Инструментарий Современного Программиста

Локализация и интернационализация программного обеспечения

Иван Трепаков

NSU Sys.Pro

ASCII

American Standard Code for Information Interchange

```
$ ascii -d
    0 NUL
              16 DLE
                         32
                                 48 0
                                          64 @
                                                  80 P
                                                           96
                                                                   112 p
    1 S0H
              17 DC1
                        33 !
                                 49 1
                                          65 A
                                                  81 0
                                                           97 a
                                                                   113 q
    2 STX
              18 DC2
                        34 "
                                 50 2
                                                  82 R
                                                           98 b
                                          66 B
                                                                   114 r
    3 ETX
              19 DC3
                        35 #
                                 51 3
                                          67 C
                                                  83 S
                                                           99 c
                                                                   115 s
    4 E0T
              20 DC4
                        36 $
                                 52 4
                                                          100 d
                                                                   116 t
                                          68 D
                                                  84 T
    5 ENO
              21 NAK
                                 53 5
                                          69 E
                                                  85 U
                                                                   117 u
                         37 %
                                                          101 e
    6 ACK
              22 SYN
                         38 &
                                 54 6
                                          70 F
                                                  86 V
                                                          102 f
                                                                   118 v
    7 BEL
              23 ETB
                         39 '
                                 55 7
                                          71 G
                                                  87 W
                                                          103 g
                                                                   119 w
    8 BS
              24 CAN
                        40 (
                                 56 8
                                          72 H
                                                  88 X
                                                          104 h
                                                                   120 x
    9 HT
              25 EM
                        41 )
                                 57 9
                                          73 I
                                                  89 Y
                                                          105 i
                                                                   121 y
   10 LF
              26 SUB
                         42 *
                                 58:
                                          74 J
                                                  90 Z
                                                          106 j
                                                                   122 z
   11 VT
              27 ESC
                        43 +
                                 59 :
                                          75 K
                                                  91 [
                                                          107 k
                                                                   123 {
   12 FF
              28 FS
                        44 ,
                                 60 <
                                          76 L
                                                  92 \
                                                          108 l
                                                                   124 |
   13 CR
              29 GS
                        45 -
                                 61 =
                                                  93 ]
                                          77 M
                                                          109 m
                                                                   125 }
   14 S0
              30 RS
                        46 .
                                 62 >
                                                  94 ^
                                                          110 n
                                          78 N
                                                                   126 ~
   15 SI
              31 US
                         47 /
                                 63 ?
                                          79 0
                                                          111 o
                                                                   127 DEL
```

ASCII

```
10:
20: _!"#$%&'()*+,-./
30: 0123456789:;<=>?
40: @ABCDEFGHIJKLMN0
50: PQRSTUVWXYZ[\]^_
60: `abcdefghijklmno
70: pqrstuvwxyz{|}~
```

ASCII

```
00: 80: 90: 20: _!"#$%&'()*+,-./ a0: 30: 0123456789:;<=>? b0: 40: @ABCDEFGHIJKLMNO c0: 50: PQRSTUVWXYZ[\]^_ d0: 60: `abcdefghijklmno e0: 70: pqrstuvwxyz{|}~ f0:
```

```
ASCII
                   CP866
             80: АБВГДЕЖЗИЙКЛМНОП
             90: РСТУФХЦЧШШЪЫЬЭЮЯ
20: ..!"#$%&'()*+,-./ а0: абвгдежзийклмноп
  60: `abcdefghijklmno e0: рстуфхцчшщъыьэюя
70: pgrstuvwxyz{|}~ f0: Ëë€eÏiЎў°•·√№¤■
                  MS-DOS
```


оПХБЕР ЛХП!

оПХБЕР ЛХП!

оПХБЕР ЛХП!

```
$ echo "οΠΧБΕΡ ЛΧΠ!" \
  | iconv -t cp1251 \
  | iconv -f koi8-r
Hoyaen κyo!
```


оПХБЕР ЛХП!

```
| iconv -t cp1251 \
        | iconv -f koi8-r

Hoyaeп куо!

$ echo "оПХБЕР ЛХП!" \
        | iconv -t koi8-r \
        | iconv -f cp1251

Привет мир!
```

\$ echo "oПXБEP ЛXП!" \

оПХБЕР ЛХП!

```
$ echo "ОПХБЕР ЛХП!" \
    | iconv -t cp1251 \
    | iconv -f koi8-r

Hoyaen куо!

$ echo "ОПХБЕР ЛХП!" \
    | iconv -t koi8-r \
    | iconv -f cp1251

Привет мир!
```

- iconv
- enca
- uchardet

Unicode Standard

- Универсальное кодирование символов
- Количество различных кодов 1 114 112
- Unicode 16.0 (2024 год) использует лишь 154 998

Цели

- Универсальность Содержит все возможные символы современных и древних языков, технических текстов, диакритику и emoji
- Эффективность Plain text кодирование в одном из трех стандартных форматов: UTF-32, UTF-16, UTF-8
- Однозначность Каждый код *однозначно* соответствует единственному символу

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Code points

Hello 🌎!

