MATH 48A - Midterm I

- 1. Consider $x^3 + y^3 = c$. When is this curve non-singular? Put the curve in Weierstrass form.
- 2. Let E be an elliptic curve over a field of characteristic $\neq 2,3$ given by

$$y^2 = x^3 + ax + b.$$

(a) Show that there is E is isomorphic to an elliptic form in the form

$$y^2 = x(x-1)(x-\lambda)$$

for some $\lambda \neq 0, 1$.

- (b) Find the relation between a, b and λ (how do you obtain one from the other?).
- (c) Find j in terms of λ . How many possibilities are there for λ for each value of j? Is the number always the same?
- 3. Show that there exist positive rational numbers r_1 and r_2 s.t. $r_1^3 + r_2^3 = 7$ by starting with one point on the elliptic curve $x^3 y^3 = 7$ and using the group operations.
- 4. Consider the cubic curves

$$x^{3} + 2y^{3} - x - 2y = 0,$$
 $2x^{3} - y^{3} + 2x + y = 0.$

Find all their intersection points and prove that any cubic going through 8 of the intersection points $\neq (0,0)$ must go through (0,0) by explicit calculation.

- 5. Given an elliptic curve $y^2 = x^3 + ax + b$ and a point $P = (x_0, y_0)$ on it, find the x coordinate of 3P. Find all 3 torsion points on the curve $y^2 = x^3 + 1$.
- 6. Characterize when the line y = mx + n is an inflectional tangent to the curve $y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Q}$. Characterize when such a curve has a 3-torsion point with coordinates in \mathbb{Q} .
- 7. Let P, P_1, P_2, P_3 be points in \mathbb{P}^2 , and let L be a line in \mathbb{P}^2 .
 - (a) If P_1, P_2 and P_3 do not lie on aline, prove that there is a projective transformation of \mathbb{P}^2 so that

$$P_1 \mapsto (0:0:1), P_2 \mapsto (0:1:0), P_3 \mapsto (1:0:0).$$

- (b) If no three of P_1, P_2, P_3 and P lie on a line, prove that there is a unique projective transformation as in (a) that also sends P to (1:1:1).
- (c) Prove that there is a projective transformation of \mathbb{P}^2 so that L is sent to the line z=0.
- (d) If P does not lie on L, prove that there is a projective transformation of \mathbb{P}^2 so that L is sent to the line z=0 and P is sent to the point (0:0:1).
- 8. Assume $\operatorname{char} k \neq 2$ and $x^2 + 1 = 0$ has a solution i in k. Let E be

$$y^2 = x^3 - x.$$

- (a) Show that $\varphi(x,y)=(-x+iy)$ is an endomorphism of F and it satisfies $\varphi^2+[1]=0$ in ${\rm End}(E).$
- (b) For $a,b\in\mathbb{Z}$ show that the degree of the endomorphism $[a]+[b]\varphi$ is $a^2+b^2.$
- (c) Explicitly find $[1] + \varphi$.
- (d) Find $ker([1] + \varphi)$.
- 9. Find as many solutions to the following equation in \mathbb{Q} as possible:

$$\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 4.$$