# V семестр

Лектор: Виктор Львович Селиванов Записывали: Глеб Минаев, Иван Кабашный Редактировал: Борис Алексеевич Золотов

# МКН СПбГУ, осень 2022

# Содержание

| 1 | Логика предикатов |                           |                                                 |   |
|---|-------------------|---------------------------|-------------------------------------------------|---|
|   | 1.1               | Истинность и доказуемость |                                                 |   |
|   |                   | 1.1.1                     | Структура                                       | 1 |
|   |                   | 1.1.2                     | Термы и формулы                                 | 2 |
|   |                   | 1.1.3                     | Значение термов и формул                        | 3 |
|   |                   | 1.1.4                     | Ультрафильтры                                   | 3 |
|   |                   | 1.1.5                     | Декартово и фильтрованное произведения структур | 5 |
|   |                   | 1.1.6                     | Теорема Гёделя о компактности                   | 6 |

# 1 Логика предикатов

# 1.1 Истинность и доказуемость

# 1.1.1 Структура

Бурбаки классифицировал структуры как:

- 1) операции,
- 2) частичные порядки,
- 3) топологические структуры.

Последние не имеют приложения в логике — их мы рассматривать не будем. "Операции" — это структуры алгебраические, "частичные порядки" — это структуры, снабжённые каким-либо отношением.

**Определение 1.** *Сигнатура* — набор функциональных, предикатных и константных символов вместе с функцией, задающей арность этих символов.

Функциональные символы интерпретируются как функции  $A^n \to A$ , предикатные символы — как функции  $A^m \to \{u; \pi\}$ , а константы — как элементы A (или, что равносильно, функции  $\{\varnothing\} \to A$ ).

Будем называть  $\sigma$ -структурой (структурой сигнатуры  $\sigma$ ) пару (A,I), где A — непустое множество, а I — интерпретация сигнатурных символов  $\sigma$  в A.

**Пример 1.** Сигнатура упорядоченного кольца —  $\langle +, \cdot; <; 0, 1 \rangle$ . Можно добавить вычитание и взятие противоположного, но они выражаются в имеющейся сигнатуре.

**Определение 2.**  $\mathbb{A}$ ,  $\mathbb{B}-\sigma$ -структуры. Тогда отображение  $\varphi:\mathbb{A}\to\mathbb{B}$  называется гомоморфизмом, если оно задаёт  $\varphi:A\to B$ , что для всякой функции  $f^n$  из сигнатуры  $\sigma$  и для всяких  $a_1,\ldots,a_n\in A$ 

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)),$$

для всякого предиката  $P^m$  в сигнатуре  $\sigma$  и всяких  $a_1,\ldots,a_m\in A$ 

$$P_A(a_1,\ldots,a_m) \implies P_B(\varphi(a_1),\ldots,\varphi(a_m))$$

и для всякой константы c сигнатуры  $\sigma$ 

$$\varphi(c_A) = c_B.$$

 $\varphi$  — изоморфизм, если  $\varphi$  — гомоморфизм, биективен, и  $\varphi^{-1}$  — гомоморфизм.

 $\mathbb A$  называется nodcmpyкmypoù  $\mathbb B$  ( $\mathbb A\subseteq\mathbb B$ ), если  $A\subseteq B$  и  $\varphi:A\to B, a\mapsto a$  гомоморфизм.

### 1.1.2 Термы и формулы

**Определение 3.** Фиксируем некоторое множество V — "множество переменных" — символы  $\land$ ,  $\lor$ ,  $\rightarrow$ ,  $\neq$  и символы  $\forall x$  и  $\exists x$  для всякого  $x \in V$ .

*Терм* — это понятие, рекурсивно определяемое следующими соотношениями:

- переменная терм,
- константа терм,
- для всяких термов  $t_1, \ldots, t_n$  и функции  $f^n$  выражение  $f(t_1, \ldots, t_n)$  терм.

 $\Phi$ ормула — это понятие, рекурсивно определяемое следующими соотношениями:

- для всяких термов  $t_1$ ,  $t_2$  выражение  $t_1 = t_2$  формула,
- для всяких предиката  $P^n$  из  $\sigma$  и термов  $t_1, \ldots, t_n$  выражение  $P(t_1, \ldots, t_n)$  формула,
- для всяких формул  $\varphi$  и  $\psi$  выражения  $\varphi \land \psi$ ,  $\varphi \lor \psi$ ,  $\varphi \to \psi$ ,  $\neq \varphi$  формулы,

ullet для всяких формулы  $\varphi$  и переменной x выражения  $\forall x \varphi$  и  $\exists x \varphi$  — формулы.

 $\operatorname{For}_{\sigma}$  — множество всех формул с сигнатурой  $\sigma$ .

**Пример 2.** В кольцах всякий терм можно свести к полиному с целыми коэффициентами. В мультипликативных группа — моному с целым коэффициентов.

