>>> On Dinur's Proof of the PCP Theorem
>>> COMP 531: Advanced Theory of Computation

Names: Aly Ibrahim † , Justin Li ‡ , Harley Wiltzer $^{\$}$

Institute: McGill University

Date: May 2, 2020

[~]\$_

[†]aly.ibrahim@mail.mcgill.ca †juan.y.li@mail.mcgill.ca

^{\$}harley.wiltzer@mail.mcgill.ca

- >>> Table of Contents
- 1. THEOREM STATEMENT
- 2. BACKGROUND
- 3. PROOF SKETCH
- 4. PRE-PROCESSING
- 5. GAP AMPLIFICATION
- 6. ALPHABET REDUCTION
- 7. QUESTIONS?

>>> Theorem Statement

Definition (Non-Deterministic Polynomial (NP))

 \exists <u>deterministic</u> polynomial-time verifier for an NP problem S that takes an input instance x and a polynomial-size <u>proof</u> t That:

- * Completeness: Accepts ($x \in S$)
- * Soundness: Rejects $(x \notin S)$

>>> Theorem Statement

Definition (Non-Deterministic Polynomial (NP))

 \exists <u>deterministic</u> polynomial-time verifier for an NP problem S that takes an input instance x and a polynomial-size <u>proof</u> t That:

- * Completeness: Accepts $(x \in S)$
- * Soundness: Rejects $(x \notin S)$

Definition (Probabilistically Checkable Proof (PCP))

 $\mathsf{PCP}[r(n),q(n)]$ is the class of languages provable with a PCP system which uses O(r(n)) bits of randomness, queries O(q(n)) bits in the proof, and has completeness 1, soundness 1/2.

>>> Theorem Statement

Theorem (PCP Theorem)

 $\mathsf{NP}\subseteq\mathsf{PCP}[\log n,1]$

BACKGROUND

>>> Background

- st Hardness of Approximation
- * Constraints
- * Constraint Graphs
- * Expander Graphs

EFFICIENT

EXACT

P Complexity Class

EFFICIENT

EXACT

Fixed Parameter Algorithms

EFFICIENT

EXACT

Fixed Parameter Algorithms

EFFICIENT EXACT HARD

Imagine A solves an NP graph problem in $O(V \cdot 2^E)$ time

Although inefficient, if graph is sparse, it is useful

Approximation Algorithms

EFFICIENT

EXACT

Definition (α -Approximation)

Given a combinatorial optimization maximization problem x with an optimal solution OPT, we say an algorithm A is an α -approximation algorithm with $(0<\alpha\leq 1)$, if A is guaranteed to return a solution with value $>\alpha\cdot \text{OPT}$.

Definition (α -Approximation)

Given a combinatorial optimization maximization problem x with an optimal solution OPT, we say an algorithm A is an α -approximation algorithm with $(0<\alpha\leq 1)$, if A is guaranteed to return a solution with value $>\alpha\cdot \text{OPT}$.

Definition (Polynomial Time Approximation Scheme (PTAS))

A maximization combinatorial optimization problem is said to have a PTAS if it has a $(1-\epsilon)$ -approximation algorithm for every constant $\epsilon>0$.

Definition (α -Approximation)

Given a combinatorial optimization maximization problem x with an optimal solution OPT, we say an algorithm A is an α -approximation algorithm with $(0<\alpha\leq 1)$, if A is guaranteed to return a solution with value $>\alpha\cdot \text{OPT}$.

Definition (Polynomial Time Approximation Scheme (PTAS))

A maximization combinatorial optimization problem is said to have a PTAS if it has a $(1-\epsilon)$ -approximation algorithm for every constant $\epsilon>0$.

Definition (Hardness assuming $P \neq NP$)

When a combinatorial optimization problem has no PTAS

Definition (Combinatorial Optimization to Decision)

Example: GAP-E3SAT $_{c,s}$ (0 < $s \le c \le 1$)

Given an estimate-3SAT (E3SAT) formula on \boldsymbol{m} clauses, output:

- * YES (OPT $\geq c \cdot m$)
- * NO (OPT $< s \cdot m$)
- * Anything o.w.

Definition (Combinatorial Optimization to Decision)

Example: GAP-E3SAT_{c,s} $(0 < s \le c \le 1)$

Given an estimate-3SAT (E3SAT) formula on \boldsymbol{m} clauses, output:

- * YES (OPT $\geq c \cdot m$)
- * NO (OPT $< s \cdot m$)
- * Anything o.w.

Theorem (PCP-Theorem ≡ GAP-E3SAT-Hardness)

 $\mathsf{PCP} ext{-}theorem \iff \exists \ \textit{universal constant} \ s < 1 \ s.t. \ \mathsf{GAP} ext{-}\mathsf{E3SAT}_{1,s} \ is \ \mathsf{NP} ext{-}hard.$

Definition (Combinatorial Optimization to Decision)

Example: GAP-E3SAT $_{c,s}$ (0 < $s \le c \le 1$)

Given an estimate-3SAT (E3SAT) formula on \boldsymbol{m} clauses, output:

- * YES (OPT $\geq c \cdot m$)
- * NO (OPT $< s \cdot m$)
- * Anything o.w.

Theorem (PCP-Theorem ≡ GAP-E3SAT-Hardness)

Proof.

 \leftarrow Build PCP[log n, 1] for GAP-E3SAT_{1,s}

Definition (Combinatorial Optimization to Decision)

Example: GAP-E3SAT $_{c,s}$ (0 < $s \le c \le 1$)

Given an estimate-3SAT (E3SAT) formula on \boldsymbol{m} clauses, output:

- * YES (OPT $\geq c \cdot m$)
- * NO (OPT $< s \cdot m$)
- * Anything o.w.

Theorem (PCP-Theorem ≡ GAP-E3SAT-Hardness)

Proof.

 \longleftarrow Build $\mathsf{PCP}[\log n, 1]$ for GAP-E3SAT $_{1,s}$ choose random clause, check if it satisfies.

Definition (Combinatorial Optimization to Decision)

Example: GAP-E3SAT $_{c,s}$ (0 < $s \le c \le 1$)

Given an estimate-3SAT (E3SAT) formula on \boldsymbol{m} clauses, output:

- * YES (OPT $\geq c \cdot m$)
- * NO (OPT $< s \cdot m$)
- * Anything o.w.

Theorem (PCP-Theorem ≡ GAP-E3SAT-Hardness)

Proof.

 $\iff \textit{Build} \ \mathsf{PCP}[\log n, 1] \ \textit{for} \ \mathsf{GAP-E3SAT}_{1,s} \\ \textit{choose random clause, check if it satisfies.} \\ \textit{If} \ x \in \mathsf{GAP-E3SAT}_{1,s} \ \textit{then all clauses satisfy}$

```
>>> Hardness of Approximation
```

Definition (Combinatorial Optimization to Decision)

```
Example: GAP-E3SAT_{c,s} (0 < s \le c \le 1)
```

Given an estimate-3SAT (E3SAT) formula on \boldsymbol{m} clauses, output:

- * YES (OPT $\geq c \cdot m$)
- * NO (OPT $< s \cdot m$)
- * Anything o.w.

Theorem (PCP-Theorem \equiv GAP-E3SAT-Hardness)

Proof.

```
 \Leftarrow \textit{Build} \ \mathsf{PCP}[\log n, 1] \ \textit{for} \ \mathsf{GAP-E3SAT}_{1,s} \\ \textit{choose random clause, check if it satisfies.} \\ \textit{If} \ x \in \mathsf{GAP-E3SAT}_{1,s} \ \textit{then all clauses satisfy} \\ \textit{If} \ x \not\in \mathsf{GAP-E3SAT}_{1,s} \ \textit{then at most $s$ clauses satisfy} \\ \end{cases}
```

>>> Constraint Graphs

Definition

 $G = \langle (V, E), \Sigma, \mathcal{C}
angle$ is called a constraint graph, if

- 1. (V, E) is an undirected graph.
- 2. V is the set of variables that assumes values over alphabet Σ .
- 3. Each edge $e \in E$, defines a constraint $c(e) \subseteq \Sigma \times \Sigma$, and $\mathcal{C} = \{c(e)\}_{e \in E}$. A constraint c(e) is said to be satisfied by (a,b) iff $(a,b) \in c(e)$.

