A fibrational view on computational effects

Danel Ahman

Prosecco Team, Inria Paris

November 13, 2017

We investigate the combination of

- dependent types $(\Pi, \Sigma, V =_{\mathcal{A}} W, ...)$
- computational effects (state, I/O, probability, recursion, ...)

Two guiding problems

- effectful programs in types (e.g., read and write in types)
- types of effectful programs (e.g., of sequential composition)

- tell a mathematically natural story
- use established math. techniques
- cover a wide range of comp. effects
- discover smth. interesting

We investigate the combination of

- dependent types $(\Pi, \Sigma, V =_{\mathcal{A}} W, ...)$
- computational effects (state, I/O, probability, recursion, ...)

Two guiding problems

- effectful programs in types (e.g., read and write in types)
- types of effectful programs (e.g., of sequential composition)

- tell a mathematically natural story (a clean core language)
- use established math. techniques
- cover a wide range of comp. effects
- discover smth. interesting

We investigate the combination of

- dependent types $(\Pi, \Sigma, V =_{\mathcal{A}} W, ...)$
- computational effects (state, I/O, probability, recursion, ...)

Two guiding problems

- effectful programs in types (e.g., read and write in types)
- types of effectful programs (e.g., of sequential composition)

- tell a mathematically natural story (a clean core language)
- use established math. techniques (fibrations and adjunctions)
- cover a wide range of comp. effects
- discover smth. interesting

We investigate the combination of

- dependent types $(\Pi, \Sigma, V =_{\mathcal{A}} W, ...)$
- computational effects (state, I/O, probability, recursion, ...)

Two guiding problems

- effectful programs in types (e.g., read and write in types)
- types of effectful programs (e.g., of sequential composition)

- tell a mathematically natural story (a clean core language)
- use established math. techniques (fibrations and adjunctions)
- cover a wide range of comp. effects (alg. effects, continuations)
- discover smth. interesting

We investigate the combination of

- dependent types $(\Pi, \Sigma, V =_{\mathcal{A}} W, ...)$
- computational effects (state, I/O, probability, recursion, ...)

Two guiding problems

- effectful programs in types (e.g., read and write in types)
- types of effectful programs (e.g., of sequential composition)

- tell a mathematically natural story (a clean core language)
- use established math. techniques (fibrations and adjunctions)
- cover a wide range of comp. effects (alg. effects, continuations)
- discover smth. interesting (using handlers to reason about effects)

(type-dependency in the presence of effects)

Let's assume that we have some dependent type A, e.g.:

$$\ell\!:\!(\mathsf{List}\;\mathsf{Chr})\vdash A(\ell) \quad \stackrel{\scriptscriptstyle\mathsf{def}}{=} \quad \Sigma\,\ell'\!:\!(\mathsf{List}\;\mathsf{Chr})\,.\,(\mathsf{length}\;\ell =_{\mathsf{Nat}}\mathsf{length}\;\ell'\times\ldots)$$

which could be used to type the dependent function

$$\mathtt{sort}: \mathsf{\Pi}\,\ell \colon (\mathsf{List}\;\mathsf{Chr}) \cdot A(\ell)$$

- **Q:** Should we allow $A[\text{receive}(y, M)/\ell]$?
 - i.e., should we be allowed to type receive(y. M): List Chr
- A1: In this work we say no
 - types should only depend on static information about effects
 - we recover dependency on effectful computations via thunks
- **A2:** We are also looking into the yes case
 - type-dependency needs to be "homomorphic" (more on this later)

Let's assume that we have some dependent type A, e.g.:

$$\ell\!:\!(\mathsf{List}\;\mathsf{Chr})\vdash \mathit{A}(\ell) \ \stackrel{\scriptscriptstyle\mathsf{def}}{=}\ \Sigma\,\ell'\!:\!(\mathsf{List}\;\mathsf{Chr})\,.\,(\mathsf{length}\;\ell=_{\mathsf{Nat}}\mathsf{length}\;\ell'\times\ldots)$$

which could be used to type the dependent function

$$\mathtt{sort}: \mathsf{\Pi}\,\ell \colon (\mathsf{List}\;\mathsf{Chr}) \cdot A(\ell)$$

Q: Should we allow $A[\text{receive}(y.M)/\ell]$?

• i.e., should we be allowed to type receive(y. M): List Chr

A1: In this work we say no

- types should only depend on static information about effects
- we recover dependency on effectful computations via thunks

A2: We are also looking into the yes case

type-dependency needs to be "homomorphic" (more on this later)

Let's assume that we have some dependent type A, e.g.:

$$\ell : (\mathsf{List}\;\mathsf{Chr}) \vdash \mathsf{A}(\ell) \quad \stackrel{\mathsf{def}}{=} \quad \Sigma\,\ell' : (\mathsf{List}\;\mathsf{Chr})\,.\,(\mathtt{length}\;\ell =_{\mathsf{Nat}} \mathtt{length}\;\ell' \times \ldots)$$

which could be used to type the dependent function

$$sort : \Pi \ell : (List Chr) . A(\ell)$$

Q: Should we allow $A[\text{receive}(y.M)/\ell]$?

i.e., should we be allowed to type receive(y. M): List Chr

A1: In this work we say no

- types should only depend on static information about effects
- we recover dependency on effectful computations via thunks
- **A2:** We are also looking into the yes case
 - type-dependency needs to be "homomorphic" (more on this later)

Let's assume that we have some dependent type A, e.g.:

$$\ell\!:\!(\mathsf{List}\;\mathsf{Chr})\vdash A(\ell) \ \stackrel{\scriptscriptstyle\mathsf{def}}{=} \ \Sigma\,\ell'\!:\!(\mathsf{List}\;\mathsf{Chr})\,.\,(\mathsf{length}\;\ell =_{\mathsf{Nat}}\,\mathsf{length}\;\ell'\times\ldots)$$

which could be used to type the dependent function

$$\mathtt{sort}: \mathsf{\Pi}\,\ell\!:\!(\mathsf{List}\;\mathsf{Chr})\,.\, A(\ell)$$

- **Q:** Should we allow $A[\text{receive}(y.M)/\ell]$?
 - i.e., should we be allowed to type receive(y. M): List Chr
- **A1:** In this work we say no
 - types should only depend on static information about effects
 - we recover dependency on effectful computations via thunks
- **A2:** We are also looking into the yes case
 - type-dependency needs to be "homomorphic" (more on this later)

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps

```
• value types \Gamma \vdash A (MLTT + thunks + ...)
```

- computation types $\Gamma \vdash \underline{C}$ (dep. CBPV/EEC)
- where Γ contains **only** value variables $x_1: A_1, \ldots, x_n: A_n$

Note: Could have also considered λ_{ML} and FGCBV

- building on CBPV/EEC gives a more general story
- especially for the treatment of sequential composition
- and also for integrating dependent- and effect-typing

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

```
• value types \Gamma \vdash A (MLTT + thunks + ...)
```

- computation types $\Gamma \vdash \underline{C}$ (dep. CBPV/EEC)
- where Γ contains **only** value variables $x_1: A_1, \ldots, x_n: A_n$

Note: Could have also considered λ_{ML} and FGCBV

- building on CBPV/EEC gives a more general story
- especially for the treatment of sequential composition
- and also for integrating dependent- and effect-typing

Aim: Types should only depend on static info about effects

Solution: CBPV/EEC style distinction between vals. and comps.

```
value types Γ ⊢ A (MLTT + thunks + ...)
computation types Γ ⊢ C (dep. CBPV/EEC)
```

(dep. cbi v/LLC

• where Γ contains **only** value variables $x_1:A_1,\ldots,x_n:A_n$

Note: Could have also considered λ_{ML} and FGCBV

- building on CBPV/EEC gives a more general story
- especially for the treatment of sequential composition
- and also for integrating dependent- and effect-typing

(e.g., sequential composition)

The problem: The standard typing rule for seq. composition

$$\frac{\Gamma \vdash_{c} M : FA \qquad \Gamma, x : A \vdash_{c} N : \underline{C}}{\Gamma \vdash_{c} M \text{ to } x : A \text{ in } N : \underline{C}}$$

is not correct any more because x can appear free in the type

(

in the conclusion

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in \underline{C} : [Levy'04]

$$\frac{\Gamma \vdash M : FA \qquad \Gamma \vdash \underline{C} \qquad \Gamma, x : A \vdash N : \underline{C}}{\Gamma \vdash M \text{ to } x : A \text{ in } N : \underline{C}}$$

But sometimes it is useful if \underline{C} can depend on x!

if we consider

fopen (return true, return false) to
$$x$$
:Bool in N

• then it would be natural to let \underline{C} depend on x, e.g.,

```
x: \mathsf{Bool} \vdash \underline{C}(x) \stackrel{\mathsf{def}}{=} \mathsf{if} \ x \ \mathsf{then} \ \text{``allow fread, fwrite, and fclose''} else "allow fopen"
```

(needs more expressive comp. types than we consider here)

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in \underline{C} : [Levy'04]

$$\frac{\Gamma \vdash_{c} M : FA \qquad \Gamma \vdash_{\underline{C}} \qquad \Gamma, x : A \vdash_{c} N : \underline{C}}{\Gamma \vdash_{c} M \text{ to } x : A \text{ in } N : \underline{C}}$$

But sometimes it is useful if \underline{C} can depend on x!

if we consider

fopen (return true, return false) to x:Bool in N

- then it would be natural to let \underline{C} depend on x, e.g.,
- $x: Bool \vdash \underline{C}(x) \stackrel{\text{def}}{=} \text{if } x \text{ then "allow fread, fwrite, and fclose"}$ else "allow fopen"

(needs more expressive comp. types than we consider here)

Aim: To fix the typing rule of sequential composition

Option 1: We could restrict the free variables in \underline{C} : [Levy'04]

$$\frac{\Gamma \vdash_{c} M : FA \qquad \Gamma \vdash_{\underline{C}} \qquad \Gamma, x : A \vdash_{c} N : \underline{C}}{\Gamma \vdash_{c} M \text{ to } x : A \text{ in } N : \underline{C}}$$

But sometimes it is useful if \underline{C} can depend on x!

• if we consider

fopen (return true, return false) to
$$x$$
: Bool in N

• then it would be natural to let \underline{C} depend on x, e.g.,

```
x: Bool \vdash \underline{C}(x) \stackrel{\text{def}}{=} \text{if } x \text{ then "allow fread, fwrite, and fclose"} else "allow fopen"
```

(needs more expressive comp. types than we consider here)

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

$$\Gamma \vdash M \text{ to } x : A \text{ in } N : M \text{ to } x : A \text{ in } C$$

But then all computation types would be singleton-like!?!

Option 3: In the monadic metalanguage λ_{ML} , one could also try

$$\Gamma \vdash M : T A \qquad \Gamma, x : A \vdash N : T B(x)
\Gamma \vdash M \text{ to } x : A \text{ in } N : T (\Sigma x : A.B)$$

But what makes this a principled solution? Why is it correct?

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

 $\Gamma \vdash_{c} M \text{ to } x:A \text{ in } N:M \text{ to } x:A \text{ in } \underline{C}$

But then all computation types would be singleton-like!?!

Option 3: In the monadic metalanguage λ_{ML} , one could also try

$$\frac{\Gamma \vdash M : TA \qquad \Gamma, x : A \vdash N : TB(x)}{\Gamma \vdash M \text{ to } x : A \text{ in } N : T(\Sigma x : A.B)}$$

But what makes this a principled solution? Why is it correct?

Aim: To fix the typing rule of sequential composition

Option 2: One could lift sequential composition to type level

$$\Gamma \vdash M \text{ to } x:A \text{ in } N:M \text{ to } x:A \text{ in } C$$

But then all computation types would be singleton-like!?!

Option 3: In the monadic metalanguage λ_{ML} , one could also try

$$\frac{\Gamma \vdash M : T A \qquad \Gamma, x : A \vdash N : T B(x)}{\Gamma \vdash M \text{ to } x : A \text{ in } N : T (\Sigma x : A . B)}$$

But what makes this a principled solution? Why is it correct?

