* Neutrinos and their names

Renember spirons:

Dirac spinor
$$f = \begin{pmatrix} F_L \\ F_R \end{pmatrix} \rightarrow 4$$
-component

Weyl spinors $F_L, F_R \rightarrow 2$ -components

 $F_L = \begin{pmatrix} F_L \\ F_L \end{pmatrix} = \begin{pmatrix} F_L \\ F_L \end{pmatrix}$

Dirac fermion field and Ragrangian:

$$\mathcal{L} = \overline{f}(i\partial - m) + = i\overline{f}\partial f - m\overline{f}f
\overline{f}f = f + \gamma^{\circ} + = (\overline{f}f + \overline{f}f) (1) (\overline{f}f)
= \overline{f}f + \overline{f}f + \overline{f}f (Weyf)$$

- Parity transformation:

$$\begin{cases} P\psi(x)P^{-1} = \gamma^{0}\psi(x!) & \text{with } \gamma c' = (t, -\bar{\gamma}c) \\ P\bar{\psi}(x)P^{-1} = \bar{\psi}(x!)\gamma^{0} \end{cases}$$

- Charge conjugation:

$$\begin{cases} C + C^{-1} = \psi^{c} = \psi^{T} = \psi^{T} + T \\ C + C^{-1} = \psi^{C} = (\psi^{C})^{+} \gamma^{0} = -\psi^{T} \psi^{-1} \end{cases}$$

with
$$C = -i\gamma^2 \chi^c = \begin{pmatrix} -i6^2 & 0 \\ 0 & i6^2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \begin{pmatrix} \mathcal{L}_L \\ \mathcal{L}_R \end{pmatrix} \end{pmatrix} \begin{pmatrix} -i^2 & 0 \\ 0 & i6^2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & i6^2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \mathcal{L}_R \end{pmatrix} = \begin{pmatrix} \mathcal{L}_L \\ \mathcal{L}_R \end{pmatrix}$$

$$\int (\underbrace{\exists_{L} C^{-1}} = \underbrace{\exists_{L}^{C}} = -i6^{2} \underbrace{\exists_{R}^{*}} \\
(\underbrace{\exists_{R} C^{-1}} = \underbrace{\exists_{R}^{C}} = i6^{2} \underbrace{\exists_{R}^{*}} \\$$

_	- CP transformation:
	P: vacua 1 P anto R 1
	P: maps L, R onto R, L C: maps L, R onto R*, L*
	c viagos e i c avvo i i i
	$(CP) I_{L}(CP)^{-1} = I_{R}(x') = i6^{2} I_{L}(x')$
	() a label amino con still long ()
	only single Weyl spinon: can still have of transformation
t	Left-branded and right-branded neutrinos
	v: active neutrinos in SU(2).
	V_: active neutrinos in SU(2), gauge interactions
	July 1
	v _R : sterile neutrinos, singlet in SU(2) _L
	no interactions except: possible Higgs Yukawa neutrino mans mixing BTSM physics
	possible Higgs Yukawa
	neutrino mass mixing
	BTSM physics
	As spinors : v => vè are active neutrinos
	VR > Vi are revile mentions
	Noter consider land la land la
	Now consider how he can build man terms beyond Dirac man terms If my which are chilally symmetric.
	chially surether
	7 s y y y y y y y y y y y y y y y y y y

Direc chiral spriors:
$$4L, 4R \rightarrow V_L, V_R, \overline{V}_L, \overline{V}_R$$

Weyl spriors: $F_L, F_R \rightarrow N_L, N_R$

+ Direc man: (as before)

 $R_p = -m_D (\overline{V}_L V_R + \overline{V}_R Y_L) = -m_D \overline{V}_D V_D$
 $think. Y_L, Y_R$ and $Y = Y_L + Y_R$
 $Y_L + Y_R = Direc spriors$
 $R_D = -m_D (N_L^+ N_R + N_R^+ N_L)$, Weyl spriors

Global symmetry $V_L \rightarrow e^{ip} V_L$ -> conserved quantity

 $V_R \rightarrow e^{ip} V_R$ -> conserved quantity

Where could this term come from?

- in Lagrangian explicitly -> violates heal.

isosprin conservation

 $V_L \rightarrow V_R$
 $V_R \rightarrow V_$

s Majorana man Verus:

$$\frac{2}{2} - \frac{1}{2} \cdot \frac{1}$$

$$\frac{C}{M} = C V = C V + C V C T$$

$$t_{3v_{L}} = v_{L} + v_{R}$$

$$t_{3v_{L}} = \frac{1}{2} \quad m_{T} \quad m_{T} = 1$$

(> requires coupling to two vers of (p°)

or coupling to Higgs (p°) with t3p=1

e.p. (p°)

e.p. (p°)

triplet

In summary, for single neutrino flavor: Dirac mans neutrino four-component sprior VD = VL + VR = (NL) E 2 Weyl sprion NR) deglees of freedom Active neutrino Majorana sprinon (requires Higgs $V_{L} = V_{L} + V_{R}^{c} = \begin{pmatrix} N_{L} \\ N_{R}^{c} \end{pmatrix} = \begin{pmatrix} N_{L} \\ N_{C} \end{pmatrix} = \begin{pmatrix} N_{L} \\ N_{C} \end{pmatrix}$ Weyl spring Sterile neutrino Majorana sprior (requires Higgs $V_S = V_R + V_L^C = (N_L^C) = (N_L^C) = (N_L^C)$ $=) \mathcal{L} = -\frac{1}{2} \left(\overline{\nu}_{L} \overline{\nu}_{C} \right) \left(\frac{m_{+}}{m_{D}} \frac{m_{D}}{m_{S}} \right) \left(\frac{\nu_{R}}{\nu_{R}} \right) + h.c.,$ weak eigenskakes + wars mixuig matrix 2 mars eigenstakes + weak eigenstakes => ViM = YiL + ViR , i= 1,2 with Majorana mans eigenvalues m;

Multiple families:
$$v_{L} \rightarrow \begin{pmatrix} v_{1L} \\ v_{2L} \end{pmatrix}, v_{L} \rightarrow \begin{pmatrix} v_{1L} \\ v_{2L} \\ v_{3L} \end{pmatrix}$$

$$-3 \quad \mathcal{L} = -\left(\overline{y}_{1L} \quad \overline{y}_{2L} \quad \overline{y}_{3L} \quad \overline{y}_{1L} \quad \overline{y}_{2L} \quad \overline{y}_{3L}\right) \times$$

$$\left(\begin{array}{c} M_{+} & M_{D} \\ M_{D}^{T} & M_{S} \\ \end{array}\right) \left(\begin{array}{c} v_{1R} \\ v_{2R} \\ v_{1R} \\ v_{2R} \\ \end{array}\right)$$

S v, and ve are mass eigenstates in Terms of weak eigenstakes

Cypmns = Ax+ Ac in Zx_xrbe_