# Diszkrét matematika 2.C szakirány

1. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ $\sim$  nagy

Komputeralgebra Tanszék

2016. ősz

### Definíció

A  $G = (\varphi, E, V)$  hármast (irányítatlan) gráfnak nevezzük, ha E, Vhalmazok,  $V \neq \emptyset$ ,  $V \cap E = \emptyset$  és  $\varphi \colon E \to \{\{v, v'\} \mid v, v' \in V\}$ . E-t az élek halmazának, V-t a csúcsok (pontok) halmazának és  $\varphi$ -t az illeszkedési leképezésnek nevezzük. A  $\varphi$  leképezés E minden egyes eleméhez egy V-beli rendezetlen párt rendel.

#### Elnevezés

 $v \in \varphi(e)$  esetén e illeszkedik v-re, illetve v végpontja e-nek.

### Megjegyzés

Az illeszkedési leképezés meghatározza az  $I \subset E \times V$  illeszkedési relációt:  $(e, v) \in I \Leftrightarrow v \in \varphi(e).$ 

#### Definíció

Ha E és V is véges halmazok, akkor a gráfot véges gráfnak nevezzük, egyébként végtelen gráfnak.

 $E = \emptyset$  esetén üres gráfról beszélünk.

### Megjegyzés

Az informatikában elsősorban a véges gráfok játszanak szerepet, így a továbbiakban mi is véges gráfokkal foglalkozunk.

#### Definíció

Ha egy él egyetlen csúcsra illeszkedik, azt hurokélnek nevezzük. Ha  $e \neq e'$  esetén  $\varphi(e) = \varphi(e')$ , akkor e és e' párhuzamos élek. Ha egy gráfban nincs sem hurokél, sem párhuzamos élek, akkor azt egyszerű gráfnak nevezzük.

#### Definíció

Az  $e \neq e'$  élek szomszédosak, ha van olyan  $v \in V$ , amelyre  $v \in \varphi(e)$  és  $v \in \varphi(e')$  egyszerre teljesül. A  $v \neq v'$  csúcsok szomszédosak, ha van olyan  $e \in E$ , amelyre  $v \in \varphi(e)$  és  $v' \in \varphi(e)$  egyszerre teljesül.

#### Definíció

A v csúcs fokszámán (vagy fokán) a rá illeszkedő élek számát értjük, a hurokéleket kétszer számolva. Jelölése: d(v) vagy deg(v).

#### Definíció

Ha d(v) = 0, akkor v-t izolált csúcsnak nevezzük.

#### Definíció

Ha egy gráf minden csúcsának a foka n, akkor azt n-reguláris gráfnak hívjuk. Egy gráfot regulárisnak nevezünk, ha valamely n-re n-reguláris.

### Példa



$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5\} \\ E &= \{e_1, e_2, e_3, e_4, e_5\} \\ \varphi &= \{(e_1, \{v_1, v_2\}), (e_2, \{v_1, v_2\}), (e_3, \{v_1, v_4\}), (e_4, \{v_3, v_4\}), (e_5, \{v_4\})\} \end{split}$$

## A fokszámösszeg

### Állítás

A  $G = (\varphi, E, V)$  gráfra

$$\sum_{v\in V}d(v)=2|E|.$$

### Bizonyítás

Élszám szerinti teljes indukció: |E|=0 esetén mindkét oldal 0. Tfh. |E|=n esetén igaz az állítás. Ha adott egy gráf, amelynek n+1 éle van, akkor annak egy élét elhagyva egy n élű gráfot kapunk. Erre teljesül az állítás az indukciós feltevés miatt. Az elhagyott élt újra hozzávéve a gráfhoz az egyenlőség mindkét oldala 2-vel nő.

### Definíció

A  $G = (\varphi, E, V)$  és  $G' = (\varphi', E', V')$  gráfok izomorfak, ha léteznek  $f \colon E \to E'$  és  $g \colon V \to V'$  bijektív leképezések, hogy minden  $e \in E$ -re és  $v \in V$ -re e pontosan akkor illeszkedik v-re, ha f(e) illeszkedik g(v)-re.

#### Példa



Megfelelő f és g bijekciók:

$$f = \{(e_1, c_5), (e_2, c_2), (e_3, c_3), (e_4, c_4), (e_5, c_1)\}$$
  

$$g = \{(v_1, w_1), (v_2, w_4), (v_3, w_2), (v_4, w_5), (v_5, w_3)\}$$

#### Példa

Ha egy egyszerű gráfban bármely két különböző csúcs szomszédos, akkor telies gráfról beszélünk.

Teljes gráfok esetén, ha a csúcsok halmazai között létezik bijektív leképezés, akkor a két teljes gráf a csúcsok és élek elnevezésétől eltekintve megegyezik. Ebben az értelemben beszélünk bármely  $n \in \mathbb{Z}^+$ esetén az n csúcsú teljes gráfról.

## Megjegyzés

Az n csúcsú teljes gráfnak  $\binom{n}{2} = n(n-1)/2$  éle van, és  $K_n$ -nel jelöljük.

## További példák

#### Definíció

A  $C_n$  ciklus csúcsai egy szabályos n-szög csúcspontjai, és pontosan a szomszédos csúcspontoknak megfelelő csúcsok szomszédosak.

