PAT-NO:

JP02002186120A

DOCUMENT-IDENTIFIER:

JP 2002186120 A

TITLE:

CONTROL DEVICE OF ELECTRIC VEHICLE

PUBN-DATE:

June 28, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

SHIMIZU, HIROSHI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

JAPAN SCIENCE & TECHNOLOGY CORP

N/A

APPL-NO:

JP2000384089

APPL-DATE:

December 18, 2000

INT-CL (IPC): B60L015/20, B60K006/02, B60L003/00, B60T008/00,

B62D006/00

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a control device for an electric vehicle

which can transmit and receive control information, bypassing a

transmission line when nonconformities occur in some transmission line, by

enabling signal transmission between each control device attached to 'each

motor.

SOLUTION: An electronic control system for the electric vehicle is provided

with a fail safe means for a signal transmission path, where a node that

detects communication trouble sends a search message for searching a transmission path and a node capable of the formation of a transmission path

sends back a response message thus forming a bypass circuit.

Best Available Copy

COPYRIGHT: (C)2002, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-186120 (P2002-186120A)

(43)公開日 平成14年6月28日(2002.6.28)

(51) Int.CL'		識別記号		ΡI			รี	-7]-1*(参考)
B60L	15/20			B601	15/20		J	3 D O 3 2
B60K	6/02	ZHV			3/00		H	3 D O 4 6
B60L	3/00			B607	00\8		E	5H115
B 6 0 T	8/00		•	B621	6/00		ZYW	
B62D	6/00	ZYW	101: 00					
		•	審查謝求	有	求項の数13	. OL	(全29頁)	最終頁に続く

(21)出顧番号

特数2000--384089(P2000--384089)

(22)出廣日

平成12年12月18日(2000.12.18)

(71)出版人 396020800

科学技術振興事業団

埼玉県川口市本町4丁目1番8号

(72)発明者 清水 沿

神奈川県鎌倉市津西2-9-4

(74)代理人 100089635

弁理士 清水 守

最終質に続く

(54) 【発明の名称】 領気自動車の制御装置

(57)【要約】

【課題】 それぞれの電動機に取り付けられた制御装置の間でも信号伝送を可能とし、いずれかの伝送線に不都合が生じたときに迂回して制御情報を送受信できる電気自動車の制御装置を提供する。

【解決手段】 電気自動車の電子制御系における、通信 障害を検出したノードが電送経路を探索する探索メッセ ージを送信し、伝送路を形成可能なノードが応答メッセ ージを返送して迂回路を形成する信号伝送路のフェール セイフ手段を設ける。

【特許請求の範囲】

【請求項1】 一台の車に複数の駆動輪があり、該駆動 輪のそれぞれに1個ずつの駆動用モーターが取り付けら れている電気自動車において、

前記駆動用モーターのそれぞれに外部からの電気信号によって加速と減速を行わせるための速度制御装置が取り付けられているとともに、該速度制御装置のそれぞれに運転者あるいは車載のセンサーからの指令に基づき、加減速のための制御信号を送り、かつ、前記駆動用モーターおよび前記速度制御装置の動作状況を制御用信号とし 10 て受け取る機能を有する主制御装置を具備することを特徴とする電気自動車の制御装置。

【請求項2】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置に入力するセンサー信号とし て、電池の電圧、該電池から供給される電流、電池温度 のそれぞれが含まれることを特徴とする電気自動車の制 御装置。

【請求項3】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置に入力するセンサー信号とし て、ステアリングの切れ角が含まれることを特徴とする 20 電気自動車の制御装置。

【請求項4】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置に入力するセンサー信号とし て、充電装置から充電中であることを示すセンサー信号 が含まれることを特徴とする電気自動車の制御装置。

【請求項5】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置に入力するセンサー信号とし て、ブレーキ制御部からのブレーキ指令値およびマスタ ーシリンダーの油圧を示すセンサー含まれることを特徴 とする電気自動車の制御装置。

【請求項6】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置から送られる制御信号として、 ステアリングの角度信号が含まれることを特徴とする電 気自動車の制御装置。

【請求項7】 請求項1記載の電気自動車用制御装置において、GPSセンサーと地図情報から自車の位置を正確に割り出し、かつ障害物センサーによって前記自車の周囲の障害物を自動的に割り出し、及び/又は、車々間通信によって前記自車と他の車の位置関係を把握し、これらの情報をもとに加減速およびステアリングの操作を自動的に行うための制御信号を作り出す制御部が含まれていることを特徴とする電気自動車の制御装置。

【請求項8】 車両の電子制御系における通信障害を検出したノードが伝送経路を探索する探索メッセージを送信し、伝送路を形成可能なノードが応答メッセージを返送して迂回路を形成する信号伝送路のフェールセイフ手段を備えたことを特徴とする電気自動車の制御装置。

【請求項9】 請求項8記載の電気自動車の制御装置に る。102は車輪、103はコントローおいて、前記ノードは、自ノードの識別子を記憶する自 次電池、201はエンジン、202は発 ノードID記憶手段と、前記伝送路に接続されている隣 50 水素供給源、302は燃料電池である。

接ノードの識別子を記憶する隣接ノード I D記憶手段と、前記ノードに送られてくるメッセージに基づき経路設定の処理を行う処理手段とから構成されることを特徴とする電気自動車の制御装置。

【請求項10】 請求項9記載の電気自動車の制御装置 において、前記ノードは、車両制御部および各車輪組毎 に設けたモータ制御部に設けられていることを特徴とす る電気自動車の制御装置。

【請求項11】 請求項9記載の電気自動車の制御装置 において、前記ノードは電池制御部、ステアリング制御 部、ブレーキ制御部、充電制御部に設けられていること を特徴とする電気自動車の制御装置。

【請求項12】 請求項10記載の電気自動車の制御装置において、前記車両制御部および各車輪組毎に設けたモータ制御部は、それぞれに設けたノードを介して入力した制御信号により変換器を制御することを特徴とする電気自動車の制御装置。

【請求項13】 請求項10又は11記載の電気自動車の制御装置において、前記迂回路を、閉ループを構成する制御信号用迂回幹線伝送路と、該迂回幹線伝送路と前記各モータ制御部との間の迂回伝送路とから構成したことを特徴とする電気自動車の制御装置。

【請求項14】 請求項13記載の電気自動車の制御装置において、特定のノードは、前記車両制御部との間の 伝送路及び迂回伝送路の全てに障害が発生したことを検出したとき、前記モータ制御部の動作を停止し、前記車両制御部は、前記特定ノードからの応答がないことを検出し、前記特定ノードのモータ制御部を制御部対象から切り離すことを特徴とする電気自動車の制御装置。

30 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両の電子制御系 にフェールセイフ手段を備えた電気自動車の制御装置に 関するものである。

[0002]

【従来の技術】モータリゼーションによる空気汚染を防止する一つの決め手として完全電気自動車の開発が急務となってきている。自然環境の保全は21世紀の大きな目標であることを認識して、本出願の発明者は1980年時代からその研究に着手し、その成果をあげつつあ
z

【0003】図7に示すように、電気自動車とは、電動機101の駆動力のみを用いて走行が可能な車であり、その電動機101に供給する電力源として、二次電池(バッテリ)を用いるものを狭義の電気自動車A、エンジン発電機を用いるものを必りーズハイブリッド車B、燃料電池を用いるものを燃料電池車Cと呼ぶことにする。102は車輪、103はコントローラ、104は二次電池、201はエンジン、202は発電機、301は水素供給源。302は燃料電池である。

【0004】このように、電気自動車とは、回転式電気 電動機の駆動力のみを用いて走行が可能な車であり、そ の電気電動機に供給する電力源として、二次電池、燃料 電池、内燃機関を用いた発電機、太陽電池等およびこれ らを組み合わせたものを使用した車と定義する。ただ し、以下の説明では、二次電池のみを用いた電気自動車 を念頭におくが、燃料電池、内燃機関発電機、太陽電池 を電力源とする車も当然に含まれる。

【0005】車両の運転の安全性および使いやすさを向 は、次第に冗長な構成要素、例えばセンサ、計算機要素 が搭載されるようになってきている。

【0006】例えば、運転者によって操作可能な操作部 材の位置センサ、あるいは回転数センサなどが冗長に設 けられている例が紹介されている。この冗長に構成され た測定装置の信号は、それぞれほぼ同一のコンピュータ プログラムに基づいて車両の駆動出力の制御を行う2つ のプロセッサに供給される。その際、両プロセッサの出 力信号は車両の駆動ユニットの出力に影響を与える同一 の可変量に作用する。

【0007】しかし、この種のシステムを完全に冗長に すると著しく複雑になり、それによってコストが増大 し、故障の頻度も増大してしまう。

【0008】現在の車両には知られているように複数の 電子制御ユニットが搭載されている。特に速度制御ユニ ット、操舵制御ユニット等が挙げられる。これらの制御 ユニットはそれぞれ車両の駆動ユニットの他の可変量に 作用する。

【0009】現在の車両においては、これらの制御ユニ ットは電子接続システムによって互いに接続され、かつ 30 それを介して互いにデータおよび情報を交換する。

【0010】特に、電気自動車の速度制御は電動機に流 す電流を制御する制御装置にアクセルペダルからの電気 的信号を流す方法が最も簡便である。また、複数個の電 動機が駆動に使われる場合であって、かつ、車の加速、 減速、旋回角を制御する場合には、車全体を制御する中 央制御装置をもう1台必要とする。これまで、このよう な制御装置では、中央制御装置と各電動機に取り付けら れている制御装置との間が、それぞれ信号線で結ばれ制 御が行われていた。

[0011]

【発明が解決しようとする課題】しかし、このような制 御の方法では、それぞれの通信線に不都合が生じた場 合、個々の電動機を制御することが不可能となる。

【0012】本発明は、上記状況に鑑みて、それぞれの 電動機に取り付けられた制御装置の間でも信号伝送を可 能とし、いずれかの伝送線に不都合が生じたときに迂回 して制御情報を送受信できる電気自動車の制御装置を提 供することを目的とする。

[0013]

【課題を解決するための手段】本願発明は、上記目的を 達成するために、

[1]一台の車に複数の駆動輪があり、該駆動輪のそれ ぞれに1個ずつの駆動用モーターが取り付けられている 電気自動車において、前記駆動用モーターのそれぞれに 外部からの電気信号によって加速と減速を行わせるため の速度制御装置が取り付けられているとともに、該速度 制御装置のそれぞれに運転者あるいは車載のセンサーか らの指令に基づき、加減速のための制御信号を送り、か 上させるために、車両の安全上問題となる電子システム 10 つ、前記駆動用モーターおよび前記速度制御装置の動作 状況を制御用信号として受け取る機能を有する主制御装 置を具備することを特徴とする。

> 【0014】(2)上記(1)記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、電池の電圧、該電池から供給される電流、電池 温度のそれぞれが含まれることを特徴とする。

【0015】〔3〕上記〔1〕記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、ステアリングの切れ角が含まれることを特徴と 20 する。

【0016】〔4〕上記〔1〕記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、充電装置から充電中であることを示すセンサー 信号が含まれることを特徴とする。

【0017】 〔5〕 上記〔1〕 記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、ブレーキ制御部からのブレーキ指令値およびマ スターシリンダーの油圧を示すセンサー合まれることを・ 特徴とする。

【0018】〔6〕上記〔1〕記載の電気自動車の制御 装置において、前記主制御装置から送られる制御信号と して、ステアリングの角度信号が含まれることを特徴と

【0019】 (7)上記 (1)記載の電気自動車用制御 装置において、GPSセンサーと地図情報から自車の位 置を正確に割り出し、かつ障害物センサーによって前記 自車の周囲の障害物を自動的に割り出し、及び/又は、 車々間通信によって前記自車と他の車の位置関係を把握 し、これらの情報をもとに加減速およびステアリングの 40 操作を自動的に行うための制御信号を作り出す制御部が 含まれていることを特徴とする。

【0020】〔8〕車両の電子制御系における通信障害 を検出したノードが伝送経路を探索する探索メッセージ を送信し、伝送路を形成可能なノードが応答メッセージ を返送して迂回路を形成する信号伝送路のフェールセイ フ手段を備えたことを特徴とする。

【0021】〔9〕上記〔8〕記載の電気自動車の制御 装置において、前記ノードは、自ノードの識別子を記憶 する自ノードID記憶手段と、前記伝送路に接続されて

50 いる隣接ノードの識別子を記憶する隣接ノード I D記憶

手段と、前記ノードに送られてくるメッセージに基づき 経路設定の処理を行う処理手段とから構成されることを 特徴とする。

【0022】〔10〕上記〔9〕記載の電気自動車の制 御装置において、前記ノードは、車両制御部および各車 輪組毎に設けたモータ制御部に設けられていることを特 徴とする。

