Package 'quantilogram'

February 1, 2014

Title Quantilogramg

Date 2014-01-20
Description This package contains the functions of the cross-quantilograms and related methods. The currenet version is written only for the purpose of the replication of the results reported in Han, Linton, Oka and Whang (2014). The more comprehensive version will be released later.
Author Heejoon Han, Oliver B. Linton, Tatsushi Oka and Yoon-Jae Whang
Maintainer Tatsushi Oka <oka@nus.edu.sg></oka@nus.edu.sg>
Depends R (>= 3.0.2), np
License GPL (>=2)
Reference Han, H., O. Linton, T. Oka and Y-J. Whang (2014) ``The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series" availabe at SRRN. R topics documented:

 CrossQ.StatBoot.OptAve
 10

 CV.SelfN.trim.0.00
 11

2 Corr

CV.SelfN.trim.0.01	12
CV.SelfN.trim.0.03	12
CV.SelfN.trim.0.05	12
CV.SelfN.trim.0.10	12
CV.SelfN.trim.0.15	12
CV.SelfN.trim.0.20	13
CV.SelfN.trim.0.30	13
Qhit	13
Qstat	14
Qstat.SelfN	15
Qstat.StatBoot	15
Qstat.StatBoot.OptAve	16
StatBoot.index	
stock	18
SysRisk	19
	20
	20

Corr

Index

Correlation Function

Description

The correlation statistics for a given lag order

Usage

Corr(matH, k)

Arguments

matH The matrix with the column size of 2

k The lag order (integer)

Details

The function obtains the simple correlation statistics. The values in the first column of input matrix is interacted with the k-lagged values in the second column.

Value

Correlation

Author(s)

Corr.partial 3

Corr.pa	rtial
---------	-------

Partial Cross-correlation function

Description

A function used to obtain partial cross-correlation function for a give lag order

Usage

```
Corr.partial(matH, k)
```

Arguments

matH A matrix with multiple columns

k The lag order (integer)

Details

This function obtains the partial corss-correlation and the simple correlation. To obtain the partial cross-correlation, this function uses the first column of the input matrix and k-lagged values of the rest of the matrix.

Value

Partial corss-correlation at k lags and the correlation statistics at k lags.

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

CrossQ	Cross-Quantilogram
01 0000	Cross Quantities, and

Description

Returns the cross-quantilogram

Usage

```
CrossQ(DATA, vecA, k)
```

Arguments

DATA An input matrix

vecA A pair of two probability values at which sample quantiles are estimated

k A lag order (integer)

CrossQ.max

Details

This function obtains the cross-quantilogram at the k lag order.

Value

Cross-Quantilogram

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

CrossQ.max

Corss-Quantilogram up to a Given Lag Order

Description

The cross-quantilograms from 1 to a given lag order.

Usage

```
CrossQ.max(DATA, vecA, Kmax)
```

Arguments

DATA An input matrix

vecA A pair of two probability values at which sample quantiles are estimated

Kmax The maximum lag order (integer)

Details

This function calculates the partial cross-quantilograms up to the lag order users specify.

Value

A vector of cross-quantilogram

Author(s)

CrossQ.max.partial 5

CrossO	may	partial
Crosso.	iliax .	partial

Partial Corss-Quantilogram upto a given lag order

Description

The partial cross-quantilograms from 1 to a given lag order.

Usage

```
CrossQ.max.partial(DATA, vecA, Kmax)
```

Arguments

DATA An input matrix

vecA A vector of probability values at which sample quantiles are estimated

Kmax The maximum lag order (integer)

Details

This function calculates the partial cross-quantilograms up to the lag order users specify.

