CPE 612 Game Theory

A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for Blockchain-Enabled Internet of Vehicles

A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for BIoV

Peer-to-Peer electric trading

- Normally, people buy energy or electricity from the charging station for EV
- In the era of Blockchain, we can sell electricity to other people using smart meter and smart contract without middleman

Price mechanism

It is **hard to acquire** the full information in the decentralized network timely, due to that communication and computation load grow exponentially with network size

In this paper

- To build a blockchain
 infrastructure that can
 enable vehicle-to-vehicle
 (V2V) electricity trading
- To create an electricity trading scheme which can find the optimal pricing for the trading

The Bayesian game is adopted

- In the blockchain system, It is not trivial to acquire the full information. So, it becomes an incomplete information game between buyer and seller in trading
- Finding the optimal pricing under the **linear strategic equilibrium** which maximizes the utilities of both sides of electricity transaction, which stimulates the electric vehicle.

A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for BIoV

System architecture

- Buyer and seller will send its request to the system to build the smart contract
- RSU (roadside unit) is another role for this system.
- Computing device located on the roadside that provides connectivity to vehicle

Process of electricity trading

- 1. Buyer sends a request to auctioneer (RSU)
- 2. Seller receives it and reply to auctioneer
- 3. Auctioneer will broadcast the information
- 4. Transaction will be created and find the optimal price for both

BAYESIAN-GAME-BASED TRADING SCHEME

A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for BIoV

Look at a request.

Electricity request of buyer *i*

 \mathcal{V}_{i} is electricity price proposed by buyer where $v_{i} \in [v_{i}^{min}, v_{i}^{max}]$

 v_i^{min} is electricity lower bound price v_i^{max} is electricity upper bound price

Electricity reply of seller *j*

 \mathcal{C}_j is electricity price proposed by seller where $c_i \in [c_i^{min}, c_i^{max}]$

 c_{j}^{min} is electricity lower bound price c_{j}^{max} is electricity upper bound price

*controlled by auctioneer

^{*}controlled by auctioneer

Assume that the pricing of both parties satisfies the linear strategic equilibrium

Price function

buyer i:

$$P_{ij}(v_i) = \alpha_b + \beta_b v_i.$$

seller j:

$$R_{ji}(c_j) = \alpha_s + \beta_s c_j.$$

Optimal bidding for buyer

$$\max_{P_{ij}} \left[v_i - \frac{1}{2} (P_{ij} + E[R_{ji}(c_j) | P_{ij} \ge R_{ji}(c_j)]) \right] \cdot Prob\{P_{ij} \ge R_{ji}(c_j)\},$$

Optimal bidding for seller

$$\max_{R_{ji}} \left[\frac{1}{2} (R_{ji} + E[P_{ij}(v_i)|P_{ij}(v_i) \ge R_{ji}]) - c_j \right] \cdot Prob\{P_{ij}(v_i) \ge R_{ji}\},$$

Optimal bidding for buyer

means that under the condition that the buyer's bid is not lower than the seller's bid.

$$\max_{P_{ij}} \left[v_i - \frac{1}{2} (P_{ij} + E[R_{ji}(c_j) | P_{ij} \ge R_{ji}(c_j)]) \right] \cdot Prob\{P_{ij} \ge R_{ji}(c_j)\},$$

Optimal bidding for seller

$$\max_{R_{ji}} \left[\frac{1}{2} (R_{ji} + E[P_{ij}(v_i) | P_{ij}(v_i) \ge R_{ji}]) - c_j \right]$$
means that under the condition that the buyer's bid is not lower than the seller's bid.

Proof: Assuming that c_j , v_i are evenly distributed over their respective intervals, then $Prob\{P_{ij} \geq R_{ji}(c_j)\}$ in (3) can be obtained as

$$Prob\{P_{ij} \ge R_{ji}(c_j)\} = Prob\{P_{ij} \ge \alpha_s + \beta_s c_j^{\min}\}$$

$$= \frac{P_{ij} - \alpha_s - \beta_s c_j^{\min}}{\beta_s (c_j^{\max} - c_j^{\min})}, \tag{7}$$

and $E[R_{ji}(c_j)|P_{ij} \ge R_{ji}(c_j)]$ in (3) can be obtained as

$$E[R_{ji}(c_j)|P_{ij} \ge R_{ji}(c_j)] = \int_{\alpha_s + \beta_s c_j^{\min}}^{P_{ij}} \frac{x dx}{P_{ij} - \alpha_s - \beta_s c_j^{\min}}$$
$$= \frac{1}{2} (\alpha_s + \beta_s c_j^{\min} + P_{ij}). \tag{8}$$

