Estabilidad de Sistemas de Segundo Orden

- Los sistemas con dos polos constituyen el bloque de construcción básico para la realización de sistemas de orden mayor.
- Consideremos el siguiente sistema causal

$$y(n) = -a_1 y(n-1) - a_2 y(n-2) + b_0 x(n)$$

cuya función de transferencia es,

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2}{z^2 + a_1 z + a_2}$$

El sistema tiene dos ceros en el origen y dos polos en,

$$p_{1}, p_{2} = \frac{-a_{1} \pm \sqrt{a_{1}^{2} - 4a_{2}}}{2}$$

Manipulando matemáticamente, se puede llegar a,

$$a_1 = -(p_1 + p_2)$$
 $a_2 = p_1 p_2$

El sistema es estable si $|p_1|<1$ y $|p_2|<1$. Estas condiciones están relacionadas con los valores de los coeficientes a_1 y a_2 de acuerdo con,

$$|\mathbf{a}_2| = |p_1|p_2| = |p_1||p_2| < 1$$
 $|\mathbf{a}_1| < 1 + \mathbf{a}_2$

Las anteriores condiciones definen a una región en el plano de los coeficientes (a_1, a_2) , de forma triangular :

- El sistema es estable si y sólo si el punto (a₁, a₂) se encuentra dentro del triángulo de estabilidad.
- La parábola $a_2 = \frac{a_1^2}{4}$ divide al triángulo:
 - ▶ Debajo de la parábola $(a_1^2>4a_2) \rightarrow$ Polos reales y diferentes
 - Sobre la parábola $(a_1^2=4a_2) \rightarrow$ Polos reales e iguales
 - **Encima de la parábola** $(a_1^2 < 4a_2) \rightarrow Polos complejos conjugados$

Polos reales y distintos.

 $\mathbf{p_1} \neq \mathbf{p_2}$. H(z) se puede expresar de la forma,

$$H(z) = \frac{A_1}{1 - p_1 z^{-1}} + \frac{A_2}{1 - p_2 z^{-1}} \qquad donde \ A_1 = \frac{b_0 p_1}{p_1 - p_2} \qquad A_2 = \frac{-b_0 p_2}{p_1 - p_2}$$

La respuesta al impulso unitario está dada por la diferencia entre dos exponenciales,

$$h(n) = \frac{b_0}{p_1 - p_2} (p_1^{n+1} - p_2^{n+1}) u(n)$$

Gráfica de h(n) con $p_1=0.5$ y $p_2=0.75$

Polos reales e iguales.

 $\mathbf{p}_1 = \mathbf{p}_2 = \mathbf{p} = -\mathbf{a}_1/2$. H(z) se puede expresar de la forma,

$$H(z) = \frac{b_0}{(1 - pz^{-1})^2}$$

La respuesta al impulso unitario está dada por el producto de una rampa y una exponencial decreciente,

$$h(n) = b_0(n+1)p^n u(n)$$

Gráfica de h(n) con p=3/4

Polos complejos conjugados.

 $\mathbf{p}_1 = r \mathbf{e}^{\mathbf{j}\mathbf{w}}, \mathbf{p}_2 = r \mathbf{e}^{-\mathbf{j}\mathbf{w}}$. H(z) se puede expresar de la forma,

$$H(z) = \frac{A}{1 - p_1 z^{-1}} + \frac{A^*}{1 - p^* z^{-1}} = \frac{A}{1 - r e^{jw_0} z^{-1}} + \frac{A^*}{1 - r e^{-jw_0} z^{-1}} \qquad 0 < w_0 < \pi$$

Los parámetros a_1 y a_2 están relacionados con r y w de la forma,

$$a_1 = -2 r \cos w_0$$
 $a_2 = r^2$

La respuesta al escalón unitario presenta un comportamiento sinusoidal con envolvente exponencial decreciente cuando r < 1. w_0 determina la frecuencia de oscilación. La distancia r de los polos al origen determina la velocidad de decrecimiento.

$$h(n) = \frac{b_0 r^n}{senw_0} sen[(n+1)w_0]u(n)$$

$$0.0.0.1 \\ 0.0.0.2 \\ 0.0.3 \\ 0.0.4 \\ 0.0.4 \\ 0.0.6 \\ 0.0.8 \\ 0.$$

Correlación de Señales Discretas

Introducción

- Poperación matemática, muy parecida a la convolución, realizada entre dos secuencias.
- El objetivo de la correlación es medir el *parecido* que existe entre dos señales.
- La correlación de señales se aplica con frecuencia en distintas áreas de la ingeniería y la ciencia. Por ejemplo, radar, sonar, comunicaciones digitales, geología, ...
- **Ejemplo 1**: Aplicación radar/ sonar
 - Sea x(n) las muestras de una señal emitida y y(n) las muestras de la señal recibida.
 - Si existe un blanco en el espacio explorado por el radar/sonar, la señal recibida y(n) es una versión retardada de x(n), atenuada por el blanco y con ruido aditivo w(n)

$$y(n) = \alpha x(n-D) + w(n)$$

donde α es el factor de atenuación y D es el retardo de ida y vuelta.