Value

A vector of cross-quantilogram and a vector of partial cross-quantilograms

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

Cross0.	nartial
CI 0550.	Dartial

Paritial Cross-Quantilogram

Description

Returns the partial cross-quantilogram

Usage

```
CrossQ.partial(DATA, vecA, k)
```

Arguments

matrix
1

vecA A vector of probability values at which sample quantiles are estiamted

k The lag order

CrossQ.partial.SelfN

Details

6

This function obtains the partial corss-quantilogram and the cross-quantilogram. To obtain the partial cross-correlation given an input matrix, this function interacts the values of the first column and the k-lagged values of the rest of the matrix.

Value

The partial corss-quantilogram and the cross-quantilogram

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

CrossQ.partial.SelfN Self-Normalized Partial Cross-Quantilogram

Description

Returns the self-normalized version of the partial cross-quantilogram

Usage

```
CrossQ.partial.SelfN(DATA, vecA, k, scaW)
```

Arguments

DATA An input matrix

vecA A pair of two probabilities at which sample quantiles are estimated

k A lag order

scaW A triming value specifiying the fraction of the sample which corresponds to the

minimum subsample size

Details

This function obtains the self-normalized version of the partial cross-quantilogram at a given lag order.

Value

The self-normalized partial cross-quantilogram

Author(s)

CrossQ.partial.StatBoot

Stationary Bootstrap for the Partial Cross-Quantilogram

Description

Returns critical values for the partial cross-quantilogram, based on the stationary bootstrap.

Usage

```
CrossQ.partial.StatBoot(DATA, vecA, k, gamma, Bsize, sigLev)
```

Arguments

DATA	The original data matrix
vecA	A pair of two probability values at which sample quantiles are estimated
k	A lag order
gamma	A parameter for the stationary bootstrap
Bsize	The number of repetition of bootstrap
sigLev	The statistical significance level

Details

This function generates critical values for for the partial cross-quantilogram, using the stationary bootstrap in Politis and Romano (1994).

Value

The boostrap critical values

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Politis, Dimitris N., and Joseph P. Romano. "The stationary bootstrap." *Journal of the American Statistical Association* 89.428 (1994): 1303-1313.

CrossQ.partial.StatBoot.OptAve

Stationary Bootstrap for the Partial Cross-Quantilogram dwith the choice of the stationary-bootstrap parameter

Description

Returns critical values for the partial cross-quantilogram, based on the stationary bootstrap with the choice of the stationary-bootstrap parameter.

Usage

CrossQ.partial.StatBoot.OptAve(DATA, vecA, k, Bsize, sigLev)

Arguments

DATA The original data matrix

vecA A pair of two probability values at which sample quantiles are estimated

k A lag order

Bsize The number of repetition of bootstrap sigLev The statistical significance level

Details

This function generates critical values for for the partial cross-quantilogram, using the stationary bootstrap in Politis and Romano (1994).

Value

The boostrap critical values

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Patton, A., Politis, D. N., & White, H. (2009). Correction to "Automatic block-length selection for the dependent bootstrap" by D. Politis and H. White. *Econometric Reviews*, 28(4), 372-375.

Politis, D. N., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. *Econometric Reviews*, 23(1), 53-70.

Politis, Dimitris N., and Joseph P. Romano. (1994). The stationary bootstrap. *Journal of the American Statistical Association* 89.428: 1303-1313.

CrossQ.SelfN 9

Description

Returns the self-normalized version of the cross-quantilogram

Usage

```
CrossQ.SelfN(DATA, vecA, k, scaW)
```

Arguments

DATA	An input matrix
vecA	A pair of two probabilities at which sample quantiles are estimated
k	A lag order
scaW	A triming value specifiying the fraction of the sample which corresponds to the minimum subsample size

Details

This function obtains the self-normalized version of the cross-quantilogram at a given lag order.

Value

The self-normalized cross-quantilogram

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

CrossQ.StatBoot	Stationary Bootstrap for the Cross-Quantilogram
-----------------	---

Description

Returns critical values for the cross-quantilogram, based on the stationary bootstrap.

