HOMEWORK 8

SAI SIVAKUMAR

Do one.

- (i) Show, if p is a polynomial of degree at least two, then the sum of the residues of $\frac{1}{p}$ is zero.
- (ii) Suppose a > e and $n \in \mathbb{N}^+$. Show $e^z az^n = 0$ has exactly n solutions in the unit disc $\mathbb{D} = \{|z| < 1\}$.

Proof (ii). Apply Rouché's theorem.

The functions f, g given by $f(z) = \exp(z) - az^n$ and $g(z) = az^n$ are meromorphic on \mathbb{D} . Furthermore, f has no poles in \mathbb{D} , and g has n zeroes but no poles in \mathbb{D} .

We have for $z \in S^1$, $|f(z) + g(z)| = |\exp(z)| = \exp(\operatorname{Re}(z)) \le e$, and $a = |az^n| \le |f(z)| + |g(z)|$. Since a > e, |f(z) + g(z)| < |f(z)| + |g(z)| for all $z \in S^1$. By Rouché's theorem the number of zeroes of f(z) is n as desired.