Разработка эвристических методов построения подстановок с низкой дифференциальной равномерностью

А.Р. Белов 1 , В.М. Завьялов 2 , Т.А. Хаирнуров 1 , Д.Г. Юргенсон 1 ЯрГУ им. П.Г. Демидова 2 СПГУ им. Екатерины II

E-mail: ashmedey@gmail.com, z.varvaramaksimovna@gmail.com, t.hairnurov@uniyar.ac.ru, d.yurgenson@uniyar.ac.ru

Аннотация

Изучается дифференциальная равномерность подстановок на конечном поле \mathbb{F}_{2^n} . На основе комбинаторного представления порядка дифференциальной равномерности подстановки предложен эффективный алгоритм вычисления дифференциальной равномерности после умножения на транспозицию. Рассмотрены некоторые подходы к построению подстановок с низкой дифференциальной равномерностью.

Ключевые слова: дифференциальная равномерность, подстановка, симметрическая группа, расстояние Хэмминга.

Введение

Симметричные шифры уже много лет являются одной из самых важных составляющих криптографии, и, как кажется, они не потеряют своей значимости через 5, 10 и даже 15 лет, ведь появление квантового компьютера не столь критично отразится на симметричной криптографии, в отличие от асимметричной. В связи с этим создание новых и улучшение уже существующих симметричных шифров крайне актуально. Популярной основой для симметричных шифров являются SP-сети. К примеру, некоторые современные стандарты шифрования ("Кузнечик", AES) построены именно на SP-сетях [1]. Как следует из самого названия, SP-сеть в простейшем варианте представляет собой многократно используемые по очереди слои двух типов: подстановочный слой (S-слой) и перестановочный слой (P-слой), которые, в свою очередь, состоят из S-блоков и P-блоков соответственно. Именно от характеристик этих двух слоёв во многом зависит общая криптографическая стойкость шифра, поэтому остро стоит вопрос о нахождении таких блоков S и P, которые обладали бы всеми нужными качествами, чтобы шифр, в состав которого входят слои, включающие в себя эти блоки, считался криптографически стойким. Один из возможных способов нахождения таких S-блоков детально описан в данной работе.

Основные определения

Определение 1. Для $n \in \mathbb{N}$, отображение вида $\mathbb{F}_2^n \to \mathbb{F}_2$, где \mathbb{F}_2 — поле из двух элементов, называется булевой функцией. Отображения вида $\mathbb{F}_2^n \to \mathbb{F}_2^m$, где $m \in \mathbb{N}$, называются векторными булевыми функциями (или (n, m)-функциями).

Одной из характеристик нелинейных элементов блочных шифров, которая обеспечивает устойчивость к некоторым методам анализа, является дифференциальная равномерность.

Определение 2. Векторная булева (n,m)-функция f называется $\partial u\phi \phi$ еренциально δ -равномерной, если для любых $a \neq 0, b \in \mathbb{F}_{2^n}$ уравнение

$$f(x) + f(x+a) = b$$

имеет не более δ решений в \mathbb{F}_2^n . Наименьшее такое число δ называется показателем дифференциальной равномерности.

Отображения, обладающие оптимальной дифференциальной равномерностью, называются *почти совершенно нелинейными отображениями* или *APN-отображениями*. Далее объекты \mathbb{F}_2^n и \mathbb{F}_{2^n} отождестявляются.

Определение 3. Отображение

$$f: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

называется АРN-отображением, если оно дифференциально 2-равномерно.

Вопрос о существовании биективных APN-отображений все еще открыт. Известно, что для полей \mathbb{F}_{2^n} при n=2,4 таких отображений не существует. В работе [4] впервые был построен пример APN-отображения для n=6.

Для характеризации дифференциальной равномерности мы используем понятие расстояния Хэмминга между подстановками [2]. Пусть Ω — множество из n элементов, $S(\Omega)$ — симметрическая группа на Ω с операцией произведения подстановок, определенной по правилу $[\pi \cdot \sigma](x) = \sigma(\pi(x))$. Под пересечением подстановок будем понимать множество

 $f\cap g=\{ au|$ цикл au входит в разложение на независимые циклы подстановок f и $g\}.$

Определение 4. *Расстоянием Хэмминга между подстановками* $f,g \in S(\Omega)$ называется

$$d(f,g) = |\{x \in \Omega : f(x) \neq g(x)\}|$$

Определение 5. Расстоянием Хэмминга между подгруппами $G,G'\leq S(\Omega)$ называется

$$d(G, G') = \min_{\substack{g \in G \setminus \{e\}\\ g' \in G' \setminus \{e\}}} d(g, g')$$

Для для вычисления расстояния между подстановками по их разложению в произведение независимых транспозиций используется

Утверждение 1. Пусть разложение в произведение независимых циклов $f, g \in S(\Omega)$ имеет вид:

$$f = (x_1, y_1)...(x_s, y_s)\tau_1...\tau_k,$$

$$q = (x_1, y_1)...(x_s, y_s)\sigma_1...\sigma_l,$$

где au_i, σ_j различные транспозиции.

