Sintesi di Reti Combinatorie

Metodo delle Mappe di Karnaugh (versione 1 ottobre 2002)

Introduzione
Reti completamente specificate
Le condizioni di indifferenza
Reti non completamente specificate

Sintesi di reti combinatorie a due livelli

Obiettivo:

- Ridurre la complessità di una (o più) funzioni booleane espresse in forma di Prodotto di Somme o di Somma di Prodotti (SOP)
- Ci si riferirà alla sola forma Somma di Prodotti o SOP
- Nella sintesi a due livelli gli obiettivi sono due:
 - Riduzione del numero dei termini prodotto (principale)
 - Riduzione del numero di letterali (secondario)
- Metodologie di sintesi ottima:
 - Metodo delle mappe di Karnaugh
 - Metodo di Quine Mc Cluskey
 - Euristiche per sintesi a due livelli

Identificare forme minime a due livelli applicando la regola di riduzione:

$$aZ + a'Z = (a + a')Z = Z$$

- In cui z è un termine prodotto di n-1 variabili
 - Esempio
 abcd' + ab'cd' = acd'
- La riduzione può essere applicata iterativamente
 - Esempio

```
abc'd' + abc'd + abcd' + abcd =
abc'(d'+d) + abc(d'+d) =
abc' + abc =
ab(c'+c) = ab
```


- II metodo appena visto
 - ▶ È applicato ad un numero di termini pari a 2ⁿ
 - Mantiene inalterato il numero dei livelli
 - Somme di prodotti rimangono tali
 - Al più, tali espressioni possono banalizzarsi
 - Divengono semplici prodotti
 - Divengono costanti

- La relazione vista può essere applicata direttamente alle espressoni algebriche che definiscono una rete
- Il problema consiste nell'identificare:
 - ▶ Tutti i termini su cui applicare la riduzione
 - Non è sempre immediato identificare tutti termini su cui applicare la regola di riduzione identificata
 - Tutti i termini che partecipano a più riduzioni contemporaneamente e replicarli
 - Si ricordi che, per le proprietà dell'algebra di Boole, la relazione

$$x + x = x$$

può essere applicata anche come

$$x = x + x$$

Esempio di replicazione dei termini:

a b	f(a,b)	
0 0	0	
0 1	1	f(a,b) = a'b + ab + ab'
1 0	1	
1 1	1	1 2

$$f_1(a,b) = (a'+a)b + ab' = b + ab'$$

 $f_2(a,b) = a'b + a(b+b') = a'b + a$

Esempio di replicazione dei termini:

a b	f(a,b)	
0 0	0	
0 1	1	f(a,b) = a'b + ab + ab'
1 0	1	
1 1	1	

- Il metodo delle mappe di Karnaugh consente di risolvere direttamente i problemi identificati
 - Replicazione dei termini
 - Identificazione dei termini da raggruppare
- Il metodo delle mappe di Karnaugh è grafico
 - La sua applicazione è semplice per funzioni di un numero di variabili fino a 4
 - Risulta complesso per un numero di variabili da 5 a 6
 - È praticamente inattuabile per un numero di variabili superiori a 6

- Una mappa di Karnaugh
 - È uno schema deducibile dalla rappresentazione geometrica delle configurazioni binarie
- Definizione di distanza di Hamming
 - Numero di bit che cambia nel passare da una configurazione binaria ad un'altra
 - Esempio
 - Distanza di Hamming tre le configurazioni 01001 e 10101

```
01001
10101
```

La distanza è pari a 3 poiché cambiano 3 bit

- La regola di riduzione
 - Consiste nell'identificare le configurazioni binarie associate ai termini prodotto che sono a distanza di Hamming unitaria
 - A tali configurazioni corrispondono coppie di mintermini in cui una sola variabile è naturale in un mintermine e complementata nell'altro
 - Esempio:
 - abcd' + ab'cd'
 abcd' = 1110
 ab'cd' = 1010
 - I mintermini 1110 e 1010 sono ad una distanza di Hamming pari ad 1

