MATH 6480/STAT 9300/AMCS 6481, Fall 2023, Homework Set 7

1. Let A_n be independent events with probabilities p_n such that $\sum_{n=1}^{\infty} (p_n - p_n^2) = \infty$. Improve on the quantitative Borel-Cantelli theorem (Theorem 1.3 of Unit 3) by stating and proving a Central limit result for $S_n := \sum_{k=1}^n \mathbf{1}_{A_k}$.

$\underline{solution}$

Consider the triangular array $X_{n,k} = \frac{\mathbf{1}_{A_k} - p_k}{\sqrt{\sum_{k=1}^n p_k (1 - p_k)}}$

where $\mathbb{P}(\mathbf{1}_{A_k}=1)=p_k$ and $\mathbb{P}(\mathbf{1}_{A_k}=0)=1-p_k$, then $\mathbb{E}X_{n,k}=0$ (the assumption of Lindeberg-Feller CLT satisfies).

Check the first condition:

$$\mathbb{E}X_{n,k}^{2} = \operatorname{Var}X_{n,k} + \mathbb{E}^{2}X_{n,k} = \operatorname{Var}X_{n,k} = \operatorname{Var}\left[\frac{\mathbf{1}_{A_{k}}}{\sqrt{\sum_{k=1}^{n}p_{k}\left(1-p_{k}\right)}}\right] = \frac{p_{k}\left(1-p_{k}\right)}{\sqrt{\sum_{k=1}^{n}p_{k}\left(1-p_{k}\right)}}$$

Therefore, the first condition of Lindeberg-Feller CLT satisfies:

$$\sum_{k=1}^{n} \mathbb{E}X_{n,k}^{2} = \sigma^{2} = \frac{\sum_{k=1}^{n} p_{k} (1 - p_{k})}{\sum_{k=1}^{n} p_{k} (1 - p_{k})} = 1$$

Check the second condition:

Given $|1_{A_k} - p_K| \le |1_{A_K}| + |p_k| \le 2$ bounded, we can focus on the denominator to see if the second condition satisfies. As $\sum_{k=1}^n p_k (1 - p_k) \to \infty$ as $n \to \infty$, we can pick N sufficiently large such that $\forall n > N$, there is $\sum_{k=1}^n p_k (1 - p_k) > \frac{4}{\varepsilon^2}$, $\forall \varepsilon > 0$ then

$$\left| \frac{1_{A_k} - p_k}{\sqrt{\sum_{k=1}^n p_k (1 - p_k)}} \right| \le \frac{|1_{Ak}| + |p_k|}{\sqrt{\sum_{k=1}^n p_k (1 - p_k)}} < \frac{2}{2/\varepsilon} = \varepsilon$$

then $\mathbf{1}_{|X_{n|k}|>\varepsilon\to 0}\to$ as $n\to\infty$ Therefore, the second condition holds as following

$$\forall \varepsilon > 0, \lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{E} X_{n,k}^{2} \mathbf{1}_{|X_{n,k}| > \varepsilon} = 0$$

By Lindeberg-Feller CLT,

$$S_n = \sum_{k=1}^n X_{n,k} = \frac{\sum_{k=1}^n \mathbf{1}_{A_k} - \sum_{k=1}^n p_k}{\sqrt{\sum_{k=1}^n p_k (1 - p_k)}} \to \sigma \chi = \chi$$

in distribution as $n \to \infty$, which is stronger and improves the quantitative BC.

2. Let $X_1, X_2, ...$ be IID with $\mathbf{E}X_1 = 0$ and $\mathbf{E}X_1^2 = \sigma^2 \in (0, \infty)$. Prove or find a counterexample: this implies

$$\frac{\sum_{k=1}^{n} X_k}{\left(\sum_{k=1}^{n} X_k^2\right)^{1/2}} \Rightarrow \mathcal{N}(0,1).$$

solution Proof given:

i) Apply SLLN to the denominator:

Given IID $\{X_n\}$ with $\mathbb{E}\left|X_1^2\right|=\sigma^2<\infty,\ \left\{X_n^2\right\}$ are IID as well, there is

$$\frac{\sum_{k=1}^{n} X_k^2}{n} \xrightarrow{\text{a.s.}} \sigma^2$$

by SLLN. Then

$$Y_n = \frac{\left(\sum_{k=1}^n X_n^2\right)^{\frac{1}{2}}}{\sigma\sqrt{n}} \xrightarrow{\text{a.s.}} 1$$

(Consider convergence a.s. as pointwise convergence, then by continuity, the square root convergence is valid. And convergence a.s. implies convergence in distribution)

ii) Apply Classical CLT to the numerator:

Given $\{X_n\}$ IID with $EX_1 = 0$ and $\operatorname{var} X_1 = \sigma^2 \in (0, \infty)$

$$X_n = \frac{\sum_{k=1}^n X_k}{\sigma \sqrt{n}} \xrightarrow{d} \chi$$

by CLT, where χ is standard normal.

