Grupo 8

Diego Bruno - Tomás Ferrer - Matías Heimann - Marcos Lund

Objetivo principal del trabajo

- Se propuso diseñar una red neuronal multicapa que aproxime un terreno dado en base a coordenadas del formato (latitud, longitud, altitud) que lo describen.
- Analizar los cambios que se realizan cambiando los parámetros e implementando mejoras.

Arquitectura utilizada

- Consideraciones:
 - Análisis de la cantidad de capas ocultas
 - Análisis de la cantidad de neuronas
 - Análisis de las salidas al cabo de cada época
- Incrementos de a cinco neuronas.
- Resultado: 10 neuronas en dos capas ocultas.

Implementación incremental

- Se eligen al azar un orden para los distintos patrones a utilizar.
- Se corrigen los pesos luego de cada patrón presentándose en un orden aleatorio.
- Una vez que la diferencia entre las salidas calculadas y las salidas obtenidas es menor a un epsilon se termina el entrenamiento.
- Puede aumentar el error entre épocas pero este tiende a disminuir.

Implementación batch

- Se eligen los patrones de la misma forma que en la incremental.
- Se corrigen los pesos de la red teniendo en cuenta los errores generados por todos los patrones de la red.
- Muy baja frecuencia de aumento de error de época a época.

Funciones utilizadas y pesos iniciales

- La inicialización de los pesos de cada capa fueron elegidas con valores random del orden de 1/√k_i donde k_i hace referencia al número de entradas de la capa inferior a la actual.
- Funciones utilizadas
 - Tangente hiperbólica
 - Exponencial
- Normalización del dataset

Mejoras

Tanto para el método de entrenamiento incremental como en el batch se implementaron estas mejoras.

- Eta adaptativo
- Momentum
- ADAM (Adaptive Moment Estimation)

Momentum y Adam (implementación)

```
for i = 1:length(w)
  q\{i\} = (d\{i + 1\} * v\{i\}');
  switch (weight optimization)
    # Default
    case 0
    dw\{i\} = eta * q\{i\};
    # Momentum
    case 1
     dw{i} = eta * g{i} + momentum alpha * last dw{i};
    # Adam
    case 2
     adam m(i) = adam betal * adam m(i) + (1 - adam betal) * g(i);
      adam v(i) = adam beta2 * adam <math>v(i) + (1 - adam beta2) * (g(i) .^ 2);
      m hat = adam m{i} / (1 - (adam betal ^ epochs));
      v hat = adam v(i) / (1 - (adam beta2 ^ epochs));
      dw{i} = eta * m hat ./ (sqrt(v hat) + adam epsilon);
  endswitch
 w\{i\} = w\{i\} + dw\{i\};
endfor
last dw = dw;
```

Resultados batch sin mejoras

- Peores resultados que en las otras configuraciones.
- Se utilizó con la función exponencial.
- Avanza muy lentamente.
- Con learning rates grandes no converge.
- Se necesita una gran cantidad de épocas para tener buenos resultados.
- Más patrones, menor error cuadrático medio final.

Resultados batch con mejoras

Momentum

- Se mostraron mejoras notables cuando el alpha se elige como 0.9
- Con alphas menores a 0.9 tarda mucho más tiempo en alcanzar un error cuadrático medio aceptable
- Con alphas mayores a 0.9 los resultados empiezan a empeorar a medida que este crece.

Eta adaptativo

- Mejora notable en comparación al batch sin mejoras.
- Mejoría en comparación a Momentum

ADAM

- La mejora más útil.
- Reduce ampliamente el nivel de generalización en comparación al ETA adaptativo y al Momentum.
- Con beta1 = 0.9 y beta2 = 0.999 da los mejores resultados.

Resultados de Incremental sin mejora

- Se utilizó la función hiperbólica para tener un menor error.
- Con learning rates grandes no converge.
- Ante una mayor cantidad de patrones la generalización es más grande y el error más chico.
- Ante una mayor cantidad de épocas el error es más chico pero se puede dar una menor generalización debido a un sobre entrenamiento.

Resultados de Incremental con mejora

Momentum

- Se encontró una mejoría con valores como 0.9.
- Los valores cercanos a 0.5 no eran útiles.

Eta adaptativo

- Mejoró con respecto al sin mejoras.
- Se utilizaron valores de a y b pequeños.

Momentum + Eta adaptativo

 Con los valores pequeños de a y b y los valores de alpha recomendados en el momentum dieron los mejores resultados.

ADAM

- o Dieron los mejores resultados.
- Con beta1 = 0.9 y beta2 = 0.999 da los mejores resultados.

Comparación de funciones

	Promedio de épocas		
Número de capas ocultas	Función exponencial	Función tangente hiperbólica	
1	2186	> 40k	
2	756	1231	
3	1543	1704	

Resultados de batch con ADAM en función de las épocas

% Generalización (utilizando 0.05 de epsilon para considerar correctitud de salidas)		Épocas		
		500	2000	5000
Porcentaje de datos usados para entrenamiento	0.1	34.92%	40.14%	45.45%
	0.25	51.92%	71.65%	77.10%
	0.4	57.14%	74.38%	<mark>87.07%</mark>

Parámetros: Batch training. ETA = 0.01 con Adam y función exponencial, 2 capas de 12.

Generalización: 87.07% (params. tabla anterior)

Resultados de Batch vs resultados de Incremental

% Generalización (utilizando 0.05 de epsilon para considerar correctitud de salidas)		Épocas	
		500 (batch)	500 (incremental)
Porcentaje de datos usados para entrenamiento	0.1	34.92%	41.72%
	0.25	51.92%	64.62%
	0.4	57.14%	<mark>78.01%</mark>

Parámetros: Batch training y Incremental training.

ETA = 0.01 con Adam y función exponencial, 2 capas de 12.

Generalización: 78.01% (params. tabla anterior)

Conclusiones

- Dos capas ocultas con diez neuronas por capa dieron los resultados más óptimos.
- La aplicación de mejoras al algoritmo de aprendizaje resultó positivo.
 - o Para momentum un valor de alfa de 0.9 es el valor óptimo.
 - El eta adaptativo resultó más apto para la reducción de errores que el momentum.
 - ADAM resultó ser la mejor implementación con los valores de beta1 y beta2 recomendado.
- Un mayor uso de datos de entrenamiento conlleva a una mayor generalización, sin embargo, derivará en un tiempo requerido superior al deseado.