Problem Set 2

Linear Algebra

Sagnik Mukherjee

June 2, 2021

1. Given a field K and a subfield F of K, note that a K- Vector Space V is also a F- Vector space obtained by restricting the action of K over V to action of F.

Having the above idea in mind, is it possible to find a subset of \mathbb{R}^3 that is independent over \mathbb{Q} but dependent over \mathbb{R} . What about the converse?

(**Remark:** Given a a field K and its subfield F we saw that a vector space on K can be converted to a vector space on F. What about the converse? i.e. given a vector space over F can you extend it to a vector space over K. This question is quite hard and requires some non-trivial (possibly) construction. I don't compel you to think about it, but if you want you can)

- **2.** Let V be a finite dimensional \mathbb{C} -Vector Space, with dim V = n. Convert it to a real vector space V^{real} as in problem 1. Is V^{real} finite dimensional. If so, what is its dimension as \mathbb{R} Vector Space?
- **3.** Given a finite dimensional F- Vector space V and a strict subspace W, prove that W is finite dimensional and dim $W < \dim V$.
- **4.** A subset \mathbb{E} of \mathbb{R}^n such that $|E| \ge n$ is defined to be relatively independent if every n element subset of \mathbb{E} is L.I. For example consider three vectors in \mathbb{R}^2 such that no two of them are collinear with the origin. This set of 3 vectors is an example of Relatively Independent subset of \mathbb{R}^2 . Note that one can always find a subset of \mathbb{R}^n consisted of n+1 vectors

Find the largest possible number of vectors in a Relatively Independent subset of \mathbb{R}^n . State with proof. What about an arbitrary n- dimensional vector space over an arbitrary infinite field instead of \mathbb{R} ?

(**Hint:** Prove that if $\{x_1,...,x_k\}$ is a relatively independent subset, where $k \ge n$, then there exists x_{k+1} such that $\{x_1,...,x_k,x_{k+1}\}$ is Relatively Independent)

5. Finite Fields:

Here you will learn about basic facts on Finite fields. We could have done it in much simpler way, but that will require First Isomorphism Theorem.

First, note that given a field K with a subfield F, we can consider K as a F- Vector Space.

Definition: Given a field F, consider the additive subgroup of F generated by $\{1\}$. Order of this additive subgroup is defined to be the *Characteristic* of the field F.

In simpler word, if characteristic is n, then n is the smallest natural number such that

$$1 + 1 + \dots + 1$$
 (Added *n* times) = 0

Problem 5.1: Given a field F prove that its cardinality is either Infinite or a Prime number. In fact if the field F is finite then certainly the cardinality is a Prime number.

Problem 5.2: Prove that given any field K, the additive subgroup generated by $\{1\}$ is actually a subfield of K. When K is of finite characteristic, this subfield is defined as the *Prime Subfield* of F.

Problem 5.3: Any finite field K contains \mathbb{F}_p as a subfield (up to isomorphism) where p is the characteristic of K. Here $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. And by the word "up to isomorphism" we mean that K contains some isomorphic copy of \mathbb{F}_p . More explicitly, K contains F as a subfield where $F \cong \mathbb{F}_p$.

[Remark and Hint: You might not be familiar with Field Isomorphism. So here is the definition. Given two fields E and F, a map $\phi: E \to F$ is a field isomorphism if and only if ϕ is a set bijection and $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$.

Also prove that any two fields of prime order p are isomorphic

Problem 5.3: Prove that any finite field K has cardinality p^q where p is a prime number.

- **6.** Let F be a field with q elements. How may elements are there in F^n ? How may bases are there in F^n ?
- **7.** Given two F-Vector Subspaces U and W of a Vector Space V prove that $U+W=\{u+w: \forall u\in U, w\in W\}$ is also a vector subspace of V.
- 8. Given a vector Space V suppose there exists two subspaces U and W such that U+W=V and $U\cap W=\{0\}$. Then W is defined to be the "Algebraic Complement" of the subspace U in V and vice-versa. Prove that given a subspace U of V, one can always find an Algebraic Complement of U in V.
- **9.** Given a vector space V and a subset W of V, convince yourself that checking the facts on closure property only, i.e. $w_1 \in W, w_2 \in W \implies w_1 + w_2 \in W$ and $\in W, \alpha \in F \implies \alpha w \in W$ are enough to conclude that W is a subspace of V.

Consider similar problems for groups/rings/modules and answer them too. Do the groups especially!