

Communication 3rd year 2021–2022

Sheet 4 Probability of error

Problem 1

A binary PCM system uses unipolar RZ signaling to transmit symbols '1' and '0'. The channel noise is modeled as AWGN with zero mean and power spectral density $N_0/2$.

Assuming that symbols '1' and '0' have equal transmit probabilities, find an expression for the average error probability at the receiver output using matched filter.

Problem 2

Repeat problem 1 if the receiver uses a filter with the following impulse response. What is the problem with this filter?

Problem 3

In a receiver for a Binary Communication System, the inputs to the decision device have the following conditional error probabilities

$$\begin{split} P(e|'0') &= \frac{\lambda}{N_0} \exp\left[-\frac{\lambda^2}{2N_0}\right] \\ P(e|'1') &= \frac{1}{\sqrt{2\pi N_0}} \exp\left[-\frac{(\lambda - A)^2}{2N_0}\right], \qquad \lambda > 0 \text{ and } A \ggg 0 \end{split}$$

Assuming that the symbols have equal transmission probabilities,

- 1) Find the optimum value of the threshold λ that minimizes the average error probability.
- 2) Find an expression of the average error probability based on the optimum value of λ .