1 Bicompletion

The bicompletion of a small category \mathcal{C} is a category $\Lambda \mathcal{C}$ with a functor $j: \mathcal{C} \to \Lambda \mathcal{C}$ containing all small colimits and limits, and with the property that for any bicomplete category \mathcal{D} , with a functor $F: \mathcal{C} \to \mathcal{D}$, there is a unique bicontinuous functor $F': \mathcal{C} \to \mathcal{D}$ such that $j \circ F' \cong F$.

The functor j is fully faithful. Everything in this document will be proven from the fully faithfulness of j and the universal property of ΛC .

There is a map from $[\mathcal{C}^{op}, Set] \to \Lambda \mathcal{C}$, and from $[\mathcal{C}, Set]^{op} \to \Lambda \mathcal{C}$, definable using the universal property of the presheaf category as the (co)completion of a small category.

The bicompletion of the opposite category is the opposite of the bicompletion. i.e. $\Lambda C^{op} \cong (\Lambda C)^{op}$.

1.1 Adjunctions

Let F be a functor $\mathcal{C} \to \mathcal{D}$, where \mathcal{D} and \mathcal{D} are small categories. Then $F^* : \Lambda \mathcal{C} \to \Lambda \mathcal{D}$ Then F^* has a left adjoint. Proof. We can define a functor $h : \mathcal{D} \to [C^{op}, Set]$ by setting $h(d, c) := \hom_{\mathcal{C}}(F(c), d)$.