Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Índice

Alguns conceitos métricos

2 Conexidade

Grafos particulares

4 Problemas de caminho de "custo mínimo" em grafos

Alguns conceitos métricos

Definição

Seja $G=(V,E,\psi)$ um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots e_k, v_k)$$

finita onde $v_0, v_1, \ldots, v_k \in V$, $e_1, e_2, \ldots, e_k \in E$ e, para cada $i = 1, 2, \ldots, k$, $\psi(e_i) = v_{i-1}v_i$.

Definição

Seja $G=(V,E,\psi)$ um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots e_k, v_k)$$

finita onde $v_0, v_1, \ldots, v_k \in V$, $e_1, e_2, \ldots, e_k \in E$ e, para cada $i=1,2,\ldots,k$, $\psi(e_i)=v_{i-1}v_i$.

Neste caso diz-se que P é um passeio entre os vértices v_0 e v_k (ou um passeio- (v_0, v_k)).

Definição

Seja $G=(V,E,\psi)$ um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots e_k, v_k)$$

finita onde $v_0, v_1, \ldots, v_k \in V$, $e_1, e_2, \ldots, e_k \in E$ e, para cada $i=1,2,\ldots,k$, $\psi(e_i)=v_{i-1}v_i$.

Neste caso diz-se que P é um passeio entre os vértices v_0 e v_k (ou um passeio- (v_0, v_k)). O vértice v_0 designa-se por vértice inicial do passeio P e v_k designa-se por vértice final do passeio P, os vértices v_1, \ldots, v_{k-1} designam-se por vértices intermédios.

Definição

Seja $G=(V,E,\psi)$ um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots e_k, v_k)$$

finita onde $v_0, v_1, \ldots, v_k \in V$, $e_1, e_2, \ldots, e_k \in E$ e, para cada $i = 1, 2, \ldots, k$, $\psi(e_i) = v_{i-1}v_i$.

Neste caso diz-se que P é um passeio entre os vértices v_0 e v_k (ou um passeio- (v_0, v_k)). O vértice v_0 designa-se por vértice inicial do passeio P e v_k designa-se por vértice final do passeio P, os vértices v_1, \ldots, v_{k-1} designam-se por vértices intermédios.

Nota

Num grafo simples, um passeio é determinado pela sequência dos sucessivos vértices; isto é, basta considerar

$$P = (v_0, v_1, \dots, v_k).$$

Definição

Definição

Seja $G = (V, E, \psi)$ um grafo.

• Um trajeto é um passeio sem arestas repetidas.

Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final $(v_0 = v_k)$. Um trajeto fechado diz-se também circuito.

Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final $(v_0 = v_k)$. Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.

Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final $(v_0 = v_k)$. Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo P em G é um "caminho fechado"; da forma mais rigorosa,

Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final $(v_0 = v_k)$. Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo P em G é um "caminho fechado"; da forma mais rigorosa,
 - 1. *P* é um *lacete* $P = (v_0, e, v_0)$, ou

Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final $(v_0 = v_k)$. Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo P em G é um "caminho fechado"; da forma mais rigorosa,
 - 1. P é um lacete $P = (v_0, e, v_0)$, ou
 - 2. $P = (v_0, a, v_1, b, v_0)$ com $v_0 \neq v_1$ e $a \neq b$, ou

Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final $(v_0 = v_k)$. Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo *P* em *G* é um "caminho fechado"; da forma mais rigorosa,
 - 1. P é um lacete $P = (v_0, e, v_0)$, ou
 - 2. $P = (v_0, a, v_1, b, v_0)$ com $v_0 \neq v_1$ e $a \neq b$, ou
 - 3. $P = (v_0, e_1, v_1, e_2, \dots e_k, v_k, e_{k+1}, v_0)$ é um passeio com $k \ge 2$ e $(v_0, e_1, v_1, e_2, \dots, e_k, v_k)$ é um caminho.

Comprimento de passeios

Definição

Seja $G=(V,E,\psi)$ um grafo e seja $P=(v_0,e_1,v_1,e_2,\ldots e_k,v_k)$ um passeio de G. Então, o comprimento de P é

$$comp(P) = k;$$

ou seja, comp(P) é o número de arestas (com eventual repetição) que o constitui.

Comprimento de passeios

Definição

Seja $G = (V, E, \psi)$ um grafo e seja $P = (v_0, e_1, v_1, e_2, \dots e_k, v_k)$ um passeio de G. Então, o comprimento de P é

$$comp(P) = k;$$

ou seja, comp(P) é o número de arestas (com eventual repetição) que o constitui.

Nota

No caso dos caminhos e dos trajetos, o comprimento coincide com o número de arestas.

Comprimento de passeios

Definição

Seja $G = (V, E, \psi)$ um grafo e seja $P = (v_0, e_1, v_1, e_2, \dots e_k, v_k)$ um passeio de G. Então, o comprimento de P é

$$comp(P) = k;$$

ou seja, comp(P) é o número de arestas (com eventual repetição) que o constitui.

Nota

No caso dos caminhos e dos trajetos, o comprimento coincide com o número de arestas.

Exemplos

Uma aresta é um caminho de comprimento 1 e um vértice é um caminho de comprimento 0.

Distância entre vértices

Definição

Seja $G=(V,E,\psi)$ um grafo (finito). Para $x,y\in V$, consideramos o conjunto $\mathcal{P}_{x,y}=\{\text{todos os caminhos entre }x\in y\}.$

Designa-se por distância entre vértices de G a função

$$\begin{split} \mathsf{dist} \colon V \times V &\longrightarrow \{0, 1, \dots, \nu(G), \infty\} \\ (x, y) &\longmapsto \begin{cases} \min\{\mathsf{comp}(P) \mid P \in \mathcal{P}_{x, y}\} & \mathsf{se} \ \mathcal{P}_{x, y} \neq \varnothing, \\ \infty & \mathsf{se} \ \mathcal{P}_{x, y} = \varnothing. \end{cases} \end{split}$$

Distância entre vértices

Definição

Seja $G = (V, E, \psi)$ um grafo (finito). Para $x, y \in V$, consideramos o conjunto $\mathcal{P}_{x,y} = \{\text{todos os caminhos entre } x \in y\}$.

