

Université de Bordj Bou Arreridj Département d'électromécanique Faculté des sciences et de la technologie

Théorie du Champ Électromagnétique

Option : ELT, (3ème Année)

Pr. HAMIMID Mourad

Table des matières

1	Not	ions Vectorielles
	1.1	Calcul vectoriel
		1.1.1 Vecteur
		1.1.1.1 Norme d'un vecteur
		1.1.1.2 Vecteur unitaire
		1.1.1.3 Addition de deux vecteurs
		1.1.1.4 Soustraction de deux vecteurs
		1.1.1.5 Multiplication d'un vecteur par un scalaire
		1.1.1.6 Le produit scalaire
		1.1.1.7 Propriétés du produit scalaire
		1.1.1.8 Le produit vectoriel
		1.1.1.9 Propriétées du produit vectoriel
	1.2	Opérateurs Vectoriels
	1.2	1.2.1 Nabla
	1.3	Gradient
	1.4	Divergence
	1.5	Rotationnel
	1.6	Le Laplacian
		•
	1.7	Circulation d'un champ vectoriel
	1.8	Flux d'un champ vectoriel
	1.9	Théorème de Stokes-Théorème
	1.10	Théorème de Gauss-Ostrogradski (ou théorème de la divergence)

Chapitre 1

Notions Vectorielles

1.1 Calcul vectoriel

1.1.1 Vecteur

Les vecteurs sont habituellement décrits à l'aide de leurs composantes scalaires, de la manière suivante :

$$\overrightarrow{V}: (V_x, V_y, V_z) \tag{1.1}$$

ou en utilisant les vecteurs unitaires

$$\overrightarrow{V} = V_x \overrightarrow{e_x} + V_y \overrightarrow{e_y} + V_z \overrightarrow{e_z} \tag{1.2}$$

1.1.1.1 Norme d'un vecteur

La norme d'un vecteur mesure la longueur de ce dernier

$$\|\overrightarrow{V}\| = \sqrt{V_x^2 + V_y^2 + V_z^2}$$
 (1.3)

1.1.1.2 Vecteur unitaire

Un vecteur unitaire \overrightarrow{u} est un vecteur qui présente une grandeur égale a l'unité. La longueur de \overrightarrow{u} est caractérisée par un module : $|\overrightarrow{u}| = 1$. Si \overrightarrow{u} est un vecteur unitaire du vecteur \overrightarrow{A} :

$$\overrightarrow{u} = \frac{\overrightarrow{A}}{\left|\overrightarrow{A}\right|} \tag{1.4}$$

1.1.1.3 Addition de deux vecteurs

Deux vecteurs $\overrightarrow{A}(A_x, A_y, A_z)$ et $\overrightarrow{B}(B_x, B_y, B_z)$, leur somme $\overrightarrow{A} + \overrightarrow{B}$ est obtenue en formant un triangle, le vecteur $\overrightarrow{C}(C_x, C_y, C_z)$ résultant de cette somme est un coté du triangle formé. $\overrightarrow{C}(Cx = A_x + B_x, C_y = A_y + B_y, C_z = A_z + B_z)$

1.1.1.4 Soustraction de deux vecteurs

Soient deux vecteurs $\overrightarrow{A}(A_x, A_y, A_z)$ et $\overrightarrow{B}(B_x, B_y, B_z)$, leur soustraction $\overrightarrow{A} - \overrightarrow{B}$ est obtenue par leurs différences donnant ainsi un autre vecteur $\overrightarrow{C}(Cx = A_x - B_x, C_y = A_y - B_y, C_z = A_z - B_z)$

1.1.1.5 Multiplication d'un vecteur par un scalaire

Soient un vecteur \overrightarrow{A} et un scalaire s, leur multiplication noté $s\overrightarrow{A}$ de même direction que \overrightarrow{A} , son module est s multiplie par le module de \overrightarrow{A} .

1.1.1.6 Le produit scalaire

Le produit scalaire est une multiplication de deux vecteurs \overrightarrow{A} et \overrightarrow{B} , noté $\overrightarrow{A} \bullet \overrightarrow{B}$ donnant un scalaire s. On peut le calculer par deux méthodes :

— Méthode analytique :

$$\overrightarrow{A} \bullet \overrightarrow{B} = \left| \overrightarrow{A} \right| \cdot \left| \overrightarrow{B} \right| \cos(\overrightarrow{A}, \overrightarrow{B}) \tag{1.5}$$

— Méthode cartésienne :

$$\overrightarrow{A} \bullet \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z \tag{1.6}$$

