线

北京林业大学

第1页 共 6页

2023-2024学年第一学期课程期末考试试卷

课程名称: 线性代数 考试方式: 闭卷()

题号	3 	=	四	五	六	七	八	总分	统分人签名
得分									

考生注意事项: 1、本试卷共_6_页,请查看试卷中是否有缺页。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、选择题(每小题 3 分,共 15 分)

得分	评	卷

- 1、A、B均为n阶方阵,则必有()成立
- (A) $(A+B)^2 = A^2 + 2AB + B^2$ (B) $(A+B)^{-1} = A^{-1} + B^{-1}$
- (C) $AB = 0 \Rightarrow A = 0$ $\vec{\otimes} B = 0$

(D)
$$|A + AB| = 0 \iff |A| = 0$$
 $\implies |E + B| = 0$

- (A) 6
- (B) -6
- (C) -30
- (D) -10
- 3、n维列向量组 α_1 , α_2 , α_3 (n>3)线性无关,则下列说法**错误**的是(
- (A) α_1 , α_2 , α_3 中任意两个向量线性无关
- (B) 令 $A = (\alpha_1 \alpha_2 \alpha_3)$, 齐次线性方程组Ax = 0只有零解
- (C) 对任意 n 维向量 β , β 能由向量组 α_1 , α_2 , α_3 线性表示,且表示法唯一
- (D) α_1 , α_2 , α_3 中任意一个向量都不能由其余两个向量线性表示
- $4、设m\times n$ 矩阵 A的秩为 r, P为 m 阶可逆矩阵, Q为 n 阶可逆矩阵, 则矩阵 PAQ 的秩为(
 - (A) r
- (B) r+1
- (D) n

(线性代数 A 卷) 第 2 页

- 5、设线性方程组 Ax=0 有 6 个未知变量, 系数矩阵 A 的秩 R(A)=2, 则线性方 程组基础解系中解向量的个数是()
 - A、6
- B, 5 C, 3
- D, 4
- 二、填空题(每小题 3 分,共 15 分)

得分	评 卷

- 1、已知 $\alpha = (1,0,-1)^{\mathrm{T}}, A = \alpha \alpha^{\mathrm{T}}, 则 A^{3} = _____.$
- 2、设矩阵 $A_{5\times3}$ 的秩为 3,则 $A_{5\times3}$ 的行最简形矩阵为______.
- $(1 \ 2 \ -2)$ 3、设三阶方阵 $A=\begin{bmatrix}2&1&2\end{bmatrix}$,三维向量 $\alpha=(b,1,1)^T$,已知 $A\alpha$ 与 α 线性相关,则 3 0 4

- 4、方阵 A 的一个特征值为 2,则行列式 |A-2E|=____.(E 为单位矩阵)
- 5、设三元线性方程组 AX=b , 其中 b 为矩阵 A 的列向量之和,则可知方程的 一个特解为_
- 三、行列式的计算(第1题3分,第2题5分,共8分)

$$2. D = \begin{vmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ b & 0 & 0 & a \end{vmatrix}$$

詽

浽

(线性代数 A 卷) 第 3 页

四、矩阵的运算(共 10 分)

得分	评卷人	若 A = (1	1 0 1 –1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $B =$	$\begin{pmatrix} 1 & 0 \\ 4 & 3 \end{pmatrix}$,且 $AX = 2X + B$,求矩阵 X	ζ.
				1		•

(线性代数 A 卷)第 4 页

2. 设向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ k \\ 4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$, 若向量组

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩为 2,(1)求常数 k;(2)求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个极大无关组,并把其余的向量用该极大无关组线性表示出来.

五、向量组的线性相关性(第1题8分,第2题10分,共18分)

得分	评卷人

1. 若 $b_1 = a_1 + a_2, b_2 = a_2 + a_3, b_3 = a_3$,且已知向量组 a_1, a_2, a_3 线性无关,证明向量组 b_1, b_2, b_3 线性无关.

六、线性方程组的解(第1小题12分,第2小题6分,共18分)

得分	评卷人

1. 设三元线性方程组 Ax = b 的增广矩阵 (A,b) 化为行阶梯形

矩阵如下: $(A,b) \xrightarrow{r} \begin{pmatrix} 1 & 1 & \lambda & 4 \\ 0 & -2 & 2-\lambda & -8 \\ 0 & 0 & (\lambda+1)(\lambda-4) & \lambda(\lambda-4) \end{pmatrix}$, 试讨论

当 λ 为何值时,该方程组(1)有惟一解;(2)无解;(3)有无穷多解,并求出有无穷多解时原方程组的通解.

八、综合题(共7分)(各小题只要写出结果,不必写出过程).

 $\begin{pmatrix} 3 & -1 & -1 \\ 0 & 2 & -4 \end{pmatrix}$, 求矩阵 A 的特征值和特征向量.

得 评卷

得分

评卷人

接降 $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 0 \end{pmatrix}, 若 <math>AB = C$.

- 1. 求矩阵 C
- 2. 将矩阵 A, C按列向量组表达,即 $A = (\alpha_1, \alpha_2, \alpha_3)$, $C = (\gamma_1, \gamma_2)$. (1)试将向量 γ_1 用向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性表示出来;(2)写出方程组 $Ax = \gamma_2$ 的解
- 3. . 将矩阵 B, C按行向量组表达,即 $B = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$, $C = \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{pmatrix}$, 试将行向量 δ_2 用 B

的行向量组 β_1,β_2,β_3 线性表示出来。

七、特征值和特征向量(共 9 分)

2. 设四元非齐次线性方程组 Ax = b的系数矩阵的秩为 2,已知 $\eta_1 = (1,0,2,-1)^T, \eta_2 = (1,2,1,-1)^T, \eta_3 = (1,2,3,4)^T$ 是它的三个解向量,求该方程组的通解.

1 7 7.

抽

\2-