Bayes Classifiers

Adopted from slides by Alexander Ihler

Supervised Learning

- **Given** examples of a function (X, Y = F(X))
- Find function $\hat{Y} = h(X)$ to estimate F(X)
 - Continuous *Y*: Regression
 - Discrete *Y*: Classification

Nearest neighbor classifier

A basic classifier

- Training data $D = \{x^{(i)}, y^{(i)}\}$, Classifier f(x)
 - Discrete feature vector X
 - f(x) is a contingency table
- Ex: credit rating prediction (bad/good)
 - *X* = income (low/med/high)
 - How can we make the most # of correct predictions?

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

A basic classifier

- Training data $D = \{x^{(i)}, y^{(i)}\}$, Classifier f(x)
 - Discrete feature vector X
 - f(x) is a contingency table
- Ex: credit rating prediction (bad/good)
 - *X* = income (low/med/high)
 - How can we make the most # of correct predictions?
 - Predict more likely outcome for each possible observation

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

A basic classifier

- Training data $D = \{x^{(i)}, y^{(i)}\}$, Classifier f(x)
 - Discrete feature vector X
 - f(x) is a contingency table
- Ex: credit rating prediction (bad/good)
 - *X* = income (low/med/high)
 - How can we make the most # of correct predictions?
 - Predict more likely outcome for each possible observation
 - Can normalize into probability: $p(y = good \mid X = x)$

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

How to generalize?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

• You wake up with a headache – what is the chance that you have the flu?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = ?
- P(F|H) = ?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = p(F) p(H|F) = (1/2) * (1/40) = 1/80
- P(F|H) = ?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

•
$$P(F|H) = p(H \& F) / p(H)$$

= $(1/80) / (1/10) = 1/8$

Classification and probability

- Suppose we want to model the data
- Prior probability of each class, p(y)
 - E.g., fraction of applicants that have good credit
- Distribution of features given the class, p(x | y = c)
 - How likely are we to see "x" in users with good credit?
- Joint distribution

$$p(y|x)p(x) = p(x,y) = p(x|y)p(y)$$

• Bayes Rule:

$$\Rightarrow p(y|x) = p(x|y)p(y)/p(x)$$

(Use the rule of total probability to calculate the denominator!)
$$= \frac{p(x|y)p(y)}{\sum_{c} p(x|y=c)p(y=c)}$$

Bayes classifiers

- Training data
 - Estimate p(y = c)
 - Split by class
 - $D_c = \{ x^{(i)} : y^{(i)} = c \}$
- Estimate p(x | y = c) using D_c
- Estimate $p(y \mid x)$ using Bayes rule
- For a discrete *X*, this recalculates the same table...

Features	# bad	# good	p(x y=0)	p(x y=1)		p(y=0 x)	p(y=1 x)
X=0	42	15	42 / 383	15 / 307		.7368	.2632
X=1	338	287	338 / 383	287 / 307	→	.5408	.4592
X=2	3	5	3 / 383	5 / 307		.3750	.6250

p(y)	383/690	307/690
------	---------	---------

Bayes classifiers

- Training data
 - Estimate p(y = c)
 - Split by class
 - $D_c = \{x^{(i)}: y^{(i)} = c\}$
- Estimate p(x | y = c) using D_c
- Estimate $p(y \mid x)$ using Bayes rule
- For continuous *X*, can use any density estimate like
 - Histogram
 - Gaussian
 - ...

Gaussian models

Estimate parameters of the Gaussians from the data

$$\alpha = \frac{m_1}{m} = \hat{p}(y = c_1)$$
 $\hat{\mu} = \frac{1}{m} \sum_j x^{(j)}$ $\hat{\sigma}^2 = \frac{1}{m} \sum_j (x^{(j)} - \mu)^2$

Multivariate Gaussian models

Similar to univariate case

$$\mathcal{N}(\underline{x} ; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right\}$$

Example: Gaussian Bayes for Iris Data

• Fit Gaussian distribution to each class {0,1,2}

$$p(y) = \text{Discrete}(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$p(x_1, x_2 | y = 0) = \mathcal{N}(x; \mu_0, \Sigma_0)$$

$$p(x_1, x_2 | y = 1) = \mathcal{N}(x; \mu_1, \Sigma_1)$$

$$p(x_1, x_2 | y = 2) = \mathcal{N}(x; \mu_2, \Sigma_2)$$

Bayes Classifiers: Naïve Bayes

Bayes classifiers

- Estimate p(y) = [p(y = 0), p(y = 1) ...]
- Estimate p(x | y = c) for each class c
- Calculate $p(y = c \mid x)$ using Bayes rule
- Choose the most likely class c
- For a discrete *X*, can represent as a contingency table...
 - What about if we have more discrete features?

