Finite representation of real numbers

Dr. Ing. Rodrigo Gonzalez

rodralez@frm.utn.edu.ar

Técnicas Digitales III

Universidad Tecnológica Nacional, Facultad Regional Mendoza.

Fixed-point

Resumen

- Coder
- Integers
- Fixed-point
 - Fractional point
 - Scale factor
 - Dynamic range
 - Addition
 - Overflow
 - Saturation
 - Multiplication
 - Accumulator

- Rounding schemes
- Floating-point
 - Number Representation
 - Standards
 - Normalized Form
 - De-normalized Form
 - Rounding schemes
 - Dynamic range
 - Precision
 - Sum of two floating-point positive numbers
- Fixed-point vs floating-point

Representation

Unsigned integers

- An N-bit binary word can represent a total of 2^N separate values.
- Range: 0 to 2^N − 1

•
$$n_{10} = 2^{N-1}b_{N-1} + 2^{N-2}b_{N-2} + \dots + 2^{1}b_{1} + 2^{0}b_{0}$$

2's complement signed integers

• Range:
$$-2^{N-1}$$
 to $2^{N-1} - 1$.

•
$$n_{10} = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

How much	bits are needed	to represent	$-\alpha_{min}$	$< \alpha$	$< \alpha_{max}$?

N = floor	(log_(m	ax([α_{min}	· Omay]	۱) ٦	ر 2 ا
/ v — 11001	(IOg ₂ (III	$\alpha \wedge (\alpha m_{ll})$	n, cemaxi	,, ,	,

Bit Pattern	Unsigned	2's Complemen
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
•	•	•
•	•	•
0111 1110	126	126
0111 1111	127	127
1000 0000	128	-128
1000 0001	129	-127
•	•	•
•	•	•
1111 1110	254	-2
1111 1111	255	-1

Representation, cont'd

$$N = floor(log_2(max([\alpha_{min}, \alpha_{max}])) + 2)$$

MATLAB

- \bigcirc » a_m = 15; a_M = 15;
- ② » N = floor (log2 (max ([a_m , a_M])) + 2);

Representation, cont'd

$$N = \text{floor}(\log_2(\max([\alpha_{min}, \alpha_{max}])) + 2)$$

MATLAB

- \bigcirc » a_m = 15; a_M = 15;
- ② » N = floor (log2 (max ([a_m , a_M])) + 2);
- \odot » N = 5.00

"Q" notation

The fractional notation can be applied to the 2's complement notation.

Fixed-point

•0000000000000

Qm.n

- m represents the number of bits to the left of the binary point.
- n represents the number of bits to the right of the binary point.
- The weights of bits that are to the right of the binary point are negative powers of 2: $2^{-1} = \frac{1}{2}$, $2^{-2} = \frac{1}{4}$..., etc.
- The naming convention does not take the MSB of the number (sign bit) into account. A Qm.n notation therefore uses m + n + 1 bits.
- Precision: 2⁻ⁿ.
- Range: -2^m to $2^m 2^{-n}$.

"Q" notation, cont'd

For instance:

Fractional point

- Q0.15 (Q15)
 - 16 bits;
 - Range: -1 to 0.99996948;
 - Precision: 1/32768 (2⁻¹⁵).
- Q3.12
 - 16 bits;
 - Range: -8 to 7.9998;
 - Precision: 1/4096 (2⁻¹²).
- Q0.31 (Q31)
 - 32 bits:
 - Range: -1 to 0.99999999534339;
 - Precision: 4.6566129e-10 (2⁻³¹).

Precision examples

Forma	t (N.M)	Largest positive value (0x7FFF)	Least negative value (0x8000)	Precision	(0x0001)	DR(dB)
1	15	0,999969482421875	-1	3,05176E-05	2^-15	90,30873362
2	14	1,99993896484375	-2	6,10352E-05	2^-14	90,30873362
3	13	3,9998779296875	-4	0,00012207	2^-13	90,30873362
4	12	7,999755859375	-8	0,000244141	2^-12	90,30873362
5	11	15,99951171875	-16	0,000488281	2^-11	90,30873362
6	10	31,99902344	-32	0,000976563	2^-10	90,30873362
7	9	63,99804688	-64	0,001953125	2^-9	90,30873362
8	8	127,9960938	-128	0,00390625	2^-8	90,30873362
9	7	255,9921875	-256	0,0078125	2^-7	90,30873362
10	6	511,984375	-512	0,015625	2^-6	90,30873362
11	5	1023,96875	-1024	0,03125	2^-5	90,30873362
12	4	2047,9375	-2048	0,0625	2^-4	90,30873362
13	3	4095,875	-4096	0,125	2^-3	90,30873362
14	2	8191,75	-8192	0,25	2^-2	90,30873362
15	1	16383,5	-16384	0,5	2^-1	90,30873362
16	0	32767	-32768	1	2^-0	90,30873362

