CONCOURS D'ADMISSION 2018

FILIÈRE MPI

COMPOSITION DE MATHÉMATIQUES – C – (ULCR)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Les parties I et II sont indépendantes.

1. Partie I

Dans cette partie, E est un ensemble fini ou dénombrable. L'ensemble des probabilités sur E est l'ensemble

$$\mathcal{P}(E) = \{ \mu \colon E \to [0,1] \mid \sum_{x \in E} \mu(x) = 1 \}.$$

Une matrice de transition sur E est une application $P: E \times E \to [0,1]$ telle que pour tout $x \in E$, on a

$$\sum_{y \in E} P(x, y) = 1.$$

Le produit PQ de deux matrices de transition P et Q est défini par

$$\forall (x,z) \in E \times E \qquad (PQ)(x,z) = \sum_{y \in E} P(x,y)Q(y,z).$$

On notera I la matrice de transition définie par $I(x,y) = \left\{ \begin{array}{l} 1 \text{ si } x = y; \\ 0 \text{ si } x \neq y. \end{array} \right.$

- **1.1.** (a) Vérifier que si P et Q sont des matrices de transition, PQ est aussi une matrice de transition.
 - (b) Vérifier que si P, Q et R sont des matrices de transition, on a (PQ)R = P(QR).
- (c) Pour tout entier $n \geq 0$ et toute matrice de transition P, on définit P^n par $P^0 = I$ et la relation de récurrence $P^{n+1} = P^n P$ si $n \geq 0$. Vérifier que P^n est bien une matrice de transition.

Étant données $\mu \in \mathcal{P}(E)$, une matrice de transition P et des fonctions bornées $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$, on définit les nombres réels suivants

$$\begin{split} \mu[f] &=& \sum_{x \in E} \mu(x) f(x), \\ \mu P(y) &=& \sum_{x \in E} \mu(x) P(x,y), \quad \text{ où } y \in E, \\ Pf(x) &=& \sum_{y \in E} P(x,y) f(y), \quad \text{ où } x \in E, \\ \langle f, g \rangle_{\mu} &=& \mu[fg]. \end{split}$$

- **1.2.** Soit $\mu \in \mathcal{P}(E)$, soient P et Q des matrices de transition et soit $f: E \to \mathbb{R}$ une fonction bornée.
 - (a) Montrer que $\mu P \in \mathcal{P}(E)$ et que $(\mu P)Q = \mu(PQ)$.
 - (b) Montrer que $Pf: E \to \mathbb{R}$ est une fonction bornée et que $\mu P[f] = \mu [Pf]$.
 - (c) Montrer que (PQ)f = P(Qf).

Une matrice de transition P sera dite réversible par rapport à un élément π de $\mathcal{P}(E)$ si pour tout $(x,y) \in E^2$, on a

$$\pi(x)P(x,y) = \pi(y)P(y,x).$$

Une matrice de transition P sera dite *irréductible* si pour tout $(x,y) \in E^2$, il existe un entier $n \ge 1$ tel que $P^n(x,y) > 0$.

On se donne, sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, une suite $(U_n)_{n\geq 1}$ de variables aléatoires réelles indépendantes et identiquement distribuées, et une variable aléatoire X_0 à valeurs dans E, indépendante de la suite $(U_n)_{n\geq 1}$. On se donne une fonction $F: E\times \mathbb{R} \to E$ et on définit une suite $(X_n)_{n\geq 0}$ de variables aléatoires à valeurs dans E en posant, pour tout entier $n\geq 1$,

$$X_n = F(X_{n-1}, U_n).$$

La loi de X_n est notée μ_n . On rappelle que c'est l'élément de $\mathcal{P}(E)$ défini par $\mu_n(x) = \mathbb{P}[X_n = x]$ pour tout $x \in E$.

L'espérance d'une variable aléatoire réelle bornée X sera notée $\mathbb{E}[X]$.

Pour tout $(x, y) \in E^2$, on pose $P(x, y) = \mathbb{P}[F(x, U_1) = y]$.

