Retículos y Álgebras de Boole

Mariam Cobalea Vico

Universidad de Málaga Dpto. de Matemática Aplicada

Curso 15/16

Tema 2: Retículos y Álgebras de Boole

- Retículos ordenados y retículos algebraicos.
- Tipos de retículos y propiedades.
 - Distributivos
 - Acotados
 - Complementados
- Álgebras de Boole. Expresiones y funciones booleanas.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16 Tema 2: Retículos y Álgebras de Boole 2 / 90

Definición

Un conjunto parcialmente ordenado (\mathcal{L}, \preceq) es un **retículo (ordenado)** si cada par de elementos $a, b \in \mathcal{L}$ tiene supremo e ínfimo, esto es,

$$\sup\{a,b\}\in\mathcal{L}$$
 e $\inf\{a,b\}\in\mathcal{L}$

El retículo se dice **completo** si todo subconjunto X tiene supremo e ínfimo.

- Ciertos retículos son importantes en teorías abstractas de computación, desarrolladas a partir de la noción de aproximación; también pueden usarse para representar el comportamiento de programas.
- Cierto tipo de retículos se usa como generalización de las *álgebras de Boole* en lógicas no clásicas.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

3 / 90

Algunos ejemplos de retículos ordenados I

Algunos ejemplos de retículos ordenados II

• $(D_n, |)$, en particular para n = 20 y n = 30:

Mariam Cobalea Vico (UMA

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

5 / 90

Algunos ejemplos de retículos ordenados III

• $(\mathcal{P}(S),\subseteq)$, en particular para $S=\{a,b,c\}$

Ejercicio

¿Es retículo el conjunto parcialmente ordenado (A, \leq) ?

Solución:

Cotas superiores $\{b,c\} = \{d,e,f\}$ \implies No existe $m.c.s.\{b,c\}$ Mínimo $\{d,e,f\} = ?????$

Luego, (A, \leq) **no** es retículo.

Retículos ordenados

Ejercicio

¿Es retículo el conjunto parcialmente ordenado (B, \ll) ?

Solución:

Cotas inferiores $\{b,d\} = \{a,c\}$ \implies No existe $m.c.i.\{b,d\}$ \implies

Luego, (B, \ll) **no** es retículo.

Supremo e ínfimo como operaciones algebraicas

Usando la definición de retículo ordenado, en todo retículo (\mathcal{L}, \preceq) se pueden definir dos operaciones binarias \sqcup y \sqcap de la siguiente manera:

$$\sqcup : \quad \mathcal{L} \times \mathcal{L} \quad \longrightarrow \quad \mathcal{L}$$

$$(a,b) \quad \longmapsto \quad \sup\{a,b\} = a \sqcup b$$

$$\begin{array}{cccc} \sqcap \colon & \mathcal{L} \times \mathcal{L} & \longrightarrow & \mathcal{L} \\ & (a,b) & \longmapsto & \inf\{a,b\} = a \sqcap b \end{array}$$

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 2: Retículos v Álgebras de Boole

9 / 90

Retículos ordenados

Supremo e ínfimo como operaciones algebraicas

Ejemplos

1 En el retículo ordenado $(\mathcal{P}(S),\subseteq)$ se definen las operaciones:

$$\forall A, B \in \mathcal{P}(S), A \sqcup B = \sup\{A, B\} = A \cup B \in \mathcal{P}(S),$$

$$A \cap B = \inf\{A, B\} = A \cap B \in \mathcal{P}(S)$$

2 En el retículo ordenado (\mathbb{Z}^+ , |) se definen las operaciones:

$$\forall a, b \in \mathbb{Z}^+, \ a \sqcup b = \sup\{a, b\} = m.c.m.(a, b) \in \mathbb{Z}^+,$$

$$a \sqcap b = \inf\{a, b\} = m.c.d.(a, b) \in \mathbb{Z}^+$$

Supremo e ínfimo como operaciones algebraicas

Teorema

Sea el retículo (\mathcal{L}, \preceq) y sea $(\mathcal{L}, \sqcup, \sqcap)$ el sistema algebraico que determina. En $(\mathcal{L}, \sqcup, \sqcap)$ se verifican las siguientes propiedades:

- 1. Conmutativa : $a \sqcup b = b \sqcup a$ $a \sqcap b = b \sqcap a$
- **2. Asociativa**: $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$ $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$
- **3. Absorción**: $a \sqcup (a \sqcap b) = a$ $a\sqcap (a\sqcup b) = a$

Estas propiedades se usan para dar una definición axiomática de retículo algebraico.

Retículos algebraicos $(\mathcal{L}, \sqcup, \sqcap)$

Definición

Sean $\sqcup y \sqcap dos$ operaciones binarias definidas en un conjunto \mathcal{L} . Se dice que $(\mathcal{L}, \sqcup, \sqcap)$ es un **retículo algebraico** si para todo $a, b, c \in \mathcal{L}$ se verifican:

- 1. Conmutativa: $a \sqcup b = b \sqcup a$ $a \sqcap b = b \sqcap a$
- **2. Asociativa:** $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$ $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$
- **3. Absorción:** $a \sqcup (a \sqcap b) = a$ $a \sqcap (a \sqcup b) = a$

Ejemplo

 $(\mathcal{P}(S), \cup, \cap)$ es un retículo algebraico, pues verifica:

- $A \cup B = B \cup A$ $A \cap B = B \cap A$
- 2. $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- $A \cap (A \cup B) = A$ $3. \quad A \cup (A \cap B) = A$

Principio de Dualidad

Teorema

Dado un conjunto parcialmente ordenado (A, \preceq) , para cada $a, b \in A$ se define la relación $a \succeq b$ si y solo si $b \preceq a$. Obviamente, se verifica:

- (A, \succeq) también es un conjunto parcialmente ordenado.
- ② Si (A, \leq) es un retículo, entonces (A, \succeq) también lo es.

Los conjuntos (A, \preceq) y (A, \succeq) están muy relacionados, concretamente:

- la operación \sqcup de (A, \preceq) coincide con la operación \sqcap de (A, \succeq) y
- la operación \sqcap de (A, \leq) coincide con la operación \sqcup de (A, \succeq) .

Principio de Dualidad

Si un enunciado se verifica para un retículo, entonces también se verifica el que resulta al reemplazar la relación \leq por la relación \succeq , la operación \sqcup por la operación \sqcap y la operación \sqcap por la operación \sqcup .

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

13 / 90

Retículos algebraicos $(\mathcal{L}, \sqcup, \sqcap)$

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo algebraico. Se verifican las propiedades:

- **4. Idempotencia:** $a \sqcup a = a$, $a \sqcap a = a$, para todo $a \in \mathcal{L}$
- **5. Cotas:** $a \sqcup b = b \iff a \sqcap b = a$, para todo $a, b \in \mathcal{L}$

Retículo algebraico \Longrightarrow Retículo ordenado

- Según hemos visto, a partir de un **retículo ordenado** se puede llegar a un retículo algebraico.
- A continuación, se establece que a partir de un retículo algebraico podemos obtener un retículo ordenado.

Teorema

Dado el retículo algebraico $(\mathcal{L}, \sqcup, \sqcap)$, se define una relación \ll en \mathcal{L} de la siguiente manera:

$$a \ll b \iff a \sqcup b = b$$

Entonces (\mathcal{L}, \ll) es un retículo ordenado en el que para todo a, $b \in \mathcal{L}$, se verifica que $\sup\{a,b\} = a \sqcup b$ e $\inf\{a,b\} = a \sqcap b$.

