Advanced Databases - Exercise Sheet No. 1 Solutions

Exercise I

- 1) BG \rightarrow DH \in F+
 - Compute closure of BG: BG+ = {B, G}
 - o $B \rightarrow D \Rightarrow add D \rightarrow \{B, G, D\}$
 - o $G \rightarrow A \Rightarrow add A \rightarrow \{A, B, G, D\}$
 - AB \rightarrow C \Rightarrow add C \rightarrow {A, B, C, D, G}
 - $CD \rightarrow E \Rightarrow add E \rightarrow \{A, B, C, D, E, G\}$
 - CE \rightarrow GH \Rightarrow add H \rightarrow {A, B, C, D, E, G, H} = U
 - \circ So, BG \rightarrow DH ∈ F+
- 2) CD → B ∉ F+
 - Compute closure of CD: CD+ = {C, D}
 - o CD → E \Rightarrow add E \rightarrow {C, D, E}
 - \circ CE \rightarrow GH \Rightarrow add G, H \rightarrow {C, D, E, G, H}
 - o G \rightarrow A \Rightarrow add A \rightarrow {A, C, D, E, G, H}
 - No dependency adds B
 - \circ So, CD \rightarrow B \notin F+
- 3) ABC \rightarrow DEG \in F+
 - Compute closure of ABC: {A, B, C}
 - o B \rightarrow D \Rightarrow add D \rightarrow {A, B, C, D}
 - o CD → E \Rightarrow add E \rightarrow {A, B, C, D, E}
 - \circ G → A \Rightarrow G not in closure yet
 - CE \rightarrow GH \Rightarrow C,E in closure \rightarrow add G,H \rightarrow {A,B,C,D,E,G,H} = U
 - \circ So, ABC \rightarrow DEG \in F+

Exercise II

- 1) CH → AE
 - Compute closure of CH: {C,H}
 - \circ $C \rightarrow E \Rightarrow \{C,H,E\}$
 - \circ $H \rightarrow B \Rightarrow \{C,H,E,B\}$

- BC \rightarrow D \Rightarrow B,C in closure \rightarrow add D \rightarrow {B,C,D,E,H}
- DE \rightarrow G \Rightarrow D,E in closure \rightarrow add G \rightarrow {B,C,D,E,H,G}
- DG \rightarrow A \Rightarrow D,G in closure \rightarrow add A \rightarrow {A,B,C,D,E,G,H} = U
- o So, CH → AE holds

2) BC → DEG

- \circ BC+ = {B,C}
- o BC → D \Rightarrow add D \rightarrow {B,C,D}
- $C \rightarrow E \Rightarrow add E \rightarrow \{B,C,D,E\}$
- DE \rightarrow G \Rightarrow D,E \rightarrow add G \rightarrow {B,C,D,E,G}
- $DG \rightarrow A \Rightarrow D,G \rightarrow add A \rightarrow \{A,B,C,D,E,G\}$
- o So, BC → DEG holds
- 3) ADEG → BC
 - O ADEG+ = {A,D,E,G}
 - DE \rightarrow G \Rightarrow already have G
 - DG \rightarrow A \Rightarrow already have A
 - The closure {A,D,E,G} doesn't contain B,C
 - o So, ADEG → BC does not hold

Exercise III

- 1) Attribute C must be in every key
 - No FD in F has C on the right-hand side, so C is not derivable from any other attributes. Thus, any key K (with K+=U) must contain C.
- 2) Keys of R(U)
 - A key (candidate key) is a minimal set of attributes that can determine all other attributes in the relation.
 - We can use the information from question 1 to narrow down our search for candidate keys: since C must be in every key, any candidate key must contain C.
 - Let's check the possible combinations (always start with the minimal sets, which are singleton attributes):

• {C}

Since C \rightarrow D so, C+ = {CD} \neq U

Thus, C is not a super key.

- {A}, {B}, {D}, {E}, {G}, {H} are not super keys because, from Question 1, every key of R
 must contain C.
- {A,C}

Check $\{A,C\}$

Compute $(AC)^+$:

- Start: $\{A,C\}$.
- $C \rightarrow D \Rightarrow \operatorname{add} D$.
- $AC \rightarrow B \Rightarrow \operatorname{add} B$.
- $\bullet \quad BD \to E \text{ (B and D present)} \Rightarrow \operatorname{add} E.$
- ullet BE o GH (B and E present) \Rightarrow add G,H.
- ullet G o A already have A.

Result:
$$(AC)^+ = \{A, B, C, D, E, G, H\} = U$$
. So $\{A, C\}$ is a superkey.

{A,C} is then a key because neither {A} nor {C} is a super key.

$$\{C\}+=\{C,D\} \neq U \text{ and } \{A\}+=\{A\} \neq U$$

• {B,C}

Compute $(BC)^+$:

- Start: $\{B,C\}$.
- $C \to D \Rightarrow \operatorname{add} D$.
- $ullet \ BD o E \Rightarrow \operatorname{add} E.$
- $BE o GH \Rightarrow \operatorname{add} G, H.$
- $G \to A \Rightarrow \operatorname{add} A$.

Thus $\{B,C\}+=U$, so $\{B,C\}$ is a super key

 $\{C,B\}$ is then a key since neither $\{C\}$, nor $\{B\}$ is a super key.

• {C,D}

 $C \rightarrow D$ only

Thus $\{C,D\}$ + = $\{C,D\} \neq U$, so $\{C,D\}$ is not a super key.

