Week 15: Large-scale biological networks

- Network topology
- Network motifs
- Condition-specific networks
- Network reconstruction
- Network propagation

Context likelihood relatedness

Tracing the flow of information through a network over time.

Random walk

A mathematical formalization of the paths resulting from successive random steps a 'walker' takes from **one node to another** with a probability that is **proportional to the weight of the edge** connecting the nodes.

Tracing the flow of information through a network over time.

Initial node scores... (e.g. expression in a condition or association with a disease)

Convergence...

Tracing the flow of information through a network over time.

Random Walk

 $p_{n}(v)$: Vector of initial node scores representing experimental measurements or our prior knowledge (e.g. expression in a condition or association with a disease)

 $p_0(v)$

 $p_{\nu}(v)$: node scores at time-step k.

 $p_k(v) = \sum_{k=1}^{n} p_{k-1}(u) w(u, v)$

 $u \in N(v)$

w(u,v): (normalized) weight or the confidence of the interaction between u and v.

 $p_k = Wp_{k-1}$

 $p_{\nu} = W^{k} p_{0}$

W: normalized adjacency matrix (stochastic).

Cowen (2017) Nat. Rev. Genet.

Random Walk with Restart (RWR)

p₀(v): Vector of initial node scores representing
experimental measurements or our prior knowledge (e.g. expression in a condition or association with a disease)

$$p_0(v)$$

$$\mathbf{p_k(v)}$$
: node scores at time-step k.

$$p_{k} = \alpha p_{0} + (1 - \alpha) W p_{k-1}$$

W: normalized adjacency matrix (stochastic).

 $\pmb{\alpha} :$ user-defined parameter that specifies the trade-off between prior information and network smoothing

Random Walk & RWR

p: steady-state distribution of node scores.

S: Can be interpreted as a similarity matrix.

S_{ij}: the amount of information propagated to node i, given that the initial ranking $\mathbf{p_0}$ is an elementary vector with 1 at entry j and 0 elsewhere.

$$p = Sp_0$$

