Engenharia de Telecomunicações e Informática

1/3

cola de Engenharia Dep. Electrónica Industrial

TP1 Fonte de alimentação - Guia de Montagem

ELECTRÓNICA GERAL

FONTE DE ALIMENTAÇÃO

Guia de Montagem do Trabalho Prático

OBJECTIVO

Universidade do Minho

Pretende-se com este trabalho montar e testar uma fonte de alimentação cujo diagrama de blocos se apresenta na Figura 1. Deverão ser montados sucessivamente todos os blocos pretendendo-se entender a razão de ser de cada um deles.

Figura 1

MATERIAL A UTILIZAR

- Osciloscópio
- Duas pontas de prova
- Multímetro digital
- Placa com a fonte de alimentação

Montagem

TP1 Fonte de alimentação - Guia de

Engenharia de Telecomunicações e Informática

Escola de Engenharia D

Dep. Electrónica Industrial

2/3

PREPARAÇÃO

Universidade do Minho

1- Identificação dos blocos no circuito

Como preparação para o trabalho é requisito que identifique no circuito da folha de Registo de Resultados os blocos da Figura 1 e que simule antes de cada aula prática o respetivo circuito utilizando o TINA. Assinale com um círculo cada bloco. Além disso, devem analisar previamente a ficha técnica fornecida como elemento de estudo à TP2. Devem trazer a ficha técnica para a aula prática.

PROCEDIMENTOS

Bloco de transformação e retificação

2- Circuito retificador de meia onda

- **2.1** Recorrendo aos interruptores disponíveis no módulo fornecido obtenha um circuito retificador de meia onda alimentando uma carga R_L = R₁. Alimente o circuito, ligando os terminais do primário (220 V) do transformador à rede.
 - Observe no osciloscópio (com as entradas no modo DC) a onda no secundário do transformador (V_s) e a forma da onda da tensão na carga (V_r). Registe-as anotando os valores relevantes (valor máximo e frequência).
- 2.2 Comute para AC a entrada do canal onde observa a tensão na carga. Determine o valor médio ou componente contínua desta tensão. Confirme o valor obtido lendo-o com o multímetro digital (em DC).

3- Circuito retificador de onda completa

- **3.1** Desligue da rede o circuito anterior. Usando os mesmos elementos, monte agora um circuito retificador de onda completa alimentando também a carga R₁. Alimente o circuito.
 - Observe e registe apenas a forma da onda da tensão na carga (V_r).
 - Com auxílio do multímetro digital (em DC), registe o seu valor médio.

ATENÇÃO: Não é possível examinar simultaneamente no osciloscópio as formas de onda de tensão no secundário do transformador e na carga $R_L = R_1$.

4- Bloco de filtragem

Mantenha a montagem em retificação de onda completa. Para os 3 casos seguintes observe e registe o comportamento da componente alternada da tensão na carga (V_f). Anote também o valor da sua componente contínua lido no multímetro digital.

- **4.1** Coloque em paralelo com a carga o condensador com menor capacidade (C₂).
- **4.2** Coloque agora em paralelo com a carga o condensador de maior capacidade (C₁).

Montagem

Engenharia de Telecomunicações e Informática

Escola de Engenharia

Dep. Electrónica Industrial

3/3

5- Bloco de estabilização

Universidade do Minho

Pretende-se agora estabilizar a tensão de saída em +12V, qualquer que seja a carga a alimentar (fonte de alimentação ideal). Para o efeito, poder-se-ia ter utilizado um díodo "Zener" cuja tensão de funcionamento fosse aproximadamente +12V numa montagem idêntica à da Figura 5 da ficha técnica, porém neste módulo recorreu-se a um regulador de tensão L7812CV.

Leia para as diferentes situações os valores de V_o (utilize o multímetro no modo DC) e do *ripple* (utilize o osciloscópio no modo AC)

- 5.1 Acrescente ao retificador de onda completa com o condensador de maior capacidade, o circuito representado na figura 7 da ficha técnica (Regulador de Tensão) fazendo inicialmente R_L = ∞ (comutador de R₁ na posição intermédia).
- **5.2** Faça variar a carga do circuito na gama dos valores disponíveis $(R_L = R_1 + R_2)$.