Powering Nusantara: Modeling the Electricity Future of Indonesia's New Capital City

Akhila Suri, Ardhi Wardhana, Raihan Amir Rashidi, Rio Kaswiyanto (Columbia SIPA); Advisor: Dr. James Glynn, Senior Research Scholar (CGEP)

Background

Objective:

• To model the electricity demand and supply for the Government of Indonesia's new capital city, Nusantara, in order to meet their goals of achieving 100% renewable energy by 2045.

Guiding questions:

- What is the projected electricity demand for Nusantara from 2024-2045?
- Which clean sources are most feasible to meet this demand?
- What policies can the new Capital City Authority (IKN) implement to help realize their net-zero & 100% renewable energy goals by 2045?

Location: from Jakarta to Nusantara

Visualization of the city (Source: IKN)

Demand Model

Case Studies

Greenfield Capital Cities Cities powered by 100% R.E.

Supply Model

Methodology via TIMES:

Natural resources

- Demand
- Fuel price NREL tech cost ESDM tech cost

(exogenous)

balance

Partial

Policy Scenarios

constraints

- Technology supply-demand
- The least present value pathway

equilibrium

TIMES

· 100% renewable

Investment scenario

Solar Irradiance Map Hydro and Wind Resources Map

Limited hydro and wind availability

Scenarios & Policies

Scenarios:

Baseline scenario: No investment constraint	Baseline Pathway:	Pathway 1: 100% new	Pathway 2: 100% new r	Pathway 3: A mix of
Scenario 1: 100% investment achieved	No technology constraint	renewable energy with	enewable e nergy with locally sour	new renewable energy
Scenario 2: 80% investment achieved		global mar ket priced tech nology by	ced technol ogy by 2045	from locally sourced and imports by
Scenario 3: 57.6% investment achieved		2045		2045

Policy Areas:

- · Financing Mechanisms Carbon tax
- · Dynamic Pricing
- Phased approach for local content regulation
- · Direct Power Purchase Agreements
- Lower benchmark price for renewable energy
- · Distributed energy resources

Landscape Assessment

Vertically Integrated Utility Structure

Transmission Planning & Development in Kalimantan (2021 –2030)