MAT 167: STATISTICS

Test II: Chapters 4-7

Instructor: Anthony Tanbakuchi

Fall 2007

Name:		
	Computer / Seat Number:	

No books, notes, or friends. **Show your work.** You may use the attached equation sheet, R, and a calculator. No other materials. If you choose to use R, copy and paste your work into a word document labeling the question number it corresponds to. When you are done with the test print out the document. Be sure to save often on a memory stick just in case. Using any other program or having any other documents open on the computer will constitute cheating.

You have until the end of class to finish the exam, manage your time wisely.

If something is unclear quietly come up and ask me.

If the question is legitimate I will inform the whole class.

Express all final answers to 3 significant digits. Probabilities should be given as a decimal number unless a percent is requested. Circle final answers, ambiguous or multiple answers will not be accepted. Show steps where appropriate.

The exam consists of 4 questions for a total of 25 points on 7 pages.

This Exam is being given under the guidelines of our institution's **Code of Academic Ethics**. You are expected to respect those guidelines.

Points Earned:	$_$ out of 25 total points
Exam Score:	

- 1. Assume that men's waists are normally distributed with $\mu = 35$ in and $\sigma = 2.3$ in.
 - (a) (1 point) If 1 man is randomly selected, find the probability that his waist size is greater than 34 in.

(b) (1 point) If 20 men are randomly selected, find the probability that their mean waist size is less than 34 in.

(c) (1 point) You are designing sweat pants that are "one size fits all". In reality, the pants only stretch out to fit the bottom 90% of the male waist sizes, what is the maximum waist size that the pants will stretch to?

Instructor: Anthony Tanbakuchi

- 2. The clothing manufacturer's association (CMA) publishes data that manufacture's use to determine what sizes of clothing they should make. As mentioned before, the CMA states that men's waists are normally distributed with $\mu=35$ in and $\sigma=2.3$ in. Lately, you are getting a lot of returns on your one size fit's all sweat pants (that you designed in a previous question) because they are too small.
 - (a) (1 point) You would like to conduct a study to estimate (at the 95% confidence level) the mean waist size of men with a margin of error of 1 in. Assuming that the standard deviation of waist sizes is $\sigma = 2.3$ in, what sample size should you use for this study?

(b) (1 point) A study was conducted (and they ignored your recommendation of sample size!) of 5 randomly selected men and the following waist sizes were measured:

36.8 38.3 37.8 40 38.3

Construct a 95% confidence interval for the true population mean waist size using the above data. (Assume σ is unknown.)

(c) (1 point) Why is the margin of error in your calculated confidence interval greater than our original desired margin of error of 1 in?

Instructor: Anthony Tanbakuchi Points earned: _____ / 3 points

3. As mentioned before, the CMA states that men's waists are normally distributed with $\mu = 35$ in. Lately, you are getting allot of returns on your one size fit's all sweat pants (that you designed in a previous question) because they are too small.

You believe that the mean waist size of men is actually greater than 35 in. Using the same study data from the previous question of 5 randomly sampled men (shown below again), conduct a hypothesis test to test your claim. Use a significance level of 0.01 and assume σ is unknown.

36.8 38.3 37.8 40 38.3 (a) (1 point) What type of hypothesis test will you use? (b) (1 point) What are the test's requirements? (c) (1 point) Are the requirements satisfied? State how they are satisfied. (d) (1 point) What are the hypothesis? (e) (1 point) What α will you use? (f) (1 point) Conduct the hypothesis test. What is the p-value?

Instructor: Anthony Tanbakuchi Points earned: _____ / 7 points

(g) (1 point) What is your formal decision?

(h) (1 point) State your final conclusion in words.

- (i) (1 point) What is the actual probability of a Type I error for this study data?
- (j) (1 point) Assume a Type I error has occurred, state what the formal decision was and what the error is.

- (k) (1 point) If the researcher had an α of 0.005 and failed reject H_0 , what have they proven?
- (l) (1 point) Assume a Type II error has occurred, state what the formal decision was and what the error is.

