In [3]: ##Human Resource Analytics, the objective of this project is to analyze 'why a
 re the best and most experienced employees
 ##leaving an organization prematurely'. It is a problem from Kaggel data scien
 ce challenge

#Import basic packages
 import numpy as np
 import pandas as pd

import matplotlib.pyplot as plt
 import seaborn as sns
 #Output plots in notebook
%matplotlib inline

#Read data
data = pd.read_csv('HR_comma_sep.csv')
data.head()

Out[3]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.38	0.53	2	157	3
1	0.80	0.86	5	262	6
2	0.11	0.88	7	272	4
3	0.72	0.87	5	223	5
4	0.37	0.52	2	159	3

<class 'pandas.core.frame.DataFrame'> RangeIndex: 14999 entries, 0 to 14998 Data columns (total 10 columns): satisfaction level 14999 non-null float64 last_evaluation 14999 non-null float64 number project 14999 non-null int64 average_montly_hours 14999 non-null int64 time_spend_company 14999 non-null int64 14999 non-null int64 Work accident left 14999 non-null int64 promotion_last_5years 14999 non-null int64 sales 14999 non-null object salary 14999 non-null object dtypes: float64(2), int64(6), object(2) memory usage: 1.1+ MB

Out[7]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_
count	14999.000000	14999.000000	14999.000000	14999.000000	14999
mean	0.612834	0.716102	3.803054	201.050337	3.4982
std	0.248631	0.171169	1.232592	49.943099	1.460 ⁻
min	0.090000	0.360000	2.000000	96.000000	2.0000
25%	0.440000	0.560000	3.000000	156.000000	3.0000
50%	0.640000	0.720000	4.000000	200.000000	3.0000
75%	0.820000	0.870000	5.000000	245.000000	4.0000
max	1.000000	1.000000	7.000000	310.000000	10.000

```
In [8]: data.dtypes
Out[8]: satisfaction level
                                   float64
         last_evaluation
                                   float64
         number_project
                                     int64
         average_montly_hours
                                     int64
         time_spend_company
                                     int64
         Work accident
                                     int64
         left
                                     int64
                                     int64
         promotion_last_5years
         sales
                                    object
         salary
                                    object
         dtype: object
In [9]: #finding unique data
         data['sales'].unique()
Out[9]: array(['sales', 'accounting', 'hr', 'technical', 'support', 'management',
                 'IT', 'product_mng', 'marketing', 'RandD'], dtype=object)
In [10]: data['salary'].unique()
Out[10]: array(['low', 'medium', 'high'], dtype=object)
         data['sales'].replace(['sales', 'accounting', 'hr', 'technical', 'support', 'm
In [11]:
         anagement', 'IT', 'product_mng', 'marketing', 'RandD'], [0,1,2,3,4,5,6,7,8,9], i
         nplace=True)
In [41]: data['salary'].replace([], [], inplace = True)
```

In [45]: data['sales']

Out[45]:	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	000000000000000000000000000000000000000
	14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994	 0 0 0 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4

14995 4 14996 4 14997 4 14998 4

Name: sales, Length: 14999, dtype: int64

In [46]: data['salary'].replace(['low', 'medium', 'high'], [0,1,2], inplace = True)

In [52]: #find correlations
 corr= data.corr()

corr

Out[52]:

12/18/2017

	satisfaction_level	last_evaluation	number_project	average_moi
satisfaction_level	1.000000	0.105021	-0.142970	-0.020048
last_evaluation	0.105021	1.000000	0.349333	0.339742
number_project	-0.142970	0.349333	1.000000	0.417211
average_montly_hours	-0.020048	0.339742	0.417211	1.000000
time_spend_company	-0.100866	0.131591	0.196786	0.127755
Work_accident	0.058697	-0.007104	-0.004741	-0.010143
left	-0.388375	0.006567	0.023787	0.071287
promotion_last_5years	0.025605	-0.008684	-0.006064	-0.003544
sales	0.015413	0.011855	0.005577	-0.002387
salary	0.050022	-0.013002	-0.001803	-0.002242

In [53]: corr=(corr)

