It remains to show that the languages $\mathfrak{L}(\phi)$ for all FOL-sentences ϕ over $Voc_{\Sigma,\leqslant}$ are star-free. This is shown in the following lemma using the Ehrenfeucht-Fraïssé theory:

Lemma 2.6.29 (FO-definable languages are star-free). *If* $L \subseteq \Sigma^*$ *is FO-definable then* L *is star-free.*

Proof. For technical reasons, we deal with an extended vocabulary $Voc_{\Sigma,\leqslant}^{\text{ext}}$ that extends $Voc_{\Sigma,\leqslant}$ by constant symbols c_{first} and c_{last} for the positions of the first and last element. The graph structures for finite words have to be extended with meanings for c_{first} and c_{last} in the obvious way. That is, if $w = \mathfrak{a}_1 \dots \mathfrak{a}_n$ is a word of length $n \ge 1$ then:

Graph(w) =
$$(\{1,...,n\}, \leq, (P_{\mathfrak{a}}^w)_{\mathfrak{a} \in \Sigma}, c_{first}^w, c_{first}^w)$$

where

$$c_{\textit{first}}^{\textit{w}} \stackrel{\text{def}}{=} 1$$
 and $c_{\textit{last}}^{\textit{w}} \stackrel{\text{def}}{=} n$

For the empty word, Graph $(\varepsilon) = (\{0\}, \leqslant, (P_{\mathfrak{a}}^{\varepsilon})_{\mathfrak{a} \in \Sigma}, 0, 0).$

We show by induction on k that each FOL[k]-sentence ϕ over the extended vocabulary $Voc_{\Sigma,\leqslant}^{ext}$ defines a star-free language. Recall that the FOL[k]-formulas are FOL-formulas where the quantifier rank is at most k. See Notation 1.6.20 on page 97.

Basis of induction. For k=0, we consider a FOL[0]-sentence φ . Then, φ is quantifier-free and closed, and thus a propositional formula built by the atoms true, $P_{\mathfrak{a}}(c_{first})$, $P_{\mathfrak{a}}(c_{last})$, t=t' and $t\leqslant t'$ where t and t' are variable-free terms, i.e., t, $t'\in\{c_{first},c_{last}\}$. In fact, the languages of these atoms are star-free:

- true, $c_{first} = c_{first}$, $c_{last} = c_{last}$, $c_{first} \leqslant c_{first}$, $c_{last} \leqslant c_{last}$ and $c_{first} \leqslant c_{last}$, define the language Σ^* , which is given by the star-free expression $\overline{\emptyset}$.
- The language defined by $P_a(c_{last})$ is

$$\mathfrak{L}(P_{\mathfrak{a}}(c_{\textit{last}})) = \{wa : w \in \Sigma^*\}$$

is given by the star-free expression $\overline{\emptyset}$ a.

• The language defined by $P_a(c_{first})$ is

$$\mathfrak{L}(\,\mathsf{P}_{\mathfrak{a}}(\,c_{\mathit{first}})\,) \ = \ \big\{\,\mathfrak{a}w : w \in \Sigma^*\,\big\}$$

is given by the star-free expression $\mathfrak{a}\overline{\emptyset}$.

• The languages defined by the atoms $c_{last} \leq c_{first}$, $c_{first} = c_{last}$ and $c_{last} = c_{first}$ agree with the star-free language

$$\{\epsilon\} \cup \bigcup_{\mathfrak{a} \in \Sigma} \{\mathfrak{a}\}$$

which, for $\Sigma = \{a_1, ..., a_k\}$, are given by the star-free expression $\varepsilon + a_1 + ... + a_k$.

As boolean combinations of star-free languages are star-free, we get that all FOL[0]-sentences define a star-free language.

Step of induction. Let us now assume that $k \geqslant 0$ and that the languages $\mathfrak{L}(\psi)$ for all FOL[k]-sentences ψ over $Voc_{\Sigma,\leqslant}^{ext}$ are star-free. The goal is to show that the languages $\mathfrak{L}(\varphi)$ of all FOL[k+1]-sentences φ over $Voc_{\Sigma,\leqslant}^{ext}$ are star-free. Again, as the class of star-free languages is closed under the boolean combinators (intersection and complementation) is suffices to consider the case of a FOL[k+1]-sentence

$$\phi = \exists x. \psi(x)$$

i.e., where ψ is a FOL[k](x)-formula (which means a FOL[k]-formula with $Free(\psi) \subseteq \{x\}$). Let

$$\mathfrak{T}_1, \ldots, \mathfrak{T}_s$$

be an enumeration of the rank-k types of $Voc_{\Sigma,\leqslant}$ and let θ_1,\ldots,θ_s FOL[k]-sentences that define them. That is:

$$\mathfrak{T}_{\mathfrak{i}} \, = \, \big\{ \, \phi : \phi \text{ is a FOL[k]-sentence s.t. } \theta_{\mathfrak{i}} \Vdash \phi \, \big\}$$