Scale of representation

- Values represented in Qm.n notation can be seen as an integer simply divided by a power-of-two scale factor, 2ⁿ.
- In fact, the scale factor can be an arbitrary scale that is not a power of two.
- Example: 16-bit 2's complement numbers between 8000H and 7FFFH can represent decimal values between -5 and +5, where the scale factor is 5/32768 (5/2¹⁵).
- It can be said that the scale factor is in "the head of the programmer".

Scale factor examples

Format	Scaling factor ()	Range in Hex (fractional value)
(1.15)	2 ¹⁵ = 32768	$0x7FFF (0.99) \rightarrow 0x8000 (-1)$
(2.14)	2 ¹⁴ = 16384	0x7FFF (1.99) → 0x8000 (-2)
(3.13)	2 ¹³ = 8192	0x7FFF (3.99) → 0x8000 (-4)
(4.12)	2 ¹² = 4096	0x7FFF (7.99) → 0x8000 (-8)
(5.11)	2 ¹¹ = 2048	0x7FFF (15.99) → 0x8000 (-16)
(6.10)	2 ¹⁰ = 1024	0x7FFF (31.99) → 0x8000 (–32)
(7.9)	2 ⁹ = 512	0x7FFF (63.99) → 0x8000 (-64)
(8.8)	2 ⁸ = 256	0x7FFF (127.99) → 0x8000 (–128)
(9.7)	2 ⁷ = 128	0x7FFF (511.99) → 0x8000 (-512)
(10.6)	2 ⁶ = 64	
(11.5)	2 ⁵ = 32	0x7FFF (2047.99) → 0x8000 (–2048)
(12.4)	2 ⁴ = 16	0x7FFF (4095.99) → 0x8000 (–4096)
(13.3)	2 ³ = 8	0x7FFF (4095.99) → 0x8000 (-4096)
(14.2)	2 ² = 4	0x7FFF (8191.99) → 0x8000 (-8192)
(15.1)	21 = 2	0x7FFF (16383.99) → 0x8000 (-16384)
(16.0)	2 ⁰ = 1(Integer)	0x7FFF (32767) → 0x8000h (–32768)

Fixed-point

00000000000000

Dynamic range

Coder

Dynamic range

Dynamic range is defined as,

$$DR_{db} = 20 log_{10} \left(\frac{\text{largest possible word value}}{\text{smallest possible word value}} \right) [dB]$$

For N-bit unsigned integers.

$$DR_{dB} = 20 log_{10} \left[\frac{2^{(N-1)}}{1} \right]$$
 [dB]
 $DR_{dB} = 20 [(N-1)log_{10}(2) - log_{10}(1)]$
 $DR_{dB} = 20 log_{10}(2) \cdot (N-1)$
 $DR_{dB} = 6.02 \cdot N - 6.02$ [dB]

Addition in 2's complement

- Adding two N-bits numbers can produce a N+1 bits result.
- The last two bits of the carry row show if overflow occurs.
- Saving the result in a N+1 word avoids overflows.
- The general rule is the sum of m individual b-bit can require as many as $b + log_2(m)$.
- Example: 256 8-bits words requires an accumulator whose word length is $8 + log_2(256) = 16$
- ¿How many sums are supported by a 40-bits accumulator for 16-bits numbers?

Overflow

- An overflow occurs in an N-bit 2's complement notation when a result is greater than 2^{N-1} - 1.
- An overflow produces a roll-over (wrap).
- An **underflow** occurs if a result is less than 2^{-N} .

Overflow, cont'd

- A roll-over usually has catastrophic consequences on a process.
- Only happen when two very large positive operands, or two very large negative operands are added.
- It can never happen during the addition of a positive operand and a negative operand, whatever their magnitude.

