MAS241 해석학 I Note

한승우

April 5, 2023

CONTENTS

CHAPTER	STRUCTURE OF THE KEAL NUMBERS	PAGE 2
1.1	Completeness of the Real Numbers	2
1.2	Neighborhoods and Limit Points	5
1.3	The Limit of a Sequence	7
1.4	Cauchy Sequences	12
1.5	The Algebra of Convergent Series	14
1.6	Cardinality	14
CHAPTER	EUCLIDEAN SPACES	Page 15
2.1	Euclidean <i>n</i> -Space	15
	Sequences in \mathbb{R}^n — 17	
2.2	Open and Closed Sets	19

Chapter 1

Structure of the Real Numbers

1.1 Completeness of the Real Numbers

Definition 1.1.1: Cauchy Sequence

Let *X* be a space. A sequence $\{x_n\}_{n\in\mathbb{N}}$ is a *Cauchy sequence* if $\|x_n-x_m\|\to 0$ as $n,m\to\infty$.

Definition 1.1.2: Completeness

A set *X* is *complete* if every Cauchy sequnce has a limit in *X*, i.e.,

$$x_n \to x_\infty \in X$$
.

Definition 1.1.3: Boundedness

Let $\emptyset \neq S \subseteq \mathbb{R}$.

- a) S is bounded above if $\exists M \in \mathbb{R}, \ \forall x \in S, \ x \leq M$.
 - *M* is called an *upper bound* of *S*.
- b) S is bounded below if $\exists M \in \mathbb{R}, \ \forall x \in S, \ x \geq M$.
 - *M* is called an *lower bound* of *S*.
- c) *S* is bounded if *S* is bounded above and below.

Theorem 1.1.1 Archimedes' Principle

Let ε and M be any two possible real numbers. Then, there exists a k in \mathbb{N} such that $M < k\varepsilon$.

The proof of Theorem 1.1.1 can be done by integrating Theorem 1.1.2 and Theorem 1.1.4.

Definition 1.1.4: Supremum and Infimum

- a) Let *S* be bounded above. Then, the smallest upper bound is called the *supremum* of *S*, sup *S*.
- b) Let *S* be bounded below. Then, the largest lower bound is called the *infimum* of *S*, inf *S*.

Example 1.1.1

Let $S = \{(-1)^k (1-1/k) \mid k \in \mathbb{N}\}$. It is clear that -1 < S < 1; 1 is an upper bound and -1 is a lower bound. We now claim that $\sup S = 1$. To show this, let us assume that M < 1 is an upper bound of S. By Archimedes' principle, there exists an natural number k_0 such that $(1-M)/2 < k_0$, which implies $(-1)^{2k_0} (1-1/(2k_0)) > M$; M is not an upper bound. Therefore, 1 is the smallest upper bound. It can be similarly shown that $\inf S = -1$.

Theorem 1.1.2 Completeness Axiom for \mathbb{R}

If $\emptyset \neq S \subseteq \mathbb{R}$ and S is bounded above, then $\sup S$ exists in \mathbb{R} .

Corollary 1.1.1

If $\emptyset \neq S \subseteq \mathbb{R}$ and S is bounded below, then $\inf S$ exists in \mathbb{R} .

Proof. Let $B := \{-x \mid x \in S\}$. Then, $M = \sup S \in \mathbb{R}$ by Theorem 1.1.2. We now claim that $\inf S = -M$.

For all $x \in S$, $-x \in B$, which implies $-x \le M$, and therefore $x \ge -M$. Thus, -M is a lower bound of S.

Suppose there is a $M_1 > -M$ such that M_1 is a lower bound of S. For all $x \in S$, $x \ge M_1$, which implies $-x \le -M_1$. Thus, $-M_1$ is an upper bound of B but $-M_1 < M = \sup B$, #.

Therefore, $\inf S = -M \in \mathbb{R}$.

Example 1.1.2

• $S := \left\{ \sum_{i=0}^{k} \frac{1}{j!} \mid k \in \mathbb{N} \right\}$. S is bounded above.

$$\sum_{j=0}^{k} \frac{1}{j!} = 1 + \sum_{j=1}^{k} \frac{1}{j!} \le 1 + \sum_{j=1}^{k} \frac{1}{2^{j-1}} < 3$$

In fact, $e := \sup S$.

• $S := \left\{ \left(1 + \frac{1}{k}\right)^k \mid k \in \mathbb{N} \right\}$. S is bounded above.

$$\left(1 + \frac{1}{k}\right)^k = \sum_{j=0}^k \binom{k}{j} \frac{1}{k^j} \le \sum_{j=0}^k \frac{1}{j!} \le e$$

Theorem 1.1.3

Let *S* be a finite nonempty subset of \mathbb{R} . Then, $\sup S \in S$ and $\inf S \in S$.

Proof. (Induction on |S|) For $S = \{x\}$, $x = \inf S = \sup S \in S$.

Take any $k \in \mathbb{N}$ and suppose the statement holds for every S with |S| = k. Now, take any $S' \subseteq \mathbb{R}$ such that |S'| = k + 1. Let $x \in S'$, $\mu := \sup(S' \setminus \{x\})$, and $\nu := \inf(S' \setminus \{x\})$. By the induction hypothesis, $\mu, \nu \in S' \setminus \{x\}$. Letting $\mu' := \max(\mu, x)$ and $\nu' := \min(\nu, x)$, μ' and ν' are the supremum and infimum of S', respectively. Moreover, μ' and ν' are elements of S'.

Theorem 1.1.4

Let $\emptyset \neq S \subseteq \mathbb{R}$.

- If *S* is bounded above, then " $\mu = \sup S$ if and only if μ is an upper bound and $\forall \varepsilon \in \mathbb{R}_+$, $\exists x \in S, \ \mu \varepsilon < x \le \mu$ ".
- If *S* is bounded below, then " $\nu = \inf S$ if and only if ν is an lower bound and $\forall \varepsilon \in \mathbb{R}_+, \exists x \in S, \ \nu \leq x < \nu + \varepsilon$ ".

Proof. Let *S* be bounded above. If there is no $x \in S$ in $(\mu - \varepsilon, \mu]$, then $\mu - \varepsilon$ would be a smaller upper bound.

For the converse, assume M is an upper bound and $M < \mu$. Let $\varepsilon \coloneqq \mu - M > 0$. Then, there is some $x \in S$ such that $M = \mu - \varepsilon < x \le \mu$, # to M is an upper bound. Therfore, μ is the least upper bound.

The same logic may be applied for bounded below *S*.

Proof of Theorem 1.1.1. Let $S := \{k\varepsilon \mid k \in \mathbb{N}\}$. Assume S is bounded above and nonempty. Then, by Theorem 1.1.2, there is $\mu = \sup S$. We also know, from Theorem 1.1.4, that there is $k \in \mathbb{N}$ such such that $\mu - \varepsilon < k\varepsilon \le \mu$, which implies $\mu < (k+1)\varepsilon$. Since $(k+1)\varepsilon \in S$, μ is not an upper bound of S, which is a contradiction. Therefore, S is not bounded above. In other words, for any M > 0, there is some $k \in \mathbb{N}$ such that $M < k\varepsilon$.

Theorem 1.1.5

Theorem 1.1.1 (Archimedes' principle) is equivalent to the following statement:

$$\forall c \in \mathbb{R}_+, \exists k \in \mathbb{N}, k-1 \leq c < k.$$

Proof. Assume Archimedes' principle. If c < 1, k = 1 satisfies, and it is done. Now, let us suppose $c \ge 1$. By Theorem 1.1.1, there is a $k \in \mathbb{N}$ such that c < k. We may let $k_0 := \min\{k \in \mathbb{N} \mid k > c\}$ by Well-Ordering of \mathbb{N} . We note that $k_0 - 1 \le c$ since $k_0 - 1 \in \mathbb{N}$ since $k_0 > 1$. Therefore, $k_0 - 1 \le c < k_0$.

Now, assume " $\forall c \in \mathbb{R}_+$, $\exists k \in \mathbb{N}$, $k-1 \le c < k$ ". Take any M > 0 and $\varepsilon \in \mathbb{R}_+$ and let $c := M/\varepsilon$. The assumption tells the existence of a $k \in \mathbb{N}$ such that $M/\varepsilon = c < k$, which directly implies $M < k\varepsilon$.

Theorem 1.1.6

Let *c* and *d* be real numbers with c < d. Then, $\exists x \in \mathbb{Q}$, c < x < d.

Proof. There are three cases: 0 < c < d, $c \le 0 < d$, or $c < d \le 0$.

Case 1) By Archimedes' principle, $\exists q \in \mathbb{N}, \ 1 < (d-c)q$, which implies cq+1 < dq. By Theorem 1.1.5, $\exists q \in \mathbb{N}, \ p-1 \le cq < p$ since cq > 0. To sum up, $p-1 \le cq , which implies <math>c < p/q < d$.

Case 2) By Archimedes' principle, $\exists q \in \mathbb{N}$, 1 < dq. Then, $c \le 0 < 1/q < d$ holds.

Case 3) By case 1 and 2, there is $r \in \mathbb{Q}$ such that -d < r < -c. Then, c < -r < d holds.

