A 3-player game theoretic model of a choice between two queueing systems with strategic managerial decision making

Michalis Panayides

EURO 2021 Athens

About me

About me

THIS.

- ► Shone R, Knight VA, Williams JE. Comparisons between observable and unobservable M/M/1 queues with respect to optimal customer behaviour
- Kerner Y, Shmuel-Bittner O. Strategic behaviour and optimization in a hybrid M/M/1 queue with retrials.
- ► Gai Y, Liu H, Krishnamachari B. A packet dropping mechanism for efficient operation of M/M/1 queues with selfish users.

- ► Knight V, Harper P. The Impact of Choice on Public Services.
- Haviv M, Roughgarden T. The price of anarchy in an exponential multi-server
- ► Shone R, Knight V, Harper P. A conservative index heuristic for routing problems with multiple heterogeneous service facilities

Queues - Custom network of queues

Queueing network structure

Steady state probabilities - Custom network

$$Q = \begin{pmatrix} (0,0) & (0,1) & (0,2) & (2,3) & (2,4) \\ -\lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 & 0 & \dots & 0 & 0 \\ \mu & -\mu - \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 & \dots & 0 & 0 \\ 0 & 2\mu & -2\mu - \lambda_1 - \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -\lambda_1 - 3\mu & \lambda_1 \\ 0 & 0 & 0 & 0 & \dots & 3\mu & -3\mu \end{pmatrix} \quad \begin{array}{c} (0,0) \\ (0,0) \\ (0,1) \\ (0,2) \\ (2,3) \\ (2,4) \end{array}$$

$$\frac{d\pi}{dt} = \pi Q = 0, \qquad \sum_{(u,v)} \pi_{(u,v)} = 1$$

$$\pi = \begin{bmatrix} \pi(0,0) \\ \pi(0,1) \\ \pi(0,2) \\ \vdots \end{bmatrix}$$

Steady state probabilities - Comparison

0.200

0.150

0.125

0.100

0.075

0.050

0.025

Game - Definition

Game - Definition

- Misra S, Sarkar S. Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective
- Song J, Wen J. A non-cooperative game with incomplete information to improve patient hospital choice

Game - Players and objectives

Game - Players and objectives

Performance Measures - Blocking time

$$B = \frac{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)} \ b(u,v)}{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)}}$$

Performance Measures - Blocking time

$$B = \frac{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)} \ b(u,v)}{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)}}$$

Performance Measures - Blocking time

$$B = \frac{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)} \ b(u,v)}{\sum_{(u,v) \in S_A^{(2)}} \pi_{(u,v)}}$$

$$b(u,v) = \begin{cases} 0, & \text{if } (u,v) \notin S_b \\ c(u,v) + b(u-1,v), & \text{if } v = N = T \\ c(u,v) + b(u,v-1), & \text{if } v = N \neq T \\ c(u,v) + \rho_s(u,v)b(u-1,v) + \rho_a(u,v)b(u,v+1), & \text{if } u > 0 \text{ and } \\ v = T \\ c(u,v) + \rho_s(u,v)b(u,v-1) + \rho_a(u,v)b(u,v+1), & \text{otherwise} \end{cases}$$

$$S_b = \{(u,v) \in S \mid u > 0\}$$

$$c(u,v) = \begin{cases} \frac{1}{\min(v,C)\mu}, & \text{if } v = N \\ \frac{1}{\lambda_1 + \min(v,C)\mu}, & \text{otherwise} \end{cases}$$

$$\rho_s(u,v) = \frac{\lambda_1}{\lambda_1 + \min(v,C)\mu}, \qquad \rho_a(u,v) = \frac{\lambda_1}{\lambda_1 + \min(v,C)\mu}$$

$$P(X < t) = \frac{\lambda_1 P_{L'_1}}{\lambda_2 P_{L'_2} + \lambda_1 P_{L'_1}} P(X^{(1)} < t) + \frac{\lambda_2 P_{L'_2}}{\lambda_2 P_{L'_2} + \lambda_1 P_{L'_1}} P(X^{(2)} < t)$$

$$P(X^{(1)} < t) = \frac{\sum_{(u,v) \in S_A^{(1)}} P(X_{(u,v)}^{(1)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(1)}} \pi_{u,v}}$$

