embedded VISION SUMMIT 2018

Mythic's Analog Deep Learning Accelerator Chip: High Performance Inference

MYTHIC

Frederick Soo, Ph.D. May 22, 2018

Poor options for high performance embedded deep learning

External GPU

- High power (100W+) weight (1kg+)
- High CAPEX and OPEX

IP core

- ASIC cost and risk
- Pressure on DDR memory buses
- Current solutions not powerful enough for many applications

Secondary processor

- Complexity of second processor
- Does not avoid DDR and power requirements

- DNN processor equivalent to 1 nVidia Titan XP but at less than 2W power
- Single chip can handle Full HD workloads at low latency
- Multiple chips can be hosted on PCIe bus
- **Deterministic execution** statically compiled program, fixed scheduler, guaranteed timing and power
- No DDR needed to support chip
- Low CPU overhead data transfers through PCIe DMA

Mythic analog IP

Mythic compute tile

- Research began in 2012 with first DNNs
- Weights stored on flash transistors and multiply done in analog domain 50x denser than SRAM.
- Best approach out of RRAM, MRAM, weight compression, etc. - noise, stability, compatibility, process
- Partnership and support from major flash memory vendor
- Analog block validation in 2018, with final verification in mid 2019.
- Room for scaling at 40nm can beat current 10nm digital with room for 4-5x process improvement

Mythic chip floorplan

- 50-100 tiles connected by programmable digital network
- Independent compute for multiple applications on a single chip
- Deterministic execution for safety and timing critical applications
- Power gating of tiles to increase efficiency

~15-30x more efficient than SoC-based INT8

Comparable to Titan XP but at

2W power

4 copies of ResNet-50 @ 640x480 30fps can be run on a

single chip

simultaneously

DSP

Mythic estimated performance vs DSP and GPU

Configu ration	GMAC/ sec	Resolutio n	Inferen ces/se c	Average # of active tiles ^a	Power ^c (W)	# of weights (including parallel copies)	pJ/ MAC	TOPS/ W
Mythic	116	224x224	30	3	<0.5	25M		3.3
	3480	224x224	900	98	<2	33M	0.6	
	700	640x480 ^d	30	20	<0.5	25M		
	4800	1920x1080 ^d	30	135 ^b	<3	41M		
SoC DSP ^e	29	224x224	7.6		0.5	N/A	15	0.13
SoC DSPe	80	1920x1080 ^d	0.5	-	0.7	N/A	8.8	0.13
Titan XP ^f	3450	224x224	892	-	167	N/A	48	0.04

aGeneration 1 chip: 50 tiles @ 1M weights/tile.

^bNetwork would be split across three Generation 1 Mythic chips

[°]Mythic estimates; actual dynamic measurements of DSP and GPU using power meter. Does not include CPU+peripherals+static power of DSP (about 1W for DSP) TensorRT INT8; could not generate Full HD INT8 engine (out of memory)

^dFully convolutional version of ResNet-50 – fc1000 1x1 is applied to last convolutional layer, followed by global average pool

eINT 8 runtimes generated using SDK provided by manufacturer

TensorRT INT8; could not generate Full HD INT8 engine (out of memory)

PCIe power consumption is low

Resolution	Raw data rate ^a (gbps) la		% usage	Expected PCIe PHY power ^c
VGA	0.2	1	5.5%	<10mW
Full HD	1.5	1	38%	50-70mW
4K	7.0	2	87%	200mW

^a30fps, 24 bit RGB

^bPCle Gen 2.1: 4gbps/lane

c100mW/lane; VGA - L2 low power mode >

90%; HD - mix of L1 and L2 modes

- Less than 10mW for light loads
- Small power footprint compared to sensor (100mW), SoC +memory (0.5-1W+) and other parts of system (LTE, WiFi)
- 4K supported with 2PCIe Gen 2.1 lanes

Example: SSD with ResNet-18 front enda

Mythic estimated performance

Resolution	Inferences /sec	Input bandwidth (MB/sec)	Average # of active tiles ^b	Power ^c (W)	# of weights (includin g parallel copies)	# of chips
300x300	60	15	5	<0.5	16M	1
VGA	60	53	20	< 0.5	16M	1
Full HD	30	178	60	<1.5	26M	2
4K	30	712	225	<5.0	64M	5

Can scale to Full HD

@ 30fps, 1.3W, single chip

- Multi-camera, 4K can be handled by multiple chips at <5W
- Millisecond-range latency
- Does not include nonmax suppression

