Feuille d'exercices n°9 : Réduction des endomorphismes et des matrices carrées

Valeurs propres et vecteurs propres

Exercice 1. (\bigstar)

Soit A une matrice carrée d'ordre n, avec $n \in \mathbb{N}^*$.

On note I la matrice unité de $\mathcal{M}_n(\mathbb{R})$.

1) Soit $a \in \mathbb{R}$. Montrer que λ est une valeur propre de A si et seulement si $\lambda - a$ est valeur propre de A - a.I.

En déduire le spectre de A - aI en fonction du spectre de A.

- 2) Soit $B \in \mathcal{M}_n(\mathbb{R})$ une matrice semblable à A.
 - a. Soit $\lambda \in \mathbb{R}$. Montrer que λ est valeur propre de A si, et seulement si, λ est valeur propre de B.

En déduire Sp(A) en fonction de Sp(B).

b. La réciproque est-elle vraie : deux matrices de même spectre sont-elles semblables?

On pourra considérer la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 2. (\bigstar)

On considère les matrices carrées d'ordre 3 suivantes :

$$A = \begin{pmatrix} 5 & 5 & -14 \\ 6 & 6 & -16 \\ 5 & 5 & -14 \end{pmatrix}; \quad B = \begin{pmatrix} 8 & 4 & -16 \\ 0 & 4 & -8 \\ 4 & 4 & -12 \end{pmatrix}; \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Ainsi que les matrices colonnes : $V_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$; $V_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$; $V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1) Vérifier que V_1, V_2 , et V_3 sont des vecteurs propres de A. Quelles sont les valeurs propres associées?
- 2) a. Montrer que P est inversible et calculer P^{-1} .
 - **b.** Justifier la relation : $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. On note D cette matrice diagonale
 - c. Calculer la matrice $\Delta = P^{-1}BP$ et vérifier qu'elle est diagonale.
- 3) On se propose de calculer les matrices colonnes X_n définies par :

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad X_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \quad \text{et} \quad \forall n \in \mathbb{N}, \ X_{n+2} = AX_{n+1} + BX_n$$

On définit, pour tout $n \in \mathbb{N}$: $Y_n = P^{-1}X_n$ et on pose également $Y_n = \begin{pmatrix} u_n \\ v_n \\ \end{pmatrix}$.

- a. Montrer que $Y_0 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ et $Y_1 = \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix}$.
- **b.** Montrer que pour tout entier naturel $n, Y_{n+2} = DY_{n+1} + \Delta Y_n$.
- c. Montrer alors que pour tout entier naturel n:

$$\begin{cases} u_{n+2} &= u_{n+1} \\ v_{n+2} &= 4v_n \\ w_{n+2} &= -4w_{n+1} - 4w_n \end{cases}$$

En déduire les expressions explicites de u_n , v_n et w_n en fonction de n.

d. Donner finalement la matrice X_n , en fonction de n.

Exercice 3. $(\star\star)$

Soit f un endomorphisme de \mathbb{R}^n , avec $n \in \mathbb{N}^*$.

On note id l'endomorphisme identité de \mathbb{R}^n et $0_{\mathbb{R}^n}$ le vecteur nul de \mathbb{R}^n .

1) Soit $k \in \mathbb{N}$. On note f^k l'endomorphisme défini par :

$$\begin{cases} f^0 = \mathrm{id} \\ f^k = f^{k-1} \circ f, \text{ si } k \in \mathbb{N}^* \end{cases}$$

Montrer que si x est un vecteur propre de f associé à la valeur propre λ , alors x est vecteur propre de f^k .

Quelle est la valeur propre de f^k associée au vecteur propre x?

- 2) On suppose dans cette question que f est un automorphisme de \mathbb{R}^n . Montrer que si x est un vecteur propre de f associé à la valeur propre λ , alors x est vecteur propre de f^{-1} .
 - Quelle est la valeur propre de f^{-1} associée au vecteur propre x?
- 3) On suppose dans cette question que x est un vecteur propre de f associé à la valeur propre λ , avec $\lambda \neq 0$. Montrer que $x \in \text{Im}(f)$.
- 4) On suppose dans cette question que λ et μ sont deux valeurs propres distinctes de f.

