ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models (arxiv)

Key Highlights

問題

- 這篇論文旨在解決什麼問題? 論文探討了增強學習(Reinforcement Learning, RL)是否真正擴展了大型語言模型的推理能力,還是僅僅優化了現有解決方案的取樣效率。作者質疑了近期的聲稱,認為RL訓練並未unlock出現有基礎模型之外的新推理能力。
- 現有方法是什麼,有哪些限制? 現有的RL方法針對推理模型(如GRPO, PPO變體)存在以下問題:(1) 過度依賴於數學等專門領域,使得模型經常過度訓練,限制了探索潛力;(2) RL訓練過早終止(通常 <200步),模型還未能充分探索新推理能力;(3) 訓練期間熵崩潰,減少了探索;(4) 在長期訓練場景中的不穩定性。

解決方案

- 這篇論文提出了什麼解決方案?該論文引入了ProRL(Extended Reinforcement Learning),包括:KL發散控制以防止熵崩潰,定期的參考策略重置以維持訓練穩定性,涵蓋多樣化的任務如數學/編碼/STEM/邏輯/指令遵循領域,以及延長的訓練時間(>2k步)。他們還採用了DAPO的增強,包括解耦剪裁和動態取樣。
- 這個想法受到什麼啟發?是否受到其他論文的影響? 這一方法建立在GRPO算法和 DAPO增強的基礎上,受到先前研究中RL沒有擴展推理邊界結論之方法學限制的啟 發。定期重置策略受到了在延長訓練期間觀察到KL項主導性的啟發。
- **該方法有哪些理論基礎支持?** 該方法的理論基礎包括通過KL正則化保持熵來進行探索,通過參考策略重置防止過早收斂,並假設多樣化的任務暴露能夠實現超越狹窄 領域特定行為的更好泛化。

實驗

• 實驗表現如何? 他們的1.5B模型(Nemotron-Research-Reasoning-Qwen-1.5B)在多個方面顯著超越基礎模型:數學提升14.7%,編碼提升13.9%,邏輯謎題提升54.8%,STEM提升25.1%,指令遵循提升18.1%。與7B模型匹配或超越,並且比專門化的基準模型在數學上多出4.6%,編碼多出6.5%。

• **這種方法有什麼限制或假設?** 該方法需要大量的計算資源(16k GPU小時),不容易擴展到更大的模型,需仔細的超參數調整和定期的手動重置,訓練數據集仍只代表了可能推理任務的一部分。

創新

• 這篇論文有哪些重要或新穎的發現?關鍵發現包括:(1) RL的有效性與基礎模型的初始表現負相關,起始表現較弱的模型在RL中獲得更大收益;(2) ProRL能夠發現基礎模型中不存在的真正新解決方案路徑;(3) 持續的性能提升在2k訓練步之後仍在繼續;(4) RL訓練的模型顯示更高的創造力指數,指示出新推理模式;(5) 對基礎模型完全失敗的非分佈內任務有強泛化性。

評論 / 批判

- **這篇論文有什麼局限性?** 計算需求對於小型組織來說是不可負擔的。該方法需要通過定期重置進行手動干預,減少了自動化。對於更大模型的可擴展性尚未得到驗證。評估雖然多樣,但相較於人類推理的全景來說仍覆蓋有限。
- 這篇論文有效地證實了其主張嗎?是的,該論文通過廣泛的基準測試、pass@k分析、創造力指數測量及詳細分析推理邊界擴展提供了全面的實驗證據。基礎模型表現與RL增益之間的相關性分析特別有說服力,並且提供了明確的例子展示基礎模型成功率為0%而RL模型達到100%的任務。

Comprehensive Analysis

Abstract

摘要

- 本論文探討強化學習 (RL) 是否真實提升語言模型的推理能力,或僅僅增強了已有的高質量回應。
- 作者介紹了 **延長強化學習 (ProRL)**,這是一種新穎的訓練方法,使用KL散度控制、參照策略重設和多樣化的任務套件。

主要發現: - ProRL 可以發現基本模型即使經過大量抽樣也無法獲得的全新推理策略。 - 經過RL訓練的模型在各種評估指標 (pass@k) 上始終優於基本模型。 - 性能改進與基本模型的初始任務能力和訓練時長均呈正相關。 - RL 能有效探索並填充先前無法訪問的解決方案空間區域。

- 研究挑戰了RL僅僅增強已有能力的假設,證明延長RL訓練可以真實擴展語言模型的推理邊界。
- 作者提供了實證證據並釋出模型權重,以支持未來在長期RL推理任務上的研究。

