Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 70 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche

(sans base de données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

 Si dans un exercice on demande plusieurs réponses vous êtes tenus de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 41,0

39,0 - 41,0	Points = Note	6,0
35,0 - 38,5	Points = Note	,
,		5,5
31,0 - 34,5	Points = Note	5,0
27,0 - 30,5	Points = Note	4,5
23,0 - 26,5	Points = Note	4,0
18,5 - 22,5	Points = Note	3,5
14,5 - 18,0	Points = Note	3,0
10,5 - 14,0	Points = Note	2,5
6,5 - 10,0	Points = Note	2,0
2,5 - 6,0	Points = Note	1,5
0,0 - 2,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2014.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre o	le points obtenus
1.	 5.1.5 Pour quelle raison, avec le système TN-S, une bonne mise à la terre et une pose parfaite de la protection équipotentielle sont extrêmement importantes ? Nommez une raison. Réponses possibles: La résistance de boucle diminue. Cela augmente le courant de court-circuit, ce qui réduit le temps de coupure. Protection contre les surtensions. Réduction de la tension de défaut. 	1	obtenus
2.	5.1.6 En laboratoire, on détermine les pertes d'un transformateur. On mesure 380 W de pertes fer et 120 W de pertes cuivre. Le rendement du transformateur est spécifié à 87 %. Calculez la puissance nominale débitée par le transformateur avec une charge ohmique. Solution: $P_{p\ Tot} = P_{p\ Fe} + P_{p\ Cu} = 380\ \text{W} + 120\ \text{W} = 500\ \text{W}$ $P_2 = \frac{P_{p\ Tot} \cdot \eta}{1 - \eta} = \frac{500\ \text{W} \cdot 87\ \%}{100\ \% - 87\ \%} = \underline{3'346, 15\ \text{W}}$	(1)	
3.	Calcul avec P ₁ = 3'846,15 W 2pt 5.3.6 Une installation industrielle consomme un courant pouvant atteindre un maximum de 200 A, sous 3 X 400 V/230 V. Nommez quatre appareils différents, installés dans le tableau de distribution, nécessaires à la mesure de l'énergie.	2	
	Réponses possibles: Mesure indirecte avec: - Fusibles avant compteur - Fusible/disjoncteur de protection du compteur - Fusible de protection de la télécommande - Compteur pour la mesure indirecte - Transformateur d'intensité (TI) - Boîte à bornes (barrette)		

Exer	Exercices			
4.	5.1.9 Champ électrique et champ magnétique.	maximal 1	obtenus	
	Quel champ apparaît dans la zone du cordon de raccordement d'une lampe de chevet, lorsque la lampe a) est allumée ?	(0,5)		
	Réponse:			
	Champs électrique et magnétique			
	b) est éteinte ?	(0,5)		
	Réponse:			
	Champ électrique			
5.	5.2.1 Nommez quatre informations que vous pouvez trouver sur cette étiquette énergie. ENERGIE ENERGIA - ENERGY © Electrolux EK 228	2		
	Réponses possibles : - Classe d'efficience énergétique de l'appareil - Besoin énergétique annuel en kWh - Capacité totale pour les denrées fraiches - Capacité totale pour les denrées congelées - Bruit en dB - Nom ou marque du fournisseur - Type de l'appareil	(chacun 0,5)		
6.	5.3.2 Une bobine a une résistance de 300 Ω . Elle est parcourue par un courant de 0,75 A, alors que la tension inductive U _L est de 150 V. Calculez l'impédance de la bobine.	2		
	Solution:			
	$X_L = \frac{U}{I} = \frac{150 \text{ V}}{0.75 \text{ A}} = 200 \Omega$	(1)		
	$Z = \sqrt{R^2 + X_L^2} = \sqrt{(300 \Omega)^2 + (200 \Omega)^2} = \underline{360, 6 \Omega}$	(1)		