Recall that $FOL[k](\emptyset)$ denotes the set of all FOL[k]-sentence. The rank-k-type

$$= \ \big\{\, \phi : \phi \text{ is a FOL}[k]\text{-sentence s.t. Graph}(w) \models \phi \,\big\}$$

=
$$\{ \varphi : \varphi \text{ is a FOL}[k]\text{-sentence s.t. } w \in \mathfrak{L}(\varphi) \}$$

of a word structure agrees with the rank-k-type \mathfrak{T}_i where θ_i holds for Graph(w), see Lemma 1.6.26 on page 99. That is:

$$w \in \mathfrak{L}(\theta_i)$$
 iff $Graph(w) \models \theta_i$ iff $FOL[k](Graph(w)) = \mathfrak{T}_i$

Hence:

Furthermore, the extension of the vocabulary by new constant symbols ensures that the empty word ε has its own rank-k-type. This follows from the fact that

$$\bigvee_{\mathfrak{a}\in\Sigma}\mathsf{P}_{\mathfrak{a}}(c_{\mathit{first}})$$

is a FOL[0]-sentence which holds for each nonempty word, but not for the empty word. Thus, there is some index $k \in \{1, ..., s\}$ such that $\mathfrak{L}(\theta_k) = \{\epsilon\}$ and $\epsilon \notin \mathfrak{L}(\theta_i)$ for all $1 \leqslant i \leqslant s$ with $i \neq k$.

Let \mathfrak{R} be the relation consisting of all pairs $(\mathfrak{T}_i,\mathfrak{T}_j)$ of rank-k-types such that for some nonempty word $\nu=\mathfrak{b}_1\,\mathfrak{b}_2\dots\mathfrak{b}_r$ and word position $\ell\in\{1,\dots,r\}$ where $(Graph(\nu),[x:=\ell])$ is a model for $\psi(x)$, the first component \mathfrak{T}_i is the rank-k-type of the prefix $\mathfrak{b}_1\,\mathfrak{b}_2\dots\mathfrak{b}_\ell$ of ℓ and the second component \mathfrak{T}_j is the rank-k-type of the (possibly empty) suffix $\mathfrak{b}_{\ell+1}\dots\mathfrak{b}_r$ of ν . Thus:

$$\mathfrak{R} \stackrel{\text{def}}{=} \{ (i,j) \in \{1,\ldots,s\}^2 : \text{ there exist } \mathfrak{b}_1 \, \mathfrak{b}_2 \ldots \mathfrak{b}_n \in \Sigma^+ \text{ and } \ell \in \{1,\ldots,r\} \text{ such that } \}$$

(1)
$$(Graph(\mathfrak{b}_1\mathfrak{b}_2...\mathfrak{b}_r), [x := \ell]) \models \psi(x)$$

(2)
$$FOL[k](Graph(\mathfrak{b}_1 \dots \mathfrak{b}_{\ell})) = \mathfrak{T}_i$$

(3)
$$FOL[k](Graph(\mathfrak{b}_{\ell+1}...\mathfrak{b}_r)) = \mathfrak{T}_i$$

We will show that for each nonempty word $w = \mathfrak{a}_1 \mathfrak{a}_2 \dots \mathfrak{a}_n \in \Sigma^+$, the following statements (i) and (ii) are equivalent:

- (i) Graph(w) $\models \varphi = \exists x. \psi(x)$
- (ii) there exists $m \in \{1, ..., n\}$ such that $(i, j) \in \mathfrak{R}$ where

$$\mathfrak{T}_{i} = FOL[k](Graph(\mathfrak{a}_{1}\mathfrak{a}_{2}...\mathfrak{a}_{m}))$$

$$\mathfrak{T}_j = FOL[k] (Graph(\mathfrak{a}_{m+1} ... \mathfrak{a}_n))$$

Having established the equivalence of (i) and (ii), the remaining argument is as follows. The induction hypothesis applied to the FOL[k]-sentences θ_i yields that the languages $\mathfrak{L}(\theta_i)$ are star-free. Let

$$L \stackrel{\text{def}}{=} \bigcup_{(i,j)\in\mathfrak{R}} \mathfrak{L}(\theta_i) \, \mathfrak{L}(\theta_j)$$