Introduction

有結構的摘要

介紹摘要

背景與討論:-最近以推理為重點的模型(如 OpenAI-O1 和 DeepSeek-R1)使用了隨時間縮放的鏈條式推理計算。-一個關鍵問題是,強化學習(RL)是否能解鎖真正的新功能,還是僅僅優化現有的功能。-之前的研究表明,強化學習只提高了取樣效率,並未增加新的推理能力。

先前研究中確定的限制: - 過度依賴特定領域(特別是數學),這些領域的模型通常被過度訓練。 - 強化學習訓練過早終止(通常少於100步),未能充分發展能力。

主要貢獻:- **ProRL**:一種訓練配方,允許在多樣化任務(數學、編程、STEM、邏輯謎題、指令遵循)中執行長時間強化學習訓練(超過2000步)。 - **Nemotron-Research-Reasoning-Qwen-1.5B**:一個擁有15億參數的模型,其性能顯著超越了基礎模型,並可與更大的7億參數模型相媲美。 - 性能提升:數學(14.7%),編碼(13.9%),邏輯(54.8%),STEM(25.1%),指令遵循(18.1%)。

主要發現:-當給予足夠的訓練時間,強化學習可以發現基礎模型中不存在的新解決路徑。-該模型在基礎模型完全失敗的任務上達到100%的成功率。-長時間的強化學習訓練產生了更多的新穎推理軌跡(以創造力指數衡量)。-強化學習的收益可根據基礎模型的性能預測——在基礎模型表現不佳的地方最有效。

影響:-該研究挑戰了先前對強化學習侷限性的假設,展示持續的強化學習訓練可在不需要額外訓練數據的情況下增強模型能力並發展出新的推理策略。

圖像摘要

• (未提供圖像)

"However, a fundamental question remains under active debate within the research community: Does reinforcement learning truly unlock new reasoning capabilities from a base model, or does it merely optimize the sampling efficiency of solutions already embedded in the base model?"

然而,一個根本性的問題在研究社群中仍在活躍地辯論中:強化學習是否真的能夠從基礎模型中解鎖新的推理能力,還是僅僅優化了基礎模型中已嵌入的解決方案的採樣效率?

"We identify two key limitations in existing research: (1) an overreliance on specialized domains like mathematics, where models are often overtrained during both pre-training and post-training phases, thereby restricting the potential for exploration; and (2) the

premature termination of RL training before models can fully explore and develop new reasoning capabilities based on a limited amount of RL training, typically no more than hundreds of steps."

我們確定了現有研究的兩個主要限制: (1)過於依賴數學等專門領域,模型在預訓練和 後訓練階段通常過度訓練,因此限制了探索的潛力; (2)在僅有數百步強化學習訓練的 基礎上,強化學習訓練的過早終止,使得模型無法充分探索和開發新的推理能力。

"RL can indeed discover genuinely new solution pathways entirely absent in base models, when given sufficient training time and applied to novel reasoning tasks... we identify many tasks where the base model fails to produce any correct solutions regardless of the amount of sampling, while our RL-trained model achieves 100% pass rates."

當給予充分的訓練時間並應用於新的推理任務時,強化學習確實可以發現基礎模型中完全不存在的真正新解決方案途徑...我們確定了許多任務,不論採樣量如何,基礎模型都無法產生任何正確的解決方案,而我們的強化學習訓練模型達到了100%的通過率。

ProRL: Prolonged Reinforcement Learning

- 本節介紹了 ProRL(延長強化學習),這是一種基於 GRPO 演算法的方法,用於實現穩定且長期的強化學習訓練。
- 主要貢獻是解決了長期強化學習訓練中的兩個主要挑戰:
 - 1. 熵崩場 當策略隨時間變得過於決定性
 - 2. 訓練不穩定性 在長期訓練期間性能下降
- 解決方案:
 - 。 **KL 散度懲罰**:防止策略偏離參考分佈太遠
 - 。 **定期重置參考策略**:刷新參考點以保持訓練穩定性
- 該方法旨在確保在多個訓練週期中保持穩定的訓練性能,同時持續改進,而不是標準的延長強化學習訓練中常見的性能下降。

'We then address key challenges in prolonged RL training, such as entropy collapse and instability, by introducing a KL divergence penalty and periodic resets of the reference policy.'

我們隨後通過引入KL散度懲罰和定期重置參考策略來解決長時間強化學習訓練中的關鍵挑戰,例如熵崩潰和不穩定。

'This ensures stable training across many epochs and continued performance improvement.'

