EDA on Telecom Churn

Project Summary

Telecom churn analysis is the process of identifying customers who are likely to cancel their service or switch to a different service provider. This is an important problem for telecom companies, as churn can have a significant impact on their revenue and profitability. Orange Telecom's Churn Dataset consists of cleaned customer activity data and a label specifying whether a customer has churned. The goal of the analysis is to understand the factors that contribute to churn and develop strategies to reduce churn by targeting those factors. The first step in conducting an exploratory data analysis (EDA) for telecom churn analysis is data acquisition, which involves obtaining a representative sample of data from the telecom company including customer demographic information, usage patterns, and churn status. The next step is data cleaning, which involves removing any missing or incomplete data and ensuring that the data is in a format that can be easily analyzed. Data visualization involves using plots and charts to visualize the data and identify trends and patterns, while data summarization involves using statistical techniques to summarize the data and understand the relationships between different variables.

To reduce churn and improve customer retention, it is important to take a proactive approach. One effective strategy is to modify the International Plan so that the charges are the same as the normal plan. This will help address any potential dissatisfaction with higher charges for international usage. Communication and asking for feedback often can help to identify and address any issues that may lead to churn. Offering promotions periodically can also help to retain customers, as can focusing on customers experiencing problems in states with high churn rates. Paying attention to your best customers and ensuring they receive the support they need is also important. Regular server maintenance and addressing poor network connectivity issues can also help to reduce churn. Developing a roadmap for onboarding new customers can help to ensure a smooth onboarding process and reduce the likelihood of churn. Analyzing churn when it occurs can provide valuable insights into the factors contributing to churn, which can inform strategies for reducing churn. Finally, it is important to stay competitive by keeping up with industry trends and continuously improving the customer experience.

Through EDA of the churn dataset, it was found that the charge fields are directly related to the minute fields, the area code may not be relevant and can be excluded, customers with the International Plan tend to churn more often, customers who have had four or more customer service calls churn significantly more than other customers, customers with high day and evening minute usage tend to churn at a higher rate, and there is no clear relationship between churn and the number of calls made or received. In conclusion, to reduce churn and improve customer retention, telecom companies should focus on modifying the International Plan, being proactive with communication and asking for feedback, offering promotions, focusing on customers experiencing problems in states with high churn rates, paying attention to their best customers, and continuously improving the customer experience.

Problem Statement

Telecom churn analysis is the process of identifying customers who are likely to cancel their service or switch to a different service provider. This is an important problem for telecom companies, as churn can have a significant impact on their revenue and profitability.

GitHub Link

https://github.com/rahulinchal/Telecom-Churn (https://github.com/rahulinchal/Telecom-Churn)

Importing Important Packages

import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
%matplotlib inline

#filtering out the warnings
import warnings
warnings.filterwarnings('ignore')

Loading the dataset

In [2]: ▶

data = pd.read_csv("https://raw.githubusercontent.com/rahulinchal/Telecom-Churn/main/Tel
data.head()

Out[2]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

Making a copy of data

In [3]:

df = data.copy()
df.head()

Out[3]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

Data Description

Name	Description	Value Type	Statistical Type
State	State abbreviation (like KS = Kansas)	String	Categorical
Account length	How long the client has been with the company	Numerical	Quantitative
Area code	Phone number prefix	Numerical	Categorical
International plan	International plan (on/off)	String, "Yes"/"No"	Categorical/Binary
Voice mail plan	Voicemail (on/off)	String, "Yes"/"No"	Categorical/Binary
Number vmail messages	Number of voicemail messages	Numerical	Quantitative
Total day minutes	Total duration of daytime calls	Numerical	Quantitative
Total day calls	Total number of daytime calls	Numerical	Quantitative
Total day charge	Total charge for daytime services	Numerical	Quantitative
Total eve minutes	Total duration of evening calls	Numerical	Quantitative
Total eve calls	Total number of evening calls	Numerical	Quantitative
Total eve charge	Total charge for evening services	Numerical	Quantitative
Total night minutes	Total duration of nighttime calls	Numerical	Quantitative
Total night calls	Total number of nighttime calls	Numerical	Quantitative
Total night charge	Total charge for nighttime services	Numerical	Quantitative
Total intl minutes	Total duration of international calls	Numerical	Quantitative
Total intl calls	Total number of international calls	Numerical	Quantitative
Total intl charge	Total charge for international calls	Numerical	Quantitative
Customer service calls	Number of calls to customer service	Numerical	Categorical/Ordinal