>>> Constraint Graphs

Definition

 $G = \langle (V, E), \Sigma, \mathcal{C}
angle$ is called a constraint graph, if

- 1. (V, E) is an undirected graph.
- 2. V is the set of variables that assumes values over alphabet Σ .
- 3. Each edge $e \in E$, defines a constraint $c(e) \subseteq \Sigma \times \Sigma$, and $\mathcal{C} = \{c(e)\}_{e \in E}$. A constraint c(e) is said to be satisfied by (a,b) iff $(a,b) \in c(e)$.

An assignment is a mapping $\sigma: V \to \Sigma$.

>>> Constraint Graphs

Definition

 $G = \langle (V, E), \Sigma, \mathcal{C}
angle$ is called a constraint graph, if

- 1. (V, E) is an undirected graph.
- 2. V is the set of variables that assumes values over alphabet Σ .
- 3. Each edge $e \in E$, defines a constraint $c(e) \subseteq \Sigma \times \Sigma$, and $\mathcal{C} = \{c(e)\}_{e \in E}$. A constraint c(e) is said to be satisfied by (a,b) iff $(a,b) \in c(e)$.

An assignment is a mapping $\sigma: V \to \Sigma$.

$$\mathtt{UNSAT}_{\sigma}(G) = \Pr_{(u,v) \in E}[\sigma(u),\sigma(v)) \notin c(e)], \quad \mathtt{UNSAT}(G) = \min_{\sigma} \mathtt{UNSAT}_{\sigma}(G).$$

>>> Expander Graphs

Definition

Let G=(V,E) be a d-regular graph. Let $E(S,\bar{S})=\left|(S\times\bar{S})\cap E\right|$ = $\left|\{(u,v)\in E\mid u\in S \text{ and } v\in\bar{S}\}\right|$ equal the number of edges from a subset $S\subseteq V$ to its complement. The edge expansion of G is defined as

$$h(G) = \min_{S: \ |S| \le \frac{|V|}{2}} \frac{E(S, S)}{|S|}.$$

>>> Expander Graphs

Definition

Let G=(V,E) be a d-regular graph. Let $E(S,\bar{S})=\left|(S\times\bar{S})\cap E\right|$ = $\left|\{(u,v)\in E\mid u\in S \text{ and } v\in\bar{S}\}\right|$ equal the number of edges from a subset $S\subseteq V$ to its complement. The edge expansion of G is defined as

$$h(G) = \min_{S: \ |S| \leq \frac{|V|}{2}} \frac{E(S, \overline{S})}{|S|}.$$

Definition $(h(G) \propto (d - \lambda))$

The spectral gap $(d-\lambda)$ of G's adjacency matrix corresponds to its edge expansion h(G). Good expanders have large h(G).

>>> Expander Graphs

Lemma

There exists $d_0\in\mathbb{N}$ and $h_0>0$, such that there is a polynomial-time constructible family $\{X_n\}_{n\in\mathbb{N}}$ of d_0 -regular graphs X_n on n vertices with $h(X_n)\geq h_0$.

PROOF SKETCH

PCP-Theorem

>>> Dinur's Contribution

Post-Stage Property	Init	Pre	Gap Amp (t)	Comp
V	$ V_0 $	$\leq 2 E_0 $	==	$O(d V_0)$
E	$ E_0 $	$O(E_0)$	$O(d^t E_0)$	$O(d^t E_0)$
$ \Sigma $	$ ilde{\Sigma}$	Σ_0	$\Sigma_0^{d^t}$	Σ_0
$\deg(G)$	const	O(d V)	?	-
Regular?	Х	1	Х	X
Good Expander?	Х	✓	Х	X
$\lambda(G)$	-	λ	?	-
NO case $gap(G)$	gap	\downarrow	$O(t \cdot \mathtt{gap})$	\

>>> Dinur's Contribution

Post-Stage Property	Init	Pre	Gap Amp (t)	Comp
V	$ V_0 $	$\leq 2 E_0 $	==	$O(d V_0)$
E	$ E_0 $	$O(E_0)$	$O(d^t E_0)$	$O(d^t E_0)$
$ \Sigma $	$ ilde{\Sigma}$	Σ_0	$\Sigma_0^{d^t}$	Σ_0
deg(G)	const	O(d V)	?	-
Regular?	Х	1	Х	X
Good Expander?	Х	✓	Х	X
$\lambda(G)$	-	λ	?	-
NO case $gap(G)$	gap	\downarrow	$O(t \cdot \mathtt{gap})$	

[3. PROOF SKETCH]\$ _ [16/64]

Lemma (Preprocessing Lemma)

There exist constants $0 < \lambda < d$ and $\beta_1 > 0$ such that any constraint graph G can be transformed into a constraint graph G', denoted G' = prep(G), such that

- * G' is d-regular with self-loops, and $\lambda(G') \leq \lambda \leq d$.
- * G' has the same alphabet as G , and $\mathit{size}(G') = \mathcal{O}(\mathit{size}(G))$.
- * $\beta_1 \cdot \mathtt{UNSAT}(G) \leq \mathtt{UNSAT}(G') \leq \mathtt{UNSAT}(G)$.

[3. PROOF SKETCH]\$ _ [17/64]

Lemma (Amplification Lemma)

Let $0<\lambda< d$, and $|\Sigma|$ be constants. There exists a constant $\beta_2=\beta_2(\lambda,d,|\Sigma|)>0$, such that for every $t\in\mathbb{N}$ and for every d-regular constraint graph $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$ with a self-loop on each vertex and $\lambda(G)\leq \lambda$,

$$\mathtt{UNSAT}(G^t) \geq eta_2 \cdot t \cdot \min\left(\mathtt{UNSAT}(G), \frac{1}{t}\right).$$

[3. PROOF SKETCH]\$ _ [18/64]

Lemma (Amplification Lemma)

Let $0<\lambda< d$, and $|\Sigma|$ be constants. There exists a constant $\beta_2=\beta_2(\lambda,d,|\Sigma|)>0$, such that for every $t\in\mathbb{N}$ and for every d-regular constraint graph $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$ with a self-loop on each vertex and $\lambda(G)\leq \lambda$,

$$\mathtt{UNSAT}(G^t) \geq \beta_2 \cdot t \cdot \min\left(\mathtt{UNSAT}(G), \frac{1}{t}\right).$$

Lemma (Composition Lemma)

Assume the existence of an assignment tester \mathcal{P} , with constant rejection probability $\epsilon>0$, and alphabet $\Sigma_0, |\Sigma_0|=\mathcal{O}(1)$. There exists $\beta_3>0$ that depends only on \mathcal{P} , such that given any constraint graph $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$, one can compute, in linear time, the constraint graph $G'=G\circ\mathcal{P}$, such that $\operatorname{size}(G')=c(\mathcal{P},|\Sigma|)\cdot\operatorname{size}(G)$, and

$$\beta_3 \cdot \mathtt{UNSAT}(G) \leq \mathtt{UNSAT}(G') \leq \mathtt{UNSAT}(G).$$

[3. PROOF SKETCH]\$ _ [18/64]

PRE-PROCESSING Degree Reduction + Expanderization

- * Start with a NP-complete problem
- * Encode it into constraint graphs
- * Transform constraint graph into expander graphs that are easier to work with
- * Keep track of the change in gap during transformations

[4. PRE-PROCESSING]\$ _ [20/64]

Two transformations:

- 1. Degree reduction
 - * Blow up number of vertices
 - * Transform into a constant degree graph

Two transformations:

- 1. Degree reduction
 - * Blow up number of vertices
 - * Transform into a constant degree graph
- 2. Expanderize
 - * Superimpose a constant degree expander graph
 - * Add self-loops to each vertex

[4. PRE-PROCESSING]\$ _ [21/64]

Two transformations:

- 1. Degree reduction
 - * Blow up number of vertices
 - * Transform into a constant degree graph
- 2. Expanderize
 - * Superimpose a constant degree expander graph
 - * Add self-loops to each vertex

These two steps can be captured by the following:

$$G' = \operatorname{prep}_2(\operatorname{prep}_1(G)).$$

[4. PRE-PROCESSING]\$ _ [21/64]

Lemma

There exist constants $0 < \lambda < d$ and $\beta_1 > 0$ such that any constraint graph G can be transformed into a constraint graph G', denoted G' = prep(G), such that

- * G' is d-regular with self-loops, and $\lambda(G') \leq \lambda \leq d$.
- * G' has the same alphabet as G , and $\mathit{size}(G') = \mathcal{O}(\mathit{size}(G))$.
- * $\beta_1 \cdot \mathtt{UNSAT}(G) \leq \mathtt{UNSAT}(G') \leq \mathtt{UNSAT}(G)$.

