

Using a left Riemann sum with three subintervals [0,1], [1,2], [2,3], what is the approximation of $\int_0^3 (3-x)(x+1) dx$?

1× f(0)+ 1× f(1)+ 1×	< f(2)
= 3+4+3=10	

- 2. The function f is continuous on the closed interval [1,10] and has values as shown in the table above. Using a right Riemann sum with four subintervals [1,3], [3,5], [5,8], [8,10], what is the approximation of $\int_{1}^{10} f(x) dx$? $\approx 2 \times 12 + 2 \times 16 + 5 \times 23 + 2 \times 17 = 15$
 - (A) 96

f(x)

(B) 116

12 | 16 | 23 | 17 |

- (C) 132
- (D) 159
- 3. The function f is continuous on the closed interval [0,12] and has values as shown in the table below. Use a midpoint Riemann sum with 4 subintervals of equal length to approximate the area that lies under f and above the x-axis from x=0 to

x=	1	2.

V 3				5						
	x	.0	1.5	3	4.5	.6	7.5	9	10.5	.12
	f(x)	.1	1.45	2.8	5.05	8.2	.12.25	17.2	23.05	29.8

$$= 152.4$$

$$= 152.4$$

$$= 152.4$$

- 4. Which of the following integrals is equal to $\lim_{n\to\infty} \sum_{i=1}^{n} (-1 + \frac{3i}{n})^2 \frac{3}{n}^2 = \frac{b-a}{b}$ (A) $\int_{-1}^{2} x^2 dx$ (B) $\int_{-1}^{0} x^2 dx$ (C) $\int_{-1}^{2} (-1+x)^2 dx$ (D) $\int_{-1}^{0} (-1+x)^2 dx$

 - (D) $\int_{-1}^{0} (-1 + \frac{x}{2})^2 dx$

- f(ci)=()2
- 5. The expression $\sqrt[3]{1}\sqrt[3]{1}\sqrt[3]{2}+\sqrt[3]{3}\sqrt[3]{3}+\dots+\sqrt[3]{3}\sqrt[3]{3}$ is a Riemann sum approximation for (A) $\int_0^1 \sqrt{x} dx = \frac{b-a}{30}$

 - (B) $\frac{1}{30} \int_{0}^{1} \sqrt{x} \ dx$

 - Ci= 30 10 f((i)= 10; 2 f(x)= 1
 - (C) $\frac{1}{30} \int_{0}^{30} \sqrt{x} \ dx$
 - (D) $\int_0^1 \frac{1}{\sqrt{x}} dx$
- $0\frac{1}{30}$ $\frac{30}{30} = 1$ $2^{-5}b-a=1$
- 7. If *n* is a positive integer, then $\lim_{n\to\infty} \frac{1}{n} \left[\left(\frac{1}{n}\right)^2 + \left(\frac{2}{n}\right)^2 + \dots + \left(\frac{n}{n}\right)^2 \right]$ can be expressed as

 (A) $\int_{-1}^{1} \frac{1}{n} dx$

- (A) $\int_0^1 \frac{1}{x} dx$ (B) $\int_0^1 \frac{1}{x^2} dx$ (C) $\int_0^1 x^2 dx$ (D) $\frac{1}{2} \int_0^1 x^2 dx$
 - fice) = ci2

$$Ci = \frac{2i}{n}$$

8. If n is a positive integer, then $\lim_{n\to\infty} \frac{2}{n} \left[\sqrt{\frac{2}{n}} + \sqrt{\frac{4}{n}} + \dots + \sqrt{\frac{2n}{n}} \right]$ can be expressed as

$$(A) \int_0^1 \sqrt{x} \ dx$$

(B)
$$\int_0^2 \sqrt{x} \ dx$$

$$(C) \int_0^1 \frac{1}{\sqrt{x}} dx$$

(A)
$$\int_{0}^{1} \sqrt{x} \, dx$$
 (B) $\int_{0}^{2} \sqrt{x} \, dx$ (C) $\int_{0}^{1} \frac{1}{\sqrt{x}} \, dx$ (D) $\int_{0}^{2} \frac{1}{\sqrt{x}} \, dx$

The graph of y = f(x) consists of four line segments and a semicircle as shown in the figure above. Evaluate each definite integral by using geometric formulas.

(a)
$$\int_{-5}^{-2} f(x) dx$$

= $\int_{-5}^{-2} f(x) dx$

(b)
$$\int_{-2}^{2} f(x) \, dx$$

(c)
$$\int_{2}^{5} f(x) \, dx$$

$$= \int_{-3}^{2} f(x) dx$$

FTC

10. The graph of f', the derivative of f, is the line shown in the figure above. If f(3) = 11, then f(-3) = 11

$$f(3) - f(-3) = \int_{-3}^{3} f(x) dx = 18$$
 : $f(-3) = -7$

11. If $f(x) = \sqrt{x^4 - 3x + 4}$ and g is the antiderivative of f, such that g(3) = 7, then g(0) = 6(Calculator)

(B)
$$-1.472$$

(D) 1.086
$$g(3) - g(0) = \int_0^3 \sqrt{x^4 + 3x + 4} dx$$

12.