ercices					Nombre of maximal	obtenu
ou déclenchée a sont répertoriée Afin de ne pas d	ser une LED avec une batter avec commutateur schéma 0 s dans le tableau ci-dessous lépasser la tension de fonctio I _F de la LED, une résistance	. Les données onnement U _F et	techniques de la	a LED	2	
Туре	LED-5-RAINBOW					
Couleur	RGB	s ₁ {				
Exécution	Claire					
Boitier	5 mm		Д			
I _F	20 mA	> 6 =	R	a		
Conformité RoHS	Oui	T =	무			
Longueurs d'onde	620 nm / 520 nm / 465 nm	↓	↓ ×			
Intensité lum. I _V	Max. 1800 mcd		¥ *			
U _F	2,0 V					
Angle	(2 theta 1/2) 15 °					
Température de	-25 - +85 °C					
service						
Solution:	stance additionnelle R_a .					
Solution:	stance additionnelle R_a . $\frac{9 V - 2 V}{0,02 A} = \underline{350 \Omega}$					
Solution: $R_a = \frac{U - U_F}{I_F} = 5.2.5$ a) Comment s'a		L1 O		N O	2 (1)	
Solution: $R_a = \frac{U - U_F}{I_F} = 5.2.5$ a) Comment s'a	$\frac{9 \text{ V} - 2 \text{ V}}{0,02 \text{ A}} = \frac{350 \Omega}{\text{appelle le moteur}}$	L1 O	M	N O		
Solution: $R_{\alpha} = \frac{U - U_F}{I_F} = \frac{1}{1}$ 5.2.5 a) Comment s'a représenté p	$\frac{9 \text{ V} - 2 \text{ V}}{0,02 \text{ A}} = \underline{350 \Omega}$ appelle le moteur ar ce schéma ?	L1 O	∑ ₁	z o		
Solution: $R_a = \frac{U - U_F}{I_F} = \frac{5.2.5}{\text{a) Comment s'a représenté p}}$	$\frac{9 \text{ V} - 2 \text{ V}}{0,02 \text{ A}} = \underline{350 \Omega}$ appelle le moteur ar ce schéma ?	L1 O	Z _I	N O		
Solution: $R_a = \frac{U - U_F}{I_F} = \frac{1}{1}$ 5.2.5 a) Comment s'a représenté p	$\frac{9 \text{ V} - 2 \text{ V}}{0,02 \text{ A}} = \underline{350 \Omega}$ appelle le moteur ar ce schéma ?		∑ _l	N O		
Solution: $R_a = \frac{U - U_F}{I_F} = \frac{1}{1}$ 5.2.5 a) Comment s'a représenté p	$\frac{9 \text{ V} - 2 \text{ V}}{0,02 \text{ A}} = \underline{350 \Omega}$ appelle le moteur ar ce schéma ?		NS N	N O	(1)	

cices	Nombre o	le points obtenus
5.2.6		
Répondez aux questions suivantes sur les accumulateurs:	2	
a) Nommez le type d'accumulateur utilisé pour le démarrage des voitures.	(0,5)	
Réponse:		
- Accumulateur au plomb		
b) Nommez le type d'accumulateur utilisé pour un Smartphone ayant une tension (FEM) par cellule de 3,6 V.	(0,5)	
Réponse possible:		
- Accumulateur Lithium - Ion		
c) Nommez un type d'accumulateur contenant un métal lourd dans sa composition.	(0,5)	
Réponse possible:		
- Accumulateur Nickel-Cadmium (NiCd) - Accumulateur au plomb		
d) Nommez un type d'accumulateur ayant une tension (FEM) par cellule de 1,2 V.	(0,5)	
Réponse possible:		
- Accumulateur NiMH/NiCd		
5.4.1		
Pour chaque composant de technique du bâtiment, choisissez une fonction.	3	
- Sonde de température - Ventilateur de moteur - Clapet coupe-feu - Détecteur de pression - Détecteur de CO ₂ - Sonde de débit	(chacun 0,5)	
	Répondez aux questions suivantes sur les accumulateurs: a) Nommez le type d'accumulateur utilisé pour le démarrage des voitures. Réponse: - Accumulateur au plomb b) Nommez le type d'accumulateur utilisé pour un Smartphone ayant une tension (FEM) par cellule de 3,6 V. Réponse possible: - Accumulateur Lithium - Ion c) Nommez un type d'accumulateur contenant un métal lourd dans sa composition. Réponse possible: - Accumulateur Nickel-Cadmium (NiCd) - Accumulateur au plomb d) Nommez un type d'accumulateur ayant une tension (FEM) par cellule de 1,2 V. Réponse possible: - Accumulateur NiMH/NiCd 5.4.1 Pour chaque composant de technique du bâtiment, choisissez une fonction.	S.2.6 Répondez aux questions suivantes sur les accumulateurs: 2 2 2 3 Nommez le type d'accumulateur utilisé pour le démarrage des voitures. (0,5) Réponse: - Accumulateur au plomb 5 Nommez le type d'accumulateur utilisé pour un Smartphone ayant une tension (FEM) par cellule de 3,6 V. (0,5) Réponse possible: - Accumulateur Lithium - Ion (0,5) Réponse possible: - Accumulateur Nickel-Cadmium (NiCd) (0,5

