Carbohydrates

- Monosaccharides
 - Glucose Broken down starch
 - Galactose Dairy, sugar beets, jams, jelly
 - Fructose Fruits, honey
 - Mannose Plant polysaccharide, not starch
- Disaccharides
 - Maltose Barley, beer, cereals (glu + glu)
 - Lactose Milk sugar (glu + gal)
 - Sucrose Table sugar, sugar cane, maples (glu + fru)

Sugars

- Polysaccharides
 - Starch: plant made
 - Amylose shorter chains
 - Amylopectin longer chain with branching
 - Glycogen: animal made
 - Similar to amylopectin, but with more branching

Sugars

- Glucose forms ring structure in solution
 - β-D Glucose 36%
 - Glucose oxidase recognizes this
 - α-D Glucose 64%

Hormone Regulation

- Lower blood glucose
 - Insulin
 - Secreted by β-islet cells of pancreas
 - Stimulates movement of glucose into cells
 - Second Messenger Duties
 - ↑Lipogenesis, protein synthesis & AA transport, glycogen synthesis
 - ↓Lipase, protein breakdown, gluconeogenesis, glycogenolysis

Hormone Regulation

- Raise Blood Glucose
 - Glucagon
 - Secreted by α-islet cell of pancreas
 - Primary hormone responsible for raising glucose
 - Stimulates glycogenolysis and gluconeogenesis
 - Epinephrine
 - Catecholamine secreted by adrenal medulla, stimulates glucagon release
 - Cortisol
 - Secreted by adrenal cortex
 - Stimulates gluconeogenesis and glucagon release

Hormone Regulation

- Raise Blood Glucose
 - Growth Hormone
 - Synthesized by Anterior Pituitary
 - Inhibits glucose uptake by cells
 - Thyroxine (T4)
 - Least important, stimulates glycogenolysis
 - Somatostatin
 - Secreted by δ-islet cells of pancreas, hypothalamus, and GI tract
 - Inhibits BOTH insulin and glucagon release
 - ACTH
 - Secreted by Anterior Pituitary
 - Stimulates cortisol, Insulin antagonist

Hyperglycemia

- High glucose
 - Resolved by insulin
- Pathology: Diabetes Mellitus
 - Type 1 Absolute Deficiency
 - Type 2 Resistance with secretory defect
 - Other
 - Pancreatic disease, drug/chemical induced etc
 - Gestational
 - Metabolic and hormonal changes during pregnancy

Clinical Signs of Diabetes

- Polyuria
 - Renal threshold 160-180 mg/dL
- Polyphagia
 - "Starvation in land of plenty"
- Polydipsia
 - See: Polyuria
- Weight loss
 - "Starvation in land of plenty"
- Hyperventilation (acetone breath)
 - High ketone level

Diabetic Ketoacidosis (DKA)

Hyperosmolar hyperketotic hyperglycemic state

Glucose Testing

- Fasting Blood Glucose (8-10 hrs)
 - Normal 70-99 mg/dL
 - Impaired 100-125 mg/dL
 - Diabetes ≥126 mg/dL
- Random Glucose
- 2-hour Glucose Tolerance (OGTT) (8-10 hrs fast)
 - Usually time of peak after meal
 - Normal ≤140 mg/dL
 - Impaired 140-199 mg/dL
 - Diabetes ≥200 mg/dL

- OGTT dosages
 - 50g Gestational screen
 - 75g 2 hr OGTT
 - 100g Women who failed first gestational screen, 3 hour challenge
 - 3 hour challenge: 2 of these true for diagnosis
 - FBS ≥95 mg/dL
 - 1 hr ≥180 mg/dL
 - 2 hr ≥155 mg/dL
 - 3 hr ≥140 mg/dL

- 5 hr GTT
 - Testing for reactive (postprandial) hypoglycemia
 - Will see large drop (40 mg/dL or more)
- Hemoglobin A1c
 - Average lifespan of RBC 120 days
 - Test reflects average glucose over 2-3 months
 - Diabetes ≥6.5%
 - Hemoglobinopathies will interfere
- Fructoasmine
 - Glucose attaches to other proteins too!
 - 2-3 week period, NO FRUCTOSE INVOLVED!

