Copyright 2007 Carlos Domingo. Universidad de Los Andes, Venezuela.

Conjuntos

1 Una noción más básica que la del número es la de conjunto, pero es necesario discutirla y aclararla porque es la base de toda la Matemática. Trate de explicar que es un conjunto
2 ara indicar un conjunto se escriben sus elementos entre $\{\}$, así el conjunto A de los números entre -3 y 4 ambos incluidos es:
A = {
}
El conjunto P de los planetas del sistema solar es: $P = {$
3
El orden no interesa {a,b} = { }
3- Según lo anterior el conjunto queda definido cuando se indican todos sus elementos. ¿Puede siempre definirse así? Indique dos conjuntos que no pueden definirse de esta manera.
Indique otra manera de definir conjuntos:
4 Los componentes de un conjunto se llaman <i>elementos</i> y se dicen que <i>pertenecen</i> al conjunto. La relación "pertenece a" se indica \in . Así si: A= {a, z, ⊙, *, △, □} entonces □ A. La idea de pertenecer, como la de conjunto es una idea intuitiva básica. "No pertenece" se indica \notin o \in ' \notin A
5 La manera usual de definir un conjunto es dar una regla tal que para todo objeto pueda decirse si pertenece o no al conjunto. Ejemplo:

6.- La forma anterior de definir se expresa así formalmente: Sea P(x) una función proposicional con sentido (puede ser sólo V ó F) para todo objeto x. Queda definido entonces el conjunto A de todas las x que hacen verdadera P(x). Así si P(x) es x > 10 esto define al conjunto de los números mayores que P(x).

Se indica así: $A = \{x \mid x > 10\}$ donde: = significa "es" $\{ \text{ significa "el conjunto de todos los "} \mid \text{ significa "tales que".}$

	,			c	. 11	• .	1 .
V	eremos que esta	i manera simbl	ie de de	etinir coni	linfos Heva a	a ciertas	naradoias.

8 Definir con una expresión formal los siguientes conjuntos:
a. Números enteros entre -6 y + 50 (incluidos ambos)
b. Números enteros divisibles por 3
c. Números fraccionarios entre 2/3 y 1
d. Puntos del plano cartesiano que están a distancia 5 del origen
e. Alumnos de la ULA que aprobaron más de 10 materias:
f. Proposiciones que considera la lógica formal (son verdaderas o falsas):
9 Se dice que B es un subconjunto de A si todo elemento de B lo es de A. Se indica B ⊂ A . Es decir, 9a) B ⊂ A ↔ (x ∈ B → x ∈ A). ¿Es cierto que A ⊂ A? ¿Es cierto que B ⊂ A ↔ x ∉ A → x ∉ B? Haga las tablas de verdad de la implicación anterior y de esta.
Suponga que B no contiene ningún elemento (conjunto vacío). ¿Es cierto que B \subset A? Decir que sí es decir que el conjunto vacío es subconjunto de todo conjunto. La suposición de que hay un conjunto vacío permite dar generalidad a muchas definiciones y resultados.
10 Dos conjuntos se dicen <i>iguales</i> si tienen los mismos elementos.
10a) Si A ⊂ B y B ⊂ A resulta: A B
¿Porqué?

_ 1				1	ue permiten	C	•		. • 1	• .	1 1
LnI	A 1110 C10	1110 CO 1	introdiicon	rodine di	iio normiton	tormar mil	INTING COMILI	intac a n	artir da co	niiintoc	dadac
1711 10) UHE SIE	211E SE		168192 (1		TOTTIAL TILL	evos comu	แแบร ส ม	MIIII (18 C	111111111111111111111111111111111111111	HAUUS.

11.- Se pueden considerar como *axiomas* que afirman la existencia de los nuevos conjuntos. Si A y B son conjuntos se puede formar un nuevo conjunto Z que los contiene como elementos Z = { ______, ____} } ¿Se puede decir que los elementos de A también son elementos de Z?

