NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVU I. a IL STUPNĚ

CASOPIS PRO ELEKTRONIKU a amatérské vysílání ROČNÍK XXXVI (LXV) 1987 • ČÍSLO 2

V TOMTO SEŠITĖ

NAT Interview	41
Rozloučení se s. Matouškem	42
AR svazarmovským ZO	43
AR miédeži	45
R45	46
Jak na to?	47
AR seznamuje (Radiomagneto	
TESLACondor)	Stanfordering agency of a m
Čteněři se ptají	
Elektronická bicí souprave	
Limiter pro elektronickeu kytai	v54
Neubvyklá zkučební doska	56
Automatické přepínění antěn	
CCIR-OWIT	55
Číslicový multimeter DMM 520	
(dohončení)	
Cagové záhladny MOS 85 a M	08 84
provystleče ROB	70
porjuicios	73
AR brance výchově	71
Z radiosmatérského světa	***
Zopraválského tejtu	
Inzerce	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Cott least	

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu, Opletalova 29, 116 31

Praha 1, tel. 22 25 49, ve Vydavatelství NAŠE

VOJSKO, Vladislavova 26, 113 66 Praha 1. tel.

26 06 51-7. Šéhředaktor ing. Jan Klabal, OKTUKA,

zástupce Luboš Kalousek, OKTFAC. Redakční rada: Předseda ing. J. T. Hyan, členové: RNDr.

V. Brunnhofer, OKTHAQ, V. Brzák, OKTDDK,

K. Donát, OKTDY, ing. O. Filippi, V. Gazda,

A. Glanc, OKTGW, ing. J. Hodík, P. Hořak,

Z. Hradiský, J. Hudec, OKTRE, ing. J. Jaroš,

ing. J. Kroupa, V. Němec, ing. O. Petráček,

CKTNB, ing. Z. Prošek, ing. F. Simelk, OKTASF,

ing. E. Smutný, plk. ing. F. Šimek, OKTSI, ing.

M. Sředl, OKTNL, doc. ing. J. Vackář, CSc.,

Jaureát st. ceny KG, J. Vorlíček, Redakce Jung
mannova 24, 113 66 Praha 1, tel. 26 06 51-7, ing.

Klabal I. 354, Kalousek, OKTFAC, ing. Engel, Hořhans I. 363, ing. Myslík, OKTAMY, Havíš,

OKTPFM, I. 348, sekretariát I. 355. Ročně výde

12 čísel. Cena výtisku 5 Kčs, pololetní předplatné

30 Kčs. Rozšířuje PNS. Informace o předplatném

30 Kčs. Rozšířuje PNS. vštřední respedice a dovoz

tisku Praha, závod 01, administrace vývozu tisku,

Kařtova 9, 160 00 Praha 6. V jednotkách ozbroje
ných sil Vydavatelství NAŠE VOJSKO, administrace

Vlastina 889/23. Inzerci přijímá Vydavatelství

NAŠE VOJSKO, n. p., závod 8, 162 00 Praha 6-Ruzyně,

Vlastina 889/23. Inzerci přijímá vydavatelství

NAŠE VOJSKO, n. p., závod 8, 113 66 Praha 1, tel. 26 06 51-7, l. 294. Za původnost a správnost

příspěvku ruči autor. Redakce rukopis vrátí, bude
li výžadán a bude-li připojena frankovaná obálka

se zpětnou adresou. Návstěvy v redakci a telefo
nické dotazy po 14. hodíně.

Č. indexu 46 043.

Rukopisy císl

Rukopisy cisla odevzdány tiskárně 9. 12. 1986 Číslo má vyjít podle plánu 18. 2. 1987 © Vydavatelství NAŠE VOJSKO, Praha

NÁŠ INTERVIEW

s ing. Dobroslavem Žofákem, vedoucím oboru záznamové techniky k. p. TESLA Přelouč.

> Současný stav na trhu kazetových magnetofonů i přístrojů cívkových je znám. Čím obohatí k. p. TESLA Přelouč náš trh v tomto roce?

V kategorii přenosných přístrojů přichází letos na trh kombinace kazetového magnetofonu s rozhlasovým přijímačem pod označením KM 350. Jde o kompaktní přístroj, který v sobě sdružuje třírozsahový stereofonní přijímač (obě normy VKV, SV a DV) a stereofonní magnetofon. Magnetofon umožňuje stereofonní záznam s automatickou regulací záznamové úrovně z rozhlasového přijímače, vestavěných mikrofonů anebo vnějšího zdoje na kazety typu Fe a Cr. Přístroj je dále vybaven rozšířením stereofonní báze (WIDE), možností změny kmitočtu oscilátoru a dalšími funkcemi. Je napájen buď ze světelné sítě nebo šesti malými monočlánky.

Dalším typem, tentokrát z kategorie stolních přístrojů, je typ SM 261. Jde o variantu již prodávaného SM 260, u něhož, namísto ručkových ukazatelů, jsou použity jako indikátory vybuzení řady svítivých diod. Byly zde rozšířeny i funkce zvětšující komfort obsluhy (autorewind, autoplay), možnost použít kabelové dálkové ovládání hlavních funkcí a design předního panelu rovněž doznal určité změny. Ostatní funkce a vybavení je shodné s typem SM 260. Jeho vzhledové řešení navazuje, podobně jako u SM 260, na další spolupracující přístroje (tuner, zesilovač).

Ve výrobě nadále zůstávají osvědčené typy B 115 a B 116.

> Z jakého důvodu počítá výrobní program ještě i nadále s cívkovými přístroji a proč nevěnuje raději pozornost rozšíření sortimentu v přístrojích kazetových?

Je sice pravda, že výroba kazetových magnetofonů zaznamenala celosvětově v uplynulých deseti letech prudký nárůst a cívkové přístroje jsou u světových výrobců spíše výjimkou. Současně je však třeba říci, že při našich setkáních, například s členy Hi-Fi klubů i při jiných příležitostech, se stále setkáváme s požadavky na výrobu cívkových magnetofonů. Kromě toho cena kazet, případně hrací doba kazety je na tuzemském trhu ve srovnání s páskem na cívkách nepo-měrně nepříznivější v neprospěch kazety. Kromě toho též uspokojujeme trvalé požadavky některých našich zahraničních partnerů na cívkové přístroje a proto tyto magnetofony budeme vyrábět ještě v průběhu 8. pětiletky.

Produkce kazetových přístrojů bude zabezpečovat potřebu trhu v základních sortimentních skupinách, tedy v kategorii přenosných i stolních přístrojů, kromě toho zde jsou ještě diktafony, přístroje pro výpočetní techniku, kazetové magnetofony pro vybavování jazykových laboratoří, přístroje do automobilu a další.

ing. Dobroslav Žofák

Dotki jste se i dalších oblastí použití magnetofonů. Co připravujete v tomto směru v oblasti výpočetní techniky?

Pro výpočetní techniku jsme v relativně velmi krátké době připravili stolní kazeto-páskovou paměť SP 210. Je to kazetový magnetofon určený jako vnější paměť k osobním počítačům. Kromě základních funkcí, tedy záznamu a reprodukci dat, může tento přístroj pracovat v režimu řízení počítačem. Umožňuje to elektronické ovládání všech základních funkcí paměti. Přístroj je vybaven počitadlem, hlasitým odposlechem a přípojkou pro sluchátka. Svou koncepcí umožňuje vy-budovat úplné pracoviště s počítačem a zobrazovací jednotkou.

> V nedávné minulosti jste měli prodejní neúspěch s přehrávačem typu KM 340. Co byste mohl říci k otázkám užitné hodnoty vašich výrobků, tedy přesněji jejich jakosti a provedení ve vztahu k prodejní ceně?

Technická úroveň výrobků bývá velmi často předmětem kritiky ze strany zákazníků. A právě KM 340 byl jedním z příkladů poslední doby. Přístroj byl od zahájení vývoje uveden na trh v poměrně krátké době, přesto však především z cenových důvodů a v návaznosti na to i pro technické parametry (rozměry a hmotnost) nebyl úspěšným typem.

Hlavní důvody vidíme v technickém stavu a cenových relacích tuzemské součástkové základny a v nedostatečném a pomalém zajišťování nových technologií. Například obor magnetofonových hlav a moderních pohonných motorků není v tuzemsku rozvíjen vůbec, nevyhovující je situace v oboru pasívních součástek a zejména v oboru tzv. bižutérie, to znamená přepínače, konektory a další.

Druhým problémem je cena materiálu a součástek, která ve finalizujícím podniku tvoří z podstatné části výrobní náklady. Ta pak zásadním způsobém určuje i konečnou cenu výrobku. Zde je tedy jádro technickoekonomické problematiky úrovně, tady jde proti sobě požadavek obchodu, aby maloobchodní cena nového výrobku byla přijatelná z hlediska

Nové výrobky kazetopáskové paměti SP210

spotřebitele i když výrobní náklady (zvláště u složitějších výrobků) stoupají. Pro zajímavost uvedu případ zmíněného pře-hrávače KM 340. Ze základní velkoob-chodní ceny tohoto přístroje, která byla 900 Kčs, činila VC sluchátek asi 200 Kčs. takže velkoobchodní cena samotného přehrávače byla asi 700 Kčs. Z toho přímé materiálové náklady činily asi 370 Kčs a čisté mzdové náklady (bez ostatních nákladů a režie) asi 40 Kčs.

> Lze tedy konstatovat, že jedním z hlavních problémů výroby je nevyhovující součástková základna spolu s vysokými cenami.

Tuzemská součástková základna je již delší dobu diskutovaným problémem. Lze říci, že v některých jejích skupinách (například v aktivních prvcích) již bylo hodně vykonáno, ale současný stav, zejména v součástkách, o nichž jsem se již zmínil. stále nelze považovat za vyhovující. Naše součástková základna neumožňuje důsledně minimalizovat rozměry přístrojů nebo koncipovat elektronickou část s vyšším stupněm integrace. Poměr cen tuzemských a ekvivalentních zahraničních součástek se v některých případech blíží

S tím souvisí i malá ochota tuzemských výrobců vyvíjet a vyrábět nové součástky a jsou nám mnohdy kladeny i nejrůznější u zadavatele formy, zaručit odběr mini-málního množství), jsou zde i problémy bilanční, problémy lhůt pro předkládání požadavků pro odběr v určitém roce a řada dalších.

To, spolu s dlouhými termíny některých dalších příprav, například zhotovení náročných forem na výlisky z plastických hmot, způsobuje neúměrné prodlužování etap přípravy výroby, i když samotný vývoj a konstrukci, zejména u jednodušších typů, lze zvládnout i v době kratší jednoho roku. I v posledně jmenovaných etapách je však nutno daleko intenzívněji nacházet cesty k racionálnímu způsobu vývoje a konstrukce. A o tom, že naše konstrukce je na výši, bych chtěl uvést alespoň dva příklady: magnetofon SM 260, který byl naším prvním přístrojem ve třídě Hi-Fi, obstál s velmi dobrým výsledkem i v laboratořích firmy Dolby, což bylo jednou ze základních podmínek pro udělení licence pro systém Dolby; dále pak byl ukončen vývoj kazetového magnetofonu řízeného mikroprocesorem.

K otázkám cen jsem již uvedl příklad KM 340. Chtěl bych pouze dodat, že propast mezi limitem ceny, přijatelným z hlediska spotřebitele a cenou, při níž je ekonomicky únosné vyrábět z hlediska výrobce, se zvětšuje u technicky náročných přístrojů, tedy přístrojů složitějších a luxusnějších. Ke snížení úrovně maloobchodních cen by přispělo i snížení maloobchodní daně, což však podnik nemůže ovlivnit,

Rád bych ještě dodal, že k výše řečeným problémům přistupuje v poslední době i přípis generálního ředitelství kon-cernu, podle něhož bychom měli produkci kazetových magnetofonů omezit ve prospěch jiné výroby. Z čehož plyne, že pozice finálního výrobce věru není lehká a jednoduchá

> A jako obvykle, poslední otázka: co byste rád naším prostřednictvím vzkázal vaším zákazníkům – naším čtenářům?

Chtěl bych je především ujistit, že přes všechny řečené i neřečené negativní okolnosti, je prvořadou snahou nás jako výrobce zajistit základní sortiment, uspokojující nejširší okruh spotřebitelů. Spolu s tím se pochopitelně snažíme o co nejvyšší kvalitu našich výrobků nemalým úsilím jak v konstrukčně technologické, tak i ve výrobní oblasti. Využíváme k tomu mimo jiné i nejrůznější příležitosti přímého kontaktu se zákazníky, jako jsou vele-trhy, setkání se členy Hi-Fi klubů, technic-ké porady organizované Čs. rozhlasem

Rád bych zdůraznil, že okruh problémů, spojených s přípravou výroby i s výrobou, je značně obsáhlý. V krátkém rozho-voru proto nebylo možno seznámit čtenávoru proto nebyto możno seznalni cena-re se všemi existujícími problémy, jen bych chtěl doplnit, že právě v poslední době věnujeme mimořádnou pozornost mezinárodní spolupráci se SSSR, s PLR

včetně kapitalistických výrobeů.

Chtěl bych vyjádřit přání, aby tento rozhovor alespoň malou měrou přispěl k objasnění některých málo známých problémů a aby zákazníci byli s našimi přístroji spokojeni.

Děkuji za rozhovor.

Interview připravil A. Hofhans

Nové výrobky – radiomagnetofony KM350

Rozloučení se S. Matouškem

Dne 23. listopadu 1986 náhle zemřel ve věku 56 let šéfredaktor časopisu Českého ústředního výboru Svazarmu Svazarmovec, soudruh Stanislav Matoušek. Patřil ke generaci, která pokládala základy budování socialismu v naší republice. Jemu bylo uloženo, aby ve službách SNB šel se zbraní v ruce chránit naši vlast. Na mnoha útvarech FMV vykonával řadu politických funkcí. Získané zkušenosti uplátnil posléze jako tajemník redakce časopisu Bezpečnost. Nesmírně těžkou službu pohraničníků ztvárnil se svým životním přítelem v knize Čára jménem domov

Od září 1985 nastoupil ve funkci šéfredaktora časopisu Svazarmovec. Přinesl si sebou velké stranické, životní i novinářské zkušenosti. optimismem jemu vlastním se pustil do redakční práce. Náhlá smrt přerušila uskutečnění jeho velkých plánů. Soudruh Stanislav Matoušek zanechal, i přes krátkou dobu působení ve svazarmovském časopise, činorodou stopu.

Čest jeho památce!

DŮM TECHNIKY ČSVTS PRAHA

uspořádá ve II. čtvrtletí 1987 korespondenční kurs

"Programování mikropočítačových systémů s mikroprocesorem 8080".

Program zahrnuje základy programování, strukturu technických a programovacích prostředků mikropočítačů řady 80 a jazyk ASM80. Procvičuje se na příkladech programování.

Kurs je určen pracovníkům s ÚSO a VŠ vzděláním se základními znalostmi mikropočítačové techniky. Účastníci budou písemně odpovídat na kontrolní otázky ke každé kapitole učebních textů. Vložné cca 400 Kčs.

Přihlášky přijímá: Dům techniky ČSVTS Praha, Miluše Kopalová, Gorkého nám. 23, 112 82 Praha 1, tel. 26 67 53

AMATÉRSKÉ RADIO SVAZARMOVSKÝM ZO

Obr. 2. Z expozice měřicí techniky

Obr. 3. Model robota – překladače materiálu

Obr. 4. Chodicí a mluvicí robot – hračka

XVIII. celostátní přehlídka technické tvořivosti Svazarmu v elektronice a radioamatérství se konala v hornickém městě Prievidze ve dnech 23. až 30. října 1986. Uspořádáním přehlídky byla pověřena okresní organizace Svazarmu a základní organizace Svazarmu Prievidzaměsto. Ředitelem XVIII. celostátní přehlídky ERA '86 byl předseda ZO Svazarmu Ján Lipták. Slavnostního zahájení se zúčastnili přední představitelé organizací Národní fronty, zástupce ÚV KSČ a ÚV Svazarmu v čele s místopředsedou plk. PhDr. Jánem Kováčem.

Přehlídka byla uspořádána v prostorách Středního odborného učiliště Priemstav Prievidza. Celostátní přehlídky ERA '86 se zúčastnily práce svazarmovských konstruktérů po předchozích krajských a městských kolech. Do soutěže bylo přihlášeno 410 exponátů, které soutěžily v 10 kategoriích podle platných propozic těchto soutěží. Z maximálního počtu visaček bylo uděleno 135. Matematickým součtem s odpovídajícím koeficientem pro jednotlivé visačky a pro počet exponátů bylo stanoveno pořadí jednotlivých krajů.

Tradičním vítězem se stali domácí, tedy Středoslovenský kraj, na druhém místě se umístila Praha-město a třetí byl kraj Jihomoravský

Výstavní sál přehlídky a plakát výtvarně zpracoval již tradiční svazarmovský výtvarník Tomáš Kolátor. Jednotlivé expozice nebyly uspořádány tak jako v minulosti podle krajů, ale byly rozděleny podle jednotlivých soutěžních kategorií. Základním poznatkem z výstavy je konstatování o ústupu dříve tradiční disciplíny

těchto výstav, a to nf techniky. Výjimku tvořily pouze exponáty z Prahy (obr. 1), které svou kvalitou vysoko přesahovaly úroveň ostatních přístrojů. Své stabilní místo si udržela měřicí technika (obr. 2).

Rozšíření doznala aplikovaná elektronika a nastupující robotika (obr. 3), která však zatím zůstává na úrovni hraček (obr. 4); věříme, že v budoucnu se najdou i praktická uplatnění pro průmyslové využití.

Slabinou u některých přístrojů zůstává neznalost bezpečnostních předpisů při jejich konstrukci.

V kategorii "neviditelných" exponátů, tj. programů k počítačům se projevuje silně stoupající zájem o výpočetní techniku. Pořadatelé budoucích výstav by se měli tomuto trendu přizpůsobit a věnovat této kategorii plnou pozornost, protože programy vůbec nejsou jen okrajovou záležitostí.

Velkým přínosem pro národní hospodářství jsou zlepšovací návrhy svazarmovských členů. V rámci soutěže byli vyhodnoceni jako nejlepší zlepšovatelé ing. J. Vonkomer a ing. P. Šperk, kterým byl předán pohár FMEP.

Zarážejícím faktem vyplývajícím ze seznamu přihlášených exponátů je skutečnost, že v kategorii audiovizuální techniky byly pouze tři exponáty, z toho dva z nich televizní generátory a pouze jeden přístroj pro ozvučování klasických 16 mm filmů.

Kromě soutěžních exponátů se přehlídky také zúčastnily svými nesoutěžními expozicemi svazarmovské podniky Elektronika Praha, Radiotechnika Teplice, Avon Gottwaldov, DOSS Valašské Meziříčí a podniky resortu FMEP, dále VVTŠ z Liptovského Mikuláše a OPUS Bratislava.

Příští, tj. XIX. celostátní přehlídka se bude konat letos v listopadu v Jihomoravském kraji ve Žďáru nad Sázavou.

Jaroslav Vorlíček, Ing. Zdeněk Kašpar

Nový osobní počítač

V Sovětském svazu je připraven do výroby osobní počítač s názvem MIKRO-ŠA. Skládá se ze dvou částí – napáječe (220 V nebo 42 V, 50 Hz) a vlastního počítače s rozměry 390 × 230 × 55 mm. Objem operační paměti 32 kB, na obrazovce (výstup je pro běžné televizory a spolupracuje s libovolným kazetovým magnetofonem) se zobrazuje 25 řádek o 64 znacích nebo pro grafiku 50 × 128 bodů. Lze zobrazovat jak písmena azbuky, tak i latinky, naše zájemce pak zaujme rozhodně i cena – předpokládá se pouze 550 Rb.

Pro majitele počítačů ATARI vydává ATARI Microcomputer Network zajímavý měsíčník s názvem AD ASTRA. Zájemci o členství v klubu (členové dostávají časopis zdarma) musí spolu s přihláškou zaslat 10 \$ na adresu: Gil Frederick, 130 Maureen St., Winnipeg, Manitoba R3K 1M2, Canada.

A/2 Amatérske AD 10

1

Rádiový orientačný beh zaznamenal v poslednom desaťročí v našej republike značný rozvoj. Svojím obsahom a charakterom plne vyhovuje mladému človeku a dáva mu dostatok možností na rozvoj jeho morálno-voľných, odborno-technických a fyzických vlastností a schopností. Podporuje záujem mládeže o rádiotechniku a elektroniku, rozvíja jej fyzickú zdatnosť a upevňuje vzťah mladých ľudí k prírode a k životnému prostrediu. Jeho materiálno-technické zabezpečenie sa u nás neustále zlepšuje a to nielen kvantitatívne, ale i kvalitatívne.

V období rokov 1976 až 1985 nastal výrazný rozvoj tohto športu i na Slovensku a to najmä medzi mládežou. V uvedenom období sa podstatne zlepšila materiálno-technická základňa, vzrástol počet kádrov a vznikli nové (pohárové) súťaže, ktoré sa významne podieľajú na raste

kvality pretékárov.

Napriek tomu sú však v počte členov i v kvalite pretekárov v SSR v porovnaní s ČSR ešte značné rezervy. Dokumentuje to i úspešnosť slovenských pretekárov na majstrovstvách ČSSR v rokoch 1976 až 1984. Z celkového počtu 192 medailí udelených za toto obdobie na M-ČSSR získali pretekári zo Slovenska len 47 (24,4 %), z toho 17 zlatých, 15 strieborných a 15 bronzových. Najúspešnejší boli pretekári zo SSR v roku 1983, keď získali

10 medailí (6-2-2) a najmenej úspešní v tomto období boli slovenskí pretekári v roku 1979, keď získali len dve medailové umiestnenia (0-1-1).

Jednou z nevyhnutných podmienok ďalšieho úspešného rozvoja ROB v SSR je i skvalitnenie činnosti komisie ROB pri RR SÚV Zväzarmu v oblasti trenérsko-metodickej práce. Túto skutočnosť si komisia ROB plne uvedomuje a preto na svojom zasadnutí dňa 18. 10. 1985 prijala uznesenie o vzniku trénersko-metodického úseku (ďalej len TMÚ) komisie ROB. Hlavnou náplňou práce tohto poradného orgánu komisie ROB bude skvalitňovanie tréningového procesu, prenos a aplikácia najnovších poznatkov do trénerskej praxe.

V tejto súvislosti je potrebné konštatovať, že napriek tomu, že naši špičkoví pretekári - reprezentanti ČSSR patria medzi svetovú elitu (víď úspechy našej reprezentácie na MS), je problematika ROB u nás v porovnaní s inými športami málo spracovaná a len sporadicky v odborných časopisoch publikovaná. Táto skutočnosť negatívne ovplyvňuje odborný rast trénerskych kádrov i kvalitu celého tréningového procesu v ROB. Nedostatočná je i výmena názorov a skúseností medzi trénermi v SSR, chýba im možnosť zverejnenia a publikovania svojich poznatkov a skúseností. Pocitujeme stály nedostatok vhodných metodických príručiek a odbornej literatúry, s ktorými by mohli tréneri pracovať a rozvíjať svoju odbornú pripravenosť.

Jednou z najdôležitejších úlôh TMÚ bude riadenie a skvalitňovanie systému prípravy trénerskych kádrov v SSR, ich presná evidencia, sledovanie a hodnotenie.

Ďalšou dôležitou úlohou úseku bude evidencia a sledovanie výkonnostných a vrcholových športovcov a práca s talentovanou mládežou.

Pre obdobie rokov 1986 a 1987 si TMÚ určil tieto konkrétne úlohy:

- pre skvalitňovanie práce v oblasti výchovy trénerov spracovať tématické okruhy a otázky pre školenie trénerov II. a III. tr.
- Aktívne sa podielať na príprave a realizácii sústredení talentovanej mládeže.
- Pripraviť a zrealizovať školenie a doškolenie trénerov II. tr.
- Vypracovať objektívny systém nominácie pretekárov z jednotlivých krajov na M-SSR.
- V prípade finančného zabezpečenia spracovať a pripraviť do tlače časť metodických materiálov pre potreby školenia trénerov v SSR.

Na záver treba pripomenúf, že v záujme skvalitnenia ďalšej trénerskej práce v ROB je potrebné v SSR riešiť i otázku najvyššej trénerskej kvalifikácie (l. tr.). V tomto smere očakávame pochopenie, podporu a pomoc od ústredných orgánov.

PhDr. Štefan Švajda, CSc. vedúci TMÚ

let od složení zkoušek RO navázal na kolektivkách několik tisíc spojení. Svou vlastní volací značku OK2RZ získal v roce 1967 a hned se věnoval závodní činnosti DX provozu. Zakrátko se stává mistrem CSSR v práci na KV (1970, 1971 a 1972) a pak celá sedmdesátá léta suverénné vítězí ve všech světových závodech v rám-ci ČSSR a jako prvý Čechoslovák se dostává soustavně do žebříčků TOP TEN. První v Evropě je např. v telegrafním CQ WW DX závodě roku 1979, kdy získává evropský "all time" rekord v počtu získaných bodů a současně i 4. místo na světě. V CQ WPX telegrafním závodě roku 1980 je dokonce i druhý na světě. Druhé místo v Evropě s 8. na světě získává již v roce 1971 v závodě CQ WPX SSB. První až třetí na světě se umísťuje v OK-DX contestu v letech 1970, 1971, 1972, 1979 a podobných úspěchů v těchto letech bychom

mohli uvést ještě řadu.

Jako operátor kolektivní stanice
OK2KOS přispívá k tomu, aby se československá stanice poprvé v historii dostala "do rámečku" mezi prvních šest na
světě. Bylo to v roce 1977 v závodech CQ
WW DX CW (3. v Evropě, 6. na světě) a CQ
WPX SSB (6. na světě), CQ MIR (1. místo
v celosvětovém pořadí). Všichni koncesionáři v OK2 vděčně vzpomínají na pravidelné zásilky QSL lístků v letech 1980 až
1985, kdy pracoval jako QSL-manažer pro
Moravu. Toho času se může pochlubit
sbírkou QSL-lístků ze všech existujících
zemí DXCC, v žebříčku DXCC Honor Roll

je zařazen v kategorii MIX i FONE. Postupně získal svazarmovská vyznamenání ZOP, titul mistra sportu i titul zasloužilého mistra sportu a jak sám říká, kromě toho vředy na dvanácterníku, lumboischiadický syndrom, ženu a dvě děti. Z další zájmové činnosti lze jmenovat sbírku 400 kaktusů a fotografování. Všechny své úspěchy získal s doma postaveným transceiverem a s dalším podomácku vyrobeným zařízením od výkonových zesilovačů po antény. Ty jsou tím hlavním článkem - mimo výjimečné erudice - který dopomohl k vynikajícím výsledkům. Aní dnes Jirka nezáostává, i když nyní jej slýcháme na pás-mech jen občas. Dříve používaný stožár a sedmiprvková LP směrovka pro pásmo 20 m(!) a HB9CV pro ostatní pásma nevy-hovovaly, a tak Jiří již tři roky vyrábí příhradový stožár, výsuvný do výše 30 m, pomocnou 11 m vysokou příhradovou konstrukcí! Zatím postavenou část si konečně můžete prohlédnout na fotografii a pokud toto dílo úspěšně dokončí, pak jistě ani v závodní činnosti ještě neřekl své poslední slovo.

Antény OK2RZ

OK2QX

ZMS Jiří Král, OK2RZ

AMATÉRSKÉ RADIO MLÁDEŽI

Soutěž mládeže na počest 70. výročí Velké říjnové socialistické revoluce

V letošním roce oslavíme 70. výročí Velké říjnové socialistické revoluce. Na počest tohoto výročí uspořádá rada radioamatérství ÚV Svazarmu na doporučení komise mládeže soutěž mládeže do 19 roků.

Soutěž mládeže bude probíhat v době od 1. do 31. března letošního roku podle podmínek celoroční soutěže OK-maratón 1987. Soutěže se může zúčastnit mládež, narozená v roce 1968 a mladší.

Hlášení do Soutěže mládeže na počest 70. výročí Velké říjnové socialistické revoluce je nutné zaslat na tiskopisu měsičního hlášení pro OK-maratón nejpozději do 15. dubna 1987 na adresu: Radioklub OK2KMB, Box 3, 676 16 Moravské Buďejovice.

V hlášení do Soutěže mládeže od kolektivních stanic musí být uvedena pracovní čísla operátorů nebo jejich značky OL, jejich datum narození a počet bodů, které jednotliví mladí operátoři získali za svoji činnost na kolektivní stanici během měsíce března.

Soutěž bude vyhodnocena v kategoriích: kolektivní stanice, posluchači, OL a YL.

Tiskopisy hlášení pro OK-maratón vám na požádání zdarma zašle kolektiv OK2KMB. Nezapomeňte uvést, pro kterou kategorii tiskopisy hlášení požadujete.

Pro soutěž mládeže na počest 70. výročí Velké říjnové socialistické revoluce neplatí dvojnásobné bodové zvýhodnění mládeže do 15 roků jako v celoroční soutěži OK-maratón 1987.

Posluchači, OL i kolektivní stanice si mohou body, které získají během soutěže v březnu, započítat i do celoročního hodnocení OK-maratónu 1987.

Rada radioamatérství ÚV Svazarmu ČSSR doporučuje všem mladým operátorům kolektivních stanic, posluchačům a OL stanicím účast v této soutěži, aby tak důstojně oslavili významné výročí Velké říjnové socialistické revoluce.

Z vaší činnosti

Radioamatérské veřejnosti je dostatečně známo, že o radioamatérskou mládež je v okrese Pardubice dobře postaráno.

Jenda, OK1-31246, netrpělivě očekával svoje desáté narozeniny, aby již také mohl vysílat jako operátor OK1OAG. Poslouchá na přijímači, který mu zhotovil jeho otec, OK1.ID

Starají se o ni kolektivy v Pardubicích, Býšti, Přelouči, Holicích a další, jejichž členové obětují svůj volný čas na výchovu nových operátorů.

Jedním z těchto kolektivů je kolektiv OK10AG - v Pardubicích. O mládež v kroužcích radioamatérského provozu se v tomto kolektivu stará hlavně Lenka Prášilová, OK1VRH. Kromě pravidelného provozu přes převáděče v pásmu VKV soutěží všichni úspěšně v OK-maratónu a pilně trénují telegrafii. Přeji Lence, OK1VRH, a celému kolektivu OK10AG mnoho dalších úspěchů ve výchově nových operátorů.

Zbyněk Kašpar, OK2-31714, z Uničova mi napsal volací značky následujících vzácných stanic, které odposlouchal v poslední době, případně značky jejich QSL manažerů: 3X0HSH via DK8PR, TV6JUN via F5AM, AZ1ARU/5 via LU6FAZ, T2ITA, 9M8EN via G4RZQ, 8P9GI via KA6V, J27AJ via W2KF, J88BK, TG9VT, J6LMV – Box 109, Castries, St. Lucia, V44KQ via WB2LCH, YN1SI, 8P6QY, P43BB, XT2BR, V47K via WB0MIV, TZ6FS via DL4BC, HIBLC, 3V8PS via 11FOU, OE3EMN/YK via OE3SFW, JW0A via SP2HMT, CR5YL, 9Y4GR a 5T5SL via DL8DF.

Láďa Šíma, OK1-12313, odpovída na žádosti o adresy domácích i zahraničních radioamatérů. Nedávno dostal dopis od jednoho našeho mladého radioamatéra, který ho však nepotěšil. Tento radioamatér ho požádal o několik adres radioamatérů DL z důvodů, že se u nás marně snaží obstarat dvoubázový FET a že tedy požádá radioamatéry v DL, aby mu jej poslali. Láďa mu napsal, že to není vhod-

né, odporuje to dobrému jménu československých radioamatérů a že by se navíc mohl dostat do rozporu se zákonem. Adresy mu samozřejmě neposlal.

