

All in one scRNA-seq Pipeline: Data downloading to analysis

Kaitlyn Saunders, Alexa Salsbury, Yan Fang, and Edmund Miller

Overview

Background: scRNA seq is powerful tool to get highly dimensional data which bulk seq cannot provide

Problem: Multiple analysis tools required and data format not compatible; Intensive coding required; Biologist unfriendly

Solution: Build up an all-in-one automatic scRNA seq analysis pipeline, from data downloading to analysis visualization

Bulk RNA-seq detects the mRNA content across all cells in the sample.

sc-RNA seq detects the mRNA content of each individual cell in the sample

Background on scRNA-seq

- Single-cell RNA sequencing (scRNA-seq) detects and quantifies individual cell mRNA content
- Looking at the whole tissue without accounting for cellular heterogeneity hide important cell-specific differences that can affect cell type and cell function.

Drop seq Process

What data looks like

What information we can get from scRNAseq dataset?

- Identify (new/rare) cell types
- Find differential expressed genes after certain treatment
- Cell fate and differential direction

Clustering and scSorter

Pseudotime and Monocle3

- Machine learning
- Learn the sequence of gene expression changes
- Buildup overall "trajectory" of gene expression changes
- Setup a root and assign pseudotime

Differentiating blood cells

RNA velocity

 Uses the ratio of unspliced to spliced mRNA transcripts to predict which cells other cells will become similar to in the future

- Unspliced mRNA decays quickly.
- Stably expressed genes will always have a small fraction of unspliced mRNA as it will continuously produce the mature spliced mRNA, and by extension, the unspliced form as well.

Multiple analysis tools required and data format not compatible

nf-core I

Real data: Data Downloading and Clustering

Data Loading and Clustering

- Data format clean up
- Data normalization and Scale
- Dimension reduction
- Clustering

Real data: differentially expressed genes

Real data: Annotate each cell types

Real data: Pseudotime

Monocle3: Pseudotime assign

Real data: RNA velocity

Future Directions

- Automate rest of code using nf-core template
- Convert outputs of Monocle3 to scSorter
- Interconvert outputs of Monocle3 and Seurat, such that the pseudotime plot can be overlaid on top of the Seurat UMAP, and the like
- Convert outputs of Monocle3 and Seurat to the RNA velocity pipeline

