Chromatography

June 2007/4

- (c) Amino acids may also be separated by using two-dimensional paper chromatography. This involves putting a spot of the mixture on the corner of a piece of chromatography paper and allowing a solvent to soak up the paper. The paper is then dried, turned through 90° and placed in a second solvent. This method gives better separation than a one solvent method.
 - (i) Paper chromatography relies on partition between the solvent applied and another phase.

What is this second phase?

(ii) The table below shows the $R_{\rm f}$ values for some amino acids in two different solvents.

amino acid	R _f solvent 1	R _f solvent 2
A	0.1	0.2
В	0.0	0.4
С	0.3	0.0
D	0.8	0.9
E	0.6	0.5

Use the grid below to plot the positions of the amino acids after two-dimensional paper chromatography using solvent 1 followed by solvent 2.

- (iii) Which amino acid travelled fastest in both solvents?
- (iv) Which amino acid did not move at all in solvent 2?

(c) The diagram shows the result of two-way paper chromatography.

(i) How many spots were there after the first solvent had been used?

.....

- (ii) Circle the spot that moved very little in solvent 2, but moved a greater distance in solvent 1.
- (iii) Draw a square around the spot that could be separated from the rest by using **only** solvent 1.

[3]

[Total: 11]

- 10 Instrumental methods of analysis have become increasingly important in recent years. The use of chromatography to separate substances, and NMR spectroscopy to identify them, has become routine in many laboratories.
 - (a) Chromatography relies on either partition or adsorption to help separate substances.

(i)	Briefly	explain	how	each	method	brings	about	separation.
\-/	,							

artition		
dsorption		
F		

(ii) The table shows three different techniques of chromatography. Identify which separation method, *partition or adsorption*, applies to each.

technique	separation method
paper chromatography	
thin-layer chromatography	
gas/liquid chromatography	

(iii) The diagram represents the output from gas/liquid chromatography carried out on a mixture.

Determine the percentage of each of the two components **X** and **Y** in the mixture.

- **8** Chromatography is an important analytical technique in chemistry. There is a number of techniques under the general heading of chromatography.
 - (a) Paper and gas chromatography rely on partition to separate the components in a mixture, whereas thin-layer chromatography uses adsorption.

Explain what is meant by (i) partition and (ii) adsorption, in the context of chromatography.

(i)	partition
(ii)	adsorption
	[2

(b) In paper or thin-layer chromatography, better separation may be achieved by running the chromatogram in one solvent, then turning the paper at right angles and running it in a second solvent. The chromatogram below was produced in this way.

- (i) Ring the spot which was insoluble in solvent 1.
- (ii) Label as A and B the spots which were **not** resolved using solvent 1.