Assignment3

- Zitong Huang, 12432670, Computer Science and Engineering
- 3d Gaussian Splatting for Scene Reconstruction
- Prof. Feng Zheng

Task 3-1

Example: 5 Machine and 3 Jobs

- N(Machinese) = 5
- Jobs: $t_i = \{3, 1, 2\}$

Example: 6 Machine and 4 Jobs

- N(Machine) = 3
- Jobs: $t_i = \{1, 6, 2, 5\}$

Task 3-2: Example 1

- N(Machine) = 3
- Jobs: $t_i = \{1, 2, 5, 6\}$

Example:

- allocate order t_1, t_2, t_3, t_4 :
- 1. allocate $t_1 = 1$ to machine 1. *Load*: {1, 0, 0}
- 2. allocate $t_2 = 2$ to machine 2. Load: {1, 2, 0}
- 3. allocate $t_3 = 5$ to machine 3. *Load*: {1, 2, 5}
- 4. allocate $t_4 = 6$ to machine 1. *Load*: {7, 2, 5}

Maximum load: 7

Order of allocation affects the final load of each machine.

- allocate order t_4 , t_3 , t_2 , t_1 :
- 1. allocate t_4 to machine 1. Load: {6, 0, 0}
- 2. allocate *t*₃ to machine 2. *Load*: {6, 5, 0}
- 3. allocate *t*₂ to machine 3. *Load*: {6, 5, 2}
- 4. allocate *t*₁ to machine 3. *Load*: {6, 5, 3}

Maximum load: 6

Task 3-2: Example 2

- N(Machine) = 3
- Jobs: $t_i = \{5, 5, 5, 5, 10\}$

Example:

- allocate order t_1 , t_2 , t_3 , t_4 , t_5 :
- 1. allocate $t_1 = 5$ to machine 1. Load: {5, 0, 0}
- 2. allocate $t_2 = 5$ to machine 2. Load: {5, 5, 0}
- 3. allocate $t_3 = 5$ to machine 3. Load: {5, 5, 5}
- 4. allocate $t_4 = 5$ to machine 1. *Load*: {10, 5, 5}
- 5. allocate $t_5 = 10$ to machine 2. Load: {10, 15, 5}

Maximum load: 15

- allocate order t_5, t_4, t_3, t_2, t_1 :
- 1. allocate $t_5 = 10$ to machine 1. Load: {10, 0, 0}
- 2. allocate $t_4 = 5$ to machine 2. Load: {10, 5, 0}
- 3. allocate $t_3 = 5$ to machine 3. *Load*: {10, 5, 5}
- 4. allocate $t_2 = 5$ to machine 2. *Load*: {10, 10, 5}
- 5. allocate $t_1 = 5$ to machine 3. Load: {10, 10, 10}

Maximum load: 10

Task 3-3: 2 Machine and 3 Jobs

- Proof:
 - Assume $t_i = \{a, b, c\}$, where a > b > c
 - Worst case of greedy algorithm: $T_{worst} = max(a, b, c) + min(b, c) = a + c$
 - Optimal solution: T = max(a, b + c)
 - We have

$$\frac{T}{T^*} = \begin{cases} a/(a+c) & \text{if } (a \ge b+c) \\ (b+c)/(a+c) & \text{if } (a < b+c) \end{cases} (1)$$

Simplify, we have $\frac{T}{T^*} >= \frac{2}{3}$

- Example:
 - \bullet $t_i = \{10, 5, 5\}$
 - Greedy algorithm: $T_{worst} = 15$, Optimal solution: T * = 10

Task 3-3: 4 Machine and 7 Jobs

Example:

- $T_{worst}: 20, 20, 50 = 50$
- T*: 30, 30, 30 = 30

Task 3-3: *m* Machine and *n* Jobs

- Assume $t_i = \{t_1, t_2, ..., t_n\}$, where $t_1 \ge t_2 \ge ... \ge t_n$, and $n \gg m$
- Worst case of greedy algorithm: $T_{worst} = t_1 + min_{S_{n-1}}$, since minimum value in solution of $T_{n-1} = (t_2, t_3, ..., t_n)$ on m machine satisfied $min_{S_{n-1}} \le \frac{sum(t_2, t_3, ..., t_n)}{m}$
- Optimal solution: $T^* \ge \frac{sum(t_1,t_2,t_3,...,t_n)}{m}$

We have $\frac{T_{worst}}{T^*} = \frac{t_1 + S_{n-1}}{T^*}$

■ For some spetial cases that $t_1 = \frac{sum(t_2,...,t_n)}{(m-1)}$ (like examples above), $T^* = \frac{sum(t_1,t_2,t_3,...,t_n)}{m} = t_1$, $T_{worst} = t_1 + min_{S_{n-1}} \ge t_1 + \frac{sum(t_2,t_3,...,t_n)}{m}$, We have:

$$Ratio_{max} = \frac{t_1 + \frac{sum(t_2, t_3, ..., t_n)}{m}}{t_1} = \frac{t_1 + \frac{(m-1)t_1}{m}}{t_1} = \frac{2m-1}{m} \rightarrow 2(when m \rightarrow \infty)$$

Thus, when $t_1 = \frac{sum(t_2,...,t_n)}{m-1}$, and the ratio is maximum close to 2.