【0023】〔11〕上記〔9〕記載の電気自動車の制 御装置において、前記ノードは電池制御部、ステアリン ることを特徴とする。

【0024】(12)上記(10)記載の電気自動車の 制御装置において、前記車両制御部および各車輪組毎に 設けたモータ制御部は、それぞれに設けたノードを介し て人力した制御信号により変換器を制御することを特徴 とする。

【0025】(13)上記(10)又は(11)記載の 電気自動車の制御装置において、前記迂回路を、閉ルー プを構成する制御信号用迂回幹線伝送路と、該迂回幹線 伝送路と前記各モータ制御部との間の迂回伝送路とから 構成したことを特徴とする。

【0026】 (14) 上記 (13) 記載の電気自動車の 制御装置において、特定のノードは、前記車両制御部と の間の伝送路及び迂回伝送路の全てに障害が発生したこ とを検出したとき、前記モータ制御部の動作を停止し、 前記車両制御部は、前記特定ノードからの応答がないこ とを検出し、前記特定ノードのモータ制御部を制御部対 象から切り離すことを特徴とする。

[0027]

【発明の実施の形態】以下、本発明の実施の形態を、図 30 面を参照しながら、代表例となる、各2輪がタンデムホ イール式サスペンションで支持される車輪系を有し、6 輪以上の駆動輪を有し、各駆動輪をインホイール式ドラ イブとした電気自動車に搭載され、スリップ時における 走行安定性を向上させるように各モータ制御する制御装 置に、フェールセイフ機構を適用する本発明の実施態様 について説明する。

【0028】本発明の特徴は電子制御ユニットを備える 制御系におけるフェールセイフ手段にあり、その余の制 御系および装置は適宜適用可能となる。

(1)システム構成

図1は本発明の実施例を示す電気自動車のシステム構成 図である。

【0029】本発明においては、前後両車輪がタンデム ホイール式サスペンションで支持された車輪系である必 要はなく、前または後の車輪系のみがタンデムホイール 式サスペンションで支持された車輪系であってもよい。 【0030】この実施態様における電気自動車は、イン ホイールモータ型の8輪駆動電気自動車である。すなわ ち、タンデムホイール式サスペンションで支持される車 50

輪系を有し、車輪全輪にモータを組み込んだインホイー ル式ドライブを備えた各駆動輪独立駆動型電気自動車で ある.

【0031】このように構成することにより、各車輪毎 の支持荷重を少なくでき、それに見合うTRC(登録商 **標)又はABS制御を行い、スリップ等を少なくし、走** 行安定性を向上させることができる.

【0032】各モータは、交流、直流、パルス等の各種 の電源により駆動可能であり、その電源の種類により対 グ制御部、ブレーキ制御部、充電制御部に設けられてい 10 応する変換器、例えば電源が交流のとき変換器がインバ ータであり、直流のときコンバータであり、パルスのと きチョッパなどである。

> 【0033】以下、電源が交流で変換器がインバータの 場合の実施態様について説明する。

【0034】車両制御部1は、マイクロコンピュータを 備え、各種センサからの検出情報を入力して必要な処理 を行って各モータ制御部へ制御指令を出力する。車両制 御部1からの前記制御指令は伝送路R1, R2, R3, R4, R5, R10, R11, R12, R13、迂回伝. 送路CR2, CR3, CR4, CR5, CR10, CR 11, CR12, CR13および制御信号用迂回幹線伝 送路CRを介して各モータ制御部2,3,4および5、 電池制御部A、充電制御部B、ブレーキ制御部C、ステ アリング制御部22へ出力される。

【0035】また、車両制御部1は、各モータ30,3 1,32,33,34,35,36,37の出力トルク の制御、回転数制御、速度制御、車載各コンポーネント の状態監視・制御、車両乗員への車両状態の報知、バッ テリの給電制御、バッテリの充電制御、ブレーキ制御、 ステアリング制御、その他の機能を担う電子制御ユニッ ト(ECU)よりなり、前記機能を行うための処理用マ イクロプログラムを有する。さらに、車両制御部1に は、回転位置センサ50,51,52,53,54,5 5,56および57、バッテリの電圧値・電流値検出の ための電力センサ9、ブレーキの操作を検出するブレー キセンサ14、ハンドルの操舵角を検出する舵角センサ 15、シフトレバーのシフトポジションを検出するシフ トポジションスイッチ16、アクセルの開度を検出する アクセルセンサ17、バッテリ温度・変換器温度等を検 40 出する温度センサ18、変換器の電圧値・電流値が閾値 より低下したこと等を検出する異常検知センサ19の検 出出力が入力される。

【0036】各車輪毎に設けられている回転位置センサ (例えばレゾルバ) 50, 51, 52, 53, 54, 5 5,56および57は、それぞれの車輪の車輪速VRF F, VRFR, VLFF, VLFR, VRRF, VRR R, VLRFおよびVLRRを示す信号 (例えば微小角 度位置変位毎のパルス信号)を生成し、車両制御部1に 供給する。

【0037】アクセルセンサ17は、アクセルペダル

(図示せず) の踏み込み量を示す信号を、 ブレーキセン サ14は、ブレーキペダル20の踏み込み量を示す信号 を、シフトポジションスイッチ16は、シフトレバー (図示せず) の投入レンジ (及びエンジンブレーキレン ジ等では当該レンジ内でのシフトレバー位置) すなわち シフトポジションを示す信号を、それぞれ出力させる。 舵角センサ15は、ハンドルの舵角検出の結果を示す信 号例えば舵角δ t を示す信号を出力させる。 バッテリの 電力センサ9は、バッテリの電圧値・電流値を測定して 出力する。温度センサ18は、インバータ等の機器の温 10 り、タンデム式前後左右各論を油圧及び回生双方にて制 度を測定して出力する。異常検知センサ19は、インバ ータの電圧値・電流値が閾値以下になったときに異常と

【0038】これらのセンサの出力は、いずれも、車体 制御部1に入力されるにあたって、 車両制御部1にて処 理可能な形式のデータに変換される。車両制御部1は、 変換後のデータを用いて、トルク指令、回転数指令およ び速度指令等の決定、制御方法の切り換え等を実行す る。以下、例示としてトルク制御の実施態様について説 明する。

出力する。

【0039】各モータ制御部2、3、4、5は、マイク ロコンピュータを備え、車両制御部1からの制御指令を 伝送路を介して入力して必要な処理をし、インバータ1 0, 10', 11, 11', 12, 12', 13, 1 3′に制御指令を出力するように構成されている。モー 夕制御部2は、トルク指令TRFに応じて、モータ制御 部3はトルク指令TLFに応じて、モータ制御部4はト ルク指令TRRに応じて、モータ制御部5はトルク指令 TLRに応じて、それぞれ対応するインバータ10,1 御して、モータ30,31,32,33,34,35, 36,37をトルク制御する。モータ制御部2,3,4 および5に与えられるトルク指令は、全て車両制御部1 から出力される。各モータ30,31,32,33,3 4,35,36,37に対するインバータ10,1 0′, 11, 11′, 12, 12′, 13, 13′の制 御は、図示しない電流センサから得たモータの各相電流 検出値に基づき、あるいはロータ角度位置等から求めた モータの各相電流推定値に基づき行う。

【0040】 タンデムホイール式サスペンションで支持 40 される車輪系は、右前部前輪RFF40、右前部後輪R FR41、左前部前輪LFF42、左前部後輪LFR4 3、右後部前輪RRF44、右後部後輪RRR45、左 後部全輪LRF46および左後部後輪LRR47に、そ れぞれモータ30、31、32、33、34、35、3 6および37が組み込まれている。

【0041】バッテリ6は各モータへの駆動電力供給源 であり、その出力はインバータ10,10′を介しモー タ30、31に、インバータ11、11′を介しモータ 32,33に、インバータ12,12'を介しモータ3 50 制御部1と、この各モータ制御部、電池制御部A、充電

4.35に、そしてインバータ13.13′を介しモー タ36,37に、それぞれ給電されている。インバータ 10,10′は、車両制御部1に制御されるモータ制御 部2の制御のもとに、バッテリ6の出力をモータ30, 31にトルク制御、速度制御等を行うために電力変換 (この図では三相交流に変換)して給電する。インバー タ11, 11', 12, 12', 13, 13' も同様に 動作する。

【0042】図1では、安全性を確保する設計方針によ 動する制動システムが用いられている。

【0043】すなわち、ブレーキペダル20が踏まれる と、これに応じてマスタシリンダ21にて発生した油圧 が、それぞれの車輪に設けられているホイルシリンダを 介してブレーキホイルBW60、BW61、BW62、 BW63、BW64、BW65、BW66およびBW6 7に作用し、車輪に制動トルクが付与される。

【0044】他方で、ブレーキセンサ14を用いて検出 されたブレーキカ (マスタシリンダ21の油圧) FBに 20 応じた検出信号がノードN12を介した伝送路により車 両制御部1に入力され、車両制御部1は前記検出信号に 基づいて回生にかかるトルク指令TRF,TLF,TR RおよびTLRを発生させる。回生指令は制御指令に応 じた指令、例えばトルク指令、速度指令などになる。 【0045】従って、図1の車両における制動力配分 は、ブレーキカFBの増大に伴い油圧回生双方が増大す る配分となる。このように油圧系統と回生系統がブレー キセンサ14以降は分離しさらに伝送路によりバックア ップされているため、油圧及び回生のいずれか一方が誤 $0^{'}$ 、 $1\,1$ 、 $1\,1^{'}$ 、 $1\,2$ 、 $1\,2^{'}$ 、 $1\,3$ 、 $2\,1$ を制 $2\,1$ 動作したとしても他方にて車両を退避させることができ

> 【0046】更に、油圧系統にはポンプが設けられてお らず、またバルブとしては油圧制動力を前後に配分する ためのプロポーショニングバルブが設けられているのみ であるのでシステム構成が簡素になる。なお、油圧系統 にボンプを設ける必要がなくまた油圧系統上のバルブの 個数を最低限に抑えることができる理由の一つは、後述 のように、モータ12FR、12FL、12RR及び1 2RLの出力トルクの制御を利用して走行安定性制御を 行うという本実施形態の特徴的構成にある。

> 【0047】本発明の特徴となるフェイルセーフ機構 は、閉ループを構成する制御信号用迂回幹線伝送路CR と、この迂回幹線伝送路CRから各モータ制御部2, 3,4,5、電池制御部A、充電制御部B、ブレーキ制 御部C、ステアリング制御部22へ接続される迂回伝送 路CR2, CR3, CR4, CR5, CR10, CR1 1, CR12, CR13と、各モータ制御部2, 3, 4,5、電池制御部A、充電制御部B、ブレーキ制御部 C、ステアリング制御部22と、全体の制御を行う車両

制御部B、ブレーキ制御部C2、ステアリング制御部2 2と車両制御部1とを接続する伝送路とから構成され る.

(2) 東西の基本的制御

図6は本発明の実施例を示す車輛制御部の動作手順を示 すフローチャートである。

【0048】車両制御部1は、まず車体速VSの検出を 実行する(ステップS1)。

【0049】車体速VSの検出手順としては様々な手順 を採用することができるが、例えば、図3に示すような 10 手順を採用するのが好ましい。以下、車体速VSを検出 する手順を図3のフローチャートで示す。この図におい ては、車両制御部1は、まずタンデム構造になっている 2輪毎に1セットとして車輪速センサSMの検出値Vを 読み込み(ステップS30)、その車輪角加速度dω/ dtを演算する(ステップ31)。車輪角加速度の演算 式としては、次の式

 $d\omega/dt \leftarrow (1/R) \cdot dV/dt$

を用いることができる。上式中、Rは車輪半径であり、 V及びωは、現在車輪角加速度を求めようとしている車 20 輪にかかる車輪速及び車輪角速度である。

【0050】車両制御部1は、このようにして求めた車 輪角加速度dω/dtの絶対値が所定の閾値を上回って いるか、上記1セットについて比較する。1セットの内 2輪とも (全輪とも) 車輪角加速度 dω/dtの絶対値 が閾値を上回っているときはスリップ(SL)と判定 し、1セットの内1輪が閾値を上回っているがもう1輪 が閾値を上回らない場合は、非スリップ(SX)と判断 すると共に閾値を上回らない方の車輪速Vをそのセット の車輪速として保持し、1セットの内2輪とも(全輪と 30 も) 車輪角加速度 dω/d tの絶対値が閾値を上回らな いときは非スリップ (SX) と判定すると共に大きい値 の車輪速をそのセットの車輪速として保持する (ステッ TS32).

