1-4 基本的算法结构

魏恒峰

hfwei@nju.edu.cn

2017年11月06日

Longest Monotone Subsequence

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Understanding this problem:

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Understanding this problem:

Subsequence vs. substring

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Understanding this problem:

Subsequence vs. substring

Monotone increasing vs. decreasing

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Understanding this problem:

Subsequence vs. substring

Monotone increasing vs. decreasing

strictly vs. non-strictly

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Understanding this problem:

```
Subsequence vs. substring

Monotone increasing vs. decreasing strictly vs. non-strictly

Longest existence? uniqueness?
```

Write a computer program that takes as its input a sequence of distinct integers and returns as its output the length of a longest monotone subsequence.

Understanding this problem:

Subsequence vs. substring

Monotone increasing vs. decreasing

Longest existence? uniqueness?

The Length vs. the subsequence itself

strictly vs. non-strictly

ES 24.8: Longest (Strictly) Increasing Subsequence (LIS)

- ▶ Given an integer array $A[0 \dots n-1]$
- ightharpoonup To find the length L of an LIS

 $0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 \implies 0, 2, 6, 9, 11, 15$

ES 24.8: Longest (Strictly) Increasing Subsequence (LIS)

- ▶ Given an integer array $A[0 \dots n-1]$
- lacktriangle To find the length L of an LIS

学生反馈: 这道题为什么放在 "Pigeonhole Principle" 这一章?

学生反馈: 这道题为什么放在 "Pigeonhole Principle" 这一章?

学生反馈: 这道题为什么放在 "Pigeonhole Principle" 这一章?

Theorem (Erdős-Szekeres Theorem)

Let n be a positive integer. Every sequence of $n^2 + 1$ distinct integers must contain a monotone subsequence of length n + 1.

Q: 这道题与 $(\frac{G}{G})$ 数学归纳法有什么关系?

Q: 这道题与 (强) 数学归纳法有什么关系?

- B.S. P(0)
- I.H. $P(0) \cdots P(i-1)$
- I.S. $P(0) \cdots P(i-1) \rightarrow P(i)$

Q:这道题与(强)数学归纳法有什么关系?

- B.S. P(0)
- I.H. $P(0) \cdots P(i-1)$
- I.S. $P(0) \cdots P(i-1) \rightarrow P(i)$

P(i) 是什么?

P(i) : the length of an LIS in $A[0\cdots i]$.

P(i): the length of an LIS in $A[0\cdots i]$.

$$L = P(n-1)$$

P(i) : the length of an LIS in $A[0\cdots i]$.

$$L = P(n-1)$$

$$P(0) = 1$$

P(i) : the length of an LIS in $A[0\cdots i]$.

$$L = P(n-1)$$

$$P(0) = 1$$

$$P(0)\cdots P(i-1) \rightarrow P(i)$$
?

P(i): the length of an LIS in $A[0\cdots i]$.

$$L = P(n-1)$$

$$P(0) = 1$$

$$P(0)\cdots P(i-1) \rightarrow P(i)$$
?

$$P(i) = \max\{P(i-1), \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j) + 1\}\}$$

P(i): the length of an LIS in $A[0\cdots i]$.

$$L = P(n-1)$$

$$P(0) = 1$$

$$P(0)\cdots P(i-1) \rightarrow P(i)$$
?

$$P(i) = \max\{P(i-1), \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j) + 1\}\}$$

P(i) : the length of an LIS in $A[0\cdots i]$.

$$L = P(n-1)$$

$$P(0) = 1$$

$$P(0)\cdots P(i-1)\to P(i)$$
?

$$P(i) = \max\{P(i-1), \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j) + 1\}\}$$

P(i) : the length of an LIS $\operatorname{\it ending}$ at A[i].

$$L = \max_{0 \le i < n} P(i)$$

$$L = \max_{0 \le i < n} P(i)$$

$$P(0) = 1$$

$$L = \max_{0 \le i < n} P(i)$$

$$P(0) = 1$$

$$P(0)\cdots P(i-1) \rightarrow P(i)$$
?

$$L = \max_{0 \le i < n} P(i)$$

$$P(0) = 1$$

$$P(0)\cdots P(i-1) \rightarrow P(i)$$
?

$$P(i) = \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j) + 1\}$$

$$P(0) = 1;$$
 for (int i = 1; i < n; ++i)
$$P(i) = \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j) + 1\}$$
 return $L = \max_{0 \le i < n} P(i);$

$$P(0)=1$$
 ; for (int i = 1; i < n; ++i) // How much time?
$$P(i) = \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j)+1\}$$

return
$$L = \max_{0 \leq i < n} P(i)$$
;

$$P(0)=1$$
; for (int i = 1; i < n; ++i) // How much time?
$$P(i) = \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j)+1\}$$

return
$$L = \max_{0 \le i < n} P(i)$$
; // How much space?

$$P(0)=1$$
 ; for (int i = 1; i < n; ++i) // How much time?
$$P(i) = \max_{\substack{0 \le j < i \\ A[j] < A[i]}} \{P(j)+1\}$$

return
$$L = \max_{0 \le i < n} P(i)$$
; // How much space?

