מבא להנדסת חשמל

עפיף חלומה

2009 בנובמבר 25

תוכן עניינים

5	פרטים טכנים	1			
5	1.1 מתרגל				
7	הרצאה מס.1				
7	2.1 טיפול במעגל חשמלי טיפול במעגל חשמלי				
7	lumped אלמנט מקובץ 2.2				
7	2.3 הגדרות בסיסיות				
7	2.4 כיווני יחוס				
7	2.5 זרם ומתח				
8	2.6				
8	ב. הספקים ואנרגיות של רכיבים				
8	נגד 2.7.1				
8	2.7.2 קבל				
8	ב סליל				
8	2.8 שיקול מיכני				
8	על נגד				
9	2.8.2 של סליל				
9	ב.מ.ב של קבל				
9	ב.ה				
9	מקור מתח אידיאלי				
10	ב.קור בוקור אולי אולי אולי ב.קור בוקור אולי אולי ב.קור אולי אולי אולי ב.קור ארם				
10	ב בולוה אום				
10	ענף ענף				
10	2,10,1				
11	תרגול מס.1	3			
11	ירות, בינו 3.1 חוק קירכוף למתחים ולזרמים	·			
13	הרצאה מס.?	4			
13	Signals אותות 4.1				
13	מדרגה מדרגה Unit Step מדרגה 4.1,1				
13	Pulse פולס 4.1.2				
13	הלם Impulse הלם 4.1.3				
14					
•	,				
15	הרצאה מס.?	5			
15	5.1 חיבורים טוריים ומקבילים				
16					
16	קבלים				

4		זיניינע ןכות

16		
17	5.2 מקורות מתח בטור	
17	5.3 מקורות זרם בטור	
18		
18		
19	5.4,2	
19	סלילים 5.4,3	
20	5.5 תרגיל	
20	5.6 סופר פוזיציה	
20	ייי און פוייביון און אייי און אייי אייי אייי אייי איי	
23	תרגול מס.?	6
23	6.1 שיטת מתח הצמתים	
25	?.סה.?	7
25	7.1 טיפול באלמנטים לא ליניארית	
27	7.2 דוגמת סיכום	
	•	
29	תרגול מס.4	8
29	8.1 מעגלים מסדר ראשון	
30	8.2 דוגמאות	
35	הרצאה מס.?	9
37	9.1 בעית ZSR בעית	
39	9.2 ליניאריות של תגובת ZSR ליניאריות של הגובת	
41	תרגול מס.?	10
45	הרצאה מס.?	11
45 46	יוו צאה מט.? 11.1 מעגל מסדר שני	11
46	תקבילי RLC מעגל 11.1.1 מעגל RLC מקבילי	
4 7	תרגול מה.2	12
47	S שיטת S למציאת מד"ר	
51	12.2 פתרון מעגל מסדר שלישי	
J 1	12,2 בונו ון בועגל בוט וו	

פרטים טכנים

ערגילים ו 80% מבחן 80% תרגילים ו 80% מבחן שעת קבלה של מרצה לא מוגדרת. לתאם דרך ulevy@cc.huji.ac.i.il יש אתר לקורס שנכנסים אליו דרך owl יש אתר לקורס שנכנסים אליו דרך igoykhmam@gmail.com מתרגל זמני:

1.1 מתרגל

גלעד לרמן בניין ברגמן חדר 301(אפשר להגיש תרגילים פו) מייל tirgulee@gmail.com מייל 8 תרגילים.

הרצאה מס.1

טיפול במעגל חשמלי 2.1

- הכרה הנדסית של חוקי הפיזיקה בנושא חשמל
 - בחירת כלים מתמטים נכונים
 - הפשטת הבעיה
 - תרגום הבעיה למשוואות
 - פתרון המשוואות

mks נשתמש בקורס זה ביחידות

lumped אלמנט מקובץ 2.2

אלמנט בעל גודל זנית. עלל אלמנט כזה חלים חוכי קירכוף.

לעומת זה יש אלמנט מפולג distributed כל אלמנט מעשי הוא מפולג, אבל נזניח את זה.

2.3 הגדרות בסיסיות

יציאות של האלמנט המקובץ נקראים ענפים¹ הצטלבויות של ענפים נקראות צמתים

2.4

זרם הולך מ + ל - באלמנט וזרם הולך מ - ל + במקור.

2.5

זרם: הזרם דרך שטח חתך A מוגדר על ידי מוגדר דרך שטח החתך הזרם זרם: רם: ביחידת אמפר [A] ביחידת אמפר ליחידת זמן. $I=\frac{\partial Q}{\partial t}$ מון.

Branches 1

8. קרפ 2, קרפ 2, סרפ

מתח: הפרש מתחים בין שתי נקודות קובע את יכולת העברת האנרגיה של מטען. אנרגיה

$$V = \frac{\partial W}{\partial Q}$$

 $P=rac{\partial W}{\partial t}=rac{\partial W}{\partial q}\cdotrac{\partial q}{\partial t}=V\cdot I$ אום ליחידת המועברת אנרגיה העבר אנרגיה המועברת ליחידת אמן

2.6 רכיבים בסיסיים

נגד: מתנגד למעבר זרם על ידי יצירת מפל מתח. עבור נגד ליניארי מתקיים חטק נגד: מתנגד למעבר זרם על ידי יצירת מפל מתח. עם אוהם $v\left(t\right)=R\cdot i\left(t\right)$ אוהם אוהם על מוליכות $G=\frac{1}{R}$ מסמנים נגד באות מדברים אם על מוליכות

קבל: קבל הוא רכיב בו המתח בין הדקיו קובע את המטען עליו. $q=q\left(v\right)$. קבל קבל הוא קיבול קובע את בין המתח בין המתח ליניארית פרד ק $q\left(v\right)$ ליניארי עבורו הפונקציה ק $q\left(v\right)$ ליניארית פרד ליניארי עבורו הפונקציה ליניארית החוא הקיבול ומודדים אותו ב $v=v\left(0\right)+\frac{1}{c}\int_{0}^{t}i\left(t\right)dt$ ליני $i=\frac{\partial q}{\partial t}=\frac{\partial(cv)}{\partial t}=c\frac{\partial v}{\partial t}\left[F\right]$

