IFT 615 – Intelligence artificielle

Réseaux bayésiens dynamiques

Hugo Larochelle

Département d'informatique

Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

Sujets couverts

- Qu'est-ce qu'un réseau bayésien dynamique (RBD)?
- Types d'inférence dans un RBD
- Cas particulier des modèles de Markov cachés

Réseaux bayésiens dynamiques (RBD)

- Comment modéliser des situations dynamiques?
 - les changements dynamiques peuvent être vus comme une séquence d'états, chaque état représentant la situation à un instant t donné
 - X_t: ensemble des variables non observables (cachées) décrivant l'état au temps t
 - \bullet E_t : ensembles de **variables observées** (*evidence*) au temps t
- Le terme dynamique réfère au dynamisme du système qu'on veut modéliser et la structure du réseau

- Reconnaissance de la parole
 - ◆ E_t sont les éléments du signal sonore
 - ♦ X_t sont les mots prononcés

Traduction automatique

- ◆ E_t sont les mots en français
- \bullet X_t sont les mots de la traduction en anglais

- Suivi d'objets (tracking)
 - \bullet E_t sont les *frames* de la vidéoe
 - \diamond X_t sont l'information sur la position d'un/des objet(s)

http://www.youtube.com/watch?v=fRowYlxKt7s

Localisation de robots

- \bullet E_t sont l'information fournie par les capteurs du robot
- \diamond X_t sont l'information sur la position du robot

Représentation dans un RBD

Problème:

- → il faudrait spécifier un grand nombre (même infini) de tables de probabilités conditionnelles, c.-à-d. une pour chaque temps t
- chaque table pourrait impliquer un nombre infini de parents

Solution:

- 1. supposer que les changements dynamiques sont causés par un **processus stationnaire** les probabilités ne changent pas dans le temps: $P(X_t \mid Parent(X_t))$ **est la même** pour tous les t
- supposer que les changements dynamiques sont causés par un processus markovien – l'état courant dépend seulement d'un nombre fini d'états précédents
 - » ex.: processus markoviens du premier ordre:
 - $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$ modèle pour les transitions
- 3. supposer que l'observation dépend uniquement de l'état courant
 - $P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t)$ modèle pour les observations/capteurs

Exemple

- « Un gardien de sécurité passe un mois dans un édifice sous-terrain, sans sortir. Chaque jour, son directeur arrive avec ou sans parapluie. Le gardien veut inférer la possibilité qu'il ait plu ou non en fonction des séquences d' observation du parapluie. »
- Modélisation:
 - ♦ Variables: $X_t = \{R_t\}$ (pour « *Rain* ») et $E_t = \{U_t\}$ (pour « *Umbrella* »).
 - Dépendances entre les variables (c-.à-d., le RBD):

♦ Modèle des transitions: $P(R_t \mid R_{t-1})$. Modèle d'observation: $P(U_t \mid R_t)$

Types d'inférence dans un RBD

 Filtrage (filtering): calcul de l'état de croyance (belief state), c.-à-d. la distribution a posteriori de la variable cachée la plus récente

$$\mathbf{P}(X_t | e_{1:t})$$

- 🔷 ex. : quelle est la probabilité qu'il pleuve aujourd'hui ?
- ex. : quelle est la croyance du robot par rapport à sa position actuelle ?
- **Prédiction**: calculer la distribution a posteriori sur un état futur

$$P(X_{t+k}|e_{1:t})$$
 où k > 0

ex. : quelle est la probabilité qu'il pleuve dans k jours ?

Types d'inférence dans un RBD

Lissage (smoothing): calculer la distribution a posteriori sur un état passé

$$P(X_k | e_{1:t})$$
 où $0 \le k < t$

- \bullet ex. : quelle est la probabilité qu'il y ait eu de la pluie hier (k=t-1) ?
- Explication la plus plausible: trouver la séquence d'états cachés qui explique le mieux les observations

$$\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t} | e_{1:t}) = \underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}, e_{1:t}) / P(e_{1:t}) = \underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t}, e_{1:t})$$

- •ex. : quelle a été la météo la plus probable pour toutes les t dernières journées ?
- ex. : quelle est la traduction en anglais d'une phrase donnée en français ?
- ◆ex. : quelle est la phrase qui a été prononcée ?

