Calcul d'indice et courbes algébriques : de meilleures récoltes

Alexandre Wallet

ENS de Lyon, Laboratoire LIP, Equipe AriC

Today:

Discrete Logarithm Problem over curves

Index-calculus

New results on harvesting

A sieving approach

for "smooth harvesting"

- for all curves
- improve a general method

Complexity improvements

for "decomposition harvesting"

- hyperelliptic curves over $\mathbb{F}_{a^n}, q = 2^k$
- new practical computations

- Discrete Logarithm Problem over curves
 - DLP, Index Calculus
 - "Curves as groups"
- 2 Smooth harvesting and new results
- 3 Decomposition harvesting and new results
- Impact of improvements

Discrete Logarithm Problem (DLP)

Let
$$g, h = [x] \cdot g \in (G, +)$$
, with $x \in \mathbb{Z}$. Compute x .

Is this a hard problem?

Classic

- Generic group: yes
- For some groups: **no**
- Cryptography: "yes"

Quantum

"NO"

Today's groups:

Class groups of algebraic curves $\mathcal{J}_{\mathbb{F}_q}(\mathcal{C})$

(and elliptic curves)

Hardness of Curve-DLP

Situation for elliptic curves

For cryptography: elliptic curves (genus g = 1)

Index-Calculus

Preprocessing: select factor base $\mathcal{F} = \{f_1, \dots, f_N\} \subset G$.

A good ${\mathcal F}$ must be:

easy to enumerate

There are standard choices.

not too big, not too small

New choices: open problem

a set of "small" elements

Today's target: harvesting in Index-Calculus for curves

Motivations:

Algorithmic Number Theory Computational Algebraic Geometry

Cryptography

Compute discrete logs in abelian varieties.

How efficient can we be?

Transfer attacks

Algebraic curves

Algebraic curve of **genus** $\mathbf g$ over a field K:

$$\mathcal{C}:P(x,y)=0\text{, for some }P\in K[X,Y].$$

$$g=1 \colon \text{elliptic: } Y^2=X^3+AX+B, \\ A,B\in K$$

$$g \geq 3$$
: hyperelliptic: $Y^2 + h_1(X)Y = X^{2g+1} + \dots$ $h_1 \in K[X], \deg h_1 \leq \mathbf{g}$

Non-hyperelliptic (all the rest).

Class group and its arithmetic

Example: $\mathbf{g} = 1$, \mathcal{C} elliptic curve

Line through $P_1, P_2: f(x,y) = 0$

"Line has 3 zeros and a triple pole at \mathcal{O} ."

$$\rightsquigarrow P_1 + P_2 + P_3 - 3\mathcal{O} \sim 0$$

Addition:

$$(P_1 - \mathcal{O}) + (P_2 - \mathcal{O}) \sim ([-P_3] - \mathcal{O})$$

Class group and its arithmetic

Example: $\mathbf{g} = 1$, \mathcal{C} elliptic curve

Line through $P_1, P_2: f(x,y) = 0$

"Line has 3 zeros and a triple pole at \mathcal{O} ."

$$\rightsquigarrow P_1 + P_2 + P_3 - 3\mathcal{O} \sim 0$$

Addition:

$$(P_1 - \mathcal{O}) + (P_2 - \mathcal{O}) \sim ([-P_3] - \mathcal{O})$$

Curve C, "class group" $\mathcal{J}(C)$.

It is a quotient group.

Its elements are "reduced divisors".

A reduced divisor is a **formal sum**:

$$D = \sum_{i=1}^{k} P_i - k\mathcal{O},$$

for some $P_1, \ldots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$.

Another example: g = 2, C hyperelliptic

Cubic through
$$P_1, \ldots, P_4: f(x,y) = 0$$

$$\ln \mathcal{J}(\mathcal{H}): \underline{P_1} + \dots + \underline{P_6} - 6\mathcal{O} = 0$$

Addition:

$$\underbrace{(P_1 + P_2 - 2\mathcal{O})}_{D_1} + \underbrace{(P_3 + P_4 - 2\mathcal{O})}_{D_2} \sim \underbrace{[-P_5] + [-P_6] - 2\mathcal{O}}_{D_3}$$

$$\sim \underbrace{[-P_5] + [-P_6] - 2\mathcal{C}}_{D_3}$$

- Discrete Logarithm Problem over curves
- 2 Smooth harvesting and new results
 - The main idea
 - New approach: harvesting by sieving
 - Timings
- 3 Decomposition harvesting and new results
- 4 Impact of improvements

Assume
$$\mathcal C$$
 is non-hyperelliptic (\Rightarrow $\mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime
$$\qquad \qquad \text{In example: $\deg C=6$}$$

Factor base $\mathcal{F}=\{\,P=(x,y)\in\mathcal{C}(\mathbb{F}_q)\,\}$ (rational points)

Preprocessing: enumerate \mathcal{F} .

