MIT OpenCourseWare http://ocw.mit.edu

18.701 Algebra I Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Rotations and Isometries

The field of scalars is the real number field here, and $V = \mathbb{R}^n$ denotes the space of column vectors.

1. Dot Product

The dot product of column vectors $x = (x_1, ..., x_n)^t$ and $y = (y_1, ..., y_n)^t$ is

$$(1.1) (x \cdot y) = x_1 y_1 + \dots + x_n y_n.$$

It is often convenient to write the dot product as the matrix product

$$(1.2) x^t y.$$

The main properties of dot product are:

- $(1.3) |x|^2 = x^t x$, and
- (1.4) $x \perp y$ (x is orthogonal to y) if and only if $x^t y = 0$.

These are really the definitions of the length |x| of a vector and of orthogonality of vectors, and no other definition would make sense.

There is a more general formula that includes both (1.3) and (1.4), namely

$$(1.5) x^t y = |x||y|\cos\theta,$$

where θ is the angle subtended by x and y. This formula requires understanding the meaning of the angle, and we won't take the time to go into that just now.

Theorem 1.6. (Pythagoras) If $x \perp y$ and z = x + y, then $|z|^2 = |x|^2 + |y|^2$.

This is proved by expanding $z^t z$:

$$z^{t}z = (x+y)^{t}(x+y) = x^{t}x + x^{t}y + y^{t}x + y^{t}y = x^{t}x + y^{t}y.$$

Similarly, if $v_1, ..., v_k$ are orthogonal vectors and $w = v_1 + \cdots + v_k$, then

$$|w|^2 = |v_1|^2 + \dots + |v_k|^2.$$

Lemma 1.8. Any set $(v_1,...,v_k)$ of orthogonal nonzero vectors is independent.

Proof. Let $w = c_1v_1 + \cdots + c_kv_k$ be a linear combination, not all c_i being zero. We throw out the terms with $c_i = 0$. The remaining multiples c_iv_i are orthogonal nonzero vectors, so we can replace v_i by c_iv_i . Then if we adjust indices, $w = v_1 + \cdots + v_\ell$, with $\ell \ge 1$. By Pythagoras, $|w|^2 = |v_1|^2 + \cdots + |v_\ell|^2 > 0$, so $w \ne 0$. \square

An orthonormal basis $\mathbf{B} = (v_1, ..., v_n)$ of V is a basis of orthogonal unit vectors (vectors of length one). Another way to say this is that \mathbf{B} is an orthonormal basis if

$$(1.9) v_i^t v_i = \delta_{ii},$$

where δ_{ij} is the Kronecker delta, which by definition is equal to 0 if $i \neq j$ and to 1 if i = j. The Kronecker delta δ_{ij} is the i, j entry of the identity matrix.

2. Orthogonal matrices and orthogonal operators

An $n \times n$ real matrix is *orthogonal* if

$$(2.1) A^t A = I,$$

which is to say, A is invertible and its inverse is A^t .

Lemma 2.2. An $n \times n$ matrix A is orthogonal if and only if its columns form an orthonormal basis.

Proof. Let v_i denote the *i*th column of A. Then v_i^t is the *i*th row of A^t , so the i, j entry of $A^t A$ is $v_i^t v_j$. Then $A^t A = I$ if and only if $v_i^t v_j = \delta_{ij}$.

the next properties of orthogonal matrices are easy to verify:

- (2.3) The orthogonal matrices form a subgroup of GL_n , called the *orthogonal group* O_n . In particular, the transpose of an orthogonal matrix is orthogonal, and the product of orthogonal matrices is orthogonal.
- (2.4) The determinant of an orthogonal matrix is ± 1 . The orthogonal matrices with determinant 1 form a subgroup of O_n of index 2, called the *special orthogonal group* SO_n .

A linear operator $T: V \longrightarrow V$ is an *orthogonal operator* if it preserves dot product, meaning that for every pair of vectors x, y,

$$(2.5) (Tx \cdot Ty) = (x \cdot y).$$

Lemma 2.6. A linear operator T is orthogonal if and only if its matrix A is an orthogonal matrix.

