HASH TABLES

1. Introduction

2. DICTIONARY DATA TYPE

Definition 2.1. Let \mathcal{X} be a set of *items* and let \mathcal{U} be a set of *keys*. Consider an abstract data type D which dynamically stores a collection of pairs (k, x) where $k \in \mathcal{U}$ and $x \in \mathcal{X}$ in such a way that D does not store two pairs having the same key at the same time. Moreover, we assume that D supports the following operations.

INSERT(D,(k,x))

Adds pair (k, x) into D if there is no other pair stored in D with k as a first entry.

DELETE(D,k)

Removes a pair with *k* as a first entry from *D* if such pair is stored in *D*.

SEARCH(D,k)

Returns x if a pair (k, x) is stored in D. Otherwise returns nil.

An abstract data type with these properties and interface is called *an associative array* or *a dictionary*.

Definition 2.2. Let \mathcal{X} and \mathcal{U} be sets. *Dictionary problem for* \mathcal{X} *and* \mathcal{U} is the task of designing a dictionary with \mathcal{X} as the set of items and \mathcal{U} as the set of keys.

3. HASH FUNCTIONS

In this section we introduce the important notion of a hash function and we discuss some probabilistic properties of such functions.

Definition 3.1. Let \mathcal{U} be a set. A hash function is a mapping $h: \mathcal{U} \to \{0,1,...,m-1\}$ where $m \in \mathbb{N}_+$.

Definition 3.2. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a hash function. A *collision* is a pair of keys $k_1, k_2 \in \mathcal{U}$ such that $k(k_1) = h(k_2)$.

Definition 3.3. Let *X* be a set and let $n \in \mathbb{N}_+$. Then a set

$$X^{\wedge n} = \left\{ \left(x_1, ..., x_n\right) \in X^n \,\middle|\, \forall_{1 \leq i < j \leq n} \, x_i \neq x_j \right\}$$

is called *the antisymmetric cartesian power of X*.

Definition 3.4. Let \mathcal{U} be a measurable space. We consider $\mathcal{U}^{\wedge n}$ as the measurable subspace of the product space \mathcal{U}^n . Suppose that P is a probability distribution on $\mathcal{U}^{\wedge n}$. Let $h:\mathcal{U}\to\{0,1,...,m-1\}$ be a measurable hash function for some $m\in\mathbb{N}_+$. Assume that the following assertions hold.

(1)

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l) = \frac{1}{m}$$

for every element $i \in \{1, ..., n\}$ and every $l \in \{0, 1, ..., m - 1\}$.

(2)

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} | h(k_i) = h(k_j)) \le \frac{1}{m}$$

for every pair of distinct elements $i, j \in \{1, ..., n\}$.

Then *h* is a simple uniform hashing with respect to *P*.

2 HASH TABLES

Example 3.5. Let $\mathcal{U} = [0, m]$ for some $m \in \mathbb{N}_+$. Then \mathcal{U} is a measurable space with respect to Borel algebra $\mathcal{B}([0, m])$. We define a hash function $h : \mathcal{U} \to \{0, 1, ..., m-1\}$ by formula

$$h(x) = |x|$$

Then h is a simple uniform hashing with respect to the normalization of n-dimensional Lebesgue measure on $[0, m]^{\wedge n}$.

Example 3.6. Let $\mathcal{U} = \{0, 1, ..., m^2 - 1\}$ for some $m \in \mathbb{N}_+$. Then \mathcal{U} is a measurable space with respect to the power algebra $\mathcal{P}(\{0, 1, ..., m^2 - 1\})$. Consider $\mathcal{U}^{\wedge n}$ as a probability space with respect to the uniform distribution P. We define a hash function $h: \mathcal{U} \to \{0, 1, ..., m - 1\}$ by formula

$$h(x) = x \mod m$$

For $i \in \{1,...,n\}$ and $l \in \{0,1,...,m-1\}$ we have

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l) = \frac{m \cdot (m^2 - 1) \cdot (m^2 - 2) \cdot ... \cdot (m^2 - n + 1)}{m^2 \cdot (m^2 - 1) \cdot ... \cdot (m^2 - n + 1)} = \frac{1}{m}$$

Fix distinct $i, j \in \{1, ..., n\}$ and $l \in \{0, 1, ..., m-1\}$. Note that

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l, h(k_j) = l) = \frac{m \cdot (m-1) \cdot (m^2 - 2) \cdot ... \cdot (m^2 - n + 1)}{m^2 \cdot (m^2 - 1) \cdot ... \cdot (m^2 - n + 1)} = \frac{1}{m \cdot (m + 1)}$$

Hence

$$P((k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = h(k_j)) = \sum_{l=0}^{m-1} P(h(k_i) = l, h(k_j) = l \mid (k_1,...,k_n) \in \mathcal{U}^{\wedge n}) =$$

$$= \frac{m}{m \cdot (m+1)} = \frac{1}{m+1} \le \frac{1}{m}$$

Thus *h* is a simple uniform hashing with respect to *P*.

4. HASH TABLES WITH CHAINING AS A SOLUTION TO DICTIONARY PROBLEM

In this section we present the solution to the dictionary problem and discuss its efficiency.

Definition 4.1. Let \mathcal{U} and \mathcal{X} be sets. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a hash function for some $m \in \mathbb{N}_+$. We consider an m-element array D_h such that $D_h[l]$ is a linked list storing values from $\mathcal{U} \times \mathcal{X}$ for every $l \in \{0, 1, ..., m-1\}$. We describe dictionary operations.