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects \bullet and combine it with restricting \underline{C} in seq. comp. (**Option 1**)

E.g., consider the non-det. program (for $x: Nat \vdash N : \underline{C}(x)$) $M \stackrel{\text{def}}{=} \text{choose (return 4, return 2) to } x: Nat in N$

After tossing the coin, this program evaluates as either $N[4/x] : \underline{C}[4/x]$ or $N[2/x] : \underline{C}[2/x]$

Idea: M denotes an element of the coproduct of algebras $\underline{C}[4/x] + \underline{C}[2/x] \quad "\stackrel{\text{def}}{=} " \quad F\left(U\left(\underline{C}[4/x]\right) + U\left(\underline{C}[2/x]\right)\right)_{/\equiv}$

and thus we would like to type M at the type Σx : Nat. \underline{C}

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

ullet and combine it with restricting \underline{C} in seq. comp. (Option 1)

E.g., consider the non-det. program (for
$$x$$
: Nat $\vdash N$: $\underline{C}(x)$)

 $M \stackrel{\text{def}}{=}$ choose (return 4, return 2) to x : Nat in N

After tossing the coin, this program evaluates as either

$$N[4/x] : \underline{C}[4/x]$$
 or $N[2/x] : \underline{C}[2/x]$

Idea: M denotes an element of the coproduct of algebras $\underline{C}[4/x] + \underline{C}[2/x] \quad "\stackrel{\text{def}}{=} " \quad F\left(U\left(\underline{C}[4/x]\right) + U\left(\underline{C}[2/x]\right)\right)$

and thus we would like to type M at the type Σx : Nat. \underline{C}

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

• and combine it with restricting \underline{C} in seq. comp. (Option 1)

E.g., consider the non-det. program (for
$$x : Nat \vdash_{c} N : \underline{C}(x)$$
)

$$M \stackrel{\text{def}}{=} \text{choose (return 4, return 2) to } x: \text{Nat in } N$$

After tossing the coin, this program evaluates as either

$$N[4/x] : \underline{C}[4/x]$$
 or $N[2/x] : \underline{C}[2/x]$

Idea: M denotes an element of the coproduct of algebras

$$\underline{C}[4/x] + \underline{C}[2/x] \quad \stackrel{\text{def}}{=} " \quad F\left(U\left(\underline{C}[4/x]\right) + U\left(\underline{C}[2/x]\right)\right)_{/x}$$

and thus we would like to type M at the type $\Sigma x: Nat. C$

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

ullet and combine it with restricting \underline{C} in seq. comp. (Option 1)

E.g., consider the non-det. program (for
$$x : Nat \vdash_{c} N : \underline{C}(x)$$
)

$$M \stackrel{\text{def}}{=} \text{choose (return 4, return 2) to } x: \text{Nat in } N$$

After tossing the coin, this program evaluates as either

$$N[4/x] : \underline{C}[4/x]$$
 or $N[2/x] : \underline{C}[2/x]$

Idea: M denotes an element of the coproduct of algebras

$$\underline{C}[4/x] + \underline{C}[2/x] \quad "\stackrel{\text{def}}{=}" \quad F\left(U\left(\underline{C}[4/x]\right) + U\left(\underline{C}[2/x]\right)\right)_{/x}$$

and thus we would like to type M at the type $\Sigma x : \text{Nat.} \underline{C}$

Aim: To fix the typing rule of sequential composition

Option 4: We draw inspiration from algebraic effects

ullet and combine it with restricting $\underline{\mathcal{C}}$ in seq. comp. (Option 1)

E.g., consider the non-det. program (for
$$x : \text{Nat } \vdash_{\overline{c}} N : \underline{C}(x)$$
)

 $M \stackrel{\text{def}}{=} \text{choose (return 4, return 2) to } x : \text{Nat in } N$

After tossing the coin, this program evaluates as either

$$N[4/x] : \underline{C}[4/x]$$
 or $N[2/x] : \underline{C}[2/x]$

Idea: M denotes an element of the coproduct of algebras

$$\underline{C}[4/x] + \underline{C}[2/x]$$
 " $\stackrel{\text{def}}{=}$ " $F\left(U\left(\underline{C}[4/x]\right) + U\left(\underline{C}[2/x]\right)\right)_{/\equiv}$

and thus we would like to type M at the type $\Sigma x : Nat. \underline{C}$

Putting these ideas together

(eMLTT: a core dep.-typed language with comp. effects)

eMLTT - types

Value types: MLTT + thunks + ...

$$A, B ::=$$
Nat $\mid 1 \mid 0 \mid \Pi x : A.B \mid \Sigma x : A.B \mid V =_A W \mid U \subseteq | \dots |$

• $U\underline{C}$ is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC's comp. types

$$\underline{C}, \underline{D} ::= FA \mid \Pi x : A . \underline{C} \mid \Sigma x : A . \underline{C}$$

- F A is the type of computations returning values of type A
- Πx: A. <u>C</u> is the type of dependent effectful functions
 - generalises CBPV/EEC's comp. types $A \to \underline{C}$ and $\underline{C} \times \underline{D}$
- $\Sigma x: A.\underline{C}$ is the type of dep. pairs of values and effectful comps.
 - captures the intuition about seq. comp. and coprods. of algebras
 - generalises EEC's comp. types $!A \otimes C$ and $C \oplus D$

eMLTT – types

Value types: MLTT + thunks + ...

$$A, B ::=$$
Nat $\mid 1 \mid 0 \mid \Pi x : A.B \mid \Sigma x : A.B \mid V =_A W \mid U \subseteq | \dots |$

• $U\underline{C}$ is the type of thunked (i.e., suspended) computations

Computation types: dep.-typed version of EEC's comp. types

$$\underline{C},\underline{D} ::= FA \mid \Pi x : A \cdot \underline{C} \mid \Sigma x : A \cdot \underline{C}$$

- F A is the type of computations returning values of type A
- Πx: A. C is the type of dependent effectful functions
 - generalises CBPV/EEC's comp. types $A \to \underline{C}$ and $\underline{C} \times \underline{D}$
- $\Sigma x: A.C$ is the type of dep. pairs of values and effectful comps.
 - captures the intuition about seq. comp. and coprods. of algebras
 - generalises EEC's comp. types $!A \otimes \underline{C}$ and $\underline{C} \oplus \underline{D}$

```
Value terms: MLTT + thunks + ... V, W ::= x \mid zero \mid succ V \mid ... \mid thunk M \mid ...
```

equational theory based on intensional MLTT

Comp. terms: dep.-typed version of CBPV/EEC's comp. terms

```
\begin{array}{lll} M,N ::= & \text{force } V \\ & \mid & \text{return } V \\ & \mid & M \text{ to } x \colon A \text{ in } N \\ & \mid & \lambda x \colon A \ldotp M \\ & \mid & MV \\ & \mid & \langle V,M \rangle & \text{(comp. $\Sigma$ intro.)} \\ & \mid & M \text{ to } \langle x \colon A,z \colon \underline{C} \rangle \text{ in } K & \text{(comp. $\Sigma$ elim.)} \end{array}
```

But: Value and comp. terms alone do not suffice, as in EEC!

```
Value terms: MLTT + thunks + ...
V, W ::= x \mid zero \mid succ V \mid ... \mid thunk M \mid ...
```

equational theory based on intensional MLTT

Comp. terms: dep.-typed version of CBPV/EEC's comp. terms

```
\begin{array}{lll} M,N ::= & \text{force } V \\ & | & \text{return } V \\ & | & M \text{ to } x \colon A \text{ in } N \\ & | & \lambda x \colon A \ldotp M \\ & | & MV \\ & | & \langle V,M \rangle & \text{(comp. } \Sigma \text{ intro.)} \\ & | & M \text{ to } \langle x \colon A,z \colon \underline{C} \rangle \text{ in } K & \text{(comp. } \Sigma \text{ elim.)} \end{array}
```

But: Value and comp. terms alone do not suffice, as in EEC!

Value terms: MLTT + thunks + ...

```
V, W ::= x \mid \text{zero} \mid \text{succ} V \mid \dots \mid \text{thunk} M \mid \dots
```

equational theory based on intensional MLTT

Comp. terms: dep.-typed version of CBPV/EEC's comp. terms

```
\begin{array}{lll} \textit{M}, \textit{N} & ::= & \texttt{force} \; \textit{V} \\ & | \; \; \texttt{return} \; \textit{V} \\ & | \; \; \textit{M} \; \texttt{to} \; x \colon \! \textit{A} \; \texttt{in} \; \textit{N} \\ & | \; \; \; \lambda x \colon \! \textit{A} \cdot \! \textit{M} \\ & | \; \; \; \textit{MV} \\ & | \; \; \langle \textit{V}, \textit{M} \rangle & (\texttt{comp.} \; \Sigma \; \texttt{intro.}) \\ & | \; \; \textit{M} \; \texttt{to} \; \langle x \colon \! \textit{A}, \textit{z} \colon \! \underline{\textit{C}} \rangle \; \texttt{in} \; \textit{K} \end{array} \qquad \qquad (\texttt{comp.} \; \Sigma \; \texttt{elim.}) \end{array}
```

But: Value and comp. terms alone do not suffice, as in EEC!

Note: We need to define K in such a way that the intended left-to-right evaluation order is preserved, e.g., consider

$$\Gamma \vDash \langle V, M \rangle \text{ to } \langle x \colon A, \mathbf{z} \colon \underline{C} \rangle \text{ in } \mathbf{K} = \mathbf{K}[V/x, M/\mathbf{z}] \colon \underline{D}$$

Homomorphism terms: dep.-typed version of EEC's linear terms

$$K, L := z$$
 (linear comp. vars.)
 $\mid K \text{ to } x : A \text{ in } M$
 $\mid \lambda x : A . K$
 $\mid KV$
 $\mid \langle V, K \rangle$ (comp. $\Sigma \text{ intro.}$)
 $\mid K \text{ to } \langle x : A, z : C \rangle \text{ in } L$ (comp. $\Sigma \text{ elim.}$)

Typing judgments:

- Γ ⋈ V : A
- Γ la M : C
- $\Gamma \mid z : \underline{C} \mid_{\overline{h}} K : \underline{D}$ (linear in z; comp. bound to z happens first

Note: We need to define K in such a way that the intended left-to-right evaluation order is preserved, e.g., consider

$$\Gamma \vdash \langle V, M \rangle$$
 to $\langle x : A, z : \underline{C} \rangle$ in $K = K[V/x, M/z] : \underline{D}$

Homomorphism terms: dep.-typed version of EEC's linear terms

```
\begin{array}{lll} \textit{K}, \textit{L} ::= & \textit{z} & \text{(linear comp. vars.)} \\ & | & \textit{K} \text{ to } x : \textit{A} \text{ in } \textit{M} \\ & | & \lambda x : \textit{A} . \textit{K} \\ & | & \textit{K} \textit{V} \\ & | & \langle \textit{V}, \textit{K} \rangle & \text{(comp. } \Sigma \text{ intro.)} \\ & | & \textit{K} \text{ to } \langle x : \textit{A}, \textit{z} : \underline{\textit{C}} \rangle \text{ in } \textit{L} & \text{(comp. } \Sigma \text{ elim.)} \end{array}
```

Typing judgments:

- Γ | V : A
- Γ | M : C
- $\Gamma \mid z : \underline{C} \mid_{\overline{h}} K : \underline{D}$ (linear in z; comp. bound to z happens first)

eMLTT – typing sequential composition

We can then account for type-dependency in seq. comp. as

$$\frac{\Gamma, x : A \vdash N : \underline{C}(x)}{\Gamma \vdash R \quad \Gamma \vdash \Sigma y : A \cdot \underline{C}(y) \quad \overline{\Gamma, x : A \vdash \langle x, N \rangle : \Sigma y : A \cdot \underline{C}(y)}}{\Gamma \vdash R \quad \text{to } x : A \text{ in } \langle x, N \rangle : \Sigma y : A \cdot \underline{C}(y)}$$

The seq. comp. rule for $\lambda_{\rm ML}$ is justified by the type isomorphism

$$\frac{\Gamma \vdash A \qquad \Gamma, x : A \vdash B(x)}{\Gamma \vdash U(\Sigma x : A . F(B)) \cong UF(\Sigma x : A . B) = T(\Sigma x : A . B)}$$

Categorical semantics of eMLTT

(fibrations + adjunctions)

Categorical semantics - MLTT part

We define fibred adjunction models $(\mathcal{B}, \mathcal{V}, p, q, F \dashv U)$

• Theorem: a sound and complete class of models for eMLTT

given by: i) a split closed comprehension cat. p (with s. fib. 0, ...)

