

Godfred Oheneba Agyekum, Étudiant

Prof. J. Morlier - Prof. C. Gogu - PhD. S. Coniglio, Encadrants

(stage - projet de 6 mois)

13 septembre 2019

Introduction

Optimisation topologique

Introduction

Histoire et motivation

Niels Aage, Erik Andreassen, boyan S. Lazarov1 , Ole Sigmund : Giga-voxel computational morphogenesis for structural design.

Sommaire

- Solveurs et problèmes d'optimisation topologique.
- Formulations et considérations des problèmes d'optimisation topologique.
- Benchmarking des solveurs d'optimisation pour des problèmes d'optimisation topologique 3D
- Résultats, conclusions et futur travail .

Quel était l'objectif?

• Évaluer et comparer des solveurs d'optimisation pour des problèmes d'optimisation topologique 3D

Solveur d'optimisation

 $\begin{cases} \min_{x} f(x) \\ g(x) \le 0 \\ h(x) = 0 \\ 0 \le x \le 1 \end{cases}$

OC : critère d'optimalité.

MMA: approximations séquentielle convexe.

GCMMA: MMA globalement convergente.

Solveurs d'optimisation topologique

M.P Bendsøe. Optimal shape design as a material distribution problem. Structural Optimization, 1:192–202, 1995 Krister Svanberg. MMA and GCMMA – two methods for nonlinear optimization, 2007.

Andreassen, E and Clausen, A and Schevenels, M and Lazarov, B. S and Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1): 1–16, 2011

Problèmes d'optimisation topologique

But: Obtenir une conception optimale d'une structure étant donnés des conditions limites et des chargements

Bongartz, I., Conn, A.R., Gould, N., Toint, P.L, CUTE: Constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 1995

Problèmes d'optimisation topologique

But: Obtenir une conception optimale d'une structure avec conditions limites et chargements

Formulations des problèmes d'optimisation topologique

- Formulation Nested
 - Compliance minimale

$$\begin{cases} \min_{x} u(x)^{T} K(x) u(x) \\ a^{T} x \leq V \\ 0 \leq x \leq 1 \end{cases}$$

Volume minimal

$$\begin{cases} \min_{x} a^{T} x \\ u(x)^{T} K(x) u(x) \le C \\ 0 \le x \le 1 \end{cases}$$

- $u(x) = K(x)^{-1}f.$
- $f \in \mathbb{R}^d$ vecteur de chargement
- $a \in \mathbb{R}^n$ vecteur de volume
- V fraction volumique
- C contrainte de compliance

Considérations sur la formulation du problème

SIMP (Solid Isotropic Material Penalization)

$$K(x) = \sum_{e=1}^{n} (E_v + (E_1 - E_v)x_e^p)K_e$$

- E₁, module de Young du matériau « artificiel »
- E₁ module de Young du matériau solide

M. P. Bendsøe. Optimal shape design as a material distribution problem. Springer, 1(4), 1989.

H. P. Mlejnek. Some aspects of the genesis of structures. Science Direct, 5(1-2), March 1992.

I.N.Rozvany M.ZhouG. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Science Direct, 89(1-3), 1991.

Considérations sur la formulation du problème

J. Petersson O. Sigmund. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Springer, 16(1), August 1998.

- Comment ? Profiles de performance et « Data profiles »
 - Ratio d'une mesure de performance
 - Mesure de performance
 - fraction de problèmes résolus pour chaque solveur, conjointement à un test de convergence

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles, 2002 Jorge J. Moré and Stefan M. Wild. Benchmarking Derivative-Free Optimization Algorithms, April 2008

- Comment ? Profiles de performance et « Data profiles ».
 - Test de convergence :

$$f(x) \le f_L + \tau(f(x_0) - f_L)$$

Ratio de performance :

$$r_{p,s} = \frac{t_{p,s}}{\min_{s} \{t_{p,s} : s \in S\}}$$

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles, 2002 Jorge J. Moré and Stefan M. Wild. Benchmarking Derivative-Free Optimization Algorithms, April 2008

