Análise preditiva - Trabalho final

Bruno Santos Wance de Souza Lucas de Jesus Matias Luiz Cesar Costa Raymundo

21 de novembro de 2018

Contents

agamento de Empréstimo	;
Leitura dos dados	
Criação do modelo	
Análise das variáveis	
Predição do modelo	
Verificação da predição	
Conclusão	
Default de crédito	
Leitura dos dados	
Criação do modelo	
Análise das variáveis	
Modelo final	
Predição do modelo	
Verificação da predição	
Conclusão	
studo de caso Customer Churn	:
Leitura dos dados	
Preparação de variáveis	
Criação do modelo	
Predição do modelo	
Verificação da predição	
Conclusão	

Pagamento de Empréstimo

Leitura dos dados

Os dados do csv gerado a partir da planilha foram carregados para a variável "pagamentoEprestimo".

```
pagamentoEmprestimo <-
    read.csv2("./dados/pagamento_emprestimo.csv", stringsAsFactors = FALSE)</pre>
```

Criação do modelo

A funcionalidade glm foi utilizada para geração do modelo de regressão e este vinculado à variável glmPagamento.

```
glm(data = pagamentoEmprestimo,
   formula = pagamento ~ estadocivil + idade + sexo, family = binomial) ->
glmPagamento
```

Análise das variáveis

Os valores Ps das variáveis reijeitam a hipótese inicial de que são irrelevantes para o modelo, portanto foram consideradas úteis todas as variáveis para a predição.

```
summary(glmPagamento)
##
```

```
## Call:
  glm(formula = pagamento ~ estadocivil + idade + sexo, family = binomial,
##
      data = pagamentoEmprestimo)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
                                       2.1662
## -2.4892 -0.4015
                     0.4166
                              0.5905
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.96591
                          1.12267
                                   -1.751 0.07993
## estadocivil -2.95095
                          0.58293 -5.062 4.14e-07 ***
## idade
             0.11614
                          0.04432
                                    2.621 0.00877 **
## sexo
               1.30123
                          0.43861
                                    2.967 0.00301 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 212.70 on 179 degrees of freedom
## Residual deviance: 146.65 on 176 degrees of freedom
## AIC: 154.65
## Number of Fisher Scoring iterations: 5
```

Predição do modelo

Para testar o modelo, foi realizada a predição.

```
glmprobsPagamento <- predict(glmPagamento, type="response")</pre>
```

A predição acima de 0,5 foi considerada para o pagamento do empréstimo e menor ou igual a 0,5 como não pagamento. Foi testado pontos de corte menores e maiores, mas nenhum trouxe maior predição que o ponto de corte 0,5.

```
nLinhasPagamento <- nrow(pagamentoEmprestimo)
glmpredPagamento <- rep(0, nLinhasPagamento)
glmpredPagamento[glmprobsPagamento > 0.5] <- 1
```

Verificação da predição

Aplicando a predição para os dados já possuídos, obtiveram-se 24 True Negatives, 125 True Positives, de um total de 180 registros. Os pagamentos forma previstos com aproximadamente 82,8% de sucesso.

```
table(glmpredPagamento, pagamentoEmprestimo$pagamento) -> tabelaPagamentoEmprestimo
tabelaPagamentoEmprestimo
```

```
##
## glmpredPagamento 0 1
## 0 24 5
## 1 26 125

(as.vector(tabelaPagamentoEmprestimo)[1] + as.vector(tabelaPagamentoEmprestimo)[4]) / nLinhasPagamento
## [1] 0.8277778
```

Conclusão

O modelo gerado obteve um sucesso de predição de 82.8% de sucesso sobre os dados já possuídos.

