Rio de Janeiro, 27 de Maio de 2013.

PROVA 2 DE PROJETO E ANÁLISE DE ALGORITMOS

PROFESSOR: EDUARDO SANY LABER

DURAÇÃO: 3 HORAS

Escolha 5 das 6 questões para resolver.

1. (2.3pt) Seja G=(V,E) um grafo direcionado, sem pesos, armazenado como uma lista de adjacências. Dizemos que a distância estendida entre um par de vértices u e v é igual a $\max\{dist(u,v), dist(v,u)\}$, onde dist(u,v) e dist(v,u) são, respectivamente, as distâncias entre u e v e entre v e u.

Como seria um algoritmo polinomial para descobrir se existe um conjunto $S\subseteq V$ de 4 vértices tal que a distância estendida entre qualquer par de vértices do conjunto S é no máximo 10? Analise a complexidade do algoritmo proposto. Quanto mais eficiente maior a pontuação.

- 2. (2.3pt) Seja G=(V,E) um grafo direcionado com pesos positivos nas arestas. Como seria um algoritmo polinomial que recebe um vértice v e devolve o peso do ciclo de peso mínimo em G que inclui v? Se não existir nenhum ciclo incluindo v, o método deve devolver "NÃO EXISTE". Quanto mais eficiente o algoritmo maior a pontuação.
- 3. (2.4pt) Seja G=(V,E) um grafo não direcionado, sem pesos, armazenado como uma lista de adjacências. Dado dois vértices u e v e um caminho P entre u e v responda os itens abaixo.
- a) Como seria um algoritmo polinomial para decidir se existe um caminho Q entre u e v que não tem arestas em comum com P? Discuta a complexidade do algoritmo proposto.
- b) Como seria um algoritmo polinomial para decidir se existe um caminho R entre u e v que tem no máximo uma aresta em comum com P? Discuta a complexidade do algoritmo proposto.
- 4. (2.3) Uma revista quer fazer um ranking de um conjunto $V = \{v_1, \ldots, v_n\}$ de n vinhos e para isso pede ajuda a um grupo de k sommeliers (s_1, \ldots, s_k) . Para cada sommelier a revista entrega uma mesma lista E com m pares de vinhos e pede que cada um deles indique, para cada par, qual é o vinho preferido ou que não responda nada caso não tenha preferência em relação ao par.

Após obter as respostas, a empresa compila k rankings R_1, \ldots, R_k , onde o ranking R_i está associado ao sommelier s_i . O ranking R_i deve satisfazer a seguinte propriedade: se s_i prefere o vinho v_x ao vinho v_y então v_x deve aparecer antes de v_y em R_i . Para construir cada ranking R_i a empresa testa todas permutações dos vinhos V até encontrar um ranking que satisfaça a condição requerida por R_i .

- a) Estime a complexidade computacional do procedimento da empresa para obter os k rankings. Como a empresa poderia construir os k rankings de forma mais eficiente? Com que complexidade?
- b) Tendo disponível os k rankings proponha um algoritmo guloso (não necessariamente ótimo) para encontrar um ranking R que minimize

$$\sum_{i=1}^{k} Inv(R, R_i),$$

onde $Inv(R,R_i)$ é o número de pares de vinhos (v_x,v_y) que aparecem em ordem trocadas em R_i e R, ou seja, que satisfazem uma das seguintes condições: (i) v_x aparece antes de v_y em R e aparece depois de v_y em R_i ou (ii) v_x aparece depois de v_y em R e antes de v_y em R_i .

Explique a motivação do critério guloso e a complexidade de sua implementação. Discuta se ele é ótimo ou não.

- 5. (2.3) Exiba um pseudo código para computar o grafo reverso G^R de um grafo direcionado G=(V,E), onde $V=\{1,\ldots,n\}$. Assuma que G está armazenado como uma matriz de adjacências M, onde M[i,j]=1 se $(i,j)\in E$. O grafo G^R deve ser armazenado em uma lista de adjacências. Analise a complexidade do algoritmo.
- 6.(2.3) Seja $S = \{X_1, \ldots, X_n\}$ um conjunto de intervalos fechados contidos no intervalo [0,1], onde $X_i = [s_i, e_i]$ para $i = 1, \ldots, n$. Dizemos que um número $z \in [0,1]$ cobre o intervalo $X \in S$ se $z \in X$. Proponha um algoritmo guloso e polinomial para encontrar o conjunto de pontos Z, com menor cardinalidade possível, tal que para todo intervalo $X \in S$ existe um ponto em Z que cobre X. Discuta a motivação, a otimalidade e a complexidade computacional do algoritmo proposto.