Teaching goals: The student is able to

- give a formal statement of the Pumping lemma for context-free languages
- explain the proof of the Pumping lemma for context-free languages
- apply the Pumping lemma to prove that a given language is not context-free

IN-CLASS PROBLEMS

Problem 1 (Pumping lemma: statement and proof). (a) Formulate the Pumping Lemma for context-free languages (without consulting your notes).

- (b) Compare the statement to the version for regular languages.
- (c) Explain the idea behind its proof.
- (d) Demonstrate pumping on the language $L = \{ww^R \mid w \in \{a, b\}^*\}.$

Problem 2 (Pumping lemma: application). Decide if the following languages are context-free. Prove that your answer is correct.

- (a) $L = \{0^i 1^j 0^i \mid i, j \ge 0\}$
- (b) $L = \{0^i 1^j 0^i \mid 0 \le i \le j\}$
- (c) $L = \{0^i 1^j 2^k \mid 0 \le i \le j \le k\}$
- (d) $L = \{ww \mid w \in \{0, 1\}^*\}$
- (e) $L = \{ww^R \mid w \in \{0,1\}^*, |w|_0 = |w|_1\}$
- (f) $L = \{1^{n^2+n+1} \mid n \ge 0\}$

EXTRA PRACTICE AND THINKING

Problem 3 (Pumping and right-linear grammars). Give an alternative proof of the Pumping lemma for regular languages that is based on derivations from a right-linear grammar.

Problem 4 (Pumping linear languages). Recall that a grammar is *linear*, if it only contains production rules of the form $A \to uBw$ and $A \to w$, where $A, B \in V$ and $u, w \in T^*$.

- (a) Formulate a Pumping lemma for linear languages.
- (b) Proof the statement using derivations from a (reduced) linear grammar.
- (c) How does the pumping constant n from the lemma relate to a linear grammar for L?
- (d) Show that the language $L = \{w \in \{0,1\}^* \mid |w|_0 = |w|_1\}$ is not linear.
- (e) Where does L lie within the Chomsky hierarchy?

Problem 5 (Pumping lemma: application). Decide if the following languages are context-free. Prove that your answer is correct.

(a)
$$L = \{0^i 1^i \mid i \ge 0\}$$

(b)
$$L = \{0^i 1^j 0^i \mid 0 \le j \le i\}$$

(c)
$$L = \{0^i 1^i 2^i \mid i \ge 0\}$$

(d)
$$L = \{0^{2i}1^{3i}0^i \mid i \ge 0\}$$

(e)
$$L = \{ww^R \mid w \in \{0, 1\}^*\}$$

(f)
$$L = \{1^{n^2} \mid n \ge 0\}$$

(g)
$$L = \{1^p \mid p \text{ is a prime}\}$$

(h)
$$L = \{0^i 1^j \mid 0 \le i \le j^2\}$$