Al Course

Dr. Mürsel Taşgın

Machine Learning, Classification, Clustering

Learning

• "Learning is any process by which a system improves performance from experience"

Herbert Simon

• "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom Mitchell

Experience

Learning

PERFORMANCE

Learning

Learning is essential for unknown environments

i.e., when designer lacks information

• Learning is useful as a system construction method i.e., agent will learn from real environment rather than writing/defining it explicitly

- Learning modifies the agent's decision mechanism to improve performance
- Learning is "a process that leads to change, which occurs as a result
 of experience and increases the potential for improved performance and future
 learning" Ambrose et al.

Learning

Machine Learning

• *Machine learning* is the study of computer algorithms that can improve automatically through experience and by the use of data.

 Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so

Machine Learning

- Machine learning: how to acquire a model on the basis of data / experience
 - Learning parameters (i.e., probabilities)
 - Learning structure (i.e., BN graphs, physical systems)
 - Learning hidden concepts (i.e., clustering, complex rules)

Machine Learning – Types of learning

- Supervised Learning: Data and corresponding labels are given (Xs & Ys)
- Unsupervised Learning: Only data is given, no labels provided (Xs but no Ys)
- Semi-supervised Learning: Some (if not all) labels are present (Xs and some of Ys)
- Reinforcement Learning: An agent interacting with the world makes observations, takes
 actions, and is rewarded or punished; it should learn to choose actions in such a way as
 to obtain a lot of reward (Xs and Reward(Xs))

Machine Learning – A Supervised Learning example

• Spam e-mail filtering

Machine Learning

The resulting *model* is also called the *hypothesis*.

Given a model space and an optimality criterion, a *model* satisfying this criterion is sought.

Some criteria:

- Maximizing the prediction accuracy
- Minimizing the hypothesis' size
- Maximizing the hypothesis fitness to the input data
- Maximizing the hypothesis interpretability
- Minimizing the time complexity of prediction

Classification

Classification: Systematic arrangement in groups or categories according to established criteria

Classification in machine learning

 Having training data and its labels (target), trying to identify label's of new data according the training and learned model

Example classification problems:

- Hand-written digit recognition (MNIST)
- Fraud detection
- Identifying flowers (IRIS dataset)
- Spam filtering
- Cancer prediction (Health data)

Classification: Systematic arrangement in groups or categories according to established criteria

Some terminology

- Classifier It is an algorithm that is used to map the input data to a specific category.
- Classification Model The model predicts or draws a conclusion to the input data given for training, it will predict the class or category for the data.
- Feature A feature is an individual measurable property of the phenomenon being observed.
- **Binary Classification** It is a type of classification with two outcomes, i.e., either true or false.
- Multi-Class Classification The classification with more than two classes, in multi-class classification each sample is assigned to one and only one label or target.
- Multi-label Classification This is a type of classification where each sample is assigned to a set of labels or targets.
- Initialize It is to assign the classifier to be used for the
- Train the Classifier Each classifier in sci-kit learn uses the fit(X, y) method to fit the model for training the train X and train label y.
- Predict the Target For an unlabeled observation X, the predict(X) method returns predicted label y.
- **Evaluate** This basically means the evaluation of the model i.e classification report, accuracy score, etc.

Some methods for classification

Linear Models

- Linear Regression
- Support Vector Machines

Non-linear Models

- K-Nearest Neighbours
- Kernel SVM
- Naïve Bayes
- Decision Tree Classification
- Random Forest Classification

• You trained a model to predict cancer from image data using a state of the art machine learning methods

Your model has an accuracy of 99.9%

By looking at the confusion matrix you realize that the model does not detect any of the positive examples.

Classifiers try to reduce the overall error so they can be biased towards the majority class.

```
# Negatives = 998
# Positives = 2
```

If our algorithm predicts every case as negative class, then the accuracy of the algorithm will be 99.8% !! \square 998/1000 (Not what we want!)

This is due to dataset imbalance! (class imbalance within the dataset).

- Different classes within training data is imbalanced (i.e., number of positives, negatives)

After plotting your class distribution you see that you have thousands of negative examples but just a couple of positives.

