

Examen de Mécanique générale

Durée = 1h 30min. N.B. Aucun document n'est autorisé.

Exercice 1 : Système Poussoir - Roulette On considère le schéma cinématique d'un système Poussoir-Roulette représenté sur la figure 1. Au bâti (0) est associé le repère $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$. Le bras (1) est lié au bâti (0) par une liaison pivot d'axe (O, \vec{z}_0) . On pose: $\overline{OB} = b\vec{x}_0$; (b=cte>0). Le repère $R_i(O, \vec{x}_1, \vec{y}_1, \vec{z}_2)$ est associé au solide (1). On pose: $\overline{OA} = \alpha \overline{x}$; (a=cte>0) et $\alpha = (\overline{x}_1, \overline{x}_1)$ La roulette (2), de rayon r, est liée au bras (1) par une liaison pivot d axe (A, \vec{x}_1) . Le repère $R_1(A, \vec{x}_1, \vec{y}_1, \vec{x}_2)$ est associé au solide (2). On pose : $\beta = (\vec{x}_1, \vec{x}_2)$ Le plateau (3) est lie au bâti (0) par une liaison glissière d'axe (B, \vec{y}_0) . Le repère $R_3(B, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ est

associé au solide (3). On pose : $\overline{BC} = \lambda \overline{y}_q$. La roulette (2) est en contact en I avec le plateau (3). Un système non représenté assure le maintien du contact

Questions:

- Positionner les repères les uns par rapport aux autres : R_I par rapport à R₀ et R₂ par rapport à R_I.
- 2) Exprimer les vecteurs rotation : $\vec{\Omega}(1/0)$, $\vec{\Omega}(2/1)$, $\vec{\Omega}(2/0)$ et $\vec{\Omega}(3/0)$
- Définir les torseurs cinématiques: {V(1/0)} su point O, {V(2/1)} au point A et {V(3/0)} au point C.
- Développer l'expression de la fermeture géométrique : CÎ = CB + BO + OA + AÎ pour établir la relation entre λ et α : $\lambda = f(\alpha)$. On considère que $\overline{CI} = \overline{CI} \ \vec{x}_0$ et on effectue la projection sur \vec{x}_0 et \vec{y}_0
- 5) Déterminer les vecteurs vitesse : $\vec{v}(I \in 2/0)$ et $\vec{v}(I \in 3/0)$.
- 6) En supposant qu'il y a roulement sans glissement en I ($\vec{v}(l \in 2/3) = 0$), préciser la relation entre $\vec{\alpha}$ et B.

UNIVERSITE HASSAN II FACULTE DES SCIENCES CASABLANCA

M 312 - Mécanique des corps rigides Examen: LP TMBTP

Moduel: M310: Mécanique Appliquée Professeur:

Mohamed Belhag

Date: Jeudi 10 Novembre 2009

Heure: 10h30 - 12h

Problème :

On considère un cerceau (C) de centre C et de masse m et de rayon a qui peut rouler sans glisser sur l'axe $(0, \bar{x}_0)$. On suppose que le mouvement de (C) est un mouvement plan par rapport au repère fixe R (O, x o, y o, z o). Le cerceau (C) reste en contact avec l'axe (O, \bar{x}_0) au point l tel que OI = x(t) \bar{x}_0 . On considère un point M lié à (C) et on pose $\theta(t) = (Cx_0, CM)$. Soit le repère $R(C, \bar{x}, \bar{y}, \bar{z}_0)$ lié au cerceau (C). La vectrice rotation du cerceau par rapport à R₀ est donné par Q = θ z₀. On notera $R = m(Ny_0 + Tx_0)$ la résultante des efforts de contact en I.