(When talking about the matrix of a linear operator on \mathbb{R}^n , it is assumed that the basis is the standard basis $(e_1, ..., e_n)$, unless another basis is given.)

Sublemma 2.7. Let M be an $n \times n$ matrix. If $x^t M y = x^t y$ for all column vectors x, y, then M = I.

Proof. We compute $e_i^t M e_j$. This is the i, j entry of M. Also, $e_i^t e_j = e_i^t I e_j$ is the i, j entry of the identity matrix. So if $x^t M y = x^t y$ for all x, y, then the entries of M and I are equal.

Proof of Lemma 2.6. If A is the matrix of T with respect to the standard basis, then Tx = Ax and

$$(Tx \cdot Ty) = (Ax)^t (Ay) = x^t A^t Ay.$$

The operator is orthogonal if and only if the right side of this equation is equal to $x^ty = (x \cdot y)$ for all vectors x, y. The sublemma shows that this is also true if and only if A is orthogonal.

3. Orthogonal 2×2 matrices

We have seen that the rotation of the plane \mathbb{R}^2 through the angle θ is the linear operator whose matrix has the form

$$(3.1) R = \begin{pmatrix} c & -s \\ s & c \end{pmatrix},$$

where $c = \cos \theta$ and $s = \sin \theta$.

A linear operator T on \mathbb{R}^2 is a reflection if it has orthogonal eigenvectors v_1, v_2 with eigenvalues 1, -1 respectively. Such an operator reflects the plane about the one-dimensional space spanned by v_1 , and is orthogonal. The standard reflection about the e_1 -axis is given by the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Theorem 3.2. (i) The orthogonal 2×2 matrices with determinant 1 are the rotation matrices (3.1). (ii) The orthogonal 2×2 matrices A with determinant -1 are the matrices

$$(3.3) S = \begin{pmatrix} c & s \\ s & -c \end{pmatrix},$$

with $c = \cos \theta$ and $s = \sin \theta$ as before.

Theorem 3.4. Multiplication by the matrix (3.3) reflects the plane about the one dimensional subspace of \mathbb{R}^2 with slope $\frac{1}{2}\theta$.

Proof of Theorem 3.2. Say that we write an orthogonal matrix as

$$A = \begin{pmatrix} c & r \\ s & t \end{pmatrix}.$$

Because A is orthogonal, its columns are unit vectors. So the point $(c, s)^t$ lies on the unit circle, and therefore $c = \cos \theta$ and $s = \sin \theta$ for some angle θ .

We want to show that A is one of the matrices R or S. This is not a difficult computation, but there is a method that simplifies it a bit. One inspects the product $P = R^{-1}A$. If A = R, then P will be the identity matrix.

We compute the first column of P:

$$P = R^t A = \begin{pmatrix} 1 & u \\ 0 & v \end{pmatrix},$$

for some u, v. Since P is orthogonal, Lemma 2.2 tells us that the second column is a unit vector orthogonal to the first one. So

$$P = \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix}.$$

Since A = RP, we find that A = R if $\det A = 1$, and A = S if $\det A = -1$.

Proof of Theorem 3.4. The characteristic polynomial of the matrix S is $t^2 - 1$, so its eigenvalues are 1 and -1. Let v_1 and v_2 be eigenvectors with these eigenvalues. Then because S is an orthogonal matrix,

$$(v_1 \cdot v_2) = (Sv_1 \cdot Sv_2) = (v_1 \cdot -v_2) = -(v_1 \cdot v_2).$$

It follows that $(v_1 \cdot v_2) = 0$. So the eigenvectors are orthogonal.

To determine the line of reflection, let $c' = \cos \alpha$, $s' = \sin \alpha$, and $v_1 = (c', s')^t$. Then Sv_1 is the vector whose entries are $cc' + ss' = \cos(\theta - \alpha)$ and $sc' - cs' = \sin(\theta - \alpha)$. So v_1 is an eigenvector with eigenvalue 1 if $\alpha = \frac{1}{2}\theta$.

