' - '	Процедура установки взрывозащищенной системы на примере					
8.1	Оценка риска взрыва (пример)	8-1				
8.2	Определение характеристик защищенности	8-1				
8.3	Оценка полного процесса	8-2				
8.4	Выбор мер взрывозащиты	8-2				
8.5	Зонная классификация	8-2				
8.6	Выбор электроустройства	8-3				
8.7	Соединение электроустройства с					
	самозащищенными схемами	8-3				
8.8	Выбор кабелей и линий	8-3				
8.9	Прокладка кабелей и линий	8-4				
8.10	Некоторые особенности	8-4				

8 Процедура установки взрывозащищенной системы, рассмотренная на примере

Пример приводится только в иллюстративных целях; в виде резюме вновь приводятся основные положения процедуры и некоторые подробности установочных требований для взрывозащищенных электросистем.

Диспетчерская всего предприятия или маленькой насосной станции для перекачки огнеопасных жидкостей обычно размещается в пристройке основного здания. При планировании технологического процесса вырабатывается решение, что емкость, устанавливаемая для предварительной обработки и хранения, а также дополнительная емкость с мешалкой будут установлены в здании, которое предстоит построить.

8.1 Оценка риска взрыва (пример)

Какие огнеопасные вещества
 Этилацетат

будут обрабатываться?

Каково количество и выход на 250 м³/час макс.

единицу времени?

Максимальная концентрация в
 Естественная вентиляция

воздухе?

Тип обработки и работ?
 Закачивание, смешивание,

перемешивание,

Нет

заполнение

Возможная утечка паров?
 Открытые контейнеры

 Метод и эффективность принудительной вентиляции?

8.2 Определение характеристик защищенности

Плотность, отношение 3,04 плотности (газообразное)

– Температура вспышки -4°C

Нижний предел взрыва
 2,1% от объема

– Температура зажигания 460°C

8.3 Оценка всего процесса

Будет ли в здании какая-либо
 Да

взрывчатая среда?

Где и в каком количестве?
 Не важно в этом случае,

т.к. техническая

Да

вентиляция отсутствует

 Будет ли иметь место опасная концентрация взрывчатой

среды?

8.4 Выбор мер взрывозащищенности

Поскольку использование первичных мер взрывозащищенности не планируется, необходимо избегать возникновения источников зажигания.

8.5 Зонная классификация

EX-RL и TRbF служат основой зонной классификации.

Помещения с системами для
 Зона 1

хранения, заполнения и

перемешивания

Оборудование, которое будут
 Зона 1 до 10 м

открывать во время операций

загрузки и выгрузки

Насосы в помещениях (Ri = 250
 Зона 1 до 3 м

м³/час)

Трубы со съемными
 Зона 2 до 3 м

соединителями в помещениях

Решение: всю насосную станцию считать Зоной 1.

8.6 Выбор электроустройств

Тип защиты

– Какие электроустройства Мотор насоса е или d нужно определенно Мотор мешалки е или d ставить в опасной зоне? Освещение е или d Измерительные и EEx ib

контрольные системы

Группа взрыва?Температурный класс?Тип зоны?Зона 1

8.7 Соединение электроустройства с искробезопасными системами

- Для искробезопасного типа защиты взрывозащита определяется взаимодействием двух или более устройств, включая соединительные кабели.
- При проверке искробезопасности установщик и пользователь несут высокую степень ответственности.
- Предпосылкой для установки искробезопасной схемы является то, что не должны быть превышены допустимые значения температуры, мощности и накопления энергии.
- При подключении линейных и нелинейных искробезопасных схем следует соблюдать спецификации, изложенные в докладе РТВ W-39.

8.8 Выбор кабелей и линий

Для подключения мотора
 NYY

Мотор мешалки
 Н07RN-F, т.к. портативен

ОсвещениеИзмерительные и контрольныеН07RN-F

 Измерительные и контрольные системы (температура, уровень,

скорость течения)

8.9 Прокладка кабелей и линий

В общем кабелепроводе

 Проникновение в Секционирование невзрывозащищенную зону

Маркировка искробезопасных
 Линий

Ввод и соединение линий
 Обеспечить маркировку и избежать смешанных

соединений

Зазор

8.10 Некоторые особенности

Тип защиты "е" для мотора Подходящая защита насоса мотора

 Эквипотенциальная связь
 Дополнительная эквипотенциальная связь

Защита освещения
 Требуется

Смежные электросооружения
 Разделение воздушным

пространством