GCE May, 2017

Jiamin JIAN

Exercise 1:

Let (X, \mathcal{A}, μ) be a measure space. Let A_n be a sequence in \mathcal{A} such that $\mu(A_n)$ converges to zero.

- (i) Prove or disprove: if $f: X \to [0, +\infty)$ is a measurable function and $\mu(X) < +\infty$, then $\int_{A_n} f$ converges to zero.
 - (ii) Let g be in $L^1(X)$. Show that $\int_{A_n} g$ converges to zero.

Solution:

(i) The statement is not true. We suppose X=(0,1] and $f(x)=\frac{1}{x^2}$, then we know that $\mu(X)<+\infty$ and f(x) is measurable on X. We set $A_n=[\frac{1}{n^2},\frac{1}{n}], n\in\mathbb{N}$. Thus we have for all $n\in\mathbb{N}, A_n\subset X$. And

$$\mu(A_n) = \frac{1}{n} - \frac{1}{n^2} = \frac{n-1}{n^2} \to 0$$

as n goes to infinity. But for the $\int_{A_n} f$, we have

$$\int_{A_n} f \, d\mu = \int_{\frac{1}{-2}}^{\frac{1}{n}} \frac{1}{x^2} \, dx = n^2 - n \to +\infty$$

as $n \to +\infty$. So, we know that $\int_{A_n} f$ does not converges to zero.

Another counter example is as follows. Let X=(0,2], $A_n=[1/n,2/n]$ for all $n\in\mathbb{N}$. Let $f(x)=\frac{1}{x}$. Then $\mu(X)=2<\infty$ and $\mu(A_n)=\frac{1}{n}\to 0$ as n goes to infinity. But

$$\int_{A_n} f = \int_{\frac{1}{n}}^{\frac{2}{n}} \frac{1}{n} = \ln 2, \quad \forall n \in \mathbb{N}.$$

Thus $\int_{A_n} f$ does not converges to 0.

(ii) We denote

$$g_n(x) = g(x)\mathbb{I}_{A_n}(x),$$

where $\mathbb{I}_{A_n}(\cdot)$ is a indicator function on A_n . Since A_n is a sequence in \mathcal{A} such that $\mu(A_n) \to 0$ as $n \to +\infty$, then we know that $g_n(x)$ converges to 0 almost everywhere. As

$$|g_n(x)| = |g(x)\mathbb{I}_{A_n}(x)| \le |g(x)|$$

and $g \in L^1(X)$, we know that g is a dominate function of g_n . By the dominate convergence theorem, we have

$$\lim_{n \to \infty} \int_{Y} g_n(x) d\mu = \int_{Y} 0 d\mu = 0,$$

thus we have

$$\lim_{n \to \infty} \int_X g_n(x) \, d\mu = \lim_{n \to \infty} \int_{A_n} g \, d\mu = 0.$$

So, we know that $\int_{A_n} g$ converges to zero.

Exercise 2:

Let (x, d) be a bounded metric space. For any non empty subset S of X and x in X we define:

$$d(x,S) = \inf\{d(x,s) : s \in S\}.$$

If A and B are two non empty subsets of X we define:

$$d_H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)\}.$$

- (i) Prove or disprove: If $d_H(A, B) = 0$, are A and B necessarily equal?
- (ii) Let \mathcal{C} be the set of all non empty closed subsets of X. Show that d_H defines a metric on \mathcal{C} .

Solution:

(i) The statement is not true. By the definition of $d_H(A, B)$, since $d_H(A, B) = 0$, we have

$$\max\{\sup_{x\in A} d(x,B), \sup_{x\in B} d(x,A)\} = 0,$$

then we have $\sup_{x\in A} d(x,B) = \sup_{x\in B} d(x,A) = 0$, so we know that $\forall x\in A, d(x,B) = 0$ and $\forall x\in B, d(x,A) = 0$. For any $x\in A$, since $d(x,B) = \inf\{d(x,y): y\in B\} = 0$, we can find a sequence $\{y_n\}$, and for any $x\in A$ this sequence converges to x. So we have $B\subset \bar{A}$, where \bar{A} is the closure of A. Similarly, we have $A\subset \bar{B}$.

