UNIVERSITE ABDELMALEK ESSAADI Ecole Nationale des Sciences Appliquées AL HOCEIMA

Année Universitaire 2019/2020 A.P.1

Examen d'optique (2 heures)

Email: optique.ensah19.20@gmail.com

Exercice I (4 pts)

Soient dans un milieu homogène d'indice de réfraction absolu n deux points A et B.

- 1- Exprimer le chemin optique (*AB*). Par application du principe de Fermat retrouver le principe de la propagation rectiligne de la lumière
- 2- Exprimer, le long du trajet lumineux *AB*, les chemins optiques (*AB*) et (*BA*) correspondant à une inversion du sens de propagation de la lumière. Appliquer le principe de Fermat pour retrouver le principe du retour inverse de la lumière.
- 3- En appliquant le principe de Fermat à deux milieux homogènes d'indices n_1 et n_2 séparés par une surface (s). Si A est un point du milieu (1) et B un point du milieu (2), retrouver les lois de Snell-Descartes pour la réfraction.

Exercice II (6 pts):

Un plongeur observe les poissons dans la mer. Son masque est assimilé à un dioptre sphérique de sommet S, de centre C, de rayon de courbure $\overline{SC} = 4cm$, d'épaisseur négligeable et séparent l'eau (n=1,33) de l'air (n'=1). Le poisson observé est un objet réel de taille AB=3cm, situé à 16cm de S sur l'axe optique.

- 1- Le dioptre est-il convexe ou concave ? justifier votre réponse
- 2- Déterminer la position des foyers Objet F et image F'
- 3- Ce dioptre est-il convergent ou divergent ?
- 4- Trouver graphiquement, la position de l'image A'B' de l'objet AB (échelle 1/2)
- 5- Vérifier numériquement la distance SA', quelle est la nature de l'image A'B'

Exercice III (7pts).

Soit une capsule en verre remplie d'air. Cette capsule est schématisée sur la figure suivante.

L'indice de réfraction du verre est n=1,5

1- Tracer le trajet d'un rayon lumineux arrivant sous incidence $i=45^{\circ}$ par rapport à l'axe optique. Justifiez les différentes étapes du tracé.

- 2- Peut-on avoir réflexion totale au niveau de la face d'entrée (lame à face parallèle air/verre/air) de capsule (Expliquez votre réponse). Si oui, donner l'angle ou les angles d'incidence pour lesquels on a réflexion totale.
- 3- On plonge cette capsule dans l'eau ($n_{eau}=1,33$). Peut-on avoir réflexion totale au niveau de la face d'entrée (lame à face parallèle eau/verre/air) de la capsule ? (Expliquez votre réponse) Si oui, donner l'angle ou les angles d'incidence pour lesquels on a réflexion totale.
- 4- Complétez le trajet d'un rayon lumineux arrivant sous incidence $i=53^{\circ}$ par rapport à l'axe optique, en considérant cette fois-ci la capsule plongée dans l'eau. Justifiez les différentes étapes du tracé.

Exercice IV (3 pts):

On considère la succession de deux dioptres sphériques, la première surface sphérique de sommet S_1 et de centre C_1 sépare les milieux d'indices n_1 et n_2 , la seconde surface de sommet S_2 et de centre C_2 sépare les milieux d'indices n_2 et n_3 , tel que S_1 , C_1 , S_2 , et C_2 sont alignés sur une même droite qui constitue l'axe optique Δ du système. On pose $\overline{S_1S_2} = e$

Soit F' le point d'intersection avec l'axe Δ , du rayon émergent dans le milieu d'indice n_3 correspondant à un rayon incident parallèle à l'axe Δ .

- 1- Les prolongements du rayon incident parallèle à l'axe et du rayon émergent correspondant se coupent en K'. Le plan passant par K' et perpendiculaire à l'axe Δ coupe ce dernier en P' (voir figure ci-dessous). Calculer $\overline{P'F}$ ' en fonction des caractéristiques des deux dioptres
- 2- Si à un rayon incident coupant l'axe en F correspond un rayon émergent parallèle à Δ , calculer de la même manière \overline{PF}
- 3- Que deviennent les expressions précédemment trouvées si :

a-
$$n_1 = n_3$$

b-
$$n_1 = n_3$$
 et $e \ll \overline{S_1C_1}$, $\overline{S_2C_2}$ et $\left| \overline{S_2C_2} - \overline{S_1C_1} \right|$, et conclure.

Remarque:

Les réponses doivent être envoyées à l'adresse électronique suivante :

optique.ensah19.20@gmail.com