Další doporučené závody v roce 1987

Rada radioamatérství ÚV Svazarmu doporučuje všem našim radioamatérům také účast v mistrovství ČSR a SSR a v mistrovství ČSSR v práci v pásmech KV a v následujících závodech a soutěžích:

a v másledujících závodech a soutěžích:
Pro mistrovství ČSR a SSR v práci na
KV pásmech se hodnotí účast v Čs. telegrafním závodě, Čs. SSB závodě, Čs.
závodě míru a OK DX contestu. Součet tří
nejvyšších dosažených bodových výsledků dává konečný výsledek, při rovnosti
bodů dvou či více stanic je rozhodující
vzájemné pořadí v OK DX contestu. Při
neúčasti jedné z nich v tomto závodě je
stanice s účastí v OK DX contestu zvýhodněna. Při účasti alespoň pěti YL bude
vyhodnocena také samostatná kategorie

V kategoriích kolektivních stanic a jednotlivců se pro mistrovství-ČSSR v práci na pásmech KV hodnotí účast v následujících závodech: CQ WW DX contest – CW část, CQ WW DX contest – SSB část, WAEDC – CW část, WAEDC – SSB část, IARU championship, OK DX Contest, mistrovství ČSR a mistrovství SSR.

Hodnotí se výsledky tří z uvedených soutěží, ve kterých závodník získá nejlepší umístění. Přitom alespoň jeden závod musí být výhradně provozem CW. Při účasti alespoň pěti YL bude vyhodnocena také samostatná kategorie žen.

V kategoriích posluchačů a stanic OL se pro mistrovství ČSSR hodnotí účast v následujících závodech: Čs. telegrafní závod, Čs. SSB závod, Čs. závod míru a OK DX contest.

Součet tří nejvyšších bodových výsledků dává konečný výsledek, při rovnosti bodů dvou či více posluchačů je rozhodující vzájemné umístění v OK DX contestu.

Během měsíce března letošního roku bude probíhat Soutěž mládeže do 19 roků, kterou rada radioamatérství ÚV Svazarmu vyhlásila na počest 70. výročí VŘSR.

Rada radioamatérství Jihomoravského KV Svazarmu uspořádá v měsíci srpnu seminář KV a VKV techniky pro OL a posluchače z Jihomoravského kraje. Doporučujeme, aby podobné semináře pro své posluchače a stanice OL uspořádaly také ostatní rady radioamatérství KV Svazarmu v celé naší ČSSR.

Nezapomeňte že . . .

... od 1. do 31. března 1987 probíhá Soutěž mládeže do 19 roků na počest 70. výročí VŘSR. Nejpozději 15. dubna 1987 svá hlášení pošlete na adresu kolektivu OK2KMB.

... další kolo závodu TEST 160 m bude uspořádáno v pátek 27. března 1987 v době od 20.00 do 21.00 UTC.

Přeji vám mnoho úspěchů a těším se na další dopisy.

73! Josef, OK2-4857

Skupina nejaktivnějších členů radioklubu OK1OAG. první řadě zleva Bláža, OK1-31116, Vašek. OK1-31249. Honza, OK1-31246. Ve druhé Petr. OK1řadě 31252 Jirka. OK1-31251. Vzadu David. OK1-30799. a Martin, OL5VKM oba již pomáhají při výchově těch nejmenších

To už tu přece jednou bylo . . .

První zapojení sirény s tranzistory našli čtenáři rubriky R 15 v Amatérském radiu č. 2/74. Autorem byl tehdy ing. Jaromír Vondráček, který námět připravil pro mezinárodní soutěž pionýrů – techniků v Bratislavě. Tam ji jako soutěžní úkol zhotovili ve dnech 27. až 29. května 1974 mladí radiotechnici z Bulharska, Maďarska, Mongolska, Německé demokratické republiky, Polska, Sovětského svazu a Československa. "Kvílející" sirény měly úspěch a tak jsme o pár let později požádali ing. Vladimíra Valentu, aby připravil pro soutěž o zadaný radiotechnický výrobek novou verzi sirény, tentokráte s hradly TTL. Pod názvem "Elektronická siréna" byla tato konstrukce uveřejněna v rubrice R 15 časopisu Amatérské radio č 9/81

Elektronická siréna

Tak tedy dnešní konstrukce tu už přece jednou – či vlastně dvakrát – byla. Tentokráte je však "srdcem" zapojení integrovaný obvod CMOS typu MHB4001 (obr. 1). Na schématu vidíte, že zapojení tónového i taktovacího generátoru jsou shodná. Změnou odporu rezistorů R1 až R4 a změnou kapacity kondenzátorů C1 až C4, připojených k vývodům integrovaného obvodu, můžete kmitočet obou generátorů snižovat či zvětšovat.

Obr. 1. Schéma zapojení elektronické sirény

Obr. 2. Deska s plošnými spoji V11

Sirénu lze bez potíží sestavit a doladit i na univerzální desce s plošnými spoji. Obrazec spojů desky, navržené pro zapojení sirény, je na obr. 2. Součástky zapájejte podle obr. 3, provozní napětí zvolte mezi třemi až devíti volty. Stabilita napájecího napětí má samozřejmě vliv na stabilitu kmitočtu generátorů.

Odporovým trimrem P řídíte hlasitost výstupního signálu. Na výstup připojte sluchátka, popř. nízkofrekvenční zesilovač. Chcete-li použít sestavy podle původního návrhu v časopisu Funkamateur (NDR č. 11/85, str. 534), v němž je na výstup sirény připojen integrovaný obvod A211D jako koncový stupeň s výkonem asi 1 W, musíme vás upozornit na chybu ve schématu zapojení. Vazební kondenzátory generátorů jsou omylem zakresleny mezi výstup a vstup téhož hradla (obr. 6 ve zmíněném čísle časopisu Funkamateur). Vstup nízkofrekvenčního zesilovače je třeba od sirény stejnosměrně oddělit kondenzátorem s kapacitou asi 0,1 μF.

Pro integrovaný obvod zapájejte objímku, abyste jej mohli při "ladění" sirény vyjímat. V žádném případě nezkoušejte měnit tón sirény přikládáním různých (zejména elektrolytických) kondenzátorů při chodu sirény – velmi snadno lze při tom zničit IO MHB4001!

Seznam součástek

R1, R4	rezistor 3,9 kΩ
R2	rezistor 2,7 kΩ
R3	rezistor 82 kΩ
R5	rezistor 4.7 kΩ
C1, C2	kondenzátor 0,15 uF
C3, C5	elektrolytický kondenzátor
•	20 uF (TE 004)
C4	elektrolytický kondenzátor
	10 μF (TE 005)
C6	kondenzátor 0,1 uF
P	odporový trimr 0.1 MΩ
	(TP 040)
10	integrovaný obvod MHB4001
,_	objimka DIL 14
	ODJIIIKA DIL 14

Obr. 3. Rozmístění součástek na desce; na rozdíl od schématu zapojení je výstup veden z druhého hradla (vývod 4)

Síťový zdroj k tranzistorovému přijímači

Jeden můj přítel mě požádal, abych mu postavil pokud možno levný síťový zdroj k bateriovému tranzistorovému přijímači, který byl původně napájen z devítivoltové destičkové baterie.

Na základě svých dosavadních zkušeností jsem zvolil zapojení se stabilizací usměrněného napětí a s dobrou filtrací. Jako nejdostupnější jsem použil zvonkový transformátor s výstupním napětím 3, 5 a 8 V, který je běžně k dostání v prodejnách Domácí potřeby za 34 Kčs. Vzhledem k požadovanému výstupnímu ss napětí 9 V jsem použil vinutí pro sekundární napětí 8 V.

Schéma zapojení je na obr. 1. Vzniklo doplněním již dříve zveřejněného a běžného zapojení zpětnovazebního stabilizátoru, připojeného za usměrňovač s filtračním kondenzátorem.

Usměrňovač je v klasickém Graetzově zapojení doplněný kondenzátory 10 nF, zapojenými mezi oba přívody střídavého napětí a "zemní" spoj celého zdroje. Tyto kondenzátory slouží (ve spojení s kvalitním stabilizátorem a dobrou filtrací elektrolytickými kondenzátory) k dostatečnému potlačení "brumu". Jejich kapacita není kritická. Stabilizátor je jak už bylo řečeno zpětnovazební typ; jako zdroj re-ferenčního napětí je použita Zenerova dioda, popř. zapojená v sérii s křemíkovou plošnou diodou (v propustném směru), která zvýší původní Zenerovo napětí o 0,6 až 0,7 V. Pracovní proud Zenerovy diody potřebný pro správnou stabilizaci, je nastaven rezistorem R3. Na bázi tranzistoru T1 se přivádí vzorek výstupního napětí z děliče R4 R5, na emitoru má tranzistor T1 referenční napětí, a proto se odchylky výstupního napětí projevují jeho otevíráním", popř. "přivíráním". Tranzistor T1 pracuje v zapojení se společným emitorem; invertuje tyto změny, a v tom spočívá princip regulace. Zvýší-li se např. napětí na výstupu, zvětší se i jeho podíl na děliči a na bázi T1; tento tranzistor se více "otevře" a "přivře" tranzistor T2. Tím se zmenší výstupní napětí. Zmenší-li se naopak výstupní napětí např. připojením zátěže, proces je opačný a skončí větším otevřením tranzistoru T2 a tedy zvýšením výstupního napětí.

Volbou odporu rezistorů R1 a R2 se nastavuje klidový pracovní bod tranzistoru T2 a kondenzátor C4 zabraňuje pronikání "brumu" na bázi T2 a tím i do výstupního napětí. Mezi bázi a kolektor T1 je zapojen kondenzátor C5, který zabraňuje vysokofrekvenčnímu rozkmitání stabilizátoru.

Výstupní napětí lze v jistých mezích měnit výstupním děličem: 9 V, pro které byl navržen, např. 6, 4, 5,3 a dokonce i 1,5 V (změnou Zenerovy diody, případně její náhradou křemíkovými plošnými diodami, zapojenými do série v propustném směru). Např. pro stabilizaci napětí 1,5 V byla použita jediná dioda řady KA . . . na níž bylo v propustném směru naměřeno "Zenerovo" napětí (napětí přechodu) "Zenerovo" napětí (napětí přechodu) 0,73 V. Na výstupu bylo bez zátěže 1,77 V a po zatížení proudem asi 100 mA se toto napětí snížilo na 1,67 V. Změnou dělicího poměru výstupního děliče už není problém dosáhnout kýžených 1,5 V. Pro tento případ je samozřejmě výhodnější napájet usměrňovač z vinutí transformátoru 5 V, tj. připojit jeho vstup mezi příslušný krajní vývod a odbočku zvonkového transformátoru.

1

Obr. 3. Rozmístění součástek na desce plošných spojů

Obr. 2. Obrazec plošných spojů desky V12

Jako usměrňovací diody lze použít jakýkoliv typ křemíkových plošných diod, Zenerova dioda se volí podle požadovaného výstupního napětí. Tranzistory mohou být libovolné křemíkové nf nebo spinací typy, T2 by mohl být např. KF508 s chladičem. Ve vzorku byl použit tranzistor KU611, což je sice na první pohled zcela zbytečné, ale tento typ, schopný dodávat mnohem větší výkon, mohl být přímo umístěn do desky s plošnými spoji a nebylo třeba jej chladit. Použité elektrolytické kondenzátory byly vybírány podle provozního napětí. Problém síťového brumu byl tímto zapojením vyřešen uspokojivě. Vzorek byl zkoušen na přijímači Jetstar (běžný kapesní typ z konce 70. let) a jakýkoliv brum nebyl postřehnutelný.

Zdroj byl umístěn do elegantní krabičky na mikrofon TESLA, zvonkový transformátor byl vyjmut z pouzdra a přišroubován dvěma dlouhými šrouby M3 do dna krabičky. Do plastikových nožek krabičky byly vyvrtány otvory a do nich vsazeny miniaturní gumové nožky, aby se zdroj "nekolébal".

Tento stručný popis může posloužit mladým radioamatérům jako nápad, jak realizovat síťový napáječ k radiopřijímači nebo k jinému bateriovému přístroji se spotřebou do 100 mA (po úpravě i větší) bez velkých problémů se síťovým brumem, stabilitou výstupního napětí apod.

Zbyšek Bahenský

	Sethain soucaster
R1, R2	rezistor 1 kΩ
R3	rezistor 4,7 kΩ
R4	rezistor 2,2 kΩ
R5	rezistor 10 kΩ
C1, C2	kondenzátor 10 nF
C3	elektrolytický kondenzátor
	500 μF (TE)
C4	elektrolytický kondenzátor
	100 μF (TE)
C5	kondenzátor 2,2 nF
C6	elektrolytický kondenzátor
	500 μF (TE)
D1 až D4	usměrňovací dioda
D5	křemíková dioda
ZD	Zenerova dioda
T1	tranzistor KF508
T2	tranzistor KU611

Saznam součástak

JAK NA TO

DALŠÍ VYUŽITÍ STIMULU

O přístroji na elektrickou akupunkturu Stimul 3 bylo referováno v AR č. 1/83. V současné době se tento přístroj objevuje ve výprodeji za sníženou cenu (100 Kčs), údajně pro nezájem kupujících.

Nejsem lékař a také nemám větší osobní zkušenosti s přístrojem, zdá se však, že výčet možnosti léčení v přiloženém návodu je značně přehnaný, především proto, že jde o povrchový jev, který těžko může mít souvislost s vnitřními poruchami. Přenechme tuto otázku odborníkům a ukažme si, že Stimulu 3 lze využit i jako detektoru emoční aktivity a kondice popsaného v AR č. 7/78, s. 271. Potřebujeme pouze nahradit dvojitou jehlovou elektrodu dvěma elektrodami ve tvaru U z mosazi nebo z bronzu, které se kablíkem a vhodnou zástrčkou (odlitou z Dentakrylu nebo slepenou z Umaplexu) připojí k přístroji.

Elektrody se navlečou přes nehty ukazováku a prsteníku levé ruky, která má volně ležet na stole. Regulátor se nastaví právě pod bod nasazení zvuku a rozsvicení LED. Potom lze provést tyto pokusy:

- Hluboké nadechnutí nosem vyvolá odezvu, která ale po chvíli odezní; lze to však opakovat. Odezva je slabá nebo žádná, jsme-li unaveni nebo nemocni; je také slabá asi u 10 % jinak zdravých lidí. Je to vhodná kontrola pro řidiče, sportovce apod.
- Přístroj lze použít jako detektor lži (viz AR č. 7/78), a to jednak jako společenskou zábavu se zapřením zvolené karty, jednak k "výslechu" provinivších se školních dítek.
- 3. Zkoušení osobních emocí a sklonu, vhodné pro psychologa, ale i pro společenskou zábavu. Přístroj ukáže odezvu při ukázání atraktivního obrázku (akt, kulturista, stokoruna, rakev, dýka aj.). Pozor aby se někdo neurazil, dokážeme-li reakci na akt nebo stokorunu! Podobně se může objevit odezva při náhlém zvuku, pichnutí, osvětlení aj.

Jev je založen na změně elektrické vodivosti kůže vlivem emocí a při nadech-

nutí. Je znám od počátku našeho století (Féré, Veraguth) a byl již ve třicátých letech využit v detektorech lži.

Ing. V. Patrovský

OPRAVA TRANSFORMÁTORU

Dostal se mi do rukou zahraniční výrobek u něhož byl poškozen transformátor. Vinutí bylo obaleno páskou z PVC a bylo doslova spečeno tak, že bez přetržení drátu nebylo možno vinutí odmotat a závity spočítat. Situaci ještě komplikovala skutečnost, že použitý drát měl průměr pouze 0,1 mm.

Zkusil jsem proto ponořit na noc cívku s vinutím do acetonu a ráno jsem byl překvapen, jak snadno bylo možno vinutí odvinout a závity pohodlně spočítat. Domnívám se, že tato zkušenost by mohla být k užitku i jiným pracovníkům. Připomínám jen, že obdobného výsledku lze dosáhnout i s trichloretylénem.

Jaromír Horák

AMATÉRSKÉ RADIO SEZNAMUJE...

Celkový popis

Radiomagnetofon Condor je zcela novým a již dľouho avizovaným výrobkem, který vyšel ze spolupráce k. p. TESLA Pardubice a polského partnera, podniku UNITRA v Lubartowě. Je to stereofonní kombinace rozhlasového přijímače a kazetového magnetofonu relativně velkých rozměrů. Rozhlasový přijímač umožňuje příjem tří pásem AM a dvou pásem FM (OIRT i CCIR). Obě pásma FM jsou volitelná přepínačem a každé z nich lze ladit po celé délce stupnice. Stereofonní zesilovač má, kromě regulátoru hlasitosti, ještě možnost nezávislého řízení hloubek a výšek a navíc regulátor plynulého rozšíření stereofonní báze. Má též tlačítko s označením INTIM, které umožňuje zeslabit reprodukci pro tichý poslech. Přitom je upravena kmitočtová charakteristika tak, jak to vyžaduje fyziologie tichého poslechu.

Pro dosažení požadovaného výstupního výkonu jsou vždy dva koncové stupně integrovaným obvodem MBA810) v můstkovém zapojení. Pro omezení maximálního výkonu (především pak pro zmenšení spotřeby ze zdrojů), lze tlačítkem SPARE můstkové zapojení

Třímotorový magnetofon (jeden motor slouží pro posun pásku, druhý pro převí-jení a třetí zasouvá a vysouvá lištu s hlavami) je ovládán elektronicky tlačítky s malým zdvihem a umožňuje přecházet z jakékoli zařazené funkce na jinou aniž by bylo třeba mezitím pásek zastavovat. Magnetofon je též vybaven automatickým zrušením zařazené funkce když pásek dojde na konec. V magnetofonu lze pou-žívat buď pásky typu Fe nebo Cr, přičemž se příslušné korekční obvody i předmagnetizace přepínají automaticky. Reprodukovat (nikoli nahrávat) lze i materiály typu

Přístroj je vybaven potlačovačem šumu DNL a při záznamu lze podle potřeby volit buď automatické nebo ručně řiditelné vybuzení záznamového materiálu. Pro kontrolu vybuzení (a to jak při záznamu, tak i při reprodukci) slouží dvě řady svítivých diod. Vždy první dioda v každé z obou řad slouží jako kontrola stavu suchých článků. Magnetofon je dále vybaven třímístným počítadlem.

K napájení lze použít buď světelnou síť 220 V, nebo vnitřní zdroj, tj. deset velkých monočlánků. Lze též připojit vnější napájecí zdroj 10 až 15 V, například automobi-

lový akumulátor.

Základní technické údaje podle výrobce

165 až 280 kHz rozsahy přij.: S۷ 525 až 1605 kHz K۷ 5,95 až 15,45 MHz, VKV I 65,5 až 73 MHz, VKV II 87,5 až 104 MHz. Cittivost DV 2.2 mV/m (s/š = 20 dB)SV 0.8 mV/m (s/s = 20 dB)K۷ $75 \,\mu\text{V/m} \,(\text{s/s} = 20 \,\text{dB})$ VKV I $3.5 \,\mu\text{V}/75 \,\Omega \,(\text{s/s} = 26 \,\text{dB})$ VKV II $2.5 \,\mu\text{V}/75 \,\Omega \,(\text{s/s} = 26 \,\text{dB})$ 25 μV/75 Ω (stereo),

18 μV/75 Q (stereo). Vstup antény: 75 Ω (souosý). Rychlost posuvu

oásku: 4,76 cm/s, Kolisáni rychl. posuvu: Kmitočtový rozsah: 50 až 12 000 Hz (Fe), 50 až 14 000 Hz (Cr).

Celkový odstup rušivých napětí: Rozsah korekci zesilovače.

Vstupy:

Výstupy:

Příkon:

±10 dB (50 a 10 000 Hz). Výstupní výkon: 2× 2,5 W (vnitř. zdroje), 2× 5 W (síť),

2× 10 W (hudební-DIN 45 324). GRAMO MAGNETOFON 0,5 V/470 kΩ, GRAMO MG 5 mV/47 kΩ.

MIKRO 5 mV/47 kQ, **REPRO** SLUCHÁTKA 200 až 600 Ω. Napáiení. 220 V/50 Hz 15 V (10 článků R 20),

10 až 15 V (vnější zdroj). 25 W (síť), max. 0,9 A (články). max. 0,5 A (články-SPARE).

Rozměry 59 × 25 × 14 cm Hmotnost: 6,5 kg (bez zdrojů).

Všechny ovládací prvky přístroje jsou soustředěny na čelní stěně. Na přijímačovém dílu zcela nahoře je šest tlačítek. z nichž pět slouží k přepínání vlnových rozsahů a šesté tlačítko zcela vlevo přepíná stereofonní nebo monofonní příjem. Vpravo je pak knoflík ladění.

Pod přijímacím dílem jsou ovládací prvky zesilovače. Odleva to jsou: regulátor hloubek, regulátor výšek a regulátor šířky stereofonní báze, pak následuje pět tlačítek z nichž tři slouží k volbě zdroje signálu, čtvrtým lze zapojit obvod DNL a poslední zapíná tichý poslech. Vedle tlačítek vpravo je regulátor hlasitosti. V další řadě jsou oba indikátory vybuze-

ní a vedle nich tlačítko, jímž lze odpojit reproduktory při provozu na sluchátka a tlačítko úsporného provozu ze suchých článků. Vpravo jsou dvě svítivé diody, z nichž žlutá indikuje zapojení sítě a červená indikuje zapojenou funkci záznamu.

V dolní části vlevo je prostor pro kazetu

s otevíracím tlačítkem a pět tlačítek jimiž lze ovládat mechanické funkce magnetofonu. Zcela vpravo je pak tlačítko záznamu a tlačítko k přepnutí automatického nebo ručně řiditelného vybuzení. Pod nimi je třímístné počítadlo s nulovacím tlačítkem a knoflik regulátoru ručního vybuzení.

Po obou stranách přístroje jsou dvě dvojice reproduktorů a v horní části (blíže středu) dva elektretové mikrofony. V levém dolním rohu je konektor pro připojení sluchátek (jack Ø 6,3 mm) a v pravém dolním rohu síťový spínač.

Na zadní stěně přístroje je zásuvka pro připojení síťové šňůry, dva konektory pro připojení vnějších reproduktorů, konektory pro připojení zdrojů nf signálu, souosý konektor pro připojení antény a přepínač kmitočtu oscilátoru. Na horní stěně přístroje je umístěno sklopné držadlo a teleskopická anténa

Funkce přístroje

Pro někoho budou na první pohled neobvyklé poměrně velké rozměry tohoto přístroje. Jakmile ho však uvedeme do provozu, budeme příjemně překvapeni kvalitou jeho reprodukce, na níž se pochopitelně i tyto rozměry podílejí.

U zkoušeného vzorku všechno fungovalo bez chyby. Citlivost přijímače byla posuzována laicky, tedy porovnáním s obdobným přístrojem zahraniční výroby a byla shledána výbornou. Jedinou výhradu jsem měl k ladění v pásmech VKV, kde sice optimální naladění velice ulehčovalo AFC s širokým rozsahem, tento široký rozsah však na druhé straně znemožňoval zachytit vysílače se slabším signálem, které byly v sousedství vysílače silnějšího. Automatické doladování totiž vždy "přetáhlo" ladění na silnější signál. Tak například v Praze nebylo vůbec možno zachytit vysílač rakouského třetího programu (kolem 89 MHz), neboť ho "přetáhla" harmonická zvukového signálu petřínského televizního vysílače. Protože AFC u tohoto přístroje není vypínatelné, bylo s výrobcem dohodnuto, že jeho rozsah (z původních 200 kHz) bude zmenšen asi na 50 kHz. Na takto upraveném přístroji bylo zjištěno, že stále ještě zůstává velmi po-hodlné ladění a přitom se popsaný nežádoucí jev již nevyskytuje.

Jak jsem již v úvodu řekl, reprodukce tohoto přístroje je velmi nepříjemná, čemuž přispívá i fyziologický průběh regulace hlasitosti (kombinovaný i s funkcí INTIM). Uspokojující průběh má též regulace šířky stereofonní báze. Jedinou připomínku bych měl k průběhu regulace hloubek, neboť tento regulátor začíná slyšitelně reagovat až v poslední části své dráhy. Domnívám se, že by přístroji ještě prospělo, kdyby mezní kmitočet hloubkových korekcí byl posunut asi o oktávu výše.

Vlastnosti vestavěného magnetofonu lze označit za výborné. Tak například kmitočtová charakteristika s materiálem Fe byla (podle ČSN) změřena v rozsahu 35 až 15 000 Hz a kolísání rychlosti posuvu bylo u kontrolovaného přístroje v rozmezí ±0,12 až 0,15 %. Celkový odstup cizích napětí (s nezapojeným obvodem DNL) byl u horní stopy 54 dB, u horní stopy 50 dB, přičemž hlavní určující složkou nebyl šum, ale brumové složky. Celkový odstup rušivých napětí (s příslušným filtrem tak, jak je to běžně uváděno u zahraničních přístrojů) byl u horní stopy naměřen 62 dB a u dolní stopy 58 dB. Zařazení obvodu DNL je sice sluchově v horní části zvukového spektra pozorovatelné, ovšem jen natolik, co DNL technicky umožňuje.

Z uvedeného vyplývá, že se opět opakuje to, že naši výrobci udávají ve svých technických údajích pouze hranice, které předepisuje ČSN. Je to velká škoda, protože v očích neznalých zákazníků se pak tyto přístroje zcela zbytečně deklasují. Přitom měřením i poslechem je tento výrobek plně srovnatelný s kvalitními zahraničními přístroji a většinu těch, které jsou k nám dováženy, daleko předčí.

Také ovládání magnetofonu pracuje bezchybně až na jednu nepříjemnou vlastnost. Stiskneme-li tlačítko chodu vpřed anebo po něm kterékoli jiné tlačítko, ozve se nepříjemné a poměrně hlasité zavrčení, které může v uživateli vzbudit dojem, že v přístroji není něco v pořádku. Tyto obavy jsou naštěstí zbytečné, protože tento nepříliš lahodný zvuk pochází od motorku a pohonu lišty s hlavami a přítlačnou kladkou (zřejmě doplněný i rezonancí ostatních dílů). Zjistil jsem, že některé přístroje dělají tento hluk větší, jiné menší a osobně považují za velkou chybu, že toto ovládání nebylo vyřešeno tak, aby jeho hlučnost byla zanedbatelná.

Elektronicky řešené automatické vypínání při zastavení navíjecích trnů pracuje zcela spolehlivě a na případnou poruchu či ukončení posuvu pásku reaguje mimořádně rychle.

Zkontroloval jsem též výstupní výkon zesilovačů a to tak, že jsem zajistil napájení z tvrdého zdroje 15 V, což v podstatě odpovídá použití nových kvalitních suchých článků. Při jmenovite zátěži a současném vybuzení obou kanálů odpovídal dosažitelný výstupní výkon (při k = 5 %) asi 2× 6,5 W, při k = 10 % asi 2× 7 W. To je sice podle mého názoru výstupní výkon více než postačující, neodpovídá však přesně údaji výrobce. Ten k tomu dodává, že hudební výkon 2× 10 W je měřen podle DIN 45 324. Je to tedy obdoba běžně zjištěných nesouhlasů, které nalézáme prakticky u všech současných zesilovačů.

Na závěr popisu funkce bych se rád zmínil ještě o přípojných místech, o nichž není v návodu dost podrobně referováno. Základním přípojným konektorem je konektor označený na schématu jako XC201, který na dutinky 3 a 5 umožňuje připojit buď krystalovou přenosku, případně magnetodynamickou přenosku s předzesilovačem, anebo výstup druhého magnetofonu (či jiného zdroje signálu) o výstupním napětí řádu stovek milivoltů. Na dutinkách 1 a 4 téhož konektoru je pak výstupní signál, který můžeme použít například pro přepis na jiný magnetofon. V tomto případě však musíme na magnetofonu, na který chceme nahrávat, použít vstup RADIO a nikoli (jak bývalo vždy obvyklé) vstup GRAMO.

Konektor označený jako XC102 s nápisem RECORD ONLY umožňuje připojit mikrofony střední impedance. Zapojují se na dutinky 1 a 4. Přestože je u tohoto konektoru výše řečený nápis, lze z jeho dutinek 3 a 5 odebírat výstupní signál z magnetofonu (maximální úroveň asi 300 mV) buď pro záznam na druhý magnetofon obvyklým způsobem, anebo pro případný vnější zesilovač.

Poslední konektor označený jako XC601 slouží pro připojení magnetodynamické přenosky bez korekčního předzesilovače. To může být v mnoha případech velmi vítané. V tomto případě jsou zapojeny dutinky 3 a 5 jak bývá obvyklé.

Nakonec bych se rád zmínil o tlačítku SPARE, které, jak již bylo řečeno, vyřazuje z činnosti polovinu můstku v každém kanálu. Tady je vhodné upozornit, že pokud posloucháme potichu, žádnou podstatnější úsporu nezískáme. Tato úspora se projevuje především v tom, že prostě nedovolí hlasitou reprodukci s takovým výkonem, při němž by již spotřeba byla nadměrná.

Vnější provedení přístroje

Je třeba přiznat, že skříň tohoto přístroje působí velice pěkným dojmem – u mnoha posuzovatelů vyvolávala dojem, že jsou obě postranní části s reproduktory odnímatelné. Ve skutečnosti je skříň nedělitelná a tato skutečnost byla některými posuzovateli hodnocena jako nedostatek. Já se domnívám, že odnímatelné reproduktory jsou u podobných zařízení spíše záležitostí efektu než účelnosti. Jednak by to celý přístroj podstatně zkomplikovalo a samozřejmě také prodražilo, jednak zařízení tohoto druhu nemůže nikdy nahrazovat kvalitní domácí sestavu, protože "soustavy" o vnitřním objemu asi 1,5 litru nemohou v žádném případě náročného posluchače plně uspokojit. A ten, kdo si k tomuto přístroji navíc připojí vnější soustavy příslušného objemu i kvality, bude mít pochopitelně zajiš-těnu mimořádně kvalitní reprodukci. Domnívám se proto, že řešení s nedělitel-nými reproduktory je naprosto rozumné a zcela logické. Celý přístroj působí pěkným vnějším

Celý přístroj působí pěkným vnějším dojmem, který (podle mého mínění) kazí jen levně vyhlížející ovládací knoflíky. Kromě toho není ani jejich vysoce lesklý povrch funkčně účelný, protože při otáčení v prstech kloužou. Uspořádání ovládacích prvků vyhovuje, i když se na první pohled zdá být těchto prvků příliš mnoho. Brzy se však v jejich funkcích orientu-

Je to patrně můj soukromý názor, ale domnívám se, že stříbřitý lak již dnes není tím nejmodernějším a nejelegantnějším provedením a že by zájemci o tento kvalitní přístroj jistě uvítali, kdyby si mohli vybrat i jinou barvu skříně, například šedou či hnědou metalízu. V těchto provedeních by přístroj dokonce ještě získal na vzhledu.

Vnitřní provedení a opravitelnost

Zadní stěnu odejmeme povolením osmi šroubů s mimořádně dlouhými závity. To je sice výhodné pro spolehlivé držení zadní stěny, avšak případní opraváři to budou hlasitě proklinat, neboť to jak při rozebírání, tak i při sestavování zdržuje.

