

Introducing RISC-V and How it enables IOT Innovation

RT-Thread 4.0 Launch Meeting 10/18/2018

21世纪初期的网络化演进对社会带来的三次冲击

第一次冲击出现在2000年	第二次冲击出现在2010年	第三次冲击出现在2020年
互联网是的社会进入10亿个"场 所"与"场所"互联的时代	手机的普及使50 亿"人"与"人"能够随时随地得与	500亿"物"与"物"能够与网络相 连
771 -5 20/11 -14/(454510	网络相连	~_

- 21世纪20年代,将进一步发展为包括物与人在内的世间万物的连接,即所谓的IoT
- 互联网市场的格局将再次产生巨变,只有掌握数据并对其进行确切分析的企业才能成为市场的 赢家

IoT的生态架构

- 构成IoT整个生态系统分为设备、微处理器、网络(局域网和广域网)、云平台、App应用等很多层面。
- 相关企业也涵盖设备厂商、芯片供应商、电信运营商、 机器供应商、系统集成商以及微软、亚马逊、谷歌、 苹果、IBM、阿里巴巴、腾讯、百度等平台巨头。
 - 所有企业都在各自擅长的领域充分发挥优势,力争成为市场赢家。然而企业的定位不同,其思路也明显有所区别。芯片供应商和制造商最关注的是IoT设备的销售情况。通信运营商瞄准的是使用手机线路的IoT解决方案得到普及。谷歌和苹果等平台企业的目的是获取大数据。

不断成长的软件生态系统

免费及开放的指令集架构

可扩展及可定制性强

世界上有非常多的开源及商用的工具及操作系统可供客户选择

在市场上有诸多开源及商用的CPU的实现可供用户选择

可用于从微控制器到超级计算机 的各种级别处理器核

RISC-V不是一家公司,也不是一种CPU的实现,它是一种在授权之下可以免费使用的指令集

RISC-V 将助力技术创新

SIEMENS CADENCE SAMSUNG Google I QUALCOMM SK hynix Mentor O SEAGATE

"The RISC-V Foundation is a non-profitable consortium chartered to standardize, protect, and promote the free and open RISC-V instruction set architecture together with its hardware and software ecosystem for use in all computing devices."

"RISC-V基金会是一个非营利性联盟,旨在标准化,保护和推广免费及开放的RISC-V指令集架构及其硬件和软件生态系统,以用于所有计算设备。"

RISC-V指令集和其它的指令集有何不同?

简洁

- 相较于其他商用的指令集而言小很多

• 从零开始的设计

- 对用户和特权指令集明确分离
- 避免功能需要与微架构或技术紧密关联

• 模块组装型指令集

- 短小精干的基本指令集
- 具有多种标准扩展

• 与生俱来的可扩展性和特制化设计

- 可变长度指令编码
- 具有可用于指令集扩展的大量操作码空间
- 支持广泛的定制工作可作为客户定制加速单元的基础,这一点在当前摩尔定律失效是变得尤为重要

• 稳定性高

- 基本及标准指令集扩展已经冻结,不再更新
- 通过选择性的扩展添加指令,绝非变为一个新版本的指令集

ISA Manual	Pages	Words	Hours to read	Weeks to read
RISC-V	236	76,702	6	0.2
ARM-32	2736	895,032	79	1.9
X86-32	2198	2,186,259	182	4.5
		假设每分	钟阅读200字,4	每周阅读40小时

传统增量ISA和21世纪RISC-V ISA

传统ISA

大而全的自助餐。人均300RMB

RISC-V ISA

RV32I 必备基础指令......20

可以运行全栈软件,给编译器开发者,操作系统 开发者以及封装语言程序员一个稳定的基础和目 标。

可选菜 RISC-V 可扩展指令

RV32M 乘法15
RV32F 单精度浮点15
RV32D 双精度浮点20
RV32A 原子操作10
RV32C 压缩指令12
RV32V 向量扩展20

模块化源自可选的标准扩展,硬件是否需要实现,完全取决于应用程序的需要。 这种模块化实现了 RISC-V的更小的面积和更低的功耗,这对嵌入式 loT应用至关重要。

RISC-V基金会决定何时在菜单中添加一个新菜(扩展指令),并且在硬件和软件技术委员会(TG)进行扩展指令的公开讨论之后,他们只会就技术来讨论增加的必要性。即使菜单上出现了新菜,它们仍然是可选的,而不是所有未来实现的必须要求,例如传统的增量ISA。

