Zentrum für Astronomie der Universität Heidelberg & Institut für Theoretische Physik

Björn Malte Schäfer

Anja Butter

Theoretische Physik III: Elektrodynamik Wintersemester 2020/2021

8. Übungsblatt

Ausgabe 12.01.2020 – Besprechung 18.01-23.01.2021

Verständnisfragen

- ullet Welche der folgenden Funktionen f(z) sind holomorph?
 - z
 - $-z^2$
 - **-** |z|
 - $-|z|^2$
 - $-e^z$
 - Re(z)

1. Aufgabe: Residuensatz

Wir betrachten eine auf ihrem gesamten Definitionsbereich D komplex differenzierbare Funktion $f:D\to\mathbb{C}$. Solche Funktionen nennt man auch analytisch oder holomorph. Nun besitze aber D eine Lücke z_0 . Der Residuensatz beantwortet die Frage, welchen Wert beispielsweise das Wegintegral

$$\oint dz f(z) \tag{1}$$

entlang eines mathematisch positiven Kreiswegs um z_0 annimmt. Ausgangspunkt ist das Resultat, dass sich eine analytische Funktion um eine Lücke z_0 als eine Laurent-Reihe darstellen lässt (die im Gegensatz su einer Potenzreihe auch negative Potenzen enthält),

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n \text{ und somit } \oint dz f(z) = \sum_{n = -\infty}^{\infty} a_n \left[\oint dz (z - z_0)^n \right]. \tag{2}$$

Hier schließt sich die Beobachtung an (die beispielsweise elementar nachgerechnet werden kann), dass nur die Potenz n=1 beiträgt, nämlich

$$\oint dz (z - z_0)^n = \begin{cases} 0 & \text{für } n \neq -1\\ 2\pi i & \text{für } n = -1 \end{cases}$$
(3)

Zusammen finden wir also $\oint dz f(z) = 2\pi i a_{-1}$. Man nennt den Koeffizienten a_{-1} auch das Residuum Res (f, z_0) des $Pols\ z_0$. Berücksichtigt man nun noch, dass man den Weg auch in umgekehrter Richtung definieren könnte (dies gäbe ein Vorzeichen) oder mehrfach (gäbe einen ganzzahligen Faktor), führt man eine $Windungszahl\ \chi$ ein. Gibt es in der vom Integrationsweg eingeschlossenen Fläche sogar mehrere Pole z_0 bis z_N , schreibt man insgesamt (Residuensatz):

$$\oint dz f(z) = 2\pi i \sum_{k=0}^{N} \text{Res}(f, z_k) \chi_k.$$
(4)

Wir betrachten nun speziell die Funktion $f(z) = \frac{1}{1+z^2}$.

(a) Welche Pole hat die Funktion f? Wie lauten ihre Residuen, wenn Sie die für Pole 1. Ordnung (Verhalten wie $\propto z^{-1}$) gültige Formel

$$\operatorname{Res}(f, z_k) = \lim_{z \to z_k} (z - z_k) f(z)$$
 (5)

zugrunde legen?

- (b) Berechnen Sie nun mit Hilfe des Residuensatzes den Wert folgender Integrale:
 - 1. Kreisweg im mathematisch positiven Sinn um jeden der Pole (ohne andere Pole mit einzuschließen).
 - Kreisweg im mathematisch positiven Sinn um den Ursprung, so groß gewählt, dass alle Pole im Innern enthalten sind.

2. Aufgabe: Erdmagnetfeld in Heidelberg

In guter Näherung gleicht das Erdmagnetfeld an der Oberfläche dem Feld eines im Erdmittelpunkt lokalisierten Dipols. Wie groß ist die sogenannte Inklination t (Winkel zwischen Erdmagnetfeld und lokaler Horizontalebene) in Heidelberg? Hinweis: Sie dürfen annehmen, dass magnetische und geographische Breite übereinstimmen.

3. Aufgabe: Polare und axiale Vektorfelder

Man unterscheidet Skalarfelder, polare Vektorfelder und axiale Vektorfelder nach ihrem Verhalten unter Drehungen und Spiegelungen, also orthogonalen Transformationen Q mit det $Q=\pm 1$. Der Fall det $Q=\pm 1$ bezeichnet eine reine Drehung. Ein Skalar ist unter Drehungen invariant, ein polares Vektorfeld transformiert sich gemäß $\boldsymbol{v}=Q\boldsymbol{v}$, ein axiales hingegen mit $\boldsymbol{v}=(\det Q)Q\boldsymbol{v}$. Ein axiales Vektorfeld ist also invariant unter Punktspiegelung. Es seien $\phi(\boldsymbol{r})$ ein Skalarfeld und $\boldsymbol{v}(\boldsymbol{r})$ ein polares Vektorfeld.

- (a) Von welcher Art sind $\nabla \phi(r)$, $\nabla \cdot v(r)$ und $\nabla \times v(r)$?
- (b) Zeigen Sie, dass das elektrische Feld ein polarer Vektor, das Magnetfeld hingegen ein axialer Vektor ist.

Hinweis Es gilt $(\det Q)\epsilon_{ijk}=q_{il}q_{jm}q_{kn}\epsilon_{lmn}$ für $Q=(q_{ij})$. Bedenken Sie ferner, dass die Transformation zunächst auf den Ortsvektor wirkt, $r\to r'=Qr$. Hieraus gewinnen Sie, wie sich die partiellen Ableitungen $\partial/\partial x_i'$ bezüglich der transformierten Koordinaten zu den ursprünglichen Ableitungen verhalten.