In [54]: corr

Out[54]:

	satisfaction_level	last_evaluation	number_project	average_moi
satisfaction_level	1.000000	0.105021	-0.142970	-0.020048
last_evaluation	0.105021	1.000000	0.349333	0.339742
number_project	-0.142970	0.349333	1.000000	0.417211
average_montly_hours	-0.020048	0.339742	0.417211	1.000000
time_spend_company	-0.100866	0.131591	0.196786	0.127755
Work_accident	0.058697	-0.007104	-0.004741	-0.010143
left	-0.388375	0.006567	0.023787	0.071287
promotion_last_5years	0.025605	-0.008684	-0.006064	-0.003544
sales	0.015413	0.011855	0.005577	-0.002387
salary	0.050022	-0.013002	-0.001803	-0.002242

In [55]: sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.va
lues)
sns.plt.title('Heatmap of correlation matrix')

Out[55]: <matplotlib.text.Text at 0xba6d780>

In [67]: #extract column with name 'left'
corr_left = pd.DataFrame(corr['left'].drop('left'))

In [68]: corr_left.sort_values(by ='left', ascending = False)

Out[68]:

	left
time_spend_company	0.144822
average_montly_hours	0.071287
number_project	0.023787
last_evaluation	0.006567
sales	-0.043814
promotion_last_5years	-0.061788
Work_accident	-0.154622
salary	-0.157898
satisfaction_level	-0.388375

In [12]: data.head()

Out[12]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.38	0.53	2	157	3
1	0.80	0.86	5	262	6
2	0.11	0.88	7	272	4
3	0.72	0.87	5	223	5
4	0.37	0.52	2	159	3

Out[72]: _____

	left
avg_hour_project_range	
(192.334, 749.333]	0.186359
(749.333, 1304.667]	0.340725
(1304.667, 1860.0]	0.098940

Out[83]:

	left
avg_hour_project_range	
(192.334, 749.333]	0.186359
(749.333, 1304.667]	0.340725
(1304.667, 1860.0]	0.098940

In [84]: data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0
 data.loc[(data['avg_hour_project'] <= 1304.667) & (data['avg_hour_project'] >
 749.333), 'avg_hour_project'] = 1
 data.loc[(data['avg_hour_project'] <= 1860.00) & (data['avg_hour_project'] > 1
 304.667), 'avg_hour_project'] = 2
 data.drop(['avg_hour_project_range'], axis = 1, inplace = True)

In [87]: #some EDA on data
g = sns.FacetGrid(data, col='left')
g.map(sns.boxplot, 'time_spend_company')

Out[87]: <seaborn.axisgrid.FacetGrid at 0xbec75c0>

In [90]: dropdata = data[data['time_spend_company']>=8]
 data.drop(dropdata.index, inplace = True)

```
In [91]: g = sns.FacetGrid(data, col='left')
g.map(sns.boxplot, 'time_spend_company')
```

Out[91]: <seaborn.axisgrid.FacetGrid at 0xc1e9978>

In [92]: sns.barplot(x = 'time_spend_company', y= 'left', data = data)
sns.plt.title('Left over time spend at company (barplot)')

Out[92]: <matplotlib.text.Text at 0xd476ef0>

In [97]: sns.factorplot(x = 'time_spend_company', y = 'left', data = data)
sns.plt.title('left over time spend at company (factorplot)')

Out[97]: <matplotlib.text.Text at 0xdad1dd8>

In [98]: sns.factorplot(x = 'time_spend_company', y = 'left', data = data, size = 5)
sns.plt.title('left over time spend at company (factorplot)')

Out[98]: <matplotlib.text.Text at 0xdb8a4e0>


```
In [99]: left = data[data['left'] == 1]
    not_left = data[data['left'] == 0]
    f, axrrr = plt.subplots(1, 2, sharey = True, sharex = True)
```



```
In [103]: left = data[data['left'] == 1]
    not_left = data[data['left'] == 0]
    f, axrrr = plt.subplots(1, 2, sharey = True, sharex = True)
    axrrr[0].hist('time_spend_company', data = left, bins = 10)
    axrrr[0].set_title('Left')
    axrrr[0].set_xlabel('Time spend at the company')
    axrrr[0].set_ylabel('number of observation')
```

Out[103]: <matplotlib.text.Text at 0xde915f8>


```
In [112]: left = data[data['left'] == 1]
    not_left = data[data['left'] == 0]
    f, axrrr = plt.subplots(1, 2, sharey = True, sharex = True)

axrrr[0].hist('time_spend_company', data = left, bins = 10)
    axrrr[0].set_title('Left')
    axrrr[0].set_xlabel('Time spend at the company')
    axrrr[0].set_ylabel('number of observation')

axrrr[1].hist('time_spend_company', data = not_left, bins = 10)
    axrrr[1].set_title('Not_Left')
    axrrr[1].set_xlabel('Time spend at the company')
    axrrr[1].set_ylabel('Number of observations')
```

