Exam 2

Quantum Mechanics

November 19, 2022

C Seitz

Problem 1.

Solution.

Some of the states have the same energy, so we will need to use degenerate perturbation theory. Specifically, the subspaces spanned by $\mathcal{A} = \{ \left| 0^{(0)} \right\rangle, \left| 1^{(0)} \right\rangle \}$ and $\mathcal{B} = \{ \left| 2^{(0)} \right\rangle, \left| 4^{(0)} \right\rangle \}$ have a degeneracy while the lone ket $\left| 3^{(0)} \right\rangle$ is nondegenerate. We assume that a perturbed ket $\alpha \in \mathcal{A}$ can be written as a linear combination of the unperturbed kets:

$$|\alpha\rangle = \sum_{n \in \mathcal{A}} \langle n | \alpha \rangle | n \rangle$$

The first order correction is given by

$$V |\alpha\rangle = \sum_{n \in \mathcal{A}} \langle n | \alpha \rangle (H - H_0) |n\rangle = \Delta_{\alpha}^{(1)} |\alpha\rangle$$

We therefore need to find the eigenvectors and eigenvalues of the matrix

$$|V_{\mathcal{A}} - \Delta_{\alpha} I| = \det \begin{pmatrix} 2\cos\theta - \Delta_{\alpha} & 2\sin\theta e^{-i\phi} \\ 2\sin\theta e^{i\phi} & -2\cos\theta - \Delta_{\alpha} \end{pmatrix} = 0$$

which is easy to solve, and we get the first order shifts $\Delta_{\alpha}^{(1)} = \pm 2$. It is the same process for the \mathcal{B} subspace

$$|V_{\mathcal{B}} - \Delta_{\beta} I| = \det \begin{pmatrix} 4\cos\theta - \Delta_{\beta} & 4\sin\theta e^{-i\phi} \\ 4\sin\theta e^{i\phi} & -4\cos\theta - \Delta_{\beta} \end{pmatrix} = 0$$

It is pretty much the same matrix, so $\Delta_{\beta}^{(1)} = \pm 4$. For the first order correction to the energy of $|3^{0}\rangle$, we have

$$\Delta_3^{(1)} = \lambda \langle 3 | V | 3 \rangle = \lambda$$

Although to second order it is pretty much the same since $\lambda \ll \epsilon$

$$\Delta_3^{(1)} = \lambda V_{33} + \lambda^2 \sum_{j \neq 3} \frac{|V_{j3}|^2}{E_3^{(0)} - E_j^{(0)}}$$
$$= \lambda + \lambda^2 \left(-\frac{3}{\epsilon} - \frac{3}{\epsilon} \right)$$
$$= \lambda - \frac{6\lambda^2}{\epsilon} \approx \lambda$$

To get the corrections to the ground state eigenvector, we can again use nondegenerate perturbation theory

$$|3^{(1)}\rangle = |3^{(0)}\rangle + \lambda \sum_{j \neq 3} |j^{(0)}\rangle \frac{V_{j3}}{E_3^{(0)} - E_j^{(0)}}$$

$$= |3^{(0)}\rangle + \frac{\lambda}{\epsilon} (|2^{(0)}\rangle + |4^{(0)}\rangle)$$

In the limit $\lambda \to 0$, the perturbed eigenvectors are the "good" linear combinations. To find them we need to find the eigenvectors of the submatrices $V_{\mathcal{A}}$ and $V_{\mathcal{B}}$, which are both just multiples of the the \hat{S}_n operator. We know those eigenvectors already

$$\left|0^{(1)}\right\rangle = \cos\frac{\theta}{2}\left|0^{(0)}\right\rangle + \sin\frac{\theta}{2}e^{i\phi}\left|1^{(0)}\right\rangle$$

$$\left|1^{(1)}\right\rangle = \sin\frac{\theta}{2}\left|0^{(0)}\right\rangle - \cos\frac{\theta}{2}e^{i\phi}\left|1^{(0)}\right\rangle$$

$$\left|2^{(1)}\right\rangle = \cos\frac{\theta}{2}\left|2^{(0)}\right\rangle + \sin\frac{\theta}{2}e^{i\phi}\left|4^{(0)}\right\rangle$$

$$\left|4^{(1)}\right\rangle = \sin\frac{\theta}{2} \left|2^{(0)}\right\rangle - \cos\frac{\theta}{2} e^{i\phi} \left|4^{(0)}\right\rangle$$
$$\left|3^{(1)}\right\rangle = \left|3^{(0)}\right\rangle$$

