DRUG CONTAINING CYCLIC AMINE DERIVATIVE

2. W3119-01

Patent number:

JP2169569

Publication date:

1990-06-29

Inventor:

SUGIMOTO HACHIRO; TSUCHIYA YUTAKA; HIGURE KUNIZO; KARIBE NORIO; IIMURA YOICHI; SASAKI

ATSUSHI; YAMANISHI YOSHIHARU; OGURA HIROO; ARAKI SHIN; OZASA TAKASHI; KUBOTA ATSUHIKO;

OZASA MICHIKO; YAMATSU KIYOMI

Applicant:

EISALCO LTD

Classification:

-international:

A61K31/40; A61K31/435; A61K31/445; A61K31/47; A61K31/495; A61K31/55; C07D207/09; C07D211/08; C07D211/32; C07D211/40; C07D295/10; C07D401/00; C07D405/12; C07D413/06; C07D471/04; A61K31/40; A61K31/435; A61K31/445; A61K31/47; A61K31/495; A61K31/55; C07D207/00; C07D211/00; C07D295/00; C07D401/00; C07D401/00; C07D401/00; C07D401/00; C07D211/08; C07D401/00; C07D211/08; C07D211/08; C07D207/09; C07D211/08; C07D211/08; C07D211/00; C07D401/00; C07D405/12; C07D413/06; C07D471/04

european;

Application number: JP19880324620 19881222 Priority number(s): JP19880324620 19881222

Report a data error here

Abstract of JP2169569

NEW MATERIAL:The compound of formula I [J is phenyl, pyridyl, indanyl, indanonyl, aikyl, etc.; B is group of formula II-formula V (R<2> is H or methyl; R<3> is H, alkyl, acyl, phenyl, etc.; R<4> is H, alkyl or phenyl; n is 0-10), etc.; T is N or C; Q is N, C or N-O; K is H, phenyl, arylaikyl, cinnamyl, alkyl, pyridylmethyl, acyl, etc.; q is 1-3] and its salt. EXAMPLE:1-Benzyl-4-[2-[(1-indanon)-2-yl]] ethylpiperidine hydrochloride. USE:It has strong acetylcholine esterase inhibiting action and choline acetyltransferase activating action and is useful for the remedy and prevention of central nervous diseases. PREPARATION:A compound of formula I wherein B is group of formula V can be produced e.g. by reacting an acid halide of formula VI with a cyclic amine derivative of formula VII in an organic solvent in the presence of a desalting agent.

Data supplied from the esp@cenet database - Worldwide

@日本国特許庁(JP)

①特許出職公開

◎ 公開特許公報(A) 平2-169569

@Int. Cl. *

識別紀号

庁内察理番号

個公開 平蚊2年(1990) 8月29日

C 07 D 207/09 A 81 K 31/40 31/435

AAM

8742-4C

*

茨城県牛久市柏田町3073-13

審査請求 未請求 請求項の数 2 (全54頁)

の発明の名称 環状アミン誘導体を含有する医薬

2049 BE 5763-324620

海出 駅 5263(1988)12月22日

A 28 勿答 嬰 3 *9 恋 73% 88 ङ 器 ** (T) 480 38 當 8 1 **35**% * **(44)** 83 X 338 88 夹 (70A) 93 ** 滋能 ** 2 (W)# 38 - 18 B **ά**Σ. 之 本 滋 3 2 88 **@**# S ***** ul: 670 **3**55 88 **33** 3 w. 38 25 **₩** 88 人 エーザイ株式会社 像代 選 人 弁理士 古 谷

茨城県牛久市栄町 2-35-18 茨城県つくば市春日 4-19-13 エーザイ紫山寮 茨城県つくば市春日 4-19-13 エーザイ紫山寮

次数県つくば市安日 4-19-13 エーサイ架山米 茨城県つくば市天久保 2-23-5 メゾン学際103 茨城県つくば市参日 4-19-13 エーザイ紫山寮

茨城界電ケ崎市松葉3-2-4

茂城県土浦市永岡1115-8

東京都文京区小石川4丁目6番10号

し、発器の名称

最終質に続く

減状アミン誘導体を含有する医薬

- 2. 特許請求の範囲
- 1 次の一般式

(X) # ...

」は(6)置換若しくは無置換の次に示す基:① フェニル器、②ビリジル器、②ビラジル器、③ キノリル器、③シクロヘキシル器、③キノキサ リル器叉は⑦フリル器、

※フェニル基が服装されていてもよい次の群から選択された一倍又は二倍の基:①インダニル、②インデニル、②インデニル、②インデニル、②インデンのニル、②インダンリル、②土

四達後アミド化合物から誘導される一番の基。

伽佐級アルキル器。又は

(図式 81-58×58- (式中、81は水器原子又は低級アルコキシカルボニル器を緊哚する) で示される器を緊哚する。

で来される感、女 - 8--(CB) - - (女中、8*は本参

原子、低級アルキル器、アシル器、低級アルキ ルスルホエル器、置換されてもよいフェエル語 又はベンジル器を意味する)で示される器、式

ル蟇又はフェニル蓋を塞除する) で示される器。

|| |で示される器、式-B-C-8H-(CH)。- で示される数、 | **

式-88-C-(C8),…で所される数。式-C83-C0-88-(C8),… 。

で示される器、式~(CH.)2-CH-NH-(EH).-で示さ

れる基、式-EH-(CH)。-- で来される基(日上の式

中、 nは 0 又は 1 ~10 の整数を意味する。 4°は 式 ~(CM)。 で示されるアルキレン器が置換器を ま*

持たないか、又は1つ又は1つ以上のメテル基を有しているような形で水器原子又はメテル基を意味する。)、式 =(CH-CH+CH)。-(式中、 hは1~3の整数を意味する)で示される基、式 =(CH-(CH))。-(式中、 cは0又は1~9の整数を意味する)で示される基、式=(CH-(CH))。-(式中、 dは0又は1~5の整数を意味する)で示され

味する。

9は1~3の整数を意味する。

全中、 ******** は単結合若しくは二酸結合を敷 味する。)

で後される議会アミン誘導体及びその業産学的 に許容できる塩を有効並分とするコリンアセチ ルトランスフェラーゼ厳信作用に基づく概単の 治策・予防期。

2 一級武

(致华、

がはフェニル基が置換されていてもよい次の 器から選択された一倍又は二倍の器;①インダ ニル、②インダノニル、②インデニル、③イン デノニル、③インダンジオニル、⑩テトラロニ ル、①ベンズスペロニル、③イングノリル、③

で示される器、式 $-CH-CH-\ddot{C}-NH-\{CH_n\}$,…で示される器、式 -8H-で示される器、式 -6-で示される器、 ジァルキルアミノアルキルカルボニル器又は低級アルコキンカルボニル器を激味する。

『は窒素原子又は炭素原子を煮出する。

○は窒素原子、総素原子又は全 _ 8-0 で 赤される数を意味する。

『は水素原子、置換若しくは無置換のフェニル基、フェニル器が置換されてもよいアリール アルキル基、フェニル器が置換されてもよいシ シナミル器、低級アルキル器、ピリジルメチル 基、シクロアルキルアルキル器、アダマンタン メチル器、フリルメチル器、シクロアルキル器。 低級アルコキシカルボニル器又はアシル器を散

で示される器、式 -8-(CB),- (式中、10 は水祭

順子、低級アルキル器、アシル器、佐級アルギ ルスルホニル器、置換されてもよいフェニル器 又はベンジル器を繋除する)で示される器。式

ル基又はフェニル器を厳除する)で示される袋。

『 で派される器、式-0-C-88-(C8)、~で米される系。 。。

で示される基、式-(CH2):-CB-88-(CH):-で示さ

0.8

れる窓。文-(3-(CH)。-で示される器 (以上の式

中、 nは 0 又は 1 ~10 の整数を意味する。 8*は 式 ~(CB)。 で示されるアルキレン磁が整接基を gr

特だないか、又は1つ又は1つ以上のメチル基を有しているような形で水無限子又はメチル基を整味する。)、式 = (CR-CH=CH)。 (式中、 bは1~3の整数を意味する)で示される無、式=(CH-(CH))。(式中、 cは0又は1~9の整数を意味する)で示される無、式=(CH-CH)。(式中、 dは0又は1~5の整数を意味する)で示され

で示される塞、虫 -CH=CH-C-8H-(CH_a);-で赤さ

3. 発明の詳細な数明

(業業上の利用分野)

本類領は、新規環状アミン誘導体を育効成分 とする医薬に関する。

(発明に至る背景及び後来技術)

※年人口が急級に増大する中で、アルソハイ マー型老年素呆などの老年痴呆の治療法を確立 することが暴望されている。

しかしながら、現在のところ、老年痴呆を裏物で治療する試みは様々なされているが、これらの疾患に摂本的に有効とされる異素は今のところ存在しない。

これらの疾患の治療薬の解発は限々の方向から研究されているが、有力な方向としてアルツハイマー型差年膨呆は、脳のコリン作動性機能低下を伴うことから、アセチルコリン的超物質、アセチルコリンエステラーゼ限等剤の方向から囲発することが提案され、実際にも試みられている。代表的なものとして、抗コリンエステラーゼ阻等剤として、フィブスチグミン、テトラ

れる器、式一器・で示される器。式 -0-で無される器、式 -0-で無される器、びアルキルアミンアルキルカルボエル器叉は仮線アルコキシガルボエル器を放映する。

『は霰響原子又は設置原子を意味する。

※は水無原子、蜜換若しくは無鬱換のフェニル器、フェニル器が蜜換されてもよいアリールアルキル器、フェニル器が鬱換されてもよいシンナミル器、低級アルキル器、ピリジルメチル器、シクロアルキルで、シクロアルキル器、ダゲルコキンカルボニル器又はアシル器を繋 験する。

eは1~3の整数を意味する。

で表される選択アミン誘導体及びその基理学的 に許存できる弦を有効成分とする第次項 [記載 の治療、予防剤。

ヒドロアミノアクリジンなどがあるが、これらの薬剤は効果が十分でない、好ましくない個作用があるなどの欠点を有しており、決定的な治療薬はないのが環状である。

変に、最近コリンアセチルトランスフェラー ゼ(EhAT) 誠活作用もこれらの疾患の治療に有効 であることが注目されている。

そこで本発明者らは、この作用を有する化合物について長年にわたって鋭寒研究を重ねてきた。

その結果、後で述べる一級式(!) で示される環状アミン誘導体が、所期の目的を遂することが可能であることを見出した。

異体的には下記の機造式 (I) で彼される本 発明化合物は、優れたコリンアセチルトランス フェラーゼ(ChAT) 厳活作用を育し、更に強力か つ選択性の高い抗アセチルコリンエステラーゼ 活性を育するため、脳内のアセチルコリンを増 置すること、記憶隆客モデルで育効であること、 及び従来この分野で祝用されているフェゾスチ グミンと比較し、作用持続時間が長く、安全性 が高いという大きな特徴を有しており、本発明 の価値は極めて高い。

本発明化合物は、コリンアセテルトランスフェラーゼの販活作用に基づいて見出されたもので、従って中枢性コリン機能、即ち神経伝達物質としてのアセテルコリンの生体内の欠乏が原因とされる穏々の疾患の治療・予防に有効である。

代表的なものとしては、アルンハイマー型老 年商品に代表される各種商品があるが、そのは かハンチントン舞踏病、ピック病、微異性運動 異常症などを挙げることができる。

世って、本発明の目的は、医薬としてとりわけ中枢神経系の疾患の治療・予防に有効な新規 選出すくン誘導体を提供すること、この新規選 状でミン誘導体の製造方法を提供すること、及 びそれを有効成分とする医薬を提供することで ある。

(発明の機成及び対象)

(6) 式 R'-CH=CH- (式中、R'は水器原子又は低級アルコキシカルボニル器を意味する) で示される器を意味する。

で示される落、女 - 8-(CH)。- (女中、8°は水業

原子、低級アルキル基、アシル基、低級アルキ ルヌルホニル基、微機されてもよいフェニル基 又はベンジル基を意味する)で示される基、式

ル蒸叉はフェニル器を意味する)で系される器。

で示される差、式-8-0-0-88-{CN)。- で示される器。

本発明の目的化合物は、次の一般式(1)で 数される数式アミン誘導体及びその薬理学的に 許容できる数である。

(或中。

Jは個體機器もくは無酸機の次に米す基;① フェニル基、②ビリジル基、③ビラジル基、③ キノリル基、⑥シクロヘキシル基、⑥キノキサ リル蒸又は①フリル基、

(1)フェニル基が整換されていてもよい次の群から選択された一倍又は二倍の基; ①インダニル、のインデニル、のインデニル、のインデンニル、のインダンジオニル、のテトラロニル、のベンズスペロニル、のインダノリル、の式

の選択するド化合物から誘導される一個の基、 価値級アルキル基、又は

で示される器、式-(C8。)2-C8-88-(C8)4-で示さ

中、 oは 0 又は 1 ~10 の整数を意味する。 8*は 式 -(CB) x-で示されるアルキレン器が置換器を 8*

特にないか、又は1つ又は1つ以上のメチル系を有しているような形で水熱原子又はメチル系を意味する。)、式。(C8-CH=CH)。 (式中、もは1~3の整数を意味する)で示される基、式=CH-(CH₂)。 (式中、cは0又は1~9の整数を意味する)で示される基、式。(CR-CH)。 (式中、dは0又は1~5の整数を意味する)で示され

| i | る 蒸、 式 -C-CH=CH-CH₃~で示される 蒸、式

で示される器、式 -CH=CH-C-NH-(CH₂)₂-で示される器、式 -8H- で示される器、式 -6-で示される器、式 -6-で示される器、 ジアルキルアミノアルキルカルボニル器又は低級アルコキシカルボニル器を意味する。

Tは密器原子又は炭素原子を意味する。

※は水器原子、覆換若しくは無震換のフェニル基、フェニル基が覆換されてもよいでリールアルギル基、フェニル基が置換されてもよいシンナミル基、低級アルギル基、ビリジルメテル基、シクロアルギルアルギル基、アダマンタンメテル基、フリルメテル基、シクロアルギル基、従級アルコキシカルボニル器又はアシル基を意味する。

aは1~3の整数を蒸除する。

エチルーミーメチルプロビル蒸などを意味する。 これらのうち好ましい基としては、メチル基、 エチル基、プロビル基、イソプロビル基などを 挙げることができ、最も好ましいものはメチル 系である。

Jにおける「魔後もしくは無魔族の次に示す 器:①フェニル器、②ピリジル器、③ピラジル 器、②キノリル器、③シクロヘキシル器、⑤キ ノキサリル器又は⑦フリル器」という定機において、愛検器としては、メチル器、エチル器、 カープロビル器、イソブロビル器、Bープテル 器、イソブチル器、はは一プチル器などの受業 数1~6の低級アルキル器に対応する低級アルキル器に対応する低級アルキル器に対応する低級アルキル器に対応する低級アルガニル器、ストキシカルボニル器、イソブロボキシカルボニル器、イソブロボキシカルボニル器、イソブロボキシカルボニル器、カープロボキシカルボニル器、カープロボキシカルボニル器、カーブチロキシカルボニル器など、上 記の低級アルコキシ塞に対応する低級アルコキ 安中、 ****** は単結合若しくは二葉結合を意味する。〕

本発明化合物(1)における上記の定義にお いて、よれに、ひ にみられる低級アルキル塞と は、炭素数1~8の直線もしくは分技状のアル キル器、例えばメチル器、エチル器、プロゼル 蓋、イソプロゼル蓋、ブチル蓋、イソブテル蓋; sec ープチル蒸、testープチル蒸、ベンチル蒸 (アミル器) 、イソベンチル筋、ネオベンテル 蓋、testーベンチル蓋、1ーメチルブテル器、 2-メチルブチル器、1、2 ークメチルプロビル 器、ヘギシル器、イゾヘキシル器、ミーメチル ベンチル藻、ミーメデルベンチル器、ミーメデ ルベンチル器、1.1 ージメデルブチル器、1.2 ージメチルブチル茲。3.2 ージメチルブテル器、 1.3 ージメチルブチル蒸、2.3 ージメチルブチ ル蒸、3.3 ージメチルプチル蒸、1ーエチルブ チル蓋。2ーエテルブテル蓋。1、1、2 ートリメ チルブロビル器。1,22 ートリメチルプロビル ※、1ーエチルー1ーメチルプロビル器、1ー

シカルガニル器とするノ器:サノ経験アルギル アミノ蒸しが低級アルキルアミノ器;カルバモ イル器;アセチルアミノ器、プロビオニルアミ ノ墓、ブチリルでミノ蓋、インブテリルアミノ 蕃、バンリルアミノ蕃、ピバロイルアミノ器な と、炭素数1~6の脂肪酸飽和モノカルギン酸 から誘導されるアシルアミノ器(シクロペキシ ルオキシカルボニル器はどのシクロアルキルズ キシガルポニル器;メテルアミノカルギニル器、 エチルアミノカルゼニル器などの揺録アキキル アミンカルガニル器、メデルカルボニルネキシ 蓋、スチルカルボニルオキシ蓋、カープロビル カルボニルオキシ藁など前紀に定義した低級で ルキル器に対応する個級アルキルカルボニルオ 半少器:トリフルオロメチル基などに代数され 名ハロゲン化道線アルキル無:水酸器:ホルミ ル茲:エトキシメチル器、メトキシメチル器。 メトキシエチル基などの低級アルコキシ価級ア ルキル暴などを挙げることができる。上記の置 逸器の説明において、「無級ブルキル器」、

「係級アルコキシ級」とは、前記の定義から派生する基をすべて含むものとする。 置換器は間一又は異なる 1~3 様で関格されていてもよい。

変にフェニル器の場合は、次の如き場合も整 後されたフェニル器に含まれるものとする。即

される然、式-0- で示される器、式-CH,-NH-C-で示される器、式-CH,-0- で示される器、式 -CH,-30:- で示される器、式-CH-で示される器

これらのうち、フェニル基に好ましい置換基 としては、低級アルギル器、低級アルコギル器。 ニトロ基、ハロゲン化便級アルキル器、低級ア

いる①~②について、その代表例を示せば以下 のとおりである。

ルコキシカルボニル蒸、ホルミル蒸、水酸蒸、 低級アルコキシ銀級アルキル蒸、ハロゲン、ベ ンブイル蒸、ペンジルスルホニル蒸などを挙げ ることができ、緩緩蒸は同一叉は相異なって? つ別上でもよい。

ピリジル薬に好ましい器としては、低級アルキル基、アミノ器、ハロゲン原子などを挙げることができる。

ビラジル基に好ましい落としては、張級アルコキシカルボニル器、カルボキシル器、アシルアミノ器、カルバモイル器、シクロアルキルオキシカルボニル器などを挙げることができる。

また、3としてのビリジル基は、2ービリジル基、3ービリジル基又は4一ビリジル基が望ましく、ビラジル基は2ービラジル基が設ましく、キノリル基は2ーキノリル基で設ましく、キノキャリル基は2ーキノキャリル基又は3ーキノキャリル基が設ましく、フリル基は2ーフリル基が設ましい。

Jの定義において、例グループに記載されて

・上記一選の式において、 tは § 又は) ~ 4 の 整数を意味し、 8は同一又は相異なる前記した 」 (4)の定義における驚後器のうちしつ又は水素 原子を意味するが、好ましくは水素原子(無整 換)、伝版アルキル器又は低級アルコキン器を あげることができる。更に、フェニル謎の繰り あう後素額でメチレンジオキシ器、エチレンジ オキン器などのアルキレンジオキン器で覆接されていてもよい。