U zkoušeného vzorku nebylo možno volně odejmout zadní stěnu, neboť tomu bránily pevně připojené přívody od vnitřních zdrojů a protiváhy teleskopické antény. Výrobce přislíbil, že se postará o pro-

pojení těchto míst zástrčkou, aby tyto přívody nebylo vždy nutno vždy pájet.

Jednotlivé desky jsou v přístroji umístěny většinou ve vodorovné poloze nad sebou. K vyjmutí každé z nich je obvykle potřeba povolit dva šroubky jimiž jsou desky jištěny, což však působí potíže, protože tyto šroubky jsou u několika desek špatně přístupné. Škoda že nebyla použíta technologie, umožňující upevnit desky například pouhým zaklapnutím.

Závěr

Radiomagnetofon Condor je v pořadí druhým přístrojem tohoto druhu, který uvádí na trh k. p. TESLA Pardubice. Svého předchůdce (Diamant-Safír) ve všech směrech jasně předstihuje a lze říci, že kdyby se byl na našem trhu objevil asi tak před pěti lety, představoval by senzaci. Vzhledem k tomu, že doba vývoje a zavádění do sériové výroby u nás trvá tak nepřiměřeně dlouho, dostává se tento přístroj na trh se značným zpožděním a v době, kdy již obliba těchto velkých přístrojů celosvětově opadává. V době uzávěrky rukopisu ještě bohužel neznáme jeho prodejní cenu (její stanovení trvá také poněkud dlouho), domnivám se, že bude-li přijatelná, bude u nás o tento skutečně dobrý výrobek oprávněný zájem.

K Příloze AR 1986

Do programu v článku Výpočet Čebyševových a Butterworthových filtrů... se vloudily dvě chyby. Autor se za jejich přehlédnutí omlouvá a uvádí správné zpění:

1760 IF ABS F5>=F4-F3 THEN GOTO

2120 IF OARLN (2xN)>330 THEN GOT 0 2230

V článku Impulsní zdroj s optoelektronickou vazbou je stejná chyba v obr. 2 i 3 na s. 28 a 29. Rezistor R5 má být spojen svým pravým vývodem pouze s anodou diody D5. Tečka v místě křížení tohoto spojení s dalším spojem (od zdroje 25 V) neplatí.

V článku **Telegrafní bzučák – multivibrátor** na s. 15 je chyba ve vzorci pro výpočet periody kmitů. Před zlomkovou čarou má být správně ln jako funkce přirozeného logaritmu, nikoli l_n.

Jak bude vycházet AR v roce 1987

V letošním roce by podle harmonogramu, smluvně zajištěného s tiskárnou, měla vycházet jednotlivá čísla takto:

AR-A: 1 - 21. 1., 2 - 18. 2., 3 - 18. 3., 4 - 15. 4., 5 - 13. 5., 6 - 10. 6., 7 - 8. 7., 8 - 19. 8., 9 - 16. 9., 10 - 14. 10., 11 - 11., 11., 12 - 9. 12.

AR-B: 1-13. 2., 2-10. 4., 3-5. 6., 4-31. 7., 5-9. 10., 6-4. 12.

BICIPRAVA SOUPRAVA

Vojtěch Valčík

Popisované zařízení slouží k imitaci bicích nástrojů a je schopno generovat i netradiční zvuky používané v podobných výrobcích v zahraničí. Může být použito jako samostatná bicí souprava s doplněním klasických činelů a charlestonky, anebo jako elektronický doplněk tradičních bicích nástrojů.

V soupravě se imituje pět nástrojů generátorem netlumených kmitů na principu rezonace. Další dva, metličky a maracas, potřebují zdroj šumového signálu. Činely a dřeva tato souprava neprodukuje. Dobře se uplatňuje možnost nastavovat jednotlivě hlasitost a jednotlivé nástroje směšovat. Maracas je spouštěn současně s malým bubínkem a simuluje i jeho strunění (snare). Metličky nemají rovněž vlastní čidlo. Lze je připojovat společně se spínáním ostatních nástroiů pomocí pětipolohového přepínače. Znějí samostatně v případě, když nepotřebný bubínek vyřadíme. Délku doznívání lze nastavovat libovolně. Obě bonga dávají při delším doznívání klouzavý zvuk, který je dobře znám z importovaných nástrojů. Soustava všech bubínků je naladěna na doporučené kmitočty.

Všechny zvolené signály se podle charakteru skladby slučují ve výstupním zesilovači, osazeném integrovaným obvodem. Zařízení samozřejmě vyžaduje vnější výkonový zesilovač.

Určitým omezením popisovaného zařízení je, že nevytváří zvuk, jehož hlasitost je přesně úměrná síle úderu paličkou. V této jednoduché konstrukci se to podařilo pouze částečně vhodným režimem v klopném obvodu, kde úroveň výstupního impulsu je do jisté míry závislá na jeho vstupní úrov-

ni. Věřím, že si dobrý bubeník s tímto nedostatkem poradí. Může například u některého bubnu nastavit větší hlasitost, anebo zesilovat zvuk společně otočným regulátorem ve šlapce. Zde je také spínač velkého bubnu, na který se paličkami nehraje.

Snímač, zesilovač a klopný obvod jsou zapojeny podle obr. 2. Jako zdroj vstupního impulsu (čidlo) se osvědčil reproduktor ve funkci mikrofonu. Je zapojen do emitoru T1, který pracuje jako zesilovač se společnou bází. Výhoda reproduktoru jako čidla spočívá v tom, že není citlivý na vedlejší zvuky a otřesy. Vhodný je jakýkoli reproduktor o průměru 16 až 20 cm, který není příliš těžký. Sám jsem použil reproduktory Unitra, eliptické 18 × 13 cm. Jeho signál je na emitor tranzistoru veden přes trimr R4, kterým nastavujeme citlivost úhozu.

Celkové uspořádání snímače vyplývá z obr. 3. Kostra je z překližky, ve spojích slepena lepidlem Epoxy. Ve spodní části je opatřena dvěma držá-

ky se šroubem, jimiž drží na trubce o průměru 18 mm, která je součástí stojanu. Musí být co nejpevnější aby se otřesy nepřenášely z jednoho bubínku na druhý.

Aby čidlo snímalo i nejrychlejší úhozy bez nežádoucího zakmitávání, musí být membrána dobře zatlumena. Osvědčila se mi pryž o tloušíce asi 2 mm, kterou je zatlumena vlastní membrána z umakartu tloušíky 1,3 mm. Po celém obvodu této membrány je navlečeno pružné obložení z podělně rozříznuté pryžové hadice o průměru 12 mm. Sestava je důkladně přitlačena rámečkem za pomoci

Obr. 2. Snímač, zesilovač a klopný obvod

Obr. 3. Vnitřní uspořádání snímače

Obr. 4. Detail uložení membrány

truhlářské svěrky ke kostře. Celek jsem nastříkal černým matným lakem. Detail uložení membrány je patrné z obr. 4.

Úhozem paličky vznikne na čidle nedefinovatelné kmitočtové spektrum. Abychom zajistili potřebný kladný impuls se strmým čelem, je do cesty zařazen monostabilní klopný obvod. Tranzistor T2 je v klidu uzavřen a T3 otevřen. Při dosažení určité úrovně signálu na bázi T2 (asi 1,3 V) se T2 otevře a T3 uzavře. V praxi to znamená, že čidlo reaguje až na úhoz určité intenzity. Poměry v klopném obvodu jsou upraveny tak, aby se podle síly úderu paličky zvyšovalo strmé čelo výstupního impulsu (rozpětí asi 6 až 15 V), takže lze částečně ovlivňovat hlasitost i když je současně mírně ovlivněn charakter zvuku nástroje. Imitace je vyhovující, protože zcela věrné napodobení klasických bubnů není požadováno.

Nástrojová část je obvyklá. Velký buben (obr. 5) je spínán spínačem S2. umístěným spolu s výstupním regulátorem hlasitosti přímo ve šlapce. Odtud jde kladný impuls na C3, C4 a D1 a pak na tvarovací obvod C5, C6, R12 a R13. Svým průběhem určuje strmost náběhu, dobu znění i doznívání. Po derivaci v tomto řetězci se spouštěcí impuls dostává přes R16 na bázi T4. Rezonanční obvod s trojitým derivačním členem RC ve zpětné vázbě určuje charakter zvuku a kmitočet nástroje. Jednotlivé bubny ladíme pomocí tónového generátoru a osciloskopu, kterým též kontrolujeme celkovou činnost obvodu. Namísto R18 zapojíme do obvodu trimr 47 kΩ. Po nastavení kmitočtu 98 Hz změříme odpor trimru a nahradíme ho pevným odporem. Kdo se v ladění hudebních nástrojů vyzná, může s dostačující přesností nastavit kmitočet sluchem třeba podle klavíru a to porovnáním s tónem G (velká oktáva). Do zvuku vlekého bubnu můžeme s výhodou zavádět i zvuk z metliček přes Př1 s libovolně dlouhým dozníváním.

Malý bubínek je imitován obvodem na obr. 6. Zde hrajeme paličkami a spouštěcí impuls proto přivádíme přímo z T3 na diodu D2. V podstatě je tento obvod totožný s obvodem velkého bubnu. Tady nastavujeme kmitočet rezonančního obvodu na 196 Hz. Při ladění sluchem porovnáváme s tónem g. Současně je spouštěn obvod s T6, který zní jako chrastítka, maracas či snare. Výstupní signál z P7 může být buď samostatný anebo může být směšován s výstupem P2 jako "snaredrum".

K vytvoření tohoto nástroje je třeba přivádět do báze T6 šumový signál. Na tvaru potřebné obálky výstupního signálu se podílí rezistory R32, R33 i kondenzátory C21 a C22, které současně omezují přechodové jevy. Parametry h₂₁ u T6, T8, T9 a T10 ovlivňují i délku znění. U T4, T5 a T7 požadujeme, aby se rezonanční obvod rozkmital v polovině dráhy emitorového trimru (R14, R24 a R40). Nekmitá-li vůbec, je třeba změnit odpory rezistorů R20, R30 a R46 (budou v rozmezí 1,2 až 2,4 MΩ.

Zvuk kotle (tom-tom) je vytvářen obvodem s tranzistorem T7 (obr. 7). Je uváděn v činnost z druhého snímače a klopného obvodu impulsem do D5. Obvod je udržován v zatlumeném stavu těsně před rozkmitáním pomocí odporového trimru R40 a rezistoru R43. Výstupní signál je vyveden kondenzátorem C31 a P3. Kondenzátor C31 ovlivňuje výsledný charakter nástroje, jeho kapacitou lze korigovat propouštěnou kmitočtovou oblast. V této soupravě patří mezi nejvěrněji znějící nástroje. Lze k němu přimíchat zvuk metliček přes Př1. Ladíme ho na kmitočet 147 Hz, anebo záznějovou metodou sluchem podle d v malé oktávě.

Obvod s tranzistorem T8 imituje zvuk drátěných metliček. Potenciometrem lze měnit délku jejich doznívání. Připojit ho můžeme na kterýkoli bubínek samostatně anebo tak, že bude znít společně. Výstupní signál je korigován a limitován diodou D7. Šumový signál je přiváděn z generátoru (obr. 8) kondenzátorem C35 a rezistorem R52. Zdrojem šumu je T11. Je třeba vybrat takový tranzistor, jehož

Obr. 8. Šumový generátor

Obr. 9. Bongo nízké a vysoké

6n8

šum neobsahuje chrastění či praskání. Tranzistory T12 a T13 zesilují a současně potlačují vliv složek, projevujících se jako chrastění (výstřelový šum).

Zvuky nízkého a vysokého bonga (obr. 9) jsou podobné klasickým nástrojům jen při zkratovaném P9. Tento dvojitý potenciometr zkracuje nebo prodlužuje délku znění obou shodných bubínků. Každý z nich má vlastní spouštěcí obvod, vstupující na D8 a D11. U těchto rezonančních nástrojů se využívá tónového signálu o vhodném kmitočtu. Spínací signál je po derivaci veden přes R56 (R62) na T9 (T10). Jeho nestabilizovaný pracovní bod způsobuje, že se při doznívání snižuje kmitočet. Dokmitává v podobě klouzavého tónu. Signál je korigován a limitován na výstupu kolektoru T9 (T10) kondenzátory C43 (C50) a diodami D10 (D13). Zvuk je decentní a připomíná moderní bicí efekt. Oba bubínky by měly být naladěny do kvinty a to tak, že nízký ladíme na 294 Hz a vysoký na 392 Hz. Podle sluchu to je d' a g'.

Všechny součástky bicí soupravy se vejdou na jedinou desku s plošnými spoji (obr. 10) včetně síťového zdroje (obr. 11), který je dobře filtrován a stabilizován diodou D20. Deska má rozměry 205 × 85 mm. Mimo desku je jen transformátor Tr1, který musíme umístit tak, aby svým magnetickým polem nevytvářel v zařízení nežádoucí brumové složky. Co nejdále jsou proto umístěny IO1 a obvody nejníže znějících bubnů, které jsou na tyto složky nejcitlivější. Samostatnou malou destičku mají pouze součásti slučovací a oddělovací části (obr. 12 a 13). Pro elektroniku byla použita skříňka z reproduktoru TESLA s typovým označením ARS 241 o rozměřech

 $26 \times 16 \times 10$ cm.

10. Deska V13 s plošnými spoji V13 (trojúhelníkové zemní plošky uprostřed desky je třeba vzájemně propojit)

Obr. 11. Zapojení síťového zdroje

Obr. 12. Deska V14 s plošnými spoji slučovacího zesilovače

Amatérske A 1 10 A/2

Seznam součástek Rezistory (TR 212, TR 151 apod.) R1 R36, R52 33 kO R2, R23, R32, R33. 220 kO R48, R54, R60, R67 15 kΩ 47 kO 22kO 150 Ω R8, R12, R18, R19, R22, R38, R45, R53, R59, R68, R70, R71 22 kΩ 4,7 kΩ $3,3 \text{ k}\Omega$ R17, R27, R42, R49, R75 $100 \text{ k}\Omega$ 330 kΩ R15, R25, R43 330 Ω R16, R26 820 kΩ R20, R30 1,2 **M**Ω R21, R37, R47, R51, R57, R58, R64, R65, R66, R76, R77, R84, R85 10 kΩ 18 až 20 kΩ R11, R46 $2,4 M\Omega$ $6.8 \text{ k}\Omega$ 470 kΩ R35, R41, R50 $1 M\Omega$ R55, R61, R78, R79, R80, R81 68 kΩ R56, R62 1,8 MΩ $3,3 M\Omega$ 1,5 kΩ 150 kΩ R39, R82, R83 270 kΩ 100 až 150 Ω/2 W 1.5 kΩ/trimr R4, R14, R24, R40 Kondenzátory (keramické) 50 μF, TE 981 68 nF C2, C59 C3, C5, C13, C21, C22, C23, C28, C29, C30, C31, C32, C37, C44, C51, C52 C14, C15, C25 až C27, C33, C34, C38, C39, 22 nF C45, C46 C6, C7 100 nF 150 nF C4, C8 až C11 C16 až C18 33 nF 15 nF 1 nF C24, C50 C35, C40 až C42 C20, C36 3.3 nF 10 nF 470 pF C43, C47 až C49 6,8 nF 5 μF, TE 984 100 μF. TE 984 120 pF 4,7 pF 10 μF, TE 984 220 pF C60, C61 1000 μF, 2× TE 986 3300 µF, TE 674 Polovodičové součástky KA501 D1 až D15 D16 až D19 1N4004 T1 až T13 KC507 (508, 509) MAA741 (501, 502, 504) Potenciometry 100 kΩ/G, TP 600 100 kΩ/G, TP 280n P1 až P6 **P7** P8 5 MΩ/TP 280n 2× 2,2 MΩ/N, TP 283n ve šlapce 25 kΩ/G, TP 280n

Uvedení do chodu by nemělo činit problémy, pokud použijeme ověřené součástky. Na předzesilovač a klopný obvod jsou vhodné tranzistory KC507 nebo 508 s $\beta=150$ až 250, na obvody s rezonančním okruhem pak s $\beta=300$ (i více). Chceme-li zařízení používat jen jako doplněk ke klasické bicí soupravě, stačí zhotovit jen dva bubínky a jejich přívodní šňůry přepojovať podle potřeby do vhodných vstupů.

Pokud by některý z bubínků spouštěl elektronickou část samovolně nebo otřesy, pomůže zatlumit kmitací cívku rezistorem o odporu 4 až 10 Ω.

Obr. 13. Zapojení slučovacího zesilovače

LIMITER PRO ELEKTRICKOU KYTARU

Ing. Miroslav Chmela

Popisovaný přístroj je určen pro elektrickou kytaru (včetně basové). Svou citivostí je vhodný i pro tuzemské kytary osazené staršími typy snímačů, které dávají menší výstupní napětí. Limiter produkuje dlouhý nezkreslený zvuk a délku prodloužení lze plynule měnit. Náběhová i odběhová doba jsou nastavitelné. Limiter také zvětšuje střední úroveň signálu vůči špičkové, což zmenšuje nároky na výkon koncového zesilovače.

Technické parametry

Napájení: Odběr proudu 4 mA. Vstupní napětí: 1 V (max). 150 kΩ. Vstupní odpor: 0 až 1 V Výstupní napětí: (nastavitelné). Práh limitace: 10 mV až 1 V (nastavitelný).

Změna výst. napětí pro nejnižší práh limitace a změnu vst. nap. o 40 dB:

Časová konst. náběhu: Časová konst. odběhu: Dolní mezní kmitočet:

Horní mezní kmitočet:

30 Hz závislý na nastaveném prahu limitace.

3 až 50 ms.

0,7 až 5,7 s.

Zkreslení:

Princip činnosti

2 dB.

Na obr. 1 je zjednodušené schéma limiteru. Signál z kytary $u_{\rm IN}$ je zesilován operačním zesilovačem OZ, který pracuje v invertujícím režimu. Zesílení tohoto obvodu je dáno jednak zápornou zpětnou vazbou tvořenou prvky P1, R1 a R2, jednak zápornou zpětnou vazbou přes napětím řízený zesilovač (VCA). Řídicí napětí Uc pro VCA je odvozeno usměrněním a filtrací výstupního napětí u out. Činnost limiteru je patrná z obr. 2. který znázorňuje úrovňovou charakteristiku limiteru. V oblasti označené "A" je přenos VCA nulový a přenos zesilovače signálu z kytary je dán nastavením potenciometru P1. Oblast "L" je oblastí limitace, ve které se výstupní napětí v závislosti na vstupním téměř nemění. V této oblasti pracuje VCA řízený regulační smyčkou. Práh limitace odpovídá takovému vstupnímu napětí u P. při němž je na výstupu taková úroveň uout, při které začíná pracovat usměrňovač D. Zvětšováním vstupního napětí od u_P se otevírá VCA, zvětšuje se záporná zpětná vazba

Vlastnosti limiteru lze vyjádřit tzv. kompresním poměrem

$$K = \frac{\Delta u_2}{\Delta u_1} \qquad [-; dB, dB] \tag{1}$$

V oblasti L je K≪1. Ideální limiter by měl K = 0 (rovnoběžka s osou u_{IN}). V oblasti A je K = 1. Aby platilo K \ll 1, musí být přenos U_c/u_{OUT} velký. Omezením je stabilita smyčky a nelineární zkreslení na nižších kmitočtech. Protože napětí u ουτ, při němž začíná usměrňovač pracovat, je konstantní, je u_{OUT} také téměř konstantní v oblasti L nezávisle na nastavení prahu limitace potenciometrem P1. Potenciometr P2 slouží ke srovnání úrovní přímého a upraveného signálu z nástroje, který se přepíná přepínačem Př. Prvky C, R5 a P3 určují časovou charakteristiku limiteru. Jestliže je P3 v pravé krajní poloze (u

potenciometrů označeno tečkami), reaguje smyčka na zvětšení vstupního napětí pomalu a do počátečního stavu (maxima zesílení) se vrací rychle. V opačné poloze potenciometru reaguje na zvětšení vstupního napětí rychle a do počátečního stavu se vrací pomalu. První případ znamená vaci pomlatu. Frvní případ znamena ostřejší zvuk a druhý měkčí zvuk nástroje. Vzhledem k tomu, že, kromě VCA, jsou použity obvody v literatuře již popisované, omezím se na vysvětlení funkce VCA.

Napětím řízený zesilovač je na obr. 3. Skládá se z operačního zesilovače s od-porovou sítí (R3, R3', R4, R4'), který

Obr. 1. Zjednodušené schéma limiteru

Obr. 2. Úrovňová charakteristika limiteru

Obr. 3. Napětím řízený zesilovač (VCA)

pracuje jako převodník proudů, jimiž jsou buzeny jeho vstupy z kolektorů T1 a T1'. Tento zesilovač dále omezuje souhlasné složky proudů. Přes R1 je přiváděn vstupní signál u_1 na T1. Řízení přenosu u_2/u_1 se musí být volena tak, aby byl zajištěn nulový přenos pro souhlasnou složku proudů I_1 a I_1 , tedy pro $U_2=0$. Pro zjednodušení předpokládejme ideální OZ $(R_{vst} \rightarrow \infty, A_u \rightarrow \infty)$. Pro nulové rozdílové napětí U_d musí (vzhledem k +U) platit

$$R3/R4 = R3'/R4'$$
 (2).

Proudy I_1 a I_1 ' se tedy větví ve stejném poměru, což znamená že $I_2 = I_2$ '. Pro $U_d = 0$ platí vzhledem k I_1 a I_1

$$R4 = R4' \tag{3}$$

a ze vztahu (2) pak plyne

$$R3 = R3' \tag{4}$$

Vztahy (3) a (4) udávají podmínku nulového přenosu souhlasných složek.

Jsou-li R2 = R2' řádově stovek ohmů, lze
předpokládat, že T1 a T1' jsou napěťově buzeny. Pro strmost tranzistorů platí

$$g_{21} = \frac{i_k}{u_{be}} \doteq 40 I_k$$
 (5),

jsou střídavé složky kdeik a Ube kolektorového proudu a je stejnosměrný proud kolektoru.

Pokud bude ube řádu nejvýše desítek milivoltů, lze v bodě daném /k vstupní charakteristiku tranzistoru aproximovat přímkou, jejíž směrnice (tedy poměr ib/ /Ube) bude vzrůstat s /k. Se změnou /b se tedy mění proud kolektoru ik podle proudového zesilovacího činitele. Proudem /k lze tedy měnit střídavou složku kolektorového proudu ik podle (5).

Tranzistory T2 a T2 pracují jako proudové zrcadlo. Napětí báze-emitor jsou shodná a platí-li $I_k \gg I_b$, je proud I_C prakticky roven I_C' . Zdrojem I_C je T3, který se otevírá při $U_C \doteq -0.6$ V. Pro $U_C < -0.6$ V je $I_C = I_{C'} > 0$ a přenos VCA $u_2/u_1 > 0$. Pro u_1' platí

$$u_1' = u_1 \frac{R2}{R1 + R2}$$
 (6).

Napětí na neinvertujícím vstupu OZ

$$u_{\rm N} = i_1' \frac{{\rm R4' \, R3'}}{{\rm R4' + R3'}}$$
 (7).

R4 a u2 nahradíme ekvivalentním obvodem proudového zdroje o úrovni $u_2/R4$. Tento proud teče do uzlu invertujícího vstupu v opačném směru proudu i1. Rezistory R4 a R3 uvažujeme v paralelním zapojení (pro střídavé signály je +U spo-jeno s nulou). Napětí na invertujícím vstupu je tedy

$$u_1 = \left(i_1 - \frac{u_2}{R4}\right) \frac{R4 \cdot R3}{R4 + R3}$$
 (8).

Za předpokladu platnosti vztahů (3) a (4) lze pro $u_d = 0$ psát

$$u_{N} = u_{1} = i_{1} \frac{R4 \cdot R3}{R4 + R3} =$$

$$= -\left(i_{1} - \frac{u_{2}}{R4}\right) \frac{R4 \cdot R3}{R4 + R3}$$
(9)

přičemž složky i1 a i' jsou v protitazi.

Po zjednodušení

$$u_2 = 2i_1 R4$$
 (10).

Řídicí proud

$$I_{\rm C} = 2I_{\rm k} \tag{11}$$

$$I_{\rm C} = \frac{-0.6 - U_{\rm C}}{\rm R5} \cdot \beta \tag{12}$$

(pro $U_{\rm C}<-0.6$ V). Po dosazení a upravě (5), (6), (10), (11), (12), $i_{\rm k}=i_{\rm 1}$ (diferenční stupeň T1 a T1' je buzen nesymetricky) dostaneme přenos VCA jako konečný výraz

A_u =
$$\frac{u_2}{u_1}$$
 = 2.R4.40 $\frac{I_c}{2}$ $\frac{R2}{R1 + R2}$ 0,5 = = 20. I_c $\frac{R4 \cdot R2}{R1 + R2}$ = = $\frac{20 \cdot R4 \cdot R2}{R1 + R2} \cdot \beta \cdot \frac{0.6 - U_c}{R5}$ (13)

kde β je proudový zesilovací činitel T3. Poslední část rovnice (13) platí, jestliže je napětí na R5 řádu jednotek voltů, jinak je nutno Ube stanovit přesněji. Připomínám, že v symbolice jsou velkými písmeny značeny stejnosměrné a malými střídavé veličiny.

Realizace limiteru

Úplné zapojení limiteru je na obr. 4, IO1 vytváří napěťový střed 4,5 V, D1 chrání přístroj proti přepólování zdroje. IO2 tvoří zesilővač signálu z nástroje a jeho počá-teční zesilení lze nastavit P1 (viz oblast A) v rozsahu 1 až 100. Potenciometr P1 má exponenciální průběh a plné zesílení je v jeho pravé poloze. Protože se však potenciometr s tímto průběhem obtížně

shání, lze použít logaritmický a zapojit jej obráceně anebo obětovat tandemový typ (logaritmický) a použít z něho dráhu, která má v pouzdře jednoduchého poten-ciometru exponenciální průběh. Dvoucestný usměrňovač výstupního signálu tvoří IO3, D2, D3, D4, R18, R19 a R20. Kondenzátor C4 je filtrační. Potenciometrem P3 nastavujeme časovou charakteristiku, R21 omezuje nabíjecí proud, D4 brání zpětnému vybíjení C4. Druhá část

IO1 pracuje jako napěťový sledovač s velkým vstupním odporem. IO3, T1 až T3 tvoří VCA, přičemž R9 a C3 zabraňují rozkmitání na vysokých kmitočtech. R14 brání T1 přechodu do saturace. Deska

s plošnými spoji je na obr. 5.

K připojení limiteru jsem použil konektory typu "jack" o průměru 6,3 mm. Protože se však u nás nedostanou jejich zásuvky opatřené kontaktem pro spínání napájení, použil jsem běžný konektor

Seznam součástek

212 nebo jiné miniaturní)	K	ondenzáto	iry
150 kΩ	C	1	33 nF, TK
100 Ω	C	2, C5	100 nF, T
R15,	C	3	220 pF, T
33 kΩ	- C	4	20 uF, TE
10 kΩ	C	6, C8	5 μF, TE 9
330 Ω	C	7	100 µF, T
1 kΩ			
330 kΩ .	. Po	olovodičo:	ré součástky
3.3 kΩ, TP 041	- \\\	1, T2	KCZ59
10 kΩ/E, TP 280	` T3	3	KC308
100 kΩ/G, TP 280	10	1, 103	MA1458
$2.5 \text{ k}\Omega/\text{N} + 250 \text{ k}\Omega/\text{N}$. TP 280	10	2	MAB356
	D.	1	KY132/80
TP 283 a 2.5 kΩ/N, TP 280	D.	2 až D4	KA261
	100 Ω R15, 33 kΩ 10 kΩ 330 Ω 1 kΩ 330 kΩ 3,3 kΩ, TP 041 10 kΩ/E, TP 280 100 kΩ/G, TP 280 2,5 kΩ/N + 250 kΩ/N, TP 280 (složeno z 2× 250 kΩ/N,	150 kΩ C C 100 Ω C G G G G G G G G G G G G G G G G G G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Obr. 5. Deska V15 s plošnými spoji limiteru

s úpravou podle obr. 6. Sestava je po rozebrání doplněna izolační podložkou, dalšími izolačními trubičkami, držákem kontaktu a případně delšími šroubky. Na držák je připájen kontakt pro spínání napájení, který byl ohnut z kontaktu reléového svazku. Výhoda zapínání zasunutím konektoru spočívá v menší pravděpodobnosti, že po skončení hry zapomeneme zařízení vypnout.

Na obr. 7 je mechanická úprava limiteru. Skříňka je ze čtyř dílů, ze dvou dřevěných bočnic, horního a spodního víka, které jsou z ocelového plechu tloušťky 1 mm. Obě bočnice díly jsem zevnitř polepil Alobalem, zvenku namořil a přestříkl bezbarvým lakem. Plechové díly jsou rovněž nastříkány a popsány Propisotem.

Uvedení do chodu

Po osazení desky zkontrolujeme nejprve odběr ze zdroje, který by neměl přesáhnout asi 4 mA. Na výstupech všech OZ by mělo být přibližně 4,5 V. Na vstup připojíme nf generátor, na výstup osciloskop a nfmilivoltmetr. P1 nastavíme do polohy maximálního zesílení a na generátoru kmitočet 1 kHz a napětí asi 1 V. Na výstupu 6 IO2 by mělo být shodné napětí. Na výstupu 7 IO3 by mělo být napětí dvojnásobného kmitočtu. Pak zkontrolujeme stejnosměrné napětí na výstupu 7 IO1, které by (podle β T3) mělo být mezi 3,5 až 4 V. Na výstupu 1 IO3 bychom měli naměřit 1 V střídavého napětí.

Změníme-li vstupní napětí z 1 V asi na 10 mV, mělo by napětí na výstupu 6 IO2 zůstat téměř nezměněné. Na výstupu 1 IO3 by se napětí mělo zmenšovat a na výstupu 7 IO1 by mělo dosáhnout úrovně

Obr. 6. Úprava konektoru

Obr. 7. Mechanické provedení limiteru

120

horni dil

bočnice

spodni viko

Obr. 8. Změřená úrovňová charakteristika

přibližně 4,3 V. Trimr R6 nastavíme nyní tak, aby se stejnosměrné napětí na výstupu 1 IO3 při změně vstupního signálu 0 až 1 V měnilo co nejméně.

Při vstupním napětí větším než 1 V a kmitočtu nad 10 kHz se projevuje kmitočtová závislost zpětné vazby tak, že se již na výstupu neudrží konstantní napětí. To však v praxi nevadí.

Potenciometrem P2 (úroveň) nastavujeme v praxi stejnou hlasitost přímého a upraveného signálu pro oblast limitace. Začátek timitace nalezneme tak, že otáčíme P1 (sustain) směrem k většímu zesílení a od okamžiku kdy se hlasitost nemění jsme v oblasti limitace. Potenciometrem P3 (náběh) nastavujeme ostřejší či měkčí zvuk nástroje.

Závěr

Popisovaný limiter byl prakticky porovnáván s výrobkem firmy Ibanez Compressor Limiter, který má poněkud odlišné ovládání. Byla zjištěna poněkud vyšší úroveň šumu u popisovaného limiteru, výsledný efekt však byl velice podobný. Na obr. 8 je změřená úrovňová charakteristika limiteru.

NEOBVYKLÁ ZKUŠEBNÍ DESKA

Popisované desky jsou určeny pro odzkoušení jednoduchých zapojení s diskrétními součástkami. Proto velmi dobře poslouží začínajícím amatérům, kteří ještě nemají mnoho zkušeností při pájení. Velmi často se jim totiž stává, že běžné měděné fólie, jaké jsou na deskách s plošnými spoji, přehřejí, fólie se odloupne a celá deska je pak k nepotřebě. Tento případ nastává obvykle tehdy, když opakovaně pájíme jedno místo na desce. U navržené desky takové nebezpečí v žádném případě nehrozí.

