Comparison of power operations in Morava E-theories

Takeshi Torii

Okayama University

November 9, 2013

Introduction

We are going to discuss power operations of Morava *E*-theories of different heights.

The E_n -cohomology $E_n^0(X)$ of a space X naturally has a Γ_n -module structure,

where Γ_n is the algebra of power operations of the nth Morava E-theory E_n .

Introduction

The E_n -cohomology $E_n^0(X)$ also has a natural G_n -action, where G_n is the extended Morava stabilizer group.

The Γ_n -module structure and the G_n -module structure on $E_n^0(X)$ are compatible in some sense.

We say that such a module is a Γ_n -module with compatible G_n -action.

Introduction

We'd like to compare Γ_n -modules with compatible G_n -action and Γ_{n+1} -modules with compatible G_{n+1} -action.

For that purpose, we set

$$B_n = L_{K(n)}(E_n \wedge E_{n+1}).$$

We have two ring homomorphisms

in:
$$E_n^0 \longrightarrow B_n^0$$
,
ch: $E_{n+1}^0 \longrightarrow B_n^0$.

Main Theorem 1

Theorem 1

If M is a Γ_{n+1} -module with compatible G_{n+1} -action, then

$$(B_n^0 \otimes_{E_{n+1}^0} M)^{G_{n+1}}$$

is a Γ_n -module with compatible G_n -action.

Main Theorem 2

Theorem 2

For any finite complex X, there is a natural isomorphism

$$(B^0_n \otimes_{E^0_{n+1}} E^0_{n+1}(X))^{G_{n+1}} \cong E^0_n(X)$$

of Γ_n -modules with compatible G_n -action.

H_{∞} -ring spectrum

Power operations are defined on an H_{∞} -ring spectrum.

A spectrum R is an H_{∞} -ring spectrum if R is equipped with maps

$$\xi_r: E\Sigma_{r+} \wedge_{\Sigma_r} R^{\wedge r} \longrightarrow R$$

for $r \ge 0$ satisfying the associativity and unit conditions up to homotopy.

Examples of H_{∞} -ring spectra

Example 1

- $R = H\mathbb{Z}/p$ the mod p cohomology,
- $R = E_n$ the *n*th Morava *E*-theory.
- If X is a space and R is an H_{∞} -ring spectrum, then the function spectrum R^X is an H_{∞} -ring spectrum.

Note that the function spectrum \mathbf{R}^{X} is defined to satisfy

$$\pi_{-q}(R^X) \cong R^q(X).$$

Let R be an H_{∞} -ring spectrum.

The power operation

$$P_r: \pi_0(R) = R^0 \longrightarrow R^0(B\Sigma_r)$$

is defined as follows.

Suppose $x \in \pi_0(R)$ is represented by

$$x:S^0\longrightarrow R.$$

This induces a map of Borel constructions

$$1 \wedge x^{\wedge r} : E\Sigma_{r+} \wedge_{\Sigma_r} (S^0)^{\wedge r} \longrightarrow E\Sigma_{r+} \wedge_{\Sigma_r} R^{\wedge r}.$$

The element $P_r(x) \in R^0(B\Sigma_r)$ is given by the composition

$$B\Sigma_{r+} = E\Sigma_{r+} \wedge_{\Sigma_r} (S^0)^{\wedge r} \xrightarrow{1 \wedge x^r} E\Sigma_{r+} \wedge_{\Sigma_r} R^{\wedge r}$$
$$\xrightarrow{\xi_r} R$$

Remark 2

The inclusion $* \to B\Sigma_r$ induces the restriction map

res :
$$R^0(B\Sigma_r) \longrightarrow R^0(*) = \pi_0(R)$$
.

We have

$$res \circ P_r(x) = x^r.$$

The operation P_r is multiplicative

$$P_r(xy) = P_r(x) \cdot P_r(y),$$

but not additive $P_r(x + y) \neq P_r(x) + P_r(y)$.