Mariam Cobalea Vico (UMA)

Subretículos

Definición

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo y sea \mathcal{M} un subconjunto no vacío de \mathcal{L} . Se dice que \mathcal{M} es un subretículo de \mathcal{L} si para todo $x, y \in \mathcal{M}$,

$$x \sqcup y \in \mathcal{M}, \quad x \sqcap y \in \mathcal{M}$$

Es decir, \mathcal{M} es **subretículo** de \mathcal{L} si tiene estructura de retículo con respecto a la restricción de las operaciones \sqcup y \sqcap de \mathcal{L} sobre \mathcal{M} .

Subretículos

Ejemplos de subretículos

Ejemplos

Los subconjuntos parcialmente ordenados \mathcal{M}_1 y \mathcal{M}_2 son subretículos de D_{36} .

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 2: Retículos v Álgebras de Boole

17 / 90

Subretículos

Contraejemplos de subretículos

Ejemplo

• El subconjunto parcialmente ordenado $\mathcal{M}_3 = \{1, 2, 3, 12, 18, 36\}$ no tiene estructura de retículo, puesto que no existe $\sup\{2, 3\}$. Por lo tanto, \mathcal{M}_3 no es un subretículo de D_{36} .

Subretículos

Contraejemplos de subretículo

Ejemplo

• $\mathcal{M}_4=\{1,2,3,12,18,36\}$ no es subretículo del retículo $\mathcal{D}_{36},$ ya que

• Sin embargo, en \mathcal{M}_4 se pueden definir operaciones \square' y \square' que le dan estructura de retículo.

 $12 \sqcap 18 = 6 \notin \mathcal{M}_4$

 Un subconjunto parcialmente ordenado que sea retículo, puede no ser subretículo.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

19 / 90

Subretículos

Ejercicio

Estudia si $\mathcal{M} = \{0, a, b, c, \mathtt{I}\}$ es subretículo de

Retículo producto

Teorema

Sean $(\mathcal{L}_1, \preceq_1)$ y $(\mathcal{L}_2, \preceq_2)$ retículos. Entonces $\mathcal{L}_1 \times \mathcal{L}_2$ es un retículo con la relación de orden producto \preceq y las operaciones \sqcup y \sqcap definidas mediante

$$(x_1,x_2) \preceq (y_1,y_2) \iff x_1 \preceq_1 y_1 \land x_2 \preceq_2 y_2$$

$$(x_1, x_2) \sqcup (y_1, y_2) = (x_1 \sqcup_1 y_1, x_2 \sqcup_2 y_2)$$

$$(x_1, x_2) \sqcap (y_1, y_2) = (x_1 \sqcap_1 y_1, x_2 \sqcap_2 y_2)$$

Al retículo $\mathcal{L}_1 \times \mathcal{L}_2$ se le llama **retículo producto**.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Bool

21 / 9

Retículo producto

Ejemplos

Ejemplo

$$\mathcal{L}_1 = \mathbb{B}, \ \mathcal{L}_2 = \mathbb{B}^2$$

 \mathcal{L}_1

 \mathcal{L}_2

 $\mathcal{L}_1 imes \mathcal{L}_2$

011

010

Homomorfismos e isomorfismos de retículos

Definición

Sean los retículos $(\mathcal{L}_1, \sqcup_1, \sqcap_1)$ y $(\mathcal{L}_2, \sqcup_2, \sqcap_2)$ y sea $f : \mathcal{L}_1 \to \mathcal{L}_2$. Se dice que f es un

- **1** \sqcup -homomorfismo, si $x \sqcup_1 y = z$ implica que $f(x) \sqcup_2 f(y) = f(z)$
- **2** \sqcap -homomorfismo, si $x \sqcap_1 y = z$ implica que $f(x) \sqcap_2 f(y) = f(z)$
- **3** homomorfismo de orden, si $x \le_1 y$ implica que $f(x) \le_2 f(y)$

Se dice que f es un **homomorfismo** de retículos si f es \sqcup -homomorfismo y \sqcap -homomorfismo.

Los homomorfismos de retículos si son inyectivos, sobreyectivos o biyectivos se llaman **monomorfismos**, **epimorfismos** o **isomorfismos** respectivamente.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

23 / 90

Homomorfismos e isomorfismos de retículos

Teorema

Si $f: \mathcal{L}_1 \to \mathcal{L}_2$ es un \sqcup -homomorfismo o bien un \sqcap -homomorfismo, entonces es un homomorfismo de orden. Es decir.

$$\left\{ \begin{array}{c}
f: \mathcal{L}_1 \to \mathcal{L}_2 \\
\text{(1) } f(x \sqcup_1 y) = f(x) \sqcup_2 f(y)
\end{array} \right\} \implies \left\{ \begin{array}{c}
f: \mathcal{L}_1 \to \mathcal{L}_2 \\
\text{(3) } x \leq_1 y \Longrightarrow f(x) \leq_2 f(y)
\end{array} \right\}$$

$$\left\{ \begin{array}{c}
f: \mathcal{L}_1 \to \mathcal{L}_2 \\
(2) f(x \sqcap_1 y) = f(x) \sqcap_2 f(y)
\end{array} \right\} \implies \left\{ \begin{array}{c}
f: \mathcal{L}_1 \to \mathcal{L}_2 \\
(3) x \leq_1 y \Longrightarrow f(x) \leq_2 f(y)
\end{array} \right\}$$

El recíproco no es cierto. No toda función entre retículos que conserva el orden, conserva también las operaciones \sqcup y \sqcap .

Homomorfismos e isomorfismos de retículos

Teorema

Sean (\mathcal{L}_1, \leq_1) y (\mathcal{L}_2, \leq_2) retículos. La función $f: \mathcal{L}_1 \to \mathcal{L}_2$ es un isomorfismo de retículos si y sólo si es biyectiva y para todo $a, b \in \mathcal{L}_1$,

$$a \leq_1 b \iff f(a) \leq_2 f(b)$$

$$\left\{ \begin{array}{l} f \ \textit{biyectiva} \\ f(a \sqcup_1 b) = f(a) \sqcup_2 f(b) \\ f(a \sqcap_1 b) = f(a) \sqcap_2 f(b) \end{array} \right\} \iff \left\{ \begin{array}{l} f \ \textit{biyectiva} \\ a \leq_1 b \iff f(a) \leq_2 f(b) \end{array} \right\}$$

- Dos retículos isomorfos son idénticos algebraicamente y también como conjuntos parcialmente ordenados.
- Por lo tanto, sus diagramas de Hasse sólo se diferenciarán en las etiquetas de los vértices.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

25 / 90

Isomorfismos de retículos

Ejemplo

 $(D_{36}, |)$ y $(D_{100}, |)$ son retículos isomorfos:

50

25

Isomorfismos de retículos

Ejemplo

 $(D_{30},|)$ y $(\mathcal{P}(\{a,b,c\}),\subseteq)$ son retículos isomorfos:

Mariam Cobalea Vico (UMA

EAC. Curso 15/16

Tema 2: Retículos v Álgebras de Boole

27 / 90

Isomorfismos de retículos

Ejemplo

Son retículos isomorfos $\Big(\mathcal{P}(\{a,b,c\}),\subseteq\Big)$ y $\Big(\mathbb{B}_3,\preceq\Big)$

$$\Big(\mathcal{P}(\{a,b,c\}),\subseteq\Big)$$

 (\mathbb{B}^3, \preceq)

Retículos distributivos

Definición

Se dice que el retículo $(\mathcal{L}, \sqcup, \sqcap)$ es **distributivo** si para cada $a, b, c \in \mathcal{L}$ se verifica:

$$a\sqcap(b\sqcup c) = (a\sqcap b)\sqcup(a\sqcap c)$$

$$a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$$

Ejemplos

- $(\mathcal{P}(\{a,b,c\}),\cup,\cap)$ es distributivo. En general, $(\mathcal{P}(S),\cup,\cap)$ es un retículo distributivo.
- D_6 , D_{12} , D_{36} , ... son retículos distributivos. En general, D_n es un retículo distributivo.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

29 / 90

Retículos distributivos

Teorema

Si \mathcal{L}' es un subretículo de un retículo distributivo $(\mathcal{L}, \sqcup, \sqcap)$, entonces \mathcal{L}' también es distributivo.

