Pragmatics of Rust and C++: The implementation of a window manager

Max van Deurzen

June 17, 2021

Technische Universität München

Agenda

Agenda

- 1. What is *Pragmatics*?
- 2. The Common Objective
- 3. External Dependency Management
- 4. Main Event Loop
- 5. Input Bindings
- 6. Clients
- 7. Results
- 8. Discussion

Pragmatics

Definition Pragmatics

1. Syntax

Set of rules that define the *structure* and *composition* of allowable symbols into correct statements or expressions in the language

2. Semantics

The *meaning* of these syntactically valid statements or expressions

3. Pragmatics

"...[T]he third general area of language description, referring to practical aspects of how constructs and features of a language may be used to achieve various objectives."

Robert D. Cameron, 2002

1. **Syntax** (*structure*)

$$x = y * 3;$$

2. Semantics (meaning)

- X
 Location in memory
- y * 3
 Computation of a value based on an expression
- x = y * 3;
 Store result of expression evaluation in location in memory

3. **Pragmatics** (purpose)

Which objectives are assignment statements used for?

- Setting up a temporary variable used to swap the values of two variables
- Modifying some part of a compound data structure
- ...

The Common Objective

Case Study: The implementation of a window manager

- System Software
 - Low-level
 - Platform-specific
- Medium to Large-Sized
 - Increased Risk of Code Smells
 - Monolithic classes
 - Global data
 - High interdependence (Coupling)
 - ..
- Event-Driven
 - Reacts to windowing system events
 - Deterministic event dispatch

Case Study: The implementation of a window manager

- External Dependency Management
 - Package management
 - Abstracting and decoupling
- Main Event Loop
 - Windowing system events
 - Internal events
 - Event dispatch
- Input Bindings
 - Storing and retrieving callable objects
- Clients
 - Distributed, mutable state

Case Study: The implementation of **two** window managers

- Same structure
 - Built on top of the X Window System
 - Library to communicate with the X server as external dependency
- Same behavior
 - ICCCM and EWMH compliant
 - Reparenting, tiling
- Different languages
 - One implemented in C++: WMCPP
 - One implemented in Rust: WMRS

External Dependency Management

External Dependency Management

Practicalities of working with external code

- 1. Package management
 - Availability of external code
- 2. Decoupling dependencies
 - Maintainability of external code

Managing the availability of external code

- The ability to aid the programmer in assuring availability
 - Automatically download and compile source code
 - Built-in version control
 - Conflict detection
- Part of the ecosystem of a language
 - Installed with its compiler or development environment
- A must for any modern programming language

- No official package manager
- Ad hoc package management
 - Third-party package management tools
 - Conan
 - Vcpkg
 - build2
 - Custom configure and build scripts
 - Let the user manage the dependencies themselves (e.g. through their distribution's package manager)
- Example: Make script

```
CXXFLAGS := -std=c++20 -march=native -03
LDFLAGS := `pkg-config --libs x11 xrandr` -flto
SRC_FILES := $(wildcard src/*.cc)
OBJ_FILES := $(patsubst src/%.cc,obj/%.o,${SRC_FILES})
all: ${OBJ_FILES}
    g++ ${OBJ_FILES} ${LDFLAGS} -o bin/wmCPP
Obj/%.o: src/%.cc
    g++ ${CXXFLAGS} -MMD -c $< -o $@</pre>
```

- Cargo, Rust's official package manager
 - Automatically downloads and compiles dependencies
 - A Rust project is a Cargo package
 - A package is a collection of source files plus a manifest file
 - The manifest file describes the package's meta-information, dependencies, and a set of target crates
 - A crate represents a library or binary executable program

Example: Cargo.toml manifest file

```
[package]
                                        [lib]
name = "wmRS"
                                        name = "winsys"
version = 0.1.0"
                                        path = "src/winsvs/mod.rs"
edition = "2018"
                                        [[bin]]
license = "BSD3"
                                        name = "core"
default-run = "core"
                                        path = "src/core/main.rs"
description = """
                                        [[bin]]
An ICCCM & EWMH compliant X11
                                        name = "client"
                                        path = "src/client/main.rs"
reparenting, tiling window manager.
written in Rust
                                        [dependencies]
,, ,, ,,
                                        x11rb = "0.8.0"
```

Managing the maintainability of external code

- The ability to decouple own code from external code
 - Changes to own code don't affect interface with external code
 - Changes to external code only affect inerface with external code
- When external code changes:
 - Only interface with external code needs to be recompiled
- When own code changes:
 - Only own code needs to be recompiled

Decouple window manager from windowing system

- 1. Hide the connection with the windowing system behind an interface
 - Provide abstraction and encapsulation
 - Describe common behavior
 - Usage is agnostic of concrete implementation
- 2. Implement the interface for each targeted windowing system
 - Implement the interface to target the X Window System
 - Implement the interface to target Wayland
 - Implement the interface to target the *Desktop Window Manager* (Windows)
 - Implement the interface to target the Quartz Compositor (macOS)
- 3. Have the window management logic call into the interface

Decouple window manager from windowing system

- 1. Hide the connection with the windowing system behind an *interface*
 - Provide abstraction and encapsulation
 - Changes to external code only affect inerface with external code
- 2. When external code changes:
 - Only interface with external code needs to be recompiled
- 3. When own code changes:
 - Only own code needs to be recompiled

To define an interface that represents the connection with the windowing system, we use a Rust *trait*

- Traits are zero-overhead collections of methods that are:
 - Declared for *some* type Self
 - Most often used to implement shared behavior
- Traits most closely resemble the concept of interfaces from other languages
- Traits can provide a default implementation for their defined methods
- Example: wmRS's Connection trait

```
pub trait Connection {
    fn step(&self) -> Option<Event>;
    fn move_window(&self, window: Window, pos: Pos);
    fn resize_window(&self, window: Window, dim: Dim);
    fn close_window(&self, window: Window);
    // ...
}
```

We implement the Connection trait to target a *specific* windowing system

 \bullet Example: WMRS 's Connection implementation for the X Window System

```
use x11rb::connection:
pub struct XConnection
  <'conn, Conn: connection::Connection>
  conn: &'conn Conn,
 // ...
impl<'conn, Conn: connection::Connection>
 Connection for XConnection<'conn, Conn>
  fn step(&self) -> Option<Event> { /* ... */ }
 // ...
```

Main Event Loop

Second Frame

Hello, world!

Input Bindings

Second Frame

Hello, world!

Clients

Second Frame

Hello, world!