Signals and Systems

Lecturer: Dr. Lin Xu, Dr. Xiran Cai

Email: xulin1@shanghaitech.edu.cn

caixr@shanghaitech.edu.cn

Office: 3-428(Xu), 3-438(Cai) SIST

Tel: 20684449(Xu), 20684431(Cai)

ShanghaiTech University

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **□** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- □ Properties of discrete FS
- **□** Fourier series and LTI systems

Recall Chapter 2

☐ Objective: characterization of a LTI system

$$x(t) \longrightarrow \boxed{\qquad \qquad } y(t)$$

 $\square x(t)$ is considered as linear combinations of a basis signal $\delta(t)$

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) d\tau \quad \to \quad y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

- \square $\delta(t)$ is not the only one. In general, a basic signal should satisfy
 - It can be used to construct a broad and useful class of signals
 - The response of an LTI system to the basic signal is simple

Continuous-time

$$e^{st}$$
 \longrightarrow LTI $y(t) =?$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$

Let
$$\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = H(s) \rightarrow y(t) = H(s)e^{st}$$

- e^{st} is an eigenfunction of the system
- For a specific value s, H(s) is the corresponding eigenvalue

Discrete-time

$$z^n \longrightarrow \boxed{\text{LTI}} \longrightarrow y[n] = ?$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]z^{n-k} = z^n \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$

Let
$$H[z] = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$
 $\rightarrow y[n] = H[z]z^n$

- z^n is an eigenfunction of the system
- For a specific value z, H[z] is the corresponding eigenvalue

Continuous-time

$$e^{st} \longrightarrow \boxed{\text{LTI}} \longrightarrow \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau \, e^{st} = H(s)e^{st}$$

If
$$x(t) = a_1 e^{s_1 t} + a_2 e^{s_2 t} + a_3 e^{s_3 t}$$
 $y(t) = ?$

$$y(t) = a_1 H(s_1) e^{s_1 t} + a_2 H(s_2) e^{s_2 t} + a_3 H(s_3) e^{s_3 t}$$

Generally, if
$$x(t) = \sum_{k} a_k e^{s_k t}$$

$$y(t) = \sum_{k} a_k H(s_k) e^{s_k t}$$

Discrete-time

$$z^{n} \longrightarrow \underbrace{\sum_{k=-\infty}^{\infty} h[k]z^{-k} z^{n} = H[z]z^{n}}$$

If
$$x[n] = \sum_{k} a_k Z_k^n$$

$$y[n] = \sum_{k} a_{k} H(z_{k}) Z_{k}^{n}$$

Examples

For a LTI system y(t) = x(t - 3), determine H(s)

Solution 1:

$$let x(t) = e^{st}, y(t) = e^{s(t-3)} = e^{-3s}e^{st}$$
$$\therefore H(s) = e^{-3s}$$

Solution 2:

$$H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = \int_{-\infty}^{\infty} \delta(\tau - 3)e^{-s\tau}d\tau = e^{-3s}$$

Examples

For a LTI system
$$y(t) = x(t-3)$$

If $x(t) = \cos(4t) + \cos(7t)$, $y(t) = ?$
Solution 1: $y(t) = \cos(4(t-3)) + \cos(7(t-3))$
Solution 2: $x(t) = \frac{1}{2}e^{j4t} + \frac{1}{2}e^{-j4t} + \frac{1}{2}e^{j7t} + \frac{1}{2}e^{-j7t}$
 $y(t) = \frac{1}{2}H(j4)e^{j4t} + \frac{1}{2}H(-j4)e^{-j4t} + \frac{1}{2}H(j7)e^{j7t} + \frac{1}{2}H(-j7)e^{-j7t}$
 $H(s) = e^{-3s} = \frac{1}{2}e^{-j12}e^{j4t} + \frac{1}{2}e^{j12}e^{-j4t} + \frac{1}{2}e^{-j21}e^{j7t} + \frac{1}{2}e^{j21}e^{-j7t}$
 $= \frac{1}{2}e^{j4(t-3)} + \frac{1}{2}e^{-j4(t-3)} + \frac{1}{2}e^{j7(t-3)} + \frac{1}{2}e^{-j7(t-3)}$

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **☐** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- □ Properties of discrete FS
- **□** Fourier series and LTI systems

<u>Recall</u>

- \square Decompose x(t) into linear combinations of basis signals, which should satisfy
 - It can be used to construct a broad and useful class of signals
 - The response of an LTI system to the basic signal is simple
- ☐ Complex exponentials are eigenfunctions of a LTI system
- \square Can we represent x(t) as linear combinations of complex exponentials?