這確保了跨多個訓練期穩定訓練和持續的性能提升。

Background: Group Relative Policy Optimization

摘要

- 本節介紹了作為本文所選強化學習算法的**群體相對策略優化 (Group Relative Policy Optimization, GRPO)**。
- GRPO與近端策略優化(Proximal Policy Optimization, PPO)相比的主要特點在於消除對單獨價值/評估模型的需求。
- 主要技術細節:
 - 。**目標函數:**GRPO透過最大化與PPO相似的裁剪目標,使用當前策略和舊策略 之間的概率比率。
 - 新的優勢估計方法:GRPO不使用像PPO一樣的評估模型,而是通過比較個體響應得分與基於群體的基線來計算優勢。
 - 。**群體基線**:對於一個響應τ,其優勢計算是其獎勵與群體中所有獎勵的均值之間的標準化差異,再除以該群體的標準差。
- **主要優勢**:這種方法通過移除訓練和維持單獨價值模型的複雜性來簡化訓練過程, 同時仍能夠透過群體相對比較提供有效的策略優化。

"Compared with Proximal Policy Optimization (PPO) [17], it removes the value model and instead uses baseline estimates based on group scores."

與 近端策略優化(PPO)相比,它移除了價值模型,而是基於群組分數使用基準估計。

"The advantage used in GRPO foregoes the critic model of PPO, and instead estimates baseline from group scores $\{Ri\}i\in G(\tau): A(\tau) = R\tau - mean(\{Ri\}i\in G(\tau)) / std(\{Ri\}i\in G(\tau))."$

GRPO 所使用的優勢取消了 PPO 的評論模型,轉而從群組分數 $\{Ri\}i\in G(\tau)$ 估計基準: $A(\tau) = R\tau - mean(\{Ri\}i\in G(\tau)) / std(\{Ri\}i\in G(\tau))$ 。

 $"LGRPO(\theta) = E\tau \sim \pi\theta \left[min(r\theta(\tau)A(\tau), clip(r\theta(\tau), 1 - \epsilon, 1 + \epsilon)A(\tau)) \right]"$

LGRPO(θ) = E $\tau \sim \pi \theta \left[\min(r\theta(\tau)A(\tau), \text{clip}(r\theta(\tau), 1 - \varepsilon, 1 + \varepsilon)A(\tau)) \right]$

Prolonged Reinforcement Learning (ProRL)

- 本節探討了**熵崩潰**,這是長期強化學習中的一個關鍵問題,當模型的輸出分佈在訓練初期變得過度集中,導致熵大幅降低。
- 這種過早的收斂限制了探索,對於像 GRPO 這樣依賴多樣化取樣來有效估計優勢的 方法來說,尤其問題嚴重。
- 當熵崩潰發生時,策略更新會變得偏頗,訓練停滯不前。
- 作者指出,雖然在回合生成期間增加取樣溫度是一種常見的緩解措施,可以鼓勵初期探索,但這僅僅是**延遲**而非**防止**熵崩潰,因為在整個訓練期間熵仍會不斷下降。
- 本節確立了熵崩潰作為需要在長期強化學習(ProRL)系統中解決的一個基本挑 戰。

"A key challenge in prolonged policy optimization is entropy collapse, which is a phenomenon where the model's output distribution becomes overly peaked early in training, resulting in sharply reduced entropy."

在長期的策略優化過程中,一個主要挑戰是熵崩塌,這是一種現象,模型的輸出分佈在訓練初期變得過於尖銳,導致熵急劇減少。

"When entropy collapses, the policy prematurely commits to a narrow set of outputs, severely limiting exploration. This is particularly detrimental in methods like GRPO, where the learning signal depends on having a diverse set of sampled outputs to effectively estimate relative advantages."

當熵崩塌發生時,策略過早地局限於一小部分輸出,嚴重限制了探索。在像GRPO這樣的方法中,這尤其有害,因為學習信號依賴於具有廣泛多樣性的取樣輸出來有效地估計相對優勢。

"A common mitigation strategy is to increase the sampling temperature during rollouts. However, we find that this approach only delays the onset of entropy collapse rather than preventing it altogether, as entropy continues to decline steadily as training progresses."

一種常見的緩解策略是在滾動過程中提高取樣溫度。然而,我們發現這種方法只是延遲了熵崩塌的發生,而不是完全防止它,因為隨着訓練的進行,熵仍然會持續下降。

Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO)

- 本節描述了採用了 DAPO(解耦剪裁和動態抽樣策略優化)技術,以應對強化學習 訓練中的熵崩潰。
- 該方法由兩個主要組成部分構成:
- **解耦剪裁**:通過分別使用上下界的超參數(ϵlow 和 $\epsilon high$)來修改標準的 PPO 剪裁機制。
- 通過設置較高的 ε _high 值,該方法鼓勵 "clip-higher" 行為,這增加了先前不太可能的 token 的概率,促進了更廣泛的探索,同時保持了熵值。
- **動態抽樣**:實施了一種智能過濾策略,排除模型在提示中持續達到完美成功(準確率 = 1)或完全失敗(準確率 = 0)的情況,因為這些提供不了有用的學習信號。
- 它將訓練重點放在中等難度的示例上,以保持多樣的學習信號。
- 這些改進共同幫助防止過早的模式崩潰,並在訓練過程中保持探索的多樣性。

"DAPO introduces decoupled clipping, where the lower and upper clipping bounds in the PPO objective are treated as separate hyperparameters: $\operatorname{clip}(r\theta(\tau), 1 - \epsilon \operatorname{low}, 1 + \epsilon \operatorname{high})$."