- ullet we define a partial interpretation fun. $[\![-]\!]$, that (if defined) maps:
 - a context Γ to and object $\llbracket \Gamma \rrbracket$ in \mathcal{B} , with $\llbracket \Gamma, x : A \rrbracket \stackrel{\text{def}}{=} \{ \llbracket \Gamma; A \rrbracket \}$
 - ullet a context Γ and a value type A to an object $[\![\Gamma;A]\!]$ in $\mathcal{V}_{[\![\Gamma]\!]}$
 - ullet a context Γ and a value term V to $[\![\Gamma;V]\!]:1_{[\![\Gamma]\!]}\longrightarrow A$ in $\mathcal{V}_{[\![\Gamma]\!]}$

Categorical semantics – MLTT part

We define fibred adjunction models $(\mathcal{B}, \mathcal{V}, p, q, F \dashv U)$

• **Theorem:** a sound and complete class of models for eMLTT given by: i) a split closed comprehension cat. *p* (with s. fib. 0, ...)

- we define a partial interpretation fun. [-], that (if defined) maps:
 - a context Γ to and object $\llbracket \Gamma \rrbracket$ in \mathcal{B} , with $\llbracket \Gamma, x : A \rrbracket \stackrel{\text{def}}{=} \{ \llbracket \Gamma; A \rrbracket \}$
 - a context Γ and a value type A to an object $\llbracket \Gamma ; A
 rbracket$ in $\mathcal{V}_{\llbracket \Gamma
 rbracket}$
 - a context Γ and a value term V to $[\![\Gamma;V]\!]:1_{[\![\Gamma]\!]}\longrightarrow A$ in $\mathcal{V}_{[\![\Gamma]\!]}$

Categorical semantics - MLTT part

We define fibred adjunction models $(\mathcal{B}, \mathcal{V}, p, q, F \dashv U)$

• **Theorem:** a sound and complete class of models for eMLTT given by: i) a split closed comprehension cat. p with s. fib. 0, ...

$$\begin{array}{c|c}
V \\
\uparrow \\
\uparrow \\
\downarrow \\
P
\end{array}$$

- the display maps $\pi_{\llbracket\Gamma;A\rrbracket}:\llbracket\Gamma,x:A\rrbracket\longrightarrow \llbracket\Gamma\rrbracket$ in $\mathcal B$ induce the weakening functors $\pi_{\llbracket\Gamma;A\rrbracket}^*:\mathcal V_{\llbracket\Gamma\rrbracket}\longrightarrow \mathcal V_{\llbracket\Gamma,x:A\rrbracket}$, and
- the value Σ and Π -types are interpreted as adjoints

$$\begin{array}{l} \Sigma_{\llbracket\Gamma;A\rrbracket} \dashv \pi_{\llbracket\Gamma;A\rrbracket}^* : \mathcal{V}_{\llbracket\Gamma\rrbracket} \longrightarrow \mathcal{V}_{\llbracket\Gamma,x:A\rrbracket} \qquad \text{(such that Σ is strong)} \\ \pi_{\llbracket\Gamma;A\rrbracket}^* \dashv \Pi_{\llbracket\Gamma;A\rrbracket} : \mathcal{V}_{\llbracket\Gamma,x:A\rrbracket} \longrightarrow \mathcal{V}_{\llbracket\Gamma\rrbracket} \end{array}$$

Categorical semantics - effects part

We define fibred adjunction models $(\mathcal{B}, \mathcal{V}, p, q, F \dashv U)$

• Theorem: a sound and complete class of models for eMLTT

given by: ii) a split fibration q (with ...) and a s. fib. adj. $F \dashv U$

- - a ctx. Γ and a comp. type \underline{C} to an object $\llbracket \Gamma ; \underline{C} \rrbracket$ in $\mathcal{C}_{\llbracket \Gamma \rrbracket}$
 - a ctx. Γ and a comp. term M to $\llbracket \Gamma; M \rrbracket : 1_{\llbracket \Gamma \rrbracket} \longrightarrow U(\underline{C})$ in $\mathcal{V}_{\llbracket \Gamma \rrbracket}$
 - a ctx. Γ , a c. var. z, a c. type \underline{C} , and a hom. term K to $\llbracket \Gamma; z \colon \underline{C}; K \rrbracket \colon \llbracket \Gamma; \underline{C} \rrbracket \longrightarrow \underline{D} \text{ in } \mathcal{C}_{\llbracket \Gamma \rrbracket}$

Categorical semantics - effects part

We define fibred adjunction models $(\mathcal{B}, \mathcal{V}, p, q, F \dashv U)$

• Theorem: a sound and complete class of models for eMLTT

given by: ii) a split fibration q (with ...) and a s. fib. adj. $F \dashv U$

- we again have weakening functors $\pi_{\llbracket\Gamma:A\rrbracket}^*:\mathcal{C}_{\llbracket\Gamma\rrbracket}\longrightarrow\mathcal{C}_{\llbracket\Gamma,x:A\rrbracket}$, and
- the comp. Σ and Π -types are interpreted again as adjoints

$$\begin{split} & \Sigma_{\llbracket \Gamma; A \rrbracket} \dashv \pi_{\llbracket \Gamma; A \rrbracket}^* : \mathcal{C}_{\llbracket \Gamma \rrbracket} \longrightarrow \mathcal{C}_{\llbracket \Gamma, \mathbf{x} : A \rrbracket} \\ & \pi_{\llbracket \Gamma; A \rrbracket}^* \dashv \Pi_{\llbracket \Gamma; A \rrbracket} : \mathcal{C}_{\llbracket \Gamma, \mathbf{x} : A \rrbracket} \longrightarrow \mathcal{C}_{\llbracket \Gamma \rrbracket} \end{split}$$

Digression: dep. elimination of 0 and +

The coproduct type A + B:

[Jacobs'99]

- require $p: \mathcal{V} \longrightarrow \mathcal{B}$ to have split fibred coproducts $A +_X B$, and
- $\langle \{ \mathsf{inl}_A \}^*, \{ \mathsf{inr}_B \}^* \rangle : \mathcal{V}_{\{A+_X B\}} \longrightarrow \mathcal{V}_{\{A\}} \times \mathcal{V}_{\{B\}}$ to be fully-faith.
- allows one to interpret dependent case analysis, i.e.,

$$\mathcal{V}_{\{A\}}\left(1_{\{A\}}, \{\operatorname{inl}_A\}^*(C)\right) \times \mathcal{V}_{\{B\}}\left(1_{\{B\}}, \{\operatorname{inr}_B\}^*(C)\right) \\ \cong \\ \mathcal{V}_{\{A+_{X}B\}}\left(1_{\{A+_{X}B\}}, C\right)$$

provides semantics for

$$\frac{\Gamma, y_1 : A \vdash W_1 : C[\operatorname{inl}_A y_1/x] \quad \Gamma, y_2 : B \vdash W_2 : C[\operatorname{inr}_B y_2/x]}{\Gamma, x : A + B \vdash \operatorname{case} x \text{ of } (\operatorname{inl}(y_1) \mapsto W_1, \operatorname{inr}(y_2) \mapsto W_2) : C[\operatorname{inr}_B y_2/x]}$$

Digression: dep. elimination of 0 and +

The coproduct type A + B:

[Jacobs'99]

- require $p: \mathcal{V} \longrightarrow \mathcal{B}$ to have split fibred coproducts $A +_X B$, and
- $\bullet \ \langle \{\mathsf{inl}_A\}^*, \{\mathsf{inr}_B\}^* \rangle : \mathcal{V}_{\{A+_XB\}} \longrightarrow \mathcal{V}_{\{A\}} \times \mathcal{V}_{\{B\}} \ \mathsf{to be fully-faith}.$
- allows one to interpret dependent case analysis, i.e.,

$$\mathcal{V}_{\{A\}}\left(1_{\{A\}}, \{\operatorname{inl}_A\}^*(C)\right) \times \mathcal{V}_{\{B\}}\left(1_{\{B\}}, \{\operatorname{inr}_B\}^*(C)\right) \\ \cong \\ \mathcal{V}_{\{A+\times B\}}\left(1_{\{A+\times B\}}, C\right)$$

provides semantics for

$$\frac{\Gamma, y_1 : A \vdash W_1 : C[\operatorname{inl}_A y_1/x] \quad \Gamma, y_2 : B \vdash W_2 : C[\operatorname{inr}_B y_2/x]}{\Gamma, x : A + B \vdash \operatorname{case} x \text{ of } (\operatorname{inl}(y_1) \mapsto W_1, \operatorname{inr}(y_2) \mapsto W_2) : C}$$

Digression: dep. elimination of 0 and +

The coproduct type A + B:

[Jacobs'99]

- require $p: \mathcal{V} \longrightarrow \mathcal{B}$ to have split fibred coproducts $A +_X B$, and
- $\langle \{ \mathsf{inl}_A \}^*, \{ \mathsf{inr}_B \}^* \rangle : \mathcal{V}_{\{A+_XB\}} \longrightarrow \mathcal{V}_{\{A\}} \times \mathcal{V}_{\{B\}}$ to be fully-faith.
- allows one to interpret dependent case analysis, i.e.,

$$\mathcal{V}_{\{A\}}\left(1_{\{A\}}, \{\mathsf{inl}_A\}^*(C)\right) \times \mathcal{V}_{\{B\}}\left(1_{\{B\}}, \{\mathsf{inr}_B\}^*(C)\right) \\ \cong \\ \mathcal{V}_{\{A+_XB\}}\left(1_{\{A+_XB\}}, C\right)$$

provides semantics for

$$\frac{\Gamma, y_1 : A \vdash W_1 : C[\mathtt{inl}_A \ y_1/x] \quad \Gamma, y_2 : B \vdash W_2 : C[\mathtt{inr}_B \ y_2/x]}{\Gamma, x : A + B \vdash \mathtt{case} \ x \ \mathtt{of} \ (\mathtt{inl}(y_1) \mapsto W_1, \mathtt{inr}(y_2) \mapsto W_2) : C}$$

Digression: dep. elimination of colimits

A generalisation:

[Ahman'17]

- Idea: fully-faith. for cocones $A \longrightarrow A \circledast_X B \longleftarrow B$ is enough, and we can generalise this to all split fibred colimits
- Theorem:
 - if for every object $X \in \mathcal{B}$ and diagram $J : \mathcal{D} \longrightarrow \mathcal{V}_X$ there exists a cocone $\underline{\operatorname{in}}^J : J \longrightarrow \Delta(\underline{\operatorname{colim}}(J))$ in \mathcal{V}_X ,
 - such that f*(in^J_D) = in^{f*oJ}_D, for any f : X → Y, and such that the unique mediating functor

$$\begin{split} & \langle \{\underline{\operatorname{in}}_D^J\}_{D\in\mathcal{D}}^* \rangle : \mathcal{V}_{\{\underline{\operatorname{colim}}(J)\}} \longrightarrow \operatorname{lim}(\widehat{J}) \\ & \text{s fully-faithful (for } \widehat{J} : \mathcal{D}^{op} \longrightarrow \operatorname{Cat, where } \widehat{J}(D) = \mathcal{V}_{\{J(D)\}}) \end{split}$$

then p has split fibred colimits of shape D, and
 p supports dependent elimination for them (analogously to +x)

Digression: dep. elimination of colimits

A generalisation:

[Ahman'17]

• Idea: fully-faith. for cocones $A \longrightarrow A \circledast_X B \longleftarrow B$ is enough, and we can generalise this to all split fibred colimits

• Theorem:

- if for every object X ∈ B and diagram J : D → V_X
 there exists a cocone in J : J → Δ(colim(J)) in V_X,
- such that $f^*(\underline{\operatorname{in}}_D^J) = \underline{\operatorname{in}}_D^{f^*\circ J}$, for any $f: X \longrightarrow Y$, and such that the unique mediating functor

$$\langle \{\underline{\mathsf{in}}_D^J\}_{D\in\mathcal{D}}^* \rangle : \mathcal{V}_{\{\underline{\mathsf{colim}}(J)\}} \longrightarrow \mathsf{lim}(\widehat{J})$$
 is fully-faithful (for $\widehat{J}: \mathcal{D}^{op} \longrightarrow \mathsf{Cat}$, where $\widehat{J}(D) = \mathcal{V}_{\{J(D)\}}$),

then p has split fibred colimits of shape D, and
 p supports dependent elimination for them (analogously to +x)

Example 1 (identity adjunctions): $Id_{\mathcal{V}} \dashv Id_{\mathcal{V}} : \mathcal{V} \longrightarrow \mathcal{V}$

- $\mathcal{C} \stackrel{\mathsf{def}}{=} \mathcal{V}$
- $q \stackrel{\text{def}}{=} p$
- $F \stackrel{\text{def}}{=} \operatorname{Id}_{\mathcal{V}}$
- $U \stackrel{\text{def}}{=} \operatorname{Id}_{\mathcal{V}}$

Note: sound as long as we haven't included any effects

Example 2 (models of Egger et al.'s EEC):

- given an adjunction $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}} : \mathcal{E} \longrightarrow \mathcal{D}$, such that
 - \mathcal{D} is a CCC (with 0, ...), and
 - $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}}$ and \mathcal{E} are \mathcal{D} -enriched, and
 - $\mathcal E$ has all $\mathcal D$ -tensors $(A \otimes \underline{\mathcal C})$ and $\mathcal D$ -cotensors $(A \Rightarrow \underline{\mathcal C})$
- we use the simple fibration $p: s(\mathcal{D}) \longrightarrow \mathcal{D}$, where

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f,g) \stackrel{\text{def}}{=} f$ where $f:X \longrightarrow Y$ $g:X \times A \longrightarrow B$

• then, we define the simpl. \mathcal{D} -enrich. fib. $q: \mathbf{s}(\mathcal{D}, \mathcal{E}) \longrightarrow \mathcal{D}$, where

$$q(X,\underline{C}) \stackrel{\text{def}}{=} X \qquad q(f,h) \stackrel{\text{def}}{=} f \qquad \text{where} \quad f: X \longrightarrow Y \quad h: X \otimes \underline{C} \longrightarrow \underline{D}$$

• finally, we define $F\dashv U$ as the lifting of $F_{\sf EEC}\dashv U_{\sf EEC}$

$$F(X,A) \stackrel{\text{def}}{=} (X, F_{\text{EEC}}(A))$$
 $U(X,\underline{C}) \stackrel{\text{def}}{=} (X, U_{\text{EEC}}(\underline{C}))$

Example 2 (models of Egger et al.'s EEC):

- given an adjunction $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}} : \mathcal{E} \longrightarrow \mathcal{D}$, such that
 - \mathcal{D} is a CCC (with 0, ...), and
 - $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}}$ and \mathcal{E} are \mathcal{D} -enriched, and
 - \mathcal{E} has all \mathcal{D} -tensors $(A \otimes \underline{C})$ and \mathcal{D} -cotensors $(A \Rightarrow \underline{C})$
- we use the simple fibration $p : s(\mathcal{D}) \longrightarrow \mathcal{D}$, where

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f,g) \stackrel{\text{def}}{=} f$ where $f: X \longrightarrow Y$ $g: X \times A \longrightarrow B$

ullet then, we define the simpl. $\mathcal D$ -enrich. fib. $q:\mathsf s(\mathcal D,\mathcal E)\longrightarrow \mathcal D$, where

$$q(X,\underline{C}) \stackrel{\text{def}}{=} X \qquad q(f,h) \stackrel{\text{def}}{=} f \qquad \text{where} \quad f:X \longrightarrow Y \quad h:X \otimes \underline{C} \longrightarrow \underline{D}$$

ullet finally, we define $F\dashv U$ as the lifting of $F_{\mathsf{EEC}}\dashv U_{\mathsf{EEC}}$

$$F(X,A) \stackrel{\text{def}}{=} (X, F_{\text{EEC}}(A))$$
 $U(X,\underline{C}) \stackrel{\text{def}}{=} (X, U_{\text{EEC}}(\underline{C}))$

Example 2 (models of Egger et al.'s EEC):

- given an adjunction $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}} : \mathcal{E} \longrightarrow \mathcal{D}$, such that
 - \mathcal{D} is a CCC (with 0, ...), and
 - $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}}$ and \mathcal{E} are \mathcal{D} -enriched, and
 - \mathcal{E} has all \mathcal{D} -tensors $(A \otimes \underline{C})$ and \mathcal{D} -cotensors $(A \Rightarrow \underline{C})$
- we use the simple fibration $p : s(\mathcal{D}) \longrightarrow \mathcal{D}$, where

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f,g) \stackrel{\text{def}}{=} f$ where $f: X \longrightarrow Y$ $g: X \times A \longrightarrow B$

ullet then, we define the simpl. $\mathcal D$ -enrich. fib. $q:\mathsf s(\mathcal D,\mathcal E)\longrightarrow \mathcal D$, where

$$q(X,\underline{C})\stackrel{\mathrm{def}}{=} X$$
 $q(f,h)\stackrel{\mathrm{def}}{=} f$ where $f:X\longrightarrow Y$ $h:X\otimes\underline{C}\longrightarrow\underline{D}$

ullet finally, we define $F\dashv U$ as the lifting of $F_{\mathsf{EEC}}\dashv U_{\mathsf{EEC}}$

$$F(X,A) \stackrel{\text{def}}{=} (X, F_{\text{EEC}}(A))$$
 $U(X,\underline{C}) \stackrel{\text{def}}{=} (X, U_{\text{EEC}}(\underline{C}))$

Example 2 (models of Egger et al.'s EEC):

- given an adjunction $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}} : \mathcal{E} \longrightarrow \mathcal{D}$, such that
 - \mathcal{D} is a CCC (with 0, ...), and
 - $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}}$ and \mathcal{E} are \mathcal{D} -enriched, and
 - \mathcal{E} has all \mathcal{D} -tensors $(A \otimes \underline{C})$ and \mathcal{D} -cotensors $(A \Rightarrow \underline{C})$
- we use the simple fibration $p : s(\mathcal{D}) \longrightarrow \mathcal{D}$, where

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f,g) \stackrel{\text{def}}{=} f$ where $f: X \longrightarrow Y$ $g: X \times A \longrightarrow B$

ullet then, we define the simpl. ${\mathcal D}$ -enrich. fib. $q: \mathsf{s}({\mathcal D}, {\mathcal E}) \longrightarrow {\mathcal D}$, where

$$q(X,\underline{C})\stackrel{\mathrm{def}}{=} X \qquad q(f,h)\stackrel{\mathrm{def}}{=} f \qquad \text{where} \quad f:X\longrightarrow Y \quad h:X\otimes\underline{C}\longrightarrow\underline{D}$$

• finally, we define $F \dashv U$ as the lifting of $F_{\text{EEC}} \dashv U_{\text{EEC}}$

$$F(X, A) \stackrel{\text{def}}{=} (X, F_{\text{EEC}}(A))$$
 $U(X, \underline{C}) \stackrel{\text{def}}{=} (X, U_{\text{EEC}}(\underline{C}))$

Example 2 (models of Egger et al.'s EEC):

- given an adjunction $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}} : \mathcal{E} \longrightarrow \mathcal{D}$, such that
 - \mathcal{D} is a CCC (with $0, \ldots$), and
 - $F_{\mathsf{EEC}} \dashv U_{\mathsf{EEC}}$ and \mathcal{E} are \mathcal{D} -enriched, and
 - \mathcal{E} has all \mathcal{D} -tensors $(A \otimes \underline{C})$ and \mathcal{D} -cotensors $(A \Rightarrow \underline{C})$
- we use the simple fibration $p : s(\mathcal{D}) \longrightarrow \mathcal{D}$, where

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f,g) \stackrel{\text{def}}{=} f$ where $f: X \longrightarrow Y$ $g: X \times A \longrightarrow B$

• then, we define the simpl. \mathcal{D} -enrich. fib. $q: \mathsf{s}(\mathcal{D}, \mathcal{E}) \longrightarrow \mathcal{D}$, where

$$q(X,\underline{C}) \stackrel{\text{def}}{=} X$$
 $q(f,h) \stackrel{\text{def}}{=} f$ where $f: X \longrightarrow Y$ $h: X \otimes \underline{C} \longrightarrow \underline{D}$

• finally, we define $F \dashv U$ as the lifting of $F_{EEC} \dashv U_{EEC}$

$$F(X,A) \stackrel{\text{def}}{=} (X, F_{\text{EEC}}(A))$$
 $U(X,\underline{C}) \stackrel{\text{def}}{=} (X, U_{\text{EEC}}(\underline{C}))$

Example 3 (families fibrations):

- given an adjunction $F_{\mathcal{D}} \dashv U_{\mathcal{D}} : \mathcal{D} \longrightarrow \mathsf{Set}$, such that
 - ullet $\mathcal D$ has set-indexed products and coproducts
- we use the families of sets fibration $p : Fam(Set) \longrightarrow Set$

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f, \{g_x\}_{x \in X}) \stackrel{\text{def}}{=} f$

where

$$X, Y \in \mathsf{Set}$$
 $A: X \longrightarrow \mathsf{Set}$ $B: Y \longrightarrow \mathsf{Set}$

$$f:X\longrightarrow Y \qquad g_{x}:A(x)\longrightarrow (B\circ f)(x)$$

- ullet analogously, we use the ${\mathcal D}$ -valued fam. fib. q : $\mathsf{Fam}({\mathcal D}) \longrightarrow \mathsf{Set}$
- ullet finally, we define $F\dashv U$ as the lifting of $F_{\mathcal{D}}\dashv U_{\mathcal{D}}$

$$F(X, A) \stackrel{\text{def}}{=} (X, F_{\mathcal{D}} \circ A) \qquad U(X, \underline{C}) \stackrel{\text{def}}{=} (X, U_{\mathcal{D}} \circ \underline{C})$$

Example 3 (families fibrations):

- given an adjunction $F_{\mathcal{D}} \dashv U_{\mathcal{D}} : \mathcal{D} \longrightarrow \mathsf{Set}$, such that
 - ullet D has set-indexed products and coproducts
- we use the families of sets fibration $p : Fam(Set) \longrightarrow Set$

$$p(X, A) \stackrel{\text{def}}{=} X \qquad p(f, \{g_x\}_{x \in X}) \stackrel{\text{def}}{=} f$$

where

$$X, Y \in \mathsf{Set} \qquad A: X \longrightarrow \mathsf{Set} \qquad B: Y \longrightarrow \mathsf{Set}$$

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$

- ullet analogously, we use the ${\mathcal D}$ -valued fam. fib. q : $\mathsf{Fam}({\mathcal D}) \longrightarrow \mathsf{Set}$
- ullet finally, we define $F\dashv U$ as the lifting of $F_{\mathcal{D}}\dashv U_{\mathcal{D}}$

$$F(X, A) \stackrel{\text{def}}{=} (X, F_{\mathcal{D}} \circ A) \qquad U(X, \underline{C}) \stackrel{\text{def}}{=} (X, U_{\mathcal{D}} \circ \underline{C})$$

Example 3 (families fibrations):

- given an adjunction $F_{\mathcal{D}} \dashv U_{\mathcal{D}} : \mathcal{D} \longrightarrow \mathsf{Set}$, such that
 - ullet D has set-indexed products and coproducts
- we use the families of sets fibration $p : Fam(Set) \longrightarrow Set$

$$p(X,A) \stackrel{\text{def}}{=} X \qquad p(f,\{g_X\}_{X \in X}) \stackrel{\text{def}}{=} f$$

where

$$X, Y \in \mathsf{Set}$$
 $A: X \longrightarrow \mathsf{Set}$ $B: Y \longrightarrow \mathsf{Set}$

