مقدمة في البرمجة بلغة ++C

أساسيات اللغة

التراكيب الشرطية هيكلية البرامج

المصفوفات

الحلقات التكرارية

الدوال

محمد سالم البهادلي

المحتويات								
الصفحة	الموضوع	الصفحة	الموضوع					
20	تمارين الفصل الثالث	4	المقدمة					
21	القصل الرابع: تراكيب التكرار	4	الفصل الاول: أساسيات اللغة					
21	الحلقة التكرارية (while)	4	الرموز					
22	الحلقة التكرارية (do-While)	5	الكلمات المحجوزة					
24	الحلقة التكرارية (for)	5	المعرفات					
25	جمل التفرع	5	الاعداد					
25	جملة أقطع (break)	5	السلاسل والحروف					
26	جملة الاستمرار (continue)	6	المتغيرات					
26	جملة خروج (exit)	7	الثوابت					
26	جملة أذهب الى (goto)	7	المؤثرات					
27	تمارين الفصل الرابع	11	الفصل الثاني: الهيكلية للبرامج					
28	الفصل الخامس: المصفوفات	11	التعليقات					
28	المصفوفات ذات البعد الواحد	11	التوجيهات					
30	المصفوفات ذات البعدين	12	الدالة الرنيسية ()main					
33	المصفوفات الحرفية	12	أدخال وأخراج البيانات					
34	تمارين الفصل الخامس	15	تمارين الفصل الثاني					
35	الفصل السادس: الدوال	16	الفصل الثالث: التراكيب الشرطية					
39	الدوال الرياضية	16	التركيب الشرطي البسيط (if)					
41	المتغيرات الخارجية	17	التركيب الشرطي الكامل (if-else)					
43	الدوال والمصفوفات	18	تركيب المؤثر الشرطي (?)					
44	تمارين الفصل السادس	18	التركيب الانتقائي (switch)					

المعالي المعالي المها المسأ

إثمالهم أل الم عصمال

والصلاة والسلام على سيد الاولين والاخرين ابو القاسم محمد وال بيته الطيبين الطاهرين واصحابة المنتجبين.

الاهداء

الى الملاك الطاهر ...

ذي القلب الكبير والنفس اللوامة المطمئنة ...

والذي تعلق بربه فدعاه خوفاً وطمعاً ...

وما هو الا قبضة من رحمة وعطف وحنان ...

لقد انفصل جسمي عن جسمه ...

لكن روحي لم تزل بروحه متصلة ...

وبهديه وارشاده عرفت جادة الصواب ...

واستبأنت سبيل الرشاد ...

فرضي الله عنه وأرضاه ...

Email: m.albahadeli@yahoo.com

الى من استلهمت منه أسباب البقاء ...

الى أمي ... بعد استئذان ... أبي ... العظيم ...

محمد البهادلي

أسئلكم الدعاء لى ولوالدي

مقدمة:

++C هي لغة برمجة للاستخدامات العامة، وتعتبر لغة برمجة كائنيه (Object Oriented). ولغة ++C يراها الكثيرون اللغة الأفضل لتصميم التطبيقات ذات الواجهة الكبيرة ولغة ++C من لغات البرمجة العالية المستوى وفي نفس الوقت قريبة من لغة التجميع ذات المستوى المحدود. تشمل ++C جميع مزايا C وذلك لانها لغة ناشئة من لغة C التي طورها العالم ستروستروب (Bjarne Stroustrup) خلال -1985 المحدود. 2013 في ولاية نيوجرسي إلي ++C.

تسهّل لغة ++ C الأسلوب المهيكل والمنهجي لعملية تصميم البرامج، وتعتمد على الكائنات كبنية أساسية لتشكيل البرامج ولغة ++ و متعددة الاستخدامات إلا أنها مناسبة لبرامج أنظمة التشغيل وتكتب معظم أجزاء أنظمة التشغيل و برامج مساعدة أنظمة التشغيل باستخدام ++ و منها نظام لينكس ولكن يتجنب الكثير من المبرمجين لغة C و ++ نظرا الشهر تهما كلغات برمجة معقدة وقد أدى ذلك إلى استخدام الكثيرين الغات مثل فيجوال بيسك و دلفي ثم جافا و + و الأخيرتين هما مجرد تسهيل (و ليس تطوير) للغة ++ و بدأ في وقت معين أن لغات مثل الجافا سوف تستولي على سوق البرمجيات التجارية من ++ مع هجرة عدد كبير من مبرمجي ++ الى جافا و + ، إلا أنه سر عان ما أدرك المبرمجون أن + هي السبيل الوحيد لإنتاج برامج تجارية قوية و سريعة و تؤدى المطلوب منها بكفاءة و بأقل عدد من الأخطاء.

تدعم لغة ++C اللغة C بشكل كامل(نظريا أو هذا ما تقوله الشركات المنتجة للمترجمات) وعمليا يمكن لمعظم برامج C أن تترجم بواسطة مترجمات ++C و لهذا تسمى هذه المترجمات بمترجمات ++C. و إلا أن الأمر لا يخلو من بعض المشاكل غير المتوقعة، فمثلا قد يحدث أن تسمي متغيراً باسم new وهي كلمة محجوزة في ++C و ليست كلمة محجوزة في C ولكن الاضافة الأهم التي أتت بها ++C عن C هي البرمجة عن طريق الكائنات حيث تعتمد C على البرمجة الإجرائية والتي كانت كافية في وقتها الا أنه بظهور أنظمة التشغيل ذات الواجهة الرسومية انتقل معظم المبرمجين إلى البرمجة بالكائنات.

أما سبب صعوبة لغة ++2 فيعود لأسباب تاريخية أكثر منها واقعية وهو ما يردده المبرمجين المعتادين على استخدام ++2 و هذا يعود بنا إلى أصل لغة C و هي لغة CPL و التي اشتهرت بشدة تعقيدها مما تسبب في ابتعاد المبرمجين عنها فتم تطويرها و تبسيطها إلى لغة سميت BCPL و لم تلقى الكثير من النجاح و لكنها تطورت إلى لغة B و عندما أرادو تطويرها سموها (و هذا هو أصل تسمية C) ، و بالطبع ورثت +C+ خصائص لغة C!لا أنه لا يمكن إنكار أن مفاهيم مثل المؤشرات Pointers ، و الاشارات هي مفاهيم مربكة للمبرمج المبتدئ ، بالاضافة إلى مفاهيم التوارث Inheritance و تعدد الشكل Polymorphism و القوالب Templates التي تربك حتى المبرمجين المحترفين وكذلك لا تقدم ++2 الحماية الكافية للمبرمج كي لا يقع في أخطاء التشغيل التي قد تتسبب في توقف الحاسوب عن العمل.

لغة ++C تواصل التطوّر لتلبية المتطلبات المستقبلية. نسخة جديدة من ++C القياسية حاليا هي قيد التطوير، لقبها ++Cاكس، يشّار بأنّه يتوقع أن يكون إصدار ها قبل2010.حيث يشير العمل الحالي بأنّ ++C سيواصل الاستفادة من طبيعتها متعددة المثّال. [Boost.Org] مجموعة تعمل للاستفادة إلى أبعد الحدود من ++C في شكله الحالي،حيث هم الان يتوسّعون كثيرا في ++C من حيث الوظيفية والقدرات.

(Fundamentals of C++) C++ الفصل الأول: أساسيات

تستخدم في لغة ++C كما هو الحال في أي لغة برمجية أخرى مجموعة من الأساسيات التي يجب التعرف عليها عند دراسة أي لغة برمجية، وهذه الأساسيات هي:

(1.1) الرموز (Characters)

Email: m.albahadeli@yahoo.com

وتتألف من :-

- a) الأرقام(digits) و هي 9,8,7,6,5,4,3,2,1,0
- a,b,c,...,x,y,z والحروف المجائية (letters) وهي الحروف الكبيرة A,B,C,...,X,Y,Z والحروف الصغيرة (b
 - c) الرموز الخاصة(special characters) وهي

+	1	*	/	•)	(•	\$ #	;	,	<	>	%	}	{	!	"	-

(1.2) الكلمات المحجوزة (Reserved words)

وهي كلمات موجودة في المكتبة القياسية للغة ++C تستعمل أسماء، ولها وظيفة معينة، ولا يمكن استعمالها لغير ما وظفت بـ لان ذلك سوف يحدث بسببها أرباك للمترجم (Compiler). وهذه الكلمات هي:

asm	auto	bool	break	case	catch	char	class	const	cast
continue	default	delete	do	double	else	enum	export	explicit	extern
false	float	for	friend	goto	if	inline	int	long	new
operator	private	protected	public	register	return	short	signed	sizeof	static
struct	switch	template	this	throw	true	try	typedef	typename	union
unsigned	using	virtual	void	volatile	Wchar_t	while	and	or	xor

(1.3) المعرفات (Identifiers)

المُعّرف هو ذلك الاسم الذي يخزن به قيم مثل الثابت أو المتغير أو الدالة ، ومن شروط المعّرف هي :

- a. أن يتكون من حرف أو حروف أو حروف وأرقام.
- b. خالى من أي رمز خاص ماعدا الرمز () under score .b

 - أن يبدأ دائماً بحرف أو الرمز (_). يُوَالَّمُ الكبيرة . يسمح باستخدام الحروف الصغيرة والحروف الكبيرة .
 - أن يكون له الطول المناسب و واضحاً وذا معنى ومدلول

مثال: معر فات مقبولة x12, student name, degree, AVARAGE, ToTaL, sum

> مثال: معرفات غير مقبولة يبدأ برقم يبدأ برقم يبدأ بالرمز الخاص \$ يمثل كلمة محجوزة new مستخدم فراغاً LG NAME

(Numbers) الأعداد (1.4) الأعداد في لغة +++ هي :

- a. الاعداد الصحيحة: وهي الاعداد الخالية من الفاصلة العشرية، مثال 927- 5476 0 -56
- b. الاعداد الحقيقية: وهي الاعداد التي تتضمن فاصلة عشرية ، مثال 326.5877 0.67 31.67 0.67 .b
- الاعداد الحقيقية ذات الدقة المضاعفة: وهي الاعداد الحقيقية الممثلة بشكل قوة آسية باستخدام الحرف (e) أو الحرف (E) حيث يدل الحرف e أو E على القوة. مثال 0.22E9 0.22E9 الحرف e أو E على القوة. مثال

(1.5) السلاسل والحروف (Strings and Characters)

السلسلة: وهي مجموعة من الحروف أو الأرقام أو الرموز الخاصة، بشرط أن تكون موضوعة بين علامتي التنصيص المزدوجة ("").

"This is a sentence." , "Go to room" , "NAME:" , "56&4787" مثال:-الحرف: وهو حرف أو رمز أو رقم موضوع بين علامتي التنصيص المفردة ('').

'+' , 'A' , 'a' , '*' , '7' مثال:-

(1.6) المتغيرات (1.6)

Email: m.albahadeli@yahoo.com

ر مرية بخصص لها أماكن تخزين في ذاكرة الحاسب، والتي تتغير قيمتها من قيمة الى أخرى،ويمكن الرجوع إليها عن طريق هذه الأسماء أثناء تنفيذ البرنامج.

في لغة ++C يجب أن يعلن عن المتغيرات مسبقاً (أي قبل تخصيص قيمة لها)، ولا فلن يتعرف لها مترجم اللغة (Complier). ولغرض الإعلان عن المتغيرات نستخدم الصيغة الآتية:

Type Variable_Name;

حيث Variable Name: يمثل اسم المتغير، والذي يخضع الى نفس شروط المعرف السابقة.

Type: يمثل نوع المتغير، ويمكن ان يكون احد الأنواع الموجودة في الجدول الأتي:

النوع	الوصف	الحجم	المدى	
short int	Short Integer		-32768 to 32767	
unsigned short int unsigned short	Short Integer	2bytes	0 to 65535	
int	Integer	2bytes Or 4bytes	يعتمد على النظام -32768 to 32767 or -2147483648 to 2147483647	
unsigned int	Integer	4bytes	0 to 4294967295	
long int	Long integer	4bytes	-2147483648 to 2147483647	
unsigned long int unsigned long	Long integer	4bytes	0 to 4294967295	
bool	Boolean value: true or false	1byte	true or false	
float	Floating point number	4bytes	3.4e- 38 to 3.4e+38 (7 digits)	
double	Double precision floating point number	8bytes	1.7e- 308 to 1.7e+308 (15 digits)	
long double	Long double precision floating point number	10bytes	1.2e- 4932 to 1.2e+4932 (19 digits)	
char	Character	1byte	-128 to 127	
unsigned char	Character	1byte	0 to 255	

أما لغرض أعطاء قيمة للمتغير، فيتم عن طريق

Variable_Name=Variable_Value;

(1) جملة التخصيص (=). الصيغة العامة

حيث أن Variable_Value تمثل قيمة المتغير.

(c in – الله الإدخال (cin>>). (ثلف سى ان (2)

cin>>Vabriable Name;

الصيغة العامة

عندما يصل البرنامج إلى جملة <<cir يتوقف منتظراً ادخال قيمة للمتغير (Variable_Value)عن طريق لوحة المفاتيح، ثم تخزن تلك القيمة في عنوان المتغير (Variable_Name) المخصص له في الذاكرة .

