

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

1 Recognize Basic Functions

Table 2-2 Basic Functions and Their Graphs

1. Linear Functions:
$$f(x) = mx + b$$

Constant Functions:
$$f(x) = b$$

Identity Function:
$$f(x) = x$$

4. Absolute Value Function:
$$f(x) = |x|$$

2. Quadratic Function:
$$f(x) = x^2$$

Square Root Function:
$$f(x) = \sqrt{x}$$

5. Reciprocal Function:
$$f(x) = \frac{1}{x}$$

3. Cubic Function:
$$f(x) = x^3$$

Cubic Root Function:
$$f(x) = \sqrt[3]{x}$$

Table 2-2 Basic Functions and Their Graphs

6. Cube root function: $f(x) = \sqrt[3]{x}$

3. Quadratic function: $f(x) = x^2$ (graph is a parabola)

x	f(x)	1 4 1
-2	4	3
-1	1	1
0	0	-5-4-3-2-1 1 2 3 4
1	1	
2	4	-3

4. Cube function: $f(x) = x^3$

7. Absolute value function: f(x) = |x|

x	f(x)		K			
-2	2.					
-1	1		<u></u>			
0	0	-:	5 –4	1 −:	<u>3</u> −;	2
1	1					
2	2		<u></u>			
						ŀ

- 1 2 3 4 5
- 8. Reciprocal function: $f(x) = \frac{1}{x}$

(2) Apply Vertical and Horizontal Translations (Shifts)

Vertical Translations of Graphs:

Consider a function defined by y = f(x). Let k be a positive real number.

- The graph of y = f(x) + k is the graph of y = f(x) shifted k units upward.
- The graph of y = f(x) k is the graph of y = f(x) shifted k units downward.

e.g.
$$f(x) = x^2$$

$$g(x) = x^2 + 2$$
 $h(x) = x^2 - 2$

$$h(x) = x^2 - 2$$

Example 1:

Use translations to graph the following functions.

a)
$$g(x) = |x| - 3$$

b)
$$h(x) = x^3 + 2$$

Horizontal Translations of Graphs:

Consider a function defined by y = f(x). Let k be a positive real number.

- The graph of y = f(x h) is the graph of y = f(x) shifted h units to the right.
- The graph of y = f(x + h) is the graph of y = f(x) shifted h units to the left.

Example 2:

Translating a graph horizontally:

$$g(x) = (x+3)^2$$

Example 3:

Translating a graph horizontally and vertically:

$$p(x) = \sqrt{x-3} - 2$$

3 Apply Vertical and Horizontal Shrinking and Stretching

Vertical Shrinking and Stretching of Graphs:

Consider a function defined by y = f(x). Let a be a positive real number.

- If a > 1, then the graph of y = af(x) is the graph of y = f(x) stretched vertically by a factor of a.
- If 0 < a < 1, then the graph of y = af(x) is the graph of y = f(x) shrunk vertically by a factor of a.

Horizontal Shrinking and Stretching of Graphs:

Consider a function defined by y = f(x). Let a be a positive real number.

- If a > 1, then the graph of y = f(ax) is the graph of y = f(x) shrunk horizontally by a factor of 1/a.
- If 0 < a < 1, then the graph of y = af(x) is the graph of y = f(x) stretched horizontally by a factor of 1/a.

Example 4:

Stretch or shrink a graph of function vertically:

a)
$$f(x) = |x|$$

b)
$$g(x) = 2|x|$$

b)
$$g(x) = 2|x|$$
 c) $f(x) = |x|/2$

Example 5:

Stretch or shrink a graph of function horizontally.

The graph of y = f(x) is shown. Graph:

$$a) \quad y = f(2x)$$

a)
$$y = f(2x)$$
 b) $y = f(x/2)$

4 Apply Reflections across the *x*- and *y*- axes.

Reflections across the x- and y- axes:

Consider a function defined by y = f(x).

- The graph of y = -f(x) is the graph of y = f(x) reflected across the x-axis.
- The graph of y = f(-x) is the graph of y = f(x) reflected across the y-axis.

Example 6:

The graph of y = f(x) is shown. Graph:

a)
$$y = -f(x)$$
 b) $y = f(-x)$

5 Summarize Transformations of Graphs.

Transformations of Functions

Consider a function defined by y = f(x). If h, k, and a represent positive real numbers, then the graphs of the following functions are related to y = f(x) as follows.

Transformation	Effect on the Graph of f	Changes to Points on f
Vertical translation (shift) y = f(x) + k y = f(x) - k	Shift upward <i>k</i> units Shift downward <i>k</i> units	Replace (x, y) by $(x, y + k)$. Replace (x, y) by $(x, y - k)$.
Horizontal translation (shift) y = f(x - h) y = f(x + h)	Shift to the right h units Shift to the left h units	Replace (x, y) by $(x + h, y)$. Replace (x, y) by $(x - h, y)$.
Vertical stretch/shrink y = a[f(x)]	Vertical stretch (if $a > 1$) Vertical shrink (if $0 < a < 1$) Graph is stretched/shrunk vertically by a factor of a .	Replace (x, y) by (x, ay) .
Horizontal stretch/shrink $y = f(a \cdot x)$	Horizontal shrink (if $a > 1$) Horizontal stretch (if $0 < a < 1$) Graph is shrunk/stretched horizontally by a factor of $\frac{1}{a}$.	Replace (x, y) by $(\frac{x}{a}, y)$.
Reflection $y = -f(x)$ $y = f(-x)$	Reflection across the x-axis Reflection across the y-axis	Replace (x, y) by $(x, -y)$. Replace (x, y) by $(-x, y)$.

