Strojno učenje

Uvod u strojno učenje

prof. dr. sc. Bojana Dalbelo Bašić doc. dr. sc. Jan Šnajder

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ak. god. 2011/12.

Nothing is as practical as a good theory.

— Kurt Lewin (1890.-1947.), psiholog

Izazovi

Data Mining Cup 2010

Using the existing characteristics of a customer's initial order, such as order quantity per type of goods, title and delivery weight, a decision must be made on whether to send a voucher worth EUR 5.00. The customers who receive a voucher should be those who would not have decided to re-order by themselves.

IEEE ICDM 2010 DM Competition

Modeling the process of traffic jams formation during morning peak in the presence of roadworks, based on initial information about jams broadcast by radio stations. Input data contain identifiers of road segments closed due to roadworks, accompanied by a sequence of segments where the first jams occurred. The algorithm should predict a sequence of segments where next jams will occur in the nearest future.

Izazovi

ACM KDD Cup 1999

Learn a predictive model (i.e. a classifier) capable of distinguishing between legitimate and illegitimate connections in a computer network.

ACM KDD Cup 2000

Given a set of page views, will the visitor view another page on the site or will the visitor leave? Given a set of page views, characterize killer pages, i.e., pages after which users leave the site. Given a set of page views, characterize which product brand a visitor will view in the remainder of the session.

Sadržaj

- ① Što je strojno učenje?
- Srodna područja
- 3 Pregled postupaka
- 4 Literatura i internetski resursi

Što je strojno učenje?

Strojno učenje (Alpaydin 2009)

Strojno učenje jest programiranje računala na način da optimiziraju neki kriterij uspješnosti temeljem podatkovnih primjera ili prethodnog iskustva.

- Posjedujemo model koji je definiran do na neke parametre
- Učenje: optimizacija parametara modela temeljem podataka
- Model može biti predikcijski ili deskriptivan

Zašto strojno učenje?

Barem tri razloga:

- Složeni problemi ne postoji ljudsko znanje o procesu ili ljudi ne mogu dati objašnjenje o procesu (npr. raspoznavanje govora)
 - problemi koje nije moguće riješiti na klasičan algoritamski način (*Al-complete problems*)
- Ogromne količine podataka ima li znanja u njima?
 - otkrivanje znanja u skupovima podataka (engl. data mining)
- Sustavi koji se dinamički mijenjaju potrebna prilagodba (npr. prilagodba korisničkih sučelja)

NB: To ne znači da sve probleme treba rješavati strojnim učenjem (npr. program za obračun plaća)

Od podataka do znanja

- Učenje općenitih modela iz podataka: od podataka do znanja
- Podataka ima u izobilju (web, tekst, eksperimentalni podatci, skladišta podataka, deep web, dnevnici)

Koliko je ukupno pohranjenih podataka?

Čovječanstvo je od 1986. godine pohranilo ukupno više od 295 eksabajta (295 \times 10¹⁸ bajtova) podataka (*Science Express, 2011.*)

Od podataka do znanja

- Znanje je skupo i potrebno
- Cilj: izgradnja modela koji je dobra i korisna aproksimacija podataka

Primjer: Korisničke transakcije mogu objasniti ponašanje korisnika

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

Model: dobra i korisna aproksimacija!

MY HOBBY: EXTRAPOLATING

Sadržaj

- 1) Što je strojno učenje?
- 2 Srodna područja
- Pregled postupaka
- 4 Literatura i internetski resursi

Interdisciplinarnost strojnog učenja

- Računarstvo, umjetna inteligencija
- Statistika i vjerojatnost (probabilističke metode)
- Raspoznavanje uzoraka
- Računalna teorija složenosti (teoretska ograničenja zbog složenosti učenja)
- Teorija informacije (mjere entropije, optimalno kodiranje...)
- Filozofija (Occamova britva najjednostavnija hipoteza je najbolja)
- Psihologija i neurobiologija

Interdisciplinarnost strojnog učenja

Strojno učenje i statistika

- Temeljni pojmovi u strojnom učenju: indukcija i generalizacija
- Cilj: Za zadani uzorak ograničene veličine, pronaći opće pravilo koje objašnjava podatke
- Statistika: zaključivanje na temelju uzorka
 - generalizacija (engl. generalisation)
 - → zaključivanje (engl. *inference*)
 - učenje (engl. learning)
 - → procjena (engl. estimation)

Strojno učenje i umjetna inteligencija

 Inteligentni sustav treba se prilagođavati okolini

 imati sposobnost učenja. Ako može učiti onda može planirati ponašanje u novim situacijama

- Strojno učenje je okosnica Umjetne inteligencije
 - Robotika
 - Robotski vid
 - Raspoznavanje govora
 - Raspoznavanje uzoraka
 - Obrada prirodnog jezika: parsiranje, razrješavanje višeznačnosti, označavanje vrste riječi
 - Pretraživanje informacija: rangiranje, query log mining
 - Umjetne neuronske mreže
 - ...

