

Universidade de Brasilia

Tomate Cerveja

Wallace Wu, Pedro Gallo, Henrique Ramos

1 Contest 1	#include <chrono></chrono>			
2 Mathematics 1	<pre>using namespace std::chrono; int32_t main(){ sws;</pre>			
3 Data structures 3	<pre>auto start = high_resolution_clock::now(); // function here</pre>			
	<pre>auto stop = high_resolution_clock::now(); auto duration = duration_cast<milliseconds>(stop - start);</milliseconds></pre>			
4 Dynamic Programming 5	<pre>cout << duration.count() << endl; }</pre>			
5 Game theory 5	.bashrc 1 lines			
6 Numerical 6	alias comp='g++ -std=c++17 -g3 -ggdb3 -03 -Wall -Wextra - fsanitize=address,undefined -Wshadow -Wconversion - D_GLIBCXX_ASSERTIONS -o test'			
7 Number theory 6				
8 Combinatorial 7	$\frac{\text{hash.sh}}{\text{\# Hashes a file, ignoring all whitespace and comments. Use for}}$			
9 Graph 7	# werifying that code was correctly typed. CTRL+D to send EOF cpp -dD -P -fpreprocessed tr -d '[:space:]' md5sum cut -c -6			
10 Geometry 12	troubleshoot.txt			
•	Pre-submit:			
11 Strings 12	Write a few simple test cases if sample is not enough. Are time limits close? If so, generate max cases.			
12 Miscellaneous 14	Te the memory usage fine?			
$\underline{\text{Contest}}$ (1)	Wrong answer:			
,	Print your solution! Print debug output, as well. Are you clearing all data structures between test cases?			
template.cpp #include <bits stdc++.h=""> 39 lines</bits>	Can your algorithm handle the whole range of input? Read the full problem statement again.			
using namespace std;	Do you handle all corner cases correctly?			
<pre>#define sws cin.tie(0)->sync_with_stdio(0)</pre>	Have you understood the problem correctly? Any uninitialized variables?			
<pre>#define endl '\n'</pre>	Any overflows?			
<pre>#define 11 long long #define 1d long double</pre>	Confusing N and M, i and j, etc.? Are you sure your algorithm works?			
#define pb push_back	What special cases have you not thought of?			
#define ff first	Are you sure the STL functions you use work as you think?			
#define ss second	Add some assertions, maybe resubmit.			
<pre>#define pll pair<11, 11> #define vll vector<11></pre>	Create some testcases to run your algorithm on. Go through the algorithm for a simple case.			
adding vii vectorvii	Go through this list again.			
#define teto(a, b) ((a+b-1)/(b))	Explain your algorithm to a teammate.			
#define LSB(i) ((i) & -(i))	Ask the teammate to look at your code.			
#define MSB(i) (32builtin_clz(i)) //64 - clzll	Go for a small walk, e.g. to the toilet.			
#define BITS(i)builtin_popcountll(i) //count set bits	Is your output format correct? (including whitespace) Rewrite your solution from the start or let a teammate do it.			
<pre>mt19937 rng(chrono::steady_clock::now().time_since_epoch().</pre>	Nonzeo your borderon from the bears of fee a commune do fer			
count());	Runtime error:			
	Have you tested all corner cases locally?			
<pre>#define debug(a) cerr<<#a<<": ";for(auto b:a)cerr<<b<<" ";="" cerr<<endl;<="" pre=""></b<<"></pre>	Any uninitialized variables? Are you reading or writing outside the range of any vector?			
template <typename a=""> void dbg(A const& a) {((cerr<<"{"<<a< th=""><th>Any assertions that might fail?</th></a<></typename>	Any assertions that might fail?			
<pre><<"} "),);cerr<<endl;}< pre=""></endl;}<></pre>	Any possible division by 0? (mod 0 for example) Any possible infinite recursion?			
const 11 MAX = 3e5+10;	Invalidated pointers or iterators?			
const 11 MOD = 1e9+7;	Are you using too much memory?			
<pre>const 11 INF = 0x3f3f3f3f3f3f3f3f3;</pre>	Debug with resubmits (e.g. remapped signals, see Various).			
const ld EPS = 1e-7:	Time limit exceeded:			

Do you have any possible infinite loops?

const 1d PI = acos(-1);

What is the complexity of your algorithm?
Are you copying a lot of unnecessary data? (References)
How big is the input and output? (consider scanf)
Avoid vector, map. (use arrays/unordered_map)
What do your teammates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?

Mathematics (2)

2.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the *i*'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \dots - c_k$, there are d_1, \dots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n$.

2.3 Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

 $(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where
$$r = \sqrt{a^2 + b^2}$$
, $\phi = \operatorname{atan2}(b, a)$.

2.4Geometry

2.4.1Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{r}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°. ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{array}{ll} x = r\sin\theta\cos\phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r\sin\theta\sin\phi & \theta = \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r\cos\theta & \phi = \operatorname{atan2}(y,x) \end{array}$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7Series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1.$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each which yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$

$$\mu = \lambda$$
, $\sigma^2 = \lambda$

ordered-set dsu segRecursive

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is $\mathrm{U}(a,b),\ a < b.$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

3.1 Ordered Set

Policy Based Data Structures (PBDS) from gcc compiler

Ordered Multiset can be created using ordered_set<pll>val, idx

order_of_key() can search for non-existent keys!

find_by_order() requires existent key and return the 0-idx position of the given value. Therefore, it returns the numbers of elements that are smaller than the given value:

ordered-set.cpp

Description: Set with index operators, implemented by gnu pbds. Remember to compile with gcc!!

Time: $\mathcal{O}(log(N))$ but with slow constant

3.2 Disjoint Set Union

There are two optional improvements:

-Tree Balancing

-Path Compression

If one improvement is used, the time complexity will become $O(\log N)$

If both are used, $O(\alpha) \approx O(5)$

dsu.cpp

Description: Disjoint Set Union with path compression and tree balancing Time: $\mathcal{O}(\alpha)$ 0479c4, 22 lines

```
struct DSU{
   v11 group, card;
   DSU (11 n) {
      n += 1; // 0-idx -> 1-idx
      group = v11(n);
}
```

3.3 Segment Trees

Each node of the segment tree represents the cumulative value of a range.

Observation: For some problems, such as range distinct values query, considerer offiline approach, ordering the queries by L for example

$egin{array}{c} ext{example.} \ ext{3.3.1} ext{ Recursive SegTree} \end{array}$

segRecursive.cpp

Description: Basic Recursive Segment Tree for points increase and range sum query. When initializing the segmente tree, remeber to choose the range limits $(L,\,R)$

Time: $\mathcal{O}(N \log N)$ to build, $\mathcal{O}(\log N)$ to increase or query 156cd2, 70 line

```
// [0, n] segtree for range sum query, point increase
11 L=0, R;
struct Segtree {
    struct Node {
        // null element:
        11 ps = 0;
    vector<Node> tree;
    vector<ll> v;
    Segtree(ll n) {
        v.assign(n+1, 0);
        tree.assign(4*(n+1), Node{});
    Node merge (Node a, Node b) {
        return Node {
            // merge operaton:
            a.ps + b.ps
        };
    void build(11 1=L, 11 r=R, 11 i=1 ) {
        if (1 == r) {
            tree[i] = Node {
                // leaf element:
```

```
else {
        11 \text{ mid} = (1+r)/2;
        build(1, mid, 2*i);
        build(mid+1, r, 2 * i + 1);
        tree[i] = merge(tree[2*i], tree[2*i+1]);
void increase(ll idx=1, ll val=0, ll l=L, ll r=R, ll i=1)
    if (1 == r) {
         // increase operation:
         tree[i].ps += val;
    else {
        11 \text{ mid} = (1+r)/2;
        if (idx <= mid) increase(idx, val, 1, mid, 2*i);</pre>
        else increase(idx, val, mid+1, r, 2*i+1);
        tree[i] = merge(tree[2*i], tree[2*i+1]);
Node query(ll left=L, ll right=R, ll l=L, ll r=R, ll i=1) {
    // left/right are the range limits for the query
    // l / r are the internal variables of the tree
    if (right < 1 or r < left) {</pre>
         // null element:
         return Node{};
    else if (left <= 1 and r <= right) return tree[i];</pre>
    else{
        11 \text{ mid} = (1+r)/2;
        return merge (
             query(left, right, 1, mid, 2*i),
             query(left, right, mid+1, r, 2*i+1)
    }
```

