Non-convex offinization.
When objective is non-convex, generally the best we can hope for is to find a stationary point: 117f 11=0,
O' an $S = a \circ OI$ staticizant $OO \setminus V/F = V \setminus V + V \setminus V = V$
Stationerry points need not be local min: 9=x3
Recall Lehrma 7 from 1 cest class:
Lemma +. Let f be B-smooth (upt nel. (VX). It X = x < B, The
$41 \ge 1$ $6.D. satisfies$ $+< T$ $AF(w_t)N \le \frac{1}{\alpha T}(+(w_0) - f(w_t))$
So, and on smooth objectives efficiently finds stationary points
There are nany prolateurs where an Stattohany points are
aldoal optima.
cet's consider a few : Let X := {x*: f(x*) = min f(x) {.
Let $T(x) := prejection of x onto X*.$

(D(Strong) convexity: for some M70 (470: strong), $\forall x,y,$ $f(y) = f(x) + \langle \mathcal{O}f(a), y - x \rangle + \xi \| x - y \|^2$ (2) weak Strong convexity: for some upo, if f = min f(x), $f \times f = f(x) + \langle \nabla f(x), T(x) - x \rangle + f \cdot \|x - T(x)\|^2$. (3) Restricted secont inequality: $\forall x$, $\forall x \in \mathcal{T}(x) = \mathcal{A}(x)^2$. (4) Error bound inequality: HX, UDFX) N = M UX-TT(X)M. (5) Polyak-Lojasiewicz: (PL) $\forall x, \exists L \nabla f(x) U^{2} = \mu (f(x) - f^{*})$ Clear that PL = all local min are global. However: Thin (Karimi et al'16): If f is B-smooth, thele: $0 \gg 2 \gg 3 \gg (9 \Rightarrow 5).$

So, Prinequality is quite crucial. Thm. Suppose f is B-smouth, and Jx* of f/x= min f/x1. Then $:GD \cap f(x_{k}) - f^* \leq (1-\alpha_{k})^k \cdot (f(x_0)-f^*)$.

Pf. By dH^n , $\chi_{kH} = \chi_k - \alpha_k \nabla f(\chi_k)$. By p-sucoteness, ffy) < f(x) + < \nabla f(x), y -x > + \frac{\beta}{2} \lambda x - y \rangle^2 \text{ \tex{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \tex{ => f(xnn)-f(xn) < <P(xn), xn-xn)+ = Uxnn-xnll2 = - \(\lambda \lambda \rangle \lambda \lambda \lambda \rangle \rangle \rangle \alpha \lambda \rangle \rangle \rangle \alpha \lambda \rangle \rangle \rangle \alpha \rangle \r $\leq -\frac{1}{2} \| \mathcal{A} \{ (x_h) \|^2$ as $\emptyset \leq \frac{1}{p}$. < -am f(x2) - f* | by PL. $f(x_{n+1}) - f^* \leq (1 - \alpha_M) f(x_n) + \alpha_M f^* - f^*$ = $(1 - \alpha_M) f(x_n) - (1 - \alpha_M) f^* = (1 - \alpha_M) (f(x_n) - f^*)$. \Rightarrow Um rolling, we see $f(x_n) - f^* \leq (1 - \alpha_M)^R (f(x_n) - f^*)$. \Rightarrow

So, with PL oh smooth objectives, can get "linear convergence"
to get $f(w_t) - f^* \leq \epsilon$, only need alog $\frac{1}{\epsilon}$) it each ions.
Exercise Show that there exists a B-smooth convex function on R
for which PL is not sutisfied.
So establishing PL is clearly very powerful. Unsurphisingly
So establishing PL is clearly very powerful. Unsurprisingly, it often does not hald, and if it does, can be very hard to show.
Moreover, for many problems of interest, we do not have
6-shookiness. By newal networks with Kelly activations,
Since $\varphi(t) = \max(\delta t)$ has $\varphi'(t) = \Lambda(t \ge 0)$ (subderivative).
Clearly glis not Lipschitz, so of is not p-smooth.
We'll next describe some attenuative non-convex approaches which
(1) all and for made - another objectives, Elex
(2) allow for situations where "all local min are good" (art not new global)

Surrogate objectives.
In classification, we are most interested in the $0-1$ loss: In classification, we are most interested in the $0-1$ loss: $A(y \neq f(x)) = S(x) = A(y \cdot f(x) < 0)$ $A(y \neq f(x)) = S(x)$ $A(y \cdot f(x)) = S(x)$
[] (A = } asherwel.
Enjoyenmentely, 1(.) is discontinuous, spierewise constant, so its derivative is zero a.e -> gradient descent is useless.
So instead, we minimize convex surroyates for the 0-1 1055:
(i) · l is comex (i) · g b) = l(t) +t.
Thus, minimizing l'implies minimizing 9. We will typically uso verture l'is differentiable/shooth so re an apply 6.D. Common commex survoyates to 0-1 loss 1 (t < 0) = ? 0: t = 0: (out of the control of the contro
(ammon convex surroyates to 0-1 loss $M(\pm 20) = 70: \pm 20:$ · ex (-t) "exparation (055" · loy (1+ exp(-t)) "logistic/cross entropy" (note 0) not soursfied, but $M(\pm 20) \le 2 \cdot \log(1+ \exp(-t))$

More generally, there are a large family of survoyates to 0-1 kss. Let l(b) be (ormex, decreasing and twice differentiable. Then:
Assume $l'(a) \neq 0$.

