Método estadístico multivariado-regresión logística para estudio de susceptibilidad ante deslizamientos de la cuenca La Loma en el municipio de Santa Barbara, Antioquia.

Método estadístico multivariado-regresión logística para estudio de susceptibilidad ante deslizamientos de la cuenca La Loma en el municipio de Santa Bárbara, Antioquia

Felipe Rincón₁; Laura Castrillón₁; Monica Rivera₁; Yuly Pereira₁; Edier Aristizábal₂

1 Estudiante de Ingeniería geológica 2 PhD, Msc. Ingeniero Geólogo

Conceptos previos

Movimientos en masa

Son movimientos ladera abajo de una masa de suelo, detritos o roca, por acción de la gravedad. En literatura se encuentran como:

- Procesos de ladera Slope processes
- Procesos gravitacionales Gravitational processes
- Procesos de remoción en masa Mass movement processes
- Sentido general, deslizamientos Landslides (Superficie de deslizamiento)

ERROR: Agrupar los tipos de procesos de remoción bajo el término Landslide.

(Irasema, 1999)

en una región dada y un tiempo específico

Análisis de riesgo

Amenaza

Energía potencial

(masa de tierra en la parte alta)

Susceptibilidad

(Pendiente, procesos, geología)

Detonador

(Intensa precipitación)

RIESGO

Grado de exposición Vulnerabilidad

(localización de la comunidad)

Protección

(material de la vivienda)

Reacción inmediata

(alerta temprana)

Recuperación Básica

(servicios públicos)

Reconstrucción

(capacidad de gestión)

-Homeostasis (capacidad de no afectarse)

Resiliencia (capacidad de reponerse)

(Cepal, 2002)

Resistencia (capacidad de aguantar y superar la crisis)

Métodos Estadísticos

Basados en deslizamientos anteriores se puede establecer donde hay mayor o menor posibilidad de su futura ocurrencia.

Pesos de los factores

Menos subjetividad.

(Komac, 2009)

Es un tipo de regresión multivariada que permite relacionar una variable dependiente con varias independientes (Atkinson and Massari, 1998).

La variable dependiente es dicotómica (0 ó 1).

O no ocurrencia de deslizamientos 1 ocurrencia de deslizamientos

La variable puede ser:

- Continua
- Discreta
- Combinación
- Distribución normal

(Biao et al, 2010).

- 1. Heteroskedasticidad
- 2. *e* no distribuye normal
 - 3. P > 1 & P < 0

La línea sobresimplifica la relación y proporciona predicciones no observables en los valores de Y para valores extremos de X (Pan, T. 2008).

El modelo "Logit" no tiene estos problemas:

$$ln\frac{p}{1-p} = \alpha + \beta X + e$$

- p es la probabilidad de que el evento Y ocurra, p(y=1)
- p/(1-p) es la razón de probabilidad
- In[p/(1-p)] es el logit

(John Whitehead)

La distribución logit restringe las probabilidades entre 0 y 1.

La probabilidad estimada es:

$$p = \frac{1}{1 + \exp(-\alpha - \beta X)}$$
 (John Whitehead)

- Si $\alpha + \beta X = 0$; p = 0.5
- Si $\alpha + \beta X$ es grande, p se aproxima a 1.
- Si $\alpha + \beta X$ es pequeño, p se aproxima a 0.

Regresión Logística - MLE

(John Whitehead)

XII Semana Té<mark>cnica de</mark> Geología e Ingeniería Geológica - Medellín 2016

Información de apoyo

Herramienta	Fecha	Referencia	Escala
Fotografías aéreas			
Gobernación de Antioquia	2005	Faja 09-13	1:25000
IGAC	1968	C-2090	1:14000
Ortofotos			
CartoAntioquia	2010-2014		1:10000

Resolución del DEM 10x10 Escala de las planchas de trabajo en 1:10000

Información de apoyo

Un	ıaaa	Geoi	ogi	ca	

Quebradagrande - Volcanico

11-1-1-1 0 - - 12-41--

Quebradagrande - Sedimentario

Amagá

Sedimentitas Sinifaná

Composición

Lavas basálticas, andesitas y piroclastos.1

Lutitas carbonosas arcillosas, areniscas feldespaticas y limolitas.2

Grauvacas, litoarenitas feldespáticas y limolitas de colores verdosos y rojizos.3

Pizarras, filitas, metagrauvacas, metareniscas y cuarcitas de grano fino.4

Intrusivos gabroicos, tonalíticos y dioríticos.5

1-2. González, 2001; Gómez et al 1995 en Kerr et al...2006.