Základní provedení vyplývá z obr. 1. Materiálem desky může být například skelný laminát, pertinax (jeho nejvhodnější tloušťka je 0,4 až 1 mm), v nouzi postačí i prešpán. Dále potřebujeme kousky pocínovaného plechu – postačí jakýkoli odpad, který můžeme sehnat například v některé provozovně OSP, kde nám mohou i nastříhat potřebné pásky v šířce asi 2 až 3 mm.

Jestliže plech neseženeme, vyhoví i prázdná konzerva, kterou ovšem velmi pečlivě vymyjeme. Je ji nutno otevřít otviračem z obou stran, pak kleštěmi přeštípneme oba lemy a vhodnými nůžkami nastříháme potřebné pásky. Pokud stříháme napříč, nemáme pak ani velké problémy s vyrovnáním pásků.

Do základní izolační desky pak vyvrtáme otvory o průměru asi 3 mm. V nouzi k vytvoření děr postačí i běžný děrovák na kůži. Pak nastříhané plechové pásky ohneme, zasuneme do desky a na druhé straně je dalším ohnutím zpevníme tak, jak vyplývá z obrázků. Počet i délku pásků zvolíme odhadem podle předpokládané potřeby počtu pájecích bodů. Někde volíme pásky krátké, jinde delší a nesmíme zapomenout na několik průběžných pásků, které budou sloužit jednak jako zemnicí, jednak jako napájecí vodič.

Na obr. 2 vidíme několik ukázek konstrukcí postavených na takto zhotovených zkušebních deskách.

žák František Ochotný

Amatérské: AD 11 A/2

Obr. 2 >

56

POPULARIZACÍ MIKROPROCESOROVÉ A VÝPOČETNÍ TECHNIKY PLNÍME ZÁVĚRY XVII. SJEZDU KSČ

mikroelektronika

Obr. 1. Rozšíření pamětového systému mikropočítače ZX Spectrum s výstupem na dálnopis

ROZŠÍŘENÍ PAMĚTI A PŘIPOJENÍ DÁLNOPISU k mikropočítači ZX-SPECTRUM

Ing. Jiří Doležal

Mikropočítač fy Sinclair ZX Spectrum patří mezi nejrozšířenější mikropočítače u nás. Po úvodním seznámení s jeho funkcí se celá řada jeho uživatelů bude snažit využít ho i k jiným účelům, než k pouhým hrám.

Proto je následující článek určen pro ty užívatele, kteří si budou chtít rozšířit stávající paměťový podsystém s možností připojení dálnopisu, či dálnopisné tiskárny, nebo použe realizovat rozšíření paměti o další prostor, ve kterém si mohou v pamětech RAM či EPROM ukládat jiné pomocné programy ve strojovém kódu mikroprocesoru Z80.

Stručná charakteristika

Připojíme-li k mikropočítači ZX Spectrum dálnopis, nebo amatérsky vyrobenou tiskárnu, je též nutné nahrát do paměti obslužný program ve strojovém kódu. Tento program se ukládá převážně na konec paměti RAM v rozsahu 45 až 64 kB. Často se ale pak stává, že nově nahraný program v jazyce BASIC, či ve strojovém kódu nám tento program přepíše a znemožní nám jeho použití (TASWORD). Proto je tento program vhodné uložit jinam.

Navržené a realizované zapojení podle obr. 1 nám uvolní "nový" prostor 1 kB, do kte-

rého můžeme připojit paměť RAM 1 kB typu MHB2114, nebo 2 kB RAM 6116, či 2 kB EPROM 2716. Není třeba jistě zdůrazňovat, že si uživatel může osadit pouze ten druh paměti, který má k dispozici, případně nemá-li zájem o připojení dálnopisu, prostě příslušné obvody vynechá, nebo naopak. Přepínání jednotlivých stránek – bloků se provádí programově v jazyce BASIC, nebo ve strojovém kódu pomocí příkazu OUT.

Výhoda tohoto řešení se projeví zejména v případech, kdy dojde k "zaseknutí", či zablokování programu. Při provedení RESET dojde k inicializaci počítače a k zrušení všech

programů uložených v paměti RAM. Programy uložené v uvedeném prostoru však zůstanou zachované. Dále je výhodné si každý program, který si chceme později pevně uložit do paměti typu EPROM nejdříve odladit v paměti RAM.

Rozšíření paměťového prostoru

Jakékoliv umisťování paměti EPROM v rozsahu 16 až 64 kB vede ke zmenšení původního rozsahu použitelného pro BASIC [1]. Zbývá se tedy "poohlédnout" po rozsahu 0 až 16 kB, kde je v paměti typu ROM umístěn operační systém mikropočítače a interpreter jazyka BASIC. Při podrobnější prohlídce paměti objevime celou řadu "hluchých" míst. Největší nevyužitý prostor (který je trvale na FFH) najdeme na adresách 14446 až 15615 (Tab. 1).

Tab. 1.

decimálně	hexadecimálně		bina	irně	
14446	38CE	0011	1100	0110	1110
15615	3CFF	0011	1100	1111	1111

Obr. 3. Ovládání ROMCS u mikropočítače ZX Spectrum

Vzhledem k tomu, že integrovaný obvod MH74S287 je paměť s otevřeným kolektorem s třístavovým výstupem, musí nám rezistor R2 ve "třetím" stavu zajistit na výstupu log. 0. Dioda D1 odděluje výstupní stav log. 0 od vstupu CS paměti ROM, která je v době komunikace CPUs pamětí RAM ve stavu log. 1. Tento signál se zároveň používá k odblokování pamětí IO1 až IO3. Dekodér IO5 (obvod MH3205) slouží k neúplnému dekódování výstupních zařízení (v našem případe ovládání výstupních zařízení (v našem případe ovládání dálnopisu a stránkování paměti). Z hlediska obvodového řešení je výhodnější po jedné adrese (0) a datových vodičích D1 až D2 posílat řídicí slova, která jsou pak uložena registrech D1 a D2 integrovaného obvodu MH7475. Tato řídicí slova pak přes hradla

IO7, nebo přímo, přepínají jednotlivé bloky pamětí – stránky. Přepnutí do režimu RAM se děje pomocí příkazu OUT 0,4. Dekodér IO5 vydekóduje požadovanou adresu 0 a ta signál poslaný po datovém vodiči D2 zapíše do registru D1. Výstupní signál Q1 = log. 1 přes hradlo odblokuje paměť RAM, a zároveň negovaný signál Q1 = log. 0 zablokuje paměť EPROM. Vyšleme příkazem OUT 0,0 po datovém vodiči log. 0, bude na Q1 = log. 0 a na Q1 = log. 1, dojde k zablokování paměti RAM a k odblokování EPROM. Vzhledem k tomu, že Q2 = log. 0 a tudíž A10 na vývodu 19 IO3 (EPROM) je také ve stavu log. 0, bude pamět přepnuta do rozsahu 0 až 1 kB.

Příkazem OUT 0,2 se vyšle po datovém vodiči D1 na vstup registru D2 log. 1, která se objeví na výstupu Q2 a přepne A10 do rozsahu 1 až 2 kB

Uvedeným způsobem lze pomocí příkazů OUT 0,0; OUT 0,2 a OUT 0,4 programově přepínat jednotlivé stránky paměti. Na pozici IO3 lze místo paměti EPROM 2716 použít statickou nízkopříkonovou paměť RAM 6116 2 kB, která má shodné zapojení s EPROM 2716. Je pouze zapotřebí přerušit na vývodu 21 log. 1 a přivést tam signál WR.

Z výše popsaného principu funkce plyne další možnost rozšíření paměti.

Na místo EPROM 2 kB lze použít 4, respektive i více (8, 16) kB, ve kterých je umístěn program delší, než je rozsah jedné stránky (1 kB)

Obr. 4. Dekodér s IO MH74154

Protože i u mikropočíta<u>če ZX Spectrum je</u> řešeno ovládání signálu ROMCS obdobně jako u ZX81, můžeme i zde použít k odblokování "hluchých" míst dynamického řízení signálu ROMCS v závislosti na adresách (obr. 3.).

Vzhledem k tomu, že zde máme k dispozici 1169 bajtů a museli bychom dekódovat 8 adresových vodičů, učiníme korekci (Tab. 2.). Po této korekci se počet vodičů potřebných pro vydekódování zmenší na 4.

Zde již vystačíme s jedním dekodérem typu MH74154, kterým dekódujeme adresové vodiče A7 až A10. Vzhledem k tomu, že musíme použít "úplné" dekódování podle Tab. 2. je nutné přivést na uvolňovací vstupy S1 a S2 adresové vodiče A11 až A15 a řídicí signál sběrnice MEMRQ (obr. 4.). V tomto zapojení je použito celkem 5 integrovaných obvodů. Vzhledem k minimalizaci počtu součástek a prostoru se zde jeví výhodnější použítí vhodně naprogramované paměti, např. typu PROM MH74S287 (byla nakonec při realizaci použíta, naprogramovaná podle Tab. 3.)

použita, naprogramovaná podle **Tab. 3.**)
Dekódování je podle **Tab. 2**; uvolní 1150
bajtů "nového" prostoru, ze kterého budeme
využívat 1024 bajtů (rozsah jedné stránky od
14464 do 15488).

Tab. 2.

decimálně	hexadecimálně		bina	irně	
14464	3880	0011	1000	1000	0000
15615	3CFF	0011	1100	1111	1111
			~		
		dek. adr. vodičů pomocí MH74S287			

Popis zapojení

Dekodér pro dynamické ovládání signálu ROMCS je osazen IO1 (MH74S287). Na vstupy A až H se přivádí adresové vodiče A7 až A14, na uvolňovací vstupy S1 a S2 pak A15 a MEMRQ.

Bude ovšem nutné zapojení rozšířit o další registry typu MH7475 a řídicí slova posílat po datových vodičích D3 až D7. Přístup do další stránky se pak v některé části předchozí stránky provede příkazem OUT x,x ve strojovém kódu

Připojení dálnopisu

Signál s dálnopisným kódem je na adrese 1 a vysílá se po datovém vodiči D0 na vstup registru D4. Na výstup Q4 je přes rezistor R3 připojena dioda LED, signalizující provoz dálnonicu

Na výstup Q4 je připojen optočlen WK16412, který galvanicky odděluje vnitřní systém mi-kropočítače od elektrického obvodu dálnopisu. Koncový spínací tranzistor T3 spolu s T2 jsou v Darlingtonově zapojení a spínají proud tekoucí cívkou elektromagnetu dálnopisu. Vzhledem ke spínacímu proudu 40 mA a napájecímu napětí 30 až 40 V vyhoví jako T3 tranzistor KF 504.

Konstrukční řešení

Vzhledem k velkému množství propojovacích vodičů byly zvoleny jednostranné plošné spoje v kombinaci s propojením smaltovanými vodiči CuPL o průměru 0,2 mm, které jsou vedeny ze strany součástek ve vzdálenosti od desky asi 8 mm; tím se dosáhlo minimálních rozměrů celé konstrukce. K mikropočítači lze pamět připojit pomocí konektorů WK46580 s roztečí 2,54 mm, nebo pomocí redukce a konektoru FRB TY5176211 s roztečí 2,5 mm. Redukce se vyrobí spojením konektoru WK46580 s konektorem FRB TX5183113.

Výstup pro dálnopis je na svorkách 1 a 2, ale lze jej opatřit jakýmkoli dostupným konektorem

Integrované obvody IO1 až IO3 lze přímo připájet do plošných spojů.

Oživení

Plošný spoj důkladně prohlédneme a veškeré drátové propojky proměříme. Ve vypnutém stavu desku připojíme k mikropočítači, který po zapnutí musí normálně pracovat. Pomocí logické sondy ověříme, máme-li na výstupu Y1, IO4 trvale log. 0. Na výstupu Q1 a Q2 má být log. 0 a Q1 log. 1. Po zadání OUT 0,4 má být na Q1 log. 1 a na Q1 a na Q2 log. 0, po zadání OUT 0,2 na Q1 log. 0, na Q1 a Q2 log. 1. Počáteční stav se opět navolí příkazem OUT

Počítač vypneme, vložíme IO1 a IO2 a zapneme. Příkazem OUT 0,4 se přepne do režimu RAM. Nyní v jazyce BASIC příkazem POKE vložíme libovolné číslo na adresy 14464 až 15615. Opětovným přečtením příkazem PRINT PEEK se přesvědčíme, jsou-li na uvedených adresách uložena skutečně zadaná čísla.

Správnou funkci provozu dálnopisu si ověříme střídavým zadáváním příkazů OUT 1,1 a OUT 1,0. LED se bude střídavě rozsvěcovat a zhasínat.

Funkci výstupního obvodu lze ověřit připojením zdroje kladného napětí 5 až 12 V v sérii s rezistorem 680 Ω k výstupním svorkám. Na rezistoru by se mělo střídavě objevovat toto napětí.

Tab. 3. Programovací tabulka MH74S287

a	dresa			výstup)	
decimálně	hexadecimálně	Y4	Y3	Y2	Y1	hex.
0	0H	0	0	0	0	00
112 113	- 70H 71H	0 0	0	0	0	00 01
121 122	79H 7 AH	 0 0	0	0	1	01 00
255	FFH	0	0	0	0	00

Obr. 5. Připojení dálnopisu (sekundární napětí transformátoru Tr je 30 až 40 V, odběr asi 100 mA)

Seznam součástek

Rezistory	(TR212, TR151)
R1	10 kΩ
R2	470 Ω
R3	390 Ω
R4	390 Ω
R5	47 kΩ

Polovodičové součástky IO1 až IO2 MHB2114

Konstrukční části konektor WK46580 objimka 2 × 12 vývodů TX 7825241 1 kus objimka 2 × 9 vývodů (vyrobit ze dvou kusů 6AF 47069) 2 kusy plošný spoj jednostranný 1 kus

Seznam použité literatury

- [1] Elektor 6/1984.
- 2 Rádiotechnika 8/1985.
- [3] Servisní dokumentace fy Sinclair pro ZX Spectrum.
- 4] Logan: Das ROM.
- [5] Katalog polovodičových součástek TES-LA Rožnov 1984–85.

HOVOROVÁ JEDNOTKA K POČÍTAČI

Jiří Toman

Tento článek popisuje zařízení, které ve spojení s mikropočítačem umožní provádět první pokusy s hovorovým vstupem a výstupem počítačů. Program pro obsluhu tohoto zařízení je psán pro procesor Z80 s tím, že je přenosný na systémy s 8080 a 8085 a po úpravě i na jiné procesory. Zařízení pracuje na principu přímé digitalizace vstupního akustického signálu. Jsou v něm použity výhradně tuzemské součástky.

Princip činnosti

Vzhledem k osmibitové sběrnici dat použitého mikropočítače jsme odkázáni na převod s přesností na 8 bitů. Tento převod umožní rozlišit 256 úrovní napětí. Maximální vstupní napětí stanovíme na +10 V. Pro změření analogové hodnoty 0 až 10 V máme tedy k dispozici 256 úrovní napětí. Z toho plyne, že maximální přesnost, s jakou jsme schopni měřit, je (10: 256) = přibližně 39 mV.

Způsobů, jakými lze převést analogový signál na digitální, je více; pro naše účely potřebujeme převodník, který pracuje velmi rychle. Ze všech principů, které lze pro daný účel využít, je současně zřejmě nejefektivnější převod využívající registr postupné aproximace a D/A převodník. Tento způsob využívá popisované zařízení. Blokové schéma je na **obr. 1.**

Na startovací vstup aproximačního registru (dále AP.REG) přivedeme krátký startovací impuls log. 0. Jeho délka má být větší než jedna perioda hodinového impulsu, přiváděného na vývod 9. Tím jsme převod odstartovali a na vývodu č.2 nyní bude po celou dobu převodu log. 1. Na vývod č. 9 AP.REG přivádíme hodinové impulsy o kmitočtu řádově MHz, na vývod č. 7 výstup z komparátoru.

Vlastní převod probíhá tak, že AP.REG "zásobuje" MDAC08 řídicím osmibitovým slovem, které vyvolá na výstupu MDAC08 určité napětí. Toto napětí se v komparátoru porovnává s napětím vstupním. Podle výsledku komparace se nastaví na AP.REG nové řídicí slovo pro MDAC08, vyvolané napětí se opět porovná v komparátoru se vstupním, podle výsledku generuje AP.REG nové slovo atd. Po osmém "porovnání" máme na datové sběrnici

Obr. 1. Blokové schéma

MDAC08 osmibitové slovo, které odpovídá (binárně) velikosti vstupního napětí. V tomto okamžiku vývod č.2 přechází do log. 0 a oznamuje tak konec převodu. Data na MĎAC08 jsou od tohoto okamžiku stabilní až do nového příchodu impulsu START. V této době je tedy načteme do počítače a uložíme do paměti. Je třeba podotknout, že po celou dobu převodu musí být na analogovém vstupu převodníku konstantní napětí. "Podržení" konstantní hodnoty napětí po dobu převodu lze zajistit např. paměťovým kondenzátorem (obvody "sample and hold"). V popisovaném zařízení tento obvod není a přesto je kvalita signálu dobrá. Proč? Stačí, uvědomíme-li si, jaká je doba převodu (řádově mikrosekundy) a jaký je požadovaný přenášený analogový kmitočet. Pro řeč je uvažován nejvyšší přenášený kmitočet 3500 Hz. Převodník si pro změření velikosti "vysekává" několikamikrosekundové vzorky ze vstupního analogového signálu a pro tento velmi krátký okamžik lze považovat analogový signál za statický, neměnný. Výjimku by tvořil vstupní signál jehlovitého charakteru, který by zařízení nepřenášelo přesně. V hovorové řeči takovýto signál obsahují především neznělé souhlásky (s, š, č, c, f, ch . . .). Jejich zkreslení je při nižších vzorkovacích kmitočtech patrné – ověřit si to můžete sami.

Pro daný přenos řeči je, jak již bylo řečeno, nutný nejvyšší přenášený kmitočet alespoň 3500 Hz. Vzorkovací kmitočet (neboli počet vzorků za 1 s) musí být minimálně dvojnásobkem horního přenášeného kmitočtu – viz např. velmi dobrá literatura [1]. Pro mnohé promluvy, nebo např. hudební nástroje, lze vzorkovaci kmitočet snížit až na 2 kHz, doba možného záznamu je potom delší – důsledkem je samozřejmě podstatné snížení srozumitelnosti.

Popisované zařízení umožní volit vzorkovací kmitočet od 1 kHz do 28 kHz (meze jsou dány programem). Program lze napsat daleko efektivněji (např. využití přerušení), u ZX-81 by to však přineslo neúnosné komplikace.

Se změnou vzorkovacího kmitočtu se samozřejmě mění doba, za kterou nám "vzorky" zaplní celou paměť. Zvyšování vzorkovacího kmitočtu zlepšuje kvalitu přenosu, rostou však také nároky na paměť (její kapacitu). Pro ZX81 a 16 kB paměti je délka přijatelně kvalitního záznamu asi 5 s.

V této souvislosti bych se chtěl zmínit, proč vlastně má smysl se touto problematikou zabývat (myšleno přímou digitalizací). Vzpomeňte si na dobu před 10 až 15 lety. Jaké byly tehdy kapacity a rychlosti pamětí? Jaké možnosti jsou dnes a jaké budou za deset let?

Ve světě jsou dnes běžné DRAM 256 kbitů, začínají DRAM 1 Mbit a bude doba, kdy 1 MB nebude zvláštností. Do 1 MB lze popisovanou metodou nahrát až 3,5 minuty řeči! Čili nahrát velké množství promluv, které mají pevně zadanou adresu a lze je na této adrese najít a vyvolat velmi rychle na výstup zařízení, kde se tato promluva generuje; lidskou řečí, ne strojově umělou, jako to umí dnešní syntezátory řeči.

Popis zařízení podle obr. 2.

Na obr. 2 je úplné schéma zařízení, které lze napojit na libovolný mikro (i mini) počítač. Porty, přes které je zařízení propojeno s počítačem, musí mít vyrovnávací paměť (buffer). Porty pracují tedy tak, že po přivedení platných dat podrží tato data až do příchodu nových platných dat. Porty lze vytvořit např. obvody MH3212 a dekodéry potřebných adres. Obvody u vstupního MDÁC08 jsou navrženy tak, že bez signálu na analogovém vstupu je na datové sběrnici hodnota rovná polovině maximálního rozsahu – tedy 127 (dekadicky). Hod-notu tohoto "čísla" a tím i umístění nulové osy lze měnit trimrem 10 kΩ v obvodu MDAC08 a jemně velikostí referenčního napětí. Trimrem 1 MΩ v obvodu MAA741 lze nastavit požadované zesílení tak, aby bylo možné převodník vybudit libovolným zdrojem signálu (např. mikrofonem). Při buzení analogového vstupu se hodnota na datové sběrnici mění v rozsahu 0 až 255. Tyto hodnoty, získané převodem, se postupně čtou počítačem a se zpožděním posílají na obvod MDAC08. Zařízení na obr. 2 spolu s programem [1] je tedy v podstatě analogový zpožďovač signálu.

Další oblastí využití popisovaného zařízení je oblast měřicí techniky. V rámci rozlišení 256 úrovní napětí lze nahrát do paměti signál, který potom necháme grafikou počítače vypsat (vytisknout) na obrazovku – lze takto získat osciloskop, kterým lze (po úpravě obslužného

Obr. 2. Úplné schéma zařízení

programu) zobrazit i velmi pomalé průběhy i nf signály.

Zařízení podle obr. 2. Ize oživit a případně i používat bez počítače. Na analogový vstup přivádíme známé napětí a ručně odstartujeme převod krátkým impulsem log. 0 na vývod 10. Vývod 10 rezistorem 1 kΩ spojíme s +5 V. Obsah datové sběrnice můžeme zobrazit např. 8 diodami LED a změnou vstupního napětí ověřit funkci převodníku.

Obslužný program je navržen tak, aby byl (po minimálních úpravách) přenositelný na procesory 8080 a 8085.

Program popíši poněkud podrobněji, aby bylo z popisu poznat, jak pracuje. Číslování řádků je totožné s adresou v paměti RAM, obsahy paměťových míst jsou uvedeny dekadicky.

- Na řádku 16514 si načteme do registrového páru HL adresu osmibitového vstupního portu, ze kterého budeme číst data z MDAC08. Na stejné adrese je umístěn i osmibitový výstupní port, na který budeme posílat data z paměti počítače. Hodnota (adresa) uložená v HL se během chodu programu nemění, HL slouží jako UKAZA-TEL na port 1. V mém případě má port 1 adresu 40960 (0 + 160 × 256 = 40960);
- řádky 16517 až 16519 načteme do registrového páru DE adresu počátku ukládání dat, získaných převodem. Tento počátek je zároveň adresou, od které je nutné chránit RAM před přepsáním u ZX-81 zadáním patřičné hodnoty RAMTOP ihned po zapnutí počítače, ještě před nahráním programu z MGF. V mém případě je do DE uložena adresa 17920. Od této adresy směrem nahoru se budou ukládat data, získaná převodem;

- řádky 16520 a 16521 se načte do akumulátoru A hodnota 0. Vzápětí se na ř. 16522 pošle tato 0 na adresu, danou řádky 16523, 16524. Adresa daná těmito řádky není nic jiného než adresa jednobitového portu 2, kterým se startuje převod AP.REG (tato adresa je 40961). Na tento port je tedy vyslána log. 0 (předtím tam byla log. 1) a způsobí start převodu. Tento START impuls končí přechodem do log. 1 na řádku 16529. Aby tento nulový start impuls měl potřebnou dobu trvání, je mezi vysláním log. 0 a log. 1 ještě řádek 16525;
- řádek 16525 a 16526 načte do reg. B hodnotu námi zvolenou. Číslo, které načteme do B vlastně určuje VZORKOVACÍ KMITOČET PŘEVODU. Pro srozumitelný hlas a ZX-81 je použitelné číslo 1 až 70. Při hodnotě 70 lze do 16 kB RAM nahrát asi 4 s řeči. Je třeba si uvědomit, že číslo 0 je zakázáno (viz. dec B a jpnz, NN);

 řádky 16527 až 16531 mění, jak již bylo řečeno, stav portu 2 na log. 1, a ta tam zůstane až do nového startovacího impulsu (průchodu programovým řádkem 16520);

 řádek 16532 dekrementuje (odečte jedničku od B) reg. B;

 ř. 16533, "hlídá" hodnotu v reg. B. Je-li B větší než 0, dojde ke skoku na ř. 16532, což se opakuje tak dlouho, dokud není B = 0. Až je B rovno 0, pokračuje program dále na řádek 16536;

 Na ř. 16536 se přečte hodnota z paměťového místa daného reg. párem DE.

V této souvislosti je třeba si uvědomit, jak celý systém pracuje: Změří se analogové napětí, naměřená hodnota se pošle do paměti (na místo dané registrovým párem DE) a inkrementuje se DE. Tímto registrový pár ukazuje na místo v paměti o jedničku větší. Celý proces se opakuje tak dlouho, až je splněna podmínka na ř. 16544, která umožní přechod na řádek 16552, čímž se dostaneme opět na začátek paměti.

16536 se tedy čte do A hodnota z předcházejícího oběhu a na ř. 16537 se A posílá na výstupní MDAC08. Signál z výstupního MDAC08 je tedy zpožděný o dobu, za kterou proběhné celý program jednou dokola;

ř. 16538 čte do A změřenou hodnotu napětí

ze vstupního portu 1; ř. 16539 posílá obsah A do paměti na adresu danou registrovým párem DE. Z této adresy jsme si hodnotu již přečetli a tak tedy tuto adresu podruhé "zneužijeme" a uložíme na ni obsah A a můžeme DE inkrementovat;

16540 inkrementuje reg. pár DE (DE = DE + 1):

ř. 16541 posílá hodnotu D do A;

ř. 16542 provede porovnání A s obsahem paměť, místa 16543:

ř. 16543 obsahuje číslo, udávající koncovou adresu ukládání dat, získaných převodem. Lze ji změnit podle obsazení RAM v počítači. Je-li A rovno číslu na ř. 16543, dojde k ovlivnění reg. příznaku Z (zero – nula) a program pokračuje na ř. 16546. Pokud je obsah A menší než číslo na ř. 16543, dojde ke skoku na adresu 16520 a děj se opakuje tak

dlouho, až je paměť plná; ř. 16547 až 16551 testují klávesnici (symbol tečka, L, 0, 9). Není-li stisknuto žádné tlačítko pokračuje program na řádek 16553 s tím, že není splněna podmínka nz. Dojde tedy k novému startu programu od adr. 16517. opačném případě pokračuje program na

řádek 16555;

ř. 16555 provede návrat zpět do BASICu a to

za řádek, kterým se do USR skákalo. Řádky 16547 a 16551 zpomalují sice chod programu (snižují nejvyšší mez dosažitelného vzorkovacího kmitočtu), ale jsou nutné, chceme-li během práce měnit hodnoty v USR programu. Pokud by v programu nebyl test klávesnice, neexistoval by návrat z USŘ zpět do BASICu; pouze restartem od adresy 0000 (např. stlačením RESET) se všemi uživatelům ZX-81 jistě známými důsledky.

Čtenář si jistě všimne, že není použit vývod č. 2 aproximačního registru. Tento vývod má po dobu převodu hodnotu log. 1. Nabízí se tedy možnost dalším jednobitovým portem "hlídat" úroveň tohoto vývodu. "Hlídat" vývod (programem) by mělo smysl jedině v případě, že bychom hodnotu získanou převodem chtěli číst bezprostředně po ukončení převodu. Úprava programu [1] je v tomto směru možná. V programu [1] je převod ukončen mnohem dříve, než chceme číst hodnoty převodem získané – viz průchod programem řádky 16527 až 16539 – a proto není nutno hlídat vývod č.2 AP.REG a přesto je podmínka pro stabilní data

Všechny porty jsou zapojeny jako mapovaná paměť (u ZX-81 nelze jednoduše použít instrukce IN/OUT). U jiných počítačů lze tyto instrukce využít a upravit program [1].

Ovládací program v BASICu

Pro snadné ovládání popisovaného zařízení uvádím dva programy v BASICu (pro ZX-81 a SPECTRUM):

Program 2. slouží jako dozvukové zařízení neboli analogový zpožďovač signálu, využitelný např. pro hudbu, zpěv, nástroje apod. Po spuštění RUN zadáme dobu zpoždění (a tím vlastně vzorkovací kmitočet) a NEW LINE odstartujeme. Program běží ve smyčce (USR) a na výstupu MDAC08 je signál zpožděný oproti vstupnímu. Chceme-li zadat jihou dobu zpoždění, zmáčkneme tečku a tím se dostaneme zpět do BASICu.

Program 3. umožní namluvit a potom reprodukovat jednotlivé pokusné promluvy.

Obr. 3. Dolní propust (LPF) 6. řádu s nastavitelnou charakteristikou propustnosti (součástky R, C v toleranci 1 %)

Obr. 4. Napojení LPF na vstup a výstup zařízení

Oba programy lze samozřejmě libovolně vylepšit

Oba tyto programy vyžadují, aby v 1 REM byl uložen strojový program [1]. Do 1 REM tento program uložíme např. použitím smyčky FOR-NEXT příkazem POKE n. x.

Závěr

Doposud jsem neuvedl pro AD/DA převod dosti podstatnou věc: nutnost použít před převodem a po převodu filtry typu dolní propust pro odstranění (potlačení) kmitočtů vyšších než je polovina vzorkovacího kmitočtu. Pro tento účel jsou používány filtry vyšších řádů s velkou strmostí potlačení pásma nad kritickým kmitočtem filtru. Pro zdůvodnění nutnosti použití filtrů doporučují nahlédnout

Program 1.

řádek	obsah	poznámka
16514	33	ld hl, NN
16515	0	•
16516	160	
16517	17	START
16518	0	ł
16519	70	
16520	62	start DAC 08
16521	0	
16522	50	
16523	1	
16524	160	
16525	6	
16526	X	vzorkovací kmitočet
16527	62	
16528	1	
16529	50	
16530	1	
16531	160	0.50
16532	5	DEC
16533	194	jpnz DEC
16534 16535	148 64	
16536	26	14 - (4-)
16537	119	ld a, (de) ld (hl) a
16538	126	Id (III) a Id a, (hi)
16539	18	id a, (iii)
16540	19	
16541	122	
16542	254	
16543	128	konec memory
16544	194	pnz start DAC 08
16545	136	7
16546	64	
16547	62	TEST KEY
16548	0	
16549	219	
16550	254	
16551	183	
16552	194	jpnz START
16553	133	
16554	64	
16555	201	RETURN DO BASIC
L		

U popisovaného zařízení používám filtry 6. řádu s nastavitelnou propustnou charakteristikou. Použitím těchto filtrů (viz **obr. 3**) lze velmi zlepšit kvalitu přenosu signálu, pro první pokusy však nejsou bezpodmínečně nutné. Způsob připojení filtrů je na obr. 4.

Další možnosti zlepšení kvality signálu jsou:

– zařadit před převodník A/D obvod preemfáze a za D/A převodník obvod deemfáze;

zařadit před převodník kompresor a za převodník expander dynamiky;

použít převod na více bitů.

Účelem článku bylo ukázat čtenářům, že digitalizace hovorových signálů je amatérsky řešitelná. Problém je kapacita a rychlost pamětí a procesorů. Jakékoli připomínky a poznámky k tomuto článku uvítám. Závěrem přeji čtenářům pevné nervy při shánění součástek pro mikroelektroniku a mikropočítače.

