Atzeni, Ceri, Paraboschi, Torlone Basi di dati

Capitolo 7:

Progettazione di basi di dati:

Metodologie e modelli

Progettazione di basi di dati

- È una delle attività del processo di sviluppo dei sistemi informativi
- va quindi inquadrata in un contesto più generale:
- · il ciclo di vita dei sistemi informativi:
 - Insieme e sequenzializzazione delle attività svolte da analisti, progettisti, utenti, nello sviluppo e nell'uso dei sistemi informativi
 - attività iterativa, quindi ciclo

Fasi (tecniche) del ciclo di vita

Studio di fattibilità: definizione costi e priorità

Raccolta e analisi dei requisiti: studio delle proprietà del sistema

Progettazione: di dati e funzioni

Realizzazione

Validazione e collaudo: sperimentazione Funzionamento: il sistema diventa operativo La progettazione di un sistema informativo riguarda due aspetti:

progettazione dei dati
 progettazione delle applicazioni

Ma:

- i dati hanno un ruolo centrale
 - i dati sono più stabili

- Per garantire prodotti di buona qualità è opportuno seguire una
 - metodologia di progetto, con:
 - articolazione delle attività in fasi
 - criteri di scelta
 - modelli di rappresentazione
 - generalità e facilità d'uso

Requisiti della base di dati

Progettazione concettuale

"CHE COSA": analisi

Schema concettuale

Progettazione logica

"COME": progettazione

Schema logico

Progettazione fisica

Schema fisico

I prodotti della varie fasi sono schemi di alcuni modelli di dati:

- Schema concettuale
- Schema logico
- Schema fisico

Modello dei dati

- insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
- componente fondamentale: meccanismi di strutturazione (o costruttori di tipo)
- come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori
- ad esempio, il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei

Schemi e istanze

- In ogni base di dati esistono:
 - lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura (aspetto intensionale)
 - nel modello relazionale, le intestazioni delle tabelle
 - l'istanza, i valori attuali, che possono cambiare anche molto rapidamente (aspetto estensionale)
 - nel modello relazionale, il "corpo" di ciascuna tabella

Due tipi (principali) di modelli

- modelli logici: utilizzati nei DBMS esistenti per l'organizzazione dei dati
 - utilizzati dai programmi
 - indipendenti dalle strutture fisiche esempi: relazionale, reticolare, gerarchico, a oggetti
- modelli concettuali: permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione
 - il più noto è il modello Entity-Relationship

Modelli concettuali, perché?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - da dove cominciamo?
 - rischiamo di perderci subito nei dettagli
 - dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
 - i modelli logici sono rigidi

Modelli concettuali, perché?

- servono per ragionare sulla realtà di interesse, indipendentemente dagli aspetti realizzativi
- permettono di rappresentare le classi di dati di interesse e le loro correlazioni
- prevedono efficaci rappresentazioni grafiche (utili anche per documentazione e comunicazione)

Architettura (semplificata) di un DBMS

utente Schema logico Schema interno BD

Modello Entity-Relationship (Entità-Relazione)

- Il più diffuso modello concettuale
 - Ne esistono molte versioni,
 - (più o meno) diverse l'una dall'altra

I costrutti del modello E-R

- Entità
- Relationship (Associazione)
- Attributo
- Identificatore
- Generalizzazione

•

Entità

- Classe di oggetti (fatti, persone, cose) della applicazione di interesse con proprietà comuni e con esistenza "autonoma"
- Esempi:
 - impiegato, città, conto corrente, ordine, fattura

Associazioni o Relationship

- Legame logico fra due o più entità, rilevante nell'applicazione di interesse
- Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)

Uno schema E-R, graficamente

Entità

- Classe di oggetti (fatti, persone, cose) della applicazione di interesse con proprietà comuni e con esistenza "autonoma"
- Esempi:
 - impiegato, città, conto corrente, ordine, fattura

Entità: schema e istanza

- Entità:
 - classe di oggetti, persone, ...
 "omogenei"
- Occorrenza (o istanza) di entità:
 - elemento della classe (l'oggetto, la persona, ..., non i dati)
- nello schema concettuale rappresentiamo le entità, non le singole istanze ("astrazione")

Rappresentazione grafica di entità

Impiegato

Dipartimento

Città

Vendita

Entità, commenti

- Ogni entità ha un nome che la identifica univocamente nello schema:
 - nomi espressivi
 - opportune convenzioni
 - singolare

Associazione

- Legame logico fra due o più entità, rilevante nell'applicazione di interesse
- Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)
- Chiamata anche:
 - relazione, correlazione, relationship

Rappresentazione grafica di Associazioni

Associazione, commenti

- Ogni associazione ha un nome che la identifica univocamente nello schema:
 - nomi espressivi
 - opportune convenzioni
 - singolare
 - sostantivi invece che verbi (se possibile)

Esempi di occorrenze

Associazione, occorrenze

- Una occorrenza di un'associazione binaria è una coppia di occorrenze di entità, una per ciascuna entità coinvolta
- Una occorrenza di una associazione n-aria è una n-upla di occorrenze di entità, una per ciascuna entità coinvolta
- Nell'ambito di un'associazione non ci possono essere occorrenze (coppie, ennuple) ripetute

Associazioni corrette?