(m) (1 point) In general, when we conduct a hypothesis test, we assume something is true and calculate the probability of observing the sample data under this assumption. What do we assume is true?

Instructor: Anthony Tanbakuchi Points ea

effective?

4. A newly married couple does not want to get pregnant during their first year of marriage and decides to only use condoms as a contraceptive device. Studies¹ have shown that the probability of pregnancy per use of a condom is 0.15% (individual probability of pregnancy). During the first year the couple use a condom every time for a total of 162 times. (a) (1 point) Find the probability of 0 pregnancies over 1 year. (b) (1 point) Find the probability of 1 or more pregnancies over 1 year. (c) (1 point) Would it be unusual to become pregnant during 1 year of use when only using this form of contraceptive? (d) (1 point) What would be the average number of pregnancies that the couple should expect to have given the above information? (e) (1 point) Using the equation for the mean of the binomial distribution, solve for the number of uses n required to have an average (mean) of 1 pregnancy. (f) (1 point) Based on your above results, if you were the primary care physician for this

¹The data presented in this problem are approximate values derived from actual published data based on typical use effectiveness.

couple, what would you tell them about their plan to prevent pregnancy? Would it be

Instructor: Anthony Tanbakuchi Points earned: _____ / 6 points

basic statistics: Quick	2.3 VISUAL	5 Continuous random variables	- 1	6 Sampling distributions	
Reference & R Commands	All plots have optional arguments:	CDF $F(x)$ gives area to the left of x , $F^{-1}(p)$ expect	ts p	ď	
by Anthony Tanbakuchi. Version 1.4	• main="" sets title	is area to the left.		$\mu_{\bar{x}} = \mu$ $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	(57)
http://www.tanbakuchi.com	 xlab="", ylab="" sets x/y-axis label 	f(x): probability density	(34)	V".	
ANTHONY@TANBAKUCHI-COM	 type="p" for point plot 		(34)	$\mu_{\hat{p}} = p$ $\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$	(58)
Get R at: http://www.r-project.org	 type="1" for line plot type="b" for both points and lines 	$E = \mu = \int_{-\infty}^{\infty} x \cdot f(x) dx$	(35)	· · · · · · · · · · · · · · · · · · ·	
R commands: bold typewriter text	Ex: plot (x, v, type="b", main="My Plot")	J		7 Estimation	
1 Misc R	Plot Types:	$\sigma = \sqrt{\int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx}$	(36)		
	hist(x) histogram	V J-∞		7.1 CONFIDENCE INTERVALS	
To make a vector / store data: x=c(x1, x2,)	stem(x) stem & leaf	F(x): cumulative prob. density (CDF)	(37)	proportion: $\hat{p} \pm E$, $E = z_{\alpha/2} \cdot \sigma_{\hat{\alpha}}$	(59)
Get help on function: ?functionName Get column of data from table:	boxplot(x) box plot	$F^{-1}(x)$: inv. cumulative prob. density	(38)		
tableNameScolumnName	plot(T) bar plot, T=table(x)			mean (σ known): $\bar{x} \pm E$, $E = z_{\alpha/2} \cdot \sigma_{\bar{x}}$	(60)
List all variables: 1s()	plot (x, y) scatter plot, x, y are ordered vectors	$F(x) = \int_{-\pi}^{x} f(x') dx'$	(39)	mean (σ unknown, use s): $\bar{x} \pm E$, $E = t_{\alpha/2} \cdot \sigma_{\bar{x}}$,	(61)
Delete all variables: rm(list=ls())	plot (t, y) time series plot, t, y are ordered vectors	p = P(x < x') = F(x')	(40)	df = n - 1	
	curve(expr, xmin,xmax) plot expr involving x				
$\sqrt{x} = \text{sqrt}(\mathbf{x})$	2.4 ASSESSING NORMALITY		(41)	variance: $\frac{(n-1)s^2}{2s^2} < \sigma^2 < \frac{(n-1)s^2}{2s^2}$,	(62)
$x^n = \mathbf{x}^{\wedge} \mathbf{n}$ (2.4 ASSESSING NORMALITI	p = P(x > a) = 1 - F(a)	(42)	AR AL	
	4 4 June 14 14 14 14 14 14 14 14 14 14 14 14 14	p = P(a < x < b) = F(b) - F(a)	(43)	df = n - 1	
n = length(x)				hà hà	
