Skips current n and processes n-1
```

2. **Termination**:

- Base cases at n=1 and n=2 stop recursion
- Decrements n until reaching base case

3. Behavior:

```
evenSum(5) \rightarrow evenSum(4) \rightarrow 4 + evenSum(3) \rightarrow evenSum(2) \rightarrow 2
```

4. Time Complexity: O(n)

(Makes n recursive calls in worst case)

5. **Space Complexity**: O(n)

(Call stack depth grows linearly with n)

Visual Representation (n=6)

Limitations

- 1. **Pre-decrement Operator**: Using --n modifies n before recursion
- 2. **Stack Overflow**: Risk for large n (like all recursive solutions)
 - 7. WAP to print the sum of odd number from 1-n.

```
public static int oddSum(int n)
{
    if(n==1)
        return 1;
    if(n%2==1)
        return n+oddSum(--n);
    else
        return oddSum(--n);
}
```

8. WAP to find power of a number.

```
public static int powOfNumber(int base,int power)
{
    if(power == 0)
        return 1;
    if(power==1)
        return base;
    return base * powOfNumber(base, --power);
}
```

Method Tracing: powOfNumber(int base, int power)

Purpose

This method calculates base raised to the power of power using recursion.

Base Case

• When power == 1 , returns base (terminates recursion)

• When power == 0 , returns 1 (terminates recursion)

Recursive Case

Returns base * powOfNumber(base, --power)

Tracing Steps

Example 1: base = 2, power = 3

Call Stack Depth	base	power	Condition	Action	Return Value
1	2	3	power != 1	2 * powOfNumber(2, 2)	2 * 4 = 8
2	2	2	power!= 1	2 * powOfNumber(2, 1)	2 * 2 = 4
3 (Base Case)	2	1	power == 1	return 2	2

Final Return Value: 8

$$(2^3 = 2 \times 2 \times 2 = 8)$$

Key Characteristics

1. Recursive Pattern:

- o Multiplies base with result of reduced power
- Decrements power until reaching base case

2. **Termination**:

- Stops when power reaches 1
- Returns base itself when power is 1
- 3. **Time Complexity**: O(power)

(Performs exactly power recursive calls)

4. Space Complexity: O(power)

(Call stack depth equals power)

Edge Cases

Input (base, power)	Output	Notes
(x, 1)	х	Any number to power 1 is itself
(1, n)	1	1 to any power is 1
(0, n)	0	0 to any positive power is 0
(x, 0)	1	1 to power is 0 always 1

Visual Representation (2³)

Limitations

1. Large Powers: Risk of stack overflow and integer overflow