Finding the null values

```
H
In [4]:
df.isnull().sum()
Out[4]:
State
                           0
                           0
Account length
Area code
International plan
Voice mail plan
                           0
Number vmail messages
Total day minutes
                           0
Total day calls
                           0
                           0
Total day charge
Total eve minutes
Total eve calls
                           0
Total eve charge
                           0
Total night minutes
Total night calls
                           0
Total night charge
                           0
Total intl minutes
                           0
Total intl calls
Total intl charge
                           0
Customer service calls
                           0
Churn
                           0
dtype: int64
```

There are no null values

Finding the duplcates

```
In [5]:

df.duplicated().value_counts()

Out[5]:
False 3333
```

There are no duplicates

dtype: int64

(3333, 20)

```
In [6]:

df.shape

Out[6]:
```

The data is clean and has no duplicate values.

```
In [7]:
# Getting the Info
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3333 entries, 0 to 3332
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	State	3333 non-null	object
1	Account length	3333 non-null	int64
2	Area code	3333 non-null	int64
3	International plan	3333 non-null	object
4	Voice mail plan	3333 non-null	object
5	•		int64
	Number vmail messages	3333 non-null	
6	Total day minutes	3333 non-null	float64
7	Total day calls	3333 non-null	int64
8	Total day charge	3333 non-null	float64
9	Total eve minutes	3333 non-null	float64
10	Total eve calls	3333 non-null	int64
11	Total eve charge	3333 non-null	float64
12	Total night minutes	3333 non-null	float64
13	Total night calls	3333 non-null	int64
14	Total night charge	3333 non-null	float64
15	Total intl minutes	3333 non-null	float64
16	Total intl calls	3333 non-null	int64
17	Total intl charge	3333 non-null	float64
18	Customer service calls	3333 non-null	int64
19	Churn	3333 non-null	bool
	1 7 (4) 67 (4)		

dtypes: bool(1), float64(8), int64(8), object(3)

memory usage: 498.1+ KB

Heatmap for correlation

In [8]: ▶

```
plt.figure(figsize=(15,10))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.heatmap(np.round(df.corr(),2),annot=True, cmap=cmap)
```

Out[8]:

<AxesSubplot:>

Observation

From the above correlation heatmap, we can see total day charge & total day minute, total evening charge & total evening minute, total night charge & total night minute are positively highly correlated with a value of 1.

Customer service call is positively correlated only with area code and negative correlated with rest variables.

Rest all correlation can be depicted from the above chart.

Data Visualization

1. Checking for how many customer leave the company (Churn).

```
In [9]:
                                                                                       H
df['Churn'].value_counts()
Out[9]:
False
         2850
True
          483
Name: Churn, dtype: int64
In [10]:
                                                                                       M
# Visualizing using pie chart.
textprops = {"fontsize":15} # Font size of text in pie chart
plt.figure(figsize = (9,9)) # fixing pie chart size
df['Churn'].value_counts().plot(kind = 'pie', autopct = '%1.1f%%', shadow = True, textpr
plt.title("Overall Churn Rate", fontsize = 15)
plt.show()
```

Overall Churn Rate

Observation

The retention value is only 14.4% that counts to only 483 out of 3333 people.

2. Checking for churn rate area code wise

```
In [11]:

df.head()
```

Out[11]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	_
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

```
In [12]:

# Checking for unique values
df['Area code'].unique()
```

Out[12]:

array([415, 408, 510], dtype=int64)

```
In [13]:

# Grouping the churn with area code
area_churn = df.groupby(['Area code'])['Churn'].value_counts().unstack()
```

Out[13]:

area churn

Churn	False	True
Area code		
408	716	122
415	1419	236
510	715	125

In [14]: ▶

```
# Visulaizing the area wise churn
area_churn.plot(kind = 'bar', figsize = (10,6), fontsize = 15)
plt.xticks(rotation = 360)
plt.xlabel("Area code", fontsize = 20)
plt.title("Area code wise churn", fontsize = 20)
```

Out[14]:

Text(0.5, 1.0, 'Area code wise churn')

Observation

Area code 415 has the highest Churn rate comapred to other areas.

3. Checking for churn rate State wise

```
In [15]:

df.head()
```

Out[15]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	day	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

```
In [16]:
```

```
df['State'].unique()
```

Out[16]:

```
array(['KS', 'OH', 'NJ', 'OK', 'AL', 'MA', 'MO', 'LA', 'WV', 'IN', 'RI', 'IA', 'MT', 'NY', 'ID', 'VT', 'VA', 'TX', 'FL', 'CO', 'AZ', 'SC', 'NE', 'WY', 'HI', 'IL', 'NH', 'GA', 'AK', 'MD', 'AR', 'WI', 'OR', 'MI', 'DE', 'UT', 'CA', 'MN', 'SD', 'NC', 'WA', 'NM', 'NV', 'DC', 'KY', 'ME', 'MS', 'TN', 'PA', 'CT', 'ND'], dtype=object)
```

```
In [17]: ▶
```

```
state_churn = df.groupby(['State'])['Churn'].value_counts().unstack()
state_churn.head()
```

Out[17]:

Churn False True

State		
AK	49	3
AL	72	8
AR	44	11
ΑZ	60	4
CA	25	9

In [18]:

```
state_churn.plot(kind = 'bar', figsize = (20,6))
plt.show()
```


4. International Plans

In [19]:

df.head()

Out[19]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	day	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

In [20]: ▶

int_plan = df['International plan'].value_counts()
int_plan

Out[20]:

No 3010 Yes 323

Name: International plan, dtype: int64

In [21]:

```
int_plan.plot(kind = 'pie', figsize = (8,8), fontsize = 15, autopct = '%1.1f%%')
plt.title("International Plan", fontsize = 15)
plt.show()
```

International Plan

Observation

90.3% of the people have no international plans and only 9.7% of the people have intenational plan.

5. Checking the churn on the basis of International plan

In [22]: ▶

df.head()

Out[22]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

In [23]: ▶

international_churn = df.groupby(['International plan'])['Churn'].value_counts().unstack
international_churn

Out[23]:

Churn False True

International plan

No 2664 346
Yes 186 137

In [24]: ▶

```
plot2 = international_churn.plot(kind = 'bar', figsize = (10,6), fontsize = 15)
plt.title("Churn on the basis of international plan", fontsize = 15)
plt.xlabel("International plan", fontsize = 15)
plt.xticks(rotation = 360)
plt.show()
```


Observation

Looks like the people who dont have international plan have more churn compared to those who have international plan.

6. Checking churn on the basis of Voice mail plan

In [25]: ▶

df.head()

Out[25]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

In [26]: ▶

voice_churn = df.groupby(['Voice mail plan'])['Churn'].value_counts().unstack()
voice_churn

Out[26]:

Churn False True

Voice mail plan

No 2008 403 Yes 842 80 In [27]: ▶

```
voice_churn.plot(kind = 'bar', figsize = (10,6), fontsize = 15)
plt.title("Churn on the basis of Voice mail plan", fontsize = 15)
plt.xlabel("Voice mail plan", fontsize = 15)
plt.xticks(rotation = 360)
plt.show()
```


Observation

Churn is more to the people who has no voice mail plan compared to the people who has voice mail plan.

7. Checking the churn customers who are having both International and voice mail plan