Chaînes de Markov

- Une chaîne de Markov (de premier ordre) est un cas particulier de RBD
 - avec une seule variable aléatoire discrète S, dans l'état au temps t
- Le domaine de S_t est souvent un symbole (ex.: un caractère, un mot, etc.)
- Une distribution a priori (initiale) de probabilités sur les symboles (états) est spécifiée $P(S_1)$
- Une matrice de transition contenant les probabilités conditionnelles $P(S_{t+1} \mid S_t)$

Illustration

Illustration dans le cas d'une chaîne finie

Probabilité de générer une chaîne

produit des probabilités, une pour chaque terme de la séquence

Visualisation d'une chaîne de Markov

Représentation matricielle

Symbole actuel

 a
 b
 c

 a
 .7
 .3
 0

 Prochain symbole
 b
 .2
 .7
 .5

 c
 .1
 0
 .5

Représentation graphique

Illustration dans le cas d'une chaîne infinie (flux de symboles)

Exemple de chaîne: ccbbbbaaaaabaabacbabaaa

Modèle de Markov caché

- Dans une modèle de Markov caché (hidden Markov model ou HMM):
 - il y a des variables cachées H_t et des variables d'observation S_t, toutes les deux discrètes
 - la chaîne de Markov est sur les variables cachées H_t
 - le symbole observé (émis) $S_t = s_t$ dépend uniquement de la variable cachée actuelle H_t

Illustration

Illustration dans le cas d'une chaîne finie

Probabilité de générer une séquence cachée et une séquence visible

Simuler d'un HMM

- Il est facile de générer des observations d'un HMM
 - \diamond échantillonner une valeur initiale $H_1 = h_1$ de $P(H_1)$
 - \diamond pour t = 2 jusqu'à T, répéter les deux échantillonnage suivants:
 - » utiliser les probabilités de transition de l'état caché courant pour obtenir un échantillon h_t , sachant l'état caché précédent: $\mathbf{P}(H_t \mid H_{t-1} = h_{t-1})$
 - » utiliser les probabilités de sortie de la variable d'observation étant donné l'état caché courant, pour obtenir le symbole d'observation (émission) s_t : $P(S_t \mid H_t = h_t)$
- On peut aussi générer la séquence des états cachés d'abord et ensuite générer les observations
 - les variables cachées dépendent uniquement des variables cachées précédentes
 - chaque observation (émission) ne dépendra pas des autres

Illustration

Illustration dans le cas d'une **chaîne infinie**, avec visualisation des valeurs de la variable cachée et la variable d'observation

Chaque **nœud caché** (valeur possible *h* de *H*) a un vecteur de **probabilités de transitions** et un **vecteur de probabilités d'émission (observations)**

Probabilité de générer une séquence visible

- La même séquence de sortie peut être produite par plusieurs séquences cachées différentes
- En fait, il y a un nombre exponentiel de séquences cachées possibles
- Un calcul naïf est donc très inefficace

$$P(S_{1:T}) = \sum_{h_{1:T}} P(H_{1:T} = h_{1:T}) P(S_{1:T} \mid H_{1:T} = h_{1:T})$$

