Cryptography Homework 2

2024 Spring Semester

21 CST H3Art

Exercise 3.5 (The solution of problem b was wrong)

- (a) Prove that the *Affine Cipher* achieves perfect secrecy if every key is used with equal probability 1/312.
- (b) More generally, suppose we are given a probability distribution on the set

$$\{a \in \mathbb{Z}_{26} : \gcd(a, 26) = 1\}.$$

Suppose that every key (a, b) for the *Affine Cipher* is used with probability $\mathbf{Pr}[a]/26$. Prove that the *Affine Cipher* achieves perfect secrecy when this probability distribution is defined on the keyspace.

Solution:

(a) Proof:

Definition of perfect secrecy: A cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ has perfect secrecy if p(x|y) = p(x) for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$.

To prove p(x|y)=p(x), for each $a\in\mathbb{Z}_{26}^*$, $b\in\mathbb{Z}_{26}$, suppose $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}$, since every key is used with equal probability 1/312, for every pair of (x,y), we choose a specific a, therefore, the key K can be represented as (a,y-ax), and there are $\Phi(26)=12$ possible choices for a.

For every ciphertext $y \in \mathcal{C}$,

$$egin{aligned} p(y) &= \sum_{K: y \in \mathcal{C}(K)} p(K) p(d_K(y)) \ &= \sum_{\{x, K: e_K(x) = y\}} p(K = (a, y - ax)) p(x) \ &= rac{12}{312} p(ext{`a'}) + rac{12}{312} p(ext{`b'}) + \cdots + rac{12}{312} p(ext{`y'}) + rac{12}{312} p(ext{`z'}) \ &= rac{12}{312} imes 1 \ &= rac{1}{26} \end{aligned}$$

For any $x \in \mathcal{P}$ and $y \in \mathcal{C}$,

$$egin{aligned} p(y|x) &= \sum_{\{K: y = e_K(x)\}} p(K) \ &= rac{1}{312} imes 12 \ &= rac{1}{26} \end{aligned}$$

using Bayes' Theorem, $p(x|y) = \frac{p(x)p(y|x)}{p(y)}$, we can get:

$$egin{aligned} p(x|y) &= rac{p(x)p(y|x)}{p(y)} \ &= rac{p(x) imesrac{1}{26}}{rac{1}{26}} \ &= p(x) \end{aligned}$$

Q.E.D.

(b) **Proof**:

Similarly, for every pair of (x, y) and a specific $a \in \mathbb{Z}_{26}^* = \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$, $\mathbf{Pr}[a] = \frac{1}{12}$, the key K can be represented as (a, y - ax), therefore:

$$egin{aligned} p(y) &= \sum_{\{x,K:e_K(x)=y\}} p(K=(a,y-ax))p(x) \ &= \sum_{\{x,K:e_K(x)=y\}} rac{\mathbf{Pr}[a]}{26} p(x) \ &= rac{12 imes rac{1}{12}}{26} p(ext{`a'}) + rac{12 imes rac{1}{12}}{26} p(ext{`b'}) + \dots + rac{12 imes rac{1}{12}}{26} p(ext{`y'}) + rac{12 imes rac{1}{12}}{26} p(ext{`z'}) \ &= rac{1}{26} \end{aligned}$$

Then, for any $x,y\in\mathbb{Z}_{26}$,

$$egin{aligned} p(y|x) &= \sum_{\{K: y = e_K(x)\}} p(K) \ &= rac{\mathbf{Pr}[a]}{26} imes 12 \ &= rac{1}{26} imes rac{1}{12} imes 12 \ &= rac{1}{26} \end{aligned}$$

Finally, using Bayes' Theorem we can get:

$$egin{aligned} p(x|y) &= rac{p(x)p(y|x)}{p(y)} \ &= rac{p(x) imes rac{1}{26}}{rac{1}{26}} \ &= p(x) \end{aligned}$$

Q.E.D.

Exercise 3.8

Suppose that y and y' are two ciphertext elements (i.e., binary n-tuples) in the One-time Pad that were obtained by encrypting plaintext elements x and x', respectively, using the same key, K. Prove that $x + x' \equiv y + y' \pmod{2}$.

