Recap: Policy Iteration and MDP

• The Policy Iteration begins with a (stationary) base policy $\mu^{(t)}$ and operates in two steps.

• Policy Evaluation step: We compute $J_{\mu^{(t)}}(1), \dots, J_{\mu^{(t)}}(n)$ which solves the system of equations:

$$J_{\mu^{(t)}}(i) = \sum_{j=1}^{n} p_{ij}(\mu^{(t)}(i)) \left(g(i, \mu^{(t)}(i), j) + \alpha J_{\mu^{(t)}}(j) \right)$$

- This step, solves a "version" of the Bellman's Equation where we stick to base policy $\mu^{(t)}$.
- This is a **linear** system on the variables $J_{\mu^{(t)}}(1), \dots, J_{\mu^{(t)}}(n)$.

Recap Policy Iteration and MDP

• **Policy Improvement step:** We compute a new policy $\mu^{(t+1)}$ as:

$$\mu^{(t+1)}(i) \in \arg\min_{u \in U(i)} \left\{ \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha J_{\mu^{(t)}}(j) \right) \right\}, \, \forall i \in \{1, ..., n\}$$

• Notice that this is similar to a 1-step lookahead minimization.

• So the Policy Improvement step, is essentially the Rollout Algorithm, where $\mu^{(t)}$ plays the role of the base policy and $\mu^{(t+1)}$ plays the role of the rollout policy.

The PI Algorithm alternates between these two steps sequentially, until:

$$J_{\mu^{(t+1)}}(i) = J_{\mu^{(t)}}(i), \forall i \in \{1, ..., n\}$$

Recap: Optimistic Policy Iteration

- The Optimistic (or Generalized) PI Algorithm can be given as follows. Given some function $J^{(t)}(i)$:
- Policy Improvement step: We compute a new policy $\mu^{(t+1)}$ as:

$$\mu^{(t)}(i) \in \arg\min_{u \in U(i)} \left\{ \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha J^{(t)}(j) \right) \right\}, \forall i \in \{1, ..., n\}$$

• <u>Policy Evaluation step:</u> Starting with $\hat{J}_0^{(t)} = J^{(0)}$ we apply m_t VI-steps for policy $\mu^{(t)}$ to compute $\hat{J}_1^{(t)}, \dots, \hat{J}_{m_t}^{(t)}$ according to:

$$\hat{J}_{m+1}^{(t)}(i) = \sum_{i=1}^{n} p_{ij}(\mu^{(t)}(i)) \left(g(i, \mu^{(t)}(i), j) + \alpha \hat{J}_{m}^{(t)} \right) \right\}, \, \forall i \in \{1, ..., n\}$$

• For all $m \in \{0, \dots, m_t - 1\}$ and sets $J^{(t+1)} = \hat{J}_{m_t}^{(t)}$.

Approximate Policy Iteration

- As always let us introduce approximation architectures. Approximate PI can be framed in terms of each of the two steps:
- <u>Critic Step</u>: Given a current policy $\mu^{(t)}$ we use an approximation architecture to perform the policy evaluation, namely to compute the cost-to-go values $\tilde{J}_{\mu^{(t)}} \approx J_{\mu^{(t+1)}}$.
- Actor Step: Given the approximate cost-to-go values $\tilde{J}_{\mu^{(t)}}$, we solve a lookahead minimization to generate the improved policy $\mu^{(t+1)}$. This minimization can also be approximated by using an architecture to generate $\mu^{(t+1)} \approx \tilde{\mu}^{(t+1)}$.

• The Reinforcement Learning (RL) Algorithms that implement both steps are called the **Actor-Critic Algorithm**.

- We begin our analyses with Critic-only algorithms:
 - Only the critic step (policy evaluation) is done with approximations
 - The actor step (policy improvement) is done exactly

• Suppose we start with a some base policy $\mu^{(t)}$. Consider an approximation architecture, say a DNN, is used to generate:

$$\tilde{J}_{\mu^{(t)}}(i,\theta) \approx J_{\mu^{(t)}}(i)$$

• Where θ represents DNN parameters.

