Graphs and the Three Utilities Problem

We can imagine trying to connect three houses below with three utilities without the utility lines crossing.

This problem is akin to the graph $K_{3,3}$ (the complete bipartite graph with three vertices in each partite set).

A graph is an ordered pair of sets (V, E), where $E \subseteq V \times V$.

For example, if $V = \{a, b, c\}$ and $E = \{(a, b), (a, c)\}$, then (V, E) is a graph. The goal of the three utilities puzzle is to draw $K_{3,3}$ in \mathbb{R}^2 without any edges crossing. A graph that can be drawn as such is *planar*.

- $K_{3,3}$ is not planar.
- $K_{2,4}$ is planar.

Euler's Theorem

Let $G \subseteq \mathbb{R}^2$ be a planar graph (i.e., drawn in \mathbb{R}^2 without edge crossings). Each disjoint subset of $\mathbb{R}^2 - G$ is a *face* of G.

For every graph G embedded in \mathbb{R}^2 (i.e., drawn without edge crossings) with V vertices, E edges, and F faces, the following is true:

$$V - E + F = 2$$

We will use this theorem to show that you cannot connect the three houses to the three utilities as follows:

Outline Proof (of $K_{3,3}$'s non-planarity)

Suppose toward contradiction that $K_{3,3}$ is planar. Then, by Euler's Theorem, we know that V - E + F = 2.

We know that $K_{3,3}$ has six vertices and nine edges, so we know that 6-9+F=2. Therefore, we know that there must be 5 faces. In order to enclose a face, there must be at least four edges in $K_{3,3}$ (as there is no edge between two members of a partite set). Additionally, each edge encloses two faces. Therefore, $E \geq 2F$. However, since E = 9, and we assume that $F \geq 5$, we have reached a contradiction (as 9 < 10). Thus, $K_{3,3}$ is not planar.

Four-Color Theorem

Every planar graph can be colored (adjacent vertices do not have the same color) with four colors. The planar graph can be colored by fewer colors.

Polynomial Example

Let p(a, b, c, d) = ab + ac + ad + bc + bd + cd. When we factor, we get p(a, b, c, d) = a(b + c + d) + b(c + d) + cd. In the first equation, we had to carry out 6 multiplications, while in the second equation we only had to carry out 3 multiplications. We could factor differently:

$$p(a, b, c, d) = ab + ac + ad + bc + bd + cd$$

= $a(b + c + d) + b(c + d) + cd$
= $(a + b)(c + d) + ab + cd$

We have a lower bound of three multiplications to carry out.

In the arbitrary case, we have the following. We want to find the lowest number of multiplications.

$$p(x_1, \dots, x_n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n x_i x_j$$

The minimum number of multiplications we can do is n-1. We can find this via a graph with n vertices $\{x_1, \ldots, x_n\}$, and for $x_i x_j$ in p, we have an edge from x_i to x_j . This is the complete graph on n vertices, K_n . Each complete bipartite subgraph represents a multiplication — so our question can be restated as follows:

Given a complete graph on n vertices, K_n , partition its edges into as few complete graphs as possible.

The answer for this is n-1, with a proof in linear algebra. However, there is no graph theory-specific proof for this question.

Diestel book: Overview

A graph is an ordered pair G=(V,E) of sets such that $\forall e\in E,\ e=\{v,w\}$ for some $v,w\in V.$

Paths and Cycles

A graph H is a **subgraph** of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

A **path** is a subgraph P of G such that $V(P) = \{v_0, \ldots, v_k\}$ and $E(P) = \{v_0v_1, \ldots, v_{k-1}v_k\}$. We say the **length** of P is equal to |E(P)|.

If $v_k v_0 \in E(G)$, then $C = P + v_k v_0$ is a **cycle**. V(C) = V(P) and $E(C) = E(P) \cup \{v_0 v_k\}$.

Abbreviations: $P = v_0 \dots v_k$, and $C = v_0 \dots v_k v_0$

Degree, Order, and Size

Given $v \in V(G)$, the **degree** of $v \ d(v) = |\{vw \mid v \in E(G)\}|$. The edge vw is **incident** to v.

The **order** of G is |V(G)|, or |G|, and the **size** of G is |E(G)|, or |G|.

Hamiltonian Cycles

A cycle $C \subseteq G$ is **Hamiltonian** if V(C) = V(G). A graph is Hamiltonian if it contains a Hamiltonian cycle.

For example, G_1 has a Hamiltonian cycle $\{1, 2, 4, 5, 6, 3, 1\}$, while G_2 does not have one as the stray vertex cannot be reached without going over an edge.

For example, the Knight's Tour (where you visit every square on a chess board) involves finding a particular kind of Hamiltonian cycle.

Dirac's Theorem

If G is a graph of order ≥ 3 such that every vertex has degree $\geq \left\lceil \frac{|G|}{2} \right\rceil$, then G is Hamiltonian.

Let P be a path in G with maximum length (i.e., a longest path). Outline:

- **Step 1** Show that $|V(P)| > \frac{|G|}{2}$
- **Step 2** Show $\exists C \subseteq G$ such that V(C) = V(P).
- **Step 3** Show that C is a Hamiltonian cycle.
- Step 1 Left as an exercise for the reader.
- Step 2 Let $P=v_0\dots v_k$. It suffices to show that $\exists j\in\{2,\dots,k\}$ such that $v_1\leftrightarrow v_j$ and $v_{j-1}\leftrightarrow v_k$. Since P has maximum length, v_1 has no neighbor outside P. Similarly, v_k . However, every vertex has degree at least 2, meaning v_1 must have a neighbor in P. Suppose toward contradiction that $\exists j=1$ such that $v_{j-1}\leftrightarrow v_k$. Then, $N=\{v_{2-1},\dots,v_{k-1-1}\}\geq \frac{n}{2}$ are not neighbors of v_k . This means $k\leq n$, so v_k has k-1-N neighbors, implying $d(v_k)<\frac{n}{2}$, which is our contradiction.

Ore's Theorem

If $|G| \geq 3$ and $\forall v, w \in V(G)$ where $v \not\leftrightarrow w$ and $d(v) + d(w) \geq n$, then G is Hamiltonian.

We can use Ore's Theorem to prove Dirac's Theorem.

Vertex Deletion

Let $v \in G$. Then, G - v is the subgraph of G with vertices $V(G) \setminus \{v\}$, and edges $E(G) \setminus \{vw \mid vw \in E(G)\}$.

Theorem 6.4

Let $v_1, \ldots, v_k \in V(G)$. Then, $G - v_1 - v_2 - \cdots - v_k$ has at most k components.

Connectedness

A graph G is **connected** if $\forall v, w \in V(G), \exists P : v \dots w$.