A  $P_n$  ösvény  $C_{n+1}$ -ből valamely él törlésével adódik.

Az  $S_n$  csillagban egy szabályos n-szög csúcspontjainak és középpontjának megfelelő csúcsok közül a középpontnak megfelelő csúcs szomszédos az összes többivel.

# Példák









#### Definíció

A  $G = (\varphi, E, V)$  gráfot páros gráfnak nevezzük, ha V-nek létezik V' és V" diszjunkt halmazokra való felbontása úgy, hogy minden él egyik végpontja V'-nek, másik végpontja pedig V''-nek eleme.

#### Definíció

Azt az egyszerű páros gráfot, amelyben |V'| = m, |V''| = n és minden V'-beli csúcs minden V''-beli csúccsal szomszédos,  $K_{m,n}$ -nel jelöljük.

#### Példa



### Definíció

A  $G'=(\varphi',E',V')$  gráfot a  $G=(\varphi,E,V)$  gráf részgráfjának nevezzük, ha  $E'\subset E,\ V'\subset V$  és  $\varphi'\subset \varphi$ . Ekkor G-t a G' szupergráfjának hívjuk. Ha a G' részgráf mindazokat az éleket tartalmazza, melyek végpontjai V'-ben vannak, akkor G'-t a V' által meghatározott feszített (vagy telített) részgráfnak nevezzük.

#### Példa



G-nek  $G_1$  részgráfja, de nem feszített részgráfja, míg  $G_2$  feszített részgráfja.

### Definíció

Ha  $G'=(\varphi',E',V')$  részgráfja a  $G=(\varphi,E,V)$  gráfnak, akkor a G'-nek a G-re vonatkozó komplementerén a  $(\varphi|_{E\setminus E'},E\setminus E',V)$  gráfot értjük.

#### Példa



 $G_2$  a  $G_1$  gráf G-re vonatkozó komplementere.

## Megjegyzés

Ha G' egyszerű gráf, és külön nem mondjuk, akkor a V'-beli csúcspontokkal rendelkező teljes gráfra vonatkozó komplementert értjük G' komplementere alatt.

### Definíció

Ha  $G = (\varphi, E, V)$  egy gráf, és  $E' \subset E$ , akkor a G-ből az E' élhalmaz törlésével kapott gráfon a  $G' = (\varphi|_{E \setminus E'}, E \setminus E', V)$  részgráfot értjük.

#### Definíció

Ha  $G=(\varphi,E,V)$  egy gráf, és  $V'\subset V$ , akkor legyen E' az összes olyan élek halmaza, amelyek illeszkednek valamely V'-beli csúcsra. A G-ből a V' csúcshalmaz törlésével kapott gráfon a  $G'=(\varphi|_{E\setminus E'},E\setminus E',V\setminus V')$  részgráfot értjük.

2016. ősz

# Gráfok alapfogalmai

#### Definíció

Legyen  $G = (\varphi, E, V)$  egy gráf. A

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sorozatot sétának nevezzük  $v_0$ -ból  $v_n$ -be, ha

- $v_j \in V$   $0 \le j \le n$ ,
- $e_k \in E$   $1 \le k \le n$ ,
- $\varphi(e_m) = \{v_{m-1}, v_m\} \quad 1 \le m \le n.$

A séta hossza a benne szereplő élek száma (n).

Ha  $v_0 = v_n$ , akkor zárt sétáról beszélünk, különben nyílt sétáról.

### Definíció

Ha a sétában szereplő élek mind különbözőek, akkor vonalnak nevezzük. Az előzőeknek megfelelően beszélhetünk zárt vagy nyílt vonalról.

### Definíció

Ha a sétában szereplő csúcsok mind különbözőek, akkor útnak nevezzük.

### Megjegyzés

Egy út mindig vonal.

A nulla hosszú séták mind utak, és egyetlen csúcsból állnak.

Egy egy hosszú séta pontosan akkor út, ha a benne szereplő él nem hurokél.

#### Definíció

Egy legalább egy hosszú zárt vonalat körnek nevezünk, ha a kezdő- és végpont megyegyeznek, de egyébként a vonal pontjai különböznek.

2016. ősz

### Példa



út:  $v_1, e_1, v_2, e_2, v_3, \ldots, v_6, e_6, v_7$ ;

vonal, de nem út:  $v_1, e_1, v_2, e_2, v_3, \dots, v_8, e_8, v_9$ ;

kör:  $v_3, e_3, v_4, e_4, v_5, e_5, v_6, e_6, v_7, e_7, v_8 (= v_3)$ .

#### Definíció

Egy gráfot összefüggőnek nevezünk, ha bármely két csúcsa összeköthető sétával.

A  $G = (\varphi, E, V)$  gráf esetén V elemeire vezessük be a  $\sim$  relációt:  $v \sim v'$  pontosan akkor, ha G-ben vezet út v-ből v'-be.

A  $\sim$  ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V-n.

A csúcsok egy adott ilyen osztálya által meghatározott feszített részgráf a gráf egy komponense.

### Megjegyzés

Bármely él két végpontja azonos osztályba tartozik (Miért?), így a gráf minden éle hozzátartozik egy komponenshez.

## Megjegyzés

Egy gráf akkor és csak akkor összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen komponense van.

### Definíció

Egy gráfot fának nevezünk, ha összefüggő és körmentes.