Linear combination of harmonically related complex exponentials

 \Box Harmonically related complex exponentials (consider e^{st} with s purely imaginary)

$$\emptyset_k(t) = e^{jk\omega_0 t} = e^{jk(2\pi/T_0)t}, k = 0, \pm 1, \pm 2, \dots$$

For any $k \neq 0$, fundamental frequency $|k|\omega_0$; fundamental period $\frac{2\pi}{|k|\omega_0} = \frac{T_0}{|k|}$

 \square Linear combination of $\emptyset_k(t)$ is also periodic

$$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T_0)t} = x(t)$$

$$x(t) \text{ is periodic}$$

Linear combination of harmonically related complex exponentials

 \square Can any x(t) (periodic) be decomposed as Linear combination of $\emptyset_k(t)$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
? Yes for most periodic signals

Because $e^{jk\omega_0t}$ are orthonormal: $\langle e^{jk_1\omega_0t}, e^{jk_2\omega_0t} \rangle = 0$

$$\langle e^{jk_1\omega_0 t}, e^{jk_2\omega_0 t} \rangle = \frac{1}{T} \int_0^T e^{jk_1\omega_0 t} e^{-jk_2\omega_0 t} dt = \begin{cases} 1, k_1 = k_2 \\ 0, k_1 \neq k_2 \end{cases}$$

Linear combination of harmonically related complex exponentials

☐ Fourier Series representation

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

- \square ω_0 is the fundamental frequency
- \Box For $a_k e^{jk\omega_0 t}$
 - > k = 0: DC component
 - $> k = \pm 1$: fundamental (first harmonic) components
 - $> k = \pm N$: Nth harmonic components

Linear combination of harmonically related complex exponentials

☐ An example

If
$$x(t) = \sum_{k=-3}^{3} a_k e^{jk2\pi t}$$

And
$$a_0 = 1$$
, $a_1 = a_{-1} = 1/4$, $a_2 = a_{-2} = 1/2$, $a_3 = a_{-3} = 1/3$

$$x(t) = 1 + \frac{1}{4} \left(e^{j2\pi t} + e^{-j2\pi t} \right) + \frac{1}{2} \left(e^{j4\pi t} + e^{-j4\pi t} \right) + \frac{1}{3} \left(e^{j6\pi t} + e^{-j6\pi t} \right)$$

$$= 1 + \frac{1}{2}\cos 2\pi t + \cos 4\pi t + \frac{2}{3}\cos 6\pi t$$

Linear combination of harmonically related complex exponentials

☐ An example

$$1 + \frac{1}{2}\cos 2\pi t + \cos 4\pi t + \frac{2}{3}\cos 6\pi t$$

https://www.youtube.com/watch?v=cUD1gMAl6W4

Linear combination of harmonically related complex exponentials

☐ Real signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \quad x^*(t) = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{jk\omega_0 t}$$

Real
$$\Rightarrow x(t) = x^*(t) \Rightarrow a_k = a_{-k}^*$$
, or $a_k^* = a_{-k}$ (Conjugate symmetry)

☐ Alternative form of Fourier Series for real signal

$$x(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k e^{jk\omega_0 t} + a_{-k} e^{-jk\omega_0 t} \right]$$

$$= a_0 + \sum_{k=1}^{\infty} 2\Re \left[a_k e^{jk\omega_0 t} \right] = a_0 + 2 \sum_{k=1}^{\infty} A_k \cos(k\omega_0 t + \theta_k)$$

$$a_k = A_k e^{j\theta_k}$$

Determine the Fourier Series Representation

Determine the Fourier Series Representation
$$\int_{0}^{T} x(t)e^{-jn\omega_{0}t}dt = \int_{0}^{T} \sum_{k=-\infty}^{\infty} a_{k}e^{jk\omega_{0}t}e^{-jn\omega_{0}t}dt \\
= \sum_{k=-\infty}^{\infty} a_{k} \left[\int_{0}^{T} e^{j(k-n)\omega_{0}t}dt \right] = Ta_{n}$$

$$\therefore a_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_0 t} dt$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Fourier Series pair

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 Synthesis equation

$$a_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt$$
 Analysis equation

 \square a_k : Fourier Series coefficients or spectral coefficients of x(t)

$$a_0 = \frac{1}{T} \int_T x(t) dt$$

Determine the Fourier Series Representation

$$x(t) = \sin \omega_0 t$$

$$\sin \omega_0 t = \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$

$$a_1 = \frac{1}{2j}$$
 $a_{-1} = -\frac{1}{2j}$ $a_k = 0$, for $k \neq \pm 1$

Determine the Fourier Series Representation

$$x(t) = 1 + \sin \omega_0 t + 2 \cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4} \right)$$

$$x(t) = 1 + \frac{1}{2j} \left[e^{j\omega_0 t} - e^{-j\omega_0 t} \right] + \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right]$$

$$+ \frac{1}{2} \left(e^{j(2\omega_0 t + \pi/4)} + e^{-j(2\omega_0 t + \pi/4)} \right)$$

