

Bäume, Wälder, Blätter

6.7 Wälder, Bäume, Blätter

Definition 6.1. Ein ungerichteter Graph ohne Kreise heißt Wald. Ein zusammenhängender Wald heißt Baum. Ein Knoten von Grad 1 in einem Baum heißt Blatt.

Satz 6.2. Sei G ein Wald mit n Knoten und m Kanten, der aus p Bäumen besteht. Dann ist n = m + p.

Beweis durch vollständige Induktion über m. Induktionsanfang (m=0): Klar. Induktionsschluss $(m-1 \to m)$: Die Behauptung gelte für ein beliebiges, aber festes $m-1 \in \mathbb{N}$. Betrachte einen Wald G mit m Kanten, n Knoten und p Bäumen. G enthält einen Baum mit mindestens einer Kante und zwei Knoten. Betrachte ein Blatt v und lösche die zu v inzidente Kante e. Der Wald $G \setminus e$ hat m-1 Kanten, n Knoten und p+1 Bäume. Nach Induktion gilt: n=m-1+p+1=m+p.

6.8 Charakterisierung von Bäumen

Satz 6.3. Für ungerichtete Graphen G sind folgende Aussagen äquivalent:

- (i) G ist ein Baum.
- (ii) G ist kreisfrei und hat |V(G)-1| Kanten.
- (iii) G ist zusammenhängend und hat |V(G)-1| Kanten.
- (iv) G ist minimal zusammenhängend, d. h. durch Löschen einer beliebigen Kante wird G unzusammenhängend.
- (v) G ist maximal kreisfrei, d. h. bei Hinzufügen einer beliebigen Kante entsteht ein Kreis.
- (vi) Zwischen je zwei Knoten gibt es immer einen eindeutigen Weg.

Satz 6.4. Ein ungerichteter Graph ist genau dann zusammenhängend, wenn G einen Baum als aufgespannten Teilgraphen enthält.

Beweis. Wir zeigen: $(i) \implies (vi) \implies (iv) \implies (ii) \implies (iii) \implies (i)$.

 $(i) \implies (vi)$: Seien $v, w \in V$. Da G zusammenhängend ist, gibt es einen Weg.

Annahme: Es gibt zwei v-w-Wege P und Q mit $E(P) \neq E(Q)$. Dann definiert $E(H) := E(P)\Delta E(Q)$ einen Eulerschen Teilgraphen H von G. Also kann $E(H) \neq \emptyset$ in kantendisjunkte Kreise zerlegt werden (Lemma).

Insbesondere gibt es Kreis in H und damit auch G. Widerspruch!

- $(vi) \implies (iv)$: G ist zusammenhängend. Lösche $e \in E(G)$ mit $\Psi(e) = \{v, w\}$. Da v, e, w eindeutiger v-w-Weg in G war, gibt es keinen v-w-Weg mehr. Folglich ist $G \setminus e$ unzusammenhängend.
- $(iv) \implies (v)$: G ist kreisfrei: Löschen einer Kreiskante kann den Zusammenhang nicht zerstören, da die Endknoten der Kante durch den Weg verbunden bleiben. Da G zusammenhängend ist, gibt es einen v-w-Weg für jedes Knotenpaar von v nach w. Neue Kante $\Psi(e) = \{v, w\}$ bildet mit v-w-Weg einen Kreis.

Bäume, Wälder, Blätter

- $(v) \implies (ii)$: G ist kreisfrei. Zeige: G ist zusammenhängend. Seien v, w zwei Knoten. Zeige: Es gibt einen v-w-Weg in G. Fügt man eine neue Kante e zwischen v und w ein, so entsteht ein Kreis. Lösche man e aus diesem Kreis, bleibt ein v-w-Weg in G übrig. Aus dem letzten Satz folgt |V(G)| = |E(G)| + 1.
- $(ii) \implies (iii)$: Folgt direkt aus dem letzten Satz.
- $(iii) \implies (i)$: Sukzessives Löschen von k Kreiskanten erhält den Zusammenhang und liefert einen Baum mit |V(G)| 1 k Kanten. Wegen des letzten Satzes ist k = 0.

6.9 Charakterisierung zusammenhängender Graphen

Definition 6.5. Sei $G = (V, E, \Psi)$ ein Graph und $X \subseteq V$.

