Memory Hierarchy Review

[Adapted from Mary Jane Irwin for Computer Organization and Design, Patterson & Hennessy, © 2005, UCB]

Review: Major Components of a Computer

Processor-Memory Performance Gap

The "Memory Wall"

Logic vs DRAM speed gap continues to grow

The Memory Hierarchy Goal

□ Fact: Large memories are slow and fast memories are small

- □ How do we create a memory that gives the illusion of being large, cheap and fast (most of the time)?
 - With hierarchy
 - With parallelism

A Typical Memory Hierarchy

- By taking advantage of the principle of locality
 - Can present the user with as much memory as is available in the cheapest technology
 - at the speed offered by the fastest technology

Characteristics of the Memory Hierarchy

Memory Performance Impact on Performance

- Suppose a processor executes at
 - ideal CPI = 1.1
 - 50% arith/logic, 30% ld/st, 20% control

and that 10% of data
memory operations miss with a 50 cycle miss penalty

□ CPI = ideal CPI + average stalls per instruction
 = 1.1(cycle) + (0.30 (datamemops/instr)
 x 0.10 (miss/datamemop) x 50 (cycle/miss))
 = 1.1 cycle + 1.5 cycle = 2.6

so 58% of the time the processor is stalled waiting for memory!

□ A 1% instruction miss rate would add an additional 0.5 to the CPI!

Memory Hierarchy Technologies

- Caches use SRAM for speed and technology compatibility
 - Low density (6 transistor cells), high power, expensive, fast
 - Static: content will last "forever" (until power turned off)

- Main Memory uses DRAM for size (density)
 - High density (1 transistor cells), low power, cheap, slow
 - Dynamic: needs to be "refreshed" regularly (~ every 8 ms)
 - 1% to 2% of the active cycles of the DRAM
 - Addresses divided into 2 halves (row and column)
 - RAS or Row Access Strobe triggering row decoder
 - CAS or Column Access Strobe triggering column selector

Memory Performance Metrics

- Latency: Time to access one word
 - Access time: time between the request and when the data is available (or written)
 - Cycle time: time between requests
 - Usually cycle time > access time
 - Typical read access times for SRAMs in 2004 are 2 to 4 ns for the fastest parts to 8 to 20ns for the typical largest parts
- Bandwidth: How much data from the memory can be supplied to the processor per unit time
 - width of the data channel * the rate at which it can be used

Classical RAM Organization (~Square)

Classical DRAM Organization (~Square Planes) bit (data) lines R **Fach intersection** 0 represents a W 1-T DRAM cell **RAM Cell** D **Array** e C word (row) line 0 d e column address Column Selector & row I/O Circuits The column address address selects the requested · data bit bit from the row in each **↓data** bit data word plane data bit

Rechnerarchitektur

Classical DRAM Operation

- DRAM Organization:
 - N rows x N column x M-bit
 - Read or Write M-bit at a time
 - Each M-bit access requires a RAS / CAS cycle

Page Mode DRAM Operation

- Page Mode DRAM
 - N x M SRAM to save a row
- After a row is read into the SRAM "register"
 - Only CAS is needed to access other M-bit words on that row
 - RAS remains asserted while CAS is toggled

Synchronous DRAM (SDRAM) Operation

□ After a row is Address read into the SRAM register

- Inputs CAS as the starting "burst" address along with a burst length
- Transfers a burst of data from a series of sequential addresses within that row
 - A clock controls transfer of successive words in the burst – 300MHz in 2004 Cycle Time

Other DRAM Architectures

- Double Data Rate SDRAMs DDR-SDRAMs (and DDR-SRAMs)
 - Double data rate because they transfer data on both the rising and falling edge of the clock
 - Are the most widely used form of SDRAMs

DDR2-SDRAMs

DRAM Memory Latency & Bandwidth Milestones

	DRAM	Page DRAM	FastPage DRAM	FastPage DRAM	Synch DRAM	DDR SDRAM
Module Width	16b	16b	32b	64b	64b	64b
Year	1980	1983	1986	1993	1997	2000
Mb/chip	0.06	0.25	1	16	64	256
Die size (mm²)	35	45	70	130	170	204
Pins/chip	16	16	18	20	54	66
BWidth (MB/s)	13	40	160	267	640	1600
Latency (nsec)	225	170	125	75	62	52

Patterson, CACM Vol 47, #10, 2004

- □ In the time that the memory to processor bandwidth doubles the memory latency improves by a factor of only 1.2 to 1.4
- To deliver such high bandwidth, the internal DRAM has to be organized as interleaved memory banks

Memory Systems that Support Caches

The off-chip interconnect and memory architecture can affect overall system performance in dramatic ways

One word wide organization (one word wide bus and one word wide memory)

- Assume
 - 1 clock cycle to send the address
 - 2. 25 clock cycles for DRAM cycle time, 8 clock cycles access time
 - 3. 1 clock cycle to return a word of data
- Memory-Bus to Cache bandwidth
 - number of bytes accessed from memory and transferred to cache/CPU per clock cycle

One Word Wide Memory Organization

□ If the block size is one word, then for a memory access due to a cache miss, the pipeline will have to stall the number of cycles required to return one data word from memory

- 1 cycle to send address
- 25 cycles to read DRAM
- 1 cycle to return data
- 27 total clock cycles miss penalty

 Number of bytes transferred per clock cycle (bandwidth) for a single miss is

One Word Wide Memory Organization, con't

■ What if the block size is four words?

1 cycle to send 1st address

$$4 \times 25 = 100$$
 cycles to read DRAM

1 cycles to return last data word102 total clock cycles miss penalty

Number of bytes transferred per clock cycle (bandwidth) for a single miss is

$$(4 \times 4)/102 = 0.157$$
 bytes per clock

One Word Wide Memory Organization, con't

What if the block size is four words and if a fast page mode DRAM is used?

cycle to send 1st address
$$25 + 3*8 = 49$$
cycles to read DRAM
cycles to return last data word
total clock cycles miss penalty

 Number of bytes transferred per clock cycle (bandwidth) for a single miss is (4 x 4)/51 = 0.314 bytes per clock

Interleaved Memory Organization

For a block size of four words

1 cycle to send 1st address

$$25 + 3 = 28$$
 cycles to read DRAM

1 cycles to return last data word

30 total clock cycles miss penalty

■ Number of bytes transferred per clock cycle (bandwidth) for a single miss is

 $(4 \times 4)/30 = 0.533$ bytes per clock

DRAM Memory System Summary

- Its important to match the cache characteristics
 - caches access one block at a time (usually more than one word)
- with the DRAM characteristics
 - use DRAMs that support fast multiple word accesses, preferably ones that match the block size of the cache
- with the memory-bus characteristics
 - make sure the memory-bus can support the DRAM access rates and patterns
 - with the goal of increasing the Memory-Bus to Cache bandwidth