Unit Commitment

1. States(S_t)

- (a) Forecast demand $(d_n^f(t+1))$ at nth bus [Belief state]
- (b) Sequence of on/off status $[u_i(t), u_i^{old}(t)]$ of ith generator with a length of $\max(UT_i, DT_i) + 1$ [Physical state]
- (c) Power output $p_i(t)$ at ith generator [Physical state]
- (d) Voltage angle $\theta_n(t)$ at nth bus [Physical state] [UC-v1 env only]

2. Actions (A_t)

- (a) On/off status $u_i(t+1)$ at ith generator
- (b) Power output $p_i(t+1)$ at ith generator
- (c) Voltage angle $\theta_n(t+1)$ at nth bus (except the 1st bus) [UC-v1 env only]

3. Transition function

(a) Forecast net load

$$d_n^f(t+2) = \text{forecast}(d_n^f(t+1))$$

(b) On-off & Start-up & Shut-down status

$$u_i(t+1) = \text{Repair}(u_i(t+1))$$

$$v_i(t+1) = \max(0, u_i(t+1) - u_i(t+1))$$

$$w_i(t+1) = -\min(0, u_i(t+1) - u_i(t+1))$$

(c) Sequence of On-off & Start-up & Shut-down status

$$\mathbf{u}_{i}(t+1) = \begin{bmatrix} u_{i}(t+1), u_{i}^{old}(t)[:-1] \end{bmatrix}$$

$$\mathbf{v}_{i}(t+1) = \begin{bmatrix} v_{i}(t+1), v_{i}^{old}(t)[:-1] \end{bmatrix}$$

$$\mathbf{w}_{i}(t+1) = \begin{bmatrix} w_{i}(t+1), w_{i}^{old}(t)[:-1] \end{bmatrix}$$

(d) Power output

$$p_i(t+1) = u_i(t+1) \operatorname{Repair}(\operatorname{clip}(p_i(t+1)))$$

(e) Voltage angle

$$\theta_n(t+1) = \text{clip}(\theta_n(t+1))$$

4. Action Correction and Cost

- (a) Minimum Up-time & Down-time Constraints are enforced by Repair(·) on u which uses the inequality $\sum_k^{UT} v(k) \leq u(t+1)$ and $\sum_k^{DT} w(k) \leq 1 u(t+1)$ to find out the generators that must be kept on & off. The violation results in a cost, but does not directly lead to "truncated".
- (b) Generation Limit Constraints are enforced by a clip function and the corrected on/off status.
- (c) Ramping Constraints are evaluated through $p(t+1)-p(t) \leq RUu(t)+SUv(t+1)$ and $p(t)-p(t+1) \leq RDu(t+1)+SDw(t+1)$. Minimum Up-time & Down-time Constraints give a pair of must-on & must-off that does not contradict with each other. However, Ramping down & Minimum Down-time Constraints give a pair of must-on & must-off that may contradict with each other. If contradicted, then it results in a cost and "truncated" without good correction method. If not, then it results in a cost, but does not directly lead to "truncated". Ramping Constraints are then enforced by Repair(·) on p, which imposes a tighter bound.

5. Reward

- (a) Network Constraints are relaxed through slacks that represent overflow and underflow. The energy waste or unfulfillment is then explicitly computed using a load shedding cost in the reward.
- (b) Reserve Requirement Constraints are relaxed through slacks that represent the unfulfillment $r_i + s \ge R_i$. The intermediate variable r_i represents the reserve at *i*th generator. To compute r_i , first evaluate $\min(u(t+1)P_{max}-p(t+1),RUu(t)+SUv(t+1)+p(t)-p(t+1)))$, then evaluate $\max(\cdot,0)$. This finds the best reserve that can be achieved without violating both power limit and ramping-up constraints. The unfulfillment is then explicitly computed using a reserve penalty cost in the reward.