Actually, we have

$$P_r(x + y) = \sum_{i+j=r} \operatorname{tr}_{\Sigma_i \times \Sigma_j}^{\Sigma_r} (P_i(x) \times P_j(y)),$$

where $\operatorname{tr}_{\Sigma_i \times \Sigma_j}^{\Sigma_r} : R^0(B\Sigma_i \times \Sigma_j) \to R^0(B\Sigma_r)$ is the transfer map.

The algebra Γ_n of power operations

Rezk considered algebraic structures any K(n)-local commutative E_n -algebra has.

Let R be a K(n)-local commutative E_n -algebra.

In particular, this implies ${\it R}$ is an ${\it H}_{\infty}$ -ring spectrum.

So we can consider power operations on $\pi_0(R)$.

There exists a graded algebra

$$\Gamma_n = \bigoplus_{k \geq 0} \Gamma_n[k],$$

which is called the algebra of power operations.

For a K(n)-local commutative E_n -algebra R, $\pi_0(R)$ naturally has a Γ_n -algebra structure.

Namely, $\pi_0(R)$ is a Γ_n -module and a commutative ring such that the multiplication

$$\pi_0(R) \otimes_{E_n^0} \pi_0(R) \longrightarrow \pi_0(R)$$

is a map of Γ_n -modules.

The degree k-component of Γ_n is given by

$$\Gamma_n[k] = \operatorname{Hom}_{E_n^0}(D_n(p^k), E_n^0),$$

where $D_n(p^k)$ is the cokernel

$$\operatorname{coker} \left(\bigoplus_{i=1}^{p^k-1} E_n^0(B\Sigma_i \times \Sigma_{p^k-i}) \xrightarrow{\operatorname{transfer}} E_n^0(B\Sigma_{p^k}) \right).$$

Note that $D_n(p^k)$ is a complete local ring since the transfer image is an ideal.

Γ_n -action on $\pi_0(R)$

The action of Γ_n on $\pi_0(R)$ is given as follows.

If $\theta \in \Gamma_n[k]$ and $x \in \pi_0(R)$, then $\theta(x) \in \pi_0(R) = R^0$ is the image of x under the map

$$\pi_0(R) \xrightarrow{P_{p^k}} R^0(B\Sigma_{p^k}) \cong E_n^0(B\Sigma_{p^k}) \otimes_{E_n^0} R^0$$

$$\longrightarrow D_n(p^k) \otimes_{E_n^0} R^0$$

$$\xrightarrow{\theta \otimes 1} E_n^0 \otimes_{E_n^0} R^0 \cong \pi_0(R).$$

Hence we obtain an operation

$$\theta:\pi_0(R)\longrightarrow\pi_0(R).$$

for $\theta \in \Gamma_n$.

Remark 3

The operation $\theta : \pi_0(R) \longrightarrow \pi_0(R)$ is additive since it factors through

$$D_n(p^k) \otimes_{E_n^0} R^0 = E_n^0(B\Sigma_{p^k})/(\operatorname{transfer}) \otimes_{E_n^0} R^0.$$

The moduli interpretation of $D_n(p^k)$

Let \mathbb{F}_n be the formal group scheme over E_n^0 associated to the Morava E-theory E_n .

Theorem 3 (Strickland)

For any complete local E_n^0 -algebra T,

$$\operatorname{Hom}_{E_n^0\text{-alg}}^c(D_n(p^k), T)$$

$$\cong \left\{ \begin{array}{l} \text{finite subgroup schemes } H \text{ of } \mathbb{F}_n \\ \text{over } T \text{ of rank } p^k \end{array} \right\}.$$

Formal affine graded category scheme

The structure of $D_n = \{D_n(p^k)\}_k$ is described as follows.

The pair (E_n^0, D_n) forms a formal affine graded category scheme.

Namely, for any complete local ring T, the pair

$$(\operatorname{Hom}_{\operatorname{ring}}^{c}(E_{n}^{0},T),\{\operatorname{Hom}_{\operatorname{ring}}^{c}(D_{n}(p^{k}),T)\}_{k})$$

naturally has the structure of a graded category.