4. Rotations of \mathbb{R}^3

Rotations are more complicated in dimension 3. A rotation of \mathbb{R}^3 is a linear operator ρ with these properties: (4.1) ρ is the identity on a one-dimensional subspace W_1 , the axis of rotation, and rotates the two-dimensional subspace W_2 orthogonal to W_1 .

For example, if the subspace W_1 is the span of e_1 , then W_2 is the span of e_2, e_3 . The matrix of ρ will have the form

(4.2)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{pmatrix},$$

where the bottom right 2×2 minor R is the rotation matrix (3.1). But it is not easy to recognize a rotation about an arbitrary axis.

Theorem 4.3. (Euler's Theorem) The matrices that represent rotations of \mathbb{R}^3 are the orthogonal matrices with determinant 1.

Because the orthogonal matrices with determinant 1 form a group, Euler's theorem has this remarkable consequence, which isn't obvious algebraically or geometrically:

Corollary 4.4. The composition of rotations about arbitrary axes is a rotation about some other axis.

Lemma 4.5. Let A be a 3×3 orthogonal matrix with determinant 1. Then 1 is an eigenvalue of A.

Proof. We must show that det(A-I)=0. We note that $det A^t=1$. Then

$$\det(A - I) = \det(A^{t}(A - I)) = \det(I - A)^{t} = \det(I - A) = -\det(A - I).$$

(If B is an $n \times n$ matrix, $\det(-B) = (-1)^n \det B$.) The relation $\det(A - I) = -\det(A - I)$ shows that $\det(A - I) = 0$.

Proof of Euler's Theorem. Let A be an orthogonal 3×3 matrix A with determinant 1, and let T denote the linear operator of multiplication by A. Lemma 4.5 tells us that T has an eigenvector v_1 with eigenvalue 1, which we choose to be a unit vector. The span W_1 of v_1 will be the axis of rotation of A. We extend to an orthonormal basis $\mathbf{B} = (v_1, v_2, v_3)$ of \mathbb{R}^3 . The span W_2 of (v_2, v_3) is the space orthogonal to W_1 .

The matrix of T with respect to this new basis is $A_1 = P^{-1}AP$, where $P = [\mathbf{B}]$ is the matrix whose columns are v_1, v_2, v_3 . According to Lemma 2.2, P is an orthogonal matrix, hence so is $A_1 = P^tAP$. Morover, the determinant of A_1 is 1.

Since v_1 is an eigenvector with eigenvalue 1, the first column of A_1 is $(1,0,0)^t$. Then v_1 is also an eigenvector of $P^{-1} = P^t$ so the top row of A_1 is (1,0,0), and A_1 has the form

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}.$$

The form of this matrix shows that T sends the space W_2 to itself. Let T' be the restriction of T to W_2 . The matrix of T' with respect to the basis (v_2, v_3) , is the bottom right 2×2 minor of A_1 . Call this matrix R. Because A_1 is orthogonal and has determinant 1, R must be and orthogonal 2×2 matrix with determinant 1, so it is one of the rotation matrices (3.1). This shows that A_1 , and hence T, acts on W_2 by a rotation. Hence T is a rotation about the axis W_1 .

5. Isometries.

By definition, an isometry of \mathbb{R}^n is a distance-preserving map $\phi: \mathbb{R}^n \to \mathbb{R}^n$, a map such that

$$|\phi(u) - \phi(v)| = |u - v|$$

for all u and v in \mathbb{R}^n .

To simplify notation, we use u' to stand for $\phi(u)$. Then the distance-preserving property of ϕ reads

$$|u' - v'| = |u - v|$$
, or

$$(5.2) (u' - v' \cdot u' - v') = (u - v \cdot u - v),$$

for all $u, v \in \mathbb{R}^n$.

Any orthogonal operator is an isometry. So is the translation t_a by a vector a, which is defined by

$$(5.3) t_a(x) = x + a.$$

The composition of isometries is an isometry.

