1 Hamiltonian and Lagrangian Systems

1.1 Symplectic Geometry

Definition 1 Let M be a manifold and $\omega \in \Omega^2(M)$. Then define the isomorphism $\flat : \mathfrak{X}(M) \to \mathfrak{X}^*(M)$; $X \mapsto X^{\flat} = i_X \omega$, and the map \sharp be its inverse.

Theorem 1 (Darboux) Suppose ω is a nondegenerate two-form on a 2n-manifold. Then $d\omega = 0$ iff there is a chart (U, ϕ) around each point m such that $\phi(m) = 0$ and $\omega|_U$ is canonical.

Definition 2 A sympletic form on a manifold M is a nondegenerate, closed two-form ω on M. A Symplectic Manifold is a manifold equipped with a symplectic form. The associated volume form is $\Omega_{\omega} = [(-1)^{[n/2]}/n!]\omega^n$. The charts in which the symplectic form takes the canonical form are called symplectic charts, and the coordinate functions are called canonical coordinates.

Definition 3 If (M, ω) and (N, ρ) are symplectic manifolds, a C^{∞} map between them that preserves the symplectic structure is called a **canonical transformation**.

Proposition 1 A canonical transformation has determinant 1 and is a local diffeomorphism.

Theorem 2 Let $M = T^*Q$, with $\tau_Q^* : M \to Q$ and $T\tau_Q^* : TQ \to TM$. Let $\alpha_q \in M$ and $\omega_{\alpha_q} \in T_{\alpha_q}M$. Then let $\theta_{alpha_q} : T_{\alpha_q}M \to \mathbb{R} : \omega_{\alpha_q} \mapsto \langle \alpha_q, T\tau_Q^*(\omega_{\alpha_q}) \rangle$, and $\theta_0 : \alpha_q \mapsto \theta_{\alpha_q}$. Then $\omega_0 = -d\theta_0$ is symplectic and the forms ω_0 and θ_0 are called the **canonical forms**.

The canonical forms, given in the usual coordinates of a cotangent bundle, take the form:

$$\theta_0 = \sum p_i dq^i$$

$$\omega = \sum dq^i \wedge dp_i$$

The canonical one-form can be thought of as a 'formal adjoint' to the projection operator:

$$\langle \theta(\alpha_q), w_{\alpha_q} \rangle = \langle T \tau_Q^* w_{\alpha_q}, \alpha_q \rangle$$

1.2 Hamiltonain Vector Fields and Poisson Brackets

Definition 4 On a symplectic manifold, given a function $H: M \to \mathbb{R}$, the **Hamiltonian Vector Field** associate to the function is a the vector field X_H satisfying $\omega(X_H, Y) = \langle dH, Y \rangle$, or that $i_{X_H} \omega = dH$.

Proposition 2 H is constant along the flow of X_H .

Proposition 3 Along a Hamiltonian flow, the symplectic form is conserved.

Definition 5 A vector field X is **locally Hamiltonian** if for every point, there is a neighborhood U of m such that $X|_{U}$ is Hamiltonian

Proposition 4 TFAE:

- 1. X is locally Hamiltonian
- 2. $\mathcal{L}_X \omega = 0$
- 3. The flow of X consists of canonical transformations

Remark 1 Locally Hamiltonian vector fields for a Lie subalgebra of $\mathfrak{X}(M)$. Globally Hamiltonian vector fields are locally Hamiltonian, but the other way around requires $H^1(M) = 0$.

Definition 6 Let $\alpha, \beta \in \mathfrak{X}^*(M)$. Then the Poisson Bracket of alpha and β is the one-form $-[\alpha^{\sharp}, \beta^{\sharp}]^{\flat}$

Definition 7 Let M be a sympletic manifold and $f,g:M\to\mathbb{R}$, then the Poisson bracket of f and g is $\{f,g\}=-i_{X_f}i_{X_g}\omega$.

Proposition 5

$$\{f,g\} = -\mathcal{L}_{X_f}g = \mathcal{L}_{X_g}f$$

Which mean the Poisson bracket is a derivation over f and g individually.

Corollary 1

- 1. $\frac{d}{dt}(f \circ F_t^{X_H}) = \{f \circ F_t^{X_H}, H\}$
- 2. $d\{f,g\} = \{df,dg\}$

Definition 8 The Lagrange Bracket of two vector fields is the function $[[X,Y]] = \omega(X,Y)$ and the Lagrange bracket of a chart is a matrix formed from the Lagrange bracket of each coordinate vector.

Theorem 3 Let (u, φ) be a chart on a symplectic manifold. Then

- 1. $\omega|_U = \sum [[u^i, u^j]] du^i \wedge du^j$
- 2. In a symplectic chart, the matrix ω_{ij} takes the off-diagonal block matrix form of a almost-complex structure.

3. If
$$f(q,p) = (Q,P)$$
, then $[[Q,P]] = \sum_{i=1}^{\infty} \left(\frac{\partial q^i}{\partial Q} \frac{\partial p^i}{\partial P} - \frac{\partial q^i}{\partial P} \frac{\partial p^i}{\partial Q} \right)$

4. $[[q,p]] \circ f^{-1} = [[Q,P]]$

Theorem 4 If X is a locally Hamiltonian vector field, and the pushforward of the canonical coordinates by the flow is denoted (Q_t, P_t) , then $[[Q_t, P_t]] \circ F_t^X = [[q, p]]$

1.3 Integral Invariants, Energy Surfaces, and Stability

Definition 9 An invariant form for a vector field is one whose Lie derivative is zero.