Default de crédito

Leitura dos dados

Os dados do csv gerado a partir da planilha foram carregados para a variável "defaultCredito".

```
defaultCredito <-
    read.csv2("./dados/default_de_credito.csv", stringsAsFactors = FALSE)</pre>
```

Criação do modelo

A funcionalidade glm foi utilizada para a geração do modelo de regressão e este vinculado à variável glmDefaultCredito

Análise das variáveis

Após análise inicial do modelo, verificamos que algumas variáveis não rejeitaram a hipótese original, por possuir o valor P muito elevado, não acrescentando relevância ao modelo.

```
summary(glmDefaultCredito)
```

```
##
## Call:
## glm(formula = default ~ idade + educacao + t_emprego + t_endereco +
      renda + divida + divida_cc + outras_div, family = binomial,
##
      data = defaultCredito)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                 3Q
                                        Max
## -2.2989 -0.6653 -0.3230
                             0.1586
                                     2.8708
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7619012 0.7422673 -2.374 0.017612 *
## idade
              0.0305786 0.0204313
                                    1.497 0.134483
## educacao
              0.0830897 0.1440116
                                    0.577 0.563963
## t_emprego
              ## t_endereco -0.0967593 0.0270678
                                   -3.575 0.000351 ***
              -0.0003825
                        0.0111299 -0.034 0.972585
## renda
## divida
              0.0737017 0.0380499
                                    1.937 0.052748 .
## divida_cc
              0.5574310 0.1286410
                                    4.333 1.47e-05 ***
             0.0491476 0.0966352
                                    0.509 0.611040
## outras_div
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 570.95 on 499 degrees of freedom
## Residual deviance: 401.37 on 491 degrees of freedom
## AIC: 419.37
```

```
##
## Number of Fisher Scoring iterations: 6
```

Modelo final

Removendo as variáveis não relevantes ao modelo, uma a uma, e reexecutando o modelo após a retirada de cada uma foi possível chegar a um modelo com variáveis relevantes.

```
glm(data = defaultCredito,
    formula = default ~ t_emprego + divida + divida_cc, family = binomial) ->
  glmDefaultCredito
summary(glmDefaultCredito)
##
## Call:
  glm(formula = default ~ t_emprego + divida + divida_cc, family = binomial,
       data = defaultCredito)
##
## Deviance Residuals:
                     Median
                                   3Q
##
      Min
                 1Q
                                           Max
  -2.2752 -0.6731 -0.3738
                               0.2857
                                        2.5518
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.25358
                           0.27709 -4.524 6.07e-06 ***
                           0.03090 -7.434 1.06e-13 ***
## t_emprego
               -0.22966
               0.08066
                           0.02210
                                     3.651 0.000262 ***
## divida
## divida cc
               0.50322
                           0.09776
                                     5.148 2.64e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 570.95 on 499 degrees of freedom
## Residual deviance: 416.05 on 496 degrees of freedom
## AIC: 424.05
##
```

Predição do modelo

Para testar o modelo, foi criada a predição.

Number of Fisher Scoring iterations: 5

```
glmprobsDefaultCredito <- predict(glmDefaultCredito, type="response")</pre>
```

A predição acima de 0,5 foi consierada como positiva para a resposta e menor ou igual a 0,5 como negativa.

```
nLinhasDefaultCredito <- nrow(defaultCredito)
glmpredDefaultCredito <- rep(0, nLinhasDefaultCredito)
glmpredDefaultCredito[ glmprobsDefaultCredito > 0.5 ] <- 1
```

Verificação da predição

A predição foi comparada com os dados já possuídos, obtevem-se 350 True Negatives, 60 True Positives, de um total de 500. Foi possível prever os resultados com 82% de sucesso.

```
table(glmpredDefaultCredito, defaultCredito$default) -> tabelaDefaultCredito

##
## glmpredDefaultCredito 0 1
## 0 350 69
## 1 21 60

(as.vector(tabelaDefaultCredito)[1] + as.vector(tabelaDefaultCredito)[4]) / nLinhasDefaultCredito
## [1] 0.82
```

Conclusão

O modelo gerado obteve um sucesso de predição de 82% de sucesso sobre os dados já possuídos.

