Estratificación poblacional según necesidades sanitarias futuras: Comparativa de modelos predictivos para el País Vasco

Alexander Olza¹ Eduardo Millán²³ María Xosé Rodríguez-Álvarez⁴¹

¹BCAM- Basque Center for Applied Mathematics.

²Osakidetza Servicio Vasco de Salud, Departamento de Salud.

³Kronikgune, Instituto de Investigación en Servicios de Salud.

⁴Dept. Statistics and OR, Universidade de Vigo.

JEDE 2020 (Octubre de 2021)

Índice

- 1. Objetivos
- 2. Metodología
 - Datos
 - Las tres fases
 - Métodos
- 3. Resultados
 - Discriminación
 - Calibración
- 4. Conclusiones

Objetivos

Proyecto en marcha desde 2014

Objetivo principal

Facilitar una atención sanitaria **proactiva y eficiente** capaz de **prevenir el deterioro** de la salud.

Envejecimiento poblacional ⇒ Mayor tasa de multimorbilidad. Modelos predictivos para:

- Detectar pacientes de riesgo
- Facilitar la labor en Atención Primaria
- Facilitar la coordinación asistencial
- Sugerir intervenciones preventivas

Enfoque: Predecir la probabilidad de Ingreso Hospitalario Urgente (IHU).

Datos

Población del País Vasco (2016): N = 2240526

- Variables independientes (2016, 190 categóricas):
 - Sociodemográficas: Edad, Sexo, Índice de privación
 - Clínicas: Extraídas de la historia clínica (Johns Hopkins ACG System)
 - ACG: Grupos de isomorbilidad (excluyentes)
 - EDC: Diagnósticos
 - Rx-Mg: Prescripciones de farmacia
- Variable dependiente: **Algún ingreso urgente** en 2017 $y \in \{0,1\}$

Ejemplos

ACG 4910: 6-9 Diagnósticos, Edad>34, 0-1 Diagnósticos graves

EDC FRE03: Endometriosis

Rx-Mg PSYx030: Psicosocial/Ansiedad

Metodología en tres fases

Métodos

Método	Búsqueda de hiperparámetros	
Regresión logística	Sin regularización (Orueta et al., 2014)	
Conjuntos de árboles	Random forest Gradient Boosted Decision Trees Adaboost	3-fold CV
Red neuronal	Experimentación manual	

Sobre la red neuronal

$$\hat{p}_i = \sigma(\mathbf{w}^1 \cdot ELU(W^0 \cdot \mathbf{x}_i + \mathbf{b}^0) + b^1)$$

$$ELU(z) = \begin{cases} z & z \ge 0 \\ e^z - 1 & z < 0 \end{cases}$$

- σ : Función sigmoide
- x_i: Predictores
- W^0 , w^1 , b^0 y b^1 : Parámetros

Discriminación - Métricas

Los médicos recibirán un aviso sobre los top K pacientes de riesgo.

- Analizamos K = 20000: Aprox. 10 pacientes por médico
- ullet Prevalencia IHU: $|I|\sim 100000$ personas/año

Sens@K=
$$\frac{|L_K \cap I|}{|I|} \times 100$$

$$PPV@K = \frac{|L_K \cap I|}{K} \times 100$$

 L_K : Listado de K pacientes con mayor p_i .

I: Listado de pacientes con algún ingreso urgente.

Discriminación - Resultados

Cuadro: Rendimiento con K = 20000. Cutoff@K: mínima p_i incluida en el top K. ΔC : incremento de predicciones correctas respecto a regresión logística. Métricas evaluadas con datos de 2018.

	AUC	Sens@K	PPV@K	Cutoff@K	△ C
Red neuronal	0.815	10.77	54.92	0.44	1268
Gradient-Boosted trees	0.813	10.43	53.21	0.46	584
Random forest	0.811	10.26	52.34	0.45	236
Regresión logística	0.805	10.14	51.75	0.49	0
AdaBoost	0.805	9.46	48.25	0.47	-1400

Calibración - Importancia

Definición

Clasificador calibrado: Sus predicciones se corresponden con la verdadera distribución de probabilidad para cada clase.

- Fundamental para toma de decisiones
- \blacktriangle Permite estratificación poblacional \to Incluir p_i en historia clínica
- ▼ Algoritmos de ML no aseguran calibración → Necesitan paso adicional
 - Especialmente árboles
 - En menor medida regresión logística y red neuronal

Calibración - Proceso

Clase verdadera y
$$\in \{0,1\}$$
 Probabilidad predicha \hat{p} $\longrightarrow p_i = f(\hat{p}_i)$

Requerimientos:

- Monótona para preservar discriminación
- Suave para permitir estratificación

Regresión Isotónica + PCHIP

Piecewise Cubic Hermite Interpolating Polynomial

Calibración - Resultados

Calibración - Resultados

Conclusiones

- La atención sanitaria proactiva requiere anticipar el deterioro de la salud.
- Los modelos deben calibrarse mediante función suave.
- Ingreso urgente en el País Vasco: Red neuronal, GBDT y random forest superan a la regresión logística.
- Siguientes pasos: Inclusión de nuevas variables.

Bibliografía

X. Jiang et al. Smooth Isotonic Regression: A New Method to Calibrate Predictive Models. AMIA Summits on Translational Science proceedings, 2011, págs. 16-20.

J. F. Orueta et al. Desarrollo de un modelo de predicción de riesgo de hospitalizaciones no programadas en el País Vasco. Vol. 88. Revista Española Salud Pública, 2014, págs. 251-260.

Apéndice - Diagrama de confiabilidad

- B_k : Individuos con p_i en cierto intervalo
- f_k : Fracción de positivos en B_k
- I_k : población en B_k
- r_k : Predicción media en B_k

Bajo hipótesis de calibración,

$$f_k \sim Bin(I_k, r_k)$$

Bröcker y Smith (2001): Calculan las variaciones de f_k para un conjunto de respuestas binarias perfectamente calibradas, construidas artificialmente.

Apéndice - Necesidad de suavizado

Cuadro: Rango del número de probabilidades predichas únicas después de la calibración para los distintos métodos.

	Sólo reg. isotónica	Reg. isotónica + PCHIP
Valores únicos	300-410	753000-841000

Apéndice - Hiperparámetros

- Random forest: 800 árboles, máxima profundidad 100
- **GBDT:** 2500 iteraciones, máxima profundidad 20, tasa de aprendizaje 0.01, regularización L2 0.5.
- AdaBoost: 3315 árboles de profundidad 1, tasa de aprendizaje 0.1.