(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 25.06.2003 Bulletin 2003/26 (51) Int Cl.7: C12N 9/12

- (21) Application number: 02258507.9
- (22) Date of filing: 10.12.2002
- (84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SI SK TR
Designated Extension States:
AL LT LV MK RO

- (30) Priority: 21.12.2001 US 341882 P
- (71) Applicant: WARNER-LAMBERT COMPANY Morris Plains, New Jersey 07950 (US)
- (72) Inventors:
 - Chen, Huifen, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
 - Delaney, Amy Marie, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
 - Dudley, David Thomas, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
 - Hasemann, Charles Albert, Jr., Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
 - Kuffa,Peter, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)

- McConnell, Patrick Charles, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
- Ohren, Jeffrey Francis, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
- Pavlovsky, Alexander Gregory,
 Pfizer Global R&D
- Ann Arbor, Michigan 48105 (US)

 Tecle, Haile, Pfizer Global R&D
 - Ann Arbor, Michigan 48105 (US)
- Whitehead, Christopher Emil, Pfizer Global R&D Ann Arbor, Michigan 48105 (US)
- Yan, Chunhong, Pfizer Global R&D
- Ann Arbor, Michigan 48105 (US)

 Thang, Erli, Pfizer Global R&D
 Ann Arbor, Michigan 48105 (US)

Sandwich, Kent CT13 9NJ (GB)

- (74) Representative: England, Peter Michael et al Pfizer Limited, UK Patent Department, Ramsgate Road
- (54) Modified MEK1 and MEK2, crystal of a peptide: ligand: cofactor complex containing such modified MEK1 or MEK2, and methods of use thereof
- (57) Modified MEK1 peptides and modified MEK2 peptides, polynucleotides encoding those peptides, and methods for purifying the peptides and crystallizing them as peptide: coffactor: ligand complexes have been discovered. The three-dimensional structures of MEK1 peptide and MEK2 peptide, including the coffactor-and

ligand-binding pockets, and uses of this information, for example, in molecular replacement and the modification, design and screening of compounds that may associate with MEK1, MEK2, or peptides structurally related thereto, have also been discovered.

Description

10

15

20

30

50

55

FIELD OF THE INVENTION

[001] The present invention generally relates to forms of a MEK1 peptide and forms of MEK2 peptide, crystals of a MEK1 or MEK2 peptide. Iligand : colactor complex, methods for producing those crystals, three-dimensional structural information derived from crystallographic data and to methods using that structural information.

BACKGROUND OF THE INVENTION

[0002] Mitogen-activated protein (MAP) kinases are thought to act as an integration point for multiple biochemical signals because they are activated by a wide variety of extracellular signals. The pattern of MAP kinase (MAPK) cascade is not restricted to growth factor signaling and it is now known that signaling pathways initiated by phorbol esters, ionophors, heat shock, and ligands for seven transmembrane receptors use distinct MAP kinase cascades with little or no cross-read/tilv between them.

[0003] Multiple MAP kinases have been described in yeast including SMK1, HOG1, MPK1, FUS3, and KSS1. In mammals, the MAP kinases have been identified as extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (INK), and p38 kinase (Davis, *Trends Biochem. Sci.* 19: 470 (1994)). These highly conserved MAP kinase isoforms are activated by dual phosphorylation on threonine and tyrosine residues.

[0004] A critical protein kinase lies upstream of the MAP kinase-mediated signaling pathway and stimulates the enzymatic activity of MAP kinases. The structure of this protein kinase, denoted MEK1, for MAP kinase /ERK kinase, was elucidated from a complementary DNA sequence and shown to be a protein of 393 amino acids (43.5-kD) that is related most closely in size and sequence to the product encoded by the Schizosaccharomyces pombe byr1 gene (Crews et al., Science 268: 478-480 (1932)). The MEK gene was highly expressed in murine brain, and the product expressed in bacteria phosphorylated the ERK gene product in vitro. As an essential component of the MAP kinase signal transduction pathway, MEK1 is involved in many cellular processes such as proliferation, differentiation, transcription reculation and development.

10005] A cDNA encoding the human homolog of MEK1 was cloned from a human T-cell cDNA library, GenBank Accession Number L11284 (Seger et al. J. Biol. Chem.267: 25628-25631 (1992)). When overaynressed in COS cells, the predicted 43.439-Da protein led to increased phorbol ester-stimulated MAP kinase kinase activity. The human MEK1 shares 99% amino acid sequence identify with the murine MEK1 and 80% with human MEK2. Human MEK1 and MEK2 encode 393 and 400 amino acid residues, respectively. Both MEK1 and MEK2 were expressed in E. coli and shown to be able to activate recombinant human ERK1 in vitro. The purified MEK2 peptide stimulated threenine and tyrosine phosphorylation on ERK1 and concomitantly activated ERK1 kinase activity more than 100-fold. The recombinant MEK2 showed lower activity as an ERK activator as compared with MEK2 purified from tissue. However, the recombinant MEK2 and be activated by serum-stimulated cell extract in vitro. MEKs, in a manner similar to ERKs, are likely to consist of a family of related proteins playing critical roles in signal transduction. (Zheng et al., J. Biol. Chem. May 25: 2881(5): 1143-9-1(1993))

[0006] Constitutive activation of MEK1 results in cellular transformation. This protein kinase therefore represents a likely target for pharmacological intervention in proliferative and inflammatory diseases (i.e. et al., Nature 372, 739-748 (1994); Dudley et al., Proc. Natl. Acad. Sci. U.S.A. 92, 7886-7889 (1995)), in order to identify small-molecule inhibitors of this pathway, Sebolt-Leopoid et al., developed et al., vitro aceade assay using recombinantly expressing distathions. S-transferase fusion proteins of MEK1 and ERK1 (Sebolt-Leopoid et al., Nature Med. 5: 810-818(1999)). Sebort-Leopoid et al., also reported the discovery of a highly potent and selective inhibitor of MEK1, 2-(2-chioro-4-ioto-ph-nylamino)-N-cyclopropriemtoxy-3,4-diffluoro-benzamide. This article reported that after treatment with this inhibitor, tumor growth was inhibited as much as 80% in mice with colon carcinomas of both mouse and human origin. Efficacy was achieved with a wide range of doses with no signs of toxicity, and correlated with a reduction in lost of MAPK in excised tumors. It was concluded that those data indicate that MEK inhibitors represent a promising, non-cytotoxic approach to the clinical management of colon cancer.

10007 Influenza A viruses are significant causes of motivitily and mortality worldwide. Annually updated vaccines may prevent disease, and anti-virals are effective treatment early in disease when symptoms are often nonspecific. Viral replication is supported by intracellular signaling events. Using a nonioxic inhibitor of MEK1 and MEK2, and thus an inhibitor of the RAF1/MEK/ERK pathway. Pleschika et al. examined the cellular response to infection of the signaling pathway occurred without impairing the synthesis of viral RNA or protein, or the import of viral ribonucleoprotein complexes (RNP) into the nucleus (Pleschika et al., Nature Cell Biol. 3: 301-305 (2001)). Instead, it inhibited ARF/MEK/ERK signaling and the export of viral RNP without affecting the cellular mRNA export pathway. It was proposed that ERK regulates a cellular factor involved in the viral nuclear export pathway.

inhibitor of MEK1 and MEK2 to examine the cellular response to infection with influenza A suggested that local application of MEK inhibitors may have only minor toxic effects on the host while inhibiting viral replication without giving rise to drug-resistant virus variants (Pleschka et al., Nature Cell Biol. 3: 301-305 (2001)).

[0008] Ryan et al. showed that inhibition of MEK1 blocks p53-induced NF-kappa-B activation and apoptosis but not cell-cycle arrest. They demonstrated that p53 activates NF-kappa-B through the RAF/MEK1/p30(rsk) pathway rather than the TNFR1/TRAF2/IKK pathway used by TNFA (*Nature* 404: 892-897 (2000)).

[0009] One such means of mediating signal transduction through the MEK1 pathway is to identify enhancers or inhibitors to the MEK1 peptide. Such identification has heretofore relied on serendipity and/or systematic screening of large numbers of natural and synthetic compounds. A superior method of furg development relies on structure assisted drug design. In this case, the three-dimensional structure of a peptide-inhibitor complox is determined and potential enhancers and/or potential linhibitors are screened and/or designed with the aid of computer modeling [Bugg et at., Scientific American, Dec.: 92-98 (1993); West at at., TIPS, 16: 67-74 (1995); Dunbrack et at., Folding & Design, 2: 27-42 (1997)]. However, heretofore the three-dimensional structure of the MEK1 peptide or MEK2 peptide has remained unknown, essentially because no MEK1 peptide or MEK2 peptide or MEK2 peptide and or MEK2 peptide or MEK2 petide or M

[0010] USP 5,683,314 to Seger et al. discloses two types of MEK1 peptides, namely, MKK1a and MKK1b and nucleotide encoding them. MKK1a has 399 amino acid residues and MKK1b has 368 amino acid residues that is identical to MKK1a except lacking amino acid residues from 147 to 172. The modification of the MEK1 peptide by truncation of the NH₂-terminal region or by removal or replacement of the insertion loop-forming region, or by a combination of these modifications to improve the peptide's biophysical characteristics, especially with respect to crystallizability, has not previously been reported.

[0011] The citation of any reference herein should not be construed as an admission that such reference is available as "Prior Art" to the instant application.

SUMMARY OF THE INVENTION

20

30

55

[0012] The present invention provides modified MEK1 peptide and modified MEK2 peptide amino acid sequences, and methods for producing such modified MEK1 and MEK2 peptide sequences. In one embodiment, the MEK1 and MEK2 peptides may be modified omitting a significant portion of the NH-12-terminal region of the MEK1 and MEK2 peptides (hereinafter referred to as "NH-12-terminally truncated MEK1 peptide" and "NH-12-terminally truncated MEK2 peptide" and "NH-12-terminally truncated MEK1 and MEK2 peptides" and/or by deletion of the MEK1 insertion loop domain and/or by replacement of the MEK1 insertion loop domain with a linker peptide (hereinafter, MEK1 or MEK2 having either one or all of these modifications is referred to as "modified MEK1," "modified MEK2," or collectively as "modified MEK1 and MEK2".

[0013] The NH₂-terminally truncated MEK1 peptides lack at least 30 amino acid residues from the NH₂-terminal region of the full-length peptide. Preferably, the NH₂-terminally truncated MEK1 peptides lack at least 30 to at most 70 amino acid residues, more preferably 41 to 61 amino acid residues from the NH₂-terminal region of the full-length peptide, or a conservatively substituted variant thereof.

[0014] The NH₂-terminally truncated MEK2 peptides lack at least 34 amino acid residues from the NH₂-terminal region of the full-length peptide of SEQ ID NO: 4. Preferably, the NH₂-terminally truncated MEK2 peptides lack at least 34 to at most 74 amino acid residues, more preferably 45 to 65 amino acid residues from the NH₂-terminal region of the full-length peotide, or a conservatively substituted variant thereof.

[0015] In another embodiment, the modified MEK1 peptide may have a deletion of insertion loop-forming amino acid residues, particularly from amino acid 280 to amino acid 323 of SEQ ID NO: 2; or at least 40 amino acid acids from between amino acid are residue 264 and amino acid 310 of SEQ ID NO: 2. This may include a deletion of amino acids (1) from amino acid 264 to amino acid 310 of SEQ ID NO: 2; (2) from amino acid 270 to amino acid 310 of SEQ ID NO: 2; (3) from amino acid 264 to amino acid 305 of SEQ ID NO: 2; (4) amino acid 267 to amino acid 307 of SEQ ID NO: 2; (3) from amino acid 268 to amino acid 268 to amino acid 268 to 350 of SEQ ID NO: 2; (4) amino acid 268 to amino acid 268 to amino acid 268 to 350 of SEQ ID NO: 2.

[0016] Alternatively, the MEK1 insertion loop domain may be replaced by with a linker peptide, wherein the linker peptide may have at most 10 amino acid residues. Preferably, the linker peptide has the amino acid sequence of Lys-

[0017] The modified MEK1 peptides of the invention may be modified by any one or any combination of the NH₂terminal truncation, the deletion of insertion loop-forming amino acid residues, and the replacement of the MEK1 insertion loop domain with a linker peptide described above.