- Une façon plus efficace de calculer la probabilité d'une séquence observée $s_{1:T}$
- Idée: utiliser la programmation dynamique
 - on définit $\alpha(i,t) = P(S_{1:t} = s_{1:t}, H_t = i)$
 - on note la récursion

$$\begin{aligned} \alpha(i,t+1) &= P(S_{1:t+1} = s_{1:t+1}, \ H_{t+1} = i) \\ &= \sum_{j} P(S_{1:t+1} = s_{1:t+1}, \ H_{t} = j, \ H_{t+1} = i) \\ &= P(S_{t+1} = s_{t+1} | \ H_{t+1} = i) \sum_{j} P(\underline{H}_{t+1} = i | \ H_{t} = j) \ P(S_{1:t} = s_{1:t}, \ H_{t} = j) \\ &= P(S_{t+1} = s_{t+1} | \ H_{t+1} = i) \sum_{j} P(H_{t+1} = i | \ H_{t} = j) \ \alpha(j,t) \end{aligned}$$

on a les valeurs initiales

$$\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$$

• Une fois le tableau α calculé, on obtient facilement:

$$P(S_{1:T} = s_{1:T}) = \sum_{i} P(S_{1:T} = s_{1:T}, H_T = j) = \sum_{i} \alpha(j,T)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\alpha(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
ι(i,t)	0	0.45			
8	1				

• initialisation: $\alpha(0,1) = P(S_1=0 \mid H_1=0) P(H_1=0) = 0.9 \times 0.5 = 0.45$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45			
0	1	0.1			

• initialisation: $\alpha(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

,	i t	1	2	3	4
t(i,t)	0	0.45	\Rightarrow		
ō	1	0.1	$\stackrel{\frown}{\longrightarrow}$		

• récursion (t=1): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{i} P(H_{t+1} = i | H_t = j) \alpha(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	\rightarrow		
σ	1	0.1			

• récursion: $\alpha(0,2) = P(S_2 = 1 | H_2 = 0) (P(H_2 = 0 | H_1 = 0) \alpha(0,1) + P(H_2 = 0 | H_1 = 1) \alpha(1,1))$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175		
ō	1	0.1			

 \bullet récursion: $\alpha(0,2) = 0.1 (0.3 \times 0.45 + 0.4 \times 0.1) = 0.0175$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0175		
8	1	0.1_	\rightarrow		

• récursion: $\alpha(1,2) = P(S_2 = 1 | H_2 = 1)$ ($P(H_2 = 1 | H_1 = 0)$ $\alpha(0,1) + P(H_2 = 1 | H_1 = 1)$ $\alpha(1,1)$)

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
α(i,t)	0	0.45	0.0175		
0	1	0.1	0.3		

• récursion: $\alpha(1,2) = 0.8 (0.7 \times 0.45 + 0.6 \times 0.1) = 0.3$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	\Rightarrow	
ō	1	0.1	0.3 =	$\stackrel{\frown}{\longrightarrow}$	

• récursion (t=2): $\alpha(i,t+1) = P(S_{t+1} = s_{t+1} | H_{t+1} = i) \sum_{i} P(H_{t+1} = i | H_{t} = j) \alpha(j,t)$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	
0	1	0.1	0.3		

 \bullet récursion: $\alpha(0,3) = 0.9 (0.3 \times 0.0175 + 0.4 \times 0.3) = 0.112725$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	0.04427
ð	1	0.1	0.3	0.03845	0.02039

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

Filtrage dans un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

	i t	1	2	3	4
α(i,t)	0	0.45	0.0175	0.112725	0.04427
ō	1	0.1	0.3	0.03845	0.02039

on peut calculer les probabilités de filtrage

$$P(H_4 = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = P(H_4 = 0, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$\sum_{i} P(H_4 = i, S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

$$= \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$$

$$= 0.04427 / (0.04427 + 0.02039)$$

$$\approx 0.6847$$

$$P(H_4 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = 0.02039 / (0.04427 + 0.02039)$$

 ≈ 0.3153

- Le calcul des α(i,t) donne un balayage de gauche à droite
- On peut faire la même chose, mais de droite à gauche
 - on définit $\beta(i,t) = P(S_{t+1:T} = S_{t+1:T} \mid H_t = i)$
 - on note la récursion

$$\begin{split} \beta(i,t-1) &= P(S_{t:T} = s_{t:T} \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t:T} = s_{t:T}, H_{t} = j \mid H_{t-1} = i) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) P(H_{t} = j \mid H_{t-1} = i) P(S_{t+1:T} = s_{t+1:T} \mid H_{t} = j) \\ &= \sum_{j} P(S_{t} = s_{t} \mid H_{t} = j) P(H_{t} = j \mid H_{t-1} = i) \beta(j,t) \end{split}$$

