Образовательный портал "GeekBrains"				
факультет "Data Science в медицине"				
курс "теория вероятности и математическая статистика"				
ИТОГОВЫЙ ПРОЕКТ				
"Автоматизация расчета концентрации иммуноглобулинов класса G к вирусу кори в сыворотке крови"				

выполнила: Гончарова А.В.

СОДЕРЖАНИЕ

- 1. Введение
- 2. Цель и задачи
- 3. Статистические методы
- 4. Получение данных
- 5. Статистическая обработка полученных данных
- 6. Реализация цели программно на python

ВВЕДЕНИЕ

Метод определения концентрации иммуноглобулинов класса G к вирусу кори в сыворотке крови основан на иммуноферментном анализе (ИФА) с применением рекомбинантного антигена вируса кори.

При ИФА получают растворы разной степени окрашивания, которую оценивают по величине оптической плотности (ОП).

Степень окраски пропорциональна концентрации иммуноглобулина G (IgG) к вирусу кори в анализируемых образцах.

В набор входят реактивы для постановки ИФА, 6 (шесть) стандартных растворов (калибраторов) с известной концентрацией IgG к вирусу кори (значения предоставляются производителем) и 96-луночный планшет.

В ходе постановки ИФА исследуемые образцы (калибраторы и сыворотки крови пациентов) добавляют в лунки планшета (1 лунка = 1 образец) и последовательно вносят в каждую лунку реагенты согласно схеме проведения иммуноферментного анализа.

В итоге ифа-планшет помещают в спектрофотометр и получают оптическую плотность реакционной смеси каждой лунки.

После измерения величины оптической плотности растворов на основании калибровочного графика рассчитывается концентрация IgG к вирусу кори.

Калибровочный график строят для каждой постановки ИФА, вручную, что может приводить к погрешности построения и, следовательно, расчета концентрации.

ЦЕЛЬ И ЗАДАЧИ

<u>Цель работы</u>: автоматизировать построение калибровочного графика и расчет концентрации IgG к вирусу кори.

Задачи:

- 1. Получить значения оптической плотности для калибраторов
- 2. Оценить силу и направленность связи между ОП и концентрацией IgG к вирусу кори
- 3. Рассчитать коэффициенты модели линейной регрессии
- 4. Оценить статистическую значимость модели и коэффициентов
- 5. Построить калибровочный график
- 6. С помощью построенной регрессионной модели рассчитать концентрацию IgG к вирусу кори в исследуемых образцах

СТАТИСТИЧЕСКИЕ МЕТОДЫ

В работе использовали следующие методы математической статистики:

Среднее арифметическое: среднее арифметическое - это сумма всех наблюдений, деленная на количество наблюдений (n).

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Корреляционный анализ: корреляционный анализ - определение взаимосвязи между переменными. Наличие связи, её направленность и силу оценивают по коэффициенту корреляции (r).

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Коэффициент корреляции принимает значения от -1 до +1.

направленность:

от 0 до 1 - связь прямая (переменная увеличивается при увеличении второй переменной)

от -1 до 0 – связь обратная (одна переменная уменьшается с увеличением второй переменной)

сила связи:

| r | от 0 до 0,3 — слабая связь | r | от 0,3 до 0,7 — умеренная связь

| r | от 0.7 до 1.0 – сильная связь

Линейный регрессионный анализ: регрессионный анализ — это статистический метод, используемый для описания взаимосвязи между двумя переменными и для прогнозирования одной переменной по значению другой.

Уравнение для линейной регрессии имеет вид:

$$y = a + b*x$$

где

у – прогнозируемая переменная (таргетная)

х – предсказывающая переменная (предиктор)

а, b – коэффициенты регрессии

$$b = \frac{\overline{yx} - \overline{y} \cdot \overline{x}}{\overline{x^2} - (\overline{x})^2};$$

$$a = \overline{y} - b \cdot \overline{x}$$
.

Оценка регрессионной модели:

коэффициент детерминации \mathbb{R}^2 : это доля изменения зависимой переменной, объясняемая регрессионной моделью, и является мерой качества соответствия модели. Он может принимать значения от 0 до 1 и рассчитывается следующим образом:

$$R^2 = r_{xy}^2$$

F-критерий Фишера: F-критерий Фишера позволяет оценить значимость уравнения линейной регрессии в целом. Фактическую величину F-критерия для парной линейной регрессии (когда есть только один факторный признак) можно вычислить по формуле, включающей коэффициент детерминации:

$$F_{\text{факт}} = \frac{r_{xy}^2 \cdot (n-2)}{(1 - r_{xy}^2)}$$

где n - это число наблюдений.

Критическое значении F-критерия находят по таблице.

Если Fфакт > Fкр, то уравнение регрессии признается статистически значимым.

t-критерий Стьюдента: оценка статистической значимости параметров регрессии проводится с помощью t-статистики Стьюдента.