[0018] The invention further provides peptides that are defined by the three-dimensional structural coordinates of the MEK1 or MEK2 peptides as set forth in Table 1 or Table 2 respectively, or of related peptides which possess the structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 peptides as set forth in Table 1 or Table 2.

[0019] Additionally, the invention provides peptides that comprise a MEK1, MEK2 or MEK-like cofactor or ligand binding pocket, as defined below.

[0020] The invention further provides isolated, purified polynucleotides, which encode the modified MEK1 and/or MEK2 peotide sequences. The polynucleotides may be natural or recombinant.

[0021] The invention further provides expression vectors for producing the modified MEK1 and MEK2 peptides in a host cell. It further provides host cells which may be stably transformed and transfected with a polynucleotide encoding the modified MEK1 peptides or modified MEK2 peptides, or a fragment thereof or an analog thereof, in a manner allowing the expression of the modified MEK1 peptides or MEK2 peptides. The present invention additionally includes cellst transfected or transformed with an expression vector of the present invention. The present invention also includes methods for expressing a modified MEK1 peptide or modified MEK2 peptide comprising culturing a cell that expresses the modified MEK1 peptide or modified MEK2 peptide in an appropriate cell culture medium under conditions that provide for expression of the peptide by the cell.

[0022] Methods of purifying the modified MEK1 peptides or modified MEK2 peptides of the invention from a fermentation broth containing the modified MEK1 peptide or modified MEK2 peptide, respectively, and contaminant proteins other than the MEK1 peptide or MEK2 peptide is respectively is also provided. The methods comprise subjecting the fermentation broth to immobilized metal chelate chromatography, which may preferably comprise pyrrole-2-carboxylate and/or zinc.

20

40

50

[0023] The invention also provides methods of using the purified modified MEK1 peptide or mofidied MEK2 peptide to produce ternary complexes of peptide: ligand: cofactor, and for producing crystals of the peptide: ligand: cofactor complexes containing the modified MEK1 peptide or modified MEK2 peptide. In one embodiment, a method of growing crystals of a peptide: ligand: cofactor complex comprises providing an aqueous solution of a modified MEK1 or MEK2 peptide, a ligand and a cofactor in a solution of ammonium acetate and a N-2-hydroxyethyl-piperazine-N'-2-ethansuifonic acid (HEPES) buffer; providing a precipitant solution comprising (a) if the peptide is MEK1 peptide, polyethylene glycol (PEG), a source of ionic strength, a buffering agent, and a reducing agent; or (b) if the peptide is MEK2 peptide, a source of ionic strength, a buffering agent, and a reducing agent; mixing a droplet of said peptide solution with a droplet of said precipitant solution; suspending the resulting mixed droplet over a well of said precipitant solution at a vapor pressure of the solution in said well being lower than in the resulting solution in the mixed droplet; and allowing the suspended mixed droplet to stand for a prolonged period until a peptide; ligand; cofactor ternary complex crystal grows to a size suitable for X-ray diffraction. The MEK1 peptide may have a concentration from about 10 to about 20 mg/mL and the HEPES further may have a pH from about pH 7 to about pH 8. The MEK2 peptide may have a concentration from about 10 to about 20 mg/mL and the HEPES further may have a pH from about pH 6.8 to about pH 8.8. [0024] The invention also provides the crystal structure of the modified MEK1 peptide in a ternary complex with ligands and cofactors, from which MEK1 structural information may be obtained. Preferably, the ligand is 5-bromo-N-(2,3-dihydroxy-propxy)-3,4-diffuoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide and the cofactor is ATP. The crystals preferably diffract to a resolution better than 5.0 Å, preferably 3.0 Å. The crystal structure of the modified MEK1 peptide: 5-bromo-N-(2,3-dihydroxy-propxy)-3,4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide: ATP complex is the first reported of the MEK1 peptide or any of the related MAPKK family.

[0025] Additionally, the Invention provides the crystal structure of the modified MEK2 peptide in a ternary complex with igands and cofactors, from which the MEK2 structural information may be obtained. Preferably, the ligand is (5-[3-4-Dfluoro-2-[2-fluoro-4-lodo-phenylamino)-phenyl]-1,3.4-oxadiazol-2-yll-(2-morpholin-4-yl-ethyl)-amine and the cofactor is ATP. The crystals preferably diffract to a resolution better than 5.0 Å, preferably 3.5 Å. The crystal structure of the modified MEK2: [5-[3-4-Dfluoro-2-[2-fluoro-4-lodo-phenylamino-phenyl]-1,3.4-oxadiazol-2-yll-(2-morpholin-4-yl-ethyl)-amine: ATP complex is the first proported of the MEK2 peptide family.

[0026] The invention further includes the three-dimensional structural coordinates of the MEK's peptide and MEK2 peptide: ligand: cofactor complexes, as set forth in Tables 1 and 2, or of a related set of structural coordinates having a root mean square deviation of preferably not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 the three-dimensional structural coordinates as set forth in Table 1 or Table 2. The structural coordinates reflect the three-dimensional structure of the MEK1 complexes and MEK2 complexes and illustrates to atomic resolution the chemical environment around the MEK1 and MEK2 ligand- and colactor-binding sites.

[0027] Particularly, it has been discovered that MEK1 comprises a peptide ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within about 4 Å of a MEK1 inhibitor located in the ligandbinding site. G77, N78, G79, G80, K97, 199, L115, L118, V127, F129, I141, M143, C207, D208, F209, G210, V211, S212, L215, I216 and M219 of SEC ID N0: 2 or a conservatively substituted variant thereof; and is defined by the structural coordinates of the following amino acid residues within about 5 A or a MEK1 inhibitor located in the licand-

binding site: G77, N78, G79, G80, K97, I99, L115, L118, I126, V127, G128, F129, I141, M143, D190, N195, L206, C207, D208, F209, G210, V211, S212, L215, I216, M219 and F223 of SEQ ID NO: 2, or a conservatively substituted variant thereof.

[0028] It has also been discovered that MEK1 peptide comprises a cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 4 Å of a cofactor (e.g. an ATP molecule) located in the cofactor-binding site: L74, G75, A76, G77, N78, G80, V81, V82, A85, K87, V127, M143, E144, H145, M148, G149, S150, D152, Q155, K192, S194, N195, L197, D208 and V224 of SEQ ID NO: 2, or a conservatively substituted variant thereof; and is defined by the structural coordinates of the following residues within about 5 Å of a cofactor located in the cofactor-binding site: L74, G75, A76, G77, N78, G79, 80, V81, V82, A95, K97, V127, M143, E144, H145, M146, D147, G149, S150, D152, Q153, D190, K192, S194, N195, L197, C207, D208, V224 and G225 of SEQ ID NO:2, or a conservatively substituted variant thereof.

20

50

55

a structurally related peptide.

N199, L201, C211, D212, V228, G229 of SEO ID NO: 4, or a conservatively substituted variant thereof.

[0031] A ligand- or ordactor-binding pocket of a MEK peptide or peptide that is structurally related to MEK1 or MEK2
peptide is also provided, wherein the ligandor cofactor-binding pocket is defined by the atoms found in the structural
coordinates of the MEK1 or MEK2 peptide as set forth in Table 1 or Table 2, or in a related set of structural coordinates
having a root mean square deviation of not more than preferably about 1.25 Å away from the binding pocket C alpha
atoms of a MEK1 or MEK2 binding pockets.

G83, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, D151, G153, S154, D156, Q157, D194, K196, S198,

[0032] The invention also provides a machine-readable medium having stored thereon data comprising the atomic coordinates as set forth in Table 1 or Table 2, or a related set of structural coordinates having a root mean square deviation of not more than preferably about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2.

35 [0033] The invention also provides for applying the the atomic coordinates set forth in Table 1 or Table 2, or of a related set of atomic coordinates having a root mean square deviation of not more than preferably about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2, to a computer algorithm to generate a three-dimensional representation (also referred to as an "image") of a peptide or peptide binding poxet of the invention. This three-dimensional representation can be used, for example, in methods for modifying, designing, screening and identifying, and evaluating chemical entities that have the potential to associate with MEK1, WEK2 or a structurally related opeolide, and thus have the potential to be as inhibitor or enhancer of MEK1, MEK2.

(0034) Additionally, the invention provides methods for modifying or designing a chemical entity having the potential to associate with a peptide of the invention. The methods include generating a three-dimensional computer representation of the peptide or a binding pocket of the peptide and generating a chemical entity that spatially conforms to the three-dimensional representation of the peptide or the peptide binding pocket. The chemical entity may be generated by a method comprising (i) assembling molecular fragments into the chemical entity, (ii) de novo design of the chemical entity or a fragment thereof; (iii) selecting the chemical entity from a small molecule database; or (iv) modifying a known inhibitor, or portion thereof, which possess the ability to associate with either MEK1, MEK2 or the structurally related peptide.

[0035] The invention also provides methods for screening and identifying a potential inhibitor or enhancer of the activity of a peptide of the invention. The methods include generating a three-dimensional computer representation of the peptide or a binding pocket of the peptide; applying an interative process whereby a chemical entity is applied to the three-dimensional representation to determine whether the chemical entity associates with the peptide or peptide binding pocket; and evaluating the effect(s) of the chemical entity on peptide activity to determine whether the chemical entity functions as an activity inhibitor or enhancer.

[0036] Methods for evaluating the potential of a chemical entity to associate with a peptide according to the invention are also provided. The methods include generating a three-dimensional representation of the peptide or a binding

pocket of the peptide; applying a three-dimensional representation of chemical entity to the three-dimensional representation; and quantifying the association between the chemical entity and the binding pocket.

[0037] Additionally, the invention provides methods of utilizing molecular replacement to obtain structural information about a moleculer or am localular complex of unknown structure comprising crystallizing said molecule or molecular complex; generating an X-ray diffraction pattern from said crystallized molecule or molecular complex; and applying at least a portion of the structural coordinates set forth in Table 1 or Table 2 or having a set of structural coordinates with a root mean square deviation of preferably not more than about 1.25 Å from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2, to the X-ray diffraction pattern to generate a three-dimensional electron density may of at least a contion of the molecule or moleculer complex whose structure is unknown.

BRIEF DESCRIPTION OF THE DRAWINGS

5

15

20

40

45

50

55

[0038] The application file contains at least one drawing executed in color. Copies of the patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.

[0039] Figure 1. Figure 1 is a ribbon representation of the three-dimensional structure of the NH₂-terminally truncated MEKT peptide structure, in a ternary complex with 5-bromo-N-(2,3-dihydroxy-propxy)-3,4-diffuoro-2-(2-fluoro-4-lodo-pen-ylamino)-benzamide and MgATP. The alpha helical regions of the peptide are colored fue, the beta sheet regions are colored green, the ATP co-factor is purple, the magnesium atom is colored cyan and the inhibitor is colored red.

The Mg-ATP molecule is bound at the active site cleft between the NH₂- and COOH-terminal lobes as found in other kinase structures, while the inhibitor binds in a pocket at the back of the cleft formed in part by the activation loop.

[0040] Figure 2. Figure 2 is a ribbon representation of the three-dimensional structure of the NH₂-terminal yru Acadex. MEK2 peptide structure, in a termap complex with [5-13.4-Dillion-2-2(-flutor-1-diod-phenylamino)-phenyl]-1.3 A-ordiazol-2-yl]-(2-morpholin-4-yl-ethyl)-amine and MgATP. The alpha helical regions of the peptide are colored blue, the beta sheet regions are colored green, the ATP co-factor is purple, the magnesium atom is colored cyan and the inhibitor is colored red. The MgATP molecule is bound at the active site cleft between the NH₂-and CODH-terminal lobbs as found in other kinase structures, while the inhibitor binds in a pocket at the back of the cleft formed in part by the activation loos.

[0041] Figure 3. Figure 3 is superposition of the three-dimensional structures of MEK1 (blue) and MEK2 (red) peptides using the C alpha atoms of commonly observed residues.

