Feature Maps

He He

CDS, NYU

March 2, 2021

The Input Space ${\mathfrak X}$

- ullet Our general learning theory setup: no assumptions about ${\mathcal X}$
- But $\mathcal{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on R^d :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

• What if we want to do prediction on inputs not natively in R^d?

The Input Space $\mathfrak X$

- Often want to use inputs not natively in R^d:
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences
- But everything in a computer is a sequence of numbers
 - The *i*th entry of each sequence should have the same "meaning"
 - All the sequences should have the same length

Feature Extraction

Definition

Mapping an input from X to a vector in R^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector

4 / 20

$$\mathcal{X} \xrightarrow{x} \overset{\text{Feature}}{\Longrightarrow} \frac{\phi(x)}{\text{Extraction}}$$

He He (CDS, NYU) DS-GA 1003 March 2, 2021

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the feature space R^d .
- Hypothesis space of affine functions on feature space:

$$\mathcal{F} = \left\{ x \mapsto w^T \phi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

Geometric Example: Two class problem, nonlinear boundary

- With identity feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate featurization $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, becomes linearly separable .
- Video: http://youtu.be/3liCbRZPrZA

He He (CDS, NYU) DS-GA 1003 March 2, 2021 6/20

Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
 - (can fit more relationships between input and action)
- Many ways to create new features.

Handling Nonlinearity with Linear Methods

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
 - height
 - weight
 - body temperature
 - blood pressure
 - etc...

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features
- Three types of nonlinearities can cause problems:
 - Non-monotonicity
 - Saturation
 - Interactions between features

He He (CDS, NYU) DS-GA 1003 March 2, 2021 10 / 20

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space \mathcal{F} ={affine functions of temperature}
- Issue:
 - Health is not an affine function of temperature.
 - Affine function can either say
 - Very high is bad and very low is good, or
 - Very low is bad and very high is good,
 - But here, both extremes are bad.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature(x)-37}\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
 - Do we really need that?
 - What does $w^T \phi(x)$ look like?

He He (CDS, NYU) DS-GA 1003 March 2, 2021 12 / 20

Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \{\text{temperature}(x)\}^2\right].$$

More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

He He (CDS, NYU) DS-GA 1003 March 2, 2021

Saturation: The Issue

- Setting: Find products relevant to user's query
- Input: Product x
- Action: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but also expect diminishing return.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

- ullet log (\cdot) good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

$$\phi(x) = (1(0 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), \ldots)$$

• Small buckets allow quite flexible relationship

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight *relative* to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula (for a male):

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

17 / 20

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

He He (CDS, NYU) DS-GA 1003 March 2, 2021

Interactions: Approach 2

• Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

• More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

He He (CDS, NYU) DS-GA 1003 March 2, 2021

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathcal{X}$.
- Consider adding all monomials of degree M: $x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d = M$.
 - Monomials with degree 2 in 2D space: x_1^2 , x_2^2 , x_1x_2
- How many features will we end up with? $\binom{M+d-1}{M}$ ("stars and bars")
- This leads to extremely large data matrices
 - For d = 40 and M = 8, we get 314457495 features.

Big Feature Spaces

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

Solutions:

- Overfitting we handle with regularization.
- Kernel methods can help with memory and computational costs when we go to high (or infinite) dimensional spaces.