Микроэкономика-І

Павел Андреянов, PhD

8 апреля 2023 г.

План лекции

- Часть 1. Разбор контрольной.
- Часть 2. Парето оптимальность и (общее) равновесие
 Вальраса в экономике обмена. Равновесие с трансфертами.

Экономика обмена

Экономика обмена

Экономика обмена - это когда нет производства. Ресурсы и товары изначально распределены между экономическими агентами и затем торгуются на конкурентном рынке или меняются при помощи бартера.

Пример

У крестьянина a есть яблоневый сад, он приносит ему 100 яблок каждый год. У крестьянина b есть куры которые несут 150 яиц в год.

Другими словами, начальные запасы крестьянина a описываются вектором $\vec{w}_a = (100,0)$ а крестьянина b вектором $\vec{w}_b = (0,150)$.

Общие запасы описываются вектором $\vec{w} = (100, 150)$.

Пример

Другими словами, начальные запасы крестьянина a описываются вектором $\vec{w}_a = (100,0)$ а крестьянина b вектором $\vec{w}_b = (0,150)$. Общие запасы описываются вектором $\vec{w} = (100,150)$.

- бартер: крестьяне обменяли 50 яблок на 50 куриных яиц
- торговля: крестьянин a решил потребить $\vec{x_a} = (50, 50)$, а крестьянин b решил потребить $\vec{x_b} = (50, 100)$ яблок.

В сценарии с торговлей, мы представляем себе, что крестьяне сначала продают все свои запасы на рынке, получают деньги, а потом решают задачу максимизации полезности.

Цены устанавливает некая беневолентная сущность.

Формально

Мы хотим ответить на следующие вопросы: какие состояния экономики возможны в результате бартера? какие состояния экономики возможны в результате торговли.

Попробуем эту идею формализовать...

Пусть у нас есть $I = \{a, b, c, \ldots\}$ агентов и $K = \{1, 2, 3, \ldots\}$ товаров.

Допустимые состояния

Допустимые состояния

Допустимым состоянием экономики обмена называется набор координат потреблений

$$\vec{x} = \{\vec{x}_a, \vec{x}_b, \vec{x}_c, \ldots\},\$$

такой, что потребления неотрицательные

$$\forall i \in I, \quad k \in K, \quad 0 \leqslant x_{ik}$$

а сумма (по агентам $i \in I$) потреблений

$$\forall k \in K, \quad \sum_{i \in I} x_{ik} = \sum_{i \in I} w_{ik}$$

совпадает с общими запасами для каждого товара (по отдельности).

Формально

Рассмотрим случай, когда $\dim I = 2$, $\dim K = 2$. В таком случае, допустимые состояния описываются четырьмя координатами:

$$x_{a1}, x_{a2}, x_{b1}, x_{b2},$$

причем они связаны соотношениями

$$x_{b1} = w_{a1} + w_{b1} - x_{a1}, \quad x_{b2} = w_{a2} + w_{b2} - x_{a2}$$

то есть степеней свободы у допустимого состояния всего две, например ими могли бы быть координаты потребления первого агента: x_{a1}, x_{a2} .

Действительном, координаты потребления второго агента выражаются через них и запасы (которые известны и постоянны).

Ящик Эджворта

Фрэнсис Эджуорт

Фрэнсис Эджуорт (Francis Edgeworth) английский экономист второй половины 19 века.

Был сторонником идеи прогрессивного налогообложения, мотивируя его убывающей предельной полезностью доходов. В честь него названы ящик Эджуорта и налоговый парадокс Эджуорта.

Ящик Эджворта

Пространство допустимых состояний описывается прямоугольником в \mathbb{R}^2 , высота и ширина которого равны $\vec{w}=(w_1,w_2)$ соответственно. Этот прямоугольник называется ящиком Эджворта, в честь еще одного экономиста.

На той же картинке мы можем изобразить предпочтения каждого агента. Для этого надо выбрать того агента, чьи координаты будут расположены нормально, а координаты второго агента будут перевернуты.

По умолчанию мы переворачиваем второго агента (b).

Ящик Эджворта

Гениальность конструкции в том, что все точки внутри ящика представляют собой все допустимые состояния экономики.

Вильфредо Парето

Вильфредо Парето (Vilfredo Pareto) итальянский математик и экономист второй половины 19 века.

Он разработал теории, названные впоследствии его именем: статистическое Парето-распределение и Парето-оптимум, широко используемые в экономической теории и иных научных дисциплинах.