1.2 Neighborhoods and Limit Points

Definition 1.2.1: Neighborhood and Deleted Neighborhood

For each $x \in \mathbb{R}$ and $r \in \mathbb{R}_+$,

$$N(x;r) := \{ y \in \mathbb{R} : |y - x| < r \} = (x - r, x + r)$$

is called the *neighborhood* of x with radius r, and

$$N'(x;r) := \{ y \in \mathbb{R} : 0 < |y - x| < r \} = N(x;r) \setminus \{x\}$$

is called the *deleted neighborhood* of x with radius r.

Definition 1.2.2: Limit Point and Isolated Point

For $\emptyset \neq S \subseteq \mathbb{R}$, $x \in \mathbb{R}$ is a limit point of S if

$$\forall \varepsilon \in \mathbb{R}_+, N'(x, \varepsilon) \cap S \neq \emptyset.$$

If $x \in \mathbb{R}$ is not a limit point of S, then it is called an *isolated point* of S.

Definition 1.2.3: Discrete Set

If $\emptyset \neq S \subseteq \mathbb{R}$ has no limit points, then *S* is said to be *discrete*.

Example 1.2.1

Let $S := \{(-1)^k (1+1/k) \mid k \in \mathbb{N}\}$. Then, 1 and -1 are limit points of S. To see 1 is a limit point, take any $\varepsilon \in \mathbb{R}_+$ and, using Theorem 1.1.1, choose a $k \in \mathbb{N}$ such that $1 < (2\varepsilon)k$. Then, $1 < 1 + \frac{1}{2k} = (-1)^{2k} \left(1 + \frac{1}{2k}\right) < 1 + \varepsilon$; $N'(1, \varepsilon) \cap S \neq \emptyset$. Therefore,

Theorem 1.2.1

1 is a limit point.

Let $\emptyset \neq S \subseteq \mathbb{R}$. Then, $x \in \mathbb{R}$ is a limit point of S if and only if

$$\exists \varepsilon_0 \in \mathbb{R}_+, \ \forall \varepsilon \in (0, \varepsilon_0), \ N'(x, \varepsilon) \cap S \neq \emptyset.$$

Proof. Trivial; $0 < \varepsilon_1 < \varepsilon_2$ implies $N'(x, \varepsilon_1) \subsetneq N'(x, \varepsilon_2)$.

Theorem 1.2.2

Let $\emptyset \neq S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$ be a limit point of S. Then, every deleted neighborhood of x must contain infinitely many points of S.

Proof. Assume $N'(x;\varepsilon) \cap S$ were to contain only finitely many points, namely, $N'(x;\varepsilon) \cap S = \{x_1, x_2, \cdots, x_k\}$. Let $S_1 \coloneqq \{|x - x_i| : i \in [k]\}$. Since S_1 is finite, we may let x_j be an element of $N'(x;\varepsilon) \cap S$ that satisfies $|x - x_j| = \min S_1 = \inf S_1 > 0$. If we let $\varepsilon_0 \coloneqq |x - x_j|/2$, $N'(x;\varepsilon_0) \cap S = \emptyset$, #.

Corollary 1.2.1

If *S* is a finite subset of \mathbb{R} , then *S* has no limit point.

Example 1.2.2

 \mathbb{Z} has no limit point.

Theorem 1.2.3 Bolzano-Weierstra Theorem

If $S \subseteq \mathbb{R}$ is bounded and has an infinite number of elements, then S has a limit point.

Proof. Since S is bounded, $a_0 := \inf S$ and $b_0 := \sup S$ exist; $S \subseteq [a_0, b_0]$. At least one of $[a_0, (a_0 + b_0)/2]$ and $[(a_0 + b_0)/2, b_0]$ has an infinite number of elements in S, otherwise S must be finite. Choose whichever has an infinite number of elements in S, and let us denote it as $[a_1, b_1]$. Since, $S \cap [a_1, b_1]$ is bounded and has an infinite number of elements, we may find a_2 and b_2 in the same manner. Note that

- (a) for every natural number k, $S \cap [a_k, b_k]$ has an infinite number of elements,
- (b) $\forall k \in \mathbb{N}, b_k a_k = (b_0 a_0)/2^k > 0$, and
- (c) $\forall k \in \mathbb{N}, a_{k-1} \le a_k < b_k \le b_{k-1}.$

The sequence $\{a_k\}_{k=0}^{\infty}$ is bounded above by b_0 , and the sequence $\{b_k\}_{k=0}^{\infty}$ is bounded below by a_0 . Therefore, we may let $\alpha \coloneqq \sup\{a_k\}$ and $\beta \coloneqq \inf\{b_k\}$.

Since a_j is a lower bound of $\{b_k\}_{k=0}^{\infty}$ for all $j \in \mathbb{N}$, $\forall j \in \mathbb{N}$, $a_j \leq \beta$. This implies β is an upper bound of $\{a_k\}_{k=0}^{\infty}$, therefore $\alpha \leq \beta$. Since $a_j \leq \alpha \leq \beta \leq b_j$ for all $j \in \mathbb{N}$, we get $0 \leq \beta - \alpha \leq b_j - a_j = (b_0 - a_0)/2^j$. Therefore, $\beta - \alpha = 0$.

We now claim that α is a limit point of S. Take any $\varepsilon \in \mathbb{R}_+$. By Theorem 1.1.4, $\exists k_0 \in \mathbb{N}$, $\alpha - \varepsilon < a_{k_0} \le \alpha$. We may take $k \in \mathbb{N}$ such that $k > k_0$ and $|b_k - a_k| < \varepsilon$ thanks to (b). Since $\alpha \in [a_k, b_k]$, $\alpha - \varepsilon < a_{k_0} \le a_k \le \alpha \le b_k < \alpha + \varepsilon$, which implies $[a_k, b_k] \subseteq N(\alpha; \varepsilon)$.

In conclusion, $S \cap [a_k, b_k]$ has infinitely many elements by (a), and so does $(S \cap [a_k, b_k]) \setminus \{\alpha\}$. $S \cap N'(\alpha; \varepsilon)$ is, therefore, nonempty.

Definition 1.2.4: Bolzano-Weierstra Property

We say that a nonempty set X has the Bolzano-Weierstra property if every bounded, infinite subset S of X has a limit point in X.

1.3 The Limit of a Sequence

Definition 1.3.1: Cluster Point

 $c \in \mathbb{R}$ is a *cluster point* of the sequence $\{x_k\}$ if,

$$\forall (\varepsilon, k) \in \mathbb{R}_+ \times \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ x_{k_1} \in N(c; \varepsilon).$$

Lemma 1.3.1

 $c \in \mathbb{R}$ is a cluster point of $\{x_k\}$ if and only if $\{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon)\}$ is infinite for every $\varepsilon \in \mathbb{R}_+$.

Proof. (\Rightarrow) Suppose $S := \{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon)\}$ is finite for some $\varepsilon \in \mathbb{R}_+$. If S were empty, then, c is not a cluster point by Definition 1.3.1. Therefore, S is nonempty and has a maximum element $k_0 := \max S$ by Theorem 1.1.3. Since c is a cluster point, there is a natural number $k_1 > k_0$ such that $x_{k_1} \in N(c; \varepsilon)$; $k_1 \in S$. This contradicts the maximality of k_0 .

(⇐) Take any $\varepsilon \in \mathbb{R}_+$ and $k_0 \in \mathbb{N}$. If there is no $k_1 \in \mathbb{N}$ such that $k_1 > k_0$ and $x_{k_1} \in N(c; \varepsilon)$, S will be bounded above by k_0 and finite, which is a contradiction. Therefore, c is a cluster point of S.

Definition 1.3.2: Convergence and Divergence of a Sequnce

The sequnce $\{x_k\}$ converges to x_0 and x_0 is the limit of $\{x_k\}$ if,

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k \in \mathbb{N}_{>k_0}, x_k \in N(x_0; \varepsilon).$$

We write $\lim_{k\to\infty} x_k = x_0$. If there is no such x_0 , then $\{x_k\}$ diverges.

Theorem 1.3.1 Bolzano-Weierstra Theorem

If $S \subseteq \mathbb{R}$ is bounded and has an infinite number of elements, then there is a sequence in S that converges to a limit point of S.

Lemma 1.3.2

 $\lim_{x \to \infty} x_k = x_0 \text{ if and only if } \{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\} \text{ is finite for every } \varepsilon \in \mathbb{R}_+.$

Proof. (\Rightarrow) Take any $\varepsilon \in \mathbb{R}_+$. There is some $k_0 \in \mathbb{N}$ such that $k \in N(x_0; \varepsilon)$ for all natural numbers $k \ge k_0$. Therefore, $\{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\} \subseteq [k_0]$ and thus finite.

(⇐) Take any $\varepsilon \in \mathbb{R}_+$. Let $k_0 := \max\{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\}$. Then, for every natural number k larger than k_0 satisfies $x_k \in N(x_0; \varepsilon)$.

Lemma 1.3.3

The limit x_0 of a sequence, if it exists, is a cluster point of the sequence.

Theorem 1.3.2 Uniqueness of the Limit

The limit of a convergent sequence of \mathbb{R} is unique.

