Elementi di teoria della Computazione (Prof.ssa Gargano)

Prova Scritta Esempio -

Nome e Cognome, email:

Matricola:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7
						/	SI NO

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

- 1. Si consideri l'automa N in figura.
 - i) Determinare la 5-tupla che lo descrive (specificando ogni componente)
 - ii) Per ognuna delle seguenti stringhe bb, abaa e abb determinare se essa appartiene o meno a L(N).
 - iii) Determinare il DFA corrispondente all'automa N (applicando le regole di costruzione studiate)

Solutione

i) La quintupla è $(Q, \Sigma, \delta, q_0, F)$ dove

 $Q = \{q_0, q_1, q_2, q_3, q_4\}$ è l'insieme degli stati, $\Sigma = \{a, b\}$ l'alfabeto, q_0 è lo stato iniziale, $F = \{q_2, q_4\}$ è l'insieme degli stati finali, e la funzione di transizione δ è definita dalla tabella a lato

	a	$\mid b \mid$
q_0	$\{q_1\}$	$\{q_3\}$
q_1	$\{q_1,q_2\}$	$\{q_1\}$
q_2	Ø	Ø
q_3	$\{q_3\}$	$\{q_3,q_4\}$
q_4	Ø	Ø

ii) Con input bb N può effettuare le transizioni da q_0 a q_3 e da q_3 a q_4 , essendo $q_4 \in F$ abbiamo che $bb \in L(N)$. Avendo in input abaa l'automa può effettuare le transizioni da q_0 a q_1 , q_1 a q_1 , q_1 a q_1 e da q_1 a q_2 , essendo q_2 uno stato finale abbiamo che $abaa \in L(N)$.

Con in input abb l'automa può effettuare solo le transizioni da q_0 a q_1 , q_1 a q_1 e da q_1 a q_1 , non essendo q_2 uno stato finale abbiamo che $abb \notin L(N)$.

iii) Indichiamo con D il DFA. Sappiamo che $D=(Q_D,\Sigma,\delta_D,q_D,F_D)$ con $Q_D=P(Q)$. Lo stato iniziale risulta $q_D=\{q_0\}$. Inoltre F_D contiene tutti quelgli stati corrispondenti ad insiemi che hanno intersezione non nulla con F. la funzione di transizione soddisfa $\delta_D(R,x)=\cup_{r\in R}\delta(r,x)$, per ogni $R\in Q_D$ e $x\in \Sigma$. Il diagramma corrispondente (in cui non compaiono gli stati irraggiungibili da quello iniziale)

Prova Scritta 2

- 2. 1) Fornire la definizione ricorsiva per le espressioni regolari.
 - 2) Data l'espressione regolare $E = (01 \cup 100)^*$
 - $2.1)\,$ descrivere brevemente (a parole) il linguaggio L(E)
 - 2.2) applicare le regole studiate per costruire un automa A tale che L(A) = L(E).

Solutione

- 1) Vedere il libro di testo, p. 67.
- 2.1) L(E) è l'insieme di tutte le stringhe che si possono ottenere dalla concatenazione di di 100 e 01 in numero qualsiasi ed in un ordine qualsiasi.
- 2.2) Per ottenere l'automa voluto dobbiamo partire dalle componenti di base e costruire E mediante le operazioni di unione, concatenazione e star.

Prova Scritta 3

3. Fornire le definizioni (formalmente precise) di configurazione di una MdT e di linguaggio riconosciuto da una MdT.

Data la Macchina di Turing M in figura, fornire la sequenza delle configurazioni quando M ha come input la sequenza aabbaaaa e dire se $aabbaaaa \in L(M)$ (Nota a,R indica in forma abbreviata $a \to a,R$ e b,R indica $b \to b,R$, il simbolo $|a_n|$ indica il blank)

Solutione

Per le definizioni si veda il libro di testo, p. 177.

Le configurazioni sono: $C_1 = q_0 aabbaaaa$, $C_2 = aq_1 abbaaaa$, $C_3 = abq_2 bbaaaa$, $C_4 = abbq_2 baaaa$, $C_5 = abbbq_2 aaa$, $C_6 = abbbaq_1 aaa$, $C_7 = abbbabq_2 aa$, $C_8 = abbbabaqqa$, $C_9 = abbbababqq$, $C_{10} = abbbababqq$, $C_{11} = abbbababqq$. La stringa viene accettata, quindi $aabbaaaa \in L(M)$.

- 4. (a) Enunciare il teorema di Rice.
 - (b) È possibile utilizzarlo per mostrare che il seguente linguaggio è indecidibile? Giustificare la risposta.

 $L = \{\langle M \rangle \mid M \text{ è una MdT che accetta ogni input di lunghezza dispari}\}.$

Soluzione:

- (a) L'enunciato del Teorema di Rice è fornito a pag. 254 del libro di testo.
- (b) È possibile utilizzare il teorema di Rice per provare l'indecidibilità di L nel modo seguente. Esiste una MdT M che accetta ogni input di lunghezza dispari (ad esempio la macchina di Turing che accetta Σ^*). Quindi la stringa $\langle M \rangle$ appartiene ad L. Inoltre esiste almeno una MdT M' tale che $\langle M' \rangle \not\in L$. Si consideri, ad esempio la MdT M' che ha $L(M') = \{\epsilon\}$ (ha q_0 come stato iniziale ed è tale che $\delta(q_0, \sqcup) = (q_{accept}, \sqcup, R)$ e $\delta(q_0, x) = (q_{reject}, x, R)$, per ogni $x \in \Sigma$.) È chiaro che $\langle M' \rangle \not\in L$. Questo prova che la proprietà che definisce L è non banale. Inoltre, se M, M' sono MdT tali che L(M) = L(M') allora $\langle M \rangle \in L$ se e solo se $\langle M' \rangle \in L$. Quindi L soddisfa le ipotesi del Teorema di Rice. Applicando il teorema di Rice si conclude che L è indecidibile.