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$

- ullet analogously, we use the $\mathcal D$ -valued fam. fib. $q:\mathsf{Fam}(\mathcal D)\longrightarrow\mathsf{Set}$
- ullet finally, we define $F\dashv U$ as the lifting of $F_{\mathcal{D}}\dashv U_{\mathcal{D}}$

$$F(X,A) \stackrel{\text{def}}{=} (X, F_{\mathcal{D}} \circ A)$$
 $U(X,\underline{C}) \stackrel{\text{def}}{=} (X, U_{\mathcal{D}} \circ \underline{C})$

Example 3 (families fibrations):

- given an adjunction $F_{\mathcal{D}} \dashv U_{\mathcal{D}} : \mathcal{D} \longrightarrow \mathsf{Set}$, such that
 - ullet D has set-indexed products and coproducts
- we use the families of sets fibration $p : Fam(Set) \longrightarrow Set$

$$p(X,A) \stackrel{\text{def}}{=} X \qquad p(f,\{g_X\}_{X \in X}) \stackrel{\text{def}}{=} f$$

where

$$X, Y \in \mathsf{Set} \qquad A: X \longrightarrow \mathsf{Set} \qquad B: Y \longrightarrow \mathsf{Set}$$

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$

- ullet analogously, we use the $\mathcal D$ -valued fam. fib. $q:\mathsf{Fam}(\mathcal D)\longrightarrow\mathsf{Set}$
- finally, we define $F\dashv U$ as the lifting of $F_{\mathcal{D}}\dashv U_{\mathcal{D}}$

$$F(X,A) \stackrel{\text{def}}{=} (X, F_{\mathcal{D}} \circ A) \qquad U(X,\underline{C}) \stackrel{\text{def}}{=} (X, U_{\mathcal{D}} \circ \underline{C})$$

Example 3 (families fibrations):

- given an adjunction $F_{\mathcal{D}} \dashv U_{\mathcal{D}} : \mathcal{D} \longrightarrow \mathsf{Set}$, such that
 - ullet D has set-indexed products and coproducts
- we use the families of sets fibration $p : Fam(Set) \longrightarrow Set$

$$p(X, A) \stackrel{\text{def}}{=} X \qquad p(f, \{g_x\}_{x \in X}) \stackrel{\text{def}}{=} f$$

$$X, Y \in \mathsf{Set}$$
 $A: X \longrightarrow \mathsf{Set}$ $B: Y \longrightarrow \mathsf{Set}$

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$

- ullet analogously, we use the \mathcal{D} -valued fam. fib. $q:\mathsf{Fam}(\mathcal{D})\longrightarrow\mathsf{Set}$
- finally, we define $F \dashv U$ as the lifting of $F_{\mathcal{D}} \dashv U_{\mathcal{D}}$ $F(X,A) \stackrel{\text{def}}{=} (X,F_{\mathcal{D}} \circ A) \qquad U(X,C) \stackrel{\text{def}}{=} (X,U_{\mathcal{D}} \circ C)$
- Ex.: EM-cats. $(\mathcal{D} \stackrel{\text{def}}{=} \operatorname{Set}^{\mathsf{T}})$ and Lawere ths. $(\mathcal{D} \stackrel{\text{def}}{=} \operatorname{Mod}(\mathcal{L}, \operatorname{Set}))$

Example 4 (continuous families of cpos for $\mu x : U\underline{C}.M$):

- given a CPO-enriched monad T on CPO, such that
 - **T** supports least zero-ary alg. op. $(\bot_A : 1 \longrightarrow TA)$, and
 - CPO^T has reflexive coequalizers
- we use the continuous fam. fib. $p : CFam(CPO) \longrightarrow CPO$

$$p(X, A) \stackrel{\text{def}}{=} X$$
 $p(f, \{g_X\}_{X \in X}) \stackrel{\text{def}}{=} f$

$$X \in \mathsf{CPO}$$
 $A: X \longrightarrow \mathsf{CPO}^{\mathsf{EP}}$ an ω -continuous functor

$$f:X\longrightarrow Y$$
 $g_{x}:A(x)\longrightarrow (B\circ f)(x)$ s.t. idx. is ω -continuous

- ullet analogously, we use the cont. fam. fib. $q:\mathsf{CFam}(\mathsf{CPO}^\mathsf{T})\longrightarrow \mathsf{CPO}$
- finally, we define $F \dashv U$ as the lifting of $F^{\mathsf{T}} \dashv U^{\mathsf{T}}$
- Ex.: monads from discrete CPO-enriched countable Lawere ths.

Example 4 (continuous families of cpos for $\mu x : U\underline{C}.M$):

- given a CPO-enriched monad T on CPO, such that
 - **T** supports least zero-ary alg. op. $(\bot_A : 1 \longrightarrow TA)$, and
 - CPO^T has reflexive coequalizers
- we use the continuous fam. fib. $p : CFam(CPO) \longrightarrow CPO$

$$p(X, A) \stackrel{\text{def}}{=} X$$
 $p(f, \{g_x\}_{x \in X}) \stackrel{\text{def}}{=} f$

$$X \in \mathsf{CPO}$$
 $A: X \longrightarrow \mathsf{CPO}^{\mathsf{EP}}$ an ω -continuous functor

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$ s.t. idx. is ω -continuous

- ullet analogously, we use the cont. fam. fib. $q:\mathsf{CFam}(\mathsf{CPO}^\mathsf{T})\longrightarrow\mathsf{CPO}$
- finally, we define $F \dashv U$ as the lifting of $F^{\mathsf{T}} \dashv U^{\mathsf{T}}$
- Ex.: monads from discrete CPO-enriched countable Lawere ths.

Example 4 (continuous families of cpos for $\mu x: U\underline{C}.M$):

- given a CPO-enriched monad T on CPO, such that
 - **T** supports least zero-ary alg. op. $(\bot_A : 1 \longrightarrow TA)$, and
 - CPO^T has reflexive coequalizers
- we use the continuous fam. fib. $p : CFam(CPO) \longrightarrow CPO$

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f, \{g_X\}_{X \in X}) \stackrel{\text{def}}{=} f$

where

 $X \in \mathsf{CPO}$ $A: X \longrightarrow \mathsf{CPO}^{\mathsf{EP}}$ an ω -continuous functor

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$ s.t. idx. is ω -continuous

- analogously, we use the cont. fam. fib. $q : \mathsf{CFam}(\mathsf{CPO}^\mathsf{T}) \longrightarrow \mathsf{CPO}$
- finally, we define $F \dashv U$ as the lifting of $F^{\mathsf{T}} \dashv U^{\mathsf{T}}$
- Ex.: monads from discrete CPO-enriched countable Lawere ths.

Example 4 (continuous families of cpos for $\mu x: U\underline{C}.M$):

- given a CPO-enriched monad T on CPO, such that
 - **T** supports least zero-ary alg. op. $(\bot_A : 1 \longrightarrow TA)$, and
 - CPO^T has reflexive coequalizers
- we use the continuous fam. fib. $p : CFam(CPO) \longrightarrow CPO$

$$p(X,A) \stackrel{\text{def}}{=} X \qquad p(f, \{g_x\}_{x \in X}) \stackrel{\text{def}}{=} f$$

$$X \in \mathsf{CPO}$$
 $A: X \longrightarrow \mathsf{CPO}^{\mathsf{EP}}$ an ω -continuous functor

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$ s.t. idx. is ω -continuous

- analogously, we use the cont. fam. fib. $q: \mathsf{CFam}(\mathsf{CPO}^\mathsf{T}) \longrightarrow \mathsf{CPO}$
- finally, we define $F \dashv U$ as the lifting of $F^{\mathsf{T}} \dashv U^{\mathsf{T}}$
- Ex.: monads from discrete CPO-enriched countable Lawere ths.

Example 4 (continuous families of cpos for $\mu x : U\underline{C}.M$):

- given a CPO-enriched monad **T** on CPO, such that
 - **T** supports least zero-ary alg. op. $(\bot_A : 1 \longrightarrow TA)$, and
 - CPO^T has reflexive coequalizers
- we use the continuous fam. fib. $p : CFam(CPO) \longrightarrow CPO$

$$p(X,A) \stackrel{\text{def}}{=} X$$
 $p(f, \{g_x\}_{x \in X}) \stackrel{\text{def}}{=} f$

$$X \in \mathsf{CPO}$$
 $A: X \longrightarrow \mathsf{CPO}^{\mathsf{EP}}$ an ω -continuous functor

$$f: X \longrightarrow Y$$
 $g_x: A(x) \longrightarrow (B \circ f)(x)$ s.t. idx. is ω -continuous

- ullet analogously, we use the cont. fam. fib. $q: \mathsf{CFam}(\mathsf{CPO}^\mathsf{T}) \longrightarrow \mathsf{CPO}$
- finally, we define $F \dashv U$ as the lifting of $F^{\mathsf{T}} \dashv U^{\mathsf{T}}$
- Ex.: monads from discrete CPO-enriched countable Lawere ths.

Example 4 (continuous families for $\mu x: U\underline{C}.M$):

- Why not use $p: \mathsf{CPO}^{\to} \longrightarrow \mathsf{CPO}$?
- Theorem: CPO is not locally cartesian closed!
 - Idea: Not all functors f^* : CPO/Y \rightarrow CPO/X are left adjoints
 - consider the epimorphism $e \stackrel{\mathsf{def}}{=} n \mapsto n : \mathbb{N}_{=} \longrightarrow \mathbb{N}_{\omega}$ in CPO, and
 - assume given a non-empty cpo X, and
 - consider the constant function $f_{\omega} \stackrel{\text{def}}{=} x \mapsto \omega : X \longrightarrow \mathbb{N}_{\omega}$,
 - then we have the following situation

$$(\emptyset, =) \xrightarrow{f_{\omega}^{*}(e)} (\{\langle x, \omega \rangle \mid x \in |X|\}, \leq) \xrightarrow{g_{1}} Y$$

Example 4 (continuous families for $\mu x : U\underline{C}.M$):

- Why not use $p: \mathsf{CPO}^{\to} \longrightarrow \mathsf{CPO}$?
- **Theorem:** CPO is not locally cartesian closed!
 - Idea: Not all functors f^* : CPO/ $Y \to \text{CPO}/X$ are left adjoints
 - ullet consider the epimorphism $e\stackrel{\mathsf{def}}{=} n\mapsto n: \mathbb{N}_{=} \longrightarrow \mathbb{N}_{\omega}$ in CPO, and
 - assume given a non-empty cpo X, and
 - consider the constant function $f_{\omega} \stackrel{\text{def}}{=} x \mapsto \omega : X \longrightarrow \mathbb{N}_{\omega}$,
 - then we have the following situation

$$(\emptyset, =) \xrightarrow{f_{\omega}^{*}(e)} (\{\langle x, \omega \rangle \mid x \in |X|\}, \leq) \xrightarrow{g_{1}} Y$$

Example 4 (continuous families for $\mu x : U\underline{C}.M$):

- Why not use $p: \mathsf{CPO}^{\to} \longrightarrow \mathsf{CPO}$?
- **Theorem:** CPO is not locally cartesian closed!
 - Idea: Not all functors f^* : CPO/ $Y \to \text{CPO}/X$ are left adjoints
 - consider the epimorphism $e \stackrel{\text{def}}{=} n \mapsto n : \mathbb{N}_{=} \longrightarrow \mathbb{N}_{\omega}$ in CPO, and
 - ullet assume given a non-empty cpo X, and
 - consider the constant function $f_{\omega} \stackrel{\text{def}}{=} x \mapsto \omega : X \longrightarrow \mathbb{N}_{\omega}$,
 - then we have the following situation

$$(\emptyset, =) \xrightarrow{f_{\omega}^{*}(e)} (\{\langle x, \omega \rangle \mid x \in |X|\}, \leq) \xrightarrow{g_{1}} Y$$

Example 4 (continuous families for $\mu x: U\underline{C}.M$):

