Notazione: $\sqrt[-]{x} := \frac{1}{\sqrt{x}}$ Basi generalizzate $|x\rangle = \xi_x(x) = \delta(x - x_0) \qquad \langle x_0 | x_0' \rangle = \delta(x_0 - x_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p$

Roba di Ehrenfest $[X, f(X, P)] = i\hbar \frac{\partial f}{\partial P}$ $[P, f(X, P)] = -i\hbar \frac{\partial f}{\partial X}$ $P_{a_k} = \sum_{j=1}^{d_k} \left| a_k^{(i)} \right\rangle \left\langle a_k^{(i)} \right\rangle$ d_k degenerazione

Matrici di Pauli

Per trovare una base di autovettori comuni (sapendo già che gli operatori commutano, e se entrambi hanno degenerazioni):

1. Trovo autovalori e autovettori di $A \in B$;

3. Se ogni label è unica, l'insieme è un ICOC.

- 2. Autovettori associati ad autovalori non degeneri sono automaticamente autovettori comuni;
- 3. Per autovettori associati ad autovalori degeneri, faccio la prova (applico B a un autovettore degenere di A);
- 4. Se è anche autovettore di B, sono a posto (è autovettore comune);
- 5. Se non lo è:
 - (a) Definisco un nuovo vettore come combinazione lineare degli autovettori della base dell'autospazio degenere in questione;
 - (b) Impongo che questo nuovo vettore sia autovettore di B;

Per capire se un insieme di osservabili compatibili costituisce un ICOC:

- 1. Se gli osservabili sono compatibili, esiste una base comune di autovettori;

(c) Risolvo il sistema di equazioni trovando i coefficienti della combinazione lineare; (d) Per come è stato definito, questo vettore è autovettore sia di A che di B. $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$ Trasformazione unitaria $A' = UAU^{\dagger}$ 2. A ogni autovettore, associo una label costituita da una lista dei corrispondenti autovalori per ogni osservabile;

4. 44 - 8 444 4 4 44 44 44 44 4						
Equazione di Schrödinger	Visuale di Schrödinger	Equazione di Heisenberg	Visuale di Heisenberg		Sistema conservativo	
$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \psi(t)\rangle = H(t) \psi(t)\rangle$	$\begin{cases} \psi(t)\rangle_S = U(\Delta t) \psi(t_0)\rangle_S \\ A_S(t) = A_S(t_0) \end{cases}$	$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} A_H(t) = [A_H, H_H]$		$(\Delta t)A_H(t_0)U(\Delta t)$	$U(t,t_0) = e^{-\frac{i}{\hbar}H(t-t_0)}$	
Matrice densità	Stato puro	Stato misto	Propi	rietà generali	$N n\rangle = n n\rangle$	
$ \rho(t) = \psi(t)\rangle \langle \psi(t) $	$\rho^2(t) = \rho(t)$	$\rho(t) = \sum_{k} p_k \rho_k(t)$	$\rho^{\dagger}(t) = \rho(t)$	$\langle A \rangle_{\psi}(t) = Tr(\rho(t)A)$	$a n\rangle = \sqrt{n} n-1\rangle$	
$ \rho_{pn}(t) = \langle u_p \rho(t) u_n \rangle = \bar{c}_n(t) c_p(t) $		Oscillatore armonico	$Tr(\rho(t)) = 1$	$i\hbar \frac{\mathrm{d}\rho(t)}{\mathrm{d}t} = [H(t), \rho(t)]$	$a^{\dagger} \left n \right\rangle = \sqrt{n+1} \left n+1 \right\rangle$	
Condizioni al contorno buche di potenziale		$H = \hbar\omega \left(N + \frac{1}{2} \right)$	$\hat{X} := \sqrt{\frac{m\omega}{\hbar}} X$	$a = \sqrt[-]{2}(\hat{X} + i\hat{P})$	$[a,a^{\dagger}]=1$	
Continuità di ψ nelle	Continuità di ψ' nelle	$N = a^{\dagger}a$	$\hat{P} := \sqrt[1]{m\hbar\omega}P$	` ,	$[N,a^{\dagger}]=a^{\dagger}$	
discontinuità di V	discontinuità finite di V	$u_n(x) = \left\lceil \frac{1}{n!2^n} \right. \left($	$\left. \frac{\hbar}{m\omega} \right)^n \right]^{\frac{1}{2}} \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}}$	$\left[\frac{m\omega}{\hbar}x - \frac{\mathrm{d}}{\mathrm{d}x}\right]^n e^{-\frac{m\omega}{\hbar}\frac{x^2}{2}}$	[N,a] = -a	
Soluzioni buche di potenziale $(A, B \in \mathbb{C})$		Metodo perturbativo $ \frac{E < V}{E_n^{(1)} - A_n e^{gx} + B_n^{-gx}} = \langle n^{(0)} \hat{W} n^{(0)} \rangle; n^{(1)} \rangle = -\sum_{k \neq n} \frac{\langle k^{(0)} \hat{W} n^{(0)} \rangle}{E_n^{(0)} - E_n^{(0)}} k^{(0)} \rangle $				
	E = V	E < V	$E_n^{(1)} = \langle n^{(0)} \hat{W}$	$ n^{(0)}\rangle; n^{(1)}\rangle = -\sum_{k \neq 0}$	$\frac{\langle k^{(0)} m^{(0)} \rangle}{\langle m^{(0)} m^{(0)} \rangle} k^{(0)} \rangle$	
$\psi(x) = Ae^{ikx} + Be^{-ikx}$	$\psi(x) = A + Bx$	$\psi(x) = Ae^{\rho x} + Be^{-\rho x}$			κ	
$k := \sqrt{rac{2m(E-V)}{\hbar^2}}$	$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$	$ ho := \sqrt{rac{2m(V-E)}{\hbar^2}}$	$E_n^{(2)} =$	$=\left\langle n^{(0)}\right \hat{W}\left n^{(1)}\right\rangle =-\sum_{k}$	$k \neq n \frac{\left \left\langle k^{(0)} \middle \hat{W} \middle n^{(0)} \right\rangle \right ^2}{E_k^{(0)} - E_n^{(0)}}$	
Momento angolare $J_{\pm} k j$	$ m\rangle = N_{\pm} k j m \pm 1\rangle; N_{\pm}(j, m)$	$0 = \hbar\sqrt{j(j+1) - m(m\pm 1)}$	Caso degenere: diagonalizzare $W_{ij} = \left\langle n_i^{(0)} \middle W \middle n_j^{(0)} \right\rangle$ (dà le correzioni			
$J_{\pm}J_{\mp} = J^2 - J_z(J_z \mp \hbar)$	$J_z J_{\pm} = J_{\pm} (J_z \pm \hbar)$	Particelle identiche		al primo ordine del'autov		
Simr	metrico	-	Antisimmetico		Commutatore tra \vec{L} e \vec{X}, \vec{P}	
$\psi(\vec{x}_1, \vec{x}_2) = \frac{1}{\sqrt{2}[1 + \delta_{mn}(\sqrt{2} - 1)]} \left(\psi_m(\vec{x}_1) \psi_n(\vec{x}_2) + \psi_n(\vec{x}_1) \psi_m(\vec{x}_2) \right) \qquad \psi(\vec{x}_1, \vec{x}_2) = \frac{1}{\sqrt{2}} \left(\psi_m(\vec{x}_1) \psi_n(\vec{x}_2) - \psi_n(\vec{x}_1) \psi_m(\vec{x}_2) \right) \qquad [L_i, X_j] = i\hbar \varepsilon_{ijk}$						
Bosoni si trovano in stati simmetrici di spin Fermioni si trovano in stati antisimmetrici di spin					$[L_i, P_j] = i\hbar \varepsilon_{ijk} P_k$	