Flowcharts

How to Argue with Your Girlfriend?

We feel certain that a moderate amount of experience with this stage of coding suffices to remove from it all difficulties, and to make it a perfectly routine operation.

— John von Neumann and Herman Goldstine, late 1940s

乎是崩溃的

Here is a Flowchart. It is usually wrong.

Fill in the missing lines.

Here is a Flowchart. It is usually wrong.

Fill in the missing lines.

Any resemblance between our flow charts and the present program is purely coincidental.

— Donald Knuth, 1963

Flowcharts Considered Harmful.

13 / 28

Just my opinion...

Just my opinion...

Draw it when it does help

Just my opinion...

Draw it when it does help OR you have to.

Simulations

Perform the following simulations of some control constructs by others.

Perform the following simulations of some control constructs by others.

```
for (int i = 0; i < N; ++i)
    statement</pre>
```

```
int i = 0;
while (i < N)
    statement
++i</pre>
```

Perform the following simulations of some control constructs by others.

```
for (int i = 0; i < N; ++i) // not general!
statement</pre>
```

```
int i = 0;
while (i < N)
    statement
++i</pre>
```

Perform the following simulations of some control constructs by others.

```
for (init; cond; inc)
  statement
```

```
init;
while (cond)
   statement
  inc
```

Perform the following simulations of some control constructs by others.

(a) "for-do" by "while-do"

```
for (init; cond; inc)
  statement
```

```
init;
while (cond)
   statement
  inc
```

Whether to use "while" or "for" is largely a matter of personal preference.

— K&R C Bible

Perform the following simulations of some control constructs by others.

```
if (A)
B
```

Perform the following simulations of some control constructs by others.

```
if (A)
B
```

Perform the following simulations of some control constructs by others.

```
while (A)
B
¬ A // Wrong: side effects?
```

```
if (A)
B
```

Perform the following simulations of some control constructs by others.

while (A)

```
if (A)
B
```

```
B
¬ A // Wrong: side effects?

flag = 1
while (A && flag)
B
flag = 0
```

Perform the following simulations of some control constructs by others.

```
if (A)
B
else
C
```

Perform the following simulations of some control constructs by others.

```
if (A)
B
else
C
```

```
flag_if = 1
while (A && flag_if)
  B
  flag_if = 0
flag_else = 1
while (¬ A && flag_else)
  C
  flag_else = 0
```

Perform the following simulations of some control constructs by others.

```
if (A)
B
else
C
```

```
flag_if = 1
while (A && flag_if)

B // Wrong: side effects?
  flag_if = 0
flag_else = 1
while (¬ A && flag_else)
  C
  flag_else = 0
```

if (A)

Perform the following simulations of some control constructs by others.

(b) "if-then & if-then-else" by "while-do"

```
В
else
  C
flag if = 1
while (A && flag if)
  B // Wrong: side effects?
  flag if = 0
flag_else = 1
while (- A && flag_else)
  C
```

```
flag = 1
while (A && flag)
  B
  flag = 0
while (¬ A && flag)
  C
  flag = 0
```

flag_else = 0

Perform the following simulations of some control constructs by others.

- (c) "while-do" by "if-then & goto"
- (d) "while-do" by "repeat-until & if-then"

while (A)
B

Perform the following simulations of some control constructs by others.

- (c) "while-do" by "if-then & goto"
- (d) "while-do" by "repeat-until & if-then"

```
while (A)
B
```

```
L: if (A)
B
goto L
```

Perform the following simulations of some control constructs by others.

