df=pd.read_csv('/content/wine classification.csv')
df

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0
1599 rows × 12 columns							

df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	de
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	

df.tail()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
1593	6.8	0.620	0.08	1.9	0.068	28.0	38.0
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0

Data columns (total 12 columns): # Column Non-Null Count Dtype float64 0 fixed acidity 1360 non-null 1 volatile acidity 1360 non-null float64 2 citric acid float64 1360 non-null 3 1360 non-null residual sugar float64 4 chlorides 1360 non-null float64 free sulfur dioxide 1360 non-null float64 6 total sulfur dioxide 1360 non-null float64 1360 non-null float64 7 density 8 рН 1360 non-null float64 9 sulphates 1360 non-null float64 10 alcohol float64 1360 non-null 11 quality 1360 non-null float64

dtypes: float64(12)
memory usage: 138.1 KB

```
print("missing values:")
df.isnull().sum()
```

missing values: fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0 0 рΗ sulphates 0 alcohol 0 0 quality dtype: int64

```
print("duplicateed rows")
df.duplicated().sum()
```

duplicateed rows
239

```
print("removing duplicates")
df.drop_duplicates(inplace=True)
```

removing duplicates

print("now we are replacing the missing values with mean")
df.fillna(df.mean(),inplace=True)

now we are replacing the missing values with mean

print("duplicateed rows are remove successfully")
df.duplicated().sum()

 $\begin{array}{c} \text{duplicateed rows are remove successfully} \\ \textbf{0} \end{array}$

print("statistics")
df.describe()

statistics									
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	su dio			
count	1360.00000	1360.000000	1360.000000	1360.000000	1360.000000	1360.00			
mean	8.31000	0.529456	0.272397	2.526029	0.088111	15.89			
std	1.73649	0.182966	0.195479	1.355291	0.049361	10.44			
min	4.60000	0.120000	0.000000	0.900000	0.012000	1.00			
25%	7.10000	0.390000	0.090000	1.900000	0.070000	7.00			
50%	7.90000	0.520000	0.260000	2.200000	0.079000	14.00			
75%	9.20000	0.640000	0.430000	2.600000	0.091000	21.00			
max	15.90000	1.580000	1.000000	15.500000	0.611000	72.00			

```
print("checking correlation")
sns.heatmap(df.corr(),annot=True,cmap='coolwarm',fmt='.2f')
plt.title('correlation heatmap')
plt.show()
```



```
print("wine quality")
plt.figure(figsize=(8,5))
sns.countplot(x='quality',data=df,palette='viridis')
plt.title("distribution of wine quality")
plt.xlabel("quality")
plt.ylabel("count")
plt.show()
```



```
print("splitting data for analysis")
x=df.drop(['quality'],axis=1)
y=df['quality']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_s
     splitting data for analysis
print("isolation forest model")
model=IsolationForest(contamination=0.05, random_state=42)
outlier predictions=model.fit predict(x train)
     isolation forest model
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarr
       warnings.warn(
eva_df = pd.DataFrame({'y_true': y_train, 'outlier_predictions': outlier_
print("setting inliers to 0 and outliers to 1")
eva df['outlier predictions'][eva df['outlier predictions']==1] = 0
eva df['outlier predictions'][eva df['outlier predictions']==-1] = 1
    setting inliers to 0 and outliers to 1
    <ipython-input-54-a6f6bb5131d1>:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: <a href="https://pandas.pydata.org/panda">https://pandas.pydata.org/panda</a>
       eva_df['outlier_predictions'][eva_df['outlier_predictions']==1] = 0
    <ipython-input-54-a6f6bb5131d1>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: <a href="https://pandas.pydata.org/panda">https://pandas.pydata.org/panda</a>
       eva_df['outlier_predictions'][eva_df['outlier_predictions']==-1] =
print("regression evaluation:")
print(f"Mean Absolute Error: {mean_absolute_error(eva_df['y_true'], eva_c
print(f"Mean Squared Error: {mean_squared_error(eva_df['y_true'], eva_df
print(f"R^2 Score: {r2_score(eva_df['y_true'], eva_df['outlier_prediction
     regression evaluation:
    Mean Absolute Error: 5.5805
    Mean Squared Error: 31.8838
    R^2 Score: -45.9369
wine data = df.drop duplicates()
```

```
outlier_predictions = model.predict(data_for_analysis)
```

```
wine_data['outlier'] = outlier_predictions
```

outliers = wine_data[wine_data['outlier'] == −1]
print("Outliers (Potentially Excellent or Poor Wines):")
display(outliers)

Outliers (Potentially Excellent or Poor Wines):							
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
14	8.9	0.620	0.18	3.8	0.176	52.0	145.0
15	8.9	0.620	0.19	3.9	0.170	51.0	148.0
17	8.1	0.560	0.28	1.7	0.368	16.0	56.0
19	7.9	0.320	0.51	1.8	0.341	17.0	56.0
33	6.9	0.605	0.12	10.7	0.073	40.0	83.0
1370	8.7	0.780	0.51	1.7	0.415	12.0	66.0
1434	10.2	0.540	0.37	15.4	0.214	55.0	95.0
1474	9.9	0.500	0.50	13.8	0.205	48.0	82.0
1558	6.9	0.630	0.33	6.7	0.235	66.0	115.0
1574	5.6	0.310	0.78	13.9	0.074	23.0	92.0
68 rows x 13 columns							

```
plt.scatter(data_for_analysis['alcohol'], data_for_analysis['density'], 
plt.title('Isolation Forest Outlier Detection')
plt.xlabel('Alcohol')
plt.ylabel('Density')
plt.show()
```

