TRANSFORMASI GEN ALBUMIN BUNGA MATAHARI (Helianthus annuuss L.) DENGAN VEKTOR Agrobacterium tumefaciens SECARA IN PLANTA PADA TANAMAN KEDELAI

SUBERATA, I W.

Fakultas Peternakan Universitas Udayana e-mail : suberata@unud.ac.id

ABSTRAK

Penggunaan A. tumefaciens untuk maksud mengintroduksi DNA albumin bunga matahari ke dalam sel tanaman kedelai didasari atas kemampuan alami dari A.tumefaciens untuk mentransfer suatu fragmen yang spesifik dari DNA plasmid (T-DNA) ke dalam sel tanaman lalu berintegrasi pada genom sel tanaman inang. Hasil kloning gen albumin yang ditumbuhkan pada bakteri E.coli selanjutnya ditransfer ke A. tumefaciens LBA $_{4404}$, melalui metode triparental mating. A. tumefaciens LBA $_{4404}$ (pAL $_{4404}$, pSW $_{600}$) yang dihasilkan kemudian ditransformasikan pada tanaman kedelai secara in planta. Hasil analisis transformasi pada tanaman kedelai transgenic secara in planta dapat dibuktikan dengan analisis PCR.

Kata kunci: transformasi, albumin bunga matahari, A. tumefaciens, tanaman kedelai

GENE TRANSFORMATION OF ALBUMINE SUNFLOWER (Helianthus annuuss L.) WITH Agrobacterium tumefaciens VECTOR BY IN PLANTA AT SOYBEAN PLANTS

ABSTRACT

Usage of *A. tumefaciens* for the purpose of including DNA sunflower albumine into soybean cell, constituted of natural ability of *A. tumefaciens* to trasformation in specific form of DNA plasmid (T-DNA) into soybean cell, then integrate at mains soybean cell genom. Result of gene cloning of albumine grown at bacterium of *E. coli*, then carried over by *A. tumefaciens* LBA_{4404} , passing method of triparental mating. *A.tumefaciens* LBA_{4404} (pAL₄₄₀₄, pSW₆₀₀) yielded later, then transformation at soybean by *in planta*. Result of analysis of transformation at soybean of transgenic by *in planta*, can be proved with PCR analysis.

Key words: trasformation, sunflower albumine, A. tumefaciens, soybean

PENDAHULUAN

Biji kedelai merupakan sumber utama protein nabati bagi manusia dan hewan karena kandungan proteinnya yang cukup tinggi, bervariasi sekitar 35-50% berat keringnya. Mengingat perannya yang sangat penting sebagai sumber protein nabati baik bagi manusia dan hewan, maka sangat diperlukan suplai komoditi ini secara berkesinambungan baik dari segi jumlah maupun kualitas protein yang ditentukan oleh proporsi sistein dan metioninnya (Sunarpi dan Anderson, 1997).

Sejauh ini upaya-upaya pemulihan konvensional belum berhasil meningkatkan nilai biologis protein biji kedelai, melalui peningkatan kadar sistein dan metionin pada protein yang dikandungnya. Kegagalan tersebut disebabkan oleh banyak factor, namun yang paling mendasar disebabkan oleh ketidakmobilan belerang terutama dalam bentuk senyawa organik di dalam tubuh tanaman. Karena itu pendekatan rekayasa genetik merupakan upaya yang paling memungkinkan untuk mengatasi masalah tersebut. Salah satu strategi rekayasa yang paling menjanjikan keberhasilannya vaitu dengan cara mentransfer gen asing Sfa8 vang berasal dari bunga matahari yang mengkode protein vang kava belerang. Transfer gen tersebut telah berhasil berekspresi pada organ vegetatif tanaman alfalfa (Tabe et al., 1995), tanaman vicia (Pickard et al., 1993) dan tanaman semanggi (Rafigul et al., 1993) sehingga transfer genotif tersebut mampu menaikkan kadar sistein dan metionin protein organ vegetatif dan organ generatif tanaman. Namun demikian belum banyak dipublikasikan berekspresinya genotip tersebut pada tanaman, sehingga diperlukan studi yang lebih mendalam mengenai segala faktor yang berpengaruh terhadap keberhasilan berekspresinya gen tersebut di dalam sel tanaman. Dengan adanya indikasi biosintesis

protein yang kaya sulfur pada biji kedelai, maka tampaknya ada peluang keberhasilan berekspresinya gen Sfa8 ke dalam sel tanaman kedelai (Sunarpi dan Anderson, 1997).