Ejercicio

Estudia si el retículo de la figura es distributivo.

Solución: Se comprueba fácilmente que es distributivo, teniendo en cuenta que es un subretículo de D_{36} y aplicando el teorema anterior.

Retículos no distributivos

Ejemplo

Los dos casos de retículos no distributivos más representativos son:

Diamante

$$\left\{\begin{array}{cccc} a\sqcap(b\sqcup c) &=& a\sqcap I &=& a\\ (a\sqcap b)\sqcup(a\sqcap c) &=& 0\sqcup 0 &=& 0\end{array}\right\} \ \left\{\begin{array}{cccc} a\sqcup(b\sqcap c) &=& a\sqcup 0 &=& a\\ (a\sqcup b)\sqcap(a\sqcup c) &=& b\sqcap I &=& b\end{array}\right\}$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

31 / 90

Caracterización de retículos no distributivos

Teorema

Un retículo es no distributivo si y sólo si contiene un subretículo isomorfo al diamante o al pentágono del ejemplo anterior.

Ejemplo

El siguiente retículo no es distributivo, pues contiene el subretículo $\{b, c, d, e, f\}$ que es isomorfo al diamante.

Retículos distributivos

Ejercicio

Estudia si es distributivo el retículo

Solución 1: No es distributivo ya que

$$\left\{
\begin{array}{rcl}
e \sqcap (b \sqcup c) & = & e \sqcap g & = & e \\
(e \sqcap b) \sqcup (e \sqcap c) & = & b \sqcup a & = & b
\end{array}
\right\}$$

Solución 2: No es distributivo porque contiene el subretículo $\{a,b,c,e,g\}$ que es isomorfo al pentágono.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

33 / 90

Retículos distributivos

Teorema

Sea $(\mathcal{L},\sqcup,\sqcap)$ un retículo distributivo y sean $a,b,c\in\mathcal{L}$ tales que

$$a \sqcup b = a \sqcup c$$
 y $a \sqcap b = a \sqcap c$

Entonces b = c.

Demostración:

$$b \stackrel{(Abs.)}{=} b \sqcup (b \sqcap a) \stackrel{(Conm.)}{=} b \sqcup (a \sqcap b) \stackrel{(Hip.)}{=} b \sqcup (a \sqcap c)$$

$$\stackrel{(Dist.)}{=} (b \sqcup a) \sqcap (b \sqcup c) \stackrel{(Conm.)}{=} (a \sqcup b) \sqcap (b \sqcup c)$$

$$\stackrel{(Hip.)}{=} (a \sqcup c) \sqcap (b \sqcup c) \stackrel{(Dist.)}{=} (a \sqcap b) \sqcup c \stackrel{(Hip.)}{=} (a \sqcap c) \sqcup c \stackrel{(Abs.)}{=} c$$

Definición

Sea (\mathcal{L}, \preceq) un retículo. Se llama **mínimo** de \mathcal{L} al elemento que es anterior a todo elemento del retículo, se denota por 0 y se le llama también **primer elemento**. Se llama **máximo** de \mathcal{L} al elemento que es posterior a todo elemento del retículo. Se denota I y se le llama también **último elemento**.

Definición

Un retículo \mathcal{L} se dice **acotado** si tiene primer y último elemento.

Ejemplos

- ullet $\Big(\mathcal{P}(S),\subseteq\Big)$ es retículo acotado, con mínimo \varnothing y máximo S.
- Dado un entero positivo n, en el retículo $(D_n, |)$ el primer elemento es 1 y el último elemento es n.
- En $\left(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\preceq\right)$ el primer elemento es la función cero y el último elemento es la función uno.

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 2: Retículos v Álgebras de Boole

35 / 90

Retículos acotados

- lacktriangle Si S es un conjunto infinito, entonces $\mathcal{P}(S)$ también es infinito. En este caso tenemos que $\left(\mathcal{P}(S),\subseteq\right)$ es un **retículo infinito** que es **acotado**.
 - Sin embargo, no todos los retículos infinitos serán acotados.
 - Por ejemplo, (\mathbb{Z}, \leq) no es acotado, ya que no tiene primer ni último elemento.
 - Por el contrario, en el caso finito tenemos

Teorema

Todo retículo finito es acotado.

Teorema

Sea (\mathcal{L}, \preceq) un retículo acotado. Para todo elemento $a \in \mathcal{L}$ se verifica:

1
$$a \sqcup 0 = a$$
 $a \sqcap 0 = 0$

$$a \sqcap I = a$$
 $a \sqcup I = I$

Demostración:

1 Por definición de primer elemento, para todo elemento $a \in \mathcal{L}$:

$$0 \leq a \implies a \sqcup 0 = a \iff a \sqcap 0 = 0$$

2 Por definición de último elemento, para todo elemento $a \in \mathcal{L}$:

$$a \leq I \implies a \sqcap I = a \iff a \sqcup I = I$$

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 2: Retículos v Álgebras de Boole

37 / 90

Retículos acotados

Átomos y superátomos

Definición

Sea (\mathcal{L}, \preceq) un retículo acotado. Se llama **átomo** a cada elemento que es sucesor inmediato del primer elemento. Se llama **superátomo** a cada elemento cuyo sucesor inmediato es el último elemento.del retículo.

Ejemplo

• Los átomos del retículo D_{20} son 2 y 5; sus superátomos son 4 y 10.

Átomos y superátomos

Ejemplos

• En P(S) los átomos son los subconjuntos unitarios; los superátomos los que subconjuntos con **dos** elementos.

• Los átomos de $F(S, \mathbb{B})$ son las funciones que toman el valor 1 exactamente en **un** elemento del dominio; los superátomos son las que toman el valor 0 exactamente en **un** elemento.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

39 / 90

Retículos acotados

Elementos \sqcup -irreducibles

Definición

Se dice que $x \in \mathcal{L}$ es un elemento \sqcup -irreducible si no se puede expresar como el supremo de otros elementos, es decir:

Si
$$x = y \sqcup z$$
 entonces o bien $x = y$ o bien $x = z$

Ejemplo

Los elementos \sqcup -irreducibles de D_{20} son 2, 4 y 5.

Elementos \sqcup -irreducibles

Teorema

Sea $x \neq 0 \in \mathcal{L}$, se tiene que x es un elemento \sqcup -irreducible si y solo si es sucesor inmediato de exactamente un elemento .