Designa-se por distância entre vértices de G a função

$$\begin{aligned} \mathsf{dist} \colon V \times V &\longrightarrow \{0,1,\dots,\nu(G),\infty\} \\ (x,y) &\longmapsto \begin{cases} \min\{\mathsf{comp}(P) \mid P \in \mathcal{P}_{\mathsf{x},y}\} & \mathsf{se} \ \mathcal{P}_{\mathsf{x},y} \neq \varnothing, \\ \infty & \mathsf{se} \ \mathcal{P}_{\mathsf{x},y} = \varnothing. \end{cases} \end{aligned}$$

Nota

Tem-se

$$\operatorname{dist}(x,x) = 0$$
, $\operatorname{dist}(x,y) + \operatorname{dist}(y,z) \ge \operatorname{dist}(x,z)$,

e dist(x, y) = dist(y, x), para todos os $x, y, z \in V$.

Teorema

Seja G = (V, E) um grafo simples finito.

Teorema

Seja G = (V, E) um grafo simples finito.

• G contém um caminho P tal que comp $(P) \ge \delta(G)$.

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Demonstração.

Seja $P = (v_0, v_1, \dots, v_k)$ um caminho de maior comprimento em G.

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Demonstração.

Seja $P=(v_0,v_1,\ldots,v_k)$ um caminho de maior comprimento em G. Portanto, todos os vizinhos de v_k pertencem ao caminho (senão, podia-se prolongar o caminho),

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Demonstração.

Seja $P=(v_0,v_1,\ldots,v_k)$ um caminho de maior comprimento em G. Portanto, todos os vizinhos de v_k pertencem ao caminho (senão, podia-se prolongar o caminho), portanto,

$$comp(P) \ge d(v_k) \ge \delta(G)$$
.

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Demonstração.

Seja $P=(v_0,v_1,\ldots,v_k)$ um caminho de maior comprimento em G. Portanto, todos os vizinhos de v_k pertencem ao caminho (senão, podia-se prolongar o caminho), portanto,

$$comp(P) \ge d(v_k) \ge \delta(G)$$
.

Seja $i_0 = \min\{i \mid v_i v_k \in E\}.$

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Demonstração.

Seja $P=(v_0,v_1,\ldots,v_k)$ um caminho de maior comprimento em G. Portanto, todos os vizinhos de v_k pertencem ao caminho (senão, podia-se prolongar o caminho), portanto,

$$comp(P) \ge d(v_k) \ge \delta(G)$$
.

Seja $i_0 = \min\{i \mid v_i v_k \in E\}$. Então, $C = (v_i, v_{i+1}, \dots, v_k, v_i)$ é um ciclo (nota: $(v_i, v_{i+1}, \dots, v_k)$ tem pelo menos três vertices porque $d(v_k) > 2$)

Teorema

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$.
- Se $\delta(G) \ge 2$, então G contém um ciclo C tal que $comp(C) \ge \delta(G) + 1$.

Demonstração.

Seja $P=(v_0,v_1,\ldots,v_k)$ um caminho de maior comprimento em G. Portanto, todos os vizinhos de v_k pertencem ao caminho (senão, podia-se prolongar o caminho), portanto,

$$comp(P) \ge d(v_k) \ge \delta(G)$$
.

Seja $i_0 = \min\{i \mid v_i v_k \in E\}$. Então, $C = (v_i, v_{i+1}, \dots, v_k, v_i)$ é um ciclo (nota: $(v_i, v_{i+1}, \dots, v_k)$ tem pelo menos três vertices porque $d(v_k) \geq 2$) de comprimento $d(v_k) + 1 \geq \delta(G) + 1$.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

• A cintura g(G) de G é o comprimento do circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario $g(G) = \infty$.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- A cintura g(G) de G é o comprimento do circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario $g(G) = \infty$.
- Seja $v \in V$. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v). Mais formalmente, $e(v) = \max_{u \in V} dist_G(u, v)$.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- A cintura g(G) de G é o comprimento do circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario $g(G) = \infty$.
- Seja $v \in V$. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v). Mais formalmente, $e(v) = \max_{u \in V} dist_G(u, v)$.
- A maior excentricidade dos seus vértices designa-se por diâmetro de G e denota-se por diam(G).

Nota: Se $V \neq \varnothing$: diam $(G) = \max_{x,y \in X} d(x,y)$.

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- A cintura g(G) de G é o comprimento do circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario $g(G) = \infty$.
- Seja $v \in V$. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v). Mais formalmente, $e(v) = \max_{u \in V} dist_G(u, v)$.
- A maior excentricidade dos seus vértices designa-se por diâmetro de G e denota-se por diam(G).

Nota: Se $V \neq \emptyset$: diam $(G) = \max_{x,y \in X} d(x,y)$.

• A menor excentricidade dos vértices de G designa-se por raio e denota-se por r(G).

Definição

Seja $G = (V, E, \psi)$ um grafo finito.

- A cintura g(G) de G é o comprimento do circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario $g(G) = \infty$.
- Seja v ∈ V. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v). Mais formalmente, e(v) = max dist_G(u, v).
- A maior excentricidade dos seus vértices designa-se por diâmetro de G e denota-se por diam(G).

Nota: Se $V \neq \emptyset$: diam $(G) = \max_{x,y \in X} d(x,y)$.

