Upload Fee Formula

S. Shirmardi, A. Arbabi

May 28, 2022

1 Upload fee

Fee is the function that generates the entire amount of upload fee:

$$Fee(s_c, t, s) = f(s_c)(1 + \sum_{c} g(t, s))$$

$$\tag{1}$$

for this entire report, s is the size of last uploaded files and t is the time difference between the last upload date and current upload date and s_c is the current file size.

Definition. f(s) is the upload fee based on current file size and α is the base upload fee amount.

$$f(s) = \alpha s + [s] + \alpha \tag{2}$$

Definition. g(t, s) is the coefficient of f(s) based on the number last uploaded files by the user and it's calculated as follows:

$$g(t,s) = h(t)k(s) \tag{3}$$

where h(t) and k(s) measure the impact of time and size and are described in the next section.

2 Influential factors

In this section, we will describe the impact of the number, date and size of a user's uploaded files on the fee.

2.1 Impact of time

For an arbitrary period, T, the function that indicates the impact of last uploading time is described as follows:

$$h(t) = \left\{ \left(\frac{T}{t}\right)^n \quad t > 0 \right. \tag{4}$$

Note. n is an optional variable and can be set to change the amount and influence of h in the final formula.

2.2 Impact of size

Let T be the same arbitrary period as the previous section, the impact of the size of the files uploaded (over time) is calculated as described below:

$$k(s) = \frac{-T}{s + \frac{T}{\beta}} + \beta \tag{5}$$

where β is an undecided constant that must be set to balance the plots of the last uploading time and size.

Upload fee schematic

The schematic of $Fee(s_c,t,s)$ is looks like the below:

