ADVANCED BAYESIAN MODELING

Noninformative Prior Analysis

Assume an ordinary normal-theory regression:

$$y \mid \theta, X \sim N(X\beta, \sigma^2 I)$$

i.e.,

$$y_i \mid \theta, X_i \sim \text{indep. N}(X_i\beta, \sigma^2) \qquad i = 1, \dots, n$$

with

$$\theta = (\beta, \sigma^2)$$

As before:

$$y$$
 is $n \times 1$ X is $n \times k$ β is $k \times 1$ X_i is row i of X I is the $n \times n$ identity matrix

Noninformative Prior

The "standard" noninformative prior has density

$$p(\theta \mid X) = p(\beta, \sigma^2 \mid X) \propto (\sigma^2)^{-1}$$
 $\sigma^2 > 0$

which is improper.

Remark: Equivalent to an improper flat prior on $(\beta, \log \sigma^2)$

Note: In general, a prior may depend on X, since X is treated as constant.

Posterior

Posterior is proper, provided

- ▶ The columns of X are linearly independent, and
- ightharpoonup n > k

In this case, the classical ordinary least squares estimates exist:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$
 $s^2 = \frac{1}{n-k} (y - X \hat{\beta})^T (y - X \hat{\beta})$

The posterior is related to these ...

4

The full posterior has an explicit form:

$$eta \mid \sigma^2, y, X \sim \mathrm{N}(\hat{eta}, \, \sigma^2 V_{eta})$$
 where $V_{eta} = (X^T X)^{-1}$ $\sigma^2 \mid y, X \sim \mathrm{Inv-}\chi^2 (n-k, s^2)$

When n-k>2, explicit posterior inferences include

$$E(\beta \mid y, X) = \hat{\beta} \qquad \text{var}(\beta \mid y, X) = \frac{n-k}{n-k-2} s^2 V_{\beta}$$

$$E(\sigma^2 \mid y, X) = \frac{n-k}{n-k-2} s^2$$

Direct posterior simulation is easy:

- 1. Simulate σ^2 from its posterior marginal.
- 2. Simulate β from its posterior conditional (given simulated σ^2).

Alternatively, the actual posterior marginals for elements of β are t-distributions that have been shifted and scaled.

Prediction

For unobserved \tilde{y} satisfying

$$\tilde{y} \mid \theta, \tilde{X} \sim \mathrm{N}(\tilde{X}\beta, \, \sigma^2 I)$$
 \tilde{X} observed

can easily simulate from posterior predictive distribution:

- 1. Simulate $\theta = (\beta, \sigma^2)$ from posterior as before.
- 2. Simulate \tilde{y} given the simulated θ .

Alternatively, there is an explicit form (BDA3, Sec. 14.2).