1.1.1.7 Propriétés du produit scalaire

Si $\overrightarrow{A} \bullet \overrightarrow{B} = 0$ alors \overrightarrow{A} et \overrightarrow{B} sont perpendiculaires

$$\overrightarrow{A} \bullet \overrightarrow{B} = \overrightarrow{B} \bullet \overrightarrow{A}$$

$$\overrightarrow{A} \left(\overrightarrow{B} + \overrightarrow{C} \right) = \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A} \cdot \overrightarrow{C}$$

1.1.1.8 Le produit vectoriel

Le produit vectoriel de deux vecteurs \overrightarrow{A} et \overrightarrow{B} , noté $\overrightarrow{A} \wedge \overrightarrow{B}$ ou ($\overrightarrow{A} \times \overrightarrow{B}$) est un vecteur.

— Méthode analytique :

$$\overrightarrow{A} \wedge \overrightarrow{B} = \left| \overrightarrow{A} \right| \left| \overrightarrow{B} \right| \sin(\overrightarrow{A}, \overrightarrow{B})$$

— Méthode cartésienne :

$$\overrightarrow{A} \wedge \overrightarrow{B} = \begin{vmatrix} \overrightarrow{e_x} & \overrightarrow{e_y} & \overrightarrow{e_z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} \overrightarrow{e_x} - \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} \overrightarrow{e_y} + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} \overrightarrow{e_z}$$

$$\overrightarrow{A} \wedge \overrightarrow{B} = (A_y B_z - A_z B_y) \overrightarrow{e_x} - (A_x B_z - A_z B_x) \overrightarrow{e_y} + (A_x B_y - A_y B_x) \overrightarrow{e_z}$$

1.1.1.9 Propriétées du produit vectoriel

- 1. $\overrightarrow{A} \wedge \overrightarrow{B} = -\overrightarrow{B} \wedge \overrightarrow{A}$
- 2. Si $\overrightarrow{A} \wedge \overrightarrow{B} = 0$ Alors \overrightarrow{A} et \overrightarrow{B} sont parallèle.

1.2 Opérateurs Vectoriels

1.2.1 Nabla

L'opérateur vectoriel, symbolisé par un triangle avec la pointe vers le bas $\overrightarrow{\nabla}$, est appelé **nabla**, "Vectoriel", cela signifie que l'opérateur mathématique en question effectue des opérations mathématiques sur les trois axes du repère.

— Coordonnées cartésiennes

Repère orthonormé : trois axes (Ox, Oy, Oz) perpendiculaires, vecteurs unitaires $(\overrightarrow{e}_x, \overrightarrow{e}_y, \overrightarrow{e}_z)$ de mêmes grandeurs.

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{e_x} + \frac{\partial}{\partial y} \overrightarrow{e_y} + \frac{\partial}{\partial z} \overrightarrow{e_z}$$
 (1.7)

— Coordonnées cylindriques

Un rayon r, un angle θ (lettre grecque theta) par rapport à l'axe (Ox) et au plan (Oxy), une hauteur z. Point de coordonnées (r, θ, z) .

1.3 Gradient

Soit un trièdre orthonormé ($\overrightarrow{e}_x,\,\overrightarrow{e}_y,\,\overrightarrow{e}_z$) et P un point de l'espace, de coordonnées (x, y, z):

$$\overrightarrow{OP} = x\overrightarrow{e}_x + y\overrightarrow{e}_y + z\overrightarrow{e}_z \tag{1.8}$$

La fonction f(P) est dite fonction scalaire de point ou champ scalaire si

$$f(P) = f(x, y, z) \tag{1.9}$$

Le vecteur $\overrightarrow{V}(P)$ est dite fonction vectorielle de point ou champ vectoriel si:

$$\overrightarrow{V}(P) = v_x(x, y, z) \overrightarrow{e}_x + v_y(x, y, z) \overrightarrow{e}_y + v_z(x, y, z) \overrightarrow{e}_z$$
(1.10)

L'opérateur \overrightarrow{grad} associé à une fonction scalaire f(x,y,z) est un vecteur de composantes $\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}\right)$

— Coordonnées cartésiennes

$$\overrightarrow{grad} f = \overrightarrow{\nabla} f = \frac{\partial f}{\partial x} \overrightarrow{e}_x + \frac{\partial f}{\partial y} \overrightarrow{e}_y + \frac{\partial f}{\partial z} \overrightarrow{e}_z$$
 (1.11)