Наблюдаемые значения критерия находят по формулам:

$$t_a = \frac{a}{m_a} \text{ if } t_b = \frac{b}{m_b}$$

$$m_a = S_{\text{oct}} \cdot \frac{\sqrt{\sum x^2}}{n \cdot \sigma_x}$$

$$m_b = \frac{S_{\text{oct}}}{\sigma_x \cdot \sqrt{n}}$$

Если расчетное значение критерия t_a , t_b больше табличного значения $t_{\rm kp}$ при заданном уровне значимости α (0,1; 0,05; 0,01), то коэффициент регрессии считается значимым.

Чтобы найти табличное значение -статистики Стьюдента, нужно знать число степеней свободы и уровень значимости α . Число степеней свободы равно df = n - m - 1, где n - число наблюдений и m - число признаков (факторов). Для парной регрессии число степеней свободы будет равно n-2.

ПОЛУЧЕНИЕ ДАННЫХ

Выполнена постановка иммуноферментного анализа (ИФА).

В итоге получили в каждой лунке планшета реакционные смеси разной степени окрашивания.

Загрузили планшет в спектрофотометр и считали значения оптической плотности (ОП) для каждой лунки.

В таблице 1 представлены результаты ОП для калибраторов и исследуемых образцов сыворотки крови.

образец	оптическая	оптическая плотность	
	измерение 1	измерение 2	
калибратор 1	0,167	0,157	
калибратор 2	0,279	0,275	
калибратор 3	0,419	0,402	
калибратор 4	0,671	0,638	
калибратор 5	1,165	1,089	
калибратор 6	2,144	1,995	
пациент 1	1,505	1,515	
пациент 2	0,998	0,924	
пациент 3	0,615	0,688	

СТАТИСТИЧЕСКАЯ ОБРАБОТКА ПОЛУЧЕННЫХ ДАННЫХ

1. Расчет среднего арифметического ОП по двум измерениям (дублям) для калибраторов и образцов (Табл.2).

Таблица 2.

образец	оптическая плотность	
калибратор 1	0,162	
калибратор 2	0,277	
калибратор 3	0,4105	
калибратор 4	0,6545	
калибратор 5	1,127	
калибратор б	2,0695	
пациент 1	1,51	
пациент 2	0,961	
пациент 3	0,6515	

2. Определение связи между ОП и концентрации IgG (табл. 3).

Таблица 3.

образец	ОП	концентрация*
калибратор 1	0,162	1
калибратор 2	0,277	1,93
калибратор 3	0,4105	6,63
калибратор 4	0,6545	10,23
калибратор 5	1,127	12,6
калибратор 6	2,0695	23,7

^{* -} значения предоставляются производителем набора

Расчет коэффициента корреляции:

$$r = 0.9816$$

Таким образом, мы подтвердили прямую сильную корреляционную связь между оптической плотностью и концентрацией IgG к вирусу кори.

3. Построение регрессионной модели расчета концентрации по значению оптической плотности.

Уравнение имеет вид:
$$y = a + b * x$$
 $a = 0.38$ $b = 11.45$

Получили уравнение модели линейной регрессии:

Концентрация IgG = 0.38 + 11.45 * ОП

Коэффициент детерминации: $R^2 = 0.9636$

Таким образом, 96,36% вариации концентрации IgG (у) объясняется вариацией фактора x – оптическая плотность.

F-критерий Фишера для модели:

По таблице находим критическое значение для F ($\alpha = 0.05$) Fкр = 7.71

Рассчитываем фактическое значение для F:

Гфакт = 105,92

Так как Fфакт = 105,92 > Fкр = 7,71, то уравнение регрессии статистически значимо.

t-статистика Стьюдента:

По таблице находим критическое значение для t ($\alpha = 0.05$)

$$t_{\text{крит}} = 2,776$$

Рассчитываем фактическое значение для t_a и t_b :

$$t_a = 0.34$$

$$t_b = 10,29$$

t-статистика Стьюдента для коэффициента регрессии а $< t_{\text{крит}},$ то есть статистически не значим.

t-статистика Стьюдента для коэффициента регрессии $b > t_{\text{крит}}$, то есть статистически значим.

Заключение по построенной модели линейной регрессии:

Построенная модель линейной регрессии для расчета концентрации IgG к вирусу кори признана статистически значимой и может использоваться в практической работе.

4. Расчет концентрации IgG к вирусу кори в образцах пациентов с помощью построенной модели линейной регрессии.

Таблица 4.

образец	ОП	концентрация*
		0,38+11,45*ОП
пациент 1	1,51	17,66
пациент 2	0,961	11,38
пациент 3	0,6515	7,84

РЕАЛИЗАЦИЯ РАБОТЫ НА РҮТНОМ

Программный код представлен в виде файла jupyter notebook (GoncharovaAV_finall_project.ipynb).