>>> Prep₁

Definition

Let $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$ be a constraint graph. The constraint graph $\operatorname{prep}_1(G)=\langle (V',E'),\Sigma,\mathcal{C}'\rangle$ is defined as follow:

* For each vertex $v \in V$, $[v] = \{(v,e) | e \in E \text{ is incident on } v\}.$

Definition

Let $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$ be a constraint graph. The constraint graph $\mathrm{prep}_1(G)=\langle (V',E'),\Sigma,\mathcal{C}'\rangle$ is defined as follow:

- * For each vertex $v \in V$, $[v] = \{(v,e) | e \in E \text{ is incident on } v\}.$
- * Connect all vertices in [v] to form a d_0 -regular graph X_v with expansion at least h_0 . We denote $E_1 = \cup_{v \in V} E(X_v)$.

$$E_2 = \{\{(v, e), (v', e)\} \mid e = \{v, v'\} \in E\}.$$

Finally, $E' = E_1 \cup E_2$.

[4. PRE-PROCESSING]\$ _ [23/64]

Definition

Let $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$ be a constraint graph. The constraint graph $\mathrm{prep}_1(G)=\langle (V',E'),\Sigma,\mathcal{C}'\rangle$ is defined as follow:

- * For each vertex $v \in V$, $[v] = \{(v,e) | e \in E \text{ is incident on } v\}.$
- * Connect all vertices in [v] to form a d_0 -regular graph X_v with expansion at least h_0 . We denote $E_1 = \cup_{v \in V} E(X_v)$.

$$E_2 = \{\{(v, e), (v', e)\} \mid e = \{v, v'\} \in E\}.$$

Finally, $E'=\overline{E_1}\cup E_2.$

* Add equality constraint for each new edge.

[4. PRE-PROCESSING]\$ _ [23/64]

[4. PRE-PROCESSING] \$ _ [24/64]

[4. PRE-PROCESSING] \$ _ [25/64]

The above transformation gives rise to a constraint graph such that $|V^\prime| < 2|E|$, and

$$c \cdot \mathtt{UNSAT}(G) \leq \mathtt{UNSAT}(G') \leq \mathtt{UNSAT}(G).$$

and moreover, for any assignment $\sigma':V'\to\Sigma$ let $\sigma:V\to\Sigma$ be defined according to the plurality value,

$$\forall v \in V, \sigma(v) \triangleq \arg\max_{a \in \Sigma} \left\{ \Pr_{(v,e) \in [v]} \left[\sigma'(v,e) = a \right] \right\}.$$

Then, $c \cdot \mathtt{UNSAT}_{\sigma}(G) \leq \mathtt{UNSAT}(G')$.

_ D----f -----1:--:----:--

Proof preliminaries: * $|E'| \le d|E|, d = d_0 + 1$

>>> Prep₁

* $\sigma(v)$ is the most popular assigned value in cloud v.

```
>>> Prep<sub>1</sub>
```

Proof preliminaries:

- * $|E'| \le \overline{d|E|}, \overline{d} = d_0 + 1$
- * $\sigma(v)$ is the most popular assigned value in cloud v.
- * Let $\sigma': V' \to \Sigma$ be the best assignment for G'.
- * $F\subseteq E$ is the set of edges that reject $\sigma.$
- * $F' \subseteq E'$ is the set of edges that reject σ' .
- * $S = \bigcup_{v \in V} \{(v, e) \in [v] \mid \sigma'(v, e) \neq \sigma(v)\}$

[4. PRE-PROCESSING]\$ _ [27/64]

```
>>> Prep<sub>1</sub>
```

Proof preliminaries:

- * $|E'| \le d|E|, d = d_0 + 1$
- * $\sigma(v)$ is the most popular assigned value in cloud v.
- * Let $\sigma': V' \to \Sigma$ be the best assignment for G'.
- * $F \subseteq E$ is the set of edges that reject σ .
- * $F' \subseteq E'$ is the set of edges that reject σ' .
- * $S = \bigcup_{v \in V} \{(v, e) \in [v] \mid \sigma'(v, e) \neq \sigma(v)\}$
- * Key observation: an edge $e=\{v,v'\}\subseteq F$, the corresponding inter-cloud edge $\{(v,e),(v',e)\}\in E'$ is either in F' or has an end point in S.
- * \Longrightarrow $|F'| + |s| \ge |F| = \alpha \cdot |E|$.
- * $\alpha = \mathtt{UNSAT}_{\sigma}(G) = \frac{|F|}{|E|}, \mathtt{UNSAT}_{\sigma'}(G') = \frac{|F'|}{|E'|}$

[4. PRE-PROCESSING] \$ _ [27/64]

```
>>> Prep<sub>1</sub>
```

Proof preliminaries:

- * $|E'| \le d|E|, d = d_0 + 1$
- * $\sigma(v)$ is the most popular assigned value in cloud v.
- * Let $\sigma': V' \to \Sigma$ be the best assignment for G'.
- * $F \subseteq E$ is the set of edges that reject σ .
- * $F' \subseteq E'$ is the set of edges that reject σ' .
- * $S = \bigcup_{v \in V} \{(v, e) \in [v] \mid \sigma'(v, e) \neq \sigma(v)\}$
- * Key observation: an edge $e=\{v,v'\}\subseteq F$, the corresponding inter-cloud edge $\{(v,e),(v',e)\}\in E'$ is either in F' or has an end point in S.
- * \Longrightarrow $|F'| + |s| \ge |F| = \alpha \cdot |E|$.
- * $lpha = \mathtt{UNSAT}_{\sigma}(G) = rac{|F|}{|E|}, \mathtt{UNSAT}_{\sigma'}\overline{(G') = rac{|F'|}{|E'|}}$
- * if gap = 0, gap' = 0
- * otherwise, We look at the following two cases:
 - 1. $|F'| \geq \frac{\alpha}{2} |E|$.
 - 2. $|F'| < \frac{\alpha}{2}|E|, \implies |S| \ge \frac{\alpha}{2}|E|.$

[4. PRE-PROCESSING]\$ _ [27/64]

$$>>> Prep_1$$

$$|F'| \geq \frac{\alpha}{2}|E|$$
:

$$\implies \alpha' = \frac{|F'|}{|E'|} \ge \frac{\frac{\alpha}{2}|E|}{d|E|} = \frac{\alpha}{2d}$$

$$\implies \mathtt{UNSAT}_{\sigma'}(G') \ge \frac{\mathtt{UNSAT}_{\sigma}(G)}{2d}$$

$$|S| \ge \frac{\alpha}{2}|E|$$
:

- * Let S^v denote the set of vertices in [v] that σ' disagrees with σ .
- * $S_a^v = \{(v, e) \in S^u | \sigma'(v, e) = a\}$
- $* \implies |S_a^v| \le \frac{|[v]|}{2}$
- * from expander property, $E(S_a^v,[v]\setminus S_a^v) \geq h_0\cdot |S_a^v|$
- * but these are precisely the edges that connect two vertices with a majority value and minority value, meaning it violates the equality constraint for edges within a cloud!

[4. PRE-PROCESSING]\$ _ [29/64]

This means we have at least the following amount of edges that belongs to $F^\prime\colon$

$$\begin{split} \sum_{v \in V} \sum_{a \in \Sigma} \frac{h_0}{2} |s_a^v| &= \frac{h_0}{2} \sum_{v \in V} \sum_a |s_a^v| \\ &= \frac{h_0}{2} \sum_{v \in V} s^v \\ &= \frac{h_0}{2} |S| \\ &\geq \frac{h_0}{2} \frac{\alpha}{2} |E| \quad \text{(from case 2)} \\ &= \frac{\alpha h_0}{4} |E| \end{split}$$

$$\implies \mathtt{UNSAT}_{\sigma'}(G') = \frac{|F'|}{|E'|} \geq \frac{\frac{\alpha h_0}{4}|E|}{|E'|} \geq \frac{\frac{\alpha h_0}{4}|E|}{d|E|} = \frac{h_0}{4d}\alpha = \frac{h_0}{4d}\mathtt{UNSAT}_{\sigma}(G).$$

[4. PRE-PROCESSING]\$ _ [30/64]

Definition

Let $G=\langle (V,E),\Sigma,\mathcal{C}\rangle$ be a constraint graph. The constraint graph $\operatorname{prep}_2(G)=\langle (V,E'),\Sigma,\mathcal{C}'\rangle$ as follows.

