Chapitre

Fonctions de référence

15

15.1 Fonction carré

Définition 15.1 La fonction carré est la fonction définie sur \mathbb{R} par $f(x) = x^2$

Un carré est toujours positif ou nul : pour tout $x \in \mathbb{R}$ on a $x^2 \geqslant 0$.

Proposition 15.1 — sens de variation. La fonction carré est strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;-\infty[$:

- Si $a < b \le 0$ alors $a^2 > b^2 \ge 0$
- Si $0 \leqslant a < b$ alors $0 \leqslant a^2 < b^2$

Figure 15.1 – Tableau de variation de la fonction carré

Démonstration.

pas de solution $S = \emptyset$

solution unique $S = \{0\}$

2 solutions $S = \{-\sqrt{k}; \sqrt{k}\}$

L'inéquation $x^2 \leqslant k$ n'a pas de solution : $S = \emptyset$ L'inéquation $x^2 \geqslant k$ est toujours vraie : $S = \mathbb{R}$

L'inéquation $x^2 \leqslant k$ a pour ensemble solution $S = [-\sqrt{k}; \sqrt{k}]$ L'inéquation $x^2 \geqslant k$ a pour ensemble solution $S =]-\infty; -\sqrt{k}] \cup [\sqrt{k}; +\infty[$

15.1 Fonction carré 3

Exercices: Fonction carré

Exercice 1 — calculer les images et antécédents par une fonction carré.

f est la fonction carré définie dans \mathbb{R} par $f(x) = x^2$

- a) Sans calculatrice. Calculer (et simplifier) les images de $-\sqrt{6}$, 10^{-2} , $\frac{7}{12}$ et $1-\sqrt{2}$.
- b) Quels sont les antécédents éventuels de 10? de 0? de -4?

Exercice 2 — Révisions. Résoudre dans \mathbb{R} les inéquations suivantes en isolant x^2 .

a)
$$x^2 = 9$$

b)
$$3x^2 = 5$$

b)
$$3x^2 = 5$$
 c) $2x^2 - 5 = 3$ d) $1 - 4x^2 = 5$ e) $3x^2 - 5 = 13$

d)
$$1 - 4x^2 = 5$$

e)
$$3x^2 - 5 = 13$$

Exercice 3 — Résoudre des inéquations de la forme f(x) < k. En s'aidant éventuellement de la courbe de la fonction carré, donner les solutions des inéquations suivantes d'inconnues x:

a)
$$x^2 \ge 9$$

d)
$$x^2 < -5$$

g)
$$12 < x^2 < 18$$

h) $0 \le x^2 < 27$
i) $-5 < x^2 \le 2$

b)
$$x^2 > 3$$

d)
$$x^2 < -5$$

e) $x^2 > -5$
f) $5 \le x^2 \le 7$

h)
$$0 \le x^2 < 27$$

c)
$$-2 < x^2$$

f)
$$5 \le x^2 \le 7$$

i)
$$-5 < x^2 \le 2$$

Exercice 4 — Utiliser le sens de variation de la fonction carré. Comparer et encadrer si possible a^2 et b^2 dans les cas suivants :

a) Si
$$0 \ge a > b$$
 alors $a^2 \dots b^2 \dots$ c) Si $a < b < 10$ alors $a^2 \dots b^2 \dots$

■ Exemple 15.2 — Utiliser le sens de variation de la fonction carré.

Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux a^2 dans chaque cas suivant :

$$2\sqrt{3} < a \leqslant 4$$

$$-5 < a < 3$$

Exercice 5 Mêmes consignes

a)
$$a > 3\sqrt{2}$$

c)
$$-5 \le a < -2$$

g)
$$-5 < a < 0$$

b)
$$-2 < a \le 0$$

d)
$$0 < a < 2\sqrt{7}$$

f)
$$a < -5$$

h)
$$-5 < a$$

Exercice 6 — Comparer x^2 et x pour différentes valeurs de $x \in \mathbb{R}$.

- a) Résoudre dans \mathbb{R} l'inéquation $x^2 > x$.
- b) Sans calculs supplémentaires donner l'ensemble solution de $-x^2 > -x$.
- c) Si x > 1, ranger dans l'ordre croissant : $0, -x, x, x^2$ et $-x^2$.
- d) Si 0 < x < 1, ranger dans l'ordre croissant : $0, -x, x, x^2$ et $-x^2$.

15.2 Fonction cube

Théorème 15.3 — Identités remarquables avec des cubes.

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

 $D\'{e}monstration.$

Théorème 15.4 — Identités remarquables avec des cubes.

