Importing the essential library

In [37]: import pandas as pd
import numpy as np

Loading the dataset

dtype: int64

In [38]: df = pd.read_csv('country_wise_latest.csv')
df.head()

Out[38]:

	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	Deaths / 100 Cases
0	Afghanistan	36263	1269	25198	9796	106	10	18	3.50
1	Albania	4880	144	2745	1991	117	6	63	2.95
2	Algeria	27973	1163	18837	7973	616	8	749	4.16
3	Andorra	907	52	803	52	10	0	0	5.73
4	Angola	950	41	242	667	18	1	0	4.32

Dealing with Null values and describing the dataset

In [39]: # checking for null values df.isnull().sum() Out[39]: Country/Region 0 Confirmed 0 Deaths 0 Recovered 0 Active 0 New cases 0 New deaths 0 New recovered 0 Deaths / 100 Cases 0 Recovered / 100 Cases 0 Deaths / 100 Recovered 0 Confirmed last week 0 1 week change 0 1 week % increase 0 WHO Region 0

In [40]: # describing data
df.describe()

Out[40]:

	Confirmed	Deaths	Recovered	Active	New cases	New deaths
count	1.870000e+02	187.000000	1.870000e+02	1.870000e+02	187.000000	187.000000
mean	8.813094e+04	3497.518717	5.063148e+04	3.400194e+04	1222.957219	28.957219
std	3.833187e+05	14100.002482	1.901882e+05	2.133262e+05	5710.374790	120.037173
min	1.000000e+01	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000
25%	1.114000e+03	18.500000	6.265000e+02	1.415000e+02	4.000000	0.000000
50%	5.059000e+03	108.000000	2.815000e+03	1.600000e+03	49.000000	1.000000
75%	4.046050e+04	734.000000	2.260600e+04	9.149000e+03	419.500000	6.000000
max	4.290259e+06	148011.000000	1.846641e+06	2.816444e+06	56336.000000	1076.000000

In [41]: # shape of the data

df.shape

Out[41]: (187, 15)

In [42]: # size of the data

df.size

Out[42]: 2805

* Which Country is having maximum confirmed cases

method 1

In [43]: # maximum confirmed cases in a country

for i in df.sort_values(by = 'Confirmed',ascending = False).head(1).v

 print('Country having maximum confirmed cases : ',i[0])
 print('Confirmed cases : ',i[1])

Country having maximum confirmed cases : US Confirmed cases : 4290259 In [44]: # top country sorted by the confirmed cases due to COVID-19
df.sort_values(by = 'Confirmed' ,ascending = False).head()

Out[44]:

	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered	De Ci
173	US	4290259	148011	1325804	2816444	56336	1076	27941	
23	Brazil	2442375	87618	1846641	508116	23284	614	33728	
79	India	1480073	33408	951166	495499	44457	637	33598	
138	Russia	816680	13334	602249	201097	5607	85	3077	
154	South Africa	452529	7067	274925	170537	7096	298	9848	

method 2:- Using arrays

```
In [45]: data = df.values
lst = []
for i in data:
    lst.append(i[1])
for i in data:
    if (i[1] == max(lst)):
        print('Country having maximum confirmed cases : ',i[0])
        print('Confirmed cases : ',i[1])
```

Country having maximum confirmed cases : US Confirmed cases : 4290259

* Which Country is having maximum deaths?

Country with maximum death : US
Death cases : 148011

In [47]: # top country sorted by the death rates due to COVID-19
df.sort_values(by = 'Deaths',ascending = False).head() # shows top 5

Out[47]: De New New New Country/Region Confirmed Deaths Recovered Active cases deaths recovered Ci 27941 173 US 4290259 148011 1325804 2816444 56336 1076 23 2442375 87618 1846641 508116 23284 33728 Brazil 614 United Kingdom 301708 45844 1437 254427 688 7 177 3 1 111 Mexico 395489 44022 303810 47657 4973 342 8588 1 85 Italy 246286 35112 198593 12581 168 5 147 1

method 2 :- Using arrays

```
In [48]: death = []
for i in data:
    death.append(i[2])
for i in data:
    if (i[2] == max(death)):
        print('Country having maximum confirmed cases : ',i[0])
        print('Confirmed cases : ',i[2])
```

Country having maximum confirmed cases : US Confirmed cases : 148011