DAPO 引入了解耦剪輯,將 PPO 目標中的上限和下限剪輯界限視為獨立的超參數: $\operatorname{clip}(r\theta(\tau), 1 - \epsilon \log 1 + \epsilon \operatorname{high})$ 。

"By setting a higher value for ϵ high, the algorithm promotes 'cliphigher', uplifting the probabilities of previously unlikely tokens and encouraging broader exploration."

通過為 chigh 設置更高的值,該算法促進"clip-higher",提升先前不太可能出現的 token 的機率,並鼓勵更廣泛的探索。

"DAPO employs dynamic sampling, filtering out prompts for which the model consistently succeeds or fails (i.e., accuracy 1 or 0), as these provide no learning signal."

DAPO 採用動態抽樣,篩選出模型一致成功或失敗的提示(即準確率為 1 或 0),因為這些提示不提供學習信號。

KL Regularization and Reference Policy Reset

這一部分描述了一種使用**KL散度正則化**來解決策略訓練中熵崩潰問題的強化學習方法。 - 作者在損失函數中添加了一個當前策略與參考策略之間的KL懲罰項,這有助於保持策略的熵並防止策略過度偏離穩定基準。 - **主要貢獻**: - **KL正則化**: 與最近主張移除KL懲罰的

工作不同,作者認為當從良好初始化模型(如DeepSeek-R1-Distill-Qwen-1.5B)開始时,KL懲罰是有益的,這些模型已經生成連貫的思維鏈輸出。 - 參考策略重置: 為了防止 KL項主導損失並使學習停滯,他们引入了一種技術,即定期將參考策略重置為當前策略 的最新快照,並重新初始化优化器状态。這一方法旨在通過KL正則化來平衡穩定性和通過定期重置來持續學習進展,防止过拟合到虚假奖励和早期收敛,同時維持訓練穩定性。

"This penalty not only helps maintain entropy but also serves as a regularizer to prevent the online policy from drifting too far from a stable reference, stabilizing learning and mitigating overfitting to spurious reward signals."

此懲罰不僅有助於維持熵,還充當一種正則化器,以防止在線政策偏離穩定參考過遠,從而穩定學習並減少對虛假獎勵信號的過擬合。

"Recent works [4, 7, 5, 18] have argued for the removal of the KL penalty, citing that models naturally diverge during training on chain-of-thought reasoning tasks. We observe that this perspective often applies to base models prior to any supervised fine-tuning. In contrast, we begin from a well-initialized checkpoint (DeepSeek-R1-Distill-Qwen-1.5B) already capable of generating coherent CoT outputs."

最近的研究[4,7,5,18]主張移除KL懲罰,指出模型在鏈式推理任務的訓練中自然分歧。我們觀察到這種觀點通常適用於任何監督精調之前的基本模型。相比之下,我們從一個已經能夠生成連貫鏈式推理輸出的良好初始化檢查點(DeepSeek-R1-Distill-Qwen-1.5B)開始。

"Periodically, we hard-reset the reference policy π ref to a more recent snapshot of the online policy $\pi\theta$, and reinitialize the optimizer states. This allows the model to continue improving while maintaining the benefits of KL regularization."

我們定期將參考策略πref硬重置為在線策略πθ的最新快照,並重新初始化優化器狀態。 這使得模型能夠在保持KL正則化好處的同時繼續改進。

Nemotron-Research-Reasoning-Qwen-1.5B: The World's Best 1.5B Reasoning Model

以下是該筆記的翻譯為繁體中文:

• 這部分介紹 **Nemotron-Research-Reasoning-Qwen-1.5B**,一個擁有15億參數的通用推理模型。主要亮點包括:

訓練方法:-使用增強學習在136K個多樣化的問題數據集上進行訓練-涵蓋多個領域:數學、編碼、STEM、邏輯謎題和指令跟隨-利用穩定的獎勵計算、改進的GRPO(群體相對策略優化)和延長的訓練時間

性能結果: - 在所有測試領域中顯著超越可比的DeepSeek-R1-Distill-Qwen-1.5B模型 - 改進幅度從+14.4%(編碼)到+54.8%(邏輯謎題)不等 - 甚至在數學(+4.6%)和編碼(+6.5%)領域超越專業領域模型

主要貢獻:-此工作展示了一個通用模型通過延長的增強學習訓練,可以在多個推理領域上取得出色的性能,挑戰了需要專門領域模型的觀點。

'We present Nemotron-Research-Reasoning-Qwen-1.5B, a generalist model trained via reinforcement learning on a diverse, verifiable dataset of 136K problems across math, code, STEM, logic puzzles, and instruction following.'

