CISSP - Domain 1

Security and Risk Management

Writer: Viktor Nowiczenko

Confidentiality, Integrity and Availability

- Confidentiality Strong Passwords, 2FA, Masking, Access Control, Least Privilege.
 - Data at rest Encryption (ex. AES256)
 - Data in motion Secure transport protocols (SSL, TLS, IPSEC)
 - o Data in use Physical locks and blocks, housekeeping
 - Threats: Social Engineering, Keyloggers, Cameras, IoT, Cryptanalysis
- Integrity Protect against unauthorized data or system modifications
 - o Cryptography, Check Sums, Hash (MD5, SHA1, SHA2), Access Control, Digital Signature
 - Threats: Code injection, Data alterations, Cryptanalysis
- Availability Authorized people access data they need, when they need to.
 - IPS/IDS
 - Patch Management
 - o Hardware redundancy: RAID, UPS, HVAC, staff, High Availability.
 - Threats: DDOS, System compromise, staff, application and hardware failure

Disclosure, Alteration, and Destruction

- Disclosure
 - Someone unauthorized getting into your system/data.
- Alteration
 - Your data has been changed.
- Disclosure
 - Systems/Data rendered inaccessible.

IAAA (Identification and Authentication, Authorization and Accountability):

- Identification
 - o Name, username, ID number, employee number, Social Security Number etc.
- Authentication
 - Type I Something you know: PIN, Passphrase etc.
 - Type II Something you have: ID, Passport, token, cookie
 - o Type III Something you are: Biometrics, Fingerprint etc
- Authorization
 - Access Control
- Accountability
 - Auditing Trace an action to a subject's identity: non-repudiation.

Security Governance Principles

- Least Privilege Minimum necessary access, no more.
- Need to Know If you don't need to know, no access.
- Non-repudiation Users can't deny having performed a certain action. Authentication + Integrity.
- Subject vs Object
 - Subject Active users or program. Subjects manipulate objects.
 - Object Passive data
- Governance vs Management
 - o Governance
 - Balanced agreed upon objectives
 - Directions and decisions
 - Monitoring performance
 - Risk appetite management
 - Management
 - Plan, build and monitor activities in alignment with the directions
 - Practical work vs. Risk Appetite
- Organization and Management Structure
 - o Top-Down: IT Leadership set the direction.
 - o Bottom-Up: IT Security seen as a nuisance. Corrective actions

Governance standards and control frameworks.

- PCI-DSS Payment Card Industry Data Security Standard
 - Required standard for handling credit and debit cards
- OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation
 - Self directed risk management
- COBIT Control Objectives for Information and related Technology.
 - o Goals for IT Stakeholder needs are mapped down to IT related goals.
- COSO Committee of Sponsoring Organizations.
 - Goals for the entire organization.
- ITIL Information Technology Infrastructure Library
 - IT Service Management (ITSM).
- FRAP Facilitated Risk Analysis Process
 - Analyzes one business unit, application or system at a time in a roundtable brainstorm with internal employees. Impact analyzed, threats and risks prioritized.
- ISO 27000 series:
 - ISO 27001: Establish, implement, control and improvement of the ISMS. Uses PDCA (Plan, Do, Check, Act)
 - ISO 27002: (From BS 7799, 1/2, ISO 17799) Provides practical advice on how to implement security controls. It has 10 domains it uses for ISMS (Information Security Management Systems).
 - ISO 27004: Provides metrics for measuring the success of your ISMS.
 - ISO 27005: Standards based approach to risk management.
 - ISO 27799: Directives on how to protect PHI (Protected Health
 - o Information).
- Defence in Depth / Layered Defence / Onion Defence
 - o Implemented multiple overlapping security controls to protect an asset.
 - Physical and Logical controls.
 - No single security control secures an asset.
 - Improves confidentiality, integrity and availability,