Literatura:

[1] Smetana, C.: Digitalizace akustických signálů. ST 5/81

TESLA Rožnov: Polovodičové součástky 1984/85.

Program 2.

REM . . . (uložený progr. 1) . . FAST
PRINT "ZADEJ DOBU ZPOZDENI" 20 25 30 40 50 IF X = 0 THEN STOP POKE 16526, X RAND USR 16514 CLS GOTO 10

Program 3

	Program 3.
1	REM (uloženo progr. 1)
5	SAVE "PREVOD"
6	
7	POKE 16553, 0
8	POKE 16554, 0
9	CLS
10	PRINT AT 4,0;
	"XXXXXXXXXXXXXXXXXXXXXXXXXX
12	PRINT AT 5,0;
	"NAVOD K OBSLUZE"
14	PRINT AT 6,0;
	"XXXXXXXXXXXXXXXXXXXXXXXXXXX
	PRINT AT 10,5; "ZAZNAM-ZMACKNI Z"
30	
40	"REPRODUKCE-ZMACKNI R" PRINT AT 14.5: "NAVOD-ZMACKNI N"
	PRINT AT 14,5; ,,NAVOD-ZMACKNI N
50	"ZADEJ VZORKOVACI KMITOCET"
60	
65	
	,,
70	
80	POKE 16526 , X
100	
100	
120	
130	
200	GOTO 100
1000	FAST
	POKE 16538 , 126
	POKE 16539 , 18 RAND USR 16514
1030	SLOW
	RETURN
2000	
	POKE 16538 , 0
	POKE 16539 . 0
	RAND USR 16514
	SLOW
2050	RETURN
Progr	am nahráváme RUN (na kazetu).
Po na	hrávání z kazety se program sám spustí.

PROGRAMY ZE SOUTĚŽE MIKROPROG 85

Učitel jazyků

Pavel Straka

Uvedený program je určen k výuce slovíček cizího jazyka - v mém případě angličtiny. Zkoušená slovíčka jsou uložena v poli dimenzovaných proměnných a tvoří vždy jednu lekci. Proto je výhodnější pracovat s rychlonahráváním, které umožňuje postupně přihrávat slovíčka z jednotlivých lekcí k obslužnému programu. Na rozdíl od jiných programů, kde je třeba zdlouhavě vypisovat celé slovo na klávesnici, zde postačí pouze jednopísmenná zhodnocení znalostí (A-ano, N-ne). Program pracuje tak, že náhodně generuje pořadové číslo slovíčka, které je pak zobrazeno. Jestliže žák slovíčka znal, je jeho první písmeno nahrazeno negativním ekvivalentem, taková slovíčka jsou pak z dalšího zkoušení vyřazena. Po úspěšném zvládnutí celé lekce jsou všechna slovíčka opět dána do původního stavu. Kromě vlastního zkoušení program umožňuje i zadávání slovíček, jejich opravu a uložení na mgf pásku, včetně jejich zpětného nahrání. Program pracuje ve spojení s rychlonahráváním, ale i bez něho, v tomto případě se však spolu se slovíčky nahrává i celý program v jazyku BASIC, o tom ale obsluha nemusí vědět. Přítomnost rychlonahrávání počítač automaticky zjistí a podle potřeby ho využívá. 15 bajtů dlouhý strojový program, uložený v REM na řádku 0, nahrazuje instrukci SCROLL, neboť ta je při větším obsazení pamětí značně pomalá, stejně jako mazání obrazovky takto popsané. Celá činnost programu je názorně patrna z přiloženého vývojového diagramu. Činnost jednotlivých částí programu je vždy vysvětlena pomocí instrukcí REM.

Pozn. Přiložený výpis programu byl pořízen na tiskárně, která bohužel neobsahuje všechny grafické znaky jako ZX-81, proto byly nahrazeny podobnými (viz přiložená tabulka).

Návod k obsluze

Program zavedeme do počítače pomocí rychlonahrávání (PRINT USR 32218, "LBANGLI"). Ten se sám spustí a nabídne volbu činnosti (MENU). Protože v počítači zatím nemáme žádná slovíčka, rozhodneme se buď pro jejich vkládání pomocí bodu 3, nebo nahrání slovíček z mgf pomocí bodu 5. Chceme-li tato slovíčka nějak opravovat zvolíme bod 4. Výpis spustíme pomocí V, obsahuje anglická slovíčka (= lichá) a jejich české ekvivalenty (= sudá), lze jej kdykoliv přerušit (P), opět spustit (V) a ukončit pomocí (K). Navíc je k dispozici režim oprav (O), kdy musíme vždy zadat číslo chybného slova a nový výraz.

Po ukončení máme možnost nového výpisu, nebo můžeme soubor nahrát na mgf. Po ukončení nahrávky se opět objeví MENU a my už můžeme přistoupit ke zkoušení pomocí tlačítek 1 či 2. Po přečtení instrukcí se v rámečku objeví slovíčko. přičemž stisknutím libovolné klávesy se objeví jeho ekvivalent a my pomocí kláves A či N odpovíme, zda jsme uměli, či nikoliv.

580 REM TABULKA 590 PRINT AT 18.4; "F 640 FRINT AT 18.4; "F 620 NEXT I 620 NEXT I 630 PRINT AT 12.6; "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	700 GUS GUSUBLIBED GUS	840 FETNEN B\$ 810 RETURN 820 REM MAZAHI 830 PRINT AT 13,7;" 840 GOTO 200 850 PRINT AT 13,7;" 840 GOTO 380 870 REM ZADRUMANI SLOVICEK 880 POKE 16418,2	990 RRINT GT 6.1;"CHCES-LI UKCNCIT TUGRBU TETO LEKCE ZADEJ: 0000 900 RRINT AT 11.7; "CISLO LEKCE: "; 910 PRINT AT 11.7; "CISLO LEKCE: "; 920 INPUT N 930 PRINT N 940 DIM R\$(152.18) 950 LET R\$(152.18) 950 LET 1=0 TO 40 970 NEXT 1 980 LET 1=1 990 PRINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; 1; ". SLOUO = "; 1000 RINT AT 21.0; ". SLOUO = "; 1000 RINT AT	1090 RAND USR 16514 1100 PRINT USR 16514 1110 IF INKEY*="A" THEN GOTO 1320 1110 IF INKEY*="A" THEN GOTO 1320 1120 IF INKEY*="A" THEN GOSUB 1150 1120 IF INKEY*="A" THEN GOSUB 1150 1130 GOTO 1110 1150 CLS 1160 REM SAUE 1150 CLS 1160 CLS 1160 CLS 1160 GOTO 1170 1170 IF INKEY*="A" THEN GOTO 1200 1180 IF INKEY*="A" THEN GOTO 1200 1180 GOTO 1170 1200 PRINT AT 10.9" SISINKIN RECORD PLAY NA MGF. A LIBOUOLNE TLACITKO" 1210 LET N\$="SAR"+STR\$ URL A\$(152) 1220 IF NEEX 32218=205 THEN GOTO 1220
UCITEL JAZYKU S1ZE: 6763 BVTE UERSN: 0 E PPC: 1940 D FILE: 22349 OF CC: 22350 URRS: 23142 DEST: 25967 E LINE: 23143 OF CC: 22350 VRRS: 0 STRB01: 23160 STREND: 23160 ERRG: 0 MRM: 16477 DF 52 STREND: 22340 LAST K: 65535 DEBOUNCE: 255 MRB61N: 55 NTTLN: 22349 ULDPPC: 65534 FLAGX: 1 STRLEN: 0 T RDDR: 3213 SEED: 60374 FRAMES: 35 S679 COORDSX: 0 COORDSX: 0 FREUF: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 PREUF: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10REM = 15 Byte stroi.progr. 20 REM ***UCITEL JAZYKU** 30 LET P=URL A\$(151) 40 LET 0=P 50 POKE 16418.0 60 CLS 7.5.85 7.6.85		· · · · · · · · · · · · · · · · · · ·	IF O.2 THEN GOTO 670 IF O.2 THEN GOTO 670 IF CODE 646A, 1)>128 THEN GOTO 420 IF CODE 646A, 1)>128 THEN GOTO 420 IF CODE 646A, 1)>128 THEN GOTO 420 IF O.1 THEN GOTO 670 IF O.1 THEN GOTO 670 IF O.2 THEN GOTO 670 IF CODE 646A, 1)>128 THEN GOTO 490 IF CODE 646A, 1)>128 THEN GOTO 490 IF CODE 646A, 1)>128 THEN GOTO 490 IF CODE 646A, 1)>128 THEN GOTO 670 IF CODE 646A, 1)>128 THEN 60TO 670 IF CODE 646A, 1)>128 THEN 60TO 670

```
1940 PRINT AT 8,0;" U HORNIM POLICKU SE UZDV OBJEUTVRAZ, COZ JE POKYN PRO TEB
E, ABV JSI SI ZOPAKOUAL JEHO EKUT- UALENT U DRUHEM JAZYCE,";
1950 PRINT AT 13,0;" STISKNUTIM N.L. SE U DOLNIM PO- LICKU OBJEUT HEDAHV EKUTU
ALENI, NANI UZ NEZBYUA NIC, NEZ POCI- TACI POMOCI TLACITEK (A) A (H) SDELIT, Z
1960 PRINT AT 21,21"STISKNI LIBOUOLNE TLACITKO"
1970 IF INKEV$="" THEN GOTO 1970
1980 FRINT AT 1,0;"
2000 NEXT I
2010 GOTO 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            237 176 201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      UVPIS POUZITYCH ZNAKU PRO KOD ZX-81:
                                                                                                                                                                                                                                               214.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ä
                                                                                                                                                                                                                                                                                                                                  LD HL, (400C)
PUSH HL
LD BC, 0021
POP DE
ROD HL, BC
LD BC, 0226
LDIR
                                                                                                                                                                                                                                               σN
                                                                                                                                                                                                                                                                                               -radek 18
                                                                                                                                                                                                                                               503
                                                                                                                                                                                                           stroj.program-radek
                                                                                                                                                                                                                                                 ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                             disassembler
                                                                                                                                                                                                                                                 53
                                                                                                                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                         21
                                                                                                                                                                                                                                                                                                                                                                                                28
                                                                                                                                                                                                                                                                                                                                     g
                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                                                                     8828288
                                                                                                                                                                                                                                                 12
                                                                                                                                                                                                                                                                                                                                      42
                                                                                                                                                               - konec -
                                                                                                                                                                                                                                                                                                                                     16514
6517
6518
16521
16522
16523
16526
16528
                                                                                                                                       ""0""";RT 9.5; "PRERUSENI = ""P""";RT 11,5; "U?PI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LIBOUOLNE TLACITKO"
      1240 SAUE "HARLICITING"+STR# URL 64(152.)
1250 CLS | 12
```

1

KONSTRUKTÉŘI SVAZARMU

AUTOMATICKÉ PŘEPÍNÁNÍ ANTÉN CCIR – OIRT

Většina rozhlasových přijímačů, které umožňují příjem vysílačů jak v pásmu OIRT tak i v CCIR, bývá vybavena pouze jedním antěnním vstupem. Pokud má v místě bydliště místní vysílač dostatečné pole, vystačíme obvykle jen s jedinou antěnou CCIR. V mnoha případech však tomu tak není a pak jsme nucení používat dvě antény, což přináší určitý problém, jak je nejjednodušeji a beze ztrát napojit na vstup přijímače. Nabízím proto poměrně jednoduchý a praktický bezztrátový způsob přepínání pomocí relé, který lze použít u všech přijímačů, které jsou laděny varikapy.

Zapojení (obr. 1) využívá napěťového rozdílu při ladění v pásmu CCIR a OIRT. Jeho základem je klopný obvod, který při přeladění z jednoho pásma do druhého spíná relé a to automaticky připojí příslušnou anténu. Aby tímto přídavným zařízením nebylo ovlívněno ladicí napětí přijímače, použil jsem zapojení s operačním zesilovačem s velkým vstupním odporem. Rezistory R1 a R2 zmenšují napětí na vstupu operačního zesilovače abychom nepřekročili maximálně dovolenou mez. Proto lze na vstup zařízení přivést napětí až 45 V. Trimrem R4 nastavujeme požadovanou úroveň překlápění a tedy i přepínání relé. Napětí, napájející operační zesilovač, jsem zvolil 15 V, protože po úbytku na něm a na tranzistoru T1 (pracujícím jako stabilizátor), bude na cívce relé požadovaných 12 V. Napájecí napětí stabilizuje Zenerova dioda D1.

Aby byla omezena výkonová ztráta tranzistoru T1 při vyšších napětích, je do jeho kolektoru zapojena telefonní žárovka. Ta současně indikuje zapnutí relé. Je však nutno dodržet podmínku, aby žárovka i relé měly přibližně stejný proudový odběr. Rezistor R6 a dioda D2 slouží jako

ochrana tranzistoru a výstupu operačního zesilovače. Odpory rezistoru R5 a napětí telefonní žárovky v závislosti na napájecím napětí jsou v následujícím přehledu.

Napájecí napět	í Žárovka	R5
18 až 24 V	6 V/50 mA	470 Ω/0,25 W
24 až 36 V	12 V/50 mA	470 Ω/0,25 W 1,5 kΩ/0,5 W
36 až 50 V	24 V/50 mA	2.7 kΩ/0.5 W

Pro nižší napětí než 18 V není zařízení konstruováno, protože se počítá s napájením odebíraným z koncových stupňů, kde je obvykle napětí vyšší.

Odporový trimr R4 nastavíme nejlépe tak, že voltmetrem s velkým vstupním odporem změříme nejvyšší ladicí napětí pásmu OIRT a nejnižší ladicí napětí pásmu CCIR. Pak připojíme na vstup (Ulad) pomocný zdroj, na němž nastavíme napětí odpovídající aritmetickému středu obou změřených napětí. Nyní nastavíme R4 tak, aby relé právě sepnulo. Nastavit relé však můžeme též přímo v přijímači. Při nastavování upozorňuji na to, že když se napětí na běžci R4 zmenší pod 2 V, operační zesilovač samovolně sepne a to i v případě, není-li na vstupu U připojeno žádné napětí. To ovšem není na závadu, protože při tak malém ladicím napětí není nutné antény přepínat. Pokud by to přece jen někomu vadilo, stačí mezi R4 a zem zařadit rezistor asi 2,2 kΩ.

Deska s plošnými spoji (obr. 2) je navržena pro relé QN 599 25 nebo relé RP 210 pro 12 V se dvěma nebo třemi přepínacími kontakty. Lze použít i jiné relé pro 12 V s proudem asi 50 mA (například modelářské relé 5468370 – 32023 prodávané v NDR (má dva přepínací kontakty). Relé se dvěma kontakty mohou být výhodná v případech, kdy bychom vyžado-

Obr. 4. Vnější provedení přepínače

vali přepínání symetrických vstupů (300 Ω).

Na obr. 3 je deska, která nese vstupní konektory obou antén a kterou připájíme k základní desce s plošnými spoji. Tak vznikne sestava podle obr. 4. Konstrukci si ovšem může každý zvolit podle svých představ a možností.

Seznam součástek

Rezistory (TR 214)		
R1	10 MΩ	
R2	$4,7 M\Omega$	
R3	10 kΩ, TR 212	
R4	10 kΩ, TP 040	
R5	viz text	
R6	1,5 kΩ	

Kondenzátory

C1	47 nF, TK 783
C2	100 uF TF 984

Polovodičové součástky

IOI	MAB356
T1	BF457 (SF357)
D1	KZ260/15
D2	KY130/80

Zdeněk Kořínek

Obr. 1. Schéma zapojení

Obr. 3. Přídavná část desky s konektory (V17)

Číslicový multimeter DMM 520

Ing. Ján Kosorinský

(Dokončení)

Na doske C zo strany spojov musíme urobiť následovné drôtové prepojenia:

- spojiť vývod 11 obvodu IO1 s kontaktom 16 prepínača rozsahu 0,1;
- spojiť vstup C8 (+12 V) s kontaktom 9 prepínača rozsahu 100;
- spojiť spoločný bod R4 a C3 s kontaktom 4 přepínača rozsahu 10.

Analogové obvody (doska A)

Doska plošných spojov zo strany spojov je na obr. 15, zo strany súčiastok na obr. 16, rozmiestnenie súčiastok na obr. 17. Tri otvory pre upevnenie dosky sú o Ø 3,2 mm, 4 otvory pre

držiaky Po1 a Po2 o Ø 2,4 mm, otvory pre Isostaty, trimre, C6, C4 a T1, T2 o Ø 1,3 mm.

K plošnej doske prinitujeme a prispájkujeme plieškové príchytky sklenených tavných poistiek Po1, Po2. Postupne povkladáme prepinače Isostat tak, aby boli nad doskou cca 1,5 mm a celú zostavu prispájkujeme k plošným spojom. Do dosky zaspájkujeme 103. Musí to byť operačný zosilňovač s tranzistormi FE na vstupoch. Namiesto R26 až R28 "letmo" prispájkujeme trimer 22 kΩ, uzemníme vstupy 2, 3 obvodu IO3, vstup A17 uzemníme, na vstup A18 privedieme napätie +12 V, na vstup A16 napätie -12 V z už nastaveného zdroja a pri

otvorenei spatnei vazbe trimrom vvkompenzujeme vstupnú napäťovú nesymetriu. Potom trimer odspájkujeme, odmeriame odpory jeho vetiev, do plošnej dosky zaspájkujeme R27 a R28 najbližšej hodnoty, trimer R26 a kompenzáciu zopakujeme. Potom odstránime uzemnenie zo vstupov 2. 3. zaspájkujeme R29 až R31. Tieto rezistory by mali byť stabilné, preto uprednostníme TR161, pred TR191, TR192. Ak R29 a R31 nebudú mať jednopercentnú presnosť bude treba zvačšiť odpor trimru R30. Zaspájkujeme C8 a zo strany spojov R17 (stáčí uhlíkový alebo metalizovaný), ďalej D3, D4, T1 a T2. Drôtovou spojkou spojíme spoločný bod D3 a R17 s kontaktom 1 prepínača ~. Spojíme spolu A20, A19, C13 a vstupy A12, A13 Zatlačímé "uzemníme". prepinač U =; na displeji by mal svietiť údaj 000. Nulový údaj nastavíme trimrom R26. Zatlačíme prepínač I =, na displeji by mal opať svietiť údaj 000. Ak je údaj veľmi odlišný od nuly, potom treba vymeniť 103.

Teraz môžeme pristúpiť k nastaveniu desaťnásobného zosilnenia IO3. Privedieme jednosmerné kladné napätie do 0,1 V, zatlačíme prepínač

Doska C	
101	C520D
102	D147D
T1	KF524
T2	KC309 alebo BC179
T3 až T5	KC308 alebo BC178
D1	KZ140
C1 až C3	TGL 5155/630 alebo 1000 V 100 pF
C4	TGL 5155/630 alebo 1000 V 33 pF
C5	TGL 5155/630 alebo 1000 V 330 pF
C6 ,	TGL 5155/400 V, 3,3 nF
C7 až C10	keramický, 100 nF
C9	TC 215, 220 nF

R1, R2	3,3 ΜΩ	
R3	2,2 ΜΩ	
Rezistory typu	TR 192:	
R5 4.7 MΩ alebo	o5,1 MΩ) zlo.	žiť od
R6 4,3 MΩ alebo	o3,9MΩ ∫ 9M	Ω , 0,2
R7 1.8 MΩ alebo	o TR 191, 820 kΩ) zło	žiť od
R8 1,8 MΩ alebo	oTR191, 82kΩ } 900 k	Ω , 0.2
Rezistory typu	TR 161 (TR 191, TR 192)):
R9, R10	180 kΩ – zložiť odpor	
	90 kΩ, 0,2 %	
R11, R12	1,8 kΩ – zložiť odpor	
	900 Ω, 0,2 %	
R13, R14	180 Ω – zložiť odpor 90	Ω ,
	0,2 %	
R15, R16	18 Ω – zložiť odpor 9 Ω	,
	0,2 %	
R17, R20	2,7 kΩ	
R18	3,3 kΩ	
R22	27 kΩ	
R24	270 kΩ	
R26	2,7 MΩ	
R44, R46	2× 18 kΩ	
R47	1 kΩ	

Rezistory typu TR 193:

Rezistory typ	ou TR 214:
R27, R28	10 M Ω
R29	6,8 Μ Ω

Rezistory typu	TR 213 (TR 191):
R31 až R39	100 Ω
R40 až R43	10 kΩ

Odporové	trimre TP 011 (7	TP 110, TP 11
	TP 095):	
R4	330 kΩ	
R19	680 Ω	
R21	6,8 kΩ	
R23	68 kO	

.2
Ω
2
ıΩ
IΩ
2
2

Prepínače Isostat: 6pólové (18 vývodov) závislé – 1 kus, 4pólové (12 vývodov) závislé – 5 kusov, nosná lišta pre 7 prepínačov s roztečou 10 mm s príslušenstvom

U = na displeji by sa mala rozsvietiť ieho hodnota: zatlačíme prepínač l = . na displejí by mala svietiť desaťnásobná hodnota, ak nie je, nastavíme trimrom 830

Zaspájkujeme IO2. Musí to byť operačný zosilňovač s tranzistormi FE na vstupoch, dobre vyhovuje MAC156 alebo MAB356, ktoré majú postačujúce dynamické vlastnosti. Rezistory R18 až R24 by mali byť stabilné, uprednostníme TR161 pred TR191, TR192. Rezistor R25 môže byť i uhlíkový prípadne metalizovaný, kondenzátory C3, C4, C7 tantalové. Kapacitný trimer C6 je miniatúrny keramický priemeru 7,5 mm, možno ho kúpiť v NDR alebo MĽR, sporadicky i u nás. Drôtovou spojkou spojíme spoločný bod R25 a C7 s kontaktom 5 prepínača ~. Teraz môžeme pristúpiť k oživeniu a nastaveniu usmerňovača. Spojíme A20, A19, C13, na vstup A12 privedieme striedavé napätie známej efektívnej hodnoty do 1 V o kmitočte asi 1 kHz. Trimrom R24 nastavime hodnotu vstupného napätia na displeji nášho multimetru. Potom znížime vstupné striedavé napätie asi na 10 mV, rozpojíme spoj A19-C13, čím dosiahneme, že 102 zosilňuje desaťnásobne. Postupne zvyšujeme kmitočet vstupného napätia a sledujeme zmenu hodnoty na displeji. Kondenzátormi C5 a C6 so sumárnou hodnotou asi 50 až 100 pF možno dosiahnuť dobré vlastnosti usmerňovača až asi

do 40 kHz.

Do dosky zaspájkujeme IO1 a rezistory R6 až R16. Uprednostníme stabil-nejšie TR161, TR191, TR192. Podľa obr. 4 zaspájkujeme R1 až R5, C1 a D1. D2 zo strany spojov, vložíme sklenené poistky Po1, Po2. Rezistor R1 by mal byť stábilný, TR161, R2 a R4 by mali byť z manganinového drôtu. R4 sa nesmie prúdom 1 A zahrievať, jeho odpor volíme asi o 5 % vačší od nominálnej hodnoty 0,1 Ω. Drôtovou spojkou spojíme spoločný bod R16 a výstupu 6 obvodu IO1 s kontaktom 5 prepínača t. Pristúpime k oživeniu a predbežnému nastaveniu prevodníka teplota/napätie. K vstupom A14, A15 pripojime zostavenú teplotnú sondu. Spojíme A20, A19, C13, zatlačíme prepínač t. Teplotné čidlo ponoríme do vody z práve sa topiaceho kusu ľadu, ktorý premiestnime z výparníka na dno chladničky, počkáme kým sa teplota okolo čidla ustáli a trimrom R8 nastavíme údaj 000. Potom teplotnú sondu ponoríme do vriacei vody a trimrom R14 nastavíme údai 99.9.

Pristupime k oživeniu a nastaveniu prevodníka odpor/napätie. Spojíme C10 a A11, ďalej A20, A19, C13. Medzi C10 a prístrojovú zem pripojíme presne odmeraný odpor do 1 kΩ, zatlačíme prepinač rozsahov 1 a trimrom R19 nastavime hodnotu odporu na displeji. Potom medzi C10 a prístrojovú zem pripojíme presne odmeraný odpor do 10 kΩ, zatlačíme prepínač rozsahov 10 a trimrom R21 nastavíme hodnotu odporu na displeji, atď. Na nastavenie zvyšných rozsahov budeme potrebovať presne odmerané odpory do 100 k Ω , do 1 M Ω a do 10 M Ω .

Teraz môžeme prikročiť k záverečnej montáži. Dosky A, C a D upevníme k čelnému panelu (pozri kapitolu Mechanická konštrukcia) a vzájomne zoskrutkujeme. Podľa obr. 5 prepojime dosky medzi sebou a so vstupnými zdierkami.

Definitivne nastavime multimeter.

Uzemníme vstupnú zdierku U, zatlačíme prepinač U = a postupne prepiname prepínače rozsahov od 1 k po 0,1. Na displeji by mal byť nulový údaj. Výnimka môže byť na najcitlivejšom

rozsahu 0,1. Ak na rozsahu 1 V nie je nulový údaj, uzemníme vstup 11 obvodu IO1 na doske C. Ak na displeji budú nuly, potom chybové napätie nám zanášajú obvody pred prevodníkom A/D. Odstránime uzemnenie vstupu prevodníka a skúsime trimrom R26 nastaviť nulový údaj.

Ďalej skontrolújemé správnosť údaja napätia na rozsahu 1 V. Na vstupnú zdierku U privedieme jednosmerné kladné napätie (asi 0,990 V), nezhodu údaja skorigujeme trimrom R48 na doske C. Potom vstupné napätie znížime na hodnotu asi 99 mV, prepneme rozsah 0,1 V, nezhodu údaja skorigujeme trimrom R30 na doske A.

Ďalej skontrolujeme usmerňovač. Súčasne zatlačíme prepínače U = a ~ a prepneme rozsah 1 V. Na vstupnú zdierku U privedieme striedavé napätie efektívnej hodnoty asi 0,990 V s kmitočtom cca 1 kHz, nezhodu údaja skorigujeme trimrom R24 na doske A. Potom rovnako ako pri oživovaní skontrolujeme vyrovnanosť kmitočtového priebehu, korekciu možno vykonať zmenou C5, C6 na doske A.

Ďalej skontrolujeme pomocou presne ociachovaných odporov nastavenie všetkých rozsahov prevodníka odpor/napätie.

Pomocou presného ampérmetru a stabilného prúdového zdroja nastavíme trimrom R5 na doske A najprv rozsah 1 A a potom trimrom R3 na doske A rozsah 100 mA.

Ďalej rovnako ako pri oživovaní skontrolujeme prípadne doregulujeme prevodník teplota/napätie.

Mechanická konštrukcia

Rozmery DMM 520 sú určené použitými súčiastkami. Návrh plošných dosiek som robil s rezervou pre možnosť použitia i iných súčiastok. Pôvodný DMM 520 má inú mechanickú konštrukciu od tej, ktorú popíšem. Je prevzatá z [5]. Na obr. 18 je priestorový nákres hlavných prvkov. K bočniciam (1) sa štyrmi skrutkami M3×5 s poľguľatou hlavou (2) priskrutkuje zadný panel (3) a ďalšími štyrmi skrutkami M3×5 s polguľatou hlavou (4) sa priskrutkuje predný panel (5) s nepriehľadnou maskou s popismi (6). Štyrmi skrutkami M3×5 (7) sa k bočniciam (1) priskrutkuje dolný kryt (8), do ktorého sa štyrmi skrutkami M3×5 (7) sa k bočniciam (1) priskrutkuje horný kryt (9). Tým sa vytvorí uzavretá pevná krabička.

Teraz k jednotlivým dielom podrob-

Rozmerový nákres zadného panelu je na obr. 19. Čiarkovane je vyznačený otvor pre prívodnú šnúru, ktorý bude treba vyvrtať individuálne.

Rozmerový nákres predného panelu je na obr. 20. Jedenásť štvorcových otvorov 7×7 slúži pre amatérsky zho-

Zoznam súčiastok

Doska A	
101	MAA741
102	MAC156 (MAB356)
103	MAC155 (MAB355).
	MAC156 (MAB356)
T1. T2	KF125 alebo KF124
D1. D2	KY701 alebo KY130
D3, D4	KZ141
D5, D6	KA206
C1	TGL 5155, 33 nF
C2	keramický, 47 nF
C3	TE 152, 10 uF
C4	TE 135, 1 μF
C5	keramický, 33 až 100 pF
C6	kapacitný trimer 5 až 25 pF,
	Ø 7,5 mm, dovoz z NDR
	alebo MĽR
C7_	TE 132, 10 uF
C8	TC 215, 100 nF
C9 až C13	keramický, 47 až 100 nF

	Rezistory typu	TR 161 (TR 191, TR 192):
	R1	10 kΩ, 0,2 %
	R6	82.kΩ
	R7	10 kΩ
	R9	470 Ω
	R10, R11	150 kΩ
	R12 až R16	`180 kΩ ∂
	R18, R19	1 MΩ
	R20 až R22	10 kΩ
	R23	3.9 kΩ
	R29	3 kΩ, 1 %
	R31	27 kΩ, 1 %
	Rezistory typu	MLT:
	R17	100 kΩ, MLT-0,5
	R25	100 kΩ, MLT-0,25 (TR 191
.*	R27	spolu s R26 cca 25 kΩ,
	R28	MLT-0,25 (TR 213)
	,	
	Drôtové rezist	orv.
	R2	1Ω.1%.
. 1	•••	manganin o Ø 0,3 mm
	R4	0,105 Ω, 1 %,
	, , ,	manganin o Ø 0,9 mm
		mangamin o e o,o min
	Odporové trin	nre.
	R3, R5	100 kΩ, TP 012 (TP 095)
	R8	330 Ω, TP 011 (TP 110,
	110	TP 111, TP 095)
		11 111, 11 053)

R24	1,5 kΩ, TP 011 (TP 110,
	TP 111, TP 095)
R30	220 Ω, TP 011 (TP 110,
	TP 111, TP 095)
R26	4,7 kΩ až 6,8 kΩ, TP 009
Ostatné	
Po1	sklenená tavná poistka 0,4 A
way in a series	v príchytkách do plošných
	spojov
Po2	sklenená tavná poistka 2 A
a di	v príchytkách do plošných
	spojov
Prepinače Isc	stat: 2pólové (6 vývodov) závislé
	(5 kusov), nosná lišta pre 5
	prepinačov s roztečou 10 mm
	s príslušenstvom
*	A Section 1988 to the second section of the section

Súčiastky umiestnené mimo plošných dosiek

Tr	transformátor El 20 × 18:		
	primárne vinutie 220 V: 3000 z. CuL		
	o Ø 0,14 mm;		
	sekundárne vinutie 2 × 16 V: 2 × 200 z.		
	CuL o Ø 0,3 mm		
Po1	sklenená tavná poistka 80 mA uchytená		

Po1 sklenená tavná poistka 80 mA uchytená v pertinaxovom držiaku na transformátore

T KC308 alebo KC307, KC309 Prístrojové zdierky WK 454 04 – 5 kusov Konektor 6AF 895 41 – 1 kus Zásuvka 6AF 280 00 – 1 kus

tovené hmatníky na prepínače Isostat. Pretože originálne obdĺžníkové hmatníky nie sú v obchodoch dostupné, bolí vyskúšané hmatníky zhotovené z uzáverov obyčajných fixiek. Tie skrátime na 15 mm, boky orežeme na rozmer 6,5×6,5 mm a vtlačíme do šupátok prepínačov. Otvor pre zásuvku teplotnej sondy bude treba zvačšiť. ak použijeme reproduktorový konektor.

