Statistical Analysis of Coding Sequences

Set-up of an R package statanacoseq distributed on GitHub to carry future implementations of Codon Bias Indexes. Master Thesis 2016
presented on August 12 2016
at the Faculty of Science
Institute of Plant Sciences (IPS)
in the master program of Bioinformatics
University of Bern and University of Fribourg

for the master degree in Bioinformatics and Computational Biology by

Fredy Siegrist

accepted on the faculty reunion:

Declaration

under Art. 28 Para. 2 RSL 05

Last, first name: Siegrist Fredy

Matriculation number: 99-119-380

Programme: Bioinformatics and Computational Biology

Thesis title: Statistical Analysis of Coding Sequences

Thesis supervisor: Dr. Cannarozzi Gina

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, except where due acknowledgement has been made in the text. In accordance with academic rules and ethical conduct, I have fully cited and referenced all material and results that are not original to this work. I am well aware of the fact that, on the basis of Article 36 Paragraph 1 Letter o of the University Law of 5 September 1996, the Senate is entitled to deny the title awarded on the basis of this work if proven otherwise. I grant insprection of my thesis.

Bern, 12.08.2016

University of Bern, 2016

 $u^{^{\mathsf{D}}}$

UNIVERSITÄT BERN But for a champion, the lasting memory is always the loss in the race unfinished.

[...] My race is now unfinished.

— Abebe Bikila from Atletu (2009)

To my friends...

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Bern, August 12 2016

Fredy Siegrist

Preface

A preface is not mandatory. It would typically be written by some other person (eg your thesis director).

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Bern, August 12 2016

Gina Cannarozzi

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Key words: R package; Codon Bias; Codon Usage; Statistical Analysis

Zusammenfassung

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Stichwörter: R Sammlung; Kodon-Vorliebe; Kodon-Gebrauch; Statistische Analyse

Contents

Ac	knov	vledgements	
Pr	eface		ii
Αb	strac	et (English / Deutsch)	`
Lis	st of 1	igures	x
Lis	st of	ables	xii
Int		ction Aim	
1	1.1	Getting familiar with the data	3
2	R pa 2.1	Generation of R package	10
3	3.1	scription of Darwin Code Transcription of Darwin functions	
4	Vigr 4.1 4.2	statanacoseq	

Contents

		Tests	
	4.4	4.4.1 Indices	
		4.4.2 Helperfunctions	
	15	Sampledata	
	4.5	·	
		4.5.1 External Data	
		4.5.2 Datasets	15
5	Outl	look	17
	5.1	Codon Bias Indices	17
	5.2	Biological meaning and statistics	18
	5.3	Package development	
6	R pa	ackage on GitHub	19
A	An a	appendix - the Darwin code for codon indices	21
Bil	bliog	raphy	29
Cu	ırricu	ılum Vitae	31

List of Figures

tOCU	
.000	

List of Tables

5 1	Codon Rias Indices	17

Introduction

This document is written based on a Generic EPFL Thesis Template in LaTeX v. 5.57 and is SUBDUE to further changes as it should be included in the GitHub project and some of the Chapters should contain text elements that are used to build up a proper R vigniette of the package. Meaning to give examples for the usage of the different indices and functions for biological interpretation with the code for repeating the *in silico* experiments by applying the code lines step by step or by copy pasting the entire code for a sample experiment wich raw data can be found in a public database. . . .

0.1 Aim

We are aiming to set up a tool to automatically calculate and evaluate statistical properties of codon bias, especially implementing the calculation for different codon bias indices and for genes of organisms where its genome is sequenced for the most part. That means that we have at least a partially sequenced genome and the information on expressed sequences or protiens The most simpple calculation of codon bias is the GC content of the third base of synonymous codons of a single gene or coding DNA sequence (CDS). This codon bias reflects neutral mechanisms like mutational selection for a high or low GC content in an organism. . . . reference . . .

Such mechanisms based on a single gene can be revised by incorporating species independent information of general translation efficiency and RNA folding. Moreover, instead of analysing a single nucleotide position alone (mononucleotides), information on cytosine (C)-methylation can be taken into account and calculation on dinucleotides (GC) for mammals or quadnucleotide (GATC) or pentnucleotides (CCWGG) wich harbours a degenerate nucleotide position that can be A or T. The succession of codons (bicodons or even tricodons) may of course also be of interest but may only refine codon bias indexes where information on the whole genome or even for species is taken into account.

When we aim for introducing a little bit more suffisticated indexes, they will depend on

List of Tables

additional information such as, the transcriptome, the genome, gene expression, tRNA availability

One aspect for some codon bias mesurements is the definition of the optimal codon, thus the one with the most desirable quality. This information is used to mesure the frequency of optimal codons (Fop) or the P1 index, a meaure of the influence of tRNA availability. Which of the codons is optimal can be manifoldly defined, such as predicted using the tRNA gene copy number as a indicator as tRNA levels correlate with gene copy number in general [Chaney and Clark(2015)](Chaney and Clark 2015).

0.2 Teff genome

[?]

1 Setup of data and project

In this chapter we will see some examples of tables and figures.

1.1 Getting familiar with the data

Before the project was set-up the initial task was to gather information for calculating one of the first defined and most basic codon bias index called frequency of optimal codons (Fop). The optimality of a codon can be estimated by the usage in the given gene, the transcriptome or by accessing the numbers of tRNA genes found in the genome. As we have already the data of tRNA genes for the teff genome available, this was the choice to work with and to import the information for closely related species for mays and millet.