Тогда

$$d(f,g) = n - 2s - |fix(f) \cap fix(g)|,$$

где

$$fix(\pi) = \{x \in \Omega \mid \pi(x) = x\}.$$

Далее будем рассматривать $\Omega = \mathbb{F}_{2^n}$. Любой элемент поля $\alpha \in \mathbb{F}_{2^n}$ определяет биективное отображение

$$\tau_{\alpha} \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$$

$$x \mapsto x + \alpha$$

Множество таких отображений $T=\{ au_{\alpha}\mid \alpha\in\mathbb{F}_{2^n}\}$ образует подгруппу симметрической группы $S(\mathbb{F}_{2^n})$

Характеризацию дифференциальной равномерности подстановки дает

Утверждение 2. Пусть $f \in S(\mathbb{F}_{2^n})$, T – группа сдвигов, определенная выше, а

$$G = f^{-1} \cdot T \cdot f = \{ f^{-1} \cdot t \cdot f | t \in T \}.$$

Тогда подстановка f является дифференциально δ -равномерной $\iff d(G,T)=2^n-\delta$

Пусть подстановка f' получена из f умножением справа на транспозицию τ . Тогда группа сдвигов сопряженная f' может быть выражена

$$f'^{-1} \cdot T \cdot f' = (f \cdot \tau)^{-1} \cdot T \cdot (f \cdot \tau) = \tau^{-1} \cdot (f^{-1} \cdot T \cdot f) \cdot \tau = \tau^{-1} \cdot G \cdot \tau$$

Известно, что при умножении подстановки на транспозицию показатель дифференциальной равномерности изменяется не более чем на 4

Утверждение 3. Пусть $d(G,T) = \alpha$. Тогда, если τ – транспозиция, то

$$\alpha - 4 \le d(\tau^{-1} \cdot G \cdot \tau, T) \le \alpha + 4$$

Алгоритм вычисления дифференциальной равномерности

Рассмотрим $\pi \in S(\mathbb{F}_2^n)$ и $G = \pi^{-1} \cdot T \cdot \pi$. Пусть $N = |\mathbb{F}_{2^n}|$, $G = \{g_1, \dots, g_{N-1}\}$, $T = \{t_1, \dots, t_{N-1}\}$. Каждый элемент t_i раскладывается в произведение независимых транспозиций $t_i = \tau_1^i \dots \tau_{\frac{N}{2}}^i$. Зафиксируем некоторый элемент $g = \sigma_1 \dots \sigma_{\frac{N}{2}} \in G$ и определим множество $I(t_i, g) \stackrel{\text{def}}{:=} t_i \cap g$. Тогда $d(t_i, g) = N - 2|I(t_i, g)|$.

Утверждение 4. Сложность построения $I(t_i, g)$ равна O(N).

Определим
$$I(g)\stackrel{\mathrm{def}}{:=}\{I(t_i,g)\mid t_i\in T\}, D(g)\stackrel{\mathrm{def}}{:=}(I(g),\max_{i\in I(g)}\{2\cdot |i|\})$$

Утверждение 5. Сложность построения D(g) равна $O(N^2)$.

Определим множество $\Delta(G) \stackrel{\text{def}}{:=} \{D(g) \mid g \in G\}.$

Утверждение 6. Дифференциальная равномерность подстановки π равна

$$\delta = \max_{(d_1, d_2) \in \Delta(G)} \{d_2\}.$$

Утверждение 7. Сложность вычисления δ равна $O(N^3)$.