On note E_{λ} et E_{μ} les sous-espaces propres de f associés respectivement aux valeurs propres λ et μ . On rappelle que :

$$E_{\lambda} = \operatorname{Ker}(f - \lambda id)$$
 et $E_{\mu} = \operatorname{Ker}(f - \mu id)$

Montrer que $E_{\lambda} \cap E_{\mu} = \{0_{\mathbb{R}^n}\}.$

5) On suppose dans cette question que l'endomorphisme f vérifie :

$$f^3 - 7f + 6id = \theta$$
, où θ désigne l'endomorphisme nul de \mathbb{R}^n

Montrer que si λ est valeur propre de f, alors $\lambda^3 - 7\lambda + 6 = 0$.

En déduire les valeurs propres possibles de f.

L'endomorphisme f est-il un isomorphime?

Recherche des valeurs propres et des sous-espaces propres

Exercice 4. (**) (d'après EDHEC 2007)

Pour toute matrice $M \in \mathcal{M}_2(\mathbb{R})$, on note tM la matrice transposée de M.

On pose
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

On rappelle que $\mathscr{B} = (E_1, E_2, E_3, E_4)$ est une base de $\mathscr{M}_2(\mathbb{R})$.

On note φ l'application qui à toute matrice M de $\mathcal{M}_2(\mathbb{R})$ associe :

$$\varphi\left(M\right) = M + {}^{t}M$$

- 1) a. Montrer que φ est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
 - **b.** Écrire la matrice A de φ dans \mathscr{B} .
 - c. En déduire que φ est diagonalisable et non bijectif.
- 2) Calculer A^2 et en déduire que, pour tout n de \mathbb{N}^* : $A^n = 2^{n-1}A$.
- 3) a. Montrer que $\operatorname{Im}(\varphi) = \operatorname{Vect}(E_1, E_2 + E_3, E_4)$. Établir alors : $\dim(\operatorname{Im}(\varphi)) = 3$.
 - **b.** En déduire la dimension de $Ker(\varphi)$ puis déterminer une base de $Ker(\varphi)$.
 - c. Établir que $\operatorname{Im}(\varphi)$ est le sous espace propre associé à la valeur propre 2.
 - d. Donner, pour résumer, les valeurs propres de φ ainsi qu'une base de chacun des sous-espaces propres associés.

Exercice 5. (\bigstar)

Soit
$$A = \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{pmatrix}$$
, avec a, b, c trois réels.

Déterminer les valeurs des réels a, b, c pour lesquelles la matrice A est diagonalisable.

Exercice 6. $(\bigstar \bigstar \bigstar)$ (d'après HEC 2001 - Maths III)

On note m un paramètre réel et on considère les matrices H_m définies par :

$$H_m = \begin{pmatrix} -1 - m & m & 2\\ -m & 1 & m\\ -2 & m & 3 - m \end{pmatrix}$$

On note h_m l'endomorphisme de \mathbb{R}^3 ayant pour matrice H_m dans la base canonique de \mathbb{R}^3 .

- 1) On suppose dans cette question que m=2.
 - a. Écrire la matrice H_2 .
 - **b.** Déterminer les valeurs propres de l'endomorphisme h_2 et les sousespaces propres associés.
 - c. L'endomorphisme h_2 est-il diagonalisable? Si oui, donner une base de vecteurs propres de h_2 .
- 2) Étudier de même les valeurs propres et les sous-espaces propres de h_0 . Cet endomorphisme est-il diagonalisable?
- 3) a. Montrer qu'il existe un réel a, qu'on déterminera, qui est valeur propre de l'endomorphisme h_m pour toutes les valeurs du paramètre m.
 - **b.** Déterminer, pour chaque valeur de m, le sous-espace propre de h_m associé à la valeur propre a. Montrer qu'on peut trouver un vecteur non nul v_1 appartenant à tous ces sous-espaces.
- 4) Soit $F = \text{Vect}(v_2, v_3)$ où $v_2 = (1, 0, 1)$ et $v_3 = (1, 1, 0)$. Déterminer les vecteurs $h_m(v_2)$ et $h_m(v_3)$ et montrer que ces vecteurs appartiennent à F pour tout m réel. En déduire que le F est stable par h_m , c'est-à-dire que $h_m(F) \subset F$.
- **5)** Montrer que (v_1, v_2, v_3) est une base de \mathbb{R}^3 . Écrire la matrice de h_m dans la base (v_1, v_2, v_3) . En déduire les valeurs de m pour lesquelles l'endomorphisme h_m est diagonalisable.

