

电路基础实验报告

实验 X: XXXXXX

姓名: XXX

学号: XXXXXXXXXX

班号: XXXXXXXX

目录

1	实验任务	2
2	实验仪器 (example)	2
3	实验原理	2
	3.1 XXXXX	2
	3.2 XXXXX	2
	3.3 XXXXX	2
4	实验内容	3
	4.1 XXXXX	3
	4.2 XXXXX	3
	4.3 XXXXX	3
5	数据记录及数据处理	4
	5.1 XXXXX	4
	5.2 XXXXX	4
6	分析与讨论	1

1 实验任务

..... (根据 PPT 内容填充即可)

2 实验仪器 (example)

(请根据具体实验内容修改)

仪器名称	万用表	电阻箱	电容箱	示波器	信号发生器	导线
数量	1	1	1	1	1	若干

3 实验原理

3.1 XXXXX

(此处可以添加公式: e.g.)

$$\left\{ \sum_{i=1}^{n} V_i = 0 \right. \tag{1}$$

(或如:)

在 R_1 、 R_3 、 R_4 、 V_1 构成的回路中:

$$\sum U_1 = -10 + 2.21 + 6.46 + 1.29 = -0.04 \approx 0$$

3.2 XXXXX

3.3 XXXXX

4 实验内容

4.1 XXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

此处可添加图片,一行单图示例如下:(修改 width 值对图片进行缩放,修改 caption 值为图片备注)

图 1: EX1

4.2 XXXXX

此处可添加图片,一行多图示例如下:(修改 width 值对图片进行缩放,修改 caption 值为图片备注,修改 subfigure][值为单个图片备注)

(a) EX1

(b) EX2

图 2: EX

(a) EX1

(b) EX2

图 3: EX

4.3 XXXXX

5 数据记录及数据处理

5.1 XXXXX

(此处可添加数据记录表格,模仿源代码进行修改即可,示例如下:)

电阻 R	R_1	R_2	R_3	R_4	R_5
电压 U/V	6.46	-8.15	2.21	1.29	-1.57

(此处可添加数据处理时所需公式,公式满足 LaTeX 公式标准即可,可以让 GPT 直接生成,也可以自己学习后进行练习。)

e.g.

理论上时间常数 $\tau=RC=~10^{-4}~s$ 测量值 $\tau=1.1*~10^{-4}~s$

5.2 XXXXX

图 4: EX

6 分析与讨论

e.g.

RC 越大, U_c 越接近输入波形, U_r 越趋于平缓。 积分电路: $\tau = RC >> 2T$ (T 为方波的周期) 微分电路: $\tau = RC << 2T$ (T 为方波的周期)