Example 1	Example 2
int x;	int x;
float mynumber;	float mynumber;
char m;	char m;
x = 168;	$cin \gg x$;
mynumber= 5.78;	cin >> mynumber;
m='T';	cin >> m;

ملاحظة (1.6.1): يمكن الاعلان عن أكثر من متغير لنفس النوع بسطر واحد، وكما يلي:

Type Variable_Name1, Varible_Name2, Variable_Name3,.....;

Example
int a,b ;
float x,y,z ;
a= 24;
b= -78;
x=y=7.5;
z=0.84;

ملحظة (1.6.2): من الممكن أعطاء قيمة للمتغير أثناء الاعلان عن ذلك المتغير. وكما يلي:

Type Variable_Name=Varible_Value;

Example 1	Example 2	Example 3
int $x = 168$;	float mynumber = 5.78;	char m = ' T ';
float $a=b=-78.2$;	float sum= 0.0 ;	

ملاحظة (1.6.3):- من الممكن استخدام عبارة الادخال لمره واحدة فقط لادخال اكثر من متغير، وكما يلي

cin >> variable_1>>variable_2>>.....>>variable_n;

Example				
<pre>int x; float mynumber; char m; cin >> x >> mynumber >> m;</pre>				

(1.7) الثوابت (Constants)

تستخدم الثوابت في لغة ++C حيث يدل الثابت على قيمة لا يمكن تغيير ها اثناء البرنامج والصيغة العامة للثابت هي:

const Type constant_name=constant_value;

حيث أن Type : يمثل نوع قيمة الثابت.

constant_name: يمثل اسم الثابت. constant value : تمثل قيمة الثابت.

const int pathwidth= 100; const char tabulator= '\t'; const char ch= "C++ Good Lang."; const double PI= 3.14159265;

(1.8) المؤثرات(Operators)

يوجد في لغة ++C عدد من المؤثرات ،وهي كالاتي:-

a) المؤثرات الحسابية(Arithmetic Operators): وهي

المؤثر	معناه	مثال
+	addition	a+b
-	subtraction	a-b
*	multiplication	a*b
/	division	a/b
%	modulo	a%b

ملاحظة (1.8.1): - يجب أن ناخذ بعين الاعتبار بالنسبة لمؤثر باقي القسمة (%) يجب أن تكون عناصر البيانات المستعملة قيم صحيحة والا فان النتيجة تكون خاطئة.

مثال: اذا كان a=11 و b=3 فان a=11

اما اذا كان a أو b أو كلاهما عدداً حقيقياً، فإن عملية باقى القسمة لا يمكن تطبيقها ، لان النتيجة تكون خاطئة .

(b) المؤثرات العلائقية(Relational Operators): وهي ست مؤثرات تستخدم على أي زوج من العناصر ويكون ناتجها اما صحيحاً True (أي قيمة ما عدا 0) أو خطئاً False(قيمة 0) وهي كما يلي:

المؤثر	معناه	مثال	النتيجة
==	Equal to	7==5	False (0)
!=	Not equal to	3!=2	True (1)
<	Less than	4>9	True (1)
<=	Less than or equal to	7<=6	False (0)
>	Greater than	-2>4	False (0)
>=	Greater than or equal to	12>=10	True (1)

c المؤثرات المنطقية (Logical operators): وهي مؤثرات ينتج عنها اما قيمة صحيح TRUE (العدد 1) أو قيمة خطأ (c

(أي قيمة ما عدا 1) .

المؤثر	معناه
&&	And
	Or
!	negating or anti-thesis

a	b	a && b	a b	!a
True	True	True	True	False
True	False	False	True	
False	True	False	True	True
False	False	False	False	

d) المؤثرات الخاصة بالبت(Bitwise Operators): وهي

المؤثر	المكافى الى	معناه
&	AND	Bitwise AND
I	OR	Bitwise Inclusive OR
^	XOR	Bitwise Exclusive OR
~	NOT	Unary complement (bit inversion)
<<	SHL	Shift Left
>>	SHR	Shift Right

وهي استخدام المؤثرات الحسابية والمؤثرات (Compound Operators): هناك ميزة في لغة ++0 وهي استخدام المؤثرات الحسابية والمؤثرات الخاصة بالبت مع اشارة التخصيص (=) تحت اسم المؤثرات المركبة، وهي طريقة مختصرة لجلة التخصيص . والمؤثرات المركبة هي : ->> = -> = -> = -> = -> = -> .

فمثلاً التعبير 2+x=x تعني اضف القيمة 9 للمتغير القديم x الموجود في الطرف الايمن، ثم خصص هذه القيمة الجديدة للمتغير الجديد الموجود في الطرف الايسر وهو x .

و على هذا يمكن استخدام التعبير السابق بطريقة المؤثر المركب = وكما يلي : $_{
m X}+=9$.

جملة التخصيص	جملة التخصيص باستخدام المؤثر المركب	
value = value + increase;	value += increase;	
a = a - 5;	a -= 5;	
a = a / b;	a /= b;	
<pre>price = price * (units + 1);</pre>	price *= units + 1;	

مؤثرات الزيادة والنقصان (Increment Decrement Operators) هناك ميزة في لغة C++ قد لا نجدها في بعض لغات البرمجة الأخرى وهي، مؤثر الزيادة (++) ومؤثر النقصان (--) حيث يمكن استعمالهما مع المتغيرات فقط.

Email: m.albahadeli@yahoo.com

مؤثر الزيادة (++): التعبير ++ يعني استخدم القيمة الحالية للمتغير a في حساب التخصيص ، ثم أضف القيمة 1 الى المتغير a الما التعبير a++ بعنى أضف القيمة 1 الى المتغير a، ثم استخدم القيمة الجديدة للمتغير a في حساب التخصيص.

مؤثر النقصان(--):التعبير --a يعني استخدم القيمة الحالية للمتغير a في حساب التخصيص ، ثم أنقص القيمة 1 من المتغير a . اما التعبير a-ديني أنقص القيمة 1 من المتغير a، ثم استخدم القيمة الجديدة للمتغير a في حساب التخصيص.

Example 1	Example 2	Example 3	Example 4
B=++A; // B contains 4	B=A++; // B contains 3	A=(++B+C++); // B contains 4,C contains 3	B=C=3; A=(B+C); // B contains 3,C contains 3 //A contains 6

g) مؤثر الفاصلة (,) (The Comma Operator): أذا كان لدينا أكثر من تعبير مفصولة عن بعضها بفاصلة فأن القيمة النهائية تحسب من اليسار الى اليمين، ونوعها هو نوع التعبير بالطرف الايمن.

expression 1, expression 1, ..., expression 1;

الصيغة العامة

a=2; b= (a+=4, 12/a);

نلاحظ أن التنفيذ في المثال اعلاه يتم كالاتي : تعطى القيمة 2 للمتغير a، ثم يُنفذ مؤثر الفاصلة حيث يُنفذ التعبير الأول 4=+a والذي تنتج عنة القيمة 3 والتي تخصص الى المتغير b . تنتج عنة القيمة 3 والتي تخصص الى المتغير b .

ملاحظة (1.8.2): - الاولوية في التفيذ تتضح عند وجود تعبير ما به عدد من المؤثرات المختلفة، فاذا اردنا أن ياخذ التعبير مساراً محدداً لتقييمه يجب استخدام الاقواس وذلك حسب ما يقتضيه التعبير، اما الاولوية في التنفيذ فتتم حسب الاتي :

التسلسل	الموثر	الوصف	التنفيذ
1	++ ~!	unary (prefix)	Right-to-left
2	• / %	multiplicative	Left-to-right
3	+ -	additive	Left-to-right
4	<< >>	shift	Left-to-right
5	< <= > >=	relational	Left-to-right
6	!= ==	equality	Left-to-right
7	&	bitwise AND	Left-to-right
8	۸	bitwise XOR	Left-to-right
9	I	bitwise OR	Left-to-right
10	&&	logical AND	Left-to-right
11	II	logical OR	Left-to-right
13	= *= /= %= += -= >>= <<= &= ^= =	assignment	Right-to-left
14	,	comma	Left-to-right

الفصل الثاني: الهيكلية للبرامج في ++C++ في الفصل الثاني: الهيكلية للبرامج

لغرض التعرف على شكل البرنامج في لغة ++C ، يجب النظر الى مجموعة من البرامج البسيطة والتي تبين الهيكل العام لاي برنامج باللغة ++C.

Program 1	التنفيذ
// my first program in C++ #include <iostream.h></iostream.h>	Hello World!
int main () {	
cout << "Hello World!"; return 0;	
}	

Program 2	التنفيذ
// operating with variables	3
#include <iostream.h></iostream.h>	
int main ()	
{	
int a, b;	
int result;	
a=5;	
b = 2;	
result = a - b;	
cout << result;	
return 0;	
}	

بعد الاطلاع على المثالين اعلاه، يمكننا الان شرح هيكلية البرنامج بلغة ++C ،حيث أن هذه الهيكلية تتألف من :

(2.1) التعليقات (2.1)

وهي جمل ايضاحية تستخدم في البرنامج فقط لتسهيل توثيق واعادة قراءة البرنامج أو تعديلة من طرف المبرمج أو الاخرين وهذه التعليقات يمكن أن تكتب في أي مكان من البرنامج، ومن الممكن أن لا تكون موجودة في البرنامج،ولا يكون لها أي تاثير على البرنامج، لان مترجم اللغة يتجاهلها اثناء التنفيذ . و توجد صيغتان للتعليق :

a. // Comment Statement

b. /* Comment Statement */

حيث أن الصيغة الاولى هي الصيغة الاكثر استخداماً في برامج اللغة ++C ،وعند استخدام هذه الصيغة يجب الانتباه الى أن كل سطر تابع لجملة التعليق أن يبدأ بالرمز (//) .

اما الصيغة الثانية فهي كذلك موجودة في اللغة C ،يمكن الاطلاع عليها خلال أي كتاب باللغة C وعند استخدام هذه الصيغة يجب الانتباه الى مايلي: اذا كان لدينا أكثر من سطر لجملة التعليق فيجب وضع الرمز (*) في بداية السطر الاول لجملة التعليق ووضع الرمز (*) في نهاية السطر الاخير لجملة التعليق .

(2.2) التوجيهات (2.2)

Email: m.albahadeli@yahoo.com

التوجيه هو عملية ادراج ملف عنوان رأسي(Header File) ضمن البرنامج، حيث أن هذا الملف موجود ضمن ملفات المكتبة القياسية للغة ++C والذي يحتوي على بعض الايعازات المستخدمة ضمن البرنامج والمطلوب التعرف عليها وتنفيذها من قبل مترجم اللغة من هذه الملفات (iostream) والذي يحتوي على عبارات الاخال والاخراج والعمليات الحسابية، وهذه الملف يجب ادراجه ضمن جميع برامج اللغة ++C، الملف الاخر هو (math) والذي يحتوي على الدوال الرياضية (الدوال المثلثية، الدوال اللوغارتيمية، الدوال الاسية،....). وكذلك يوجد العديد من الملفات والتي سوف نتطرق لها من خلال البرامج اللاحقه.

#include< File Name.h >

اما الصيغة العامة للتوجيه هي:-

حيث أن File_Name يمثل اسم الملف.

Example: - (1) #include< iostream.h > (2) #include< math.h >

(2.3) الدالة الرئيسية ()Main Function main

وهي الدالة التي يبدأ بها البرنامج،وتكون موجودة في جميع البرامج بلغة ++C ، ولهذه الدالة صيغتان يمكن استخدام اياً منهما عند كتابة برنامجاً ما

```
الصيغة الثانية
void main( )
{
Program Body;
}
```

```
الصيغة الأولى
int main( )
{
    Program Body;
    return 0;
}
```

حيث Program body يمثل جملة أو مجموعة من الجمل . اما return 0 تمثل جملة الارجاع (الاعادة) ، أنشاء الله سوف نتطرق لها في فصل الدوال بصورة تفصيلية .

ملحظة (2.3.1):- (1) في بعض من البرامج المستخدمة للصيغة الأولى يمكن كتابة الدالة () main وبدون ذكر int ، هذه العملية تعتبر صحيحة لانه مترجم اللغة يعتبر ها دائما وكأنها ()int main .

(2) يجن الانتباء الى أن جملة الارجاع return 0 غير موجودة ضمن الصيغة الثانية .

(2.4) إدخال وإخراج البيانات (2.4)

(1) الادخال: - (راجع موضوع المتغيرات) في بعض البرامج يُستخدم مؤثر التخصيص (=) لتخصيص قيم لمتغيرات، وهنا لا يسمح بتغير تلك القيم الا بتغير جملة التخصيص حيث تكون ثابتة اثناء تنفيذ البرنامج . لذلك يُفضل في معظم البرامج استخدام دالة الادخال <mi>والموجودة ضمن ملف العنوان iostream ، وهذه الدالة تأخذ المعطيات من لوحة المفاتيح وتخصصها لاسماء متغيرات، حيث يمكن استخدامها في البرنامج فيما بعد .

```
cin >> Variable Name; الصيغة العامة لدالة الادخال هي:
```

ملحظة (2.4.1):- اذا كان لدينا اكثر من متغير، فأنة بالامكان بسطر واحد استخدام <<cir لادخال القيم لهذه المتغيرات وكما يلى

cin >> Variable 1>> Variable 2<< Variable 3<<< Variable n;

(2) الاخراج: تستخدم الدالة >> cout (ثلفظ سي اوت - cout) لاخراج البيانات على وحدة الاخراج القياسية (الشاشة) ، وهذه الدالة موجودة ضمن ملف العنوان iostream.h .

حبث

:Format تعني التوصيف الازم للطباعة، البرنامج الجيد هو البرنامج الذي تكون مخرجاته منسقة وذات توصيف جيد للبيانات.

عناصر البيانات ، وهي اختصار لكلمة الادلة(Arguments) ويمكن أن تكون هذه عناصر البيانات ، وهي اختصار لكلمة الادلة(Arguments) ويمكن أن تكون هذه الادلة ثوابت عددية أو متغيرات من النوع (الصحيح – الحقيقي الحرفي) المطلوب طباعتها على الشاشة، وعلى أن تفصل الادلة عن بعضها بواسطة فواصل .

ملاحظة (2.4.2): - هناك بعض الرموز الخاصة، يطلق عليها أحياناً (رموز الهروب)، و الممكن استخدامها مع دالة الاخراج >>cout للتحكم في المخرجات أو الطباعة على الشاشة، و هذه الرموز يمكن أن توضع ضمن التوصيفات(Format) أو بصورة منفردة وفي حالة كتابتها بصورة منفردة فيجب وضعها داخل علامة التنصيص المزدوجة("") ماعدا الرمز endl وهي كالاتي .

الرمز	معناه	الرمز	معناه
endl	الانتقال الى سطر جديد	\ b	التراجع مسافة الى الخلف
\n	الانتقال الى سطر جديد	\ f	الانتقال الى صفحة جديدة
\r	البدء من أول السطر	\a	استخدام الجرس
\t	التقدم مسافة معينة قبل الطباعة	\'	لطباعة علامة التنصيص المفردة
\ v	التقدم مسافة عمودية قبل الطباعة	\"	لطباعة علامة التنصيص المزدوجة

-: (2.4.3) <u>مثال</u>

```
Program

// my second program in C++

#include <iostream.h>

int main ()

{

cout << "Hello World! ";</td>

cout << "I'm a C++ program";</td>

return 0;
```

نلاحظ من خلال هذا المثال أن التفيذ قد أظهر الطباعة للعبارتين بسطر واحد ،وهذا تنسيق غير جيد للطباعة اذ اننا نريد طباعة كل عبارة بسطر واحد مستقل عن السطر الاخر، لذلك سوف نستخدم الرموز endl لهذا الغرض .

```
Program

// my second program in C++
Hello World!

#include <iostream.h>
I'm a C++ program

int main () {
cout << "Hello World! " << endl ;</td>

cout << "I'm a C++ program" ;</td>
return 0;
```

مثال (2.,4.4) :- يمكن استبدال الرمز endl بالرمز 'n' .

Email: m.albahadeli@yahoo.com

Program	التنفيذ)
// my second program in C++	Hello World!
#include <iostream.h></iostream.h>	I'm a C++ program
int main ()	
{	
cout << "Hello World!\n ";	
cout << "I'm a C++ program";	
return 0;	
}	

مثال (2.4.5):- أكتب برنامجاً لحساب وطباعة مساحة ومحيط دائرة نصف قطرها r=5.2.

Program	التنفيذ
//calculate area and circumference	The Area of circle =84.948663
#include <iostream.h></iostream.h>	The Circumference of circle =32.672563
int main ()	
{	
const double PI=3.1415926;	
float r=5.2;	
double area ,circumference ;	
area = PI * r * r;	
circumference = 2 * PI * r;	
cout << "The Area of circle =" << area << endl;	
cout << "The Circumference of circle =" << circumference;	
return 0;	
}	

مثال (2.4.6): - المطلوب كتابة برنامج لادخال الطول والعرض لمستطيل ما ،ثم حساب وطباعة محيط ومساحة هذا المستطيل .

Program	التنفيذ
#include <iostream.h></iostream.h>	Length= 20
void main()	Width= 15
{	Perimeter is 70
int length, width;	Area is 300
int perimeter, area;	
cout << "Length = " << endl;	
cin >> length;	
cout << "Width = " << endl;	
cin >> width;	
perimeter = $2*(length+width)$;	
area = length*width;	
cout << "Perimeter is " << perimeter << endl;	
cout << "Area is " << area << endl;	
}	

مثال (2.4.7):- أكتب برنامجاً لقراءة درجات طالب في أربعة مواد (95 69 77)، وحساب وطباعة معدل الطالب.

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter Four Degrees: 77 82 69 95
void main()	The Average of Student is 80.75
\	
int d1, d2, d3, d4, sum = 0 ;	
float average;	
cout << "Enter Four Degree : ";	
cin >> d1 >> d2 >> d3 >> d4;	
sum = (d1+d2+d3+d4);	
average = sum/4;	
cout << endl;	
cout << "The Average of Student is " << average << endl;	
}	

ملاحظة (2.4.8):- المبرمج الجيد، دائما يبحث عن كتابة برنامجة بأقل الخطوات ، لذلك يمكن أعادة المثال اعلاه بالبرنامج الاتي :

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter Four Degrees: 77 82 69 95
void main()	The Average of Student is 80.75
{	
int d1, d2, d3, d4;	
cout << "Enter Four Degree : ";	
cin >> d1 >> d2 >> d3 >> d4;	
cout << endl;	
cout << "The Average of Student is " << (d1+d2+d3+d4)/4;	
}	

تمارين (الفصل الثاني)

 $C = \frac{5}{5}(F - 32)$ المعادلة (F - 32) المعادلة المؤية مستخدماً المعادلة (F - 32) المعادلة (F - 32

تمرين 2 :- أكتب برنامجاً لادخال قيم حقيقية للمتغيرات x, y, z, w ، وحساب وطباعة كل مما ياتى :

A =
$$\frac{5+x}{z} + \frac{y}{2.7w}$$
 2) B = $\frac{4.5(x+2.3y)^2}{z+w}$

تمرين S: - أكتب برنامجاً لقراءة العجلة الثابتة A والزمن T ، ثم أحسب وأطبع المسافة D والسرعة النهائية V ، اذا علمت أن V=AT وأن السرعة النهائية هي V=AT .

تمرين 4: - تتبع واستنتج مخرجات البرنامج التالى:

Email: m.albahadeli@yahoo.com

```
Program
#include <iostream.h>
int main()
short a,b,c;
short d,e;
d=e=30;
a=4;
b = -a + 1;
c = ++a + b ++ ;
cout << "A="<<a<< "\t"<<"B=" <<b<< "\t"<< "C=" <<c<< "\n";
c+=-a+--b;
a=b=c-(a*b);
d/=a+b:
e=e/a +b;
cout << "D="<<d<< "\t"<< "E=" <<e;
return 0;
```

تمرين 5 :- أكتب برنامجاً لادخال الجنس(Sex) وفصيلة الدم لزوجين، وأظهار النتائج كالاتي

SEX BLOOD SPECIES

M A+

F O+

الفصل الثالث: التراكيب الشرطية (Conditional Structures)

نلاحظ ان جميع الامثلة التي مرت بنا سابقًا، نفذت بطريقة متسلسلة (أي خطوة بعد خطوة). وهنا يتبادر الى الذهن السؤال الاتي:

سؤال: - كيف باستطاعتنا نقل تنفيذ خطوات برنامجاً ما بدون تسلسل او بمعنى اخر،كيف يتم التحكم بتنفيذ خطوات البرنامج كيفما نريد؟ للأجابة عن هذا السؤال، علينا دراسة مفهوم التراكيب الشرطية

(3.1) التركيب الشرطي البسيط (اذا / If)

if(condition)	الصيغة العامة
statement;	

عمل If: اذا كان الشرط (Condition) صحيحاً ، فنفذ الجملة (Statement).

مثال(3.1.1) :-

Program	التنفيذ
#include <iostream.h></iostream.h>	التنفيذ1:
int main ()	The number is Positive
\{.	
int x;	
cin>>x;	التنفيذ2:
if $(x > 0)$	
<pre>cout << " The number is Positive" ; return 0 ;</pre>	
icturii 0,	
§	

نلاحظ من خلال التنفيذ1 للبرنامج أعلاه ،عند إدخال x=15 ،فان الشرط متحقق وبالتالي ظهرت لنا العبارة

The number is Positive

بينما عند التنفيذ2،أي عند ادخال x=-6 لم تظهر لنا أي عبارة.

مثال(3.1.2) :-

Program	التنفيذ
#include <iostream.h></iostream.h>	التنفيذ1:
int main ()	The number is Positive
\{. ,	
int x;	
cin>>x; if (x > 0)	التنفيذ2:
cout << " The number is Positive";	The number is Negative
if (x < 0)	3
cout << " The number is Negative";	
return 0;	
}	

نلاحظ من خلال المثال اعلاه، في التنفيذ الاول ظهرت لنا العبارة The number is Positive بينما في التنفيذ الثاني ظهرت لنا العبارة The number is Negative، هنا تم استخدام التركيب الشرطي البسيط مرتين.

ملاحظة (3.1.3):- اذا كان المطلوب تنفيذ أكثر من جملة ضمن شرطاً ما، فيجب وضع هذه الجمل ضمن القوسين } ، { وهذا ما اصطلح على تسميته الجملة المركبة أو البلوك .

```
{
    statement_1;
    statement_2;
    ...
    statement_n;
}
```

مثال (3.1.4):- أكتب برنامجاً لقراءة عددين حقيقيين ، ثم رتب هذين العددين تصاعديا .

Program	التنفيذ
<pre>#include<iostream.h> void main () { float a,b,temp; cin>>a>>b;</iostream.h></pre>	5.7 3.94 :1: 3.94 , 5.7
<pre>if (a>b) { temp=a; a=b; b=temp; } cout << a <<" , "<< b ; }</pre>	-1.6 8.17 التنفيذ2: -1.6 , 8.17

نلاحظ من خلال المثال أعلاه، عند التنفيذ الاول قد تحقق الشرط وبالتالي تم اجراء التبديل وظهرت النتيجة، بينما في التنفيذ الثاني لم يتحقق الشرط(أي لم يتم أجراء التبديل) وبالرغم من ذلك ظهرت لنا النتيجة صحيحة أيضاً .

(3.2) التركيب الشرطي الكامل (اذا...والا / 3.2)

```
if(condition) الصيغة العامة
statement_1;
else
statement_2;
```

عمل <u>If ...else</u> :- اذا كان الشرط (Condition) صحيحاً ،فنفذ الجملة (Statement_1) اما اذا كان الشرط غير صحيح فنفذ الجملة (Statement_2) الجملة (Statement_2).

مثال (3.2.1):- المطلوب كتابة برنامجاً يتضمن أدخال عدد صحيح، ومعرفة فيما أذا كان هذا العدد زوجي ام فردي.

Program	التنفيذ
#include <iostream.h></iostream.h>	التنفيذ1:
int main ()	The number is Even
{	
int x;	
cin>>x;	التنفيذ2:
if(x%2==0)	.2
cout << " The number is Even" ;	The number is Odd
else	
cout << " The number is Odd";	
return 0;	
}	

نلاحظ عند التنفيذ 1،أي عند ادخال x=8 ،فان الشرط متحقق وبالتالي ظهرت لنا العبارة The number is Even بينما في التفيذ 2،أي عند ادخال x=11 ،فان الشرط غير متحقق ورغم ذلك ظهرت لنا العبارة The number is Odd .

ملحظة (3.2.2):- (1) التركيب الشرطي الكامل يكافئ تركيبين شرطيين بسيطين .

(2) يمكن استخدام أكثر من تركيب شرطي كامل بصورة متداخلة ضمن البرنامج الواحد ، وهذا ما أصطلح على تسميتة التركيب الشرطي المتداخل (Nested Conditional Structure) .

(Conditional Operator ?) ? تركيب المؤثر الشرطي ? (3.3)

```
الصيغة العامة (condition)?statement_1:statement_2;
```

عمل المؤثر الشرطى (?): مشابه إلى عمل التركيب الشرطي الكامل if...else عمل المؤثر الشرطي الكامل

مثال (3.3.1): - أكتب برنامجاً لحساب وطباعة قيمة Y ، أذا علمت أن

$$Y = \begin{cases} 5 - x^2 & \text{if } x \ge 0 \\ 2x^3 & \text{if } x < 0 \end{cases}$$

Program by Conditional Operator?	Program by Ifelse
#include <iostream.h></iostream.h>	#include <iostream.h></iostream.h>
	int main ()
int main ()	{
{	float x ,y ;
	$cin \gg x$;
float x ,y ;	if(x>=0)
$cin \gg x$;	y = 5 - x * x;
y=(x>=0) ? 5-x*x : 2*x*x*x ;	else
cout << " Y = " << y;	y=2*x*x*x;
return 0;	cout << " Y = " << y;
	return 0;
}	}

مثال (3.3.2):- أكتب برنامجاً لقراءة عددين صحيحين، ثم يطبع المتغير الذي يحتوي أكبر قيمة .

