

COSC130

Topic 10-2: Introduction to Cloud Security

Uday Tupakula

A/Prof in Cyber Security
School of Science and Technology
Faculty of Science, Agriculture, Business and Law
University of New England

Cloud Computing

• NIST Definition(SP 800-145): Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

- Cloud model composed of
 - five essential characteristics
 - three service models
 - four deployment models

Cloud Computing: Essential Characteristics

• On-demand self-service

Broad network access

Resource pooling

Rapid elasticity

Measured service

General Cloud View

Cloud Computing: Typical Commercial Terms of Service

- Terms of service determined by legally binding agreement between providers and consumers
 - Service Agreement
 - Service Level Agreement

Promises

- Availability
- Remedies for failure to perform: offer credits or refund
- Data Preservation: service termination due to violation in acceptable usage policies
- Legal care: do not sell or disclose customer information and/or data
- Limitations
 - Scheduled Outages not
 - Major Events: natural disasters

oud Computing: Service Models

(SaaS): Access to providers application

(PaaS): Consumers can create or deploy their applications

ervice (laaS): Consumers can deploy OS and Applications in virtual machines

eement Changes

nerally security risks placed on consumers

Cloud Computing: Typical Commercial Terms of Service

Obligations

- Acceptable Usage Policies
- Licenced Software
- Timely Payments

Recommendations

- Terminology: pay attention to some of the terms redefined by cloud provider
- Compliance: service agreements should specify compliance with applicable laws and regulations
- Security Criticality and Backup: check if provider recommends individual backup
- Negotiated Service Agreements: discuss required modifications to terms of service prior to use
- Service Agreement Changes: Provider may change terms of service with some notice period.

Cloud Computing: Service Models

- Software as a Service (SaaS): Access to providers applications
 - Microsoft Office 365, Salesforce, Netflix, Gmail, Dropbox
- Platform as a Service (PaaS): Consumers can create or deploy their applications
 - AWS Elastic Beanstalk, Google App Engine, Salesforce Lightning, IBM Cloud Foundry
- Infrastructure as a Service (IaaS): Consumers can deploy OS and Applications in virtual machines
 - Amazon Web Services, Microsoft Azure, Google Compute Engine, IBM Cloud

Cloud Computing: Deployment Models

- Private Cloud: Provisioned for exclusive use by a single organisation
- Community Cloud: Provisioned for exclusive use by specific community of consumers
- Public Cloud: Provisioned for open use by the general public
- Hybrid Cloud: combination of two or more cloud infrastructures

NIST Cloud Reference Model (NIST CRM)

- High level conceptual model which is a logical extension to NIST Cloud Computing Definition
- Generic vendor neutral model
- Effective tool for discussing the requirements, structures, and operations of cloud computing
- Defines a set of actors, activities and functions that can be used in the process of developing cloud computing architectures
- Helps stakeholders to understand the overall view of roles and responsibilities in order to assess and assign risk
- Focuses on the requirements of "what" cloud services provide, not a "how to" design solution and implementation

NIST CRM: Cloud Actors

Cloud Consumer

Cloud Provider

Cloud Auditor

Cloud Broker

Cloud Carrier

Cloud Consumer

Person, or organization that maintains a business relationship with, and uses service from Cloud Providers

Cloud Auditor

A party that can conduct independent assessment of cloud services, information system operations, performance and security of the cloud implementation

Cloud Provider

Person,
organization or
entity
responsible for
making a service
available to
Cloud Consumers

Cloud

An entity that manages the use, performance and delivery of cloud services, and negotiates relationships between Cloud Providers and Cloud Consumers

Cloud Carrier

The intermediary that provides connectivity and transport of cloud services from Cloud Providers to Cloud Consumers

NIST CRM: Scope of control between customer and Provider

NIST CRM: Scope of control between customer and Provider

NIST CRM: Scope of control between customer and Provider-On-site Private Cloud

NIST CRM: Scope of control between customer and Provider-On-site Private Cloud

- Network Dependency
- Need additional skill for managing the private cloud
- Workloads hidden from clients
- Data transfer and performance limitations
- Potentially strong security
- Significant to high upfront costs to implement and migrate to cloud
 - New Data Centre, Converted Data Centre, Scavenged Resources
- Limited Resources

