- 1. Между двумя коаксиальными металлическими цилиндрами с радиусами R_1 =1см и R_2 =2 см, заряженными с линейными плотностями τ_1 =4·10⁻⁸ Кл/м и τ_2 = 8·10⁻⁸ Кл/м соответственно, находится диэлектрик с ϵ_1 =2. Внешний цилиндр окружен слоем диэлектрика с ϵ_2 =4 и внешним радиусом R_3 =4 см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. На оси тонкого кольца радиуса R, заряженного с линейной плотностью заряда τ , на расстоянии r_1 от центра кольца находится точечный заряд Q. Какую работу необходимо совершить, чтобы увеличить расстояние между кольцом и зарядом на Δr ?

ВАРИАНТ 2

- 1. Проводящий шар радиусом R_1 =2см, заряженный зарядом Q= $-4\cdot10^{-9}$ Кл, окружен сферическим слоем диэлектрика (ε =7) радиусом R_2 =4см, который заряжен с постоянной объемной плотностью ρ = $-2\cdot10^{-6}$ Кл/м³. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
 - б) Рассчитайте емкость системы.
- 2. На продолжении равномерно заряженного с линейной плотностью τ стержня длиной L находится точечный заряд Q. Какую работу необходимо совершить, чтобы увеличить расстояние между стержнем и зарядом на Δr ?

- 1. Две большие параллельные пластины заряженные с поверхностными плотностями σ_1 =2·10⁻⁹ Кл/м² и σ_2 =4·10⁻⁹ Кл/м², находятся на расстоянии d=10 см. Вплотную к правой пластине примыкает слой диэлектрика с диэлектрической проницаемостью ϵ =4 и толщиной h=2см. Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(\mathbf{x})$, $D_{\mathbf{x}}(\mathbf{x})$, $\phi(\mathbf{x})$ и постройте примерные графики этих функций.
- б) Рассчитайте объемную плотность энергии электростатического поля, в точке, расположенной в середине слоя диэлектрика.
- 2.Стержень длиной L_1 равномерно заряжен зарядом Q_1 . На продолжении стержня находится второй стержень длиной L_2 , равномерно заряженный зарядом Q_2 . Расстояние между ближайшими точками стержней d. Найдите силу взаимодействия стержней.

- 1. Между двумя коаксиальными металлическими цилиндрами с радиусами R_1 =2cм и R_2 =6 см, заряженными с линейными плотностями τ_1 =6·10⁻⁸ Кл/м и τ_2 = -8·10⁻⁸ Кл/м соответственно, расположены два цилиндрических слоя диэлектрика с диэлектрическими проницаемостями ε_1 =3 и ε_2 =6. Радиус границы между диэлектриками R=4 см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. Вдоль силовой линии эл. поля, создаваемого равномерно заряженным по объему диэлектрическим шаром (ρ , ϵ , и R шара известны) расположен тонкий стержень длиной L, заряженный зарядом Q. Расстояние от центра шара до ближайшего конца стержня r_0 . Определите силу, действующую на шар.

ВАРИАНТ 5

- 1. Между двумя тонкими концентрическими сферами, радиусами R_1 =2cм и R_2 =6cм, помещены два сферических слоя диэлектрика с диэлектрическими проницаемостями ε_1 =2 и ε_2 =6. Радиус границы между диэлектриками R=4 см. Одна из сфер заряжена и разность потенциалов между сферами $\Delta \phi$ =100B. Найдите:
 - 1)Заряд сферы;
- 2) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- 2. Вдоль радиального направления на расстоянии r_0 от оси заряженного с поверхностной плотностью σ <0 цилиндра радиусом R, расположен тонкий стержень длиной L, заряженный зарядом Q>0. Определите силу, действующую на цилиндр. (r_0 расстояние от оси цилиндра до ближайшего конца стержня).

- 1. Две большие параллельные пластины заряженные с поверхностными плотностями $\sigma_1 = -2 \cdot 10^{-9} \text{ Кл/м}^2$ и $\sigma_2 = 4 \cdot 10^{-9} \text{ Кл/м}^2$, находятся на расстоянии d=10 см. Пространство между ними полностью заполнено двумя слоями диэлектриков равной толщины: стеклом ($\varepsilon_1 = 7$) и эбонитом ($\varepsilon_2 = 3$). Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций.
- б) Рассчитайте объемную плотность энергии электростатического поля, в точке, расположенной в середине первого слоя (ϵ_1) диэлектрика.
- 2. Тонкая нить, заряженная с линейной плотностью τ , согнута в виде полукольца радиусом R. Определите напряженность поля в центре полукольца.