Assume $\mathcal C$ is non-hyperelliptic (\Rightarrow $\mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime $\qquad \qquad \text{In example: $\deg C=6$}$

Assume $\mathcal C$ is non-hyperelliptic ($\Rightarrow \mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime $\qquad \qquad \text{In example: $\deg C=6$}$

Assume $\mathcal C$ is non-hyperelliptic (\Rightarrow $\mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime $\qquad \qquad \text{In example: $\deg C=6$}$

Assume $\mathcal C$ is non-hyperelliptic ($\Rightarrow \mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime $\qquad \qquad \text{In example: $\deg C=6$}$

Assume $\mathcal C$ is non-hyperelliptic (\Rightarrow $\mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime $\qquad \qquad \text{In example: $\deg C=6$}$

Assume $\mathcal C$ is non-hyperelliptic ($\Rightarrow \mathbf g \geq 3$) $\qquad \mathcal C: C(x,y)=0$, [Diem'08] $\deg C \leq \mathbf g+1$ $K=\mathbb F_q$, for $q=p^d$, p prime $\qquad \qquad \text{In example: $\deg C=6$}$

Cost of smooth harvesting

Input: C(X,Y) in $\mathbb{F}_q[X,Y]$, \mathcal{F} rational points **Output:** A relation.

Cost analysis: $\deg C = \mathbf{g} + 1$

- A) Do:
 - 1- Select $P_1, P_2 \in \mathcal{F}$ at random.
 - 2- Compute their line $Y = \lambda X + \mu$.
 - 3- Compute $F(X) = \frac{C(X, \lambda X + \mu)}{(X x_1)(X x_2)}$.
 - 4- Compute roots x_i 's of F in \mathbb{F}_q .

While $\#\{\text{roots}\} < \mathbf{g} - 1$.

- B) $y_i \leftarrow \lambda x_i + \mu$ for $1 \le i \le \mathbf{g} 1$.
- C) Output $\{(x_1, y_1), \dots, (x_{g-1}, y_{g-1})\}.$

1 inversion, 3 multiplications

evaluation

 $\sim \mathbf{g}^2 \log q$

Success probability: $\frac{1}{(g-1)!}$

 $\sim 2{f g}$ multiplications

 $\mathcal{R}(\mathcal{F}) \sim (\mathbf{g} - 1)! \mathbf{g}^2 \log q$

A sieving approach to harvesting

	No sieve		Sieve	
Theory	Hope to find good lines		Parametrize lines, keep only the good ones	
Practice	Root finding at random	VS	Store results of cheap computations	

Existing approach [SS'14]: restricted to hyperelliptic, rely on sort, backtracking

Our result:

V.Vitse, A.W., Improved sieving on algebraic curves, LatinCrypt 2015

- all curve types, adaptable to "balanced" variants
- VS [SS'14]: skip computations, better memory efficiency, no sorting.

$$\mathcal{C}: C(x,y) = 0$$
, genus $\mathbf{g} \geq 3$. [Diem'08]: $\deg C \leq \mathbf{g} + 1$

Factor base
$$\mathcal{F} = \{P, P_1, P_2, \dots\}$$
. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P$$
: $\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$ (cheap)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$\mathcal{C}: C(x,y) = 0$$
, genus $\mathbf{g} \geq 3$. [Diem'08]: $\deg C \leq \mathbf{g} + 1$

Factor base
$$\mathcal{F} = \{P, P_1, P_2, \dots\}$$
. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P$$
: $\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$ (cheap)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T = \begin{bmatrix} 1 & 0 & 0 & \dots \end{bmatrix}$$

$$C: C(x,y) = 0$$
, genus $\mathbf{g} \ge 3$. [Diem'08]: $\deg C \le \mathbf{g} + 1$