30 [0042] Figure 4. Figure 4 illustrates the interactions involved in the orientation of the ligand (referred to as "pd0318088" in the figure) within the MEK1 active site. The back right side of the figure shows the H-donor and acceptor bond formed between the backbone nitrogen of Ser212 and the 4-fluore group of the inhibitor. Also shown at the top of the figure is the lodine of the inhibitor forming an electrostatic interaction with the backbone carbonyl of Val127. Finally, Leu115, Leu118 and Phe209 participate in forming the prime hydrophobic pocket.

Idea [0d43] Figure 5. Figure 5 illustrates the interactions involved in the orientation of the ligand (referred to as "PD0334581" in the figure) within the MEK2 active site. The back right side of the figure shows the H-donor and acceptor bond formed between the backbone nitrogen of Ser216 and the 4-fluoro group of the inhibitor. Also shown at the top of the figure is the lodine of the inhibitor forming an electrostatic interaction with the backbone carbonyl of Val131. Finally, Leu119, Leu122 and Phe213 participate in forming the prime hydrophobic pocket.

6

SEQUENCE LISTING

SEQ ID NO: 1 Full-length of MEK1 nucleotide

SEQ ID NO: 2 Full-length of MEK1 peptide

SEQ ID NO: 3 Full-length of MEK2 nucleotide

SEQ ID NO: 4 Full-length of MEK2 peptide

SEQ ID NO: 5 Probe for MEK1

10

15

20

30

35

40

45

SEQ ID NO: 6 Probe for MEK1

SEQ ID NO: 7 PCR primer for MEK1-C1/MEK1-C1(d280-323)

SEQ ID NO: 8 PCR primer for MEK1-C1/MEK1-C1(d280-323);

MEK1-C2/MEK1-C2(d280-323); and PCR primer for

MEK1-C3/MEK1-C3(d280-323)

SEQ ID NO: 9 PCR primer for MEK1-C2/MEK1-C2(d280-323)

SEQ ID NO: 10 PCR primer for MEK1-C3/MEK1-C3(d280-323)

25 SEQ ID NO: 11 PCR probe for MEK2

SEQ ID NO: 12 PCR probe for MEK2

SEQ ID NO: 13 PCR primer for MEK2-C1

SEQ ID NO: 14 PCR primer for MEK2-C2

SEO ID NO: 15 PCR primer for MEK2-C3

SEO ID NO: 16 PCR primer for MEK2-C4

SEQ ID NO: 17 PCR primer for MEK2-C5

SEO ID NO: 18 PCR primer for MEK2-C6

SEQ ID NO: 19 PCR reverse primer for MEK2-C1-C6

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0044] The present invention provides modified MEK1 and modified MEK2 peptides, and crystals of a peptide: ligand: cofactor complex that preferably comprise a ternary (i.e. tertiary) complex of a modified MEK1 peptide or modified MEK2 peptide, or a peptide that is structurally related to MEK1 or MEK2 peptide, at ligand and a cofactor.

[0045] According to one embodiment of the invention, the crystals are formed from recombinant human MEK1 peptide or recombinant human MEK2 peptide derived from a circular nucleic acid sequence that preferably has been expressed in a prokaryotic host and purified. The crystals diffract X-rays to a resolution better than 5Å. The information derived from the crystals provides three-dimensional crystallographic structural information for the MEK1 complex and the MEK2 complex, including ligand-binding and cofactor-binding sites of the MEK1 peptide, MEK2 peptide or a peptide that is structurally related to MEK1 or MEK2 peptide. The present invention includes the use of this structural information in, for example, the modification, design, screening and identification, and evaluation of chemical entities that have the potential to associate with MEK1 or MEK2 peptide, or a peptide that is structurally related thereto, and thus may inhibit or enhance MEK1 or MEK2 activity.

Defintions

[0046] As used herein, the terms "comprising" and "including" are used in the conventional, non-limiting sense.

[0047] As used herein, "ligand" means a small molecule that binds to or associates specifically with an enzyme and can be used to mean an inhibitor or an activator.

[0048] As used herein, "cofactor" means an inorganic molecule, an organic molecule or a coenzyme that is required for enzymatic activity. For example, ATP (adenosine triphosphate) is a cofactor used by a kinase enzyme to transfer a phosphate group, i.e. phosphorylate its substrate.

[0049] As used herein, the phrase "root mean square (RMS) deviation" denotes the structural relationship between two or more species of proteins or peptides. It means that the difference in the root mean square of the distance of the three-dimensional structure of one peptide from C-alpha (C_o) atoms or backbone trace of the MEK1 peptide or MEK2 peptide in units of Angstroms (A) unless indicated otherwise. It may be determined by superimposing one of the three-dimensional structures of the species on another, which may be solved by, for example, X-ray crystallography or by MMR and measuring the difference in the root mean square of the distance from C_o atoms or backbone trace of the MEK1 or MEK2 peptide to the other peptide in units of Angstroms (A). The superimposing of three-dimensional structures on one another may be performed using a molecular modeling program, for example CNX™ (Accellys), XtaNicw™ (Duncan McRee, Scrips Research Institute) or O™ (Morten Kjeldgaard, Ambus Univ.) Demark). The closer the relationship between the three-dimensional structures, the smaller will be the value of the RMS deviation. For example, the three-dimensional relationship between the structural coordinates of the C-alpha atoms of two ligand protein co-complex structures is typically between 0.0.5 Å RMS deviation. An example of the causation of a RMS deviation, specifically between the MEK1 and MEK2 crystalline structures of the Invention, is provided herein in Example 16.

[0050] Therefore, one embodiment of this invention is the three-dimensional structures of the modified MEK1 and MEK2 peptides in ternary complexes with a ligand and a cofactor as found in Table 1 and Table 2. An additional embodiment is a "structurally related" peptide, crystals of the structurally related peptide and the three-dimensional structures thereof.

[0051] As used herein, a "structurally related" protein or peptide refers to a protein or peptide that is defined by the structural coordinates of the MEK1 or MEK2 peptide as set forth in Table 1 or 1 Table 2 or a related set of structural coordinates having a root mean square deviation of from not more than about 1.5 Å to not more than about 0.50 Å from the core C alpha atoms of the MEK1 or MEK2 peptide structural coordinates as set forth in Table 1 or Table 2. Preferably the root mean square deviation is not more than about 0.50 Å, nore preferably not more than about 0.75 Å, even more preferably not more than about 1.00 Å, and most preferably not more than about 1.25 Å. An example of such a "structuralis viriated poptide" may be, but is not limited to, MEK5.

[0052] Similarly, as used herein, "related set of structural coordinates" refers to a set of structural coordinates having a root mean souare deviation in the range of from not more than about 1.5 Å to not more than about 5.0 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates a set forth in Table 1 or Table 2. Preferably the root mean square deviation is not more than about 0.50Å, more preferably not more than about 0.75 Å, even more preferably not more than about 1.26 Å, and most preferably not more than about 1.26 Å, and the preferably not more than about 1.26 Å, and the preferably not more than about 1.26 Å.

T0053] Ås used herein, "chemical entity" refers to a chemical compound, a complex of at least two chemical compounds, or a fragment of such a compound or complex. Such entities can be, for example, potential drug candidates and can be evaluated for their ability to inhibit or enhance the activity of MEK1, MEK2, or a structurally related peptide. [0054] As used herein, the term "inhibitor" or "inhibit" (or variations thereof) refers to a ligand such as a compound or substance that lowers, reduces, decreases, prevents, diminishes, stops or negatively interfers with MEK1's or MEK2's activity, or such actions. Often the terms "inhibitor" and "antagonists" can be used interchangeably. Inhibition is typically expressed as a percentage of the enzymes activity in the presence of the inhibitor over the remse activity without the inhibitor. Or it may be expressed in terms of IC50, the inhibitor concentration at which 50% of the original enzyme activity is observed.

[0055] As used herein, the term "enhancer" or "enhance" (or variations thereof) refers to a ligand such as a compound or substance that improves, increases, stimulates, raises or positively interferes with MEK1 or MEK2 activity, or such actions. Often the terms "enhancer" or "agonists" can be used interchangeably. An enhancer would increase the enzyme's activity.

[0056] As used herein, the terms "model" and "modeling" mean the procedure of evaluating (also referred to as "assessing") the affinity of the interaction between a MEK1, MEK2, MEK. like binding pocket and a chemical entity (also referred to as a "candidate compound") based on steric constraints and surface/solvent electrostatic effects.

MEK1 and MEK2

55

[0057] As used herein, the abbreviation "MEK1" or "Mek1" refers to the polynucleotide encoding the MAP kinase

/ERIK1 kinase, or the peptide per se. The MEK1 peptide is sometimes referred to as MAPKK, MPK1, MEK1, MAP kinase kinase to mMAP kinase /ERK1 kinase in the literature and throughout this application. The nucleic acid sequence of the polynucleotide encoding the full-length protein of MEK1 was published by Zheng and Guari (J. Biol. Chem. 268, 11435-11439 (1930)) and submitted to GenBank under the accession number L11284. The nucleic acid sequence described therein is provided herein, shown in SEQ ID NO: 2. This corresponding peptide sequence of the full-length protein is provided herein, shown in SEQ ID NO: 2. This peptide sequence was submitted to GenBank by Zheng et al. and Seger et al. and assigned Accession number NP_002746. It is noted that the numbering of SEQ ID NO:2 provided herein begins at the starting codon ATC (MeJ).

[0058] As used herein, the abbreviation "MEK2" or Mek2" refers to the polynucleotide encoding the MAP kinase set REIK2 kinase, or the peptide perso. The MEK2 peptide is sometimes also referred to as MAPKK2 or MPK2. MEK2 is a paralog of MEK1 in the literature and throughout this application. MEK2 peptide, and the polynucleotide encoding the full-length MEK2 peptide were reported by Zheng et al. (J. Biol. Chem. 288, 11435-11439 (1993)) and their sequences are available under GenBank Accession numbers P36507 and NM, 030662, respectively. The nucleic acid sequence encoding MEK2 and amino acid sequence of MEK2 peptide are provided herein as SEG ID NO: 3 and SEG ID NO: 4, respectively.

MEK1 and MEK2 Peptide Binding Pockets

5

15

40

50

55

[0059] As used herein, "binding pocket," also referred to as, for example, "binding site," "binding domain," "substrate-binding site," "catalytic domain," or "ligand-binding domain," iligand-binding site," "or -factor-binding site," or "co-factor-binding domain," refers to a region or regions of a molecule or molecular complex, that, as a result of its surface features, including, but not limited to, volume (both internally in cavities or in total), solvent accessibility, and surface charge and hydrophobicity, can associate with another chemical entity or compound. Such regions are of utility in fields such as drug discovery.

5 [0060] As used herein, a "MEK-like" peptide binding pocket refers to a peptide binding pocket defined by the atoms found in the structural coordinates set of the MEK? Or MEK2 peptide as set forth in Table 1 or Table 2, or defined by structural coordinates having a root mean square deviation ranging from not more than about 1.5 A to not more than about about 0.50 Å, preferably of not more than about 1.25 Å, away from the binding pocket C alpha atoms of any one of the MEK1 or MEK2 binding pockets (e.g. the MEK1 or MEK2 ordactor or ligand binding pockets defined above in the Summary of the Investion section), or a conservatively substituted variant thereof.

[0061] As used herein, the term "activity" refers to all activities, i.e., the function of MEK1 or MEK2 in the phosphorylation of its substrate ERK1, as well as to the enzymes' potency. Often the terms "activity" and "function" can be used interchangeably.

[0062] As used herein, the term "associate" refers to the process in which at least two molecules reversibly interact with each other, for example, by binding with each other. This may also refer to the process in which the conformation of the protein changes in response to the presence of a ligand to better accommodate the steric and electrostatic effects of the ligand. Associations between MEK1, MEK2, or a structurally related peptide and a ligand may occur with all or a part of a MEK1, MEK2, or MEK-like binding pocket. The association(e) may be non-covalent, e.g., wherein the juxtaposition is energetically favored by hydrogen bonding, van der Waals interactions or electrostatic interactions, or the association(only may be non-covalent).

MEK1 and MEK2 Peptides

[0063] The present invention provides isolated peptides and protein molecules that consist of, consist essentially of or are comprised of the amino acid sequences of the peptides encoded by the nucleic acid sequences disclosed in the SEQ ID NO: 1 and SEQ ID NO: 3, as well as obvious variants of these peptides that the within the art to make and use. Some of these variants are described in detail below.

