Regression-Based Forecasting

Midterm Score Summary

• 49 questions; 60 points

	Minimum	25 th Percentile	Mean	75 th Percentile	Maximum
Out of 60	28	38	42	45	50
Out of 100	47	63	70	75	83

Grading policy

- Grade assignment is based on relative performance
- If the highest aggregate score in the class is 80% (say), they will be treated as the top of the class to receive the highest grade.
- Top x% will get A, the second top y % will get A- and so on
- This grading process is equivalent to curving
- The grade you receive is based on **relative** performance not absolute
- I do not enforce any absolute percentages as cutoffs for final grades

Course Assessment

Type	Weight
Homework's (four)	20%
Midterm Quiz 1	20%
Midterm Quiz 2	20%
Project (Report + Presentation)	30 + 10%
	100%

Final Project (40%)

- Specify a business problem
- Identify a relevant dataset
- Business context could be in any area or function
- Assessment
 - ➤ Report (30%) + Presentation (10%)
- Presentation
 - ➤ 15-minute presentation on one of the classes of last week
 - **Presentation date(s) in the syllabus file**

Final Report

- Formal report
 - > Introduction, Problem description, Approach (Regression / Classification)
 - Data Analysis, Results, Inference
 - > Conclusions, recommendations
- Regression: k-NN as Regression, Linear Regression & Regression Tree
- Classification: k-NN as classification, Logistic Regression & Classification Tree
- Assess the performance & recommend the best predictive model
- 8-10 pages including any tables and graphs (excluding code)
- Two or Three key insights from the entire analysis
- Submit the code with comments at end of the report

Public datasets for final project

kaggle

- https://www.kaggle.com/
- Online community of data scientists and machine learners
- Owned by Google Inc.
- Register yourself, and you can download datasets for free
- As of June 2017, Kaggle passed over 1,000,000 registered users
- Variety of datasets
- Your imagination only limits possibilities

Final Project presentation

- Presentation (10%)
 - ➤ 15-minute presentation followed by a 10-minute Q&A
 - ➤ May 31st (Tue) & Jun 02nd (Thu)
 - Groups are randomly assigned to the 2 days
 - For Groups should send the ppt file by 8 am on their presentation date
 - Each member of the group should **mention the contribution** of their work in the last slide of the presentation file
- Everyone must be present in the class on the presentation days
 - > Zero scores for presentation assessment if absent

May 31st presentations

- ACB
- ATJ
- HJJ
- P

Jun 02nd presentations

- AJA
- DJK
- MRV
- TAP

Time Series Forecasting

- Focus
 - Forecasting future values of a single time series
- Performed in nearly every organization that works with quantifiable data
- Applications:
 - ➤ Sales forecast in Retail stores
 - Forecast reserves, production, demand and prices in Energy companies
 - Forecast enrollment in educational institutions
 - Forecast tax receipts and spending in government
 - Inflation and Economic activity in World Bank, IMF

Previous topics applications

- Time was not considered in significance in the previous datasets
- Most of the datasets we studied in the previous topics are called crosssectional data
- Here we study time series data
- Today's technology has helped to record on very high frequent time scales
- An example from one of my research topic Alibaba data

Time Series components

- Four components in time series
 - Level Average level of the series
 - > Trend Change in series from one period to the next
 - Seasonality Short-term cyclical behavior of the series
 - ➤ Noise Random variation from other unknown causes
- Let's look at an example

Amtrak Ridership

- Monthly ridership
- January 1991 March 2004
 - Period: January 1991 March 2004
 - ➤ Ridership is in thousands
 - $\sim 1,800,000$ passengers per month

Today's class mandatory steps

- Create a folder name "m. regression_forecasting" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "regression_forecasting_code.R", and all CSV files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r /rproject/ m. regression_forecasting"
- Open RStudio project
- Open "regression_forecasting_code.R" file within RStudio

Amtrak Ridership

- Slight U-shaped trend, Annual seasonality
- Peak travel during July and August

Zoom from 2001 to 2003

Data Partition

Trend models

- Commonly used trend models
 - > Linear
 - > Exponential
 - ➤ Polynomial

Linear trend

- The outcome variable Y is the time series
- Predictor X is the time index

Linear trend model on Training data

Linear trend – Fit

Linear trend – Fit and Prediction

Linear trend – Error

Polynomial trend

Polynomial trend model on Training data

Polynomial trend – Fit

Polynomial trend – Fit and Prediction

Polynomial trend – Error

Seasonality

Seasonality model on Training data

Seasonality—Fit

Seasonality- Fit and Prediction

Seasonality—Error

Polynomial trend and Seasonality

Polynomial + Seasonality model on Training data

Polynomial + Seasonality – Fit

Polynomial + Seasonality- Fit and Prediction

Polynomial + Seasonality – Error

RMSE – Training and Validation

Model	Train	Validation
Linear	158.92	239.48
Polynomial	146.97	179.84
Seasonality	96.34	229.65
Polynomial + Seasonality	66.76	153.25

MAPE – Training and Validation

Model	Train	Validation
Linear	7.53%	10.14%
Polynomial	7.01%	7.07%
Seasonality	4.32%	10.86%
Polynomial + Seasonality	3.01%	6.7%

Next class

Classification Tree

Thank You