

Mobile Information Systems

Lecture 07: Privacy & Security

© 2015-20 Dr. Florian Echtler Bauhaus-Universität Weimar

<florian.echtler@uni-weimar.de>

Key issue: security/privacy (recap)

- Huge amounts of private & personal data on mobile devices
 - Contact information, messages & e-mails
 - Visited websites, pictures
 - PIN/TAN codes
- Many people want access to that data
 - Google, Facebook, Microsoft (for selling ads)
 - NSA, GCHQ, BND etc. (for catching criminals)
 - Hackers (for stealing/extorting your money)

Problem 1: (lack of) encryption

- No pervasive encryption on mobile devices
 - Strong opposition from government snoopers (up to demanding "key escrow")
 - Device encryption
 - Protects flash memory with user-derived key
 - When missing: lost/found devices often trivial to access
 - Data encryption
 - Data in transit often unencrypted
 - Can be intercepted/modified

Problem 2: cloud services

- Widespread voluntary use of cloud services
 - Google, Facebook, Dropbox, Whatsapp, Amazon, ...
 - Main reasons:
 - Substitution of online resources for on-device resources
 - Social components, communication, sharing
 - Requires trusting at least one, usually several 3rd parties (outsourcing)
 - Mostly without proper end-to-end encryption (cf. 1) → data freely accessible to cloud providers

Problem 3: (lack of) data protection

- Private data not protected "by default"
 - Outdated legal framework (but see EU GDPR)
 - Not strictly enforced by mobile OS
 - No fine-granular access control
 - → access to contact list, messages, location, ... possible for nosy/malicious apps
- Even if data itself encrypted, metadata often still readable (cf. WhatsApp)

Problem 4: intransparency

- Many components outside user control
 - Baseband module (own CPU, RAM, OS)
 - Device OS (e.g. iOS, many Android devices)
- No independent review possible
 - Bugs, security holes and/or backdoors may exist
 - Android is supposedly open-source ...
 - ... but *many* exceptions (Google apps, vendor modifications, ...)
 - Updates sloppy after 1-2 years, almost non-existent after 3

Attacks on mobile devices

- In increasing (arbitrary) order of severity:
 - Re-use/sale of personal data
 - Snooping, "shoulder surfing"
 - Nosy apps, spyware, malware
 - Network-based attacks (WiFi sniffer, IMSI catcher)
 - Physical device access/theft

Attacks: re-use/sale of personal data

- Most cloud providers have ...
 - Full access to uploaded data
 - ToS which allow them secondary use
 - Slowly changing due to GDPR
- Additional problems:
 - Providers acquired by other companies → new ToS
 - Other cloud users (e.g. photo tagging)

Alternatives: personal cloud, e.g. NextCloud?

Attacks: "shoulder surfing"

Image source (FU): https://f0rki.at/current-state-of-android-physical-security.html

- "Unlock patterns" & short PINs easy to spot
- "Smudge attacks"
 - Fingers always leave small grease traces
 - Traces can be used to infer patterns/PINs

Attacks: "shoulder surfing" (2)

Image source (FU): https://dl.acm.org/citation.cfm?id=2481330

- Possible methods of defense:
 - "Back-of-device authentication" (De Luca et al., CHI 2013) (requires extra sensor on back side)
 - Combination of PIN input with eye tracking, grasp sensing, ...
 - Randomization of number layout (drawbacks?)

Attacks: spyware & malware

- Definition: malicious software which tries to intercept information or mis-use resources
 - In mobile context: mostly infostealers (spyware)
 - Less available resources (CPU/bandwidth) than on desktop/laptop computers
 - Secondary goal: resilience against removal
- Android = main target for malware
 - ~ 80% market share
 - Relaxed security model
 - Slow/sloppy review process in app stores

Android security model

- Based on Linux security model
- Each app has own "account" (UID)
 - No direct access to other apps' data/files
 - Only via OS-provided interfaces (permissions)
- Problems:
 - Permissions can only be approved as a whole
 - Exact implications often unclear for user
 - E.g. messaging app requires contact data & internet access (obvious for messaging service)
 - Can also be used to "exfiltrate" whole address book

Attacks: spyware & malware (2)

- Most Android malware are trojans
 - Provide some legitimate service/function
 - Hide illicit activities in background
- Dedicated malware relatively rare
 - E.g. ZeuS (Windows) + ZitMo (ZeuS-in-the-Mobile)
 - Zeus on PC prompts user to connect mobile device, installs mobile malware component
 - Zeus intercepts banking website credentials,
 ZitMo intercepts SMS with TAN
 - → full access to bank account!

Attacks: spyware & malware (3)

- Can (sometimes) be analyzed in *sandbox*
 - Android emulator with additional logging (syscalls, network traffic, ...)
 - Simulated user input to trigger malicious behaviour
- "Arms race":
 - Malware tries to identify sandbox environment
 - Sandbox tries to look as realistic as possible
 - E.g. IMEI check, vibration → accelerometer, sound → microphone, waiting for specific user input ...