The figure above shows the graph of \underline{f}' , the derivative of a differentiable function f, on the closed interval $0 \le x \le 8$. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. Given f(6) = 9, find each of the following.

(a)
$$f(0)$$

 $f(6)-f(0)=-3+7-10$

(b)
$$f(1)$$

(c)
$$f(3)$$

(d)
$$f(8)$$

9 (a)
$$f(0)$$
 (b) $f(1)$ (c) $f(3)$

16)- $f(0)=-3+7-10$ $f(1)-f(0)=-3$ $f^2_{10}-f(3)=-10$
 $f(0)=15$ $f(1)=12$ $f(3)=19$

13. If $\int_{a}^{b} f(x) dx = 2a - 5b$, then $\int_{a}^{b} [f(x) - 2] dx = \int_{a}^{b} f(x) dx - 2(b-a)$

- (C) 4a 7b

 $\int_{1}^{4} f(x) dx = \frac{15}{2}$ and $\int_{6}^{4} f(x) dx = 5$, then $\int_{1}^{4} f(x) dx = \int_{1}^{6} f(x) dx - \int_{4}^{6} f(x) dx$

- (B) $\frac{9}{2}$ (C) $\frac{19}{2}$

(*) Substitution

15. If $\int_{-2}^{6} f(x) dx = 10$ and $\int_{2}^{6} f(x) dx = 3$, then $\int_{2}^{6} f(4-x) dx = -\int_{2}^{-2} f(x) dx = \int_{-2}^{2} f(x) dx$

- (A) 3
- (B) 6
- (C) 7
- (D) 10 = $\int_{0}^{6} f(x) dx +$

16. The graph of y = f(x) is shown in the figure above. If A and B are positive numbers that represent the areas of the shaded regions, what is the value of $\int_{-3}^{3} f(x) dx - 2 \int_{-1}^{3} f(x) dx$, in terms of A and B?

- (B) A+B

17. Let f and g be continuous functions with the following properties.

(1) g(x) = f(x) - n where n is a constant.

 $(2) \int_{0}^{4} f(x) dx - \int_{4}^{6} g(x) dx = 1 \implies \int_{0}^{4} f(x) dx - \int_{4}^{6} f(x) dx - \int_{4}^{6} f(x) dx - \int_{4}^{6} f(x) dx + \sum_{n=1}^{6} f(n) dx - \int_{4}^{6} f(n)$ (3) $\int_{4}^{6} f(x) dx = 5n-1 \implies \int_{0}^{4} f(x) dx = 1 - 2n + (5n-1) = 3n$

(a) Find $\int_0^4 f(x) dx$ in terms of n. (b) Find $\int_0^6 g(x) dx$ in terms of n. (c) $\int_0^6 f(x) dx = \int_0^4 f(x) dx + \int_0^6 f(x) dx = 3N + 5N - 1 = 8N - 1$ (b) Find $\int_0^6 g(x) dx$ in terms of n. (d) $\int_0^6 f(x) dx = \int_0^6 f(x) dx - 6N = 8N - 1 - 6N = 2N - 1$

(c) Find the value of k if $\int_0^2 f(2x) dx = kn$.

(C)
$$u=2x$$
 $du=2dx$
 $\chi=0 \rightarrow u=0$
 $\chi=2 \rightarrow u=$

Antiderivatives 11

1. If $\frac{dy}{dx} = 3x^2 - 1$, and if y = -1 when x = 1, then y = -1

(A)
$$x^3 - x + 1$$

(B)
$$(x^3 - x - 1)^1 = 3x^2$$

$$(0)(-x^3+x-1)^1 \pm 3x^2-1$$

$$(x) -x^3 + 1$$

2. The closed interval [a,b] is partitioned into n equal subintervals, each of width Δx , by the numbers

 $x_0, x_1, ..., x_n$ where $0 < a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$. What is $\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{\sqrt{x_i}} \Delta x$?

(A)
$$\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a}}$$

(B)
$$\frac{(\sqrt{b}-\sqrt{a})}{2}$$

(C)
$$2(\sqrt{b}-\sqrt{a})$$

(D)
$$\sqrt{b} - \sqrt{a}$$

 $f(x) = \sqrt{x}$ Ja X-Edx = /2 x = 76

3. A curve has a slope of -x+2 at each point (x, y) on the curve. Which of the following is an equation for this curve if it passes through the point (2,1)?

