Inter (Part-II) 2019

Physics	Group-II	PAPER: II
Time: 20 Minutes	(OBJECTIVE TYPE)	Marks: 17

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- The electrostatic force between two charges is 42 N. If we place a dielectric of $\varepsilon_r = 2.1$ between the charges, then the force becomes equal to:
 - (a) 42 N

- (b) 84 N
- (c) 20 N 1/
- (d) 2 N
- It is required to suspend a proton of charge 'q' 2and mass 'm' in an electric field, the strength of the field must be:
 - (a) $E = \frac{mg}{qv}$ (b) $E = \frac{mg}{q} \sqrt{2}$
 - (c) $E = \frac{q}{mq}$
- (d) $E = \frac{qv}{B}$
- The value of charge on 1.0×10^7 electrons is:
 - (a) $1.6 \times 10^{-12} \text{ C} \text{ 1/} \text{ (b)} 1.6 \times 10^{+11} \text{ C}$

 - (c) 1.6×10^{-19} C (d) $1.6 \times 10^{+19}$ C
- The unit of E is NC-1 and that of B is NA-1m-1, then the unit of $\frac{E}{R}$ is:
 - (a) ms-2

- (b) ms
- (c) m⁻¹s⁻¹
- (d) ms-1 1/

5-	The value of $\frac{e}{m}$ is smallest for:						
	(a) Proton √ (b) Electron						
	(c) β-particle (d) Positron						
6-	Henry is equal to = :						
	(a) VsA ⁻¹ √ (b) Vs ⁻¹ A						
	(c) $V^{-1}s^{-1}A$ (d) $V^{-1}s^{-1}A^{-1}$						
7-	Maximum emf generated in a generator is:						
	(a) $\varepsilon_0 = \varepsilon \sin \theta$ (b) $\varepsilon = \varepsilon_0 \sin \theta$						
	(c) $\varepsilon_0 = N\omega AB \sin \theta$ (d) $\varepsilon_0 = N\omega AB $						
8-	The velocity of an oscillating charge as it moves to and fro along the wire is:						
	(a) Infinite (b) Constant						
	(c) Changing √ (d) Zero						
9-	At what frequency will an inductor of 1.0 H have a reactance of 500 Ω :						
	(a) 50 Hz (b) 80 Hz √						
	(c) 500 Hz (d) 1000 Hz						
10-	Good conductors have conductivities of the						
	order of:						
	(a) $10^{-7} (\Omega \text{m})^{-1}$ (b) $10^7 (\Omega \text{m})^{-1} $						
	(c) $10^2 (\Omega m)^{-1}$ (d) $10^{-2} (\Omega m)^{-1}$						
11-	Which factor does not affect the conductivity of p-n-junction diode:						
	(a) Doping (b) Temperature						
	(c) Voltage (d) Pressure 1.						
12-	The Boolean expression of NAND gate is:						
., -	(a) $X = A.B$ (b) $X = A$						
	(c) $X = \overline{A.B} \sqrt{(d)} X = A + B$						

13-	The r	numerical	value	of	Stefen's	constant is	•
13-	The r	numerical	value	of	Stefen's	constant is	

(a) $5.67 \times 10^{-8} \sqrt{}$

(b) 2.9×10^{-3}

(c) 6.63×10^{-34}

(d) 1.6×10^{-19}

The lifetime of an electron in an excited state is 14about 10-8 s. What is its uncertainty in energy during this time:

(a) $6.63 \times 10^{-34} \text{ J}$

(b) $9.1 \times 10^{-31} \text{ J}$

(c) $1.05 \times 10^{-26} \text{ J} \sqrt{\text{(d)}} 7.2 \times 10^{-15} \text{ J}$

The numerical value of Rydberg's constant is: 15-

(a) $1.0974 \times 10^7 \sqrt{}$ (b) 1.0974×10^{-7}

(c) 1.0974×10^{14} (d) 1.0974×10^{-14}

By mass spectrograph, we can find the value of 16mass by using formula:

(a) $m = \left(\frac{e^2r^2}{2v}\right)B^2$ (b) $m = \left(\frac{er^2}{2v}\right)B^2 \sqrt{\frac{e^2r^2}{2v}}$

(c) $m = \left(\frac{ev}{2r^2}\right)B$ (d) $m = \left(\frac{ev^2}{2r}\right)B$

The binding energy per nucleon is maximum 17for:

(a) Hydrogen

(b) Nitrogen

(c) Uranium

(d) Iron 1/