Transactional And Behavioral Patterns In Credit Card Fraudulent Victimization

Max Wong and Team Spring 2025

01

RESEARCH MOTIVATION

Why Fraud Detection Matters?

Why Fraud Detection Matters?

Digital payment systems increase vulnerability to cyber threats

Companies need better fraud detection tools

Fraud affects billions globally

Machine learning offers a scalable, data-driven solution

/

RESEARCH QUESTIONS

What Are We Trying to Study?

What Are We Trying to Study?

How do transactional and behavioral factors affect the likelihood of a person being a fraud victim?

RQ1:

Would certain types
of merchants have a
higher possibility of
fraudulent
transactions?

RQ2:

Would merchants in more **populated cities** be more likely to be fraudulent compared to those in less populated cities?

RQ3:

Would the transaction hour of the day affect the probability of fraud in digital transactions?

ı

DATA OVERVIEW

Our Dataset

1.8 Million

Credit card transactions (2019–2020)

23 Features

Merchant, time, location, cardholder demographics, etc.

693

Different Merchants

999

Credit Card Holders

/-

DATA PREPARATION

Preparing the Data

Preparing the Data

Cleaned and merged 2 datasets in R

Imputed missing values (using mice)

3

Converted formats, removed duplicates, fixed zip codes

Fraudulent by Transaction Categories

travelgrocery_nethealth_fitness food_dininghomepersonal_carekids_petsmisc_posgas_transportshopping_posmisc_netshopping_netgrocery_pos0 500 1000 1500 2000

Fraudulent by Hour

2500 -

Clustering + Prediction Models

Clustering + Predictive Models

Clustering	Scenarios	Predictive Models
K-means	8 clusters + 1 baseline (no clustering) = 9 total scenarios	Logistic Regression
		Random Forest
Model-based		Neural Network (1 hidden layers)
		Deep Learning (2 hidden layers)

1

RESULT & ANALYSIS

Can Clusters Help Isolate Fraud?

Clustering Results

- Scenario 3 and 5 showed one cluster with >35% fraud, while others were <1%.
- With transaction hour or population can isolate fraud-prone groups effectively
- Clustering helps expose hidden fraud patterns

Prediction Results

- Clustering + predictive modeling significantly improves fraud detection
 - Scenario 7 & 8 have better results than Scenario 9
- Scenario 8 (Best detection power & business impact)
 - Model-Based Clustering +
 Random Forest
 - 0.9830 sensitivity
 - o 0.1734 precision
 - Lowest loss (\$1638)

15

07

CONCLUSIONS & RECOMMENDATIONS

Which Model Performs Best?

Best Scenario for Business Use Case

- Goal
 - Minimize cost of loss & strengthen customer trust
 - Need high sensitivity & low false negative rate
- Scenario 8
 - All key features
 - Model-based clustering
 - Random Forest
 - ~98% sensitivity
 - ~17% precision
 - Loss amount: \$1638

17

Recommendations and Limitations

- Recommendations
 - A combination of
 - High-sensitivity models
 - 2-Factor Authentication (2FA)
 - Invest in continuous model updates and feature engineering
- Limitations
 - Computation power constraints
 - No hyperparameter tuning for models
 - May not reflect best performance of models

THANK YOU!

10