これらのうち微も好ましい場合は、無覆換若 しくはメトキシ基が1~3個覆換されている場 今である。

なお、上記のインダノリチニルは J60の定義 におけるフェニル基が置換されていてもよい二 倍の基の例である。すなわち J60の②のインダ ノニルから誘導される代表的な二倍の基である。

Jの定義において、選載するド化会物から誘
導される一倍の高とは、例えばキナゾロン、テトラハイドロイソキノリンーオン、テトラハイドロインドではピンーオン。ヘキサハイドロインアゲビンーオンなどを挙げることができるが、構造式中に選択するドが存在すればなら、これらのみに設定されない。単議もしくは指合ヘテロ議から誘導される選択するドがありうるが、総合ヘテロ議が好ましい。この場合、フェエル議との結合ヘテロ議が好ましい。この場合、フェエル議とは接機数1~8の低級アルキル器、好ましくは

上記の式中で、式(i)、(i) における f は水素 原子又は塩級アルキル基を意味し、式(i) にお ける y は水素原子又は低級アルコキシ蒸、式(ii)、 (ii) における8*、8* は水素原子、低級アルキル 蒸、塩級アルコキシ蒸、8*は水震原子又は低級 アルキル蒸を意味する。

なお、式(j)。(!) において、右側の議は ? 員

ノチル器、炭素数1~8の低級アルコキシ器、 好ましくはメトキシ器あるいはハロゲン原子に よって懸挽されていてもよい。

好ましい例を挙げれば次の選りである。

機であり、式(k) において有側の頭は8負職である。

Jの上記の定義のうち最も好ましいものは、
フェニル環が緊接されてもよいインダノンから
誘導される一部の基、環状アミド化合物から誘
導される一個の熱である。

目の定義において、式 - (CH) - で示される器

は、8°が水素原子である場合は虫-(CH₁)。-で数され、更にアルキレン総のいずれかの炭素原子にしつ又はそれ以上のメテル基が結合していてもよいことを意味する。この場合、好ましくはnは1~3である。

また、 8の一選の基において、基内にアミド 基を有する場合も好ましい器の一つである。

更に好ましい基としては、武*(CH-CH*CH)。(式中、 bは1~3の整数を繋除する)で示される基、式*CH-(CH*)。-(式中、 cは6又は1~
9の整数を意味する)で示される基、式*(CH-CH)。*
(式中、 dは6又は1~5の整数を意味する)

で来される基、式 -86- で示される基。式 -6-で示される基文は式 -3-で示される基をあげる ことができる。

げることができるが、特に許ましい選ば出

※の定義における「蜜換又は無覆換のフェニル基」、「覆換もしくは無覆換のアリールアルキル基」において、覆換基は前記の Jの定義において(3)の①~①において定義されたものと同一のものである。

アリールアルキル器とは、フェエル環が上記

本発明において、変理学的に許容できる後とは、例えば複数塩、鋭数塩、臭化水蒸穀塩、緑酸塩などの組織酸塩、繊酸塩、酢酸塩、トリフルギロ酢酸塩、マレイン酸塩、海石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩などの有機酸塩を挙げることができる。

また置後器の選択によっては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、トリメチルアミン塩、トリエチルアミン塩、ビリジン塩、ピコリン塩、ジシクロヘキシルアミン塩などの有機アミン塩、アンモニウム塩などを形成する場合もある。

なお、本発明化合物は、要換器の機類によっては不容波器を有し、光学異性体が存在しうるが、これらは本発明の範囲に関することはいうまでもない。

異体的な例を一つ述べれば、Jがインダノン

の製換器で製造されるか、無覆油のペンジル器、 フェネチル器などを意味する。

ビリジルメチル基とは異体的には、2ービリジルメチル基、3ービリジルメチル基、4ービリジルメチル基などを挙げることができる。

※については、フェニル器が置換されてもよ いアリールアルキル器、置換若しくは無置換の フェニル器、フェニル器が置換されてもよいシ ンナミル器が数も舒ましい。

好ましいアリールアルキル基は、異体的には 例えばベンジル基、フェホチル基などをいい、 これらはフェニル基が従業数1~8の振振アル コキン基、従業数1~8の振級アルキル基、水 験番などで置換されていてもよい。

一一は単純会もしくは二級総合を意味する。 二数結合である場合の例をあげれば、上記で返 ペたフェニル線が関接されてもよいインダノン から誘導される二個の器の場合、すなわちイン ダノリデニル器である場合をあげることができ る。

貴格を有する場合、不斉提案を有するので幾何

者格を有する場合、不予反案を有するので幾何 異性体、光学異性体、ジアステレオマーなどが 存在しうるが、何れも本発明の範囲に含まれる。

これらの定義を総合して特に終ましい化合物 群をあげれば次のとおりである。

〔気中、ジはフェニル基が覆換されていてもよい次の群から選択された一個又は二個の基;①インダニル、②インゲニル、②インデニル、②チンジオニル、③チトラロニル、②ベンズスベロニル、②インダノリ

8.

8.1.0.0.8 は前記と開機の繁集を有する。〕 で数される環状でミン叉は薬理学的に許容できる族。

上紀の」の定義中、最も好ましい基としては、

フェニル蓋が置換されていてもよいイングノニ ル器、インダンジオニル器、インダノリアニル 慈をあげることができる。また。この場合、ブ エエル签は整接されていないか、周一又は相異 なる水酸墨、ハロゲン、低級アルコキシ蓋で置 後されている場合が最も好ましい。低級アルコ キシ蒸とは、炭素数1~8の例えばノトキシ蒸、 エトキシ器、イソプロボキシ器、カープロボギ シ蒸、カーブトキシ蓋などをいい、1~4覆換 をとりうるが、3置後の場合が経ましい。数も 好ましい場合はメトキン器が2魔袋となってい る場合である。

(A) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(8) をあげることができる。

(武中、川はフェニル基が震物されていてもよ い次の群から選択された一倍又は二個の基:①

(3) 世に会まれる化会物の中で更に好ましい 化合物物としては、次の一般式で表される化合 物(C) をあげることができる。

N- で示される器、即ちピペリジンの場 会である。

(C) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(色) をおげることができる。

(武中、)はフェニル基が監検されてもよいイ ングノエル、イングンジオニル、イングノリデ ニル基から選択された基を意味する。

メジダエル、®インダノエル、®インデエル、 ラロニル、のペンズスペロニル、@インダノリ

}--CG-CH- で示される基を意味す ĖK.

Š ..

81 技式 - (CH) - (式中、 a は 8 又は 1 ~13 の

整数を意味する。8°は式 ~ (CB) ,~ で示されるア

ルキシン器が置接基を持たないか、又は1つ叉 は1つ以上のメテル概を有しているような形で 水素原子又はメチル基を意味する。)で示され & 器、式=(EB-CH=EB)。- (式中、5は1~3の盤 数を意味する)で乗される器、式*CH-(CB;)。-(玄中、 c)は()又は(~)の盤数を意味する) で示される甚又は式=(C8-C8)。* (式中。 6120 又は1~5の整数を意味する)で示される器を 業味する。

T, G, q, K は前配と開機の意味を有する。】

X'は置換器しくは無置換のフェニル器、置換 されてもよいアリールアルキル基、魔独されて もよいシンナミル器を意味する。

81は前記と間様の意味を有する。)

本発明化合物の製造方法は職々考えられるが、 (武中、1)、11、11、11 前記と同様の意味を有する。) 代表的な方法について述べれば以下の通りであ

(武中、n, 2*, 2* は前記の繁味を育する) で示 される器を繁味する場合〕

(式中、J, 8*, 8*, n, T, Q, q, K は前記の意味を有し、 Hal はハロゲン原子を意味する。)

即ち、一般式(百)で表される酸ハロゲン化物と、一般式(Ⅱ)で表される環状アミン誘導体を、例えば炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、トリエチルアミンなどの脱塩剤の存在下に、タロロホルム、ベンゼン、トルエン。・ジオキサン、テトラハイドロフラン、ジメチルホルムアミド(DMF)などの有機溶媒中、水冷、窓器もしくは加熱により反応させ、容器に目的物質の一つである化合物(Ⅳ)を得ることができる。

製造方法B

」がキナゾロン、テトラハイドロイソキノリ シーオン、テトラハイドロベンゾジアゼピンー オン、ハキャハイドロベンツアブシンーオンか

(式中、8°,8° は水器原子、低級アルキル基、 低級アルコキシ基、ハロゲン原子であり、 pは 1~3の複数であり、 Zは式-CP₅- で示される

系、又は式 -8- (式中、8⁷は水素原子又は塩級 アルキル器を示す)で示される器を意味する。 Hal, 8², a, 7, Q, q, Kは前記の意味を有する。)

即ち、一般式 (V) で数される魔機-1.2.3.4 ーテトラハイドロー58-1ーベンツアゼビンー2ーオンを、例えばジメチルホルムアミド路線中で、一般式 (V) で表される化合物と、例えばナトリウムハイドライドの存在下に紹合して、目的物質の一つである (VI) を得ることができる。

N N N E C

lød ()- Thensutati

かつ 8が -(CH) *-で示される基である場合は次 ** ら選択された環状アミド化合物から誘導される 一個の基である場合は次のような方法でも製造 することができる。

Ball & Z

の製造方法によっても製造できる。

$$\begin{array}{c}
0 \\
-(CH) \cdot -($$

即ち、2-ハイドロキシメテルニコテン酸ラクトン(値)と、一般式(区)で表される化合物とを、常法により反応せしめて、目的物質の一つである一般式(X)で表される化合物を得ることができる。反応温度は200℃前後が好ましい。

製造方法印

であり、 8が文 - (CH) - で数される器である場 8°

合 (8*,8* は約記の8*,8* の定義と問様の意味 を有する。0,8*は約記と関様の意味を有する。) は次の製造方法によっても製造できる。

即ち、2.3 ーピラジルカルボン酸無水物(煤)を、例えばインプロピルアルコール中に加え電 泥する。アルコールを留去したのち、一般式 (IX) で要される化合物と、例えばテトラセド ロフランなどの溶媒中反応させることにより、 目的物質の一つである化合物(煤)を得ること

即ち、一般式(X)で表される優換2,3 ージ ヒドロオキンピロロ(3,4-b) ペンゼンと、一級 式(Yi)で表される化合物とを、例えば水素化 ナトリウム存在下に、例えばジメテルホルムア ミドなどの治案中、加熱下に反応せしめて、目 的物質の一つである化合物(XI)を得ることが できる。

製 改 方 法 E

であり、8か主 -C888-(C8)。- で表される際で 。。

ある場合は次の製造方法でも製造することがで きる。

かできる。

製造方法的

一級式(1)において、」が服装されてもよいフェニル基であり、 Bが式-C-(CHs) s-で示される基、又は式-C-CHs-CHs-で示される基でのは、又は式-C-CHs-CHs-で示される基でのは、次の方法によっても製造すること

のの場合は、のシスタトよっても必然。のここができる。下記の式中、 0° は前記の3何の定義における機能整を意味する。

即ち、例えばテトラヒドロフランなどの溶液中で、ジイソプロビルアミン、ホーブチルリチウム/ヘキサン溶液を加え、約一80℃の温度にて、一般式(深)で表されるでセトフェノンと、一般式(湖)で表される化合物と縮合し、化合物(斑)を得る。これを、例えばトルエンなどの溶媒中で混水した後、常法により接触最元すると、目的物質の一つである化合物(畑)が得られる。製造方法。

本発明において、 Jが出て定義されるものの 中で、フェニル基が置換されてもよい①インダ ニル、②インダノニル、②インダンジオニル。

$$1, -68^{4} - 8, -\frac{(68^{4})}{3} - 8$$
 (XX)

(式中、J'は Jが上記の定義である場合を示し、 8'は上記の 8の定義において最左端の歳素原子 に結合している基を除いた疑案を意味する。)

即ち、一般式(照)で表されるホスホナートに一般式(ほ)で表されるアルデヒド化合物を反応せしめて(wittig反応)、目的物質の一つである一般式(第)で表される化合物を得、次いでこれを接触器元して目的物質の一つである化合物(2011)を得ることができる。

Nittig反応を行う際の触媒としては、例えば ナトリウムメチラート(MeONa) 、ナトリウムエ ③テドラロニル、
のペンズスペロニル又は
第式

□(CH-CH=CH), □(式中、 bは 1 ~ 3 の数数を意味する)で示される器、式=CH-(CH₂); □(式中、 cは 0 又は 1 ~ 9 の整数を意味する)で示される器、又は式□(CH-CH); □(式中、 dは 0 又は 1 ~ 5 の整数を意味する)で示される器である場合は、例えば次の二つの方法によって製造できる。

製造方法。

チラード(EtBRs)。 t-8xix、Nan などを挙げることができる。この際路線としては、例えばテトラとドロフラン〈THF〉、ジメチルホルムアミド(DMF)、エーチル、ニトロメクン、ジメチルスルホキシド〈DMSO〉などを挙げることができる。また、反応温度は震温から180 で程度が好ましい結果を与える。

接触還元を行う際は、例えばパラジウム炭楽、 ラニーニッケル、ロジウム炭素などを触導とし で用いることが終ましい結果を与える。

落である場合を異体的に示せば、以下のとおり である。

る基(式中、8¹¹、8¹² は 8の定義のうち、阿一 又は相異なる水素原子、接級アルキル基、振級 アルコキシ基、ハロゲンである場合をいう)で あり、8か式~(CH₂)。で示される基(式中、 n は1~8で示される基を意味する)であり、柔

$$-\left(\begin{array}{c} -\left(\begin{array}{c} -\left(\begin{array}{c} -\left(\begin{array}{c} -\left(\frac{\pi}{2}\right) \\ \end{array}\right) & \text{change} \end{array}\right) & \text{change} \end{array}\right) - \text{change}$$

$$+\left(\begin{array}{c} -\left(\begin{array}{c} -\left(\frac{\pi}{2}\right) \\ \end{array}\right) & \text{change} \end{array}\right) + \left(\begin{array}{c} -\left(\frac{\pi}{2}\right) \\ \end{array}\right)$$

$$+\left(\begin{array}{c} -\left(\frac{\pi}{2}\right) \\ \end{array}\right) + \left(\begin{array}{c} -\left(\frac{\pi}{2}\right) \\ \end{array}\right)$$

$$+\left(\begin{array}{c} -\left(\frac{\pi}{2}\right) \\ \end{array}\right) + \left(\begin{array}{c} -\left(\frac{\pi}{2$$

(式中、81°,81° は、811,81° と開榜の定義とする) で示される基である場合を異体的に示せば次の適りである。

$$1, -cu \cdot - k, -\left(\frac{(xu \cdot k)}{y} - k\right)$$
 (xxii)

即ち、一般式 (以助で表される魔検若しくは 無魔接のインダノンなどの化合物と一般式 (以) で表されるアルデヒド体と、常性によりアルド ール縮合を行い、目的物質の一つである一般式 (知) で表される化合物を得る。

本度路は、例えばテトラヒドロフランほどの 密媒中でジインプロビルアミンとホープテルへ キサン溶液によりリテウムジインプロビルアミ ドを生成させ、好ましくは約一部りの温度でこれに上記の一般式 (双引)で変される化合物を加える。次いで一般或 (双) で変されるアルデヒド体を加えて常法により反応せしめ、窒温さで界温させることによって脱水させ、エノン体である一般式 (図) で変される化合物を得る。

本反応の別方法として、両者 ((21) と(X)) をテトラヒドロフランなどの密膜に溶解し、約 0 でにて、例えばナトリウムメチラートなどの 塩基を加えて、窓道にて反応させることによる 方法によっても製造することができる。

上記の製造方法によって終られたエノン体 (窓)を前紀に示したと間様の方法により還元 することにより、一般式 (窓里)で表される化合 物を得ることができる。

あり、 8が式-(CHa) **で示される基であり、式

製造方法1に記載したと開榜に、一具体例を 赤せば次の通りである。

る場合を異体的に示せば以下のとおりである。

整 资 方 绘 H

」がフェニル器の部分が覆換されてもよいインダノリル器である場合は、以下の方法によって製造することができる。

即ち、化合物(図裏) をりて一窓温にて、例えば水素化ホウ素ナトリウムなどで選元することにより、質的物質の一つである化合物(図例)を得ることができる。この場合の熔線は、例えばメタノールなどが好ましい。

製造 カ 法 」

」がフェニル器の部分が**製**換されていてもよ いインデニル器を示す場合は、以下の方法によ っても製造することができる。

即ち、化合物 (質別)を常法により複雑などの 存在下限水させて、田的物質の一つである化合 物 (質V)を得ることができる。

製造方法工

」がフェニル器の部分が覆換されていてもよ いインデノニル基を示す場合は、以下の方法に よっても製造することができる。

ランなどの溶媒中、 1,8-ジアザビンクロ (3,4,3) ウンデクー (-x) (DBU) とともに 加熱蒸炭することにより 8-炭離を行い、イン デノン代合物 (双動を得る。なお、上記のブロ ム体は、他のハロゲンでも反応は可能である。

なお、製造方法 G ~ Jにおいて、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

・即ち、一般式 (以前)で表されるインダノン化 合物を、例えば四塩化炭素などの溶媒中。 男ー プロムコハタ酸イミド (NBS) と遊酸化ペン ソイルとともに加熱酸洗してプロム化し、次に このプロム体 (以前)を、例えばチトラセドロフ

一方。アルデヒド体は例えば以下の方法によ り製造することができる。

XII

即ち上記の如く、式 (i) 又は式 (i) で示される化合物を出発物質とし、これを上記の方法によりアルデヒド体とし、これを下記に示すウィテッと反応などを繰り返したり、組み合わせたりすることにより増設反応を行い、目的とする出発物質を得ることができる。

ウィテッと製菓としては、例えば1炭素増長 のときはメトキシメテレントリフェエルホスホ ランを用い、2炭素増長のときはホルミルメチ レントリフェニルホスホランを用いる。

メトキシメテレントリフェニルホスホランは、 メトキシメテレントリフェニルホスホーウムク ロライドとローブテルリテウムとから、例えば エーテル又はテトラヒドロフラン中で生成させ る。この中にケトン体又はアルデヒド体を加え てメトキシビニル体とした後、微処理によって アルデヒドを会成することができる。

特定の場合の異体例を以下に示す。

素などが経ましい。

異体 第 2

辺上のようにして得られる一級式(I)の化 合物及びその酸付加塩は各種差人性痴呆症、特 にアルッパイマー型老年痴呆の治療に有用であ る。

一般式(1)で示される化合物及びその酸付加度の有用性を示すために、薬理試験結果を以下に説明する。

寒腺粥!