- \diamond on a les valeurs initiales $\beta(i,T) = 1 \forall i$
- Une fois le tableau β calculé, on obtient facilement:

$$P(S_{1:T} = s_{1:T}) = \sum_{j} P(S_{1:T} = s_{1:T}, H_1 = j)$$

$$= \sum_{j} P(S_{2:T} = s_{2:T} | H_1 = j) P(S_1 = s_1 | H_1 = j) P(H_1 = j)$$

$$= \sum_{j} \beta(j,1) P(S_1 = s_1 | H_1 = j) P(H_1 = j)$$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

•	j	1	2	3	4
(i,t)	0				
Ð	1				

initialisation: β(i,4) = 1

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	:	1 2	3	4
(i,t)	0				1
β	1				1

• initialisation: $\beta(i,4) = 1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

,	i t	1	2	3	4
(i,t)	0			*	_ 1
В	1			K	1

• récursion (t=4): $\beta(i,t-1) = \sum_{i} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(0,3) = P(S_4=0 | H_4=0) P(H_4=0 | H_3=0) \beta(0,4) + P(S_4=0 | H_4=1) P(H_4=1 | H_3=0) \beta(1,4)$$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	:	2	3	4
β(i,t)	0			0.41	1
മ	1				1

• récursion $\beta(0,3) = 0.9 \times 0.3 \times 1 + 0.2 \times 0.7 \times 1 = 0.41$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion
$$\beta(1,3) = P(S_4=0 | H_4=0) P(H_4=0 | H_3=1) \beta(0,4) + P(S_4=0 | H_4=1) P(H_4=1 | H_3=1) \beta(1,4)$$
Hugo Larochelle

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0			0.41	1
മ	1			0.48	1

 \bullet récursion $\beta(1,3) = 0.9 \times 0.4 \times 1 + 0.2 \times 0.6 \times 1 = 0.48$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

•	i t	1	2	3	4
β(i,t)	0		*	0.41	1
8	1		K	0.48	1

• récursion (t=3): $\beta(i,t-1) = \sum_{j} P(S_t = s_t | H_t = j) P(H_t = j | H_{t-1} = i) \beta(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

• récursion
$$\beta(0,2) = P(S_3=0 | H_3=0) P(H_3=0 | H_2=0) \beta(0,3) + P(S_3=0 | H_3=1) P(H_3=1 | H_2=0) \beta(1,3)$$
Hugo Larochelle

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0		0.1779	0.41	1
മ	1			0.48	1

 \bullet récursion $\beta(0,2) = 0.9 \times 0.3 \times 0.41 + 0.2 \times 0.7 \times 0.48 = 0.1779$

Exemple: décoder un message binaire avec canal bruité (T=4)

• message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
β(i,t)	0	0.120249	0.1779	0.41	1
æ	1	0.105612	0.2052	0.48	1

on continue d'appliquer la récursion jusqu'au début (t=1)...

Lissage avec un HMM

 Les tables α(i,t) et β(i,t) peuvent également être utilisées pour faire du lissage

$$P(H_k = i \mid S_{1:T} = S_{1:T}) = P(H_k = i, S_{1:k} = S_{1:k}, S_{k+1:T} = S_{k+1:T}) / \Upsilon$$
 (Y est la normalisation)
= $P(H_k = i, S_{1:k} = S_{1:k}) P(S_{k+1:T} = S_{k+1:T} \mid H_k = i) / \Upsilon$
= α(i,k) β(i,k) / Υ