Solution:

Proof:

Since y and y' are binary n-tuples obtained by encrypting plaintext elements x and x' using y' are binary y' and use the same key y', we have:

$$x \oplus K = y$$

$$x' \oplus K = y'$$

Therefore,

$$y + y'(\text{mod } 2) = x \oplus K + x' \oplus K(\text{mod } 2)$$
$$= x \oplus K \oplus x' \oplus K(\text{mod } 2)$$
$$= x \oplus x' \oplus K \oplus K(\text{mod } 2)$$
$$= x \oplus x'(\text{mod } 2)$$
$$= x + x'(\text{mod } 2)$$

Q.E.D.

Exercise 3.9(a)

(a) Construct the encryption matrix (as defined in Example 3.3) for the *One-time Pad* with n=3.

Example 3.3

Let $P=\{a,b\}$ with $\mathbf{Pr}[a]=1/4$, $\mathbf{Pr}[b]=3/4$. Let $K=\{K_1,K_2,K_3\}$ with $\mathbf{Pr}[K1]=1/2$, $\mathbf{Pr}[K_2]=\mathbf{Pr}[K_3]=1/4$. Let $C=\{1,2,3,4\}$, and suppose the encryption functions are defined to be $e_{K_1}(a)=1$, $e_{K_1}(b)=2$; $e_{K_2}(a)=2$, $e_{K_2}(b)=3$; and $e_{K_3}(a)=3$, $e_{K_3}(b)=4$. This cryptosystem can be represented by the following encryption matrix:

	a	b
K_1	1	2
K_2	2	3
K_3	3	4

Solution:

Since n=3, the space of plaintext $\mathcal{P}=\{000,001,010,011,100,101,110,111\}$, the keyspace $\mathcal{K}=\{K_1,K_2,K_3,K_4,K_5,K_6,K_7,K_8\}=\{000,001,010,011,100,101,110,111\}$, therefore, the encryption matrix is as follows:

\mathcal{K}/\mathcal{P}	000	001	010	011	100	101	110	111
10/1	000	001	010	011	100	101	110	111
K_1	000	001	010	011	100	101	110	111
K_2	001	000	011	010	101	100	111	110
K_3	010	011	000	001	110	111	100	101
K_4	011	010	001	000	111	110	101	100
K_5	100	101	110	111	000	001	010	011
K_6	101	100	111	110	001	000	011	010
K_7	110	111	100	101	010	011	000	001
K_8	111	110	101	100	011	010	001	000

Exercise 3.15

Consider a cryptosystem in which $P = \{a, b, c\}$, $K = \{K_1, K_2, K_3\}$ and $C = \{1, 2, 3, 4\}$. Suppose the encryption matrix is as follows:

	a	b	c
K_1	1	2	3
K_2	2	3	4
K_3	3	4	1

Given that keys are chosen equiprobably, and the plaintext probability distribution is $\mathbf{Pr}[a] = 1/2$, $\mathbf{Pr}[b] = 1/3$, $\mathbf{Pr}[c] = 1/6$, compute $H(\mathbf{P})$, $H(\mathbf{C})$, $H(\mathbf{K})$, $H(\mathbf{K}|\mathbf{C})$, and $H(\mathbf{P}|\mathbf{C})$.

Solution:

Definition of Shannon's Entropy: Let X be a discrete RV on a nite set \mathcal{X} . Then, the *entropy* of X is defined as:

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2(p(x))$$

Definition of conditional entropy: Suppose X and Y are two random variables. Then for any fixed value y of Y, we get a (conditional) probability distribution on X; we denote the associated random variable by X|y Clearly,

$$H(\mathbf{X}|y) = -\sum_{x} \mathbf{Pr}[x|y] \log_2 \mathbf{Pr}[x|y]$$

We denoted $H(\mathbf{X}|\mathbf{Y})$, to be the weighted average (with respect to the probabilities $\mathbf{Pr}[y]$) of the entropies $H(\mathbf{X}|\mathbf{y})$ over all possible values y. It is computed to be

$$H(\mathbf{X}|\mathbf{Y}) = -\sum_{y}\sum_{x}\mathbf{Pr}[y]\mathbf{Pr}[x|y]\log_{2}\mathbf{Pr}[x|y]$$

