SVM

The linearly separable case

2 Non linearly separable case

3 Non linear SVMs

SVMs

Plan du cours

- The linearly separable case
- The linearly separable case
- The kernel trick
- Non linear SVMs

Some examples of classification problems

Some examples of classification problems

Notion of margin

Notion of margin

Notion of margin

Definitions

- Margin: Distance between the nearest example of the training set and the decision boundary.
- Dataset : $\{(x_i, y_i), i = 1, \dots, n\}, x_i \in \mathbb{R}^d, y_i \in \{1, -1\}$
- Decision function : $f(x) = w^T x + b = 0$
 - f(x) = 0: separating hyperplane
 - f(x) > 0 : class 1 $(y_i = 1)$
 - f(x) < 0: class 2 $(y_i = 1)$

Formalization of the problem

- Decision function : $h_w(x) = w^T x + b$. Separating hyperplane $h_w(x) = 0$
- Parameters:
 - w is normal to the hyperplane
 - b is the offset
- The parameters w and b are non unique. Indeed, kw and kb yield the same decision boundary

Formalization of the problem

How should we choose $h_w(x) = w^T x + b = 0$?

Solution: we maximize the margin!

Non linearly separable case

What can we do if the data are not linearly separable?

Non linearly separable case

- Idea : model potential errors using slack positive variables ξ_i associated to the observations (x_i, y_i)
- We have two situations :
 - No error : $y_i(w^Tx_i + b) \ge 1 \Rightarrow \xi_i = 0$
 - Error : $y_i(w^T x_i + b) < 1 \Rightarrow \xi_i = 1 y_i(w^T x_i + b) > 0$

Non linearly separable case

We associate to this situation a cost function:

In this example one single point is misclassified

Non linear SVMs

- How can we extend this algorithm to the non linear case?
- Principle: we transport the data into another space where the data are linearly separable using a transformation $\varphi: x \to \varphi(x)$

Non linear SVMs

Non linear SVMs

The Kernel trick

- We observe that in the SVM algorithm, the only quantities involved are $K(x, y) = \langle \phi(x), \phi(y) \rangle$
- We are given an explicit expression of K and forget ϕ

Non linear SVMs Examples of kernels

Non linear SVMs Examples of kernels

