Assignment 1 ML March 22, 2022

1. See script file for details.

Figure 1: The relation between RM and MEDV with a fitted regression line.

- 2. a) See script file.
 - b) It is pretty much the same, the testing errors are the same to the first four significant figures.

This can be seen by looking at the *MSE*(on test data) in Table 3.

- c) The plot of the two graphs is also more or less the same.The plot for Lasso regression is significantly different, however.We can see the values of the parametes of the two variables in Table 2. We can see the difference in the training methods for the Bivariate case in Figure 2.
- d) The normal linear model seemed to train faster, but the Ridge model's test went faster. That being said, the difference in testing speed could be down to random error. There are other processes running on my computer which might interfere with accurate timing
- e) Yes, the Lasso method has a significantly larger MSE, and the model also trained a lot slower.
- f) We can see in Table 3, Table 5 and Table 6 that the *MSE* does change as Lasso and Ridge parameter changes. The generalization error actually increases as we change the parameters. The training and testing times do not change, however.
- g) The mean absolute error:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

This is very similar to the MSE. Only the errors are not squared. For MSE, squaring a large absolute error makes the error disproportionately large, which punishes an outliers. Since large errors are not squared for MAE, the outliers are punished but not over excessively.

h) The adjusted R^2 metric tries to deal with this problem, the formula is:

$$R_{\text{adj}}^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$

Where *N* is the total sample size, and *p* is the number of features of the model.

i) We cannot compare this to the results of Task 1. Task 1 is a bivariate linear regression and does not depend on B.

We can compare this to part a) for the multi-linear case. We can see the difference in the parameters when 'B' is dropped by comparing Table 2 and Table 4. We can see that the multidimensional plot changes for the multilinear case, MEDV depends differently on RM.

Table 1: Different Linear Regression Models

Model	MSE	R^2	Train Time $\times 10^{-6}$	Test Time $\times 10^{-6}$
21110001	22.737590 22.923754 27.606505	0.763344	368.595123 409.841537 460.863113	74.386597 68.187714 71.048737

Table 2: Parameters of Different Linear Regression Models

Model	θ_0	$ heta_1$	θ_2	θ_3	$ heta_4$	θ_5	θ_6	θ_7	θ_8	θ_9	$ heta_{10}$	θ_{11}	$ heta_{12}$	θ_{13}
Linear	36.73	-0.12	0.04	0.02	2.78	-18.59	3.76	0.00	-1.47	0.31	-0.01	-0.95	0.01	-0.55
Ridge	31.47	-0.12	0.04	-0.01	2.57	-10.79	3.80	-0.00	-1.36	0.30	-0.01	-0.86	0.01	-0.56
Lasso	40.55	-0.08	0.04	-0.00	0.00	-0.00	1.01	0.02	-0.64	0.27	-0.01	-0.74	0.01	-0.78

Table 3: Different Linear Regression Models when B is Excluded

Model	MSE	R^2	Train Time $\times 10^{-6}$	Test Time $\times 10^{-6}$
21110011	23.425683	000=0	464.200974 337.362289	53.882599 51.975250
Lasso	23.628806 28.433794		428.676605	56.266785

Table 4: Parameters of Different Linear Regression Models With B Excluded

Model	θ_0	$ heta_1$	θ_2	θ_3	$ heta_4$	θ_5	θ_6	θ_7	θ_8	$ heta_9$	$ heta_{10}$	θ_{11}	θ_{13}
Linear	42.31	-0.13	0.04	0.01	2.98	-19.42	3.59	0.01	-1.48	0.29	-0.01	-0.93	-0.58
Ridge	36.95	-0.13	0.04	-0.02	2.77	-11.28	3.64	0.00	-1.37	0.27	-0.01	-0.84	-0.59
Lasso	45.02	-0.09	0.04	-0.00	0.00	-0.00	0.88	0.03	-0.64	0.26	-0.02	-0.72	-0.81

Table 5: Different Linear Regression Models with $\alpha=2$

Model	MSE	R^2	Train Time $\times 10^{-6}$	Test Time $\times 10^{-6}$
Linear	22.737590	0.759814	406.980515	68.664551
Ridge	23.108689	0.762833	329.732895	66.995621
Lasso	32.515507	0.639673	385.046005	69.856644

Table 6: Different Linear Regression Models with $\alpha=3$

Model MSE R^2 Train Time ×10 ⁻⁶	Test Time ×10
Linear 22.737590 0.759814 388.145447 Ridge 23.237427 0.761974 329.017639 Lasso 34.971519 0.623029 356.912613	67.710876 66.518784 70.095062

Figure 2: The relation between RM and MEDV for different regression methods.

3 and 4. A quick note on the results. The classifier for task 3 and task 4 has an accuracy of 100%. This makes sense because if we look at plots of features, the type of plant can be discerned by eye, so the computer will definitely be able to do it.

5. a) See Figure 3

- b) We probably could use them to make a semi-fine classifier. There is not too much overlap between malignant and benign cases.
- c) See Figure 4.
- d) We probably could use these to make a semi-fine classifier aswell. There is not too much overlap between malignant and benign cases. That being said, medical things have to be pretty accurate, so I am not sure if these will suffice.
- e) I chose area and perimeter, the data looked more separate for these two. The F1 score seemed better for these features than other features, when I trained models on other features.
- f) See Figure 5 for the values.

Accuracy: 0.8882 Precision: 0.8363 Recall: 0.8614 F1: 0.8487

g) I would say recall. Recall measures how many of the cases are detected as malignant. In the case of something that is life threatening, it is much better to detect all the cases, even if some benign tumors are labeled as malignant.

Figure 3: Perimeter Vs Area of Tumor

Figure 4: Smoothness Vs Area of Tumor

Figure 5: Confusion Matrix for the Breast Cancer classifier