1.1.1 read tRNA stats and decide on optimality of a codon

```
#03.01.2016 Master project read in stat files from view-source:http://gtrnadb.ucsc
     .edu/GtRNAdb2/genomes/eukaryota/
3 #reading the files
4 setwd("E:/R")
5 readstats <- function(fileno=2, chunksize=1) {</pre>
    statfile=dir(pattern=".stats$")[fileno]
     con <- file(statfile, "r", blocking = FALSE)</pre>
    for(i in seq(1,3500,chunksize)){
9
           d=scan(con, what="a", nlines=chunksize, sep="|", quote="", quiet=TRUE)
      if (length(d)>0 && d[1]==""){
10
        print(substr(d[2:(length(d)-1)], 2, 15) )
        reps <- as.numeric(gsub("[^0-9]","", d[2:(length(d)-1)]))
12
        tRNAs <- substr(d[2:(length(d)-1)], 2, 4)
13
        codons <- substr(d[2:(length(d)-1)], 6, 8)
15
           closeAllConnections()
         return(data.frame(tRNAs, codons, reps))
16
```

```
18
19 }
20 (Zmays <- readstats() )</pre>
21 eins <- function(x=c("Val","UUU","1")){optfactor <- as.numeric(x[3])/max(Zmays[
    tRNAs == x [1],3])}
22 optfact <- apply(Zmays, 1, eins)</pre>
23 isopt <- (optfact == 1)
24 Zmays.out <- data.frame(Zmays, optfact, isopt)</pre>
25 Zmays.out[Zmays.out$isopt==TRUE,-4]
1 tRNAscan-SE v.1.3 (March 2011) scan results (on host aero.cse.ucsc.edu)
2 Started: Thu Jul 26 22:25:36 PDT 2012
4 -----
5 Search Mode:
                              Eukaryotic
6 Searching with:
                             tRNAscan + EufindtRNA -> Cove
7 Covariance model:
                             TRNA2-euk.cm
7 COVATIANCE MODEL:
8 tRNAscan parameters:
9 EufindtRNA parameters:
                              Strict
                              Relaxed (Int Cutoff= -32.1)
10
11 Reporting HMM/2' structure score breakdown
13
14 First-pass (tRNAscan/EufindtRNA) Stats:
15 -----
16 Sequences read:
                         13
17 Seqs w/at least 1 hit: 13
18 Bases read:
                         2066432718 (x2 for both strands)
19 Bases in tRNAs:
                         2747160
20 tRNAs predicted:
                         28967
21 Av. tRNA length:
                         94
22 Script CPU time:
                          417.21 s
23 Scan CPU time:
                          1253.04 s
                         3298.3 Kbp/sec
24 Scan speed:
25
26 First pass search(es) ended: Thu Jul 26 22:54:15 PDT 2012
27
28 Cove Stats:
29
                          28967
2249
30 Candidate tRNAs read:
31 Cove-confirmed tRNAs:
32 Bases scanned by Cove: 3210632
33 % seq scanned by Cove: 0.1 %
34 Script CPU time: 117.99 s
                          2336.55 s
35 Cove CPU time:
                           1374.1 bp/sec
36 Scan speed:
37
38 Cove analysis of tRNAs ended: Fri Jul 27 00:06:48 PDT 2012
39
40 Summary
41 -----
42 Overall scan speed: 1001957.8 bp/sec
44 tRNAs decoding Standard 20 AA:
                                            1455
45 Selenocysteine tRNAs (TCA):
46 Possible suppressor tRNAs (CTA,TTA):
```

```
tRNAs with undetermined/unknown isotypes:
48 Predicted pseudogenes:
                                               771
49
   Total tRNAs:
                                               2249
50
51
52
  tRNAs with introns:
                               54
53
   | Thr-GGT: 1 | Val-AAC: 3 | Val-CAC: 1 | Val-TAC: 1 | Ser-GCT: 1 | Arg-TCT: 1 |
    Leu-TAA: 2 | Asn-ATT: 1 | Ile-AAT: 1 | Met-CAT: 24 | Tyr-ATA: 1 | Tyr-GTA: 16 |
    Cys-ACA: 1 |
55
56
   Isotype / Anticodon Counts:
57
        : 122
                 AGC: 79
                              GGC:
                                          CGC: 28
                                                       TGC: 15
58 Ala
59 Gly
        : 55
                 ACC:
                             GCC: 33
                                         CCC: 11
                                                       TCC: 11
60 Pro
        : 59
                 AGG: 15
                             GGG: 1
                                          CGG: 9
                                                        TGG: 34
                                          CGT: 7
                                                        TGT: 17
61
   Thr
        : 58
                 AGT: 21
                             GGT: 13
        : 61
   Val
                 AAC: 25
                             GAC: 15
                                          CAC: 16
                                                        TAC: 5
62
                 AGA: 13
                              GGA: 23
                                           CGA: 7
                                                        TGA: 11
                                                                     ACT:
                                                                                  GCT
        : 68
    : 14
  Arg : 90
                 ACG: 45
                             GCG:
                                           CCG: 6
                                                      TCG: 7
                                                                    CCT: 12
                                                                                  TCT
    : 20
                                           CAG: 14
                                                       TAG: 9
                                                                    CAA: 20
  Leu : 79
                 AAG: 30
                             GAG:
                                                                                  TAA
    : 6
                              GAA: 25
   Phe
        : 27
                 AAA: 2
66
67
   Asn
         : 53
                 ATT: 2
                              GTT: 51
                                                        TTT: 144
                                           CTT: 206
68
  Lys
         : 350
                 ATC: 1
                             GTC: 44
        : 45
69 Asp
70 Glu
        : 59
                                           CTC: 30
                                                        TTC: 29
71 His
        : 33
                ATG: 4
                             GTG: 29
72 Gln
                                           CTG: 14
                                                        TTG: 25
        : 39
                 AAT: 73
                              GAT:
73
   Ile
         : 79
                                                        TAT: 6
   Met
         : 90
                                           CAT: 90
74
        : 28
                 ATA: 2
                              GTA: 26
75
   Tyr
76 Supres: 7
                                           CTA: 6
                                                        TTA: 1
77 Cys
        : 30
                 ACA: 2
                              GCA: 28
78 Trp
        : 30
                                           CCA: 30
79 SelCys: 4
                                                        TCA: 4
```

However this code had to be adapted because it is only reading in the tRNA genes with introns.

1.2 text chunk - tRNA database

The tRNA genome numbers for eukariotic, bacterial, archaea and one viral genome was extracted from tRNAscan-SE v.1.3 run statistics of the GtRNAdb 2.0 (available at Genomic tRNA Database 2.0, http://gtrnadb.ucsc.edu/GtRNAdb2/genomes/).[Chan PP et al. 2016]

To decide on optimal codons the number of genes for the given anticodon was divided by the maximal number of genes for a anticodon for the same aminoacid to give fraction

Chapter 1. Setup of data and project

to optimal codon. The codon was accepted as optimal if this fraction was 1. In a list for every genome with available run statistic data, a frame with aminoacid, codon, number of genes, fraction to optimal codon, fraction to all codons, and the decision if it is a optimal codon was stored for the four superkingdoms seperately.

```
The genomes with names containing \# or * have to be treated as special cases, as even the browser failed to fetch the files. Therefore \# was replaced with \%23
```

However, in those run statistics, from vertebrates especially non-primate mammals, are littered with tRNA-derived repetitive elements with primary sequences very similar to real tRNAs. So they apply a non-unveiled post filter after the tRNAscan-SE on those genomes before depositing the predictions to GtRNAdb. Therefore, and because they were not willing to share the database with the summary statistics, these had to be rebuild from scanning the headers of the fasta files. Therefore the fasta file name had to be scanned in the index.html file and the fasta files were renamed according to the directory name to facilitate automation.