Problem 2.

$$|\alpha_{\pm}\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$$
$$|\beta_{\pm}\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm i |1\rangle)$$

Solution.

I will start by going through all of the moments for position. Let $c=\sqrt{\frac{\hbar}{2m\omega}}$

$$\langle \alpha_{+} | x^{n} | \alpha_{+} \rangle = \frac{c^{n}}{2} (\langle 0 | + \langle 1 |) (a + a^{\dagger})^{n} (|0\rangle + |1\rangle)$$

$$= \frac{c^{n}}{2} (\langle 0 | (a + a^{\dagger})^{n} | 0\rangle + \langle 0 | (a + a^{\dagger})^{n} | 1\rangle$$

$$+ \langle 1 | (a + a^{\dagger})^{n} | 0\rangle + \langle 1 | (a + a^{\dagger})^{n} | 1\rangle)$$

for a yet unspecified constant c. We know that $(a+a^{\dagger})^n$ is just a binomial expansion. The first and last terms survive only for terms in the expansion where the power of a is the same as a^{\dagger} which happens only when n is even. The second term survives when the power of a is one less than a^{\dagger} and vice versa for the third term. For even n, we can write

$$(a)^{n/2} (a^{\dagger})^{n/2} |0\rangle = (n/2)! |0\rangle$$

 $(a)^{n/2} (a^{\dagger})^{n/2} |1\rangle = (n/2)! |1\rangle$

For odd values of n, we write

$$(a)^{\frac{n-1}{2}} (a^{\dagger})^{\frac{n+1}{2}} |0\rangle = \sqrt{\frac{n+1}{2}!} \sqrt{\frac{n-1}{2}!} |0\rangle$$
$$(a)^{\frac{n+1}{2}} (a^{\dagger})^{\frac{n-1}{2}} |1\rangle = \sqrt{\frac{n+1}{2}!} \sqrt{\frac{n-1}{2}!} |1\rangle$$

Putting it together and using the appropriate binomial coefficients, we get

$$\langle \alpha_{+} | x^{n} | \alpha_{+} \rangle = \begin{cases} c^{n} \binom{n}{n/2} (n/2)!, & n \text{ even} \\ c^{n} \binom{n}{(n+1)/2} \sqrt{\frac{n+1}{2}!} \sqrt{\frac{n-1}{2}!}, & n \text{ odd} \end{cases}$$

For the pure ensemble of $|\beta_+\rangle$, we have

$$\langle \beta_{+} | x^{n} | \beta_{+} \rangle = \frac{c^{n}}{2} (\langle 0 | -i \langle 1 |) (a + a^{\dagger})^{n} (|0\rangle + i |1\rangle)$$

$$= \frac{c^{n}}{2} (\langle 0 | (a + a^{\dagger})^{n} | 0\rangle + i \langle 0 | (a + a^{\dagger})^{n} | 1\rangle)$$

$$- i \langle 1 | (a + a^{\dagger})^{n} | 0\rangle + \langle 1 | (a + a^{\dagger})^{n} | 1\rangle)$$

$$= \frac{c^{n}}{2} (\langle 0 | (a + a^{\dagger})^{n} | 0\rangle + \langle 1 | (a + a^{\dagger})^{n} | 1\rangle)$$

$$\langle \beta_+ | x^n | \beta_+ \rangle = \begin{cases} c^n \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

so this is only nonzero for even n. For an ensemble of $|\alpha_{-}\rangle$, it is a similar situation

