Nonlinear Dimensionality Reduction: t-Stochastic Neighbor Embedding (t-SNE)

Prof. Endri Raco

Polytechnic University of Tirana

Erasmus+ Exchange Professor

Advanced Multivariate Analysis
Polytechnic University of Catalonia (UPC)
October 15, 2025

Welcome to Advanced Multivariate Analysis

Today's Journey

- 2-hour deep dive into t-SNE
- Mathematical foundations to practical insights
- Three key parts:
 - SNE The original idea
 - t-SNE Solving the crowding problem
 - Hyperparameters & interpretation

$$p_{j|i} = \frac{e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2}}{\sum_{k \neq i} e^{-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2}}$$

Core t-SNE Formula (We'll derive this today)

The Curse of Dimensionality

Our Intuition Works Here:

2D: Simple

3D: Manageable

But Not Here:

100D? 1000D?

Problems:

- Distance concentration
- Volume: $V_n(r) \propto r^n$
- Sparse data

"Geometric intuition fails"

Goals of Dimensionality Reduction

Goal 1: Visualization

Key: "See" hidden structure

Goal 2: Feature Extraction

Benefits:

- Noise reduction
- Efficiency
- Better ML

Challenge: Preserve relationships while reducing dimensions

When Linear Methods Falter

Swiss Roll Dataset

3D Manifold

True Structure: 2D manifold in 3D space

PCA Projection

Problem:

Preserves variance, destroys local structure

Need methods that preserve local relationships

The Manifold Hypothesis

"High-dimensional data often lies on or near a much lower-dimensional manifold"

Example: Earth's Surface

2D surface in 3D

Mathematical Form

Data: $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$ where $\mathbf{x}_i \in \mathbb{R}^D$

Assumption:

 \exists manifold \mathcal{M} with dim $d \ll D$:

$$\mathbf{x}_i \approx f(\mathbf{z}_i) + \epsilon_i$$

- $\mathbf{z}_i \in \mathbb{R}^d$ (low-dim)
- $f: \mathbb{R}^d \to \mathbb{R}^D$
- ϵ_i (noise)

Goal: Uncover this hidden low-dimensional structure

Preserving Neighborhoods: t-SNE in Action

PCA on MNIST Digits

PCA: Mixed Clusters

Problems:

- Classes overlap significantly
- Linear projection limitations
- Poor cluster separation

t-SNE on MNIST Digits

t-SNE: Clear Separation

Advantages:

- Distinct clusters
- Preserves local structure
- Reveals true relationships

"t-SNE focuses on preserving local neighborhood structure" Similar points in high-D → nearby points in low-D

Today's Journey: From Theory to Mastery

From Distances to Probabilities: The Core Idea

Central Insight: Convert distances between points into probabilities
that represent neighborhood relationships

Traditional Approach

Euclidean Distances

Problem: How to weight different distances?

SNE/t-SNE Approach

Probabilities

Solution: Probabilities naturally normalize!

"What is the probability that point i would pick point i as its neighbor?"

Part 1: Stochastic Neighbor Embedding (SNE)

The Foundation: Understanding the original SNE algorithm before moving to t-SNE improvements

What We'll Cover

- High-dimensional similarities
- Gaussian kernels
- 3 Conditional probabilities
- Perplexity parameter
- 6 Low-dimensional mapping
- 6 KL divergence objective
- Gradient computation

Key References

Original Paper:

Hinton & Roweis (2002)

"Stochastic Neighbor Embedding" NIPS 2002

Mathematical Framework:

Building on MDS, Isomap, LLE but with probabilistic approach

"SNE converts high-dimensional Euclidean distances into conditional probabilities that represent similarities"

High-Dimensional Similarity: Gaussian Kernels

The Core Question: How similar are two points in high-dimensional space?

Gaussian Similarity

Similarity decreases with distance following Gaussian decay

Mathematical Form

Unnormalized similarity:

$$\operatorname{sim}(i,j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma_i^2}\right)$$

Key Properties:

- Range: (0,1]
- Max when i = j
- Smooth decay
- Point-specific σ_i

Critical: σ_i controls the

"neighborhood size" for point i

The Conditional Probability $p_{j|i}$

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)}$$

Breaking Down the Components:

Numerator:

$$\exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma_i^2}\right)$$

- $\|\mathbf{x}_i \mathbf{x}_i\|^2$: Squared distance
- σ_i^2 : Variance for point *i*
- Gaussian kernel at x_i

Denominator:

$$\sum_{k \neq i} \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_k\|^2}{2\sigma_i^2}\right)$$

- Sum over all other points
- Ensures $\sum_{i} p_{j|i} = 1$
- Makes it a probability

Tuning Neighborhood Size: Perplexity

The Problem: How to choose σ_i for each point?