The statistics is now enhanced by an 65th line containing undefined aminoacid all other anticodons with degenerated base information are counted to the undefined species (as they do in the summary page)

codon ramp (rare codons at the start Tuller et al.) "This "codon ramp" hypothesis should apply primarily in the context of strong translation, but we found that using rare codons at the N terminus increases expression regardless of translation strength." –ANECTODE—When analysing the moving average of the optionality factor of the codons for the tRNA genes, we don't really detect a codon ramp at the 5' terminus, first, but the first codon was always optimal. No wonder because there is only one codon for Methionine, the start codon. Therefore we should only analyse the aminoacids that have a choice of anti-codons to use.

For analyzing codon usage in E. teff Gina's validated protein-transcript fasta files were used, however there were two issues in the database: first one of the proteins (Et_s4372-0.17-1) was truncated, didn't startet with methionine and was not corresponding to the truncated transcript, secondly the number of transcripts matched the number of proteins, but there was one orphan entry on each side (Et_s2692-0.26-1, Et_s14755-0.7-1), that had to be filled up with the corresponding entry of the other datafile.

1.2.1 Plot OCU demo

Figure 1.1: A sample figure (from plot OCU demo(plot(OCU)), of statanacoseq, got from https://github.com/fredysiegrist/statanacoseq).

2 R package setup and maintenance

In this chapter we will describe the generation of the R package structure, implementation in R Studio and hosting on GitHub.

2.1 Generation of R package

The first intention was to generate a package named "statanacoseq" in the linux version of R. The name is pretty long and has not been found to be used as R package name anywhere else, that is screened by google. Setting up of the R package has been done with the help of devtools, some few lines of code generate a backbone that then can be filled with the content and basically be packed after having put the first function in to an R file.

```
demo(plotOCU)
demo(Fop)
```

In this case a simple function with misleading name was countcodonfreq but was used to check the 'validated' fasta files by printing out the fraction of codons to aminoacids for the nucleotide and aminoacids with the same entry name.

```
countcodonfreq <- function(no=1, wdir="/windows/R/") {
    require(seqinr)
    list(myseq, myaa) <- mylist(wdir)
    print(length(myseq[[no]])/3/length(myaa[[attr(myseq[[no]], "name")]]))
}</pre>
```

2.1.1 Maintenance with R Studio

To be more efficient in managing the project the project initiated with devtools was imported into R Studio, a software package that brings many functions for assisting with R code writing, documentation and communication with the version control system [RStudio Team(2015)].

2.1.2 Publishing on GitHub - Description of versions

After the package got the first function to work independently on sample data from the package it was submitted to GitHub, a hosting service for software projects, for version control and to make it available for revision. The origin is placed at https://github.com/fredysiegrist/statana [Charles(2013)]. Since no version has been generated where the indices that are not implemented in Darwin has been drawed up, the version remained at 0.0.0.900x, marking it as under development. At the moment of writing this text the version is 0.0.0.9001 and will be set to 0.0.0.9002 for the evaluation of this work and 0.0.0.9003 after the corrections. Any further version will mark improvements to the code made post thesis submission.

The version 0.0.1 should mark the mile stone of achieving better performance than the Darwin package, incuding the calculation of not-implemented functions in that code.

Version 0.1.0 should be the version that is distributed to the scientific community and following versions may be described in articles.

Version 1.0.0 will be defined after distribution to CRAN or bioconductor, if a bug free code that is consistant in it-self is created and will have some back-references from other packages.

3 Transcription of Darwin Code

In this chapter we will describe the transcription of darwin codes and the adaptation of some function to the R enviorenment.

- 3.1 Transcription of Darwin functions
- 3.2 R environement adaptation

4 Vignette

This document is a vignette for using the R package statanacoseq:

4.1 statanacoseq

4.2 Demos

Fop NEC plotOCU

4.3 Tests

checkCDNA Fop NEC NucleotideContent species

4.4 Functions

4.4.1 Indices

ComputeCAI Codon Adaptation Index ComputeCAIVector Codon Adaptation Index Vector ComputeCarboneRA Compute Carbone Relative Adaptiveness ComputeFop Frequency of Optimal Codons ComputeGC3syn GC content 3rd position of synonymous codons ComputeNEC Effective number of codons RelativeAdaptiveness Compute Relative Adaptiveness

Intermediator functions for indices

RSCU Relative Synonymous Codon Usage

Void indices

ComputeCBI Codon Bias Index ScaledChiSquare Scaled Chi-Square SilentSiteComposition Base Composition at Silent Sites

Function from Darwin left untranscribed

Entries Entries

4.4.2 Helperfunctions

anticodoncount Calculate Global Anticodon Usage areopts Optimality Decision for Codons of Custom Genome checkCDS Checks Integrity of CDS Sequence Codon-Prob Codon Probability table CodonProbabilities Codon Probabilities CodonUsage Table for Codon Usage and Optimality of Codons FindHighlyExpressedGenes Find Highly Expressed Genes NucleotideContent Nucleotide Content reversecomplement Reverse Complement Anticodon SetupRA Relative Synonymous Codon Usage

Graphical functions

plotOCU Plot of Optimality Score for Codons in a Single Protein

3rd party functions

movingAverage Calculating a Moving Average

Obsolete functions

countcodonfreq Count Codon Frequency

Data Handling

mylist My List of Nucleotide-Sequences and Aminoacid-Sequences readfasta Processed tRNA Containing Fasta File Headers to Count Anticodons readintronic Read tRNA Intronic Gene Count Statistics readstats Read tRNA Gene Count Statistics readtRNAout Read tRNA Gene Count Statistics searchfafile Search and Return a Fasta File Name from Partial Name

4.5 Sampledata

4.5.1 External Data

Etef.sample.protein.fasta Etef.sample.transcript.fasta seq30469.out

4.5.2 Datasets

aa_ac Aminoacids and Anticodons GtRNAdb2species Viruses, Eukaryota, Archaea, Bacteria Species Names on GtRNAdb2 Tef Optimal Codon Table for Eragostis tef Decided on tRNAscan-SE count of tRNA genes in sequenced genome veab Viruses, Eukaryota, Archaea, Bacteria Species File Names on GtRNAdb2 veabfa Viruses, Eukaryota, Archaea, Bacteria Species Fasta File Names on GtRNAdb2

5 Outlook

In this chapter we will give a brief overview on what Indices are meant to be implemented in the future, what results could be generated by applying them and what the future for this package looks like.

