# Study of Potential Top Yukawa Coupling Deviations in Muon Colliders

Ishmam Mahbub
University of Minnesota

#### Introduction

$$W^+W^- \rightarrow t\bar{t}$$
 Process

At Large Energies, the contribution from the  $\gamma$ , Z and t-channel contribution grows as:

$$\mathcal{M}^{\gamma+Z+b}(W_L^+W_L^- \to t\bar{t}) = \frac{m_t}{v^2}\sqrt{s} \quad ; \sqrt{s} >> m_t$$

So, the Higgs diagram is needed to unitarize this contribution. But, if the top yukawa-coupling deviates from Standard Model value by  $\delta_{vt}$ :

$$y_t \rightarrow y_t (1 + \delta_{yt})$$

The scattering amplitude will scale as:

$$\mathcal{M}(W_L^+ W_L^- \to t\bar{t}) = \frac{m_t}{v^2} \sqrt{s} \delta_{yt} \; ; \; \sqrt{s} >> m_t$$

Then Perturbative unitarity will be broken at some scale:

$$\Lambda < \frac{10 TeV}{\delta_{yt}}$$



#### Introduction

#### **Objective**

Obtain a precision constraint on the top Yukawa coupling for the future muon colliders

#### **Steps**

- Find partonic level matrix elements for all possible helicity amplitudes. I wrote down all 36 helicity amplitudes in analytic form.
- Convolute these amplitudes with the muon PDF
- Perform a chi-square test to find 1 $\sigma$  deviation for  $\delta_{yt}$

### $\mu^+\mu^- \rightarrow t\bar{t} + X$ at 14TeV



H. Al Ali et al., "The Muon Smasher's Guide," arXiv:2103.14043 [hep-ph]



- The figures show convoluted crosssection at 14TeV (left).
- The dotted lines show deviations from SM predictions.
- The bottom left plot zooms in on 360-600GeV where the statistics is high and interference is visible
- The right plot is a comparison from the "Muon Smasher's Guide"

#### Comparison Between Muon Smasher's Guide





#### Discrepancies between Muon Smasher's Guide

| Channels                 | Average Deviation |
|--------------------------|-------------------|
| WW                       | 67%               |
| ZZ                       | 60%               |
| $Z\gamma + \gamma\gamma$ | 29%               |

H. Al Ali et al., "The Muon Smasher's Guide," arXiv:2103.14043 [hep-ph]

#### The Convoluted Cross-section at 3TeV and 10TeV



#### **Sensitivity Test**

Sensitivity for Luminosity =  $10ab^{-1}$  and  $E_{CM}$  = 10TeV



Sensitivity for Luminosity =  $10ab^{-1}$  and  $E_{CM}$  = 3TeV



1 $\sigma$  Precision for  $E_{CM}$  = 3 TeV and  $E_{CM}$  = 10 TeV for Luminosity = 10 $ab^{-1}$ 

|                          | $\delta_{yt}$ | $\delta_{yt}$ |
|--------------------------|---------------|---------------|
| $E_{CM} = 3\text{TeV}$   | -3.3%         | 4.25%         |
| $E_{CM} = 10 \text{TeV}$ | -1.95%        | 2.36%         |

## Angular Distribution for $\mu^+\mu^- \to t\bar t + X$ at 10TeV



Sensitivity for Luminosity =  $10ab^{-1}$  and  $E_{CM}$  = 10TeV with Angle Cuts



## Sensitivity for Luminosity = $10ab^{-1}$ and $E_{CM}$ = 10TeV without Angle Cuts



Comparing 1 $\sigma$  Precision for  $E_{CM}$  = 10 TeV, Luminosity = 10 $ab^{-1}$  with and without angle cuts

| $E_{CM} = 10 \text{TeV}$ | $\delta_{\mathrm yt}$ | $\delta_{yt}$ |
|--------------------------|-----------------------|---------------|
| Without Angle Cut        | -1.95%                | 2.36%         |
| With Angle Cut           | -1.46%                | 1.7%          |

Sensitivity for Luminosity =  $1ab^{-1}$  and  $E_{CM}$  = 3TeV with Angle Cuts

-0.1

0.5

0.0 -0.2



0.0

 $\delta_{
m yt}$ 

Sensitivity for Luminosity =  $1ab^{-1}$  and  $E_{CM}$  = 3TeV without Angle Cuts



Comparing 1 $\sigma$  Precision for  $E_{CM}$  = 3 TeV, Luminosity = 1 $ab^{-1}$  with and without angle cuts

0.2

0.1

| $E_{CM} = 3\text{TeV}$ | $\delta_{yt}$ | $\delta_{\mathrm yt}$ |
|------------------------|---------------|-----------------------|
| Without Angle Cut      | -8.9%         | 19.1%                 |
| With Angle Cut         | -7.2%         | 12.4%                 |

#### **Sensitivity for Varying Luminosity**

- -2 $\sigma$  crossing for varying  $\delta_{yt}$  and luminosity at  $E_{CM}=14TeV$
- The dashed line compares results from Muon Smasher's Guide paper

•1 $\sigma$  crossing for varying  $\delta_{yt}$  and luminosity at  $E_{CM}=3TeV$  and  $E_{CM}=10TeV$ 