Meccanica classica

Equazioni di Lagrange Equazioni di Hamilton

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i} \qquad \dot{q}_i = \frac{\partial H}{\partial p_i}; \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$$

Roba matematica

Error function	Integrale di Seno $(n \in \mathbb{N} \setminus \{0\})$		Commutatori cancri	Prodotto misto
$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$	ſ	$\left(\frac{(n-1)!!}{n}, \sqrt{\frac{\pi}{n+1}}\right)$ n pari	[A, BC] = [A, B]C + B[A, C]	$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
Polinomi di Hermite	$I_n(a) = \int_0^\infty x^n e^{-ax^2} dx = \begin{cases} \frac{(n-1)^{\frac{n}{2}}}{2}}{\frac{n}{2}} \\ \frac{(n-1)^{\frac{n}{2}}}{2}}{2} \end{cases}$	$\frac{2^{\frac{n}{2}}}{(n-1)!} \bigvee a^{n+1}$	[AB, C] = A[B, C] + [A, C]B	$ec{a} imes (ec{b} imes ec{c}) = ec{b} (ec{a} \cdot ec{c}) - ec{c} (ec{a} \cdot ec{b})$
$H_n(z) = (-)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}$		$\frac{(\frac{n}{2})^n}{n+1}$ n dispari	[AB, CD] = A[B, C]D + AC[B, D] +	$(\vec{a} imes \vec{b}) imes \vec{c} = \vec{b} (\vec{c} \cdot \vec{a}) - \vec{a} (\vec{b} \cdot \vec{c})$
$= \left(2z - \frac{d}{dz}\right) H_{n-1}(z)$	`	24 2	+[A,C]DB+C[A,D]B	Goniometria marastoniana
Formule Eulero	Integrale di D'Eramo	Integrale	$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$	
$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$	$\int_{\mathbb{R}} dx e^{-\alpha x^2 + \beta x} = \frac{\sqrt{\pi}}{\alpha} e^{\frac{\beta^2}{4\alpha}}$	$\int_0^1 \mathrm{d}z \sin^2(n\pi z)$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$	
$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{e^{i\theta} + e^{-i\theta}}$				