DERIVACE FUNKCE

Derivace funkce v bodě umožňuje popsat, jak rychle se funkce v takovém bodě funkce mění.

Lineární funkce

Lineární funkce jsou funkce tvaru y(x) = ax + b, kde a a b jsou určité koeficienty. Víme, že grafem lineární funkce je přímka a také, jaký vliv na ni mají a a b:

- Koeficient b je tzv. **absolutní koeficient**. Udává hodnotu funkce v bodě nula. Čím je b větší, tím více posouvá graf funkce y(x) nahoru.
- Koeficient a je tzv. lineární koeficient neboli směrnice přímky. Udává sklon přímky. Čím je a větší, tím je graf funkce strmější. Pro a > 0 je funkce rostoucí, pro a = 0 přejde funkce na obyčejnou konsatntní funkci y = b s nulovým sklonem, pro a < 0 je funkce klesající.</p>

Uvažujme nyní lineární funkce y(x) = ax + b a nějaký pevný bod x_0 s funkční hodnotou $y(x_0)$. Ptejme se nyní, co se stane, zvětšíme-li hodnotu x o nějakou vzdálenost dx. Jak se změní funkční hodnota? Nakreslíme-li si situaci, vidíme, že se hodnota změní o d $y = dx \cdot a$. Můžeme tedy zapsat

$$a = \frac{\mathrm{d}y}{\mathrm{d}x} \,. \tag{1}$$

Představme si třeba funkci y(x) = 2x + 4 a bod $x_0 = 2$. Posuneme-li se o dx = 1, pak se změní hodnota y o d $y = a \cdot dx = 2 \cdot 1 = 2$. Posuneme-li se o dx = 2, změní se hodnota y o d $y = 2 \cdot 2 = 4$, atd...

Obrázek 1: Znázorněna funkce y(x) = 2x + 4. Zafixujme bod $x_0 = 2$ s hodnotou $y(x_0) = 6$. Pokud se změní x o hodnotu dx = 2, změní se hodnota y o d $y = dx \cdot 2 = 4$.

To, že při posunu o dx snadno spočteme dy pouhým vynásobení číslem, je vlastnost, která platí pouze pro lineární funkce. Proto jsou vlastně lineární funkce tak speciální. U složitějších funkcí už obecně záleží na tom, jak velké je x a dx. Uvažte například kvadratickou funkci, tam už přírůstek dy bude pokaždé jiný.

Verze: 9. listopadu 2021

Derivace jako tečna funkce

Pakliže však bude funkce "dostatečně rozumná" a ono dx dostatečně malé, máme návod na to, jak určit malou změnu v dy. Můžeme se totiž na nějakém malém okolí bodu x_0 pokusit aproximovat funkci její **tečnou**. Jak vytvořit tečnu ke křivce v daném bodě? Začneme tím, že vytvoříme **sečnu**, přímku spojující dva body na grafu funkce. Jeden bod bude $(x_0, f(x_0))$. Druhý bod vezměme tak, že posuneme bod x_0 o nějakou vzdálenost h a získáme bod $(x_0 + h, f(x_0 + h))$.

Obrázek 2: Příklad konstrukce sečny k nějaké funkci (modrá). Vezmeme bod $x_0 = 2$ s funkční hodnotou $f(x_0) = 2$. Druhý bod vezmeme tak, že k x_0 přičteme h = 1. Odpovídající funkční hodnota je $f(x_0 + h) = 4$. Takto získané body propojíme přímkou (zelená).

Nyní si všimneme, že čím blíže bude druhý bod prvnímu, tím lépe se sečna podobá tečně. Pokud budeme zmenšovat onu vzdálenost h mezi dvěma body (přičemž x_0 ponecháváme stále na místě), bude se směrnice sečen stále více přibližovat směrnici tečny.

Až nakonec pro $h \to 0$ přejdou sečny skutečně v tečnu.

Pokud nyní vezmeme dx dostatečně malé, nebude nám vadit, když místo skutečné hodnoty dy budeme počítat s přibližnou hodnotou, kterou nám bude dávat bod na tečně.