【0051】その1セットの車輪について非スリップ (SX)と判定したときは、変数VSにその車輪の車輪 速Vを積算する (ステップS33)。逆に、その1セッ トの車輪についてスリップと判定したときは、角加速度 dω/dtの絶対値が所定の閾値を上回っているのであ れば、その車輪についてはスリップ又はその傾向が発生 40 しているとみなすことができるため、スリップ又はその 傾向が生じているとみなせる車輪 (スリップ輪) の個数 をカウントするための変数であるNSを1インクリメン トさせる(ステップS34)。

【0052】車両制御部1は、ステップS33又はS3 4を実行した後、その1セットの車輪の位置及び車輪速 Vを内蔵するメモリ等に記憶する(ステップS35)。 車両制御部1は、ステップS31~S35にかかる手順 を、全てのタンデム構造の車輪を含むすべての駆動輪に ついて実行する (ステップS36)。

【0053】車両制御部1は、このようにして全ての駆 動輪についてスリップ輪かそれとも非スリップ輪かの判 定を行った後に、スリップ輪の個数NSが4に等しいか 否かすなわち全ての駆動輪がスリップしているのかそう でないのかを判定する (ステップS37)。通常は、全 ての駆動輪が同時にスリップ又はその傾向を示しはしな いため、車両制御部1は、ステップ533の繰り返し実

10

行によりVSに積算された値を4-NSすなわち非スリ ップ輪の個数にて除すことにより、車体速VSを算出す る(ステップS38)。

【0054】逆に、NS=4が成立しているときには、 過去においてステップS35を実行した際に記憶した情。 報を利用して、最後にスリップし始めた駆動輪がどの車 輪であるのかをサーチする (ステップS39)。

【0055】車両制御部1は、このサーチの結果発見さ れた駆動輪すなわち最後にスリップし始めた車輪が、ス リップし始める直前に有していた車輪速Vの値を、車体 速VSとして用いることとする(ステップS40)。

【0056】このように、本実施形態においては、原則 として非スリップ輪の車輪速のみから車体速VSを求め ることにより、車体速VSを比較的正確に決定すること を可能にしており、ひいては後述する手順にて仮確定さ れるトルク指令値を適切なものとしている。また、タン デムサスペンション構造であることから、8個の車輪全 てがスリップ又はその傾向を示すことは極めてまれな状 態ということになるが、そのときにも、最後にスリップ し始めた車輪がスリップし始める直前から所定時間内に 有していた車輪速の平均をもって車体速VSとしている ため、比較的信頼性のおける車体速情報をトルク指令値 の仮確定に利用することができる。ステップS38又は S40実行後は、車両制御部1の動作は、図6のステッ プS2に戻る。

【0057】図6においては、車体速VSを検出した 後、まず操舵の状態を判断するために、舵角8tの絶対 値が所定の閾値と同じかまたはそれ以上かの判定が実行 される (ステップS2) 、 舵角が閾値より大きい場合 で、スリップがないとき(ステップS12)、車両制御 部1は目標ヨーレイト適合制御や目標すべり角度適合制 御(例えばすべり角度0制御)を実行する (ステップS 3).

【0058】例えば、舵角センサ15で検出される舵角 δ t の絶対値が所定の閾値以上であるとき、すなわち車 両操縦者が操舵を行っていると判断されるときに、操舵 に伴う車体の走行不安定性の発生を防止乃至抑制すべ く、目標ヨーレイト適合制御乃至目標すべり角度適合制 御を実行する。

【0059】目標ヨーレイト適合制御乃至目標すべり角 度適合制御の手順の一例を、図4に示す。

【0060】 図4に示すフローにおいては、 車両制御部 50 1は、まずアクセルセンサ17の出力に基づき判定でき

るアクセルオン/オフ状態、シフトポジションスイッチ 16にて与えられるシフトポジション、舵角センサ15 から与えられる舵角る七及びこれに基づき算出できるd δt/dt等に基づき、結合係数群(経験に基づく式) を選択している (ステップS50)。

【0061】車両制御部1は、更に、タンデムサスペン ション構造の各車輪毎に、車輪加速度d v/d tを求め これに基づき路面摩擦係数μ(経験に基づく式)を演算 する (ステップS51)。車両制御部1は、路面摩擦係 択した結合係数群を用いて補正係数kを車輪毎に決定す る (ステップS52)。

【0062】車両制御部1は、アクセルがオンしている ときには(ステップS53)、車輪速V、アクセル開度 VA及びシフトポジションに基づき力行トルクマップか ら各車輪毎にトルク指令を仮確定する(ステップS5 4)。またアクセルがオフしているときには (ステップ S53)、車輪速V、ブレーキカFB及びシフトポジシ ョンに基づき回生トルクマップから、各車輪毎にトルク 指令を仮確定する(ステップS55)。力行トルクマッ 20 プは回転数及びトルクが共に正の領域におけるモータの 回転数トルク特性をあらわすマップであり、回生トルク マップは回転数が正、トルクが負の領域におけるモータ の回転数トルク特性を示すマップであり、経験で求めて おく.

【0063】車両制御部1は、ステップS54又はS5 5にて仮確定したトルク指令にステップS52にて決定 した補正係数を乗ずることによりトルク指令を決定し (ステップS56)、決定したトルク指令を対応するモ ータ制御部に出力する(ステップS57)。

【0064】従って、ステップS50にて選択対象とな る結合係数群の値や、ステップS52における補正係数 kの設定手法次第では、目標ヨーレイト適合制御乃至目 標すべり角度適合制御を実行しているときのトルク指令 が採りうる範囲は、アクセルオン時でも回生領域に属す る値となることがあり、またアクセルオフ時でも力行領 域に属する値となることがある。このような制御を行う ことで、本実施形態では、操舵時における車体の走行安 定性を向上させている。

【0065】なお、目標ヨーレイト適合制御や目標すべ 40 り角度適合制御に関しては、特開平10-210604 号公報の開示を参照されたい。また、目標ヨーレイト適 合制御や目標すべり角度適合制御に代えて、車体に作用 するヨーレイトを含め車両の運動状態を示す複数の状態 量を用いて走行安定性制御を実行する手法を採用しても よい。

【0066】この手法に関しては、特開平10-271 613号公報を参照されたい。目標ヨーレイト適合制御 や目標すべり角度適合制御を終了した後は、車両制御部 1の動作は、図6に戻る。

【0067】車両制御部1は、ステップS1に戻り動作 を繰り返す。また、車体速VSを検出した後実行される ステップS2において、目標ヨーレイト適合制御や目標 すべり角度適合制御を実行する必要がないと認められる 場合、即ち舵角の絶対値が閾値より小さいとき、車両制 御部1は、原則として8WD制御にかかる手順を実行す る(ステップS6)。

12

【0068】車両制御部1は、この8WD制御ステップ S6を開始するに際して、まず、車体速VSを検出する 数μ及び舵角δtに基づき、かつステップS50にて選 10 手順にて検出したタンデムサスペンション構造での車輪 1セットに対応するスリップ輪の個数NSに関する判定 ・分類処理を実行する。

> 【0069】すなわち、検出されたスリップ輪の個数N Sが4に等しいときすなわち全ての駆動輪がスリップま たはその傾向を示しているとき(ステップS7)や、ス リップ輪の個数NSが3に等しいときすなわちスリップ 又はその傾向を示していないタンデムサスペンション構 造の駆動輪が1個(1セット)しかないとき (ステップ S8) には、車両制御部1の動作は8WD制御 (ステッ プS6)ではなくTRC/ABS相当制御に移行する (ステップS9)。

> 【0070】また、スリップ輪の個数NSが2に等しい ときすなわちスリップ又はその傾向を示していないタン デムサスペンション構造の駆動輪が2個存在していると き (ステップS10) であっても、検出されたスリップ 輪が共に左側の車輪である場合や共に右側の車輪である 場合(ステップS11)には、TRC/ABS相当制御 へと移行する (ステップS9)。

【0071】更に、前述のステップS2において目標ヨ 30 ーレイト適合制御乃至目標すべり角度適合制御が必要と みられる状態であると判定されたときであっても、スリ ップ輪の個数NSが非Oであるときすなわちいずれかの タンデムサスペンション構造の駆動輪がスリップ又はそ の傾向を示していると認められるときには(ステップS 12)、やはりTRC/ABS相当制御へと移行する (ステップS9)。

【0072】TRC/ABS相当制御の手順の一例を図 5に示す。

【0073】TRC/ABS相当制御を実行するに際し ては、車両制御部1は、まず、各車輪の車輪速Vの高低 や、アクセルオン/オフ等に応じて、結合係数群、制御 定数群等を選択する(ステップS60)。

【0074】ここでいう結合係数群は、後述の角加速度 判定に使用するしきい値群を決定するために使用する係 数の集合であり、制御定数群は、フィードハックトルク を決定する際に使用する定数の集合である。車両制御部 1は、ステップS61において、アクセルがオンしてい るときには、車輪速V、アクセル開度VA及びシフトポ ジションに応じ力行トルクマップから(ステップS6

50 2)、アクセルがオフしているときには、車輪速V、ブ

レーキカFB及びシフトポジションに応じ回生トルクマップから(ステップS63)、トルク指令を仮確定する。

【0075】車両制御部38は、更に、ステップS61 において、アクセルがオンしているときには、アクセル 開度VA及びステップS60にて選択した結合係数群と に基づき関値群を決定する(ステップS64)。また、 アクセルがオフしているときには、ブレーキカFBとス テップS60にて選択した結合係数群とに基づき、関値 群を決定する(ステップS65)。

【0076】車両制御部1は、ステップS64又はS6 5にて決定したしきい値群を基準として、各車輪の角加 速度dω/dtを分類する(ステップS66)。 車両制 御部1は、分類の結果に応じ、異なる演算式等を使用し てフィードバックトルクを決定する。例えば、車輪角加 速度dω/dtが第1の範囲に属するときには第1の演 算式によるフィードバックトルク決定処理を(ステップ S67-1)、第2の範囲に属するときには第2の演算 式に基づくフィードバックトルク決定処理を(ステップ S67-2)、第3の範囲に属するときには第3の演算 20 式によるフィードバックトルク決定処理を(ステップS 67-3)、…第nの範囲に属するときには第nの演算 式に基づくフィードバックトルク決定処理を(ステップ S67-n)というように、各車輪毎にその回転角加速 度dω/dtの属する範囲に応じた演算式にてフィード バックトルクを決定する。

【0077】更に、ステップS67-1, S67-2, S67-3, · · · ステップS67-nにかかる演算式中の定数は、ステップS60にて選択した制御定数群にかかる値とする。車両制御部1は、このようにして決定 30したフィードバックトルクを、ステップS62又はS63にて仮確定したトルク指令値から減ずることによりトルク指令値を確定し(ステップS68)、確定したトルク指令値を対応するモータ制御部に出力する(ステップS69)。

【0078】このような手順を採用することによって、各駆動輪に作用するトルクを適宜変動させることができ、在来エンジン車両におけるTRC/ABS制御に相当する機能を実現することができる。なお、TRC/ABS相当制御に関しては、特開平8-182119号公報や、特開平10-210604号公報による開示を参照されたい。図5に示す手順を終了した後は、車両制御部1の動作は図6に示すステップS4に移行する。

【0079】車両制御部1は、目標ヨーレイト適合制御 乃至目標すべり角度適合制御への移行条件やTRC/A BS相当制御への移行条件がいずれも成立しないとき、 すなわち舵角&tの絶対値がしきい値以上となっておらず、タンデムサスペンション構造のスリップ輪の個数N S(セット数)が2以下であって、かつ左側の2個の車 輪又は右側の2個の車輪がいずれもスリップ輪となって 50 はいないときに、8WD制御 (ステップS6) にかかる 手順を実行する。

【0080】その際に、車両制御部1は、まず、上記ス リップ輪の個数NSが1であるか否かを判定する (ステ ップS13)。通常の走行路では、NS=0であるの で、車両制御部1の動作はステップS14及びS15に 移行する。ステップS14では、車両制御部1は、タン デムサスペンション構造の全ての駆動輪を配分輪として 決定する。ここでいう配分輪とは、実際にトルク出力を 10 配分する駆動輪である。ステップS15では、車両制御 部1は、各配分輪に対するトルク出力の配分の比重を通 常値に設定する。例えば、全ての駆動輪に対し、配分の 比重=1を設定する。ただし、この配分の比重は、車両 積載重量に応じて変化させてもよいし、車体の構造に応 じて前後の車輪間で異なる所定比重としても構わない。 【0081】逆に、ステップS13においてNS=1で あると判定したときや、ステップS11においてTRC /ABS相当制御への移行条件が成立していないと判定 されたときには、車両制御部1スリップ輪以外の車輪を 配分輪として決定する(ステップS16)。

【0082】更に、実際にトルクを出力したときに車体 重心を中心としたヨー方向のモーメントが新たに筆体に 作用することとならないよう、すなわち左右がバランス するように、各車両に対する配分比重を調整する(ステップS17)。

【0083】例えば、ステップS16において配分輪に 選択されなかった駆動輪すなわちスリップ輪については トルク指令が与えられないよう配分比重を0とし、左側 及び右側のうちスリップ輪が属する側の非スリップ輪の 配分比重には、スリップしていなければスリップ輪に配 分されるはずであったトルク出力に相当する配分比重を 上乗せする。

