CÁLCULO DE LÍMITES

LÍMITE DE FUNCIONES VECTORIALES DE VARIABLE REAL

Recordamos el siguiente teorema:

Sea $\overline{f}: Dom \ \overline{f} \subset \mathbb{R}^n \to \mathbb{R}^m \ / \ \overline{f}(\overline{X}) = (f_1(\overline{X}), f_2(\overline{X}),, f_i(\overline{X}),, f_m(\overline{X})), \quad \text{y} \quad \overline{X}_0 \quad \text{punto} \quad \text{de acumulación de } Dom \ \overline{f} \text{ . Entonces:}$

$$\exists \lim_{\overline{X} \to \overline{X_0}} \overline{f}(\overline{X}) = \overline{L} = (L_1, L_2, \dots, L_i, \dots, L_m) \Leftrightarrow \exists \lim_{\overline{X} \to \overline{X_0}} f_i(\overline{X}) = L_i \quad (\forall i : 1 \le i \le m)$$

En este sentido, el cálculo del límite de una función vectorial $\overline{f}(t) = (f_1(t), f_2(t), \dots, f_i(t), \dots, f_m(t))$ se obtendrá calculando los límites de cada una de sus funciones componentes. Dado que dichas funciones componentes son funciones escalares, se utilizan todas las herramientas para el cálculo del límite que se analizaron en AMI.

LÍMITE DE CAMPOS VECTORIALES

Considerando el teorema que permite el cálculo del límite componente a componente, para obtener el límite de un campo vectorial $\overline{f}(\overline{X}) = (f_1(\overline{X}), f_2(\overline{X}), \dots, f_i(\overline{X}), \dots, f_m(\overline{X}))$ se deberán calcular los límites de cada una de sus funciones componentes. Dado que dichas funciones componentes son campos escalares, vamos a profundizar en el estudio y la obtención de límites de campos escalares.

LÍMITE DE CAMPOS ESCALARES

En el caso de las funciones escalares de AMI, para el cálculo del límite en un punto de acumulación x_0 del dominio, tenemos únicamente dos formas de acercamiento a dicho punto: por derecha y por izquierda, siempre sobre la recta real (es decir en forma horizontal y en línea recta).

Si los límites calculados por derecha y por izquierda en x_0 coinciden, existirá el límite de la función en dicho punto. Si los límites laterales son distintos, no existe el límite de la función en x_0 .

Sin embargo, cuando trabajamos con campos escalares, la forma de acercamiento a los puntos de acumulación para el cálculo del límite es mucho más compleja. Veamos el siguiente gráfico, para un punto de acumulación $(x_0, y_0) \in R^2$: no solamente podemos acercarnos desde distintas direcciones del plano, sino que podemos hacerlo mediante caminos que no sean en línea recta.

Esfera abierta reducida con centro en (x_0, y_0)

En este caso, para que exista el límite del campo escalar en (x_0, y_0) deberán coincidir los límites que se calculen mediante todas las formas posibles de acercamiento a (x_0, y_0) . Obviamente, es imposible evaluar todas estas infinitas posibilidades. De todas maneras, hay ciertos caminos de acercamiento a los puntos de acumulación que se utilizan más habitualmente y que analizaremos más adelante. Una situación análoga a la anterior se produce para los puntos de acumulación de un subconjunto de \mathbb{R}^3 , o de cualquier otro subconjunto de \mathbb{R}^n .

Utilizando distintas formas de acercamiento, es posible demostrar que el límite <u>no existe</u>, cuando por diferentes caminos de aproximación al punto de acumulación se obtienen diferentes valores de los límites asociados a esos caminos.

Si los cálculos realizados para una cierta cantidad de límites relacionados a formas distintas de aproximación dan el mismo resultado, no se puede afirmar la existencia del límite: es imposible analizar todas las posibles formas de acercamiento a un punto, ya que son infinitas. Para demostrar la existencia del límite habrá que utilizar propiedades o la definición.

Cálculo de límites utilizando propiedades

Resolvemos algunos ejercicios del TP 3

5)a) Analizar la existencia del siguiente límite: $\lim_{(x,y)\to(1,1)} \frac{x^3y-xy^3}{x^4-y^4}$

7)c) Analizar la existencia del siguiente límite: $\lim_{(x,y)\to(2,2)} \frac{\sin(4-xy)}{16-x^2y^2}$

Limites sucesivos o iterados

El cálculo de límites sucesivos implica fijar primero una de las variables (que pasa a comportarse como una constante) y calcular el límite simple para la otra. Este límite define, a su vez, una nueva función para la primera variable, cuyo límite simple se calcula finalmente.