- 1. Длинный проводящий цилиндр радиусом R_1 =1мм, заряженный с постоянной линейной плотностью τ_1 = $-6\cdot10^{-8}$ Кл/м, расположен на оси длинной фарфоровой трубки (ε =7). Внутренний радиус трубки R_2 =2см, внешний R_3 =4см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\varphi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. Две большие параллельные пластины, заряженные с поверхностными плотностями σ_{I} =-2·10⁻⁹ Кл/м² и σ_{2} =4·10⁻⁹ Кл/м², находятся на расстоянии d=10 см. Площадь пластин S= 0,5 м. Между ними, на расстоянии l=1 см от левой пластины, расположен слой диэлектрика (ε =7) толщиной b=3 см. Определите силу, действующую на правую пластину.

ВАРИАНТ 8

- 1. Между двумя концентрическими сферами, радиусами R_1 =2см и R_2 =6см, помещены два сферических слоя диэлектрика с диэлектрическими проницаемостями ϵ_1 =2 и ϵ_2 =6. Радиус границы между диэлектриками R=4 см. Сферы заряжены зарядами Q_1 = $-4\cdot10^{-9}$ Кл и Q_2 = $2\cdot10^{-9}$ Кл соответственно. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную во втором диэлектрике (ϵ_2).
- 2. В пространстве образовано скопление зарядов в виде плоского слоя толщиной d=4 см, заряженное с объемной плотностью ρ = $-2\cdot10^{-6}$ Кл/м 3 . На расстоянии l=8 см от его оси, перпендикулярно боковой поверхности слоя, находится стержень длиной L=3 см, заряд которого Q= $-8\cdot10^{-10}$ Кл. Определите силу, действующую на стержень.

- 1. На плоский конденсатор, расстояние между пластинами которого d, подается разность потенциалов $\Delta \varphi$. Пространство между пластинами конденсатора полностью заполнено двумя слоями диэлектрика равной толщины: стеклом(ϵ_1 =7) и эбонитом (ϵ_2 =3). Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(\mathbf{x})$, $D_{\mathbf{x}}(\mathbf{x})$, $\phi(\mathbf{x})$ и постройте примерные графики этих функций.
 - б) Рассчитайте энергию заряженного конденсатора, если площадь пластин равна S.
- 2. Диэлектрический шар радиусом R, диэлектрической проницаемость которого ε , заряжен по объему с постоянной плотностью ρ . Вдоль радиального направления на расстоянии r_0 ($r_0 > R$) от центра шара расположен ближний конец тонкого стержня длиной L, заряженного зарядом Q. Определите силу, действующую шар.

- 1. Полый толстостенный эбонитовый цилиндр (ε =3) заряжен по объему с постоянной объемной плотностью $\rho = -4 \cdot 10^{-9} \text{ Кл/м}^3$. Внутренний радиус цилиндра R_1 =2см, внешний R_2 =4 см. Коаксиально ему расположен тонкостенный металлический цилиндр радиусом R_3 =8см, заряженный с линейной плотностью τ =4·10⁻⁸ Кл/м. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. На оси тонкого кольца радиуса \mathbf{R} , заряженного с линейной плотностью заряда $\mathbf{\tau}$, на расстоянии \mathbf{r}_{θ} от центра кольца находится точечный заряд \mathbf{Q} . Какая сила действует на кольцо?

ВАРИАНТ 11

- 1. В безграничном диэлектрике (ε =6) расположена шарообразная полость радиусом R=1см. В полости наблюдается скопление зарядов с объемной плотностью $\rho = -8.85 \cdot 10^{-9} \, \text{Кл/м}^3$. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Поверхностную плотность связанных зарядов на внутренней поверхности диэлектрика.
- 2. На оси перпендикулярной плоскости тонкого, равномерно заряженного с линейной плотностью τ кольца радиуса R расположен стержень длиной L. Заряд стержня Q равномерно распределен по его длине. Расстояние между центром кольца и серединой стержня d. Найдите силу, действующую на кольцо.

