ELEMENTS OF CHEMICAL REACTION ENGINEERING

H. SCOTT FOGLER

Ame and Catherine Vennema Professor of Chemical Engineering The University of Michigan, Ann Arbor

edition

Library of Congress Cataloging-in-Publication Data Fogler, H. Scott.

Elements of chemical reaction engineering.

(Prentice-Hall international series in the physical and chemical engineering sciences)
Includes bibliographies and index.

1. Chemical reactors. I. Title. II. Series. TP157.F65 1986 660.2'81 85-28270 ISBN 0-13-263476-7

Manufacturing buyer: Gordon Osbourne

© 1986 by Prentice-Hall, Inc. A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-263476-7 025

Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi Prentice-Hall of Japan, Inc., Tokyo Prentice-Hall of Southeast Asia Pte. Ltd., Singapore Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro Whitehall Books Limited, Wellington, New Zealand

Contents

PKEI	ACE	AAII
CHA]	PTER 1: MOLE BALANCES	1
1.1	definition of the rate of reaction, $-r_{ m A}$	2
1.2	THE GENERAL MOLE BALANCE EQUATION	6
1.3	BATCH REACTORS	8
1.4	CONTINUOUS-FLOW REACTORS	10
	1.4.1 Continuous-Stirred Tank Reactor	10
	1.4.2 Tubular Reactor	11
1.5	INDUSTRIAL REACTORS	15
	SUMMARY	19
	QUESTIONS AND PROBLEMS	20
	SOME THOUGHTS ON PROBLEM SOLVING	23
	SUPPLEMENTARY READING	27
СНА	PTER 2: CONVERSION AND REACTOR SIZING	28
2.1	DEFINITION OF CONVERSION	28
		29
2.2	DESIGN EQUATIONS	29
	2.2.1 Batch Systems	31
	2.2.2 Flow Systems	31

viii		Contents
2.3	APPLICATIONS OF THE DESIGN EQUATIONS	33
2.4	REACTORS IN SERIES	37
2.5	SOME FURTHER DEFINITIONS	47
	SUMMARY	49
	QUESTIONS AND PROBLEMS	51
	SOME THOUGHTS ON PROBLEM SOLVING	56
	SUPPLEMENTARY READING	57
CHA	APTER 3: RATE LAWS AND STOICHIOMETRY	59
3.1	BASIC DEFINITIONS	59
	3.1.1 The Reaction Rate Constant	60
	3.1.2 The Reaction Order	63
	3.1.3 Elementary Reactions and Molecularity	65
	3.1.4 Reversible Reactions	67
2.0	3.1.5 Nonelementary Reactions	68
3.2	PRESENT STATUS OF OUR APPROACH TO REACTOR SIZING AND DESIGN	69
3.3	STOICHIOMETRIC TABLE	70
	3.3.1 Batch Systems	71
	3.3.2 Constant-Volume Reaction Systems	73
	3.3.3 Flow Systems	76
	3.3.4 Volume Change with Reaction	77
3.4	REACTIONS WITH PHASE CHANGE	86
	SUMMARY	89
	QUESTIONS AND PROBLEMS	92
	SOME THOUGHTS ON PROBLEM SOLVING	99
	SUPPLEMENTARY READING	103
СНА	PTER 4: ISOTHERMAL REACTOR DESIGN	105
4.1	DESIGN STRUCTURE FOR ISOTHERMAL REACTORS	106
4.2	SCALE-UP OF LIQUID-PHASE BATCH REACTOR DATA	
	TO THE DESIGN OF A CSTR	106
	4.2.1 Batch Operation	108
4.2	4.2.2 Design of CSTRs	112
4.3	TUBULAR FLOW REACTORS	121
4.4	PRESSURE DROP IN REACTORS	126
	4.4.1 Flow through a Packed Bed	126
	4.4.2 Pressure Drop and the Rate Law4.4.3 Pressure Drop in Pipes	130
	4.4.3 Pressure Drop in Pipes	135

Contents	Contents	ix
33	4.5 REVERSIBLE REACTIONS	136
37	4.5.1 Role of Nitric Oxide in Smog Formation	138
47	4.6 Unsteady-state operation of reactors	142
	4.6.1 Startup of a CSTR	143
49	4.6.2 Semibatch Reactors	144
51 56	4.6.3 Reactive Distillation	152
57	4.7 RECYCLE REACTORS	154
31	SUMMARY	158
	QUESTIONS AND PROBLEMS	159
59	SOME THOUGHTS ON PROBLEM SOLVING	175
59	SUPPLEMENTARY READING	178
60		
63	CHAPTER 5: COLLECTION AND ANALYSIS OF RATE DATA	179
65	5.1 batch reactor data	180
67	5.1.1 Differential Method of Rate Analysis	180
68	5.1.2 Gas-Phase Reactions with Total Pressure	
60	as the Measured Variable	182
69	5.1.3 Integral Method	189
70	5.2 method of initial rates	195
71	5.3 method of half-lives	197
73	5.4 least-squares analysis	199
76 77	5.4.1 Linearization of the Rate Law	199
77	5.4.2 Nonlinear Analysis	200
86	5.4.3 Weighted Least-Squares Analysis	201
89	5.5 differential reactors	203
92	5.6 EVALUATION OF LABORATORY REACTORS	206
99	5.6.1 Integral (Fixed-bed) Reactor	206
103	5.6.2 Stirred Batch Reactor	207
	5.6.3 Stirred Contained Solids Reactor (SCSR)	208
105	5.6.4 Continuous-Stirred Tank Reactor (CSTR)	208
106	5.6.5 Straight-through Transport Reactor	209
100	5.6.6 Recirculating Transport Reactor	210
106	5.6.7 Summary of Reactor Ratings	211
108	5.7 experimental design	211
112	5.7.1 Finding the Rate Law	211
121	5.7.2 Experimental Planning	213
126	SUMMARY	216
126	QUESTIONS AND PROBLEMS	218
130	SOME THOUGHTS ON PROBLEM SOLVING	225
135	SUPPLEMENTARY READING	229
100		