- A menor excentricidade dos vértices de G designa-se por raio e denota-se por r(G).
- Um vértice v diz-se central quando e(v) = r(G). O conjunto dos vértices centrais designa-se por centro do grafo.

Um exemplo (concreto)

Exemplo

Considere o seguinte grafo G.

Exemplo

Considere o seguinte grafo G.

1. Determine a cintura do grafo G.

Exemplo

Considere o seguinte grafo G.

- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.

Exemplo

Considere o seguinte grafo G.

- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.
- 3. Determine o raio e o diâmetro de G.

Exemplo

Considere o seguinte grafo G.

- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.
- 3. Determine o raio e o diâmetro de G.
- 4. Determine o centro de G.

Exemplo

Seja G
$$=$$
 (V, E, ψ) um grafo finito com $V \neq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Exemplo

Seja
$$G=(V,E,\psi)$$
 um grafo finito com $V \neq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Exemplo

Seja
$$G=(V,E,\psi)$$
 um grafo finito com $V \neq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

$$\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$$

Exemplo

Seja
$$G=(V,E,\psi)$$
 um grafo finito com $V \neq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- $\bullet \ \operatorname{diam}(G) = \max_{x,y \in X} d(x,y).$

Exemplo

Seja
$$G=(V,E,\psi)$$
 um grafo finito com $V
eq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- $\bullet \ \operatorname{diam}(G) = \max_{x,y \in X} d(x,y).$
- $\operatorname{dist}(x,y) = \operatorname{comprimento} \operatorname{do} \operatorname{menor} \operatorname{caminho} (\operatorname{ou} \infty).$

Exemplo

Seja
$$G=(V,E,\psi)$$
 um grafo finito com $V
eq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- $\bullet \ \operatorname{diam}(G) = \max_{x,y \in X} d(x,y).$
- $dist(x, y) = comprimento do menor caminho (ou <math>\infty$).

Logo, $r(G) \leq \operatorname{diam}(G)$.

Exemplo

Seja $G=(V,E,\psi)$ um grafo finito com $V\neq\varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- diam(G) = $\max_{x,y \in X} d(x,y)$.
- $dist(x, y) = comprimento do menor caminho (ou \infty).$

Logo, $r(G) \leq \operatorname{diam}(G)$.

Caso 1: Suponhamos que existem $x, y \in V$ com $dist(x, y) = \infty$. Então, para todo o $z \in V$,

Exemplo

Seja $G=(V,E,\psi)$ um grafo finito com $V
eq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- $\bullet \ \operatorname{diam}(G) = \max_{x,y \in X} d(x,y).$
- $dist(x, y) = comprimento do menor caminho (ou <math>\infty$).

Logo, $r(G) \leq \operatorname{diam}(G)$.

Caso 1: Suponhamos que existem $x,y \in V$ com $\operatorname{dist}(x,y) = \infty$. Então, para todo o $z \in V$, $\operatorname{dist}(z,x) = \infty$ ou $\operatorname{dist}(z,y) = \infty$ e por isso $r(G) = \infty$ e $\operatorname{diam}(G) = \infty$.

Exemplo

Seja $G=(V,E,\psi)$ um grafo finito com $V
eq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- diam(G) = $\max_{x,y \in X} d(x,y)$.
- $dist(x, y) = comprimento do menor caminho (ou <math>\infty$).

Logo, $r(G) \leq \operatorname{diam}(G)$.

Caso 2: Suponhamos que dist $(x, y) < \infty$, para todos os $x, y \in V$.

Exemplo

Seja $G=(V,E,\psi)$ um grafo finito com $V
eq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- diam(G) = $\max_{x,y \in X} d(x,y)$.
- $\operatorname{dist}(x,y) = \operatorname{comprimento} \operatorname{do} \operatorname{menor} \operatorname{caminho} (\operatorname{ou} \infty).$

Logo, $r(G) \leq \operatorname{diam}(G)$.

Caso 2: Suponhamos que $\operatorname{dist}(x,y) < \infty$, para todos os $x,y \in V$. Sejam x,y os vértices com a maior $\operatorname{dist}(x,y) = \operatorname{diam}(G)$ e seja z um vértice central (ou seja, e(z) = r(G)).

Exemplo

Seja $G=(V,E,\psi)$ um grafo finito com $V
eq \varnothing$. Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $\bullet \ r(G) = \min_{x \in V} \max_{y \in V} d(x, y).$
- $\bullet \ \operatorname{diam}(G) = \max_{x,y \in X} d(x,y).$
- $\operatorname{dist}(x,y) = \operatorname{comprimento} \operatorname{do} \operatorname{menor} \operatorname{caminho} (\operatorname{ou} \infty).$

Logo, $r(G) \leq \operatorname{diam}(G)$.

Caso 2: Suponhamos que $dist(x,y) < \infty$, para todos os $x,y \in V$. Sejam x,y os vértices com a maior distância dist(x,y) = diam(G) e seja z um vértice central (ou seja, e(z) = r(G)). Portanto:

 $\mathsf{diam}(G) = \mathsf{dist}(x,y) \le \mathsf{dist}(x,z) + \mathsf{dist}(z,y) \le 2\,e(z) = 2r(G).$

Definição

Seja $G = (V, E, \psi)$ um grafo. Os vértices $u, v \in V$ dizem-se conexos se existe um caminho entre eles em G.

Exemplo

Por exemplo: i e b são conexos, e j e c não são conexos.

Definição

Seja $G=(V,E,\psi)$ um grafo. Os vértices $u,v\in V$ dizem-se conexos se existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos.

Definição '

Seja $G=(V,E,\psi)$ um grafo. Os vértices $u,v\in V$ dizem-se conexos se existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos. Um grafo não conexo diz-se desconexo.

