5주차 예비보고서

전공: 경영학과 학년: 4학년 학번: 20190808 이름: 방지혁

1.

드모르간의 정리란 크게 논리합의 측면과 집합론의 측면에서 접근할 수 있습니다. 드 모르간의 법칙에서 논리합을 부정하면 논리곱으로 바뀌고 각 변수는 부정되며, 논 리곱을 부정하면 논리합으로 바뀌고 각 변수는 부정됩니다.

 $\overline{A \cdot B} = \overline{A} + \overline{B}$ (드 모르간의 제 1법칙)

제 1법칙에서는 A와 B의 논리곱에 부정을 취하면 A의 부정과 B의 부정에 논리합을 취해준 것과 같습니다. A와 B가 모두 참이 아니라면 A가 거짓이거나 B가 거짓이게 됩니다.

 $\overline{A+B} = \overline{A} \cdot \overline{B}$ (드 모르간의 제 2법칙)

제 2법칙에서는 A와 B의 논리합에 부정을 취한다면 이는 A의 부정과 B의 부정에 논리 곱을 취해준 것과 같습니다. A 혹은 B가 참이 아닌 경우 A도 거짓이고 B도 거짓인 경우와 같다는 것입니다.

2.

동일 법칙 (Identity Laws): A + 0 = A, A · 1 = A

지배 법칙 (Domination Laws) : A · 0 = 0, A + 1 = 1

등멱 법칙 (Idempotent Laws) : A + A = A, A · A = A

부정 법칙 (Negation Laws): A + A' = 1, A · A' = 0

교환 법칙 (Commutative Laws): A + B = B + A, A · B = B · A

결합 법칙 (Associative Laws):

$$A + (B + C) = (A + B) + C, A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

분배 법칙 (Distributive Laws): A · (B + C) = A · B + B · C

드 모르간의 법칙 (De Morgan's Laws):

$$(A + B)' = A' \cdot B', (A \cdot B)' = A' + B'$$

이중 부정 법칙 (Double Negation Law): (A')' = A

흡수 법칙 (Absorption Law) : A + A · B = A, A · (A + B) = A

예시)

AB + A'C + BC

= AB + ABC + A'C + A'BC (교환 법칙)

= AB · (1 + C) + A'C · (1 + B) (동일, 분배법칙)

= AB · 1 + A'C · 1 (지배 법칙)

= AB + A'C (동일 법칙)

 $AB + A \cdot (CD + CD')$

= AB + A · C · (D + D') (분배 법칙)

= AB + A · C · 1 (부정 법칙)

= AB + AC

3.

카르노 맵은 최소 논리곱의 합을 대수적으로 간소화를 하는 것보다 진리표를 이용하여 최소 논리식을 쉽게 구하는 접근법입니다. 변수의 개수에 따라 크기가 결정되며, 각 칸에 값을 삽입합니다. 간단히 설명하자면 가까이 붙어있는 1 또는 0(접근 방법에 따라 다름)를 서로 그룹화시켜 주는 것입니다.

이는 기존의 대수적 관점의 접근 방식보다 논리식을 더 간단하고 빠르게 얻어낼 수 있으며, 간단한 회로 즉, 작은 회로 설계 시에는 효과적입니다. 반면, 큰 회로 설계 시 카르노 맵이 지나치게 비대해져 소프트웨어 사용 같은 다른 방식을 취하게 됩니다.

예시)

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

f = C' + AB'

이 때 AB의 순서가 00 01 10 11이 아닌 00 01 11 10인 이유는 양옆끼리는 하나의 비트만 차이가 나야 하기 때문입니다. 이런 식으로, 2ⁿ의 크기를 가지는 직사각형들로 묶어주고 식으로 다시 나타내야 합니다. 또한, 카르노 맵을 이용해 간소화를 할 때에는 어떻게 항들을 묶느냐에 따라 여러 가지 답이 나올 수 있습니다. 4 변수 카르노맵

은 4X4표를 통해, 5 변수 카르노맵은 3차원으로 4X4표 두 개를 이용해 논리회로를 간소화할 수 있습니다.

4.

앞서 위의 항목들에서 서술했던 카르노 맵에 의한 간소화 방법은 변수의 개수가 4개를 초과한다면, 다소 어려워지는 경향이 있습니다. 이에 대해 보완 방법인 Quine-McCluskey 알고리즘이 존재합니다. 해당 방법은 도표를 이용해 논리식을 간소화할 수 있는 방법입니다. 이러한 방식은 크게 Prime Implicant 식별과 Prime Implicant 선택으로 나눌 수 있습니다.

우선 Prime Implicant 식별은 먼저 최소 항을 2진수로 변환한 표로 만듭니다. 2진수들 중 1개의 비트만 차이가 나는 최소 항들을 묶어주고, 그걸 다시 표로 구성합니다. 최소항들은 즉, 1의 개수에 따라 그룹으로 나누어지는 것입니다. 1의 개수가 0개인항: 0000, 1의 개수가 1개인항 0001, 0010, 0100, 1000 이런 식으로 나누어질 수있는 것입니다. 각 그룹 내에서 비트 1개의 차이가 나는 항들을 찾습니다. 두 항이 1비트만 차이가 날 경우, 이를 결합해 그 차이가 나는 비트 위치를 -로 표현합니다.이 때 결합이 되지 않은 항목은 PI(Prime Implicant)가 됩니다. 더 이상 결합될 수없을 때까지 이 과정을 반복합니다.

이렇게 PI를 구한 후 PI 선택 과정으로 넘어갑니다. PI 선택에서는 PI 선택표를 그리고 카르노 맵과 같이 최소한의 항으로 최적화할 수 있도록 PI를 선택하면 됩니다. 해당 선택표의 행은 Prime Implicant들로 이루어집니다. 또한, 열은 최소항들로 구성됩니다. 그리고, 각 Prime Implicant가 포함하는 최소항을 표시하기 위해 해당 위치에 'X' 표시를 합니다. 이후 필수 prime implicant를 선택하고 이를 수식으로 변환하면됩니다.

더 변수가 더 많아질 경우에는 Espresso 알고리즘 같은 다른 방식을 사용하는 것이 효율적일 수 있습니다.

5.

용어 정리

implicant : 카르노 맵에서 1의 묶음들을 말하는데, 이때 그 묶음은 크기가 2[#]이어야 합니다.

prime implicant : 더 큰 implicant에 포함되지 않는 implicant를 말합니다.

essential prime implicant: prime implicant에 포함되는 '1' 중 하나 이상이 다른 implicant에 속하지 않고 자신의 prime implicant에만 속하는 prime implicant를 말합니다.

간략화된 함수는 essential prime implicant 모두와 non-essential prime implicant의 일부를 포함합니다.

NAND 최적화

이렇듯 알고리즘을 사용하여 여러 회로를 단순화할 수 있지만, 회로 설계상 nand가 제일 편리하기 때문에 xor gate를 nand로만 구성할 수 있습니다.

이게 기존의 xor gate(f = ab' + a'b)였다면

이런식으로 NAND gate만 사용하여 표현할 수도 있습니다.

Shannon 정리

논리식을 특정 변수 하나를 기준으로 분해하여 함수의 값을 두 가지 경우, 예를 들어 a가 1일 경우 a가 0일 경우로 나누는 방법입니다.

함수 f를 af(a = 1) + a'f(a = 0) 이러한 형태로 나눌 수 있습니다.

이렇듯 한 함수는 두 개의 작은 함수로 분리될 수 있습니다.