1 General Questions - UDP/TCP

1.	Why does UDP exist? Would it not have been enough to just let user processes send raw IP packets?				
2.	Both UDP and TCP use port numbers to identify the destination entity when delivering a message. Give two reasons why these protocols invented a new abstract ID (port numbers), instead of using process IDs, which already existed when these protocols were designed.				
3.	Datagram fragmentation and reassembly are handled by IP and are invisible to TCP. Does this mean that TCP does not have to worry about data arriving in the wrong order?				
4.	Why is the maximum payload of a TCP segment 65495 Bytes? Hint: Look at the IPv4 header.				

2 TCP Connection

1. Assume that Alice and Bob are communicating using a chat program over a TCP connection. The header of each chat message is 80 B long. The data is ASCII encoded. The following exchange takes place:

Alice Where are you from?

Bob I'm from Berlin.

Alice Nice to meet you.

Bob Nice to meet you too.

ence diagram o	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgem
	showing the	e use of cum	ulative ackn	owledgen
	showing the	e use of cum	ulative ackn	owledgen

3 TCP Timeout

1. A host measures the following RTT's from a TCP connection.

Time step	0	1	2	3	4	5
RTT [ms]	300	330	234	317	280	266

Calculate the TCP estimated retransmission timeouts, using $\alpha=0.125$ and $\beta=0.25$. Assume that the RTT estimate at t=0 is $300\,\mathrm{ms}$, and the corresponding deviation estimate is $20\,\mathrm{ms}$.