Математическая логика. Домашнее задание №3

Горбунов Егор Алексеевич

14 марта 2016 г.

Задание №1 Напишите нерекурсивное определение функции

$$f(n) = \sum_{i \in n} (f(i) + 1)$$

Докажите, используя (обобщенный) принцип индукции, равенство этих двух функций.

Решение: Видимо, f(0) = 0, тогда:

$$f(n) = \sum_{i=0}^{n-1} (f(i)+1) = f(0)+1+f(1)+1+\ldots+f(n-1)+1=n+f(n-1)+\ldots+f(1) = n+(n-1)+2f(n-2)+2f(n-3)+\ldots+2f(1) = n+(n-1)+2(n-2)+4f(n-3)+4f(n-4)+\ldots+4f(1) = n+(n-1)+2(n-2)+4(n-3)+8f(n-4)+8f(n-5)+\ldots+8f(1) = n+2^{0}(n-1)+2^{1}(n-2)+2^{2}(n-3)+\ldots+2^{k-1}(n-k)+\ldots+2^{n-2} = n+\sum_{i=1}^{n-1} 2^{i-1}(n-i) = n+\frac{n}{2}\sum_{i=1}^{n-1} 2^{i}-\sum_{i=1}^{n-1} i2^{i-1}$$

Рассмотрим $F(z) = \sum_{i=1}^{n-1} z^i = \frac{z^n - z}{z-1}$, тогда $F'(z) = \sum_{i=1}^{n-1} i z^{i-1} = \frac{1 - n z^{n-1} + (n-1) z^n}{(z-1)^2}$. Таким образом:

$$f(n) = n + \frac{n}{2}F(2) - F'(2) = n + \frac{n}{2}(2^{n} - 2) - 2^{n}(n - 1) + n2^{n-1} - 1 =$$

$$= n + n2^{n-1} - n - 2^{n}(n - 1) + n2^{n-1} - 1 = n2^{n} - n2^{n} + 2^{n} - 1 =$$

$$= 2^{n} - 1$$

Теперь нужно показать равенство $2^n - 1$ и f(n) в исходном определении, т.е. доказать нужно следующее утверждение:

$$P(n) = (2^n - 1 = \sum_{i < n} (f(i) + 1))$$

- P(0) верно, т.к. f(0) = 0 и $2^0 1 = 0$
- Пускай верно $P(n), P(n-1), \dots, P(0)$, тогда докажем P(S(n)), т.е. P(n+1). Раскроем

рекурсивное определение, как делали это выше, и воспользуемся предположением:

$$f(n+1) = n+1+f(n)+\ldots+f(1) = (n+1)+(2^n-1)+(2^{n-1}-1)+\ldots+(2^1-1) = 1+2^1+2^2+\ldots 2^n = 1+2^{n+1}-2 = 2^{n+1}-1$$

Как видим, мы показали то, что требовалось.

Задание №2 Докажите, что принцип зависимой рекурсии эквивалентен принципам рекурсии и индукции.

Решение: Принцип зависимой рекурсии: для задания зависимой функции $f \in \prod_{n \in \mathbb{N}} B(n)$ достаточно задать:

$$f(0)$$
 = b , $b \in B(0)$
$$f(S(n))$$
 = e , e — выражение, задающее элемент $B(S(n))$

• Покажем, как из принципа зависимой рекурсии следует принцип индукции. Положим нам хочется доказать P(n). Зададим зависимые множества B(n) так:

$$B(n)$$
 = {1}, если верно $P(n)$ $B(n)$ = Ø, если неверно $P(n)$

Таким образом, чтобы доказать P(n), нужно задать функцию $f \in \prod_{n \in \mathbb{N}} B(n)$ по принципу зависимой рекурсии. Если такую функцию удаётся задать, то P(n) будет доказано.

• Покажем, как из принципа завиимой рекурсии следует принцип рекурсии: это просто, достаточно сказать, что B(n) не зависит от \mathbb{N} , т.е. B(n) = B и получится просто принцип рекурсии.

Задание №3 Приведите контрпримеры, показывающие, что отдельно ни принципа рекурсии, ни принципа индукции не достаточно, чтобы гарантировать уникальность натуральных чисел. То есть нужно привести примеры множеств \mathbb{N}_i вместе с $0_i \in \mathbb{N}_i$, $S_i : \mathbb{N}_i \to \mathbb{N}_i$, где $i \in \{1,2\}$, таких что \mathbb{N}_1 удовлетворяет принципу рекурсии, \mathbb{N}_2 удовлетворяет принципу индукции, но они не равномощны \mathbb{N} .

Решение:

• рассмотрим множество $\mathbb{N}_1 = \{0,1,2\}$ вместе с $0_1 = 0$ и $S_1(n) = (n+1)$ mod 3. Оно удовлетворяет принципу рекурсии, т.к. можно сконструировать следующую функцию: $f(0) = 0_1, \ f(S(n)) = S_1(f(n))$. Но видно, что $|\mathbb{N}_1| = 3 < |\mathbb{N}|$.

• я чего-то не понимаю, но, кажется, что множество $\mathbb{N}_1 = \{0, 1, 2\}$ удовл. принципу индукции, т.е. если у нас есть предикат P над этим множеством, то для его доказательства достаточно показать P(0) и $P(S_1(n))$ если верно P(n)...

Задание №5 Сформулируйте принципы рекурсии, индукции и зависимой рекурсии для множества List(A).

Решение:

• Принцип рекурсии: для задания функции $f: List(A) \to B$ достаточно задать:

$$f(nil) = b$$

 $f(cons(a, xs)) = e$

Где, $b \in B$, а выражение e может использовать xs и задаёт элемент из B

- Принцип индукции: если мы хотим доказать, что для любого $xs \in List(A)$ верно P(xs), то достаточно доказать:
 - Верно P(nil)
 - Для любого $xs \in List(A)$, если верно P(xs), то для любого $a \in A$ верно P(cons(a,xs))
- Принцип зависимой рекурсии: для задания зависимой функции $f \in \prod xs \in List(A)B(xs)$ нужно задать:

$$f(nil) = b$$

 $f(cons(a, xs)) = e$

Где, $b \in B(nil)$, а выражение e может использовать $f(xs) \in B(xs)$ и задаёт элемент из B(cons(a,xs))

Задание №6 Опишите индуктивным образом предикат на N, задающий нечетные числа.

Решение:

$$\frac{n \text{ is odd}}{1 \text{ is odd}} \qquad \frac{n \text{ is odd}}{n+2 \text{ is odd}}$$