Matemática Discreta Solución Práctico 3

Licenciatura en Informática Ingeniería en Informática

Se proponen soluciones de ejemplo para algunos ejercicios del práctico. Las soluciones presentadas no son las únicas posibles. Pueden existir otras soluciones igualmente correctas.

Ejercicio 1

Dadas las siguientes letras proposicionales:

- ♦ p = "La luna es blanca"
- ♦ q = "El sol es amarillo"
- ♦ r = "La tierra es un queso"

Tomando como base las letras proposicionales anteriores, traduzca a proposiciones bien formadas las siguientes frases expresadas en lenguaje natural:

Solución:

a) Si la tierra es un queso, entonces la luna no es blanca o el sol no es amarillo

$$r \rightarrow (\neg p \lor \neg q)$$

b) No se cumple que el sol no es amarillo y la luna no es blanca

$$\neg (\neg q \land \neg p)$$

c) La tierra no es un queso y el sol es amarillo o la tierra es un queso y la luna no es blanca

$$(\neg r \land q) \lor (r \land \neg p)$$

d) El sol es amarillo y la luna es blanca si y sólo si no se cumple que el sol no es amarillo o la luna no es blanca

$$(q \wedge p) \leftrightarrow \neg (\neg q \vee \neg p)$$

 e) Si la luna no es blanca entonces el sol no es amarillo y si el sol no es amarillo entonces la luna no es blanca

$$(\neg p \rightarrow \neg q) \land (\neg q \rightarrow \neg p)$$

Ejercicio 2

Coloque todos los paréntesis que sea posible a cada una de las siguientes proposiciones, tomando en cuenta la precedencia usual de las conectivas:

Solución:

a)
$$(p \rightarrow (q \rightarrow r))$$

b)
$$((p \land q) \rightarrow (q \land p))$$

c)
$$(p \rightarrow ((q \land q) \rightarrow p))$$

d)
$$(((p \land r) \lor q) \leftrightarrow s)$$

Dibuje la tabla de verdad asociada a cada una de las siguientes proposiciones y determine cuáles de ellas son tautologías, cuáles son contradicciones y cuáles son contingencias. Justifique todas sus respuestas.

a)
$$(p \land q) \leftrightarrow \neg(\neg p \lor \neg q)$$

Solución:

р	q	p∧q	¬р	¬q	$\neg p \lor \neg q$	$\neg(\neg p \lor \neg q)$	$(p \land q) \leftrightarrow \neg(\neg p \lor \neg q)$
0	0	0	1	1	1	0	1
0	1	0	1	0	1	0	1
1	0	0	0	1	1	0	1
1	1	1	0	0	0	1	1

La proposición es una tautología porque sus cuatro valuaciones posibles valen 1.

b)
$$(p \rightarrow q) \land (p \rightarrow \neg q) \leftrightarrow p$$

Solución:

р	q	$p \rightarrow q$	¬q	$p \rightarrow \neg q$	$(p \rightarrow q) \land (p \rightarrow \neg q)$	$(p \rightarrow q) \land (p \rightarrow \neg q) \leftrightarrow p$
0	0	1	1	1	1	0
0	1	1	0	1	1	0
1	0	0	1	1	0	0
1	1	1	0	0	0	0

La proposición es una contradicción porque sus cuatro valuaciones posibles valen 0.

c)
$$(p \rightarrow \bot) \land (\bot \rightarrow p) \leftrightarrow \neg p$$

Solución:

р		$p \rightarrow \bot$	$\perp \rightarrow p$	$(p \rightarrow \bot) \land (\bot \rightarrow p)$	¬р	$(p \to \bot) \land (\bot \to p) \leftrightarrow \neg p$
0	0	1	1	1	1	1
1	0	0	1	0	0	1

La proposición es una tautología porque sus dos valuaciones posibles valen 1.

d)
$$(p \rightarrow \bot) \lor (q \rightarrow \bot)$$

Solución:

р	q		$p \rightarrow \bot$	$q \rightarrow \bot$	$(p \rightarrow \bot) \lor (q \rightarrow \bot)$
0	0	0	1	1	1
0	1	0	1	0	1
1	0	0	0	1	1
1	1	0	0	0	0

La proposición es una contingencia porque algunas de sus valuaciones valen 0 y otras 1.