Далее, мы хотим выбрать те допустимые состояния экономики из которых нельзя выйти при помощи бартера, а значит они будут потенциальными "равновесиями" в бартерной системе.

Допустимое состояние x это (слабый) Парето оптимум, если не существует другого допустимого состояния, которое делает всем агентам (сильно) лучше.

Формально, это можно определить как

$$E \cap L_{++}^{a}(x) \cap L_{++}^{b}(x) = \emptyset,$$

где E это сам ящик Эджворта.

Все такие точки называются Парето границей или Парето фронтом.

Какие из трех точек x^*, \hat{x}, \tilde{x} являются Парето оптимальными?

Допустимое состояние это (сильный) Парето оптимум, если не существует другого допустимого состояния, которое делает всем агентам (слабо) лучше, но хотя бы одному агенту – сильно.

Формально, это можно определить как

$$E \cap (L_{++}^{a}(x) \cap L_{+}^{b}(x)) \cup (L_{+}^{a}(x) \cap L_{++}^{b}(x)) = \emptyset.$$

Пример слабого но не сильного ПО легко построить при помощи толстой кривых безразличия.

Сильные ПО это подмножество слабых ПО, но мы почти никогда не будем различать их между собой.

Дело в том, что для подавляющего числа задач они вообще совпадают. Чаще всего это просто точки касания кривых безразличия.

Но есть и исключения (все они связаны с границей ящика).

Экзотический пример 1

Пусть в ящике Эджворта первая полезность квазилинейная, а вторая $K \mathcal{A}$.

Экзотический пример 2

Пусть в ящике Эджворта первая полезность линейная, а вторая Леонтьев.

Примеры у доски

Примеры у доски

Опять пусть есть два агента с запасами (1,2) и (1,1).

- $U_a(x,y) = U_b(x,y) = \alpha \log x + \log y$
- $U_a(x, y) = \log x + y$, $U_b(x, y) = \alpha \log x + \log y$
- $U_a(x, y) = \min(x, y)$, $U_b(x, y) = \alpha \log x + \log y$
- $U_a(x,y) = \sqrt{x} + \sqrt{y}$, $U_b(x,y) = \alpha x + y$

Нарисуйте (слабую) Парето границу. Какие точки на границе не могут быть результатом добровольного бартера, подразумевая что агенты не будут меняться себе в ущерб?

Равновесие Вальраса

Леон Вальрас

Леон Вальрас (Leon Walras) французский экономист второй половины 19 века.
Лидер Лозаннской школы маржинализма.
Основатель теории общего экономического равновесия.

Равновесие Вальраса

Равновесием Вальраса экономики обмена называется допустимое состояние \vec{x} и вектор цен \vec{p} , такие, что каждый агент достигает максимума полезности по бюджетному ограничению с бюджетом, равным доходу от продажи своих начальных запасов.

$$\forall i \in I, \quad \vec{x_i} \in arg \max U_i(*) \quad s.t. \quad \vec{p} \cdot \vec{x_i} \leqslant \vec{p} \cdot \vec{w_i}$$

Другими словами PB - это модель состояния торговой площадки. Существование PB - неочевидное утверждение.

Как устроена площадка

Денег изначально у агентов нет, а есть только запасы.

- На табло высвечивается некоторый вектор цен \vec{p} .
- Агенты меняют все запасы на деньги, теперь у агентов только деньги, а товаров нет.
- Далее, агент заказывает себе товары максимизируя полезность при бюджетном ограничении
- Снова у агентов есть товары но нет денег (вернее, у них талоны от заказанных товаров но не сами товары)

Если не возникло дефицита и все заказы были успешно выполнены, то это и есть равновесие. Наша задача понять при каких ценах \vec{p} это верно.

Закон Вальраса

Закон Вальраса

Напомним, что при локальной ненасыщаемости полезностей, агенты полностью тратят все свои деньги:

$$\forall i \in I, \quad \vec{p} \cdot \vec{x_i} = \vec{p} \cdot \vec{w_i},$$

это называется Законом Вальраса.

Формально это не является частью определения РВ, но практически моментально вытекает из него.

Денежное Равенство

Отсюда можно сделать вывод, что после окончания торгов у агентов не останется денег на руках, другими словами, выполнено денежное равенство:

$$\sum_{i\in I} \vec{p} \cdot \vec{x}_i = \sum_{i\in I} \vec{p} \cdot \vec{w}_i.$$

Действительно, справа стоят все деньги, полученные после продажи начальных запасов, а слева — все деньги, потраченные на покупку товаров.

Геометрически, это можно представить себе как ортогональность вектора цен \vec{p} вектору $\vec{x}-\vec{w}$.