3.3.2 PA Segtree

Description: Seg with PA (Progressao Aritmetica / Arithmetic Progression) When initializing the segmente tree, remeber to choose the range limits (L, R) and call build()

```
Time: \mathcal{O}(N \log N) to build, \mathcal{O}(\log N) to increase or query ^{22f4a0, 100 \text{ lines}}
// [0, n] segtree for range sum query, point increase
11 L=0, R;
struct SegtreePA {
    struct Node {
         // null element:
         11 ps = 0;
    };
    vector<Node> tree;
    vector<11> v:
    vector<pl1> lazy; // \{x, y\} of \{x*i + y\}
    // x = razao da PA, y = constante
    SegtreePA(11 n) {
    R = n;
         v.assign(n+1, 0);
        tree.assign(4*(n+1), Node{});
         lazy.assign(4*(n+1), pll());
    Node merge (Node a, Node b) {
```

```
return Node {
        // merge operaton:
        a.ps + b.ps
    };
inline pll sum(pll a, pll b) {
    return {a.ff+b.ff, a.ss+b.ss};
void build(ll l=L, ll r=R, ll i=1) {
   if (1 == r) {
        tree[i] = Node {
            // leaf element:
            v[1]
        };
    else {
        11 \text{ mid} = (1+r)/2;
        build(1, mid, 2*i);
        build(mid+1, r, 2*i+1);
        tree[i] = merge(tree[2*i], tree[2*i+1]);
    lazy[i] = \{0, 0\};
void prop(ll l=L, ll r=R, ll i=1) {
    auto [x, y] = lazy[i];
    if (x == 0 \text{ and } y == 0) \text{ return;}
    11 len = r-1+1;
    // (l_val + r_val) * len / 2
    Node val{ ((y + y + x*(len-1))*len) / 2 };
    tree[i] = merge(tree[i], val);
    if (1 != r) {
        11 \text{ mid} = (1+r)/2;
        lazy[2*i] = sum(lazy[2*i], lazy[i]);
        lazy[2*i+1] = sum(lazy[2*i+1], \{x, y + x*(mid-1+1)\}
    lazy[i] = \{0, 0\};
// left/right are the range limits for the query
// l / r are the internal variables of the tree
void increase(11 left, 11 right, 11 x, 11 y, 11 l=L, 11 r=R
    , 11 i=1 ) {
    prop(l, r, i);
    if (right < 1 or r < left) return;
    else if (left <= 1 and r <= right) {
        lazv[i] = \{x, v\};
        prop(1, r, i);
   else{
        11 \text{ mid} = (1+r)/2;
        increase(left, right, x, y, 1, mid, 2*i);
        ll ny = y + max( x*(mid-max(left, 1) + 1), OLL);
        increase(left, right, x, ny, mid+1, r, 2*i+1);
        tree[i] = merge(tree[2*i], tree[2*i+1]);
Node query(11 left=L, 11 right=R, 11 l=L, 11 r=R, 11 i=1) {
    prop(l, r, i);
    if (right < 1 or r < left) {
        // null element:
        return Node{};
```

```
else if (left <= 1 and r <= right) return tree[i];</pre>
        else{
             11 \text{ mid} = (1+r)/2;
             return merge (
                 query(left, right, 1, mid, 2*i),
                 query(left, right, mid+1, r, 2*i+1)
             );
};
```

3.4 Convex Hull Trick

If multiple transitions of the DP can be seen as first degree polynomials (lines). CHT can be used to optimized it

Some valid functions:

```
ax + b
cx^2 + ax + b (ignore cx^2 if c is independent)
```

cht-dynamic.cpp

Description: Dynamic version of CHT, thefore, one can insert lines in any order. There is no line removal operator

Time: $\mathcal{O}(\log N)$ per query and per insertion 707da4, 51 lines

```
// Convex Hull Trick Dinamico
// Para float, use LLINF = 1/.0, div(a, b) = a/b
// update(x) atualiza o ponto de intersecao da reta x
// overlap(x) verifica se a reta x sobrepoe a proxima
// add(a, b) adiciona reta da forma ax + b
// query(x) computa maximo de ax + b para entre as retas
// se quiser computar o minimo, eh soh fazer (-a)x + (-b)
// O(log(n)) amortizado por insercao
// O(log(n)) por query
struct Line {
 mutable 11 a, b, p;
 bool operator<(const Line& o) const { return a < o.a; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct DynamicCHT : multiset<Line, less<>>> {
 ll div(ll a, ll b) {
    return a / b - ((a ^ b) < 0 and a % b);
 void update(iterator x) {
   if (next(x) == end()) x -> p = LLINF;
   else if (x->a == next(x)->a) x->p = x->b >= next(x)->b?
        LLINF : -LLINF;
    else x->p = div(next(x)->b - x->b, x->a - next(x)->a);
 bool overlap(iterator x) {
   update(x);
   if (next(x) == end()) return 0;
   if (x->a == next(x)->a) return x->b >= next(x)->b;
    return x->p >= next(x)->p;
 void add(ll a, ll b) {
    auto x = insert({a, b, 0});
    while (overlap(x)) erase(next(x)), update(x);
```

3.5 Li-chao Tree

Works for any type of function that has the **transcending property**:

Given two functions f(x),g(x) of that type, if f(t) is greater than/smaller than g(t) for some x=t, then f(x) will be greater than/smaller than g(x) for x
ieq t. In other words, once f(x) "win/lose" g(x), f(x) will continue to "win/lose" g(x).

The most common one is the line function: ax + b

Dynamic Programming (4)

$\underline{\text{Game theory}} \ (5)$

5.1 Classic Game

- \bullet There are n piles (heaps), each one with x_i stones.
- Each turn, a players must remove t stones (non-zero) from a pile, turning x_i into y_i.
- The game ends when it's impossible to make any more moves and the player without moves left lose.

5.2 Bouton's Theorem

Let s be the xor-sum value of all the piles sizes, a state s=0 is a losing position and a state s!=0 is a winning position

5.2.1 **Proof**

All wining positions will have at least one valid move to turn the game into a losing position.

All losing positions will only have moves that turns the game into winning positions (except the base case when there are no piles left and the player already lost)

5.3 DAG Representation

Consider all game positions or states of the game as **Vertices** of a graph

Valid moves are the transition between states, therefore, the directed ${\bf Edges}$ of the graph

If a state has no outgoing edges, it's a dead end and a losing state (degenerated state).

If a state has only edges to winning states, therefore it is a losing state.

if a state has at least one edge that is a losing state, it is a winning state.

5.4 Sprague-Grundy Theorem

Let's consider a state u of a two-player impartial game and let v_i be the states reachable from it.

To this state, we can assign a fully equivalent game of Nim with one pile of size x. The number x is called the **Grundy value or nim-value or nimber** of the state u.

If all transitions lead to a *winning state*, the current state must be a *losing state* with nimber 0.

If at least one transition lead to a *losing state*, the current state must be a *winning state* with nimber *i*, 0.

The **MEX** operator satisfies both condition above and can be used to calculate the nim-value of a state:

 $nimber_u = MEX \text{ of all } nimber_{vi}$

Viewing the game as a DAG, we can gradually calculate the Grundy values starting from vertices without outgoing edges (nimber=0).

Note that the MEX operator **garantees** that all nim-values smaller than the considered nimber can be reached, which is essentially the nim game with a single heap with pile size = nimber.

There are only two operations that are used when considering a Sprague-Grundy game:

5.4.1 Composition

XOR operator to compose sub-games into a single composite game

When a game is played with multiple sub-games (as nim is played with multiple piles), you are actually choosing one sub-game and making a valid move there (choosing a pile and subtracting a value from it).

The final result/winner will depend on all the sub-games played. Because you need to play all games.

To compute the final result, one can simply consider the XOR of the nimbers of all sub-games.

5.4.2 Decomposition

MEX operator to compute the nimber of a state that has multiple transitions to other states

A state with nimber x can be transitioned (decomposed) into all states with nimber y < x

Nevertheless a state may reach several states, only a single one will be used during the game. This shows the difference between **states** and **sub-games**: All sub-games must be played by the players, but the states of a sub-game may be ignored.