- Comment ? Profiles de performance et « Data profiles ».
 - Profile de performance :

$$\rho_s(\alpha) = \frac{1}{|\mathcal{P}|} \quad \operatorname{card}\{p \in \mathcal{P} : r_{p,s} \le \alpha\}$$

■ Data profile : $d_{S}(\kappa) = \frac{1}{|\mathcal{P}|} \quad \operatorname{card}\{p \in \mathcal{P} : \frac{t_{p,S}}{n_{p}+1} \leq \kappa\}$

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles, 2002 Jorge J. Moré and Stefan M. Wild. Benchmarking Derivative-Free Optimization Algorithms, April 2008.

Benchmarking en optimisation topologique 3D

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles, 2002 Jorge J. Moré and Stefan M. Wild. Benchmarking Derivative-Free Optimization Algorithms, April 2008.

Benchmarking en optimisation topologique 3D

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles, 2002 Jorge J. Moré and Stefan M. Wild. Benchmarking Derivative-Free Optimization Algorithms, April 2008.

 $\tau = 10^{-3}$

Number of simplex gradients, κ

Exemple de benchmarking 2D

(a) Penalization of problems with $\omega_{\text{max}} = 1e - 2$

Mathias Stolpe Susana Rojas Labanda. Benchmarking optimization solvers for structural topology optimization, 2015

Considérations sur la formulation du problème

- Un seul point de chargement externe.
- Élasticité linéaire dans l'équation d'équilibre
- K(x) est définie positive
- Les variables de densité x sont dans [0,1]
- Une seule méthode d'interpolation : la méthode SIMP
- Un seul filtre : filtre d' Helmholz

Le plan d'expériences

Compliance minimale

Cantilever, Wheel, Michell, respectivement.

Bongartz, I., Conn, A.R., Gould, N., Toint, P.L, CUTE: Constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 1995

Le plan d'expériences

Compliance minimale

• Contraintes volumique : 0.1 - 0.5

Total compliance minimale : 120

Bongartz, I., Conn, A.R., Gould, N., Toint, P.L, CUTE: Constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 1995

Le plan d'expériences

Compliance minimale

Ratio de longueur et discrétisation:

DOMAINE	L_x	Ly	L_t	N,	N,	N_x	n	đ	DOMAINE	-
	2	1	1	88	88	176	1362944	4206051		-
	100			1479.61	-00	20		**********		
	2	1	1	176	88	88	1362944	4206051		
	2	1	1	128	64	64	524288	1635075		
	4	1	4	88	88	176	1362944	4206051		- 1
	18		10							-
	4	1	1	176	88	88	1362944	4206051		-
	4	1	1	128	64	64	524288	1635075		
										3
MICHELL									CANTILEVER	

DOMAINE	L_{s}	Ly	L_x	N _E	N_{y}	N _x	n	a
	2	1	1	88	88	176	1362944	4206051
	2	1	1	176	88	88	1362944	4206051
	2	1	1	128	64	64	524288	1635075
	4	1	1	88	88	176	1362944	4206051
	4	1	1	176	88	88	1362944	4206051
	4	1	1	128	64	64	524288	1635075
	4	3	1	88	88	176	1362944	4206051
	4	3	1	176	88	88	1362944	4206051
	4	3	1	128	64	64	524288	1635075
CANTILEVER								

DOMAINE	L_x	L_y	L_2	Nx	N_y	N.	77	d
	2	1	1	88	88	176	1362944	4206051
	2	1	1	176	88	88	1362944	4206051
	2	1	1	128	64	64	524288	1635075
	4	1	1	88	88	176	1362944	4206051
	4	1	1	176	88	88	1362944	4206051
	4	1	1	128	64	64	524288	1635075
	4	3	1	88	88	176	1362944	4206051
	4	3	1	176	88	88	1362944	4206051
	4	3	1	128	64	64	524288	1635075
WHEEL								

