morfismos

definição e propriedades

Definição. Sejam A e A' dois anéis. Uma aplicação $\varphi: A \to A'$ diz-se um morfismo (ou homomorfismo) de anéis se satisfaz as seguintes condições:

- 1. $(\forall a, b \in A)$ $\varphi(a+b) = \varphi(a) + \varphi(b)$;
- 2. $(\forall a, b \in A)$ $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.

Um morfismo diz-se um *monomorfismo* (respetivamente, *epimorfismo*, *isomorfismo*) se for injetivo (respetivamente, sobrejetivo, bijetivo)

Um morfismo diz-se um *endomorfismo* se A=A'. Um endomorfismo bijetivo diz-se um *automorfismo*.

Exemplo 36. Sejam A e A' anéis. Então, a aplicação $\varphi_0: A \to A'$ definida por $\varphi_0(x) = 0_{A'}$, para todo $x \in A$, é um morfismo, ao qual chamamos *morfismo nulo*.

Exemplo 37. Seja A um anel. Então, a aplicação identidade em A é um automorfismo, ao qual chamamos *morfismo identidade*.

Exemplo 38. A aplicação $\varphi: \mathbb{Z} \to \mathbb{Z}_{10}$ definida por $\varphi(n) = [6n]_{10}$, para todo $n \in \mathbb{Z}$, é um homomorfismo de anéis. De facto, para $n, m \in \mathbb{Z}$ temos:

1.
$$\varphi(n+m) = [6(n+m)]_{10} = [6n+6m]_{10} = [6n]_{10} + [6m]_{10} = \varphi(n) + \varphi(m);$$

2.
$$\varphi(nm) = [6(nm)]_{10} = [36(nm)]_{10} = [(6n)(6m)]_{10} = [6n]_{10}[6m]_{10} = \varphi(n)\varphi(m)$$
, uma vez que $36 \equiv 6 \pmod{10}$.

Proposição. Sejam A e A' dois anéis e $\varphi:A\to A'$ um morfismo. Então, $\varphi\left(0_A\right)=0_{A'}$.

Exemplo. 39. A aplicação $\varphi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por $\varphi((n,m)) = 3n + m + 3$ não é um morfismo de anéis pois $\varphi(0_{\mathbb{Z} \times \mathbb{Z}}) = \varphi((0,0)) = 3 \times 0 + 0 + 3 = 3 \neq 0 = 0_{\mathbb{Z}}.$

Proposição. Sejam A e A' dois anéis e $\varphi:A\to A'$ um morfismo. Então, $(\forall a\in A) \quad \varphi\left(-a\right)=-\varphi\left(a\right)$.

Proposição. Sejam A e A' dois anéis e $\varphi:A\to A'$ um morfismo. Então, $(\forall a\in A)\,(\forall k\in\mathbb{Z})\quad \varphi\,(ka)=k\varphi\,(a)\,.$

Proposição. Sejam $\varphi:A\to A'$ um morfismo de anéis e B um subanel de A. Então, $\varphi(B)$ é um subanel de A'.

Proposição. Sejam $\varphi: A \to A'$ um epimorfismo de anéis e I um ideal de A. Então, $\varphi(I)$ é um ideal de A'.

Proposição. Sejam $\varphi: A \to A'$ um morfismo de anéis e B' um subanel de A'. Então,

$$\varphi^{-1}\left(B'\right) = \left\{x \in A \mid \varphi\left(x\right) \in B'\right\}$$

é um subanel de A.

Proposição. Sejam $\varphi: A \to A'$ um morfismo de anéis e I' um ideal de A'. Então,

$$\varphi^{-1}\left(I'\right) = \left\{x \in A \mid \varphi\left(x\right) \in I'\right\}$$

é um ideal de A.

núcleo e imagem de um morfismo

Definição. Seja $\varphi:A\to A'$ um morfismo de anéis.

1. Chama-se *Núcleo de* φ (ou *kernel de* φ), e representa-se por $\operatorname{Nuc}\varphi$ (ou $\operatorname{Ker}\varphi$), ao subconjunto de A definido por

$$\mathrm{Nuc}\varphi = \{x \in A : \varphi(x) = 0_{A'}\};$$

2. Chama-se imagem de φ , e representa-se por ${\rm Im}\varphi$ ou φ (A), ao subconjunto de A' definido por

$$\operatorname{Im}\varphi = \{\varphi(x) : x \in A\}.$$

Proposição. Seja $\varphi:A\to A'$ um morfismo de anéis. Então,

- 1. $Nuc\varphi$ é um ideal de A;
- 2. $\text{Im}\varphi$ é um subanel de A'.

Exemplo 40. Considere-se o morfismo de anéis $\varphi: \mathbb{Z} \to \mathbb{Z}_{10}$ definido por $\varphi(n) = [6n]_{10}$, para todo $n \in \mathbb{Z}$.

Por um lado, tendo em conta que $\mathrm{Nuc}\, \varphi = \{n \in \mathbb{Z} : \varphi(n) = [0]_{10}\}$ e que

$$\begin{split} \varphi(n) &= [0]_{10} &\Leftrightarrow [6n]_{10} = [0]_{10} \\ &\Leftrightarrow 6n \equiv 0 (\bmod{10}) \\ &\Leftrightarrow n \equiv 0 (\bmod{\frac{10}{\mathrm{m.d.c.}(6,10)}}) \\ &\Leftrightarrow n \equiv 0 (\bmod{5}), \end{split}$$

concluímos que $\operatorname{Nuc} \varphi = 5\mathbb{Z}$.

Por outro lado,

$$\operatorname{Im}\varphi = \{\varphi(n) : n \in \mathbb{Z}\}
= \{[6n]_{10} : n \in \mathbb{Z}\} = \{[0]_{10}, [2]_{10}, [4]_{10}, [6]_{10}, [8]_{10}\}.$$

teorema fundamental do homomorfismo

Proposição. Sejam A um anel e I um seu ideal. Então, a aplicação $\pi:A\to A/I$ definida por $\pi(x)=x+I$ ($x\in A$), é um epimorfismo (ao qual se chama *epimorfismo canónico*).

Teorema Fundamental do Homomorfismo. Seja $\varphi:A\to A'$ um morfismo de anéis. Então,

$$A/\mathrm{Nuc}\varphi\cong\varphi(A)$$
.

teoremas de isomorfismos

1º Teorema do Isomorfismo. Seja $\varphi:A\to A'$ um epimorfismo de anéis. Se I é um ideal de A tal que $\mathrm{Nuc}\varphi\subseteq I$, então,

$$A/I \cong A'/\varphi(I)$$
.

 2° Teorema do Isomorfismo. Sejam A um anel e A_1 e A_2 subanéis de A. Se A_2 é um ideal de A, então,

$$(A_1 + A_2)/A_2 \cong A_1/(A_1 \cap A_2).$$