

Fine-grained and Continual Visual Recognition for Assisting Visually Impaired People

MARCUS KLASSON

Doctoral Thesis Stockholm, Sweden, 2022

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science
Division of Robotics, Perception, and Learning
TRITA-EECS-AVL-2020:4
SE-10044 Stockholm
ISBN 100-Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av Teknologie doktorexamen i elektroteknik fredagen den 18 januari 2022 klockan 14.00 i Sal F3, Lindstedtsvägen 26, Kungliga Tekniska Högskolan, Stockholm.

© Marcus Klasson, date

Tryck: Universitetsservice US AB

Abstract

In recent years, computer vision-based assistive systems have enabled visually impaired people to use automatic object recognition on their mobile phones. These systems should be capable of recognizing objects that are important for the user on a fine-grained level. To this end, we have focused on the particular application of classifying food items which can be challenging for blind/low-vision people since visual information is often required for distinguishing between similar items. In Paper A, we present a challenging image dataset of groceries taken in grocery stores where each item is hierarchically labeled to capture the fine-grained structure of the various items. Furthermore, we demonstrate in Paper B how more easily accessible information about the items, such as web-scraped images and text descriptions, can be utilized for enhancing the classification performance of groceries compared to only using the real-world images for training.

A valuable feature of assistive vision systems is the capability of adapting to new object classes. The main challenge here is to avoid catastrophically forgetting previously learned knowledge when the classifier is updated with new classes. In Paper C, we propose a new continual learning setting for replay-based methods that aligns well with real-world needs where constraints are placed on processing time rather than the storage capacity of old samples. We then study the timing of replaying certain tasks and show that learning replay schedules over which tasks to replay can be critical for the final classification performance in our proposed setting. Finally, in Paper D, we present a method based on reinforcement learning for learning a policy for selecting which tasks to replay at different times. The benefit of our learned replay scheduling policy is that it can be applied to any new continual learning scenario for mitigating catastrophic forgetting in a classifier without additional computational cost.

To conclude, I will discuss some potential future directions for the development of the next generation of computer vision-based assistive technologies.

Keywords: Visual Recognition, Fine-grained Classification, Continual Learning, Visually Impaired People, Assistive Technologies

Sammanfattning

hej

List of Papers

A A Hierarchical Grocery Store Image Dataset with Visual and Semantic Labels

Marcus Klasson, Cheng Zhang, Hedvig Kjellström In IEEE Winter Conference on Applications of Computer Vision (2019)

B Using Variational Multi-view Learning for Classification of Grocery Items

Marcus Klasson, Cheng Zhang, Hedvig Kjellström In *Patterns, Volume 1(8) (2020)*

- C Learn the Time to Learn: Replay Scheduling for Continual Learning Marcus Klasson, Hedvig Kjellström, Cheng Zhang Under submission
- D Meta Policy Learning for Replay Scheduling in Continual Learning Marcus Klasson, Hedvig Kjellström, Cheng Zhang Under preparation

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Acronyms

List of commonly used acronyms:

AE Acronym examples
CL Continual Learning

CNN Convolutional Neural Network
 RL Reinforcement Learning
 VAE Variational Autoencoder
 VIP Visually Impaired People

Contents

Li	st of	Papers	iii
A	ckno	wledgements	v
A	crony	yms	vii
C	ontei	nts	1
Ι	Ove	erview	3
1	Intr	roduction	5
	1.1	Vision Impairments	6
	1.2	Assistive Vision Technologies	7
	1.3	Scope of Thesis	8
	1.4	Thesis Contributions	9
	1.5	Thesis Outline	13
2	Bac	kground	15
	2.1	Machine Learning Basics	17
	2.2	Deep Learning	17
	2.3	Reinforcement Learning	17
	2.4	Datasets for Object Recognition	17
	2.5	Machine Learning	18
	2.6	Deep Learning	19
	2.7	Continual Learning in Neural Networks	22
3	Fin	e-grained Classification	25
	3.1	Related Work	25
	3.2	${\it Methodology/Approach} $	25
4	Cor	ntinual Learning	27
	4.1	Related Work	27

