

B103025027 林瀚坪

B103040015 陳承新

B103040061 段向生

B103040063 蕭維亨

一、摘要

本報告將從KNN開始介紹,介紹幾種資料分類演算法;

再來分享我們設計的程式以及在設計時所遇到的問題。

最後我們會對得出的結果進行分析。

二、分類演算法 簡介

KNN演算法,Random Forest, LVQ

KNN

- K-近鄰演算法
- 一種監督式學習演算法,它可以用於分類和回歸問題。

Random Forest

一種集成學習算法,使用多個決策樹對數據進行建模,然後將它們的預測結果合併來得出最終的預測結果。

LVQ

一種監督式學習算法, 在過程中進行即時的調整,讓各類別的代表點趨近最佳 值。

題。

不同分類法的比較

Date: Apr 1, 2023

則將其向樣本的方向移動。

• 反之則相反

Time: 10:00 AM

	步驟	缶夬黑占	優點
KNN	 確定鄰居數(即K值)。 計算測試樣本與訓練樣本之間的距離。 找到與測試樣本最相似的K個訓練樣本。 決定這K個訓練樣本中最常見的類別, 並將其分配給測試樣本的類別。 	當數據集較大時, 計算成本較高。 對數據集中的噪聲和 異常值比較敏感	簡單易懂且易於實現
Random FOREST	 從數據集中隨機選取一部分樣本,用於訓練第一棵決策樹。 直到建立了所需數量的決策樹。 將它們的預測結果進行合併,最終根據合併後的結果進行預測。 	難以解釋其內部運作 方式,因為它是由多 個決策樹組成的。且 需要較多空間。	在處理大型數據集時, 速度快 能夠處理高維數據集,並 且可以檢測出重要的特徵
COMPETITIVE LAYER LINEAR LA LINEAR LA C1 WC11 C2 WC21 C3 WC42 C4 WC42 C4 WC42 C5 WC42 C6 WC42 C7 WC42 C7 WC42 C8 WC42 C9 WC42	計算樣本與每個權重向量之間的距離。確定最近鄰分類器。如果最近鄰分類器與樣本的真實標籤相同則將其向樣本的方向移動。	需要進行參數調 整,並且不易擴展 到多類別分類問	具有很好的可解釋性,可以更好地理解 模型的內部運作方式

ction Header • Section Head

- 1.讀檔後,將數據轉換成list
- 2.歸一化
- 3.切割數據

4.計算測試資料和每一筆 要訓練資料的距離,使用 的是歐基里德距離 (Euclidean distance)。

- 5.尋找K個最近距離及紀
- 錄下來,並按標簽數量投
- 票分類。

```
#尋找K個最近距離
idx_list = min_idx(K_VALUE, arr_dist)
#記錄最近的K個標簽
outcome_list = [train_data_a["Outcome"][idx_list[x]] for x in range(K_VALUE)]
#按標簽數量投票分類
final_list_a = final_list_a + [classify(outcome_list)]
```


6.最後將結果進行比對。

```
#計算準確率
for i in range(len(single_test_a)):
    if final_list_a[i] == test_data_a["Outcome"][i]:
        current_a = current_a + 1;
for i in range(len(single_test_b)):
    if final_list_b[i] == test_data_b["Outcome"][i]:
        current_b = current_b + 1;
print("Accuracy of A : %.2f%%" % (current_a/len(single_test_a)*100))
print("Accuracy of B : %.2f%%" % (current_b/len(single_test_b)*100))
```


1.首先,我們載入了需要 使用的套件 2.使用csv套件讀取我們 需要的資料

Random Forest

-處理步驟

```
import csv
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as mat
```

```
csvfile = open(r"C:\Users\User\Desktop\school\2nd\DataMining\A\test_data.csv")
testfile = list(csv.reader(csvfile))
csvfile.close()

csvfile = open(r"C:\Users\User\Desktop\school\2nd\DataMining\A\train_data.csv")
trainfile = list(csv.reader(csvfile))
csvfile.close()

csvfile = open(r"C:\Users\User\Desktop\school\2nd\DataMining\B\test_data.csv")
test2 = list(csv.reader(csvfile))
csvfile.close()

csvfile = open(r"C:\Users\User\Desktop\school\2nd\DataMining\B\train_data.csv")
train2 = list(csv.reader(csvfile))
csvfile.close()
```


Random Forest

-處理步驟


```
x_train = [i[:-1] for i in trainfile[1:]]
x_{\text{test}} = [i[:-1] \text{ for } i \text{ in testfile}[1:]]
y_train = [i[-1] for i in trainfile[1:]]
y_{\text{test}} = [[i[-1]] \text{ for } i \text{ in } testfile[1:]]
```


4.使用 randomForestModel.fit()方法 來訓練模型,傳入的參數為 x_train和y_train。

Random Forest -處理步驟

randomForestModel = RandomForestClassifier(n_estimators=100)
randomForestModel.fit(x_train2, y_train2)

*randomForestModel.fit()

是用來訓練隨機森林模型的方法。 它的作用是根據給定的訓練資料(通常 包括特徵和標籤)來訓練一個隨機森林 模型。

5.使用 randomForesModel.predict() 方法 可以對新的數據進行預測,以預測 它屬於哪個類別,並將預測結果存 儲在 predict 中。

Random Forest -處理步驟

predict = randomForestModel.predict(x_train2)

6. 在模型訓練完成後,我們使用 score()方法來計算模型的精度,並 將結果輸出到屏幕上。

ction Header • Section Head

KNN之結果

• Accuracy of A: 76.62%

• Accuracy of B : 75.00%

100%

Random forest之結果

A:

• Test: 100%

• Train: 78.1%

В

• Test:100%

• Train 82%

▲各features的重要性

討論

從程式得出的結論是 血液中葡萄糖濃度 與BMI為前二重要的特徵

關於Features 的重要性,程式得出的數據合理嗎?

與現實情況成功連結

糖化血色素及血糖	BMI
是確認是否有糖尿病的重要指標, 已確認有糖尿病的患者更是要定期檢查。 *最好每 3 個月追蹤檢查一次	體重控制有助於糖尿病的血糖、血脂及血壓 控制。
	資料來源:糖尿病友「腰」約控糖! - 衛生福利部 https://www.mohw.gov.tw/fp-2649-20037-1.html

資料來源:中國醫藥大學-衛教單張-糖化血色素及血糖控制標準

https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=4865

參考資料

林昕潔, 柯皓仁, & 楊維邦. (2005). 以 SVM 與詮釋資料設計書籍分類系統 (Doctoral dissertation) Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.

糖尿病友「腰」約控糖! - 衛生福利部 https://www.mohw.gov.tw/fp-2649-20037-1.html

中國醫藥大學-衛教單張-糖化血色素及血糖控制標準

https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=4865

