Глубокое обучение и вообще

Соловей Влад и Шигапова Фирюза

22 декабря 2021 г.

Посиделка 12: Transformers United

Agenda

Transformers для

- Multivariate Time Series
- Tabular Data
- Images

Attention is all you need!

Attention is all you need

Развитие идеи внимания. Статья вышла в 2017 году и стала мамой всех текущих SOTA моделей.

Attention is all you need

Encoder

Что мы хотим?

Есть предложение: "The animal didn't cross the street because it was too tired"

Абстракции!

А теперь тоже самое, но словами:

- 1. Query, key ищем связи между словами. Ходим по всем со всеми смотрим насколько они связаны. Query мое текущее слово, key мое слово с которым я сравниваю себя.
- 2. Value то, что мы знаем об этом слове

multi head attention

Соединяем!

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

Х

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Z

Выходом всего этого дела будут вектора key и value, которые позволят декодеру смотреть на нужные нам кусочки. И бежим смотреть гифки декодера!

Объяснение взято отсюда английский оригинал и отсюда лекции мфти

- 1. У нас нет никаких слоев, кроме dense
- 2. Учится очень классно, находит множество взаимосвязей
- 3. Positional Encoding позволяет учитывать позицию в тексте

Multivariate Time Series - Positional Encoding

Positional Encoding позволяет учитывать позицию элемента в последовательности

- 1. Посчитать cos-sin и включить в качестве еще одной характеристики в вектор характеристик: concat([u, cos, sin])
- 2. Создать обучаемый вектор, равный размеру входного вектора характеристик, и сложить его с вектором: $u+W_{pos}$
- 3. Создать обучаемый скаляр и включить в качестве еще одной характеристики в вектор характеристик: $concat([u, scalar_{pos}])$

Multivariate Time Series - что можно после Encoder

MLP

Вытягиваем последовательность в один длинный вектор

Multivariate Time Series - что можно после Encoder RNN

Отдаем на вход RNN сети

Figure 3. Long Short-Term Memory network and LSTM unit.

Multivariate Time Series - что можно после Encoder CNN

Отдаем на вход CNN сети

Tabular Data

1	A User	В	С		D	E	F	G	Н		J	K	L
		Card	Year		Month	Day	Time	Amount	Use Chip	Merchant Name	Merchant City	MCC	Is Fraud?
2	0)	2019	4	21	9:47	\$6.81	Chip	Chevron	Brandon	5541	No
3	0)	2019	4	21	10:38	\$10.07	Chip	Anwar Grocery	Brandon	5411	No
4	0)	2019	4	22	3:53	\$42.61	Chip	Kelly Auto Repair	Brandon	7538	No
5	0)	2019	4	22	7:28	\$47.66	Chip	Barnes & Noble	Brandon	5942	No
6	0)	2019	4	22	10:30	\$9.73	Chip	Applebees	Brandon	5812	No
7	0)	2019	4	23	15:02	\$121.47	Chip	Green Wholesale	Brandon	5300	No
8	0)	2019	4	23	23:20	\$71.66	Online	Frontier Communications	ONLINE	4814	No
9	0)	2019	4	24	10:13	\$11.05	Chip	Applebees	Brandon	5812	No
10	0)	2019	4	24	10:17	\$11.05	Chip	Applebees	Brandon	5812	No

Tabular Data

Figure 1: The architecture of TabTransformer.

Tabular Data

- Для каждой категориальной переменной ставим в соответствие Embedding
- Все категориальные признаки представляем в виде последовательности
- Созданная последовательность идет на вход Transformer

$$E(\mathbf{x}_{cat}) = e_1(x_1), \cdot \cdot \cdot, e_m(x_m)$$

Vision Transformer

Vision Transformer - Image to Patches

Vision Transformer - Image to Patches

Vision Transformer - Position Embedding

Vision Transformer - Encoder

Гибридные архитектуры

Вначале можно применить свертки (CNN) и только потом делать Patches.

Vision Transformer

Figure 7: **Left:** Filters of the initial linear embedding of RGB values of ViT-L/32. **Center:** Similarity of position embeddings of ViT-L/32. Tiles show the cosine similarity between the position embedding of the patch with the indicated row and column and the position embeddings of all other patches. **Right:** Size of attended area by head and network depth. Each dot shows the mean attention distance across images for one of 16 heads at one layer. See Appendix D.7 for details.