X			Contents
CHA	PTER (6: CATALYSIS AND CATALYTIC REACTORS	231
6.1	CATA	LYSTS	231
	6.1.1	Definitions	231
	6.1.2	Catalyst Properties	233
6.2	STEPS	IN A CATALYTIC REACTION	235
	6.2.1	Adsorption Isotherms	238
	6.2.2	Surface Reaction	244
	6.2.3	Desorption	245
	6.2.4	The Rate-Limiting Step	245
6.3	SYNTI	HESIZING A RATE LAW, MECHANISM, AND RATE-LIMITING STEP	246
	6.3.1	Is the Adsorption of Cumene Rate Limiting?	249
	6.3.2	Is the Surface Reaction Rate Limiting?	253
	6.3.3	Is the Desorption of Benzene Rate Limiting?	254
	6.3.4	Summary of the Cumene Decomposition	255
6.4	DESIG	N OF REACTORS FOR GAS-SOLID REACTIONS	258
	6.4.1	Basic Guidelines	258
	6.4.2	The Design Equation	258
6.5	HETE	ROGENEOUS DATA ANALYSIS FOR REACTOR DESIGN	261
	6.5.1	Deducing a Rate Law from the Experimental Data	262
	6.5.2	Finding a Mechanism Consistent	
		with Experimental Observations	264
	6.5.3	Evaluation of the Rate-Law Parameters	265
	6.5.4	Reactor Design	268
6.6		LYST DEACTIVATION	273
		Deactivation by Sintering or Aging	274
		Deactivation by Coking or Fouling	276
	6.6.3	Deactivation by Poisoning	276
	6.6.4	Temperature-Time Trajectories	280
		Effect of Deactivation on Selectivity	282
		Determining the Order of Deactivation	284
6.7	MOVI	NG-BED REACTORS	288
	SUMM	ARY	294
	QUEST	TIONS AND PROBLEMS	296
	SOME	THOUGHTS ON PROBLEM SOLVING	310
	SUPPL	EMENTARY READING	314
СНА	PTER 7	: NONELEMENTARY HOMOGENEOUS REACTIONS	316
7.1	FUND	AMENTALS	317
	7.1.1	Active Intermediates	317
	7.1.2	Pseudo-Steady-State Hypothesis (PSSH)	319

Contents	Contents	xi
231	7.2 SEARCHING FOR A MECHANISM	320
231	7.2.1 General Considerations	321
231	7.2.2 Hydrogen Bromide Reaction	324
233	7.3 ENZYMATIC REACTION FUNDAMENTALS	328
235	7.3.1 Definitions and Mechanisms	328
238	7.3.2 Michaelis-Menten Equation	331
244	7.3.3 Batch Reactor Calculations	334
245	SUMMARY	336
245	QUESTIONS AND PROBLEMS	337
246	SOME THOUGHTS ON PROBLEM SOLVING	345
249	SUPPLEMENTARY READING	348
253	SUFFLEMENTARY READING	0.0
254		
255	CHAPTER 8: NONISOTHERMAL REACTOR DESIGN	349
258	8.1 rationale	349
258		351
258	8.2 THE ENERGY BALANCE	351
261	8.2.1 First Law of Thermodynamics	351
262	8.2.2 Evaluating the Work Term	332
264	8.2.3 Dissecting the Molar Flow Rates to Obtain the Heat of Reaction	353
264 265	8.2.4 Dissecting the Enthalpies	355
268	8.2.5 Relating $\Delta H_R(T)$, $\Delta H_R(T_R)$, and ΔC_P	356
273	8.2.6 Constant or Mean Heat Capacities	358
274	8.2.7 Variable Heat Capacities	358
276	8.2.8 Heat Added to the Reactor, \dot{Q}	361
276		
280	8.3 nonisothermal continuous-flow reactors at steady state	362
282	8.3.1 Application to the CSTR	363
284	8.3.2 Adiabatic Tubular Flow Reactor	372
288	8.3.3 Steady-State Tubular Flow Reactor	
294	with Heat Exchange	379
294	8.4 EQUILIBRIUM CONVERSION	383
310	8.4.1 Adiabatic Temperature and Equilibrium Conversion	384
314	8.4.2 Optimum Feed Temperature	387
	8.5 UNSTEADY-STATE OPERATION	388
316	8.5.1 The General Equation	389
	8.5.2 Unsteady Operation of Plug-Flow Reactors	390
317	8.5.3 Unsteady CSTR Operation	392
317	8.5.4 Batch Reactors	393
319	O.J.T Daton Reactors	

ΈP

xii		Contents
8.6	NONADIABATIC REACTOR OPERATION: OXIDATION	
	OF SULFUR DIOXIDE EXAMPLE	397
	8.6.1 Manufacture of Sulfuric Acid	397
	8.6.2 Catalyst Quantities	4 01
	8.6.3 Reactor Configuration	401
	8.6.4 Operating Conditions	402
8.7	MULTIPLE STEADY STATES	412
	8.7.1 Heat-Removed Term, $R(T)$	413
	8.7.2 Heat of Generation, $G(T)$	413
	8.7.3 Ignition–Extinction Curve	415
	8.7.4 Steady-State Bifurcation Analysis	419
	SUMMARY	425
	QUESTIONS AND PROBLEMS	426
	SOME THOUGHTS ON PROBLEM SOLVING	445
	SUPPLEMENTARY READING	450
СНА	APTER 9: MULTIPLE REACTIONS	452
9.1	CONDITIONS FOR MAXIMIZING THE DESIRED PRODUCT	
	IN PARALLEL REACTIONS	454
	9.1.1 Maximizing S for One Reactant	455
	9.1.2 Maximizing S for Two Reactants	457
9.2	MAXIMIZING THE DESIRED PRODUCT IN SERIES REACTIONS	461
9.3	STOICHIOMETRIC TABLE FOR MULTIPLE REACTIONS	465
9.4	HYDRODEALKYLATION OF MESITYLENE	471
	9.4.1 Description of the Reacting System	471
	9.4.2 Optimization of Xylene Production	
	in a Packed-Bed Reactor	475
9.5	NONISOTHERMAL CHEMICAL REACTIONS	479
9.6	WHAT IF THE PROCEDURE IN TABLE 9-2 CAN'T BE APPLIED?	481
	SUMMARY	491
	QUESTIONS AND PROBLEMS	494
	SUPPLEMENTARY READING	508
СНА	PTER 10: EXTERNAL DIFFUSION EFFECTS	
	IN HETEROGENEOUS REACTIONS	509
10.1	MASS-TRANSFER FUNDAMENTALS	510
	10.1.1 Definitions	510
	10.1.2 Molar Flux	511
	10.1.3 Fick's First Law	513

Contents	Contents	xiii
397 397 401 401 402	10.2 BINARY DIFFUSION 10.2.1 Evaluating the Molar Flux 10.2.2 Boundary Conditions 10.2.3 Modeling Diffusion without Reaction 10.2.4 Temperature and Pressure Dependence of D_{AB} 10.2.5 Modeling Diffusion with Chemical Reaction	514 517 517 523 523 523
412 413 413 415 419	10.3 EXTERNAL RESISTANCE TO MASS TRANSFER 10.3.1 Mass-Transfer Coefficient 10.3.2 Mass Transfer to a Single Particle 10.3.3 Mass-Transfer-Limited Reactions in Packed Beds 10.3.4 Mass-Transfer-Limited Reaction on Surfaces of Metals	524 525 528 532 539
425 426 445 450 452	10.4 WHAT IF? (PARAMETER SENSITIVITY) SUMMARY QUESTIONS AND PROBLEMS SOME THOUGHTS ON PROBLEM SOLVING SUPPLEMENTARY READING	544 549 550 558 559
454 455 457	CHAPTER 11: DIFFUSION AND REACTION IN POROUS CATALYSTS 11.1 DIFFUSION AND REACTION IN SPHERICAL CATALYST PELLETS	560 561
461 465 471	11.1.1 Effective Diffusivity 11.1.2 Derivation of the Differential Equation Describing Diffusion and Reaction	561 562
471 475	11.1.3 Writing the Equation in Dimensionless Form11.1.4 Solution to the Differential Equation for a First-Order Reaction	565 567
479 481	11.2 INTERNAL EFFECTIVENESS FACTOR 11.3 FALSIFIED KINETICS	569 572
491 494 508	11.4 OVERALL EFFECTIVENESS FACTOR 11.5 ESTIMATION OF DIFFUSION- AND REACTION-LIMITED REGIMES 11.5.1 Wiesz-Prater Criterion for Internal Diffusion 11.5.2 Mears' Criterion for External Diffusion	574 577 577 579
509	11.6 mass transfer and reaction in a packed bed 11.7 determination of limiting situations from reaction data	580 586
510 510 511 513	11.7 DETERMINATION OF LIMITING SITUATIONS FROM REACTION DATA SUMMARY QUESTIONS AND PROBLEMS SUPPLEMENTARY READING	587 588 595

