IDENTIFICAÇÃO DOS PARÂMETROS DE UM MODELO DE INTERCEPTAÇÃO UTILIZANDO UM ALGORITMO DE CALIBRAÇÃO AUTOMÁTICA

Debora Yumi de Oliveira

Orientador: Prof. Dr. Pedro Luiz Borges Chaffe

Coorientador: Me. João Henrique Macedo Sá

O QUE É INTERCEPTAÇÃO?

Interceptação altera a quantidade e qualidade da água que chega no solo

O QUE É CALIBRAÇÃO?

O QUE É CALIBRAÇÃO?

monitoramento

Fonte: Adaptado de Vrugt et al. (2008)

OBJETIVO GERAL

Avaliar o desempenho da calibração do modelo de Rutter aplicado a uma bacia experimental coberta por Floresta Ombrófila Mista utilizando o algoritmo de calibração automática Differential Evolution Adaptive Metropolis (DREAM).

OBJETIVOS ESPECÍFICOS

 Verificar o comportamento dos valores dos parâmetros do modelo de Rutter em relação às características dos eventos de precipitação

OBJETIVOS ESPECÍFICOS

 Analisar o desempenho do DREAM na identificação dos parâmetros do modelo de Rutter a partir de diferentes eventos de precipitação

OBJETIVOS ESPECÍFICOS

 Comparar os valores dos parâmetros obtidos a partir da calibração do modelo e os valores determinados a partir de métodos de regressão

MATERIAIS E MÉTODOS

ÁREA DE ESTUDO

- Bacia experimental do rio Araponga
 - 5,3 ha
 - Floresta nativa
 - Coberta por Floresta Ombrófila Mista
- Dados monitorados
 - Precipitação total (P_g) , precipitação interna, escoamento pelos troncos
 - Dados meteorológicos → E_p
- De 26/02/2014 a 06/10/2014 (223 dias)
 - 60 eventos

Modelo de Rutter

- Dados de entrada:
 - $-E_p$ \longrightarrow Método de Penman modificado
 - $-P_q \longrightarrow Monitoramento$
- 5 parâmetros: c, S_c , $S_{t,c}$, p_d , ε

Análise de regressão

Calibração

Algoritmo de Calibração Automática

DIFFERENTIAL EVOLUTION ADAPTIVE METROPOLIS

- Distribuição a priori: distribuição uniforme
- Amostragem de novos pontos:

Função de verossimilhança:

$$L\left(\mathbf{x}\middle|\hat{\mathbf{Y}},\psi\right) = \left[\sum_{t=1}^{T} \left(y_{t}\left(\mathbf{x}\right) - \hat{y}_{t}\right)^{2}\right]^{-\frac{1}{2}T}$$

distribuição *a priori* de **x**

VALIDAÇÃO

- Validação: (1) para cada evento
 - (2) para série completa (60 eventos)
- Medidas de ajuste:

Erro de volume

$$ER(\mathbf{x}) = \frac{\left|\sum_{t=1}^{T} \hat{y}_{t} - \sum_{t=1}^{T} y_{t}(\mathbf{x})\right|}{\sum_{t=1}^{T} \hat{y}_{t}} \times 100$$

Coeficiente de Nash

$$Nash(\mathbf{x}) = 1 - \frac{\sum_{t=1}^{T} (\hat{y}_t - y_t(\mathbf{x}))^2}{\sum_{t=1}^{T} (\hat{y}_t - \overline{y})^2}$$

RESULTADOS E DISCUSSÃO

CALIBRAÇÃO POR EVENTO

 $\widetilde{\mathbb{Q}}_{0.5}$ 0.5

Eventos com $P_g > 2$ mm possibilitam

a identificação dos parâmetros

2 mm

 $(\mu m)^{0.5}$

Calibração e Validação

Faixa de incerteza associada aos valores dos parâmetros nem sempre contempla os dados observados

VALIDAÇÃO

UFSC

REGRESSÃO X CALIBRAÇÃO

Desempenho similar ao se utilizar parâmetros obtidos por métodos de regressão e por calibração

20

Parâmetro	Regressão	Calibração	Unidade
С	0,43	0,37-0,38	-
S_c	4,39	9,63-10,3	mm
$S_{t,c}$	0,20	0,23-9,68	mm
$ ho_d$	0,15	0,74-0,78	-
ε	0,10*	0,00-0,14	
Erro de volume	16	7	%
Nash	0,854	0,878	-
*			

^{*} Valor adotado

CONCLUSÕES E RECOMENDAÇÕES

Conclusões

OBJETIVO ESPECÍFICO 1

Verificar o comportamento dos valores dos parâmetros do modelo de Rutter em relação às características dos eventos de precipitação

- Variação nos valores dos parâmetros identificados a partir de diferentes eventos
 - Sem relação com características dos eventos
 - Sem padrão de variação sazonal

Conclusões

OBJETIVO ESPECÍFICO 2

Analisar o desempenho do DREAM na identificação dos parâmetros do modelo de Rutter a partir de diferentes eventos de precipitação

• Eventos com $P_g > 15$ mm proporcionaram melhores resultados

Conclusões

OBJETIVO ESPECÍFICO 3

Comparar os valores dos parâmetros obtidos a partir da calibração do modelo e os valores determinados a partir de métodos de regressão

 Desempenho similar ao se utilizar parâmetros obtidos por métodos de regressão

RECOMENDAÇÕES

- Testar outras funções de verossimilhança
 - Combinação das diferentes saídas do modelo
 - Consideração explícita de outras fontes de incerteza
- Melhor estimativa do escoamento pelos troncos

- Melhorias na formulação do modelo
 - Alteração do cálculo da drenagem

MUITO OBRIGADA!

Separação da Série de Dados

CRITÉRIOS ADOTADOS

- 12 horas de período seco
- Precipitação total acumulada > 0,24 mm
- Início do evento um Δt antes do início do registro de precipitação total
- Eventos com falhas descartados

De 26.02.2014 a 06.10.2014 (223 dias)

TOTAL DE 60 EVENTOS

Separação da Série de Dados

Série completa

Precipitação total: 1.435 mm

Precipitação interna: 1.006 mm (70%)

Escoamento de tronco: 18 mm (1,2%)

60 eventos

Precipitação total: 1.274 mm

Precipitação interna: 955 mm

Escoamento de tronco: 17 mm

Análise de Incerteza

- Incerteza relacionada à estimativa dos parâmetros:
 - Simulação do modelo de Rutter com os 10.000 últimos valores de x
 - Sumarizada pelos percentis 2,5 e 97,5
- Incerteza total:
 - Para cada passo de tempo, acréscimo ao resultado da simulação de um valor amostrado de N_d (0, RMSE)

$$RMSE(\mathbf{x}) = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (\hat{y}_t - y_t(\mathbf{x}))^2}$$

Erro homocedástico!

Sumarizada pelos percentis 2,5 e 97,5