République Islamique de Mauritanie Ministère d'Etat à l'Education Nationale, à l'Enseignement Supérieur et à la Recherche Scientifique

Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2012

Session Normale

Honneur – Fraternité – Justice

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Exercice 1 (3 points)

Soit la fonction \mathbf{f} définie sur \mathbb{R} par $\mathbf{f}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}} \ln(\mathbf{e}^{\mathbf{x}} + 1)$. Soit (C) la courbe représentative de \mathbf{f} dans un repère orthonormé $(\mathbf{O}; \vec{\mathbf{i}}, \vec{\mathbf{j}})$.

1. Justifier et interpréter graphiquement les limites suivantes :

$$\lim_{x \to -\infty} f(x) = 0, \lim_{x \to +\infty} f(x) = +\infty \quad \text{et} \quad \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty \quad . \tag{0.75 pt}$$

- 2.a) Dresser le tableau de variation de \mathbf{f} .
 - b) Montrer que f réalise une bijection de \mathbb{R} sur un intervalle J que l'on déterminera.
 - c) Tracer la courbe (C).

(0,25 pt) (0,25 pt)

(0.75 pt)

3. On pose $\mathbf{I} = \int_0^1 \mathbf{f}(\mathbf{x}) d\mathbf{x}$. On se propose de calculer \mathbf{I} par deux méthodes.

 $\underline{\text{M\'ethode a}}$: Déterminer trois réels \mathbf{a} , \mathbf{b} et \mathbf{c} tels que pour tout réel \mathbf{x} :

$$f'(x) = f(x) + ae^x + b + \frac{ce^{-x}}{1 + e^{-x}}$$
. En déduire I.

Méthode b : En posant $t = e^x + 1$, utiliser une intégration par parties pour calculer I.

(0,5 pt)

(1 pt) (0, 25 pt)

(0.25 pt)

Exercice 2 (3 points)

L'espace est rapporté à un repère orthonormal $(\mathbf{0}; \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$. On considère les points $\mathbf{A}(2;1;3)$, $\mathbf{B}(3;2;1)$, $\mathbf{C}(4;1;4)$, $\mathbf{D}(5;3;-2)$ et $\mathbf{E}(6;-2;-4)$.

- 1.a) Calculer \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{DE} . Vérifier que le vecteur \overrightarrow{DE} est normal au plan (ABC)
- b) Déterminer une équation cartésienne du plan (ABC).

c) Déterminer une représentation paramétrique de la droite (DE). (0,5 pt)

d) Déterminer les coordonnées du point **F** projeté orthogonal de **D** sur le plan (ABC).

Déterminer un réel \mathbf{k} tel que $\overrightarrow{\mathbf{EF}} = \mathbf{k} \overrightarrow{\mathbf{DF}}$ (0,5 pt)

2.a) Calculer le volume V du tétraèdre ABCD. (On rappelle que $V = \frac{1}{3}Base \times Hauteur$). b) Déterminer les deux ensembles Γ_1 et Γ_2 des points M de l'espace définis par :

$$\mathbf{M} \in \Gamma_1 \Leftrightarrow 11 \mathbf{MD}^2 - \mathbf{ME}^2 = -30 \tag{0.25 pt}$$

$$M \in \Gamma_2 \Leftrightarrow MD^2 - ME^2 = -36$$
. (0,25 pt)

Exercice 3 (4 points)

Le plan complexe est muni d'un repère orthonormé $(\mathbf{0}; \mathbf{u}, \mathbf{v})$.

Dans \mathbb{C} , on considère l'équation $E_{\theta}: z^2 - (6\cos\theta)z + 4 + 5\cos^2\theta = 0$, $\theta \in [0,2\pi[$.