Corolario

Los átomos son elementos ⊔-irreducibles.

El recíproco no es cierto.

Contraejemplo

En el retículo $(D_{36}, |)$, el elemento 4 es \sqcup -irreducible, pero **no** es un átomo ya que no es sucesor inmediato del primer elemento.

Mariam Cobalea Vico (UMA)

Retículos acotados

Descomposición en unión de elementos \(\subseteq \)-irreducibles no redundantes

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo finito. Entonces cada $a \in \mathcal{L}$ se puede expresar

$$a = d_1 \sqcup d_2 \sqcup \cdots \sqcup d_t$$

donde los d_i son elementos \sqcup -irreducibles no redundantes.

¿Qué quiere decir que los elementos d_i son **no redundantes**?

- ✓ Si $d_i \leq d_k$, es decir, $d_i \sqcup d_k = d_k$, entonces se puede suprimir d_i de la descomposición de a.
- ✓ Así, la expresión es **no redundante** si todos los d_i son incomparables en \leq .

Descomposición como suma de elementos \(\subseteq \)-irreducibles no redundantes

Ejemplo

En D_{36} el elemento 18 se expresa de la forma:

$$18 = \sup(6,9) = \sup(\sup(2,3),9) = \sup(2,\sup(3,9))$$

$$18 = 6 \sqcup 9 = (2 \sqcup 3) \sqcup 9 = 2 \sqcup (3 \sqcup 9) = 2 \sqcup 9$$

Retículos acotados

Descomposición como suma de elementos \(\subseteq \)-irreducibles irredundantes

Ejercicio

- **1** Dibuja el diagrama de Hasse de $(D_{150}, |)$.
- ② Da una lista de los átomos y otra lista de los elementos □-irreducibles.
- forma si es posible).

Elementos Complementarios

Definición

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo acotado, con primer elemento 0 y último elemento I y sean $a, b \in \mathcal{L}$. Se dice que a y b son **complementarios** (uno es el complemento del otro) si:

$$a \sqcup b = I$$
 y $a \sqcap b = 0$

También se dice que b es complemento de a y que a es complemento de b.

En todo retículo acotado se verifica que 0 e I son complementarios.

Observación

En un retículo acotado un elemento $x \in \mathcal{L}$ puede no tener complemento, tener un único complemento o puede tener más de un complemento.

Tema 2: Retículos y Álgebras de Boole

Elementos Complementarios

Ejemplos

• En el retículo $(D_{12}, |)$ no tienen complemento 2, ni 6; 3 tiene un único complemento que es 4; son complementarios 1 y 12.

• En el retículo $(D_{36}, |)$ no tienen complemento 2, 3, 6, 12 ni 18; 4 tiene un único complemento que es 9; son complementarios 1 y 36.

Elementos Complementarios

Ejemplos

- En el diamante
 - a y b son complementarios, ya que $a \sqcup b = I$ y $a \sqcap b = 0$
 - a y c son complementarios, ya que $a \sqcup c = I$ y $a \sqcap c = 0$
 - by c son complementarios, ya que $b \sqcup c = 1$ y $b \sqcap c = 0$

diamante

pentágono

- En el pentágono:
 - a y c son complementarios, ya que $a \sqcup c = I$ y $a \sqcap c = 0$
 - b y c son complementarios, ya que $b \sqcup c = I$ y $b \sqcap c = 0$

Tema 2: Retículos y Álgebras de Boole

Elementos Complementarios

Ejemplo

• En el retículo

- ▶ 0 y I son complementarios.
- ightharpoonup a y c son complementarios, ya que $a \sqcup c = I$ y $a \sqcap c = 0$.
- ▶ $a ext{ y } e ext{ son complementarios, ya que } a \sqcup e = I ext{ y } a \sqcap e = 0.$
- d y c son complementarios, ya que $d \sqcup c = I$ y $d \sqcap c = 0$.
- b no tiene complemento.

Retículos complementados

Definición

Un retículo $(\mathcal{L}, \sqcup, \sqcap)$ se llama **complementado** si cada elemento tiene al menos un complemento.

Ejemplo

• $(D_n, m.c.m., m.c.d.)$ es complementado para n = 6. Sin embargo no lo es para n = 12, ya que 2 no tiene complemento en D_{12} .

Teorema

 $(D_n, m.c.m., m.c.d.)$ es complementado si y sólo si $n = p_1^1 \cdot p_2^1 \cdots p_k^1$, donde cada $p_1 < p_2 < \cdots < p_k$ son primos distintos.

Mariam Cobalea Vico (UMA)

AC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

49 / 90

Complemento de un elemento

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo distributivo y acotado con 0 y I. Entonces cada elemento $a \in \mathcal{L}$ tiene a lo sumo un complemento.

Como consecuencia, si en un retículo acotado encontramos un elemento que tiene más de un complemento, podemos deducir que no es distributivo.

Ejemplo

El retículo

no es distributivo, ya que hemos encontrado que $\it c$ tiene dos complementos $\it a$ y $\it d$.

Operación complemento

Definición

Sea $(\mathcal{L}, \sqcup, \sqcap)$ un retículo complementado y distributivo y sea $a \in \mathcal{L}$.

El **complemento** del elemento $a \in \mathcal{L}$ es el único elemento $\overline{a} \in \mathcal{L}$ tal que

$$a \sqcup \overline{a} = I$$
 y $a \sqcap \overline{a} = 0$

En todo retículo distributivo y complementado podemos definir una función de $\mathcal L$ en sí mismo que asigna a cada elemento $a \in \mathcal{L}$ su complemento \bar{a} .

$$\begin{array}{ccccc} - & : & \mathcal{L} & \rightarrow & \mathcal{L} \\ & a & \mapsto & \overline{a} \end{array}$$

Ejemplo

En $(\mathcal{P}(S), \cup, \cap)$ el complemento de cada $X \subseteq S$ es el conjunto $\overline{X} = S \setminus X$.

$$- : \mathcal{P}(S) \rightarrow \mathcal{P}(S)$$

$$X \mapsto \overline{X} = S \setminus X$$

EAC, Curso 15/16 Tema 2: Retículos y Álgebras de Boole

Operación complemento

Ejemplo

 $\left(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\leq
ight)$ es un retículo complementado.

En el retículo $\left(\mathcal{F}(\mathbb{B}^2,\mathbb{B}),\leq\right)$ cada elemento tiene un único complemento.

El complemento de la función $f: \mathbb{B}^2 \to \mathbb{B}$ es la función

$$\overline{f}: \mathbb{B}^2 \to \mathbb{B}$$

definida como

$$\overline{f}(x) = \begin{cases} 0, & \text{si} \quad f(x) = 1\\ 1, & \text{si} \quad f(x) = 0 \end{cases}$$

Retículos de Boole

Definición

Se llama retículo de Boole a un retículo distributivo y complementado.

Ejemplo

 \bullet $\mathbb{B} = \{0,1\}$ con su orden habitual \leq es un retículo ordenado. Las operaciones \sqcup y \sqcap asociadas son las siguientes:

Se puede demostrar fácilmente que $(\mathbb{B}, \sqcup, \sqcap)$ es un retículo distributivo y complementado.

