Theorem 29 let [: East) - on he bounded. fis

Kiemann is begrable if at objit

V €>0 3 P & P : U(1,P) - L(1,P) < €

Prosp = " let of be R-integrable and

A= sup U(J,P) = nd U(J,P)

Du for a give EDO that wit Ping & P s.t.

A- = < L(1, R) at U(1, R) < A+ =

For P= Pool in have

u(1, P)-L(1, P) = u(1, P2)-L(1, R)

< A+ = (A- =) = E

2 If prog 200 Km sa POP st.

((1P) - L(1P) = 8

As a is orbitand,

Sylvine = Sylvine

50 Jul R-akgalde

so
$$\int_{a}^{b} \int_{a}^{b} \int$$

$$u(1, 0) = \sum_{i=1}^{n} A_{i} \Delta_{i} = (3-a)$$

so his not R-integrable

So U(J.P)-L(J.P) = >0 > < E at 1 is C-airfulle, will

Theorem 29 Every monotone function J. [a,5] ->1R is Riemann mtegrable.

Proof Assume who ket fis mereasing. Then $f(a) \leq f(b) \leq f(b)$, so fis bounded.

Let $\epsilon > 0$. Choose a partition P with a much $\sigma(P) \leq \frac{\epsilon}{f(b) \cdot f(a) + 1}$.

As f is investing, $M_i = f(bc)$, $m_i = f(x_{i-1})$, so that $U(f_i, P) - L(f_i, P) = \sum_{i=1}^{n} \left(f(x_i) - f(x_{i-1})\right) \Delta x_i$ $\leq \sum_{i=1}^{n} \left(f(x_i) - f(x_{i-1})\right) \nabla(P)$ $\leq \left(f(b) - f(a)\right) \frac{\epsilon}{f(b) \cdot f(a) + 1} < \epsilon$

By Theorem 28, Jis Rieman mtegreble.

26869

 \square

Definition 30 J: D-> IR is uniformly continuous if

VE>0 35>0 (VEED) Y × ED: 1×-8(-5=) (f(x)-f(e)) < E

Renade This means that S is dozen integerably of E. Continuity was

VEED) Y E>0 35>0 Y × ED: |x-E| < 5=> |f(x)-f(x)|=E

Example $\int : \mathbb{R} > \mathbb{R}$, $\times > \mathbb{R}^2$ is continuous, but not uniformly continuous.

Suppose for $\varepsilon = 1$ then with a $\delta > 0$ sud that $|x = \varepsilon| < \delta > |x^2 - \varepsilon'| < 1$ for all $|x| \in \mathbb{R}$. But for |x| = |x| + |x| = 1 we have $|x - \varepsilon| = |x| = 1$ and $|x|^2 - |x|^2 = |(x + \frac{\delta}{2})^2 - |x|^2 = |x|^2 + |x|^2 = 1 + |x|^2 > 1$, a contradiction

Theorem 31 let f: [a,6] > 1 be continuous The fis confirmation of the first confirmation of the first continuous.

Proof Suppose f is continuous on [a,b] but not uniformly continuous. Then $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists \varepsilon \in D \ \exists \times \varepsilon \in D : |x-\varepsilon| < \delta \Rightarrow |f(x)-f(\varepsilon)| \ge \varepsilon$ So then exists an $\varepsilon > 0$ sud that for $\delta = \frac{1}{n} \ \exists \varepsilon_n, x_n \in D$ with $|x_n-\varepsilon_n| < \delta = \frac{1}{n} \ but |f(x_n)-f(\varepsilon_n)| \ge \varepsilon$.

Now (this is the key step!) (an) combains a convoyent subsequence by Boleuno-Deinstraf. Therefore then with my, rew see that

(1) lim & = d for some de [a,s]

(2) $\lim_{r\to\infty} x_n = d \left(|x_n-d| \le |x_n-e_n| + |e_n-d| \right)$

(3) $\lim_{r\to\infty} f(\mathbf{e}_{n_r}) = f(d)$ and $\lim_{r\to\infty} f(\mathbf{x}_{n_r}) = f(d)$

but $\forall n: ||g(x_n)-g(x_n)|| \geq \epsilon$, which is a contradiction.

expand: (i) $\forall \epsilon' > 0 \exists r' \forall r > r' : |c_{nr} - d| < \epsilon'$ } $prd \epsilon' = \frac{1}{n} \log t$

| xn-d| < |xn-cn/+|cn-d| < n + > 0 as noss.

Theom 32 Brey continuous further 1: [a,6] -> 18 is Rieman. interroble

Proof $\int_{\mathbb{R}^{2}} |S| = \int_{\mathbb{R}^{2}} |S| = \int_{\mathbb{$

Now choose a partition P will o(P) < 5.

Then on each ordered I: if around morning at maxim at some $X, X' \in I_i$, so that $m_i = f(X)$, $M_i = f(X')$.

Now $|x-x'| \leq \sigma(P) < 5$, so that $M:=m:=|J(x)-J(x)| < \frac{\varepsilon}{b-\alpha}$

Thus $U(J_1P) - L(J_1P) = \sum_{i=1}^{n} (M_i \cdot m_i) \Delta \times_{\mathcal{C}} < \sum_{b=a}^{e} \sum_{i=1}^{n} \Delta \times_{i} = \varepsilon$

By Theon 28, of is Rieman integrable.

 \bigcup

Theorem 33 Let $f: [a,s] \to \mathbb{R}$ be bounded. For each \$>0 \ due to \ canadled \ there exists a $\delta >0$ such that for only portions $P \circ f[a,s] \to \text{lectures}$ with $\sigma(P) < \delta$

 $U(J,\ell) < \int_{a}^{b} J(x) dx + \varepsilon$ $L(J,\ell) > \int_{x}^{\varepsilon} J(x) dx - \varepsilon$

and

blemake This means that a parkism with sufficiely small mesh (TP) approximates both lapper and lower sems well.

