EA721 - Princípios de Controle e Servomecanismos

10. Semestre de 2004 - 2a. Prova - Prof. Paulo Valente

RA: Nome: Ass.:

- 1. Os Diagramas de Bode da função de transferência $G_1(s)=kP(s)$ são apresentados nas páginas 4 e 5 nas formas gráfica e tabular. O ganho k=1440 foi previamente determinado para atender a uma especificação de erro de regime para entrada rampa; P(s) é a função de transferência da planta a ser compensada (realimentação unitária). Ao recorrer à tabela, utilize sempre os valores mais próximos (em termos absolutos) dos valores procurados. Indique claramente os procedimentos utilizados para resolver as questões a seguir.
- a) Determine o valor aproximado de k_v , a constante de velocidade do sistema de controle em malha fechada implicado pelos Diagramas de Bode;
- b) Suponha que um compensador proporcional $C(s)=k_p$ seja associado em série com $G_1(s)$. Qual deveria ser o valor aproximado de k_p para que a margem de fase resultante fosse de 40^o ?;
- c) Projete um compensador atraso, isto é, determine k_c , T e β , de tal maneira que a margem de fase do sistema compensado seja igual a 45^o , com margem adicional de 10^o .
- 2. Considere um sistema do tipo 2 com ganho de malha igual a G(s) = C(s)P(s), onde C(s) e P(s) são as funções de transferência do controlador e da planta, respectivamente (realimentação unitária). A constante de aceleração do sistema em malha fechada é dada por

$$k_a = \lim_{s \to 0} s^2 G(s).$$

Desenvolva um procedimento a ser seguido para obter k_a através dos Diagramas de Bode de G(s). Sugestão: $k_a \approx (j\omega)^2 G(j\omega)$ quando ω tende a zero.

3. Um sistema de controle com realimentação unitária tem como planta

$$P(s) = \frac{10}{s^2}.$$

Projete um compensador avanço, isto é, determine k_c , T e α , de tal forma que a margem de fase do sistema compensado seja de 45^o , com margem adicional de 5^o . (Note que $k=k_c\alpha=1$ pois não há especificação sobre erro de regime para entrada rampa.)

4. Considere o sistema de controle cuja equação característica é dada por

$$1 + k \frac{s^2 - 4s + 20}{(s+2)(s+4)} = 0.$$

Esboce o Lugar das Raízes da equação. Os seguintes parâmetros devem ser calculados:

- a) Ângulos de partida dos pólos;
- b) Pontos de cruzamento com o eixo imaginário;
- c) Ganho nos pontos de cruzamento com o eixo imaginário;
- **d**) Ponto(s) de entrada no eixo real.
- 5. Esboce o Lugar das Raízes da equação característica

$$1 + \frac{10}{(s+2)(s+\alpha)} = 0$$

em função de $0 \le \alpha < \infty$. Determine o valor de α para o qual as raízes da equação são reais e iguais.

6. Obtenha o Diagrama de Nyquist referente à função de malha aberta

$$G(s) = \frac{10}{(s+1)^4},$$

Esboce as curvas C_s e C_G nos planos s e Re $G(s) \times \operatorname{Im} G(s)$, respectivamente, indicando os mapeamentos de C_s em C_G . Com base no Critério de Nyquist, o sistema é estável em malha fechada ? Justifique.

7. Considere o sistema de controle com realimentação unitária que tem como função de transferência da planta

$$P(s) = \frac{k}{s(s+7)},$$

onde k é tal que a sobre-elevação máxima do sistema em malha fechada, não-compensado, é de 20%.

- a) Determine o erro de regime do sistema não-compensado para uma entrada rampa unitária;
- b) Projete um compensador atraso, isto é, determine k_c , T e β , para que o erro de regime do sistema em malha fechada, compensado, seja 1/20 do valor obtido no item a).