Proof. Suppose a and b are two limits of a sequence $\{x_k\}$ and $a \neq b$. Let $\varepsilon \coloneqq |b-a|/2$. Then, by Lemma 1.3.2, $A \coloneqq \{k \in \mathbb{N} \mid x_k \notin N(a; \varepsilon)\}$ and $B \coloneqq \{k \in \mathbb{N} \mid x_k \notin N(b; \varepsilon)\}$ are both finite, which means $A \cup B = \mathbb{N}$ is finite, #.

Theorem 1.3.3

If a sequence has two (or more) cluster points, then it diverges.

Proof. Suppose x_0 is the limit of $\{x_k\}$. Since, by Lemma 1.3.3, x_0 is a cluster point, there is another cluster point c different from x_0 . Let $\varepsilon := |x_0 - c|/2$.

Although $S := \{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\}$ should be finite by Lemma 1.3.2, $\{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon)\}$, a subset of S, is infinite by Lemma 1.3.1, #.

Theorem 1.3.4

A convergent sequence is bounded.

Proof. Let x_0 is the limit of $\{x_k\}$. There is some $k_0 \in \mathbb{N}$ such that $|x_k - x_0| < 1$ for all $k \in \mathbb{N}_{k_0}$. Let $A := \{x_k \mid k \in \mathbb{N} \text{ and } k \leq k_0\}$ and $B := \{x_k \mid k \in \mathbb{N} \text{ and } k \geq k_0\}$. Then, A is finite and B is bounded above and below by $x_0 + 1$ and $x_0 - 1$, respectively. Therefore, $\{x_k\}$ is bounded above by $\max(\max A, x_0 + 1)$ and below by $\min(\min A, x_0 - 1)$.

Corollary 1.3.1

An unbounded sequence diverges.

Lemma 1.3.4

The following hold.

- (i) $\lim_{k\to\infty} x_k = 0 \iff \lim_{k\to\infty} |x_k| = 0$
- (ii) $\lim_{k\to\infty} x_k = x_0 \implies \forall c \in \mathbb{R}, \lim_{k\to\infty} cx_k = cx_0$

Proof of (ii). If c=0, then it is done; so suppose $c\neq 0$. Take any $\varepsilon\in\mathbb{R}_+$. Then, there is some $k_0\in\mathbb{N}$ such that $|x_k-x_0|<\varepsilon/|c|$ for all $k\geq k_0$. This directly implies for all $k\geq k_0$, $|cx_k-cx_0|=|c|\cdot|x_k-x_0|<|c|\cdot\varepsilon/|c|=\varepsilon$.

Theorem 1.3.5

A bounded, monotone sequence converges.

Proof. Suppose $\{x_k\}$ is a monotone increasing sequence. Since it is bounded, $\{x_k\}$ has $\mu := \sup\{x_k \mid k \in \mathbb{N}\}$. Take any $\varepsilon \in \mathbb{R}_+$. By Theorem 1.1.4, there is some $k_0 \in \mathbb{N}$ such that $\mu - \varepsilon < x_{k_0} \le \mu$. Then, for all $k \in \mathbb{N}_{\ge k_0}$, $\mu - \varepsilon < x_{k_0} \le x_k \le \mu$, which implies $|x_k - \mu| < \varepsilon$. Therefore $\lim_{k \to \infty} x_k = \mu$.

Theorem 1.3.6 The Squeeze Play

Let $\{x_k\}$, $\{y_k\}$, and $\{z_k\}$ be sequences that satisfy $x_k \le y_k \le z_k$ for $k \in \mathbb{N}$. If both $\{x_k\}$ and $\{z_k\}$ converges to $L \in \mathbb{R}$, then $\{y_k\}$ also converges to L.

Proof. Take any $\varepsilon > 0$. There is $k_1 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}_{\geq k_1}$, $x_k \in N(L; \varepsilon)$. Similarly, there is $k_2 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}_{\geq k_2}$, $x_k \in N(L; \varepsilon)$. Then, for all $k \in \mathbb{N}$ not smaller than $\max\{k_1, k_2\}$, $L - \varepsilon < x_k \le y_k \le z_k < L + \varepsilon$ holds, which implies $y_k \in N(L; \varepsilon)$.

Theorem 1.3.7 Limit is Order Preserving on Convergent Sequences

If both $\{x_k\}$ and $\{y_k\}$ converge and if $x_k \le y_k$ for each $k \in \mathbb{N}$, then

$$\lim_{k\to\infty}x_k\leq\lim_{k\to\infty}y_k.$$

Proof. Let $L_x := \lim_{k \to \infty} x_k$ and $L_y := \lim_{k \to \infty} y_k$, and suppose $L_x > L_y$. Let $\varepsilon := (L_x - L_y)/2 > 0$. Then, there is $k \in \mathbb{N}$ such that $x_k \in N(L_x; \varepsilon)$ and $y_k \in N(L_y; \varepsilon)$, which implies $y_k < L_y + \varepsilon = L_x - \varepsilon < x_k$, #.

Definition 1.3.3: Subsequence

Let $\{x_k\}$ be any sequence. Choose any strictly monotone increasing sequence $k_1 < k_2 < k_3 < \cdots$ of natural numbers. For each $j \in \mathbb{N}$, let $y_j := x_{k_j}$. The sequence $\{y_j\}_{j=1}^{\infty}$ is called an *subsequence* of $\{x_k\}$.

Theorem 1.3.8

The point c is a cluster point of $\{x_k\}$ if and only if there exists a subsequence of $\{x_k\}$ that converges to c.

Proof. (\Rightarrow) Let $\{\varepsilon_k\}$ be an arbitrary sequence of positive real numbers that converges to 0. (e.g. $\varepsilon_k = 1/k$) Define $\{k_j\}_{j=1}^{\infty}$ by the inductive definition below.

- $k_0 := 0$
- For each $j \in \mathbb{N}$, $k_j \in \{k \in \mathbb{N} \mid k > k_{j-1} \text{ and } x_k \in N(c; \varepsilon_j)\}$.

Since c is a cluster point, $\{k \in \mathbb{N} \mid k > k_{j-1} \text{ and } x_k \in N(c; \varepsilon_j)\} \neq \emptyset$ for all $j \in \mathbb{N}$. Therefore, $\{k_j\}$ is well-defined. It is immediate that $\lim_{j\to\infty} x_{k_j} = c$.

(\Leftarrow) Let $\{x_{k_j}\}_{j=1}^{\infty}$ be a sequence such that $\lim_{j\to\infty} x_{k_j} = c$. Take any $\varepsilon \in \mathbb{R}_+$ and $k \in \mathbb{N}$. Then, there is some $j_0 \in \mathbb{N}$ such that $\forall j \in \mathbb{N}_{\geq j_0}$, $x_{k_j} \in N(c; \varepsilon)$. Let $k_0 := \min\{k_j \in \mathbb{N} \mid j > j_0 \text{ and } k_j > k\}$. Then, $x_{k_0} \in N(c; \varepsilon)$ and $k_0 > k$. Therefore, c is a cluster point.

Theorem 1.3.9

Any bounded sequence $\{x_k\}$ has a cluster point.

Proof. If the set $S := \{x_k \mid k \in \mathbb{N}\}$ is finite, there is some x_{k_0} that is repeated infinitely. Then, x_{k_0} is surely a cluster point.

Now, suppose *S* is infinite. Then, by Theorem 1.2.3, *S* has a limit point ℓ . To prove ℓ is a cluster point, take any $\varepsilon \in \mathbb{R}_+$ and $k \in \mathbb{N}$.

Let $S' := \{x_{k'} \mid k' \in \mathbb{N}_{>k}\}$. We first claim that ℓ is a limit point of S'. Take any $\varepsilon' \in \mathbb{R}_+$ less than $m = \min\{|x_{k'} - \ell| \in \mathbb{R}_+ \mid k' \in \mathbb{N}_{\leq k}\}$. (m exists due to Theorem 1.1.3.) Then, $S' \cap N'(\ell; \varepsilon') = S \cap N'(\ell; \varepsilon')$ is nonempty. Therefore, ℓ is a limit point of S' by Theorem 1.2.1.

Finally, we can say $S' \cap N(\ell; \varepsilon)$ is nonempty. This implies there is some $k_0 \in \mathbb{Z}_{>k}$ such that $x_{k_0} \in N(\ell; \varepsilon)$. Therefore, ℓ is a cluster point of $\{x_k\}$.

Corollary 1.3.2

If a sequence has no cluster point, then the sequence is unbounded.

Corollary 1.3.3

Any bounded sequence converges if and only if it has exactly one cluster point.

Corollary 1.3.4

A sequence $\{x_k\}$ diverges if and only if at least one of the following conditions holds.

- $\{x_k\}$ has two or more cluster points.
- $\{x_k\}$ is unbounded.

Proof. (\Rightarrow) Suppose $\{x_k\}$ is diverging and bounded. By Theorem 1.3.9, it has at least one cluster point. Also, if it had exactly one cluster point, it would converge by Corollary 1.3.3.

 (\Leftarrow) It is direct from Theorem 1.3.3 and Corollary 1.3.1.

Theorem 1.3.10

A sequence $\{x_k\}$ converges if and only if every subsequence of $\{x_k\}$ converges.

