

Erläuterungen zu den berechneten Parametern Postprocessing Skript für Ermüdungsversuche auf der Prüfmaschine VHF7

Hakan.celik@ikv.rwth-aachen.de

Stand 17.04.2020

Allgemeines Input-Daten

Das Skript benötigt folgende Daten:

- Zwick:
 - Probe_i_Messwerte.csv
 - Probe_i_Zyklische Ergebnisse.csv
- IR Daten
 - Infrarot.dat

Allgemeines Output Daten

Das Skript gibt eine Reihe von Daten (im Results-Ordner) aus:

- corrected zwick.csv
 - Fast identisch mit der Original Zwick, jedoch mit korrigierten Extensometer Werten
- processed_cyclic100.csv
 - Spannungs und Dehnungswerte für jeden einzelnen Zyklus =>Hysteresedaten

Zur schnellen Übersicht warden noch einzelne Diagramme geplottet:

- plot_dissEnergy.pdf
- plot_dynStiff.pdf
- plot_hystereses.pdf
- plot_storEnergy.pdf
- plot_strain.pdf
- plot_stress.pdf
- plot_temperature.pdf

- processed_cyclic.csv
 - Enthält alle berechneten Parameter für jeden Zyklus
- processed_cyclic_red.csv
 - Die Anzahl der gespeicherten Zyklen ist reduziert um den Factor downsampling reduziert

Die folgenden Daten stellen reduzierte Datensätze dar und werden zur einfacheren Weiterverarbeitung erstellt. Die Inhalte sind der processed_cyclic.csv entnommen:

- processed_Stress.csv
- processed_Strain.csv
- processed_dynamic_Stiffness.csv
- processed_Energy.csv
- processed_Temperature_IR.csv

Allgemeines Input-Parameter

Pfad der Zwick- und IR-Daten:

MainPath = r"C:\Users\Celik\Desktop\Test_Data\2_Hz\PBTGF30_1 20_0°_2Hz_925N_Valid "

Logzeit zur Synchronisation der Pyrometerdaten:

#manual time of excel if no Zeit.txt is given

 year
 = 2020

 month
 = 2

 day
 = 20

 hour
 = 13

 minute
 = 26

 second
 = 25

 mikrosecond
 = 0

Verschiebungsparameteration für die Pyrometerdaten:

#manual offset for IR and USB

offsetIR = 0offsetUSB = 0

Sensor und Sensorstecker:

usedSensorplug = "1369" => Nicht ändern usedSensor = "1369"

Sensordatenbank:

Diese Sensoren sind unter sensor.py hinterlegt

[Sensor-Nr.; Sensitivität, Längung, Stauchung, Basislänge]

Sensor("1369", 1.581, 1.25, -1.25, 19.980)) Sensor("1880", 1.602, 1.25, -1.25, 19.920)) Sensor("2181", 1.592, 5.00, -5.00, 19.920))

Probenquerschnitt in [mm²]:

area = 10

Reduktion der Daten:

cycle_downsampling = 1

- 1 => 1/1 Datensatz
- 2 => 1/2 Datensatz usw.

Exporteigenschaft für Dezimaltrennzeichen

decimal_separator = "." oder ","

Allgemeines Ausführen

Pyhton Umgebung:

Zum Ausführen der Datei solltet Ihr eine aktuelle Pyhtonumgebung haben.

Folgende Umgebung ist empfehlenswert:

https://www.anaconda.com/distribution/

Mit dieser Plattform steht Euch auch Spyder zur Verfügung.

Ausführen:

Ihr braucht nur die Datei input_param.py einladen, die Parameter entsprechend modifizieren und das Skript starten (F5).

Hier werden die Rohdaten für Spannung und Dehnung angeben.

Daraus ist es möglich die Hysterese abzubilden.

Klimadaten:

Surfacetemp [°C]

 Oberflächentemperatur der Probe, gemessen durch Pyrometer

Temp_IR_intern_chamber [°C]

 Interne Temperatur von dem Pyrometer. Ist gleichzusetzen mit der Temperatur der Temperaturkammer

Temperature_Chamber_USB [°C] Humidity_Chamber [%rh]

 Werden momentan nicht ausgegeben. USB Klimastick

Spannungs- und Dehnungsdaten:

Strain_rate [%]

 Änderungsrate der Dehnung über die Zyklen

Spannungs- und Dehnungsdaten:

d(E_Dyn)/dN [N/mm^2]

 Änderungsrate der Dynamischen Steifigkeit

Dynamische Steifigkeit und Schädigungsparameter D:

E_Dyn [N/mm^2]

Dynamische Steifigkeit

Damage D [-]

 Aus der Dynamischen Steifigkeit berechneter Schädigungsparameter

d(E_Dyn)/dN [N/mm^2]

Änderungsrate der Dynamischen Steifigkeit E Dyn [N/mm²] --- Damage D [-] 12000 1.2 $\underline{E_{dyn,0}} - E_{dyn,}(N)$ 1.0 Oynamische Steifigkeit E_{dyn} [N/mm²] 10000 8000 0.8 Jamage D 6000 0.6 0.4 4000 $d E_{dyn}$ $E_{dyn,i-1} - E_{dyn,i+1}$ 2000 0.2 dN $N_{i-1} - N_{i+1}$ 0.0 0 600 200 400 800 1000 Belastungszyklus N [-]

Energiedaten:

Dissipated_Energy [kJ/m^3]

Eingeschlossene Fläche in der Hystereseschleife.
 Dissipierte Energie in dem betrachteten Zyklus

Stored_Energy [kJ/m^3]

 Fläche unter der Hysterese. Gespeicherte Energie im Werkstoff.

Cumulated_Dissipated_Energy [kJ/m^3]

 Dissipierte Energien über alle Zyklen aufsumiert bis zu dem betrachteten Zyklus

Cumulated_Stored_Energy [kJ/m^3]

 Gespeicherte Energien über alle Zyklen aufsumiert bis zu dem betrachteten Zyklus

Damping [-]

 Dämpfung D als Verhältnis der Dissipierten Energie zur Gespeicherten

Viskolelastische Daten:

tan_DELTA[-]

Maß für den viskosen Anteil

Berechnet:

$$\tan(\delta) = \frac{E''}{E'}$$

Storage_Modulus [N/mm^2]

 Der Speichermodul beschreibt das ideal elastische Verhalten

Berechnet:

$$E' = \sqrt{E_{dyn}^2 - E''^2}$$

Loss_Modulus [N/mm^2]

 Der Verlustmodul beschreibt das ideal viskose verhalten

Berechnet:

$$E'' = \frac{W_{dissipated}}{\pi \left(0.5 * (\varepsilon_{max} - \varepsilon_{min})\right)^{2}}$$

$$\tan(\delta) = \tan(\omega \cdot \Delta t) = \frac{E''}{E'}$$

Erläuterung der herausgegebenen Größen onePoint.csv

Daten über alle Zyklen:

Strain at Failure [%]

Cycles until Failure [-]

Average Stress_Max [N/mm^2]

Average Stress_Min [N/mm^2]

Average Strain_Max [%]

Average Strain_Min [%]

Average Strain rate [%]

Average Surfacetemp_of_Specimen [°C]

Average Dissipated_Energy [kJ/m^3]

Average Stored_Energy [kJ/m^3]

Cumulated_Dissipated_Energy [kJ/m^3]