DM1: Une preuve du théorème d'Ascoli

Dernière modification 19 mai 2023

Q1 Montrer que si (Y, d) est un espace métrique compact et $(E, ||\cdot||)$ un espace de Banach, alors, $\mathcal{C}(Y; E)$ l'espace des fonctions continues de Y dans E, muni de la norme de la convergence uniforme $||f||_{\infty} = \sup_{x \in Y} ||f(x)||$, est un espace de Banach.

Soit $(f_n)_{n\geq 0}$ une suite de Cauchy d'éléments de $\mathcal{C}(Y;E)$. On veut montrer que $(f_n)_{n\geq 0}$ est convergente.

Par définition,

$$\forall \epsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \text{tel que} \quad \forall n, m \ge n_0 \quad ||f_n - f_m||_{\infty} < \epsilon.$$

Donc,

$$\forall x \in Y \quad ||f_n(x) - f_m(x)|| < \epsilon$$

 $\iff (f_n(x))_{n\geq 0}$ est une suite de Cauchy dans $(E,||\cdot||)$ qui est un espace métrique complet

 $\iff (f_n(x))_{n>0}$ converge vers une limite $z_x \in E$.

Soit $z: Y \to E$ tel que $\forall x \in Y \quad z(x) = z_x$.

On note que

$$\forall x \in Y \lim_{m \to +\infty} ||f_n(x) - f_m(x)|| = ||f_n(x) - z(x)|| < \epsilon.$$

Ce qui implique $||f_n - z||_{\infty} < \epsilon \quad \forall n \ge n_0$. Donc, $(f_n)_{n \ge 0}$ converge uniformemet vers z. On note que $z \in \mathcal{C}(Y; E)$, parce que $(f_n)_{n \ge 0}$ est continue.

Remarque On note que la convergence uniforme est essentiel pour concluire. Par exemple, soit

$$f_n(x) = \arctan(nx).$$

La limite de cette suite est

$$z(x) = \begin{cases} -\frac{\pi}{2} & \text{si } x < 0\\ +\frac{\pi}{2} & \text{si } x > 0, \end{cases}$$
 (1)

qui est donc discontinue en x=0.

Définition Un espace métrique (X, d) est dit **précompact** si pour tout $\epsilon > 0$, il existe des élements $x_1, ..., x_N$ de X tels que $X \subset \bigcup_{i=1}^N B(x_i, \epsilon)$.

 $\mathbf{Q2}$ Montrer que [0,1] est précompact dans \mathbb{R} .

 $\forall \epsilon > 0$ on veut montrer qu'il existe des éléments $x_0, x_1, ..., x_N \in [0, 1]$ $N \in \mathbb{N}$ tels que $[0, 1] \subset$ $\cup_{i=0}^{N} B(x_i, \epsilon).$

Pour $\epsilon > \frac{1}{2}$ on note que $X \subset B(\frac{1}{2}, \epsilon)$. Supposons $\epsilon \leq \frac{1}{2}$. Soit $N = \lfloor \frac{1}{\epsilon} \rfloor$, posons $\forall i, x_i = i\epsilon$. On note que $\forall x \in [0, 1], x \in B(x_{\lfloor \frac{x}{\epsilon} \rfloor}, \epsilon)$. Donc, $[0, 1] \subset \bigcup_{i=0}^{N} B(x_i, \epsilon)$.

 $\mathbf{Q3}$ Montrer que tout sous-ensemble borné de \mathbb{R}^N est précompact.

Soit A un sous-ensemble borné de \mathbb{R}^N . Supposons, par absurde, que A n'est pas précompact. Donc, il existe r > 0 tel que il n'existe pas de recouvrement fini de A par des boules ouvertes de rayon r

- ⇒ cette recouvrement ne peut pas être dans une boule de rayon fini
- \implies A n'est pas borné.

Q4 Montrer qu'un espace compact est précompact.

Soit (X,d) un espace métrique compact. Supposons, par absurde, que (X,d) n'est pas précompact.

Donc, il existe r > 0 tel que il n'existe pas de recouvrement fini de X par des boules ouvertes de rayon r.

Donc, par récurrence, on peut construire une suite $(x_n)_{n\geq 0}$ tel que $x_m\notin B(x_n,r)$ $d(x_n, x_m) \ge r \quad \forall n \ne m$. On note que $(x_n)_{n \ge 0}$ n'a pas de valeur d'adhérence. Donc, X n'est pas compact.

 $\mathbf{Q5}$ Soit (X,d) un espace métrique et $Z \subset X$ précompact. Montrer que \bar{Z} l'adhérence de Z est précompacte.