For cancer prediction (and similar critical cases), even a single case is critical!

Evaluating the performance

Log loss function

Log-loss is indicative of how close the prediction probability is to the corresponding actual/true value (0 or 1 in case of binary classification). The more the predicted probability diverges from the actual value, the higher is the log-loss value.

$$Logloss_i = -[y_i \ln p_i + (1 - y_i) \ln(1 - p_i)]$$

$$Logloss = -\frac{1}{N} \sum_{i=1}^{N} [y_i \ln p_i + (1 - y_i) \ln(1 - p_i)]$$

Evaluating the performance

Cross-entropy

- Cross-entropy loss, or log loss, measures the performance of a classification model whose output is a probability value between 0 and 1.
- Cross-entropy loss increases as the predicted probability diverges from the actual label.
- So predicting a probability of .012 when the actual observation label is 1 would be bad and result in a high loss value.
- A perfect model would have a log loss of 0.

$$-(y\log(p)+(1-y)\log(1-p))$$

Binary cross-entropy loss

$$-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

Multi-class cross-entropy loss

Cross-entropy

In information theory, we like to describe the "surprise" of an event. An event is more surprising the less likely it is, meaning it contains more information.

- •Low Probability Event (surprising): More information.
- •Higher Probability Event (unsurprising): Less information.

Information h(x) = -log(P(x))

Entropy is the number of bits required to transmit a randomly selected event from a probability distribution. A skewed distribution has a low entropy, whereas a distribution where events have equal probability has a larger entropy.

A skewed probability distribution has less "surprise" and in turn a low entropy because likely events dominate. Balanced distribution are more surprising and turn have higher entropy because events are equally likely.

- •Skewed Probability Distribution (unsurprising): Low entropy.
- •Balanced Probability Distribution (surprising): High entropy.

Entropy
$$H(X) = - sum x in X P(x) * log(P(x))$$

Cross-entropy can be calculated using the probabilities of the events from P and Q, as follows:

Cross-entropy H(P, Q) = - sum x in X P(x) * log(Q(x))

Machine Learning – Confusion Matrix

Evaluating the performance

Confusion Matrix

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
ondition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	
Actual condition	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	

relevant elements false negatives true negatives 0 true positives false positives selected elements How many negative How many relevant selected elements items are selected? are truly negative? e.g. How many sick people are correctly e.g. How many healthy people are identified as having the condition. identified as not having the condition. Specificity = Sensitivity=

Machine Learning – Confusion Matrix

$$Accuracy = \frac{tp + tn}{tp + tn + fp + fn}$$

$$ext{Precision} = rac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
ugingin a	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	
Actual collution	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),	

Machine Learning – Confusion Matrix

A: accurate and precise

B: precise, but not accurate

C: neither accurate nor precise

D: accurate, but not precise

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
Actual condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	

Machine Learning – Classification Example

We built a model for cancer prediction. Following table shows the classification predictions and true labels

Patient ID	Prediction (Cancer:1, Not-Cancer:0)	True Label (Cancer:1, Not-Cancer:0)	
ID-1	1	1	
ID-2	0	0	
ID-3	0	1	
ID-4	1	0	
ID-5	0	0	
ID-6	1	1	
ID-7	0	0	
ID-8	0	0	
ID-9	0	1	
ID-10	1	0	

Accuracy?
Precision?
Recall?
F1-score?
Sensitivity?
Specifity?

Machine Learning – Classification Example

We built a model for cancer prediction. Following table shows the classification predictions and true labels

Patient ID	Prediction (Cancer:1, Not-Cancer:0)	True Label (Cancer:1, Not-Cancer:0)	
ID-1	1	1	
ID-2	0	0	
ID-3	0	1	
ID-4	1	0	
ID-5	0	0	
ID-6	1	1	
ID-7	0	0	
ID-8	0	0	
ID-9	0	1	
ID-10	1	0	

		Prediction Condition			
		Positiv	/e	Nega	tive
Actual Condition	Positive	TP	2	FN	2
Actual Condition	Negative	FP	2	TN	4

Accuracy	0,60
Precision	0,50
Recall	0,50
F1-score	0,50
Sensitivity	0,5
Specifity	0,67

Problems in classification

- Dataset imbalance
 - SMOTE oversampling
 - Random undersampling
- Lack of labeled data
 - Data generation
 - Data labeling
 - Self-supervised learning, semi-supervised learning

Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the same group (called a **cluster**) are more similar (in some sense) to each other than to those in other groups (clusters).

