GPT-GNN: Generative Pre-Training of Graph Neural Networks

Kim Minhyoung

Index

- Introduction
- Self-supervised learning
- GPT Generative Pre-trained Transformer
- Graph Neural Network
- MessagePassing
- GAT Graph Attention Network
- GPT-GNN
- Experiments

What is GPT-GNN framework?

- Initialize Graph Neural Network by learning generative pretext task
- self-supervised learning
- Motivated from GPT (Generative Pre-trained Transformer)
- Graph Neural Network

Self-supervised Learning

- Self-Supervised Learning은 unlabeled data에서 중요한 특징들을 추출해 내기 위하 Pretext Task를 설계하여 Unsupervised Learning을 진행하여 다양한 Task에서 중요한 정보를 추출할 수 있게 한다
- 이 모델을 Downstream Task에 대해 Transfer Learning을 진행하여 해당 테스크에 더 높은 정확도를 가지게 할 수 있다.

Self-supervised Learning

GPT - Generative Pre-trained Transformer

- GPT도 대표적인 Self-Supervised Learning
- 이전 단어들을 주고 다음 단어를 맞추는 것을 학습
- Attention의 구조는 전체 문장의 정보를 볼 수 있으므로 Attention 값에 0을 곱하여 모델이 정보를 얻지 못하게 하는 maskng 사용

Graph Neural Network

- Deep Learning의 기존 연구는 정형화된 데이터, 이미지, 음성 등 Euclidean Data를 가지고 진행되었음
- Non Euclidean Data인 그래프 데이터를 가지고 모델을 구축하기 어려움
- 명확한 순서를 가지고 있는 Euclidean Data와 다르게 Non Euclidean Data는 정해진 순서가 없음
- 이런 데이터에서 Neural Network를 활용하기 위한 시도로 GraphSAGE 같은 알고리즘이 제안되었으며, 최근 활발하게 연구되는 분야임

1. Sample neighborhood

2. Aggregate feature information from neighbors

MessagePassing

- GraphSAGE에서 제안된 일반화된 GNN 설계 구조가 MessagePassing
- 이웃들로 부터 Message (feature)를 전달 받아 Aggregate하여 새로운 feature로 출력함
- Aggregate된 Message에 노드 자신의 feature도 반영한 뒤 모델의 출력으로 생성함

$$m_v^{t+1} = \sum_{w \in N(v)} M_t(h_v^t, h_w^t, e_{vw}) \qquad h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

GAT – Graph Attention Network

- GAT는 MessagePassing 구조를 따르면서
 Attention을 적용한 네트워크
- parameter vector와 가중치행렬 W를 학습
- 이웃들의 feature에 normalized attention score를 곱하여 합산한 뒤 비선형성 추가한 것을 출력함

$$lpha_{ij} = rac{exp(LeakyRELU(ec{a}^T[\mathbf{W}ec{h}_i|\mathbf{W}ec{h}_j]))}{\Sigma_{k \in N_i} exp(LeakyRELU(ec{a}^T[\mathbf{W}ec{h}_i|\mathbf{W}ec{h}_i]))} \ ec{h}_i' = \sigma(\Sigma_{j \in N_i}lpha_{ij}\mathbf{W}ec{h}_j)$$

GPT-GNN

- GPT-GNN은 그래프의 permutation을 정했을때 노드가 추가되면서 기존에 있는 노드와 연결되는 edge가 추가되는 구조에서 착안
- 노드 속성이 있는 그래프 G에서 feature 정보와 structural 정보를 같이 학습함
- 그래프를 재생성 할때 기존 그래프의 정보를 바탕으로
- 새 노드를 추가하고 그 노드의 특징을 gnn의 representation으로 만들며, 그 노드와 연결되는(연결되지 않는) 노드를 예측

GPT-GNN

- 이때 생성하는 노드의 feature와 edge 예측이 독립적이면 모델 성능이 저하됨
- 실제 그래프는 속성과 edge가 관련있음
- 따라서 이를 두 단계로 분해하여 학습
- 노드의 feature는 edge와 독립적으로 생성함
- edge prediction은 생성한 노드 feature의 정보를 포함하여 edge connecting representation을 생성

$$\log p_{\theta}(X, E) = \sum_{i=1}^{|\mathcal{V}|} \log p_{\theta}(X_i, E_i \mid X_{\leq i}, E_{\leq i}). \quad \square \qquad \mathbb{E}_o \left[\underbrace{p_{\theta}(X_i \mid E_{i,o}, X_{\leq i}, E_{\leq i})}_{\text{1) generate attributes}} \cdot \underbrace{p_{\theta}(E_{i,\neg o} \mid E_{i,o}, X_{\leq i}, E_{\leq i})}_{\text{2) generate edges}} \right]$$

