Analysis - PMA 1 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

Overview

1. The Real and Complex Number Systems

Sets

Ordered Sets

Fields

The Real Field

The Extended Real Number System

Euclidean Spaces

Exercises

Sets

Definition

If A is any set,

- $ightharpoonup x \in A$ means x is a member of A.
- $ightharpoonup x \notin A$ means x is not a member of A.
- ▶ The *empty set* is a set which contains no element.
- If a set has an element, it is called nonempty.
- ▶ If B is a set and every element of A is an element of B, we say that A is a subset of B, and write $A \subset B$, or $B \supset A$.
- ▶ If, in addition, there is an element of B which is not in A, then A is said to be *proper subset* of B. Note that for every set A, $A \subset A$.
- ▶ If $A \subset B$ and $B \subset A$, then A = B. Otherwise, $A \neq B$.

Ordered Sets

Definition

Let S be a set. An *order* on S is a relation, denoted by <, with the following two properties:

(i) If $x \in S$ and $y \in S$, then one and only one of the statements

$$x < y, x = y, y < x$$

is true.

(ii) If $x, y, z \in S$, if x < y and y < z, then x < z.

y > x means x < y and $x \le y$ means x < y or x = y.

Definition

An *ordered set* is a set S in which an order is defined.

Definition

Suppose S is an ordered set, and $E \subset S$.

- ▶ If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is bounded above,
- \blacktriangleright and call β an upper bound of E.

Lower bounds are defined in the same way.

Example

- ▶ Let $A = \{p \in \mathbb{Q} : p > 0, p^2 < 2\}$. Then we have, for all $p \in S$, p < 2. Thus 2 is an upper bound of S. Moreover, A is bounded below by 0.
- Let $B=\{p\in\mathbb{Q}:p>0,p^2>2\}$. For $p\in B$, suppose p>0. Then p>1. If p< q, then $p^2< q^2$. So $p+1\in B$. Then you can show that there is no $\beta\in\mathbb{Q}$ which bounds B above. But every element of A is a lower bound of B.

Definition

Suppose S is an ordered set, E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (i) α is an upper bound of E.
- (ii) If $\gamma < \alpha$, then γ is not an upper bound of E.

Then α is called the *least upper bound of* E or the *supremum of* E, and we write

$$\alpha = \sup E$$
.

By (ii), such α is unique.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in the same manner and write $\alpha = \inf E$.

1. The Real and Complex Number Systems

Sets
Ordered Sets
Fields
The Real Field
The Extended Real Number System
Euclidean Spaces
Exercises

Example

In the previous example, A is bounded above. In fact, the upper bound of A are exactly the members of B. Since B contains no smallest member, A has no least upper bound in \mathbb{Q} . Similarly, B is bounded below : the set of all lower bounds of B is consists of A and of all $r \in \mathbb{Q}$ with $r \leq 0$. Since A has no largest member, B has no greatest lower bound in \mathbb{Q} .

Example

If $\alpha = \sup E$ exists, then α may or may not be a member of E.

►
$$E_1 = \{r \in \mathbb{Q} : r < 0\}$$

$$E_2 = \{ r \in \mathbb{Q} : r \le 0 \}$$

Then

$$\sup E_1 = \sup E_2 = 0$$

and $0 \notin E_1$, $0 \in E_2$.

Example

Let
$$E = \{1/n : n = 1, 2, \dots\}$$
. Then

$$\sup E = 1, \inf E = 0$$

and $1 \in E$ but $0 \notin E$.

Definition (The Supremum Axiom)

An ordered set S is said to have the *least-upper-bound property* if the following is ture: If $E \subset S$, E is not empty, and E is bounded above, then $\sup E$ exists in S.

 $\mathbb Q$ does not have the least-upper-bound property.

Theorem

Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S, and $\alpha = \inf B$. In particular, $\inf B$ exists in S.