Definição

Seja $G=(V,E,\psi)$ um grafo. Os vértices $u,v\in V$ dizem-se conexos se existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos. Um grafo não conexo diz-se desconexo.

Nota

A relação de conexidade definida por

 $x \sim y$ quando x e y são conexos

é uma relação de equivalência em V.

Definição

Seja $G=(V,E,\psi)$ um grafo. Os vértices $u,v\in V$ dizem-se conexos se existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos. Um grafo não conexo diz-se desconexo.

Nota

A relação de conexidade definida por

$$x \sim y$$
 quando x e y são conexos

é uma relação de equivalência em V.

Nota

Seja $G=(V,E,\psi)$ um grafo conexo de ordem n. Então, $|E|\geq n-1$ (ver a solução do exercício 25).

Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas.

Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas. O número de componentes conexas de G denota-se por cc(G).

Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas. O número de componentes conexas de G denota-se por cc(G).

Nota

• Um grafo G é conexo se e só se cc(G) = 1.

Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas. O número de componentes conexas de G denota-se por cc(G).

Nota

- Um grafo G é conexo se e só se cc(G) = 1.
- As componentes conexas são precisamente os subgrafos (induzidos) conexos maximais.

Pontes

Definição

Seja $G=(V,E,\psi)$ um grafo. Uma aresta $a\in E$ diz-se uma ponte (ou uma aresta de corte) quando cc(G-a)>cc(G).

Exemplo

G:

A arresta a é uma ponte de G.

Pontes

Definição

Seja $G=(V,E,\psi)$ um grafo. Uma aresta $a\in E$ diz-se uma ponte (ou uma aresta de corte) quando cc(G-a)>cc(G).

Ou seja, a é uma ponte de G se a eliminação de a aumenta o número de componentes de G.

Exemplo

G: a

A arresta a é uma ponte de G.

Pontes

Definição

Seja $G=(V,E,\psi)$ um grafo. Uma aresta $a\in E$ diz-se uma ponte (ou uma aresta de corte) quando cc(G-a)>cc(G).

Exemplo

A arresta a é uma ponte de G.

Teorema

Sejam $G = (V, E, \psi)$ um grafo e $a \in E$ com $\psi(a) = \{u, v\}$. Então, as seguintes afirmações são equivalentes:

- (i) A aresta a é uma ponte de G
- (ii) cc(G a) = cc(G) + 1 (supondo que G é finito).
- (iii) Os vértices u e v não são conexos em G-a.
- (iv) A aresta a não pertence a nenhum circuito de G.

Definição

Seja $G=(V,E,\psi)$ um grafo finito. Um circuito em G diz-se circuito de Euler quando contém todas as arestas de G.

Definição

Seja $G=(V,E,\psi)$ um grafo finito. Um circuito em G diz-se circuito de Euler quando contém todas as arestas de G.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha que G tem um circuito de Euler, digamos

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha que G tem um circuito de Euler, digamos

Se um vértice v aparece n vezes em P, então d(v) = 2n é par.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha agora que todos os vértices de G tem grau par.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha agora que todos os vértices de ${\it G}$ tem grau par. Seja

um trajeto de maior comprimento em G.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

$$P: \qquad \stackrel{e_1}{\underset{v_0}{\underbrace{\hspace{1cm}}}} \stackrel{e_k}{\underset{v_1}{\underbrace{\hspace{1cm}}}} \stackrel{e_k}{\underset{v_{k-1}}{\underbrace{\hspace{1cm}}}} \stackrel{e_k}{\underset{v_k}{\underbrace{\hspace{1cm}}}}$$

um trajeto de maior comprimento em G. Logo, P contém todas as arestas com um vértice em v_k . Logo, como $d(v_k)$ é par, $v_0 = v_k$.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

um trajeto de maior comprimento em G. Logo, P contém todas as arestas com um vértice em v_k . Logo, como $d(v_k)$ é par, $v_0 = v_k$. Suponha que existe uma aresta fora de P; neste caso existe uma aresta $v - v_i$ fora de P com v_i em P.

Teorema

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

um trajeto de maior comprimento em G. Logo, P contém todas as arestas com um vértice em v_k . Logo, como $d(v_k)$ é par, $v_0 = v_k$. Suponha que existe uma aresta fora de P; neste caso existe uma aresta $v \longrightarrow v_i$ fora de P com v_i em P. Então,

$$P: v v_i v_k = v_0 v_i$$

é um trajeto mais comprido, uma contradição.

Exemplo

Os vértices tem grau 3, 5, 3 e 3, respetivamente.

Exemplo

Os vértices tem grau 3, 5, 3 e 3, respetivamente.

Definição

Seja $G=(V,E,\psi)$ um grafo finito. Um trajeto em G diz-se trajeto de Euler quando contém todas as arestas de G.

Exemplo

Os vértices tem grau 3, 5, 3 e 3, respetivamente.

Definição

Seja $G = (V, E, \psi)$ um grafo finito. Um trajeto em G diz-se trajeto de Euler quando contém todas as arestas de G.

Teorema

Seja G um grafo finito e conexo. Então, G tem um trajeto de Euler se e só o número de vértices de grau ímpar é 0 ou 2.

Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes.

Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes. Um grafo $G=(V,E,\psi)$ diz-se nulo quando $E=\varnothing$; ou seja, quando não tem arestas.

Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes. Um grafo $G = (V, E, \psi)$ diz-se nulo quando $E = \emptyset$; ou seja, quando não tem arestas.

Nota

• A menos de isomorfismo, existe um único grafo completo de ordem n. Denota-se este grafo por K_n , e $\epsilon(K_n) = \binom{n}{2}$ $(n \in \mathbb{N})$.