```
In [28]:

df.head()
```

Out[28]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	day	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

In [29]: ▶

```
# Getting those data who has international plan and voice mail plan
voice_and_int = df[df['International plan'] == 'Yes']
voice_and_int = voice_and_int[voice_and_int['Voice mail plan'] == 'Yes']

# Getting those data who has international plan but no voice mail plan
voice_and_int2 = df[df['International plan'] == 'Yes']
voice_and_int2 = voice_and_int2[voice_and_int2['Voice mail plan'] == 'No']

# Getting those data who dont have international plan but have voice mail plan
voice_and_int3 = df[df['International plan'] == 'No']
voice_and_int3 = voice_and_int3[voice_and_int3['Voice mail plan'] == 'Yes']

# Getting those data who dont have international plan and voice mail plan
voice_and_int4 = df[df['International plan'] == 'No']
voice_and_int4 = voice_and_int4[voice_and_int4['Voice mail plan'] == 'No']
```

In [30]:

M

```
plt.figure(figsize = (15,10))
# Checking the churn customers who are having both International and voice mail plan
plt.subplot(2,2,1)
sns.barplot(data = voice_and_int, x = voice_and_int['Churn'].value_counts().keys(),
           y = voice_and_int['Churn'].value_counts())
plt.title("International plan = Yes and Voice mail plan = Yes", fontsize = 15)
# Checking the churn customers who are having International plan but not the voice mail
plt.subplot(2,2,2)
sns.barplot(data = voice_and_int2, x = voice_and_int2['Churn'].value_counts().keys(),
           y = voice_and_int2['Churn'].value_counts())
plt.title("International plan = Yes and Voice mail plan = No", fontsize = 15)
# Checking the churn customers who are not having International plan but have voice mail
plt.subplot(2,2,3)
sns.barplot(data = voice and int3, x = voice and int3['Churn'].value counts().keys(),
           y = voice_and_int3['Churn'].value_counts())
plt.title("International plan = No and Voice mail plan = Yes", fontsize = 15)
# Checking the churn customers who are neither having International plan nor have voice
plt.subplot(2,2,4)
sns.barplot(data = voice_and_int4, x = voice_and_int4['Churn'].value_counts().keys(),
           y = voice_and_int4['Churn'].value_counts())
plt.title("International plan = No and Voice mail plan = No", fontsize = 15)
plt.show()
```


Observation

The churn is most to the people who dont have international plan but have voice mail plan The ch

8. Column wise Histogram and Box Plot (Univariate)

In [31]:

```
# Visualizing code of histogram plot & boxplot for each columns to know the data distrib
for col in df.describe().columns:
    fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(18,6))
    sns.histplot(df[col], ax = axes[0],kde = True)
    sns.boxplot(df[col], ax = axes[1],orient='h',showmeans=True,color='orange')
    fig.suptitle("Distribution plot of "+ col, fontsize = 15)
    plt.show()
```

Distribution plot of Account length

Distribution plot of Area code

Distribution plot of Number vmail messages

Distribution plot of Total day minutes

Distribution plot of Total day calls

Distribution plot of Total day charge

Distribution plot of Total eve minutes

Distribution plot of Total eve calls

Distribution plot of Total eve charge

Distribution plot of Total night minutes

Distribution plot of Total night calls

Distribution plot of Total night charge

Distribution plot of Total intl minutes

Distribution plot of Total intl calls

Distribution plot of Total intl charge

Out[32]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	day	Total day calls	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

In [33]:

df['Churn'].value_counts()

Out[33]:

False 2850 True 483

Name: Churn, dtype: int64

In [34]: ▶

 $to_state_churn = ((df.groupby(['State'])['Churn'].mean()*100).sort_values(ascending = Fato_state_churn)$

Out[34]:

	State	Churn
0	NJ	26.470588
1	CA	26.470588
2	TX	25.000000
3	MD	24.285714
4	SC	23.333333
5	MI	21.917808
6	MS	21.538462
7	NV	21.212121
8	WA	21.212121
9	ME	20.967742

In [35]: ▶