To compute the mex of a set efficiently:

mex.cpp

Description: Compute MEX efficiently by keeping track of the frequency of all existent elements and also the missing ones

Time: $\mathcal{O}(\log N)$ per addition/removal, $\mathcal{O}(1)$ to get mex value, $\mathcal{O}(N\log(N))$ to initialize

d6f2b9, 27 lines

```
struct MEX {
    map<11, 11> freq;
    set<11> missing;
    // initialize set with values up to {max_valid_value}
         inclusive
    MEX(ll max_valid_value) { // <math>O(n log(n))}
        for(ll i=0; i<=max valid value; i++)</pre>
            missing.insert(i);
    ll get() { // O(1)
        if (missing.empty()) return 0;
        return *missing.begin();
    void remove(ll val) { // O(log(n))
        freg[val]--:
        if (freq[val] == 0)
            missing.insert(val);
    void add(ll val) { // O(log(n))
        freq[val]++;
        if (missing.count(val))
            missing.erase(val);
};
```

5.5 Variations and Extensions

5.5.1 Nim with Increases

Consider a modification of the classical nim game: a player can now add stones to a chosen pile instead of removing.

Note that this extra rule needs to have a restriction to keep the game acyclic (finite game).

Lemma: This move is not used in a winnig strategy and can be ignored.

Proof: If a player adds t stones in a pile, the next player just needs to remove t stones from this pile.

Considering that the game is finite and this ends sooner or later.

Example: If the set of possible outcomes for a state is 0, 1, 2, 7, 8, 9. The nimber is 3, because the MEX is 3, which is the smallest nim-value you can't transition into and also you can transition to all smaller nim-values.

Note that 7, 8, 9 transitions can be ignored, because you can simply revert the play by subtracting the same amount.

5.6 Misère Game

In this version, the player who takes the last object loses. To consider this version, simply swap the winning and losing player of the normal version.

5.7 Staircase Nim

5.7.1 Description

In Staircase Nim, there is a staircase with n steps, indexed from 0 to n-1. In each step, there are zero or more coins. Two players play in turns. In his/her move, a player can choose a step (i>0) and move one or more coins to step below it (i-1). The player who is unable to make a move lose the game. That means the game ends when all the coins are in step 0.

5.7.2 Strategy

We can divide the steps into two types, odd steps, and even steps.

Now let's think what will happen if a player A move x coins from an even step(non-zero) to an odd step. Player B can always move these same x coins to another even position and **the state of odd positions aren't affected**

But if player A moves a coin from an odd step to an even step, similar logic won't work. Due to the degenerated case, there is a situation when x coins are moved from stair 1 to 0, and player B can't move these coins from stair 0 to -1 (not a valid move).

From this argument, we can agree that coins in even steps are useless, they don't interfere to decide if a game state is winning or losing.

Therefore, the staircase nim can be visualized as a simple nim game with only the odd steps.

When stones are sent from an odd step to an even step, it is the same as removing stones from a pile in a classic nim game.

And when stones are sent from even steps to odd ones, it is the same as the increasing variation described before.

5.8 Grundy's Game

Initially there is only one pile with x stones. Each turn, a player must divide a pile into two non-zero piles with different sizes. The player who can't do any more moves loses.

5.8.1 Degenerate (Base) States

x = 1 (nim-val = 0) (losing)

x = 2 (nim-val = 0) (losing)

5.8.2 Other States

nim-val = MEX (all transitions)

Examples

```
x = 3:
{2, 1} -> (0) xor (0) -> 0
```

 $nim-val = MEX(\{0\}) = 1$

x = 4:

```
\{3, 1\} \rightarrow (1) \text{ xor } (0) \rightarrow 1

\text{nim-val} = \text{MEX}(\{1\}) = 0
```

x = 5:

```
\{4, 1\} \rightarrow (0) \text{ xor } (0) \rightarrow 0

\{3, 2\} \rightarrow (1) \text{ xor } (0) \rightarrow 1

\text{nim-val} = \text{MEX}(\{0, 1\}) = 2
```

x = 6:

```
\{5, 1\} \rightarrow (2) \text{ xor } (0) \rightarrow 2
\{4, 2\} \rightarrow (0) \text{ xor } (0) \rightarrow 0
\text{nim-val} = \text{MEX}(\{0, 2\}) = 1
```

Important observation: All nimbers for $(n \ge 2000)$ are non-zero. (missing proof here and testing for values above 1e6).

5.9 Insta-Winning States

Classic nim game: if **all** piles become 0, you lose. (no more moves)

Modified nim game: if any pile becomes 0, you lose.

To adapt to this version of nim game, we create insta-winning states, which represents states that have a transition to any empty pile (will instantly win). Insta-winning states must have an specific nimber so they don't conflict with other nimbers when computing. A possible solution is nimber=INF, because no other nimber will be high enough to cause conflict.

Because of this adaptation, we can now ignore states with empty piles, and consider them with (nullvalue = -1). And the (nimber = 0) now represents the states that only have transitions to insta-winning states.

After this, beside winning states and losing states, we have added two new categories of states (insta-winning and empty-pile). Notice that:

```
empty-pile <- insta-winning <- nimber(0)
```

Therefore, we have returned to the classical nim game and can proceed normally.

OBS: Empty piles (wasn't empty before) (nimber = -1) is different from Non-existent piles (never existed) (nimber = 0)

Usage Example:

https://codeforces.com/gym/101908/problem/B

5.10 References

```
https://cp-algorithms.com/game_theory/sprague-grundy-nim.html
```

https://codeforces.com/blog/entry/66040

https://brilliant.org/wiki/nim/

Numerical (6)

Number theory (7)

7.1 Sieves

These sieves are used to find all primes up to an upper bound N, which is usually 10^7

7.1.1 Eratosthenes

Eratosthenes uses less memory than the linear sieve and is almost as fast

eratosthenes.cpp

Description: Optimized sieve of eratosthenes **Time:** $\mathcal{O}(N \log \log N)$

8d74e5, 15 lines

7.1.2 Linear Sieve

Due to the lp vector, one can compute the factorization of any number very quickly!

Can check primality with lp[i] == i

Uses more memory, because lp is a vector of int or ll and not bits.

Proof of time complexity:

We need to prove that the algorithm sets all values lp[] correctly, and that every value will be set exactly once. Hence, the algorithm will have linear runtime, since all the remaining actions of the algorithm, obviously, work for O(n).

Notice that every number i has exactly one representation in form:

$$i = lp[i] \cdot x$$

where lp[i] is the minimal prime factor of i, and the number x doesn't have any prime factors less than lp[i], i.e.

$$lp[i] \le lp[x].$$

Now, let's compare this with the actions of our algorithm: in fact, for every x it goes through all prime numbers it could be multiplied by, i.e. all prime numbers up to lp[x] inclusive, in order to get the numbers in the form given above.

Hence, the algorithm will go through every composite number exactly once, setting the correct values lp[] there. Q.E.D.

linear-sieve.cpp

Description: Linear Sieve that iterates every value once (prime) or twice (composite)

Time: $\mathcal{O}(N)$

2124a6, 18 lines

Combinatorial (8)

8.1 Permutations

8.1.1 Factorial

n	1 2 3	4	5 6	7	8	9	10
n!	1 2 6	24 1	20 720	5040	40320	362880	3628800
n	11	12	13	14	15	16	17
n!	4.0e7	4.8e	8 6.2e	9 8.7e	10 1.3e	12 2.1e	l3 3.6e14
							0 171
n!	2e18	2e25	3e32	8e47 3	6e64 9e	157 6e2	62 > DBL_MAX

Graph (9)

9.1 Network flow

In optimization theory, maximum flow problems involve finding a feasible flow through a flow network that obtains the maximum possible flow rate.

```
dinic.cpp
```