(a) Ist G ungerichtet, so sei

$$\delta(X) := \{ e \in E \mid |\Psi(e) \cap X| 1 \}$$

die Menge aller Kanten zwischen Knoten in X und Kanten in $V \setminus X$.

(b) Ist G gerichtet, so sei

$$\delta^{+}(X) := \{ e \in E \mid \Psi(e) \in X \times V \setminus X \}$$

$$\delta^{-}(X) := \{ e \in E \mid \Psi(e) \in V \setminus X \times V \}$$

$$\delta(X) := \delta^{+}(X) \cup \delta^{-}(X)$$

Satz 6.6. Ein Graph G ist genau dann zusammenhängend, wenn $\delta(X) \neq \emptyset$ für alle $\emptyset \subsetneq X \subsetneq V$. Ist G gerichtet, ist G genau dann stark zusammenhängend, wenn $\delta^+(X) \neq \emptyset$ für alle $\emptyset \subsetneq X \subsetneq V$.

Beweis.

$$G$$
 zusammenhängend $\iff \delta(X) \neq \emptyset$ für alle $\emptyset \subseteq X \subseteq V$

 \Longrightarrow : Es sei $\emptyset \subsetneq X \subsetneq V$ und $v \in X, w \in V \setminus X$.

Da G zusammenhängend ist, gibt es einen v-w-Weg P in G. Da $v \in X, w \notin X$, enthält P Kante e mit $\Psi(e) = \{x, y\}, x \in X, y \notin X$. Folglich ist $e \in \delta(X) \neq \emptyset$.

 \Leftarrow : Widerspruchsannahme: G sei unzusammenhängend. Dann gibt es Knoten u,v, die nicht durch einen Weg in G verbunden sind. Es sei $X := \{w \in V \mid \exists u\text{-}v\text{-Weg in } G\},$ dann ist $u \in X$ und $v \notin X$. Behauptung: $\delta(X) = \emptyset$

 \implies Widerspruch! Denn gäbe es Kante $e \in \delta(X)und\Psi(e) = \{w,x\}, w \in X, x \notin X$, so gäbe es Weg von u über w und e nach x. Widerspruch zu $x \notin X$.

6.10 Branchings und Arboreszenzen

Definition 6.7. Ein gerichteter Graph G ist ein Branching, falls der zu Grunde liegende ungerichtete Graph ein Wald ist und $|\delta^-(v)| \leq 1$ für alle Knoten v. Ein zusammenhängendes Branching heißt Arboreszenz.

Bäume, Wälder, Blätter

26. November 2024

Bemerkung. • Eine Arboreszenz mit n Knoten hat genau n-1 Kanten.

- Folglich existiert genau ein Knoten r mit $\delta^-(r) = \emptyset$.
- Für eine Kante (v, w) eines Branchings heißt w Nachfolger von v und v Vorgänger von w.
- Ein Knoten ohne Nachfolger heißt Blatt.

Satz 6.8. Für gerichtete Graphen $G, r \in V(G)$ sind folgende Aussagen äquivalent:

- (i) G ist eine Arboreszenz mit Wurzel r.
- (ii) G ist ein Branching mit |V(G)| 1 Kanten und $\delta^-(r) = \emptyset$.
- (iii) G hat |V(G)| 1 Kanten und jeder Knoten ist von r aus erreichbar.
- (iv) Jeder Knoten ist von r aus erreichbar. Entfernen einer beliebigen Kante zerstört diese Eigenschaft.
- (v) G erfüllt $\delta^+(X) \neq \emptyset$ für alle $X \subsetneq V$ mit $r \in X$. Entfernen einer beliebigen Kante zerstört diese Eigenschaft.
- (vi) $\delta^-(x) = \emptyset$ und $\forall v \in V(G)$ gibt es einen eindeutigen r-v-Kantenzug.
- (vii) $\delta^-(r) = \emptyset$, $|\delta^-(v)| = 1$ für jedes $v \in V \setminus \{r\}$ und G ist kreisfrei.

Satz 6.9. Ein gerichteter Graph G ist genau dann stark zusammenhängend, wenn er für jedes $r \in V(G)$ aufspannende Arboreszenz mit Wurzel r enthält.