4 Lastnosti preslikav

Naloga 4.1. Naj bosta X in Y množici ter $f: X \to Y$ in $g: Y \to X$ taki preslikavi, da je $f \circ g \circ f$ bijekcija. Dokažite, da sta f in g bijekciji.

Naloga 4.2. Preslikavo $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ definiramo s predpisom

$$f(S) := \{ n \in \mathbb{N} \mid \forall m \in S. \, n \le m \} \, .$$

- (a) Določite $f(\{20, 17\})$ in $f(\emptyset)$.
- (b) Dokažite, da za vse $A, B \in \mathcal{P}(\mathbb{N})$ velja $f(A \cup B) = f(A) \cap f(B)$.
- (c) Poiščite primer množic $A, B \in \mathcal{P}(\mathbb{N})$, za kateri ne velja $f(A \cap B) = f(A) \cup f(B)$.
- (d) Izračunajte zalogo vrednosti preslikave $f \circ f$.

Naloga 4.3. Dokažite, da so za preslikavo $f: X \to Y$ ekvivalentne naslednje trditve:

- (a) Preslikava f je injektivna.
- (b) Za vse podmnožice $A, B \subseteq X$ velja $f_*(A \cap B) = f_*(A) \cap f_*(B)$.
- (c) Za vsaki disjunktni podmnožici $A, B \subseteq X$ velja $f_*(A) \cap f_*(B) = \emptyset$.
- (d) Za vsako podmnožico $A \subseteq X$ velja $f_*(A^{\complement}) \subseteq (f_*(A))^{\complement}$.
- (e) Za vse $A \subseteq X$ velja $f^*(f_*(A)) = A$.
- (f) Preslikava $f_* : \mathcal{P}(X) \to \mathcal{P}(Y)$ je injektivna.

Naloga 4.4. Naj bosta A in B množici. Definirajmo preslikavo $I: B^A \to \mathcal{P}(A)^{\mathcal{P}(B)}$ s predpisom $I(f) := f^*$.

- (a) Ali je *I* injektivna preslikava?
- (b) Ali je *I* surjektivna preslikava?