Internship Weekly Report – Week 3

Title Page

Name: Sandeep Ravaji Patel

Domain: Data Science **Week Number:** Week 3

Task Description

Objective:

To develop skills in data visualization and exploratory data analysis (EDA) using real-world datasets, focusing on generating meaningful visual insights and handling missing values effectively.

Tasks Completed:

Data Visualization:

- Plotted bar charts, histograms, and scatter plots using Matplotlib and Seaborn.
- Used plt.bar, plt.hist, sns.scatterplot, and sns.heatmap to generate clean and informative graphs.
- Compared visual outputs from different datasets (bengaluru_house_prices.csv and Pokemon.csv).

Exploratory Data Analysis (EDA):

- Identified and handled missing data using isnull(), dropna(), and fillna().
- Conducted correlation analysis using corr() and visualized it with heatmaps.
- Analyzed distribution and relationship of features such as price, area, and Pokémon statistics.

Tools Used:

- Matplotlib
- Seaborn
- Pandas
- Jupyter Notebook

Ode Snippets / Design Screenshots

Example 1: Bar Chart of Pokémon Types

Bar Plot

```
[51]: x=["Python","C","C++","Java"]
y=[85,70,80,82]
c=["yellow","Blue","green","pink"]
plt.xlabel("Language",fontsize=11)
plt.ylabel("Popularity",fontsize=11)
plt.title("Bar Plot",fontsize=18)
plt.bar(x,y,width=0.4,color="c",align="center",edgecolor="Black",linewidth=2,linestyle=":",alpha=0.7,label="Popularity")
plt.legend()
```

[51]: <matplotlib.legend.Legend at 0x1c17a493e00>

Example 2: Heatmap of Feature Correlations (Bengaluru Housing Dataset)

Correlation

balcony

price

By default method="pearson"

[261]:	<pre>p_corr=df14.corr(numeric_only=True) p_corr</pre>				
[261]:		total_sqft	bath	balcony	price
	total_sqft	1.000000	0.627872	0.208954	0.673927
	bath	0.627872	1.000000	0.275726	0.594844

0.208954 0.275726 1.000000 0.170138

0.673927 0.594844 0.170138 1.000000

Example 3: Handling Missing Data By Interpolation

applying intepolation with different functions and for different columns

```
[254]: df13 = pd.DataFrame([(1.0, np.nan, -1.0, 1.0),(np.nan, 2.0, np.nan, np.nan),(9.0, 3.0, np.nan, 9.0),(16.0, np.nan, -4.0, 16.0)],columns=list('abcd'))
df13

[254]: a b c d

0 1.0 NaN -1.0 1.0

1 NaN 2.0 NaN NaN

2 9.0 3.0 NaN 9.0

3 16.0 NaN -4.0 16.0
```

Quadratic interpolation

```
[255]: df13["d"]=df13["d"].interpolate(method="quadratic")
df13

[255]: a b c d

0 1.0 NaN -1.0 1.0

1 NaN 2.0 NaN 4.0

2 9.0 3.0 NaN 9.0

3 16.0 NaN -4.0 16.0
```

Polynomial interpolation with order 2

```
[256]:
       df13["a"]=df13["a"].interpolate(method="polynomial",order=2,axis=0)
[256]:
                 b
                            d
                       C
                     -1.0
          1.0 NaN
                           1.0
           4.0
               2.0 NaN
                           4.0
           9.0
                3.0 NaN
                           9.0
       3 16.0 NaN -4.0 16.0
```

Linear interpolation

```
[257]: df13["c"]=df13["c"].interpolate(method="linear",axis=0)
df13

[257]: a b c d

0 1.0 NaN -1.0 1.0

1 4.0 2.0 -2.0 4.0

2 9.0 3.0 -3.0 9.0

3 16.0 NaN -4.0 16.0
```

Challenges Faced

Missing Data Issues:

- Some columns had extensive missing values.
- **Resolution:** Used median/mode imputation or dropped rows depending on data quality and quantity.

Inconsistent Data Types:

- Some numeric columns were read as strings due to formatting issues.
- **Resolution:** Cleaned and typecasted columns using astype(float) after cleaning symbols.

Plot Formatting and Readability:

- Legends and axis labels sometimes overlapped or were unreadable.
- **Resolution:** Added tight layout(), rotated ticks, and adjusted figure size for clarity.

\rightarrow Learning Outcome

Data Visualization Mastery:

Gained confidence using Matplotlib and Seaborn to build clear and impactful visualizations.

EDA Techniques:

• Performed real-world data exploration with correlation analysis, value counts, and distribution plots.

Data Cleaning:

• Improved handling of null values and inconsistent formats across datasets.

Next Steps

For Week 4, the focus will be on:

- Machine Learning Basics: Introduction to supervised models.
- Modeling Practice: Implementing Linear Regression.
- Data Preparation: Splitting data into training and testing sets.

Resources

• Matplotlib: Matplotlib Guide

• Seaborn: <u>Seaborn Documentation</u>

• **Dataset 1:** Bengaluru House Prices – CSV

• **Dataset 2:** Pokémon Dataset – CSV