Mohammed J. Zaki

Dmcourse /

Assign4

Assign4 (Due Date: 5th Nov, before midnight)

This assignment has two parts, the first is for all sections, whereas the second is for CSCI6390 only .

Logistic Regression

You will implement the stochastic gradient descent (SGD) algorithm for logistic regression, given a training set and a testing set. You may assume that the last column is the class or dependent variable. The fields are all comma separated. The training data is thus a set of n points $\{(\mathbf{x}_i, y_i)\}$ for $i = 1, 2, \ldots, n$. Or we can denote all points as the $n \times d$ matrix \mathbf{X} , and the dependent variable as the $n \times 1$ vector \mathbf{y} .

The gradient of the weight vector w at a training point x_k is given as

$$\nabla_k = f(-y_k \mathbf{w}^T \mathbf{x}_k) \ y_k \ \mathbf{x}_k$$

where f(z) is the logistic function, given as

$$f(z) = \frac{1}{1 + exp(-z)}$$

The SGD algorithm is therefore as follows:

Input:
$$\mathbf{X}, \mathbf{y}, \epsilon, \eta$$
 $\mathbf{X} = (\mathbf{X}, \mathbf{1})$ //Map points to 1 higher dimension by adding a column of 1s $d = d + 1$ $\mathbf{w} = \mathrm{random} \ \mathbf{d} \ \mathrm{dimensional} \ \mathrm{vector} \ \mathrm{in} \ \mathrm{the} \ \mathrm{range} \ [0,1]$ repeat $\mathbf{w}_{prev} = \mathbf{w}$ for $k = 1, 2, \ldots, n$ in random order do $\mathbf{w} = \mathbf{w} + \eta \cdot \nabla_k$ until $\|\mathbf{w} - \mathbf{w}_{prev}\| \le \epsilon$

Next, predict the class for the points \mathbf{z}_j in the testing set, using the following approach:

$$\hat{y}_j = +1$$
, if $f(\mathbf{w}^T \mathbf{z}_j) \ge 0.5$ or $\hat{y}_i = -1$, if $f(\mathbf{w}^T \mathbf{z}_i) < 0.5$.

After this compute the accuracy of the prediction using the true class y_i for each test point z_i .

Kernel Regression (CSCI6390 Only)

You will implement kernel regression using linear, quadratic (homogeneous), or gaussian kernels.

Recall that the weight vector in feature space is given as $\mathbf{w} = \sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i)$

There is a closed form solution for computing the α_i values, i.e., for $\vec{\alpha}$ when considering all n points, given as:

$$\vec{\alpha} = \mathbf{K}^{-1}\mathbf{y}$$

You can use np.linalg.pinv to compute the inverse of the kernel matrix \mathbf{K} .

After computing $\vec{\alpha}$ use the testing set to predict the \hat{y}_i values for each test point \mathbf{z}_i , as follows:

$$\hat{\mathbf{y}}_j = \sum_{i=1}^n \alpha_i \mathbf{K}(\mathbf{x}_i, \mathbf{z}_j)$$

Finally, compute the "accuracy" by checking if $sign(\hat{y}_j)$ matches the true value y_j for test case \mathbf{z}_j ; we are assuming here that the dependent attribute is a class variable with values $\{+1, -1\}$.

What to turn in

Write a script named assign4-LAST-FIRST.py where LAST and FIRST are your last and first names, respectively. The script will be run as fo llows: assign4.py TRAIN TEST eps eta (for CSCI4390) or assign4.py TRAIN TEST eps eta [linear | quadratic | gaussian] [spread] (for CSCI6390) The spread value is used only for gaussian kernel.

Show your results on the following training and testing files:

Attach:Concrete_Data_RNorm_Class_train.txt_ for training set, and

Attach:Concrete_Data_RNorm_Class_test.txt_ for testing set. Save them to a text file and submit with script. Print out the w value for logistic regression, and print out the accuracy values.

Page last modified on November 04, 2016, at 12:52 PM