-42of bounded => | f(x) | < M for all x e [a, 5] (1) adding a point to a partition of decrease the upper sum by admost 2MJ(P) if xix y < xi, then U(j, P) - U(j, Pu(y)) = M(x,-x,-) - M'(x,-y)-M'(y-x,-) SZM Dx < ZM \(\mathbb{C}(P)\)</p> if a pathon Q has I points, then U(j, p) - 4 (j pù Q) ≤ 2Mr σ(p) Noo fix 270. Then there exists a part km Q sul that $U(f,Q) < \int_{0}^{\infty} f(x)dx + \frac{\varepsilon}{2}$ For any PEP we have therefore U(j, e) € U(j, e) + U(j, Q) - U(j, PuQ) $< 2Mr\sigma(P) + \int_{-\infty}^{\infty} J(x)dx + \frac{\varepsilon}{2}$ Choosing $S = \frac{E}{4mr}$, we have that for all PEP with r(P)eS

 $U(J,P) < 2M = \frac{\varepsilon}{y_{M}-2} + \int_{0}^{\infty} J(\kappa) d\kappa + \frac{\varepsilon}{\varepsilon} = \int_{0}^{\infty} J(\kappa) d\kappa + \frac{\varepsilon}{\varepsilon}$ A solid proof who for L(J,P).

Theoan 34 led J. Ea. 5) 318 be Riemann megable. If ence satisfies lon v(en) =0 $\lim_{n\to\infty} \mathcal{U}(J_1(n)) = \int_{-\infty}^{\infty} J(x) dx = \lim_{n\to\infty} \mathcal{L}(J_1(n))$ By Theor 33, YEZO J 8 >0 YPEP: c(P)<5 ⇒ |U(J,P)- ∫f(x)dx|<ε As la v(Ph) = 0, 45>0 IN Yn>N: v(Ph) < 5 Together, YESO JN Yn>N: \U(J, P)- JJ(x) dx \< E Thus lim U(J, Pa) = \$ J(x) dx. Similarly lon $L(J, r_n) = \int J(\omega) d\omega$.

Remark: If you know that is R-mberrable, it suffices to choose my l_n with $\sigma(l_n) \to 0$ to compute $\int_{a}^{b} J(\epsilon) dx$

Cont material

Exa ples

1 is monthone, therefore R-alegrable

Choose
$$P_n = \{a, \alpha \neq \Delta, \alpha \neq 2\Delta, ..., \alpha \neq n\Delta = 5\}$$
 where $\Delta = \frac{5-\alpha}{n}$

$$\Gamma(\mathcal{C}_n) = \Delta = \frac{b-a}{b} \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

Twefor
$$U(J, P_n) = \sum_{i=1}^{n} (a+i\Delta)\Delta = an\Delta + \frac{n(n\omega)}{2}\Delta^2$$

$$= a(b-a)^{1/2}(b-a)^{2}(1+a) \qquad L(J_{1}l_{n}) = an\Delta + \frac{n(m-1)}{2}\Delta^{2}$$

ad
$$\int_{a}^{b} J(s)ds = \lim_{n \to \infty} U(J_{1}R_{n}) = a(b-a) + \frac{1}{2}(b-a)^{2} = \frac{5^{2}-a^{2}}{2}$$

2)
$$\int : [I_1, a] \rightarrow [R], \int (x) = \frac{1}{x}$$

I is monotone, therefore Realegrable

$$\Delta \times = q^{-1} = (q^{-1})q^{-1}$$
, $\sigma(r_n) = (q^{-1})q^{-1} = \alpha(r_n) = 0$

Therfore
$$L(J_1 P_n) = \sum_{i=1}^{h_1} \frac{1}{q^i} (q_{-i}) q^{i-1} = n(1-\frac{1}{q}) | U(J_1 P_n) = n(q_{-1})$$

and
$$\int_{a}^{b} J(x) dx = \lim_{n \to \infty} L(J_{n}R_{n}) = \lim_{n \to \infty} n \left(1 - e^{-\frac{1}{n} \log a}\right)$$

$$a = \lim_{t \to 0} \frac{1-e^{-t} \log a}{t} = \lim_{t \to 0} \frac{e^{-t} \log a}{1} = \log a$$

7- Proportes of the Riemann Integral

Theorem 35 let J. [a,s] > IR le R-integrable.

If [c,d] = [a,s] then f is R-integrable on [c,d].

From Let $\varepsilon > 0$. Then Kon is a $P \subset P$ with $U(f,P) - U(f,P) < \varepsilon$.

If we let $P' = P \cup \{c,d\} = \{x_0,x_1,...,x_{i=C},x_{in},...,x_{n}\}$

then $u(J,P')-L(J,P')\leq u(J,P)-L(J,P)<\epsilon$

Now take $P'' = \{ x_k, x_{kn}, \dots, x_{n+r} \}$, which is a partition of [c, d] with

 $U(J_i P^u) - L(J_i P^u) = \sum_{i=h_{i}}^{h_{i}r} (M_i - m_i) \Delta x_i$

< \(\sigma_{i=1}^{n}\) (M_i-mi) Dxe

= U(J,P1)- L(J,P1) < c

This fis Rentegrable our [c, 1].

Theorem 36 Wt J: [a.5] > R be R-integrable over [a,c] alla,b]

where access. Then of is IR-a begroble ovo Iris I and

J(x) dx = \(\int \) J(x) dx = \(\int \) J(x) dx