MATEMATIKA DISKRIT 2: RELASI DAN SIFATNYA

AYU LATIFAH, ST., MT.

Misalkan R sebuah relasi pada sebuah himpunan A.

Sebuah **path** dengan panjang n dalam R dari a ke b adalah sebuah sekuen hingga $\pi = a, x_1, x_2, ..., x_{n-1}, b$, berawal dengan a dan berakhir dengan b, sehingga

$$a R x_1, x_1 R x_2, ..., x_{n-1} R b$$

Sebuah path dengan panjang n melibatkan n+1 elemen A, meskipun mereka tidak perluberbeda.

Panjang dari sebuah path adalah jumlah sisi (edge) dalam path tersebut, dengan simpul² (vertices) tidak perlu semuanya berbeda.

Contoh 12

Perhatikan digraph berikut.

Maka $\pi_1 = 1, 2, 5, 4, 3$ adalah sebuah path dengan panjang 4 dari simpul 1 ke simpul 3. $\pi_2 = 1, 2, 5, 1$ adalah sebuah path dengan panjang 3 dari simpul 1 ke dirinya sendiri.

 π_3 = 2, 2 adalah sebuah path dengan panjang I dari simpul 2 ke dirinya sendiri.

- Sebuah path yang berawal dan berakhir pada simpul yang sama disebut siklus (cycle).
- Dalam Contoh I2, π_2 adalah siklus dengan panjang 3, sedangkan π_3 adalah siklus dengan panjang I
- Path pada sebuah relasi R dapat dipakai untuk mendefinisikan relasi² baru.
- Definisikan sebuah relasi R^n sbb. x R^n y berarti ada sebuah path dengan panjang n dari x ke y dalam R.

- Juga dapat didefinisikan sebuah relasi R^{∞} pada A, dituliskan x R^{∞} y, yang berarti ada suatu path dalam R dari x ke y.
- R^{∞} disebut **connectivity relation** untuk R.

Contoh 13

Ambil $A = \{a, b, c, d, e\}$ dan R direpresentasikan oleh digraph berikut.

Hitung: R^2 dan R^{∞} .

Jawab: berdasarkan digraph dari R, diperoleh;

```
a R<sup>2</sup> a karena a R a dan a R a
```

a R² b karena a R a dan a R b

a R² c karena a R b dan b R c

b R² d karena b R c dan c R d

b R² e karena b R c dan c R e

c R² e karena c R d dan d R e

Karena itu,

$$R^2 = \{(a,a), (a,b), (a,c), (b,d), (b,e), (c,e)\}$$

Untuk menghitung R^{∞} , diperlukan seluruh pasangan terurut dari simpul² untuk mana terdapat sebuah path dengan panjang sembarang dari simpul pertama ke simpul kedua.

Dari digraph diperoleh,

$$R^{\infty} = \{(a,a), (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), (b,e), (c,d), (c,e), (d,e)\}.$$

Teorema 3

Jika R adalah sebuah relasi pada A =
$$\{a_1, a_2, ..., a_n\}$$
, maka $M_{R^2} = M_R \otimes M_R$

Contoh 14

Ambil A dan R seperti pada Contoh 13. Maka,

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Sehingga,

$$\boldsymbol{M}_{R^2} = \boldsymbol{M}_R \otimes \boldsymbol{M}_R = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Teorema 4

Untuk $n \ge 2$, dan R sebuah relasi pada sebuah himpunan hingga A, diperoleh

$$M_{R^n} = M_R \otimes M_R \otimes \cdots \otimes M_R$$
 (*n* faktor)

Relasi refleksif dan irrefleksif

Sebuah relasi R pada sebuah himpunan A adalah **refleksif** jika $(a,a) \in R$, $\forall a \in A$, yaitu jika a R a untuk seluruh $a \in A$.

Sebuah relasi R pada sebuah himpunan A adalah irrefleksif jika $(a,a) \notin R$, $\forall a \in A$.

Jadi R adalah refleksif jika setiap elemen $a \in A$ berelasi dengan dirinya sendiri dan irrefleksif jika tidak ada elemen yang berelasi dengan dirinya sendiri.

Contoh

Relasi **equality** pada himpunan A, yang didefinisikan $\Delta = \{(a,a) \mid a \in A\}$, adalah **refleksif** karena $(a,a) \in \Delta$, $\forall a \in A$.

Relasi *inequality* pada himpunan A, yang didefinisikan $R = \{(a,b) \in A \times A \mid a \neq b\}$ adalah irrefleksif karena $(a,a) \notin R$, $\forall a \in A$.

Contoh

Ambil $A = \{1, 2, 3\}$ dan $R = \{(1,1), (1,2)\}$, maka

R tidak refleksif karena $(2,2) \notin R$ dan $(3,3) \notin R$.

Juga, R tidak irrefleksif karena $(I,I) \in R$.

Relasi refleksif dan irrefleksif dapat dicari dengan matrik relasinya, refleksif bila diagonal utamanya semuanya 1, irrefleksif bila diagonal utamanya semuanya 0.