我們推出了 Nemotron-Research-Reasoning-Qwen-1.5B,一個一般化模型,通過強化學習訓練於多樣且可驗證的數據集上,涵蓋了136K數學、代碼、STEM、邏輯謎題和指示跟隨問題。

'Leveraging stable reward computation, improved GRPO, and prolonged training, our model achieves strong generalization across domains.'

利用穩定的獎勵計算、改進的GRPO以及延長的訓練,我們的模型在不同領域中實現了強大的泛化能力。

'It also surpasses domain-specialized baselines in both math (+4.6%) and code (+6.5%), demonstrating the effectiveness of generalist prolonged RL training.'

它在數學(+4.6%)和代碼(+6.5%)兩個領域超越了領域專用基準,展示了一般化長期強化學習訓練的有效性。

Training Dataset

摘要

• 研究人員創建了一個包含136,000個範例的綜合訓練數據集,涵蓋五個不同的領域:數學、編碼、STEM學科、邏輯謎題和指令遵循。

- 每個任務類別都包含明確的回報信號(無論是二元的還是連續的),以便為強化學習訓練提供有效反饋。
- 這種多領域的方法旨在促進模型在不同類型的推理任務中的泛化,並能夠在不同的 回報結構下系統地比較各種強化學習算法。
- 數據集的詳細組成在論文的附錄D中進一步解釋。

'We construct a diverse and verifiable training dataset spanning 136K examples in five task domains, math, code, STEM, logical puzzles, and instruction following, to enable robust reinforcement learning from a wide range of reasoning problems.'

我們構建了一個多樣且可驗證的訓練數據集,涵蓋數學、程式碼、STEM、邏輯謎題和指令遵循這五個任務領域,共有136K例,以支持來自各種推理問題的強大強化學習。

'Each task type is paired with a clear reward signal (binary or continuous), allowing for reliable feedback during training.'

每種類型的任務都配有明確的獎勵信號(二元或連續的),這使得在訓練期間能夠獲得可 靠的反饋。

'This broad task coverage encourages generalization beyond narrow domains and enables meaningful comparison of RL algorithms across diverse reward structures.'

這種廣泛的任務覆蓋促進了超越狹隘領域的泛化,並使得在不同的獎勵結構中進行強化學 習算法的有意義比較。

Training Setup

簡要摘要

• 本部分描述了機器學習模型的強化學習訓練技術配置。關鍵細節包括:

框架與方法: - 使用 "verl" 框架進行強化學習訓練 - 實施增強的 GRPO(群體相對策略優化)和 DAPO 改進 - 使用解耦的剪裁參數和動態提示過濾去除過於簡單/困難的示例

訓練參數: - 每個提示生成 16 個回應樣本,上下文限制為 8096 個標記 - 高採樣溫度 (1.2) 以生成多樣化回應 - 批次大小為 256,每個批次包含 64 小批次(每步進行 4 次梯度更新) - 使用 AdamW 優化器,恆定學習率為 2×10^{-6}

計算資源: - 訓練在 32 個 NVIDIA H100-80GB GPU 上進行(每個節點 8 個 GPU,一共 4 個節點) - 總訓練時間:大約 16,000 個 GPU 小時

• 這一配置代表了現代語言模型微調方法中典型的大規模強化學習訓練配置。

ProRL Training Dynamics

這部分描述了 ProRL (Process Reinforcement Learning) 的訓練方法。- 主要訓練策略包括:- **監控及重置策略**:作者使用他們的評估基準驗證集追踪訓練進度。當性能停滯或變差時,他們重置參考模型和優化器,以恢復穩定性並鼓勵策略探索。- **逐步擴展上下文長度**:訓練採用兩階段的回應長度方法:- 大部分訓練:以 8k token 限制來保持穩定性和簡潔性-最後約 200 步:擴展到 16k token,展示快速適應和性能提升-**長期目標重點**:該方法專門設計來有效處理長期目標強化學習任務。- 本節強調自適應訓練機制,保持穩定性的同時促進模型改進和策略多樣化。

"When validation performance stagnates or degrades, we perform a hard reset of the reference model and optimizer. This not only restores training stability but also facilitates greater policy divergence from the base model."

當驗證性能停滯或下降時,我們對參考模型和優化器進行硬重置。這不僅能恢復訓練的穩定性,還有助於實現策略與基礎模型的更大分歧。

"Throughout most of training, we cap response length at 8k tokens to maintain concise and stable generations. In the final stage (~ 200 steps), we increase the context window to 16k tokens, observing that the model adapts quickly and achieves measurable improvements."

