CS 517: Computational Complexity

prof = Mike Rosulek <rosulekm@eecs>

TA = Ni Trieu <trieun@oregonstate>

website = Canvas

textbook = online lecture notes

HW1 out, due next Fri

Overview

- What is computational complexity about?
- Prerequisites
- "I heard this class is impossible"
- Diagonalization

What complexity is about

- What problems can/cannot be computed with given resources?
 - Resource = time, memory, randomness, nondeterminism, interaction...

- How much do different resources help?
 - Is memory more valuable than time? Is randomness more valuable than nondeterminism?

What complexity is about

 What makes some computational problems harder than others?

 How can I {recognize, prove} that a particular problem can't be solved efficiently?

Prerequisites

- How to make a logical mathematical argument
 - Induction, contrapositive, etc
- If not:
 - ??

 Goal: your mathematical communication skills (precision, coherence) will improve in this course

- Classic undergrad algorithms
 - Dynamic programming
 - Graph search algorithms
 - Understanding resource usage of an algorithm
- If not:
 - Take cs325 or cs515 first

Basics of Turing machines

- Definitions, concepts
- "languages" (decision problems)

• If not:

- Read Erickson section 6 (TMs) for refresher.
- If you've literally never seen anything like this, then we should talk.

(Aside: Why Turing machines?)

- Need some mathematical definition to formally reason about computation in general
- Historical importance
- Very low-level model (only a few basic operations)
 - Makes reasoning about computation easier
 - Makes programming harder (not our concern in this course)

 In the end, choice isn't crucial anyway (any "reasonable" model will be equivalent)

- That Turing machines are robust to changes in the computational model
 - In most cases, adding features to a TM doesn't change what problems can be solved
 - e.g.: adding tapes, two-way infinite tapes, etc.

- If not:
 - Read Erickson section 6.6 (TMs)

- That universal Turing machines exist
 - A TM's "source code" can be encoded as a string and given to another TM as input
 - A universal TM takes input (M,x) and runs TM M on input x
 - Modern analogy: you can write a C++ compiler in C++

ok to say "simulate M on input x"
• If not: even if M,x determined @ runtime

- Read Erickson section 6.8, 7.1 (TMs, universal models)

"I heard this class was impossible"

My perspective on a hard course

- My goal is for all CS PhD students to benefit from this course
- Achieving this goal is still a work in progress
- Every CS PhD can benefit from:
 - Understanding what problems can/can't be computed with certain resource constraints
 - Improving their skills in communicating mathematical (especially algorithmic) ideas

Course structure

- Lectures, reading
- Homework problem sets (maybe 1 problem per lecture)
- Final exam
 - Likely individualized
 - Subset of homework problems

Diagonalization method

- Cardinality A = A = A + B• Definition: |A| = |B| if there is a bijection $f: A \to B$
 - Even if A,B are infinite sets

- rationals

- "A & B have same **cardinality**" (there are other useful measures of "size")
- These sets all have same cardinality:

$$-\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \{0,1\}^* = \{ \epsilon, 6, 1, 60, 61, 10, 11, 600, \dots \}$$

- ℝ, P(ℕ)

$$Ex$$
: N and $\{0, 2, 4, \dots\}$, bijection $f: N \rightarrow \{0, 2, \dots\}$

$$f(x) = 2x$$

- Theorem: |X| ≠ |P(X)| for every set X (even infinite)
 - Corollary: $|\mathbb{Q}| = |\mathbb{N}| \neq |P(\mathbb{N})| = |\mathbb{R}|$
 - "there are 'more' real numbers than naturals/rationals"

- Suffices to show:
 - There is no surjective (onto) function f : X → P(X)
 - Every f always "misses" at least one item in P(X)

edge case:
$$X = \emptyset$$
: $|X| = 0$
 $P(X) = \{\emptyset\}$ $|P(X)| = 1$

- Theorem: no surjective function $f: X \rightarrow P(X)$
- One-line proof: $\{x \in X \mid x \notin f(x)\}$ in P(X) but is never the output of f

• **Theorem**: no surjective function f : X → P(X)

Idea: take
$$f: X \rightarrow P(X)$$
,

each $f(x) \in P(X) \Rightarrow f(x)$ is subset of X

write f as table

 $x_1 \times x_2 \xrightarrow{---} x_1$

$$f(x_1) = \{x_2, x_3...\}$$

 $f(x_2) = \emptyset$
 $f(x_3) = \{x_1, ...\}$

• **Theorem**: no surjective function f : X → P(X)

obs: fis onto if every sequence of 9/1 appears somewhere as a Row in this table,

Claim: complemented disagrees w/ every Now of table

=> disagrees with nth row in (at least) nth position

Diagonalization as a technique

- Goal: construct a set D that disagrees with all candidates in some list
 - e.g., all possible outputs of f

How?

- Disagree with 1st candidate on whether 1st item is in/out of the set
- Disagree with 2nd candidate on whether 2nd item is in/out

- ...