Penggunaan teknik transformasi genetik secara in planta telah menyebar dan banyak diterapkan, karena teknik ini dilakukan tanpa melalui kultur *in vitro* yang rumit dan biaya yang tinggi. Transformasi dilakukan dengan menginokulasi A. tumefaciens yang membawa plasmid biner dengan klon gen vang dikehendaki pada biji atau bibit tanaman yang masih sangat muda (seedling). Prinsipnya adalah menginokulasi sel-sel meristem atau embrio yang tertransformasi akan tumbuh menjadi tanaman transgenik yang mengandung gen yang tertransformasi melalui vector A. tumefaciens (Wirawan et al., 1996). Dalam teknik ini akan lebih banyak menghasilkan tanaman transgenik yang chimera, artinya tidak seluruh tanaman adalah sel yang tertransformasi tetapi transformasi genetik terjadi hanya secara parsial. Namun biasanya 1 -2% dari tanaman yang dihasilkan adalah transgenik penuh (whole transgenic) artinya setiap sel pada tanaman tersebut adalah sel-sel yang tertransformasi (transformed cell).

Berdasarkan hal tersebut perlu dilakukan studi transfer gen Sfa8 ke dalam sel tanaman kedelai secara *in planta* dengan harapan dapat menghasilkan tanaman kedelai transgenik yang mampu menaikkan nilai gizi biji kedelai baik sebagai sumber protein bagi manusia maupun pakan ternak yang sekaligus mampu menunjang pembangunan nasional melalui program peningkatan gizi masyarakat.

MATERI DAN METODE

Penelitian ini dilaksanakan di Laboratorium Bioteknologi dan rumah kaca Jurusan Hama dan Penyakit Tanaman, Fakultas Pertanian Universitas Udayana.

Transformasi Genetik dengan Metode Triparental Mating

Transformasi genetik dengan metode triparental mating yaitu suatu metode memasukkan plasmid pBI_{121} dari sel *E. coli* ke dalam sel *A. tumefaciens* dengan bantuan *E. coli* yang mengandung plasmid pRK_{2013} (Vervliet dalam Wirawan, 1996) seperti yang terlihat pada (Gambar 1).

Prosedur kerjanya adalah sebagai berikut: ketiga bakteri di atas dikultur secara terpisah pada media LB cair dengan antibiotika dan suhu yang sesuai *A. tumefaciens* LBA (pAL₄₄₀₄) tanpa antibiotika, 28°C, *E. coli* (pBI₁₂₁ + 600 bp Sfa8) dan *E.coli* (pRK₂₀₁₃) masing-masing dengan 100 ppm kanamisin dan suhu 37°C. Kemudian diinkubasi pada suhu 37°C semalam dengan pengocokan (*shaker*). Sel bakteri dipanen dengan sentrifugasi pada 5000 rpm selama 1 menit. Sel-sel bakteri dicuci dengan aquades steril (pakai aquabides) 2 kali. Kemudian sel-sel bakteri disuspen

Gambar 1: Skema kerja metode triparental mating

dalam 300 ul LB liquid tanpa antibiotika. Masingmasing 100 µl suspensi ketiga bakteri dimasukkan ke dalam 1,5 ml eppendorf tube steril, kemudian ketiga bakteri dicampur dengan membalik-balikkan tubenya. Setelah tercampur merata lalu disentrifugasi pada 3000 rpm selama 1 menit. Supernatannya dibuang lalu sel-sel bakteri tersebut disuspensi dalam 100 ul LB cair. Sebanyak 30 µl suspensi bakteri (campuran ketiganya) diteteskan (spot) di atas media LB agar, kemudian diinkubasi semalam pada suhu 30°C. Bakteri yang tumbuh diambil dengan kawat ose kemudian dikultur untuk menghasilkan single koloni pada media AB dengan kanamisin 100 ppm. Pada media AB hanya A. tumefaciens yang bisa hidup, sedangkan E. coli tidak bisa hidup. Kemudian dikultur semalam pada suhu 28°C. Single koloni yang tumbuh adalah A. tume faciens LBA $_{4404}$ (pAL $_{4404}$ + pSW $_{600}$). Dengan demikian klon gen Sfa8 yang fragmennya dapat dari biji bunga matahari telah diklon pada pBI_{121} dan dipelihara pada sel A.tumefaciens LBA₄₄₀₄, sehingga siap untuk ditransformasikan dalam sel tanaman (kedelai).