```
plt.figure(figsize = (10,6))
sns.barplot(data = to_state_churn, x = to_state_churn['State'], y = to_state_churn['Chur
plt.title(" State with most churn percentage", fontsize = 20)
plt.show()
```


10. State vs Average bottom true churn percentage

In [36]: ▶

 $bottom_state_churn = ((df.groupby(['State'])['Churn'].mean()*100).sort_values(ascending bottom_state_churn$

Out[36]:

	State	Churn
0	HI	5.660377
1	AK	5.769231
2	AZ	6.250000
3	VA	6.493506
4	IA	6.818182
5	LA	7.843137
6	NE	8.196721
7	IL	8.620690
8	WI	8.974359
9	RI	9.230769

In [37]: ▶

```
plt.figure(figsize = (10,6))
sns.barplot(data = bottom_state_churn, x = bottom_state_churn['State'], y = bottom_state
plt.title(" State with least churn percentage", fontsize = 20)
plt.show()
```


Observation

There are 51 states having different churn rates.

CA, NJ, TX, MD, SC, MI, MS, NV, WA, ME are the ones who have higher churn rate more than 20% which is more than 50% of average churn rate.

And HI, AK, AZ, VA, IA, LA, NE, IL, WI, RI are the ones who have lower churn rate which is less than 10%.

11. One Digit Account Length

In [38]:

df.head()

Out[38]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	day	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

In [39]:

```
one_digit = df[df['Account length'] <= 9]
one_digit.head()</pre>
```

Out[39]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes
158	МО	6	510	No	No	0	183.6	117	31.21	256.7
671	СТ	3	415	No	Yes	36	118.1	117	20.08	221.5
923	MS	1	415	No	No	0	144.8	107	24.62	112.5
960	AR	5	415	No	No	0	199.2	106	33.86	187.3
964	NY	9	408	No	Yes	31	193.8	130	32.95	202.6
4										•

In [40]:

one_digit['Churn'].value_counts()

Out[40]:

False 22 True 2

Name: Churn, dtype: int64

In [41]: ▶

one_digit['Churn'].value_counts().plot(kind = 'pie', figsize = (8,8), autopct = '%1.1f%%
plt.title('One Digit Account Length churn rate', fontsize=18)

Out[41]:

Text(0.5, 1.0, 'One Digit Account Length churn rate')

One Digit Account Length churn rate

Observation

Account length is the noumber of days the customers are active. So for the new customers those churning rate is too low around 8.3% in percentage. They might be just using the telecom service to experience the benefits and they might not be satisfied with the service provided and churned.

12. Two Digit Account Length

In [42]: ▶

two_digit = df[(df['Account length'] > 9) & (df['Account length'] <= 99)]
two_digit.head()</pre>

Out[42]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3
10	IN	65	415	No	No	0	129.1	137	21.95	228.5
11	RI	74	415	No	No	0	187.7	127	31.91	163.4
13	MT	95	510	No	No	0	156.6	88	26.62	247.6
4										•

In [43]: ▶

two_digit['Churn'].value_counts()

Out[43]:

False 1378 True 225

Name: Churn, dtype: int64

In [44]: ▶

two_digit['Churn'].value_counts().plot(kind = 'pie', figsize = (8,8), autopct = '%1.1f%
plt.title('Two Digit Account Length churn rate', fontsize=18)

Out[44]:

Text(0.5, 1.0, 'Two Digit Account Length churn rate')

Two Digit Account Length churn rate

Observation

Those people whose account length are between 10 to 99 are having a churning rate of 14%. The customers below 50 might be treated as new customers and more than 55 and less than 99 they might not be geting benefits from plan taken.

13. Three Digit Account Length

In [45]: ▶

