Devoir surveillé n°16

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Mines-Ponts Maths 2 MP 2022 – Autour des exponentielles de matrices

Dans tout le sujet, le corps $\mathbb K$ sera $\mathbb R$ ou $\mathbb C$, et n est un entier naturel supérieur ou égal 2. On note $\|\cdot\|$ une norme sur l'espace vectoriel $\mathcal M_n(\mathbb K)$, vérifiant les propriétés

$$\|\mathbf{I}_n\| = 1 \tag{N_1}$$

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2, \ \|AB\| \le \|A\| \|B\| \tag{N_2}$$

On rappelle que l'exponentielle d'une matrice A de $\mathcal{M}_n(\mathbb{K})$ est la matrice, notée e^A , ou bien $\exp(A)$, définie par

$$e^{A} = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

On rappelle que, pour tout $A \in \mathcal{M}_n(\mathbb{K})$, l'application

$$f_{\mathbf{A}}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ t & \longmapsto & e^{t\mathbf{A}} \end{array} \right.$$

est de classe \mathcal{C}^1 sur \mathbb{R} , avec

$$\forall t \in \mathbb{R}, \ f'_{A}(t) = Ae^{tA} = e^{tA}A$$

On admettra que, si A et B sont deux matrices semblables de $\mathcal{M}_n(\mathbb{K})$, plus précisément si on a B = P⁻¹AP avec $P \in GL_n(\mathbb{K})$, alors

$$e^{\mathbf{B}} = \mathbf{P}^{-1}e^{\mathbf{A}}\mathbf{P}$$

Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{K})$, on définit leur crochet de Lie par

$$[A, B] = AB - BA$$

La partie IV du problème est indépendante des parties II et III.

I Questions préliminaires

On se donne deux matrices A et B dans $\mathcal{M}_n(\mathbb{K})$. On suppose dans les questions 1 et 2 que A et B commutent.

 $\boxed{1}$ Montrer que les matrices A et e^{B} commutent.

On définit une application

$$g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ t & \longmapsto & e^{t(A+B)}e^{-tB} \end{array} \right.$$

2 Montrer que l'application g, et l'application f_A définie en préambule, sont solutions d'un même problème de Cauchy.

En déduire une démonstration de la relation

$$\forall t \in \mathbb{R}, \ e^{t(A+B)} = e^{tA}e^{tB} \tag{1}$$

- Réciproquement, on suppose la relation 1 satisfaite. En dérivant deux fois cette relation par rapport à la variable *t*, montrer que les matrices A et B commutent.
- **4** Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, prouver la relation, $||e^A|| \le e^{||A||}$.
- **5** Montrer que $det(e^A) = e^{tr(A)}$.

II Formule de Trotter-Kato

Dans cette partie, on note A et B deux matrices quelconques de $\mathcal{M}_n(\mathbb{K})$. L'objectif est de prouver la relation

$$\lim_{k \to +\infty} \left(e^{\frac{1}{k} A} e^{\frac{1}{k} B} \right)^k = e^{A+B} \text{ ou } \lim_{k \to +\infty} \left(\exp\left(\frac{1}{k} A\right) \exp\left(\frac{1}{k} B\right) \right)^k = \exp(A+B)$$
 (2)

Pour *k* entier naturel non nul, on pose

$$X_k = \exp\left(\frac{1}{k}A\right)\exp\left(\frac{1}{k}B\right)$$
 et $Y_k = \exp\left(\frac{1}{k}(A+B)\right)$

6 Prouver les majorations

$$\forall k \in \mathbb{N}^*, \ \|X_k\| \le \exp\left(\frac{\|A\| + \|B\|}{k}\right) \text{ et } \|Y_k\| \le \exp\left(\frac{\|A\| + \|B\|}{k}\right)$$

On introduit la fonction

$$h: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ t & \longmapsto & e^{t\mathrm{A}}e^{t\mathrm{B}} - e^{t(\mathrm{A} + \mathrm{B})} \end{array} \right.$$

7 Montrer que

$$X_k - Y_k = \mathcal{O}\left(\frac{1}{k^2}\right)$$
 lorsque $k \to +\infty$

8 Vérifier la relation

$$X_{k}^{k} - Y_{k}^{k} = \sum_{i=0}^{k-1} X_{k}^{i} (X_{k} - Y_{k}) Y_{k}^{k-1-i}$$

En déduire la relation 2.