在大多數訓練過程中,我們將響應長度限制在8千個標記以維持簡潔和穩定的生成。在最後階段(約200步),我們將上下文窗口增加到16千個標記,觀察到模型能迅速適應並實現顯著的改進。

"To enable effective long-horizon reinforcement learning, we monitor training progress using a blended validation set derived from the evaluation benchmark."

為了實現有效的長期強化學習,我們使用從評估基準中衍生的混合驗證集來監控訓練進度。

Evaluation

評估

- 本節提供對 Nemotron-Research-Reasoning-Qwen-1.5B 模型在多個領域和基準測試中的全面評估。
- **基準測試及設定:** 評估涵蓋四個主要領域 數學 (如 AIME, AMC, MATH 等)、編程 (如 APPS, Codecontests, HumanEval+等)、邏輯謎題 (Reasoning Gym)、以及 STEM 推理/指令跟隨 (GPQA Diamond, IFEval)。評估採用 vllm 推理,溫度設定為 0.6,top_p 設定為 0.95,並對多數任務測量 16 個樣本的 pass@1 準確性。
- **主要結果:** 提出的模型顯著超越基準模型 DeepSeek-R1-Distill-Qwen-1.5B 在所有領域中的表現:
 - ∘ 數學: 平均提升 15.7%
 - ∘ 編程: 提升 14.4%
 - 。STEM 推理: 提升 25.9% (GPQA Diamond)
 - ∘ 指令跟隨: 提升 22.0% (IFEval)
 - 邏輯謎題: 提升 54.8%
- **泛化能力:** 模型在未見過的 Reasoning Gym 任務中展示了強大的分佈外表現,並超越專門領域模型(DeepScaleR-1.5B 用於數學,DeepCoder-1.5B 用於編程)分別提升了 4.6% 和 6.5%。值得注意的是,它達到了與參數規模為 7B 的基準模型相當的表現,同時避免了此前方法中因過度回應長度引起的"過度思考"問題。

"Our model consistently outperforms the base model across benchmarks, showing an average improvement of 15.7%" and "surpasses the base model in competitive programming tasks as measured by pass@1 accuracy by 14.4%"

我們的模型在各項基準測試中穩定地超越基本模型,平均提升15.7%,並在競賽式編程任務中通過@1準確率超越基本模型14.4%。

"Our model shows significant improvements on three OOD tasks, demonstrating stronger generalization beyond the training distribution. This highlights the effectiveness of our training approach in enabling the model to adapt and perform well on unseen challenges."

我們的模型在三項OOD(分布外)任務中顯示出顯著改進,展示了超越訓練分佈的更強 泛化能力。這突顯了我們的訓練方法在使模型適應和應對未知挑戰方面的有效性。 "Our ProRL trained model enables strong generalization, achieving superior pass@1 scores on both math (+4.6%) and code (+6.5%) benchmarks" compared to domain-specialized models, while "ProRL enables deeper exploration and refinement within limited response length, where prior works often increase training response length too early, causing 'overthinking'"

我們的ProRL訓練模型實現了強泛化能力,在數學(+4.6%)和編碼(+6.5%)基準測試中取得了優異的通過@1分數,與專業領域模型相比,ProRL 使我們能在有限的回應長度內進行更深入的探索和精煉,而之前的工作中往往因過早增加訓練回應長度而導致"過度思考"。

Analysis: Does ProRL Elicit New Reasoning Patterns?

摘要

本節探討延長強化學習(ProRL)訓練是否能使模型發展超越其基礎能力的新推理模式。 研究人員進行了實驗,對比了基礎模型(DeepSeek-R1-Distilled-1.5B)及經過中期和 長期ProRL訓練後的模型。

主要發現:

• 初始能力與RL增益之間的反比關係:

- 。研究顯示,模型的初始推理能力(以pass@128衡量)與RL訓練帶來的改善之間存在很強的負相關性。
- 。在某些任務上表現已經很好的模型在RL訓練後的推理廣度增益最小甚至為 負,而在處理困難任務時表現欠佳的模型則從ProRL中受益最大。

• ProRL效應的三種類別:

- · **邊界縮小**:在某些任務(特別是數學)上,RL縮小了推理探索範圍,提高了 準確性(pass@1),但降低了推理多樣性(pass@128)。
- 。**平臺期**:某些任務顯示早期飽和,無進一步增益。
- 。**持續增益**:特別是在代碼生成方面,ProRL持續擴展推理能力,使模型能內化 更複雜的模式。

• 熟悉度因素:

顯示出RL訓練後改善最小的任務往往創造性指數較低,這表明基礎模型已經 從預訓練數據中熟悉了類似模式。

研究表明,ProRL的有效性在很大程度上依賴於基礎模型的初始能力和任務的性質,其中 在基礎模型最初表現掙扎的領域推理擴展最為顯著。 "A key finding from our study is that the effectiveness of RL in expanding a model's reasoning boundary (measured by pass@128) is strongly influenced by the base model's initial capabilities."

