

_	DEECDE MATCHING THE MIDEO.	Write out the definition of the derivative	1	::

• BEFORE WATCHING THE VIDEO: Write out the McLaurin expansion for the exponential function

• Explain in your own words how continuous time Markov chains differ from the Markov chains that we have been studying thus far in this course.

• How do we take a limit of a matrix of functions and how then do we differentiate a matrix of functions

					of lim	its	cannot	be	calculated	using	the	method	you	have	just
describe	d lim	$1_{\delta t \to 0}$	$\frac{P(t+\delta t)-I}{\delta t}$	P(t)											

 \bullet How is the Jump rate matrix for a continuous time Markov chain, $\mathbf{Q},$ defined?

• Explain how the exponential of a matrix is calculated. Hint: You do not take the exponential of each of the elements in turn.

• Show by substitution that $\mathbf{P}(t) = \exp(\mathbf{Q}t)$ is a solution of the Kolmogorov equation.

• How do you determine whether or not a continuous time Markov chain has a limiting stationary distribution and how do you determine the elements of this distribution