Support Vector Machines

Nipun Batra

July 26, 2025

IIT Gandhinagar

Non-Linearly Separable Data

Data not separable in ${\mathbb R}$

Can we still use SVM?

Yes!

How? Project data to a higher dimensional space.

Projection/Transformation Function

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

where, d =original dimension

D = new dimension

In our example:

$$d = 1; D = 2$$

Linear SVM:

Maximize

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \overline{x_i}.\overline{x_j}$$

such that constraints are satisfied.

Transformation (ϕ)

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \phi(\overline{x_i}).\phi(\overline{x_j})$$

Steps

1. Compute $\phi(x)$ for each point

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

Q. If D >> dBoth steps are expensive!

Steps

1. Compute $\phi(x)$ for each point

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

- 2. Computer dot products over \mathbb{R}^d space
- Q. If D >> dBoth steps are expensive!

Kernel Trick