Primer Certamen Algoritmos y Complejidad

28 de octubre de 2017

1. Todas las funciones siguientes tienen $\sqrt{3}$ como punto fijo. ¿Cuál es la que converge más rápido cerca de $\sqrt{3}$?

$$g_a(x) = 3 - x(1 - x)$$

$$g_b(x) = \frac{1}{2}x + \frac{3}{2x}$$

$$g_c(x) = \frac{x+3}{x+1}$$

(35 puntos)

2. Determine el orden de convergencia del método de Newton a x^* si la función tiene un cero doble en x^* (vale decir, $f(x^*) = f'(x^*) = 0$).

(25 puntos)

3. Suponga una fórmula de cuadratura de la forma:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x = A_{-1} f(-1) + A_{1} f(1) + B_{-1} f'(-1) + B_{1} f'(1)$$

- *a*) Plantee ecuaciones para los coeficientes del polinomio interpolador de máximo grado posible en términos de f(-1), f(1), f'(-1) y f'(1).
- b) Evalúe la integral para el polinomio interpolador, y use las ecuaciones anteriores para hallar los coeficientes.

(35 puntos)

- 4. El problema de *ubicación de plantas* en una dimensión considera posiciones de un número finito de clientes en una recta, en las posiciones $\{c_i\}$, y un número finito de posiciones posibles de plantas, $\{p_i\}$, donde la planta i puede atender a los clientes entre las posiciones $p_i d$ y $p_i + d$ (d es un valor fijo). Hay una potencial ubicación de planta a distancia a lo más d de cada cliente. Se busca atender a todos los clientes con el mínimo de plantas.
 - *a*) Demuestre que la estrategia voraz de ir eligiendo ubicaciones para plantas de manera de atender al máximo número de clientes no atendidos aún no siempre da un óptimo.
 - b) Demuestre que la estrategia voraz de ordenar clientes y posiciones de plantas de izquierda a derecha, y elegir siempre la posición de la planta más a la derecha capaz de atender al cliente más a la izquierda sin atención da un óptimo.

(30 puntos)

Torpedo

Proposición. El error de interpolación mediante polinomios para los puntos distintos $x_0, ..., x_n \in [a, b]$ cumple:

$$f(x) - Q_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\zeta) \prod_{0 \le j \le n} (x - x_j)$$

donde $a < \zeta < b$.

Proposición. Si $p_n(x)$ es un polinomio mónico de grado n, entonces:

$$\max_{-1 \le x \le 1} |p_n(x)| \ge 2^{1-n}$$

Definición. Los polinomios de Chebyshev se definen por:

$$T_0(x) = 1$$
 $T_1(x) = x$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Proposición. *Para* $x \in [-1, 1]$:

$$T_n(x) = \cos(n \arccos x)$$

El polinomio T_n es de grado n, y el coeficiente de x^n en T_n es 2^{n-1} si $n \ge 1$.

Definición. Los polinomios de Lagrange para los puntos $x_0, ..., x_n$ son los polinomios:

$$\ell_i(x) = \prod_{\substack{0 \le j \le n \\ j \ne i}} (x - x_j) / \prod_{\substack{0 \le j \le n \\ j \ne i}} (x_i - x_j)$$

Estos cumplen:

$$\ell_i(x_i) = [i = j]$$

Proposición. El polinomio único de grado a lo más n que interpola los puntos (x_i, y_i) para $0 \le i \le n$ está dado por:

$$Q_n(x) = \sum_{0 \le j \le n} \ell_j(x) y_j$$