Question ONE

a) Hand simulation to mimic the erection of a wall that requires 6 pallets of bricks

		EVENT LIST				CHRONOLOGICAL LIST		
#	Event Description		(Mins)	Event end		Processed	Fill Pallet	
		TNow	Duration	processing time	TNow	Event	Stack / Available#	Production
1	Labourer supply pallet	0	2	2	0	-	- , 3 nil	-
2	Labourer supply pallet	2	2	4	2	Labourer supply pallet	1 fil, 2 nil	
3	Mason 1 remove pallet	2	1	3	2	Labourer supply pallet	2 fill, 1 nil	
4	Mason 1 lay bricks	3	8	11	3	Mason 1 remove pallet	1 fill, 2 nil	
5	Labourer supply pallet	4	2	6	4	Labourer supply pallet	2 fill, 1 nil	
6	Mason 2 remove pallet	4	1	5	4	Labourer supply pallet	1 fill, 2 nil	
7	Mason 2 lay bricks	5	8	13	5	Mason 2 remove pallet	1 fill, 2 nil	
8	Labourer supply pallet	6	2	8	6	Labourer supply pallet	2 fill, 1 nil	
9	Labourer supply pallet	8	2	10	8	Labourer supply pallet	3 fill, 0 nil	
10	Mason 1 remove pallet	11	1	12	11	Mason 1 lay bricks	2 fill, 1 nil	1/11
11	Labourer supply pallet	12	2	14	12	Mason 1 remove pallet	3 fill, 0 nil	
12	Mason 1 lay bricks	12	8	20	12	Mason 1 remove pallet	3 fill, 0 nil	
13	Mason 2 remove pallet	13	1	14	13	Mason 2 lay bricks	2 fill, 1 nil	2 / 13
14	Labourer supply pallet	14	2	16	14	Labourer supply pallet	3 fill, 0 nil	
15	Mason 2 lay bricks	14	8	22	14	Mason 2 remove pallet	3 fill, 0 nil	
16	Mason 1 remove pallet	20	1	21	20	Mason 1 lay bricks	2 fill, 1 nill	3 / 20
17	Labourer supply pallet	21	2	23	21	Mason 1 remove pallet	3 fill, 0 nil	
18	Mason 1 lay bricks	21	8	29	21	Mason 1 remove pallet	3 fill, 0 nil	
19	Mason 2 remove pallet	22	1	23	22	Mason 2 lay bricks	2 fill, 1 nil	4 / 22
20	Labourer supply pallet	23	2	25	23	Mason 2 remove pallet	3 fill, 0 nil	
21	Mason 2 lay bricks	23	8	31	23	Mason 2 remove pallet	3 fill, 0 nil	
22	Mason 1 remove pallet	29	1	30	29	Mason 1 lay bricks	2 fill, 1 nil	5 / 29
23	Labourer supply pallet	30	2	32	30	Mason 1 remove pallet	3 fill, 0 nil	
24	Mason 1 lay bricks	30	8	38	30	Mason 1 remove pallet	3 fill, 0 nil	
25	Mason 2 remove pallet	31	1	32	31	Mason 2 lay bricks	2 fill, 1 nil	6/31

- b) Statistics for the state variables from hand simulation
 - i) The available space on the scaffold to place pallets:

Add up all the available space throughout the simulation

Divided by the number of events scheduled = 20 / 25 = 0.8 or 80%

ii) The time the laborer spends waiting to serve the masons

These are the times a laborer has to wait for the space on the pallet to become available so as to supply more. The time slots are:

```
Between 10 - 12 \text{ mins} = 2 \text{ mins}
```

Between 12 - 14 mins = 2 mins

Between 16 - 21 mins = 5 mins

Between 25 - 30 mins = 5 mins

Total = 14 minutes

Divide by 4 (number of instances laborer delays occurred) = 3.5 minutes

iii) The production rate of the operation

```
6 / 31 = 0.193549
```

This is the based on the time taken to lay the last pallet by the second mason when building a wall with six pallets

Question TWO

a) Generate 100 samples from a two parameter Weibull distribution i.e Weibull(1, 5) using the Inverse Transform Method

Sample source code attached:

```
public static partial class Formulas
{
    public static System.Boolean Formula(Simphony.General.Execute Element)
    {
        // Parameters for the Uniform distribution
        const int UNIFORM_LOW = 0;
        const int UNIFORM_HIGH = 1;

        // Parameters for the Weibull distribution
        const double GAMMA = 1.0; // Scale
```

b) Generate 100 samples from a Beta distribution i.e Beta(4, 3, 32, 73) using the Acceptance Rejection Method

Shape parameters are α = 4.0 and β = 5.0

Evaluate the Beta function (denoted by Γ) as a factorial:

$$\alpha$$
 = 4 and β = 3

B (α, β) =
$$\frac{\Gamma(\alpha) - \Gamma(\beta)}{\Gamma(\alpha + \beta)} = \frac{(\alpha - 1)! (\beta - 1)!}{(\alpha + \beta - 1)!} = \frac{(4 - 1)! - (3 - 1)!}{(4 + 3 - 1)!} = \frac{1}{60}$$

The value of c (highest possible value of y on the interval 32 to 73) is determined to be 2.07, from an analytical tool

Sample source code attached:

```
public static partial class Formulas
{
    public static System.Boolean Formula(Simphony.General.Execute Element)
    {
        // Parameters to the Uniform distribution
        const int UNIFORM LOW = 0;
```

```
// const int UNIFORM HIGH = 1;
// Two parameters for the beta distribution, Low and High
// const double ALPHA = 4.0;
// const double BETA = 3.0;
const double LOW = 32.0;
const double HIGH = 73.0;
double x = 0.0; // A uniform random variate defined on the PDF f(x) with interval [a, b]
double X = 0.0; // A random variable with PDF function f(x) defined on the interval [a, b]
double y = 0.0; // A uniform random variate on the interval [0, c]
double c = 0.0; // Highest value of y from f(x)
// Maximum value of f(x) defined for x in the interval[a, b] (from 32 - 72)
c = 2.07; // 2.4576;
// Begin processing for a hundred random deviates
for (int counter = 0; counter < 100; counter++)</pre>
      x = SampleUniform(LOW, HIGH);
      y = SampleUniform(UNIFORM LOW, c);
      X = 30 * x * System.Math.Pow((1 - x), 4);
      // Find out if the point y falls on or below the PDF curve
      while (y > X)
            // 1) Generate random numbers that are uniformly distributed
            x = SampleUniform(LOW, HIGH);
            y = SampleUniform(UNIFORM LOW, c); // A value of y drawn from the sample
            X = 30 * x * System.Math.Pow((1 - x), 4); // Represents a likely value of y
      }
      // If so then deliver x
      TraceLine(System.String.Format ("(\{0:0000\}) => \{1\}", counter+1, x));
} // End for
return default(System.Boolean);
```

Question THREE

Using the method of moments to fit the statistical data in csv format

i) Normal Distribution

Mean = 7.7709

Standard deviation = 2.7694

PDF curve

CDF curve

ii) Gamma Distribution

PDF Curve

CDF curve

iii) Log normal Distribution

PDF Curve

CDF curve