- * Vertices remain the same.
- * Let X be a d_o' regular graph on V and edge set E_1 such that $\lambda(X) < \lambda_0 < d_0'$ (expander graph).Let $E_2 = \{\{v,v\} \mid v \in V\}$ (self-loops). $E' = E \cup E_1 \cup E_2$.
- * For constraints, we just add null constrains (always satisfied) for each new edge.

[4. PRE-PROCESSING]\$ _ [31/64]

The above transformation leads to the following lemma:

Lemma

There exists global constants $d_o' > \lambda_0 > 0$ such that for any d-regular constraint graph G, the constrain graph $G' = prep_2(G)$ has the following properties:

- * G' is $(d+d_0+1)$ -regular expander with self-loop on every vertex, and $\lambda(G') \le d+d+\lambda_0+1 \le \deg(G')$.
- * $size(G') = \mathcal{O}(size(G))$,
- * For every $\sigma: V \to \Sigma, \tfrac{d}{d+d'_{\sigma}+1} \cdot \mathtt{UNSAT}_{\sigma}(G) \leq \mathtt{UNSAT}_{\sigma}(G') \leq \mathtt{UNSAT}_{\sigma}(G).$

[4. PRE-PROCESSING]\$ _ [32/64]

>>> Prep₂

- * The degree of each vertex is increased by $d_0^\prime + 1$.
- * |E'| is gone up by at most $c' \leq (d+d_0'+1)/d$
- * constant size increase.

[4. PRE-PROCESSING]\$ _ [33/64]

>>> Prep₂

- * The degree of each vertex is increased by $d_0^\prime + 1$.
- * |E'| is gone up by at most $c' \leq (d+d_0'+1)/d$
- * constant size increase.
- * Fix an assignment $\sigma:V o \Sigma$,

*

$$\begin{split} \mathtt{UNSAT}_{\sigma}(G') &= \frac{\texttt{\# edges violated by } \sigma}{|E'|} \\ &\geq \frac{|E| \cdot \mathtt{UNSAT}_{\sigma}(G)}{c' \cdot |E|} \\ &= \frac{d}{d + d'_{\sigma} + 1} \cdot \mathtt{UNSAT}_{\sigma}(G) \end{split}$$

[4. PRE-PROCESSING]\$ _ [33/64]

>>> Preprocessing Lemma

Finally, combining the previous two transformation, we have:

$$G' = \mathtt{prep}_2(\mathtt{prep}_1(G)$$

with the following gap:

$$\mathtt{UNSAT}(\mathtt{Prep}_1(G)) \leq c \cdot \mathtt{UNSAT}(G),$$

and

$$\begin{aligned} \mathtt{UNSAT}(\mathtt{Prep}_2(\mathtt{Prep}_1(G))) &\leq \frac{d}{d+d_0'+1} \cdot c \cdot \mathtt{UNSAT}(G) \\ \implies \beta_1 &= \frac{cd}{d+d_0'+1} \end{aligned}$$

[4. PRE-PROCESSING]\$ _ [34/64]

GAP AMPLIFICATION

[5. GAP AMPLIFICATION] \$ _ [36/64]

[5. GAP AMPLIFICATION] \$ _ [36/64]

 $\ \ \, \text{INPUT:} \ \, (G,\mathcal{C}) \ \, \overline{\text{a} \ \, d\text{-regular constraint} \ \, (n,\overline{d},\lambda)\text{-expander.}}$

INPUT: (G,\mathcal{C}) a d-regular constraint $(n,d,\lambda)\text{-expander}.$ DENOTE: GAP = UNSAT(G)

INPUT: (G,\mathcal{C}) a d-regular constraint (n,d,λ) -expander.

 $\mathtt{DENOTE: GAP = UNSAT}(G)$

INTRODUCE: a fixed constant parameter t.

INPUT: (G, \mathcal{C}) a d-regular constraint $(n, \overline{d}, \lambda)$ -expander.

DENOTE: GAP = $\mathtt{UNSAT}(G)$

INTRODUCE: a fixed constant parameter t.

RECALL: $F\subseteq E$ is the set of edges failing $\mathcal C$

INPUT: (G,\mathcal{C}) a d-regular constraint (n,d,λ) -expander.

DENOTE: GAP = UNSAT(G)

INTRODUCE: a fixed constant parameter t.

RECALL: $F\subseteq E$ is the set of edges failing $\mathcal C$

AFTERMATH:

st Polynomial increase in graph size.

* GAP' increases
$$\begin{cases} 0 & \text{if GAP} = 0 \\ \geq \frac{t}{O(1)} \times \min(\text{GAP}, \frac{1}{t}) & \text{Else} \end{cases}$$

- * Alphabet blows up $\Sigma' = \Sigma^{d^t}$.
- * λ' and d' decrease in value (ignore).

Definition

An ''One or More Random Walk'' (OoM) in a regular graph $G=(V,E)\colon$

- 1. Picks a random vertex $a \in V$ to start at
- 2. Takes a step along a random edge of current vertex
- 3. Decides to stop with probability 1/t. Otherwise step 2
- 4. Names the final vertex b.

Definition

An ''One or More Random Walk'' (OoM) in a regular graph $G=(V,E)\colon$

- 1. Picks a random vertex $a \in V$ to start at
- 2. Takes a step along a random edge of current vertex
- 3. Decides to stop with probability 1/t. Otherwise step 2
- 4. Names the final vertex b.

Definition

A ``Zero or More Random Walk'' (ZoM) in a regular graph G=(V,E), starting from a vertex $v\colon$

- 1. Stop with probability 1/t
- 2. Take a step along a random edge of current vertex
- 3. Go to step 1

[5. GAP AMPLIFICATION]\$ _ [38/64]

>>> Graph Powering $G^\prime = G^{(t)}$

* V' = V

[5. GAP AMPLIFICATION] \$ _

>>> Graph Powering $G^\prime = G^{(t)}$

- * V' = V
- * $(a,b) \in E'$ correspond to walks in G of $\mathrm{dist}_G(a,b) pprox t$

- >>> Graph Powering $G^\prime=G^{(t)}$
 - * V' = V
 - * $(a,b) \in E'$ correspond to walks in G of $\operatorname{dist}_G(a,b) \approx t$
 - $\overline{\Sigma'} = \overline{\Sigma^{1+d+d^2+..+d^t}}$
 - * upper bound on the number of vertices at distance at most t from a given vertex in d-regular graph G

- >>> Graph Powering $G^\prime = G^{(t)}$
 - *V' = V
 - * $(a,b) \in E'$ correspond to walks in G of $\mathrm{dist}_G(a,b) \approx t$
 - * $\Sigma' = \Sigma^{1+d+d^2+..+d^t}$
 - * upper bound on the number of vertices at distance at most t from a given vertex in d-regular graph G
 - * $\sigma': V' \to \Sigma'$ (each vertex is mapped to a string)
 - * a has an opinion $(\sigma'(a)_b \in \Sigma)$ on the value for each $b \in V_{t\text{-neighbourhood }a}$ in its string
 - * σ' hereafter is optimal assignment for G'

- >>> Graph Powering $G^\prime = G^{(t)}$
 - $\overline{*}V' = V$
 - * $(a,b) \in E'$ correspond to walks in G of $\mathrm{dist}_G(a,b) \approx t$
 - * $\Sigma' = \Sigma^{1+d+d^2+..+d^t}$
 - * upper bound on the number of vertices at distance at most t from a given vertex in d-regular graph G
 - * $\sigma': V' \to \Sigma'$ (each vertex is mapped to a string)
 - * a has an opinion $(\sigma'(a)_b \in \Sigma)$ on the value for each $b \in V_{t\text{-neighbourhood }a}$ in its string
 - * σ' hereafter is optimal assignment for G'

$$* \mathcal{C}'(a,b) \begin{cases} (\sigma'(a)_u, \sigma'(b)_v) \in \mathcal{C} & \forall (u,v) \in E_{\mathtt{walk}(a,b)} \\ \sigma'(a)_v = \sigma'(b)_v \in \mathcal{C} & \forall v \in V_{\mathtt{walk}(a,b)} \end{cases}$$

- >>> Graph Powering $G^\prime = G^{(t)}$
 - *V'=V
 - * $(a,b) \in E'$ correspond to walks in G of $\mathrm{dist}_G(a,b) pprox t$
 - * $\Sigma' = \Sigma^{1+d+d^2+..+d^t}$
 - * upper bound on the number of vertices at distance at most t from a given vertex in d-regular graph G
 - * $\sigma': V' \to \Sigma'$ (each vertex is mapped to a string)
 - * a has an opinion $(\sigma'(a)_b \in \Sigma)$ on the value for each $b \in V_{t\text{-neighbourhood }a}$ in its string
 - * σ' hereafter is optimal assignment for G'

*
$$\mathcal{C}'(a,b)$$

$$\begin{cases} (\sigma'(a)_u, \sigma'(b)_v) \in \mathcal{C} & \forall (u,v) \in E_{\mathtt{walk}(a,b)} \\ \sigma'(a)_v = \sigma'(b)_v \in \mathcal{C} & \forall v \in V_{\mathtt{walk}(a,b)} \end{cases}$$

*
$$\sigma(v) \doteq \max_{a \in \Sigma} \{ \mathbb{P}[\text{ZoM } v \to w \text{ s.t. } \sigma'(w)_v = a \mid \text{stops} \leq t \text{ steps}] \}$$

>>> How do we generate Edges?

