Estructuras Algebraicas Segundo examen parcial	1 ^{er} Apellido:	3 de junio de 2022 Tiempo 2 h
Dpt. Matemática Aplicada a las T.I.C. E.T.S. de Ingenieros Informáticos Universidad Politécnica de Madrid	2º Apellido: Nombre: Número de matrícula:	Calificación:

Para que sean consideradas como válidas, todas las respuestas deben estar adecuadamente justificadas. No está permitido el uso de dispositivos electrónicos.

Ejercicio 1. (2 puntos)

- a) Definición de polinomio irreducible en el anillo de polinomios con coeficientes en un cuerpo $(\mathbb{K},+,\cdot)$. Ideales maximales en $(\mathbb{K}[x],+,\cdot)$ (enunciado y demostración).
- b) Estructura del grupo de unidades de un cuerpo finito (enunciado y demostración).

Ejercicio 2. (2 puntos)

- a) Sea $(R, +, \cdot)$ anillo. Demostrar que si para todo $x \in R$ se verifica que $x \cdot x = x$ entonces para todo $x \in R$ se verifica que x + x = 0.
- b) Determinar la característica del anillo $(\mathbb{Z}[i]/I, +_I, \cdot_I)$, siendo I el siguiente ideal: I = (4 i).

Ejercicio 3. (3 puntos)

Dados los anillos $(\mathbb{Q}[x], +, \cdot)$ y $(\mathbb{R}, +, \cdot)$, se considera $\alpha = \sqrt{2 - \sqrt[3]{2}} \in \mathbb{R}$ y la aplicación $f : \mathbb{Q}[x] \to \mathbb{R}$ definida:

$$f(h) = h\left(\alpha\right)$$

- a) Demostrar que f es homomorfismo de anillos.
- b) Obtener el polinomio mónico $q \in \mathbb{Q}[x]$ generador del ideal $\ker(f)$
- c) Estudiar si el subanillo imagen de f es ideal de \mathbb{R} y si im(f) es cuerpo. En caso de ser cuerpo, dar una base de su extensión sobre \mathbb{Q} .

Ejercicio 4. (3 puntos)

- a) Estudiar si el polinomio $h=x^5+x^4+3x^2+x+5\in\mathbb{Q}[x]$ es irreducible en $\mathbb{Q}[x]$. Describir los elementos del mínimo cuerpo \mathbb{K} , extensión de \mathbb{Q} , en el cual $h=x^5+x^4+3x^2+x+5\in\mathbb{Q}[x]$ tiene una raíz $\beta\in\mathbb{K}$.
- b) En el cuerpo K, obtenido en el apartado anterior, calcular el resultado de la siguiente operación:

$$7(\beta + 1)^{-1}(2\beta + 1)$$

c) Sea $\gamma \in \mathbb{R}$ tal que $[\mathbb{Q}(\gamma):\mathbb{Q}]=5$. Calcular el valor de $[\mathbb{Q}(\gamma^2):\mathbb{Q}]$

Soluciones

1. Consultar apuntes.

2. a)
$$2x = (2x)^2 = 4x^2 = 4x \Rightarrow 2x = 0$$

b) char
$$(\mathbb{Z}[i]/I) = 17$$
.

- 3. a) La aplicación definida es el homomorfismo de evaluación en $\alpha = \sqrt{2 \sqrt[3]{2}}$.
 - b) $\ker(f) = (q)$ siendo $q = x^6 6x^4 + 12x^2 6$, irreducible por el criterio de Eisenstein para p = 2
 - c) $\operatorname{im}(f) \approx \mathbb{Q}[x]/(q) \approx \mathbb{Q}[\alpha] \approx \mathbb{Q}(\alpha)$. No es ideal de \mathbb{R} . $\operatorname{im}(f)$ sí es cuerpo. Una base de la extensión sobre \mathbb{Q} es: $B = \{1, \alpha, \sqrt[3]{2}, \sqrt[3]{2}\alpha, \sqrt[3]{4}, \sqrt[3]{4}\alpha\}$.
- 4. a) $x^5 + x^4 + x^2 + x + 1 \in \mathbb{Z}_2[x]$ es irreducible $\Rightarrow h \in \mathbb{Q}[x]$ es irreducible. $\mathbb{K} = \mathbb{Q}(\beta) \approx \mathbb{Q}[x]/(h) = \{a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 : a_i \in \mathbb{Q}\}.$
 - b) $\beta^4 + 3\beta + 12$
 - $c) \ \gamma^2 \in \mathbb{Q}(\gamma) \Rightarrow [\mathbb{Q}(\gamma) : \mathbb{Q}] = [\mathbb{Q}(\gamma) : \mathbb{Q}(\gamma^2)] \cdot [\mathbb{Q}(\gamma^2) : \mathbb{Q}] \Rightarrow [\mathbb{Q}(\gamma^2) : \mathbb{Q}] = 5$