Homework 4

- 对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
 - 1. 使其在单位增益负反馈时系统性失调小于0.1mV;
 - 2. 使其随机性失调的标准差 (std) 小于 **1mV**;
 - 3. 使其共模抑制比大于 50dB。

- ·对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
 - 1. 使其在单位增益负反馈时系统性失调小 于**0.1mV**;

消除系统性失调 → V₂=V₁=0.9V

$$V_2 = V_1 = 0.9V$$

$$V_{GST3.4} = 500mV$$

$$\left(\frac{W}{L}\right)_{3,4} = 1.4:1$$

- 对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
 - 2. 使其随机性失调的标准差 (std) 小于 **1mV**;

$$V_{OS} = \Delta V_{T1} + \frac{g_{m3}}{g_{m1}} \Delta V_{T3} + \frac{V_{GST1}}{2} S$$

$$S = \frac{\Delta W/L_1}{W/L_1} + \frac{\Delta W/L_3}{W/L_3}$$

- 对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
 - 2. 使其随机性失调的标准差 (std) 小于 **1mV**;

$$V_{OS} = \Delta V_{T1} + \frac{g_{m3}}{g_{m1}} \Delta V_{T3} + \frac{V_{GST1}}{2} S$$

$$S = \frac{\Delta W/L_1}{W/L_1} + \frac{\Delta W/L_3}{W/L_3}$$

$$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$$
 2 (mV*um)

$$\frac{\Delta W/L}{\overline{W}/L} = A_{WL} \sqrt{\frac{1}{W^2} + \frac{1}{L^2}}$$
1.8 (%*um)

+50 % for pMOST

1. 将S项忽略

2. 令gm1=gm3, 简化设计

• 使其随机性失调的标准差 (std) 小于1mV;

考虑差分对,考虑正态分布

$$\sigma V_{T1} = \sigma V_{T3} = 0.5 mV$$

$$WL_3 = 16um^2$$

$$WL_1 = 36um^2$$

$$\left(\frac{W}{L}\right)_{3.4} = \frac{4.7u}{3.4u} \qquad \left(\frac{W}{L}\right)_{1.2} = \frac{36u}{1u}$$

$$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$$
 2 (mV*um)

》)仿真结果

- 对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
 - 3. 使其共模抑制比大于 50dB。

$$CMRR_{s} = 2g_{m1}g_{m3}R_{B} \cdot (r_{02}||r_{04})$$

$$g_{m1} = 635u, \qquad g_{m3} = 208u, \ g_{ds2} = 1.89u, \qquad g_{ds4} = 0.85u$$

$$R_B > \sim 3K\Omega$$

- 对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
 - 3. 使其共模抑制比大于 50dB。

$$CMRR_r = \frac{V_E L_B}{V_{OS}}$$

$$L_B > \sim 10nm$$

>>> 仿真结果

Homework Analysis 1-4

Homework 5

·已知要求GBW=50MHz, CL=5pF。设计一相位裕度大于70°的 米勒运放。通过仿真结果,给出该设计运放的:

233

- 1. FOM
- 2. 相位裕度
- 3. 输入等效总噪声
- 1. 选择 αβγ
- 2. 找到满足GBW最小的f_T
- 3. 根据增益要求选择L。
 - 得到f_{TH6}
- 4. 根据C₁和L₆计算W₆

•
$$L_6 = 0.2$$
um

$$f_{TH6} = 30GHz = > i = 0.04$$

• $W_6 = 375um$

 C_{GS} =2kW, k = 2fF/um, for minL

- ・已知要求GBW=50MHz,CL=5pF。设计一相位裕度大于70°的 米勒运放。通过仿真结果,给出该设计运放的:
 - **1. FOM**
 - 2. 相位裕度
 - 3. 输入等效总噪声
 - 5. 根据I_{DSH6}和反型系数i计算I_{DS6} I_{DSH6}=10.5mA
 - $KP_n = 280uA/V^2$
 - 6. 通过选择的 α 和 C_1 计算 C_c C_c =2.5pF
 - 7. 通过C_C计算g_{m1}和I_{DS1}

- $I_{DS6} = 10.5 \text{m} * 0.04 = 420 \text{uA}$
- $g_{m1} = 785u$
 - $I_{DS1} = 78.5 uA$
 - W1/L1=28u/0.5u

Loop Gain仿真

仿真结果

仿真结果

