Ali Siahkoohi

Simons Postdoctoral Fellow Dept. of Comp. Applied Math. & Operations Research Rice University alisk@rice.edu https://alisiahkoohi.github.io Last updated: March 13, 2025

Research Interests and Highlights

My research focuses on designing scalable methods for **uncertainty quantification** in high-dimensional problems in computational science and engineering, with broader impact on AI reliability.

I have published 39 peer-reviewed articles (citations: 979, h-index: 18, i10-index: 27), including 17 first-author papers in high-impact journals and conference proceedings, such as NeurIPS, ICML, and ICLR. My work has also been covered in major media outlets, including The New York Times, The Telegraph, and Futurism.

Education

Georgia Institute of Technology

August 2022

Ph.D. in Computational Science and Engineering (minor in Applied Math.)

Atlanta, GA, USA

Advised by Felix J. Herrmann

University of Tehran M.Sc. in Geophysics

March 2016 Tehran, Iran

Sharif University of Technology B.Sc. in Electrical Engineering

August 2013 Tehran, Iran

Academic Appointments

Rice University

August 2022 – Present Houston, TX, USA

Simons Postdoctoral Fellow

Department of Computational Applied Mathematics & Operations Research

Jointly hosted by Maarten V. de Hoop and Richard G. Baraniuk

Publications

Google Scholar profile: https://scholar.google.com/citations?user=sxRMqYIAAAAJ&h

In Preparation & Under Review

- P2. <u>A. Siahkoohi</u>, R. Morel, R. Balestriero, E. Allys, G. Sainton, T. Kawamura, and M. V. de Hoop. Multi-scale clustering and source separation of InSight mission seismic data. Preprint arXiv:2305.16189, 2025 [pdf] [code] [slides] [bib]
- P1. P. M. Mayer, L. Luzi, <u>A. Siahkoohi</u>, D. H. Johnson, and R. G. Baraniuk. Improving fairness and mitigating MADness in generative models. Preprint arXiv:2405.13977, 2024 [pdf] [code] [slides] [bib]

Journal Publications

- J8. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. ASPIRE: Iterative amortized posterior inference for Bayesian inverse problems. *Inverse Problems*, In print, 2025 [pdf] [code] [bib]
- J7. R. Orozco, P. Witte, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, B. Peters, and F. J. Herrmann. InvertibleNetworks.jl: A Julia package for scalable normalizing flows. *Journal of Open Source Software*, 9(99):6554, 2024

[pdf] [code] [link] [bib]

- J6. L. Luzi, P. M. Mayer, J. Casco-Rodriguez, <u>A. Siahkoohi</u>, and R. G. Baraniuk. Boomerang: Local sampling on image manifolds using diffusion models. *Transactions on Machine Learning Research*, 2024a [pdf] [code] [link] [bib]
- J5. M. Louboutin, Z. Yin, R. Orozco, T. J. Grady II, <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, O. Møyner, G. J. Gorman, and F. J. Herrmann. Learned multiphysics inversion with differentiable programming and machine learning. *The Leading Edge*, 42(7):474–486, 2023

 [pdf] [link] [bib] [featured in Seismic Soundoff] [journal's most downloaded paper in '23]
- J4. Y. Zhang, Z. Yin, O. López, <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Optimized time-lapse acquisition design via spectral gap ratio minimization. *Geophysics*, 88(4):A19–A23, 2023a [pdf] [link] [bib]
- J3. <u>A. Siahkoohi</u>, G. Rizzuti, R. Orozco, and F. J. Herrmann. Reliable amortized variational inference with physics-based latent distribution correction. *Geophysics*, 88(3):R297–R322, 2023a [pdf] [slides] [code] [link] [bib] [featured in Geophysics Bright Spots]
- J2. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Deep Bayesian inference for seismic imaging with tasks. *Geophysics*, 87(5):S281–S302, 2022a [pdf] [code] [link] [bib]
- J1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. The importance of transfer learning in seismic modeling and imaging. *Geophysics*, 84(6):A47–A52, 2019a [pdf] [code] [link] [bib]