Proof. (\Rightarrow) Take any subsequence $\{x_{k_i}\}_{i=1}^{\infty}$ of $\{x_k\}_{k=1}^{\infty}$ and $\varepsilon \in \mathbb{R}_+$. There is $i_0 \in \mathbb{N}$ such that $\forall i \in \mathbb{N}_{\geq i_0}, \ |x_i| < \varepsilon$. Since $k_i \geq i$ for all natural number $i, \ \forall i \in \mathbb{N}_{\geq i_0}, \ |x_{k_i}| < \varepsilon$.

 (\Leftarrow) { x_k } is a subsequence of itself.

Definition 1.3.4: Limit Superior and Inferior

Let $\{x_k\}$ be a sequence and C be a set of cluster points of the sequence.

- $\limsup x_k \triangleq \begin{cases} \sup C & \text{if } \{x_k\} \text{ is bounded} \\ \infty & \text{if } \{x_k\} \text{ is unbounded above} \\ \sup C & \text{if } \{x_k\} \text{ is bounded above but unbounded below and } C \neq \emptyset \\ -\infty & \text{if } \{x_k\} \text{ is bounded above but unbounded below and } C = \emptyset \end{cases}$ is called *limit superior* of $\{x_k\}$.
- $\lim\inf x_k \triangleq \begin{cases} \inf C & \text{if } \{x_k\} \text{ is bounded} \\ -\infty & \text{if } \{x_k\} \text{ is unbounded below} \\ \inf C & \text{if } \{x_k\} \text{ is bounded below but unbounded above and } C \neq \emptyset \\ \infty & \text{if } \{x_k\} \text{ is bounded below but unbounded above and } C = \emptyset \\ \text{is called } limit inferior \text{ of } \{x_k\}. \end{cases}$

Note:- 🛉

In all cases, $\liminf x_k \le \limsup x_k$.

Theorem 1.3.11

- If $\mu = \limsup x_k$ is finite, then μ is in C. ($\mu = \max C$)
- If $v = \liminf x_k$ is finite, then v is in C. ($v = \min C$)

Proof. Suppose $\mu = \limsup x_k$ is finite. Take any $\varepsilon \in \mathbb{R}_+$ and $k \in \mathbb{N}$. The finiteness of μ implies $\mu = \sup C$. By Theorem 1.1.4, there is some $c \in C$ such that $\mu - \varepsilon < c \le \mu$. If $c = \mu$, then we are done. So let $c < \mu$.

Choose any positive ε_1 less than $\min\{c-(\mu-\varepsilon), \mu-c\}$ so $N(c;\varepsilon_1)\subseteq N(\mu;\varepsilon)$. Then, $\{k \in \mathbb{N} \mid x_k \in N(\mu; \varepsilon)\}\$ is infinite since it has an infinite set $\{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon_1)\}\$ as its subset. (See Lemma 1.3.1.)

The second part can be proven analogously.

Theorem 1.3.12

Let $\{x_k\}$ be any bounded sequence in \mathbb{R} . Fix any $\varepsilon \in \mathbb{R}_+$.

- Let $\mu = \limsup x_k$. $\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ x_k < \mu + \varepsilon$. $\forall k \in \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ x_{k_1} > \mu \varepsilon$. Let $\nu = \liminf x_k$. $\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ x_k > \nu \varepsilon$. $\forall k \in \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ x_{k_1} < \nu + \varepsilon$.

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Then, $\{k \in \mathbb{N} \mid x_k \ge \mu + \varepsilon\}$ is finite. If it were not, then there would be a cluster point larger than μ since Theorem 1.3.9 implies the existence of a cluster point in a subsequence of $\{x_k\}$ which is composed of x_k 's not smaller than $\mu + \varepsilon$. Therefore, if $k_0 := \max\{k \in \mathbb{N} \mid x_k \ge \mu + \varepsilon\} + 1$, then $x_k < \mu + \varepsilon$ for all k not smaller than k_0 .

Also, since μ is a cluster point by Theorem 1.3.11, $\forall k \in \mathbb{N}, \exists k_1 \in \mathbb{N}_{>k}, x_{k_1} > \mu - \varepsilon$. (See Lemma 1.3.1.)

The second part can be proven analogously.

Theorem 1.3.13

Let $\{x_k\}$ be any sequence in \mathbb{R} .

- (i) $\{x_k\}$ converges to x_0 if and only if $\liminf x_k = \limsup x_k = x_0$.
- (ii) $\{x_k\}$ diverges if and only if one of the following holds.
 - Either $\lim \inf x_k$ or $\lim \sup x_k$ is infinite.
 - Both $\liminf x_k$ or $\limsup are finite and <math>\liminf x_k < \limsup x_k$.

Proof.

- (i) (\Rightarrow) $C = \{x_0\}$, therefore $\liminf x_k = \limsup x_k = x_0$.
 - (⇐) Take any $\varepsilon \in \mathbb{R}_+$. There are natural numbers k_1 and k_2 such that $\forall k \in \mathbb{N}_{>k_1}$, $x_k < \infty$ $x_0 + \varepsilon$ and $\forall k \in \mathbb{N}_{\geq k_0}$, $x_k > x_0 - \varepsilon$. Then, for all natural number k not smller than $k_0 := \max\{k_1, k_2\}, x_0 - \varepsilon < x_k < x_0 + \varepsilon \text{ holds.}$
- (ii) If it is not $\liminf x_k = \limsup x_k \in \mathbb{R}$, then it is either "One of them is infinite." or "They are both finite but they are different."

Exercise 1.3.1

Let $\{x_k\}$ be a bounded sequence of positive numbers. For each $k \in \mathbb{N}$ define $y_k :=$ x_{k+1}/x_k and $z_k := (x_k)^{1/k}$. Prove that $\liminf y_k \le \liminf z_k \le \limsup z_k \le \limsup y_k$.

Solution: ($\lim \inf y_k \leq \lim \inf z_k$) Let $L := \lim \inf y_k$. Now, we claim that

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists k_0 \in \mathbb{N}, \ \forall \ k \in \mathbb{N}_{\geq k_0}, \ z_k > L - \varepsilon.$$

If L=0, then it is done. Therefore, suppose L>0. To prove this, take any $\varepsilon \in \mathbb{R}_+$ smaller than L. Then, there is some $k_1 \in \mathbb{N}$ such that $y_k > L - \varepsilon/2$ for all k not smaller than k_1 by

Theorem 1.3.12. Then, for all $k \in \mathbb{N}_{k \geq k_1}$, $x_k > (L - \varepsilon/2)^{k-k_1} x_{k_1}$, which is equivalent to

$$z_k = x_k^{1/k} > \left(L - \frac{\varepsilon}{2}\right) \left[\left(L - \frac{\varepsilon}{2}\right)^{-k_1} x_{k_1}\right]^{1/k}.$$

Since $\lim_{k\to\infty}\left[(L-\varepsilon/2)^{-k_1}x_{k_1}\right]^{1/k}=1$, there is some $k_2\in\mathbb{N}$ such that

$$\left[\left(L - \frac{\varepsilon}{2}\right)^{-k_1} x_{k_1}\right]^{1/k} > 1 - \frac{\varepsilon/2}{L - \varepsilon/2} = \frac{L - \varepsilon}{L - \varepsilon/2}.$$

for all $k \in \mathbb{N}_{\geq k_2}$. Thus, for every natural number k not smaller than $\max\{k_1, k_2\}$,

$$z_k > \left(L - \frac{\varepsilon}{2}\right) \left[\left(L - \frac{\varepsilon}{2}\right)^{-k_1} x_{k_1} \right]^{1/k} > \left(L - \frac{\varepsilon}{2}\right) \cdot \frac{L - \varepsilon}{L - \varepsilon/2} = L - \varepsilon.$$

The claim is now proven.

For the main proof, assume that $\liminf z_k < L$ for the sake of contradiction. Take $\varepsilon_0 := (L - \liminf z_k)/2$. Then, by the previous claim, $\exists k_3 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_3}, \ z_k > L - \varepsilon_0 =$ $(L + \liminf x_k)/2$.

Nevertheless, by Theorem 1.3.12, there is some $k_4 \in \mathbb{N}_{>k_3}$ such that $z_{k_4} < \liminf x_k + \varepsilon_0 =$ $(L + \liminf x_k)/2$, which is a contradiction.

 $\limsup z_k \leq \limsup y_k$ can be proven analogously.

Cauchy Sequences 1.4

Definition 1.4.1: Cauchy Sequence

A sequence $\{x_k\}$ in $\mathbb R$ is called a *Cauchy sequence* if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k, m \in \mathbb{N}_{\geq k_0}, |x_k - x_m| < \varepsilon.$$

Theorem 1.4.1

If $\{x_k\}$ is a convergent sequence of real numbers, then $\{x_k\}$ is a Cauchy sequence.

Proof. Let $x_0 := \lim_{k \to \infty} x_k$. Take any $\varepsilon \in \mathbb{R}_+$. Then, there is some $k_0 \in \mathbb{N}$ such that $|x_k - x_0| < \infty$ $\varepsilon/2$ for all $k \in \mathbb{N}$ not smaller than k_0 . Then, for all $k, m \in \mathbb{N}$ greater than $k_0, |x_k - x_m| \le \varepsilon/2$ $|x_k - x_0| + |x_k - x_m| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

Theorem 1.4.2 If $\{x_k\}$ is a Cauchy sequence, then $\{x_k\}$ is bounded.

