Parsing

UC Davis LIN 177 Winter 2022

Kenji Sagae

- Last time in LIN 177
 - CFG
 - PCFG
 - Extracting PCFG rules from trees
 - Parsing

Context Free Grammars

- A context-free grammar is a tuple $G = (N, \Sigma, R, S)$, where
 - *N* is a set of *nonterminal symbols*
 - (e.g. NP, VP, S)
 - Σ is a set of terminal symbols
 - (e.g. noun, verb)
 - (e.g. house, sees)
 - R is a set of *rules* (or *productions*) of the form $A \rightarrow \beta$, where $A \in N$ and $\beta \in (N \cup \Sigma)^*$
 - $S \in N$ is a start symbol

 $S \rightarrow NP VP$

 $NP \longrightarrow Det N$

 $VP \rightarrow V NP$

 $NP \longrightarrow Det N PP$

 $PP \rightarrow P NP$

 $VP \rightarrow V NP PP$

Det \rightarrow the

 $N \rightarrow dog$

 $N \longrightarrow boy$

 $N \rightarrow park$

 $V \longrightarrow saw$

 $P \rightarrow in$

 $S \longrightarrow NP \ VP$ Det \longrightarrow the NP \longrightarrow Det N \longrightarrow dog NP \longrightarrow V NP \longrightarrow N \longrightarrow boy NP \longrightarrow Det N PP \longrightarrow N \longrightarrow park PP \longrightarrow P NP \longrightarrow V \longrightarrow Saw PP \longrightarrow V NP PP \longrightarrow P \longrightarrow in


```
(S (NP (Det (The)) (N (boy)) )
(VP (V (saw))
(NP (Det (the)) (N (dog))))
```

Top-Down Parsing

- Start with Start symbol
 - In our example, S
- Repeat this:
 - If the leftmost symbol is a terminal symbol, match it against the input
 - If everything matches, done
 - If the leftmost symbol is a non-terminal, expand it using a rule in the grammar
 - Find a rule that will lead to the right terminal symbol

S	\longrightarrow	NP VP	Det \longrightarrow th	е
NP	\longrightarrow	Det N	$N \rightarrow dog$	
VP	\longrightarrow	V NP	$N \rightarrow boy$	
NP	\longrightarrow	Det N PP	$N \rightarrow park$	
PP	\longrightarrow	P NP	$V \longrightarrow saw$	
۷P	\longrightarrow	V NP PP	$P \longrightarrow in$	

S	\longrightarrow	NP VP	Det \longrightarrow the
NP	\longrightarrow	Det N	$\mathbb{N} \longrightarrow \mathrm{dog}$
VP	\longrightarrow	V NP	$\mathbb{N} \longrightarrow \text{boy}$
NP	\longrightarrow	Det N PP	$\mathbb{N} \longrightarrow \text{park}$
PP	\longrightarrow	P NP	$V \longrightarrow saw$
VP	\longrightarrow	V NP PP	$P \rightarrow in$

 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$

 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$


```
S \longrightarrow NP VP
NP \longrightarrow Det N
VP \longrightarrow V NP
NP \longrightarrow Det N PP
PP \longrightarrow P NP
VP \longrightarrow V NP PP
```


 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$


```
S \longrightarrow NP VP
NP \longrightarrow Det N
VP \longrightarrow V NP
NP \longrightarrow Det N PP
PP \longrightarrow P NP
VP \longrightarrow V NP PP
```



```
S \longrightarrow NP VP
NP \longrightarrow Det N
VP \longrightarrow V NP
NP \longrightarrow Det N PP
PP \longrightarrow P NP
VP \longrightarrow V NP PP
```


S	\longrightarrow	NP VP	Det \longrightarrow the
NP	\longrightarrow	Det N	$\mathbb{N} \longrightarrow \mathrm{dog}$
VP	\longrightarrow	V NP	$\mathbb{N} \longrightarrow \text{boy}$
NP	\longrightarrow	Det N PP	$\mathbb{N} \longrightarrow \text{park}$
PP	\longrightarrow	P NP	$V \longrightarrow saw$
VP	\longrightarrow	V NP PP	$P \rightarrow in$