INSERT $(D_h, (k, x))$

Inserts pair (k, x) to the linked list $D_h[h(k)]$ as its new head.

DELETE(D_h, k)

Deletes a pair with first entry k from the linked list $D_h[h(k)]$.

 $SEARCH(D_h, k)$

Searches for the pair with the first entry k in the list $D_h[h(k)]$. If such pair is found, then returns its second entry. Otherwise returns nil.

Then D_h together with these operations is a solution of dictionary problem for \mathcal{U} and \mathcal{X} . We call it the hash table with collisions resolved by chaining for h.

Suppose that \mathcal{U} and \mathcal{X} are sets. Let $h:\mathcal{U}\to\{0,1,...,m-1\}$ be a hash function. Consider the hash table D_h . Fix $l\in\{0,1,...,m-1\}$ and $n\in\mathbb{N}_+$. Suppose that pairs $(k_1,x_1),...,(k_n,x_n)$ for $(k_1,...,k_n)\in\mathcal{U}^{\wedge n}$ and $x_1,...,x_n\in\mathcal{X}$ are consecutively inserted to initially empty D_h . After these sequence of insertions is performed the length of the linked list stored in $D_h[l]$ is equal to the cardinality of the set $\{i\,|\,h(k_i)=l\}$. We denote the function

$$\mathcal{U}^{\wedge n} \ni (k_1, ..., k_n) \rightarrow \left| \left\{ i \mid h(k_i) = l \right\} \right| \in \mathbb{N}$$

by $coll_1$.

HASH TABLES 3

Theorem 4.2. Let \mathcal{U} be a measurable space and let \mathcal{X} be a set. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a measurable hash function and fix $n \in \mathbb{N}_+$. Then the following assertions hold.

- **(1)** The function $coll_l : \mathcal{U}^{\wedge n} \to \mathbb{N}$ is measurable for every $l \in \{0, 1, ..., m-1\}$.
- (2) If h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$, then

$$\mathbb{E} \, coll_l = \int_{\mathcal{U}^{\wedge n}} coll_l \, dP = \frac{n}{m}$$

for every $l \in \{0, 1, ..., m-1\}$.

Proof. Suppose that X_i is the indicator function of the measurable set $\{(k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l\}$. Then

$$coll_l = \sum_{i=1}^n X_i$$

This proves that $slot_l$ is measurable. If in addition h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$, then

$$\mathbb{E} \, coll_l = \mathbb{E} \left(\sum_{i=1}^n X_i \right) = \sum_{i=1}^n \mathbb{E} X_i = \sum_{i=1}^n P \left((k_1, ..., k_n) \in \mathcal{U}^{\wedge n} \, \middle| \, h(k_i) = l \right) = \frac{n}{m}$$

Suppose that \mathcal{U} and \mathcal{X} are sets. Let $h:\mathcal{U}\to\{0,1,...,m-1\}$ be a hash function. Consider the hash table D_h . Fix $n\in\mathbb{N}_+$ and $i\in\{1,...,n\}$. Suppose that pairs $(k_1,x_1),...,(k_n,x_n)$ for $(k_1,...,k_n)\in\mathcal{U}^{\wedge n}$ and $x_1,...,x_n\in\mathcal{X}$ are consecutively inserted to initially empty D_h . After these sequence of insertions is performed the number of elements in the linked list stored in $D_h[k(k_i)]$ which precede (k_i,x_i) is equal to the cardinality of the set $\{j\in\{i+1,...,n\}\,\big|\,h(k_j)=h(k_i)\}$. We denote the function

$$\mathcal{U}^{\wedge n}\ni (k_1,...,k_n)\to \left|\left\{i\left|h(k_i)=l\right\}\right|\in\mathbb{N}$$

by $coll_{\leq i}$.

Theorem 4.3. Let \mathcal{U} be a measurable space and let \mathcal{X} be a set. Let $h: \mathcal{U} \to \{0, 1, ..., m-1\}$ be a measurable hash function and fix $n \in \mathbb{N}_+$. Fix $i \in \{1, ..., n\}$. Then the following assertions hold.

(1) The function

$$\mathcal{U}^{\wedge n} \ni (k_1, ..., k_n) \mapsto \#\{j \mid i \le j \le n \text{ and } h(k_i) = h(k_j)\} \in \mathbb{N}$$

is measurable.

(2) If h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$, then

$$\mathbb{E}\#\{j\,|\,i\leq j\leq n\;and\;h(k_i)=h(k_j)\}=\int_{\mathcal{U}^{\wedge n}}\#D_h[l]\,dP=\frac{n}{m}$$

for every $l \in \{0, 1, ..., m-1\}$.

Proof. Suppose that X_i is the indicator function of the measurable set $\{(k_1,...,k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l\}$. Then

$$\#D_h[l] = \sum_{i=1}^n X_i$$

This proves that $\#D_h[l]$ is measurable. If in addition h is a simple uniform hashing with respect to some probability distribution P on $\mathcal{U}^{\wedge n}$, then

$$\mathbb{E} \# D_h[l] = \mathbb{E} \left(\sum_{i=1}^n X_i \right) = \sum_{i=1}^n \mathbb{E} X_i = \sum_{i=1}^n P((k_1, ..., k_n) \in \mathcal{U}^{\wedge n} \mid h(k_i) = l) = \frac{n}{m}$$