我們研究的一個關鍵發現是,強化學習(RL)在擴展模型推理邊界(通過pass@128測量)的有效性受到基礎模型初始能力的強烈影響。

"In contrast, in domains where the base model struggles, particularly those with a low initial pass@128, RL training is most effective. Here, ProRL not only improves pass@1, but also expands the model's ability to explore and succeed in a broader range of reasoning paths."

相比之下,在基礎模型表現不佳的領域,特別是那些初始pass@128較低的領域,RL訓練最為有效。在這裡,ProRL不僅改善了pass@1,還擴展了模型探索和成功更多推理路徑的能力。

"Most notably, on some domains such as code generation, ProRL enables continued gains, suggesting that prolonged training allows the model to explore and internalize more sophisticated reasoning patterns."

最值得注意的是,在某些領域如代碼生成中,ProRL能夠帶來持續增益,這表明延長訓練可以使模型探索並內化更複雜的推理模式。

Related Work

這部分技術報告的相關研究涵蓋了兩個主要的研究領域:

推理模型: -本節回顧了從OpenAI的o1系列開始推出鏈式推理的推理模型發展歷程。 - 隨後DeepSeek和Kimi的工作重點是使用具驗證獎勵的強化學習(RLVR)訓練這些模型。 -各種RL算法已被普及並有開源的複現努力。 -大部分工作集中在狹窄領域或測試時的擴展,而不是持續的強化學習訓練。 -由於超參數敏感性,長期RL訓練具有挑戰性,但能顯著增強推理能力。

RL推理邊界: -本節探討RL是否真實地提升語言模型中的推理能力。 -經典的RL成功案例(DeepQ, AlphaGo/AlphaZero)展示了RL能達到超人表現,幫助代理發現新的策略。 -最近的研究對此觀點提出質疑,認為RLVR方法並未真正擴展推理能力。 -有些研究顯示在pass@k指標上沒有改善甚至出現惡化,並且傾向於放大現有模式而非學習新推理能力。 -作者們指出將使用創造力指數等替代指標來評估RL訓練是否產生了真實的學習。

• 無圖片概要提供。

"Our research demonstrates that achieving prolonged RL training can substantially expand the boundaries of reasoning capabilities in these models."

我們的研究表明,實現長時間的強化學習訓練可以顯著擴展這些模型的推理能力邊界。

"However, challenging this perspective, several recent studies question whether RL training genuinely enhances the reasoning capacity of LLMs. One work [13] argues that the RLVR method fails to extend this capacity, as evidenced by pass@k metrics showing no improvement and in some cases deterioration, compared to the base model."

然而,挑戰這一觀點,一些最近的研究質疑強化學習訓練是否真正增強了大型語言模型的推理能力。一項研究 [13] 指出,RLVR 方法未能擴展這一能力,因為根據 pass@k 指標顯示,與基礎模型相比,沒有任何提升,甚至在某些情況下有所下降。

"Beyond pass@k metrics, alternative measurements like creativity index [12] can also determine whether models learn new ideas through RL training, which we employ during our studies."

除了 pass@k 指標以外,創意指數 [12] 等替代測量方法也可以確定模型是否通過強化學習訓練學習新概念,這也是我們在研究中使用的方法。

Conclusion

- 這篇論文介紹了 ProRL,一種強化學習方法,成功地擴展了語言模型的推理能力超越其初始邊界。
- **主要成就**: ProRL 示範了擴展的強化學習訓練可以在語言模型中開發新的推理模式,挑戰了之前對強化學習在此領域的局限性假設。
- **技術創新**:該方法使用 KL 散度懲罰和定期參考策略重置來保持長時間訓練的穩定性,從而能夠發展一個最先進的 1.5B 參數模型。
- 訓練範圍:該模型在多樣的推理任務上進行訓練,包括數學、編程、STEM 問題、 邏輯謎題以及指令遵循。
- 關鍵發現:
 - ProRL 在基礎模型最初表現不佳的任務中效果最佳
 - 該方法使得模型能夠強大地泛化到分布外的仟務和更複雜的問題
 - 擴展的強化學習訓練幫助模型內部化可轉移的抽象推理模式
- **重要性**:該研究表明,通過足夠的訓練時間和合適的技術,強化學習可以有意義地 擴展推理邊界,為開發更具推理能力的模型提供了一個有希望的方向。

