Elliptic Cone

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Traces

In plane z = p: an ellipse In plane y = q: a hyperbola In plane x = r: a hyperbola

In the xz – plane: a pair of lines that intersect at the origin In the yz – plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a negative coefficient. The traces in the coordinate planes parallel to the axis are intersecting lines.

Elliptic Paraboloid

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Traces

In plane z = p: an ellipse In plane y = q: a parabola In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.

Hyperbolic Paraboloid

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Traces

In plane z = p: a hyperbola In plane y = q: a parabola In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Traces

In plane z = p: an ellipse In plane y = q: an ellipse In plane x = r: an ellipse

If a = b = c, then this surface is a sphere.

Hyperboloid of One Sheet

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Traces

In plane z = p: an ellipse In plane y = q: a hyperbola In plane x = r: a hyperbola

In the equation for this surface, two of the variables have positive coefficients and one has a negative coefficient. The axis of the surface corresponds to the variable with the negative coefficient.

Hyperboloid of Two Sheets

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Traces

In plane z = p: an ellipse or the empty set (no trace)

In plane y = q: a hyperbola In plane x = r: a hyperbola

In the equation for this surface, two of the variables have negative coefficients and one has a positive coefficient. The axis of the surface corresponds to the variable with a positive coefficient. The surface does not intersect the coordinate plane perpendicular to the axis.

Access for free at openstax.org.