Soit $\epsilon > 0$, on veut construire une recouvrement fini de \bar{Z} par des boules ouvertes de rayon ϵ . Z précompact $\implies \exists (x_1,...x_n) \in Z^n$ tel que $Z = \bigcup_{i=1}^n B(x_i,\frac{\epsilon}{2})$.

 \bar{Z} est l'ensemble des limites de suites convergentes d'éléments de Z. Donc, $\forall x \in \bar{Z} \quad \exists y \in Z$ tel que $d(x,y) < \frac{\epsilon}{2}$. On note que $\exists 1 \leq i \leq n$ tel que $y \in B(x_i, \frac{\epsilon}{2})$.

Par l'inegalité triangulaire,

$$d(x, x_i) \le d(x, y) + d(y, x_i) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Donc, $\bar{Z} = \bigcup_{i=1}^n B(x_i, \epsilon)$.

 $\mathbf{Q6}$ Montrer que (X,d) est compact si et seulement s'il est complet et précompact.

Supposons (X, d) compact. Soit $(x_n)_{n\geq 0}$ une suite de Cauchy dans (X, d). (X, d) compact implique que $(x_n)_{n\geq 0}$ admet un valeur d'adhérence, donc $(x_n)_{n\geq 0}$ est convergente et (X, d) complet.

Réciproquement, supposons (X, d) complet et précompact.

Soit $(x_n)_{n\geq 0}$ une suite dans (X,d). On veut montrer que $(x_n)_{n\geq 0}$ a un valeur d'adhérence.

(X,d) précompact \Longrightarrow par le Principe de Dirichlet que $\forall \epsilon > 0$ il existe une sous-suite $(x_{\phi(n)})_{n \geq 0}$ dans une boule ouvert de rayon ϵ . Donc, $\forall n,m \quad d(x_n,x_m) < \epsilon$. Donc, $(x_{\phi(n)})_{n \geq 0}$ est une suite de Cauchy. (X,d) complet implique que $(x_{\phi(n)})_{n \geq 0}$ converge \Longrightarrow $(x_n)_{n \geq 0}$ a un valeur d'adhérence.

Définition Soit (Y, d) un espace métrique. Soit $\mathcal{F} \subset \mathcal{C}(Y; \mathbb{R})$ une famille d'applications continues de Y vers \mathbb{R} .

— On dit que la famille \mathcal{F} est **équicontinue** au point $y \in Y$ si pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que

$$\forall f \in \mathcal{F} \quad \forall y' \in Y \quad d(y, y') < \delta \implies |f(y) - f(y')| < \epsilon.$$

- On dit que la famille \mathcal{F} est **équicontinue** sur Y si elle est équicontinue en tout point de $y \in Y$.
- On dit que la famille \mathcal{F} est **uniformement équicontinue** si pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que

$$\forall f \in \mathcal{F} \quad \forall y, y' \in Y \quad d(y, y') < \delta \implies |f(y) - f(y')| < \epsilon.$$

 $\mathbf{Q7}$ Montrer que si (Y,d) est compact et \mathcal{F} est une famille équicontinue sur Y alors elle est uniformement équicontinue.

Soit $\epsilon > 0$. Comme \mathcal{F} est équicontinue sur Y, il existe $\forall y \in Y$ une boule ouverte $B(y, \delta_y)$ tel que $\forall f \in \mathcal{F}, f(B(y, \delta_y)) \subset B(f(y), \frac{\epsilon}{2})$.

On note que la famille $B(y, \delta_y)_{y \in Y}$ est un recouvrement de Y.

(Y,d) compact $\implies \exists r > 0$ tel que toute boule ouverte de rayon r est contenue dans l'une des boules $B(y,\delta_y)$.

Donc,

$$\forall a, b \in Y \quad d(a, b) < r \implies |f(a) - f(b)| \le |f(a) - f(y)| + |f(y) - f(b)| < \epsilon.$$

Donc, \mathcal{F} est uniformement continue.

Théorème d'Ascoli Soit (Y, d) un espace métrique compact. Soit $\mathcal{F} \subset \mathcal{C}(Y; \mathbb{R})$ une famille de fonctions qui vérifie les hypothèses suivantes.

- La famille \mathcal{F} est équicontinue sur Y.
- Pour tout $y \in Y$, l'ensemble $\mathcal{F}(y) = \{f(y) : f \in \mathcal{F}\}$ est une partie bornée de \mathbb{R} . Alors, de toute suite d'éléments de \mathcal{F} on peut extraire une sous-suite qui converge dans $(\mathcal{C}(Y,\mathbb{R}),||\cdot||_{\infty})$.

