获得的答案

A Deterministic Finite State automaton can be simulated on the Turing Machine with stay put instead of left. The modifications can be done if transitions are added from state in F to q_{accept} and from the states outside F to q_{relect} when a blank symbol is read.

Assume there is a Turing Machine M, such that $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ with stay put instead of left. Create a DFA such that the DFA $(Q', \Sigma', \delta', q_0', F)$ recognizes the same language.

The machine M cannot move left and cannot write anything that it can written on the tape while moving to the right. Thus, the access is one-way.

For every DFA, there exists a Turing Machine that accepts the same language because a DFA is a Turing Machine with read only tape and tape head with moves to right.

The transition function δ' for the NFA is as follows:

First, set $\delta'(q_{\text{start}}, P) = \{q_{\textit{OP}}\}$ where $q_{\textit{op}}$ is the start state of TM variant.

Next, set
$$\delta'(q_{accept}, i) = \{q_{accept}\}$$
 For any i

If
$$\delta(p,a) = (q_{\text{accept}},b,w)$$
 where $w = R$ or S , set $\delta'(q_{pa},\in) = \{q_{\text{accept}}\}$

R is RIGHT S is stay put.

If
$$\delta(p,a) = (q_{reject}, b, w)$$
 where $w = R$ or S , we set $\delta'(q_{pa} \in) = \{q_{reject}\}$

- For each $a \in \Sigma$, set $\delta'(q_{start}, a) = \{\langle q_0, a \rangle\}$, where q_0 is start state of S.
- For each $p,q \in Q$ where $p \notin \{q_{accept},q_{reject}\}$, for each $a \in \Gamma$, if S has transition of form $\delta(p,a) = (q_{accept},b,w)$ or $\delta(p,a) = (q_{reject},b,w)$, w becomes R for each $c \in \Sigma$, set $\delta'(\langle p,a \rangle,c) = \{\langle q,c \rangle\}$.
- For each $p,q \in Q$ where $p \notin \{q_{accept},q_{reject}\}$, for each $a \in \Sigma$, if S has transition of form $\delta(p,a) = (q_{accept},b,w)$ or $\delta(p,a) = (q_{reject},b,w)$, w becomes S then set $\delta'(\langle p,a\rangle,\varepsilon) = \{\langle q,b\rangle\}$

Thus, an NFA is constructed which is defined as follows:

$$\left(Q'=Q,\Sigma'=\Sigma,\delta',q_{op}=q_{start},F\right)$$
 From our TM variant S.

The language recognized by NFA is regular languages.