Протоколи и протоколни архитектури

Протокол (1)

- Набор от правила
- Управляващи комуникацията
- Определящи:
 - -Какво се комуникира
 - -Как се комуникира
 - *Кога* се комуникира

Протокол (2)

- Използва се за комуникация между системи / мрежови възли (или между обекти в една и съща система)
 - Обектите трябва да `говорят` един и същ език
- Обекти
 - Софтуерни приложения/компоненти/агенти
 - Хардуерни устройства/модули
 - Фърмуер (firmware) софтуер, записан в хардуерно устройство.
- Системи / мрежови възли
 - Крайни възли (hosts)
 - Компютри, терминали, телефони, сензори и др.
 - Междинни възли
 - Повторители (repeaters), концентратори (hubs), модеми (modems), мостове (bridges), комутатори (switches), маршрутизатори (routers), шлюзове (gateways).
- Всеки протокол използва своя собствена протоколна единица за данни (Protocol Data Unit, PDU)

Протоколи: Основни елементи

- Синтаксис (РDU структура)
 - PDU формат
 - Нива на сигнала
- Семантика (значение на PDU полетата)
 - Контролна секция
 - Протоколна контролна информация
 - Адресна информация
 - Информация за борба с грешките
 - Информационна секция
 - Данни
- Синхронизация
 - Определяне последователността на обменяните PDU

Протоколи: Характеристики

- Директност / индиректност
- Монолитност / структурираност
- Симетричност / асиметричност
- Стандартност / нестандартност

Характеристики на протоколите: Директност / индиректност

- Директност
 - Системи имащи връзка тип `точка-точка`
 - Например, РС периферно устройство.
 - Системи имащи многоточкова връзка
 - Например, безжични локални мрежи (ad hoc WLAN).
 - Данните могат да се обменят без намесата на активен агент
- Индиректност
 - Комутируеми мрежи
 - Например, глобални мрежи (WAN), комутируеми локални мрежи (switched LAN).
 - Взаимносвързани мрежи (интернети)
 - Обменът на данни зависи от други (междинни) обекти

Характеристики на протоколите: Монолитност / структурираност

- Комуникацията е комплексна задача
- Твърде сложна за да бъде изпълнена от една единствена единица
- Структурираният дизайн позволява раздробяването на проблема на по-малки проблеми за по-лесно решаване
- Слоеста структура се предпочита
 - В този случай са необходими няколко протокола – поне един за всеки слой.

Характеристики на протоколите: Симетричност / асиметричност

- Симетричност
 - Комуникация между равностойни обекти
 - Например, интерфейсни карти за локални мрежи (LAN NIC)
- Асиметричност
 - Комуникация тип `господар/роб` (master/slave): например, Bluetooth.
 - Комуникация тип `клиент/сървър` (например, протоколи на приложния слой)

Характеристики на протоколите: Стандартност / нестандартност Нестандартните протоколи са за специфични цели и задачи (DI) Наличието на K подателя и L получателя води до K * L-○D2 протокола и 2 * K * Lреализации Ако се използва 1 общ (стандартен) протокол, ще са необходими ut standards: 12 different pro ards: 1 pro само K + L24 protocol implementation 7 implementation

Стандарти

- Защо са необходими стандарти?
 - За уникална спецификация
 - За <u>глобално еднообразие</u> и <u>оперативна</u> съвместимост (interoperability) между системите/оборудването
- Предимства
 - <u>По-голям пазар</u> за хардуер и софтуер
 - Продукти от различни проиводители могат да комуникират помежду си
- Недостатъци
 - Замразяване на технологиите
 - Може да съществуват няколко стандарта за едно и също нещо

Стандарти: Видове

Де юре

реализации

- Официални
- Одобрени от призната стандартизираща
- Може да има слабо възприемане от пазара • Например, OSI модела.

• Де факто

- Не са формално одобрени, но използвани.
- Възприети от пазара, но все още неофициални.

• Патентовани (частни)

- Принадлежащи на някого, който има пълен контрол над тях.

Отворени

- Спецификациите им са достъпни безплатно и са документирани с всички детайли

Стандарти: Организации (1)

- За патентовани стандарти / затворени системи
 - ECMA (European Computers Manufacturers Association)
 EIA (Electronic Industrials Association)
- За интерфейсни стандарти / системи от различни

- За международни стандарти / отворени системи

 ISO (International Organization for Standardization)

 Създадена през 1947 г.

 Многонационална организация, посветена на постигането на световно споразумение за международни стандарти. Почти 3/4 от страните са представени в ISO

 - ISO стандарт, който покрива всички аспекти на мрежовите комуникации е референтният модел за взаимно свързване на отворени системи (OSI) въведен в края на 1970.

Стандарти: Организации (2)

- Консорциуми/форуми: смес от фирми (промоция на продукти) и стандартизиращи органи (стандартизация в прогрес)
 - ІЕЕЕ 802.х формална стандартизираща група
 - Frame Relay Forum
 - ATM Forum
 - Universal Plug and Play (UPnP) Forum
 - Wireless World Research Forum (WWRF)
- За патентовани мрежи (на големите компании)
 - IBM/SNA, Digital/DECNET, Novell/Netware

Протоколна архитектура

- Комуникационна задача, разделена на слоеве.
- Всяка комуникационна система използва своя собствена слоеста протоколна архитектура
- За комуникация между обекти от един и същ слой се използват *протоколи*

Протоколи: Функции

- Капсулация и декапсулация (на протоколни единици за данни)
- Сегментация и десегментация
- Контрол на съединението
- Доставка в правилен ред
- Контрол на потока данни
- Контрол на грешките
- Адресация
- Мултиплексиране
- Услуги на пренасянето

