Erro Quadrático Médio de um Estimador

ESTAT0078 - Inferência I

Prof. Dr. Sadraque E. F. Lucena

sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/inferencia1

- Na aula anterior, aprendemos a verificar se um estimador é viesado.
- Em geral, dado um parâmetro desconhecido, pode existir uma infinidade de funções da amostra que podem ser usadas para determinar estimadores para esse parâmetro.
- Precisamos então definir um critério para selecionar um deles.
- Um bom estimador deve estar próximo do verdadeiro valor do parâmetro que ele estima.
- Uma medida de proximidade do estimador $\hat{\theta}$ em relação ao parâmetro θ , que ele estima, é dada pelo **erro quadrático médio** do estimador.

Definição 4.1: Erro Quadrático Médio de um estimador

O erro quadrático médio de um estimador $\hat{\theta}$ do parâmetro θ é dado por

$$EQM(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right].$$

• É possível mostrar que

$$EQM(\hat{\theta}) = Var(\hat{\theta}) + B^2(\hat{\theta}).$$

• No caso em que $\hat{\theta}$ é não viesado para θ , temos que

$$EQM(\hat{\theta}) = Var(\hat{\theta}).$$

• Dizemos que $\hat{\theta}_1$ é melhor que $\hat{\theta}_2$ se

$$EQM(\hat{\theta}_1) \leq EQM(\hat{\theta}_2),$$

para todo θ , em que podemos substituir " \leq " por "<" para pelo menos um valor de θ .

• Nesse caso, o estimador $\hat{\theta}_2$ é dito ser **inadmissível**, visto que há outro com menor erro quadrático médio.

• Se existir um estimador $\hat{\theta}^*$ tal que, para todo estimador $\hat{\theta}$ de θ com $\hat{\theta} \neq \hat{\theta}^*$,

$$EQM(\hat{\theta}^*) \leq EQM(\hat{\theta}),$$

para todo θ , em que podemos substituir " \leq " por "<" para pelo menos um θ , então $\hat{\theta}^*$ é dito ser ótimo para θ .

• Se os estimadores são não viesados, então $\hat{\theta}^*$ é dito ser o estimador não viesado de variância uniformemente mínima, se

$$Var(\hat{\theta}^*) \leq Var(\hat{\theta}),$$

para todo θ , com " \leq " substituídos por "<" para pelo menos um θ .

Exemplo 4.1

Sejam X_1, \ldots, X_n uma amostra aleatória de uma variável aleatória com média μ e variância σ^2 . Temos os seguintes estimadores para a média populacional μ :

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$
 e $\tilde{X} = \frac{2X_1 + X_2 + \dots + X_n}{n+1}$.

Qual estimador tem menor erro quadrático médio?

Exemplo 4.2

Seja $\hat{\mu} = X_1$ um etimador para a média populacional μ . Ele é melhor que \overline{X} quando comparados os erros quadráticos médios?

Exemplo 4.3

Seja X_1, X_2, X_3 uma amostra aleatória obtida de X com distribuição de Poisson(λ). Determine o melhor estimador entre

$$\hat{\lambda}_1 = \frac{X_1 + X_2 + X_3}{3}$$
 e $\hat{\lambda}_2 = \frac{X_1 + X_2 + 2X_3}{4}$.

Fim