Retículos de Boole

Propiedades

Un retículo de Boole es un conjunto con dos operaciones binarias ⊔ y ⊓ y una operación unaria — que verifica las propiedades que hemos visto. Además, se tiene:

Teorema

Sea $(\mathcal{L}, \sqcup, \sqcap, -)$ un retículo de Boole. Para todo a, $b \in \mathcal{L}$ se verifican las propiedades:

- **De Morgan** $(\overline{a \sqcup b}) = \overline{a} \sqcap \overline{b}$ $\overline{a \sqcap b} = \overline{a} \sqcup \overline{b}$

• Involución $\overline{a} = a$

A los retículos de Boole se les llama también álgebras de Boole.

Se usa el término retículo de Boole para hacer hincapié en el orden parcial subyacente, mientras que se usa álgebra de Boole cuando se quiere resaltar las operaciones algebraicas \sqcup , \sqcap y -.

Álgebras de Boole

Definición algebraica

Las álgebras de Boole se pueden definir también usando sólo las operaciones algebraicas.

Definición

Sea A un conjunto no vacío que contiene dos elementos especiales 0_A , 1_A , $0_A \neq 1_A$. En $\mathcal A$ se consideran dos operaciones binarias + y \cdot y una operación unaria -. Se dice que $(A, +, \cdot, -, 0_A, 1_A)$ es un álgebra de Boole si para todo $a, b, c \in A$ se verifican:

Identidad:
$$a + 0_A = a$$

$$a \cdot 1_{\mathcal{A}} = a$$

Conmutativa:
$$a + b = b + a$$
 $a \cdot b = b \cdot a$

$$a \cdot b = b \cdot a$$

Distributiva:
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 $a \cdot (b + c) = a \cdot b + a \cdot c$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Complemento:
$$a + \overline{a} = 1_A$$

$$a \cdot \overline{a} = 0_A$$

Ejemplo

$$(\mathbb{B},+,\cdot,-,0,1)$$
 y $(\mathcal{P}(S),\cup,\cap,-,arnothing,S)$ son álgebras de Boole

Retículo de Boole = Álgebra de Boole

Teorema

Sea $(\mathcal{A},+,\cdot,-,0_{\mathcal{A}},1_{\mathcal{A}})$ un álgebra de Boole. La relación \preceq definida

$$a \leq b \iff a+b=b$$

es un orden parcial.

Ejercicio

Demuestra que para todo $a \in \mathcal{A}$, se verifica $0_{\mathcal{A}} \leq a \leq 1_{\mathcal{A}}$.

Las álgebras de Boole cumplen **todas** las propiedades establecidas para los retículos distributivos y complementados.

Teorema

Todo retículo de Boole es un álgebra de Boole y recíprocamente.

Retículo de Boole = Álgebra de Boole

1. Conmutativa:
$$a+b=b+a$$
 $a \cdot b=b \cdot a$

2. Asociativa:
$$a + (b+c) = (a+b) + c$$
 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

3. Absorción:
$$a + (a \cdot b) = a$$
 $a \cdot (a + b) = a$

4. Idempotencia:
$$a + a = a$$
 $a \cdot a = a$

5. Cotas:
$$a \leq b \iff a+b=b \iff a \cdot b=a$$

6. **Extremos:**
$$0, 1 \in A,$$
 $0 \leq a \leq 1$

7. **Identidad:**
$$0+a=a$$
 $a\cdot 1=a$

8. **Dominancia:**
$$a+1 = 1$$
 $0 \cdot a = 0$

9. Distributiva:
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

10. Complemento:
$$a + \overline{a} = 1$$
 $a \cdot \overline{a} = 0$

11. **DeMorgan:**
$$(\overline{a+b}) = \overline{a} \cdot \overline{b}$$
 $\overline{a \cdot b} = \overline{a} + \overline{b}$

12. Involución:
$$\overline{\overline{a}} = a$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

57 / 90

Álgebras de Boole

Ejercicio

En un álgebra de Boole $(A, +, \cdot, -, 0_A, 1_A)$ se define la operación \oplus (xor) de la siguiente manera:

$$a \oplus b = a\overline{b} + \overline{a}b$$

- **1** Determina $a \oplus a$, $a \oplus 0$, $a \oplus 1$ y $a \oplus \overline{a}$.
- 2 Demuestra o refuta cada una de las siguientes afirmaciones

i)
$$a \oplus b = b \oplus a$$
 ii) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

$$iii)$$
 $a \oplus b = \overline{a} \oplus \overline{b}$ $iv)$ $a \oplus bc = (a \oplus b)(a \oplus c)$

$$(v) \ a(b \oplus c) = ab \oplus ac$$
 $(vi) \ \overline{a \oplus b} = \overline{a} \oplus b = a \oplus \overline{b}$

$$vii) \ a \oplus b = 0 \Rightarrow a = b$$
 $viii) \ a \oplus b = a \oplus c \Rightarrow b = c$

Álgebras de Boole

Átomos

Definición

Un **átomo** en un álgebra de Boole es un elemento $a \in A$ tal que para todo $b \in A$, si $b \leq a$, entonces b = 0 ó bien b = a.

Ejemplo

En el álgebra de Boole $(D_{30}, mcm, mcd, -, 1, 30)$ los átomos son 2, 3 y 5. En el álgebra de Boole $(\mathcal{P}(\{a, b, c\}), \cup, \cap, -, \varnothing, \{a, b, c\})$ los átomos son $\{a\}, \{b\}, \{c\}.$

Ejercicio

Sea $(\mathcal{A},+,\cdot,-,0_{\mathcal{A}},1_{\mathcal{A}})$ un álgebra de Boole. Demuestra que:

• Si a es un átomo, entonces para todo $b \in \mathcal{A}$, se verifica

$$ab = 0$$
 ó bien $ab = a$

• Si a_1 y a_2 son átomos, entonces $a_1 \cdot a_2 = 0$.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

59 / 90

Álgebra de Boole producto

Teorema

Si A_1 y A_2 son dos álgebras de Boole, entonces $A_1 \times A_2$ también es un álgebra de Boole.

Ejemplo

$$\mathcal{A}_1 = \mathbb{B}, \ \mathcal{A}_2 = \mathbb{B}^2$$

$\mathcal{A}_1 imes \mathcal{A}_2$

Teorema

Si A_1, A_2, \ldots, A_n son álgebras de Boole, entonces $A_1 \times \cdots \times A_n$ es un álgebra de Boole.

Álgebra de Boole producto

Ejemplo

Sea $(\mathbb{B},+,\cdot,-,0,1)$ el álgebra de Boole trivial.

Por el teorema anterior, $\mathbb{B}^n = \{(b_1, b_2, \dots b_n) | b_j \in \mathbb{B} \text{ para } j : 1, 2, \dots, n\}$ es también un álgebra de Boole.