 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$

 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$

 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$

 $S \longrightarrow NP VP$ $NP \longrightarrow Det N$ $VP \longrightarrow V NP$ $NP \longrightarrow Det N PP$ $PP \longrightarrow P NP$ $VP \longrightarrow V NP PP$

S	\longrightarrow	NP VP
NP	\longrightarrow	NP PP
NP	\longrightarrow	Det N
VP	\longrightarrow	V NP
PP	\longrightarrow	P NP
VΡ	\longrightarrow	VP PP

Det \rightarrow the N \rightarrow park N \rightarrow dog N \rightarrow boy V \rightarrow saw P \rightarrow in

. . .

Det N	Р	Det	N	V	Det	NI	$S \rightarrow NP VP$	1.0
The man	-					-	$NP \rightarrow Pro$	0.22
							$NP \rightarrow Det N$	0.67
							$NP \rightarrow NP PP$	0.11
							$VP \rightarrow V NP$	0.75
							$VP \rightarrow VP PP$	0.25
							$PP \rightarrow P NP$	1.0

Det N P Det N V Det N	$S \rightarrow NP VP$	1.0
The man with the telescope saw the dog	$NP \rightarrow Pro$	0.22
	$NP \rightarrow Det N$	0.67
	$NP \rightarrow NP PP$	0.11
	$VP \rightarrow V NP$	0.75
	$VP \rightarrow VP PP$	0.25
	$PP \rightarrow P NP$	1.0

Det N P Det N V Det N
The man with the telescope saw the dog

Det	Ν	Р	Det	N	V	Det	Ν
The	man	with	the	telescope	saw	the	dog

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

Det N P Det N V Det N	$S \rightarrow NP VP$	1.0
The man with the telescope saw the dog	$NP \rightarrow Pro$	0.22
0.67	$NP \rightarrow Det N$	0.67
	$NP \rightarrow NP PP$	0.11
	$VP \rightarrow V NP$	0.75
	$VP \rightarrow VP PP$	0.25

1.0

 $PP \rightarrow P NP$

Det	Ν	Р	Det	ſ	V	V	Det	N
The	man	with	the	teles	cope	saw	the	dog
0.67	* 0.6	7						

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

Det	Ν	Р	Det	N	V	Det	N	
The man with the telescope saw the dog								
0.67	* 0.6	7 * ().67					

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

Det N P Det N V Det N	$S \rightarrow NP VP$	1.0
The man with the telescope saw the dog	$NP \rightarrow Pro$	0.22
0.67 * 0.67 * 0.67 * 1.0	$NP \rightarrow Det N$	0.67
	$NP \rightarrow NP PP$	0.11
	$VP \rightarrow V NP$	0.75
	$VP \rightarrow VP PP$	0.25
	$PP \rightarrow P NP$	1.0

		-		N	-		
The	man	with	the t	elescope	saw	the	dog
0.67	* 0.67	7 * C).67 *	1.0 * 0.75			

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

Det	N	Р	Det	Ν	V	Det	Ν
The	man	with	n the te	elescop	e sav	v the	dog
0.67	* 0.6	7 * (0.67 * 1	.0 * 0.75	5 * 0.	11	

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

Det N P Det N V Det N
The man with the telescope saw the dog

0.67 * 0.67 * 0.67 * 1.0 * 0.75 * 0.11 * 1.0

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

Det N P Det N V Det N

The man with the telescope saw the dog

0.67 * 0.67 * 0.67 * 1.0 * 0.75 * 0.11 * 1.0 = 0.025

				S			
		NP		`			
		/ \					
			\		\		
			PP			VP \	
					/		
Ν	Р]	NP		N	P
Det	Ň	Р	Det	N	V	Det	Ν
The	man	with	the	telescope	saw	the	dog

$S \rightarrow NP VP$	1.0
$NP \rightarrow Pro$	0.22
$NP \rightarrow Det N$	0.67
$NP \rightarrow NP PP$	0.11
$VP \rightarrow V NP$	0.75
$VP \rightarrow VP PP$	0.25
$PP \rightarrow P NP$	1.0