xiv		Contents
СНА	APTER 12: MULTIPHASE REACTO	PRS 596
12.1	SLURRY REACTORS	597
	12.1.1 Rate of Gas Absorption	599
	12.1.2 Transport to Catalyst	599
	12.1.3 Diffusion and Reaction in t	
	12.1.4 The Rate Law	600
	12.1.5 Determining the Limiting	Step 600
	12.1.6 Slurry Reactor Design	609
12.2	TRICKLE BED REACTORS	610
	12.2.1 Fundamentals	611
	12.2.2 Limiting Situations	614
	12.2.3 Evaluating the Transport C	pefficients 614
	SUMMARY	622
	QUESTIONS AND PROBLEMS	622
	SUPPLEMENTARY READING	627
CHAI	PTER 13: DISTRIBUTIONS OF RE FOR CHEMICAL REAC	TORS 629
	By L. F. Brown and H. S	Fogler
13.1	GENERAL CHARACTERISTICS	629
	13.1.1 Residence-Time Distribution	n Function 632
13.2	THE RESIDENCE I	ME DISTRIBUTION 633
	13.2.1 Pulse Input	633
	13.2.2 Positive-Step Tracer Experim	
	13.2.3 Negative-Step Tracer Experi	ment 639
13.3	CHARACTERISTICS OF THE RTD	640
	13.3.1 Integral Relationships	640
	13.3.2 Mean Residence Time	642
	13.3.3 Other Moments of the RTD	017
	13.3.5 Normalized RTD Function	• •
	13.3.5 Internal-Age Distribution I(
	13.3.6 RTDs and Chemical Reaction	n Rates 650
13.4	THE RTD IN IDEAL REACTORS	651
	13.4.1 RTDs in Batch and Plug-Flo	w Reactors 651
	13.4.2 Single CSTR RTD	651
	13.4.3 The RTD in CSTRs in Serie	055
	13.4.4 Plug Flow-CSTR Series RT	D 656
	13.4.5 Laminar Flow Reactor	659

Contents	Contents		XV
596	13.5 RTDs in real f	EACTOR SYSTEMS	661
	13.5.1 Tubular	Reactor RTDs	661
597	13.5.2 RTDs in	a Continuous-Stirred Tank	665
599	13.5.3 Tests on	Some Fluidized Beds	666
599	13.6 reactor model	ING WITH THE RTD	668
600		HE SEGREGATION MODEL	669
600	13.7.1 Segregat	Ÿ.	669
600 609		of Reactors with Completely	
		ed Mixing	670
610	SUMMARY		673
611	QUESTIONS AND	SM3 IBO DD	674
614	SUPPLEMENTARY		679
614	SUFFLEMENTARI	READING	072
622			
622	CHAPTER 14: ANAL	SIS OF NONIDEAL REACTORS	680
627	*	S. Fogler and L. F. Brown	
	14.1 THE BASIC IDEA	·	680
629	14.1.1 Mathem	atical Tractability	681
	14.1.2 Physical	·	681
629	•	del Must Have at Most Two Parameters	681
632	14.2 MODELING REAL	REACTORS WITH COMBINATIONS	
633	OF IDEAL REACT		682
633	14.2.1 Real CS	TR Modeled with an Exchange Volume	682
638	14.2.2 Real CS	TR Modeled Using Bypassing and Dead Space	685
639	14.3 TESTING A MODE	EL AND DETERMINING ITS PARAMETERS	686
640	14.3.1 Two CS	TRs with Interchange	687
640	14.3.2 Tracer U	Jse to Determine Parameters	
642	in CSTF	R-with-Deadspace-and-Bypass Model	692
644	14.4 models of tank	C REACTORS	696
647	14.5 MODELS OF TUBE	JLAR REACTORS	697
647	14.5.1 Nonidea	lity in Tubular Reactors	697
650	14.5.2 Dispersi	•	697
651	14.6 maximum mixei	DNESS	707
651		VERSUS THE NEED FOR A MODEL	712
651	14.7 USING THE RID	VERSOS THE NEED FOR A MODEL	
653	SUMMARY		712
656	QUESTIONS AND	PROBLEMS	714
659	SUPPLEMENTARY	READING	719

ΧV	'i	Contents
AP	PENDICES	
A	GRAPHICAL AND NUMERICAL TECHNIQUES	722
	A.1 Integration: The Graphical Form of Simpson's Rule	722
	A.2 Useful Integrals in Reactor Design	724
	A.3 Equal-Area Graphical Differentiation	726
	A.4 Solutions to Differential Equations	729
	A.5 Numerical Evaluation of Integrals	730
	A.6 Solutions to a First-Order Differential Equation	732
В	IDEAL GAS CONSTANT AND CONVERSION FACTORS	734
С	THERMODYNAMIC RELATIONSHIPS INVOLVING	
	THE EQUILIBRIUM CONSTANT	736
D	PREDICTION OF BINARY GAS PHASE DIFFUSIVITIES	738
Е	MEASUREMENT OF SLOPES	740
F	GUIDED DESIGNS	743
	F.1 Comprehensive Problem	743
	F.2 Continuous Food Processing Plant	746
	F.3 Plant Safety	747
	F.4 Original Final Exam Problems	748

INDEX

761

1.4 Continuous-Flow Reactors

1.4.1 Continuous-stirred tank reactor

A type of reactor used very commonly in industrial processing is a stirred tank operated continuously (see Figure 1-4). It is referred to as the *continuous-stirred tank reactor* (CSTR) or *backmix reactor*. The CSTR is normally run at steady state, and is usually operated so as to be quite well mixed. As a result of the latter quality, the CSTR is generally modeled as having no spatial variations in concentration, temperature, or reaction rate throughout the vessel. Since the temperature and concentration are identical everywhere within the reaction vessel, they are the same at the exit point as they are elsewhere in the tank. Thus the temperature and concentration in the exit stream are modeled as being the same as those inside the reactor. In systems where mixing is highly nonideal, the well-mixed model is inadequate and we must resort to other modeling techniques, such as residence-time distributions, in order to obtain meaningful results. This topic is discussed in Chapters 13 and 14.