In vitcaでセチルコリンエステラーゼ阻塞作用

一方、ホルミルメチレントリフェニルホスホ ランを用いる場合は、原料となるケトン体又は アルデヒド体のエーテル、テトラヒドロフラン 又はベンゼン溶液中にウィテッと試薬を加え、 窒温から加熱選続することによって合成するこ とができる。

このようにして合成した不飽和アルデヒド体は、必要により接触激先して飽和アルデヒド体とすることができる。この際の触感としては、バラジウム投業、ラネーニッケル、ロジウム炭

アセチルコリンエステラーゼ機として、マウス器ホモジネートを用いて、引issnらの方法? に準拠してエステラーゼ結准を測定した。マウス器ホモジネートに、蒸箕としてアセテルチオコリン、被検体及びDTNBを添加し、インキュペーション後、提生したテオコリンがDTNBと反応し、生じる黄色蜜物を41%nmにおける吸光皮変化として測定し、アセテルコリンエスチラーゼ活性を求めた。

機体のアセチルコリンエステラーゼ阻害活性 は50%阻害激度(IC。。)で表した。

結果を表しに示す。

]) Silman, E.L., Courtney, K.D., Andres, V. and Peatherstone, R.N. (1961) Broches, Pharmacol., I. 38 \sim 05

88 E

変 : (統 金)

化合物	ACCESS 等层层	化合物	ALIEM MESS
1	8, 23	32	5, 8
1	9, 0053	35	0, 90082
S	ä, 10	36	0.0015
8	0, 837	19	6.15
-8-	0, 613	. 33	0,085
\$	0, 051	43	0,030
18	6, 669	56	0,38
3.3.	0, 888	58	0,819
12	9, 040	82	98.80
13	8, 025	54	1.0
1.8	0. 638	\$6	6,017
13	0, 094	72	8, 0075
(3	8, 852	75	0,0016
18	9,788	ļ 77	9, 16
19	0,084	36	0, 28
26	0,54	82	0, 929
23	59	99	0,018
2.3	0.073	100	6, 935
24	3, 1	108	9,085
28	26	111	0.11
27	9,41	130	0.19
30	0,561	134	2.8
31	0.094	188	0,084

化合物	4(28 18/5)	(£ & #	ACCENTACION
188	0, 981	318	Ø, 8048
189	0, 012	218	0, 017
190	9, 62	274	0.14
181	8, 085	221	6, 833
192	0.013	852	0,033 0,011 0,0864 0,083 0,48 0,004 0,002 0,002 0,002 0,10 0,004 0,004
193	8, 2	223	9,0884
194	9, 089	224	6, 983
195	0.0071	225	9.48
198	6, 6012	225	8, 9849
197	4, 38	227	6, 01
198	6, 8654.	228	8, 992
139	9, 623	229	8, 84
293	0,000	230	0.18
204	0, 635	281	8, 903
205	0.914	238	8, 4
205	0, 41	233	0.046
207	0, 049	234	0,6018
298	2, 883	225	0, 22
269	0, 43	238	0.672
210	9.08	235	9, 18
212	8, 5	240	9, 9088
213	Ø. 95	243	0.22
214	6, 0084	245	0.82

実験例2

8x *1*3 アセチルコリンエステラーゼ阻害作用 ラットに接接体を経口投与し、その1時間後 に大脳半球を認取し、ホモジナイズ後、アセチルコリンエステラーゼ活性を認定した。なお、 生理会該水投与群を対照とした。

結集を表でに示す。

2 2

化合物和	用 <u>業</u> (mg/kg)	ACHE組書作用 (%)
Saline		Ü
	ì	5 *
	3	17 **
4	10	39 **
	30	47 **
	10	δ
15	3#	4 **
	160	18 **

X 20 90 3

スコポラミンの受動回避学習微客に対する作用。"

Wistar系統性ラットを用い、装置としては
Step through型の明緒箱を使用した。試行の1
時間期に検体を経口投与し、30分前にスコポラミン6,5mg/kg(ip)を処置した。訓練試行では明室に動物を入れ、陪室に入った直接にギロチンドで等別の電気ショックを定のグリットから与えた。 8時間後に保持試行として再び動物を明置に入れ、特室に入るまでの時間を測定し評価した。

効果は生食投与群とスコポラミン投与群の反応時間の差を 100%とし物体により何光拮抗したか(Revorse%)で表した。

*1 2.80*0|snecky & Jarvik: int, J. Neuropharmacci

6. 217 ~222 (1967)

結果を表るに示す。

袭: 3

化合物剂	/# & ⟨ng/kg⟩	Reversis%
	0,125	.55
3	0, 25	35 *
13	0, 25	33
13	0, 5	27
16	1. 0	51
	2.0	30
19	0.5	37
13	10	3.9
73	0,5	\$3
<i>13</i>	1.0	38

XX914

<u> コリンアセテルトランスフェラーゼ(ChAT) 数活</u> 送性の製度

ファト社児の脳神経細胞の培養故びに神経細 独中コリンアセチルトランスフェラーゼ(CBAT) 活性の需要

2) P. Fonnum : J. Neurechem., <u>24</u>, 407-409 (1975) #efti? らの方法に挙じてラット胎児の脳神経細胞の培養を行った。ウィスター系酸性ラット17日齢の胎児大脳半球をトリブシン処理した。細胞数を2×16°個/0.5㎡に擬鍵し、間時に複数化合物を添加してマイタロブレートに移し、37℃、5%CO。-95%G。で7日間培養した。マイタロブレート中の培養神経細胞のcha7活住はPannus? の方法に挙じて別定した。神経細胞培養液に"C-Acety! Coenzyne A を加えて1時間反応させ、生成した"C-Acety!-chalian をテトラフェニルポロン存在下トルエンにて抽出し、液体シンチレーションカウンターにで測定し、Cha7活性を求めた。検体のCBa7酸活作用はコントロール系で表した。

 F. Sefti, J. Haytikka, F. Eckerestein, H. Gasha, R. Heuman and M. Schwab, Neuroscience, 14, 55-68 (1985)

₹

	· · · · · · · · · · · · · · · · · · ·	
& & W	200744	ルトランス (DAT) 緊急運転
	Sanc.	X of Cont.
60 g Q	[0~1 k	96
	10 8	314*
C8,5	10-1 8	115**
	18, 8	187*
(a. T. C. a. O	18-4 3	\$88*
C8'8	19-> 8	181
,	19-1 8	93
00-0-0-0	10-1 8	87**
	\$8*** ¥	58**
9	\$8-7 K	114 *
<u>'`` </u>	\$8** ¥	1184
	{8 ⁻⁵ 8	104
79 79 7 m	}9^* ¥	135*2
	10-× B	1317
C1,C8,8	19~* W	138**
cas I a a	10-1 ×	83
°°°	1971 8	\$5
CH ₂ 9	19-1-3	33

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
€ 🕁 🐞	コリングセデ! フェラーゼ(5-1-ランス (DAT) 域 高活性
	Core,	≸ of Cost.
	10-4 X	198
(3.0 <u>C</u>) - (3 () - (3 () - (3 () - (3 () - () - (3 () - () - () - () - () - () - () - (30'* ¥	186
CR-8	16-8 H	110**
27. 6	}6-°¥	101
c.o J - 0. O - 0. O - 0.	16.* 3	185**
CH50	36-> ¥	85**
c), 6	36-7 N	188**
	10-* u	183
CH ₂ O	30°° ¥	88*
es é	19°⁴ ¥	181
0.0-()-0.0	10~* %	196
CH ₂ 8	10-* K	84**
68.8 m #5	10~* ¥	108**
	16- ; X	39
CH. CHI	10~2 N	70**
149.5	, u 8	134

上記の選奨業験例から独力なアセチルコリン エステラーを組書作用及びコリンプセチルトラ ンスフェラーを製造作用を有していることが明 らかとされた。

本義領化合物(1)のうち。Jがフェエル選が固換されていてもよいインダノンから誘導される基である場合の化合物が最も好ましい。即ち、特に、Jがフェエル選が選換されていてもよいインダノンから誘導される基である場合の化合物は、提来のアセテルコリンエステラーゼ問言制とは構造を著しく器にすること、優れたコリンアセテルトランスフェラーゼ整体作用を有し、変に協力なアセテルコリンエステラーゼを存用を有し、変に協力なアセテルコリンエステラーゼを存用を有し、変に協力なアセテルコリンエステラーゼを失いこと、作用持続が長いこと、水溶性が高く、昆つ極めて変変な化合物であり、製剤上有利であること、及び生体利用率が優れ、月1755年35年3日による要けにくく、昆つ緑内移行性もよいなどの特徴を有している。

提って、本発明の目的は、コリンアセチルト ランスフェラーゼ厳活作用に基づいて様々の施

展産、福命管理客後遺産に有効な化合物を有効 成分とする新規な医薬を提供するにある。

なお、本総別化会物の代表的化合物(前記表 3の化合物版(13,15,19,79)について、ラット における器性試験を行ったところ、いずれも約 100mg/kg以上で震篤な器性を示さなかった。本 発明化合物は、コリンアセチルトランスフェラー ・被話作用が有効なあらゆる概念に有効であ る。代表的な概念をあげれば、各種差人性療果 低;特にアルツハイマー型差年痴呆、脳卒中 (秘出血、脳經務)、脳動脈硬化症、関部外海 などに伴う経血管障害;脳炎後遷底、脳性麻痺 などに伴う経血管障害;脳炎後遷底、脳性麻痺 などに伴う往来力低下。菩擬独高、意欲低下、 情報障害、記述障害、幻覚一妄想状態、行動異 常などの治療、予防、緩解、改善などに有効で ある。

本発明化合物のコリンドセチルトランスフェ ラーゼ数活作用がこれらの展型に有効なのは、 上記の作用により場内のアセチルコリンが増製 されることに基づくものと考えられる。

更に、本発明化合物は強力かつ選択性の高い

抗コリンエステラーゼ作用を有するので、これ らの作用に基づく医薬としても有用である。

取ち、アルフハイマー製造年級業のほか、例 えばハンチントン解籍網、ビック網、跳発性異 常能などにも有用である。

本発明化合物をこれらの医薬として使用する 場合は、経口数等若しくは非経口投与により没 与されるが、通常は解脈内、皮下、筋肉内など 注射剤、無異若しくは舌下鏡など非径口投与に より投与される。投与量は、症状の程度;患者 の年令、性別、体質、熱受性差;投与方法;投 与の時期、関係、医薬製剤の性質、緩剤、緩緩 :有效成分の機器などによって異なり、特に限 定されないが、過常成人1日あたり約3,1~303 mg、肝ましくは約1~100mg であり、これを通 常1日1~4回にわけて投与する。

本発明化合物を製剤化するためには、製剤の 技術分類における通常の方法で往射剤、坐翼。 舌下錠、錠剤、カブセル剤などの剤型とする。

在射剤を顕製する場合には、主薬に必要によ カ明顕勢剤、緩衝剤、影微化剤、溶解補助剤。 安定化率、等限化剤、保存剤などを抵加し、常 独により参照、皮下、筋肉内注射剤とする。そ の際必要により常独により複雑乾燥物とするこ とも可能である。

経際新としての例を挙げれば、例えばメチルセルロース、ポリソルベート88、ヒドロキシエチルセルロース、アラピアゴム、トラガント次、カルボキシメチルセルロースナトリウム、ポリオキシエテンシソルビタンモノラウレートなどを挙げることができる。

容解補助剤としては、例えばポリオキシエチ レン変化セマシ法、ポリソルベート 8 G、ニコ チン酸アミド、ポリオキシエチレンソルビタン モノラクレート、マグロゴール、ヒマシ油脂肪 酸エチルエステルなどを挙げることができる。

また安定化剤としては、例えば運輸数ナトリウム、メタ亜硫酸ナトリウム、エーテル等が、 深存剤としては、例えばバラオキシ安息養酸メ テル、パラオキシ安息養敵エチル、ソルビン酸、 フェノール、タシゾール。タロロタシゾールは どを挙げることができる。

第出版を採圧適額した後、残壊を塩化メチレンに溶解し、10%塩酸一酶酸エチル溶液を加え、 さらに減圧激励して結晶を得た。これをメタノ ールー198 から再結晶化し、次の物性を有する 係額化合物().33g(収率80%)を得た。

・触点(で):224~225

・元素分析館:C:,H:,80、801 として

£ 8 8

理验值(96) 74.68 7,63 3.79

東湖像(96) 74.66 7.65 3.77

英 路 例 2

<u>1 - ペンジルー 4 - 〔8 - 〔(1 - インダノン</u>) <u>- 2 - イリデニル〕)エチルビペリジン・複数</u> 進

80%水液化ナトリウム0.38gをヘキサンにて 洗浄後、THF 10mlを加えた。この中へ 8 むにて ジエチル 1 …インダノンー 8 …イルホスホナー

(東海(利)

以下に実施例に従って本発明をさらに異体的に説明するが、本発明の技術的範囲がこれらの 実施例の範囲に接定されるものでないことはいうまでもない。

なお、下記の実施例において、898 の値はす ペでフリー体での測定値を示す。

莱 脑 例 1

<u>1ーペンタルー4ー(2ー((1ーインダノン)</u> ー3ーイル))エチルビベリタン・塩酸塩

1ーベンジルー4ー〔2一〔(1ーインダ/ン)ー2ーイリデニル])エチルビベリジン
0.37gをメタノール10mlに溶解し、5 %ロジウム一炭素 0.1gを加えた。裏鑑常圧にて24時間水素添加した後、触媒を適別し、種液を溶圧機 確した。この類液をシリカゲルカラム(塩化メチレン:メタノール= 288:1)にて機製し、

ト2.12gのTHF 30x1熔液を接下した。笠盛にて 30分獲搾した後、再び0℃に冷却し、1ーペン グルーイーピベリジンアセトアルデヒド3.43g の8MF 10ml 溶液を加えた。室程で2時間、58℃ で2時間さらに2時間加熱激液した後、6℃に てメタノールと20%能敵を加えた。10分級飽和 水酸化ナトリウム水溶液にて熔落独とし、酢酸 エチルにて抽出した。有機器を飽和食塩水にて 佐夢した後、硫酸マグネシウムで乾燥し、緑圧 纏縮して得られた残渣をシリカゲルカラム(塩 化メチレン:メタノール=500 : 1)にて積製 した。露出技を減圧激縮した後、残骸を塩化メ チレンに溶解し、1996塩酸一酚酸エチル溶液を 加え、瀬圧繊維して標題化合物0.78g(収率27 %)を得た。なお、ジェチルミーインダノシー 2ーイルホスキナートを1.37g回収した。

- ·分子式: C2.82.80 NC!

(58. a)

F 18 91 3

1 ーペンジルー 8 ー 〔 35.8 ージメトギンー 1 ーインダノン) ー 2 ー 4 リデニル〕メチルビベ リジン・協制協

(8) <u>1-ベンジルー4-ビベリジンカルボアル</u> デモドの合成

メトキシメチレントリフェニルホスホニウム クロライド26.0gを無水エーテル 200mlに懸濁 させ、1.6% ローブテルリテウムへキサン路液 を窓盤にて減下した。窓選にて30分間選押した 後、6 でに冷却し、1 ーベンジルー 4 ーピベリ ドン 14.35gの無水エーテル30ml路液を加えた。 窓辺にて3時間撹拌した後不溶物を濾別し、濾 液を適圧激結した。これをエーテルに溶解し、

この反応はアルゴン雰囲気下行った。

無水THF iOsi中にワインプロピルアミン2,05 elを加え、さらに 0 でにて1.8% sープチルリチ カムペキサン溶液9.12mlを加えた。0 でにて10 分援押した後、-78でまで冷却し、5.6 ージメ トキシー 1 ーインダノン2 85gの無水789 3061 海液とハキサメチルポスホルアミド2,310iを加 えた。-73でにて15分援押した後、回で得た1 ーベンジルーモービベリジンカルボアルデキド 2.70gの無水THF 30ml 溶液を加えた。 窓温まで 徐々に昇湿し、さらに窒湿にて 2 時間撹拌した 後、1%塩化アンモニカム水溶液を加え、有機 爾を持難した。水圏を酢酸エチルにて抽出し、 さらに会わせた有機器を飽和食塩水にて蒸浄し た。磁酸マグネシウムで乾燥後、薄圧濃縮し、 得られた残惫をシリカゲルカラム(塩化メデレ ン:メタノール=500 :1~100 :1)にて精 製した。常出液を減圧激縮した後、残凌を塩化 メチレンに密解し、18%塩酸一酢酸エチル溶液 を加え、さらに矯圧機器して結晶を得た。これ 18塩酸にて抽出した。さらに水酸化ナトリウム 水溶液にてp8-12 とした後、塩化メチレンにで 抽出した。硫酸マグネンウムにて乾燥後、減圧 強縮し、得られた残密をシリカゲルカラムにで 精製し、油状物質5.50g (収率38%) を得た。

これをメタノール40mlに溶解し、18度数40ml を加えた。3時間加熱選進した後、深圧濃縮し、 機能を水に溶解後水酸化ナトリウム水溶液にて p8 18 とし、塩化メチレンにて抽出した。飽和 食塩水にて洗浄後、硫酸マグネシウムにて乾燥 し、減圧濃縮して得られた残骸をシリカゲルカ ラムにて精製し、環難化合物2.77g(収率84%) を抽状物質とした優た。

- · 分子或 ; C; 。8; ; %0
- 18 888 (COC1.) 3 : 1, 40 2, 40 (78, m) , 2, 78 (28, dt) , 3, 45 (28, m) , 7, 20 (58, m) , 9, 51 (18, d)

を選化メチレンーIPS から再結晶化し、次の物性を有する標題化台物3、40 s (収率82%)を得た。

- ・触点(で);237~238(分解)
- · 元素分析後: Co. Hy. 80 o · NCI として

C H

理論(数 (%) 69.54 6.82 3.38

突溯值(%) 89.51 6.78 3.30

実施 第 4

<u>| 1 - ベンジル - 4 - 〔(8.8 - ジメトキシー1</u> <u>- インダノン) - 2 - イル』メチルビベリジン</u> ・塩製塩

1 ーベンジルー 4 ー ((5.8 ージチトキシー 1 ーインダノン) ー 2 ーイリデニル) メテルビ ベリジン(), 40 g をTHF 18×1に溶解し、10%パラ ジウムー炭素(), 04 g を加えた。盗風者圧にて 8 時間水漏溶加した後、触銭を練削し、譲渡を減 圧機縮した。この競技をシリカゲルカラム(塩化ノチレン:メタノール=50:1)にて精製し、 溶出核を採圧機器した後、残技を塩化メチレン に溶解し、10%塩酸一酢酸エチル溶液を加え、 さらに減圧機縮して結晶を得た。これをエタノールー1F8 から再結晶化し、次の物性を育する 機器化合物0.95g(収率82%)を得た。

・磁点(で):211 ~212 (分解)

· 元潔分析館; Co. Hr. 1805 · MCI として

C 8 3

理論號 (96) 59,30 7,27 3,37

突然性 (96) 89,33 7,15 3,72

寒 渡 粥 5

<u>2- (4'- (!'-ペンソルビベリジン) エチル)</u> <u>-2.3 -ジェドロー(-スキンビロロ(3,4 -b)</u> ビリジン・二塩酸塩

えーヒトロキシメチルエコチン酸ラクトン12.6

除却下、護押しながら水素化ナトリウム(80%) を8.218加える。その後、2.3 ージヒドロー5、 8 ージメトキンオキンピロロ [3,4 ーも] ベン ゼン18を加え、80℃で4時間護津する。終了 後、8,6 を加え、クロロホルム抽出し、クロロ ホルム圏を水洗、乾燥(8850。)、溶媒を留去し でソリカゲル綺麗すると目的物の抽状物を得る。 これを常施により進發塩にすることによりタリーム色の結晶を約9.28異た。

- ·分子式:C.,H.,A,O, · 2HC!
- 'H-XX8 (COC);# ;
 - 1.12~3.4(98,5). 2.72 ~3.00(28,5).
 - 3.48(28,0), 3.62(28.t), 3.95(68,s),
 - 4.28(2H.s). 6.90(1H.s). 7,28(8H.s)

<u>莱 珀 网 7</u>

4-(8-(0-71/42/22) x 72)-1 -422224422

g、4-(2-アミノエチル) ベンジルゼベラ ジン40gをシールドチェーブ中で200 む、7時 開援搾する。その後、シリカゲルカラムで精製 し、常法により複数塩にすることにより目的物 の二複数塩6.37gを得た。

・鞍点(で):143.5 ~145

・元素分析値:Co,HosHsO・2HC1 として

C H N

理論性(%) 51.77 8.86 10.29

突滅強(%) 51.45 8.68 9.98

2- (4'- (1'-ベングルビベリジン) エチル) -2,3 - ジヒドロー5.6 - ジメトキンズキシビ ロロ (3,4 - b) ベンゼン・塩酸塩

2,3 ージヒドロー5,6 ージメトキシオキシピロロ (3,4 ー b) ベンゼン 9,5 g を触誤数のヨウ化カリウムとともに8MP に譲襲する。これを

室業気後下2-ニトロペンズアルデヒド30 g、
1-ベンジルー4-アミノエチルピペリジン21.4
g、メタノール103ml を室温で3時間提件する。
皮応液を水冷し、水素化ホカ素ナトリウム16 g
の%の3H 30ml 溶液を溶加する。さらに崩落にて
1時間反応させた後、水にあけ、メチルクロライドで抽出し、10 %塩酸150ml で3 国抽出し、メチレンクロライドで洗浄する。この水鹽を検酸ナトリウムで料10にし、メチレンクロライドで抽出し、無水能酸マグネンウムで乾燥後、溶機を採圧留去し、1-ペンジルー4ー(%ー(ローニトロペンジル)エチル)ピペリジン28.4 g
を発布。

これをメタノール100ml に容解し、10%パラジウム一機器(含水)3gを用い4%8/cm² 圧力で水霧器加を行い、機器化合物25,6gを得る。・分子式:Ca. Ha. B.