- ightharpoonup El *problema* consiste en determinar a partir de las secuencias x(n), y(n):
 - » a) Si existe un blanco.
 - » b) El retardo de tiempo D y la distancia al blanco.
- La comparación visual es prácticamente imposible debido al ruido. La correlación proporciona un método para extraer la información solicitada.

- **Ejemplo 2.** Comunicaciones digitales.
 - Sea x_0 (n) y x_I (n) las secuencias definidas para $0 \le n \le L-1$, que representan el "0" lógico y el "1" lógico. L es un entero que indica el número de muestras en cada secuencia.
 - La señal recibida por el receptor puede representarse como:

$$y(n) = x_i(n) + w(n)$$
 $i = 0,1$ $0 \le n \le L - 1$

donde w (n) es el ruido aditivo y otras interferncias propias de los sistemas de comunicación.

- El problema consiste en determinar si la señal contenida en y(n) es $x_0(n)$ ó $x_1(n)$. El receptor conoce las dos muestras para el "0" y para el "1" y debe compararlas con la señal recibida para determinar a cuál de las dos se asemeja más. Esta comparación se realiza mediante la correlación.
- **♦** Correlación Cruzada (señales de energía)
 - La *correlación cruzada* de dos secuencias reales de energía finitas x(n) e y(n) se define como la secuencia :

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
 δ $r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n+l)y(n)$ $l = 0, \pm 1, \pm 2,...$

El índice *l* es el parámetro de desplazamiento o retardo en el tiempo, y los subíndices xy indican las señales que han sido correlacionadas. El orden indica cual secuecia ha sido retardada con respecto a la otra.

Si se invierten los papeles de x(n) e y(n), también se invierte el orden de los subíndices en la definición de la correlación:

$$r_{yx}(l) = \sum_{n=-\infty}^{\infty} y(n)x(n-l)$$
 δ $r_{yx}(l) = \sum_{n=-\infty}^{\infty} y(n+l)x(n)$ $l = 0, \pm 1, \pm 2,...$

Al comparar las expresiones para $r_{xy}(l)$ y $r_{yx}(l)$ se puede concluir que,

$$r_{xy}(l) = r_{yx}(-l)$$

por lo tanto, $r_{xy}(l)$ es simplemente la versión reflejada de $r_{yx}(l)$ respecto a l=0.

- Lo anterior significa que $r_{xy}(l)$ y $r_{yx}(l)$ proporcionan la misma información con respecto a la similitud entre x(n) e y(n).
- **Ejemplo.** Determine la correlación cruzada de las secuencias,

$$x(n) = \{...,0,0,2,-1,3,7,\underline{1},2,-3,0,0,...\}$$
 $y(n) = \{...,0,0,1,-1,2,-2,\underline{4},1,-2,5,0,0,...\}$

Solución. Aplicando la definición,

$$r_{xy}(l) = \{10, -9, 19, 36, -14, 33, 0, 7, 13, -18, 16, -7, 5, -3\}$$

- **♦** Auto Correlación (señales de energía)
 - La Auto Correlación se define como la secuencia obtenida al aplicar la correlación cruzada a una misma seccuencia x(n):

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n)x(n-l)$$
 \acute{o} $r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n+l)x(n)$ $l = 0, \pm 1, \pm 2,...$

El índice *l* es el parámetro de desplazamiento o retardo en el tiempo, y los subíndices xy indican las señales que han sido correlacionadas. El orden indica cuál secuencia ha sido retardada respecto a la otra.

Propiedades

Para desarrollar algunas de las propiedades más importantes de la correlación se analizan dos secuencias de energía finita x(n) e y(n) que se combinan linealmente para obtener:

$$ax(n)+by(n-l)$$

donde a y b son constantes arbitrarias y l es un desplazamiento en el tiempo.