Estudo de caso Customer Churn

Leitura dos dados

Os dados do csv gerado a partir da planilha foram carregados para a variável "customerChurn".

```
customerChurn <-
  read.csv2("./dados/estudo_caso_customer_churn.csv", stringsAsFactors = FALSE)</pre>
```

Preparação de variáveis

O tempo de utilização dos serviços dos clientes foram segmentados de acordo com informações do cliente. Os clientes são considerados novos possuem menos de 6 meses de utilização dos serviços. Entre 6 meses e 14 foram considerados de maiores riscos. Por algum motivo foi obtido melhores resultados classificando os grupo de clientes com risco até 18 meses.

Criação do modelo

A funcionalidade glm foi utilizada para geração do modelo de regressão e este vinculado à variável glmCustomer. Removendo as variáveis não relevantes ao modelo, uma a uma, e reexecutando o modelo após a retirada de cada uma foi possível chegar a um modelo com variáveis relevantes. Foi feito alguns testes de remoção e adição de variáveis, respeitando o valor P, de forma que otimizasse a predição e chegamos ao seguinte modelo:

```
glm(data = customerChurn,
  formula = churn ~ clientes_risco + chi_score_month_0 + support_cases_month_0 +
    days_since_last_login_0_1 + support_cases_0_1 , family = binomial) ->
    glmCustomer
```

Predição do modelo

Para testar o modelo, foi realizada a predição.

```
glmprobsCostumer <- predict(glmCustomer, type="response")</pre>
```

Para definir o ponto de corte foi utilizado o algoritmo de curvas ROC(Receiving Operating Characteristc), pelo método youden. A metodologia busca um maior resultado possível para a sensitividade e especificidade.

```
rocobj <- roc(customerChurn$churn, glmprobsCostumer)
coords(rocobj, x="best", input="threshold", best.method="youden")[1] -> pontoCorte
pontoCorte
```

```
## threshold
## 0.05147994
```

Com o ponto de corte definido, podemos preparar a predição.

```
nLinhasCostumer <- nrow(customerChurn)
glmpredCostumer <- rep(0, nLinhasCostumer)
glmpredCostumer[ glmprobsCostumer > pontoCorte ] <- 1</pre>
```

Verificação da predição

Aplicando a predição para os dados já possuídos, obtiveram-se 4213 True Negatives, 212 True Positives, de um total de 6347 registros. Os pagamentos forma previstos com aproximadamente 69,7% de sucesso (sensitividade) e 65,6% de especificidade . Como a probabilidade de churn é bem pequena, cerca de 5%, é importante que a especificidade esteja alta também, pois é possível conseguir uma alta taxa de sucesso de predição se o ponto de corte for acima do ideal, mas a especificidade é prejudicada e a predição não traria informações úteis.

```
dadosReais <- customerChurn$churn
table(glmpredCostumer, dadosReais) -> tabelaCostumerChurn
tabelaCostumerChurn
##
                  dadosReais
##
  glmpredCostumer
                      0
##
                 0 4213
                         111
                 1 1811
(as.vector(tabelaCostumerChurn)[1] + as.vector(tabelaCostumerChurn)[4]) / nLinhasCostumer
## [1] 0.6971798
quantChurns = nrow(customerChurn[customerChurn$churn==1,])
#Percentual de Churns presentes nos nossos dados:
quantChurns/nLinhasCostumer
## [1] 0.05089018
sensitivity(tabelaCostumerChurn)
## [1] 0.6993692
specificity(tabelaCostumerChurn)
## [1] 0.6563467
```

Conclusão

A partir do modelo foi possível gerar a probabilidade de cada cliente deixar o serviço. Os parâmetros utilizados foram:

