Integrale

$$F'(x) = f(x)$$

$$F(x) = \int f(x)$$

F - primitiva lui f (antiderivata)

f – derivata lui F

!!! O functie sa admita primitive => functia sa fie continua pe D (sa nu
aibe discontinuitatii de speta 1)

1) Integrare prin parti:

$$\int f'(x) * g(x) dx = f(x) * g(x) - \int f(x) * (g(x))' dx$$

$$(f * g)' = f'(x) * g(x) + f(x) * g'(x)$$

$$\left(\frac{f}{g}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

2) Formule de recurenta:

I =

Trebuie sa ajungem sa scriem I_n in functie de I_{n-1} , I_{n+2} , ...

3) Integrare prin schimbare de variabila:

Notam cu u = f(x) astfel incat (f(x))' sa ne apara in ecuatie si scriem I(x) in fuctie de u I(u)

$$x = t \mid '$$

 $dx = dt$

4) Integrarea functiilor rationale oarecare:

$$\underline{\underline{\text{Ex:}}} \ \frac{3x^2 + x + 1}{2x + 1} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{2x + 1}$$

Le aflam pe cele cu puterea ce mai mare: $(x-2)^2$ si (2x+1)

$$B = \frac{3x^2 + x + 1}{2x + 1}$$
 si inlocuim cu x din ecuatia $(x - 2)^2 = 0 \implies x = 2$

5) Impartirea polinoamelor:

Ex:
$$f = 2x^5 - 3x^4 + 7x^3 - x + 2$$

 $g = x^2 - x - 1$

f/g:

1. Ne uitam la puterea cea mai mare a lui x
$$2x^{5} - 3x^{4} + 7x^{3} - x + 2 \qquad x^{2} - x - 1$$

$$-2x^{5} + 2x^{4} + 2x^{3} \qquad 2x^{3} - x^{2} + 8x + 7$$

$$-x^{4} + 9x^{3} - x - 2 \qquad 2. \text{ Alegem cu ce inmultim}$$

$$2x^3 - x^2 + 8x + 7$$

Nr. crt.	Funcția	$\frac{\text{Multimea primitivelor}}{(\text{integrala nedefinition})}$ $\int x^{n} dx = \frac{x^{n+1}}{x^{n+1}}$
1.	$f: \mathbb{R} \to \mathbb{R}, f(x) = x^n, n \in \mathbb{N}$	$\frac{\mathbf{Multimea\ primitivelor}}{(\mathbf{integrala\ nedefinitivelor}} \\ \int \mathbf{x}^{n} d\mathbf{x} = \frac{\mathbf{x}^{n+1}}{n+1} + \mathscr{C}$
2.	$f: I \to \mathbb{R}, f(x) = x^r, I \subset (0, +\infty),$ $r \in \mathbb{R} \setminus \{-1\}$	$\int x^r dx = \frac{x^{r+1}}{r+1} + \mathscr{C}$
3.	$f: \mathbb{R} \to \mathbb{R}, f(x) = a^x, a > 0, a \neq 1$	$\int a^{x} dx = \frac{a^{x}}{\ln a} + \mathscr{C}$
4.	$f: I \to \mathbb{R}, f(x) = \frac{1}{x}, I \subset \mathbb{R}^{\bullet}$	$\int \frac{1}{x} dx = \ln x + \mathscr{C}$
5.	$f: I \to \mathbb{R}, f(x) = \frac{1}{x^2 - a^2},$ $I \subset \mathbb{R} \setminus \{\pm a\}, a \neq 0$	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + \emptyset$
6.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x^2 + a^2}, a \neq 0$	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + \emptyset$
7.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x$	$\int \sin x dx = -\cos x + \mathscr{C}$
8.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$	$\int \cos x dx = \sin x + \mathscr{C}$
9.	$f: I \to \mathbb{R}, f(x) = tg x,$ $I \subset \mathbb{R} \setminus \left\{ (2k+1) \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$	$\int tg x dx = -\ln \cos x + \mathscr{C}$
10.	$f: I \to \mathbb{R}, f(x) = \operatorname{ctg} x,$ $I \subset \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$	$\int \operatorname{ctg} x \mathrm{d}x = \ln \sin x + \mathscr{C}$
11.	$f: I \to \mathbb{R}, f(x) = \frac{1}{\cos^2 x},$ $I \subset \mathbb{R} \setminus \left\{ (2k+1) \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + \mathscr{C}$
12.	$f: I \to \mathbb{R}, f(x) = \frac{1}{\sin^2 x},$ $I \subset \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + \ell$

13.
$$f: I \to \mathbb{R}, f(x) = \frac{1}{\sqrt{a^2 - x^2}}, \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + \mathcal{C}$$
14.
$$f: I \to \mathbb{R}, f(x) = \frac{1}{\sqrt{x^2 - a^2}}, \qquad \int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left| x + \sqrt{x^2 - a^2} \right| + \mathcal{C}$$
15.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{\sqrt{x^2 + a^2}}, \qquad \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left| x + \sqrt{x^2 + a^2} \right| + \mathcal{C}$$

$$a \neq 0$$