3. Grosse, 1926; Correa, et al., 2008.

4. Grosse, 1926; González, 1976 - 2001.

5. González 2001

Fallas	Característica
Fallas Romeral	Inversa ₁
Falla piedecuesta	Inversa ₂
Falla de minas	Inversa

Etayo, 1983
 Calle y Gonález, 1980

1. Geología

2. Estructural

Zona de afección

- Fallas principales 800 m
- Fallas secundarias 90 m

3. Usos del suelo

4. Curvatura

5. Pendientes

6. Rugosidad

		M	G	U	F	Р	С	R
Morfodinámico (M)		1						
Geológico (G)	Pearson	0,197	1					
Usos del suelo (U)		0,261	0,202	1				
Fallas (F)	n de	0,122	0,373	0,388	1			
Pendiente (P)	ació	0,021	0,380	0,238	0,320	1		
Curvatura (C)	Correlación de	0,081	-0,004	-0,29	-0,004	-0,023	1	
Rugosidad (R)		0,458	0,458	0,282	0,418	0,821	-0,067	N 1

Casos – Factor ausente	Log de la verosimilitud -2	R cuadrado Cox y Snell	R cuadrado Nagelkerke
Geológico	18425,805	0,083	0,135
Usos del suelo	18692,355	0,071	0,116
Falla	18425,805	0,083	0,135
Pendiente	19191,116	0,093	0,152
Curvatura	17957,152	0,103	0,168
Rugosidad	18288,505	0,089	0,145
Todos los factores	12652,739	0,301	0,490

Casos – Factor ausente	Porcentaje global correcto
Todos ausentes	81,6
Geológico	84,5
Usos del suelo	82,1
Falla	85,2
Pendiente	84,7
Curvatura	84,7
Rugosidad	84,6

Tabla de clasificación

				Pronosticado				
			Morfodir	namico	Porce	entaje		
	Observado				corr	recto		
Paso 0	Morfodinamico	0	17356	0		100,0		
		1	3902	0		.0		
	Porcentaje globa	al				81,6		

			Pronosticado			
			Morfodinamico		Porcentaje	
	Observado		0	1	cori	recto
Paso 1	Morfodinamico	0	17350	6		100,0
		1	1995	1907		48.9
	Porcentaje globa	ıl				90,6

	Coeficiente	Significancia	Exp(B)
Constante	-4,856	0	0,008
Geológico (G)	0,313	0	1,368
Usos del suelo (U)	0,744	0	2,104
Falla (F)	0,506	0	1,658
Pendiente (P)	0,004	0	1,004
Curvatura (C)	0,005	0,12	1,005
Rugosidad (R)	-0,011	0	0,989

$$P = -4.8 + 0.31G + 0.74U + 0.50F + 0.004P + 0.005C - 0.011R$$

Modelos	Factores	AUC
1	Todos los factores involucrados	68,5 %
2	Curvatura ausente	66,9 %
3	Rugosidad ausente	49,4 %
4	Curvatura y rugosidad ausentes	74,9 %

Mapa de Susceptibilidad

Convenciones

Intervalos de probabilidad

Pág. 30

Conclusiones

- La regresión logística es un método estadístico de gran utilidad en la aproximación de susceptibilidad ante deslizamientos con bajo grado de subjetividad.
- La validación con los modelos permite discriminar entre los factores preseleccionados y así aproximar con menor incertidumbre el modelo mas acercado a la realidad.
- Para la cuenca de la quebrada La Loma, la ausencia de los factores curvatura y rugosidad permiten obtener el mejor modelo de regresión
- La mayor parte de la cuenca de la quebrada La Loma se encuentra zonificada como intermedia (60,6%), seguida de la zona alta (30,2%) y baja (9,2%).

Referencias

- Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31, 181–216.
- Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F., 2005. Landslide hazard assessment in the Staffora basin, northern Italian Apennines. Geomorphology 72, 272–299.
- Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. *Engineering Geology*, 102(3), 99-111.
- Clague, J. J., & Stead, D. (2012). Landslides: types, mechanisms and modeling. Cambridge University Press.
- Komac, B. L. A. Ž., & Zorn, M. A. T. I. J. A. (2009). Statistical landslide susceptibility modeling on a national scale: the example of Slovenia. Rev Roum Géogr, 53, 179-195.
- Pan, T. (2008). Using the multivariate multilevel logistic regression model to detect DIF: A comparison with HGLM and logistic regression DIF detection methods. ProQuest.
- John Whitehead. An introduction An Introduction to Logistic Regression. Department of Economics Appalachian State University
- Alcántara, I. (1999). Landslides: ¿deslizamientos o movimientos del terreno? Definición, clasificaciones y terminología. Boletin del instituto de Geografía, UNAM.
- ETAYO-SERNA, F. et al. (1983): Mapa de terrenos geologicos de Colombia.- Publ. Esp. Ingeominas n.14-1, 235p., Bogota.

GRACIAS!