T = table(x)	3 Probability	5.1 UNIFORM DISTRIBUTION		2 proportions: $\Delta \hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n_1} + \frac{\hat{p}\hat{q}}{n_2}}$	(63)
	Number of successes x with n possible outcomes.			' '	
2 Descriptive Statistics	(Don't double count!)	p = P(u < u') = F(u')		2 means (indep): $\Delta \bar{x} \pm t_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}$,	(64)
2.1 Numerical	$P(A) = \frac{x_A}{}$ (17)	= punif(u', min=0, max=1)	(44)	√ n ₁ n ₂	
Let x=c (x1, x2, x3,)	$P(A) = \frac{1}{n}$ (17)	$u' = F^{-1}(p) = qunif(p, min=0, max=1)$	(45)	$df \approx \min(n_1 - 1, n_2 - 1)$	
	$P(\bar{A}) = 1 - P(A)$ (18)		(43)	matched pairs: $\bar{d} \pm t_{\alpha/2} \cdot \frac{s_d}{\sqrt{m}}$, $d_i = x_i - y_i$,	(65)
$total = \sum_{i} x_i = sum(x)$	P(A or B) = P(A) + P(B) - P(A and B) (19)	5.2 NORMAL DISTRIBUTION		matched pairs: $a \pm r_{\alpha/2} \cdot \frac{1}{\sqrt{n}}$, $a_i = x_i - y_i$,	(03)
i=1	P(A or B) = P(A) + P(B) if A, B mut. excl. (20)	3.2 NORMAL DISTRIBUTION		df = n - 1	
min = min(x)		$f(x) = \frac{1}{\sqrt{2-x^2}} \cdot e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}}$	(46)	-,	
max = max(x)		$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-x} \cdot e^{-x}$	(46)	7.2 CI CRITICAL VALUES (TWO SIDE	m)
six number summary : summary (x)	$P(A \text{ and } B) = P(A) \cdot P(B) \text{ if } A, B \text{ independent}$ (22)		(47))
	$n! = n(n-1) \cdots 1 = factorial(n)$ (23)	$z' = F^{-1}(p) = qnorm(p)$	(48)	$z_{\alpha/2} = P(z > \alpha) = \text{qnorm(1-alpha/2)}$	(66)
$\mu = \frac{\sum x_i}{N} = \text{mean}(\mathbf{x})$	n! n	z = r $(p) = qnorm(p)$	(48)	$t_{\alpha/2} = P(t > \alpha) = qt (1-alpha/2, df)$	(67)
ν	$_{n}P_{k} = \frac{n!}{(n-k)!}$ Perm. no elem. alike (24)			$\chi_I^2 = P(\chi^2 < \alpha) = \text{qchisq(alpha/2, df)}$	(60)
$\bar{x} = \frac{\sum x_i}{n} = \text{mean}(\mathbf{x})$ (1)	n!		(49)		
$\bar{x} = P_{50} = \text{median}(\mathbf{x})$ (1)	$= \frac{n!}{n_1! n_2! \cdots n_L!} \text{ Perm. } n_1 \text{ alike, } \dots \text{ (25)}$	$x' = F^{-1}(p)$		$\chi_R^2 = P(\chi^2 > \alpha) = \text{qchisq(1-alpha/2, d}$	
		= qnorm(p, mean=μ, sd=σ)	(50)		(69)
$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$ (1)	${}_{n}C_{k} = \frac{n!}{(n-k)!k!} = \text{choose}(\mathbf{n}, \mathbf{k})$ (26)	- quorm(p, mean-p, su-o,	(30)		
$G = \sqrt{\frac{N}{N}}$ (1	2	5.3 t-DISTRIBUTION		7.3 REQUIRED SAMPLE SIZE	
- · · · · · · · · · · · · · · · · · · ·	4 Discrete Random Variables			(70/2)2	
$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{1}} = \operatorname{sd}(\mathbf{x}) (1)$)		(51)	proportion: $n = \hat{p}\hat{q}\left(\frac{z_{\alpha/2}}{E}\right)^2$,	(70)
γ n−1	$P(x_i)$: probability distribution (27)	$t' = F^{-1}(p) = at(p, df)$	(52)	$(\hat{p} = \hat{q} = 0.5 \text{ if unknown})$	
$CV = \frac{\sigma}{u} = \frac{s}{\bar{\tau}}$ (1)	$E = \mu = \sum x_i \cdot P(x_i) \qquad (28)$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	()	(4) 2	
μ χ	. 2	5.4 χ ² -DISTRIBUTION		mean: $n = \left(\frac{z_{\alpha/2} \cdot \hat{\sigma}}{E}\right)^2$	(71)
2.2 RELATIVE STANDING	$\sigma = \sqrt{\sum (x_i - \mu)^2 \cdot P(x_i)}$ (29)	l "		(E)	
		$p = P(\chi^2 < \chi^{2'}) = F(\chi^{2'})$			
$z = \frac{x - \mu}{\sigma} = \frac{x - \bar{x}}{s}$ (1)	4.1 BINOMIAL DISTRIBUTION	= pchisq(X ² ', df)	(53)		
Percentiles:		1			
$P_k = x_i$, (sorted x)	$\mu = n \cdot p$ (30)		(54)		
	$\sigma = \sqrt{n \cdot p \cdot q}$ (31)				
$k = \frac{i - 0.5}{2} \cdot 100\%$ (1	$P(x) = {}_{n}C_{x}p^{x}q^{(n-x)} = \mathbf{dbinom}(\mathbf{x}, \mathbf{n}, \mathbf{p}) (32)$	5.5 F-DISTRIBUTION			
To find x _i given P _i , i is:	- (-) n-1-1 unital(x, n, p)	nce - etc - eceto			
10 Ind x_i given P_k , i is: 1. $L = (k/100\%)n$	4.2 Poisson distribution	p = P(F < F') = F(F')			
 if L is an integer: i = L + 0.5; otherwise i=L an 			(55)		
round up.	$P(x) = \frac{\mu^{x} \cdot e^{-\mu}}{r!} = \text{dpois}(\mathbf{x}, \mu) (33)$	$F' = F^{-1}(p) = qf(p, df1, df2)$	(56)		
	1 4-	the state of the s			

