Course Info

- Lab 6 next week, prepare before lab sessions! Keep an eye on piazza.
- Project 1.2 ddl March 31st. Project 2.1 released next week!
- This week discussion on ALU & FSM. Next week discussion on datapath.
- Mid-term I answer & score will be released before next week. If you have questions, feel free to ask on Piazza.

Course Info

• HW4 will be released, keep an eye on piazza. Submit your paper homework to the picture below (SIST 3-322). There will be a box. Put into the box. Remember to add your name. You have only one chance to submit and cannot be withdrawn.

CS 110 Computer Architecture Datapath & Controller

Instructors:

Siting Liu & Chundong Wang

Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/ Spring-2023/index.html

School of Information Science and Technology (SIST)
ShanghaiTech University

Controller as FSM

		addi	add	SW	lw	beq	
	reg_we	1	1	0	1	0	
	mem_rw	R	R	W	R	R	
	alu_ctrl	add	add	add	add	comp	
	imm_sel		*	S		B*	
	d_src	alu	alu	*	mem	alu*	
	op_src	imm	reg	imm	imm	reg	imm
	PC_mux	+4	+4	+4	+4	& Bran	e ch
-						α Dian	CH

Output = control signals

Another Implementation

There Are a Thousand Hamlets in a Thousand People's Eyes. — Shakespeare

Compare Logic

BrUn: control signal (input), whether it is a unsigned or signed comparison; BrLT: 1 if less than, otherwise 0; output signal to the decoder/controller; BrEq: 1 if equal, otherwise 0; output signal to the decoder/controller;

Compare Logic

BrUn: control signal (input), whether it is a unsigned or signed comparison;

BrLT: 1 if less than, otherwise 0; output signal

BrEq: 1 if equal, otherwise 0; output signal

		BrLT	BrEq
)/	BEQ	0	1
X	BNE	0/1	0
<	BLT	1	0
	BGE	0	0/1 💥

Consideration for IMM Generation

Consideration for IMM Generation

Up to Now

BrUn

w/w/o u

AddJALR

AddJALR

PC= RErs 1) +imm

15

AddJALR

	addi	add	SW	lw	beq	jalr
reg_we	1	1	0	1	0	
mem_rw	R	R	W	R	R	
alu_ctrl	add	add	add	add	add	
imm_sel	I	*	S	I	В	
d_src	alu	alu	*	mem	*	
op_src	imm	reg	imm	imm	imm	
pc_sel	+4	+4	+4	+4	Comp.	
pc_src	reg	reg	reg	reg	рс	
BrUn	*	*	*	*	w/w/o u	

Add JAL 1. PC = PC + in 2. rd = PC + 4

1. PC = PC + imm

imm[1]	1:0]	rs1	funct3	rd	opcode] I-type
				54.63		1
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-type
From the state of						1
$[imm[12] \mid imm[10:5]$	rs2	rs1	funct3	imm[4:1] imm[11]	opcode	B-type
						1
	$\mathrm{imm}[31{:}12]$			rd	opcode	U-type
						1
[imm[20]] $[imm[10]$	[0:1] $ imm[11]$	imm[1	[9:12]	rd	opcode	J-type

AddJAL

1. PC = PC + imm

	addi	add	SW	lw	beq	jalr	jal
reg_we	1	1	0	1	0	1	
mem_rw	R	R	W	R	R	R	
alu_ctrl	add	add	add	add	add	add	
imm_sel	I	*	S	I	В	1	
d_src	alu	alu	*	mem	*	рс	
op_src	imm	reg	imm	imm	imm	imm	
pc_sel	+4	+4	+4	+4	Comp.	alu_re	
pc_src	reg	reg	reg	reg	рс	reg	
BrUn	*	*	*	*	w/w/o u	*	

Add U-type: LUI

	$_{ m imm}[$	31:12]		rd	opcode U-type
imm[20]	imm[10:1]	imm[11]	imm[19:12]	rd	opcode J-type

Add U-type: AUIPC

			y p-c- 210	1) ^	-PC+ UI
	imi	m[31:12]		rd	opcode U-type
imm[20]	imm[10:1]	imm[11]	imm[19:12]	rd	opcode J-type

What is the minimum clock cycle/max frequency of the CPU?

What is the minimum clock cycle/max frequency of the CPU?

What is the minimum clock cycle/max frequency of the CPU?

