Курсовая работа на тему:

Использование моделей регрессии для прогнозирования цен на произведения искусства

декабрь 2019

Студент 231 группы: Мироненко Φ .Д.

Научный руководитель: Григорьев Д.А.

Санкт-Петербургский Государственный Университет

1 Введение

В нашей работе нам удалось присоединиться к международной команде, занимающейся исследованиями в области анализа рынка художкственных произведений. Основоной целью исследования является создание модели, определяющей возможную цену картины на основе различных признаков: тональности, изображённых объектов, года написания, бывших владельцев и т.д.

Главной задачей на начальном этапе был сбор датасета. Для этих целей использовался язык Python3.7 и среда разработки Jupyter Notebook. С исходным кодом, а также с полученными датасетами можно ознакомиться по ссылке:

 $https://github.com/FomaMironenko/Projects/tree/master/Project_sem3$

В дальнейшем названия всех файлов выделены курсивом и приводятся в соответствии с их именами на GitHub.

2 Этапы работы

Изначально для работы нам был предоставлен файл Source.txt, содержащий информацию (автор, название, дата последней продажи, цена) для 1000 произведений искусства. Первым делом он был приведён к более удобному для обработки виду в arts.csv. Далее работа разделилась на две части по сбору данных по всем художникам и по всем картинам, доступным из списка.

2.1 Данные по художникам

Для получения информации по художникам была использована платформа mutualart.com [1]. Сперва из arts.csv были выделены 161 различных художников, и каждому из них при помощи скрипта $get_artists_url.ipynb$ был сопоставлен адрес соотвестствующей страницы с mutualart.com [1]. Если корректный адрес не был найден, соотвествующее поле заполнялось пустой строкой. После этого для каждого художника с непустой ссылкой при помо-

115	Cy Twombly	https://www.mutualart.com/Artist/Cy-Twombly/C5		
116	Lucio Fontana	https://www.mutualart.com/Artist/Lucio-Fontana		
117	Paul Gauguin	https://www.mutualart.com/Artist/Paul-Gauguin/		

Puc. 1: artists.csv после применения get artists url.ipynb

щи скрипта $get_artist_info.ipynb$ с соответсвующего адреса были получены поля Country, Born, Died, Info и записаны в таблицу artists.csv.

115	Cy Twombly	https://www.mutualart.com/Artist/Cy-Twombly/C5	American	1928	2011	[\r\n Edwin Par
116	Lucio Fontana	https://www.mutualart.com/Artist/Lucio-Fontana	Italian	1899	1968	[\r\n Influenti
117	Paul Gauguin	https://www.mutualart.com/Artist/Paul-Gauguin/	French	1848	1903	[\r\n French ar

Рис. 2: artists.csv после применения get artist info.ipynb

2.2 Данные по картинам

Источником информации для датасета по картинам послужил сайт аукционного дома Christies [3]. Сбор данных осуществлялся при помощи кода из файла $get_art_info.ipynb$. Для каждой строки из arts.csv просматривалась поисковая выдача сайта для соответствующего произведения искусства, и из первых 30ти вариантов выбирался наиболее релевантный. При этом, как видно из Рис. 3, результаты поиска не всегда содержали искомый объект. За эту чать программы отвечает функция get_correct_url, принимающая на вход имя художника и название картины. Для выбора наиболее релевантного результата имя художника и название картины из датасета последовательно сравнивались с соответствующими полями из вариантов выдачи при помощи метода SequenceMatcher.ratio() из библиотеки difflib, и выбирался

 $argmax\{ratio(x.p, dataset_p): x \in search_result \& ratio(x.a, dataset_a) > 0.9\}$ где p - название картины, a - имя художника. get_correct_url возвращает строку с адресом подходящей страницы, которая поступает на вход в функцию parce, добывающую значения для полей Estimate, Description, Provenance. Обработанные таким образом данные записывались в файл artsnew.csv.

Рис. 3: Поисковая выдача для запроса Edvard Munch The Scream

3 Результаты

Таким образом, получены два файла: artsnew.csv, содержащий таблицу 1000×9 , и artists.csv с таблицей 161×6 , которые будут использованы в дальнейшем для обучения модели.

4 Использованное ПО

 Π акеты для Python:

- numpy 1.18.0
- pandas 0.25.3
- requests 2.22.0
- bs4 0.0.1
- fake_useragent 0.1.11
- difflib

Использованные ресурсы

- [1] https://www.mutualart.com/
- [2] https://www.sothebys.com/en/
- [3] https://www.christies.com/