Package 'fnets'

April 4, 2022

2 common.predict

Index																				2	(
	sim.commo sim.var threshold		 							 										1	8
	sim.commo sim.commo																				

common.predict

Forecasting the factor-driven common component

Description

Produces forecasts of the common component for a given forecasting horizon by estimating the best linear predictors

Usage

```
common.predict(
  object,
  x,
  h = 1,
  common.method = c("restricted", "unrestricted"),
  r = NULL
)
```

Arguments

object fnets object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method a string specifying the method for common component forecasting; possible values are:

• "restricted" performs forecasting under a restrictive static factor model

• "unrestricted" performs forecasting under an unrestrictive, blockwise VAR representation of the common component

number of static factors; if common.method = "restricted" and r = NULL, it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein (2013)

Value

r

a list containing	
is	in-sample estimator of the common component
fc	forecasts of the common component for a given forecasting horizon h
r	static factor number
h	forecast horizon

fnets 3

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

Forni, M., Hallin, M., Lippi, M. & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

Examples

```
set.seed(123)
n <- 500
p <- 50
common <- sim.common1(n, p)
idio <- sim.var(n, p)
x <- common$$\$$$data + idio$$$data
out <- fnets(x, q = NULL, idio.var.order = 1, idio.method = "lasso", lrpc.method = "none")
cpre <- common.predict(out, x, h = 1, common.method = 'restricted', r = NULL)
ipre <- idio.predict(out, x, cpre, h = 1)</pre>
```

fnets

Factor-adjusted network estimation

Description

Operating under factor-adjusted vector autoregressive (VAR) model, the function estimates the spectral density and autocovariance matrices of the factor-driven common component and the idiosyncratic VAR process, the impulse response functions and common shocks for the common component, and VAR parameters, innovation covariance matrix and long-run partial correlations for the idiosyncratic component.

Usage

```
fnets(
    x,
    center = TRUE,
    q = NULL,
    ic.op = 5,
    kern.const = 4,
    common.args = list(var.order = NULL, max.var.order = NULL, trunc.lags = 20, n.perm = 10),
    idio.var.order = 1,
    idio.method = c("lasso", "ds"),
```

4 fnets

```
idio.args = list(n.iter = 100, tol = 0, n.cores = min(parallel::detectCores() - 1,
  3)),
lrpc.method = c("par", "npar", "none"),
cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE)
```

Arguments

X	input time series matrix, with each row representing a variable
center	whether to de-mean the input x row-wise
q	number of factors. If q = NULL, the factor number is estimated by an information criterion-based approach of Hallin and Liška (2007), see hl.factor.number for further details
ic.op	choice of the information criterion, see hl.factor.number for further details
kern.const	constant multiplied to floor($(\dim(x)[2]/\log(\dim(x)[2]))^{(1/3)}$) which determines the kernel bandwidth for dynamic PCA
common.args	a list specifying the tuning parameters required for estimating the impulse re-

sponse functions and common shocks. It contains:

- var.order order of the blockwise VAR representation of the common component. If var. order = NULL, it is selected blockwise by Schwarz criterion
- max.var.order maximum blockwise VAR order for the Schwarz criterion
- trunc.lags truncation lag for impulse response function estimation
- n.perm number of cross-sectional permutations involved in impulse response function estimation

idio.var.order order of the idiosyncratic VAR process; if a vector of integers is supplied, the order is chosen via cross validation

> a string specifying the method to be adopted for idiosyncratic VAR process estimation; possible values are:

- "lasso" Lasso-type 11-regularised M-estimation
- "ds" Dantzig Selector-type constrained 11-minimisation

a list specifying the tuning parameters required for estimating the idiosyncratic VAR process. It contains:

- n.iter maximum number of descent steps; applicable when idio.method = "lasso"
- tol numerical tolerance for increases in the loss function; applicable when idio.method = "lasso"
- n. cores number of cores to use for parallel computing, see makePSOCKcluster; applicable when idio.method = "ds"

a string specifying the type of estimator for long-run partial correlation matrix estimation; possible values are:

- "par" parametric estimator based on the VAR model assumption
- "npar" nonparametric estimator from inverting the long-run covariance matrix of the idiosyncratic component via constrained 11-minimisation

idio.args

idio.method

1rpc.method

fnets 5

• "none" do not estimate the long-run partial correlation matrix

cv.args

a list specifying arguments for the cross validation procedures for selecting the tuning parameters involved in VAR parameter and (long-run) partial correlation matrix estimation. It contains:

- n.folds number of folds
- path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
- do.plot whether to plot the output of the cross validation step

Details

See Barigozzi, Cho and Owens (2021) for further details.

