Formal Verification of an Arbiter

Chao Yan & Mark Greenstreet & Jochen Eisinger

The University of British Columbia

Outline

- Circuit-Level Verification
- Arbiter
 - Specification
 - Previous work
 - An arbiter circuit
- Verification as Reachability
 - Coho
 - Stiffness
- Almost-Surely Verification
- Conclusion and Future Work

Circuit-Level Verification

- Digital circuit verification
 - Show that a circuit in an analog-model implements the desired discrete behavior.
- Why do Circuit-Level Verification?
 - Digital design has become relatively low error:
 - Circuit-level bugs remain a problem:
 - SPICE is still the main validation tool, and it doesn't scale.
 - Deep-submicron circuit effects undermine digital abstractions.
 - Hard/impossible to simulate bugs.
- Example
 - Synchronoizer τ doesn't scale with FO4.
 - Deep metastability beyond resolution of HSPICE.
 - How can we make sure our designs don't have such "scaling bugs"?

Arbiters

A Black-Box View

- Previous Work
 - Kurshan & McMillan (IEEE TCAD 1991) verified an nMOS arbiter.
 - Assumed inputs make instantaneous transitions.
 - This assumption greatly reduces the size of the reachable space.
 - No perfect arbiter can be built
 - Hurtado 1975, Marino 1981, Chapiro 1984, Mendler & Stroup 1993.
- Challenges
 - Formal specification
 - Realistic device and input models
 - Stiffness
 - Metastable behaviour

Discrete Specification

- LTL logic
 - p: p holds in the current state.
 - $\square p$: p holds this and all subsequent states.
 - $p \ \widehat{\mathbf{U}} \ q$: if p holds in the current state, p will continue to hold until a state in which q holds.
 - $p \ \widehat{\mathbf{W}} \ q$: if p holds in the current state, p will continue to hold forever or until a state in which q holds.

Specification

Discrete Specification

- LTL logic
- Specification

Initially:

$$\forall i \in \{1, 2\}. \ \neg \mathsf{r}_i \land \neg \mathsf{g}_i$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1, 2\}.$$
 $\square (\mathsf{r}_i \ \widehat{\mathbf{W}} \ \mathsf{g}_i) \land \square (\neg \mathsf{r}_i \ \widehat{\mathbf{W}} \ \neg \mathsf{g}_i)$ $\land \square (\mathsf{g}_i \ \widehat{\mathbf{U}} \ \neg \mathsf{r}_i)$

r holds until g \uparrow $g \uparrow \rightarrow r \downarrow$ r holds until g \downarrow

Discrete Specification

- LTL logic
- Specification

Initially:

$$\forall i \in \{1, 2\}. \ \neg \mathsf{r}_i \land \neg \mathsf{g}_i$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1, 2\}. \qquad \Box (\mathsf{r}_i \ \widehat{\mathbf{W}} \ \mathsf{g}_i) \land \Box (\neg \mathsf{r}_i \ \widehat{\mathbf{W}} \ \neg \mathsf{g}_i)$$
$$\land \Box (\mathsf{g}_i \ \widehat{\mathbf{U}} \ \neg \mathsf{r}_i)$$

Guarantee (arbiter controls g_1 and g_2):

Handshake:

$$\forall i \in \{1, 2\}. \ \Box (\neg \mathsf{g}_i \ \widehat{\mathbf{W}} \ \mathsf{r}_i) \ \land \ \Box (\mathsf{g}_i \ \widehat{\mathbf{W}} \ \neg \mathsf{r}_i)$$

Mutual Exclusion:

$$\Box \neg (\mathsf{g}_1 \wedge \mathsf{g}_2)$$

Liveness:

$$\forall i \in \{1, 2\}. \ (\Box(\mathsf{r}_i \ \widehat{\mathbf{U}} \ \mathsf{g}_i)) \land (\Box(\neg \mathsf{r}_i \ \widehat{\mathbf{U}} \ \neg \mathsf{g}_i))$$

- → Map continuous trajectories to discrete sequences.
 - O Region 1 represents a logical low signal.
 - O Region 2 represents a monotonically rising signal.
 - O Region 3 represents a logical high signal.
 - O Region 4 represents a monotonically falling signal.
 - O Brockett's annulus allows entire families of signals to be specified.

- Map continuous trajectories to discrete sequences.
- Region 1 represents a logical low signal.
 - Region 2 represents a monotonically rising signal.
 - Region 3 represents a logical high signal.
 - O Region 4 represents a monotonically falling signal.
 - O Brockett's annulus allows entire families of signals to be specified.

- O Map continuous trajectories to discrete sequences.
- O Region 1 represents a logical low signal.
- Region 2 represents a monotonically rising signal.
 - O Region 3 represents a logical high signal.
 - O Region 4 represents a monotonically falling signal.
 - O Brockett's annulus allows entire families of signals to be specified.

- O Map continuous trajectories to discrete sequences.
- O Region 1 represents a logical low signal.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
 - O Region 4 represents a monotonically falling signal.
 - O Brockett's annulus allows entire families of signals to be specified.