**Задача 1.** Семейства термов и формул задаются контекстно свободными грамматиками.

**Определение 4.** Переменная x называется csofodhoй в формуле  $\varphi$ , если есть вхождение x не покрывается никаким квантором  $\forall x$  и никаким квантором  $\exists x$ .  $\mathrm{FV}(\varphi)$  — множество всех свободных переменных формулы  $\varphi$ .

# 1.1.3 Значение термов и формул

**Определение 5.** Пусть t — терм в сигнатуре  $\sigma$ , а  $\mathbb{A}$  —  $\sigma$ -структура. Тогда  $t^{\mathbb{A}}:A^n\to A$  — означивание t, некоторая функция, полученная подставлением вместо констант их значений в  $\mathbb{A}$  и последующим рекурсивным означиванием по синтаксическому дереву t. Аналогично получается означивание формулы  $f^{\mathbb{A}}:A^n\to \{\mathfrak{u};\pi\}$ .

**Определение 6.** Предложение в сигнатуре  $\sigma$  — формула без свободных переменных.

$$\varphi^{\mathbb{A}} \in \{T, F\},$$
 
$$\varphi^{\mathbb{A}} = T \Longleftrightarrow \mathbb{A} \models \varphi.$$

**Определение 7.** *Моделью* данного множества предложения  $\Gamma$  называется структура, в которой все предложения из  $\Gamma$  истины. Если  $\mathbb{A}$  — это модель, то иногда пишут  $\mathbb{A} \models \Gamma$ .

Если  $\Gamma$  — множество предложений,  $\varphi$  — предложение. Говорят, что  $\varphi$  логически следует из  $\Gamma$  ( $\Gamma \models \varphi$ ), если  $\varphi$  истино в любой модели  $\Gamma$ .

**Определение 8.** Предложение  $\varphi$  называется тождественно истино, если оно истино в любой структуре. Иногда пишут  $\models \varphi$ .

#### Утверждение 1.

- $\Gamma \models \varphi$  тогда и только тогда, когда  $\Gamma \cup \{\neg \varphi\}$  не имеет модели.
- ullet  $\varphi$  тождественная истина тогда и только тогда, когда  $\models \varphi$ .
- $\Gamma$  конечное;  $\Gamma \models \varphi$  тогда и только тогда, когда  $(\land \Gamma) \rightarrow \varphi$  тожественная истина.

#### 1.1.4 Ультрафильтры

**Определение 9.** Пусть I — непустое множество.  $\Phi$ ильтром на множестве I называется непустое множество  $F \subseteq \mathcal{P}(I)$  (где  $\mathcal{P}(I)$  — множество всех подмножеств), которое не содержит  $\emptyset \subset I$ , а также замкнуто относительно пересечения:

$$\forall A, B \in F \ A \cap B \in F$$

и взятия надмножеств:

$$\forall A \in F \ A \subseteq B \subseteq I \implies B \in F.$$

Фильтр F называется ультрафильтром, если  $A \in F$  или  $\overline{A} \in F$  для любого  $A \subseteq I$ .

# Утверждение 2.

- 1) Фильтр F является ультрафильтром тогда и только тогда, когда он является максимальным по включению среди всех фильтров (то есть, нет фильтра, который бы его расширял).
- 2) Пусть F ультрафильтр u A,  $B \subseteq I$ , тогда

$$A \in F \iff \overline{A} \notin F,$$

$$A \cup B \in F \iff A \in F \text{ unu } B \in F.$$

3) Любой фильтр содержится в некотором ультрафильтре.

Доказательство. Докажем 1.

Пусть F — ультрафильтр. Утверждается, что нет фильтра F', который содержал бы F ( $F' \supseteq F$ ). Предположим противное, т.е. что существует такое A, что оно принадлежит F' и не принадлежит F. Раз  $A \notin F$ , то  $\overline{A} \in F$ . В силу того, что  $F \subseteq F'$ , то  $\overline{A}$  также принадлежит F'. Таким образом,  $\emptyset = A \cap \overline{A} \in F'$ , противоречие.

В обратную сторону, F — максимальный по включению фильтр. От противного, пусть есть множество  $A\subseteq I$  такое, что  $A,\overline{A}\notin F$ . Рассмотрим

$$F' = \{ X \subseteq I \mid \exists B \in F \ A \cap B \subseteq X \}.$$

F' должно быть фильтром (замкнутость вверх по включению понятна, замкнутость относительно пересечения также верна, так как если  $X,Y\in F',\,A\cap B\subseteq X,\,A\cap C\subseteq Y$  для  $B,C\in F$ , то  $A\cap B\cap C\subseteq (X\cap Y).\,B\cap C\in F$ , а значит,  $X\cap Y\in F'$ . и последнее, если бы  $\emptyset\in F'$ , то получается очевидное противоречие из того, что  $A\cap B$  всегда непусто).

Докажем 2. Пусть F — ультрафильтр. Одновременно A и  $\overline{A}$  принадлежать F не могут. Имеем  $A \in F \vee \overline{A} \in F$ , откуда понятно. Второе утверждение очевидно в левую сторону.

