Transfinite Induction

Loris Jautakas

September 10, 2023

Introduction 1

In this document we give some results relating to transfinite induction. This includes defining the ordinal numbers, closure of monotone set operators, and principles of induction.

Definition 1: [total_order]/ ordinal_numbers

A set α is said to be an ordinal if and only if one of the following equivalent conditions hold:

- 1. α is transitive, and $\in \subseteq \alpha \times \alpha$ is a well-ordering on α .
- 2. α is transitive, and $\in \subseteq \alpha \times \alpha$ is a partial well-ordering on α .

Result 1: [relation, equivalence_relation]/ turning_any_binary_relation_into_equivalence_relation

Let

1. $R \subseteq X^2$ be a binary relation.

Then define:

1.

$$T(X): \mathcal{P}(X^2) \to \mathcal{P}(X^2)$$

$$T: S \mapsto S \cup \{(x, x) \in X^2 | x \in \text{dom } R \cup \text{ran } R\}$$

$$\cup \{(x, y) \in X^2 | yRx\}$$

$$(3)$$

$$\Gamma: S \mapsto S \cup \{(x, x) \in X^2 | x \in \operatorname{dom} R \cup \operatorname{ran} R\}$$
 (2)

$$\bigcup \left\{ (x,y) \in X^2 | yRx \right\} \tag{3}$$

$$\bigcup \left\{ (x,z) \in X^2 \middle| xRyRz \right\} \tag{4}$$

Then $\overline{T}(R)$ is an equivalence relation on X.

Proof. By definition of $\overline{T}(R)$, if there is nothing more to add to satisfy transitivity, reflexivity or symmetry, then $\overline{T}(R)$ must be transitive, reflexive and symmetric, and thus is a equivalence relation.