Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 15: Root Locus Continued

Overview

In this Lecture, you will learn:

What is the effect of small gain?

• Departure Angles

Which Poles go to Zeroes?

Arrival Angles

Picking Points?

- Calculating the Gain
- Satisfying Performance Criteria

The root locus starts at the poles.

- What it the effect of small gain?
- Do the poles become more or less stable?

To find the departure angle, we look at a very small region around the departure point.

For a point to be on the root locus, we want phase of 180° .

$$\angle G(s) = \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = 180^{\circ}$$

If we make the point s extremely close to the pole p.

- Most part of phase at s is the same as for p.
 - $ightharpoonup \angle (s-z_i) \cong \angle (p-z_i)$ for all i
 - $ightharpoonup \angle (s-z_i) \cong \angle (p-z_i)$ for all i
- ullet The only difference is the phase from p itself.

The phase due to p is just the departure angle,

$$\angle_{dep}$$

$$\angle(s-p) = \angle_{dep}$$

The total phase is

$$\angle G(s) = \angle G(p) - \angle_{dep} = 180^{\circ}$$

$$\angle_{dep} = \angle G(p) + 180^{\circ}$$

Therefore, to find the departure angle from pole p, just find the phase at p.

Numerical Examples

The phase at p is based on geometry.

$$\angle G(p) = 150^{\circ} - 90^{\circ} - 45^{\circ} = 15^{\circ}$$

So the departure angle is easy to calculate.

$$\angle_{dep} = \angle G(p) + 180^{\circ} = 195^{\circ}$$

M. Peet Lecture 15: Control Systems

6 / 27

Root Locus Demo 1

 $\mathsf{Wiley} + \; \mathsf{Root} \; \mathsf{Locus} \; \mathsf{Demo} \; 1$

Numerical Examples

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}$$

Poles at

•
$$p_{1,2} = -.957 \pm 1.23$$

•
$$p_{3,4} = -.0433 \pm .641$$

Zeroes at

•
$$z_{1,2} = -.5 \pm .866i$$

Problem:

Find departure angle at

$$p_1 = -.957 + 1.23.$$

8 / 27

$$\angle_{dep} = 180^{\circ} + \angle(p_1 - z_1) + \angle(p_1 - z_2) - \angle(p_1 - p_2) - \angle(p_1 - p_3) - \angle(p_1 - p_4)$$

The difficulty is calculating the phase.

M. Peet Lecture 15: Control Systems

Numerical Examples

$$\angle(p_1 - z_1) = \angle(-.957 + 1.23i + .5 - .866i) \times p_1$$

$$= \angle(-.457 + .364i)$$

$$= \tan^{-1} \left(\frac{.364}{-.457}\right)$$

$$= 141.46^{\circ}$$

$$\times (-.457 + .364i)$$

$$\angle(p_1 - z_2) = \angle(-.457 + 2.096i) = 102.3^{\circ}$$

Obviously,

$$\angle(p_1 - p_2) = 90^{\circ}$$

 $\angle(p_1 - p_3) = 147.2^{\circ}, \qquad \angle(p_1 - p_4) = 116.03^{\circ}$

Numerical Examples

Now that we have all the angles:

$$\angle G(p_1) = \angle (p_1 - z_1) + \angle (p_1 - z_2) - \angle (p_1 - p_2) - \angle (p_1 - p_3) - \angle (p_1 - p_4)$$

$$= 141.46^{\circ} + 102.3^{\circ} - 90^{\circ} - 147.2^{\circ} - 116.03^{\circ}$$

$$= -109.47^{\circ}$$

We conclude

$$\angle_{dep,p_1} = \angle G(p_1) + 180^{\circ} = 70.53^{\circ}$$

By symmetry we could find

$$\angle_{dep,p_2} = -70.53^{\circ}$$

Numerical Examples

What about a pole on the real axis?

$$\angle G(p) = 0^{\circ}$$
 or 180°

Calculating the Departure Angle

DIY Example

Similar to Departure Angles, we can find arrival angles

$$G(s) = \frac{s^2 + 4s + 8}{s^6 + 2s^5 + 5s^4 - s^3 + 2s^2 + 1}$$

Suspension Problem

- We treat arrival angles like departure angles.
- To find the arrival angle, we look at a very small region around the arrival point.

For a point to be on the root locus, we want phase of 180° .

$$\angle G(s) = \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = 180^{\circ}$$

If we make the point s extremely close to z.

- Most of phase at s is same as phase at z.
 - ▶ Most of phase is $\angle G(z)$
- The only difference is the phase from z itself, $\angle(s-z)$.