1.a) Résoudre, dans \mathbb{C} , l'équation \mathbf{E}_{θ} . On note \mathbf{z}_1 , \mathbf{z}_2 les solutions de \mathbf{E}_{θ} avec $\mathbf{Im}(\mathbf{z}_1) \geq \mathbf{0} \text{ si } \boldsymbol{\theta} \in \llbracket \mathbf{0}, \boldsymbol{\pi} \rrbracket$ (1 pt)

- b) Préciser les valeurs de θ et les solutions de \mathbf{E}_{θ} dans les cas suivants :
- L'équation \mathbf{E}_{θ} admet des solutions doubles. Dans ce cas on note \mathbf{A}_1 et \mathbf{A}_2 les points d'affixes respectives \mathbf{z}_1 , \mathbf{z}_2 avec $\mathbf{Re}(\mathbf{z}_1) \geq \mathbf{0}$.
- (0,25 pt)
- L'équation E_{θ} admet deux solutions imaginaires pures. Dans ce cas on note B_1 et B_2 les points d'affixes respectives z_1 , z_2 avec $Im(z_1) \ge 0$.
- (0,25 pt)

(1 pt) (0,5 pt)

(0, 5 pt)

(0, 5 pt)

- 2. Dans le cas général on note M_1 et M_2 les points d'affixes respectives z_1 , z_2 .
 - a) Déterminer le lieu géométrique Γ des points \mathbf{M}_1 et \mathbf{M}_2 lorsque θ décrit $\theta \in [0,2\pi[$.
 - b) Préciser la nature et les éléments caractéristiques de l'ensemble Γ et le construire.
- 3. On définit l'application f qui à tout point M d'affixe z associe le point M' d'affixe z', barycentre du système $\{(A_1,-4);(B_1,2);(M,3)\}$.
- a) Ecrire z'en fonction de z puis reconnaitre f et donner ses éléments caractéristiques.
- b) Donner une équation cartésienne de $\Gamma' = f(\Gamma)$. Donner les éléments caractéristiques de Γ' dans $(O; \vec{u}, \vec{v})$.

Exercice 4 (4 points)

On se propose dans cet exercice de calculer la limite de la suite numérique de terme général $U_n=\frac{\sqrt[n]{n!}}{n},\ n\!\geq\!2.$

On considère la fonction f définie sur $]0,+\infty[$ par $f(x)=x-\ln x$.

- 1. Dresser le tableau de variation de \mathbf{f} . (1 \mathbf{pt})
- 2. Soit $\lambda \in \mathbb{R}^*$; on pose $\mathbf{I}(\lambda) = \int_{\lambda}^{1} \mathbf{f}(\mathbf{x}) d\mathbf{x}$.
- a) En utilisant une intégration par parties, calculer $\int_{\lambda}^{1} \ln x dx$. (0,5 pt)
- b) En déduire le calcul de $I(\lambda)$ puis $\lim_{\lambda \to 0^+} I(\lambda)$. (0,5 pt)
- 3. Soit $n \in \mathbb{N}$, $n \ge 2$; $k \in \mathbb{N}$ telque $1 \le k \le n$ on pose: $S_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$.
 - a) Montrer que : $\frac{1}{n}f(\frac{k+1}{n}) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}}f(t)dt \le \frac{1}{n}f(\frac{k}{n})$; pour $1 \le k \le n-1$.
 - b) En déduire que : $\mathbf{S}_{\mathbf{n}} \frac{1}{\mathbf{n}} \mathbf{f}(\frac{1}{\mathbf{n}}) \le \mathbf{I}(\frac{1}{\mathbf{n}}) \le \mathbf{S}_{\mathbf{n}}$ puis que : $\mathbf{I}(\frac{1}{\mathbf{n}}) \le \mathbf{S}_{\mathbf{n}} \le \mathbf{I}(\frac{1}{\mathbf{n}}) + \frac{1}{\mathbf{n}} \mathbf{f}(\frac{1}{\mathbf{n}})$.
- c) En utilisant 3.b) montrer que $\lim_{n \to +\infty} S_n = \frac{3}{2}$. (0,25 pt)
- 4.a) Montrer que : $\sum_{k=1}^{n} \ln\left(\frac{k}{n}\right) = \ln\left(\frac{n!}{n^n}\right)$ et que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. (0.5 pt)
 - b) En déduire que : $S_n = \frac{n^2 + n}{2n^2} \ln U_n$. (0,25 pt)
 - c) Déduire de ce qui précède $\lim_{n\to+\infty} \mathbf{U}_n$. (0,25 pt)

Exercice 5 (6 points)