Factor base
$$\mathcal{F} = \{P, P_1, P_2, \dots\}$$
. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P$$
: $\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$ (cheap)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$\mathcal{C}:C(x,y)=0$$
, genus $\mathbf{g}\geq 3$. [Diem'08]: $\deg C\leq \mathbf{g}+1$

Factor base
$$\mathcal{F} = \{P, P_1, P_2, \dots\}$$
. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P$$
: $\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$ (cheap)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$\mathcal{C}:C(x,y)=0$$
, genus $\mathbf{g}\geq 3$. [Diem'08]: $\deg C\leq \mathbf{g}+1$

Factor base
$$\mathcal{F} = \{P, P_1, P_2, \dots\}$$
. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P$$
: $\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$ (cheap)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T = \begin{bmatrix} & \mathbf{2} & & 1 & & 1 & & \dots \end{bmatrix}$$

$$\lambda_{I\!\!P}(P_i) = \lambda_{I\!\!P}(P_j) \Leftrightarrow I\!\!P, P_i, P_j$$
 lined up.

$$\mathcal{C}:C(x,y)=0$$
, genus $\mathbf{g}\geq 3$. [Diem'08]: $\deg C\leq \mathbf{g}+1$

Factor base
$$\mathcal{F} = \{P, P_1, P_2, \dots\}$$
. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P$$
: $\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$ (cheap)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T = \begin{bmatrix} & \mathbf{2} & & 1 & & 1 & & \dots \end{bmatrix}$$

$$\lambda_{I\!\!P}(P_i) = \lambda_{I\!\!P}(P_j) \Leftrightarrow I\!\!P, P_i, P_j \text{ lined up.}$$

When
$$T[\lambda_i] = g : relation$$

Analysis

For one loop:

- O(q) multiplications + O(q) storage.
- Expect $\approx \frac{q}{\mathbf{g}!}$ relations.

 \Rightarrow Harvesting in $\approx \mathbf{g}!q$.

Previous approach: $\approx (\mathbf{g} - 1)! q(\mathbf{g}^2 \log q)$

 \Rightarrow

Speed-up $\approx \mathbf{g} \log q$.

Relations management:

Loop on P uses all lines through P.

 \Rightarrow

No duplicate relations.

Sieving = time/memory trade-off.

Timings

q		78137	177167	823547	1594331
	Diem	11.5	27.5	135.1	266.1
Genus 3, degree 4	Sieving	3.6	9.3	46.9	94.6
	Ratio	3.1	2.9	2.8	2.8
	Diem	51.8	122.4	595.8	1174
Genus 4, degree 5	Sieving	15.5	40.1	195.1	387.6
J	Ratio	3.3	3.1	3.1	3
	Diem	229.4	535.8	2581	5062
Genus 5, degree 6	Sieving	75.6	199	969.3	1909
J	Ratio	3	2.6	2.6	2.6
	Diem	1382	3173	14990	29280
Genus 7, degree 7	Sieving	458.5	1199	5859	11510
<u> </u>	Ratio	3	2.6	2.5	2.5

Implementation in Magma; CPU Intel $^{\odot}$ Core i5@2.00Ghz processor. Time to collect 10000 relations, expressed in seconds.

- Discrete Logarithm Problem over curves
- 2 Smooth harvesting and new results
- 3 Decomposition harvesting and new results
 - Extension fields and restriction of scalars
 - Polynomial System Solving
 - New results for binary hyperelliptic curves
- Impact of improvements

Factor bases over an extension field

Let \mathcal{C} be a curve of genus \mathbf{g} , with defining equation in $\mathbb{F}_{q^n}[X,Y]$.

$$\mathbb{F}_{q^n} = \mathbb{F}_q + \mathbb{F}_q \cdot \mathbf{t} + \dots + \mathbb{F}_q \cdot \mathbf{t}^{n-1}$$

"Small elements": points with coordinates in a subspace of \mathbb{F}_{q^n} .

$$\mbox{A candidate: } \mathcal{F} = \{P = (x,y) \in \mathcal{C} \,:\, x \in \mathbb{F}_q, y \in \mathbb{F}_{q^n}\}.$$
 [Gaudry'09, Nagao'10, Diem'11]

Factor bases over an extension field

Let $\mathcal C$ be a curve of genus $\mathbf g$, with defining equation in $\mathbb F_{q^n}[X,Y]$.

$$\mathbb{F}_{q^n} = \mathbb{F}_q + \mathbb{F}_q \cdot \mathbf{t} + \dots + \mathbb{F}_q \cdot \mathbf{t}^{n-1}$$

"Small elements": points with coordinates in a subspace of \mathbb{F}_{q^n} .

