Automatic Speech Processing EE-554

General Information

- Course, Textbook suggestions and lab notes available on moodle
- Practice questions
 - Purpose is to test the understanding of the main concepts
 - Feedback through hand correction
- Exam: written, without notes
- Contact: {mathew,petr.motlicek}@idiap.ch

What is speech?

Most common mode of communication

Information in speech

- A few day-to-day examples
 - "You sound happy."
 - "Oh, I did not recognize your voice."
 - "Can you say that again in English?"
 - "Did you hear what I said?"
 - "Oh, I can not hear clearly on the mobile, could you please call me on the landline?"
 - "He sounds like a French guy."
 - "Oh that is a female voice."
 - "It seems there is an old guy on the phone."

Why speech processing? (1)

Emulate the ability of humans to speak and listen with machines

Why speech processing? (2)

Engineering and computer science

- Signal processing
- Machine learning
- Information coding and transmission
- Data science

Physiology

- Speech production
- Hearing

Speech

Processing

Multi- and Interdisciplinary

Linguistics

- Natural language
- **Phonetics**
- Grammar

Why speech processing? (3)

"If I could make a current of electricity vary in intensity precisely as the air varies in density during the production of a speech sound, I should be able to transmit speech telegraphically." Alexander Graham Bell

Opportunities to innovate and create

A few milestones related to speech transmission and storage

Milestone	Year	Milestone	Year	Milestone	Year
Commercial Telegraph	1844	Transistor	1947	Compact Disc	1982
Transatlantic Telegraph	1858	Information Theory	1948	Cellular telephone	1984
Telephone	1876	$33\frac{1}{3} \text{ LP}$	1950	Groupe Spécial Mobile (GSM)	1989
Phonograph	1877	Transatlantic Telephonecable	1956	Digital Versatile Disk (DVD)	1995-1996
Flat Disc	1887	Stereo LP	1958	Voice over Internet Protocol (VoIP)	around 1996
Radio	Early 20th Century	Commercial Digital Computers	1958	3rd Generation (3G)	2001
$Radio\ Program$	1906	Communication Satellites	1962	In US, Western Union discontinued Telegraph	2006
Transcontinental Telephone	1915			in 65, western emon discontinued Telegraph	2000
Transatlantic Radiotelephone	1927	Digital Telephone Transmission (using PCM)	1962		
Pulse Code Modulation (PCM)	1938	Integrated chips	1971		
Speech and Hearing Research	1939	Singlechip Digital Signal Processing	1981		

Course overview

- Introduction: speech processing, language engineering applications, speech science
- Fundamentals of speech signal processing: analysis and spectral properties, linear predictive coding
- Basic tools in statistical pattern recognition, Markov models, dynamic programming, hidden Markov models
- Automatic speech recognition
- Text-to-speech synthesis
- Speaker identification and verification

Lab exercises

- Lab. No. 1: Speech signal and its analysis, pitch, etc
- Lab. No. 2: Linear Predictive (LP) analysis of speech (source-system decomposition)
- Lab. No. 3: Statistical pattern recognition, clustering,
 EM algorithm, etc
- Lab. No. 4: Markov models and hidden Markov models

Speech Coding

Speech Coding (cont.)

- 16000 bps (adaptive pulse code modulation)
- 13000 bps (multi-pulse LPC)
- 8000 bps (code-excited LPC)
- 2400 bps (LPC)

Automatic Speech Recognition (ASR)

- Reading vs. Conversation, Speaker-dependent vs. Speaker-independent
- Multilingual speech recognition (many languages are under-resourced)
- Noise-robust speech recognition
 - Distant speech recognition (e.g., on home devices Amazon Alexa, Google home, Apple HomePod)

Clean

Reverberant

Reverberant + noise

 Recognition of atypical speech, e.g. accented speech, children speech, impaired speech

Unimpaired speech

Impaired speech (Hypernasal)

Automatic Speech Recognition (cont.)

- Office/desktop:
 - Voice control of PC/Workstations, of programs, dictation systems
- Manufacturing/Business:
 - Aid in manufacturing process, quality control, stock control and management
- Medical/Legal:
 - Creation of medical/legal reports, briefs, diagnostics...
- Others:
 - Games, aid to handicapped, interactive kiosk information systems

Text-to-Speech Synthesis (TTS)

- Challenges
 - Fast adaptation to new speaker
 - Multilingual speech synthesis
 - Affective/Expressive speech synthesis
 - "Objective" evaluation
- End-use
 - Announcement systems
 - Dialog systems
 - Assistive systems for visually impaired and speech impaired persons
 - Voice banking

Stephen Hawkins, Cambridge Univ.