Similarly, $Prob\{P_{ij}(v_i) \geq R_{ji}\}$ and $E[P_{ij}(v_i)|P_{ij}(v_i) \geq R_{ji}]$ in (4) can be respectively obtained as

$$Prob\{P_{ij}(v_i) \ge R_{ji}\} = Prob\{\alpha_b + \beta_b v_i^{\max} \ge R_{ji}\}$$

$$= \frac{\alpha_b + \beta_b v_i^{\max} - R_{ji}}{\beta_b (v_i^{\max} - v_i^{\min})}, \qquad (9)$$

$$E[P_{ij}(v_i)|P_{ij}(v_i) \ge R_{ji}] = \int_{R_{ji}}^{\alpha_b + \beta_b v_i^{\max}} \frac{x dx}{\alpha_b + \beta_b v_i^{\max} - R_{ji}}$$

$$= \frac{1}{2}(\alpha_b + \beta_b v_i^{\max} + R_{ji}). \qquad (10)$$

Substitute the (7), (8) and (9), (10) into (3) and (4) respectively. Combine them with the (1) and (2), P_{ij}^* and R_{ji}^* are derived. The proof is finished.

Bayesian equilibrium:

$$P_{ij}^* = \frac{1}{12}v_i^{\text{max}} + \frac{1}{4}c_j^{\text{min}} + \frac{2}{3}v_i,$$

$$R_{ji}^* = \frac{1}{12}c_j^{\text{min}} + \frac{1}{4}v_i^{\text{max}} + \frac{2}{3}c_j.$$

Finding optimal quantity.

$$\mathcal{P}1: \quad \max_{b_i, s_j} \sum_{i=1}^{I} U(b_i) - \sum_{j=1}^{J} C(s_j), \tag{11}$$

$$s.t. \ b_i^{\min} \le \sum_{j=1}^J b_{ij} \le b_i^{\max},$$
 (12)

$$s_j^{\mathsf{t}} - \sum_{i=1}^{I} (1 + \rho_j) s_{ji} \le s_j^{\mathsf{r}},$$
 (13)

$$b_{ij} = s_{ji} \ge 0, \tag{14}$$

where

$$U(b_i) = w_i ln \left(\sum_{j=1}^{J} b_{ij} - b_i^{\min} + 1 \right),$$
 (15)

$$C(s_j) = l_1 \sum_{i=1}^{I} \rho_j(s_{ji})^2 + l_2 \sum_{i=1}^{I} \rho_j s_{ji}.$$
 (16)

$$\mathcal{P}2: \quad \max_{b_i, s_j} \sum_{i=1}^{I} \sum_{j=1}^{J} [T_{ij} \ln b_{ij} - T_{ij} s_{ji}],$$

$$s.t. \quad (12), \quad (13), \quad \text{and} \quad (14). \quad (17)$$

Objective: solve P1 and P2.

Finding optimal quantity.

Theorem 2: The optimal transaction volume $\{b_{ij}^*, s_{ji}^*\}$ achieving the maximum social welfare can be derived by

$$b_{ij}^* = s_{ji}^* = \frac{Tr_{ji} - l_2 \rho_j}{2l_1 \rho_i}. (18)$$

$$F_{1}(b_{i}, s_{j}, \alpha, \beta, \gamma, \delta, \lambda, \mu) = \sum_{i=1}^{I} U(b_{i}) - \sum_{j=1}^{J} C(s_{j})$$

$$+ \sum_{i=1}^{I} \alpha_{i} \left(b_{i}^{\min} - \sum_{j=1}^{J} b_{ij}\right) + \sum_{i=1}^{I} \beta_{i} \left(\sum_{j=1}^{J} b_{ij} - b_{i}^{\max}\right)$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} - \lambda_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} - \lambda_{ij} - \mu_{ij} - \lambda_{ij} = 0.$$

$$- \alpha_{i} + \beta_{i} - \lambda_{ij} - \mu_{ij} - \lambda_{ij} - \mu_{ij} - \lambda_{ij} - \mu_{ij} - \mu_{ij}$$

$$P_{ij}^* = \frac{1}{12}v_i^{\text{max}} + \frac{1}{4}c_j^{\text{min}} + \frac{2}{3}v_i,$$

$$R_{ji}^* = \frac{1}{12}c_j^{\text{min}} + \frac{1}{4}v_i^{\text{max}} + \frac{2}{3}c_j.$$

Algorithm 1: V2V Electricity Trading Algorithm.