• {C,E}

 $C \rightarrow D$

 $CE \rightarrow CED$ (since $C \rightarrow D$)

Thus $\{C,E\}$ + = $\{C,E,D\} \neq U$, so $\{C,E\}$ is not a super key.

• {C,G}

Compute $(CG)^+$:

- Start: $\{C,G\}$.
- $C \to D \Rightarrow \operatorname{add} D$.
- $G \to A \Rightarrow \operatorname{add} A$.
- $AC \rightarrow B$ (A and C present) \Rightarrow add B.
- $BD \to E \Rightarrow \operatorname{add} E$.
- ullet $BE
 ightarrow GH \Rightarrow \operatorname{add} H$ (G already present).

Thus $\{C,G\}+=U$, so $\{C,G\}$ is a super key.

{C,G} is then a key since neither {C}, nor {G} is a super key.

• {C,H}

 $CH \rightarrow CHD$ (since $C \rightarrow D$)

Thus $\{C,H\}$ + = $\{C,H,D\} \neq U$, so $\{C,H\}$ is not a super key.

- Since {A, C}, {B, C}, and {C, G} are keys, any other key must include C but exclude
 A, B, and G; otherwise it would not be minimal.
- o Therefore, any other key must be sought among the attributes {C, D, E, H}.
- Nevertheless, $\{C,E,D,H\}+=\{C,E,D,H\}\neq U$. Therefore, no other key exists.
- Thus, the only keys are {A,C}, {C,B} and {C,G}.

Exercise IV

We need to check whether $F+\subseteq G+$ and $G+\subseteq F+$

- Check if F+ ⊆ G+
- \circ AB \rightarrow C is in both F and G
- \circ B \rightarrow A is in both F and G
- AD \rightarrow E is in both F and G (since in G, we have AD \rightarrow E)
- BD \rightarrow I is in both F and G (since in G, we have B \rightarrow A and AD \rightarrow EI, thus, using pseudotransitivity, BD \rightarrow EI, so, using decomposition rule, BD \rightarrow I)
- o Therefore, F+ ⊆ G+

- Check if G+ ⊆ F+
- \circ AB \rightarrow C is in both F and G
- \circ B \rightarrow A is in both F and G
- AD \rightarrow EI (AD \rightarrow ADE since AD \rightarrow E and we can't add other attributes
- o Thus, {A,D}+={A,D,E}
- o So, G+ ⊈ F+

Therefore, $F+ \neq G+$

Exercise V

ClientNum → ClientName

ProductNum → ProductName, VAT, UnitPrice

(ClientNum, ProductNum, Date) → Number

1- A candidate key is a minimal attribute set whose closure contains all attributes. Single attributes obviously don't determine everything. Therfore, let's Compute closure of {ClientNum, ProductNum, Date}

Compute closure of {ClientNum, ProductNum, Date}:

- It trivially contains ClientNum, ProductNum, Date.
- From ClientNum → ClientName we get ClientName.
- From ProductNum → ProductName, VAT, UnitPrice we get ProductName, VAT, UnitPrice.
- From (ClientNum, ProductNum, Date) → Number we get Number.
 So {ClientNum, ProductNum, Date}⁺ contains every attribute → it is a super key.

Check minimality:

- {ClientNum, ProductNum} does **not** determine Number or Date.
- {ClientNum, Date} does not determine ProductNum (hence not product attributes or Number).
- {ProductNum, Date} does not determine ClientNum (hence not ClientName or Number).

Therefore, the only candidate key (under these FDs) is:

(ClientNum, ProductNum, Date).

2- The table COMMANDE is in 1NF because all attributes are atomic, and rows are uniquely identifiable.

The table though is not in 2NF because there are some non-key attributes that depend just on part of the primary key, e.g., ClientNum → ClientName.

3- Decomposed table:

CLIENT(ClientNum, ClientName)

PRODUCT(**ProductNum**, ProductName, VAT, UnitPrice)

COMMANDE(ClientNum, ProductNum, Date, Number)

Exercise VI

1- To check all the keys, we always start with the minimal sets, which are singleton attributes.

Compute closures:

- A^+ : from A o BC get B,C. From C o AD get D (and A already). From CD o BEF get E,F. So $A^+=\{A,B,C,D,E,F\}=U$. \Rightarrow A is a key.
- $C^+\colon C o AD$ gives A,D. From A o BC get B. From CD o BEF get E,F. So $C^+=U$. \Rightarrow **C** is a key.
- $E^+\colon E o ABC$ gives A,B,C. From C o AD get D. From CD o BEF get E,F. So $E^+=U$. \Rightarrow **E** is a key.
- F^+ : F o CD gives C, D. From C o AD get A. From A o BC get B. From CD o BEF get E. So $F^+ = U$. \Rightarrow F is a key.

No smaller subset than a single attribute can be a key, and we found these four single-attribute keys.

 $B+ \neq U$ and $D+ \neq U$ so, neither B or D is super key.

Thus, all candidate keys are: A, C, E, F.

- 1- R is in 3NF because:
 - R is in 2NF: the keys of R are single attributes, and the non-key attributes B and D therefore cannot depend on any proper subset of a key.
 - R is in 3NF: About D and B: D (respectively B) can only be determined by a set of attributes that contains B (respectively D) and is not a super key, but such a set would have to be exactly {B} (respectively {D}).
 - o In other words, there is no attribute set K such that K is not a super key and K \rightarrow D (respectively K \rightarrow B).