Exemplos (Grafos completos)

Definição '

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes. Um grafo $G = (V, E, \psi)$ diz-se nulo quando $E = \emptyset$; ou seja, quando não tem arestas.

Nota

- A menos de isomorfismo, existe um único grafo completo de ordem n. Denota-se este grafo por K_n , e $\epsilon(K_n) = \binom{n}{2}$ $(n \in \mathbb{N})$.
- Cada grafo nulo é simples, de facto, os grafos nulos são precisamente os grafos complementares dos grafos completos. Portanto, denotamos o grafo nulo com n vértices por $\mathcal{K}_n^{\complement}$.

Exemplos (Grafos completos)

Definição

Seja $k \in \mathbb{N}$. Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum $k \in \mathbb{N}$.

Definição

Seja $k \in \mathbb{N}$. Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum $k \in \mathbb{N}$.

Exemplos (Grafos 2-regulares)

Definição

Seja $k \in \mathbb{N}$. Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum $k \in \mathbb{N}$.

Exemplos (Grafos 2-regulares)

Nota

• Os grafos 3-regulares designam-se por grafos cúbicos.

Definição

Seja $k \in \mathbb{N}$. Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum $k \in \mathbb{N}$.

Exemplos (Grafos 2-regulares)

Nota

- Os grafos 3-regulares designam-se por grafos cúbicos.
- O grafo K_n é (n-1)-regular.

Definição

Seja $k \in \mathbb{N}$. Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum $k \in \mathbb{N}$.

Exemplos (Grafos 2-regulares)

Nota

- Os grafos 3-regulares designam-se por grafos cúbicos.
- O grafo K_n é (n-1)-regular. De facto, um grafo simples G é (n-1)-regular se e só se G é completo.

Definição

Seja $k \in \mathbb{N}$. Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum $k \in \mathbb{N}$.

Exemplos (Grafos 2-regulares)

Nota

- Os grafos 3-regulares designam-se por grafos cúbicos.
- O grafo K_n é (n-1)-regular. De facto, um grafo simples G é (n-1)-regular se e só se G é completo.
- Um grafo G é 0-regular se e só se G é um grafo nulo.

Definição

Um grafo $G = (V, E, \psi)$ diz-se bipartido quando existem subconjuntos não-vazios $X, Y \subseteq V$ de V com $V = X \cup Y$ e $X \cap Y = \emptyset$ tais que os grafos G[X] e G[Y] são nulos

Exemplo

Definição

Um grafo $G=(V,E,\psi)$ diz-se bipartido quando existem subconjuntos não-vazios $X,Y\subseteq V$ de V com $V=X\cup Y$ e $X\cap Y=\varnothing$ tais que os grafos G[X] e G[Y] são nulos (isto é, não existem arestas entre qualquer par de vértices de X nem entre qualquer par de vértices de Y; ou seja, cada aresta de G tem um extremo em X e outro em Y).

Exemplo

Definição

Um grafo $G=(V,E,\psi)$ diz-se bipartido quando existem subconjuntos não-vazios $X,Y\subseteq V$ de V com $V=X\cup Y$ e $X\cap Y=\varnothing$ tais que os grafos G[X] e G[Y] são nulos (isto é, não existem arestas entre qualquer par de vértices de X nem entre qualquer par de vértices de Y; ou seja, cada aresta de G tem um extremo em X e outro em Y).

Uma tal partição $\{X,Y\}$ do conjunto V dos vértices de G designa-se por bipartição dos vértices. Neste caso denota-se G por (X,Y,E,ψ) (ou simplesmente (X,Y,E) se G é simples).

Exemplo

Teorema

 G^a é bipartido \iff G não tem circuitos b de comprimento ímpar.

^acom pelo menos dois vértices

^bcircuito = passeio fechado sem repetição de arestas.

Teorema

 $G \ \'e \ bipartido \iff G \ n\~ao \ tem \ circuitos \ de \ comprimento \ \'impar.$

Demonstração.

Teorema

G é bipartido \iff G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha que G é bipartido (com partição $\{X,Y\}$) e seja

um circuito em G. Suponhamos que $v_0 \in X$.

Teorema

G é bipartido \iff G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha que G é bipartido (com partição $\{X,Y\}$) e seja

$$P: \qquad \underbrace{\begin{array}{cccc} e_1 & & e_k \\ v_0 & v_1 & & v_{k-1} & v_0 \end{array}}_{e_k}$$

um circuito em G. Suponhamos que $v_0 \in X$. Então, $v_1 \in Y$, $v_2 \in X$, ..., $v_{k-1} \in Y$ e $v_0 \in X$.

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha que G é bipartido (com partição $\{X, Y\}$) e seja

um circuito em G. Suponhamos que $v_0 \in X$. Então, $v_1 \in Y$, $v_2 \in X$, ..., $v_{k-1} \in Y$ e $v_0 \in X$. Portanto, há um número ímpar de vértices e por isso

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha que G é bipartido (com partição $\{X, Y\}$) e seja

um circuito em G. Suponhamos que $v_0 \in X$. Então, $v_1 \in Y$, $v_2 \in X$, ..., $v_{k-1} \in Y$ e $v_0 \in X$. Portanto, há um número ímpar de vértices e por isso um número par de arestas.

Teorema

G é bipartido \iff G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha agora que $G=(V,E,\psi)$ não tem circuitos de comprimento ímpar (e G é conexo).