Peer-Reviewed Conference Proceedings

- C32. S. Alemohammad, J. Casco-Rodriguez, L. Luzi, A. I. Humayun, H. Babaei, D. LeJeune, <u>A. Siahkoohi</u>, and R. G. Baraniuk. Self-consuming generative models go MAD. In *The Twelfth International Conference on Learning Representations*, 2024 [pdf] [extended pdf] [poster] [link] [bib] [featured in the news ^{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}]
- C31. L. Luzi, D. LeJeune, A. Siahkoohi, S. Alemohammad, V. Saragadam, H. Babaei, N. Liu, Z. Wang, and R. G. Baraniuk. Titan: Bringing the deep image prior to implicit representations. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pages 6165–6169, 2024b [pdf] [code] [link] [bib]
- C30. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Conditional score-based diffusion models for Bayesian inference in infinite dimensions. In *Advances in Neural Information Processing Systems*, volume 36, pages 24262–24290, 2023
 [pdf] [slides] [poster] [code] [link] [bib] [featured as a Spotlight presentation]
- C29. <u>A. Siahkoohi</u>, R. Morel, M. V. de Hoop, E. Allys, G. Sainton, and T. Kawamura. Unearthing InSights into Mars: Unsupervised source separation with limited data. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202, pages 31754–31772, 2023b [pdf] [slides] [poster] [code] [link] [bib]
- C28. R. Orozco, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Amortized normalizing flows for transcranial ultrasound with uncertainty quantification. In *Medical Imaging with Deep Learning*, volume 227, pages 332–349, 2023a [pdf] [link] [bib]
- C27. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Refining amortized posterior approximations using gradient-based summary statistics. In *5th Symposium on Advances in Approximate Bayesian Inference*, 2023b [pdf] [link] [bib]
- C26. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification. In *Medical Imaging* 2023: *Image Processing*, volume 12464, page 124641L, 2023c [pdf] [link] [bib]

- C25. Y. Zhang, Z. Yin, O. Lopez, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. 3D seismic survey design by maximizing the spectral gap. In *Third International Meeting for Applied Geoscience & Energy*, 2023b
 [pdf] [poster] [bib]
- C24. <u>A. Siahkoohi</u>, M. Chinen, T. Denton, W. B. Kleijn, and J. Skoglund. Ultra-low-bitrate speech coding with pretrained Transformers. In *Proceedings of Interspeech*, pages 4421–4425, 2022b [pdf] [link] [bib]
- C23. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Velocity continuation with Fourier neural operators for accelerated uncertainty quantification. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1765–1769, 2022c [pdf] [slides] [code] [link] [bib]
- C22. M. Louboutin, P. Witte, <u>A. Siahkoohi</u>, G. Rizzuti, Z. Yin, R. Orozco, and F. J. Herrmann. Accelerating innovation with software abstractions for scalable computational geophysics. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1482–1486, 2022 [pdf] [slides] [link] [bib]
- C21. Z. Yin, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Learned coupled inversion for carbon sequestration monitoring and forecasting with Fourier neural operators. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 467–472, 2022 [pdf] [slides] [code] [link] [bib] [student oral paper honorable mention]
- C20. Y. Zhang, M. Louboutin, <u>A. Siahkoohi</u>, Z. Yin, R. Kumar, and F. J. Herrmann. A simulation-free seismic survey design by maximizing the spectral gap. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 15–20, 2022 [pdf] [slides] [code] [link] [bib]
- C19. <u>A. Siahkoohi</u>, R. Orozco, G. Rizzuti, and F. J. Herrmann. Wave-equation based inversion with amortized variational Bayesian inference. In *EAGE Deep learning for seismic processing: Investigating the foundations workshop*, 2022d [pdf] [slides] [code] [link] [bib]
- C18. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Photoacoustic imaging with conditional priors from normalizing flows. In *NeurIPS Workshop on Deep Learning and Inverse Problems*, 2021
 [pdf] [poster] [link] [bib]
- C17. <u>A. Siahkoohi</u>, G. Rizzuti, M. Louboutin, P. Witte, and F. J. Herrmann. Preconditioned training of normalizing flows for variational inference in inverse problems. In *3rd Symposium on Advances in Approximate Bayesian Inference*, 2021 [pdf] [slides] [code] [link] [bib]
- C16. <u>A. Siahkoohi</u> and F. J. Herrmann. Learning by example: Fast reliability-aware seismic imaging with normalizing flows. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1580–1585, 2021 [pdf] [slides] [code] [link] [bib]
- C15. R. Kumar, M. Kotsi, <u>A. Siahkoohi</u>, and A. Malcolm. Enabling uncertainty quantification for seismic data preprocessing using normalizing flows (NF)—An interpolation example. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1515–1519, 2021 [pdf] [code] [link] [bib]
- C14. G. Rizzuti, <u>A. Siahkoohi</u>, P. A. Witte, and F. J. Herrmann. Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1541–1545, 2020 [pdf] [slides] [code] [link] [bib]
- C13. M. Zhang, <u>A. Siahkoohi</u>, and F. J. Herrmann. Transfer learning in large-scale ocean bottom seismic wavefield reconstruction. In *Society of Exploration Geophysicists Technical Program Expanded*