Transformasi Genetik Secara in planta

Penelitian ini dilakukan di rumah kaca, dengan menggunakan media perkecambahan dari polybag yang berisi campuran tanah dan pasir 1:1. Biji kedelai yang akan digunakan direndam dengan aguades selama 15 menit untuk merangsang perkecambahan. Setelah kecambah tumbuh, tunas aksilar dan tunas baru yang tumbuh di atas kotiledon dipotong, kemudian diinokulasi dengan A. tumefaciens LBA₄₄₀₄ (pAL₄₄₀₄, pSW₆₀₀). Sebagai kontrol, juga ditanam kedelai tanpa diinokulasi dengan A. tumefaciens LBA₄₄₀₄. Setelah 1-2 minggu, tunas baru hasil inokulasi akan tumbuh di atas kotiledon. Untuk keperluan analisis, diambil tunas/daun mudanya apakah sudah tertransformasi A. tumefaciens LBA₄₄₀₄, dengan mendeteksi keberadaan gen albumin bunga matahari menggunakan analisis polymerase chain reaction (PCR). Disamping itu juga dilihat perbedaan pertumbuhan dan hasil yang dicapai antara tanaman yang tertransformasi dengan tanaman kontrol.

Analisis Jaringan Transforman

Untuk membuktikan keberadaan gen albumin pada tanaman kedelai hasil transformasi, dilakukan analisis PCR menggunakan primer spesifik dari Sfa8. Squen primer yang digunakan adalah sebagai berikut:

- 5' GGGGATCCATGGAAGGTTTTCGATCG 3' dan 5' GGGAATTCCCGGGTTTACATTTGGCATGG 3' Program PCR yang digunakan adalah:
- I). Pre-treatment pada suhu 92°C selama 30 detik dengan satu siklus ulangan.
- II). a. Denaturation pada suhu 92°C selama 60 detik

- b. Annealing pada suhu 60°C selama 30 detik
 c. Elongation pada suhu 72°C selama 90 detik pada bagian II ini menggunakan 40 siklus ulangan
- III). Extention pada suhu 72°C selama 10 menit dengan satu siklus ulangan.

HASIL DAN PEMBAHASAN

Transformasi Klon Gen Albumin pada Plasmid pBI₁₂₁ ke dalam Sel *A.tumefaciens* LBA₄₄₀₄ dengan Metode Triparental Mating

Transformasi gen albumin bunga matahari pada plasmid pBI_{121} ke dalam sel A. tumefaciens LBA_{4404} dengan metode triparental mating, setelah ditumbuhkan pada media AB dengan kanamisin, hasilnya adalah hanya koloni bakteri A. tumefaciens LBA_{4404} (pAL_{4404} , pSW_{600}) yang bertahan tumbuh pada media seleksi (AB agar + kanamisisn) seperti yang telihat pada Gambar 2.

Gambar 2: Pemurnian $A.\ tumefaciens\ LBA_{4404}\ (pAL_{4404}\ +\ pSW_{600})$ pada media AB agar + kanamisin umur $3\ hari.$

Bertahannya *A. tumefaciens* LBA₄₄₀₄ (pAL₄₄₀₄ + pSW₆₀₀) pada media seleksi (AB+kanamisin) karena pada media AB sudah dikondisikan sedemikian rupa sehingga hanya *A. tumefaciens* LBA₄₄₀₄ yang bisa tumbuh, sedangkan bakteri lain seperti *E. coli* akan mati. Sedangkan bertahannya *A. tumefaciens* LBA₄₄₀₄ pada media kanamisin, karena adanya pSW₆₀₀ yang merupakan gabungan antara pBI₁₂₁ dan gen albumin. Telah diketahui bahwa pBI₁₂₁ mengandung fragmen Npt II, gen GUS dan multi kloning site yaitu fragmen pendek tempat pengklonan gen asing (albumin) untuk ditransfer. Dengan adanya Npt II yang resisten terhadap kanamisin pada pSW₆₀₀ menyebabkan *A. tumefaciens* LBA₄₄₀₄ tetap bertahan pada media dengan kanamisin (Wirawan, 1996).

