KING SAUD UNIVERSITY **COLLEGE OF COMPUTER AND INFORMATION SCIENCES COMPUTER SCIENCE DEPARTMENT** CSC 329: Computer Network **Tutorial 2** 2nd Semester 1440 **Student ID:** Name:

Par

rt1: Multiple-Choice Questions (Model Answer)	
1)	Which of following is not a guided computer communication media? a.twisted pair cables b.fiber optic cables c.coaxial cables d.satellite
2)	encoding has a transition at the middle of each bit. a .NRZ b. Manchester c. NRZ-I d. All the above
3)	Modulation of an analog signal can be accomplished through changing the of the carrier signal. a. Amplitude b. Frequency c. Phase d. Any of the above
4)	ASK, PSK, and FSK are examples of modulation. a.Digital-to-digital b.Digital-to-analog c.Analog-to-analog d.Analog-to-digital

1) Draw the bit sequence "001101010" using the following types of digital modulation: ASK, FSK and PSK. Note: Use the below coordinate system.

ASK: only amplitude changes for each bit. Phase shift and frequency are the same. **FSK:** only frequency changes for each bit. Phase shift and amplitude are the same. **PSK:** only phase shift changes for each bit. Amplitude and frequency are the same.

- 2) A signal travels from point 1 to point 4. At point 1, the signal power is **120 W**. The signal is attenuated by the time it reaches point 2, the power becomes **80w**.
 - a) Calculate the total relative power in dB?

Attenuation = $10\log_{10} 80/120$

Attenuation = $10\log_{10} (0.667)$

Attenuation = -1.8 = -2dB

The total relative power= -2 + 5 - 4 = -1 dB

- b) If the power is gained or loss?

 Loss
- c) What is the signal power in point 4.

Attenuation = $10\log_{10} P4/P1$

 $-1 = 10 \log_{10} P4/120$

 $-0.1 = \log_{10} P4/120$

 $10^{-0.1} = P4/120$

0.8 = P4/120

P4=95.3 watt

3) We have a channel with **4 KHz** bandwidth. If we want to send data at **100 Kbps**, what is the minimum SNR^{db}? What is SNR?

```
Capacity = bandwidth * \log_2 (1 +SNR)

\log_2 (1 +SNR) = Capacity / bandwidth

= 100 * 10^3 / 4 * 10^3

= 25

SNR = 2^{25} -1

SNR<sub>dB</sub> = 10 * \log_{10} (2^{25} -1) =75.25
```

4) What is the total delay (latency) for a frame of size 5 million bits that is being sent on a link with 5 routers each having a queuing time of 2 μ s. The length of the link is 2000 Km. The speed of light inside the link is 2×10^8 m/s. The link has a bandwidth of 5 Mbps. Ignore processing time at the nodes. Which component of the total delay is dominant?

```
Latency = processing time + queuing time +transmission time + propagation time Processing time = 0 Queuing time = 5 \times 2 \mu s = 10 \mu s = 0.000010 s Transmission time = 5,000,000 / (5 \text{ Mbps}) = 1 s Propagation time = (2000 \text{ Km}) / (2 \times 10^8) = 0.01 s Latency = 0 + 0.000010 + 1 + 0.01 = 1.010030 s
```