(i) $l''(b) \geq 0$ (so -l' is decreasing) $O \leq 1/1 = 0$ 2+<02= 2-1(1) = -1(0) \ 3 Is we can show -l'(4) =0, than by $\frac{1}{h} = \frac{1}{h} \left(\frac{1}{h} \left(\frac{1}{h} \right) \right) = \frac{1}{h} \left(\frac{1}{h} \left(\frac{1}{h} \right) \right)$ $= \hat{P}(y.f(x) < 0)$ $= \hat{R} \left(-l'(y, f(x)) \ge -l'(0) \right)$ $\leq \frac{\hat{T}(-l'(y,f(x)))}{l'(v,f(x))}$ by Markov $\frac{i}{l'(v,f(x))}$ -l'(0) $= \frac{1}{-l'(0)} \cdot \frac{1}{l'} \underbrace{z''_i - l'(y_i f(x_i))}_{l'}$

Thus, for any convex, decreasing, differentiable I st l'(0) to, - l'(t) is surrogate for 0-1 loss. (D RK)= exp(+) => -D'(+)= l(+). (2) lostog (1+ expl-ti) =7 -l'(t) = expl-t) Here - l'is not convex.

[+ex(-t)]

[+ex(-t)] However, if we do G.D. Oh (which is coment) i.e. an. on 2(W) := + 5 / l(y; f(xi; w)), and we somehow found that the 1055 G(W):= L ZN-l'(y:f(x:;W)) were small, then we would know that the Orlioss is small as well. (In the homework, we'll see whythis is useful)

Def. f:R' is and (y,h,s)-proxy comex if, Jg,h: R" -> IR st Frs.t. Am $L(v) \ge g(w) + \langle \nabla f(w), v - w \rangle.$ Thm: If f is (g,h,v)-proxy-convex and $MTF(\omega)M \leq L$, for all ω , then for any $\omega(\omega)$, $\gamma>\omega$, $T\geq 1$ min $g(w_t) \leq h(v) + \frac{2L^2}{2} + \frac{11w/01 - vV^2}{2}$ Remark. For small step sizes 1 and large T, G.D. on f finds
glas which is close to 4/51. Useful it we can show there are families of related observe functions So, Gir for which are "meaning ful". i.e., 5= agrin f, $-M(w) = \sqrt{f(w)}$ and $g(w) = \pm f(w)$ would imply $\min_{t < T} \frac{1}{2} f(w_t) \leq \min_{w} \int_{-\infty}^{\infty} f(w) + \varepsilon.$ Not a global min, but a fon of it. If min flw is very snaw, has good.

The remainder, we will prove that GD converges to a Global min for 2-layer leaky Rell nets on linearly sep	
Global min for 2-layer leaky Rell nets on linearly sep	'. data
Two groot techniques:	
(1) Proxy convexity) leeture	
(2) Perceptron arguments. I homework	
2-layer leasty vets: $w_j \in \mathbb{R}^d$, $W \in \mathbb{R}^{m \times d}$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^m \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^m \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$) $w_j \in \mathbb{R}^d$ (rows $w_j \in \mathbb{R}^d \setminus \mathbb{R}^d$)	5)
$u_j \in \{-1\} \text{ Im } (j, m = 1) \text{ neurons } . $	X € (0 ₇)
$f(x; W) = \sum_{j=1}^{n} a_j \Psi(xw_j, x>).$	
only training first layer.	
$f(t) = \log(1 + \exp(-t))$	
$f(x; W) = \sum_{j=1}^{m} a_j \varphi(x_{W_j}, x_j).$ Only training first (ayer. $I(t) = \log(1 + \exp(-t)); x x \le 1$ $I(t) = \log(1 + \exp(-t)); x x \le 1$ $I(x_{W_j}, x_j).$	٦ [].
G.D. on empirical risk $L(W) = \frac{1}{N} \sum_{i=1}^{N} l(y_i f(x_i; W))$	

Remark We will consider parameterizing the dijective for L(W) by a moutrix W, while we typically think of vectors in Rd for some d.

You can cost the gradian to that form by considering vec(W) = Rd·m : stack ear column of W one ethe Everything works out — can cheek in matrix calculus.

Everything works out — can cheek in matrix calculus.

(= tv(VTW) = tv(WVT))

The result is a considering the dijective for L(W).