Vraťme se k předchozímu obrázku. Jaká je směrnice zelené sečny? Je to zase podíl toho, o kolik se změnila funkční hodnota, a toho, o kolik jsme se posunuli:

směrnice sečny =
$$\frac{\text{o kolik se změní funkce}}{\text{o kolik se posuneme}} = \frac{f(x_0 + h) - f(x_0)}{(x_0 + h) - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}. \tag{2}$$

Směrnici tečny získáme limitním procesem

směrnice tečny =
$$\lim_{h \to 0}$$
 směrnice sečny = $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$. (3)

Získáváme tak vztah pro **derivaci funkce** f **v bodě** x_0 :

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \,. \tag{4}$$

Ještě jednou, derivace funkce f v bodě x_0 představuje směrnici tečny k takové funkci v bodě x_0 . K čemu je to dobré? Pokud se posuneme o nějaké dx a ptáme se, o jakou hodnotu df se funkce f změní, můžeme použít jednoduchý vztah:

$$df = dx \cdot f'(x_0). \tag{5}$$

Dokonce si můžeme napsat celý předpis pro tečnu:

rovnice tečny =
$$y(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$
. (6)

Přírůstek $x - x_0$ je právě posunutí mezi x_0 a x. Zajímá-li nás hodnota tečny v bodě x, stačí takové posunutí vynásobit derivací funkce $f'(x_0)$ a přičíst ještě funkční hodnotu $f(x_0)$.

Jak derivaci počítat?

Můžeme ji počítat přímo z definice.

Příklad 1 (Derivace lineární funkce). Výše jsme uvedli, že lineární funkce y(x) = ax + b má všude stále stejnou směrnici a. To znamená, že lineární funkce splývá se svou tečnou a derivace by měla být rovna směrnici a. To se dá samozřejmě ukázat i matematicky:

$$y'(x_0) = \lim_{h \to 0} \frac{y(x_0 + h) - y(x_0)}{h} = \lim_{h \to 0} \frac{[a(x_0 + h) + b] - [ax_0 + b]}{h} = \lim_{h \to 0} \frac{ah}{h} = \lim_{h \to 0} a = a.$$
 (7)

Vidíme, že derivace je všude rovna a, nezávisle na tom, v jakém bodě x_0 ji počítáme.

Příklad 2 (Kvadratická funkce). Jak to bude u kvadratické funkce $f(x) = x^2$? Čekáme, že zde již derivace bude záviset na bodě x_0 , kde ji počítáme. Parabola se totiž stává stále strmější a strmější. Výpočet dává

$$f'(x_0) = \lim_{h \to 0} \frac{[(x_0 + h)^2] - [x_0^2]}{h} = \lim_{h \to 0} \frac{2x_0 h + ah^2}{h} = \lim_{h \to 0} (2x_0 + ah) = 2x_0.$$
 (8)

Derivace je tedy různá v každém bodě x_0 . Čím větší je bod x_0 , tím větší je derivace. To přesně odpovídá tomu, že je ve vzdálenějších bodech parabola strmější.

Příklad 3 (Nepřímá úměrnost). Jaká bude derivace u funkce $g(x) = \frac{1}{x}$? Čekáme, že derivace určitě záporná, neboť nepřímá úměrnost je klesající, tečna bude tedy taky klesající. Navíc čím větší bude x_0 , tím se pokles funkce zpomaluje. Výpočtem ukážeme

$$g'(x_0) = \lim_{h \to 0} \frac{\frac{1}{x_0 + h} - \frac{1}{x_0}}{h} = \lim_{h \to 0} \frac{1}{h} \frac{(x_0) - (x_0 + h)}{(x_0 + h)x_0} = \lim_{h \to 0} \frac{-h}{h(x_0 + h)x_0} = \lim_{h \to 0} \frac{-1}{(x_0 + h)x_0} = -\frac{1}{x_0^2}.$$
(9)

To je přesně to, co jsme čekali.

Počítání z definice je ale poměrně zdlouhavé, jakmile jsou předpisy pro funkce složitější. Naštěstí platí stejná pravidla pro aritmetiku derivací, jako pro aritmetiku limit.

POČÍTÁNÍ DERIVACÍ

Derivace elementárních funkcí je potřeba naučit se nazpaměť z tabulky.

Derivace polynomů a obecné mocniny

Pro derivaci mocniny se používá vztah

$$(x^k) = kx^{k-1}$$
 platný pro $k \in \mathbb{R}$. (10)

Všimněme si, že se výpočet sestává ze dvou kroků. Mocnina k u x^k "spadne" před něj a v exponentu zůstane mocnina o jedničku snížená, x^{k-1} , dohromady kx^{k-1} .

Příklad 4. Spočítáme derivaci funkce

$$f(x) = 2x^3 - 4x^2 + 8x - 1. (11)$$

Můžeme derivovat člen po členu:

$$(2x^3)' = 2 \cdot (x^3)' = 2 \cdot (3x^2) = 6x^2.$$
 (12)

Obdobně

$$(4x^2)' = 4 \cdot 2x = 8x. \tag{13}$$

Připomeňme, že $x^1 = x$ a $x^0 = 1$. Z třetího členu dostaneme tedy

$$(8x)' = (8x^{1})' = 8 \cdot (1x^{0}) = 8 \cdot (1 \cdot 1) = 8$$
(14)

a ze čtvrtého

$$(1)' = 1 \cdot (x^0)' = 1 \cdot (0 \cdot x^{-1}) = 0.$$
(15)

