

中国石油天然气管道工程有限公司 China Petroleum Pipeline Engineering Corporation

温度仪表数据表

项目号: DD19301

文件号: DDS-0101IN01-002

第 2 页 共 2 页

	1. 一般特性			2. 外壳及电气连接			3. 过程连接及安装					4. 其他要求			5. 选项及附件			6. 其		它	
	仪表名称	一体化温度变送器		气区域划分	Class1, Div2, GroupD		护管材质		不锈钢				安装套管	管 直型,整体钻孔		同种仪表总数		9 Page:1/1			
仪	型号		防护/防爆等级		IP65 / ExdbIIBT4		护管外径		Ф 6									本页仪表合计		9	
表规	检测元件	Pt100	外壳材质 电气规格/数量 连线芯数		铝合金,耐盐雾 1/2"NPT (F) 2		过程连接型式过程连接标准														
格	输出信号	4~20mA/HART																	当地地方名称		海南省澄迈县
	精度及稳定性	±0.2%																环境温度 ℃		2~41	
	表头及刻度	LCD	电源(气源)		24VDC/两线制													环境湿度%		78~85	
	说明																				
序 号	仪表位号	检测点名称	数	P&ID图号	管线(设备)				温度		密度	粘度		测量范围	套管长		量程		安装套管		备注
			量		尺寸mm	材质	7172	成份	$^{\circ}$ C	MPaG	kg/m3	mPa.s	等级	(℃)	度(mm)	双支	代码	材质	管外长度	过程连接	田仁
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	TT-01104	南部高含CO2天然气进装置温度检测	1	DWG-0101PR01-003	168x6	316L	天然气	CO2	35	1.5-3.5	24	0.01	4MPa	0~80	200	单		316L	100	焊接	CO2含量30~80%
2	TT-01112	原料气分离器天然气出口温度检测	1	DWG-0101PR01-003	168x6	316L	天然气	CO2	35	1.5-3.5	24	0.01	4MPa	0~80	200	单		316L	100		CO2含量30~80%
3	TT-01125	CO2压缩机组出口汇管温度检测	1	DWG-0101PR01-007	114x5	20#	CO2		40	2.2	24	0.01	3.5MPa	0~80	150	单		碳钢	100	焊接	
4	TT-01117	CO2冷却器后分离器CO2出口温度检测	1	DWG-0101PR01-003	114x5	Q345E	CO2		-40	2.5	24	0.01	3.5MPa	- 50~50	150	单		316L	100	焊接	
\vdash	TT-01128	CO2提升泵进口汇管温度检测	1	DWG-0101PR01-010	114x5	Q345E	液态CO2		-32	2.2		0.01	3.5MPa	-50~50	150	单		316L	100	焊接	
-		CO2储罐A~B温度检测		DWG-0101PR01-009																	CO2储罐厂家供货
-	TT-01158	分子筛脱水橇天然气进吸附塔温度检测	1	DWG-0101PR01-005	114x5	20#	天然气		40	2.2	24		3.5MPa	0~80	150	单		碳钢	100	焊接	
8	TT-01106	CO2冷却器后分离器CO2进口温度检测	1	DWG-0101PR01-008	114x5	Q345E	CO2		-40	2.5	24	0.016	3.5MPa	- 50∼50	150	单		316L	100	焊接	
			H																		
\vdash										-						-					