5.1 Codon Bias Indices

There are dozens of codon bias indices that yet have to be implemented in the package. The original Darwin code has alredy defined some of the most wanted indices yet to be implemented. Here is an overview on the implemented, the ones which have a void function backbone and the non-implemented functions:

The table 5.1 is a floating table showing which indices have already been implemented in statanacoseq.

Table 5.1: Codon Bias Indices

name	implemented	backbone	missing
Fop	Х		
CBI		X	
В		X	
Ε		X	

5.2 Biological meaning and statistics

The basic idea of a statistical analysis package for codon analysis is to combine the most frequently used codon indices in one software to evaluate which of them is best performing regarding to the availability (quality) and the biological properties for the given species. By putting it into the environement of the statistical open source program R following analysis steps as correlation to Gene Ontology (GO) tags can be done without having to deal with data handling to other software. The open structure of R codes also allows to use other implementation of algorithms already developed for R as we here used the functions RSCU from seginr package for example. That allows other scientist to work with there own interpretation of new indices or better implementation of algorithms to calculate them. Furthermore, it is designed to adapt collaborators or third party code in the package, because every function has its own file and comes with the description of the function. The basic biological problem to solve, as soon as all the major indices are implemented, is to find correlations of indices or clusters with other biological information such as gene expression (that is already part of the calculation of some indices), intracellular location, stress responses, enzymatic families, pathways, development stages and many more. One possible approach is to correlate the index properties to GO attributes and to find out wether there are indices that are significantly representing some of them, in order that a prediciton of the function or other properties of unknown proteins can be predicted.

5.3 Package development

6 R package on GitHub

Here you can see a citation: [Council(1985)].

The project is hosted on GitHub and freely available for the scientific community interested in it: https://github.com/fredysiegrist/statanacoseq

To install the R package on a R version > 3.3.0 the following lines of codes are sufficient to load the package:

```
1  # install 3rd party software for communicating with GitHub
2  install.packages("devtools")
3  library(devtools)
4  # install software package of master thesis
5  install_github("fredysiegrist/statanacoseq")
6  library(statanacoseq)
```

To run a short demo on some of the functionalities one can now enter the following lines to test the package installation.

```
demo(plotOCU)
demo(Fop)
```

An appendix - the Darwin code for codon indices

In this appendix we list the CodonIndices file of the Darwin software package that was used to transcribed most of the functions of statanacoseq package.