Program	التنفيذ
#include <iostream></iostream>	2 7
int main ()	The Maximum Number = 7
{	
int a,b,max;	
cin>>a>>b;	
max = (a > b)? a : b ;	
cout << "The Maximum Number = " << max;	
return 0;	
}	

(3.4) التركيب الانتقائي The selective structure Switch) Switch

كما لاحظنا سابقًاءأن جميع التراكيب الشرطية تتم فيها المقارنة بين قيمتين حيث تكون النتيجة أما صحيحة أو خاطئة، ولكن في بعض الاحيان علينا أن نقارن بين عدد من الحالات تبعًا لشروط مختلفة .

في هذه الحالة نستطيع استخدام التركيب الانتقائي (switch) والذي يقوم باختيار القيمة الصحيحة من عدد من القيم وحسب صحة الشرط الموجود في الصيغة .

حبث

الصيغة العامة للتركيب الانتقائي هي:

expression : هو ذلك التعبير الذي يجب أن تكون نتيجتة من النوع الصحيح (int) أو من النوع الحرفي (char) .

case : تمثل نوع الحالة المناسبة بعد احتساب التعبير .

value : تمثل قيمة التعبير ويمكن أن تكون عدداً موجباً أو سالباً من النوع الصحيح (int) أو من النوع الحرفي (char) .

break : وهي عبارة توقف، تستعمل عند آخر كل مجموعة جمل من جمل الحالة (case) لتفادي استمرار بقية الحالات(cases)، واذا لم تستعمل بعد أي حالة فإن التعبير ينتقل الى الحالة الموالية لهذه الحالة .

default : وتعني حالة اسقاط و هي اختيارية (يمكن عدم ذكر ها في البرنامج)، وتنفذ عندما يكون قيمة (expression) لا تتحقق مع أي قيمة (value) .

مثل (3.4.1): - باستخدام تركيب الانتقاء switch ، أكتب برنامجاً لادخال عددين من النوع الحقيقي و مؤثر حسابي يشير الى العملية الحسابية المستخدمة (+ , - , * , /) ، مع طباعة الرسالة المناسبة أذا لم يكن المؤثر المُدخل يشير الى احد العمليات الحسابية الاربعة .

Program	التنفيذ
#include <iostream.h></iostream.h>	التنفيذ 1 :
void main ()	Enter Two Real Numbers: 2.5 1.7
{	Enter Operator: *
float a, b;	2.5 * 1.7 = 4.25
char op ;	
cout << " Enter Two Real Numbers : " << endl ;	التنفيذ 2:
cin >>a>>b;	Enter Two Real Numbers: -0.9 4.11
cout << " Enter Operator : " << endl ;	Enter Operator : +
cin >>op;	-0.9 + 4.11 = 3.21
switch (op)	
{	التنفيذ 3:
case '+': cout < <a<<"+"<<b<<"="<<a+b;< td=""><td>Enter Two Real Numbers: 1.5 7.67</td></a<<"+"<<b<<"="<<a+b;<>	Enter Two Real Numbers: 1.5 7.67
break ;	Enter Operator : ^
case '-' : cout < <a<<"-"<<b<<"="<<a-b;< td=""><td>Error Input Operator</td></a<<"-"<<b<<"="<<a-b;<>	Error Input Operator
break;	
case '*': cout < <a<<"*"<<b<<"="<<a*b;< td=""><td>التنفيذ 4:</td></a<<"*"<<b<<"="<<a*b;<>	التنفيذ 4:
break;	Enter Two Real Numbers: 2.6 19.2
case '/' : if (b==0)	Enter Operator : /
cout << " Error Divide by Zero ";	2.6 / 19.2 = 0.135416
else	
cout < <a<<" ";<="" "<<b<<"="<<a/b;</td><td></td></tr><tr><td>break;</td><td></td></tr><tr><td>Default : cout << " error="" input="" operator="" td=""><td></td></a<<">	
}	

مثال (3.4.2):- أكتب برنامجاً لقراءة متغير صحيح x، ثم أحسب وأطبع قيمة y حيث أن

$$y = \begin{cases} 3x - 7 & if \quad x = -3\\ 5x^2 & if \quad x = 2 \text{ or } 5\\ x - 4x^3 & if \quad x = -4 \text{ or } 4 \end{cases}$$

Program	التنفيذ
#include <iostream.h> void main () {</iostream.h>	: 1 التنفيذ 1 Enter Integer Number : 2 Y= 20
int x, y; cout << "Enter Integer Number: "; cin >> x; switch (x) {	: 2 التنفيذ Enter Integer Number : -6 Error Data out the Range
case -3: y=3*x-7; cout << " Y= "<< y; break; case 2:	Enter Integer Number : 4 Y= - 132
case 5: y=5*x*x; cout <<" Y= "<< y; break; case -4:	: 4: Enter Integer Number : -3 Y= -16
<pre>case 4: y=x-4*x*x*x;</pre>	: 4 التنفيذ Enter Integer Number : 5 Y= 125

نلاحظ في المثال اعلاه، انه تم ادراج الحالات التي لها نفس المعادلة الحالة تلو الاخرى ،والاكتفاء بذكر المعادلة وعبارة الطباعة في نهاية الحالة الاخبرة من الحالات التي لها نفس المعادلة .

تمارين (الفصل الثالث)

تمرين 1 : أكتب برنامجاً يقرأ ثلاث متغيرات من النوع الحقيقي، ثم يطبع هذه المتغيرات بترتيب تصاعدي .

تمرين 2 : أكتب برنامجاً لقراءة أطوال أضلاع مثلث ثم،

Email: m.albahadeli@vahoo.com

- . أطبع كلمة EQULLATERAL في حالة تساوي الأضلاع a
 - . أطبع كلمة ISOSCELES في حالة متساوي الساقين . b
 - . أطبع كلمة SCALENE في حالة اختلاف الأضلاع . c
- d في حالة عدم التوافق مع الحالات الثلاث اعلاه . d ERROR TRIANGLE LENGTH في حالة عدم التوافق مع الحالات الثلاث اعلاه

تمرين 3 : أكتب برنامجاً لادخال متغيرين من النوع الصحيح ومتغير حرفي يدل على الحرف الأول من العملية الحسابية

(Addition, Subtraction, Multiplication, Division) سواء كان الحرف صغيراً أو كبيراً، ثم أحسب وأطبع ناتج العملية الحسابية .

تمرين 4 : المطلوب كتابة برنامج لقراءة المرتب الأساسي لبائع ومقدار مبيعاته، ثم حساب وطباعة الراتب الصافي للبائع، علماً أن الراتب الصافي = الراتب الأساس + المكافئة المئوية . حيث أن المكافئة المئوية تحسب بالصيغة التالية

- a. 2% من مرتبة الأساسي، أذا كانت مبيعاته أقل أو تساوي ثلاث أضعاف مرتبة الأساسي.
 - b. 3% من مرتبة الأساسي، أذا كانت مبيعاته أكثر من ثلاث أضعاف مرتبة الأساسي.
 - c. %5 من مرتبة الأساسي، أذا زادت مبيعاته على خمسة أضعاف مرتبة الأساسي.

الفصل الرابع: تراكيب التكرار (الحلقات) (Iteration Structures (Loops

تحت شرط معين يتحتم علينا أحياناً تنفيذ جملة أو مجُموعة من الجمل عدداً من المرات، وهذا ما يوصف بالتكرار . في اللغة ++C توجد مجموعة من الصيغ التي اللغة ++C توجد مجموعة من الصيغ التي التي التكرار، ومن هذه الصيغ هي : while , do...while , for

(4.1) الحلقة التكرارية بينما (The iteration loop while)

```
while(condition) الصيغة العامة statement ;
```

عمل الحلقة while : أختبر الشرط (condition) أولاً، فأذا كان الشرط صحيحاً، نفذ الجملة (statement)، كرر هذا الاختبار والتنفيذ لغاية أن يصبح الشرط غير صحيح (خاطئا) .

- ملاحظة (4.1.1): (1) يمكن تكرار تنفيذ أكثر من جملة ضمن الحلقة while ، بشرط أن توضع هذه الجمل ضمن الجملة المركبة (البلوك). ولاحظة (2) تستخدم الحلقة while عندما يكون عدد التكرارات معلوم أو غير معلوم.
- (3) يمكن استخدام أكثر من حلقة تكرارية بصورة متداخلة ضمن البرنامج الواحد ، وهذا ما أصطلح على تسميتة الحلقات التكرارية المتداخلة (Nested Iteration Loop) .

مثال(4.1.2):-

Program	التنفيذ
// custom countdown using while	Enter the starting number: 8
#include <iostream.h></iostream.h>	8, 7, 6, 5, 4, 3, 2, 1, FIRE!
int main ()	
{	
int n;	
cout << "Enter the starting number:";	
$cin \gg n$;	
while (n>0)	
cout << n << ", ";	
n;	
} 	
cout << "FIRE!";	
return 0;	
}	

نلاحظ من خلال تنفيذ البرنامج اعلاه أنه تم تخصيص القيمة 8 للمتغير n ،ثم اختبار الشرط (n>0) ،حيث أن الشرط كان صحيحاً فتم طباعة القيمة 8 ثم أصبحت قيمة n=0 من خلال مؤثر النقصان n=0 عندئذ أصبح القيمة 8 ثم أصبحت قيمة أصبحت قيمة n=0 عندئذ أصبح الشرط غير صحيح وبالتالي تم الخروج من الحلقة نهائياً ،والانتقال الى تنفيذ العبارة !FIRE .

مثال (4.1.3):- أكتب برنامجاً لحساب وطباعة مجموع الأعداد 4.0,4.5,5.0,5.5,...,9.5,10

```
#include <iostream.h>
void main ()
{
    float a=4.0, sum=0.0;
    while (a<=10)
    {
        sum+=a;
        a+=0.5;
    }
    cout << " The Total = " << sum;
}
```

عثال (4.1.4): - أكتب برنامجاً لحساب وطباعة المضروب (factorial) للأعداد من 1 الى 10، حيث أن مضروب العدد (n!)n يحسب كالاتي : n!=n(n-1)(n-2)...3.2.1

```
التنفيذ
                          Program
#include <iostream.h>
                                                                1! = 1
int main ()
                                                                2!=2
                                                                3! = 6
  long factorial;
                                                                4! = 24
  int k, a=1;
                                                                5! = 120
  while (a \le 10)
                                                                6! = 720
                                                                7! = 5040
                                                                8! = 40320
    factorial=1;
    k=1:
                                                                9! = 362880
    while (k \le a)
                                                                10!= 3628800
      factorial*=k;
      ++k;
    cout <<a<<"!= "<<factorial<<endl;
    ++a;
  }
 return 0;
```

في البرنامج اعلاه تم تنفيذ حلقتين تكراريتين، الحلقة ألاولى والتي تسمى بالحلقة الخارجية وهي تنفيذ الجملة المركبة بين القوسين التابعين لها طالما أن العدد a لم يتجاوز 10، تأتي بعدها الحلقة الثانية والتي تسمى الحلقة الداخلية وهي أيجاد مضروب العدد، وذلك من خلال الجملتين factorial*=k;

++k;

(4.2) الحلقة التكرارية أفعل...بينما (The iteration loop do... while)

```
do الصيغة العامة statement ; while(condition) ;
```

عمل الحلقة do...while هذه الحلقة مشابه للحلقة التكرارية while وتختلف عنها في أمرين، أولاً أن الحلقة do...while تبدأ التنفيذ للجملة(statement) ثم تتحقق من الشرط بعد ذلك، ثانيا يتم التفيذ في هذه الحلقة مرة واحدة على الاقل حتى ولو كان الشرط غير متحقق .

مثال (4.2.1): - أكتب برنامجاً لادخال وطباعة عدد صحيح،أوقف البرنامج عند أدخال عند ادخال القيمة 0.

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter number (0 to end): 1254
int main ()	You entered: 1254
{	Enter number (0 to end): 160277
unsigned long n;	You entered: 160277
do	Enter number (0 to end): 33385
{	You entered: 33385
cout << " Enter number (0 to end): ";	Enter number (0 to end): 0
$cin \gg n$;	You entered: 0
cout << " You entered: " << n << endl;	
\} while (n != 0);	
return 0;	
}	

مثا<u>ل (4.2.2):</u>-

```
التنفيذ
                           Program
                                                                                                                       التنفيذ 1:
#include <iostream.h>
int main ()
                                                                  Enter the starting number: 8
                                                                  8, 7, 6, 5, 4, 3, 2, 1, FIRE!
 int n;
 cout << "Enter the starting number : ";</pre>
                                                                                                                       التنفيذ 2:
 cin >> n;
                                                                  Enter the starting number: 0
 do
                                                                  0, FIRE!
   cout << n << ", ";
   --n;
  } while (n>0)
 cout << "FIRE!"<<endl ;</pre>
 return 0;
```

مثال (4.2.3):- أكتب برنامجاً لحساب وطباعة مجموع الأعداد 4.0,4.5,5.0,5.5,...,9.5,10

Program	التنفيذ
#include <iostream.h></iostream.h>	The Total = 87.00
void main ()	
{	
float a=4.0, sum=0.0;	
do	
{	
sum+=a;	
a+=0.5;	
} while (a<=10);	
cout << " The Total = " << sum;	
}	

مثال (4.2.4): - أكتب برنامجاً لحساب وطباعة المضروب (factorial) للأعداد من 1 الى 10 .

