2014-2015 学年第二学期高等数学试题 (A)

- 一、填空题(共5小题,每题4分,共20分)
- 1.以向量 $\vec{a} = \{8,4,3\}, \vec{b} = \{2,-2,1\}$ 为邻边所构成平行四边形的面积等于_____。

2. 设
$$z = x^3 f\left(xy, \frac{y}{x}\right)$$
, f 具有二阶连续偏导数,则 $\frac{\partial^2 z}{\partial y^2} = \underline{\hspace{1cm}}$ 。

3.二重积分
$$I = \iint_{D} \left(x^3 \sin y + x^2 y^2\right) dx dy = \underline{\hspace{1cm}},$$

其中D是由曲线 $y=x^2$, $y=4x^2$,y=1围成的区域。

- 4. 球面 $x^2 + y^2 + z^2 = 50$ 与锥面 $x^2 + y^2 = z^2$ 的交线在点 M(3,4,5) 处的切线方程为_____
- 5.已知 Σ 为平面2x+2y+z=6在第一卦限中的部分,

则
$$\iint_{\Sigma} (2xy - 2x^2 - x + z) ds = \underline{\hspace{1cm}}.$$

- 二、选择题(共5小题,每题4分,共20分)

(A)
$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_n^2$$
 都收敛; (B) $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_n^2$ 都发散;

(B)
$$\sum_{n=1}^{\infty} u_n 与 \sum_{n=1}^{\infty} u_n^2$$
 都发散;

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛,而 $\sum_{n=1}^{\infty} u_n^2$ 发散;

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛,而 $\sum_{n=1}^{\infty} u_n^2$ 发散; (D) $\sum_{n=1}^{\infty} u_n$ 发散,而 $\sum_{n=1}^{\infty} u_n^2$ 收敛。

- 7. 函数 f(x,y) 在点 (x_0,y_0) 上处偏导数存在是 f(x,y) 在该点处_____。
- (A) 连续的充分条件;
- (B) 连续的必要条件;
- (C) 可微的必要条件;
- (D) 可微的充分条件。
- 8. 将函数 $f(x) = \arctan \frac{1+x}{1-x}$ 展开为 x 的幂级数为______。

(A)
$$f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in [-1,1];$$

(B)
$$f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in (-1,1);$$

(C)
$$f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in [-1,1);$$

(D)
$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad x \in [-1,1)$$

9.设 $I = \oint_L \frac{xdx + ydy}{x^2 + y^2}$, L是 xoy 平面上任一不包含原点的光滑封闭曲线,则 $I = \underline{\hspace{1cm}}$ 。

(A) 0; (B)
$$\pi$$
; (C) 2π ; (D) $\frac{\pi}{2}$

10. 直线
$$l_1$$
: $\begin{cases} x - y = 0 \\ z = 0 \end{cases}$ 与直线 l_2 : $\frac{x - 2}{4} = \frac{y - 1}{-2} = \frac{z - 3}{-1}$ 的距离为____。

(A) 1; (B)
$$\sqrt{\frac{19}{3}}$$
; (C) $\sqrt{\frac{1}{2}}$; (D) $\sqrt{\frac{19}{2}}$

三、(共7小题,共60分)

11. (8分) 在区间
$$\left(-1,1\right)$$
内求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ 的和函数。

12. (8 分) 区域
$$\Omega$$
 是由球面 $x^2 + y^2 + z^2 = 2z$ 与圆锥面 $z = \sqrt{x^2 + y^2}$ 围成的包含 z 轴的部

分,计算三重积分
$$I = \iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dv$$
.。

13. (8 分) 计算
$$\int_{L} \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$
,

其中L是沿 $y = \pi \cos x$ 由 $A(\pi, -\pi)$ 到 $B(-\pi, -\pi)$ 的曲线段。

14. (8分) 计算曲面积分
$$I = \bigoplus_{\Sigma} \sqrt{x^2 + y^2 + z^2} \left(x dy dz + y dz dx + z dx dy \right)$$
,

其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 的外侧。

15. (8 分) 已知函数
$$z = u(u,v)e^{ax+by}$$
,且 $\frac{\partial^2 u}{\partial x \partial y} = 0$,确定常数 $a \cap b$,使函数 $z = z(x,y)$

满足方程:
$$\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0$$
。

16. (10 分) 设有两条抛物线
$$y = nx^2 + \frac{1}{n}$$
 和 $y = (n+1)x^2 + \frac{1}{n+1}$, 记它们交点的横坐标的

绝对值为 a_n ,(1)求这两条抛物线所围成的平面图形的面积 s_n ,(2)求级数 $\sum_{n=1}^{\infty} \frac{s_n}{a_n}$ 的和。

17. (10 分) 设函数 f(x)连续, Ω_t : $0 \le z \le h$, $x^2 + y^2 \le t^2$,