Features	# bad	# good		p(x y=0)	p(x y=1)		p(y=0 x)	p(y=1 x)
X=0	42	15		42 / 383	15 / 307		.7368	.2632
X=1	338	287	→	338 / 383	287 / 307	_>	.5408	.4592
X=2	3	5		3 / 383	5 / 307		.3750	.6250

Joint distributions

 Make a truth table of all combinations of values

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Joint distributions

 Make a truth table of all combinations of values

- For each combination of values, determine how probable it is
- Total probability must sum to one
- How many values did we specify?

Α	В	С	p(A,B,C y=1)
0	0	0	0.4
0	0	1	0.1
0	1	0	0.0
0	1	1	0.0
1	0	0	0.1
1	0	1	0.2
1	1	0	0.1
1	1	1	0.1

Overfitting & density estimation

- Estimate probabilities from the data
 - E.g., how many times (what fraction) did each outcome occur?
- *M* data << 2^N parameters?
- What about the zeros?
 - We learn that certain combinations are impossible?
 - What if we see these later in test data?
- Overfitting!

Α	В	С	p(A,B,C y=1)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

Overfitting & density estimation

- Reduce the model complexity
 - E.g., assume that features are conditionally independent of one another given the class label
- Conditional Independence:
- p(a,b,c|y) = p(a|y) p(b|y) p(c|y)
- $p(x_1, x_2, ... x_N | y=1) = p(x_1 | y=1) p(x_2 | y=1) ... p(x_N | y=1)$
- Only need to estimate each individually

Α	p(A y=1)
0	.4
1	.6

В	p(B y=1)
0	.7
1	.3

C	p(C y=1)	
0	.1	\Rightarrow
1	.9	,

Α	В	С	p(A,B,C y=1)
0	0	0	.4 * .7 * .1
0	0	1	.4 * .7 * .9
0	1	0	.4 * .3 * .1
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Naïve Bayes Models

- Naïve Bayes:
 - p(y | x) = p(x | y) p(y) / p(x)
 - Estimate p(y) for each class y
 - $p(x \mid y) = \prod_i p(x_i \mid y)$
 - Estimate $p(x_i | y)$ for each feature x_i and class y

Predict
$$y = c_1$$
 if $p(x | y = c_1) p(y = c_1) > p(x | y = c_2) p(y = c_2)$

- Note: may not be a good model of the data
 - Doesn't capture correlations in x's
 - Can't capture some dependencies
- But in practice it often does quite well!

Example: Naïve Bayes

Observed Data:

$$\hat{p}(y=1) = \frac{4}{8} = (1 - \hat{p}(y=0))$$

$$\hat{p}(x_1 = 1|y = 0) = \frac{3}{4}$$
 $\hat{p}(x_1 = 1|y = 1) = \frac{2}{4}$
 $\hat{p}(x_2 = 1|y = 0) = \frac{2}{4}$ $\hat{p}(x_2 = 1|y = 1) = \frac{1}{4}$

$$\hat{p}(x_1 = 1, x_2 = 1 | y = 1) = \hat{p}(x_1 = 1 | y = 1) \, \hat{p}(x_2 = 1 | y = 1)$$

$$= \frac{2}{4} \times \frac{1}{4}$$

Example: Naïve Bayes

Observed Data:

X ₂	y
1	0
0	0
0	1
0	0
1	1
1	0
0	1
0	1
	1 0 0 1 1

$$\hat{p}(y=1) = \frac{4}{8} = (1 - \hat{p}(y=0))$$

$$\hat{p}(x_1 = 1|y = 0) = \frac{3}{4}$$
 $\hat{p}(x_1 = 1|y = 1) = \frac{2}{4}$ $\hat{p}(x_2 = 1|y = 0) = \frac{2}{4}$ $\hat{p}(x_2 = 1|y = 1) = \frac{1}{4}$

Prediction given some observation x?

$$\hat{p}(y=1)\hat{p}(x=11|y=1) \qquad \hat{p}(y=0)\hat{p}(x=11|y=0) \\ \frac{4}{8} \times \frac{2}{4} \times \frac{1}{4} \qquad \hat{p}(y=0)\hat{p}(x=11|y=0)$$

Decide class 0

Naïve Bayes Models for Spam

- $y \in \{spam, not spam\}$
- *X* = observed words in email
 - Ex: ["the" ... "probabilistic" ... "lottery"...]
 - "1" if word appears; "0" if not
- 1000's of possible words: 2^{1000s} parameters?
- # of atoms in the universe: » 2²⁷⁰...
- Model words given email type as independent
- Some words more likely for spam ("lottery")
- Some more likely for real ("probabilistic")
- Only 1000's of parameters now...

Summary

- Bayes rule; p(y | x)
- Bayes classifiers
 - Learn $p(x \mid y = C)$, $p(y = C) \Rightarrow p(y = C \mid x)$
- Naïve Bayes classifiers
 - Assume features are independent given class:

$$p(x | y = C) = p(x_1 | y = C) p(x_2 | y = C) ...$$

- Maximum likelihood (empirical) estimators for
 - Discrete variables
 - Gaussian variables
 - Overfitting