12.- Unión. Sean A y B dos conjuntos. Se llama unión de A y B y se indica A \cup B al conjunto que tiene los elementos que están en A o en B o en ambos y sólo dichos elementos.

```
Así si A = {a, b, m, n, p} B = {a, b, s, t, p} entonces A ∪ B = {

}
```

14. *Intersección*. Dados A y B. Se llama intersección al conjunto que tiene sólo los elementos que pertenecen a A y B. Se indica $A \cap B$. Para los conjuntos A y B del caso anterior se tiene: $A \cap B = \{$

}

15. Ambas definiciones pueden ponerse formalmente así:

16. El conjunto Universal E. En general cuando se define un conjunto se tiene presente un universo o conjunto mayor para el cual la proposición P(x) que define el conjunto es *significativa* (sea V o F). Tal conjunto que comprende al definido se llama conjunto universal.

Así si definimos $A = \{x \mid x \text{ entero } y \mid x > 100\}$ el conjunto universal es el de los enteros.

17. Complementación. Dado un conjunto A, los elementos del conjunto universal E que no pertenecen a A forman otro conjunto que llamaremos A', complemento de A. Así para el ejemplo anterior:

Formalmente se define:

17b) Si Y =
$$\{ x \mid P(x) \}$$
 entonces Y'= $\{ x \mid \}$

o bien si E es el universal de Y, Y' = $\{x \mid x \notin Y \land x \in E \}$

18. Si ϕ es el vacío y E el universal se tiene:

19. *Diferencia entre dos conjuntos*. Dados los conjuntos A y B se denomina diferencia A – B al conjunto formado por los elementos de A que no pertenecen a B.

19a)
$$A - B = \{x \mid x \in A \land x \notin B\}$$

Se tiene:
$$E - A = ____ y A - \phi = ____$$

20. Para demostrar las siguientes igualdades usar las definiciones 9a y 10a, entre otras que necesite.

(A')' = A
$(A \cup B)' = A' \cap B'$ (De Morgan)
$(A \cap B)' = A' \cup B'$ (De Morgan)
$A \cup (B \cup C) = (A \cup B) \cup C$ asociativa
$A \cap (B \cap C) = (A \cap B) \cap C$ asociativa
$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ distributiva
$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ distributiva
Demostrar que $A \subset B \leftrightarrow B' \subset A'$

21. Diagramas de Venn. Una manera de visualizar las propiedades de los conjuntos es representar cada conjunto mediante una figura cerrada. Los elementos son los puntos (indicados o no) dentro de la figura.

a se llama primer elemento. b se llama segundo elemento. Como se ve la idea implica los conceptos de primero y segundo. En la teoría axiomática, de la que hablaremos más adelante se puede introducir el par
ordenado como definición sin acudir a las ideas de "primero" y "segundo". Véase la diferencia entre (a,b) y
{a, b} ¿Cuál es?
23. <i>Producto Cartesiano</i> . Dados dos conjuntos A y B se puede formar el conjunto de los pares (a, b) tales que a es un elemento de A y b uno de B. Tal conjunto de pares se llama producto cartesiano de A y B y se indica A x B. $C = A \times B = \{x \mid x = (a, b) \text{ siendo } a \in A \text{ y } b \in B\}$
¿Cómo se representa gráficamente?
24 C A = (2 - 5) B = (- b) A = B = (
24. Sean A = {3, a, 5, x} B = {a, b}, A x B = {
}
25. ¿Es en general A x B = B x A ?
26. Demostrar las relaciones siguientes $(A \cup B) \times Z = (A \times Z) \cup (B \times Z)$
200 Demostra no remeiones digarentes (11 o D) n D (11 n D) o (D n D)
$(A \cap B) \times Z = (A \times Z) \cap (B \times Z)$
27. Relaciones. La relación entre dos objetos es una idea intuitiva básica. Se puede expresar indicando los
dos objetos y entre ellos el nombre que describe la relación. Así: a. 4 es que 5. b. 3 3. c. La luna la Tierra. d. Juan Pedro.