【0084】車両制御部1は、ステップS15又はS1 7を実行した後、ステップS18において、アクセルが オンしていれば、車体速VS、アクセル開度VA及びシ フトポジションに応じ力行トルクマップから(ステップ S19)、アクセルがオフしていれば、車体速VS、ブ レーキカFB及びシフトポジションに応じ回生トルクマ ップから(ステップS20)トルク指令を仮確定する。 【0085】車両制御部1は、ステップS19又はS2 0を実行した後、ステップS15又はS17にであらか じめ設定乃至調整されている配分比重に応じて、ステッ プS19又はS20にて仮確定したトルク指令値に調整 を施し(例えば配分比重を乗算し)、これにより各車輪 に対するトルク指令値を確定する (ステップS21)。 【0086】車両制御部1は、ステップS21にて確定 した各トルク指令値をそれぞれ対応するモータ制御部へ と出力し(ステップS22)、その後ステップS4に移 行する。

1 【0087】従って、本実施形態では、タンデムサスペ

ンション構造の各車輪のスリップ状態に応じて、制御状 態が切り替わる。まず、タンデムサスペンション構造の 2輪を1個の単位とすると、4個の車輪のうち1個のみ がスリップしているときすなわちNS=1であるときに は、スリップしていなければ当該スリップ輪にてさせる はずであったトルク指令が、このスリップ輪と同じ側に ある他の駆動輪にて出力されることになる。また同様に NS=2であるときのうち、スリップ輪が左右に1個ず つ存在しているときには、左右1個ずつ残っている非ス リップ輪にてトルク指令が実現される。さらに、NS= 10 2でありかつスリップ輪がいずれも左側 (又は右側) に あるときには、TRC/ABS相当制御が実行される。 更に、NS=3であるときや、NS=4であるときに は、やはり、TRC/ABS相当制御が実行される。こ のように、本実施形態によれば、各車輪におけるスリッ プ又はその傾向の発生状況、特にスリップ輪の個数や位 置に応じて、車両制御部1による各モータ出力の制御モ ードや各車輪に対するトルク配分比重を切り換え又は変 更するようにしているため、ホイルインモータ型の8輪 駆動電気自動車において好適な8WD制御やTRC/A 20 BS相当制御を実現し、走行安定性を維持改善すること ができる。

(3)フェイルセーフ機構

上記のとおり、主要な電子制御ユニットは、制御信号用 迂回幹線伝送路CRを介して接続されているので、伝送 路等に障害が発生した場合にも制御系をバックアップで き、通常通りの制御を行うことができる。

【0088】信号伝送系は、電子制御ユニットを形成す る車両制御部1、モータ制御部2、3、4、5、電池制 御部A、充電制御部B、ブレーキ制御部C、ステアリン 30 グ制御部22に設けられたノード (通信装置) に基づい て構成される。各ノード (通信装置) は、自ノードの識 别子N1, N2, N3, N4, N5, N10, N11, N12, N13を記憶する自ノードID記憶手段N1 b, N2b, N3b, N4b, N5b, N10b, N1 1b, N12b, N13bと、伝送路および迂回伝送路 に接続されている隣接ノードの識別子を記憶する隣接ノ ードID記憶手段N1c, N2c, N3c, N4c, N 5c, N10c, N11c, N12c、N13cと、ノ ードに送られてくるメッセージに基づき経路設定の処理 40 を行う処理手段N1a, N2a, N3a, N4a, N5 a, N10a, N11a, N12a, N13aとをそれ ぞれ有した複数のノードN1, N2, N3, N4, N 5, N10, N11, N12, N13とそれらを接続す る伝送路R1, R2, R3, R4, R5, R10, R1 1, R12, R13と迂回伝送路CR2, CR3, CR 4, CR5, CR10, CR11, CR12, CR13 と制御信号用迂回幹線伝送路CRからなり、発生した障 害箇所を迂回して通信経路を設定する迂回経路設定方式 をとっている。

【0089】上記迂回経路設定方式によれば、各ノード は接続された伝送路および迂回伝送路を介した隣接ノー ド間のポーリングにより、相手からの応答がないとき両 者間の伝送路または迂回路伝送路における通信の障害と して検出し、前記通信障害を検出したノードは、自己の 識別子と、前記通信障害が検出された伝送路に接続され た隣接ノードの識別子とを探索メッセージsとして送信 し、前記探索メッセージを受信したノードは、前記探索 メッセージ中の前記隣接ノードの識別子Dを自己の自ノ ード I D記憶手段または隣接ノード I D記憶手段に記憶 されている識別子と比較し、前記比較の結果、いずれも 一致しなければ、前記探索メッセージを受信したノード は、前記探索メッセージを他のノードに中継し、一方、 前記比較の結果、いずれかが一致すれば、前記探索メッ セージを受信したノードは、迂回路設定のための応答メ ッセージェを前記通信障害を検出したノードに送り返 す。

【0090】探索メッセージsや応答メッセージrは、送信信号のフレームの制御部に、探索メッセージや応答メッセージ等のメッセージ種類、送信先通信装置の識別し(ID)、障害関連通信装置の識別子(ID)、障害関連通信装置の識別子(ID)、回線残り容量などをのせる。障害関連通信装置とは、障害を発生している通信装置または障害を発生している伝送路に接続された隣接の通信装置を指す。

【0091】車両制御部1のノードN1と各モータ制御部のノードNnとの間の伝送路が確保できたことを各ノードが検出すると、各ノードは自モータ制御部および自インバータをスタンバイ状態に設定する。伝送路を介して制御指令が入力したときには、自モータ制御部は自インバータを制御指令によって制御する。

(事例(a))例えば、車両制御部1とモータ制御部2 の間の信号伝送路R2で通信障害B1が発生した場合に ついて、図1と図2を用いて説明する。

【0092】ノードN2は、接続された伝送路および迂回伝送路を介した隣接ノードN1間のボーリングにより、相手からの応答がないとき通信の障害として検出する。ノードN2の処理手段N2aは、信号フレームの制御部に、メッセージ種類が探索メッセージsであり、送信元通信装置の識別子がN2であり、障害関連通信装置の識別子がN1である旨の信号をのせてノードN13又はN3に送信する。

(a-1)まず、ノードN3を介した迂回路の設定について説明する。ノードN3は、この探索メッセージsを受信すると、処理手段N3aにおいて探索メッセージsから障害関連ノードの識別子N1を取り出し、この識別子N1を自ノードID記憶部N3bに記憶されたデータN3及び隣接ノードID記憶部N3cに記憶されたデータN1,N2,N10と比較する。この比較の結果、識50別子N1が隣接ノードID記憶部N3cに記憶されたデ

18

ータN1と一致するので、ノードN3がノードN2とノ ードN1との間の伝送路、即ち、迂回伝送路CR2→迂 回幹線伝送路CR→迂回伝送路CR3→ノードN3→伝 送路R3→伝送路R1と接続されるようにノードN2に 応答メッセージェを送信するとともに、自己の経路切替 え部に対して、伝送路R2を経由するノードN2への通 信経路に代わってノードN3を経由してノードN2への 迂回経路を設定することを指示する経路設定信号を送 ٥.

【0093】応答メッセージェは、メッセージ種類が応 10 型電気自動車を、特定の電子制御系に障害が発生して 答メッセージであり、送信先ノードの識別子がN2であ り、送信元ノードの識別子がN3である旨の信号を、信 号フレームの制御部にのせた送信信号である。

【0094】一方、応答メッセージァを受信したノード N2は、応答メッセージrを受信すると、送信元通信装 置の識別子がN3である旨の信号を取り出し、これに基 づき迂回経路を設定すべき相手のノードを確認して、自 己の経路切替え部に対して、上記の実施態様と同様にノ ードN3への迂回経路を設定することを指示する経路設 定信号を送る。

(a-2)ノードN13を介した迂回路の設定について 説明する。

上記(a-1)で説明した手順と同様の手順により、迂・ 回伝送路CR2→迂回幹線伝送路CR→迂回伝送路CR 13→ノードN13→伝送路R13→伝送路R1と接続 される迂回路を形成する。

【0095】以上の2つの経路設定信号に基づき迂回経 路が設定される。

〔事例(b)〕例えば、車両制御部1とモータ制御部2 の間の信号伝送路R2でB1の通信障害および迂回幹線 30 伝送路CRでB2の通信障害が発生した場合について、 図1と図2を用いて説明する。

【0096】この場合には、上記 (a-2) で説明した 迂回路だけが設定でき、上記 (a-1)で説明した迂回 路は設定できない。

〔事例(c)〕例えば、車両制御部1とモータ制御部2 の間の信号伝送路R2でB1の通信障害および迂回幹線 伝送路CRでB2およびB3の通信障害が発生した場合 について、図1と図2を用いて説明する。

【0097】この場合、B1, B2およびB3の通信障 40 害発生により、ノードN2は車両制御部1への伝送路が すべてなくなったことを、所定時間内にポーリングに対 する応答がないことによりノードN2が検出し、モータ 制御部2のスタンバイモードを停止モードに変えインバ ータ10,10′を停止する。

【0098】車両制御部1は、所定時間内にノードN2 からの応答がないことを検出し、ノードN2を伝送回路 から切り離し、残りのノードを介してバックアップして 残りのモータ制御部を制御する。

【0099】以下、車両制御部1と各制御部2、3、

4, 5, 10, 11, 12, 13との迂回路は上記した 実施態様と同様に設定される。

[0100]

【発明の効果】以上、詳細に説明したように、本発明に よれば、以下のような効果を奏することができる。

【0101】(1)走行安定性を向上できる電子制御を 採用し、タンデムホイール式サスペンションで支持され る車輪系を有し、車輪全輪に電子制御のモータを組み込 んだインホイール式ドライブを備えた各駆動輪独立駆動

も、迂回経路を設定することにより、制御機能を維持し _ たまま、車両の制御動作を継続することができる。

【0102】(2)電子制御系にフェールセイフ機構を 組み込んだので、車両制御を安定に行うことができる。 つまり、タンデムホイール式サスペンションで支持され る車輪系を有し、車輪全輪にモータを組み込んだインホ イール式ドライブを備えた各駆動輪独立駆動型電気自動 車において、走行安定性を向上できる制御を採用したの で、各輪毎の支持荷重を少なくでき、それに見合うTR C又はABS制御ができるので、スリップ等を少なくす ることができ、走行安定性を向上させることができる。 また、非スリップ輪が車体の左側及び右側に少なくとも 1個ずつあるときに、車体に新たなヨー方向モーメント が作用しないよう調整を施した上で、各モータに対し出 カトルク値を指令するようにしたため、ヨー方向モーメ ントの発生を防ぎながら8WDを実現でき、スリップ時 における信頼性の高い走行安定性制御を実現することが できる。

【0103】(3)電子制御系にフェールセイフ機構を 組み込んだので、車両制御を安定に行うことができる。 つまり、タンデムホイール式サスペンションで支持され る車輪系を有し、車輪全輪にモータを組み込んだインホ イール式ドライブを備えた各駆動輪独立駆動型電気自動 車において、走行安定性を向上できる制御を採用したの で、スリップ等を少なくでき、走行安定性を向上させる ことができ、また、非スリップ輪が車体の左側に1個も ないとき及び右側に1個もないときに、スリップ輪のス リップ状態に応じ調整を施した上で、各モータに対し出 カトルク値を指令するようにしたため、TRC/ABS 相当制御を制動用流体の圧力操作のための部材なしで実 現することができ、かつTRC/ABS相当制御が適切 な状況下で動作するため、スリップ時における信頼性の 高い走行安定性制御を実現できる。

【図面の簡単な説明】

【図1】 本発明の実施例を示す電気自動車のシステム構 成図である。

【図2】本発明の実施例を示す電気自動車の電子制御系 のブロック図である。

【図3】 本発明の実施例を示す車体速検出ステップを示 50 すフローチャートである。

【図4】本発明の実施例を示す目標ヨーレイト(すべり 43 角度) 適合制御ステップを示すフローチャートである。 44

【図5】本発明の実施例を示すTRC/ABS制御ステ ップを示すフローチャートである。

【図6】本発明の実施例を示す車両制御部の動作手順を 示すフローチャートである。

【図7】電気動力自動車の基本構成を示す図である。 【符号の説明】

- 車両制御部(CPU)
- 2. 3, 4, 5 モータ制御部(CPU)
- バッテリ
- 10, 10', 11, 11', 12, 12', 13, 1
- 3′ インバータ
- ブレーキセンサ 14
- 舵角センサ 15
- 16 シフトポジションスイッチ
- 17 アクセルセンサ
- 18 温度センサ
- 19 異常検知センサ
- 20 ブレーキペダル
- 21 マスタシリンダ
- 電池制御部 Α
- **充電制御部** С
- ブレーキ制御部
- 22 ステアリング制御部
- 30, 31, 32, 33, 34, 35, 36, 37