2 CONTENTS

	4.2	Methodology/Approach	27
5		nclusions and Future Directions	29
	5.1	Conclusions	29
	5.2	Future Directions	29
Bi	bliog	graphy	31
II	Inc	luded Papers	39
A	N	ame for Paper A	A 1
	A.1	Introduction	A1
В	N	ame for Paper B	В3
	D 1	Introduction	\mathbf{D}_{2}

Part I Overview

Introduction

Vision is probably the most important sense that humans possess. Our society is built on having this ability. For example, if we would like to cross a street, there are thick colored stripes on the road or signs above head height that indicate where the cross walk is located such that we can cross the street in an appropriate way. Another example is how we communicate through text where words and sentences are composed by structured sequences of symbols that constitute a specific language. Much media and entertainment, such as computers, television, and theatres, with performers acting various scenes requires our capability to see. Furthermore, it has been shown that being able to create visual images facilitate reading comprehension for middle school struggling readers [1]. Possessing normal vision capabilities basically makes our lives easier when it comes to performing actions to reach various goals, communicating with other people, and learning new concepts.

In 2020, it was estimated to be 43.3 million people who are blind and 295 million people with moderate to severe visual impairment in the world [2]. To enhance the mobility of visually impaired (VI) people, there exist various kinds of assistive devices and tools, such as screen readers and Braille typewriter machines, for supporting them with receiving information and communicating through text. More recently, several computer vision-based assistive vision tools have emerged in the form of wearable devices and mobile applications for helping VIs with tasks where visual information is a must, for example, wayfinding in natural environments [3–5] and object recognition [6–8].

Despite the recent successes in computer vision [9–11], these methods can face several challenges when deployed in the real world which makes their recognition performance suffer. For example, it can be difficult for the method to distinguish between similar items on a fine-grained level, such as different brands of apples and pears, as well as performing robustly in environments with noisy backgrounds and poor lighting. Part of the reason for such challenges is that specifying a model of the visual world that has been injected with knowledge about the rich

complexity that can exist in images is very difficult [12]. Therefore, there is a necessity for developing computer vision methods that can recognize various appearances of objects, adapt to changes of known objects, and learn what new objects look like as well as executing these tasks in a robust and time-efficient manner.

In this thesis, we address the challenges on robustness in fine-grained classification as well as how the method can learn to recognize new object classes. We will begin this introduction by briefly describing vision impairments in Section 1.1, followed by a summary of computer vision-based assistive technologires in Section ??. Then we describe the scope of the thesis in Section 1.3 and summarize the contributions of the included papers in Section 1.4. Finally, we give the thesis outline in Section 1.5 to the rest of the thesis.

1.1 Vision Impairments

Vision impairment (VI) is defined as the decrease of one's ability to see from various distances [citation WHO ICD]. There are different types of VIs ranging from various degrees of blindness to having issues with seeing from far or near distances. The visual capabilities are in general assessed by measuring the *visual acuity* (sharpness) of seeing, for example, a letter or symbol, from some fixed distance. The visual acuity measured differently based on whether near- or far-sighted VI is assessed. For far-sighted VI, the visual acuity is calculated by the ratio between the distance that the subject can see the item and the distance a normal-sighted person could recognize the item. When assessing near-sighted VI, one checks the font size of letters that the subject can see using a standardized point system for measuring the symbol size [world report on vision]. Worth noting is that to be considered having a VI, it is taken into account whether the the vision capabilities are possible to correct with eye-glasses or contact lenses [citeation here].

In 2020, it was estimated that 338 million people possess moderate to severe VI globally, including 43 million people that are blind [Bourne et al]. Furthermore, the World Health Organization (WHO) have estimated that at least 2.2 billion people live with a near or distance VI, where at least 1 billion cases could have been prevented or yet has to be addressed [13]. The untreated cases are projected to grow to 1.7 billion people by 2050 mainly due to population growth in the world as well as increased aging among the populations [2]. The leading causes for vision loss are uncorrected refractive errors, untreated cataracts, age-related macular degenerationm, glaucoma, diabetic retinopathy, where 90% of such cases are preventable and treatable [14]. The causes for vision loss also differs between countries and areas with different incomes.

There exists several tools for assisting VI people with everyday tasks. The *white cane* is probably the most common tool among VI people which is used for wayfinding to help the user anticipate what is present in their near surroundings.