$$x(t) = 1 + \left(1 + \frac{1}{2j}\right) e^{j\omega_0 t} + \left(1 - \frac{1}{2j}\right) e^{-j\omega_0 t} + \frac{1}{2} e^{j\pi/4} e^{j2\omega_0 t} + \frac{1}{2} e^{-j\pi/4} e^{-j2\omega_0 t}$$

$$a_0 \qquad a_1 \qquad a_{-1} \qquad a_2 \qquad a_{-2}$$

Determine the Fourier Series Representation

$$x(t) = 1 + \left(1 + \frac{1}{2j}\right)e^{j\omega_0 t} + \left(1 - \frac{1}{2j}\right)e^{-j\omega_0 t} + \frac{1}{2}e^{j\pi/4}e^{j2\omega_0 t} + \frac{1}{2}e^{-j\pi/4}e^{-j2\omega_0 t}$$

$$a_0 \quad a_1 \quad a_{-1} \quad a_2 \quad a_{-2}$$

Determine the Fourier Series Representation

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt = \frac{1}{T} \int_{-T_1}^{T_1} 1 dt = \frac{2T_1}{T}$$

$$a_{k} = \frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-jk\omega_{0}t} dt = -\frac{1}{jk\omega_{0}T} e^{-jk\omega_{0}t} \Big|_{-T_{1}}^{T_{1}} = \frac{2}{k\omega_{0}T} \left[\frac{e^{jk\omega_{0}T_{1}} - e^{-jk\omega_{0}T_{1}}}{2j} \right]$$

$$= \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\pi} = \frac{2T_1}{T} \frac{\sin(k\omega_0 T_1)}{k\omega_0 T_1} k \neq 0$$

$$k \neq 0$$

Determine the Fourier Series Representation

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\pi}$$

$$=\frac{2T_1}{T}\frac{\sin(k\omega_0T_1)}{k\omega_0T_1}, k\neq 0$$

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **☐** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- □ Properties of discrete FS
- **□** Fourier series and LTI systems

History

- ☐ Using "trigonometric sum" to describe periodic signal can be tracked back to Babylonians who predicted astronomical events similarly.
- □ L. Euler (in 1748) and Bernoulli (in 1753) used the "normal mode" concept to describe the motion of a vibrating string; though JL Lagrange strongly criticized this concept.
- □ Fourier (in 1807) had found series of harmonically related sinusoids to be useful to describe the temperature distribution through body, and he claimed "any" periodic signal can be represented by such series.
- ☐ Dirichlet (in 1829) provide a precise condition under which a periodic signal can be represented by a Fourier series.

Jean Baptiste Joseph Fourier March 21 1768 - May 16 1830 Born Auxerre, France. Died Paris, France.

Convergence problem

- \square Approximate periodic signal x(t) by $x_N(t) = \sum_{k=-N}^N a_k e^{jk\omega_0 t}$
- ☐ How good the approximation is?

$$e_N(t) = x(t) - x_N(t) = x(t) - \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$$
 $E_N = \int_T |e_N(t)|^2 dt$

- When $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$, E_N is minimized;
- If $x_N(t)$ can be expressed as $\sum_{k=-N}^N a_k e^{jk\omega_0 t}$, $N \to \infty \Rightarrow E_N \to 0$
- ☐ Problem:
 - a_k may be infinite

Convergence problem!

• $N \to \infty$, $x_N(t)$ may be infinite

Two different classes of conditions

- Condition 1: Finite energy condition

 If $\int_T |x(t)|^2 dt < \infty$, x(t) can be represented by a FS
 - Guarantees no energy in their difference; FS is not equal to x(t)
- ☐ Condition 2: Dirichlet condition
 - (1) Absolutely integrable $\int_T |x(t)| dt < \infty$

An example: a periodic signal

$$x(t) = \frac{1}{t}, 0 < t \le 1$$

is not absolutely integrable.

Two different classes of conditions

- ☐ Condition 2: Dirichlet condition
 - (2) In any finite interval of time, x(t) is of bounded variation; finite maxima and minima in one period

An example: a periodic signal

$$x(t) = \sin\left(\frac{2\pi}{t}\right), 0 < t \le 1$$

meets (1) but not (2).

Two different classes of conditions

- ☐ Condition 2: Dirichlet condition
 - (3) In any finite interval of time, only a finite number of finite discontinuities

An example: a periodic signal meets (1) and (2) but not (3).

- Dirichlet condition guarantees x(t) equals its Fourier Series representation, except for discontinuous points.
- Three examples are pathological in nature and do not typically arise in practical contexts.

x(t)

Example

 $\square x(t)$ is a square wave

$$x_N(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$$

$$\lim_{N\to\infty} x_N(t_1) = x(t_1)$$

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **☐** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- □ Properties of discrete FS
- **□** Fourier series and LTI systems

Properties of continuous-time FS

☐ Use the notation

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

to signify the paring of a periodic signal with its FS coefficients.

