

Dayananda Sagar College of Engineering
Shavige Malleshwara Hills, Kumaraswamy Layout, Banashankari, Bangalore-560078, Karnataka
Tel: +91 80 26662226 26661104 Extn: 2731 Fax: +90 80 2666 0789
Web - http://www.dayanandasagar.edu Email: hod-ece@dayanandasagar.edu
(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by National Assessment & Accreditation Council (NAAC) with 'A' grade)

Department of Electronics & Communication Engg. Continuous Internal Evaluation - I

Date:	05.10.2020
Day:	Monday
Timings:	01.00 to 2.30pm
	Day:

		de: 18EC5DCDSP	Day:	Monday		
	ester:		Timings:	01.00 to	2.30pm	
Max	Mark	s: 50 M	Duration:	$1\frac{1}{2}$ Hrs.		
					Marks	CO & Levels
Q1	(a)	If $X(k)$ and C_k are the coefficients of DFT and Fourier series relation between them is given as	espectively,	then the	1	
	(b .)	i) $X(k) = \frac{1}{N}C_k$ ii) $X(k) = N + C_k$ iii) $C_k = \frac{1}{N}X(k)$ iv				
	(b)	Given W_N is a twiddle factor matrix with any element a_{ij} , choose (a) $a_{ij} = a_{ji}$ (b) $a_{ij} = -a_{ji}$ (c) $a_{1j} = a_{i1}$ i) (a) and (b) are correct ii) (a) and (c) are correct iii) (a) and (d)	$(d) a_{ij} = a_j$		1	
	(c)	iv) (c) and (d) are correct Which of the following is/are incorrect statement/s?) 1	1	1	
	(d)	i) $W_N^a = W_N^{a+N}$ ii) $W_N^{-a} = (W_N^a)^*$ iii) $W_N^{-a} = -(W_N^a)^*$ iv The term $N\delta(k)$ is the DFT of	v) both 11) and	d 111)	1	
	(e)	i) $N\delta(n)$ ii) $u(n)$ iii) $Nu(n)$ iv) $\delta(n)$ For a real valued 4 point sequence $x(n)$, the 4 point DFT is $X(k)$.	If $X(1) = 1$	– 2 <i>j</i> then		
		X(7) = i) 1-2j ii) 1+2j iii) 2+j iv) 2-j Which of the following is an example for odd sequence?			1	
	(f)	Which of the following is an example for odd sequence? i) $x(n) = [0, 5, -6, -6, 5]$ ii) $x(n) = [0, 5, 6, 6, 5]$ iii) $x(n) = [0, 5, 6, -6, -5]$ iv) $x(n) = [0, -5, 6, 6, -5]$			1	
	(g)	If $[W]_N$ is a twiddle factor matrix then its inverse is given by i) $N[W]_N$ ii) $\frac{1}{N}[W]_N^*$ iii) $N[W]_N^*$ iv) $\frac{1}{N}[W]_N$			1	
	(h)	For a real sequence $x(n)$, the N (even number) point DFT is denoted the following is a wrong statement?	ted as $X(k)$.	Which of		
		i) $X(0)$ is real ii) $X(\frac{N}{2})$ is real iii) $X(N-1)$ is always real in	v) X(N-k)	$=X(k)^*$	1	
	(i)	DFT of a real and even sequence is i) purely real ii) purely imaginary iii) combination of real and these	imaginary iv) None of	1	
	(j)	Which of the following is a wrong statement as concerned to DFT/H			1	
Q2		i) $W_N^{2kr} = W_{N/2}^{kr}$ ii) $-W_N^k = W_N^{k+\frac{N}{2}}$ iii) $X(k) = X(k+N)$ i Let $x(n)$ be a finite length sequence with $X(k) = [0, 1+j, 1, 1-1]$			10	
Q2		between DFT and DTFS and DFT properties find DTFS coefficient sequences.			10	
		i) $x_1(n) = e^{\frac{j\pi n}{2}}x(n)$ ii) $x_2(n) = x((n-1))_A$				CO 1,2/L4
		iii) $x_3(n) = (0,0,1,0) (*)_N x(n)$, where $(*)_N$ indicates	circular conv	volution.		
Q3	(a)	Compute 4 point DFT of the sequence $x(n) = [1,3,5,7]$ using DIT	* *		5	CO1/L3
	(b)	Find the total number of multiplications and additions required for conventional DFT and FFT approach. Also find the speed improven	nent factor.			CO1/L3
Q4	(a)	Find 5 point circular convolution of the following sequences $x_1(n) = [1,2,-1,4,3]$ and $x_2(n) = [2,0,-1]$	-	tric circle	6	CO1/L3
	(b)	A 4 point sequence $x(n) = [1,2,3,4]$ has DFT $X(k)$ for $0 \le k \le 2$		sequence	4	CO1/L4

which has DFT $X((K-1))_4$ without performing DFT and IDFT.

Q5 (a) Show that multiplication of two DFTs in frequency domain corresponds to circular 4 CO1/L3 convolution in time domain. Compute the 5 point DFT of the sequence x(n) = [1, 3, 5, 7, 9]. Also plot magnitude 6 (b) CO1/L3 spectrum. Q6 Consider a sequence x(n) = [1,1,0,3,-2,-4,6,5] with DFT X(k). Evaluate the following 10 functions without evaluating the DFT. CO1/L4 ii) X(4) iii) $\sum_{k=0}^{7} e^{-j\frac{2\pi k}{4}} X(k)$ iv) $\sum_{k=0}^{7} |X(k)|^2$ v) $\sum_{k=0}^{7} X(k)$ i) *X*(0) Given the impulse response of a system as h(n) = [1, -1, 2], find the output of the system Q7 10 CO2/L4 y(n) for an input x(n) = [1,3] using DFT-IDFT formula method.

Staff: STM/KSG/CU/KP