Description: Run several bfs to compute the residual graph until a max flow configuration is discovered

```
Time: General Case, \mathcal{O}\left(V^2E\right); Unit Capacity, \mathcal{O}\left((V+E)\sqrt{E}\right); Bipartite and unit capacity, \mathcal{O}\left((V+E)\sqrt{V}\right)
```

```
dea1b7, 86 lines
// remember to duplicate vertices for the bipartite graph
//N = number of nodes, including sink and source
const 11 N = 700;
struct Dinic {
   struct Edge {
        11 from, to, flow, cap;
    vector<Edge> edges;
   vector<ll> q[N];
   11 \text{ ne} = 0, 1\text{vl}[N], \text{vis}[N], pass;
   11 qu[N], px[N], qt;
   ll run(ll s, ll sink, ll minE)
        if (s == sink) return minE;
        11 \text{ ans} = 0;
        for(; px[s] < (int)g[s].size(); px[s]++){</pre>
            11 e = g[s][px[s]];
            auto &v = edges[e], &rev = edges[e^1];
            if( lvl[v.to] != lvl[s]+1 || v.flow >= v.cap)
            11 tmp = run(v.to, sink, min(minE, v.cap - v.flow))
            v.flow += tmp, rev.flow -= tmp;
            ans += tmp, minE -= tmp;
            if (minE == 0) break;
        return ans:
   bool bfs(ll source, ll sink) {
        at = 0;
        qu[qt++] = source;
        lvl[source] = 1;
        vis[source] = ++pass;
        for(ll i=0; i<qt; i++) {</pre>
            11 u = qu[i];
            px[u] = 0;
            if (u == sink) return 1;
            for(auto& ed :q[u]) {
                auto v = edges[ed];
                if (v.flow >= v.cap || vis[v.to] == pass)
                     continue;
                vis[v.to] = pass;
                lvl[v.to] = lvl[u]+1;
                qu[qt++] = v.to;
        return false:
   11 flow(11 source, 11 sink) { // max_flow
        reset flow();
        11 \text{ ans} = 0;
        while(bfs(source, sink))
            ans += run(source, sink, LLINF);
        return ans:
   void addEdge(11 u, 11 v, 11 c, 11 rc = 0) { // c = capacity
         , rc = retro-capacity;
```

```
Edge e = \{u, v, 0, c\};
       edges.pb(e);
       q[u].pb(ne++);
       e = \{v, u, 0, rc\};
       edges.pb(e);
       g[v].pb(ne++);
   void reset_flow() {
       for (ll i=0; i < ne; i++) edges[i].flow = 0;
       memset(lvl, 0, sizeof(lvl));
       memset(vis, 0, sizeof(vis));
       memset(qu, 0, sizeof(qu));
       memset(px, 0, sizeof(px));
       qt = 0; pass = 0;
   // cut set cost = minimum \ cost = max \ flow
    // cut set is the set of edges that, if removed,
    // will disrupt flow from source to sink and make it 0.
   vector<pll> cut() {
       vector<pll> cuts;
       for (auto [from, to, flow, cap]: edges)
            if (flow == cap and vis[from] == pass and vis[to] <
                 pass and cap > 0)
                cuts.pb({from, to});
       return cuts;
};
```

The by-product of computing Max Flow is Min Cut! After Max Flow algorithm stops, we run graph traversal (DFS/BFS) from source s again. All reachable vertices from source s using positive weighted edges in the residual graph belong to the S-component. All other unreachable vertices belong to the T-component. All edges connecting the S-component to the T-component belong to the cut-set of C. The Min Cut value is equal to the Max Flow value. This is the minimum over all possible s-t cuts values.

9.1.2 Matching with Flow

By modeling a bipartite graph, with some Vertices (that will choose a match) to be on the L graph and some Vertices (that will be chosen) on the R. Set the correct capacities for these edges and also for the edges that connects the sink and source. After this modeling and running the dinic max flow algorithm, one will generate a possible matching (if it is possible).

A special case of matching is the perfect matching, which includes all vertices from the bipartite graph L and R.

A maximum matching has the maximum cadinality. A perfect matching is a maximum matching. But the opposite is not necessarity true.

It's possible to access dinic.edges, which is a vector that contains all edges and also its respective attributes, like the flow passing through each edge. Remember to consider that negative flow exist for reverse edges.

Matching

Coloring

Shortest Paths

For weighted directed graphs

9.4.1 Dijkstra

Single Source and there cannot be any negative weighted edges.

diikstra.cpp

Description: By keeping track of the distances sorted using an priority queue, transverse only using the smallest distances.

```
Time: \mathcal{O}\left((V+E)\log V\right)
                                                        ef1d0b, 19 lines
priority_queue<pl1, vector<pl1>, greater<pl1>> pq; // min pq
vector<vector<pll>> q(MAX);
vector<ll> d(MAX, INF);
void dijkstra(ll start){
    pq.push({0, start});
    d[start] = 0;
    while( !pq.empty() ){
        auto [p1, u] = pq.top(); pq.pop();
        if (p1 > d[u]) continue;
        for(auto [v, p2] : g[u]){
            if (d[u] + p2 < d[v]) {
                 d[v] = d[u] + p2;
                 pq.push({d[v], v});
        }
```

By inverting the sorting order, Dijkstra can be modified for the opposite operation: longest paths.

Furthermore, Dijkstra be extended to keep track of more information, such as:

- how many minimum-price routes are there? (modulo $10^9 + 7$
- what is the minimum number of flights in a minimum-price route?
- what is the maximum number of flights in a minimum-price route?

extendedDijkstra.cpp

Description: Also counts the numbers of shortest paths, the minimum and maximum number of edges transversed in any shortest path.

```
Time: \mathcal{O}((V+E)\log V)
                                                      f93094, 32 lines
priority_queue<pl1, vector<pl1>, greater<pl1>> pg; // min pq
vector<vector<pll>>> g(MAX);
vector<11> d(MAX, INF), ways(MAX, 0), mx(MAX, -INF), mn(MAX,
    INF);
//INF = INT64\_MAX
void dijkstra(ll start){
    pq.push({0, start});
    ways[start] = 1;
    d[start] = mn[start] = mx[start] = 0;
    while( !pq.empty() ) {
       auto [p1, u] = pq.top(); pq.pop();
        if (p1 > d[u]) continue;
       for(auto [v, p2] : q[u]) {
            // reset info, shorter path found, previous ones
                 are\ discarted
            if (d[u] + p2 < d[v]){
                d[v] = d[u] + p2;
                ways[v] = ways[u];
                mx[v] = mx[u]+1;
                mn[v] = mn[u]+1;
                pq.push({d[v], v});
            // same distance, different path, update info
            else if (d[u] + p2 == d[v]) {
                ways[v] = (ways[v] + ways[u]) % MOD;
                mn[v] = min(mn[v], mn[u]+1);
                mx[v] = max(mx[v], mx[u]+1);
```

9.4.2 Bellman-Ford

Single Source and it **supports** negative edges

Conjecture: After at most n-1 (Vertices-1) iterations, all shortest paths will be found.

bellman-ford.cpp

```
Description: n-1 iterations is sufficient to find all shortest paths
Time: \mathcal{O}(V*E) \rightarrow \mathcal{O}(N^2)
```

```
d749f1, 15 lines
using T = array<11, 3>;
vector<T> edges;
vector<11> d(MAX, INF);
//INF = 0x3f3f3f3f3f3f3f3f3f, to avoid overflow
void BellmanFord(ll src, ll n) {
    for(11 i=0; i<n-1; i++) { // n-1 iterations
```

```
for(auto [u, v, w] : edges) {
    if (d[u] + w < d[v]) {
        d[v] = d[u] + w;
```

By iterating once more, one can check if the last iteration reduced once again any distance. If so, it means that there must be a negative cycle, because the shortest distance should have been found before elseway.

To retrieve the negative cycle itself, one can keep track of the last vertice that reaches a considered vertice

bellman-ford-cycle.cpp

Description: By using the property that n-1 iterations is sufficient to find all shortest paths in a graph that doesn't have negative cycles. Iterate n times and retrieve the path using a vector of parents

Time: $\mathcal{O}(V*E) \rightarrow \mathcal{O}(N^2)$

```
0506b5, 35 lines
using T = array<11, 3>;
vector<T> edges;
vector<ll> d(MAX, INF), p(MAX, -1);
vector<11> cycle;
//INF = 0x3f3f3f3f3f3f3f3f3f, to avoid overflow
void BellmanFordCycle(ll src, ll n) {
    d[src] = 0;
    11 x = -1; // possible node inside a negative cycle
    for(11 i=0; i<n; i++) { // n iterations
        for(auto [u, v, w] : edges) {
            if (d[u] + w < d[v]) {
                d[v] = d[u] + w;
                p[v] = u;
                x = v;
    if (x != -1) {
        // set x to a node, contained in a cycle in p[]
        for (11 i=0; i < n; i++) x = p[x];
        11 tmp = x;
        do {
            cycle.pb(tmp);
            tmp = p[tmp];
        while (tmp != x);
        cycle.pb(x);
        reverse(cycle.begin(), cycle.end());
```

9.4.3 Floyd Warshall

All-Pair Shortest Paths

flovd-warshall.cpp

Description: By using an auxiliar vertice, check if a smaller path exists between a pair (u, v) of vertices, if so, update minimum distance. Time: $\mathcal{O}(V^3)$

```
//N < sqr3(1e8) = 460
```

fa5f60, 15 lines

9.5 Undirected Graph

Bridges and Articulation Points are concepts for undirected graphs!

9.5.1 Bridges (Cut Edges)

Also called isthmus or cut arc.

A back-edge is never a bridge!

A **lowlink** for a vertice U is the closest vertice to the root reachable using only span edges and a single back-edge, starting in the subtree of U.

