Probability, Information Theory, and Physics

From Information Theory to Physics and from Physics to Deep Learning

Sanha Cheong

sanha@stanford_edu

Department of Physics Stanford University

July 11, 2017

Agenda

Today's main goal:

- ▶ Introduce basic concepts used in *information theory*
- Go through some examples to demonstrate the capabilities of information theory
- Relate the above to well-known results in physics—particularly, some Statistical Mechanics
- ▶ Use physics to motivate some *Deep Learning* algorithms

For this, the prerequisites are:

- Understanding of calculus
- Exposure to basic ideas in probabilities and statistics
- ▶ Physics will be derived, but previous exposure will help

Probability & Its Interpretation

Probability measures how likely an event is to occur or a proposition be true. In other words, it represents *uncertainty*.

There is some subtlety here, however...

- Frequentist: relative occurrence of the event under consideration after repeated (infinite) trials
- ▶ Bayesian: the *confidence* in a belief or a prediction

This is a very interesting and important debate, but we will use 'probability' interchangeably.

Mathematically, the probability of a state x in the set of all possibilities X is denoted as $P_X(x)$ and $0 \le P_X(x) \le 1$. Probability density $p_X(x)$ is the generalization of this concept to continuous variable (uncountable set of possibilities) and is unbound.

Quantifying Information with Probability

Property 1: Range & Limits

The statement "sun rose from the east this morning" doesn't really mean much; it has *zero* information. However, a surprising/rare event holds *a lot* of information. Mathematically,

$$P(x) \to 1^- \Longrightarrow I(x) \to 0^+$$

 $P(x) \to 0^+ \Longrightarrow I(x) \to \infty$

Property 2: Independence ← Additivity

Suppose that two events x and y are *independent*. When we learn that x and y happened, the information gained must be a *sum* of information held by each. Hence,

$$p(x,y) = p(x)p(y) \Longrightarrow I(x,y) = I(x) + I(y)$$

Self-information & Shannon Entropy

In addition, we assume that I(x) is continuous. Then, such a function is *unique* (up to a constant > 0). Hence, we define:

$$I(x) \equiv -\log(P(x))$$

and call it the *self-information* (also called surprisal) of an event x. Note that the base of the log is irrelevant.

Another crucial quantity for today is the **Shannon entropy**:

$$\mathcal{H}[P] \equiv \mathbb{E}[I(x)] = -\sum_{x \in X} P(x) \log P(x)$$
$$\mathcal{H}[p] \equiv \mathbb{E}[I(x)] = -\int_{X} p(x) \log p(x) dx$$

and we define $0 \log 0 = 0$ (continuous extension).

(The generalization to continuous variables is sometimes called the *differential entropy* and has some caveats.)

Uniform Distributions Discrete Case

Consider a Bernoulli process (i.e., coin flip) such that $X = \{0, 1\}$, P(x = 0) = a, and P(x = 1) = 1 - a. Then:

$$\mathcal{H}_2 = -a \log_2 a - (1-a) \log_2 (1-a)$$

Moreover, for any discrete distribution
$$P(x)$$
 on $X = \{x_1,...,x_n\}$, $\mathcal{H}[P] \leq \log n$

and equality holds if and only if P is a *uniform* distribution. In other words, for a discrete distribution, the entropy is *maximized* when it is uniform.

Uniform Distribution Continuous Case

Now, let x be a *continuous* variable taking values from an interval $X \subset \mathbb{R}$ with a finite total length ℓ . Then, similarly, the uniform distribution

$$p: x \in X \longmapsto \frac{1}{\ell}$$

has the *maximum* entropy: $\mathcal{H}[p] = \log \ell$.

The proof is analogous to that of the discrete case, but replace all $\sum_{i=1}^{n}$ to $\int_{X} dx$.

Hence, if there are *no other constraints*, the probability distribution over X with maximum entropy is a uniform distribution.

Okay, Is There Anything New?

... but

so what?

We just re-derived the principle of *indifference* (equal a priori probability), which is almost common sense and has been known for long time. Are we doing anything *new*?

Yes. We can re-formulate the same (equilibrium) statistical mechanics differently (with less assumption)!

Statistical Mechanics with Maxwell, Boltzmann, and Gibbs

Equal a priori probability & physical knowledge \Rightarrow Thermodynamics & statistical mechanics e.g. large # of degree of freedoms, microstates, etc.

Principle of Maximum Entropy Statistical Mechanics with Jaynes

Principle of Maximum Entropy states:

Given some testable information, the probability distribution that best represents our current knowledge is the one that maximizes (Shannon) entropy.

Applications: *equilibrium statistical mechanics*, coding theory (FEC), Bayesian inference, *deep learning*, etc.

MaxEnt Statistical Mechanics

Edwin T. Jaynes, Physical Review (1957)

Principle of Maximum Entropy

 \Rightarrow physical results as statistical inference

Known macroscopic physical quantities are merely constraints to the entropy maximization problem.