Program	التنفيذ
#include <iostream.h></iostream.h>	1!= 1
int main ()	2!= 2
{	3!= 6
long factorial;	4!= 24
int k ,a=1 ;	5!= 120
do	6!= 720
{	7!= 5040
factorial=1;	8!= 40320
k=1;	9!= 362880
do	10!= 3628800
{	
factorial*=k;	
++k;	
} while (k<=a)	
cout < <a<<"!= "<<factorial<<endl;<="" td=""><td></td></a<<"!=>	
++a;	
} while (a<=10)	
return 0;	
}	

(4.3) الحلقة التكرارية لأجل (The iteration loop for)

```
for(initialization ; condition ; increase) الصيغة العامة
statement ;
```

عمل الحلقة for عمل الحلقة (initialization) والذي يمثل القيمة الأولية لعداد الحلقة (عداد الحلقة هو عبارة عن متغير)، ثانياً أختبر الشرط (condition) ، فأذا كان الشرط صحيحاً، نفذ الجملة (statement)، ثالثاً نفذ (increase) والذي يمثل مقدار الزيادة أو النقصان بمقدار معين في عداد الحلقة، كرر الخطوات ثانياً وثالثاً لغاية أن يصبح الشرط غير صحيح (خاطئاً).

مثال (4.3.1):-

```
#include <iostream.h>
int main ()

{
    int n;
    for (n=10; n>0; n--)
        cout << n << ", ";
        cout << "FIRE!" << endl;
    return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!
```

مثال (4.3.2): - أكتب برنامجاً لحساب وطباعة المضروب (factorial) للأعداد من 1 الى 10.

```
التنفيذ
                          Program
#include <iostream.h>
                                                                1! = 1
int main ()
                                                                2! = 2
                                                                3! = 6
  long factorial;
                                                                4! = 24
  int k, a;
                                                                5! = 120
  for (a=1;a\leq=10;a++)
                                                                6! = 720
                                                                7! = 5040
    factorial=1;
                                                                8! = 40320
    for(k=1;k<=a;k++)
                                                                9! = 362880
       factorial*=k;
                                                                10!= 3628800
    cout <<a<<"!= "<<factorial<<endl;
 return 0;
```

مثا<u>ل (4.3.3)</u>: - أكتب برنامجاً لحساب وطباعة مجموع الأعداد (4.3.3): - أكتب برنامجاً لحساب وطباعة مجموع الأعداد

Email: m.albahadeli@yahoo.com

```
#include <iostream.h>
void main ()
{
    float a , sum=0.0;
    for( a=4.0;a<=10;a+=0.5)
    sum+=a;
    cout << " The Total = " << sum;
}

The Total = 87.00
```

مثال (4.3.4): المطلوب كتابة برنامجاً لحساب وطباعة المعدل لمجموعة من الاعداد الحقيقية والتي عددها n

```
التنفيذ
                           Program
#include <iostream.h>
                                                                  Enter The Size of The List: 7
void main ()
                                                                  The Data: 12.5 -10.04 35 1.432 7.7 101.1 34.567
                                                                  The Average of all Numbers = 26.037
 int n, counter;
 float number, sum, average;
 sum=0.0:
 cout << "Enter The Size of The List:";
 cin >> n:
 cout << endl << "The Data: ";
 for( counter=0;counter<n;counter++)</pre>
    cin >>number;
    sum+=number;
 average=sum/n;
 cout <<endl<< " The Average of all Numbers = " << average ;</pre>
```

(4.4) الجمل التفرعية (Branching Statement)

في بعض البرأمج يتعين علينا تحويل المسار التتابعي لاوامر البرنامج الى الخروج من الحلقات التكرارية أو الرجوع اليها أو الخروج نهائياً من البرنامج، الجمل التفرعية تساعدنا في هذه العملية، ولكن يجب أن يكون أستخدام هذه الجمل محدود، لانه احيانا وفي البرأمج الكبيرة تسبب لنا مشاكل أثناء التنفيذ من هذه الجمل هي :

(1) جملة أقطع Break: تستخدم هذه الجملة للخروج من الحلقات التكرارية، حيث يتم أنهاء التكرار متى ما وصل التنفيذ الى هذه الجملة. نتذكر بأن هذه الجملة استخدمت لنفس المعنى في موضوع التركيب الانتقائي switch.

مثا<u>ل (4.4.1)</u> :-

Program	التنفيذ
// break loop example	10, 9, 8, 7, 6, 5, 4, 3, countdown aborted!
#include <iostream.h></iostream.h>	
int main ()	
{	
int n;	
for (n=10; n>0; n)	
{	
cout << n << ", ";	
if (n=3)	
{	
cout << "countdown aborted!";	
break;	
}	
}	
return 0;	
}	

تم التفيذ بطباعة الاعداد من 10 ولغاية 3 ثم طبعت العبارة !countdown aborted بعدها تم التوقف والخروج من الحلقة التكرارية وذلك لكون الشرط قد تحقق في التركيب الشرطي البسيط if .

(2) جملة الاستمرار Continue: تستخدم هذه الجملة بالاستمرار في توجيه التحكم الى نهاية الحلقة وبالتالي الرجوع الى بداية الحلقة وأكمال تنفيذها حتى النهايه .

مثا<u>ل (4.4.2)</u> :-

```
      Program

      // continue loop example

      #include <iostream.h>

      using namespace std;

      int main ()

      {
      int n;

      for (n=10; n>0; n--)
      {

      if (n==5)
      continue;

      cout << n << ",";</td>

      }
      cout << "FIRE!" <<endl;</td>

      return 0;
      }
```

(3) جملة خروج Exit :وتعني الخروج نهائياً من البرنامج وترجع بالقيمة صفراً اذا كان البرنامج نفذ على أحسن ما يرام،وبأي قيمة لا تساوى صفراً اذا كان هناك خطأ .

مثال (4.4.3) :-

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter value: 9
int main ()	Enter value : 4
{	Enter value : 6
int i, number, sum=0;	Enter value: 8
for (i=1;i<10;i++)	Enter value: 1
{	Enter value: 12
cout << "Enter value :";	Enter value : -7
cin >> number;	This is negative
if (number < 0)	
{	
cout << "This is negative";	
exit();	
}	
sum+=number;	
}	
cout << "The sum of positive numbers"< <sum;< td=""><td></td></sum;<>	
return 0;	
}	

عندما يكون الشرط الموجود في التركيب الشرطي البسيط if صحيحاً تطبع الرسالة المطلوبة، ثم تنفذ جملة الخروج (exit) التي تعني الخروج ليس فقط من الحلقة for بل الخروج نهائياً من البرنامج مجموع الاعداد الموجبة المدخلة، وعلية لن يطبع البرنامج مجموع الاعداد الموجبة المدخلة، وهذا ما نشاهدة في التنفيذ اعلاه.

(4) جملة أذهب الى goto: تستخدم هذه الجملة بتحويل المسار التتابعي لاوامر البرنامج الى جملة معينة .

goto lable : الصيغة العامة

حيث label اسم العنوان وينطبق عليه نفس شروط اسم المتغير حيث يمكن وضعه في أي مكان من البرنامج .

مثا<u>ل (4.4.4)</u> :-

Program	التنفيذ
// goto loop example	10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!
#include <iostream.h></iostream.h>	
int main ()	
{	
int n=10;	
last:	
cout << n << ", ";	
n;	
if (n>0)	
goto last;	
cout << "FIRE!\n";	
return 0;	
}	

نلاحظ أن الشرط كلما كان صحيحاً فأن العبارة goto متحققة وبالتالي فان التفيذ ينتقل الى العنوان : last الى أن يصبح الشرط غير صحيح عندئذ ينتقل التنفيذ الى طباعة العبارة !FIRE .

تمارين (الفصل الرابع)

تمرين 1 : أكتب برنامجاً لحساب وطباعة حاصل جمع مربعات الاعداد الصحيحة الفردية الواقعة بين عددين يتم ادخالهما عن طريق لوحه المفاتيح .

تمرين 2 : المطلوب كتابة برنامج لايجاد جميع الاعداد الاولية الواقعة بين 1 و 100 .

تمرين 2: أكتب برنامجاً لحساب وطباعة مجموع المتسلسلة التالية:

$$T = \frac{3a}{8!} - \frac{2b}{7!} + \frac{3a}{6!} - \frac{2b}{5!} + \dots + \frac{3a}{2!} - \frac{2b}{1!}$$

T1 تمرين 2 : فصل دراسي به عدد غير معروف من الطلاب، أكتب برنامجاً لقراءة رقم الطالب SEX و وجنسة SEX و درجاته في ثلاث امتحانات TS . أوقف تنفيذ البرنامج عند ادخال رقم الطالب قيمة سالبة ، المطلوب :

- a. حساب وطباعة معدل الدرجات لكل طالب.
- b. حساب وطباعة عدد الطالبات في الصف .
 - c. أيجاد وطباعة أكبر معدل في الصف.
- d. طباعة رقم الطالب ومعدله مع النتيجة المقابلة لمعدله والتي هي على النحو الاتي d

النتيجة	حدود المعدل
Fail	أصغر من 50
Admit table	أكبر من أو يساوي 50 وأصغر من 60
Medial	أكبر من أو يساوي 60 وأصغر من 70
Good	أكبر من أو يساوي 70 وأصغر من 80
Very Good	أكبر من أو يساوي 80 وأصغر من 90
Excellence	أكبر من أ ويساوي 90 وأصغر من 100

الفصل الخامس: المصفوفات (Arrays)

في الفصول التي مرت بنا سابقاً ،كان اسم المتغير يحمل قيمة واحدة فقط قابلة للتغير أثناء تنفيذ البرنامج، في حين أنه هناك مجموعة من البيانات التي لها نفس النوع والتي تحتاج الى عملية تخزين في متغيرات قليلة، ولكي يصبح البرنامج سهل الكتابة والمتابعة والفهم ،عليناً استخدام مفهوم المصفوفة (هنا المصفوفة عبارة عن سلسلة من العناصر التي لها نفس النوع والموضوعة في الذاكرة بشكل متجاور والتي تحمل اسماً واحداً بحيث يمكن الرجوع الى هذه العناصر والتعامل معها عن طريق هذا الاسم).

وتقسم المصفوفات الى قسمين وهما:

القسم ألاول : مصفوفات ذات البعد الواحد (One-Dimensional Arrays) . (Multi-Dimensional Arrays) . القسم الثاني : مصفوفات متعددة الابعاد (المعاد الابعاد على المعاد ال

ملحظة :- في لغة ++C يوجد الامر define# الذي يعتبر من أوامر المعالج الأولي (Preprocessor) والذي يقوم بأنشاء معرفات تسمى الثوابت الرمزية (Symbolic Constants) حيث يمكن وضعة في أي مكان من البرنامج ولكن من الأفضل ما يوضع في أوله،أي بعد جمل #include . في كثير من البرامج يستخدم هذا الامر في الاعلان عن عدد عناصر المصفوفة .

#define Constant name value ; الصيغة العامة للامر

#define PI 3.141519
#define MAX 15
#define STRING "This is a string"

(5.1) <u>المصفوفات ذات البعد الواحد</u> :-

الصيغة العامة للاعلان عن مصفوفة ذات بعد واحد Type Array_name [index] ;

حيث

مثال:-

Type : يمثل نوع البيانات في المصفوفة . Array_name : يمثل اسم المصفوفة . index : يمثل عدد عناصر المصفوفة .

مثال (5.1.1): يمكن الاعلان عن 5 قيم صحيحة في مصفوفة ما وبدون استخدام 5 متغيرات مختلفة . فمثلاً ; [5]int billy حيث أن اسم المصفوفة هنا billy وعناصر ها من النوع الصحيح، نلاحظ الشكل التالي والذي يُظهر كيف يتم حجز مواقع في الذاكرة لعناصر المصفوفة billy .

billy 1 2 3 4

حيث ان كل خانة تضم عنصر من عناصر المصفوفة والذي يكون من النوع الصحيح، دليل(index) هذه القيم رُقم من $\frac{1}{0}$ الى 4 ، لانه دائماً في لغة c++ العنصر الأول في المصفوفة يكون دليلة c++ العنصر الثاني هو c++ العنصر الأول في المصفوفة وهو c++ العنصر الاعنصر الاحظ في الشكل الاتي :

	billy[0]	billy[1]	billy[2]	billy[3]	billy[4]
billy					

القيم الأبتدائية للمصفوفة ذات البعد الواحد(Initial Values) :- يمكن تخصيص أو شحن قيم مبدئية لأي مصفوفة عن طريق :

أولاً :- اثناء الاعلان عن المصفوفة. والصيغة العامة هي

Email: m.albahadeli@yahoo.com

Type Array name $[index] = \{ value 1, value 2, ..., value n \} ;$

حيث value_1,value_2,...,value_n تمثل قيم المصفوفة على الترتيب . هنا عدد العناصر هو n والذي يمثل index .

