Teoria del Senyal. Pràctica 2 de laboratori

Eric Guisado, Raúl Alonso

Divendres 30 de setembre de 2016

Índex

1 Estudi previ 1

1 Estudi previ

Qüestió 1. Si el senyal d'entrada x[n] té longitud L_x , indicar quina seria la longitud L_y del senyal resultat del filtratge y[n] en funció de L i L_x . Indicar quantes multiplicacions s'han de fer per poder calcular les L_y mostres del senyal de sortida mitjançant l'aplicació directa de l'equació de convolució suposant que $L_x > L$. Expressar aquest número de multiplicacions en funció de L i L_x . Calcular també el número de multiplicacions per mostra d'entrada (és a dir, el quocient entre el número total de multiplicacions necessàries i el número de mostres d'entrada L_x).

El senyal de sortida y[n] es calcula com

$$y[n] = \{x * h\}[n] = \sum_{j=0}^{L-1} h[j]x[n-j]$$

Suposem que el senyal x[n] comença a n=k i acaba a $n=k+L_x-1$. Els termes de la sortida y[n] seran aquells per als quals hi ha algun $j\in\{0,1,...,L-1\}$ tal que $n-j\in\{k,k+1,...,k+L_x-1\}$, és a dir, $k\leqslant n-j\leqslant k+L_x-1\iff k+j\leqslant n\leqslant k+L_x-1+j$. Per tant, els termes de la sortida seran aquells amb $k\leqslant n\le k+L_x+L-2$. Així doncs, la sortida té longitud $L+L_x-1$.

Observem que podem escriure, per a $k \leq n \leq k + L_x + L - 2$:

$$y[n] = \{x * h\}[n] = \sum_{j=\max\{0, n-k-L_x+1\}}^{\min\{L-1, n-k\}} h[j]x[n-j] =$$

$$\begin{cases} \sum_{j=0}^{n-k} h[j]x[n-j] & \text{si } k \leq n \leq k+L-1 \\ \sum_{j=0}^{L-1} h[j]x[n-j] & \text{si } k+L-1 < n < k+L_x-1 \\ \sum_{j=0}^{L-1} h[j]x[n-j] & \text{si } k+L_x-1 \leq n \leq k+L+L_x-2 \end{cases}$$

Així, es dedueix que el nombre de multiplicacions que cal fer en aplicar directament l'equació de convolució és:

$$2\sum_{i=1}^{L} i + L(L_x - L - 1) = L(L+1) + L(L_x - L - 1) = LL_x$$

El nombre de multiplicacions per mostra d'entrada és $\frac{LL_x}{L_x} = L$.

Qüestió 2. Respon a les següents preguntes:

- a) Relacionar el número de blocs P (i = 0, ..., P 1) amb L_x i M.
- b) Quin és el valor màxim de M (donat el número de punts totals N de cada bloc $x_i[n]$) per tal que la convolució circular en (1) coincideixi amb la convolució lineal en (2)? Expressar aquest valor màxim de M en funció de N i L.

Per tal que els senyals $x_i[n]$ comprenguin totes les mostres dels senyals hem de tenir en compte que

$$x = \begin{bmatrix} x[0] & x[1] & \cdots & x[L_x - 1] \end{bmatrix}.$$

Llavors, cal que donat un x[k] qualsevol, amb $0 \le k \le L_x - 1$, existeixi $n \in \{0, ..., N - 1\}$ i $i \in \{0, ..., P - 1\}$ de manera que $x_i[n] = x[k]$, és a dir, de manera que k = n + iM.

Per tal que la convolució circular coincideixi amb la convolució lineal s'ha de verificar, per a $n \in \{0, 1, \dots, N-1\}$:

$$\sum_{j=0}^{L-1} h[j]x_i[n-j] = \sum_{j=0}^{L-1} h[j] \sum_{r=-\infty}^{\infty} x_i[n-j-rN]$$

Per garantir-ho, imposem que, per a $r \neq 0$, $n \in \{0, 1, \dots, N-1\}$, $j \in \{0, 1, \dots, L-1\}$, $n-j-rN \notin \{0, 1, \dots, M-1\}$.

Per a r > 0, veiem que sempre es té n - j - rN < 0. En efecte, el màxim valor d'aquesta expressió es dóna amb r = 1, j = 0, n = N - 1, i és -1.

Per a r>0, veiem que sempre es té $n-j-rN\geqslant M$. En aquest cas, el mínim valor d'aquesta expressió es dóna amb $r=-1,\ j=L-1$ i n=0. S'ha de satisfer, doncs, $N-L+1\geqslant M$. Per tant, el valor màxim de M és N-L+1.

(Altrament, la convolució circular és la suma dels senyals que s'obtenen aplicant un retard de rN, amb $r \in \mathbb{Z}$. Per evitar encavallaments, la longitud de la convolució lineal ha de ser menor que N. Per tant, $L + M - 1 \leq N$.)

Qüestió 3. Calcular el número de multiplicacions reals associat a aquest mètode per mostra d'entrada. Per això, considerar que es fa ús de l'algorisme FFT suposant que el número de punts de la DFT és una potència de 2, és a dir, $N=2^{\nu}$ (en aquest cas, el número de multiplicacions complexes tant de la DFT com de la IDFT és de $N\log_2 N$ multiplicacions complexes). Considerar també que el valor de M és el valor màxim calculat a la qüestió 2.2. Per a calcular el número de multiplicacions per mostra d'entrada s'ha de calcular quantes multiplicacions són necessàries per a processar cada bloc i dividir aquest número per M, és a dir, pel número de mostres d'entrada que es processen a cada bloc. Expressar el resultat en funció de L i N.

Per trobar la DFT d'un bloc i, després d'obtenir el producte $X_i[k]H[k]$, trobar-ne la transformada inversa calen $2N \log_2 N$ multiplicacions complexes. El producte $X_i[k]H[k]$ requereix N multiplicacions complexes. El nombre d'operacions per mostra d'entrada és, doncs:

$$\frac{2N\log_2 N + N}{M} = \frac{2N\log_2 N + N}{N - L + 1} = \frac{2\log_2 N + 1}{1 - \frac{L - 1}{N}}$$