- 1- Calculer les vitesses $\tilde{V}(I/R_0), V(I/R), \tilde{V}(I \in (C)/R_0)$ et comparer les résultats.
- 2- Calculer la vitesse et l'accélération de M par rapport à Ro.
- 3- Déterminer le moment cinétique $\sigma_{\mathcal{C}}(C/R_0)$ et le moment dynamique $\delta_C(C/R_0)$ en (C) du cerceau par rapport à R_0 . En déduire $\sigma_I(C/R_0)$ et $\delta_1(C/R_0)$.
- 4- Calculer le moment d'inertie du cerceau par rapport à l'axe Czo.
- 5- Ecrire le théorème de la résultante dynamique et le théorème du moment dynamique en C.
- 6- Déduire les équations du mouvement.

Université Mohammed V- Agdal Faculté des Sciences Département de Physique

Contrôle de Mécanique du solide SMI-SM-S3 Section A Groupe A04

Un solide S_1 , constitué par un cercle de rayon r_1 , de centre C_1 est en contact en I avec un second cercle rigide S_2 de rayon r_2 , de centre C_2 . Le solide S_1 roule sans glisser sur l'axe Ox d'un repère fixe orthonormé direct $R_0(O,\vec{x},\vec{y},\vec{z})$ alors que le solide S_2 tourne autour d'un axe passant par C_2 et parallèle à l'axe C_1z du repère Galiléen $R_1(C_1,\vec{x},\vec{y},\vec{z})$. On désigne par α , θ et φ les paramètres de position angulaire respectivement du point I pa rapport à R_1 , d'un point $P_1 \in S_1$ et d'un point $P_2 \in S_2$ par rapport à $R_1(C_1,\vec{u},\vec{v},\vec{z})$.

On utilise $R \cdot (C_1, \vec{u}, \vec{v}, \vec{z})$ comme repère de projection. d'axe $C_1 u$ passant par C_2 . On appelle I_1 respectivement I_2 le point de S_1 et de S_2 qui se trouvent en I à l'instant considéré et on note par x la position du centre C_1 .

1- Déterminer la vitesse de rotation instantanée des solides S_1 et S_2 par rapport au repère absolue R_0 , $\bar{\omega}(S_1/R_0)$ et $\bar{\omega}(S_2/R_0)$.

- 2- Calculer $\vec{v}(C_1/R_0)$. En déduire la vitesse $\vec{v}(I_1/R_0)$.
- 3- Calculer la vitesse $\vec{v}(C_2/R_0)$. En déduire $\vec{v}(I_2/R_0)$.
- 4- Calculer la vitesse de glissement $\vec{v}_g(S_2/S_1)$ de S_2 sur S_1 . En déduire à partir de la condition de roulement sans glissement en I de S_2 sur S_1 l'expression de α en fonction de θ et θ .
- 5- Calculer l'accélération $\bar{\gamma}(I_2/R_p)$

Université Sultan Moulay Slimane, Ecole Supérieure de Technologie

Série N° 3 (Mécanique du solide) Année 2020 Filières EREE1&MISEM1

Exercice 1

Determiner la position du centre d'inertie d'une demi sphère homogène pleine S(O,R) De centre O et de rayon R et d'axe de symetrie l'axe oz, la densité de S est p et sa masse M.

Exercice 2

Déterminer la matrice d'inertie en O, par rapport à un repère orthonormé (O, xyz), d'un cylindre homogène (S), de centre O, et de rayon R. En déduire la matrice d'inertie d'une barre AB, rectiligne, de longueur h, de milieu O et la matrice d'inertie d'un disque de centre O et de rayon R.

Exercice 3

Soit un solide (S) constitué d'un disque (D) de masse M et de rayon R et d'une tige (T) de même masse M et de longueur 2L. La tige est soudée au centre 0 du disque comme l'indique la figure suivante :

- 1- Déterminer la matrice d'inertie du disque.
- 2- Déterminer la matrice d'inertie de la tige.
- 3- Déterminer la matrice d'inertie du solide (S).