In particular, we have maps

$$s: E_n^0 \longrightarrow D_n(p^k)$$

$$t: E_n^0 \longrightarrow D_n(p^k)$$

$$u: D_n(p^0) \longrightarrow E_n^0$$

and

$$c: D_n(p^{k+l}) \longrightarrow D_n(p^k) \underset{s, E_n^0, t}{\otimes} D_n(p^l)$$

for $k, l \ge 0$ corresponding to the structure of a graded category.

Γ_n -module and D_n -comodule

In other words, (E_n^0, D_n) is a graded Hopf algebroid without antipode.

So we can consider a D_n -comodule,

which is an E_n^0 -module M with structure maps

$$M \longrightarrow D_n(p^k) \underset{s,E_n^0}{\otimes} M$$

for $k \ge 0$ satisfying the associativity and unit conditions.

Remark 4

The category of Γ_n -modules is equivalent to the category of D_n -comodules.

In the following of this talk we use the words Γ_n -module and D_n -comodule interchangeably.

The extension B_n

We are going to consider the relationship between Γ_n -modules and Γ_{n+1} -modules.

For that purpose, we define

$$B_n = L_{K(n)}(E_n \wedge E_{n+1}).$$

Note that B_n is a K(n)-local commutative E_n -algebra.

Hence $\pi_0(B_n) = B_n^0$ is a Γ_n -algebra.

The extension B_n

We have maps of H_{∞} -ring spectra

in:
$$E_n \longrightarrow B_n$$
,

ch:
$$E_{n+1} \longrightarrow B_n$$
.

In particular, we have ring homomorphisms

in:
$$E_n^0 \longrightarrow B_n^0$$
,

$$ch: E_{n+1}^0 \longrightarrow B_n^0.$$

The following is the key proposition.

Proposition 5

 B_n^0 is a Γ_{n+1} -algebra such that $\operatorname{ch}: E_{n+1}^0 \to B_n^0$ is a map of Γ_{n+1} -algebras.

The proposition follows from the following lemma.

Lemma 4

There is an isomorphism

$$D_{n+1}(p^k) \underset{s,E_{n+1}^0}{\otimes} B_n^0 \cong \prod_{r=0}^k D_{n+1}(p^k,p^r),$$

where $D_{n+1}(p^k, p^r)$ is a complete local B_n^0 -algebra such that

$$\operatorname{Hom}_{B_n^0 ext{-alg}}^c(D_{n+1}(p^k,p^r),T)$$

$$\cong \left\{ egin{array}{l} \textit{finite subgroup schemes H of $\mathbb{F}_{n+1}[p^\infty]$} \\ \textit{over T of rank p^k such that the rank of $\pi_0(H)$ is p^r} \end{array} \right\}.$$

Using the proposition, we obtain

Proposition 6

If M is a B_n^0 -module and a Γ_{n+1} -module such that

$$B_n^0 \otimes_{E_{n+1}^0} M \longrightarrow M$$

is a map of Γ_{n+1} -modules, then M has a Γ_n -module structure.

Proof. ch induces a ring homomorphism

$$D_{n+1}(p^k) = E_{n+1}^0(B\Sigma_{p^k})/(\text{transfer})$$

$$\longrightarrow B_n^0(B\Sigma_{p^k})/(\text{transfer})$$

$$\cong D_n(p^k) \underset{s,E_n^0}{\otimes} B_n^0.$$

We obtain a B_n^0 -algebra homomorphism

$$D_{n+1}(p^k) \underset{s,E_{n+1}^0}{\otimes} B_n^0 \longrightarrow D_n(p^k) \underset{s,E_n^0}{\otimes} B_n^0.$$

We have a map

$$M \longrightarrow D_{n+1}(p^k) \underset{s,E_{n+1}^0}{\otimes} M$$

$$\cong (D_{n+1}(p^k) \underset{s,E_{n+1}^0}{\otimes} B_n^0) \underset{B_n^0}{\otimes} M$$

$$\longrightarrow (D_n(p^k) \underset{s,E_n^0}{\otimes} B_n^0) \otimes_{B_n^0} M$$

$$\cong D_n(p^k) \underset{s,E_n^0}{\otimes} M.$$

This gives M a Γ_n -module structure.

