The Chomsky Hierarchy

Shakir Ullah Shah

Chomsky Hierarchy

 Type-0 grammars (unrestricted grammars) include all formal grammars.

 Type-1 grammars (context-sensitive grammars) generate the context-sensitive languages.

The chomsky hierarchy

- Type-2 grammars (context-free grammars) generate the context-free languages.
- Context free languages are the theoretical basis for the syntax of most programming languages.

- Type-3 grammars (regular grammars) generate the regular languages.
- These languages are exactly all languages that can be decided by a finite state automaton. Additionally, this family of formal languages can be obtained by FAST National University of Computer and Emerging Sciences, Peshawar Campus

Linear-Bounded Automata:

Same as Turing Machines with one difference

the input string tape space is the only tape space allowed to use

Linear-Bounded Automata:

Turing machine.

No limit on length of tape.

Linear bounded automata (LBA).

- A single tape TM that can only write on the portion of the tape containing the input.
- Note: allowed to increase alphabet size if desired.
- LBA is strictly less powerful than TM.
- There are languages that can be recognized by TM but not a LBA.
- .We won't dwell on LBA in this course.

Il computation is done between end markers

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\} \qquad L = \{a^{n!}\}$$

BA's have more power than PDA's (pushdown automata

BA's have less power than Turing Machines

Type-0 grammar (Unrestricted Grammar)

Productions

String of variables and terminals

String of variables and terminals

Type-0 grammar (Unrestricted Grammar)

 They generate exactly all languages that can be recognized by a Turing machine.

 These languages are also known as the recursively enumerable languages.

This is different from the recursive languages which can be *decided* by an always halting

FAST National University of Computer and Emerging Sciences, Peshawar Campus

Example unrestricted grammar:

$$S \rightarrow aBc$$
 $aB \rightarrow cA$
 $Ac \rightarrow d$

Theorem:

A language $\,L\,$ is Turing-Acceptable if and only if $\,L\,$ is generated by an unrestricted grammar

Context-Sensitive Grammars:

Type-1 grammar Productions

String of variables and terminals

String of variables and terminals

and:
$$|u| \leq |v|$$

Context-Sensitive Grammars:

Type-1 grammar

• The rule is allowed if *S* does not appear on the right side of any rule.

 The languages described by these grammars are exactly all languages that can be recognized by a non-deterministic Turing machine whose tape is bounded by a constant times the length of the input.

The language $\{a^nb^nc^n\}$ is context-sensitive:

$$S \rightarrow abc \mid aAbc$$

 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Theorem:

language L is context sensistive if and only if accepted by a Linear-Bounded automator

Observation:

here is a language which is context-sensitive ut not decidable

FAST National University of Computer and Emerging Sciences, Peshawar Campus

The Chomsky Hierarchy

Turing-Acceptable decidable Context-sensitive Context-free Regular

Summary

Automata theory: formal languages and formal grammars			
Chomsky hierarchy	Grammars	Languages	Minimal automaton
Type-0	(unrestricted)	Recursively enumerable	Turing machine
	(unrestricted)	Recursive	Decider
Type-1	Context-sensitive	Context-sensitive	Linear-bounded
Type-2	Context-free	Context-free	Pushdown
Type-3	Regular	Regular	Finite
Each category of languages or grammars is a proper superset of the category directly beneath it.			