Attacks: network-based attacks

- WLAN (802.11x) passive sniffing attacks
 - Unencrypted (many hotels)
 - WEP (outdated & thoroughly broken)
 - WPA(2) pre-shared key & handshake must be known (key often public, handshake can be forced)
 - WPA2 Enterprise (e.g. eduroam) currently assumed to be secure (but can you trust every eduroam AP?)
 - WPA3 also not fully secure, known attack scenarios
- → use separate VPN on top of WLAN

Attacks: network-based attacks (2)

WWAN

- Identifying information
 - IMSI (Int. Mobile Subscriber ID) = SIM card
 - IMEI (Int. Mobile *Equipment* ID) = baseband module
- Location monitoring
 - Cell-based location always available in backend
 - Uses SS7 (Signalling System 7) backend network

Attacks: network-based attacks (3)

- Signalling System 7 (SS7)
 - Ancient protocol suite (since ~ 1975), used for ...
 - call setup, billing etc. between carriers
 - carrier-internal configuration (roaming between MSCs)
 - Many bugs & security issues
 - Accessible to "rogue operators" allows ...
 - re-routing of calls and messages
 - tracking cell-based location of IMSI/IMEI
 - disabling call encryption
 - SMS re-routing recently used for bank fraud (mobile TANs intercepted)

Attacks: network-based attacks (4)

- WWAN call/data monitoring
 - Uses IMSI catcher = "fake base station"
 - Mobile devices must authenticate to base stations, but not vice versa → anybody can operate a BTS!
 - Strong signal when close to target
 → phone switches to IMSI catcher
 - IMSI catcher can downgrade/disable encryption
 - Data forwarded to regular network, but decrypted/recorded beforehand
 - Possible using open-source tools (OpenBTS)

Attacks: network-based attacks (5)

IMSI catcher: classic "MITM" (man-in-the-middle) attack

Attacks: physical device access

- Security rule-of-thumb ("evil maid"):
 - Once attacker has physical access, you've lost.
 - Last line of defense: very strong encryption (public-key cryptosystem, 1000s of bits key length)
- Problem: key management impossible to type/remember 1000s of key bits
 - Alternative 1: key needs to be derived from/ protected by smaller number of bits → use KDF
 - Alternative 2: key needs to be stored in a separate security device,
 e.g. smartcard (such as SIM card)

Attacks: physical device access (2)

- KDF = Key Derivation Function
 - Protection against brute-force attacks
 - Complex function, 1000s of iterations
 - KDF should not take more than ~ 1 second on mobile device for fast unlock → problems?

Attacks: physical device access (3)

- Software-only KDF: no mitigation against offline attacks with high-end computers
 - Alternative: "Secure Enclave" (iPhone) with internally-stored hardware key
 - Wipes HW key after # of wrong tries

Attacks: physical device access (4)

- Alternative key storage: smart card
 - Small dedicated computer (CPU, RAM, ROM)
 - Common example: SIM card
 - However: (currently) not used to store device keys, only WWAN network/baseband keys
 - Features:
 - Irrevocable wipe after n wrong PINs
 - Tamper-proof: e.g. light sensor → triggers chip wipe
 - Attacks usually require advanced knowledge of internals, sometimes via an electron microscope

Android startup process

Attack scenarios on found device

- Device is locked and/or PIN protected (note: device PIN != SIM card PIN)
 - Bootloader unlocked
 - Flash & boot custom recovery image
 - Create backup of data partition
 - Analyze offline → PIN protection useless (see KDF)
 - Bootloader locked
 - Simply unlock bootloader? → will erase data partition
 - Attempt to re-flash recovery anyway (bugs in BL?)
 - Ultimate solution: direct hardware access to flash chips
 - "Cold-Boot": cool down RAM, reboot, read out remains

Encryption done right?

Image source (FU): http://www.heise.de/.../Android-Smartphone-mit-Iris-Scanner-2650067.html

- PIN > 4 digits → user acceptance sinks *rapidly*
- Two-factor authentication = something you know (e.g. PIN) + something you own
 - Biometric: face, fingerprint, iris pattern, ...
 - Hardware: wireless token, chipcard, ...
- Communication
 - Always use secure channels (HTTPS)
 - Very difficult to account for all failure modes

Cloud services done right?

- Peer-to-peer approaches
 - E.g. Tor, Bittorrent, Bitcoin
 - Problem: discovery of mobile peers,
 multi-hop routing → high network load
- End-to-end encryption
 - Some 3rd party tools: e.g. Boxcryptor, Truecrypt
 - Damages business model of many cloud providers
 - Zero-knowledge computing → computations on encrypted data without intermediate decryption

Data protection done right?

- Fine-granular access management
 - Current state: take it or leave it
 - App permissions can only be approved or denied as a whole
 - Slightly better on iOS: individual decisions possible
 - Most apps will simply not work if access denied
- Possible solution: fake personal data
 - E.g. provide plausible-looking randomly generated contacts instead of real ones
 - Apps shouldn't be able to tell the difference

Transparency done right?

Image source (FU): http://www.replicant.us/

- Replicant: Android derivative
 - Contains *only* open-source components
 - No Google apps, services & store
 - Several hardware drivers missing
 - Baseband still inaccessible
- OsmocomBB
 - Fully open-source UMTS baseband implementation
 - Only runs on some Motorola dumbphones
- OpenMoko: open hard-/software smartphone
 - Full schematics & source code available

The End