Known Mean μ and Variance σ^2

As a first 'non-trivial' example, consider $p : \mathbb{R} \to \mathbb{R}$ with extra information: its mean μ and variance σ^2 . i.e.,

$$g_{1}(p;x) = \int_{-\infty}^{\infty} p \, dx - 1 = 0$$

$$g_{2}(p;x) = \int_{-\infty}^{\infty} xp \, dx - \mu = 0$$

$$g_{3}(p;x) = \int_{-\infty}^{\infty} (x - \mu)^{2} p \, dx - \sigma^{2} = 0$$

Then, consider:

$$F[p] = \int_{-\infty}^{\infty} -p \log p \, dx + \sum_{i} \lambda_{i} g_{i}(p; x)$$

$$= \int_{-\infty}^{\infty} -p \log p + \lambda_{1} p + \lambda_{2} x p + \lambda_{3} (x - \mu)^{2} p \, dx - (cons.)$$

and define $\mathcal{L} \equiv -p \log p + \lambda_1 p + \lambda_2 x p + \lambda_3 (x - \mu)^2 p$.

Known Mean μ and Variance σ^2 (cont'd)

The entropy is *maximized* when:

$$\frac{\partial \mathcal{L}}{\partial p} = -1 - \log p + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2 = 0.$$

$$\therefore p(x) = \exp(\lambda_1 - 1 + \lambda_2 x + \lambda_3 (x - \mu)^2)$$

Since $\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x$ must be finite, $\lambda_2 = 0$ and $\lambda_3 < 0$. Re-defining the constants, we can re-write: $p(x) = C \exp\left(-b(x-\mu)^2\right)$. Then, the constraints require $C = \sqrt{\frac{b}{\pi}}$ and $b = \frac{1}{2\sigma^2}$. Therefore,

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

which is the *Gaussian distribution* with the specified mean and variance. Gaussian distribution is the *MaxEnt* distribution when the mean and the variance are known.

Multi-dimensional Gaussian Distribution

Now, consider a n-dimensional distribution $p:\mathbb{R}^N\to\mathbb{R}$. As in Example 2, we have constraints: the mean and the covariance are μ and Σ . Then, the MaxEnt distribution is the multi-variate Gaussian:

$$ho(\mathbf{x}) = rac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left[-rac{1}{2} \left(\mathbf{x} - oldsymbol{\mu}
ight)^T \mathbf{\Sigma}^{-1} \left(\mathbf{x} - oldsymbol{\mu}
ight)
ight] \,.$$

In particular, if x_i 's are independent of each other,

$$\Sigma = \operatorname{diag}\left(\sigma_1^2,...,\sigma_n^2\right)$$

and therefore the MaxEnt distribution becomes:

$$p(\mathbf{x}) = \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_i}\right) \exp\left[-\frac{1}{2} \sum_{i=1}^{n} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right].$$

Let's Get 'Physical'

Since this is a physics talk after all, let's consider a case found in the natural world. Consider a collection of independent point particles with a common mass m moving around randomly and randomly with velocity \mathbf{v} .

Under the constraints $\mathbb{E}(\mathbf{v}) = \mathbf{0}$ and $\Sigma = \text{diag}(\sigma^2, \sigma^2, \sigma^2)$, the *MaxEnt* distribution over velocity is:

$$p(v_x, v_y, v_z) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp\left(-\frac{v_x^2 + v_y^2 + v_z^2}{2\sigma^2}\right).$$

Empirically, however, it is more useful to consider a distribution over *speed*, not velocity:

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$
 and $d\mathbf{v} = v^2 \sin \theta \, dv \, d\theta \, d\phi$.

Let's Get 'Physical' (cont'd)

Integrating over all solid angle, we obtain:

$$p(v) = \frac{1}{(2\pi\sigma^2)^{3/2}} 4\pi v^2 \exp\left(-\frac{v^2}{2\sigma^2}\right) .$$

Note that σ^2 has dimension of v^2 . Since $KE = \frac{1}{2}mv^2$ classically, it is useful to define:

$$\sigma^2 \sim \frac{KE}{m} \Longrightarrow \sigma^2 = \frac{\epsilon}{m}$$

where ϵ is some energy scale. (Thermodynamcially, $\epsilon = k_B T$.) Then, we retain the 'familiar' expression in physics:

$$p(v) = \sqrt{\left(\frac{m}{2\pi\epsilon}\right)^3} 4\pi v^2 \exp\left(-\frac{mv^2}{2\epsilon}\right)$$

which is the Maxwell-Boltzmann Distribution over speed.