- **1.** Обкладки конденсатора имеют форму квадрата со стороной a, расстояние между обкладками d. Внутрь конденсатора помещена пластина толщиной b (d > b), с относительной диэлектрической проницаемостью ε =7. Расстояние между правой пластиной и слоем диэлектрика равно h.
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций для заряженного конденсатора, при том что обкладка, для которой x=0, заряжена положительно (x- расстояние, отсчитываемое внутрь конденсатора от одной из обкладок в направлении, перпендикулярном обкладкам);
- б) Найдите <u>по определению</u> ёмкость плоского конденсатора (не используя формулы емкости батареи конденсаторов).
- **2.** Скопление зарядов в вакууме имеет вид шара радиусом R .Объемная плотность заряда ρ . При перемещении точечного заряда вдоль силовой линии поля из положения r_1 от центра шара $(r_1 > R)$ до $r_2 (r_2 > R)$, электрическое поле совершило работу A. Найдите величину точечного заряда.

- 1. Между двумя коаксиальными металлическими цилиндрами с радиусами R_1 =1см и R_2 =2 см, заряженными с линейными плотностями τ_I = $-4\cdot10^{-8}$ Кл/м и τ_I = $8\cdot10^{-8}$ Кл/м соответственно, находится диэлектрик с ϵ_I =2. Внешний цилиндр окружен слоем диэлектрика с ϵ_I =4 и внешним радиусом ϵ_I =4 см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. На оси тонкого кольца радиуса R, заряженного с линейной плотностью заряда τ , на расстоянии r_1 от центра кольца находится точечный заряд Q. Какую работу необходимо совершить, чтобы увеличить расстояние между кольцом и зарядом на Δr ?

ВАРИАНТ 14

- 1. Металлический шар радиусом R_1 =2см, заряженный зарядом Q= $-6\cdot10^{-9}$ Кл, окружен сферическим слоем диэлектрика (ε =2) радиусом R_2 =4см, который заряжен с постоянной объемной плотностью ρ = $-2\cdot10^{-6}$ Кл/м 3 . Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
 - б) Рассчитайте емкость системы.
- 2. На продолжении равномерно заряженного с линейной плотностью τ стержня длиной L находится точечный заряд Q. Какую работу необходимо совершить, чтобы увеличить расстояние между стержнем и зарядом на Δr ?

- 1. Две большие параллельные пластины заряженные с поверхностными плотностями σ_1 =2·10⁻⁹ Кл/м² и σ_2 = $-4\cdot10^{-9}$ Кл/м², находятся на расстоянии d=10 см. Вплотную к правой пластине примыкает слой диэлектрика с диэлектрической проницаемостью ϵ =4 и толщиной h=2см. Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций.
- б) Рассчитайте объемную плотность энергии электростатического поля, в точке, расположенной в середине слоя диэлектрика.
- 2.Стержень длиной L_1 равномерно заряжен зарядом Q_1 . На продолжении стержня находится второй стержень длиной L_2 , равномерно заряженный зарядом Q_2 . Расстояние между ближайшими точками стержней d. Найдите силу взаимодействия стержней.

- 1. Между двумя коаксиальными металлическими цилиндрами с радиусами R_1 =2cм и R_2 =6 см, заряженными с линейными плотностями τ_1 = $-6\cdot10^{-8}$ Кл/м и τ_2 = $-5\cdot10^{-8}$ Кл/м соответственно, расположены два цилиндрических слоя диэлектрика с диэлектрическими проницаемостями ε_1 =5 и ε_2 =2. Радиус границы между диэлектриками ε_2 =4 см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. Вдоль радиуса заряженного по объему диэлектрического шара (ρ , ϵ , и R шара известны) расположен тонкий стержень длиной L, заряженный зарядом Q. Расстояние от центра шара до ближайшего конца стержня r_0 . Определите силу, действующую на шар.

