Warm up: You flip 6 distinguishable coins. what is the probability that at least 2 th are heads?

ex How many ways that to flip 3 heads

How many ways are there to choose 3 of these 6 blanks to fill in heads? $C(6,3) = \frac{6!}{3!3!} = \frac{8.5.4}{3.7.1} = 20$

Alt 1: 2 heads = ((6,7) = 6! = 6.5 = 3.5 = 15 onternes Alt 7: 3 hends = 20 ontcomes = (66,4) = 15 ontcomes = (66,4) = 6 outcomes = ((6,5) = 6 out comes Alt 5: 6 heads = 1 ontcomes

a number of ways to flip at least I heads & is 15+20+15+6+1 = 57 may

A How many ways are there to flip 6 distinguishable coins?

 $n(5) = 2^6 = 64$

Probability of flipping at least 2 heads is

How many ways to flip ont least 2 heads The same thing as Total ways to to flip at coins most 1 head head.

64 - 7 = 57

7.5 Condionala Probability and Independence

Nintendo ran ads for their latest Pokemon game and has a summary of the results

	san the	Did not see	- Total
Purchased	100	200	300
Did not buy	200	1500	1700
Total	300	1700	2000

Did this ad work?

was it effective.

If some saw the ad were they more likely to someone who did not see the ad!

- Probabilty they bought the game bought & san at = 100 = 33% if they san the ad?
- if they did not see the ad? $\frac{1700}{\text{see the ad}} = \frac{200}{1700}$

12%

```
Two important related events (or unrelated)
        A: event that a person buys the game
        B: event that a person sees the ad.
The first probability ne compated was the prob. a person bought the game given that they
 san the ad.
    "Probability of A given B" = P(A|B)
                                               ligiren=
   P(A18) is called a conditional probability.
     P(A18) = .33
     pyrigh=.12 P(A/B")=.12
  How do we calculate P(A1B)?
    P(A(B) = # of people who saw the ad
                                               n(ANB)
                                             = n(B)
               # of people who saw the ad
        P(A|B) = \frac{n(A \cap B)}{n(B)} = \frac{n(A \cap B)/n(S)}{n(B)/n(S)} = \frac{P(A \cap B)}{P(B)}
ex Roll two distinguishable dice, fair.
   what is the probability the sum of both numbers will be 8 given that the first number rolled is 3?
      A: Sum of # is 8 (ind P(A|B)
```

B: first # is 3 what is n(ANB) and n(B)?

B= {(3,1), (3,2), (3,3), (3,41), (3,5), (3,6)} ANB = { (3,5) } $P(A|B) = \frac{n(A \cap B)}{n(B)} = \frac{1}{6}$ $P(A|B) = \frac{P(A\cap B)}{P(B)}$ ue can write as $P(A \cap B) = P(A \mid B) P(B)$ ex If there is a 50% chance of rain (R) and a 20% chance of lightning if it rains (L), what is the probability of both happening? P(R) = .5P(L|R) = .2P(RNL) = P(LIR) P(R) $= .2 \times .5 = .1 \cdot r \cdot 10%$ Tree diagrams; A: buy the ganc B: saw the ad. ANB (A) Anb

To find P(ANB) we travel up to Brode and from there to the A node, P(B) = .15 P(B') = .85 the Probability of Traveling from B to A P(A \ B) = .33 what is the probability P(ANB)? $P(A \cap B) = P(A \mid B) P(B)$ $= .33 \times .15 = .05$ what is P(A'|B)? If we are at the B note there are only two ways to go: to A or to A' P(A'18) + P(A 18) = 1 so P(A'1B) = (- P(A|B) = 1 - .33 = .6733 A P(AMB) = .05

ex Unfair coins.

We toss too coins, the first is fair and the second is twice: as likely to land on heads than tails.

$$\frac{\text{First coin}}{P(H) = \frac{1}{2}}$$

$$P(T) = \frac{1}{2}$$

$$P(T) = X = \sqrt{3}$$

$$2x + X = 1$$

$$3x = 1 \Rightarrow x = \frac{1}{3}$$

$$P(HH) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$$
 $P(HH) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$
 $P(TH) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$
 $P(TT) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$

Second Loin

P(H) = 2x = 3

ex Fill in the missing quantities: ?=.6.C $P(ANC) = ?=.3 \times .6$?=.6.C $P(AND) = ?=.3 \times .4$ $P(BNC) = ?=.7 \times .1$ $P(BNC) = ?=.7 \times .1$ $P(BND) = ?=.7 \times .9$