想吃什么点什么, 好吃,不浪费, 人均80RMB

飞速成长的RISC-V生态系统

SiFive Freedom SDK

GCC + BinUtils

SiFive Freedom Studio

- Freedom SDK, Eclipse CDT, GNU MCU Eclipse, pre-built GCC, and OpenOCD
- Built on Open Source technology

SEGGER

- SEGGER JLINK for Debug and Production Flash Programming
- Embedded Studio for RISC-V IDE, toolchain, debugger

Lauterbach

Lauterbach TRACE32 for silicon bring up and debug

UltraSoC

IP and tooling supporting SiFive instruction trace

• IAR

IAR Embedded Workbench with SiFive support in development

Embedded Operating Systems

- RT-Thread
- Express Logic Thread X
- ZephyrOS
- Micrium μCOS
- RIOT

Rich Operating Systems

- Debian Linux
- Fedora Linux
- SylixOS

FreedomStudio

嵌入式系统开发者拥抱AI

- 当下所面临的挑战是,用户对复杂系统行为的需求一直在增加,这对开发人员编写可靠代码来满足需求形成考验。
- 为相机系统编写代码使其可以靠检测视野中的所有人脸,这项任务难度有多高?
- 最近AI技术在嵌入式系统中的应用越来越多,这要求开发人员去获得新的技能并拓展新的思维方式,需要学习:
 - 卷积神经网络
 - 机器学习方法
 - AI训练方法
 - 如何将系统行为划分为AI和算法域等课题
 - 当系统的关键操作特性是派生的到且未定义的,且其中间操作是隐蔽的,以至于不能用传统的软件去分析系统时,他们还需要知道如何测试、调试和验证系统行为
- AI将引发嵌入式系统设计方式的大规模转变

- 用私有化指令定制硬件,用于Machine Learning将是一个趋势
 - 因为AI算法变化的频率非常高,通用的解决方案将更加适合
- 更适合的方案是将RISC-V作为基础指令集 + 扩展指令
 - 面向特定应用的扩展指令,例如
 - RISC-V Vector Extension
 - Tensor Instructions
 - Hardware acceleration
- 通用CPU + 面向特定应用的扩展指令的方式可以让软件生态在RISC-V的已有的软件生态上快速成长

RISC-V 为何选择Vector Extension

- RISC-V 采用的是Cray-style Vector Extensions
- 相同的软件模型适用于从小型到大型的各种不同的RISC-V CPU 处理器
- 充分重视RISC-V软件生态环境
 - LLVM Compiler
 - GCC Auto-Vectorizer
 - Frameworks, libraries, 3rd party software support

Vector ISA Goodness

- Reduced instruction bandwidth
- Reduced memory bandwidth
- Lower energy
- **Exposes DLP**
- Masked execution
- Gather/Scatter
- From small to large VPU

RISC-V Vector Extension

- Small
- Natural memory ordering
- Masks folded into vregs
- Scalar, Vector & Matrix
- Typed registers {extensions}
- Reconfigurable
- Mixed-type instructions
- Common Vector/SIMD programming model
- Fixed-point support
- **Easily Extensible**

Use Cases / Domains

- Machine Learning
- **Graphics**
- **DSP**
- Crypto
- **Structural Analysis**
- Climate Modeling
- Weather Prediction
- Drug design
- And more...

12

RISC-V + Hardware Acceleration - Kendryte K210

	Kendryte K210
Process	28nm
RISC-V Core	Dual-Core 64bit@400MHz, w/FPU
KPU	KPU 1.0, 64KLU@400MHz
视频性能	QVGA@60fps/VGA@30fps, Unlimited ROI, 支持 Tiny YOLO V2, MobileNet V1
音频新能	支持8路麦克风阵列,无需外加DS
FFT硬件加速	64/128/256/512点FFT
加密	AES, SHA256
AI框架	TensorFLow, Keras, Darknet
开发环境	SDK/HDK

Worldwide Presence

- 10 Offices
- ~300 Employees

World-class expertise

- Inventors of RISC-V
- Semiconductor in the Cloud
- RTL Design & Verification
- FPGA & Emulation
- Physical Design
- Wafer Fabrication
- Board Design
- Full Silicon Validation

SiFive中国(上海赛昉科技有限公司)上門巴经成立,

技术本土化正在迅速进行中

David PattersonTechnical Adviser

SiFive 公司的历史及其与生俱来的RISC-V基因

• RISC-V CPU IP的领导者

- Inventors of RISC-V
- Most complete product line of CPU IP: from microcontrollers, to embedded, to high-performance multi-core processors
- Very easy to customize