Relasi simetri, asimetri, dan antisimetri

Sebuah relasi R pada sebuah himpunan A adalah **simetri** jika bilamana $(a,b) \in R$, maka $(b,a) \in R$.

Sebuah relasi R pada sebuah himpunan A adalah **asimetri** jika bilamana $(a,b) \in R$, maka $(b,a) \notin R$.

Sebuah relasi R pada sebuah himpunan A adalah **antisimetri** jika bilamana $(a,b) \in R$ dan $(b,a) \in R$, maka a = b.

Contoh

Ambil $A = \{1, 2, 3, 4\}$ dan $R = \{(1,2), (2,2), (3,4), (4,1)\}$.

Maka R tidak simetri, karena $(1,2) \in R$ tetapi $(2,1) \notin R$.

R tidak asimetri, karena $(2,2) \in R$.

R antisimetri, karena jika $a \neq b$, apakah $(a,b) \notin R$ atau $(b,a) \notin R$.

Matrik $M_R = [m_{ij}]$ dari sebuah relasi simetri memenuhi sifat, jika

 $m_{ij} = 1$, maka $m_{ji} = 1$, selanjutnya jika

 $m_{ii} = 0$, maka $m_{ij} = 0$.

Atau $M_R = (M_R)^T$, sehingga M_R adalah matrik simetri.

Matrik $M_R = [m_{ij}]$ dari sebuah relasi asimetri memenuhi sifat, jika

$$m_{ij} = 1$$
, maka $m_{ji} = 0$,

Jika R asimetri, membawa bahwa $m_{ii} = 0$ untuk semua i.

Matrik $M_R = [m_{ij}]$ dari sebuah relasi antisimetri memenuhi sifat, bahwa jika $i \neq j$, maka $m_{ij} = 0$ atau $m_{ji} = 0$.

Contoh

Untuk matrik² relasi berikut, apa sifat relasinya?

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

k matrik² relasi berikut, apa sifat relasinya?
$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$M_{R_2} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R_1$$
: simetri

$$R_2$$
: simetri

Contoh

Untuk matrik² relasi berikut, apa sifat relasinya?

$$\boldsymbol{M}_{R_3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

k matrik² relasi berikut, apa sifat relasinya?
$$M_{R_3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_{R_4} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$R_3$$
: antisimetri, tidak asimetri

$$R_4$$
: tidak simetri

Contoh

Untuk matrik² relasi berikut, apa sifat relasinya?

$$M_{R_5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_{R_6} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 R_5 : antisimetri, tidak asimetri

$$M_{R_6} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 R_6 : asimetri, antisimetri

Relasi transitif

Sebuah relasi R pada sebuah himpunan A adalah transitif jika bilamana a R b dan b R c, maka a R c.

Kadang² lebih mudah untuk mengatakan apa artinya sebuah relasi yang tidak transitif.

Sebuah relasi R pada sebuah himpunan A adalah tidak transitif jika terdapat a, b, dan c dalam A sehingga a R b dan b R c tetapi a R c. Jika a, b, dan c ini tidak ada, maka R tidak transitif.

Contoh

Ambil $A = \{1, 2, 3, 4\}$ dan $R = \{(1,2), (1,3), (4,2)\}.$

Apakah R transitif?

Jawab

Karena tidak ditemukan elemen² a, b, dan c dalam A sehingga $(a,b) \in R$ dan $(b,c) \in R$, tetapi $(a,c) \notin R$, maka kesimpulannya R tidak transitif.

Sebuah relasi transitif dapat dicari dengan matrik relasinya $M_R = [m_{ij}]$ sbb.

Jika
$$m_{ij} = 1$$
 dan $m_{jk} = 1$, maka $m_{ik} = 1$.

Atau dengan kata lain, jika

$$(M_R)_{\otimes}^2 = M_R$$

maka R adalah transitif.

Contoh

Ambil $A = \{1, 2, 3\}$ dan R relasi pada A yang matrik relasinya sbb.

$$M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Tunjukkan bahwa R transitif.

Jawab

Dengan perhitungan langsung, didapat $(M_R)_{\otimes}^2 = M_R$; oleh karena itu, R transitif.

Teorema

Sebuah relasi R adalah transitif jika dan hanya jika memenuhi sifat berikut.

Jika terdapat sebuah path dengan panjang lebih besar dari I dari simpul a ke simpul b, ada sebuah path dengan panjang I dari a ke b (yaitu, a berelasi dengan b)

Dinyatakan secara aljabar, R adalah transitif jika dan hanya jika $R^n \subseteq R$ untuk semua $n \ge 1$.

Teorema

Ambil R sebuah relasi pada sebuah himpunan A. Maka,

- (a) Refleksivitas dari R berarti bahwa $a \in R(a)$, $\forall a \in A$.
- (b) Simetri dari R berarti bahwa $a \in R(b) \leftrightarrow b \in R(a)$.
- (c) Transitivitas dari R berarti bahwa jika $b \in R(a)$ dan $c \in R(b)$, maka $c \in R(a)$.

SEKIAN DANTERIMA KASIH