Figure 1-4 Continuous-stirred tank reactor.

When the general mole balance equation

$$F_{j0} - F_j + \int_{-\infty}^{V} r_j \, dV = \frac{dN_j}{dt} \tag{1-4}$$

is applied to a CSTR operated at steady state (i.e., conditions do not change with time),

$$\frac{dN_j}{dt} = 0$$

in which there are no spatial variations in the rate of reaction, i.e.,

$$\int_{-\infty}^{V} r_j \ dV = V r_j$$

nces

ing is a stirred he *continuous*ormally run at s a result of the ıl variations in ssel. Since the reaction vessel, ank. Thus the ng the same as deal, the wellchniques, such ts. This topic is

(1-4)

t change with

it takes the familiar form known as the design equation for a CSTR:

$$V = \frac{F_{j0} - F_j}{-r_j} \tag{1-6}$$

The CSTR design equation gives the reactor volume necessary to reduce the entering flow rate of species, j, F_{j0} , to the exit flow rate F_j . We note that the CSTR is modeled such that the conditions in the exit stream (e.g., concentration, temperature) are identical to those in the tank. The molar flow rate F_i is just the product of the concentration of species j and the volumetric flow rate v:

$$F_{j} = C_{j} \cdot v$$

$$\frac{\text{moles}}{\text{time}} = \frac{\text{moles}}{\text{volume}} \cdot \frac{\text{volume}}{\text{time}}$$
(1-7)

1.4.2 Tubular reactor

In addition to the batch and backmix (CSTR) reactors, another type of reactor commonly used in industry is the tubular reactor. It consists of a cylindrical pipe and is normally operated at steady state, as is the CSTR. For the purposes of the material presented here, we consider systems in which the flow is highly turbulent and the flow field may be modeled by that of plug flow. That is, there is no radial variation in concentration. (The laminar flow reactor is discussed in Chapter 13.)

In the tubular reactor, the reactants are continually consumed as they flow down the length of the reactor. In modeling the tubular reactor, we assume that the concentration varies continuously in the axial direction through the reactor. Consequently, the reaction rate, which is a function of concentration for all but zeroorder reactions, will also vary axially. To develop the design equation, we shall divide (conceptually) the reactor into a number of subvolumes so that within each subvolume ΔV , the reaction rate may be considered spatially uniform (see Figure 1-5). We now focus our attention on the subvolume that is located a distance y from the entrance of the reactor. Letting $F_i(y)$ represent the molar flow rate of j into volume ΔV at y and $F_j(y + \Delta y)$ the molar flow of j out of the volume at the point $(y + \Delta y)$, the general mole balance on species j is

$$F_{j0} - F_j + \int_{-\infty}^{V} r_j \, dV = \frac{dN_j}{dt}$$
 (1-4)

Figure 1-5 Tubular reactor.

In spatially uniform subvolume ΔV ,

$$\int_{-\infty}^{\Delta V} r_j \ dV = r_j \ \Delta V$$

For a tubular reactor operated at steady state,

$$\frac{dN_j}{dt} = 0$$

equation (1-4) becomes

$$F_j(y) - F_j(y + \Delta y) + r_j \, \Delta V = 0 \tag{1-8}$$

In this expression r_j is an indirect function of y. That is, r_j is a function of reactant concentration, which is a function of the position y down the reactor. The volume ΔV is the product of the cross-sectional area A of the reactor and the reactor length Δy .

$$\Delta V = A \Delta v$$

We now substitute in equation (1-8) for ΔV and then divide by Δy to obtain

$$-\left[\frac{F_j(y+\Delta y)-F_j(y)}{\Delta y}\right]=-Ar_j$$

The term in brackets resembles the definition of the derivative

$$\lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x) - f(x)}{\Delta x} \right] = \frac{df}{dx}$$

Taking the limit as Δy goes to zero, we obtain

$$-\frac{dF_j}{dv} = -Ar_j$$

F_{j, exit}

or dividing by -1, we have

$$\frac{dF_j}{dy} = Ar_j \tag{1-9}$$

It is usually most convenient to have the reactor volume V rather than the reactor length y as the independent variable. Accordingly, we shall change variables using the relation $dV = A \, dy$ to obtain one form of the design equation for a tubular reactor:

$$\frac{dF_j}{dV} = r_j \tag{1-10}$$

We also note that for a reactor in which the cross-sectional area A varies along the length of the reactor, the design equation remains unchanged. This equation can be generalized for the reactor shown in Figure 1-6, in a manner similar to that presented above, by utilizing the volume coordinate V rather than a linear coordinate V. After passing through volume V, species J enters subvolume ΔV at V at a molar flow rate $F_J(V)$. Species J leaves subvolume ΔV at volume V at a molar flow rate V

$$G = \int_{-\infty}^{\Delta V} r_j \, dV = r_j \, \Delta V \tag{1-11}$$

Figure 1-6

After accounting for steady-state operation in equation (1-4), it is combined with equation (1-11) to yield

$$F_i(V) - F_i(V + \Delta V) + r_i \, \Delta V = 0$$

Rearranging gives us

$$\frac{F_j(V + \Delta V) - F_j(V)}{\Delta V} = r_j$$

and taking the limit as $\Delta V \rightarrow 0$, we again obtain equation (1-10):

$$\frac{dF_{A}}{dV} = r_{A}$$
Tubular reactor
$$\frac{dF_{j}}{dV} = r_{j}$$
(1-10)

(1-8)

ction of reactant tor. The volume te reactor length

 $\nabla \Delta y$ to obtain

Chap. 1

Consequently, we see that equation (1-10) applies equally well to our model of tubular reactors of variable and constant cross-sectional area, although it is doubtful that one would find a reactor of the shape shown in Figure 1-6. The conclusion drawn from the application of the design equation is an important one: that the extent of reaction achieved in a plug-flow tubular reactor does not depend on its shape, only on its total volume.

To obtain some insight into things to come, consider the following example of how one can use the tubular reactor design equation (1-10).

Example 1-3 How Large Is It?

The first-order reaction

$$A \longrightarrow F$$

is carried out in a tubular reactor in which the volumetric flow rate is constant. Derive an equation relating the reactor volume to the entering and exiting concentrations of A, the rate constant k, and the volumetric flow rate v. Determine the reactor volume necessary to reduce the exiting concentration to 10% of the entering concentration when the volumetric flow rate is $10 \, \mathrm{dm}^3/\mathrm{min}$ (i.e., liters/min) and the specific reaction rate, k, is 0.23 per minute.

