Practice quiz on Types of Functions

TOTAL DES POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a $\text{function } f:A\to B?$

0 / 1 point

- $\bigcap f(1) = 5, f(2) = 8, \text{ and } f(10) = 40.$
- f(1) = 4, f(2) = 40, and f(10) = 8.
- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $lacksquare f(a)=4a, ext{ for each } a\in A$

POUR RÉUSSIR 75 % ou plus

Incorrect

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. This is a perfectly fine rule. In this case, rather than listing out each assignment explicitly, we have given a formula.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a)= ${\cal S}$ if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- $\bigcap T(a) = + \text{ and } D(a) = S$
- $\bigcap T(a) = \text{ and } D(a) = H$
- $\bigcap T(a) = \text{ and } D(a) = S$
- T(a) = + and D(a) = H

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a) = H)

3. Consider the function $g:\mathbb{R} o\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the (1/1) point graph of g?

- \bigcirc (1,0)
- \bigcirc (0,-1)
- (2,-1)
- $\bigcirc (-1,0)$

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

- lacksquare The graph of h(x) = x 1
- igcirc The graph of g(x)=x+2
- \bigcirc The graph of f(x) = 2x

	$igcirc$ The graph of $s(x)=x^2$	
	\checkmark Correct The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h .	
5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true? (a) h is a strictly increasing function (b) h is neither a strictly increasing function nor a strictly decreasing function. (c) All statements are correct (e) h is a strictly decreasing function	1/1 point
	\checkmark correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ Since the graph of h is a line with negative slope, this is in fact true!	
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$ Which of the following is a possible value for $f(3.7)$? $ 3 $	1/1 point
	\checkmark correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$. Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies that.	