 $\mathbf{Q8}$ Montrer que pour démontrer le théorème, il suffit de montrer que $\bar{\mathcal{F}}$ est compact.

Pour démontrer le théorème, il faut montrer que toute suite dans \mathcal{F} a une valeur d'adhérence dans $(\mathcal{C}(Y,\mathbb{R}),||\cdot||_{\infty})$, on peut restreindre $(\mathcal{C}(Y,\mathbb{R}),||\cdot||_{\infty})$ au ensemble des limites des suites convergentes d'éléments de Y. Donc, il suffit de montrer que toute suite dans \mathcal{F} a une valeur d'adhérence dans $\bar{\mathcal{F}} \iff \bar{\mathcal{F}}$ est compact.

 $\mathbf{Q9}$ En déduire qu'il suffit de montrer que \mathcal{F} est précompact.

 $\bar{\mathcal{F}}$ est compact $\iff \bar{\mathcal{F}}$ est complet et précompact.

On note que l'adhérence $\bar{\mathcal{F}}$ est une fermé dans l'espace de Banach $(\mathcal{C}(Y,\mathbb{R}),||\cdot||_{\infty})$ donc $\bar{\mathcal{F}}$ est complet.

Donc, il reste juste montrer que $\bar{\mathcal{F}}$ est précompact.

Q10 Soit δ tel que pour tout $f \in \mathcal{F}$ on ait l'implication $d(y, y') < \delta \implies |f(y) - f(y')| < \frac{\epsilon}{3}$. Montrer qu'il existe $y_1, ..., y_N \in Y$ tels que $Y = \bigcup_{i=1}^N B_Y(y_i, \delta)$.

Soit $y \in Y$,

$$\forall f \in \mathcal{F} \quad f(B_Y(y,\delta)) \subset B\left(f(y), \frac{\epsilon}{3}\right).$$

On note que la famille $(B_Y(y,\delta))_{y\in Y}$ est un recouvrement de Y. (Y,d) compact \implies cette recouvrement possède un sous-recouvrement fini.

Q11 Montrer que $\mathcal{F}(y_1,...,y_N) = \{(f(y_1),...,f(y_N))| f \in \mathcal{F}\} \subset \mathbb{R}^N$ est précompact. En déduire qu'il existe M tel que

$$\mathcal{F}(y_1,...,y_N) \subset \bigcup_{j=1}^M B_{\mathbb{R}^N} \left((f_j(y_i)_{i \in [1,N]}), \frac{\epsilon}{3} \right).$$

Par hypothèse, $\mathcal{F}(y)$ est une partie bornée de \mathbb{R} . Donc, $\mathcal{F}(y_1,...,y_N)$ est une partie bornée de \mathbb{R}^N . Donc, $\mathcal{F}(y_1,...,y_N)$ est précompact.

Donc, par définition de précompacité $\exists f_1, ..., f_M$ tel que $\mathcal{F}(y_1, ..., y_N) \subset \bigcup_{i=1}^M B_{\mathbb{R}^N} \left((f_i(y_1), ..., f_i(y_N)), \frac{\epsilon}{3} \right)$.

Q12 Montrer que $\mathcal{F} \subset \bigcup_{j=1}^M B(f_j, \epsilon)$. En déduire que \mathcal{F} est précompact.

Soit $f \in \mathcal{F}$, on veut montrer que $\min_{i \in [1,N]} ||f - f_j||_{\infty} < \epsilon$. $||f - f_j||_{\infty} = \sup_{y \in Y} |f(y) - f_j(y)| \Longrightarrow$ on cherche une borne pour tout y.

On sait que $Y = \bigcup_{i=1}^{N} B_Y(y_i, \delta) \implies \forall f \in \mathcal{F}, f(Y) = f\left(\bigcup_{i=1}^{N} B_Y(y_i, \delta)\right) \subset \bigcup_{i=1}^{N} f(B_Y(y_i, \delta)) \subset \bigcup_{i=1}^{N} B(f(y_i), \frac{\epsilon}{3}).$ Soit $y \in Y$. Prenons y_i tel que f(y) est dans la boule $B(f(y_i), \frac{\epsilon}{3})$ et prenons f_j tel que $f(y_1, ..., y_i, ..., y_N)$ est dans la boule $B(f_j(y_1, ..., y_N), \frac{\epsilon}{3})$.

Par l'inégalité triangulaire,

$$|f(y) - f_j(y)| < |f(y) - f(y_i)| + |f(y_i) - f_j(y_i)| + |f_j(y_i) - f_j(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$