Duc Thanh Nguyen - Boston University

Today, I will be examining data and implementing normality checks in Stata: using 2013 data from the US Census on the county-level obesity rates in the US.

- a. Use the command describe to learn about the type of the variable PCT OBESE ADULTS13
 - describe PCT OBESE ADULTS13

Variable	Storage	Display	Value	Variable label
name	type	format	label	
PCT_OBESE_AD	~13 double	%10.0g		PCT_OBESE_ADULTS13

b. Create a table summary of descriptive statistics for variable PCT_OBESE_ADULTS13 using the summarize command.

• sum PCT_OBESE_ADULTS13

Variable	0bs	Mean	Std. dev.	Min	Max
PCT_0BESE~13	3,142	31.01709	4.523205	11.8	47.6

- c. Utilize the following two commands to further examine the distribution of the obesity rates across the US counties:
 - sum PCT_OBESE_ADULTS13, d

PCT_OBESE_ADULTS13					
	Percentiles	Smallest			
1%	19.2	11.8			
5%	23	12.7			
10%	25.5	13.1	0bs	3,142	
25%	28.3	13.4	Sum of wgt.	3,142	
50%	31.2		Mean	31.01709	
		Largest	Std. dev.	4.523205	
75%	33.8	45.5			
90%	36.4	46.1	Variance	20.45938	
95%	38	46.3	Skewness	2896491	
99%	42	47.6	Kurtosis	3.899369	

• tabstat PCT OBESE ADULTS13, stat(mean sd min max sk k med)

Variable	Mean	SD	Min	Max	Skewness	Kurtosis
PCT_0BESE~13	31.01709	4.523205	11.8	47.6	2896491	3.899369
Variable	p50					
PCT_0BESE~13	31.2					

d. Construct a boxplot for the PCT_OBESE_ADULTS13 variable using the graph box command:

graph box PCT_OBESE_ADULTS13

e. The ERS is interested in how many counties have obesity rates above the 99th percentile. From the output in part c above we know that the 99th percentile of the obesity rates across 3142 US counties was 42% in 2013. Using the list command in Stata, we can provide the ERS with the list of counties with obesity rates above the 99th percentile:

list County if PCT_OBESE_ADULTS13 > 42

- f. Using Stata, create a histogram for the PCT_OBESE_ADULTS13 variable with the superimposed normal curve.
 - histogram PCT_OBESE_ADULTS13, bin(20) normal xtitle("Percentage Obese 2013") title("Histogram For Obesity 2013")

I can qualitatively say that the distribution of obesity percentages in 2013 seems to approximate a normal distribution fairly well. The shape is roughly bell-shaped, though there's a slight skew to the left, indicating that while most of the data points are concentrated in the middle (around the 30% obesity range), there are fewer areas with much lower or much higher percentages.

The smooth curve suggests the data might follow a normal distribution, but the leftward skew hints that there may be a small bias toward lower obesity percentages. Overall, the distribution doesn't look perfectly normal, but it is fairly close.

g.

h. tabstat PCT_OBESE_ADULTS13, stat(mean med)

Variable	Mean	p50
PCT_0BESE~13	31.01709	31.2

Since the normal probability density function is symmetric, we would expect that for a variable with a distribution close to normal, the sample mean and median should be nearly the same. This is because in a perfectly normal distribution, the mean and median coincide at the center of the distribution, reflecting symmetry. If the distribution is close to normal, the sample mean and median should not differ significantly, as both would be located near the peak of the bell curve. However, any noticeable differences between them might indicate slight skewness or departures from normality. In the case of the obesity distribution from 2013, the slight leftward skew observed in the histogram might cause a small difference between the sample mean and median.