Diagonalisation des matrices carrées et des endomorphismes

Exercice 7. (\bigstar)

1. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} 3 & 0 & 1 \\ -1 & 2 & -1 \\ -2 & 0 & 0 \end{array}\right)$$

- a) Déterminer les valeurs propres et les sous-espaces propres de f.
- b) L'endomorphisme f est-il un isomorphisme?
- c) Montrer qu'il existe une base \mathscr{B} de \mathbb{R}^3 formée de vecteurs propres de f. Déterminer une telle base et donner la matrice de f dans cette base.
- 2. Soit q l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$B = \left(\begin{array}{rrr} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & 5 \end{array}\right)$$

- a) Déterminer les valeurs propres et les sous-espaces propres de q.
- b) L'endomorphisme q est-il un isomorphisme?
- c) Montrer que q est diagonalisable, puis, déterminer une matrice diagonale D et une matrice inversible P de deuxième ligne égale à $(1\ 0\ 1)$ telles que $D = P^{-1} B P$.

Exercice 8. (\bigstar) (extrait de EML 2007)

On considère la matrice carrée d'ordre 3 suivante : $A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 1 & 0 \end{pmatrix}$.

- a. Montrer, sans calcul, que A est diagonalisable.
- b. Déterminer une matrice diagonale D et une matrice inversible et symétrique P, de première ligne $(1 \ 1 \ 1)$ et de deuxième ligne $(1 \ -1 \ 0)$, telles que $A = PDP^{-1}$.

Exercice 9. (**) (extrait de ESCP 2002 - Maths III)

On désigne par I, O, J et A les matrices carrées d'ordre 3 suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \ A = \begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -3 \end{pmatrix}$$

- 1. a) Exprimer la matrice A en fonction des matrices I et J, puis la matrice J en fonction des matrices A et I.
 - b) Exprimer J^2 en fonction de J et en déduire que la matrice A vérifie l'égalité:

$$A^2 + 5A + 4I = O.$$

- c) Montrer que la matrice A est inversible et exprimer son inverse A^{-1} en fonction des matrices I et J.
- 2. a) Soit U la matrice-colonne $\begin{pmatrix} 1 \end{pmatrix}$.

Calculer le produit matriciel JU.

En déduire une valeur propre de la matrice J.

- b) Montrer que 0 est valeur propre de J et donner une base du sous-espace propre associé.
- c) La matrice J est-elle inversible? La matrice J est-elle diagonalisable?
- 3. a) Soit X une matrice-colonne non nulle à trois éléments et λ un réel vérifiant $JX = \lambda X$.

Montrer qu'il existe un réel μ que l'on donnera en fonction de λ vérifiant $AX = \mu X$.

- b) En déduire que A est diagonalisable et que ses valeurs propres sont -1 et -4.
- c) Sans expliciter la matrice A^{-1} , calculer ses valeurs propres et montrer qu'elle est diagonalisable.

Exercice 10. (\bigstar)

1. On considère la matrice $A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$.

Déterminer leurs valeurs propres de A et les sous-espaces propres associés. La matrice A est-elle diagonalisable?

Peut-on trouver une matrice diagonale semblable à A?

- **2.** On considère la matrice $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.
 - a) Montrer que 0 est valeur propre de B.
 - b) Déterminer leurs valeurs propres de B ainsi que les sous-espaces propres associés.
 - c) La matrice B est-elle diagonalisable?
 - d) On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice B. Déterminer les valeurs propres et les sous-espaces propres de f.
 - e) Justifier l'existence d'une matrice inversible P de $\mathcal{M}_3(\mathbb{R})$, de première ligne égale à (1 1 1), telle que $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = P^{-1} B P.$ Déterminer une telle matrice

Polynômes annulateurs

Exercice 11. (\bigstar)

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
.

On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A.

- 1. Montrer que $A^2 = 2A I$, où I désigne la matrice unité de $\mathcal{M}_3(\mathbb{R})$.
- 2. En déduire les valeurs propres de f.
- 3. L'endomorphisme f est-il un automorphisme de \mathbb{R}^3 ? Si oui, préciser l'isomorphisme réciproque f^{-1} .
- 4. L'endomorphisme f est-il diagonalisable?
- 5. Déterminer les sous-espaces propres de f.
- 6. Montrer que A est semblable à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 12. $(\star\star)$

Soit E un espace vectoriel réel de dimension finie.

