Week	Dates	Book chapters	Topic	
1	February 28 – March 3	1 and 2	Electromagnetic model, field concepts. Vector algebra, vector analysis.	
2	March 7–10	3	Electrostatics. Coulomb's law, scalar potential, electric dipole, permittivity, conductors and insulators, capacitance, electrostatic energy and forces.	
3	March 14– 17	4 and 5	Static electric currents, Ohm's law, conductivity Magnetostatics, Biot-Savart's law, vector potential, permeability, magnetic dipole, inductance.	
4	March 21– 24	6	Faraday's law, Maxwell equations for dynamic electromagnetic fields. Complex representation of time-harmonic fields.	
5	March 28 – 31	7	Plane waves in lossless and lossy media. Attenuation of waves, Wave reflection from planar interfaces. Brewster angle.	
6	April 4–7	(8,9) 10	Electromagnetic radiation. Fields generated by a Hertzian dipole.	

André-Marie Ampère (1775–1836)

Michael Faraday (1791–1867)

Generator: alternating current

from: Ulaby, p. 316)

Transformer

from: Cheng, p. 233)

Speed of light

- Ole Römer (1644–1710)
 - 220000 km/s
- James Bradley (1693–1762)
 - 304300 km/s (?)
- Hippolyte Fizeau (1819 1896)
 - 313000 km/s
- Léon Foucault (1819–1868)
 - 297000 km/s

Table 1. The determination of "c."

	Year	Author	Method	Value of c	Ref
Space-Based Measures	Obs. 1671 to 1673, Published 1676	O.C. Rømer (1644-1710)	Moon of Jupiter eclipses	48,023 leagues/second [214,000 km/s]	[7]
	1690	C. Huygens (1629-1695)	Moon of Jupiter Eclipses	1,000 Earth diameters/minute [212,500 km/s]	[11]
	1694	E. Halley (1656-1742)	Moon of Jupiter Eclipses	278,000 km/s	[12]
	1729	J. Bradley (1693-1762)	Parallax aberration	10210 times the speed of Earth in its orbit [304,00km/s]	[13]
Earth-Based Measures	1849	A.H.L. Fizeau (1819-1896)	Toothed wheel	70,948 leagues/s [313,300km/s]	[14]
	1862	J.B.L. Foucault (1819-1868)	Rotating Mirror	298,000[±500]km/s	[15] [16]
	Exp. 1906 Pub. 1907	E.B. Rosa and N.E. Dorsey (1861-1921) (1873-1959)	Measurement of electromagnetic constants	299,788[±30]km/s	[17]
	1926	A.A. Michelson (1852-1931)	Rotating Mirror	299,796[±4]km/s	[18]
	1950	L. Essen (1908-1997)	Cavity Resonator	299,7925.5[±3]km/s	[19]
	1958	K.D. Froome (1921-1995)	Radio interferometry	299,792.50[±0.10]km/s	[20]
	1972	Evenson et al.	Laser interferometry	299,792.4562[±0.0011]km/s	[21]
	1983	17th CGPM	Fixed and used to define the meter	299,792.458km/s	

Time-harmonic fields

a sinusoidal wave

$A\cos(\omega t - kz)$

Wavelength and phase velocity

constant phase:

$$kz = \omega t$$

 $A\cos(\omega t - kz)$

$$\lambda = \frac{2\pi}{k}$$

$$\nu = \frac{\omega}{k}$$

Plane wave in free space

$$\mathbf{E}(z) = \mathbf{u}E_0 \mathrm{e}^{-\mathrm{j}kz}$$

$$\mathbf{E}(z,t) = \operatorname{Re}\left\{\mathbf{E}(z)e^{j\omega t}\right\} = \operatorname{Re}\left\{\mathbf{u}E_0e^{j(\omega t - kz)}\right\} = \mathbf{u}E_0\cos(\omega t - kz)$$

assumed real

$$k = \omega \sqrt{\mu_0 \varepsilon_0}$$

$$v = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = c$$

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{\omega\sqrt{\mu_0\varepsilon_0}} = \frac{1}{f\sqrt{\mu_0\varepsilon_0}} = \frac{c}{f}$$

$$f = 100 \,\mathrm{MHz} \quad \Leftrightarrow \quad \lambda = 3 \,\mathrm{m}$$

 $f = 30 \,\mathrm{GHz} \quad \Leftrightarrow \quad \lambda = 1 \,\mathrm{cm}$

Complex vector: time-dependence

