

第4部 RTミドルウェア応用実習

宮本 信彦

国立研究開発法人産業技術総合研究所 インダストリアルCPS研究センター ソフトウェアプラットフォーム研究チーム

資料

- USBメモリで配布
 - 「WEBページ」フォルダのHTMLファイルを開く
 - チュートリアル(EV3、LibreOffice) _ OpenRTM-aist.html
- もしくはRTミドルウェア講習会のページからリンクをクリック
 - チュートリアル(第3部)

OPERIKINI-dISU The power to connect		
ダワ	ウンロード ドキュメント	コミュニティ 研究開発 プロジェクト ハードウエア Pukiwikiマニュアル 概要: RTミトルフェア(OpenRTM-aist)はロボットシステムをコンホーイント指向で構築するソフトウェアプラットフォームです。RTミドルウェアを利用することで、既存のコンポーネントを再利用し、モジュール指向の柔軟なロボットシステムを構築することができます。RTミドルウエアについて、その概要およびRTコンポーネントの機能やプログラミングの流れについて説明します。
	11:00 -12:30	 講義資料:190605-01.pdf 第2部(前半): RTコンポーネントの作成入門 - 担当: 宮本 信彦(産総研) - 概要: RTシステムを設計するツールRTSystemEditorおよびRTコンポーネントを作成するツールRTCBuilderの使用方法について解説するとともに、移動ロボットのシミュレータを用いた実習によりRTCBuilder、RTSystemEditorの利用法の学習します。
	12:30 -13:30	昼食
	13:00 -13:30	RTミドルウェア普及貢献賞授賞式
	13:30 -15:00	第2部(後半): RTコンポーネントの作成入門- 担当: 宮本 信彦(産総研)- 概要: OpenRTM-aistを利用して移動ロボット実機を制御するプログラムを作成します。
	15:00 -16:30	第3部: RTシステム応用実習 - 担当: 宮本 信彦(産総研) - 概要: ポータブル版LibreOffice用RTCの利用方法について解説を行うとともに、表計算ソフトによるRTCのテストの実行についての実習を行います。 チュートリアル(第3部、Windows)

Ubuntuを使用している場合

- ノートPC(Windows 10)を貸出
- RT System Editor、ネームサーバーを起動する
 - デスクトップのショートカットをダブルクリック

- RT System Editorの起動

- ネームサーバー起動

RTCのテスト

- 開発したRTCの動作確認手順
 - 実機、シミュレータを利用する場合
 - 任意の値を入力するのは難しい
 - 本当に指定の値で停止、走行が切り替わっているか?
 - 意図通りの値が出力されているか?

False(タッチセンサがオン)を 入力すると停止するか?

- 本当に指定の速度で走行しているか?
- シミュレータが無い場合は直接実機で動作を確認するため、試行錯誤の手間が増加

を出力しているか?

表計算ソフトによるデータ入出力

デモ動画

デモ動画

手順

- 第2部で作成したRobotControllerComp.exeを起動する。
- ポータブル版LibreOffice対応RTCの起動
 - USBメモリ内のバッチファイルから起動
- LibreOffice Calc上の操作でポートを接続
 - Calc上のGUIを使用して対象のデータポートを接続
- RT System Editor上の操作でRTCをアクティブ化
 - コンフィギュレーションパラメータを変更したときの挙動を確認
 - インポートへの入力値を変更したときの挙動を確認

ポータブル版LibreOffice対応RTC

- 配布のUSBメモリに以下のソフトウェアを同梱
 - ポータブル版LibreOffice
 - OpenRTM-aist-Python
 - OpenOffice用RTコンポーネント

RTC起動

• LibreOffice操作RTCを起動する

起動に失敗する場合

操作ダイアログ表示

LibreOffice Calcの画面から操作ダイアログ起動ボタンを 押す

ポート一覧表示

• 操作ダイアログの画面からツリー表示ボタンを押して ネームサーバーに登録したRTCのポートー覧を表示

ポート接続

RobotController0のoutを選択

「列を移動させる」のチェックを外す

「**作成**」ボタンを押す (操作ダイアログは右上の罰を押して消す)

インポートと接続される

動作確認(アウトポート)

 RobotControllerのアウトポートからデータを出力して みる

動作確認(アウトポート)

• LibreOffice Calc上で出力データの確認ができる

動作確認(インポート)

• インポートに指定のデータを入力するとどのような動作となるか

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY VAISTA

RobotController0のinを選択

「列を移動させる」のチェックを外す

動作確認(インポート)

おわりに

- これで実習は一通り終了です。
- 実習を終了する際について
 - タッチセンサなどの実習中に取り付けた部品は、取り外して実習前の状態で返却してください
 - EV3の電源をオフにして返却してください

