STK1110 Høsten 2021

Hypotesetesting om forventningen til en populasjon

Tilsvarer Avsnitt 9.2

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Normalfordelte data med kjent varians

- Anta at $X_1, \ldots, X_n \stackrel{uif}{\sim} N(\mu, \sigma^2)$, der σ er kjent.
- Anta at vi har en test av typen

$$H_0: \mu \geq \mu_0 \mod H_a: \mu < \mu_0$$

for en gitt verdi av μ_0 .

• Da forkaster vi H_0 dersom $Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}\leq c$, og vi må finne c slik at signifikansnivået blir α .

Normalfordelte data med kjent varians (forts.)

• Da $Z \sim N(0,1)$ når $\mu = \mu_0$, har vi:

$$\begin{split} \mathsf{P}(\mathsf{Type I-feil}) = & \mathsf{P}(\mathsf{Forkaste}\ H_0 | H_0\ \mathsf{er\ sann}) \\ = & \mathsf{P}(Z \le c | \mu \ge \mu_0) \\ \le & \mathsf{P}(Z \le c | \mu = \mu_0) = \Phi(c). \end{split}$$

• For å få signifikansnivå α løser vi

$$\alpha = \Phi(c) \rightarrow c = \Phi^{-1}(\alpha) = -z_{\alpha}.$$

• Vi forkaster altså H_0 ved signifikansnivå α dersom $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \le -z_{\alpha}$.

Normalfordelte data med kjent varians (forts.)

• Anta at vi vi nå ønsker å teste

$$H_0: \mu \leq \mu_0 \text{ mot } H_a: \mu > \mu_0.$$

- Da forkaster vi H_0 dersom $Z = \frac{X \mu_0}{\sigma / \sqrt{n}} \ge c$, og vi må finne c slik at signifikansnivået blir α .
- Vi har:

P(Type I-feil) =P(
$$Z \ge c | \mu \le \mu_0$$
)
 \le P($Z \ge c | \mu = \mu_0$)
=1 - P($Z \le c | \mu = \mu_0$) = 1 - $\Phi(c)$.

• For å få signifikansnivå α løser vi

$$\alpha = 1 - \Phi(c) \rightarrow c = \Phi^{-1}(1 - \alpha) = z_{\alpha}.$$

• Vi forkaster altså H_0 ved signifikansnivå α dersom $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}$.

Ensidig alternativ

Så langt har vi sett på tester av typen

$$H_0: \mu \le \mu_0 \text{ mot } H_a: \mu > \mu_0$$

 $H_0: \mu \ge \mu_0 \text{ mot } H_a: \mu < \mu_0.$

- Dette er tester med et ensidig alternativ.
- Merk at læreboka formulerer H_0 som $\mu = \mu_0$ i slike tilfeller.
- Grunnen til denne forenklingen er at sannsynligheten for type II-feil er størst for **nullverdien** $\mu=\mu_0$, og at det dermed holder å finne signifikansnivået for denne verdien av μ .

Tosidig alternativ

Vi skal nå se på tester med et tosidig alternativ, altså

$$H_0: \mu = \mu_0 \text{ mot } H_a: \mu \neq \mu_0.$$

Eksempel

Eks. 9.6 fra boka.

- Vi antar at $X_1, \ldots, X_n \stackrel{uif}{\sim} N(\mu, \sigma^2)$ med σ kjent.
- En test for hypotesene over med signifikansnivå α forkaster da H_0 dersom $Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}\leq -z_{\alpha/2}$ eller $Z\geq z_{\alpha/2}$.

Styrkefunksjon og valg av n

Anta at vi nå vil teste

$$H_0: \mu \leq \mu_0 \text{ mot } H_a: \mu > \mu_0.$$

med signifikansnivå α

- Styrkefunksjonen er da $\gamma(\mu) = 1 \Phi(z_{\alpha} + \frac{\mu \mu_{0}}{\sigma/\sqrt{n}})$.
- For $\mu > \mu_0$ er da sannsynligheten for type II-feil

$$\beta(\mu) = 1 - \gamma(\mu) = \Phi(z_{\alpha} + \frac{\mu - \mu_0}{\sigma/\sqrt{n}}).$$

• Vi ønsker nå å bestemme n slik at sannsynligheten for type II-feil er høyst β hvis $\mu=\mu_1>\mu_0$.

Styrkefunksjon og valg av n (forts.)

• Vi løser $\beta(\mu_1) = \Phi(z_{\alpha} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) \leq \beta$ for n og får

$$n \ge \left(\sigma \frac{z_{\alpha} + z_{\beta}}{\mu_1 - \mu_0}\right)^2.$$

For tester av typen

$$H_0: \mu \ge \mu_0 \text{ mot } H_a: \mu < \mu_0$$

er styrkefunksjonen
$$\gamma(\mu) = \Phi(-z_{\alpha} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}).$$

• Den n som gir sannsynlighet for type II-feil høyst lik β når $\mu=\mu_1<\mu_0$ er da gitt ved samme formel som over.