$$P(X^{(2)} < t) = \frac{\sum_{(u,v) \in S_A^{(2)}} P(X_{(u,v)}^{(2)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(2)}} \pi_{u,v}}$$

$$P(X^{(i)} < t) = \frac{\sum_{(u,v) \in S_A^{(i)}} P(X_{u,v}^{(i)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(i)}} \pi_{u,v}}, \quad \text{for } i = \{1,2\}$$

$$P(X^{(i)} < t) = \frac{\sum_{(u,v) \in S_A^{(i)}} P(X_{u,v}^{(i)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(i)}} \pi_{u,v}}, \quad \text{for } i = \{1,2\}$$

$$X_{(u,v)}^{(1)} \sim \begin{cases} \mathsf{Erlang}(v,\mu), & \text{if } C = 1 \text{ and } v > 1 \\ \mathsf{Hypo}\left(\left[v - C, 1\right], \left[C\mu, \mu\right]\right), & \text{if } C > 1 \text{ and } v > C \\ \mathsf{Erlang}(1,\mu), & \text{if } v \leq C \end{cases}$$

$$X_{(u,v)}^{(2)} \sim \begin{cases} \mathsf{Erlang}(\min(v,T),\mu), & \text{if } C = 1 \text{ and } v,T > 1 \\ \mathsf{Hypo}\left(\left[\min(v,T) - C,1\right],\left[C\mu,\mu\right]\right), & \text{if } C > 1 \text{ and } v,T > C \\ \mathsf{Erlang}(1,\mu), & \text{if } v \leq C \text{ or } T \leq C \end{cases}$$

$$P(X^{(i)} < t) = \frac{\sum_{(u,v) \in S_A^{(i)}} P(X_{u,v}^{(i)} < t) \pi_{u,v}}{\sum_{(u,v) \in S_A^{(i)}} \pi_{u,v}}, \quad \text{for } i = \{1,2\}$$

$$P(X_{(u,v)}^{(1)} < t) = \begin{cases} 1 - \sum_{i=0}^{v-1} \frac{1}{i!} e^{-\mu t} (\mu t)^i, & \text{if } C = 1 \text{ and } v > 1 \\ 1 - (\mu C)^{v-C} \mu \sum_{k=1}^{|\vec{r}|} \sum_{l=1}^{r_k} \frac{\Psi_{k,l}(-\lambda_k) t^{r_k-l}}{(r_k-l)!(l-1)!}, & \text{if } C > 1 \text{ and } v > C \\ & \text{where } \vec{r} = (v-C,1) \text{ and } \vec{\lambda} = (C\mu,\mu) \\ 1 - e^{-\mu t}, & \text{if } v \leq C \end{cases}$$

$$P(X_{(u,v)}^{(2)} < t) = \begin{cases} 1 - \sum_{i=0}^{\min(v,T)-1} \frac{1}{i!} e^{-\mu t} (\mu t)^i, & \text{if } C = 1 \text{ and } v, T > 1 \\ 1 - \mu(\mu C)^{\min(v,T)-C} \times \sum_{k=1}^{|\vec{r}|} \sum_{l=1}^{r_k} \frac{\Psi_{k,l}(-\lambda_k) t^{r_k-l} e^{-\lambda_k t}}{(r_k-l)!(l-1)!}, & \text{if } C > 1 \text{ and } v, T > C \\ \text{where } \vec{r} = (\min(v,T)-C,1) \text{ and } \vec{\lambda} = (C\mu,\mu) \\ 1 - e^{-\mu t}, & \text{if } v \leq C \text{ or } T \leq C \end{cases}$$

Comparisons

Game - Players and objectives

Game - Strategies

 $p_A, p_B \in [0, 1]$ $p_A + p_B = 1$

$$T_A \in [1, N_A]$$

 $T_B \in [1, N_B]$

Game - Formulation

Ambulance's Decision

$$R = \begin{pmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,N_B} \\ p_{2,1} & p_{2,2} & \dots & p_{2,N_B} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N_A,1} & p_{N_A,2} & \dots & p_{N_A,N_B} \end{pmatrix}$$

