Step1: Convert Routing Sheet into a Machine Graph Matrix

Input: Routing Sheet

Table 1. Routing sheet

Part Number	Sequence of Machines	Total Batch Machining Time (minutes per operation)	Batch Size
1	1,4,8,9	96-36-36-72	2
2	1,4,7,4,8,7	36-120-20-120-24-20	3
3	1,2,4,7,8,9	96-48-36-120-36-72	1
4	1,4,7,9	96-36-120-72	3
5	1,6,10,7,9	96-72-200-120-72	2
6	6,10,7,8,9	36-120-60-24-36	1
7	6,4,8,9	72-36-48-48	2
8	3,5,2,6,4,8,9	144-120-48-72-36-48-48	1
9	3,5,6,4,8,9	144-120-72-36-48-48	1
10	4,7,4,8	120-20-120-24	2
11	6	72	3
12	11,7,12	192-150-80	1
13	11,12	192-60	1
14	11,7,10	288-180-360	3
15	1,7,11,10,11,12	15-70-54-45-54-30	1
16	1,7,11,10,11,12	15-70-54-45-54-30	2
17	11,7,12	192-150-80	1
18	6,7,10	108-180-360	3
19	12	60	2

Output: Machine Graph Matrix

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	0	3	0	1	2	0	0	0	0	0
2	0	0	0	1	0	1	0	0	0	0	0	0
3	0	0	0	0	2	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	6	0	0	0	0
5	0	1	0	0	0	1	0	0	0	0	0	0
6	0	0	0	3	0	0	1	0	0	2	0	0
7	0	0	0	2	0	0	0	2	2	2	2	2
8	0	0	0	0	0	0	1	0	6	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	2	0	0	0	2	0
11	0	0	0	0	0	0	3	0	0	2	0	3
12	0	0	0	0	0	0	0	0	0	0	0	0

Step2: Iteratively start to form Cells using Machine Graph Matrix until all values in the matrix are 0

- Iteration Step 1 Start:
 - O Get the most frequent routing pairs (4,8) & (8,9)

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	0	3	0	1	2	0	0	0	0	0
2	0	0	0	1	0	1	0	0	0	0	0	0
3	0	0	0	0	2	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	6) 0	0	0	0
5	0	1	0	0	0	1	0	0	0	0	0	0
6	0	0	0	3	0	0	1	0	0	2	0	0
7	0	0	0	2	0	0	0	2	2	2	2	2
8	0	0	0	0	0	0	1	0	6) 0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	2	0	0	0	2	0
11	0	0	0	0	0	0	3	0	0	2	0	3
12	0	0	0	0	0	0	0	0	0	0	0	0

- It is self-explanatory green rectangle is the starting machine and red rectangle is the ending machine.
- For all the routing pairs, utilizing the ending machine, continue the routing flow by performing the search using them as starting machine until it leads to a dead-end (Row with all zeros).
- Once a routing path is completed in a dead-end, mark it as a cell and assign the values in the matrix to 0

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	0	3	0	1	2	0	0	0	0	0
2	0	0	0	1	0	1	0	0	0	0	0	0
3	0	0	0	0	2	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	6	0	0	0	0
5	0	1	0	0	0	1	0	0	0	0	0	0
6	0	0	0	3	0	0	1	0	0	2	0	0
7	0	0	0	2	0	0	0	2	2	2	2	2
8	0	0	0	0	0	0	1	0	6	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	2	0	0	0	2	0
11	0	0	0	0	0	0	3	0	0	2	0	3
12	0	0	0	0	0	0	0	0	0	0	0	0

• Iteration Step 1 Output:

o Cell1:4->8->9

o Cell2:8->9

- Iteration Step 2 Start:
 - Get the most frequent routing pairs (4,7)

	1	2	3	4	5	6	7	8	9	10	11	12
1		1	0	3	0	1	2	0	0	0	0	0
2	0	0	0	1	0	1	0	0	0	0	0	0
3	0	0	0	0	2	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0
5	0	1	0	0	0	1	0	0	0	0	0	0
6	0	0	0	3	0	0	1	0	0	2	0	0
7	0	0	0	2	0	0	0	2	2	2	2	2
8	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	2	0	0	0	2	0
11	0	0	0	0	0	0	3	0	0	2	0	3
12	0	0	0	0	0	0	0	0	0	0	0	0

	1	2	3	4	5	6	7	T	8	9	10	11	12
1		1	0	3	0	1		2	0	0	0	0	0
2	0	0	0	1	0	1		0	0	0	0	0	0
3	0	0	0	0	2	0		0	0	0	0	0	0
4	0	0	0	0	0	0		4	0	0	0	0	0
5	0	1	0	0	0	1		0	0	0	0	0	0
6	0	0	0	3	0	0		1	0	0	2	0	0
7	0	0	0	2	0	0		0	2	2	2	2	2
8	0	0	0	0	0	0		1	0	0	0	0	0
9	0	0	0	0	0	0		0	0	0	0	0	0
10	0	0	0	0	0	0		2	0	0	0	2	0
11	0	0	0	0	0	0		3	0	0	2	0	3
12	0	0	0	0	0	0		0	0	0	0	0	0