Styrkefunksjon og valg av n (forts.)

For tester av typen

$$H_0: \mu = \mu_0 \text{ mot } H_a: \mu \neq \mu_0$$

er styrkefunksjonen

$$\gamma(\mu) = 1 - \Phi(z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}) + \Phi(-z_{\alpha/2} + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}).$$

• Nå finnes det ikke noen eksakt formel for hva n må være for at sannsynligheten for type II-feil blir høyst β for $\mu = \mu_1 \neq \mu_0$, men vi har den tilnærmede formelen

$$n \ge \left(\sigma \frac{z_{\alpha/2} + z_{\beta}}{\mu_1 - \mu_0}\right)^2.$$

Store utvalg av uif data med ukjent varians

- Anta at X_1, \ldots, X_n er uif med forventning μ og ukjent varians σ^2 .
- Anta videre at n er så stor at

$$Z = rac{ar{X} - \mu}{S/\sqrt{n}} \stackrel{tiln.}{\sim} N(0,1), \ \mathrm{med} \ S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2.$$

- For å teste hypoteser om μ kan vi da bruke akkurat samme framgangsmåter som for normalfordelte utvalg med kjent varians, bare at vi bytter ut σ med S.
- For å kunne bestemme n slik at sannsynligheten for type II-feil er under et visst nivå for en gitt verdi av μ , kan vi bruke formlene for normalfordelte utvalg med kjent varians, men trenger da et anslag for σ (fra en pilotstudie e.l.).

Eksempel

Eks. 9.8 i boka.

Små utvalg av normalfordelte data med ukjent varians

- Anta at $X_1, \ldots, X_n \stackrel{uif}{\sim} N(\mu, \sigma^2)$, der σ er ukjent.
- Anta videre at n ikke er stor nok til å bruke resultatene for store utvalg.
- Vi bruker da at

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}.$$

- Vi lar $T = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$, og kan utlede forkastningsområder som tilsvarer et signifikansnivå på α på samme måte som for normalfordelte utvalg med kjent varians. Vi får da
 - For $H_0: \mu \geq \mu_0$ mot $H_a: \mu < \mu_0$: forkast H_0 for $T \leq -t_{\alpha,n-1}$.
 - For $H_0: \mu \leq \mu_0 \mod H_a: \mu > \mu_0$: forkast H_0 for $T \geq t_{\alpha,n-1}$.
 - For $H_0: \mu = \mu_0$ mot $H_a: \mu \neq \mu_0$: forkast H_0 for $T \leq -t_{\alpha/2,n-1}$ eller $T \geq t_{\alpha/2,n-1}$.

Små utvalg av normalfordelte data med ukjent varians (forts.)

Eksempel

Eks. 9.9 i boka.

- For å beregne styrkefunksjonen til testene over trenger en fordelingen til T når $\mu \neq \mu_0$.
- Det er en ikke-sentral t-fordeling, som vi ikke skal gå nærmere inn på.
- I stedet kan vi bruke R til å finne styrkefunksjonen, feil av type II og utvalgsstørrelse som gir sannsynlighet for feil av type II høyst lik β for en gitt μ i samsvar med H_a .

Eksempel

Eks. 9.10 i boka.

Tosidig alternativ og konfidensintervall

- La oss se på tester med tosidig alternativ, altså $H_0: \mu = \mu_0$ mot $H_a: \mu \neq \mu_0$.
- Da er det en sammenheng mellom testing og konfidensinterval for μ .
- Vi forkaster H_0 ved signifikansnivå α dersom

$$T = rac{ar{X} - \mu_0}{S/\sqrt{n}} \le -t_{lpha/2,n-1} ext{ eller } rac{ar{X} - \mu_0}{S/\sqrt{n}} \ge t_{lpha/2,n-1}.$$

• Det er det samme som å forkaste H_0 dersom

$$ar{X} \leq \mu_0 - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$$
 eller $ar{X} \geq \mu_0 + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$

eller hvis

$$\mu_0 \leq \bar{X} - t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$$
 eller $\mu_0 \geq \bar{X} + t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$.

Tosidig alternativ og konfidensintervall (forts.)

• Et $100 \cdot (1 - \alpha)$ % konfidensintervall for μ er gitt ved

$$\left(\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right).$$

- Det beyr at vi forkaster H₀ dersom μ₀ ikke ligger innafor konfidensintervallet for μ.
- Generelt gjelder at for tester av $H_0: \theta = \theta_0$ mot $H_a: \theta \neq \theta_0$ får vi en test med signifikansnivå α hvis vi forkaster H_0 dersom θ_0 ikke ligger i et $100 \cdot (1 \alpha)\%$ konfidensintervall for θ .