What is the minimum clock cycle/max frequency of the CPU?

I-type (load): $T \ge t_{IF} + t_{ID} + t_{EXE} + t_{MEM} + t_{WB}$

23

What is the minimum clock cycle/max frequency of the CPU?

B-type: $T \ge t_{IF} + t_{ID} + t_{EXE}$

considered as part of ID

Timing Diagram (Consider delays)

Timing Diagram (Consider delays)

Instru.	IF = 300 ps	ID = 100 ps	EX = 200 ps	MEM = 300 ps	WB = 100 ps	Total
add	X	X	X		X	700 ps
beq	X	X	X			600 ps
jal	X	X	X		X	700 ps
lw	X	X	X	X	X	1000 ps
sw	X	X	Х	X		900 ps

Up to Now

Controller: Two Implementations

Using combinational circuits

	addi	add	SW	lw	beq	jalr	jal
reg_we	1	1	0	1	0	1	1
mem_rw	R	R	W	R	R	R	R
alu_ctrl	add	add	add	add	add	add	add
imm_sel		*	S	I	В	I	J
d_src	alu	alu	*	mem	*	рс	рс
op_src	imm	reg	imm	imm	imm	imm	imm
pc_sel	+4	+4	+4	+4	Comp.	alu_re	alu_re
pc_src	reg	reg	reg	reg	рс	reg	рс
BrUn	*	*	*	*	w/w/o u	*	*

Combinational Control Logic

00	LUI	0110111	rd			imm[31:12]	
000	AUIPC	0010111	rd			imm[31:12]	
000	JAL	1101111	rd		9:12]	n[20]10:1[11]19	imn
010	JALR	1100111	rd	000	rsl		imm[11:0
000	BEQ	1100011	imm[4:1 11]	000	rs1	rs2	imm[12 10:5]
010	BNE	1100011	imm[4:1 11]	001	rs1	rs2	imm[12 10:5]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BLT	1100011	imm[4:1 11]	100	rsl	rs2	imm[12 10:5]
00	BGE	1100011	imm[4:1 11]	101	rsl	rs2	imm[12 10:5]
	BLTU	1100011	imm[4:1 11]	110	rs1	rs2	imm[12 10:5]
000	BGEU	1100011	imm[4:1 11]	111	rsl	rs2	imm[12 10:5]
000	LB	0000011	rd	000	rsl)]	imm[11:0
000	LH	0000011	rd	001	rsl	0]	imm[11:0
000	LW	0000011	rd	010	rs1		imm[11:0
0000	LBU	0000011	rd	100	rs1		imm 11:0
0000	LHU	0000011	rd	101	rs1		imm 11:0
0000	SB -	0100011	imm[4:0]	000	rs1	rs2	imm[11:5]
	SH	0100011	imm 4:0	001	rs1	rs2	imm[11:5]
	SW	0100011	imm[4:0]	010	rs1	rs2	imm[11:5]
Not	ADDI	0010011	rd	000	rsl)	imm[11:0
NOL	SLTI	0010011	rd	010	rs1	0]	imm[11:0
	SLTIII	0010011	rd	011	rsl)	imm[11:0
	XORI	0010011	rd	100	rsl	0]	imm[11:0
	ORI	0010011	rd	110	rsl		imm[11:0
	ANDI	0010011	rd	111	rs1		imm 11:0

i[30]			i[14:12]			i[6:2]					
000000		shamt	rsl	001	rd	0010011	SLLI				
000000		shamt	rsl	101	rd	0010011	SRLI				
0100000		shamt	rs1	101	rd	0010011	SRAI				
0000000		rs2	rs1	000	rd	0110011	ADD				
0100000		rs2	rs1	.000	rd	0110011	SUB				
000000		rs2	rsl	001	rd	0110011	SLL				
0 <mark>0</mark> 00000 rs2		rsl	010	rd	0110011	SLT					
0000000			rsl	011	rd	0110011	SLTU				
0000000			rsl	100	rd	0110011	XOR				
0000000			rs1	101	rd	0110011	SRL				
0100000	rs2	0100000 r	rs2	rs2	rs2	rs2	rs1	101	rd	0110011	SRA
000000		rs2	rsl	110	rd	0110011	OR				
0000000	- 6	rs2	rsl	111	rd	0110011	AND				
0000	pred	succ	00000	000	00000	0001111	FENCE				
0000	0000	0000	00000	001	00000	0001111	FENCE				
0000	000000000		00000	000	00000	1110011	ECALL				
0000	00000001		00000	000	00000	1110011	EBREA				
	CHI		rsl	001	rd	1110011	CSRRW				
Not in	GS11(rsl	010	rd	1110011	CSRRS				
	CST		rsl	011	rd	1110011	CSRRC				
	esr			101	rd	1110011	CSRRW				
	CST		zimm	110	rd	1110011	CSRRS				
	CST		zimm	111	rd	1110011	CSRRC				