ВАРИАНТ 17

- 1. Между двумя тонкими концентрическими сферами, радиусами R_1 =2см и R_2 =6см, помещены два сферических слоя диэлектрика с диэлектрическими проницаемостями ε_1 =7 и ε_2 =2. Радиус границы между диэлектриками R=4 см. Одна из сфер заряжена и разность потенциалов между сферами $\Delta \phi$ =100В. Найдите:
 - 1)Заряд сферы;
- 2) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- 2. Вдоль радиального направления на расстоянии r_0 от оси заряженного с поверхностной плотностью σ <0 цилиндра радиусом R, расположен тонкий стержень длиной L, заряженный зарядом Q>0. Определите силу, действующую на цилиндр. (r_0 расстояние от оси цилиндра до ближайшего конца стержня).

- 1. Две большие параллельные пластины заряженные с поверхностными плотностями $\sigma_1 = -8 \cdot 10^{-9} \text{ Кл/м}^2$ и $\sigma_2 = 2 \cdot 10^{-9} \text{ Кл/м}^2$, находятся на расстоянии d=10 см. Пространство между ними полностью заполнено двумя слоями диэлектриков равной толщины ($\varepsilon_1 = 2$ и $\varepsilon_2 = 6$). Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций.
- б) Рассчитайте объемную плотность энергии электростатического поля, в точке, расположенной в середине первого слоя (ϵ_1) диэлектрика.
- 2. Тонкая нить, заряженная с линейной плотностью τ , согнута в виде полукольца радиусом R. Определите напряженность поля в центре полукольца.

- 1. Длинный цилиндр из диэлектрика (ε =4) радиусом R_1 =1мм, заряженный с постоянной объемной плотностью ρ = $-8\cdot10^{-8}$ Кл/м³, расположен на оси длинной толстостенной металлической трубки, заряженной с поверхностной плотностью σ = $2\cdot10^{-10}$ Кл/м². Внутренний радиус трубки R_2 =2см, внешний R_3 =4см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. Две большие параллельные пластины, заряженные с поверхностными плотностями σ_{I} =-2·10⁻⁹ Кл/м² и σ_{2} =4·10⁻⁹ Кл/м², находятся на расстоянии d=10 см. Площадь пластин S= 0,5 м. Между ними, на расстоянии l=1 см от левой пластины, расположен слой диэлектрика (ε =7) толщиной b=3 см. Определите силу, действующую на правую пластину.

ВАРИАНТ 20

- 1. Между двумя концентрическими сферами, радиусами R_1 =2см и R_2 =6см, помещены два сферических слоя диэлектрика с диэлектрическими проницаемостями ϵ_1 =4 и ϵ_2 =2. Радиус границы между диэлектриками R=4 см. Сферы заряжены зарядами Q_1 =2·10⁻⁹ Кл и Q_2 = $-8\cdot10^{-9}$ Кл соответственно. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную во втором диэлектрике (ε_2).
- 2. В пространстве образовано скопление зарядов в виде плоского слоя толщиной d=4 см, заряженное с объемной плотностью $\rho=2\cdot10^{-6}$ Кл/м³. На расстоянии l=2 см от его оси, перпендикулярно боковой поверхности слоя, находится стержень длиной L=3 см, заряд которого $Q=5\cdot10^{-10}$ Кл. Определите силу, действующую на стержень.

- 1. На плоский конденсатор, расстояние между пластинами которого d, подается разность потенциалов $\Delta \varphi$. Пространство между пластинами конденсатора полностью заполнено двумя слоями диэлектрика равной толщины: стеклом(ϵ_1 =2) и эбонитом (ϵ_2 =8). Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций.
 - б) Рассчитайте энергию заряженного конденсатора, если площадь пластин равна S.
- 2. Диэлектрический шар радиусом R, диэлектрической проницаемость которого ε , заряжен по объему с постоянной плотностью ρ . Вдоль радиального направления на расстоянии r_0 ($r_0 > R$) от центра шара расположен ближний конец тонкого стержня длиной L, заряженного зарядом Q. Определите силу, действующую шар.

- 1. Полый толстостенный эбонитовый цилиндр (ε =3) заряжен по объему с постоянной объемной плотностью $\rho = -4\cdot10^{-9} \text{ Кл/м}^3$. Внутренний радиус цилиндра R_1 =2см, внешний R_2 =4 см. Коаксиально ему расположен тонкостенный металлический цилиндр радиусом R_3 =8см, заряженный с поверхностной плотностью σ = $-4\cdot10^{-8} \text{ Кл/м}^2$. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. На оси тонкого кольца радиуса \mathbf{R} , заряженного с линейной плотностью заряда $\mathbf{\tau}$, на расстоянии \mathbf{r}_0 от центра кольца находится точечный заряд \mathbf{Q} . Какая сила действует на кольцо?