 \square Linearity: if x(t) and y(t) are periodic signals with the same period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k \Rightarrow z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Properties of continuous-time FS

☐ Time shifting

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \implies x(t-t_0) \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k$$

Proof
$$\frac{1}{T} \int_{T} x(t - t_{0}) e^{-jk\omega_{0}t} dt = \frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}(\tau + t_{0})} d\tau$$

$$= e^{-jk\omega_{0}t_{0}} \frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}\tau} d\tau$$

$$= e^{-jk\omega_{0}t_{0}} a_{k}$$

Properties of continuous-time FS

☐ Time reversal

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \implies y(t) = x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k = a_{-k}$$

Proof

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \Longrightarrow x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0(-t)} = \sum_{k=-\infty}^{\infty} a_k e^{j(-k)\omega_0 t}$$
$$= \sum_{m=-\infty}^{\infty} a_{-m} e^{jm\omega_0 t}$$

 \square If x(t) even, $a_{-k} = a_k$, if x(t) odd, $a_{-k} = -a_k$

☐ Time scaling

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \implies y(t) = x(\alpha t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k = a_k$$

Proof

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \Longrightarrow x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 \alpha t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha \omega_0)t}$$

FS coefficients the same, but fundamental frequency changed.

Multiplication

$$\begin{array}{ccc}
x(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & a_k \\
y(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & b_k
\end{array} \implies z(t) = x(t)y(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

☐ Proof

$$x(t)y(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \sum_{n=-\infty}^{\infty} b_n e^{jn\omega_0 t} = \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_k b_n e^{j(k+n)\omega_0 t}$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_k b_{l-k} e^{jl\omega_0 t} = \sum_{l=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} a_k b_{l-k} e^{jl\omega_0 t}$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_k b_{l-k} e^{jl\omega_0 t}$$

□ Conjugation and conjugate symmetry

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \implies z(t) = x^*(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k = a_{-k}^*$$

□ Proof

Proof
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \quad \therefore x^*(t) = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk\omega_0 t} = \sum_{m=-\infty}^{\infty} a_{-m}^* e^{jm\omega_0 t}$$

- \square If x(t) real, $a_k^* = a_{-k}$ (conjugate symmetry) $\Rightarrow |a_k| = |a_{-k}|$
 - x(t) real and even $(a_{-k} = a_k) \Rightarrow a_k = a_k^* \Rightarrow a_k$ real and even
 - x(t) real and odd $(a_{-k} = -a_k) \Rightarrow a_k = -a_k^* \Rightarrow a_k$ pure imaginary and odd
 - x(t) real and odd, $a_0 = ?$

☐ Differentiation and Integration

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \Rightarrow \begin{cases} dx(t)/dt \stackrel{\mathcal{FS}}{\longleftrightarrow} jk\omega_0 a_k \\ \int_{-\infty}^t x(\tau)d\tau \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k/(jk\omega_0) \end{cases}$$

Proof

$$\frac{dx(t)}{dt} = \sum_{k=-\infty}^{\infty} a_k \frac{d(e^{jk\omega_0 t})}{dt} = \sum_{k=-\infty}^{\infty} a_k jk\omega_0 e^{jk\omega_0 t}$$

$$\int_{-\infty}^{t} x(\tau)d\tau = \sum_{k=-\infty}^{\infty} a_k \int_{-\infty}^{t} e^{jk\omega_0\tau}d\tau = \sum_{k=-\infty}^{\infty} \frac{a_k}{(jk\omega_0)} e^{jk\omega_0t}$$

☐ Frequency shifting

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \Rightarrow e^{jM\omega_0 t} x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{k-M}$$

☐ Proof

$$e^{jM\omega_0 t}x(t) = e^{jM\omega_0 t} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{j(k+M)\omega_0 t}$$

$$k + M = l = \sum_{l=-\infty}^{\infty} a_{l-M} e^{jl\omega_0 t}$$

Periodic convolution

$$\begin{array}{ccc}
x(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & a_k \\
y(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & b_k
\end{array} \implies \int_{T} x(\tau)y(t-\tau)d\tau & \stackrel{\mathcal{FS}}{\longleftrightarrow} & Ta_k b_k$$

☐ Proof

$$\int_{T} x(\tau)y(t-\tau)d\tau = \int_{T} \sum_{k=-\infty}^{\infty} a_{k}e^{jk\omega_{0}\tau} \sum_{n=-\infty}^{\infty} b_{n}e^{jn\omega_{0}(t-\tau)}d\tau$$

$$\int_{T} \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{k}e^{jk\omega_{0}\tau} \sum_{n=-\infty}^{\infty} b_{n}e^{jn\omega_{0}(t-\tau)}d\tau$$

$$= \int_{T} \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_{k} e^{jk\omega_{0}\tau} b_{n} e^{-jn\omega_{0}\tau} e^{jn\omega_{0}t} d\tau$$

