

planetmath.org

Math for the people, by the people.

absolutely continuous

Canonical name Absolutely Continuous
Date of creation 2013-03-22 13:26:12
Last modified on 2013-03-22 13:26:12

Owner Koro (127) Last modified by Koro (127)

Numerical id 10

Author Koro (127) Entry type Definition Classification msc 28A12

Related topic RadonNikodymTheorem

Related topic AbsolutelyContinuousFunction2

Defines absolute continuity

Let μ and ν be signed measures or complex measures on the same measurable space (Ω, \mathscr{S}) . We say that ν is absolutely continuous with respect to μ if, for each $A \in \mathscr{S}$ such that $|\mu|(A) = 0$, it holds that $\nu(A) = 0$. This is usually denoted by $\nu \ll \mu$.

Remarks.

If μ and ν are signed measures and (ν^+, ν^-) is the Jordan decomposition of ν , the following are equivalent:

- 1. $\nu \ll \mu$;
- 2. $\nu^+ \ll \mu$ and $\nu^- \ll \mu$;
- 3. $|\nu| \ll |\mu|$.

If ν is a finite signed or complex measure and $\nu \ll \mu$, the following useful property holds: for each $\varepsilon > 0$, there is a $\delta > 0$ such that $|\nu|(E) < \varepsilon$ whenever $|\mu|(E) < \delta$.