Acknowledgments

摘要

- 致謝部分簡要感謝了幾位對研究有貢獻的人:
- Shrimai Prabhumoye 通過討論提供了啟發性的見解。
- Sahil Jain 分享了解決熵崩潰(機器學習模型中已知問題)的專業知識。
- Makesh Narsimhan Sreedhar 和 David Mosallanezhad 提供了模型評估的技術援助。
- 致謝部分表明這篇論文處理了機器學習模型中的熵崩潰問題,並且涉及了來自該領域同事的合作討論和評估援助。

Limitations

- **計算需求**:由於多階段強化學習訓練伴隨著定期重置和長推理鏈取樣,該方法需要大量的計算資源,可能會讓資源受限的研究人員難以使用。
- **可擴展性不確定**:雖然已在1.5B參數模型上進行了測試,但尚不清楚該方法在更大模型上的表現如何,隨著模型大小的增加,計算需求也顯著增加。
- 訓練複雜性:參考策略和優化器參數的定期硬重置增加了複雜性,可能會導致訓練不穩定,與傳統方法相比更具有挑戰性。
- **泛化範圍有限**:儘管涵蓋了不同領域的內容,訓練數據僅代表了一部分的推理任務,儘管觀察到了一些分布外的泛化,不能保證所有推理領域的性能。
- 這些限制突顯了採用的實際障礙和需要進一步研究以實現更廣泛應用的領域。

"The extended RL training process requires substantial computational resources, which may be prohibitive for smaller organizations or researchers with limited budgets."

擴展的強化學習訓練過程需要大量的計算資源,這對於小型組織或預算有限的研究人員來 說可能是難以承受的。

"Our approach requires periodic hard-resets of the reference policy and optimizer parameters to maintain training stability. This introduces additional complexity to the training process and may lead to inconsistent results compared to more stable training methods."

我們的方法需要定期對參考策略和優化器參數進行硬重置,以維持訓練穩定性。這增加了 訓練過程的額外複雜性,並且可能導致與更穩定的訓練方法相比,結果不一致。

"While our evaluation covers diverse domains, the training dataset still represents only a subset of possible reasoning tasks. The performance on certain out-of-distribution tasks shows promising generalization, but

we cannot guarantee similar improvements across all potential reasoning domains not explicitly included in our training or evaluation."

儘管我們的評估涵蓋了多個領域,但訓練數據集仍然僅代表了可能推理任務的一個子集。 在某些分布外任務上的表現顯示出有希望的泛化能力,但我們不能保證對於所有潛在推理 領域,尤其是未明確包含在我們的訓練或評估中的領域,會有類似的改進。

Societal Impacts

• 部分概要:

社會影響

本節討論了延長強化學習(Prolonged Reinforcement Learning, ProRL)對社會的更廣泛影響,這是一種通過延長訓練來增強語言模型推理能力的技術。

主要益處:

- 。**民主化**:1.5B 參數的小型模型使得資源有限的用戶、教育機構和組織也能夠 獲得先進的 AI 推理能力
- 。**效率**:提供了低成本、節能的替代方案,同時保持良好的性能表現
- 。**實際應用**:使得敏感部門(如金融、醫療、法律)和實時應用(如 AI 助手) 的安全本地部署成為可能
- **領域影響:**在解決如醫療、氣候科學和無障礙等關鍵領域的推理挑戰方面顯示 出特別的前景

倫理問題:

- **資源不平等:**高計算要求的訓練可能會擴大資源充足與資源有限的 AI 開發者 之間的鴻溝
- 。**濫用潛力**:增強的推理能力在沒有適當的保護措施下,可能會使得有害應用變 得更加複雜
- 能力轉變:從低能力到高能力的快速進展需要警惕突現行為和風險

未來考量:作者建議將 ProRL 與價值對齊方法相結合,並且開發自適應評估基準, 以確保在不同背景下的負責任發展和部署。

• 圖像總結:

○ 無

"ProRL demonstrates that current RL methodology can possibly achieve superhuman reasoning capabilities when provided with sufficient compute resources."

ProRL 表明當提供足夠的計算資源時,當前的增強學習(RL)方法有可能實現超越人類的推理能力。

"As shown in our analysis, tasks with low initial performance often exhibit sustained gains through extended training, creating opportunities to address reasoning challenges in critical domains like healthcare, climate science, and accessibility technologies."

如我們的分析所示,初始性能低的任務通常通過延長訓練表現出持續的提升,這為解決醫療保健、氣候科學和無障礙技術等關鍵領域中的推理挑戰提供了機會。

"The substantial training computational requirements may exacerbate resource inequality in AI development, while enhanced reasoning capabilities could enable more sophisticated misuse if deployed without appropriate safeguards."

巨大的訓練計算需求可能使人工智能開發中的資源不平等問題更加嚴重,同時增強的推理能力如果在缺乏適當保障措施的情況下部署,可能會導致更加複雜的濫用。

References

No references found.