^aSSD with atrous architecture – VGG-16 FC layer causes blow-up at higher resolution

bMythic chip Generation 1 - 50 tiles with 1M weights/tile

^cEstimated power

Example: SSD^a 4K multi-chip @ 30fps

- Chip-to-chip daisy-chain
- Each chip handles a subset of neural network layers
- Each chip has 4 lanes, can handle 2GB/sec bidirectional transfers
- 4K video @ 30fps by 5 chips
- More chips to increase throughput, reduce latency, run larger networks
- Low latency some additional overhead from PCIe but still in low milliseconds

Example: OpenPose with ResNet-18 front

Mythic estimated performance vs DSP and GPU

	Resolutio n	Inference s/sec	Averag e # of active tiles ^a	Powe r ^b (W)	# of chips	pJ/ MAC	TOPS/ W
Mythic	328x176	60	26	<1	1		10
	656x368	60	105	<2.5	2	0.2	
	1920x1080	30	444	<10	5		
SoC DSP ^d	656x368	0.7	-	1	-	8.1	0.24
Titan XP ^d	656x368	68.5	-	225	-	18.3	0.1

Can scale to FHD@ 30fps @ <10W

^cGeneration 1 chip has 100 tiles planned. Use multiple chips to increase throughput and lower latency dINT 8 runtimes

⁵⁰⁻¹⁰⁰x more efficient than DSP or GPU running TensorRT-Int8

Can run QVGA 60fps @ <1W

^aConvolutional network only, ResNet-18 front end – does not include video pipeline and post-processing

bEstimated power; DSP and TitanXP power measured using power meter and nVIDIA-SMI, respectively

Example: Video+LIDAR fusion

Mythic estimated performance

Component	Resolution	Rate (fps)	Average # of active tiles	Power ^a (W)
PointNet ^b	300 points x 400 objects	10	54	<1.5
Dense Fusion	300 points x 400 objects	10	22	<0.5
SSDc	Full HD	10	19	<0.5
Total			95	<3.0

- Scale system for higher resolution, frame rate and multiple cameras by adding chips
- Does not include non-max suppression for SSD

Full HD @ 10fps video+LIDAR fusion onto single chip at 2W

^aEstimated power

^bSpatial transform network replaced by camera rotation as in PointFusion paper (https://arxiv.org/pdf/1711.10871.pdf)

cSSD with ResNet-18 front end

Example: Multi-chip PCIe card

# of chips on card	Inference s /sec	Input bandwidth (GB/sec)	PCIe 2.1 Ianes	PCIe 4.0 Ianes
1	30	0.2	0.5	0.1
8	120	1.0	1.9	0.5
32	480	3.8	7.6	1.9

^aFully convolutional version of ResNet-50 – *fc1000* 1x1 is applied to last convolutional layer, followed by global average pool

- Deep networks are not I/O limited
- Most of processing power used on deep layers
- Small fraction of total tile compute is dedicated to input
- For ResNet-50 and similar networks, 4 lanes of PCIe Gen 2.1 sufficient to feed ~16 Mythic chips
- 16 lanes of PCle 4.0 can feed
 ~128 Mythic chips

Tensorflow current target, will also support ONNX and other frameworks

Statically compiled programs - deterministic runtime

Encrypted runtime and secure API

Simple driver API

embedded VISION SUMMIT 2018

How Mythic will get to market

- Highest risks analog design have been mitigated/proven
 - Third generation of analog validation chip
 - Analog performance programming, read, write, power, noise within spec
 - Very low analog power baseline allows us to trade power/noise, offload to digital if necessary
- Hard but solvable parts are ahead digital, software, driver, algorithm:
 - Digital design inter-tile networks, nano-processor, I/O, debug
 - Compiler scheduling, optimization
 - Drivers and software PCle, host-side APIs
 - Algorithms quantization and noise
 - Problems here can be solved through software and firmware

Early adopters

- We are looking for a small set of early adopters:
 - Sophisticated about neural networks
 - Stringent latency, power, throughput and form-factor requirements
 - High value in performance -increased accuracy, speed/power/latency
 - Can prototype/test/deploy quickly (e.g. using Jetson TX2 or QC already, can use PCIe or miniPCIE cards)

- We want to make sure our chips work for developers:
 - Most important models for production
 - Most relevant benchmarks
 - Performance requirements (power, latency, accuracy)
 - Hardware requirements (target SoC, power, form factor)
 - Software requirements (driver, API)
 - Accelerators to market (development kits, reference designs, prototypes)

Take-aways

- 1 Mythic chip ~ Titan XP but at 2W!
- Compatible with Tensorflow and other frameworks
- Scalable by using multiple chips
- Proven analog design
- Launching next spring with PCIe plug-in board
- Work closely with early adopters in 6-12 months on software and integration

Final note

- We are hosting a celebration of our 40M Series B in our Redwood City office!
- Thursday May 31, 2018
- Please RSVP at https://mythic.splashthat.com