Teoría de Conjuntos

Karina García Buendía

August 14, 2025

Axioma 1: Existencia

Existe un conjunto que no tiene elementos.

Axioma 2: Extensión

Si todo elemento de X es elemento de Y y todo elemento de Y es elemento de X, entonces X = Y.

Axioma 3: Esquema de comprensión

Sea una propiedad P(x). Para cualquier conjunto A hay un conjunto B tal que $x \in B \Leftrightarrow x \in A$ y P(x).

Ejemplo 1. Si P y Q son conjuntos, entonces hay un conjunto R tal que $x \in R$ si y solo si $x \in P$ y $x \in Q$.

Ejemplo 1. Si P y Q son conjuntos, entonces hay un conjunto R tal que $x \in R$ si y solo si $x \in P$ y $x \in Q$.

Proof.

Consideremos la propiedad de que $x \in Q$, es decir P(x, Q). Por el axioma esquema de comprensión se tiene que para todo Q y cualquier P hay un conjunto R tal que $x \in R$ si y solo si $x \in P$ y $x \in Q$.

Ejemplo 1. Si P y Q son conjuntos, entonces hay un conjunto R tal que $x \in R$ si y solo si $x \in P$ y $x \in Q$.

Proof.

Consideremos la propiedad de que $x \in Q$, es decir P(x, Q). Por el axioma esquema de comprensión se tiene que para todo Q y cualquier P hay un conjunto R tal que $x \in R$ si y solo si $x \in P$ y $x \in Q$.

Ejemplo 2. El conjunto de todos los conjuntos no existen.

Proof.

Supongamos lo contrario.

Lema

Sea P(x) una propiedad de x. Para todo conjunto A hay un único conjunto B tal que $x \in B$ si y solo si $x \in A$ y P(x)

Axioma 4: del Par

Para cualesquiera a y b existe un conjunto C tal que $x \in C$ si y solo si x = a o x = b.

Axioma 4: del Par

Para cualesquiera a y b existe un conjunto C tal que $x \in C$ si y solo si x = a o x = b.

¿Todo conjunto es un elemento de algún otro conjunto?, ¿dos conjuntos cuales quiera son simultáneamente elementos de algún mismo conjunto?

Axioma 5: de Unión

Para cualquier S, existe un conjunto U tal que si $x \in U$ si y solo si $x \in X$ para algún $X \in S$.

• Ejemplo 3. Sea $S = \{\emptyset, \{\emptyset\}\}$

Axioma 5: de Unión

Para cualquier S, existe un conjunto U tal que si $x \in U$ si y solo si $x \in X$ para algún $X \in S$.

• Ejemplo 3. Sea $S = \{\emptyset, \{\emptyset\}\}\$ ¿Quién es $\bigcup S$?

Axioma 5: de Unión

Para cualquier S, existe un conjunto U tal que si $x \in U$ si y solo si $x \in X$ para algún $X \in S$.

- Ejemplo 3. Sea $S = \{\emptyset, \{\emptyset\}\}\$ ¿Quién es $\bigcup S$?
 - Entonces $x \in \bigcup S$ si y solo si $x \in A$ para algún conjunto A en S. Es decir, si y solo si $x \in \emptyset$ o $x \in \{\emptyset\}$
- $\bullet \ \bigcup \emptyset = \emptyset$
- Sean A y B conjuntos, existe $\bigcup \{A, B\}$ tal que $x \in \bigcup \{A, B\}$ si y solo si $x \in A$ o $x \in B$.