Example 7:

Use Multiple Transformations to graph the function:

$$m(x) = -\frac{1}{2}(x-2)^2 + 3$$

Example 8:

Use Multiple Transformations to graph the function:

$$n(x) = -\sqrt{-x+2}$$

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions Analyzing Graphs of Functions and Piecewise-Defined Functions

Test for Symmetry

Test for Symmetry:

Consider an equation in the variables x and y.

- The graph of the equation is symmetric with respect to y-axis if substituting -x for x in the equation results in an equivalent equation.
- The graph of the equation is symmetric with respect to x-axis if substituting -y for y in the equation results in an equivalent equation.
- The graph of the equation is symmetric with respect to the origin if substituting -x for x and -y for y in the equation results in an equivalent equation.

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 验育演文書大學(深圳)

Example 1:

Determine whether the graph is symmetric with respect to x-axis, y-axis, or the origin:

a)
$$y = |x/|$$

b)
$$x = y^2 - 4$$

Example 2:

Determine whether the graph is symmetric with respect to x-axis, y-axis, or the origin:

$$x^2 + y^2 = 9$$

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions Analyzing Graphs of Functions and Piecewise-Defined Functions

Identify Even and Odd Functions.

Even and Odd Functions:

Consider an equation in the variables x and y.

- A function is an even function if f(-x) = f(x) for all x in the domain of f. The graph of an even function is symmetric with respect to y-axis.
- A function is an odd function if f(-x) = -f(x) for all x in the domain of f. The graph of an odd function is symmetric with respect to the origin.

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 验育演文業大學(深圳)

Example 3:

Determine whether the function is even, odd, or neither.

b.

c.

Example 4:

Determine whether the function is even, odd, or neither.

a)
$$f(x) = -2x^4 + 5|x|$$
 b) $g(x) = 4x^3 - x$

b)
$$g(x) = 4x^3 - x$$

$$\mathbf{c)} \quad h(x) = 2x^2 + x$$

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 给解决案大學(深圳)

Graph Piecewise-Defined Functions.

Example 5: Interpreting a piecewise-defined function.

Evaluate the function for the given values of x.

$$f(x) = \begin{cases} -x - 1 & \text{for } x < -1 \\ -3 & \text{for } -1 \le x < 2 \\ \sqrt{x - 2} & \text{for } x \ge 2 \end{cases}$$
a) $f(-3)$ b) $f(-1)$ c) $f(2)$ d) $f(6)$

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 验育演之業大學(深圳)

Example 6:

Graph the function defined by:

$$f(x) = \begin{cases} -3x & \text{for } x < 1 \\ -3 & \text{for } x \ge 1 \end{cases}$$

Example 7:

Graph the function defined by:

$$f(x) = \begin{cases} x+3 & \text{for} & x < -1 \\ x^2 & \text{for} & -1 \le x < 2 \end{cases}$$

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions

Step Functions: a special category of piecewise-defined functions.

The graph of a step function is a series of discontinuous "steps".

One important step function is called the greatest integer function or floor function, defined by: f(x) = [x]

where [x] is the greatest integer less than or equal to x.

The operation [x] may also be denoted as int(x) or floor(x).

Example 8:

Graph the function defined by: f(x) = [x]

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions

Investigate Increasing, Decreasing, and Constant Behavior of a Function.

Intervals of Increasing, Decreasing, and Constant Behavior

Suppose that I is an interval contained within the domain of a function f.

- f is increasing on I if $f(x_1) < f(x_2)$ for all $x_1 < x_2$ on I.
- f is decreasing on I if $f(x_1) > f(x_2)$ for all $x_1 < x_2$ on I.
- f is constant on I if $f(x_1) = f(x_2)$ for all x_1 and x_2 on I.

For all $x_1 < x_2$ on $I, f(x_1) > f(x_2)$

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 公司 经通过工作人等

Example 10:

Use interval notation to write the intervals over which f is:

- a) Increasing
- b) Decreasing
- Constant

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 验证法决例深圳

Determine Relative Minima and Maxima of a Function.

Relative/Local Minimum and Maximum Values:

- f(a) is a relative/local maximum of f if there exists an open interval containing a such that $f(a) \ge f(x)$ for all x in the interval.
- f(b) is a relative/local minimum of f if there exists an open interval containing b such that $f(b) \le f(x)$ for all x in the interval.

Note: An open interval is an interval in which the endpoints are not included.

2.7 Analyzing Graphs of Functions and Piecewise-Defined Functions 學類 學類演之業大學

Example 11: Find the Relative/Local Maxima and Minima

For the graph of y = g(x) shown,

- a. Determine the location and value of any relative maxima.
- **b.** Determine the location and value of any relative minima.

