IMPORT LIBRARIES

```
In [3]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
```

IMPORT DATASET

In [4]:

df=pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")

In [5]:

df

Out[5]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical
1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical
1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical
1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences
1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical
1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical

1470 rows × 35 columns

In [6]:

df.head()

Out[6]:

		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Em
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1

5 rows × 35 columns

In [7]:

df.tail()

Out[7]:

		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField
	1465	36	No	Travel_Frequently	884	Research & Development	23	2	Medical
	1466	39	No	Travel_Rarely	613	Research & Development	6	1	Medical
:	1467	27	No	Travel_Rarely	155	Research & Development	4	3	Life Sciences
	1468	49	No	Travel_Frequently	1023	Sales	2	3	Medical
	1469	34	No	Travel_Rarely	628	Research & Development	8	3	Medical

5 rows × 35 columns

In [8]:

Loading [MathJax]/extensions/Safe.js

```
df.shape
Out[8]:
   (1470, 35)
In [9]:
   df.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 1470 entries, 0 to 1469
   Data columns (total 35 columns):
    #
        Column
                                    Non-Null Count
                                                     Dtype
   - - -
        _ _ _ _ _
                                    -----
                                                     ----
    0
        Age
                                    1470 non-null
                                                     int64
    1
        Attrition
                                    1470 non-null
                                                     object
                                                     object
    2
        BusinessTravel
                                    1470 non-null
    3
        DailyRate
                                    1470 non-null
                                                     int64
    4
        Department
                                    1470 non-null
                                                     object
    5
        DistanceFromHome
                                    1470 non-null
                                                     int64
    6
        Education
                                    1470 non-null
                                                     int64
    7
        EducationField
                                    1470 non-null
                                                     object
    8
                                    1470 non-null
        EmployeeCount
                                                     int64
    9
        EmployeeNumber
                                    1470 non-null
                                                     int64
    10
        EnvironmentSatisfaction
                                    1470 non-null
                                                     int64
    11
        Gender
                                    1470 non-null
                                                     object
    12
        HourlyRate
                                    1470 non-null
                                                     int64
        JobInvolvement
    13
                                    1470 non-null
                                                     int64
    14
        JobLevel
                                    1470 non-null
                                                     int64
    15
        JobRole
                                    1470 non-null
                                                     object
    16
        JobSatisfaction
                                    1470 non-null
                                                     int64
    17
        MaritalStatus
                                    1470 non-null
                                                     object
    18
        MonthlyIncome
                                    1470 non-null
                                                     int64
    19
        MonthlyRate
                                    1470 non-null
                                                     int64
    20
        NumCompaniesWorked
                                    1470 non-null
                                                     int64
    21
        0ver18
                                    1470 non-null
                                                     object
    22
        OverTime
                                    1470 non-null
                                                     object
    23
        PercentSalaryHike
                                    1470 non-null
                                                     int64
    24
        PerformanceRating
                                    1470 non-null
                                                     int64
    25
        RelationshipSatisfaction
                                    1470 non-null
                                                     int64
    26
        StandardHours
                                    1470 non-null
                                                     int64
    27
        StockOptionLevel
                                    1470 non-null
                                                     int64
    28
        TotalWorkingYears
                                    1470 non-null
                                                     int64
    29
        TrainingTimesLastYear
                                    1470 non-null
                                                     int64
    30
        WorkLifeBalance
                                    1470 non-null
                                                     int64
    31
        YearsAtCompany
                                    1470 non-null
                                                     int64
    32
        YearsInCurrentRole
                                    1470 non-null
                                                     int64
    33
        YearsSinceLastPromotion
                                    1470 non-null
                                                     int64
        YearsWithCurrManager
                                    1470 non-null
                                                     int64
```

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

```
In [10]:
    df.describe()
```

Out[10]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	Environn
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.0000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000

8 rows × 26 columns

Ш

In [11]:

```
corr=df.corr()
corr
```

<ipython-input-11-7d5195e2bf4d>:1: FutureWarning: The default value of
numeric_only in DataFrame.corr is deprecated. In a future version, it
will default to False. Select only valid columns or specify the value of
numeric_only to silence this warning.
 corr=df.corr()

