Zeolite calciner with the insulating effect of material at the wall

Contents

- Introduction
 - Problem description
 - Goal of the project
 - Typical outcome
- Model description
- Parameter analysis
- Summary

Problem context

Goal: heat zeolite to 600 °C

Problem

Zeolite sticks to the wall

Goal of the project

- Model the steady-state temperature of the bulk along the length of the calciner
- Deliverable: Python application
- Investigate the influence of operation parameters on the heating of the kiln

Typical outcome

Zeolite temperature

Steady-state thermal energy balance

$$c_1 rac{dT}{dx} + c_2 rac{d^2T}{dx^2} = Q_{
m in} - Q_{
m out}$$
 Convection Diffusion Source terms (Heat transfer paths)

Heat balance in zeolite bed:

$$c_1rac{dT_b}{dx}=Q_{b,\,\mathrm{in}}-Q_{b,\,\mathrm{out}}$$

Heat balance in gas (air and steam):

$$c_2 rac{dT_g}{dx} = Q_{g,\,\mathrm{in}} - Q_{g,\,\mathrm{out}}$$

Heat balance in insulating zeolite deposit:

$$0 = Q_{d, \text{ in}} - Q_{d, \text{ out}}$$

Together: system of differential-algebraic equations (DAE)

$$c_1 rac{dT_b}{dx} = Q_{b,\,\mathrm{in}} - Q_{b,\,\mathrm{out}}$$

$$c_2 rac{dT_g}{dx} = Q_{g,\,\mathrm{in}} - Q_{g,\,\mathrm{out}}$$

$$0=Q_{d,\,\mathrm{in}}-Q_{d,\,\mathrm{out}}$$

Results

Parameter: thickness zeolite deposit (m)

Optional: Varying Oven Temperature

Parameter: Feed rate (kg/h)

Parameter: Initial water content (wt%)

Parameter: heat conductivity Zeolite (W/m/K)

Summary

- Developed 1D Model
- Significance of parameters:
 - 1. Deposit thickness
 - 2. Heat conductivity
 - 3. Feed rate
 - 4. Initial water content

Recommendations

- Investigate experimental values of deposit layer
- High temperature of first burner chamber

Zeolite calciner with the insulating effect of material at the wall GitHub repository:

ZeoliteCalciner / model1D

https://github.com/ZeoliteCalciner/model1D

Bed Height: Saeman model