- Funzione binaria a n variabili **f:** {0,1}ⁿ \rightarrow {0,1}
- Può essere rappresenta
 - Mediante tabella della verità
 - Mediante rappresentazione geometrica cartesiana in uno spazio a n dimensioni in cui gli assi sono le variabili della funzione
- Esempio a 2 variabili

a	b	f(a,b)
0	0	0
0	1	1
1	0	1
1	1	1

Esempio a 3 variabili

a	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

N-Cubi

- Nella rappresentazione cartesiana di una funzione in uno spazio a n dimensioni, collegando i vertici le cui configurazioni sono a distanza di Hamming unitaria si ottinene un n-cubo
- Spazio a 1 dimensione (1 variabile)
 - ▶ È una linea
 - L'1-cubo è un segmento
 - I due vertici sono associati alle configurazioni 0 e 1

N-Cubi

- Spazio a 2 dimensioni (2 variabili)
 - ▶ È il piano
 - ► Il 2-cubo è un quadrato
 - Si ottiene dall'1-cubo per proiezione
 - Si premette 0 alle configurazioni dei vertici originali, 1 a quelle dei vertici proiettati

N-Cubi

- Spazio a 3 dimensioni (3 variabili)
 - ▶ È lo spazio tridimensionale
 - ▶ Il 3-cubo è un solido
 - Si ottiene dal 2-cubo per proiezione
 - Premettendo 0 alle configurazioni dei vertici originali, 1 a quelle dei vertici proiettati

N-Cubi e Tabelle della verità

- Si può trasportare
 - Una tabella delle verità a n variabili su un n-cubo
 - Marcando opportunamente i nodi associati a 0 e 1
- Si sottolinea nuovamente che
 - Due configurazioni sono a distanza unitaria (adiacenti) se e solo se i vertici associati sono collegati da un lato

N-Cubi e Mappe

- La rappresentazione in uno spazio a n dimensioni non è maneggevole
 - Già per sole tre dimensioni non è di semplice utilizzo
 - Si passa allo sviluppo nel piano dei cubi
- Al cubo sviluppato nel piano
 - Che ha 2ⁿ vertici
- Si sovrappone una mappa
 - Con 2ⁿ caselle organizzate secondo righe e colonne

N-Cubi e Mappe

- Una mappa così realizzata è una mappa di Karnaugh:
 - Le configurazioni assunte dalla variabili di ingresso danno origine gli indici di riga e colonna della mappa
 - ▶ In ogni casella si trascrive il valore assunto dalla funzione quando la configurazione delle variabili corrisponde a quella delle coordinate che contrassegnano le caselle
 - In una mappa di Karnaugh, due caselle che condividono un lato di un n-cubo corrispondono a due configurazioni di variabili adiacenti (distanza di Hamming pari ad 1)

$$f(a,b) = ONset(1,2)$$

N-Cubi e Mappe

- Lo sviluppo di un 3-cubo implica il taglio del cubo
- Il taglio deve mantenere intatta la adiacenza fra vertici
 - Si presti molta attenzione all'ordinamento delle coordinate
 - Ordinamento delle coordinate mantiene le distanze di Hamming e non coincide con la numerazione consecutiva

Raggruppamenti

- Caratteristiche delle mappe
 - ▶ Un implicante è una funzione p associata ad un termine prodotto di m letterali con $1 \le m \le n$ tale per cui $f \ge p$
 - Cioè p implica f.
 - Per ogni 1 in p corrisponde un 1 in f.
 - Un mintermine è un implicante in cui m=n.

- Individuare gli implicanti primi e primi essenziali:
 - Implicante primo
 - Funzione p associata ad un termine prodotto a cui corrisponde un raggruppamento di dimensione massima
 - Cioè, l'eliminazione di un qualsiasi letterale dal prodotto genera un prodotto tale che la nuova funzione q *non implica* f
 - Implicante primo essenziale
 - Implicante primo che copre uno o più 1 non coperti da nessun altro implicante primo.
- Copertura:
 - Scelta del minor numero di implicanti primi ed essenziali

- Identificare una forma SoP che
 - Includa il numero minimo di implicanti
 - A parità di numero di prodotti, l'implicante associato al prodotto col minimo numero di letterali (definita come forma minima)
 - Garantisca la copertura di tutti gli 1 della funzione
- Teorema:
 - Esiste una forma minima costituita da soli implicanti primi
 - Gli implicanti primi essenziali devono essere inclusi nella forma minima
 - Una forma minima costituita da soli implicanti primi essenziali è unica
 - La condizione è solo sufficiente

