Tratamento de problemas \mathcal{NP} -difíceis: GRASP

Flávio K. Miyazawa Eduardo C. Xavier

Instituto de Computação/Unicamp

29 de abril de 2011

GRASP

Greedy Randomized Adaptive Search Procedures

Duas fases:

- Algoritmo guloso × Construção aleatória
 - Construção aleatória
 - Soluções com alta variabilidade.
 - Baixa qualidade de soluções.
 - Algoritmo Guloso
 - Soluções de boa qualidade.
 - Baixa ou nenhuma variabilidade nas soluções.
 - GRASP: Explorar vantagens das duas estratégias.
- Busca Local
 - Aplicar busca local nas soluções da primeira fase.

GRASP

GRASP: Greedy Randomized Adaptive Search Procedures

- Insere aleatoriedade na geração das soluções gulosas.
 - ► Cada solução é formada por elementos/componentes.
 - Elementos/componentes são rankeados de acordo com valor acrescido na solução.
 - Elementos são inseridos de forma gulosa/aleatória para formar solução inicial.
- Para cada solução inicial, aplica método de busca local.
- Guardar a melhor solução encontrada durante sua execução.

GRASP

```
GRASP-Simplificado (* problema de minimização *) S \leftarrow \emptyset; S^* \leftarrow \emptyset; S^* \leftarrow \emptyset; Enquanto (não atingir critério de parada) faça S \leftarrow \text{Solução-Gulosa-Aleatória}(); S' \leftarrow \text{Busca-Local}(S); Se \text{custo}(S') < \text{custo}(S^*) = \text{então}(S^*) < S^* \leftarrow S' fim-enquanto Retornar S^*.
```

Possíveis implementações das subrotinas:

Condições de parada

- Número de iterações limitado a um valor máximo
- Quando atingir limite de tempo de CPU
- Quando melhor solução não for atualizada por certo número de iterações

Possíveis implementações das subrotinas:

```
\begin{array}{c} \textbf{Solução-Gulosa-Aleatória} \\ S \leftarrow \emptyset \\ \textbf{Enquanto} \ S \ \text{não} \ \text{\'e solução vi\'avel faça} \\ L \leftarrow \text{Construa-Lista-Restrita-de-Candidatos}(S) \\ e \leftarrow \text{Escolha-Gulosa-Aleatória}(L) \\ S \leftarrow \text{Insere-Novo-Elemento}(S,e) \\ \text{Devolva} \ S \end{array}
```

Construa-Lista-Restrita-de-Candidatos:

- A cada iteração temos uma solução parcial S.
- Seja f(S, e) valor da solução parcial S acrescida de elemento e.
- Seja $E = (e_1, \dots, e_m)$ elementos/componentes que podem ser inseridos em S ordenados:

$$f_{\mathsf{min}} = f(S, e_1) \leq \ldots \leq f(S, e_m) = f_{\mathsf{max}}$$

Construa-Lista-Restrita-de-Candidatos (Minimização)

Por qualidade mínima

- **1** Seja $\alpha \in [0,1]$.

- Oevolva L

Pelos *k* melhores elementos:

- Seja k tamanho máximo para lista restrita de candidatos
- Devolva L

Escolha-Gulosa-Aleatória:

Possíveis algoritmos para Escolha-Gulosa-Aleatória (L):

• Seja a LRC, $L=(e_1,\ldots,e_k)$.

Escolha-Gulosa-Aleatória (L) (Minimização)

Uniforme

• Com probabilidade $\frac{1}{|L|}$, devolva $e \in L$.

- Ordem $bias(e_i) \leftarrow \frac{1}{i}$ para i = 1, ..., k (indicador de preferência).
 - Defina $p(e_i)$ probabilidade de obter e_i proporcional a

$$\frac{\mathsf{bias}(e_i)}{\sum_{i=1}^k \mathsf{bias}(e_i)}$$

• Com probabilidade $p(e_i)$, devolva $e \in L$.

Exemplo: TSP

- Lista de elementos E que compõem uma solução são arestas.
- Uma solução parcial S será composta por caminhos sem vértices em comum.
- Quando tivermos um único caminho sobre todos os vértices temos uma solução.
- Lista-Restrita-de-Candidatos
 - Elementos candidatos a serem inseridos em S são arestas que quando adicionadas a S garantem:
 - ★ Todos os vértices em S terão grau no máximo 2.
 - ★ Ou seja, são arestas que ligam vértices de grau ≤ 1 .
 - f(S, e) é o custo dos caminhos quando inserido e.

Idéia:

- Sejam S e T duas soluções boas.
- Suponha que fazemos movimentos que partem de S para T.

$$S = S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_k = T$$

 Possivelmente, neste caminho podemos obter soluções melhores que obtêm características boas de ambas soluções

Exemplo: CNF-SAT com pesos nas cláusulas.

- Duas soluções S e T compostas por atribuição 1/0 para variáveis (x_1, \ldots, x_n) .
- Diferença simétrica $\Delta(S, T)$ são variáveis com valores distintos em S e em T.
- ullet Podemos mudar uma variável por vez de S até solução ficar igual a T.

- Denote por $\Delta(S, T)$ a diferença simétrica de S e T
- S^e denota solução vizinha de S_j com transformação $e \in \Delta(S,T)$

```
\begin{array}{l} \textbf{Path-Relinking}(S,T) \\ S^* \leftarrow S \quad \text{(manter a melhor solução)} \\ S_0 \leftarrow S \\ j \leftarrow 1 \\ \textbf{Enquanto} \ j < |\Delta(S,T)| \ \textbf{faça} \\ S_j \leftarrow \text{ solução em}\{S^e : e \in \Delta(S_{j-1},T)\} \ \text{de custo} \\ \textbf{mínimo} \\ \textbf{Se} \ c(S_j) < c(S^*) \ \textbf{então} \ S^* \leftarrow S_j \\ j \leftarrow j+1 \\ \textbf{Devolva} \ S^* \end{array}
```


Forward Path Relinking: S é uma solução melhor que T Backward Path Relinking: S é uma solução pior que T

GRASP with Path Relinking - Minimização

- Manter um pool P das melhores soluções
- A cada iteração do GRASP (após computar S' da busca local):
 - Escolher uma solução T em P.
 - 2 Realizar Path-Relinking entre S' e T.
 - **3** Atualizar melhor solução S^* e pool caso necessário.

Ex.: MaxSat (Festa, Pardalos, Pitsoulis, Resende'06)

Comparação: GRASP × GRASP+Path Relinking: Probabilidade de se alcançar valor de uma solução pelo tempo