Value

an S3 object of class fnets, which contains the following fields:

number of factors a list containing estimates of the spectral density matrices for x, common and spec idiosyncratic components a list containing estimates of the autocovariance matrices for x, common and acv idiosyncratic components common.irf if $q \ge 1$, a list containing estimators of the impulse response functions (as an array of dimension (p,q,trunc.lags + 2)) and common shocks (an array of dimension (q,n)) for the common component idio.var a list containing the following fields: • beta estimate of VAR parameter matrix; each column contains parameter estimates for the regression model for a given variable • Gamma estimate of the innovation covariance matrix

- lambda regularisation parameter
- convergence returned when idio.method = "lasso"; indicates whether a convergence criterion is met
- var.order VAR order

lrpc see the output of par.lrpc if lrpc.method = 'par' and that of npar.lrpc if lrpc.method

if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

idio.method input parameter lrpc.method input parameter kern.const input parameter

References

mean.x

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

6 fnets.var

See Also

predict.fnets, plot.fnets

Examples

```
## Not run:
set.seed(123)
n <- 500
p <- 50
common <- sim.common1(n, p)
idio <- sim.var(n, p)
x <- common$\frac{1}{2} \text{data} \text{data}
out <- fnets(x, q = NULL, idio.var.order = 1, idio.method = "lasso",
lrpc.method = "par", cv.args = list(n.folds = 1, path.length = 10, do.plot = TRUE))
pre <- predict(out, x, h = 1, common.method = 'unrestricted')
plot(out, type = 'granger', display = 'network', threshold = .05)
plot(out, type = 'lrpc', display = 'heatmap', threshold = .05)
## End(Not run)</pre>
```

fnets.var

11-regularised Yule-Walker estimation for VAR processes

Description

Estimates the VAR parameter matrices via 11-regularised Yule-Walker estimation and innovation covariance matrix via constrained 11-minimisation.

Usage

```
fnets.var(
    x,
    center = TRUE,
    method = c("lasso", "ds"),
    lambda = NULL,
    var.order = 1,
    cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
    n.iter = 100,
    tol = 0,
    n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

x input time series matrix, with each row representing a variable

center whether to de-mean the input x row-wise

method a string specifying the method to be adopted for VAR process estimation; possi-

ble values are:

fnets.var 7

	 "lasso" Lasso-type 11-regularised M-estimation
	 "ds" Dantzig Selector-type constrained 11-minimisation
lambda	regularisation parameter; if lambda = NULL, cross validation is employed to select the parameter $$
var.order	order of the VAR process; if a vector of integers is supplied, the order is chosen via cross validation
cv.args	a list specifying arguments for the cross validation procedure for selecting the regularisation parameter (and VAR order). It contains:
	• n.folds number of folds
	• path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
	• do.plot whether to plot the output of the cross validation step
n.iter	maximum number of descent steps; applicable when method = "lasso"
tol	numerical tolerance for increases in the loss function; applicable when method = "lasso" $$
n.cores	number of cores to use for parallel computing, see makePSOCKcluster; appli-

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

cable when method = "ds"

Value

a list which contains the following fields:

				_	
beta	estimate of VAR	parameter matrix:	each column	contains	parameter estimates

for the regression model for a given variable

Gamma estimate of the innovation covariance matrix

lambda regularisation parameter

convergence returned when method = "lasso"; indicates whether a convergence criterion is

met

var.order VAR order

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

8 hl.factor.number

Examples

hl.factor.number

Factor number estimator of Hallin and Liška (2007)

Description

Estimates the number of factors by minimising an information criterion over sub-samples of the data. Currently the three information criteria proposed in Hallin and Liška (2007) (ic.op = 1, 2 or 3) and their variations with logarithm taken on the cost (ic.op = 4, 5 or 6) are implemented, with ic.op = 5 recommended as a default choice based on numerical experiments.

Usage

