Comparison between RNA-seq and Immunohistochemistry data

Contents

Comparative analysis	1
ER analysis	1
IHC dataset	1
RNA-seq dataset	2
Inner Join datasets	3
Comparison Analysis	4
Put all the plots together	6
PR analysis	7
IHC dataset	
RNA-seq dataset	
Inner join datasets	
Comparison analysis	8
Put all the plots together	2
Session Info	2

In the SHIVA trial, estrogen, androgen and progesterone status (ER, AR and PR) were collected in order to associate the patients to a hormone therapy. The hormone receptors ER, AR and PR were collected using Immunohistochemistry (IHC). Immunohistochemestry values are available through TCGA for a limited number of samples but RNA-Seq could represent a valid proxy. In this section we want to explore the relationship between RNA-seq and Immunohistochemistry and, possibly, identify a threshold that we can use in the simulation to appropriately identify over-expressed samples. IHC categories for ER will be compared to ESR1 expression values and IHC PR categories to the RNA values of PGR gene.

Comparative analysis

To run the comparison analysis we will need two datasets:

- Dataset with IHC values,
- Dataset with RNA-seq expression values

Both dataset need to have in common the same patients so that we can reconstruct the index.

The analysis will be run on two hormone receptors:

- ER
- PR

ER analysis

IHC dataset

As Input dataset we are choosing to use:

Clinical data downloaded from cBioportal for the dataset: Breast Invasive Carcinoma (TCGA, Cell 2015) - LINK

The dataset has been downloaded and stored as brca_tcga_pub2015_clinical_data.tsv.

```
suppressMessages(library(dplyr))
suppressMessages(library(ggplot2))
suppressMessages(library(plotly))
suppressMessages(library(readr))
suppressMessages(library(knitr))
suppressMessages(library(PrecisionTrialDesigner))
ihc <-readr::read_tsv("../external_resources/brca_tcga_pub2015_clinical_data.tsv")</pre>
ihcFilter <- ihc %>%
  dplyr::select(`Patient ID`
                , `ER Status By IHC`
                 `ER Status IHC Percent Positive`
                ) %>%
  dplyr::filter(!is.na(`ER Status By IHC`)) %>% # Remove the <NA>
  dplyr::filter(!is.na(`ER Status IHC Percent Positive`)) %% # Remove the <NA>
  dplyr::rename(case_id=`Patient ID`, er_status=`ER Status By IHC`, ihc_value=`ER Status IHC Percent Po
# preview
kable(head(ihcFilter), caption="top 6 rows")
```

Table 1: top 6 rows

case_id	er_status	ihc_value
TCGA-A2-A3XV	Positive	<10%
TCGA-A2-A3Y0	Positive	90- $99%$
TCGA-LL-A50Y	Positive	90- $99%$
TCGA-LL-A5YP	Positive	< 10%
TCGA-LL-A5YL	Positive	90- $99%$
TCGA-LL-A5YM	Positive	90 - 99%

RNA-seq dataset

##

The RNA-seq dataset was extracted using PTD function.!

```
panel_design <- data.frame(drug=""
    , gene_symbol="ESR1"
    , alteration="expression"
    , exact_alteration="up"
    , mutation_specification=""
    , group="")

panel <- newCancerPanel(panel_design)

## Checking panel construction...

## Calculating panel size...

## Connecting to ensembl biomart...

panel <- getAlterations(panel, tumor_type = "brca_tcga")</pre>
```

```
## Retrieving Expression data...
## getting Expression from this cancer study: brca_tcga
panel <- subsetAlterations(panel)

## Subsetting expression...
# Load data from SHIVA retrospective analaysis
#panel <- readRDS("../Temp/shiva_panel.rds")

# Fetch data
rnaseq <- panel@dataFull$expression$data %>%
    filter(tumor_type == "brca") %>%
    filter(gene_symbol == "ESR1") %>%
    select(case_id, expressionValue)

# Preview
kable(head(rnaseq), caption = "top 6 rows")
```

Table 2: top 6 rows

case_id	expressionValue
TCGA-3C-AAAU	-0.7191
TCGA-3C-AALI	-1.0102
TCGA-3C-AALJ	-0.3734
TCGA-3C-AALK	-0.8026
TCGA-4H-AAAK	-0.5421
TCGA-5L-AAT0	-0.4499

Inner Join datasets

Preview the results from the inner join.