· 'H — HAR (COCI,) Ø ; 1, 0 — 2, 1(9H, m) , 2, 84

(2H, t) , 2, 90(2H, m) , 3, 47(2H, m) , 8, 65

(2H, m) , 7, 82(2H, m) , 7, 30(5H, m)

寒 路 例 8

3- [2- (1-ペンジルー4-ピペリジル) エチルー2- (18. 38) -キナブリンオン

4 - (8- (0-アミノベンジル) エチル)
- 1 - ベンジルビベリジン25.3 g。1,1'-カル
ポエルジイミグゾール13 g。メタノール100al
を12時間加熱選定を行う。反応後、水をあけ、
メテレンタロライドで抽出し、無水硫酸マグネ
ンカムで乾燥し、溶薬を減圧製出する。

この残骸をシリカゲルカラムクロマトグラフィーにより得製(5%NeOH-CH₂Cl₂)し、酢酸エチルより、2頭再結晶を行い複類化合物3.0 8を得る。

·分子式; [1:8::5]

- 'H - HMR (COCT₂) Ø : 1.0 ~2.1(9H, m) . 2.7 - 3.0(2H, m) . 3.2 ~3.6(4H, m) . 4.4 (2H, s) . 5.5 ~7.4(8H, m) . 7.75(1H, s)

せる。豫圧下落謀を領去し、シリカゲルクロマ トグラフィーで精製後、常法で盗鞭塩とする。 ※養無非器質0.17gを得る(収率19.5%)。

·分子式:Ca.Na.Na.O · 2HCl

* 'H - NNR(COC1.) & :1, 26~2.02(9H.m) 、 8.52
(3H.m) 、 2.78~2.95(2H.bd) 、 3.10(2H.m) 、 3.48(2H.m) 、 3.54(2H.m) 、 3.91(2H.m)
bi) 、 7.14~7.45(9H.m)

更 第 例 10

1 - [4 - (1 - ペンジルビベリジン) エチル] -1,2,3,4 - テトラハイドロー58-1-ベンツ アゼピン-2-オン・塩酸塩

ナトリウムハイドライド6.27gをジメチルホルムアミド (8%F)8.5ml に翻濁させ、氷冷下復搾する。これに1,2.3.4 ーテトラハイドロー58 ー1ーベンツアゼビンー2ーオン8.60gを0%F

定 独 例 3

<u>3 - (4 - 41 - ベンジルビベリグン) エチル</u>
-1,2,3,4 - チトラハイドロー4 - メチルー5
8- (1,4) - ベンブジアゼビン- 2 - オン・三
複数塩

ナトリウムハイドライド8、35gをジメチルボルムアミド (DNF)0、5ml に整備させ、水冷下機 作、これに1、2、3、4 ーチトラハイドロー4ーメ チルー58-1、4 ーベンツジアゼピンー2ーオン 6、52gをDNF 3mlに溶かして溶下し、塗痕で30 分間捜索する。ここへ 8ーペンジルー4ー (2 ークロロエチル) ピペリジン塩酸塩0、81gを08F 3mlに溶かして溶下し、60~76℃で7時間提幹 する。水水にあけ、塩化メチレンで抽出する。 飽和金塩水で洗い、硫酸マグネシウムで乾燥さ

401に称かして落下する。60 ℃で15分間加熱後、 水冷し、ガーベンジルー4 ー (2 ークロロエチル) ピベリジン複雑塩1.08 8 を加え、その後、 60 ℃で3 時間30分後許する。放冷後、水水にあけ、塩化メチレンで抽出する。水洗後、碗酸マ グネシウムで乾燥させ、減圧下溶媒を留去する。 シリカゲルクロマト精製後、常法で複雑塩とし、 機器化合物1.40 8 を得る(収率94.8%)。

·分子式; Cs.Hs.R.O·RC1

突 旅 到 11

 8 - [4 - () -ペンジルピペリジル) エチル)
 -5.8.11.12 -チトラヒドログベンゾ (5.6) ア ゾミンー6-オン・塩酸塩

5.6.11,12ーチトラヒドロベング (8.5) アグミンー 6ーオン2.24 まと60 %水溶化ナトリウムをジメテルフォルムアミド20m1に入れ、60 ℃で1時間加熱撹拌後、1ーベンジルー4ークロロエチルピベリジン 6.7 g を加え、さらに3.5 時間反応する。

反応液を水20mlにあけ、酢酸エテルで相出し、 飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 し、鍋圧留去する。

競技をシリカゲルカラムクロマトグラフィー により (5 %%eQN is CH₂Cl₂) 精製分離し、構 級化合物Q.6 まを得る。

- · 分子式: C. .H. . N. O · HCI
- '8 NNN (COC1₀) 8 : 1.1 -2.2(98, m) . 3.7 ~4.1(48, m) . 4.15~4.5(28, m) . 4.46 (28.5) . 8.8 -7.4(138, m)

莱 施 例 12

10- (4'- (1'-ベンジルビベリジン) エチル) -18,11 -ジハイドロー5-メチルー5H-ジベ ンソ (8,8) (1,4) ジアゼピン-11-オン・塩

- ·分子式: 0.48.18.0 · #C1
- ''H-HNR(CDC1.) & ; 1, 20~1, 91(11H, m) .

 2, 80~3, 00(2H, b*) . 3, 22(3H. m) . 3, 41

 (2H. m) . 6, 87~7, 98(3H, m) . 7, 08(9H. m) .

 7, 84(1H, dd)

英籍例13

3… ((ぎ -- () -- ベンジルピペリジン) ブロ ピオイル) アミノ) -- 2 -- ピラジンカルガン酸 イソプロビルエステル・複数塩

2.3 ーピラジンカルボン酸無水物18gをイソ プロビルアルコール 260×1に加え1時間遷流す る。その後アルコールを留去し、得られる関体 を785 に溶解して4 ー (2 ー アミノエテル) ベ ンジルビベリジン30.6g、1 ー ハイドロキシベ ンゾトリアゾル21gを加える。これを拘卸下、 撹拌し、8CC 28.7gを加え、室屋で1数反応さ せる。減過後、785 を留去し、塩化メチレンを 酸塩

ナトリウムハイドライド() 25 gをジメテルホルムで、ド(888)に整備させて水冷下燃炸する。ここへ、10,11 ージハイドロー 5 ーメテルー68 ージベング (b,e) (1,4) ージアゼピンー11ー まン0,58 gを08f 5 alに協かして調下する。40~50 でで20分間撹拌し、次いで水冷して、4~(アミノエテル) ー1ーベンジルゼペリジン 0,71 gを加え、45~55 でで8時間撹拌する。水水にあけて塩化メテレンで抽出する。飽和食塩水で有機緩を洗い、磁酸マグネシウムで乾燥させた後、減圧下溶尿を溜出する。残液をシリカゲルカラムで燃製し、常法により塩酸塩として緩緩化合物(),78 gを淡黄色非経気として得る(収率65.4%)

加える。これを飽和炭酸カリウム水溶液、食塩水で洗浄し、乾燥後、溶鉱物法する。さらにシリカゲルカラムで精製し、得られた結晶をエーナルーヘキサンで再結晶すると目的物の白い結晶8.81gを得た。これを常法により複数塩とした。

·元素分析版:Cs.Hs.R.Os. HCl. */,HsOとして

実 搶 例 14

2ーキノキサリンカルボン酸クロライド2g を1-(p-メトキシベンジル) - 4 ーピベリジ ンエチルアミン2.52gをトリエチルアミン2g 存在下、室温でTHF 中で反応させた。これを常 法により後処理してカラム構製することにより R- (4 -(1' - (ローメトキレベンジル) ピペリ ジン) エチル) - 2 - キノキサリンカルボン酸 アミド 2.38を得た。

これを18塩化メチレンに溶解し88mにより 脱メチル化反応を行い、カラム精製することに より生成物0.3 gを得た。これを複数塩とする ことによりクリーム色の結晶を0.2 g得た。

- · 分子式: C::N::N:0: · HC!
- . '8 NAR (CDC1.) \$; 1.08 1.92 (94.0) . 2.84 -3.18 (24.0) . 3.24 - 3.84 (24.0) . 3.52 (24.5) . 5.50 (24.0) . 7.05 (24.0) . 7.17 (24.0) . 7.84 - 8.14 (44.0) . 9.53 (14.0)

果 始 例 15

※- (% - (% - ペンジルビベリジル) エチル)-2-キノキサリンカルボン酸でミド

4-(8-ペンダイルピベリジル) 野難(7 8 と 塩化チオエル 8 ml とベンゼン29 ml 中 2 時間加熱 蓋液後、液圧器 去する。

これをFHF 20mlに溶解し、水冷撹拌下アニリン1.86m、トリエテルアミン10m、FHF 30ml内に溶加する。室温で約1.1時間反応した後、水にあけメチレンクロライドで抽出する。錐和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧溜去する。残渣をシリカゲルカラムタロマトグラフィーで精製(5.9kml in CH₂Cl₂)し4ー(8ーベンソイルピベリジル)酢酸アニリドC.9 mを等る。

この4-(8-ペンゾイルピペリジル) 酢酸アニリト 0.9 g をTHF 10mlに溶解し、水冷漢拌下、THF 30ml中リテクムアルミニウムハイドライド 0.38 g を調下し、さらに1時間加熱遺液する。 反応後、水を加え、沈酸違虫後、酢酸エテルで 抽出し、飽和食塩水で洗浄し、無水磁酸マグネシウムで乾燥し、線媒を縁圧留去し、1ーペンシルー4-(8'-フェニルアミノエチル) ピベ

1 ーペンジルー4 ーでミノエチルゼペリジン4.8 g、ピリジン30ml、4 ージメチルでミノビリジンを密羅、撹拌下、2 ーキノキサロイルクロライド40g加える。3時間反応後、水にあけメチレンクロライドで抽出し、総和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶液を被圧酸去する。

この残液をシリカゲルカラムクロマトグラフ *一で精盤(5 %8e88-ChsCl。)し、酢酸エチルより再結器し、縲羅化合物3.0 gを得る。

- · 分子或: C. . H . . N . O. · NCI
- 'H NMR (CBCl₂) Ø 1-1, 16 2, 20 (SH, m) , 2, 76 - 3, 04 (2H, m) , 3, 49 (2H, m) , 3, 48 - 3, 88 (2H, t) , 1, 13 - 7, 40 (5H, m) , 7, 70 - 8, 26 (4H, m) , 9, 54 (1H, x)

異 施 例 18

<u> 1 - ベンジルー 4 - (* - フェニルアミノエチ</u> ル) ピペリジン

リタン6、7 gを得る。

- → 分子式:C.s.E.s.N.s.
- (2H, m) . 3, 10 (2H, t) . 3, 44(2H, m) . 2, 85 (2H, m) . 3, 10(2H, t) . 3, 44(2H, m) . 3, 7 (1H, bs) . 8, 4 -6, 8(3H, m) . 7, 0 -7, 4 (7H, m)

黄雉 例 17

9- (4'-(1'-ベンジルピベリグル) エテル) アセトアニリド

1 ーペンジルー4 ー (** ーフェニルアミノエチル) ピペリジン0.7 g、トリエチルアミン2.8 g、78F 20mlを氷冷下接搾下、アセチルクロライド0.4 gを擦下する。

・ 室温で3時間反応後、水2001を加え、メテレンクロライドで抽出し、総和食塩水で洗浄後、 無水破験マグネシウムで乾燥し、溶薬を源圧器 弦する。銭差をカラムクロマトグラフィーで構 製 (5 % MeSH in CHyCle) し、機関化合物を得 చ్చ

- · 分子式; C, 282.828.0
- $-18 888 (6061_{\bullet}) \delta : 1.0 2.1 (128.8) = 2.5$ $\sim 3.0(28.0) - 3.39(28.0) - 3.87(28.1)$ 6, 9 ~7. \$ (108. #)

X 36 59 13

第一(3), 5) ージメトキシフェニル) 一部一(4) ー ()'ーベンジルビベリジル) エチル) - 4-7 ロロけい皮酸アミド・塩酸塩

1-4721-4- (8'+(3', 8'-211)+ シフェニル) アミノエチル] ピペリジン 1.0g。 トリエチルアミン2.0 g、THP 20mlを収拾機件 下、a~フロロけい皮酸タロライド側釘g加煮。 る。霊温で 2 時間反応後水にあけ、酢酸エチル

下複雑する。ここに、イソニコチン酸クロライ ド境酸塩3.85gを加え、3時間30分機拌する。 滅圧下溶媒を留去し、シリカゲルカラムで精製 する。常法により二歳酸権とし、核資色非晶質 として0.75gを得る(収率73.0%)

- ·分子式:CaaHaaHaB·2HC1
- + 'H NNR (COC1₂) δ (1, 13 \sim 2, 01 (9H, σ) , 2, 81 (28, 55) , 3,44(28, s), 3,88(28, bt) , 8.84~7.28(128.8) . 8.31(28.4)

突 施 祭 2 9

4~ ()~ベンジルビベリジン) プロバンアニ ガド・塩酸塩

マニリン 0.5g、トリエテルアミン1gを786 中に溶解する。この中に機律下、4-(1-ペ ングルビベリグン》プロビオン酸タロライドを -1g綴でし、窯器で3時間反応させる。その後。 チルアミン1.5 g存在下 788中、窯器で援修し 溶線を審去し、塩化メチレンを加え。水洗、

で抽出し、飽和食塩水で洗浄し、醤水硫酸マグ ネシウムで乾燥し、熔煤を減圧留去する。

この残骸をシリカゲルカラムクロマトグラフ ィーにより精製(5 96Me GH in CH,Cl。)する。 常法により複数塩として概题化合物0.9 Rを得

- ·分子式: C., H., R. C. F · HCI
- · 'H-HHR (COCL) & pl. 1 -2.1(9H, m) . 2.7 ~3.0(2H, bd), 3.51(2H, s), 3.83(88, m), 5.1 -8.4(48, m) . 6.8 ~7.8(108.m)

寒 為 例 19

#~ [8" ~(1" ~ベンジルピベリジン) エテル] ーリーフェニルニコテン数でミビ・二塩酸塩

| 事一(4'()'…ベンダルビベリジン) エチル) アニリン0.70g、4ー(8.81ージメチルアミノ) - ピリクン触媒盤をピリジン[fine]に溶かし、氷冷

WaSB, で乾燥する。これを再び溶媒を留成して シリカゲルカラム綺製することにより質的物の 抽状物を得た。さらにこのものを常法に從い、 塩酸塩にすることにより白い結晶6.14gを得た。

- ・触点(な):197.5~198
- ・元素分析数: 0,,8,,8,,0,800として

E 8 8

理驗值(%) 79,28 7,58 7,81

実態数(%) 70,50 7,58 1,83

寒 締 例 21

N- (3' - (1' - ベンジルピロリジン) メチル) ペンツアミド・複数線

マンジルクロライド9.74g。3ー(2´ーアミ クメチルトーベンジルビロリジン 1 変をトリエ - 慶応させた。これを常接により後処理しカラム 精製することにより、目的物を5,52g 得た。これを一般的方法により複製塩にした。

- · 分子堂; C, .H, .N, 0 · HCl
- . 'a -- sur (cuci.) 3 :

1, 48 ~ 3, 08 (7H, m) ~ 3, 44 (2H, d) ~ 3, 62 (2 H, d) ~ 7, 04 ~ 3, 88 (10H, m)

実 精 例 2.2

4 - (4° - (8 - ベンジル) ビベリジル) - 3 -ハイドロキシーローメトキシブチロフェノン

変数気下、THP 7el中にジイソプロビルア ミン2elを加え、0 ℃にて、1.6% αープチルリ チウムヘキサン溶液7、5el を加え、10分階複幹 後、一78℃まで冷却してローメトキシアセトフ ェノン1、65gのTHP 10el溶液を加え20分間複拌 する。まらに1 ーペンジルー4ーピペリジンカ ルポアルヂヒド2、4 gのTHP 10el溶液を加え、

ンカーメトキンプチロフェノン0.54g、カートルエンスルホン数8.1g。トルエン30mlで加熱 遊読を5時間行う。反応後、炭酸カリウム水溶 液にあけ、メチレンクロライドで抽出し、無水 酸酸マグネシウムで乾燥し、液圧製出する。残 液をカラムクロマトグラフィーで緩緩(3 55 Me OH - CH。Cl。)し、1 ーペンジルー4ー [4ー(カーメトキシフェニル)ー4ーオキソブチル〕ビ ペリジン0.45gを得る。これをMe OH 28mlに溶解 し、1056パラジウムー炭素(含水)40mgを加える。変傷物圧で1.5 時間水素添加する。不溶物 を濾出し、減圧製まする。常法により塩酸塩と し、Me OH - IFS より結晶化し、根類化合物0.2 gを得る。

- ·分子或:C.,H., 80, · HCl
- .'H-N88(CBC1.) & ; 1.4 -2.3(118.m). 2.4 -2.7(28.m). 2.95(28.t). 3.55(28.m). 3.87(38.m). 8.83(28.d). 7.1 -7.5(58.m). 7.94(28.d)

X M 97 24

10分間後押する。1%塩化アンモニウム水溶液 を加え、メテレンクロライドで輸出し、能和食 塩水で洗浄し、無水磁能マグネシウムで乾燥後、 減圧製去する。残篷をシリカゲルカラムクロマ トグラフィーにより精製(5%%eSiiーCii,) により精製し、模器化合物2.0 gを得る。

·分子式:CasHasNOs

- 'N - NNH (COCI,) 8; 1,0 -2.2(9H, m) ,2.6 -3.4(5H, m) ,3.43(8H, s), 3.81(3H, s),
4,1(1H) ,6.83(2H, d),7.17(5H, s),
7.82(2H, d)