On note θ l'endomorphisme nul de E et id l'endomorphisme identité de E. On appelle projecteur de E tout endomorphisme f de E tel que $f \circ f = f$. Soit p un projecteur de E. On suppose que $p \neq \theta$ et $p \neq id$.

- 1) Montrer que 0 et 1 sont les seules valeurs propres possibles de p.
- 2) Montrer que 0 et 1 sont les valeurs propres de p.
- 3) On note E_1 le sous-espace propre de p associé à la valeur propre 1. On rappelle que $E_1 = \text{Ker}(p - id)$. Montrer que : $E_1 = \operatorname{Im}(p)$.
- 4) Montrer que $E_1 \cap \operatorname{Ker}(p) = \{0_E\}$ et que $E = E_1 + \operatorname{Ker}(p)$. (si A et B sont des ensembles, $A + B = \{a + b \mid a \in A, b \in B\}$) En déduire que la famille obtenue en réunissant les vecteurs d'une base de E_1 et d'une base de Ker(p) forme une base \mathscr{B} de E. Écrire la matrice du projecteur p dans cette base \mathscr{B} .

Exercice 13. (\bigstar) (extrait de ESC 2005)

Soit $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On considère les matrices :

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 6 & 1 \\ -3 & -8 & 0 \end{pmatrix} \quad ; \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad ; \quad O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On note:

- \times f l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base \mathscr{B} est A.
- \times Id l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base \mathscr{B} est I.
- \times h l'endomorphisme de \mathbb{R}^3 défini par : h = f 3Id.
- \times N la matrice de l'endomorphisme h relativement à la base \mathscr{B} .
- 1. Vérifier que $N = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 3 & 1 \\ -3 & -8 & -3 \end{pmatrix}$.

- 2. Montrer que si λ est valeur propre de N, alors $\lambda = 0$. Établir alors que 0 est la seule valeur propre de h.
- 3. En déduire que f admet 3 pour unique valeur propre.
- 4. Déterminer une base et la dimension du sous-espace propre de f associé à la valeur propre 3.
- 5. L'endomorphisme f est-il diagonalisable? Est-il bijectif?

Réduction des endomorphismes

Exercice 14. $(\star\star\star)$

Soit f un endomorphisme de \mathbb{R}^n , avec $n \ge 2$, tel que :

$$rg(f) \leqslant 1$$
 et $f^3 + f = 0$

- 1. Montrer que 0 est l'unique valeur propre de f.
- 2. On suppose $f \neq 0_{\mathcal{L}(E)}$. Soit x un vecteur non nul de \mathbb{R}^n .
 - a) Montrer que si $x \in \text{Im}(f)$, alors x est vecteur propre de f. En déduire : $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.
 - **b)** Démontrer alors : $f^2 = 0_{\mathcal{L}(E)}$.
 - c) En déduire une contradiction. Conclure.

Exercice 15. (\bigstar) (d'après EDHEC 2004)

On note E l'espace vectoriel des fonctions polynomiales réelles de degré inférieur ou égal à 2.

On note e_0, e_1, e_2 les fonctions définies, pour tout réel x, par :

$$e_0(x) = 1$$
, $e_1(x) = x$ et $e_2(x) = x^2$

et on rappelle que $B = (e_0, e_1, e_2)$ est une base de E.

Soit f l'application qui à toute fonction polynomiale P de E associe la fonction Q = f(P), où Q est la dérivée seconde de l'application qui à tout réel xassocie $(x^2 - x)P(x)$.