```
three_digit = df[(df['Account length'] > 99)]
three_digit.head()
```

Out[45]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
5	AL	118	510	Yes	No	0	223.4	98	37.98	220.6	
6	MA	121	510	No	Yes	24	218.2	88	37.09	348.5	
4)	

In [46]: ▶

three_digit['Churn'].value_counts()

Out[46]:

False 1450 True 256

Name: Churn, dtype: int64

In [47]: ▶

three_digit['Churn'].value_counts().plot(kind = 'pie', figsize = (8,8), autopct = '%1.1f
plt.title('Three Digit Account Length churn rate', fontsize=18)

Out[47]:

Text(0.5, 1.0, 'Three Digit Account Length churn rate')

Three Digit Account Length churn rate

Observation

Those people whose account length is more than 100 are like old customers and they might be churning due to no additional offers given to them like power plus plan or other benefits.

14. Box Plot for Account Length attribute

```
In [48]:

plt.figure(figsize=(10,8))
sns.boxplot(data = df, x ='Churn', y = 'Account length')
plt.title('Account Length Boxplot with Churn', fontsize=18)
```

Out[48]:

Text(0.5, 1.0, 'Account Length Boxplot with Churn')

Observation

Account length is the no. of days the customers are active. So for the new customers those churning rate is too low around 8.3% in percentage and number is 2. They might be just using the telecom service to experience the benefits and they might not be satisfied with the service provided and churned.

Those people whose account length are between 10 to 99 are having a churning rate of 14%. The customers below 50 might be treated as new customers and more than 55 and less than 99 they might not be geting benefits from plan taken.

Those people whose account length is more than 100 are like old customers and they might be churning due to no additional offers given to them like power plus plan or other benefits.

So, yes Account Length is also depicting a clear view of churing reasons and insights.

15. Voice Mail

In [49]: ▶

df.head()

Out[49]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4)	

In [50]: ▶

```
voice_mail_plan = df['Voice mail plan'].value_counts()
voice_mail_plan
```

Out[50]:

No 2411 Yes 922

Name: Voice mail plan, dtype: int64

In [51]:

```
voice_mail_plan.plot(kind = 'pie', autopct = '%1.1f%%', figsize = (8,8), fontsize = 15)
plt.title('Distribution of Voice mail plan', fontsize = 15)
plt.show()
```

Distribution of Voice mail plan

16. Voice mail plan with respect to churn

```
In [52]:

voice_churn = ((df.groupby(['Voice mail plan'])['Churn'].mean())*100)
voice_churn
```

Out[52]:

Voice mail plan No 16.715056 Yes 8.676790

Name: Churn, dtype: float64

In [53]: ▶

```
voice_churn.plot(kind = 'bar', figsize = (10,6), fontsize = 15, color = ['b','g'])
plt.xticks(rotation = 360)
plt.title("Percentage of churn on the basis of voice mail plan")
plt.show()
```


Observation

2411 dont have a voice mail plan.

922 have a voice mail plan.

Among those who dont have a voice mail 16.7 % people churn.

Whereas among those who have a voice mail plan only 8.7 % people churn.

Customers with the Voice Mail Plan tend to churn less frequently

17. Area code with respect to churn

```
In [54]:

df.head()
```

Out[54]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

```
In [55]:

df['Area code'].value_counts()
```

Out[55]:

415 1655 510 840 408 838

Name: Area code, dtype: int64

In [56]:

```
area_churn = ((df.groupby(['Area code'])['Churn'].mean())*100).reset_index()
area_churn
```

Out[56]:

	Area code	Churn
0	408	14.558473
1	415	14.259819
2	510	14.880952