Поиск Равновесия Вальраса можно представить себе как несколько групп уравнений.

- товарные равенства, *К* штук: что сумма товаров в каждой категории равны соответствующим общим запасам, т. е. допустимое состояние экономики;
- условия оптимальности, $K \cdot I$ штук: что каждый агент выбирает потребление оптимально, т. е. условия первого порядка;
- законы Вальраса, / штук. Денежное равенство из них вытекает, поээтому мы его считать не будем.

Неизвестные тоже можно разбить на группы:

- цены, их К штук
- ullet собственно потребления, их $K\cdot I$ штук
- множители Лагранжа, их / штук

Казалось бы, у нас система из $I \cdot K + K + I$ уравнений и столько же неизвестных, но есть один подвох - система линейно зависима.

Дело в том, что если выполнены все товарные равенства, то есть мы находимся в ящике Эджворта, и выполнены законы Вальраса для всех кроме одного агента, то последний закон Вальраса выполняется автоматически.

Если все кроме одного агента потратили все деньги, и товары перешли из одних руки в другие, то из этого алгебраически вытекает, что последний агент также потратил все свои деньги.

То есть линейно независимых уравнений, на самом деле, $I \cdot K + K + I - 1$.

Получается, что уравнений больше, чем неизвестных?

РВ как система уравнений

На самом деле, неизвестных тоже $I\cdot K+K+I-1$, ведь цены определены с точностью до константы, а значит цену одного из товаров (обычно последнего) можно приравнять к 1, без потери общности.

Связь ПО и РВ

Связь ПО и РВ

Легко видеть, что первый блок уравнений (товарные равенства) у РВ и ПО - одинаковый. Они просто фиксируют ящик Эджворта и точку начальных запасов в нем.

Второй блок уравнений (условия оптимальности), на самом деле, тоже совпадает в выпуклых задачах, потому что это условия касания кривых безразличия.

Наконец, третий блок (законы вальраса) это условие того, что бюджетная линия проходит сразу через две точки: начальные запасы и предполагаемое PB.

Связь ПО и РВ

Получается, что PB - выбирает на Парето-фронте (как правило) одну точку.

В чем разница между РВ и ПО?

В Равновесии Вальраса есть цены, это главное. Происхождение этих цен нас не интересует, можно считать, что они написаны кем-то на гигантском табло.

Каждый агент продает свои запасы по этим ценам и уже далее максимизирует полезность, покупая на эти деньги товары.

Возникает бюджетная линия, которая отделяет верхние Лебеговы множества агентов друг от друга в ящике Эджворта

В Парето оптимуме никаких цен нет, соответственно бюджетных множеств тоже нет.

В отличие о PB, в ПО верхние Лебеговы множества не обязательно разделены линейно.

Они могут быть разделены, например, параболой.

Поэтому верхние Лебеговы множества \mathcal{L}_{++} отделены друг от друга просто как нибудь.

Конечно, если экономика полностью выпуклая, то разделение всегда будет линейное, по Теореме о Разделяющей Гиперплоскости.

Но, вообще говоря, РВ это усиление ПО.

Первая Теорема Благосостояния: любое РВ это слабое ПО.

Доказательство от противного...

Пусть точка x является PB с ценами \vec{p} но не слабым ПО.

Тогда, по определению $L^a_{++}(x)\cap L^b_{++}(x)\cap E$ непусто. Получается, что есть некоторая другая точка y которая

- является допустимым состоянием экономики
- дает строго большую полезность обоим агентам

Поскольку точка у лежит в ящике эджворта то она лежит либо над, либо под, либо в точности на бюджетной линии. Значит, ее точно мог бы купить один из двух агентов.

Но это противоречит оптимизации полезности в РВ.

РВ с трансфертами

РВ с трансфертами

Равновесием Вальраса с трансфертами экономики обмена называется допустимое состояние \vec{x} и вектор цен \vec{p} , такие, что каждый агент достигает максимума полезности по бюджетному ограничению, с бюджетом равным доходу от продажи своих начальных запасов плюс трансферты.

$$\forall i \in I, \quad \vec{x_i} \in arg \max U_i(*) \quad s.t. \quad \vec{p} \cdot \vec{x_i} \leqslant \vec{p} \cdot \vec{w_i} + T_i.$$

Очень важно, что трансферты суммируются в ноль $\sum T_i = 0$, иначе сломается денежное равенство.

РВ с трансфертами

По сути, трансферты являются (скрытым) способом изменить начальные запасы и, как следствие, равновесие и цены.