Saturation

- To avoid a rollover, overflow is detected and the result is saturated to the most positive or most negative value that can be represented.
- This procedure is called saturation arithmetic.
- PDSP allows the results to be saturated automatically in hardware (In TI DSP C5505, SATD Bit of ST1 55 register).

Multiplication in 2's complement

- The product of two N-bit numbers requires 2N bits to contain all possible values.
- But the two MSB are always equal (sign extension bit).
- Therefore, 2N-1 bits are enough to store the result.

Fixed-point 000000000000000

Q15 will not produce an overflow.

Multiplication

000000000000000

Multiplication and division by 2 in 2's complement

- Multiplication: all bits are shifted left by one position.
- Division: all bits are shifted right by one position, however the sign bit must be preserved (arithmetic shift).
- Arithmetic shift ≠ logical shift.

Accumulator

- PDSP have an accumulator with extra bits to avoid overflow during internal calculations (In C5505, 40-bits accumulator).
- Guard bits: extra bits to avoid addition overflows.
- Only round final results to the final data size and format if possible.

b39-b32	b31-b16	b15-b0		
G	Н	L		
Guard bits	High-order bits	Low-order bits		

Truncation and roundoff

- After multiplication, a 2N-bits number must be stored in memory of N-bits word.
- Truncation: e = Q[x] x, $-\Delta \le e < 0$, $\mu = -\frac{\Delta}{2}$, $\sigma^2 = \frac{\Delta}{12}$

$$\mu = -\frac{\Delta}{2}$$
,

$$\sigma^2 = \frac{\Delta}{12}$$

• Roundoff: e = Q[x + 0.5] - x, $-\Delta/2 < e \le \Delta/2$, $\mu = 0$,

$$\mu = 0$$
, α

Number Representation

A floating-point number can represent a very large or a very small value, positive and negative.

Floating-point

Floating-point Numbers (Decimal)

A floating-point number is typically expressed in the scientific notation in the form of

where,

$$(-1)^{\mathcal{S}} \times F \times r^{\mathcal{E}}$$
,

- S, sign bit.
- F. fraction.
- E, exponent.
- r, certain radix. r = 2 for binary; r = 10 for decimal.

Standards

Coder

Standards

IEEE Standard P754 Format

Bit 31 30 29 28 27 26 25 24 23 22 21 20
$$\cdots$$
 2 1 0 S 27 26 25 24 23 22 21 20 \cdots 2 1 0 \cdots 2 1 0 \cdots 3 Sign (s) \leftarrow Exponent (c) \rightarrow \leftarrow Fraction (f) \rightarrow

IBM Format

DEC (Digital Equipment Corp.) Format

Bit 31 30 29 28 27 26 25 24 23 22 21 20
$$\cdots$$
 2 1 0 \odot S 27 26 25 24 23 22 21 20 \cdots 2 1 0 \odot Sign (s) \leftarrow Exponent (e) \rightarrow \leftarrow Fraction (f) \rightarrow

MIL-STD 1750A Format

Modern computers adopt IEEE 754-2008 standard for representing floating-point numbers.

IEEE 754-2008 standard

IEEE 754-2008 standard defines several formats.

Binary formats $(B=2)$					Decimal formats $(B = 10)$			
Parameter	Binary 16	Binary 32	Binary 64	Binary 128	Decimal 132	Decimal 164	Decimal 128	
p, digits	10 + 1	23 + 1	52 + 1	112 + 1	7	16	34	
e_{max}	+15	+127	+1023	+16383	+96	+384	+16,383	
e_{min}	-14	-126	-1022	-16382	-95	-383	-16,382	
Common name	Half precision	Single precision	Double precision	Quadruple precision				

31 30 23 22 0 S Exponent (E) Fraction (F) 1 8 23

32-bit Single-Precision Floating-point Number

$$(-1)^S \times F \times r^{(E-bias)}$$

- *S*, sign bit. 0 for positive numbers and 1 for negative numbers.
- E, 8-bits exponent.
- We need to represent both positive and negative exponents.
- E = [1, 254], bias = 127; $-126 \le E bias \le 127$.
- E = 0 and E = 255 are reserved.
- F, 23-bits fraction.