Also, guiding dogs are used for enhancing mobility by helping VI people to maintain a direct route, avoid obstacles, and prepares owner by stopping at curbs and stairways until they are told to proceed [15]. There also exist several tools for recognition tasks. For example, currency markers are used for keeping track of different bills in wallets, color indicators can be used to tell the user of the color of clothes, and labeling apparatus are used for distinguishing between similar items. Means for communication also exists in the form of Braille keybords and screen readers that are used in both computers and mobile phones to provide nearly equal opportunities for VI people when it comes to office-related tasks. There has been a recent emergence of various devices that are aimed to assist VI people with object recognition tasks which we will discuss next.

1.2 Assistive Vision Technologies

Cameras are used by people with VIs, including blindness, to record events and memories similarly as normal-sighted people [16]. This has opened up for opportunities where VI people can use their cameras for more than recording events, for example, object recognition, document text recognition, and color identification. Object recognition has been shown to be considered an everyday challenge, where VI people would like to ask questions about objects where visual information is necessary for identification [17]. For example, it can be very difficult to distinguish between different containers and packages that have similar shapes but different content without being able to see. These findings have encouraged development of technical aids that use computer vision for assisting VI people.

In the last decade, we have seen several variants of assistive vision technologies emerging on the market. There exist many applications for mobile phones where various visual tasks have been cramped in into the app, such as object and face recognition, barcode scanning, color and currency identification, and text recognition [18] [taptapsee, google lookout]. Moreover, there exists wearable devices with similar capabilities as the mobile phone apps [orcam, Envision AI] that also use computer vision for assistance. An alternative to the computer vision-based apps there are other mobile applications where VI users can have a video call with sighted volunteers that help them with any kind of task requiring visual capabilities [be my eyes]. Despite that these assistive vision technologies has opened up for VI people being more independent, there remains several challenges to tackle regarding system requirements (computing on device, internet connection, update to new classes) and privacy concerns (can other people overhear what I'm asking about, and are other people OK with that I take photos in the public for helping myself?).

Current assistive vision technologies face several challenges that needs to be tackled to enhance their utility for VI people. In the past decade, machine learning techniques have been applied successfully to various computer vision tasks such as object recognition, generating scene descriptions, and visual question an-

swering [ADD REFS]. In addition to better computer hardware, the main reason for these successes is the immense data collection and annotation that is required for obtaining large-scale computer vision datasets. However, the annotation becomes even more costly if the object classes should be separated based on fine-grained details about the objects, which makes it challenging for assistive vision systems to provide users with further information about objects than the general object class. Another challenge is how to update the assistive vision devices with information about new objects to recognize and ensuring that the system is still able to recognize the previous known items correctly. Furthermore, assistive vision devices should have the ability to answer questions about the surroundings of the user, should perform in real-time and be robust when applied in different environments, as well as ensuring privacy for the user.

1.3 Scope of Thesis

This thesis is focused on two applications for machine learning and computer vision-based assistive technologies, namely fine-grained classification [19] and continual learning [20, 21]. Fine-grained classification involves identifying subcategories and details of general object classes, which can be important when distinguishing between visually similar items. An example is when one has to distinguish between two juice packages from the same brand where the main ingredients are apples and oranges in the packages. The general setting in finegrained classification is that all data and classes to learn are given all at once to the classifier to learn, but can be extended to the continual learning setting where the classes to learn are divided into tasks that are learned at different points in time. Continual learning methods are used for updating the classifier's current knowledge with information about the new classes and making sure that the classifier remembers the previously learned classes. The common denominator of these fields is classification, but both fields have challenges of their own that has to be addressed before adding such features into assistive vision devices. Hence, we will describe the individual challenges that we have focused on next.

Fine-grained Classification

One main challenge for fine-grained classification is the data collection procedure and there are several reasons for this. Firstly, the annotation of the collected data becomes more time-consuming as the annotators must know about specific details about the objects to label the data as accurately as possible. Secondly, as fine-grained classes might be rare, there might be few examples per class that the classifier can learn from to discriminate between the objects.