• 基于云端技术的芯片方案领导者

- Leverages software, high-level design, and automation
- Dramatically reduce cost and increase innovation
- Builds custom CPU IP and ASICs

SiFive RISC-V CPU的产品路线图

U Cores

Application Processors

- Linux-Capable
- Real Time Capabilities
- Multi-Core Ready

U52

U54-MC

E34

32-bit RISC-V

• FPU (F or D)

U74-MC

U77-MC

U87-MC

- 64-bit RISC-V Multi-Core Linux-Capable
- U54-MC4 Application Cores
- 1x E51 Monitor Core
- 5-stage pipeline
- Up to 9 cores and optional L2 Cache Controller
- 1.7 DMIPS/MHz
- 3.01 CoreMark/MHz

Dual Issue

- Al/Inference Macro-op Fusion
 - Vector Extensions
- Superscalar
- Out Of Order
- Vector Extensions

E Cores

High Performance Embedded

- Storage Controllers, Modems
- Deterministic Memory Access
- Fast Interrupt Latencies
- Multi-Core Ready

E31

- 32-bit RISC-V
- 5-stage pipeline
- 1.61 DMIPS/MHz
- 3.01 CoreMark/MHz

E51

- 32-bit RISC-V
- 5-stage pipeline
- 1.7 DMIPS/MHz

E24

FPU (F)

3.01 CoreMark/MHz

E71

E74

E77

- Dual Issue
- Macro-op Fusion
- Dual Issue
- Al/Inference
- Macro-op Fusion Vector Extensions

E Cores

Deep Embedded

- Small, Efficient MCU
- Minion / Security Cores
- Multi-Core Ready

E20

32-bit RISC-V

- 32-bit RISC-V
- 2-stage pipeline
- 3-stage pipeline • 1.1 DMIPS/MHz
 - 1.38 DMIPS/MHz

E21

• 2.4 CoreMark/MHz • 3.1 CoreMark/MHz

E54

32-bit RISC-V

• FPU (F or D)

E27

- Al/Inference
- Vector Extensions

17

Ready

SiFive基于云端技术的"定制芯片工厂"

SiFive基于云端技术的"定制芯片工厂"生态圈

HiFive1: RT-Thread First Run on RISC-V Dev Board

SiFive FE310-G000		
Process	180nmG	
Operating Voltage	3.3 V and 1.8 V	
Input Voltage	5 V USB or 7-12 VDC Jack	
IO Voltages	Both 3.3 V or 5 V supported	
Digital I/O Pins	19	
PWM Pins	9	
SPI Controllers/HW CS Pins	1/3	
External Interrupt Pins	19	
External Wakeup Pins	1	
Flash Memory	16 MB Quad SPI	
Host Interface (microUSB)	Program, Debug, and Serial Communication	

- QEMU模拟软件
- Interrupt Enable/Disable 中断开/关
- Context Switching 任务切换
- Interrupt Handling 中断处理
- OS Tick OS时钟节拍
- [Cache] 可选项

HiFive Unleashed: World's First Multi-Core RISC-V Linux Dev Board

SiFive FU540-C000				
Process	28nm			
RISC-V Core	4 × U54 RISC-V cores with machine, supervisor, and user mode 32 KB 8-way L1 I-cache, and 32 KB 8-way L1 D-cache. 1 × E51 RISC-V cores with machine and user mode, 16 KB 2-way L1 I-cache, and 8 KB data tightly integrated memory (DTIM).			
L2 Cache	2 MB 16-way coherent L2 cache.			
Interrupts	Software and timer interrupts, 53 peripheral interrupts connected to the PLIC with 7 levels of priority.			
DDR3/4 Controller	64 bit + ECC Memory Controller to external DDR3/DDR3L/DDR4 memory.			
UART 0	Universal Asynchronous/Synchronous Transmitters for serial communication.			
UART 1	Universal Asynchronous/Synchronous Transmitters for serial communication.			
QSPI 0	Serial Peripheral Interface. QSPI 0 has 1 chip select signal.			
QSPI 1	Serial Peripheral Interface. QSPI 1 has 4 chip select signals.			
QSPI 2	Serial Peripheral Interface. QSPI 2 has 1 chip select signal.			
PWM 0	16-bit Pulse-width modulator with 4 comparators.			
PWM 1	16-bit Pulse-width modulator with 4 comparators.			

为低功耗应用量身打造的架构

客户按需配置你的CPU和系统

让客户专注于真正重要的应用

不用在完全依赖芯片制造工艺的 演进 传统的设计方法学无法快速提供

利用和复用任何可以复用的设计