Veamos la definición para campos definidos de R² en R, pero que puede generalizarse para campos definidos de Rⁿ en R.

Sea $f:Dom\ f\subset R^2\to R$, con (x_0,y_0) punto de acumulación de $Dom\ f$. Se definen:

$$l_{12} = \lim_{x \to x_0} (\lim_{y \to y_0} f(x, y))$$
 si existe $h(x) = \lim_{y \to y_0} f(x, y)$

$$l_{21} = \lim_{y \to y_0} (\lim_{x \to x_0} f(x, y))$$
 si existe $g(y) = \lim_{x \to x_0} f(x, y)$

La forma de acercamiento a (x_0, y_0) y la interpretación geométrica en cada uno de estos límites sucesivos se describe a continuación:

En este caso, consideramos fijo x_0 , de modo tal que los valores de y tienden a y_0 en la bola abierta reducida. Esto define la función $h(x) = \lim_{y \to y_0} f(x, y)$ sobre la gráfica de f.

En un segundo paso, cuando los valores de x tienden a x_0 , se calcula el límite para la función h(x) y se obtiene l_{12} (si dicho límite existe).

Para
$$l_{21}$$

$$l_{21} = \lim_{y \to y_0} (\lim_{x \to x_0} f(x, y))$$

En este caso, consideramos fijo y_0 , de modo tal que los valores de x tienden a x_0 en la bola abierta reducida. Esto define la función $g(y) = \lim_{x \to x_0} f(x, y)$ sobre la gráfica de f.

En un segundo paso, cuando los valores de y tienden a y_0 , se calcula el límite para la función g(y) y se obtiene l_{21} (si dicho límite existe).

<u>Notación</u>: se indica con L el límite propiamente dicho del campo escalar, para diferenciarlo de otros límites especiales que dependen de la forma de acercamiento al punto de acumulación. Se suele denominar límite múltiple o simultáneo; en el caso de campos escalares de R^2 en R se lo llama límite doble; en el caso de campos escalares de R^3 en R se lo llama límite triple.

Teoremas (aplicación de límites sucesivos)

Sea $f:Dom\ f\subset R^2\to R$, con (x_0,y_0) punto de acumulación de $Dom\ f$. Sea $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ el límite doble, y sean los límites sucesivos $l_{12}=\lim_{x\to x_0}(\lim_{y\to y_0}f(x,y))$ y $l_{21}=\lim_{y\to y_0}(\lim_{x\to x_0}f(x,y))$. Entonces:

- $\bullet \quad \exists l_{12} \land \exists l_{21} \land \exists L \Longrightarrow L = l_{12} = l_{21}$
- $\exists l_{12} \land \exists l_{21} \land l_{12} \neq l_{21} \Rightarrow \not\equiv L$ Este teorema suele ser el más utilizado en la resolución de eiercicios.

Tengamos en cuenta que si existen ambos límites sucesivos y son iguales, esto no indica ninguna conclusión sobre la existencia de L, ya que solamente analizamos el acercamiento al punto de acumulación solamente mediante dos formas de las infinitas formas de acercamiento posible.

¿Qué sucede si los límites sucesivos no existen? Esta situación no permite realizar ninguna conclusión sobre la existencia del límite doble. Veamos un ejemplo:

Calcular, si existen, el límite doble, y los límites sucesivos: $\lim_{(x,y)\to(0,0)} x \sin\left(\frac{1}{y}\right)$

Límite doble: $L = \lim_{(x,y)\to(0,0)} x \sin\left(\frac{1}{y}\right) = 0$ (se obtiene aplicando propiedades porque es un infinitésimo por una función acotada)

Límites sucesivos:

$$\begin{split} l_{12} &= \lim_{x \to 0} (\lim_{y \to 0} x \sin \left(\frac{1}{y}\right)) \qquad \nexists l_{12} \quad \text{ya que no existe el límite para } \lim_{y \to 0} x \sin \left(\frac{1}{y}\right) \\ l_{21} &= \lim_{y \to 0} (\lim_{x \to 0} x \sin \left(\frac{1}{y}\right)) = \lim_{y \to 0} 0 = 0 \end{split}$$

Vemos que $\not\equiv l_{12}$ y sin embargo existe L.

