Alex Valentino Midterm 2
412

5 (a) Let $Df(x_0) = 0$, $[D^2f(x_0)]$ be a positive definite matrix. We want to show for a δ ball around x_0 that $f(x_0) \leq f(x)$. Note that for a positive definite matrix, we can do a coordinate transform P to have that $h^TP[D^2f(x_0)]P^{-1}h = \lambda_1h_1^2 + \cdots + \lambda_nh_n^2$, therefore we can find a minimum λ_i such that $h^TP^{-1}[D^2f(x_0)]P^h \geq \lambda_i||h||^2$. For the rest we will assume that the basis allows for a diagonal $[D^2f(x_0)]$. Let $\lambda_i > \epsilon > 0$, then there exists a δ such that for all $h \in B(\delta, 0)$, $|f(x_0+h)-T_2(f;x_0)(h)| < \epsilon ||h||^2$. Therefore $T_2(f;x_0)(h) - \epsilon ||h||^2 < f(x_0+h)$. This gets us that

$$f(x_0 + h) - f(x_0) > T_2(f; x_0)(h) - \epsilon ||h||^2 - f(x_0)$$

$$= f(x_0) - f(x_0) + h^T [D^2 f(x_0)]h - \epsilon ||h||^2$$

$$= \lambda_1 h_1^2 + \dots + \lambda_n h_n^2 - \epsilon (h_1^2 + \dots + h_n^2)$$

$$\geq \epsilon (h_1^2 + \dots + h_n^2) - \epsilon (h_1^2 + \dots + h_n^2)$$

$$= 0$$

- (b) Observe that D(g(y)) = D(f(T(y)) = Df(T(y))DT(y). In order to compute $D^2g(y)$, we must compute the intermediate terms D(Df(T(y))) and D(DT(y)). Observe that we have D(Df(T(y))) by another application of the chain rule, $D(Df(T(y))) = D^2f(T(y))DT(y)$. To compute D(DT(y)), we must consider it multiplied via Df(T(y)) to make any sense. Therefore $Df(T(y))DDT(y) = \sum_{i=1}^n \frac{\partial f}{\partial y_i}(T(y))D(\frac{\partial T(y)}{\partial y_i})$. Therefore $D^2(g(y)) = D^2f(T(y))DT(y) + \sum_{i=1}^n \frac{\partial f}{\partial y_i}(T(y))D(\frac{\partial T(y)}{\partial y_i})$. If $D^2f(x_0)$ is a positive definite matrix there isn't a guarentee that $D^2g(y_0)$ is positive definite. We observe in the formula that at points one would be computing $v^TD(\frac{\partial T(y)}{\partial y_i})v$, which has no guarantees of being positive definite.
- 6 Consider f, and it's ith component f_i . Consider $x = (x_1, \dots, x_n), \bar{x} = (\bar{x}_1, \dots, \bar{x}_n) \in U$. And let the vectors denoted $x_{\bar{i}}$ refer to vectors of the form $(x_1, \dots, x_{i-1}, \bar{x}_i, \dots, \bar{x}_n)$, where $x_{\bar{1}} = \bar{x}$, and $x_{n+1} = x$. Then

$$f_i(x) - f_i(\bar{x}) = \sum_{j=1}^n f_i(x_{i+1}) - f_i(x_{\bar{i}})$$

$$= \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} (x_{\bar{j}} - (z_j + \bar{x}_j)e_j)(x_j - \bar{x}_j)$$

$$= \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} (\bar{x})(x_j - \bar{x}_j) + \sum_{j=1}^n \left[\frac{\partial f_i}{\partial x_j} (x_{\bar{j}} - (z_j + \bar{x}_j)e_j) - \frac{\partial f_i}{\partial x_j} (\bar{x}) \right](x_j - \bar{x}_j)$$

where $z_i \in (x_i, \bar{x}_i)$ or (\bar{x}_i, x_i) depending on size and e_j is the standard jth basis vector. If we take our vectors to be within \bar{U} , then our partial derivatives are uniformly continuous, and if $||x - \bar{x}|| < \delta$ then there exists an ϵ such that $|\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\bar{x})| < \epsilon$.

