Deconfined Quantum Critical Points

Leon Balents

T. Senthil, MIT
A. Vishwanath, UCB
S. Sachdev, Yale
M.P.A. Fisher, UCSB

Outline

- Introduction: what is a DQCP
- "Disordered" and VBS ground states and gauge theory
- Gauge theory defects and magnetic defects
- Topological transition
- Easy-plane AF and Bosons

What is a DQCP?

- Exotic QCP between two conventional phases
- Natural variables are emergent, fractionalized degrees of freedom – instead of order parameter(s)
 - "Resurrection" of failed U(1) spin liquid state as a QCP
- Violates Landau rules for continuous CPs
- Will describe particular examples but applications are much more general
 - c.f. Subir's talk

Deconfined QCP in 2d s=1/2 AF

small confinement scale since 4-monopole fugacity is "dangerously irrelevant "

$$\mathcal{L} = |(\partial_{\mu} - iA_{\mu})z_{\alpha}|^{2} + s|z|^{2} + u(|z|^{2})^{2} + \kappa (\epsilon_{\mu\nu\kappa}\partial_{\nu}A_{\kappa})^{2}$$

Pictures of Critical Phenomena

Wilson: RG

scale invariant field theory with 1 relevant operator

 Landau-Ginzburg Wison:

$$F = \int d^{d}x \, |\nabla |^{2} + r|\psi|^{2} + u|v|^{4}$$

expansion of free energy (action) around disordered state in terms of order parameter

Systems w/o trivial ground states

- Nothing to perform Landau expansion around!
- s=1/2 antiferromagnet
- bosons with non-integer filling, e.g. f=1/2

 Any replacement for Landau theory must avoid unphysical "disordered" states

Spin Liquids

Anderson...

- Non-trivial spin liquid states proposed
 - -U(1) spin liquid (uRVB)

Kivelson, Rokhsar, Sethna, Fradkin Kotliar, Baskaran, Sachdev, Read Wen, Lee...

$$|\Psi\rangle =$$
 + ...

 Problem: described by compact U(1) gauge theory (= dimer model)

$$E_{ij} = \begin{cases} +1 & i \in A \\ -1 & i \in B \end{cases}$$

$$(\vec{E})_i = \pm 1$$

$$H = u \sum_{\langle ij \rangle} E_i^2 - K \sum_{\square} \cos(\epsilon_{ij} \Delta_i A_j)$$

Polyakov Argument

- Compact U(1):
 - -E=integer
 - $-A $A+2\pi$

$$H = u \sum_{\langle ij \rangle} E_i^2 - K \sum_{\square} \cos(\epsilon_{ij} \Delta_i A_j)$$

- For uÀ K, clearly E_{ij} must order: VBS state
- For KÀ u: E_{ii} still ordered due to "monopoles"

$$ec{\Delta} \cdot ec{B} = 2\pi Q \delta(x) \delta(au)$$
 flux cha

flux changing event

"confinement" (Polyakov): monopole events imply strong flux fluctuations

Dual E field becomes concentrated in lines

 $[E_i,A_i]=i$

Monopoles and VBS

- Unique for s=1/2 system: $(\vec{\Delta} \cdot \vec{E})_i = \pm 1$
- Single flux carries discrete translational/rotational quantum numbers: "monopole Berry phases"

Haldane, Read-Sachdev, Fradkin

- only four-fold flux creation events allowed by square lattice symmetry
- *single* flux creation operator ψ^y serves as the VBS order parameter ψ » ψ_{VBS}

Read-Sachdev

- For pure U(1) gauge theory, quadrupling of monopoles is purely quantitative, and the Polyakov argument is unaffected:
 - U(1) spin liquid is generically unstable to VBS state due to monopole proliferation

Neel-VBS Transition

Gelfand et al Kotov et al Harada et al

J₁-J₂ model

- Question: Can this be a continuous transition, and if so, how?
 - Wrong question: Is it continuous for particular model?

Models w/ VBS Order

$$H = 2J \sum_{\langle ij \rangle} S_i^x S_j^x + S_i^y S_j^y$$

$$-K \sum_{ijkl \in \Box} (S_i^+ S_j^- S_k^+ S_l^- + S_i^- S_j^+ S_k^- S_l^+)$$

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino,

B. Phys. Rev. Lett. 89, 247201 (2002)

Spin+Dimer Model=U(1) Gauge Theory

$$b_{i\uparrow}^{\dagger}b_{i\uparrow} = 1$$
 $E_{ij} = \begin{pmatrix} +1 & i \in A \\ -1 & i \in B \end{pmatrix}$

$$(\vec{\Delta} \cdot \vec{E})_i = \eta_i (b_{i\alpha}^{\dagger} b_{i\alpha} - 1)$$

 $b_{i\alpha}^{\dagger}$ creates spinon

CP¹ U(1) gauge theory

Some manipulations give:

$$ec{n} \sim z_{lpha}^{\dagger} ec{\sigma}_{lphaeta} z_{eta}^{}$$
 spinon

$$\mathcal{L} = |(\partial_{\mu} - iA_{\mu})z_{\alpha}|^{2} + s|z|^{2} + u(|z|^{2})^{2} + \kappa (\epsilon_{\mu\nu\kappa}\partial_{\nu}A_{\kappa})^{2}$$