В другую сторону, имеем  $A \cup B \in F$ , предоположим противное. Пусть  $A, B \notin F$ , значит,  $\overline{A}, \overline{B} \in F$ , а тогда  $\overline{A} \cap \overline{B} \in F$ . По закону деМоргана,  $\overline{A \cup B} \in F$ , откуда  $A \cup B \notin F$ .

Докажем 3. Пусть имеется F. Утверждается, что существует ультрафильтр  $F^*$ , который сожержит F ( $F^* \supseteq F$ ). Данное утверждение нетривиально и в каком-то смысле схоже с аксиомой выбора. Применим лемму Цорна.

**Лемма 3** (Цорн). Пусть  $(P; \leq)$  — частичный порядок, в котором всякая линейная цепь  $A \supseteq P$  имеет верхнюю границу. Тогда в этом частичном порядке есть максимальный элемент.

Рассмотрим множество всех фильтров  $P = \{G - \text{фильтр} \mid F \subseteq G\}$ , и порядок  $\subseteq$ . Пусть  $\mathfrak{F}$  — множество фильтров  $F_1 \subseteq F_2 \vee F_2 \subseteq F$ , а  $F' = \bigcup \mathfrak{F}$ . F' — фильтр, что проверяется ручками. По лемме, существует  $F^*$  — максимальное расширение.

## Пример 3.

- Пусть есть I, тогда  $\{I\}$  фильтр.
- Пусть  $\emptyset \neq A \subseteq I$ , тогда  $F = \{X \subseteq |A \subseteq X\}$ фильтр.

**Задача 2.** Если I бесконечное, то в P(I) есть неглавные ультрафильтры. Для доказательства рассматриваем  $F = \{A \subseteq I | A - \text{коконечно}\}$ , и существующий по доказанному ранее  $F^* \supseteq F$ .

## 1.1.5 Декартово и фильтрованное произведения структур

Пусть имеется некоторое проиндексированное семейство  $\sigma$ -структур  $\{A_i\}_{i\in I}$ .

**Определение 10** (Декартово произведение). Определим  $\sigma$ -структуру на декартовом произведении нескольких  $\sigma$ -структур. Мы будем обозначать её  $\mathbb{A} = \prod_{i \in I} \mathbb{A}_i$ .

Носителем структуры будет множество

$$A = \prod_{i \in I} A_i = \left\{ a \colon I \longrightarrow \bigsqcup_{i \in I} A_i \mid a(i) \in A_i \right\}.$$

Константы, функции и предикаты интерпретируются следующим образом:

- 1)  $c^{\mathbb{A}}(i) = c^{\mathbb{A}_i}$  отображение, возвращающее в каждой структуре соответствующую константу;
- 2)  $(f^{\mathbb{A}}(a_1,\ldots,a_n))(i) = f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$  действуем функцией в каждой структуре, собираем из образов элемент декартова произведения;
- 3)  $P^{\mathbb{A}}(a_1,\ldots,a_n) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$  выполнен для всех  $i\in I.$

**Определение 11** (Фильтрованное произведение). Пусть F — фильтр на множестве I.  $Фильтрованное произведение нескольких структур (обозначается <math>\mathbb{A}_F$ ) получается факторизацией их декартова произведения по следующему отношению эквивалентности:

$$a \equiv_F b \stackrel{\text{def}}{\iff} \{i \in I \mid a(i) = b(i)\} \in F$$

(говорят, что a(i) = b(i) для F-большинства i).

Носителем фильтрованного произведения будет фактор-множество  $A/\equiv_F$ , состоящее из классов эквивалентности  $\{[a] \mid a \in A\}$ . Константы, функции и предикаты интерпретируются следующим образом:

1)  $c^{\mathbb{A}_F} = [c^{\mathbb{A}}]$  — класс элемента, собранного из соответствующих констант во всех структурах;

- 2)  $f^{\mathbb{A}_F}([a_1], \dots, [a_n]) = [f^{\mathbb{A}}(a_1, \dots, a_n)]$  надо проверить, что определено однозначно (потому что пересечение множеств фильтра принадлежит фильтру);
- 3)  $P^{\mathbb{A}_F}([a_1],\ldots,[a_n]) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$  для F-большинства i.

Если F — ультрафильтр, то  $\mathbb{A}_F$  называется ультрапроизведением.

**Теорема 4** (об ультрапроизведениях). Пусть F — ультрафильтр на множестве I,  $\mathbb{A}_i$  — семейство стркутур,  $\varphi(x_1,\ldots,x_k)$  —  $\sigma$ -формула и пусть  $a_1,\ldots,a_k\in\prod_i A_i$ . Тогда  $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_k])$  тогда и только тогда, когда  $\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_n(i))$  для F-большинства индексов.

# 1.1.6 Теорема Гёделя о компактности

**Теорема 5.** Бесконечное множество предложений  $\Gamma$  имеет модель, если каждое его конечное подмножество  $\Gamma'$  имеет модель.