Exercice 4

Considérons un robot constitué d'un socle 0 et de deux bras 1 et 2. (Voir figure)

Soit les repères :

끫뢊0 (끫뢄, 끫룊 0, 끫료 0, 끫룎 0) repère fixe lié au socle Q
끫뢊1(끫뢄, 끫룊 1, 끫료 1, 끫룎 0) repère lié au bras 1.
끫뢊2 (끫뢄, 끫룊 2, 끫료 2, 끫룎 0) repère lié au bras 2.
On donne : 如 = 끫虧, 避虧, 끫쾗尉, 끫룊。

- 1- Calculer 끫븨 (끫뢊1/끫뢊0)et 끫븨 (끫뢊2/끫뢊0).
- 2- Calculer 組織者 出融 composition des vitesses.
- 3- Calculer 끫뷼/끫뢀. 끫뢊。)

T.D. Cinématique

I - Mouvements.

Exercice n°1 : Loi de mouvement

Le mouvement en rotation d'un bras de robot est effectué selon la loi d'accélération $\ddot{\theta}$ représentée ci-contre.

Elle correspond à une limitation par le couple moteur, donc d'après le principe fondamental de la dynamique, à une limitation de l'accélération angulaire $\ddot{\theta}(t)$.

Cette accélération est donc toujours égale à sa valeur extrémale $\pm \overset{\bullet}{\theta}_0$ ou alors elle est nulle.

A l'instant t = 0 s, la vitesse angulaire $\dot{\theta}(t)$ est nulle et la position angulaire $\theta(t)$ est considérée nulle également.

Chaque phase de l'accélération a une durée To.

- 1 Déterminer, pour chaque phase, l'expression de la vitesse angulaire $\hat{\theta}(t)$ et représenter l'ensemble sur un graphe.
- 2 Quelles sont les positions atteintes θ(t) aux instants T₀, 2T₀, 3T₀, 4 T₀ et 5T₀?
- 3 Déterminer pour chaque phase l'expression de la position angulaire θ(t) et représenter l'ensemble sur un graphe.
- 4 A quel mouvement concret du bras de robot, la loi obtenue correspond-elle ?

Exercice n°2: (d'après concours Centrale - Supelec 2002)

Un appareil d'imagerie médicale doit exécuter un mouvement de rotation $\theta(t)$ autour du patient.

La plage de mouvement total possible par la cinématique de l'appareil est limitée à $\Delta\theta_{total} = 225^{\circ}$

La motorisation permet une accélération angulaire comprise entre $\ddot{\theta}_{min} = -13^{\circ}/s^2$ et $\ddot{\theta}_{Max} = 13^{\circ}/s^2$

L'examen proprement dit a une durée T=3 s et se fait à vitesse constante $\dot{\theta}_{Max}$ la plus grande possible pour couvrir la plus grande plage angulaire possible, appelée $\Delta\theta_{examen}$.

- 1 Représenter graphiquement l'allure de la loi de vitesse.
- 2 Déterminer la durée de la phase d'accélération T_0 , la plage $\Delta\theta_{examen}$ et la vitesse $\dot{\theta}_{Max}$ du mouvement pendant l'examen. Faire les applications numériques.

Exercice n°3: (d'après concours Mines - Ponts 1999)

Un robot est constitué schématiquement d'un bâti de référence 0, d'une barre 1 de longueur OA = L et d'une barre 2 de longueur AB = L.

La barre 1 peut avoir un mouvement de rotation d'axe (O, \overrightarrow{z}) par rapport au bâti 0, paramétré par l'angle θ_{10} .

La barre 2 peut avoir un mouvement de rotation d'axe (A, \overrightarrow{z}) par rapport à la barre 1, paramétré par l'angle θ_{21} . A chaque pièce i est attachée une base $(\overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z})$

A l'instant t = 0, on a $\theta_{10} = 90^{\circ}$ et $\theta_{21} = -180^{\circ}$.

La mouvement du robot est assurée par :

- un moteur qui pilote la valeur de l'angle θ₁₀
- un mécanisme à poulies et courroie, non représenté, qui assure la relation $\dot{\theta}_{21}$ = - 2 $\dot{\theta}_{10}$ à tout instant .

- 1 Quelle est la trajectoire du point B, symbolisant la pince du robot ?
- 2 Calculer la vitesse du point B, par rapport au bâti 0, par 2 méthodes différentes.