Dibuje la tabla de verdad asociada a cada una de las siguientes proposiciones y determine cuáles de las consecuencias lógicas planteadas se cumplen y cuáles no. Justifique todas sus respuestas.

a)
$$p, \neg(p \rightarrow q) \models \neg q$$

Solución:

р	q	$p \rightarrow q$	$\neg (p \rightarrow q)$	−q
0	0	1	0	1
0	1	1	0	0
1	0	0	1	1
1	1	1	0	0

La única valuación que hace valer 1 a p, $\neg(p \to q)$ es la tercera valuación (v₃). En ella se verifica que v₃(p) = 1, v₃($\neg(p \to q)$) = 1 y también que v₃($\neg q$) = 1. Por definición de consecuencia lógica, se cumple efectivamente que p, $\neg(p \to q)$ |= $\neg q$.

b)
$$(p \rightarrow q), (q \rightarrow p) \models (p \land q)$$

Solución:

р	Q	$p \rightarrow q$	$q \rightarrow p$	p∧q
0	0	1	1	0
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

Las dos valuaciones que hacen valer 1 a $(p \to q)$, $(q \to p)$ son la primera valuación (v_1) y la cuarta valuación (v_4) . En la cuarta se verifica que v_4 $(p \to q) = 1$, v_4 $(q \to p) = 1$ pero v_4 $(p \land q) = 0$. Por definición de consecuencia lógica, **no** se cumple que $(p \to q)$, $(q \to p) \models (p \land q)$. Es decir, que $(p \to q)$, $(q \to p) \not\models (p \land q)$

c)
$$(p \lor q), (p \to q) \models (p \land q)$$

Solución:

р	q	p∨q	$p \rightarrow q$	p∧q
0	0	0	1	0
0	1	1	1	0
1	0	1	0	0
1	1	1	1	1

Las dos valuaciones que hacen valer 1 a $(p \lor q)$, $(p \to q)$ son la segunda valuación (v_2) y la cuarta valuación (v_4) . En la segunda se verifica que v_2 $(p \lor q) = 1$, v_2 $(p \to q) = 1$ pero v_2 $(p \land q) = 0$. Por definición de consecuencia lógica, **no** se cumple que $(p \lor q)$, $(p \to q) \models (p \land q)$. Es decir, que $(p \lor q)$, $(p \to q) \not\models (p \land q)$.

d) $(p \rightarrow q), (r \rightarrow \bot) \models (p \leftrightarrow r) \lor (\neg r)$

Solución:

р	q	r		$p \leftrightarrow r$	⊸r	$p \rightarrow q$	$r \rightarrow \bot$	$(p \leftrightarrow r) \lor (\neg r)$
0	0	0	0	1	1	1	1	1
0	0	1	0	0	0	1	0	0
0	1	0	0	1	1	1	1	1
0	1	1	0	0	0	1	0	0
1	0	0	0	0	1	0	1	1
1	0	1	0	1	0	0	0	1
1	1	0	0	0	1	1	1	1
1	1	1	0	1	0	1	0	1

Hay tres valuaciones que hacen valer 1 a $(p \to q)$, $(r \to \bot)$, son la primera, tercera y séptima valuación $(v_1, v_3 y v_7)$. En las tres se verifica que $(p \leftrightarrow r) \lor (\neg r)$ también vale 1. Por definición de consecuencia lógica, se cumple efectivamente que $(p \to q)$, $(r \to \bot) \models (p \leftrightarrow r) \lor (\neg r)$

Ejercicio 5

Sean α , β , $\gamma \in PROP$ proposiciones **cualesquiera**. Para cada una de las siguientes afirmaciones, determine si es correcta o no. En caso de que sea correcta, plantee hipótesis, tesis y demuéstrela. En caso contrario presente un contraejemplo concreto y justifique.