* No 97 23

<u>4- (4-8-ペンジル) ピベリジル) - p-</u> メトキンプチロフェノン・複数塩

ディーン・スターク数器を用い、4 ー (6 ー (8 - ペンジル) ピペリジル) ー 3 ー ハイドロキ

8-(f) -(f) -ベンジルビベリジン) エチル)-3-フランカルボン酸アスド・塩酸塩

4-(2-アミノエチル)-1-ベンジルビベリンン1、84g、炭酸カリウム2.87gをクロロホルム40ml、水40mlの浸液に加え、水冷下1時間度沖する。有機層を分散し、熱和食塩水で洗い、硫酸マグネシウムで乾燥させる。接圧下溶媒を留去し、シリカゲルカラムで精製、含法で塩酸塩とし、淡黄色非晶質として様類化合物1、60gを得る(収率61、1%)

- · 分子式; C., H., N., N., O., · KCl
- . 'H NNH (COCI.) Ø ; 1, 47 2, 18 (9 H, m) , 2, 81

 (2 H, bd) , 3, 25 3, 47 (4 H, m) , 5, 80 (1 H,

 bs) , 8, 51 (1 H, dd) , 7, 15 7, 19 (8 H, m) ,

 7, 82 (1 H, dd)

X 16 07 2 5

※一 (* 一(* ーペンジルゼペリゾン) エチル) ベンツアミド

※一(1ーラダマンタンメチル) 一4ー (2ー ブミノエチル) ピペリジン!、47g、炭酸カリウム®、73gをクロロホルム15mlと水15mlの混旋に 加え、水冷下液しく撹拌する。ここにペンソイルクロライド®、90gを摘下し、室裏で一夜撹拌 する。有機器を分離し、水と飽和食塩水で洗い、 繊酸マグネシウムで乾燥させ、溶媒を減圧下盤 去する。シリカゲルカラムで精製し、ペンゼン ーカーペキサンから再結晶し、後黄色板状器と して緩緩化会物!、47gを得る〈収率72.6%)。

·分子式:Costosticit

- 'H - MHR (COC12) Ø : 1.20 - 2.28 (27H, m) ,

Z.72 (2H, bs) , 5.43 (2H, q) , 8.01 (1H, bs) ,

7.31 - 7.43 (3H, m) , 7.67 (1H, dd)

法で複数核として複類化合物8、52gを黄色非晶 質として得る(収率37.6%)。

·分子式:C..H..H.O FHCI

* 'H - NBR (COC)₆) Ø ; 0, 92 - 3, 50 (83H, m) ;
7: 29 (5H, m)

実 第 例 2 7

<u>8- (4 -(1 - 49ロヘキシルメチルビベリン</u>ル) エテル] 8 -メチルベンズアミ<u>ド・塩酸塩</u>

8ーメチルー8ー (4'ーピベリジルエチル) ベンズアミド3.8 g、シタロへ中シルブロマイド1,2 g、炭酸水器ナトリウム2.0 g、メチルエチルケトン35a1を7時間加熱酸液する。反応後、水に加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留金する。この残渣をシリカゲルカラムクロマトグラフィーにより領線 (5 %HeGH-

美給 例 2.6

8-メテルー※- (f - (f - ベンジルビベリジン) エテル) ベンツアミド、塩酸塩

ナトリウエハイドライド① 18 8 をテトラハイドロフラン (THF) 2 mlに影響させ、水冷下撹拌する。ここに 8 ー (4' ー (1' ー ベンジルビベリジン) エチル) ベンツアミド1、45 8 をTHF 5 mlに溶かしたものを滴下する。 窓盤で 1 時間撹拌した後、再び水冷し、ヨウ化メテルの 36mlを加え、一夜窓盤で撹拌する。水水にあけ、塩紙下クロホルム抽出し、飽和食塩水で洗い、硫酸マグネンウムで乾燥させる。減圧下溶解を留まし、シリカゲルクロマトで精製する。0.50 8 の黄色油状物が繰られる (収率47.0%)。

また、メチル化されていない原料8、22gを回収した(回収率15,2%)。 場られた抽状物を含

CH.CI.) し、探醒化合物0.3 gを答る。

- +分子式:C:,#:,8:,0 + HC(
- * 'N NM8 (COCl.) 8 : 0.8 -1.1(208.0) . 1.1 -1.6(48.0) . 1.8 -2.8(58.0) . 7.4 (58.0)

美 精 例 2 8

3,8-ジメトキシー1-インダノン0.85gと
1-ベンブイルー4ーピペリジンーカルボアル
デヒド1,38gを無水THP 20×1 に溶解し、6
たにて28%ナトリウムメチラート1,02gを加え
た。窒温にて2時筋撹拌した後、酢酸エチルに
て希釈し、飽和食塩水にて洗浄した。硫酸マグ
ネンウムにて乾燥後、縁圧適縮し、得られた技 後をシリカゲルカラムにて精製し、1-ベング イルー4ー((5.5ージメドキシー1ーインダノン) ー2ーイリデエル)メテルピペリジン1.28 g (収率71%) を得た。

この化合物1、23gをTBF 20m1 に溶解し、 10%パラジウムー提案 0、3gを加えた。室蓋常 圧にて1日水素添加した後、結蹊を譲削し、協 被を緩圧適縮した。これを変化メテレンーペキ サンから再結晶化し、次の物性を有する環題化 合物1、10g(収率89%)を得た。

・ 数点 (で) :181 ~182

· 元嘉分析館: C***82980、として

C H N

翠絲做(%) 72,26 6,92 3,56

実測数 (%) 73.30 8.85 1.32

赛 総 例 2.9

<u>4一(6.8ージメトキシー1ーインダノン)ー</u> <u>2ーイル)メテルピペリジン・塩酸塩</u>

チルピベリジン・塩酸塩

4ー ((5,6ージェトキシー1ーインダノン)
ー2ーイル) メチルピペリジン0,25gをTHP
8mに容辞し、トリエチルアミン0,29mに3ー
フルオロベンジルブロミ PO,13mを加えた。2
時間加熱差疑した後、縁圧議縮し、酢酸エチル
にて希釈し、10%羧酸ナトリウム水溶液、飽和
食塩水にて洗浄した。硫酸マグネシウムにて乾
緩後、減圧漁締し、得られた残液をシリカゲル
カラムにて稀製した。さらに常法により複穀塩
とし、塩化メチレンー 1 PEから再結晶化し、
次の物性を育する緩縮化合物0,27g(収率72%)
を得た。

F 数点(も):239 ~232 (分解)

· 元素分析鑑:Ca4Ba9NOa×8Clとして

C H S

理論数(%) 66,43 6,74 3,23

実謝数 (%) 88.18 8.79 3.11

1-ベンソイルー4-((5.8-ジメトキシー1-インダノン)-2-イル)メチルピベリジン9,00gをジオキサン90g1に熔解し、68塩酸90g1を加えた。10時間加熱量蒸した後、減圧繊維し、水で希釈した後、酢酸エチルにて抽出した。水臓を50%水酸化ナトリウム水溶液にで約12とした後、塩化メチレンにて抽出し、さらに熱和食塩水にて洗浄した。碳酸マグネシウムにで乾燥、減圧機縮し、得られた残渣を常法により塩酸塩とし、メタノールーエーテルから再結晶化し、次の物性を有する模態化合物6.30g(収率85%)を得た。

- 触点 (セ) :248 ~253 (分解)

· 元素分析値:C. H. 180. · 801 として

C N

포粉盤(96) 82,87 7,42 4,30

要別位(%) 62.75 7.31 4.52

実 施 例 3 0

<u>1- (3-フルオロベンジル) - 4 - 〔(5.8-</u> ジメトキシー1-インダノン) - 2 - 4 ル〕 メ

寒 施 翙 31

<u>1 -ベンジルー 4 - [(5,8 - ジメトキシー 1 - インダノン) - 2 - イル] メチルピベラジン・</u>
2 複数塩

· 触点(で):227 ~228 (分解)

- 元素分析値: C,:8;:8;:8;:0:・2001として

C # 8

理論核(56) 86,78 8,88 8,18

東 第 例 3 %

4- ((5.8-ロメトキャー1-イングノン) -2-イル) メチルー1-エトキャカルボニルビ ベリジン

[・ペンジルー4 - 〔(5,6-ジノトキシー〕 ーインダノン) - 2 - イル) メテルピペリジン 0,50 g をペンゼン 8 ni に溶解し、クロルギ酸エ ナル0,15 ni を加えた。 3 時間加熱選流した後、 齢粒エチルにて禁釈し、飽和装響水、錐和食塩 水にて洗浄した。微数マグネシウムにて乾燥後、 緩圧繊縮し、得られた程度を酢酸エチルーへキ サンから再結晶化し、次の物性を有する機器化 合物0,45 g (収率94%) を得た。

この残骸をTHF 20s1 に溶解し、1.8 ーグ アザビックロ (5.4.0) ウンデター 7 ーエン 1.86s1を加えた。30分間加熱選抜した後、接圧 適能し、酢酸エチルにて新飲し、飽和食塩水に て洗浄した。磁酸マグネシウムにて乾燥後、減 圧緩緩し。得られた残骸をシリカゲルカラムに て緩緩し、緩緩化合物1.12s(収率58%)を抽 状物質として得た。

/分子式: Cas#as#9。

· 'H-NMR (COCIa) # :

1,23(3H,t), 1,41-2,90(11H,m), 3,84(3H,s), 3,88(3H,s), 4,10(2H,q), 6,60(1H,s), 8,97(1H,s), 7,03(1H,s)

突 施 例 3 4

<u> 1 - ベンジルー 4 - ((1,3 - インダンジオン)</u> - 2 - イリアニル) メチルピベリジン

無水で目を 3ml 中にジイソプロビルアミン

・触点(で):132 ~133

・元素分析後: CaoHao HD。 として

0 8 8

理論館 (96) 88,48 7,53 3,88

実別性 (96) 66.79 7.53 4.00

寒 훪 钙 33

4- ((5.5-ジメトキシー) -- インデノン) -- -- イル) メデルー] -- エトキンカルボニルビ ペリジン

4 - ((5,8-ジメトキシー1-インダノン)
-2-イル)メチルー1-エトキシカルボニル
ビベリジン2、00gを四塩化炭素30㎡に溶解し、
ドーブロムコハク酸イミド0、98gと過酸化ペン
ソイル0、02gを加えた。 5時間加熱電流した後、
四塩化炭素で希釈し、飽和整響水、飽和食塩水
にて洗浄した。硫酸マグネシウムにて乾燥法、
繊圧繊維した。

0.17a1を加え、さらに 0 世にて 1.6% nープチルリテウムペキサン溶液0.75a1を加えた。 0 世にて10分間護粋した後、一78 世まで冷却し、1.3 ーインダンジオン0.18gの無水下HF 8n1を被とペキサメチルホスホルアミド0.21a1を加えた。一78 世にて15分間護粋した後、1ーベンジルー 4 ーピペリジンカルボアルデヒド0.35gの無水THF 3a1容液を加えた。室温まで涂々に発量し、さらに窒温にて一晩護浄した後、塩にメチレンで若家し、動和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、等られた残渣を塩化メチレン・1 PEから再結晶化し、次の物性を有する裸態化合物0.12g(収率29%)を得た。

·離点(な):173~174(分解)

- 元素分析核: C;;8;;80; として

C 8 8

理論館(%) 79.73 6.33 4.23

要测值 (96) 79.43 6.20 4.31

英 接 例 3.5

1-ベングルー4- ((5,6-ジメトキレインデ ン」…を一イルリメテルビペリジン・複数塩

1--- 4 × 5 × 1 + 2 (5.8 - 5 × 5 + 5 - 1 ーインダノール) ー2ーイル) メチルピペリジ ン6.24gを塩セメチレン5mlに溶解し、10%塩 粉一酢酸エチル溶液を加え、減圧濃縮した。得 るれた競技を進化メチレンーした日から再結構 化し、次の物性を有する模類化合物0.248 (収 率95%) を答た。

・蘇点 (で) : 218 ~217 (分解)

、元素分析額 (C., H., NO.・NC) として

~ . 8

7, 56 理論值(%) 72,07 3, 50 7,63 3, 33 寒期億 (%) 71.82

寒 施 例 3.6

1-4200-4- (3- (5.8-02)+2 - 1 - インダノン) - 2 - イリデニル)] -ブ

- ·分子式:0:88:80:*HCI
- · H-NNR(COCLs) &:

1 10~3 00 (13H, m), 3, 45 (2H, m), 3, 50 (2H, s), 3,90(38,s), 3,95(3H,s), 6,58~7,80 (3H, m), 7, 27 (5H, m)

寒 跨 例 3 7

1-4200-1-(3-(5.8-011+0 - 1 - インダノン} - 2 - イル]] プロピルビ

ベリジン・塩酸塩

1ーペンジルー4ー (3- ((5,5-ジメトキ シーミーインダノントーミーイガデニル)] ブ ロビルビベリジン0.40gをTHF 15s1 に海豚 し、10%パラジウムー炭素 0.1gを加えた。窒 温景圧にて 2 時間水業添加した後、触算を練別 し、維液を減圧機能した。移られた残液をシリ カゲルカラムにて綺製し、常法により塩酸塩と し、標題化合物8.37g(収率84%)を抽状物質

ロビルビベリジン、複数塩

無水でHF 5ml中にジイソプロビルアミン 0.31mlを加え、さらに 0 せにて 1.6% nープチ ルリチウムヘキサン熔板1、39×1を加えた。 8 ℃ にて10分間援搾した後、一78でまで冷却し、5. 8 - ジメトキシー 1 - インダノン0,38gの無水 THF 部(密放とヘキサメチルガスポルアミド 0.35siを加えた。-78むにて15分間撹拌した法。 3- (1-4220-4-64922) 708 オンアルデヒド6.50gの餌水THF 5sl溶液を 加えた。霊器まで徐々に葬器し、さらに繁盛に て3時間提择した後、酢酸エテルで希釈し、丝 和食塩水にて洗浄した。酢酸マグネンウムにて 乾燥後、綾圧讃瓏し、得られた凝微をシリカゲ ルカラムにて精製し、常法により複数塩とし、 模類化合物0.55g(収率61%)を抽状物質とし て得た。

として暴た。

- ·分子式:CasHasNOa · PCL
- · '8-NWR(CUC1a) # :

1,00-3,30(18H, m), 3,38,3,43(tota) 2H, Each s), 3,85(3H,s), 3,90(3H,s), 8,77. 8,83 (total 1H. exch s), 7,85,7,10 (total Ik, each s), 7, 18, 7, 20 (total 5%, each s)

業 綾 第 38~249

塞路例1~37と网络にして合成した化合物 を表5~10に示す。

*35 91	* * *	物 理 (化 字 短 数 (数点、无影分析物、888 など)
		就点 (T) ; 217~248 (分解)
		元素分析数(C., F., 80, ・80) として)
38		E 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		激点(で):198~197
	al na n	元素分析数(Cashasin・HC) として)
39		788 8 111 111 111
	,	数点 (で) ; 203-204 (分解)
	a,o 🖒 ci, 🔾 -ci, 🔾 - iici	元命分析数(Ca.48,480, +801 さして)
40		### ## ## ## ## ## ## ## ## ## ## ## ##
27	CH. Q - CH Q - HCI	**-**** (CDC)
	CH.0	分子文:C ₂ ,H ₂ ,N ₃ , - NCl
42	°8,9\$\dag{\dag{\dag{\dag{\dag{\dag{\dag{	'H-MARE (COC), 3; 1 05-3 40 (14M, m), 2 45 (2M, m), 3 40 (3M, m), 1 55 (3M, m), 8 75 (3M, A80), 7, 22 (5M, m)
	Cis, Š	分子文:CarHaeNGa·NCI

表 5 (統 章)

		24. April 17. April 185 185
	※ 金 ※	物理化学级数
突線突	2899	(数点、元素分析室、※※ など)
		飲 点(七) : 201~202 (分解)
		元素分析権(Costa,805,1801 として)。
-63	(x,0)	· · · · · · · · · · · · · · · · · · ·
	CH.0	
		'H-888 (CDC) s) 8 : 2 22 (20 2) 5 25 (20 2)
	assa. Jili 🛆 🛝	'H-BMS (CDCL) 8: 1 (0-14 46 (LM 3), 1 30 (CM S), 1 85 (G, S) 1 (3 (CM S), 4 25 (LM 58), 8 8 ((M S), 7 87 (H, S), 7 22 (SE S)
44		11n, 8), 1, 26106, 8)
	C3.40	分子式:CrafferNO。
		数点 (セ) : 225~236 (分解)
	CH.0 1 1 - CH O - HC)	元無分析像(Cz.sil.s.W)。・NC(として)
45		
		7828 66.98 633 656
		発生(で):168~178 (分解)
		元 務分析館(CaaHaa MO・HC) として)
48		
477	C3,6 C - C3, - C - 100	競点 (で) : 120~122
		元素分析像(C, :H;s:80, · HC1 として)
		THE CASE OF THE CA
		THE HI SE IN
	-	INSU THE SE

突胎师	梯 逸 式	修 選 化 学 復 数 (数点、元素分析像、用版 など)
	Ca,0 L Ca,-O - BC1	*H-888 (CBCL)
€0	а. ф са. Ф · ж	'H-MAR(CBCL)
50	CH-07 CH-CH-CH-CH-CHCOAH	'H-NNA(COCY) & : 1.14~2.01(1458.m). 3.48(20.m). 3.21(00.0). 1.17(38.2d). 8.55(10.d). 8.32(10.d). 7.23 (58.5) 37720: C.N., NO. · E.N.O.
82	01.0 LL 01010 · 101	'8-88 (CC) } ; 1 10~2 37 98 m, 2 99 (78 b0), 1.53 (88 s), 1 88 (31 s), 1 93 (78 s), 5 71 (78 b1), 5 84 (18 b), 7 20 (18 s), 7 24 (81 s) 3 Fx: C2,8,482 - 8C1
355 355 355	()-(-cs.cs.cs()-cs() · xc)	数点(て):149~150 元素分析数(C. 85, 80・8C) として) 元素分析数(E. 85, 80・8C) 元素数(E. 75 2 3 8) 元素数(E. 75 2 8 30 1 80 ア、6,630) でして、8,00 2 7 8

淡 5 (統 會)

,	,	
XNN	被 波 云	数 選 代 学 塩 数 (数点、元素分析数、383 など)
53	О-баса•са•са• (Э-са• (О — ист	'H-NNE (CDCL.) & ; 1.80-2.03(138.5)
-34	O-ta-aaO-aO → uc:	(H-NNS(CRC12) タ : 1 10~2 13 (TH n) . 2 28 (ZH t) : 2 88 (ZH bd) . 1 10~2 18 (ZH bd) . 7 2~7 87 (ZU n) : 2 88 (ZH bd) . 7 10~2 08 (SE n) 分子式 : C::8::80・8C1
\$\$	() .cs.cs.cs. ()-cs. () · ±50	 株点(て):176~178 光素分析値(Ca:18ac8aS - 28C1として) 実施値(S): 52:30 7:43 6:38 アルルの(S): 62:43 7:13 6:39 アルルの(S): 62:43 7:13 6:39
XX XX	○-la.la○-aO	'8-***(ITC)
57	O- ¹ 08-0808.	'H-MM (COC), 8 (1 13-2 18 (TM a), 2 25 (24 bd), 2 85 (24 bd), 3 45 (24 bd), 3 59 10 (24 a), 7 20 (54 b), 7 56 (24 dd), 8 57 (24 dd) 分子式: C, 8 3, 8 5 · 28C (

数 5 (**33** 8)