Solution

For a tubular reactor, the mole balance on species A (j = A) was shown to be

$$\frac{dF_{A}}{dV} = r_{A} \tag{1-10}$$

For a first-order reaction, the rate law (which is discussed in Chapter 3) is

$$-r_{\mathbf{A}} = kC_{\mathbf{A}} \tag{E1-3.1}$$

Since the volumetric flow rate, v_0 , is constant,

$$\frac{dF_{A}}{dV} = \frac{d(C_{A}v_{0})}{dV} = v_{0}\frac{dC_{A}}{dV} = r_{A}$$
 (E1-3.2)

Substituting for r_A in equation (E1-3.1) yields

$$-\frac{v_0 dC_{A}}{dV} = -r_{A} = kC_{A}$$
 (E1-3.3)

Rearranging gives us

$$-\frac{v_0}{k} \left(\frac{dC_{\rm A}}{C_{\rm A}} \right) = dV$$

Using the conditions at the entrance of the reactor that when V=0, then $C_{\rm A}=C_{\rm A0},$

$$-\frac{v_0}{k} \int_{C_{A0}}^{C_A} \frac{dC_A}{C_A} = \int_{0}^{V} dV$$
 (E1-3.4)

Reactor sizing

yell to our model a, although it is re 1-6. The conportant one: that not depend on its

ances

llowing example

te is constant. d exiting conv. Determine to 10% of the m³/min (i.e.,

shown to be

(1-10)

napter 3) is

(E1-3.1)

(E1-3.2)

(E1-3.3)

V=0, then

(E1-3.4)

This gives

$$V = \frac{v_0}{k} \ln \frac{C_{A0}}{C_A} \tag{E1-3.5}$$

Substituting C_{A0} , C_A , v_0 , and k in equation (E1-3.5), we have

$$V = \frac{10 \text{ dm}^3/\text{min}}{0.23 \text{ min}^{-1}} \ln \frac{C_{\text{A0}}}{0.1 C_{\text{A0}}} = \frac{10}{0.23} \ln 10 = 100 \text{ dm}^3 \text{ (100 liters; 0.1 m}^3\text{)}$$

We see that a reactor volume of 0.1 m³ is necessary to convert 90% of species A entering into product B.

In the remainder of this chapter we look at slightly more detailed drawings of some typical industrial reactors and point out a few of the advantages and disadvantages of each. †

1.5 Industrial Reactors

When is a batch reactor used?

What are the

CSTR?

advantages and

disadvantages of a

A batch reactor is used for small-scale operation, for testing new processes that have not been fully developed, for the manufacture of expensive products, and for processes that are difficult to convert to continuous operations.

The reactor can be charged (i.e., filled) through the two holes shown at the top (Figure 1-7). The batch reactor has the advantage of high conversions that can be obtained by leaving the reactant in the reactor for long periods of time, but it also has the disadvantages of high labor costs per unit production, and large-scale production is difficult.

Although a semibatch reactor (Figure 1-8) has essentially the same disadvantages as the batch reactor, it has the advantages of good temperature control and the capability of minimizing unwanted side reactions through the maintenance of a low concentration of one of the reactants. The semibatch reactor is also used for two-phase reactions in which a gas is usually continuously bubbled through the liquid.

A continuous-stirred tank reactor (CSTR) is used when intense agitation is required. The CSTR can either be used by itself or, in the manner shown in Figure 1-9, as part of a series or battery of CSTRs. It is relatively easy to maintain good temperature control with a CSTR. There is, however, the disadvantage that the conversion of reactant per volume of reactor is the smallest of the flow reactors. Consequently, very large reactors are necessary to obtain high conversions.

The tubular reactor [i.e., plug-flow reactor (PFR)] is relatively easy to maintain (no moving parts), and it usually produces the highest conversion per reactor volume of any of the flow reactors. The disadvantage of the tubular reactor is that it is difficult to control temperature within the reactor, and hot spots can

[†]Chem. Eng. 63 (10), 211 (1956). See also AIChE Modular Instruction Series E, Vol. 6 (to appear in 1986).

Figure 1-7 Simple batch homogeneous reactor. [Excerpted by special permission from *Chem. Eng., 63*(10), 211 (Oct. 1956). Copyright (1956) by McGraw-Hill, Inc., New York, NY 10020.]

Figure 1-8 Semibatch reactor. [Excerpted by special permission from *Chem. Eng.*, 63(10), 211 (Oct. 1956). Copyright (1956) by McGraw-Hill, Inc., New York, NY 10020.]

ances

Figure 1-9 Battery of stirred tanks. [Excerpted by special permission from *Chem. Eng., 63*(10), 211 (Oct. 1956). Copyright (1956) by McGraw-Hill, Inc., New York, NY 10020.]

What are the advantages and disadvantages of a PFR?

occur when the reaction is exothermic. The tubular reactor is commonly found either in the form of one long tube or as one of a number of shorter reactors arranged in a tube bank as shown in Figure 1-10. Most homogeneous liquid-phase

Figure 1-10 Longitudinal tubular reactor. [Excerpted by special permission from *Chem. Eng., 63*(10), 211 (Oct. 1956). Copyright (1956) by McGraw-Hill, Inc., New York, NY 10020.]

al permis-McGraw-

m *Chem*. Inc., New flow reactors are CSTRs, whereas most homogeneous gas-phase flow reactors are tubular.

18

A fixed-bed (packed-bed) reactor is essentially a tubular reactor, which is packed with solid catalyst particles (Figure 1-11). This heterogeneous reaction system is used most frequently to catalyze gas reactions. This reactor has the same difficulties with temperature control as other tubular reactors, and in addition, the catalyst is usually troublesome to replace. On occasion, channeling of the gas flow occurs, resulting in ineffective use of parts of the reactor bed. The advantage of the fixed-bed reactor is that for most reactions it gives the highest conversion per weight of catalyst of any catalytic reactor.

Figure 1-11 Longitudinal catalytic fixed-bed reactor. [Excerpted by special permission from *Chem. Eng., 63*(10), 211 (Oct. 1956). Copyright (1956) by McGraw-Hill, Inc., New York, NY 10020.]

Another type of catalytic reactor in common use is the fluidized-bed (Figure 1-12). The fluidized-bed reactor is analogous to the CSTR in that its contents, though heterogeneous, are well mixed, resulting in an even temperature distribution throughout the bed. The fluidized-bed reactor cannot be modeled as either a CSTR or a tubular reactor, but requires a model of its own. The temperature is relatively uniform throughout, thus avoiding hot spots. This type of reactor can handle large amounts of feed and solids, and has good temperature control; consequently, it is used in a large number of applications. The advantages of the ease of catalyst replacement or regeneration are sometimes offset by the high cost of the reactor and catalyst regeneration equipment.

se flow reactors are

Balances

r reactor, which is neous reaction sysactor has the same and in addition, the ling of the gas flow ne advantage of the est conversion per

special per-(1956) by

zed-bed (Figure nat its contents, erature distribudeled as either a temperature is e of reactor can erature control; vantages of the the high cost of

STHONTOOMERT 8/84

Figure 1-12 Fluidized-bed catalytic reactor. [Excerpted by special permission from *Chem. Eng., 63*(10), 211 (Oct. 1956). Copyright (1956) by McGraw-Hill, Inc., New York, NY 10020.]