+ quadrupled monopoles

- Phases are completely conventional:
 - -s<0: spinons condense: Neel state $\vec{n}\sim\langle z_{lpha}^{\dagger}
 angle \vec{\sigma}_{lphaeta}\langle z_{eta}
 angle$
 - -s>0: spinons gapped: U(1) spin liquid unstable to VBS state
 - -s=0: QCP?
- What about monopoles? "Flux quantization"
 - -In Neel state, flux § 2π is bound to skyrmion
 - -Monopole is bound to "hedgehog"

Skyrmions

Time-independent topological solitons – bound to flux

Integer "index"
$$Q=\frac{1}{4\pi}\int d^2r\,\hat{n}\cdot\partial_x\hat{n}\times\partial_y\hat{n}=\Phi/2\pi$$
 conserved for smooth configurations

observed in QH Ferromagnets

Hedgehogs

- •Monopole is bound to a "hedgehog" action » ρ_s L in AF
 - singular at one space-time point but allowed on lattice

Hedgehogs=Skyrmion Creation Events

$$|Q=1\rangle = 0$$

$$\psi^{\dagger}|Q=0\rangle$$

$$\Delta Q = +1$$

note"singularity"at origin

Hedgehogs=Skyrmion Creation Events

Fugacity Expansion

 Idea: expand partition function in number of hedgehog events:

$$Z = Z_0 + \int_{r_1} \lambda(r_1) Z_1[r_1] + \frac{1}{2} \int_{r_1, r_2} \lambda(r_1) \lambda(r_2) Z_2[r_1, r_2] + \cdots$$

- $-\lambda = quadrupled$ hedgehog fugacity
- -Z₀ describes "hedgehog-free O(3) model"
- Kosterlitz-Thouless analogy:
 - λ "irrelevant" in AF phase
 - λ "relevant" in PM phase
 - -Numerous compelling arguments suggest λ is *irrelevant* at QCP (quadrupling is crucial!)

Topological O(3) Transition

- Studied previously in classical O(3) model with hedgehogs forbidden by hand (Kamal+Murthy. Motrunich+Vishwanath)
 - Critical point has modified exponents (M-V)

$$\langle \vec{N}_r \cdot \vec{N}_0 \rangle \sim \frac{1}{r^{1+\eta}}$$
 $\eta_{O(3)}$ ¼ .03 $\eta_{TO(3)}$ ¼ .6-.7
$$1/T_1 \text{ " } T^{\eta} \qquad \qquad \text{very broad spectral fnctns}$$

- Same critical behavior as monopole-free CP1 model

$$\mathcal{L} = |(\partial_{\mu} - iA_{\mu})z_{\alpha}|^{2} + s|z|^{2} + u(|z|^{2})^{2} + \kappa (\epsilon_{\mu\nu\kappa}\partial_{\nu}A_{\kappa})^{2}$$

· RG Picture:

Easy-Plane Anisotropy

e.g. lattice bosons

• Add term
$$\Delta S = v \int d^3 r \, n_z^2$$

$$n^+ \sim e^{i\phi}$$

- Effect on Neel state
 - -Ordered moment lies in X-Y plane
 - -Skyrmions break up into *merons*

$$\oint \vec{\nabla} \phi \cdot d\vec{\ell} = 2\pi$$

two "flavors" of vortices with "up" or "down" cores

$$n^+ = z_1^* z_2$$

vortex/antivortex
 in z₁/z₂

Vortex Condensation

- Ordinary XY transition: proliferation of vortex loops
 - Loop gas provides useful numerical representation

 Topological XY transition: proliferation of two distinct types of vortex loops

Stable if "up" meron does not tunnel into "down" meron

Up-Down Meron Tunneling= Hedgehog

Up/Down Meron Pair = Skyrmion

$$n_1 + in_2 = 2w/(1 + |w|^2)$$

 $n_3 = (1 - |w|^2)/(1 + |w|^2)$

$$w = \frac{z - a}{z - b}$$

VBS Picture

Discrete Z₄ vortex defects carry spin ½
 -Unbind as AF-VBS transition is approached

• Spinon fields \mathbf{z}_{α}^{*} create these defects

Implications of DQCP

- Continuous Neel-VBS transition exists!
- Broad spectral functions η» 0.6
 - Neutron structure factor $\chi(k_i,\omega) \sim \frac{1}{k^{2-\eta}} F\left(\frac{\omega}{ck},\frac{\hbar\omega}{k_BT}\right)$
 - NMR 1/T₁ » T^η
- Easy-plane anisotropy
 - application: Boson superfluid-Mott transition?
 - self-duality
 - reflection symmetry of T>0 critical lines
 - Same scaling of VBS and SF orders
 - Numerical check: anomalously low VBS stiffness

Conclusions

- Neel-VBS transition is the first example embodying two remarkable phenomena
 - Violation of Landau rules (confluence of two order parameters)
 - Deconfinement of fractional particles
- Deconfinement at QCPs has much broader applications - e.g. Mott transitions

The David and Lucile Packard Foundation

Thanks: Barb Balents + Alias