AIME Problems 2024-2024

AIME Problems 2024-2024

0-	++-	
UΟ	ntents	

2024 AIME II Problems	2
2024 AIME I Problems	4

AIME Problems 2024-2024

2024 AIME II Problems

1. Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf clubs, and 562 who own a garden spade. In addition, each of the 900 residents owns a bag of candy hearts. There are 437 residents who own exactly two of these things, and 234 residents who own exactly three of these things. Find the number of residents of Aimeville who own all four of these things.

- 2. A list of positive integers has the following properties:
 - The sum of the items in the list is 30.
 - The unique mode of the list is 9.
 - The median of the list is a positive integer that does not appear in the list itself.

Find the sum of the squares of all the items in the list.

3. Find the number of ways to place a digit in each cell of a 2x3 grid so that the sum of the two numbers formed by reading left to right is 999, and the sum of the three numbers formed by reading top to bottom is 99. The grid below is an example of such an arrangement because 8 + 991 = 999 and 9 + 9 + 81 = 99.

0	0	8
9	9	1

4. Let x, y and z be positive real numbers that satisfy the following system of equations:

$$\log_2\left(\frac{x}{yz}\right) = \frac{1}{2}$$

$$\log_2\left(\frac{y}{xz}\right) = \frac{1}{3}$$

$$\log_2\left(\frac{z}{xy}\right) = \frac{1}{4}$$

Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\frac{m}{n}$ where m and n are relatively prime positive integers. Find m+n.

- 5. Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The triangle whose sides are extensions of segments \overline{AB} , \overline{CD} , and \overline{EF} has side lengths 200, 240, and 300. Find the side length of the hexagon.
- 6. Alice chooses a set A of positive integers. Then Bob lists all finite nonempty sets B of positive integers with the property that the maximum element of B belongs to A. Bob's list has 2024 sets. Find the sum of the elements of A.
- 7. Let N be the greatest four-digit integer with the property that whenever one of its digits is changed to 1, the resulting number is divisible by 7. Let Q and R be the quotient and remainder, respectively, when N is divided by 1000. Find Q + R.
- 8. Torus T is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let S be a sphere with a radius 11. When T rests on the inside of S, it is internally tangent to S along a circle with radius r_i , and when T rests on the outside of S, it is externally tangent to S along a circle with radius r_o . The difference $r_i r_o$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

- 9. There are 25 indistinguishable white chips and 25 indistinguishable black chips. Find the number of ways to place some of these chips in a 5×5 grid such that
 - * each cell contains at most one chip
 - * all chips in the same row and all chips in the same column have the same colour
 - * any additional chip placed on the grid would violate one or more of the previous two conditions.
- 10. Let $\triangle ABC$ have incenter I and circumcenter O with $\overline{IA} \perp \overline{OI}$, circumradius 13, and inradius 6. Find $AB \cdot AC$.
- 11. Find the number of triples of nonnegative integers (a, b, c) satisfying a + b + c = 300 and

$$a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b = 6,000,000.$$

- 12. Let O(0,0), $A(\frac{1}{2},0)$, and $B(0,\frac{\sqrt{3}}{2})$ be points in the coordinate plane. Let \mathcal{F} be the family of segments \overline{PQ} of unit length lying in the first quadrant with P on the x-axis and Q on the y-axis. There is a unique point C on \overline{AB} , distinct from A and B, that does not belong to any segment from \mathcal{F} other than \overline{AB} . Then $OC^2 = \frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.
- 13. Let $\omega \neq 1$ be a 13th root of unity. Find the remainder when

$$\prod_{k=0}^{12} (2 - 2\omega^k + \omega^{2k})$$

is divided by 1000.

- 14. Let $b \ge 2$ be an integer. Call a positive integer n b-eautiful if it has exactly two digits when expressed in base b, and these two digits sum to \sqrt{n} . For example, 81 is 13-eautiful because $81 = \underline{63}_{13}$ and $6+3 = \sqrt{81}$. Find the least integer $b \ge 2$ for which there are more than ten b-eautiful integers.
- 15. Find the number of rectangles that can be formed inside a fixed regular dodecagon (12-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.