- cliente_risco: Variável binária, onde 0 = falso e 1 = verdadeiro, que representa a presença do cliente no grupo de clientes acima de 6 meses de contrato até 18. Têm um peso relevante em aumento de chance de churn caso verdadeiro.
- chi_score_mont_0: Representa o Chi-score em dezembro. Quanto maior, menor a chance de churn.
- support_cases_month_0: Representa a quantidade de casos abertos no mês de dezembro. Quanto maior, menor a chance, o que pode indicar que clientes que utilizam mais o serviço, abrem mais chamados e cancelam menos.
- days_since_last_login_0_1: Representa a diferença entre os dias desde o último login enter o mês de dezembro e novembro. O valor negativo significa que em dezembro os dias foram menores que de dezembro. Então uma quantidade maior aumenta as chances de churn.
- support_cases_0_1: Representa a diferença dos suportes abertos entre dezembro e novembro. O valor negativo significa que em dezembro a abertura de suportes foi inferior a novembro. Então uma quantidade maior aumenta as chances de churn.

```
## (Intercept) clientes_risco
## -2.943803456 1.117847560
```

```
## chi_score_month_0 support_cases_month_0
## -0.006757281 -0.152530512
## days_since_last_login_0_1 support_cases_0_1
## 0.012072215 0.119399356
```

Acrescentamos também se os clientes realmente deixaram o serviço, coluna "churn", visto que estamos aplicando para os dados já conhecidos.

```
customerChurn$probs = glmprobsCostumer
head(customerChurn[order(-customerChurn$probs),], 100) -> clientesMaisProvaveis

select(clientesMaisProvaveis, id, probs, churn) %>%
   mutate(id = id) %>%
   kable(caption = "Lista clientes mais prováveis - Churn")
```

Table 1: Lista clientes mais prováveis - Churn

id	probs	churn
1672	0.2491660	1
227	0.1897374	1
257	0.1897374	1
272	0.1897374	0
278	0.1897374	0
279	0.1897374	0
317	0.1897374	1
346	0.1897374	0
363	0.1897374	1
371	0.1897374	1
413	0.1897374	0
416	0.1897374	0
423	0.1897374	0
427	0.1897374	0
440	0.1897374	0
444	0.1897374	0
475	0.1897374	0
488	0.1897374	0
523	0.1897374	1
543	0.1897374	1
548	0.1897374	1
551	0.1897374	0
583	0.1897374	0
604	0.1897374	0
622	0.1897374	0
625	0.1897374	0
645	0.1897374	0
678	0.1897374	0
689	0.1897374	0
761	0.1897374	0
775	0.1897374	0
787	0.1897374	1
788	0.1897374	0
798	0.1897374	0
891	0.1897374	1
896	0.1897374	1
926	0.1897374	0

id	probs	churn
945	0.1897374	1
947	0.1897374	1
948	0.1897374	1
979	0.1897374	1
991	0.1897374	0
994	0.1897374	0
1152	0.1897374	0
1214	0.1897374	1
1468	0.1897374	0
1563	0.1897374	1
1593	0.1897374	0
1617	0.1897374	0
1693	0.1897374	0
1706	0.1897374	0
1711	0.1897374	1
1760	0.1897374	1
1767	0.1897374	0
1774	0.1897374	0
1808	0.1897374	0
1809	0.1897374	0
2361	0.1897374	0
2501	0.1897374	0
2586	0.1897374	0
2985	0.1897374	0
3139	0.1897374	0
3152	0.1897374	0
3163	0.1897374	1
3177	0.1897374	0
3186	0.1897374	0
3235	0.1897374	1
3265	0.1897374	0
3269	0.1897374	0
3290	0.1897374	0
3312	0.1897374	1
3313	0.1897374	1
3320	0.1897374	0
3349	0.1897374	1
3363	0.1897374	1
3417	0.1897374	0
3418	0.1897374	0
3437	0.1897374	0
3449	0.1897374	0
3491	0.1897374	0
3526	0.1897374	0
3536	0.1897374	0
3542	0.1897374	0
3545	0.1897374	0
3548	0.1897374	0
3598	0.1897374	0
3600	0.1897374	0
3613	0.1897374	0
3623	0.1897374	0

id	probs	churn
3655	0.1897374	0
3671	0.1897374	0
3714	0.1897374	0
3723	0.1897374	0
3734	0.1897374	0
3767	0.1897374	0
3772	0.1897374	1
3780	0.1897374	0
3799	0.1897374	0
3824	0.1897374	0
3846	0.1897374	0