目录

1	线性组合 linear combination 2			
	1.1	线性组	日合: $\beta = k_1 \alpha_1 + k_2 \alpha_2 + \ldots + k_n \alpha_n$	2
	1.2	线性组	l合的性质	2
		1.2.1	性质: 0 向量, 可由任意向量组来表示. 即: 0 向量 = $0\alpha_1 + 0\alpha_2 + + 0\alpha_n$	2
		1.2.2	性质:向量组 A 中,任取出其中的一个向量 $_i$ 出来,它可以由这个向量	
			组 A 来表示. 如: $\alpha_3 = 0\alpha_1 + 0\alpha_2 + 1\alpha_3 + 0\alpha_n$	2
		1.2.3	任意一个向量组, 都可由这些个向量 (即 "n 维单位向量") 来表示: ε_1 =	
			$(1,0,,0), \ \varepsilon_2 = (0,1,,0), \varepsilon_n = (0,0,,1) \ \ \$	3
	1.3	线性相关 and 线性无关		3
		1.3.1	线性相关 and 线性无关的几何意义	3
		1.3.2	线性相关	3
		1.3.3	线性无关	4
	1.4	线性框	B关的性质, 定理	4
		1.4.1	向量组中, 若其中有两个向量成比例, → 则该向量组中的所有成员, 就	
			都"线性相关"	4
		1.4.2	含有 0 向量的任一向量组, 必 "线性相关"	4
		1.4.3	只有一个零向量,则它必"线性相关"	4
		1.4.4	一个向量 \vec{v} , 线性相关的充要条件是: 它本身就是零向量, 即 $\vec{v}=0$	4
		1.4.5	$\alpha_1,,\alpha_s$ "线性相关"的充要条件是: 至少一个向量, 可以由其余向量来	
			表示	5
		1.4.6	$lpha_1,,lpha_s$ 是 "线性无关" 的, 如果给它们再加一个向量 eta , 即 $lpha_1,,lpha_s,eta$	
			变成了是"线性相关"的话,则可以证明: β 可由 $\alpha_1,,\alpha_s$ 来唯一的线	
			性表示	5
		1.4.7	若 $\vec{v_1},\vec{v_r}$ 这组向量是"线性相关"的,则给它们添加一些新的向量,	
			它们整体 $(\vec{v_1},\vec{v_r},\vec{v_{r+1}},\vec{v_s})$ 依然是"线性相关"的	5
		1.4.8	在一个 n 维空间中, 存在 m 个 n 维向量的话, 并且是 $m>n$ 话, 则这	
			个向量组 (即含有 m 个向量的), 一定是"线性相关"的. 即: n+1 个 n	
			维向量, 一定"线性相关"	5
	1.5	线性无	E关的性质, 定理	6
		1.5.1	任意一个非零向量,必"线性无关"	6
		1.5.2	(1)"线性无关"的向量组, 把每个向量的内部的维度, 往后接长, 则新的	
			向量组, 依然是"线性无关"的. (2)"线性相关"的向量组, 把每个向量的	
			内部的维度, 截短后, 则新的向量组, 依然是"线性相关"的	6
		1.5.3	n 个 n 维向量 (即,此处是"向量的个数"="每个向量自己的维数") 所	
			构成的行列式, 则: (1) 若 $ D \neq 0$, 则这些向量就是"线性无关"的. (2)	
			若 D=0, 则这些向量是"线性相关"的	6
		1.5.4	n 维的"单位向量"组 (单位向量, 显然就是"基轴"本身了), 是它们是	
			"线性无关"的	7
		1.5.5	替换定理: 在线性空间中, 给出两个有限向量组: $a_1,a_2,,a_t$, 与 $b_1,b_2,,b_s$.	
			若向量组 1 是"线性无关"的,并且"向量组 1"可由"向量组 2"来线	
			性表示的话,则: $t \leq s$	7

向量组的线性相关性

1 线性组合 linear combination

1.1 线性组合: $\beta = k_1\alpha_1 + k_2\alpha_2 + ... + k_n\alpha_n$

【线性组合】:

有 β , α_1 , α_2 , α_n , 它们都是 n 维向量. 若存在 k_1 , k_2 , ..., k_n 这些系数 (即权重), 能使得 $\beta = k_1\alpha_1 + k_2\alpha_2 + ... + k_n\alpha_n$, 则就称 β 是向量组 α_1 , α_2 , α_n 的一个 "线性组合", 或称 β 可由向量组 α_1 , α_2 , α_n 来 "线性表示".

那么这组系数 k, 可不可以全取 0? 可以. 这样的话, $\beta = 0$ 了.