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha agora que $G=(V,E,\psi)$ não tem circuitos de comprimento ímpar (e G é conexo). Seja $x_0 \in V$. Consideramos

$$X = \{x \in V \mid \operatorname{dist}(x, x_0) \in \operatorname{par}\} \neq \emptyset$$
,

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha agora que $G=(V,E,\psi)$ não tem circuitos de comprimento ímpar (e G é conexo). Seja $x_0 \in V$. Consideramos

$$X = \{x \in V \mid \operatorname{dist}(x, x_0) \text{ \'e par}\}, \ Y = \{y \in V \mid \operatorname{dist}(y, x_0) \text{ \'e impar}\} \neq \varnothing.$$

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha agora que $G=(V,E,\psi)$ não tem circuitos de comprimento ímpar (e G é conexo). Seja $x_0 \in V$. Consideramos

$$X = \{x \in V \mid \operatorname{dist}(x, x_0) \text{ \'e par}\}, \ Y = \{y \in V \mid \operatorname{dist}(y, x_0) \text{ \'e impar}\} \neq \varnothing.$$

Suponhamos que existem $x, x' \in X$ adjacentes (com $a \in E$).

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha agora que $G=(V,E,\psi)$ não tem circuitos de comprimento ímpar (e G é conexo). Seja $x_0 \in V$. Consideramos

$$X = \{x \in V \mid \mathsf{dist}(x, x_0) \text{ \'e par}\}, \ Y = \{y \in V \mid \mathsf{dist}(y, x_0) \text{ \'e impar}\} \neq \varnothing.$$

Suponhamos que existem $x,x'\in X$ adjacentes (com $a\in E$). Sejam

$$P: \underbrace{\times} \quad X_0 \qquad P': \underbrace{\times} \quad X_0 \qquad X'$$

caminhos de menor comprimento (necessariamente par).

Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

Demonstração.

Suponha agora que $G=(V,E,\psi)$ não tem circuitos de comprimento ímpar (e G é conexo). Seja $x_0 \in V$. Consideramos

$$X = \{x \in V \mid \mathsf{dist}(x, x_0) \ \mathsf{\acute{e}} \ \mathsf{par}\}, \ Y = \{y \in V \mid \mathsf{dist}(y, x_0) \ \mathsf{\acute{e}} \ \mathsf{\acute{impar}}\} \neq \varnothing.$$

Suponhamos que existem $x, x' \in X$ adjacentes (com $a \in E$). Sejam

caminhos de menor comprimento (necessariamente par). Portanto,

$$x_0$$
 x' x x_0

é um passeio fechado de comprimento ímpar, logo existe um circuito de comprimento ímpar (TPC!!), uma contradição.

Problemas de caminho de "custo mínimo" em grafos

O problema

Formalizar o problema

- vértices = cruzamentos
- arestas = estradas com distância/tempo/preço/...

Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u, v) = W(v, u), W(u, u) = 0 e, para todos os $u \neq v \in V$, $W(u, v) = \infty$ se $uv \notin E$.

Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u,v)=W(v,u), W(u,u)=0 e, para todos os $u\neq v\in V$, $W(u,v)=\infty$ se $uv\notin E$. (Logo, não precisamos E.)

Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u, v) = W(v, u), W(u, u) = 0 e, para todos os $u \neq v \in V$, $W(u, v) = \infty$ se $uv \notin E$. (Logo, não precisamos E.) Para cada caminho $P = (v_0, v_1, \ldots, v_k)$ em G, o custo de P é

$$W(P) = \sum_{i=0}^{k-1} W(v_i, v_{i+1})$$

(onde
$$\alpha + \infty = \infty = \infty + \alpha$$
).

Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u, v) = W(v, u), W(u, u) = 0 e, para todos os $u \neq v \in V$, $W(u, v) = \infty$ se $uv \notin E$. (Logo, não precisamos E.) Para cada caminho $P = (v_0, v_1, \ldots, v_k)$ em G, o custo de P é

$$W(P) = \sum_{i=0}^{k-1} W(v_i, v_{i+1})$$

(onde
$$\alpha + \infty = \infty = \infty + \alpha$$
).

Objetivo

Encontrar o caminho de menor custo entre dois vértices.

Considerações iniciais

Se $(v_0, v_1, \ldots, v_{k-1}, v_k)$ é o caminho de "menor custo" entre v_0 e v_k , então $(v_0, v_1, \ldots, v_{k-1})$ é o caminho de "menor custo" entre v_0 e v_{k-1} .

Edsger W. Dijkstra (1959). «A note on two problems in connexion with graphs». Em: *Numerische Mathematik* 1.(1), pp. 269–271.

Edsger Wybe Dijkstra (1930 - 2002), matemático holandês.

As variáveis

• start = o vértice inicial.

- start = o vértice inicial.
- Para cada $v \in V$:

- start = o vértice inicial.
- Para cada $v \in V$:
 - custo(v) = "custo" do caminho de menor "custo" entre start e v (até o momento).

- start = o vértice inicial.
- Para cada $v \in V$:
 - custo(v) = "custo" do caminho de menor "custo" entre start e v (até o momento).
 - ant(v) = antecessor de v no caminho de menor "custo" entre start e v (até o momento).

- start = o vértice inicial.
- Para cada $v \in V$:
 - custo(v) = "custo" do caminho de menor "custo" entre start e v (até o momento).
 - ant(v) = antecessor de v no caminho de menor "custo" entre start e v (até o momento).
- **temp** = lista dos vértices com valores temporários.

- start = o vértice inicial.
- Para cada $v \in V$:
 - custo(v) = "custo" do caminho de menor "custo" entre start e v (até o momento).
 - ant(v) = antecessor de v no caminho de menor "custo" entre start e v (até o momento).
- **temp** = lista dos vértices com valores temporários.
- menor = vértice de menor custo (neste momento).

O desenvolvimento

• Inicializar as variáveis:

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\operatorname{custo}(v) = \infty$, $\operatorname{ant}(v) = \emptyset$.

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\mathbf{custo}(v) = \infty$, $\mathbf{ant}(v) = \emptyset$.
 - custo(start) = 0.