- O Map continuous trajectories to discrete sequences.
- Region 1 represents a logical low signal.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
- Region 4 represents a monotonically falling signal.
 - O Brockett's annulus allows entire families of signals to be specified.

- O Map continuous trajectories to discrete sequences.
- O Region 1 represents a logical low signal.
- Region 2 represents a monotonically rising signal.
- O Region 3 represents a logical high signal.
- O Region 4 represents a monotonically falling signal.
- → Brockett's annulus allows entire families of signals to be specified.

Brockett's Annulus

Initially:

$$\forall i \in \{1, 2\}. \ \neg r_i \land \neg g_i$$
$$\forall i \in \{1, 2\}. \ B_1(r_i) \land B_1(g_i)$$

Brockett's Annulus

Initially:

$$\forall i \in \{1, 2\}. \ B_1(r_i) \land B_1(g_i)$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1, 2\}. \qquad \Box(r_i \ \widehat{\mathbf{W}} \ g_i) \land \Box(\neg r_i \ \widehat{\mathbf{W}} \neg g_i)$$

$$\land \qquad \Box(g_i \ \widehat{\mathbf{U}} \neg r_i)$$

$$\forall i \in \{1, 2\}. \qquad \Box(B_3(r_i) \ \widehat{\mathbf{W}} \ B_{2,3}(g_i)) \land \Box(B_1(r_i) \ \widehat{\mathbf{W}} \ B_{4,1}(g_i))$$

$$\land \qquad \Box(B_3(g_i) \ \widehat{\mathbf{U}} \ B_4(r_i))$$

Brockett's Annulus

Initially:

$$\forall i \in \{1, 2\}. \ B_1(r_i) \land B_1(g_i)$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1, 2\}. \qquad \Box(B_3(r_i) \widehat{\mathbf{W}} B_{2,3}(g_i)) \land \Box(B_1(r_i) \widehat{\mathbf{W}} B_{4,1}(g_i))$$
$$\land \Box(B_3(g_i) \widehat{\mathbf{U}} B_4(r_i))$$

Guarantee (arbiter controls g_1 and g_2):

Handshake:

$$\forall i \in \{1, 2\}. \ \Box(B_1(g_i) \ \widehat{\mathbf{W}} \ B_{2,3}(r_i)) \land \ \Box(B_3(g_i) \ \widehat{\mathbf{W}} \ B_{4,1}(r_i))$$

Mutual Exclusion:

$$\Box \neg (B_{2,3}(g_1) \land B_{2,3}(g_2))$$

Liveness:

$$\forall i \in \{1, 2\}. \ (\Box(B_3(r_i) \ \widehat{\mathbf{U}} \ B_{2,3}(g_i))) \land (\Box(B_1(r_i) \ \widehat{\mathbf{U}} \ B_{4,1}(g_i)))$$

- Brockett's Annulus
- Specify Metastable Behaviours
 - Almost-surely version of LTL "always" operator
 - $\bullet \quad \phi \models \Box_Z S \equiv (\phi \models (\Box S) \lor ((\phi \in Z) \land (\mu(Z) = 0))$
 - A trajectory ϕ satisfies $\square_Z S$ iff S holds everywhere along ϕ , or if ϕ is in a negligible set, Z.
 - The probability of S holding everywhere along ϕ is equal to 1.
 - \bullet α insensitivity
 - arbiter's clients do not act as feedback controllers
 - α -ins $\Rightarrow (\Box_Z(B_3(r_i) \widehat{\mathbf{U}} B_{2,3}(g_i)))$

Continuous Specification

Initially:

$$\forall i \in \{1, 2\}. \ B_1(r_i) \land B_1(g_i)$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1, 2\}. \qquad \Box(B_3(r_i) \widehat{\mathbf{W}} B_{2,3}(g_i)) \land \Box(B_1(r_i) \widehat{\mathbf{W}} B_{4,1}(g_i))$$
$$\land \Box(B_3(g_i) \widehat{\mathbf{U}} B_4(r_i))$$

Guarantee (arbiter controls g_1 and g_2):

Handshake:

$$\forall i \in \{1, 2\}. \ \Box(B_1(g_i) \ \widehat{\mathbf{W}} \ B_{2,3}(r_i)) \land \ \Box(B_3(g_i) \ \widehat{\mathbf{W}} \ B_{4,1}(r_i))$$

Mutual Exclusion:

$$\Box \neg (B_{2,3}(g_1) \land B_{2,3}(g_2))$$

Liveness:

$$\forall i \in \{1, 2\}.$$

$$\alpha \text{-ins} \Rightarrow (\Box_Z(B_3(r_i) \widehat{\mathbf{U}} B_{2,3}(g_i)))$$

$$\wedge (B_3(r_i) \widehat{\mathbf{U}} (B_{2,3}(g_i) \vee B_3(r_{\sim i})))$$

$$\wedge (\Box(B_1(r_i) \widehat{\mathbf{U}} B_{4,1}(g_i)))$$

Arbiter Circuit

- Based on a SR-latch
- The metastability filters ensure that no grant is asserted until metastability has resolved.

