

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Doctorado en Modelación Matemática

00045

PROGRAMA DE ESTUDIOS

OMBRE DE LA ASIGNATURA		
	Procesos estocásticos avanzado	
CEMECTRE	CLINE DE LA ACCOMPANIA	
SEMESTRE Optativa	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante las propiedades básicas de los procesos de renovación, de las cadenas de Markov en tiempo continuo y del movimiento browniano, así como mostrar sus aplicaciones en otras áreas del conocimiento.

TEMAS Y SUBTEMAS

1. Cadenas de Markov en tiempo continuo

- 1.1. Cadenas de Markov a tiempo discreto.
- 1.2. Definición de cadenas de Markov en tiempo continuo.
- 1.3. Funciones de transición.
- 1.4. Generador infinitesimal.
- 1.5. Procesos de nacimiento puro.
- 1.6. Procesos de muerte pura.
- 1.7. Procesos de nacimiento y muerte.
- 1.8. Propiedades límite de los procesos de nacimiento y muerte.
- 1.9. Procesos de nacimiento y muerte con estados absorbentes.

2. Procesos de renovación

- 2.1. Definición de un proceso de renovación y conceptos relacionados.
- 2.2. Ejemplos de procesos de renovación.
- 2.3. Comportamiento asintótico: teorema elemental de renovación.
- 2.4. Distribuciones asociadas al proceso de renovación.
- 2.5. Teoremas de renovación.
- 2.6. Distribuciones asintóticas del número de renovaciones.
- 2.7. Generalizaciones y variaciones del proceso de renovación.
- 2.8. Aplicaciones en teoría de riesgo y sistemas de espera.
- 2.9. Simulación.

3. Movimiento browniano

- 3.1. Definiciones.
- 3.2. Proceso gaussiano.
- 3.3. Principio de invarianza y el teorema de límite central.
- 3.4. Principio de reflexión y tiempos de llegada.
- 3.5. Propiedades del movimiento browniano.
- 3.6. Simulación de las trayectorias del movimiento browniano.
- 3.7. Movimiento browniano reflejado.
- 3.8. Movimiento browniano absorbido.
- 3.9. Puente browniano.
- 3.10. Movimiento browniano con deriva.
- 3.11. Proceso de Ornstein-Uhlenneck.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las técnicas de demostración. Los estudiantes acudirán a asesorías extra clase. Solución de problemas relacionados con el tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se

Universidad Tecnológica de la Mixteca Clave DGP: 200089

Doctorado en Modelación Matemática

00046

PROGRAMA DE ESTUDIOS

obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA

Básica:

An Introduction to stochastic modeling; Mark. A. Pinsky y Samuel Karlin, Academic Press, 2012.
Stochastic processes and models; D. Stirzaker, Oxford University Press, 2005.

DE POSGRADO

- 3. Essentials of stochastic processes; R. Durrett, Springer, 1999.

- 1. Brownian Motion and Stochastic Calculus; Karatzas, I & Shreve, S. E, 1998.
- 2. Introduction to probability models; S. M. Ross. Academic Press 1997.
- 3. Adventures in stochastic processes; S.I. Resnick. Birkhäuser, 1992.

PERFIL PROFESIONAL DEL DOCENTE

Estudios de doctorado en matemáticas o en matemáticas aplicadas.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS

DE POSGRADO

AUTORIZÓ DR. RAFAEL MARTÍNEZ MARTÍNEZ VICE-RECTOR ACADÉMICO VICE-RECTORIA

ACADÉMICA