 $\phi=$:הסליל: ϕ השטף המגנטי נקבע חד ערכית על ידי הארם ϕ השטף ϕ : משרן(סליל): $i=i\left(0\right)+\frac{1}{L}\int_{0}^{t}v\left(t'\right)dt'$ ולכן על $V=\frac{\partial\phi}{\partial t}=\frac{\partial(Li)}{\partial t}\Rightarrow V=L\frac{\partial i}{\partial t}$ ($i)=L\cdot i$

2.7 הספקים ואנרגיות של רכיבים

 t_0 מזמן $w=\int_{t_0}^t P\left(t'\right)dt'$ אזי אזי $P\left(t
ight)=V\left(t
ight)\cdot i\left(t
ight)$ מזמן שנצרך ע"י אלמנט הוא אזי אלמנט הוא פא

2.7.1 נגד

 $P\left(t
ight)=V\cdot i=R\cdot i^{2}=i^{2}R=rac{V^{2}}{R}$ עבור נגד ליניארי מתקיים

2.7.2 קבל

 $arepsilon=\frac{1}{c}q$ עבור קבל: $w=\int_{t_0}^t V\left(t'
ight)i\left(t'
ight)dt'=\int_{q_0}^q V\left(q
ight)dq'$ אוי $arepsilon=\frac{1}{2}cv^2$ אוי $\int_0^q \frac{1}{c}q'dq'=\frac{1}{2c}q^2$

2.7.3

עבור סליל $d\phi=d\phi=L$ יודעים כי $w=\int_{t_0}^t v\left(t'\right)i\left(t'\right)dt'=\int_{\phi_0}^\phi i\left(\phi\right)d\phi$ אזי $\varepsilon=L\int_0^i i'di'=L\int_0^\phi \frac{\phi'}{L}\cdot\frac{d\phi'}{L}=\frac{1}{2L}\phi^2$

2.8 שיקול מיכני

2.8.1 של נגד

 $f = D \cdot \underbrace{u}$:מת חיכוך עם אוויר: מהירות

inductor

2,9. תורוקמ

$$w = \int_0^x f dx$$
$$= \int_0^t du \cdot u dt$$
$$= \int_0^t Du^2 dt \Leftrightarrow R \cdot i^2$$

2.8.2 של סליל

$$w = \int_0^x f dx$$
$$\int_0^t M \frac{du'}{dt'} u dt'$$
$$\int_0^u M u' du'$$
$$= \frac{1}{2} M u^2 \Leftrightarrow \frac{1}{2} Li^2$$

2.8.3 של קבל

 $S=rac{1}{k}$ היסות מקדם או או קפיץ קבוע בעל בעל נניח נניח

$$f = kx = \frac{1}{s}x \Rightarrow x = sf$$

אזי

$$w = \int_0^x f dx$$
$$= \int_0^x f d(fs)$$
$$= \int_0^f s f df$$
$$= \frac{1}{2} s f^2 \Leftrightarrow \frac{1}{2} c v^2$$

2.9

מקור מתח אידיאלי 2.9.1

התקן שהמתח בין הדקיו אינו תלוי בזרם.

10 קרפ 2, קרפ 2. קרפ

מקור זרם 2.9.2

אתקן זרם שהזרם הזורם דרגו אינו דלוי במתח הנופל עליו. אפשר להחליף מקור מתח במקור זרם ולהפך בקלות.

2.10 חוקי קירכוף

חוק הזרמים של קירכוף KCL עבור כל מעגל בכל זמן נתון הסכום האלגברי של זרם הענפים היוצאים מצומת כלשהיא הוא אפס.

ענף 2.10.1

הוא מחבר בין שני צמתים

תרגול מס.1

3.1 חוק קירכוף למתחים ולזרמים

חוק הזרמים אומר שכל המטען שנכנס לצומת גם יוצא מהצומת. חוק המתח אומר כי סכום המתחים בלולאה הוא אפס.

?.סמ. הרצאה

Signals אותות 4.1

Unit Step מדרגה 4.1.1

$$u\left(t\right) = \begin{cases} 0 & t < 0\\ 1 & t > 0 \end{cases}$$

Pulse פולס 4.1.2

$$P_{s}(t) = \begin{cases} 0 & t < 0\\ \frac{1}{\Delta} & 0 < t < \Delta\\ 0 & t > \Delta \end{cases}$$

ניתן לבנות פולס משתי מדרגות

$$P_{s}(t) = \frac{u(t) - u(t - \Delta)}{\Delta}$$

Impulse הלם 4.1.3

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

$$\int_{-\varepsilon}^{\varepsilon} \delta\left(t\right) dt = 1$$

:קיים קשר בין פונקצית לפונקצית מדרגה קיים קשר בין פונקצית א

$$\delta(t) = \frac{\partial u(t)}{\partial t}$$

$$u(t) = \int_{-\infty}^{\infty} \delta(\tau) d\tau$$

Ramp 4,1,4

$$r\left(t\right) = \begin{cases} t & t \ge 0\\ 0 & t < 0 \end{cases}$$

?.סס.?

5.1 חיבורים טוריים ומקבילים

איור 5.1: חיבור של שתי רכיבים בטור

5.1.1 נגדים

$$i = i_{1} = i_{2}$$

$$v = v_{1} + v_{2}$$

$$R = \frac{v}{i}$$

$$= \frac{v_{1}}{i} + \frac{v_{2}}{i}$$

$$= \frac{v_{1}}{i_{1}} + \frac{v_{2}}{i_{2}}$$

$$= R$$

$$R = \sum_{n=1}^{N} R_{n}$$

5.1.2

$$V_{n}(t) = V_{0}(0) + \frac{1}{c_{n}} \int_{0}^{t} i_{n}(t') dt'$$

$$V(t) = \sum_{n} V_{n}(t)$$

$$= \sum_{n} V_{n}(0) + \sum_{n} \frac{1}{c_{n}} \int_{0}^{t} i_{n}(t') dt'$$

$$= V(0) + \left[\int_{0}^{t} i(t') dt \right] \sum_{n} \frac{1}{c_{n}}$$

$$\frac{1}{c} = \sum_{n} \frac{1}{c_{n}}$$

$$V(0) = \sum_{n} V_{n}(0)$$

5.1.3

$$V_n = L_n \frac{\partial i_n}{\partial t}$$

$$V = \sum_n V_n - \sum_n L_n \frac{\partial i_n}{\partial t}$$

$$= \frac{\partial i}{\partial t} \sum_n L_n$$

$$L = \sum_n L_n$$

5.2 מקורות מתח בטור

איור 5.2: מקורות זרם בטור

$$V = V_1 V_2$$

במקרה של מקור מתח הכיוונים משנים.