Theorem 3.10: Suppose that $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is a cryptosystem. Then

$$H(\mathbf{K}|\mathbf{C}) = H(\mathbf{K}) + H(\mathbf{P}) - H(\mathbf{C})$$

Joint probability can be related to conditional probability by the formula:

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

First we compute $H(\mathbf{P})$ using the **definition of Shannon's Entropy**:

$$\begin{split} H(\mathbf{P}) &= -[p(a)\log_2(p(a)) + p(b)\log_2(p(b)) + p(c)\log_2(p(c))] \\ &= -[\mathbf{Pr}[a]\log_2(\mathbf{Pr}[\mathbf{a}]) + \mathbf{Pr}[b]\log_2(\mathbf{Pr}[b]) + \mathbf{Pr}[c]\log_2(\mathbf{Pr}[c])] \\ &= -[\frac{1}{2}\log_2(\frac{1}{2}) + \frac{1}{3}\log_2(\frac{1}{3}) + \frac{1}{6}\log_2(\frac{1}{6})] \\ &= 1.4591479170272448 \\ &\approx 1.459 \end{split}$$

Next, we compute each probability distribution on $\mathcal C$ according the above encryption matrix:

$$= \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{6}$$

$$= \frac{2}{9}$$

$$\mathbf{Pr}[2] = \mathbf{Pr}[K_1] \times \mathbf{Pr}[b] + \mathbf{Pr}[K_2] \times \mathbf{Pr}[a]$$

$$= \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2}$$

$$= \frac{5}{18}$$

$$\mathbf{Pr}[3] = \mathbf{Pr}[K_1] \times \mathbf{Pr}[c] + \mathbf{Pr}[K_2] \times \mathbf{Pr}[b] + \mathbf{Pr}[K_3] \times \mathbf{Pr}[a]$$

$$= \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2}$$

$$= \frac{1}{3}$$

$$\mathbf{Pr}[4] = \mathbf{Pr}[K_2] \times \mathbf{Pr}[c] + \mathbf{Pr}[K_3] \times \mathbf{Pr}[b]$$

$$= \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{3}$$

$$= \frac{1}{6}$$

 $\mathbf{Pr}[1] = \mathbf{Pr}[K_1] \times \mathbf{Pr}[a] + \mathbf{Pr}[K_3] \times \mathbf{Pr}[c]$

Then we can compute $H(\mathbf{C})$ as follows:

$$\begin{split} H(\mathbf{C}) &= -[p(1)\log_2(p(1)) + p(2)\log_2(p(2)) + p(3)\log_2(p(3)) + p(4)\log_2(p(4))] \\ &= -[\mathbf{Pr}[1]\log_2(\mathbf{Pr}[1]) + \mathbf{Pr}[2]\log_2(\mathbf{Pr}[2]) + \mathbf{Pr}[3]\log_2(\mathbf{Pr}[3]) + \mathbf{Pr}[4]\log_2(\mathbf{Pr}[4])] \\ &= -[\frac{2}{9}\log_2(\frac{2}{9}) + \frac{5}{18}\log_2(\frac{5}{18}) + \frac{1}{3}\log_2(\frac{1}{3}) + \frac{1}{6}\log_2(\frac{1}{6})] \\ &= 1.9546859469463558 \\ &\approx 1.955 \end{split}$$

After that, $H(\mathbf{K})$ can be computed easily since keys are chosen equiprobably $\frac{1}{3}$:

$$\begin{split} H(\mathbf{K}) &= -[\mathbf{Pr}[K_1] \log_2(\mathbf{Pr}[K_1]) + \mathbf{Pr}[K_2] \log_2(\mathbf{Pr}[K_2]) + \mathbf{Pr}[K_3] \log_2(\mathbf{Pr}[K_3])] \\ &= -[3 \times \frac{1}{3} \log_2(\frac{1}{3})] \\ &= 1.5849625007211563 \\ &\approx 1.585 \end{split}$$

