体論 (第4回)

4. 拡大次数

体の拡大 L/K が与えられると, L には次で K 上のベクトル空間の構造が入る.

- (i) 足し算: $L \times L \to L$ $((x,y) \mapsto x + y)$,
- (ii) スカラー倍: $K \times L \longrightarrow L$ ((a, x) $\longmapsto ax$).

ただし、上のx+yやaxは体Lの足し算と掛け算で考える.

定義 4-1 (拡大次数)

体の拡大 L/K に対して、

 $[L:K] := \dim_K L$ (LのK上のベクトル空間としての次元)

を L/K の拡大次数と言う. $[L:K]<\infty$ のとき, L/K は有限次拡大といい, そうでないとき, L/K を無限次拡大という. また [L:K]=n のとき, L/K を n 次拡大と呼ぶ.

[補足] $K \subseteq L$ であるから,

$$[L:K]=1 \Longleftrightarrow L=K$$

が成り立つ.

ベクトル空間の次元の復習も兼ねて、次の例題を考える.

例題 4-1

 $\{1+i,1-i\}$ は \mathbb{C}/\mathbb{R} の基底である. 特に

$$[\mathbb{C}:\mathbb{R}]=\dim_{\mathbb{R}}\mathbb{C}=2.$$

※ 体の拡大 L/K に対して, L/K の基底とは, L の K 上ベクトル空間としての基底のことである.

[証明]

(1 次独立であること) $a,b \in \mathbb{R}$ が

$$a(1+i) + b(1-i) = 0$$

を満たすとする. このとき,

$$(a+b) + i(a-b) = 0$$

より, a+b=a-b=0. よって a=b=0. 従って, 1+i, 1-i は \mathbb{R} 上 1 次独立である.

(\mathbb{C} を生成すること) $z \in \mathbb{C}$ を取る. z = a + bi $(a, b \in \mathbb{R})$ と表し、次のように変形する.

$$z = a + bi = \frac{a+b}{2}(1+i) + \frac{a-b}{2}(1-i).$$

従って、zは1+i,1-iの \mathbb{R} 上の1次結合で表せる.

問題 4-1 $\alpha = \sqrt{-2}, \beta = 1 + \alpha$ とし、また

$$M = \{a + b\alpha \mid a, b \in \mathbb{Q}\}\$$

と置く. このとき, $\{\beta, \beta^2\}$ は M の \mathbb{Q} 上の基底であることを示せ.

定理 4-1

L/K を体の拡大, $\alpha \in L$ は K 上代数的とする. f(x) を α の K 上の最小多項式とし, $n = \deg f$ とする. さらに,

$$M := K[\alpha] = \{ g(\alpha) \mid g(x) \in K[x] \}$$

と置く. このとき, $\{1, \alpha, \dots, \alpha^{n-1}\}$ は M の K 上の基底となる.

 $\times M$ は L の部分ベクトル空間になっていることは容易に分かる.

[証明]

(1 次独立であること) $a_0,\ldots,a_{n-1}\in K$ として $a_0+a_1\alpha+\cdots+a_{n-1}\alpha^{n-1}=0$ とする. 多項式 g(x) を

$$g(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in K[x]$$

で定めると,

$$g(\alpha) = 0$$
, $\deg g < n = \deg f$

が成り立つ. f(x) は α の K 上の最小多項式なので g(x)=0 でなければならない. よって

$$a_0 = a_1 = \dots = a_{n-1} = 0$$

となり、 $1, \alpha, \ldots, \alpha^{n-1}$ は K 上 1 次独立である.

(M を生成すること) $z \in M$ とし, $z = g(\alpha)$ となる $g(x) \in K[x]$ を取る. 割り算の原理から

$$g(x) = q(x)f(x) + r(x), \quad \deg r < n$$

を満たす $q(x), r(x) \in K[x]$ が取れる. このとき,

$$r(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \ (a_i \in K)$$

と表すと,

$$z = g(\alpha) = r(\alpha) = a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1}$$
.

よって, z は $1, \alpha, \ldots, \alpha^{n-1}$ の K 上の 1 次結合で表せる.

定理 4-2

定理 4-1 の状況を考える. このとき, M は体である. 特に $M = K(\alpha)$ であり,

$$[K(\alpha):K] = \deg f.$$

[証明]

環準同型

$$\Phi: K[x] \longrightarrow L \quad (g(x) \longmapsto g(\alpha))$$

を考える. このとき、

$$\operatorname{Im}(\Phi) = \{ g(\alpha) \mid g(x) \in K[x] \} = M.$$

また, 定理 3-1(2)から,

$$\ker(\Phi) = \{g(x) \in K[x] \mid g(\alpha) = 0\}$$

$$= \{h(x)f(x) \mid h(x) \in K[x]\}$$

$$= (f(x)).$$

よって, 準同型定理から

$$K[x]/(f(x)) = K[x]/\ker(\Phi) \simeq \operatorname{Im}(\Phi) = M.$$

また (f(x)) は K[x] の極大イデアルであることが確かめられる (問題 4-2). よって, M は体である. 次に後半の主張についてみる. M の定義より $M\subseteq K(\alpha)$. 逆に, M は K と α を含む体なので, $K(\alpha)$ の最小性から $K(\alpha)\subseteq M$ も言える. よって $M=K(\alpha)$. また定理 4-1 より,

$$[K(\alpha):K] = \dim_K K(\alpha) = \dim_K M = \deg f.$$

[補足] 上の証明から次の同型が成り立つ.

$$K[x]/(f(x)) \simeq K[\alpha] = K(\alpha) \quad \left(\ \overline{g(x)} \longmapsto g(\alpha) \ \right).$$

問題 4-2 $f(x) \in K[x]$ を体 K 上の既約モニック多項式とする. K[x] が PID であることを利用して, (f(x)) が K[x] の極大イデアルであることを示せ.

例題 4-2

 $\alpha = \sqrt[3]{2} \$ とする.

- (1) $[\mathbb{Q}(\alpha):\mathbb{Q}]$ を求めよ.
- (2) α^2 の \mathbb{Q} 上の最小多項式を求めよ.

(解答)

(1) $f(x) = x^3 - 2$ は α の \mathbb{Q} 上の最小多項式である (例題 3-2 を参照). 定理 4-2 より

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = \deg f = 3.$$

(2) $g(x) = x^3 - 4$ と置くと, $g(\alpha^2) = 0$ である. また

$$\alpha^2 \in \mathbb{Q}(\alpha), \qquad \alpha = \frac{1}{2}(\alpha^2)^2 \in \mathbb{Q}(\alpha^2)$$

より $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^2)$ が分かる. 従って

$$[\mathbb{Q}(\alpha^2):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}] = 3.$$

よって, α^2 の $\mathbb Q$ 上の最小多項式の次数は 3 である. 従って, g(x) は α^2 の $\mathbb Q$ 上の最小多項式である.

問題 4-3 $\alpha = \sqrt{2 + \sqrt{2}}$ と置く.

- (1) [$\mathbb{Q}(\alpha):\mathbb{Q}$] を求めよ.
- (2) $\{1,1+\alpha,1+\alpha+\alpha^2,1+\alpha+\alpha^2+\alpha^3\}$ は $\mathbb{Q}(\alpha)/\mathbb{Q}$ の基底であることを示せ.