

QUALIDADE DE SOFTWARE 1

Profa. CRISTIANE SOARES RAMOS
ENGENHARIA DE SOFTWARE
FACULDADE DO GAMA
UNIVERSIDADE DE BRASÍLIA

• INTRODUÇÃO A MEDIÇÃO & ANÁLISE

AGENDA

1.

Universidade de Brasília

FUNDAMENTOS DE MEDIÇÃO E ANÁLISE

O QUE É MEDIÇÃO?

Medição é o processo pelo qual números e símbolos são atribuídos aos atributos de entidades do mundo real como uma forma de descrevê-los de acordo com regras claramente definidas

O QUE É MEDIÇÃO?

Medição é o processo pelo qual números e símbolos são atribuídos aos atributos de entidades do mundo real como uma forma de descrevê-los de acordo com regras claramente definidas

MEDIÇÃO E ANÁLISE

Frankie is taller than Wonderman.

Frankie is tall.

Wonderman is tall.

Peter is not tall.

Relações empíricas para o atributo altura

Frankie is not much taller than Wonderman.

Frankie is much taller than Peter.

Peter is higher than Frankie if sitting on Wonderman's shoulders.

X é maior que Y ou

Y é maior que X ou

X é muito maior que Z

CONCEITOS

ENTIDADE: Objeto a ser caracterizado pela medição dos seus atributos.

ATRIBUTO (mensurável):

- é uma propriedade distinguível ou uma característica de uma entidade de software.
- Uma entidade pode ter vários atributos, mas somente alguns podem ser medidos

MEDIÇÃO: Processo de coletar métrica

MEDIDA: Valor coletado para uma métrica

MÉTRICA:

- Um método de medição e uma escala de medida.
- Incluem métodos para caracterizar os dados quantitativos.

	T. (1)TU			
	Entity	Attribute	Measure	
1	Completed project	Duration	Months from start to finish	
2	Completed project	Duration	Days from start to finish	
3	Program code	Length	Number of lines of code (LOC)	
4	Program code	Length	Number of executable statements	
5	Integration testing process	Duration	Hours from start to finish	
6	Integration testing process	Rate at which faults are found	Number of faults found per KLOC (thousand LOC)	
7	Test set	Efficiency	Number of faults found per number of test cases	
8	Test set	Effectiveness	Number of faults found per KLOC (thousand LOC)	
9	Program code	Reliability	Mean time to failure (MTTF) in CPU hours	
10	Program code	Reliability	Rate of occurrence of failures (ROCOF) in CPU hours	

TIPOS DE MEDIÇÃO

A <u>Medição direta</u> constitui o processo natural de tentar entender as entidades e os atributos que elas possuem. Mas não exclui a possibilidade de medições mais precisas que poderão ser atingidas <u>indiretamente</u>

CLASSIFICAÇÃO DOS TIPOS DE MEDIÇÃO

Direta

O atributo de uma entidade não envolve nenhum outro atributo ou entidade.

Exemplos:

- <u>Tamanho</u> do código fonte (linhas de código);
- <u>Duração</u> do processo de teste (tempo decorrido em horas);
- <u>Número de defeitos descobertos</u> durante o processo de teste (quantidade de defeitos);
- <u>Tempo</u> que um programador passa em um projeto (meses trabalhados)

Indireta

O atributo de uma entidade envolve outro atributo ou entidade.

Exemplo:

Densidade de defeito do módulo número de defeitos

__ tamanho do módulo

The following direct measures are commonly used in software engineering:

- Size of source code (measured by LOC)
- Schedule of the testing process (measured by elapsed time in hours)
- *Number of defects discovered* (measured by counting defects)
- *Time* a programmer spends on a project (measured by months worked)

TABLE 2.4 Examples of Common Derived Measures Used in Software Engineering

Programmer productivity	LOC produced/person-months of effort
Module defect density	Number of defects/module size
Defect detection efficiency	Number of defects detected/total number of defects
Requirements stability	Number of initial requirements/total number of requirements
Test coverage	Number of test requirements covered/total number of test requirements
System spoilage	Effort spent fixing faults/total project effort

Objetivas:

 Expressões numéricas ou representações gráficas de expressões numéricas que podem ser computadas a partir da medição de uma entidade, produto ou recurso.

Subjetivas

 Medidas relativas, baseadas em estimativas pessoais ou de grupo (ex.: bom, ruim, etc)

ESCALA DE MEDIÇÃO

Escala é um conjunto de valores ordenados ou um conjunto de categorias para o qual um atributo é mapeado.

Define um intervalo de valores possíveis que podem ser produzidos ao executar um método de medição.