- Why not use $p: \mathsf{CPO}^{\to} \longrightarrow \mathsf{CPO}$?
- Theorem: CPO is not locally cartesian closed!
 - **Idea:** Not all functors f^* : CPO/ $Y \to \text{CPO}/X$ are left adjoints
 - consider the epimorphism $e\stackrel{\mathsf{def}}{=} n\mapsto n: \mathbb{N}_{=} \longrightarrow \mathbb{N}_{\omega}$ in CPO, and
 - assume given a non-empty cpo X, and
 - consider the constant function $f_{\omega} \stackrel{\text{def}}{=} x \mapsto \omega : X \longrightarrow \mathbb{N}_{\omega}$,
 - then we have the following situation

Example 4 (continuous families for $\mu x: U\underline{C}.M$):

- Why not use $p: \mathsf{CPO}^{\to} \longrightarrow \mathsf{CPO}$?
- Theorem: CPO is not locally cartesian closed!
 - **Idea:** Not all functors $f^*: CPO/Y \to CPO/X$ are left adjoints
 - consider the epimorphism $e \stackrel{\mathsf{def}}{=} n \mapsto n : \mathbb{N}_{=} \longrightarrow \mathbb{N}_{\omega}$ in CPO, and
 - assume given a non-empty cpo X, and
 - consider the constant function $f_{\omega} \stackrel{\text{def}}{=} x \mapsto \omega : X \longrightarrow \mathbb{N}_{\omega}$,
 - then we have the following situation

Example 5 (EM-resolutions of split fibred monads):

• given a split fibred monad $\mathbf{T} = (T, \eta, \mu)$ on p, i.e.,

• we consider models based on the EM-resolution of T

and show that three familiar results hold for this situation

Example 5 (EM-resolutions of split fibred monads):

• **Theorem 1:** if p supports Π -types, then p^{T} also supports Π -types

• **Theorem 2:** if p supports Σ -types and the dependent strength

$$\sigma_A:\Sigma_A\circ T\longrightarrow T\circ \Sigma_A$$

is a natural isomorphism, then p^{T} also supports Σ -types

 Theorem 3: if p supports Σ-types and p^T has split fibred reflexive coequalizers, then p^T also supports Σ-types

(for corresponding simply typed results, see [Borceux'94] and [Linton'69])

Example 5 (EM-resolutions of split fibred monads):

• Theorem 1: if p supports Π -types, then p^T also supports Π -types

• **Theorem 2:** if p supports Σ -types and the dependent strength

$$\sigma_A: \Sigma_A \circ T \longrightarrow T \circ \Sigma_A$$

is a natural isomorphism, then p^{T} also supports Σ -types

 Theorem 3: if p supports Σ-types and p^T has split fibred reflexive coequalizers, then p^T also supports Σ-types

(for corresponding simply typed results, see [Borceux'94] and [Linton'69]

Examples of fibred adjunction models

Example 5 (EM-resolutions of split fibred monads):

• Theorem 1: if p supports Π -types, then p^T also supports Π -types

• **Theorem 2:** if p supports Σ -types and the dependent strength

$$\sigma_A: \Sigma_A \circ T \longrightarrow T \circ \Sigma_A$$

is a natural isomorphism, then p^{T} also supports Σ -types

 Theorem 3: if p supports Σ-types and p^T has split fibred reflexive coequalizers, then p^T also supports Σ-types

(for corresponding simply typed results, see [Borceux'94] and [Linton'69])

Fibred effect theories \mathcal{T}_{eff} :

signatures of dep. typed operation symbols

$$\frac{\cdot \vdash I \qquad x_i \colon I \vdash O \qquad I \text{ and } O \text{ are pure value types}}{\mathsf{op} \colon (x_i \colon I) \longrightarrow O}$$

equipped with equations on derivable effect terms

In eMLTT:

$$M ::= \ldots \mid \operatorname{op}_{V}^{C}(x.M)$$

General algebraicity equations (in addition to eff. th. eqs.):

$$\frac{\Gamma \trianglerighteq V : I \quad \Gamma, x : O[V/x_i] \trianglerighteq M : \underline{C} \quad \Gamma \mid z : \underline{C} \mid_{\overline{h}} K : \underline{D}}{\Gamma \trianglerighteq K[\operatorname{op}_{\overline{V}}^{\underline{C}}(x.M)/z] = \operatorname{op}_{\overline{V}}^{\underline{D}}(x.K[M/z]) : \underline{D}} \text{ (op : } (x_i : I) \longrightarrow O)$$

Sound semantics: based on

•
$$p : \mathsf{Fam}(\mathsf{Set}) \longrightarrow \mathsf{Set}$$
 and $q : \mathsf{Fam}(\mathsf{Mod}(\mathcal{L}_{\mathcal{T}_{\mathsf{eff}}}, \mathsf{Set})) \longrightarrow \mathsf{Set}$

Fibred effect theories \mathcal{T}_{eff} :

signatures of dep. typed operation symbols

$$\frac{\cdot \vdash I \qquad x_i : I \vdash O \qquad I \text{ and } O \text{ are pure value types}}{\text{op} : (x_i : I) \longrightarrow O}$$

equipped with equations on derivable effect terms

In eMLTT:

$$M ::= \ldots \mid \operatorname{op}_{V}^{\underline{C}}(x.M)$$

General algebraicity equations (in addition to eff. th. eqs.)

$$\frac{\Gamma \trianglerighteq V : I \quad \Gamma, x : O[V/x_i] \trianglerighteq M : \underline{C} \quad \Gamma | z : \underline{C} \trianglerighteq K : \underline{D}}{\Gamma \trianglerighteq K[\operatorname{op}_{\overline{V}}^{\underline{C}}(x.M)/z] = \operatorname{op}_{\overline{V}}^{\underline{D}}(x.K[M/z]) : \underline{D}} (\operatorname{op} : (x_i : I) \longrightarrow O)$$

Sound semantics: based on

ullet $p: \mathsf{Fam}(\mathsf{Set}) \longrightarrow \mathsf{Set}$ and $q: \mathsf{Fam}(\mathsf{Mod}(\mathcal{L}_{\mathcal{T}_{\mathsf{eff}}}, \mathsf{Set})) \longrightarrow \mathsf{Set}$

Fibred effect theories \mathcal{T}_{eff} :

signatures of dep. typed operation symbols

$$\frac{\cdot \vdash I \qquad x_i : I \vdash O \qquad I \text{ and } O \text{ are pure value types}}{\text{op} : (x_i : I) \longrightarrow O}$$

equipped with equations on derivable effect terms

In eMLTT:

$$M ::= \ldots \mid \operatorname{op}_{V}^{\underline{C}}(x.M)$$

General algebraicity equations (in addition to eff. th. eqs.):

$$\frac{\Gamma \vdash_{\nabla} V : I \quad \Gamma, x : O[V/x_i] \vdash_{\nabla} M : \underline{C} \quad \Gamma \mid_{\mathbf{Z}} : \underline{C} \vdash_{\nabla} \underline{K} : \underline{D}}{\Gamma \vdash_{\nabla} \underline{K}[\operatorname{op}_{V}^{\underline{C}}(x.M)/\mathbf{z}] = \operatorname{op}_{V}^{\underline{D}}(x.\underline{K}[M/\mathbf{z}]) : \underline{D}} \quad (\operatorname{op} : (x_i : I) \longrightarrow O)$$

Sound semantics: based on

•
$$p: \mathsf{Fam}(\mathsf{Set}) \longrightarrow \mathsf{Set}$$
 and $q: \mathsf{Fam}(\mathsf{Mod}(\mathcal{L}_{\mathcal{T}_{\mathsf{eff}}}, \mathsf{Set})) \longrightarrow \mathsf{Set}$

Fibred effect theories \mathcal{T}_{eff} :

• signatures of dep. typed operation symbols

$$\frac{\cdot \vdash I \qquad x_i : I \vdash O \qquad I \text{ and } O \text{ are pure value types}}{\text{op} : (x_i : I) \longrightarrow O}$$

equipped with equations on derivable effect terms

In eMLTT:

$$M ::= \ldots \mid \operatorname{op}_{V}^{\underline{C}}(x.M)$$

General algebraicity equations (in addition to eff. th. eqs.):

$$\frac{\Gamma \vdash_{\nabla} V : I \quad \Gamma, x : O[V/x_i] \vdash_{\nabla} M : \underline{C} \quad \Gamma \mid_{\mathbf{Z}} : \underline{C} \vdash_{\Gamma} \underline{K} : \underline{D}}{\Gamma \vdash_{\nabla} K[\operatorname{op}_{V}^{\underline{C}}(x.M)/\mathbf{z}] = \operatorname{op}_{V}^{\underline{D}}(x.K[M/\mathbf{z}]) : \underline{D}} \text{ (op : } (x_i : I) \longrightarrow O)$$

Sound semantics: based on

• $p : \mathsf{Fam}(\mathsf{Set}) \longrightarrow \mathsf{Set}$ and $q : \mathsf{Fam}(\mathsf{Mod}(\mathcal{L}_{\mathcal{T}_{\mathsf{eff}}}, \mathsf{Set})) \longrightarrow \mathsf{Set}$

Example 1 (interactive I/O):

- ullet read : $1 \longrightarrow \mathsf{Chr}$ $(\mathsf{Chr} \stackrel{\mathsf{def}}{=} 1 + \ldots + 1)$ write : $\mathsf{Chr} \longrightarrow 1$
- no equations

Example 2 (global state with location-dependent store type):

```
• \diamond \vdash \mathsf{Loc}

x : \mathsf{Loc} \vdash \mathsf{Val}

\diamond \vdash \mathsf{isDec}_{\mathsf{Loc}} : \Pi x : \mathsf{Loc} . \Pi y : \mathsf{Loc} . (x =_{\mathsf{Loc}} y) + (x =_{\mathsf{Loc}} y \to 0)
```

- $\begin{array}{c} \texttt{get}: (x : \mathsf{Loc}) \longrightarrow \mathsf{Val} \\ \\ \mathsf{put}: (\Sigma x : \mathsf{Loc}.\mathsf{Val}) \longrightarrow \end{array}$
- \bullet five equations (two of them branching on $is \mathsf{Dec}_\mathsf{Loc}$

Example 3 (dep. typed update monads $TX \stackrel{\text{def}}{=} \Pi_{s:S}$. $Ps \times X$)

Example 1 (interactive I/O):

- read : $1 \longrightarrow \mathsf{Chr}$ $(\mathsf{Chr} \stackrel{\mathsf{def}}{=} 1 + \ldots + 1)$ write : $\mathsf{Chr} \longrightarrow 1$
- no equations

Example 2 (global state with location-dependent store type):

- $\diamond \vdash \mathsf{Loc}$ $x : \mathsf{Loc} \vdash \mathsf{Val}$ $\diamond \vdash \mathsf{isDec}_{\mathsf{Loc}} : \mathsf{\Pi} x : \mathsf{Loc} . \mathsf{\Pi} y : \mathsf{Loc} . (x =_{\mathsf{Loc}} y) + (x =_{\mathsf{Loc}} y \to 0)$
- get : $(x:Loc) \longrightarrow Val$ put : $(\Sigma x:Loc.Val) \longrightarrow 1$
- five equations (two of them branching on isDec_{Loc})

Example 1 (interactive I/O):

- read : $1 \longrightarrow \mathsf{Chr}$ $(\mathsf{Chr} \stackrel{\mathsf{def}}{=} 1 + \ldots + 1)$ write : $\mathsf{Chr} \longrightarrow 1$
- no equations

Example 2 (global state with location-dependent store type):

- ⋄ ⊢ Loc x:Loc ⊢ Val
 - $\diamond \vdash \mathsf{isDec}_{\mathsf{Loc}} : \mathsf{\Pi} x : \mathsf{Loc} . \mathsf{\Pi} y : \mathsf{Loc} . (x =_{\mathsf{Loc}} y) + (x =_{\mathsf{Loc}} y \to 0)$
 - get : $(x:Loc) \longrightarrow Val$ put : $(\Sigma x:Loc.Val) \longrightarrow 1$
 - five equations (two of them branching on isDec_{Loc})

Example 3 (dep. typed update monads $TX \stackrel{\text{def}}{=} \Pi_{s:S}$. $Ps \times X$)