The phase due to z is just the arrival angle,

$$\angle_{arr}$$

$$\angle(s-z) = \angle_{arr}$$

The total phase is

$$\angle G(s) = \angle G(z) + \angle_{arr} = 180^{\circ}$$

Thus the departure angle is

$$\angle_{arr} = 180^{\circ} - \angle G(z)$$

Numerical Examples

The phase at z is based on geometry.

$$\angle G(z) = 90^{\circ} - 150^{\circ} - 45^{\circ} = -105^{\circ}$$

So the departure angle is easy to calculate.

$$\angle_{arr} = 180 - \angle G(z) = 285^{\circ}$$

Calculating the Arrival Angle

DIY Example

New Topic

Calculating Gain

Suppose we have drawn our root locus.

Now we want:

- A point with 20% overshoot
- · A point with 4s settling time
- A point with 2s rise time.

We can see that acceptable points are on the root locus.

Question: How to achieve these points?

Problem: Given a point on the root locus, $s_{desired}$, find the gain which achieves that point.

Answer: We know that for a point on the root locus,

$$1 + kG(s) = 0$$

Therefore, the gain at the point $s_{desired}$ is

$$k = \left| -\frac{1}{G(s)} \right| = \frac{1}{|G(s)|}$$

• The gain is determined by the *magnitude* of G(s).

Note: Even is a point is not *EXACTLY* on the root locus, the formula still gives an approximate gain

Calculating the magnitude of G(s) is similar to calculating the phase

$$G(s) = \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

Multiplication and division properties of complex numbers:

$$|r_1 \cdot r_2| = |r_1| \cdot |r_2|$$

$$\left|\frac{r_1}{r_2}\right| = \frac{|r_1|}{|r_2|}$$

To calculate |G(s)| we can use

$$|G(s)| = \frac{|s - z_1| \cdots |s - z_m|}{|s - p_1| \cdots |s - p_n|}$$

$$k(s) = \frac{|s - p_1| \cdots |s - p_n|}{|s - z_1| \cdots |s - z_m|}$$

Numerical Example

It is somewhat hard to find k. Easiest in factored form.

$$G(s) = \frac{1}{s(s+4)(s+6)}$$

Lets find the gain at s = -1.8 Pole 1:

$$|s| = 1.8$$

Pole 2:

$$|s+4| = 2.2$$

Pole 3:

$$|s+6| = 4.2$$

$$k = \frac{|s - p_1| \cdots |s - p_n|}{|s - z_1| \cdots |s - z_m|} = \frac{1.8 \cdot 2.2 \cdot 4.2}{1} = 16.63$$

Numerical Example

Points on the real axis are easiest. Lets try the point at $s\cong -1+2\imath$

$$G(s) = \frac{1}{s(s+4)(s+6)}$$

Pole 1:

$$|s| = \sqrt{1 + 2^2} = \sqrt{5} = 2.236$$

Pole 2:

$$|s+4| = \sqrt{3^2 + 2^2} = \sqrt{13} = 3.6$$

Pole 3:

$$|s+6| = \sqrt{5^2 + 2^2} = \sqrt{29} = 5.385$$

$$k = \frac{|s - p_1| \cdots |s - p_n|}{|s - z_1| \cdots |s - z_m|} = \sqrt{5 \cdot 13 \cdot 29} = 43.4$$

Can the Suspension system achieve 30% overshoot using proportional feedback?

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

• $M_P = .3$ defines the line at

$$\omega = \frac{\pi}{\ln(M_{p,desired})} \sigma$$

- Examine the gain at
 - $s_1 = -.3536 + .922i$
 - $s_2 = -.7 + 1.83i$

$$k(s_1) = 3.58$$

 $k(s_2) = 2.6153$

DIY Example

$$G(s) = \frac{s+2}{s(s^2+2s+2)}$$

$$\times \qquad \qquad \text{Im(s)}$$

$$\times \qquad \qquad \times$$

$$\times \qquad \qquad \times$$

$$\times \qquad \times$$

Find $T_s \leq 8s$

Matlab

The Matlab syntax for root locus is

> rlocus(n,d)

where

- n is a vector of the coefficients of the numerator of G
- ullet d is a vector of the coefficients of the denominator of G

Example:

$$G(s) = \frac{s^2 + 4s + 8}{s^6 + 2s^5 - s^3 + 2s^2 + 1}$$

- \bullet > n = [1 4 8]
- \bullet > d = [1 2 0 -1 2 0 1]

To find the gain at a point on the root locus:

- Plot the root locus.
- > rlocfind(n,d)
- Use the cursor to select the point.

Summary

What have we learned today?

What is the effect of small gain?

Departure Angles

Which Poles go to Zeroes?

Arrival Angles

Picking Points?

- Calculating the Gain
- Satisfying Performance Criteria

Next Lecture: Generalized Root Locus and Design Problems