xercices		Nombre d maximal	de points obtenus
5.2.9Circuit à basse tens	sion.	3	
S1 7-V	S1 T-V-		
s2 E/	K1 / S2 E\ K1		
К1	P1 K1 P1		
Circuit de command	on date at	(1)	
Circu	uit 1 Circuit 2	, ,	
a) Quelle est la diff	férence principale dans la fonction entre les circuits 1 et 2 ?		
Réponses possib	les:		
	tionne sur le principe du courant de repos, le circuit 2 sur ncipe du courant de travail.		
	une interruption du circuit de commande provoque du klaxon, ce qui n'est pas le cas pour le circuit 2.	(1)	
b) Pour quelle app	lication convient le circuit 1 ? Nommez un exemple.		
Réponses possib	les:		
Système de suSystème d'alar			
- Dispositifs de s	sécurité (les coupures sont détectées).	(1)	
c) Pour quelle app	lication convient le circuit 2 ? Nommez un exemple.		
Réponses possib	les:		
Système à impSystème de co			

12. Les données suivantes sont données pour un moteur à courant alternatif monophasé: U = 230 V; I = 6,1 A; P_{abs} = 1'200 W, Q_L = 726,9 var. a) Calculez le facteur de puissance du moteur non compensé. Solution: $cos \varphi = \frac{P_{abs}}{U \cdot I} = \frac{1'200 \text{ W}}{230 \text{ V} \cdot 6, 1 \text{ A}} = \underline{0,855}$	5 (1)	obtenus
Solution:		
b) Calculez l'inductance de la bobine du moteur. Solution:	(2)	
Solution: $Q_L = I^2 \cdot X_L \rightarrow X_L = \frac{Q_L}{I^2} = \frac{726,9 \text{ var}}{(6,1 \text{ A})^2} = 19,54 \Omega$ $L = \frac{X_L}{2 \cdot \pi \cdot f} = \frac{19,54 \Omega}{2 \cdot \pi \cdot 50 \text{ Hz}} = \frac{62,18 \text{ mH}}{120}$		
c) Calculez le facteur de puissance lorsque le moteur est compensé avec un condensateur d'une puissance réactive $Q_C = 500$ var. Solution: $Q_{tot} = Q_L - Q_C = 726, 9 \ var - 500 \ var = 226, 9 \ var$ $tan \ \varphi = \frac{Q_{tot}}{P} = \frac{226, 9 \ var}{1'200W} = 0, 189 \rightarrow cos \ \varphi = \underline{0,983}$	(2)	

xercices	Nombre o	de points obtenus
5.3.4 3 corps de chauffe ayant des résistances de 30 Ω , 40 Ω et 50 Ω sont couplés e étoile sur le réseau 3 x 400 V / 230 V.		
a) Calculez la puissance totale des trois résistances ensemble.	(2)	
Solution:		
$P_1 = \frac{U_1^2}{R_1} = \frac{(230 \text{ V})^2}{30 \Omega} = 1'763 \text{ W}$ $U_2^2 = (230 \text{ V})^2$		
$P_2 = \frac{{U_2}^2}{R_2} = \frac{(230 \text{ V})^2}{40 \Omega} = 1'323 \text{ W}$ $P_1 = \frac{{U_S}^2}{R_3} = \frac{(230 \text{ V})^2}{50 \Omega} = 1'058 \text{ W}$		
$P_y = P_1 + P_2 + P_3 = 1'763W + 1'323W + 1'058W = 4.144 \text{kW}$		
b) Quelle est la puissance totale si les mêmes résistances sont connectées en triangle ?	(1)	
Réponses possibles:		
- Trois fois plus grande.		
- $P_{\Delta} = 3 \cdot P_{y} = 3 \cdot 4,144 \text{ kW} = \underline{12,43 \text{ kW}}$		