5.3 מקורות זרם בטור

אי אפשר לעשות דבר כזה אלה אם כן $I_1=I_2$ שבמקרה הזה לא משנה שיש שתי מקורות זרם.

5.4 חיבור מקבילי של רכיבים

איור 5.3: חיבור מקבילי של רכיבים

5.4.1 נגדים

$$i_n = \frac{V_n}{R_n} = \frac{V}{R_n}$$

$$i = \sum_n i_n$$

$$= \sum_n \frac{V_n}{R_n}$$

$$= V \sum_n \frac{1}{R_n}$$

$$\frac{V}{R} = V \sum_n \frac{1}{R_n}$$

$$\frac{1}{R} = \sum_n \frac{1}{R_n}$$

מקרה פרטי:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R} = \frac{R_2 + R_1}{R_1 R_2}$$

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

5.4.2

$$i_n = c_n \frac{\partial v_n}{\partial t} = c_n \frac{\partial V}{\partial t}$$

$$i = \sum_n c_n \frac{\partial V_n}{\partial t}$$

$$= \frac{\partial V}{\partial t} \sum_n c_n$$

$$C = \sum_n c_n$$

5.4.3

$$i_{n} = i_{n}(0) + \frac{1}{L_{n}} \sum_{0}^{t} v_{n}(t') dt'$$

$$i = \sum_{n} i_{n}$$

$$= \sum_{n} i_{n}(0) + \sum_{n} \frac{1}{L_{n}} \int_{0}^{t} V_{n}(t) dt$$

$$= i(0) + \left[\int_{0}^{t} v(t') dt' \right] \sum_{n} \frac{1}{L_{n}}$$

$$\frac{1}{L} = \sum_{n} \frac{1}{L_{n}}$$

20 פרפ 5. קרפ?

5.5 תרגיל

איור 5.4: מעגל פשוט

 $rac{1}{C}=rac{1}{C_1}+rac{1}{C_2}+rac{1}{C_3}$ במעגל הזה שלושת הקבלים בטור אזי $rac{1}{L}=rac{1}{L_1}+rac{1}{L_2}$ אזי במקביל מחוברים במקביל אזי הדיודה כבר לא מקירים אז מגדירים אותה:

אם הזרם על הדיודה הוא חיובי אז הדיודה בקצר. אם הזרם הוא שלילי אז הדיודה בנתג.

אזי

איור 5.5: פתרון

5.6 סופר פוזיציה

כאשר יש קשר ליניארי בין עירור לתוצאה, השפעת מספר עירורים הפועלים שווה לסכום השפעות של כל אחד מהעירורים הפועלים. 5.6. היציזופ רפוס

איור 5.6: מעגל עם שתי מקורות

פתרון רגיל:

$$I_{2} = ?$$

$$V = (I_{2} - I) R_{1} + I_{2}R_{2}$$

$$I_{2} = \frac{V}{R_{1} + R_{2}} + I \frac{R_{1}}{R_{1} + R_{2}}$$

פתרון בסופר פוזיציה:

פותרים ראשית את מקור המתח, אזי מנתקים את הענף של מקור הזרם

$$I_2^V = \frac{V}{R_1 + R_L}$$

עכשיו מקצרים את מקור המתח ומקבלים:

$$I_2^A = \frac{I}{R_1 + R_2} R_1$$

העיכרון הזה עובד טוב במקרה זרם ומתח כי הם ליניארים, אבל זה לא עובד במקרה אל הספק כי זה לא ליניארי (I^2R) :

$$P_{V} = \left(\frac{V}{R_{1} + R_{2}}\right)^{2} R_{2}$$

$$P_{I} = \left(\frac{R_{1}}{R_{1} + R_{2}}\right)^{2} R_{2}$$

$$P_{T} \neq P_{V} + P_{I}$$

תרגול מס.?

6.1 שיטת מתח הצמתים

איור 6.1: מעגל דוגמה

רוצים להפוך את זה למעגל עם מקורות זרם:

איור 6.2

$$-\frac{V_1}{12} - \frac{V_1}{5} - \frac{V_1 - V_2}{4} + \frac{3}{4} + 2 + 2 = 0$$

$$-\frac{V_2}{12} - \frac{V_2}{10} + \frac{V_1 - V_2}{4} - 2 - \frac{1}{4} - 0.8 = 0$$

נפתור:

24 פרפ 6. קרפ?

$$V_1\left(-\frac{1}{12} - \frac{1}{5} - \frac{1}{4}\right) + V_2\frac{1}{4} = -\left(\frac{3}{4} + 2 + 2\right)$$

$$V_1\left(\frac{1}{4}\right) + V_2\left(-\frac{1}{12} - \frac{1}{10} - \frac{1}{4}\right) = \left(2 + \frac{1}{4} + 0.8\right)$$

נרשום את זה כמטריצה $G \cdot V = I$ אבל בצורה אחרת אבל $R \cdot I = V$ כאשר זה נרשום את גרשום את אוליריות

$$\begin{pmatrix} \frac{1}{12} + \frac{1}{5} + \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{12} + \frac{1}{10} + \frac{1}{4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} + 2 + 2 \\ -\left(2 + \frac{1}{4} + 0.8\right) \end{pmatrix}$$

מקבלים:

$$V_2 = -2.6V$$

$$V_1 = 7.68V$$

?.סס.?

7.1 טיפול באלמנטים לא ליניארית

איור 2.1: מעגל עם אלמנט לא ליניארי ומקור משתנהבזמן

נתון כי

$$v_s \ll E$$
 .1

$$i=g\left(v\right)$$
 .2

$$E + v_s = iR_s + v\left(t\right) . 3$$

 v_s נמצא נקודת עבודה בלי להתיחס ל

$$I_0 = g(V_0)$$

$$E = I_0 R_s + V_0$$

26 קרפ 7. קרפ?