Alex Valentino Midterm 2
412

Therefore

$$\sum_{j=1}^{n} \left[\frac{\partial f_i}{\partial x_j} (x_{\bar{j}} - (z_j + \bar{x}_j) e_j) - \frac{\partial f_i}{\partial x_j} (\bar{x}) \right] (x_j - \bar{x}_j)$$

$$\leq \epsilon \sum_{j=1}^{n} |(x_j - \bar{x}_j)| \leq \epsilon \sqrt{n} ||x - \bar{x}||$$

Therefore $|f_i(x) - f_i(\bar{x}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\bar{x})(x_j - \bar{x}_j)| < \sqrt{n}\epsilon ||x - \bar{x}||$ has been shown for arbitrary ϵ for $x, \bar{x} \in U, ||x - \bar{x}|| < \delta$

7 Note that $S_N(f;x) = \frac{a_0}{2} + \sum_{n=1}^N (a_n \cos(nx) + b_n \sin(nx)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_N(x-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_N(t) dt, 1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t), D_n(t) \text{ is even. Therefore,}$

$$= |S_N(f;x) - \frac{f(x+) + f(x-)}{2}|$$

$$= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_N(t) dt - \frac{f(x+) + f(x-)}{2} \right|$$

By applying the definition of $S_N(f;x)$

$$= \left| \frac{1}{2\pi} \int_0^{\pi} (f(x-t) + f(x+t)) D_N(t) dt - \frac{f(x+) + f(x-)}{2} \right|$$

By the eveness of $D_N(t)$

$$= \left| \frac{1}{2\pi} \int_0^{\pi} (f(x-t) + f(x+t) - f(x+t) - f(x-t)) D_N(t) dt \right|$$
By $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) = 1$, $\frac{1}{2\pi} \int_0^{\pi} D_N(t) = \frac{1}{2}$

$$\leq \left| \frac{1}{2\pi} \int_0^{\pi} (f(x-t) - f(x-t)) D_N(t) dt \right| + \left| \frac{1}{2\pi} \int_0^{\pi} (f(x+t) - f(x+t)) D_N(t) dt \right|$$

Note that $\frac{f(x\pm t)-f(x\pm)}{\sin(\frac{t}{2})}$ are Riemann integrable on $(0,\pi)$, as when it isn't approaching 0 it's the quotient of two riemann integrable functions, and when at 0 we have that $\lim_{t\to 0} \left|\frac{f(x\pm t)-f(x\pm)}{\sin(\frac{t}{2})}\right| \leq \lim_{t\to 0} \left|\frac{t}{\sin(\frac{t}{2})}\right| = 2$, thus at the only possible discontinuity the quotient is bounded. Therefore, additionally, we can be extended to $(-\pi,\pi)$ by having them be zero on $(-\pi,0]$, maintaining their Riemann integrability. Let

these extended functions be noted as $f_{-}(t) = \begin{cases} \frac{f(x-t)-f(x-t)}{\sin(\frac{t}{2})} & x \in (0,\pi) \\ 0 & x \in (-\pi,0] \end{cases}$, $f_{+}(t) = \frac{f(x-t)-f(x-t)}{\sin(\frac{t}{2})}$

$$\begin{cases} \frac{f(x+t)-f(x+)}{\sin(\frac{t}{2})} & x \in (0,\pi) \\ 0 & x \in (-\pi,0] \end{cases}$$
. Therefore,

$$\left| \int_0^{\pi} (f(x-t) - f(x-t)) D_N(t) dt \right| + \left| \int_0^{\pi} (f(x+t) - f(x+t)) D_N(t) dt \right| = \left| \int_{-\pi}^{\pi} f_-(t) \sin((N+\frac{1}{2})t) dt \right| + \left| \int_{-\pi}^{\pi} f_+(t) \sin((N+\frac{1}{2})t) dt \right|$$

Alex Valentino Midterm 2
412

thus we have the inequality

$$|S_N(f;x) - \frac{f(x+) + f(x-)}{2}| \le |\int_{-\pi}^{\pi} f_-(t)\sin((N+\frac{1}{2})t)dt| + |\int_{-\pi}^{\pi} f_+(t)\sin((N+\frac{1}{2})t)dt|$$

Since both of the integrals on the right hand side are of the form $\int_{-\pi}^{\pi} h(t) \sin(\lambda t)$, where h is Riemann integrable, then the Riemann-Lebesgue Lemma can be applied, thus $\lim_{N\to\infty} S_N(f;x) = \frac{f(x+)+f(x-)}{2}$