Format

Coder

32-bit Single-Precision Floating-point Number

- Representation of a floating point number may not be unique: $11.01_2 = 1.101_2 \times 2^1 = 110.1_2 \times 2^{-1}$.
- Therefore, the fractional part *F* is normalized.
- 1.F, implicit leading 1.

Normalized Form Example 1

Coder

Represent 3215.020002₁₀

```
Decimal Value Entered: 3215.020002
```

Single precision (32 bits):

```
Binary: Status: normal
```

```
Hexadecimal: 4548F052 Decimal: 3215.0200
```

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Example 2

Represent $3215.020002_{10} \times 2 = 6430.040004_{10}$

Decimal Value Entered: 6430.040004

Single precision (32 bits):

Binary: Status: normal

Bit 31 Bits 30 - 23 Bits 22 - 0 Sign Bit Exponent Field Significand 0 1 .10010001111000001010010 10001011 0: + Decimal value of exponent field and exponent Decimal value of the significand 1: -139 - 127 = 12 1.5698340

Hexadecimal: 45C8F052 Decimal: 6430.0400

Normalized Form

Coder

Example 3

Represent $3215.020002_{10}/4 = 803.7550005_{10}$

Decimal Value Entered: 803.7550005

Single precision (32 bits):

```
Status: normal
Binary:
  Bit 31
                           Bits 30 - 23
                                                                      Bits 22 - 0
Sign Bit
                          Exponent Field
                                                                      Significand
   0
                             10001000
                                                             1 .10010001111000001010010
                                                           Decimal value of the significand
          Decimal value of exponent field and exponent
   1: -
                              -127 = 9
                        136
                                                                      1.5698340
```

Decimal: 803.75500 Hexadecimal: 4448F052

Floating-point numbers are auto-scaled!.

Format

Coder

Not all real numbers in the range are representable

Fixed-point

 $-N_{min}$ $+N_{min}$ $-N_{max}$ $+N_{max}$

Normalized floating-point numbers

Denormalized floating-point numbers

- Normalized form has a serious problem, with an implicit leading 1 for the fraction, it cannot represent the number zero!
- De-normalized form was devised to represent zero and small numbers.
- $E = 0 \Rightarrow 0.F$, implicit leading 0.

De-normalized Form

Example

Coder

Represent -3.4E-39₁₀

Decimal Value Entered: -3.4e-39

Single precision (32 bits):

Binary: Status: denormalized

Bit 31
Sign Bit

1

0: +
1:
Decimal value of exponent field and exponent

0 - 127 = -127

Bits 22 - 0 Significand
0.1001010000010111010001
Decimal value of the significand

0.5784800

Hexadecimal: 802505D1 Decimal: -3.3999999e-39

De-normalized Form

Coder

Special values

- **Zero**: E=0, F=0. Two representations: +0 (S=0) and -0 (S=1).
- Inf (Infinity): E = 0xFF, F = 0. Two representations: +Inf (S = 0) and -Inf (S = 1).

Floating-point

• NaN (Not a Number): E = 0xFF, $F \neq 0$. A value that cannot be represented as a real number (e.g. 0/0).

MATLAB

- $\mathbf{0}$ » a = 1/0
- 2 » ans = Inf
- \bigcirc » b = -1/0
- \bigcirc » c = 0/0
- » ans = NaN

Rounding schemes

- ulp (unit of least precision, eps ()).
- f, significant, f = 1.F.
- f' and f" being two successive multiples of ulp.
- Assume that f' < f < f'', f'' = f' + ulp,
- Then, the rounding function round(f) associates to f either f' or f", according to some rounding strategy.

Rounding schemes are:

- Truncation (also called round toward 0 or chopping): round(s) = f' if f is positive, round(-f) = f'' if f is negative.
- Round toward plus infinity: round(s) = f''
- Round toward minus infinity: round(s) = f'
- Round to nearest (default): if f < f' + ulp/2, round(f) = f', and if f > f' + ulp/2, round(f) = f''.

Dynamic range

$$DR_{dB} \approx 6.02 \cdot 2^{b_E}$$

where b_E is the number of bits of E.

For single precision (32-bits):

$$DR_{dB} \approx 6.02 \cdot 2^8 \approx 1541 \, dB$$

For fixed-point Q31 (32-bits):

$$DR_{dB} \approx 6.02 \cdot 32 \approx 192 \, dB$$

Precision

- Precision is not constant throughout floating point numbers' range.
- As the numbers get larger, the precision gets worse.