 $I\left(v
ight)=rac{E-v}{R_{s}}$ נצייר גרף של

 $g\left(v\right)$ ו איור 1.2 גרף מתח זרם של 2.1 איור

-ניקח עכשיו בחשבון ההשפעה של השינויים הקטנים במתח המקור. לשינויים קט-ניקח עכשיו בחשבון ההשפעה אל השינוי כ $(V_1$ יהיו שינויים קטנים בזרם דרך האל-נים במתח על האלמנט את השינוי כ I_0+I_1 וזרם דרך האלמנט (I_1). סה"כ המתח על האלמנט I_1 וזרם דרך האלמנט (I_1).

$$I = g(v)$$

$$I_0 + I_1 = g(v_0 + v_1)$$

$$= g(v_0) + \frac{\partial g}{\partial v}|_{v_0} \cdot v_1$$

$$I_1 = \frac{\partial g}{\partial V}|_{v_0} \cdot v_1$$

לסיכום:

- I_0, V_0 את המעגל עבור מקור E ומוצאים עבודה את פותרים.1
 - $rac{1}{R} = rac{\partial g}{\partial v}|_{v_0}$ מוצאים את בנקודת בנקודת השיפוע. 2
- ליניארי האלמנט את כאשר מחליפים א v_s כתוצאה כתוצאה מ V_1, I_1 את מחשבים מנגד ליניארי בנגד ליניארי
 - 4. מתבים 1,3 ומקבלים פתרון כללי

 $g\left(v
ight)=$ האלמנט הוא האלמנט והאופיין של האלמנט הוא ב $E=100V,v_s=\sin\left(2\pi t
ight),R_s=10$ האלמנט הוא בועמה: $100\left(1-e^{-rac{v}{100}}
ight)$

7.2. סוכיס תמגוד

פתרון: נרודת עבודה:

$$\begin{array}{rcl} i\left(t\right) & = & g\left(v\left(t\right)\right) \\ E + v_s\left(t\right) & = & i\left(t\right)R_s + v\left(t\right) \\ I_0 & = & 100\left(1 - e^{-\frac{v}{100}}\right) \\ 100 & = & I_0 \cdot 1 + V_0 \\ 100 - V_0 & = & I_0 = 100\left(1 - e^{-\frac{v_0}{100}}\right) \\ v_0 & = & 100e^{-\frac{v}{100}} \\ v_0 & = & 56.7V \\ I_0 & = & 43.3A \end{array}$$

7.2 דוגמת סיכום

איור 7.3: מעגל

פותרים דרך סופר פוזיציה: מנתקים את מקור הזרם

$$i_v = \frac{50}{(14 \parallel 10) + 5} = \frac{10}{10 + 14} = \frac{50}{26}$$

נשתמש במחלק זרם $I_1=I\frac{R_2}{R_1+R_2}$ בשביל לקבל הזרם בענף כרגע נקצר את מקור המתח ונחזיר את מקור הזרם. אזי אפשר להמיר את מקור הזרם ונגד ה 12Ω למרור מתח.

תרגול מס.4

מעגלים מסדר ראשון 8.1

עקרונות הפתרון

- משד"פ ומקבלים משד"פ KCL ו KVL משד"פ 1.
- 2. פותרים מתמטית: פתרון פרטי + פתרון הומוגיני. פיזיקלית: ZIR: תגובה לתנאי התחלה בלבד ללא עירור.

 $y_{ZIR}=y$ אזי א אי $y\left(0
ight)=k$ לכל משוואה מהצורה $y'+rac{1}{ au}y=0$ אזי אוואה $ke^{-rac{t}{ au}}$

- .3 פתרון ZSR: תגובה לעירור עם תנאי התחלה אפס.
- דומה ל א y_h . $y_{zsr}=y_p+y_h$ קיים y (0) =0 התחלה עם תנאי אין איים על $y'=\frac{1}{\tau}y=f\left(t\right)$.4 (מקדם אחר) והפתרון הפרטי דומה לפונקצית העירור.

 $y_p = bt + c$ מקבלים at עבור עבור $y_p = A\sin\left(\omega t + arphi
ight)$ מקבלים מקבלים (א)

$$y_{p}\left(0
ight)+N=0$$
 .ກ.ກ $y_{ZSR}=\left(y_{p}+Ne^{-rac{t}{ au}}
ight)u\left(t
ight)$

 $f\left(t
ight)
ightarrow g\left(t
ight)$ אם ניתן קיימות רק עבור ZSR: אם ניתן

- $\sum f_n\left(t\right) \rightarrow \sum g_n\left(t\right)$ בוויציה.
 - $f\left(t-t_{0}
 ight)
 ightarrow g\left(t-t_{0}
 ight)$ בי היוה בימן.2
 - $f'(t) \rightarrow g'(t)$ גזירה. 3
 - $\int f dt \rightarrow \int g dt$ אינטגרציה.
- $G\left[af_{1}\left(t\right)+bf_{2}\left(t\right)\right]=aG\left(f_{1}\right)+bG\left(f_{2}\right)$ 5. לכל אופרטור ליניארי.

 $u_{C}\left(0^{-}
ight)=I_{c}\left(0^{+}
ight)$ ו $V_{c}\left(0^{-}
ight)=V_{C}\left(0^{+}
ight)$: פרט לעירור הלב ונגזרותיו מתקיים לפני החיבור ל ZSR יש לכפול פתרון

אזי הפתרון עבור הלם יהיה אם ידוע הפתרון עבור כניסת מדרגה אם אוי אם אוי אם אם אם ידוע הפתרון עבור כניסת $y_f = \left(y^u_{ZSR}\right)' + y^u_{ZIR}$

 $y_f = (y^u_{ZSR})' + y^u_{ZIR}$ second היחידות של $\frac{L}{R}, \sqrt{LC}:RC$ הם

30 אָסמ לוגרת .8 קרפ 8. אָסמ לוגרת .9 אָרפּ

8.2 דוגמאות

איור 8.1: שתי קבלים ונגד

נרשום KVL

$$V_{C_2} + V_R - V_{C_1} = 0$$

$$\frac{1}{c_2} \int_{-\infty}^t i dt + iR - \frac{i}{c_1} \int_{-\infty}^t -i dt = 0$$

$$\left(\frac{1}{c_1} + \frac{1}{c_2}\right) \int i dt + iR = 0$$

$$\frac{\partial i}{\partial t} + \frac{1}{R} \left(\frac{1}{c_1} + \frac{1}{c_2}\right) i = 0$$

$$\frac{\partial i}{\partial t} + \frac{1}{\tau} i = 0$$

 $. au = rac{RC}{2}$ כאשר מציאת תנאי התחלה:

$$V_{C_{2}} + R \cdot i (0^{+}) - V_{c_{1}} (0^{+}) = 0$$

$$i (0^{+}) = \frac{V_{C_{1}} (0^{+}) - V_{C_{2}} (0^{+})}{R}$$

$$= \frac{V_{C_{1}} (0^{-}) - V_{C_{2}} (0^{-})}{R}$$

$$= \frac{V_{0} - 0}{R}$$

$$= \frac{V_{0}}{R}$$

זה נכון בגלל רציפות מתח בקבל

$$i(t) = \frac{V_0}{R}e^{-\frac{t}{\tau}}$$
$$= \frac{V_0}{R}e^{-\frac{2t}{RC}}$$

