Алгоритмы и модели вычислений.

Задание 5: сложность вычислений: классы P, NP, co-NP II

Сергей Володин, 272 гр.

задано 2014.03.13

Задача 1

- 1. Докажем, что НАМРАТН \leqslant_m^p UHAMPATH.
 - $HAMPATH = \{(G, s, t) | G$ ориентированный граф, в G существует гамильтонов путь из s в $t\}$,

UHAMPATH = $\{(G, s, t)|G$ — неориентированный граф, в G существует гамильтонов путь из s в t $\}$.

Пусть G — ориентированный граф, s и t — его вершины. x = (G, s, t). Определим f(x) = (G', s', t'). Для каждой вершины $v \in V(G)$, кроме s и t, добавим в V(G') три вершины v_i, v_m, v_o . Для s и t добавим s_o и t_i . Соединим $v_i \leftrightarrow v_m$ и $v_m \leftrightarrow v_o$ (стрелкой \leftrightarrow обозначено неориентированное ребро). Для каждого $(u,v) \in E(G)$ добавим $(u_o,v_i) \in E(G')$. G'получившийся граф, $s' = s_o$, $t' = t_i$.

- (a) Пусть $x=(G,s,t)\in {\rm HAMPATH}$. Тогда существует путь $s\to v_1\to v_2\to \dots\to v_n\to t$. По построению, тогда существует путь $s_o \leftrightarrow v_{1i} \leftrightarrow v_{1m} \leftrightarrow v_{1o} \leftrightarrow ... \leftrightarrow v_{ni} \leftrightarrow v_{nm} \leftrightarrow v_{no} \leftrightarrow t_i$, который является гамильтоновым путем в G' todo, поэтому $f(x) \in UHAMPATH$
- (b) Пусть $f(x) = (G', s_o, t_i) \in \text{UHAMPATH}$. Из вершины с индексом \cdot_o по построению есть ребра только в вершины с индексом \cdot_i . Из вершины v_i есть ребро только в v_m , из вершины v_m — только в v_o . Поэтому гамильтонов путь имеет вид $s_o \leftrightarrow v_{1i} \leftrightarrow v_{1m} \leftrightarrow v_{1o} \leftrightarrow ... \leftrightarrow v_{ni} \leftrightarrow v_{nm} \leftrightarrow v_{no} \leftrightarrow t_i$, значит, в исходном графе G есть путь $s \to v_1 \to v_2 \to \dots \to v_n \to t$, и он гамильтонов todo, поэтому $x \in HAMPATH$
- (c) f вычислима за полиномиальное время (линейное по количеству ребер и вершин время)
- 2. Поскольку НАМРАТН ∈ NP-с, НАМРАТН ≤ UHAMPATH, UHAMPATH ∈ NP, то (см. решение 4-го задания, вспомогательные утверждения, 2) UHAMPATH ∈ NP-с ■

Задача 2

См. (каноническое) 21

Задача 3

- 1. $\mathcal{C} \supset \mathsf{NP} \cup \mathsf{co}\text{-}\mathsf{NP}$.
 - (a) Пусть $L \in \mathsf{NP}$. Тогда (семинар) $L \leqslant_m^p \mathsf{SAT} \Leftrightarrow \exists f \colon \Sigma^* \to \Sigma^* \colon \forall x (x \in L \Leftrightarrow f(x) \in \mathsf{SAT}), \ f$ вычислима за полиномиальное время. Определим $M_{
 m SAT}$: вычисляем за полиномиальное время (определение сводимости) f(x) (xвход), спрашиваем оракула $f(x) \in SAT$ за O(1). Ответ — ответ оракула (корректно из определения сводимости). Время работы полиномиально: T(|x|) = poly(|x|) + O(1) = poly(|x|).
 - (b) Пусть $L \in \text{co-NP}$. Тогда $\overline{L} \leqslant_m^p \text{SAT} \Leftrightarrow \exists f \colon \Sigma^* \to \Sigma^* \colon \forall x (x \in \overline{L} \Leftrightarrow f(x) \in \text{SAT}) \Leftrightarrow \forall x (x \in L \Leftrightarrow f(x) \notin \text{SAT}),$ f — вычислима за полиномиальное время. Определим M_{SAT} : вычисляем за полиномиальное время (определение сводимости) f(x) (x-вход), спрашиваем оракула $f(x) \in SAT$ за O(1). Ответ — противоположный ответу оракула (корректно из определения сводимости). Время работы полиномиально: $T(|x|) = \overline{\text{poly}(|x|) + O(1)} = \text{poly}(|x|)$.
- 2. $\mathcal{C} \subset \mathsf{NP} \cup \mathsf{co-NP}$. Пусть $L \in \mathcal{C}$. Тогда существует МТ M_{SAT} , вычисляющая $x \in L$ за полиномиальное время, и делающая не более одного обращения к оракулу $t \in SAT$