We focus on the specific application of grocery shopping with an assistive vision app which fits well into the setting of fine-grained classification. Grocery items usually require visual information to distinguish between them, for example,

when one needs to know how the ingredients differ in two juice packages. This also goes for raw grocery items where it might be difficult for a VI customer to tell the difference between two different brands of green apples unless the customer knows how the apples smell or how the texture of their peel differs when touching them. Furthermore, situations in the grocery store environment can disturb the recognition performance for the assistive vision device, for example, when multiple and misplaced items appear in the camera view and also when there are poor lighting settings in some areas of the store. Collecting training data that covers all possible scenarios that can occur in the store would be a cumbersome procedure. Our goal is to reduce the need for training data in the grocery stores by collecting web-scraped information about the items and use this for easing the learning of the classifier.

Continual Learning

The main challenge in continual learning is called catastrophic forgetting [22] which means that the classifier will overwrite previously learned knowledge with new information about the new objects of interest during learning. Therefore, we must use additional training techniques that prevents this forgetting effect to maintain the recognition performance on all classes during the lifespan of the classifier. A simple yet efficient approach in continual learning on how to mitigate catastrophic forgetting is replay-based methods [23, 24]. The main assumption is that we are allowed to keep a low number of examples from every seen class in a small memory buffer. The idea is then to mix the old examples with the training data from new classes, such that we learn the new classes and aim to retain the performance on the old classes by replaying the memory examples for the classifier.

Most previous works on replay-based continual learning have focused on improving the quality of which examples that should be stored in the memory [23, 25, 26] and also on enhancing the storage capacity by storing compressed features of data rather than the raw data [27–29]. However, the time to replay different tasks have been ignored even if the timing of rehearsal has been shown to be very important for humans to retain memory on various tasks [30–33]. Furthermore, in contrast to the constraint on the small memory size, machine learning systems used in real-world applications may be limited by processing times rather than data storage capacity [Add REFs]. In such settings, the challenge to tackle becomes how to select what data from the huge storage to replay. We show that learning schedules over which tasks to replay at different times can be crucial for continual learning performance in this setting.

1.4 Thesis Contributions

In this section, we summarize the contributions of each of the included papers as well as briefly describing the contributions of each author to the manuscripts.

MK: Would be nice to have a figure for every paper.

Paper A: A Hierarchical Grocery Store Image Dataset with Visual and Semantic Labels

Figure 1.1: MK: Paper A could have a picture of the hierarchical structure of the dataset and/or a Google Maps picture over the stores I visited perhaps.

Marcus Klasson, Cheng Zhang, Hedvig Kjellström. In *IEEE Winter Conference on Applications of Computer Vision (WACV) 2019.*

Summary We collect a dataset with natural images of raw and refrigerated grocery items taken in grocery stores in Stockholm, Sweden, for evaluating image classification models on a challenging real-world scenario. The data collection was performed by taking photos of groceries with a mobile phone to simulate a scenario of grocery shopping using an assistive vision app. Furthermore, we downloaded iconic images and text descriptions of each grocery item by web-scraping a grocery store website to enhance the dataset with information describing the semantics of each individual item. the items are grouped based on their type, e.g., apple, juice, etc., to provide the dataset with a hierarchical labeling structure.

We provide benchmark results evaluated using pre-trained and fine-tuned CNNs for image classification. Moreover, we take an initial step towards utilizing the rich product information in the dataset by training the classifiers with representations where both natural and iconic images have been combined through a multi-view VAE.

Author Contributions CZ and HK presented the idea and the data collection procedure for the natural images and web-scraped information. MK performed the data collection including visiting the grocery stores for taking the natural images and the web-scraping of the grocery store website for iconic images and text descriptions. MK performed all the experiments. All authors contributed to discussing the results and contributed to writing the manuscript.

Paper B: Using Variational Multi-View Learning for Classification of Grocery Items

Figure 1.2: MK: Paper B could perhaps show some PCA visualizations.

Marcus Klasson, Cheng Zhang, Hedvig Kjellström. In *Patterns, Volume* 1(8) (2020).

Summary We investigate whether training image classifiers can benefit from learning joint representations of grocery items using multi-view learning over the natural images and web-scraped information of the grocery items in the Grocery Store dataset (see Paper 1.4). We employ a deep multi-view model based on VAEs called Variational Canonical Correlation Analysis (VCCA) [34] for learning joint representations of the different data types, i.e., natural images, iconic images, and text descriptions. We performed a thorough ablation study over all data types to demonstrate how they contribute individually to enhancing the classification performance. Furthermore, we apply two classification approaches where we (i) train the classifier on the joint latent representations, and (ii) using a generative classifier by incorporating a class decoder to the VCCA model that can be used for classifying images.