```
In [57]: ▶
```

```
plt.figure(figsize = (10,6))
sns.barplot(data = area_churn, x = 'Area code', y = 'Churn')
plt.title('Area Code wise Churn percentage', fontsize = 15)
plt.ylabel('Churn Percentage', fontsize = 15)
plt.xlabel("Area Code", fontsize = 15)
plt.show()
```


Observation

All Area Code have around 14% Churn rate. So, Area Code doesn't matter.

18. Overall Calls in day

In [58]: ▶

df.head()

Out[58]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	•
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

In [59]: ▶

overall_calls_day = df.groupby(['Churn'])['Total day minutes', 'Total day calls', 'Total
overall_calls_day

Out[59]:

Total day minutes Total day calls Total day charge

^	L			-	
u	п	u	r	п	
_					

False	175.175754	100.283158	29.780421
True	206.914079	101.335404	35.175921

In [60]: ▶

```
plt.figure(figsize = (10,6))
overall_calls_day.plot(kind = 'bar', figsize = (10,6))
plt.title('Mean of overall calls in a day', fontsize = 15)
plt.xticks(rotation = 360)
plt.ylabel('Mean', fontsize = 15)
plt.xlabel("Churn", fontsize = 15)
plt.show()
```

<Figure size 720x432 with 0 Axes>

19. Overall Calls in evening

```
In [61]:

df.head()
```

Out[61]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	day	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

In [62]: ▶

```
overall_calls_eve = df.groupby(['Churn'])['Total eve minutes', 'Total eve calls', 'Total
overall_calls_eve
```

Out[62]:

Total eve minutes Total eve calls Total eve charge

Churn

False	199.043298	100.038596	16.918909
True	212.410145	100.561077	18.054969

In [63]: ▶

```
plt.figure(figsize = (10,6))
overall_calls_eve.plot(kind = 'bar', figsize = (10,6))
plt.title('Mean of overall calls in the evening', fontsize = 15)
plt.xticks(rotation = 360)
plt.ylabel('Mean', fontsize = 15)
plt.xlabel("Churn", fontsize = 15)
plt.show()
```

<Figure size 720x432 with 0 Axes>

20. Overall Calls in night

In [64]: ▶

df.head()

Out[64]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

In [65]: ▶

overall_calls_night = df.groupby(['Churn'])['Total night minutes', 'Total night calls',
overall_calls_night

Out[65]:

Total night minutes Total night calls Total night charge

^	L			-	
u	п	u	r	п	
_					

False	200.133193	100.058246	9.006074
True	205.231677	100.399586	9.235528

In [66]: ▶

```
plt.figure(figsize = (10,6))
overall_calls_night.plot(kind = 'bar', figsize = (10,6))
plt.title('Mean of overall calls in the night', fontsize = 15)
plt.xticks(rotation = 360)
plt.ylabel('Mean', fontsize = 15)
plt.xlabel("Churn", fontsize = 15)
plt.show()
```

<Figure size 720x432 with 0 Axes>

21. Average calls of total day calls, evening calls & night calls on basis of churn

```
In [67]:

df.head()
```

Out[67]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	day	Total day calls	Total day charge	Total eve minutes	-
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	•

In [68]:

```
avg_calls = df.groupby(['Churn'])['Total day calls', 'Total eve calls', 'Total night cal
avg_calls
```

Out[68]:

Churn	False	True
Total day calls	100.283158	101.335404
Total eve calls	100.038596	100.561077
Total night calls	100.058246	100.399586

In [69]: ▶

```
plt.figure(figsize = (10,6))
avg_calls.plot(kind = 'bar', figsize = (10,6))
plt.title('Average calls of total day calls, evening calls & night calls on basis of chu
plt.xticks(rotation = 360)
plt.ylabel('Mean', fontsize = 15)
plt.xlabel("Calls", fontsize = 15)
plt.show()
```

<Figure size 720x432 with 0 Axes>

22. Average calls of total day minutes, evening minutes & night minutes on basis of churn

In [70]:

df.head()

Out[70]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	-
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	_
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

In [71]:

avg_minutes = df.groupby(['Churn'])['Total day minutes', 'Total eve minutes', 'Total nig
avg_minutes

Out[71]:

Churn	False	True
Total day minutes	175.175754	206.914079
Total eve minutes	199.043298	212.410145
Total night minutes	200.133193	205.231677

In [72]: ▶