	0	1	2	3	4
billy	16	2	77	40	12071

ثانياً: عن طريق دالة الادخال <cin

for (i=0 ;i<5 ; i++)

cin>>billy[i] ;

ثم يتم أدخال القيم عن طريق لوحة المفاتيح.

مثال (5.1.4): - في البرنامج التالي يتم تخصيص أربعة قيم من النوع الصحيح الى مصفوفة ذات بعد واحد أسمها billy ثم طباعة قيم المصفوفة مع مجموع تلك القيم .

	\'\ \C-
Program	التنفيذ
// arrays example	billy[0]= 16
#include <iostream.h></iostream.h>	billy[1]= 2
#define M 5	billy[2]= 77
int main ()	billy[3]= 40
{	billy[4]= 12071
int billy [M] = {16, 2, 77, 40, 12071};	
int n, result=0;	The sum = 12206
for (n=0; n<5; n++)	
{	
cout<< "billy[" < <n<<"]="<<billy[n]<<endl;< td=""><td></td></n<<"]="<<billy[n]<<endl;<>	
result += billy[n];	
}	
cout << " The sum = "<< result;	
return 0;	
}	

مثال (5.1.5) :- البرنامج التالي يتم فية ادخال وطباعة عناصر مصفوفه ذات بعد واحد وأيجاد وطباعة أصغر عنصر في هذه المصفوفه.

Program	التنفيذ
#include <iostream.h></iostream.h>	mat[0]=3
#define LEN 5	mat[1]=8
void main ()	mat[2]=7
{	mat[3]=2
int i, min ,pos , mat[LEN] ;	mat[4]=4
for(i=0; i< LEN; i++)	
{	The Smallest is mat[3]= 2
cout<< " mat[" << i<< "]=" < <endl ;<="" td=""><td></td></endl>	
cin>> mat[i];	
}	
min=mat[0];	
for(i=1; i< LEN; i++)	
if (mat[i] < min)	
{	
min=mat[i];	
pos=i;	
}	
cout<< "The Smallest is mat[" << pos<< "]="<< min;	
}	

مثال(5.1.6) :- أكتب برنامجاً لقراءة قيم حقيقية لمصفوفة a عدد عناصرها 6 ، ثم رتب هذه العناصر تصاعدياً وضعها في مصفوفه جديدة b .

```
Program
#include <iostream.h>
                                                              a[0] = 2.5
#define M 6
                                                              a[1] = 9.1
int main ()
                                                              a[2] = 6.06
                                                              a[3] = 2.51
 int i, j, n1, n2;
                                                              a[4] = 0.05
 float temp, a[M];
                                                              a[5] = 3.0
 for(i=0; i < M; i++)
                                                              The Sorted Array as following:
   cout << " a[" << i<< "]=" << endl;
                                                              b[0] = 0.05
                                                              b[1] = 2.50
   cin >> a[i];
                                                              b[2] = 2.51
 n1=M-1;
                                                              b[3] = 3.00
 for(i=1; i < n1; i++)
                                                              b[4] = 6.06
                                                              b[5] = 9.10
    n2=i+1;
    for(j=n2; j < M; j++)
       if(a[j]-a[i] < 0)
          temp=a[i];
          a[i]=a[j];
          a[j]=temp;
  }
 cout << " The Sorted Array as following: " << endl;
 for(i=0; i< M; i++)
 cout << "b[" << i << "]=" << a[i] << endl;
return 0;
```

(5.2) المصفوفات متعددة الابعاد: سوف نخصص دراستنا في هذا البند حول المصفوفات ذات البعدين (المصفوفات المكونة من صفوف واعمدة) فقط، حيث يمكن أن تعمم الدراسه الى مصفوفات ذات أبعاد أكثر.

```
الصيغة العامة للاعلان عن مصفوفة ذات بعدين Type Array_name [index_1][index_2] ;
```

```
حيث
```

int jimmy [3][5]; -: (5.2.1)

في هذا المثال، تم الاعلان عن مصفوفة أسمها jimmy والتي تتضمن 3 صفوف و 5 أعمدة (أي أن عدد عناصرها 15 عنصراً).

ملاحظة (5.2.2): دليل عناصر المصفوفة (الصفوف والاعمدة)، يُرقم بدأ من 0.

-- نلاحظ في الشكل التالي مواقع عناصر المصفوفة jimmy في الذاكرة . فمثلاً العنصر [3][1]jimmy هو العنصر الواقع في الصف الثاني العمود الرابع.

القيم الأبتدائية للمصفوفة ذات البعدين(Initial Values) :- يمكن تخصيص أو شحن قيم مبدئية لأي مصفوفة عن طريق :

أولاً: - اثناء الاعلان عن المصفوفة. والصيغة العامة هي

 $Type\ Array_name\ [index_1][index_2] = \{\ \{\ list\ of\ first\ row\}, \{list\ of\ second\ row\}, \ldots, \{list\ of\ last\ row]\ \}\ ;$

int jimmy[3][5]={ {1,2,3,4,5},{2,4,6,8,10},{3,6,9,12,15} } ; -: (5.2.3)مثال (5.2.3)

jimmy

	0	1	2	3	4
0	1	2	3	4	5
1	2	4	6	8	10
2	3	6	9	12	15

ثانياً: - عن طريق دالة الادخال <cin>

-: (5.2.4) مثا<u>ل</u>

Program	التنفيذ
#include <iostream.h></iostream.h>	1 2 3 4 5 2 4 6 8 10 3 6 9 12 15
#define WIDTH 5	
#define HEIGHT 3	jimmy[0][0]= 1
int main ()	[immy[0][1]= 2
{	[jimmy[0][2]=3
int jimmy [HEIGHT][WIDTH];	jimmy[0][3]= 4
int n,m;	jimmy[0][4]= 5
for (n=0;n <height;n++)< td=""><td>jimmy[1][0]= 2</td></height;n++)<>	jimmy[1][0]= 2
for (m=0;m <width;m++)< td=""><td>jimmy[1][1]= 4</td></width;m++)<>	jimmy[1][1]= 4
{	jimmy[1][2]= 6
cin>>jimmy[n][m];	jimmy[1][3]= 8
}	jimmy[1][4]= 10
for (n=0;n <height;n++)< td=""><td>jimmy[2][0]= 3</td></height;n++)<>	jimmy[2][0]= 3
for (m=0;m <width;m++)< td=""><td>jimmy[2][1]= 6</td></width;m++)<>	jimmy[2][1]= 6
{	jimmy[2][2]= 9
cout<< "jimmy["< <n<<"]="<<jiimmy[n][m]<<endl;< td=""><td>jimmy[2][3]= 12</td></n<<"]="<<jiimmy[n][m]<<endl;<>	jimmy[2][3]= 12
}	jimmy[2][4]= 15
return 0;	
}	

نلاحظ أن عناصر المصفوفة في البرنامج السابق ترتبط بعلاقة ما الذلك يمكن الحصول على هذه العناصر من خلال تلك والعلاقة وعدم استخدام دالة الادخال </ri> والتي من خلالها قد يحث خطاء في ادخال بعض القيم، لذلك فأن البرنامج السابق يمكن كتابتة بالطريقة الاتية :

مث<u>ال (5.2.5)</u> -:

```
التنفيذ
                              Program
#include <iostream.h>
                                                                [0][0] = 1
#define WIDTH 5
                                                                [immy[0][1] = 2
#define HEIGHT 3
                                                                [immy[0][2]=3
int main ()
                                                                [immy[0][3] = 4
                                                                [jimmy[0][4] = 5
int jimmy [HEIGHT][WIDTH];
                                                                [jimmy[1][0] = 2
                                                                jimmy[1][1] = 4
int n,m;
for (n=0; n< HEIGHT; n++)
                                                                [immy[1][2] = 6
 for (m=0; m<WIDTH; m++)
                                                                [jimmy[1][3] = 8
                                                                jimmy[1][4]=10
   jimmy[n][m]=(n+1)*(m+1);
                                                                [jimmy[2][0] = 3
                                                                [jimmy[2][1] = 6
for (n=0; n< HEIGHT; n++)
                                                                [2][2] = 9
 for (m=0; m< WIDTH; m++)
                                                                [jimmy[2][3] = 12
                                                                [immy[2][4] = 15
   cout<< "jimmy["<<n<<"]="<<jimmy[n][m]<<endl;
 return 0;
```

مثال (5.2.6): البرنامج التالي يقوم بعملية أدخال مصفوفتين من النوع الصحيح، ثم يقوم باجراء عملية الجمع على المصفوفتين.

$$a = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & 5 \\ 19 & 22 & 8 \end{pmatrix}, b = \begin{pmatrix} 7 & 9 & -3 \\ 8 & -1 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

Program	التنفيذ		
#include <iostream.h></iostream.h>	2 7 -1 9 0 -3 1 8 3 -1 5 1 19 0 22 0 8 4		
#define R 3			
#define C 3	Addition of two arrays:		
int main ()			
{	9 8 -3		
int a[R][C], b[R][C], add[R][C], mult[R][C];	9 2 6		
int i, j, k;	19 22 12		
for(i=0; i < R; i++)			
for(j=0; j < C; j++)			
cin>> a[i][j]>>b[i][j];			
for(i=0; i < R; i++)			
for(j=0; j < C; j++)			
add[i][j]= a[i][j]+b[i][j];			
cout<< "Addition of two arrays :" << endl;			
for(i=0; i < R; i++)			
{			
for(j=0; j < C; j++)			
cout<< add[i][j]<< '\t';			
cout<< endl;			
}			
return 0;			
}			

مثال (5.2.7): - ليكن لدينا المصفوفة الاتية

$$\alpha = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & 5 \\ 19 & 22 & 8 \end{pmatrix}$$

أكتب برنامجاً لقراءة عناصر المصفوفة a ثم أيجاد وطباعة

- (1) حاصل ضرب عناصر القطر الرئيسي للمصفوفة (أي ايجاد [2][2]*a[1][1]*[0][0]).
 - (2) أكبر عنصر في المصفوفة.

Program	التنفيذ
#include <iostream.h></iostream.h>	The product = 48
#define R 3	
#define C 3	Maximum element in Array = 22
int main ()	
{	
int a[R][C]= $\{\{2,-1,0\},\{1,3,5\},\{19,22,8\}\}\$;	
int i, j,max, product;	
$\max=a[0][0]$;	
product =1;	
for(i=0; i< R; i++)	
for(j=0; j < C; j++)	
(· · · · · · · · · · · · · · · · · · ·	
if(i==j)	
product*= a[i][j];	
if(a[i][j] >max)	
$\max = a[i][j];$	
}	
<pre>cout<< "The product = " <<pre>roduct<< endl ; cout<< " Maximum element in Array = " <<max ;<="" pre=""></max></pre></pre>	
· ·	
return 0;	

نلاحظ من خلال البرنامج اعلاه، انه تم ادخال عناصر المصفوفة بصورة مباشرة ببعدها وضع الشرط الاول التابع للتركيب الشرطي البسيط الاول والمتضمن حساب حاصل ضرب عناصر القطر الرئيسي، بينما الشرط الثاني الموجود في التركيب الشرطي الثاني فيتضمن ايجاد أكبر عنصر في المصفه فة

(5.3) المصفوفات الحرفية (Character Arrays)

في لغة ++C يمكن التعامل مع السلاسل الحرفية وكانها مصفوفات يطلق على هذا النوع من المصفوفات بالمصفوفات الحرفية، فمثلا الكلمة Hello يمكن التعامل معها بشكل مصفوفة حرفية وكما يلي :

char myword $[6] = \{ 'H', 'e', 'l', 'l', 'o', '\0' \} ;$

حيث تم الاعلان عن مصفوفة من النوع الحرفي (char) وأسمها (myword) وتتضمن الحروف 'o', 'l', 'l', 'e', 'l', 'e', 'l' 'o' والذي يسمى الرمز الصفري، يجب أن يكون هذا الرمز موجود في نهاية أي مصفوفة حرفية، حيث أن الغرض منه هو معرفة مترجم اللغة بنهاية عناصر المصفوفة، وعليه يجب حجز له مكان في الذاكرة، أي أن دليل المصفوفة (index) يضاف له 1 عند الاعلان عن المصفوفة لاحظ أن الدليل في المصفوفة myword هو 6.

ملاحظة (5.3.1): - يمكن كتابة المصفوفة الحرفية بصيغة السلسلة الحرفية، ولكن يجب الانتباه الى دليل المصفوفة الذي يجب أن يكون بعدد char myword [6] = "Hello"; فمثلاً نكتب ("", فمثلاً نكتب ("") والذي يكون مخصص للرمز الصفري ("). فمثلاً نكتب

ملحظة (5.3.2): - يمكن عدم ذكر دليل المصفوفة اثناء الاعلان عنها. مثلاً نستطيع أن نكتب و المصفوفة اثناء الاعلان عنها.