III Vers les algèbres de Lie

Dans cette partie, $\mathbb{K} = \mathbb{R}$. Pour tout n entier naturel, $n \geq 2$, on introduit l'ensemble, dit groupe spécial linéaire :

$$SL_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \det(M) = 1 \}$$

Si G est un sous-groupe fermé de $GL_n(\mathbb{R})$, on introduit son algèbre de Lie :

$$\mathcal{A}_{\mathrm{G}} = \left\{ \mathbf{M} \in \mathcal{M}_{n}(\mathbb{R}) \mid \forall t \in \mathbb{R}, \; e^{t\mathbf{M}} \in \mathbf{G} \right\}$$

L'ensemble $\mathrm{SL}_n(\mathbb{R})$, ainsi que le groupe orthogonal $\mathrm{O}_n(\mathbb{R})$, sont bien des sous groupes fermés de $\mathrm{GL}_n(\mathbb{R})$. On ne demande pas de le démontrer.

- 9 Déterminer \mathcal{A}_{G} lorsque $G = SL_{n}(\mathbb{R})$.
- 10 Si G = $O_n(\mathbb{R})$, montrer que $\mathcal{A}_G = \mathcal{A}_n(\mathbb{R})$, ensemble des matrices symétriques.

Dans les questions 11 à 14, G est sun sous-groupe fermé quelconque de $GL_n(\mathbb{R})$.

- 11 En utilisant la partie II, montrer que \mathcal{A}_G est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
- Soient $A \in \mathcal{A}_G$ et $B \in \mathcal{A}_G$. Montrer que l'application

$$u: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ t & \longmapsto & e^{t\mathrm{A}}\mathrm{B}e^{-t\mathrm{A}} \end{array} \right.$$

est à valeurs dans A_G .

13 En déduire que A_G est stable par le crochet de Lie i.e.

$$\forall A \in \mathcal{A}_G, \ \forall B \in \mathcal{A}_G, \ [A, B] \in \mathcal{A}_G$$

On rappelle que, si M est une matrice de $\mathcal{M}_n(\mathbb{R})$, on dit que M est tangente à G en I_n s'il existe $\varepsilon > 0$ et une application γ : $]-\varepsilon,\varepsilon[\to G$, dérivable, telle que $\gamma(0)=I_n$ et $\gamma'(0)=M$. L'ensemble des matrices tangentes à G en I_n est appelé espace tangent à G en I_n , et noté $\mathcal{F}_{I_n}(G)$.

On rappelle aussi que l'application det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est différentiable en tout point, par exemple parce qu'elle est polynomiale.

- **14** Prouver l'inclusion $\mathcal{A}_{G} \subset \mathcal{T}_{I_n}(G)$.
- Soit $M \in \mathcal{M}_n(\mathbb{R})$, que l'on pourra aussi considérer comme matrice complexe, soit l'application $\delta_M : t \in \mathbb{R} \mapsto \det(I_n + tM)$. En utilisant un développement limité à l'ordre 1, montrer que δ_M est dérivable en 0 et calculer $\delta_M'(0)$.
- **16** Montrer que la différentielle au point I_n de l'application det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est la forme linéaire «trace».
- 17 Montrer que, dans les cas particuliers $G = SL_n(\mathbb{R})$ et $G = 0_n(\mathbb{R})$, on a $T_{I_n}(G) = \mathcal{A}_G$.

IV Comportement asymptotique

Etude d'un exemple

On considère deux nombres complexes distincts α et β . On suppose qu'une matrice $A \in \mathcal{M}_3(\mathbb{C})$ admet α pour valeur propre simple, β pour valeur propre double.

18 Montrer que A est semblable à une matrice de la forme

$$T = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & a \\ 0 & 0 & \beta \end{pmatrix}$$

où a est un certain nombre complexe. Calculer T^n pour n entier naturel puis e^{tT} pour t réel. En déduire une condition nécessaire et suffisante sur α et β pour que l'on ait $\lim_{t\to +\infty} e^{tA} = 0_3$.