8.2. תואמגוד

מתחי קבלים:

$$V_{c_1}(t) = V_0 + \frac{1}{c_1} \int -i(t) dt$$

$$= V_0 + \frac{V_0}{RC} \int_0^t e^{-\frac{2t}{RC}} dt$$

$$= \frac{V_0}{2} + \frac{V_0}{2} e^{-\frac{2t}{RC}}$$

אנרגיה:

$$P_{R}(t) = i^{2}(t) \cdot R = \frac{V_{0}^{2}}{R} e^{-\frac{4t}{RC}}$$

$$E_{R}(t) = \int_{0}^{t} P(t) dt$$

$$= \frac{CV_{0}^{2}}{4} \left(1 - e^{-\frac{4t}{RC}}\right)$$

$$E_{R}(\infty) = \frac{CV_{0}^{2}}{4}$$

$$E_{C_{1}}(\infty) = E_{C_{2}}(\infty)$$

$$= \frac{1}{2}C\left(\frac{V_{0}}{2}\right)^{2}$$

$$= \frac{1}{8}CV_{0}^{2}$$

$$E_{tot} = 2\frac{1}{8}CV_0^2 + \frac{1}{4}CV_0^2 = \frac{1}{2}CV_0^2$$

 $i\left(t<0\right)=0$

נכתוב הפונק' בצורה מתמטית:

$$i(t) = u(t) + 2r(t) - 4r(t-1) + 6r(r-3) - 6r(t-4) + 6r(t-6) - \dots$$

אזי המתח על הנגד:

$$V_r = 12 \cdot [u(t) + 2r(t) - 4r(t-1) + 6r(t-3) - 6r(t-4) + 6r(t-6)...]$$

מתח על סליל:

$$V_L = 2\delta(t) + 4u(t) - 8u(t-1) + 12(t-3) - 12(t-4) + 12(t-6)...$$

32 אָסמ לוגרת. 8 קרפ 8. אָסמ לוגרת.

איור 8.2: לא יודע

תנאי התחלה:

$$i(0^+) = 1A$$

 $V_s(t) = 10\sin(2t)u(t)$

:KVL נרשום

$$\begin{split} V_s &= V_L + V_{R_2} = L \frac{\partial i}{\partial t} + i_2 R_2 \\ &= L \frac{\partial i}{\partial t} + R_2 i + \frac{R_2}{R_1} V_L \\ &= L \frac{\partial i}{\partial t} + R_2 i + \frac{R_2}{R_1} L \frac{\partial i}{\partial t} \end{split}$$

XX

$$i' + i = \frac{V_s}{2} = 5\sin(2t) u(t)$$

ZIR

$$i' + i = 0$$

$$i(0^{+}) = 1$$

$$\Rightarrow i_{ZIR} = e^{-i}$$

ZSR

8.2. תואמגוד

$$i' + i = 5\sin(2t) u(t)$$

$$i(0^{+}) = 0$$

$$\Rightarrow i_{ZSR} = [i_p + ke^{-t}] u(t)$$

$$i_p = a\sin(2t + \varphi) = A\sin(2t) + B\cos(2t)$$

נציב במשד"פ:

$$\begin{split} i_{ZSR} &= \left[A \sin{(2t)} + B \cos{(2t)} + k e^{-r} \right] u\left(t \right) \\ \left[2A \cos{(2t)} - 2B \sin{2t} - k e^{-t} \right] u\left(t \right) \\ &+ \left[A \sin{(2t)} + B \cos{(2t)} + k e^{-t} \right] \delta\left(t \right) \\ &+ \left[A \sin{(2t)} + B \cos{(2t)} + k e^{-t} \right] u\left(t \right) \end{split}$$

 $:\delta$ מקדמים

$$A\sin 2t + B\cos 2t + ke^{-t}|_{t=0} = 0$$
$$B + k = 0$$

 $u\left(t
ight)$: מקדמי

$$2A + B = 0$$

 \sin

$$-2B + A = 5$$

נפתור ונקבל:

$$A = 1$$

$$B = -2$$

$$k = 2$$

אזי

$$i_{ZSR} = \left[\sin\left(2t\right) - 2\cos\left(2t\right) + 2e^{-t}\right]u\left(t\right)$$

?.סס.?

מה זה מעגל של סדר ראשון! זה מעגל שהתגובה שלהם ניתנת לתיאור על ידי משוואה דיפרנציאלית מסדר ראשון

איור 9.1: מעגל נגד קבל

ב 0 את אות וסוגרים את פותחים אל בt=0ב האת על הקבל הוא המתח לt<0ב ב V_0 המתח על הקבל אל לנו מעגל על התחלה על עם תנאי התחלה עם לנו על על הקבל של לנו מעגל אל הא

$$V_c = V_R$$

$$i_c = -i_R$$

$$i_c = c \frac{\partial V_c}{\partial t}$$

$$i_R = \frac{V_R}{R} = \frac{V_c}{R} = -c \frac{\partial V_c}{\partial t}$$

$$V'_c + \frac{1}{RC} V_c = 0$$

$$V_C(0) = V_0$$

$$V = ke^{\beta t}$$

נציב הפתרון במשוואה ונקבל:

$$(v_0 e^{\beta t})' + \frac{1}{RC} v_0 e^{\beta t} = 0$$
$$\beta V_0 + \frac{v_0}{RC} = 0$$
$$\beta = -\frac{1}{RC}$$