La energía de la señal combinada es:

$$\sum_{n=-\infty}^{\infty} \left[ax(n) + by(n-l) \right]^2 = a^2 \sum_{n=-\infty}^{\infty} x^2(n) + b^2 \sum_{n=-\infty}^{\infty} y^2(n-l) + 2ab \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
$$= a^2 r_{xx}(0) + b^2 r_{yy}(0) + 2ab r_{xy}(l)$$

Suponiendo que $b\neq 0$ y dividiendo la expresión anterior por b^2 ,

$$r_{xx}(0)\left(\frac{a}{b}\right)^2 + 2\left(\frac{a}{b}\right)r_{xy}(l) + r_{yy}(0) \ge 0$$

Considerándola una ecuación cuadrática de coeficientes r() y dado que la expresión de **energía** anterior es siempre no negativa, **el discriminante debe ser no positivo**, es decir,

$$4[r_{xy}^{2}(l) - r_{xx}(0)r_{yy}(0)] \le 0$$

Por lo tanto, la cross-correlación verifica que:

$$|r_{xy}(l)| \le \sqrt{r_{xx}(0)r_{yy}(0)} = \sqrt{E_x E_y}$$

Y la auto-correlación, que:

$$\left| r_{xx}(l) \right| \le r_{xx}(0) = E_x$$

- De lo anterior, se **concluye** que:
 - La autocorrelación alcanza su valor máximo para el retardo cero,
 - Para la *correlación cruzada* este valor es una **cota superior** de sus valores posibles.
 - Se puede apreciar también que en el cálculo de la correlación, el *escalado* carece de importancia, por lo que en la práctica es conveniente *normalizar* las secuencias de correlación en el rango [-1 1]:

$$\rho r_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} \qquad \rho r_{xy}(l) = \frac{r_{xy}(l)}{\sqrt{r_{xx}(0)r_{yy}(0)}}$$

Puesto que la correlación satisface la propiedad,

$$r_{xy}(l) = r_{yx}(-l)$$
 y $r_{xx}(l) = r_{xx}(-l)$

se deduce que la **autocorrelación** es una *función par*, por lo que *es* suficiente calcular r_{xx} (l) para $l \ge 0$.

Ejemplo. Calcular la autocorrelación de la señal

$$x(n) = a^n u(n), \qquad 0 < a < 1$$

Solución. Dado que x(n) es de duración infinita, su autocorrelación también es de duración infinita. Se distinguen dos casos:

$$l \ge 0$$

$$r_{xx}(l) = \sum_{n=0}^{\infty} x(n)x(n-l) = \sum_{n=0}^{\infty} a^n a^{n-l} = a^{-l} \sum_{n=0}^{\infty} (a^2)^n \Rightarrow r_{xx}(l) = \frac{1}{1-a^2} a^l$$

Recordar que:
$$\sum_{k=l}^{\infty} A^k = \sum_{k=0}^{\infty} A^k - \sum_{k=0}^{l-1} A^k$$
 donde, $\sum_{k=0}^{l-1} A^k = \frac{1-A^l}{1-A}$, $\sum_{k=0}^{\infty} A^k = \frac{1}{1-A}$ $\forall |A| < 1$

l < 0

$$r_{xx}(l) = \sum_{n=0}^{\infty} x(n)x(n-l) = a^{-l}\sum_{n=0}^{\infty} (a^2)^n \implies r_{xx}(l) = \frac{1}{1-a^2}a^{-l}$$

Puesto que *l* es negativo, $a^{-l} = a^{|l|}$, las dos expresiones se pueden combinar:

$$r_{xx}(l) = \frac{1}{1-a^2} a^{|l|}$$
 , $\rho_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} = a^{|l|}$, $-\infty < l < \infty$

Cálculo de la autocorrelación de x(n)=a²

Las similitudes entre el cálculo de la *cross-correlación* y la *convolución* de dos secuencias son evidentes. En efecto, la convolución de x(n) con y(-n) es igual a la correlación cruzada $r_{xy}(l)$; esto es,

$$r_{xy}(l) = x(l) * y(-l)$$

En caso que y(n)=x(n), se obtiene la *auto-correlación* como,

$$r_{xx}(l) = x(l) * x(-l)$$

♦ Correlación de Señales de Potencia Periódicas

Sean x(n) e y(n) dos **señales de potencia.** Su correlación cruzada y autocorrelación se definen como,

$$r_{xy}(l) = \lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} x(n) y(n - l) \quad y \quad r_{xx}(l) = \lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} x(n) x(n - l)$$

Si x(n) e y(n) son dos secuencias **periódicas**, ambas con periodo **N**, los promedios sobre un *intervalo infinito* son iguales a los promedios sobre un *periodo*, de manera que la expresión anterior se reduce a,

$$r_{xy}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) y(n-l) \quad y \quad r_{xx}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-l)$$

- Por consiguiente, $r_{xy}(l)$ y $r_{xx}(l)$ son secuencias periódicas con periodo N. El factor 1/N puede considerarse un factor de escala.
- Aplicación Práctica. La correlación se emplea para determinar periodicidades en señales físicas corrompidas por interferencias aleatorias.
 - Considérese la secuencia y(n)=x(n)+w(n), donde x(n) es una secuencia periódica de periodo desconocido N y w(n) representa una interferencia aditiva aleatoria. Supóngase que se observan M muestras de y(n), donde $0 \le n \le M-1$ y M >> N. Por razones prácticas se supone que y(n)=0 para n < 0 y $n \ge M$.