✓ Dados $a = (a_1, a_2, \dots a_n) \in \mathbb{B}^n$ y $b = (b_1, b_2, \dots b_n) \in \mathbb{B}^n$, las operaciones + y · están definidas

$$a+b=(a_1,a_2,...,a_n)+(b_1,b_2,...b_n)=(a_1+b_1,a_2+b_2,...a_n+b_n)$$

$$a \cdot b = (a_1, a_2, \dots a_n) \cdot (b_1, b_2, \dots b_n) = (a_1 \cdot b_1, a_2 \cdot b_2, \dots a_n \cdot b_n)$$

- ✓ El complemento de cada elemento $a=(a_1,a_2,\ldots a_n)\in \mathbb{B}^n$ es $\overline{a}=(\overline{a_1},\overline{a_2},\ldots,\overline{a_n}).$
- \checkmark Además, $0_{\mathbb{B}^n}=(0,0,\dots 0)$ y $1_{\mathbb{B}^n}=(1,1,\dots ,1)$
- ✓ Los átomos son: (1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1)

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

61 / 90

Isomorfismos de Álgebras de Boole

Definición

Sean $(A, +, \cdot, -, 0_A, 1_A)$ y $(B, \vee, \wedge, -, 0_B, 1_B)$ álgebras de Boole. Un **isomorfismo** de álgebras de Boole es una función $\phi \colon A \to B$ que es biyectiva y para todo $a, b \in A$ verifica:

Isomorfismos de Álgebras de Boole

Ejemplo

La función $\phi \colon \mathcal{D}_{30} o \mathcal{D}_{1001}$ definida

$$\phi(1) = 1$$
 $\phi(2) = 7$ $\phi(5) = 13$ $\phi(3) = 11$ $\phi(10) = 91$ $\phi(6) = 77$ $\phi(15) = 143$ $\phi(30) = 1001$

es un isomorfismo de álgebras de Boole.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

63 / 90

Teorema de representación

Lema

Sea $(A, +, \cdot, -, 0_A, 1_A)$ un álgebra de Boole finita. Si b es cualquier elemento distinto de cero en A, y $a_1, a_2, ..., a_k$ son todos los átomos de A tales que $a_i \leq b$, entonces $b = a_1 + a_2 + ... + a_k$ de forma única.

Ejemplo

 $1001 = 91 \sqcup 143 = (7 \sqcup 13) \sqcup (13 \sqcup 11) = 7 \sqcup 13 \sqcup 11$

Teorema de representación

- Del lema anterior se deduce que hay una biyección entre los elementos de un álgebra de Boole y los subconjuntos de sus átomos.
- De hecho, esta biyección es un isomorfismo de \mathcal{A} en $\mathcal{P}(S)$, donde S es el conjunto de átomos de \mathcal{A} .

Teorema

Toda álgebra de Boole finita $(A, +, \cdot, -, 0_A, 1_A)$ es isomorfa al álgebra de Boole $(\mathcal{P}(S), \cup, \cap, -, \varnothing, S)$, donde S es el conjunto de átomos de A.

Corolario

Si $(A, +, \cdot, -, 0_A, 1_A)$ es un álgebra de Boole finita con n átomos, entonces A tiene 2^n elementos.

Mariam Cobalea Vico (UMA)

AC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

65 / 90

Teorema de representación

Ejemplo

 $(D_{30}, mcm, mcd, -, 1, 30)$ es isomorfo a $(\mathcal{P}(\{2, 3, 5\}), \cup, \cap, -, \varnothing, \{2, 3, 5\})$

$$\phi \colon \mathcal{D}_{30} \longrightarrow \mathcal{P}(\{2,3,5\})$$

$$\phi(1) = \varnothing \qquad \qquad \phi(2) = \{2\}$$

$$\phi(3) = \{3\}$$
 $\phi(5) = \{5\}$

$$\phi(6) = \{2,3\}$$
 $\phi(10) = \{2,5\}$

$$\phi(15) = \{3,5\} \qquad \phi(30) = \{2,3,5\}$$

Isomorfismos de Álgebras de Boole

Teorema

Sea $(A, +, \cdot, -, 0_A, 1_A)$ un álgebra de Boole finita con conjunto de átomos $\{a_1, \ldots, a_n\}$. Si $(\mathcal{B}, \vee, \wedge, -, 0_\mathcal{B}, 1_\mathcal{B})$ es un álgebra de Boole finita con conjunto de átomos $\{b_1, \ldots, b_n\}$, entonces existe una función $\phi \colon \mathcal{A} \to \mathcal{B}$ tal que $\phi(a_j) = b_j$, $1 \le j \le n$, que es un isomorfismo de álgebras de Boole.

Ejemplo

$$\phi \colon \mathcal{D}_{30} \to \mathbb{B}^3$$

$$\phi(1) = 000, \quad \phi(2) = 100, \quad \phi(3) = 010, \quad \phi(5) = 001,$$

$$\phi(6) = 110, \quad \phi(10) = 101, \quad \phi(15) = 011, \quad \phi(30) = 111$$

Ejercicio

Halla un conjunto S tal que $\mathcal{P}(S)$ y \mathbb{B}^5 sean isomorfos como álgebras de Boole.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

67 / 90

Isomorfismos de Álgebras de Boole

Ejercicio

Se consideran las álgebras de Boole $A_1 = D_{2310}$ y $A_2 = \mathcal{P}(\{a, b, c, d, e\})$ y se define la función $f : A_1 \to A_2$ del siguiente modo:

$$f(2) = \{a\}$$
 $f(3) = \{b\}$ $f(5) = \{c\}$ $f(7) = \{d\}$ $f(11) = \{e\}$

- Expresa, si es posible, los elementos 110, 210 y 330 en función de átomos y superátomos.
- ② Determina cuáles deben ser las imágenes de f(35), f(110), f(210) y f(330) para que f sea isomorfismo de álgebras de Boole.
- **3** Estudia si se puede definir otra función $g: A_1 \to A_2$ que también sea **isomorfismo de álgebras de Boole**.
- En caso afirmativo, determina g(110), g(210) y g(330).
- **1** ¿Cuántos isomorfismos diferentes se pueden definir entre A_1 y A_2 ?

El álgebra de Boole \mathcal{F}_n

Definición

Se llama función booleana de n variables a una función $f: \mathbb{B}^n \to \mathbb{B}$.

El conjunto de todas las funciones booleanas de n variables se denota \mathcal{F}_n .

Ejemplo

La función $f: \mathbb{B}^3 \to \mathbb{B}$ definida

X	у	z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 2: Retículos v Álgebras de Boole

69 / 90

El álgebra de Boole \mathcal{F}_n

Ejemplo

- Una función booleana de 3 variables es una función f tal que f(x, y, z) es 0 ó 1 para cada una de las 2^3 elecciones de x, y, z.
- Podemos pensar en poner 3 interruptores en una de las dos posiciones.
- Como hay 8 formas de poner los interruptores y cada posición lleva a alguna de las dos salidas, dependiendo de la función, hay $2^{2^3}=256$ funciones booleanas de 3 variables. Esto es, $|\mathcal{F}_3|=2^{2^3}=256$.
- ullet En general, $|\mathcal{F}_n|=2^{2^n}$.

El álgebra de Boole \mathcal{F}_n

Definición

$$(f+g)(x_1,x_2,\ldots,x_n)=f(x_1,x_2,\ldots,x_n)+g(x_1,x_2,\ldots,x_n)$$

$$(f \cdot g)(x_1, x_2, \dots, x_n) = f(x_1, x_2, \dots, x_n) \cdot g(x_1, x_2, \dots, x_n)$$

para cualesquiera $(x_1, x_2, \dots, x_n) \in \mathbb{B}^n$.

