

High end telecom networking – deep dive LCU 2013

1000x Packet Traffic Technologies are Maturing

... times more capacity

Single core networking

Only priority queuing doable with single core

- Static priorities
- Highest priority first with starving prevention logic
- Packet order not an issue
- Does not scale

Multicore SoC Load Sharing

Multicore SoC great for load sharing

- Static resource allocation
- Queue selection typically by hash of incoming packet header or round robin
- HW aware applications
- Unpredictable, uneven core load

Multicore SoC Load Balancing

Multicore SoC great for load balancing

- Dynamic resource allocation with rules
- Fast per packet decision
- Event Machine model: each thread asks for new job after current is finished
- Automatic scaling "single thread" programming model

Hickups with multicore scaling

Case study: WCDMA HSPA

- Mobile traffic for large amount of cells
- Find max throughput QoS threshold for adding more users

Case study: Linux userspace PMD vs. socket packet test

Kernel approach saturates at ten cores

Dataplane in userspace scales linearly

HW load balancer further improves scaling with number of cores

HW abstraction of networking SoC

Logical functionality and packet flow in typical networking SoC

Null latency intelligent packet scheduling to the cores

SW abstraction of networking SoC

Open Event Machine SW architecture

What do we need

Abstraction

1000x

Scalability

Efficiency

Abstraction is the key for portability

Maintain same architectural split across platforms

Agnostic to programming model

No need to (re)program as SoC or core resources increase. "Single core"

Application portability Common terminology

Scalability for optimal capacity

Efficiency for maximum density

Open Data Plane

ODP will be the de-facto data plane programming model

OpenDataPlane™

How does ODP map to Openstack

How does ODP map to NFV

How does ODP map to Open Daylight

Summary

... get ready for 1000x packet compute