Con las condiciones anteriores, la autocorrelación de y(n), considerando el factor de normalización 1/M, es

$$\begin{split} r_{yy}(l) &= \frac{1}{M} \sum_{n=0}^{M-1} y(n) y(n-l) = \frac{1}{M} \sum_{n=0}^{M-1} \left[x(n) + w(n) \right] \left[x(n-l) + w(n-l) \right] \\ &= \frac{1}{M} \sum_{n=0}^{M-1} x(n) x(n-l) + \frac{1}{M} \sum_{n=0}^{M-1} \left[x(n) w(n-l) + w(n) x(n-l) \right] + \frac{1}{M} \sum_{n=0}^{M-1} w(n) w(n-l) \\ r_{yy}(l) &= r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l) \end{split}$$

- $r_{xx}(l)$
 - » La autocorrelación de x(n) es periódica puesto que x(n) es periódica, y presentará picos en l=0, N, 2N,...
 - » La amplitud de los picos de la autocorrelación disminuye a medida que l tiende a M. Por lo tanto hay que evitar calcular $r_{xx}(l)$ para valores l > M/2.
- $ightharpoonup r_{xw}(l) y r_{wx}(l)$
 - » La correlación entre x(n) y w(n) debe ser muy pequeña puesto que las dos señales no están relacionadas en absoluto.
- $r_{ww}(l)$
 - » La autocorrelación de w(n) presentará un pico en l=0, pero dada su naturaleza aleatoria se supone que $r_{ww}(l)$ tenderá rápidamente hacia cero.
- Se espera que sólo r_{xx} (l) presente picos considerables para l>0. Esto permite detectar señales periódicas x(n) inmersas en la interferencia w(n) e identificar su periodo.

Ejemplo. Determinar **la periodicidad de las manchas solares** a partir de la tabla de Wölfer (manchas solares de Wölfer) para $0 \le l \le 20$, donde cada valor de l corresponde a un año. La tabla ha sido elaborada para 100 años entre 1770 y 1869.

Año	Manchas	Año	Manchas	Año	Manchas	Año	Manchas
1770	101	1795	21	1820	16	1845	40
1771	82	1796	16	1821	7	1846	62
1772	66	1797	6	1822	4	1847	98
1773	35	1798	4	1823	2	1848	124
1774	31	1799	7	1824	8	1849	96
1775	7	1800	14	1825	17	1850	66
1776	20	1801	34	1826	36	1851	64
1777	92	1802	45	1827	50	1852	54
1778	154	1803	43	1828	62	1853	39
1779	125	1804	48	1829	67	1854	21
1780	85	1805	42	1830	71	1855	7
1781	68	1806	28	1831	48	1856	4
1782	38	1807	10	1832	28	1857	23
1783	23	1808	8	1833	8	1858	55
1784	10	1809	2	1834	13	1859	94
1785	24	1810	0	1835	57	1860	96
1786	83	1811	1	1836	122	1861	77
1787	132	1812	5	1837	138	1862	59
1788	131	1813	12	1838	103	1863	44
1789	118	1814	14	1839	86	1864	47
1790	90	1815	35	1840	63	1865	30
1791	67	1816	46	1841	37	1866	16
1792	60	1817	41	1842	24	1867	7
1793	47	1818	30	1843	11	1868	37
1794	41	1819	24	1844	15	1869	74
Número anual de manchas solares de Wölfer							

Identificación de la Periodicidad de las Manchas Solares de Wölfer

Número anual de manchas solares de Wölfer

Señal de autocorrelación normalizada

PERIODO = 10 u 11 años

Secuencias de Correlación Entrada-Salida en Sistemas LTI

Supóngase que la señal x(n), de autocorrelación $r_{xx}(l)$ conocida, se aplica a la entrada de un sistema con respuesta impulsional h(n), produciendo,

$$y(n) = h(n) * x(n) = \sum_{k=-\infty}^{\infty} h(n)x(n-k)$$

La cross-correlación $\mathbf{r}_{\mathbf{yx}}(l)$ entre la señal de entrada y salida está dada por,

$$r_{yx}(l) = y(l) * x(-l) = h(l) * [x(l) * x(-l)] = h(l) * r_{xx}(l)$$

La expresión anterior indica que se puede considerar a r_{yx} (l) como la salida del sistema LTI cuando la entrada es r_{xx} (l).