Proposition 6 Let X be a vector field and α, β invariant forms of it. Then

- 1. $i_X \alpha$ is invariant
- 2. $d\alpha$ is invariant
- 3. $\mathcal{L}_X \gamma$ is closed \iff $d\gamma$ is invariant
- 4. $\alpha \wedge \beta$ is invariant

Definition 10 α is relatively invariant $\iff \mathcal{L}_X \alpha$ is closed.

Definition 11 A_X is the algebra of all invariant forms of X, \mathcal{R}_X the relatively invariant forms of X, \mathcal{C} the closed forms of $\Omega(M)$ and \mathcal{E} the exact forms.

Theorem 5 The following sequences are exact:

1.
$$0 \to \mathcal{A}_X \xrightarrow{i} \Omega(M) \xrightarrow{\mathcal{L}_X} \Omega(M) \xrightarrow{\pi} \Omega(M) / Im(\mathcal{L}_X) \to 0$$

2.
$$0 \to \mathcal{C} \xrightarrow{i} \mathcal{R}_X \xrightarrow{d} \mathcal{A}_X \xrightarrow{\pi} \mathcal{A}_X / (\mathcal{E} \cap \mathcal{A}_X) \to 0$$

Let Σ_e be a connected component of $H^{-1}(e)$, where e is a regular value of H.

Theorem 6 There is a volume element μ_e invariant on Σ_e invariant under $X|\Sigma_e$

Definition 12 $V \subset M$ is a submanifold is an invariant manifold of a vector field if the vector field is tangent to V at every point.

Definition 13 Let $f_k: M \to \mathbb{R}$ be constants of motion for a Hamiltonian system X_H , and let $\vec{F} = (f_1, \ldots, f_n): M \to \mathbb{R}^k$, and c a regular value of \vec{F} , and let $\Sigma_c = \vec{F}^{-1}(c)$. Then Σ_c is an invariant manifold of X_H of codimension n and there is an invariance volume μ_c defined on Σ_c .

1.4 Lagrangian Systems

Definition 14 Let f be any map between vector bundles E, F over the same base space. Then the **Fiber Derivative** of the function f is the function $\mathbf{F}f$: $E \to L(E, F)$; $e \mapsto Df(e)$.

Proposition 7 Let $L: TQ \to \mathbb{R}$. Then $FL: TQ \to T^*Q$ is smooth and fiber-preserving.

Definition 15 Let ω_0 be the canonical symplectic form on T^*Q and let $L: TQ \to \mathbb{R}$. Then the **Lagrange two-form** is $\omega_L = (FL)^*\omega_0$

Definition 16 Let Q be a manifold and L a function on the tangent bundle. Then L is a regular Lagrangian if every point is a regular point of FL

Definition 17 Given $L: TQ \to \mathbb{R}$, define the action $A: TQ \to \mathbb{R}$ by $A(v) = \langle \mathbf{F}L(v), v \rangle$ and the energy E = A - L. A Lagrangian vector field for L is a vector field X_L s.t. $i_{X_L}\omega_L = dE$.

Theorem 7 Let X_L be a Lagrangian vector field for L, then in a chart, the integral curves (u(t), v(t)) satisfy Lagrange's Equations:

$$\frac{d}{dt}u(t) = v(t)$$

$$\frac{d}{dt}\left(\langle D_2L(u(t),v(t)),w\rangle\right) = \langle D_1L(u(t),v(t)),w\rangle$$

 $\forall w \in TQ.$

Theorem 8 Let L and \tilde{L} be regular Lagrangians, and $X_L, X_{\tilde{L}}$ be their respective vector fields. Then TFAE:

1.
$$L = \tilde{L} + \alpha + C$$
, $d\alpha = 0$

2.
$$X_L = X_{\tilde{L}} \, \& \, \omega_L = \omega_{\tilde{L}}$$

The set of closed one-forms on Q form the 'gauge group' of Lagrangians, i.e. Lagrangians can be transformed without changing the dynamics.

1.5 The Legendre Transformation

Definition 18 L is a hyperregular Lagrangian if $FL: TQ \to T^*Q$ is a diffeomorphism.

Theorem 9 Let L be a hyperregular Lagrangian on Q and let $H = E \circ (\mathbf{F}L)^{-1}$: $T^*Q \to \mathbb{R}$, where E is the energy of L. Then $\mathbf{F}L$ conjugates the flow X_L to X_H .

Theorem 10 $FH = (FL)^{-1}$

Corollary 2 Hyperregular Hamiltonians and Lagrangians correspond bijectively by their fiber derivatives.

1.6 Variational Principles in Mechanics

Definition 19 The path space between two points is defined as $\Omega(q_1, q_2, [a, b]) = \{c : [a, b] \to Q | c \text{ is a } C^2 \text{ curve}, c(a) = q_1; c(b) = q_2\}$

Proposition 8 The tangent space of the path space is $T_c\Omega(q_1, q_2, [a, b]) = \{v : [a, b] \to TQ | \pi_Q(v) = c, v(a) = 0, v(b) = 0\}$

Theorem 11 A function satisfies the Euler-Lagrange equations iff the resulting curve is a critical point of the action functional.

Theorem 12 (Euler-Lagrange-Jacobi-Maupertuis Principle of Least Action) Let $c_0(t)$ be a base integral curve of X_L , $q_1 = c_0(a)$; $q_2 = c_0(b)$, and e be the energy of $c_0(t)$ and be a regular value of a e. Let A be the accumulated (integrate) action along a path. Then dA(c) = 0, and the converse holds.