Quantifiers

Existential quantifier ∃ -

There exists some x in the domain of discourse where $P(x) = True \exists x P(x)$

Universal Quantifier ∀ -

For every x in domain in discourse, $P(x) = True \forall xP(x)$

Negation of Quantifiers ¬

$$\neg (\ \forall x\ P(x)\) \equiv \exists x\ (\ \neg P(x)\)\ \neg (\ \exists x\ P(x)\) \equiv \forall x\ (\ \neg P(x)\)$$

Example

What is a limit?

Suppose an $\rightarrow 1$

$$\equiv \exists l (\forall \epsilon > 0 \exists N \in \mathbb{N} (n > N \Longrightarrow |an - l| < \epsilon))$$

$$\equiv \exists \ l \ (\ \forall \epsilon \in \mathbb{R} \ \exists \ N \in \mathbb{N} \ (\ n > N \ \land \epsilon > 0 \Longrightarrow |an - l| < \epsilon))$$

$$P(n) = "n > N"$$

$$Q(\epsilon) = \epsilon > 0$$

$$R(l,\epsilon,n) = |an - l| < \epsilon$$

Hence -

$$\exists l(\forall \epsilon \in \mathbb{R} \; \exists \; N \in \mathbb{N} \; \forall \; n(\; P(n) \mathbb{A}Q(\epsilon) \Longrightarrow R(l,\epsilon,n)\;))$$

Negation of Above

If an does not converge,

$$\neg (\exists l (\forall \epsilon \in \mathbb{R} \exists N \in \mathbb{N} \forall n (P(n) \land Q(\epsilon) \Longrightarrow R(l, \epsilon, n))))$$

$$\forall l \neg (\ \forall \epsilon \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ (\ P(n) \mathbb{A} Q(\epsilon) \Longrightarrow R(l, \epsilon, n)\)\)$$

$$\forall l \; \exists \epsilon \in \mathbb{R} \; \neg (\; \exists N \in \mathbb{N} \; \forall n \in \mathbb{N} \; (\; P(n) \land Q(\epsilon) \Longrightarrow R(l, \epsilon, n) \;) \;)$$

$$\forall l \; \exists \epsilon \in \mathbb{R} \; \forall N \in \mathbb{N} \; \neg (\; \forall n \in \mathbb{N} \; (\; P(n) \mathbb{A} Q(\epsilon) \Longrightarrow R(l, \epsilon, n) \;) \;)$$

$$\forall l \; \exists \epsilon \in \mathbb{R} \; \forall N \in \mathbb{N} \; \exists n \in \mathbb{N} \; \neg (\; P(n) \mathbb{A} Q(\epsilon) \Longrightarrow R(l, \epsilon, n) \;) \;)$$

$$\forall l \; \exists \epsilon \in \mathbb{R} \; \forall N \in \mathbb{N} \; \exists n \in \mathbb{N} \; (\; P(n) \; \mathbb{A} \; Q(\epsilon) \; \mathbb{A} \; \neg R(l,\epsilon,n) \;) \;)$$

In English, for all l, there exists ϵ in $\mathbb R$ and there exists n and N in $\mathbb N$ such that n>N and $\epsilon>0$ and | an - | | NOT | $<\epsilon$

Proofs

General Domains

- $\forall x P(x)$ is easy to disprove. Just find on x. Very hard to prove.
- $\exists x P(x)$ is easy to prove. Just find on x. Very hard to disprove.

Finite Domains

Both are easy. You could just run through all.

Enumeratable Domains

∀ is easy to show by induction.

Contradiction

If either \forall or \exists is difficult to show, or if $\neg P(x)$ is more well known, you can disprove the negation of the predicate.

Full Adder

Stupid way

Make a truth table for an nbit input

Better way

Truth Table -

in1	in2	out	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Hence out is the XOR $(\neg P \land Q) \lor (\neg Q \land P)$

Carry is the And PAQ