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python


```
U + 0048
        Н
            LATIN CAPITAL LETTER H
11+0.065
            LATIN SMALL LETTER F
11+006C
            LATTN SMALL LETTER L
U+006C
            LATIN SMALL LETTER L
U+006F
            LATIN SMALL LETTER 0
U+0020
            SPACE
U+1F30E
            EARTH GLOBE AMERICAS
11+0.021
            EXCLAMATION MARK
```

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Hello 🌎!

```
$ printf 'Hello \U1F30E!' | uniname
            LATIN CAPITAL LETTER H
U + 0048
       Н
11+0.065
            LATIN SMALL LETTER F
11+006C
            LATTN SMALL LETTER L
U+006C l
            LATIN SMALL LETTER L
U+006F
            LATIN SMALL LETTER 0
U+0020
            SPACE
U+1F30E
            EARTH GLOBE AMERICAS
11+0.021
            EXCLAMATION MARK
```

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Привет 🌎!

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

import sys, unicodedata as U

Привет 🌎!

```
U+041F
             CYRILLIC CAPITAL LETTER PE
11 + 0440
             CYRTLLIC SMALL LETTER FR
11 + 0438
             CYRTLLIC SMALL LETTER T
U + 0432
             CYRILLIC SMALL LETTER VE
U+0435
             CYRILLIC SMALL LETTER IE
U + 0442
             CYRILLIC SMALL LETTER TE
U + 0020
             SPACE
U+1F30E
             EARTH GLOBE AMERICAS
11 + 0.021
             EXCLAMATION MARK
```

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

import sys, unicodedata as U

Привет 🌎!

```
$ printf 'Привет \U1F30E!' | uniname
            CYRILLIC CAPITAL LETTER PE
U+041F
11 + 0440
            CYRTLLIC SMALL LETTER FR
11 + 0438
            CYRTLLIC SMALL LETTER T
U + 0432
            CYRILLIC SMALL LETTER VE
U+0435
            CYRILLIC SMALL LETTER IE
U+0442
            CYRILLIC SMALL LETTER TE
U + 0020
            SPACE
U+1F30E
            EARTH GLOBE AMERICAS
11 + 0.021
            EXCLAMATION MARK
```

Code points

Йо-йо

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Йо-йо

```
U+0439 Й CYRILLIC CAPITAL LETTER SHORT I
U+043E o CYRILLIC SMALL LETTER 0
U+002D - HYPHEN-MINUS
U+0438 и CYRILLIC SMALL LETTER I
U+0306 ° COMBINING BREVE
U+043E o CYRILLIC SMALL LETTER 0
```

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Йо-йо

```
$ printf 'Йо-и\u0306o' | uniname
U+0439 Й CYRILLIC CAPITAL LETTER SHORT I
U+043E о CYRILLIC SMALL LETTER 0
U+002D - HYPHEN-MINUS
U+0438 и CYRILLIC SMALL LETTER I
U+0306 ° COMBINING BREVE
U+043E о CYRILLIC SMALL LETTER 0
```

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

U+1F468 👨 MAN

ZERO WIDTH JOINER

U+1F469 👩 WOMAN

U+200D

U+200D ZERO WIDTH JOINER

U+1F467 👧 GIRL

27

Code points

- Кодируют "абстрактные символы"
- Целые числа от 0 до 10FFFF₁₆
- Стандартно записываются в hex с префиксом U+
- Имеют уникальные имена

Инструменты

- uniname (часть пакета uniutils)
- Модуль unicodedata в Python

U+1F468 👨 MAN

U+200D ZERO WIDTH JOINER

U+1F469 👩 WOMAN

U+200D ZERO WIDTH JOINER

U+1F467 👧 GIRL

Ключевые моменты

• Текст разбивается на символы

- Текст разбивается на символы.
 - Символы ≠ глифы

- Текст разбивается на символы
 - Символы ≠ глифы
- Символы кодируются последовательностью code point'ов
 - Code point целое число от 0 до 10FFFF₁₆ соответствующее некоторому абстрактному символу

- Текст разбивается на символы
 - Символы ≠ глифы
- Символы кодируются последовательностью code point'ов
 - Code point целое число от 0 до 10FFFF₁₆ соответствующее некоторому абстрактному символу
- Символы могут комбинироваться

- Текст разбивается на символы
 - Символы ≠ глифы
- Символы кодируются последовательностью code point'ов
 - Code point целое число от 0 до 10FFFF₁₆ соответствующее некоторому абстрактному символу
- Символы могут комбинироваться

- Текст разбивается на символы
 - Символы ≠ глифы
- Символы кодируются последовательностью code point'ов
 - Code point целое число от 0 до 10FFFF₁₆ соответствующее некоторому абстрактному символу
- Символы могут комбинироваться
- Правила поиска, сортировки, эквивалентности и других процессов описаны в стандарте