Out[11]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber
Age	1.000000	0.010661	-0.001686	0.208034	NaN	-0.010145
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN	-0.050990
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN	0.032916
Education	0.208034	-0.016806	0.021042	1.000000	NaN	0.042070
EmployeeCount	NaN	NaN	NaN	NaN	NaN	NaN
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN	1.000000
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN	0.017621
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN	0.035179
JobInvolvement	0.029820	0.046135	0.008783	0.042438	NaN	-0.006888

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN	-0.018519
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN	-0.046247
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN	-0.014829
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN	0.012648
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN	-0.001251
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	NaN	-0.012944
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	NaN	-0.020359
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	NaN	-0.069861
StandardHours	NaN	NaN	NaN	NaN	NaN	NaN
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN	0.062227
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN	-0.014365
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN	0.023603
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN	0.010309
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN	-0.011240
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN	-0.008416
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN	-0.009019
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN	-0.009197

26 rows × 26 columns

```
In [12]:
```

```
plt.subplots(figsize=(22,15))
sns.heatmap(corr,annot=True,cmap="coolwarm")
```

Out[12]:

<Axes: >

In [13]:

df.Attrition.value counts()

Out[13]:

No 1233 Yes 237

Name: Attrition, dtype: int64

Checking for NULL Values

In [14]:

df.isnull().any()

Out[14]:

Age False
Attrition False
BusinessTravel False
DailyRate False
Loading [MathJax]/extensions/Safe.js t False

DistanceFromHome False Education False EducationField False EmployeeCount False EmployeeNumber False EnvironmentSatisfaction False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False False MaritalStatus MonthlyIncome False MonthlyRate False NumCompaniesWorked False 0ver18 False OverTime False PercentSalaryHike False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

Data Visualization

```
In [15]:
```

```
attrition_counts = df['Attrition'].value_counts()
plt.figure(figsize=(6, 6))
plt.pie(attrition_counts, labels=attrition_counts.index,
autopct='%1.1f%', startangle=90)
plt.title('Attrition Distribution')
plt.axis('equal')
plt.show()
```

Attrition Distribution

In [16]:

```
plt.figure(figsize=(8, 6))
sns.countplot(x="Attrition", data=df)
plt.title("Attrition Count")
plt.show()
```

Attrition Count

In [17]:

```
plt.figure(figsize=(8, 6))
sns.histplot(data=df, x="Age", kde=True)
plt.title("Distribution of Age")
plt.show()
```


40

Age

50

60

Outlier Detection

0

20

```
In [18]:
```

```
plt.figure(figsize=(35, 8))
sns.boxplot(data=df)
plt.title('Box Plots for all the attributes')
plt.show()
```

30


```
In [19]:
```

```
sns.boxplot(data=df, x='YearsInCurrentRole')
plt.title('Years In Current Role')
plt.xlabel('Fare')
```

Years In Current Role

In [20]:

```
sns.boxplot(data=df, x='MonthlyIncome')
plt.title('Monthly Income')
plt.xlabel('Fare')
plt.show()
```

Monthly Income


```
In [21]:
    from scipy import stats

z_scores = stats.zscore(df['MonthlyIncome'])
z_score_threshold = 3
    df_cleaned = df[(np.abs(z_scores) <= z_score_threshold)]

In [22]:
    sns.boxplot(data=df_cleaned, x='MonthlyIncome')
    plt.title('Monthly Income')
    plt.xlabel('Fare')</pre>
```

plt.show()

Monthly Income

So the outliers are in large quantity, and they are inside the threshold, so let us not remove the outliers

SPLITTING INDEPENDENT AND DEPENDENT VARIABLES

In [23]:

In [24]:

x.head()

Out[24]:

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCou
0	41	Travel_Rarely	1102	Sales	1	2	Life Sciences	1
1	49	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1
2	37	Travel_Rarely	1373	Research & Development	2	2	Other	1
3	33	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1
4	27	Travel_Rarely	591	Research & Development	2	1	Medical	1

Loading [MathJax]/extensions/Safe.js | Imns

```
Ш
```

```
In [25]:
y.head()
```