A candidate:
$$\mathcal{F}=\{P=(x,y)\in\mathcal{C}\,:\,x\in\mathbb{F}_q,y\in\mathbb{F}_{q^n}\}.$$
 [Gaudry'09, Nagao'10, Diem'11]

Want: $P_1 + \cdots + P_m = 0$, with $D_i \in \mathcal{F}$ meaning: find curve f s.t. $f(x_i, y_i) = 0$

Fix m: good f's \in space of $\dim = m - \mathbf{g} = d$. $\mathbf{a_1}, \dots, \mathbf{a_d} \text{: symbolic coordinates}.$

Goal: find values for a_i 's s.t. f is good.

"Projection" of a relation

 $(x,y) \in \mathcal{F}$ iff $x \in \mathbb{F}_q \Rightarrow$ "project" on x-line to restrict coordinate space.

R(x) :=Symbolic resultant (in y) of f(x,y) and \mathcal{C} 's equation.

•
$$R(x) = x^m + \sum_{j < m} \underbrace{\frac{R_j(a_1, \dots, a_d)}{\in \mathbb{F}_{q^n}[a_1, \dots, a_d]}} \cdot x^j$$
,

- Property: $R(\mathbf{x_i}) = 0$.
- ullet All x_i 's $\in \mathbb{F}_q$ implies all $R_j(a_1,\ldots,a_d)$'s $\in \mathbb{F}_q.$

Restriction of scalars¹

The base field is $\mathbb{F}_{q^n} = \mathbb{F}_q + \mathbb{F}_q \cdot \mathbf{t} + \cdots + \mathbb{F}_q \cdot \mathbf{t}^{n-1}$

$$\begin{array}{cccc} R_j(a_1,\dots,a_d) & & & & & \\ & \swarrow & & & \searrow & & \\ \forall \ \mathsf{coeff} \ \pmb{\lambda} \in \mathbb{F}_{q^n} \colon & & \mathsf{New \ variables:} \\ \pmb{\lambda} = \lambda_1 + \lambda_2 \mathbf{t} + \dots + \lambda_n \mathbf{t}^{n-1} & & & a_i = a_{i1} + a_{i2} \mathbf{t} + \dots + a_{i,n} \mathbf{t}^{n-1} \\ & & & \swarrow & & \\ R_{j1}(\mathbf{a}) + R_{j2}(\mathbf{a}) \cdot \mathbf{t} + \dots + R_{jn}(\mathbf{a}) \cdot \mathbf{t}^{n-1} \end{array}$$

$$R_j(a_1,\ldots,a_d)\in\mathbb{F}_q \quad\Leftrightarrow\quad egin{cases} R_{j2}(\mathbf{a})=0\ dots\ & ext{polynomial system}\ dots\ R_{jn}(\mathbf{a})=0 \end{cases}$$

¹[Gaudry'09, Nagao'10, Diem'11]

Gröbner bases and relation cost

$$\xrightarrow{\text{F4 or F5}} \qquad \text{Degree}$$

$$\xrightarrow{\text{algo}} \qquad \text{order}$$

$$\xrightarrow{\mathsf{FGLM}}_{\mathsf{algo}}$$

$$\xrightarrow{\mathsf{Root}}$$
 finding

Solutions

If
$$C$$
 has genus \mathbf{g} , $m = n\mathbf{g}$ implies $d = (n-1)\mathbf{g}$.
 $\Rightarrow n(n-1)\mathbf{g}$ equations and variables

Gröbner bases and relation cost

$$\xrightarrow{\mathsf{FGLM}}$$

Solutions

If
$$C$$
 has genus \mathbf{g} , $m=n\mathbf{g}$ implies $d=(n-1)\mathbf{g}$. $\Rightarrow n(n-1)\mathbf{g}$ equations and variables

Main parameter: \triangle #solutions (in $\overline{\mathbb{F}_{q^n}}$)

Above process runs in $\widetilde{O}(\Delta^{\omega})$

Relations when solutions are in \mathbb{F}_q .

Cost analysis if ${\mathcal C}$ hyperelliptic

$$\Delta = 2^{n(n-1)\mathbf{g}}$$

Success probability: $\frac{1}{(ng)!}$

$$\mathcal{R}(\mathcal{F}) \sim (ng)! \cdot 2^{\omega n(n-1)g}$$

Reducing the number of solutions

$$\Delta = 2^{n(n-1)g}$$
 is quickly huge.

