Introductory Applied Machine Learning, Tutorial Number 1

School of Informatics, University of Edinburgh, Instructor: Nigel Goddard

September 2017

1. Suppose X and Y are two random variables. X takes on the value yes if the word "password" occurs in an email, and no if this word is not present. Y takes on the values of ham and spam. This example relates to "spam filtering" for email.

Let p(Y = ham) = p(Y = spam) = 0.5, and p(X = yes|Y = ham) = 0.02, p(X = yes|Y = spam) = 0.5. Compute p(Y = ham|X = yes).

Solution:

$$p(Y=ham|X=yes) = \frac{p(X=yes|Y=ham)P(Y=ham)}{p(X=yes|Y=ham)P(Y=ham) + p(X=yes|Y=spam)P(Y=spam)}$$
(1)
=
$$\frac{0.02 \times 0.5}{0.02 \times 0.5 + 0.5 \times 0.5}$$
(2)
=
$$0.0385$$
(3)

If it helps you can put up the joint probability distribution, which is

- 2. Label the following situations as either supervised or unsupervised learning:
 - (a) The INFCO supermarket collects information on what its customers buy (via loyalty cards). This gives rise to a purchase profile for each customer. It then groups customers on the basis of these profiles, in order to understand the makeup of its customer base.
 - (b) RASHBANK is an investment bank that uses the recent history of stockmarket data to predict future stock performance.

Solution:

- (a) Unsupervised. No specific notion of input / output, probably no labeled data, INFCO is learning the structure of the data, not trying to predict which customers are likely pass a bad check.
- (b) Supervised. There is an input (historical performance), an output (future performance) and a clear error/objective function (expected risk-adjusted gain).
- 3. Class conditional probabilities for each word are:

	goal	football	golf	defence	offence	wicket	office	strategy	
politics	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{5}{6}$	$\frac{5}{6}$	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	_
sport	$\frac{5}{7}$	$\frac{5}{7}$	$\frac{2}{7}$	$\frac{5}{7}$	$\frac{2}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	

Based on the data:

$$p(\text{politics}) = \frac{6}{13} = 0.462,$$

 $p(\text{sport}) = \frac{7}{13} = 0.538.$

For $\mathbf{x} = (1, 0, 0, 1, 1, 1, 1, 0)^T$, the document contains the words goal, defence, offence, wicket and office, so:

$$\begin{array}{lll} p_{\mathrm{NB}}(\mathbf{x}\,|\,\mathrm{politics}) & = & \frac{2}{6}\times\frac{5}{6}\times\frac{5}{6}\times\frac{5}{6}\times\frac{5}{6}\times\frac{5}{6}\times\frac{1}{6}\times\frac{4}{6}\times\frac{1}{6} = \frac{5000}{1679616} = 0.0029769 \\ p_{\mathrm{NB}}(\mathbf{x}\,|\,\mathrm{sport}) & = & \frac{5}{7}\times\frac{2}{7}\times\frac{5}{7}\times\frac{5}{7}\times\frac{2}{7}\times\frac{1}{7}\times\frac{1}{7}\times\frac{6}{7} = \frac{3000}{5764801} = 0.000520 \,, \end{array}$$

and therefore:

$$p(\text{politics} \mid \mathbf{x}) = \frac{p(\text{politics})p(\mathbf{x} \mid \text{politics})}{p(\text{politics})p(\mathbf{x} \mid \text{politics}) + p(\text{sport})p(\mathbf{x} \mid \text{sport})} = 0.831.$$

4. You have a collection of 1000 nature photographs which were taken under many different conditions. All of the images are of size 300×300 pixels. You wish to develop a binary classifier that labels a photograph as to whether or not it depicts a sunny day on a beach. The images have been pre-processed in the following manner:

- Each image $i \in \{1...1000\}$ is partitioned nine regions $R_{i,1}...R_{i,9}$. Each region is 100×100 pixels. The regions are arranged in a 3×3 grid, so that the region R_{i1} is the top-left corner of image i, the region R_{i2} is the top middle portion of the image, and so on.
- For each region $R_{i,j}$, we compute the average hue^1 of pixels within the region $R_{i,j}$. The hue value is quantised into 7 discrete bins: "red", "orange", "yellow", "green", "blue", "indigo" and "violet".
- (a) How would you represent this data in terms of attribute-value pairs?
- (b) How many attributes are there? Are they categorical, ordinal or numeric?
- (c) What values can they take on?

Solution: The naive (and incorrect) solution is to use 9 categorical attributes $X_1...X_9$, where the possible values are the colour labels. This would work if there was a natural "structure" to the regions, e.g. if region R_1 represented the same thing in all images (e.g. the "sun" region). In practice, there is no structure or ordering to the regions: in one image the top-left region R_1 might contain the "sun" while in another R_1 could contain clear blue sky.

The correct answer is:

- (a) Attributes will reflect presence or absence of particular colours in the image.
- (b) There are 7 attributes (one per colour value), their values are numeric.
- (c) The values are either binary (presence / absence) or integer, if we want to allow repetitions of colours: e.g. an image containing two "yellow" regions may be deemed different from an image containing one "yellow" region.

 $^{^1}$ The *hue* is a scalar representation of color. It ranges from 0° to 360° . For example, colors with hues around 0° look red, hues around 120° look blue, and hues around 240° look green.