```
In [2]: #Prac-01
        #Linear regression by using Deep Neural network: Implement Boston housin
        #price prediction problem by Linear regression using Deep Neural network
        #Boston House price prediction dataset.
        import pandas as pd
        import numpy as np
        # Load the Boston housing dataset from the original source
        data_url = "http://lib.stat.cmu.edu/datasets/boston"
        raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
        data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
        target = raw_df.values[1::2, 2]
        # Convert data and target into DataFrame
        data_columns = ["CRIM", "ZN", "INDUS", "CHAS", "NOX",
        "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT"]
        data = pd.DataFrame(data, columns=data_columns)
        data['PRICE'] = target
        # Display the first few rows of the DataFrame
        print(data.head())
        # Now, you can continue with the rest of the code to build and train the
              CRIM
                      ZN
                          INDUS
                                 CHAS
                                         NOX
                                                 RM
                                                      AGE
                                                              DIS
                                                                   RAD
                                                                          TAX
        \
          0.00632 18.0
                           2.31
                                  0.0
                                       0.538 6.575
                                                    65.2 4.0900
                                                                   1.0
                                                                        296.0
                                                    78.9 4.9671
        1 0.02731
                     0.0
                           7.07
                                  0.0
                                       0.469 6.421
                                                                   2.0
                                                                        242.0
        2
          0.02729
                     0.0
                           7.07
                                  0.0
                                       0.469
                                              7.185
                                                     61.1 4.9671
                                                                  2.0
                                                                        242.0
          0.03237
                     0.0
                           2.18
                                  0.0 0.458 6.998 45.8 6.0622 3.0 222.0
        3
           0.06905
                     0.0
                           2.18
                                  0.0 0.458 7.147 54.2 6.0622 3.0 222.0
           PTRATIO
                         B LSTAT PRICE
        0
              15.3 396.90
                             4.98
                                    24.0
        1
              17.8 396.90
                             9.14
                                    21.6
        2
              17.8 392.83
                             4.03
                                    34.7
        3
              18.7 394.63
                             2.94
                                    33.4
              18.7 396.90
                             5.33
                                    36.2
In [3]: #Check the shape of dataframe
        data.shape
Out[3]: (506, 14)
In [4]: data.columns
Out[4]: Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
        'TAX',
               'PTRATIO', 'B', 'LSTAT', 'PRICE'],
              dtype='object')
```

```
data.dtypes
In [5]:
Out[5]: CRIM
                    float64
                     float64
         ZN
                    float64
         INDUS
         CHAS
                    float64
         NOX
                    float64
                    float64
         RM
         AGE
                    float64
         DIS
                    float64
                    float64
         RAD
         TAX
                    float64
         PTRATIO
                    float64
                    float64
         В
         LSTAT
                    float64
                    float64
         PRICE
         dtype: object
In [6]: # Identifying the unique number of values in the dataset
         data.nunique()
Out[6]: CRIM
                     504
         ZN
                     26
         INDUS
                     76
         CHAS
                       2
         NOX
                     81
         RM
                    446
         AGE
                     356
         DIS
                     412
         RAD
                       9
         TAX
                     66
         PTRATIO
                     46
                     357
         LSTAT
                    455
         PRICE
                     229
         dtype: int64
In [7]: # Check for missing values
         data.isnull().sum()
Out[7]: CRIM
                    0
         ΖN
                    0
                    0
         INDUS
         CHAS
                    0
         NOX
                    0
         RM
                    0
         AGE
                    0
                    0
         DIS
         RAD
                    0
         TAX
                    0
         PTRATIO
                    0
         В
                    0
         LSTAT
                     0
                    0
         PRICE
         dtype: int64
```

```
In [8]: # See rows with missing values
data[data.isnull().any(axis=1)]
```

Out[8]:

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE

In [9]: # Viewing the data statistics
data.describe()

Out[9]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AG
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.57490
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.14886
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.90000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.02500
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.50000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.07500
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.00000

In [10]: # Finding out the correlation between the features
 corr = data.corr()
 corr.shape

Out[10]: (14, 14)

```
In [13]: # Plotting the heatmap of correlation between features
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(20,20))
sns.heatmap(corr, cbar=True, square= True, fmt='.1f', annot=True,
annot_kws={'size':15}, cmap='gray')
```