Análogamente, considerando $\lim_{(x,y)\to(0,0)} y \sin\left(\frac{1}{x}\right)$ tenemos que $\frac{1}{x}l_{21}$ y sin embargo existe L

Para el caso de $\lim_{(x,y)\to(0,0)} \left(y\sin\left(\frac{1}{x}\right) + x\sin\left(\frac{1}{y}\right)\right)$, tenemos que no existe ninguno de los límites sucesivos, y sin embargo existe L.

Resolvemos el ejercicio 5)h) del TP3

5)h)
$$e_{(uy)(00)} \times \frac{x^2 + y^3}{x^2 + y^2}$$
 $l_{12} = e_{(y\to 0)} \left(\frac{e_{(y\to 0)}}{x^2 + y^2}\right) - e_{(y\to 0)} \times \frac{x^2}{x^2}$
 $e_{12} = e_{(y\to 0)} \left(\frac{e_{(y\to 0)}}{x^2 + y^2}\right) - e_{(y\to 0)} \times \frac{x^2}{x^2}$
 $e_{21} = e_{(y\to 0)} \left(\frac{e_{(y\to 0)}}{x^2 + y^2}\right) - e_{(y\to 0)} \times \frac{y^2}{y^2} - e_{(y\to 0)} \times \frac{y^2}{y^2}$
 $e_{21} = e_{(y\to 0)} \left(\frac{e_{(y\to 0)}}{x^2 + y^2}\right) - e_{(y\to 0)} \times \frac{y^2}{y^2} - e_{(y\to 0)} \times \frac{y^2}{y^2}$

Limites acercándose por curvas

Definimos este tipo de límite para campos de R^2 en R, pero dicha definición puede generalizarse para campos de R^n en R.

Sea $f:Dom\ f\subset R^2\to R$, con (x_0,y_0) punto de acumulación de $Dom\ f$. Sea la curva C, asociada a $\overline{g}:[a,b]\subset R\to R^2$ de modo que existe un valor $t_0\in(a,b)$ tal que $\overline{g}(t_0)=(x_0,y_0)$. Definimos el límite $L_C=\lim_{t\to t_0}f(\overline{g}(t))$

Veamos que, cuando t tiende a t_0 , los puntos sobre curva se acercan a (x_0, y_0)

Los límites por curvas refieren a distintas formas de acercarse al punto (x_0, y_0) en la esfera abierta reducida. Esto permite el cálculo de distintos límites de acuerdo a las distintas curvas que pasan por (x_0, y_0) . Si los límites por distintas curvas dan valores distintos, entonces no existirá el límite doble (recordemos que si existe, el límite es único). Sin embargo, si los límites por curvas dan valores iguales, nada puede decidirse sobre la existencia o no del límite L.

La forma más habitual de secuenciar los cálculos es:

- 1) *Hallar los límites sucesivos*: Si son distintos, no existe el límite doble. Si son iguales, se continúa la operatoria
- 2) *Hallar los límites por curvas*: los límites por curvas se suelen secuenciar en este orden: haz de rectas, haz de parábolas de eje x, haz de parábolas de eje y. Si algunos de los límites calculados son distintos, no existe el límite doble. Si todos los límites son iguales, no puede concluirse la existencia o no del límite *L*.

Resolvemos el ejercicio 5)i)

Resolvemos ejercicios surtidos del TP3

10) a) Anolizon la conti muded en (0,0)
10) a) Analizar la continuidad en (0,0) $\begin{cases} x^3 & \text{si } x^2 + y \neq 0 \\ \hline x^2 + y & \text{si } x^2 + y \neq 0 \end{cases}$
$(x,y) = \langle x^2 + y \rangle$
$\begin{cases} 0 & \text{if } x^2 + y = 0 \end{cases}$
i) = {(0,0)=0
li) lin f(x,y)
li) lu (xy)(00)
Debeurs anolizar les des romes de la
Devenue 3 some for
función je que en ambos cosos es posible
a clacoane al (n a)
X + Y = 0 = 0 Y = - x 2
Q 3
((x,y) = x2y
The state of the s
$\int_{\mathbb{R}} (x,y) = 0$
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) = 0$
L_1 $(x^2+y=0)$ $L_1=C$ $f(x,y)=C$ $O=0$ $(xy)(xy)$ $(xy)(xy)$
(my)(00) (my)(00)
1 1 2
L2 (x2+y+0) L2 = (xy)(00) f(x,y) =
3
= C X
(kg)(00) x2+g
0 1 1 1 1 1 1 1 1
I hedd analizar este limite con analquei
Puedo analizar este límite con analquei herramienta excepto acercarme por la perallola y=-x²
perolloto y=-x2
7