The aim of the preceding discussion on commercial reactors is to give a more detailed picture of each of the major types of industrial reactors: batch, semibatch, CSTR, tubular, fixed-bed (packed-bed), and fluidized-bed. Many variations and modifications of these commercial reactors are in current use; for further elaboration, we refer the reader to the detailed discussion of industrial reactors given by Walas.[†]

SUMMARY

1. A mole balance on species j, which enters, leaves, reacts, and accumulates in a system volume V, is

$$F_{j0} - F_j + \int_{-\infty}^{V} r_j \, dV = \frac{dN_j}{dt}$$
 (S1-1)

[†]S. M. Walas, *Reaction Kinetics for Chemical Engineers* (New York: McGraw-Hill, 1959), Chap. 11.

- 2. The kinetic rate law for r_j is solely a function of the properties of the reacting materials; it is an intensive quantity. The rate law is essentially an algebraic equation of concentration, not a differential equation. For homogeneous systems, typical units of $-r_A$ may be gram moles per second per liter, and for heterogeneous systems, typical units of $-r'_A$ may be gram moles per second per gram of catalyst. By convention, $-r_A$ is the rate of disappearance of species A and r_A is the rate of formation of species A.
- 3. The differential mole balance for a tubular reactor operated at steady state is

$$\frac{dF_j}{dV} = r_j \tag{S1-2}$$

4. The mole balance on a CSTR (backmix reactor) can be expressed by the equation

$$V = \frac{F_{j0} - F_j}{-r_j}$$
 (S1-3)

5. A mole balance on a batch reactor gives

$$\int_{-\infty}^{V} r_j \ dV = \frac{dN_j}{dt} \tag{S1-4}$$

6. When there are no spatial variations in conditions and material properties within the reactor, equation (S1-4) can be written

$$\frac{1}{V}\frac{dN_j}{dt} = r_j \tag{S1-5}$$

QUESTIONS AND PROBLEMS

I wish I had an answer for that, because I'm getting tired of answering that question.

Yogi Berra, New York Yankees Sports Illustrated, June 11, 1984

- P1-1 Make a list of the most important things that you learned in this chapter.
- P1-2 What assumptions were made in the derivation of the design equation for
 - (a) The batch reactor?
 - (b) The CSTR?
 - (c) The plug-flow reactor?
- **P1-3** State in words the meanings of $-r'_A$ and r'_A .
- P1-4 Write the design equation for a backmix reactor that is not well mixed and consequently has a spatial variation in the reaction rate throughout the reactor volume.

Conversion and Reactor Sizing

2

Be more concerned with your character than with your reputation, because character is what you really are while reputation is merely what others think you are.

John Wooden, coach, UCLA Bruins

The first chapter focused on the general mole balance equation; the balance was applied to the three most common types of industrial reactors, and a design equation was developed for each reactor type. In Chapter 2 we first define *conversion* and then rewrite the design equations in terms of conversion. After carrying out this operation, we show how one may size a reactor (i.e., determine the reactor volume necessary to achieve a specified conversion) once the relationship between reaction rate, $r_{\rm A}$, and conversion is known.

2.1 Definition of Conversion

In defining conversion, we choose one of the reactants as the basis of calculation and then relate the other species involved in the reaction to this basis. In most instances it is best to choose the limiting reactant as the basis of calculation. We develop the stoichiometric relationships and design equations by considering the general reaction

$$aA + bB \longrightarrow cC + dD$$
 (2-1)

The capital letters represent chemical species and the lowercase letters represent stoichiometric coefficients. Taking species A as our basis of calculation, we divide than with your really are while ou are.

UCLA Bruins

he balance was a design equaeconversion and arrying out this reactor volume etween reaction

s of calculation basis. In most calculation. We considering the

(2-1)

etters represent ation, we divide the reaction expression through by the stoichiometric coefficient of species A, in order to arrange the reaction expression in the form

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$
 (2-2)

to put every quantity on a "per mole of A" basis.

A convenient way to relate the number of moles of each of the species in the reaction to one another is through the use of the quantity called **conversion**. The conversion X_A is the number of moles of A that have reacted per mole of A fed to the system:

Definition of X

$$X_{\rm A} = \frac{\text{moles of A reacted}}{\text{moles of A fed}}$$

For the sake of brevity, we eliminate the subscript A and let $X \equiv X_A$. However, when considering multiple reactions (see Chapter 9) and certain other reaction schemes, it is often necessary to retain the subscript.

2.2 Design Equations

2.2.1 Batch systems

In most batch reactors, the longer the reactant is in the reactor, the more reactant is converted to product until either equilibrium is reached or the reactant is exhausted. Consequently, in batch systems the conversion X will be a function of the time the reactants spend in the reactor. If N_{A0} is the number of moles of A initially, then the total number of moles of A that have reacted after a time t is $N_{A0}X$:

$$\begin{bmatrix} \text{moles of A} \\ \text{consumed} \end{bmatrix} = \begin{bmatrix} \text{moles of A} \\ \text{fed} \end{bmatrix} \cdot \begin{bmatrix} \frac{\text{moles of A reacted}}{\text{mole of A fed}} \end{bmatrix}$$
$$\begin{bmatrix} \text{moles of A} \\ \text{reacted} \\ \text{(consumed)} \end{bmatrix} = \begin{bmatrix} N_{A0} \end{bmatrix} \quad . \quad [X]$$

Now, the number of moles of A that remain in the reactor after a time t, N_A , can be expressed in terms of N_{A0} and X:

$$\begin{bmatrix} \text{moles of A} \\ \text{in reactor} \\ \text{at time } t \end{bmatrix} = \begin{bmatrix} \text{moles of A} \\ \text{initially fed} \\ \text{to reactor at} \\ t = 0 \end{bmatrix} - \begin{bmatrix} \text{moles of A that} \\ \text{have been consumed by chemical} \\ \text{reaction} \end{bmatrix}$$

$$N_{\text{A}} = \begin{bmatrix} N_{\text{A0}} \end{bmatrix} - \begin{bmatrix} N_{\text{A0}}X \end{bmatrix}$$

The number of moles of A in the reactor after a conversion X has been

Chap. 2

achieved is

$$N_{\rm A} = N_{\rm A0} - N_{\rm A0} X = N_{\rm A0} (1 - X) \tag{2-3}$$

When there are no spatial variations in temperature or concentration, the mole balance on species A for a batch system reduces to the following equation:

$$\frac{dN_{\rm A}}{dt} = r_{\rm A}V\tag{2-4}$$

This equation is valid whether or not the reactor volume is constant. In the general reaction

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$
 (2-2)

reactant A is disappearing; therefore, we multiply both sides of equation (2-4) by -1 to obtain the mole balance for the batch reactor in the form

$$-\frac{dN_{\rm A}}{dt} = (-r_{\rm A})V\tag{2-5}$$

The rate of disappearance of A, $-r_A$, in this reaction might be given by a rate law similar to equation (1-2), such as $-r_A = kC_AC_B$.