We suppose A=[0,1) and B=[0,1], thus $A\neq B$. Since $A\subset B, \ \forall x\in A, \ \exists y\in B$ such that x=y and d(x,y)=0, we have $\sup_{x\in A}d(x,B)=0$. On the other hand, when $x\in B$ and $x\in [0,1)$, since A=[0,1), we know that for any $x\in [0,1)$, there exists a $y\in A$ such that x=y and then d(x,y)=0. And when $x\in B$ and $x=\{1\}$, since $y\in A=[0,1)$, we have $d(x,A)=\inf\{d(x,y):y\in A\}=0$. Thus it is also holds that $\sup_{x\in B}d(x,A)=0$. Then we know that $d_H(A,B)=0$ but $A\neq B$. So, A and B is not necessarily equal.

- (ii) Since \mathcal{C} is the set of all non empty closed subsets of X, for $A \in \mathcal{C}$ and $B \in \mathcal{C}$, A, B are both closed sets. Next we need to verify the definition of the metric.
- (a) $d_H(A, B) \ge 0$: since (X, d) is a metric space, then $d(x, B) \ge 0$ and $d(x, A) \ge 0$, thus we have $d_H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)\} \ge 0$.
- (b) $d_H(A, B) = 0 \iff A = B$: if A = B, then we have d(x, B) = 0 for any $x \in A$ and d(x, A) = 0 for any $x \in B$, thus we know that $d_H(A, B) = 0$. If $d_H(A, B) = 0$, by the result we get from (i), we know that $A \subset \overline{B}$ and $B \subset \overline{A}$. Since A and B are both closed sets, then we have $A \subset B$ and $B \subset A$, thus we can get A = B.
- (c) $d_H(A, B) = d_H(B, A)$: since $d_H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)\}$ and $d_H(B, A) = \max\{\sup_{x \in B} d(x, A), \sup_{x \in A} d(x, B)\}$, thus we have $d_H(A, B) = d_H(B, A)$.
- (d) For $A, B, C \in \mathcal{C}$, $d_H(A, B) \leq d_H(A, C) + d_H(C, B)$: since $d_H(A, C) + d_H(C, B) \geq \sup_{x \in A} d(x, C) + \sup_{x \in C} d(x, B)$, then we know that $d_H(A, C) + d_H(C, B) \geq \sup_{x \in A} d(x, B)$.

Similarly, we have $d_H(A,C)+d_H(C,B)\geq \sup_{x\in B}d(x,A)$, thus we can get $d_H(A,C)+d_H(C,B)\geq \max\{\sup_{x\in A}d(x,B),\sup_{x\in B}d(x,A)\}=d_H(A,B)$.

Exercise 3:

Let (X, \mathcal{A}, μ) be a measure space and $\{f_k\}$ a sequence in $L^p(X)$ where $1 \leq p \leq +\infty$. Suppose that $\{f_k\}$ converges in $L^p(X)$ to f. Show that f_k converges in measure to f on X.

Hint: According to the definition f convergence in measure, you need to show that for any positive ϵ , $\mu(\{x \in X : |f_k(x) - f(x)| \ge \epsilon\})$ converges to zero as k tends to infinity.

Solution:

When $p = +\infty$, since the sequence $\{f_k\}$ converges to f in $L^{\infty}(X)$, then $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, when n > N, we have $||f_n - f||_{\infty} < \epsilon$. It means that $|f_n - f|$ is less than ϵ almost everywhere. Thus we have $\mu(|f_n - f| > \epsilon) = 0$ when $n \to \infty$. So we get that $\mu(\{x \in X : |f_n(x) - f(x)| \ge \epsilon\})$ converges to zero as n tends to infinity.