• Simplest example: BrUn

		11151	11151[14.12]			IIISL[0.2] – Diaii		
			V		V			
imm[12 10:5]	rs2	rsl	000	imm[4:1 11]	1100011	BEQ		
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE		
imm[12 10:5]	rs2	rsl	100	imm[4:1 11]	1100011	BLT		
imm[12 10:5]	rs2	rsl	101	imm[4:1 11]	1100011	BGE		
imm[12 10:5]	rs2	rsl	110	imm[4:1 11]	1100011	BLTU		
imm[12 10:5]	rs2	rsl	111	imm[4:1 11]	1100011	BGE		

inct[1/1·12]

- How to decode/control whether BrUn is 1? BrUn = Inst [13] & Branch instruction
- Branch?

inct[6.2] - Branch

Using Types of Instructions

	addi	add	SW	lw	beq	jalr	jal
reg_we	1	1	0	1	0	1	1
mem_rw	R	R	W	R	R	R	R
alu_ctrl	add	add	add	add	add	add	add
imm_sel		*	S	I	В	I	J
d_src	alu	alu	*	mem	*	рс	рс
op_src	imm	reg	imm	imm	imm	imm	imm
pc_sel	+4	+4	+4	+4	Comp.	alu_re	alu_re
pc_src	reg	reg	reg	reg	рс	reg	рс
BrUn	*	*	*	*	w/w/o u	*	*

• Example:

- mem_rw, 1 when "W"; 0 when "R"
- Only "W" when S-type store

$$mem_rw = SW + SH + SB$$

Recall: S-Format Store Instructions

		5	3	5	7	
$\operatorname{imm}[11:5]$	rs2	rs1	funct3	$\mathrm{imm}[4:0]$	opcode	S-type
7	5					

Assembly: sw/sh/sb rs2, imm(rs1)

imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW

SB = $\overline{i[14]}$ $\overline{i[13]}$ $\overline{i[12]}$ $\overline{i[6]}$ $\overline{i[5]}$ $\overline{i[4]}$ $\overline{i[3]}$ $\overline{i[2]}$

SH = $\overline{i[14]}$ $\overline{i[13]}$ $\overline{i[12]}$ $\overline{i[6]}$ $\overline{i[5]}$ $\overline{i[4]}$ $\overline{i[3]}$ $\overline{i[2]}$

SW = $\overline{i[14]}$ $\overline{i[13]}$ $\overline{i[12]}$ $\overline{i[6]}$ $\overline{i[5]}$ $\overline{i[4]}$ $\overline{i[3]}$ $\overline{i[2]}$

Combinational Control Logic (Don't-care values)

	addi	add	SW	lw	beq	jalr	jal
reg_we	1	1	0	1	0	1	1
mem_rw	R	R	W	R	R	R	R
alu_ctrl	add	add	add	add	add	add	add
imm_sel	[*	S	I	В	I	J
d_src	alu	alu	*	mem	*	рс	рс
op_src	imm	reg	imm	imm	imm	imm	imm
pc_sel	+4	+4	+4	+4	Comp.	alu_re	alu_re
pc_src	reg	reg	reg	reg	рс	reg	рс
BrUn	*	*	*	*	w/w/o u	*	*

Combinational Control Logic (Don't-care values)

• imm_sel as an example

00	00000	rs2	rs1	000	rd	0110011	ADD
	im	m	rs1	000	rd	0010011	ADDI
	imm		rs1	010	rd	0000011	LW
im	nm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW
imn	n[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ
		imm[20 10	0:1 11 19:12]		rd	1101111	JAL
	im	m	rs1	000	rd	1100111	JALR

Assume (should be 3-bit, because we still have U-type imm.)