Out[25]:

0 Yes1 No2 Yes3 No4 No

Name: Attrition, dtype: object

ENCODING

In [26]:

```
categorical_features = x.select_dtypes(include=
['object']).columns.tolist()
x_encoded = pd.get_dummies(x, columns=categorical_features,
drop_first=True)
```

In [27]:

x_encoded.head()

Out[27]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction
0	41	1102	1	2	1	1	2
1	49	279	8	1	1	2	3
2	37	1373	2	2	1	4	4
3	33	1392	3	4	1	5	4
4	27	591	2	1	1	7	1

5 rows × 47 columns


```
In [28]:
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    x_scaled = pd.DataFrame(scaler.fit_transform(x_encoded),
    columns=x_encoded.columns)
In [29]:
    x_scaled.head()
```

Out[29]:

		Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfac
	0	0.446350	0.742527	-1.010909	-0.891688	0.0	-1.701283	-0.660531
	1	1.322365	-1.297775	-0.147150	-1.868426	0.0	-1.699621	0.254625
3	2	0.008343	1.414363	-0.887515	-0.891688	0.0	-1.696298	1.169781
	3	-0.429664	1.461466	-0.764121	1.061787	0.0	-1.694636	1.169781
	4	-1.086676	-0.524295	-0.887515	-1.868426	0.0	-1.691313	-1.575686

5 rows × 47 columns


```
In [30]:
    x=x scaled
```

Train and test split

In [31]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
random state=42)
```

MODEL BUILDING

In [32]:

```
# Import the necessary libraries
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
Loading [MathJax]/extensions/Safe.js arn.metrics import accuracy_score, classification_report,
```

```
from joblib import dump
            In [33]:
               logreg model = LogisticRegression(random state=42)
               dt model = DecisionTreeClassifier(random state=42)
            In [34]:
               logreg model.fit(x train, y train)
               dt model.fit(x_train, y_train)
            Out[34]:
               DecisionTreeClassifier(random state=42)
            In a Jupyter environment, please rerun this cell to show the HTML representation or trust the
            notebook.
            On GitHub, the HTML representation is unable to render, please try loading this page with
            nbviewer.org.
            DecisionTreeClassifier
               DecisionTreeClassifier(random state=42)
            In [35]:
               logreg predictions = logreg model.predict(x test)
               dt predictions = dt model.predict(x test)
               logreg accuracy = accuracy score(y test, logreg predictions)
               print("Logistic Regression Accuracy:", logreg accuracy)
               dt accuracy = accuracy score(y test, dt predictions)
               print("Decision Tree Accuracy:", dt accuracy)
               logreg report = classification report(y test, logreg predictions)
               print("Classification Report for Logistic Regression:\n", logreg report)
               dt report = classification report(y test, dt predictions)
               print("Classification Report for Decision Tree Classifier:\n",
               dt report)
               logreg_conf_matrix = confusion_matrix(y_test, logreg_predictions)
               print("Confusion Matrix for Logistic Regression:\n", logreg conf matrix)
Loading [MathJax]/extensions/Safe.js | natrix = confusion_matrix(y_test, dt_predictions)
```

confusion matrix

print("Confusion Matrix for Decision Tree Classifier:\n", dt conf matrix)

Logistic Regression Accuracy: 0.8809523809523809

Decision Tree Accuracy: 0.7721088435374149

Classification Report for Logistic Regression:

		precision	recall	f1-score	support
	No	0.92	0.95	0.93	255
Y	es	0.56	0.46	0.51	39
accura	су			0.88	294
macro a	vg	0.74	0.70	0.72	294
weighted a	vg	0.87	0.88	0.88	294

Classification Report for Decision Tree Classifier:

	precision	recall	f1-score	support
No	0.87	0.86	0.87	255
Yes	0.17	0.18	0.17	39
accuracy			0.77	294
macro avg	0.52	0.52	0.52	294
weighted avg	0.78	0.77	0.78	294

Confusion Matrix for Logistic Regression:

[[241 14]

[21 18]]

Confusion Matrix for Decision Tree Classifier:

[[220 35]

[32 7]]