Speech-to-Speech Translation

Human Speech Communication

message

linguistic code ($\sim 50 \text{ b/s}$)

motor control speech production

text-to-speech synthesis

speech coding

SPEECH SIGNAL (~50 kb/s)

speech perception

cognitive processes

linguistic code (~ 50 b/s)

message

automatic speech recognition

Automatic Speaker Recognition

- Challenges
 - Robustness to environment and channel variation
 - Language independence
 - Legally admissible forensic evidence
- End use
 - Secured access
 - Forensics

Forensic speaker recognition

Speech Assessment

Broad category of problems pertaining to speech communication with human in the loop

Speech coding and transmission system assessment (ITU standards)

Change of codec and/or transmission channel Average Listener

- How intelligible is the transmitted speech?
- How good or bad is the transmitted speech quality?
- Quality of service?

Language learning

- Degree of nativeness
- Fluency
- Pronunciation errors

- Control versus Pathological
- Type of speech pathology

Speech Assessment (cont.)

- Drawback of human listener based assessment
 - Costly in terms of both time and money
 - Different expertise needed for different tasks
 - Difficult to reproduce

Solution: Automatic prediction of human assessment

- Challenges
 - Developing models that are sensitive to the specific variabilities with limited data and knowledge
 - Exploiting existing speech technology components
 - Handling variabilities in human assessment

Speech Production

Excitation: vibration of vocal cords

System: Vocal tract shape and sometimes nasal cavity

Response: Speech

One excitation

Six excitations

Speech Production (cont.)

- Rate of periodic vibration of vocal cords differs from person to person due to differences in vocal fold size children > female > male
- Vocal cords under tension tend to vibrate faster
- For certain sound productions there is no periodic vibration of vocal cords
- Length of vocal tract differs from person to person male > female > children
- Shape of vocal tract changes for different sounds

Human Hearing

- Ear transforms sound's acoustic form of energy into nerve impulses
- Loudest sound that can be heard without feeling pain is about 120 dB
- Ear is not equally sensitive to all frequencies (highest sensitivity 1 kHz
 - 5 kHz)

Human Hearing: Sound pressure and loudness

Sound	Intensity	Intensity level
	N/m^2	dB
Threshold of hearing	10^{-12}	0
Rustling Leaves	10^{-11}	10
Whisper	10^{-10}	20
Speech	10^{-6}	60
Orchestra	$6.3\cdot10^{-3}$	98
Walkman at Maximum Level	10^{-2}	100
Threshold of Pain	10^{1}	130
Instant Perforation of Eardrum	10^{4}	160

Human Hearing: Basilar membrane and critical bands

Atomic unit of sound: Phoneme

- Phoneme: smallest sound unit that distinguishes meaning of words,
 e.g., bed (/b//eh//d/), bad (/b//ae//d/), bud (/b//ah//d/)
- Phone: Several recognizably different sounds of phonemes
- Number of phonemes or phones in each language is different
 - English has about 42 phonemes
- Phonemes can be grouped as,
 - Vowels (no constriction in vocal tract) e.g., /aa/, /ey/, /iy/, /ow/, /uw/
 - Consonants
 e.g., /p/, /b/, /m/, /v/, /k/, /t/, /f/, /s/

Other groupings: Articulatory-based

- Manner of articulation
 e.g., Plosive: /p/, Fricative: /s/, Approximant: /er/
- Place of articulation
 e.g., Labial: /p/, Dental: /th/, Alevolar: /d/, Labio-dental: /v/,
- Palatal-Alevolar: /ch/, Lateral /l/
- Voicing
 - Voiced sounds (periodic vibration of vocal cords, has nonzero fundamental frequency) e.g., /aa/, /b/, /m/, /g/, /d/, /v/
 - Unvoiced sounds (no fundamental frequency) e.g., /p/, /k/, /t/, /f/, /s/
 - Aspirant sounds (mix of both) e.g., /hh/

Other groupings: Articulatory-based (cont.)

- Nasalitye.g., /m/, /n/
- Roundedness
 e.g., /uw/
- Frontedness (only for vowels)
 e.g., Front: /ih/, Mid: /ah/, Back: /ao/
- Height of tongue (only for vowels)
 e.g., High: /ey/, Mid: /er/, Low: /ae/

See also International Phonetic Alphabet

Thank you for your attention!