We performed a thorough ablation study over all data types to demonstrate how they contribute individually to enhancing the classification performance. To gain further insights into our results, we visualized the learned representations of the grocery items from VCCA and discussed how the iconic images and text descriptions help the model to better distinguish between the groceries. Our results show that the iconic images help to group the items based on their color and shape while text descriptions separate the items based on differences in ingredients and flavor. Finally, we concluded that utilizing the iconic images and text descriptions yielded better classification results than only using natural images.

Author Contributions CZ and HK presented the idea and all authors contributed to formalizing the methodology. MK performed all the experiments and created the visualizations. All authors took part in discussing the results. All authors contributed to writing the manuscript.

Paper C: Learn the Time to Learn: Replay Scheduling for Continual Learning

Figure 1.3: MK: Paper C could illustrate the new CL setup with a figure that shows a network and a scheduler that needs to fetch a small replay memory from a huge pool of historical data.

Marcus Klasson, Hedvig Kjellström, Cheng Zhang. Submitted to *International Conference on Machine Learning (ICML)* 2022.

Summary In this paper, we show that learning the time to replay different tasks can be critical for continual learning (CL) performance in replay-based methods. As the main assumption in replay-based CL is that only a small set of historical data can be re-visited for mitigating catastrophic forgetting, most works have focused on improving the sample quality of the replay memory. However, in many real-world applications, historical data is accessible at all times. e.g., by storing it on the cloud. But although all historical data could be stored, retraining machine learning systems on a daily basis is prohibitive due to processing times and operational costs. Therefore, small replay memories are still needed in CL to mitigate catastrophic forgetting when learning new tasks. To this end, we propose to learn the time to learn for a CL system, in which we learn schedules over which tasks to replay at different times. Inspired by human learning, we demonstrate that scheduling over the time to replay is critical to the final CL performance with finite memory resources. We then illustrate our idea with scheduling over which tasks to replay by learning such policy with Monte Carlo tree search. We perform extensive evaluation showing that learning replay schedules can significantly improve the performance compared to baselines without learned scheduling. We also show that our method can be combined with any replay-based method and memory selection technique. Finally, our results indicate that the learned schedules are also consistent with human learning insights.

Author Contributions CZ presented the idea and MK and CZ contributed to formalizing the methodology. MK performed all the experiments. All authors

took part in discussing the results and contributed to writing the manuscript.

Paper D: Meta Policy Learning for Replay Scheduling in Continual Learning

Figure 1.4: MK: Paper D could show illustration of the RL agent scheduler that gets performance measures as input and outputs an action proportion of how to select the replay memory. RL agent could also have a replay buffer where data is collected from several environments. Maybe it can also show the test case, so that it would be two separated "at training/test phase".

Marcus Klasson, Hedvig Kjellström, Cheng Zhang. Under preparation for conference submission.

Summary

Author Contributions CZ presented the idea.

1.5 Thesis Outline

Background

The goal with this thesis is to provide machine learning methods for recognizing objects from images. Machine learning is a field within Artificial Intelligence where computer programs learns from experiences how to make predictions in new situations. There are three essential parts to enable the computer to make predictions with machine learning. Firstly, we need data representing the scenarios where we have objects that we wish to predict what they are. Secondly, we need a model that learns how to make the decisions based on the provided data. Thirdly, we need a learning algorithm for fitting the model to the data we have such that good and sensible decisions can be made on future data. Machine learning has proven to be successful on various types of data, including, images and video, text, and audio, and there exists many different kinds of models and algorithms for learning decision-making from data.