After constructing a DFS Tree, an edge (u, v) is a bridge \iff there is no back-edge from v (or a descendent of v) to u (or an ancestor of u)

To do this efficiently, it's used tin[i] (entry time of node i) and low[i] (minimum entry time considering all nodes that can be reached from node i).

In another words, a edge (u, v) is a bridge \iff the low[v] ι tin[u].

bridges.cpp

Description: Using the concepts of entry time (tin) and lowlink (low), an edge is a bridge if, and only if, low[v] > tin[u]

Time: $\mathcal{O}(V+E)$ 87e0d3, 25 lines vector<vll> g(MAX); 11 timer = 1;11 tin[MAX], low[MAX]; vector<pll> bridges; void dfs(ll u, ll p = -1){ tin[u] = low[u] = timer++; for (auto v : q[u]) if (v != p) { if (tin[v]) // v was visited $(\{u,v\} \text{ is a back-edge})$ // considering a single back-edge: low[u] = min(low[u], tin[v]);else { // v wasn't visited ({u, v} is a span-edge) dfs(v, u); // after low[v] was computed by dfs(v, u): low[u] = min(low[u], low[v]);if (low[v] > tin[u]) bridges.pb({u, v});

```
void findBridges(ll n) {
    for(ll i=1; i<=n; i++) if (!tin[i])
        dfs(i);
}</pre>
```

9.5.2 Bridge Tree

After merging *vertices* of a **2-edge connected component** into single vertices, and leaving only bridges, one can generate a Bridge Tree.

Every **2-edge connected component** has following properties:

• For each pair of vertices A, B inside the same component, there are at least 2 distinct paths from A to B (which may repeat vertices).

bridgeTree.cpp

Description: After finding bridges, set an component id for each vertice, then merge vertices that are in the same 2-edge connected component **Time:** $\mathcal{O}\left(V+E\right)$

```
// g: u \rightarrow \{v, edge id\}
vector<vector<pll>>> g(MAX);
vector<vll> qc(MAX);
11 timer = 1;
11 tin[MAX], low[MAX], comp[MAX];
bool isBridge[MAX];
void dfs(ll u, ll p = -1) {
   tin[u] = low[u] = timer++;
    for(auto [v, id] : q[u]) if (v != p) {
        if (tin[v])
            low[u] = min(low[u], tin[v]);
            dfs(v, u);
            low[u] = min(low[u], low[v]);
            if (low[v] > tin[u])
                isBridge[id] = 1;
void dfs2(11 u, 11 c, 11 p = -1) {
    comp[u] = c;
    for(auto [v, id] : g[u]) if (v != p) {
        if (isBridge[id]) continue;
        if (!comp[v]) dfs2(v, c, u);
void bridgeTree(ll n) {
    // find bridges
    for(ll i=1; i<=n; i++) if (!tin[i])
        dfs(i);
    // find components
    for(ll i=1; i<=n; i++) if (!comp[i])
        dfs2(i, i);
    // condensate into a TREE (or TREES if disconnected)
    for(ll u=1; u<=n; u++) {</pre>
        for(auto [v, id] : g[u]) {
            if (comp[u] != comp[v]) {
                gc[comp[u]].pb(comp[v]);
```

```
}
```

9.5.3 Articulation Points

One Vertice in a graph is considered a Articulation Points or Cut Vertice if its removal in the graph will generate more disconnected components

```
articulation.cpp
```

```
Description: if low[v] >= tin[u], u is an articulation points The root is a corner case Time: \mathcal{O}(V + E)
```

```
8707a0, 29 lines
vector<vll> q(MAX);
11 \text{ timer} = 1;
11 low[MAX], tin[MAX], isAP[MAX];
// when vertex i is removed from graph
// isAP[i] is the quantity of new disjoint components created
// isAP[i] >= 1 \{i \ is \ a \ Articulation \ Point\}
void dfs(ll u, ll p = -1) {
    low[u] = tin[u] = timer++;
    for (auto v : g[u]) if (v != p) {
        if (tin[v]) // visited
             low[u] = min(low[u], tin[v]);
        else { // not visited
             dfs(v, u);
             low[u] = min(low[u], low[v]);
             if (low[v] >= tin[u])
                 isAP[u]++;
    // corner case: root
    if (p == -1 \text{ and } isAP[u]) isAP[u]--;
void findAP(ll n) {
    for(ll i=1; i<=n; i++) if (!tin[i])</pre>
        dfs(i);
```

9.5.4 Block Cut Tree

After merging *edges* of a **2-vertex connected component** into single vertices, one can obtain a block cut tree.

2-vertex connected components are also called as biconnected component

Every bridge by itself is a biconnected component

Each edge in the block-cut tree connects exactly an Articulation Point and a biconnected component (bipartite graph)

Each biconnected component has the following properties:

- For each pair of edges, there is a cycle that contains both edges
- For each pair of vertices A, B inside the same connected component, there are at least 2 distinct paths from A to B (which do not repeat vertices).

blockCutTree.cpp

blockCutTree kruskal toposort

```
erate a block cut tree
Time: \mathcal{O}(V+E)
                                                     f752d5, 100 lines
// Block-Cut Tree (bruno monteiro)
// Cria a block-cut tree, uma arvore com os blocos
// e os pontos de articulação
// Blocos sao as componentes 2-vertice-conexos maximais
// Uma 2-coloração da arvore eh tal que uma cor são
// os componentes, e a outra cor sao os pontos de articulação
// Funciona para grafo nao conexo
// isAP[i] responde o numero de novas componentes conexas
// criadas apos a remocao de i do grafo q
// Se isAP[i] >= 1, i eh ponto de articulação
// Para todo i < blocks.size()
// blocks[i] eh uma componente 2-vertce-conexa maximal
// blockEdges[i] sao as arestas do bloco i
// tree eh a arvore block-cut-tree
// tree[i] eh um vertice da arvore que corresponde ao bloco i
// comp[i] responde a qual vertice da arvore vertice i pertence
// Arvore tem no maximo 2n vertices
// O(n+m)
// 0-idx graph!!!
vector<vll> g(MAX), tree, blocks;
vector<vector<pll>> blockEdges;
stack<ll> st; // st for vertices,
stack<pl1> st2; // st2 for edges
vector<ll> low, tin, comp, isAP;
11 \text{ timer} = 1;
void dfs(ll u, ll p = -1) {
    low[u] = tin[u] = timer++;
    st.push(u);
    // add only back-edges to stack
    if (p != -1) st2.push({u, p});
    for (auto v : q[u]) if (v != p)
        if (tin[v] != -1) // visited
            st2.push({u, v});
    for (auto v : g[u]) if (v != p) {
        if (tin[v] != -1) // visited
            low[u] = min(low[u], tin[v]);
        else { // not visited
            dfs(v, u);
            low[u] = min(low[u], low[v]);
            if (low[v] >= tin[u]) {
                isAP[u] += 1;
                blocks.pb(vll(1, u));
                while(blocks.back().back() != v)
                    blocks.back().pb(st.top()), st.pop();
                blockEdges.pb(vector<pll>(1, st2.top())), st2.
```

Description: After Merging 2-Vertex Connected Components, one can gen-

```
while(blockEdges.back().back() != pair<11, 11>(
                    blockEdges.back().pb(st2.top()), st2.pop();
    // corner case: root
    if (p == -1 \text{ and } isAP[u]) isAP[u]--;
void blockCutTree(ll n) {
    // initialize vectors and reset
   tree.clear(), blocks.clear(), blockEdges.clear();
Of course, this cannot be done to every graph. Consider a
bridge in a graph. We have to assign a direction to it (and by
doing sorwe make this bridge "crossable" in only one direction.
That means we can't go from one of the bridge's ends to the
other solwe can't make the graph strongly connected.
        dfs(i);
    // set component id for APs
    tree.assign(blocks.size(), vll());
    for(ll i=0; i<n; i++) if (isAP[i])</pre>
        comp[i] = tree.size(), tree.pb(vll());
    // set component id for non-APs and construct tree
    for(ll u=0; u<(ll)blocks.size(); u++) {</pre>
        for(auto v : blocks[u]) {
            if (!isAP[v])
                comp[v] = u;
            else
                tree[u].pb(comp[v]), tree[comp[v]].pb(u);
```

Now consider a DFS through a bridgeless connected graph. Clearly, we will visit each vertex. And since there are no bridges, we can remove any DFS tree edge and still be able to go from below the edge to above the edge by using a path that contains at least one back edge. From this follows that from any vertex we can go to the root of the DFS tree. Also, from the root of the DFS tree we can visit any vertex we choose. We found a strong orientation!

In other words, to strongly orient a bridgeless connected graph, run a DFS on it and let the DFS tree edges point away from the DFS root and all other edges from the descendant to the ancestor in the DFS tree.