When $1 \le p < \infty$, for any $\epsilon > 0$, we have

$$||f_{n} - f||_{p}^{p} = \int_{X} |f_{n} - f|^{p} d\mu$$

$$\geq \int_{\{x \in X: |f_{n} - f|^{p} \ge \epsilon^{p}\}} |f_{n} - f|^{p} d\mu$$

$$\geq \epsilon^{p} \mu(\{x \in X: |f_{n} - f|^{p} \ge \epsilon^{p}\})$$

$$= \epsilon^{p} \mu(\{x \in X: |f_{n} - f| \ge \epsilon\}),$$

thus we know that

$$\mu(\{x \in X : |f_n - f| \ge \epsilon\}) \le \frac{1}{\epsilon^p} ||f_n - f||_p^p.$$

Since $\{f_n\}$ converges in $L^p(X)$ to f, we have $||f_n - f||_p^p \to 0$ as $n \to \infty$. So, for all $\epsilon > 0$, $\mu(\{x \in X : |f_n(x) - f(x)| \ge \epsilon\})$ converges to zero as n tends to infinity.

Exercise 4:

Suppose $g_n, g \in L^1(\mathbb{R})$, g_n converges to g almost everywhere, and $\int g_n$ converges to $\int g$. Define $f_n(x) := g_n(x+n)$.

- (i) Prove or disprove: there exists an f in $L^1(\mathbb{R})$ such that f_n converges to f almost everywhere.
 - (ii) Prove or disprove: if there is an f as in (i), then $\int f_n$ converges to $\int f$.

Solution:

(i) The statement is not true. We suppose $g_n(x) = (x + \frac{1}{n})\mathbb{I}_{[0,1]}(x)$ and $g(x) = x\mathbb{I}_{[0,1]}(x)$, then we have

$$|g_n(x) - g(x)| = |(x + \frac{1}{n})\mathbb{I}_{[0,1]}(x) - x\mathbb{I}_{[0,1]}(x)| = \frac{1}{n} \to 0$$

when n tends to infinity. So, g_n converges to g almost everywhere. Since

$$\int_{\mathbb{R}} g_n(x) \, dx = \int_0^1 (x + \frac{1}{n}) \, dx = \frac{1}{2} + \frac{1}{n} \to \frac{1}{2}$$

as $n \to +\infty$ and

$$\int_{\mathbb{R}} g(x) \, dx = \int_{0}^{1} x \, dx = \frac{1}{2},$$

we know that $\int g_n$ converges to $\int g$. As $f_n(x) := g_n(x+n)$, then $f_n(x) = (x+n+\frac{1}{n})\mathbb{I}_{[0,1]}(x)$, it is diverges as $f_n(x) > n$ for any $x \in [0,1]$.

(ii) The statement is not true. We set $g_n(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ for all $n \in \mathbb{N}$ and $g(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ too. Since $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} dx = 1$, then we have $g_n(x) \in L^1(\mathbb{R})$ and $g(x) \in L^1(\mathbb{R})$. As $g_n(x) = g(x)$, we know that g_n converges to g almost everywhere. By the definition of $f_n(x)$, we know that $f_n(x) = g_n(x+n) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x+n)^2}{2}}$ and when f(x) = 0, for any fix $x \in \mathbb{R}$ we have,

$$|f_n(x) - f(x)| = \left| \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+n)^2}{2}} - 0 \right| \to 0$$

as $n \to +\infty$. So, we know that f is in $L^1(\mathbb{R})$ and f_n converges to f almost everywhere. But for any $n \in \mathbb{N}$, we have

$$\int_{\mathbb{R}} f_n(x) \, dx = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+n)^2}{2}} \, dx = 1,$$

and we know that

$$\int_{\mathbb{R}} f(x) \, dx = \int_{\mathbb{R}} 0 \, dx = 0,$$

thus $\int f_n$ does not converges to $\int f$.