ELEN0040 - REPETITION 3

Analyse de circuits combinatoires

Analyse

Point de départ : schéma/circuit logique

- Exprimer les fonctions logiques des ≠ portes et composants logiques
- Simplifier les fonctions logiques représentant le circuit global (variables de sortie)
- Déterminer la table de vérité du circuit
- → ((Vérifier l'optimalité des fonctions par Karnaugh))

Rappel: portes logiques

NOT
$$X \longrightarrow \overline{X}$$

AND $X \longrightarrow -X.Y$

NAND $Y \longrightarrow -\overline{X.Y}$

OR $X \longrightarrow -X+Y$

NOR $X \longrightarrow -\overline{X+Y}$

XOR $X \longrightarrow -X \oplus Y$
 $= \overline{X}Y + X\overline{Y}$

NXOR $X \longrightarrow -\overline{X} \oplus \overline{Y}$
 $= XY + \overline{X}\overline{Y}$

Half adder = additionneur 2 bits

X	Υ	S	C
0	0	0	0
0	1	~	0
1	0	1	0
1	1	0	1

Full adder = additionneur 3 bits

$$\begin{array}{c|c}
X & & & \\
Y & & & \\
Z & & & \\
\end{array}$$

$$\begin{array}{c|c}
S = X \oplus Y \oplus Z \\
C = X.Y + Z.(X \oplus Y)$$

Décodeur = générateur de minterms

Υ	X	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	~	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1
		↓	↓		↓
		ΧŢ	ΧŢ	Χ̈́Υ	XY

Exemple:
$$F(X,Y) = \overline{X} \overline{Y} + X Y = \Sigma m(0,3)$$

Décodeur + portes OR

Implémentation de n'importe quelle fonction

Multiplexeur = sélectionneur d'entrée

2ⁿ entrées, n sélections → 1 sortie

S ₁	S ₀	F
0	0	Eo
0	1	E ₁
1	0	E_2
1	1	E_3

$$F = \overline{S_1} \overline{S_0} E_0 + \overline{S_1} S_0 E_1 + S_1 \overline{S_0} E_2 + S_1 S_0 E_3$$

$$F1 = \overline{S_1} \overline{S_0} E_0 + \overline{S_1} S_0 E_1 + S_1 \overline{S_0} E_2 + S_1 S_0 E_3$$

$$= \overline{AB} (BC + \overline{BC}) + \overline{AB} (B + C) + \overline{AB} (B + C$$

$$\begin{array}{c}
D_0 = \overline{F_1} \, \overline{D} = F_1 + D \\
D_1 = F_1 \, \overline{D} = \overline{F_1} + D \\
D_2 = \overline{F_1} \, D = F_1 + \overline{D} \\
D_3 = F_1 \, D = \overline{F_1} + \overline{D}
\end{array}$$

$$\begin{array}{c}
F_1 = \overline{B} + \overline{AC} \\
F_1 = \overline{B} + \overline{AC} \\
F_1 = \overline{B} + \overline{AC}
\end{array}$$

Table de vérité de F₁ et F₂

Α	В	С	F ₁	F ₂	m _i
0	0	0	1	1	0
0	0	1	0	1	1
0	1	0	1	1	2
0	1	1	1	1	3
1	0	0	0	1	4
1	0	1	0	1	5
1	1	0	1	1	6
1	1	1	1	1	7

$$F_1 = B + \overline{A}\overline{C}$$

$$F_2 = 1$$

Simplification de F₁ par Karnaugh

$$F_1(A, B, C) = \sum m(0,2,3,6,7)$$

Rappel: Implémentation à l'aide de NAND / NOR

NAND :

Karnaugh(F) \rightarrow F = $\Sigma(\Pi) \rightarrow$ De Morgan(\overline{F})

NOR :