Perform the following Random Process/Verifier

- 1. Perform a One or More Random Walk (OoM)
- 2. Denote the start vertex by a and the end vertex by b
- 3. For each $u \rightarrow v$ in path from a to b
 - * Reject if $\mathrm{dist}_G(u,a) \leq t$ and $\mathrm{dist}_G(v,b) \leq t$ and $(\sigma'(a)_u,\sigma'(b)_v) \not\in \mathcal{C}(u,v)$
 - * Accept o.w.

>>> How do we generate Edges?

BAD SIDE EFFECTS:

- * $|E'| = \Omega(|E|^2)$
- * produce a probability distribution over all possible edges making the resulting graph a weighted constraint graph with possible parallel edges

>>> How do we generate Edges?

BAD SIDE EFFECTS:

- * $|E'| = \Omega(|E|^2)$
- * produce a probability distribution over all possible edges making the resulting graph a weighted constraint graph with possible parallel edges

FIX:

- * throws away any $(a o b) \in E'$ if $\mathrm{dist}_G(a,b) > 10\log(|\Sigma|)t \doteq B$.
 - * Why can we throw these edges? Verifier always Accepts them.
 - * Effect? reduce graph size and gap $\uparrow pprox rac{|F'|}{|E'|\downarrow}$
- replace each weighted edge with multiple parallel edges appropriately
 - * Effect? back to an unweighted constraint graph

Within the verifier's OoM random walk, we say a particular step $u \to v$ is faulty if:

- 1. $(u o v) \in F$ (recall $F \subseteq E$ is the edges failing $\mathcal C$)
- 2. $\operatorname{dist}_G(u \to a) \leq t$ and $\sigma'(a)_u = \sigma(u)$
- 3. $\operatorname{dist}_G(v \to b) \leq t$ and $\sigma'(b)_v = \sigma(v)$

Within the verifier's OoM random walk, we say a particular step u o v is faulty if:

- 1. $(u \to v) \in F$ (recall $F \subseteq E$ is the edges failing \mathcal{C})
- 2. $\operatorname{dist}_G(u \to a) \leq t$ and $\sigma'(a)_u = \sigma(u)$
- 3. $\operatorname{dist}_G(v \to b) \leq t$ and $\sigma'(b)_v = \sigma(v)$

Definition (# Faulty Steps)

Let N be the r.v. counting the number of faulty steps. If N>0, the verifier rejects

$$\mathbb{P}[N>0]$$
 is large \implies GAP' large

A step $u \to v$ is faulty* if (1) it is faulty, and (2) $\mathrm{dist}_G(a,b) \leq B$

A step $u \to v$ is faulty* if (1) it is faulty, and (2) $\mathrm{dist}_G(a,b) \leq B$

Definition (# Faulty* Steps)

Let N^* be a r.v. denoting the number of faulty* steps in the $a \to b$ walk.

A step $u \to v$ is faulty* if (1) it is faulty, and (2) $\mathrm{dist}_G(a,b) \leq B$

Definition (# Faulty* Steps)

Let N^* be a r.v. denoting the number of faulty* steps in the $a \to b$ walk.

Definition (# Violating Steps)

Let N_F be a r.v. denoting the number of steps $\in F$

A step $u \to v$ is faulty* if (1) it is faulty, and (2) $\mathrm{dist}_G(a,b) \leq B$

Definition (# Faulty* Steps)

Let N^* be a r.v. denoting the number of faulty* steps in the $a \to b$ walk.

Definition (# Violating Steps)

Let N_F be a r.v. denoting the number of steps $\in F$

Definition (# Steps)

Let L be a r.v. denoting the number of steps the $a \to b$ walk.

Lemma

For any non-negative r.v. N, $\mathbb{P}[N>0] \geq \frac{\mathbb{E}[N]^2}{\mathbb{E}[N^2]}$

We need to show that $GAP' \geq \frac{t}{O(1)} \cdot \frac{|F|}{|E|}$

Proof.

Using Cauchy-Schwarz

$$\mathbb{E}[N] = \mathbb{E}[N \cdot \mathbb{1}[N > 0]] \le \sqrt{\mathbb{E}[N^2]} \sqrt{\mathbb{E}[\mathbb{1}[N > 0]]^2} = \sqrt{\mathbb{E}[N^2]} \sqrt{\mathbb{P}[N > 0]}$$

Lemma For any non-negative r.v. N, $\mathbb{P}[N>0] \geq \frac{\mathbb{E}[N]^2}{\mathbb{E}[N^2]}$

Proof. Using Cauchy-Schwarz

We need to show that $GAP' \geq \frac{t}{O(1)} \cdot \frac{|F|}{|F|}$

$$\mathbb{E}[N] = \mathbb{E}[N \cdot \mathbb{1}[N > 0]] \le \sqrt{\mathbb{E}[N^2]} \sqrt{\mathbb{E}[\mathbb{1}[N > 0]]^2} = \sqrt{\mathbb{E}[N^2]} \sqrt{\mathbb{P}[N > 0]}$$

$\mathbb{E}[N] \geq \frac{t}{4|\Sigma|^2} \cdot \frac{|F|}{|E|}$

Lemma

Lemma
$$\mathbb{E}[N^*] \geq \frac{t}{8|\Sigma|^2} \cdot \frac{|F|}{|E|}$$

Lemma

 $\mathbb{E}[N^{*2}] \le O(1) \cdot t \cdot \frac{|F|}{|F|}$

Lemma

Let (u,v) be a fixed edge in the regular graph G=(V,E). Do a DoM in G, conditioned on making exactly k $u \to v$ steps. Then:

- * The distribution on the final vertex b is the same as if we did a ZoM starting from v.
- * The distribution on the initial vertex a is same as if we did an ZoM starting from u.
- * a and b are independent.

Lemma

$$\mathbb{E}[N] \ge \frac{t}{4|\Sigma|^2} \cdot \frac{|F|}{|E|}$$

Proof.

$$\mathbb{E}[N_{u \to v}] = \sum_{k \ge 1} \mathbb{E}[N_{u \to v} \mid \text{ exactly } k \mid u \to v \text{ steps}]$$

$$\times \mathbb{P}[\text{exactly } k \mid u \to v \text{ steps}]$$

$$= \sum_{k \ge 1} k \cdot \mathbb{P}[u \to v \text{ is faulty } | \text{ exactly } k \mid u \to v \text{ steps}]$$

$$\times \mathbb{P}[\text{exactly } k \mid u \to v \text{ steps}]$$

$$(1)$$

Lemma $\mathbb{E}[N] \geq \frac{t}{4|\Sigma|^2} \cdot \frac{|F|}{|E|}$

Proof.

$$imes \mathbb{P}[ext{exactly } k \ u o v \ ext{steps}]$$
 (2) $= \sum_{k \geq 1} k \cdot \mathbb{P}[u o v \ ext{is faulty} \ | \ ext{exactly } k \ u o v \ ext{steps}]$ (3)

(1)

(2)

(4)

 $\mathbb{E}[N_{u o v}] = \sum \mathbb{E}[N_{u o v} \mid ext{exactly } k \ u o v ext{ steps}]$

 $\times \mathbb{P}[\texttt{exactly} \ k \ u \rightarrow v \ \texttt{steps}]$

$$\mathbb{P}[u o v \text{ is faulty } | \text{ exactly } k \ u o v \text{ steps}]$$
 (5)

$$\mathbb{P}[u o v \; ext{is faulty} \; | \; ext{exactly} \; k \; u o v \; ext{steps}]$$

$$u
ightarrow v$$
 is faulty \mid exactly k $u
ightarrow v$ steps \mid

 $=\left(\mathbb{P}[exttt{dist}_G(w o a) \leq t \mid exttt{and} \mid \sigma'(w)_u = \sigma(u)]
ight)^2$

Lemma

 $\mathbb{E}[N^*] \ge \tfrac{t}{8|\Sigma|^2} \cdot \tfrac{|F|}{|E|}$

Proof.