Data Analysis and Retrieval With Indexed Nucleotide/peptide sequences homepage

```
# Several indices for codon usage.
                              Alexander Roth (2005-2007)
7 # Frequency of optimal codons (Ikemura 1981). AR (April 2007)
8 ComputeFop := proc(d:string)
9
   cu:=CodonUsage();
   aviod:={op(AToCodon('$')),
10
            op(AToCodon('M')),
            op(AToCodon('W'))};
12
   xop:=0; xnon:=0;
13
   for i to length(d) by 3 do
14
15
     c := d[i..i+2];
      if not member(c, aviod) then
16
        if c=cu[CodonToInt(c),1,1] then
17
           xop:=xop+1;
19
        else
          xnon := xnon + 1 :
20
21
         fi;
22
      fi;
23
    od:
    xop/(xop+xnon);
24
26
27
28 # Effective number of codons* (Wright 1990, *Fuglsang 2004). AR (April 2007)
29 ComputeNEC := proc(d:string)
   cod:=CreateArray(1..64);
30
   aa:=CreateArray(1..20);
```

```
aviod:={op(AToCodon('$'))};
32
33
     count:=0;
     for i to length(d) by 3 do
34
35
      c := d[i..i+2];
36
       if not member(c, aviod) then
        ai:=CodonToInt(c);
37
38
         ci:=CodonToCInt(c);
        cod[ci]:=cod[ci]+1;
40
         aa[ai]:=aa[ai]+1;
41
         count:=count+1;
42
      fi;
43
     od;
44
     Nc:=0;
45
46
     for i to 20 do
47
       Acods := IntToCInt(i);
48
       k := length(Acods);
49
       if k<2 then Nc := Nc + 1; next; fi;</pre>
       n := sum([seq(cod[Acods[x]], x=1..k)]);
       S := sum([seq((cod[Acods[x]]/n)^2, x=1..k)]);
51
       F := (n*S-1) / (n-1);
52
       Nc := Nc + 1/F;
54
     od:
     Nc;
55
56 end:
57
58 #one:=''; all:='';
59 #for x to 3 do
60 #for i to 20 do for j to length(IntToCodon(i)) do
61 #
        all:=all.IntToCodon(i)[j];
62 #
        one:=one.IntToCodon(i)[1];
63 #od od od;
65 # Nucleotide content. AR (2006)
66 NucleotideContent := proc(; tD:{string, Entry}, pos=[1,2,3]:list(posint)) -> list
67
    o := CreateArray(1..4);
    n := 0;
68
69
     if not assigned(tD) then
70
       for z to DB[TotEntries] do
         d:=SearchTag(DNA, Entry(z));
71
         for i1 to length(d)-max(pos) by 3 do for i2 in pos do
72
73
             i:=i1+i2;
74
             n := n+1;
             o[BToInt(d[i])] := o[BToInt(d[i])]+1
75
76
         od od;
77
       od:
78
     else
       if type(tD, Entry) then d:=SearchTag('DNA', tD)
79
80
       else d:=tD fi;
       for i1 to length(d)-max(pos) by 3 do for i2 in pos do
81
82
           i:=i1+i2;
           o[BToInt(d[i])] := o[BToInt(d[i])]+1
84
       od od;
85
     fi;
```

```
return(o/n);
87
88
   end:
89
90
    # G+C content 3rd position of synonymous codons. AR (April 2007)
91
   ComputeGC3syn:= proc(td:string)
92
     if member(td[-3..-1], AToCodon('$')) then d:=td[1..-4] else d:=td fi; # remove
93
        stop codon
94
      o := CreateArray(1..4);
      n := 0;
95
      for i to length(d) by 3 do
96
97
        c:=d[i..i+2];
        if length(IntToCInt(CodonToInt(c)))>1 then
98
         n := n+1;
99
100
         oi:=BToInt(c[3]);
         o[oi] := o[oi]+1
101
102
        fi;
103
      od;
104
      o:=o/n;
     return(o[2]+o[3]);
105
106
   end:
107
108
   # Base composition at silent sites.
109
110
   SilentSiteComposition := proc(d:string)
111
    # to be implemented
112
   end:
113
114
115 # Scaled Chi-Square.
   ScaledChiSquare := proc(d:string)
116
117
     # to be implemented
118
    end:
119
120
   # Codon Bias Index (CBI) (Bennetzen and Hall 1982).
122 ComputeCBI := proc(d:string)
    # to be implemented
123
124
125
126
   # Relative synonymous codon usage. AR (2007)
127
128
   RSCU := proc(;d:string)
129
      if nargs > 0 then
        cc:=CodonCount(d);
130
131
      else
      cc := CodonCount();
132
133
      fi:
      rscu := CreateArray(1..64);
134
135
      for i to 64 do
       s := 0;
136
        syn:=IntToCInt(CIntToInt(i));
137
138
        1:=length(syn);
139
        for j in syn do
         s:=s+cc[j];
140
141
```

```
if s=0 then next fi;
142
 143
                                rscu[i]:=cc[i]/(s/l);
144
                        od:
145
                       rscu;
 146
                end:
147
148
149 # Compute CAI, the Codon Adaptation Index (Sharp and Li 1987).
 150 # Markus Friberg and Alexander Roth (Dec 2005)
151 ComputeCAI := proc(DNA:{string, Entry})
                        # check global variables and scan arguments
152
 153
                        if not assigned(RA) then
                              error('Error in ComputeCAI: RA not assigned, use e.g. SetupRA(yeast);') fi;
 154
                        if type(DNA, Entry) then dna:=copy(SearchTag('DNA', DNA))
155
 156
                        else dna:=DNA fi;
 157
                        UseCodonProb := false;
 158
                        for i from 2 to nargs do % \left( 1\right) =\left( 1\right) \left( 1\right) 
                                if length(args[i]) = 2 and args[i, 1] = 'UseCodonProb' then
 159
                                         UseCodonProb := args[i, 2]
 160
161
162
                                      error('Unknown argument ', args[i]);
                                fi;
164
                        od;
165
                        # compute cai
 166
                        w := 0;
 167
                        n := length(dna)/3;
                        for j to length(dna) by 3 do
 168
                             cint := CodonToCInt(dna[j..j+2]);
169
170
                                codprob := If(UseCodonProb, CodonProb[cint], 1);
                               if CIntToA(cint) <> '$' then # don't consider stop codons
171
                               w := w + ln(codprob * RA[cint]) fi;
172
 173
                        od;
 174
                        exp(1/n * w)
175 end:
176
 177 ComputeCAIVector := proc(e:Entry)
178
                        if not assigned(RA) then
                             error('Error in ComputeCAI: RA not assigned, use e.g. SetupRA(yeast);') fi;
179
 180
                        dna := SearchTag('DNA', e);
 181
                        wa := CreateArray(1..20);
                        na := CreateArray(1..20);
 182
                        for j to length(dna) by 3 do
183
                               cint := CodonToCInt(dna[j..j+2]);
 185
                                a := CIntToInt(cint);
                                if a <= 20 then
 186
                                        wa[a] := wa[a] + ln(RA[cint]);
 187
                                        na[a] := na[a]+1;
188
189
                               fi:
190
                        od;
                        res := CreateArray(1..21);
 191
                        for i to 20\ do
 192
193
                             res[i] := If(na[i]=0, 'NA', exp(1/na[i] * wa[i])) od;
                       res[21] := exp(1/sum(na) * sum(wa));
195
196 end:
```

```
SetupRA := proc(s:string)
198
      global RA, CodonProb;
199
      CodonProb := [0.9910, 0.9750, 0.9793, 0.9691, 0.9318, 0.9268, 0.8389, 0.9636,
200
201
                     0.9622, 0.8830, 0.8633, 0.9223, 0.9179, 0.9598,
                                                                              1, 0.9825,
                     0.9720, 0.8660, 0.8883, 0.9223, 0.9530, 0.8176, 0.7371, 0.9253,
202
                     0.5895, 0.5874, 0.4657, 0.8154, 0.9370, 0.7825, 0.8817, 0.9173,
203
                     0.9832, 0.9475, 0.9284, 0.9727, 0.9341, 0.9249, 0.8082, 0.9614,
204
                     0.8887, 0.8914, 0.8059, 0.9475, 0.9074, 0.9249, 0.9072, 0.9719,
205
206
                          0, 0.9460,
                                           0, 0.9436, 0.9328, 0.9347, 0.8408, 0.9737,
                          0, 0.7542, 0.8870, 0.8534, 0.9722, 0.9748, 0.9819, 0.9703]:
207
      if s = 'yeast' then #based on the original CAI paper by Shart and Li
208
209
        RA := [0.135,
                           1,
                                 1, 0.053, 0.012,
                                                        1, 0.006, 0.921,
                    1, 0.031, 0.003, 0.021, 0.003,