- 1. a) Montrer que f est un endomorphisme de E.
 - **b)** Déterminer $f(e_0)$, $f(e_1)$ et $f(e_2)$ en fonction de e_0 , e_1 et e_2 .
 - c) En déduire que la matrice de f dans la base \mathscr{B} est $A = \begin{pmatrix} 2 & -2 & 0 \\ 0 & 6 & -6 \\ 0 & 0 & 12 \end{pmatrix}$. b) Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ une matrice de $\mathscr{M}_2(\mathbb{R})$.
 - d) Montrer sans calcul que f est un automorphisme de E.
- 2. a) Donner les valeurs propres de f, puis en déduire que f est diagonalisable.
 - b) Déterminer les sous-espaces propres de f.
- 3. a) Justifier l'existence d'une matrice P inversible dont la première ligne ne contient que des « 1 » telle que $A = PDP^{-1}$, où $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 12 \end{pmatrix}$. pour tout $M \in \mathscr{M}_2(\mathbb{R})$.
 - **b)** Montrer: $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$
- 4. a) Déterminer la matrice P^{-1} .
 - b) En déduire explicitement, en fonction de n, la matrice A^n .
 - c) On dit qu'une suite de matrices $(M_n)_{n\in\mathbb{N}}$ tend vers la matrice M, lorsque n tend vers $+\infty$, si chaque coefficient de M_n tend vers le coefficient situé à la même place dans M.

On pose $B = \frac{1}{12}A$.

Montrer que la suite $(B^n)_{n\in\mathbb{N}}$ tend vers une matrice J vérifiant $J^2=J$.

Exercice 16. (\bigstar) (d'après EML 2006)

On considère les trois matrices de $\mathcal{M}_2(\mathbb{R})$ suivantes :

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

- 1. a) Quelles sont les valeurs propres de A?
 - b) Déterminer une matrice inversible P telle que $A = PDP^{-1}$ On note E l'ensemble des matrices carrées M d'ordre 2 telles que :

$$AM = MD$$

- 2. a) Vérifier que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$
 - Montrer que M appartient à E si et seulement si : z = 0 et y = t.
 - c) Établir que (U, A) est une base de E.
 - d) Calculer le produit UA. Est-ce que UA est élément de E?
- 3. On note $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ l'application définie par :

$$f(M) = AM - MD$$

- b) Déterminer le novau de f et donner sa dimension.
- c) Quelle est la dimension de l'image de f?
- d) Déterminer les matrice M de $\mathcal{M}_2(\mathbb{R})$ telles que f(M) = M. En déduire que 1 est valeur propre de f. Montrer que -1 est aussi valeur propre de f.
- e) Est-ce que f est diagonalisable?
- f) Montrer que $f \circ f \circ f = f$.

Exercice 17. (\bigstar)

Soit f l'application définie par :

$$f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

- 1. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer les valeurs propres de f ainsi que les sous-espaces propres associés.
- 3. L'endomorphisme f est-il diagonalisable? Si oui, proposer une base de $\mathcal{M}_2(\mathbb{R})$ formée de vecteurs propres de f.

Exercice 18. (\bigstar) (d'après ECRICOME 2007)

 $\mathcal{M}_2(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels. La matrice A suivante étant donnée :

$$A = \left(\begin{array}{cc} 3 & -1 \\ 6 & -2 \end{array}\right)$$

on définit l'application ϕ_A par :

$$\phi_A: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$M \mapsto \phi_A(M) = AM - MA$$

Partie 1 : Diagonalisation de A.

- 1) Vérifier que $A^2 = A$. En déduire les valeurs propres possibles de A.
- 2) Prouver que la matrice A est diagonalisable et déterminer une matrice P inversible de $\mathcal{M}_2(\mathbb{R})$ et une matrice diagonale D de $\mathcal{M}_2(\mathbb{R})$ dont la première colonne est nulle vérifiant la relation :

$$A = PDP^{-1}$$

Donner l'écriture matricielle de P^{-1} .

Partie 2 : Diagonalisation de ϕ_A .

- 1) Montrer que ϕ_A est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2) Établir que $X^3 X$ est un polynôme annulateur de ϕ_A . En déduire les valeurs propres possibles de ϕ_A .
- 3) Montrer que la matrice M est un vecteur propre de ϕ_A associée à la valeur propre λ si, et seulement si, la matrice $N = P^{-1}MP$ est non nulle et vérifie l'équation matricielle : $DN - ND = \lambda N$.
- 4) On pose $N = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - a. Trouver l'ensemble des matrices N telles que DN ND = 0.
 - **b.** En déduire que la famille (A, M_1) avec $M_1 = \begin{pmatrix} -2 & 1 \\ -6 & 3 \end{pmatrix}$ est une base du sous-espace propre $Ker(\phi_A)$ associé à la valeur propre 0.
 - c. Déterminer les deux autres valeurs propres non nulles λ_1 et λ_2 de ϕ_A et caractériser les matrices N associées.
 - d. En déduire une base de chaque sous-espace propre $E_{\lambda_1}(\phi_A)$ et $E_{\lambda_2}(\phi_A)$ associé aux valeurs propres λ_1 et λ_2 .
- 5) L'endomorphisme ϕ_A est-il diagonalisable?

