Kombinatorni objekti

16.10.2024.

Kombinatorna prebrojavanja

1.1 Definicija i podela kombinatornih objekata

Svaki kombinatorni objekat možemo definisati kao izdvajanje elemenata iz skupa / multiskupa svih zadatih objekata, gde pravimo razliku između toga da li jedan element možemo odabrati više puta i da li je redosled u kojem biramo elemente značajan ili ne.

	Redosled je bitan	Redosled nije bitan
Ne možemo	Permutacija skupa / permutacija	Kombinacija skupa / kombinacija bez
birati element	bez ponavljanja	ponavljanja
više puta		
Možemo birati	Permutacija multiskupa /	Kombinacija multiskupa / kombinacija
element više	permutacija s ponavljanjem	sa ponavljanjem
puta		

1.2 Permutacije skupa

Definicija: Pod **permutacijom** skupa A se podrazumeva svaka bijekcija $f: A \to A$ skupa A na samog sebe. Skup svih permutacija skupa A obično se obeležava sa $\operatorname{Sym}(A)$.

Za skup $\operatorname{Sym}(A)$ svih permutacija skupa A važi sledeća teorema, koja ilustruje algebarsku strukturu skupa $\operatorname{Sym}(A)$.

Teorema: Ako je dat skup A, tada za skup $\operatorname{Sym}(A)$ važe sledeće osobine:

- a) Zatvorenost: $(\forall f, g \in \text{Sym}(A))$ $f \circ g \in \text{Sym}(A)$
- b) Asocijativnost: $(\forall f, g, h \in \text{Sym}(A))$ $f \circ (g \circ h) = (f \circ g) \circ h$;
- c) Postojanje neutralnog elementa: $(\exists i_A \in \text{Sym}(A)) \quad (\forall x \in A) \quad i_A(x) = x;$
- d) Postojanje inverznog elementa: $(\forall f \in \text{Sym}(A)) \quad (\exists f^{-1} \in \text{Sym}(A)) \quad f \circ f^{-1} = f^{-1} \circ f = i_A.$

Algebarski, uređeni par $(Sym(A), \circ)$, gde je \circ operacija kompozicije čini algebarsku grupu. Ova grupa se specijalno naziva **simetrijska grupa skupa** A

Definicija: k-permutacija skupa od n elemenata je svaka uređena k-torka različitih elemenata iz skupa od n elemenata. Permutacija skupa od n elemenata je svaka n-permutacija tog skupa.

Pored naziva k-permutacija koristi se i termin varijacija bez ponavljanja k-te klase od n elemenata.

Teorema: Neka su P(n,k) i P(n,n) redom broj k-permutacija skupa od n elemenata i broj permutacija skupa od n elemenata. Tada:

1.
$$P(n,k) = n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

2.
$$P(n,n) = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1 = n!$$

Dokaz:

(1) Prvi član k-permutacije skupa od n elemenata može biti izabran na n načina. Pošto je jedan element izabran, a u permutaciji se nalaze samo različiti elementi, preostaje n-1 elemenat, tako da se sledeći član bira na n-1 način. Prema tome, prva dva člana mogu se izabrati na $n\cdot(n-1)$ načina. Postupak produžavamo, tako da se poslednji, k-ti član permutacije bira iz skupa koji sadrži n-(k-1) elemenata, pa postoji upravo toliko načina da i on bude izabran. Prema pravilu proizvoda,

$$P(n,k) = n \cdot (n-1) \cdot \dots \cdot (n-k+1).$$

(2) Direktna posledica (1) za k = n.

k-permutacija skupa predstavlja sve načine na koji iz skupa od n različitih elemenata možemo odabrati k elemenata, tako da je redosled kojim biramo te elemente značajan.

```
[]: | #Rekurzivni algoritam za generisanje svih k-permutacija skupa
     def generate_permutations(arr, length, current, used):
         if len(used) == min(length, len(arr)):
             print(current)
         else:
             for i in arr:
                 if i not in used:
                     newcurrent = current.copy()
                     newcurrent.append(i)
                     newused = used.copy()
                     newused.add(i)
                     generate_permutations(arr, length, newcurrent, newused)
     def permute(arr, k):
         generate_permutations(arr, k, [], set())
     permute([1, 2, 3, 4], 4)
     print("###########")
     permute([1, 2, 3, 4], 2)
```

1.3 Permutacije multiskupa

Teorema: Neka je dato k vrsta objekata, tako da i-te vrste ima n_i objekata, i neka je $n = \sum_{i=1}^k n_i$. Tada je broj permutacija tih n objekata jednak:

$$\frac{n!}{n_1!n_2!\dots n_k!}.$$

Dokaz: Neka je x traženi broj permutacija. Za bilo koju permutaciju ovih n objekata, ako objekte prve vrste posmatramo kao različite, dobijamo $x \cdot n_1!$ permutacija.