Using $\mathbb{E}[N] \geq rac{t}{4|\Sigma|^2} \cdot rac{|F|}{|E|}$

Lemma

Let G be an (n,d,λ) -expander and $F\subset E(G)=E$, then the probability that a random walk, starting in the zeroth step from a random edge in F, passes through F on its $t^{\rm th}$ step, is bounded by

$$\frac{|F|}{|E|} + \left(\frac{\lambda}{d}\right)^{t-1}$$

ENGLISH: Vertices from a Random Walk in an Expander are as if picked Independently from \boldsymbol{V} .

Lemma $\mathbb{E}[N^{*2}] \le O(1) \cdot t \cdot \frac{|F|}{|F|}$

Proof.

Let $N_F = \sum_{i=1}^{\infty} \mathbb{1}[i^{\text{th}} \text{ step in } F] = \sum_{i=1}^{\infty} \zeta_i$.

$$\infty$$
 ∞

$$\mathbb{E}[N^{*2}] \leq \mathbb{E}[N_{E}^{2}] = \sum_{i=1}^{\infty} \, \mathbb{E}[\zeta_{i} \cdot \zeta_{i}] \leq 2 \sum_{i=1}^{\infty} \mathbb{P}[\zeta_{i}]$$

 $\mathbb{E}[N^{*2}] \le \mathbb{E}[N_F^2] = \sum \mathbb{E}[\zeta_i \cdot \zeta_j] \le 2 \sum \mathbb{P}[\zeta_i = 1] \cdot \sum \mathbb{P}[\zeta_j = 1 \mid \zeta_i = 1]$

(7)

 $\mathbb{P}[\zeta_i = 1 \mid \zeta_i = 1]$ (8)

 $=\mathbb{P}[$ the walk is j-i steps more]

 $\mathbb{E}[\mathsf{a} \ \mathsf{walk} \ \mathsf{from} \ \mathsf{random} \ \mathsf{vertex} \in F \ \mathsf{takes} \ (j-i)^{\mathsf{th}} \ \mathsf{step} \ \mathsf{in} \ F]$

$$imes$$
 [a walk from random vertex $\in T$ takes $(f-t)$ step in .

$$\leq (1 - 1/t)^{j-i} \left(\frac{|F|}{|E|} + \left(\frac{\lambda}{d}\right)^{j-i-1} \right) \tag{11}$$

[5. GAP AMPLIFICATION] \$ _

(9)

ALPHABET REDUCTION / COMPOSITION

>>> Alphabet Reduction

* The amplification step does a great job of increasing the gap

[6. ALPHABET REDUCTION]\$ _ [51/64]

>>> Alphabet Reduction

- * The amplification step does a great job of increasing the gap
- * ... at the cost of blowing up the assignment alphabet superexponentially

[6. ALPHABET REDUCTION]\$ _ [51/64]

- * The amplification step does a great job of increasing the gap
- * ... at the cost of blowing up the assignment alphabet superexponentially
- * We must construct a method of constraining the assignment alphabet. This is called the Alphabet Reduction/Composition step.

- >>> Assignment Tester: Motivation
 - * Ultimately, we want to transform a constraint graph output by the amplification step into a new constraint graph on a fixed-size alphabet Σ_0 .

>>> Assignment Tester: Motivation

- * Ultimately, we want to transform a constraint graph output by the amplification step into a new constraint graph on a fixed-size alphabet Σ_0 .
- * Due to the recursive nature of the overall gap amplification procedure, individual constraints are aggregated iteratively with an alphabet reduction step after each iteration

>>> Assignment Tester: Motivation

- * Ultimately, we want to transform a constraint graph output by the amplification step into a new constraint graph on a fixed-size alphabet Σ_0 .
- * Due to the recursive nature of the overall gap amplification procedure, individual constraints are aggregated iteratively with an alphabet reduction step after each iteration
- * We can therefore condition on the satisfiability of constraints in previous iterations to encode the satisfiability of the next constraints in a fixed alphabet. However, we must maintain two guarantees:

>>> Assignment Tester: Motivation

- * Ultimately, we want to transform a constraint graph output by the amplification step into a new constraint graph on a fixed-size alphabet Σ_0 .
- * Due to the recursive nature of the overall gap amplification procedure, individual constraints are aggregated iteratively with an alphabet reduction step after each iteration
- * We can therefore condition on the satisfiability of constraints in previous iterations to encode the satisfiability of the next constraints in a fixed alphabet. However, we must maintain two guarantees:
 - 1. Completeness: If the constraint graph originally had an unsat value of 0, the alphabet reduction step must output a constraint graph with unsat value 0.
 - 2. Soundness: If the constraint graph was not originally satisfiable and had gap g, the constraint graph output by the alphabet reduction step has gap ϵg for some $\epsilon>0$.

>>> Assignment Tester: It's not so simple

- * Unfortunately, these guarantees are not enough.
- * The issue: the satisfiability of constraints individually does not imply the satisfiability of constraints simultaneously.

>>> Assignment Tester: The definition

Definition (Assignment Tester)

An Assignment Tester with alphabet Σ_0 and rejection probability $\epsilon>0$ is an algorithm $\mathcal P$ whose input is a circuit Φ over Boolean variables X, and whose output is a constraint graph $G=\langle (V,E),\Sigma_0,\mathcal C\rangle$ such that $V\supset X$, and such that the following hold. Let $V'\triangleq V\setminus X$ and let $a:X\to\{0,1\}$ be an assignment.

- * Completeness: If $a\in\mathsf{SAT}(\Phi)$, there exists $b:V'\to\Sigma_0$ such that $\mathsf{UNSAT}_{a\cup b}(G)=0$.
- * Soundness: If $a \not\in \mathsf{SAT}(\Phi)$, then for all $b: V' \to \Sigma_0$, UNSAT $_{a \cup b}(G) \ge \epsilon r_d(a, \mathsf{SAT}(\Phi))$.
- where $r_d:\{0,1\}^n \times \{0,1\}^n \to \mathbf{R}_{\geq 0}: (x,y) \mapsto \frac{1}{n} d_{\mathtt{Hamming}}(x,y)$, and $d_{\mathtt{Hamming}}$ denotes the Hamming distance, which trivially satisfies the properties of a metric.

>>> Assignment Tester: What's the damage?

* Good news: Assignment Testers exist

>>> Assignment Tester: What's the damage?

- * Good news: Assignment Testers exist
- * Ambiguous news: Assignment Testers increase the number of constraints, thereby increasing the constraint graph size

>>> Assignment Tester: What's the damage?

- * Good news: Assignment Testers exist
- * Ambiguous news: Assignment Testers increase the number of constraints, thereby increasing the constraint graph size
- * Best news: It's not so bad. We know that the alphabet size of the constraint graph at the beginning of each alphabet reduction step is either some initial arbitrary alphabet Σ or the fixed size ``target" alphabet Σ_0 . But, $|\Sigma|, |\Sigma_0| \in O(1)$! Therefore, the size of the constraint graph constructed for each constraint is some function $c(\mathcal{P}, |\Sigma|)$, where \mathcal{P} is the assignment tester. Note, neither \mathcal{P} or $|\Sigma|$ depend on the size of the graph!

* So far we've discussed how constraints are transformed into constraint graphs over a fixed alphabet Σ_0 , using an assignment tester \mathcal{P} .

- * So far we've discussed how constraints are transformed into constraint graphs over a fixed alphabet Σ_0 , using an assignment tester \mathcal{P} .
- * Now we turn to the problem of using these assignment testers to transform the entire constraint graph into a new one, over alphabet Σ_0 . This is called *composition*.