☐ Parseval's relation

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

□ Proof

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \frac{1}{T} \int_{T} x(t) x^{*}(t) dt = \frac{1}{T} \int_{T} x(t) \sum_{k=-\infty}^{\infty} a_{k}^{*} e^{-jk\omega_{0}t} dt
= \sum_{k=-\infty}^{\infty} a_{k}^{*} \frac{1}{T} \int_{T} x(t) e^{-jk\omega_{0}t} dt
= \sum_{k=-\infty}^{\infty} a_{k}^{*} a_{k} = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$$

☐ Parseval's relation

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

$$\frac{1}{T} \int_{T} |a_{k}e^{jk\omega_{0}t}|^{2} dt = \frac{1}{T} \int_{T} |a_{k}|^{2} dt = |a_{k}|^{2}$$

- $\square |a_k|^2$ is the average power in the kth harmonic component of x(t)
- \Box Total average power in x(t) equals the sum of the average powers in all of its harmonic components

Properties

Property

□ Summary

		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting Frequency Shifting	3.5.2	$x(t-t_0)$ $e^{jM\omega_0t}=e^{jM(2\pi/T)t}x(t)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M}
Conjugation	3.5.6	$x^*(t)$	a_{-k}^*
Time Reversal	3.5.3	x(-t)	$\hat{a_{-k}}$
Time Scaling	3.5.4	$x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
			$\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \end{cases}$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\Re e\{a_k\} = \Re e\{a_{-k}\}$ $\Im m\{a_k\} = -\Im m\{a_{-k}\}$ $ a_k = a_{-k} $ $ 4 $
Real and Even Signals	3.5.6	x(t) real and even	a_k real and even
Real and Odd Signals	3.5.6	x(t) real and odd	a_k purely imaginary and odd
Even-Odd Decomposition		$\begin{cases} x_e(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re\{a_k\}$
of Real Signals		$\begin{cases} x_e(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$j\mathcal{I}m\{a_k\}$

Periodic Signal

Section

Fourier Series Coefficients

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

\square Examples FS coefficients of g(t)?

• Let
$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \qquad \dots \uparrow$$

$$b_k = e^{jk\omega_0 T_1} a_k - e^{-jk\omega_0 T_1} a_k = \frac{1}{T} \left(e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1} \right) = \frac{2j\sin(k\omega_0 T_1)}{T}$$

•
$$g(t) = \int_{-\infty}^{t} q(\tau) d\tau$$

$$\therefore c_k = \frac{b_k}{jk\omega_0} = \frac{2j\sin(k\omega_0 T_1)}{jk\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\pi}, k \neq 0$$

$$a_k = \frac{\sin(k\omega_0 T_1)}{k\pi}, k \neq 0$$

$$= \frac{\sin(k\pi/2)}{k\pi}, k \neq 0$$

$$g(t) = x(t-1) - 1/2$$

FS coefficients of g(t)?

$$x(t-1) \stackrel{\mathcal{FS}}{\leftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk\pi/2} a_k, k \neq 0$$

$$-1/2 \stackrel{\mathcal{FS}}{\leftrightarrow} \begin{cases} 0, k \neq 0 \\ -\frac{1}{2}, k = 0 \end{cases} \quad \therefore x(t-1) - 1/2 \stackrel{\mathcal{FS}}{\leftrightarrow} \begin{cases} e^{-jk\pi/2} a_k, k \neq 0 \\ a_0 - \frac{1}{2}, k = 0 \end{cases}$$

■ Examples

Given a signal x(t) with the following facts, determine x(t)

- 1. x(t) is real;
- 2. x(t) is periodic with T=4 and FS coefficients $a_k = 0$ for $|\mathbf{k}| > 1$;
- 3. A signal with FS coefficients $b_k = e^{-j\pi k/2}a_{-k}$ is odd;
- 4. $\frac{1}{4} \int_4 |x(t)|^2 dt = \frac{1}{2}$.

- From 2, $x(t) = a_0 + a_1 e^{j\pi t/2} + a_{-1} e^{-j\pi t/2}$
- $b_k = e^{-j\pi k/2}a_{-k}$ corresponds to the signal x(-t+1), which is real and odd
- $\frac{1}{4} \int_4 |x(t)|^2 dt = \frac{1}{4} \int_4 |x(-t+1)|^2 dt = \sum_{k=-\infty}^{\infty} |b_k|^2 = |b_0|^2 + |b_1|^2 + |b_{-1}|^2 = \frac{1}{2}$
- x(-t+1) is real and odd $\Rightarrow b_k = -b_{-k} \Rightarrow b_0 = 0, b_1 = -b_{-1} = \frac{j}{2}$ or $-\frac{j}{2}$
- $a_0 = 0$, $a_1 = -\frac{1}{2}$ or $\frac{1}{2}$, $a_{-1} = -\frac{1}{2}$ or $\frac{1}{2}$

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **☐** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- **□** Properties of discrete FS
- **□** Fourier series and LTI systems