איור 9.2: מעגל סליל נגד

$$V_{R} = V_{L}$$

$$V_{L} = L \frac{\partial I_{L}}{\partial t}$$

$$= -L \frac{\partial I_{R}}{\partial t}$$

$$= -\frac{L}{R} \frac{\partial V_{R}}{\partial t}$$

$$= -\frac{L}{R} \frac{\partial V_{L}}{\partial t}$$

9.1. חיעב ZSR

אבל המתח הוא לא רציף על סליל, אזי אי אפשר להשתמש במשוואה זו לפתור

$$V_L = L \frac{\partial I_L}{\partial t} = I_R \cdot R = -i_L \cdot R$$

$$\frac{\partial I_L}{\partial t} + \frac{R}{L} I_L = 0$$

$$I_L (0^-) = 0$$

אזי הפתרון הוא

$$I_L = I_0 e^{-t\frac{R}{L}}$$

ZSR בעית 9.1

איור 9.3: מעגל יותר מסובך

:KVL כותבים משוואות

$$V_c = V_R = V$$

$$I = I_c + I_R$$

$$= c \frac{\partial V}{\partial t} + \frac{V}{R}$$

אזי המשוואות הם:

$$V' + \frac{1}{RC}V = \frac{1}{C}I$$
$$V(0) = 0$$

יודעים כי ב0=0ל כל הזרם מצא על הקבל: $I_C=C\frac{\partial V}{\partial t}=I$ כל הזרם מצא על הזרם לt=0ב כי יודעים יודעים להזרם על הנגד

 $V=V_H+V_P$ פתרון של מד"ר לא הומוגינית

 $V=ke^{-rac{t}{RC}}$:ידועים את הפתרון ההומוגיני

את הפתרון הפרטי מנחשים אותו, הוא יראה בערך כמו החלק הלא הומוגיני של $V_p=A$ המשוואה: $V_p=A$

$$V_p' + \frac{1}{RC}V_P = \frac{I}{C}$$

$$A = IR$$

k בתנאי ההתחלה: מסיגים את של הפתרון ההומוגיני על ידי הצבת הפתרון בתנאי ההתחלה

$$V_{p}(0) + V_{H}(0) = 0$$

$$k = -IR$$

$$V = IR\left(1 - e^{-\frac{t}{RC}}\right)$$

נחזור על אותה בעיה עם מקור זרם המשתנה בזמן

$$I\left(t\right) = I_0 \cos\left(\omega t\right)$$

$$V' + \frac{1}{RC}V = I_0 \cos \omega t$$

$$V_P = A \cos(\omega t) + B \sin(\omega t)$$

$$(A \cos(\omega t) + B \sin(\omega t))' + \frac{1}{RC} (A \cos(\omega t) + B \sin(\omega t)) = I_0 \cos \omega t$$

$$\left(B\omega + \frac{A}{RC}\right) \cos(\omega t) + \left(\frac{B}{RC} - A\omega\right) \sin(\omega t) = I_0 \cos \omega t$$

$$A = \frac{B}{RC\omega}$$

$$B\omega + \frac{A}{RC} = \frac{I_0}{C}$$

$$B = \frac{I_0 R^2 C\omega}{1 + (RC\omega)^2}$$

$$A = \frac{I_0 R}{1 + (RC\omega)^2}$$

MK

$$V_p = \frac{I_0 R}{1 + (RC\omega)^2} \cos(\omega t) + \frac{I_0 R^2 C\omega}{1 + (RC\omega)^2} \sin(\omega t)$$

מציבים בתנאי התחלה ומקבלים:

$$k_2 = -\frac{I_0 R}{1 + \left(RC\omega\right)^2}$$

:אזי הפתרון הוא

$$V_{ZSR} = \left[-\frac{I_0 R}{1 + (RC\omega)^2} e^{-\frac{t}{RC}} + \frac{I_0 R}{1 + (RC\omega)^2} \cos(\omega t) + \frac{I_0 R^2 C\omega}{1 + (RC\omega)^2} \sin(\omega t) \right] u(t)$$

2SR ליניאריות של תגובת 9.2

עבור מעגלים חשמליים בעלי ליניאריים יש קשר ליניארי בין העירור(המבוא) לבין עבור מעגלים חשמליים בעלי ליניאריית לכן ניתן להשתמש בסןפר פוזיציה. אם המוצא, כלומר תגובת x במאר y כאשר y כאשר y כאשר y כאשר y כאשר y כאשר y בניסה y תגובת המערכת (המוצא) אזי המערכת ליניארית אם מתקיים y בוער y בוער און אם מתקיים עבור y באמן y בוער און אם מתקיים עבור באמן און y באמן y באמן של y

פרק 10

תרגול מס.?

$$\frac{\partial^{2} y}{\partial t^{2}} + 2\alpha \frac{\partial y}{\partial t} + \omega_{0}^{2} y = f(t)$$

 $\dot{y}\left(0\right)=0$ ו עם תנאי התחלה $y\left(0\right)=y_{0}$ התחלה כאשר α קבוע הריסון ו ω_0 היא התדירות כאשר α $Q=rac{\omega_0}{2a}$ נגדיר גורם האיכות :הפתרון

$$y = y_{zsr} + y_{zir} = (y_p + y_{h_0}) u(t) + y_{h_2}$$

 $y_h=e^{st}$ באשר דומה לעירור אומה כאשר אם מציבים את זה מקבלים המשוואה האופינית של המעגל

מקרה ראשון: 2 שורשים ממשיים ושליליים

$$Q < \frac{1}{2}, \alpha > \omega_0$$

 $y_h = Ae^{s_1\overline{t}} + Be^{s_2t}$

זה נקרא ריסון יתר, אין תנודות במעגל זה.

מקרה שני: 2 שורשים ממשיים שליליים וזהים

$$\alpha = \omega_0, Q = \frac{1}{2}$$

$$s_1 = s_2 = -\alpha t$$

$$y_h = Ae^{s_1t} + Ate^{s_1t}$$

זה נקרא ריסון קריטי

מקרה שלישי: שני שורשים מורכבים

$$s_{1,2}=-lpha\pm i\omega_d$$
 , $\omega_d=\sqrt{\omega_0^2-lpha^2}$ מקבלים $a<\omega_0,Q>rac{1}{2}$

 $y_h = e^{-\alpha t} \left(A \sin(\omega_d t) + B \cos(\omega_d t) \right) = k e^{-\alpha t} \cos(\omega_d t + \varphi)$

 $T=rac{2\pi}{\omega_d}$ מתזור מת בעלות הם בעלות התנודות הת-ריסון. התנודות זמן מתזור לומר תנודות דועכות, זה נקרא ה מצב רביעי: 2 שורשים דמיוניים טהורים

$$Q \to \infty, \alpha \to 0$$

$$S_{1,2} = \pm i\omega_0$$

$$y_h = A\sin(\omega_0 t) + B\cos(\omega_0 t) = k\cos(\omega_0 t + \varphi)$$

29 אָרפ 10. קרפ?

