

Construções Geométricas

Trabalhos: P1

Sumário

L	Atividades da Aula 01: Construções Elementares
	1.1 Exemplos
	.2 Trabalho: 25/05
	Atividades da Aula 02: Construções Elementares
	2.1 Perpendicularidade
	2.2 Operações com ângulos
	2.3 O arco capaz
	2.4 Trabalho: 01/06
	Atividades da Aula 03: Construções de Triângulos
	3.1 Construções em sala de aula
	3.2 Trabalho: 15/06

1 Atividades da Aula 01: Construções Elementares

1.1 Exemplos

Exemplo 1 Transportar um segmento sobre uma semirreta dada.

Exemplo 2 Transportar um ângulo a partir de uma dada semirreta.

Exemplo 3 Traçar, a partir de um ponto $P \notin r$, uma reta perpendicular a uma reta r dada.

Exemplo 4 Traçar, a partir de um ponto $P \notin r$, uma reta paralela a uma reta r dada.

Obs: Para as construções, veja [1].

1.2 Trabalho: 25/05

- 1. Traçar, a partir de um ponto $P \in r$, uma reta perpendicular a uma reta r dada.
- 2. Traçar a mediatriz de um segmento \overline{AB} dado.
- 3. Traçar a bissetriz de um ângulo $A\hat{O}B$ dado.
- 4. Construir um quadrado conhecendo a sua diagonal.
- 5. Construir o círculo circunscrito a um triângulo.
- 6. Construir o círculo inscrito em um triângulo.

2 Atividades da Aula 02: Construções Elementares

2.1 Perpendicularidade

• Chama-se **projeção ortogonal** de um ponto sobre uma reta r ao ponto P' de interseção da reta com a perpendicular à ela que passa por aquele ponto.

a)
$$\overrightarrow{PP'} \perp r \in \overrightarrow{PP'} \cap r = \{P'\}.$$

b) Se $P \in r$, então P = P' (P é sua própria projeção).

Exemplo 5 Determine a projeção ortogonal de um ponto sobre uma reta.

Qual a ideia central?

• O simétrico do ponto P em relação à reta r é o ponto Q, pertencente à reta perpendicular $\overrightarrow{PP'}$, tal que PP' = P'Q, Q distinto de P.

a)
$$\overrightarrow{PP'} \perp r \in PP' = P'Q$$
.

b) Se $P \in r$, então P = Q (P é seu próprio simétrico).

Exemplo 6 Determine o simétrico do ponto P em relação à reta r.

Qual a ideia central?

Exercício 1 Traçar a bissetriz de um ângulo AÔB dado.

Exercício 2 Traçar uma reta s paralela a uma reta r dada, sabendo que a distância entre as duas retas \acute{e} d.

• Sabemos que um triângulo equilátero é aquele possui todos os lados congruentes.

Exemplo 7 Construa um triângulo equilátero sendo conhecida a medida l do seu lado.

Qual a ideia central?

2.2 Operações com ângulos

Podemos efetuar operações de adição e subtração de ângulos, como também construir ângulos cujas medidas sejam múltiplos ou divisores da medida de um ângulo dado.

Exemplo 8 Construa um ângulo cuja medida é 60° um outro cuja medida é 30°.

Qual a ideia central?

Exemplo 9 Construa um ângulo reto.

Qual a ideia central?

Exemplo 10 Divida um ângulo reto em três ângulos congruentes.

Qual a ideia central?

Obs: No geral, não é possível tri seccionar um ângulo qualquer!

2.3 O arco capaz

Sejam A e B dois pontos sobre um círculo \mathcal{C} . Chamamos o arco \widehat{AB} de arco capaz do ângulo θ sobre o segmento AB .

Todos os ângulos $A\hat{P}B$, com P pertencente ao arco \widehat{AB} , têm a mesma medida. Um observador, portanto, que se mova sobre este arco, consegue ver o segmento \overline{AB} sempre sob mesmo ângulo.