— Coordonnées cylindriques

$$\overrightarrow{grad} f = (\overrightarrow{grad}f)_r \overrightarrow{e}_r + (\overrightarrow{grad}f)_\theta \overrightarrow{e}_\theta + (\overrightarrow{grad}f)_z \overrightarrow{e}_z$$
(1.12)

$$\overrightarrow{grad}f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{1}{r} \frac{\partial f}{\partial \theta} \\ \frac{\partial f}{\partial z} \end{pmatrix} \begin{pmatrix} \overrightarrow{e_r} \\ \overrightarrow{e_\theta} \\ \overrightarrow{e_z} \end{pmatrix}$$

Divergence 1.4

l'opérateur div ou $(\overrightarrow{\nabla} \bullet)$ associe à un vecteur \overrightarrow{V} le produit scalaire par ce vecteur par $\overrightarrow{\nabla}$, $div\overrightarrow{V} = \overrightarrow{\nabla}\overrightarrow{V} =$ scalaire

Propérateur
$$div$$
 ou $(V \bullet)$ associately $\overrightarrow{V} = \overrightarrow{\nabla} \bullet \overrightarrow{V}$ $\overrightarrow{V} = \overrightarrow{V_x} \overrightarrow{e_x} + \underbrace{V_y \overrightarrow{e_y}}_{v_y} + \underbrace{V_z \overrightarrow{e_z}}_{v_z}$

$$div\overrightarrow{V} = \frac{\partial v_x}{\partial x}\overrightarrow{e}_x + \frac{\partial v_y}{\partial y}\overrightarrow{e}_y + \frac{\partial v_z}{\partial z}\overrightarrow{e}_z = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$
(1.13)

— Coordonnées cylindriques

$$div \overrightarrow{V} = \frac{1}{r} \left(\frac{\partial (rV_r)}{\partial r} + \frac{\partial V_{\theta}}{\partial \theta} \right) + \frac{\partial V_z}{\partial z}$$
(1.14)

1.5 Rotationnel

l'opérateur \overrightarrow{rot} ou $(\overrightarrow{\nabla} \wedge .)$ associé à un vecteur, le produit vectoriel de $\overrightarrow{\nabla}$ par le vecteur \overrightarrow{V} $\overrightarrow{rot}\overrightarrow{V} = \overrightarrow{\nabla} \wedge \overrightarrow{V}$

 $\overrightarrow{\nabla} \wedge \overrightarrow{V} = \overrightarrow{rot} \overrightarrow{V} = \begin{vmatrix} \overrightarrow{e}_x & \overrightarrow{e}_y & \overrightarrow{e}_z \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ V_x & V_y & V_z \end{vmatrix} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \right) \overrightarrow{e}_x + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x} \right) \overrightarrow{e}_y + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial z} \right) \overrightarrow{e}_z$ (1.15)

1.6 Le Laplacian

l'opérateur noté (\triangle) est défini par :

$$\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial z^2}$$

 $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ il peut s'applique à une fonction scalaire

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \tag{1.16}$$

Circulation d'un champ vectoriel

On définit la circulation d'un vecteur \overrightarrow{v} le long d'un contour (C) , par l'intégrale curviligne :

$$C_{\overrightarrow{AB}}(\overrightarrow{v}) = \int_{\overrightarrow{AB}} \overrightarrow{v} \cdot \overrightarrow{dl}$$
 (1.17)

La circulation de long d'un contour fermé est notée :

$$C(\overrightarrow{v}) = \oint \overrightarrow{v} \cdot \overrightarrow{dl} \tag{1.18}$$

Flux d'un champ vectoriel 1.8

On définit le flux d'un vecteur \overrightarrow{v} à travers une surface (s) par l'intégrale double

$$\phi(s) = \iint_{(s)} \overrightarrow{v} \cdot \overrightarrow{n} ds$$

Lorsque la surface (S) est fermée, le vecteur unitaire \overrightarrow{n} est dirigé de l'intérieur vers l'extérieur.

Théorème de Stokes-Théorème 1.9

La circulation d'un vecteur le long d'un contour fermé (C)limitant une surface (S) est égal au flux de son rotationnel à travers cette surface.

$$\oint \overrightarrow{v} \cdot \overrightarrow{dl} = \iint_{(s)} \overrightarrow{rot}(\overrightarrow{v}) \cdot \overrightarrow{n} \, ds \tag{1.19}$$

Le vecteur unitaire \overrightarrow{n} est orienté selon la convention du tire-bouchon de Maxwell.

Théorème de Gauss-Ostrogradski (ou théorème de la divergence) 1.10

Le flux d'un champ vectoriel à travers une surface fermée (S) est égal à l'intégrale de sa divergence dans le volume (τ) limité par la surface fermée (S)

$$\iint_{(s)} \overrightarrow{v} \cdot \overrightarrow{n} \, ds = \iiint_{(\tau)} div(\overrightarrow{v}) \, d\tau \tag{1.20}$$