As the languages $\mathfrak{L}(\theta_i)$ are star-free, so is the language L. The goal is now to show that L agrees with the language defined by $\exists x.\psi(x)$ excluding the empty word (which might or might not belong to $\mathfrak{L}(\exists x.\psi(x))$, i.e.:

$$\mathfrak{L}(\exists x.\psi(x)) \setminus \{\epsilon\} = L \tag{*}$$

From (*) we conclude that

$$\mathfrak{L}\big(\exists x.\psi(x)\big) \ = \left\{ \begin{array}{ll} L \cup \{\epsilon\} & : & \text{if } Graph(\epsilon) \models \exists x.\psi(x) \\ L & : & \text{otherwise} \end{array} \right.$$

is star-free. Establishing statement (*) amounts showing that for each word $w \in \Sigma^*$:

$$w \in L$$
 iff $w \neq \varepsilon$ and $Graph(w) \models \exists x. \psi(x)$

": Suppose $w = \mathfrak{a}_1 \dots \mathfrak{a}_n \in L$. Then, $w \in \mathfrak{L}(\theta_i) \mathfrak{L}(\theta_j)$ for some pair $(i,j) \in \mathfrak{R}$. We first observe that $w \neq \varepsilon$. This follows from the fact that by condition (2) in the definition of \mathfrak{R} , the formula-set \mathfrak{T}_i is the rank-k-type of some nonempty word. Hence, $n \geqslant 1$ and there exists $m \in \{1, \dots, n\}$ such that

$$w_1 \stackrel{\text{def}}{=} \mathfrak{a}_1 \mathfrak{a}_2 \dots \mathfrak{a}_{\mathfrak{m}} \in \mathfrak{L}(\theta_{\mathfrak{i}})$$

$$w_2 \stackrel{\text{\tiny def}}{=} \mathfrak{a}_{m+1} \dots \mathfrak{a}_n \in \mathfrak{L}(\theta_j)$$

But then $Graph(w_1) \models \theta_i$ and $Graph(w_2) \models \theta_i$, and therefore

$$FOL[k](Graph(w_1)) = \mathfrak{T}_i \text{ and } FOL[k](Graph(w_2)) = \mathfrak{T}_i$$

But then the equivalence of statements (i) and (ii) yields $Graph(w) \models \exists x. \psi(x)$.

"\(\infty\)": Let $w = \mathfrak{a}_1 \mathfrak{a}_2 \dots \mathfrak{a}_n$ be a nonempty word with $Graph(w) \models \exists x. \psi(x)$. Hence, by the equivalence of (i) and (ii) we obtain the existence of an index $m \in \{1, ..., n\}$ such that

$$(i,j) \in \mathfrak{R}$$

where i, $j \in \{1,...,s\}$ with FOL[k](Graph(w_1)) = \mathfrak{T}_i and FOL[k](Graph(w_2)) = \mathfrak{T}_j where – as before – $w_1 = \mathfrak{a}_1 \mathfrak{a}_2 ... \mathfrak{a}_m$ and $w_2 = \mathfrak{a}_{m+1} \mathfrak{a}_2 ... \mathfrak{a}_n$. Then:

$$Graph(w_1) \models \theta_i$$
 and $Graph(w_2) \models \theta_i$

Hence, $w_1 \in \mathfrak{L}(\theta_i)$, $w_2 \in \mathfrak{L}(\theta_i)$ and therefore $w = w_1 w_2 \in \mathfrak{L}(\theta_i) \mathfrak{L}(\theta_i) \subseteq L$.

We now establish the equivalence of statements (i) and (ii).

"(i) \Longrightarrow (ii)": Let $w = \mathfrak{a}_1 \mathfrak{a}_2 \dots \mathfrak{a}_n$ be a nonempty word such that:

$$Graph(w) \models \exists x. \psi(x)$$

Then there exists a word position $m \in \{1, ..., n\}$ such that:

$$(Graph(w), [x := m]) \models \psi(x)$$

Let $w_1 \stackrel{\text{def}}{=} \mathfrak{a}_1 \mathfrak{a}_2 \dots \mathfrak{a}_m$ and $w_2 \stackrel{\text{def}}{=} \mathfrak{a}_{m+1} \dots \mathfrak{a}_n$. Let i and j be indices in $\{1, \dots, s\}$ with

$$FOL[k](Graph(w_1)) = \mathfrak{T}_i$$
 and $FOL[k](Graph(w_2)) = \mathfrak{T}_j$.