Modified MEK1 Peptide

[0064] In one embodiment, the invention provides an isolated, substantially pure polypeptide comprising novel modified MEK1 peptides, constructed, for example, so as to omit a significant portion of the flexible NH₂-terminal tuncated MEK1 peptides). The NH₂-terminally tuncated MEK1 peptides of the present invention preferably retains the globular core of the corresponding full-length of MEK1 peptide of the present invention preferably retains the globular core of the corresponding full-length of MEK1 peptides and that MEK1 peptide can bind to ATP, its natural colactor, Preferably, the NH₂-terminally tuncated MEK1 peptides lack all or a significant portion (minimally 30 amino acids, preferably 41 amino acids, more preferably up to 50 amino acids, and oven more preferably up to 51 amino acids) of the flexible, partially disordered NH₂-terminal which includes a portion of the ERK1 binding domain. In addition, the NH₂-terminally tuncated MEK1 peptides may

have a methionine as the initial amino acid prior to the indicated sequence.

[0065] These NH₂-terminally truncated MEK1 peptide may further have a deletion of the MEK1 insertion loop-forming domain, particularly from amino acid 280 to 323 of SEQ ID NO: 2 or at least 40 amino acids from between 284 and 310 of SEQ ID NO: 2. This may include a deteletion of amino acids (1) from amino acid 284 to amino acid 310 of SEQ ID NO: 2; (2) from amino acid 270 to amino acid 310 of SEQ ID NO: 2; (3) from amino acid 264 to amino acid 305 of SEQ ID NO: 2; (4) amino acid 267 to amino acid 307 of SEQ ID NO: 2; or (5) from amino acid 265 to amino acid 304 of SEQ ID NO: 2; or (5) from amino acid 265 to amino acid 265 to amino acid 265 to amino acid 265 to amino acid

[0066] The MEK1 insertion loop domain may also be replaced with a linker peptide. Preferably, the linker peptide has at most 10 amino acid residues. More preferably, the linker peptide has the amino acid sequence Lys-Asn-Cys-Lys-Thr-Asn.

[0067] Alternatively, the MEK1 peptide may be modified by a deletion of the MEK1 insertion loop-forming domain and/or by replacement of the MEK1 insertion loop domain as described above, without NH₂-terminal truncation. [0068] These modified MEK1 peptides may also have a histline oligomer tag, for example a histidine hexamer tag

[0068] These modified MEK1 peptides may also have a histidine oligomer tag, for example a histidine hexamer tag (His-Tag) at its COOH-terminus.

15 [0069] For example, the modified MEK1 peptide can be chosen from any of the following: (1) a NH₂-terminally truncated MEK1 peptide comprising amino acids 62-393 of the sequence shown in SEQ ID NO: 2, optionally containing a COOH-terminal His-Tag; (2) a NH₂-terminally truncated MEK1 peptide comprising amino acids 62-393 of SEQ ID NO: 2 with an additional deletion of insertion loop-forming amino acid residues as described above, and optionally containing a COOH-terminal His-Tag; (3) a NH₂-terminally truncated MEK1 peptide comprising amino acids 51-393 of the se-20 quence shown in SEQ ID NO: 2, optionally containing a COOH-terminal His-Tag; (4) a NH2-terminally truncated MEK1 peptide comprising amino acids 51-393 of SEQ ID NO; 2 with an additional deletion of insertion loop-forming amino acid residues as described above, and optionally containing a COOH-terminal His-Tag; (5) a NH₂-terminally truncated MEK1 peptide comprising amino acids 42-393 of the sequence shown in SEQ ID NO: 2, and which may optionally contain a COOH-terminal His-Tag; (6) a NH2-terminally truncated MEK1 peptide comprising amino acids 42-393 of SEQ ID NO: 2 with an additional deletion of insertion loop-forming amino acid residues as described above, and optionally containing a COOH-terminal His-Tag; (7) a MEK1 peptide modified to have a deletion of insertion loop-forming amino acid residues as described above; and (8) a MEK peptide modified to replace the insertion loop-forming amino acid residues with a linker peptide, preferably Lys-Asn-Cys-Lys-Thr-Asp, with or without NH₂-terminal truncation de-

700 [0070] Preferably, the modified MEK1 peptides retain the conserved amino acids described below and comprises approximately 331 to 351 amino acids residues, or approximately 284 to 311 amino acid residues if the NH2-terminally truncated MEK1 peptides have a deletion within the peptide. The modified MEK1 peptide can be either phosphorylated or unphosphorylated. Similarly the modified MEK1 peptide can comprise one or more selenomethionines substituted for a naturally occurring methionine of the corresponding full-length MEK1 peptide. Of course, general modifications such as additional heavy atom derivatives common in X-ray crystallographic studies may also be performed on the modified MEK1 peptide of the present inventions.

[0071] In a preferred embodiment, the modified MEK1 peptide is derived from human MEK1 and lacks the residues from amino acid 1 to amino acid 41 of the N-terminal amino acids of the corresponding full-length MEK1. In a more 49 preferred embodiment, the modified MEK4 peptide lacks the residues from amino acid 1 to amino acid 50 of the N-terminal amino acids of the corresponding full-length MEK1. In the most preferred embodiment, the modified MEK1 peptide lacks the residues from amino acid 1 to amino acid 61 of the N-terminal amino acids of the corresponding full-length MEK1 shown in SEO ID NO: 2.

[0072] The modified MEK1 peptides of the present invention can be derived from any eukaryotic source, but is preferably a vertebrate MEK1, more preferably from a mammalian MEK1, and most preferably human MEK1.

Modified MEK2 Peptide

[0073] In another embodiment, the invention provides an isolated, substantially pure polypeptide comprising novel modified MEK2 peptides, constructed, for example, so as to omit a significant portion of the floxible NH₂-terminal tail, or a conservatively substituted variant thereof ("NH₂-terminally truncated MEK2 peptides"). The NH₂-terminally truncated MEK2 peptides of the present invention preferably retains the globular core of the corresponding full-length of MEK2 peptides, such that MEK2 peptide an bind to ATP, its natural cofactor. Preferably the NH₂-terminally truncated MEK2 peptides lack all or a significant portion (minimally 34 amino acids to at most 74 amino acids, preferably minimally 34 to at most 56 amino acids) of the flexible, partially disordered NH₂-terminus which includes a portion of the ERK2 binding domain. In addition, the NH₂-terminally truncated MEK2 peptides may have a methionine as the initial amino acid prior to the indicated sequence. These modified MEK2 peptides may also have a histidine oligomertag, for example a histidine hexamer tag (His-Tag) at its COOH terminus.

[0074] For example, the modified MEK2 peptide can be chosen from any of the following: (1) a N1-j-terminally truncated MEK2 peptide comprising amino acids 48-400 of the sequence shown in SEQ ID NO: 4, optionally containing a COCH-terminal His-Tag; (2) a N1-j-terminally truncated MEK2 peptide comprising amino acids 55-400 of the sequence shown in SEQ ID NO: 4, optionally contain a COCH-terminal His-Tag; (3) a N1-j-terminally truncated MEK2 peptide comprising amino acids 68-400 of the sequence shown in SEQ ID NO: 4, and which may optionally contain a COCH-terminal His-Tag; (4) a N1-j-terminally truncated MEK2 peptide comprising amino acids 59-400 of the sequence shown in SEQ ID NO: 4, and which may optionally contain a COCH-terminal His-Tag; (6) a N1-j-terminally truncated MEK2 peptide comprising amino acids 82-400 of the sequence shown in SEQ ID NO: 4, and which may optionally contain a COCH-terminal His-Tag; (6) a N1-j-terminally truncated MEK2 peptide comprising amino acids 84-400 of the sequence shown in SEQ ID NO: 4, and which may optionally contain a COCH-terminal His-Tag; (7) a N1-j-terminally truncated MEK2 peptide comprising amino acids 84-400 of the sequence shown in SEQ ID NO: 4, and which may optionally contain a COCH-terminal His-Tag; (7) a N1-j-terminally truncated MEK2 peptide comprising amino acids 84-400 of the sequence shown in SEQ ID NO: 4, and which may optionally contain a COCH-terminal His-Tag;

[0075] Preferably, the modified MEK2 peptides retain the conserved amino acids described below and comprises approximately 326 to 366 amino acids residues. The modified MEK2 peptide can be either phosphorylated or unphosphorylated. Similarly the modified MEK2 peptide can comprise one or more selenomethionines substituted for a naturally occurring methionine of the corresponding full-length MEK2 peptide. Of course, general modifications such as additional heavy atom derivatives common in X-ray crystallographic studies may also be performed on the modified MEK2 peptide of the present invention and such modifications are also included as part of the present invention and such modifications are also included as part of the present invention and such modifications are also included as part of the present invention and such modifications are also included as part of the present inventions.

15

20

50

55

[0076] In a preferred embodiment, the modified MEK2 peptide is derived from human MEK2 and lacks the residues from amino acid 1 to amino acid 45 of the N-terminal amino acids of the corresponding full-length MEK2 shown in SEQ ID NO: 4. In a more preferred embodiment, the modified MEK2 peptide lacks the residues from amino acid 1 to amino acid 54 of the N-terminal amino acids of the corresponding full-length MEK2 shown in SEQ ID NO: 4. In the most preferred embodiment, the modified MEK2 peptide lacks the residues from amino acid 1 to amino acid 65 of the N-terminal amino acids of the corresponding full-length MEK2 shown in SEQ ID NO: 4.

[0077] The modified MEK2 peptides of the present invention can be derived from any eukaryotic source, but is preferably a vertebrate MEK2, more preferably from a mammalian MEK2, and most preferably human MEK2.

[0078] As used herein, a protein or peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The proteins or peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the protein or peptide, even if in the presence of considerable amounts of other components.

[0079] In some uses, "substantially free of cellular material" includes preparations of the protein or peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), preferably less than about 20% other proteins, more preferably less than about 5% other proteins, more preferably less than about 5% other proteins. When the protein or peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

35 [0080] The language "substantially free of chemical precursors or other chemicals" includes preparations of the protein in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the protein having less than about 30% (by dry weight) chemical precursors or other chemicals, preferably less than about 10% chemical precursors or other chemicals.
20% chemical precursors or other chemicals, more preferably less than about 10% chemical precursors or other chemicals.

[0081] The isolated protein described herein can be purified from cells that naturally express MEK1 or MEK2 peptide or purified from cells that have been altered to express MEK1 or MEK2 (recombinant expression). For example, a nucleic acid molecule encoding the protein is cloned into an expression vector, the expression vector is introduced into a host cell and the protein is then expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

[0082] "Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified poptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. The terms "poptide", "polypeptide" and "protein" are used interchangeably herein. Polypeptides may contain amino acids other than the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in polypeptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art.

[0083] Accordingly, the polypoptidos also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code; in which a substitutent group is included, in which the mature polypoptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyeth-ylong qlycol), or in which the additional amino acids are fused to the mature polypoptide, such as a leader or scoretary

sequence or a sequence for purification of the mature polypeptide or a pro-protein sequence.

5

20

[0084] The present invention further provides for fragments of the MEK1 and MEK2 peptides, in addition to proteins and peptides that comprises and consist of such fragments. As used herein, a fragment comprises at least 8 or more contiguous amino acid residues from the protein kinases. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the kinase or could be chosen for the ability to perform a function, e.g. act as an immunogen. Particularly important fragments are biologically active fragments, peptides which are, for example about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase, e.g., active site. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., by PROSITE

[0085] Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moioty, covalent attachment of a nucleotide derivative covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demothylation, formation of covalent crosslinks, formation of covalent crosslinks, formation of covalent crosslinks, formation of pryogulamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, jodication, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, phenylation, racemization, selenoylation, suffered in the mediated addition of amino acids to proteins such as arripintalion, and ubjustituation.

[0086] Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts. For example, see Problem's Structure and Molecular Properties, 2nd Ed., TE. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are availation on this subject, such as by Work f. Prostrainstitional Covalent Modification of Proteins, B.C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seitter et al. (Meth. Enzymol. 182, 628-648 (1990)) and Rattan et al. (Jann. N.Y. Acad. Sci. 663; 48-62 (1992)).