NIST CRM: Scope of control between customer and Provider-Outsourced Private Cloud

NIST CRM: Scope of control between customer and Provider-Outsourced Private Cloud

- Network Dependency
- Workloads hidden from clients
- Risks from multi-tenancy (Depends on how separation is achieved)
- Data transfer and performance limitations
- Potentially strong security: Security applied at providers and consumers perimeter
- Modest costs to implement and migrate to cloud
- Extensive resources

Software as a Service (SaaS) Environments

- Who are the consumers?
 - Organizations providing their users with access to typical software applications such as office productivity or email.
 - End users who directly use software applications.
 - Software application administrators who configure an application for end users.
- What does a consumer get?
 - Use specific applications on demand.
 - application data management: backup and data sharing between consumers.
- How are usage fees calculated?
 - Based on different parameters: number of users, the time in use, per-execution, per-record-processed, network bandwidth consumed, and quantity/duration of data stored.

SaaS Environments: Abstract Interaction Dynamics

SaaS Environments: Scope of Control

- Why limited admin control for consumer?
 - Manage application users: new staff, terminated staff, change of user roles

SaaS Environments

- Benefits
 - Modest software tool footprint
 - Efficient usage of software licences
 - Centralised management of data
 - Platform responsibilities managed by cloud providers
 - Savings in up-front costs
- Issues and Concerns
 - Browser based risks
 - Network dependence
 - Lack of portability between clouds
 - Isolation vs Efficiency

SaaS Environments: Isolation vs Efficiency

Favouring Isolation

Favouring Efficiency

SaaS Environments: Recommendations

- Data Protection
 - What mechanisms and configurations are being used?
 - Where is the data location?
 - CIA requirements for the data?
- Client Device Protection
- Encryption
- Secure Data Deletion

Platform as a Service(PaaS) Environments

- Who are the consumers?
 - Application developers to design and implement an application's software.
 - Application testers to run applications in various testing environments.
 - Application deployers who publish applications into the cloud and manage possible conflicts arising from multiple versions of an application.
 - Application administrators to configure, tune, and monitor application performance.
 - Application end users.
- What does a consumer get?
 - Usage of PaaS cloud provider's tools and execution resources to develop, test, deploy and administer applications
- How are usage fees calculated?
 - Based on different parameters: number of consumers, consumers types, storage, processing, or network resources consumed by the platform, requests serviced, and the time the platform is in use

PaaS Environments: Abstract Interaction Dynamics

PaaS Environments: Scope of Control

PaaS Environments

Benefits

- Modest software tool footprint
- Efficient usage of software licences
- Centralised management of data
- Platform issues managed by cloud providers
- Savings in up-front costs
- Facilitated scalable application development and deployment

Issues and Concerns

- Browser based risks, Network dependence, Isolation vs Efficiency
- Lack of portability between PaaS clouds
- Security engineering of PaaS applications

PaaS Environments: Recommendations

- Generic Interfaces: to support portability and interoperability
- Standard language, tools and protocols
- Data Protection
- Application Framework: support for tools for mitigating security vulnerabilities
- Component Testing
- Security: ensure PaaS application can run in secure manner, can integrate with enterprise framework
- Data Deletion

Infrastructure as a Service(laaS) Environments

- Who are the consumers?
 - System Administrators
- What does a consumer get?
 - Access to virtual machines, network accessible storage, network infrastructure components
- How are usage fees calculated?
 - Based on different parameters: Resource allocation such as CPU, memory, storage, network bandwidth and the time in use

laaS Environments: Abstract Interaction Dynamics

laaS Environments: Scope of Control

IaaS Environments: Operational View

laaS Environments

Benefits

- Savings in up-front cost
- Full control of the virtual machine
- Flexible and efficient renting of computing resources
- Portable and interoperable

Issues and Concerns

- Browser based risks, Network dependence, Isolation vs Efficiency
- Virtual machine sprawl
- Robustness of VM-level isolation
- Features for dynamic network configuration for providing isolation

laaS Environments: Recommendations

- Multi-tenancy: Protection of Virtual Machines
- Data Protection
- Secure Data Deletion
- Admin Access to limited set of trained users
- Plan for VM migration