Pada umumnya penanda genetik yang digunakan pada tanaman, kebanyakan merupakan ensim resisten terhadap antibiotika yang telah direkayasa sehingga dapat diekspresikan secara konstitutif pada tanaman. Sebagai contoh adalah Neomycin phosphotransferase II (Npt II) yang membuat resisten terhadap kanamisin. Kegunaan gen penanda pada beberapa vector trasformasi adalah dapat dengan mudah dilakukan verifikasi terhadap jaringan transformasi pada media yang mengandung antibiotik. (Kort, et al., 1991).

Transformasi Genetik dengan A.tumefaciens ke dalam Tanaman Kedelai Secara In planta

Hasil penelitian ini disajikan pada (Gambar 3). Sebagaimana telah disajikan pada metodelogi di atas bahwa transformasi genetik dilakukan terhadap kecambah yang telah dihilangkan tunas barunya yang tumbuh di atas kotiledon (Gambar 3a). Pertumbuhan tunas baru diawali dengan baik pada minggu 1-2 setelah inokulasi (Gambar 3b). Tunas-tunas transgenik yang dihasilkan menunjukkan cabang-cabang yang lebih banyak dibandingkan dengan yang tidak terinokulasi vaitu rata-rata 23 cabang per pohon pada tanaman terinokulasi dan 17 cabang pada tanaman kontrol. Ini menunjukkan tanaman yang terinokulasi cabangnya lebih banyak 35,29% dari tanaman yang tidak terinokulasi. Perbedaan ini sangat jelas terlihat pada tanaman yang sudah menginjak dewasa (Gambar 3c) sehingga buah yang dihasilkan setelah panen menunjukkan perbedaan berat biji yaitu 74,61 g untuk yang terinokulasi dan 53,26 g untuk tanaman kontrol, dari 40 tanaman kedelai yang ditanam di rumah kaca. Hasilini menunjukkan bahwa tanaman yang terinokulasi A. tumefaciens LBA₄₄₀₄ mampu berproduksi lebih tinggi dari tanaman kontrol yaitu sekitar 39,82%. Disamping itu juga dilakukan penimbangan secara acak, masing-masing 10 biji ulangan. Hasilnya adalah kedelai transgenik mempunyai berat biji rata-rata 1,099 g. Ini berarti biji kedelai transgenik lebih berat 4,624% dari biji kedelai non transgenik.

Dengan adanya indikasi biosintesis protein yang kaya sulfur pada biji kedelai, maka ada peluang keberhasilan berekspresinya gen-gen SFA8 ke dalam sel tanaman kedelai (Sunarpi dan Anderson, 1997). Prinsipnya adalah menginokulasi sel-sel meristem atau embrio yang tertransformasi akan tumbuh menjadi tanaman transgenik yang mengandung gen yang tertransformasi melalui vector A. tumefaciens. Dalam teknik ini akan lebih banyak menghasilkan tanaman transgenik yang chimera, artinya tidak seluruh tanaman adalah sel yang tertransformasi tetapi transformasi genetik terjadi hanya secara parsial. Namun biasanya 1 – 2% dari tanaman yang dihasilkan adalah transgenik penuh (whole transgenic) artinya setiap sel pada tanaman tersebut adalah sel-sel yang tertransformasi (transformed cell) (Wirawan et al., 1998).

Analisis Jaringan Transforman

Untuk lebih meyakinkan bahwa tanaman kedelai hasil transformasi telah membawa gen albumin, maka dilakukan analisis PCR pada tunas muda kedelai transgenik, menggunakan primer spesifik albumin dari Sfa8. Hasilnya seperti pada Gambar 4.