2024 AIME I Problems

1. Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including t minutes spent in the coffee shop. When she walks at s+2 kilometers per hour, the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya walks at $s+\frac{1}{2}$ kilometers per hour. Find the number of minutes the walk takes her, including the t minutes spent in the coffee shop.

2. There exist real numbers x and y, both greater than 1, such that

$$\log_x(y^x) = \log_y(x^{4y}) = 10.$$

Find xy.

- 3. Alice and Bob play the following game. A stack of n tokens lies before them. The players take turns with Alice going first. On each turn, the player removes 1 token or 4 tokens from the stack. The player who removes the last token wins. Find the number of positive integers n less than or equal to 2024 such that there is a strategy that guarantees that Bob wins, regardless of Alices moves.
- 4. Jen enters a lottery by picking 4 distinct numbers from $S = \{1, 2, 3, \dots, 9, 10\}$. 4 numbers are randomly chosen from S. She wins a prize if at least two of her numbers were 2 of the randomly chosen numbers, and wins the grand prize if all four of her numbers were the randomly chosen numbers. The probability of her winning the grand prize given that she won a prize is $\frac{m}{n}$ where m and n are relatively prime positive integers. Find m + n.
- 5. Rectangle ABCD has dimensions AB = 107 and BC = 16, and rectangle EFGH has dimensions EF = 184 and FG = 17. Points D, E, C, and F lie on line DF in that order, and A and H lie on opposite sides of line DF, as shown. Points A, D, H, and G lie on a common circle. Find CE.

6. Consider the paths of length 16 that follow the lines from the lower left corner to the upper right corner on an 8×8 grid. Find the number of such paths that change direction exactly four times, like in the examples shown below.

7. Find the largest possible real part of

$$(75 + 117i)z + \frac{96 + 144i}{z}$$

where z is a complex number with |z| = 4.

8. Eight circles of radius 34 can be placed tangent to \overline{BC} of $\triangle ABC$ so that the circles are sequentially tangent to each other, with the first circle being tangent to \overline{AB} and the last circle being tangent to \overline{AC} , as shown. Similarly, 2024 circles of radius 1 can be placed tangent to \overline{BC} in the same manner. The inradius of $\triangle ABC$ can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

- 9. Let ABCD be a rhombus whose vertices all lie on the hyperbola $\frac{x^2}{20} \frac{y^2}{24} = 1$ and are in that order. If its diagonals intersect at the origin, find the largest number less than BD^2 for all rhombuses ABCD.
- 10. Let ABC be a triangle inscribed in circle ω . Let the tangents to ω at B and C intersect at point D, and let \overline{AD} intersect ω at P. If AB = 5, BC = 9, and AC = 10, AP can be written as the form $\frac{m}{n}$, where m and n are relatively prime integers. Find m + n.
- 11. Each vertex of a regular octagon is independently colored either red or blue with equal probability. The probability that the octagon can then be rotated so that all of the blue vertices end up at positions where there were originally red vertices is $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m+n?
- 12. Define $f(x) = ||x| \frac{1}{2}|$ and $g(x) = ||x| \frac{1}{4}|$. Find the number of intersections of the graphs of $y = 4g(f(\sin(2\pi x)))$ and $x = 4g(f(\cos(3\pi y)))$.
- 13. Let p be the least prime number for which there exists a positive integer n such that $n^4 + 1$ is divisible by p^2 . Find the least positive integer m such that $m^4 + 1$ is divisible by p^2 .
- 14. Let ABCD be a tetrahedron such that $AB = CD = \sqrt{41}$, $AC = BD = \sqrt{80}$, and $BC = AD = \sqrt{89}$. There exists a point I inside the tetrahedron such that the distances from I to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m\sqrt{n}}{p}$, when m, n, and p are positive integers, m and p are relatively prime, and p is not divisible by the square of any prime. Find m + n + p.
- 15. Let \mathcal{B} be the set of rectangular boxes with surface area 54 and volume 23. Let r be the radius of the smallest sphere that can contain each of the rectangular boxes that are elements of \mathcal{B} . The value of r^2 can be written as $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.