For batch reactors we are interested in determining how long we should leave the reactants in the reactor in order to achieve a certain conversion X. To learn this, we transform the mole balance, equation (2-4), in terms of conversion by differentiating equation (2-3),

$$N_{\rm A} = N_{\rm A0} - N_{\rm A0} X \tag{2-3}$$

with respect to time, while remembering that $N_{\rm A0}$ is the number of moles of A initially present and is therefore a constant with respect to time.

$$\frac{dN_{\rm A}}{dt} = 0 - N_{\rm A0} \frac{dX}{dt}$$

Combining with equation (2-4) yields

$$-N_{A0}\frac{dX}{dt} = r_{A}V$$

The differential forms of the design equations appear often in reactor analysis and are particularly useful in the interpretation of reaction rate data. For a batch reactor, the design equation in differential form is

Batch reactor

$$N_{\rm A0} \frac{dX}{dt} = -r_{\rm A} V \tag{2-6}$$

(2-3)

ncentration, the owing equation:

(2-4)

nt. In the general

(2-2)

equation (2-4) by rm

(2-5)

ven by a rate law

long we should conversion X. To ms of conversion

(2-3)

er of moles of A e.

n reactor analysis data. For a batch

(2-6)

Constant-volume batch reactors are found very frequently in industry. In particular, the laboratory bomb reactor for gas-phase reactions is widely used for obtaining reaction rate information on a small scale. Liquid-phase reactions in which the volume change during reaction is insignificant are frequently carried out in batch reactors when small-scale production is desired or operating difficulties rule out the use of continuous systems. For a *constant-volume batch reactor*, equation (2-5) can be arranged into the form

$$-\frac{1}{V}\frac{dN_{A}}{dt} = -\frac{d(N_{A}/V)}{dt} = -\frac{dC_{A}}{dt} = -r_{A}$$
 (2-7)

For batch-reactor systems in which the volume varies while the reaction is proceeding, the volume may usually be expressed either as a function of time alone or of conversion alone, for either adiabatic or isothermal reactors. Consequently, the variables of the differential equation (2-6) can be separated in one of the following ways:

$$V dt = N_{A0} \frac{dX}{-r_{A}}$$

or

$$dt = N_{A0} \frac{dX}{-r_A V}$$

These equations are integrated with the limits that the reaction begins at time zero (i.e., t=0, X=0). When the volume is varied by some external source in a specific manner such as a piston compressing the reacting gas according to the equation $(V=V_1+V_2\sin\omega t)$, the equation relating time and conversion one would use is

$$\int_{0}^{t} V dt = N_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$
 (2-8)

However, for the more common batch reactors in which volume is not a predetermined function of time, the time t necessary to achieve a conversion X is

Design

equation

$$t = N_{A0} \int_0^{X(t)} \frac{dX}{-r_A V}$$
 (2-9)

Equation (2-6) is the differential form of the design equation, and equations (2-8) and (2-9) are the integral forms for a batch reactor. The differential form is generally used in the interpretation of laboratory rate data.

2.2.2 Flow systems

Normally, the conversion increases with the time the reactants spend in the reactor. For continuous-flow systems, this time usually increases with increasing reactor volume; consequently, the conversion X is a function of the reactor volume

Chap. 2

V. If F_{A0} is the molar flow rate of species A fed to a system operated at steady state, the molar rate at which species A is reacting within the entire system will be $F_{A0}X$. The molar feed rate of A to the system minus the rate of reaction of A within the system will equal the molar flow rate of A leaving the system F_A . The preceding sentence can be written in the form of a mathematical statement in the following manner:

$$[F_{A0}] \cdot [X] = \frac{\text{moles of A fed}}{\text{time}} \cdot \frac{\text{moles of A reacted}}{\text{moles of A fed}}$$

$$F_{A0} \cdot X = \frac{\text{moles of A reacted}}{\text{time}}$$

$$\begin{bmatrix} \text{molar flow rate} \\ \text{at which A is} \\ \text{fed to the system} \end{bmatrix} - \begin{bmatrix} \text{molar rate at} \\ \text{which A is} \\ \text{consumed within} \\ \text{the system} \end{bmatrix} = \begin{bmatrix} \text{molar flow rate} \\ \text{at which A leaves} \\ \text{the system} \end{bmatrix}$$

$$F_{A0} - F_{A0}X = F_{A}$$

Rearranging gives us

$$F_{\rm A} = F_{\rm A0}(1 - X) \tag{2-10}$$

Using this relationship between molar flow rate and conversion, it is now possible to express the design equations in terms of conversion for the flow reactors examined in Chapter 1.

CSTR or Backmix Reactor The equation resulting from a mole (mass) balance on species A for the reaction

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$
 (2-2)

occurring in a CSTR was given by equation (1-6), which can be rearranged to

$$F_{A0} - F_{A} = -r_{A}V (2-11)$$

We now substitute for the exiting molar flow rate of A, F_A , in terms of the conversion X and the entering molar flow rate, F_{A0} , by using equation (2-10) in the form

$$F_{A0} - F_{A} = F_{A0}X$$

and combining it with equation (2-11) to give

$$F_{A0}X = -r_AV \tag{2-12}$$

We can rearrange equation (2-12) to determine the CSTR volume necessary to achieve a specified conversion X.

at steady state, n will be $F_{A0}X$. of A within the The preceding n the following

zing

rate leaves

$$(2-10)$$

sion, it is now e flow reactors

(mass) balance

$$(2-2)$$

rearranged to

(2-11)

n terms of the on (2-10) in the

(2-12)

ame necessary

$$V = \frac{F_{A0}X}{(-r_A)_{\text{exit}}}$$
 (2-13)

Since the exit composition from the reactor is identical to the composition inside the reactor, the rate of reaction is evaluated at the exit conditions.

Tubular Flow Reactor After multiplying both sides of the tubular reactor design equation (1-10) by -1, we express the mole balance equation for species A in the reaction given by equation (2-2) as

$$\frac{-dF_{\rm A}}{dV} = -r_{\rm A} \tag{2-14}$$

For a flow system, F_A has previously been given in terms of the entering molar flow rate F_{A0} and the conversion X:

$$F_{\rm A} = F_{\rm A0} - F_{\rm A0} X \tag{2-10}$$

Combining equations (2-10) and (2-14), the result is the differential form of the design equation of a plug-flow reactor:

$$F_{A0}\frac{dX}{dV} = -r_{A} \tag{2-15}$$

We now separate the variables and integrate with the limit V=0 when X=0 to obtain the plug-flow reactor volume necessary to achieve a specified conversion X:

$$V = F_{A0} \int_0^X \frac{dX}{-r_A} \tag{2-16}$$

To carry out the integrations in the batch and plug-flow reactor design equations (2-9) and (2-16), as well as evaluation of the CSTR design equation (2-13), we need to know how the reaction rate $-r_A$ varies with the concentration (hence conversion) of the reacting species. This relationship between reaction rate and concentration is developed in Chapter 3.

