ESP32-S3 Power Consumption Reference

Guide -from Espressif "ESP32S3 Technical Manual"

"Test Conditions

Supply Voltage: 3.3V ± 5%
 Ambient Temperature: 25°C

• RF Measurements: At antenna port with 100% duty cycle

1. Active Mode - RF Working

Wi-Fi Transmission (TX)

Protocol	Data Rate	Power Level	Peak Current
802.11b	1 Mbps	@21 dBm	340 mA
802.11g	54 Mbps	@19 dBm	291 mA
802.11n HT20	MCS7	@18.5 dBm	283 mA
802.11n HT40	MCS7	@18 dBm	286 mA

Wi-Fi Reception (RX)

 Protocol
 Current

 802.11b/g/n HT20
 88 mA

 802.11n HT40
 91 mA

2. Modem-Sleep Mode

Wi-Fi is clock-gated, CPU remains active

CPU Frequency CPU Configuration Periph

Peripherals OFF Peripherals ON

40 MHz	Dual core idle (WAITI)	13.2 mA	18.8 mA
	Single core 32-bit, other idle	16.2 mA	21.8 mA
	Dual core 32-bit	18.7 mA	24.4 mA
	Single core 128-bit, other idle	19.9 mA	25.4 mA
	Dual core 128-bit	23.0 mA	28.8 mA
80 MHz	Dual core idle (WAITI)	22.0 mA	36.1 mA
	Single core 32-bit, other idle	28.4 mA	42.6 mA
	Dual core 32-bit	33.1 mA	47.3 mA
	Single core 128-bit, other idle	35.1 mA	49.6 mA
	Dual core 128-bit	41.8 mA	56.3 mA
160 MHz	Dual core idle (WAITI)	27.6 mA	42.3 mA
	Single core 32-bit, other idle	39.9 mA	54.6 mA
	Dual core 32-bit	49.6 mA	64.1 mA
	Single core 128-bit, other idle	54.4 mA	69.2 mA
	Dual core 128-bit	66.7 mA	81.1 mA
240 MHz	Dual core idle (WAITI)	32.9 mA	47.6 mA
	Single core 32-bit, other idle	51.2 mA	65.9 mA
	Dual core 32-bit	66.2 mA	81.3 mA
	Single core 128-bit, other idle	72.4 mA	87.9 mA
	Dual core 128-bit	91.7 mA	107.9 mA

Additional Notes for Modem-Sleep:

- Flash access adds ~10 mA (80 Mbit/s flash in SPI 2-line mode)
- PSRAM variants may consume more power

3. Low-Power Modes

Mode	Description	Typical Current
Light-Sleep	VDD_SPI and Wi-Fi powered down, GPIOs high-impedance	240 μΑ
Deep-Sleep	RTC memory + RTC peripherals powered	8 μΑ
Deep-Sleep	RTC memory only (peripherals powered down)	7 μΑ
Power Off	CHIP_PU set low, chip shut down	1 μΑ

PSRAM Power Additions (Light-Sleep Mode):

• 8MB Octal PSRAM (3.3V): +140 μA

• 8MB Octal PSRAM (1.8V): +200 μA

• **2MB Quad PSRAM (3.3V):** +40 μA

4. Power Mode Characteristics

Mode	CPU Status	Wi-Fi Status	Wake-up Sources	Use Cases
Active	Running	Active TX/RX	N/A	Data transmission, processing
Modem-Sle ep	Running	Clock-gated	N/A	Local processing, periodic Wi-Fi
Light-Sleep	Stopped	Powered down	Timer, GPIO, RTC	Sensor monitoring
Deep-Sleep	Stopped	Powered down	Timer, GPIO, RTC, Touch	Long-term standby

5. Battery Life Estimation Examples

Scenario 1: IoT Sensor (Mostly Deep-Sleep)

• Deep-sleep 99.9% of time: 8 μA

• Active 0.1% for data transmission: ~100 mA average

• Average current ≈ 8.1 µA

• 1000 mAh battery ≈ 14 years

Scenario 2: Periodic Wi-Fi Data Logger

Deep-sleep 95%: 8 μALight-sleep 4%: 240 μA

• Active Wi-Fi 1%: 150 mA average

Average current ≈ 1.5 mA

• 1000 mAh battery ≈ 28 days

Scenario 3: Always-Connected Device

Modem-sleep 80 MHz: ~30 mA average

• Periodic transmission: +20 mA average

• Average current ≈ 50 mA

• 1000 mAh battery ≈ 20 hours

6. Power Optimization Tips

- 1. Use appropriate sleep modes based on wake-up requirements
- 2. Lower CPU frequency when high performance isn't needed
- 3. **Disable unused peripherals** to reduce base consumption
- 4. Optimize Wi-Fi duty cycle use modem-sleep between transmissions
- 5. Consider PSRAM power overhead when choosing chip variant
- 6. Use RTC GPIO and peripherals for ultra-low power wake-up scenarios

Data source: ESP32-S3 Series Datasheet v2.0