• Note that, differently from fitted-VI, the cost-to-go approximation is associated to a policy $\mu^{(t)}$.

• As always, suppose that we can generate sample state/cost-to-go pairs:

$$(i_0^1, \beta^1), (i_0^2, \beta^2), ..., (i_0^S, \beta^S)$$

• Where S is number of samples. These costs can be generated by applying the policy $\mu^{(t)}$:

Then we have:

$$\beta^{s} = \sum_{k=0}^{M-1} \alpha^{k} g(i_{k}^{s}, \mu^{(t)}(i_{k}^{s}), i_{k+1}^{s}) + \alpha^{M} \hat{J}(i_{M}^{s}) \longrightarrow$$

Terminal cost function approximation

• Notice that $\mu^{(t)}$ plays the role of the base policy, in the Rollout Algorithm. We can summarize the simulation process as:

• Then the critic-step reduced to the usual regression (training) problem:

$$\theta^{(t)} = \arg\min_{\theta} \left\{ \sum_{s=1}^{S} \left(\tilde{J}_{\mu^{(t)}}(i_0^s, \theta) - \beta^s \right)^2 \right\}$$

• Solved by gradient-type methods (e.g.: SGD), like always.

• In critic-only algorithms, the actor-step (policy improvement) is obtained exactly:

$$\mu^{(t+1)}(i) \in \arg\min_{u \in U(i)} \left\{ \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}_{\mu^{(t)}}(j, \theta^{(t)}) \right) \right\}, \, \forall i \in \{1, ..., n\}$$

- And then we repeat:
 - Use $\mu^{(t+1)}$ to simulate more rollout trajectories
 - Collecting more samples associated with policy $\mu^{(t+1)}$
 - Update $\theta^{(t)}$ to $\theta^{(t+1)}$; and so forth

• Are there any problems with this approach?

Bias-Variance Tradeoff

- The central problem here is that the samples we are collecting are always linked to some policy:
 - Samples generated while under $\mu^{(t)}$ cannot be treated to be the same as sampled generated under $\mu^{(t+1)}$
- In addition, if the rollout horizon M is too long, there will be a lot of a variance in the simulated costs.

• However, if the rollout horizon M is too short, there will be a lot of bias in the simulated costs.

Critic-only Algorithms with Q-factors

- We can make the algorithm model-free (i.e.: without knowledge of the transition probabilities) by using Q-factors.
- As always with Q-factors, given a state-control pair (i, u) we want to generate the approximate Q-factor:

$$\tilde{Q}_{\mu^{(t)}}(i, u, \theta) \approx Q_{\mu^{(t)}}(i, u)$$

• The critic step becomes, after obtaining samples $\{(i_0^S, u^S, \beta^S)\}_{S=1}^S$:

$$\theta^{(t)} = \arg\min_{\theta} \left\{ \sum_{s=1}^{S} \left(\tilde{Q}_{\mu^{(t)}}(i_0^s, u^s, \theta) - \beta^s \right)^2 \right\}$$

$$\qquad \qquad \beta^s = g(i_0^s, u^s, i_{k+1}^s) + \sum^* \alpha^k g(i_k^s, \mu^{(t)}(i_k^s), i_{k+1}^s) + \alpha^M \hat{J}(i_M^s)$$

Critic-only Algorithms with Q-factors

Then the policy improvement step becomes:

$$\mu^{(t+1)}(i) \in \arg\min_{u \in U(i)} \left\{ \tilde{Q}_{\mu^{(t)}}(i, u, \theta^{(t)}) \right\}, \forall i \in \{1, ..., n\}$$

 This variant with Q-factors, share the same issues as the one with value function approximations.

Actor-only Algorithms

• Now let's focus on the actor component step:

$$\mu^{(t+1)}(i) \in \arg\min_{u \in U(i)} \left\{ \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \tilde{J}_{\mu^{(t)}}(j, \theta^{(t)}) \right) \right\}, \, \forall i \in \{1, ..., n\}$$

• We will introduce approximation in the **Policy Space**, by using say a DNN, to generate:

$$\tilde{\mu}(i,\theta) \approx \mu(i)$$

Now, what we seek is a mapping from states to actions.

