Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 27 de enero de 2022

Grupo, apellidos y nombre: 1,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/6)$.

1 Dados los siguientes 3 nodos de un árbol de clasificación con muestras pertenecientes a 3 clases:

$$\begin{array}{c|ccccc} c & 1 & 2 & 3 \\ \hline n_1 & 2/12 & 5/12 & 5/12 \\ n_2 & 3/11 & 4/11 & 4/11 \\ n_3 & 5/11 & 3/11 & 3/11 \\ \end{array}$$

donde cada fila indica la probabilidad "a posteriori" de cada clase en el nodo. ¿Cuál de las siguientes desigualdades es cierta?

- A) $\mathcal{I}(n_1) < \mathcal{I}(n_3) < \mathcal{I}(n_2)$
- B) $\mathcal{I}(n_3) < \mathcal{I}(n_2) < \mathcal{I}(n_1)$
- C) $\mathcal{I}(n_1) < \mathcal{I}(n_2) < \mathcal{I}(n_3)$
- D) $\mathcal{I}(n_2) < \mathcal{I}(n_3) < \mathcal{I}(n_1)$

Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$ y alfabeto $\Sigma = \{a, b\}$. Dada la cadena x = bbb, la aproximación de Viterbi a $P_M(x)$, $\tilde{P}_M(x)$, se ha hallado mediante el algoritmo de Viterbi:

$$\begin{split} V_{11} &= \pi_1 B_{1b} = 0.3000 \\ V_{21} &= \pi_2 B_{2b} = 0.3333 \\ V_{12} &= \max(V_{11} A_{11} B_{1b}, V_{21} A_{21} B_{1b}) = \max(0.0450, 0.1000) = 0.1000 \\ V_{22} &= \max(V_{11} A_{12} B_{2b}, V_{21} A_{22} B_{2b}) = \max(0.0500, 0.0556) = 0.0556 \\ V_{13} &= \max(V_{12} A_{11} B_{1b}, V_{22} A_{21} B_{1b}) = \max(0.0150, 0.0167) = 0.0167 \\ V_{23} &= \max(V_{12} A_{12} B_{2b}, V_{22} A_{22} B_{2b}) = \max(0.0167, 0.0093) = 0.0167 \\ \tilde{P}(\text{bbb}) &= \max(V_{13} A_{1F}, V_{23} A_{2F}) = \max(0.0083, 0.0042) = 0.0083 \end{split}$$

El camino más probable (uno de los caminos más probables, si hay más de uno) mediante el cual M genera x es:

- A) 112 F
- B) 2 1 1 F
- C) 122F
- D) 2 2 1 F

3 Sea un problema de clasificación en tres clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error del clasificador $c(\mathbf{x})$ dado en la tabla, ε :

- A) $\varepsilon < 0.25$.
- B) $0.25 < \varepsilon < 0.50$.
- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

x	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c = 1 \ c = 2 \ c = 3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.1 0.7	0.2	2
0 1	0.4 0.3 0.3	0	1
1 0	0.3 0.4 0.3	0.4	3
1 1	0.4 0.4 0.2	0.4	1

4 Dada la siguiente tabla de frecuencias conjuntas de las 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
N(A,B,C)	124	28	227	175	126	222	23	75

¿Cuál es el valor de $P(A=1 \mid B=1, C=0)$?

- A) 0.023
- B) 0.250
- C) 0.092
- D) 0.446

5 Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$ y alfabeto $\Sigma = \{a, b\}$. Tras la aplicación de una iteración del algoritmo de reestimación por Viterbi, se ha obtenido la tabla de probabilidades de transición entre estados que se muestra a la derecha. ¿A partir de qué tabla de frecuencias de transición entre estados se ha obtenido?

A	1	2	F
1	$\frac{4}{9}$	$\frac{1}{9}$	$\frac{4}{9}$
2	$\frac{4}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- C) A 1 2 F 1 8 2 8 2 12 3 3

 $6 \, \bigcap$ La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, \bullet y \circ :

Si intercambiamos de clúster los puntos $(10,1)^t$ y $(7,1)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 27 de enero de 2022

Grupo, apellidos y nombre: 1,

Problema sobre Perceptrón

En la tabla de la izquierda se proporciona un conjunto de 3 muestras bidimensionales de aprendizaje de 3 clases, mientras que en la tabla de la derecha se proporciona un conjunto de pesos iniciales para cada clase.

n	x_{n1}	x_{n2}	c_n	
1	-2	-2	1	
2	0	0	2	
3	2	2	3	

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
w_{c0}	0	-1	-1
w_{c1}	-2	0	4
w_{c2}	-2	0	4

Se pide:

- 1. (1.5 puntos) Realiza una traza de ejecución de una iteración del algoritmo Perceptrón, con factor de aprendizaje $\alpha=1$, margen $\gamma=0.1$ utilizando los pesos iniciales proporcionados.
- 2. (0.5 puntos) Representa gráficamente las regiones de decisión del clasificador resultante, así como las fronteras de decisión necesarias para su representación.