By Slutsky's Theorem: there is $\frac{X_n}{Y_n} \stackrel{d.}{\to} \frac{x}{1}$ as $n \to \infty$, i.e.,

$$\frac{\sum_{k=1}^{n} X_k}{\left(\sum_{k=1}^{n} X_k^2\right)^{\frac{1}{2}}} \stackrel{d}{\to} \mathcal{N}(0,1) \text{ as } n \to \infty$$

- 3. For each of the following eight situations, say whether there exist constants a_n and b_n so that $(T_n a_n)/b_n \xrightarrow{\mathcal{D}} \chi$, where χ is a standard normal? If so, identify a_n and b_n ; you do not need to prove these values or even that there is such a limit, just state them. In fact sometimes a proof will be beyond your present capability and you must rely on a near-independence heuristic. If there are no such constants, say why not. You do not need a proof in this case either, just give as good a reason as you can in one sentence.
 - (a) Let n balls be distributed uniformly and independently into n boxes, and let T_n be the number of balls in the first box.
 - (b) Let n balls be distributed uniformly and independently into \sqrt{n} boxes, and let T_n be the number of balls in the first box.
 - (c) Let n balls be distributed uniformly and independently into n boxes, and let T_n be the number of empty boxes.
 - (d) Let $\{X_i\}$ be i.i.d. with $\mathbf{P}(X_i = 1) = \mathbf{P}(X_i = -1) = 1/2$. Let Z_n be 1 if $S_n > 0$ and 0 otherwise and let $T_n = \sum_{i=1}^n Z_i$.
 - (e) Let $\{X_i\}$ be i.i.d. with $\mathbf{P}(X_i = 1) = \mathbf{P}(X_i = -1) = 1/2$. Let $T_n = \prod_{i=2}^n (1 + X_i/n)$.
 - (f) Let X_n be uniform on the interval [0,1] and let T_n be the sum of the first n decimal digits of X_n .
 - (g) Let T_n be the n^{th} prime number.
 - (h) Let X_n be i.i.d. uniform on [0,1] and let Z_n be the first digit of 2^{nX_n} . Let $T_n = \sum_{i=1}^n Z_i$.

solution

(a) a_n, b_n do not exist. T_n follows Possion distribution, $T_n \sim P(1)$, is a discrete distribution. The corresponding distribution limit of $\frac{T_n - a_n}{b_n}$ is discontinuous, there is a gap of at least $\frac{1}{b_n}$ between left and right limits, which conflicts with the continuity of $\mathcal{N}(0,1)$. As for the potential of converging to 0, it requires $b_n = \infty$. There is no such

 a_n that makes $\frac{T_n - a_n}{b_n} \to \mathcal{N}(0, 1)$.

(b) $a_n = \sqrt{n}, b_n = \sqrt{\sqrt{n}(1 - \frac{1}{\sqrt{n}})}$. compare to (a), there is no costant mean that can be regarded as parameter in possion. So we need to construct a new R.V. The R.V. describing if the *i*-th ball in the first box follows bernoulli distribution. that is, $X_i \sim \text{Ber}\left(\frac{1}{n}\right), P\left(X_i = 1\right) = \frac{1}{\sqrt{n}}$ and $P\left(X_i = 0\right) = 1 - \frac{1}{\sqrt{n}}$. $T_n = \sum_{i=1}^n X_i$ is Binomial and $a_n = \sum_{i=1}^n \frac{1}{\sqrt{n}} = \sqrt{n}$.

Use the example 1 in notes unit 07. Given $np = \sqrt{n} \to \infty$, then

$$\frac{T_n - \sqrt{n}}{\sqrt{n\left(1 - \frac{1}{\sqrt{n}}\right)}} \xrightarrow{d.} \mathcal{N}(0, 1)$$

.

A rigorous proof given as following:

Consider the triangular array $X_{n \cdot k} = \left(X_k - \frac{1}{\sqrt{n}}\right)/b_n$ where $b_n = \sqrt{\sqrt{n}\left(1 - \frac{1}{\sqrt{n}}\right)}$. Check conditions for Lindeberg - Feller CLT:

 $i) \sum_{k=1}^{n} \mathbb{E} X_{nk}^2 = 1$

ii) $\lim_{n\to\infty} \sum_{k=1}^n \mathbb{E} X_{n,k}^2 \mathbf{1}_{|X_{n,k}|>\epsilon} = 0$ since $|X_{n,k}|\to 0$ as $n\to\infty$ (thus $\mathbf{1}_{X_{|n,k|}}>\varepsilon\to 0$ as $n\to\infty$) then

$$\frac{T_n - \sqrt{n}}{\sqrt{\sqrt{n}\left(1 - \frac{1}{\sqrt{n}}\right)}} \xrightarrow{d.} \mathcal{N}(0, 1)$$

(c) $a_n = \frac{n}{e}, b_n = \sqrt{\frac{n}{e} \left(1 - \frac{1}{e}\right)}$ similar to (b). construct a R.V. indicating if a box is empty. $X_i \sim \text{Ber}(p)$ where $p = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$

Then use binomial converging to Poission that $T_n = \sum_{i=1}^n X_i \sim \text{Binomial}$ and then

$$\frac{Tn - \frac{n}{e}}{\sqrt{\frac{n}{e}\left(1 - \frac{1}{e}\right)}} \xrightarrow{d.} \mathcal{N}(0, 1)$$

(d) a_n, b_n do not exist.