איור 10.1: מעגל

 $V_c\left(0^ight)=-1V, i\left(0^ight)=:$ דרישה: $c=rac{1}{3}f, \omega_0=12rac{rad}{sec}$: תנאי התחלה: $Q=rac{1}{2}$ ותנאי התחלה: בא

$$y'' + 2\alpha y' + \omega_0^2 y = f(t)$$

: kvl נפתור דרך

$$V_{C} + V_{R} + V_{L} = 0$$

$$V_{C} (0^{-}) + \frac{1}{c} \int idt + iR + L \frac{\partial i}{\partial t} = 0$$

$$i'' + \frac{R}{L}i' + \frac{1}{LC}i = 0$$

$$2\alpha = \frac{R}{L}$$

$$\omega_{0} = \frac{1}{LC}$$

$$\Rightarrow L = \frac{1}{\omega_{0}^{2}c} = \frac{1}{48}H$$

$$\begin{array}{rcl} Q & = & \frac{1}{2} = \frac{\omega_0}{2\alpha} \\ \Rightarrow \alpha & = & \omega_0 = 12 \\ R & = & 2\alpha L \\ & = & \frac{1}{2}\Omega \end{array}$$

אזי

$$i'' = 24i' + 144i = 0$$

נפתור הפולינום האופייני:

$$P(s) = s^2 + 24 + 144 = 0$$

 $S_{1,2} = -12$

:אזי הפתרון

$$i_{ZIR} = Ae^{-12t} + Bte^{-12t}$$

רוצים לקבל את תגובת הזרם למדרגה. אזי מעננין אותנו ZSRכי את תגובת רוצים לקבל את תגובת הזרם למדרגה.

$$L=20mH, R=0.125\Omega, c=0.5F$$
 נתנון:

$$\begin{split} KCL: i_s &= i_L + i_c + i_R \\ i_s &= \frac{1}{L} \int_{-\infty}^t V\left(t\right) dt + C \frac{dV}{dt} + \frac{V}{R} \\ \frac{1}{c} i_s' &= v'' + 16v' + \frac{1}{LC} v \end{split}$$

אזי

$$v'' + 16v' + 100v = 2\delta(t)$$

 $v(0) = v'(0) = 0$

יש שתי דרכים לפתור את זה: או שפותרים עבור מדרגה וגוזרים או שעושים אינט-גרל ופותרים 2.סמ לוגרת .10 קרפ?

$$\int_{0^{-}}^{0^{+}} v'' + 16 \int_{0^{-}}^{0^{+}} +100 \int_{0^{-}}^{0^{+}} v = 2 \int_{0^{-}}^{0^{+}} \delta(t)$$
$$\left[v'(0^{+}) - v'(0^{-})\right] + 16 \left[v(0^{+}) - v(0^{-})\right] + 0 = 2$$
$$v'(0^{+}) + 16v(0^{+}) = 2$$

 $v\left(0^{+}\right)=0,v^{'}\left(0^{+}\right)=2$ עושים שיקולי איזון אי רציפות ומקבלים

$$\begin{array}{rcl} P\left(s\right) & = & S^2 + 16s + 100 = 0 \\ s & = & -8 \pm 6j \\ v & = & e^{-8t} \left(A\cos\left(6t\right) + B\sin\left(6t\right) \right) u\left(t\right) \\ v\left(0\right) & \Rightarrow & A = 0 \end{array}$$

$$v'(0^{+}) = \frac{\partial}{\partial t} \left[e^{-8t} B \sin(6t) \cdot u(t) \right]$$

$$= B \left[-8e^{-8t} \sin(6t) u(t) + 6e^{-8t} \cos(6t) \right] u(t) + 0\delta(t)$$

$$6B = 2$$

$$B = \frac{1}{3}$$

$$V_{ZSR} = \frac{1}{3} e^{-8t} \sin(6t) u(t)$$

תגובת הלם:

$$v'' + 16v' + 100v = 2i'_s = 2\delta'(t)$$

. את הפתרון את לנו ומקבלים שהיה לנו הפתרון על נגזור הפתרון על $u'\left(t\right)=\delta\left(t\right)$ את מכיוון מכיוון

פרק 11

?.סה הרצאה מס.?

איור 11.1: מעגל

$$I_{s}\left(t
ight)=I_{s}u\left(t
ight)$$
 עבור עבור עבור עבור אשא משוואות משוואות

$$Li'_{L} = i_{R}R$$

$$i_{s} = i_{R} + i_{L}$$

$$i_{L}(t) + \frac{L}{R}i'_{L} = I_{s}u(t)$$

$$i'_{L} + \frac{R}{L}i_{L} = \frac{R}{L}I_{s}u(t)$$

$$i_{L}(t) = I_{s}\left(1 - e^{-\frac{R}{L}t}\right)u(t)$$

$$v_{L}(t) = Li'_{L}$$

$$= Re^{-\frac{R}{L}t}I_{s}u(t)$$

9סמ האצרה . 11 קרפ?

מעגל מסדר שני

הוא מעגל שהתגובה שלו(גם מתח וגם זרם) ניתן לניתוח על ידי מד"ר מסר שני.

מקבילי RLC מעגל 11.1.1

איור RLC :11,2 מקבילי

$$V_R=V_C=V_L=V$$
 : מתח $I_s=i_r+i_c+Ll$: קשרי מתח

$$I_{R} = \frac{V_{R}}{R}$$

$$I_{L} = i_{L}(0) + \frac{1}{L} \int_{0}^{t} V_{L}(t') dt'$$

$$I_{c} = C \cdot V'_{c}$$

:מציבים

$$CV_C' + i_L(0) + \frac{1}{L} \int_0^t V dt + \frac{V}{R} = I_s$$

$$V'' + \frac{1}{RC} V' + \frac{1}{LC} V = \frac{1}{C} i_s'$$

כדי לפתור את זה צריכים שתי תנאי התחלה. לפעמים לא יהיה נתון לנו שני תנאים אבל אפשר להסיק את התנאי השני מרציפות המתח או הזרם.

פרק 12

תרגול מה.?