$$\langle \alpha_{-} | x^{n} | \alpha_{-} \rangle = \frac{c^{n}}{2} (\langle 0 | (a + a^{\dagger})^{n} | 0 \rangle + \langle 1 | (a + a^{\dagger})^{n} | 1 \rangle)$$
$$\langle \alpha_{-} | x^{n} | \alpha_{-} \rangle = \begin{cases} c^{n} \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

and for $|\beta_{-}\rangle$, we get

$$\langle \beta_{-} | x^{n} | \beta_{-} \rangle = \frac{c^{n}}{2} (\langle 0 | (a + a^{\dagger})^{n} | 0 \rangle + \langle 1 | (a + a^{\dagger})^{n} | 1 \rangle)$$
$$\langle \beta_{-} | x^{n} | \beta_{-} \rangle = \begin{cases} c^{n} \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

For a mixed ensemble of $|\alpha_{+}\rangle$ and $|\alpha_{-}\rangle$,

$$[x^n] = \begin{cases} c^n \binom{n}{n/2} (n/2)!, & n \text{ even} \\ \frac{1}{2} c^n \binom{n}{(n+1)/2} \sqrt{\frac{n+1}{2}}! \sqrt{\frac{n-1}{2}}!, & n \text{ odd} \end{cases}$$

and for a mixed ensemble of $|\beta_{+}\rangle$ and $|\beta_{-}\rangle$,

$$[x^n] = \begin{cases} c^n \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

Now we go through all of the moments for momentum. Let $c = \sqrt{\frac{m\hbar\omega}{2}}$

$$\langle \alpha_{+} | p^{n} | \alpha_{+} \rangle = \frac{(-i)^{n} c^{n}}{2} (\langle 0 | + \langle 1 |) (a - a^{\dagger})^{n} (|0\rangle + |1\rangle)$$

$$= \frac{(-i)^{n} c^{n}}{2} (\langle 0 | (a - a^{\dagger})^{n} | 0\rangle + \langle 0 | (a - a^{\dagger})^{n} | 1\rangle)$$

$$+ \langle 1 | (a - a^{\dagger})^{n} | 0\rangle + \langle 1 | (a - a^{\dagger})^{n} | 1\rangle)$$

We can see that if n is odd, the cross terms will always cancel. So we only need to be concerned with even n. Also this will be real as long as n is even, $(-i)^n$ will alternate in sign as we ascend even values of n, but the minus signs will always occur together, making it always positive:

$$[p^n] = \begin{cases} c^n \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

It is easy to see that the result is the same for $|\beta_{+}\rangle$. Now for $|\alpha_{-}\rangle$, we again always get zero for odd n. So just for even n,

$$\langle \alpha_{-} | p^{n} | \alpha_{-} \rangle = \frac{(-i)^{n} c^{n}}{2} \left(\langle 0 | - \langle 1 | \rangle (a - a^{\dagger})^{n} (|0\rangle - |1\rangle \right)$$

$$= \frac{(-i)^{n} c^{n}}{2} \left(\langle 0 | (a - a^{\dagger})^{n} | 0 \rangle + \langle 1 | (a - a^{\dagger})^{n} | 1 \rangle \right)$$

$$[p^n] = \begin{cases} c^n \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

and the result is identical for a pure ensemble of $|\beta_{-}\rangle$. In summary, if we have a mixed ensemble of $|\alpha_{+}\rangle$ and $|\alpha_{-}\rangle$, we will get

$$[p^n] = \begin{cases} c^n \binom{n}{n/2} (n/2)!, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

and the same for the mixed ensemble of $|\beta_{+}\rangle$ and $|\beta_{-}\rangle$.

m = 1				
m_1, m_2	3	2	1	
2, -1	$\sqrt{\frac{1}{15}}$	$\sqrt{rac{1}{3}}$	$\sqrt{\frac{3}{5}}$	
1, 0	$\sqrt{\frac{8}{15}}$	$\sqrt{\frac{1}{6}}$	$-\sqrt{\frac{3}{10}}$	
0, 1	$\sqrt{\frac{2}{5}}$	$-\sqrt{\frac{1}{2}}$	$\sqrt{rac{1}{10}}$	

Figure 1: Clebsch-Gordon coefficients for $j_1=1,\,j_2=2,\,m=1$

Problem 3.

