A Comprehensive Approach to Fake News Detection using NLP

Neuromatch Academy | Deep Learning Course | Summer 2024 | Tranquil Kolwitzia | Language Detectives

Team members: Boran, Zeinab, Ali

Project TA: Joseph

Pod TA: Mohammad

DATASET

News	Size (Number of articles)	Subjects	
Real-News	21417	Туре	Articles size
		World-News	10145
Reuters		Politics- News	11272
Fake-News	23481	Туре	Articles size
unreliable		Government- News	1570
websites that		Middle-east	778
were flagged by Politifact and		US News	783
Wikipedia.		left-news	4459
winipodia.		politics	6841
		News	9050

DATASET

- -Majority of the articles contain less than 400 words.
- -This might be useful when padding the articles in later steps.

PREPROCESSING

- Concatenate fake and true dataframes, label them either 0 or 1
- Join title and text columns
- Expand contractions
 e.g replace '\$' with 'dollar'
- Remove HTML tags, URLs, usernames, emails

- Remove punctuation, digits
- Normalize unicode e.g. æ → a, ü → u
- Remove stopwords e.g. 'a', 'of', 'the', 'for', 'and'

PREPROCESSING

Before Preprocessing:

Donald Trump Sends Out Embarrassing New Yearâ ™s Eve Message; This is Disturbing Donald Trump just couldn t wish all Americans a Happy New Year and leave it at that. Instead, he had to give a shout out to his enemies, haters and the very dishonest fake news media. The former reality show star had just one job to do and he couldn t do it. As our Country rapidly grows stronger and smarter, I want to wish all of my friends, supporters, enemies, haters, and even the very dishonest Fake News Media, a Happy and Healthy New Year, President Angry Pants tweeted. 2018 will be a great year for America! As our Country rapidly grows stronger and smarter, I want to wish all of my friends, supporters, enemies, haters, and even the very dishonest Fake News Media, a Happy and Healthy New Year. 2018 will be a great year for America! Donald J. Trump (@realDonaldTrump)

After preprocessing !!!

donald trump sends out embarrassing new years eve message this is disturbing donald trump just couldn t wish all americans a happy new year and leave it at that instead he had to give a shout out to his enemies haters and the very dishonest fake news media the former reality show star had just one job to do and he couldn t do it as our country rapidly grows stronger and smarter i want to wish all of my friends supporters enemies haters and even the very dishonest fake news media a happy and healthy new year president angry pants tweeted will be a great year for america as our country rapidly grows stronger and smarter i want to wish all of my friends supporters enemies haters and even the very dishonest fake news media a happy and healthy new year will be a great year for america

GLOVE

(Global Vectors for Word Representation)

LSTM

(Long Short-Term Memory)

Epoch

Batch size

Learning rate

Loss function

Embedding dim

64

Max article length

100

20

200

- optimizer Dropout probability
- torch.optim.Adam() 0.1

Glove + uni_LSTM

accuracy	99.87%
precision	99.87%
recall	99.87%
f1-score	99.87%

Glove + bi_LSTM

accuracy	99.74%
precision	99.74%
recall	99.75%
f1-score	99.74%

TF-IDF VECTORIZER

Max df	0.75
Max features	2000

LOGISTIC REGRESSION

Penalty	L2
Solver	newton-cg
multi_class	multinomial

accuracy	99.34%
precision	99.34%
recall	99.35%
f1-score	99.34%

Hidden size	768
Epoch	2
Batch size	64
Max article length	100
Learning rate	1e-5
Loss function	BceLoss()
optimizer	Adam
Dropout rate	0.2

BERT MODEL CURVES

accuracy	99.91%
precision	99.91%
recall	99.91%
f1-score	99.91%

SUSPICIOUSLY ACCURURATE MODELS

	title	text	subject	date
21412	'Fully committed' NATO backs new U.S. approach	BRUSSELS (Reuters) - NATO allies on Tuesday we	worldnews	August 22, 2017
21413	LexisNexis withdrew two products from Chinese \dots	LONDON (Reuters) - LexisNexis, a provider of I	worldnews	August 22, 2017
21414	Minsk cultural hub becomes haven from authorities	MINSK (Reuters) - In the shadow of disused Sov	worldnews	August 22, 2017
21415	Vatican upbeat on possibility of Pope Francis	MOSCOW (Reuters) - Vatican Secretary of State	worldnews	August 22, 2017
21416	Indonesia to buy \$1.14 billion worth of Russia	JAKARTA (Reuters) - Indonesia will buy 11 Sukh	worldnews	August 22, 2017

Notice the 'Reuters' tag on real news articles. Indeed it's present in a considerable number of articles.

We should remove them to prevent our models from cheating and to make them actually learn the semantic relationship between words.

COMPARING ALL 3 MODELS

With Reuters

Without Reuters

	Glove + Uni_LSTM	TFIDF + Log_Reg	BERT
accuracy	99.87%	99.34%	99.91%
f1-score	99.87%	99.34%	99.91%
accuracy	98.97%	98.78%	99.48%
f1-score	98.97%	98.77%	99.47%

ANOTHER DATASET

accuracy	75.92%
precision	75.27%

Glove + bi_LSTM

accuracy	75.69%
precision	75.15%

TFIDF + Log_Reg

accuracy	74.93%
precision	73.05%

BERT

accuracy	73.92%
precision	72.52%

CONCLUSION AND FUTURE DIRECTIONS

- All the models were able to extract features from news articles and classify them very accurately
- Order of the words don't really matter !!! (for fake news detection)
- Don't increase complexity unless needed

 Models should be trained on larger scale datasets consisting of news articles from various sources

 Other modalities (like images) can be explored

THANK YOU - ANY QUESTIONS?

Boran Aybak Kilic

https://www.linkedin.com/in/bkilic7/

Zeinab Jalilzadeh

https://www.linkedin.com/in/zeinab-jalilzadeh

Ali Khezri

https://www.linkedin.com/in/ali-khezri-3a81 2a2ab?trk=contact-info

References

- https://github.com/nihar-max/nlp_news_cla ssification/blob/main/News%20Classificatio n%20using%20NLP%20part%201.ipynb
 - https://www.learndatasci.com/glossary/tf-idf -term-frequency-inverse-document-frequen cy/#:~:text=cost%20to%20you.-,What%20is %20TF%2DIDF%3F,%2C%20relative%20t o%20a%20corpus).
- https://www.kaggle.com/code/sadikaljarif/fa ke-news-detection-using-bert
- https://huggingface.co/learn/nlp-course/en/c hapter6/6
- https://www.kaggle.com/code/satyamsss/fa ke-news-prediction-lstm-97-accurate