Na obr. 21 (viz III. str. obálky předchozího čísla AR-A) je nákres masky predného panelu v skutočnej veľkosti. K prednému panelu ju priložíme (príp. prilepíme) až pred konečnou montážou. Proti poškrabaniu ju možno chrániť tenkou priehľadnou fóliou. Do masky a do ochrannej fólie do krížikom označených miest vyrežeme otvory pre hmatníky, displej, zdierky, dvojpólovú zásuvku a štyri diery v rohoch pre skrutky na upevnenie k bočniciam.

Rozmerový nákres bočníc je na obr. 22. Otvorv pre skrutkovač na nastavenie trimrov nie sú vyznačené.

Rozmerový nákres horného a spodného krytu je na obr. 23. Priestorový náčrtok upevnenia dielcov k prednému a zadnému panelu je na obr. 24.

K zadnému panelu 3 zvonku priskrutkujeme skrutkami M3×7 oba integrované stabilizátory, na jednu zo skrutiek z vnútornej strany nasunieme cínovacie očko, uchytíme ho maticou a drôtovoù spojkou prepojime so zemou na doske B, ktorú potom prispájkujeme na kolikové nožičky oboch stabilizátorov.

Transformátor k zadnému panelu upevníme nasledovne: na vyčnievajúce skrutky M3. ktorými sú stiahnúté plechy naskrutkujeme dištančné stĺpky (11) o Ø 6 so závitom M3 po celej dĺžke také dlhé, aby sa kostrička aní žiadne vývody nedotýkali zadného panelu a aby tvorili rovinu. Potom štyrmi skrutkami M3×5 (2) transformátor priskrutkujeme k zadnému panelu.

Cez elastickú pryžovú koncovku vloženú do otvoru v zadnom paneli prestrčíme obe žily sieťovej šnúry a prispájkujeme k tavnej poistke a k vývodu primárneho vinutia transformátoru.

Predný panel zložíme nasledovne::

Zvnútra skrutkami M3×3 (13) pripevníme zásuvku teplotnej sondy. Cez pripevňovacie otvory nosných list prepínačov Isostat skrutkami M3×5 (14) prichytíme dištančné stĺpky o Ø 6×12 mm (15) so závitom M3 po celej dĺžke. Potom štyrmi skrutkami M3×5 s kužeľovou hlavou (6) mocou dištančných stĺpikov dosky A a C. Skrutkami M2 (1), dlhými toľko, aby neprečnievali cez predný panel, prichytíme zvnútra filter (18), rámik (19) a dosku D. Rámik lemuje sedemsegmentové displeje a je tak vysoký, aby s čelnou plochou displejov tvoril rovinu. Filter je vystrihnutý z priehľadenej fólie takej farby akou svietia segmenty displejov. Spredu k panelu priložíme

Obr. 18. Mechanická konštrukcia DMM 520

Obr. 19. Zadný panel

A/2
87 Amatérské ADI

masku, ochrannú fóliu, pripevníme 5 zdierok a skrutkami pripevníme k bočniciam.

Konštrukcia teplotnej sondy

Teplotnú sondu môžeme zhotoviť buď podľa [4] alebo tak, že tranzistor T v plastickom púzdre s prispájkovaným dvojžilovým káblikom vlepíme do trubky cca 10 cm dlhej s vnútorným otvorom asi 4,5 až 5 mm z takého nekovového materiálu (pertinax, sklotextit, teflon apod.), ktorý bez deformácie vydrží teplotu aspoň 100°C a nie je dobrým vodičom tepla. Teplotnú sondu zhotovenú z teflonu možno vidiet na fotografii na III. strane obálky.

Obsluha DMM 520

Multimeter sa zapína zasunutím vidlice prívodnej šnúry do zásuvky 220 V, 50 Hz. Pred każdým meraním skontrolujeme prepinače funkcii, rozsahov a správnosť pripojenia meracích hrotov. Upozorňujem, že napätie väčšie než 100 V treba priviesť na zdierku U/1000 V, prúd väčší než 100 mA na zdierku I/1 A. Prv než zatlačíme prepínač R skontrolujeme, či na

Časové základny MOS 85

Miloslav Rajchl, OK1DRM

Pro tréninky dohledávky v ROB jsou určeny vysílače ROB Mini. Jejich předností je jejich malá váha a malé rozměry. Vysílače nejsou vybaveny časovou základnou. Jejím doplněním se rozšíří možnosti využití těchto vysílačů. Časovou základnou MÓS 85 se zkvalitní tréninky a přiblíží se skutečným podmínkám závodů. Vysílače ROB Mini lze takto využít pro soutěže nižších stupňů. Navržené schéma MOS 85 bylo po úpravě použito pro časovou základnu MOS 84 do vysílačů MINIFOX. Ve starších typech těchto vysílačů je použíta časová základna s obvody TTL, která má velkou proudovou spotřebu. Deska časové základny MOS 84 je navržena výměnným způsobem za původní desku TTL. Časové základny MOS 84 a MOS 85 jsou osazeny polovodiči CMOS s velmi malou spotřebou a širokým napájecím napětím.

Popis činnosti časové základny MOS 85

Schéma časové základny MOS 85 je na obr. 1. Časová základna je řízena oscilátorem s krystalem X1. Ościlátor kmitá na kmitočtu 4,194 MHz. Jako aktivní prvek oscilátoru je použit hodinový obvod IO1 U114D nebo MHB1116, které též obsahují děličku 1:2²³. Napájení tohoto obvodu je stabilizováno diodami D1 a D2. Na výstupu děličky IO1 je signál 0,5 Hz, tzn. s periodou 2 sekundy. Signál se vede na převodník napětové úrovně s tranzistorem T1, z jehož kolektoru se přivádí

informace na hodinový vstup CL děličky 1:15 IO2 MHB4029. Vstupem B/D je nastaveno binární čítání. Vstupem U/D je nastaveno čítání vzad. Dělička krokuje od čísla 15 do 1. Krácení cyklu zajišťují vstupy předvolby JA, JB, JC, JD, která je nastavena na číslo 15. Dělička krokuje vzad se vstupní náběžnou hranou hodinového impulsu. Vstup PL pro přepis předvolby na výstupy Q je tranzistorem T2 připojen na úroveň "L" tím, že je báze T2 napájena přes rezistory R6, R7, R8, R9 z výstupů Q. V okamžiku dokrokování děličky k číslu 0 se tranzistor T2 rozepne a tím se na vstupu PL objeví úroveň "H Kód předvolby, tzn. číslo 15 se přepíše na

mat.- Al plech tl.2 mm pozn. ohyby ostré

Obr. 22. Bočnice

Obr. 23. Horný a spodný kryt >

8 2 mat.-Fe plech tl.0,8 mm

Obr. 24. Upevnenie súčiastok na predný a zadný panel

vstupnej zdierke R, U nie je externé napätie. To, pokial by bolo nepripustne veľké, môže spoľahlivo zničiť nielen prevodník odpor/napätie ale i iné obvody multimetru.

Meranie striedavého napätia dosiahneme súčasným zatlačením prepínačov U = a ~, meranie striedavého prúdu zatlačením prepínačov I = a ~.

Použitá literatura

- [1] Andrlík F.: Číslicové panelové měřidlo, AR-A č. 12/84.
- [2] Kahl, B.: Analog-digital-wandler C 520 D, Radio Fernsehen Elektronik č. 6/82.
- [3] Digitalmultimeter TR 1696, typ M-3001.
- 4] AR-B č. 5/80.
- [5] AR-B č. 1/85.

a MOS 84 pro vysílače ROB

výstupy Q. Děj se celý opakuje a číslo 0 je vynecháno. Na výstupu QD je přítomen signál s periodou 30 sekund, který se dále sighal s periodou 30 sekulnú, který se dale vede na hodinový vstup děličky 1:10 IO3 MHB4029. Vstupem B/D je nastaveno dekadické čítání. Vstupem U/D je nasta-veno čítání vzad. Dělička IO3 krokuje od čísla 9, které je v okamžiku startu přepsácisia 9, které je v okamiziku startu prepsa-no ze vstupů předvolby tohoto obvodu. Startuje se přepínačem Př1 tak, že vstupy PL děliček IO2 a IO3 přejdou z úrovně "H" na úroveň "L". Na výstupu QD děličky IO3 je v okamžiku startu úroveň "H", která se vede na invertor T3, na jehož kolektoru je úroveň "L". Tranzistor T3 plní též úlohu výkonového prvku. Na výstupu A je při-tomna úroveň "L" po dobu načítání dvou period, tj. 2× 30 sekund v děličce IO3. Opětná změna nastane po načítání dalších osmi period, tzn. 8×30 sekund. Jestliže se časová základna nepoužívá, je přepínačem Př1 připojena úroveň "H" na vstupy PL děliček IO2 a IO3. Kódy předvoleb jsou neustále přepisovány na výstupy Vysílač je v činnosti nepřetržitě. okamžiku startu se děličky odblokují. Vysílač je v provozu 1 minutu po nastartování. To znamená, že se startuje na počátku relace podle nastaveného kódu vysílače. Potom následuje 4 minuty pauza. Největší chyba (zpoždění startu) může dosáhnout 2 sekundy, kdy se tlačítko Př1 stiskne těsně po náběžné hraně signálu z IO1. Pro jiné využití základny, kdy je třeba ovládat zařízení úrovní "H", lze na desku přidat další invertor T4. Protože v ROB Mini nespolupracují obvody časové základny s obvody TTL, není třeba napájecí napětí stabilizovat. Pro jiné využití časové základny v konstrukcích, kde je dostatek místa, lze použít jako zdroj impulsů 0,5 Hz motorový výstup z budíku QUARTZ, Potom odpadnou součástky C1, C2, X1, IO1. Motorové impulsy se přivádějí

Konstrukce

Deska plošných spojů a rozmístění součástek jsou na obr. 2 a obr. 3. Pro jiná uchycení jsou na desce předznačeny body pro otvory. V ROB Mini je deska na jednom konci přichycena přes distanční sloupek na desku vysílače 80 m. Na druhém konci je deska přichycena přes přepínač Př1 (Isostat) na subpanel. Rohy desky jsou u přepínače Př1 odstřiženy,

na pájeci špičku C.

aby nepřekážely. Otvor pro tlačitko přepi-nače Př1 v panelu je umístěn v polovině mezi zdířkou pro anténu a funkčním pře-pinačem vysílače. Umístění desky je patrné z obr. 4. Podle použitého hodinového obvodu U114D nebo MHB1116 je třeba propojit pájkou příslušnou špičku IO1 5 nebo 6 se spojem k bodu C. Na desce je třeba propojit pájecí špičku D s prostředním vývodem D přepínače Př1. Napájení desky se připojí před stabilizátor napětí pro napájení vysílače, tzn. "plus" na ko-lektor KU611. Výstup časové základny, tj. špička A se připojí na špičku Č.J. na desku vysílače. Je třebá, aby na desce vysílače byl osazen rezistor R2 a T2 (dle schématu TX 80 m), což z pochopitelných důvodů nebylo u některých vysílačů realizováno. Parametry časové základny

MOS 85

Napájení: 12 V (7 V až 15 V). Spotřeba: 2,5 mA.

Spínání: 1 min. od startu úrovní "L" ("H"),

4 min opačný stav. Přesnost startu: 2 sec.

Časová stálost spínání: 2 sec./24 hod.

Součástky

Rezistory - miniaturní typy

R1, R5, R12

R2, R3, R4, R6, R7, R8, R10, R11

(R13)

47 kΩ · Kondenzátory - miniaturní typy, keramické,

12 kΩ

slídové, styroflexové

C1, C2

Polovodičové součástky **KA136**

D1, D2, D3

T1, T2, T3 (T4)

U114D nebo MHB1116 102, 103 MHB4029

Ostatní součástky

Přepínač Isostat s aretací Krystal X1 – 4,194 MHz (miniaturní kryt) Diody D1 a D2 lze nahradit libovolnými křemíkovými typy. Podmínkou je, aby napájecí napětí Upo pro 101 bylo v mezích 1,2 až 1,7 V. Lze

Obr. 2. Deska plošných spojů V18 časové základny MOS 85

Obr. 4. Umístění desky MOS 85 v ROB Mini

Obr. 5. Schéma časové základny MOS 84

také použít jednu diodu LED (nutno vyzkoušet). Tranzistory lze použít libovolné křemíko-vé NPN typu KC. Celková cena součástek je asi 300 Kčs. Nejdražší je krystal X1 za 140 Kčs.

Popis činnosti časové základny MOS 84

Schéma časové základny MOS 84 je na obr. 5. Činnost časové základny je stejná jako MOS 85, pouze startování je realizováno invertorem T4. Tím je zajištěna záměnnost této základny za původní obvody TTL v zařízení MINIFÓX. Navíc je na desce zapojen trimr R14 jako předřadník pro měřidlo baterií a ochranné diody pro napájení z baterií.

Návrhy možné úpravy

Vysílač se uvede do provozu na 1 minutu v okamžiku nastartování. To znamená, že se vysílač startuje na začátku své relace podle jeho kódu. Protože je v zařízení MINIFOX dostatek místa, bylo by možné zapojit předvolby IO3 přes číslicový přepínač BCD. Potom je možné předvolit krokování děličky IO3 libovolně. Vysílač se startuje v čase nula pětiminutové periody. Vysílač se uvede v činnost na 1 minutú podle předvolby. Tento způsob startování je z hlediska návaznosti jednotlivých vysílačů přesnější. Nevýhodou je nutnost mechanických úprav v Minifoxu.

Tento způsob startování je již v některých novějších Minifoxech se základnami CMOS aplikován. Protože proudová spotřeba základny MOS 84 je zanedbatelná, je výhodné propojit v Minifoxu baterie pro napájení základny s baterií pro napájení vysílače. Propojí se špička č. 5 na desce časové základný se špičkou č. 12 na desce vysílače 145 MHz.

Konstrukce

Deska plošného spoje a rozmístění součástek jsou na obr. 6 a 7. Deska se přišroubujé na místo původní desky TTL a připájí ke kabelové formě. Připájí se též bateriové kablíky. Pořadí vývodů je shodné a deska se montuje výměnným způsohem

Součástky

Rezistory - miniaturní typy 12 kΩ

R1, R11 R2, R3, R4, R6,

R8, R9, R10, R12, R13 47 kΩ R5 120 kΩ

R15 **R14**

C3

1,2 kΩ trimr 100 kΩ TP 009

Kondenzátory

15 pF (miniaturní keramické, C1, C2

slídové, styroflexové) 5 µF/15 V (libovolný, dle místa na desce)

Polovodičové součástky

D1, D2, D3 D4, D5, D6 KA136 KY132/80

U114D nebo MHB1116 MHB4029

102, 103

Ostatní součástky

Krystal X1 - 4,194 MHz (miniaturní kryt) O záměnách polovodičů platí totéž, jako u zá-kladny MOS 85. Parametry MOS 84 jsou shodné jako u MOS 85.

Oživení základen MOS 84 a MOS 85

K oživení stačí avomet, akustická sonda stavů a stopky. Jestliže jsou součástky v pořádku a správně osazená a zapájená deska, fungují základny okamžitě. V případě závady sledujeme periody signálů za obvody iednotlivými integrovanými a tranzistory, Trimr R14 u MOS 84 nastavíme tak, aby při napájení 10 V ukazovala ručka na počátek červeného pole na měřidle v zařízení MINIFOX.

Obr. 6. Deska plošných spojů V19 časové základny MOS 84

Obr. 7. Rozmístění součástek na desce V19 MOS 84

Amatérské (1) (1) A/2

AMATÉRSKÉ RADIO BRANNÉ VÝCHOVĚ

OK5MVT jubilejně

Nechce se tomu téměř věřit, ale již deset let pořádá sportovní základna talentované mládeže při radioklubu OK5MVT pravidelná letní výcviková soustředění se zaměřením na MVT. Letošní – jubilejní – proběhlo ve dnech 5. až 20. července v příjemném prostředí motelu Halda u Příbrami a zúčastnilo se jej 23 chlapců a děvčat ve věku od 10 do 18 let ze všech

koutů Čech a Moravy Za řízení vedoucího trenéra SZTM a předsedy české komise MVT Dr. Vojty Kroba, OK1DVK - který také sestavil již tradičně dokonalý harmonogram výcviku spolu s instruktory ing. Miroslavem Heklem, OK1DMH, Pavlem Strunzem, OK5MVT, a Miroslavem Kotkem, OK1FWW, probíhal každý den jeden tréninkový závod, vždy z části disciplín více-

Závodníci byli rozdělení do kategorií B, D, C1 a C2. V jednom dni se soutěžilo v klíčování, provozu a střelbě ze vzdu-chovky, další den potom v příjmu, hodu granátem a orientačním běhu. Mimo to se ovšem celé dopoledne trénoval příjem a klíčování.

Možná někoho překvapí, že z programu soustředění nevymizela střelba a hod granátem, které isou podle nových pravidel pouze doplňkovými disciplínami. Pro mládež isou totiž obě tyto branné disciplíny velmi atraktivní a výsledky z nich budou jistě zajímat i státního trenéra. Proto jsme je zachovali. Do jisté míry je škoda, že byly fakticky zrušeny, neboť

David Krch, OK5MVT, na trati orientačního závodu

málokterý pořadatel při soutěži střelbu a granát zařadí, jestliže to není povinné.

Trénink orientačního běhu probíhal na přilehlých velmi vhodných terénech. O stavbu tratí se staral dr. Krob, M. Kotek a P. Strunz, Mapa "Houpačka" byla svědkem mnoha tvrdých zápolení.

každého závodu zpracovával OK1DVK výsledkovou listinu, takže si vícebojaři mohli prohlédnout, jak si ve výkonnosti stojí. Večery byly pestře vyplněny přednáškami z rozličných oblastí: počínaje od radioamatérského provozu přes nová pravidla víceboje až po základy počítačové techniky a ukázky z historie

Je smutné, že se člověk setkává s lidskou bezohledností a nepochopením takřka na každém kroku a není toho ušetřen, ani když se věnuje práci s mládeží. Např. při střelbě ze vzduchovky na místním hřišti pod dohledem trenérů a za dodržování bezpečnostních opatření přišla postarší občanka obce Dubenec, údajně členka občanského výboru, vyžadovat na trenérovi povolení, že zde smí střelbu provozovat. To, že na hřišti parkují auto-mobily, ji ale nevadilo. Nebo při disciplíně práce na stanici vyhnal člen JZD šest závodníků z louky, protože se mu nelíbilo, že sedí v trávě, která se má kosit. V zápětí přes louku přejel traktor JZD, jenž zanechal v louce široké stopy. K dovršení všech těchto nepříjemných zkušeností na nás v obci Drásov čekala po orientačním závodě "odměna" v podobě vypuštěných pneumatik auta, protože někomu patrně vadilo, že stojíme na travnaté krajnici.

Žádný z těchto zážitků však nemohl narušit chod a železnou organizaci výcviku. Na konci soustředění byl uspořádán kontrolní závod I. stupně pro kat. B, D a II. stupně pro kat. C1 a C2. Ve špičkové soutěži zvítězil Jan Beran, OL6BMH, v kat. C1 David Luňák, OK1KNR, a v C2 Pavel Žáček z OK2KLK.

Po celou dobu našeho pobytu pracovala stanice SZTM OK5MVT/p ve všech pásmech KV a při provozu se vystřídali i někteří mladí OL a RO. Lze si jen přát, aby mladí účastníci u MVT vydrželi a stali se oni propagátory tohoto náročného a krásného sportu.

M. Kotek, OK1FWW

Budoucí naděje naší reprezentace Anička Beňovská při telegrafním provozu

XIII. Polní den mládeže na VKV - 1986

Závod se konal v červenci 1986 před XXXVIII. VKV Polním dnem. Soutěžilo se ve dvou kategoriích a účast soutěžících stanic byla velice dobrá. V pásmu 145 MHz bylo hodnoceno 138 stanic a v pásmu 433 MHz 37 stanic. Podmínky šíření vln byly vcelku dobré, dokonce během závodu se krátkodobě vyskytla i mimořádná vrstva E, netrvající déle než deset minut, ale i v tak krátké době deset minut, ale i v tak kitako doba dokázali někteří mladí operátoři udělat několik spojení na vzdálenost nad 1000 kilometrů. V kategorii 145 MHz zvítězila stanice OK1KZE/p, která pracovala v lokátoru JN69PE, navázala 119 spojení, což jí vyneslo 26 391 bodů. Druhé místo obsadila stanice OK1KTL/p - 23 827 bodů, 3. OK1KKS/p - 21 183, 4. OK1KRG/p 19 613, 5. OK1KFQ - 17 889 bodů.

V kategorii 433 MHz zvítězila stanice OK1KHI/p, pracující v lokátoru JO70UR, navázala 54 spojení, za která získala 9657 bodů. Druhá byla OK1KPP/P – 7600 bodů, 3. OK2KAU/p - 6744, 4. OK1KTL/p - 4731, 5. OK1KRG/p - 4601 bodů.

Vyhodnotil OK1MG

Soutěž VKV 41

Loňský ročník VKV soutěže "Vítězství" poprvé proběhl na území PLR. Pořadate-lem byl PZK (Polski Zwiazek Krótkofalowców), který za místo konání soutěže zvolil oblast 50 km severně od Katovic. Soutěžní kóty se nacházely v hezké krajině Krakowsko-Czestochowské jury, v nadmořské výšce 400 až 500 m. Vzdálenosti mezi stanovišti jednotlivých družstev byly tentokrát malé, od 3 do 10 km a přesto nedocházelo v průběhu závodu k vzájemnému rušení. Družstva dostala přiděleny prefixy SP0 a jedno písmeno v sufixu podle stejného klíče jako v minulém roce v NDR. Čs. reprezentační družstvo používalo značku SP0A. V letošním ročníku soutěže "Vítězství" reprezentovali ČSSR: OK1MDK, OK1FM, OK1MAC, OK2PEW, OK3YCM a OK3TJI, vedoucí družstva OK1PG a funkci mezinárodního rozhodčího vykonával OK1CA.

Cs. družstvo přicestovalo do místa soustředění – města Zawierczie autobusem, což umožnilo vzít bez problémě. dostatečné technické vybavení. Celé zařízení bylo napájeno z akumulátorů a byly použity transceivery FT221 pro pásmo 2 m a FT780R pro pásmo 70 cm s anténními přijímacími předzesilovači. Jako hlavní antény byl použit systém 2 x 15 prvků Yagi Cue Dee pro pásmo 2 m a 4 × 21 prvků F9FT pro pásmo 70 cm a další pomocné antény pro přijímací pracoviště. Jako i v minulých létech byl před závodem kontrolován výstupní výkon vysílačů a namátkově i během závodu.

Z oblasti stanovišť reprezentačních družstev bylo možno velmi dobře pracovat jižním směrem, ale i ostatní směry byly pro práci na VKV dobré. Snad jen do oblasti OK1 jsou v cestě hory; přesto i tímto směrem byla navázána dlouhá spojení. Vzhledem k taktizování v minulých létech bylo dohodnuto, že se budou reprezentačním družstvům počítat jen spojení se stanicemi, které naváží spojení ještě nejméně se dvěmi dalšími reprezentačními družstvy. Je třeba poznamenat, že v SP na rozdíl od OK je možné, aby z jednoho stanoviště pracovalo více stanic se stejným zařízením pod různými volacími značkami. Tuto možnost využily stanice SP více než dostatečně a z jednoho stanoviště bylo slyšet až 32 různých značek! Bohužel navázat spojení se všemi těmito stanicemi bylo – vyjma družstva SP – obtížné. Výsledkem je např. skutečnost, že polské reprezentační družstvo má z celkových 670 spojení na 2 m pouze 95 stanic jiných než SP! Podobné složení soutěžních spojení má i maďarské reprezentační družstvo, kde také podpora stanic HG byla značná

Lze konstatovat, že chování některých stanic SP na pásmu mělo velice daleko k ham-spiritu. Je potěšující, že podobné praktiky nepoužívaly stanice OK, a m. žnost s nimi pracovat měla všechna reprezentační družstva. I přes špatné počasí a podmínky šíření na VKV během závodu bylo možno navázat řadu kvalitních spojení, jako jsou např. spojení čs. družstva se stanicí I4XCC v pásmu 2 m nebo OZ1FYW v pásmu 70 cm. Také družstva SSSR, NDR a RSR navázala řadu spojení DX vzhledem k použitému výkonu 10 wattů a demonstrovala, jakým směrem se má závod "Vítězství" vyvíjet. Nejvíce spojení v pásmu 2 m navázalo družstvo HG a v pásmu 70 cm družstvo SP. Dalšího neilepšího výsledku dosáhlo družstvo OK. Konečné výsledky byly oznámeny v pro-sinci, kdy pořadatelé mohli vyhodnotit všechny došlé deníky. Příští ročník soutěže Vítězství" – VKV

Příští ročník soutěže Vítězství" – VKV 42 se koná v roce 1987 v ČSSR. Reprezentační družstva se této soutěže zúčastní z kót v oblasti Žďáru nad Sázavou – lokátor JN89. K dobré úrovni závodu jistě přispěje bohatá účast stanic OK, tak jak je v ČSSR na VKV pravidlem. Je třeba, aby všechny zúčastněné stanice pracovaly v duchu ham-spiritu a tím potvrdily vysokou úroveň provozu na VKV v ČSSR. Jen tak se stane letošní ročník soutěže "Vítězství" kvalitnějším, než byl ten loňský.

KV-

Kalendář KV závodů na únor a březen 1987

13. 2.	Čs. SSB závod	17.00-20.00
1415.2.	PACC contest	12.00-12.00
1415. 2.	YU DX contest	21.00-21.00
1415.2.	International YL-OM, CW	18.00-18.00
20 -22 2	CQ WW 160 m contest, SSB	22,00-16.00
2122.2.	ARRL DX contest, CW	00,00-24.00
2122. 2.	RSGB 7 MHz CW	12.00-09.00
2122.2.	International YL-OM SSB	18.00-18.00
27. 2.	TEST 160 in	20.00-21.00
26. 2.	BYLARA (YL-OM)	19.00-22.00
28. 2.	BYLARA (YL-OM)	10,00-13,00
28. 21. 3.	REF contest, SSB	06.00-18.00
78.3.	ARRL DX contest, SSB	00.00-24.00
8. 3.	Čs. YL-OM závod	06,00-08.00
27. 3.	TEST 160 m	20.00-21.00
2829. 3.	CQ WW WPX contest, SSB	00,00-24.0

Podminky PACC contestu viz AR 2/84, REF contestu AR 1/87, OK-SSB závodu AR 1/85, ARRL DX contestu AR 2/86, Čs. YL-OM závodu AR 1/85, CQ WW DX contestu AR 3/86 – pozor násobiči jsou různé prefixy, ale bez ohledu na pásma.

YU WW DX contest

je pořádán každoročně druhý víkend v únoru, pouze telegrafním provozem. Začátek je vždy v sobotu ve 21.00 UTC, konec ve stejnou dobu v neděli. Závodí se v kmitočtovém rozmezí 3520 až 3590 a 7010 až 7040 kHz. Naše stanice se mohou přihlásit do kategorií d) jeden operátor, e) více operátorů a f) posluchači. Výzva je CQ YU, jugoslávské stanice volají CQ TEST. Vyměňuje se kód složený z RST a pořadového čísla spojení od 001. Navazují se spojení se všemi stanicemi na světě a jednotlivá spojení se bodově hodnotí takto:

v pásmu .	3.5	7 MHz
stanice Jugoslávie	10	5 bodů
vlastní kontinent	2	1 bod
stanice DX	5	2 body

Násobiči jsou různé země DXCC a jugoslávské prefixy v každém pásmu zvlášť.

Přechod z jednoho pásma na druhé je pro kategorii d) povolen až po 30 minutách přovozu, v kategorii e) po 10 minutách provozu. Stanice kategorie e) však mohou během provozu v jednom pásmu navazovat spojení v druhém, pokud tím získají nový násobič. Deníky musí obsahovat datum, volací značky stanic, RST a pořadové číslo spojení vyslané i přijaté, změnu pásma, nový násobič, počet bodů. Obě pásma se píší chronologicky za sebou do jednoho deníku! Sumář musí obsahovat konečný výsledek s uvedením počtu zemí a jugoslávských prefixů podle pásem, body a čestné prohlášení. Diplomy obdrží vítězné stanice v každé zemi, pokud závodí alespoň 12 hodin. Deníky musí být odeslány nejpozději do 15. března na: Savez Radioamatera Jugoslavie, YUDXC, P.O.B. 48, 11001 Beograd, Yugoslavia, nebo do 14 dnů po závodě na ÚRK.

Víte, s kolika lokátory jste pracovali?

Svět je rozdělen na 324 "velkých" lokátorů (první dvě písmena v označení lokátorů). SM5AGM zveřejňuje pravidelně v časopise SM-QTC seznam stanic a počet lokátorů, se kterými tyto stanice pracovaly, a to podle jednotlivých pásem 1,8 MHz až 10 GHz. Z našich stanic má nejlepší výsledek OK1KIR, která je na 2. místě se 17 lokátory v pásmu 1,3 GHz – K2UYH je na 1. místě s 20 lokátory. Spojení nejsou ohraničena datem, musí však být s pozemní stanicí a může být použito jen pasivních reflektorů – platí tedy spojení EME. Hlásí se všechna spojení, u kterých je jistota oboustrannéh spojení, i když nejsou potvrzena QSL listky. Svá hlášení můžete zasílat na adresu: Folke Rosvall, Vasterskarsringen 50, 184-00 Akersberga, Sweden, třeba i jen za jedno pásmo.

Předpověď podmínek šíření KV na březen 1987

V dalším vývoji po pozoruhodném vzestupu v říjnu loňského roku nám zatím Slunce nenaznačilo, zda má v úmyslu ještě pokračovat s poklesem aktivity až do hlubokého minima, či již zahájit vzestup k maximu, jež by v tomto případě mohlo připadat v úvahu ještě během tohoto desetiletí. Průměrné relativní čísloR za říjen bylo 35,7, vyhlazené R_{12} za duben 1986 tudíž 13,8. Denní měření slunečního toku v říjnu: 71, 72, 72, 71, 71, 73, 74, 75, 75, 74, 76, 76, 75, 72, 80, 83, 87, 89, 93, 92, 95, 99, 98, 96, 95, 96, 95, 93, 91 a 91, aritmetický průměr 83 a výskyty jedné střední 19, 10, a tří menších, leč stále ještě energeticky významných erupcí, 19., 24. a 25. 10. dokumentují výjimečnost vývoje vzhledem k tomu, že se nacházíme stále v období slunečního minima. Převládala aktivita skupin skvrn ve vyšších heliografických šířkách, patřících proto-již příštímu 22. cyklu. Počátkem listopadu se ale vyskytovaly opět jen skvrny těsně u slunečního rovníku.

Aktivita magnetického pole Země byla spíše nižší, jak ukazují indexy Ak: 11, 28, 10, 9, 21, 11, 8, 6, 8, 4, 5, 3, 26, 24, 16, 6, 8, 20, 21, 19, 11, 6, 7, 2, 4, 4, 15, 10, 18, 19 a 8. Prakticky stálý vzestup sluneční radiace při absenci velkých poruch vedl k vývoji převážně velmi dobrých až vynikajících podmínek šíření v dlouhém intervalu 6, až 29, 11.