- (c) "while-do" by "if-then & goto"
- (d) "while-do" by "repeat-until & if-then"

```
while (A)
B
```

```
L: if (A)
B
goto L
```

```
if (A)
  repeat
   B
  until (¬ A)
```

Simulate "while-do" by "if-then-else & recursive".

while (A)
B

Simulate "while-do" by "if-then-else & recursive".

```
while (A)
B
```

```
simulateWhile() {
  if (A)
    B
    simulateWhile();

return;
}
```

Simulate "while-do" by "if-then-else & recursive".

```
while (A)
B
```

```
simulateWhile() { // define function
  if (A)
    B
    simulateWhile();
  return;
}
```

Simulate "while-do" by "if-then-else & recursive".

```
while (A)
B
```

```
simulateWhile() { // define function
  if (A)
    B
    simulateWhile();
  return;
}
```


- (1) A;B
- (2) if-then
- (3) if-then-else
- (4) for-do
- (5) while-do
- (6) repeat-until

- (1) A;B
- (2) if-then
- (3) if-then-else
- (4) for-do
- (5) while-do
- (6) repeat-until

repeat B until (¬ A)

- (1) A;B
- (2) if-then
- (3) if-then-else
- (4) for-do
- (5) while-do
- (6) repeat-until

```
repeat
B
until (¬ A)
```

```
B
while (A)
B
```

- (1) A;B
- (2) if-then
- (3) if-then-else
- (4) for-do
- (5) while-do
- (6) repeat-until

```
repeat
B
until (¬ A)
```

```
B
while (A)
B
```

Theorem ("On Folk Theorems" (David Harel, 1980))

Any computable function can be computed by a "while-do" (and ";") program (with additional Boolean variables).

Simulations for Equivalence

Bounded Iterations vs. Unbounded Iterations

Bounded Iterations vs. Unbounded Iterations

Q: Why unbounded iterations?

μ -Recursive Functions

$$\underset{y}{\mu}y\big(g(x,y)\big) = \Big(\operatorname*{argmin}_y g(x,y) = 0\Big)$$

 μ -Recursive Functions

$$\mu y \big(g(x,y) \big) = \Big(\operatorname*{argmin}_y g(x,y) = 0 \Big)$$

Unbounded iterations: "while-do"

μ -Recursive Functions

$$\mu y \big(g(x,y) \big) = \Big(\operatorname*{argmin}_y g(x,y) = 0 \Big)$$

Unbounded iterations: "while-do"

Theorem (Ackermann Function)

The Ackermann function is μ -recursive but not primitive recursive (which contains bounded iterations.).

Given a list L of N integers, to produce in S and P the sum of the even numbers in L and the product of the odd ones, respectively.

Given a list L of N integers, to produce in S and P the sum of the even numbers in L and the product of the odd ones, respectively.

```
int S = 0, P = 1;
for (int i = 0; i < N; ++i) {
  if (L(i) % 2 == 0)
    S += L(i);
  else
    P *= L(i);
}</pre>
```

Given a list L of N integers, to produce in S and P the sum of the even numbers in L and the product of the odd ones, respectively.

```
int S = 0, P = 1;
for (int i = 0; i < N; ++i) {
  if (L(i) % 2 == 0)
    S += L(i);
  else
    P *= L(i);
}</pre>
```

DH 2.1: Salary Summation N-1 vs. N iterations

Given a list L of N integers, to produce in S and P the sum of the even numbers in L and the product of the odd ones, respectively.

```
int S = 0, P = 1;
for (int i = 0; i < N; ++i) {
  if (L(i) % 2 == 0)
    S += L(i);
  else
    P *= L(i);
}</pre>
```

DH 2.1: Salary Summation N-1 vs. N iterations

- (a) Using iteration statements.
- (b) Using recursion.

- (a) Using iteration statements.
- (b) Using recursion.

```
int P = 1;
for (int i = 2; i <= n; ++i) {
  P *= i;
}</pre>
```

- (a) Using iteration statements.
- (b) Using recursion.

```
int P = 1;
for (int i = 2; i <= n; ++i) {</pre>
  P *= i;
}
int recursive-factorial(int n) {
  if (n == 1)
    return 1;
    else return n * recursive-factorial(n-1);
}
```

- (a) Using iteration statements.
- (b) Using recursion.

```
int P = 1;
for (int i = 2; i <= n; ++i) {</pre>
  P *= i:
}
int recursive-factorial(int n) { // define function
  if (n == 1)
    return 1;
    else return n * recursive-factorial(n-1);
}
```

- (a) Using iteration statements.
- (b) Using recursion.

```
int P = 1;
for (int i = 2; i <= n; ++i) {</pre>
  P *= i:
}
int recursive-factorial(int n) { // define function
  if (n == 1)
    return 1:
    // NOT: return n*(n-1)!
    else return n * recursive-factorial(n-1);
}
```

Stack and Permutations

Thank You!