Naturalmente que se um ponto N pertence ao outro arco, o ângulo $A\hat{N}B$ é também constante e igual a $180^{\circ}-\theta$:

uma vez que

$$360^{\circ} = \widehat{APB} + \widehat{ANB} = 2 \cdot A\widehat{NB} + 2 \cdot A\widehat{PB}$$

 $\Leftrightarrow A\widehat{NB} + A\widehat{PB} = 180^{\circ}.$

Exemplo 11 Construa o arco capaz de um ângulo $C\hat{E}D$ sobre um segmento \overline{AB} dados.

Solução:

1. Transporte o ângulo dado de modo que o segmento \overline{AB} seja um de seus lados:

2. Trace a mediatriz do segmento \overline{AB} :

3. Trace a reta perpendicular à semirreta AX, passando pelo ponto A e encontra a mediatriz no ponto O:

4. Como $\beta + \epsilon = 90^{\circ}$ e $\epsilon + \zeta = 90^{\circ}$, segue que $\beta = \zeta$.

Como O é um ponto da mediatriz de \overline{AB} , é equidistante dos seus extremos, de modo a formar um triângulo isósceles AOB.

5. Portanto, tomando o círculo de centro em O e raio \overline{OA} , o ângulo central é $A\hat{O}B=2\beta,$ gerando o nosso arco capaz:

Exemplo 12 Trace uma reta tangente a uma circunferência de raio r e centro O, passando por um ponto P da mesma.

Qual a ideia central?

Exemplo 13 Trace uma reta tangente a uma circunferência de raio r e centro O, passando por um ponto P exterior à mesma.

Qual a ideia central? Construir triângulos, como abaixo:

Obs: Para as construções, veja [1].

2.4 Trabalho: 01/06

1. Construa um ângulo cuja medida seja 75°.

- 2. Determine o ortocentro de um triângulo retângulo cuja hipotenusa mede 10 cm e um de seus ângulos agudos mede 30°. **PS:** construa o triângulo usando régua e compasso (físico ou o geogebra).
- 3. Desenhe uma reta r e dois pontos A e B situados num mesmo semiplano determinado por r. Determine o ponto P sobre a reta r de forma que a soma AP + PB seja a menor possível.

Dica: Use o simétrico de um dos pontos dados.

3 Atividades da Aula 03: Construções de Triângulos

3.1 Construções em sala de aula

Exemplo 14 Construir um triângulo conhecidas as medidas dos seus três lados:

a)
$$a = 3, b = 4 e c = 5.$$

b)
$$a = 4, b = 5 e c = 10.$$

c) $a, b \in c$, quaisquer.

Exemplo 15 Construir um triângulo sendo conhecidas as medidas a e b de dois lados e a medida do ângulo α determinado por eles.

Exemplo 16 Construir um triângulo sendo conhecidas as medidas de dois dos seus ângulos, α e β , e a medida do lado comum a esses ângulos.

Exemplo 17 Construir um triângulo sendo conhecidas as medidas do seu lado a, do ângulo adjacente à ele C e do ângulo oposto ao mesmo.

3.2 Trabalho: 15/06

- 1. Construir um triângulo retângulo isósceles conhecendo a soma das medidas da hipotenusa com a de um de seus catetos.
- 2. Construir o triângulo ABC conhecendo o lado a, o ângulo oposto \hat{A} e a mediana deste lado.
- 3. Construir o triângulo ABC conhecendo o ângulo $\hat{A},$ o lado b e o raio r do círculo inscrito.

Referências

- [1] REZENDE, E. Q. F., Geometria euclidiana plana e construções geométricas, Ed. Unicamp, 2016. Baixe aqui. Obrigada, Lucas!
- [2] WAGNER, E., Construções geométricas., Rio de Janeiro, SBM, 2007. Baixe aqui.