One of the main goals with machine learning is to have models that generalize to unseen data and events. However, there are several challenges that has to be tackled to achieve this goal. The first challenge is to obtain datasets that represent the events that the model should make predictions for. Machine learning models often require vast amounts of examples to learn from, and also, the examples should be annotated with some information describing each example in order to ease the learning. But even if we have large datasets, we must have models that have the capacity of preserving the knowledge gained from the dataset. Furthermore, we must have algorithms that can train the model from the huge amount of data in computationally efficient both time- and processingwise. Especially for visual data, it has become much cheaper to obtain vast amounts of images and videos from the internet. Occasionally, these can be annotated through search words or, alternatively, from crowdsourcing. Moreover, computational power has also become cheaper through smaller and more efficient micro-processors, semi-conductors, and cloud computing. Deep learning [35] is a class of machine learning models based on neural networks that are capable of learning from large and high-dimensional datasets due to their capacity. They are trained using an optimization algorithm called Stochastic Gradient Descent (SGD) [36] which works well for large-scale data and can be applied on graphical processing units (GPUs) with recent machine learning programming libraries, such as TensorFlow, PyTorch, and Jax. However, deep learning still faces lots of challenges in generalization, especially when they are applied in environments that were not present in the training data, and it is still an open research problem on how to make them generalize better.

There are several approaches for enabling better generalization for deep learning models. A good start is to collect datasets that are similar and represent the events in the environment where the model will be deployed. Related to this, one can also collect different data types from various modalities, such as visual signals in the form of images and video as well as natural language which can be written or spoken, if these are available in the data collection process and are sensible for the task to be solved. Multimodal machine learning opens up the possibility of learning correspondences between the different data types to gain better understanding of the phenomenon of interest [37,38], which can help the model to be more accurate and robust. However, in order to enhance the utility of machine learning models, they should be capable of continuously updating their knowledge as many environments where object recognition is useful are ever-changing [20, 21]. We should build models that can add new objects of interest to recognize as well as delete concepts that are obsolete or non-relevant. It would also be useful if we could update models with personalized objects to recognize to narrow down the scope of items to recognize for object recognizers to make the tasks easier.

In this chapter, we cover related works on datasets on object recognition both with image and text data in Section 2.4. Next, we provide a description of machine learning, especially deep learning, models that were used in the included papers in Section 2.5 and 2.6. In Section 2.7, we discuss the setting of continual learning for updating the knowledge of machine learning models that is aiming to make the models capable of handling ever-changing environments as a step towards to enabling life-long learning.

2.1 Machine Learning Basics

2.2 Deep Learning

Autoencoders

2.3 Reinforcement Learning

Monte Carlo Tree Search

Fine-grained Classification

- 3.1 Related Work
- 3.2 Methodology/Approach

Continual Learning

- 4.1 Related Work
- 4.2 Methodology/Approach

Conclusions and Future Directions

5.1 Conclusions

5.2 Future Directions

- Video data for object recognition instead of images for making systems easier to use. And use a disability-first approach when collecting the data
- Federated Learning for decentralizing model updates
- Uncertainty Quantification How to make the classifiers trustworthy?

Disability-first Approaches

Federated Learning

Bibliography

- [1] Anne Nielsen Hibbing and Joan L. Rankin-Erickson. A picture is worth a thousand words: Using visual images to improve comprehension for middle school struggling readers. *The Reading Teacher*, 56, 2003.
- [2] Rupert Bourne, Jaimie D Steinmetz, Seth Flaxman, Paul Svitil Briant, Hugh R Taylor, Serge Resnikoff, Robert James Casson, Amir Abdoli, Eman Abu-Gharbieh, Ashkan Afshin, et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the global burden of disease study. The Lancet global health, 9(2):e130–e143, 2021.
- [3] James Coughlan and Roberto Manduchi. Functional assessment of a camera phone-based wayfinding system operated by blind and visually impaired users. *International Journal on Artificial Intelligence Tools*, 18(03):379–397, 2009.
- [4] Hernisa Kacorri, Eshed Ohn-Bar, Kris M Kitani, and Chieko Asakawa. Environmental factors in indoor navigation based on real-world trajectories of blind users. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*, pages 1–12, 2018.
- [5] Jack M Loomis, Reginald G Golledge, Roberta L Klatzky, and James R Marston. Assisting wayfinding in visually impaired travelers. In *Applied Spatial Cognition*, pages 179–202. Psychology Press, 2020.
- [6] Dragan Ahmetovic, Daisuke Sato, Uran Oh, Tatsuya Ishihara, Kris Kitani, and Chieko Asakawa. Recog: Supporting blind people in recognizing personal objects. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, pages 1–12, 2020.
- [7] Hernisa Kacorri. Teachable machines for accessibility. *ACM SIGACCESS Accessibility and Computing*, (119):10–18, 2017.
- [8] Kyungjun Lee and Hernisa Kacorri. Hands holding clues for object recognition in teachable machines. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, pages 1–12, 2019.