Actor-only Algorithms

Notice, that we can define a policy parametrization through cost parametrization:

$$\tilde{\mu}(i,\theta) \in \arg\min_{u \in U(i)} \left\{ \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \tilde{J}(j,\theta) \right) \right\}, \, \forall i \in \{1,...,n\}$$

- In this case, the approximated policy is given as the solution of the 1-step lookahead minimization problem.
- The issue here is how can we update θ :
 - By using approximate VI?
 - By minimizing some other objective? For example $J_{\widetilde{\mu}(\cdot,\theta)}$?
- We have to be careful because the policy given by an "ArgMin" may not be differentiable w.r.t. θ .

Training by Cost Optimization

• We will start by properly defining what we want to optimize when we generate:

$$\tilde{\mu}(i,\theta) \approx \mu(i)$$

• Ideally we want to perform the following optimization:

$$\min_{ heta} \mathbb{E}_{p_0} \left[J_{\tilde{\mu}(heta)}(i_0) \right]$$

- Where $\tilde{\mu}(\theta)$ specifies an action for every possible state (we omit the state argument)
- p_0 is some initial distribution of the initial states.
- $J_{\widetilde{\mu}(\theta)}(\cdot)$ is the cost-to-go associated with the policy $\widetilde{\mu}(\theta)$.

• The framework of Cost (or Reward) Optimization leads to the very first algorithm in the RL community, developed separately from the DP framework: the **Policy Gradient Algorithm**.

• If we assume $J_{\widetilde{\mu}(\theta)}(\cdot)$ is differentiable w.r.t. θ and if we know the initial state i_0 , we can write the usual gradient step:

$$\theta^{(t+1)} = \theta^{(t)} - \gamma^{(t)} \nabla J_{\tilde{\mu}(\theta^{(t)})}(i_0), \quad \forall t \ge 0$$

- The issue is that the gradient may not be explicitly given and we may not know p_0 , the initial state distribution.
- However we will leverage simulation and sampling to perform the gradient step.

• We will perform a "trick", where we will allow our approximated policy to be randomized:

$$\tilde{\mu}(i,\theta) = u, \quad w.p. \quad p(u|i,\theta) \qquad \forall u \in U(i)$$

Then, the optimization becomes:

$$\min_{\theta} \mathbb{E}_{p_{(z|\theta)}} \left[\sum_{k=0}^{\infty} \alpha^k g(i_k, u_k) \right]$$

- Where $p_{(z|\theta)}$ is the condition distribution of $z=(i_0,u_0,i_1,u_1,...)$ given θ .
- For simplicity we assumed the stage cost only depend on the initial state and control.

• Let's unpack $p_{(z|\theta)}$:

$$p(z|\theta) = p(i_0, u_0, i_1, u_1, ..., |\theta)$$

Applying the Markov Property:

$$p(z|\theta) = p(i_0, u_0, i_1, u_1, \dots, |\theta) = p(i_0) \prod_{k=0}^{3} p_{i_k, i_{k+1}}(u_k) p(u_k|i_k, \theta)$$

• Now let F(z) be:

$$F(z) = \sum_{k=0}^{\infty} \alpha^k g(i_k, u_k)$$

Then the optimization problem becomes:

$$\min_{\theta} \mathbb{E}_{p_{z|\theta}} \left[F(z) \right]$$

• Now we apply the popular "log-trick" : $\nabla \ln(p) = \frac{\nabla p}{p}$ as follows:

$$\nabla_{\theta} \left(\mathbb{E}_{p(z|\theta)} \left[F(z) \right] \right) = \nabla_{\theta} \left(\sum_{z \in Z} p(z|\theta) F(z) \right) = \sum_{z \in Z} \nabla_{\theta} \left(p(z|\theta) \right) F(z) =$$

$$\sum_{z \in Z} p(z|\theta) \frac{\nabla_{\theta}(p(z|\theta))}{p(z|\theta)} F(z) = \sum_{z \in Z} p(z|\theta) \nabla_{\theta} \left(\ln(p(z|\theta)) \right) F(z) =$$

$$\mathbb{E}_{p(z|\theta)} \left[\nabla_{\theta} \left(\ln(p(z|\theta)) \right) F(z) \right]$$

