Actividad 3.1: Trayectorias en lazo abierto (Zig Zag)

En esta actividad se implementa el código requerido para generar las siguientes trayectorias a partir de las velocidades angulares y lineales en un plano 2D. En este segundo ejercicio se busca trazar tramos predefinidos, formando una especie de zigzag.

```
%Limpieza de pantalla clear all close all clc
```

Se declara el tiempo de ejecución

Se declaran las condiciones iniciales a tomar en cuenta

Se declara el punto de control en referencia al robot

Se declaran las velocidades de referencia

La lógica para cada trayectoria se define de la siguiente manera, haciendo un total de 8 pasos nuevamente:

```
Tramo 1 (v=0 m/s, w=pi/6 rad/s) - Gira 30°

Tramo 2 (v=1 m/s, w=0 rad/s) - Avanza 1 metro
```

```
Tramo 3 (v=0 m/s, w=2/3pi rad/s) - Gira 120°

Tramo 4 (v=1 m/s, w=0 rad/s) - Avanza 1 metro

Tramo 5 (v=0 m/s, w=-2/3pi rad/s) - Gira -120°

Tramo 6 (v=1 m/s, w=0 rad/s) - Avanza 1 metro

Tramo 7 (v=1 m/s, w=0 rad/s) - Avanza 1 metro

Tramo 8 (v=0 m/s, w=pi/2 rad/s) - Gira 90°

Va aumentando el número de muestras (N) para lograr que el robot complete la secuencia de movimientos
```

```
v = [0*ones(1,10) \ 1*ones(1,10) \ 0*ones(1,10) \ 1*ones(1,10) \ 0*ones(1,10) \ 0*ones(1,10)]
```

 $w = [pi/6*ones(1,10) \ 0*ones(1,10) \ 2/3*pi*ones(1,10) \ 0*ones(1,10) \ -2/3*pi*ones(1,10) \ 0*ones(1,10) \$

Se inicia bucle de simulación en el cual se declara el modelo cinemático

Ahora se inicia con la simulación virtual en 3D

Para esta parte se importan los archivos compartidos por el profesor: MobilePlot.m, MobileRobot.m y Uniciclo.mat que se encuentran en la misma carpeta que este código, esto con el fin de poder graficar el entorno en 3D simultáneamente con este programa.

A continuación se muestran los pasos para la visualización:

a) Configuracion de escena

```
scene=figure; % Crear figura (Escena)
set(scene,'Color','white'); % Color del fondo de la escena
set(gca,'FontWeight','bold'); % Negrilla en los ejes y etiquetas
sizeScreen=get(0,'ScreenSize'); % Retorna el tamaño de la pantalla del computador
```

```
set(scene,'position',sizeScreen); % Configurar tamaño de la figura
camlight('headlight'); % Luz para la escena
axis equal; % Establece la relación de aspecto para que las unidades de datos sean
grid on; % Mostrar líneas de cuadrícula en los ejes
box on; % Mostrar contorno de ejes
xlabel('x(m)'); ylabel('y(m)'); zlabel('z(m)'); % Etiqueta de los eje

view([135 35]); % Orientacion de la figura
axis([-3 3 -3 3 0 2]); % Ingresar limites minimos y maximos en los ejes x y z [minX max
```

b) Graficar robots en la posicion inicial

```
scale = 4;
MobileRobot;
H1=MobilePlot(x1(1),y1(1),phi(1),scale);hold on;
```

c) Graficar Trayectorias

```
H2=plot3(hx(1),hy(1),0,'r','lineWidth',2);
```

d) Bucle de simulacion de movimiento del robot

```
step=1; % pasos para simulacion

for k=1:step:N

    delete(H1);
    delete(H2);

    H1=MobilePlot(x1(k),y1(k),phi(k),scale);
    H2=plot3(hx(1:k),hy(1:k),zeros(1,k),'r','lineWidth',2);
    pause(ts);
end
```


Este ejercicio nos ayuda a visualizar como funciona la manipulación de un robot modular declarándole la distancia y el ángulo que debe ejecutar para lograr la trayectoria deseada. Lo cual será muy útil para la realización del reto final.