Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $1/\ 1/\ 8$

Выполнил: студент 104 группы Воробьев С. Ю.

Преподаватель: Сенюкова О. В.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл)	6
Отладка программы, тестирование функций	7
Программа на Си и на Ассемблере	8
Анализ допущенных ошибок	9
Список цитируемой литературы	10

Постановка задачи

С заданной точностью ε вычислить площадь плоской фигуры, ограниченной тремя кривыми. Для этого требуется выполнить следующие подзадачи:

- С некоторой точностью ε_1 вычислить абсциссы точек пересечения кривых, используя метод деления отрезка пополам для уравнения F(x) = 0.
- Представить площадь заданной фигуры как алгебраическую сумму определенных интегралов и вычислить эти интегралы с некоторой точностью ε_2 по формуле прямоугольников.
- Величины ε_1 и ε_2 подобрать вручную так, чтобы гарантировалось вычисление площади фигуры с точностью ε

Математическое обоснование

Корни:

$$(f_1 - f_3)(-3) > 0, (f_1 - f_3)(-2) < 0, (f_1 - f_3)(x) \downarrow \Rightarrow x_1 \in [-3, -2]$$

 $(f_2 - f_3)(-3) > 0, (f_2 - f_3)(-2) < 0, (f_2 - f_3)(x) \downarrow \Rightarrow x_2 \in [-1, 0]$
 $(f_1 - f_2)(1) < 0, (f_1 - f_2)(2) > 0, (f_1 - f_2)(x) \uparrow \Rightarrow x_3 \in [1, 2]$

Для оценки погрешности интеграла будем пользоваться формулой Рунге[2]:

$$\Delta_{2n} = \frac{1}{3}(I_{2n} - I_n)$$

Погрешность одного инетграла можно вычислить по формуле:

$$\Delta_{I_i} = \varepsilon_2 + 2f_{imax}\varepsilon_1$$

Суммарная погрешность 3-х интегралов будет:

$$\Delta_I^{\Sigma} = 3\varepsilon_2 + 6f_{max}\varepsilon_1 < \varepsilon$$

Пусть $\varepsilon_2 = k\varepsilon$, тогда:

$$\varepsilon_1 \le \frac{(1-3k)\varepsilon}{6f_{max}}$$

Заметим, что k < 1/3 – пусть k = 1/5, а $f_{max} < 10$, тогда можем подставить все это в выражение:

$$\varepsilon_1 \le \frac{(1-3k)\varepsilon}{6f_{max}} = \frac{\varepsilon}{150}$$
$$\varepsilon_2 \le \frac{\varepsilon}{5}$$

Результаты экспериментов

Таким образом у меня получились координаты точек пересечения (таблица 1):

Кривые	X	У
1 и 3	-2.3905	2.0916
2 и 3	-0.5495	9.0990
1 и 2	1.2518	5.4965

Таблица 1: Координаты точек пересечения

Проиллюстрируем результаты графиком (рис. 1).

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа построена на двух основных функциях – root и integral

```
root(f,g,a,b,eps) Возвращаемое значение — корень f - g=0 (double) f и g — указатели на функции (double (*)()) g а и g — границы интервала (double) g — допустимая погрешность вычисления корня (double) g — инtegral g — значение — значение определённого интеграла g — указатель на подынтегральную функцию (double (*)()) g — и g — пределы интегрирования (double) g — допустимая погрешность вычисления интеграла g — допустимая погрешность вычисления интеграла g
```

Математические функции реализованы в виде методов

f1(x), f2(x), f3(x), f4(x), f5(x), f6(x)

Функции 1-3 реализованы на NASM

Функции 4-6 реализованы на Си и нужны для тестирования работы функций с численными методами

На вход все эти функции принимают x (double) – абсциссу, а возвращают $f_i(x)$ (double) – ординату.

Программа состоит из 4-х файлов:

таіп.с — главный файл, обрабатывает флаги, вызывает функции посчета calc.c — файл с функциями, выполняющими подсчеты — integral, root, f_4, f_5, f_6 HEAD.h — файл с заголовочными файлами и прототипами func.asm — файл с функциями f_1, f_2, f_3 на языке NASM

Сборка программы (Маке-файл)

```
all: main clean
main: main.o func.o
gcc -m32 -o main main.o func.o -lm
main.o: main.c
gcc -m32 -std=c99 -c main.c

func.o: func.asm
nasm -felf32 func.asm

clean:
rm *.o
```

Как видно из Make-файла – программа собирается из двух основных частей: main.c и func.asm.

В файле main.c подключен заголовочный файл HEAD.h, который прикрепляет к main.c все необходимое в процессе препроцессирования. Таким образом исходный файл линкуется из двух объектных файлов — main.o и func.o

Отладка программы, тестирование функций

Протестируем наши функции с численными методами на другом наборе функций (таблица 2) и (таблица 3). Во второй колонке значение, посчитанное моей программой, в третьей колонке – посчитанное через Wolfram Alpha.

Входные данные	X	Walpha
ln(x) + 2		
\sqrt{x}	0.215224	0.2152235
(0, 1]		
ln(x) + 2		
-x+5	2.207940	2.2079400
[2, 3]		
-x+5		
\sqrt{x}	3.208713	3.2087121
[3, 4]		

Таблица 2: Координаты точек пересечения

Подынтегральная функция	I	Walpha
ln(x) + 2 [1, 3]	5.2958	5.29583
-x + 5 [-2, 0]	12.0000	12.00000
	1.1455	1.14554

Таблица 3: Интегралы от других функций

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к этому отчету.

Анализ допущенных ошибок

При подключении библиотеки math.h возникли проблемы – она не подключалась. Исправить удалось с помощью использования флага -lm при линовке.

При нахождении корней методом деления отрезка пополам изначально я не учел, что возможны два случая: убывание и возрастание функции. Я рассматривал только один, и это привело к ошибкам в вычислении корней. Исправилось это проверкой и корректировкой входных данных перед непосредственной работой алгоритма.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Осокин А. Е. [http://e-lib.gasu.ru/eposobia/metody/R_4_7.html 4.7 Правило Рунге оценки погрешности. Экстраполяция Ричардсона.]