On peut également faire du lissage sur deux variables cachées adjacentes

$$P(H_k = i, H_{k+1} = j \mid S_{1:T} = S_{1:T}) = P(H_k = i, H_{k+1} = j, S_{1:k} = S_{1:k}, S_{k+1:T} = S_{k+1:T}) / \Upsilon'$$

$$= P(H_k = i, S_{1:k} = S_{1:k}) P(H_{k+1} = j \mid H_k = i) P(S_{k+1} = S_{k+1} \mid H_{k+1} = j)$$

$$P(S_{k+2:T} = S_{k+2:T} \mid H_{k+1} = j) / \Upsilon'$$

$$= α(i,k) β(j,k+1) P(H_{k+1} = j \mid H_k = i) P(S_{k+1} = S_{k+1} \mid H_{k+1} = j) / \Upsilon'$$

 À noter que Υ correspond à une somme sur i seulement, tandis que Υ' est une somme sur i et j

Lissage avec un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

	i t	•••	2	•••
α(i,t)	0	•••	0.0175	•••
0	1		0.3	

	i t	•••	2	•••
β(i,t)	0		0.1779	•••
œ.	1		0.2052	

on peut calculer les probabilités de lissage au temps t=2

$$P(H_2 = 0 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0) = \frac{\alpha(0,2) \beta(0,2)}{\sum_i \alpha(i,2) \beta(i,2)}$$

$$= \alpha(0,2) \beta(0,2) / (\alpha(0,2) \beta(0,2) + \alpha(1,2) \beta(1,2))$$

$$= 0.0175 \times 0.1779 / (0.0175 \times 0.1779 + 0.3 \times 0.2052)$$

≈ 0.04813

$$P(H_2 = 1 \mid S_1 = 0, S_2 = 1, S_3 = 0, S_4 = 0)$$

= 0.3 x 0.2052 / (0.0175 x 0.1779 + 0.3 x 0.2052)
 ≈ 0.95186

- $\alpha(i,t)$ peut être utilisé pour inférer la distribution de prédiction $P(H_{t+k}|s_{1:t})$
- On utilise également un programme dynamique
 - on définit $\pi(i,k) = P(H_{t+k} = i | S_{1:t} = s_{1:t})$
 - on note la récursion

$$\begin{split} \pi(i,k+1) &= P(H_{t+k+1} = i \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_{s} \sum_{j} P(H_{t+k+1} = i,\, H_{t+k} = j,\, S_{t+k} = s \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_{s} \sum_{j} P(S_{t+k} = s \,|\, H_{t+k} = j) \,P(H_{t+k+1} = i \,|\, H_{t+k} = j) \,P(H_{t+k} = j \,|\, S_{1:t} = s_{1:t}) \\ &= \sum_{j} P(H_{t+k+1} = i \,|\, H_{t+k} = j) \,P(H_{t+k} = j \,|\, S_{1:t} = s_{1:t}) \,\sum_{s} P(S_{t+k} = s \,|\, H_{t+k} = j) \\ &= \sum_{i} P(H_{t+k+1} = i \,|\, H_{t+k} = j) \,\pi(j,k) \end{split}$$

on a les valeurs initiales

$$\pi(\mathsf{i},0) = P(H_t = i \,|\, s_{1:t}) = \alpha(\mathsf{i},\mathsf{t}) \,/\, \sum_{\mathsf{j}} \alpha(\mathsf{j},\mathsf{t}) \quad \forall i$$

- On pourrait également faire une prédiction de S_{t+k}
 - $P(S_{t+k} = s | S_{1:t} = s_{1:t}) = \sum_{j} P(S_{t+k} = s | H_{t+k} = j) P(H_{t+k} = j | S_{1:t} = s_{1:t})$ $= \sum_{j} P(S_{t+k} = s | H_{t+k} = j) \pi(j,k)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\pi(i,0) = \alpha(i,t) / \sum_i \alpha(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	t	•••	4
α(i,t)	0	•••	0.04427
O	1	•••	0.02039

