Definíciók 2.

Grammatikának a következő négyest nevezzük:

G=(N,T,P,S)

- N a nemterminális ábácé, (szimbólumok véges nem üres halmaza)
- T a terminálisok ábécéje, (betűk véges nem üres halmaza)
- P az átírási szabályok véges halmaza,
- S a kezdőszimbólum, $S \in N$.

N és T diszjunkt halmazok, azaz N \cap T = \emptyset

A szabályok p \rightarrow q alakúak, ahol p,q \in (N U T)* és p jelöli a szabály baloldalát, q a jobboldalát,

 \rightarrow a két oldalt elválasztó jel és $\rightarrow \notin (N \cup T)$.

A szabályok baloldala kötelezően tartalmaz legalább egy nemterminális szimbólumot.

Mondatforma: (N U T)* elemeit mondatformának nevezzük.

Közvetlen levezetés:

Legyen G=(N,T,P,S) egy adott grammatika. Legyen $u,v\in (N\cup T)^*$. Azt mondjuk, hogy a v mondatforma közvetlenül levezethető az u mondatformából, ha létezik $w_1,w_2\in (N\cup T)^*$ és $x\to y\in P$ úgy, hogy $u=w_1xw_2$ és $v=w_1yw_2$. Jelölése: $u\stackrel{>}{\to} v$

Közvetett levezetés:

Legyen G=(N,T,P,S) egy adott grammatika. Legyen $u,v\in (N\cup T)^*$. Azt mondjuk, hogy a v mondatforma közvetetten levezethető az u mondatformából, ha létezik olyan $k\geq 0$ szám és $x_0,\ldots,x_k\in (N\cup T)^*$ mondatformák úgy , hogy $u=x_0$ és $v=x_k$ és x_i -ből közvetlenül levezethető x_{i+1} , minden $i\in [0,k-1]$ –re.

Grammatika által generált nyelv:

Legyen G=(N,T,P,S) egy adott grammatika. A G által generált nyelv L(G), ahol $L(G):=\{\ u\in T^*\mid S\underset{G}{\Rightarrow^*}u\ \}$, azaz az S-ből levezethető szavak halmaza.

Ekvivalens nyelvtanok: A G_1 es G_2 nyelvtanok ekvivalensek, ha $L(G_1) = L(G_2)$, azaz ugyanazt a nyelvet generálják.

Kvázi ekvivalens nyelvtanok: A G₁ es G₂ nyelvtanok kvázi ekvivalensek,

ha $L(G_1)\setminus \{\epsilon\}=L(G_2)\setminus \{\epsilon\}$, azaz legfeljebb az üres szó

tartalmazásában különböznek.

Láncszabály: Egy G grammatika egy $p \rightarrow q \in P$ szabálya láncszabály, ha $p, q \in N$, azaz nemterminálisok.

Epszilonszabály: Egy G grammatika egy $p \rightarrow q \in P$ szabálya epszilonszabály, ha $q = \varepsilon$.

Grammatikák (nyelvtanok) típusai: Egy G grammatikát i. típusúnak ($i \in \{0,1,2,3\}$) mondunk, ha szabályai a következő táblázat alaptípusának megfelelő alakúak.

Chomsky-féle grammatikák:

Típus	Alaptípus szabályai	Speciális alakok szabályai	Normál forma szabályai
0.	Nincs korlátozás.	$p \rightarrow q$, ahol	
		$p \in N^+, q \in (N \cup T)^*$	
1.	$u_1Au_2 \rightarrow u_1vu_2$, ahol	$p \rightarrow q$, ahol $\ell(p) \leq \ell(q)$	Kuroda normál forma
	$u_1, u_2, v \in (N \cup T)^*, A \in N, \text{ \'es}$	kivéve az S $\rightarrow \varepsilon$, de ekkor S	$A \rightarrow a$ vagy
	v≠ε,	nem fordul elő egyetlen	$A \rightarrow B$ vagy
	kivéve az $S \rightarrow \varepsilon$, de ekkor S	szabály jobboldalán sem.	$A \rightarrow BC$ vagy
	nem fordul elő egyetlen	(hossz-nemcsökkentő	$AB \rightarrow CD$ alakúak a szabályok,
	szabály jobboldalán sem.	grammatika)	ahol
	(környezetfüggő grammatika)		$a \in T \text{ \'es } A,B,C,D \in N,$
			kivéve az S $\rightarrow \varepsilon$, de ekkor S nem
			fordul elő egyetlen szabály
			jobboldalán sem.
2.	$A \rightarrow v$, ahol $v \in (N \cup T)^*$, $A \in$	$A \rightarrow v$, ahol	Chomsky normál forma
	N	$v \in (N \cup T)^*, A \in N \text{ és } v \neq \varepsilon,$	$A \rightarrow a$ vagy
	(környezetfüggetlen	kivéve az S $\rightarrow \varepsilon$, de ekkor S	$A \rightarrow BC$ alakúak a szabályok,
	grammatika)	nem fordul elő egyetlen	ahol
		szabály jobboldalán sem.	$a \in T \text{ \'es } A,B,C \in N,$
			kivéve az S $\rightarrow \varepsilon$, de ekkor S nem
			fordul elő egyetlen szabály
		_	jobboldalán sem.
3.	$A \rightarrow uB$ vagy $A \rightarrow u$, ahol	$A \rightarrow aB$ vagy	$A \rightarrow aB$ vagy
	$u \in T^*, A,B \in N$	$A \rightarrow a$, ahol	$A \to \varepsilon$, ahol
	(reguláris grammatika)	$a \in T$, és $A,B \in N$,	$a \in T$, és $A,B \in N$.
		kivéve az S $\rightarrow \varepsilon$, de ekkor S	
		nem fordul elő egyetlen	
		szabály jobboldalán sem.	

Nyelvek típusai: Egy L nyelv i. típusú ($i \in \{0,1,2,3\}$), ha létezik olyan i. típusú grammatika, ami az L nyelvet generálja.

Chomsky nyelvcsalád: \mathcal{L}_i jelölje az i. Chomsky nyelvcsaládot ($i \in \{0,1,2,3\}$), azaz azon nyelvek halmazát, amelyek i. típusú grammatikával generálhatóak.

Chomsky-hierarchia: $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$