Regels voor Natuurlijke Deductie (naar 1)

regel	Coq commando
$\overline{\Sigma, \alpha \vdash \alpha}^{\text{hyp}}$	assumption. exact H.
$ \begin{array}{ c c c c } \hline \Sigma \vdash \alpha \to \beta & \Sigma \vdash \alpha \\ \hline \Sigma \vdash \beta & \\ \hline \end{array} \to E \ (modus \ ponens) $	${\tt imp_e}\ lpha$.
$ \frac{\Sigma, \alpha \vdash \beta}{\Sigma \vdash \alpha \to \beta} \to I $	${\tt imp_i}$ H.
$\frac{\Sigma \vdash \alpha \qquad \Sigma \vdash \neg \alpha}{\Sigma \vdash \beta} \neg E \ (inconsistentie)$	$neg_{-}e\ lpha$.
$ \frac{\Sigma, \neg \beta \vdash \alpha \qquad \Sigma, \neg \beta \vdash \neg \alpha}{\Sigma \vdash \beta} \neg E * (bewijs \ uit \ het \ ongerijmde) $	neg_e' α H.
$\frac{\Sigma, \beta \vdash \alpha \qquad \Sigma, \beta \vdash \neg \alpha}{\Sigma \vdash \neg \beta} \neg I \ (weerlegging)$	$\mathtt{neg}_{ extsf{-}}\mathtt{i}$ $lpha$ H.
$\boxed{\frac{\Sigma \vdash \alpha \land \beta}{\Sigma \vdash \alpha} \land 1E}$	con_e1 eta .
$\frac{\Sigma \vdash \alpha \land \beta}{\Sigma \vdash \beta} \land 2E$	con_e2 $lpha$.
$ \frac{\Sigma \vdash \alpha \qquad \Sigma \vdash \beta}{\Sigma \vdash \alpha \land \beta} \land I $	$\mathtt{con}_{\mathtt{-}}\mathtt{i}$.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathtt{dis_e} \ (\alpha \ \backslash \! / \ \beta) \ \mathtt{G} \ \mathtt{H}.$
$\boxed{\frac{\Sigma \vdash \alpha}{\Sigma \vdash \alpha \lor \beta} \lor 1I}$	$ ext{dis}_{-} ext{i1}.$
$\boxed{\frac{\Sigma \vdash \beta}{\Sigma \vdash \alpha \lor \beta} \lor 2I}$	dis₋i2.

¹J.F.A.K. van Benthem, H.P. van Ditmarsch, J. Ketting, J.S. Lodder, W.P.M. Meyer-Viol. *Logica voor informatica, derde editie.* Pearson Education. ISBN 90-430-0722-6. maart 2003.

$$\frac{\Sigma \vdash \forall x, \alpha}{\Sigma \vdash \alpha[x := t]} \forall E \ (instantiatie)$$

all_e (forall x, α) t.

term t is een zeker speciaal geval

vrije variabelen in t moeten ook vrij zijn in $\alpha[x:=t]$

$$\frac{\Sigma \vdash \alpha[x := y]}{\Sigma \vdash \forall x, \alpha} \forall I \ (generalisatie)$$

all_i y.

y is vrij in $\alpha[x:=y]$

y is niet vrij in Σ noch in $\forall x, \alpha$

$$\frac{\Sigma \vdash \exists x, \alpha \qquad \Sigma, \alpha[x{:=}y] \vdash \gamma}{\Sigma \vdash \gamma} \exists E$$

exi_e (exists x, α) y H.

y is vrij in $\alpha[x:=y]$

y is niet vrij in γ noch in Σ noch in $\exists x, \alpha$

$$\frac{\Sigma \vdash \alpha[x{:=}t]}{\Sigma \vdash \exists x,\alpha} \exists I \ (abstractie)$$

 exi_i t.

term t is een zeker speciaal geval

vrije variabelen in t moeten ook vrij zijn in $\alpha[x:=t]$

$$\frac{1}{\Sigma \vdash \alpha \lor \neg \alpha} \text{LEM (law of excluded middle)}$$

LEM.

Verklaring notatie

 Σ een verzameling beweringen

 α, β, γ beweringen

x, y variabelen

t term

G, H namen voor nieuwe aannames

Een verzameling aannames schrijven we als α, β, γ . De verzameling aannames Σ, α wordt gevormd door Σ uit te breiden met α .

De bewering $\alpha[x:=t]$ ontstaat uit de bewering α door daarin alle vrije voorkomens van x te vervangen door t.

Voorbeeld:
$$P x \land \neg P x \rightarrow (\forall x, P x)[x := t1 + d]$$
 staat voor $P (t1+d) \land \neg P (t1+d) \rightarrow (\forall x, P x)$.

Let op de analogieën tussen \wedge en \forall en tussen \vee en \exists en op de dualiteiten tussen \wedge en \vee en tussen \forall en \exists .