モータ

R

- 40 右前部前輪RFF
- 41 右前部後輪RFR
- 42 左前部前輪LFF

- 左前部後輪LFR
- 右後部前輪RRF
- 45 右後部後輪RRR
- 左後部前輪LRF 46
- 47 左後部後輪LRR

50, 51, 52, 53, 54, 55, 56, 57 回転位置センサ

20

60, 61, 62, 63, 64, 65, 66, 67 ブレーキホイール

10 .70, 71, 72, 73 回転位置センサ(RPS) VRFF, VRFR, VLFF, VLFR, VRRF,

VRRR, VLRF, VLRR 車輪速

PRFR, PRFF, PLFF, PLFR, PRRF,

PRRR, PLRR, PLRF 回転位置

TRF, TLF, TRR, TLR トルク指令

制御信号用迁回幹線伝送路 CR

CR2, CR3, CR4, CR5, CR10, CR1

1, CR12, CR13迂回伝送路

R1, R2, R3, R4, R5, R10, R11, R1

20 2, R13 伝送路

N1, N2, N3, N4, N5, N10, N11, N1

2. N13 ノード

N1a, N2a, N3a, N4a, N5a, N10a,

N11a, N12a, N13a **処理手段**

N1b, N2b, N3b, N4b, N5b, N10b,

N11b, N12b, N13b 自ノードID記憶手

段

N1c, N2c, N3c, N4c, N5c, N10c,

N11c, N12c, N13c 隣接ノードID記憶

30 手段

【図2】

【図1】

【図4】

【図5】

【図7】

【手模補正書】

【提出日】平成13年10月19日(2001.10.19)

【手模補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】

明細書

【発明の名称】

電気自動車の制御装置

【特許請求の範囲】

【請求項1】 一台の車に複数の駆動輪があり、該駆動輪のそれぞれに1個ずつの駆動用モーターが取り付けられている電気自動車において、

前記駆動用モーターのそれぞれに外部からの電気信号によって加速と減速を行わせるための速度制御装置が取り付けられているとともに、該速度制御装置のそれぞれに運転者あるいは車載のセンサーからの指令に基づき、加減速のための制御信号を送り、かつ、前記駆動用モーターおよび前記速度制御装置の動作状況を制御用信号として受け取る機能を有する主制御装置を具備することを特徴とする電気自動車の制御装置。

【請求項2】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置に入力するセンサー信号とし て、電池の電圧、該電池から供給される電流、電池温度 のそれぞれが含まれることを特徴とする電気自動車の制 御装置。

【請求項3】 請求項1記載の電気自動車の制御装置に

おいて、前記主制御装置に入力するセンサー信号として、ステアリングの<u>操舵</u>角が含まれることを特徴とする 電気自動車の制御装置。

【請求項4】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置に入力するセンサー信号とし て、充電装置から充電中であることを示すセンサー信号 が含まれることを特徴とする電気自動車の制御装置。

【請求項5】 請求項1記載の電気自動車の制御装置において、前記主制御装置に入力するセンサー信号として、ブレーキ制御部からのブレーキ指令値およびマスターシリンダーの油圧を示すセンサー<u>信号が</u>含まれることを特徴とする電気自動車の制御装置。

【請求項6】 請求項1記載の電気自動車の制御装置に おいて、前記主制御装置から送られる制御信号として、 ステアリングの<u>操舵角</u>信号が含まれることを特徴とする 電気自動車の制御装置。

【請求項7】 車両の電子制御系における通信障害を検出したノードが伝送経路を探索する探索メッセージを送信し、伝送路を形成可能なノードが応答メッセージを返送して迂回路を形成する信号伝送路のフェールセイフ手段を備えたことを特徴とする電気自動車の制御装置。

【請求項8】 請求項7記載の電気自動車の制御装置において、前記ノードは、自ノードの識別子を記憶する自ノードID記憶手段と、前記伝送路に接続されている隣接ノードの識別子を記憶する隣接ノードID記憶手段と、前記ノードに送られてくるメッセージに基づき経路設定の処理を行う処理手段とから構成されることを特徴

とする電気自動車の制御装置。

【請求項<u>9</u>】 請求項<u>8</u>記載の電気自動車の制御装置に おいて、前記ノードは、車両制御部および各車輪担毎に 設けたモータ制御部に設けられていることを特徴とする 電気自動車の制御装置。

【請求項<u>10</u>】 請求項<u>8</u>記載の電気自動車の制御装置において、前記ノードは電池制御部、ステアリング制御部、ブレーキ制御部、充電制御部に設けられていることを特徴とする電気自動車の制御装置。

【請求項<u>11</u>】 請求項<u>9</u>記載の電気自動車の制御装置において、前記車両制御部および各車輪組毎に設けたモータ制御部は、それぞれに設けたノードを介して入力した制御信号により<u>電力</u>変換器を制御することを特徴とする電気自動車の制御装置。

【請求項12】 請求項9又は10記載の電気自動車の 制御装置において、前記迂回路を、閉ループを構成する 制御信号用迂回幹線伝送路と、該迂回幹線伝送路と前記 各モータ制御部との間の迂回伝送路とから構成したこと を特徴とする電気自動車の制御装置。

【請求項13】 請求項12記載の電気自動車の制御装置において、特定のノードは、前記車両制御部との間の伝送路及び迂回伝送路の全てに障害が発生したことを検出したとき、前記モータ制御部の動作を停止し、前記車両制御部は、前記特定ノードからの応答がないことを検出し、前記特定ノードのモータ制御部を制御部対象から切り離すことを特徴とする電気自動車の制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両の電子制御系 にフェールセイフ手段を備えた電気自動車の制御装置に 関するものである。

[0002]

【従来の技術】モータリゼーションによる空気汚染を防止する一つの決め手として完全電気自動車の開発が急務となってきている。自然環境の保全は21世紀の大きな目標であることを認識して、本出願の発明者は1980年時代からその研究に着手し、その成果をあげつつある。

【0003】図7に示すように、電気自動車とは、電動機101の駆動力のみを用いて走行が可能な車であり、その電動機101に供給する電力源として、二次電池(バッテリ)を用いるものを狭義の電気自動車A、エンジン発電機を用いるものを必料電池車Cと呼ぶことにする。102は車輪、103はコントローラ、104は二次電池、201はエンジン、202は発電機、301は水素供給源、302は燃料電池である。

【0004】このように、電気自動車とは、回転式電気 電動機の駆動力のみを用いて走行が可能な車であり、そ の電気電動機に供給する電力源として、二次電池、燃料 電池、内燃機関を用いた発電機、太陽電池等およびこれらを組み合わせたものを使用した車と定義する。ただし、以下の説明では、二次電池のみを用いた電気自動車を念頭におくが、燃料電池、内燃機関発電機、太陽電池を電力源とする車も当然に含まれる。

【0005】車両の運転の安全性および使いやすさを向上させるために、車両の安全上問題となる電子システムは、次第に冗長な構成要素、例えばセンサ、計算機要素が搭載されるようになってきている。

【0006】例えば、運転者によって操作可能な操作部材の位置センサ、あるいは回転数センサなどが冗長に設けられている例が紹介されている。この冗長に構成された測定装置の信号は、それぞれほぼ同一のコンピュータプログラムに基づいて車両の駆動出力の制御を行う2つのプロセッサに供給される。その際、両プロセッサの出力信号は車両の駆動ユニットの出力に影響を与える同一の可変量に作用する。

【0007】しかし、この種のシステムを完全に冗長にすると著しく複雑になり、それによってコストが増大し、故障の頻度も増大してしまう。

【0008】現在の車両には知られているように複数の電子制御ユニットが搭載されている。特に速度制御ユニット、操舵制御ユニット等が挙げられる。これらの制御ユニットはそれぞれ車両の駆動ユニットの他の可変量に作用する。

【0009】現在の車両においては、これらの制御ユニットは電子接続システムによって互いに接続され、かつそれを介して互いにデータおよび情報を交換する。

【0010】特に、電気自動車の速度制御は電動機に流す電流を制御する制御装置にアクセルペダルからの電気的信号を流す方法が<u>用いられるが、複数</u>個の電動機が駆動に使われる場合であって、かつ、車の加速、減速、旋回角を制御する場合には、車全体を制御する中央制御装置をもう1台必要とする。これまで、このような制御装置では、中央制御装置と各電動機に取り付けられている制御装置との間が、それぞれ信号線で結ばれ制御が行われていた。

[0011]

【発明が解決しようとする課題】しかし、このような制 健の方法では、それぞれの通信線に不都合が生じた場 合、個々の電動機を制御することが不可能となる。

【0012】本発明は、上記状況に鑑みて、それぞれの 電動機に取り付けられた制御装置の間でも信号伝送を可 能とし、いずれかの伝送線に不都合が生じたときに迂回 して制御情報を送受信できる電気自動車の制御装置を提 供することを目的とする。

[0013]

【課題を解決するための手段】本願発明は、上記目的を 達成するために、

〔1〕一台の車に複数の駆動輪があり、該駆動輪のそれ

ぞれに1個ずつの駆動用モーターが取り付けられている 電気自動車において、前記駆動用モーターのそれぞれに 外部からの電気信号によって加速と減速を行わせるため の速度制御装置が取り付けられているとともに、該速度 制御装置のそれぞれに運転者あるいは車載のセンサーか らの指令に基づき、加減速のための制御信号を送り、か つ、前記駆動用モーターおよび前記速度制御装置の動作 状況を制御用信号として受け取る機能を有する主制御装 置を具備することを特徴とする。

【0014】〔2〕上記〔1〕記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、電池の電圧、該電池から供給される電流、電池 温度のそれぞれが含まれることを特徴とする。

【0015】〔3〕上記〔1〕記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、ステアリングの<u>操舵</u>角が含まれることを特徴と する。

【0016】〔4〕上記〔1〕記載の電気自動車の制御 装置において、前記主制御装置に入力するセンサー信号 として、充電装置から充電中であることを示すセンサー 信号が含まれることを特徴とする。

【0017】〔5〕上記〔1〕記載の電気自動車の制御装置において、前記主制御装置に入力するセンサー信号として、ブレーキ制御部からのブレーキ指令値およびマスターシリンダーの油圧を示すセンサー<u>信号が</u>含まれることを特徴とする。

【0018】〔6〕上記〔1〕記載の電気自動車の制御装置において、前記主制御装置から送られる制御信号として、ステアリングの操舵角信号が含まれることを特徴とする。

【0019】〔<u>7</u>〕車両の電子制御系における通信障害を検出したノードが伝送経路を探索する探索メッセージを送信し、伝送路を形成可能なノードが応答メッセージを返送して迂回路を形成する信号伝送路のフェールセイフ手段を備えたことを特徴とする。

【0020】 [8] 上記 [7] 記載の電気自動車の制御装置において、前記ノードは、自ノードの識別子を記憶する自ノード I D記憶手段と、前記伝送路に接続されている隣接ノード O 配別子を記憶する隣接ノード I D記憶手段と、前記ノードに送られてくるメッセージに基づき経路設定の処理を行う処理手段とから構成されることを特徴とする。

【0021】〔<u>9</u>〕上記〔<u>8</u>〕記載の電気自動車の制御 装置において、前記ノードは、車両制御部および各車輪 組毎に設けたモータ制御部に設けられていることを特徴 とする。

【0022】〔<u>10</u>〕上記〔<u>8</u>〕記載の電気自動車の制 御装置において、前記ノードは電池制御部、ステアリン グ制御部、ブレーキ制御部、充電制御部に設けられてい ることを特徴とする。 【0023】〔11〕上記〔9〕記載の電気自動車の制御装置において、前記車両制御部および各車輪組毎に設けたモータ制御部は、それぞれに設けたノードを介して入力した制御信号により電力変換器を制御することを特徴とする。

【0024】〔12〕上記〔9〕又は〔10〕記載の電気自動車の制御装置において、前記迂回路を、閉ループを構成する制御信号用迂回幹線伝送路と、該迂回幹線伝送路と前記各モータ制御部との間の迂回伝送路とから構成したことを特徴とする。

【0025】〔13〕上記〔12〕記載の電気自動車の 制御装置において、特定のノードは、前記車両制御部と の間の伝送路及び迂回伝送路の全てに障害が発生したこ とを検出したとき、前記モータ制御部の動作を停止し、 前記車両制御部は、前記特定ノードからの応答がないこ とを検出し、前記特定ノードのモータ制御部を制御部対 象から切り離すことを特徴とする。

[0026]

【発明の実施の形態】以下、本発明の実施の形態を、図面を参照しながら<u>説明する。ここでは、</u>代表例となる、各2輪がタンデムホイール式サスペンションで支持される車輪系を有し、6輪以上の駆動輪を有し、各駆動輪をインホイール式ドライブとした電気自動車に搭載され、スリップ時における走行安定性を向上させるように各々をモータ制御する制御装置に、フェールセイフ機構を適用する実施態様について説明する。