Esempio 2

Raccoglimento essenziale di dimensione massima

Raccoglimento di dimensione massima

Termine appartenente ad un solo implicante primo

- Ad ogni raccoglimento è associato un termine prodotto
- Il termine prodotto associato ad un implicante è ottenuto:
 - Identificando le variabili che non cambiano mai di valore
 - Riportando ogni variabile in modo diretto
 - Se il valore che essa assume è 1
 - In modo complementato
 - Se il valore da essa assunto è 0
- Osservazione:
 - Un numero di 2^m uno raccolti produce un termine prodotto di nm letterali dove n è il numero di variabili della funzione
 - Esempio: per una funzione di 4 variabili un implicante che raccoglie
 4 uni è associato ad un prodotto di 2 variabili

Esempio 3

La variabile **a** non cambia valore: **a** = 0, **a** compare negata nel prodotto La variabile **b** cambia valore: **b** non compare nel termine prodotto La variabile **c** non cambia valore: **c** = 0, **c** compare negata nel prodotto La variabile **d** cambia valore: **d** non compare nel termine prodotto

Il termine prodotto corrispondente è a'c'

- Una copertura è
 - Un sottoinsieme degli implicanti identificati tale per cui nessun 1 della funzione rimane scoperto
 - Poiché ogni implicante scelto aumenta il un costo della realizzazione della funzione, il numero di implicanti da scegliere deve essere il minore possibile.
- L'obiettivo è la riduzione del costo
 - Identificazione della copertura di minima cardinalità:
 - Sottoinsieme degli implicanti primi e primi ed essenziali identificati che realizza una copertura della funzione che è di cardinalità minima

- Scelta degli implicanti per realizzare la copertura:
 - Si scelgono tutti gli implicanti primi essenziali
 - Sono parte della copertura poiché "sono essenziali" e, quindi, non è possibile fare a meno di loro
 - Si eliminano gli implicanti primi coperti da quelli essenziali
 - Gli implicanti eliminati, detti completamente ridondanti, coprono degli 1 che sono già ricoperti da quelli essenziali
 - Si seleziona il numero minore di implicanti primi rimasti
 - Gli implicanti residui sono detti parzialmente ridondanti
 - Osservazione:
 - La scelta viene fatta seguendo un criterio basato sulla pura osservazione della tabella

- Esempio 1:
 - Selezione degli implicanti primi essenziali

a'b

lmplicanti primi
b'c'd' acd' ab'd'

$$F(a,b,c,d) = a'c' + bc + ...$$

Esempio 1:

- Copertura dei rimanenti termini
- Forma minima

$$F(a,b,c,d) = a'c' + bc + ab'd'$$

- Esempio 2:
 - Forme equivalenti


```
a'b'c' a'bd abc ab'd'
b'c'd' a'c'd bcd acd'
```

```
F(a,b,c,d) = a'b'c' + a'bd + abc + ab'd'
F(a,b,c,d) = b'c'd' + a'c'd + bcd + acd'
```

Condizioni di indifferenza

- Condizioni di Indifferenza o don't care
 - La specifica di un progetto (la descrizione di quello che si vuole progettare) contiene, spesso, delle condizioni di indifferenza
 - Le condizioni di indifferenza corrispondono a configurazioni di ingresso per le quali il valore dell'uscita non è noto e non è neppure di interesse sapere quanto può valere
 - Questo accade quando:
 - Le configurazioni di ingresso non si presentano mai
 - Le configurazioni di ingresso impediscono di osservare l'uscita della rete

Condizioni di indifferenza

- Le configurazioni di ingresso per le quali il valore dell'uscita è non specificato costituiscono il DCset della funzione
- Sulla tabella delle verità (o in una mappa di Karnaugh) il valore non specificato della funzione si indica i simboli "-" o "x"
- Le condizioni di indifferenza sono gradi di libertà nel processo di sintesi
 - Ai DC si può assegnare il valore 0 o 1 a seconda di quanto conviene per minimizzare la funzione
 - Una condizione di indifferenza non deve necessariamente essere coperta da un implicante