En general se indica a \Re b y se dice que *a tiene la relación R con b*.

conjunto B (puede ser eventualmente $A = B$), Identifique en los ejemplos anteriores los conjuntos $A y B$ e indique casos en los que se cumple la relación y casos en que no se cumple.
a. A = B =
b.
C.
C.
d.
20. Definición de la veleción necudo el concente de muedante contecione
29. Definición de la relación usando el concepto de producto cartesiano.
30. Dominio y recorrido de una relación. Sea a \Re b con a \in A y b \in B. Se llama dominio de la relación al subconjunto de las a \in A para los cuales vale la relación. Se llama recorrido o rango de la relación al conjunto de los b para los cuales la relación es válida. Sea A = $\{2, 4, 6\}$ B= $\{2, 3, 4, 9\}$ Sea la relación a $>$ b con a \in A y b \in B a. Hallar el dominio y el recorrido de R
dominio de R = { } recorrido de R = { }
b. Representar la relación como producto cartesiano y ver que subconjunto del producto representa la relación.
31. <i>Relación de equivalencia</i> . Una relación R definida entre los elementos de A se denomina <i>relación de equivalencia</i> si tiene las propiedades siguientes (x, y, z pertenecen a A) a. es <i>reflexiva</i> , es decir Para todo x, x R x. b. es <i>simétrica</i> , es decir, Para todo x y todo y, x R y → y R x c. es <i>transitiva</i> , es decir, Para, x R y ^ y R z → x R z Averigije que es una relación anti-simétrica y una relación asimétrica

28. Relación entre elementos de dos conjuntos. En general, si a \Re b a pertenece a un conjunto A y b a un

Dar ejemplos de relaciones:
a. de equivalencia
b. reflexiva y transitiva; no simétrica
c. simétrica ; no reflexiva ni transitiva.
c. simetrica , no renexiva in transitiva.
d. transitiva; no reflexiva ni simétrica.
e. reflexiva y simétrica; no transitiva.
32. <i>División en clases de equivalencia</i> . Si entre todos los elementos de un conjunto A está definida un relación de equivalencia; podemos juntar todos los elementos a uno dado (es decir que tienen la relación I de equivalencia con él) en un subconjunto de A. Tal subconjunto es una <i>clase de equivalencia</i> de A. Supongamos que seguimos este proceso de reunión para todos los x ∈ A. • ¿Puede quedar algún elemento que no pertenezca a ninguna clase de equivalencia?
• ¿Puede un elemento pertenecer a dos clases de equivalencia diferentes?
Se tiene pues la partición en clases de equivalencia es un subdivisión completa de A en conjuntos disjuntos. Dar ejemplos de relaciones de equivalencia y de las subdivisiones en clases que originan.

33. <i>Funciones</i> . Una <i>función</i> del conjunto X en el Y es una <i>relación</i> tal que para <i>cada</i> elemento $x \in X$ le corresponde <i>un único</i> $y \in Y$. Se indica $f(x) \to Y$ ó $X \to Y$ ó $y = f(x)$ Indicar en los gráficos las relaciones entre elementos mediante flechas. Relación que no es Función
Dar ejemplos de Funciones numéricas y no numéricas
34. <i>Tipos de Funciones</i> . Son usuales las siguientes denominaciones de casos especiales de funciones (X se refiere al dominio y Y al rango o recorrido):
a. <i>Función Inyectiva</i> : a diferentes elementos de X le corresponden diferentes elementos de Y.
b. <i>Función sobreyectiva</i> : todo elemento de Y es correspondiente de alguno de X.
c. Función biyectiva: es inyectiva y sobreyectiva
Distinguir en las siguientes <i>relaciones</i> cuáles son funciones y que tipo son o no son • x es subordinado de y
• y es satélite de x
• $y \rightarrow x2$ (x, y reales)
n n + 1 n entere
• $n \rightarrow n + 1$ n entero
• $(a, b) \rightarrow (a + b) / 2$
• lanzamientos de un dado → número que salió
 proposición lógica → su valor de verdad

• persona → nombre propio

Fin del documento de Conjuntos. Licencia pendiente.