Other Testing

- C-peptide
 - A product of insulin production
 - Absent in type 1 diabetes
- Ketones
 - 78% BHB, 2% acetone, 20% AAA
 - Produced more in type I diabetes (DKA)

Glucose Methods

G-6-PDH
 Glucose-6-Phosphate + NADP
 — 6-phosphogluconate + NADPH

Increase in absorbance at 340 nm

201 535 102

Glucose Methods

- Glucose Oxidase
 - β -D Glucose + O_2 \xrightarrow{GO} Gluconic Acid + H_2O_2
 - From here can measure with polarographic electrode
 - Measures O₂ consumption, must sequester H₂O₂
 - Trinder Reaction

 - Many interferences
 - Chromogenic Oxygen receptor, or dye that changes color in presence of H₂O₂

Glucose Methods

- Glucose Dehydrogenase
 - β-D Glucose+NAD \longrightarrow D-glucono δ lactone+NADH+H+
 - Patented Rxn, only 1% of labs use
 - Increase in absorbance at 340 nm
- If glucose is in the name, it is specific for β-D Glucose
 - Mutarose coverts α to β

TABLE 14-10	METHODS OF GLUCOSE MEASUREMENT		
Glucose oxidase	Glucose + O_2 + H_2O $\xrightarrow{glucose oxidase}$ \rightarrow gluconic acid + H_2O_2		
	H ₂ O ₂ + reduced chromogen → oxidized chromogen + H ₂ O		
Hexokinase	Glucose + ATP hexokinase plucose-6-PO ₄ + ADP		
	Glucose-6-PO ₄ + NADP ⁺ \longrightarrow NADPH + 6-phosphogluconate		
Clinitest	Cu ²⁺ Reducing substance ► Cu ¹⁺ O		
Copyright © 2014 Woltes Kluwer Health Lippincott Williams & Wilkins			

Other methods

TABLE 14-12 METHODS OF GLYCATED HEMOGLOBIN MEASUREMENT			
METHODS BASED ON STRUCTURAL DIFFERENCES			
Immunoassays	Polyclonal or monoclonal antibodies toward the glycated N-terminal group of the β-chain of hemoglobin		
Affinity chromatography	Separates based on chemical structure using borate to bind glycosylated proteins	Not temperature dependent Not affected by other hemoglobins	
METHODS BASED ON CHARGE DIFFERENCES			
Ion-exchange chromatography	Positive-charge resin bed	Highly temperature dependent Affected by hemoglobinopathies	
Electrophoresis	Separation is based on differences in charge	Hemoglobin F values > 7% interfere	
Isoelectric focusing	Type of electrophoresis using isoelectric point to separate	Pre-HbA ₁ c interferes	
High-pressure liquid chromatography	A form of ion-exchange chromatography	Separates of all forms of glyco-Hb: A ₁ a, A ₁ b, A ₁ c	
Copyriged 20 M Workers (Source Vouce) Lippinson Williams & Wildow			

We use in Auto Chem

TABLE 14-13

METHODS OF KETONE MEASUREMENT

Nitroprusside Acetoacetic acid + nitroprusside

alkaline pH

purple color

Enzymatic 3-β-Hydroxybutyrate + NAD+

3-HBD

acetoacetate + H+ + NADH

Cappiget 0.2014 Wolfen Flower Health [Lapincet Williams & Wilson

Galactose

- Galactosemia: failure to thrive
 - Deficiency in 1 of 3 enzymes for galactose metabolism
 - Usually galactose-1-phosphate uridyltransferase
 - Diarrhea, vomiting
 - Mental retardation (DD) and catarats if untreated
- Screened for at birth
 - Why?

Seemingly unrelated?

- Microalbumin
 - Diabetes causes damage to the kidney
 - Early sign is increase in urine albumin
 - Microalbumin is not a small molecule of albumin!