XRR	18 後 式	物 理 化 学 照 数 (数点、光器分析物、光器 など)
53	√-##C#,O#,-○#-C#,-○ + z#C!	数点(で):240~240.7 元素分析数(C.o.H.o.N.O28C(として) で * ** 理論数(S) 65.75 7.28 11.65 実施数(S) 65.25 7.21 11.57 火-11.7(S) 66.25 7.21 11.59
59	O-1460-O-1-0	(1-188(CDC))
80	аля - О-яяёсен, - Ох-сэл,	'8-883(CEC.) \$; 1 12-2 26(Th.e), 2 34(2H.c), 2 14-1 01(2H. 2 3 5 0 4 4), 2 29(2H.e), 7 71(2H.e), 12 20 (2h.e)

***** 8

,		
RECE		物 窓 化 学 塩 数 (数点、元素分析数、8% など)
81	ÇÇ-04,04-○4-04-0 + 280	製点 (T):135~140 (分配) 元素分析数(C.4.4.48.0・28C3として) 取数(3) 82.85 8.47 10.80 更数(3) 82.85 8.47 10.80 更減(3) 52.85 8.78 8.38
š2		数点(つ): 80~32(分泌) 光素分析的(C., 8., 8, 0・20Clとして) - 200g() - 82 58 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
63		(*-NES (CDC), 6 : 2.7-2.1(28,8)
64	Train-Orai O - m	'H-MMK(CSC1.) 8: 11 ~ 2.238 %; 2.7~1.1(48.4), 3.4~1.7 (GL d), 1.3~1.6(88.4), 8.98(18.4), 分子式; 5.48,48,8~8C1
65	(a, (a, (a, -(a, (a, (a, (a, (a, (a, (a, (a, (a, (a,	**************************************

来路外	微 法 式	物 深 化 学 復 数 (数点、充為分析数、888 など)
88	OC+04:04-O4-04-O + 801	'4-880(CE), 4; 10-120(31.0), 2 \$1 (28.00, 1.451.55 (8.0), 4 (5)(24.0), 7.00-1.55(48.0), 7.55 (8.0)
		HTC: Ceskeek.O-881
\$7	(C)-03-03-03-03-03-03-03-03-03-03-03-03-03-	'H-MAS (CDC), 3; 1,10-2,26(SH, n), 2,22-2,57(SH, n), 3,45(2H, 1), 3,55(ZH, n), 6,50-7,20(GH, n), 7,26(GH, n)
		分子式 :C.,,8,,,8,, · 28Ci
***		(*-8ME(CDC); 5; L10-2:16(13E:n); 2:16; -2:50(2E:n); 2:37 (2E:20); 3:30; -1:6(4E:n); 1:48(3E:n); 1:27 (3E:n) 3:7:±:5:48:46:40(1
.59	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	**-****(******************************
-75	G,C4Q+C4Q - NC1	'1-488 (CSC)

发 多(統合)

******		·
XXX	線 進 式	物 現 化 学 短 数 (能点。元素分析数、888 など)
7	0.03-C+03-O	'4-NER(CEC.)
		分子式;CaaBaaRaB·BCT
\$0.00 \$10	74.01.0.00 74.01.0.00	'R-MAN (COC)
	APCO VIII	分子式(Canhanana)。- NCl
73		**************************************
74	Ça.ca○-ca○ ← ca.ca.	'8-MER(CEC(*)
75	9.01-()-01-() (1) - 101	TH-MAR (COLL)

XXX	海 选 坐	信 亞 化 等 怪 数 (数点、元素分析法、340 年2)
78	Ca'0 Ca'Ca'-O+Ca'-O + act	#-\$ME(CDC)
77	01.0 1 - CN,	77 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
**************************************	a.a. X	#### (C.14, 8, 8, 8, 18) 'H-M## (COU.)
79	Ç4,03,-○x-68,-○	分子之:C.a.Rasanda - RCI 'A-WE (DCI-)

実施例	* * *	物 理 代 学 低 数 (数点、元素分析物、約3 など)
250 250 250 250	Ca,ca,-(>-ca,-() Ca,ca,-()-ca,-() Ca,ca,-()-ca,-()	*8-888(CCC), さ、(フィーは) 1 01-2 40(98.m), 2 70-3 19(48.m), 3 48(38 5), 3 54(28.m), 2 50-4 20(28.m), 6 30-8 20 (98.m) 分子式; C,,8:48,0; *8C)
81	(\$\documer_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*B-#83 (COC)
82	GLesses, CsCsO . 1801	1-888 (CDC1.) 4 . 1,42 (38.0.2.2.76—1.80 (28.2.2) 2.76—1.80 (28.2.2) 2.76—1.80 (28.2.2) 2.76—1.80 (28.2.2) 2.76—1.80 (28.2.2) 2.76 (28.2.2) 2.
ŠĪ		'H-NNE(CDCI,) #; 9.65(JH, t), 1.04-2.16(13N, n), 3.68 -4.00 (2N, n), 4.24-4.60(2N, n), 4.38(7N, n), 5.46 (3N, t), 7.76(N, n), 7.48-7.72(N, n), 8.57 (1N, t), 8.71(N, n)

787	·	物 類 (t) 学 (t) 数 (数点、光素分析数、582 など)
834	Calegranica - Carol - Hei	'8-NN (CDC)
8 5	Circonor. Crar. O · Hor	'%-NYS (COC)
88	Ç¥ÇCONNCH∍CH,-○K-CH,-○ ACI	'N-WWS (CDC)
87	Ç¥Zescoca, Ca⊈cosaca,ca,-⊘a-ca⊘ aca	
\$8	Carana Cara O . aci	'8-181 (CEC)

突然突	20 数 80	物 理 化 学 恒 数 (数点、元素分析值、NAR 写名)
89	(1 Can-(1) - C1-C1-(-) , 11C1	'H-##\$(CDE)
33	Ç(C)	'H-MME (COC)
Q.L		'H-MNF(CDC), S 0.98-2.15(9H, a), 2.50-2.03(9H, a), 3.14(3H, 5) 32-1.72(4H, a), 7.04-7.32(5H, a), 7.50 -7.82(1H, a), 7.84-3.15(5H, a), 5.05(1H, s)
äΣ	J. J	'H-MAN (CDC1)
\$3	Drgweer'03'-(>-5401	**-***(CC1)

笑始的	籍 進 武	物 程 代 学 恒 数 (数点、元素分析数、898 など)
940		株点(t):197.5~198.5 元素分析性(C.18.,*50・3KC)として)
35	Calgranca, Oa-ca, Oaca, Faci	数点(で);174~175.5 元素分析数(C.46.48.00.00)。・8(1として) で

35 8

×nn	## ## #	物 意 化 等 恒 数 (数点、元素分析鉴、NS 仁之)
36	CA_CRHCH*CH*-CH*-CH*-Q + HCI	'H-NNS (CDT1)
97	CT C8.68C8-68O - 2868	'8-AMR(CECT.)
88		'H-MMR(CDC)。) 2; 111-21(38 m)、2.7~3.0(28 m)、3.00(28 m)。 1.50(28 m)、6.9 ~7.6(128 m)、8.05(28 m) 分子式; CNN-O, -MC1
99	, 0 trans. 0 trans	'H-HMM(COCL)
188	Officeron-O-cen-O - sci	'A-MAS(COE), 3 ; 1 1 ~2 2 (B.m.), 2 1~3 0 (2H.m), 1 (8 (2H.m), 1 89 (2H.m), 8.8 ~7.4 (15H.m) 分子式:C ₂₊ H ₂₊ N ₂ O・HC1

****	接 造 武	物 班 化 学 祖 数 (数点、元素分析数、NN など)
200	ca.ca.acaOx-caO	(H-MR2(CGCL)) を: 一2:2(SM, G): 2:7〜3:0(2M, S): 1:15(CM, S): 1:15(CM, S): 1:15(CM, S): 1:15(CM, S): 1:15(CM, S): 2:75(CM, S): 1:15(CM, S): 3:75(CM,
192		'H-HME(CECL)
183	cs,dscs,cs,-()-cs,-() - scs	'H-BUS (CDCI,)
104	ся,смся,ся,-Ся-си,-С Ф _{еся} ,	'H-NNR(COC()
72 72 72 72 72 72 72 72		'8-888 (CBC).) 3 1.15-2 16 (CR. 6), 2.68-2.58 (28.8), 3.48 (28. 4) 1.58-4.09 (28.1), 5.87 (7.40 (108.7), 8.22-8.44 (28.8), 8.82 (18.5)

多 (新 金)

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
突線汽	器 遊 式	物 理 化 学 组 数 (数点、元素分析值、888 年2)
198		H-MMB(CDC),
167	C3	'H-MRE(CSCI,) 名: 2.90~2.(0(94.8)、2.55~2.58(24.8)、2.83(35. 5) 2.1(24.8)、2.52~2.02(24.8)、7.25(54.8) 7.25~7.43(54.8) 分子式: C,:3,28,0,5:EC1
108	ca,ca,Qca,ca,-Qx-ca,-Q , 80)	'N-SME(CECI,) f; 1.02(3m U, 1.10-2.00(0m m), 1.31(2M m); 1.80(21 bd) 1.41(2M m), 1.55 ~1.51(2M m); 1.87 ~1.40(5m m), 1.30(5m m) 3) Fra: C.,8,48,0 ~8Cl
109	CH., >HCH., CO., CO., - CHCH., - O . 2HCH	'8-88E(CGCI.) & : 10 ~2 1(98.8). 2.18(GR.8). 1.3~2 0(48.8). 13E(28.8). 2.4 ~2 E(28.8). 1.3~7 5(108.8) 597£::::::::::::::::::::::::::::::::::::
118	CB, CB, LOG, CB, -CB, -CB, -CB, -CB, -CB, -CB, -CB,	'H-MMS(CDC),

		\$ \$ 6 \$ 5 \$
XXX	文	(総点、元素分析銘、888 など)
77.00 77.00 77.00	ca.lac.ca,-Ca-ca,-C	**************************************
112	ca'ga'a''-(>-ca'-()	19-588(CEC), 2; 185(EES), 11-12(98,0), 2,5-13(CEE,0), 185(EES), 186(EES), CEC
7.00	a,≈aa;a,-⊖-a,-⊖ → ncr	'H-MMR(CDCI.) 6; 1.16-2.86(SU.m), 2.83(SM.bd., 3.41(SM.m), 1.76(SM.m), 1.42(IM.dd), 5.90(IM.dd), 5.20 UM.dd), 6.39 ~7.40(IGM.m) 分子文:C., M., M.O. MCI
80.00	ся.ЁксяСэ-сяО ф	**-****(CDE);
iis	Californica On-ca O	'8-888(CDC)。) 8: 1 15-1 25(124.a). 2.8((24.bd). 3.88(24.s). 1 67(26.bt). 6.75 ~7.67(84.a); 7.23(68.s). 分子式: C,,82.498.0 - 8C)

### 25 2 (38 <del>4</del>4)

***	* * *	物 海 (2 年 / 18 数 ( <b>2</b> 元 <b>3</b> 分析物、193 以 2 )
lis	10-\$c2,01-(0-111-0 - 2110)	'H-847(CDC  ) 8; 10 -2 109 30. 2 5 -3 6(26 3) 3 43(75 3); 1 35 (25 3) 6 4 -5 7 (36 3) 6 3 -7 3 (36 3); 2 34 (35 4)
117	**************************************	分子式: CN, 8.0、28C:  'A-MR (CBC), 6; 10 ~2 1(86.4) 2 5~1 0(26.4) 3 41(28.5), 1 5 (CR, 6) 8, 6 ~7.1(58.4) 7 22(58.5), 4 37(28.6) 8, 6 ~7.1(58.4) 7 22(58.5),
118	10-acr.ca(3-04(0) . 20cr	'e-ene (CCC), 8; 2 6-3 0 (24. m), 3 43 (24. m), 3 5 (25. m), 3 5 (25. m), 3 6 5 (25. m), 1 6 6 (25. m), 1 6 6 (25. m), 1 6 6 (25. m), 2 6 6 (
119	a.\$a.a○x-a○ . xa. ○ . xa.	'H-MMF(CDC1) 8; 1.77(38.0), 1.0 —2.1(38.0), 2.32(34.0), 2.5 —2.5(28.0), 1.40(28.5), 3.83(28.0), 8.7~ 7.3(88.0) 分子式:C1.812858.48(1
128	ся ₋ сиси, ся, -Оя-ся, -О - яся ся, о - О - яся	(3-782 (CRC1.)

RM (F)	器 選 武	物 窓 化 等 版 数 (数点、光素分析版、888 など)
121	O-caca,-Ca-ca,-O - 2001	'H-985 (CBC!)
122		'9-99 (CDT), 0; 1 07-2 35 (98 pt. 2 39 (38 pt. 3 33 (28 pt.) 1 31 (38 pt.) 1 31 -6 56 (38 pt.) 1 34-7 (11 (38 pt.) 7 25 (38 pt.) 2 31 (28 pt.) 27-25 (C. 8. 8. 8. 8. 8. 280)
123	O-deca,ca,-O+ca,-O - 2001 Q Ica,	(N-MMB (CDC), )
324	Ö-101-01-01-01-01-01-01-01-01-01-01-01-01	(R-NAM (CDC) )

### **3**5 9

	· · · · · · · · · · · · · · · · · · ·	3 3 3 3
実施例	* * *	物 選 化 学 恒 数 (数点、元素分析後、3991 など)
125	Oglecator Origin or ici	18-982 (CDC), 8 0.85-2.12(128,0), 2.52 -3.54(84,0), 7.08- 7.52(104,0)
125	8,8 - C-2-C8,C8,- C3-C8,- C - 28C1	'8-888(CDC), 6 1,08-2,10(GH, 6), 2,80-2,32(2H, 6), 3,96(3H, 9, 3,34-2,59(4H, 6), 2,90(2H, 6), 6,50(2H, 0,72,-1,14-1,14-1,14-1,14-1,14-1,14-1,14-1,
127	О-С-я-си,си,-Ся-си,-О • яся	'H-MM (CDC),
128	Фол,-Ё-энся,ся,-Ся-ся,-О + ног	'n-sus(CDC1.) 2: 10 ~2 2(38 m) 2 7~2.0(28 m), 3 27(28 m), 2 50 (25 m), 2 3 (28 m), 5 8(18 m), 7 23(38 s), 7,3 ~7,7(38 m), 8 82(18 m), 7 23(38 分子式:(C ₂ :8.880, 80)
129	(B)-C-4-CH, CM, -() 8-CM, -() - HCH	'8-MMS (CSC()) 4; (フリー体) 1,10~2,05 (17にま), 2,10 ~2,37 (3k s), 2,95 (3k s), 3,38~3,52 (3k,s), 1,08~4,18 (21,3), 7,38~1,78 (5k,s) 分子式:(************************************
330	7,2.0,0,-0,-0,-0	'R-NNE(CDC)

実施例	* * *	物 理 化 学 恒 数 (数点、元素分析组、PAR など)
131	<u> </u>	(N-MM2(CDC))
		分子式: Coallookell · NCI
	Q-åsca,-Ca-caQ + acı	'A-888 (CBC), 2: {} -2 i(78 s), 2:6-3:05 (28,0), 3:05-3:15 {28 s), 3:88 (28 s), 5:1 (18 ), 7:1 ~7.3 {108 s}
		OFR; Castantylls / MCI
153	(	'H-WAR (CDC).) 8 : 1.00-1.08(208.a), 7.22(58,5a), 7.37(58,s)
receives	CS9	分子式;C,,HssN,O、NCI
134	O-Éssen, ca , - Cs-cs , - Yo ₁ · se :	'H-NAB (CDC)
		分子式:C,,8,,8,8,+8Cl
135	0-i.c., () + 0+, () + ±0	'H-MMR (CDC1.)
		分子式:C.x80:289; - 8C)
138	3.) Luci, a. ()+0. () +0.	(**-888 (CDC) -)
		分子式:CanitantaOn · NCI

## 赛 3 (統 多)

×ind	* * * *	称 淳 化 学 恒 数 (発点、元素分析室、888 など)
137	Agreement Crick O v rei	'H-MMS (CDC)
	20083	分子式: C12H22H2U2 7 HCC
133	Aognichten - Ch-ch- O - 163	'H-888 (CDC)   # :   1   -2 2(3H, #)   2 7-2 0 (2H, #)   3 1-2 1   12H, #)   3 48 (2H, #)   4 50 (1H)   8 9 -7 1 (10H, #)
	W. P.	分子式:C., N., S.O., - NCI
139	Ca'gasca'ca'-Qa-ca'-Q - aci	'H-888(CDC)
		分子式:CzaHaanaū · NCi
140		'H-88E (CCC1.) d: 1 1 - 2 2 3 8 8 7 2 7 - 3 0 (23 8) 3 3 - 3 4 (23 8) 3 40 (24 8), 5 8 (180 8 59 (18 d), 1 1 - 7 8 (118 8)
		97x; C., 8., 8., 8.0 · BCl
141	Lancasca, Cr-ca, O · sci	'H-MBP (CDC) 3
	25.82 SER 2	HFX : Candandada + NC)

***********		
2HM	<b>%</b>	物 雅 代 学 低 歌 (教名、光源分析策、888年22)
142		(H-882 (CEC), /: 11 - 22 3 GB #3: 2 3 - 2 7 (#1. m), 2 7 - 2 0 131 a), 1 5 - 2 5 (#1. a), 5 1 (10), 2 7 0 - 7, 7
	~	分子式:Controlled ( )C)
143	ca,ca,caacca,-C>-ca,-Q aci	'H-888(CDC), /; L:[7(85, 0), L2 ~ E:1(88, 8), E:1[(25, 0); 2] ~ E:0(20, 8), E:1 ~ E:1(20, 8), E:1[(25, 0); 2] (19), 7:2)(S(3)
		972 C, 3828 S - HC
144	Q(a, C≠-ca, C + ca	'H-WAR (CCCL) 8; 1 ( ~2 012H a), 2 8 ~3 0(ZH a), 1 (~2 3 (ZA a), 1 41 (ZH z), 1 3 ~3 (CH a), 1 (Zh (18H z)
		分子式:Coshoe8s0~HCl
145		'H-MAR (CDC),
	~ vos^	分子文: CookerReO・HCI
145	_lac.c(>+c(>	'H-M82(C0C)
	1/2	分子式;C,,8,,,20,

## 22 9 (82 9)

×XX	<b>* *</b> ×	物 類 化 学 復 数 (際点、元為分析板、888 など)
347	1	'N-MMR(CDC),
148	ся, — сядяяся, ся, -( ) х-сы, -( ) х яст	'W-MER (CDC); 2 ; 10 - 2 103 ; 2 ? - 1 1(28 m); 1   - 1 1 (21 m); 2 ? (28 m); 5 9 - 5 1 (21 m); 7 29 (38 m); 5 9 - 5 1 (31 m); 7 29 (38 m); 6 9 - 5 1
149	J. 1. 01.01. O. 1.	'8-mm(CDC)
150	\$\begin{align*!} \delta \center*. \	'H-NHS(COCL) 8; 0.80-2.10(9H,m), 2.55-3.50(7H,m), 3.82(2H, n), 7.38(5H,m), 7.80(4H,AHq) 分子之; C.,H,,M,O, - HCl
975 975		**************************************

289	後 進 幺	物 - 2章 - 代 - 学 - 1巻 - 数 (数点、元素分析数、80% など)
63		'B-MME (CGC1_) & : 0.86-2.04(SA_0), 2.48-2.88(28.40, 2.12- 3.52(416.40), 7.03-7.72(148.40)
183	J. da. ca O-ca 160 Ca.	'H-MBH(COC1,)
547 557 557	<b></b>	'9-888(CDC), 8; 1.00-1.96(118.5), 2.30(38.5), 3.38(28.5d), 7.02(48.5d), 7.28(58.5)
65		'H-MEN(COCL-)
156	€	数点 (で) : 215~217 (分解) 元素分析数(C.,*,.*,6.c.・HCI として) C H B B B B B B B B B B B B B B B B B B