El complemento de la función booleana f es la función booleana \overline{f} definida

$$\overline{f}(x_1,\ldots,x_n)=\overline{f(x_1,\ldots,x_n)}$$

Teorema

 \mathcal{F}_n es un álgebra de Boole con las operaciones booleanas definidas.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Bool

71 / 90

El álgebra de Boole \mathcal{F}_n

Ejemplo

Las operaciones booleanas de \mathcal{F}_2 se ilustran en la siguiente tabla

X	y	f	g	f+g	$f \cdot g$	\overline{f}
0	0	1	0	1	0	0
0	1	0	1	1	0	1
1	0	1	1	1	1	0
1	1	0	0	0	0	1

El álgebra de Boole \mathcal{F}_2

Ejemplo

En la siguiente tabla aparecen todas las funciones booleanas de dos variables

$$\mathcal{F}_2 = \{f_j \colon \mathbb{B}^2 \to \mathbb{B}, \ j : 0, ..., 15\}$$

X	y	$\int f_0$	f_1	f_2	f_3	<i>f</i> ₄	f_5	f_6	f ₇	<i>f</i> ₈	f 9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

Los átomos del álgebra de Boole \mathcal{F}_2 son: f_1, f_2, f_4 y f_8 .

Cada elemento de \mathcal{F}_2 se puede expresar como suma de átomos. Por ejemplo

$$f_7 = f_1 + f_2 + f_4$$
, $f_{10} = f_2 + f_8$, $f_{14} = f_2 + f_4 + f_8$

Nos interesa escribir cada elemento del álgebra de Boole \mathcal{F}_n , en este caso \mathcal{F}_2 , como suma de átomos.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

73 / 90

El álgebra de Boole \mathcal{F}_2

$$\mathcal{F}_2 = \{f_j \colon \mathbb{B}^2 \to \mathbb{B}, \ j : 0, ..., 15\}$$

			1											ı	ı		ı		
;	x	У	f_0	f_1	<i>f</i> ₂	<i>f</i> ₃	<i>f</i> ₄	f_5	<i>f</i> ₆	<i>f</i> ₇	<i>f</i> ₈	f 9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	
(0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
(0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
:	1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

Expresiones booleanas

Definición

Una expresión booleana sobre el álgebra de Boole $(A, +, \cdot, -, 0_A, 1_A)$ se define recursivamente de la siguiente manera:

- [B] Cualquier elemento de A y cualquier símbolo de variable $x_1, x_2, ..., x_n$ son expresiones booleanas.
- [R] Si E_1 y E_2 son expresiones booleanas, entonces $E_1 + E_2$, $(E_1 \cdot E_2)$ y $\overline{E_1}$ son también expresiones booleanas.

Ejemplo

- $E(x) = (\overline{5 \lor x}) \lor \overline{6}$ es una expresión booleana en $(D_{30}, \lor, \land, -, 1, 30)$.
- $E(x, y, z) = \overline{x} \cdot z + \overline{x} \cdot y + \overline{z}$ es una expresión booleana en \mathbb{B} .
- \checkmark Las expresiones booleanas representan cálculos con elementos no específicos de un cierto álgebra de Boole A.
- ✓ Se pueden manipular usando las propiedades de las operaciones definidas en el álgebra de Boole correspondiente.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos v Álgebras de Boole

75 / 90

Expresiones booleanas

✓ Para una asignación de valores a las variables, podemos evaluar la expresión $E(x_1, x_2, ..., x_n)$ mediante la sustitución de las variables en la expresión por sus valores y obtendremos como resultado un elemento de A.

Ejemplos

• Reemplazando x por 2 en la expresión booleana $E(x) = (\overline{5 \lor x}) \lor \overline{6}$ definida en $(D_{30}, \lor, \land, -, 1, 30)$, obtenemos

$$E(2) = (\overline{5 \vee 2}) \vee \overline{6} = (\overline{10}) \vee 5 = 3 \vee 5 = 15$$

• Reemplazando x por 0, y por 1 y z por 1 en la expresión booleana $E(x,y,z) = \overline{x} \cdot z + \overline{x} \cdot y + \overline{z}$ definida en \mathbb{B} , obtenemos

$$E(0,1,1) = \overline{0} \cdot 1 + \overline{0} \cdot 1 + \overline{1} = 1 \cdot 1 + 1 \cdot 1 + 0 = 1 + 1 + 0 = 1$$

Expresiones booleanas

Definición

Se dice que dos expresiones booleanas son equivalentes si toman los mismos valores para las mismas asignaciones a las variables.

Ejemplo

Las expresiones booleanas $E_1(x)=\overline{x}\vee 5$ y $E_2(x)=(\overline{5\vee x})\vee \overline{6}$ definidas en $(D_{30}, \vee, \wedge, -, 1, 30)$ son equivalentes, ya que

	1	2	3	5	6	10	15	30
$E_1(x)$	30	15	10	30	5	15	10	5
$E_2(x)$	30	15	10	30	5	15	10	5

Expresiones booleanas

- ✓ Dos expresiones booleanas $E_1(x_1, x_2, ..., x_n)$ y $E_2(x_1, x_2, ..., x_n)$ serán equivalentes si es posible transformar una en la otra con manipulaciones booleanas.
- ✓ En este caso, escribimos

$$E_1(x_1, x_2, ..., x_n) = E_2(x_1, x_2, ..., x_n)$$

Ejercicio

Demuestra que:

• En el álgebra de Boole $(D_{30}, \vee, \wedge, -, 1, 30)$

$$\overline{x} \vee 5 = (\overline{5 \vee x}) \vee \overline{6}$$

2 En el álgebra de Boole $(D_{2\cdot 3\cdot 7\cdot 11}, \vee, \wedge)$

$$\overline{(x \wedge 3)} \wedge (77 \vee 3) = (231 \wedge \overline{x}) \vee 77$$

¿Cómo debemos especificar una función de \mathcal{A}^n en \mathcal{A} a partir de una expresión booleana $E(x_1, x_2, ..., x_n)$ sobre $(\mathcal{A}, +, \cdot, -, 0_{\mathcal{A}}, 1_{\mathcal{A}})$?

- ✓ Cada asignación de valores a las variables $x_1, x_2, ..., x_n$ será una n-tupla ordenada en el dominio \mathcal{A}^n y
- ✓ el correspondiente valor de $E(x_1,...,x_n)$ será la imagen en el codominio A.

Ejemplo

La expresión booleana $E(x)=(\overline{5\vee x})\vee\overline{6}$ sobre el álgebra de Boole $(D_{30},\vee,\wedge,-,1,30)$ define la función $f\colon D_{30}\to D_{30}$ dada por

Mariam Cobalea Vico (UMA)

EAC. Curso 15/16

Tema 2: Retículos y Álgebras de Boole

79 / 90

Expresiones booleanas/Funciones booleanas

 \succ En general, dada un álgebra de Boole $(A, +, \cdot, -, 0_A, 1_A)$, **no toda función** de A^n en A equivale a una expresión booleana sobre A, aunque . . .

Teorema

Toda función $f: \mathbb{B}^n \to \mathbb{B}$ se puede especificar mediante una expresión booleana.

Ejemplo

La función $f: \mathbb{B}^3 \to \mathbb{B}$ dada en la tabla se corresponde con las expresiones lógicas que la siguen:

$$(x_1 + x_2 + \overline{x}_3) \cdot (x_1 + \overline{x}_2 + \overline{x}_3) \cdot (\overline{x}_1 + x_2 + x_3) \cdot (\overline{x}_1 + x_2 + \overline{x}_3) \cdot (\overline{x}_1 + \overline{x}_2 + x_3)$$
$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) + (x_1 \cdot x_2 \cdot x_3)$$

Definición

Las expresiones booleanas que constan de una única variable o su complemento se llaman **literales**.