Theorem 5.4. An isometry ϕ of \mathbb{R}^n that fixes the origin $(\phi(0) = 0)$ is an orthogonal operator.

Theorem 5.5. Every isometry ϕ of \mathbb{R}^n is the composition of an orthogonal operator and a translation. More precisely, if $\phi(0) = a$, then $\phi = t_a p$, where p is an orthogonal operator.

The very neat proof of Theorem 5.4 we present here was found a few years ago by Sharon Hollander, when she was a student in 18.701.

Lemma 5.6. Let x and y be vectors in \mathbb{R}^n . If the three dot products $(x \cdot x)$, $(x \cdot y)$, $(y \cdot y)$ are equal, then x = y.

Proof. Suppose that $(x \cdot x) = (x \cdot y) = (y \cdot y)$. To show that x = y, we will show that the length of the vector x - y is zero. This is seen by expanding $|x - y|^2$:

$$((x-y)\cdot(x-y)) = (x\cdot x) - 2(x\cdot y) + (y\cdot y) = 0.$$

Lemma 5.7. An isometry ϕ which fixes the origin preserves dot products, i.e., for all $u, v \in \mathbb{R}^n$,

$$(u' \cdot v') = (u \cdot v).$$

Proof. In our prime notation, the fact that our isometry ϕ fixes the origin reads 0' = 0. We set v = 0 in formula (5.2), finding that $(u' \cdot u') = (u \cdot u)$. Similarly, $(v' \cdot v') = (v \cdot v)$. The lemma follows when we expand (5.2) and cancel $(u \cdot u)$ and $(v \cdot v)$ from the two sides of the equation.

Proof of Theorem 5.4. Let ϕ be an isometry that fixes the origin. Lemma 5.7 will show that ϕ is an orthogonal operator, once we show that it is a linear operator. So we must show that $\phi(u+v) = \phi(u) + \phi(v)$ and that $\phi(cv) = c\phi(v)$, for all column vectors u, v and all real numbers c.

We show first that $\phi(u+v) = \phi(u) + \phi(v)$. Let's introduce a symbol for the sum, writing w = u + v. Using our prime notation, the relation to be shown becomes w' = u' + v'.

We substitute x = w' and y = u' + v' into Lemma 5.6. To show that w' = u' + v', it suffices to show that the three dot products $(w' \cdot w')$, $(w' \cdot (u' + v'))$, and $((u' + v') \cdot (u' + v'))$ are equal. We expand these dot products: It suffices to show that

$$(w' \cdot w') = (w' \cdot u') + (w' \cdot v') = (u' \cdot u') + 2(u' \cdot v') + (v' \cdot v').$$

Lemma 5.7 allows us to drop the primes from these dot products: $(w' \cdot w') = (w \cdot w)$, etc. So we must show that

$$(5.8) (w \cdot w) = (w \cdot u) + (w \cdot v) = (u \cdot u) + 2(u \cdot v) + (v \cdot v).$$

Now whereas w' = u' + v' is to be shown, w = u + v is true by definition. So (5.8) follows by substituting u + v for w.

Next, we show that $\phi(cv) = c\phi(v)$. The proof is similar: Writing w = cv, we must show that w' = cv'. It suffices to show that $(w' \cdot w')$, $(w' \cdot cv')$, and $(cv' \cdot cv')$ are equal, or that

$$(w' \cdot w') = c(w' \cdot v') = c^2(v' \cdot v').$$

Lemma 5.7 allows us to drop primes, and then the equalities become true because w = cv.

Proof of Theorem 4. Let ϕ be an isometry, and let $a = \phi(0)$. Let $p = t_{-a}\phi$. The inverse of t_a is t_{-a} , so $\phi = t_a p$. The theorem amounts to the assertion that p is an orthogonal operator. Since it is the composition of isometries, p is an isometry. Also, $p(0) = t_{-a}\phi(0) = t_{-a}(a) = 0$, so p fixes the origin. Theorem 5.4 shows that p is an orthogonal operator, as required.