· MWW= | \vec(\b)\\2

Lemmel. If $g:\mathbb{R}^d \to \mathbb{R}$ is $L-positively homogeneous, <math>(g(\omega))=\alpha L_g(\omega)$ then $L \nabla g(\omega)$, $\omega > = L_g(\omega)$ Remark: ul(t)=hax(t, Lt) 13 (-positively homogeneous Our goal will be to show [[w] is proxy comex fer appropriate proxies g,h, i.e. want to show, for some g, M, $\angle \nabla \hat{L}(W), w - V > \geq g(W) - h(V).$ $\nabla \hat{L}(W) = \pm \sum_{i=1}^{n} \nabla \ell(y_i f(x_i; W))$ $=\frac{1}{2}\int_{0}^{1}\int_{0}^{1}(y_{i}f(x_{i},w))y_{i}\nabla f(x_{i},w).$ Now: f(xi; W) = \(\int_{5}\alpha\(\text{U}\kmy\x>\) is (-homeg, since \(\theta\) is. So, $\langle \nabla f(x; W), W \rangle = f(x; W).$

Thus: $\angle \nabla \hat{l}(w), W-V \rangle = \pm \sum_{i=1}^{n} \ell'(y) f(x; w)) y i \angle \nabla f(x; w), W-V \rangle$ $=\frac{1}{h}\sum_{i=1}^{h}\ell(y_{i}f(x_{i};W))\cdot\left(y_{i}f(x_{i};W)-y_{i}\lambda\gamma f(x_{i};W),V\right)$ So now, which I do we want to choose? (alculus \Rightarrow $\nabla f(x; w) = \sum_{x=0}^{\infty} \Delta x^{T}$, $\sum_{x=0}^{\infty} \Delta x^{T}$) $y_i \langle \nabla f(x_i; W), V \rangle = y_i \cdot H((\nabla_{x_i}^W \alpha x_i^T)^T V)$ $= y_i + v(x_i a^T D_{x_i} V)$ $=y_i+v\left(\alpha^T D_{X_i}^W V X_i\right)$ = yî v Dx: Vx: $= \leq \alpha_5 q'(x_0, x_0) < \sigma_{3,yx_0}.$ know: Lu, y, x, > = 8 > 0. Si let v, := 8.aj. V*, 50.

(outhwing from : Since I is decreasing, -l'(z) <0. So, $-l(y_if(x_i;w))\cdot y_i \angle \nabla f(x_i,w),V \geq -l(y_if(x_i;w))\cdot g \angle V,$ $\angle \nabla \hat{L}(w), w-V \geq \frac{1}{N} \sum_{i=1}^{N} \hat{L}(y_i; f(x_i; w)) \cdot (y_i; f(x_i; w)) - p \propto \delta).$ 'since l'is convex, l'121).(2-22) = l(2)-l(221.-> = $\pm \frac{1}{2}$ $\mathbb{I}\left\{\left(y_{i}f(x_{i};w)\right)-\mathcal{I}\left(f\alpha \mathcal{I}\right)\right\}.$ $= ||w| - |(|\varphi |).$ Therefore, [[W] is ([, l(3xY), V) - proxy convex with V=V(p) having rows 5= Paj 5x Since UDF(x:, w) N= 11 Diag (q'Kw;, x;) a xit NF < 1 (Exeruse!)

Mus the theorem gramantees that for any wold, 4>0, E>0, min Î(Wx) = l(g xx) + 2 + 11w(01 - WF Since ((t) <2exp(-t), taking P= x-18-10g(&) guarantees $l(P \propto Y) \preceq \frac{\varepsilon}{3}$. For $7 \leq \frac{2}{2}$, this means min $\hat{L}(w_{\epsilon}) \leq \frac{2\epsilon}{3} + \frac{\|W(0) - V\|_{F}^{2}}{1 - 1 - 1}$ For TZ 27 MW(Ol-WF E-1, Min L/Wt) < E. All together: Theorem. Suppose MXNX1, yiXJ, x:> > Y for all i for some NJ*#=1. Then GD on 2-layer leaky relunct satisfies the following. For any \$70, if 1 \(\frac{\pi}{2} \) then for VeTR*** with rows $N_3 = a_3 \(\alpha^{-1} \) \(\begin{array}{c} \) \(\alpha \)$ if T= 22" llw(0)- Vl/F 2", then win L(W) < 2.

Remark I'm not answe of proofs with any of:
O- y is ReLU vather than leaky bell
0- bias ferms included
(3) training both first and second layer weights
Destruining > 2 layers net.
It you can come up vish a post in any of those settings, this would probably be sufficient for a Neurth paper! Requires:
Mis vould probably be sufficient for a Neurth Paper! Requires.
(I) Random initialization (E) (Dury assume linear sepandapi'virs of transing data. (3) No "NTK". Idealy allow for constant number of neurons. (OU can work on this instead of doosing paper for final project it you'llike.
You can work on this instead at doosing paper for finen project it youlline.