4.4 Discrete maximum entropy examples⁴

4.4.1 Discrete uniform

Example 2 (discrete uniform) Suppose we know only that there are three possible (exchangeable) events, $x_1 = 1$, $x_2 = 2$, and $x_3 = 3$. The maximum entropy probability assignment is found by solving the Lagrangian

$$\mathcal{L} \equiv \max_{p_i} \left[-\sum_{i=1}^{3} p_i \log p_i - (\lambda_0 - 1) \left(\sum_{i=1}^{3} p_i - 1 \right) \right]$$

First order conditions yield

$$p_i = e^{-\lambda_0}$$
 for $i = 1, 2, 3$

and

$$\lambda_0 = \log 3$$

Hence, as expected, the maximum entropy probability assignment is a discrete uniform distribution with $p_i = \frac{1}{3}$ for i = 1, 2, 3.

4.4.2 Discrete nonuniform

Example 3 (discrete nonuniform) Now suppose we know a little more. We know the mean is 2.5.⁵ The Lagrangian is now

$$\mathcal{L} \equiv \max_{p_i} \left[-\sum_{i=1}^{3} p_i \log p_i - (\lambda_0 - 1) \left(\sum_{i=1}^{3} p_i - 1 \right) - \lambda_1 \left(\sum_{i=1}^{3} p_i x_i - 2.5 \right) \right]$$

First order conditions yield

$$p_i = e^{-\lambda_0 - x_i \lambda_1}$$
 for $i = 1, 2, 3$

and

$$\lambda_0 = 2.987$$

$$\lambda_1 = -0.834$$

The maximum entropy probability assignment is

$$p_1 = 0.116$$

 $p_2 = 0.268$
 $p_3 = 0.616$

⁴ A table summarizing some maximum entropy probability assignments is found at the end of the chapter (see Park and Bera [2009] for additional maxent assignments).

⁵Clearly, if we knew the mean is 2 then we would assign the uniform discrete distribution above.