

RETO Frenado Magnético

Una simulación de la desaceleración por frenado magnético.

Mariana, Camila, Sofia, Eilyn, Eduardo y Andrés

Magnetismo

Fenómeno físico por el que los objetos ejercen fuerzas de atracción o repulsión sobre otros materiales.

Campo Magnético

Campo físico que representa la influencia magnética sobre las **corrientes eléctricas**, las **cargas en movimiento y los materiales magnéticos**.

Frenos Magneticos

Los frenos magnéticos se utilizan para detener o controlar el movimiento de un objeto, a través del magnetismo.

Tienen varios usos, pero los más comunes son en las vías de trenes y en montañas rusas, donde permiten recorridos seguros y precisos. También se utilizan en otros sistemas de transporte y maquinaria industrial.

Trenes Bala de Japón

LEY DE BIOT-SAVART

- $\mathbf{B}(\mathbf{r})$: Campo magnético en el punto \mathbf{r} , donde se quiere calcular el campo.
- μ_0 : Permeabilidad magnética del vacío ($4\pi imes 10^{-7}\,\mathrm{N/A}^2$).
- *I*: Corriente que circula por el conductor.
- dl: Elemento infinitesimal del conductor, con dirección del flujo de corriente.
- r': Posición del elemento de corriente dl.
- **r**: Posición del punto donde se calcula el campo.
- ${f r}-{f r}'$: Vector desde el elemento de corriente hasta el punto de observación.
- ×: Producto vectorial.
- ullet $|{f r}-{f r}'|$: Distancia entre el punto de observación y el elemento de corriente.

Que hace?

La ley se basa en la idea de que cada elemento de corriente genera un campo magnético en un punto, y el campo total es la suma vectorial de todos esos campos.

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0 I}{4\pi} \int rac{d\mathbf{l} imes (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}$$

Runge-Kutta

$$k_{1} = hf(t_{k}, \hat{y}_{k})$$

$$k_{2} = hf(t_{k} + \frac{h}{2}, \hat{y}_{k} + \frac{k_{1}}{2})$$

$$k_{3} = hf(t_{k} + \frac{h}{2}, \hat{y}_{k} + \frac{k_{2}}{2})$$

$$k_{4} = hf(t_{k} + h, \hat{y}_{k} + k_{3})$$

Que hace?

- Es un método numérico para resolver ecuaciones diferenciales
- Su precisión aumenta conforme el paso disminuye

$$\hat{y}_{k+1} = \hat{y}_k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Preview Cócligo

Una pequeña síntesis de lo que el codigo alberga.

Campo y Espiras

Se utiliza la **ley de Biot-Savart** para calcular el campo magnético del solenoide, y se dan los valores para graficar las espiras con quiver.

Trayectoria, Gradiente y Animación

Simula el movimiento de un dipolo magnético considerando **Fmagnética**, **Ffricción**, y **Fgravedad**, usando el método **Runge-Kutta de 4º** orden. El gradiente, usando la **diferencial**, y la animación.

Código

Main

```
codigo1_campo_magnetico_espiras();
codigo2_trayectoria_completa();
[Px, Py, Pz, dx, dy, dz] = generar_espiras(nl, N, R, sz);
```

Se inicializan los valores necesarios, y se llaman a las funciones del codigo1 que contiene el campo magnético y espiras.

Y en el codigo2, se tiene la simulación trayectoria, el gradiente, y la animación.

Espiras

El campo magnético es generado por un solenoide compuesto por:

- 6 espiras circulares (nl = 6)
- Radio R = 1.5 m
- Separación sz = 1 m entre espiras
- Corriente I = 300 A en cada espira
- Orientación: Espiras en planos perpendiculares al eje z

Hicimos las espiras en diferentes maneras, progresando de forma gradual, primero generando una, luego 6 puestas perpendicularmente en el eje z y finalmente, poniendo las flechas para representar la dirección en la que esta dirigida la corriente.

Campo Magnético

Calcula el campo magnético generado por el sistema de espiras usando la Ley de Biot-Savart.

Se logra tener

- Campo magnético Bx y Bz en toda la región, para crear una malla de puntos y la suma calcula el campo.
- Visualización con streamlines para mostrar dirección del campo.

Trayectoria

Simula el movimiento del dipolo magnético bajo la influencia de múltiples fuerzas.

- Es el resultado de 3 fuerzas compitiendo:
 - Magnética: Variable, puede atraer o repeler
 - Gravitacional: Constante hacia abajo (0.981 N)
 - Fricción: Proporcional a velocidad, siempre opuesta al movimiento

Runge Kutta 4 Orgen

```
function [z_next, v_next] = rk4_step(z, v, dt, a_func)
   % Runge-Kutta 4 orden
   k1z = v;
   k1v = a_func(z, v);
   k2z = v + 0.5*dt*k1v;
   k2v = a func(z + 0.5*dt*k1z, v + 0.5*dt*k1v);
   k3z = v + 0.5*dt*k2v;
   k3v = a func(z + 0.5*dt*k2z, v + 0.5*dt*k2v);
   k4z = v + dt*k3v;
   k4v = a_func(z + dt*k3z, v + dt*k3v);
   z = z + dt/6 * (k1z + 2*k2z + 2*k3z + k4z);
   v \text{ next} = v + dt/6 * (k1v + 2*k2v + 2*k3v + k4v);
end
```

Se encarga de calcular la trayectoria del dipolo que cae a través de un campo magnético, considerando todas las fuerzas que actúan sobre él,

Gradiente

Se calcula el gradiente del campo magnético para determinar la fuerza sobre el dipolo.

- Tiene un paso diferencial de 0.005
- Entre mas tiempo menos velocidad

El gradiente calculado determina la fuerza magnética que, combinada con la fricción, reduce progresivamente la velocidad hasta detener el dipolo.

Animación Frenos magneticos

```
% FUNCIÓN PARA CREAR ANIMACIÓN %
function crear_animacion(zm, tt, nombre_video, Pz_espiras, R)
   % Crear video writer
   writerObj |= VideoWriter(nombre video, 'MPEG-4');
   writerObj.FrameRate = 30;
    open(writerObj);
   % Parámetros de visualización
    z_range = [-6, 6];
   % Configurar figura para animación
   figure(100);
    set(gcf, 'Position', [100, 100, 800, 600]);
   % Determinar step para la animación (no todos los puntos)
    step = max(1, floor(length(zm)/300)); % Máximo 300 frames
```

Se crea un video que muestre cómo una partícula magnética es frenada al pasar por un solenoide, combinando física y simulación numérica.

- Electromagnetismo. (n.d.). Endesa. Retrieved June 11, 2025, from https://www.fundacionendesa.org/es/educacion/endesa-educa/recursos/que-es-el-electromagnetismo
- Fernández, J. L. (s. f.). Ley de Biot-Savart. Fisicalab. https://www.fisicalab.com/apartado/campo-magnetico-creado-corriente-electrica

Referencias