MATLAB

- 0 » u = linspace(-15,15,1000);
- ② » q = quantizer([6 4],'float'); % [wordlength exponentlength]

- **6** »
- y q = quantizer('fixed', [6 2]); % [wordlength fractionlength]
- \bigcirc » y2 = quantize(q,u);
- 3 » plot(u,y2); title(tostring(q))

Precision

Precision, cont'd

Precision

Precision, cont'd

Precision

Coder

Precision, cont'd

eps (x) returns the positive distance from abs (x) to the next larger in magnitude floating point number of the same precision.

- \bigcirc » e1 = eps(single(1))
- 2 » e1 = 1.1920929e-07

Precision, cont'd

 $\mathtt{eps}\,(\mathtt{x}) \,\, \text{returns the positive distance from } \mathtt{abs}\,(\mathtt{x}) \,\, \text{to the next larger in magnitude floating point number of the same precision}.$

MATLAB

Coder

Precision

- ② » e1 = 1.1920929e-07
- 3 » e2 = eps(single(1e1))

Coder

Precision, cont'd

 $\mathtt{eps}\,(\mathtt{x}) \,\, \text{returns the positive distance from } \mathtt{abs}\,(\mathtt{x}) \,\, \text{to the next larger in magnitude floating point number of the same precision}.$

- 2 » e1 = 1.1920929e-07
- \odot » e2 = eps(single(1e1))

Coder

Precision, cont'd

eps (x) returns the positive distance from abs (x) to the next larger in magnitude floating point number of the same precision.

MATLAB

- \bigcirc » e1 = eps(single(1))
- \odot » e2 = eps(single(1e1))

Fixed-point

Coder

Sum of two floating-point positive numbers

$$n = n_1 + n_2 = 1.F \times r^{(E-bias)},$$

 $n_1 = 1.F_1 \times r^{(E_1-bias)},$
 $n_2 = 1.F_2 \times r^{(E_2-bias)}.$

• if $E_1 >= E_2$ then.

$$E=E_1,\ F=F_1+(F_2>>(E_1-E_2))$$

else.

$$E = E_2, F = (F_1 >> (E_2 - E_1)) + F_2$$

• if F >= r then. (first normalization)

$$E = E + 1, F = F >> 1$$

- \bullet F = round(F)
- if F >= r then. (second normalization)

$$E = E + 1$$
. $F = F >> 1$

Example 1

Coder

• if
$$160 >= 131$$
 then,

$$E = 160.$$

$$E = 160, F = 1.001010100000010111111001$$

$$n = (-1)^0 \times 1.001010100000010111111001 \times r^{(160-127)}$$

Fixed-point

Example 2

Coder

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

MATLAB

 \bigcirc » $(2^53 + 1) - 2^53$

Fixed-point

Example 2

Coder

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

-) » (2⁵³ + 1) 2⁵³

Sum of two floating-point positive numbers

Example 2

Coder

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

- » (2⁵³ + 1) 2⁵³
- 2 » ans = 0
- $3 \gg x=1$, t = tan(x) sin(x)/cos(x)

Example 2

Coder

- In floating-point processors scaling the data increases dynamic range, but scaling does not improve precision, and in fact degrades performance.
- When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

- \bigcirc » $(2^53 + 1) 2^53$
- 0 > x=1, t = tan(x) sin(x)/cos(x)
- \bigcirc » t = 2.2204e-16 % eps(1)

Fixed-point

Bibliography

- Bruno Paillard. An Introduction To Digital Signal Processors, Chapter 5 "Binary representations and fixed-point arithmetic".
- Richard G. Lyons. Understanding Digital Signal, Chapter 12 "Digital data formats and their effects".
- Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12 "Floating Point Arithmetic".
- Erick L. Oberstar. Fixed-Point Representation & Fractional Math.
- A Tutorial on Data Representation Integers, Floating-point Numbers, and Characters http://www3.ntu.edu.sg/home/ehchua/programming/java/DataRepresentation.html
- Greg Duckett. Fixed-Point vs. Floating-Point DSP for Superior Audio. http://web.archive.org/web/20060515074349/http://www.rane.com/note153.html