2006 Canadian Computing Competition, Stage 1

In mathematics, a group, G, is an object that consists of a set of elements and an operator (which we will call \times) so that if x and y are in G so is $x \times y$. Operations also have the following properties:

- Associativity: For all x, y, and z in G, $x \times (y \times z) = (x \times y) \times z$.
- Identity: the group contains an "identity element" (we can use \emph{i}) so that for each x in G, $x \times i = x$ and $i \times x = x$.
- Inverse: for every element x there is an inverse element (we denote by x^{-1}) so that $x \times x^{-1} = i$ and $x^{-1} \times x = i$.

Groups have a wide variety of applications including the modeling of quantum states of an atom and the moves in solving a Rubik's cube puzzle. Clearly the integers under addition from a group (0 is the identity, and the inverse of x is -x, and you can prove associativity as an exercise), though that group is infinite and this problem will deal only with finite groups.

One simple example of a finite group is the integers modulo 10 under the operation addition.

That is, the group consists of the integers 0, 1, ..., 9 and the operation is to add two keeping only the least significant digit. Here the identity is 0. This particular group has the property that $x \times y = y \times x$, but this is not always the case. Consider the group that consists of the elements a, b, c, d, e and i. The "multiplication table" below defines the operations. Note that each of the required properties is satisfied (associativity, identity and inverse) but, for example, $c \times d = a$ while $d \times c = b$.

×	i	а	b	с	d	e
i	i	а	b	с	d	e
а	а	i	d	e	b	с
b	b	e	i	d	с	а
с	с	d	e	i	а	b
d	d	с	а	b	e	i
e	е	b	с	а	i	d

Your task is to write a program which will read a sequence of multiplication tables and determine whether each structure defined is a group.

Input Specification

The input will consist of a number of test cases. Each test case begins with an integer $n \ (0 \le n \le 100)$. If the test case begins with n=0, the program terminates. To simplify the input, we will use the integers $1 \dots n$ to represent elements of the candidate group structure; the identity could be any of these (i.e., it is not necessarily the element 1). Following the number n in each test case are n lines of input, each

containing integers in the range [1..n]. The q^{th} integer on the p^{th} line of this sequence is the value $p \times q$.

Output Specification

Sample Input

```
2
1 2
2 1
6
1 2 3 4 5 6
2 1 5 6 3 4
3 6 1 5 4 2
4 5 6 1 2 3
5 4 2 3 6 1
6 3 4 2 1 5
7
1 2 3 4 5 6 7
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1
3
1 2 3
3 1 2
3 1 2
0
```

Sample Output

```
yes
yes
no
no
```

Explanation

The first two collections of elements are in fact groups (that is, all properties are satisfied). For the third candidate, it is not a group, since $3 \times (2 \times 2) = 3 \times 1 = 3$ but $(3 \times 2) \times 2 = 1 \times 2 = 2$. In the last candidate, there is no identity, since $1 \times 3 = 3$ (not $2 \times 3 = 3$), and $3 \times 3 = 3$ (not $3 \times 3 = 3$).

CCC problem statements in large part from the PEG OJ