5

10

15

20

What is claimed is:

A process for the production of compounds of the following general formula i

$$\begin{array}{c}
CH_{2} \\
CH = CH
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
CH_{2}
\end{array}$$
(I)

in transgenic organisms with a content of at least 1 % by weight of said compounds referred to the total lipid content of said organism which comprises the following steps:

- a) introduction of at least one nucleic acid sequence in a transgenic organism, which encodes a Δ -9-elongase, and
- introduction of at least one second nucleic acid sequence which encodes a Δ-8desaturase, and
- if necessary introduction of at least a one third nucleic acid sequence, which encodes a Δ-5-desaturase, and
 - d) cultivating and harvesting of said organism; and

where the variables and substituents in formula I have the following meanings:

R¹ = hydroxyl-, Coenzyme A-(Thioester), phosphatidylcholine-, phosphatidylethanolamine-, phosphatidylglycerol-, diphosphatidylglycerol-, phosphatidylserine-, phosphatidylinositol-, sphingolipid-, glycoshingolipid- or a residue of the general formula II:

$$H_{2}C-O-R^{2}$$
 $H_{C}-O-R^{3}$
 $H_{2}C-O$
(II)

- R² = hydrogen-, phosphatidylcholine-, phosphatidylethanolamine-, phosphatidylglycerol-, diphosphatidylglycerol-, phosphatidylserine-, phosphatidylinositol-, shingolipid-, glycoshingolipid- or saturated or unsaturated C₂-C₂₄-alkylcarbonyl-,
 - R³ = hydrogen-, saturated or unsaturated C_Z-C₂₄-alkylcarbonyl-, or R² and R³ independent of each other a residue of the formula la:

5

10

15

20

$$\begin{array}{c|c} O & CH_2 \\ \hline \end{array} \\ \begin{array}{c} CH_2 \\ \hline \end{array} \\ \begin{array}{c} CH_2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_3 \\ \hline \end{array} \\ \end{array}$$
 (Ia)

n = 3.4 or 6, m = 3.4 or 5 and p = 0 or 3.

- 2. The process as claimed in claim 1, wherein the nucleic acid sequences which encode polypeptides with Δ -8-desaturase, Δ -9-elongase or Δ -5-desaturase are selected from the group consisting of
 - a nucleic acid sequence depicted in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9
 - a nucleic acid sequence which is derived from the sequence depicted in SEQ ID
 NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9 according to the degeneracy of the genetic code,
 - c) derivatives of the sequence depicted in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 or SEQ ID NO: 9 which encodes polypeptides having at least 50 % homology to the sequence encoding armino acid sequences depicted in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 or SEQ ID NO: 10 and which sequences function as a Δ-8-desaturase, Δ-9-elongase or Δ-5-desaturase.
- The process as claimed in claim 1 or claim 2, wherein the substituents R² and R³ are independent of each other saturated or unsaturated C₁₀-C₂₂-alkylcarbonyl-.
- 4. The process as claimed in any of the claims 1 to 3, wherein the substituents R² and R³ are independent of each other saturated or unsaturated C₁₆-, C₁₈-, C₂₀- or C₂₂-alkyl-carbonyl-.
 - 5. The process as claimed in any of the claims 1 to 4, wherein the substituents R² and R³ are independent of each other unsaturated C₁₆-, C₁₅-, C₂₀- or C₂₂-alkylcarbonyl- with at least three double bonds.
- 6. The process as claimed in any of the claims 1 to 5, wherein the transgenic organism is an oil producing plant.
 - 7. The process as claimed in any of the claims 1 to 6, wherein the transgenic plant is selected from the group consisting of rapeseed, poppy, mustard, hemp, castor bean, ses-

5

ame, olive, calendula, punica, hazel nut, almond, macadamia, avocado, pumpkin, walnut, laurel, pistachio, primrose, canola, peanut, linseed, soybean, safflower, sunflower and borage.

- The process as claimed in any of the claims 1 to 7, wherein the compounds of the general formula I are isolated in the form of their oils, lipids of free fatty acids.
 - The process as claimed in any of the claims 1 to 8, wherein the compounds of the general formula I are isolated in a concentration of at least 5 % by weight referred to the total lipid content.
- 10. An isolated nucleic acid sequence comprising a nucleotide sequence which encodes a Δ 8-desaturase selected from the group consisting of
 - a) a nucleic acid sequence depicted in SEQ ID NO: 1,
 - b) a nucleic acid sequence which is derived from the sequence depicted in SEQ ID NO: 1 according to the degeneracy of the genetic code and which sequences function as a Δ -8-desaturase.
- 15 11. An isolated nucleic acid sequence comprising a nucleotide sequence which encodes a Δ 5-desaturase selected from the group consisting of
 - a) a nucleic acid sequence depicted in SEQ ID NO: 5,
 - a nucleic acid sequence which is derived from the sequence depicted in SEQ ID
 NO: 5 according to the degeneracy of the genetic code,
- 20 c) derivatives of the sequence depicted in SEQ ID NO: 5 which encodes polypeptides having at least 50 % homology to the sequence encoding amino acid sequences depicted in SEQ ID NO: 6 and which sequences function as a Δ -5-desaturase.
 - 12. An amino-acid sequence encoded by an isolated nucleic acid sequence as claimed in claims 10 or claim 11.
- 25 13. A gene construct comprising an isolated nucleic acid having the sequence SEQ ID NO: 1 or SEQ ID NO: 5 as claimed in claim 10 or claim 11, where the nucleic acid is functionally linked to one or more regulatory signals.
 - 14. A gene construct as claimed in claim 13, whose gene expression is increased by the regulatory signals.

- A vector comprising a nucleic acid as claimed in claim 10 or claim 11 or a gene construct as claimed in claim 14.
- 16. An organism comprising at least one nucleic acid as claimed in claim 10 or claim 11, a gene construct as claimed in claim 13 or a vector as claimed in claim 15.
- 5 17. The organism as claimed in claim 16, wherein the organism is a microorganism, a non-human animal or a plant.
 - 18. The organism as claimed in claim 16 or 17, wherein the organism is a transgenic plant.