ML4SCI Hackathon 2021 NMR Challenge

Tun Sheng Tan

Physics Department University of Florida

January 17 2022

Problem and Approach

Using spin-echo magnetizations $M_x(t)$ and $M_y(t)$ to predict

- lacktriangle the planar effective scattering strength $lpha_{ imes}$
- ightharpoonup perpendicular effective scattering strength $lpha_z$
- \blacktriangleright the flip angle of nuclear spins θ

B_z

Approach

- ▶ Small dataset (n = 3000) with sequence length L = 856
- lacktriangle Uncorrelated targets ightarrow independent regressions
- Prioritize feature engineering

What does not work

- 1. Dimensionality reduction using PCA
- 2. Feature selection using F-statistic and p-values
- 3. Area under curve, $|M^{xy}(t)|$
- 4. Time-delay embedding
- 5. Higher order gradient of time-series¹
- 6. Power spectral density & Cross power spectral density¹
- 7. Regressor Chain

 $^{^{1}}$ Not as good as Fourier transform. $MSE_{ heta}^{PSD}, MSE_{ heta}^{TS} \sim 10^{\circ^{2}}$ vs $MSE_{ heta}^{FFT} \sim 1^{\circ^{2}}$.

Features

- 1. Fourier transform $|\tilde{M}^{xy}(\omega)|^1$
- 2. $\frac{d}{d\omega}|\tilde{M}^{xy}(\omega)|$
- 3. Constant-Q transform
- 4. Trigonometry transform: $\log[V\cos(\psi)]$ and $\log[|\psi|]$ where

$$\begin{array}{rcl} V & = & \sin^{-1}\left(1.1\max\{|M^{\mathrm{x}\mathrm{y}}(t)|\}\right) \\ \phi(t) & = & \tan^{-1}\left(\frac{M^{\mathrm{x}}(t)}{M^{\mathrm{y}}(t)}\right) \\ \psi(t) & = & \sin^{-1}\left(\frac{M^{\mathrm{x}}(t)}{V\cos(\phi(t))}\right) \end{array}$$

Figure: 1

¹arXiv:2110.06811 . See section 3 of supplementary material for details.

Base Models

Three base models without hyperparameter tuning

- 1. LightGBM: default settings
 - $ightharpoonup \alpha_{x,z}$: Features 1, 2, 3, 4
 - \triangleright θ : Features 1, 2, 4
- 2. Transformer: SGD optimizer, cyclic learning rate, SiLU activation, smooth L1 loss, 256 batch size, 1000 epochs
 - ► Model 1: Features 1, 2, 3, 4
 - ► Model 2: Features 1, 3, 4

Figure: Transformer

Final Model

- 1. Data preprocessing:
 - standardize features (removing the mean and scaling to unit variance)
 - log transform targets and standardize
- 2. Perform out-of-fold prediction (k=10) using transformer 1, transformer 2 and LightGBM
- 3. Take weighted average of the models for each target
- 4. Clip $\alpha_x \in [0, 150] kHz$, $\alpha_z \in [0, 300] kH$, $\theta \in [10, 90]^{\circ}$

 $Code\ available\ at\ https://github.com/tunsheng/ML4SCI-NMR-2021-Solution$

Backup

Ablation Study (I)

Features	MSE_{α_x}	MSE_{α_z}	MSE_{θ}
TS	231.6800	6625.0227	141.0835
FFT	94.0395	2634.2513	1.4023
CQT	41.4168	5825.2558	6.7801
FFT + GRAD FFT	91.1387	2661.7525	1.3735
FFT + CQT	38.1213	2365.2629	2.5243
TRIG + CQT	33.6687	5434.9461	6.6327
FFT + TRIG	43.5086	2515.2337	1.2402
FFT + GRAD FFT + TRIG	44.9065	2280.9371	1.3222 ¹
FFT + TRIG + CQT	33.2738	2377.5268	2.5472
$FFT + GRAD \; FFT + TRIG + CQT$	32.0861 ¹	2427.6995 ¹	2.4594

 ${\color{red}{\sf Table:}}\ {\color{blue}{\sf Mean}}\ {\color{blue}{\sf squared}}\ {\color{blue}{\sf errors}}\ {\color{blue}{\sf for}}\ {\color{blue}{\sf LightGBM}}$

¹Used this for training

Ablation Study (II)

Features	$MSE_{\alpha_{x}}$	MSE_{α_z}	MSE_{θ}
TS	231.6800	6625.0227	141.0835
GRAD 6th	203.1794	3974.3285	37.2417
TS + GRAD 4th	144.8954	4465.4705	18.1563
TS + GRAD 6th	142.9788	4154.9162	19.8565
$TS + GRAD \ 6th + TRIG$	61.1777	3558.1060	37.0968
TS + TRIG	84.6014	4941.4302	80.1348
TS + FFT	103.9186	2940.1749	1.5453
TS + CQT	40.1949	5673.7429	6.9262

Table: Mean squared errors for LightGBM

Stacking

To minimize variance and improve accuracy

Model	$MSE_{lpha_{ imes}}$	MSE_{α_z}	$MSE_{ heta}$
LightGBM	36.22663	2299.48227	1.53249
Transformer 1	40.11050	2297.86204	4.95406
Transformer 2	46.58499	2319.71042	5.06916
Ensemble	25.64227	1749.83395	1.36223

Final submission score: 237.43