ТВиМС. Лекция

22 ноября 2024 г.

Двухфакторный дисперсионный анализ

Пример 2. Следующая таблица содержит округленные значения выхода химической реакции, где A_{l-4} – уровни концентрации, B_{l-3} – уров-

ни температуры.

ypbi.				
	B_1	B_2	B_3	Σ
A_1	6	6	7	34
	5	4	6	
A_2	5	5 5	5 5	29
_	4	5	5	
A ₃	6	7	4	34
	6	7	4	
A_4	8	6 5	5 2	33
	7	5	2	
Σ	47	45	38	130

Проверить при уровне значимости $\alpha = 0.05$ гипотезу — на выход химической реакции не влияет: 1) фактор A; 2) фактор B; 3) взаимодействие факторов AB (факторы имеют фиксированные уровни).

А, В - факторы

$$m=4$$
 $k=3,\ n=2$ — число наблюдений в клетке x_{ijl} - наблюдения $x_{111}=6,x_{112}=5,\ldots$ $\overline{x}_{...}=rac{\sum_{i=1}^{m}\sum_{j=1}^{k}\sum_{l=1}^{n}x_{ijl}}{2}=rac{130}{24}=5.42$
$$Q=\sum_{i=1}^{m}\sum_{j=1}^{k}\sum_{l=1}^{n}(x_{ijl}-\overline{x}_{...})^2$$

$$Q_A=kn\sum_{i=1}^{m}(x_{i..}-\overline{x}_{...})^2$$

$$Q_B=mn\sum_{j=1}^{m}(x_{.j.}-\overline{x}_{...})^2$$