•	j k	0	1	2
r(i,k)	0			
F	1			

• initialisation: $\pi(0,0) = \alpha(0,4) / (\alpha(0,4) + \alpha(1,4))$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
0	1		0.02039

	i k	0	1	2
τ(i,k)	0	0.68466		
F	1			

• initialisation: $\pi(0,0) = 0.04427 / (0.04427 + 0.02039) = 0.68466$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
7	1		0.02039

•	j k	0	1	2
π(i,k)	0	0.68466		
F	1	0.31534		

 \bullet initialisation: $\pi(1,0) = 0.02039 / (0.04427 + 0.02039) = 0.31534$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
0	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466		
F	1	0.31534		

• récursion (k=0): $\pi(i,k+1) = \sum_{j} P(H_{t+k+1} = i | H_{t+k} = j) \pi(j,k)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j k	0	1	2
r(i,k)	0	0.68466	}	
F	1	0.31534		

• récursion (k=0): $\pi(0, 1) = P(H_5 = 0 | H_4 = 0) \pi(0,0) + P(H_5 = 0 | H_4 = 1) \pi(1,0)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0	•••	0.04427
O	1	•••	0.02039

,	i k	0	1	2
п(i,k)	0	0.68466	0.33154	
F	1	0.31534		

• récursion (k=0): $\pi(0, 1) = 0.3 \times 0.68466 + 0.4 \times 0.31534 = 0.33154$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

•	j k	0	1	2
τ(i,k)	0	0.68466	0.33154	
K	1	0.31534	\overrightarrow{A}	

• récursion (k=0): $\pi(1, 1) = P(H_5 = 1 | H_4 = 0) \pi(0,0) + P(H_5 = 1 | H_4 = 1) \pi(1,0)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i	•••	4
α(i,t)	0	•••	0.04427
ō	1	•••	0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	
F	1	0.31534	0.66846	

 \bullet récursion (k=0): $\pi(0, 1) = 0.7 \times 0.68466 + 0.6 \times 0.31534 = 0.66846$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
0	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	0.36685
F	1	0.31534	0.66846	0.63315

on continue d'appliquer la récursion jusqu'à la fin (k=2)...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - on souhaite calculer la distribution de prédiction $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0)$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	•••	4
α(i,t)	0		0.04427
ō	1		0.02039

	i k	0	1	2
π(i,k)	0	0.68466	0.33154	0.36685
F	1	0.31534	0.66846	0.63315

$$\bullet$$
 $P(H_6=0 \mid S_1=0, S_2=1, S_3=0, S_4=0) = \pi(0,2) = 0.36685$

- On peut également éviter une énumération exponentielle
 - exemple avec T=3 $\max_{h^*_{1:3}} P(h^*_1) P(s_1|h^*_1) P(h^*_2|h^*_1) P(s_2|h^*_2) P(h^*_3|h^*_2) P(s_3|h^*_3)$ $= \max_{h^*_{3}} P(s_3|h^*_3) \max_{h^*_{2}} P(s_2|h^*_2) P(h^*_3|h^*_2) \max_{h^*_{1}} P(h^*_2|h^*_1) P(h^*_1) P(s_1|h^*_1)$
- Solution: programmation dynamique, avec un max au lieu de la somme
 - on définit $\alpha^*(i,t) = P(S_{1:t} = S_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = i)$
 - on note la récursion

$$\alpha^*(i,t+1) = \max_{j} P(S_{1:t+1} = S_{1:t+1}, H_{1:t-1} = h^*_{1:t-1}, H_t = j, H_{t+1} = i)$$

$$= \max_{j} P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) P(H_{t+1} = i \mid H_t = j) P(S_{1:t} = S_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = j)$$

$$= P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_{j} P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$$

- on a les valeurs initiales: $\alpha^*(i,1) = P(S_1 = s_1 | H_1 = i) P(H_1 = i) \forall i$
- On a alors que $P(S_{1:T} = S_{1:T}, H_{1:T} = h^*_{1:T}) = \max_{j} \alpha^*(j,T)$
- On retrouve $h^*_{1:T}$ à partir de tous les argmax_i