Proof. There is $k_0 \in \mathbb{N}$ such that $|x_k - x_m| < 1$ for all $k, m \in \mathbb{N}_{\geq k_0}$. It implies that $|x_k - x_m| < 1$ $|x_{k_0}|<1$, for all $k\in\mathbb{N}_{\geq k_0}$, which implies $|x_k|<|x_{k_0}|+1$. Therefore, for all $k\in\mathbb{N},\,|x_k|\leq 1$ $\max\{|x_1|,|x_2|,\cdots,|x_{k_0}|,|x_{k_0}|+1\}.$

12

Theorem 1.4.3

A Cauchy sequence has exactly one cluster point.

Proof. Since a Cauchy sequence is bounded, it has at least one cluster point by Theorem 1.3.9. So, we should prove that the sequence does not have more than one cluster point. Assume c_1 and c_2 are cluster points for the sake of contradiction. Let $\varepsilon := |c_1 - c_2|/3$. Choose $k_0 \in \mathbb{N}$ such that $\forall k, m \in \mathbb{N}_{\geq k_0}$, $|x_k - x_m| < \varepsilon$. Also, there are $k_1, k_2 \in \mathbb{N}_{>k_0}$ such that $|x_{k_1} - c_1| < \varepsilon$ and $|x_{k_2} - c_2| < \varepsilon$. Note that $|c_1 - c_2| \le |c_1 - x_{k_1}| + |x_{k_1} - x_{k_2}| + |x_{k_2} - c_2|$. Nevertheless, then

$$\varepsilon > |x_{k_1} - x_{k_2}| \ge |c_1 - c_2| - |c_1 - x_{k_1}| - |c_2 - x_{k_2}|$$

 $> 3\varepsilon - \varepsilon - \varepsilon = \varepsilon.$

which is a contradiction.

Theorem 1.4.4 Cauchy Completeness of \mathbb{R}

A sequence in \mathbb{R} is convergent if and only if it is a Cauchy sequence.

Proof. By Corollary 1.3.3, a Cauchy sequence is convergent since it is bounded (Theorem 1.4.2) and has exactly one cluster point (Theorem 1.4.3). A convergent sequence in \mathbb{R} is Cauchy. (Theorem 1.4.1)

Definition 1.4.2: Cauchy Completeness

A set X is said to be *Cauchy complete* if every Cauchy sequence in X converges to a point of X.

Example 1.4.1

 \mathbb{R} is Cauchy complete.

Definition 1.4.3: Contractive Sequence

A sequence $\{x_k\}$ is said to be *contractive* if there exists a constant C, with 0 < C < 1, such that

$$\forall k \in \mathbb{N}_{>1}, |x_{k+1} - x_k| \le C|x_k - x_{k-1}|.$$

Theorem 1.4.5

Any contractive sequence in \mathbb{R} is a Cauchy sequence.

Proof. Suppose 0 < C < 1 and $\forall k \in \mathbb{N}_{>1}$, $|x_{k+1} - x_k| \le C|x_k - s_{k-1}|$. If it is trivial when $|x_2 - x_1| = 0$, so supose $|x_2 - x_1| \ne 0$. By induction, $\forall k \in \mathbb{N}_{>1}$, $|x_{k+1} - x_k| \le C^{k-1}|x_2 - x_1|$. To prove $\{x_k\}$ is a Cauchy sequence, take any $\varepsilon \in \mathbb{R}_+$. Since $\lim_{k \to \infty} C^{k-1} = 0$,

$$\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ C^{k-1} < \frac{(1-C)\varepsilon}{|x_2 - x_1|}.$$

Then, for any $k, m \in \mathbb{N}$ with $k_0 \le m < k$,

$$\begin{split} |x_k - x_m| &= \left| \sum_{j=m}^{k-1} (x_{j+1} - x_j) \right| \leq \sum_{j=m}^{k-1} |x_{j+1} - x_j| \\ &\leq \sum_{j=m}^{k-1} C^{j-1} |x_2 - x_1| = C^{m-1} |x_2 - x_1| \sum_{j=0}^{k-m-1} C^j \\ &= C^{m-1} |x_2 - x_1| \frac{1 - C^{k-m}}{1 - C} < \frac{C^{m-1}}{1 - C} |x_2 - x_1| \\ &< \frac{(1 - C)\varepsilon}{|x_2 - x_1|} \cdot \frac{1}{1 - C} |x_2 - x_1| = \varepsilon. \end{split}$$

The Algebra of Convergent Series

Theorem 1.5.1

Let $\{x_k\}$ and $\{y_k\}$ be convergent sequences in \mathbb{R} and $\lim_{k\to\infty} x_k = x_0$ and $\lim_{k\to\infty} y_k = y_0$.

- $\lim_{k \to \infty} (x_k + y_k) = x_0 + y_0$ $\lim_{k \to \infty} x_k y_k = x_0 y_0$

 - $\lim_{k\to\infty}\frac{y_k}{x_k}=\frac{y_0}{x_0} \text{ if } x_0\neq 0.$

Theorem 1.5.2

Let $\{x_k\}$ and $\{y_k\}$ be convergent sequences in \mathbb{R} and $\lim_{k\to\infty} x_k = x_0$. Then, if $r \in \mathbb{Q}$, then

$$\lim_{k\to\infty} x_k^r = x_0^r.$$

Nevertheless, we requre $x_0 \neq 0$ if r < 0.

Cardinality 1.6

Definition 1.6.1: Dense Set

We say a subset S of T is dense in T if every neighborhood of any point $x \in T$ contains points of S.

Theorem 1.6.1

- \mathbb{N} , \mathbb{Z} , and \mathbb{Q} are countably infinite.
- \mathbb{R} is uncountable.
- \mathbb{Q} is dense in \mathbb{R} .

Chapter 2

Euclidean Spaces

2.1 Euclidean *n*-Space

Definition 2.1.1: Inner Product

The inner product of two vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{n} x_j y_j.$$

Theorem 2.1.1

If \mathbf{x} , \mathbf{y} , and \mathbf{z} are arbitrary vectors in \mathbb{R}^n and if a and b are real numbers, then the following hold:

(i) The inner product is *additive* in both its variables:

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$$

 $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$

- (ii) The inner product is *symmetric*: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.
- (iii) The inner product is homogeneous in both its variables: $\langle a\mathbf{x}, b\mathbf{y} \rangle = ab\langle \mathbf{x}, \mathbf{y} \rangle$.

Definition 2.1.2: Euclidean Norm

The *Euclidean norm* of a vector \mathbf{x} in \mathbb{R}^n is

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Theorem 2.1.2 The Cauchy-Schwarz Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$
.

Proof. For any $t \in \mathbb{R}$, $0 \le ||t\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 t^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle t + ||\mathbf{y}||^2$. Thus, the discriminant $|\langle \mathbf{x}, \mathbf{y} \rangle|^2 - ||\mathbf{x}||^2 ||\mathbf{y}||^2$ is nonpositive.

Theorem 2.1.3

For vectors **x** and **y** in \mathbb{R}^n and any $c \in \mathbb{R}$, the Euclidean norm has the following proper-

ties.

- (i) $\|\mathbf{x}\| \ge 0$; $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$. (Positive Definiteness)
- (ii) $||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}||$. (Absolute Homogeneity)
- (iii) $||x + y|| \le ||x|| + ||y||$. (Subadditivity)

Proof of (iii).

$$0 \le ||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2$$

$$\le ||\mathbf{x}||^2 + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^2 = (||\mathbf{x}|| + ||\mathbf{y}||)^2$$

Definition 2.1.3: Norm

A *norm* on \mathbb{R}^n is any function $n: \mathbb{R}^n \to \mathbb{R}$ that is positive definite, absolutely homogeneous, and subadditive.

Definition 2.1.4: Metric

A *metric* on \mathbb{R}^n is a function from $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ having the following properties.

- (i) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) \ge 0$; $d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$. (Positive Definiteness)
- (ii) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{y})$. (Symmetry)
- (iii) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$. (The Triangle Inequality)

Definition 2.1.5: Euclidean Metric

The *Euclidean metric* on \mathbb{R}^n is defined by

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \left[\sum_{j=1}^{n} (x_j - y_j)^2\right]^{1/2}.$$

Theorem 2.1.4

The Euclidean metric is a metric on \mathbb{R}^n .

Definition 2.1.6: Orthogonality

Two vectors **x** and **y** in \mathbb{R}^n are said to be *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Definition 2.1.7: Neighborhood and Deleted Neighborhood

A neighborhood $N(\mathbf{x}; r)$ or $\mathbf{x} \in \mathbb{R}^n$ with radius r is the set

$$N(\mathbf{x}; r) = \{ \mathbf{y} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{y}|| < r \}.$$

A deleted neighborhood $N'(\mathbf{x}, r)$ of \mathbf{x} is $N'(\mathbf{x}; r) = N(\mathbf{x}; r) \setminus \{\mathbf{x}\}.$

Definition 2.1.8: Limit Point

Let *S* be nonempty subset of \mathbb{R}^n . We say that **x** is a *limit point* of *S* if

$$\forall \varepsilon \in \mathbb{R}_+, N'(\mathbf{x}; \varepsilon) \cap S \neq \emptyset.$$

Theorem 2.1.5

 \mathbb{Q}^n is dense in \mathbb{R}^n .