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$
$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Démonstration.

15.2 Fonction cube 5

Définition 15.2 La fonction cube est la fonction f définie sur $\mathbb R$ d'expression $f(x)=x^3$

Proposition 15.5 — sens de variation. La fonction cube est strictement croissante sur \mathbb{R} .

x	$-\infty$		0		$+\infty$
$f(x) = x^3$	$-\infty$ $-$		÷ -0		$+\infty$
Signe de $f(x)$		_	0	+	

Figure 15.3 – Tableau de variation de la fonction cube

Théorème 15.6 — équation $x^3=k$ **d'inconnue** x. Pour tout $k \in \mathbb{R}$, l'équation $x^3=k$ admet une unique solution notée $k^{\frac{1}{3}}=\sqrt[3]{k}$.

■ Exemple 15.7 Résoudre graphiquement l'équation $x^3 > 2$ d'inconnue x

LG Jeanne d'Arc, 2nd
Année 2021/2022

Exercices: Fonction cube

Exercice 1 — calculer les images et antécédents par une fonction cube.

f est la fonction cube définie dans \mathbb{R} par $f(x) = x^3$

- a) Sans calculatrice. Calculer (et simplifier) les images de 2, -3, 4 et -5.
- b) Quels sont les antécédents éventuels de -8? de 125? de 9? de -9?
- **Exemple 15.8** Résoudre équations et inéquations en isolant x^3 .

$$x^3 > 27$$

$$3x^3 + 12 \geqslant 204$$

$$-3x^3 + 15 \ge 207$$

Exercice 2 Résoudre dans \mathbb{R} les équations suivantes en isolant x^3 .

$$(E_1) x^3 = 9$$

$$(E_2) 10x^3 + 8 = -632 (E_3) -9x^3 - 1 = 575 (E_4) 3x^3 = 5$$

Exercice 3 Résoudre dans \mathbb{R} les inéquations suivantes en isolant x^3 .

$$(I_1) \ x^3 > 9$$

$$(I_3) 3x^3 > 375$$

$$(I_5) -9x^3 - 1 < 575$$

$$(I_2) \ x^3 \leqslant 27$$

$$(I_4) 2x^3 - 14 > -30$$

Exercice 4 — Utiliser le sens de variation de la fonction cube. Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux a^3 dans chaque cas suivant:

a)
$$a \geqslant -5$$

c)
$$-3 \le a < 2$$

e)
$$2 \leqslant a \leqslant 5$$

g)
$$-5 < 2a \le 1$$

b)
$$a < 2$$

d)
$$-2 < a \le 5$$

f)
$$-2 > a \ge -1$$

Exercice 5 — Comparer x^3 , x^2 et x pour différentes valeurs de $x \in \mathbb{R}$.

- b) Si x > 1, ranger dans l' ordre croissant :0, x, 1, x^3 et x^2 .
- c) Si 0 < x < 1, ranger dans l'ordre croissant 0, x, 1, x^3 et x^2 .
- d) Ci-contre les représentations graphiques des fonctions $f: x \mapsto x^2$, $q: x \mapsto x$ et $h: x \mapsto x^3$. Associer chaque courbe à la fonction correspondante.

15.3 Fonction inverse 7

15.3 Fonction inverse

Définition 15.3 La fonction inverse est définie sur $\mathbb{R} \setminus \{0\} =]-\infty; 0[\cup]0; -\infty[$ par

$$f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$$

$$x \mapsto y = \frac{1}{x}$$

Théorème 15.9 Pour $x \neq 0$, l'image de x par f est aussi l'antécédent de x par f. En effet f(f(x)) = x.

Proposition 15.10 — sens de variation. f est strictement décroissante sur chacun des intervalles $]0; -\infty[$ et $:]-\infty; 0[$:

Si
$$a < b < 0$$
 alors $\frac{1}{b} < \frac{1}{a} < 0$

Si
$$0 < a < b$$
 alors $0 < \frac{1}{b} < \frac{1}{a}$

 $D\'{e}monstration.$

x	$-\infty$ () +∞
f(x)	$0 \longrightarrow -\infty$	$+\infty$ 0
signe de $f(x)$	_	+

Figure 15.4 – Tableau de variation de la fonction inverse

LG Jeanne d'Arc, 2nd
Année 2021/2022

 $\begin{array}{ll} \textbf{Figure 15.5} - \text{La courbe représentative} \\ \text{de la fonction inverse dans un repère} \\ \text{orthonormé est l'hyperbole} \\ \text{d'équation} \\ \mathcal{C} \colon y = \frac{1}{x} \text{ (on peut aussi dire } \mathcal{C} \colon xy = 1 \text{)} \\ \end{array}$