Lugar das Raízes. Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 0.$$

- 1. Magnitude e fase: |kG(s)| = 1, $\angle G(s) = 180^{\circ} \times r$, $r = \pm 1, \pm 3, \ldots$
- 2. Assíntotas: $\theta = \frac{180^o \times r}{n-m}, \ r = \pm 1, \pm 3, \dots$
- 3. Ângulos de partida e chegada: satisfazem

$$\sum_{i} \phi_{z_i} - \sum_{j} \phi_{p_j} = 180^o \times r, \ r = \pm 1, \pm 3, \dots$$

4. Pontos de entrada e saída: entre as raízes de

$$D'(s)N(s) - D(s)N'(s) = 0$$

Compensação Avanço: $C(s)=k_c\alpha\frac{Ts+1}{\alpha Ts+1},\ T>0,\ 0<\alpha<1$

$$\operatorname{sen} \phi_m = \frac{1-\alpha}{1+\alpha}, \quad \omega_m = \frac{1}{T\sqrt{\alpha}}, \quad \left|\frac{jT\omega+1}{j\alpha T\omega+1}\right|_{\omega=\omega_m} = 20\log\,\frac{1}{\sqrt{\alpha}}.$$

Compensação Atraso: $C(s)=k_c\beta\frac{Ts+1}{\alpha Ts+1},\ T>0,\ \beta>1$

$$\left| \frac{jT\omega + 1}{j\beta T\omega + 1} \right| = -20\log\,\beta$$

para $\omega >> 1/T$.

Critério de Nyquist: N = Z - P

ω (rad/s)	$ G_1(j\omega) $ (dB)	$\angle G_1(j\omega)$ (graus)
1.0000	32.0374	-92.1641
1.0971	31.2313	-92.3742
1.3543	29.3996	-92.9305
1.6718	27.5666	-93.6168
2.0638	25.7317	-94.4634
2.5476	23.8939	-95.5073
3.1448	22.0518	-96.7939
3.8821	20.2030	-98.3781
4.7922	18.3441	-100.3262
5.9157	16.4701	-102.7173
7.3025	14.5735	-105.6435
9.0145	12.6431	-109.2090
10.000	11.6752	-111.2347
11.127	10.6632	-113.5264
13.736	8.6121	-118.7069
16.956	6.4609	-124.8456
20.932	4.1739	-131.9983
25.839	1.7102	-140.1572
31.896	-0.9710	-149.2328
39.374	-3.9059	-159.0553
48.605	-7.1205	-169.3963
60.000	-10.6296	-180.0000
74.065	-14.4379	-190.6037

ω (rad/s)	$ G_1(j\omega) $ (dB)	$\angle G_1(j\omega)$ (graus)
91.429	-18.5407	-200.9447
100.00	-20.3723	-205.2011
112.86	-22.9233	-210.7672
139.32	-27.5594	-219.8428
171.98	-32.4132	-228.0017
212.30	-37.4435	-235.1544
262.07	-42.6097	-241.2931
323.51	-47.8760	-246.4736
399.35	-53.2136	-250.7910
492.97	-58.6006	-254.3565
608.54	-64.0213	-257.2827
751.21	-69.4647	-259.6738
927.31	-74.9233	-261.6219
1000.0	-76.8816	-262.2276
1144.7	-80.3919	-263.2061
1413.0	-85.8671	-264.4927
1744.3	-91.3468	-265.5366
2153.2	-96.8293	-266.3832
2658.0	-102.3137	-267.0695
3281.2	-107.7994	-267.6258
4050.4	-113.2859	-268.0765
5000.0	-118.7729	-268.4417
10000.	-136.8332	-269.2208

Respostas

- 1. a) $k_v \simeq 40 \ s^{-1};$ b) $k_p = 0.8213;$ c) C(s) = 648.4(s+1.695)/(s+0.805);
- **2.** A assí ntota de baixa freqüência cruza 0 db em $\omega_0 = \sqrt{k_a}$ (isto é, $k_a = \omega_0^2$);
- 3. C(s) = 7.5486(s + 1.9078)/(s + 14.4013);
- **4.** a) $\pm 168.6901^{\circ}$; b) $s = \pm j3.8987$; c) k = 1.5; d) s = -2.8792;
- 5. $\alpha = 8.3246$;
- **6.** a) Ver slides da Aula 10; b) N=Z=2, instável;
- 7. a) $e_r = 1/7$; b) $\beta = 20$, C(s) = (s + 0.001)/(s + 0.0005).