Fields

Definition

A field is a set F with two operations, called addition and multiplication, which satisfy the following so-called "field axioms" (A), (M), and (D):

- (A) Axioms for addition
 - (A1) If $x, y \in F$, $x + y \in F$.
 - (A2) If $x, y \in F$, x + y = y + x.
 - (A3) If $x, y, z \in F$, (x + y) + z = x + (y + z).
 - (A4) $0 \in F$ such that 0 + x = x for all $x \in F$.
 - (A5) For every $x \in F$, there is $-x \in F$ such that x + (-1) = 0.
- (D) The distributive law For all $x, y, z \in F$, x(y + z) = xy + xz.

(M) Áxioms for multiplication

- (M1) If $x, y \in F$, $xy \in F$.
- (M2) If $x, y \in F$, xy = yx.
- (M3) If $x, y, z \in F$, (xy)z = x(yz).
- (M4) $1 \in F \setminus \{0\}$ such that 1x = x for all $x \in F$.
- (M5) For every $x \in F \setminus \{0\}$, there is $1/x \in F$ such that x(1/x) = 1.

1. The Real and Complex Number Systems

Sets
Ordered Sets
Fields
The Real Field
The Extended Real Number System
Euclidean Spaces
Exercises

Example

 \mathbb{Q} is a field.

See LA1 for details.

Proposition

- (A) implies
- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then y = 0.
- (c) If x + y = 0, then y = -x.
- (d) -(-x) = x.

The field axioms implies

- (a) 0x = 0.
- (b) If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$.
- (c) (-x)y = -(xy) = x(-y).
- $(\mathsf{d}) \ (-x)(-y) = xy.$

- (M) implies
- (a) If $x \neq 0$ and xy = xz, then y = z.
- (b) If $x \neq 0$ and xy = x, then y = 1.
- (c) If $x \neq 0$ and xy = 1, then y = 1/x.
- (d) If $x \neq 0$, then 1/(1/x) = x.

Definition

An ordered field is a field F which is also an ordered set, such that

- (i) x + y < x + z if $x, y, z \in F$ and y < z,
- (ii) xy > 0 if $x, y \in F$, and x > 0 and y > 0.

If x > 0, we call x is positive; if x < 0, x is negative.

Proposition

The following statements are true in every ordered field.

- (a) If x > 0, then -x < 0, and vice versa.
- (b) If x > 0 and y < z, then xy < xz.
- (c) If x < 0 and y < z, then xy > xz.
- (d) If $x \neq 0$, then $x^2 > 0$. In particular, 1 > 0.
- (e) If 0 < x < y, then 0 < 1/y < 1/x.

1. The Real and Complex Number Systems

Sets
Ordered Sets
Fields
The Real Field
The Extended Real Number System
Euclidean Spaces
Exercises

The Real Field

Theorem

There exists an ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as a subfield.

Theorem

(a) If $x, y \in \mathbb{R}$ and x > 0, then there is a positive integer n such that

$$nx > y$$
.

Exercises

(b) If $x, y \in \mathbb{R}$ and x < y, then there exists $p \in \mathbb{Q}$ such that

$$x .$$

Theorem

For every real x>0 and every integer n>0, there is one and only one positive real y such that $y^n=x$. This number y is written $\sqrt[n]{x}$ or $x^{1/n}$ and called nth roots of x.

Corollary

If a and b are positive real numbers and n is a positive integer, then

$$(ab)^{1/n} = a^{1/n}b^{1/n}.$$

Decimals

Let x > 0 be real. Let n_0 be the largest integer such that $n_0 \le x$. Having chosen n_0, \dots, n_{k-1} , let n_k be the largest integer such that

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x.$$

Let E be the set of these numbers

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k}$$
 $(k = 0, 1, 2, \dots).$

Then $x = \sup E$. The decimal expansion of x is

$$n_0.n_1n_2n_3\cdots$$
.

The Extended Real Number System

Definition

The extended real number system consists of the real field $\mathbb R$ and two symbols, $+\infty$ and $-\infty$. We preserve the original order in $\mathbb R$, and define

$$-\infty < x < +\infty$$

for every $x \in \mathbb{R}$.

Definition

For convention, define

- (a) If x is real, $x + \infty = +\infty, x \infty = -\infty, \frac{x}{+\infty} = \frac{x}{-\infty} = 0.$
- (b) If x > 0, then $x \cdot (\pm \infty) = \pm \infty$.
- (c) If x < 0, then $x \cdot (\pm \infty) = \mp \infty$.