1.2 线性组合的性质

1.2.1 性质: **0** 向量,可由任意向量组来表示. 即: 0向量 = $0\alpha_1 + 0\alpha_2 + ... + 0\alpha_n$

1.2.2 性质: 向量组 **A** 中,任取出其中的一个向量 $_i$ 出来,它可以由这个向量组 **A** 来表示. 如: $\alpha_3 = 0\alpha_1 + 0\alpha_2 + 1\alpha_3... + 0\alpha_n$

1.2.3 任意一个向量组,都可由这些个向量 (即 "n 维单位向量") 来表示: $\varepsilon_1 = (1,0,...,0)$, $\varepsilon_2 = (0,1,...,0)$, ... , $\varepsilon_n = (0,0,...,1)$

例如:
$$\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = 1 \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + 2 \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} + 3 \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$$

1.3 线性相关 and 线性无关

1.3.1 线性相关 and 线性无关的几何意义

见本章的"张成"部分.

1.3.2 线性相关

【线性相关 linearly dependent】:

对于 n 个 m 维的向量 $\vec{v_1}$, $\vec{v_2}$, ... $\vec{v_n}$, 若存在一组 k (系数, 倍数) 不全为 0, 使得 $k_1\vec{v_1} + k_2\vec{v_2} + ... + k_n\vec{v_n} = 0$, 则称 $\vec{v_1}$, $\vec{v_2}$, ... $\vec{v_n}$ 是 "线性相关" 的.

例

例如:下面这三个向量,是否线性相关?

$$\left|\begin{array}{c|c}1\\0\end{array}\right|, \left|\begin{array}{c}0\\1\end{array}\right|, \left|\begin{array}{c}2\\3\end{array}\right| \tag{1}$$

那么就看下面这个式子, 是否能存在非零的系数 (只要有一个 k 是不为零的, 就满足了我们的条件)

$$k_1 \begin{vmatrix} 1 \\ 0 \end{vmatrix} + k_2 \begin{vmatrix} 0 \\ 1 \end{vmatrix} + k_3 \begin{vmatrix} 2 \\ 3 \end{vmatrix} = 0 \tag{2}$$

那么显然, 当 k_1 取 2, k_2 取 3, k_3 取 1 时, 该式子能成立. 即, 的确存在一组非零的 k. 这就说明, 这三个向量, 是"线性相关"的. (不需要所有的系数 k 都不为 0, 只要有一个系数 k 不为零就行了.)

若只能是 k 全为 0 时, 该等式才成立, 那么这些向量 $\vec{v_1}, \vec{v_2}, ... \vec{v_n}$ 就是 "线性无关" 的 (linearly independent).

"线性无关"就表示,这组向量中的任何一个,都无法表示成其他向量的"线性组合"。即,它们中每一个向量,都是"独当一面"的,无法被其他向量所替代.

1.3.3 线性无关

不是线性相关, 就是"线性无关"了.

1.4 线性相关的性质, 定理

1.4.1 向量组中,若其中有两个向量成比例, \rightarrow 则该向量组中的所有成员,就都"线性相关". 如:

1.4.2 含有 0 向量的任一向量组, 必 "线性相关".

如:

$$0\vec{v}_1 + 0\vec{v}_2 + 0\vec{v}_3 + \underbrace{k}_{\text{tift}} \cdot \underbrace{\vec{0}}_{\text{sph}} = 0$$

该向量组,最后含有一个零向量,该零向量前的 k 可以随便取值,都不影响 $k\vec{v}=\vec{0}$. 既然 k 可以随便取值,那我们就有了一组不全为 0 的系数 $(k_1,k_2,...k_n)$,所以这些 v 向量,就是"线性相关"的关系了.

1.4.3 只有一个零向量,则它必"线性相关".

 $\pm \vec{0} : k\vec{0} = \vec{0}$

k 可以随便取值, 都不妨碍 $k \cdot \vec{0} = \vec{0}$. 既然 k 可以随便取值, 那我们就有了一组不全为 0 的系数 $(k_1, k_2, ...k_n)$, 所以这些 v 向量 (本例中只有一个向量), 就是"线性相关"的关系了.

1.4.4 一个向量 \vec{v} , 线性相关的充要条件是: 它本身就是零向量, 即 $\vec{v}=0$

k 可以随便取值, 我们就有了一组不全为 0 的系数 ($k_1, k_2, ... k_n$] , 所以这些 v 向量, 就是 "线性相关" 的关系了.

1.4.5 $\alpha_1, \dots, \alpha_s$ "线性相关"的充要条件是:至少一个向量,可以由其余向量来表示

1.4.6 $\alpha_1, ..., \alpha_s$ 是 "线性无关"的,如果给它们再加一个向量 β ,即 $\alpha_1, ..., \alpha_s$, 变成了是 "线性相关"的话,则可以证明: β 可由 $\alpha_1, ..., \alpha_s$ 来唯一的线性表示.

1.4.7 若 $\vec{v_1}$, ... $\vec{v_r}$ 这组向量是"线性相关"的,则给它们添加一些新的向量,它们整体($\vec{v_1}$, ... $\vec{v_r}$, $\vec{v_{r+1}}$, ... $\vec{v_s}$)依然是"线性相关"的.

