III-II CSM Deep Learning Lab Question Paper 12-04-2023

- 1. Checking the TF version and availability of physical devices
 - a. Get the version of TensorFlow running on your machine?
 - b. Get the type & number of physical devices available on your machine, print what are they, and test whether the GPU is available?
- 2. Random number generator
 - a. What is the need for setting a 'seed' value in any random number generation?
 - b. Create two random number generators using TensorFlow with the same seed of 42, create two random gaussian tensors of shape 2x3, and verify that the both tensors are identical.
 - c. Create two random number generators using TensorFlow with two different seed values say 42 & 11, create two random gaussian tensors of shape 2x3, and verify that the both tensors are not identical.
- 3. Shuffling of Tensors
 - a. Shuffle the given Tensor with and without an operation seed value. Write down your observations.
 - b. Show that 'operation seed' in 'tf.random.shuffle' and the 'global seed' in 'tf.random.set_seed' are different? Illustrate that having both gives the tensor in same order every time after shuffling?
- 4. Reshaping the tensors
 - a. (i) Construct a vector consisting of first 24 integers using 'numpy'.
 - (ii) Convert that 'numpy' vector into a Tensor of rank 3.
 - (iii) Write your observations on how the elements of the vector got rearranged in the rank 3 tensor.
 - b. (i) Create a tensor of rank 2.
 - (ii) Convert that tensor into another tensor of shape 2x2x1 using 'tf.newaxis'
 - c. (i) Create a tensor of rank 2.
 - (ii) Convert that tensor into another tensor of shape 2x2x1 using 'tf.expand_dims'.
- 5. Linear Regression full experiment
- 6. Regularization full experiment
- 7. ANN

Layer (type)	Output Shape	Param #
Layer1_tanh (Dense)	(None, 4)	12
Layer2_tanh (Dense)	(None, 2)	10
Layer3_sigmoid (Dense)	(None, 1)	3
Total params: 25 Trainable params: 25 Non-trainable params: 0		

- a. (i) Import all the necessary libraries required for creating the above neural network model (ii) Construct the model using **Sequential API**. Consider the corresponding activation functions as specified in the Layer Type, and assume that each of the input feature vector has **two features** in it. Chose the number of units in each layer accordingly.
 - (iii) Compile the model with the following details and print the model as given in the figure
 - i. Optimizer = Adam
 - ii. Loss function = Choose appropriately from the layer types
 - iii. Metrics = Choose appropriately considering the binary class classification task
- b. (i) Import all the necessary libraries required for creating the above neural network model (ii) Construct the model using **Functional API**. Consider the corresponding activation functions as specified in the Layer Type, and assume that each of the input feature vector has **two features** in it. Chose the number of units in each layer accordingly.
 - (iii) Compile the model with the following details and print the model as given in the figure
 - i. Optimizer = Adam

III-II CSM Deep Learning Lab Question Paper 12-04-2023

- ii. Loss function = Choose appropriately from the layer types
- iii. Metrics = Choose appropriately considering the binary class classification task

8. CNNs

Layer (type)	Output Shape	Param #
conv_1_relu (Conv2D)	(None, 13, 13, 32)	544
<pre>max_pool_1 (MaxPooling2D)</pre>	(None, 6, 6, 32)	0
flatten_7 (Flatten)	(None, 1152)	0
dense_1_relu (Dense)	(None, 128)	147584
dense_2_softmax (Dense)	(None, 10)	1290
Total papamer 140 419		=======
Total params: 149,418 Trainable params: 149,418		

Non-trainable params: 0

- a. (i) Import all the necessary things
 - (ii) Construct the model using **Sequential API**. Consider the corresponding activation functions as specified in the Layer Type, and assume that the input is of shape **28x28x1**. The kernel size of the convolutional layer should be **3x3**. Chose the number of filters, padding, and stride accordingly.
 - (iii) Compile the model with the following details and print the model as given in the figure.
 - i. Optimizer = Adam
 - ii. Loss function = Choose appropriately from the layer types
 - iii. Metrics = Choose appropriately considering the multiclass classification task
- b. (i) Import all the necessary things
 - (ii) Construct the model using **Functional API**. Consider the corresponding activation functions as specified in the Layer Type, and assume that the input is of shape **28x28x1**. The kernel size of the convolutional layer should be **3x3**. Chose the number of filters, padding, and stride accordingly.
 - (iii) Compile the model with the following details and print the model as given in the figure.
 - i. Optimizer = Adam
 - ii. Loss function = Choose appropriately from the layer types
 - iii. Metrics = Choose appropriately considering the multiclass classification task
- c. (i) Load the 'cifar100' dataset that comes with TensorFlow.
 - (ii) Determine the images in training set and test sets respectively.
 - (iii) Identify the resolutions of the images.
 - (iv) Perform the normalization of the dataset along with extending their dimension to consider the 'batches' while training.
- 9. Write a Program for text processing to identify the POS tags from the input text?
- 10. Write a Program for Text Processing to identify the common tags for the parsing?
- 11. Write a program for Text Processing to identify the Named Entity Recognition from the given Text?
- 12. Write the Code for implementing the LSTM model for the sentiment Analysis on IMDB Movie Reviews dataset with Sigmoid Optimizer?
- 13. Write the Code for implementing the LSTM model for the sentiment Analysis on IMDB Movie Reviews dataset with Adam Optimizer?
- 14. Write the Code for implementing the LSTM model for the sentiment Analysis on IMDB Movie Reviews dataset with '*RMSProp*' Optimizer?