5 Continuous random variables

6 Sampling distributions

Basic Statistics: Ouick | 2.3 VISUAL

8 Hypothesis Tests

Test statistic and R function (when available) are listed for each. Optional arguments: alternative="two.sided" can be:

"two.sided". "less". "greater"

conf.level=0.95 constructs a 95% confidence interval. Standard CI only when alternative="two.sided".

8 1 1-SAMPLE PROPORTION

 $H_0: p = p_0$ prop.test(x, n, p=p0, alternative="two.sided")

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/n}}$$
(72)

8.2 1-SAMPLE MEAN (σ KNOWN)

$$z = \frac{\bar{x} - \mu_0}{\sigma t / \bar{\sigma}}$$
(7)

 $H_0: \mu = \mu_0$

 $H_0: \mu = \mu_0$

t.test(x, mu=u0, alternative="two.sided")

Where
$$\mathbf{x}$$
 is a vector of sample data.

$$t = \frac{\bar{x} - \mu_0}{\frac{1}{r^2} \sqrt{g_0}}, \quad df = n - 1$$

8.4 2-SAMPLE PROPORTION TEST $H_0: p_1 = p_2$ or equivalently $H_0: \Delta p = 0$

prop.test(x, n, alternative="two.sided") where: $\mathbf{x} = \mathbf{c}(x_1, x_2)$ and $\mathbf{n} = \mathbf{c}(n_1, n_2)$

$$z = \frac{\Delta \hat{p} - \Delta p_0}{\sqrt{\frac{\hat{p}\hat{q}}{n_1} + \frac{\hat{p}\hat{q}}{n_2}}}, \quad \Delta \hat{p} = \hat{p}_1 - \hat{p}_2$$

$$\bar{p} = \frac{x_1 + x_2}{x_1 + x_2}, \quad \bar{q} = 1 - \bar{p}$$
 (76)

