PHYS 598 SDA RECITATION 6 & 7 - PROBLEM SET

Starred problems to be done at the end. An indispensable reference is Problems and Solutions for Groups, Lie Groups, Lie Algebras With Applications, Steeb et al.

I. Practice with Lie Groups: In mathematics, a Lie group (pronounced "Lee") is a group that is also a differentiable manifold, with the property that the group operations are compatible with the smooth structure. The standard Wiki-level example are 2×2 real invertible matrices under multiplication, denoted by $GL(2,\mathbb{R})$. This group is an open subset of \mathbb{R}^4 , and is disconnected - it has two connected components corresponding to the positive and negative values of the determinant.

If these statements are unclear, please ask me before proceeding! For a more formal treatment, consult Ch.2 of Homogeneous Finsler Spaces, Springer Monographs in Mathematics.

I-1. A complex $2n \times 2n$ matrix S is called *symplectic* if $S^t J S = J$, where

$$J = \begin{pmatrix} \mathbb{O}_n & \mathbb{I}_n \\ -\mathbb{I}_n & \mathbb{O}_n \end{pmatrix}$$

and \mathbb{I}_n is the $n \times n$ identity matrix, etc. Prove that the set of $2n \times 2n$ complex symplectic matrices, denoted by $\mathrm{Sp}(n,\mathbb{C})$, is a matrix Lie group¹ [i.e., it is a topologically closed² subgroup of $\mathrm{GL}(2n,\mathbb{C})$]. To show this, first prove closure, then show inclusion of the identity and finally, the existence of an inverse.

I-2. The Lie group SU(1,1) is defined as the group of 2×2 matrices V that satisfy

$$V\sigma_3V^{\dagger} = \sigma_3$$
 and det $V = 1$.

The Lie group SO(2,1) is the group of transformations on vectors $\vec{x} \in \mathbb{R}^3$ (with determinant =1) that preserves $x_1^2 + x_2^2 - x_3^3$. Display the homomorphism from SU(1,1) onto SO(2,1). All that is required is to show that the group multiplication law is preserved.

I-3.* Let $\alpha, \beta \in \mathbb{R}$. Let T be the 2×2 unitary diagonal matrix

$$T(\alpha, \beta) = \begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{i\beta} \end{pmatrix}.$$

Find the condition on a unitary 2×2 matrix U s.t. $UT(\alpha, \beta)U^{-1} = T(\alpha', \beta')$. Think of all possible cases.

II. Homogenous spaces: A smooth manifold M endowed with a transitive, smooth action by a Lie group G is called a Homogeneous G-space. If any of these terms are unfamiliar to you, open to §2 here. Your task is to understand the examples of Isometry groups in the Wiki article on Homogeneous spaces.

¹ Some people denote the group of $2n \times 2n$ complex symplectic matrices by $\mathrm{Sp}(2n,\mathbb{C})$. But I don't like those people.

² Topologically, not necessarily smooth, as defined above!

III. A Permutation group... is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself). Since permutations are bijections of a set, they can be represented by Cauchy's two-line notation. This notation lists each of the elements of M in the first row, and for each element, its image under the permutation below it in the second row. If σ is a permutation of the set $M = \{x_1, x_2, \ldots, x_n\}$ then,

$$\sigma = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ \sigma(x_1) & \sigma(x_2) & \sigma(x_3) & \dots & \sigma(x_n) \end{pmatrix}.$$

- III-1. The group of all permutations of a set M is the symmetric group Sym(M). Often, the notation S_n is interchangeably used (since set M has n elements). The term permutation group thus means a subgroup of the symmetric group. Convince yourself of this last statement.
 - III-2. Consider the permutation group S_3 , such that

$$S_3 = \{ \sigma_1 = (), \ \sigma_2 = (12), \ \sigma_3 = (13), \ \sigma_4 = (23), \ \sigma_5 = (123), \ \sigma_6 = (132) \}.$$

Compute/look up the Cayley table of S_3 . Convince yourself that S_3 is isomorphic to the dihedral group D_3 . This is very relevant to students working in crystallography - and you might just know it already!

- III-3.* Show that the inverse of a permutation matrix is its transpose.
- IV. Reading exercise: We shall want to understand Lie groups and Homogeneous spaces in the context of *Grassmannian manifolds*. Our aim is to get through as much as possible of $\S 2$ in this PDF.
 - V.* Further readings: The link here explains Schubert varieties very simply. It's worth a read!