Fourier series representation of D-T periodic signals

Linear combination of harmonically related complex exponentials

☐ Harmonically related complex exponentials

$$\emptyset_k[n] = e^{jk(2\pi/N)n}, k = 0, \pm 1, \pm 2, \dots$$

- Fundamental frequency $|k|(\frac{2\pi}{N})$
- Only N distinct signals in $\emptyset_k[n]$, since $\emptyset_k[n] = \emptyset_{k+rN}[n]$
- \square Linear combination of $\emptyset_k[n]$ is also periodic

$$x[n] = \sum_{k=\langle N \rangle} a_k \emptyset_k[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

 $\square \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$: Discrete-Time Fourier Series; a_k : Fourier Series coefficients

Fourier series representation of D-T periodic signals

Determine the Fourier Series Representation

$$\sum_{n=\langle N \rangle} x[n] e^{-jr(2\pi/N)n} = \sum_{n=\langle N \rangle} \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} e^{-jr(2\pi/N)n}$$

$$= \begin{cases} N, k = r \\ 0, k \neq r \end{cases} = N\delta[k-r]$$

$$= \sum_{k=\langle N \rangle} a_k \sum_{n=\langle N \rangle} e^{j(k-r)(2\pi/N)n} = Na_r$$

$$\therefore a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

Fourier series representation of D-T periodic signals

Determine the Fourier Series Representation

☐ Discrete Fourier series pair

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
 Analysis equation; a_k : Fourier Series coefficients or spectral coefficients

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

Synthesis equation; Fourier Series (Finite)

Fourier series representation of D-T periodic signals

Determine the Fourier Series Representation

If $\omega_0 = \frac{2\pi}{N}$, x[n] is periodic with fundamental period of N.

$$x[n] = \sin \omega_0 n = \frac{1}{2j} e^{j(2\pi/N)n} - \frac{1}{2j} e^{-j(2\pi/N)n}$$

$$\therefore a_1 = \frac{1}{2j} \qquad a_{-1} = -\frac{1}{2j} \qquad a_k = 0, \text{ for } k \neq \pm 1 \text{ in one period}$$

 \square a_k is periodic and only one

Fourier series representation of D-T periodic signals

Determine the Fourier Series Representation

Examples
$$x[n] = 1 + \sin(\frac{2\pi}{N})n + 3\cos(\frac{2\pi}{N})n + \cos(\frac{4\pi}{N}n + \frac{\pi}{2})$$

$$x[n] = 1 + \frac{1}{2i} \left[e^{j(2\pi/N)n} - e^{-j(2\pi/N)n} \right] + \frac{3}{2} \left[e^{j(2\pi/N)n} + e^{-j(2\pi/N)n} \right]$$

$$+\frac{1}{2}\left(e^{j(4\pi n/N+\pi/2)}+e^{-j(4\pi n/N+\pi/2)}\right)$$

$$\therefore x[n] = 1 + \left(\frac{3}{2} + \frac{1}{2j}\right) e^{j(2\pi/N)n} + \left(\frac{3}{2} - \frac{1}{2j}\right) e^{-j(2\pi/N)n}$$

$$+\frac{1}{2}e^{j\pi/2}e^{j2(2\pi/N)n}+\frac{1}{2}e^{-j\pi/2}e^{-j2(2\pi/N)n}$$

Fourier series representation of D-T periodic signals

Linear combination of harmonically related complex exponentials

$$a_k = a_{-k}^*$$
, or $a_k^* = a_{-k}$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$x^*[n] = \sum_{k=\langle N \rangle} a_k^* e^{-jk(2\pi/N)n} = \sum_{k=\langle N \rangle} a_{-k}^* e^{jk(2\pi/N)n}$$

$$x[n] = x^*[n] \implies a_k = a_{-k}^*$$

Fourier series representation of D-T periodic signals

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk(2\pi/N)n}$$

$$m = n + N_1 = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk(2\pi/N)(m-N_1)} = \frac{1}{N} e^{jk(2\pi/N)N_1} \sum_{m=0}^{2N_1} e^{-jk(2\pi/N)m}$$

$$= \begin{cases} \frac{2N_1 + 1}{N}, k = 0, \pm N, \pm 2N, \dots \\ \frac{1}{N} \frac{\sin[2k\pi(N_1 + 1/2)/N]}{\sin(k\pi/N)}, k \neq 0, \pm N, \pm 2N, \dots \end{cases}$$

Fourier series representatio signals

Linear combination of harmonically related co

 \square Approximate a discrete square by $\hat{x}[n]$

$$\hat{x}[n] = \sum_{k=-M}^{M} a_k e^{jk(2\pi/N)n}$$

With
$$a_k = \begin{cases} \frac{2N_1+1}{N}, k = 0, \pm N, \pm 2N, \dots \\ \frac{1}{N} \frac{\sin[2k\pi(N_1+1/2)/N]}{\sin(k\pi/N)}, \text{ else} \end{cases}$$

- \square For M=4, $\widehat{x}[n] = x[n]$
- ☐ No convergence issues for the discrete—time Fourier series!