1.3. (a) Vérifier que P est une matrice de transition et que, pour tout entier $n \geq 0$ et tout $(x_0, \ldots, x_n) \in E^{n+1}$, on a

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mu_0(x_0) \prod_{i=1}^n P(x_{i-1}, x_i).$$

(b) Montrer que pour tout entier $n \ge 0$ et tout $(x_0, \ldots, x_n) \in E^{n+1}$ tel que $\mathbb{P}[X_0 = x_0, \ldots, X_n = x_n] > 0$, on a, pour tout $x \in E$,

$$\mathbb{P}[X_{n+1} = x \mid X_0 = x_0, \dots, X_n = x_n] = P(x_n, x).$$

- (c) Montrer que pour tout $n \ge 0$, on a $\mu_n = \mu_0 P^n$ et que si $\mu_0 P = \mu_0$, alors $\mu_n = \mu_0$ pour tout $n \ge 0$.
 - (d) Montrer que pour tout $n \geq 0$ et tout $x \in E$ tel que $\mu_0(x) > 0$, on a

$$\mathbb{P}[X_n = y \mid X_0 = x] = P^n(x, y) \qquad \text{pour tout } y \in E.$$

(e) Montrer que pour toute fonction $f\colon E\to \mathbb{R}$ bornée, on a

$$\mathbb{E}[f(X_n)] = \mu_0[P^n f].$$

À partir de maintenant, on supposera que

- P est réversible par rapport à une probabilité $\pi \in \mathcal{P}(E)$,
- il existe $a \in E$ tel que $\pi(a) > 0$ et tel que, pour tout $x \in E$, il existe un entier $n \ge 1$ pour lequel $P^n(a, x) > 0$.
- **1.4.** Montrer que $\pi P = \pi$.

- **1.5.** (a) Montrer que pour tout $n \geq 1$, la matrice de transition P^n est réversible par rapport à π .
- (b) Soit $n \ge 1$ et soit $x \in E$. Montrer que si $P^n(a,x) > 0$, on a $P^n(x,a) > 0$ et $\pi(x) > 0$.
 - (c) Montrer que $\pi(x) > 0$ pour tout $x \in E$.
 - (d) Montrer que P est irréductible.
- **1.6.** Pour toute fonction $f: E \to \mathbb{R}$ bornée et tout entier $n \geq 1$, on pose

$$\mathcal{E}_n(f) = \frac{1}{2} \sum_{(x,y) \in E^2} [f(x) - f(y)]^2 \pi(x) P^n(x,y).$$

- (a) Montrer que $\mathcal{E}_n(f) = \langle f P^n f, f \rangle_{\pi}$.
- (b) Montrer que si Pf = f, la fonction est f est constante.
- (c) Soit μ un élément de $\mathcal{P}(E)$ tel que $\mu P = \mu$. En posant $f(x) = \frac{\mu(x)}{\pi(x)}$, montrer que Pf = f, puis que $\mu = \pi$.

À partir de maintenant, on supposera également qu'il existe un élément b de E tel que P(b,b)>0.

1.7. (a) Montrer que pour tous entiers positifs k, ℓ, n , on a $P^n(b, b) > 0$ et

$$P^{k+n+\ell}(x,y) \ge P^k(x,b)P^n(b,b)P^\ell(b,y)$$
 pour tout $(x,y) \in E^2$.

- (b) Montrer que P^2 est irréductible. On rappelle (cf. la question 5(a)) que P^2 est réversible par rapport à π .
- (c) Montrer que si une fonction bornée $f:E\to\mathbb{R}$ vérifie Pf=-f, alors f(x)=0 pour tout $x\in E.$
- **1.8.** Dans cette question, on prend $E = \{1, \dots, d\}$, où d est un entier. Une fonction $f \colon E \to \mathbb{R}$ peut être alors vue comme un élément de \mathbb{R}^d .
- (a) Montrer que $\langle \cdot, \cdot \rangle_{\pi}$ définit un produit scalaire sur \mathbb{R}^d . On note $\|\cdot\|_{\pi}$ la norme associée.
- (b) Montrer que l'application $f \mapsto Pf$ est un endomorphisme de \mathbb{R}^d symétrique pour le produit scalaire $\langle \cdot, \cdot \rangle_{\pi}$.
- (c) Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de P, alors λ est réelle et vérifie $-1 < \lambda \leq 1$.
- (d) On note b_1 le vecteur de \mathbb{R}^d dont toutes les composantes valent 1. Montrer que b_1 est un vecteur propre de P associé à la valeur propre 1, qui est une valeur propre de multiplicité 1 pour P.
- (e) Montrer qu'il existe $\lambda \in [0,1[$ tel que, pour tout $n \geq 1$ et toute fonction $f: E \to \mathbb{R}$, on a

$$||P^n f - \pi[f]b_1||_{\pi} \le \lambda^n ||f - \pi[f]b_1||_{\pi}.$$

(f) En déduire qu'il existe une constante C telle que

$$\forall n \ge 1$$
 $\sup_{x \in E} |\mu_n(x) - \pi(x)| \le C\lambda^n.$

Partie II

Pour tout t > 0, on note $\gamma_t \colon \mathbb{R} \to \mathbb{R}^+$ la fonction définie par

$$\forall x \in \mathbb{R} \qquad \gamma_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

On admettra que pour tout t > 0, on a $\int_{-\infty}^{\infty} \gamma_t(x) dx = 1$.