Using the above **Theorem 3.10**, we can get $H(\mathbf{K}|\mathbf{C})$:

$$H(\mathbf{K}|\mathbf{C}) = H(\mathbf{K}) + H(\mathbf{P}) - H(\mathbf{C})$$

= 1.585 + 1.459 - 1.955
= 1.089

Finally, to compute $H(\mathbf{P}|\mathbf{C})$, we need to compute $\mathbf{Pr}[P|C]$, and use the **definition of conditional entropy** to find it. Therefore, the $\mathbf{Pr}[P|C]$ s are computed used:

$$\mathbf{Pr}(P|C) = \frac{\mathbf{Pr}(P) \times \mathbf{Pr}(C|P)}{\mathbf{Pr}(C)} = \begin{cases} \frac{\mathbf{Pr}(P) \times \mathbf{Pr}(K)}{\mathbf{Pr}(C)} & \text{if } \mathbf{Pr}(\mathbf{C}|\mathbf{P}) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

	a	ь	С
1	$\mathbf{Pr}[a 1] = rac{rac{1}{2} imes rac{1}{3}}{rac{2}{9}} = rac{3}{4}$	$\mathbf{Pr}[b 1] = 0$	$\mathbf{Pr}[c 1] = rac{rac{1}{6} imesrac{1}{3}}{rac{2}{6}} = rac{1}{4}$
2	$\mathbf{Pr}[a 2] = rac{rac{1}{2} imes rac{1}{3}}{rac{5}{18}} = rac{3}{5}$	$\mathbf{Pr}[b 2] = rac{rac{1}{3} imes rac{1}{3}}{rac{5}{18}} = rac{2}{5}$	$\mathbf{Pr}[c 2] = 0$
3	$\mathbf{Pr}[a 3] = \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{3}} = \frac{1}{2}$	$\mathbf{Pr}[b 3] = \frac{\frac{1}{3} \times \frac{1}{3}}{\frac{1}{3}} = \frac{1}{3}$	$\mathbf{Pr}[c 3] = rac{rac{1}{6} imes rac{1}{3}}{rac{1}{3}} = rac{1}{6}$
4	$\mathbf{Pr}[a 4] = 0$	$\mathbf{Pr}[b 4] = \frac{\frac{1}{3} \times \frac{1}{3}}{\frac{1}{6}} = \frac{2}{3}$	$\mathbf{Pr}[c 4] = rac{rac{1}{6} imesrac{1}{3}}{rac{1}{6}} = rac{1}{3}$

Thus, we can find:

$$\begin{split} H(\mathbf{P}|1) &= -[\mathbf{Pr}[a|1] \log_2(\mathbf{Pr}[a|1]) + \mathbf{Pr}[b|1] \log_2(\mathbf{Pr}[b|1]) + \mathbf{Pr}[c|1] \log_2(\mathbf{Pr}[c|1])] \\ &= -[\frac{3}{4} \log_2(\frac{3}{4}) + \frac{1}{4} \log_2(\frac{1}{4})] \\ &= 0.8112781244591328 \\ &\approx 0.811 \\ H(\mathbf{P}|2) &= -[\mathbf{Pr}[a|2] \log_2(\mathbf{Pr}[a|2]) + \mathbf{Pr}[b|2] \log_2(\mathbf{Pr}[b|2]) + \mathbf{Pr}[c|2] \log_2(\mathbf{Pr}[c|2])] \\ &= -[\frac{3}{5} \log_2(\frac{3}{5}) + \frac{2}{5} \log_2(\frac{2}{5})] \\ &= 0.9709505944546686 \\ &\approx 0.971 \\ H(\mathbf{P}|3) &= -[\mathbf{Pr}[a|3] \log_2(\mathbf{Pr}[a|3]) + \mathbf{Pr}[b|3] \log_2(\mathbf{Pr}[b|3]) + \mathbf{Pr}[c|3] \log_2(\mathbf{Pr}[c|3])] \\ &= -[\frac{1}{2} \log_2(\frac{1}{2}) + \frac{1}{3} \log_2(\frac{1}{3}) + \frac{1}{6} \log_2(\frac{1}{6})] \\ &= 1.4591479170272448 \\ &\approx 1.459 \\ H(\mathbf{P}|4) &= -[\mathbf{Pr}[a|4] \log_2(\mathbf{Pr}[a|4]) + \mathbf{Pr}[b|4] \log_2(\mathbf{Pr}[b|4]) + \mathbf{Pr}[c|4] \log_2(\mathbf{Pr}[c|4])] \\ &= -[\frac{2}{3} \log_2(\frac{2}{3}) + \frac{1}{3} \log_2(\frac{1}{3})] \\ &= 0.9182958340544896 \\ &\approx 0.918 \end{split}$$