Solution. In this two particle system, we have $j_1 = 1$ and $j_2 = 2$. We are told the z component of the individual angular momenta $m_1 = -1$ and $m_2 = 2$. So we use the state kets $|j_1, j_2; m_1, m_2\rangle$ where m_1 and m_2 follow the usual rules. So the state is $|1, 2; -1, 2\rangle$.

$$\langle J^{2} \rangle = \langle 1, 2; -1, 2 | J^{2} | 1, 2; -1, 2 \rangle$$

$$= \langle 1, 2; -1, 2 | (J_{1}^{2} + J_{2}^{2} + 2J_{1z}J_{2z}) | 1, 2; -1, 2 \rangle$$

$$= j_{1}(j_{1} + 1)\hbar^{2} + j_{2}(j_{2} + 1)\hbar^{2} - 4\hbar^{2}$$

$$= 2\hbar^{2} + 6\hbar^{2} - 4\hbar^{2}$$

$$= 4\hbar^{2}$$

We cannot directly compute the expectation values of J_x, J_y, J_z in this basis, because $|j_1, j_2, m_1, m_2\rangle$ are not eigenkets of J_x, J_y, J_z . But can change basis:

$$|j_1, j_2, m_1, m_2\rangle = \sum_{m_1, m_2} |j_1, j_2; jm\rangle \langle j_1, j_2; jm|j_1, j_2; m_1, m_2\rangle$$

We need to determine $\langle j_1, j_2; jm | j_1, j_2; m_1, m_2 \rangle$ which are the Clebsch-Gordon coefficients.

Noting that $m = m_1 + m_2 = 1$, we find

$$|1,2;-1,2\rangle = \sqrt{\frac{3}{5}} |1,2;11\rangle + \sqrt{\frac{1}{3}} |1,2;21\rangle + \sqrt{\frac{1}{15}} |1,2;31\rangle$$

The expectation value $\langle J_z \rangle$ is then

$$\langle J_z \rangle = \langle 1, 2; -1, 2 | J_z | 1, 2; -1, 2 \rangle$$

$$= \left(\sqrt{\frac{3}{5}} \langle 1, 2; 11 | + \sqrt{\frac{1}{3}} \langle 1, 2; 21 | + \sqrt{\frac{1}{15}} \langle 1, 2; 31 | \right) J_z$$

$$\left(\sqrt{\frac{3}{5}} | 1, 2; 11 \rangle + \sqrt{\frac{1}{3}} | 1, 2; 21 \rangle + \sqrt{\frac{1}{15}} | 1, 2; 31 \rangle \right)$$

$$= \hbar \left(\frac{3}{5} + \frac{1}{3} + \frac{1}{15} \right) = \hbar$$

as we should expect. For J_x, J_y ,

$$\langle J_x \rangle = \langle 1, 2; -1, 2 | J_x | 1, 2; -1, 2 \rangle$$

$$= \left(\sqrt{\frac{3}{5}} \langle 1, 2; 11 | + \sqrt{\frac{1}{3}} \langle 1, 2; 21 | + \sqrt{\frac{1}{15}} \langle 1, 2; 31 | \right) \right)$$

$$\frac{1}{2} (J_+ + J_-) \left(\sqrt{\frac{3}{5}} | 1, 2; 11 \rangle + \sqrt{\frac{1}{3}} | 1, 2; 21 \rangle + \sqrt{\frac{1}{15}} | 1, 2; 31 \rangle \right)$$

$$= 0$$

and $\langle J_y \rangle = 0$ since neither J_+ nor J_- connects two $|j_1, j_2; jm\rangle$ states.

