See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272846760

Synthesis and (Spectro)Electrochemistry of Mixed-Valent Diferrocenyldihydrothiopyran Derivatives

ARTICLE in DALTON TRANSACTIONS · FEBRUARY 2015

Impact Factor: 4.2 · DOI: 10.1039/C5DT00246J

CITATIONS

2

READS

15

8 AUTHORS, INCLUDING:

Konrad Kowalski

University of Lodz

47 PUBLICATIONS **463** CITATIONS

SEE PROFILE

Alexander Hildebrandt

Technische Universität Chemnitz

50 PUBLICATIONS **647** CITATIONS

SEE PROFILE

Grzegorz Mloston

University of Lodz

381 PUBLICATIONS 2,696 CITATIONS

SEE PROFILE

Bruno Therrien

Université de Neuchâtel

317 PUBLICATIONS 5,971 CITATIONS

SEE PROFILE

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Synthesis and (Spectro)Electrochemistry of Mixed-Valent Diferrocenyldihydrothiopyran Derivatives

Konrad Kowalski,* a Rafał Karpowicz, a Grzegorz Mlostoń, Dominique Miesel, a Alexander Hildebrandt, Heinrich Lang, Rafał Czerwieniec, Bruno Therriene

^aFaculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, PL-91403 Łódź, Poland

^bFaculty of Chemistry, Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91403 Łódź, Poland

^cTechnische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany

^d Universität Regensburg, Institut für Physikalische und Theoretische Chemie, Universitätsstraße 31, D-93040 Regensburg, Germany

^eInstitute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland

Supplementary Information

Contents

Figure S1 ¹ H-NMR spectrum of 1	3
Figure S2 ¹ H-NMR spectrum of 2	4
Figure S3 ¹ H-NMR spectrum of 2	5
Figure S4 ¹ H-NMR spectrum of 3	6
Figure S5 UV-Vis/NIR spectra of 2 at 25 °C in acetonitrile	7
Table S1 Crystallographic and structure refinement parameters for 1 and 3	8

Figure S1 1 H-NMR spectrum of 1

Figure S2 ¹H-NMR spectrum of 2

Figure S3 ¹H-NMR spectrum of 2

Figure S4 ¹H-NMR spectrum of 3

Figure S5. Left: UV-Vis/NIR spectra of **2** at 25 °C in acetonitrile (2.0 mmol·L⁻¹) at rising potentials (bottom: -200 to 525 mV; top: 525 to 1200 mV vs Ag/AgCl); supporting electrolyte $[Bu_4N][B(C_6F_5)_4]$. Right: Deconvolution of the NIR absorptions of **2**⁺ using three Gaussian shaped bands determined by spectroelectrochemistry in an OTTLE cell.

Table S1. Crystallographic and structure refinement parameters for 1 and 3.

	1	3
Chemical formula	$C_{27}H_{28}Fe_2S$	$C_{27}H_{28}Fe_2O_2S$
Formula weight	496.25	528.25
Crystal system	Orthorhombic	Triclinic
Space group	<i>P cab</i> (no. 61)	P -1 (no. 2)
Crystal color and shape	red block	red block
Crystal size	0.18 x 0.18 x 0.16	0.21 x 0.20 x 0.16
a (Å)	9.7243(7)	12.7358(10)
b (Å)	13.7133(10)	14.2608(12)
c (Å)	32.524(2)	14.4554(11)
α (°)		103.754(6)
β (°)		115.357(6)
γ (°)		92.709(6)
$V(\mathring{A}^3)$	4337.1(5)	2271.0(3)
Z	8	4
T(K)	173(2)	173(2)
$D_{\rm c}$ (g·cm ⁻³)	1.520	1.545
μ (mm ⁻¹)	1.446	1.392
Scan range (°)	$1.94 < \theta < 29.23$	$1.63 < \theta < 29.28$
Unique reflections	5881	12288
Observed refls [I>2 σ (I)]	2950	5481
$R_{ m int}$	0.0908	0.1299
Final <i>R</i> indices $[I>2\sigma(I)]^*$	0.0288 , wR_2 0.0389	$0.0430, wR_2 \ 0.0814$
R indices (all data)	0.0835 , wR_2 0.0431	$0.1122, wR_2 \ 0.0919$
Goodness-of-fit	0.599	0.676
Max, Min $\Delta \rho / e (Å^{-3})$	0.319, -0.299	0.397, -0.415

^{*} Structures were refined on F_0^2 : $wR_2 = [\Sigma[w (F_0^2 - F_c^2)^2] / \Sigma w (F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma(F_0^2) + (aP)^2 + bP]$ and $P = [max(F_0^2, 0) + 2F_c^2]/3$