Handlers of algebraic effects (for programming and extrinsic reasoning)

Handlers of alg. effects (for programming)

Idea: Generalisation of exception handlers [Plotkin, Pretnar'09]

 ${\sf Handler} = {\sf Algebra} \quad {\sf and} \quad {\sf Handling} = {\sf Homomorphism}$

Usual term-level presentation:

$$\underline{\Gamma} \vDash M : FA \qquad \Gamma, x_{\nu} : I, x_{k} : O[x_{\nu}/x_{i}] \to U\underline{C} \vDash N_{\text{op}} : \underline{C} \qquad \Gamma, y : A \vDash N_{\text{ret}} : \underline{C}$$

satisfying

(return
$$V$$
) handled with $\{...\}_{\mathsf{op} \in \mathcal{T}_{\mathsf{eff}}}$ to $y : A$ in $N_{\mathsf{ret}} = N_{\mathsf{ret}}[V/x]$

$$(\operatorname{op}_V^{\mathcal{C}}(x.M))$$
 handled with $\{...\}_{\operatorname{op}\in\mathcal{T}_{\operatorname{eff}}}$ to $y:A$ in $N_{\operatorname{ret}}=N_{\operatorname{op}}[V/x_v][.../x_v]$

Typical use case for programming:

- write your programs using alg. ops. (e.g., get and put)
- use handlers to provide fit-for-purpose impl. (e.g., $S \to X \times S$)

Handlers of alg. effects (for programming)

Usual term-level presentation:

$$\frac{\Gamma \vdash M : \mathit{FA} \qquad \Gamma, x_{v} : \mathit{I}, x_{k} : \mathit{O}[x_{v}/x_{i}] \rightarrow \mathit{U}\underline{C} \vdash \mathsf{N}_{\mathsf{op}} : \underline{C} \qquad \Gamma, y : \mathit{A} \vdash \mathsf{N}_{\mathsf{ret}} : \underline{C}}{\Gamma \vdash \mathsf{C} \qquad \mathsf{M} \text{ handled with } \{\mathsf{op}_{x_{v}}(x_{k}) \mapsto \mathit{N}_{\mathsf{op}}\}_{\mathsf{op} \in \mathcal{T}_{\mathsf{eff}}} \text{ to } y : \mathit{A} \text{ in}_{\underline{C}} \qquad \mathsf{N}_{\mathsf{ret}} : \underline{C}}$$
 satisfying

(return V) handled with $\{...\}_{\mathsf{op} \in \mathcal{T}_{\mathsf{eff}}}$ to y : A in $N_{\mathsf{ret}} = N_{\mathsf{ret}}[V/x]$ (op $\frac{C}{V}(x.M)$) handled with $\{...\}_{\mathsf{op} \in \mathcal{T}_{\mathsf{eff}}}$ to y : A in $N_{\mathsf{ret}} = N_{\mathsf{op}}[V/x_v][.../x_k]$

Typical use case for programming:

- write your programs using alg. ops. (e.g., get and put)
- use handlers to provide fit-for-purpose impl. (e.g., $S \to X \times S$)

Handlers of alg. effects (for programming)

Idea: Generalisation of exception handlers [Plotkin, Pretnar'09]

 $\mathsf{Handler} = \mathsf{Algebra} \quad \mathsf{and} \quad \mathsf{Handling} = \mathsf{Homomorphism}$

Usual term-level presentation:

$$\frac{\Gamma \vdash_{\overline{c}} M : FA \qquad \Gamma, x_v : I, x_k : O[x_v/x_i] \to U\underline{C} \vdash_{\overline{c}} N_{op} : \underline{C} \qquad \Gamma, y : A \vdash_{\overline{c}} N_{ret} : \underline{C}}{\Gamma \vdash_{\overline{c}} M \text{ handled with } \{op_{x_v}(x_k) \mapsto N_{op}\}_{op \in \mathcal{T}_{eff}} \text{ to } y : A \text{ in}_{\underline{C}} N_{ret} : \underline{C}}$$
satisfying

 $(\text{return }V) \text{ handled with } \{...\}_{\mathsf{op}\in\mathcal{T}_{\mathsf{eff}}} \text{ to } y\!:\!A \text{ in } N_{\mathsf{ret}}=N_{\mathsf{ret}}[V/x]$

 $(\operatorname{op}_V^{\underline{C}}(x.M))$ handled with $\{...\}_{\operatorname{op}\in\mathcal{T}_{\operatorname{eff}}}$ to y:A in $N_{\operatorname{ret}}=N_{\operatorname{op}}[V/x_v][.../x_k]$

Typical use case for programming:

- write your programs using alg. ops. (e.g., get and put)
- use handlers to provide fit-for-purpose impl. (e.g., $S \to X \times S$)

Idea: Assuming we were able to handle into values

$$M$$
 handled with $\{\operatorname{op}_{\mathsf{x}_{\mathsf{v}}}(\mathsf{x}_{\mathsf{k}})\mapsto V_{\operatorname{op}}\}_{\operatorname{op}\in\mathcal{T}_{\operatorname{eff}}}$ to $y\colon A$ in B V_{ret} an define predicates (essentially, dependent types)

$$\sqcap \vdash P : UFA \rightarrow \mathcal{U}$$

by

- ullet equipping a universe ${\cal U}$ with an algebra for $\mathcal{T}_{\sf eff}$, and
- using the above handle-into-values construct to define P

Note 1: P(thunk M) computes a proof obligation for M

Note 2: Formally, we work in an extension of eMLTT with

- a universe \mathcal{U} closed under Nat, $1, 0, +, \Sigma, \Pi$
- a type-based treatment of handlers $\underline{C} ::= \ldots \mid \langle A; \overrightarrow{V_{op}}; \overrightarrow{W_{eq}} \rangle$
- function extensionality (actually, a it's a bit more extensional)

Idea: Assuming we were able to handle into values

$$M$$
 handled with $\{\operatorname{op}_{\mathsf{X}_{\mathsf{V}}}(\mathsf{x}_{\mathsf{k}})\mapsto V_{\operatorname{op}}\}_{\operatorname{op}\in\mathcal{T}_{\operatorname{eff}}}$ to $y\!:\!A$ in $_{\mathcal{B}}$ V_{ret}

we can define predicates (essentially, dependent types)

$$\Gamma \vdash P : \mathit{UFA} \to \mathcal{U}$$

by

- ullet equipping a universe ${\cal U}$ with an algebra for ${\cal T}_{\sf eff}$, and
- using the above handle-into-values construct to define P

Note 1: P(thunk M) computes a proof obligation for M

Note 2: Formally, we work in an extension of eMLTT with

- a universe \mathcal{U} closed under Nat, $1, 0, +, \Sigma, \Pi$
- a type-based treatment of handlers $\underline{C} ::= \ldots \mid \langle A; \overrightarrow{V_{\sf op}}; \overrightarrow{W_{\sf eq}} \rangle$
- function extensionality (actually, a it's a bit more extensional)

Idea: Assuming we were able to handle into values

$$M$$
 handled with $\{\operatorname{op}_{X_{V}}(x_{k})\mapsto V_{\operatorname{op}}\}_{\operatorname{op}\in\mathcal{T}_{\operatorname{eff}}}$ to $y:A$ in V_{ret} we can define predicates (essentially, dependent types)

$$\Gamma \vdash P : UFA \rightarrow \mathcal{U}$$

by

- ullet equipping a universe ${\cal U}$ with an algebra for ${\cal T}_{\sf eff}$, and
- using the above handle-into-values construct to define P

Note 1: P(thunk M) computes a proof obligation for M

Note 2: Formally, we work in an extension of eMLTT withh

- a universe \mathcal{U} closed under Nat, $1, 0, +, \Sigma, \Pi$
- a type-based treatment of handlers $\underline{C} ::= \ldots \mid \langle A; \overrightarrow{V_{\sf op}}; \overrightarrow{W_{\sf eq}} \rangle$
- function extensionality (actually, a it's a bit more extensional)

Idea: Assuming we were able to handle into values

$$M$$
 handled with $\{\operatorname{op}_{\mathsf{x}_{\mathsf{V}}}(\mathsf{x}_{\mathsf{k}})\mapsto V_{\operatorname{op}}\}_{\operatorname{op}\in\mathcal{T}_{\operatorname{eff}}}$ to $y\!:\!A$ in $_{\!B}$ V_{ret}

we can define predicates (essentially, dependent types)

$$\Gamma \vdash P : UFA \rightarrow \mathcal{U}$$

by

- ullet equipping a universe ${\cal U}$ with an algebra for ${\cal T}_{\sf eff}$, and
- using the above handle-into-values construct to define P

Note 1: P(thunk M) computes a proof obligation for M

Note 2: Formally, we work in an extension of eMLTT with

- a universe \mathcal{U} closed under Nat, $1, 0, +, \Sigma, \Pi$
- a type-based treatment of handlers $\underline{C} ::= \ldots \mid \langle A; \overrightarrow{V_{op}}; \overrightarrow{W_{eq}} \rangle$
- function extensionality (actually, a it's a bit more extensional)

Example 1 (Evaluation Logic style modalities):

- Given a predicate $P:A\to \mathcal{U}$ on return values, we define a predicate $\Diamond P:UFA\to \mathcal{U}$ on I/O-computations as
- $\Diamond P \stackrel{\text{def}}{=} \lambda x : UFA . (\text{force } x) \text{ handled with } \{...\}_{\text{op} \in \mathcal{T}_{\text{IO}}} \text{ to } y : A \text{ in}_{\mathcal{U}} P y$ using the handler given by

$$\begin{array}{ll} V_{\mathsf{read}} & \stackrel{\scriptscriptstyle\mathsf{def}}{=} & \lambda \, x \colon \! \big(\Sigma \, x_{\!\scriptscriptstyle V} \colon \! 1 \cdot \mathsf{Chr} \to \mathcal{U} \big) \cdot \widehat{\Sigma} \, y \colon \! \mathsf{El}(\widehat{\mathsf{Chr}}) \cdot \big(\mathsf{snd} \, \, x \big) \, y \\ V_{\mathsf{write}} & \stackrel{\scriptscriptstyle\mathsf{def}}{=} & \lambda \, x \colon \! \big(\Sigma \, x_{\!\scriptscriptstyle V} \colon \mathsf{Chr} \cdot 1 \to \mathcal{U} \big) \cdot \big(\mathsf{snd} \, \, x \big) \, \star \end{array}$$

• $\Diamond P$ is the possibility modality

$$\Diamond P\left(\operatorname{thunk}\left(\operatorname{read}(x.\operatorname{write}_{e'}(\operatorname{return}V)\right)\right)\right) = \widehat{\Sigma}x:\operatorname{El}(\widehat{\operatorname{Chr}}).PV$$

• To get the necessity modality, use $\widehat{\Pi} x$: El $(\widehat{\mathsf{Chr}})$ in V_{read}

Example 1 (Evaluation Logic style modalities):

- Given a predicate $P:A\to \mathcal{U}$ on return values, we define a predicate $\Diamond P:UFA\to \mathcal{U}$ on I/O-computations as
- $\Diamond P \stackrel{\text{def}}{=} \lambda x : UFA. \text{ (force } x) \text{ handled with } \{...\}_{op \in \mathcal{T}_{IO}} \text{ to } y : A \text{ in}_{\mathcal{U}} P y$ using the handler given by

$$\begin{array}{ll} V_{\mathsf{read}} & \stackrel{\mathsf{def}}{=} & \lambda \, x \colon \! \left(\Sigma \, x_{\!\scriptscriptstyle V} \colon \! 1 \cdot \mathsf{Chr} \to \mathcal{U} \right) \cdot \widehat{\Sigma} \, y \colon \! \mathsf{El}(\widehat{\mathsf{Chr}}) \cdot \left(\mathsf{snd} \, x \right) \, y \\ V_{\mathsf{write}} & \stackrel{\mathsf{def}}{=} & \lambda \, x \colon \! \left(\Sigma \, x_{\!\scriptscriptstyle V} \colon \! \mathsf{Chr} \cdot 1 \to \mathcal{U} \right) \cdot \left(\mathsf{snd} \, x \right) \, \star \end{array}$$