 Prolog can tell us which sentences are in the language defined by the grammar.

```
s \rightarrow np, vp.
np \longrightarrow det, n.
vp --> v, np.
\det --> [the].
\det --> [a].
n \longrightarrow [boy].
n \longrightarrow [dog].
v \rightarrow [saw].
```

 Here we a new property (def/indef) to determiners. If a determiner is det(def), we need to call it det(def) when we use it in a rule. The np rule now only allows det(def), and not det(indef).

```
s --> np, vp.
np --> det(def), n.
vp --> v, np.

det(def) --> [the].
det(indef) --> [a].
n --> [boy].
n --> [dog].
v --> [saw].
```

 But instead of saying det(def) in the rule, we can use a variable. In the grammar below, the variable D will take on the value def or indef as necessary, but we don't do anything with that value.

```
s --> np, vp.
np --> det(D), n.
vp --> v, np.

det(def) --> [the].
det(indef) --> [a].
n --> [boy].
n --> [dog].
v --> [saw].
```

Now we pass that value to the resulting np. So an np made with a det(def) will be np(def), and an np made with a det(indef) will be np(indef). We update the rules where we use an np. But we don't use the def/indef property of the np.

```
s --> np(A), vp.
np(D) --> det(D), n.
vp --> v, np(B).

det(def) --> [the].
det(indef) --> [a].
n --> [boy].
n --> [dog].
v --> [saw].
```

 Finally, we can pass the def/indef property of the np to the s.

```
s(A) \longrightarrow np(A), vp.
np(D) \longrightarrow det(D), n.
vp \rightarrow v, np(B).
det(def) \longrightarrow [the].
det(indef) \longrightarrow [a].
n \longrightarrow [boy].
n \longrightarrow [dog].
v --> [saw].
```

 Now the s will have the same def/indef value as the determiner used in the first np. (The np inside the vp also has a def/indef value, but we don't use it anywhere in this grammar.)

```
s(A) --> np(A), vp.
np(D) --> det(D), n.
vp --> v, np(B).

det(def) --> [the].
det(indef) --> [a].
n --> [boy].
n --> [dog].
v --> [saw].
```

 We could keep track of the def/indef value of both the first np and the np inside the vp. For the np inside the vp, we just pass the value to the vp. Then, when we use the vp, it will have a def/indef value. And we can pass that value to s.

```
s(definiteness(subj(A), obj(C))) --> np(A), vp(C).
np(D) --> det(D), n.
vp (B) --> v, np(B).

det(def) --> [the].
det(indef) --> [a].
n --> [boy].
n --> [dog].
v --> [saw].
```

• We can see the what this grammar generates:

```
?-s(X,Y,[]).
X = definiteness(subj(def), obj(def)),
Y = [the, boy, saw, the, boy]
X = definiteness(subj(def), obj(def)),
Y = [the, boy, saw, the, dog]
X = definiteness(subj(def), obj(indef)),
Y = [the, boy, saw, a, boy]
X = definiteness(subj(def), obj(indef)),
Y = [the, boy, saw, a, dog]
X = definiteness(subj(def), obj(def)),
Y = [the, dog, saw, the, boy]
X = definiteness(subj(def), obj(def)),
Y = [the, dog, saw, the, dog]
X = definiteness(subj(def), obj(indef)),
Y = [the, dog, saw, a, boy]
X = definiteness(subj(def), obj(indef)),
Y = [the, dog, saw, a, dog]
X = definiteness(subj(indef), obj(def)),
...
```

Syntactic Analysis

He likes fish

Syntactic Analysis

Syntactic Analysis

Dependency Structure

Structural Ambiguity

• I use a spoon to feed cats, and I do this in the garden

• I use a spoon to feed cats, the spoon is in the garden

• I feed cats, the cats have a spoon, the spoon is in the garden

 I feed cats, the cats have a spoon, the feeding takes place in the garden