The result that bridgeless connected graphs are exactly the graphs that have strong orientations is called **Robbins'** theorem.

9.5.6 Minimum Spanning Tree

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible.

kruskal.cpp

Description: Sort all edges in crescent order by weight, include all edges which joins two disconnected trees. In case of tie, choose whichever. Dont include edges that will join a already connected part of the tree.

Time: $\mathcal{O}\left(E\log E\alpha\right)$

206ba3, 21 lines

```
// use DSU struct
struct DSU{};

set<array<11, 3>> edges;

int32_t main() { sws;
    11 n, m; cin >> n >> m;
    DSU dsu(n+1);
    for(11 i=0; i<m; i++) {
        11 u, v, w; cin >> u >> v >> w;
        edges.insert({w, u, v});
    }

11 minCost = 0;
    for(auto [w, u, v] : edges) {
        if (dsu.find(u) != dsu.find(v)) {
            dsu.join(u, v);
            minCost += w;
        }
    }
    cout << minCost << endl;
}
```

9.6 Directed Graph

9.6.1 Topological Sort

Sort a directed graph with no cycles (DAG) in an order which each source of an edge is visited before the sink of this edge.

Cannot have cycles, because it would create a contradition of which vertices whould come before.

It can be done with a DFS, appending in the reverse order of transversal. Also a stack can be used to reverse order

toposort.cpp

Description: Using DFS pos order transversal and inverting the order, one can obtain the topological order

```
Time: \mathcal{O}(V+E)
```

75f781, 17 lines

```
vector<vll> g(MAX, vll());
```

```
vector<bool> vis;
vll topological;
void dfs(ll u) {
    vis[u] = 1;
    for(auto v : g[u]) if (!vis[v]) dfs(v);
    topological.pb(u);
// 1 - indexed
void topological_sort(ll n) {
    vis.assign(n+1, 0);
    topological.clear();
    for(ll i=1; i<=n; i++) if (!vis[i]) dfs(i);
    reverse(topological.begin(), topological.end());
```

9.6.2 Kosaraju

A Strongly Connected Component is a maximal subgraph in which every vertex is reachable from any vertex inside this same subgraph.

A important property is that the inverted graph or transposed graph has the same SCCs as the original graph.

kosaraju.cpp

Description: By using the fact that the inverted graph has the same SCCs. just do a DFS twice to find all SCCs. A condensated graph can be created if wished. The condensated graph is a DAG!!

381904, 45 lines

```
Time: \mathcal{O}(V+E)
struct Kosaraju {
    11 n;
    vector<vll> g, gi, gc;
    vector<bool> vis:
    vector<11> comp;
    stack<ll, vll> st;
    void dfs(ll u) { // g
       vis[u] = 1;
        for(auto v : g[u]) if (!vis[v]) dfs(v);
        st.push(u);
    void dfs2(ll u, ll c) { // gi
       comp[u] = c;
        for (auto v : gi[u]) if (comp[v] == -1) dfs2(v, c);
   Kosaraju (vector<vll> &q_)
     : q(q_), n(q_size()-1) { // 1-idx
        gi.assign(n+1, vll());
        for(ll i=1; i<=n; i++) {
            for(auto j : g[i])
                gi[j].pb(i);
        gc.assign(n+1, vll());
       vis.assign(n+1, 0);
        comp.assign(n+1, -1);
        st = stack<ll, vll>();
        for(ll i=1; i<=n; i++) if (!vis[i]) dfs(i);</pre>
        while(!st.empty()) {
            auto u = st.top(); st.pop();
            if (comp[u] == -1) dfs2(u, u);
```

```
for(11 u=1; u<=n; u++)
            for(auto v : g[u])
                if (comp[u] != comp[v])
                    gc[comp[u]].pb(comp[v]);
};
```

9.6.3 2-SAT

SAT (Boolean satisfiability problem) is NP-Complete.

2-SAT is a restriction of the SAT problem, in 2-SAT every clause has exactly two variables: $(X_1 \vee X_2) \wedge (X_2 \vee X_3)$

Every restriction or implication are represented in the graph as directed edges.

The algorithm uses kosaraju to check if any $(X \text{ and } \neg X)$ are in the same Strongly Connected Component (which implies that the problem is impossible).

If it doesn't, there is at least one solution, which can be generated using the topological sort of the same kosaraju (opting for the variables that appers latter in the sorted order)

2sat.cpp

bool solve() {

Description: Kosaraju to find if there are SCCs. If there are not cycles, use toposort to choose states

```
Time: \mathcal{O}(V+E)
                                                       87417c, 83 lines
// 0-idx graph !!!!
struct TwoSat {
    11 N; // needs to be the twice of the number of variables
    // node with idx 2x \Rightarrow variable x
    // node with idx 2x+1 \Rightarrow variable !x
    vector<vll> g, gi;
    // g = graph; gi = transposed graph (all edges are inverted
    TwoSat(ll n) { // number of variables (add +1 faor 1-idx)
        N = 2 * n:
        g.assign(N, vll());
        gi.assign(N, vll());
    11 idx; // component idx
    vector<11> comp, order; // topological order (reversed)
    vector<bool> vis, chosen;
    // chosen[x] == 0 \Rightarrow x was assigned
    // chosen[x] == 1 \rightarrow !x was assigned
    // dfs and dfs2 are part of kosaraju algorithm
    void dfs(ll u) {
        vis[u] = 1;
        for (ll v : q[u]) if (!vis[v]) dfs(v);
        order.pb(u);
    void dfs2(11 u, 11 c) {
        comp[u] = c;
        for (ll v : gi[u]) if (comp[v] == -1) dfs2(v, c);
```

```
vis.assign(N, 0);
        order = vector<11>();
        for (ll i = 0; i < N; i++) if (!vis[i]) dfs(i);
        comp.assign(N, -1); // comp = 0 \ can \ exist
        idx = 1:
        for(ll i=(ll)order.size()-1; i>=0; i--) {
            11 u = order[i];
            if (comp[u] == -1) dfs2(u, idx++);
        chosen.assign(N/2, 0);
        for (11 i = 0; i < N; i += 2) {
            // x and !x in the same component \Rightarrow contradiction
            if (comp[i] == comp[i+1]) return false;
            chosen[i/2] = comp[i] < comp[i+1]; // choose latter</pre>
                  node
        }
        return true;
    // a (with flagA) implies \Rightarrow b (with flagB)
    void add(ll a, bool fa, ll b, bool fb) {
        // \{fa == 0\} \Rightarrow a
        // {fa == 1} \Rightarrow !a
        a = 2*a + fa;
        b = 2*b + fb;
        g[a].pb(b);
        gi[b].pb(a);
    // force a state for a certain variable (must be true)
    void force(ll a, bool fa) {
        add(a, fa^1, a, fa);
    // xor operation: one must exist, and only one can exist
    void exclusive(ll a, bool fa, ll b, bool fb) {
        add(a, fa^0, b, fb^1);
        add(a, fa^1, b, fb^0);
        add(b, fb^0, a, fa^1);
        add(b, fb^1, a, fa^0);
    // nand operation: no more than one can exist
    void nand(ll a, bool fa, ll b, bool fb) {
        add(a, fa^0, b, fb^1);
        add(b, fb^0, a, fa^1);
};
```

9.7Trees

lca.cpp

Description: Solves LCA for trees

Time: $\mathcal{O}(N \log(N))$ to build, $\mathcal{O}(\log(N))$ per query

7afc1a, 54 lines

```
struct BinaryLifting {
    11 n, logN = 20; // \sim 1e6
    vector<vll> q;
    vector<11> depth;
    vector<vll> up;
    BinaryLifting(vector<vll> &q_)
    : g(g_), n(g_.size() + 1) { // 1-idx}
        depth.assign(n, 0);
        while((1 << logN) < n) logN++;
        up.assign(n, vll(logN, 0));
        build();
```

```
void build(ll u = 1, ll p = -1) {
    for(ll i=1; i<logN; i++) {</pre>
        up[u][i] = up[up[u][i-1]][i-1];
    for (auto v : g[u]) if (v != p) {
        up[v][0] = u;
        depth[v] = depth[u] + 1;
        build(v, u);
ll go(ll u, ll dist) { // O(log(n))
    for(ll i=logN-1; i>=0; i--) { // bigger jumps first
        if (dist & (1LL << i)) {
            u = up[u][i];
    }
    return u;
11 lca(11 a, 11 b) { // O(log(n))
    if (depth[a] < depth[b]) swap(a, b);</pre>
    a = go(a, depth[a] - depth[b]);
    if (a == b) return a;
    for(ll i=logN-1; i>=0; i--) {
        if (up[a][i] != up[b][i]) {
            a = up[a][i];
            b = up[b][i];
    }
    return up[a][0];
ll lca(ll a, ll b, ll root) { // lca(a, b) when tree is
     rooted at 'root'
    return lca(a, b) ^lca(b, root) ^lca(a, root); //magic
```

queryTree.cpp

};