Пусть $\Delta(G)$ уже вычислено и $\pi' = \pi \cdot (\alpha, \beta)$. Покажем как вычислить $\Delta((\alpha, \beta) \cdot G \cdot (\alpha, \beta))$

Рассмотрим изменение множества $I(t_i,g)$ под действием транспозиции $\sigma=(\alpha,\beta)$. Напомним, что $g=\sigma_1\dots\sigma_{\frac{N}{2}}$. Если $\sigma=\sigma_i$, то $I(t_i,g)=I(t_i,\sigma^{-1}g\sigma)$. Если $\sigma\neq\sigma_i$, тогда в разложении g на транспозиции присутствуют транспозиции $\sigma_s=(\alpha,\alpha')$ и $\sigma_r=(\beta,\beta')$. В таком случае, под действием транспозиции σ из разложения g пропадут транспозиции σ_s и σ_r , но появятся новые транспозиции $\sigma'_s=(\beta,\alpha')$ и $\sigma'_r=(\alpha,\beta')$. Отсюда следует, что $I(t_i,\sigma^{-1}g\sigma)$ получается из $I(t_i,g)$ удалением σ_s и σ_r (если таковые имеются) и добавлением σ'_s и σ'_r (если они есть в разложении t_i). При правильном выборе структур данных, транспозиции σ_s , σ_r можно находить за O(1). Определять принадлежность транспозиций σ'_s , σ'_r разложению t_i также можно за O(1). Таким образом, итоговая сложность вычисления $I(t_i,\sigma^{-1}g\sigma)$ равна O(1).

Аналогичным образом описывается процедура нахождения множества $D(\sigma^{-1}g\sigma)$ по известному D(g)=(I(g),d). Если $\sigma=\sigma_i$, то D(g) не меняется. Иначе нужно найти сдвиги $t(\sigma_s),t(\sigma_r),t(\sigma_s'),t(\sigma_r'),$ в разложение которых входят $\sigma_s,\sigma_r,\sigma_s'$ и σ_r' , а затем пересчитать множества

$$I(t(\sigma_s), g), I(t(\sigma_r), g), I(t(\sigma_s'), g), I(t(\sigma_r'), g).$$

Если учесть, что мощность этих множеств не может измениться более чем на 2, то сложность нахождения нового максимума $d' = \max_{i \in I(\sigma^{-1}g\sigma)} \{2 \cdot |i|\}$ можно обеспечить за время O(1).

Подытоживая, результирующая сложность вычисления $\Delta(\sigma^{-1}G\sigma)$ равна O(N). Если учесть, что δ изменяется не более чем на 4, то $\delta' = \max_{(d_1,d_2)\in\Delta(\sigma^{-1}G\sigma)}\{d_2\}$ вычисляется за O(1).

Некоторые подходы к построению подстановок с низкой дифференциальной равномерностью

В ходе работы было предложено несколько подходов, позволяющих уменьшить дифференциальную равномерность подстановки путём её умножения на n-ое количество транспозиций. Основная идея всех подходов заключается в следующем: необходимо выбрать какую-либо подстановку, далее следует найти такую транспозицию, при умножении на которую либо уменьшится дифференциальная равномерность подстановки, либо уменьшится метрика $\chi(\Delta(G))$, напрямую связанная с дифференциальной равномерностью. Затем нужно сопрячь подгруппу данной транспозицией, если таковая нашлась, и повторить шаг с подбором транспозиции или заврешить поиск, если подходящую транспозицию найти не удалось. Вот наиболее удачные алгоритмы, основанные на этой идее:

- 1. Полный перебор всех возможных транспозиций. Этот алгоритм даёт лучшие результаты, но при этом он работает очень медленно на больших размерностях.
- 2. Перебор некоторого набора транспозиций. В качестве возможных наборов нами были выбраны различные системы образующих симметрических групп.
- 3. Перебор транспозиций из множества $Tr(\Delta(G))$, построенного с помощью эвристики.

Необходимо пояснить, что представляют из себя метрика $\chi(\Delta(G))$ и множество $Tr(\Delta(G))$. Но для начала определим другое множество:

$$M_d \stackrel{\text{def}}{:=} \{ t \cap g \mid |I(t,g)| = \frac{d}{2} \}$$

Теперь, с помощью введённого множества, определим $\chi(\Delta(G))$ и $Tr(\Delta(G))$:

$$\chi(\Delta(G)) \stackrel{\text{def}}{:=} |M_{\delta}|$$

$$Tr(\Delta(G))\stackrel{\mathrm{def}}{:=}\{(\alpha,\beta)\mid \alpha\in au_1\ \&\ eta\in au_2,$$
 где $au_1, au_2\in\cup M_\delta$ различные транспозиции $\}$