Usage

```
CrossQ.StatBoot(DATA, vecA, k, gamma, Bsize, sigLev)
```

Arguments

DATA The original data matrix

vecA A pair of two probability values at which sample quantiles are estimated

k A lag order

gamma A parameter for the stationary bootstrap

Bsize The number of repetition of bootstrap

sigLev The statistical significance level

Details

This function generates critical values for for the cross-quantilogram, using the stationary bootstrap in Politis and Romano (1994).

Value

The boostrap critical values

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Politis, Dimitris N., and Joseph P. Romano. "The stationary bootstrap." *Journal of the American Statistical Association* 89.428 (1994): 1303-1313.

CrossQ.StatBoot.OptAve

Stationary Bootstrap for the Cross-Quantilogram with the choice of the stationary-bootstrap parameter

Description

Returns critical values for the cross-quantilogram, based on the stationary bootstrap with the choice of the stationary-bootstrap parameter.

Usage

```
CrossQ.StatBoot.OptAve(DATA, vecA, k, Bsize, sigLev)
```

Arguments

DATA The original data matrix

vecA A pair of two probability values at which sample quantiles are estimated

k A lag order

Bsize The number of repetition of bootstrap sigLev The statistical significance level

CV.SelfN.trim.0.00

Details

This function generates critical values for for the cross-quantilogram, using the stationary bootstrap in Politis and Romano (1994). To choose parameter for the stationary bootstrap, this function first obtaines the optimal value for each time serie using the result provided by Politis and White (2004) and Patton, Politis and White (2004) (The R-package, "np", written by Hayfield and Racine is used). Next, the average of the obtained values is used as the parameter value.

Value

The boostrap critical values

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Patton, A., Politis, D. N., & White, H. (2009). Correction to "Automatic block-length selection for the dependent bootstrap" by D. Politis and H. White. *Econometric Reviews*, 28(4), 372-375.

Politis, D. N., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. *Econometric Reviews*, 23(1), 53-70.

Politis, Dimitris N., and Joseph P. Romano. (1994). The stationary bootstrap. *Journal of the American Statistical Association* 89.428: 1303-1313.

CV.SelfN.trim.0.00

Critical Values for the Self-Normalized Statistics with a trimming value 0.00

Description

The critical values are obtained via simulation. The Brownian bridge are approximated by 5,000 normali distribution and the number of repetition is 500,000 to obtain the critical values.

Usage

data(CV.SelfN.trim.0.00)

Details

- dim: The number of restrictions imposed under the null hypothesis
- sig0.10: The critical value for the 0.10 significance level
- sig0.05: The critical value for the 0.05 significance level
- sig0.025: The critical value for the 0.025 significance level
- sig0.01: The critical value for the 0.01 significance level
- sig0.005: The critical value for the 0.005 significance level

12 CV.SelfN.trim.0.15

CV.SelfN.trim.0.01	Critical Values for the Self-Normalized Statistics with a trimming value 0.01
Description	
See the explanation in C	CV.SelfN.trim.0.00
CV.SelfN.trim.0.03	Critical Values for the Self-Normalized Statistics with a trimming value 0.03
Description	
See the explanation in C	CV.SelfN.trim.0.00
CV.SelfN.trim.0.05	Critical Values for the Self-Normalized Statistics with a trimming value 0.05
Description	
See the explanation in C	CV.SelfN.trim.0.00
CV.SelfN.trim.0.10	Critical Values for the Self-Normalized Statistics with a trimming value 0.10
Description	
See the explanation in C	CV.SelfN.trim.0.00
CV.SelfN.trim.0.15	Critical Values for the Self-Normalized Statistics with a trimming value 0.15

Description

See the explanation in CV.SelfN.trim.0.00

CV.SelfN.trim.0.20

CV.SelfN.trim.0.20 Critical Values for the Self-Normalized Statistics with a trimming value 0.20

Description

See the explanation in CV.SelfN.trim.0.00

CV.SelfN.trim.0.30 Critical Values for the Self-Normalized Statistics with a trimming value 0.30

Description

See the explanation in CV.SelfN.trim.0.00

Qhit Quantile Hit

Description

Returns the matrix of quantil-hits

Usage

Qhit(DATA, vecA)

Arguments

DATA A matrix

vecA A vector of probability values at which sample quantiles are estimated

Details

This function generates the quantile hits given a vector of probabilty values. The quantile hits are obtained for each column of an input matrix.