Time: $\mathcal{O}(N \log(N))$ to build; $\mathcal{O}(\log(N))$ per query 75ba37, 67 lines

```
struct BinaryLifting {
    11 n, logN = 20; // \sim 1e6
    vector<vpll> g;
   vector<ll> depth;
   vector<vll> up, mx, mn;
    BinaryLifting(vector<vpll> &g_)
    : g(g_), n(g_size() + 1) { // 1-idx}
       depth.assign(n, 0);
       while ((1 << logN) < n) logN++;
       up.assign(n, vll(logN, 0));
       mx.assign(n, vll(logN, -INF));
       mn.assign(n, vll(logN, INF));
       build();
   void build(ll u = 1, ll p = -1) {
        for(ll i=1; i<logN; i++) {</pre>
           mx[u][i] = max(mx[u][i-1], mx[up[u][i-1]][i-1]);
           mn[u][i] = min(mn[u][i-1], mn[up[u][i-1]][i-1]);
```

```
up[u][i] = up[up[u][i-1]][i-1];
       for(auto [v, w] : g[u]) if (v != p) {
           mx[v][0] = mn[v][0] = w;
           up[v][0] = u;
           depth[v] = depth[u] + 1;
           build(v, u);
   }
   array<11, 3> go(11 u, 11 dist) { // O(log(n))
       11 mxval = -INF, mnval = INF;
       for(ll i=logN-1; i>=0; i--) { // bigger jumps first
           if (dist & (1LL << i)) {
               mxval = max(mxval, mx[u][i]);
               mnval = min(mnval, mn[u][i]);
               u = up[u][i];
       }
       return {u, mxval, mnval};
   array<11, 3> query(11 u, 11 v) { // O(log(n))
       if (depth[u] < depth[v]) swap(u, v);</pre>
       auto [a, mxval, mnval] = go(u, depth[u] - depth[v]);
       11 b = v;
       if (a == b) return {a, mxval, mnval};
       for(ll i=logN-1; i>=0; i--) {
           if (up[a][i] != up[b][i]) {
               mxval = max(\{mxval, mx[a][i], mx[b][i]\});
               mnval = min({mnval, mn[a][i], mn[b][i]});
               a = up[a][i];
               b = up[b][i];
       mxval = max(\{mxval, mx[a][0], mx[b][0]\});
       mnval = min(\{mnval, mn[a][0], mn[b][0]\});
       return {up[a][0], mxval, mnval};
};
```

9.8 Math

Geometry (10)

Strings (11)

11.1 Hashing

Hashing consists in generating a Polynomial for the string, therefore, assigning each distint string to a specific numeric value In practice, there will always be some collisions:

```
Probability of colision: =\frac{n^2}{2m}
```

n = Comparissons, m = mod size

```
when using multiple mods, they multiply: m = m1 * m2
```

```
hashing.cpp
```

Time: $\mathcal{O}(n)$ to build, $\mathcal{O}(1)$ per query

Description: Create a numerical value for a string by using polynomial hashing

```
c3a650, 43 lines
// s[0]*P^n + s[1]*P^(n-1) + ... + s[n]*P^0
struct Hashing {
    11 n, mod;
    string s:
    vector<11> p, h; // p = P^i, h = accumulated hash sum
    const 11 P = 31; // can be 53
    Hashing(string &s , ll m)
      : n(s_.size()), s(s_), mod(m), p(n), h(n) {
        for(11 i=0; i<n; i++)
            p[i] = (i ? P*p[i-1] : 1) % mod;
        for(11 i=0; i<n; i++)
            h[i] = (s[i] + P*(i ? h[i-1] : 0)) % mod;
    ll query(ll l, ll r) { // [l, r] inclusive (0-idx)
        ll hash = h[r] - (1 ? (p[r-1+1]*h[1-1]) % mod : 0);
        return hash < 0 ? hash + mod : hash;
};
// for codeforces:
mt19937 rng(chrono::steady_clock::now().time_since_epoch().
    count());
int32_t main() { sws;
    vector<ll> mods = {
        1000000009,1000000021,1000000033,
        1000000087,1000000093,1000000097,
        1000000103,1000000123,1000000181,
        1000000207,1000000223,1000000241,
        1000000271,1000000289,1000000297
    };
    shuffle(mods.begin(), mods.end(), rng);
    string s; cin >> s;
    Hashing hash(s, mods[0]);
```

11.2 **Z-Function**

Suppose we are given a string s of length n. The Z-function for this string is an array of length n where the i-th element is equal to the greatest number of characters starting from the position i that coincide with the first characters of s (the prefix of s)

The first element of the Z-function, z[0], is generally not well defined. This implementation assumes it as z[0] = 0. But it can also be interpreted as z[0] = n (all characters coincide).

Can be used to solve the following simples problems:

Find all ocurrences of a pattern p in another string s. (p + '\$' + s) (z[i] == p.size())

zfunction kmp suffix-array kasai manacher

```
• Find all borders. A border of a string is a prefix that is also
  a suffix of the string but not the whole string. For example,
  the borders of abcababcab are ab and abcab. (z[8] = 2, z[5]
  = 5) (z[i] = n-i)
```

• Find all period lengths of a string. A period of a string is a prefix that can be used to generate the whole string by repeating the prefix. The last repetition may be partial. For example, the periods of abcabca are abc, abcabc and abcabca.

It works because (z[i] + i = n) is the condition when the common characters of z[i] in addition to the elements already passed, exceeds or is equal to the end of the string. For example:

```
abaababaab z[8] = 2
```

abaababa is the period; the remaining (z[i] characters) are a prefix of the period; and when all these characters are combined, it can form the string (which has n characters).

zfunction.cpp

Description: For each substring starting at position i, compute the maximum match with the original prefix. z[0] = 0

Time: $\mathcal{O}(n)$

```
vector<ll> z_function(string &s) { // O(n)
    ll n = (ll) s.length();
    vector<ll> z(n);
    for (11 i=1, 1=0, r=0; i<n; i++) {
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        while (i + z[i] < n \text{ and } s[z[i]] == s[i + z[i]]) z[i]++;
        if (r < i + z[i] - 1) l = i, r = i + z[i] - 1;
    return z;
```

11.3 KMP

KMP stands for Knuth-Morris-Pratt and computes the prefix function.

You are given a string s of length n. The prefix function for this string is defined as an array π of length n, where $\pi[i]$ is the length of the longest proper prefix of the substring s[0...i] which is also a suffix of this substring. A proper prefix of a string is a prefix that is not equal to the string itself. By definition, $\pi[0] = 0.$

For example, prefix function of string "abcabed" is [0,0,0,1,2,3,0], and prefix function of string "aabaaab" is [0, 1, 0, 1, 2, 2, 3].

Description: Computes the prefix function

Time: $\mathcal{O}(n)$

48408b, 13 lines

vector<11> kmp(string &s) { // O(n)ll n = (ll) s.length();

```
14b37c, 12 lines
```

```
vector<ll> pi(n);
```

```
for (11 i = 1; i < n; i++) {
    11 j = pi[i-1];
    while (j > 0 \&\& s[i] != s[j])
        j = pi[j-1];
    if (s[i] == s[j])
        j++;
    pi[i] = j;
return pi;
```

11.4 Suffix Array

The suffix array is the array with size n, whose values are the indexes from the longest substring (0) to the smallest substring (n) after ordering it lexicographically. Example:

```
Let the given string be "banana".
0 banana
                                   5 a
1 anana
            Sort the Suffixes
                                   3 ana
2 nana
                                   1 anana
3 ana
             alphabetically
                                   0 banana
4 na
                                   4 na
5 a
                                   2 nana
So the suffix array for "banana" is \{5, 3, 1, 0, 4, 2\}
```

Note that the length of the string i is: (s.size()-sa[i])

```
suffix-array.cpp
Description: Creates the Suffix Array
Time: \mathcal{O}(N \log N)
```

