Acids, Bases and Salts

Class 10th Chemistry

Chemfinity @ Infinity and Beyond

Glossary

- Acids and Bases
- Olfactory indicators
- Characteristics
- Reactions
- O Vs
- O pH
- O lonisation
- O Hydronium ion
- Acid rain

- Common Salt
- O Antacids
- O Dilution
- Washing Soda
- O Baking soda
- Baking powder
- O POP
- O Gypsum
- O Bleaching Powder.

Some common (characteristics and acidbase indicators)

- Acids are sour in taste, turn blue litmus red, hydrogen gas on reaction with metals *
- Bases are bitter in taste, turn red litmus blue, hydrogen gas on reaction with metals *
- Litmus is a common natural indicator extracted from lichens.
- Commonly used indicators: Litmus, Phenolphthalein, Methyl Orange, Turmeric powder.
- Olfactory indicators: Clove oil, Vanilla essence

A/B vs "the metals"

- \circ Acid + Metal \rightarrow Salt + H₂
- $OH_2SO_4 + Zn \rightarrow ZnSO_4 + H_2$
- \circ 2NaOH + Zn \rightarrow Na₂ZnO₂ + H₂
- The above reaction is not possible with all the metals.
- Metal (Hydrogen)Carbonates + Acid -> Metal salt + Water + Carbon Dioxide
- \circ On passing CO_2 through slaked lime:
- \circ Slaked lime + $CO_2 \rightarrow Calcium Carbonate + Water$
- On passing excess of CO_2 : $Ca(HCO_3)_2$

The Acids vs the Bases

- \circ Acid + Base \rightarrow Salt + H₂O
- The reaction of an acid with a base is called a neutralisation reaction.
- Acidic salts, Basic salts and Neutral salts.

Metal oxides vs the acids

- Metal oxide + Acid → Metal Salt + Water
- \circ Cu₂O + HCl \rightarrow CuCl + H₂O
- Why should curd and sour substances not be kept in brass and copper vessels?

Ionisation of acids in water: Protonation

- The process of dissolution of an acid or a base in water is exothermic. Therefore...
- O Hydronium ion (H₃O⁺)
- Splitting of salts
- O Dilution

pH: The power of a(n) acid/base

- \bigcirc 0 to 14 \rightarrow scale
- O Potenz == p
- O H == hydrogen
- 7 to 14 == Basic
- 0 to 7 == Acidic

Importance of pH
Our bodies work in pH range of about 7
to 7.8
When the pH of rain water is less than 5.6, an acid rain is said to have occurred.

Consequences of acid rain.
Acidity and Antacids.
Soil and acid rain.
Our body and the pH.
pH less than 5.5 causes tooth decay.

Some Common Salts

- Chlorides
- Sulphates
- O Nitrates
- Carbonates
- O Acetates

Rock Salt is the ore

- O NaCl
- O CaCl₂
- O MgCl₂
- O ZnCl₂
- \circ Na₂SO₄
- \circ Na₂CO₃
- O NaHCO₃
- O CaSO₄
- O MgSO₄

- O CH₃COONa
- O NaNO₃
- \circ Al₂(SO₄)₃
- O ZnSO₄
- \circ (NH4)₂SO₄
- A salt is an ionic compound formed on reaction of
- o an acid and a base.

Sodium Chloride

- NaCl or table salt or common salt or rock salt.
- Obtained from the ore or sea-water.
- Evaporation of sea water.
- Of great importance to industry, majorly used to manufacture other sodium compounds.
- Caustic Soda, Washing Soda, Baking Soda, Hydrochloric Acid, Hydrogen, Chlorine, Sodium metal.
- Improves food taste. Preservative.
- Manufacturing of soap.
- In European countries, it is used to depress the freezing point of ice.

Caustic Soda

- O NaOH
- Most common alkali.
- Industrial use.
- Electrolysis of brine water aka the "chlor-alkali process".
- O 2NaCl + $2H_2O$ electrolysis \rightarrow 2NaOH + Cl_2 + H_2
- Chlorine at anode, Hydrogen at cathode, Alkali near the cathode.
- Used in making soaps and detergents.
- Manufacturing of paper.
- Other sodium compounds.
- O Dyes and Bleaches.
- Purification of Bauxite.

Hydrochloric acid

- Formed when chlorine and hydrogen combine in 1:1.
- Used as an electrolyte.
- Preparation of chlorides.
- O PVC.
- Textiles.
- O Households.
- Our body.

- Chlorine is used :
- Bleaching action.
- Sterilisation.
- Organic compounds like tetrachloromethane.
- Paints and dyes.
- O Chloroform.

Bleaching Powder

- A substance that removes colors from colored substances and renders them colorless is called a bleaching agent.
- Chloride of lime or Calcium oxychloride.
- CaOCl₂
- O By passing Cl_2 over $Ca(OH)_2$, BP is obtained:
- \circ Ca(OH)₂ + Cl₂ \rightarrow CaOCl₂ + H₂O
- O White powder.
- Strong smell of chlorine.
- Soluble in water.
- Reacts with dil. Acids to liberate chlorine.
- O Used in bleaching of wood pulp in paper industry.

- Bleaching washed clothes in laundry.
- Disinfecting water.
- Making of Chloroform.
- Powerful oxidising agent.

Baking Soda

- O Sodium bicarbonate or Sodium Hydrogen carbonate
- O NaCl + NH₃ + H₂O + CO₂ \rightarrow NaHCO₃ + NH₄Cl
- White Crystals
- Sparingly soluble in water.
- Mildly alkaline.
- Used for faster cooking.
- Used in making of baking powder(BS + Tartaric/citric acid)
- An antacid.
- In Fire extinguishers
- Baking cakes and breads.

Washing Soda

- Sodium carbonate decahydrate.
- \circ Na₂CO₃.10H₂O
- Transparent crystalline solid.
- Soluble in water.
- Alkaline.
- Cleansing nature.
- Permanent hardness removal.
- Manufacturing of glass and borax.

- $O NaCl + NH₃ + H₂O + CO₂ \rightarrow NaHCO₃ + NH₄Cl$
- O $2NaHCO_3$ h $\rightarrow Na_2CO_3 + CO_2 + H_2O_3$

Soda Ash

Plaster of Paris

- Calcium sulphate hemihydrate.
- \circ CaSO₄.1/2H₂O or 2CaSO₄.H₂O
- Prepared by heating gypsum in a controlled environment:
- \circ CaSO₄.2H₂O 100°C \rightarrow CaSO₄.1/2H₂O + 3/2H₂O
- O If Gypsum is heated at a temperature more than 100°C, dead burnt plaster(CaSO₄) is formed, which is of no use.
- White powder.
- Sets into hard mass on mixing with water, in about half an hour. This is because of formation of crystals of gypsum.
- O Hospitals
- Toy industry. Laboratories
- Fire proofing.

Water of crystallisation

- The water molecules which form part of the structure of a crystal of a compound are called WOC.
- Salts containing WOC are called hydrated salts.
- O CaSO₄.2H₂O
- Na₂CO₃.10H₂O
- FeSO₄.7H₂O
- O CUSO₄.5H₂O
- On intensive heating, these turn anhydrous.