A **cluster** cannot be defined precisely \Box *There are so many clustering algorithms!*

Clustering Algorithm Types:

- Connectivity models (Hierarchical clustering, distance based)
- Centroid models (k-means)
- Distribution models (based on statistical distributions)
- Density models (DBSCAN)
- Group models
- Graph-based models (cliques, communities)
- Neural models (Self-organizing maps)

Hierarchical Algorithms

Divisive

- Initially all data points in a single cluster
- Based on a heuristic, divide data into clusters iteratively
- Stop when further division is not possible or do not make improvement

Agglomerative

- Initially all data points form a separate cluster (of size 1)
- Based on a heuristic, merge data points into clusters iteratively
- Stop when no more merging is possible or do not make further improvement

Hierarchical Algorithms

- Using a heuristic either divide or merge operation is used
- A fitness function, cost function or any metric should be used to decide on best next move, i.e., merge_next(a,b), divide(c)
- Build a dendrogram representing the hierarchical grouping
- Cut the dendrogram at some point to identify clusters

Centroid models

k-means algorithm

- N observations into k clusters
- Randomly choose k observations as initial means
- Assign k points as means of data
- Each observation belongs to nearest mean (cluster center, centroid)
- Calculate *centroids* of each k clusters \square *new means for next iteration*
- Repeat iteration until convergence (no change occurs)

 k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

2. k clusters are created by associating every observation with the nearest mean. The partitions here represent the

partitions here represent the Voronoi diagram generated by the means.

 The centroid of each of the k clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

Distribution-based clustering

- Statistics based
- Clusters can be defined as objects belonging to same distribution
- Sampling objects from a distribution

<u>Gaussian mixture models (Expectation – maximization)</u>

- Data set is usually modeled with a fixed number of Gaussian distributions that are initialized randomly
- Parameters of distributions are iteratively optimized to better fit the data set
- This will converge to a local optimum, so multiple runs may produce different results.
- Objects are often then assigned to the Gaussian distribution they most likely belong to

Density-based clustering

In density-based clustering, clusters are defined as areas of higher density than the remainder of the data set. Objects in sparse areas – that are required to separate clusters – are usually considered to be noise and border points.

DBSCAN

- Non-parametric model
- Connects points within certain distance thresholds
- Only the points that satisfy a density criterion are connected
- A point p is a *core point* if at least *minPts* points are within distance ε of it (including p).
- A point q is directly reachable from p if point q is within distance ε from core point p. Points are only said to be directly reachable from core points.
- A point q is reachable from p if there is a path $p_1, ..., p_n$ with $p_1 = p$ and $p_n = q$, where each p_{i+1} is directly reachable from p_i . Note that this implies that the initial point and all points on the path must be core points, with the possible exception of q.
- All points not reachable from any other point are outliers or noise points.

In this diagram, minPts = 4. Point A and the other red points are core points, because the area surrounding these points in an ε radius contain at least 4 points (including the point itself). Because they are all reachable from one another, they form a single cluster. Points B and C are not core points, but are reachable from A (via other core points) and thus belong to the cluster as well. Point N is a noise point that is neither a core point nor directly-reachable.