[0067] The peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. *Operatively linked 'indicates that the peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the NH₂-terminus of the kinase peptide. *Operatively linked' in the violent period in the standard formation of the standard formation of the standard formation of the peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the NH₂-terminus of the dependent sources, and therefore a fusion peptide sinked in a fusion peptide are typically derived from two independent sources, and therefore a fusion peptide comprises two linked peptides not normally found linked in nature. The two peptides may be from the same or different enormal.

[0088] In some uses, the fusion protein does not affect the activity of the peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-this fusions. WC-tagged, H-tagged and ig fusions. Such fusion proteins, particularly poly-this fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

[0089] A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligited together in-frame in accordance with conventional 40 techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using another primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Blology, 1992). Moreover, many expression vectors are commercially evaluable that already encode a fusion moiety (e.g., a GST protein). A modified MEK1 peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in frame to the peptide.

Nucleic Acids and Polynucleotides Encoding Modified MEK1 and MEK2 Peptides

[0090] The present invention also provides isolated nucleic acid molecules that encode the functional, active kinases of the present invention. Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention. an allelic variant thereof, or an ortholog or paralog thereof.

55 Polynucleotides Encoding Modified MEK1 Peptides

[0091] In a particular embodiment, the invention also provides isolated, purified polynucleotides that encode novel modified MEK1 peptides, such as NH₂-terminally truncated MEK1 peptides, MEK1 peptides having a deletion of in-

sertion loop-forming domains, and/or MEK1 having the insertion loop domain replaced with a linker peptide.

[0092] The polynucleotide may be natural or recombinant. In one embodiment, the nucleic acid sequence encodes a modified MEK1 peptide having an amino acid sequence of amino acids from between amino acids 42 and 62 to amino acid 393 of SEQ ID NO; 2 or a conservatively substituted variant thereof. In particular, the nucleic acid sequence encodes a modified MEK1 peptide having an amino acid sequence of amino acids 42 to 393 of SEQ ID NO: 2 or an amino acid sequence that differs from amino acid 42 to 393 of SEQ ID NO: 2 by only having conservative substitutions. Alternatively, the nucleic acid sequence encodes a modified MEK1 peptide having an amino acid sequence of amino acids 51 to 393 of SEQ ID NO: 2 or an amino acid sequence that differs from amino acid 51 to 393 of SEQ ID NO: 2 by only having conservative substitutions. Or, the nucleic acid seguence encodes a modified MEK1 peotide having an amino acid sequence of amino acids 62 to 393 of SEQ ID NO; 2 or an amino acid sequence that differs from amino acid 62 to 393 of SEQ ID NO: 2 by only having conservative substitutions. Such polynucleotides may be, for example, one having the sequence set forth in SEQ ID NO: 1 with deletion of the portion encoding the first 41-61 amino residues of the sequence of SEQ ID NO: 2.

[0093] In addition, the polynucleotide may encode the modified MEK1 peptide to further have a deletion of insertion loop-forming domain, particularly from amino acid 280 to 323 of SEQ ID NO; 2; or at least 40 amino acids from between amino acid residue 264 and amino acid 310 of SEQ ID NO: 2. This may include a deletion of amino acids (1) from amino acid 264 to amino acid 310 of SEQ ID NO: 2; (2) from amino acid 270 to amino acid 310 of SEQ ID NO: 2; (3) from amino acid 264 to amino acid 305 of SEQ ID NO: 2; (4) amino acid 267 to amino acid 307 of SEQ ID NO: 2; or (5) from amino acid 265 to amino acid 304 of SEQ ID NO: 2.

20 [0094] Moreover, the polynucleotide may encode the MEK1 peptide modified to replace the MEK1 insertion loopforming amino acid residues with a linker peptide, preferably Lys-Asn-Cys-Lys-Thr-Asp, either alone or in combination with the NH₂-terminal truncations described above.

[0095] The polynucleotide of the invention also may encode the MEK1 peptides modified to have a deletion of insertion loop-forming amino acid residues as described above, without NH2-terminal truncation.

[0097] In another particular embodiment, the invention also provides isolated, purified polynucleotides that encode

[0096] Also, any of these amino acid sequences may contain one or more selenomethionines in place of a methionine. Further, these modified MEK1 peptides and their various variants may have a histidine oligomer tag, for example a histidine hexamer tag (His-tag) at their COOH-terminus.

Polynucleotides Encoding Modified MEK2 Peptides

15

30

novel modified MEK2 peptides, such as NH2-terminally truncated MEK2 peptides. The polynucleotide may be natural or recombinant. In one embodiment, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids from between amino acids 46 and 66 to amino acid 400 of SEQ ID NO: 4 or a conservatively substituted variant thereof. In particular, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids 46 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 46 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Alternatively, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids 55 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 55 to 400 of SEQ ID NO: 4 by only having conservative substitutions. 40 Or, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids 66 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 66 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Alternatively, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids 59 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 59 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Or, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids 62 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 62 to 400 of SEQ ID NO; 4 by only having conservative substitutions. Additionally, the nucleic acid sequence encodes a modified MEK2 peptide having an amino acid sequence of amino acids 64 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 64 to 400 of SEQ ID NO: 4 by only having

conservative substitutions. Such polynucleotides may be, for example, one having the sequence set forth in SEQ ID [0098] Also, any of these amino acid sequences may contain one or more selenomethionines in place of a methionine. Further, these modified MEK2 peptides and their various variants may have a histidine oligomer tag, for example a histidine hexamer tag (His-tag) at their COOH-terminus.

NO: 3 with deletion of the portion encoding the first 45-65 amino residues of the sequence of SEQ ID NO: 4

[0099] As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present 55 in the natural source of the nucleic acid, Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA or cDNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, particularly contiguous peptide encoding sequences and peptide encoding sequences within

the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

- [0100] Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.
- [0101] For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of Isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention, Isolated nucleic acid molecules according to the present invention further include such molecules produced swithdicially.
- [0102] The preferred classes of nucleic acid molecules that are comprised of the nucleotide sequences of the present are the full-length cDNA molecules and genes and genomic clones since some of the nucleic acid molecules provided in SEQ ID NO: 1 are fragments of the complete gene that exists in nature. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided herein.
- [0103] Full-length genes may be cloned from known sequence using any one of a number of methods known in the art. For example, a method which employs XL-PCR (Perkin-Elmer, Foster City, Calif.) to amplify long pieces of DNA may be used. Other methods for obtaining full-length sequences are known in the art.
 - [0104] The isolated nucleic acid molecules can encode the active protein plus additional amino or carboxyl-terminal amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to an active form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature active protein by cellular enzymes.
 - [0105] As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the active kinase alone or in combination with coding sequences, such as a leader or secretary sequence (e.g., a prepro or pro-protein sequence), the sequence encoding the active kinase, with or without the additional coding sequences, plus additional non-coding sequences, for example infrons and non-coding 5 and 5° sequences such as transcribed but non-translated sequences that play a role in transcribine. mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a popilide that facilitates purification.
- [0106] Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form of DNA, including 35 cDNA and genomic DNA, obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (antisense strand).
- [0107] The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention and that encode obvious variants of the kinase proteins of the present invention that are described above.

 40 Such nucleic acid molecules may be naturally occurring, such as alloilic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.
- [0108] A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could be at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode optiope bearing regions of the poptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A flabeled probe and then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.
 - [0109] A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12; 20, 25, 40, 50 or more consecutive nucleotides.

55

[0110] Orthologs, homologs, and allelic variants can be identified using methods known in the art. As described above, these variants comprise a nucleotide sequence encoding a peptide that is typically 60%, preferably 65%, more preferably 70%, or even more preferably 75% or more homologous to the nucleotide sequence provided in SEQ ID

NO: 1 or SEQ ID NO: 3 or a fragment of this sequence. In one preferred embodiment, the variants comprise a nucleotice sequence encoding a peptide that is at least 80%, preferably 85%, more preferably 90%, even more preferably 95% or more homologous to the nucleotide sequence provided in SEQ ID NO: 1 or SEQ ID NO: 3 or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3 or a fragment of the sequence.

5

15

20

25

30

40

50

55

[0111] As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 50%, preferably at least 55% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least 65%, preferably at least 70%, or more preferably at least 75% homologous to each other typically remains hybridized to each other. Standard hybridization conditions from moderate to highly stringent conditions are known to those skilled in the art (See e.g., Current Protocols in Molecular Biology, John Willey & Sons, N.Y. (1889), 6.3.1-6.3.6). Moderate hybridization conditions are defined as equivalent to hybridization in 2X socium chloride/sodium citrate (SSC) at 30 °C, followed by one or more washes in 1X SSC, 0.1% SDS at 50-60 °C. Highly stringent conditions are defined as equivalent to hybridization in 6X sodium chloride/sodium citrate (SSC) at 45 °C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50-65 °C.

[0112] The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermodiates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for cDNA and genomic DNA to isolate full-length cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides described herein. [0113] The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the SEQ ID NO: 1 or SEQ ID NO: 3. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as those which may encompass fragments disclosed prior to the present invention.

[0114] The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.

[0115] The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations. The nucleic acid molecules are also useful for expressing antigenic portions of the proteins; useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods; useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein; and useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides. The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides; and useful for making vectors that express part, or all, of the peptides. The nucleic acid molecules are further useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

[0116] In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

[0117] Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a kinase protein, such as by measuring a level of a receptor-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genonic DNA, or determining if a receptor gene has been mutated.

Vectors And Host Cells For Producing Modified MEK1 and MEK2 Peptides

[0118] The present invention also provides for an expression vector for producing the modified MEK1 and MEK2 peptides described above in a host cell. It further provides a host cell which may be stably transformed and transfected with a polynucleotide encoding the modified MEK1 and MEK2 peptides described above, or a fragment thereof or an analog thereof, in a manner allowing the expression of the modified MEK1 and MEK2 peptides. The present invention also provides expression vectors comprising the nucleic acids of the present invention operatively associated with an expression control sequence.

MEK1 Expresion Vectors

5

15

20

30

40

[0119] The expression vector may contain a nucleic acid encoding a modified MEK1 peptide having an amine acid sequence from between amine acids 42 to a field \$30 s ESC ID NO: 2 or a conservatively substituted variant thereof. In one embodiment, the expression vector contains a nucleic acid encoding a modified MEK1 peptide having an amine acid sequence that differs from amine acid sequence 5 amine acids 42 to 393 of SEG ID NO: 2 by only having conservative substitutions. In an attenuative embodiment, the expression vector contains a nucleic acid encoding a modified MEK1 peptide having an amine acid sequence between amine acids 5 to 393 of SEG ID NO: 2 or an amine acid sequence that differs from amine acids 5 to 393 of SEG ID NO: 2 or an amine acid sequence that differs from amine acids 5 to 393 of SEG ID NO: 2 or an amine acid sequence that differs from amine acids 5 to 393 of SEG ID NO: 2 or an amine acid sequence that differs from amine acids 5 to 393 of SEG ID NO: 2 or an amine acid sequence that differs from amine acids sequence of amine acids 52 to 393 of SEG ID NO: 2 or an amine acid sequence that differs from amine acids 52 to 393 of SEG ID NO: 2 by only having conservative substitutions. Such polynuclootides may be, for example, one having the sequence of SEG ID NO: 1 with deletion of the portion encoding the first 41 - 61 amine residues of the sequence of SEG ID NO: 1 with deletion of the portion encoding the first 41 - 61 amine residues of the sequence of SEG ID NO:

[0120] In addition, the expression vector may contain a nucleic acid encoding a modified MEK1 having a NH₂-terminal truncation and a deletion of insertion loop-forming amino acid residues, particularly from amino acid 280 to amino acid 323 SEQ ID NO: 2; or at least 40 amino acids from between amino acid residues 264 and amino acid 310 of SEQ ID NO: 2. This may include a deletion of amino acids (1) from amino acid 264 to amino acid 310 of SEQ ID NO: 2; (2) from amino acid 270 to amino acid 310 of SEQ ID NO: 2; (3) from amino acid 267 to amino acid 350 of SEQ ID NO: 2; (4) amino acid 267 to amino acid 367 to amino ac

amino acid residues as described above without NH₂-terminal truncation.
[0121] Also, the expression vector may contain a nucleic acid encoding a modified MEK1 peptide wherein the insertion loop-forming amino acid residues are replaced with a linker peptide, preferably Lys-Asn-Cys-Lys-Thr-Asp, with or

[0122] Also, any of these expression vectors may optionally contain a nucleic acid encoding a modified MEK1 peptide having one or more selenomethionines in place of a methionine. The expression vector may also optionally contain a nucleic acid encoding a modified MEK1 peptide having a histidine oligomer tag, for example a histidine hexamer tag (His-tao) at its COOH-terminus.

