

Term End Examination - November 2011

Course: MAT101 - Multivariable Calculus and Differential Equations Slot: C2+TC2

Time: Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer ALL the Questions

1. Verify Euler's theorem for the function $f(x, y, z) = 3x^2yz + 5xy^2z + 4z^4$.

2. If
$$u = x^2 - y^2$$
, $v = 2xy$ find $\frac{\partial(u, v)}{\partial(x, y)}$.

- 3. Evaluate $\int_{0}^{1} \frac{x dx}{\sqrt{1-x^5}}$.
- 4. Evaluate $\int_{0}^{5} \int_{0}^{x^2} x(x^2 + y^2) dx dy$.
- 5. Show that the vector field given by $\vec{A} = 3x^2y\vec{i} + (x^3 2yz^2)\vec{j} + (3z^2 2y^2z)\vec{k}$ is irrotational but not solenoidal.
- 6. Use Green's theorem in a plane to evaluate $\oint_c [(2x y)dx + (x + y)dy]$ where c is the boundary of the circle $x^2 + y^2 = a^2$ in the xoy plane.
- 7. Find the solution of y''-4y'+4y=0 which satisfies y(0)=3, y'(0)=1.
- 8. Find the general solution of $\frac{d^3y}{dx^3} y = 0$.
- 9. Find $L[t\cos t]$.
- 10. Find $L^{-1} \left(\frac{s+2}{s^2 4s + 13} \right)$.

PART – B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. a) Expand the Taylor's series expansion of $e^x \cos y$ at the point (0, 0) to third approximation.
 - (b) The temperature T at any point (x, y, z) in space is $400x^2yz$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.

- 12. (a) Evaluate $\iint_{R} \left(1 \frac{x^2}{a^2} \frac{y^2}{b^2}\right) dxdy$ over the first quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (b) Change the Order of integration in $\int_{0}^{4a} \int_{y=\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ and hence evaluate it.
- 13. (a) Verify Green's theorem for, $\oint_c [(xy + y^2)dx + x^2dy]$, where c is bounded by y = x and $y = x^2$.
 - (b) If $\overline{F} = 4xz \hat{i} y^2 \hat{j} + yz \hat{k}$, evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 14. (a) Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} + 4y = 5\sin 3x$.
 - (b) Solve the differential equation $(2x+1)^2 \frac{d^2y}{dx^2} 2(2x+1)\frac{dy}{dx} 12y = 96x$.
- 15. (a) Use convolution theorem to evaluate $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$.
 - (b) Solve $\frac{d^2y}{dx^2} + 9y = \cos 2x$ using Laplace transform given that y(0) = 1, $y(\frac{\pi}{2}) = -1$
- 16. (a) Discuss the maxima and minima of the function

$$f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$

- (b) Find the volume of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
- 17. (a) Verify Stoke's theorem for the vector field $\overline{F} = (x^2 y^2) \vec{i} + 2xy \vec{j}$ integrated round the rectangle in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = b.
 - (b) Evaluate $L^{-1} \left(\frac{8s + 29}{s^2 12s + 32} \right)$.