Out[112]: <matplotlib.text.Text at 0xf9a2128>

In [116]: sns.barplot(x ='time_spend_company', y = 'left', hue = 'promotion_last_5years'
, data = data)

Out[116]: <matplotlib.axes._subplots.AxesSubplot at 0xfba9588>

In [117]: sns.barplot(x ='time_spend_company', y = 'left', hue = 'salary', data = data)

Out[117]: <matplotlib.axes._subplots.AxesSubplot at 0xfd40588>

In [118]: data.dtypes

Out[118]: satisfaction_level float64 last evaluation float64 number_project int64 average_montly_hours int64 time_spend_company int64 Work accident int64 left int64 promotion_last_5years int64 sales int64 salary int64 avg_hour_project float64 dtype: object

In [119]: data.describe()

Out[119]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_
count	14623.000000	14623.000000	14623.000000	14623.000000	14623
mean	0.611633	0.715922	3.805102	201.157355	3.3532
std	0.249324	0.171453	1.238614	49.984234	1.1500
min	0.090000	0.360000	2.000000	96.000000	2.0000
25%	0.440000	0.560000	3.000000	156.000000	3.0000
50%	0.640000	0.720000	4.000000	200.000000	3.0000
75%	0.820000	0.870000	5.000000	245.000000	4.0000
max	1.000000	1.000000	7.000000	310.000000	7.0000

In [120]: data.head()

Out[120]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.38	0.53	2	157	3
1	0.80	0.86	5	262	6
2	0.11	0.88	7	272	4
3	0.72	0.87	5	223	5
4	0.37	0.52	2	159	3

```
In [121]: data['salary'].unique()
```

Out[121]: array([0, 1, 2], dtype=int64)

```
In [122]: data['promotion_last_5years'].unique()
```

Out[122]: array([0, 1], dtype=int64)

```
In [136]: #average monthly hours
g = sns.FacetGrid(data, hue = "left", aspect = 4)
g.map(sns.kdeplot,'average_montly_hours',shade = True)
g.set(xlim=(0, 1.099*data['average_montly_hours'].max()))
g.add_legend()
```

Out[136]: <seaborn.axisgrid.FacetGrid at 0x1143d978>

In [142]: #Boxplot g = sns.FacetGrid(data, col = 'left') g.map(sns.boxplot, 'average_montly_hours') np.mean(data[data['left'] ==1]['average_montly_hours']), np.mean(data[data['left'] == 0] ['average_montly_hours'])

Out[142]: (207.41921030523662, 199.13409337676438)

Out[156]:

	left
avg_mon_hours_range	
(167.333, 238.667]	0.072888
(95.786, 167.333]	0.334932
(238.667, 310.0]	0.363340

In [157]: cf

Out[157]:

	left
avg_mon_hours_range	
(95.786, 167.333]	0.334932
(167.333, 238.667]	0.072888
(238.667, 310.0]	0.363340

In [160]: #replace continous values by categorical ones
 data.loc[data['average_montly_hours'] <= 167.333, 'average_montly_hours'] = 0
 data.loc[(data['average_montly_hours'] > 167.333) & (data['average_montly_hours'] <= 238.667), 'average_montly_hours'] = 1
 data.loc[(data['average_montly_hours'] > 238.667) & (data['average_montly_hours'] <= 310.0), 'average_montly_hours'] = 2
 data.drop(['avg_mon_hours_range'], axis = 1, inplace = True)</pre>

```
In [166]: # number project
sns.barplot(x = 'number_project', y = 'left', data=data)
sns.plt.title('number of projects done by people left(left=1)')
```

Out[166]: <matplotlib.text.Text at 0x11576a90>

In [168]: #boxplot g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'number_project') print('left_median : ', np.median(data[data['left'] == 1] ['number_project'])) print('not_left_median : ', np.median(data[data['left'] == 0] ['number_project'])) # this indicates number of projects done by a person is not a good estimate, b ecause it is distributed equally between left=0 and left = 1

left_median : 4.0
not_left_median : 4.0

In [169]: # outliers dp exit, dro those observations
dropdata= data[(data['number_project'] ==8) & (data['left']==0)]
data.drop(dropdata.index, inplace= True)

In [188]: data.head()