ercices	Nombre of maximal	de points obtenus
5.3.6 On doit déterminer l'impédance et ensuite la résistance d'une bobine.	3	
Pour la mesure, on dispose d'un voltmètre (V) , d'un ampèremètre (A) ,		
d'une source de tension continue et d'une source de tension alternative.		
a) Quelle source de tension utilisez-vous pour la mesure d'impédance ?	(1)	
Réponse: La source de tension alternative.		
b) Quelle source de tension utilisez-vous pour la mesure de résistance ?	(1)	
Réponse: La source de tension continue.		
c) Complétez le schéma avec les appareils de mesure et une des deux sources de tension.	s (1)	
AC DC + V		
Le voltmètre peut être placé avant ou après l'ampèremètre. Les 2 solution sont acceptées.	s	

Exer	cices	Nombre o	le points obtenus
4.5	5.4.4		
15.	Expliquez le fonctionnement du circuit représenté aussi précisément que possible.	2	
	S1.1, S1.2, S1.3 et S2.1 sont des poussoirs.		
	14		
	S2.1 I S1.1 S1.1 S1.1 S1.1 S1.1 S1.1 S1.1		
	S1.3 I		
	Bascule RS Sortie		
	S B003		
	l l l R		
	S1.1 B001 R est actif		
	å l'état 0		
	S1.2 I		
	Réponse possible:		
	La sortie peut être activée par une impulsion sur S2.1 ou S1.3 (contacts de fermeture).		
	La sortie peut être désactivée par une impulsion sur S1.1 ou S1.2 (contacts		
	d'ouverture).		
16.	5.3.2 Déterminez le courant total I pour le schéma suivant.	2	
10.	Dotominoz le courant total i podr le conoma carvant.	_	
	$R_1 = 2 \Omega$ $R_1 = R_3$		
	$R_2 = 4 \Omega$ $R_3 = 6 \Omega$		
	$R_4 = 8 \Omega$		
	U = 12 V		
	Solution:		
1			
	$R_{\acute{e}qu} = R_1 + \frac{1}{1 + 1 + 1} = 2 \Omega + \frac{1}{1 + 1 + 1} = 3,846 \Omega$		
	$R_{\acute{e}qu} = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = 2 \Omega + \frac{1}{\frac{1}{4 \Omega} + \frac{1}{6 \Omega} + \frac{1}{8 \Omega}} = \frac{3,846 \Omega}{1}$		
	$R_{\acute{e}qu} = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = 2 \Omega + \frac{1}{\frac{1}{4 \Omega} + \frac{1}{6 \Omega} + \frac{1}{8 \Omega}} = \frac{3,846 \Omega}{I}$ $I = \frac{U}{R_{\acute{e}qu}} = \frac{12 \text{ V}}{3,846 \Omega} = \frac{3,12 \text{ A}}{I}$		

xer	cices	Nombre d	_
17.	5.3.4 Calculez les courants dans les conducteurs de phases et déterminez graphiquement le courant dans le neutre. $R_1 = 100 \ \Omega$ $R_2 = 150 \ \Omega$ $L2 \circ \qquad $	maximal 3	obtenus
	Solution:		
	$U_1 = U_2 = U_3 = \frac{400 \text{ V}}{\sqrt{3}} = 230 \text{ V}$ 3 x 400 V/230 V 50 Hz		
	$I_{L1} = \frac{U_1}{R_1} = \frac{230 \text{ V}}{100 \Omega} = \frac{2.3 \text{ A}}{100 \Omega}$		
	$I_{L2} = \frac{U_2}{R_2} = \frac{230 \text{ V}}{150 \Omega} = \frac{1,53 \text{ A}}{1}$		
	$I_{L3} = \frac{U_3}{R_3} = \frac{230 \text{ V}}{115 \Omega} = \underline{\underline{2 \text{ A}}}$		
	0,5 pt pour chaque courant de phase		
	IL3' IN		
	lu3 L ₃		
	Echelle: 1 A ≙ 20 mm		
	$13,5 \text{ mm } \triangleq I_{N} = \underline{0,68 \text{ A}}$		
	Tolérance ∓ 0,1 A Courant de neutre correct 1,5 pt.		
	Total	41	