Q1.1	Prove reflect (reflect t) = t
	Base case is when t is simply Empty, t = Empty
	reflect (reflect t) = reflect (reflect Empty) - molet (t)
	= reflect (Empty) = Empty = t Ly the output equals t = Empty.
	Induction step, when t how children (or subtrees) left, right.
	From bose case, reflect (reflect i) = is. 50, reflect (reflect left) = left 3 are induction hypothesis reflect (reflect right) = right 3 (IH)
	reflect (reflect t)
	= reflect (reflect (Node (+, left, right)) = reflect (Node (+, reflect inject, reflect sheft)) = Node (x, reflect (reflect left), reflect (reflect right)) = Node (x, left, right) = t T

Q1,2	Prove for all mia tree, size m = size m 0.
	Bose cose: m = tmpty.
	size m
	= Size Empty = 0 & From hose cose, Size m= size mo
	Size' m O
	= size truly 0 = 0
	- · · · · · · · · · · · · · · · · · · ·
	Induction step
	Induction hypothesis are when m has subtrees left, right. (m = Node(x left, right)
	From buse case, the IH one size left = Size left 0
	Size right - Size right 0.
	5, 26 1750
	Size' m O
	= size' Node (x, left, right) 6
	= size left (size right (1+0))
	= size left (size night)
	= Size' left ((Size' right 0)+1) (IH applies here)
	= size' left ((size right)+1)
	= size left 0 + ((size right)+1) (IH applies here)
	= size left + size right + 1
	= Size M

```
Lemma is for all m: 'a tree, size m + acc = size' m acc base case is when m is Empty and acc starts at 0. size m = 0 because it returns 0 size' m = 0 because it return acc, which is 0
```

Step case

size' Node(x,left,right) 0

- = size' left (size' right (1+0))
- = size' left (size' right 1)
- = size' left ((size right) +1) by Lemma
- = size left + ((size right) +1) by Lemma
- = 1 + size left + size right
- = size m