24 BIBLIOGRAPHY

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

- [10] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 7263–7271, 2017.
- [11] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In *International conference on machine learning*, pages 2048–2057. PMLR, 2015.
- [12] Richard Szeliski. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.
- [13] World Health Organization. World report on vision. World Health Organization, 2019.
- [14] Jaimie D Steinmetz, Rupert RA Bourne, Paul Svitil Briant, Seth R Flaxman, Hugh RB Taylor, Jost B Jonas, Amir Aberhe Abdoli, Woldu Aberhe Abrha, Ahmed Abualhasan, Eman Girum Abu-Gharbieh, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: the right to sight: an analysis for the global burden of disease study. The Lancet Global Health, 9(2):e144–e160, 2021.
- [15] Roberto Manduchi and James Coughlan. (computer) vision without sight. Communications of the ACM, 55(1):96–104, 2012.
- [16] Chandrika Jayant, Hanjie Ji, Samuel White, and Jeffrey P Bigham. Supporting blind photography. In *The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility*, pages 203–210, 2011.
- [17] Erin Brady, Meredith Ringel Morris, Yu Zhong, Samuel White, and Jeffrey P Bigham. Visual challenges in the everyday lives of blind people. In *Proceedings* of the SIGCHI conference on human factors in computing systems, pages 2117– 2126, 2013.
- [18] Microsoft. Seeing ai, 2017. URL https://www.microsoft.com/en-us/ai/ seeing-ai. Accessed 2022-03-14.
- [19] Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu, Yuxin Peng, Jinhui Tang, Jian Yang, and Serge Belongie. Fine-grained image analysis with deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

BIBLIOGRAPHY 25

[20] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. *IEEE Transactions on Pattern* Analysis and Machine Intelligence, 2021.

- [21] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019.
- [22] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In *Psychology of learning and motivation*, volume 24, pages 109–165. Elsevier, 1989.
- [23] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS Torr, and Marc'Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486, 2019.
- [24] Tyler L Hayes, Giri P Krishnan, Maxim Bazhenov, Hava T Siegelmann, Terrence J Sejnowski, and Christopher Kanan. Replay in deep learning: Current approaches and missing biological elements. *Neural Computation*, 33(11):2908–2950, 2021.
- [25] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data. In *ICML*, 2020.
- [26] Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for streaming learning. In 2019 International Conference on Robotics and Automation (ICRA), pages 9769–9776. IEEE, 2019.
- [27] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind your neural network to prevent catastrophic forgetting. In European Conference on Computer Vision, pages 466–483. Springer, 2020.
- [28] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient incremental learning through feature adaptation. In European Conference on Computer Vision, pages 699–715. Springer, 2020.
- [29] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for real-time continual learning. arXiv preprint arXiv:1912.01100, 2019.
- [30] Frank N Dempster. Spacing effects and their implications for theory and practice. Educational Psychology Review, 1(4):309–330, 1989.
- [31] Karri S Hawley, Katie E Cherry, Emily O Boudreaux, and Erin M Jackson. A comparison of adjusted spaced retrieval versus a uniform expanded retrieval schedule for learning a name–face association in older adults with probable

26 BIBLIOGRAPHY

- alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 30(6):639–649, 2008.
- [32] T. Landauer and Robert Bjork. Optimum rehearsal patterns and name learning. *Practical aspects of memory*, 1, 11 1977.
- [33] Paul Smolen, Yili Zhang, and John H Byrne. The right time to learn: mechanisms and optimization of spaced learning. *Nature Reviews Neuroscience*, 17(2):77, 2016.
- [34] Weiran Wang, Xinchen Yan, Honglak Lee, and Karen Livescu. Deep variational canonical correlation analysis. arXiv preprint arXiv:1610.03454, 2016.
- [35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org.
- [36] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In *Proceedings of COMPSTAT'2010*, pages 177–186. Springer, 2010.
- [37] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multi-modal machine learning: A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, 41(2):423–443, 2018.
- [38] Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. arXiv preprint arXiv:1304.5634, 2013.
- [39] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
- [40] Mark Everingham, SM Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes challenge: A retrospective. *International journal of computer vision*, 111(1):98–136, 2015.
- [41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer, 2014.
- [42] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. *International journal of computer vision*, 123(1):32–73, 2017.
- [43] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the Association for Computational Linguistics, 2:67–78, 2014.

