Automated Feature Engineering using Deep Reinforcement Learning

Ziyu Xiang Supervisor: Prof. Kalathil, Prof. Qian

Feature Engineering: Feature engineering is the process of taking a dataset and constructing explanatory variables — features — that can be used to train a machine learning model for a prediction problem.

Manual Feature Engineering (MFE): The traditional approach to feature engineering is to build features one at a time using domain knowledge, a tedious, time-consuming, and error-prone process known as manual feature engineering.

Automated Feature Engineering (AFE): Automated feature engineering improves upon MFE standard workflow by automatically extracting useful and meaningful features from a set of related data tables with a framework that can be applied to any problem

- creates interpretable features
- generally applicable

Ref: https://towardsdatascience.com/why-automated-feature-engineering-will-change-the-way-you-do-machine-learning-5c15bf188b96

The Sure Independent Screening and Sparse Operation(SISSO)

prototypes	#	materials primary	features	descriptor	classification accuracy
NaCl		132 IE_A , IE_B , χ_A , EA_A , EA_B , v_A ,		$d_1 := \frac{IE_AIE_B(d_{AB}-r_{\text{covA}})}{\exp(\chi_A)\sqrt{r_{\text{covB}}}}$	100%
	$\hat{\pmb{H}}^{(\mathrm{m})} \equiv \{\hat{\pmb{H}}^{(\mathrm{m})}\}$				
		_			
	SIS(P)	$SIS(\Delta_{1D})$		$SIS(\Delta_{(n-1)\mathrm{D}})$	
	subspace: $oldsymbol{\mathcal{S}}_{\scriptscriptstyle 1D}$	subspace: ${m S}_{ ext{2D}}$	•••	subspace: $oldsymbol{\mathcal{S}}_{n exttt{D}}$	
	\downarrow	\downarrow		↓	
	$S_{\scriptscriptstyle exttt{1D}}$				
		so		SO	
	1D descriptor	2D descriptor		nD descriptor	

Ref: Ouyang, Runhai, et al. "SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates." *Physical Review Materials* 2.8 (2018): 083802.

Automated Feature Engineering using Deep Reinforcement Learning

Tree search problem using Deep Q Learning

Pros: efficient learning

less computation resources requirement

Cons: No guarantee to contract to global optimal

Dataset:

Primary features' dimension: (132,7)

Labels: 2

prototypes	#materials primary features	descriptor	classification accuracy
NaCl	132 IE_A , IE_B , χ_A , χ_B , r_{covA} , r_{covB} , EA_A , EA_B , v_A , v_B , d_{AB}	$d_1 := \frac{IE_AIE_B(d_{AB} - r_{\text{covA}})}{\exp(\chi_A)\sqrt{r_{\text{covB}}}}$	100%

Algorithm: Deep Q-Learning

States: each feature f_i

Rewards: classification accuracy a, computed by Logistic Regression.

Actions: operation in the set

$$\hat{\boldsymbol{H}}^{(m)} \equiv \{I, +, -, \times, /, \exp, \log, |-|, \sqrt{,}^{-1},^2,^3\} [\phi_1, \phi_2],$$

Learning rate: 0.001 **Batch size**: 32 **Gamma**: 0.99 **Epsilon**: 1.0 (decay 0.99 min 0.1)

Results

Algorithm	Descriptors	Running Time	Accuracy	Features
Base	Primary features		82.5%	
SISSO	$\frac{IE_AIE_B(d_{AB}-r_{covA})}{\exp(\chi_A)\sqrt{r_{covB}}}$	8.6h	100%	830877
DQL	$\exp(d_{AB})(r_{covA} - \frac{d_{AB}}{r_{covA}})$	0.5h	97.5%	68923
DQL	$\exp(r_{covA})(d_{AB}-rac{d_{AB}}{\chi_A})$	3h	99.2%	295512
DQL	$\frac{IE_AIE_B(d_{AB}-r_{covA})}{\exp(\chi_A)\sqrt{r_{covB}}}$	6.8h	100%	514196

Results

Results

Challenges and Future work

Actions space: Setting multidimensional actions is more accurate, but the action space will become inconsistent.

Monotonicity of Rewards: With more features combined together, classification accuracies may not be monotonic.

The many-armed issue: A general limitation of Multi-Arm Bandit algorithms (e.g. UCT), when dealing with a large number of actions compared to the number of allowed iterations, is to be biased toward exploration.

Ref: Gaudel, Romaric, and Michele Sebag. "Feature selection as a one-player game." 2010.

Dulac-Arnold, Gabriel, et al. "Deep reinforcement learning in large discrete action spaces." *arXiv preprint arXiv:1512.07679* (2015).

Khurana, Udayan, Horst Samulowitz, and Deepak Turaga. "Feature engineering for predictive modeling using reinforcement learning." *Thirty-Second AAAI Conference on Artificial Intelligence*. 2018.