Out[188]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.38	0.53	2	0	3
1	0.80	0.86	5	2	6
2	0.11	0.88	7	2	4
3	0.72	0.87	5	1	5
4	0.37	0.52	2	0	3

```
In [178]: #satisfaction_level
    g=sns.FacetGrid(data, hue='left', aspect=4)
    g.map(sns.kdeplot, 'satisfaction_level', shade=True)
    g.set(xlim=(0, data['satisfaction_level'].max()))
    g.add_legend()
```

Out[178]: <seaborn.axisgrid.FacetGrid at 0x131667f0>


```
In [180]: #boxplot
    g= sns.FacetGrid(data, col= 'left')
    g.map(sns.boxplot, 'satisfaction_level')
```

Out[180]: <seaborn.axisgrid.FacetGrid at 0x13351240>

Out[194]:

	left
satisfaction_range	
(-0.003, 1.0]	0.545455
(1.0, 2.0]	0.196339
(2.0, 3.0]	0.148668

```
In [185]: #last_evaluation
    g=sns.FacetGrid(data, hue='left', aspect=6)
    g.map(sns.kdeplot, 'last_evaluation', shade=True)
    g.set(xlim=(0, 1.2 * data['last_evaluation'].max()))
    g.add_legend()
```

Out[185]: <seaborn.axisgrid.FacetGrid at 0x135400b8>


```
In [187]: #boxplot
    g=sns.FacetGrid(data, col='left')
    g.map(sns.boxplot, 'last_evaluation')
```

Out[187]: <seaborn.axisgrid.FacetGrid at 0x1415eb70>


```
In [198]: data.loc[(data['satisfaction_level']==2), 'satisfaction_level']=1
    data.loc[(data['satisfaction_level']==3), 'satisfaction_level']=2
```

```
In [191]: # same process for evaluation_range
    data['evaluation_range'] = pd.cut(data['last_evaluation'], 3)
    data[['evaluation_range', 'left']].groupby(['evaluation_range']).mean()

data.drop(['satisfaction_range'], axis = 1, inplace = True)
```

Out[191]:

	left
evaluation_range	
(0.359, 0.573]	0.380430
(0.573, 0.787]	0.041594
(0.787, 1.0]	0.305770

```
In [193]: data.loc[(data['last_evaluation']> 0.787) & (data['last_evaluation']<=1.0), 'l
    ast_evaluation']=2
    data.loc[(data['last_evaluation']> 0.573) & (data['last_evaluation']<=0.787),
    'last_evaluation']=1
    data.loc[(data['last_evaluation']<= 0.573), 'last_evaluation']=0

data.drop(['evaluation_range'], axis = 1, inplace = True)</pre>
```

In [201]: data.head()

Out[201]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.0	0.0	2	0	3
1	2.0	2.0	5	2	6
2	0.0	2.0	7	2	4
3	2.0	2.0	5	1	5
4	0.0	0.0	2	0	3

```
In [200]:
          data.drop(['satisfaction range'], axis = 1, inplace = True)
In [202]: data.dtypes
Out[202]: satisfaction level
                                    float64
          last evaluation
                                    float64
          number project
                                      int64
          average montly hours
                                      int64
          time spend company
                                      int64
          Work_accident
                                      int64
          left
                                      int64
          promotion_last_5years
                                      int64
          sales
                                      int64
          salary
                                      int64
          avg hour project
                                    float64
          dtype: object
```

```
In [203]: #Train-Test split
    from sklearn.model_selection import train_test_split
    label = data.pop('left')
    data_train, data_test, label_train, label_test = train_test_split(data, label,
        test_size = 0.2, random_state = 42)
```

In [204]: #Logistic Regression

from sklearn.linear model import LogisticRegression

logis = LogisticRegression()

logis.fit(data train, label train)

logis_score_train = logis.score(data_train, label_train)

print("Training score: ",logis_score_train)

logis score test = logis.score(data test, label test)

print("Testing score: ",logis_score_test)

Training score: 0.766113865618 Testing score: 0.775726495726

In [206]: data.head()

Out[206]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spen
0	0.0	0.0	2	0	3
1	2.0	2.0	5	2	6
2	0.0	2.0	7	2	4
3	2.0	2.0	5	1	5
4	0.0	0.0	2	0	3

#SVM In [208]:

from sklearn.svm import SVC

svm=SVC()

svm.fit(data_train, label_train)

trainingscore=svm.score(data train, label train)

print("training score: ", trainingscore)

testingscore=svm.score(data_test, label_test)

print("testing score: ", testingscore)

training score: 0.964780304326 testing score: 0.964444444444

In []: