

TEWA 1: Advanced Data Analysis

Lecture 12

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit) Department of Cognition, Emotion, and Methods in Psychology

https://github.com/lei-zhang/tewa1_univie

Fakultät für Psychologie

lei.zhang@univie.ac.at lei-zhang.net @lei_zhang_lz

STAN DEBUGGING

cognitive model
statistics
computing

Make it Reproducible

- Scripts are good documentations!
- Save your seed (not cross platform*)

Make it Readable

- Choose a consistent style
- Give meaningful variable names

Start with Simulated Data

Design Top-Down, Code Bottom-Up

Write Comments

Code never lies!

The Editor of your Choice

computing


```
data {
  int<lower=0> w;
  int<lower=0> N;
  int<lower=0> N;
}

parameters {
  real<lower=0,upper=1> p;
}

model {
  p ~ uniform(0,1);
  w ~ binomial(N, p);
}

  data {
  int<lower=0> w;
  int<lower=0> N;
}

parameters {
  real<lower=0,upper=1> p;
}

model {
  p ~ uniform(0,1);
  w ~ binomial(N, p);
}
```

```
data {
   int<lower=0> w;
   int<lower=0> N;
}

parameters {
   real<lower=0,upper=1> p;
}

model {
   p ~ uniform(0,1);
   w ~ binomial(N, p);
}
```

```
data {
   int<lower=0> w;
   int<lower=0> N;
}

parameters {
   real<lower=0,upper=1> p;
}

model {
   p ~ uniform(0,1);
   w ~ binomial(N, p);
}
```

^{*} Click on each logo to visit their homepage.

^{**} Comparison

cognitive model

Common Error / Warning Types

computing

ERRORS

forget ";" mis-indexing: mismatch or constant support mismatch improper constrain improper dimension declaration vectorizing when not supported wrong data type wrong distribution names forget priors miss spelling

WARNINGS

forget last blank line use earlier version of Stan numerical problems divergent transitions hit max treedepth BFMI too low improper prior

computing

Debugging in Stan

- always use a *.stan file
- use lookup()
- start with simulated data
- be careful with copy/paste
- run 1 chain, 1 sample
- debugging by printing

```
for (s in 1:1) {
 vector[2] v;
  real pe;
  v <- initV;
  for (t in 1:nTrials) {
    choice[s,t] ~ categorical_logit( tau[s] * v );
    print("s = ", s, ", t = ", t, ", v = ", v);
    pe <- reward[s,t] - v[choice[s,t]];</pre>
    v[choice[s,t]] <- v[choice[s,t]] + lr[s] * pe;</pre>
```

cognitive model statistics

computing

Debugging Stan in RStudio

```
rstan::rstudio_stanc("_scripts/binomial_globe_model.stan")
```


Example: Memory Retention

cognitive model

statistics

computing

	Time Interval								
Subject	1	2	4	7	12	21	35	59	99
1	18	18	16	13	9	6	4	4	4
2	17	13	9	6	4	4	4	4	4
3	14	10	6	4	4	4	4	4	4

Simple Exponential Decay Model

cognitive model

statistics

computing


```
.../09.debugging/_scripts/exp_decay_main.R
```

TASK: Debugging the Memory retention model

```
> dataList
$`k`
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 18 18 16 13 9 6 4 4 4
[2,] 17 13 9 6 4 4 4 4 4
[3,] 14 10 6 4 4 4 4 4 4

$nItem
[1] 18

$intervals
[1] 1 2 4 7 12 21 35 59 99

$ns
[1] 3

$nt
[1] 9
```

```
>= 9 errors!
```

Viel Spaß!

```
Satisfied with the results?
```

Warning messages: 1: There were 3998 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup 2: Examine the pairs() plot to diagnose sampling problems

Why Stan Fails?

computing

```
for (s in 1:ns) {
    for (t in 1:nt) {
        theta[s,t] = fmin(1.0, exp(-alpha[s] * intervals[t]) + beta[s]);
        k[s,t] ~ binomial(nItem, theta[s,t]);
    }
}
```

Non-differentiable link (likelihood) functions are bad news, particularly in Stan, which relies on derivatives.

statistics

computing

```
> source('stan_utility.R')
> check_all_diagnostics(fit)
[1] "n_eff / iter looks reasonable for all parameters"
[1] "Rhat looks reasonable for all parameters"
[1] "0 of 4000 iterations ended with a divergence (0%)"
[1] "0 of 4000 iterations saturated the maximum tree depth of 10 (0%)"
[1] "E-BFMI indicated no pathological behavior"
```


Credit: Michael Betancourt

AN JEST 101

Happy Computing!