- * So far we've discussed how constraints are transformed into constraint graphs over a fixed alphabet Σ_0 , using an assignment tester \mathcal{P} .
- * Now we turn to the problem of using these assignment testers to transform the entire constraint graph into a new one, over alphabet Σ_0 . This is called *composition*.
- * Before we begin, we state a few definitions concerning error-correcting codes:

Definition (Linear Dimension)

An error correcting code Enc: $\Sigma \to \{0,1\}^\ell$ is said to have linear dimension if $\ell \in O(\log_2 |\Sigma|)$.

- * So far we've discussed how constraints are transformed into constraint graphs over a fixed alphabet Σ_0 , using an assignment tester \mathcal{P} .
- * Now we turn to the problem of using these assignment testers to transform the entire constraint graph into a new one, over alphabet Σ_0 . This is called *composition*.
- * Before we begin, we state a few definitions concerning error-correcting codes:

Definition (Linear Dimension)

An error correcting code Enc: $\Sigma \to \{0,1\}^\ell$ is said to have linear dimension if $\ell \in O(\log_2 |\Sigma|)$.

Definition (Relative Distance)

An error correcting code $\operatorname{Enc}:\Sigma \to \{0,1\}^\ell$ is said to have relative distance ρ if for every $a_1,a_2\in\Sigma$ with $a_1\neq a_2$, $d_{\operatorname{Hamming}}(\operatorname{Enc}(a_1),\operatorname{Enc}(a_2))\geq \rho\ell$ (or equivalently, $d_r(\operatorname{Enc}(a_1),\operatorname{Enc}(a_2))\geq \rho$).

>>> Composition: Step 1 -- Robustization

- $f{*}$ Input: Constraint graph G
- * Given an error correcting code Enc with
 - 1. Linear dimension, ℓ
 - 2. Relative distance $\rho > 0$

>>> Composition: Step 1 -- Robustization

- * Input: Constraint graph G
- * Given an error correcting code Enc with
 - 1. Linear dimension, ℓ
 - 2. Relative distance $\rho>0$
- * Output: For each constraint in $\mathcal C$, a circuit on $2\ell \in O(1)$ variables as shown on the left.

>>> Composition: Step 2 -- Constraint graph composition

- * Input: Boolean circuits Φ_{α_i} for each constraint $\alpha_i \in \mathcal{C}$, produced by the robustization
- * Given an Assignment Tester ${\cal P}$

>>> Composition: Step 2 -- Constraint graph composition

- * Input: Boolean circuits Φ_{α_i} for each constraint $\alpha_i \in \mathcal{C}$, produced by the robustization
- * Given an Assignment Tester ${\cal P}$
- * Output: The Σ_0 -alphabet constraint graph encoding the original input constraint graph, written $G\circ \mathcal{P}$

>>> Alphabet Reduction Lemma

Given the following:

1. A constraint graph $G = \langle (V,E), \Sigma, \mathcal{C} \rangle$

>>> Alphabet Reduction Lemma

Given the following:

- 1. A constraint graph $G = \langle (V, E), \Sigma, \mathcal{C} \rangle$
- 2. An Assignment Tester ${\mathcal P}$ with a target fixed-size alphabet Σ_0

>>> Alphabet Reduction Lemma

Given the following:

- 1. A constraint graph $G = \langle (V, E), \Sigma, \mathcal{C} \rangle$
- 2. An Assignment Tester ${\mathcal P}$ with a target fixed-size alphabet Σ_0

There exists $\beta_3 \in O(1) > 0$ such that

- * β_3 UNSAT $(G) \leq$ UNSAT $(G \circ \mathcal{P}) \leq$ UNSAT(G)
- * $G\circ \mathcal{P}$ can be computed in O(|G|) time, and $|G\circ \mathcal{P}|\in O(|G|)$

>>> Alphabet Reduction Lemma: Proof of complexity

- * Each circuit Φ_{lpha_i} is over 2ℓ nodes. Therefore, the circuits are simulated in $2^{O(2\ell)}$ time.
- * However, ℓ is constant, so the circuit are simulated in constant time.

>>> Alphabet Reduction Lemma: Proof of complexity

- * Each circuit Φ_{α_i} is over 2ℓ nodes. Therefore, the circuits are simulated in $2^{O(2\ell)}$ time.
- * However, ℓ is constant, so the circuit are simulated in constant time.
- * As explained earlier, the size of each constraint graph G_{α_i} is $c(\mathcal{P}, |\Sigma|) \in O(1)$. Therefore, the size of $G \circ \mathcal{P}$ is $c(\mathcal{P}, |\Sigma|)|G| \in O(|G|)$.

>>> Alphabet Reduction Lemma: Proof of complexity

- * Each circuit Φ_{α_i} is over 2ℓ nodes. Therefore, the circuits are simulated in $2^{O(2\ell)}$ time.
- * However, ℓ is constant, so the circuit are simulated in constant time.
- * As explained earlier, the size of each constraint graph G_{α_i} is $c(\mathcal{P}, |\Sigma|) \in O(1)$. Therefore, the size of $G \circ \mathcal{P}$ is $c(\mathcal{P}, |\Sigma|)|G| \in O(|G|)$.
- * Likewise, union linearly-many constraint graphs (since $|G\circ\mathcal{P}|\in O(|G|)$), so the overall time complexity is O(|G|).

We will now prove that $\mathtt{UNSAT}(G \circ \mathcal{P}) \leq \mathtt{UNSAT}(G)$.

- * Let $\sigma:V\to \Sigma$ be an optimal assignment for G, such that ${\tt UNSAT}_\sigma(G)={\tt UNSAT}(G)$
- * We define an assignment $\sigma':V'\to\Sigma_0$ on the variables of $G\circ\mathcal{P}$ such that $\sigma'([v])=\mathsf{Enc}(\sigma(v))\in\{0,1\}^\ell$.

We will now prove that $\mathtt{UNSAT}(G \circ \mathcal{P}) \leq \mathtt{UNSAT}(G)$.

- * Let $\sigma:V\to \Sigma$ be an optimal assignment for G , such that ${\tt UNSAT}_\sigma(G)={\tt UNSAT}(G)$
- * We define an assignment $\sigma':V'\to \Sigma_0$ on the variables of $G\circ \mathcal P$ such that $\sigma'([v])=\mathsf{Enc}(\sigma(v))\in\{0,1\}^\ell$.
- * Since $[v] \cup [w] \subset V_{(v,w)}$, it remains to define the assignment σ' on $\cup_{e=(v,w)\in E}(V_e\setminus ([v]\cup [w]))\triangleq B$.

We will now prove that $\mathtt{UNSAT}(G \circ \mathcal{P}) \leq \mathtt{UNSAT}(G)$.

- * Let $\sigma:V\to \Sigma$ be an optimal assignment for G , such that ${\tt UNSAT}_\sigma(G)={\tt UNSAT}(G)$
- * We define an assignment $\sigma':V'\to \Sigma_0$ on the variables of $G\circ \mathcal P$ such that $\sigma'([v])=\mathsf{Enc}(\sigma(v))\in\{0,1\}^\ell$.
- * Since $[v] \cup [w] \subset V_{(v,w)}$, it remains to define the assignment σ' on $\cup_{e=(v,w)\in E}(V_e\setminus ([v]\cup [w])) \triangleq B$.
- * If σ satisfies a constraint $c(e) \in \mathcal{C}$ for some edge e = (v, w),
 - * \Longrightarrow there must be a satisfying assignment over $V_e\setminus ([v]\cup [w])$ for all constraints in G_e by the completeness of $\mathcal P$

We will now prove that $\mathtt{UNSAT}(G \circ \mathcal{P}) \leq \mathtt{UNSAT}(G)$.

- * Let $\sigma:V\to \Sigma$ be an optimal assignment for G , such that ${\tt UNSAT}_\sigma(G)={\tt UNSAT}(G)$
- * We define an assignment $\sigma':V'\to \Sigma_0$ on the variables of $G\circ \mathcal P$ such that $\sigma'([v])=\mathsf{Enc}(\sigma(v))\in\{0,1\}^\ell$.
- * Since $[v] \cup [w] \subset V_{(v,w)}$, it remains to define the assignment σ' on $\cup_{e=(v,w)\in E}(V_e\setminus([v]\cup[w])) \triangleq B$.
- * If σ satisfies a constraint $c(e) \in \mathcal{C}$ for some edge e = (v,w) ,
 - * \Longrightarrow there must be a satisfying assignment over $V_e\setminus ([v]\cup [w])$ for all constraints in G_e by the completeness of $\mathcal P$
- * Else,
 - * We define σ' over these inputs arbitrarily. Then, ${\tt UNSAT}_{\sigma'}(G') \leq {\tt UNSAT}_{\sigma}(G)$.