210
                                                         1, 1, 0.823,
                           1, 0.007, 0.245, 1, 0.009, 0.002, 0.047,
211
                    1,
212
                0.002, 0.002, 0.002, 0.137, 0.039, 0.003, 0.003, 0.006,
213
                    1,
                           1, 0.016, 0.554, 0.015, 0.316, 0.001,
214
                 0.002 \,, \ 0.020 \,, \ 0.004 \,, \qquad \quad 1 \,, \ 0.002 \,, \ 0.831 \,, \ 0.018 \,, \\
                                                                         1.
                                   1, 0.071, 0.036, 0.693, 0.005,
                                                                         1,
215
                    1,
                           1,
                                          1, 0.117,
                                                                 1, 0.113]:
216
                    1, 0.077,
                                   1,
                                                         1,
      elif s = 'yeast2perc' then
217
218
        RA := [0.1277, 1, 1, 0.08078603, 0.02564103, 0.9501, 0.01, 1, 1, 0.0313253,
                0.00159109, 0.03253012, 0.00383632, 1, 1, 0.8325, 1, 1, 0.00572082,
220
                 0.2407 \,, \ 1 \,, \quad 0.00333704 \,, \ 0.01 \,, \ 0.08676307 \,, \ 0.01 \,, \ 0.01 \,, \ 0.01 \,, \ 0.1687 \,, \\
                0.04752971, 0.01, 0.00125078, 0.00562852, 1, 1, 0.01611863, 0.6806,
221
222
                0.00955593, 0.3007, 0.00337268, 1, 0.00286369, 0.01890034, 0.00229095,
                0.00169635, 0.7625, 0.01526718, 1, 1, 1, 1, 0.08910891, 0.02409639,
223
                  0.6892,
                0.00120482, 1, 1, 0.05555556, 1, 1, 0.1451, 1, 1, 0.1765]:
224
225
      elif s = 'yeast1perc' then
        RA := [0.07619048, 1, 1, 0.04887218, 0.01160093, 1, 0.01, 0.9722, 1,
226
227
                0.02690583, 0.01, 0.02690583, 0.00233645, 1, 1, 0.7664, 1, 1, 0.01,
                0.2192, 1, 0.00190114, 0.01, 0.07984791, 0.01, 0.01,
228
                0.01,\ 0.1402,\ 0.03326180,\ 0.01,\ 0.00107296,\ 0.00536481,\ 1,\ 1,
229
                0.01156069, 0.6220, 0.00392542, 0.2826, 0.00098135, 1, 0.01,
230
                  0.01452282,
231
                 0.00207469 \,,\ 1,\ 0.01 \,,\ 0.8253 \,,\ 0.02028081 \,,\ 1,\ 1,\ 1,\ 1,\ 0.06722689 \,,
                0.01345291, 0.7691, 0.01, 1, 1, 0.08333333, 1, 1, 0.1159, 1, 1,
232
                  0.1405]:
      elif s = 'yeast05perc' then
233
        RA := [0.06239168, 1, 1, 0.025, 0.004329, 1, 0.01, 0.8095, 1,
234
                0.01877934, 0.01, 0.00938967, 0.00452489, 1, 1, 0.7285, 1, 1, 0.01,
235
                0.1574, 1, 0.01, 0.01, 0.04961832, 0.01, 0.01,
236
237
                0.01, 0.08362369, 0.02471910, 0.01, 0.01, 0.00449438, 1, 1,
                 0.01518987 \,,\; 0.5362 \,,\; 0.01 \,,\; 0.2367 \,,\; 0.00189394 \,,\; 1 \,,\; 0.01 \,,\; 0.00852878 \,, \\
238
239
                0.00426439, 1, 0.01, 0.8644, 0.01261830, 1, 1, 1, 1, 0.05263158,
                0.00938967, 0.7793, 0.01, 1, 1, 0.1132, 1, 1, 0.07865169, 1, 1,
240
                0.08415842]:
241
      elif s = 'yeasttop24protexpr' then
242
        RA := [0.3403, 1, 1, 0.3230, 0.1646, 0.6951, 0.04268293, 1, 1, 0.09117647,
243
                244
                 0.03353659 \,, \ 0.00914634 \,, \ 0.1982 \,, \ 0.01 \,, \ 0.00923077 \,, \ 0.01 \,, \ 0.2308 \,, \\
245
                0.1548, 0.01092896, 0.04007286, 0.07103825, 1, 0.9475, 0.1169, 1,
246
                  0.1366,
                0.3707, 0.02764228, 1, 0.03382353, 0.06470588, 0.02647059, 1,
247
                  0.07712766,
```

```
0.7048, 0.09574468, 1, 1, 1, 1, 0.4009, 0.1324, 0.6029, 0.02941176, 1,
248
               0.07865169, 1, 1, 0.357, 1, 1, 0.3927]:
249
250
      elif s = 'yeasttop24mrnaexpr' then
        RA := [0.1286, 1, 1, 0.08292683, 0.04761905, 1, 0.04761905, 0.9864, 1,
251
               0.03783784, 0.00904977, 0.02702703, 0.00621118, 1, 1, 0.677, 1, 1,
252
253
               0.00625, 0.17, 1, 0.00485437, 0.01941748, 0.09223301, 0.01, 0.00452489,
               0.01, 0.2081, 0.04885057, 0.00862069, 0.01, 0.01436782, 1, 1,
254
255
               0.00914634, 0.6516, 0.01081081, 0.327, 0.01, 1, 0.0080429, 0.02144772,
               0.00268097, 1, 0.01754386, 0.8816, 0.01754386, 1, 1, 1, 0.08163265,
256
               0.07027027, 0.6757, 0.00540541, 1, 1, 0.125, 1, 1, 0.1782, 1, 1,
257
                 0.1019]:
      elif s = 'carbone' then
258
       RA := ComputeCarboneRA();
259
260
      else
261
        error ('Error in SetupRA: not yet implemented for that organism')
262
      fi;
   end:
263
264
265
   ComputeCarboneRA := proc( ; t=0.01:nonnegative, initfrac=1:nonnegative, iterfrac
266
      =0.5:nonnegative, mode:string)
267
      global RA;
      if not assigned(DB) then error('DB must be assigned') fi;
268
269
      x := 1; # fraction of the sequences used to compute RA in this iteration
270
      AllGenes := [seq(i, i=1..DB[TotEntries])]:
      genes := Shuffle(AllGenes)[1..round(initfrac * DB[TotEntries])]:
271
      bestCorr := 0;
272
      cai := CreateArray(1..DB[TotEntries]):
273
274
      while length(genes) / DB[TotEntries] > t do
        RA := RelativeAdaptiveness(genes);
275
276
        for i to DB[TotEntries] do
277
          dna:=SearchTag('DNA',Entry(i));
          if SearchString('X', dna)<>-1 then next fi;
278
          cai[i] := ComputeCAI(dna) od;
279
280
        x := x * iterfrac;
281
        res := transpose([AllGenes, cai]):
282
        if mode='reverse' then
          res := transpose(sort(res, res -> res[2])):
284
        else
          res := transpose(sort(res, res -> -res[2])):
285
286
        fi:
        genes := res[1][1..round(x * DB[TotEntries])]:
287
288
      od;
289
      R.A
290
    end:
291
292
293 RelativeAdaptiveness := proc(entries:list(posint))
      CodonCounts := CreateArray(1..64);
294
295
      for i in entries do
        dna := SearchTag('DNA', Entry(i));
296
        for j to length(dna) by 3 do
          cod := CodonToCInt(dna[j..j+2]);
298
          if cod=0 then next fi; # to avoid XXX
299
          CodonCounts[cod] := CodonCounts[cod]+1;
```

```
301
        od;
302
      od;
      RA := CreateArray(1..64);
303
304
      aa := 1;
305
      for aa to 20 do
        codons := IntToCInt(aa);
306
        counts := [seq(CodonCounts[i], i=codons)];
307
        freqs := counts / sum(counts);
308
309
        for i to length(codons) do
          cod := codons[i];
310
311
          RA[cod] := freqs[i] / max(freqs);
312
        od;
      od:
313
      for i to length(RA) do
                                     # set minimum RA value to 0.01
314
315
       if RA[i] = 0 then
316
         RA[i] := 0.01 \text{ fi od};
      for i in AToCInt('$') do
317
                                    # set RA value of stop codons to 1
318
       RA[i] := 1; od;
319
   end:
320
321
322 # for each codon, compute the probability that it occurs at least once in a gene
323 CodonProbabilities := proc()
     res := CreateArray(1..64);
324
325
      for e in Entries() do
326
        occurs := CreateArray(1..64);
        dna := SearchTag('DNA', e);
327
        for c to length(dna) by 3 do
328
329
          cint := CodonToCInt(dna[c..c+2]);
330
          occurs[cint] := 1;
331
        od:
332
        res := res + occurs;
333
      od;
     res / DB[TotEntries]
334
335
   end:
336
337
   FindHighlyExpressedGenes := proc(; n=100:integer, tag='PROTEXPR':string)
338
339
      # tags: 'PROTEXPR' 'MRNAEXPR'
      expr := CreateArray(1..DB[TotEntries]);
340
      for i to DB[TotEntries] do
341
        ex := sscanf(SearchTag(tag, Entry(i)), '%f');
342
343
        if ex <> [] then
344
          expr[i] := op(ex) fi;
345
      od:
      sorted := sort(expr);
346
      limit := sorted[length(sorted)-n+1];
347
      genes := [];
348
      for i to DB[TotEntries] do
349
350
        if expr[i] >= limit then
          genes := append(genes, i) fi od;
351
352
      genes
353 end:
```