■ Exemple 15.11 Résoudre graphiquement les inéquation $\frac{1}{x} > 2$ et $\frac{1}{x} > -3$ d'inconnue x

x	$-\infty$	$+\infty$
signe de		
signe de		
signe de		

Exercices: Fonction inverse

Exercice 1 — calculer les images et antécédents par une fonction inverse.

f est la fonction inverse définie dans $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x}$

- a) Sans l'aide de la calculatrice, exprimer l'image par la fonction inverse de chacun des nombres réels suivants sans laisser de racine carrée au dénominateur : $2\sqrt{3}$, $-\sqrt{2}$, $\frac{\sqrt{3}}{2}$ et $\frac{1+\sqrt{5}}{2}$.
- b) Exprimer l'antécédent des nombres suivants par la fonction inverse sous la forme d'un entier ou d'une fraction d'entiers : $\frac{2}{3}$, $-\frac{3}{2}$, 10^{-2} , 0,001, -10^3 et -10^{-4} .
- Exemple 15.12 Résoudre équations et équations en isolant $\frac{1}{x}$.

$$\frac{1}{x} = 12$$

$$\frac{3}{x} = -11$$

$$\frac{1}{x} + 8 = \frac{10}{13}$$

$$40 - \frac{14}{r} = 20$$

Exercice 2 Résoudre dans \mathbb{R} les équations suivantes en isolant $\frac{1}{x}$.

$$(E_1) \ \frac{1}{x} = 2$$

$$(E_1)$$
 $\frac{1}{x} = \frac{2}{7}$ (E_2) $\frac{1}{x} = \frac{-1}{7}$

$$(E_3)$$
 $\frac{15}{x} = \frac{-5}{17}$

$$(E_3) \frac{15}{x} = \frac{-5}{17}$$

$$(E_4) \frac{2}{x} = 26$$

$$(E_5) \frac{-7}{m} = 2$$

$$(E_5) \frac{-7}{x} = 2$$

$$(E_6) \frac{1}{x} - 11 = \frac{10}{23}$$

■ Exemple 15.13 — Résoudre équations et inéquations en isolant $\frac{1}{x}$.

$$\frac{1}{x} > 5$$

$$\frac{1}{x} \leqslant 2$$

$$\frac{1}{x} \leqslant -3$$

$$\frac{1}{x} \geqslant -\frac{1}{2}$$

Exercice 3 Résoudre dans \mathbb{R} les inéquations suivantes en isolant $\frac{1}{x}$.

$$(I_1)$$
 $\frac{1}{x} \geqslant 7$

$$\left| (I_3) \right| \frac{1}{x} >$$

$$(I_5) \frac{1}{x} \leqslant 2$$

$$(I_2) \frac{1}{x} < -\frac{3}{2}$$

$$(I_3) \frac{1}{x} > -2$$

$$(I_4) \frac{1}{x} > -\frac{2}{5}$$

$$\left| \begin{array}{cc} (I_5) & \frac{1}{x} \leqslant 2 \\ (I_6) & \frac{1}{x} \leqslant \frac{2}{5} \end{array} \right|$$

Exercice 4 — Utiliser le sens de variation de la fonction inverse. En s'aidant de la courbe de la fonction inverse ou de son tableau de variation donner un encadrement de $\frac{1}{x}$ dans chaque cas :

- a) x > 3
- d) $2 \le x < 5$
- g) $-4 \le x < 0$
- j) $-4 \le x < 0$

- b) $x > \frac{2}{3}$

- $\begin{array}{c} \mathbf{k} \) \ -4 < x \\ \mathbf{l} \) \ x < 0 \end{array}$

- c) 3 > x > 0
- e) $\frac{2}{5} < x \le \frac{7}{8}$ h) $x \le -8$ f) $-5 \le x < -2$ i) $x \le -\frac{2}{3}$

15.4 Fonction racine carrée

Définition 15.4 La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $f: [0; +\infty[$ $\to \mathbb{R}$

$$x \mapsto y = \sqrt{x}$$

Sa représentation graphique est la courbe « \mathscr{C} : $y = \sqrt{x}$ »

Proposition 15.14 — sens de variation. La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

Si
$$0 \le a < b$$
 alors $0 \le \sqrt{a} < \sqrt{b}$

Démonstration.

Figure 15.6 – Tableau de variation de la fonction racine carrée

x	$0 + \infty$
$f(x) = \sqrt{x}$	
Signe de $f(x)$	