Prova Scritta 4

- 5. 1) Definire i problemi di decisione 3-SAT e SUBSET-SUM
 - 2) Data la formula $\phi = (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$ determinare l'istanza di SUBSET-SUM corrispondente a ϕ nella riduzione 3-SAT a SUBSET-SUM.

Soluzione: 1) Le definizioni sono date nel libro di testo (Kleinberg, Tardos, Algorithm Design, Capitolo 8)

2) L'istanza risulta composta dall'insieme $S = \{1000110, 1001001, \dots, 1, 2\}$ e l'intero w = 1114444 ottenuti mediante la tabella:

	x_1	x_2	x_3	C_1	C_2	C_3	C_4	Numeri in S
x_1	1	0	0	0	1	1	0	1000110
$\overline{x_1}$	1	0	0	1	0	0	1	1001001
x_2	0	1	0	1	1	0	0	0101100
$\overline{x_2}$	0	1	0	0	0	1	1	100011
x_3	0	0	1	0	1	1	0	10110
$\overline{x_3}$	0	0	1	1	0	0	1	11001
	0	0	0	1	0	0	0	1000
	0	0	0	2	0	0	0	2000
	0	0	0	0	1	0	0	100
	0	0	0	0	2	0	0	200
	0	0	0	0	0	1	0	10
	0	0	0	0	0	2	0	20
	0	0	0	0	0	0	1	1
	0	0	0	0	0	0	2	2
w	1	1	1	4	4	4	4	1114444

6. Si considerino 4 problemi A, B, C e D. Ognuno puó appartenere o meno all classe NP. Si conosce l'esistenza delle seguenti riduzioni: $A \leq_P B$, $B \leq_P C$, $D \leq_P C$.

Per ognuna delle affermazioni seguenti indicare se é sicuremente VERA, sicuramente FALSA oppure NON SI SA (cioé dipende dai problemi e dalla relazione tra le classi $P \in NP$); giustificare brevemente le risposte.

- 1) Se A é NP-completo allora C é NP-completo.
- 2) Se A é NP-completo e $B \in NP$, allora B é NP-completo.
- 3) Se $C \in P$ allora $D \in P$.

Soluzione.

- 1) Non si sa
. In particolare non si sa se $C \in NP$
- 2) Si. Sappiamo che $B \in NP$; inoltre ogni problema in NP si riduce ad A e, sapendo $A \leq_P B$, si riduce a B.
- 3) SI. L'esistenza della riduzione polinomiale da D a C, sapendo che $C \in P$, implica l'esistenza di un algoritmo polinomiale per D, quindi $D \in P$.
- 7. Una palestra cerca istruttori in grado di coprire corsi nelle discipline sportive D_1, \ldots, D_m . Gli istruttori candidati sono I_1, \ldots, I_m dove L'istruttore I_i é in grado di insegnare un insieme di discipline $S_i \subseteq \{D_1, \ldots, D_n\}$ (per ogni $i = \ldots, m$). Se il direttore della palestra intende arruolare al massimo k istruttori, risulta possibile ricoprire tutte le discipline D_1, \ldots, D_n ?

Chiamare il problema descritto PALESTRA; formalizzarlo (indicare input e output desiderato) e mostrare che esso risulta NP-completo. [Aiuto. Si può sfruttare il fatto che il problema Set-Cover risulta NP-completo.]

Soluzione

Per mostrare che il problema é NP-completo, dobbiamo mostrare che esso risulta in NP e poi mostriamo che esiste una riduzione polinomiale da Set-Cover.

Se vengono forniti $k' \leq k$ istruttori e per ognuno l'insieme di discipline coperte, basterá verificare che ogni elemento dell'insieme $\{D_1, \ldots, D_m\}$ risulta coperto. Questa operazione di puó essere fatta in tempo polinomiale, quindi PALESTRA \in NP.

Consideriamo un'istanza di set-cover: $U = \{u_1, \dots, u_n\}, S_1, \dots, S_m \subseteq U$ e parametro k. Creiamo un istanza di PALESTRA con: -insieme di discipline D = U, istruttori I_1, \dots, I_m dove l'istruttore I_i é in grado di insegnare un insieme di discipline S_i (per ogni $i = \dots, m$) e numero massimo di istruttori arruolabili pari a k. Risulta:

 S_{i_1}, \ldots, S_{i_k} é una soluzione di Set-Cover sse $S_{i_1} \cup \ldots \cup S_{i_k} = U = D$, il che equivale a dire (per come abbiamo costruito l'istanza di PALESTRA) che gli istruttori I_{i_1}, \ldots, I_{i_k} coprono tutte le discipline

Quindi S_{i_1}, \ldots, S_{i_k} é una soluzione di Set-Cover sse I_{i_1}, \ldots, I_{i_k} é una soluzione di PALESTRA.