Bibliography

- [Cannarozzi et al.(2014)Cannarozzi, Plaza-Wüthrich, Esfeld, Larti, Wilson, Girma, de Castro, Chanyalew, Blö Gina Cannarozzi, Sonia Plaza-Wüthrich, Korinna Esfeld, Stéphanie Larti, Yi Song Wilson, Dejene Girma, Edouard de Castro, Solomon Chanyalew, Regula Blösch, Laurent Farinelli, et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). *BMC genomics*, 15(1):581, 2014.
- [Chaney and Clark(2015)] Julie L Chaney and Patricia L Clark. Roles for Synonymous Codon Usage in Protein Biogenesis. *Annu Rev Biophys*, 44:143–66, 2015. URL http://view.ncbi.nlm.nih.gov/pubmed/25747594.
- [Charles(2013)] P.W.D. Charles. Project Title. https://github.com/charlespwd/project-title, 2013.
- [Council(1985)] Applied Technology Council. Earthquake damage evaluation data for California. Technical report, Seismic Safety Commission, Applied Technology Council, California, 1985.
- [RStudio Team(2015)] RStudio Team. *RStudio: Integrated Development Environment for R.* RStudio, Inc., Boston, MA, 2015.

Fredy SIEGRIST

Schnbergweg 11 CH-3006 Bern +41 31 511 0512

Objective: Master in Bioinformatics and Computational Biology

EDUCATION

2016 (ongoing), Universities of Bern and Fribourg, Switzerland, Master in Bioinformatics, English.

2011, Apr 13, University of Basel, Switzerland, PhD Cell Biology, English.

2003, Oct 24, University of Bern, Switzerland, Master Biochemisty, German.

1999, Jun 17, Gymnasium Bern-Kirchenfeld, Switzerland, Matura type C, German.

ACTIVITIES

Editorial Acitivities and Teaching

Served as referee for: BMC Research Notes (BioMed Central), International Journal of Interferon, Cytokine and Mediator Research (Dove Press).

Modular course in Clinical Medicine for bachelor students (University of Basel) Tracking down genes modern genetics in clinical research

Administration

Administrative Board Member, Moosbad Immobilien AG, Emmenmatt, Switzerland

Publication Record

h index / Sum of the Times Cited (Web of science) $5\ /\ 317$

Computer Experience

Programming Langugaes (OO): R, PHP5, Python, Java. Programming Langugages (procedural, script): Unix-Bourne-Shell / bash, DOS-Batch, GW-BASIC. Operating Systems: Windows, Ubuntu, MAC-OS, MS-DOS. Software: MS Office / LibreOffice, Oracle VM Virtual Box CMS: OpenText, Joomla, Adobe Experience Manager, LSF / SGE Networks: Windows Server, Novell NetWare Databases: SQL / MySQL, MS Access

Work Experience

Publisher (CMS), Webeditor, IT-Support, Brewery Assistant.

EMPLOYMENT

Publisher, Federal Food Safety and Veterinary Office, Liebefeld, Switzerland 2016, Feb - Mai

Scientific Associate, Clinic of Nephrology, Bern University Hospital, Switzerland 2014, Feb - Jul

Post-doc, Laboratory of Virology, University Hospitals of Geneva, Switzerland 2011, Mar - 2013, Feb

PhD, Molecular Medicine and Toxicology, Roche, Basel, Switzerland 2006, Mar - 2010, Sep

Trainee, Functional Genomics, Novartis, Basel, Switzerland 2004, Apr - 2005, Mar

31

SCIENTIFIC AFFILIATIONS

2016 International Society for Computational Biology 2008 - 2014 International Society for Interferon and Cytokine Research Fredy Siegrist Page 2

PROJECT SUMMARIES

Short-term scientific associate, University Hospital of Bern Department of Nephrology, Hypertension and clinical Pharmacology; Prof B. Frey Department of medical Oncology; Dr M. Zweifel Genome-mutations in the androgen-receptor ligand-binding domain in mamma- and ovarian carcinomas

Mutations in the androgen-receptor ligand-binding domain is addressed by next-generation sequencing in mamma-, ovarian- and prostate-cancer samples. Driver mutations will be analysed in-vitro for sensitivity to dihydrotestosteron derivatives in reporter assays. *Department of Nephrology; Prof U. Huynh-Do* Genomic analyses of chronic hypoxia exposed fetal kidneys

Kidney from mice embryos hold in a hypoxia chamber were analysed by microarrays and significant genes are verified by qPCR, in-situ hybridization and immunohistochemistry to validate expression. Epigenetic DNA status (MetC and hMetC) of candidate genes will be assessed by MeDIP-qPCR.

Post-doctoral position, University Hospitals of Geneva Laboratory of Virology; Prof L. Kaiser and Dr C. Tapparel Small RNA sequencing of rhinovirus infections

Deep sequencing data from small RNA Illumina libraries were analysed in rhinovirus infected cell culture samples, small viral RNAs are detected and human miRNA quantified. HeLa cells were infected with different rhinovirus types. Viral RNA fragments and human miRNAs were analysed with northern blots, primer extension and rapid amplification of cDNA ends assays. Impact of RNA fragments on viral replication and translation was addressed with quantitative PCR, Luciferase and immuno-fluorescence.