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\operatorname{custo}(v) = \infty$, $\operatorname{ant}(v) = \emptyset$.
 - custo(start) = 0.
 - $temp = V \setminus \{start\}$ e menor = start.

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\operatorname{custo}(v) = \infty$, $\operatorname{ant}(v) = \emptyset$.
 - custo(start) = 0.
 - $temp = V \setminus \{start\}$ e menor = start.
- Repetir:

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\operatorname{custo}(v) = \infty$, $\operatorname{ant}(v) = \emptyset$.
 - **custo**(start) = 0.
 - $temp = V \setminus \{start\}$ e menor = start.
- Repetir:
 - $c_{\text{aux}} = \infty$.
 - Para todo o v em **temp**:
 - Se custo(v) > custo(menor) + W(menor, v), então

$${f custo}(v) = {f custo}({\tt menor}) + W({\tt menor}, v), \ {\tt ant}(v) = {\tt menor}.$$

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\operatorname{custo}(v) = \infty$, $\operatorname{ant}(v) = \emptyset$.
 - **custo**(start) = 0.
 - $temp = V \setminus \{start\}$ e menor = start.
- Repetir:
 - $c_{\text{aux}} = \infty$.
 - Para todo o v em **temp**:
 - Se custo(v) > custo(menor) + W(menor, v), então

$$custo(v) = custo(menor) + W(menor, v),$$

$$ant(v) = menor.$$

• Se ${\bf custo}(v) < c_{\rm aux}$ então $c_{\rm aux} = {\bf custo}(v)$ e $v_{\rm aux} = v$ (lembrar do "menor custo").

O desenvolvimento

- Inicializar as variáveis:
 - Para cada $v \in V$: $\operatorname{custo}(v) = \infty$, $\operatorname{ant}(v) = \emptyset$.
 - **custo**(start) = 0.
 - $temp = V \setminus \{start\}$ e menor = start.
- Repetir:
 - $c_{\text{aux}} = \infty$.
 - Para todo o v em **temp**:
 - Se custo(v) > custo(menor) + W(menor, v), então

$$\begin{aligned} \mathbf{custo}(v) &= \mathbf{custo}(\mathtt{menor}) + W(\mathtt{menor}, v), \\ \mathbf{ant}(v) &= \mathtt{menor}. \end{aligned}$$

- Se ${\bf custo}(v) < c_{\rm aux}$ então $c_{\rm aux} = {\bf custo}(v)$ e $v_{\rm aux} = v$ (lembrar do "menor custo").
- $temp = temp \setminus \{v_{aux}\}\ e \ menor = v_{aux}$.

- vértice inicial: 1.
- vértice terminal: 4.

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}
	(0,1)	(1, 1)	$(\infty, -)$		

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}
	(0,1)	(1, 1)	$(\infty, -)$	2	{3,4}

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}
	(0,1)	(1, 1)	$(\infty, -)$	2	{3,4}
		(1,1)	(3, 2)		

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}
	(0,1)	(1, 1)	$(\infty, -)$	2	{3,4}
		(1,1)	(3, 2)	3	{4}

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}
	(0,1)	(1,1)	$(\infty, -)$	2	{3,4}
		(1,1)	(3, 2)	3	{4}
			(2,3)		

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	$\{2, 3, 4\}$
	(0,1)	(1,1)	$(\infty, -)$	2	{3,4}
		(1,1)	(3, 2)	3	{4}
			(2,3)	4	Ø

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

O algoritmo de Dijkstra

Exemplo

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	$\{2, 3, 4\}$
	(0,1)	(1,1)	$(\infty, -)$	2	{3,4}
		(1,1)	(3, 2)	3	{4}
			(2,3)	4	Ø

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

O algoritmo de Dijkstra

Exemplo

1	2	3	4	menor	temp
(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1	{2,3,4}
	(0,1)	(1,1)	$(\infty, -)$	2	{3,4}
		(1,1)	(3, 2)	3	{4}
			(2,3)	4	Ø

- vértice inicial: 1.
- vértice terminal: 4.
- Notação: (custo, vértice anterior).

Informações adicionais

- SIMON PEYTON JONES e ANDREW GOLDBERG (2010). «Getting from A to B: fast route-finding on slow computers». URL: https://www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/. A talk by Simon Peyton-Jones for Think Computer Science 2010.
 - STEPHEN DOLAN (2013). «Fun with semirings: a functional pearl on the abuse of linear algebra». Em: Proceedings of the 18th ACM SIGPLAN international conference on Functional programming ICFP '13. Vol. 48. 9. ACM. ACM Press, pp. 101–110. URL: https://www.cl.cam.ac.uk/~sd601/papers/semirings.pdf.

Exercício 31 (a) e (b)

4

5 1

6

 $\begin{bmatrix} 0 & \mathbf{5} & \infty & \infty & \infty & \mathbf{7} & \infty \\ \mathbf{5} & 0 & 8 & \infty & 6 & \infty & \infty \\ \infty & 8 & 0 & 1 & \infty & \infty & 2 \\ \infty & \infty & 1 & 0 & 3 & \infty & \infty \\ \infty & 6 & \infty & 3 & 0 & 3 & \infty \\ \mathbf{7} & \infty & \infty & \infty & 3 & 0 & 2 \\ \infty & \infty & 2 & \infty & \infty & 2 & 0 \end{bmatrix}$

0	5 0	∞	∞	∞	7	∞
5	0	8	∞	6	∞	∞
$ \infty $	8	0	1	∞	∞	2
$ \infty $	8 ∞ 6	1	0	3	∞	∞
$ \infty $	6	∞	3	0	3	∞
7	∞	∞	∞	3	0	2
$ \infty $	∞	2	∞	∞	2	0