case_id	expressionValue	er_status	ihc_value
TCGA-A1-A0SB	-0.9422	Positive	70-79%
TCGA-A1-A0SD	-0.1806	Positive	90-99%
TCGA-A1-A0SE	-0.6371	Positive	80 - 89%
TCGA-A1-A0SF	-0.3379	Positive	90- $99%$
TCGA-A1-A0SI	-0.6601	Positive	50-59%
TCGA-A1-A0SJ	-0.6137	Positive	70-79%

Comparison Analysis

Explore RNA-seq Z-score

Rna-seq expression density plot


```
ggsave(filename="../Figures/fig_extra1.svg", plot=p1, device = "svg")
```

Saving 6.5 x 4.5 in image

Explore ICH values

Barplot with COUNT of patients in each ER ICH expression value (from 0 to 100%)


```
ggsave(filename="../Figures/fig_extra2.svg", plot=p2, device = "svg")
```

Saving 6.5×4.5 in image

Compare

```
p3 <- ggplot(data=df, aes(x=ihc_value, y=expressionValue, group=1)) +
    geom_point(colour="red", size=1, shape=21, fill="white") +
    labs(title="Comparison between RNA-seq and IHC values for ER in Breast cancer") +
    xlab("IHC value") +
    ylab("RNA-seq z-score") +
    geom_smooth(method="lm") +
    geom_hline(yintercept =0.3) +
    theme(legend.position = "none", plot.title=element_text(size=10))

#ggplotly(p3,width = 650, height = 400, margin(t=1000))

ggsave(filename="../Figures/fig_extra3.svg", plot=p3, device = "svg")</pre>
```

Saving 7×4.5 in image

Fit to a linear model

```
# Convert chategorical values to continue numerical value # <10\% = 1 # 10-19\% = 2 # etc..
```

```
df$ihc_value2 <- as.numeric(factor(df$ihc_value))
# Fit the data into a linea regressino model ache chek the coefficients
summary(lm(df$expressionValue ~ ihc_value2, df))</pre>
```

```
##
## Call:
## lm(formula = df$expressionValue ~ ihc_value2, data = df)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -1.1513 -0.5161 -0.1986 0.3119 3.6855
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                          0.10600 -8.612 3.90e-16 ***
## (Intercept) -0.91294
## ihc_value2
              0.10993
                          0.01292
                                    8.510 7.99e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7789 on 305 degrees of freedom
## Multiple R-squared: 0.1919, Adjusted R-squared: 0.1892
## F-statistic: 72.42 on 1 and 305 DF, p-value: 7.987e-16
```

There is a significant linear relationship between the predictor and the outcome. Although the R^2 value is very low (R^2 indicates the percentage of total variation explained by the linear relationship with the predictors).

• Pearson correlation: **0.4380385**

Put all the plots together

```
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
```


PR analysis

IHC dataset

<10% 10-19% 20-29% 30-39% 40-49% 50-59% 60-69% 70-79% 80-89% 90-99% ihc_value

RNA-seq dataset

The RNA-seq dataset was extracted using PTD function.!

```
panel_design <- data.frame(drug=""
    , gene_symbol="PGR"
    , alteration="expression"
    , exact_alteration="up"
    , mutation_specification=""
    , group="")</pre>
```

```
panel <- newCancerPanel(panel_design)</pre>
## Checking panel construction...
## Calculating panel size...
## Connecting to ensembl biomart...
panel <- getAlterations(panel, tumor_type = "brca_tcga")</pre>
##
## Retrieving Expression data...
## getting Expression from this cancer study: brca_tcga
panel <- subsetAlterations(panel)</pre>
## Subsetting expression...
# Load data from SHIVA retrospective analaysis
# Fetch data
rnaseq_PR <- panel@dataFull$expression$data %>%
  filter(tumor_type == "brca") %>%
  filter(gene_symbol == "PGR") %>%
  select(case_id, expressionValue)
```

Inner join datasets

```
# join
dfPR <- dplyr::inner_join(rnaseq_PR, ihcPRFilter, by="case_id")</pre>
```

Comparison analysis

Explore RNA-seq Z-score

Rna-seq expression density plot

Explore ICH values

Compare

```
p3 <- ggplot(data=dfPR, aes(x=ihc_value, y=expressionValue, group=1)) +
    geom_point(colour="red", size=1, shape=21, fill="white") +
    labs(title="Comparison between RNA-seq and IHC values for PR in Breast cancer") +
    xlab("IHC value") +
    ylab("RNA-seq z-score") +
    geom_smooth(method="lm") +
    geom_hline(yintercept =0.3) +
    theme(legend.position = "none", plot.title=element_text(size=10))

#ggplotly(p3,width = 650, height = 400, margin(t=1000))
p3</pre>
```