• Now let's use the un-packed $p(z|\theta)$ to expand the gradient:

$$\nabla_{\theta} \left(\ln(p(z|\theta)) \right) = \nabla_{\theta} \left(\ln(p(i_0) \prod_{k=0}^{\infty} p_{i_k, i_{k+1}}(u_k) p(u_k|i_k, \theta)) \right) =$$

$$\nabla_{\theta} \left(\ln(p(i_0)) + \sum_{k=0}^{\infty} \ln(p_{i_k, i_{k+1}}(u_k)) + \sum_{k=0}^{\infty} \ln(p(u_k|i_k, \theta)) \right) =$$

$$\sum_{k=0}^{\infty} \nabla_{\theta} \left(\ln(p(u_k|i_k, \theta)) \right)$$

• Now, substituting back in the gradient expression:

$$\nabla_{\theta} \left(\mathbb{E}_{p(z|\theta)} \left[F(z) \right] \right) = \mathbb{E}_{p(z|\theta)} \left[\nabla_{\theta} \left(\ln(p(z|\theta)) \right) F(z) \right] =$$

$$\mathbb{E}_{p(z|\theta)} \left[\left(\sum_{k=0}^{\infty} \nabla_{\theta} \left(\ln(p(u_k|i_k, \theta)) \right) \right) \left(\sum_{k=0}^{\infty} \alpha^k g(i_k, u_k) \right) \right]$$

• Now we remove the infinite summations, by truncating the trajectories at some stage M and using a terminal cost approximation (obtained, for example by approx. VI):

$$\mathbb{E}_{p(z|\theta)} \left[\left(\sum_{k=0}^{M-1} \nabla_{\theta} \left(\ln(p(u_k|i_k,\theta)) \right) \right) \left(\sum_{k=0}^{M-1} \alpha^k g(i_k, u_k) + \alpha^M \hat{J}_M(i_m) \right) \right]$$

 Now, we proceed like always: We replace expectations by sample average approximation (SAA) using simulation:

and we obtain:

$$\nabla_{\theta} \left(\mathbb{E}_{p(z|\theta)} \left[F(z) \right] \right) \approx \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k=0}^{M-1} \nabla_{\theta} \left(\ln(p(u_k^s|i_k^s, \theta)) \right) \right) \left(\sum_{k=0}^{M-1} \alpha^k g(i_k^s, u_k^s) + \alpha^M \hat{J}_M(i_m^s) \right)$$

REINFORCE: Policy Gradient Algorithm

• At last, the algorithm known as the REINFORCE algorithm (or simple the Policy Gradient) is given as follows:

Algorithm 1 REINFORCE Algorithm (Policy Gradient)

Input: Initial DNN parameters $\theta^{(0)}$ and randomized policy $\tilde{\mu}(\theta^{(0)})$.

- 1: **for** t = 0, ..., T **do** (obtaining new samples)
- 2: Collect S sample trajectories $z^s = (i_0^s, u_0^s, ..., i_M^s)$ using the policy $\tilde{\mu}(\theta^{(t)})$
- 3: Compute the policy gradient:

$$\nabla_{\theta} \left(\mathbb{E}_{p(z|\theta^{(t)}} \left[F(z) \right] \right) \approx \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k=0}^{M-1} \nabla_{\theta} \left(\ln(p(u_{k}^{s}|i_{k}^{s},\theta^{(t)})) \right) \right) \left(\sum_{k=0}^{M-1} \alpha^{k} g(i_{k}^{s},u_{k}^{s}) + \alpha^{M} \hat{J}_{M}(i_{m}^{s}) \right)$$

4: Perform the gradient step:

$$\theta^{(t+1)} = \theta^{(t)} - \gamma^{(t)} \nabla_{\theta} \left(\mathbb{E}_{p(z|\theta^{(t)})} \left[F(z) \right] \right)$$

5: end for

Output: The last DNN configuration $\theta^{(T)}$. A suboptimal policy $\tilde{\mu}(\theta^{(T)})$

Example: Gaussian Policies

- As an example of a randomized policy, Gaussian Networks are often used in the policy gradient framework, when we have continuous actions.
- In this case we have:

$$\tilde{\mu}(i,\theta) \sim \mathcal{N}(m_{\theta}(i), \Sigma)$$

• For discrete action space, we could use Logistic functions ("soft-max" policies).