0	5	∞	∞	∞	7	∞
5	0	8	∞	6	∞	∞
∞	8	0	1	∞	∞	2
∞	∞	1	1 0 3	3	∞	∞
∞	6	∞	3	0	3	∞
7	∞	∞	∞	3	0	2
∞	∞	2	∞	∞	2	0

0	5	∞	∞	∞	7	∞
		8	∞	6	∞	∞
∞	8	0	1	∞	∞	2
∞	∞	1	0	3	∞	∞
∞	6	∞	3	0	3	∞
7	∞	∞	∞	3	0	2
∞	∞	2	∞	∞	2	0
	∞ ∞ ∞ 7	$\begin{array}{ccc} 5 & 0 \\ \infty & 8 \\ \infty & \infty \\ \infty & 6 \\ 7 & \infty \end{array}$	$\begin{array}{ccccc} 5 & 0 & 8 \\ \infty & 8 & 0 \\ \infty & \infty & 1 \\ \infty & 6 & \infty \\ 7 & \infty & \infty \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0 & 5 & \infty & \infty & \infty & \infty & 7 \\ 5 & 0 & 8 & \infty & 6 & \infty \\ \infty & 8 & 0 & 1 & \infty & \infty \\ \infty & \infty & 1 & 0 & 3 & \infty \\ \infty & 6 & \infty & 3 & 0 & 3 \\ 7 & \infty & \infty & \infty & 3 & 0 \\ \infty & \infty & 2 & \infty & \infty & 2 \end{bmatrix}$

0	5	∞	∞	∞	7	∞
5	0	8	∞	6	∞	∞
∞	8	0	1	∞	∞	2
∞	∞	1	1 0 3	3	∞	∞
∞	6	∞	3	0	3	∞
7	∞	∞	∞	3	0	2
∞	∞	2	∞	∞	2	0
_						-

0	5	∞	∞	∞	7	∞
5	0	8	∞	6	∞	∞
∞	8	0	1	∞	∞	2
∞	∞	1	$1 \\ 0 \\ 3 \\ \infty$	3	∞	∞
∞	6	∞	3	0	3	∞
7	∞	∞	∞	3	0	2
∞	∞	2	∞		2	

0	5	∞	∞	∞	7	∞
5	0	8	∞	6	∞	∞
∞	8	0	1	∞	∞	2
∞	∞	1	0	∞ 3 0 3	∞	∞
∞	6	∞	3	0	3	∞
7	∞	∞	∞	3	0	2
∞	∞	2	∞		2	

 $Verifique se \ G \ \'e \ um \ grafo \ bipartido.$

Verifique se G é um grafo bipartido.

Logo, o grafo ${\it G}$ não é bipartido.

Verifique se G é um grafo bipartido.

Logo, o grafo G não é bipartido.

Argumento alternativo:

Verifique se G é um grafo bipartido.

Logo, o grafo G não é bipartido.

Argumento alternativo: G contém um circuito de comprimento impar, logo G não é bipartido.

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3, 4, 5, 6, 7}

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3,4,5,6,7}
_	-	(13, 2)	$(\infty, -)$	(11, 2)	(7,1)	$(\infty, -)$	6	{3, 4, 5, 7}
	•	•	•	•	•		•	

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3, 4, 5, 6, 7}
_	_	(13, 2)	$(\infty, -)$	(11, 2)	(7,1)	$(\infty, -)$	6	{3, 4, 5, 7}
_	-	(13, 2)	$(\infty, -)$	(10, 6)	-	(9,6)	7	{3,4,5}

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3, 4, 5, 6, 7}
_	_	(13, 2)	$(\infty, -)$	(11, 2)	(7,1)	$(\infty, -)$	6	{3, 4, 5, 7}
_	-	(13, 2)	$(\infty, -)$	(10, 6)	-	(9,6)	7	{3,4,5}
_	_	(11, 7)	$(\infty, -)$	(10, 6)	_	_	5	{3,4}

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3, 4, 5, 6, 7}
_	_	(13, 2)	$(\infty, -)$	(11, 2)	(7,1)	$(\infty, -)$	6	{3, 4, 5, 7}
_	_	(13, 2)	$(\infty, -)$	(10, 6)	_	(9,6)	7	{3,4,5}
_	_	(11, 7)	$(\infty, -)$	(10, 6)	_	_	5	{3,4}
_	_	(11,7)	(13, 5)	_	_	-	3	{4}
			•		•		•	

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3, 4, 5, 6, 7}
_	-	(13, 2)	$(\infty, -)$	(11, 2)	(7,1)	$(\infty, -)$	6	{3, 4, 5, 7}
_	_	(13, 2)	$(\infty, -)$	(10, 6)	_	(9,6)	7	{3,4,5}
_	-	(11,7)	$(\infty, -)$	(10, 6)	_	-	5	{3,4}
_	-	(11,7)	(13, 5)	-	_	-	3	{4}
_	-	_	(12,3)	-	_	-	4	Ø

1	2	3	4	5	6	7	menor	temp
(0, -)	$(\infty, -)$	1	{2,3,4,5,6,7}					
_	(5,1)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	(7,1)	$(\infty, -)$	2	{3, 4, 5, 6, 7}
_	-	(13, 2)	$(\infty, -)$	(11, 2)	(7,1)	$(\infty, -)$	6	{3, 4, 5, 7}
_	_	(13, 2)	$(\infty, -)$	(10, 6)	_	(9,6)	7	{3,4,5}
_	_	(11, 7)	$(\infty, -)$	(10, 6)	_	-	5	{3,4}
_	-	(11,7)	(13, 5)	_	-	-	3	{4}
_	-	_	(12,3)	-	-	-	4	Ø

Portanto, um caminho de custo mínimo é

$$4 \leftarrow 3 \leftarrow 7 \leftarrow 6 \leftarrow 1$$
.