מד"ר שיטת S למציאת מד"ר 12.1

$$\mathcal{L}\left\{y\left(t\right)\right\} = y\left(s\right) = \int_{-\infty}^{\infty} y\left(t\right) e^{-st} dt$$

$$\mathcal{L}\left(\frac{\partial y\left(t\right)}{\partial y}\right) = s \cdot y\left(s\right)$$

$$\mathcal{L}\left(\int y\left(t\right) dt\right) = \frac{1}{s} y\left(s\right)$$

s מישור	t מישוא	
$V\left(s\right) = i\left(s\right) \cdot R$	V = i(t) R	נגד
$V = \frac{1}{CS}I(s)$	$V = \frac{1}{C} \int i(t) dt$	קבל
$V\left(s\right) = LsI\left(s\right)$	$V = L \frac{\partial i(t)}{\partial t}$	סליל

t ומישור אומישור בין מישוא ומישור טבלה בין יובנה טבלה טבלה וומישור א

48 קרפ. 12. קרפ?

איור 12.1: דוגמה למעגל

 $\begin{array}{rcl} L & = & 2H \\ C & = & 3F \\ R_1 & = & 2\Omega \\ E_2 & = & 4\Omega \\ V_c \left(0^- \right) & = & 8V \\ i_c \left(0^- \right) & = & 3A \end{array}$

צריכים להעביר המעגל למקור זרם אזי:

איור 12.2: זרם

$$\begin{array}{rcl} G \cdot V & = & I \\ \left(\frac{1}{R_{1}} + \frac{1}{LS} & -\frac{1}{LS} \\ -\frac{1}{LS} & \frac{1}{R_{2}} + cs + \frac{1}{LS} \end{array}\right) \cdot \begin{pmatrix} v_{1}\left(s\right) \\ v_{2}\left(s\right) \end{pmatrix} & = & \left(\frac{V_{s}\left(s\right)}{R_{1}} \\ 0 \end{pmatrix} \\ V_{c} & = & V_{2} \\ & = & \frac{V_{s}/R_{1}SL}{\left(\frac{1}{R_{1}} + \frac{1}{sL}\right)\left(\frac{1}{R_{2}} + \frac{1}{Ls} + sC\right) - \frac{1}{s^{2}L^{2}}} \end{array}$$

את פותרים:

$$V_{c}(s) = \frac{V_{s}(s)}{\frac{sL}{E_{2}} + 1 + \frac{R_{1}}{R_{2}} + \frac{R_{1}}{Ls} + s^{2}CL + SCR - \frac{R_{1}}{Ls}}$$

$$= \frac{V_{s}(s)/CL}{s^{2} + \left(\frac{1}{R_{2}C} + \frac{R_{1}}{L}\right)s + \frac{1}{LC}\left(1 + \frac{R_{1}}{R_{2}}\right)}$$

$$= s^{2} + \left(\frac{1}{R_{2}C} + \frac{R_{1}}{L}\right)s + \frac{1}{LC}\left(1 + \frac{R_{1}}{R_{2}}\right)V_{c}(s) = \frac{1}{LC}V_{s}(s)$$

אזי

$$V_{c}''(t) + \left(\frac{1}{R_{2}C} + \frac{R_{1}}{L}\right)V_{c}'(t) + \frac{1}{LC}\left(1 + \frac{R_{1}}{R_{2}}\right)V_{c}(t) = \frac{1}{LC}V_{s}(t)$$

פותרים:

$$V_c'' + \frac{13}{12}V_c' + \frac{1}{4}V_C = \frac{1}{6}V_s$$

$$\omega_0 = \frac{1}{2}$$

$$2\alpha = \frac{13}{12}$$

$$Q = \frac{\omega_0}{2\alpha} = \frac{6}{3} < \frac{1}{2}$$

אנחנו בתחום של ריסון יתר. מציאת תנאי ההתחלה

$$I_{L}(0^{-}) = \frac{V_{c}(0^{-})}{R_{2}} + CV'_{C}(0^{-})$$

$$V'_{c}(0^{-}) = \frac{i_{L}(0^{-}) - V_{c}/R_{2}}{C}$$

$$V'_{c}(0^{-}) = \frac{1}{3}$$

2. המ לוגרת 12. קרפ?

ZIR

$$P(s) = s^{2} + \frac{13}{12}s + \frac{1}{4} = 0$$

$$S_{1,2} = -\frac{1}{3}, -\frac{3}{4}$$

$$V_{c}^{ZIR} = Ae^{-\frac{1}{3}t} + Be^{-\frac{3}{4}t}$$

$$A + B = 8$$

$$\frac{1}{3}A - \frac{3}{4}B = \frac{1}{3}$$

$$\Rightarrow V_{C}^{ZIR} = 15.2e^{-\frac{t}{3}} - 7.2e^{-\frac{-t}{4}}$$

ZSR

$$V_c'' + \frac{13}{12}V_c' + \frac{1}{4}V_c = \underbrace{\frac{1}{6}}_{\frac{1}{CC}}V_s$$

$$V_p = a + bt$$

$$V_C^{ZSR} = (V_p + V_h) u(t)$$

$$= \left[a + bt + Ae^{-\frac{t}{3}} + Be^{-\frac{3t}{4}} \right] u(t)$$

$$\frac{13}{12}b + \frac{1}{4}a + \frac{1}{4}bt = \frac{1}{c}(1+2t)$$

$$\Rightarrow a = -5\frac{1}{9}$$

$$b = \frac{4}{3}$$

$$V_c^{ZSR} = \left(-5\frac{1}{9} + \frac{3}{4}t + Ae^{-\frac{t}{3}} + Be^{-\frac{3t}{4}}\right)u(t)$$

$$V_C(0^+) : -5\frac{1}{9} + A + B = 0$$

$$V_C'(0^+) : \frac{4}{3} - \frac{1}{3}A - \frac{3}{4}B = 0$$

$$A = 6$$

$$B = -\frac{8}{9}$$

אזי

$$\begin{array}{rcl} V_{c}^{ZSR}\left(t\right) & = & \left[-5\frac{1}{9}+\frac{4}{3}t+6e^{-\frac{t}{3}}-\frac{8}{9}e^{-\frac{3t}{4}}\right]u\left(t\right) \\ V_{c}\left(t\right) & = & V_{C}^{ZIR}+V_{C}^{ZSR} \end{array}$$

12.2 פתרון מעגל מסדר שלישי

$$V_c''' + 4V_c''' + 6V_c'' + 4V_C = 0$$

$$s^3 + 4^2 + 6s + 4 = 0$$

$$S_{1,2} = -2$$

$$S_{2,3} = -1 \pm j$$

$$V_c = Ae^{-2t} + e^{-t} [B\sin(t) + C\cos(t)]$$