【0027】本発明の特徴は電子制御ユニットを備える 制御系におけるフェールセイフ手段にあり、その余の制 御系および装置は適宜適用可能となる。

(1)システム構成

図1は本発明の実施例を示す電気自動車のシステム構成 図である。

【0028】本発明においては、前後両車輪がタンデムホイール式サスペンションで支持された車輪系である必要はなく、前または後の車輪系のみがタンデムホイール式サスペンションで支持された車輪系であってもよい。【0029】この実施態様における電気自動車は、インホイールモータ型の8輪駆動電気自動車である。すなわち、タンデムホイール式サスペンションで支持される車輪系を有し、車輪全輪にモータを組み込んだインホイール式ドライブを備えた各駆動輪独立駆動型電気自動車である。

【0030】このように構成することにより、各車輪毎の支持荷重を少なくでき、それに見合うTRC又はAB S制御を行い、スリップ等を少なくし、走行安定性を向上させることができる。

【0031】各モータは、交流、直流、バルス等の各種の電源により駆動可能であり、その電源の種類により対応する変換器、例えば電源が交流のとき変換器がインバータであり、直流のときコンバータであり、パルスのと

きチョッパなどである。

【0032】以下、電源が交流で変換器がインバータの 場合の実施態様について説明する。

【0033】車両制御部1は、マイクロコンピュータを備え、各種センサからの検出情報を入力して必要な処理を行って各モータ制御部(CPU)2,3,4,5へ制御指令を出力する。車両制御部(CPU)1からの前記制御指令は伝送路R1,R2,R3,R4,R5,R10,R11,R12,R13、迂回伝送路CR2,CR3,CR4,CR5,CR10,CR11,CR12,CR13および制御信号用迂回幹線伝送路CRを介して各モータ制御部2,3,4および5、電池制御部A、充電制御部B、ブレーキ制御部C、ステアリング制御部22へ出力される。

【0034】また、車両制御部1は、各モータ30、3 1,32,33,34,35,36,37の出力トルク の制御、回転数制御、速度制御、車載各コンポーネント の状態監視・制御、車両乗員への車両状態の報知、バッ テリの給電制御、バッテリの充電制御、ブレーキ制御、 ステアリング制御、その他の機能を担う電子制御ユニッ ト(ECU)よりなり、前記機能を行うための処理用マ イクロプログラムを有する。さらに、車両制御部1に は、回転位置センサ<u>(SM)</u>50,51,52,53, 54, 55, 56および57、バッテリの電圧値・電流 値検出のための電力センサ9、ブレーキの操作を検出す るブレーキセンサ14、ハンドルの操舵角を検出する舵 角センサ15、シフトレバーのシフトポジションを検出 するシフトポジション(SP)スイッチ16、アクセル の開度を検出するアクセルセンサ17、バッテリ温度・ 変換器温度等を検出する温度センサ18、変換器の電圧 値・電流値が閾値より低下したこと等を検出する異常検 知センサ19の検出出力が入力される。

【0035】各車輪毎に設けられている回転位置センサ (例えばレゾルバ)50,51,52,53,54,5 5,56および57は、それぞれの車輪の車輪速VRF F,VRFR,VLFF,VLFR,VRRF,VRR R,VLRFおよびVLRRを示す信号(例えば微小角 度位置変位毎のパルス信号)を生成し、車両制御部1に 供給する。

【0036】アクセルセンサ17は、アクセルペダル (図示せず)の踏み込み量を示す信号を、ブレーキセン サ14は、ブレーキペダル20の踏み込み量を示す信号 を、シフトボジションスイッチ16は、シフトレバー (図示せず)の投入レンジ(及びエンジンブレーキレン ジ等では当該レンジ内でのシフトレバー位置)すなわち シフトボジションを示す信号を、それぞれ出力させる。 舵角センサ15は、ハンドルの舵角検出の結果を示す信 号例えば舵角&tを示す信号を出力させる。バッテリ6 の電力センサ9は、バッテリ6の電圧値・電流値を測定 して出力する。温度センサ18は、インバータ等の機器 の温度を測定して出力する。異常検知センサ19は、インバータの電圧値・電流値が関値以下になったときに異常信号を出力する。

【0037】これらのセンサの出力は、いずれも、車両制御部1に入力されるにあたって、車両制御部1にて処理可能な形式のデータに変換される。車両制御部1は、変換後のデータを用いて、トルク指令、回転数指令および速度指令等の決定、制御方法の切り換え等を実行する。以下、例示としてトルク制御の実施感様について説明する。

【0038】各モータ制御部2,3,4,5は、マイク ロコンピュータを備え、車両制御部1からの制御指令を 伝送路を介して入力して必要な処理をし、インバータ1 0, 10', 11, 11', 12, 12', 13, 1 3'に制御指令を出力するように構成されている。モー 夕制御部2は、トルク指令TRFに応じて、モータ制御 部3はトルク指令TLFに応じて、モータ制御部4はト ルク指令TRRに応じて、モータ制御部5はトルク指令 TLRに応じて、それぞれ対応するインバータ10,1 0′, 11, 11′, 12, 12′, 13, 13′を制 御して、モータ30,31,32,33,34,35, 36, 37をトルク制御する。モータ制御部2, 3, 4 および5に与えられるトルク指令は、全て車両制御部1 から出力される。各モータ30,31,32,33,3 4,35,36,37に対するインバータ10,1 0′, 11, 11′, 12, 12′, 13, 13′の制 御は、図示しない電流センサから得たモータの各相電流 検出値に基づき、あるいはロータ角度位置等から求めた モータの各相電流推定値に基づき行う。

【0039】タンデムホイール式サスペンションで支持される車輪系は、右前部前輪RFF40、右前部後輪RFR41、左前部前輪RFF42、左前部後輪LFR43、右後部前輪RRF44、右後部後輪RRR45、左後部前輪LRF46および左後部後輪LRR47に、それぞれモータ30、31、32、33、34、35、36および37が組み込まれている。

【0040】バッテリ6は各モータへの駆動電力供給源であり、その出力はインバータ10、10′を介しモータ30、31に、インバータ11、11′を介しモータ32、33に、インバータ12、12′を介しモータ34、35に、そしてインバータ13、13′を介しモータ36、37に、それぞれ拾電されている。インバータ10、10′は、車両制御部1に制御されるモータ制御部2の制御のもとに、バッテリ6の出力をモータ30、31にトルク制御、速度制御等を行うために電力変換(この図では三相交流に変換)して拾電する。インバータ11、11′、12、12′、13、13′も同様に動作する。

【0041】図1では、安全性を確保する設計方針により、タンデム式前後左右各輪を油圧及び回生双方にて制

動する制動システムが用いられている。

【0042】すなわち、ブレーキペダル20が踏まれると、これに応じてマスタシリンダ21にて発生した油圧が、それぞれの車輪に設けられているホイールシリンダを介してブレーキホイールBW60、BW61、BW62、BW63、BW64、BW65、BW66およびBW67に作用し、車輪に制動トルクが付与される。

【0043】他方で、ブレーキセンサ14を用いて検出されたブレーキ力(マスタシリンダ21の油圧)FBに応じた検出信号がノードN12を介した伝送路<u>R12</u>により車両制御部1に入力され、車両制御部1は前記検出信号に基づいて回生にかかるトルク指令TRF,TLF,TRRおよびTLRを発生させる。回生指令は制御指令に応じた指令、例えばトルク指令、速度指令などになる。

【0044】従って、図1の車両における制動力配分は、ブレーキカFBの増大に伴い油圧回生双方が増大する配分となる。このように油圧系統と回生系統がブレーキセンサ14以降は分離しさらに伝送路によりバックアップされているため、油圧及び回生のいずれか一方が誤動作したとしても他方にて車両を退避させることができる。

【0045】更に、油圧系統にはTRC/ABS制御のための油圧ポンプが設けられておらず、油圧制動力の前後配分を適正化するためのプロポーショニングバルブが設けられているのみであるので油圧制動システムの構成が簡素になる。なお、油圧系統にTRC/ABSのための油圧装置を設けなくてもよい理由の一つは、後述のように、モータ12FR、12FL、12RR及び12RLの出力トルクの制御を利用して走行安定性制御を行うという本実施形態の特徴的構成にある。

【0046】本発明の特徴となるフェイルセーフ機構は、閉ループを構成する制御信号用迂回幹線伝送路CR と、この迂回幹線伝送路CRから各モータ制御部2,

- 3,4,5、電池制御部A、充電制御部B、ブレーキ制 御部C、ステアリング制御部22へ接続される迂回伝送 路CR2,CR3,CR4,CR5,CR10,CR1 1,CR12,CR13と、各モータ制御部2,3,
- 4.5、電池制御部A、充電制御部B、ブレーキ制御部C、ステアリング制御部22と、全体の制御を行う車両制御部1と、この各モータ制御部、電池制御部A、充電制御部B、ブレーキ制御部C、ステアリング制御部22と車両制御部1とを接続する伝送路とから構成される。

(2)車両の基本的制御

図6は本発明の実施例を示す車両制御部の動作手順を示すフローチャートである。

【0047】車両制御部1は、まず車体速VSの検出を 実行する(ステップS1)。

【0048】車体速VSの検出手順としては様々な手順 を採用することができるが、例えば、図3に示すような 手順を採用するのが好ましい。以下、車体速VSを検出する手順を図3のフローチャートで示す。この図においては、車両制御部1は、まずタンデム構造になっている 2輪毎に1セットとして車輪速センサSMの検出値Vを読み込み(ステップS30)、その車輪角加速度 dω/dtを演算する(ステップ31)。車輪角加速度の演算式としては、次の式

dω/dt←(1/R)·dV/dt を用いることができる。上式中、Rは車輪半径であり、 V及びωは、現在車輪角加速度を求めようとしている車 輪にかかる車輪速及び車輪角速度である。

【0049】車両制御部1は、このようにして求めた車輪角加速度はω/dtの絶対値が所定の閾値を上回っているか、上記1セットについて比較する。1セットの内2輪とも(全輪とも)車輪角加速度はω/dtの絶対値が閾値を上回っているときはスリップ(SL)と判定し、1セットの内1輪が閾値を上回っているがもう1輪が閾値を上回らない場合は、非スリップ(SX)と判断すると共に閾値を上回らない方の車輪速Vをそのセットの車輪速として保持し、1セットの内2輪とも(全輪とも)車輪角加速度はω/dtの絶対値が閾値を上回らないときは非スリップ(SX)と判定すると共に大きい値の車輪速をそのセットの車輪速として保持する(ステップS32)。

【0050】その1セットの車輪について非スリップ (SX)と判定したときは、変数VSにその車輪の車輪速Vを積算する(ステップS33)。逆に、その1セットの車輪についてスリップと判定したときは、角加速度 dω/dtの絶対値が所定の閾値を上回っているのであれば、その車輪についてはスリップ又はその傾向が発生しているとみなすことができるため、スリップ輪)の個数をカウントするための変数であるNSを1インクリメントさせる(ステップS34)。

【0051】車両制御部1は、ステップS33又はS34を実行した後、その1セットの車輪の位置及び車輪速 Vを内蔵するメモリ等に記憶する(ステップS35)。 車両制御部1は、ステップS31~S35にかかる手順を、全てのタンデム構造の車輪を含むすべての駆動輪について実行する(ステップS36)。

【0052】車両制御部1は、このようにして全ての駆動輪についてスリップ輪かそれとも非スリップ輪かの判定を行った後に、スリップ輪の個数NSが4に等しいか否かすなわち全ての駆動輪がスリップしているのかそうでないのかを判定する(ステップS37)。通常は、全ての駆動輪が同時にスリップ又はその傾向を示しはしないため、車両制御部1は、ステップS33の繰り返し実行によりVSに積算された値を4-NSすなわち非スリップ輪の個数にて除すことにより、車体速VSを算出する(ステップS38)。

【0053】逆に、NS=4が成立しているときには、過去においてステップS35を実行した際に記憶した情報を利用して、最後にスリップし始めた駆動輪がどの車輪であるのかをサーチする(ステップS39)。

【0054】車両制御部1は、このサーチの結果発見された駆動輪すなわち最後にスリップし始めた車輪が、スリップし始める直前に有していた車輪速Vの値を、車体速VSとして用いることとする(ステップS40)。

【0055】このように、本実施形態においては、原則として非スリップ輪の車輪速のみから車体速VSを求めることにより、車体速VSを比較的正確に決定することを可能にしており、ひいては後述する手順にて仮確定されるトルク指令値を適切なものとしている。また、タンデムサスペンション構造であることから、8個の車輪全てがスリップ又はその傾向を示すことは極めてまれな状態ということになるが、そのときにも、最後にスリップし始めた車輪がスリップし始める直前から所定時間内に有していた車輪速の平均をもって車体速VSとしているため、比較的信頼性のおける車体速情報をトルク指令値の仮確定に利用することができる。ステップS38又はS40実行後は、車両制御部1の動作は、図6のステップS2に戻る。