- *Abstracts*, pages 1666–1670, 2020 [pdf] [slides] [code] [link] [bib]
- C12. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Weak deep priors for seismic imaging. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2998–3002, 2020a [pdf] [slides] [code] [link] [bib]
- C11. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian deep-prior based approach. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1636–1640, 2020b [pdf] [slides] [code] [link] [bib]
- C10. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2020c [pdf] [slides] [code] [link] [bib]
- C9. F. J. Herrmann, <u>A. Siahkoohi</u>, and G. Rizzuti. Learned imaging with constraints and uncertainty quantification. In *NeurIPS Deep Inverse Workshop*, 2019 [pdf] [slides] [poster] [link] [bib]
- C8. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Deep-learning based ocean bottom seismic wavefield recovery. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2232–2237, 2019b
 [pdf] [code] [slides] [link] [bib]
- C7. <u>A. Siahkoohi</u>, D. J. Verschuur, and F. J. Herrmann. Surface-related multiple elimination with deep learning. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 4629–4634, 2019c [pdf] [slides] [link] [bib]
- C6. G. Rizzuti, <u>A. Siahkoohi</u>, and F. J. Herrmann. Learned iterative solvers for the Helmholtz equation. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2019
 [pdf] [slides] [link] [bib]
- C5. <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Deep convolutional neural networks in prestack seismic—two exploratory examples. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2196–2200, 2018a [pdf] [poster] [link] [bib]
- C4. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Seismic data reconstruction with generative adversarial networks. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2018b
 [pdf] [slides] [link] [bib]
- C3. <u>A. Siahkoohi</u> and A. Gholami. Sparsity promoting least squares migration for laterally inhomogeneous media. In *7th EAGE Saint Petersburg International Conference and Exhibition*, 2016 [pdf] [link] [bib]
- C2. M. S. Ebrahimi, M. H. Daraei, J. Rezaei, and <u>A. Siahkoohi</u>. A novel utilization of wireless sensor networks as data acquisition system in smart grids. In *Materials Science and Information Technology*, volume 433-440, pages 6725–6730, 2012 [pdf] [link] [bib]
- C1. A. Najafi, <u>A. Siahkoohi</u>, and M. B. Shamsollahi. A content-based digital image watermarking algorithm robust against JPEG compression. In *IEEE International Symposium on Signal Processing and Information Technology*, pages 432–437, 2011 [pdf] [link] [bib]

Theses

T1. <u>A. Siahkoohi</u>. *Deep generative models for solving geophysical inverse problems*. PhD thesis, **Georgia Institute of Technology**, 2022 [pdf] [slides] [link] [bib]

Technical Reports

- R4. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Taming score-based diffusion priors for infinite-dimensional nonlinear inverse problems. Technical Report arXiv:2405.15676, Rice University, 2024