Teď stačí jen všechno sečíst:

$$f'(x) = 6x^2 - 8x + 8. (16)$$

Příklad 5. Spočítáme derivaci funkce

$$g(x) = x^{10} + \frac{1}{x^{10}} \,. \tag{17}$$

Na první člen použijeme vztah a máme $(x^{10})' = 10x^9$. Druhý člen $\frac{1}{x^{10}}$ se dá stejně tak zapsat jako x^{-10} a platí pro něj stejné pravidlo:

$$\left(\frac{1}{x^{10}}\right)' = (x^{-10})' = (-10)x^{-11} = -\frac{10}{x^{11}}.$$
(18)

Pozor, často má člověk tendenci dělat v tomto chyby a psát $(x^{-10})' = -10x^{-9}$, což je chyba! Celkově

$$g'(x) = 10x^9 - \frac{10}{x^{11}}. (19)$$

Derivace ostatních elementárních funkcí

Příklad 6. Spočteme

$$(\sin x - \cos x)'. \tag{20}$$

Platí

$$(\sin x - \cos x)' = (\sin x)' - (\cos x)' = \cos x + \sin x. \tag{21}$$

Příklad 7.

$$[4e^{3x} + \ln(4x) - \operatorname{arctg} x]' = 4(e^{3x})' + (\ln 4 + \ln x)' - (\operatorname{arctg} x)' = 4 \cdot 3e^{3x} + 0 + \frac{1}{x} - \frac{1}{1 + x^2} =$$
(22)

$$=12e^{3x} + \frac{1}{x} - \frac{1}{1+x^2} \dots {23}$$

Derivace součinu a podílu

Pro derivaci součinu platí

$$(fg)' = f'g + fg' \neq f'g' \tag{24}$$

a pro derivaci podílu platí

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2} \neq \left(\frac{f'}{g'}\right). \tag{25}$$

Příklad 8.

$$\left[(2x+4) \cdot x^4 \right]' = (2x+4)'x^4 + (2x+4)(x^4)' = 2x^4 + (2x+4) \cdot 4x^3 = 2x^4 + 8x^4 + 16x^3 = 10x^4 + 16x^3.$$
 (26)

Příklad 9.

$$(x\sin x)' = \sin x + x\cos x. \tag{27}$$

Příklad 10. Pravidlo platí i pro více součinů:

$$(fgh)' = f'gh + fg'h + fgh'. (28)$$

Například

$$[(x^{2}+4x+1)(x-2)e^{2x}]' = (x^{2}+4x+1)'(x-2)e^{2x} + (x^{2}+4x+1)(x-2)'e^{2x} + (x^{2}+4x+1)(x-2)(e^{2x})' = (29)$$

$$= (2x+4)(x-2)e^{2x} + (x^{2}+4x+1) \cdot 1 \cdot e^{2x} + (x^{2}+4x+1)(x-2) \cdot 2e^{2x} = (30)$$

$$= (2x^2 + 4x - 4x - 8)e^{2x} + (x^2 + 4x + 1)e^{2x} + (2x^3 + 8x^2 - 2x - 4x^2 - 16x - 4)e^x = (31)$$

$$=(2x^3+7x^2-14x-11)e^x. (32)$$

Příklad 11.

$$(\arcsin x \sin x)' = \frac{1}{\sqrt{1 - x^2}} \sin x + \arcsin x \cos x. \tag{33}$$

Příklad 12.

$$\left(\frac{x^2+7x}{x^2-1}\right)' = \frac{(x^2-1)(x^2+7x)' - (x^2-1)'(x^2+7x)}{(x^2-1)^2} = \frac{(x^2-1)(2x+7) - (2x)(x^2+7x)}{(x^2-1)^2} = \frac{2x^3-2x+7x^2-7-2x^3-14x^2}{(x^2-1)^2} = \frac{-7x^2-2x-7}{x^4-2x^2+1}.$$
(34)

$$=\frac{2x^3 - 2x + 7x^2 - 7 - 2x^3 - 14x^2}{(x^2 - 1)^2} = \frac{-7x^2 - 2x - 7}{x^4 - 2x^2 + 1}.$$
 (35)

Příklad 13. Pokud člověk zapomene vztah pro derivaci funkce tg x, není problém si ji spočítat:

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)'\cos x - (\cos x)'\sin x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}.$$
 (36)

Poslední člen lze upravit dvěma způsoby. Buďto jako součet zlomků

$$(tg x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = 1 + tg^2 x \tag{37}$$

anebo s využitím identity $\sin^2 x + \cos^2 x = 1$,

$$(\operatorname{tg} x)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$
 (38)