Comparison between RNA-seq and IHC values for PR in Breast cancer

Fit to a linear model

```
# Convert chategorical values to continue numerical value
\# < 10\% = 1
# 10-19% = 2
# etc..
dfPR$ihc_value2 <- as.numeric(factor(dfPR$ihc_value))</pre>
# Fit the data into a linea regressino model ache chek the coefficients
summary(lm(expressionValue ~ ihc_value2, dfPR))
##
## Call:
## lm(formula = expressionValue ~ ihc_value2, data = dfPR)
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
## -1.2185 -0.4923 -0.1667 0.0834 7.1311
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                          0.10126 -6.240 1.57e-09 ***
## (Intercept) -0.63187
## ihc_value2
                           0.01522
                                    7.763 1.47e-13 ***
              0.11819
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9817 on 287 degrees of freedom
## Multiple R-squared: 0.1736, Adjusted R-squared: 0.1707
## F-statistic: 60.27 on 1 and 287 DF, p-value: 1.466e-13
```

Put all the plots together

Session Info

```
sessionInfo()
```

```
## R version 3.3.3 (2017-03-06)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS 10.13.1
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
##
  [8] base
##
## other attached packages:
## [1] gridExtra_2.3
                                     gdtools_0.1.6
## [3] bindrcpp_0.2
                                     PrecisionTrialDesigner_0.99.0
## [5] knitr_1.17
                                     readr_1.1.1
## [7] plotly_4.7.1
                                     ggplot2_2.2.1.9000
## [9] dplyr_0.7.4
##
## loaded via a namespace (and not attached):
```

```
## [1] Biobase_2.34.0
                                      httr_1.3.1
## [3] tidyr_0.7.2
                                      bit64_0.9-7
## [5] jsonlite_1.5
                                      viridisLite_0.2.0
## [7] AnnotationHub_2.6.5
                                       shiny_1.0.5
## [9] assertthat_0.2.0
                                      LowMACAAnnotation_0.99.3
## [11] interactiveDisplayBase_1.12.0 highr_0.6
## [13] stats4_3.3.3
                                      blob_1.1.0
## [15] Rsamtools_1.26.2
                                      yaml_2.1.14
## [17] ggrepel_0.7.0
                                      lattice_0.20-35
## [19] RSQLite_2.0
                                      backports_1.1.1
## [21] glue_1.2.0
                                      digest_0.6.12
## [23] GenomicRanges_1.26.4
                                      RColorBrewer_1.1-2
## [25] XVector_0.14.1
                                       cgdsr_1.2.6
## [27] colorspace_1.3-2
                                      Matrix_1.2-12
## [29] htmltools_0.3.6
                                      httpuv_1.3.5
## [31] R.oo_1.21.0
                                      plyr_1.8.4
## [33] XML_3.98-1.9
                                      pkgconfig_2.0.1
## [35] biomaRt_2.30.0
                                      zlibbioc_1.20.0
## [37] purrr_0.2.4
                                      xtable_1.8-2
## [39] scales_0.5.0
                                      svglite_1.2.1
## [41] brglm_0.6.1
                                      BiocParallel_1.8.2
## [43] tibble_1.3.4
                                       IRanges_2.8.2
## [45] DT_0.2
                                      SummarizedExperiment_1.4.0
## [47] BiocGenerics_0.20.0
                                      lazyeval_0.2.1
## [49] magrittr_1.5
                                      mime_0.5
## [51] memoise_1.1.0
                                       evaluate_0.10.1
## [53] R.methodsS3_1.7.1
                                      BiocInstaller_1.24.0
## [55] tools_3.3.3
                                      data.table_1.10.4-3
## [57] hms_0.3
                                       stringr_1.2.0
## [59] googleVis_0.6.2
                                      S4Vectors_0.12.2
## [61] munsell_0.4.3
                                      Biostrings_2.42.1
## [63] AnnotationDbi_1.36.2
                                      GenomeInfoDb_1.10.3
## [65] profileModel_0.5-9
                                      rlang_0.1.4
## [67] RCurl_1.95-4.8
                                      htmlwidgets_0.9
## [69] labeling_0.3
                                      bitops_1.0-6
## [71] shinyBS_0.61
                                      rmarkdown_1.7
## [73] gtable_0.2.0
                                       codetools_0.2-15
## [75] DBI_0.7
                                      reshape2_1.4.2
## [77] R6_2.2.2
                                      GenomicAlignments_1.10.1
## [79] rtracklayer_1.34.2
                                      bit_1.1-12
## [81] bindr_0.1
                                      rprojroot_1.2
## [83] stringi_1.1.5
                                      parallel_3.3.3
## [85] Rcpp_0.12.13
```