Proof. Take any $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ and $\varepsilon \in \mathbb{R}_+$. For each $j = 1, 2, \dots, n$, choose a rational $x_j \in N(y_j; \varepsilon/\sqrt{n})$ and form $\mathbf{x} \triangleq (x_1, x_2, \dots, x_n) \in \mathbb{Q}^n$. Then,

$$\|\mathbf{x} - \mathbf{y}\|^2 = \sum_{j=1}^n (x_j - y_j)^2 < n(\varepsilon/\sqrt{n})^2 = \varepsilon^2.$$

Therefore **y** is a limit point of \mathbb{Q}^n .

Definition 2.1.9: Boundedness

A subset *S* of \mathbb{R}^n is said to be *bounded* if

$$\exists M \in \mathbb{R}_+, \ \forall \mathbf{x} \in S, \ ||\mathbf{x}|| \leq M.$$

2.1.1 Sequences in \mathbb{R}^n

Definition 2.1.10: Cluster Point

 $\mathbf{c} \in \mathbb{R}^n$ is a *cluster point* of the sequence $\{\mathbf{x}_k\}$ if,

$$\forall (\varepsilon,k) \in \mathbb{R}_+ \times \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ \mathbf{x}_{k_1} \in N(\mathbf{c};\varepsilon).$$

Definition 2.1.11: Convergence and Divergence of a Sequence

The sequnce $\{\mathbf{x}_k\}$ converges to \mathbf{x}_0 and \mathbf{x}_0 is the *limit* of $\{\mathbf{x}_k\}$ if,

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ \mathbf{x}_k \in N(\mathbf{x}_0; \varepsilon).$$

We write $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x}_0$. If there is no such \mathbf{x}_0 , then $\{\mathbf{x}_k\}$ diverges.

Theorem 2.1.6

Let $\{\mathbf{x}_k\} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})$ for each $k \in \mathbb{N}$. Let $\mathbf{x}_0 = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$. The sequence $\{\mathbf{x}_k\}$ converges to \mathbf{x}_0 if and only if, for each $j \in [n]$, the sequence $\{x_j^{(k)}\}$ converges to $\{x_j^{(0)}\}$.

Proof. (\Rightarrow) Take any $\varepsilon \in \mathbb{R}_+$. There there is $k_0 \in \mathbb{N}$ such that

$$\forall k \in \mathbb{N}_{>k_0}, \mathbf{x}_k \in N(\mathbf{x}_0; \varepsilon).$$

Then, for each $j \in [n]$,

$$\left(x_{j}^{(k)}-x_{0}^{(k)}\right)^{2} \leq \sum_{i=1}^{n} \left(x_{i}^{(k)}-x_{0}^{(k)}\right)^{2} = \|\mathbf{x}_{k}-\mathbf{x}_{0}\|^{2} < \varepsilon.$$

(⇐) Take any $\varepsilon \in \mathbb{R}_+$. Then, for each $j \in [n]$, there is some $k_j \in \mathbb{N}$ such that

$$\forall k \in \mathbb{N}_{\geq k_j}, \ x_j^{(k)} \in N(x_0^{(k)}; \varepsilon/\sqrt{n}).$$

Then, for all natural number k not smaller than $\max_{i \in [n]} k_i$,

$$\|\mathbf{x}_k - \mathbf{x}_0\|^2 = \sum_{j=1}^n \left(x_j^{(k)} - x_0^{(k)}\right)^2 < n(\varepsilon/\sqrt{n})^2 = \varepsilon^2.$$

Definition 2.1.12: Cauchy Sequence

A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n is called a *Cauchy sequence* if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k, m \in \mathbb{N}_{\geq k_0}, \|\mathbf{x}_k - \mathbf{x}_m\| < \varepsilon.$$

Theorem 2.1.7 Cauchy's Completeness Theorem in \mathbb{R}^n

A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n is Cauchy if and only if it converges. \mathbb{R}^n is Cauchy complete.

Proof. (\Leftarrow) The proof if similar to Theorem 1.4.1.

(⇒) Let some Cauchy sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n be given. Take any $\varepsilon \in \mathbb{R}_+$. There is some $k_0 \in \mathbb{N}$ such that for every natural number k and m not smaller than k_0 , $\|\mathbf{x}_k - \mathbf{x}_m\| < \varepsilon$. Then, for each $j \in [n]$, $|x_j^{(k)} - x_j^{(m)}| \le \|\mathbf{x}_k - \mathbf{x}_m\| < \varepsilon$, which implies each $\{x_j^{(k)}\}_{k \in \mathbb{N}}$ is Cauchy. By Theorem 1.4.4, $\{x_j^{(k)}\}_{j \in \mathbb{N}}$ converges to some number $x_j^{(0)}$. Then, Theorem 2.1.6 ensures that $\lim_{k \to \infty} \mathbf{x}_k = (x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)})$.

Theorem 2.1.8 The Generalized Bolzano-Weierstra Theorem

Every bounded infinite set in \mathbb{R}^n has a limit point in \mathbb{R}^n .

Proof. Suppose that S is any bounded, infinite set in \mathbb{R}^n . Being bounded, S is contained in some n-cube $C(2M) = [-M, M]^n$ centered at $\mathbf{0}$. Construct C_1, C_2, \cdots as following.

- $C_1 \triangleq C(2M) = [a_1^{(1)}, b_1^{(1)}] \times \cdots \times [a_n^{(1)}, b_n^{(1)}]$
 - Note that C_1 ∩ S = S is infinite.
- For each $k \in \mathbb{N}$, C_{k+1} is any cube of the form $[a_1^{(k+1)}, b_1^{(k+1)}] \times \cdots \times [a_n^{(k+1)}, b_n^{(k+1)}]$ where each $[a_j^{(k+1)}, b_j^{(k+1)}]$ is either $[a_j^{(k)}, (a_j^{(k)} + b_j^{(k)})/2]$ or $[(a_j^{(k)} + b_j^{(k)})/2, b_j^{(k)}]$ so that $C_{k+1} \cap S$ is infinite.
 - This is possible since there is at least one cube among 2^n possible choices that $C_{k+1} \cap S$ is infinite.

Then, the main diagonal d_k of C_k equals to $Mn^{1/2}/2^{k-2}$. Also, note that $C_k \supseteq C_{k+1}$ for all $k \in \mathbb{N}$. Now, we may construct a sequence $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ as following.

- \mathbf{x}_1 is any element in $C_1 \cap S$.
- For each $k \in \mathbb{N}$, \mathbf{x}_{k+1} is arbitrarily taken from $C_{k+1} \cap S \setminus \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k\}$.

We claim that $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ is a Cauchy sequence. To show this, take any $\varepsilon\in\mathbb{R}_+$. There is some $k_0\in\mathbb{N}$ such that $d_{k_0}=Mn^{1/2}/2^{k_0-2}<\varepsilon$ by Theorem 1.1.1. Then, for all $k,m\in\mathbb{N}_{\geq k_0}, \|\mathbf{x}_k-\mathbf{x}_m\|\leq d_{k_0}<\varepsilon$. Therefore, since $\{\mathbf{x}_k\}$ is Cauchy, and therefore convergent by Theorem 2.1.7.

Clearly, $\mathbf{x}_0 \triangleq \lim_{k \to \infty} \mathbf{x}_k$ is a limit point of S since any deleted neighborhood $N'(\mathbf{x}_0)$ of \mathbf{x}_0 intersects infinitely many points with $\{\mathbf{x}_k\}_{k \in \mathbb{N}} \subseteq S$.

Definition 2.1.13: Subsequence

Let $\{\mathbf{x}_k\}$ be any sequence in \mathbb{R}^n . Choose any strictly monotone increasing sequence $k_1 < k_2 < k_3 < \cdots$ of natural numbers. For each $j \in \mathbb{N}$, let $\mathbf{y}_j \coloneqq \mathbf{x}_{k_j}$. The sequence $\{\mathbf{y}_j\}_{j=1}^{\infty}$ is called an *subsequence* of $\{\mathbf{x}_k\}$.

Theorem 2.1.9

The point **c** is a cluster point of $\{\mathbf{x}_k\}$ if and only if there exists a subsequence of $\{\mathbf{x}_k\}$ that converges to **c**.

Proof. Analogous to Theorem 1.3.8.

Theorem 2.1.10

Any bounded sequence $\{x_k\}$ has a cluster point.

Proof. Analogous to Theorem 1.3.9.

Corollary 2.1.1

If a sequence in \mathbb{R}^n has no cluster point, then the sequence is unbounded.

Corollary 2.1.2

Any bounded sequence in \mathbb{R}^n converges if and only if it has exactly one cluster point.

Corollary 2.1.3

A sequence $\{x_k\}$ diverges if and only if at least one of the following conditions holds.

- $\{\mathbf{x}_k\}$ has two or more cluster points.
- $\{\mathbf{x}_k\}$ is unbounded.

