STAT 403 HW1

Chongyi Xu

April 4, 2018

Questions

1. Let X_1, \dots, X_n be IID random points from $Exp(1/\beta)$. The PDF of $Exp(1/\beta)$ is

$$p(x) = \frac{1}{\beta}e^{-x/\beta}$$

for $x \ge 0$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample average. Let β be the parameter of interest that we want to estimate.

(a) What is the bias and variance of using the sample average \bar{X}_n as the estimator of β ?

The population mean will be $\mu = \mathbb{E}(X_n) = \beta$. Since we are using the sample average as the estimator, $\hat{\beta} = \bar{X}_n$, then

bias
$$(\hat{\beta}_n) = \mu - \mu = 0$$
, $\operatorname{Var}(\hat{\beta}_n) = \frac{\beta^2}{n}$

(b) What is the mean square error of using \bar{X}_n as the estimator of β ?

$$\mathbf{MSE}(\hat{\beta_n}) = \mathbf{Var}(\hat{\beta_n}) + \mathbf{bias}^2(\hat{\beta_n}) = \mathbf{Var}(\hat{\beta_n}) = \frac{\beta^2}{n}$$

(c) Does $\bar{X_n}$ converges to β ? Why?

From the calculation above, we can see that $\mathbf{bias}(\hat{\beta}_n) = 0$ for all n and $\mathbf{Var}(\hat{\beta}_n) = \frac{\beta^2}{n}$ converge to 0 as $n \to \infty$. Therefore, the estimator $\hat{\beta}_n = \bar{X}_n$ converges to β .

(d) Now consider a new estimator $\hat{\beta}_n = a * \bar{X}_n$, where $a \in \mathbb{R}$ is a real number. What is the mean square error of $\hat{\beta}_n$?

Similar to what we did in part(a), and the variance will not change since the estimator just gets scaled.

bias
$$(\hat{\beta}_n) = a * \mu - \mu = (a - 1)\mu, \ Var(\hat{\beta}_n) = \frac{\beta^2}{n}$$

Therefore, the mean square error will be

$$\mathbf{MSE}(\hat{\beta_n}) = \mathbf{Var}(\hat{\beta_n}) + \mathbf{bias}^2(\hat{\beta_n}) = \frac{\beta^2}{n} + (a-1)^2 \mu^2$$

(e) To mimimize the mean square error, which value of a should we take? Does this give us an estimator that has a lower mean square error than the sample mean \bar{X}_n ?

From the equation of MSE above, we can see that the minimum value of MSE according to a happens at

$$\frac{d}{da}\mathbf{MSE}(\hat{\beta_n}) = 2\mu^2(a-1) = 0 \Rightarrow a = 1$$

So the value of a to minimize the mean square error is 1, which is the same as the estimator using sample mean \bar{X}_n .

1

2. Use R to plot the function $f(x) = e^{-sin(x)} * cos(\pi x)$ for $x \in [-10, 10]$

library(ggplot2)

$$f(x) = e^{-sinx}cos(\pi x)$$

3. Use R to generate 5000 data points from $N(2, 2^2)$. Plot the density histogram with 50 bins. Attach a density curve of $N(2, 2^2)$ to the histogram.

Density Plot of $N(2, 2^2)$

- 4. Let $X_1, X_2 \ Uni[2,4]$. Let $\bar{X_2}$ be the sample mean.
- (a) Use the for loop to generate at least 100000 realizations of \bar{X}_2 and plot the corresponding histogram.

```
xbar <- vector(length=100000)
for (n in 1:100000) {
    x1 <- runif(n=1, min=2, max=4)
    x2 <- runif(n=1, min=2, max=4)
    xbar[n] <- mean(c(x1, x2))
}
dat <- data.frame(xbar=xbar)

p <- ggplot(dat, aes(x=xbar)) +
    geom_histogram(aes(y=..density..), colour="black", fill="grey", bins=50) +
    ggtitle(expression(paste("Density Histogram of ", bar(X[2])))) +
    theme(plot.title = element_text(hjust = 0.5))
p</pre>
```

Density Histogram of $\overline{X_2}$

(b) The density curve of $\bar{X_2}$ is

$$p(x) = \begin{cases} x - 2, & \text{when } 2 \le x \le 3\\ 4 - x, & \text{when } 3 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

Attach the corresponding density curve of $\bar{X_2}$ to the histogram.

```
size=nrow(dat)
px <- vector(length=size)
x <- seq(from=2, to=4, by=(4-2)/size)
for (i in 1:length(x)) {
   if (x[i] <= 3) {
      px[i] <- x[i] - 2
   } else {
      px[i] <- 4 - x[i]
   }
}
p + geom_line(aes(x=x[1:length(x)-1],y=px[1:length(px)-1]), color="red")</pre>
```


