Molecular Transformer Unifies Reaction Prediction and Retrosynthesis across Pharma Chemical Space

Alpha A. Lee, Qingyi Yang, Vishnu Sresht, Peter Bolgar, Xinjun Hou, Jacquelyn L Klug-McLeod, and Christopher R. Butler

2021.6.18

Outlines

- 1 Introduction
- 2 The Molecular Transformer
- 3 Experiments
- 4 Summary

- 1 Introduction
- 2 The Molecular Transformer
- 3 Experiments
- 4 Summary

Methods to Synthesise Complex Molecules

• template-based

 Handcrafting/ automatic template extraction algorithms: rely on pre-existing atom mapping that maps atoms in the reactants to atoms in the product.

• template-free

- graph-based: require atom-mapped datasets to generate the ground truth for training, and atom mapping algorithms make use of reaction templates.
- sequence-based: use a text representation of the reactants, reagents and products (usually SMILES), and treat reaction prediction as machine translation from one language (reactants-reagents) to another language (products).

Problems in Existing Methods

- The Molecular Transformer model outperforms all methods in the literature in reaction prediction, but retrosynthesis has not been described.
- Beyond accuracy, dataset bias is a major challenge in validating machine learning models in chemistry applications. The training and test sets are harvested from medicinal chemistry patents and are very similar.

Contribution

- This is the first validation of reaction prediction tools with industrial pharma data.
- Molecular Transformer is the only framework that accurately tackles both reaction prediction and retrosynthesis.

- 1 Introduction
- 2 The Molecular Transformer
- B Experiments
- 4 Summary

Molecular Transformer

The transformer is a step-wise autoregressive encoder-decoder model comprised of a combination of multi-head attention layers and positional feed forward layers.

Encoder and Decoder of Molecular Transformer

- In the encoder, the multi-head attention layers attend the input sequence and encode it into a hidden representation.
- The decoder consists of two types of multi-head attention layers.
 - The first is masked and attends only the preceding outputs of the decoder.
 - ▶ The second multi-head attention layer attends encoder outputs, as well as the output of the first decoder attention layer.
 - Multi-head attention allows the encoder and decoder to peek at different tokens simultaneously.

- Introduction
- 2 The Molecular Transformer
- 3 Experiments
- 4 Summary

Datasets

- USPTO: contains stereochemical information.
- PF-ELN: a set of proprietary electronic lab notebook data from internal medicinal chemistry projects in Pfizer. This dataset contains 147,392 reactions with 2 reactants.
- USPTO-R: 50,000 reactions drawn from diverse reaction classes in USPTO as a benchmark for retrosynthesis models.

Test of Generalisability: Reaction Prediction

Baseline: Weisfeiler-Lehman Difference Network (WLDN)

Model	Training set	Test set	Top-1 [% acc.]	Top-2 [% acc.]	Top-3 [% acc.]
Molecular Transformer	PF — ELN	PF — ELN	97.0%	98.5 %	98.8%
Molecular Transformer	USPT0	PF — ELN	69.0%	80.3%	82.9%
WLDN ¹¹	USPT0	PF — ELN	50.4%	51.7%	52.2%

Table 1 Molecular Transformer accurately predicts products of reactions given reactants and is generalisable across chemical space. The table show the top-k accuracy of Molecular Transformer tested on proprietary electronic lab notebook data for different training sets.

Test of Accuracy: Retrosynthesis Prediction

Model	Training set	Test set	Top-1 [% acc]	Top-2 [% acc]	Top-3 [% acc]
Molecular Transformer	USPTO - R	USPTO - R	43.8%	56.0%	60.5%
Coley et al. 5	USPTO - R	USPTO - R	37.3%	-	54.7%
Liu et al. ¹⁴	USPTO - R	USPTO - R	37.4%	-	52.4%

Table 2 Molecular Transformer for retrosynthesis accurately predicts reactants of reactions given products and outperforms the state-of-the-art. The table show the top-k accuracy of Molecular Transformer trained and tested on USPTO – R. The top-2 accuracy is not reported in refs 1.

The Molecular Transformer outperforms the benchmark model, which uses a template-based approach.

Test of Generalisability: Retrosynthesis Prediction

Model	Training set	Test set	Top-1 [% acc]	Top-2 [% acc]	Top-3 [% acc]
Molecular Transformer	USPTO - R	PF — ELN	31.5%	40.5%	44.3%
Molecular Transformer	PF — ELN	PF — ELN	91.0%	94.5%	94.5%

Table 3 Molecular Transformer for retrosynthesis is accurate for chemistries that are industrially relevant, and generalises across chemical space. The table show the top-k accuracy of Molecular Transformer with different training set-test set combinations.

- Introduction
- 2 The Molecular Transformer
- 3 Experiments
- 4 Summary

Conclusions

- Molecular Transformer is a versatile framework that tackles both reaction prediction and retrosynthesis. It is
- A key advantage of our framework is that it can be easily extended to tackle problems such as predicting reaction condition, reagents and yield.