PhD Thesis, F. Hoffmann-La Roche AG Molecular Medicine Laboratories; Prof U. Certa SOCS proteins in IFN silencing

Function of SOCS Proteins in IFN signalling was studied by gene expression analysis with semi quantitative RT- qPCR. Selected candidates were cloned in a mammalian expression vector and fusion proteins with SNAP-tag (Covalys) were cloned and analysed with fluorescence microscopy. Stable SOCS expressing cell lines were generated and characterized for their interferon response by gene and miRNA expression microarrays and statistical analysis with R/Bioconductor. Bimolecular fluorescence complementation with eYFP and STAT1/2 fusion proteins was insensitive to STAT activation by IFN, but localization of STAT fusion proteins as for untagged dimers. Cell-to-cell transfer of a proliferation control protein (IFITM3)

The transfer of IFITM3 proteins from a generator cell to a recipient cell was assessed by fluorescence microscopy, eYFP marked cell lines were sorted by FACS and analysed for protein transfer by immunoblotting. Protein transfer and proliferation assay (metabolite calorimetry, BrdU ELISA, FACS) excluded transfer of cytostatic effect. Phylogenetic analyses demonstrated recent IFITM gene development.

Traineeship, Novartis Pharma AG, NIBR, Basel Functional Genomics Group; Dr F. Natt siRNA stability in biological fluids

Obstacles for siRNA therapeutics are siRNA delivery and the short half-life of non-modified oligonucleotides. I have established a method for rapid analysis of degradation and demonstrated benefit of novel siRNA modifications (especially at their 3 overhang) for serum stability. I synthesized siRNA derivatives together with hydrolysis-stable MOE-RNA standard marker and analysed degradation of differently modified siRNA with HPLC, CE and Gel- electrophoresis. Furthermore, I have specified mechanism of degradation using LC-MS.

Diploma Thesis, University of Bern Department of Chemistry and Biochemistry; Prof R. Haener Construction and analysis of a cis-acting Ribonucleasemimic

Ribozyme mimics are generally linked to a nucleic-acid-backbone for specific recognition of the targeted gene transcripts. Efficient substitutes for the big catalytic domain are metal complexes like Cutrpy for example. I have demonstrated self-cleavage of a RNA-Cutrpy-based ribozyme mimic at a specific phosphordiester bond. Main work involved the RNA backbone design (single bulge cleaving site), RNA modification (functional and radioactive / fluorescence labelling) and purification. Finally, triggering of cleavage and analysis of RNA degradation (PAGE).

Fredy Siegrist Page 3

PUBLICATIONS

Original articles published or accepted in peer reviewed journals (IF 2012)

Scott R, Siegrist F, Foser S, Certa U. Interferon-alpha induces reversible DNA demethylation of the IFITM3 core promoter in human melanoma cells. J Interferon Cytokine Res 2011 Aug 11; 31(8):601-8. IF: 3.3

Cortzar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs A, Siegrist F, Steinacher R, Jiricny J, Bird A, Schr P. Embryonic Lethal Phenotype Reveals a Function of TDG in Maintaining Epigenetic Stability. Nature 2011 Feb 17; 470 (7334): 419-423. IF: 38.6

Siegrist F, Singer T, Certa U. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a. Biol Proced Online 2009 Dec; 11 (1): 113-29. IF: 1.0

Hallen LC, Burki Y, Ebeling M, Broger C, Siegrist F, Oroszlan-Szovik K, Bohrmann B, Certa U, Foser S. Antiproliferative Activity of the Human IFN-alpha-Inducible Protein IFI44. J Interferon Cytokine Res 2007 Aug; 27 (8): 675-80. IF: 3.3

Reviews published or accepted in peer reviewed journals (IF 2012)

Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 2013; 14: 282-293. IF: 2.8

Siegrist F, Ebeling M, Certa U. The small interferon induced transmembrane genes and proteins. J Interferon Cytokine Res 2011 Jan; 31 (1): 183-97. IF: 3.3

Original articles, reviews, editorials, letters, published or accepted in non-peer reviewed journals

Siegrist F, Certa U. Micro RNA Induction by Interferon Alpha and a Potential Role to Interfere with SOCS. In 7th Joint Conference Montral, Qubec, Canada, October 12-16, 2008 Editor: John Hiscott. Medimont International Proceedings 2008: 93-97.

Thesis

Siegrist F. Transcriptional responses of tumor cell lines to interferon-alpha. PhD Thesis, cell biology, University of Basel 2011.

Siegrist F. Auf der Spur eines artifiziellen, selbstspaltenden RNA-Molekls. Diplomathesis, Master of biochemistry, University of Bern 2003.

Abstracts presented at international and national meetings

Siegrist F, Otten-Hernandez P, Thomas Y, Farinelli L, Kaiser L and Tapparel C. Viral genome sequencing and small RNA detection by next generation sequencing. Cytokines 2012 Sep; 59(3): 565

Siegrist F, Otten P, Thomas Y, Farinelli L, Kaiser L and Tapparel C. Viral genome sequencing and small RNA detection by next generation sequencing. 3rd Swiss Funtamental Virology Workshop 2011 Aug.

Urfer PM, Siegrist F, Noreen F, Weis S, Certa U, Truninger K, Schr P. Integrating transcriptome and epigenome analyses to identify DNA methylation changes associated with colorectal carcinogenesis. BioValley Science Day 2010 Sep.

Cortazar D, Kunz C, Selfridge J, Lettieri T, Wirz A, Schrmann D, Jacobs A, Siegrist F, Jiricny J, Bird A, Schr P. Embryonic lethality of TDG-deficient mice reveals a function of TDG in the maintenance of epigenetic stability. BioValley Science Day 2010 Sep.

Siegrist F, Certa U. Suppression of interferon alpha mediated gene expression by SOCS1 and SOCS3. FEBS-Special Meeting: Jak-Stat Signalling: from Basics to Disease 2010 Feb.

Siegrist F, Ebeling M, Certa U. Phylogenetic analysis of interferon inducible transmembrane gene family and functional aspects of IFITM3. Cytokine 2009 Oct-Nov; 48 (1-2): 87.

Siegrist F, Certa U. Micro RNA induction by interferon alpha and their potential role to interfere in the negative feedback pathway. Cytokine, 2008 Sep; 43 (3): 284-285.

Scott RW, Siegrist F, Burki Y, Foser S, Certa U. Methylation Status Influence On Interferon-alpha Sensitivity In Human Melanoma Cells. 3rd Swiss Meeting on Genome Stability DNA Dynamics and Epigenetics. 2007 Oct.

PUBLISHED DATASETS