مثال (5.3.3) :-

Program	التنفيذ
// null-terminated sequences of characters	Please, enter your first name: Mohammed
#include <iostream.h></iostream.h>	Hello, Mohammed!
int main ()	
{	
<pre>char question[] = "Please, enter your first name: ";</pre>	
char greeting[] = "Hello, ";	
char yourname [80];	
cout << question;	
cin >> yourname;	
cout << greeting << yourname << "!";	
return 0;	
}	

تمارين (الفصل الخامس)

تمرين 1 : مخزن يتضمن ثلاث اصناف من البضائع،المطلوب كتابة برنامج لادخال رقم الصنف مع عدد مبيعات ذلك الصنف خلال الاشهر الثلاث الاولى من السنة مع حساب وطباعة الاتى:

- (1) مجموع مبيعات كل صنف خلال الاشهر الثلاثة.
 - (2) أكثر الأصناف مبيعاً خلال الأشهر الثلاثة
- (3) مجموع المبيعات لجميع الاصناف خلال الشهر الثاني.

تمرين 2: أكتب برنامجاً لايجاد عدد مرات تكرار الحرف k في نص معين.

تمرين 3: المطلوب كتابة برنامج يتضمن ادخال أسم المولود، مكان الولادة، الجنس، تاريخ الولادة (اليوم والشهر والسنة)، ثم عمل الاتي:

- i طبع قائمة بأسماء الذكور مع العناوين بترتيب تصاعدي حسب الاسماء.

 - ii. طبع قائمة بأسماء الاناث وتاريخ ولادتهن. iii. طبع قائمة سأسماء الذكور والاناث المولودين قبل 2006/12/31.

تمرين 4 : فصل دراسي يتضمن 50 طالباً وطالبة، المطلوب كتابة برنامجاً لقراءة أسم الطالب ودرجاتة في ثلاث مواد (T1,T2,T3)،جنسه (M أو F) ثم حساب وطباعة مايلي:

- a) معدل كل طالب في الدرجات الثلاث. b) المعدل العام للطلبة.
- c) اعلى معدل وطباعتة مع اسم الطالب الذي يمتلك ذلك المعدل.
- d) عدد الطالبات الناجحات بالمعدل (درجة النجاح 50 فمافوق).

تمرين 5: ليكن لدينا المصفوفات الاتية:

Email: m.albahadeli@yahoo.com

$$a = \begin{pmatrix} 3 & -1 & -20 \\ 1 & 3 & 5 \\ 9 & 4 & 8 \end{pmatrix}, b = \begin{pmatrix} 1 & 0 & -3 \\ 5 & -1 & 19 \\ 7 & 0 & 4 \end{pmatrix}, c = \begin{pmatrix} 1 & 4 \\ -3 & 2 \\ 3 & 5 \end{pmatrix}$$

المطلوب كتابة برنامج لحساب وطباعة :

- (2a-5b)*c, b*c, a*b (a
- b) أكبر عنصر في المصفوفات الثلاث مع المصفوفة التي تحوى هذا العنصر.

الفصل السادس: الدوال (Functions)

في السابق كتبت البرامج على أنها كتلة واحدة، وهذا قد يكون غير مناسب في بعض الاحيان حيث يصعب متابعتها وأصلاحها خصوصاً في البرنامج الطويل ولذلك يفضل تجزئته الى عدة اجزاء صغيرة كل جزء يؤدي مهمة معينة،ثم تختبر هذه الاجزاء وترتبط مع بعضها لتكون البرنامج الكامل.

لهذا الغرض سوف نستخدم مفهوم الدوال،حيث أن الدالة عبارة عن جملة أو مجموعة من الجمل التي تؤدي وظيفة معينة،ويمكن استدعها من أي نقطة من البر نامج,و من فوائد هذه الدوال مابلي:

- $_{i}$ تعمل على تجزئة البرنامج الطويل الى أجزاء صغيرة يمكن متابعتها واصلاحها من قبل المبرمج $_{i}$
 - ii. تساعد على تلافى عمليات التكرار فى خطوات البرنامج التى تتطلب عملاً طويلأوشاقاً .
 - iii. توفر الدوال الجاهزة (المخزونة في ذاكرة الحاسب) من مساحة الذكرة المطلوبة.

الصيغة العامة للدالة هي:

```
Type function_name(argument1,argument2 ...)
Types of the parameter list variables;
{
  types of local variables;
  function body;
  return(expression);
}
```

حيث

Type : يمثل نوع قيمة الدالة عند رجوعها الى البنامج المنادي .

function name : يمثل أسم الدالة .

... argument1, argument2 : تمثل دلائل أو معاملات لاستقبال وارجاع البيانات .

Tapes of the parameter variables : نوع المعاملات المستقبلة والمرجعة للبيانات

types of local variables : المتغيرات المعلن عنها داخل الدالة وهي محلية (والمتغيرات المحلية هي متغيرات يعلن عنها وتستخدم في حدود الداله ولا يمكن التعرف عليها في البرنامج الرئيسي أو أية دالة أخرى حتى ولو كانت تحمل نفس الاسم).

function body : يمثل جملة أو مجموعة من الجمل .

return : تمثل جملة اعادة قيمة التعبير (expression) حسب نوع الدالة .

<u>ملاحظة (6.1):-</u>

Email: m.albahadeli@yahoo.com

i. يتم الاعلان والتعريف عن الدالة في بداية البرنامج وقبل الدالة الرئيسية (main .

تكون قيمتها int تلقائياً . ويستحسن الاعلان عنها في كل الاحوال . مثلاً

- ii. يتم استدعاء الدالة داخل البرنامج عن طريق اسمها فقط.
- iii. ينبغي الاعلان عن نوع الدالة اذا كانت ترجع بقيمة من النوع غير الصحيح(int)، وفي حالة عدم الاعلان عنها قبل استدعائها
 - (1) float larger()
 - (2) int temp()
 - (3) temp()

iv. قد يكون للدالة مهمة معينة تؤديها بدون ارجاع قيمة عند انتهائها،أي انها دالة خالية بدون معاملات في هذه الحالة يعلن عنها من النوع الخالي (void). فمثلاً

void printmessage () or void printmessage (void)

مثال (6.2):- أكتب برنامجاً يستخدم دالة لاجراء عملية الجمع لأي عددين صحيحين.

Program	التنفيذ
// function example	The result is 8
#include <iostream.h></iostream.h>	
int addition (int a, int b)	
{	
int r;	
r=a+b;	
return (r);	
}	
int main ()	
{	
int z;	
z = addition (5,3);	
cout << "The result is " << z;	
return 0;	
}	

نلاحظ اننا قمنا بتعريف دالة للجمع (addition) في بداية البرنامج، والتي لها معاملات صحيحة a, b ثم قمنا بتوضيح عمل الدالة من خلال الجمل الموجودة داخل البرنامج عن طريق اسمها فقط بعدها تم اعطاء القيم 5 للمتغير a و 3 للمتغير b .

```
int addition (int a, int b)

z = addition ( 5 , 3 );

yes a dition ( 5 , 3 );

yes a dition (int a, int b)

z = addition (int a, int b)

z = addition ( 5 , 3 );
```

مثال (6.3):- البرنامج التالي يوضح استخدام دالتين ضمن البرنامج الواحد، احدهما لعملية الضرب والاخرى لعملية القسمة

Program	التنفيذ
#include <iostream.h></iostream.h>	10
int mul (int a, int b)	2.5
{	
return (a*b);	
float div (float a float b)	
float div (float a, float b)	
return (a/b);	
}	
int main ()	
{ 	
int x=5,y=2;	
float n=5.0,m=2.0;	
<pre>cout << mul(x,y); cout << endl;</pre>	
cout << div (n,m);	
cout << endl;	
return 0;	
}	

مثك (6.4): - أكتب برنامجاً يستخدم الدالة الخالية لطباعة العبارة !I'm a function .

Program	التنفيذ
// void function example	I'm a function!
#include <iostream.h></iostream.h>	
void printmessage ()	
{ cout << "I'm a function!" ; }	
int main ()	
<pre>{ printmessage (); return 0; }</pre>	

مثال (6.5):- أكتب برنامجاً لقراءة أربع متغيرات حقيقية ،ثم استخدم الدالة لايجاد أكبر قيمة من هذه المتغيرات .

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter Four Real numbers: 5.26 0.044 9.9 0.4
float large (x,y)	The Largest number: 9.9
float x,y;	
\	
if(x>y)	
return x;	
else	
return y;	
}	
int main()	
\	
float temp1,temp2,max;	
float num1,num2,num3,num4;	
cout<<"Enter Four Real numbers :";	
cin>> num1>>num2>>num3>>num4;	
temp1=large(num1,num2);	
temp2=large(num3,num4);	
max=large(temp1,temp2);	
cout << "The Largest number :" << max ;	
return 0;	
}	

مثال (6.6):- أكتب برنامجا لحساب مربع العدد على أن يحسب مربع بدالة مستقلة .

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter value : 5
int square(int x)	The Square of is 25
{	
return $(x*x)$;	
}	
int main ()	
{ <u>.</u>	
int z;	
cout<<" Enter value :";	
cin>> z;	
cout << "The Square of " << z << "is" << z;	
return 0;	
}	

مثال (6.7):- أكتب برنامجاً لقراءة ثلاث اعداد من النوع الصحيح، ثم رتب هذه الاعداد تصاعدياً باستخدام الدالة .

```
التنفيذ
                         Program
// Ascending Order
                                                               Enter three numbers: 58 25 99
#include <iostream.h>
                                                               Ascending order: 25, 58, 99
int swap(x,y)
int x, y;
 int temp;
 temp=x;
 x=y;
 y=temp;
int main ()
 int a, b, c;
 cout <<" Enter three numbers :" ;</pre>
 cin>> a >> b >> c;
 if(a>b)
   swap(a,b);
  if(b>c)
   swap(b,c);
 if(a>c)
   swap(a,c);
 cout < "Ascending order: " < a << ", " << b << ", " << c;
 return 0;
```

في هذا البرنامج يتم استدعاء دالة التبديل (swap(x,y كلما كان الشرط صحيحاً عند التفيذ تم استدعاء دالة التبديل (58,25) swap(x,y كلما كان الشرط قد تحقق، لذلك تم التبديل بين القيم 58 و 25 ،اما في بقية الحالات فقد كانت الشروط غير متحققة وبالتالي لم يتم استدعاء دالة التبديل وعلية ظهرت لنا النتائج كما يلى :

25,58,99

مثال (6.8): أكتب برنامجا لحساب القيمة المطلقة للعدد الحقيقي.

Program	التنفيذ
#include <iostream.h></iostream.h>	-19.5
float fabs(float x)	Absolute value of -19.5 is 19.5
{	255
$if(x \ge 0)$	Absolute value of 255.12 is 255.12
return (x);	-6698
else	Absolute value of -6698.0 is -6698.0
return(-x);	
}	
void main ()	
{	
float a;	
cin>> a;	
cout << "Absolute value of " < <a<<"is"<< fabs(a);<="" td=""><td></td></a<<"is"<<>	
}	

(6.9) الدوال الرياضية :- في لغة ++C توجد مجموعة من الدوال الجاهزة والموجودة ضمن المكتبة القياسية للغة ، ومن هذه الدوال هي، الدوال الرياضية الموجودة ضمن ملف العنوان math.h ، وفيما يلي بعض هذه الدوال :

الدالة	الغرض منها	نوع المتغير	القيمة المرجعة
abs(x)	القيمة المطلقة للعدد الصحيح	int	int
fabs(x)	القيمة المطلقة للعدد الحقيقي	double	double
sqrt(x)	الجذر التربيعي	double	double
pow(x,y)	y بقوة x	double	double
sin(x)	الجيب	double	double
cos(x)	الجيب تمام	double	double
tan(x)	الظل	double	double
asin(x)	معكوس الجيب	double	double
acos(x)	معكوس الجيب نمام	double	double
atan(x)	معكوس الظل	double	double
sinh(x)	الجيب الزائدي	double	double
cosh(x)	الجيب تمام الزائدي	double	double
tanh(x)	الظل الزائدي	double	double
exp(x)	الاسية	double	double
log(x)	اللوغرتيم الطبيعي	double	double
log10(x)	اللو غاريتم العشري	double	double

مثا<u>ل (6.9.1)</u> -:

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter value: 16
#include <math.h></math.h>	Sqrt of 16 is 4
int main ()	16 power 2 is 256
{	Absolute value of 16 is 16
double a ;	
cout<<" Enter value :";	
cin>> a;	
cout << " Sqrt of " < <a<<"is"<< sqrt(a)<<endl;<="" td=""><td></td></a<<"is"<<>	
cout << a<<"power"<< 2<<"is"<< pow(a,2) < <endl;< td=""><td></td></endl;<>	
cout<<"Absolute value of"< <a<<"is"<<fabs(a);< td=""><td></td></a<<"is"<<fabs(a);<>	
return 0;	
}	

مثال (6.9.2):-

```
#include <iostream.h>
#include <math.h>
#include <math.h>

#include <math.h>

#include <math.h>

#include <math.h>

#include <math.h>

#include : -3.5

#includ
```

```
ن المحدد الحقيقي x، علما أن روطباعة قيمة الدالة f عند العدد الحقيقي x علما أن روطباعة قيمة الدالة f(x) = \begin{cases} \sqrt{3-\cos 2x} & \text{if } x \geq 0 \\ x^5-e^{x^2} & \text{if } x < 0 \end{cases}
```

```
التنفيذ
                               Program
                                                                                                                        التفيذ 1:
#include <iostream.h>
#include <math.h>
                                                                  Enter real value: 0.7
float f(float x)
                                                                  f(0.7) = 1.4143
 If(x>=0)
                                                                                                                       التنفيذ 2:
 return( sqrt(3-cos(2*x)) );
                                                                  Enter real value: -3.2
 return( pow(x,5)-exp(x*x));
                                                                  f(-3.2) = -28694.5654
int main ()
 float x;
 cout << "Enter real value : " ;</pre>
 cin >> x;
 cout << "f(" << x << ")= " << f(x) << endl;
 return 0;
```

مثال f(a)*f(b)<0:- يوجد جذر للدالة f ضمن الفترة المغلقة f(a,b) اذا وفقط اذا كان f(a)*f(b)<0:- يوجد جذر للدالة $f(x)=e^x-x-1$

جذراً ضمن فترة معينة ام لا.