Provê valores e unidades para a descrição dos atributos das entidades que estão sendo medidas e podem ser de diferentes tipos. Escala

- Ajuda a entender ou avaliar a entidade.
- Método para atribuir valor aos atributos

TIPOS DE ESCALA - NOMINAL

É o mais simples tipo de escala. Classifica os elementos em categorias no que diz respeito a um determinado atributo;

Provê um nome ou um valor para um atributo

A ordem dos valores não tem nenhum significado para a sua interpretação.

Os nomes das categorias e sua sequencia não estabelece nenhum relacionamento entre as categorias.

- Todas as categorias juntas devem cobrir todas as possíveis categorias de um atributo (conjunto exaustivo)
- Um assunto é classificado em uma (apenas uma) categoria (mutuamente exclusivo).

TIPOS DE ESCALA - NOMINAL

Exemplos:

- as religiões (católico, protestante, budista, judeu);
- a cor dos cabelos das pessoas (ruivo, castanho, louro);
- os nomes das linguagens de programação (Java, Visual Basic, C++);
- Tipos de linhas de código (executáveis, comentários, em branco);

TIPOS DE ESCALA - ORDINAL

Acrescenta a noção de ordem à escala nominal;

Permite que os resultados sejam colocados em uma determinada ordem (ascendente ou descendente);

É possível não apenas agrupar, mas também ordenar. Mas não oferece informações sobre a magnitude das diferenças entre os elementos.

Ao transformar as relações em operações matemáticas as operações de adição, subtração, multiplicação e divisão não podem ser usadas.

Usa-se apenas as relações "maior que" e "menor que".

TIPOS DE ESCALA - ORDINAL

Exemplos:

- Classe social (alta, média, baixa)
- Níveis de maturidade do CMMI (nível 2, nível 3, nível 4, nível 5)
- Satisfação do usuário (Completamente insatisfeito (1), Insatisfeito(2), Neutro(3), Satisfeito(4), Completamente satisfeito(5))
- Experiência de um membro da equipe (sem experiência, com pouca experiência, experiente)

TIPOS DE ESCALA - INTERVALO

Preserva a importância da ordem dos resultados assim como a escala ordinal;

Possui informações sobre o tamanho dos intervalos que separam os pontos da escala, permitindo realizar uma análise melhor sobre os resultados (FENTON et al., 2015).

É possível realizar somas e subtrações.

TIPOS DE ESCALA - INTERVALO

Exemplos:

- horário
- datas
- temperatura (Fahrenheit e Celsius)
 - Quando uma cidade está com dez graus celsius e a outra está com vinte graus, pode-se dizer que a diferença de temperatura é de dez graus, porém não se pode dizer que uma tem o dobro de temperatura da outra.

TIPOS DE ESCALA - RACIONAL

Preserva as mesmas características da escala de intervalo (possui ordem e tamanho dos intervalos)

Representa também a razão entre as entidades

Possui o elemento zero (representa a total ausência do atributo medido)

Pode iniciar em zero e aumentar em intervalos iguais conhecidos como unidades (FENTON e PFLEEGER, 1997)

Todas as funções aritméticas podem ser utilizadas gerando resultados significativos

Exemplos: intervalos de tempo, custo, esforço

TIPOS DE ESCALA - ABSOLUTA

É feita, unicamente, através da contagem do número de elementos de uma determinada entidade (FENTON e PFLEEGER, 1997).

Para esta escala só existe uma maneira pela qual a medição pode ser realizada;

Todas as funções aritméticas produzem resultados significativos.

Exemplos:

- número de falhas observadas durante um teste de integração;
- número de pessoas que estão trabalhando em um projeto de software.

A quantidade de defeitos ou a quantidade de pessoas só pode ser medida de uma maneira, contando os elementos do conjunto, ou seja, o número de defeitos encontrados ou o número de pessoas.

HIERARQUIA DAS ESCALAS DE MEDIÇÃO

Cada nível de escala possui todas as propriedades da escala de nível inferior.

A escala de maior nível pode ser reduzida ao nível inferior, mas o contrário não é possível.

CLASSIFICANDO AS MEDIDAS DE SOFTWARE

CLASSIFICAÇÃO DAS ENTIDADES

Atividades de medição de software iniciam com a identificação de entidades e atributos que queremos medir.

As entidades são divididas em 3 classes:

Processo: coleção de atividades relacionadas com software.

- Geralmente está associado a uma escala de tempo
- Atividades estão ordenadas ou relacionadas de uma maneira que depende de tempo (ex.: somente após finalizar uma tarefa a outra poderá ser iniciada)

Produto: qualquer artefato, *deliverable* ou documentos que resultem de uma atividade de processo.

Recursos: entidades requeridas por uma atividade de processo.

Recursos e produtos estão associados ao processo.