On note $C_0(\mathbb{R})$ (respectivement $C_b(\mathbb{R})$) l'espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$ (respectivement, telles que $\sup_{x \in \mathbb{R}} |f(x)| < +\infty$).

Lorsqu'il est bien défini, le produit de convolution f * g de deux fonctions continues $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ est la fonction $f * g: \mathbb{R} \to \mathbb{R}$ définie par

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy.$$

Pour $f \in C_b(\mathbb{R})$, on pose

$$||f||_1 = \int_{\mathbb{R}} |f(x)| dx \in \mathbb{R} \cup \{+\infty\}$$
 et $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)| \in \mathbb{R}$.

Si f est dérivable, on note $\frac{d}{dx}f$ sa dérivée et, si f est n fois dérivable, on note $\frac{d^n}{dx^n}f$ la dérivée n-ième de f, définie par la relation de récurrence $\frac{d^{n+1}}{dx^{n+1}}f = \frac{d}{dx}(\frac{d^n}{dx^n}f)$. On utilisera aussi les notations $f' = \frac{d}{dx}f$ et $f'' = \frac{d^2}{dx^2}f$.

Si on se donne pour tout t > 0, une fonction $f_t : \mathbb{R} \to \mathbb{R}$ et si pour $x \in \mathbb{R}$, l'application $t \mapsto f_t(x)$ est dérivable, on notera sa dérivée $\frac{d}{dt}f_t(x)$.

2. Partie II-A

- **2.1.** Soit $(f,g) \in C_b(\mathbb{R}) \times C_b(\mathbb{R})$. Si $||f||_1 < +\infty$ ou si $||g||_1 < +\infty$, vérifier que l'application f * g est bien définie et que l'on a alors f * g = g * f.
- **2.2.** Montrer que pour tout s > 0 et tout t > 0, on a $\gamma_s * \gamma_t = \gamma_{s+t}$.
- **2.3.** Montrer que pour tout $x \in \mathbb{R}$ et tout t > 0, on a

$$\frac{d}{dt}\gamma_t(x) = \frac{1}{2}\frac{d^2}{dx^2}\gamma_t(x).$$

- **2.4.** Pour $f \in C_b(\mathbb{R})$, on pose $P_0 f = f$ et $P_t f = \gamma_t * f$ si t > 0. [Dans cette question, on pourra utiliser le changement de variable $z = \frac{y}{\sqrt{t}}$.]
 - (a) Montrer que $P_t f \in C_b(\mathbb{R})$ et que l'application $(t, x) \mapsto P_t f(x)$ est continue sur $\mathbb{R}^+ \times \mathbb{R}$.
 - (b) Montrer que si $f \in C_0(\mathbb{R})$, alors $P_t f \in C_0(\mathbb{R})$ et, pour tout $x \in \mathbb{R}$, on a $\lim_{t \to +\infty} P_t f(x) = 0$.
- **2.5.** Montrer que pour tout entier $n \geq 1$, il existe une constante $c_n \in \mathbb{R}$ telle que, pour tout t > 0 et tout $x \in \mathbb{R}$, on a la majoration

$$\left| \frac{d^n}{dx^n} \gamma_t(x) \right| \le \frac{c_n}{t^{n/2}} \left(1 + \frac{|x|}{\sqrt{t}} \right)^n \gamma_t(x).$$

- **2.6.** Soit $f \in C_b(\mathbb{R})$.
- (a) Vérifier que pour tout t > 0, l'application $P_t f$ est infiniment dérivable et que, pour tout $x \in \mathbb{R}$, l'application $t \mapsto P_t f(x)$ est dérivable en tout t > 0.
- (b) Soit t > 0. Montrer que $||P_t f||_{\infty} \le ||f||_{\infty}$ et que, pour tout entier $n \ge 1$, il existe une constante $C_n \in \mathbb{R}$ indépendante de t et de f telle que

$$\left\| \frac{d^n}{dx^n} (P_t f) \right\|_{\infty} \le \frac{C_n \|f\|_{\infty}}{t^{n/2}}.$$