<u>Hipótesis</u>: $\models \neg \alpha$ y $\models (\beta \rightarrow \alpha)$

Tesis: $\models \neg \beta$

<u>Demostración</u>: Sea v una valuación cualquiera. Debemos probar que $v(\neg\beta) = 1$.

Como $(\neg \alpha)$ es tautología, $v(\neg \alpha) = 1$ y por definición de valuación se tiene que $v(\alpha) = 0$.

Como $(\beta \to \alpha)$ es tautología, $v(\beta \to \alpha)$ = max { 1 – $v(\beta)$, $v(\alpha)$ } = 1.

Dado que $v(\alpha) = 0$, se tiene entonces que max $\{1 - v(\beta), 0\} = 1$, por tanto $1 - v(\beta) = 1$.

Por definición de valuación, concluimos que $v(\neg \beta) = 1$.

b) Si se cumple que $\models (\alpha \land \beta)$ entonces se cumple que $\models \alpha$ y que $\models \beta$ CORRECTA Solución:

 $\underline{\mathsf{Hip\acute{o}tesis}} \colon \models (\alpha \land \beta)$

 $\underline{\mathsf{Tesis}} : \models \alpha \mathsf{ y} \models \beta$

 $\underline{\text{Demostración}}\text{: Sea v una valuación cualquiera. Debemos probar que }v(\alpha) = 1 \text{ y }v(\beta) = 1.$

Como $(\alpha \land \beta)$ es tautología, $v(\alpha \land \beta) = \min\{v(\alpha), v(\beta)\} = 1$. Por lo tanto, tanto $v(\alpha)$ como $v(\beta)$ valen ambas 1.

c) Si se cumple que $\models (\alpha \lor \beta)$ entonces se cumple que $\models (\alpha \land \beta)$

INCORRECTA

Solución:

<u>Hipótesis</u>: \models ($\alpha \lor \beta$)

Tesis: $\models (\alpha \land \beta)$

Contraejemplo: Tomamos $\alpha = p$, $\beta = \neg p$.

Comprobamos que \models ($\alpha \lor \beta$). La siguiente tabla de verdad muestra que en las dos posibles valuaciones se cumple que v(p $\lor \neg p$) = 1.

р	¬р	p ∨ ¬p
0	1	1
1	0	1

Sin embargo, vemos que $(\alpha \land \beta)$ es una contradicción. La siguiente tabla de verdad muestra que en las dos posibles valuaciones se cumple que $v(p \land \neg p) = 0$.

р	¬р	p ∧ ¬p
0	1	0
1	0	0

d) Si se cumple que $\alpha \models \beta$ entonces se cumple que $\models \alpha$ o que $\models \beta$

INCORRECTA

Solución:

Hipótesis: $\alpha \models \beta$

<u>Tesis</u>: $\models \alpha \circ \models \beta$

Contraejemplo: Tomamos $\alpha = p$, $\beta = p$.

Comprobamos que $\alpha \models \beta$. Sea v una valuación tal que v(p) = 1. Se verifica trivialmente que v(p) = 1, cumpliéndose entonces la definición de consecuencia lógica.

Sin embargo, vemos que ni α ni β son tautologías. Basta con tomar la otra valuación que hace valer cero a p.

e) Si se cumple que $\alpha \models \beta$ y que $\beta \models \gamma$ entonces se cumple que $\alpha \models \gamma$

CORRECTA

Solución:

<u>Hipótesis</u>: $\alpha \models \beta$ y $\beta \models \gamma$

Tesis: $\alpha \models \gamma$

<u>Demostración</u>: Sea v una valuación cualquiera tal que $v(\alpha) = 1$. Debemos probar que $v(\gamma) = 1$.

Por hipótesis, tenemos que $\alpha \models \beta$. Como $v(\alpha)=1$, aplicando la definición de consecuencia lógica tenemos que $v(\beta)=1$. También por hipótesis, tenemos que $\beta \models \gamma$. Aplicando de nuevo la definición de consecuencia lógica, concluimos que $v(\gamma)=1$.

