Homework 5: Material Properties Analysis

Junesh Gautam

March 5, 2025

Problem 4.3: Tensile vs. Compressive Strength of Ceramics

Data and Plot

Table 3.4 provides tensile (σ_{ut}) and compressive (σ_{uc}) strengths for ceramics and glasses. Selected data pairs (in MPa):

Table 1: Selected Data from Table 3.4		
Material	σ_{ut} (MPa)	σ_{uc} (MPa)
Soda-lime glass	50	1000
Alumina, Al_2O_3	262	2620
Silicon carbide, SiC	307	2500

Figure 1: Tensile vs. compressive strength for ceramics. $\sigma_{uc} \gg \sigma_{ut}$.

Trend and Explanation

General Trend: Compressive strengths are $10\text{--}20\times$ higher than tensile strengths.

Physical Explanation: Brittle materials fail under tension due to flaw propagation, while compression closes flaws.

Problem 4.6: Hardness vs. Tensile Strength for Steels

(a) Brinell Hardness (HB) vs. σ_u

Conclusion: Eq. 4.4 ($\sigma_u = 3.45 \times HB$) underestimates strength at high HB. Improved slope: $\sigma_u = 3.8 \times HB$.

Ultimate Strength Vs Brinell Hardness

Figure 2: σ_u vs. HB. Dashed line: Eq. 4.4.

(b) Improved Relationship

Best-fit regression:

$$\sigma_u = 3.82 \times HB \quad (R^2 = 0.998)$$

Error reduced from 6% to 2%.

(c) Vickers Hardness (HV) vs. σ_u

Ultimate Strength Vs Vickers Hardness

Figure 3: σ_u vs. HV.

$$\sigma_u = 3.62 \times HV \quad (R^2 = 0.997)$$

Problem 4.10: Four-Point Bending Equations

Derivation of Fracture Strength (σ_{fb}) and Elastic Modulus (E)

For a rectangular cross-section beam (width t, height 2c) in four-point bending:

Figure 4: Four-point bending configuration with loading distance L_1 and total span L

1. Fracture Strength (σ_{fb})

1. Bending moment between loading points:

$$M = \frac{P_f L_1}{2}$$

2. Second moment of area:

$$I = \frac{t(2c)^3}{12} = \frac{2}{3}tc^3$$

3. Bending stress equation:

$$\sigma_{fb} = \frac{Mc}{I} = \frac{\left(\frac{P_f L_1}{2}\right)c}{\frac{2}{3}tc^3}$$

4. Final fracture strength equation:

$$\sigma_{fb} = \frac{3P_f L_1}{4tc^2}$$

2. Elastic Modulus (E)

1. Maximum deflection formula:

$$v_{max} = \frac{PL_1(3L^2 - 4L_1^2)}{48EI}$$

3

2. Solve for E using stiffness (dP/dv) from linear region:

$$E = \frac{L_1(3L^2 - 4L_1^2)}{48I} \left(\frac{dP}{dv}\right)$$

3. Substitute $I = \frac{2}{3}tc^3$:

$$E = \frac{L_1(3L^2 - 4L_1^2)}{32tc^3} \left(\frac{dP}{dv}\right)$$

Key Differences from Three-Point Bending

- Constant bending moment between loading points $(L_1 < x < L L_1)$
- Different deflection equation form due to load distribution
- Reduced shear component compared to three-point bending

Problem 4.13: Shear Modulus and Yield Strength

Given:

- Shaft radius: $r = 9.53 \,\mathrm{mm} = 0.00953 \,\mathrm{m}$
- Gauge length: $L = 160 \,\text{mm} = 0.160 \,\text{m}$
- Torque (T) vs. twist angle (θ) data (Table P4.13)

(a) Shear Modulus G:

Steps:

- 1. Select linear region data: $T = 77.9 \,\mathrm{N}\,\mathrm{m}, \, \theta = 2^{\circ}$
- 2. Convert twist angle to radians:

$$\theta_{\rm rad} = 2^{\circ} \times \frac{\pi}{180^{\circ}} = 0.0349 \, {\rm rad}$$

3. Calculate shear strain (γ) :

$$\gamma = \frac{\theta_{\text{rad}} \cdot r}{L} = \frac{0.0349 \, \text{rad} \times 0.009 \, 53 \, \text{m}}{0.160 \, \text{m}} = 0.002 \, 08$$

4. Calculate polar moment of inertia (J):

$$J = \frac{\pi r^4}{2} = \frac{\pi (0.00953 \,\mathrm{m})^4}{2} = 1.717 \times 10^{-8} \,\mathrm{m}^4$$

5. Calculate shear stress (τ) :

$$\tau = \frac{T \cdot r}{J} = \frac{77.9 \,\mathrm{N\,m} \times 0.009\,53\,\mathrm{m}}{1.717 \times 10^{-8}\,\mathrm{m}^4} = 43.3\,\mathrm{MPa}$$

6. Compute shear modulus (G):

$$G = \frac{\tau}{\gamma} = \frac{43.3 \,\text{MPa}}{0.002 \,08} = \boxed{20.8 \,\text{GPa}}$$

(b) Shear Yield Strength τ_o :

Steps:

- 1. Identify yield point: Nonlinearity begins at $T \approx 351 \,\mathrm{Nm}$
- 2. Calculate shear stress at yield:

$$\tau_o = \frac{T_{\text{yield}} \cdot r}{I} = \frac{351 \text{ N m} \times 0.009 53 \text{ m}}{1.717 \times 10^{-8} \text{ m}^4} = \boxed{195 \text{ MPa}}$$

4

Figure 5: Torque vs. twist angle curve. The linear region is used to calculate G, and the yield point marks τ_o .