Playing with Vampire: the dark art of theorem proving

Martin Suda

TU Wien, Vienna, Austria

SAT/SMT/AR Summer School in Manchester, 2018

...an automated/automatic theorem prover for first-order logic

...an automated/automatic theorem prover for first-order logic

What is special about Vampire?

• very fast (35 trophies from CASC over the last 16 years)

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs
- limited resource strategy (LRS)

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs
- limited resource strategy (LRS)
- AVATAR architecture for clause splitting

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs
- limited resource strategy (LRS)
- AVATAR architecture for clause splitting
- ullet reasoning with theories (arithmetic, arrays, ...) and quantifiers (!)

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs
- limited resource strategy (LRS)
- AVATAR architecture for clause splitting
- reasoning with theories (arithmetic, arrays, ...) and quantifiers (!)
- finite model building

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs
- limited resource strategy (LRS)
- AVATAR architecture for clause splitting
- reasoning with theories (arithmetic, arrays, ...) and quantifiers (!)
- finite model building
- powerful portfolio mode, a.k.a "the CASC mode"

...an automated/automatic theorem prover for first-order logic

- very fast (35 trophies from CASC over the last 16 years)
- notoriously hard to obtain
- simple to use, but also many ways to configure
- fully TPTP compliant; also understands SMTLIB2
- detailed proofs
- limited resource strategy (LRS)
- AVATAR architecture for clause splitting
- reasoning with theories (arithmetic, arrays, ...) and quantifiers (!)
- finite model building
- powerful portfolio mode, a.k.a "the CASC mode"
- question answering, interpolants, sine axiom selection, ...

CASC 2017 results¹

Higher-order	Satallax	Leo-III	<u>Satallax</u>	LEO-II	Zipperpir	Isabelle		
Theorems	3.2	1.1	3.0	1.7.0	1.1	2016		
Solved/500	430/500	382/500	382/500	305/500	179/500	387/500		
Solutions	430/500	382/500	375/500	301/500	179/500	0/500		
Typed First-order	<u>Vampire</u>	Vampire	CVC4	Princess	Zipperpir			
Theorems +*-/	4.1	4.2	ARI-1.5.2	170717	1.1			
Solved/250	194/250	191/250	188/250	130/250	39/250			
Solutions	194/250	191/250	188/250	115/250	39/250			
First-order	Vampire	Vampire	E	CVC4	iProver	Leo-III	lean-nan	Zipperpir
Theorems	4.2	4.0	2.1	NAR-1.5.2	2.6	1.1	1.0	1.1
Solved/500	452/500	444/500	381/500	327/500	283/500	211/500	186/500	154/500
Solutions	452/500	440/500	381/500	327/500	279/500	211/500	186/500	154/500
First-order Non-	Vampire	Vampire	iProver	CVC4	E	Scavenger		
theorems	SAT-4.1	SAT-4.2	SAT-2.6	SNA-1.5.2	FNT-2.1	EP-0.2		
Solved/250	219/250	217/250	175/250	136/250	85/250	12/250		
Solutions	217/250	204/250	175/250	136/250	85/250	12/250		
Effectively	iProver	iProver	Vampire	E	Scavenger	Scavenger		
Propositional CNF	2.6	2.5	4.2	2.1	EP-0.1	EP-0.2		
Solved/200	174/200	171/200	168/200	53/200	5/200	4/200		
SLedgeHammer	Vampire	CVC4	ET	E	Leo-III	iProver	Zipperpir	iProverM
Theorems	SLH-4.2	SLH-1.5.2	2.0	SLH-2.1	SLH-1.1	SLH-2.6	SLH-1.1	2.5-0.1
Solved/2000	1433/2000	1364/2000	1328/2000	1185/2000	652/2000	519/2000	472/2000	320/2000
Large Theory Batch	Vampire	Vampire	MaLARea	iProver	E			
Problems	LTB-4.0	LTB-4.2	0.6	LTB-2.6	LTB-2.1			
Solved/1500	1156/1500	1144/1486	1131/1500	777/1499	683/1499			
Solutions	1156/1500	1144/1486	1131/1500	777/1499	683/1499			

 $^{^{1}} http://www.cs.miami.edu/~tptp/CASC/26/WWWFiles/DivisionSummaryI.html$

Maybe you have seen in Kilburn building ...