Solution: Use Perplexity - a user-specified parameter that indirectly sets σ_i through binary search

Definition

$$\mathsf{Perp}(P_i) = 2^{H(P_i)}$$

where Shannon entropy:

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$$

Binary Search for σ_i

Interpretation:

Perplexity = effective number of neighbors

Typical values: 5-50

Perplexity in Action

How Perplexity Affects Point Neighborhoods

Dense Region

Small σ_i needed

Many nearby points

- \rightarrow Narrow Gaussian
- \rightarrow Small σ_i achieves target perplexity

Sparse Region

Large σ_i needed

Few nearby points

- → Wide Gaussian
- \rightarrow Large σ_i achieves target perplexity

Key Insight: SNE automatically adapts to local data density Dense regions get small σ_i , sparse regions get large σ_i

Low-Dimensional Similarity $(q_{i|i})$: Standard Gaussians

$$q_{j|i} = \frac{\exp(-\|\mathbf{y}_i - \mathbf{y}_j\|^2)}{\sum_{k \neq i} \exp(-\|\mathbf{y}_i - \mathbf{y}_k\|^2)}$$

Key Differences from High-D:

Fixed Variance

No point-specific σ_i Often $\sigma^2 = 0.5$ Or absorbed into gradient

Why Fixed?

1. Equal density:

Points equally dense in low-D

2. Scale arbitrary:

Can rescale embedding

3. Simplification:

Fewer parameters

Result: Simpler optimization

Measuring Mismatch: Kullback-Leibler Divergence

Intuition: The cost of encoding data from distribution P using a code optimized for distribution Q.

$$\mathsf{KL}(P||Q) = \sum_{j} p_{j} \log \left(rac{p_{j}}{q_{j}}
ight)$$

Key Properties

- Always non-negative: $KL(P||Q) \ge 0$
- Zero if and only if P = Q
- Not a distance metric because it's asymmetric:

$$\mathsf{KL}(P||Q) \neq \mathsf{KL}(Q||P)$$

SNE's Goal: Minimize $\sum_i \mathsf{KL}(P_i||Q_i)$, where P_i are high-dim probabilities and Q_i are low-dim probabilities.

Asymmetric Penalty

Focus: A large penalty is incurred for representing nearby points $(p_j | \text{large})$ with distant map points $(q_j | \text{small})$.

SNE Cost Function: C(Y)

$$C(Y) = \sum_{i=1}^n \mathsf{KL}(P_i||Q_i) = \sum_i \sum_j p_{j|i} \log rac{p_{j|i}}{q_{j|i}}$$

Understanding the Cost:

What We Minimize

Sum over all points i: Each i has its own distribution P_i We want Q_i to match P_i

Asymmetric Penalties

High penalty:
Similar points mapped far
Low penalty:
Distant points mapped close

Result: SNE preserves local neighborhoods at the expense of global

What Does SNE Prioritize?

The Asymmetry of KL Divergence in Action

Case 1: $\underset{\text{High-D}}{\text{Eimilar}} \underset{\text{Space}}{\rightarrow} \text{Separated}$ Case 2: $\underset{\text{High-D}}{\text{Distant}} \underset{\text{Space}}{\rightarrow} \text{Collapsed}$

Key Insight: SNE strongly preserves local neighborhoods (Case 1) but allows distant points to collapse (Case 2)

Optimizing SNE: The Gradient $\frac{\partial C}{\partial \mathbf{y}_i}$

Gradient Descent: Update positions to minimize cost

$$\mathbf{y}_{i}^{(t+1)} = \mathbf{y}_{i}^{(t)} - \eta \frac{\partial C}{\partial \mathbf{y}_{i}}$$

The SNE Gradient Formula:

$$\frac{\partial C}{\partial \mathbf{y}_i} = 2\sum_{i=1}^n (p_{ij} - q_{ij} + p_{ji} - q_{ji})(\mathbf{y}_i - \mathbf{y}_j)$$

Key Components

Force terms:

 $(p_{ij} - q_{ij})$: Mismatch from i to j $(p_{ii} - q_{ii})$: Mismatch from j to i

Direction:

 $(\mathbf{y}_i - \mathbf{y}_i)$: Vector from j to i

Derivation Steps

- 1. Start with KL divergence
- 2. Apply chain rule
- 3. Differentiate w.r.t. \mathbf{y}_i
- 4. Account for asymmetry
- 5. Simplify terms

Full derivation in van der Maaten & Hinton (2008), Section 2

Gradient Intuition: Forces at Play

The Gradient as a System of Forces

Attractive Force

When $p_{ij} > q_{ij}$: Points should be closer \Rightarrow Pull together

Repulsive Force

When $p_{ij} < q_{ij}$: Points are too close \Rightarrow Push apart