8.5 2-SAMPLE MEAN TEST

 $H_0: u_1 = u_2$ or equivalently $H_0: \Delta u = 0$ t.test(x1, x2, alternative="two.sided") where: x1 and x2 are vectors of sample 1 and sample 2 data.

$$t = \frac{\Delta \bar{x} - \Delta \mu_0}{\int_{x_1^2 - x_2^2}^{x_2^2}} df \approx \min(n_1 - 1, n_2 - 1), \quad \Delta \bar{x} = \bar{x}_1 - \bar{x}_2$$
 (77)

$$\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$$

8.6. 2-SAMPLE MATCHED PAIRS TEST

 $H_0: X$ and Y are independent (independence)

 $H_0 : \mu_d = 0$ t.test(x, v, paired=TRUE, alternative="two.sided") where: x and y are ordered vectors of sample 1 and sample 2 data.

$$t = \frac{\bar{d} - \mu_{d0}}{\sigma + \sqrt{f_n^2}}, d_i = x_i - y_i, df = n - 1$$

8.7 Test of homogeneity, test of independence $H_0: p_1 = p_2 = \cdots = p_n$ (homogeneity)

Enter table: D=data.frame(c1, c2, ...), where c1, c2, ... are column data vectors. Or generate table: D=table (x1, x2), where x1, x2 are ordered vectors

of raw categorical data.

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}, \quad df = (\text{num rows - 1})(\text{num cols - 1}) \quad (79)$$

(80)

(82)

P MODEL

For 2 × 2 contingency tables, you can use the Fisher Exact Test: fisher.test(D. alternative="greater")

 $E_i = \frac{\text{(row total)(column total)}}{\text{(erand total)}} = np_i$

(must specify alternative as greater)

9 Linear Regression

chisq.test(D)

9.1 LINEAR CORRELATION $H_0 \cdot o = 0$

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)x_x x_y}, \quad t = \frac{r - \rho_0}{\sqrt{\frac{1-r^2}{n-2}}}, \quad df = n-2$$
 (81)

9.2 MODELS IN R MODEL TYPE | FOUNTION

linear 1 indep var	$y = b_0 + b_1x_1$	У	\sim	x1	
0 intercept	$y = 0 + b_1x_1$	У	\sim	0+x1	
linear 2 indep vars	$y = b_0 + b_1x_1 + b_2x_2$	У	\sim	x1 0+x1 x1+x2 x1+x2+x1*x2	
inteaction	$y = b_0 + b_1x_1 + b_2x_2 + b_{12}x_1x_2$	v	\sim	x1+x2+x1*x2	

9.3 REGRESSION

- Simple linear regression steps 1. Make sure there is a significant linear correlation.
- results=lm(y~x) Linear regression of y on x vectors
 - results View the results
- 4. plot(x, y); abline (results) Plot regression line on data 5. plot (x. results\$residuals) Plot residuals

$$y = b_0 + b_1x_1$$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_2 - \bar{x} - b_1 \bar{x}$$
(83)

9.4 PREDICTION INTERVALS

To predict y when x = 5 and show the 95% prediction interval with regression model in results: predict (results, newdata=data.frame(x=5), int="pred")

10 ANOVA

(74)

10.1 ONE WAY ANOVA

results=aov(depVarColName~indepVarColName.

data=tableName) Run ANOVA with data in TableName, factor data in indepVarColName column, and response data in depVarColName column

2. summary (results) Summarize results

boxplot (depVarColName~indepVarColName, data=tableName) Boxplot of levels for factor

11 Loading external data

· Export your table as a CSV file (comma seperated file) from Excel.

 Import your table into MyTable in R using: MvTable=read.csv(file.choose())