Obtaining Vampire and these slides

The source code of Vampire is available on GitHub: https://github.com/vprover/vampire

Vampire has been pre-installed on the summer school VM

Like us [on Facebook: https://www.facebook.com/vprover/

To get these slides and exercises:

https://github.com/quickbeam123/satsmtar2018

(git clone https://github.com/quickbeam123/satsmtar2018.git)

First-order logic and the TPTP langauge

Switching to the other slides for a bit ...

Saturation

Saturation

Selecting the given clause

Saturation algorithms in Vampire

- the Discount loop
- the Otter loop
- Limited Resource Strategy [RV03]

AVATAR – architecture overview

Splitting interface

component index, component records, current model

AVATAR – architecture overview

Splitting interface

component index, component records, current model

model Unsatisfiable solve split clause: $[C_1] \lor ... \lor [C_n]$ contradiction clause: $\neg [C'_1] \lor ... \lor \neg [C'_k]$

SMT solver

Reasoning with theories

Arithmetic reasoning in Vampire

- Evaluation of ground interpreted terms $(1 + X \longrightarrow X)$
- Theory axioms
 - hand-crafted set
 - which axioms should be added for a given problem?
- VampireZ3 = AVATAR with an SMT solver
 - current implementation for Z3
 - Idea: Vampire only explores theory-consistent ground sub-problems
- theory instantiation and unification with abstraction [TACAS2018]

...

Reasoning with theories

Arithmetic reasoning in Vampire

- Evaluation of ground interpreted terms $(1 + X \longrightarrow X)$
- Theory axioms
 - hand-crafted set
 - which axioms should be added for a given problem?
- VampireZ3 = AVATAR with an SMT solver
 - current implementation for Z3
 - Idea: Vampire only explores theory-consistent ground sub-problems
- theory instantiation and unification with abstraction [TACAS2018]
- . . .

Finite model building

MACE/Paradox-style model finding

- try looking for a finite counterexample to an invalid conjecture
- iterate model sizes $n = 1, 2, \dots$
- pose the question " $\exists M, |M| = n \& M \models Ax \land \neg C$ " as a SAT problem

Finite model building

MACE/Paradox-style model finding

- try looking for a finite counterexample to an invalid conjecture
- iterate model sizes $n = 1, 2, \dots$
- pose the question " $\exists M, |M| = n \& M \models Ax \land \neg C$ " as a SAT problem

Dark art mini-CHALLENGE

./vampire --show_options on

Dark art mini-CHALLENGE

./vampire --show_options on

Some options to play with

- Set of support (-sos on)5536, but 507 new with respect to default
- AVATAR turned off (-av off) default: 9465; avoff: 8587, also 221 new
- Discount saturation loop and the age-weight ratio (-sa discount -awr 10) discount only: 9341; with awr10: 9495
- Lookahead literal selection (-s 1011) default: 9465; lookahead: 8852 but 839 new
- Sackward subsumption (-bs on)

Ready made solution from the Vizzard

Portfolio mode (a.k.a. CASC mode)

- a conditional portfolio mode
- a cocktail of a strategies optimized for good general performance
- incomplete strategies in the mix; complementarity for coverage
- --mode casc (there is also --mode casc_sat)
- in fact: --mode portfolio --schedule casc_2018 -t 5m
- --cores <number> for executing in parallel

Ready made solution from the Vizzard

Portfolio mode (a.k.a. CASC mode)

- a conditional portfolio mode
- a cocktail of a strategies optimized for good general performance
- incomplete strategies in the mix; complementarity for coverage
- --mode casc (there is also --mode casc_sat)
- in fact: --mode portfolio --schedule casc_2018 -t 5m
- --cores <number> for executing in parallel

A small experiment (5 minutes time limit)

TPTP 7.0.0 total:	21851	
Discarded (hol $+$ poly):	4323	
Eligible (cnf, fof, tff):	17528	
casc:	13362	76.2 %
casc_sat:	9473	54.0 %
union:	13495	76.9 %