- o Loops are not allowed. So end the search when search hits dead-end or forms a loop.
- Iteration Step 2 Output:

o Cell3:4->7->4

- Iteration Step 3 Start:
 - o Get the most frequent routing pairs (1,4), (6,4), (11,7) & (11,12)

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	0	3	0	1	2	0	0	0	0	0
2	0	0	0	1	0	1	0	0	0	0	0	0
3	0	0	0	0	2	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	1	0	0	0	0	0	0
6	0	0	0	(3	0	0	1	0	0	2	0	0
7	0	0	0	0	0	0	0	2	2	2	2	2
8	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	2	0	0	0	2	0
11	0	0	0	0	0	0	(3	0	0	2	0	(3)
12	0	0	0	0	0	0	0	0	0	0	0	0

- o End the search when search hits dead-end or forms a loop.
- Iteration Step 3 Output

o Cell4:1->4

o Cell5: 6-> 4

o Cell6:11->7->11

o Cell7:11->12

- Iteration Step 4 Start:
 - \circ Get the most frequent routing pairs: (3, 5) , (1, 7), (10, 7), (7, 8), (7, 9) , (6,10) , (7, 10) , (11,10), (10, 11) & (7, 12)

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	0	0	0	1	(2) 0	0	0	0	0
2	0	0	0	1	0	1	0	0	0	0	0	0
3	0	0	0	0	(2)	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	0	0	1	0	0	(2)) 0	0
7	0	0	0	0	0	0	0	2) (2) (2)	0	2
8	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	2	0	0	Q	(2)	0
11	0	0	0	0	0	0	0	0	0	[2]	0	0
12	0	0	0	0	0	0	0	0	0	Ō	0	0

- End the search when search hits dead-end or forms a loop or has a fork (2 or more options).
- Iteration Step 4 Output

o Cell8:3->5->2,6

o Cell9: 1-> 7, 8, 9, 10, 12

Cell10: 10 -> 7Cell11: 7-> 8 -> 7

o Cell12:7->9

o Cell13:6->10->11->10

Cell14: 7-> 10
Cell15: 11 -> 10
Cell16: 10 -> 11
Cell17: 7-> 12

• Iteration Step 5 Start:

Get the most frequent routing pairs: (1, 2), (2, 4), (1, 6), (2, 6) & (6, 7)

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	Q	0	_0	0	(1	0	0	0	0	0	0
2	0	0	0	(1	0	<u>(1</u>	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	(1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0

- End the search when search hits dead-end or forms a loop or has a fork (2 or more options).
- Iteration Step 5 Output:

o Cell18:1->2,4,6

o Cell19:2->4

○ Cell20:1->6->7

o Cell21:2->6

o Cell22:6->7

Summary of the Cells with reason code for the end of search path

1		1	1: Dead-end
1 [4,8,9]	1		2: Loop
2 [8,9]	2	1	_
3 [4,7,4]	3	(2) S. FOIR
4 [1,4]	4	1	
5 [6,4]	5	1	
6 [11,7,11]	6	2	
7 [11,12]	7	1	
8 [3,5,2,6]	8	(3	D
9 [1,7,8,9,10,12]	9	3	
10 [10,7]	10	1	
11 [7,8,7]	11	. 2	
12 [7,9]	12	1	
13 [6,10,11,10]	13	2	
14 [7,10]	14	1	
15 [11,10]	15	1	
16 [10,11]	16	1	
17 [7,12]	17	1	
18 [1,2,4,6]	18	3	
19 [2,4]	19	1	
20 [1,6,7]	20	1	
21 [2,6]	21	. 1	
22 [6,7]	22	1	

Processing the cells

- For cells which ended with dead-end have natural ending. So, they will have first priority for forming machine cells.
- Group the cells which have same ending machine
- Then combine any Sub-set Cells

Original Set

- Dead-end cell formation output:
 - o Cell1: 1, 2, 4,6
 - o Cell2: 1,6,7,10
 - o Cell3: 4, 7, 8, 9
 - o Cell4: 7, 10, 11, 12
- Are there still machines not part of the above Cells?
 - o Yes:
 - Use cells derived from loops (1), followed by forks (2) to cover the unused machines.
 - Based on number of common machines, either merge the cells into existing dead-end cells or create a new cell.
 - o No:
 - End the cell formation process

loopCells

1	[6,10,11,10]
2	[4,7,4]
3	[11,7,11]
4	[7,8,7]

deadEndCells

Final Cell Configuration

1	[1,2,3,4,5,6]	İ
2	[1,6,7,10]	
3	[4,7,8,9]	Γ
4	[7,10,11]	Γ
5	[7,11,12]	I

forkCells

1	[1,7,8,9,10,12]
2	[3,5,2,6]
3	[1,2,4,6]

Final Output

- Cell1: 1, 2, 3, 4, 5, 6
- Cell 2: 1, 6, 7, 10
- Cell 3: 4, 7, 8, 9
- Cell 4: 7, 10, 11
- Cell 5: 7, 11, 12