Now, if we measure the total angular momentum and obtain the largest possible value, then we are in the state $|1,2;31\rangle$ in the $|j_1,j_2;jm\rangle$ basis. However, to compute J_{1z} and J_{2z} we need to transform this back to the $|j_1,j_2,m_1,m_2\rangle$ basis. Looking up the coefficients, we get

$$|1,2;31\rangle = \left(\sqrt{\frac{1}{15}}|1,2;-12\rangle + \sqrt{\frac{2}{5}}|1,2;10\rangle + \sqrt{\frac{8}{15}}|1,2;01\rangle\right)$$

$$\langle J_{1z} \rangle = \langle 1, 2; 31 | J_{1z} | 1, 2; 31 \rangle$$

$$= \left(\sqrt{\frac{1}{15}} \langle 1, 2; -12 | + \sqrt{\frac{2}{5}} \langle 1, 2; 10 | + \sqrt{\frac{8}{15}} \langle 1, 2; 01 | \right) \right)$$

$$J_{1z} \left(\sqrt{\frac{1}{15}} | 1, 2; -12 \rangle + \sqrt{\frac{2}{5}} | 1, 2; 10 \rangle + \sqrt{\frac{8}{15}} | 1, 2; 01 \rangle \right)$$

$$= -\hbar \frac{1}{15} + \hbar \frac{2}{5} = \frac{\hbar}{3}$$

$$\langle J_{2z} \rangle = \langle 1, 2; 31 | J_{2z} | 1, 2; 31 \rangle$$

$$= \left(\sqrt{\frac{1}{15}} \langle 1, 2; -12 | + \sqrt{\frac{2}{5}} \langle 1, 2; 10 | + \sqrt{\frac{8}{15}} \langle 1, 2; 01 | \right) \right)$$

$$J_{2z} \left(\sqrt{\frac{1}{15}} | 1, 2; -12 \rangle + \sqrt{\frac{2}{5}} | 1, 2; 10 \rangle + \sqrt{\frac{8}{15}} | 1, 2; 01 \rangle \right)$$

$$= 2\hbar \frac{1}{15} + \hbar \frac{8}{15} = \frac{2\hbar}{3}$$

The probability that J_{1z} and J_{2z} never change from their original values is given by

$$|\langle 1, 2; -12|1, 2; 31\rangle|^2 = 1/15$$

If we instead measure the smallest possible value, we are in state $|1, 2; 11\rangle$. The third particle being added has $j_3 = 1$ and $m_3 = -1$. We can consider the first two particles as a single composite particle in state $|jm\rangle = |11\rangle$. We now have two particles with j = 1. Taking $m_1 = 1$ and $m_2 = -1$ and reading off the table above, the probabilities are

$$\mathbf{Pr}(j) = \begin{cases} \frac{1}{3}, j = 0\\ \frac{1}{2}, j = 1\\ \frac{1}{6}, j = 2 \end{cases}$$

Finally, the expectation value of J^2 for this three particle system is

m = 0				
m_1, m_2 j	2	1	0	
1, -1	$\sqrt{\frac{1}{6}}$	$\sqrt{rac{1}{2}}$	$\sqrt{rac{1}{3}}$	
0, 0	$\sqrt{rac{2}{3}}$	0	$-\sqrt{rac{1}{3}}$	
-1, 1	$\sqrt{rac{1}{6}}$	$-\sqrt{\frac{1}{2}}$	$\sqrt{rac{1}{3}}$	

Figure 2: Clebsch-Gordon coefficients for $j_1=1,\,j_2=1$ and m=0

$$\langle J^{2} \rangle = \langle 1, 1; 1, -1 | J^{2} | 1, 1; 1, -1 \rangle$$

$$= \langle 1, 1; 1, -1 | (J_{1}^{2} + J_{2}^{2} + 2J_{1z}J_{2z}) | 1, 1; 1, -1 \rangle$$

$$= j_{1}(j_{1} + 1)\hbar^{2} + j_{2}(j_{2} + 1)\hbar^{2} - 2\hbar^{2}$$

$$= 2\hbar^{2}$$