MEK2 Expresion Vectors

without NH2-terminal truncation as described above.

[0123] The expression vectors of the invention may also contain a nucleic acid encoding a modified MEK2 peptide having an amino acid sequence from between amino acids 46 and 66 to amino acid 400 of SEQ ID NO: 4 or a conservatively substituted variant thereof. In particular, the expression vector may contain a nucleic acid sequence encoding a modified MEK2 peptide having an amino acid sequence of amino acids 46 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 46 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Alternatively, the expression vector may contain a nucleic acid sequence encoding a modified MEK2 peptide having an amino acid sequence of amino acids 55 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 55 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Or, the expression vector may contain a nucleic acid sequence encoding a modified MEK2 peptide having an amino acid sequence of amino acids 66 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 66 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Alternatively, the expression vector may contain a nucleic acid sequence encoding a modified MEK2 peptide having an amino acid sequence of amino acids 59 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 59 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Or, the expression vector may contain a nucleic acid sequence encoding a modified MEK2 peptide having an amino acid sequence of amino acids 62 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 62 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Additionally, the expression vector may contain a nucleic acid sequence encoding a modified MEK2 peptide having an amino acid sequence of amino acids 64 to 400 of SEQ ID NO: 4 or an amino acid sequence that differs from amino acid 64 to 400 of SEQ ID NO: 4 by only having conservative substitutions. Such expression vectors may be, for example, one containing a nucleic acid sequence encoding the sequence set forth in SEQ ID NO: 3 with deletion of the portion encoding the first 45-65 amino residues of the sequence

[0124] Also, any of these expression vectors may optionally contain a nucleic acid encoding a modified MEK2 peptide having one or more selenomethionines in place of a methionine. The expression vector may also optionally contain a nucleic acid encoding a modified MEK2 peptide having a histidine oligomer tag, for example a histidine hexamer tag (Histata) at its COOH-terminus.

[0125] The present invention further includes a cell transfected or transformed with an expression vector of the

present invention. Any of the cells mentioned below may be employed in this method. In one embodiment, the cell is a prokaryotic cell. Preferably, the prokaryotic cell is an *E. coli* cell. In another embodiment the cell is an eukaryotic cell, such as an insect cell or a vertebrate cell, which may be, for example, a mammalian cell.

[0126] The present invention also includes methods for expressing the modified MEK1 and MEK2 peptides comprising culturing a cell that expresses the modified MEK1 or MEK2 peptide in an appropriate cell culturing conditions that provide for expression of the protein by the cell. Any of the cells mentioned above may be employed in this method. In a particular embodiment, the cell is a yeast cell which has been manipulated to express a modified MEK1 or MEK2 peptide of the present invention. In a preferred embodiment, the prokaryotic cell is an E. coli cell which has been manipulated to express a modified MEK1 or MEK2 peptide of the present invention.

[0127] The invention also provides vectors containing the nucleic acid molecules described herein. The term 'vector' refers to a vehicle, preferably a nucleic acid molecule that can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. The vector preferably includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as BAC, PAC, YAC, or MAC, which are commercially available from. for example, Clagan (Valencia, CA). Various expression vectors known in the art can be used to express polynucleotide encoding the MEX to TMEX2 pestide.

[0128] A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

20 [0129] The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

[0130] Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with ne dis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

(0131) The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ, the lac, TRP, and TAC promoters from E. cofi, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

[0132] In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTA enhancers. [0133] In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribled region a ribosome-binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., (Molecular Cloring:

A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989)).

50

[0134] A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, perivade from viruses uses, and retroviruses. Vactors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g., cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY, (1989).

[0135] The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are known to those of ordinary skill in the art.

55 [0136] The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are known to those of ordinary skill in the art.

[0137] The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Strep-com/ces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Dro-sophila, animal cells such as COS and CHO cells, and plant cells.

[0138] As described herein, it may be desirable to express a peptide of the present invention as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of such peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic eleawage site may be introduced at the junction of the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pRS (Sikorski, et al., Genetics 12Ct): 19-27 (1899), pGEX (Simith et al., Genet 67: 31-40 (1989)), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione Stransferses (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. colf expression vectors include pTirc (Amann et al., Gene 69. 301-315 (1988)) and pET 11d (Studier et al., Gene Expression Technolox: Methods in Enzymolox 185: 60-98 (1990)).

[0139] Recombinant protein expression can be maximized in a host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California 119-128 (1990)). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20: 2111-2118 (1992)).

[0140] The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6: 229-234 (1987)), pMFa (Kurjan et al., Gell 30: 933-943 (1982)), pJRY88 (Schultz et al., Gene 54: 113-123 (1987)), and pYES2 (Invitrogen Corporation. San Diego. CA).

20

40

50

25 [0141] The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured lases cells [6.g., SI9 cells] include the pA series (Smith et al., Mol. Cell Biol. 3: 2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170: 31-39 (1989)). In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian expression vectors include pCDM8 (Seed, B. Nature 329: 840 (1987)) and bMT2PC (Kaufman et al., EMBO. J. 6. 187-195 (1987)).

[0142] The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the at that would be useful to express the nucleic acid molecules. Preferred vectors include the pET24b (Novagen, Madison, WI), pAcSQ2 (Pharmingen, San Diego, CA), and pFastBac (Life Technologies, Gaithersburg, MD). The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Friish, E. F., and Manistis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory. Cold Spring Harbor Laboratory Perss, Cold Spring Harbor (1989).

[0143] The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned (1143) and the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, 1sues specific expression).

[0144] The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include, for example, prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells. Preferred host cells of the instant invention include E. coli and Si9.

[0145] The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloring: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY, 1989).

[0146] Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-aciting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or inited to the nucleic acid molecule vector.

[0147] In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

[0148] Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or amplicillin-resistance genes for prokaryotic host cells and diflydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotycic trait will be effective.

[0149] While the active protein kinases can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

[0150] Where secretion of the peptide is desired, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the proteins or heterologous to these proteins.

15 [0151] It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

[0152] The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing the MEK1 and MEK2 peptides or a peptide that can be further purified to produce desired amounts of the peptide or fragments. Thus, host cells containing expression vectors are useful for peptide production.

[0153] Host cells are also useful for conducting cell-based assays involving the protein or protein fragments. Thus, a recombinant host cell expressing a native protein is useful for assaying compounds that stimulate or inhibit protein function

(0154) Host cells are also useful for identifying protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that hatve a desired effect on the mutant protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native protein.

[0155] Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the meture animal in one or more cell types or tissues of the transgenic animal. Those a minimals are useful for studying the function of the MEK1 or MEK2 peptide and identifying and evaluating modulators of the protein activity. Other examples of transgenic animals include non-human orimates, sheen, does cows, coats, chickons, and amphibians.

Peptide Purification of Modified MEK1 and MEK2

[0156] The purification conditions and methods as listed herein are provided to elucidate the approach used in the purification of the MEK1 and MEK2 peptides and for the formation, for example, of the MEK1: ligand: cofactor and MEK2:ligand:cofactor complexes. Of course those of ordinary skill in the art would be aware of other purification conditions and techniques that may be suitable for the purification of the modified MEK1 and MEK2 proteins described herein. For examples see, Methods in Enzymology, Volume 182; Guide to Protein Purification, edited by M.P. Duetscher, Academic Press (1990).

Purification of Modified MFK1

50

55

5

[0157] The invention provides a multiple step method for purifying the modified MEK1 peptide, described herein, to near homogeneity. The modified MEK1 peptide, preferably the MEK1 peptide with a poly-histidine tag at the COOH-terminus, may be advantageously purified by employing immobilized metal affinity chromatography (IMMC). The immobilized metal may be nickel, zinc, cobalt, or copper. Preferably, the immobilized metal is cobalt, as found in the TALON™ metal affinity resin from ClonTech. The IMAC step may be performed on the soluble fraction of the fermentation broth containing the expressed MEK1 peptide, which is obtained after the host cell lysis. The host cell lysis processes are known to those skilled in the art and may be selected for by them without difficulty. For example, when the complex of the containing the expression of the fermion of the ferminal processes are known to those skilled in the art and may be selected for by them without difficulty. For example, when can be sufficiently of the containing the cool-them and life life. The modified MEK1 peptide containing the COOl-theminal His-Tag, may be

purified by immobilized motal chelate (IMAC) chromatography. The IMAC step may be accomplished with the following resins, but not limited to: Ni-NTA[™] resin from Glagen, HisTrap[™] resin from Pharmacia, POROS[™] MC resin from Applied Biosystems or TALON resin from Clontech. Preferably, TALON resin is used. More preferably, the IMAC step is accomplished by the use of resin in a ratio of about 2 mL resin to about 1 g wet weight of whole cells, prior to cell lysis. [159] An additional aspect of the invention includes the use of a transition state analogue and a metal cation to displace a contaminant protein during the IMAC purification. When *E. coli* is employed as a host cell for expressing the MEK1 peptides, contaminant protein such as *E. coli* proly Isomerase are contamined in the fermentation broth, and are preferably removed before crystalization. For the invention, a transition state analogue and a metal cation are employed to replace the contaminant protein during MEK1-binding and contaminant removal steps of the IMAC purification. The transition state analogue way be, but is not limited to, pyrrole-2-carboxylate, 1-pyrroline-2-carboxylate, or tetrahydrofuran-2-carboxylate. Preferably, the transition state analogue is pyrrole-2-carboxylate. The transition state analogue. I present, has a concentration of from about 0.1 mM to about 2.0.0 mM, and oven more preferably has a concentration of about 1.0 mM. As a source of the metal cation, a form of the zinc cation may be employed. It may be used in any salt form, for example zinc acetate, zinc chloride or zinc sulfate. Preferably, zinc is used in the form of zinc chioride at a concentration of about 0.0 of about 0.0 mM.

[0160] The MEK1-binding and contaminant removal steps of the IMAC purification may be performed in the presence of any suitable buffering agent. For example, the buffering agent may be, but is not limited to, Tris [Tris(hydroxymethyl)-aminomethane], HEPES (N-2-hydroxyethyl-piporazine-N-2-ethanesulfonic acid), potassium phosphate, ammonium monobasic phosphate, or MOPS (3-(N-morpholino) propanesulfonic acid). Preferably, the buffering agent is about 5.0 nm Marmonium or potassium monobasic phosphate having a pH of about 8.0. [0161] The binding and contaminant removal steps of the IMAC purification may be performed in the presence of any suitable contaminating protein-displacing agent may be, but is not limited to, imidazole, or histidine. Preferably, the contaminating protein-displacing agent is about 5.0 mM imidazole. [0162] The binding and contaminant removal steps of the IMAC purification can be performed in the presence of any suitable contaminating protein-displacing agent is about 5.0 mM imidazole.

15

20

30

50

suitable reducing agents. The reducing agent may be, but is not limited to, 2-mercaptoethand, or TCEP (ris2-Carboxyethylphosphine) hydrochloride). Preferably, the reducing agent is about 2.0 mM TCEP. [0163] The binding and contaminant removal stees of the IMAC purification may be performed in the presence of a

detergent. The detergent may be, but is not limited to, CHAPS (34(3-cholamidoproph))-improvement in detergent. The detergent may be, but is not limited to, CHAPS (34(3-cholamidoproph))-impropanesulfonate), Triton X-100, Nonidet P-40, Tween 20, or Tween 80. Preferably, the detergent is about 10.0 mM CHAPS.

[0164] The binding and contaminant removal steps of the IMAC purification may be performed in the presence of an ion source. The ion source may be, but is not limited to, KCI, NaCI, or sodium sulfate. Preferably, an ion source is about 0.3 M NaCI.