Isto ponavljamo za objekte druge i svih ostalih vrsta, što daje:

$$x \cdot n_1! \cdot n_2! \cdot \cdots \cdot n_k! = P(n, n) = n!.$$

Stoga je traženi broj jednak:

$$x = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}.$$

```
[]: class ListElement:
         def __init__(self, value, next):
             self.value = value
             self.next = next
         def nth(self, n):
             o = self
             i = 0
             while i < n and o.next is not None:
                 o = o.next
                 i += 1
             return o
     def init(multiset):
         multiset.sort() # ensures proper non-increasing order
         h = ListElement(multiset[0], None)
         for item in multiset[1:]:
             h = ListElement(item, h)
         return h, h.nth(len(multiset) - 2), h.nth(len(multiset) - 1)
     def visit(h):
         """Converts our bespoke linked list to a python list."""
         o = h
         1 = []
         while o is not None:
             1.append(o.value)
             o = o.next
         return 1
     def permutations(multiset):
         """Generator providing all multiset permutations of a multiset."""
         h, i, j = init(multiset)
         yield visit(h)
         while j.next is not None or j.value < h.value:
             if j.next is not None and i.value >= j.next.value:
```

```
else:
            s = i
        t = s.next
        s.next = t.next
        t.next = h
        if t.value < h.value:</pre>
            i = t
        j = i.next
        h = t
        yield visit(h)
if __name__ == '__main__':
    import sys
    multiset = [1, 1, 2, 2, 3, 3, 3]
    if multiset != []:
        for permutation in permutations(multiset):
            for item in permutation:
                 print(item)
            print()
    else:
        print("usage", sys.argv[0], "<multiset>")
```

Teorema: Neka je dato n objekata. Broj k-permutacija sa ponavljanjem je jednak n^k .

Dokaz: Pošto u svakom od k koraka izbora možemo izabrati jedan od n elemenata, rezultat neposredno sledi prema pravilu proizvoda. Dakle, ukupan broj mogućih izbora je:

$$n \cdot n \cdot \dots \cdot n$$
 $(k \text{ puta}) = n^k$.

1.4 Permutacije "oko okruglog stola" / kružne permutacije

Teorema: Broj načina da se n objekata rasporedi oko okruglog stola je (n-1)!.

Dokaz (prvi način): 1. Fiksiramo jedan objekat (npr. A) da izbegnemo dupliranje zbog rotacija. 2. Preostali n-1 objekata možemo rasporediti na (n-1)! načina.

Dokaz (drugi način): Primetimo da za svako raspoređivanje n elemenata u nizu postoji tačno n raspoređivanja za okruglim stolom koja se razlikuju samo po tome od kojeg mesta smo počeli raspored, tj. postoji n rasporeda koji se od jednog mogu generisati samo rotacijom stola. Kako je ukupan broj permutacija n! i svaka permutacija se za okruglim stolom ponavlja n puta, ukupan broj kružnih permutacija je $\frac{n!}{n} = (n-1)!$

1.5 Primeri

```
[]: #Fisher-Yates algoritam za nasumično permutovanje

import random

def random_permutation(n):
```

```
elements = list(range(1, n + 1))

for i in range(n - 1, 0, -1):
    j = random.randint(0, i)
    elements[i], elements[j] = elements[j], elements[i]

return elements

n = 5
perm = random_permutation(n)
print(f"Nasumična permutacija skupa {{1, 2, ..., {n}}}: {perm}")
```

Nasumična permutacija skupa {1, 2, ..., 5}: [4, 1, 5, 3, 2]

```
[]: #Kod za generisanje određene permutacije po leksikografskom poretku, u ovomu
     ⇔primeru izračunata je 5. permutacija
     import math
     def permutacija_po_redu(k, m, n, a):
         a[m] = 1 + (k - 1) // math.factorial(n - m)
         if m < n - 1:
             k0 = k - (a[m] - 1) * math.factorial(n - m)
             permutacija_po_redu(k0, m + 1, n, a)
             for i in range(m + 1, n):
                 if a[i] > a[m]:
                     a[i] += 1
     n = 4
    k = 5
     a = [0] * n
     permutacija_po_redu(k, 0, n, a)
    print("Permutacija sa rednim brojem", k, ":", a)
```

Permutacija sa rednim brojem 5 : [1, 1, 5, 1]