- Input: $\{b_i^{\min}, b_i^{\max}, v_i^{\min}, v_i^{\max}, v_i\}_{i=1}^N$ $\{s_i^{\min}, s_i^{\max}, c_i^{\min}, c_i^{\max}, c_j\}_{j=1}^{M}$
- Initialization: c^{\max} , v^{\min} Output: $\{T_{ij}, b_{ij}\}$
- 1: **for** $i = 1 \rightarrow N$ **do**
- for $i = 1 \rightarrow M$ do
- if $c^{\max} \le c_i^{\max}$ or $c_j \notin [c_i^{\min}, c_i^{\max}]$ then
- seller *j* needs to resubmit the bid.
- 5: end if
- if $v_i^{\min} \leq v^{\min}$ or $v_i \notin [v_i^{\min}, v_i^{\max}]$ then
- buyer i needs to resubmit the bid.
- 8: end if
- if $c^{\max} \geq c_i^{\max}$ and $v_i^{\min} \geq v^{\min}$ then
- 10: Solve (3) and (4), the optimal biding prices
 - $\{P_{ij}^*, R_{ii}^*\}$ that achieve the Bayesian equilibrium can be obtained.
- if $P_{ij} \geq R_{ji}$ then 11:
- $T_{ij} = (P_{ij} + R_{ji})/2$
- 13: else
- 14: The transaction between buyer i and seller j is not valid.
- end if 15:
- end if 16:
- 17: Solve the problem $\mathcal{P}1$ and $\mathcal{P}2$ according to T_{ij} to get the optimal trading volume $\{b_{ij}^*, s_{ii}^*\}$.
- 18: end for
- end for 19:
- 20: **return** $\{T_{ij}, b_{ij}\}$

A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for BIoV

Implement

- Use **Python** for creating system that buyer and seller and interact
- Not use real blockchain as a system

```
seller.html
🕏 app.pv
              return True
         def completeBuyerTransaction(self, sellerTransactionIdx):
              sellerTransaction = self.fetchSellerTransaction(sellerTransactionIdx)
              buyerTransaction = self.fetchBuyerTransaction(sellerTransaction.parentTransaction
              if(sellerTransaction.status == 'accepted'):
                  sellerTransaction.status = 'completed'
                 buyerTransaction.status = 'completed'
                  buyerTransaction.agreedTransactionIdx = sellerTransaction.idx
                 buyerTransaction.T = sellerTransaction.T
                 buyerTransaction.distance = sellerTransaction.distance
                  buyerTransaction.optimalAmount = sellerTransaction.optimalAmount
                 for transaction in self.fetchSellerTransactionsByParentTransactionIdx(sellerT
                      if(transaction.idx != sellerTransaction.idx):
                          transaction.status = 'failed'
                  return True
              else: return False
          def getAcceptedTransaction(self, BuyerIdx):
              sellerTransaction = []
              for transaction in self.sellerTransaction:
                  if(transaction.parentTransactionIdx == BuyerIdx and transaction.status == 'ac
                      sellerTransaction.append(transaction)
              if(sellerTransaction == None): return False
              else : return [ transaction. dict for transaction in sellerTransaction ]
          def getBuyerPendingTransaction(self, idx):
              b transaction = []
              for buyerTransaction in [transaction. dict for transaction in self.buyerTransa
                 b transaction.append(buyerTransaction)
                  for sellerTransaction in [transaction. dict for transaction in self.seller
                     b transaction.append(sellerTransaction)
                    b transaction
                              edTransaction(self, idx):
```

Buyer create request.

Buyer create request

Wait Seller response

Seller response. (Failed)

Choose Buyer request

Response back

System compute

Seller response. (Success)

Choose Buyer request

Response back

System compute

Buyer choose.

Pending/Accept

A Bayesian Game Based Vehicle-to-Vehicle Electricity Trading Scheme for BIoV

Transaction Price Based on Bayesian Game

- The prices is influenced by c_j^{min} and v_i^{max}
- When the electricity buyer reduces v_i^{max} , the probability of unsuccessful transaction will increase due to the lower price
- When the electricity seller reduces c_j^{min} , the probability of successful transaction will also increase

66 Conclusion

- a V2V electricity trading scheme based on blockchain technology has been designed and created
- the Bayesian game-based pricing scheme has been designed to deal with the incomplete information sharing in the blockchain system.
- From the scheme, the optimal pricing under the linear strategic equilibrium is obtained which maximizes the utilities of both sides of electricity transaction

THANK YOU