证明过程,如:

已知 $\vec{v_1}, \vec{v_2}, \vec{v_3}$ 是 "线性相关" 的, 即:

 $k_1 \vec{v}_1 + k_2 \vec{v}_2 + k_3 \vec{v}_3 = 0$

把它扩充一下,就有:

 $(k_1\vec{v}_1 + k_2\vec{v}_2 + k_3\vec{v}_3) + (0\vec{v}_4 + 0\vec{v}_5) = 0$

这 5 个系数 k, 就是: $k_1, k_2, k_3, 0, 0$, 不全为 0! 说明这组向量 $\vec{v_1}, ... \vec{v_5}$ 是 "线性相关" 的. 证毕.

即:一个向量组中,只要其中一部分向量是"线性相关"的,则就可知道:整个向量组中的全部向量,都是"线性相关"的.

这里的本质就是: 比如一个队伍, 有 1 个女的, n 个男的. 它满足"有女"性质. 之后无论往队伍里添加多少人, 它依然满足"有女"性质. 因为这个性质, 在最早的队伍中, 就已经被满足了.

即:

部分"线性相关"^{能推导出} 整体"线性相关" 整体"线性相关"^{能推→出} 部分"线性相关"

同样就是说:整体"无女"的话,则其中的子集部分也"无女".

1.4.8 在一个 n 维空间中, 存在 m 个 n 维向量的话, 并且是 m > n 话, 则这个向量组 (即 含有 m 个向量的), 一定是 "线性相关" 的. 即: n+1 个 n 维向量, 一定 "线性相关".

比如,在 3 维空间中,存在 4 个三维的向量,则由这 4 个向量所组成的"向量组",一定是"线性相关"的.即这个向量组中,最多只有 3 个向量可以做基轴,还有一个向量是多余的.

1.5 线性无关的性质, 定理

1.5.1 任意一个非零向量,必"线性无关".

如: $k\vec{v}$. 因为 $\vec{v} \neq \vec{0}$, 则只能系数 k=0, 这样本例中, 我们就找不到一组不全为 0 的 k, 那么这一向量必 "线性无关".

1.5.2 (1)"线性无关"的向量组,把每个向量的内部的维度,往后接长,则新的向量组,依然是"线性无关"的.(2)"线性相关"的向量组,把每个向量的内部的维度,截短后,则新的向量组,依然是"线性相关"的.

例

例如:若
$$\alpha_I=\begin{vmatrix}1\\3\\5\end{vmatrix}$$
 , $\alpha_2=\begin{vmatrix}6\\-1\\8\end{vmatrix}$, $\alpha_3=\begin{vmatrix}-3\\3\\9\end{vmatrix}$ 这三个向量(轴),线性无关。即它们彼此无法互相取代,而是独挡一面,张成的是 3 维空间($k_1+6k_2-3k_3=0$

即
$$\begin{cases} k_1 + 6k_2 - 3k_3 = 0 \\ 3k_1 - k_2 + 3k_3 = 0 \\ 5k_1 + 8k_2 + 9k_3 = 0 \end{cases} \leftarrow \text{ 即 } k_1\alpha_1 + k_2\alpha_2 - k_3\alpha_3 = 0$$
 即得出: $k_1 = k_2 = k_3 = 0$

则:
$$\gamma_1 = \begin{vmatrix} 1 \\ 3 \\ 5 \\ 1 \\ 6 \end{vmatrix}$$
, $\gamma_2 = \begin{vmatrix} 6 \\ -1 \\ 8 \\ 3 \end{vmatrix}$, $\gamma_3 = \begin{vmatrix} -3 \\ 3 \\ 9 \end{vmatrix}$ 这三个 5 维向量,也线性无关的。 即在五维空间中,有这三个向量存在

1.5.3 n 个 n 维向量 (即,此处是"向量的个数"="每个向量自己的维数") 所构成的行列式,则: (1) 若 $|D| \neq 0$,则这些向量就是"线性无关"的. (2) 若 D=0,则这些向量是"线性相关"的.

例

如: 这三个向量是"线性相关"还是"无关"的?

那么我们就来算算它们作为一个整体的行列式的值,是否 =0?

$$\begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & 0 \end{vmatrix} = ?$$

1.5.4 n 维的"单位向量"组 (单位向量,显然就是"基轴"本身了),是它们是"线性无关"的.

1.5.5 替换定理: 在线性空间中,给出两个有限向量组: $a_1, a_2, ..., a_t$,与 $b_1, b_2, ..., b_s$. 若向量组 1 是 "线性无关"的,并且 "向量组 1"可由 "向量组 2"来线性表示的话,则: $t \leq s$.

向量组 1 中向量, 是"线性无关"的. 所以它的 t 轴 (都属于基轴了), 彼此独立, 成为独当一面的维度.

向量组 2 中的向量, 可以用来表示向量 1 中的轴. 这就意味着, 向量组 2 中可能存在多余的 "伪轴". 所以 "向量组 2" 中的向量数量 s, 一定是 \geq "向量组 1" 中的向量数量 t 的.