Sean $\alpha \in \mathsf{PROP}$ y $\beta \in \mathsf{PROP}$ dos proposiciones tales que $\models \alpha$ y $\models \neg \beta$. Para cada una de las siguientes afirmaciones, indique si es correcta o no. En caso de que sea correcta, plantee hipótesis, tesis y demuéstrela. En caso contrario presente un contraejemplo concreto y justifique.

a) $\alpha \models \beta$

Solución:

<u>Hipótesis</u>: $|= \alpha y |= \neg \beta$

Tesis: $\alpha \models \beta$

Contraejemplo: Tomamos $\alpha = (p \vee \neg p), \beta = \bot$.

Comprobamos que $|= \alpha$. Sea v una valuación cualquiera. Se verifica que $v(p \lor \neg p) = 1$, dado que, por definición de valuación (caso \lor) max $\{v(p), v(\neg p)\} = 1$, independientemente del valor de verdad de p (si v(p) = 1, entonces $v(\neg p) = 0$, por definición de valuación, caso \neg , y viceversa).

Comprobamos que $\models \neg \beta$. Sea v una valuación cualquiera. Se verifica que $v(\bot) = 0$. Entonces, por definición de valuación (caso \neg), se verifica que $v(\neg\bot) = 1$.

Sin embargo, vemos que $\alpha \not\models \beta$. En cualquier valuación v se verifica que v(p $\vee \neg p$) = 1, pero v(\bot) = 0. Se concluye entonces que p $\vee \neg p \not\models \bot$.

b) $\beta \models \alpha$

Solución:

<u>Hipótesis</u>: $|= \alpha \ y \ |= \neg \beta$

Tesis: $\beta \models \alpha$

<u>Demostración</u>: Por hipótesis, tenemos que $\models \neg \beta$. Por definición de tautología, en toda valuación v se cumple que $v(\neg \beta) = 1$. Por definición de valuación (caso \neg), se tiene que $v(\beta) = 0$. Por lo tanto, dado que en toda valuación se tiene que $v(\beta) = 0$, entonces no existe ninguna valuación tal que $v(\beta) = 1$. Dado esto, por definición de consecuencia lógica, ya con eso se cumple que $\beta \models \alpha$.

c) $|= \neg(\alpha \leftrightarrow \beta)$

Solución:

Hipótesis: $|= \alpha \ y \ |= \neg \beta$

Tesis: $\neg(\alpha \leftrightarrow \beta)$

<u>Demostración</u>: Por hipótesis, tenemos que $|=\alpha y|=\neg\beta$. Por definición de tautología, en toda valuación v se cumple que $v(\alpha)=1$ y $v(\neg\beta)=1$. Por definición de valuación (caso \neg), se tiene que $v(\beta)=0$. Entonces, por definición de valuación (caso \leftrightarrow), se tiene que $v(\alpha\leftrightarrow\beta)=0$ (dado que $v(\alpha)\neq v(\beta)$) y luego, por definición de valuación (caso \neg), se tiene que $v(\neg(\alpha\leftrightarrow\beta))=1$. Como esto vale cualquiera sea la valuación v, por definición de tautología se concluye finalmente que $\neg(\alpha\leftrightarrow\beta)$.

Sea $\Gamma \subseteq \mathsf{PROP}$ un conjunto de proposiciones y α , $\beta \in \mathsf{PROP}$ dos proposiciones tales que $\Gamma \models \alpha$ y $\Gamma \models \beta$. Para cada una de las siguientes afirmaciones, indique si es correcta o no. En caso de que sea correcta, plantee hipótesis, tesis y demuéstrela. En caso contrario presente un contraejemplo concreto y justifique.

a)
$$\Gamma \models (\alpha \land \beta)$$
.