[44] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pages 2425–2433, 2015.

- [45] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6700–6709, 2019.
- [46] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.
- [47] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3608–3617, 2018.
- [48] Daniela Massiceti, Luisa Zintgraf, John Bronskill, Lida Theodorou, Matthew Tobias Harris, Edward Cutrell, Cecily Morrison, Katja Hofmann, and Simone Stumpf. Orbit: A real-world few-shot dataset for teachable object recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10818–10828, 2021.
- [49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 2012.
- [50] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- [51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.
- [52] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.
- [53] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[54] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

- [55] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International conference on machine learning*, pages 1530–1538. PMLR, 2015.
- [56] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. *Journal of the American statistical Association*, 112(518):859–877, 2017.
- [57] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational inference. *IEEE transactions on pattern analysis and machine intelligence*, 41(8):2008–2026, 2018.
- [58] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning, pages 1278–1286. PMLR, 2014.
- [59] Mathieu Salzmann, Carl Henrik Ek, Raquel Urtasun, and Trevor Darrell. Factorized orthogonal latent spaces. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pages 701–708. JMLR Workshop and Conference Proceedings, 2010.
- [60] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In *International Conference on Machine Learning*, pages 4528–4537. PMLR, 2018.
- [61] Tameem Adel, Han Zhao, and Richard E Turner. Continual learning with adaptive weights (claw). arXiv preprint arXiv:1911.09514, 2019.
- [62] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 532–547, 2018.
- [63] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.
- [64] Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions* on pattern analysis and machine intelligence, 40(12):2935–2947, 2017.

[65] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. arXiv preprint arXiv:1710.10628, 2017.

- [66] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong learning. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1320–1328, 2017.
- [67] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In *International Conference on Machine Learning*, pages 3987–3995. PMLR, 2017.
- [68] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.
- [69] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual learning with additive parameter decomposition. arXiv preprint arXiv:1902.09432, 2019.
- [70] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.
- [71] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7765–7773, 2018.
- [72] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting with hard attention to the task. In *International Conference on Machine Learning*, pages 4548–4557. PMLR, 2018.
- [73] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
- [74] David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning. arXiv preprint arXiv:1706.08840, 2017.
- [75] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. arXiv preprint arXiv:1705.08690, 2017.
- [76] Gido M van de Ven and Andreas S Tolias. Generative replay with feedback connections as a general strategy for continual learning. arXiv preprint arXiv:1809.10635, 2018.
- [77] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9516–9525, 2021.

[78] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting the nearest class mean classifier in online class-incremental continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3589–3599, 2021.

- [79] Arslan Chaudhry, Marc'Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.
- [80] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet: Pooled outputs distillation for small-tasks incremental learning. In *Computer Vision ECCV 2020*, pages 86–102. Springer International Publishing, 2020.
- [81] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adversarial continual learning. arXiv preprint arXiv:2003.09553, 2020.
- [82] KJ Joseph and Vineeth N Balasubramanian. Meta-consolidation for continual learning. arXiv preprint arXiv:2010.00352, 2020.
- [83] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan Ghasemzadeh. Linear mode connectivity in multitask and continual learning. arXiv preprint arXiv:2010.04495, 2020.
- [84] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E Turner, and Mohammad Emtiyaz Khan. Continual deep learning by functional regularisation of memorable past. arXiv preprint arXiv:2004.14070, 2020.
- [85] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Experience replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.
- [86] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Part II Included Papers

Paper A

Name for Paper A

Marcus Klasson, Cheng Zhang, Hedvig Kjellström

Abstract

Abstract aby stract

A.1 Introduction

hej hej här är en artikel

what do you think this is?

hello hello city

Paper B

Name for Paper B

Marcus Klasson, Cheng Zhang, Hedvig Kjellström

Abstract

Abstract aby stract

B.1 Introduction

hej hej här är en artikel

what do you think this is?