Program	التنفيذ
#include <iostream.h></iostream.h>	0.5 1.0
#include <math.h></math.h>	There exists Root between 0.5 and 1.0
float f(float x)	
{	
return($exp(x)-x-1$);	
}	
void main ()	
{	
float a, b;	
cin>>a>>b;	
if $(f(a)*f(b) < 0)$	
cout<< "There exists Root between"< <a<< "and"<<b="" ;<="" td=""><td></td></a<<>	
}	

(6.10) المتغيرات الخارجية (Global Variables): تعرفنا سابقاً على المتغيرات المحلية والتي يعلن عنها وتستخدم داخل حدود الدالة ولاعلاقة لها بالدوال الاخرى. أما المتغيرات الخرجية فهي التي تكون معروفه لجميع الدوال الموجودة في البرنامج الرئيسي، حيث يتم الاعلان عنها خارج كل الدوال وقبل الدالة الرئيسية (main ولايجوز الاعلان عنها أكثر من مرة.

مثال (6.10.1): أكتب برنامجاً لعمل الاتي:

- a) ادخال نتيجة الامتحان الاول والثاني لكل طالب في فصل دراسي يضم 5 طلاب.
 - b) استخدام دالة لحساب أكبر درجة ومعدل وحالة كلّ طالب على النحو الاتي :
 - i. ناجح (PASS) اذا كان معدل الطالب يساوي أو أكبر من 50.
 - ii. راسب (FAIL) اذا كان معدل الطالب أقل من 50.

Program	التنفيذ
#include <iostream.h></iostream.h>	Number of Student: 1
float max, avg;	Enter two numbers: 72 71
char status ;	The result : Maximum= 72
int main()	Average = 71.5
{	Status: PASS
int i;	
float t1, t2;	
$for(i=1; i \le 5; i++)$	Number of Student: 2
{	Enter two numbers: 45–48
cou<< "Number of Student : " << i< <endl ;<="" td=""><td>The result: Maximum= 48</td></endl>	The result: Maximum= 48
cout<<"Enter two numbers :";	Average = 46.5
cin>>t1>>t2;	Status : FAIL
calculate(t1,t2);	
print_them(t1,t2);	N. 1. CC. 1 . 2
}	Number of Student: 3
return 0;	Enter two numbers: 90 86
}	The result: Maximum= 90
calculate(m1,m2) float m1,m2	Average = 88.0 Status : PASS
110at 1111,1112	Status . PASS
if(m1>m2)	
$\max=m1$;	Number of Student: 4
else	Enter two numbers : 50 51
max=m2;	The result: Maximum= 51
avg = (m1+m2)/2;	Average $= 50.5$
if(avg >= 50)	Status: PASS
status="PASS";	
else	
status="FAIL";	Number of Student: 5
}	Enter two numbers: 25.5 22.5
print_them(n1,n2)	The result : Maximum= 25.5
float n1,n2;	Average = 24.0
{	Status : FAIL
cout << " The result : Maximum= " << max << endl ;	
cout << "Average =" << avg << endl;	
cout<< "Status : "< <status<<endl ;<="" td=""><td></td></status<<endl>	

في هذا البرنامج تم الاعلان عن المتغيرات الخارجية max , avg من النوع الحقيقي و status من النوع الحرفي وذلك قبل الدالـة الرئيسية ()main وبالتالي جميع هذه المتغيرات شاملة ومعروفة في البرنامج وبقية الدوال المستخدمة من قبل هذا البرنامج

البرنامج كما نلاحظ قام باستدعاء دالتين، الدالة الاولى calculate(m1,m2) لحساب الدرجة الاكبر والمعدل مع الحالة ،بينما الدالة الثانية (print_them(n1,n2 فقد استخدمت لطباعة النتائج فقط .

(6.11) استدعاء الدالة لتفسها أو لدالة أخرى :- في لغة ++C يمكن استدعاء الدالة لنفسها أو لدالة أخرى في نفس البرنامج

مثال (6.11.1): أكتب برنامجاً يستخدم دالة لحساب مضروب العدد (factorial).

```
Program
                                                                                      التنفيذ
// factorial calculator
                                                                                                            التنفيذ 1:
#include <iostream.h>
                                                             Please type a number: 4
long factorial (long a)
                                                             4! = 24
 if (a > 1)
                                                                                                            التنفيذ 2:
 return (a * factorial (a-1));
                                                             Please type a number: 9
 else
                                                             9! = 362880
 return (1);
int main ()
 long number;
 cout << "Please type a number: ";</pre>
 cin >> number;
 cout << number << "! = " << factorial (number);
 return 0:
```

في هذا البرنامج تم استدعاء الدالة لنفسها، فلاحظ المطلوب حساب factorial(a) لذلك عند الاستدعاء اصبح لدينا استدعاء اخر هو factorial(4) = 4*factorial(3)

= 4*3*factorial(2)

=4*3*2*factorial(1)

=4*3*2*1

= 24

مثال (6.11.2): أكتب برنامجاً لحساب وطباعة المضاعف المشترك الاصغر (least common multiple) لعددين صحيحين .

المضاعف المشترك الاصغر (LCM) يحسب من القانون الاتي :

$$LCM(a,b) = \frac{a*b}{GCD}$$

GCD يمثل القاسم المشترك الاكبر للعدين a وd.

هناك عدة طرق يمكن من خلالها الحصول على القاسم المشترك الاكبر GCD ومنها هذه الطريقة البسيطة:

i. نقوم بتحليل كل عدد الى قواسمه و ثم نبحث عن القواسم التي اشترك فيها العددان .

ii. نضر ب القواسم المشتركة فينتج (القاسم المشترك الأكبر) .

فمثلاً ٠

ومن هنا اشترك العددان في القاسم 2 مرتين وبالتالي

2=4*2 هو القاسم المشترك الاكبر بين العددين 28 . 24.

```
التنفيذ
                        Program
                                                             Enter two numbers: 91 169
#include <iostream.h>
                                                             LCM = 1183
least common multiple(a,b)
int a,b;
                                                             GCD = 15
 int c,d;
 c=a;
 d=b:
 return( c*d/greatest common divisar(a,b) );
greast common divisor(x,y)
int x,y;
 int temp;
 if(x==y)
  return x;
 else
  if(y>x)
   temp=y;
    y=x;
    x=temp;
 return( greatest_common_divisor(x-y,y)) ;
int main ()
 int m,n,l,g;
 cout << " Enter two numbers : ";
 cin >> m >> n;
 l=least common multiple(m,n);
 g=greatest_common_divisor(m,n);
 cout << " LCM = " << l<< endl;
 cout << " GCD = " << g << endl;
 return 0;
```

خلال البرنامج اعلاه، تم تعريف دالة المضاعف المشترك الاصغر للعددين الصحيحين a,b ، والتي خلالها تم استدعاء دالة القاسم المشترك الاكبر للعدين الصحيحين a,b والتي تم تعريفها كدالة ثانية في البرنامج. بعدها تم ادخال قيم للمتغيرات m,n خلال البرنامج حيث اعطيت هذه القيم الى المتغيرات a,b لحساب القاسم المشترك الاكبر والمضاعف المشترك الاصغر.

-: (Functions and Arrays) الدوال والمصفوفات (6.12)

Email: m.albahadeli@yahoo.com

ذكرنا سابقاً أنه عند معالجة بيانات كثيرة جداً يتحتم علينا استخدام المصفوفات ليسهل معها عملية تخزين البيانات في متغيرات قليلة، ولكي يصبح البرنامج سهل الكتابة والمتابعة والفهم يتم استخدام الدوال مع المصفوفات.

ولكن يجب أن نأخذ في الاعتبار كيفية تمرير عناصر المصفوفة الى أي دالة، وهذا قد يحدث كالاتي :

- i. يمكن أن تتم عملية تمرير البيانات الى الدوال بأستخدام المتغيرات الخارجية.
- ii. قد يحدث التمرير بالاعلان عن المصفوفة في الدالة بحيث تكون من نفس النوع والطول.

مثال (6.12.1) :- أكتب برنامجاً لقراءة قيم صحيحة وتخزينها في مصفوفة a ذات بعد واحد ثم تخزين هذه البيانات بالعكس في مصفوفة b عن طريق الدالة.

Program	التنفيذ
#include <iostream.h></iostream.h>	Enter a[0]= 7
#define M 5	Enter a[1]= -3
int i , k, a[M] , b[M] ;	Enter a[2]= 8
int main ()	Enter $a[3]=4$
{	Enter a[4]= 2
for(i=0; i < M; i++)	Array after reversed is:
{	b[0]= 2
cout<< "Enter a[" < <i<< "="" "]=";</td><td>b[1]= 4</td></tr><tr><td>cin>>a[i];</td><td>b[2]= 8</td></tr><tr><td>}</td><td>b[3]= -3</td></tr><tr><td>reversed_a();</td><td>b[4]= 7</td></tr><tr><td>cout << " <<="" after="" array="" endl;<="" is:="" reversed="" td=""><td></td></i<<>	
for(i=0; i< M; i++) cout<< "b[" <	

تمارين (الفصل السادس)

تمرين 1: أكتب برنامجاً لقراءة اطوال مثلث $A_{j}B_{j}C$ ثم أحسب مساحة هذا المثلث عن طريق الدالة ،علماً أن

AREA =
$$\sqrt{S(S-A)(S-B)(S-C)}$$

$$S = \frac{(A+B+C)}{2}$$

تمرين 2: أكتب برنامجاً لدالة مهمتها ايجاد وطباعة جميع الاعداد الاولية الواقعة بين 20 و 500.

تمرين \underline{s} : سلسلة فيبوناشي Fibonacci Series وهي عبارة عن سلسلة أرقام يكون فيها الرقمين الأول والثاني يساوي 1 والارقام الثالث ومافوق كل رقم منها يساوي مجموع الرقمين السابقين له .

1 1 2 3 5 8 13 21 33 ...

أكتب برنامجا باستخدام الدالة لحساب مجموع متسلسلة فيبوناشي

 $\frac{1}{2}$ تمرين $\frac{1}{2}$: المطلوب كتابة برنامجاً لحساب معدل N من القيم الصحيحة على أن يتم حساب المعدل في دالة مستقلة

تمرير $\frac{5}{2}$: أكتب برنامجاً لقراءة المتغيرين n,m ثم حساب قيمة المعادلة

$$\mathbf{p} = \frac{\mathbf{n}!}{(\mathbf{n} - \mathbf{m})!}$$

تمرين 6: أكتب برنامجاً لادخال رقم الموظف وأسمة و راتبة الشهري وعدد ساعات العمل الاضافي التي عملها، ثم حساب الراتب الصافي لعدد N من الموظفين في مؤسسة ما، علماً أن الراتب الصافي للموظف = الراتب الشهري + مبلغ العمل الاضافي . مبلغ العمل الاضافي يحسب عن طريق الجدول الاتي :

المبلغ في الساعة الواحدة (بالدينار)	ساعات العمل خلال الشهر	
1000	أقل أو يساوي 10 ساعات	
1500	أكثر من 10 ساعات	
2000	أكثر من 25 ساعة	

على أن تكون النتائج بالشكل الاتي:

الراتب الصافي	أجرة الساعة الواحدة	الساعات الاضافية	أسم الموظف	رقم الموظف
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

- a) جمع العاصر الواقعة أعلى القطر الرئيسي من المصفوفة.
- b) جمع العناصر الواقعة أسفل القطر الرئيسي من المصفوفة.
 - حاصل ضرب عناصر القطر الرئيسي من المصفوفة. (c
 - d) ايجاد أكبر عنصر في المصفوفة.
 - e) ايجاد أصغر عنصر في المصفوفة.
 - ترتيب عناصر المصفوفة بصورة تصاعديا. (f)