```
hl.factor.number(x, q.max = NULL, mm, w = NULL, do.plot = FALSE, center = TRUE)
```

Arguments

X	input time series matrix, with each row representing a variable
q.max	maximum number of factors; if $q.max = NULL$, a default value is selected as $min(50,floor(sqrt(min(dim(x)[2]-1,dim(x)[1]))))$
mm	integer representing the kernel bandwidth
W	vector of length $2 * mm + 1$ containing symmetric weights; if $w = NULL$, default weights are generated using the Bartlett kernel and mm
do.plot	whether to plot the values of six information criteria
center	whether to de-mean the input x row-wise

Details

See Hallin and Liška (2007) for further details.

idio.predict 9

Value

a list containing	
q.hat	a vector containing minimisers of the six information criteria
Gamma_x	an array containing the estimates of the autocovariance matrices of x at 2 \star mm + 1 lags
Sigma_x	an array containing the estimates of the spectral density matrices of x at 2 \star mm + 1 Fourier frequencies
SV	a list containing the singular value decomposition of Sigma_x

References

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Examples

```
library(fnets)

set.seed(123)
n <- 500
p <- 50
common <- sim.common2(n, p)
idio <- sim.var(n, p)
x <- common$$\frac{1}{2}$ apply(idio$$$ data, 1, sd)/apply(common$$ data, 1, sd) + idio$$ data

hl <- hl.factor.number(x, q.max = NULL, mm = floor(4 * (n/log(n))^(1/3)), do.plot = TRUE)
hl$$q</pre>
```

idio.predict

Forecasting idiosyncratic VAR process

Description

Produces forecasts of the idiosyncratic VAR process for a given forecasting horizon by estimating the best linear predictors

Usage

```
idio.predict(object, x, cpre, h = 1)
```

Arguments

object	fnets object
X	input time series matrix, with each row representing a variable
cpre	output of common.predict
h	forecast horizon

npar.lrpc

Value

a list containing	
is	in-sample estimator of the idiosyncratic component
fc	forecasts of the idiosyncratic component for a given forecasting horizon h
h	forecast horizon

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Examples

npar.lrpc

Nonparametric estimation of long-run partial correlations of factoradjusted VAR processes

Description

Returns a nonparametric estimate of long-run partial correlations of the VAR process from the inverse of long-run covariance matrix obtained via constrained 11-minimisation.

Usage

```
npar.lrpc(
  object,
  x,
  eta = NULL,
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  do.correct = TRUE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

npar.lrpc 11

Arguments

object	fnets object
x	input time series matrix; with each row representing a variable
eta	regularisation parameter; if eta = NULL, it is selected by cross validation
cv.args	a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:
	 n. folds number of folds path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value do.plot whether to plot the output of the cross validation step
do.correct	whether to correct for any negative entries in the diagonals of the inverse of long-run covariance matrix
n.cores	number of cores to use for parallel computing, see makePSOCKcluster

Value

a list containing

Omega estimated inverse of the long-run covariance matrix

1rpc estimated long-run partial correlation matrix

eta regularisation parameter

```
## Not run:
set.seed(123)
n <- 500
p <- 50
common <- sim.common1(n, p)
idio <- sim.var(n, p)
x <- common$\frac{data}{data} + idio$\frac{data}{data}
out <- fnets(x, q = NULL, idio.method = 'lasso', lrpc.method = 'none')
nlrpc <- npar.lrpc(out, x, cv.args = list(n.folds = 1, path.length = 10, do.plot = TRUE))
out$lrpc <- nlrpc
out$lrpc.method <- 'npar'
plot(out, type = 'lrpc', display = 'heatmap', threshold = .05)
## End(Not run)</pre>
```

12 par.lrpc

par.lrpc	Parametric estimation of long-run partial correlations of factor-
	adjusted VAR processes

Description

Returns a parametric estimate of long-run partial correlations of the VAR process from the VAR parameter estimates and the inverse of innovation covariance matrix obtained via constrained 11-minimisation.