[0165] The elution of MEK1 from the IMAC resin may be accomplished by several modes, which are known in the str. For example, the elution of MEK1 from the IMAC column may be accomplished by using, for example, EDTA, histidine, or imidazole, or by reducing the pH. Preferably, the elution of MEK1 may be accomplished with about 100 mM EDTA.

[0166] The elution step of the IMAC purification may be performed in the presence of any suitable buffring agent (s). The buffering agent may be, but is not limited to, Tris, ammonium monobasic phosphate, HEPES, or MOPS. Preferably, the buffering agent may be about 20.0 mM HEPES or (pH of about 8.0). The elution of MEK1 also may be performed in the presence of any suitable organic agents. The organic agent may be, but is not limited to, glycerol or ethylene glycoc. Preferably, the organic agent is about 10% glycerol.

[0167] The invention also provides a method for further purifying the protein using cation and anion exchange chromatography, followed by size exclusion chromatography (SEC). The cation exchange chromatography could occur prior to the anion exchange chromatography could occur prior to the cation exchange chromatography. Further, the ion exchange steps could be eliminated all together. The preferred method is to perform the cation exchange step prior to the anion exchange step, which is followed by protein concentration and size exclusion chromatography.

[0168] The cation exchange step may be performed using several types of chromatography resins. For example, the cation exchange resin may be, but is not limited to, S-Sepharose™, MonoS™, POROS™ MS, or POROS™ S. Preferably, the cation exchange resin is POROS™ S. The cation exchange step may be performed in the presence of any suitable buffering agent(s). The buffering agent may include, but is not limited to, phosphate, malonic acid, butaneoiloic acid, acetic acid. MES (2-(N-morpholino)-ethanesulfonic acid), or HEPES. Preferably, the buffering agent is about 20.0 mM MES (of he about 6.4).

59 [0169] The cation exchange step may be performed in the presence of any suitable reducing agent(s). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP, or dithiothreitol (DTT). Preferably, the reducing agent is about 2.0 mM TCEP.

[0170] The cation exchange step may be performed in the presence of any suitable organic agent(s). The organic

- agent may be, but is not limited to, glycerol or ethylene glycol. Preferably, the organic agent is about 20.0% ethylene glycol.
- [0171] Elution of the MEK1 from the cation exchange resin may be accomplished by several different modes that are known in the art. For example, the MEK1 may be eluted by increasing the pH. Alternatively, the MEK1 may be eluted by increasing the salt concentration by using, for example, NaC1, KC1, ammonium acetate, or sodium sulfate. Preferably, ammonium acetate may be used to cause the elution by an increase of the salt concentration.
- [0172] The anion exchange step may be performed using several types of chromatography resin(s). The anion exchange resin may be, but is not limited to, Q-Sepharose™, DEAE-Sepharose™, MonoQ™, POROS™ HQ, or PO-ROS™ PI, Preferably, the exchange resin is POROS™ HQ.
- [0173] The anion exchange step may be performed in the presence of any suitable buffering agent(s). The buffering agent may be, but is not limited to, HEPES, Tris, bis-Tris, bis-Tris Propane, N-methyldiethanolamine, 1,3-diaminopropane, ethanolamine, piperazine, or ammonium monobasic phosphate. Preferably, the buffering agent is about 20.0 mM Tris (pH of about 8.0).
- [0174] The anion exchange step may be performed in the presence of any suitable reducing agent(s). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP, or DTT. Preferably, the reducing agent is about 2.0 mM TCEP.
 - [0175] The anion exchange step may be performed in the presence of any suitable salt(s). The salt may be NaCl, KCl. ammonium acetate, or sodium sulfate. Preferably, the salt is about 10.0 mM ammonium acetate.
- [0176] The SEC step may be performed using various types of chromatography resins. For example, the suitable 20 SEC resin may include, but is not limited to, Sephadex¹¹⁰ G-2100, Sephadex¹¹⁰ G-200, Sephacryl¹¹⁰ S-100, Sephacryl¹¹⁰ S-200. Superdex¹¹⁰ Co. Preferably, the SEC resin is Superdex¹¹⁰ Sec.
 - [0177] The SEC step may performed in the presence of any suitable buffering agent(s). The buffering agent may be, but is not limited to, phosphate, HEPES, MES, Tris, bis-Tris, or bis-Tris propane. Preferably, the buffering agent is about 20.0 mM HEPES (bit of about 7.5).
- [0178] The SEC step may be performed in the presence of any suitable reducing agent(s). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP, or DTT. Preferably, the reducing agent is about 2.0 mM TCEP.
 - [0179] The SEC step may be performed in the presence of any suitable salt(s). The salt may be, but is not limited to, NaCl, KCl, ammonium acetate, or sodium sulfate. Preferably, the salt is about 150.0 mM ammonium acetate.
- [0180] The SEC step may be performed in the presence of any sulfable chelating agent(s). The chelating agent may be, but is not limited to, sodium citrate or EDTA. Preferably, the salt is about 0.5 mM EDTA.
 - [0181] The invention also provides a method for forming a MEK1: ligand complex. The MEK1: ligand complex formation may be performed at any point during the MEK1 purification. Preferably, the MEK1: ligand complex formation step may be performed prior to the SEC step. Alternatively, the MEK1: ligand complex formation step could be performed after the protein has been completely purified. The MEK1: ligand complex formation step may be performed at various concentrations of MEK1. For example, the concentration of MEK1 may be in the range of about 0.02 mg/ml to about 2 mg/ml. Preferably, the concentration of MEK1 is about 0.2 mg/ml to about 0.3 mg/ml. Further, the MEK1: ligand complex formation step may be performed at various molar ratios of MEK1 to ligand may be in the range of about 1:1 to about 1:1000. Preferably, the molar ratio of MEK1 to ligand may be in the range of about 1:1 to about 1:1000. Preferably, the molar ratio of MEK1 to ligand may be in the range of about 1:1 to about 1:1000. Preferably, the molar ratio of MEK1 to ligand

Purification of Modified MEK2

40

55

[0182] The invention also provides a multiple step method for purifying the modified MEK2 peptide, described herein, to near homogeneity. The modified MEK2 peptide with a poly-histidine tag at the COOH-terminus, may be advantageously purified by employing immobilized metal affinity chromatography (IMMC). The immobilized metal may be, for example, nickel, zinc, cobalt, or copper. Preferably, the immobilized metal is cobalt, as found in the TALONI*m metal affinity resin from ClorTech. The IMAC step may be performed on the soluble fraction of the fermentation broth containing the expressed MEK2 peptide, which is obtained after the hast cell lysis. The host cell significant is shown to those skilled in the art and may be selected for by them without difficulty. For example, when E. coli is used as host cell for expressing the MEK2 peptides, E. colf cell lysis may be enzymatically performed, for example by using lysozyme. Alternatively, mechanical processes using a french press, sonicatio, or lead bill may be employed. Preferably a mechanical lysis using a bead mill (DynoMill KOL) is used to perform E. coli cell lysis.

[0183] The modified MEK2 peptide, preferably the MEK2 peptide containing the COOH-terminal His-Tag, may be purified by immobilized metal chelate (IMAC) chromatography. The IMAC step may be accomplished with, for example, the following resins: NI-NTA^M resin from Qlagen, HisTrap^M resin from Pharmacia, POROSTM MC resin from Applied Biosystems or TALON resin from Clontech. Preferably, TALON resin is used. More preferably, the IMAC step is accomplished by the use of resin in a ratio of about 1 mL resin to about 5 g wet weight of whole cells, prior to cell lysis. [0184] An additional aspect of the invention includes the use of a transition state analoque and metal to displace a

contaminant protein during the IMAC purification. When *E. coli* is employed as a host cell for expressing the MEK2 peptides, contaminant proteins such as *E. coli* profyl isomerase are contained in the fermentation broth, and are preferably removed before crystallization. For the invention, a transition state analogue and a divalent metal cation are employed to displace the contaminant protein during the MEK2-binding and contaminant removal steps of the IMAC purification. The transition state analogue may be, but is not limited to, pyrole-2-carboxylate, b.1-pyroline-2-carboxylate, or tetrahydrofuran-2-carboxylate. Preferably, the transition state analogue is pyrole-2-carboxylate. The transition state analogue, if present, has a concentration of from about 0.1 mM to about 20.0 mM, and even more preferably has a concentration of about 1.0 mM. As the divalent metal cation, zinc may be employed. It may be used in any salt form, for example zinc acetate, zinc chloride or zinc sulfate. Preferably, zinc is used in the form of zinc chloride at a concentration of about 0.06 mM.

5

15

25

55

[0185] The MEK2-binding and contaminant removal steps of the IMAC purification may be performed in the presence of any suitable buffering agent. For example, the buffering agent may be, but is not limited to, Tris [Tris(hydroxymethyl)-aminomethane], HEPES (N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid), potassium phosphate, or MOPS (3-(N-morpholino) propanesulfonic acid). Preferably, buffering agent is about 50.0 mM potassium phosphate having pH of about 8.0.

[0186] The binding and contaminant removal steps of the IMAC purification may be performed in the presence of any suitable contaminating protein-displacing agents. The contaminating protein-displacing agent may be, but is not limited to, imidazole, or histidine. Preferably, the contaminating protein-displacing acent is about 5.0 mM inidazole.

[0187] The binding and contaminant removal steps of the IMAC purification can be performed in the presence of any suitable reducing agents. The reducing agent may be, but is not limited to, 2-mercapitedhanol, or TCEP (Tris[2-Carboxvethylphosphinel hydrochioride). Preferably, the reducing agent is about 2.0 mM TCEF.

[0188] The binding and contaminant removal steps of the IMAC purification may be performed in the presence of a detergent. The detergent may be, but is not limited to, CHAPS (3-(3-cholamidopropylj-dimethylammonio)-1-propanesulfonate), Triton X-100, Nonidet P-40, Tween 20, or Tween 80. Preferably, the detergent is about 10.0 mM CHAPS.

[0189] The binding and contaminant removal steps of the IMAC purification may be performed in the presence of an ion source. The ion source may be, but is not limited to, KCI, NaCI, or sodium sulfate. Preferably, an ion source is about 0.3 M NaCI.

[0190] The elution of MEK2 from the IMAC resin may be accomplished by several modes, which are known in the accomplished by using, for example, EDTA, histidine, or imidazole, or by reducing the pH. Preferably, the elution of MEK2 may be accomplished with about 0.1 M EDTA.

[0191] The elution step of the IMAC purification may be performed in the presence of any suitable buffering agent (s). The buffering agent may be, but is not limited to, Tris, phosphate, HEPES, or MOPS. Preferably, the buffering agent may be about 20.0 mM HEPES (pH of about 8.0). The elution of MEK2 also may be performed in the presence of any suitable organic agents. The organic agent may be, but is not limited to, glycerol or ethylene glycol. Preferably, the organic agent is about 10% glycerol.

[0192] The invention also provides a method for further purifying the protein using cation exchange chromatography, followed by concentration of the protein and size exclusion chromatography (SEC).

40 [0193] The cation exchange step may be performed using several types of chromatography resins. For example, the cation exchange resin may be, but is not limited to, S-Sepharose™, MonoS™, POROS™ MS, or POROS™ S. Preferably, the cation exchange resin is POROS™ MS. The cation exchange step may be performed in the presence of any suitable buffering agent(s). The buffering agent may include, but is not limited to, phosphate, malonic acid, but acedic acid, acetic acid. MES (2-(N-morpholino)-ethanesultonic acid), or HEPES. Preferably, the buffering agent is about 20.0 mM MES (ph of about 64.)

[0194] The cation exchange step may be performed in the presence of any suitable reducing agent(s). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP, or dithiothreitol (DTT). Preferably, the reducing agent is about 2.0 mM TCEP.

[0195] The cation exchange step may be performed in the presence of any suitable organic agent(s). The organic agent may be, but is not limited to, glycorol or ethylene glycol. Preferably, the organic agent is about 20.0% ethylene glycol.

