Компьютерное Зрение Лекция №1, осень 2023

Введение в цифровые изображения

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

Координатная система RGB

<u>Закон Грассмана</u> — эмпирическое наблюдение, что восприятие хроматической составляющей цвета описывается примерно линейным законом

Система CIE XYZ

Свойства системы:

- Ү соответствует видимой части спектра
- Х и Z описывают хроматическую компоненту
- Точки (1,0,0), (0,1,0), (0,0,1) мнимые базовые цвета
- X, Y, Z изменяются от 0 до ∞

Значения трехцветного XYZ для цвета, где $I(\lambda)$ — спектральная плотность какой-либо энергетической фотометрической величины :

$$X = \int_{380}^{780} I(\lambda)\bar{x}(\lambda)d\lambda$$

$$Y = \int_{380}^{780} I(\lambda)\bar{y}(\lambda)d\lambda$$

$$Z = \int_{380}^{780} I(\lambda)\bar{z}(\lambda)d\lambda$$

Цветовое пространство HSV (HSB)/HSI/HSL

$$I = \frac{R + G + B}{3}$$

$$L = \frac{\max(R, G, B) + \min(R, G, B)}{2}$$

$$V = \max(R, G, B)$$

Цветовое пространство YCbCr

Преобразование в пространство YCbCr:

$$Y = k_r R + (1 - k_g - k_b)G + k_b B$$

$$C_b = \frac{0.5}{1 - k_b}(B - Y)$$

$$C_r = \frac{0.5}{1 - k_r}(R - Y)$$

$$k_r + k_g + k_b = 1$$

 k_r , k_g , k_b — весовые коэффиценты

Источники для погружения в теорию цвета

Лекция: <u>Как устроен цвет - Дмитрий Николаев, заведующий сектором зрительных систем ИППИ РАН</u>

Статья: У цветового треугольника не два, а один угол

Статья: Как устроен формат JPEG

Применение цвета в задачах

Построение гистограмм по цветам для индексированного поиска

Применение цвета в задачах

Поиск по заданному цвету – кожа человека

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

Цифровое изображение

$$f(x,y) = \begin{bmatrix} f(0,0) & \cdots & f(0,n-1) \\ \vdots & \ddots & \vdots \\ f(m-1,0) & \cdots & f(m-1,n-1) \end{bmatrix}$$

0 \le f(x,y) \le L

Обычно L = 255 - uint8

Типы изображений

Бинарное (Binary)

В градации серого (Grayscale)

Цветное (Color)

Binary представление изображения

Grayscale представление изображения

Color представление изображения — один канал

Color представление изображения

Представление части изображения

Изображение содержит дискретное количество пикселей

Значение пикселя:

- «шкала серого»
- (или «интенсивность»): [0,255]

Представление части изображения

Изображение содержит дискретное количество пикселей

Значение пикселя:

– «grayscale» (или «интенсивность»): [0,255]

- «color»

- RGB: [R, G, B]

– Lab: [L, a, b]

- HSV: [H, S, V]

План лекции

- Теория цвета
- Представление изображения в компьютере
- Представление изображение в виде функции

- Изображения обычно цифровые (дискретные):
 - Пример 2D пространства на регулярной сетке
- Представлено в виде матрицы целочисленных значений

			m			P	ix	
	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
n]	176	135	5	188	191	68	0	49
•	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Декартовые координаты

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ & f[-1,1] & f[0,1] & f[1,1] \\ & \ddots & f[-1,0] & \underline{f[0,0]} & f[1,0] & \dots \\ & f[-1,-1] & f[0,-1] & f[1,-1] & \\ & \vdots & \ddots & \end{bmatrix}$$

Изображение как функция f от \mathbb{R}^2 до \mathbb{R}^M :

- f(x, y) дает интенсивность в позиции (x, y)
- Определяется через прямоугольник, с конечным диапазоном:

 $f: [a,b] \times [c,d] \rightarrow [0,255]$

Изображение как функция f от \mathbb{R}^2 до \mathbb{R}^M :

- f(x, y) дает интенсивность в позиции (x, y)
- Определяется через прямоугольник, с конечным диапазоном:

$$f: [a,b] \times [c,d] \to [0,255]$$

• Цветное изображение:
$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Гомогенные координаты

Обычные координаты

$$(x y)^T$$

$$R_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}$$

Гомогенные координаты

$$(sx\ sy\ s)^T$$
, где $s\neq 0$, но обычно $s=1$

$$\tilde{x} = \begin{pmatrix} x \\ 1 \end{pmatrix}$$

$$R_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0\\ \sin(\phi) & \cos(\phi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Аффинные трансформации

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & t_x \\ \sin(\phi) & \cos(\phi) & t_y \\ 0 & 0 & 1 \end{pmatrix}$$

Трансформация перспективы

$$P=egin{pmatrix} a&b&c\d&e&f\g&h&1 \end{pmatrix}$$
 $P_{33}=1$, т.к. $P\sim aP\ orall a
eq 0$

Трансформации

Transform of unit square	Name	Transformation matrix	DoF
10 24 10 10 10 10 10	Translation	$egin{pmatrix} 1 & 0 & t_1 \ 0 & 1 & t_2 \ 0 & 0 & 1 \end{pmatrix}$	2
34 25 34 15 00 00	Rotation	$egin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 \ \sin(\phi) & \cos(\phi) & 0 \ 0 & 0 & 1 \end{pmatrix}$	1
30 30 30 30 30 30 30 30	Rigid Body	$egin{pmatrix} \cos(\phi) & -\sin(\phi) & t_x \ \sin(\phi) & \cos(\phi) & t_y \ 0 & 0 & 1 \end{pmatrix}$	3
20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Affine	$\left(egin{array}{ccc} a & b & c \ d & e & f \ 0 & 0 & 1 \end{array} ight)$	6
	Projective Transform	$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{pmatrix}$	8

DoF – Degrees of Freedom

Оценка параметров. Аффинное преобразование

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} x'_i \\ y'_i \end{pmatrix} = \begin{pmatrix} x_i & y_i & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_i & y_i & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix} \longrightarrow$$

$$\longrightarrow \begin{pmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \\ x_3' \\ y_3' \end{pmatrix} = \begin{pmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix} \longrightarrow \mathbf{q} = M\mathbf{p} \longrightarrow \mathbf{p} = (M^{\top}M)^{-1}M^{\top}\mathbf{q}$$

Оценка параметров. Перспективное преобразование

$$\begin{pmatrix} x & y & 1 & 0 & 0 & 0 & -x'x & -x'y & -x' \\ 0 & 0 & 0 & x & y & 1 & -y'x & -y'y & -y' \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \begin{pmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & 0 & 0 & 0 & -x'_2x_2 & -x'_2y_2 & -x'_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -y'_2x_2 & -y'_2y_2 & -y'_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x'_3x_3 & -x'_3y_3 & -x'_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x'_4x_4 & -x'_4y_4 & -x'_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -y'_4x_4 & -y'_4y_4 & -y'_4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$min ||Mp||, ||p|| = 1$$

$$min ||DV^T p||, ||p|| = 1, q = V^T p$$

$$min ||DV^T p||, ||p|| = 1, q = V^T p$$

$$min ||Dq||, ||Vq|| = 1$$

$$min ||Dq||, ||Vq|| = 1$$

Итоги

- Рассмотрены цветовые пространства: RGB, XYZ, HSV, Lab, YCbCr
- Показаны виды представления изображений: Binary, Grayscale, Color
- Изучена интерпретация изображения в виде двумерной дискретной функции