Bongartz, I., Conn, A.R., Gould, N., Toint, P.L, CUTE: Constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, 1995

Profiles de performance pour la compliance minimale 3D

Valeur de la fonction objectif

Profiles de performance pour la compliance minimale 3D

Valeur de la fonction objectif

Profiles de performance pour la compliance minimale 3D

Data profiles pour la compliance minimale 3D

Valeur de la fonction objectif

Data profiles pour la compliance minimale 3D

Valeur de la

fonction objectif

Data profiles pour la compliance minimale 3D

Valeur de la fonction objectif

Conclusions et futur travail

Contributions

- Prise en main de TopOpt Petsc.
- Construction d'un plan d'expériences 3D.
- Implémentation des solveurs OC, GCMMA en PETSc
- Benchmarking de solveurs d'optimisation non linéaire pour des problèmes d'optimisation topologique 3D.

Conclusions et futur travail

- Que manque-t-il?
 - Plus de solveurs d'optimisation : méthodes SQP dans NLOPT et méthodes de points intérieurs dans IPOPT.
 - Benchmarking des solveurs d'optimisation pour des problèmes d'optimisation à la formulation SAND

Conclusions et futur travail

- Que pouvons-nous conclure des profiles de performance et "Data profiles?
 - GCMMA surpasse MMA, OC.
 - MMA surpasse OC.
 - MMA, GCMMA, sont capables d'obtenir une conception avec une tolérance large.
 - GCMMA produit les meilleurs designs en utilisant peu d'itérations.
 - OC est les solveur le moins robuste des solveurs.
 - GCMMA est le plus robuste.

MERCI!!!

Autres formulations des problèmes d'optimisation topologique

- Formulation SAND
 - Compliance minimale

$$\begin{cases} \min_{x,u} f^T u \\ a^T x \le V \\ K(x)u - f = 0 \\ 0 \le x \le 1 \end{cases}$$

- $f \in \mathbb{R}^d$ vecteur de chargement
- $a \in \mathbb{R}^n$ vecteur de volume
- V fraction volumique
- C contrainte supérieur de la compliance

Volume minimal

$$\begin{cases} \min_{x} a^{T} x \\ f^{T} u \leq C \\ K(x)u - f = 0 \\ 0 \leq x \leq 1 \end{cases}$$

Analyse structurale

MGCG

```
 \begin{array}{ll} 1. & \text{Pr\'e-lissage}: \{U_l\} \leftarrow smooth^{\nu_1}([K_l], \{U_l\}, \{F_l\}); \\ 2. & \text{Obtenir r\'esidu}: \{r_l\} \leftarrow \{F_l\} - [K_l]\{U_l\}; \\ 3. & \text{Raffinement}: \{r_{l-1}\} \leftarrow \left[I_{l,l-1}\right]^T \{r_l\}; \\ 4. & \text{Si } l=1; \\ 5. & \text{R\'esoudre}: [K_{l-1}]\{\delta_{l-1}\} = \{r_{l-1}\}; \\ 6. & \text{Sinon}; \\ 7. & \text{R\'ecursion}: \delta_{k-1} \leftarrow \text{V-cycle}([K_{l-1}], \{0\}, \{r_{l-1}\}); \\ 8. & \text{Fin si;} \\ 9. & \text{Correction}: \{U_l\} \leftarrow \{U_l\} + \left[I_{l,l-1}\right] \{\delta_{l-1}\}; \\ 10. & \text{Post-lissage}: \{U_l\} \leftarrow smooth^{\nu_2}([K_l], \{U_{l,0}\}, \{F_l\}); \\ \end{array}
```

Algorithme MGCG à 4 niveaux : $\{U_l\} = V-cycle([K_l], \{U_l\}, \{F_l\})$

Simone Coniglio, Joseph Morlier, Christian Gogu, Remi Amargier, Engine Pylon Topology Optimization Framework Based on Performance and Stress Criteria. AAIA Journal, 28 Aug 2019

