Due date: Monday May 8, 23.59

## **A?** Problem 2.1 (4 pts)

**Assignment 2** 

Wooden chop-sticks have the geometry shown below, where the arms are opened by a wedge of height  $\delta$ . The wood has a linear elastic behaviour with a Young's modulus E.

- (a) Determine the compliance of each arm of the chop-sticks.
- (b) Calculate the energy release rate G.
- (c) Will crack growth be stable or unstable? Assume that the material has a flat R-curve.



## **A?** Problem 2.2 (4 pts)

The R-curve for a steel alloy is given by:

$$R = \frac{K_{Ic}^2}{E} + \frac{1}{2}\sqrt{\Delta a}$$

where R is in MJ/m<sup>2</sup>, the crack extension  $\Delta a$  is in meters,  $K_{Ic}=95\,\mathrm{MPa}\sqrt{\mathrm{m}}$  and  $E=210000\,\mathrm{MPa}$ . A large but thin plate is made from this material and contains a centre crack of length  $2a_0=40\,\mathrm{mm}$ .

- (a) Show that this plate allows a maximum stable crack growth of 6.3 mm at both tips.
- (b) Calculate the critical stress  $\sigma_c$  at which unstable fracture will occur.

## **A?** Problem 2.3 (2 pts)

The following data were obtained from a series of tests conducted on pre-cracked specimens with a thickness  $B=10\,\mathrm{mm}$ .

| Crack length $a$ (mm) | Compliance $C$ (mm/kN) | Critical load $P$ (kN) |
|-----------------------|------------------------|------------------------|
| 50.0                  | 0.100                  | 10.00                  |
| 66.7                  | 0.143                  | 8.75                   |
| 84.2                  | 0.202                  | 7.80                   |
| 102.7                 | 0.279                  | 7.00                   |
| 119.5                 | 0.359                  | 6.55                   |

Where P is the critical load at fracture. All load-displacement records were linearly elastic up to fracture. Determine the critical energy release rate  $G_c$  for this material.

A? Assignment 2 Page 1/1