The given $T_n = \sum_{i=1}^n Z_i \in [0, n]$. If there exists such a_n, b_n , then b_n need to be of order n for the construction limit to be tight, and a_n also need to be of the same order n. Given T_n, a_n, b_n same order. $\left|\frac{T_n - a_n}{b_n}\right| \leq c$ for some constant c. In other words. $\lim_{n \to \infty} \frac{T_n - a_n}{b_n}$ is bounded then cannot be normal

(e) $a_n = 1, b_n = \frac{1}{\sqrt{n}}$. Consider $\log T_n = \sum_{i=1}^n \frac{X_i}{n} + O\left(\frac{1}{n}\right)$, where $O\left(\frac{1}{n}\right)$ refers to \exists a constant C s.t. $C \leq \frac{1}{n}$. $\mathbb{E}(X_i) = 0$ and $\operatorname{var}(X_i) = 1 \in (0, \infty)$, then

$$Y_n = \frac{\sum_{i=1}^{\infty} X_i}{\sqrt{n}} \to \mathcal{N}(0,1)$$
 in dist. by CLT

Then

$$\sqrt{n} (T_n - 1) = \sqrt{n} \left(e^{\left(\frac{\sum_{i=1}^{\infty} X_i}{\sqrt{n}} + O\left(\frac{1}{n}\right)\right) - 1} \right)$$

$$= \sqrt{n} \left(e^{\left(\frac{Y_n}{\sqrt{n}} + O\left(\frac{1}{n}\right)\right)} - 1 \right)$$

$$\geq \sqrt{n} \left(\frac{Y_n}{n} + O\left(\frac{1}{n}\right) \right)$$

$$= Y_n + O\left(\frac{1}{\sqrt{n}}\right).$$

Then

$$\lim_{n \to \infty} \sqrt{n} (T_n - 1) = \lim_{n \to \infty} Y_n = \mathcal{N}(0.1)$$

Therefore, we can take $a_n = 1$ and $b_n = \frac{1}{\sqrt{n}}$

(f) $a_n = 4.5n, b_n = \sqrt{8.25n}$. let $Y_i = \text{uniform } \{0, 1, \dots, 9\}$ be the R.V. of the *i*-th decimal, then $T_n = \sum_{i=1}^n Y_i$. $\mathbb{E}(T_n) = n\mathbb{E}(Y_i) = 45n$. Thus $\text{Var}(Y_i) = \frac{\left(10^2 - 1\right)}{12} = \frac{99}{12} = 8.25$. and then $\text{Var}(Y_i - E(Y_i)) = 8.25$.

Given $\{Y_i - \mathbb{E}Y_i\}$ IID with mean zero and variance $\sigma^2 = 8.25$. Since $T_n - ET_n = \sum_{i=1}^n (Y_i - \mathbb{E}Y_i)$,

$$\frac{T_n - 4.5n}{\sqrt{8.25n}} \xrightarrow{d.} \mathcal{N}(0,1)$$
 by CLT

(g) a_n, b_n do not exist, since T_n is deterministic, there is no randomness subject to.

(h)
$$a_n = \mu n$$
, $b_n = \sigma \sqrt{n}$

$$\mathbb{P}(Z_n = k) = \mathbb{P}(\log_{10} k \leqslant \{nX_n \log_{10} 2\} \leqslant \log_{10}(k+1)).$$

where $k = \{1.2, \dots 9\}$, and $\{nX_n \log_{10} 2\} = nX_n \log_{10} 2 - \lfloor nX_n \log_{10} 2 \rfloor$. And $\{nX_n \log_{10} 2\}$ is uniform on [0, 1]. Then $\mathbb{P}(Z_n = k) = \log_{10} \left(\frac{k+1}{k}\right)$.

Given $\{Z_n\}$ IID with $\mathbb{E}Z_n = \mu \neq 0$ and $\operatorname{var}(Z_n) = \sigma^2 < \infty$

$$\frac{T_n - n\mu}{\sqrt{n}\sigma} \to \mathcal{N}(0,1)$$
 by CLT

Therefore, $a_n = n\mu$ and $b_n = \sqrt{n}\sigma$