

EE4305 Fuzzy/Neural Systems for Intelligent Robotics

SOLUTION FOR PB 4

(1)

Each of the straight lines in the figure can be implemented as a neuron with weight vector orientations as shown below:

$$m = -1, c = 3$$

$$y = -\frac{w_1}{w_2}x - \frac{w_0}{w_2}$$

 $\frac{w_1}{w_2} = 1$ and seeing the weight vector orientation $w_1 =$

$$w_2 = -1$$
. $\Rightarrow w_0 = 3$

y w y=-x +

m = 0, $c = 1 \Rightarrow w_1 = 0$. Choose $w_2 = 1$, $w_0 = -1$ by looking at the desired orientation.

$$m = 1, c = 0.$$

 $\frac{w_1}{w_2} = -1$. By looking at the desired

orientation, choose $w_1 = 1$, $w_2 = -1$ and $w_0 = 0$.

The final network is

(2)
$$E = \frac{1}{2} \sum_{j=1}^{N} (e_j)^2$$

$$e_j = d_j - y(\mathbf{x}_j) = d_j - \sum_{i=0}^{M} w_i \varphi_i(\mathbf{x}_j, \boldsymbol{\mu}_i, \sigma_i)$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \left[\frac{1}{2} \sum_j e_j^2 \right]
= \sum_j e_j \frac{\partial e_j}{\partial w_i}$$
(1)

The error signal e_j is $e_j = d_j - \sum_{i=0}^{M} w_i \varphi_i(\cdot)$

Therefore,

$$\frac{\partial e_j}{\partial w_i} = -\varphi_i(\cdot)$$

Or rewrite eqn. (1), $\frac{\partial E}{\partial w_i} = -\sum_j e_j \varphi_i(\cdot)$