Student #:	Student Name:
AP Physics	Class 7: Simple Harmonic Motion
1. A simple pendulum hat by a mass of $2m$, the (a) doubled (b) halved (c) quartered (d) quadrupled (e) unchanged	as a mass m , length L , and period T . If the pendulum mass is replaced period will be
statements is true? (a) The amplitude of the kinetic energy (c) The maximum point (d) The potential energy equilibrium positions.	gy of the spring at the amplitude is equal to the potential energy at the
floor in a perfectly ela motion of the ball can (a) harmonic motion (b) harmonic motion	n with a period of 2 s n with a period of 1 s n with a period of 12 s nstant velocity
	n simple harmonic motion along the x -axis according to the equation eriod of oscillation of the object is
How would you increa (a) Increase the leng	on the end of a string of length L . The frequency of the pendulum is f . ase the frequency of the pendulum to $2f$? gth of the pendulum to $4L$ angth of the pendulum to $14L$

- (c) Increase the length of the pendulum to $2{\it L}$
- (d) Decrease the length of the pendulum to 12L
- (e) Decrease the mass of the pendulum to 12m

6.	A mass hangs from two parallel springs, each with the same spring constant k . Compared to the period T of the same mass oscillating on one of the springs, the period of oscillation of the mass with both springs connected to it is
	(a) $\frac{1}{4}T$ (b) $\frac{1}{2}T$ (c) T (unchanged) (d) $2T$ (e) $4T$
7.	Which of the following is generally true for an object in simple harmonic motion on a spring of constant k?
	 (a) The greater the spring constant k, the greater the amplitude of the motion. (b) The greater the spring constant k, the greater the period of the motion. (c) The greater the spring constant k, the greater the frequency of the motion. (d) The lower the spring constant k, the greater the frequency of the motion. (e) The lower the spring constant k, the greater the kinetic energy of the motion.
Question 4 N/m.	s 8-10: A harmonic oscillator follows the equation $\frac{d^2x}{dt^2} = -4x$. The spring constant k is
8.	The angular frequency of the harmonic motion is
	(a) zero (b) 2 rad/s (c) 4 rad/s (d) 8 rad/s (e) 16 rad/s
9.	The mass m oscillating on the spring is
	(a) 1 kg (b) 2 kg (c) 4 kg (d) 8 kg (e) 16 kg
10.	The period T of oscillation is
	(a) zero (b) $\pi/4s$ (c) $\pi/2s$ (d) πs
	(e) 2π s

- 11. A pendulum of length L has a period of 2s on Earth. A planetary explorer takes the same pendulum of length L to another planet where its period is 1s. The gravitational acceleration on the surface of this planet is most nearly
 - (a) 8g
 - (b) 4g
 - (c) 2g
 - (d) 12g
 - (e) 14g

- 12. A block of mass $1.0\,\mathrm{kg}$ is sliding on a frictionless horizontal surface with a speed of $4.0\,\mathrm{m/s}$ when it collides inelastically with another $1.0\,\mathrm{kg}$ block attached to a spring. The spring compresses a distance of $0.5\,\mathrm{m}$ after the collision. The force constant k of the spring is
 - (a) 2N/m
 - (b) $4 \,\mathrm{N/m}$
 - (c) 8 N/m
 - (d) $16 \,\mathrm{N/m}$
 - (e) $32 \,\mathrm{N/m}$

- 13. A block of mass $0.5\,\mathrm{kg}$ rests up against a compressed spring of force constant $5\,\mathrm{N/m}$. The spring is released, and the block travels a distance of $1.0\,\mathrm{m}$ when the block leaves the spring at the edge of the horizontal frictionless table, and is projected to the floor. The table is $1.5\,\mathrm{m}$ high. The horizontal distance from the table the block lands on the floor is
 - (a) 1.2 m
 - (b) $1.7\,\mathrm{m}$
 - (c) 2.1 m

- (d) $2.8\,\mathrm{m}$
- (e) $3.4 \, \text{m}$

The following questions are "review" questions for kinematics.

- _____ 14. A golf ball is hit from level ground and has a horizontal range of $100\,\mathrm{m}$. The ball leaves the golf club at an angle of 60° to the level ground. At what other angle(s) can the ball be struck at the same initial velocity and still have a range of $100\,\mathrm{m}$?
 - (a) 30°
 - (b) 20° and 80°
 - (c) 10° and 120°
 - (d) 45° and 135°
 - (e) There is no other angle other than 60° in which the ball will have a range of $100 \, \text{m}$.

Free-Response Questions:

1. A mass m oscillates on an ideal spring of spring constant k on a frictionless horizontal surface. The mass is pulled aside to a distance A from its equilibrium position, and released.

- (a) In terms of the given quantities, at what distance from the equilibrium position is the potential energy of the mass equal to its kinetic energy?
- (b) In terms of the given quantities, what is the acceleration of the mass when it is at the amplitude A?

2. A mass oscillates in simple harmonic motion as shown by the position x vs. time t graph below.

- (a) What is the frequency of oscillation?
- (b) Write the equation that represents the speed of the mass as a function of time.