Value

A matrix of quantile-hits

Author(s)

14 Qstat

Qstat Q-statistics

Description

Te Box-Pierece and Ljung-Box type Q-statistics

Usage

```
Qstat(vecTest, Tsize)
```

Arguments

vecTest A vector of test statistics ordered with respect the number of lags

Tsize A original sample size

Details

This function returns Box-Pierece and Ljung-Box type Q-statistics

Value

the Box-Pierece and Ljung-Box statistics

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Box, G. EP, and D. A. Pierce. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. *Journal of the American Statistical Association* 65.332, pp.1509-1526.

Ljung, G. M., and G. EP Box. (1978). On a measure of lack of fit in time series models. *Biometrika* 65.2, pp.297-303.

Qstat.SelfN 15

- ~

Description

The self-normalized version of the Q-statistics

Usage

```
Qstat.SelfN(DATA, vecA, Kmax, vW)
```

Arguments

vecA A pair of two probability values at which sample quantiles are estimated

Kmax The maximum lag order

vW A triming value for the self-normalization

Details

This function returns the self-normalized Q-statistics.

Value

The self-normalized Q-statistics

Author(s)

Heejoon Han, Oliver Linton and Tatsushi Oka, Yoon-Jae Whang

Qstat. StatBoot Stationary Bootstrap for Q statistics

Description

Stationary Bootstrap procedure to generate critical values for both Box-Pierece and Ljung-Box type Q-statistics

Usage

```
Qstat.StatBoot(DATA, vecA, Psize, gamma, Bsize, sigLev)
```

Arguments

DATA	The original data
vecA	A pair of two probabity values at which sample quantiles are estimated
Psize	The maximum number of lags
gamma	A parameter for the stationary bootstrap
Bsize	The number of repetition of bootstrap
sigLev	The statistical significance level

Details

This function returns critical values for for both Box-Pierece and Ljung-Box type Q-statistics through the statioanry bootstrap proposed by Politis and Romano (1994).

Value

The bootstrap critical values

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Politis, Dimitris N., and Joseph P. Romano. (1994). The stationary bootstrap. *Journal of the American Statistical Association* 89.428, pp.1303-1313.

Qstat.StatBoot.OptAve Stationary Bootstrap for Q statistics

Description

Stationary Bootstrap procedure to generate critical values for both Box-Pierece and Ljung-Box type Q-statistics with the choice of the stationary-bootstrap parameter.

Usage

```
Qstat.StatBoot.OptAve(DATA, vecA, Psize, Bsize, sigLev)
```

Arguments

DATA	The original data
vecA	A pair of two probabity values at which sample quantiles are estimated
Psize	The maximum number of lags
Bsize	The number of repetition of bootstrap
sigLev	The statistical significance level

StatBoot.index 17

Details

This function returns critical values for for both Box-Pierece and Ljung-Box type Q-statistics through the statioanry bootstrap proposed by Politis and Romano (1994). To choose parameter for the statioanry bootstrap, this function first obtaines the optimal value for each time serie using the result provided by Politis and White (2004) and Patton, Politis and White (2004) (The R-package, "np", written by Hayfield and Racine is used). Next, the average of the obtained values is used as the parameter value.

Value

The bootstrap critical values

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

Patton, A., Politis, D. N., & White, H. (2009). Correction to "Automatic block-length selection for the dependent bootstrap" by D. Politis and H. White. *Econometric Reviews*, 28(4), 372-375.

Politis, D. N., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. *Econometric Reviews*, 23(1), 53-70.