Mimořádně štědře se k nám příroda zachovala během CQ WW DX contestu 25.–26. 10. 1986, kdy zejména použitelnost horních pásem KV včetně desítky připomínala sluneční maximum s R₁₂ přes sto. Vysvětlení lze nalézt ve spolupůsobení dlouhého a téměř nepřerušovaného vzestupu sluneční radiace, k níž se přidružila významná korpuskulární složka (v průměru přinášející asi polovinu potřebné energie), jež ale nevedla ke zvýšení geomagnetické aktivity téměř až do konce závodu.

Není vyloučeno, že něco podobného může nastat v březnu, i když zatím vychází další pravděpodobný vzestup sluneční aktivity až na duben. Přinejmenším konec března nás ale může příjemně překvapit pravděpodobnou koincidencí většího počtu přízných faktorů, zejména pak v okolí rovnodennosti. Možnosti ionosféry, naznačené v následujících odstavcích, představují stejně jako v minulých předpovědích maximum, které se může vyskytnout třeba jen jednou či nejvýše několikrát za měsíc. Při výpočtu byl totiž dosazen decil pouhých 10 %, zato výkon a parametry antén poblíže vrcholu naších možností. Pokusme se tedy nepropást šanci, pokudk ní v dále uvedených časech (UTC) dojde, bude-li ovšem i na druhém konci někdo QRV.

OVSEM 1 Na Grunem Konci nekdo CHV.

TOP band: UA1P 15.30–05.30, BY 23.00, U1
15.00–03.00, J2 16.30–03.00, 3B 19.30–23.30, PY
24.00–06.00, 6Y 01.00–03.00, W3 24.00–07.00, W7
02.00–07.00, KL7 02.00–04.00.

Osmdesátka: A3 15.30–18.00, JA 14.30–22.30, P2 15.30–21.00, 3B 17.00–02.30, 4K 19.30–02.00, PY 21.30–06.00, OA 23.40–07.00, CEOA 02.30–07.00, VR6 03.40–07.00, W7 23.40–07.00, FO8 05.40–07.00, KH6 05.30–06.10, KL7 00.30–06.00.

Ctyřicitka: A3 13,00–18.00, JA 14.00–22.00, VK6 15,00–21.00 a 23.00, 3B 16.00–03.00, 4K 20.00 a 00.00–02.00, PY 20.00–06.00, ZL dlouhou cestou 07.00, VR6 07.00–08.00, W7 07.00.

Třicítka: A3 12.00–15.00, JA 12.00–18.00, UI nepřetržitě, VK6 14.00–19.00, FB8X 16.00, PY 19.00– 04.00 a 06.00, ZL dlouhou cestou 07.00, KP4 07.00 a 21.00–23.00, KL7 06.00 a 17.00.

Dvacitka: A3 13.00–14.00, JA 11.00–14.00, P2 13.00–15.00, UI 03.00–19.00, 3B 14.00–18.00, PY 19.00–20.00, KP4 10.00 a 20.00–21.00, W4 22.00, W3 11.00–21.00, stejně i W2 a VE3.

Patnáctka: UA1P 10.00–14.00, BY 06.00–13.00, J2 05.00 až 18.00, 3B 12.00–16.00, KP4 17.00–18.00, W3 14.00–18.00.

Desítka: UI 07.00-14.00, J2 06.00-16.00, ZD7 09.00-16.00.

Mezi radioamatéry, používajícími mikropočítač Sinclair Spectrum, je znám předpovědní program "Wotson" od GM4HHJ a objevují se dotazy na míru jeho použítelnosti. Je třeba konstatovat, že program je správný a poměrně dobře použítelný. Jeho omezení plynou ze žjednodušené předpovědní metody. Rozmanité variace změn v ionosféře lze jen do jisté míry vyjádřit analyticky. Měně je respektována ionosférická hystereze v denním chodu, takže vypočtený čas bývá menší, častějí i o hodinu, ale výjimečně (pro náročné trasy do Pacifiku zejména) i o dvě hodiny, ojediněle i o tři. Pro horní pásma KV je poněkud pesimistou, takže zvětšíme-li zadávané H, dostaneme výsledky, použítelné ve dnech s lepšími podmínkami. Při svých 21 kB umí dost a na to, že je v jazyce BASIC, počítá poměrně rychle.

Z RADIOAMATÉRSKÉHO SVĚTA

Radioamatérské dění v NDR

- Mezi našimi radioamatéry je rozšířena kniha "Amateurfunk", která v NDR vyšla již v pěti vydáních. Vzhledem k tomu, že řada informací v knize zveřejněných již byla vývojem překonána, připravuje se nyní k vydání nová kniha se stejným názvem, která by postihla vývoj nové součástkové základny, v níž dominují polovodičové prvky a integrované obvody. Použití elektronek bude např. uvažováno jen v kapitole o výkonových stupních vysílačů. Autorem knihy je šéfredaktor časopisu Funkamateur, Y21XE. V současné době je kniha ve stadiu zpracovávání rukopisů.
- Ženy mají i v NDR svůj stabilní vysílací čas. Scházejí se vždy první čtvrtek v měsíci v 17.00 UTC na kmitočtu 3650 kHz. Ve stejný den se konají i Y2 skedy v pásmu 160 m a to telegraficky na 1845 ± 5 kHz a SSB na 1920 ± 5 kHz. Časy skedů jsou různé, od října do března v 17.00 UTC, v ostatních měsících při západu slunce (duben a září v 18.00, květen a srpen v 19.00 a červen a červenec v 19.30 UTC).
- Kolektiv Y61HQ, reprezentační stanice NDR, na prvém šampionátu IARU ve dnech 12. až 13. 7. 1986 navázal více než 4500 spojení. Po dlouhém experimentování se jim podařilo vysílat současně na pěti pásmech, bez vzájemného ovlivňování a z jednoho QTH. Při lepších podmínkách šíření na vyšších pásmech by výsledek byl ještě výraznější. Na jednotlivých pásmech dosáhli těchto počtů spojení: (pásmo/počet) 160/219 80/547 40/936 20/2086 15/536 10/200.

OK2QX

Zajímavosti ze světa

Ve Švédsku byl v loňském roce uspořádán kurs radioamatérského vysílání pro misionáře, kteří odcházejí do afrických a jihoamerických zemí, aby se jim umožnil styk s domovem. Kursu se zúčastnilo 20 zájemců.

FRACOL (Federated Radio Amateur Clubs of Colombia) uspořádal v loňském roce radioamatérskou expedici na ostrov Gorgona (3°00′ s. š., 78°14′ z. d.), kde je výzkumné ekologické centrum. Fauna i flora tohoto ostrova je dosud nedotčena civilizací a pracuje se tam na vědeckých výzkumech unikátních druhů. Stanice pracovala s volacím znakem 5J0FRC ve všech radioamatérských pásmech.

Existují země DXCC, kde nemají QSLbyro a QSL lístky se musí zasílat výhradně přes manažery nebo direct. Jsou to země: A5, A6, A7, BV, D6, ET, HZ, J5, KC6S, KH1-3-5-7-9, KP1, P5, T2, T3, T5, TJ, TL, TN, TT, TY, TZ, V4, VP2E, VR6, XT, XU, XW, XX9, XZ, YA, ZA, ZD7, ZD9, ZK2, ZK3, 3C, 3V, 3W, 4W, 5A, 5H, 5R, 5U, 5X, 7Q, 7O, 8Q, 9G, 9N, 9U. Uvědomte si to při třídění a odesilání svých QSL!

Od ledna 1987 je v NDR vydáván nový časopis s názvem Mikroprozessortechnik, zabývající se aplikacemi mikroelektronických prvků, systémy a bude přinášet i software pro uživatele osobních počítačů. Cena jednoho výtisku je 5 DM a je možné jej objednat i prostřednictvím PNS. Mimochodem – u nás má v letošním roce rovněž vycházet nový časopis, zabývající se obdobnou problematikou, s názvem Elektronika.

Švédové pořádají v březnu až květnu letošního roku expedici na Mt. Everest. Ze základny ve výši 5500 m předpokládají i radioamatérskou aktivitu, včetně přenosu zajímavých snímků z expedice provozem SSTV.

Gálapágy – prefix HC8 – mají v současné době vlastní radioklub, jehož členy je 18 místních radioamatérů. Souostroví se skládá ze 13 větších ostrovů, má celkem 7800 km² a největší ostrov Isabela má délku 130 km. Na cizojazyčných mapách je najdeme pod názvem Archipelago de Colon. Ostrovy jsou vulkanického původu, poslední sopečné výbuchy byly zaznamenány v letech 1963 a 1968. Prvým vědcem, který studoval a popsal život na těchto ostrovech, byl Charles Darwin, který ostrovy navštívil v roce 1835. Od roku 1959 je celé souostroví vyhlášeno národním parkem (rezervací) a to na všech neobydlených územích. Loňská letní expedice, kterou podnikl HC1MB/HC8 nedopadla dobře - vzhledem k problémům s anténami i zařízením navázal pouze 500 spojení.

V souvislosti s neuznáním Aruby jako samostatné země DXCC, (úplná samostatnost bude od roku 1996) je vhodné si připomenout, že ke skupině Holandských Antil patří ostrovy Aruba, Bonaire, Curacao, St. Martin, St. Eustatius a Saba. Pro diplom WAC platí první tři za Jižní Ameriku, další tři za Severní Ameriku a hranice kontinentu rozděluje tyto dvě ostrovní skupiny – mimochodem vzdálené od sebe asi 800 km – i na dvě země

V oblasti Viržinských ostrovů byla zřízena podmořská laboratoř, ze které pracoval loni v březnu KV4KD. Poprvé byly podobné pokusy prováděny již v roce 1970, kdy stanici na mořském dně obsluhoval W2YRQ se svou manželkou WA5IGW. Anténa byla v obou případech umístěna na lodi a s podmořskou laboratoří byla propojena souosým kabelem.

V Indonézii je v současné době registrováno přes 40 000 radioamatérů v organizaci ORARI. Z toho 5 % se zabývá provozem na pásmech KV, ale jen velmi malý počet provozem DX. O tom svědčí např. jen 25 diplomů DXCC vydaných pro indonézské radioamatéry. Přesto se ale v poslední době zvýšil počet stanic YB a YC hlavně v pásmu 15 m. Koncese jsou vydávány ve třech třídách: YB.. pro provoz ve všech pásmech, výkon 500 W; YC.. všechna pásma od 20 m, 75 W výkonu; YD.. pouze provoz na 80 m s výkonem 10 W a provoz se zahraničními stanicemi je těmto stanicím zakázán.

Na Šalomounových ostrovech je nyní aktivní jediná stanice H44MA, QSL přes VK2PXM.

Do konce roku 1986 pracovala stanice HI60RCD u příležitosti 60. výročí amatérského provozu v Dominikánské republice.

OZ1DJJ přesídlil na dvě léta do Grónska a vysílá pod značkou OX3LX. Velmi aktivní stanicí z této země je též YL Anni, OX3ZM, která se účastní téměř všech světových závodů.

Zprávy v kostce

K výročí argentinské radioamatérské asociace vysílala stanice AZ1ARU, QSL via LU4AA. Pro stanici AZ1A z Jižních Orknejí se QSL zasílají na LU8DTO ● Se zvláštními volacími značkami se můžete nyní setkat u filipínských stanic - DV jsou zvláštní stanice s povolením pracovať nad 14 275 kHz a stanice DW mají povolen pouze telegrafní provoz v pásmu 40 m Francouzská antarktická základna Dumont d'Urville je v letošní sezóně obsazena stanicí FT8YA, QSL přes FE6DZU ● LY4L pracovala u příležitosti výročí narození V. I. Lenina; v den výročí jeho narození pracuje každoročně stanice se zvláštním prefixem ● S velmi vzácným prefixem se objevuje stanice TF1PS, operátor Thor, obvykle v okolí kmitočtu 14 190 kHz SSB ● Z dalších prefixů, které se objevily během roku 1986, lze jmenovat 3G3DX z Chile a 4V z Haiti ● O tom, že Maďarsku je již povoleno pracovat pásmu 160 m, jsme již psali. V SSB části CQ WW DX contestu však překvapila malá účast stanic v tomto pásmu všeobecně a též špatné podmínky šíření. O to více překvapila zvýšená sluneční aktivita příznivce vyšších pásem, kde se objevily podmínky v posledních dvou letech výjimečné - mimo amerického kontinentu bylo možno v pásmu 28 MHz pracovat s celým světem, včetně Oceánie – stanice VK a ZL přicházely & nezvyklých silách. celkem 26 zón a přes 85 zemí bylo zachy-ceno jen v OK. Patnáctimetrové pásmo pak otevřelo možnosti pro práci řadě expedic v karibské oblasti a radioamatérům Severní a Jižní Ameriky – dokonce i stanice XE, W6 a HK0 bylo možno "udělat" bez větších problémů ● Mike Smedal, ex A71AD, již dostal zpět své deníky od quatarské telekomunikační zprávy a může vyřídit QSL dalším zájemcům. V současné době pracuje jako 5B4TI GM3YOR byl ve Srí Lance na dovolené a během října 1986 pracoval jako GM3YOR/4S7, převážně telegraficky ● ON7IP/ST pracuje na 14 175–14 195 kHz v nočních hodinách.

OK2QX

Morse značky na mincích!

Málokdo i z numismatiků ví, že Morseova abeceda se objevila i na mincích. Bylo to v letech 1943 až 1945, po Hitlerem vyhlášené "totální válce", kdy Kanada, patřící tradičně ke státům uznávajícím vládu britského krále, vydala pěticentovou minci s obrazem tehdejšího krále Jiřího VI. (1936 až 1952). Měľa nezvyklý, dvanáctiúhelníkový tvar a 5 centů bylo znázorněno římskou číslicí V, což současně symbolizovalo vítězství (Victory). Na okraji byla Morseovou abecedou věta "We win when work willingly" (Zvítězíme, budeme-li pro to pracovat). Mince byla v roce 1943 ražena z mosazí a její aukční cena dosahuje 40 000 DM; v dalších dvou letech byly tyto mince raženy z chromové oceli a jejich katalogová cena je asi 4 DM.

(Podle Funkamateur 12/85-QX)

Z opravářského sejfu

NÁHRADA ELEKTRONKY 6P45S V TELEVIZORU ELEKTRON 716

Elektronka 6P45S, kterou jsou osazeny koncové stupně řádkového rozkladu v některých sovětských barevných televizorech, má, jako každá v tomto obvodu, omezenou životnost. Při poruše pak obvykle nastávají značné problémy s jejím sháněním.

Problémy lze však poměrně snadno vyřešit tím, že ji nahradíme elektronkou PL509. Zapojení patice je shodné, pracovní napětí na elektrodách rovněž vyhovují. Úprava se tedy týká pouze žhavení. PL509 vyžaduje žhavicí proud 300 mA při napětí 40 V. Je proto nutné přerušit na desce plošnými spoji ty spoje, které vedou na vývody (4 a 5) a sem přivést napětí z Tr1 (vývody 8 a 8'). Odebereme je až za pojistkou Pr1. Transformátor, pojistka, i PL509 tuto úpravu dobře snášejí, přestože žhavicí napětí dosahuje jen asi 33 V. Elektronka je tedy částečně podžhavena, rušivě se to však ani po dlouhodobém provozu neprojevuje.

Nakonec je třeba nastavit výkon koncového stupně rozkladu trimrem R32 v bloku U3; případně vodorovný rozměr obrazu propojkami V2 (v témže bloku).

Ing. František Ducheček

ÚPRAVA KONVERTORU OIRT/CCIR Z AR A2/85

Popísané pôvodné zapojenie spĺňa podmienky na kvalitný prevod zvuku z OIRT do CCIR. Úprava sa týka len náhrady kryštálu 21 až 31 MHz paralelným rezonančným obvodom z týchto dôvodov.

Autor pôvodného článku upozorňuje, že pri použití kryštálu približne 31 MHz je možno konvertované pásmo OIRT "umiestnit" do voľnej oblasti pásma CCIR (102 až 108 MHz). Kryštál s týmto kmitočtom však možno získať iba veľmi ťažko. Krome toho predstavuje cena kryštálu značnú časť nákladov na celý konvertor.

Preto som v pôvodnom zapojení nahradil kryštál paralelným obvodom LC. Cievka má 15 závitov drôtu o priemere 0,3 mm s jadrom z.hmoty NO1 na kostričke o priemere 5 mm. Navinutú cievku možno priepiť na dosku s plošnými spojmi. Keramický kondenzátor, pripojený paralelne k cievke, má kapacitu 10 pF. Otvory pre kryštál treba zväčšiť na priemer 1,5 mm, aby bolo možné do nich vložiť obe súčiastky. Vinutie cievky je vhodné impregnovať napr. acetónovým lepidlom, aby nedochádzalo k parazitnej frekvenčnej modulácii.

Na zabezpečenie frekvenčnej stability je treba, aby napájacie napätie bolo stabilizované aspoň Zenerovou diódou. V mnohých rozhlasových prijímačoch je vf časť napájaná stabilizovaným napätím, čo využijeme pri napájaní konvertoru.

Oživovanie je zhodné s pôvodným. Naviac môžeme frekvenciu oscilátora nastaviť pohodlne tak, aby sa obe pásma neprekrývali.

ing. Eduard Kaluš, CSc.

NÁHRADA ELEKTRONKY PCL84 ELEKTRONKOU PCL86

Nedostatek elektronek typu PCL84 mě donutil k tomu, že jsem se rozhodl použít místo ní elektronku PCL86. Na objímce však musíme přepojit tři přivody: přívod k dutince 2 přepojíme na dutinku 9, přívod k dutince 3 přepojíme na dutinku 2 a přívod k dutince 9 přepojíme na dutinku 3. Další změny nejsou nutné.

Miroslav Janáč

ZLEPŠENÍ SMĚŠOVACÍ JEDNOTKY TM 102

Ve své pracovní náplní se často zabýváme ozvučováním sálů a různých prostranství při veřejných konferencích, slavnostech a projevech, přičemž požadujeme dobrou kvalitu přenosu signálu. Protože se v mnoha případech nevyhneme dlouhým přivodům od mikrofonů, často i více než 50 m, bývá zdrojem komplikací nedostatečný odstup signálu od rušivých napětí. Pro tyto účely používáme nejčastěji zařízení podniku Elektronika, směšo-

zvětšení strmosti filtru. Měřením isme zjistili, že filtry sice spolehlivě odfiltrují signály vysílačů dlouhých, středních i krátkých vln, avšak přibližně nad 20 MHz již pozbývají potřebné účinnosti. Příčinou bylo, jak se dalším zkoumáním prokázalo, příliš dlouhé a komplikované vedení zemního vodiče mikrofonního konektoru, na schématu označeného bodem G1. Proto musíme použít kondenzátor Ca. který jedním koncem připájíme na zem zástrčky a druhým koncem na její kovový kryt. Jako Ca nelze použít libovolný kondenzátor, ale takové provedení, které má vyhovující vysokofrekvenční vlastnosti, tedy malý sériový odpor a indukčnost. Na tuto skutečnost se často zapomíná. Proto lze doporučit článek "Kdy méně znamená více" v AR, z něhož vyplývá například nevhodnost kondenzátoru typu TK 782 pro toto použití, protože se nehodí pro kmitočty nad 1 MHz.

Rezistory a kondenzátory jsou zapájeny přímo na špičky konektoru a na desku s plošnými spoji. Jen kondenzátor Cd je zapojen ze strany spojů přímo na bázi tranzistoru T1 a zemní fólii desky. Úpravy jsme realizovali na několika směšovacích jednotkách a osvědčily se natolik, že celé zařízení bylo zcela srovnatelné s nejlepšími profesionálními přístroji.

Aby nevznikly zbytečné problémy se stanovením nejvhodnějších součástek, připojujeme seznam použitých doplňků. Ra = 220 Ω, TR 192 Cb = 15 nF, TK 744 Rb = 220 Ω, TR 192 Cc = 4,7 nF, TK 744 Ca = 4,7 nF, TK 744 Cd = 2.2 nF, TK 744 Ing. Jiří Štefan, Josef Novotný

vací jednotku TM 102, koncové zesilovače TW 140 a reproduktorové soustavy RS 516. S mikrofony Shure typ 569 toto zařízení dobře vyhovuje až na zmíněný nedostatečný odstup.

Odstup směšovací jednotky je sám o sobě velmi dobrý, ale jakmile jsme k ní připojili mikrofony dlouhým vedením. objevil se jednak síťový brum, jednak signály blízkých rozhlasových i televizních vysílačů. Na obr. 1 jsou nakresleny (tlustými čarami) úpravy, které jsme museli postupně realizovat, aby popsané jevy zmizely.

Každý mikrofon jsme zapojili s tzv. falešnou symetrii, protože směšovací jednotka má pouze nesymetrické vstupy. Jednotka je již v tomto směru upravena, protože dutinka 3 vstupního konektoru je uzemněna. Na vstupu však nejsou žádné vysokofrekvenční ochranné obvody vyjma rezistoru R2 (220 Ω). Proto jsme do vstupního obvodu navrhli filtr, který omezuje přenášené pásmo nad 20 kHz. Pro snadnou realizaci jsme použili filtr typu RC. Rozhlasové vysílače po této úpravšice z přenosu zmízely, avšak rušení televizními vysílači zůstalo a nepomohlo ani

Inzerci přijímá osobné a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce AR), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 28. 11. 1986 do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Sinclair ZX Spectrum + 48 k (10 000). P. Bublík, Budivojova 12, 370 01 Č. Budějovice. Dálnopisný stroj RFT – starší. Dobrý stav (1000). V. Svoboda, Harusova 1319, 149 00 Praha 4. Konc. zes. 2 × 150/210 W/8 Ω (3100), mech. pruž. dozvuku (600), trafo 2 × 25 V/10 A (300), gramo NC 420 mahagon (1000), 2 kostry a plechy na trafo 450 W (à 80), tlum. na RS 668 (80). ing. T. Paviù, Svandova 3, 150 00 Praha 5.

MGF ZK 147A (2000) + pásky (à 100) 10 ks, nebo vyměním za fotoap. P-ca nebo teleobí, 200-500 mm M 42. Koupím stavebnici nebo hotové TV hry (splátky) - popis, cena? Spěchá. J. Šuma, Kamenná horka 9, 568 02 Svitavy.

Regul. autotransform, RT 10/0 až 250 V, 10 A v celém rozsahu (1200), Ing. M. Korecký, Lhenická 1, 390 05 Č. Budějovice.

ZX Interface 1 a ZX Microdrive (6450) k počítači ZX Spectrum, R. Vašík, Očadlíkova 1343, 769 01

Cuprextit - odřezky (1 dm² 5 Kčs), magnetofon B 700 (980), KSY63A (B) (3). J. Dostálek, Nezvalova 826, 537 02 Chrudim.

JVC Stereo Tuner JT-V310 (3500). J. Feichtinger, Oskara Nedbala 1178, 500 02 H. Králové.

BFR90, 91, BF961, 963 (à 80), fetový OZ - B080 (à 40), MAA741, 748, 723 (à 12), MHB2114 (à 120). J. Grygar, D ělnická 62/b, 735 64 Havířov-Suchá.

Mgf. M1417S + náhr, mechaniku (1700, 300), J. Putala, č. 755, 735, 14 Orlová 4

BFR90, 91 (70), BF963 (50). O. Marek, Studentská 1770, B11/13, 708 33 Ostrava 2.

Avomet C4328 (450), Osciloskop H 313 (1600), Walkman UNISEF Japan (1000). J. Chalupa, Bořivojova 27, 130 00 Praha 3.

Kazetový Tape deck AIWA M 700, Dolby NR systém MPX filtr (8500) nebo vyměním za Video VHS a doplatím. M. Hanyš, Jeronýmova 128, 512 51

Lomnice n. Popelkou.

Zosilňovač TW 40, 2 × 20 W, TRANSIWATT Hifi (2000). L. Mužila, 013 62 Veľké Rovné č. 1216.

Tuner 813 A (3000), 2 ks repro RS 283 B 8 Q/30 W (à 900) gramo MC 440 vložka JVC (1400). Koupím AR-A roč. 85-86. M. Jaroš, Gothard 375, 508 01 Hořice v Pod

DYN. RAM 4164, nové (à 190). P. Chyška, Pod nemocnicí 2219, 390 01 Tábor.

Osciloskop BM 430 - 30 MHz, sonda, náhr. elky, výb. stav (2400). F. Strouhal, Koupě 4, 387 43

TM 556 + dokum, MT 135 (250, 340), LUN 24 V/4× přep., 48 V/2× přep. (23, 17), BUY79, KZZ45, KCZ58, KF630D (42, 69, 42, 27), BRY45-600, TXC03D60 (12, 14), TBA222, 2708, LM309K, MC3052 (30, 170, 42, 39), AR, ST (à 3) seznam, pl. spoje pro PMD 85 a osciloskop, klávesnici (480, 210). J. Mašek, 5.

května 1460, 440 01 Louny. Termistorové perličky (1k až 100k) (10), skleněná čidla (20). Ing. A. Šroubek, Karlovarská 115, 323 17

Tape deck AIWA AD-M-700E, 20 Hz až 19 kHz, 3 hl. 2 m., B (9000) a sluchátka PIONEER SE-L-30, 12 Hz až 22 kHz (1200). J. Novotný, Zahradní 360, 281 02 Cerhenice

Čas. relé RTs-61, 3 s - 60 hod (1000), nepoužívané. A. Priatel, Steinerova 2, 040 11 Košice.

Seltron VZ 200 barevný mikropočítač, prídavná pamat 64 kB (7000), BFR90, 91, BFT66, schémy na TV zos. (80, 90, 150), De Luxe Joystick a Interface na ZX Spectrum, kazeta hier (3000, 300), dig. multimetr TEL (3000), stavebnicu generátora s XR 2206 (1200), konektory FRB pár (180), DIL 28, 40 (40, 50), IO, T, R, C, MP aj. M. Ondrejkov, 059 84 Vyšné Hágy

IO: MH 3001, 3002, 3212, 3216, 3226, 74 193, 74\$287, 82\$11, - nepoužité (240, 160, 30, 25, 25, 25, 20, 130, 50). J. Pawera, Jos. Božka 20, 737 01 Č. Těšín.

BF900 (80), konektory BNC (pár 60), barev. obrazovka A47-500X (1200), relé AE2 - 4,5 V (25), přesné odpory – řada E24 (à 4). P. Kotráš, Kamenice 41, 251 68 Štiřín.

ZX Spectrum 48 s výbavou + 300 programů + vyved. kláves, na Joystick + magnet, reset. (Vše 8900). I. Farkas, Kolej Strahov III./429, 160 17 Praha 6.

Televizor RUBÍN 401-1 - na součástky (do 500). M. Fuxa, Thámova 30, 186 00 Praha 8.

ZX Spectrum 48 K (čes. manuál, kazety s programy, orig. balení), ZX Interface I, + Microdrive + 3 microflopy (8200, 4500). V. Švaříček, Orlická 366, 516 01 Rychnov n. Kn.

ZX 81 (2000), RC soupr. Improp 4 kanál. kompl. (2600) - nelétané i amat. 2kanál + 2× Futaba S 28 nové (2100), A. Čermák, Podolská 21, 147 00 Praha 4. Sov. osciloskop H3015 (3500) - nový. M. Strnad, Jablonecká 420, 190 00 Praha 9.

CASIO PB 100 1,5 kB (3650). Ing. M. Koritta, Jabloňová 28 81, 106 00 Praha 10.

Tape deck AKAI GX-7 (pro náročné), gramo MC 400 (2000), a zes. TRANSIWATT 2 × 50 W (2000). I. Havlín, Na Kampě 15, 118 00 Praha 1, tel. 535 81 71.

Cas. relé RTS - 61 (400). Attila Sárkány, Osadní 31, 170 00 Praha 7

SRAM 2K × 8 HM6116, 16k × 1 HM6167, MB 8167 (350, 350, 400), 82 53 (100). Ing. M. Marek, 250 68 Řež 181, tel. zam. 84 42 41 l. 2471.

Modul SHARP F-2009 (EL 512), který obsahuje IO: SC43520A 05 a TOSHIBA 6267 (1350). P. Hauptman, U zeměpis, ústavu 6, 160 00 Praha 6, tel, 329 78 12.

ZX 81 + 16 kB RAM, angl. manuál, 4 kazety s 60ti programy a konektor ke sběrnici (4200). Jen písem-ně. Ing. J. Šolc, Biskupcova 19, 130 00 Praha 3.

Paměti 4164 (à 180), 2764 (600), 27128 (900) a další, ICL, ICM. O. Gassler, Kunětická 12A, 530 09 Pardu-

Joystick adaptér pro SINCLAIR QL (680). J. Tayari, Vrbenského 46, 170 00 Praha 7.

Osaz, pl. spoj stereotuneru dle AR 10/84 neoživ. (350), 1 neosaz. pl. spoj S 71 (50). Koupím IO řady MH 74, LED, růz. měř. př. a dig. multim. popis, cena. P. Půta, Táborská 3, 301 45 Plzeň, tel. 475 30.

Magn. B-113 (2500). Bližší dopisem. J. Benák, Šebalinova 15 12, 252 23 Praha 5.

BM 384 + 344 (990), J. Zavadil, Zavadilova 11, 160 00 Praha 6.

PI. spoj + IO + potenciometry ZETAWATT 1458 (300) 4 KB105 G (40), 11NR15 (40), motor SMZ 375 R + řem., so. talíř slož., skříňku, plexi (400) 2 pásm. repro 5 W/4 Ω , 30 \times 16 \times 22 cm (250) 3 pásm. repro 20 W/4 Ω , 60 × 45 × 19 cm - 2 ks (800), 3 pás. výhybku RS 234D/20 W/4 Ω (130), UCY74121 (25), pl. spoj R13, L43 (20, 20) regul, napětí 220 V/400 W (700), vzduch. motor RENA (230), zesil. 2× 20 W/ /4 Q. B. Průžek, 250 82 Tuklaty 130.

Radia (300-500), televize na rozebr. (150-300), zesil. (400), repra (30, 70), elky trafa, vrtačku dvouruč. el. S. Charouz, 543 71 Hostinné.

Grafický ekvalizer devítipásm. (2100), světel. had rychlost krokování, změna směru, 3 hadice AR11/84 (2200), siréna AR 9/81 (150), malá světel, hudba AR 5/78 (450), zesilovač MUZIC 70 W (1400), zesil, 40 W s led. sig. (800), hlasitý AUT telef. (800), telev. Ametyst (400), mg. Uran (200), sluchátka mono (200), stmívač (500), hlídač dětského pokoje (400), Koupím čidla na svítiplyn, VI. Loskot, Družstevní 27, 412 01 Litoméřice, tel. 2427.

Tape deck AIWA F 220, JVC KDV 11 100%stav (6400, 4500), gramo PIONEER PL 514 X s novou vložkou Ortofon EC 10, autoreturn, TG 120 BM (520, 900), Zosilovače PIONEER SA 530 2× 44 W, JVC AK 11 2 × 30 W, ASO 300 130 W vhodné pre disco (6200, 3700, 2000), profesionál, reproboxy 4 pásm. 1× ARN 8608, 1× ARN 6608, 1× ARN 5608, 2× ARV 3608 osadenie, čierna koženka, poloprofes, repro 3pásm. 1× ARN 8608, 1× ARZ 4608, 1× ARV 3608 - osadenie V=117 I, 120 W hud, 12× LED, reg. výšky, stredy – čierna koženka (6000, 5600), far. hud. 4× 100 W (650), anten. pred. OIRT, CCIR (290), LCD displei + budič (80), BF679 do 1 GHz, NF<2,1 dB, Gp 17 dB F345A, KF907, BF963 (à 90), BF960, BF990 (à 100), F245A, KF907 (à 50), BF766 (à 135), IO MH7442, 03, 10, 04, 90, 50, 75 (à 8), MHZ115 (à 25), KD601, GNU74, KUY12, OC27, 3NU73, 2NU72, (à 10), KF521, 523, CO (20), (a), CO (20), (b), CO (20), (c), CO (20), C 520, 524, (à 9), KF517, KFY18 (à 6), KF508 (à 6), KC509 (à 4), KF 124, KC238 (à 3), odpory TR 191 (100 ks – 50 Kčs) – zmes. Kúpim Tape deck GRUNDIG TS 1000, 945 alebo iný kvalitný TEAC, TECHNICS, TASCAM, REVOX, PIONEER, AKAI – cievky min. Ø 22-27 cm, cena, popis, r. výroby, terajší stav. D. Macho, Pohotovostné s. 755/23, 926 00 Sereď, tel. 2596 po 18 hod.