We will now prove that $\mathtt{UNSAT}(G \circ \mathcal{P}) \leq \mathtt{UNSAT}(G)$.

- * Let $\sigma:V\to \Sigma$ be an optimal assignment for G , such that ${\tt UNSAT}_\sigma(G)={\tt UNSAT}(G)$
- * We define an assignment $\sigma':V'\to \Sigma_0$ on the variables of $G\circ \mathcal{P}$ such that $\sigma'([v])=\mathsf{Enc}(\sigma(v))\in\{0,1\}^\ell$.
- * Since $[v] \cup [w] \subset V_{(v,w)}$, it remains to define the assignment σ' on $\cup_{e=(v,w)\in E}(V_e\setminus ([v]\cup [w])) \triangleq B$.
- * If σ satisfies a constraint $c(e) \in \mathcal{C}$ for some edge e = (v,w) ,
 - * \Longrightarrow there must be a satisfying assignment over $V_e\setminus ([v]\cup [w])$ for all constraints in G_e by the completeness of $\mathcal P$
- * Else,
 - * We define σ' over these inputs arbitrarily. Then, ${\tt UNSAT}_{\sigma'}(G') \leq {\tt UNSAT}_{\sigma}(G)$.

So, we have shown that

$$\mathtt{UNSAT}(G') = \min_{\tilde{\sigma}'} \mathtt{UNSAT}_{\tilde{\sigma}'}(G') \leq \mathtt{UNSAT}_{\sigma'}(G') \leq \mathtt{UNSAT}_{\sigma}(G) = \mathtt{UNSAT}(G)$$

It remains to show that $\beta_3 \mathrm{UNSAT}(G) \leq \mathrm{UNSAT}(G \circ \mathcal{P})$ for some $\beta_3 > 0$.

* Let $\sigma':V' o \Sigma_0$ be an optimal assignment for $G'=G\circ \mathcal{P}$.

It remains to show that $\beta_3 {\tt UNSAT}(G) \leq {\tt UNSAT}(G \circ \mathcal{P})$ for some $\beta_3 > 0$.

- * Let $\sigma':V'\to \Sigma_0$ be an optimal assignment for $G'=G\circ \mathcal{P}$.
- * From σ' we construct an assignment on G, $\sigma:V\to\Sigma$, such that $\sigma(v)=\min_{s\in\Sigma}d_r(\sigma'([v]),\operatorname{Enc}(s))$. Denote by F the set of edges whose constraints are falsified by σ .

It remains to show that $\beta_3 \text{UNSAT}(G) \leq \text{UNSAT}(G \circ \mathcal{P})$ for some $\beta_3 > 0$.

- * Let $\sigma':V' o \Sigma_0$ be an optimal assignment for $G'=G\circ \mathcal{P}$.
- * From σ' we construct an assignment on G, $\sigma:V\to\Sigma$, such that $\sigma(v)=\min_{s\in\Sigma}d_r(\sigma'([v]),\mathsf{Enc}(s))$. Denote by F the set of edges whose constraints are falsified by σ .
- * For $(v,w)\in F$, c((v,w)) is falsified by σ , so the restriction of σ' to $[v]\cup [w]$ must be the closest assignment to $\mathsf{SAT}(\tilde{c}((v,w)))$ by the construction of σ .

It remains to show that $\beta_3 \mathrm{UNSAT}(G) \leq \mathrm{UNSAT}(G \circ \mathcal{P})$ for some $\beta_3 > 0$.

- * Let $\sigma':V'\to \Sigma_0$ be an optimal assignment for $G'=G\circ \mathcal{P}$.
- * From σ' we construct an assignment on G, $\sigma:V\to\Sigma$, such that $\sigma(v)=\min_{s\in\Sigma}d_r(\sigma'([v]),\mathsf{Enc}(s))$. Denote by F the set of edges whose constraints are falsified by σ .
- * For $(v,w)\in F$, c((v,w)) is falsified by σ , so the restriction of σ' to $[v]\cup [w]$ must be the closest assignment to $\mathsf{SAT}(\tilde{c}((v,w)))$ by the construction of σ .
- * However, since Enc has relative distance $\rho>0$, we must change up to a fraction $\rho/2$ of the bits in [v] or [w] (if not both) to satisfy c((v,w)).
 - * $\Longrightarrow d_r(\sigma'|_{[v]\cup[w]}, \mathsf{SAT}(\tilde{c}(e))) \geq \frac{1}{2}\frac{\rho}{2} = \frac{\rho}{4}$

Recall that ${\mathcal P}$ satisfies the soundness probability, with

>>> Alphabet Reduction Lemma: Proof of inequality (LHS) Pt. 2

$$\begin{aligned} \mathtt{UNSAT}(G') &= \mathtt{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \mathtt{UNSAT}_{\sigma'|_{V_e}}(G_e) \end{aligned}$$

rejection probability ϵ .

>>> Alphabet Reduction Lemma: Proof of inequality (LHS) Pt. 2 Recall that $\mathcal P$ satisfies the soundness probability, with

rejection probability $\epsilon.$

$$\begin{split} \mathtt{UNSAT}(G') &= \mathtt{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \mathtt{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in E} \mathtt{UNSAT}_{\sigma'|_{V_e}}(G_e) \end{split}$$

Recall that ${\mathcal P}$ satisfies the soundness probability, with rejection probability $\epsilon.$

$$\begin{split} \text{UNSAT}(G') &= \text{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \text{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \text{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \epsilon \frac{\rho}{4} \quad \text{By Soundness} \end{split}$$

[6. ALPHABET REDUCTION]\$ _

Recall that ${\mathcal P}$ satisfies the soundness probability, with rejection probability $\epsilon.$

$$\begin{split} \text{UNSAT}(G') &= \text{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \text{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \text{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \epsilon \frac{\rho}{4} \qquad \text{By Soundness} \\ &= \epsilon \frac{\rho}{4} \frac{|F|}{|E|} \end{split}$$

Recall that ${\mathcal P}$ satisfies the soundness probability, with rejection probability $\epsilon.$

$$\begin{aligned} \mathtt{UNSAT}(G') &= \mathtt{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \mathtt{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \mathtt{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \epsilon \frac{\rho}{4} \qquad \qquad \mathtt{By Soundness} \\ &= \epsilon \frac{\rho}{4} \frac{|F|}{|E|} \\ &= \beta_3 \mathtt{unsat}_{\sigma}(G) \end{aligned}$$

>>> Alphabet Reduction Lemma: Proof of inequality (LHS) Pt. 2 Recall that ${\cal P}$ satisfies the soundness probability, with

$$\begin{aligned} \operatorname{UNSAT}(G') &= \operatorname{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \operatorname{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \operatorname{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \epsilon \frac{\rho}{4} \qquad \text{By Soundness} \\ &= \epsilon \frac{\rho}{4} \frac{|F|}{|E|} \\ &= \beta_3 \mathrm{unsat}_{\sigma}(G) \\ &\geq \beta_3 \min_{\tilde{\sigma}} \mathrm{unsat}_{\tilde{\sigma}}(G) \\ &= \beta_3 \mathrm{unsat}_{\sigma}(G) \end{aligned}$$

rejection probability ϵ .

>>> Alphabet Reduction Lemma: Proof of inequality (LHS) Pt. 2 Recall that ${\cal P}$ satisfies the soundness probability, with

$$\begin{aligned} \operatorname{UNSAT}(G') &= \operatorname{UNSAT}_{\sigma'}(G') \\ &= \frac{1}{|E|} \sum_{e \in E} \operatorname{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \operatorname{UNSAT}_{\sigma'|_{V_e}}(G_e) \\ &\geq \frac{1}{|E|} \sum_{e \in F} \epsilon \frac{\rho}{4} \qquad \text{By Soundness} \\ &= \epsilon \frac{\rho}{4} \frac{|F|}{|E|} \\ &= \beta_3 \mathrm{unsat}_{\sigma}(G) \\ &\geq \beta_3 \min_{\tilde{\sigma}} \mathrm{unsat}_{\tilde{\sigma}}(G) \\ &= \beta_3 \mathrm{unsat}_{\sigma}(G) \end{aligned}$$

rejection probability ϵ .

THANK YOU FOR LISTENING! WE HOPE IT WAS FUN

HAPPY TO ANSWER ANY QUESTIONS

[7. questions?]\$ _