Condizioni di indifferenza

Importante

- Gli implicanti primi realizzati solamente mediante condizioni di indifferenza non hanno alcuno scopo
- Un implicante primo non diventa essenziale quando è l'unico a coprire una data condizione di indifferenza

- Sintetizzare una funzione di 4 ingressi a, b, c, d
 - Gli ingressi codificano cifre decimali in codice BCD
 - L'uscita vale 1 se e solo se la cifra in ingresso è minore o uguale a 3 oppure maggiore o uguale a 8
- Dalla specifica risulta che
 - Delle 16 possibili configurazioni degli ingressi solo 10 potranno effettivamente presentarsi (Codifica BCD)
 - In corrispondenza delle configurazioni di valori impossibili, non interessa il valore che la funzione può assumere
 - In questi casi, il valore dell'uscita è non specificato

Tabella della verità

BCD	a	b	С	đ	£
0	0	0	0	0	1
1	0	0	0	1	1
1 2 3	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
_	1	0	1	0	_
_	1	0	1	1	- - -
_	1	1	0	0	-
_	1	1	0	1	_
_	1	1	1	0	-
_	1	1	1	1	-

Mappa di Karnaugh

ab\c	d 00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	ı	-	I	ı
10	1	1	-	ı

- Ignorando la presenza dei gradi di libertà introdotti dalle condizioni di indifferenza
 - L'utilizzo dei soli 1 porterebbe a identificare due implicanti primi essenziali

$$f(a,b,c,d) = a'b' + b'c'$$

- Servendosi delle condizioni di indifferenza si migliora il risulato riducendo il costo della realizzazione
 - Assegnando valore 1 in corrispondenza di 1010 e 1011 e valore 0 in corrispondenza delle altre configurazioni

f(a,b,c,d) = b'

- Si voglia sintetizzare la rete RC di figura soggetta ai seguenti vincoli di progetto:
 - Il valore assunto da a è sempre uguale a quello di b
 - ► Il valore di f è 1
 - Quando a=0, b=0
 - Quando a=1, b=1, c=0
 - ► Il valore di f è 0
 - In tutti gli altri casi

- Non facendo alcuna considerazione
 - Sul contesto in cui è inserito il circuito
 - Sul fatto che a deve essere uguale a b

a	b	С	£
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
_1	1	1	0

c a	00	01	11	10
0	1	0	1	0
1	1	0	0	0

$$f(a,b,c) = a'b' + abc'$$

- Considerando il solo vincolo sugli ingressi
 - ▶ a è sempre uguale a b

a	b	C	£		a	b	C	<u>f</u>
0	0	0	1		0	0	0	1
0	0	1	1		0	0	1	1
0	1	0	0		0	1	0	_
0	1	1	0		0	1	1	_
1	0		0		1	0	0	_
1	0	1	0		1	0	1	_
1	1	0	1	•	1	1	0	1
_1	1	1	0		_1	1	1	0

$$f(a,b,c) = a' + c'$$

 $f(a,b,c) = b' + c'$

- Considerando i vincoli imposti sulle uscite
 - ▶ Dato che z=cf, quando c=0 allora z non dipende da f

a b c	f	Z		a b c	f
0 0 0	1	0	z indipendente da £	0 0 0	_
0 0 1	1	1		0 0 1	1
0 1 0	_	_	z indipendente da £	0 1 0	-
0 1 1	_	_		0 1 1	-
1 0 0	_	-	z indipendente da £	1 0 0	-
1 0 1	_	_		1 0 1	-
1 1 0	1	0	z indipendente da £	1 1 0	-
1 1 1	0	0		1 1 1	0

$$f(a,b,c) = a'$$

- Rispetto al caso senza condizioni di indifferenza si hanno seguenti variazioni
 - Individuare gli implicanti primi e primi essenziali considerando le condizioni di indifferenza come se fossero tutte 1
 - Si ricordi che gli implicanti primi realizzati solamente mediante condizioni di indifferenza non hanno alcun valore
 - Coprire solo l'ONset della funzione con gli implicanti
 - Infatti, i soli termini significativi sono gli 1 della funzione
 - Questi termini sono gli unici elementi di rilievo (vincoli)