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

• initialisation: $\alpha^*(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 | H_1 = i) P(H_1 = i)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45			
ō	1				

• initialisation: $\alpha^*(0,1) = P(S_1=0 | H_1=0) P(H_1=0) = 0.9 \times 0.5 = 0.45$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

_	i t	1	2	3	4
(i,t)	0	0.45			
ō	1	0.1			

• initialisation: $\alpha^*(1,1) = P(S_1=0 \mid H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	j	1	2	3	4
*(i,t	0	0.45	\Rightarrow		
8	1	0.1	\rightarrow		

• récursion (t=1): $\alpha^*(i,t+1) = P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_j P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
.*(i,t)	0	0.45	\rightarrow		
ō	1	0.1			

• récursion: $\alpha^*(0,2) = P(S_2=1|H_2=0) \max\{P(H_2=0|H_1=0) \alpha^*(0,1), P(H_2=0|H_1=1) \alpha^*(1,1)\}$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135		
ō	1	0.1			

• récursion: $\alpha^*(0,2) = 0.1 \text{ max} \{ 0.3 \times 0.45, 0.4 \times 0.1 \} = 0.0135$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

_	i t	1	2	3	4
:*(i,t)	0	0.45	0 .0135		
8	1	0.1-	\rightarrow		

• récursion: $\alpha^*(1,2) = P(S_2=1|H_2=1) \max\{P(H_2=1|H_1=0) \alpha^*(0,1), P(H_2=1|H_1=1) \alpha^*(1,1)\}$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135		
ð	1	0.1	0.252		

• récursion: $\alpha^*(1,2) = 0.8 \text{ max} \{ 0.7 \times 0.45, 0.6 \times 0.1 \} = 0.252$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0 .0135 •	\Rightarrow	
ō	1	0.1	0.252		

• récursion (t=2): $\alpha^*(i,t+1) = P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_i P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0 .0135	0.09072	
ō	1	0.1	0.252		

• récursion: $\alpha^*(0,3) = 0.9 \text{ max} \{ 0.3 \times 0.0135, 0.4 \times 0.252 \} = 0.09072$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

$\alpha^*(i,t)$	i t	1	2	3	4
	0	0.45	0.0135	0.09072	0.02449
	1	0.1	0.252	0.03024	0.01270

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

Explication la plus plausible avec un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

	i t	1	2	3	4
(i,t)	0	0.45	0.0135	0.09072	0.02449
0	1	0.1	0.252	0.03024	0.01270

on trouve le maximum à la dernière colonne...

Explication la plus plausible avec un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

.	i t	1	2	3	4
.*(i,t	0	0.45	0.0135	0.09072	0.02449
ð	1	0.1	0.252	0.03024	0.01270

... puis on retrouve le chemin qui a mené là

Explication la plus plausible avec un HMM

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=1$, $S_3=0$, $S_4=0$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.4
$P(H_t=1 \mid H_{t-1})$	0.7	0.6

Distribution initiale

	H ₁ =0	H ₁ =1
<i>P</i> (<i>H</i> ₁)	0.5	0.5

	i t		1		2		3		4
α*(i,t)	0		0.45	0.0	0135	0.0	9072	0.0	2449
8	1		0.1	0	.252	0.0	3024	0.0	1270
		H_1	=0	H ₂ =	-1	H_3	=0	H	₁ =0

ce chemin nous donne la séquence des H_t la plus probable

Filtrage en ligne avec RBD

- Étant donné mon état de croyance actuel $P(X_t \mid e_{1:t})$
 - lack comment le mettre à jour après une nouvelle observation $e_{\rm t+1}$ en temps réel
- En appliquant la règle de Bayes et l'hypothèse markovienne, nous arrivons à:

$$P(X_{t+1} \mid e_{1:t+1}) = P(X_{t+1} \mid e_{1:t}, e_{t+1})$$

$$= P(e_{t+1} \mid X_{t+1}) \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t \mid e_{1:t}) / \alpha$$

$$= P(e_{t+1} \mid X_{t+1}) \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t \mid e_{1:t}) / \alpha$$

probabilité de la nouvelle observation (disponible dans la table des probabilités)

prédiction du prochain état en se basant sur notre état de croyance au temps t

Exemple de l'agent de sécurité

RBD:

- \diamond une distribution de **probabilité a priori P**(R_0), par exemple [0.5, 0.5]
- \diamond un **modèle des transition P**($R_t | R_{t-1}$)
- \bullet un **modèle d'observation P**($U_t | R_t$)

R _{t-1}	$P(r_{t} R_{t-1})$
V	0.7
F	0.3
R _t	$P(u_t R_t)$

R_t	$P(u_t R_t)$
V	0.9
F	0.2

- **Jour 1**: le parapluie apparait, $(U_1 = true \text{ ou } u_1)$
 - le filtrage de t=0 à t=1 est: $P(R_1 \mid u_1) = P(u_1 \mid R_1) P(R_1) \alpha$

Exemple de l'agent de sécurité

- **Jour 2**: le parapluie apparait de nouveau, c.-à-d., U_2 =true
 - ♦ le filtrage de *t*=1 à *t*=2 est:

$$P(R_2 \mid u_1, u_2) = P(u_2 \mid R_2) P(R_2 \mid u_1) / \alpha$$

= $(P(u_2 \mid R_2) \sum_{r_1} P(R_2 \mid r_1) P(r_1 \mid u_1)) / \alpha$

Améliorations sur le HMM

- Comment rendre un HMM (ou un RBD en général) plus précis?
 - augmenter l'ordre du modèle markovien
 - » ex.: $Rain_t$ aurait comme parents, non seulement $Rain_{t-1}$ mais aussi $Rain_{t-2}$ pour un processus markovien du second ordre
 - » ceci donnerait des prédictions plus précises
 - permettre des interactions directes entre la variables d'observation
 - » on pourrait avoir plutôt $P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t, E_{t-1})$
 - » ça peut rendre l'inférence encore plus complexe

Au delà du HMM

- Filtre de Kalman: cas où les variables d'observation et cachées ne sont pas discrètes mais sont plutôt réelles
 - voir livre de référence, section 15.4
- État caché avec structure complexe: cas où il n'est pas possible de faire une sommation exacte sur toutes les configurations de l'état caché
 - on doit alors approximer l'inférence
 - filtre particulaire (particle filter): inférence approximative basée sur l'échantillonnage, où on maintien une population stochastique de configurations (particules) de l'état caché
 - → à chaque temps t, on met à jour notre population de particules en tenant compte des nouvelles observations
 - voir livre de référence, section 15.5.3

Résumé

- Un réseau bayésien dynamique (RBD) permet de tenir compte de la nature séquentielle d'un environnement
- Un modèle de Markov caché (HMM) est un cas particulier de RBD avec
 - \bullet une seule variable cachée $X_t = \{H_t\}$ et une seule variable observée $E_t = \{S_t\}$
 - les variables H_t et S_t sont discrètes
- Il existe des procédures de programmation dynamique efficaces dans un HMM pour faire de l'inférence (filtrage, prédiction, lissage, explication la plus plausible)

Raisonnement probabiliste: pour quel type d'agent?

Simple reflex

Model-based reflex Sensors What the world is like now What my actions do What my action of the should do now Agent Actuators

Goal-based

Utiliy-based

Objectifs du cours

Vous devriez être capable de...

- Distinguer les différents types d'inférence
 - distribution de filtrage
 - distribution de prédiction
 - distribution de lissage
 - explication la plus plausible
- Décrire ce qu'est un modèle de Markov caché
 - \diamond connaître les définitions des tableaux α , β , π et α^* (que calcule ces tableaux?)
 - \diamond savoir utiliser des tableaux α , β , π et α^* pré-calculés
- Implémenter de l'inférence dans un modèle de Markov caché