MEDICAL IMAGE SEGMENTATION USING CNN AND DYNAMIC PROGRAMMING

0 0 0

Nilabjanayan Bera

Medical Segmentation Tasks: Lack of Training Data

CASE - I

CASE - I

CASE - II

CASE - II

CASE - II

Nikon Eclipse TE200 microscope with a 20x, 0.45 NA objective lens and a 0.52 NA condenser lens

Training: 12

Testing: 3

Nikon Eclipse TE200 microscope with a 20x, 0.45 NA objective lens and a 0.52 NA condenser lens

Training: 12

Testing: 3

Training: 1516

Testing: 386

Nikon Eclipse TE200 microscope with a 20x, 0.45 NA objective lens and a 0.52 NA condenser lens

Training: 12

Testing: 3

Small no. of training data!!

Training: 1516

Testing: 386

DYNAMIC PROGRAMMING

A SOLUTION

U-Net

No. of radial lines: N

No. of candidate points on each line: M

No. of radial lines: N

No. of candidate points on each line: M

No. of radial lines: N

No. of candidate points on each line: M

g(n,i): value of warped map on the i-th point on the n-th radial line.

No. of radial lines: N

No. of candidate points on each line: M

g(n,i): value of warped map on the i-th point on the n-th radial line.

dg(n, i) = g(n, i) - g(n, i-1), directional derivative on g

dg(n, i) = g(n, i) - g(n, i-1), directional derivative on g

$$E(n, i, j) = \begin{cases} dg(n, i) + dg(n \oplus 1, j), & \text{if } |i - j| \leq \delta \\ \infty, & \text{otherwise,} \end{cases}$$

Our cost function:

$$\min_{v_1,\dots,v_N} E(N,v_N,v_1) + \sum_{n=1}^{N-1} E(n,v_n,v_{n+1})$$

No. of radial lines: N

No. of candidate points on each line: M

g(n,i): value of warped map on the i-th point on the n-th radial line.

dg(n, i) = g(n, i) - g(n, i-1), directional derivative on g

$$E(n, i, j) = \begin{cases} dg(n, i) + dg(n \oplus 1, j), & \text{if } |i - j| \leq \delta \\ \infty, & \text{otherwise,} \end{cases}$$

Our cost function:

$$\min_{v_1,\dots,v_N} E(N,v_N,v_1) + \sum_{n=1}^{N-1} E(n,v_n,v_{n+1})$$

Loss function:

Differentiable??

Approximated Neural Network

Approximated Neural Network

Introduce the randomness

DP(g)

Exact loss

Ground Truth

Mimicked loss

Approximated contour

F(g)

For the DP module, the output is DP(g)

For the approximated module, the output is F(g)

Mimicked loss: L(F(g), DP(g))

Randomized loss: $L(F(g + \sigma \varepsilon), DP(g + \sigma \varepsilon))$

RESULTS

Images

Ground Truth

U-Net

EDPCNN

CONCLUSION

Further Scope of Improvements

- → Cell no. detection in embryo.
- → Segment myocardium and right ventricle or multiple cells with automated placement of multiple star patterns.
- → Disease prediction from heart masks.

THANK YOU