Сегментация: предимства и недостатъци

• Предимства

- По-ефективен контрол на грешките
- По-справедлив достъп до мрежовата инфраструктура
- По-кратки закъснения
- По-малки буфери са необходими
- Могат да се използват контролни точки и точки за рестартиране/възобновяване

• Недостатъци

- Режийни разноски (overhead)
- Увеличаване броя на прекъсванията в приемника
- Увеличено време за обработка

Функции на протоколите: Контрол на съединението 3/4 фази: Protocol Entity Изграждане на съединението Трансфер на данни Разпадане на съединението Може да има също и прекъсване и <u>възстановяване</u> на съединението Поредни номера, използвани за: Доставка в правилен ред Контрол на потока Контрол на грешките

Функции на протоколите: Доставка в правилен ред

- Протоколните единици (PDU) могат да преминат през различни пътища през мрежата
- И, в резултат, да пристигнат в разбъркан ред
- Затова се номерират последователно по модул
 - modulo 2^N
 - N е размера на полето $Seq.\ No.\ ($ в заглавната част на PDU)
 - Номерата се повтарят циклично
 - Например, ако *N*=2, PDU се номерират 0, 1, 2, 3, 0, 1, ...
 - По-късно изпратена PDU с номер (1) може да пристигне преди по-рано изпратена PDU със същия номер (1)
 - Не е възможно да се различи стария номер 1 от новия номер 1

Функции на протоколите: Контрол на потока

- Извършва се от получателя
- С цел да ограничи постъпващия поток от данни
- 2 вида:
 - Старт-стопен (stop-and-wait)
 - Кредитен
 - Плъзгащ се прозорец (sliding window)

Функции на протоколите: Контрол на грешките

- Защита срещу загубени или повредени PDU
 - Най-вече за откриване на грешки
- Подател
 - Добавя служебни битове за контрол на грешките
- Получател
 - Проверява тези битове
 - Ако са ОК, потвърждава с положителна квитанция *АСК*.
 - Ако има грешка, бракува PDU.
 - (и може да изпрати обратно <u>отрицателна квитанция *NAK*</u>)
- Повторно предаване
 - Ако не се получи АСК в рамките на определен интервал от време (неявно, implicit)
 - Ако се получи NAK (явно, explicit)
- Извършва се от различни слоеве

Функции на протоколите: Адресация

- Ниво
- Обхват (scope)
- Тип
- Идентификатори на съединението (connection identifiers)
- Режим

Адресен обхват

• Глобален

- Например, IPv4 *публични* адреси
- Глобална недвусмисленост
 - Адрес X идентифицира уникална система
 - Има само една система с адрес X
- Глобална приложимост
 - Една система може да <u>идентифицира</u> всяка друга система по нейния адрес
 - Адрес X идентифицира тази система отвсякъде в рамките на обхвата

• Локален

- E.g. IPv4 *частни* адреси
- Локална недвусмисленост
- Локална приложимост

Адресен тип

• Йерархичен

- Телефонните номера
- ІР адресите в Интернет

• Плосък

- MAC адресите в локалните мрежи (LAN).

Идентификатори на съединението (*етикети*)

- Използват се при трансфер на данни по предварително изградено (логическо) <u>съединение</u> (connection-oriented data transfer)
- Назначават се при изграждане на съединението (комуникационна фаза 1)
 - Намаляват допълнителните/режийните разноски (overhead), тъй като етикетите са по-къси от глобалните адреси.
 - Маршрутизацията може да бъде фиксирана и да се идентифицира по етикета на съединението
 - Обектите могат да участват едновременно в няколко съединения
 - Мултиплексиране
 - Информация за състоянието (state information) се пази в мрежата

Адресен режим

Unicast

- Адресира се един обект
- PDU изпратена към <u>един</u> обект

Broadcast

- Адресират се всички обекти в рамките на домейна
- PDU изпратена към всички обекти

· Multicast

- Адресира се подмножество от обекти в домейна
- PDU изпратена към група обекти

Anycast

- Комуникация между подател и най-близкия от няколко получателя в група
 - Например, комуникация с най-близкия сървър.
- Използва се в IPv6

Функции на протоколите:

Мултиплексиране

- Съответствие/нанасяне (mapping) на няколко съединения от един слой към едно съединение от друг слой
- Мултиплексиране **нагоре** (upward multiplexing)
 - Различни съединения от горен слой, мултиплексирани в едно съединение на по-долния слой.
 - Например, реализиране на няколко канала по една и съща комуникационна (физическа) линия.
 - Рентабилност
- Мултиплексиране **надолу** (downward multiplexing)
 - 1 съединение от горен слой, реализирано чрез разпределяне на трафика му по няколко съединения на по-долния слой.
 - Например, реализиране на 1 канал по няколко различни комуникационни линии.
 - Подобрена производителност
 - Ускорена доставка

Функции на протоколите: Услуги на пренасянето

- Приоритетност
 - Идентифициране на по-важните PDU
- Качество на обслужване (Quality of Service, QoS)
 - Минимално-приемлива производителност (throughput)
 - Например, брой битове/сьобщения, доставени за 1 секунда.
 - Максимално-приемливо закъснение (delay, latency)
 - Максимално-приемливо вариране на закъснението (jitter)
 - Максимално-приемливо ниво на грешките (Bit Error Rate, BER)
- Сигурност
 - Ограничения за достъп
 - Шифриране/дешифриране на данни
 - Потвърждаване автентичността на съобщенията (message authentication)
 - AAA (Authentication, Authorization and Accounting)