Definición

• Decimos que una expresión booleana de n variables es un minitérmino si es de la forma

$$y_1 \cdot y_2 \cdot \dots \cdot y_n$$

donde usamos y_j para denotar x_j o bien \overline{x}_j .

• Se dice que una expresión booleana está en su forma normal disyuntiva si es una suma de minitérminos.

Ejemplo

 $(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) + (x_1 \cdot x_2 \cdot x_3)$ es una expresión booleana en forma normal disyuntiva, con tres minitérminos:

$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3), (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) \quad y \quad (x_1 \cdot x_2 \cdot x_3).$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

81 / 90

Expresiones booleanas/Funciones booleanas

Ejemplo

- La expresión $x \cdot \overline{y} \cdot z$ es un minitérmino en las tres variables x, y, z. La función correspondiente en \mathcal{F}_3 toma el valor 1 solamente en (1,0,1).
- La expresión $x \cdot \overline{z}$ es un minitérmino en dos variables x, z. Pero no es un minitérmino en las tres variables x, y, z. La función correspondiente en \mathcal{F}_3 toma el valor 1 en (1,0,0) y en (1,1,0).
- La expresión $x \cdot \overline{y} \cdot z \cdot \overline{x}$ no es un minitérmino ya que involucra a la variable x en más de un literal.

Ejemplo

ullet En la siguiente tabla se da una lista de los 8 elementos de \mathbb{B}^3 y los minitérminos correspondientes que toman el valor 1 en los elementos indicados.

(a,b,c)	Minitérminos con valor 1 en (a, b, c)
(0,0,0)	$\overline{x} \cdot \overline{y} \cdot \overline{z}$
(0,0,1)	$\overline{x} \cdot \overline{y} \cdot z$
(0, 1, 0)	$\overline{x} \cdot y \cdot \overline{z}$
(0, 1, 1)	$\overline{x} \cdot y \cdot z$
(1,0,0)	$x \cdot \overline{y} \cdot \overline{z}$
(1,0,1)	$x \cdot \overline{y} \cdot z$
(1, 1, 0)	$x \cdot y \cdot \overline{z}$
(1, 1, 1)	$x \cdot y \cdot z$

Expresiones booleanas/Funciones booleanas

Dada una función de \mathbb{B}^n en \mathbb{B} , podemos obtener una expresión booleana en forma normal disyuntiva correspondiente a esta función de la siguiente manera:

- Hacemos corresponder un minitérmino a cada uno de los elementos de \mathbb{B}^n para los cuales el valor de la función es 1.
- 2 Para cada una de estos elementos obtenemos un minitérmino

$$y_1 \cdot y_2 \cdot ... \cdot y_n$$

en el cual y_i es x_i si la componente j de la n-tupla es 1 y es \overline{x}_i si la componente j de la n-tupla es 0.

Ejemplo

A la función $f:\mathbb{B}^3 \to \mathbb{B}$ dada por la tabla

$$\begin{array}{c|c} & f \\ \hline (0,0,0) & 1 \\ (0,0,1) & 0 \\ (0,1,0) & 1 \\ (0,1,1) & 0 \\ (1,0,0) & 0 \\ (1,0,1) & 0 \\ (1,1,0) & 0 \\ (1,1,1) & 1 \\ \end{array}$$

le corresponde la expresión booleana

$$(\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3) + (\overline{x}_1 \cdot x_2 \cdot \overline{x}_3) + (x_1 \cdot x_2 \cdot x_3)$$

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

85 / 90

Expresiones booleanas/Funciones booleanas

Definición

• Decimos que una expresión booleana es un n variables es un maxitérmino si es de la forma

$$y_1 + y_2 + ... + y_n$$

donde usamos y_i para denotar x_i o bien \overline{x}_i .

• Se dice que una expresión booleana está en su forma normal conjuntiva si es un producto de maxitérminos.

Ejemplo

$$(x_1+x_2+\overline{x}_3)\cdot(x_1+\overline{x}_2+\overline{x}_3)\cdot(\overline{x}_1+x_2+x_3)\cdot(\overline{x}_1+x_2+\overline{x}_3)\cdot(\overline{x}_1+\overline{x}_2+x_3)$$

es una expresión en forma normal conjuntiva que consta de cinco maxitérminos.

Dada una función de \mathbb{B}^n en \mathbb{B} , podemos obtener una expresión booleana en forma normal conjuntiva correspondiente a esta función de la siguiente manera:

- Hacemos corresponder un maxitérmino a cada uno de los elementos de \mathbb{B}^n para los cuales el valor de la función es 0.
- 2 Para cada una de estos elementos obtenemos un maxitérmino

$$y_1 + y_2 + ... + y_n$$

en el cual y_j es x_j si la componente j de la n-tupla es 0 y es \overline{x}_j si la componente j de la n-tupla es 1.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

87 / 90

Expresiones booleanas/Funciones booleanas

Ejemplo

A la función $f \colon \mathbb{B}^3 o \mathbb{B}$ dada por la tabla

$$\begin{array}{c|cccc} & & & & & & \\ \hline (0,0,0) & 1 & \\ (0,0,1) & 0 & \\ (0,1,0) & 1 & \\ (0,1,1) & 0 & \\ (1,0,0) & 0 & \\ (1,0,1) & 0 & \\ (1,1,0) & 0 & \\ (1,1,1) & 1 & \\ \end{array}$$

le corresponde la expresión booleana

$$(x_1+x_2+\overline{x}_3)\cdot(x_1+\overline{x}_2+\overline{x}_3)\cdot(\overline{x}_1+x_2+x_3)\cdot(\overline{x}_1+x_2+\overline{x}_3)\cdot(\overline{x}_1+\overline{x}_2+x_3)$$

Ejercicio

Halla la forma normal disyuntiva de la función booleana $F:\mathbb{B}^3 \to \mathbb{B}$ dada en forma conjuntiva

$$F(x, y, z) = (x + y + z)(x + y + \overline{z})(x + \overline{y} + \overline{z})$$

Ejercicio

Sean las expresiones booleanas

$$E_1(x,y,z) = \overline{x+\overline{z}} + \overline{y} \cdot z + \overline{y+z}$$
 y $E_2(x,y,z) = \overline{x\cdot z + y\cdot \overline{z}} + \overline{y}$

- ① Determina si $E_1(x, y, z)$ y $E_2(x, y, z)$ son equivalentes.
- 2 Estudia si mediante la expresión booleana E_2 se puede especificar la función booleana $F(x,y,z)=\overline{x}z+\overline{y}$
- **3** Halla la forma normal disyuntiva y la forma normal conjuntiva de la función booleana que se puede especificar mediante la expresión booleana $E_1(x, y, z)$.

Mariam Cobalea Vico (UMA)

EAC, Curso 15/16

Tema 2: Retículos y Álgebras de Boole

89 / 90

Bibliografía

Matemáticas discreta y combinatoria R.P. Grimaldi (Ed. Addison Wesley)

Estructuras de matemáticas discretas para la computación

B. Kolman y R.C. Busby (Ed. Prentice Hall)

2000 problemas resueltos de Matemática Discreta

S. Lipschutz y M. Lipson (Ed. McGraw Hill)

Matemática Discreta y sus aplicaciones K. Rosen (Ed. McGraw Hill)

Matemática Discreta K.A. Ross y C.R.B. Wright (Ed. Prentice Hall).