Usage

```
par.lrpc(
  object,
  x,
  eta = NULL,
  cv.args = list(n.folds = 1, path.length = 10, do.plot = FALSE),
  adaptive = FALSE,
  eta.1 = NULL,
  do.correct = TRUE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object	fnets object
X	input time series matrix; with each row representing a variable
eta	regularisation parameter; if eta = NULL, it is selected by cross validation
cv.args	a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:
	• n.folds number of folds
	• path.length number of regularisation parameter values to consider; a sequence is generated automatically based in this value
	 do.plot whether to plot the output of the cross validation step
adaptive	whether to use the adaptive estimation procedure
eta.1	regularisation parameter for Step 1 of the adaptive estimation procedure; if eta.1 = NULL, defaults to $2 * sqrt(log(dim(x)[1])/dim(x)[2])$
do.correct	whether to correct for any negative entries in the diagonals of the inverse of long-run covariance matrix
n.cores	number of cores to use for parallel computing, see makePSOCKcluster

Details

See Barigozzi, Cho and Owens (2021) for further details, and Cai, Liu and Zhou (2016) for further details on the adaptive estimation procedure.

plot.fnets 13

Value

a list containing

Delta estimated inverse of the innovation covariance matrix
Omega estimated inverse of the long-run covariance matrix
pc estimated innovation partial correlation matrix
lrpc estimated long-run partial correlation matrix

eta regularisation parameter

adaptive was the adaptive procedure used

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

Cai, T. T., Liu, W., & Zhou, H. H. (2016). Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44(2), 455-488.

Examples

```
## Not run:
set.seed(123)
n <- 500
p <- 50
common <- sim.common1(n, p)
idio <- sim.var(n, p)
x <- common$\frac{1}{2}\text{ata} + idio$\frac{1}{2}\text{ata}
out <- fnets(x, q = NULL, idio.method = 'lasso', lrpc.method = 'none')
plrpc <- par.lrpc(out, x, cv.args = list(n.folds = 1, path.length = 10, do.plot = TRUE))
out$lrpc <- plrpc
out$lrpc.method <- 'par'
plot(out, type = 'pc', display = 'network', threshold = .05)
plot(out, type = 'lrpc', display = 'heatmap', threshold = .05)
## End(Not run)</pre>
```

plot.fnets

Plotting the networks estimated by fnets

Description

Plotting method for S3 objects of class fnets. Produces a plot visualising three networks underlying factor-adjusted VAR processes: (i) directed network representing Granger causal linkages, as given by estimated VAR transition matrices summed across the lags, (ii) undirected network representing contemporaneous linkages after accounting for lead-lag dependence, as given by partial correlations of VAR innovations, (iii) undirected network summarising (i) and (ii) as given by long-run partial correlations of VAR processes.

14 plot.fnets

Usage

```
## S3 method for class 'fnets'
plot(
    x,
    type = c("granger", "pc", "lrpc"),
    display = c("network", "heatmap"),
    names = NA,
    groups = NA,
    threshold = 0,
    ...
)
```

Arguments

x fnets object

type a string specifying which of the above three networks (i)–(iii) to visualise; pos-

sible values are

• "granger" directed network representing Granger causal linkages

• "pc" undirected network representing contemporaneous linkages; available when x\$1rpc.method = "par"

• "lrpc" undirected network summarising Granger causal and contemporaneous linkages; available when x\$lrpc.method = "par" or x\$lrpc.method = "npar"

display

a string specifying how to visualise the network; possible values are:

• "network" as an igraph object, see plot.igraph

• "heatmap" as a heatmap, see imagePlot

names a character vector containing the names of the vertices

groups an integer vector denoting any group structure of the vertices

threshold if threshold > 0, hard thresholding is performed on the matrix giving rise to

the network of interest

... additional arguments

Details

See Barigozzi, Cho and Owens (2021) for further details.

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

See Also

fnets

predict.fnets 15

predict.fnets Fore

Forecasting by fnets

Description

Produces forecasts of the data for a given forecasting horizon by separately estimating the best linear predictors of common and idiosyncratic components

Usage