GPT-GNN

- 전체 그래프에 대해 학습을 진행하면 dependency가 강함
- 그래프 샘플링을 통해 학습
- 학습에서 정보 손실을 막기 위해 노드를 두 가지로 분리해서 학습함
- Attribution Generation Node feature 생성 노드, mask 토큰과 동일한 효과를
 주는 벡터 X_init을 masking 되는 노드의 feature로 입력
- Edge Generation Node edge 생성은 서로 독립적인 과정으로 봐서 masking X
- 각 노드가 생성한 repr에 적절한 decoder를 붙여 학습

Loss

- Attribute Decoder는 feature type에 따라 MLP, LSTM 등을 사용 가능
- Distance Function (L2-Norm 등등)을 통해 Loss 정의
- Edge Decoder는 pairwise score (두 노드가 연결될지 되지 않을지) 사용
- 이웃이 없는 노드는 학습할때 더 많이 학습되도록 계산시 포함함

$$\mathcal{L}_{i}^{Attr} = Distance \left(Dec^{Attr}(h_{i}^{Attr}), X_{i} \right)$$

$$\mathcal{L}_{i}^{Edge} = -\sum_{j^{+} \in E_{i, \neg o}} \log \frac{\exp \left(Dec^{Edge}(h_{i}^{Edge}, h_{j^{+}}^{Edge}) \right)}{\sum_{j \in S_{i}^{-} \cup \{j^{+}\}} \exp \left(Dec^{Edge}(h_{i}^{Edge}, h_{j}^{Edge}) \right)}$$

Experiments

- Open Academic Graph (OAG)
- Amazon Recommendation Dataset
- OAG Task Prediction of Field, Venue, Author ND
- Amazon Task Prediction Score of Review (Fashion, Beauty, Luxury fields)

Experiments

	Downstream Dataset	OAG				Amazon		
	Evaluation Task	Paper-Field	Paper-Venue	Author ND	Fashion	Beauty	Luxury	
	No Pre-train	.336±.149	.365±.122	.794±.105	.586±.074	.546±.071	.494±.067	
Field Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.403±.114 .368±.125 .387±.112	.418±.093 .401±.096 .404±.097	.816±.084 .803±.092 .810±.084	.610±.070 .597±.065 .604±.063	.568±.066 .554±.061 .561±.063	.516±.071 .509±.052 .506±.074	
	GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.396±.118 .401±.109 .407±.107	.423±.105 .428±.096 .432±.098	.818±.086 .826±.093 .831±.102	.621±.053 .616±.060 .625±.055	.576±.056 .570±.059 .577±. 054	.528±.061 .520±.047 .531±.043	
Time Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.384±.117 .352±.121 .369±.116	.412±.101 .394±.105 .398±.102	.812±.095 .799±.093 .805±.089	.603±.065 .594±.067 .599±.063	.562±.063 .553±.069 .558±.060	.510±.071 .501±.064 .503±.063	
	GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.382±.114 .392±.105 .400±.108	.414±.098 .421±.102 .429±.101	.811±.089 .821±.088 .825±.093	.614±.057 .608±.055 .617±.059	.573±.053 .567±.038 .572±.059	.522±.051 .513±.058 .525±.057	
Time + Field Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.371±.124 .349±.130 .360±.121	.403±.108 .393±.118 .391±.102	.806±.102 .797±.097 .800±.093	.596±.065 .589±.071 .591±.068	.554±.063 .545±.068 .550±.058	.505±.061 .498±.064 .501±.063	
	GPT-GNN (Attr) — (w/o node separation) GPT-GNN (Edge) — (w/o adaptive queue) GPT-GNN	.364±.115 .347±.128 .386±.116 .376±.121 .393±.112	.409±.103 .391±.102 .414±.104 .410±.115 .420±.108	.809±.094 .791±.108 .815±.105 .808±.104	.608±.062 .585±.068 .604±.058 .599±.068	.569±.057 .546±.062 .565±.057 .562±.065 .572±.063	.517±.057 .497±.062 .514±.047 .509±.062 .521±.049	

Table 1: Performance of different downstream tasks on OAG and Amazon by using different pre-training frameworks with the heterogeneous graph transformer (HGT) [15] as the base model. 10% of labeled data is used for fine-tuning.

감사합니다