This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

 $DIALOG(R) File\ 345: In padoc/Fam.\&\ Legal\ Stat$

(c) 2004 EPO. All rts. reserv.

RECEIVED

5029227

Basic Patent (No, Kind, Date): JP 60066863 A2 850417

<No. of Patents: 001>

MAR 2 9 2004

THIN FILM TRANSISTOR SUBSTRATE (English)

OFFICE OF PETITIONS

Patent Assignee: RICOH KK

Author (Inventor): ENOMOTO TAKAMICHI; UEHARA KIYOHIRO; OOTA WASABUROU;

MATSUMOTO FUYUHIKO; KOBAYASHI SHIYUNSUKE

IPC: *H01L-029/78; H01L-027/12 Derwent WPI Acc No: *C 85-130750; JAPIO Reference No: *090204E000023;

Language of Document: Japanese

Patent Family:

Patent No Kind Date

Applic No Kind Date

JP 60066863 A2 850417

JP 83175762 A 830922 (BASIC)

Priority Data (No,Kind,Date): JP 83175762 A 830922 DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

01588363

Image available

THIN FILM TRANSISTOR SUBSTRATE

PUB. NO.:

60-066863 [JP 60066863 A]

PUBLISHED:

April 17, 1985 (19850417)

INVENTOR(s): ENOMOTO TAKAMICHI

UEHARA KIYOHIRO

OOTA WASABURO

MATSUMOTO FUYUHIKO

KOBAYASHI SHUNSUKE

APPLICANT(s): RICOH CO LTD [000674] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

58-175762 [JP 83175762]

FILED:

September 22, 1983 (19830922)

INTL CLASS:

[4] H01L-029/78; H01L-027/12

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components): 14.2 (ORGANIC

RECEIVED

MAR 2 9 2004

OFFICE OF PETITIONS

CHEMISTRY -- High Polymer Molecular Compounds)

JAPIO KEYWORD: R096 (ELECTRONIC MATERIALS -- Glass Conductors); R097

(ELECTRONIC MATERIALS -- Metal Oxide Semiconductors, MOS)

JOURNAL:

Section: E, Section No. 337, Vol. 09, No. 204, Pg. 23, August

21, 1985 (19850821)

ABSTRACT

PURPOSE: To prevent metal diffusion into the substrate by means of an Si thin film and enhance the degree of freedom of the shape by a method wherein a thin film of Si compound is adhered on a flexible resin substrate, and a gate electrode, gate insulation film, semiconductor film, source electrode and drain electrode are successively laminated thereon into the thin film transistor.

CONSTITUTION: The thin film 7 of an Si compound such as SiO, SiO(sub 2) or Si(sub 3)N(sub 4) is adhered on the flexible substrate 1 made of polyethylenephthalate, polycarbonate or the like. Next, the gate insulation film 3 of Ta(sub 2)O(sub 5), Si(sub 3)N(sub 4) or the like is surrounded by the formation of the gate electrode 2 made of Al, Au, etc. in a fixed region on this film 7, and the semiconductor film 4 made of Te, amorphous Si, etc. is provided thereon. Thereafter, the source electrode 5 and the drain electrode 6 are mounted from both ends of the film 4 onto the film 7, respectively. Thus, the titled substrate with no decrease in the transistor function with times is obtained.

⑩日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭60-66863

@Int_Cl_4

識別記号

庁内整理番号

❷公開 昭和60年(1985)4月17日

H 01 L 29/78 H 01 L 27/12

8422-5F 8122-5F

審査請求 未請求 発明の数 1 (全3頁)

59発明の名称 薄膜トランジスター基板

> ②特 願 昭58-175762

❷出: 顧 昭58(1983)9月22日

砂発 明 者 堰 本 孝 道 79発 明 者 上 原 清博 眀 者 太田 和三郎 ⑫発 明 者 松本 冬彦 ⑫発 眀 者 小 林 駿 介

東京都大田区中馬込1丁目3番6号 株式会社リコー内 東京都大田区中馬込1丁目3番6号 株式会社リコー内 東京都大田区中馬込1丁目3番6号 株式会社リコー内 東京都大田区中馬込1丁目3番6号 株式会社リコー内

⑩出 願 人 株式会社リコー

東京都練馬区西大泉3-13-40

10代 理 人 弁理士 樺 山 東京都大田区中馬込1丁目3番6号

Ŋ

発明の名称

称膜トランジスター基板

特許請求の範囲

可挽性を有する樹脂基板上に、ケイ楽化合物の **脚膜を形成し、との薄膜上に、ゲート電標、ゲー** ト乾緑膜、半導体膜、ソース電極、ドレイン電極 を順次投層形成して、拇膜トランジスターとした ことを特徴とする、荷膜トランジスター基板。

発明の詳細な説明

(技術分野)

との発明は、特膜トランジスター基板、詳しく は、全体として可挽性を有する複膜トランジネタ 特徴に関する。

(従来技術)

旗膜トランジスター、すなわち、旗膜状に形成 されたトランジスターが知られている(特開昭58 - 106860 号公報、特別昭 58 -- 106861 号公報、特 開昭 56 - 23780 号公報等)。

しかし、従来知られている称膜トランジスター

は、ガラスやシリコン等、硬質の碁板を用い、と の硬質基板上に薄膜トランジスターを形成してい る。とのため、薄膜トランシスター指板の形状が 硬質基板により限定されてしまう、衝撃に弱い、 **基板を薄くすることが困難である、収扱いにおけ** る作業性が悪い、等々の問題があった。