Due associazioni sulle stesse entità

Associazione n-aria

Associazione ricorsiva: coinvolge "due volte" la stessa entità

Associazione ricorsiva con "ruoli"

Associazione ternaria ricorsiva

Attributo

- Proprietà elementare di un'entità o di un'associazione, di interesse ai fini dell'applicazione
- Associa ad ogni occorrenza di entità o associazione un valore appartenente a un insieme detto dominio dell'attributo

Attributi, rappresentazione grafica

Attributi composti

- Raggruppano attributi di una medesima entità o associazione che presentano affinità nel loro significato o uso
- Esempio:
 - Via, Numero civico e CAP formano un Indirizzo

Rappresentazione grafica

Altri costrutti del modello E-R

- Cardinalità
 - di associazione
 - di attributo
- Identificatore
 - interno
 - esterno
- Generalizzazione

Cardinalità di associazione

- Coppia di valori associati a ogni entità che partecipa ad una associazione
- specificano il numero minimo e massimo di occorrenze dell'associazione cui ciascuna occorrenza di una entità può partecipare

Esempio di cardinalità

- per semplicità usiamo solo tre simboli:
- 0 e 1 per la cardinalità minima:
 - 0 = "partecipazione opzionale"
 - 1 = "partecipazione obbligatoria"
- 1 e "N" per la massima:
 - "N" non pone alcun limite

Occorrenze di Residenza

Cardinalità di Residenza

Tipi di associazioni

- Con riferimento alle cardinalità massime, abbiamo associazioni:
 - uno a uno
 - uno a molti
 - molti a molti

Associazioni "molti a molti"

Due avvertenze

- Attenzione al "verso" nelle associazioni uno a molti
- le associazioni obbligatorie-obbligatorie sono molto rare

Associazioni "uno a molti"

Associazioni "uno a uno"

Cardinalità di attributi

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare opzionalità ("informazione incompleta")
 - indicare attributi multivalore

Rappresentazione grafica

Identificatore di una entità

- "strumento" per l'identificazione univoca delle occorrenze di un'entità
- costituito da:
 - attributi dell'entità
 - identificatore interno
 - (attributi +) entità esterne attraverso associazioni
 - identificatore esterno

Identificatori interni

Identificatore esterno

Alcune osservazioni

- ogni entità deve possedere almeno un identificatore, ma può averne in generale più di uno
- una identificazione esterna è possibile solo attraverso una associazione a cui l'entità da identificare partecipa con cardinalità (1,1)
- perché non parliamo degli identificatori delle associazioni?

Generalizzazione

- mette in relazione una o più entità E1,
 E2, ..., En con una entità E, che le comprende come casi particolari
 - E è generalizzazione di E1, E2, ..., En
 - E1, E2, ..., En sono specializzazioni (o sottotipi) di E

Rappresentazione grafica

Proprietà delle generalizzazioni

- Se E (genitore) è generalizzazione di E1, E2, ..., En (figlie):
- ogni proprietà di E è significativa per E1, E2, ..., En
- ogni occorrenza di E1, E2, ..., En è occorrenza anche di E

Ereditarietà

 tutte le proprietà (attributi, associazioni, altre generalizzazioni) dell'entità genitore vengono ereditate dalle entità figlie e non rappresentate esplicitamente

Tipi di generalizzazioni

- totale se ogni occorrenza dell'entità genitore è occorrenza di almeno una delle entità figlie, altrimenti è parziale
- esclusiva se ogni occorrenza dell'entità genitore è occorrenza di al più una delle entità figlie, altrimenti è sovrapposta
- consideriamo (senza perdita di generalità) solo generalizzazioni esclusive e distinguiamo fra totali e parziali

Altre proprietà

- possono esistere gerarchie a più livelli e multiple generalizzazioni allo stesso livello
- un'entità può essere inclusa in più gerarchie, come genitore e/o come figlia
- se una generalizzazione ha solo un'entità figlia si parla di sottoinsieme
- alcune configurazioni non hanno senso
- il genitore di una generalizzazione totale può non avere identificatore, purché ...

Esercizio

 Le persone hanno CF, cognome ed età; gli uomini anche la posizione militare; gli impiegati hanno lo stipendio e possono essere segretari, direttori o progettisti (un progettista può essere anche responsabile di progetto); gli studenti (che non possono essere impiegati) un numero di matricola; esistono persone che non sono né impiegati né studenti (ma i dettagli non ci interessano)

Documentazione associata agli schemi concettuali

- dizionario dei dati
 - entità
 - associazioni
- vincoli non esprimibili

Dizionario dei dati (entità)

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente dell'azienda	Codice, Cognome,	Codice
	3011 32101133	Stipendio	
Progetto	Progetti	Nome,	Nome
	aziendali	Budget	
Dipartimento	Struttura	Nome,	Nome,
	aziendale	Telefono	Sede
Sede	Sede	Città,	Città
	dell'azienda	Indirizzo	

Dizionario dei dati (associazioni)

Relazioni	Descrizione	Componenti	Attributi
Direzione	Direzione di un	Impiegato,	
	dipartimento	Dipartimento	
Afferenza	Afferenza a un	Impiegato,	Data
	dipartimento	Dipartimento	
Partecipazione	Partecipazione	Impiegato,	
	a un progetto	Progetto	
Composizione	Composizione	Dipartimento,	
	dell'azienda	Sede	

Vincoli non esprimibili

Vincoli di integrità sui dati

- (1) Il direttore di un dipartimento deve afferire a tale dipartimento
- (2) Un impiegato non deve avere uno stipendio maggiore del direttore del dipartimento al quale afferisce
- (3) Un dipartimento con sede a Roma deve essere diretto da un impiegato con più di dieci anni di anzianità
- (4) Un impiegato che non afferisce a nessun dipartimento non deve partecipare a nessun progetto