Exercice 5 (6 points)	
Dans le plan orienté on considère un triangle équilatéral direct ABC de coté a , $(a > 0)$, de	
centre G. Soient I, Jet K les milieux respectifs des segments [BC], [CA] et [AB]. Le	
point E est le symétrique de K par rapport à I.	
1. Faire une figure illustrant les données précédentes que l'on complétera au fur et à	(0.5)
mesure.	(0,5 pt) (0,5 pt)
2.a) Montrer qu'il existe une unique rotation $\mathbf{r_1}$ qui transforme \mathbf{B} en \mathbf{I} et \mathbf{J} en \mathbf{A} .	(0,5 pt)
b) Déterminer les éléments caractéristiques de $\mathbf{r_i}$.	(0,5 pt)
3. Soit \mathbf{t} la translation de vecteur \overrightarrow{AJ} . On pose : $\mathbf{r}_2 = \mathbf{t} \circ \mathbf{r}_1$ et $\mathbf{f} = \mathbf{s}_{JC} \circ \mathbf{s}_{JE} \circ \mathbf{s}_{KE}$.	
a) Déterminer $\mathbf{r}_2(\mathbf{J})$ et caractériser \mathbf{r}_2 .	(0,5 pt)
b) Déterminer deux droites Δ_1 et Δ_2 telles que $\mathbf{r}_1 = \mathbf{s}_{KC} \circ \mathbf{s}_{\Delta_1}$ et $\mathbf{r}_2 = \mathbf{s}_{JC} \circ \mathbf{s}_{\Delta_2}$. En déduire	
que $\mathbf{f} = \mathbf{t}_{\overline{\mathbf{A}}\overline{\mathbf{J}}} \circ \mathbf{s}_{\mathbf{K}\mathbf{C}}$	(0,5 pt)
c) Déterminer l'image du triangle \mathbf{BIK} par \mathbf{f} . Justifier que \mathbf{f} est une symétrie glissante et	
donner sa forme réduite.	(0,5 pt)
4.a) Montrer qu'il existe une unique similitude directe s qui transforme E en I et C en G .	(0,5 pt)
 b) Déterminer un angle et le rapport de s. c) Montrer que le centre de s est situé sur les cercles circonscrits aux triangles BCG et 	(0,5 pt)
BEI. Préciser ce centre.	(0, 25 pt)
5. Dans cette question, \mathbf{M} est un point variable du cercle Γ de diamètre $[\mathbf{BC}]$.	(0, 20 pt)
On note $s(\mathbf{M}) = \mathbf{M}'$.	
a) Déterminer le lieu géométrique Γ' du point M' lorsque M décrit Γ .	(0, 25 pt)
b) Montrer que pour tout point \mathbf{M} de $\widehat{\boldsymbol{\Gamma}}$ distinct de $\widehat{\mathbf{B}}$, la droite $(\mathbf{MM'})$ passe par le	
point \mathbf{K} .	(0, 25 pt)
c) En déduire un programme de construction de M' à partir d'une position de M sur Γ .	
Placer M et M' en supposant que les points B, M et C se succèdent dans le sens	(0, 25 pt)
trigonométrique sur Γ .	(0, 25 pt)
6) Pour tout entier nature $n \ge 2$, on pose : $s^2 = s \circ s$ et $s^n = s \circ s^{n-1}$. On définit une suite de points (\mathbf{M}_n) par $\mathbf{M}_0 = \mathbf{E}$; $\mathbf{M}_1 = s(\mathbf{M}_0)$ et $\mathbf{M}_n = s^n(\mathbf{M}_0)$.	
a) Sur une nouvelle figure, placer les points $\mathbf{B}, \mathbf{M}_0, \mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3$ (Pour la construction,	(0. 25 mt)
on pourra prendre la droite (BE) verticalement avec BE = 6cm).	(0, 25 pt) (0, 25 pt)
b) Calculer en fonction de \mathbf{n} et \mathbf{a} la somme : $\mathbf{S}_{\mathbf{n}} = \mathbf{M}_{0}\mathbf{M}_{1} + \mathbf{M}_{1}\mathbf{M}_{2} + \cdots + \mathbf{M}_{\mathbf{n}}\mathbf{M}_{\mathbf{n}-4}$.	
c) Calculer la limite $\lim_{n\to+\infty} \mathbf{S_n}$ et l'interpréter.	(0, 25 pt)
d) Justifier que : $\mathbf{M}_{1960} \in (\mathbf{BM_4})$ et $\mathbf{M}_{2012} \in (\mathbf{BG})$.	(0, 25 pt)
	I

Fin.