2.2 Open and Closed Sets

Definition 2.2.1: Interior/Boundary Point and Open/Closed Set

Let *S* be any subset of \mathbb{R}^n and let **x** be any point in \mathbb{R}^n .

- (i) **x** is an interior point of S if $\exists r \in \mathbb{R}_+$, $N(\mathbf{x}; r) \subseteq S$.
- (ii) If every point of *S* is an interior point of *S*, then *S* is said to be *open*.
- (iii) We call **x** is a boundary point of *S* if $\forall r \in \mathbb{R}_+$, $N(\mathbf{x}; r) \cap S \neq \emptyset \land N(\mathbf{x}; r) \setminus S \neq \emptyset$.
- (iv) If *S* continas all its boundary points, then *S* is said to be *closed*.

Definition 2.2.2

Let $S \subseteq \mathbb{R}^n$.

- (i) The *interior* of S, denoted \mathring{S} , is the set of all interior points of S.
- (ii) The boundary of S, denoted bd S, is the set of all boundary points of S.
- (iii) The *derived set* of S, denoted S', is the set of all limit points of S.
- (iv) The *closure* of S, denoted S, is the union of S and S'.
- (v) The *complement* of S, denoted S^c , is the set $\mathbb{R}^n \setminus S$.

Note:-

- For $S \subseteq \mathbb{R}^n$, $\mathring{S} \subseteq S \subseteq \overline{S}$.
- For $S \subseteq \mathbb{R}^n$, S is open if and only if $\mathring{S} = S$.
- For $S \subseteq \mathbb{R}^n$, \mathring{S} is open.

Theorem 2.2.1

The union of any collection of open sets in \mathbb{R}^n is open. The intersection of any finite collection of open sets in \mathbb{R}^n is also open.

Proof. To prove the first assertion, suppose that $\{U_{\alpha} \mid \alpha \in J\}$ is any collection of open sets in \mathbb{R}^n . Let $U \triangleq \bigcup_{\alpha \in J} U_{\alpha}$. Take any $\mathbf{x} \in U$. Then, there is some $\alpha_0 \in J$ such that $\mathbf{x} \in U_{\alpha_0}$. Since U_{α_0} is open, there is some neighborhood $N(\mathbf{x}; \varepsilon)$ such that $N(\mathbf{x}; \varepsilon) \subseteq U_{\alpha_0}$, which, in turn, $N(\mathbf{x}; \varepsilon) \subseteq U$. Therefore, \mathbf{x} is an interior point of U; U is open.

To prove the second assertion, let U be the intersection of any finite collection $\{U_1, U_2, \cdots, U_k\}$ of open sets and take any $\mathbf{x} \in U$. For each $j \in [k]$, since $\mathbf{x} \in U_j$, there is some $r_j \in \mathbb{R}_+$ such that $N(\mathbf{x}; r_j) \subseteq U_j$. Then, take $r_0 \triangleq \min_{j \in [k]} r_j \in \mathbb{R}_+$. Since, for all $j \in [k]$, $N(\mathbf{x}; r_0) \subseteq U_j$, it is implied that $N(\mathbf{x}; r_0) \subseteq U$. Therefore, \mathbf{x} is an interior point of U; U is open.

Note:-

Intersection of infinitely many open sets may fail to be open. For instance, consider

$$U_k \triangleq N(\mathbf{0}; 1/k),$$

for each $k \in \mathbb{N}$. Then, $\bigcap_{k \in \mathbb{N}} U_k = \{0\}$, which is not open.

Theorem 2.2.2

A set $C \subseteq \mathbb{R}^n$ is closed if and only if C^c is open.

Proof. (\Rightarrow) Take any $\mathbf{x} \in C^c$. Since C is closed and contains all of its boundary points, \mathbf{x} is not a boundary point of C. Therefore, there is some neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x})C = \emptyset$ or $N(\mathbf{x}) \cap C^c = \emptyset$. The second case is not possible since $\mathbf{x} \in N(\mathbf{x}) \cap C^c$. Therefore, $N(\mathbf{x}) = \emptyset$, which implies $N(\mathbf{x}) \subseteq C^c$; \mathbf{x} is an interior point of C^c . Therefore, C^c is open.

(⇐) Take any bounddary point \mathbf{x} of C. Assume $\mathbf{x} \in C^c$ for the sake of contradiction. Since C^c is open, there is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq C^c$. However, that implies $N(\mathbf{x}) \cap C = \emptyset$, which contradicts \mathbf{x} is a boundary point of C. Therefore, $\mathbf{x} \in C$; C contains all of its boundary points.

Theorem 2.2.3

The intersection of any collection of closed sets in \mathbb{R}^n is closed. The union of any finite collection of closed sets in \mathbb{R}^n is also closed.

Proof. To prove the first assertion, let $\{C_{\alpha}\}_{\alpha \in J}$ be any collection of closed sets in \mathbb{R}^n . Then, each $C_{\alpha}{}^c$ is open by Theorem 2.2.2, and thus $\bigcup_{\alpha \in J} C_{\alpha}{}^c$ is open by Theorem 2.2.1. Its complement $(\bigcup_{\alpha \in J} C_{\alpha}{}^c)^c$ is closed by Theorem 2.2.2. And note that $(\bigcup_{\alpha \in J} C_{\alpha}{}^c)^c = \bigcap_{\alpha \in J} C_{\alpha}$ by De Morgan's law.

To prove the second assertion, let $\{C_1, C_2, \dots, C_k\}$ be a finite collection of closed sets in \mathbb{R}^n . Then, each C_i^c is open by Theorem 2.2.2, and thus $\bigcap_{i=1}^k C_i^c$ is open by Theorem 2.2.1. Its complement $\left(\bigcap_{i=1}^k C_i^c\right)^c$ is closed by Theorem 2.2.2. And note that $\left(\bigcap_{i=1}^k C_i^c\right)^c = \bigcup_{i=1}^k C_i$ by De Morgan's law.

Theorem 2.2.4

 $C \subseteq \mathbb{R}^n$ is closed if and only if $C' \subseteq C$.

Proof. (\Rightarrow) Let $\mathbf{x} \in C'$. Assume $\mathbf{x} \in C^c$ for the sake of contradiction. Since C^c is open by Theorem 2.2.2, there is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq C^c$. Such $N(\mathbf{x})$ satisfies $N(\mathbf{x}) \cap C = \emptyset$, which contradicts $\mathbf{x} \in C'$. Therefore, $\mathbf{x} \in C$; C contains all its limit points.

(⇐) It is enough to prove C^c is open by Theorem 2.2.2. Take any $\mathbf{x} \in C^c$. \mathbf{x} is not a limit point of C by the hypothesis. Therefore, there is a deleted neighborhood $N'(\mathbf{x})$ of \mathbf{x} such that $N'(\mathbf{x}) \cap C = \emptyset$. Then, $N'(\mathbf{x}) \subseteq C^c$, and thus $N(\mathbf{x}) \subseteq C^c$, which implies \mathbf{x} is an interior point of C^c . Thus, C^c is open.

Corollary 2.2.1

 $C \subseteq \mathbb{R}^n$ is closed if and only if $\overline{C} = C$.

Theorem 2.2.5

Let $S \subseteq \mathbb{R}^n$. The interior of S is the union of all open sets contained in S.

Proof. Let $\mathcal{U} \triangleq \{U \subseteq S \mid U \text{ is open in } \mathbb{R}^n\}.$

- (⊆) Let $\mathbf{x} \in \mathring{S}$. Then, there is an open neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq S$. Noting that $\mathbf{x} \in N(\mathbf{x}) \in \mathcal{U}$, we conclude $\mathring{S} \subseteq \bigcup \mathcal{U}$.
- (⊇) Take any $\mathbf{x} \in \bigcup \mathcal{U}$. Then, there is an open set U in \mathbb{R}^n such that $x \in U \subseteq S$. There is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq U$. Therefore, $N(\mathbf{x}) \subseteq S$; \mathbf{x} is an interior point of S. Thus; $\mathring{S} \supseteq \bigcup \mathcal{U}$.

Theorem 2.2.6

The closure of *S* is the intersection of all closed sets that contain *S*.

Proof. Let $C \triangleq \{C \subseteq \mathbb{R}^n \mid S \subseteq C \text{ and } C \text{ is closed}\}.$

- (⊆) Since $S \subseteq \bigcap \mathcal{C}$ is obvious, we only need to show $S' \subseteq \bigcap \mathcal{C}$. Let $\mathbf{x} \in S'$. Then, it is direct that $\forall C \in \mathcal{C}$, $\mathbf{x} \in C'$ since each $C \in \mathcal{C}$ satisfies $S \subseteq C$. As C is closed and thus $\mathbf{x} \in C' \subseteq C$ by Theorem 2.2.4, Consequently, $\mathbf{x} \in \bigcap \mathcal{C}$; $\overline{S} \subseteq \bigcap \mathcal{C}$.
- (⊇) It is enough to show that \overline{S} is closed, which, in turn, is sufficient to show that $(\overline{S})' \subseteq \overline{S}$ by Theorem 2.2.4. Let $\mathbf{y} \in (\overline{S})'$ and take any deleted neighborhood $N'(\mathbf{y}; \varepsilon)$ of \mathbf{y} . Then, there is some element \mathbf{z} in $N'(\mathbf{y}; \varepsilon) \cap \overline{S}$. Then, $\mathbf{z} \in S$ or $\mathbf{z} \in S'$.