Eventually, the $H(\mathbf{P}|\mathbf{C})$ is:

$$H(\mathbf{P}|\mathbf{C}) = \mathbf{Pr}[1] \times H(\mathbf{P}|1) + \mathbf{Pr}[2] \times H(\mathbf{P}|2) + \mathbf{Pr}[3] \times H(\mathbf{P}|3) + \mathbf{Pr}[4] \times H(\mathbf{P}|4)$$

$$= \frac{2}{9} \times 0.811 + \frac{5}{18} \times 0.971 + \frac{1}{3} \times 1.459 + \frac{1}{6} \times 0.918$$

$$= 1.08927777777778$$

$$\approx 1.089$$

Exercise 3.17

Suppose that APNDJI or XYGROBO are ciphertexts that are obtained from encryption using the *Shift Cipher*. Show in each case that there are two "meaningful" plaintexts that could encrypt to the given ciphertext. (Thanks to John van Rees for these examples.)

Solution:

Because we know that the ciphertext is encrypted using Shift Cipher, I will use a simple program written in Python to do exhaustive search to get the plaintext, the code is as follows:

```
def decrypt(ciphertext, shift_count):
    plaintext = []
   for ch in ciphertext:
       if ord(ch) <= 90-shift_count:</pre>
            plaintext.append(chr(ord(ch)+shift_count))
       else:
            plaintext.append(chr(64+ord(ch)+shift_count-90))
    return plaintext
ciphertext1 = 'APNDJI'
ciphertext2 = 'XYGROBO'
print('Decrypt the ciphertext {}:'.format(ciphertext1))
for shift in range(1, 26):
   for ch in decrypt(ciphertext1, shift):
       print(ch, end='')
   print()
print('Decrypt the ciphertext {}:'.format(ciphertext2))
for shift in range(1, 26):
    for ch in decrypt(ciphertext2, shift):
       print(ch, end='')
   print()
```

The results we got from searching are as follows:

```
Decrypt the ciphertext APNDJI:
BQOEKJ
CRPFLK
DSQGML
ETRHNM
FUSION
GVTJP0
HWUKQP
IXVLRQ
JYWMSR
KZXNTS
LAY0UT
MBZPVU
NCAQWV
ODBRXW
PECSYX
QFDTZY
RGEUAZ
SHFVBA
TIGWCB
UJHXDC
VKIYED
WLJZFE
XMKAGF
YNLBHG
ZOMCIH
```

Decrypt the ciphertext XYGROBO:
YZHSPCP
ZAITQDQ
ABJURER
BCKVSFS
CDLWTGT
DEMXUHU
EFNYVIV
FGOZWJW
GHPAXKX
HIQBYLY
IJRCZMZ
JKSDANA
KLTEBOB
LMUFCPC
MNVGDQD
NOWHERE
OPXIFSF
PQYJGTG
QRZKHUH
RSALIVI
STBMJWJ
TUCNKXK
UVDOLYL
VWEPMZM
WXFQNAN

Finally, for ciphertext APNDJI, the two "meaningful" plaintexts that could encrypt to it are:

FUSION LAYOUT

And for another ciphertext XYGROBO, the two "meaningful" plaintexts that could encrypt to it are:

ABJURER NOWHERE