②
$$\coprod_{01C7} + A \approx \coprod_{004C} + \coprod_{004A} + A$$

- Текст разбивается на символы
 - Символы ≠ глифы
- Символы кодируются последовательностью code point'ов
 - Code point целое число от 0 до 10FFFF₁₆ соответствующее некоторому абстрактному символу
- Символы могут комбинироваться
- Правила поиска, сортировки, эквивалентности и других процессов описаны в стандарте
- Три стандартных формата кодирования code point'oв: UTF-32, UTF-16, UTF-8
 - Code unit Минимальная единица кодирования в формате

Unicode Transformation Format

- Code unit Минимальная единица кодирования в формате
- Scalar value Кодируемое значение code point'a в диапазонах U+0000..U+D7FF и U+E000..U+10FFFF
- Символ ≠ code point ≠ scalar value ≠ code unit

UTF-32

Code unit 32-битное значение

- Каждый скаляр кодируется одним 32-битным значением
- Кодировка фиксированной длины
- Большой размер
- Формат строк в Python 3

UTF-16

Code unit 16-битное значение

- U+0000..U+D7FF и U+E000..U+FFFF кодируются одним 16-битным значением
- U+1000..U+10FFFF кодируются двумя 16-битными значениями в диапазоне U+D800..U+DFFF, называемыми суррогатными парами
- Символы большинства языков кодируются одним code unit'ом
- Кодировка переменной длины
- Формат строк в Python 2, Java и Windows API

Table 3-5. UTF-16 Bit Distribution

Scalar Value		UTF-16	
xxxxxxxxxxxxxx	XX	xxxxxxxxxxxxx	
000uuuuuxxxxx	xxxxxxxxx	110110wwwwxxxxx 110111xxxxxxxxxx	

Note: www = uuuuu - 1

UTF-8

Code unit 8-битное значение

- Расширение ASCII
- По-байтовая кодировка
- Компактный размер
- Кодировка переменной длины
- Стандартный формат текста в Web (HTML, CSS, XML) и Unix системах

Table 3-6. UTF-8 Bit Distribution

Scalar Value	First Byte	Second Byte	Third Byte	Fourth Byte
00000000 0xxxxxx	0xxxxxxx			
00000yyy yyxxxxxx	110yyyyy	10xxxxxx		
zzzzyyyy yyxxxxxx	1110zzzz	10уууууу	10xxxxxx	
000uuuuu zzzzyyyy yyxxxxxx	11110uuu	10uuzzzz	10уууууу	10xxxxxx

Byte order

- Многобайтовые кодировки требуют определения порядка байтов при записи code unit'a
- Big-endian байты пишутся начиная с самого старшего
- Little-endian байты пишутся начиная с самого младшего
- Byte order mark (BOM) U+FEFF в соответствующем формате

Локали

Локали

Переменные окружения

- LANG Локаль по умолчанию
- LC_COLLATE Поиск и сравнение строк
- LC_CTYPE Диапазоны символов (алфавит, числа, верхний/нижний регистры)
- LC_TIME Формат даты и времени
- LC_NUMERIC Формат чисел
- LC_MESSAGES Язык сообщений системы и утилит
- LC_ADDRESS Формат адреса и локации
- ...
- LC_ALL Переопределяет все вышеперечисленные переменные

Локали

Переменные окружения

- LANG Локаль по умолчанию
- LC_COLLATE Поиск и сравнение строк
- LC_CTYPE Диапазоны символов (алфавит, числа, верхний/нижний регистры)
- LC_TIME Формат даты и времени
- LC_NUMERIC Формат чисел
- LC_MESSAGES Язык сообщений системы и утилит
- LC_ADDRESS Формат адреса и локации
- ...
- LC_ALL Переопределяет все вышеперечисленные переменные

Unix locale language[_territory][.codeset][@modifier]

- en_US американский английский
- ru_RU.UTF-8 русский (Россия)
- fr_CA.IS08859-1 канадский французский
- ..

Примеры

Примеры

```
$ export LANG=ru_RU.UTF-8
$ echo "windows" | \
   awk '{print toupper($0)}'
WINDOWS
$ export LANG=tr_TR.UTF-8
$ echo "windows" | \
   awk '{print toupper($0)}'
WINDOWS
```

Примеры

```
$ export LANG=ru RU.UTF-8
$ echo "windows" | \
  awk '{print toupper($0)}'
WINDOWS
$ export LANG=tr TR.UTF-8
$ echo "windows" | \
  awk '{print toupper($0)}'
WTNDOWS
```

```
$ locale
LANG="en US.UTF-8"
LC CTYPE="en US.UTF-8"
LC NUMERIC="ru RU.UTF-8"
LC TIME="ru RU.UTF-8"
LC ALL=
$ locale -k LC TIME | grep 'd t fmt'
d t fmt="%a %d %b %Y %T"
$ date
C6 26 OKT 2024 00:02:42 +07
$ LC TIME=en US date
Sat Oct 26 12:02:42 AM +07 2024
$ LC ALL=C date
Sat Oct 26 00:02:42 +07 2024
```

Q&A