Implémentation de F1 à l'aide de NAND

$$F_1 = B + \overline{A}\overline{C}$$

Portes NAND → Somme de produits

Implémentation de F1 à l'aide de NAND

$$F_1 = B + \overline{AC}$$

Portes NAND → Somme de produits

Implémentation de F1 à l'aide de NAND

$$F_1 = B + \overline{AC}$$

Portes NAND → Somme de produits

$$F_1 = \overline{\overline{B}.(\overline{\overline{A}\overline{C}})}$$

$$S_0 = \overline{C}_{HA1} = \overline{A} + \overline{B}$$

$$S_1 = \overline{S}_{HA1} C_{HA1} = 1$$

$$\overline{S_1} \, \overline{S_0} = 0 \implies E_0 \text{ inutile}$$
 $\overline{S_1} \, S_0 = 0 \implies E_1 \text{ inutile}$
 $S_1 \, \overline{S_0} = A.B \implies E_2 = \overline{B}$
 $S_1 \, \overline{S_0} = \overline{A} + \overline{B} \implies E_3 = A$

$$F_{MUX1} = \overline{S_1} \overline{S_0} E_0 + \overline{S_1} S_0 E_1 + S_1 \overline{S_0} E_2 + S_1 S_0 E_3$$

$$= AB \overline{B} + (\overline{A} + \overline{B}) A$$

$$= A \overline{B}$$

$$\overline{S_1} \overline{S_0} = X\overline{A}$$
 $E_0 = \overline{D_0 \bigoplus D_1} = Y$

$$\overline{S}_1 S_0 = \overline{X}A$$
 $E_1 = \overline{D}_2 \oplus \overline{D}_3 = \overline{Y}$

$$S_1 \overline{S_0} = 0$$
 E_2 inutile

$$S_1 S_0 = XA + \overline{X}\overline{A}$$
 $E_3 = (\overline{D_0 \oplus D_2}). (\overline{D_0 \oplus D_1}) = XY$

$$F = \overline{S_1} \overline{S_0} E_0 + \overline{S_1} S_0 E_1 + \overline{S_1} \overline{S_0} E_2 + S_1 S_0 E_3$$

$$= X\overline{A} Y + \overline{X}\overline{A} \overline{Y} + (XA + \overline{X}\overline{A}) XY$$

$$= XY + A\overline{X}\overline{Y}$$

S

С

 $C_{HA2} = X\overline{A}$

 $S_{HA2} = X \oplus \overline{A}$

 $S_1=X \oplus \overline{A}$

HA

Ex. 35 - Analyse $S_{HA1} = A \oplus B$ S S НΑ C_{HA1} = AB НΑ С В С $S_{HA2} = X \oplus \overline{A}$ $C_{HA2} = X\overline{A}$ A+B MUX 4-1 AB B $S_1 = X \oplus \overline{A}$ $S_0 = \overline{C}_{HA2} = \overline{X} + A$ $\vec{D}_0 = \vec{X}\vec{Y}$ $D_1 = X\overline{Y}$ DEC 2-4 $D_2 = \overline{X}Y$ MUX 4-1 D₃=XY $F = XY + A\overline{X}\overline{Y}$ XY

Table de vérité de F

Α	X	Υ	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0		1	 <mark>1</mark>	→ XY
	0	0	1	+ A X Y
1	0	1	0	
1	1	0	0	
1		1	1	→ XY

Implémentation de F grâce à un MUX

Α	X	Υ	F	Ei
[_0_	0	0	0	$E_0(Y)$
<u>_0</u> _	0	1	0	
[-0		0	0	E ₁ (Y)
<u> 0 </u>		~	1	
[-1	0	0	1	E ₂ (Y)
1_1_	0	1	0	
[1	<u> </u>	0	0	E ₃ (Y)
<u>L1_</u>	_1	1	1	

Implémentation de F grâce à un MUX

Α	X	Υ	F	Ei
0	0	0	0	0
0	0	 - -	0	
0	1	0	0	Y
0	1		_1_	
1	0	0	77	Y
1	0		0_	
1	1	0	0	Υ
1	1		_1_	

Implémentation de F grâce à un MUX (Sol2)

A	X	Y	F	Ei
0	0	0	0	XY
0	0	1	0	
0	1	0	0	
0	1_	11	<u>1</u>	
1	0	0	1	X nxor Y
1	0	1	0	
1	1	0	0	
1	_1_	11	1	

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Ex.36 - Analyser le circuit suivant. Donner la **table de vérité** (variable dans l'ordre alphabétique SVP) de la fonction de sortie et son expression canonique sous forme d'un **produit de sommes**.