Обозначим как $Transpositions_1$ - множество всех возможных транспозиций, $Transpositions_2$ - множество образующих транспозиций, $Transpositions_3$ - множество $Tr(\Delta(G))$. Псевдокод первого метода приведен в Алгоритме 1. Псевдокод для алгоритма 2 (3) отличается лишь заменой $Transpositions_1$ на $Transpositions_2$ ($Transpositions_3$).

```
Algorithm 1 Алгоритм 1
Require: \Delta(G)

ightarrow где d(G',T)>d(G,T) или d(G',T)=d(G,T) & \chi(\Delta(G'))<\chi(\Delta(G))
Ensure: \Delta(G')
   \Delta(G') \leftarrow \Delta(G)
  MaxDistance \leftarrow d(G,T)
  for Transposition \in Transpositions_1 do
       \Delta(G'') = RecalcGroupDistance(\Delta(G), Transposition) \triangleright Сопрягаем G транспозицией
       if d(G'',T) > MaxDistance then
           \Delta(G') \leftarrow \Delta(G'')
           MaxDistance \leftarrow d(G', T)
       end if
       if d(G'',T) = MaxDistance \& \chi(\Delta(G'')) < \chi(\Delta(G')) then
           \Delta(G') \leftarrow \Delta(G'')
       end if
  end for
```

После многочисленных экспериментов оказалось, что лучше всего справляется с задачей уменьшения дифференциальной равномерности "комбинированный" алгоритм, который состоит из последовательного применения алгоритма 2 с разными системами образующих и алгоритма 3. Такой "комбинированный" алгоритм позволяет стабильно снижать дифференциальную равномерность S-блока размерности 8 до значения 6.

Результаты вычислительных экспериментов

Используя построенные алгоритмы, проводились вычислительные эксперименты. Была построена подстановка на \mathbb{F}_{2^8} :

 $50, 115, 207, 140, 63, 107, 6, 86, 214, 203, 216, 223, 101, 228, 49, 67, 239, 114, 138, 83, 53, 13, 124, 180, 96, \\ 234, 22, 231, 210, 16, 26, 125, 82, 100, 206, 18, 94, 24, 169, 106, 69, 202, 126, 11, 141, 12, 250, 133, 193, 33, \\ 251, 92, 98, 174, 185, 252, 90, 158, 197, 188, 118, 127, 80, 57, 215, 135, 45, 56, 162, 10, 195, 36, 62, 177, 245, \\ 213, 58, 110, 192, 2, 40, 167, 168, 143, 38, 66, 187, 39, 240, 68, 220, 32, 120, 76, 55, 97, 161, 235, 46, 37, 14, \\ 78, 89, 73, 238, 171, 232, 230, 179, 84, 224, 244, 0).$

Сравнительная характеристика с другими известными подстановками приведена в таблице 1. В качестве параметров сравнения выбраны 4 характеристики: дифференциальная равномерность, нелинейность, минимальная алгебраическая степень и алгебраическая иммунность.

Также удалось построить подстановку на \mathbb{F}_{2^6} с порядком дифференциальной равномерности 4:

(0, 2, 5, 4, 19, 41, 33, 42, 28, 31, 36, 58, 37, 32, 48, 9, 56, 50, 13, 20, 15, 60, 1, 12, 55, 11, 7, 35, 8, 47, 25, 39, 59, 18, 63, 10, 46, 24, 38, 17, 30, 61, 40, 29, 3, 45, 43, 22, 44, 62, 53, 34, 57, 21, 14, 54, 27, 26, 23, 49, 6, 16, 52, 51)

Таблица 1: Таблица 1

	π_{AES}	$\pi_{Kuznechik}$	$\pi_{Jimenez}$ [3]	π
Дифференциальная равномерность	4	8	6	6
Нелинейность	112	100	104	100
Минимальная алгебраическая степень	7	7	7	7
Алгебраическая иммунность	4	4	4	4

Исходный код вычислительных экспериментов можно найти в открытом репозитории https://github.com/Raz1el/APN-research

ЛИТЕРАТУРА

- [1] Лось, А. Б. Криптографические методы защиты информации для изучающих компьютерную безопасность: учебник для вузов / А. Б. Лось, А. Ю. Нестеренко, М. И. Рожков. 2-е изд., испр. Москва: Издательство Юрайт, 2025.
- [2] А. Р. Белов, "Характеризация биективных APN-отображений в терминах расстояния между подгруппами симметрической группы", ПДМ, 2023, № 60, 5–12
- [3] R. A. de la Cruz Jimenez, "Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms with almost optimal cryptographic parameters", Матем. вопр. криптогр., 12:3 (2021), 89–124
- [4] Hou X.-D. (2006). Affinity of permutations of F_{2^n} . Discret. Appl. Math.. V. **154**, P. 313–325.

Кураторы исследования:

Чижов Иван Владимирович — к.ф.-м.н., зам. по науке руководителя лаборатории криптографии; Коломеец Николай Александрович — к.ф.-м.н., н.с. международного научно-образовательного Математического центра НГУ.