

PROJETO 3 CALCULO

População de coelhos

Energia potencial

Discentes:

Gerciane Souza Cabral - RA: 22352792 Gláucia L. S Calazans - RA: 22354149 Rutiele da S. Oliveira - RA: 22353619 Suênia Felix Araújo - RA: 22353529

GRÁFICO DA POPULAÇÃO DE COELHOS

Anos de O a 40

	А	В	
1	t (anos)	P(t)	
2	0	9,9336033	
3	1	14,78308269	
4	2	21,97388526	

=2000/(1 + EXP(5,3 - 0,4*A2))

Fórmula usada para calcular a população de coelhos.

Gráfico criado em excel.

ANÁLISE DE CRESCIMENTO

1° Crescimento Inicial Rápido

Nos primeiros anos, a população de coelhos cresce rapidamente, possivelmente devido à abundância de recursos e à falta de competição.

3° Estabilização da População

Isso acontece em torno de 2000 coelhos, provavelmente quando a taxa de natalidade se equilibra com a taxa de mortalidade,

2° Desaceleração do Crescimento A disponibilidade de alimentos e espaço diminui, aumentando a competição e reduzindo a taxa de sobrevivência e reprodução.

Variação da população: Mostra a variação na população entre cada ano consecutivo.

ano posterior -ano atual =(B3 - B2)

$$=(B3 - B2)$$

Ano de maior aumento: O maior aumento ocorreu no ano 13.

=ÍNDICE(A2:A40; CORRESP(MÁXIMO(C2:C40); C2:C40; 0))

População naquele ano: A população de coelhos no ano 13 foi de 950,0.

Α	В	С	D	Е
t (anos)	Populçao por ano	Variação da população	Ano de maior aumento	População naquele ano
0	9,9	4,8	13	950,0
1	14,8	7,2		
2	22,0	10,6		
3	32,6	15,6		
4	48,3	22,9		
5	71,1	33,2		
6	104,3	47,4		
7	151,7	66,5		
8	218,2	90,7		
9	308,9	119,4		
10	428,3	149,8		
11	578,1	177,0		
12	755,1	195,0		
13	950,0	198,8		

=ÍNDICE(B2:B40; CORRESP(MÁXIMO(C2:C40); C2:C40; 0))

CAUSAS NATURAIS QUE PODERIAM TER LEVADO O GRÁFICO DE POPULAÇÃO A TER ESSA FORMA

Recursos Limitados:

Inicialmente, com poucos coelhos na ilha, os recursos disponíveis para alimentação e reprodução são abundantes. Isso leva a uma rápida taxa de crescimento da população de coelhos.

Competição Intraespecífica:

Com o aumento da população de coelhos, a competição por recursos, também aumenta. Isso pode levar a uma desaceleração no crescimento da população à medida que os recursos se tornam mais escassos.

Fatores Ambientais:

Mudanças ambientais, como variações na temperatura, precipitação e disponibilidade de alimentos ao longo do ano, podem afetar a capacidade da população de coelhos de se reproduzir e sobreviver.

FIM

GRÁFICO DE E(R)

O gráfico mostra como a energia potencial de ligação entre os íons Na⁺ e Cl⁻ varia com a distância entre eles. Ele nos ajuda a entender como a estabilidade da ligação é afetada pela distância interatômica.

Quando a energia potencial de ligação é mínima (no ponto de equilíbrio), a ligação entre os íons é mais estável.

Gráfico criado em python.

```
port numpy as np
import matplotlib.pyplot as plt
# Definir a função de energia potencial de ligação E(r)
def energia_potencial(r):
    return -1.436 / r + 17.32e-6 / (r**8)
Esta função calcula a energia potencial de ligação entre os íons Na<sup>+</sup> e Cl<sup>-</sup>
em função da distância interatômica r. O primeiro termo -1.436 / r representa
a contribuição da atração eletrostática entre os íons Na<sup>+</sup> e Cl<sup>-</sup>.
Quanto menor a distância r, maior é a atração eletrostática.
O segundo termo 17.32e-6 / (r**8) representa a contribuição da repulsão de Pauli
entre os íons. Este termo se torna significativo apenas em distâncias muito curtas
devido à sobreposição dos elétrons nos íons.
# Criar uma série de valores de r no intervalo desejado (0,185 < r ≤ 2)
r_values = np.linspace(0.186, 2, 500) # 500 pontos entre 0.186 e 2
# Calcular os valores correspondentes de E(r)
energia_values = energia_potencial(r_values)
# Criar o gráfico
plt.figure(figsize=(10, 6))
plt.plot(r_values, energia_values, color='orange', label='Energia Potencial de Ligação')
plt.xlabel('Distância Interatômica (nm)')
plt.ylabel('Energia Potencial (eV)')
plt.title('Energia Potencial de Ligação entre Na* e Cl-')
plt.grid(True)
plt.legend()
plt.show()
```

Código usado para plotar o gráfico a cima.

DETERMINANDO A DISTÂNCIA DE EQUILÍBRIO

A distância de equilíbrio entre os íons é 0.267 nm.
A energia potencial mínima é -4.708 eV.

```
port numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
# Definir a função de energia potencial de ligação E(r)
def energia_potencial(r):
    return -1.436 / r + 17.32e-6 / (r**8)
# Criar uma série de valores de r no intervalo desejado (0,185 < r ≤ 2)
r_values = np.linspace(0.186, 2, 500) # 500 pontos entre 0.186 e 2
# Calcular os valores correspondentes de E(r)
energia_values = energia_potencial(r_values)
# Criar o gráfico
plt.figure(figsize=(10, 6))
plt.plot(r_values, energia_values, color='orange', label='Energia Potencial de Ligação')
plt.xlabel('Distância Interatômica (nm)')
plt.ylabel('Energia Potencial (eV)')
plt.title('Energia Potencial de Ligação entre Na* e Cl-')
plt.grid(True)
plt.legend()
# Encontrar o valor de r que minimiza a energia potencial
result = minimize(energia potencial, x0=1, bounds=[(0.185, 2)])
# Obtendo o valor de r que minimiza a energia potencial
r_equilibrium = result.x[0]
E_equilibrium = result.fun
# Adicionar marcador para o ponto de equilíbrio no gráfico
plt.plot(r_equilibrium, E_equilibrium, 'ro', label='Ponto de Equilibrio')
plt.legend()
plt.show()
```


Código usado para plotar o gráfico a cima.

OBRIGADA