ВАРИАНТ 23

- 1. В безграничном диэлектрике (ε =6) расположена шарообразная полость радиусом R=1см. В полости наблюдается скопление зарядов с объемной плотностью ρ =4·10⁻⁹ Кл/м³. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Поверхностную плотность связанных зарядов на внутренней поверхности диэлектрика.
- 2. На оси перпендикулярной плоскости тонкого, равномерно заряженного с линейной плотностью τ кольца радиуса R расположен стержень длиной L. Заряд стержня Q равномерно распределен по его длине. Расстояние между центром кольца и серединой стержня d. Найдите силу, действующую на кольцо.

- **1.** Обкладки конденсатора имеют форму квадрата со стороной a, расстояние между обкладками d. Внутрь конденсатора помещена пластина толщиной b (d > b), с относительной диэлектрической проницаемостью ε =7. Расстояние между правой пластиной и слоем диэлектрика равно h.
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций для заряженного конденсатора, при том что обкладка, для которой x=0, заряжена положительно (x- расстояние, отсчитываемое внутрь конденсатора от одной из обкладок в направлении, перпендикулярном обкладкам);
- б) Найдите <u>по определению</u> ёмкость плоского конденсатора (не используя формулы емкости батареи конденсаторов).
- **2.** Скопление зарядов в вакууме имеет вид шара радиусом R .Объемная плотность заряда р. При перемещении точечного заряда вдоль силовой линии поля из положения r_1 от центра шара $(r_1 > R)$ до $r_2 (r_2 > R)$, электрическое поле совершило работу A. Найдите величину точечного заряда.

- 1. Между двумя коаксиальными металлическими цилиндрами с радиусами R_1 =1см и R_2 =2 см, заряженными с линейными плотностями τ_1 = $-4\cdot10^{-8}$ Кл/м и τ_2 = $-2\cdot10^{-8}$ Кл/м соответственно, находится диэлектрик с ϵ_1 =7. Внешний цилиндр окружен слоем диэлектрика с ϵ_2 =4 и внешним радиусом R_3 =4 см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. На оси тонкого кольца радиуса R, заряженного с линейной плотностью заряда τ , на расстоянии r_1 от центра кольца находится точечный заряд Q. Какую работу необходимо совершить, чтобы увеличить расстояние между кольцом и зарядом на Δr ?

ВАРИАНТ 26

- 1. Проводящий шар радиусом R_1 =2см, заряженный зарядом Q= $-4\cdot10^{-9}$ Кл, окружен сферическим слоем диэлектрика (ε =7) радиусом R_2 =4см, который заряжен с постоянной объемной плотностью ρ =9·10⁻⁶ Кл/м³. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
 - б) Рассчитайте емкость системы.
- 2. На продолжении равномерно заряженного с линейной плотностью τ стержня длиной L находится точечный заряд Q. Какую работу необходимо совершить, чтобы увеличить расстояние между стержнем и зарядом на Δr ?

- 1. Две большие параллельные пластины заряженные с поверхностными плотностями $\sigma_1 = -2 \cdot 10^{-9} \text{ Кл/м}^2$ и $\sigma_2 = -4 \cdot 10^{-9} \text{ Кл/м}^2$, находятся на расстоянии d=10 см. Вплотную к правой пластине примыкает слой диэлектрика с диэлектрической проницаемостью $\varepsilon=2$ и толщиной h=2см. Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций.
- б) Рассчитайте объемную плотность энергии электростатического поля, в точке, расположенной в середине слоя диэлектрика.
- 2.Стержень длиной L_1 равномерно заряжен зарядом Q_1 . На продолжении стержня находится второй стержень длиной L_2 , равномерно заряженный зарядом Q_2 . Расстояние между ближайшими точками стержней d. Найдите силу взаимодействия стержней.

