Methodology, Modelling and Consultancy Skills

Assessment 1

Cameron Allan, Rohan Binaykia

S1748084, S2456709

Problem 1

To start we write the vectors (in transpose for ease of formatting)

$$X^{T}$$
 = (Brass Bronze Duralumin)
 M^{T} = (70000 100000 90000)
Sale^T = (8 16 14)
 Y^{T} = (Zinc Tin Aluminium)
 Q^{T} = (100000 75000 50000)
Cost^T = (5 2 8)
 C^{T} = (C_1 C_2 C_3)

Denoting the products, max production of each product, sale price of each product, the non-copper materials, the maximum quantity of each material we can buy, the costs of the non-copper materials, and the copper materials allotted to each alloy respectively. We should also note the maximum amount of copper we can use, $M_C = 80000$.

Let p_i represent the percentage of copper in the alloy x_i and let y_i denote the mass of the material in Y used

$$\frac{C_i}{C_i + y_i} = p_i$$

We can rewrite this so that the mass of each material used when blending our alloy is in terms of the mass of copper used.

$$y_i = \frac{1 - p_i}{p_i} \cdot C_i$$

This is useful as we can write our product masses in terms of the amount of copper used and the proportion of the alloy that will be copper.

$$x_i = 0.9 \cdot (y_i + C_i)$$

$$x_i = 0.9 \cdot (\frac{(1 - p_i)}{p_i} \cdot C_i + C_i)$$

$$x_i = 0.9 \cdot (\frac{(1 - p_i)}{p_i} + 1) \cdot C_i$$

$$x_i = 0.9 \cdot \frac{1}{p_i} \cdot C_i$$

We should now look at the profit per product (ppp) of copper of each alloy. Let Sale(i) denote the

ith entry of the Sale vector.

$$ppp(i) = Sale(i) \cdot x_i - Cost(i) \cdot y_i - 12 \cdot C_i$$

$$= Sale(i) \cdot 0.9 \cdot \frac{1}{p_i} \cdot C_i - Cost(i) \cdot \frac{(1 - p_i)}{p_i} \cdot C_i - 12 \cdot C_i$$

$$= C_i \left(\frac{9 \cdot Sale(i)}{10 \cdot p_i} + \frac{p_i \cdot Cost(i) - 12 \cdot p_i - Cost(i)}{p_i} \right)$$

$$= C_i \left(\frac{9 \cdot Sale(i) + 10 \cdot p_i \cdot Cost(i) - 120 \cdot p_i - 10 \cdot Cost(i)}{10 \cdot p_i} \right)$$

 $\frac{\text{ppp}(i)}{C_i}$ is our profit per kilogram of copper. In fact we have our linear programming problem we want to maximise now.

$$\sum_{i=1}^{3} ppp(i)$$

We want to maximise $\frac{\text{ppp}(i)}{C_i}$ for maximal profit per kilogram of copper. $\frac{\text{ppp}(i)}{C_i}$ is decreasing on all the following intervals of p_i

$$0.2 \le p_1 \le 0.5$$

$$0.6 \le p_2 \le 0.8$$

$$0.1 \le p_3 \le 0.5$$

As such we want to minimise p_i in each case. To show this is a linear optimisation problem we want to write the objective function in the form

$$S^TC$$

which is rather easy as we saw above the obvious choice for S_i is

$$s_i = \frac{\text{ppp}(i)}{C_i}$$

as such we have

$$S^T = (4 \ \frac{32}{3} \ 42)$$

From here we just need to add our constraints.

$$\sum_{i=1}^{3} C_{i} \leq 80000 = M_{C}$$

$$x_{i} = \frac{9 \cdot C_{i}}{10 \cdot p_{i}} \leq M_{i}$$

$$y_{i} = \frac{(1 - p_{i})}{p_{i}} \cdot C_{i} \leq Q_{i}$$

$$\max \{\sum_{i=1}^{3} S_{i}C_{i} | \sum_{i=1}^{3} C_{i} \leq M_{C}, \ x_{i} = \frac{9 \cdot C_{i}}{10 \cdot p_{i}} \leq M_{i}, \ y_{i} = \frac{(1 - p_{i})}{p_{i}} \cdot C_{i} \leq Q_{i} \}$$