(c) Montrer que pour tout t > 0, on a

$$\frac{d}{dt}(P_t f) = \frac{1}{2} \frac{d^2}{dx^2}(P_t f).$$

3. Partie II-B

Pour $f \in C_b(\mathbb{R})$, on pose $Q_0 f = f$ ainsi que, pour tout $x \in \mathbb{R}$ et tout t > 0,

$$Q_t f(x) = P_{1-e^{-2t}} f(e^{-t}x).$$

On pose également

$$\langle f \rangle = \int_{\mathbb{R}} f(x)\gamma_1(x) dx,$$

$$Var(f) = \int_{\mathbb{D}} (f(x) - \langle f \rangle)^2 \gamma_1(x) dx.$$

3.1. Soit $f \in C_b(\mathbb{R})$. Montrer que pour tout $t \geq 0$ et tout $x \in \mathbb{R}$, on a

$$Q_t f(x) = \int_{\mathbb{R}} f(e^{-t}x - \sqrt{1 - e^{-2t}}y) \gamma_1(y) \, dy.$$

- **3.2.** Soit $f \in C_b(\mathbb{R})$.
- (a) Vérifier que, pour tout t > 0, l'application $Q_t f$ est infiniment dérivable et que, pour tout $x \in \mathbb{R}$, l'application $t \mapsto Q_t f(x)$ est dérivable en tout t > 0.
- (b) Soit t > 0. Montrer que $||Q_t f||_{\infty} \le ||f||_{\infty}$ et que, pour tout entier $n \ge 1$, il existe une constante $C_n \in \mathbb{R}$ indépendante de t et de f telle que

$$\left\| \frac{d^n}{dx^n} (Q_t f) \right\|_{\infty} \le \frac{C_n \|f\|_{\infty}}{t^{n/2}}.$$

(c) Montrer que pour tout t > 0, on a, pour tout $x \in \mathbb{R}$,

$$\frac{d}{dt}(Q_t f)(x) = \frac{d^2}{dx^2}(Q_t f)(x) - x\frac{d}{dx}(Q_t f)(x).$$

Pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 et tout $x \in \mathbb{R}$, on pose Lf(x) = f''(x) - xf'(x).

3.3. Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ des fonctions bornées de classe C^2 telles que f', g', f'' et g'' sont bornées. Après avoir vérifié que les intégrales sont convergentes, montrer l'égalité

$$-\int_{\mathbb{R}} Lf(x)g(x)\gamma_1(x) dx = \int_{\mathbb{R}} f'(x)g'(x)\gamma_1(x) dx.$$

3.4. Soit $f \in C_b(\mathbb{R})$. Montrer que pour tout t > 0, on a

$$\frac{d}{dt} \int_{\mathbb{R}} Q_t f(x) \gamma_1(x) \, dx = 0,$$

puis que, pour tout $t \geq 0$, on a $\langle Q_t f \rangle = \langle f \rangle$.

- **3.5.** Soit $f \in C_b(\mathbb{R})$.
 - (a) Vérifier que l'intégrale double suivante est bien définie

$$I(f) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} [f(x) - f(y)]^2 \gamma_1(x) \, dx \right) \gamma_1(y) \, dy.$$

- (b) Montrer que $\frac{1}{2}I(f) = Var(f)$.
- **3.6.** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable bornée telle que $f' \in C_b(\mathbb{R})$. Montrer l'égalité

$$\int_{\mathbb{R}} x f(x) \gamma_1(x) dx = \int_{\mathbb{R}} f'(x) \gamma_1(x) dx.$$

- **3.7.** Soit $f \in C_b(\mathbb{R})$.
 - (a) Vérifier que les intégrales suivantes sont bien définies

$$I_1(f) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} x \left[\int_y^x f(u) \, du \right] \gamma_1(x) \, dx \right) \gamma_1(y) \, dy,$$

$$I_2(f) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} y \left[\int_x^y f(u) \, du \right] \gamma_1(x) \, dx \right) \gamma_1(y) \, dy.$$

- (b) Montrer que $I_1(f) = I_2(f) = \langle f \rangle$.
- **3.8.** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable bornée telle que $f' \in C_b(\mathbb{R})$.
 - (a) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, on a

$$[f(x) - f(y)]^2 \le (x - y) \int_{u}^{x} (f'(u))^2 du.$$

(b) Montrer l'inégalité

$$\operatorname{Var}(f) \le \int_{\mathbb{R}} (f'(x))^2 \gamma_1(x) dx.$$

- **3.9.** Soit $f \in C_b(\mathbb{R})$.
 - (a) Montrer que si $\langle f \rangle = 0$, on a

$$\frac{d}{dt} \int_{\mathbb{D}} (Q_t f)^2(x) \gamma_1(x) \, dx \le -2 \int_{\mathbb{D}} (Q_t f)^2(x) \gamma_1(x) \, dx.$$

(b) Montrer que pour tout t > 0, on a

$$\operatorname{Var}(Q_t f) \le e^{-2t} \operatorname{Var}(f).$$