(каноническое) Задача 21

 $\Gamma \coprod = \{G - \text{ ориентированный граф} | \mathbf{B} G \text{ существует гамильтонов цикл} \}.$

- $\Gamma\Pi = \{(G, s, t)$ ориентированный граф, две его вершины в G существует гамильтонов путь из s в $t\}$.
 - 1. Докажем, что $\Gamma\Pi \leqslant_m^p \Gamma$ Ц. Пусть x = (G, s, t) граф и две его вершины. Определим граф f(x): возьмем G, удалим все ребра между s и t, все ребра в s, все ребра из t. Добавим одно $t \to s$.
 - (a) Пусть $x \in \Gamma\Pi$, то есть, в G есть гамильтонов путь из s в t. Тогда в этом пути нет ребер из t в s (иначе через tили s путь пройдет дважды). Значит, путь будет гамильтоновым и в f(x). Но в f(x) есть ребро $t \to s$, получаем гамильтонов цикл, составленный из пути и одного ребра. Значит, $f(x) \in \Gamma \coprod$

- (b) Пусть $f(x) \in \Gamma$ Ц, то есть, в f(x) есть гамильтонов цикл. В этот цикл входят вершины s и t, так как в него входят все вершины графа. Но из t нет других ребер, кроме как в s (по построению), значит, в цикл входит ребро $t \to s$. Рассмотрим весь путь без этого ребра. Он гамильтонов, так как является гамильтоновым циклом без одного ребра. Этот путь будет также путем в G, так как не содержит ребра $t \to s$, а в G ребер больше (кроме $t \to s$). Также этот путь будет гамильтоновым, так как множества вершин G и f(x) совпадают. Значит, $x \in \Gamma\Pi$
- (c) Сводимость f в явном виде. A[i][j] матрица графа G, B[i][j] матрица графа f(x). Алгоритм: todo. Получаем, что f вычислима за полиномиальное время.
- 2. (Идея обсужалась с Игорем Силиным). Докажем, что $\Gamma \coprod \leqslant_m^p \Gamma \Pi$. Пусть x = G граф. Фиксируем некоторую его вершину v. «Разделим» ее на две вершины s и t, из s добавим все ребра из v, в t направим все ребра в v. Получим граф G'. Определим f(x) = (G', s, t).
 - (a) Пусть $x \in \Gamma \coprod$. Тогда в x = G существует гамильтонов цикл. Он содержит все вершины, в том числе и вершину $v: v \to v_1 \to ... \to v_n \to v$. Тогда в графе G' образа f(x) будет путь $s \to v_1 \to ... \to v_n \to t$, и он будет гамильтоновым todo, т.е. $f(x) \in \Gamma \Pi$
 - (b) Пусть $f(x) \in \Gamma \Pi$. Тогда существует гамильтонов путь $s \to ... \to t$. Значит, в G есть цикл $v \to ... \to v$, и он гамильтонов todo. Получаем $x \in \Gamma \coprod$.
 - (c) Сводимость f в явном виде. A[i][j] матрица графа x = G, B[i][j] матрица графа из f(x). Алгоритм: todo. Получаем, что f вычислима за полиномиальное время.

(каноническое) Задача 23

- 2. $\chi(x_1, x_2, x_3) \stackrel{\text{def}}{=} (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_3$. Семейство подмножеств (n = 3) $A_{\chi} = \{\{x_1, \neg x_1\}, \{x_2, \neg x_2\}, \{x_3, \neg x_3\}, \{x_1, x_2, x_3\}, \{\neg x_1, \neg x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, x_2, x_3\}, \{\neg x_3\}\}$. Пусть A протыкающее множество. Тогда $A \cap \{\neg x_3\} \neq \emptyset \Rightarrow A \ni \neg x_3$. Также $A \cap \{x_1, \neg x_1\} \neq \emptyset$, поэтому A содержит x_1 или $\neg x_1$. Аналогично $x_2 \in A$ или $\neg x_2 \in A$. Получаем, что A содержит не менее трех элементов. Предположим, что их ровно 3. Рассмотрим все возможные 4 случая (или×или раньше по тексту):
 - (a) $A = \{x_1, x_2, \neg x_3\}$. Тогда $A \cap \{\neg x_1, \neg x_2\} = \emptyset$ противоречие.
 - (b) $A = \{x_1, \neg x_2, \neg x_3\}$. Тогда $A \cap \{\neg x_1, x_2, x_3\} = \varnothing$ противоречие.
 - (c) $A = \{ \exists x_1, x_2, \exists x_3 \}$. Тогда $A \cap \{x_1, \exists x_2 \} = \emptyset$ противоречие.
 - (d) $A = \{ \exists x_1, \exists x_2, \exists x_3 \}$. Тогда $A \cap \{x_1, x_2, x_3\} = \emptyset$ противоречие.

Получаем, что A содержит более трех элементов