Verification as Reachability

- Phase-space view of circuit behaviour
 - Waveforms → phase-space (reachable regions)
 - An inverter example

- Formal verifiation by reachability analysis
 - Specify continuous signals by Brockett annuli
 - Compute the reachable region that contains all reachable trajectories
 - Verify each signal satisfies its Brockett annulus
 - Verify LTL properties are satisfied in the reachable region

Coho: Reachability Computation Tool

- Solving dynamic systems: linear differential inclusions.
 - Inclusions computed for neighborhood of a region.
 - Each inclusion is of the form: $\dot{v} = Av + b \pm u$, where u is an error term.
- Representing and manipulating high dimensional space: projectagon
 - Provides a tractable representation.
 - Exploits extensive algorithms for 2D computational geometry.
- All approximations overapproximate the reachable space:
 - Coho is sound for verifying safety properties.
 - False negatives are possible.

Circuit Model

- Transistors modeled as voltage controlled current sources.
- The I_{ds} function is obtained by tabulated data from HSPICE simulations.

- At each time step, and for each projection polygon edge, Coho:
 - computes a bounding box for node voltages of each transistor.
 - computes a model of the form $i_1 = A_1v + b_1 \pm u_1$ where u_1 is an error bound. Likewise for i_2 .
 - bounds $i_c = (A_2 + A_2)v + (b_1 + b_2) \pm (u_1 + u_2)$. This produces a worst-case error bound.
- Approximate the ODEs by linear differential inclusions:

Projectagons

- Coho projects high dimensional polyhedron onto two-dimensional subspaces.
- Projectagons are efficiently manipulated using two-dimensional geometry computation algorithms.
- Projectagon faces correspond to projection polygon edges.

Projectagons

- A bounding projectagon is obtained by moving each face forward in time.
- The advanced face is projected onto two-dimensional subspaces to maintain the structure of projectagon.

Stiffness

- Stiffness
 - Wide range of time constants for nodes in the arbiter
 - $R \in [0.6 \ k\Omega 13 \ P\Omega]$
 - $C \in [0.01 \ pf 0.13 \ pf]$

- Ill-conditioned Jacobian matrix for ODE $\dot{x} = f(x)$
- Why stiffness is a problem for Coho
 - No good time-step
 - Errors: circuit model error, projectagon approximation error
- Solution
 - Changing variables
 - ullet z converges to its equilibrium voltage q(r, x1, x2) rapidly
 - Replace z with u = z q(r, x1, x2)
 - Additional invariants

Result

- **Mutual Exclusion**
 - **Brockett Annuli**

Result

- O Mutual Exclusion
- → Brockett Annuli
 - Metastability filters work as
 Brockett's Annulus transformers

b. $\dot{\overline{g}}_1$ vs \overline{g}_1

Liveness

- Metastable behaviours
 - Both requests are asserted concurrently
 - Fail to show a client is eventually granted

Bound the metastable region by Coho

Liveness

- Metastable behaviours
- Bound the metastable region by Coho
 - lacktriangle Stay in region M forever because of over-approximation.
 - How to show region M is exited with probability one?

- Intuition
 - → The distance of any two points on a line increases
 - O There is at most one point stay in the metastable region
 - \bigcirc The set of trapped trajectories is of maximum dimension d-1

Intuition

- The distance of any two points on a line increases
- O There is at most one point stay in the metastable region
- \bigcirc The set of trapped trajectories is of maximum dimension d-1

Intuition

- The distance of any two points on a line increases
- O There is at most one point stay in the metastable region
- \bigcirc The set of trapped trajectories is of maximum dimension d-1

- Intuition
 - O The distance of any two points on a line increases
 - There is at most one point stay in the metastable region
 - \bigcirc The set of trapped trajectories is of maximum dimension d-1

- Intuition
 - O The distance of any two points on a line increases
 - O There is at most one point stay in the metastable region
 - \longrightarrow The set of trapped trajectories is of maximum dimension d-1

- Intuition
- Double Cone
 - Construct a double cone with vertex on a trajectory
 - Trajectories on boundaries flow inward
 - Trajectories in the cone diverge on the axis direction

- Intuition
- Double Cone
- Sufficient condition
 - diverge property relate to the Jacobian matrix
 - details formulated in paper
- Almost Surely Verification

- Intuition
- Double Cone
- Sufficient condition
- Almost Surely Verification
 - use Coho to find metastable region
 - compute Jacobian matrix
 - use interval arithmetic to show divergence holds everywhere in metastable region

Conclusion and Future Work

- Conclusion
 - Specification
 - Solutions to stiffness problem
 - Almost-surely verification of metastable region
- Future Work
 - General solution for stiff system and metastable behaviours
 - An oscillator start-up verification problem
 - Formal specification for more circuits
 - Combine static (symbolic) techniques with reachability computation

Conclusion and Future Work

- Conclusion
 - Specification
 - Solutions to stiffness problem
 - Almost-surely verification of metastable region
- Future Work
 - General solution for stiff system and metastable behaviours
 - An oscillator start-up verification problem
 - Formal specification for more circuits
 - Combine static (symbolic) techniques with reachability computation
- Questions?

Thank You!