case we have a feature vector \mathbf{x} . So, finally, we get $P(c_i|\mathbf{x}) = \frac{p(\mathbf{x}|c_i)P(c_i)}{\sum\limits_{j=1}^{S} p(\mathbf{x}|c_j)P(c_j)}$ (7.7)

$$\int_{j=1}^{2-1} P(\mathbf{x}|c_j) P(c_j)$$
where $P(c_i)$ or P_i , the prior probability, is the unconditional probability that

where $P(c_i)$ or P_i , the prior probability, is the unconditional probability that the class is i independently of the information provided by \mathbf{x} and $p(\mathbf{x}|c_i)$ is the density of \mathbf{x} when the class is c_i . $P(c_i|\mathbf{x})$ is referred to as the "posterior probability for

class i."