Graph-based clustering

Transform the data into a graph representation

- Vertices are the data points to be clustered
- Edges are weighted based on similarity between data points
- Apply a clustering method on graph
- Find the components, communities or clusters in the graph

Graph partitioning

Each connected component is a cluster

Graph-based clustering

Objective Function

• An objective function to determine what would be the best «cut» or grouping in the graph

Algorithm

Find the optimal partition (according to objective function)

i.e., Minimize cut

$$\operatorname{Cut}(V_1,V_2) = \sum_{i \in V_1,} w_{ij} \qquad \text{w}_{ij} \text{ is weight of the edge between nodes i and j}$$

$$\begin{array}{c} \mathsf{V1} \\ \mathsf{V3} \\ \mathsf{V3} \\ \mathsf{V4} \\ \mathsf{V2} \\ \mathsf{V4} \\ \mathsf{V6} \\ \mathsf{Cut} = 0.2 \end{array}$$

Limitation: The optimal solution may split up a single node from the rest of the graph!

Graph-based clustering

Spectral clustering

- Spectral properties of a graph
 - Spectral properties: eigenvalues/eigenvectors of the adjacency matrix can be used to represent a graph
 - Graph Laplacian (using adjacency matrix)
 - There exists a relationship between spectral properties of a graph and the graph partitioning problem

Consider a data set with N data points

- 1. Construct an N × N similarity matrix, W
- 2. Compute the $N \times N$ Laplacian matrix, L = D W
- 3. Compute the k "smallest" eigenvectors of L
 - a) Each eigenvector v_i is an $N \times 1$ column vector
 - b) Create a matrix V containing eigenvectors v₁, v₂, .., v_k as columns (you may exclude the first eigenvector)
- Cluster the rows in V using k-means or other clustering algorithms into K clusters

Graph-based clustering

Spectral clustering

$$L = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

Eigenvalues of L:

$$\Lambda = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.44 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4.56 \end{bmatrix}$$

Eigenvectors of L:

$$V = \begin{bmatrix} 0.41 & 0.46 & 0.65 & -0.28 & 0.29 & -0.18 \\ 0.41 & 0.46 & -0.65 & 0.28 & 0.29 & -0.18 \\ 0.41 & 0.26 & 0 & 0 & -0.58 & 0.66 \\ 0.41 & -0.26 & 0 & 0 & -0.58 & -0.66 \\ 0.41 & -0.46 & 0.28 & 0.65 & 0.29 & 0.18 \\ 0.41 & -0.46 & -0.28 & -0.65 & 0.29 & 0.18 \end{bmatrix}$$

Graph-based clustering

Label propagation

- Labels represent cluster identity for each node
- Initially all nodes have their own labels (clusters of size 1)
- Iteratively, at each round, nodes get the most popular label among its neighbors
- Stop when no label update is possible (no change of labels)

Neural models

Self-organizing maps

- An unsupervised machine learning technique used to produce a *low-dimensional representation* of a higher dimensional data set while preserving the topological structure of the data.
- Competitive Learning instead of loss minimization

Example: RGB colors

Input Data: 3 dimensional color data (Red-Green-Blue)

• Neural Network: 2 dimensional layout for neurons. Each neuron contains a weight vector representing its RGB values and a geometric location in the grid.

Neural models

Self-organizing maps

The SOM learning algorithm:

- Initialize the weights
- Iterate over the input data, finding the "winning" neuron for each input (best matching unit BMU)
- Adjust weights based on the location of that "winning" neuron

```
Initialize weights

For 0 to X number of training epochs
Select a sample from the input data set
Find the "winning" neuron for the sample input
Adjust the weights of nearby neurons

End for loop
```

Finding winning neuron

$$-\sqrt{(n_r - v_r)^2 + (n_g - v_g)^2 + (n_b - v_b)^2}$$

Neighbor Update

$$n_{i}(t + 1) = n_{i}(t) + h * [v(t) - n_{i}(t)]$$

n (t) = weight vector of neuron i at regression step t
v (t) = input vector at regression step t

h = neighborhood function

Neural models

Self-organizing maps

Machine Learning – Clustering Use Cases

Where to use clustering?

- Fraud detection (clusters of fraudsters)
- Identification of customer groups/interest groups
- Anomaly detection
- Drug discovery, cancer research
- Genetics research
- Recommender systems
- Identifying crime locations
- Delivery optimization
- Ride-share data analysis
- Document classification
- Spam filtering