Keram. filtry MURATA SFE 6,5MBF a CDA 6,5MC10 (à 100). Ing. P. Kučera, Topolová 580, 431 51 Klášterec n. Ohří.

Prog. kalk. Casio fx-180P, 38 sdruž. kroků, 55 fci, 7 pamětí, statistika, integrály, zlomky, závorky (1300), Calcul PSR-98E, 45 kroků, 64 fci, 7 pamětí, statistika. počítání v hex a oct, závorky (1200). K. Prodělal, Rokycanova 16, 615 00 Brno.

Čas. Amat. rádio řady A, roč. 1980, 81, 82, 83, 84 část roč. 1985, vč. příloh. Ing. L. Salák, Cihlářská 10, 674 01 Třebíč.

NF milivoltmetr (620), ind. vyladění (184). Kdo poradí s příjmem ze satelitu. Šalmík, Sklepní 234, 690 02 Strachotin

Barev, TV JUNOSŤ C 401 – slabá obrazovka (2000) Dr. J. Dobýval, J. Trnky 70, 738 01 Frýdek-Místek, tel.

Počítač Commodore 128, 128 kB RAM, 48 kB ROM, 3 systémy 2 procesory (280, 8500), magnetof. mnoho programů a her, 2 ovládače (24 000), AY-3-8500 (290), VQB 71 (80). K. Břicháček, Únor. vítězství 17, 350 02 Cheb

Knihy pro radioamatéry - různé (10, 15, 25), časopisy AR pro konstruktéry (r. 77-85) (à 2,50), ARA (r. 77-85) (a 2,50), Modellár (r. 72-85) (à 2), Modellbau heute (r. 72-85) (à 3,50). J. Vinařová, Sv. Čecha 7 356 01 Sokolov.

\$042P (140), BFT66 (130), BFR90,91 (90), DIL (25-40), tantaly (15), MDA2025 (35), gramo vložku AKAI PC 100 (800). Lad. Szilagyi, Bernolákovo 30, 940 01 N. Zámky.

Mgf. B 52 (800), univerzál. konvertor pro převod VKV OIRT na CCIR nebo naopak, bez zásahu do přijímače (150). Vít. Pantlík, Kárníkova 14, 621 00 Brno.

Mech. kaz. mgf. SM 1 ster. vč. dokum. (500), WK 46587-90 (35), Z570M, MH74141 (25, 15), různé TP (5). F. Kyncl, Letná 422, 460 13 Liberec.

Ant. předzesil. pro K10 - CCIR (300) a K33 (345), oba zisk 16 dB - dovoz ze zahr, Koupim ARA 2, 12/85, 7/86, ARB 2, 3, 5/84 nebo vym. za ant. konektory. P. Červený, Kollárova 21, 415 01 Teplice.

SORD M5 + BF + BG + kópiu orig, manuálu a syst. prem. + knihy hry (vše za 9000). J. Jung, Prostějovská 3, 080 01 Prešov, tel. 490 51.

Sedmisegmentové displeje IV6 (à 50). L. Samohýl, Vrbická 126, 713 00 Ostrava 2.

Osciloskop RFT, 10 Hz - 1 MHz (1800), aut. bubeník (2500), zesil. 100 W (1200). J. Dokoupil, 411 56 Bohušovice n O 330

ZX 81 16 kB RAM, napájecí zdroj, angl. manuál a programy a hry (5000). Ing. P. Lanik, 739 46 Hukvaldy 163.

Přijímač KV – K12, 1,5 – 30 MHz, 6 rozsahů (1000), přijímač VKV, ML, 20 – 220 MHz, 9 rozsahů (1000), J. Dorrová, Hodkovice 11, 252 41 Dolní Břežany.

MG. B-73 nový (3800), prij. PROXIMA 408/422 (2500), el. volt. BM 388E + sonda (3500), obr. 40LK4C nová (850), obr. pre POLYSKOP maska + škala 13LO371 (200), mer. PU 160 + prísl. (1200), mer. SSSR TL 4M (450), org. pl. spoj. L28, 035, N222, 044, 048, 049 (L33, L31, 32, 30 – čis. stup.), B 21 (P42. 43, 44, 45, 46 Q meter) (P318, P317, 315 TV hry) G 33, E62 (H 204, pr. ADAM), S 210 prij. (R 219 ÷ 227 univ. čítač ARB6/83), S54, (S12, S14 ZETAWATT 1420), zos. 24 V = 10 W ÷ 15 W AZA 020 (700), náhr. bloky do TV C401, el. ГУ-19, ГУ-50, RÈ125C, nahr. diel C430, TV hry tov. výr. šport (2004, 1000), (071, 72, 70, 73, čítač A9/82), ploš. 072, 012, 013, P303, P304, N227. Zoltán Bohuš, V. Clematisa B-1, 050 01

MK 25A, ZK140 + pásky (à 600), ROSSIJA 301 (300), CROWN (100), el. rádiá 315 A (250), 308 + vrak (200). hlavy ANP 908, 907, 935, 954, (55, 40, 79, 70), rôzne staré typy elektrónek i SSSR, farebnú hudbu 4× 200 W (350), 4KD501, 10KV601, 10KV606, 10KV611, 18GF506 (à 50), 100 u/20 V, tantal, 555 (à 40). Kúpim: 5G/50 V, MM5314, MC10131P, rôzne IO, R, C vadné kalkulačky a digitálne meráky a zariadenia. D. Kostra, Sládkovičova 14, 907 01 Myjava.

Spectrum Plus, Joysticky, Interface, BFR90, 91 (65). TOSHIBA Cassette deck PC-G 22, Dolby B, 20 – 16 000 Hz, norm., CrO₂, metal (5000). P. Knura, K otočce 775, 140 18 Praha 4.

ŘEDITELSTVÍ **MEZINÁRODNÍ POŠTOVNÍ PŘEPRAVY**

Gorkého nám, 13, 220 00 Praha 1

přijme do 3,5letého nově koncipovaného učebního oboru

manipulant poštovního provozu a přepravy

- Výuka je zajištěna v odborném učilišti v Olomouci, ubytování a stravování zdarma. Uční dostávají zvýšené kapesné. V průběhu učební doby obdrží náborový příspěvek 2000 Kčs.
- V období provozního výcviku je zajištěno ubytování a stravování v Praze, 2× měsíčně zdarma jízdné do trvalého bydliště. Učni obdrží 80 % časové měsíční mzdy kvalifikovaného pracovníka plus 20 % max. výkonnostní odměny. Mají možnost dalšího zvyšování kvalifikace.
- Po vyučení pracoviště v Praze, ubytování v podnikové ubytovně, odměňování podle II. etapy ZEUMSu
- Uplatnění jako kvalifikovaní pracovníci v poštovní přepravě mezinárodního i tuzemského styku.
- Náborová oblast: Jihomoravský a Severomoravský kraj.

Bližší informace:

Ředitelství mezinárodní pošt. přepravy, Gorkého nám. 13, 220 00 Praha 1, telefon: 23 62 809, s. Kašparová.

ŘEDITELSTVÍ POŠTOVNÍ PŘEPRAVY PRAHA

přijme

do tříletého nově koncipovaného učebního oboru

MANIPULANT POŠTOVNÍHO PROVOZU A PŘEPRAVY

Učební obor je určen především pro chlapce, kteří mají zájem o zeměpis a rádi cestují. Absolventi mají uplatnění ve vlákových poštách, výpravnách listovních uzávěrů a na dalších pracovištích v poštovní přepravě. Úspěšní absolventi mají možnost dalšího zvyšování kvalifikace – nástavba ukončená maturitou.

Výuka je zajištěna v Olomouci, ubytování a stravování je internátní a je zdarma. Učni dostávají zvýšené měsíční kapesné a obdrží náborový příspěvek ve výši 2000 Kčs.

Bližší informace podá

Ředitelství poštovní přepravy, Praha 1, Opletalova 40, PSČ 116 70, telef. 22 20 51–5, linka 277.

516 01 Rychnov n. Kn.

Náborová oblast:

Jihomoravský, Severomoravský kraj.

KOUPĚ

Koupíme

jakýkoli osobní počítač + software.

ZŠ Židlochovice, Tyršova 611, 667 01 Židlochovice.

Ant. předzesil. nebo zesilovač na VKV CCIR a IV.-V. televizní pásmo. Jen špičkové tovární výrobky. F. Zavadil, 1. máje 41, 460 09 Liberec 3.

IO AY-3-8610. 100% stav, cena. J. Weigl, Krásného 55, 636 00 Brno.

10 A227D 2 ks a LED LQ1812 nebo 1732 20 ks. M. Chval, Okružní 238, 435 13 Meziboří.

Displej kapesního kalkulátoru POLYTRON 6004. M. Lanta, Hronov 2, 549 37 Žďárky.

Servisní manuál k videomgf. VM 6465. P. Slunečko, Lidická bl. 607 26/9, 434 01 Most.

RC súpravu 1kanálovú v 100% spořahlivom tech. stave. J. Granát, SDH 2/20, 018 51 Nová Dubnica. Přijimače FuHEa, b, e, f, v; E62, E200, E220, E232. E53, SE25, S102a, FuPEc, FuG 15 aj. inkurantní přístroje, díly, elektronky a dokumentaci. Z. Kvítek, Voříškova 29, 623 00 Brno.

Fety: P8000, 8002, CP643, 640, koaxiál. relé. Paměti: 4164, 41256, 6116LP, 6264LP, 27128, 27256, kazetu s páskou do tiskárny SEIKOSHA – GP500, floppy disc 3,5', ZX Microdrive aj. kazety Microdrive. J. Grygar, Dělnická 62/b, 735 64 Havířov-Suchá.

Tr. BF, BFR, BFT, LM1035, kon. BNC, IO CMOS, OZ-JFET, LED, µA733, CD4047 a různé BTV úhl. do 42 cm i nehrající. M. Filák, Rybníky 1030/16, 755 01 Vsetín

Vícekanálový zesilov., cena dle dohody. P. Straka, 789 82 Moravičany č. 23.

Kazety - moduly na Video Computer System ATARI 2600. J. Rubek, 1. máje 1529E, 432 01 Kadaň.

Tranzistory: BFT66 a BFR90 nebo 91. P. Mikeš, Písecká 5046, 430 04 Chomutov. Kalkulačku CALCUMAT 106 alebo POLYTRON 6006

s vadným displejom, príp. kúpim IO M58628-001P 773A. Ing. F. Trojan, Fučíkova 430, 013 03 Varín. Kempston Joystick k ZX Spectru, světelné pero, plotter. M. Budín, Dobrovského 270/3D, 602 00

Varhany, rozestavěné, orig. vadné, plánek na jejich stavbu. V. Juřica, Rudimov 7, 763 21 Slavičín. IFK 120, odsávačku cínu a IO sov. výroby K237ChA5 a K237UR5. Ing. F. Ducheček, Sokolovská 1119,

Počítač zahr. výroby. R. Kalisz, 735 43 Albrechtice

Profesionál. periferie - tiskárnu na formát A4, discdrive 5,1/4", disky, barev. monitor i persp. hw součástky. Hledám zájemce o amat. skladbu IBM PC kompatible. J. Podobský, Podléškova 15, 106 00 Praha 10.

POLDI SONP KLADNO

přijme

pro údržbu vysoce moderních elektronických zařízení nových hutních provozů za dobrých platových podmínek pracovníky se středoškolským vzděláním i vyučené v oborech elektro se zájmém o práci na:

technologických a měřicích systémech řízených mikroprocesory

okruzích průmyslové televize

čidlech pro automatický systém řízení.

Informace: tel. 761. linka 3082.

Servisní návod pro VM6465 popř. schéma - dohoda. Fr. Mařík, Na podlesí 1476, 432 01 Kadaň.

Síťové trafo PN661020 na přijímač LARGO, nebo "Kdo navine". Ing. K. Macek, V pláni 627, 142 00

Motorky SMZ 375 s převodovkou 1-10 ot./min. J. Bašta, 273 01, Kam. Žehrovice 152, tel. 932 65

Potenciometry, MA1458, 555, 556, 748, KF - PNP, KC NPN, BC - PNP, VI. Illek, Moravni 959, 765 02

Tranz. osciloskop do 20 MHz, obč. radiostanice, VF gen. BM 205, 270, i jiné měř. servis dok. Color 110, Mánes Color. J. Šatra, Živnostenská 20, 312 02

Sinclair Spectrum, Plus. Pavel Žid, Myslbeková 753, 542 32 Úpice.

10 A277D - 3 ks, MHB4011 - 3 ks. L. Škovran, J. Borodáča 3, 083 01 Sabinov.

TR. R.C různé, ale také stykače a jističe od 15 do 25 A. M. Hlaváč, Hvozdná 104, 767 11 Gottwaldov.

Přímý konektor WK 46 580 - 2,54 mm - 2 ks. číslicový přepínač TS 212 00 01 + konektor - 12 ks, optron WK 164 12 (apod.), IO 8286, 8253, 7404, 74S14, ICM7555, 74132, blokovací kondenzátory pro sběrnici uP. výbojku IFK 123, manuály a programy k ZX-81 Spectrum, tiskárnu (např. Seikosha GP-50S), pl. spoje pro uAR CPV-2 - upravené vývody. Prodám K565RU5, Kenf M., Místní 5, 736 01 Havířov-

AIWA - gramo LX-80, zes, MX-80, tuner TX-80, deck FX-R80, jen nové - velmi dobře zaplatím. F. Chytrý, Synkova 20, 628 00 Brno.

Obvody na ZX Spectrum k rozšíření pamětí ze 16 na 48 kB; 4532 8 ks, 74LS157 2 ks, 74LS00, 74LS32, popř. ekvivalenty. J. Dočekal, Poděšín 9, 592 12 Nížkov.

Sinclair ZX Spectrum: Commodore, MHB4001, 4011, A225D, A273D, A274D, MA1458, KB109 (A, B, G), A2030, MHB4024, 4518, 4013, 4029, K500TM31, krystal 100 kHz, KC238, KSY81, KC308, MHB4543, MHB4311, VQE22. P. Skalka, Hlinka 30, 793 99 poš. Osoblaha.

Součástku C1213 A firma HITACHI – 2 ks. O. Řehák, Lidická 834, 563 01 Lanškroun.

AR-A 1, 2, 3, 5/85, 9, 11/83, AR-B 6/82. T. Plajner. Žižkova 385, 280 00 Kolín.

Kom. přijímač R 250, VU 21, Volna-K, K12 nebo pod. i na baterie, dokumentace a náhr. elky. JUDr. M. Moravec, Solná 23, 746 00 Opava. Tranzistor S3030. K. Štěpán, 679 31 Sebranice 49.

Obrazovku pre osciloskop (1 - 2 ks) typ 7QR20, s păticami (à 140), bez pătic (à 120). Ing. M. Raus. Chodská 17, 612 00 Brno.

Pamaťový modul EM-5 pre mikropočítač SORD M-5, alebo modul BASIC-G. R. Záboj, Samopalníkov 4 040 01 Košice

Mag. Start MP40 100 μ A 2 \times a DR 45 400 μ A/900 Ω 1x. Fr. Tyityis, 373 13 Kojákovice 82.

Paměť 16 kB pro ZX-81. J. Kremlička, Jáchymova

533/III, 377 04 J. Hradec. **Ob.** 32LK1C, IO: S042P, BF900, MC10131P, SFE10,7, Q - 27 MHz, MLF 10,7/250, ARMCR 1-4/86, Funkamateur 1÷4/86, Radio, Fernsehen, El. 1÷4/86, TDA2522, TDA2520, TDA5830, SD80727, AY-3-8500, HBF4016, 4966, 72710, UCY7486, TL085, TL75, XR4212CP, LM324, SPF 10700-A190D z NDR. Zoltán Bohuš, V. Clementisa B-1, 050 01 Revúca.

TECHNICS tuner STG5, perf. stav. gramof. hroty EPS-24 CS nebo pod. se stand, ozn. T4P, Ing. S. Kučmina, Pod papierňou 37, 085 01 Bardejov.

VÝMĚNA

AR-A č. 1-12 za č. 2, 3, 6/84 a 5, 7, 10/85 (kus za kus). P. Kotráš, Kamanice 41, 251 68 Štiřín, tel. 920 99

Na ATARI ST programy, M. Derian, Podolská 124, 147 00 Praha 4

BALUN 50/200, 3,5 - 30 MHz, výr. HY-GAIN/Telex (nový) za různé el. souč. nebo prodám. Ing. M. Novák, Stříbrského 688, 149 00 Praha 4.

RŮZNÉ

Kdo půjčí nebo prodá plánek zapojení rmg. Grundig RR 2000. D. Novák, Olešní 15, 712 00 Ostrava. Kdo zhotoví kvalit, konvertor K31/K8 nebo K34/K8 (12 V - 14 V), nebo přeladí laditelný konv. z K3 na K8. Udejte cenu. V. Musil, Školní 35, 312 16 Plzeň. Kto požičia, predá alebo vymení schéma zapojenia prenosného ČB TV juhosl. výr. MINIVOX a schéma zapojenia MGF SANYO M 2525E. Na výmenu ponúkam rôzny TV materiál, digitrony, moduly do stol. kalkulatorov apod. V. Schwarz, S. Chalúpku 296/41.

967 01 Kremnica. Kdo odborně seřídí konvergence u TV SONY KV 2062MR. B. Kapal, Hermanova 52, 170 00 Praha 7, tel. 38 27 71.

Kdo naprogramuje paměti EPROM dle zadaného obsahu? Asi 8 kB. O. Gassler, Kunětická 12A, 530 09 Pardubice.

M.: MIKROPROCESOROVÁ TECHNIKA pro 3. ročník SPŠ elektro-technických. SNTL: Praha 1986. 176 stran, 56 obr., 13 tabulek. Cena váz.

Tato učebnice je určena pro předměty Mikroprocesorová technika a Elektronika, vyučované na středních průmyslových školách. Má poskytnout studentům základ pro uplatnění v praxi, popř. pro další studium v oboru.

V první kapitole jsou vysvětleny nejdůležitější pojmy a přehledně popsán vývoj mikroprocesorů, technologií jejich výroby a jejich nejrozšířenější typy. Ve druhé kapitole autor probírá podrobně vlastnosti a činnost mikroprocesoru 8080A, který je vyráběn v ČSSR. Kapitoly 3. a 4. jsou věnovány obvodům, s nimiž mikroprocesor 8080A spolupracuje pamětem a podpůrným obvodům.

Informace o jazyku symbolických adres, potřebném k vytváření formy programů, vhodné pro 8080A, a principy překladu programu do strojového kódu jsou námětem kapitoly páté. O realizaci přerušování programů pojednává krátká samostatná kapitola šestá, opět zaměřená na mikroprocesor 8080A.

Poslední dvě kapitoly popisují školní mikro-počítač TEMS 80-03A; jednak samotný sy-stém, jednak programování jeho aplikačních zařízení. Jeho příloha je do knihy zařazen přehled znaků kódu ASCII.

Výklad je stručný, ale vyhovuje dobře pro daný účel publikace, která může posloužit nejen studentům třetího ročníku SPS elektrotechnických, pro něž je určena, ale také všem, kdo mají možnost pracovat s počítačem TEMS 80, popř. s jinými systémy, využívajícími mikroprocesoru 8080A. -Ba-

Hojka, J.; Boltik, J.; Nobilis, J.: RADIO-ELEKTRONICKÁ ZAŘÍZENÍ I. SNTL: Praha 1986. 328 stran, 151 obr., 8 tabulek. Cena váz. 24 Kčs.

Kniha, schválená Ministerstvem školství ČSR jako učební text pro střední průmyslové školy s výukou studijního oboru Elektronická a sdělovací zařízení, popisuje nejen samotná zařízení, ale i teoretické principy jejich činnos-ti, základní matematické vztahy, charakterizuilcí činnost, popř. i postup návrhu jednotlivých obvodů elektronických zařízení. K ověření a zopakování nabytých vědomostí je ke každé z kapitol připojen soubor kontrolních otázek a úloh. Správnost odpovědí pak má student možnost si zkontrolovat podle textu, uvedeného v závěru knihy.

První kapitola je věnována akustickým zařízením a popisuje jak základní pojmy a fyzikální principy, tak i realizaci jednotlivých druhů akustických zařízení. Druhá kapitola je teoretická - pojednává o metodách analýzy časově proměnných signálů. Třetí kapitola obsahuje výklad přechodných jevů v lineárních obvodech, na něj navazuje pojednání o derivačních a integračních obvodech. Napájecí zdroje jsou námětem čtvrté kapitoly. Popisují se jak usměrňovací, tak i filtrační a stabilizační obvo-

VÝPOČETNÍ STŘEDISKO Václavské nám. 42

Státní banky československé 110 03 Praha 1

přijme ihned nebo podle dohody:

- sam. organizátory provozu tř. T12 (VŠ, praxe)
- sam. inženýry VS tř. T12 (VŠ FE, praxe)
- inženýry VS tř. T11 (VŠ FE)
- techniky tř. T10 (ÚSO)
- systémové programátory tř. T10 (ÚSO, ÚSV)
- samostatné operátory VS tř. T8 (ÚSO, ÚSV)
- operátory VS tř. T6

Pracoviště v centru města, pěkné pracovní prostředí, mladý kolektiv, podniková rekreace atd.

DALŠÍ INFORMACE ZÍSKÁTE VE SPRÁVNÍM ODBORU STŘEDISKA NA TEL. 2116, LINKA 403, 514 NEBO V SEKRETARIÁTU ŘEDITELE 26 72 69.

Funkamateur (NDR), č. 11/1986

Trend výroby televizních přijímačů v NDR (2) – Měření L aC s jednoduchým konvertorem a digitálním voltmetrem – Mikroelektronické bloky pro stavebnice Polytron A-B-C (5) – Více dálkových spojení na 1,8 a 3,5 MHz – "Trap" dipól, popis a provoz – Lineární výkonový tstupeň 500 W pro KV (2) – Od slunečního větru k polární záři (3) – Parametrický ekvalizér – Rozšíření možnosti využití stereofonního kazetového přístroje GC 6030 – Nejdůležitější bistabilní klopné obvody s IO – Světelný had se šesti provozními variantami – Stabilní zdroj 50 Hz pro hodiny – Jednoduchý generátor funkcí s čtyřnásobným operačním zesilovačem B084 – Zkušební a programovací přístroj pro EPROM S555C1/C2 (2) – Hledání chyb v programech.

Radio-amater Jug., č. 9/1986

Ekonomický čítač do 600 MHz – Transceiver QRP (2) – Šumový můstek – Indikátor poklesu napětí – Filtr 50 Hz – Elektronický přepínač – Katalog logických IO – Zkoušeč kabelů podle normy DIN – Indikátor nabíjení akumulátoru – Návrh mikrovlnných zesilovačů s malým šumem – Elektronický tachometr pro spalovací motory – Osvětlení fotokomory diodami LED.

Rádiótechnika (MLR), č. 11/1986

90 let firmy Tungsram – Speciální IO, obvody video v TVP – Mikroperiférie (14) – Mnohostranný indikátor potlesku – Technika pro spojení EME (3) – SSTV styková jednotka k ZX Spectrum – Amatérská zapojení: Telegrafní vysílač 4 W pro pásmo 80 m; Jednoduchý přijímací konvertor pro 50 MHz; Jednoduchý ní zesilovač a stabilizátor napěti – Videotechnika (36) – Řiditelný světelný had – Generátor synchronizačních a zatemňovacích impulsů (2) – Učme se Basic s C-16 (11) – Radiotechnika pro pionýry.

Radio, Fernsehen, Elektronik (NDR), č. 11/1986

Bioelektronika, budoucnost zpracování informací – Počítače páté generace? – Jednodeskový počítač s U884M – Jednočipový mikropočítač U882D s displejem a s desitkovou klávesnicí – Systém pracující v reálném čase pro spolupráci s několika počítači – Inteligentní řízení periferních zařízení pro mikropočítače – Reléové spínací pole M3104 s IMS-2 – Analýza obvodů jazykem Basic (11) – Pro servis – Informace o polovodičových součástkách 231 – Gramofony Hi-fi s přímým pohonem a tangenciálním raménkem – Abecedně číslicová indikace názvů vysílačů – Přenosný programátor pamětí TPG 700 – Mikrovlnný zesilovač v technice finline – Konverze dvojkových čísel v desítková – Banka pamětí s rozsahem 64 Kbyte – Číslicový měřič vrcholových hodnot – Logická sonda pro TTL.

Radio, televízija, elektronika (BLR), č. 11/1986

Spínaný napájecí zdroj v TVP – Nový systém kazetového videozápisu – Systém MIDI pro elektronické hudební nástroje – Generátor sinusového signálu, řízený napětím – Projektování se systémy, programovanými v asembleru – Schéma klávesnice pro mikropočítač – Modul se stykem PPI 8255A pro osmibitový osobní mikropočítač – Vlastnosti mezinárodní číslicové telefonní ústředny MT-20 – Pulsně kódová modulace v provozu elektronických automatických telefonních ústředen – Optrony, určené pro provoz s odrazem světelného paprsku – Hledač kovů – Elektronický zkoušecí přístroj – Generátor pro sedmirozsahový transceiver – Programovatelné stabilizátory proudu – Grafické symboly pro anténní obvody – Grafické symboly součástí obvodů vvf.

Elektronikschau (Rak.), č. 11/1986

Zajímavosti a aktuality z elektroniky – Metodika zkoušení a spolehlivost součástek a obvodů – Automatické testovací systémy – Víceůčelová testovací zařízení – Trendy a perspektivy automatického zkoušení – Přehled testovacích systémů na světovém trhu – Signálový procesor Analog Devices ADSP-2000 – Syntéza řeči bez hranic? – Pokrok ve vývoji osciloskopů – Osciloskopy Tektronix série 11000 – Nejmodernější osciloskop, Philips PM3055 – Univerzální čítač Schlumberger 2721 – Součástka měsice: řídicí jednotka CMOS Philips PCF84CXX – Zajímavá zapojení – Nové součástky a přístroje.

dy, násobiče napětí, měniče i impulsně regulované zdroje.

Nejobsáhlejší je pátá kapitola o zesilovačích. Do ní jsou za všeobecnými částmi textu, věnovanými rozdělení a základním vlastnostem zesilovačů, zařazeny popisy všech nejužívanějších druhů a provedení zesilovačů je popsána funkce zesilovačů, činnost jednotlivých obvodů, vztahy, důležité pro návrh apod.

Šestá kapitola s názvem Mikroelektronika shrnuje nejrůznější poznatky z této oblasti – technologie výroby, principy vytváření obvodů, nastavování pracovních bodů, činnost operačních zesilovačů a jejich kompenzaci, číslicové integrované obvody. Součástí této kapitoly je i výklad logických funkcí, realizace logických obvodů aj. Poslední kapitola je věnována výkladu činnosti a návrhu obvodů generátorů sinusových průběhů.

Šíře látky, zpracovávaná v této učebnici, je

Síře látky, zpracovávaná v teto učebnict, je značná, proto nemůže jít výklad příliš do hloubky (předpokládají se patrně také již určité znalosti z jiných vyučovacích předmětů); poskytuje však studentům možnost zvládnout předmět v rozsahu, požadovaném osnovami.

Kniha může být užitečná i amatérským zájemcům o elektroniku, zejména tím, že jim umožní osvojit si návrh i výpočet prvků jednotlivých obvodů, volit vhodnou koncepci zapojení pro daný účel apod. – prostě doplnit si potřebné množství teorie ke svým praktica zkušenostem. Dobrou pomocí k tomu jsou uváděné příklady praktických výpočtů obvodů. –JB-

SPRAVOČNIK – POLUPROVODNIKO-VYJE BIS ZAPOMINAJUŠČICH U-STROJSTV, (Polovodičové velké integrované obvody pamětí). Redaktoři sborníku A. Ju. Gordnov a Ju. N. D'jakov. Radio i svjaz: Moskva 1986, 360 stran, grafy, tabulky. Do ČSSR dovezeno prostřednictvím n. p. Zahraniční literatura, Praha, Vodičkova 1, prodejní cena v ČSSR 19 Kčs.

Publikace je projekčním katalogem integrovaných obvodů – pamětí, vyráběných v SSSR. V prvém dílu uvádí obecné údaje o polovodičových pamětech, podrobně rozebírá kód výrobního označení obvodů a systém elektrických parametrů. Najdeme zde obecné charakteristiky pamětí, typické časové diagramy pro časové sledy jednotlivých vstupních a výstupních signálů pamětí, tábulky rozdílů sovětského a mezinárodního označení příslušných signálů. Podrobně a zajímavou formou je zpracována kapitola, pojednávající o metodách diagnostiky a kontroly parametrů obvodů pamětí. Jsou uvedeny metody měření statických i dynamických charakteristik, vývojové diagramy různých funkčních testů, jako např. šachovnicový test, součtové testy, adresové testy, křížové testy, testy běžící jednotkou a další. Publikace obsahuje také typická funkční schémata a typické parametry pamětí různých fyzikálních struktur (TTL a dalších), dále různé vzorce a příklady výpočtů, doporu-čená zapojení obvodů, klasifikace různých typů pouzder integrovaných obvodů a různé další údaje pro projektování a montáž integrovaných obvodů (technologie při pájení postupnou vlnou, odolnost proti statické elektřině ap.).

Druhá část publikace je systematicky tříděným katalogem pamětí. U každého typu paměti jsou uváděny údaje (kapacita a organizace paměti, fyzikální podstata a použitá technologie, použití, napájecí napětí, příkon, rozsah provozních teplot, kompatibilita s dalšími obvody, typ pouzdra), časové diagramy jednotlivých signálů s ohledem na návaznost, velikost cyklu paměti, maximální a provozní hodnoty statických i dynamických parametrů pamětí a různé charakteristiky a údaje pro projektování.

V publikaci najdeme z operačních pamětí různé typy statických pamětí, dynamické paměti, typy PROM. Je škoda, že autoři přeložili do ruského jazyka i běžně mezinárodně užívanou anglickou terminologii a ustálené názvy signálů. Publikace obsahuje rovněž soupis literatury, použité k sestavení sborníku. Do katalogu jsou zahrnuty dostupné údaje až do roku 1985 včetně.

Velmi přínosná a zajímavá je část textu, pojednávající o testování správné funkce pamětí: lze ji využít i obecně pro paměti a integrované obvody jiných výrobců (popř. i pro jiná elektronická zařízení). Tato oblast není v naší literatuře příliš zpracována a není k dispozici ani dostatečný počet titulů v literatuře dovážené

Kniha může být vhodnou příručkou pro konstruktéry a projektanty moderních elektronických zařízení, pro techniky, pro posluchače vysokých škol a další zájemce, a je vhodným doplňkem katalogů n. p. TESLA. Je dostatečně moderní, což je při současném rychlém vývoji mikroelektroniky důležité.

Ing. Milan Volf, CSc.