Gambar 3. Transformasi gen albumin secara *in planta* pada tanaman kedelai dengan vector *A. tumefaciens* LBA_{4404.} (A) Bibit kedelai diinokulasi pada bagian meristern di atas kotiledon. (B) Pertumbuhan tunas di atas kotiledon setelah ditransformasi. (C) Tanaman kedelai transgenik yang dihasilkan melalui transformasi *in planta*. 1. Kontrol (non transformed). 2. Tanaman transgenic dengan percabangan yang banyak, dibandingkan dengan kontrol

Gambar 4. Deteksi gen albumin bunga matahari pada tunas muda tanaman kedelai transgenik hasil transformasi. lane 1,2,3 merupakan kedelai transgenik dan lane 4,5,6 adalah kedelai non transgenik,, M = Marker

Dari hasil analisis PCR di atas menunjukkan bahwa tanaman kedelai transgenik (lane 1, 2, 3) mempunyai ukuran DNA 600 bp karena telah membawa gen albumin dari bunga matahari, sedangkan tanaman non transgenik (lane 4,5,6) tidak menghasilkan pita DNA albumin. Perlu diketahui bahwa Sfa8 tidak ada pada tanaman kedelai, sehingga setelah dilakukan uji PCR dengan primer spesifik dari Sfa8, hanya tanaman kedelai yang mengandung albumin yang teramplifikasi, sehingga menghasilkan pita DNA albumin 600 bp. Hasil ini didukung oleh penelitian Kort, et al. (1991) yang menyebutkan bahwa isolasi gen SFA8 dari bunga matahari melalui proses PCR menunjukkan ukuran DNA albumin 600 bp. Sedangkan tanaman non transgenik karena tidak mengandung albumin sehingga tidak terjadi amplifikasi dan hasilnya adalah negatif.

SIMPULAN

Gen albumin bunga matahari (600 bp) yang diklon pada plasmid vector pBI_{121} dapat ditransformasikan ke dalam A. tumefaciens LBA_{4404} menggunakan metode triparental mating. Transformasi genetik menggunakan vector A. tumefaciens LBA_{4404} dapat menghasilkan tanaman kedelai transgenik secara in planta.

UCAPAN TERIMA KASIH

Melalui kesempatan ini penulis menyampaikan terima kasih dan penghargaan yang setinggi-tingginya kepada yang terhormat Bapak Prof. Dr. Ir. I G. P. Wirawan, MSc dan Bapak Dr. Ir. I Made Sudana MS, yang dengan sepenuh hati mencurahkan waktu, tenaga dan pikiran selama berlangsungnya penelitian dan penulisan ini. Bapak Kepala Lab. Bioteknologi Pertanian beserta staf, serta rekan-rekan semuanya sehingga penelitian ini dapat diselesaikan sesuai rencana.

DAFTAR PUSTAKA

Kort, A.A.J.B. Caldwell. G.G. Lilley, and T.J.V. Higgins, 1991. Amino acid and cDNA sequence of a methionine-rich 2S protein from sunflower seed (*Helianthus annuus*, L.).

Pickaedt, T., Saalbach, I., Waddell, D., Meixner, M., Muntz, K. and Scheider, O., 1993. Seed spesific expression of the 2S albumin gene from Brazil nut (Bertholletia excelsa) in transgenic *vicia* narbonensis. Molecular Breeding 1: 295-301.

Rafigul, M., Khan, I., Cereotti, A., Tabe, L., Aryan, A., McNabb, W., Moore, A., Craig, S., Spancer, D. and Higgins, T.J.V., 1993. Acumulation of sulphur-rich seed albumin from sunflower in the leavesof transgenic subterranean clover (Trifolium subterraneum, L.). Transgenic Research 5: 179-185.

Sunarpi dan Anderson, J. W., 1997, Allocation of 5 in Generative Growth of Soybeen, Plant Physiol. 114; 687-693.

Tabe. L.M., Wardley – Richardson, T., Cereotti, A. Aryan, A., McNabb, W., Moore, A. and Higgins, T.J.V., 1995. A. Biotechnical approach to improvising the nutritive value of alfalfa. J. Anim. Sci 73: 2752-2759.

Wirawan, I.G.P., 1996. Moleculer Mechanism of Crown Gall Tumor Induction by *A. tumefaciens*. Graduate Course of Biochemical Regulation, Graduate School of Agriculture Sciences Nagoya University, Nagoya. Japan.

Wirawan, I G. P., I N. Arya, dan S. Subandiah, 1998. Isolasi Loci Resisten terhadap CVPD (Citrus Vein Phloem Degeneration) dengan Metode Transformasi Menggunakan A. tumefaciens, Laporan Penelitian tidak dipiblikasikan.