Strojno učenje i računarska znanost

Računarska znanost:

- Učinkoviti algoritmi koji rješavaju optimizacijske probleme
- Omogućava predstavljanje modela i njegovu evaluaciju u računalu
- Problemi prostorne i vremenske složenosti

Strojno učenje i kognitivna znanost

Razumijevanje algoritama strojnog učenja ⇔ Razumijevanje ljudske sposobnosti (ili ograničenja) učenja

Thought Reading Experiment:

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/index.html

- Funkcijska magnetska rezonancija (fMRI)
 - Bilježi protok krvi kroz mozak: aktivna područja mozga koriste više kisika.
 - Oslanjanje na činjenicu da molekule u krvnim stanicama reagiraju u magnetskom polju u ovisnosti o količini kisika

- Nema univerzalnog algoritma za učenje! (no free lunch theorem)
 - izumljeni su učinkoviti algoritmi koji rješavaju određen tip problema
 - omogućili su bolje teoretsko razumijevanje učenja

Dubinska analiza podataka

Dubinska analiza podataka (engl. data mining) ili otkrivanje znanja u skupovima podataka (engl. knowledge discovery in datasets) – primjena strojnog učenja na velike baze podataka

- Trgovina: analiza potrošačke košarica, CRM
- Financije: Određivanje kreditne sposobnosti, detekcija zlouporaba kartica
- Proizvodnja: optimizacija, troubleshooting
- Medicina: postavljanje dijagnoza
- Telekomunikacije: optimizacija usluga
- Bioinformatika: analiza izražajnosti gena, poravnavanje
- Text mining: klasifikacija teksta, ekstrakcija informacija
- Računalni vid: prepoznavanje lica, praćenje vozila
- . . .

Sadržaj

- 1) Što je strojno učenje?
- Srodna područja
- Pregled postupaka
- 4 Literatura i internetski resursi

Vrste strojnog učenja

Nadzirano učenje (engl. supervised learning)

Podatci su u obliku (ulaz,izlaz). Cilj učenja jest pronaći preslikavanje $\hat{y} = f(x)$ s ulaza na izlaz

- Ako je y je diskretna vrijednost: klasifikacija
- Ako je y kontinuirana vrijednost: regresija

Nenadzirano učenje (engl. unsupervised learning)

Dani su podaci bez ciljne vrijednosti. Cilj nenadziranog učenja jest pronaći pravilnosti u podacima

• grupiranje (engl. clustering)

Podržano/ojačano učenje (engl. reinforcement learning)

Učenje optimalne strategije na temelju pokušaja s odgođenom nagradom

Nadzirano učenje – primjene

- Predviđanje: na temelju ulaznih vrijednosti predvidjeti buduće
- Ekstrakcija znanja: učenje lako tumačivih moela
- Sažimanje: model koje objašnjava podatke umjesto podataka
- Otkrivanje ekstremnih vrijednosti: iznimke koje nisu pokrivene modelom (npr. zlouporaba)
- Upravljanje: upravljački ulazi dobiveni regresijom

Primjer klasifikacije: Analiza kreditne sposobnosti

- Klasifikacija u svrhu predviđanja
- Cilj: Razlikovanje između grupa klijenata niskog rizika i visokog rizika na temelju podataka o njihovom prihodu i ušteđevini
- Diskriminacijska funkcija: IF prihod $> \theta_1$ AND ušteđevina $> \theta_2$ THEN nizak rizik ELSE visok rizik

Primjer klasifikacije: raspoznavanje lica

- Cilj: prepoznati lice osobe unatoč promjenama u pozi, osvjetljenju, frizuri, šminki te okluzijama (naočale, brada)
- Skup podataka za učenje:

• Budući podatci:

• Baze lica: http://www.face-rec.org/databases/

Primjer klasifikacije: kategorizacija novinskih članaka

KTLab KTN indexer (http://ktlab.fer.hr/en/products/63-ktn-indexing-system)

Primjer klasifikacije: Raspoznavanje simbola LATEX-a

Detexify LaTeX symbol classifier (http://detexify.kirelabs.org/)

Primjer klasifikacije: Raspoznavanje novčanica

Neuronska mreža i generator uzoraka (http://www.zemris.fer.hr/predmeti/su/seminari/)

Klasifikacija – još primjera

- Klasifikacija novinskih dokumenata u rubrike
- Detekcija neželjenih poruka e-pošte (engl. spam detection)
- Predviđanje kretanja dionica
- Određivanje smisla višeznačne riječi
- Raspoznavanje dlanova u svrhu autentikacije
- Automatsko dodjeljivanje ključnih riječi nekom dokumentu
- Medicinska dijagonostika (od simptoma do dijagnoze ili obrnuto)
- Prepoznavanje vrste plesa na temelju ritma
- Predviđanje ishoda nogometnih utakmica
- Klasificiranje mentalnog zdravlja autora teksta
- Predviđanje ocjene filma na temelju ocjena gledatelja

Klasifikacijski algoritmi

- Bayesov klasifikator
- Stroj s potpornim vektorima (engl. support vector machine, SVM)
- Stabla odluke (engl. decision trees)
- Algoritam k-najbližih susjeda
- Perceptron
- Neuronske mreže (višeslojni perceptron)
- Skriveni Markovljev model
- Logistička regresija
- ...

Regresija – primjer

Cilj: Predviđanje cijene rabljenih automobila

- x atributi automobila (prijeđeni km)
- y cijena
- $\hat{y} = f(x|w_0, w_1)$
- model:

$$f(x) = w_1 x + w_0$$

 w₀, w₁ – parametri modela

Nenadzirano učenje – primjene

- Dani su podaci, bez ciljne vrijednosti neoznačeni podaci (engl. unlabeled data)
- Cilj nenadziranog učenja jest naći pravilnosti u podacima
- Tipične primjene:
 - Eksplorativna dubinska analiza podataka
 - Marketing: segmentacija korisnika
 - Biologija: grupiranje biljaka ili životinja prema njihovim značajkama
 - Text mining: grupiranje sličnih dokumenata
 - Pretraživanje informacija: grupiranje sličnih rezultata
 - Bioinformatika: grupiranje DNA-mikropolja
 - Obrada slike: sažimanje slike grupiranjem sl. elemenata sličnih boja

Grupiranje (engl. clustering)

Razvrstavanje podataka u grupe tako da slični podatci budu u istoj grupi, a različiti podatci u različitim grupama.

Primjer: grupiranje rezultata pretraživanja

Carrot² - Open Source Search Results Clustering Engine (http://project.carrot2.org/)

Primjer: grupiranje haploskupina (evolucijska biologija)

Haploskupine – nasljedno, polovično genetičko obilježje, korisno za analizu genetičkog podrijetla populacija

Dieneks' Antrophology Blog, http://dienekes.blogspot.com/2005/08/haplogroup-frequency-correlations-in.html

Primjer: grupiranje DNA-mikropolja (bioinformatika)

Cilj: grupiranje gena sa sličnom izražajnošću (slična izražajnost – slična funkcionalnost)

Algoritmi grupiranja

- Algoritam k-srednjih vrijednosti
- Algoritam maksimizacije očekivanje
- Hijerarhijsko aglomerativno grupiranje
- DBSCAN

Algoritmi – popularnost (dubinska analiza podataka)

lzvor: KDnuggets polls 2007 (http://www.kdnuggets.com/polls/2007/data_mining_methods.htma)

Podržano učenje

- Učenje strategije na temelju serije izlaza
- Nema nadziranog učenja samo odgođena nagrada
- Problem dodjeljivanja nagrade (engl. credit assignment problem)
- Tipične primjene:
 - Igranje igara
 - Robotika i upravljanje
 - Višeagentski sustavi

Primjer: upravljanje humanoidnim robotom

Cilj: generiranje upravljačkih akcija za humanoidnog robota

- problem: 7 ili više stupnjeva slobode (npr. ruka)
- prostor stanja ima 21 ili više dimenzija

TU Darmstadt: Intelligent Autonomous Systems (http://www.robot-learning.de/Research/ReinforcementLearning)

Sadržaj

- 1) Što je strojno učenje?
- Srodna područja
- Pregled postupaka
- 4 Literatura i internetski resursi

Udžbenici

• Ethem Alpaydin: *Introduction to Machine Learning*, MIT Press, 2009.

