Übung zur Vorlesung Technische Grundlagen der Informatik

Prof. Dr. Andreas Koch Thorsten Wink

Wintersemester 09/10 Übungsblatt 7

Die folgenden Aufgaben sollen in der Hardwarebeschreibungssprache Verilog bearbeitet werden. Zur Simulation können Sie XILINX ISE verwenden. Es ist als WebPack-Edition frei verfügbar und auch auf den Poolrechnern der RBG installiert. Dort kann es einfach mit dem Befehl *ise* gestartet werden. Ein Tutorial zur Installation und Benutzung finden Sie auf unserer Webseite.

Aufgabe 7.1 Zähler in Verilog

Wir betrachten noch einmal den Zähler aus der letzten Hausaufgabe.

- a) Der Zähler soll um einen Eingang für ein enable-Signal erweitert werden. Es wird nur gezählt, wenn enable 1 ist.
- b) Der Zähler soll mit einem synchronen Reset (*sreset*) erweitert werden, so dass mit steigende Taktflanke der Zähler auf 0 zurückgesetzt wird wenn *sreset*=1.
- c) Der Zähler soll mit einem asynchronen Reset (*areset*) erweitert werden, so dass unabhängig vom Takt der Zähler auf 0 zurückgesetzt wird.
- d) Über eine Leitung *set* und einen 4-Bit-Dateneingang *value* soll der Zähler synchron auf den Wert von *value* gesetzt wird, sobald *set* 1 ist.
- e) Der Zähler soll nur bis zu einem Wert *max* zählen, der über einen zu definierenden Parameter gesetzt werden kann. Ist kein Parameter beim Modulaufruf angegeben, soll wie bisher ohne einen Schwellwert gezählt werden.
- f) Schreiben Sie einen Testrahmen für die letzte Teilaufgabe, so dass max = 5. Zu Beginn sollen alle Eingangssignal auf 0 liegen. Nach 7 ns soll ein synchroner Reset erfolgen, danach soll der Startwert 3 gesetzt werden und der Zähler gestartet werden. Geben Sie ein Timing-Diagramm an, bei dem die Werte für *clk* und *count* zu sehen sind.

Aufgabe 7.2 Paritätsbit

Schreiben Sie ein Verilog-Modul, das zu einem übergebenen Bitstring von n Bits ein Paritätsbit hinten anhängt, welches 1 ist, wenn die Anzahl der Einsen im Bitstring ungerade ist, und das 0 ist, wenn die Anzahl der Einsen im Bitstring gerade ist. Der so entstandene neue Bitstring soll der Ausgang des Moduls sein. Wird kein Parameter angegeben, so soll die Bitbreite des Ausgangs 9 Bit betragen.

Aufgabe 7.3 Fragen

- a) Wie können Werte an Wire-Variablen zugewiesen werden? Geben Sie ein Beispiel an. Können Wires Werte speichern?
- b) Wie können Zuweisungen an Signale verzögert werden?
- c) Wie unterscheiden sich initial und always?

Hausaufgabe 7.1 Multiplexer in Verilog

Beschreiben Sie einen 8:1 Multiplexer in Verilog. Zur Auswahl aus den Eingängen $INx, x \in \{0, ..., 7\}$ soll der Steuereingang S[2:0] dienen. Die Bitbreite der Eingänge und des Ausgangs sollen parametrisierbar sein, falls keine Bitbreite angegeben wird soll der Standardwert 4 verwendet werden.

Hausaufgabe 7.2 Multiplexer in Verilog (2)

Schreiben Sie ein strukturelles Verilog-Modul, welches die Funktion $Y = A\bar{B} + \bar{B}\bar{C} + \bar{A}BC$ realisiert. Verwenden Sie dazu nur den Multiplexer aus der vorherigen Aufgabe.

Plagiarismus

Der Fachbereich Informatik misst der Einhaltung der Grundregeln der wissenschaftlichen Ethik großen Wert bei. Zu diesen gehört auch die strikte Verfolgung von Plagiarismus. Weitere Infos unter www.informatik.tu-darmstadt.de/plagiarism