

Established under sub section (3) of Section 1 of Garden City University Act, 2013 (Karnataka Act No. 47 of 2013)

Dr. A P J Abdul Kalam School of Engineering I Semester, B. Tech Degree Examination, April 2023 Applied Physics (10ABTEC22112)

Course: Applied Physics Semester: I

Course Code: 10ABTEC22112

Question Bank

MODULE-1: Quantum mechanics

SL. NO.	QUESTIONS	CO/s	RBT LEVEL	MARKS
1	State Wien's displacement law & write the formula.	C01	L1	3
2	State Plank's law for black body radiation.	C01	L1	3
3	What is blackbody radiation spectrum?	C01	L1	3
4	State & explain Planck's law of radiation.	C01	L1	5
5	Show that de-Broglie's wavelength(λ) of a moving particle is $\lambda = \frac{h}{p}$.	C01	L1	5
6	Obtain the expression Wein's law using Plank's law.	C01	L1	5
7	Deduce the relation of Plank's law by using Rayleigh Jean's law.	C01	L1	5
8	State de-Broglie's hypothesis and prove that $\lambda = \frac{h}{p}$.	C01	L1	6
9	Relate the Plank's law to Wein's law and Rayleigh Jean's law.	C01	L1	6
10	State and explain Compton effect.	C01	L1	6
11	State and explain photoelectric effect.	C01	L1	6
12	Show that the non-existence of electrons in the nucleus.	C01	L1	6
13	State and explain Heisenberg's Uncertainty Principle.	C01	L1	6
14	Find the Time independent Schrodinger wave equation for matter waves.	C01	L1	8

height and obtain the eigen values.

MODULE-2: Semiconductor and Dielectrics

	MODULE 2. Semiconauctor and Dicted			
SL. NO.	QUESTIONS	CO/s	RBT LEVEL	MARKS
1	Describe dielectrics with an example.	C02	L2	2
2	Discuss the types of semiconductors with an example.	C02	L2	4
3	Differentiate the types of semiconductors with an example.	C02	L2	4
4	Explain polar and non-polar dielectrics.	C02	L2	4
5	Discuss polarization and mention its types of dielectric materials.	C02	L2	4
6	Discuss conductor, semiconductor and insulators based on energy level diagram.	C02	L2	6
7	Discuss law of mass action for intrinsic semiconductor.	C02	L2	6
8	Discuss the types of polarization of dielectric material with an example.	C02	L2	6
9	Explain Fermi level in an intrinsic semiconductor.	C02	L2	6
10	Derive an expression for the Fermi energy and Energy gap of an intrinsic semiconductor.	C02	L2	6
11	Derive an Clausius-Mossotti equation for 3-D cubic solid lattice for dielectrics materials.	C02	L2	8
12	Derive an expression for hall voltage using Hall effect with a neat diagram.	C02	L2	8
13	What is Zener diode? Discuss its I-V characteristics.	C02	L2	8

MODULE-3: Optoelectronics

SL. NO.	QUESTIONS	C0/s	RBT LEVEL	MARKS
1	Discuss the applications of LEDs.	C03	L2	2
2	Discuss the applications of solar cells.	C03	L2	2
3	Illustrate the applications of semiconductor diode LASER.	C03	L2	2
4	Describe radiative recombination mechanism in semiconductor.	C03	L2	2

5	Describe radiative and nonradiative recombination mechanism in semiconductor.	C03	L2	4
6	Identify the advantage and disadvantages of photodiodes.	C03	L2	4
7	Discuss radiative and nonradiative recombination mechanism in semiconductor.	C03	L2	6
8	Explain the structure and working of PIN photodiode.	C03	L2	6
9	Explain the structure and working of avalanche photodiode.	C03	L2	6
10	Describe semiconductor diode LASER using energy level diagram.	C03	L2	8
11	Discuss the structure and working principle of LED with it's I-V characteristics.	C03	L3	8
12	Discuss the structure and working of solar cell and mention it's applications.	C03	L3	8

MODULE-4: Lasers and Optical Fibre

SL. NO.	QUESTIONS	C0/s	RBT LEVEL	MARKS
	Lasers			
1	Describe numerical aperture.	C04	L2	3
2	Explain spontaneous emission using energy level diagram.	C04	L2	3
3	Summarize the characteristics of lasers.	C04	L2	3
4	Explain stimulated emission using energy level diagram.	C04	L2	3
5	Describe the principle of lasers.	C04	L2	3
6	Discuss i) induce absorption ii) spontaneous and iii) stimulated emission processes.	C04	L2	6
7	Explain the requisites of a laser system and condition for lasing action.	C04	L2	6
8	Deduce an equation for energy density of radiation in terms of Einstein's coefficients.	C04	L2	8
9	Describe the construction and working of CO₂ laser with an energy level diagram	C04	L2	8
10	Describe the construction and working of	C04	L2	8
	semiconductor laser with an energy level diagram.			
	Optical Fibers			
1	Describe optical fiber and show its geometry.	C04	L2	3

2	Discuss the reasons for attenuation in an optical	C04	L2	3
	fiber.			
3	Discuss the radiation loss in optical fiber.	C04	L2	3
4	What is attenuation? Give the expression for	C04	L2	3
	attenuation.			
5	Identify the advantages and disadvantages of	C04	L2	6
	optical fiber communication.			
6	Derive an expression for Numerical aperture for	C04	L2	8
	propagation of light in an optical fiber.			
7	Explain the types of optical fibers.	C04	L2	8
8	Discuss the types of attenuation.	C04	L2	8
9	Explain fiber loss and mention the factors	C04	L2	8
	contributing to it.			

MODULE-5: Crystal Structures

SL. NO.	QUESTIONS	CO/s	RBT LEVEL	MARKS
1	Construct the steps to determine Miller indices.	C05	L3	3
2	Discuss unit cell and mention its types.	C05	L3	3
3	Discuss Atomic packing factor.	C05	L3	3
4	Illustrate coordination number for SC, BCC and FCC.	C05	L3	5
5	Discuss miller indices and write the procedure to	C05	L3	5
	find the miller indices.			
6	Discuss Atomic packing factor for BCC.	C05	L3	5
7	Discuss Atomic packing factor for SC and FCC.	C05	L3	6
1	Differentiate between SC, BCC and FCC.	C05	L3	6
9	Discuss unit cell and explain its types using diagram.	C05	L3	6
10	Express the inter planar spacing in terms of Miller indices.	C05	L3	8
11	Discuss number of atoms per unit cell and coordination number.	C05	L3	7
12	Illustrate 7 types of crystal systems.	C05	L3	7
13	Derive an expression for Bragg's law of X-ray diffraction.	C05	L3	8
14	Demonstrate Bragg's X-ray spectrometer with a neat diagram.	C05	L3	8