	addi	add	SW	lw	beq	jalr	jal
imm_sel		*	S		В	I	J
	00	_	01	00	10	00	11

Combinational Control Logic (Don't-care values)

* -	Can be 00, 01,
00	10, 11
00	
01	
10	
11	
00	
	00 00 01 10 11

Funct3 (instru[14:12]) instru[6:2]

 $imm_sel[1] = i[6] i[5] i[4] i[3] i[2] + i[6] i[5] i[4] i[3] i[2] i[14] i[13] i[12] + i[6] i[6] i[5] i[4] i[3] i[2] i[14] i[13] i[12]$

ROM-based Implementation

imm[31:12]				rd	0110111	LUI	nanonna	1 2	- 1	nna.	-1	0010011	CHIL
imm[31:12]			rd	0010111	AUIPC	000000	shamt	rsl	001	rd	0010011	SLLI	
imm[20]10:1[11]19:12]		rd	1101111	JAL	000000	shamt	rsl	101	rd	0010011	SRLI		
imm[11:0		rsl	000	rd	1100111	JALR	01 00000	shamt	rs1	101	rd	0010011	SRAI
imm[12 10:5]	rs2	rsl	000	imm[4:1 11]	1100011	BEQ	000000	rs2	rs1	000	rd	0110011	ADD
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE	01 00000	rs2	rs1	000	rd	0110011	SUB
imm[12 10:5]	rs2	rsl	100	imm[4:1 11]	1100011	BLT	000000	rs2	rs1	001	rd	0110011	SLL
imm[12 10:5]	rs2	rsl	101	imm[4:1 11]	1100011	BGE	000000	rs2	rsl	010	rd	0110011	SLT
imm[12 10:5]	rs2	rsl	110	imm[4:1 11]	1100011	BLTU	000000	rs2	rs1	011	rd	0110011	SLTU
imm[12 10:5]	rs2	rsl	111	imm[4:1 11]	1100011	BGEU	000000	rs2	rsl	100	rd	0110011	XOR
imm[11:0	0.00.0000	rsl	000	rd	0000011	LB	000000	rs2	rs1	101	rd	0110011	SRL
imm[11:0		rsl	001	rd	0000011	LH	0100000	rs2	rs1	101	rd	0110011	SRA
imm 11:0		rs1	010	rd	0000011	LW	000000	rs2	rs1	110	rd	0110011	OR
			100		0000011	100000000000000000000000000000000000000	0000000	rs2	rs1	111	rd	0110011	AND
imm 11:0		rs1	100	rd		LHU	0000 pr	red succ	00000	000	00000	0001111	FENC
imm[11:0	4	rs1		rd	0000011	0.0000000000000000000000000000000000000	0000 00	0000 0000	00000	001	00000	0001111	FENC
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB	00000000	00000	00000	000	00000	1110011	ECAL
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH	00000000	00001	00000	000	00000	1110011	EBR
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW	CST		rsl	001	rd	1110011	CSRI
imm[11:0	4	rsl	000	rd	0010011	ADDI	Not in CS	110	rs1	010	rd	1110011	CSRI
imm[11:0		rs1	010	rd	0010011	SLTI	/MO11		rsl	011	rd	1110011	CSRI
imm[11:0		rsl	011	rd	0010011	SLTIU	U		zimm	101	rd	1110011	CSRI
imm[11:0	0]	rsl	100	rd	0010011	XORI	CST		zimm	110	rd	1110011	CSRI
imm[11:0	0]	rsl	110	rd	0010011	ORI				111		1110011	CSRI
imm[11:0	0]	rs1	111	rd	0010011	ANDI	CST		zimm	111	rd	1110011	CASIG
21232125232523		-	41417		7341 T 1241 T 1	OF TY	·		·	·		· · · · · · · · · · · · · · · · · · ·	

- Read-only memory (ROM)
 - Similar to RAM, given address, the contents are accessed
 - Use 11 bits as address
 - Can be reprogrammed by replacing the stored value (add instructions)

Control Block Design

ROM Controller Implementation

Extra Consideration for Expansion

		5	3	5	7	
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-type
7	5					

Assembly: sw/sh/sb rs2, imm(rs1)

imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW

SB = $\overline{i[14]}$ $\overline{i[13]}$ $\overline{i[12]}$ $\overline{i[6]}$ $\overline{i[5]}$ $\overline{i[4]}$ $\overline{i[3]}$ $\overline{i[2]}$ $\overline{i[1]}$ $\overline{i[0]}$