Then, $(i,j) \in \Re$ by the definition of \Re .

- "(ii) \Longrightarrow (i)": Let $w = \mathfrak{a}_1 \mathfrak{a}_2 \dots \mathfrak{a}_n \in \Sigma^+$ and $\mathfrak{m} \in \{1, \dots, n\}$ and i, $j \in \{1, \dots, s\}$ such that the following conditions (a), (b) and (c) are satisfied:
 - (a) $(i,j) \in \mathfrak{R}$
 - (b) $FOL[k](Graph(w_1)) = \mathfrak{T}_i$ where $w_1 = \mathfrak{a}_1 \dots \mathfrak{a}_m$
 - (c) $FOL[k](Graph(w_1)) = \mathfrak{T}_j$ where $w_2 = \mathfrak{a}_{m+1} \dots \mathfrak{a}_n$

Condition (a) yields the existence of a word $\nu = \mathfrak{b}_1 \mathfrak{b}_2 \dots \mathfrak{b}_r \in \Sigma^+$ and a word position ℓ in $\{1, \dots, r\}$ such that the following conditions (1), (2) and (3) hold:

- (1) $(Graph(v), [x := \ell]) \models \psi(x)$
- (2) $FOL[k](Graph(v_1)) = \mathfrak{T}_i$ where $v_1 = \mathfrak{b}_1 \mathfrak{b}_2 \dots \mathfrak{b}_\ell$
- (3) $FOL[k](Graph(v_2)) = \mathfrak{T}_i$ where $v_2 = \mathfrak{b}_{\ell+1} \dots \mathfrak{b}_r$

As the rank-k-types of w_1 and v_1 agree (both equal \mathfrak{T}_i by conditions (b) and (2)), the word structures of w_1 and v_1 satisfy the same FOL[k]-sentences. The same holds for w_2 and v_2 which have the same rank-k type \mathfrak{T}_j ; see conditions (c) and (3). Thus, by the Ehrenfeucht-Fraïssé Theorem (see Theorem 1.6.27 on page 101) we get:

$$Graph(w_1) \cong_k Graph(v_1)$$
 and $Graph(w_2) \cong_k Graph(v_2)$

Recall that $\mathcal{A} \cong_k \mathcal{B}$ denotes that structures \mathcal{A} and \mathcal{B} are k-round game equivalent for the Ehrenfeucht-Fraïssé game and that $\mathcal{A} \cong_k \mathcal{B}$ holds if and only if structures \mathcal{A} and \mathcal{B} satisfy the same FOL[k]-sentences.

Applying an argument similar to the one used in the concatenation lemma for linear orders (Lemma 1.6.41 on page 110) we obtain the k-round game equivalence of the pointed word structures:

$$(Graph(w), m) \cong_k (Graph(v), \ell)$$

The Ehrenfeucht-Fraïssé Theorem then yields that the interpretations

$$(Graph(w), [x := m])$$
 and $(Graph(v), [x := \ell])$

fulfill the same FOL[k](x)-formulas. As $\psi(x) \in FOL[k](x)$, by (1) we get:

$$(Graph(w), [x := m]) \models \psi(x)$$

But this yields $Graph(w) \models \exists x. \psi(x) = \phi$.

This completes the proof of Theorem 2.6.27. In fact, since the star-free languages constitute a proper subclass of the class of regular languages we obtain that MSO over words is more powerful than FOL over words. An example for a regular language that is not star-free is L_{even} , the set of all finite words of even length. We may assume here the singleton alphabet $\Sigma = \{\mathfrak{a}\}$ and define L_{even} as the set of all words \mathfrak{a}^n where \mathfrak{n} is even.

Theorem 2.6.30 (MSO over finite words is strictly more expressive than FOL). *The regular language* L_{even} *is MSO-definable, but not FO-definable.*

Proof. The MSO-definability follows from the fact that L_{even} is regular as it is given by the regular expression

$$(aa)^*$$

The fact that L_{even} is not FO-definable follows by the observation that there is no FOL-sentence over the vocabulary of linear orders that characterizes the finite linear orders of even length. See Theorem 1.6.43 on page 112.