 Christopher Bishop: Pattern Recognition and Machine Learning, Springer, 2007.

 Tom Mitchell: Machine Learning, McGraw-Hill, 1997.

Udžbenici – dodatni

- Stephen Marsland *Machine Learning: An Algorithmic Perspective*, Chapman and Hall/CRC, 2009.
- Duda, Hart, Stork: Pattern Classification, Wiley-Interscience, 2000.
- Hastie, Tibshirani, Friedman: *Elements of Statistical Learning: Data Mining, Inference, and Prediction*, Springer, 2003.
- Witten, Frank, Hall: Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2011.
- Daphne Koller: Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
- Japkowicz & Shah: Evaluating Learning Algorithms: A Classification Perspective, CUP, 2011.

E-Udžbenici

- Hastie, Tibshirani, Friedman: The Elements of Statistical Learning:
 Data Mining, Inference, and Prediction
 http://www-stat.stanford.edu/~tibs/ElemStatLearn/
- MacKay: Information Theory, Inference, and Learning Algorithms http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
- Sutton & Barto. Reinforcement Learning: An Introduction http://webdocs.cs.ualberta.ca/~sutton/book/ebook/
- Rasmussen & Williams: Gaussian Processes for Machine Learning http://www.gaussianprocess.org/gpml/chapters/
- Barber: Byesian Reasoning and Machine Learning http://www.cs.ucl.ac.uk/staff/d.barber/brml
- Nilsson: Introduction to Machine Learning http://ai.stanford.edu/~nilsson/mlbook.html

Znanstvene konferencije

- International Conference on Machine Learning (ICML)
 http://www.machinelearning.org/icml.html
- European Conference on Machine Learning (ECML)
 ECML11: http://www.ecmlpkdd2011.org/
- Neural Information Processing Systems (NIPS) http://nips.cc/Conferences/
- Uncertainty in Artificial Intelligence (UAI) http://www.auai.org/
- Computational Learning Theory (COLT) http://www.learningtheory.org/
- International Joint Conference on Artificial Intelligence (IJCAI) http://ijcai.org/
- International Conference on Neural Networks (Europe)
 ICANN11: http://www.cis.hut.fi/icann2011/

Znanstveni časopisi

- Journal of Machine Learning Research (www.jmlr.org)
- Machine Learning (www.springer.com/computer/ai/journal/10994)
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association
- . . .

Internetske stranice

- MetaOptimize QA
 Strojno učenje, NLP, AI, IR, vizualizacija i analiza podataka
 http://metaoptimize.com/
- CrossValidated QA
 Statistika, dubinska analiza i vizualizacija podataka http://stats.stackexchange.com/
- KD nuggets http://www.kdnuggets.com/
- Data Mining Cup http://www.data-mining-cup.de/en/
- Machine Learning Summer School (MLSS) http://www.mlss.cc/

On-line predavanja

- Videolectures.net
 videolectures.net/Top/Computer_Science/Machine_Learning/
- Andrew Ng (Stanford): Machine Learning lectures academicearth.org/courses/machine-learning
- Stanford's Machine Learning online course www.ml-class.org/

Programski alati

- Weka (GPL)www.cs.waikato.ac.nz/ml/weka
- Rapid Minner (AGPL) rapid-i.com
- Orange (GPL)www.ailab.si/orange
- R (GPL)www.r-project.org
- Matlab www.mathworks.com/products/matlab

Programski alati – popularnost

lzvor: KDnuggets polls (http://www.kdnuggets.com/2011/05/tools-used-analytics-data-mining.html)

Programski jezici – popularnost

lzvor: KDnuggets polls (http://www.kdnuggets.com/2011/05/tools-used-analytics-data-mining.html)

Skupovi podataka

```
    UCI Repository

  http://www.ics.uci.edu/~mlearn/MLRepository.html

    UCLKDD Archive

  http://kdd.ics.uci.edu/summary.data.application.html
Statlib
  http://lib.stat.cmu.edu/

    Weka datasets

  http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html
Delve
  http://www.cs.utoronto.ca/~delve/
```