Einster Auasinos: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
12 = x-20 (y-20 x2+y) = x-20 x2 = 0 / 100 decido
y-20 (x-20 x2ty) - y-20
Haz de rectos
Hoz de rectos y=mx x->0 x²+mx x>0 x/x+m) decide
deci de
hoz de para lolas
hoz de parolholos $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
a = 1 no decide
hos de parabolos
(x=by2 e by = e by5 = 0
X=by2 e by6 -e by5 -0 y-so b2y4+y y-so b2y3+1 No devide
Problemes con: $x^3 - x^2 + y$ (tore que le 1)
Debenos analizar que quede una cura bren definida, d'ecuación y=h(x) o' x = 9(y)
- x = g(3)
$x^3 = x^2 + y = 0$ $y = x^3 - x^2$ es une curve bren definide
Debenios confirmos que posa por el punto en cuestión y(0)=0 s posa por (0,0)

(X^3) $(X,Y) \neq \overline{0}$
13) $\begin{cases} (x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{fin} (x,y) \neq \overline{0} \\ 0 & \text{fin} (x,y) = \overline{0} \end{cases}$
0 oi (x,y) = 0
a) Derivotror que f es coutimo en O
b) à Puede analizar a l'imite carcandose
al origen por la linea de nivel 1 de f?
x 0 x 0 x 2 2 x 0 x 2 2 2 x 0 - V
a) i) $f(0,0) = 0$
u) e $f(x,y) = e$ x^3
$\frac{\text{ii'}}{\text{(my)(00)}} \frac{\text{(my)(00)}}{\text{(my)(00)}} \frac{x^3}{x^2 + y^2} =$
CIA TELLIFORME
$= \underbrace{(\text{ay})(\infty)}_{\text{(ay)}} \times \times$
(ay)(00) X24y2
Clary of aut of acot
iii) $f(0,0) = L = 0$ f es continue en (00)

Demostranos algunas funciones acotados no tradicionales (suponemos (x,y) \$ (0,0))
no tradicionales (suponemos (x,y) \$ (0,0)
$0 \le x^2 \le x^2 + y^2 = 0$ $0 \le x^2 \le x^2 + y^2 = 0$ $0 \le x^2 \le x^2 + y^2 = 0$
And the xade
$=0$ $0 \leq x^2 \leq 1$
$=0 0 \leq x^2 \leq 1$
$R_{1}O_{2}O_{3}$ $+$ O_{4} Y^{2}
Anologomente: 04 42 41
1 Carl as are a martine of the
De la anterior de deduce:
De la anterior de deduce: 0 = x ² = 1 = 0 x ² = 1 = 0 x ² ty ²
x242 x242
\Z
$= \sqrt{\frac{x^2}{x^2 + y^2}} \leq \sqrt{1} = \sqrt{\frac{x}{x^2 + y^2}} \leq 1 = 0$
(-1 < x < 1)
x2xy2
Anologormente: -1 \(\frac{1}{\times^2 + y^2} \)
(x ² +y ²
3

b) rinea de nivel 1 -> f(x,y)=1
그는 그 사람들이 그렇게 되었다. 그 사람이 생각하게 하면 내가 그는 사람이 하는 사람들이 하는 사람들이 되었다.
$\frac{x^3}{x^2+y^2} = 1 \Rightarrow 0 x^3 = x^2+y^2 (técnico visto principal)$
x2+y2 principal principal
No puede definire una unico función y - h(x) & x = g(y)
y = h(x) d x = g(y)
9.0)
de Que su coderno si de cidieramos utilizar
y = \x3_x2 despejondes la voriable
y? i lase le curre por (0,0)?
2 - A War and
Vegrus: es necesario que
Veorus: es necesorio que $\chi^3 - \chi^2 \gtrsim 0 \Rightarrow \chi^2(x-1) \geqslant 0 = 0$
V - V > 0 - V (N) > 0
=> ×≥ 1
Le uno y= 1x3-x2 sté bren definide
ti X>1, por la cual ma pasa por (0,0)