Boltzmann Statistics

Let us go back to *discrete* probabilities. Consider a random variable $s \in S = \{s_1, ..., s_N\}$. Also, let there be a function $E: S \to \mathbb{R}$ and denote $E(s_i) \equiv E_i$. This time, let our constraint be on $\mathbb{E}(E)$, instead of $\mathbb{E}(s)$. i.e., $\sum_{i=1}^N P_i E_i = \langle E \rangle$.

The corresponding *MaxEnt* distribution is:

$$P_i = \frac{e^{-\beta E_i}}{\sum\limits_{j=1}^{N} e^{-\beta E_j}}$$

which is often called the Boltzmann Statistics (distribution).

Physically, s_i 's are discrete (quantum) states and E_i 's their respective *energies*. β defines (absolute) *temperature*: $\beta \equiv 1/k_BT$.

Properties of Boltzmann Statistics

In particular, assuming no degeneracy (no different s_i 's have same energy E_i),

$$0 < k_B T \ll \overline{E} \Longrightarrow P_1 \approx 1$$
$$k_B T \gg \overline{E} \Longrightarrow P_i \approx \frac{1}{N}$$

However, E need not be one-to-one. That is, E_i 's are not necessarily distinct. Hence,

Physically different states can be equally likely.

e.g. a collection of gas molecules, magnetic moment (spin) alignment, pixelated images, etc.

'Summarizing' States and Statistical Learning

In other words, for statistical purposes, energy effectively *summarizes* states.

- ► Microscopic: each *s_i*, fully specified to the smallest scale, phenomenologically indistinguishable
- ► Global/Macroscopic: all *s_i*'s with same *E_i*, only the total energy is specified, *meaningful* difference

This is at the core philosophy of *statistics* and also is a key challenge of *learning*.

- Statistics: deducing meaningful overall features from many individual components
- ► Learning: must distinguish and extract meaningless and meaningful features in order to generalize properly

Boltzmann Machine: Structure

Our last application is a basic *deep learning* algorithm.

Consider a system with *many* degrees of freedom, and suppose we want to extract meaningful features from a data set.

For this, we use to binary vectors:

Visible:
$$\mathbf{v} = [v_1, ..., v_n]$$

Hidden: $\mathbf{h} = [h_1, ..., h_m]$

and define:

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i=1}^{n} \sum_{j=1}^{m} v_i w_{ij} h_j$$
$$-\sum_{i=1}^{n} a_i v_i - \sum_{i=1}^{m} b_j h_j$$

Boltzmann Machine: Learning with Energy

Now, we need to *train* the energy function such that it has stably low values for a *meaningful* set of microscopic states.

First, we need to know how to *update* states. Consider a hidden unit h_j being on v.s. off. Then,

$$P_{
m on} = rac{{
m e}^{-E_{
m on}/T}}{{
m e}^{-E_{
m on}/T} + {
m e}^{-E_{
m off}/T}} \ = rac{1}{1 + \exp\left(-rac{\Delta E}{T}
ight)}$$

Hence, given initial training data \mathbf{v} and prior guesses on a_i, b_j, w_{ij} , we can stochastically *generate* \mathbf{h} , *reconstruct* \mathbf{v}' , and onwards.

Boltzmann Machine: It works!

Now that we can generate stochastic *neighboring* (microscopic) states, we tune/update parameters such that their energies are *minimized* globally.

$$\begin{split} \Delta \mathcal{W} &= \epsilon \left(\mathbf{v} \mathbf{h}^\mathsf{T} - \mathbf{v}' \mathbf{h}'^\mathsf{T} \right) \,, \\ \Delta \mathbf{a} &= \epsilon (\mathbf{v} - \mathbf{v}') \,, \quad \Delta \mathbf{b} = \epsilon (\mathbf{h} - \mathbf{h}') \end{split}$$

Here are some results applied on text recognition.

- (a) Training Data
- (b) Filters (w_{ii}'s)

(c) Samples

Summary

To sum up today's talk, we explored:

- ► How to quantify *information* with (Shannon) entropy
- ► Principle of Maximum Entropy (epistemic modesty)
- Jaynes formalism of (equilibrium) statistical mechanics, one key result being Boltzmann Statistics
- Application of Boltzmann statistics in deep learning

... and there are MANY more interesting applications and research topics in the area. Feel free to talk to me later!

THANK YOU!

References

- [1] I. Goodfellow, Y. Benglo, and A. Courville. *Deep Learning* (Adaptive Computation and Machine Learning series). The MIT Press, November 2016.
- [2] E. T. Jaynes. *Information theory and statistical mechanics*. The Physical Review, 106(4):620–630, May 1957.
- [3] M. Mézard and A. Montanari. *Information, Physics, and Computation*. Oxford University Press, 2009.
- [4] Steve Presseé and Kingshuk Ghosh and Julian Lee and Ken A. Dill. Principles of maximum entropy and maximum caliber in statistical physics. Reviews of Modern Physics, 85:1115-1141, July 2013.