Can be reduced by **exploiting structural properties** (e.g. symmetries) before running algorithms.

Examples:

$$\begin{cases} x_1 + x_2 + x_3 = a \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = b \\ x_1 x_2 x_3 = c \end{cases} \xrightarrow{\text{using symmetries}} \begin{cases} e_1 = a \\ e_2 = b \\ e_3 = c \end{cases}$$
6 solutions.

4 solutions.

$$\begin{array}{c} \xrightarrow{\text{removing}} \\ & \xrightarrow{\text{powers}} \\ \\ x^2 - 2xy + y^2 = (x-y)^2 \end{array}$$

$$\begin{cases} y = x + \sqrt{a} \\ x^2 = b \end{cases}$$

 $2 \ \mathsf{solutions}.$

Situation

Known reductions for elliptic curves (g = 1): [FGHR'14, FHJRV'14, GG'14] "Summation polynomials" and symmetries

Our results:

J-C. Faugère, A.W., The Point Decomposition Problem in Hyperelliptic Curves.

Designs, Codes and Cryptography [to be published]

- If $q=2^n$, reduction of Δ for hyperelliptic curves of all genus \mathbf{g} .
- Practical harvesting on a meaningul curve (# $\mathcal{J}(\mathcal{H}) \sim 184$ bits prime).

- Discrete Logarithm Problem over curves
- 2 Smooth harvesting and new results
- 3 Decomposition harvesting and new results
 - Extension fields and restriction of scalars
 - Polynomial System Solving
 - New results for binary hyperelliptic curves
- 4 Impact of improvements

Shape of the resultant

$$\mathcal{H}: y^2 + h_1(x)y = h_0(x)$$
 hyperelliptic of genus \mathbf{g} over \mathbb{F}_{q^n} , with $q = 2^k$

Good
$$f$$
's:
$$f(x,y) = \underbrace{\sum_{i=0}^{d_1} a_i x^i}_{p(x)} + y \cdot \underbrace{\sum_{i=0}^{d_2} a_{i+d_1+1} x^j}_{q(x)} \qquad \text{with } \begin{cases} d_1 = \lfloor \frac{m}{2} \rfloor \\ d_2 = \lfloor \frac{m-2\mathbf{g}-1}{2} \rfloor \end{cases}$$

Then:

$$R(x)$$
 = $p(x)^2 + q(x)^2 h_0(x)$ + $p(x)q(x)h_1(x)$

Shape of the resultant

$$\mathcal{H}: y^2 + h_1(x)y = h_0(x)$$
 hyperelliptic of genus \mathbf{g} over \mathbb{F}_{q^n} , with $q = 2^k$

$$\text{Good } f\text{'s:} \qquad f(x,y) = \underbrace{\sum_{i=0}^{d_1} a_i x^i}_{p(x)} + y \cdot \underbrace{\sum_{i=0}^{d_2} a_{i+d_1+1} x^j}_{q(x)} \qquad \text{with } \begin{cases} d_1 = \lfloor \frac{m}{2} \rfloor \\ d_2 = \lfloor \frac{m-2\mathbf{g}-1}{2} \rfloor \end{cases}$$

Then:

$$\begin{array}{lll} R(x) & = & p(x)^2 + q(x)^2 h_0(x) & + & p(x) q(x) h_1(x) \\ \deg = m & \deg = m & \deg \leq \mathbf{m} \end{array}$$
 Monomials in a_i 's:
$$\begin{array}{ll} a_i^2 \text{ only} & a_i a_j, \ i \neq j \end{array}$$

In Char = 2, equations coming from the "head" of R can be **squares**.

Results

$$h_1(x) = x^{\deg h_1} + \dots + a_t x^t$$
, where $0 \le t \le \deg h_1 \le \mathbf{g}$.

Number of squares in R:

For $\mathbf{L} = \deg h_1 - t$, $R - x^m$ has $\mathbf{g} - \mathbf{L}$ square coefficients.

Corollary:

We can find $(n-1)(\mathbf{g} - \mathbf{L})$ square equations in the systems.

Additional results:

- ullet any system contains a subsystem of n-1 equations in n-1 variables.
- it is determined whp.: solve it before solving the remaining equations.

