

What is claimed is:

- 1 1. The method for simulating dental procedures for training dental students
2 comprising, in combination, the steps of:
3 employing a digital computer consisting of a processor and a display device to
4 display a model of a tooth,
5 employing said digital computer and display device to display a model of a dental
6 tool, and
7 employing a haptic interface device that is manually moveable by a dental student
8 and coupled to said digital computer to move the said model of a dental tool with respect
9 to said model of a tooth to haptically simulate a dental procedure.

- 1 2. The method set forth in claim 1 wherein said dental tool is a pick having a
2 handle and wherein said haptic interface includes a stylus movable by said dental student
3 to simulate the motion of said handle.

- 1 3. The method set forth in claim 1 wherein said dental tool is a drill having a
2 handle and wherein said haptic interface includes a stylus movable by said dental student
3 to simulate the motion of said handle.

- 1 4. The method set forth in claim 1 wherein said dental tool is an amalgam carrier
2 having a handle and wherein said haptic interface includes a stylus movable by said
3 dental student to simulate the motion of said handle.

- 1 5. The method set forth in claim 1 wherein said dental tool is a carver having a
2 handle and wherein said haptic interface includes a stylus movable by said dental student
3 to simulate the motion of said handle.

- 1 6. The method set forth in claim 1 wherein said model of a dental tool is selected
2 by said student from a plurality of available dental tools, each of which has a handle, and
3 wherein said haptic interface includes a stylus movable by said dental student to simulate
4 the motion of the handle of each of said tools.

- 1 7. The method set forth in claim 6 wherein said plurality of dental tools
2 comprises at least a pick, a carver, and a drill.

1 8. The method set forth in claim 6 wherein said plurality of dental tools
2 comprises at least a pick, a carver, a drill and an amalgam carrier.

1 9. The method set forth in claim 1 wherein said display device renders said
2 model of a tooth and said model of a dental tool in a stereoscopic three dimensional
3 display.

1 10. The method set forth in claim 1 wherein said a haptic interface device that is
2 manually moveable by a dental student includes a moveable stylus that is moveable in at
3 least three degrees of freedom.

1 11. The method set forth in claim 1 wherein said display device renders said
2 model of a tooth volumetrically as a solid object consisting of a collection of volume
3 elements.

1 12. The method set forth in claim 12 wherein said model of a tooth is subdivided
2 into different regions simulating different materials said materials including enamel,
3 dentin and pulp.

1 13. The method as set forth in claim 1 wherein said model of a dental tool
2 represents a drill, said method further including the step of removing portions of said
3 model of a tooth that are intersected by said drill.

1 14. The method as set forth in claim 1 wherein said model of a dental tool
2 represents an amalgam carrier, said method further including the step of adding material
3 to portions of said model of a tooth in the vicinity of said amalgam carrier.

1 15. The method for simulating dental procedures as set forth in claim 11 wherein
2 said digital computer further includes means for storing volumetric object grid data
3 specifying the attributes of at least selected ones of said volume elements.

1 16. The method for simulating dental procedures as set forth in claim 14 further
2 including the step of responding the movement of said model of a dental tool with respect
3 to said model of a tooth by modifying said volumetric object grid data.

1 17. The method for simulating dental procedures as set forth in claim 15 further

2 including the step of responding the movement of said model of a dental tool with respect
3 to said model of a tooth by modifying said volumetric object grid data and said data
4 specifying the attributes of at least selected ones of said volume elements.

1 18. The method for simulating dental procedures as set forth in claim 17 wherein
2 said digital computer further includes means for storing data for representing the shape
3 and character of a modification region of said model of a dental tool to control the
4 manner in which said volumetric object grid data is modified.

1 19. Apparatus for simulating dental procedures for training a dental student
2 comprising, in combination, a digital computer consisting of at least a processor, a
3 display device, a haptic interface including a moveable stylus manipulatable by said
4 student, and storage means for storing:

5 volumetric object grid data for representing a tooth as a collection of volume elements
6 in three-dimensional space,

7 tool definition data for representing the shape and character of a modification region of
8 a dental tool in three-dimensional space, and

9 a simulation program executable by said processor in response to the movement of said
10 stylus for moving a displayed model of said dental tool with respect to a displayed model
11 of said tooth to haptically simulate a dental procedure.

1 20. Apparatus as set forth in claim 19 wherein said storage means further stores
2 attribute grid data specifying the attributes of at least selected ones of said volume
3 elements.

1 21. Apparatus as set forth in claim 20 wherein said storage means further stores
2 tool definition data specifying the characteristics of said dental tool.

1 22. Apparatus as set forth in claim 21 wherein said tool definition data specifies
2 the shape and location of a modification region of said dental tool and wherein said
3 simulation program includes means for modifying said object grid data for volume
4 elements in the vicinity of said modification region.

1 23. Apparatus as set forth in claim 22 wherein said simulation program further
2 includes means for modifying said attribute grid data describing volume elements in the
3 vicinity of said modification region.

1 24. Apparatus as set forth in claim 23 wherein said tool definition data further
2 includes the specification of the location of feel points relative to said modification
3 region and wherein said simulation program includes means for controlling haptic forces
4 applied to said stylus when said modification region of said dental tool is moved near to
5 said tooth.

1 25. Apparatus as set forth in claim 24 wherein at least some of said feel points
2 define the location of a handle portion of said dental tool.

1 26. Apparatus as set forth in claim 24 wherein at least some of said feel points
2 are positioned outwardly from said modification region to increase the amount of force
3 that the student must apply to said stylus to modify data representing said tooth

1 27. Apparatus as set forth in claim 24 wherein at least some of said feel points
2 are positioned inwardly into said modification region to decrease the amount of force that
3 the student must apply to said stylus to modify data representing said tooth.

1 28. Apparatus as set forth in claim 24 wherein at least some of said feel points
2 are spaced from adjacent ones of said feel points by a distance larger than the dimension
3 of projecting portions of said tooth thereby facilitating the removal of said projecting
4 portions.

1 29. Apparatus as set forth in claim 24 wherein at least some of said feel points
2 are positioned relative to said modification region to guide the movement of said
3 modification region with respect to said model of a tooth.

1 30. Apparatus as set forth in claim 23 wherein said tool definition data further
2 includes the specification of the location of one or more sensor points relative to said
3 modification region for determining the attributes of volume elements of said tooth
4 located at said sensor points.

1 31. Apparatus as set forth in claim 30 wherein said tool definition data includes the
2 specification of the location of a single sensor point located substantially at the center of
3 mass of said modification region.

1 32. Apparatus as set forth in claim 30 wherein said tool definition data further includes
2 the specification of the location of one or more sensor points at or near the location of
3 one or more selected ones of said feel points for determining the attributes of volume
4 elements of said tooth at said sensor points.

AUG 20 2010 10:00 AM
RECEIVED
U.S. PATENT AND TRADEMARK OFFICE
SEARCHED
INDEXED
MAILED
EXAMINED
FILED