Remark

For every subset of the extended real number system, $+\infty$ is an upper bound, and that every nonempty subset has a least upper bound. For example, if $E \subset \mathbb{R}$ is a nonempty unbounded subset, then $\sup E = +\infty$ in the extended real number system.

Exercises

Euclidean Spaces

Definition

For each positive integer k, let \mathbb{R}^k be the set of all ordered k-tuples

$$\mathbf{x}=(x_1,\cdots,x_k),$$

where x_1, \dots, x_k are real numbers, called the *coordinates* of \mathbf{x} . The elements of \mathbb{R}^k are called points, or vectors, especially when k > 1. If $\mathbf{y} = (y_1, \dots, y_k)$ and α is a real number, put

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \cdots, x_k + y_k),$$

 $\alpha \mathbf{x} = (\alpha x_1, \cdots, \alpha x_k)$

so that $\mathbf{x} + \mathbf{y}, \alpha \mathbf{x} \in \mathbb{R}^k$. These two operations make \mathbb{R}^k into a vector space over the real field. The zero element of \mathbb{R}^k is the point $\mathbf{0} = (0, 0, \cdots, 0)$.

Definition

Define the *inner product* of x and y by

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{k} x_i y_i$$

and the *norm* of x by

$$|\mathbf{x}| = (\mathbf{x} \cdot \mathbf{x})^{1/2} = \left(\sum_{i=1}^k x_i^2\right)^{1/2}.$$

The structure is called euclidean k-space.

Theorem

Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$ and α is real. Then

- (a) $|x| \ge 0$;
- (b) $|\mathbf{x}| = 0$ if and only if $\mathbf{x} = \mathbf{0}$;
- (c) $|\alpha \mathbf{x}| = |\alpha||\mathbf{x}|$;
- (d) $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}|$;
- (e) $|x + y| \le |x| + |y|$;
- $(\mathsf{f}) \ |\mathbf{x} \mathbf{z}| \leq |\mathbf{x} \mathbf{y}| + |\mathbf{y} \mathbf{z}|.$

1. The Real and Complex Number Systems

Sets
Ordered Sets
Fields
The Real Field
The Extended Real Number System
Euclidean Spaces
Exercises

Ex1.1

If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.

1. The Real and Complex Number Systems

Sets
Ordered Sets
Fields
The Real Field
The Extended Real Number System
Euclidean Spaces
Exercises

Ex1.4

Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Ex1.5

Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A).$$

Ex1.6

Fix b > 1.

(a) IF m, n, p, q are integers, n > 0, q > 0 and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Ex1.6

Fix b > 1.

(b) Prove that $b^{r+s} = b^r b^s$ if r and s are rationals.

Ex1.6

Fix b > 1.

(c) If x is real, define B(x) to be the set of all numbers b^t where t is rational and $t \le x$. Prove that $b^r = \sup B(r)$ where r is rational. Hence it makes sense to define

$$b^x = \sup B(x)$$

for every real x.

Ex1.6

Fix b > 1.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Ex1.7

Fix b > 1, y > 0.

- (a) For any positive integer n, $b^n 1 \ge n(b-1)$.
- (b) Hence $b 1 \ge n(b^{1/n} 1)$.

Ex1.7

Fix b > 1, y > 0.

(c) If
$$t > 1$$
 and $n > (b-1)/(t-1)$, then $b^{1/n} < t$.

Ex1.7

Fix b > 1, y > 0.

- (d) If w is such that $b^w < y$, then $b^{w+(1/n)} < y$ for sufficiently large n.
- (e) If $b^w > y$, then $b^{w-(1/n)} > y$ for sufficiently large n.

Ex1.7

Fix b > 1, y > 0.

(f) Let A be the set of all w such that $b^w < y$, and show that $x = \sup A$ satisfies $b^x = y$.

Ex1.7

Fix b > 1, y > 0.

(g) Prove that this x is unique.

This x is called the *logarithm of* y *to the base* b.

1. The Real and Complex Number Systems

Sets
Ordered Sets
Fields
The Real Field
The Extended Real Number System
Euclidean Spaces
Exercises

The End