Exercice 19 (EML 2011)

On considère les matrices carrées d'ordre 3 suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

Partie I : Détermination d'une racine carrée de A

- 1. Sans calcul, justifier que A est diagonalisable et non inversible. Déterminer le rang de A.
- 2. Montrer que 0, 1 et 4 sont les trois valeurs propres de A et déterminer les sous-espaces propres associés.
- 3. En déduire une matrice diagonale D de $\mathcal{M}_3(\mathbb{R})$ dont les coefficients diagonaux sont dans l'ordre croissant, et une matrice inversible P de $\mathcal{M}_3(\mathbb{R})$, dont les coefficients de la première ligne sont tous égaux à 1, telles que : $A = PDP^{-1}$.
- 4. Calculer P^{-1} .
- 5. Montrer qu'il existe une matrice diagonale Δ de $\mathcal{M}_3(\mathbb{R})$, dont les coefficients diagonaux sont dans l'ordre croissant, telle que $\Delta^2 = D$, et déterminer Δ .
- 6. On note $R = P\Delta P^{-1}$. Montrer $R^2 = A$ et calculer R.

Partie II: Étude d'endomorphismes

On munit \mathbb{R}^3 de sa base canonique $\mathscr{B} = (e_1, e_2, e_3)$ et on considère les endomorphismes f et g de \mathbb{R}^3 dont les matrices dans \mathscr{B} sont respectivement Aet R. On note $\mathscr{C} = (u_1, u_2, u_3)$ la base de \mathbb{R}^3 telle que P est la matrice de passage de \mathscr{B} à \mathscr{C} .

- 1. Déterminer les matrices de f et q dans la base \mathscr{C} .
- 2. a) Déterminer une base et la dimension de Ker (f).
 - b) Déterminer une base et la dimension de $\operatorname{Im}(f)$.
- 3. a) Déterminer une base et la dimension de Ker(g).
 - b) Déterminer une base et la dimension de Im(q).
- 4. Trouver au moins un automorphisme h de \mathbb{R}^3 tel que $q = f \circ h$. On déterminera h par sa matrice H dans la base \mathscr{C} , puis on exprimera la matrice de h dans la base \mathcal{B} à l'aide de H et de P.

Exercice 20 (HEC 2013)

On note $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. Soit f l'application définie sur E qui associe à tout polynôme $P \in E$, le polynôme f(P) défini par :

 $f(P)(X) = -3XP(X) + X^2P'(X)$, où P' est la dérivée du polynôme P.

- 1. a) Rappeler la dimension de E.
 - b) Montrer que f est un endomorphisme de E.
 - c) Déterminer la matrice M de f dans la base canonique de E.
 - d) La matrice M est-elle inversible? Est-elle diagonalisable? Calculer pour tout $n \in \mathbb{N}^*$, M^n .
 - e) Préciser le novau Ker(f) de f ainsi qu'une base de Ker(f).
 - f) Déterminer l'image Im(f) de f.
- 2. On note id_E et 0_E respectivement, l'endomorphisme identité et l'endomorphisme nul de E, et pour tout endomorphisme v de E, on pose $v^0 = id_E$ et pour tout k de \mathbb{N}^* , $v^k = v \circ v^{k-1}$.

Soient u et g deux endomorphismes de E tels que :

$$u^4 = 0_{\mathcal{L}(E)}, \ u^3 \neq 0_{\mathcal{L}(E)}$$
 et $g = id_E + u + u^2 + u^3$

- a) Soit P un polynôme de E tel que $P \notin \text{Ker}(u^3)$. Montrer que la famille $(P, u(P), u^2(P), u^3(P))$ est un base de E.
- **b)** Montrer que q est un automorphisme de E. Déterminer l'automorphisme réciproque q^{-1} en fonction de u.
- c) Établir l'égalité : $Ker(u) = Ker(g id_E)$.
- d) Montrer que 1 est la seule valeur propre de q.