(A)
$$\frac{1}{2}x^2 - 2x - 4$$

(B)
$$2x^2 + x - 8$$

(C)
$$-\frac{1}{2}x^2 + 2x - 1$$

(D)
$$r^2 - 2r + 1$$

slope = f'(x) = -x+2

$$f(x) = -\frac{1}{2}x^2 + 1x + ($$

4

(D)
$$x^2 - 2x + 1$$

 $\int_{0}^{4} (x^{2}-2)\sqrt{x} \, dx = \int_{0}^{4} \chi^{\frac{3}{2}} - \chi \chi^{\frac{3}{2}} dx = \frac{2}{7} \chi^{\frac{3}{2}} - \frac{4}{2} \chi^{\frac{3}{2}} + C$

(A)
$$\frac{2}{5}x^2\sqrt{x} - \frac{2}{3}x\sqrt{x} + C$$

(B)
$$\frac{2}{5}x^2\sqrt{x} - \frac{4}{3}x\sqrt{x} + C$$

(C)
$$\frac{2}{7}x^3\sqrt{x} - \frac{4}{3}x\sqrt{x} + C$$

(D)
$$\frac{2}{7}x^3\sqrt{x} - \frac{2}{3}x^2\sqrt{x} + C$$

L Fundamental Theorem of Calculus II] U

$$\int_{0}^{\infty} 1. \frac{d}{dx} \int_{1}^{x^{2}} \sqrt{3+t^{2}} dt = \sqrt{\frac{3+(x^{2})^{2}}{3+t^{2}}} dt$$

- (A) $\sqrt{3+x^2}$ (B) $\sqrt{3+x^4}$
- (C) $2x\sqrt{3+x^4}$ (D) $2\sqrt{3+x^2}$

- (A) cos 2
- (B) $\frac{\cos 4}{4}$
- (C) $\frac{\cos 4}{\sqrt{2}}$
- (D) $\sqrt{2}\cos 4$

graph of g

5. The graph of the function g, shown in the figure above, has horizontal tangents at x = 4 and x = 8. B If $f(x) = \int_0^{\sqrt{x}} g(t) dt$, what is the value of f'(4)? $f'(x) > g(Jx) \cdot \sqrt[3]{x}$

- (A) 0
- (B) $\frac{1}{2}$
- (C) $\frac{3}{4}$
- (D) $\frac{3}{2}$

- (A) -1
- (B) 0
- (C) 1
- (D) $\frac{3}{2}$ (E) $\frac{8}{5}$ $F'(x) = \frac{1}{2} (x^2 + 3x^{-2})^{-\frac{1}{2}} (xx + (-6)x^{-\frac{1}{2}})$ F"(1)= 1. 1. (-4) =-1

- 7. The graph of a function f, whose domain is the closed interval [-3,5], is shown above. Let g be the function given by $g(x) = \int_{-3}^{2x-1} f(t) dt$.
- (a) Find the domain of $g \cdot (a) 3 \le 2 \times -1 \le 5$
- (b) Find g'(3).

- Domain T-113]

(b) 9'(x)= f(xx-1).2 9'13) = 2. f(5) = 2

The graph above shows two periods of f. The function f is defined for all real numbers x and is periodic with a period of 8) Let h be the function given by $h(x) = \int_0^x f(t) dt$.

(a) h(b) = 1+8-5=2 h'(x) = f(x)

(a) Find
$$h(8)$$
, $h'(6)$, and $h''(4)$. $h'(6) = f(6) = -2$

b"(x)=f'(x)

- (b) Find the values of x at which h has its minimum and maximum on the closed interval [0,8].

 Justify your answer. (b) h'(x) = f(x) h'(x) = f(x) h'(x) = f(x)
- (c) Write an equation for the line tangent to the graph of h at x = 35.

(c) h'(35) = f(35) = f(32+3)=f(3) = 4

- : passes (35,11) with slope=4
- = y-11= 4 (x-35)

h10)=0 h15)=0-1+8 >0

- in h attains its min at
- (6,3)(-2,2)(1,0)(8,0)graph of f
- 8. The graph of f, consisting of four line segments, is shown in the figure above. Let g be the function given by $g(x) = \int_{-2}^{x} f(t) dt$. 1 (b) 9"(x)= f'(x)

 - (a) Find $g'(1)(A) \circ g'(x) = f(x)$ g'(1) = f(1) = 0 f'(x) changes its sign at f'(x) = f(x) = 0 f'(x) = f(x) = 0 f'(x) = f(x) = 0 f'(x) = f(x) = 0
 - (b) Find the x-coordinate for each point of inflection of the graph of g on the interval -2 < x < 8.
 - (c) Find the average rate of change of g on the interval $2 \le x \le 8$. AROC= $\frac{g(8)-g(2)}{8-2} = \frac{\int_{2}^{8} f(t) dt}{1}$
 - (d) For how many values of c, where 2 < c < 8, is g'(c) equal to the average rate found in part (c)? Explain your reasoning.
 - (d) $g'(x) = f(x) = \frac{1}{2}$
- Two values of c for reces.