Out[13]: <Axes: >

```
\[ \frac{\geq}{g} - 1.0 \]
                                           0.4
                                                                                 0.6
                                                                                          0.6
                                                                                                                       0.5
               1.0
                                                                       0.7
                                                                                                    -0.4
NZ
                                                    -0.4
                                                                                 0.6
                                                                                          0.7
                                  1.0
     0.4
                        0.8
                                           1.0
                                                              0.7
                                                                       -0.8
                                                                                 0.6
                                                                                          0.7
                                                                                                                      0.6
                        -0.4
                                           -0.3
                                                    1.0
                                                                                                                      -0.6
                                                                                                                                0.7
                                                                                          -0.3
                                                                                                   -0.4
                                           0.7
                                                                       -0.7
                                                                                 0.5
                                                                                          0.5
                                                                                                                                -0.4
              -0.6
                        0.6
                                                              1.0
                                                                                                             -0.3
                                                                                                                      0.6
     -0.4
               0.7
                        -0.7
                                           -0.8
                                                             -0.7
                                                                       1.0
                                                                                                                      -0.5
                                                                                                                      0.5
WAD .
     0.6
              -0.3
                        0.6
                                           0.6
                                                    -0.2
                                                              0.5
                                                                                 1.0
                                                                                          0.9
                                                                                                    0.5
                                                                                                                                -0.4
     0.6
                        0.7
                                           0.7
                                                              0.5
                                                                                 0.9
                                                                                          1.0
                                                                                                    0.5
                                                                                                             -0.4
                                                                                                                      0.5
                                                                                 0.5
                                                                                          0.5
                                                                                          -0.4
     0.5
                        0.6
                                           0.6
                                                    -0.6
                                                                                 0.5
                                                                                          0.5
                                                                                                                      1.0
                                                    0.7
                                                              -0.4
                                                                                                                      -0.7
                                                                                                                                1.0
     -0.4
                                 CHAS
                                                              AGE
                                                                        DIS
                                                                                 RAD
                                                                                          TAX
                                                                                                  PTRATIO
                                                                                                                      LSTAT
                                                                                                                               PRICE
```

```
In [14]: # Spliting target variable and independent variables
X = data.drop(['PRICE'], axis = 1)
y = data['PRICE']
```

```
In [15]: # Splitting to training and testing data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3
random_state = 4)
```

0.2

- 0.0

-0.2

- -0.6

```
In [16]: # Import library for Linear Regression
         from sklearn.linear_model import LinearRegression
In [17]: # Create a Linear regressor
         lm = LinearRegression()
In [18]: # Train the model using the training sets
         lm.fit(X_train, y_train)
Out[18]:
          ▼ LinearRegression
          LinearRegression()
In [19]: # Value of y intercept
         lm.intercept_
Out[19]: 36.35704137659398
In [21]: #Converting the coefficient values to a dataframe
         coeffcients = pd.DataFrame([X_train.columns,lm.coef_]).T
         coeffcients = coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficien
         coeffcients
Out[21]:
             Attribute Coefficients
```

0	CRIM	-0.12257
1	ZN	0.055678
2	INDUS	-0.008834
3	CHAS	4.693448
4	NOX	-14.435783
5	RM	3.28008
6	AGE	-0.003448
7	DIS	-1.552144
8	RAD	0.32625
9	TAX	-0.014067
10	PTRATIO	-0.803275
11	В	0.009354
12	LSTAT	-0.523478

```
In [23]: from sklearn import metrics

# Model prediction on train data
y_pred = lm.predict(X_train)
# Model Evaluation
print('R^2:',metrics.r2_score(y_train, y_pred))
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train,
y_pred))*(len(y_train)-1)/(len(y_train)-X_train.shape[1]-1))
print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 0.7465991966746854

Adjusted R^2: 0.736910342429894

MAE: 3.0898610949711265 MSE: 19.07368870346903 RMSE: 4.367343437774162

In [24]: # Visualizing the differences between actual prices and predicted values plt.scatter(y_train, y_pred) plt.xlabel("Prices") plt.ylabel("Predicted prices") plt.title("Prices vs Predicted prices") plt.show()

Prices vs Predicted prices


```
In [25]: # Checking residuals
plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()
```



```
In [26]: # Checking Normality of errors
    sns.distplot(y_train-y_pred)
    plt.title("Histogram of Residuals")
    plt.xlabel("Residuals")
    plt.ylabel("Frequency")
    plt.show()
```

C:\Users\Ekata\AppData\Local\Temp\ipykernel_9316\3326403628.py:2: UserW
arning:

`distplot` is a deprecated function and will be removed in seaborn v0.1 4.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(y_train-y_pred)

In []:

RMSE: 5.482152251362978