Remark 7

This proposition gives B_n^0 a Γ_n -module structure.

This coincides with the Γ_n -module structure given by the K(n)-local commutative E_n -algebra structure on B_n .

Γ_n -module with compatible G_n -action

We consider the action of G_n on a Γ_n -module.

For a space X, $\pi_0(E_n^X) = E_n^0(X)$ is a Γ_n -module and a twisted E_n^0 - G_n -module.

We introduce a Γ_n -module with compatible G_n -action.

Note that the G_n -action on $E_n^0(B\Sigma_{p^k})$ induces a G_n -action on

$$D_n(p^k) = E_n^0(B\Sigma_{p^k})/(\text{transfer}).$$

Γ_n -module with compatible G_n -action

Definition 5

Let M be a Γ_n -module.We say M is a Γ_n -module with compatible G_n -action if M is a Γ_n -module and a twisted E_n^0 - G_n -module such that the structure map

$$M \longrightarrow D_n(p^k) \underset{s,E_n^0}{\otimes} M$$

is G_n -equivariant for any $k \geq 0$.

Γ_n -module with compatible G_n -action

Namely, the diagram

$$M \longrightarrow D_n(p^k) \underset{s,E_n^0}{\otimes} M$$

$$\downarrow g \otimes g$$

$$M \longrightarrow D_n(p^k) \underset{s,E_n^0}{\otimes} M$$

commutes for any $g \in G_n$ and any $k \ge 0$.

Suppose M is a Γ_{n+1} -module with compatible G_{n+1} -action.

The tensor product

$$B_n^0 \otimes_{E_{n+1}^0} M$$

is a Γ_{n+1} -module with compatible G_{n+1} -action.

Furthermore, it has a Γ_n -module structure (by Proposition 6) with compatible G_n -action.

From this, we obtain the following theorem.

Theorem 6 (Main Theorem 1)

If M is a Γ_{n+1} -module with compatible G_{n+1} -action, then

$$(B_n^0 \otimes_{E_{n+1}^0} M)^{G_{n+1}}$$

is a Γ_n -module with compatible G_n -action.

Γ_n -module $E_n^0(X)$

Now we consider the relationship between the Γ_n -module $E_n^0(X)$ and the Γ_{n+1} -module $E_{n+1}^0(X)$ for a space X.

The map $ch : E_{n+1} \rightarrow B_n$ induces a map

$$E_{n+1}^0(X) \longrightarrow B_n^0(X)$$

of Γ_{n+1} -modules with compatible G_{n+1} -action.

This implies a map

$$(B_n^0 \otimes_{E_{n+1}^0} E_{n+1}^0(X))^{G_{n+1}} \longrightarrow B_n^0(X)^{G_{n+1}}$$

of Γ_n -modules with compatible G_n -action.

We have a natural isomorphism

$$B_n^0(Y)^{G_{n+1}} \cong E_n^0(Y)$$

for any spectrum Y, and a natural isomorphism

$$B_n^0 \otimes_{E_{n+1}^0} E_{n+1}^0(Z) \xrightarrow{\cong} B_n^0(Z)$$

for any finite spectrum Z.

Hence we obtain the following theorem.

Theorem 7 (Main Theorem 2)

For any finite complex X, there is a natural isomorphism

$$E_n^0(X)\cong (B_n^0\otimes_{E_{n+1}^0}E_{n+1}^0(X))^{G_{n+1}}$$

of Γ_n -modules with compatible G_n -action.

In particular, we can recover the Γ_n -module $E_n^0(X)$ with compatible G_n -action from the Γ_{n+1} -module $E_{n+1}^0(X)$ with compatible G_{n+1} -action if X is a finite complex.

Thank you for your attention