【0056】図6においては、車体速VSを検出した 後、まず操舵の状態を判断するために、舵角&tの絶対 値が所定の閾値と同じかまたはそれ以上かの判定が実行 される(ステップS2)。舵角が閾値より大きい場合 で、スリップがないとき(ステップS12)、車両制御 部1は目標ヨーレイト適合制御や目標すべり角度適合制 御(例えばすべり角度の制御)を実行する(ステップS 3)。

【0057】例えば、舵角センサ15で検出される舵角 るtの絶対値が所定の閾値以上であるとき、すなわち車 両操縦者が操舵を行っていると判断されるときに、操舵 に伴う車体の走行不安定性の発生を防止乃至抑制すべ く、目標ヨーレイト適合制御乃至目標すべり角度適合制 御を実行する。

【0058】目標ヨーレイト適合制御乃至目標すべり角度適合制御の手順の一例を、図4に示す。

【0059】図4に示すフローにおいては、車両制御部 1は、まずアクセルセンサ17の出力に基づき判定でき るアクセルオン/オフ状態、シフトポジションスイッチ 16にて与えられるシフトポジション、舵角センサ15 から与えられる舵角&t及びこれに基づき算出できるd &t/dt等に基づき、結合係数群(経験に基づく式) を選択している(ステップS50)。

【0060】車両制御部1は、更に、タンデムサスペンション構造の各車輪毎に、車輪加速度dv/dtを求めこれに基づき路面摩擦係数μ(経験に基づく式)を演算する(ステップS51)。車両制御部1は、路面摩擦係数μ及び舵角δtに基づき、かつステップS50にて選

択した結合係数群を用いて補正係数kを車輪毎に決定する(ステップS52)。

【0061】車両制御部1は、アクセルがオンしているときには(ステップS53)、車輪速V、アクセル開度VA及びシフトポジションに基づき力行トルクマップから各車輪毎にトルク指令を仮確定する(ステップS54)。またアクセルがオフしているときには(ステップS53)、車輪速V、ブレーキカFB及びシフトポジションに基づき回生トルクマップから、各車輪毎にトルク指令を仮確定する(ステップS55)。力行トルクマップは回転数及びトルクが共に正の領域におけるモータの回転数トルク特性をあらわすマップであり、回生トルクマップは回転数が正、トルクが負の領域におけるモータの回転数トルク特性を示すマップであり、経験で求めておく

【0062】車両制御部1は、ステップS54又はS55にて仮確定したトルク指令にステップS52にて決定した補正係数を乗ずることによりトルク指令を決定し(ステップS56)、決定したトルク指令を対応するモータ制御部に出力する(ステップS57)。

【0063】従って、ステップS50にて選択対象となる結合係数群の値や、ステップS52における補正係数 kの設定手法次第では、目標ヨーレイト適合制御乃至目 標すべり角度適合制御を実行しているときのトルク指令が採りうる範囲は、アクセルオン時でも回生領域に属する値となることがあり、またアクセルオフ時でも力行領 域に属する値となることがある。このような制御を行うことで、本実施形態では、操舵時における車体の走行安 定性を向上させている。

【0064】なお、目標ヨーレイト適合制御や目標すべり角度適合制御に関しては、特開平10-210604号公報の開示を参照されたい。また、目標ヨーレイト適合制御や目標すべり角度適合制御に代えて、車体に作用するヨーレイトを含め車両の運動状態を示す複数の状態量を用いて走行安定性制御を実行する手法を採用してもよい。

【0065】この手法に関しては、特開平10-271 613号公報を参照されたい。目標ヨーレイト適合制御 や目標すべり角度適合制御を終了した後は、車両制御部 1の動作は、図6に戻る。

【0066】車両制御部1は、ステップS1に戻り動作を繰り返す。また、車体速VSを検出した後実行されるステップS2において、目標ヨーレイト適合制御や目標すべり角度適合制御を実行する必要がないと認められる場合、即ち舵角の絶対値が閾値より小さいとき、車両制御部1は、原則として8WD制御にかかる手順を実行する(ステップS6)。

【0067】車両制御部1は、この8WD制御ステップ S6を開始するに際して、まず、車体速VSを検出する 手順にて検出したタンデムサスペンション構造での車輪 1セットに対応するスリップ輪の個数NSに関する判定・分類処理を実行する。

【0068】すなわち、検出されたスリップ輪の個数N Sが4に等しいときすなわち全ての駆動輪がスリップま たはその傾向を示しているとき(ステップS7)や、ス リップ輪の個数NSが3に等しいときすなわちスリップ 又はその傾向を示していないタンデムサスペンション構 造の駆動輪が1個(1セット)しかないとき(ステップ S8)には、車両制御部1の動作は8WD制御(ステップS6)ではなくTRC/ABS相当制御に移行する (ステップS9)。

【0069】また、スリップ輪の個数NSが2に等しいときすなわちスリップ又はその傾向を示していないタンデムサスペンション構造の駆動輪が2個存在しているとき(ステップS10)であっても、検出されたスリップ輪が共に左側の車輪である場合(ステップS11)には、TRC/ABS相当制御へと移行する(ステップS9)。

【0070】更に、前述のステップS2において目標ヨーレイト適合制御乃至目標すべり角度適合制御が必要とみられる状態であると判定されたときであっても、スリップ輪の個数NSが非0であるときすなわちいずれかのタンデムサスペンション構造の駆動輪がスリップ又はその傾向を示していると認められるときには(ステップS12)、やはりTRC/ABS相当制御へと移行する(ステップS9)。

【0071】TRC/ABS相当制御の手順の一例を図 5に示す。

【0072】TRC/ABS相当制御を実行するに際しては、車両制御部1は、まず、各車輪の車輪速Vの高低や、アクセルオン/オフ等に応じて、結合係数群、制御定数群等を選択する(ステップS60)。

【0073】ここでいう結合係数群は、後述の角加速度 判定に使用する園値群を決定するために使用する係数の 集合であり、制御定数群は、フィードバックトルクを決定する際に使用する定数の集合である。車両制御部1は、ステップS61において、アクセルがオンしているときには、車輪速V、アクセル開度VA及びシフトボジションに応じ力行トルクマップから(ステップS62)、アクセルがオフしているときには、車輪速V、ブレーキカFB及びシフトボジションに応じ回生トルクマップから(ステップS63)、トルク指令を仮確定する。

【0074】車両制御部38は、更に、ステップS61において、アクセルがオンしているときには、アクセル開度VA及びステップS60にて選択した結合係数群とに基づき関値群を決定する(ステップS64)。また、アクセルがオフしているときには、ブレーキカFBとステップS60にて選択した結合係数群とに基づき、関値群を決定する(ステップS65)。

【0075】車両制御部1は、ステップS64又はS6 5にて決定した閾値群を基準として、各車輪の角加速度 dω/dtを分類する(ステップS66)。車両制御部 1は、分類の結果に応じ、異なる演算式等を使用してフ ィードバックトルクを決定する。例えば、車輪角加速度 dω/dtが第1の範囲に属するときには第1の演算式 によるフィードバックトルク決定処理を(ステップS6 7-1)、第2の範囲に属するときには第2の演算式に 基づくフィードバックトルク決定処理を(ステップS6 7-2)、第3の範囲に属するときには第3の演算式に よるフィードバックトルク決定処理を (ステップS67 -3)、…第nの範囲に属するときには第nの演算式に 基づくフィードバックトルク決定処理を (ステップS6 7-n)というように、各車輪毎にその回転角加速度d ω/dtの属する範囲に応じた演算式にてフィードバッ クトルクを決定する。

【0076】更に、ステップS67-1, S67-2, S67-3, ···ステップS67-nにかかる演算式中の定数は、ステップS60にて選択した制御定数群にかかる値とする。車両制御部1は、このようにして決定したフィードバックトルクを、ステップS62又はS63にて仮確定したトルク指令値から減ずることによりトルク指令値を確定し(ステップS68)、確定したトルク指令値を対応するモータ制御部に出力する(ステップS69)。

【0077】このような手順を採用することによって、各駆動輪に作用するトルクを適宜変動させることができ、在来エンジン車両におけるTRC/ABS制御に相当する機能を実現することができる。なお、TRC/ABS相当制御に関しては、特開平8-182119号公報や、特開平10-210604号公報による開示を参照されたい。図5に示す手順を終了した後は、車両制御部1の動作は図6に示すステップS4に移行する。

【0078】車両制御部1は、目標ヨーレイト適合制御 乃至目標すべり角度適合制御への移行条件やTRC/A BS相当制御への移行条件がいずれも成立しないとき、 すなわち舵角をもの絶対値が<u>閾値</u>以上となっておらず、 タンデムサスペンション構造のスリップ輪の個数NS (セット数)が2以下であって、かつ左側の2個の車輪 又は右側の2個の車輪がいずれもスリップ輪となっては いないときに、8WD制御 (ステップS6) にかかる手 順を実行する。

【0079】その際に、車両制御部1は、まず、上記スリップ輪の個数NSが1であるか否かを判定する(ステップS13)。通常の走行路では、NS=0であるので、車両制御部1の動作はステップS14及びS15に移行する。ステップS14では、車両制御部1は、タンデムサスペンション構造の全ての駆動輪を配分輪として決定する。ここでいう配分輪とは、実際にトルク出力を配分する駆動輪である。ステップS15では、車両制御

部1は、各配分輪に対するトルク出力の配分の比重を通常値に設定する。例えば、全ての駆動輪に対し、配分の比重=1を設定する。ただし、この配分の比重は、車両積載重量に応じて変化させてもよいし、車体の構造に応じて前後の車輪間で異なる所定比重としても構わない。【0080】逆に、ステップS13においてNS=1であると判定したときや、ステップS11においてTRC/ABS相当制御への移行条件が成立していないと判定されたときには、車両制御部1スリップ輪以外の車輪を配分輪として決定する(ステップS16)。

【0081】更に、実際にトルクを出力したときに車体 重心を中心としたヨー方向のモーメントが新たに車体に 作用することとならないよう、すなわち左右がバランス するように、各車両に対する配分比重を調整する(ステップS17)。

【0082】例えば、ステップS16において配分輪に 選択されなかった駆動輪すなわちスリップ輪については トルク指令が与えられないよう配分比重を0とし、左側 及び右側のうちスリップ輪が属する側の非スリップ輪の 配分比重には、スリップしていなければスリップ輪に配 分されるはずであったトルク出力に相当する配分比重を 上乗せする。

【0083】車両制御部1は、ステップS15又はS1 7を実行した後、ステップS18において、アクセルが オンしていれば、車体速VS、アクセル開度VA及びシ フトポジションに応じ力行トルクマップから(ステップ S19)、アクセルがオフしていれば、車体速VS、ブ レーキカFB及びシフトポジションに応じ回生トルクマ ップから(ステップS20)トルク指令を仮確定する。 【0084】車両制御部1は、ステップS19又はS2 0を実行した後、ステップS15XはS17に<u>て</u>あらか じめ設定乃至調整されている配分比重に応じて、ステッ プS19又はS2.0にて仮確定したトルク指令値に調整 を施し(例えば配分比重を乗算し)、これにより各車輪 に対するトルク指令値を確定する(ステップS21)。 【0085】車両制御部1は、ステップS21にて確定 した各トルク指令値をそれぞれ対応するモータ制御部へ と出力し(ステップS22)、その後ステップS4に移 行する。

【0086】従って、本実施形態では、タンデムサスペンション構造の各車輪のスリップ状態に応じて、制御状態が切り替わる。まず、タンデムサスペンション構造の2輪を1個の単位とすると、4個の車輪のうち1個のみがスリップしているときすなわちNS=1であるときには、スリップしていなければ当該スリップ輪にてさせるはずであったトルク指令が、このスリップ輪と同じ側にある他の駆動輪にて出力されることになる。また同様にNS=2であるときのうち、スリップ輪が左右に1個ずつ存在しているときには、左右1個ずつ残っている非スリップ輪にてトルク指令が実現される。さらに、NS=

2でありかつスリップ輪がいずれも左側(又は右側)にあるときには、TRC/ABS相当制御が実行される。更に、NS=3であるときや、NS=4であるときには、やはり、TRC/ABS相当制御が実行される。このように、本実施形態によれば、各車輪におけるスリップ又はその傾向の発生状況、特にスリップ輪の個数や位置に応じて、車両制御部1による各モータ出力の制御モードや各車輪に対するトルク配分比重を切り換え又は変更するようにしているため、インホイールモーク型の8輪駆動電気自動車において好適な8WD制御やTRC/ABS相当制御を実現し、走行安定性を維持改善することができる。

(3)フェイルセーフ機構

上記のとおり、主要な電子制御ユニットは、制御信号用 迂回幹線伝送路CRを介して接続されているので、伝送 路等に障害が発生した場合にも制御系をバックアップで き、通常通りの制御を行うことができる。

