### Induction (Chapter 5)

#### **Announcement:**

- ♦HW5 is due now
- ♦HW6 has been posted

#### **Proofs**

1. Direct proof

$$P \rightarrow Q$$

2. Indirect proof

$$\neg Q \rightarrow \neg P \ (P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P)$$

3. Proof by contradiction

$$(P \land \neg Q) \rightarrow (\neg P \lor Q)$$

3

### Rational Numbers an Easier Characterization

Recall the set of rational numbers **Q** = the set of numbers with decimal expansion which is periodic past some point (I.e. repeatinginginginginginging...)

Easier characterization

 $\mathbf{Q} = \{ p/q \mid p,q \text{ are integers with } q \neq 0 \}$ Prove that the sum of any irrational number with a rational number is irrational:

4

### Reductio Ad Absurdum Example –English!

You don't have to use a sequence of formulas. Usually an *English* proof is preferable! EG: Suppose that claim is false. So [x] is rational and y irrational] [=P] and [x+y] is rational [=-Q]. But y=(x+y)-x. The difference of rational numbers is rational since a/b-c/d=(ad-bc)/bd. Therefore [y] must be rational]  $[implies \neg P]$ . This contradicts the hypotheses so the assumption that the claim was false was incorrect and the claim must be **true**.

5

### Proofs Disrefutation

Disproving claims is often much easier than proving them.

Claims are usually of the form  $\forall k \ P(k)$ . Thus to disprove, enough to find one k—called a **counterexample**—which makes P(k) false.

6

## Disrefutation by Counterexample

Disprove: The product of irrational numbers is irrational.

- 1. Let  $x = \sqrt{2}$  and  $y = \frac{1}{\sqrt{2}}$ . Both are irrational.
- 2. Their product  $xy = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1$  is rational.

7

#### Overview

**Mathematical Induction Proofs** 

- Well Ordering Principle
- Simple Induction
- Strong Induction (Second Principle of Induction)
- Program Correctness
  - Correctness of iterative Fibonacci program

Suppose we have a sequence of propositions which we would like to prove:

$$P(0), P(1), P(2), P(3), P(4), \dots P(n), \dots$$

EG: P(n) =

"The sum of the first n positive odd numbers is the n<sup>th</sup> perfect square"

We can picture each proposition as a domino:



#### **Mathematical Induction**

So sequence of propositions is a sequence of dominos.



When the domino falls, the corresponding proposition is considered true:



#### **Mathematical Induction**

When the domino falls (to right), the corresponding proposition is considered true:



Suppose that the dominos satisfy two constraints.

- 1) Well-positioned: If any domino falls (to right), next domino (to right) must fall also. P(n)
- 2) First domino has fallen to right



#### **Mathematical Induction**

Suppose that the dominos satisfy two constraints.

- 1) Well-positioned: If any domino falls to right, the next domino to right must fall also.

  P(n) P(n+1)
- 2) First domino has fallen to right



Suppose that the dominos satisfy two constraints.

1) Well-positioned: If any domino falls to right, the next domino to right must fall also.



2) First domino has fallen to right



#### **Mathematical Induction**



Then can conclude that all the dominos fall!



#### **Mathematical Induction**



Then can conclude that all the dominos fall!



### **Mathematical Induction**



Then can conclude that all the dominos fall!



#### **Mathematical Induction**



Then can conclude that all the dominos fall!



### Mathematical Induction Principle of Mathematical Induction:

If:

- 1) [**basis**] P(0) is true
- 2) [*induction*]  $\forall n \ P(n) \rightarrow P(n+1)$  is true



Then:

 $\forall n P(n)$  is true

This formalizes what occurred to dominos.

EG: Prove  $\forall n \ge 0$  P(n) where P(n) = "The sum of the first n positive odd numbers is the n<sup>th</sup> perfect square."

$$= \sum_{i=1}^{n} (2i-1) = n^2$$

## Mathematical Induction Example.



Geometric interpretation. To get next square, need to add next odd number:



# Mathematical Induction Example.



Geometric interpretation. To get next square, need to add next odd number:



# Mathematical Induction Example.

|      | , |  |  |  |
|------|---|--|--|--|
| 1    |   |  |  |  |
| +3+5 |   |  |  |  |
| +5   |   |  |  |  |
| +7   |   |  |  |  |
|      |   |  |  |  |
|      |   |  |  |  |
|      |   |  |  |  |

Geometric interpretation. To get next square, need to add next odd number:



# Mathematical Induction Example.

| 1        |  |  |  |  |
|----------|--|--|--|--|
| +3       |  |  |  |  |
| +5       |  |  |  |  |
| +7<br>+9 |  |  |  |  |
| +9       |  |  |  |  |
| +11      |  |  |  |  |
|          |  |  |  |  |

Geometric interpretation. To get next square, need to add next odd number:



## Mathematical Induction Example.



 $\sum_{i=1}^{n} (2i-1) = n^2$  Example

 $\overline{i=1}$  Every induction proof has two parts, the basis and the induction step.

Basis: Show that the statement holds for *n* = 0 (or whatever the smallest case is). Usually the hardest thing about the base case is understanding what is meant when n=0 (or smallest case). In our case, plugging in 0, we would like to show that:

$$\sum_{i=0}^{\infty} (2i - 1) = 0^2$$

This seems confusing. RULE: The sum of nothing is 0. So apply rule to get 0=0. ✓

### **Mathematical Induction**

 $\sum_{i=1}^{n} (2i-1) = n^2$  **Example**Show that if statement holds for n, then statement holds for n+1. For formulas, this amounts to playing around with formula for *n* and algebraically deriving the formula for n+1 (in this case, go in

reverse): 
$$\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + [2(n+1)-1]$$

$$= n^2 + [2n+1]$$
 (induction hypothesis)  
=  $(n+1)^2$  This completes proof.

## Proof of Induction Well Ordering Property

A fundamental axiom about the natural numbers:

**Well Ordering Property:** Any *non-empty* subset S of  $\mathbf{N}$  has a smallest element! Q1: What's the smallest element of the set  $\{ 16.99+1/n \mid n \in \mathbf{Z}^+ \}$ ? Q2: How about  $\{ \lfloor 16.99+1/n \rfloor \mid n \in \mathbf{Z}^+ \}$ ?

## Proof of Induction Principle Well Ordering Property

```
A1: { 16.99+1/n | n ∈ Z<sup>+</sup> } doesn't have a smallest element (though it does have limit-point 16.99)! Well-ordering principle does not apply to subsets of R.
A2: 16 is the smallest element of { 16.99+1/n | n ∈ Z<sup>+</sup> }.
(EG: set n = 101)
```