49608b, 20 lines

```
vector<ll> suffixArray(string s) {
   s += "!";
   11 n = s.size(), N = max(n, 260LL);
   vector<ll> sa(n), ra(n);
   for (ll i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];
   for (11 k = 0; k < n; k ? k *= 2 : k++) {
       vector<ll> nsa(sa), nra(n), cnt(N);
       for (ll i = 0; i < n; i++) nsa[i] = (nsa[i]-k+n)%n, cnt
       for (ll i = 1; i < N; i++) cnt[i] += cnt[i-1];
       for (ll i = n-1; i+1; i--) sa[--cnt[ra[nsa[i]]]] = nsa[
       for (ll i = 1, r = 0; i < n; i++) nra[sa[i]] = r += ra[
           ra[sa[i-1]] or ra[(sa[i]+k)%n] != ra[(sa[i-1]+k)%n]
       ra = nra:
       if (ra[sa[n-1]] == n-1) break;
   return vector<ll>(sa.begin()+1, sa.end());
```

Kasai generates an array of size n (like the suffix array), whose values indicates the length of the longest common prefix beetwen (sa[i] and sa[i+1])

```
Description: Creates the Longest Common Prefix array (LCP)
```

```
Time: \mathcal{O}(N \log N)
                                                                                  913195, 13 lines
```

```
vector<ll> kasai(string s, vector<ll> sa) {
   11 n = s.size(), k = 0;
    vector<11> ra(n), lcp(n);
    for (ll i = 0; i < n; i++) ra[sa[i]] = i;</pre>
    for (ll i = 0; i < n; i++, k -= !!k) {
        if (ra[i] == n-1) { k = 0; continue; }
        ll j = sa[ra[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k]) k++;
        lcp[ra[i]] = k;
   return lcp;
```

Problems that can be solved:

Numbers of Distinct Substrings:

```
• \frac{n(n+1)}{2} - lcp[i] (for all i)
```

Longest Repeated Substring:

• biggest lcp[i]. The position can be found in sa[i]

Find how many distinct substrings there are for each len in

• Use delta encoding and the fact that lcp[i] counts the repeated substring between s.substr(sa[i]) and s.substr(sa[i+1]), which are the substrings corresponding to the common prefix.

Find the k-th distinct substring:

```
string s; cin >> s;
ll n = s.size();
auto sa = suffix_array(s);
auto lcp = kasai(s, sa);
11 k; cin >> k;
for(ll i=0; i<n; i++) {</pre>
    11 len = n-sa[i];
    if (k <= len) {
        cout << s.substr(sa[i], k) << endl;</pre>
        break;
    k += lcp[i] - len;
```

11.5 Manacher

Manacher's Algorithm is used to find all palindromes in a string.

For each substring, centered at i, find the longest palindrome that can be formed.

Works best for odd size string, so we convert all string to odd ones by adding and extra characters between the original ones

Therefore, the value stored in the vector cnt is actually palindrome-len + 1.

manacher.cpp

Description: Covert String to odd length to use manacher, which computes all the maximum lengths of all palindromes in the given string

Time: $\mathcal{O}\left(2n\right)$ 0c2a2b, 46 lines

```
struct Manacher {
    string s, t;
    vector<11> cnt;
    // t is the transformed string of s, with odd size
    Manacher(string &s_) : s(s_) {
       t = "#";
        for(auto c : s) {
           t += c, t += "#";
        count();
    // perform manacher on the odd string
    // cnt will give all the palindromes centered in i
    // for the odd string t
    void count() {
       11 n = t.size();
        string aux = "$" + t + "^";
        vector<11> p(n + 2);
       11 1 = 1, r = 1;
        for(11 i = 1; i <= n; i++) {
            p[i] = max(OLL, min(r - i, p[1 + (r - i)]));
            while (aux[i - p[i]] == aux[i + p[i]]) {
                p[i]++;
            if(i + p[i] > r) {
                1 = i - p[i], r = i + p[i];
        cnt = vector < 11 > (p.begin() + 1, p.end() - 1);
    // compute a longest palindrome present in s
    string getLongest() {
       11 len = 0, pos = 0;
        for(ll i=0; i<(ll)t.size(); i++) {</pre>
            11 sz = cnt[i]-1;
            if (sz > len) {
                len = sz;
                pos = i;
        return s.substr(pos/2 - len/2, len);
};
```

11.6 Booth

An efficient algorithm which uses a modified version of KMP to compute the least amount of rotation needed to reach the lexicographically minimal string rotation.

A rotation of a string can be generated by moving characters one after another from beginning to end. For example, the rotations of *acab* are *acab*, *caba*, *abac*, and *baca*.

booth.cpp

Description: Use a modified version of KMP to find the lexicographically minimal string rotation

Time: $\mathcal{O}\left(n\right)$

64184b, 30 lines

```
// Booth Algorithm ll least_rotation(string &s) { // O(n)
```

```
ll n = s.length();
    vector<11> f(2*n, -1);
    11 k = 0;
    for(11 j=1; j<2*n; j++) {
        11 i = f[j-k-1];
        while(i != -1 and s[j % n] != s[(k+i+1) % n]) {
            if (s[j % n] < s[(k+i+1) % n])
                k = j - i - 1;
            i = f[i];
        if (i == -1 \text{ and } s[j \% n] != s[(k+i+1) \% n]) {
            if (s[j % n] < s[(k+i+1) % n])
                k = j;
            f[j - k] = -1;
        else
            f[j - k] = i + 1;
    return k;
int32_t main() { sws;
   string s; cin >> s;
   11 n = s.length();
   11 ans_idx = least_rotation(s);
    string tmp = s + s;
    cout << tmp.substr(ans_idx, n) << endl;</pre>
```

14

Miscellaneous (12)

Techniques (A)

techniques.txt

Combinatorics

159 lines

Recursion Divide and conquer Finding interesting points in N log N Algorithm analysis Master theorem Amortized time complexity Greedy algorithm Scheduling Max contiquous subvector sum Invariants Huffman encoding Graph theory Dynamic graphs (extra book-keeping) Breadth first search Depth first search * Normal trees / DFS trees Dijkstra's algorithm MST: Prim's algorithm Bellman-Ford Konig's theorem and vertex cover Min-cost max flow Lovasz toggle Matrix tree theorem Maximal matching, general graphs Hopcroft-Karp Hall's marriage theorem Graphical sequences Floyd-Warshall Euler cycles Flow networks * Augmenting paths * Edmonds-Karp Bipartite matching Min. path cover Topological sorting Strongly connected components Cut vertices, cut-edges and biconnected components Edge coloring * Trees Vertex coloring * Bipartite graphs (=> trees) * 3^n (special case of set cover) Diameter and centroid K'th shortest path Shortest cycle Dynamic programming Knapsack Coin change Longest common subsequence Longest increasing subsequence Number of paths in a dag Shortest path in a dag Dynprog over intervals Dynprog over subsets Dynprog over probabilities Dynprog over trees 3^n set cover Divide and conquer Knuth optimization Convex hull optimizations RMQ (sparse table a.k.a 2^k-jumps) Bitonic cycle Log partitioning (loop over most restricted)

Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion Catalan number Pick's theorem Number theory Integer parts Divisibility Euclidean algorithm Modular arithmetic * Modular multiplication * Modular inverses * Modular exponentiation by squaring Chinese remainder theorem Fermat's little theorem Euler's theorem Phi function Frobenius number Ouadratic reciprocity Pollard-Rho Miller-Rabin Hensel lifting Vieta root jumping Game theory Combinatorial games Game trees Mini-max Nim Games on graphs Games on graphs with loops Grundy numbers Bipartite games without repetition General games without repetition Alpha-beta pruning Probability theory Optimization Binary search Ternary search Unimodality and convex functions Binary search on derivative Numerical methods Numeric integration Newton's method Root-finding with binary/ternary search Golden section search Matrices Gaussian elimination Exponentiation by squaring Sorting Radix sort Geometry Coordinates and vectors * Cross product * Scalar product Convex hull Polygon cut Closest pair Coordinate-compression Ouadtrees KD-trees All segment-segment intersection Sweeping Discretization (convert to events and sweep) Angle sweeping Line sweeping Discrete second derivatives Strings Longest common substring Palindrome subsequences

Knuth-Morris-Pratt Tries Rolling polynomial hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm Letter position lists Combinatorial search Meet in the middle Brute-force with pruning Best-first (A*) Bidirectional search Iterative deepening DFS / A* Data structures LCA (2^k-jumps in trees in general) Pull/push-technique on trees Heavy-light decomposition Centroid decomposition Lazy propagation Self-balancing trees Convex hull trick (wcipeg.com/wiki/Convex_hull_trick) Monotone queues / monotone stacks / sliding queues Sliding queue using 2 stacks Persistent segment tree

15