 [pdf] [bib]
- R3. M. Louboutin, <u>A. Siahkoohi</u>, R. Wang, and F. J. Herrmann. Low-memory stochastic backpropagation with multi-channel randomized trace estimation. Technical Report arXiv:2106.06998, Georgia Institute of Technology, 2021 [pdf] [code] [link] [bib]
- R2. <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, and F. J. Herrmann. Faster uncertainty quantification for inverse problems with conditional normalizing flows. Technical Report arXiv:2007.07985, Georgia Institute of Technology, 2020d [pdf] [link] [bib]
- R1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Neural network augmented wave-equation simulation. Technical Report arXiv:1910.00925, Georgia Institute of Technology, 2019d [pdf] [code] [link] [bib]

Awards

Future Faculty Fellows Award

June 2024

Rice University, George R. Brown School of Engineering and Computing

Houston, TX, USA

Selected Research Proposal Experience

Scientific ML-supported subsurface characterization in physical function spaces

Awarded, 2024

- ▶ Funding Source: Occidental Petroleum Corporation, PI: Maarten V. de Hoop
- ► Contributions: Developed ideas and contributed to writing for two of the four research thrusts entitled "Score diffusion, nonlinear operators, and uncertainty quantification in function spaces" and "Unsupervised, factorial data decomposition and hidden signals: Reservoir characterization below salt, denoising, and monitoring"

Learning and forecasting complex fault dynamics – Predictability of earthquakes

Not funded, 2024

- ▶ Funding Source: National Science Foundation, PI: Maarten V. de Hoop
- ► Contributions: Developed ideas and contributed to writing for one of the four research thrusts entitled "Structure in data, clustering, lattice theory, and diffusion models"

Exploring the local geometry of deep networks

Awarded, 2023

- ▶ Funding Source: Office of Naval Research (DURIP), PI: Richard G. Baraniuk
- ► Contributions: Developed ideas and wrote research objectives for one of the three research thrusts entitled "The geometry of deep probabilistic models"

A deep-learning framework for stable, interpretable, and uncertainty-quantified hybrid modeling of multi-scale complex systems Not funded, 2023

- ▶ Funding Source: Department of Energy, PI: Pedram Hassanzadeh
- ► Contributions: Coordinated efforts within Richard G. Baraniuk's group (a co-PI) to develop and write research objectives for one of the four research thrusts entitled "Spline operator-based analysis of Deep neural networks"

Topological deep learning, causal inference, and data-driven forecasting for subsurface multiscale multiphysics systems Awarded, 2022

► Funding Source: Department of Energy, PI: Maarten V. de Hoop

▶ Contributions: Led the effort to write the annual progress report

Mentoring Experience

Paul M. Mayer [link] 2022 – Present

PhD Student, Rice University

Houston, TX, USA

Contributions: Advised on the development of methods and software for two projects and co-authored two papers (Luzi et al., 2024a; Mayer et al., 2024)

Rafael Orozco [link] 2020 – 2022

PhD Student, Georgia Institute of Technology

Atlanta, GA, USA

Contributions: Advised on the development of methods and software for main PhD thesis and co-authored four papers (Orozco et al., 2021, 2023b,c; ?)

Mi Zhang [link] 2019 – 2020

Visiting PhD Student, China University of Petroleum-Beijing

Atlanta, GA, USA

Contributions: Advised on the development of methods and software for a project and co-authored a paper (Zhang et al., 2020)

Teaching Experience

Rice University Houston, TX, USA

Department of Computational Applied Mathematics & Operations Research

Numerical Analysis Fall 2024

Substitute Instructor (12 lectures)

Fall 2022

► Numerical Analysis I
Substitute Instructor (18 lectures)