2.3 Applications of the Design Equations

The rate of disappearance of A, $-r_A$, is almost always a function of the concentrations of the various species present. When a single reaction is occurring, each of the concentrations can be expressed as a function of the conversion X; consequently, $-r_A$ can be expressed as a function of X.

A particularly simple functional dependence, yet one that does occur on many occasions, is $-r_A = kC_{A0}(1-X)$. For this dependence, a plot of the reciprocal rate of reaction $(-1/r_A)$ as a function of conversion yields a curve similar to the one shown in Figure 2-1, where

$$\frac{1}{-r_{\rm A}} = \frac{1}{kC_{\rm A0}} \cdot \frac{1}{1-X}$$

Figure 2-1

If a reaction is carried out isothermally, the rate is usually greatest when the concentration of reactant is greatest, i.e., when there is negligible conversion $(X \cong 0)$. (Hence $1/-r_A$ will be small.) When the reactant concentration is small (i.e., when conversion is large), the reaction rate will be small. (Consequently, $1/-r_A$ is large.) For irreversible reactions of greater than zero order,

$$-\frac{1}{r_A} \longrightarrow \infty$$
 as $X \longrightarrow 1$

These characteristics are illustrated by Figure 2-1 and the majority of reactions exhibit qualitatively similar curves.

Example 2-1 Sizing a CSTR

Shade the area in Figure 2-1 which, when multiplied by F_{A0} , would give the volume of a CSTR necessary to achieve 80% conversion (i.e., X=0.8).

Solution

Equation (2-13) gives the volume of a CSTR as a function of F_{A0} , X, and $-r_A$; i.e.,

$$V = \frac{F_{A0}X}{-r_{\rm A}} \tag{2-13}$$

does occur on lot of the reciurve similar to

zing

when the conersion $(X \cong 0)$. mall (i.e., when $1/-r_A$ is large.)

rity of reactions

ould give the Y=0.8).

X, and $-r_A$;

(2-13)

Algebraically,

$$V = F_{A0} \left(\frac{1}{-r_A}\right) X$$

$$\frac{V}{F_{A0}} = \left(\frac{1}{-r_A}\right) (0.8)$$
(E2-1.1)

In a CSTR the composition, temperature, and conversion of the effluent stream are identical to that of the fluid within the reactor since perfect mixing is assumed. Therefore, we need to find the value of $-r_A$ (or reciprocal thereof) when X = 0.8.

From Figure E2-1.1 we see that when X = 0.8, $1/-r_A = 27.5$.

$$\frac{V}{F_{A0}}$$
 = (27.5)(0.8) = 22 dm³·s/mol (E2-1.2)

Figure E2-1.1

In Figure E2-1.1 this value of $V/F_{\rm A0}$ is equal to the area of a rectangle with a height $1/-r_A = 27.5$ and a base X = 0.8. This rectangle is shaded in the figure. If the entering molar flow rate, F_{A0} , was 20 mol/s, the CSTR reactor volume necessary to achieve 80% conversion would be

$$V = 20 \frac{\text{mol}}{\text{s}} \cdot 22 \frac{\text{dm}^3 \cdot \text{s}}{\text{mol}}$$
$$= 440 \text{ dm}^3 = 440 \text{ liters}$$

The design equation for a plug-flow reactor (PFR) is

Design
$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$
(2-16)

It's the area under the curve for a plug-flow reactor

It's the rectangular area for a CSTR

> The integral in equation (2-16) can be evaluated from the area under the curve of a plot of $1/-r_A$ versus X (Figure 2-2). The product of this area and F_{A0} will give the tubular reactor volume necessary to achieve the specified conversion of A, X. For

> > FRO CAON

Figure 2-2

80% conversion the shaded area is roughly equal to $10 \text{ dm}^3 \cdot \text{s/g}$ mol. The tubular reactor volume can be determined by multiplying this area (in dm³·s/g mol) by F_{A0} (g mol/s). Shortcuts for evaluating the area under the curve in graphical integration are given in Appendix A.1.

Example 2-2 Comparing the CSTR and PFR Sizes

It is interesting to compare the volumes of a CSTR and a plug-flow reactor (PFR) required for the same job. To do this we shall use the data in Figure 2-1 to learn which reactor would require the smaller volume to achieve a conversion of 60%: a CSTR or a tubular reactor. The feed conditions are the same in both cases.

For the CSTR:

$$\frac{V}{F_{A0}} = \left(\frac{1}{-r_{A}}\right)X = (16)(0.6) = 9.6 \,\frac{\text{dm}^{3} \cdot \text{s}}{\text{mol}}$$

This is also the area of the rectangle with vertices $(X, 1/-r_A)$ of (0, 0), (0, 16), (0.6, 16), and (0.6, 0) (see Figure E2-2.1).

For the plug-flow (tubular) reactor:

$$\frac{V}{F_{A0}} = \int_{0}^{0.6} \frac{dX}{-r_{A}} = \text{area under the curve between } X = 0 \text{ and } X = 0.6$$
(see appropriate shaded area in Figure E2-2.1)
$$= 5.1 \frac{\text{dm}^{3} \cdot \text{s}}{\text{mol}}$$

For the same flow rate $F_{\rm A0}$, the plug-flow reactor requires a smaller volume than the CSTR to achieve a conversion of 60%.

Generally, the isothermal tubular reactor volume is smaller than the CSTR for the same conversion

s/g mol) by F_{A0} aphical integra-

ol. The tubular

flow reactor Figure 2-1 to conversion of same in both

0, 0), (0, 16),

$$X = 0.6$$

$$(2.1)$$

volume than

2.4 Reactors in Series

Many times reactors are connected in series such that the exit stream of one reactor is the feedstream for another reactor. When this occurs it is often possible to speed the calculations by defining the conversion in terms of location at a point downstream rather than with respect to any one reactor. That is, the conversion X is the total moles of A that have reacted up to that point per mole of A fed to the first reactor. However, this definition can only be used provided that there are no side streams withdrawn and the feedstream enters only the first reactor in the series.

As an example, the relationships between conversion and molar flow rates for the reactor sequence shown in Figure 2-3 are given by the following equations:

$$F_{A1} = F_{A0} - F_{A0}X_{1}$$

$$F_{A2} = F_{A0} - F_{A0}X_{2}$$

$$F_{A3} = F_{A0} - F_{A0}X_{3}$$

$$\frac{\mathbf{x} = \mathbf{0}}{\mathbf{F_{A0}}} \qquad \mathbf{y}_{1}$$

$$\mathbf{F_{A0}} \qquad \mathbf{F_{A1}} \qquad \mathbf{F_{A1}} \qquad \mathbf{F_{A1}} \qquad \mathbf{F_{A2}} \qquad \mathbf{y}_{3} \qquad \mathbf{F_{A3}}$$

Figure 2-3