Algebraic Structures

Ikhan Choi

March 24, 2022

Contents

Ι	Groups	3
1	Subgroups	4
2	Group actions 2.1 Orbits and stabilizers	5 5 5 5
3	Symmetry groups 3.1 Cyclic groups	6 6 6
II	Rings	7
4	Ideals	8
5	Integral domains	9
6	Polynomial rings	10
	6.1 Irreducible polynomials	10
II	I Modules	11
7	Exact sequences	12
8	Hom functor and tensor products	13
9	Modules over a principal ideal domain	14

IV	Vector spaces	15
10	Multilinear forms	16
11	Normal forms	17
	11.1 Finitely generated $\mathbb{F}[x]$ -modules	17
	11.2 Similarity	17
	11.3 Spectral theorems	17
12	Tensor algebras	18

Part I

Groups

Subgroups

subgroups homomorphisms, image, kernel, inverse images normality, quotient, coset counting direct sum, direct product

Group actions

2.1 Orbits and stabilizers

Invariants on orbit space. The size and number of orbits.

- 2.2 Action by conjugation
- 2.3 Action by left multiplication

Symmetry groups

- 3.1 Cyclic groups
- 3.2 Symmetric groups
- 3.3 Matrix groups

dihedral groups

Exercises

- **3.1.** Let G be a finite group. If G/Z(G) is cylic, then G is abelian.
- **3.2.** Let *G* be a finite group. If $x \mapsto x^3$ is a surjective endomorhpism, then *G* is abelian.

Part II

Rings

Ideals

Chapter 5
Integral domains

Polynomial rings

6.1 Irreducible polynomials

relation to maximal ideals Irreducibles over several fields

Part III

Modules

Exact sequences

free modules inj, proj

Hom functor and tensor products

hom and duality tensor product algebras?

Modules over a principal ideal domain

invariant factors and elementary divisors

Part IV Vector spaces

Chapter 10 Multilinear forms

Duality Adjoints Inner product

Normal forms

11.1 Finitely generated $\mathbb{F}[x]$ -modules

cyclic subspaces

11.2 Similarity

GL, SL, PSL?

11.3 Spectral theorems

Chapter 12 Tensor algebras

Exterior algebras Symmetric algebras