Politis, Dimitris N., and Joseph P. Romano. (1994). The stationary bootstrap. *Journal of the American Statistical Association* 89.428: 1303-1313.

StatBoot.index

Stationary Bootstrap Index

Description

A subfunction for the statioanry bootstrap

Usage

```
StatBoot.index(Nsize, gamma)
```

Arguments

Nsize The size of the stationary bootstrap resample gamma A parameter for the stationary boostrap.

Details

This function resamples blocks of indicies with random block lengths. This code follows the MAT-LAB file of the Oxford MFE Toolbox written by Kevin Sheppard.

18 stock

Value

A vector of indicies for the stationary bootstrap

Author(s)

Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang

References

The Oxford MFE toolbox (http://www.kevinsheppard.com/wiki/MFE_Toolbox) by Kevin Sheppard

stock

The Data Set of Monthly Stock Return and Sotck Variance

Description

The dataset contains monthly excess stock returns and stock varaince, which are included in the data set analyzed in Goyal and Welch (2008). Stock returns are measured by the S&P 500 index and include dividens. A treasury-bill rate is subtracted from stock returns to give excess stock returns The stock variance is a volatility estimate based on daily squared returns and is treated as an estimate of equity risk in the literature. The sample period is from Feburary 1885 to December 2005 with sample size 1,451.

· Return: excess stock returns

• Variance: stock variance

Usage

data(stock)

Format

A data object with two variables

References

Welch, Ivo, and Amit Goyal. "A comprehensive look at the empirical performance of equity premium prediction." *Review of Financial Studies* 21.4 (2008): 1455-1508.

SysRisk 19

SysRisk

The Data Set for Systemic Risk Analysis

Description

The data set contains the daily CRSP market value weighted index returns, which are used as the market index returns in Brownless and Engle (2012), and also includes daily stock returns on JP Morgan Chase (JPM), Goldman Sachs (GS) and American International Group (AIG). The sample period is from 2 Jan. 2001 to 30 Dec. 2011 with sample size 2,767.

Usage

data(SysRisk)

Format

A data object with five variables

Details

- day: The time index (day)
- Market: The daily CRSP market value weighted incex returns
- JPM: stock returns on JP Morgan Chase (JPM)
- GS: stock returns on Goldman Sachs (GS)
- AIG: stock returns on American International Group (AIG)

References

Brownlees, Christian T., and Robert F. Engle. "Volatility, correlation and tails for systemic risk measurement." *Available at SSRN* 1611229 (2012).

Index

```
*Topic datasets
                                                stock, 18
    CV.SelfN.trim.0.00, 11
                                                SysRisk, 19
    CV.SelfN.trim.0.01, 12
    CV.SelfN.trim.0.03, 12
    CV.SelfN.trim.0.05, 12
    CV.SelfN.trim.0.10, 12
    CV.SelfN.trim.0.15, 12
    CV.SelfN.trim.0.20, 13
    CV.SelfN.trim.0.30, 13
    stock, 18
    SysRisk, 19
Corr, 2
Corr.partial, 3
CrossQ, 3
CrossQ.max, 4
CrossQ.max.partial, 5
CrossQ.partial, 5
CrossQ.partial.SelfN, 6
CrossQ.partial.StatBoot, 7
CrossQ.partial.StatBoot.OptAve, 8
CrossQ.SelfN, 9
CrossQ.StatBoot, 9
CrossQ.StatBoot.OptAve, 10
CV.SelfN.trim.0.00, 11
CV.SelfN.trim.0.01, 12
CV.SelfN.trim.0.03, 12
CV.SelfN.trim.0.05, 12
CV.SelfN.trim.0.10, 12
CV. SelfN. trim. 0.15, 12
CV.SelfN.trim.0.20, 13
CV.SelfN.trim.0.30, 13
Qhit, 13
Qstat, 14
Qstat.SelfN, 15
Qstat.StatBoot, 15
Qstat.StatBoot.OptAve, 16
StatBoot.index, 17
```