CORRECTA

Solución:

<u>Hipótesis</u>: $\Gamma \models \alpha$ y $\Gamma \models \beta$

Tesis: $\Gamma \models (\alpha \land \beta)$

<u>Demostración</u>: Sea una v valuación cualquiera tal que $v(\Gamma)$ = 1. Dado que $\Gamma \models \alpha$ y $\Gamma \models \beta$, por def. de consecuencia lógica tenemos que $v(\alpha)$ = 1 y $v(\beta)$ = 1. Luego, por def. de valuación (caso \land), tenemos que $v(\alpha \land \beta)$ = min { $v(\alpha)$, $v(\beta)$ } = min { 1, 1 } = 1. Aplicando nuevamente la def. de consecuencia lógica, concluimos que $\Gamma \models (\alpha \land \beta)$.

b)
$$\Gamma \models \neg(\alpha \lor \beta)$$
.

INCORRECTA

Solución:

<u>Hipótesis</u>: $\Gamma \models \alpha$ y $\Gamma \models \beta$

Tesis: $\Gamma \models \neg(\alpha \lor \beta)$

Contraejemplo: Tomamos $\Gamma = \{p, q\}, \alpha = (p \rightarrow q), \beta = (q \rightarrow p).$

Sea v una valuación tal que $v(\Gamma) = 1$. Es decir, tal que v(p) = v(q) = 1. Por def. de valuación (caso \rightarrow) tenemos que $v(p \rightarrow q) = \max \{ 1 - v(p), v(q) \} = \max \{ 1 - 1, 1 \} = 1$ y que $v(q \rightarrow p) = \max \{ 1 - v(q), v(p) \} = \max \{ 1 - 1, 1 \} = 1$. Por lo tanto, se verifica que $\Gamma = \alpha$ y que $\Gamma = \beta$. (1)

Sin embargo, veremos que $v(\neg(\alpha\vee\beta))=0$. Por def. de valuación (caso \vee) tenemos que $v(\alpha\vee\beta)=\max\{v(\alpha),v(\beta)\}=\max\{v(p\to q),v(q\to p)\}=\max\{1,1\}=1$. Entonces, por def. de valuación (caso \neg) tenemos que $v(\neg(\alpha\vee\beta))=1-v(\alpha\vee\beta)=1-1=0$. **(2)**

A partir de (1) y (2), se concluye entonces que $\Gamma \not\models \neg(\alpha \lor \beta)$.

c) $(\alpha \leftrightarrow \beta)$ es una tautología.

INCORRECTA

Solución:

Hipótesis: $\Gamma \models \alpha$ y $\Gamma \models \beta$

Tesis: $(\alpha \leftrightarrow \beta)$ es una tautología

Contraejemplo: Tomamos nuevamente $\Gamma = \{p, q\}, \alpha = (p \rightarrow q), \beta = (q \rightarrow p).$

Р	q	$p \rightarrow q$	$q \rightarrow p$	$(p\toq)\leftrightarrow(q\top)$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

En la parte anterior ya vimos que $\Gamma \models \alpha$ y que $\Gamma \models \beta$. Sin embargo, a partir de la tabla de verdad, comprobamos que existen dos valuaciones que hacen valer 0 a $(\alpha \leftrightarrow \beta)$. Es decir, que hacen valer 0 a $(p \to q) \leftrightarrow (q \to p)$. Por lo tanto, $(\alpha \leftrightarrow \beta)$ **no** es una tautología.

d) Dada cualquier proposición $\delta \in \Gamma$, se cumple que $\Gamma \models (\neg \neg \delta)$.

CORRECTA

Solución:

<u>Hipótesis</u>: $\Gamma \models \alpha$ y $\Gamma \models \beta$, $\delta \in \Gamma$ es una proposición cualquiera.

$$\underline{\mathsf{Tesis}} \colon \Gamma \models (\neg \neg \delta)$$

<u>Demostración</u>: Sea una ν valuación cualquiera tal que ν (Γ) = 1. Dado que $\delta \in \Gamma$, en particular se cumple que ν (δ) = 1. Entonces, por def. de valuación (caso \neg), tenemos que ν (\neg δ) = 1 - ν (δ) = 1 - 1 = 0. Aplicando nuevamente la def. de valuación (caso \neg), tenemos que ν (\neg σ) = 1 - ν (σ) = 1 - 0 = 1. Aplicando la def. de consecuencia lógica, concluimos que Γ |= \neg σ .