Relación de entrada-salida para la correlación cruzada r_{yx}(n)

La correlación $r_{xy}(l)$ puede obtenerse de igual forma que en la expresión anterior,

$$r_{xy}(l) = h(-l) * r_{xx}(l)$$

La *auto correlación* $r_{yy}(l)$ puede obtenerse al reemplazar x(n) por y(n). Luego de aplicar las propiedades de la convolución,

$$r_{yy}(l) = y(l) * y(-l) = [h(l) * x(l)] * [h(-l) * x(-l)] = r_{hh}(l) * r_{xx}(l)$$

- La auto-correlación $r_{hh}(l)$ de la repuesta impulsional h(n) existe si el sistema es estable.
 - La estabilidad asegura además que si la señal de entrada es una señal de energía (potencia) la señal de salida también es una señal de enegía (potencia).
 - De la expresión r_{vv} anterior, para l=0 se tiene:

$$r_{yy}(0) = \sum_{k=-\infty}^{\infty} r_{hh}(k) r_{xx}(k)$$

Ecuación que proporciona la energía (potencia) de la *señal de salida* en términos de las autocorrelaciones de h(n) y x(n).

Análisis Frecuencial de Señales

Introducción

Representación en el dominio de la frecuencia: descomposición de señales en términos de componentes sinusoidales (o exponenciales complejas).

Herramientas

- Serie de Fourier: efectúa la descomposición de señales periódicas.
- Transformada de Fourier: efectúa la descomposición de señales no periódicas.

Importancia

La respuesta de los sistemas LTI a una suma lineal de sinusoidales es otra serie de sinusoidales que **difieren sólo en amplitud y fase** respecto a la señal de entrada.

Historia

- ▶ 1672- Isaac Newton empleó el término *espectro* para describir las bandas *contínuas* de colores producidas al descomponerse la luz blanca cuando se hacía pasar por un prisma.
- Demostró que al colocar otro prisma invertido respecto al primero los colores vovían a mezclarse para producir la luz blanca. También mostró que al impedir el paso de uno o varios de los colores, la luz obtenida no era blanca.
- El anterior estudio es un *análisis frecuencial*, pues la luz blanca es descompuesta en colores, y cada color posee una frecuencia específica.

Análisis Frecuencial de Señales

Análisis de la luz blanca

Síntesis de la luz blanca

Rango de Frecuencias de algunas señales biológicas

Tipo de Señal	Rango de Frecuencia (Hz)
Elecroretinograma ^a	0 - 20
Electronistagmograma ^b	0 - 20
Neumograma ^c	0 - 40
Electrocardiograma (ECG)	0 - 100
Electroencefalograma (EEG)	0 - 100
Electromiograma ^d	10 - 200
Esfigmomanogramae	0 - 200
Voz	100 -4000

^a Registro gráfico de las características de la retina.

Rango de frecuencias de algunas señales sísmicas

Tipo de Señal	Rango de Frecuencia (Hz)
Ruido del viento	100 - 1000
Señales de exploración sísmica	10 - 100
Señales de terremotos y explosiones nuclear	res 0.01 - 10
Ruido sísmico	0.1 - 1

^b Registro gráfico de movimientos involuntarios de los ojos.

^c Registro gráfico de la actividad respiratoria.

^d Registro gráfico de la actividad muscular, como las contracciones musculares.

e Registro gráfico de la presión sanguínea.

Rango de frecuencias de algunas señales electromagnéticas

Tipo de Señal	Longitud de Onda (m)	Rango de Frecuencia (Hz)	
Radiodifusión	$10^4 - 10^2$	$3x10^4-3x10^6$	
Señales de radio de onda corta	$10^2 - 10^{-2}$	$3x10^6-3x10^{10}$	
Radar, comunicaciones vía satél	lite,		
comunicaciones espaciales,			
enlaces de microondas	1-10-2	$3x10^8 - 3x10^{10}$	
Infrarrojos	10 -3 -10 -6	$3x10^{11}$ - $3x10^{14}$	
Luz visible	3.9x10 ⁻⁷ -8.1x10 ⁻⁷	$3.7x10^{14} - 7.7x10^{14}$	
Ultravioleta	10-7-10-8	$3x10^{15}$ - $3x10^{16}$	
Rayos Gamma y Rayos X	10^{-9} - 10^{-10}	$3x10^{17}$ - $3x10^{18}$	