Emitter Coupled Logic (ECL)

/ Current Mode Logic (CML)

+ Unsaturated Logic family (Transisters used in - Fastest Logic family - Low propagation delay

in Forward Active and Cut off)

fig: Basic Differential amplifier circuit.

Assumption

is -> reverse saturation current VT -> Themal voltage = 25.9mY

Basic ECL NOR Grate

Truth Table

	Vin	VR	Q1.	Q2	V01	V05	1 9	of the state of th	
	H16H	1		cutoff		I			
	LOW	7	cut off	Active	LOW	HIGH		$\frac{4^{3} \times 4_{10} + 4^{5}}{8} = \frac{4^{3} \times 4_{10} + 4^{5}}{8}$	
1									

VR = Logic HIGH + Logic LOW

Logic HIGHT SOUTY

ECL NOR Gale with Reference circuit

Logic HIGH -> -.0.7V

Q5 > Forward Active ...

VOR -> OR output

VNOR -> NOR output

Logic LOW
$$\rightarrow -0.7$$
 -1.4V $V_R \rightarrow retevence$ voltage

Logic HIGH $\rightarrow -0.7$ $V_R = \frac{Logic Low + Logic IH 6.14}{2}$
 $= \frac{-1.4 - 0.7}{2} = -1.051$

Diodes D1, D2 are wed to reduce Hemperature vacciation in ECL drowt

Power Dissipation (max) in ECL NOR gate with reference Vx = vy = H161H → 100 - 0.7V : VHOR -1.4V $I' = i_E + i_5 + i_2 + i_3 + i_4$ Power dissipation, P = AV. I' Post of pounds of the post of tomar boil public Very con a line of the contact of the

Max. Fanout of ECL Logic Grate

Loading effect -> The change in output voltage due to adding Load circuit

$$V_{\rm F}' = -0.7 - 0.75$$

= -1.45V

Q -> Forward Active ar > cut off

$$i_{\rm F}' = \frac{-1.45 + 5.2}{1.19}$$

Driver circuit

standard
$$i_{\rm F}' = \frac{-1.45+}{1.18}$$

Lord current $i_{\rm F}' = \frac{-1.45+}{1.18}$

ib3 = 0 - 183

(1+p) iB3