SH = $\overline{i[14]}$ $\overline{i[13]}$ $\overline{i[12]}$ $\overline{i[6]}$ $\overline{i[5]}$ $\overline{i[4]}$ $\overline{i[3]}$ $\overline{i[2]}$ $\overline{i[1]}$ $\overline{i[0]}$

SW = $\overline{i[14]}$ $\overline{i[13]}$ $\overline{i[12]}$ $\overline{i[6]}$ $\overline{i[5]}$ $\overline{i[4]}$ $\overline{i[3]}$ $\overline{i[2]}$ $\overline{i[1]}$ $\overline{i[0]}$

RV32I

Summary

- We have built a processor!
 - Capable of executing all RISC-V instructions in one cycle each
 - Not all units (hardware) used by all instructions
 - Critical path changes
- 5 Phases of execution
 - IF, ID, EX, MEM, WB
 - Not all instructions are active in all phases
- Controller specifies how to execute instructions
 - Implemented as ROM or logic

Bottleneck

Instru.	IF = 300 ps	ID = 100 ps	EX = 200 ps	MEM = 300 ps	WB = 100 ps	Total
add	X	X	X		X	700 ps
beq	X	X	X			600 ps
jal	X	X	X		X	700 ps
lw	X	Х	X	X	X	1000 ps
sw	X	Х	Х	X		900 ps

Great Ideas in Computer Architecture

- Abstraction (Layers of Representation / Interpretation)
- Moore's Law
- Principle of Locality/Memory Hierarchy
- Parallelism
- Performance Measurement and Improvement
- Dependability via Redundancy

"Iron Law" of Processor Performance

$$\frac{\text{Time}}{\text{Program}} = \frac{\text{Instructions}}{\text{Program}} \cdot \frac{\text{Cycles}}{\text{Instruction}} \cdot \frac{\text{Time}}{\text{Cycle}}$$

$$\frac{\text{CPI}}{\text{CPI}}$$

Instructions Program

RISC vs. CISC

- ISA-relevant
- Compiler
- What task, complexity
- Etc.

"Iron Law" of Processor Performance

$$\frac{\text{Time}}{\text{Program}} = \frac{\text{Instructions}}{\text{Program}} \cdot \frac{\text{Cycles}}{\text{Instruction}} \cdot \frac{\text{Time}}{\text{Cycle}}$$

- Microarchitecture implementation or circuit design
- ISA

Timing Diagram (Consider delays)

Instru.	IF = 300 ps	ID = 100 ps	EX = 200 ps	MEM = 300 ps	WB = 100 ps	Total
lw	X	X	X	X	X	1000 ps

Cycles (CPI)

 $\frac{\text{Time}}{\text{Cycle}}$ (Critical path; technology; TPD etc.)

Timing Diagram (Consider delays)

Instru.	IF = 300 ps	ID = 100 ps	EX = 200 ps	MEM = 300 ps	WB = 100 ps	Total
lw	X	X	X	X	X	1000 ps

 $\frac{\text{Time}}{\text{Program}} = \frac{\text{Instructions}}{\text{Program}} \cdot \frac{\text{Cycles}}{\text{Instruction}} \cdot \frac{\text{Time}}{\text{Cycle}}$

Pipeline: Improve Time/Program

- Instruction: PCR test: 1. scan QR code; 2. get the tube; 3. sample
- 5 seconds for each step:
- Single-cycle (once for all)

$$\frac{Time}{Program} = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Time}{Clock\ cycle}.$$

Multi-cycle

- Instruction: PCR test: 1. scan QR code; 2. get the tube; 3. sample
- 5 seconds for each step
- Multi-cycle or multi-step

$$\frac{Time}{Program} = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Time}{Clock\ cycle}.$$

Pipeline

PCR test in pipeline

$$\frac{Time}{Program} = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Time}{Clock\ cycle}.$$

Analogy in our CPU Design

$$\frac{Time}{Program} = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Time}{Clock\ cycle}.$$

Simplify the Model

Recall DFFs

Simplify the Model

$$\frac{\text{Time}}{\text{Program}} = \frac{\text{Instructions}}{\text{Program}} \cdot \frac{\text{Cycles}}{\text{Instruction}} \cdot \frac{\text{Time}}{\text{Cycle}}$$