• $\Diamond P$ is the possibility modality

```
\Diamond P \left( \text{thunk} \left( \text{read}(x.\text{write}_{e'}(\text{return } V)) \right) \right) = \widehat{\Sigma} x : El(\widehat{Chr}).P V
```

• To get the necessity modality, use $\widehat{\Pi} x : El(\widehat{Chr})$ in V_{read}

Example 1 (Evaluation Logic style modalities):

- Given a predicate $P:A\to \mathcal{U}$ on return values, we define a predicate $\Diamond P:UFA\to \mathcal{U}$ on I/O-computations as
- $\Diamond P \stackrel{\text{def}}{=} \lambda x : \textit{UFA}. \text{ (force } x) \text{ handled with } \{...\}_{\mathsf{op} \in \mathcal{T}_{\mathsf{IO}}} \text{ to } y : A \text{ in}_{\mathcal{U}} P y$ using the handler given by

$$\begin{array}{lll} V_{\mathsf{read}} & \stackrel{\mathsf{def}}{=} & \lambda \, x \colon \! \left(\Sigma \, x_{\!\scriptscriptstyle \mathcal{V}} \colon \! 1 \cdot \mathsf{Chr} \to \mathcal{U} \right) \cdot \widehat{\Sigma} \, y \colon \! \mathsf{El}(\widehat{\mathsf{Chr}}) \cdot \left(\mathsf{snd} \, x \right) \, y \\ V_{\mathsf{write}} & \stackrel{\mathsf{def}}{=} & \lambda \, x \colon \! \left(\Sigma \, x_{\!\scriptscriptstyle \mathcal{V}} \colon \! \mathsf{Chr} \cdot 1 \to \mathcal{U} \right) \cdot \left(\mathsf{snd} \, x \right) \, \star \end{array}$$

• $\Diamond P$ is the possibility modality

$$\Diamond P\left(\text{thunk}\left(\text{read}(x.\text{write}_{e'}(\text{return }V)\right)\right)\right) = \widehat{\Sigma}x: \widehat{\text{El}(\widehat{\text{Chr}})}.PV$$

• To get the necessity modality, use Πx : El(Chr) in V_{read}

Example 1 (Evaluation Logic style modalities):

• Given a predicate $P:A\to \mathcal{U}$ on return values, we define a predicate $\Diamond P:UFA\to \mathcal{U}$ on I/O-computations as

 $\Diamond P \stackrel{\text{def}}{=} \lambda x : \textit{UFA}. (\texttt{force}\, x) \text{ handled with } \{...\}_{\texttt{op} \in \mathcal{T}_{\mathsf{IO}}} \texttt{ to } y : A \texttt{ in}_{\mathcal{U}} P y$ using the handler given by

$$\begin{array}{ll} V_{\mathsf{read}} & \stackrel{\mathsf{def}}{=} & \lambda \, x \colon (\Sigma \, x_{\mathsf{v}} \colon 1 \cdot \mathsf{Chr} \to \mathcal{U}) \cdot \widehat{\Sigma} \, y \colon \mathsf{El}(\widehat{\mathsf{Chr}}) \cdot (\mathsf{snd} \, x) \, y \\ \\ V_{\mathsf{write}} & \stackrel{\mathsf{def}}{=} & \lambda \, x \colon (\Sigma \, x_{\mathsf{v}} \colon \mathsf{Chr} \cdot 1 \to \mathcal{U}) \cdot (\mathsf{snd} \, x) \, \star \end{array}$$

• $\Diamond P$ is the possibility modality

$$\Diamond P \left(\text{thunk} \left(\text{read}(x . \text{write}_{e'}(\text{return } V)) \right) \right) = \widehat{\Sigma} x : \widehat{\text{El}(\widehat{\text{Chr}})} . P V$$

• To get the necessity modality, use $\widehat{\Pi} x : El(\widehat{Chr})$ in V_{read}

Example 2 (Dijkstra's weakest precondition semantics):

• Given a postcondition on return values and final states

$$Q: A \to S \to \mathcal{U}$$
 $(S \stackrel{\text{def}}{=} \Pi x : \text{Loc. Val})$

we define a precondition for stateful comps. on initial states

$$\mathsf{wp}_{\mathcal{Q}}: \mathit{UFA} o \mathit{S} o \mathcal{U}$$

by

i) handling the given comp. into a state-passing function using

$$V_{
m get}, V_{
m put}$$
 on $S o (\mathcal{U} imes S)$ and $V_{
m ret}$ " $=$ " Q

- ii) feeding in the initial state; and iii) projecting out ${\cal U}$
- Theorem: wp_Q satisfies expected properties of WPs, e.g., $\operatorname{wp}_Q\left(\operatorname{thunk}\left(\operatorname{return}V\right)\right) = \lambda x_S : S . Q V x_S$

Example 2 (Dijkstra's weakest precondition semantics):

• Given a postcondition on return values and final states

$$Q: A \to S \to \mathcal{U}$$
 $(S \stackrel{\text{def}}{=} \Pi x : \text{Loc. Val})$

we define a precondition for stateful comps. on initial states

$$\mathsf{wp}_Q: \mathit{UFA} o \mathcal{S} o \mathcal{U}$$

by

i) handling the given comp. into a state-passing function using

$$V_{\mathsf{get}}, V_{\mathsf{put}}$$
 on $S o (\mathcal{U} imes S)$ and V_{ret} " $=$ " Q

- ii) feeding in the initial state; and iii) projecting out ${\cal U}$
- **Theorem:** wp_Q satisfies expected properties of WPs, e.g., wp_Q (thunk (return V)) = $\lambda x_S : S : Q V x_S$

Example 2 (Dijkstra's weakest precondition semantics):

• Given a postcondition on return values and final states

$$Q: A \to S \to \mathcal{U}$$
 $(S \stackrel{\text{def}}{=} \Pi x : \text{Loc. Val})$

we define a precondition for stateful comps. on initial states

$$\mathsf{wp}_{O}: \mathit{UFA} \to \mathit{S} \to \mathit{U}$$

by

 $\it i$) handling the given comp. into a state-passing function using

$$V_{\mathsf{get}}, V_{\mathsf{put}}$$
 on $S o (\mathcal{U} imes S)$ and V_{ret} " $=$ " Q

- ii) feeding in the initial state; and iii) projecting out \mathcal{U}
- ullet Theorem: wp $_Q$ satisfies expected properties of WPs, e.g.,

$$wp_Q (thunk (return V)) = \lambda x_S : S . Q V x_S$$

$$wp_Q (thunk (put_{\langle \ell, V \rangle}(M))) = \lambda x_S : S . wp_Q (thunk M) (x_S[\ell \mapsto V])$$

Example 3 (Patterns of allowed effects):

Assuming an inductive type Protocol, given by

e : Protocol
$$\mathbf{r}: (\mathsf{Chr} \to \mathsf{Protocol}) \to \mathsf{Protocol}$$

and potentially also by \wedge , \vee , ...

• Then, given a protocol Pr : Protocol, we define

$$\underline{\mathsf{Pr}}: \mathit{UFA} \to \mathcal{U}$$

by handling the given comp. using

$$V_{\mathsf{read}}, V_{\mathsf{write}}$$
 on $\mathsf{Protocol} o \mathcal{U}$

where

$$\begin{array}{lll} V_{\mathsf{read}} & \langle -, V_{\mathsf{rk}} \rangle & (\mathtt{r} \; \mathsf{Pr'}) & \stackrel{\mathsf{def}}{=} & \widehat{\Pi} \, x \colon \mathsf{El}(\widehat{\mathsf{Chr}}) \, . \, (V_{\mathsf{rk}} \, x) \, (\mathsf{Pr'} \, x) \\ V_{\mathsf{write}} & \langle V \, , V_{\mathsf{wk}} \rangle \, (\mathtt{w} \; P \; \mathsf{Pr'}) & \stackrel{\mathsf{def}}{=} & \widehat{\Sigma} \, x \colon \mathsf{El}(P \, V) \, . \, V_{\mathsf{wk}} \, \star \, \mathsf{Pr'} \\ & \stackrel{\mathsf{def}}{=} & \widehat{\Omega} \end{array}$$

Example 3 (Patterns of allowed effects):

Assuming an inductive type Protocol, given by

$$\begin{tabular}{ll} \bf e: Protocol & \bf r: (Chr \rightarrow Protocol) \rightarrow Protocol \\ \hline \bf w: (Chr \rightarrow \mathcal U) \rightarrow Protocol \rightarrow Protocol \\ \hline \end{tabular}$$
 and potentially also by \land , \lor , \ldots

Then, given a protocol Pr : Protocol, we define

$$Pr: UFA \rightarrow U$$

by handling the given comp. using

$$V_{\mathsf{read}}, V_{\mathsf{write}}$$
 on $\mathsf{Protocol} o \mathcal{U}$

where

Example 3 (Patterns of allowed effects):

• Assuming an inductive type Protocol, given by

e: Protocol
$$\mathbf{r}: (\mathsf{Chr} \to \mathsf{Protocol}) \to \mathsf{Protocol}$$

 $\mathbf{w}: (\mathsf{Chr} \to \mathcal{U}) \to \mathsf{Protocol} \to \mathsf{Protocol}$

and potentially also by \wedge , \vee , ...

• Then, given a protocol Pr : Protocol, we define

$$\mathsf{Pr}: \mathit{UFA} \to \mathcal{U}$$

by handling the given comp. using

$$V_{\mathsf{read}}, V_{\mathsf{write}}$$
 on $\mathsf{Protocol} \to \mathcal{U}$

where

$$\begin{array}{lll} V_{\mathsf{read}} & \langle -, V_{\mathsf{rk}} \rangle & (\mathtt{r} \ \mathsf{Pr'}) & \stackrel{\mathsf{def}}{=} & \widehat{\Pi} \, x \colon \mathsf{El}(\widehat{\mathsf{Chr}}) \cdot (V_{\mathsf{rk}} \, x) \, (\mathsf{Pr'} \, x) \\ V_{\mathsf{write}} & \langle V \, , V_{\mathsf{wk}} \rangle & (\mathtt{w} \ P \ \mathsf{Pr'}) & \stackrel{\mathsf{def}}{=} & \widehat{\Sigma} \, x \colon \mathsf{El}(P \ V) \cdot V_{\mathsf{wk}} \, \star \, \mathsf{Pr'} \\ & \stackrel{\mathsf{def}}{=} & \widehat{\mathsf{O}} & \end{array}$$

Conclusion

In work we told a mathematically natural story of combining

dependent types and computational effects

In particular, we saw

- a clean core language of dependent types and comp. effects
- a natural category-theoretic semantics
- alg. effects and handlers, in particular, for reasoning using
 - Evaluation Logic style modalities
 - Dijkstra's weakest precondition semantics
 - patterns of allowed (I/O)-effects

Future work involves

- type-dependency on computations
- local effects
- more expressive computation types

Thank you!

D. Ahman.

Fibred Computational Effects. (PhD Thesis, 2017)

D. Ahman, N. Ghani, G. Plotkin.

Dependent Types and Fibred Computational Effects. (FoSSaCS'16)

D. Ahman.

Handling Fibred Computational Effects. (POPL'18)

Future work (type-dependency on comps.)

- How to accommodate $\underline{D}(\text{read}(x.M))$
- That is, how to avoid restricting the typing of seq. comp.?
- M to x:A in N: C[thunk M/y] (where y:UFA) [Vákár'17]
- $\alpha: \widehat{T}(\mathcal{U}_{\mathsf{comp}}) \longrightarrow \mathcal{U}_{\mathsf{comp}}$ [Pédrot, Tabareau'17]
- for eMLTT, one possible way forward
 - i) build on Vákár's proposal
 - ii) but force type-dep. to be homomorphic
 - $\underline{D}[\text{thunk}(M \text{ to } x:A \text{ in } N)/y] = M \text{ to } x:A \text{ in } \underline{D}[\text{thunk}(N/y)]$
 - D[M to x:A in N/z] = M to x:A in D[N/z]