- 1. Между двумя коаксиальными металлическими цилиндрами с радиусами R_1 =2cм и R_2 =6 см, заряженными с линейными плотностями τ_1 = $-6\cdot10^{-8}$ Кл/м и τ_2 = $8\cdot10^{-8}$ Кл/м соответственно, расположены два цилиндрических слоя диэлектрика с диэлектрическими проницаемостями ε_1 =3 и ε_2 =6. Радиус границы между диэлектриками R=4 см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\varphi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. Вдоль радиуса заряженного по объему диэлектрического шара (ρ , ϵ , и R шара известны) расположен тонкий стержень длиной L, заряженный зарядом Q. Расстояние от центра шара до ближайшего конца стержня r_0 . Определите силу, действующую на шар.

ВАРИАНТ 29

- 1. Между двумя тонкими концентрическими сферами, радиусами R_1 =2см и R_2 =6см, помещены два сферических слоя диэлектрика с диэлектрическими проницаемостями ε_1 =4 и ε_2 =6. Радиус границы между диэлектриками R=4 см. Одна из сфер заряжена и разность потенциалов между сферами $\Delta \phi$ =100В. Найдите:
 - 1)Заряд сферы;
- 2) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- 2. Вдоль радиального направления на расстоянии r_0 от оси заряженного с поверхностной плотностью σ <0 цилиндра радиусом R, расположен тонкий стержень длиной L, заряженный зарядом Q>0. Определите силу, действующую на цилиндр. (r_0 расстояние от оси цилиндра до ближайшего конца стержня).

- 1. Две большие параллельные пластины заряженные с поверхностными плотностями σ_1 =-2·10⁻⁹ Кл/м² и σ_2 =4·10⁻⁹ Кл/м², находятся на расстоянии d=10 см. Пространство между ними полностью заполнено двумя слоями диэлектрика равной толщины (ε_1 =2 и ε_2 =4). Найдите:
- а) Найдите аналитические зависимости $E_{\mathbf{x}}(x)$, $D_{\mathbf{x}}(x)$, $\phi(x)$ и постройте примерные графики этих функций.
- б) Рассчитайте объемную плотность энергии электростатического поля, в точке, расположенной в середине первого слоя (ϵ_1) диэлектрика.
- 2. Тонкая нить, заряженная с линейной плотностью τ , согнута в виде полукольца радиусом R. Определите потенциал электрического поля в центре полукольца.

- 1. Длинный проводящий цилиндр радиусом R_1 =1мм, заряженный с постоянной линейной плотностью τ_1 =6·10⁻⁸ Кл/м, расположен на оси длинной фарфоровой трубки (ε =7). Внутренний радиус трубки R_2 =2см, внешний R_3 =4см. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную в диэлектрике на единицу длины.
- 2. Две большие параллельные пластины, заряженные с поверхностными плотностями σ_{I} =-2·10⁻⁹ Кл/м² и σ_{2} =4·10⁻⁹ Кл/м², находятся на расстоянии d=10 см. Площадь пластин S= 0,5 м. Между ними, на расстоянии l=1 см от левой пластины, расположен слой диэлектрика (ε =7) толщиной b=3 см. Определите силу, действующую на правую пластину.

- 1. Между двумя концентрическими сферами, радиусами R_1 =2см и R_2 =6см, помещены два сферических слоя диэлектрика с диэлектрическими проницаемостями ϵ_1 =8 и ϵ_2 =2. Радиус границы между диэлектриками R=4 см. Сферы заряжены зарядами Q_1 =4·10⁻⁹ Кл и Q_2 = $-9\cdot10^{-9}$ Кл соответственно. Найдите:
- а) Найдите аналитические зависимости $E_r(r)$, $D_r(r)$, $\phi(r)$ и постройте примерные графики этих функций.
- б) Рассчитайте энергию электростатического поля, локализованную во втором диэлектрике (ϵ_2).
- 2. В пространстве образовано скопление зарядов в виде плоского слоя толщиной d=4 см, заряженное с объемной плотностью ρ = $-2\cdot10^{-6}$ Кл/м 3 . На расстоянии l=8 см от его оси, перпендикулярно боковой поверхности слоя, находится стержень длиной L=3 см, заряд которого Q= $8\cdot10^{-10}$ Кл. Определите силу, действующую на стержень.