Ambulance's Decision

$$T_A = 3$$

 $T_B = 2$ \Rightarrow $\begin{pmatrix} - & - & - & - \\ - & - & - & - \\ - & \times & - & - \\ - & - & - & - \end{pmatrix}$ \Rightarrow $B_A(T = 3) = B_B(T = 2)$

Hospitals' Decision

$$A = \begin{pmatrix} U_{1,1}^A & U_{1,2}^A & \dots & U_{1,N_B}^A \\ U_{2,1}^A & U_{2,2}^A & \dots & U_{2,N_B}^A \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^A & U_{N_A,2}^A & \dots & U_{N_A,N_B}^A \end{pmatrix}, \quad B = \begin{pmatrix} U_{1,1}^B & U_{1,2}^B & \dots & U_{1,N_B}^B \\ U_{2,1}^B & U_{2,2}^B & \dots & U_{2,N_B}^B \\ \vdots & \vdots & \ddots & \vdots \\ U_{N_A,1}^B & U_{N_A,2}^B & \dots & U_{N_A,N_B}^B \end{pmatrix}$$

$$U_{T_A, T_B}^{(i)} = 1 - \left[(P(X^{(i)} < t) - 0.95)^2 \right]$$

Nash Equilibrium

$$R = \begin{pmatrix} 0.5 & 0.1 & 0 & 0 \\ 0.9 & 0.5 & 0.2 & 0 \\ 1 & 0.8 & 0.5 & 0.3 \\ 1 & 1 & 0.7 & 0.5 \end{pmatrix}$$

$$A = \begin{pmatrix} 0.99998394 & 0.99998394 & 0.99998394 & 0.99998394 \\ 0.99998955 & 0.99998848 & 0.99998649 & 0.9999845 \\ 0.99999952 & 0.9999987 & 0.99999596 & 0.99999199 \\ 0.99994372 & 0.99995113 & 0.99998603 & 0.99999911 \end{pmatrix}$$

$$B = \begin{pmatrix} 0.99998394 & 0.99998955 & 0.99999952 & 0.99994372 \\ 0.99998394 & 0.99998848 & 0.9999987 & 0.99995113 \\ 0.99998394 & 0.99998649 & 0.99999596 & 0.99998603 \\ 0.99998394 & 0.9999845 & 0.99999199 & 0.99999911 \end{pmatrix}$$

Nash Equilibria:
$$(0, 0, 0.4, 0.6)$$
 $(0, 0, 0.4, 0.6)$

Asymmetric Replicator Dynamics

$$\frac{dx}{dt_i} = x_i((f_x)_i - \phi_x), \quad \text{for all } i$$

$$\frac{dy}{dt_i} = y_i((f_y)_i - \phi_y), \quad \text{for all } i$$

Asymmetric Replicator Dynamics

$$\frac{dx}{dt_i} = x_i((f_x)_i - \phi_x), \quad \text{for all } i$$

$$\frac{dy}{dt_i} = y_i((f_y)_i - \phi_y), \quad \text{for all } i$$

- ► Fudenberg, Drew, et al. The theory of learning in games. Vol. 2. MIT press, 1998.
- ► Elvio, Accinelli and Carrera, Edgar. 2011. Evolutionarily Stable Strategies and Replicator Dynamics in Asymmetric Two-Population Games. 10.1007/978-3-642-11456-4_3.

Inefficiency measure

$$PoA = \frac{\max_{s \in E} Cost(s)}{\min_{s \in S} Cost(S)}$$

Inefficiency measure

$$PoA = \frac{\max_{s \in E} Cost(s)}{\min_{s \in S} Cost(S)}$$

$$PoA_A(s_r) = \frac{Cost(s_r)}{\min_{s \in S} Cost(S)}, \qquad PoA_B(s_c) = \frac{Cost(s_c)}{\min_{s \in S} Cost(S)}$$

Learning algorithms - Asymmetric replicator dynamics

"Inefficiencies can be learned and emerge naturally"

Learning algorithms - Asymmetric replicator dynamics

"Targeted incentivisation of behaviours can help escape

learned inefficiencies"

Thank you!

"Inefficiencies can be learned and emerge naturally"

"Targeted incentivisation of behaviours can help escape learned inefficiencies"

- PanayidesM@cardiff.ac.uk
 - ☑ @Michalis_Pan
 - 011michalis11

https://github.com/11michalis11/AmbulanceDecisionGame