République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation SERVICE DES EXAMENS

Baccalauréat 2018

Séries : C & TMGM Epreuve : MATHEMATIQUES Durée : 4 heures Coefficients : 9 & 6

Honneur – Fraternité – Justice

Session Normale

Exercice 1 (3 points)	
1° On considère l'équation (E): $25x-49y=5$, où x et y sont des entiers relatifs.	
a) Déterminer le pgcd de 49 et 25 à l'aide de l'algorithme d'Euclide et en déduire que l'équation	0.75 pt
(E) admet des solutions entières.b) Vérifier que le couple (10; 5) est une solution particulière de (E). Résoudre l'équation (E).	1 pt
c) Montrer qu'il existe un unique entier p compris entre 1960 et 2018 tel que : $25p = 5[49]$.	0,25 pt
2° a) Justifier que si (x,y) est une solution de (E) alors $5x = 1[7]$ et $y = 0[5]$.	0.25 pt
b) Montrer que $5x = 1[7]$ si et seulement si $x = 3[7]$.	0.25 pt
3° a) Soit x un entier relatif. Quels sont les restes de x^2 dans la division euclidienne par7 ?	0.25 pt
b) Existe-t-il un couple (x,y) d'entiers relatifs tels que (x^2,y^2) soit solution de (E) ?	0.25 pt
Exercice 2 (4 points)	
Le plan complexe est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. Pour tout nombre complexe z on	
pose: $P(z) = z^3 - (1+4i)z^2 - (9-i)z - 6 + 18i$.	
1.a) Calculer P(3i) et déterminer les nombres a et b tels que $\forall z \in \mathbb{C}$: P(z)=(z-3i)(z²+az+b)	0.5 pt
b) En déduire l'ensemble des solutions de l'équation $P(z) = 0$.	0.5 pt
c) On considère les points A, B et C images des solutions de l'équation P(z) = 0 tels que	0.5 pt
$ z_C \le z_B \le z_A $. Placer les points A, B et C et déterminer la nature du triangle ABC.	
d) Soit A' = bar $\{(A;-5),(B;6),(C;12)\}$. Vérifier que l'affixe de A' est $z_{A'} = -3 + i$. Placer A'.	0.5 pt
2° On considère l'ellipse Γ de sommets A, A' et B.	
a) Déterminer le centre I et l'excentricité de Γ .	0.5 pt 0.5 pt
b) Ecrire une équation cartésienne de Γ dans le repère $\left(0;\vec{i},\vec{j}\right)$.	
c) Préciser les points d'intersection de Γ avec l'axe (Ox).	0.5 pt
d) Déterminer les foyers et les directrices de Γ puis construire Γ .	0.5 pt
Exercice 3 (4 points)	
Soit ABCD un parallélogramme tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{4}$ et AB = 2AD.	
On définit les points E, F, G et H tels que AFEB et ADGH soient des carrés directs.	
Soit I, J et K les milieux respectifs des segments [EC], [CG] et [GA].	105.
1° Représenter les données précédentes sur une figure qui sera complétée au fur et à mesure. π	0.5 pt
2° Soit R_A la rotation de centre A et d'angle $\frac{\pi}{2}$, T la translation de vecteur \overrightarrow{BC} et $f = T \circ R_A$.	
a) Quelle est la nature de f ?	0.25 pt
a) Déterminer f(D) puis caractériser f. Quelle est l'image du point F par f?	0.5 pt
c) Justifier que les segments [DF] et [CG] sont perpendiculaires et de même longueur.	0.5 pt
3°a) Comparer les vecteurs \overrightarrow{DF} et \overrightarrow{CE} puis en déduire que le triangle ECG est rectangle isocèle direct en C.	0.5 pt
b) Montrer qu'il existe un unique antidéplacement g qui transforme E en C et C en G.	0.25 pt
c) Vérifier que g est une symétrie glissante dont on donnera la forme réduite.	0.25 pt
4° Soit S la similitude directe qui transforme B en A et A en D.	0.5
a) Déterminer le rapport de S et une mesure de l'angle de S. b) Montrer que le centre Ω de S appartient aux cercles Γ_1 et Γ_2 circonscrit respectivement aux	0.5 pt
carrés AFEB et ADGH. Placer Ω .	0.25 pt
c) Montrer que $S(F) = G$ puis en déduire que $S(\Gamma_1) = \Gamma_2$.	0.25 pt
	0.23 pt
d) Soit M un point de Γ_1 et M' = S(M). Montrer que les points A, M et M' sont alignés.	0.25 pt
d) Soit M un point de Γ_1 et M' = S(M). Montrer que les points A, M et M' sont alignés. Exercice 4 (4 points)	_
Exercice 4 (4 points) 1° a) Résoudre l'équation différentielle (E): y" – 6y' + 8y = 0.	_
Exercice 4 (4 points)	0.25 pt

2° Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{4x} - 2e^{2x}$ et (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- a) Calculer et interpréter les limites suivantes $\lim_{x \to \infty} f(x)$, $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} \frac{f(x)}{x}$. 0.75 pt 0.75 pt
- b) Dresser le tableau de variations de f.
- 3° Soit g la restriction de f sur l'intervalle $I =]-\infty,0]$.
- a) Montrer que g réalise une bijection de l'intervalle I sur un intervalle J que l'on déterminera.
- b) Calculer et interpréter $\lim_{x\to -1} \frac{g^{-1}(x)}{x+1}$ où g^{-1} est la réciproque de g.
- c) Soit (C') la courbe de g⁻¹. Montrer que les courbes (C) et (C') se coupent en un unique point B 0.25 pt d'abscisse α tel que $-0.6 < \alpha < -0.5$.
- d) Tracer dans le même repère les courbes (C) et (C'). 0.5 pt
- e) Donner l'expression de $g^{-1}(x)$.
- 4° Soit S l'aire de la partie du plan délimitée par les courbes (C), (C') et les axes de coordonnées.
- a) Montrer que $S = 2 \int_{\alpha}^{0} (x f(x)) dx$. 0.25 pt
- b) Calculer la valeur de S en fonction de α et en donner une valeur approchée à 10^{-2} près. 0.25 pt

Exercice 5 (5 points)

Partie A:

Soit la fonction f définie sur $-1,+\infty$ par $f(x) = \frac{x}{x+1} - (x+1)\ln(x+1)$.

On note (C) la courbe représentative de f dans un repère orthonormé (O; i, j).

- 1. Montrer que $\lim_{x \to -1^+} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = -\infty$ puis calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement. 2. a) Calculer f'(x) et f''(x) puis étudier les variations de f'. 0.75 pt
- 0.5 pt
- b) Calculer f'(0) et en déduire le signe de f'(x). 0.25 pt
- 3. a) Dresser le tableau de variation de f. 0.25 pt
- b) Tracer la courbe (C). 0.25 pt
- 3. a) Calculer $\int_0^x \frac{t}{t+1} dt$ et à l'aide d'une intégration par parties, calculer $\int_0^x (t+1) \ln(1+t) dt$. 0.5 pt
 - b) En déduire la primitive F de f sur }-1,+∞ qui s'annule en 0. 0.25 pt
 - c) Calculer l'aire A, du domaine plan délimité par la courbe (C), l'axe des abscisses et les 0.25 pt droites d'équations respectives x = 0 et x = n, pour n un entier naturel $n \ge 1$.

Partie B:

Soit (U_n) la suite définie $\forall n \ge 1$ par $U_n = \frac{1}{2}f(1) + \frac{1}{3}f(2) + \frac{1}{4}f(3) + ... + \frac{1}{n}f(n-1) = \sum_{i=1}^{n-1} \frac{1}{k+1}f(k)$.

1° Posons
$$\forall n \ge 1 : V_n = \frac{1}{n+1} f(n)$$
.

- a) Vérifier que $\forall n \ge 1$, $V_n = \frac{1}{n+1} \frac{1}{(n+1)^2} \ln(n+1)$. 0.5 pt
- b) En déduire que $U_n = \sum_{k=1}^{n} \frac{1}{k} \sum_{k=1}^{n} \frac{1}{k^2} \ln(n!)$. 0.25 pt
- 2° Notons $\forall n \ge 1$, $S_n = \sum_{k=1}^{n} \frac{1}{k}$ et $S'_n = \sum_{k=1}^{n} \frac{1}{k^2}$.
- a) Montrer que $\forall k \ge 1$; $\frac{1}{k+1} \le \int_{k}^{k+1} \frac{dt}{t} \le \frac{1}{k}$ puis en déduire que $\frac{1}{n} + \ln n \le S_n \le 1 + \ln n$. 0.5 pt
- b) Montrer que $\forall k \ge 1$; $\frac{1}{\left(k+1\right)^2} \le \int_k^{k+1} \frac{dt}{t^2} \le \frac{1}{k^2}$ puis en déduire que $1 \frac{1}{n} + \frac{1}{n^2} \le S'_n \le 2 \frac{1}{n}$. 0.5 pt
- c) En déduire que $\forall n \ge 1 : \frac{2}{n} 2 \le U_n + \ln((n-1)!) \le \frac{1}{n} \frac{1}{n^2}$. 0.25 pt

0.25 pt

0.25 pt

0.25 pt