If $\mathbf{z} \in S$, then $\mathbf{z} \in N'(\mathbf{y}; \varepsilon) \cap S \neq \emptyset$. If $\mathbf{z} \in S'$, take $\varepsilon' \triangleq \min\{\|\mathbf{z} - \mathbf{y}\|, \varepsilon - \|\mathbf{z} - \mathbf{y}\|\}$. Then, $N(\mathbf{z}; \varepsilon') \subseteq N'(\mathbf{y}; \varepsilon)$. Since $\mathbf{z} \in S'$, there is some \mathbf{x} in $N'(\mathbf{z}; \varepsilon') \cap S$. Thus, $\mathbf{x} \in N'(\mathbf{z}; \varepsilon') \cap S \subseteq N'(\mathbf{y}; \varepsilon) \cap S \neq \emptyset$.

In both cases, $N'(\mathbf{y}; \varepsilon) \cap S \neq \emptyset$. Thus, we proved that $\mathbf{y} \in S' \subseteq \overline{S}$; $(\overline{S})' \subseteq \overline{S}$.

Corollary 2.2.2

For any $S \subseteq \mathbb{R}^n$, the set \overline{S} is closed.

Corollary 2.2.3

For any $C \subseteq \mathbb{R}^n$, C is closed if and only if $\overline{C} = C$.

Theorem 2.2.7

Let $S \subseteq \mathbb{R}^n$.

- (i) $\mathring{\ddot{S}} = \mathring{S}$
- (ii) $\overline{(\overline{S})} = \overline{S}$
- (iii) $\mathring{S} \cap \text{bd} S = \emptyset$

- (iv) $\mathring{S} \cup \text{bd} S = \overline{S}$
- (v) $\overline{S} \cap \overline{S^c} = \text{bd } S$

Proof.

- (i) \mathring{S} is open and an open set is the interior of itself.
- (ii) \overline{S} is closed and a closed set is the closure of itself. (See Corollary 2.2.2 and Corollary 2.2.3).
- (iii) Suppose there is some $\mathbf{x} \in \mathring{S} \cap \mathrm{bd} S$. There is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq S$. Then, $N(\mathbf{x}) \cap C^c = \emptyset$, which contradicts $\mathbf{x} \in \mathrm{bd} S$.
- (iv) (\subseteq) Since it is already $\mathring{S} \subseteq S \subseteq \overline{S}$, we only need to show $\mathrm{bd} S \subseteq \overline{S}$. Let $\mathbf{x} \in \mathrm{bd} S$. If $\mathbf{x} \in S$, then it is done; so suppose $\mathbf{x} \in S^c$. Take any neighborhood $N(\mathbf{x}; \varepsilon)$ of \mathbf{x} . Then, $N(\mathbf{x}; \varepsilon) \cap S \neq \emptyset$. Noting that $N'(\mathbf{x}; \varepsilon) \cap S = N(\mathbf{x}; \varepsilon) \cap S \neq \emptyset$, $\mathbf{x} \in S'$.
 - (⊇) Let $\mathbf{x} \in \overline{S}$. If $\mathbf{x} \in S$, then it is either "There is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq S$." or "Every neighborhood $N(\mathbf{x})$ of \mathbf{x} satisfies $N(\mathbf{x}) \cap S^c \neq \emptyset$." The first case is $\mathbf{x} \in \mathring{S}$ and the latter case is $\mathbf{x} \in \mathring{S}$ and the latter case is $\mathbf{x} \in \mathring{S}$.

Now the only left case if $\mathbf{x} \in S' \setminus S$. Take any deleted neighborhood $N'(\mathbf{x})$ of \mathbf{x} . Then, $N(\mathbf{x}) \cap S = N'(\mathbf{x}) \cap S \neq \emptyset$. Also, $\mathbf{x} \in N(\mathbf{x}) \cap S^c$. Thus, $\mathbf{x} \in \mathrm{bd} S$.

(v) Using $\overline{S} = \mathring{S} \cup \text{bd } S$, we get

$$\overline{S} \cap \overline{S^{c}} = (\mathring{S} \cup \text{bd} S) \cap ((\mathring{S^{c}}) \cup \text{bd} S^{c})$$

$$= (\mathring{S} \cap (\mathring{S^{c}})) \cup (\mathring{S} \cap \text{bd} S^{c}) \cup (\text{bd} S \cap (\mathring{S^{c}})) \cup (\text{bd} S \cap \text{bd} S^{c})$$

 $\mathring{S} \cap (\mathring{S}^c) = \emptyset$ since $S \cap S^c = \emptyset$ and $\mathring{S} \subseteq S$ and $\mathring{S}^c \subseteq S^c$. bd $S = \text{bd } S^c$ is direct from their definitions. Thus,

$$\mathring{S} \cap \operatorname{bd} S^{\operatorname{c}} = \mathring{S} \cap \operatorname{bd} S = \emptyset$$

$$\operatorname{bd} S \cap (\mathring{S^{\operatorname{c}}}) = \operatorname{bd} S^{\operatorname{c}} \cap (\mathring{S^{\operatorname{c}}}) = \emptyset$$

by (iv). Therefore, $\overline{S} \cap \overline{S^c} = \operatorname{bd} S \cap \operatorname{bd} S^c = \operatorname{bd} S$.

Definition 2.2.3: Diameter

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ be a bounded set. The *diameter* of *S* is defined to be

$$d(S) \triangleq \sup\{ \|\mathbf{x} - \mathbf{y}\| \mid \mathbf{x}, \mathbf{y} \in S \}.$$

Definition 2.2.4: Distance

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. The distance from \mathbf{x} to S is defined to be

$$d(\mathbf{x}, S) \triangleq \inf\{\|\mathbf{x} - \mathbf{y}\| \mid \mathbf{y} \in S\}.$$

Theorem 2.2.8

Let *S* be a nonempty set in \mathbb{R}^n and let **x** be a point of \mathbb{R}^n .

- (i) $d(\mathbf{x}, S) = 0$ if and only if $\mathbf{x} \in \overline{S}$.
- (ii) S is closed if and only if $d(\mathbf{x}, S) > 0$ for every $\mathbf{x} \in S^c$.
- (iii) If *S* is closed, then there exists $\mathbf{y}_0 \in S$ such that $d(\mathbf{x}, S) = ||\mathbf{x} \mathbf{y}_0||$.
- (iv) If S is open and if $\mathbf{x} \in S^c$, then there exists no $\mathbf{y} \in S$ such that $d(\mathbf{x}, S) = \|\mathbf{x} \mathbf{y}\|$.

Proof.

- (i) (\Rightarrow) We shall show that if such **x** is not in *S*, then it is in *S'*. So, suppose **x** \notin *S*. By Theorem 1.1.4, for any $\varepsilon \in \mathbb{R}_+$, there is some **y** \in *S* such that $0 \le ||\mathbf{x} \mathbf{y}|| < \varepsilon$. Since $\mathbf{x} \notin S$, $\mathbf{x} \ne \mathbf{y}$, and thus $\mathbf{y} \in N'(\mathbf{x}; \varepsilon) \cap S$, implying **x** is a limit point of *S*.
 - (\Leftarrow) Conversely, if $\mathbf{x} \in S' \setminus S$, then for all $\varepsilon \in \mathbb{R}_+$, there is some $\mathbf{z} \in S$ such that $0 < \|\mathbf{x} \mathbf{z}\| < \varepsilon$. Therefore, $0 \le d(\mathbf{x}, S) < \varepsilon$. Since ε is arbitrary, $d(\mathbf{x}, S) = 0$.
- (ii) (\Rightarrow) $d(\mathbf{x}, S) = 0$ if and only if $\mathbf{x} \in \overline{S} = S$. Therefore, $d(\mathbf{x}, S) > 0$ if and only if $\mathbf{x} \in S^c$. (\Leftarrow) For every $\mathbf{x} \in S^c$, $\mathbf{x} \notin \overline{S}$ by (i). Thus, if $\mathbf{x} \in \overline{S}$, then $\mathbf{x} \in S$, or, $\overline{S} \subseteq S$. S is therefore closed.
- (iii) If *S* is finite, then we can easily see $d(\mathbf{x}, S) = \min\{\|\mathbf{x} \mathbf{y}\| \mid \mathbf{y} \in S\}$. Therefore, now suppose *S* is infinite. Let $\{\varepsilon_k\}_{k \in \mathbb{N}}$ be a sequence defined by $\varepsilon_k = 1/k$ for each $k \in \mathbb{N}$. By Theorem 1.1.4, for each $k \in \mathbb{N}$, we can find $\mathbf{y}_k \in S$ that satisfies

$$d(\mathbf{x}, S) \le ||\mathbf{x} - \mathbf{y}_k|| < d(\mathbf{x}, S) + \varepsilon_k$$
.

If the set $\{y_k \mid k \in \mathbb{N}\}$ is finite, then there must be some y_k such that $||x - y_k|| = d(x, S)$, and we are done.

Suppose $\{y_k \mid k \in \mathbb{N}\}$ is infinite. Since the set is also bounded since