Lecture 3

Christopher Godley
CSCI 2270 Data Structures
June 6th, 2018

Computer Memory

- Memory on a computer is stored using binary bits.
- Bit
 - is either a 1 or a 0
- Byte
 - group of 8 bits
- Everything is a number
 - Your English paper, your favorite song, the embarrassing picturesof you your Mom posts to Facebook, etc...

Binary Representation

Endian

- Binary can be interpreted either reading left->right or right->left depending on the system
- We will default to reading all binary in this course in the following format:

128	64	32	16	8	4	2	1
0	0	0	1	1	0	1	0
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

MSB: Most Significant Bit

LSB: Least Significant Bit

Hexadecimal Representation

- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16
 - The numerical digits 0-9 are the same as decimal

Hex = Decimal

$$A = 10$$

$$B = 11$$

$$C = 12$$

$$D = 13$$

$$E = 14$$

$$F = 15$$

Conversion

- Binary to Decimal
 - Use powers of two to calculate decimal value
- Decimal to Binary
 - Start binary value Right->Left
 - Divide decimal value by two
 - If there is a remainder (odd), enter a 1, else enter a 0
 - (#/2 is odd)?1:0
- Hexadecimal

Hexadecimal Conversion

- Easy to/from binary
- More complicated to/from decimal
- Binary to Hex:
 - Split the binary bits into groups of four
 - Map each group of four bits to a hexadecimal value.

Max/Min Values of Binary number

- The largest binary number:
 - for any given number of bits
 - all the bits are set to 1
- The smallest number:
 - For any given number of bits
 - All the bits are set to 0

Variable Types

- Char
 - 1 byte
- Int
 - 4 bytes
- Long
 - 8 bytes
- Float
 - 4 bytes
- Double
 - 8 bytes

Memory

- Variables are stored in discrete locations in memory
- The amount of memory required by a variable depends on the type of variable
- In the figure to the right
 - Each address is 1 byte
 - Variable 0xACAA is stored at ?
 - 0xFF02

Address	Value
0xFF06	
0xFF05	
0xFF04	
0xFF03	
0xFF02	AC
0xFF01	AA
0xFF00	

Memory - Example

Address	Value	Variable	
0xFFFF			
0xFFFE			
0xFFFD	0x03	V	
0xFFFC	0x02		
0xFFFB	0xFF] '	
0xFFFA	0x01		
0xFF04	0xFF	X	
0xFF03	0x0A		
0xFF02	0x01		
0xFF01	0x05		
0xFF00			

Variables store data.

How do we store variables?

Pointers

- Regular int variable may be declared as such
 - int X = 4;
- The pointer this variable would be declared as
 - int* ptrX = &X;