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **☐** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- **□** Properties of discrete FS
- **□** Fourier series and LTI systems

Properties

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \quad y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

■ Multiplication

$$x[n]y[n] \xrightarrow{\mathcal{FS}} \sum_{l=\langle N \rangle} a_l b_{k-l}$$

☐ First difference

$$x[n] - x[n-1] \xrightarrow{\mathcal{FS}} (1 - e^{-jk(2\pi/N)}) a_{k_{\text{onjugate Symmetry for}}}$$

☐ Parseval's relation

$$\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{k=\langle N \rangle} |a_k|^2$$

Periodic Signal Fourier Series Coefficients **Property** x[n]) Periodic with period N and a_k) Periodic with y[n] | fundamental frequency $\omega_0 = 2\pi/N$ $b_k \mid \text{period } N$ Linearity Ax[n] + By[n] $Aa_k + Bb_k$ $a_{\nu}e^{-jk(2\pi/\hat{N})n_0}$ Time Shifting $x[n-n_0]$ $e^{jM(2\pi/N)n}x[n]$ Frequency Shifting Conjugation a_{-k}^* $x^*[n]$ Time Reversal x[-n] a_{-k} $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is } -1 \end{cases}$ $\frac{1}{m}a_k$ (viewed as periodic) with period mNTime Scaling if n is not a multiple of m(periodic with period mN) $\sum_{r=\langle N\rangle} x[r]y[n-r]$ Periodic Convolution Na_kb_k $\sum_{l=\langle N\rangle}a_lb_{k-l}$ Multiplication x[n]y[n] $(1 - e^{-jk(2\pi/N)})a_t$ First Difference x[n] - x[n-1] $\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$ Running Sum $a_k = a_{-k}^*$ $\Re\{a_k\} = \Re\{a_{-k}\}$ $\mathfrak{I}m\{a_k\} = -\mathfrak{I}m\{a_{-k}\}$ x[n] real Real Signals $|a_k| = |a_{-k}|$ Real and Even Signals x[n] real and even a_{ν} real and even Real and Odd Signals x[n] real and odd a_k purely imaginary and odd Even-Odd Decomposition $x_{\rho}[n] = \mathcal{E}\nu\{x[n]\}$ $\Re\{a_k\}$ [x[n] real] of Real Signals $x_o[n] = Od\{x[n]\}$ [x[n] real] $j\mathfrak{I}m\{a_k\}$ Parseval's Relation for Periodic Signals

 $\frac{1}{N} \sum_{n=(N)} |x[n]|^2 = \sum_{k=(N)} |a_k|^2$

Properties of discrete-time FS

 $\square x_1[n]$ is a square wave with N=5 and $N_1 = 1$

$$b_{k} = \begin{cases} \frac{2N_{1} + 1}{N}, k = \pm N, \pm 2N, \dots \\ \frac{1}{N} \frac{\sin[2k\pi(N_{1} + 1/2)/N]}{\sin(k\pi/N)}, \text{else} \end{cases} = \begin{cases} \frac{3}{5}, k = \pm 5, \pm 10, \dots \end{cases} \underbrace{\frac{1}{5} \frac{\sin(3k\pi/5)}{\sin(k\pi/5)}}_{\text{(b)}}, \text{else} \underbrace{\frac{1}{5} \frac{$$

$$\begin{cases} \frac{3}{5}, k = \pm 5, \pm 10, \dots \\ \frac{1}{5} \frac{\sin(3k\pi/5)}{\sin(k\pi/5)}, \text{ else} \end{cases}$$

 \square For $x_2[n]$

$$c_{\mathbf{k}} = \begin{cases} 1, k = \pm N, \pm 2N, \dots \\ 0, & \text{else} \end{cases}$$

$$\therefore a_{k} = b_{k} + c_{k} = \begin{cases} \frac{8}{5}, & k = \pm 5, \pm 10, \dots \\ \frac{1}{5} \frac{\sin(3k\pi/5)}{\sin(k\pi/5)}, & \text{else} \end{cases}$$

Properties of discrete-time FS

Examples

Suppose we are given the following facts about a sequence x[n]:

- 1. x[n] is periodic with period N = 6.
- **2.** $\sum_{n=0}^{5} x[n] = 2$.
- 3. $\sum_{n=2}^{7} (-1)^n x[n] = 1$.
- **4.** x[n] has the minimum power per period among the set of signals satisfying the preceding three conditions.