Georgia Institute of Technology Atlanta, GA, USA

School of Computational Science and Engineering

► Computational Foundations of Machine Learning
Teaching Assistant

Spring 2022

► Imaging with Data-Driven Models Fall 2019

Teaching Assistant

Fall 2018

► Numerical Analysis I Teaching Assistant

Tehran, Iran

Sharif University of Technology

Department of Electrical Engineering

► Digital Signal Processing
Teaching Assistant

Spring 2011

► Signals and Systems

Teaching Assistant

Spring 2011

► Linear Algebra Spring 2010

Teaching Assistant

► Electrical Engineering: Principles and Laboratory

Teaching Assistant

Fall 2009

Talks

Invited Talks

T22. Montana State University March 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Gianforte School of Computing T21. The University of California, Santa Barbara February 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Department of Mechanical Engineering T20. Johns Hopkins University January 2025 Towards reliable AI: A framework for quantification of AI uncertainty Oral presentation Department of Electrical and Computer Engineering T19. ISCL Seminar Series, Pennsylvania State University November 2024 Mitigating biases in self-consuming generative models Virtual oral presentation Interdisciplinary Scientific Computing Laboratory (Dr. Romit Maulik) [video] T18. CNRS, Université Montpellier January 2023 Low-cost uncertainty quantification for large-scale inverse problems Virtual oral presentation RhEoVOLUTION Group (Dr. Andréa Tommasi) T17. Workshop on Subsurface Uncertainty Description and Estimation August 2022 Reliable amortized variational inference with conditional normalizing flows via Oral presentation physics-based latent distribution correction International Meeting for Applied Geoscience & Energy T16. Intelligent illumination of the Earth Workshop June 2021 Fast and reliability-aware seismic imaging with conditional normalizing flows Virtual oral presentation King Abdullah University of Science and Technology T15. Advances in Seismic Imaging and Inversion Mini-symposium October 2020 Unsupervised data-guided uncertainty analysis in imaging and horizon Virtual oral presentation The 3rd Annual Meeting of the SIAM Texas-Louisiana Section **Contributed Talks** T19. Geo-Mathematical Imaging Group Partners Meeting, Rice University November 2024 Improving fairness and mitigating MADness in generative models Oral presentation T18. International Conference on Machine Learning July 2023 Unearthing InSights into Mars: Unsupervised source separation with limited data Poster presentation T17. Symposium on Advances in Approximate Bayesian Inference July 2023 Refining amortized posterior approximations using gradient-based summary Poster presentation statistics T16. Geo-Mathematical Imaging Group Partners Meeting, Rice University May 2023 Martian time-series unraveled: A multi-scale nested approach with factorial Oral presentation variational autoencoders T15. Geo-Mathematical Imaging Group Partners Meeting, Rice University May 2023 Unearthing InSights into Mars: Unsupervised source separation with limited data Oral presentation T14. International Meeting for Applied Geoscience & Energy August 2022 Velocity continuation with Fourier neural operators for accelerated uncertainty Oral presentation quantification T13. Chrome Media Team, Google December 2021 Low-bitrate speech coding with Transformers Virtual oral presentation

November 2021

Virtual oral presentation

T12. ML4SEISMIC Partners Meeting, Georgia Institute of Technology

Multifidelity conditional normalizing flows for physics-guided Bayesian

inference T11. ML4SEISMIC Partners Meeting, Georgia Institute of Technology November 2021 Uncertainty quantification in imaging and automatic horizon tracking—A Virtual oral presentation Bayesian deep-prior based approach T10. Society of Exploration Geophysicists International Exposition and Annual Meeting September 2021 Learning by example: Fast reliability-aware seismic imaging with Virtual oral presentation normalizing flows [video] T9. Symposium on Advances in Approximate Bayesian Inference January 2021 Preconditioned training of normalizing flows for variational Prerecorded short oral presentation inference in inverse problems [video] T8. European Association of Geoscientists & Engineers Annual Conference & Exhibition December A deep-learning based Bayesian approach to seismic imaging and Virtual oral presentation uncertainty quantification T7. Society of Exploration Geophysicists International Exposition and Annual Meeting Uncertainty quantification in imaging and automatic horizon tracking—A Virtual oral presentation Bayesian deep-prior based approach [video] T6. Society of Exploration Geophysicists International Exposition and Annual Meeting Weak deep priors for seismic imaging Virtual oral presentation T5. Society of Exploration Geophysicists Student Chapter, Georgia Tech February 2020 A deep-learning based Bayesian approach to seismic imaging and uncertainty Oral presentation quantification T4. HotCSE Seminar, CSE Department, Georgia Institute of Technology November 2019 Learned imaging with constraints and uncertainty quantification Oral presentation T3. Society of Exploration Geophysicists International Exposition & Annual Meeting September 2019 Deep-learning based ocean bottom seismic wavefield recovery Oral presentation T2. Society of Exploration Geophysicists International Exposition & Annual Meeting September 2019 Surface-related multiple elimination with deep learning Oral presentation