```
## $3 method for class 'fnets'
predict(
  object,
    x,
    h = 1,
    common.method = c("restricted", "unrestricted"),
    r = NULL,
    ...
)
```

Arguments

object fnets object

x input time series matrix, with each row representing a variable

h forecasting horizon

common.method a string specifying the method for common component forecasting; possible values are:

• "restricted" performs forecasting under a restrictive static factor model

• "unrestricted" performs forecasting under an unrestrictive, blockwise VAR representation of the common component

number of static factors; if common.method = "restricted" and r = NULL, it is estimated as the maximiser of the ratio of the successive eigenvalues of the estimate of the common component covariance matrix, see Ahn and Horenstein (2013)

... not used

Value

r

a list containing

forecast for the given forecasting horizon

common.pred a list containing forecasting results for the common component

idio.pred a list containing forecasting results for the idiosyncratic component

mean.x mean.x argument from object

sim.common1

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

See Also

fnets, common.predict, idio.predict

sim.common1

Simulate data from a dynamic factor model

Description

Simulate the common component following a dynamic factor model that does not admit a static representation; see the model (C1) in the reference.

Usage

```
sim.common1(n, p, q = 2, heavy = FALSE)
```

Arguments

n sample size p dimension

q number of dynamic factors

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series q number of factors

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110

```
common <- sim.common1(500, 50)</pre>
```

sim.common2

sim.common2	Simulate data from a static factor model	

Description

Simulate the common component following a dynamic factor model that admits a static representation; see the model (C2) in the reference.

Usage

```
sim.common2(n, p, q = 2, heavy = FALSE)
```

Arguments

n	sample size
р	dimension
q	number of dynamic factors; number of static factors is given by $2 * q$
heavy	if heavy = FALSE, common shocks are generated from rnorm whereas if heavy = TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated seriesq number of factorsr number of static factors

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

```
common <- sim.common2(500, 50)</pre>
```

18 sim.var

	٠				
S	1	m	ν	а	r

Simulate a VAR(1) process

Description

Simulate a VAR(1) process; see the reference for the generation of the transition matrix.

Usage

```
sim.var(n, p, Gamma = diag(1, p), heavy = FALSE)
```

Arguments

n sample size p dimension

Gamma innovation covariance matrix; ignored if heavy = TRUE

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data generated series
A transition matrix

Gamma innovation covariance matrix

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series.

```
idio <- sim.var(500, 50)
```

threshold 19

threshold	Edge selection for VAR parameter, inverse innovation covariance, and long-run partial correlation matrices
	iong run partai corretation martices

Description

Thresholds the entries of the input matrix at a data-driven level to perform edge selection

Usage

```
threshold(mat, path.length = 500, do.plot = FALSE)
```

Arguments

mat input parameter matrix

path.length number of candidate thresholds do.plot whether to plot thresholding output

Details

See Barigozzi, Cho and Owens (2021) and Liu, Zhang, and Liu (2021) for more information on the threshold selection process

Value

a list which contains the following fields:

threshold data-driven threshold network thresholded input

References

Barigozzi, M., Cho, H. & Owens, D. (2021) FNETS: Factor-adjusted network analysis for high-dimensional time series. arXiv preprint arXiv:2201.06110.

Liu, B., Zhang, X., & Liu, Y. (2021). Simultaneous Change Point Inference and Structure Recovery for High Dimensional Gaussian Graphical Models. Journal of Machine Learning Research, 22(274), 1-62.

```
set.seed(123) A \leftarrow diag(.7, 50) + rnorm(50^2, 0, .1) threshold.A \leftarrow threshold(A)
```

Index

```
common.predict, 2, 9, 16
fnets, 3, 14, 16
fnets.var, 6
hl.factor.number, 4, 8
{\tt idio.predict}, 9, {\it 16}
imagePlot, 14
makePSOCKcluster, 4, 7, 11, 12
\mathsf{npar.lrpc}, 5, 10
par.lrpc, 5, 12
plot.fnets, 6, 13
plot.igraph, 14
predict.fnets, 6, 15
sim.common1, 16
sim.common2, 17
\operatorname{sim.var}, 18
threshold, 19
```