Example: Gaussian Policies

For the gaussian case, then we can write:

$$\ln(p(u_k|i_k,\theta)) = -\frac{1}{2}(m_{\theta}(i_k) - u_k)^{\top} \Sigma(m_{\theta}(i_k) - u_k) + \text{constant}$$

• Taking the gradient w.r.t. θ yields:

$$\nabla_{\theta} \Big(\ln(p(u_k|i_k,\theta)) \Big) = -\frac{1}{2} \Sigma^{-1} (m(i_k) - u_k) \nabla_{\theta} (m_{\theta}(i_k))$$
 Backpropagation

• The training becomes very efficient, if we use Gaussian Policies.

Policy Gradient as weighted likelihood

Let us restate the main equation of the policy gradient:

$$\nabla_{\theta} \left(\mathbb{E}_{p(z|\theta)} \left[F(z) \right] \right) \approx \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k=0}^{M-1} \nabla_{\theta} \left(\ln(p(u_k|i_k^s, \theta)) \right) \right) \left(\sum_{k=0}^{M-1} \alpha^k g(i_k^s, u_k^s) + \alpha^M \hat{J}_M(i_m^s) \right)$$

Let's recall our MDP model:

• Let's ignore the costs for the moment. Suppose we collect trajectory samples:

Policy Gradient as weighted likelihood

- With a randomized policy we can ask the following the question: Find the parameter θ that makes the samples sequence most likely to occur:
- That is the Maximum Likelihood (ML) problem (Which we saw for the HMM problem):

$$\max_{\theta} \left\{ \prod_{s=1}^{S} p(z^{s}|\theta) \right\} = \max_{\theta} \left\{ \prod_{s=1}^{S} p(i_{0}^{s}) \prod_{k=0}^{\infty} p_{i_{k}^{s}, i_{k+1}^{s}}(u_{k}^{s}) p(u_{k}^{s}|i_{k}^{s}, \theta) \right\}$$

We can take the long and then the gradient obtaining:

$$\frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k=0}^{M-1} \nabla_{\theta} \left(\ln(p(u_k^s | i_k^s, \theta)) \right) \right)$$

This is exactly equal the first component of the Policy Gradient!

Policy Gradient as weighted likelihood

• Again:

$$\nabla_{\theta} \left(\mathbb{E}_{p(z|\theta)} \big[F(z) \big] \right) \approx \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k=0}^{M-1} \nabla_{\theta} \left(\ln(p(u_k|i_k^s, \theta)) \right) \right) \left(\sum_{k=0}^{M-1} \alpha^k g(i_k^s, u_k^s) + \alpha^M \hat{J}_M(i_m^s) \right)$$

$$\text{Maximum-Likelihood} \qquad \text{Costs "weights"}$$

• So the Policy Gradient places a "weight" on each sampled trajectory equal to the total cost associated with that trajectory.

• So we "tilt" our search for the configuration θ that make the states with higher costs less likely (remember we go on the direction of the negative gradient!)

Issues of Policy Gradient

 We end the lecture some question regarding the Policy Gradient and the Critic-only Algorithm presented so far.

Both Algorithm rely heavily on sampled trajectories:
 Small Variance
 Large Bias

Rollout Horizon
M

• We need to address the Bias-Variance Trade-off.

• We will study how to address this issue and how to combine both algorithm into the Actor-Critic Algorithm (which is also a framework).

Issues of Policy Gradient

- In addition the Policy Gradient (and the Critic-only) Algorithms are what is known as on-policy algorithms:
 - After every gradient-step we need to collect more samples with the updated policy.
- This fact can be very costly in practical problems, since between training steps we need to perform a lot of sampling.

Ideally, we would like to do something like we did in the DQN, using a Replay Buffer:

We will study how to do so next time.