Seminario

Andoni Latorre Galarraga

31/03/2022

6. Las raices de x^5-2 son $\sqrt[5]{2}$, $\sqrt[5]{2}\xi_5$, $\sqrt[5]{2}\xi_5^2$, $\sqrt[5]{2}\xi_5^3$, $\sqrt[5]{2}\xi_5^4$ donde ξ_5 es raiz quinta primitiva de la unidad. Deducimos que $F=\mathbb{Q}(\sqrt[5]{2},\xi_5)$ Consideramos el siguiente equema:

El grado de $\mathbb{Q}(\sqrt[5]{2}, \xi_5)$ sobre \mathbb{Q} es 5 ya que $x^5 - 2$ es irreducible sobre \mathbb{Q} por Eisenstein con p = 2. Para $\mathbb{Q}(\xi_5)$

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$$

Para aplicar el criterio de la traslación x = t + 1

$$x^4 + x^3 + x^2 + x + 1 = (t+1)^4 + (t+1)^3 + (t+1)^2 + (t+1) + 1 = 0$$

$$= t^4 + 5t^3 + 10t^2 + 10t + 5$$

que es irreducible por Eisenstein con p=5. Por ser (4,5)=1 tenemos que $|\mathbb{Q}(\sqrt[5]{2},\xi_5):\mathbb{Q}|=4\cdot 5=20$.

Veamos que $\sqrt[3]{p} \notin F$

Sabemos que x^3-p es irreducible por Eisenstein con p=p y 3 \ 20 contradiciendo el teorema del grado.

Para $\sqrt[4]{p}$,

Por ser 4 y 5 coprimos.

Pero $\mathbb{Q}(\sqrt[4]{p}, \sqrt[5]{2}) \subseteq \mathbb{R}$, lo cual es contradictorio.

7. Por inducción sobre $n=\delta(f)$. Cuando n=1 tenemos que f es de la forma ax+b con $a,b\in K$. La única raiz $-ba^{-1}\in K$ y por tanto $1\mid 1!=1$. Para el paso de inducción consideramos dos casos.

Caso 1: f es reducible. Sean f = pq, E_f , E_p , E_q los cuerpos de escisión de f, p, q repectivamente y R_f , R_p , R_q los conuntos de las raices de f, p, q respectivamente.

$$E_f = K(R_f) = K(R_p, R_q)$$

$$n_2 \mid \\ E_q = K(R_q)$$

$$n_1 \mid \\ K$$

Ahora, el grado de E_f divide a

$$n_1!n_2! = n_1!(n-n_1)! \mid n!$$

Caso 2: f es irreducible. Tomamos $u \in R_f$, en K(u) podemso escribir f = (x - u)g con $g \in k(u)[x]$ entonces

$$|E_f:K| = |E_f:K(u)| \cdot |K(u):K| = n|E_f:K(u)|$$

Como $|E_f:K(u)|$ divide a (n-1)! se tiene que $|E_f:K|\mid n!$