## **第 8 (数 参)**

~~~~~~		
ZMA	交 发 縣	物 業 化 学 低 数 (数点、元素分析值、828 年2)
157	}	'8-##8(CSC1-)
	√ 200 - 20	分子式;C.。R.。8.0 · RC1
158	{	'H-848 (CSCI ₅) 8 : 0, 83 (94, 4) , 1, 12—1, 23 (94, 4) , 2, 76 (24, 64) , 3, 82 (25, 4) , 1, 38 (34, 4) , 7, 67 (24, 64)
		分子式; E,,,R,,,S,C、概以
159	- Lea, ca, - Ca-ca, - O-7 . 1001	'8-888 (CEC) ; 0 ; 1.6-2 1(58.8), 2.2-2.5 (48.8); 2.3-2.5
	C83	97x: C., 8, 18,0 · HC
160	Jåca,cu, 0.01.0 · 1101	'H-MBE(CDCI) & : 1,00-2,05(9k,m), 2,08.2,13(sotel 3%, each 9, 2,82(2%, bd), 3,03 - 2,43(2%, m), 3,44(2%, a), 4,47.4,56(total 3%, each a), 7,35(10%, a)
	• • • • • • • • • • • • • • • • • • •	分子文:C.,H,,S,0×HC)
(6)	Carigarion (O-car O) scr	"H-NWR(COC); S; 1.80-2.08(OR.e); 2.78(2H.bd); 2.88(3R.s); 3.10-2.18(2H.m); 2.43(2H.s); 3.57(2H.m); 7.22((OH.m)
		HFR: CoallookaD - BCl

突旋河	* * * *	物 蹇 化 举 级 数 (除点、元聚分析统、888 位ど)
ŝšž		'4-888(CDC1) 8 1.78-2.00(38.8), 2.63(38.8), 2.88(28.00) 2.86.2.3(40521.38, 38.8.8), 2.765-2.40(28. 8, 2.43(38.8), 3.30(58.8)
	5023	分子式; ClaBasBaO・BCL
163	Ca-calica, C. C. C 100	'N-8X8 (CDC)
	Gas Cita	分子式; C,, H,, N, N, NCI
184	Signar-Oran Torra	'H-KKS (CDC1.) & :: 172 -3 88 (SH. a), 3.33 1.00-2.08 (107.a), 2.72 -3 88 (SH. a), 3.33 (2K. bd), 5.18 (1K. bs), 7.07 (7K. bs)
		分子式:CeeHeeNeO,
185	J. 101. CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	/H-#M (CDC1.) / . C 15 (28.0). (55 (28.0). C 90~2 23 (10 k.0). 3 00 (38.0). 3 34 (48.0); 7 40 (58.0)
		分子文 ; C., 3, 4, 6 · 3Cl
386	J. C.	(14-884 (CDC12)
·		分子式: C. 33.48.0 · 28C1

22 (23 · 18)

% 8%	* * *	
187	Jan.caO-caO · 2803	(機会、元素分析等。888 年2) 'H-MMR(CDC1)
188	Jadiaia. Ora O	分子文: C+18,+8+8・28C1 'H-MMR(COCI.) まし、2.83(28.5d)、3.26(28.5d)。 1.60~2.06(48.d)、2.83(28.5d)、3.26(28.5d)。 3.45(28.5)、3.39(28.5)、3.85(18.5m)、7.27 CSN.5)、7.77(48.88%)
159	0.8° C-0O-0O - 801	分子式; C.s. 8.s. 8.s. 6.s. × IC1 *8-888 (CDC(s)
179	a,000 Jan. O-04-O . 801	***-*********************************
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J.c., Cs-cs, O · 2801	'H-NNR(CSC!)

然	物 母 化 学 恒 数 (数点、元素分析値、888 など)
\$-10,0,0,0-0,0 0	19-988 (CEC1)
	#### : C., F., R. NC
Agreen.co. On-coB	'#-###(CBC1;
0,8	97x;5,18,18,9,
800008-04-04-04-04-04-04-0	'H-848 (CDC)
****	分子式;Cz.HzoNzOz / HCl
Careo - C-casta - Ca-ca-(a) . Mc1	'H-MRR(COC)
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	'H-888 (CDC;) \$; 1 16-2 12(9x, m), 1 89 (2x, bn), 1 47 (3x, s), 4 35 (2x, bn), 1 88 -1 76 (11x, m), 1 88 (1x, 3d), 1 23 (1x, do)
	# # # # # # # # # # # # # # # # # # #

\$ (M &)

突然例	* * *	物 理 化 学 恒 数 (数点、元素分析者、2013 など)
177		'%-NNE(CDC1.) 3: 1.08~1.38(9h.m), 2.68~1.02(7h.m), 2.40(2h. 0), 7.27(5h.m), 7.41(2h.d), 7.78(2h.d), 10.0 (1h.m) 37##C:C.sH.c.*.65. *********************************
900 0-10 10-10	CH.	「B-NRE(EDEL。) が : 1,10〜1,08(150.m) 2,77 〜2,98(50.m), 3,12〜 8,46(40.m), 7,28(50.m) 分子念:C _{1,2} 8 _{3,4} 8 ₃ 0・8C1
17.8	У.c. J.c., Сэ-сэО . нс;	'H-MMR(CDC);
\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	Jac. O-ca. O . 100	'1-W8 (CSC)
181	ano Car. Ca-ca . O · aci	'%-WAR(CBC), 8; 1.10-1.88(124,s), 2.80(24,s), 2.88(34,s), 1.23-3.14(44,s), 4.02(24,s), 8.84(24,s), 1.28(14,s) 5-FX:(2,48,8,8,0,+8C)

35 9 (38 8)

突旋例	器 盖 式	物 理 化 学 语 数 (额点、元素分析像、888 など)
182	яў-ся,о-ффен,ся,-фэ-ся,-ф ся,	'H-8ME(CDC1.) & : 1 00-2 08(98.0). 2 88(28.5d). 2 38(28.5). 1 12-3 50(28.5). 3 47(28.5). 5 18(28.5). 7 15(48.486). 7 38(58.5). 7 96(28.486)
183	Sacardo An	'H-848 (CDC1)
\$8 4	сн. &-О-фен,саОх-саО — жо	'H-NNH(CCCI) & ; 0 90-2 20((10.m), 2.60 -3.30(20.m), 2.25, 1.03(total 18.sach bm), 3.4k 1.55(total 28. each bm), 3.88(38.s), 7.10.7,21(total 58, each s), 7.87(40.88m) 分子式:C ₂₄ 8.88.38.38.+HCI
185	cs.cs.ocs Gos.cs Os-cs O · scs	(H-788 (CDC),) & 1, 2,76~3,02(100,0), 3,20 ~ 1,50(100,0), 7,21~7,30(90,0) ~ 1,50(100,0), 7,21~7,30(90,0) ~ 分子玄:C88.9. ~ NC1

突胎的	* * *	物 題 化 学 恒 数 (数点、元素分析物、細 など)
185		'H-NHR(CDC)
187	C8, C8-6 - C-C8C8, C8, - C8-C8, - C8-C8.	分子式: CH.s. 8.3. · HCl '8-M86(CDC).) 8:

X3397	· · · · · · · · · · · · · · · · · · ·	物 魔 化 學 恒 数 《数点、元素分析器、形形 など》
188	CS.0 The O-cs. O - RC	'8-888 (CDC1,)
		97-31; C2284-783 - 801
189		'H-888 (CBC)) 8 LOS-2 12 194 m) 2 50-3 (0 CBL m) 2 48 CBL m)
	C# ₃ ð	分子之:Coolier1800 · NC)
	n	(現金) 205~89(; (プ) 系盤
190	(3,0 _{C3,0}	元素分析値(Cs+8s+80s・NC) として)
330		
	68-9 B	30: 42 (t) ; 198~199
191		元素分析値(08,,80,・80) として)
		ZHE
	CH ₂	施成 (で) ; 200~201
198		元集分析館(C++8++80++80++2-6-7)
		ZRE

表 10 (数 6)

	and and a second 	
XXX	** ** ***	、 物 理 化 学 版 数 (数点、元素分析値、988 (2ど)
133	'jb.0.0.0.	'8-88 (CCC1)
194	а. Д.с. О-а. О · во	数点(セ): 175~177 元素分析を(C.468C.+HE) として) [
196	QÅ-0,-0-0,-0 · ≠0	職点 (で) ; 211〜213 (分解) 元素分析数(C.an, ang - HEI として) で で で で で で で で で で で で で で で で で で で
155	a,a \$\dagger\$-a,-\$\dagger\$-a,-\$\dagger\$	触点 (T) :153~154 元本分析値(CreMreMSeとして) で
197	in, 1	数点(セ);170~171 (分解) 元本分析をCookeraGoとして) 変数数像 15-31 1-47 2-38

実務例	總 後 式	物 理 化 学 報 数 (数点、元素分析数、NH など)
198	aran Çar-O-ar-Q - sci	数点(で):175~175 元素分析数(C.as.asc.asc) として) (
199		数点 (t) ;236~237 (分解) 元素分析数(CH.,NO,・NC) として) 変数数数) (12 34
***************************************	\$\a\-\-\a\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\	般点(て);195~195 元素分析値(C.o.S.o.NO・NCI として)
201	\$\frac{1}{2}\tau_1\tau_2\tau_1\tau_2\tau_1\tau_2\tau_1\tau_2\tau_1\tau_2\tau_2\tau_1\tau_2\tau_2\tau_1\tau_2\tau_2\tau_2\tau_1\tau_2\tau_	'H-888(CX).)
282		'H-SMR(CUC)。

数 1:0 (統 金)

黑線例	第 卷 式	物 選 化 学 撰 数 (数点、元素分析数、308 など)
203	CR.C. C. CR. C. MCI	融品 (t):126-127 元素分析数(C.,が,,40,・8C) として)
204.	C34.0 \$\frac{1}{2} C34.034.044.044\frac(3) - C34\frac(3) - (3)	'8-888 (CDC)
305	a.1 \$\frace.ca.ca.ca. \to a. \to \ca. \to \ca. \ca. \ca. \ca. \ca. \ca. \ca. \ca.	'1-WMF (CDC),
208	(8.0) Cha-O-01-O - 1101	'H-MB(CC),
387		'A-WAY (CDCI.)

¥2.85 91	※ 法 太	物 逐 化 学 恒 数 (数点、光素分析液、光解 年代)
208	CH,N \$\delta\cH\CH\CH\O\-CH\\	'B-882(CBC), 8 1 58~2 55(78 5), 2 78~3 52(28 5), 3 56 (28 5), 3 63(28 5), 3 90(68 5), 5 53(18 6t), 5 93(18 6), 7 82(58 5), 1 57 (18 6)
	CHair	分子式:C**#**#9* · HC]
308	св,3 <mark>См-0</mark> — ск. О - мст	'8-888 (CDC),
	'	分子式:CaxHarRC: 1RCi
230	ca.o.\	'N-MME (CDC')
		分子式: C::#:::#0 #C)
231	15-0-04-0-101	1. 12 - 2. 55 (78, a), 2. 78 - 3. 02 (28, a), 3. 50 1. 12 - 2. 55 (78, a), 2. 78 - 3. 02 (28, a), 3. 50 (28, a), 7. 25 (58, a)
		分子式;C,:H::NCF + NEI
313		'B-NAR(COC1.) Ø: 1 50-2 55(78.s), 2 38(38.s), 2 78-2 53 (35.s), 3 48(38.s), 3 17(28.s), 4 56(18.60). 1,38-1,80(38.s), 1,31(58.s)
	*	分子式:Czzllys80・8Cl

20 1.0 (**32**, **3**)

***	26 发 数	物 養 化 学 恒 数 (数点。元素分析数、888-74.5)
- 25	фа-О-ак-О - на	'A-MAR(COSI,) 8; 1.48—2.50(14.0), 2.32(34.0), 2.77—2.02 124.0), 3.49(48.0), 6.69(16.0), 1,10 — 7.67(34.0)
	C8.5	分子式; C5,81,80、HC1 観点 (七) : 174~178
214		元数分析値(C.a8.a80.として)
215		数点 (T) ; 175~175 元素分析的(C.o.M., MO.として) 「 変数数(20 75 14 6 87 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
218	CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_	一次の報(3) 18.0~18.1 接点(で):180~18.1 元素分析数(C.o.H.,NU.・HCI として) 一次的数(数) 70.85 7.85 3.17 実別数(数) 70.86 7.85 3.17
217		数点(t):228~230 (分解) 元素分析数(C.,H,,30., HC) として) 現象数(S) (S ² (S)

XBM	* * *	物 理 化 学 恒 数 (数点、元素分析值、888 年年)
218	Q\$a-0-a, 0 ⋅ m	**************************************
213	J - O-03, - O - 101	数点(t):211-213 (分解) 元素分析数(t,,#,,*K!・Kt) として) C !! ** 実施基係 72-22 { 31 } 17
229		'H-MMS (COC)
281		数点(セ);170~171 元素分析数(C,.8,,80,として) (C)
232	ск.о Д <mark>ан</mark> сиси.си, си, -Си, -О - иси	'R-888 (19C;)

数 1 0 (88 a)

英格尔	海	物 理 化 幸 惟 数 (数点、光素分析後、888 など)
223	C8.0 A - CHCH,CH,CH,CH,CH, - (C4.0) - (HC)	'8-NAS(COC).) &; 1 10-2 40(154.m). 2 68 - 2 00(28.m). 3 48 (28.m). 150(28.m). 3.88(38.m). 3.98(38.m). 6 68(38.m). 1.83(18.m). 7.19(18.m). 7.8] (58.m) 分子文: C,1,1,10.m. + NCI
224	ax.0	数点 (T) ; 130~135 元素分析数(CH.,HC,・HC) として) (
235	04.0 TH-04-0-04-0 + 801	'H-MSR(CCC1-)
238		数点(T): 185-188 (分類) 「A-NAS(COC)」)を(1.55-2.18(78.m)、1.85-2.75(28.m)、1.25- 1.83(58.m)、1.92(38.m)、1.98(38.s)、4.50 (24.m)、6.89(18.m)、7.19(18.m)、1.26-7.60 (54.m) 分子式:Co.8s.m0、
\$57	а.c.ДаО-а. Ž - кі	数点(セ);220~221 元素分析値(Cooks,80o・801 として) E

ZRO	22. 26. 26	物 理 化 学 版 数 (数度、无案分析度、898 など)
238	artharoade m	数点(T) : 212~813 元素分析数(C, H, NO, : NC) として) C ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※
223	01.0 1 01. O+01. O 61. + 1101	数点(で):223~236 (分別) 元素分析数(C.s.s., N5、・NC(として) に
239		'F-MMS (CDC).)
231	01.0 L 01. O-01. 0 . 101	25 (T) (219-21) 元素分析数(C.,4,4,6,・8C) として) C
232	C1,0 \$\frac{1}{2} \frac{1}{2}	数点(で): 234~238 (分析) 元素分析数(Co.45,,#,G.・4E) として) (Co.45, #, #, #, #, #, #, #, #, #, #, #, #, #,

₹ 13 (XX \$)

漢籍例	2 金 縣	物 題 化 学 塩 数 (数点、元素分析値、898 など)
222	ca'o Apa' O-ca' Q _{ca} - sez	'H-WH CDC(,) \$: 1.10~1.43(148 m) 3.53(28 m) 1.34(28 m), 1.31(08 m) 6.35~7.03(78 m)
234	ся, б Д _ ся, - О-ся, - О-ся - нег	Mag (t) : 145~148 元素分析後(CHN)、・8C1 として) 「業務(数)
235	CS-10 CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-CS-C	機点(t):193~194 元素分析数(C.,R.,M.,・5Cl として) 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「
238	CH, CH, - CH, - CH, - O-CH, - NCI	数点(で):225~238 (分解) 元素分析数(CK., NO.、NC) として) で
237	сн. в — О-сн. Дсн. О · нст	'H-MAR(CEC), 8; 0.78~0.40(141.4), 3.48 (34.4), 3.85(34.4), 3.3(43.4), 5.01(24.4), 3.75(14.4), 3.86~ 7.83(34.4), 7.09(34.4) 277x2:C,,8,,MO. HCI

XX.	* * *	物 题 化 学 施 数 (数点、元素分析值、868年22)
238	04,9 X \$\frac{1}{2} 04, -() - 04, -(\frac{1}{2} - 240)	融急 (ロ) :224~236 (分解) 元素分析度(C,,H,,M,O ₂ 、28C)として) 正確定(3) 60 93 5 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ca,g_a,-()-ca,ca,-() →aci	融点(t):252~258 (分解) 元素分析後(C.85,802、HC) として) C H N 変数数(2) 53 53 7 53 2 35 変数数(2) 53 50 7 43 1 25
240	care Types O-car O - act	触点 (で) ; 225~225 (分解) 元素分析を(C, N, MO, HE) として) (
241	03.0 \$ 0.0 O-03. \$. HO	融点 (セ) ; 236~227 (分解) 元素分析線(C.43,80、- NC: として) 要適等(剤) 行行 作前 2.3
242	54.0 \$\documents \documents \docu	製点(で):243~245 (分析) 元素分析数(C*1,M,・米ロ として) (

10 (M *)

********	8 3b £	物 蓬 化 茅 签 数
XXVI	後 後 ぶ	(熟点、元素分析性、約3年20)
	***	始ま (て) :191~192
	08,0 \$\dot\ 03, \land -03, \land -001, \land -001	元素分析数(C,,)(,), (KO, - (KC) として)
243		
	CR. C.	
		差点 (T) : 219-221
		元素分析物(0,-11,000,-100) として)
244		
	G., 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	***************************************	18-888-0 ₂ 0) 8 3
	8	'8-888 (5.0) 5; 1 10-2 17 (148, m), 3,84 (18, m), 8,70 (18, m), 6,84 (18, m)
245	"" MY CH- (M - 180)	