Analysis of the new number of solutions

Genericity assumption: systems behave like regular systems of dimension 0 over \mathbb{F}_{q^n} .

Before:

- #vars = (n-1)ng
- #eqs = (n-1)ng
- Eqs have deg = 2

$$\Rightarrow \Delta = 2^{n(n-1)g}$$

Now (after presolving):

- $(n-1)(n\mathbf{g}-1)$ eqs and vars
- $(n-1)(\mathbf{g}-\mathbf{L})$ linear eqs
- remaining have deg = 2

$$\Rightarrow \Delta = 2^{(n-1)((n-1)\mathbf{g} + \mathbf{L} - 1)}$$

$$2^{(n-1)((n-1)\mathbf{g}-1)} < \Delta < 2^{(n-1)(n\mathbf{g}-1)}$$

factor

$$2^{(\mathbf{n}-\mathbf{1})(\mathbf{g}+\mathbf{1})} \geq \frac{\Delta}{\Delta} \geq 2^{\mathbf{n}-\mathbf{1}}$$

$$\frac{\Delta}{\Lambda}$$

$$2^{n-2}$$

- Discrete Logarithm Problem over curves
- 2 Smooth harvesting and new results
- Decomposition harvesting and new results
- 4 Impact of improvements
 - Experimental timings
 - Comparisons to recent records

Impact in experiments

Table: Average time 2 to find one relation. Parameters: ${\bf g}=2,\ q=2^{15},$ curves with ${\bf L}=0.$

n	Approach	# solutions	Time, one system	Time, one relation
3	classic ours	4096 64	~ 1500 sec. ~ 0.029 sec.	$\begin{array}{c} \sim 12.5 \; \mathrm{days} \\ \sim 21 \; \mathrm{seconds} \end{array}$
4	classic ours	2^{24} 2^{15}	$\sim 250 \; { m hours}$	

NB: Success probability =
$$\frac{1}{(n\mathbf{g})!}$$

²Computations with Magma 2.19

Expected nops for meaningful parameters

- Parameters: $\mathbf{g}=2$, $\mathbf{L}=0$, $q=2^{31}$, n=3. (NB: base field is $\mathbb{F}_{2^{93}}$).
- $\mathcal C$ such that $\#\mathcal J(\mathcal C)\sim p$ prime, with $\log p=184$ bits.

Table: Comparisons of possible algorithms

Algorithm	estimated nops		
ho-Pollard	$\sim 2^{92}$		
Index-calculus	Harvesting	Linear algebra	
"Smooth"	$\sim 2^{93}$	$\sim 2^{93}$	
Decomposition, old $(\Delta = 2^{12})$	$\sim 2^{69.5}$	$\sim 2^{63}$	
Decomposition, ours $(\Delta = 2^6)$	$\sim 2^{55}$	$\sim 2^{63}$	

NB: Cost of harvesting
$$\sim \#\mathcal{F} \times \Delta^\omega \times (ng)!$$

$$\sim 2^{31} \times \Delta^{2.4} \times 2^{9.5}$$

Practical comparisons

• With dedicated implementation³, we find 1 relation in 2.3 sec. in avg.

Table: Comparison with a recent record computation

	#rels	harvesting	matrix size, density ^{††}	#linalg. ^{†††}	$\log p$
$[KDL+'17]^{\dagger}$	$\sim 2^{33}$	6 months	2^{24} , 184	$\sim 2^{56}$	768
our work	$\sim 2^{31}$	7 days	2^{28} , 87	$\sim 2^{63}$	184

†: [KDL+'17] Computation of a 768 bits prime field discrete logarithm, EuroCrypt 2017 ††: Size after filtering. [KDL+'17] use a dedicated filtering.

 $\dagger\dagger\dagger$: linear algebra is done modulo p

³FGb and code gen., Sparse FGLM, NTL

Perspectives and open problems

Decomposition harvesting: (ongoing work)

- (A) Reductions for elliptic curves use "summation polynomials".
 - analog notion for other curves?
 - [FW'17]: a possible approach, but limited efficiency. Improvements?
- (B) There are lots of "symmetries" (automorphisms) in higher genus class groups.
 - Can we exploit them?

Open problems:

- (C) Is there any choice of factor base for elliptic curve over \mathbb{F}_p ?
- (D) New families of curves with subexponential Index-calculus?
- (E) Can we find better than Index-calculus?

Thank you:)