MATH 562-01 MATHEMATICAL STATISTICS

Final Exam (Due by 12:00 pm, 12/05/2016, Monday)

Name:

1. (10 points each) Let Z_1 , Z_2 and Z_3 be independent normal random variables, each with mean zero and variance one. Find the distribution of the following variables, and justify your answers.

$$(1) \ \frac{Z_1 + Z_2 - Z_3}{2}$$

(2).
$$\frac{(Z_1 + Z_2)^2}{2Z_3^2}$$

2. (10 points each) Let Z_1 , Z_2 , Z_3 , Z_4 be a random sample from N(0,1), and X_1 , X_2 , X_3 , X_4 a random sample from N(2,1). Determine the sampling distributions of the following statistics. Explain why.

(1).
$$\frac{(X_1 - X_2)^2 + (Z_1 + Z_2)^2 + (X_3 - X_4)^2}{2}$$
 (2).
$$\frac{\sum_{k=1}^{4} (X_k - \overline{X})^2}{\sum_{k=1}^{4} (Z_k - \overline{Z})^2}$$

(2).
$$\frac{\sum_{k=1}^{4} (X_{k} - \overline{X})^{2}}{\sum_{k=1}^{4} (Z_{k} - \overline{Z})^{2}}$$

3. (10 points) Let X_1, \dots, X_m and Y_1, \dots, Y_n be independent random samples from a normal distribution with unknown mean μ and variance σ^2 . Let

$$\overline{X} = \frac{1}{m} \sum_{k=1}^{m} X_k$$
, $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, and $S_x^2 = \frac{1}{m-1} \sum_{k=1}^{m} (X_k - \overline{X})^2$.

Find the constant c so that the statistic

$$T = c \frac{\overline{Y} - \overline{X}}{S_x}$$

has a Student's t-distribution with m-1 degree of freedom.

- 4. (10 points) Let X_1, X_2, \dots, X_n be random from sample $N(\mu,10)$ If $P\left[\sum_{i=1}^{n} (X_i - \overline{X})^2 \le 52.3\right] = 0.05$, find the sample size n.
- 5. (10 points each) Let X_1, X_2, \dots, X_{16} be a random sample from N(1,4). Find

$$(1). \quad P \left[1.753 < \frac{4(\overline{X} - 1)}{S} \right]$$

(2).
$$P[S^2 \le 5.95]$$

6. (10 points) Let X_1, \dots, X_6 and Y_1, \dots, Y_8 be independent random samples from a standard normal distribution, and $V = \frac{4}{3} \left| \sum_{i=1}^{6} X_i^2 \middle| \sum_{i=1}^{8} Y_j^2 \right|$. What is the 99th percentile of the distribution of V?

1

7. (10 points) Let X_1, X_2, \dots, X_n be a random sample from a population with probability density function

$$f(x; p) = {10 \choose x} p^{x} (1-p)^{10-x}, x = 0,1,\dots,10.$$

where 0 is an unknown parameter. Find the Fisher Information in the random sample about the parameter <math>p.

8. (10 points) Let X_1, X_2, \dots, X_n be a random sample from a population with probability density function

$$f(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0,1,2,\dots$$

where $\lambda > 0$ is an unknown parameter. Find the maximum likelihood estimator $\widetilde{\lambda}$, and determine if $\widetilde{\lambda}$ is efficient (i.e., a UMVUE).

9. (10 points) Let X_1, X_2, \dots, X_n be a random sample from a population with probability density function

$$f(x;\theta) = \frac{\theta \alpha^{\theta}}{x^{(\theta+1)}}, \quad x > \alpha,$$

where $\alpha > 0$ is given and $\theta > 0$ is an unknown parameter. Find a sufficient statistic for θ .

- 10. (10 points) A random sample of size n is drawn from a normal population $N(\mu_1, \sigma_1^2)$, and another random sample of the same size is drawn independently from another normal population $N(\mu_2, \sigma_2^2)$. Find the MLE $\widetilde{\theta}$ for $\theta = \mu_1 \mu_2$. If the variances σ_1^2 and σ_2^2 are assumed to be known, is $\widetilde{\theta}$ an efficient estimator?
- 11. (10 points) A sequence of independent Bernoulli trials with probability of success p is performed. Let X be the number of trials until the first success occurs. Four independent realizations of X are $x_1 = 1$, $x_2 = 1$, $x_3 = 2$ and $x_4 = 1$. If, a priori, p is uniformly distributed on (0,1) and squared error loss is used, find the Bayesian estimate for p, i.e., $E[p|x_1, x_2, x_3, x_4]$.
- 12. (10 points) Let X_1, \dots, X_9 be a random sample from a normal distribution with mean μ and variance σ^2 , both unknown. Find a 90% confidence interval for μ .
- 13. (10 points) Let X_1, X_2, \dots, X_{21} be a random sample from a normal distribution with unknown mean μ and variance 1. Then $(L,U) = \left(\overline{X} \frac{1.96}{\sqrt{21}}, \overline{X} + \frac{1.96}{\sqrt{21}}\right)$ is a 95% confidence interval for μ . From a particular random sample, we observed \overline{x} , and found that L = 10.54 and U = 11.40. Which of the following interpretations of our finding are true? Explain why. (No credit without explanation.)
 - (1). The probability that μ will assume a value between 10.54 and 11.40 is 0.95.

- (2). If we were to repeat this entire sampling and interval computation process 100,000 times independently, we would expect 95,000 of the resulting intervals containing the true value of μ .
- (3). If we were to collect one additional independent observation from this normal population, the probability that this new observation would fall between 10.54 and 11.40 would be 0.95.
- 14. (10 points) Let X have density function $f(x) = (\theta + 1)x^{\theta}$, 0 < x < 1, and zero otherwise. The hypothesis $H_0: \theta = 1$ is to be rejected in favor of $H_a: \theta = 2$ if X > 0.90. What is the probability of Type I error? What is the power of the test.
- 15. (10 points) Let \overline{X} be the sample mean of a random sample from a normal distribution with variance 9. The hypothesis $H_0: \mu = 100$ is rejected in favor of $H_a: \mu = 101$ if $\overline{X} > c$, where c is a constant. If the size of the test is required to be 0.05, find the minimum sample size necessary to achieve 0.5 as the power of the test.
- 16. (10 points) It is hypothesized that of all marathon runners, 70% are adult men, 25% are adult women, and 5% are youths. To test this hypothesis, the following data from a recent marathon are used:

Adult men Adult women Youths Total 630 300 70 1,000

A chi-square goodness-of-fit test is used at $\alpha = 0.05$. What is the value of the test statistic? What would be the conclusion?

17. (10 points) Let Y_1, Y_2, \dots, Y_n be random variables such that $E[Y_i] = 2 + \beta x_i$, $i = 1, 2, \dots, n$, where x_1, x_2, \dots, x_n can be observed and β is an unknown parameter. If a random sample gives $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the **least squares estimate of** β is defined as $\hat{\beta}$ such that

$$S(\beta) = \sum_{i=1}^{n} (y_i - 2 - \beta x_i)^2$$

is minimized. Find the $\hat{\beta}$.

18. (10 points) A single observation is taken from a Cauchy distribution with density function $f(x) = \frac{1}{\pi \left[1 + \left(x - \theta\right)^2\right]}$. For testing $H_0: \theta = 0$ versus $H_a: \theta \neq 0$ at the 0.05 significant level using the generalized likelihood ratio test, find the critical region