```
plt.figure(figsize = (10,6))
avg_minutes.plot(kind = 'bar', figsize = (10,6))
plt.title('Average calls of total day minutes, evening minutes & night minutes on basis
plt.xticks(rotation = 360)
plt.ylabel('Mean', fontsize = 15)
plt.xlabel("Minutes", fontsize = 15)
plt.show()
```

<Figure size 720x432 with 0 Axes>

23. Average calls of total day Charges, evening Charges & night Charges on basis of churn

```
In [73]:

df.head()
```

Out[73]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										•	

In [74]: ▶

avg_charges = df.groupby(['Churn'])['Total day charge', 'Total eve charge', 'Total night
avg_charges

Out[74]:

Churn	False	True
Total day charge	29.780421	35.175921
Total eve charge	16.918909	18.054969
Total night charge	9.006074	9.235528

In [75]: ▶

```
plt.figure(figsize = (10,6))
avg_charges.plot(kind = 'bar', figsize = (10,6))
plt.title('Average calls of total day Charges, evening Charges & night Charges on basis
plt.xticks(rotation = 360)
plt.ylabel('Mean', fontsize = 15)
plt.xlabel("Charges", fontsize = 15)
plt.show()
```

<Figure size 720x432 with 0 Axes>

Average calls of total day Charges, evening Charges & night Charges on basis of churn

Observation

Churn customers speak more minutes that non-churn customers at day, evening and night. Hence they pay more charge that non-churn customers.

We can retain churn customers if we include master plan. In master plan if a customer is talking more minutes then we can charge a little less amount from him or he can get discount or additional few free minutes to talk.

This will make customers who are going to churn happy and they will not leave the company.

24. Customer Service calls

In [7	76]:	M
df.he	ead()	

Out[76]:

	State	Account length		International plan	Voice mail plan	Number vmail messages	Total day minutes	day	Total day charge	Total eve minutes	-
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	
4	OK	75	415	Yes	No	0	166.7	113	28.34	148.3	
4										>	

In [77]: ▶

customer_churn = ((df.groupby(['Customer service calls'])['Churn'].mean())*100).reset_ir
customer_churn

Out[77]:

	Customer service calls	Churn
0	0	13.199426
1	1	10.330229
2	2	11.462451
3	3	10.256410
4	4	45.783133
5	5	60.606061
6	6	63.636364
7	7	55.55556
8	8	50.000000
9	9	100.000000

```
In [78]: ▶
```

```
plt.figure(figsize = (10,6))
sns.barplot(data = customer_churn, x = customer_churn['Customer service calls'], y = cus
plt.title("Churn rate per service call", fontsize = 20)
plt.xlabel('No of cust service call', fontsize = 15)
plt.ylabel('Percentage', fontsize = 15)
plt.show()
```


Observation

The service calls of customers varies from 0 to 9.

Those customers who make more service calls they have a high probability of leaving.

As we can see from graph, customers with more than 5, their churning rate is more.

Hence customers who make more than 5 service calls, their queries should be solved immediately and they should be given better service so that they dont leave the company.

Customers with four or more customer service calls churn more than four times as often as do the other customers

Conclusion

The telecommunications market is already well-established, and the rate of new customers is slow. As a result, companies in this industry prioritize retention and reducing customer churn. This project analyzed a churn dataset to identify the main factors contributing to churn and gain valuable insights. Through exploratory data analysis, we were able to gain insight into the churn dataset, listed below:

- 1. The four charge fields are directly related to the minute fields.
- 2. The area code may not be relevant and can be excluded.
- 3. Customers with the International Plan tend to churn more often.
- 4. Customers who have had four or more customer service calls churn significantly more than other customers.
- 5. Customers with high day and evening minute usage tend to churn at a higher rate.
- 6. There is no clear relationship between churn and the variables such as day calls, evening calls, night calls, international calls, night minutes, international minutes, account length, or voice mail messages.