Professional Service

Editorial Service

examples

► **Acta Geophysica**, Associate Editor Applied Geophysics section

2024 – Present

October 2018

Poster presentation

► **Journal of Mathematics**, Guest Editor 2023 – 2024 Special issue on Applied Mathematics in Inverse Problems and Uncertainty Quantification

T1. Society of Exploration Geophysicists International Exposition & Annual Meeting

Deep convolutional neural networks in prestack seismic—two exploratory

Conference Organization

▶ International Meeting for Applied Geoscience & Energy, Session Chair

2022

Technical Program Committee Member and Reviewer ► Neural Information Processing Systems (NeurIPS) 2023 - 2025► Frontiers in Probabilistic Inference: Sampling Meets Learning (ICLR workshop) 2025 ► International Conference on Machine Learning (ICML) 2024 - 2025► Annual AAAI Conference on Artificial Intelligence 2025 ► Artificial Intelligence and Statistics Conference (AISTATS) 2024 - 2025► International Conference on Learning Representations (ICLR) 2024 - 2025► Advances in Approximate Bayesian Inference (AABI) 2023 - 2024► Structured Probabilistic Inference & Generative Modeling (ICML workshop) 2023 - 2024► International Speech Communication Association (Interspeech) 2023 ► Deep Generative Models for Health (NeurIPS workshop) 2023 ► International Meeting for Applied Geoscience & Energy 2023 **Journal Reviewer** ▶ IEEE Transactions on Neural Networks and Learning Systems ► IEEE Geoscience and Remote Sensing Letters ▶ IEEE Transactions on Geoscience and Remote Sensing ▶ Notices of the American Mathematical Society (AMS) ► Remote Sensing ▶ Journal of Geophysical Research – Solid Earth ► Geophysical Prospecting Geophysics ▶ Geosciences ► Entropy **Industry Research Experience** Google August 2021 - December 2021 Research Intern (cf. A. Siahkoohi et al. (2022b)) San Francisco, CA, USA Chrome Media Team Selected Media Coverage AI's Mad Loops February 2025 Rice Magazine [link] AI Appears to Be Slowly Killing Itself August 2024 **Futurism** When A.I.'s Output Is a Threat to A.I. Itself August 2024 The New York Times [link] Breaking MAD: Generative AI could break the internet July 2024 Rice News, Rice University

April 2024

'Cesspool of AI crap' or smash hit? LinkedIn's AI-powered collaborative articles offer

a sobering peek at the future of content

Fortune

[link]	
AI's 'mad cow disease' problem tramples into earnings season Yahoo!finance [link]	April 2024
'Mad' AI risks destroying the Information Age The Telegraph [link]	February 2024
When AI Is Trained on AI-Generated Data, Strange Things Start to Happen Futurism [link]	August 2023
Episode 194: Improving integration in machine learning workflows Seismic Soundoff Podcast, Society of Exploration Geophysicists [link]	July 2023
Training AI With Outputs of Generative AI Is Mad CDOtrends [link]	July 2023
AIs trained on AI-generated images produce glitches and blurs NewScientist [link]	July 2023
Scientists make AI go crazy by feeding it AI-generated content TweakTown [link]	July 2023
AI Loses Its Mind After Being Trained on AI-Generated Data Futurism [link]	July 2023
Generative AI Goes 'MAD' When Trained on AI-Created Data Over Five Times Tom's Hardware [link]	July 2023
Group Brings Seismic Imaging to Climate-Change Conversations and Beyond College of Computing News, Georgia Institute of Technology [link]	August 2022