Module-04, Python for Machine Learning Supervised Machine Learning

Dostdar Ali Instructor

Data science and Artificial Intelligence 3-Months Course at Karakaroum international Univrsity

January 25, 2024

Table of Contents

- Supervised Learning
- 2 Supervised Learning: Example
- Supervised Learning Algorithms
- 4 Supervised Learning: classification
- 5 Supervised Learning: Regression
- Machine Learning Model

Supervised Learning

- Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.
- The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data.

Supervised Learning

- Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.
- The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data.

Supervised Learning: Example

Supervised
Learning
Example

| label_1 |
| label_3 |
| label_4 |

examples

labeled examples

Start-Tech Academ

Supervised Learning: Example

Supervised Learning Example

Apple 100 gm

Apple 80 gm

Banana 40 gm

Banana 60 gm

Supervised Learning Algorithms

The supervised Learning algorithms are dividing into two algorithms,

- Classification
 - Categorizing data into classes.
 - Example: Fruit detection, spam detection
- Regression
 - Predicting a continuous value.
 - Example: Weight prediction, house price prediction.

Supervised Learning Example (classification)

Supervised Learning (classification)

Classification:

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings
- Model Discriminant

$$\label{eq:come} \begin{split} & \text{IF } \textit{income} > \theta_1 \text{ AND } \textit{savings} > \theta_2 \\ & \text{THEN } \textbf{low-risk} \text{ ELSE } \textbf{high-risk} \end{split}$$

Applications:

- Pattern recognition
- Face recognition
- Character recognition
- Medical diagnosis
- Web Advertising

Logistic Regression

- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

- Logistic Regression
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Gradient Boosting Algorithms (e.g., XGBoost, LightGBM)
- AdaBoost
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Ensemble methods

Supervised Learning: Regression

Supervised Learning Example (Regression)

Supervised Learning: Regression

- Linear Regression
- Multi Regression
- Ridge Regression
- Lasso Regression

Machine Learning Model

- Steps in Building ML Model
 - Problem formulation
 - Data frame
 - Pre-Processing
 - Train-Test Split
 - Model Building
 - Validation and Model Accuracy
 - Prediction

Great Job Thank yo