Table de vérité de O

X	Υ	Z	0
0	0	0	0
0	0 1		0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Expression canonique de O sous forme d'un produit de sommes

$$O(X, Y, Z) = \sum_{i=1}^{n} m(0,1,3,5)$$
 $X = \sum_{i=1}^{n} m(0,1,3,5)$
 $X = \sum_{i=1}^{n} m(0,1,3,5)$
 $X = \sum_{i=1}^{n} m(0,1,3,5)$

$$\overline{O} = \overline{XY} + \overline{XZ} + \overline{YZ}$$
 $\rightarrow O = (X+Y).(X+\overline{Z}).(Y+\overline{Z})$

F.A.: Entrées:
$$X_{FA} = A$$
; $Y_{FA} = \overline{AB}.\overline{AB} = \overline{AB}+A\overline{B} = A \oplus B$; $Z_{FA} = B$
Sorties: $S_{FA} = X_{FA} \oplus Y_{FA} \oplus Z_{FA} = A \oplus (A \oplus B) \oplus B = 0$
 $C_{FA} = X_{FA}Y_{FA} + Z_{FA}(X_{FA} \oplus Y_{FA})$
 $= A.(A \oplus B) + B.((A \oplus B) \oplus A) = A\overline{B} + B = A + B$

$$\begin{array}{l} \textit{MUX4-1} \colon S_0 = \overline{S_{\mathsf{FA}}} = 1 \; ; \; S_1 = \overline{B} \\ \overline{S_0} \; \overline{S_1} = 0 \to \textbf{E_0} \; \textbf{inutile} \\ S_0 \; \overline{S_1} = B \to E_1 = (\overline{D_0}\overline{D_2} + \overline{D_4}\overline{D_5}) \oplus \overline{D_7} = (\overline{D_0}D_2D_4D_5) \oplus \overline{D_7} \; (\text{*DEC3-8}) \\ \overline{S_0} \; S_1 = 0 \to \textbf{E_2} \; \textbf{inutile} \\ S_0 \; S_1 = \overline{B} \to E_3 = S_{\mathsf{HA}} = \overline{B} \oplus \overline{C} \end{array}$$

$$F = \overline{S_0} \, \overline{S_1} \, E_0 + S_0 \, \overline{S_1} \, E_1 + \overline{S_0} \, S_1 \, E_2 + S_0 \, S_1 \, E_3$$

$$\begin{array}{l} \textit{DEC3-8} \colon \mathsf{D}_0 = \overline{\mathsf{A}}\overline{\mathsf{B}}\overline{\mathsf{C}} \\ \mathsf{D}_1 = \overline{\mathsf{A}}\overline{\mathsf{B}}\overline{\mathsf{C}} \\ \mathsf{D}_2 = \overline{\mathsf{A}}\mathsf{B}\overline{\mathsf{C}} \\ \mathsf{D}_3 = \overline{\mathsf{A}}\mathsf{B}\overline{\mathsf{C}} \\ \mathsf{D}_3 = \overline{\mathsf{A}}\mathsf{B}\overline{\mathsf{C}} \\ \mathsf{D}_4 = \mathsf{A}\overline{\mathsf{B}}\overline{\mathsf{C}} \\ \mathsf{D}_5 = \mathsf{A}\overline{\mathsf{B}}\overline{\mathsf{C}} \\ \mathsf{D}_5 = \mathsf{A}\overline{\mathsf{B}}\overline{\mathsf{C}} \\ \mathsf{D}_6 = \mathsf{A}\mathsf{B}\overline{\mathsf{C}} \\ \mathsf{D}_7 = \mathsf{A}\mathsf{B}\mathsf{C} \\ \mathsf{D}_7 = \mathsf{A}\mathsf{B}\mathsf{C} \\ \mathsf{E}_1 = (\overline{\mathsf{D}_0\mathsf{D}_2\mathsf{D}_4\mathsf{D}_5}) \oplus \overline{\mathsf{D}}_7 = \overline{\mathsf{0}} \oplus \overline{\mathsf{D}}_7 = \mathsf{D}_7 = \mathsf{A}\mathsf{B}\mathsf{C} \ (*) \\ \hline \\ \mathsf{F} = \overline{\overline{\mathsf{S}_0}} \, \overline{\mathsf{S}_1} \, \overline{\mathsf{E}_0} + \mathsf{S}_0 \, \overline{\mathsf{S}_1} \, \overline{\mathsf{E}_1} + \overline{\overline{\mathsf{S}_0}} \, \overline{\mathsf{S}_1} \, \overline{\mathsf{E}_2} + \mathsf{S}_0 \, \mathsf{S}_1 \, \overline{\mathsf{E}_3} \\ = \mathsf{B}.\mathsf{A}\mathsf{B}\mathsf{C} + \overline{\mathsf{B}}.(\overline{\mathsf{B}} \oplus \overline{\mathsf{C}}) \\ = \mathsf{A}\mathsf{B}\mathsf{C} + \overline{\mathsf{B}}\mathsf{C} = \mathbf{C}(\mathbf{A} + \overline{\mathbf{B}}) \end{array}$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$= CA + C\overline{B}$$

