Sets & Relations Power set (P(A)): Ho of n(A) = m, set formed by subsets of A P(A) wintain 2 maubiets 00/10 - AUBOC) = (AUB) (AUC) (AUB) Or AUB = A OB [De Morgon laws] ANB = AUB \rightarrow (A-B) \cap B = \emptyset , (A-B) \cup B = AUB Symmetric difference → ADB = (A-B)U(B-A) => (AUB)-(AMB) A=U-A, AUB=U-(AUB) \rightarrow n (A)=p, n(B)=9 Max {p, y} ≤ n (AUB) ≥ p+9 , 0 ≤ m(A DB) ≤ pnin {p, y}

A'NBAC' (R) A'NBIAC

, ANBAC'

product of A & B. denoted by AXB.

ii) n(A) = p, n(B) = q then $n(A \times B) = pq = n(B \times A)$

iii) n(ANB) = m then n {(AXB) A (BXA)}=m2

i) General AXB FBXA

A-B= A-(ADB) ANB

ANB'NC

BA = B- (ANB)

A'nBnd

(DA) & CB then

A-B= A-(A(B)

BA=B-(AAB)

 $\rightarrow A^{1} \cap B^{1}$ n(AUBUC) = n(A) + n(B) + n(C) - n(ANB)

the order (total social a time is possible to the terms

Relations. If a god should still the beautiful to

→ A & B kron empty sets. (a,b) is cauterian Broduct of A & B 28 ac A, beB

n(Bnc)-n(cna)+n(Anbx)

 $\Rightarrow A_1 B_1 (A \cap B^1 \cap C' = n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$

→ A E B be non empty sets then every sets set of AXB is fewor A to B R ⊆ AXB.	s a seelah on
-> Risa evelation from Ato B & (7,4) cR, then I is	
-> If n(A)=m, n(A)=n then no of pomble ecclations to	Reom AtoBisza
fruerise (AT) = (a,b) = (b,a)	
i) ark=bra (ii) (pt) = r	
-> Identity Relation - In = {(a,4), (b,b), (cic), (d,d)}	
-> Reflexive Accelation R on a set A is evelbted to itself	4
$\forall a \in A \Rightarrow (a,a) \in R$	
No of eneflexive auditions from A to A is 2 n(n1)	
→ Symmeteric: (a,b) ∈R ⇔ (b,a) ∈R	
No of symmetric relations from Ato A is 2 2	
→ Anti symmetric relation: arb & bra then a =b	
→ Jevarnitive: aRb & bRC => aRc ¥ a,b, c &A.	
a R b => a 2 b & b 2 c => a 4 c	
-> Equivalence: i) Reflexive ii) Symmetric iii) Taransitive	
Positial Ouder quelation! i) Reflexive ii) Anti symmetries i	i) Teamitie
NOTE: In seal numbers \angle/\angle , in sets C, \subseteq are not equi	valence relations
-> no of matrices formed by aship (0,1,-, p-1) either symmetry	n'c of thew symmetr
or both and their detlAll in drumble by pie	
$\begin{bmatrix} a & b \\ c & a \end{bmatrix} = 2p-1$	