Aspherical Singlet

Aspheres are suitable for correction of spherical aberration, although the performance for finite field sizes is critical. A problem is the conventional Taylor expansion representation of aspheres, which is not orthogonal and therefore sometimes hard to optimize.

- a) Establish an imaging setup with a magnification of m = 0.2, a wavelength λ = 0.55 μ m, a numerical aperture of NA = 0.6 with a setup, which has an overall length not larger than 50 mm with a single spherical lens made of the plastics material PMMA.
- b) Now define the second surface to be aspherical. How many coefficients are necessary to obtain a diffraction limited performance on axis ?
- c) What is the largest field size, which guarantees a performance not worse than a factor of two in comparison to the axis point.
- d) Now try to install an asphere on both sides of the lens. Can the field behavior be improved?

Solution:

a) The paraxial magnification, the F-number as F# = 1/(2NA) = 0.833 and the overall length (operand TTHI) together with the spot optimization are used to find the spherical system. To establish a magnification, it is necessary to set a small finite field size. Here we use y = 0.1 mm. For the default merit function, 9 rings seems to be necessary to guarantee a dense sampling.

Edit Design Tools View Help													
Oper #	Type							Target	Weight	Value			
1: DMFS	DMFS												
2: BLNK	BLNK	equential merit function: RMS spot radius centroid GQ 9 rings 6 arms											
3: WFNO	WFNO							0.8330000	100.0000000	0.8192869			
4: PMAG	PMAG		1					-0.2000000	100.0000000	-0.4257895			
5: TTHI	TTHI	0	2					50.0000000	100.0000000	49.9995755			
6: BLNK	BLNK		perands for field 1.										
7: BLNK	BLNK	Operands for fie											
8: TRAC	TRAC		1	0.0000000	0.0000000	0.1261740	0.0000000	0.0000000	0.1276655	0.2309047			
9: TRAC	TRAC		1	0.0000000	0.0000000	0.2863293	0.0000000	0.0000000	0.2837615	0.4969380			
10: TRAC	TRAC		1	0.0000000	0.0000000	0.4396752	0.0000000	0.0000000	0.4093663	0.6855548			

b) The asphericity is increased step by step with conic constant, 4th order, 6th order, 8th order. Here we get diffraction limited performance on axis.

₿ Lens Data Editor													
Edit	Solves View He	elp											
Surf:Type		Comment	Radius	Thickn	33	Glass	Semi-Diameter	Conic	Par 0 (unused)	2nd Order Term	4th Order Term	6th Order Term	8th Order Term
OBJ	Standard		Infinity	37.693	622 V		0.1000000	0.0000000					
1*	Standard		7.2908107	7 6.000	000	PMMA	6.5000000	0.0000000					
	Even Asp		-4.5032836	6.306	378 V		6.2000000	J -3.7315064 V	7	0.0000000	6.815E-004 V	-3.65E-006 V	7 1.228E-008 V
IMA	Standard		Infinity		-		0.0203403	0.0000000					

c) The spot rms size on axis is 0.44 μ m. A diameter in the field of 0.88 μ m is obtained for an object size of y = 0.024 mm. It should be noticed, that due to the large coma, a reference of the spot size to the centroid makes sense and should be set for the spot diagram and the rms vs field. Otherwise, the results are different.

d) Now a field of y = 0.04 mm is fixed, the merit function is re-calculated and the first surface is made aspherical too. The result shows, that now it is diffraction limited for both field point. This means, aspheres for both sides are in this case helpful to correct the field related aberrations.

	Surface Type	Comment	Radius	Thickness	Material	Coating	Clear Semi-Dia	Chip Zone	Mech Semi-Dia	Conic	TCE x 1E-6	2nd Order Term	4th Order Term	6th Order Term	8th Order Term
	OBJECT Standard ▼		Infinity	38,900 V			0,400	0,000	0,400	0,000	0,000				
	1 STOP Even Asphere ▼		4,427 V	6,000	PMMA		5,119	0,000	5,119	-0,809 V	-	0,000	0,000	0,000	0,000
2	Even Asphere ▼		-7,566 V	5,100 V			4,481	0,000	5,119	-9,429 V	0,000	0,000	3,231E-04 V	-7,508E-06 V	8,644E-08 V
	IMAGE Standard ▼		Infinity				0.080	0.000	0.080	0.000	0.000				

