Polynômes - TD4 $\mathbb{R}[X]$ et l'analyse

Exercice 1. Echauffement

- a) Soit $P = \sum_{k=0}^{n} a_n X^n \in \mathbb{R}[X]$, avec $a_n \neq 0$. Décrivez le comportement de P(x) quand $x \to +\infty$ et quand $x \to -\infty$.
- b) Esquissez les graphes des polynômes suivants, vus commes des fonctions de $\mathbb R$ dans $\mathbb R$:

i)
$$2X^2 + 4X + 3$$
 ii) $X^3 + 2X^2 - X - 2$ iii) $-4X^4 + 4X^2 - 1$

Solution de l'exercice 1.

- a) On pourrait commencer par leur rappeler le comportement qualitatif, en distinguant les cas où n est paire ou impaire, puis les faire montrer que $P(x) \sim a_n x^n$ quand $x \to \pm \infty$.
- b) i) L'écrire sous la forme $2(X+1)^2+1$, puis dessiner la parabole. ii) L'écrire sous la forme (X-1)(X+1)(X+2), puis s'orienter par rapport aux zéros. iii) L'écrire sous la forme $-4(X^2-1/2)^2=-4(X-1/\sqrt{2})^2(X+1/\sqrt{2})^2$, puis s'orienter par rapport aux zéros.

Exercice 2. Racines réelles

- a) Montrer que chaque polynôme de degré impair à coefficients réels admet une racine réelle
- b) Soit $P \in \mathbb{R}[X]$ scindé dans \mathbb{R} . Montrer que P' est également scindé dans \mathbb{R} .

Solution de l'exercice 2. Illustrer par le graphe du polynôme!

- a) Exercice 1 a) et théorème des valeurs intermédiaires.
- b) Notons $n = \deg P$. On veut montrer que P' a $\deg P' = n-1$ racines réelles (comptées avec leur multiplicité). Soient $a_1 < \ldots < a_k$ les racines de P et m_1, \ldots, m_k leurs multiplicités, si bien que $m_1 + \cdots + m_k = n$. Chaque a_i avec $m_i \geq 2$ est alors encore racine de P' avec multiplicité $m_i 1$. De plus, par le théorème de Rolle, entre a_i et a_{i+1} il y a au moins une racine a_i' de P', $i = 1, \ldots, k-1$. Comptés avec leur multiplicité, P' a donc au moins $\sum_{i=1}^k (m_i 1) + k 1 = n-1$ racines réelles.

Exercice 3. Formule de Taylor

a) Soit \mathbb{K} un corps et $P \in \mathbb{K}[X]$, deg P = n. On désigne par $P^{(k)}$ la k-ième dérivée de P. Montrer que pour tout $a \in \mathbb{K}$ et $x \in \mathbb{K}$, on ait

$$P(a+x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} x^{k} \quad \text{(Formule de Taylor)}$$

b) Trouver le polynome $P \in \mathbb{R}[X]$ de degré 5, tel que P(1) = 1, P'(1) = 1, P''(1) = 2, $P^{(3)}(1) = 6$, $P^{(4)}(1) = 24$, P(0) = 0.

Solution de l'exercice 3.

a) Clair.

b)
$$1 + (X - 1) + (X - 1)^2 + (X - 1)^3 + (X - 1)^4 + (X - 1)^5$$
.

Exercice 4. Polynôme interpolateur de Lagrange. Soient $a_1 < \cdots < a_n \in \mathbb{R}$ et $b_1, \ldots, b_n \in \mathbb{R}$. Le but de cet exercice est de montrer qu'il existe un unique polynôme P de degré au plus n-1 (appelé le "polynôme interpolateur de Lagrange"), tel que $P(a_i) = b_i$ pour tout i.

- a) Pour $i=1,\ldots,n$, trouver un polynôme L_i de degré n-1 tel que $L_i(a_j)=\delta_{ij}$ (symbole de Kronecker).
- b) Construire à partir des L_i , i = 1, ..., n, un polynôme P avec $P(a_i) = b_i$ pour tout i.
- c) Soit Q un polynôme de degré au plus n-1, tel que $Q(a_i)=b_i$ pour tout i. Montrer que Q=P. Cela reste-t-il vrai si on ne suppose pas que deg $Q \le n-1$?
- d) Donner les polynômes de degré 2 ou moins ayant les mêmes valeurs que $\sin(x)$ en

i)
$$-\frac{\pi}{2}$$
, 0, $\frac{\pi}{2}$ ii) $-\pi$, 0, π iii) $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$

Solution de l'exercice 4.

a)
$$L_i = \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a - a_j)}$$

- b) $P = \sum_{i} b_i L_i$.
- c) Le polynôme P-Q a n racines. Comme il est de degré au plus n-1, c'est le polynôme nul. Si on ne suppose pas que deg $Q \le n-1$, l'assertion n'est pas vrai, car si R est par exemple le polynôme interpolateur de Lagrange avec $R(a_i) = b_i a_i^n$, alors $S = R + X^n$ satisfait à $S(a_i) = b_i$.
- d) Encore ici, les laisser d'abord dessiner le graphe de $\sin(x)$ et les inciter a deviner la réponse géométriquement. Puis utiliser le fait que le polynôme ainsi trouvé est l'unique.