- $\sum_{n=0}^{5} x[n] = 2 \Longrightarrow a_0 = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j0(2\pi/N)n} = 1/3.$
- $\sum_{n=2}^{7} (-1)^n x[n] = 1 \Longrightarrow \sum_{n=\langle N \rangle} x[n] e^{-j3(2\pi/N)n} = 1 \Longrightarrow a_3 = 1/6$
- from 4, $a_1 = a_2 = a_4 = a_5 = 0$
- $x[n] = a_0 e^{-j0(2\pi/N)n} + a_3 e^{-j3(2\pi/N)n} = \frac{1}{3} + \frac{1}{6} e^{-j\pi n} = \frac{1}{3} + \frac{1}{6} (-1)^n$

Chapter 3: Fourier Series Representation of Periodic signals

- ☐ The response of LTI systems to complex exponentials
- **□** Fourier series representation of continuous periodic signals
- **□** Convergence of the Fourier series
- **☐** Properties of continuous-time Fourier series
- **□** Fourier series representation of discrete –time periodic signals
- Properties of discrete FS
- **□** Fourier series and LTI systems

Recall
$$e^{st} \longrightarrow \text{LTI} \longrightarrow H(s)e^{st} \qquad H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$

$$z^{n} \longrightarrow \text{LTI} \longrightarrow H[z]z^{n} \qquad H[z] = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$

 \square System functions: H(s) and H[z]

For periodic signal, CT Fourier Series (Ch3) e^{st} s pure imaginary $e^{st} \rightarrow e^{j\omega t}$ For aperiodic signal, CT Fourier Transform (Ch4) s complex number e^{st} Laplace Transform (Ch9)

For periodic signal, DT Fourier Series (Ch3)

For aperiodic signal, DT Fourier Transform (Ch5) $|z| = 1, z^n \rightarrow e^{j\omega n}$ For aperiodic signal, DT Fourier Transform (Ch5) |z| not limited to 1, z^n Z-Transform (Ch10)

 \Box Frequency response for CT system: $H(j\omega)$

$$H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau \quad \stackrel{s=j\omega}{\Longrightarrow} \quad H(j\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$

$$e^{j\omega t}$$
 LTI $H(j\omega)e^{j\omega t}$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \longrightarrow \text{LTI} \qquad y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

$$b_k = a_k H(jk\omega_0)$$

☐ Frequency response for CT system: example

$$x(t) = \sum_{k=-3}^{3} a_k e^{jk2\pi t}$$
 $(a_0 = 1, a_1 = a_{-1} = \frac{1}{4}, a_2 = a_{-2} = \frac{1}{2}, a_3 = a_{-3} = \frac{1}{3})$ is the input of a LTI system with $h(t) = e^{-t}u(t)$, determine $y(t)$

Solution

$$y(t) = \sum_{k=0}^{\infty} a_k H(j\omega) e^{jk2\pi t} \qquad H(j\omega) = \int_0^{\infty} e^{-\tau} e^{-j\omega\tau} d\tau = \frac{1}{1+j\omega}$$

$$b_k = a_k H(j\omega) = a_k \frac{1}{1 + jk2\pi} \qquad b_0 = 1 \cdot 1 = 1 \qquad b_1 = \frac{1}{4} \frac{1}{1 + j2\pi} \quad b_{-1} = \frac{1}{4} \frac{1}{1 - j2\pi}$$

$$b_2 = \frac{1}{2} \frac{1}{1 + j4\pi} \qquad b_{-2} = \frac{1}{2} \frac{1}{1 - j4\pi} \qquad b_3 = \frac{1}{3} \frac{1}{1 + j6\pi} \qquad b_{-3} = \frac{1}{3} \frac{1}{1 - j6\pi}$$

 \Box Frequency response DT system: $H(e^{j\omega})$

$$H[z] = \sum_{n=-\infty}^{\infty} h[k]z^{-n} \qquad \stackrel{z=e^{j\omega}}{\Longrightarrow} \qquad H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

$$e^{j\omega n} \longrightarrow \left[\qquad \text{LTI} \qquad \right] \longrightarrow H(e^{j\omega})e^{j\omega n}$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$\longrightarrow \qquad \qquad LTI \qquad \qquad y[n] = \sum_{k=\langle N \rangle} a_k H(e^{j\omega}) e^{jk(2\pi/N)n}$$

$$b_k = a_k H(e^{j\omega})$$

☐ Frequency response DT system: example

$$h[n] = \alpha^n u[n], |\alpha| < 1$$

$$x[n] = \cos \frac{2\pi n}{N} \longrightarrow \boxed{\text{LTI}} \qquad y[n]?$$

$$x[n] = \frac{1}{2}e^{j(2\pi/N)n} + \frac{1}{2}e^{-j(2\pi/N)n}$$

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n} = \frac{1}{1 - \alpha e^{-j\omega}}$$

$$y[n] = \frac{1}{2} \left(\frac{1}{1 - \alpha e^{-j2\pi/N}} \right) e^{j(2\pi/N)n} + \frac{1}{2} \left(\frac{1}{1 - \alpha e^{j2\pi/N}} \right) e^{-j(2\pi/N)n}$$