【0087】信号伝送系は、図2に示すように電子制御 ユニットを形成する車両制御部1、モータ制御部2,

3, 4, 5、電池制御部A、充電制御部B、ブレーキ制 御部C、ステアリング制御部22に設けられたノード (通信装置) に基づいて構成される。 各ノード (通信装 置) は、自ノードの識別子N1, N2, N3, N4, N 5, N10, N11, N12, N13を記憶する自ノー ドID記憶手段N1b, N2b, N3b, N4b, N5 b, N10b, N11b, N12b, N13bと、伝送 路および迂回伝送路に接続されている隣接ノードの識別 子を記憶する隣接ノードID記憶手段N1c,N2c, N3c, N4c, N5c, N10c, N11c, N12 c、N13cと、ノードに送られてくるメッセージに基 づき経路設定の処理を行う処理手段N1a, N2a, N 3a, N4a, N5a, N10a, N11a, N12 a, N13aとをそれぞれ有した複数のノードN1, N 2, N3, N4, N5, N10, N11, N12, N1 3とそれらを接続する伝送路R1、R2、R3、R4、 R5, R10, R11, R12, R13と迂回伝送路C R2, CR3, CR4, CR5, CR10, CR11, CR12, CR13と制御信号用迂回幹線伝送路CRか らなり、発生した障害箇所を迂回して通信経路を設定す る迂回経路設定方式をとっている。

【0088】上記迂回経路設定方式によれば、各ノードは接続された伝送路および迂回伝送路を介した隣接ノード間のボーリングにより、相手からの応答がないとき両者間の伝送路または迂回路伝送路における通信の障害として検出し、前記通信障害を検出したノードは、自己の識別子と、前記通信障害が検出された伝送路に接続された隣接ノードの識別子とを探索メッセージsとして送信し、前記探索メッセージを受信したノードは、前記探索メッセージ中の前記隣接ノードの識別子Dを自己の自ノードID記憶手段または隣接ノードID記憶手段に記憶

されている識別子と比較し、前記比較の結果、いずれも一致しなければ、前記探索メッセージを受信したノードは、前記探索メッセージを他のノードに中推し、一方、前記比較の結果、いずれかが一致すれば、前記探索メッセージを受信したノードは、迂回路設定のための応答メッセージrを前記通信障害を検出したノードに送り返す。

【0089】探索メッセージsや応答メッセージrは、 送信信号のフレームの制御部に、探索メッセージや応答 メッセージ等のメッセージ種類、送信先通信装置の識別 子(ID)、送信元通信装置の識別子(ID)、障害関 連通信装置の識別子(ID)、回線残り容量などをのせ る。障害関連通信装置とは、障害を発生している通信装 置または障害を発生している伝送路に接続された隣接の 通信装置を指す。

【0090】車両制御部1のノードN1と各モータ制御部のノードNnとの間の伝送路が確保できたことを各ノードが検出すると、各ノードは自モータ制御部および自インバータをスタンバイ状態に設定する。伝送路を介して制御指令が入力したときには、自モータ制御部は自インバータを制御指令によって制御する。

(事例(a)]例えば、車両制御部1とモータ制御部2の間の信号伝送路R2で通信障害B1が発生した場合について、図1と図2を用いて説明する。

【0091】ノードN2は、接続された伝送路および迂回伝送路を介した隣接ノードN1間のボーリングにより、相手からの応答がないとき通信の障害として検出する。ノードN2の処理手段N2aは、信号フレームの制御部に、メッセージ種類が探索メッセージsであり、送信元通信装置の識別子がN2であり、障害関連通信装置の識別子がN1である旨の信号をのせてノードN13又はN3に送信する。

(a-1)まず、ノードN3を介した迂回路の設定につ いて説明する。ノードN3は、この探索メッセージsを 受信すると、処理手段N3aにおいて探索メッセージs から障害関連ノードの識別子N1を取り出し、この識別 子N1を自ノード I D記憶部N3bに記憶されたデータ N3及び隣接ノードID記憶部N3cに記憶されたデー タN1, N2, N10と比較する。この比較の結果、識 別子N1が隣接ノードID記憶部N3cに記憶されたデ ータN1と一致するので、ノードN3がノードN2とノ ードN1との間の伝送路、即ち、迂回伝送路CR2→迂 回幹線伝送路CR→迂回伝送路CR3→ノードN3→伝 送路R3→伝送路R1と接続されるようにノードN2に 応答メッセージェを送信するとともに、自己の経路切替 え部に対して、伝送路R2を経由するノードN2への通 信経路に代わってノードN3を経由してノードN2への 迂回経路を設定することを指示する経路設定信号を送

【0092】応答メッセージァは、メッセージ種類が応

答メッセージであり、送信先ノードの識別子がN2であり、送信元ノードの識別子がN3である旨の信号を、信号フレームの制御部にのせた送信信号である。

【0093】一方、応答メッセージrを受信したノード N2は、応答メッセージrを受信すると、送信元通信装 置の識別子がN3である旨の信号を取り出し、これに基 づき迂回経路を設定すべき相手のノードを確認して、自 己の経路切替え部に対して、上記の実施態様と同様にノ ードN3への迂回経路を設定することを指示する経路設 定信号を送る。

(a-2)ノードN13を介した迂回路の設定について説明する。

上記(a-1)で説明した手順と同様の手順により、迂回伝送路CR2→迂回幹線伝送路CR→迂回伝送路CR 13→ノードN13→伝送路R13→伝送路R1と接続される迂回路を形成する。

【0094】以上の2つの経路設定信号に基づき迂回経路が設定される。

(事例(b)]例えば、車両制御部1とモータ制御部2の間の信号伝送路R2でB1の通信障害および迂回幹線伝送路CRでB2の通信障害が発生した場合について、図1と図2を用いて説明する。

【0095】この場合には、上記(a-2)で説明した 迂回路だけが設定でき、上記(a-1)で説明した迂回 路は設定できない。

(事例(c))例えば、車両制御部1とモータ制御部2の間の信号伝送路R2でB1の通信障害および迂回幹線伝送路CRでB2およびB3の通信障害が発生した場合について、図1と図2を用いて説明する。

【0096】この場合、B1, B2およびB3の通信障 客発生により、ノードN2は車両制御部1への伝送路が すべてなくなったことを、所定時間内にボーリングに対 する応答がないことによりノードN2が検出し、モータ 制御部2のスタンバイモードを停止モードに変えインバ ータ10, 10′を停止する。

【0097】車両制御部1は、所定時間内にノードN2からの応答がないことを検出し、ノードN2を伝送回路から切り離し、残りのノードを介してバックアップして残りのモータ制御部を制御する。

【0098】以下、車両制御部1と各制御部2,3,4,5,10,11,12,13との迂回路は上記した 実施賠様と同様に設定される。

[0099]

【発明の効果】以上、詳細に説明したように、本発明に よれば、以下のような効果を奏することができる。

【0100】(1)走行安定性を向上できる電子制御を採用し、タンデムホイール式サスペンションで支持される車輪系を有し、車輪全輪に電子制御のモータを組み込んだインホイール式ドライブを備えた各駆動輪独立駆動型電気自動車を、特定の電子制御系に障害が発生して

も、迂回経路を設定することにより、制御機能を維持したまま、車両の制御動作を推続することができる。

【0101】(2)電子制御系にフェールセイフ機構を 組み込んだので、車両制御を安定に行うことができる。 つまり、タンデムホイール式サスペンションで支持され る車輪系を有し、車輪全輪にモータを組み込んだインホ イール式ドライブを備えた各駆動輪独立駆動型電気自動 車において、走行安定性を向上できる制御を採用したの で、各輪毎の支持荷重を少なくでき、それに見合うTR C又はABS制御ができるので、スリップ等を少なくす ることができ、走行安定性を向上させることができる。 また、非スリップ輪が車体の左側及び右側に少なくとも 1個ずつあるときに、車体に新たなヨー方向モーメント が作用しないよう調整を施した上で、各モータに対し出 カトルク値を指令するようにしたため、ヨー方向モーメ ントの発生を防ぎながら8WDを実現でき、スリップ時 における信頼性の高い走行安定性制御を実現することが できる。

【0102】(3)電子制御系にフェールセイフ機構を組み込んだので、車両制御を安定に行うことができる。つまり、タンデムホイール式サスペンションで支持される車輪系を有し、車輪全輪にモータを組み込んだインホイール式ドライブを備えた各駆動輪独立駆動型電気自動車において、走行安定性を向上できる制御を採用したので、スリップ等を少なくでき、走行安定性を向上させることができ、また、非スリップ輪が車体の左側に1個もないとき及び右側に1個もないときに、スリップ輪のスリップ状態に応じ調整を施した上で、各モータに対し出力トルク値を指令するようにしたため、TRC/ABS相当制御を制動用流体の圧力操作のための部材なしで実現することができ、かつTRC/ABS相当制御が適切な状況下で動作するため、スリップ時における信頼性の高い走行安定性制御を実現できる。

【図面の簡単な説明】

【図1】本発明の実施例を示す電気自動車のシステム構成図である。

【図2】本発明の実施例を示す電気自動車の電子制御系のブロック図である。

【図3】本発明の実施例を示す車体速検出ステップを示すフローチャートである。

【図4】本発明の実施例を示す目標ヨーレイト (すべり 角度) 適合制御ステップを示すフローチャートである。

【図5】本発明の実施例を示すTRC/ABS制御ステップを示すフローチャートである。

【図6】本発明の実施例を示す車両制御部の動作手順を 示すフローチャートである。

【図7】電気動力自動車の基本構成を示す図である。 【符号の説明】

1 車両制御部 (CPU)

2, 3, 4, 5 モータ制御部 (CPU)

- 6 バッテリ
- 9 電力センサ
- 10, 10', 11, 11', 12, 12', 13, 1
- 3′ インバータ
- 14 ブレーキセンサ
- 15 舵角センサ
- 16 シフトポジション(SP)スイッチ
- 17 アクセルセンサ
- 18 温度センサ
- 19 異常検知センサ
- 20 ブレーキペダル
- 21 マスタシリンダ .
- A 電池制御部
- B 充電制御部
- C ブレーキ制御部
- 22 ステアリング制御部
- 30, 31, 32, 33, 34, 35, 36, 37 £-\$
- 40 右前部前輪RFF
- 41 右前部後輪RFR
- 42 左前部前輪LFF
- 43 左前部後輪LFR
- 44 右後部前輪RRF
- 45 右後部後輪RRR
- 46 左後部前輪LRF 47 左後部後輪LRR
- 50, 51, 52, 53, 54、55, 56, 57 回転位置センサ (SM)

60, 61, 62, 63, 64, 65, 66, 67

ブレーキホイール (BW) VRFF, VRFR, VLFF, VLFR, VRRF,

VRRR, VLRF, VLRR 車輪速 TRF, TLF, TRR, TLR トルク指令

CR 制御信号用迁回幹線伝送路

CR2, CR3, CR4, CR5, CR10, CR1

1, CR12, CR13迂回伝送路

R1, R2, R3, R4, R5, R10, R11, R1 2, R13 伝送路

N1, N2, N3, N4, N5, N10, N11, N1 2, N13 ノード

N1a, N2a, N3a, N4a, N5a, N10a,

N11a, N12a, N13a 処理手段

N1b, N2b, N3b, N4b, N5b, N10b,

N11b, N12b, N13b 自ノードID記憶手段

N1c, N2c, N3c, N4c, N5c, N10c, N11c, N12c, N13c 隣接ノードID記憶手段

【手模補正2】

【補正対象書類名】図面

IDO5 : IDO

N10c : N1 N3, N11

C210

【手模補正3】

【補正対象書類名】図面

K30 : K3

K3e : N1. N2. N10

【補正対象項目名】図3

【補正方法】変更

15b:15

15c : 11. 111. 114

【補正内容】

【図3】

m1b : m1

111c: 11. 110. 115

CRIL

【手続補正4】 【補正対象書類名】図面 【補正対象項目名】図7

【補正方法】変更 【補正内容】 【図7】

フロントページの続き

(51) Int. Cl. ⁷	識別配号	FΙ	テーマコード(参考)
// B62D 101:00		B 6 2 D 103:00	
103:00		107:00	
107:00		113:00	
113:00		125:00	,
125:00		137:00	
137:00		B 6 0 K 9/00	ZHVE

Fターム(参考) 3D032 CC33 DA03 DA23 DA24 DA64

DA65 DA67 DA82 DA92 DA93

DA95 DB11 DC34 EB04 FF01

FF08 GG01

3D046 AA09 BB01 BB28 BB29 HH00

HH02 HH05 HH07 HH08 HH12

HH15 HH16 HH23 HH36 HH39

HH46 JJ01 LL05 MM04 MM13

5H115 PA08 PC06 PG04 PI16 PI22

PI29 PU01 PU26 PV03 PV09

QNO2 QNO5 QNO8 SE03 TD15

T105 T030 TZ01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.