	CX*8	分子式;C.,55,1802、HCI
	¥6.	強点 (七) ;182~183
	* 1 7 D- NO.	元素分析数化5.8%。以5.0。として)
245		8
		INES ILA ÉN EL
	267.26	Ma (C) : 240~241 (998)
		元素分析数(C.sH.s.NG,S.・NC) として)
247	03.0 X -73 () -801	20 800 800
age and the	The state of the s	
£	74.20	

表 10 (総金)

XMA	器 浚 玄	物 理 化 学 復 数 (数点、元素分析数、8% など)
	9	総 点(で);180~185 (分解)
248	CB-0 / 1-1-O-08 2 HCI	元素分析値(5,58,58,65・2801として)
\$ 7.2	Catal Care	
	8	MA (T) :230~232 (5) MA
249		元券分析数(1.53,50,50,70) として)
		282 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

第1頁の続き @Mnt.Cl. * 識別配号 厅内整理番号 A 81 K 31/445 31/47 31/495 31/55 C 07 D 211/08 211/40 295/10 401/00 7375-4C 7180-4C 7180-4C 6742-4C 6742-4C 6742-4C 6742-4C 8829-4C 405/12 413/05 471/04 104 H **②発 明** * × 488 医鍼県つくば市竹屋 2-11-6 柏マンション401号 **39** *** 111 ***** * Ø. 茨城県つくば市薔養 4-14-5 ヴィラ・エスポワール 206号 (D) FE 33 33 * 83 茨城県つくば市並木4-15-1 ニューライフ並木406 **3** SS 3 238 4 ***** 茨城県つくば市吾妻 4-14-5 ヴィラ・エスポワール 206号 多光 明 者 W فللؤ 澨 藩 神奈川県鎌倉市今泉台7-23-7

【公報種別】特許法第17条の2の規定による補正の掲載

[部門区分]第3部門第2区分

[発行日] 平成9年(1997) 1月14日

[公開番号]特期平2-169569

[公開日] 平成2年(1990) 6月29日

【年通号数】公開特許公報2-1696

[出職番号]特職昭63-324620

(国際特許分類第6版)

C070 207/09

A61K 31/40 AAM
31/435
31/445
31/47
31/495
31/55
C070 211/08
211/40
295/10
401/00
405/12

413/06° 471/04 104

(FII

C070 207/09 8217-4C A63X 31/40 AMA 33/435 9434-40 31/445 33/47 33/495 33/55. C070 211/08 9284-40 9284-4C 213/40 295/38 9283-40 401/00 7602-4C 405/12 7602-4C 413/06 7602-4C 471/04 104 H 7602-4C

45 800 800 IE 800

条件企業官 聚

) 常然の表示

3. 養質の名数

- 微核でミン袋線なを含むする塩薬

2、 特别也多名帝

事務との製菓 物質部最大

经金属银币单一品

永 徐 選 人

8 8

m (62)8863-7808 (ft)

5. 被股份対象

符额贫金文

(8383) 芳葉士

8. 潜泛の内容

数数の数り

でかそんコリンエステラーゼ服务器の河南から開発することが 接載され、実際にも試みられている。代表的なものとして、施 コリンエステラーゼ服务所として、フィブステグミン、テトラ ドドコアミノアクリシンなどがあるが、これらの裏別は効果が 十分でない、好ましくない顕存用があるなどの分点を有してお も、決定的な防備額はないのが強なである。

変に、表面ロリンアセチルトランスフェラーゼ(CAAT)経着作 用もこれらの素素の効果に対象であることが差別されている。

そこで本義務者もは、この作用も有する使命物について基準 にわなって素養養養を重ねてきた。

その数限、後で基べる機差式(i)で示される機能で「お締 機体が、所謂の目的を施することが可能であることを異常した。

収集的には下窓の機造式 (1) で高される本条明化金額は、 優れたコリンドマチルトランスフェラーゼ(88代)銀譜物別を有 し、変に強力かつ選択性の高い流アセチルコリンエステラーゼ 設定者育するため、認例のアロチルコリンを増盤すること、定 遺職者をデルで言語であること、及び従来この分野で進弱され ているフィゾステグミンと比較し、作用特徴時期が最く。変性 性が高いという文文な特徴を有しており、本意明の偏瘫は極め て続い。

本発現化合物は、ロリンでカテルトランスフェラーゼの動態 作機に基づいて気能されたもので、投って中枢性ロリン構築、 概ち終級性機物質としてのアセテルロリンの生体内の欠乏が原 後とされる様々の気勢の誘致・予防に有能である。

代表的なものとしては、アルツハイマー放電単衡条に代表さ

1958 BESS 1888

1. 発勢の名称

機化アミン物を存を含むする必要

2. 特許請求の報題

1 次の養養双

で表される環境でミン病等体<u>来は</u>その原理学的に符号できる 塩毛有数減分とするコリングセテルトランスフェラード解析 存用に基づく表表の指数・予算期。

3 養殖の養養な総務

(務急上の釈用方質)

本題明は、新鏡環状アミン誘導体を有効成分とする影響に関する。

(義明に至る智量及び技念技術)

海岸人口が急激に後大する中で、アルツハイマー製造年齢 数との選供優易の治療法を確立することが高度されている。

しかしながら、現在のとこち、光学変異を姿勢で治療する終 みは繋りなきれているが、これらの変型に数本的に有効とされ る実現は今のところ存在しない。

これらの宛原の治療薬の溶剤は数々の方式から研究されているが、有力な方式としてアルツハイマー型を呼吸最低、 綴のコリン作験性機能性でを作うことから、アセチルコリン筋験機能、

れる各種偏果があるが、そのほかパンタントン素酸解, ビック 級、機能性機能な安全などを必けることができる。

接って、本発物の目的は、医素としてよりわけ中枢神経系の 無難の接続・予防に有効な新規模はアミン誘導体を接続するこ と、この需要機材でミン誘導体の影波方法を提供すること、及 びそれを有効素分とする関係を提供することである。

(発明の構成及び効果)

本発明的目的信息報法、故心等基式(I) で基金的も環状で こと需要体又はその数理学的に許容できる第である。

本発明において、悪悪学的に許多できる後とは、例えば複数 塩、繊維塩、真此本実験後、機構強などの無機類数、整数塩、 粉酸塩、トリゴルまの影響数、マレイン酸氢。然石酸級、メダ ソスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン数 塩などの有機酸塩を挙げることができる。

なお、本義関化会物は、不済政策を有するので数何条性体、 光学異数体、ファステレオマーなどが存在してるが、例れも参 発明の数据に含まれる。

本数明化合物の製造方数は機や考えられるが、代数的な方法 について効べれば以下の通りである。

&&ZAAA

即ち、微数次(II)で変されるホスキナートに発達な(II) で変されるアルチとド化分数を選ぶせらめて(nic(jg近応)。 複数式(IV)で変される化合物を提、さいでこれを複数差形して自動物質の化合物(j)を得ることができる。

郷ち、橋巻式(V)で送される 8.8ージメトキシー:一イシダノンと構造式(II) で売されるアルデヒド本を、常然によりアルドール総合を行い、調査式(IV) で過去れる化合物を得る。本気定は、例えばテトラヒドロフランなどの物類中でフインプロピルマミンとカープテルペキャン総数によりリテウムジャンプロピルマミンとカープテルペキャン総数によりリテウムジャンプロピルマミドを全成させ、将ましくは約~80℃の過程でこれに上記の構造式(V)で表される 6.8ージメトキシー:一イングノンを加える。次いで構造式(II) で過されるアルデヒド体を超えて言葉により投資せらめ、高度生下外最合せることによって発水をせ、エノン体である複素式(IV)で高される化合物合作名。

本反応の例方法として、報告((V)と(S)())をテトラドドロコランなどの機能に解解し、物りでにて、例えばナトリウムメテラートなどの選挙を加えて、実践にて反応をせることによる方法によっても製造することができる。

上記の裏施方法によって終られたエノン株((Y) を創記に示 したと雑錦の方法により発光することにより、接急式(1)で 機される化金物を得ることができる。

なお、製造方法人~日において、生業機関として無いるイン ダノン競技物製品を強いるか支は以下の方法により製造される。 888 などを挙げることができる。この機能器としては、例えば テトラとドロフラン(ではり)、ジタチルボルムでもり(DM P)、エーテル、エトロメタン、ジメチルスルポキシド(DM SO)などを挙げることができる。また、仮容能器は電磁から 100 で機能が終ましい結果を与える。

※無難地を行う際は、終えばバテジウム繊維、ラニーニッケル、ロフタム製剤などを勉強として高いることが終ましい数象を与える。

製造五葉泉

0%:0

一方、アルデヒド学は例えば以下の方法により製造することができる。

即ち上歌の如く。名(4)でデされる化合物を出路物質とし、これを上記の方案によりアルデルドはよすをしてことにより、異名とする出版物質を答ることができる。

ウィチャリ数数としては、微えばメトキシメチャントリフェーエルカスもランを思いる。

メトキシメデレントリフェニルがスキッンは、メトギシメチレントリフェニルポネポニウムタコライドとロープテルリテウムとから、機工びエーテル又はテトラヒドコフラン中で教成させる。この中にケチン落を加え、激動器によってアルゲヒドを会議することができる。

以上のようにして等られる物造式(())の代合物及びその動物が基準は各種者人性等条で、等にアルフハイマー型名字類条の 治療に有限である。

神楽点(1)で示される社会物及びその動作環境の有限性を 添すために、高温温物施設を災下に指明する。

ls vitroアセチルコリンエステラーヤ基金位置

化合物	% & (*8/hg)	ACSESSION OF NO.
Saline		0
	1	5 *
数数数 (0 化合物	\$	57.84
es it. et es	38	30 **
	80	87 **

.8

米黎祭3

メコダラミンの受動回避等別路等におする作用**

等)またの高級株子のよを用い、高差としてはまます。(Arough版の 明確的を使用した。無行の主動機のに放体を総口数心し、20分 物にスコポテミンの50g//kg(ts)を発産した。異数銀行では明確 に動物を入れ、確定に入った液化にデロデンドアを明め電気シ コックを体のグリットから与えた。も時間後に体性能打として 帯び動物を残なに入れ、確定に入るまでの時間を創度し解係し た。

数集は生食数年数とスコポラミン技与群の製造時間の発売180 Mとし物材により何米物鉄したか(Reverses)で送した。

*1 2.80% classes & Jervin: ist. J. Neurophermateig. 217~22 2(1887)

数基を整まに示す。

マキタルコリンエステラ・ゼ級として、マウス級ホモジネートを同いて、Eliasaらの方法や に体的してエステラーゼ活性を設定した。マウス級ホモジネートに、基盤としてアヤテルテオコリン、接続体及びDTNBを発知し、インキュペーション後、基金したアオコリンがひてNBとほかし、乗びる資金条件を利加3における受性変数化として発定し、アセテルコリンエステラーゼ活性を求めた。

後歩のアセチルロリンスステラーゼ報告接続は59年報告機関 (10.47年をした。

数基を数1江本す。

 Bilman C.L. Courtney, S.A. Andres, V. and Peachers tone, R.E. (1881) Biochem. Pharmacol., 7, 88 -95

住金物	ACHESE SE SE FOAR CO EO
高級点:の化合物	0.0053

きょ 対76 アヤチルロリンエステラーギ業委任祭

48

ラットに要義体を終口投与し、その1時期後に大阪半等を整 数し、おもグナイズ後、アセチルコリンエステラーが顕然を繋 変した。なお、生場な塩水及与類を対象とした。

福建企业总统原文。

₩ 3

化合物	(518/82)	Řeverseš
実施領し の化合物	9. 125	58
100 km 20 at	9, 25	36

光黎 3 4

コリンアセチルトランスフェラーゼ(Chif)販売着性の概定

ラット効果の際物等解象の対象をひに神経細胞中ロリンアセ デルトランズフェラーゼ(SME)活性の概義

※61611 らの方法に挙じてラット設定の数数数数数の必要 を行った。ウィスター系数数ラット11日数の数支大器学級を トリプシン処理した、数数数を引×100億メ2.5%に深密し、 段等に数数化合物を影響してマイケロプレートに答し、37℃, 5%C8-95%6。ウリの残毒をした。マイクロプレート中の信養 物数級数ののAMS性はFormed*の方法に挙じて過ぎした。特 無額数等機管に「*C-Acestyl Conseyer Aを加入て1時間気息 含せ、生成した「*C-Acestyl conseyer Aを加入て1時間気息 させ、生成した「*C-Acestyl choliste モテトラフェニルボロ ン学生下トルエンにて独立し、教育シンチレーションカウン ターにて概定し、5%不断数を求めた。数体の外が気管存在は コントロールとで表した。数条を変くに示す。

1) F. Hatil. 1. Hay links. F. Estandatela. S. Estano. R. Han Mas and M. Schanh. Maurescience. 14. 55-68(1988)

2) P. Foscus : J. Neuroches. . 24. 407-408 (1975)

st 2 %	282783839727.9.6 (6841) K .S.S.S.S.	
	isse.	% w? Eust.
8	30-6 %	\$8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000 8	114*
CH-8	18-8-8	1,0817

上記の高辺突動例から放力なアセチルロリンエステットが数 審存用及びロリンアセチルトランスフェラーが放棄作品を有し ていることが限らかとされた。

本発明化合物(目)は、資本のアセチルコリンエステラーゼ 服書別とは構造を受しく美にすること、優れたコリンフセチル トランスフェラーゼ級特件報告をし、更に競力なアセチルコリ ンエステラーゼ級特件服を有し、ことのほか無行第一関作用率 が大きいこと、作用特級が長いこと、水溶性が高く、見つ緩め て安定な化合物であり、製剤上向割であること、及び生体利息 単か優れ、計では 525% effect を受けにくく、見つ製肉排行性 もよいなどの物盤を有している。

製って、本意別の目的は、コリンアセチルトランスフェラー 世紀信作品に基づいて残るの均差点、福成管理書後選ばに有効 な化金物を有効成分とする新規な高限を提供するにある。

なが、本製物化合物について、テットにおける物性動機を行ったたころ。約180mm/kg形上で高減な高性を示さなかった。本 機能企会がは、エリンアセチルトランスフェラービ製造作権が 有效なあらゆを表面に有效である。代数的な表数をあげれば、各種基人性的系数:特にアルフハイマー数数年最高。 解學中 (数目数、數模案)、器数數是允定、過程外費などに任う数点 實際等:數學表達的、影性解釋などに任う性素力等で、言語經 實、寒飲能等、情緒寒寒、影樂釋養、影光一多數數數、行動業 質などの始級、予節、報酬、数數などに有効である。

本質研究会報のコリンでもぞれトランスフェラーは就議作品 がこれらの概念に可能なのは、上記の作用により認例のアセテ ふコリンが構整されることに基づくものと考えられる。

変に、本無額化金物は設力かつ選択性の減り抗コリンエステラーが作用を有するので、これらの作用に基づく器塞としても 有限である。

概念、アルコハイマー服物学解除のほか、例えばハンチントン解除物、どっり段、投資性異常能などにも有限である。

本発展化会物をこれらの認識として費用する場合は、総の投 与者しては発展に改与により投与されるが。教育は影照内、変 下、診案内など依然期、光幕等しくは苦干板など姿級に登与に より投与される。役与量は、症状の態度、患者の折合、性弱。 体質、感受性強:受与方法:投与の特別、損害、限量数別の性 質、調解、阻棄:有能成分の機器などによって異なり、特に複 定されないが、義常成人:日本たり約2.1~300 mg、対ましく は約1~190mg であり、これを通常181~4例にわけて分与 する。

本発質なる物を整絡化するためには、変約の技術分野における適常の方法で在材料、要素、苦下蒸、佐南、カブセル熱など

### の残骸とする。

接射熱を顕著する場合には、光楽に必要により加熱整核、線 養料、緊張化能、溶解機能性、安定化能、等級化能、保存額な ども必能し、容数により診断、投下、高内内性射能とする。そ 少額必要により常然により高的転換物とすることも可能である。

数級数としての個を挙げれば、例えばメデルセパロース、ボ リソルペート88。ヒドロギジエテルセルロース、ブラピアゴ ム、トラガントボ、カルボキンメデルセルローステトリウム、 ボリオギンステレンソルビタンモノラウシートなどを挙げるこ とができる。

複数複数形としては、例えばポリオキンエテレン競化セマン 物、ポリンルベート88、エロチン酸アミド、ポリオキンエチ レンフルセタンキノラウレート、マグロゴール、ヒマシ被器数 数エチルエステルなどを挙げることができる。

また安定依例としては、例えば原稿機サトリウム、メタ整施 機サトリウム、エーナル等が、例が無としては、例えばパラオー キシ安急者機メチル、パラオキシ安急等機工テル、ソルビン機、 フェノール、クレゾール、クロロタンブールなどを挙げること かできる。

## (%) **%** (%)

設下に実施機に接って本発明をあられ最終的に提明するが、 本発明の投資的発展がこれるの機械例の機器に駆発されるもの でないことはいうまでもない。

なる、下数の変異的において、2000 の姿はすべてフリー杯で の数変集を示す。

### X X 6

W 1-KYZA-1-EXSZZZZZZZZZZZZZZZZZ

2をキシメテレントリフェエルポスポニウムタロライド
28.08を探水エーテル 280miに整備させ、 1.68 カープチルリテウムペキサン溶験を電磁にて搬下した、設備にて知分額 複字した後、 8 でに物類し、 1 ーペンジルーモービベリドン
14.25gの部ポエーテル30gi 容易を加えた。窓磁にて3時間 複字した位不得物を探測し、適度を施圧機能した。これをユーテルに容解し、18温機にて特別した。そらに水板化チトリウム水溶液にて36 32 とした後、塩化メテレンにて特別した。 連携すぎネシウムにて製製法、被圧機能し、得られた機能をシリカゲスカラムにて製製法、被抗機能し、得られた機能をシリカゲスカラムにて製製法、被抗機能し、得られた機能をシリカゲスカラムにて製製法、被抗機関3.30g(収率38米)を発た。

これをメタタールがおはに容解し、38姿貌1981を指えた。3 特報加熱環境した後、施田機器し、機器を水に溶解後水器化 ナトリウム水解析にて明 13 とし、塩化メテレンにて換紙した。銀路食塩水にて発養後、複数マグネンウムにて開港し、 無法審確して待られた残器をシリカゲルカラムにて機能し。 機能化分物2.77g(複率8(※)を放送機能とした機た。

- ・含字式: 6...3..※
- * 'U-898(C\$C(.) & . 1.40~2.49(78.6) . 3.78(28.61) . 8.49(28.5) . 7.20(28.5) . 8.8)(18.8)
- 39 3 ベンフル・4 (低3 フェトキシー1 インダノン)- 2 イリデニル)メデルとベリジン・協議協の会成

この反応はアルゴン数数数下行った。

※水では 10ml中にジイングロビルアミン2.08mlを加え、お らにもではて1.5% 3ープテルリテウムペキテン修修1.1261を Min, other 1988 Min bar . - The Thing to be ーヴメトキシー1ーインダノンと85gの数次78F 30al答案と 人类性或参加多数要为少于F2.33m(老额类性。一78年以下18 会複雑した後、似で答だ! - ペンタネーオービベリタンカネ ボアルデヒド2.76gの線水75F 30st溶液を加えた。葉葉まで 数々に募集し、さらに高級にてる特殊複雑した他、18級化 アンモニウム水溶液を鍛え、有機酸を分離した。水圏を酢酸 エチルにて独居し、さらに合わせた有機競を競雑会選束にて 後歩した。鉄道マグネンウムで乾燥金、鉄圧機関し、巻られ、 た機能をジリカゲルカラム(選化メチシンコメタブール×500 :1~100: こ)にて智慧した。際は彼を報道機械した数。 我最全国化ステレンに溶解し、10%基数・新数エテル容数を 施え、さらに選出機械して結婚を得な。これを提供メチレン 一部5 から内勤的化し、次の領性を育する策略性合物に40g (数数83%) 多額た。

C S S \$8.882 (*) \$9.80 7.07 8.07 \$8.882 (%) 89.80 7.15 3.02

出獨人代潔人 吉 各 零

- · MG (T) : 237 ~ 238 (5) (M)
- ・元素分析像: ひぶん物・蛇ほどして

C B N

整路器(86) 68,68 \$,82 3,38

\$\$\$\$\$\$ (№) 68.51 £.78 5.30

### 

数後後:で得られた(一ペンジルーは一(《名の一ジストキシー1・インダノン》・2・イリデエル)メデルビベリジン
0.40gをFEP 18対に施援し、19対バラジウム・炭類に03gを施えた。幸政済圧にても物別主席施助した改、地域を提別し、地域を経済施した。この残差をシリカゲルカラム(磁化メデレン:メタノール本50:1)にて開発し、毎美政を総定機関した後、養殖を協化メデレンに発酵し、16%基数・影験エチル溶液を加え、そのに発圧機関して結晶を存在。これをエダノールー195 から内結晶化し、次の物性を有する機能化合物の38g(収率38%)を存た。

- · 数点 (*C) : 311 ~ 312 (分额)
- # # # # # E . H. . H. . H. . T