Chapter 1

Probability

1.1 Sample Spaces and Events

The Sample Space of an Experiment: The sample space of an experiment, denoted by S, is the set of all possible outcomes of that experiment.

Events: An **event** is any collection (subset) of outcomes contained in the sample space S. An event is said to be **simple** if it consists of exactly one outcome and **compound** if it consists of more than one outcome.

Some Relations from Set Theory:

- 1. The **union** of two events A and B, denoted by $A \cup B$ and read "A or B" is the event consisting of all outcomes that are *either in* A or in B or in both events (so that the union includes outcomes for which both A and B occur as well as the outcomes for which exactly one occurs) that is, all outcomes in at least one of the events.
- 2. The **intersection** of two events A and B, denoted by $A \cap B$ and read " A and B" is the event consisting of all outcomes that are in both A and B.
- 3. The **complement** of an event A, denoted by A', is the set of all outcomes in S that are not contained in A.

Mutually exclusive events: When A and B have no outcomes in common, they are said to be **disjoint** or **mutually exclusive** events. Mathematicians write this compactly as $A \cup B = \emptyset$ where \emptyset denotes the event consisting of no outcomes whatsoever (the "null" or "empty" event).

1.2 Axioms, Interpretations, and Properties of Probability

Basic properties of probability:

1. For any event $A, P(A) \ge 0$.

- 2. P(S) = 1.
- 3. If A_1, A_2, A_3, \cdots is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i).$$

1.2.1 Proposition

 $P(\emptyset) = 0$ where \emptyset is the null event. This in turn implies that the property contained in Axiom 3 is valid for a *finite* collection of events.¹

1.2.2 Proposition

For any event $A, P(A) = 1 - P(A')^2$.

1.2.3 Proposition

For any event $A, P(A) \leq 1$.

1.2.4 Proposition

For any events A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)^{3}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$

$$- P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

1.3 Counting Techniques

The Product Rule for Ordered Pairs

1.3.1 Proposition

If the first element or object of an ordered pair can be selected in n_1 ways, and for each of these n_1 ways the second element of the pair can be selected in n_2 ways, then the number of pairs is n_1n_2 .

Product Rule for K-Tuples:

Suppose a set consists of ordered collections of k elements (k-tuples) and that there are n_1 possible choices for the first element; for each choice of the first element, there are n_2 possible choices of the second element;...; for each possible of the first k-1 elements, there are n_k choices for kth element. Then there are $n_1 n_2 \cdot \cdot \cdot \cdot \cdot n_k$ possible k-tuples.

¹Proof page 57.

²Proof page 60.

${\bf Permutations:}$

Any ordered sequence k objects taken from a set of n distinct objects is called a **permutation** of size k of the objects. The numbers of permutations of size k that can be constructed from the n objects is denoted $P_{k,n}$.