とのような問題を解決するべく、可能性を有す る樹脂基板上に、薄膜トランジスターを形成する ことが意図された。

例えば、第1図は、発明者らが試作した磁膜ト ランジスター装板の1例を説明図的に示している。 図中、符号」は、ポリエチレンテレフタレートを 材料とする可撓性の側脂基板、符号2はゲート電 優、符号3はゲート絶繰騰、符号1は半導体膜、 符号5はソース電極、符号6はドレイン電機を、 それぞれ示している。ゲート絶縁腹3は、Ta205 の薄膜、半導体膜4はテルル化より形成されてい

との可挽性の遊膜トランジスクー店板において、 ' 蒋膜トランジスターは、 製造直後、従来の、便賀

基板を用いたものと同様の良好なトランジスター 機能を示したが、この機能は、比較的短時間で低 下してしまった。

すなわち、スイッチングにおける、オン電流について見ると、その値は、第 2 図の曲線 2-1 で示すように、製造後 100 時間もすると、製造直後の値の 1/10 程度の値にまで低下してしまうのである。

(掲 成)

以下、本発明を説明する。

本発明の薄膜トランジスター基板は、可境性を 有する樹脂基板上に、ケイ素化合物の薄膜を形成 し、この薄膜上にゲート電極、ゲート絶縁膜、半 導体膜、ソース電機、ドレイン電極を積層形成し て構成される。

可機性を有する樹脂菇板の材料としては、ポリ

エチレンテレフタレート、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリプロピレン、セルロースアセテート、セルローストリアセテート、変成ポリエステル等が好適である。

また、ゲート絶線膜の材料としては、 Ta₂O₅ 、 Si₃N₃ 等が適当である。半導体膜の材料としては、 テルル、アモルファスシリコン等が適している。

ケイ素化合物としては、 SiO , SiO₂ , Si₃N₄ 等があげられる。

電極の材料としては、アルミニウム、金等の各 積金属、酸化インシウム等の各種金属酸化物をあ げることができる。

なお、樹脂搭板は一般に耐熱性がないので、店板上に各種薄膜を形成するのに、店板の変形温度以上に加熱することなく膜形成を可能ならしめる、蒸着法もしくはスパッタリング法を用いる。

ケイ素化合物による海膜の膜厚は、100 Å ~ 3000 Å、好ましくは、1000 Å ~ 2000 Å が良い。 さて、樹脂基板上に郊膜トランジスターを形成

した場合、トランシスター機能が時間とともに低 下する原因は、例斯基板内への金属の拡散である と考えられる。

従って、この拡散を防止することによって、ト ジンシスター機能の低下を、有効に軽減できると 期待される。

そとで、例听巷板への拡散を以下の如き方法で 調べた。

樹脂 基板としてポリエチレンテレンタレートのフィルムを用いた。

この側脂基板を3つのグループに分けた。第1のグループでは、側脂基板上に直接、テルルの薄膜を形成した。第2のグループでは、側脂基板上に直接、テルルの構験を形成した。第3のグループでは、側脂基板上に、SiO、SiO2、Si3N4 等のケイ水の胸膜を形成した。第3のグループでは、側脂の酸を形成し、この消膜の上にテルルの溶を形成した。この消膜の上にテルルの溶を下成した。このような、3グループの被検体がける光過率を調べた。すなわち、テルルが過

が変化する。従って、透過半の変化によって、テ ルルの拡散の有無を知ることができる。

被検体における光の透過率は、被検体製造直後の値を1とし、製造から1ケ月後(720時間後)における透過率を、製造直接の値と比較した。その結果は以下の通りである。

第1のグループでは製造 | ケ月核の透過率は0.9、 第2のグループでは、0.8であって、これら第1。 第2のグループの被検体では、樹脂悲坂へのテル ルの拡散が認められた。

しかるに、第3のクループの被検体では、製造 1ヶ月後も、透過率は、製造値板と同じく1を示 し、拡散が有効に防止されていることが知られた。 このようにして、ケイ素化合物の移膜が、例斯基 板への金属拡散を防止する効果を有することが分った。

そとで、第3図に示すように、ポリエチレンテレフタレートの樹脂基板 I 上に、SiO2のお膜7を 蒸着形成し、その上に酸化インシウムによるゲート電極2、Ta2O5によるゲート絶縁膜3、テルル による半導体膜1、酸化インジウムによるソース 電極5、ドレイン電衝6を、順次、蒸漪形成して、 可機性ある、海鸌トランジスター提板を得た。

この実施例における、オン電流の経時的変化は、 第2回の曲線2-2の如きものとなった。

(効果)

1

以上、本充明によれば、新規な糠膜トランジスター場板を提供できる。この糠膜トランジスター 基板では、樹脂毒板を用いるので、全体として、 可挽性があり、形状の自由度が大きく、耐衝撃性 にもすぐれ、作業性も良好である。

従って、センサー、能動素子、回路基板等として川いられる際、これらの設 健康位や、作業手順 に大きな自由度が得られ、設計の自由度も増大する。

また、ケイ 点化合物の概膜が、例脂素板への金 低の拡散を有効に防止するので、トランジスター 機能の経時的似下が有効に軽減され、 腹膜トラン ジスター 基板の分命が有効に延慢される。 図面の簡単な説明 第1図は、 樹脂 蓋板を 用いる 海 膜トランシスター 蓋板の 1 例を示す図、 第2図は、 本発明における解決課題 まび、 本発明の効果を説明するための図、第3図は、本発明の 1 実施例を示す、断面図的説明図である。

」・・・ 関脂基板、 7 ・・・ ケイ紫化合物の 海 店 、 2 ・・・ ゲート 電 板 、 3 ・・・ ゲート 絶 様 膜 、 4 ・・・ 半 導体膜 、 5 ・・・ ソース 電 優 、 6 ・・・ ドレイン 電 極 。

代理人 樺 山