$$\mathsf{F} = \mathsf{C}(\mathsf{A} + \overline{\mathsf{B}}) = \overline{\overline{\mathsf{C}}(\overline{\mathsf{A}} + \overline{\overline{\mathsf{B}}})} = \overline{\overline{\mathsf{C}} + (\overline{\mathsf{A}} + \overline{\overline{\mathsf{B}}})}$$

Exercice 40

$$F(z, y, x, w) = \sum m(0, 3, 5, 7, 8, 11, 13, 15) + \sum d(2, 10)$$

- Simplifier la fonction F en utilisant la méthode de Karnaugh.
- 2) Implémenter la fonction F à l'aide d'un multiplexeur de taille minimale. Chaque entrée du multiplexeur peut comporter une et une seule des portes logiques suivantes : AND, OR, XOR, NXOR.

Simplification par Karnaugh

$$F(z, y, x, w) = \sum m(0, 3, 5, 7, 8, 11, 13, 15) + \sum d(2, 10)$$

$$F(z, y, x, w) = xw + wy + \overline{w}\overline{y}$$

Z	Υ	X	W	M _i	F	
0	0	0	0	0	1	
0	0	0	1	1	0	X NXOR W
0	0	1	0	2	X	
0	0	1	1	3	1	
0	1	0	0	4	0	
0	1	0	1	5	1	W
0	1	1	0	6	0	
0	1	1	1	7	1	
1	0	0	0	8	1	
1	0	0	1	9	0	X NXOR W
1	0	1	0	10	X	
1	0	1	1	11	1	
1	1	0	0	12	0	
1	1	0	1	13	1	W
1	1	1	0	14	0	
1	1	1	1	15	1	

Implémenter la fonction F à l'aide d'un MUX de taille minimale. Chaque entrée du MUX peut comporter une et une seule des portes logiques suivantes : AND, OR, XOR, NXOR

Minimal?

Z	Y	X	W	M_{i}	F	
0	0	0	0	0	1	
0	0	0	1	1	0	X NXOR W
0	0	1	0	2	Х	
0	0	1	1	3	1	
0	1	0	0	4	0	
0	1	0	1	5	1	W
0	1	1	0	6	0	
0	1	1	1	7	1	
1	0	0	0	8	1	
1	0	0	1	9	0	X NXOR W
1	0	1	0	10	Х	
1	0	1	1	11	1	
1	1	0	0	12	0	
1	1	0	1	13	1	W
1	1	1	0	14	0	
1	1	1	1	15	1	

Implémenter la fonction F à l'aide d'un MUX de taille minimale. Chaque entrée du MUX peut comporter une et une seule des portes logiques suivantes : AND, OR, XOR, NXOR