Cas général

Dans tout ce qui suit, $\mathbb{K} = \mathbb{C}$. On pose $E = \mathbb{C}^n$. L'espace vectoriel E, identifié à $\mathcal{M}_{n,1}(\mathbb{C})$, peut être muni d'une quelconque norme notée $\|\cdot\|_E$, on rappelle qu'elles sont toutes équivalentes. On se donne $A \in \mathcal{M}_n(\mathbb{C})$ une matrice carrée à coefficients complexes, et on note u l'endomorphisme de \mathbb{C}^n canoniquement associé à cette matrice. On s'intéresse au comportement asymptotique de la fonction f_A introduite dans le préambule, et a celui des fonctions vectorielles solutions du système différentiel linéaire à coefficients constants X' = AX. Pour tout t réel et pour $(i,j) \in [\![1,n]\!]^2$, on notera $v_{i,j}(t)$ le coefficient d'indices (i,j) de la matrice e^{tA} . Ainsi,

$$\forall t \in \mathbb{R}, \ f_{\mathbf{A}}(t) = e^{t\mathbf{A}} = (v_{i,j}(t))_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$$

Pour toute valeur propre λ de la matrice A, on note m_{λ} sa multiplicité, et on introduit le sous-espace vectoriel

$$F_{\lambda} = \text{Ker}((A - \lambda I_n)^{m_{\lambda}}) = \text{Ker}((u - \lambda Id_E)^{m_{\lambda}})$$

On posera aussi $\alpha = \max_{\lambda \in Sp(A)} Re(\lambda)$.

19 Montrer que si $\lim_{t \to +\infty} f_A(t) = 0$, alors $\alpha < 0$.

20 Montrer que
$$\mathbb{C}^n = \bigoplus_{\lambda \in \operatorname{Sp}(A)} F_{\lambda}$$
.

21 En déduire l'existence de trois matrices P, D et N dans $\mathcal{M}_n(\mathbb{C})$ telles que

- P est inversible,
- D est diagonale,
- N est nilpotente,
- ND = DN, A = $P(D + N)P^{-1}$ et $\chi_A = \chi_D$.

22 En déduire l'existence d'un entier naturel p tel que, pour tout $(i, j) \in [1, n]^2$, on ait

$$v_{i,j}(t) = \mathcal{O}(t^p e^{\alpha t})$$
 lorsque $t \to +\infty$

23 Etudier la réciproque de la question 19.

On suppose, dans cette question seulement, que les valeurs propres de la matrice A ont toutes des parties réelles positives ou nulles. Montrer que, si $X \in \mathbb{C}^n$, on a

$$\lim_{t \to +\infty} e^{tA} X = 0 \iff X = 0$$

Dans les questions qui suivent, on introduit les polynômes suivants :

$$P_{S}(X) = \prod_{\substack{\lambda \in \operatorname{Sp}(A) \\ \operatorname{Re}(\lambda) < 0}} (X - \lambda)^{m_{\lambda}}$$

$$P_{i}(X) = \prod_{\substack{\lambda \in \operatorname{Sp}(A) \\ \operatorname{Re}(\lambda) > 0}} (X - \lambda)^{m_{\lambda}}$$

$$P_{n}(X) = \prod_{\substack{\lambda \in \operatorname{Sp}(A) \\ \operatorname{Re}(\lambda) = 0}} (X - \lambda)^{m_{\lambda}}$$

Et les sous-espaces $E_s = \text{Ker}(P_s(A))$, $E_i = \text{Ker}(P_i(A))$ et $E_n = \text{Ker}(P_n(A))$ de $E = \mathbb{C}^n$. Les indices s, i, n signifient respectivement stable, instable et neutre.

© Laurent Garcin

25 Après avoir justifié que $E = E_s \oplus E_i \oplus E_n$, montrer que

$$\mathbf{E}_s = \left\{ \mathbf{X} \in \mathbf{E} \mid \lim_{t \to +\infty} e^{t\mathbf{A}} \mathbf{X} = \mathbf{0} \right\}$$

On prouverait de même, mais ce n'est pas demandé, que

$$\mathbf{E}_i = \left\{ \mathbf{X} \in \mathbf{E} \mid \lim_{t \to -\infty} e^{t\mathbf{A}} \mathbf{X} = \mathbf{0} \right\}$$

26 Montrer que

$$\mathbf{E}_n = \left\{ \mathbf{X} \in \mathbf{E} \mid \exists \mathbf{C} \in \mathbb{R}_+^*, \ \exists p \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ \|e^{t\mathbf{A}}\mathbf{X}\|_{\mathbf{E}} \le \mathbf{C}(1 + |t|)^p \right\}$$

 E_n est donc l'ensemble des vecteurs X de \mathbb{C}^n tels que la fonction vectorielle $t \mapsto e^{tA}X$ ait un comportement polynomial en $-\infty$ et $+\infty$.