CLASSIFICAÇÃO DAS ENTIDADES

Entidades de processo

Podem ser usadas para melhorar um processo de desenvolvimento ou de manutenção de software.

Exemplos:

- a efetividade de remoção de defeitos durante o desenvolvimento,
- tempo de resposta para corrigir um problema,
- o percentual de problemas resolvidos durante um mês,
- tempo de entrega de acertos
- Etc

EXERCÍCIO — MÉTRICAS DE PROCESSO

ENTIDADE DE PROCESSO	ATRIBUTO	POSSÍVEIS MÉTRICAS
TESTE		
MANUTENÇÃO		

EXEMPLO: ENTIDADES DE PROCESSO, ATRIBUTOS E MÉTRICAS

ENTIDADE DE PROCESSO	ATRIBUTO	POSSÍVEIS MÉTRICAS
TESTE	VOLUME	- Número de testes planejados
	PROGRESSO	Número de testes executadosNúmero de testes executados com sucesso
MANUTENÇÃO	CUSTO	Custo (R\$) por anoEsforço da equipe por solicitação de mudança

CLASSIFICAÇÃO DAS ENTIDADES

Entidades de produto

Descrevem as características do produto, como:

- tamanho,
- complexidade,
- níveis de qualidade.

A norma SQUARE propõe um conjunto de métricas para avaliar a qualidade de um produto de software.

EXERCÍCIO — MÉTRICAS DE PRODUTO

ENTIDADE DE PRODUTO	ATRIBUTOS	MÉTRICAS POSSÍVEIS
Documento		
Defeito		

EXEMPLO: ENTIDADES DE PRODUTO, ATRIBUTOS E MÉTRICAS

ENTIDADE DE PRODUTO	ATRIBUTOS	MÉTRICAS POSSÍVEIS
Sistema	Tamanho	Número de módulosNúmero de linhas de código
	Densidade de defeito	- Quant. de defeitos por mil linha de código (KLOC)
Documento	Tamanho	- Número de páginas
Defeito	Origem	- Nome da atividade onde o defeito foi introduzido
	Esforço para correção	- Esforço da equipe (horas)

EXERCÍCIO: MÉTRICAS RECURSOS

ENTIDADE DE PRODUTO	ATRIBUTOS	MÉTRICAS POSSÍVEIS
EQUIPE DO PROJETO		
FERRAMENTA CASE		

CLASSIFICAÇÃO DAS ENTIDADES

Entidades de recurso

Descrevem as características do produto, como:

- tamanho,
- complexidade,
- níveis de qualidade.

A norma SQUARE propõe um conjunto de métricas para avaliar a qualidade de um produto de software.

EXEMPLO: ENTIDADES DE RECURSO, ATRIBUTOS E MÉTRICAS

ENTIDADE DE PRODUTO	ATRIBUTOS	MÉTRICAS POSSÍVEIS
EQUIPE DO PROJETO	Tamanho da equipe	- Número de pessoas na equipe
	Experiência	Número de anos de experiênciaNúmero de anos de experiência em programação
FERRAMENTA CASE	Uso	Sim / Não

As classes de entidades possuem atributos internos e atributos externos

Atributos internos:

- Podem ser medidos puramente por meio da análise do processo, produto ou recurso, separado de seu comportamento.
- Aplicado a um produto não-executável
- <u>Exemplo</u>: sem executar o código de um software é possível determinar os atributos internos:
 - tamanho (linhas de código, número de operandos...),
 - complexidade (número de pontos de decisão no código),
 - dependência entre os módulos
 - Apenas com a leitura do código é possível encontrar :
 - vírgulas mal colocadas
 - Uso inadequado de comandos

Atributos externos:

- Podem ser medidos somente se relacionados ao seu comportamento que é mais importante que a própria entidade.
- São obtidos a partir do comportamento do sistema por meio de testes, operação ou observando sua execução em um ambiente.
- Exemplo: Quando o código é executado:
 - Número de falhas encontradas pelo usuário
 - Dificuldade do usuário na navegação de telas
 - Tempo de resposta em uma pesquisa do banco de dados

"MEDIÇÃO PRESSUPÕE ALGUMA COISA A SER MEDIDA, E
A MENOS QUE NÓS CONHEÇAMOS O QUE ESTA ALGUMA
COISA É, NENHUMA MEDIÇÃO PODE TER QUALQUER
SIGNIFICADO".

(PETER CAWS, 1959)

22/03/2021

QUALIDADE DE SOFTWARE 1

Profa. CRISTIANE SOARES RAMOS
ENGENHARIA DE SOFTWARE
FACULDADE DO GAMA
UNIVERSIDADE DE BRASÍLIA

• Fundamentos de medição e análise.