[0196] Elution of the MEK2 from the cation exchange resin may be accomplished by several different modes that are known in the art. For example, the MEK2 may be duted by increasing the pH. Alternatively, the MEK2 may be eluted by increasing the salt concentration by using, for example, NaCl, KCl, ammonium acetate, or sodium sulfate. Preferably, ammonium acetate may be used to cause the elution by an increase the salt concentration.

[0197] The SEC step may be performed using various types of chromatography resins. For example, the suitable SEC resin may include, but is not limited to, Sephadex*M G-100, Sephadex*M G-200, SephacryI*M S-100, SephacryI*M S-100, SephacryI*M S-200, Superdex*M 75, or Superdex*M 200. Preferably, the SEC resin is Superdex*M 200.

[0198] The SEC step may performed in the presence of any suitable buffering agent(s). The buffering agent may be, but is not limited to phosphate, HEPES, MES, Tris, bis-Tris, or bis-Tris propane. Preferably, the buffering agent is about 20.0 mM HEPES (bit of about 75.0.

[0199] The SEC step may be performed in the presence of any suitable reducing agent(s). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP, or DTT. Preferably, the reducing agent is about 2.0 mM TCEP.

[0200] The SEC step may be performed in the presence of any suitable salt(s). The salt may be, but is not limited to, NaCl, KCl, ammonium acetate, or sodium sulfate. Preferably, the salt is about 150.0 mM ammonium acetate.

[0201] The SEC step may be performed in the presence of any suitable chelating agent(s). The chelating agent may be, but is not limited to, sodium citrate or EDTA. Preferably, the salt is about 0.1 mM EDTA.

[0202] The invention also provides a method for forming a MEK2: ligand complex. The MEK2: ligand complex formation may be performed at any point during the MEK2 purification. Preferably, the MEK2: ligand complex formation step may be performed eflowing the SEC step. Alternatively, the MEK2: ligand complex formation step could be performed prior to the SEC step. The MEK2: ligand complex formation step may be performed using various concentrations of MEK2. For example, the concentration of MEK2 may be in the range of about 0.0 2m gm/lnt bebut 2 mg/lnt Preferably, the concentration of MEK2 is about 0.2 mg/lnt lo about 0.3 mg/lnt. Further, the MEK2: ligand complex formation step may be performed at various molar ratios of MEK2 to ligand. For example, the molar ratio of MEK2 to ligand may be in the range of about 1.110. bebout 1.1100. Preferably, the molar ratio of MEK2 to ligand sbout 1.10.

Crystallization of Modified MEK1 and MEK2 Peptide Complexes

[2023] The present invention further includes methods of using modified MEK1 and MEK2 peptides, such as NH₂-terminally truncated MEK1 and MEK2 peptides, to grow crystals of a MEK1 or MEK2 peptide: ligand: cofactor complex. The crystallization conditions and methods listed herein are provided to elucidate one approach used in the crystallization of the MEK1 or MEK2 peptide: ligand: cofactor complexes. Of course those of ordinary skill in the art would be aware of other crystallization orditions and techniques that may be suitable for the crystallization of the modified MEK1 proteins described herein. For examples see, McPherson, A., Crystallization of Biological Macromolecules, Cold Spring Harbor Laboratory Press (1999).

Crystallization of Modified MEK1 Peptide Complexes

20

30

40

55

[0204] Generally, the crystallization of modified MEK1 peptide complexes comprises contacting a NH₂-terminally truncated MEK1 peptide with a ligand and a cofactor, wherein a stable ternary complex of a MEK1 peptide. Ilgand: cofactor formed, and then growing a crystal of the MEK1 peptide. Ilgand: cofactor complex by adding the solution of the ternary complex to a precipitating solution. For example, in order to produce crystals of a MEK1 peptide: Ilgand: cofactor complex, a solution ("MEK1 solution") containing the MEK1 peptide, a ligand and a cofactor and a precipitant solution are provided. The concentration of MEK1 in the MEK1 solution is from about 2 mg/mL. The concentration of MEK1 in the MEK1 solution is from about 15 mg/mL. The concentration of MEK1 meters are considered as the meters of the met

[0205] The cofactor may include, but is not limited to, an ATP-cation, non-hydrolyzable ATP analogue such as AMP-PNP (adenylyl-imidodiphosphate), or ATP-Garma-S (Adenosine 5'-0-3-thiotriphosphate). The ATP-cation may include, but is not limited to, a lithium, sodium, magnesium, or potassium salt of ATP. Preferably, the ATP-cation is a sodium or magnesium salt of ATP. More preferably, the ATP-cation is a magnesium salt of ATP ("Mg-ATP").

[0206] The MEKT solution may comprise, but is not limited to, MEKT, ligand, cofactor, a buffering agent, and a source of ionic strength. The concentrations of the protein, ligand and cofactor are described above. The buffering agent may be, but is not limited to, phosphate, MES, HEPES (N 2 hydroxyethyl piperazine N' 2 ethanesul-fonic acid), Tris, bis-Tris, or bis-Tris propane. Preferably, the buffering agent is HEPES of a concentration between about 10 mM and about 100 mM and apt Hube between about 8.8 and about 8.8. More preferably, the buffering agent is about 20 mM HEPES (pH 7.8). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP of DTT. Preferably, the reducing agent is TCEP at a concentration between about 0.1 mM and about 10 mM. More preferably, the reducing agent is about 2.0 mM TCEP. The MEKT solution may contain a salt as source of ionic strength. The salt may be, but is not limited to, Nacl KCI, ammonium acotate or sodium sulfate. Preferably, the salt is ammonium acotate at a concentration between about 5 mM and about 500 mM. More preferably, the salt is about 150 mM ammonium acotate.

[0207] The MEK1 solution may optionally contain any suitable chelating agent(s). The chelating agent may be sodium citrate. When the MEK1 solution contains a chelating agent, about 0.5 mM EDTA is preferably used as the chelating

agent.

15

20

30

40

50

55

[0208] In addition, any precipitating solution "MEK1 precipitant solution") may also be used in the crystallization of MEK1 peptide: ligand: cofactor complex. When mixed with the MEK1 solution described above, the precipitating solution preferably causes the temany complex to form well-diffracting crystals. The MEK1 precipitant solution may comprise a variety of components designed to stabilize the formation of the MEK1 peptide: ligand: cofactor complex as a crystalline solid. For example, the precipitant solution may include, but is not limited to, a source of onic strength, a source of overtwhere devoid (PEG) as buffering agent, and a reducing agent.

[0209] The buffering agent of the MEK1 precipitant solution may be, but is not limited to, phosphate, acotate, succinate, malonate, malate, imidazole, MES, Tris, or bis-Tris propane, or any combination thereof. Preferably, the buffering agent is a mixed buffer system of imidazole/ malate/ phosphate buffer. The concentrations of the buffers may be in the ranges of about 1 mM - about 100 mM for limidazole, about 10 mM - about 1000 mM for malate, and about 40 mM - about 1400 mM for phosphate. The mixed buffer system may have a pH value between about pH 30 and about pH 7.0. For the phosphate buffer, ammonium phosphate monobasic may be preferably used. Most preferably, the mixed buffer system comprises about 10 mM imidazole, about 100 mM malate, and about 400 mM ammonium phosphate and has a 9H value between about ch 4 5 and about 6H 5.5.

[0210] The source of lonic strength of the MEK1 precipitant solution may be, but is not limited to, NaCl, KCl, ammonium sulfate, lithium sulfate, ammonium phosphate, or sodium potassium phosphate. The mixed buffer system of the MEK1 precipitant solution may serve as an ionic strength source. Preferably, monobasic ammonium phosphate is added, without adjustment of the pH, to a concentration of 100 -1000 mM, or more preferably to a concentration of 200 -600 mM to a solution of the 10 mM midiazole/100 mM maiste acid buffer solution that has had the pH value adjusted to pH 7.0 with a 50% (V/V) solution of KOH. The resulting solution preferably has the appropriate ionic strength and a final pH value in the range of about DH 4.5 to about of 15.5.

[0211] The MEK1 precipitant solution also may contain any suitable reducing agent(s). The reducing agent may include, but is not limited to, 2-mercaptoethanol, TCEP or DTT at a concentration of about 0.1 mM to about 100 mM. Preferably, DTT may be used.

[0212] Many possible method could be used to grow the crystals of the MEK1 peptide: ligand: cofactor complex, including, but is not limited to, harging-drop vapor diffusion, selting-drop vapor diffusion, microbatch, batch, or counter diffusion is get so or oils. Preferably, the crystallization may be performed by hanging-drop vapor diffusion them the diffusion is performed by hanging-drop vapor diffusion. When using the method of hanging drop vapor diffusion to grow the MEK1: ligand: cofactor crystals, the MEK1 solution is temised with a droplet of the MEK1 precipitant solution to obtain a mixed droplet solution. The mixed droplet solution is then suspended over a well of precipitant solution in a sealed container. For example, about 1 µL of the MEK1 solution is mixed with the MEK1 precipitant solution in a ratiol form about 1.4 to about 4.1, and preferably from about 1.2 to about 2.1. More preferably, the ratio of the MEK1 solution to the MEK1 precipitant solution is about 1.1. In one embodiment, the mixed droplet may be suspended over a well solution containing between 0.6 mL and 1.2 mL, and more preferably about 1.0 mL of precipitant solution. The crystallization temperature may be between about 4°C and about 20°C, preferably is about 13°C, and more preferably the crystals are grown at 13°C for 3-5 days and then moved to room temperature.

[0213] The mixed droplet solution is allowed to stand suspended over the well solution containing the MEK1 precipitant solution at the temperature described above for a period of about 5 days to about 5 weeks until the MEK1 peptide: ligand: cofactor crystals reach a size appropriate for crystallographic data collection, preferably between about 0.05 x about 0.5 x about 0.1 mm to about 0.3 x about 0.5 mm.

[0214] Standard micro and/or macro seeding may also be used to obtain a crystal of X-ray diffraction quality, i.e. a crystal that will diffract to a resolution greater than 5.0 Å. In the preferred form, no seeding is used to grow diffraction quality crystals.

[0215] After the desired growth is achieved, the crystals of MEK1 peptide: ligand: cofactor complex, may be harvested and bathed in a cryportotective solution. The cryportotective solution may comprise a variety of components designed to stabilize the formation of a vitreous solid containing the MEK1 peptide: ligand: cofactor complex as a crystalline solid at a temperature of about 110 K04m. The cryportotective solution may comprise, but is not limited to, a suitable source of low molecular weight solution of ethylene glycol or polyethylene glycol (PCG), a diluting agent and a cryo oil solution made up of about 70% Paratone-N oil and 30% minoral oil. The low molecular weight of about 100 to 600, and most preferably a 100% solution of ethylene glycol or about 100 to 600, and most preferably a 100% solution of ethylene glycol oil about 100 to 600, and most preferably a 100% solution of ethylene glycol oil solution of between 5 and 25%. Most preferably the PEG solution will be made to a final concentration of 10% with the well solution. During the cryp preparation process, the crystal may first be removed from the mother liquor and then bathed in the 10% PEG solution for 1.20 minutes. Most preferably the cryptal will pleaded in the PEG well solution for about 2 minutes. The cryptal may then be removed to a Paratone-N and mineral oil mixture and manipulated to in the oil to remove the aqueous solution prior to quickly placing the crypt protected evical into a liquid nitrogen bath.

[0216] Although any ligand for the NH₂-terminally truncated MEK1 peptide may be used, preferably the ligand comprises a MEK1 or MEK2 inhibitor. Proferably, the ligand is 5-bromo-N-(2,3-dihydroxy-propoxy)-3,4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide having the following chemical structure:

[0217] A crystal of the present invention may take a variety of crystal forms, all of which are included in the present invention. In one embodiment the crystals may be triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal or hexagonal. In a preferred embodiment the crystal has hexagonal symmetry. In a more preferred embodiment the crystal has hexagonal symmetry and has the space group P6₂ in the most preferred form the crystal has the space group P6₃ and has a unit cell consisting of approximately: a = 0 = 8 ± 1.4 ± 0.3 Å c. = 1 ± 9.0 ° .7 ° = 120.0 ° .9 ° .7 ° = 120.0 ° .

Crystallization of Modified MEK2 Peptide Complexes

5

15

20

25

40

55

[0218] Generally, the crystallization of modified MEK2 peptide complexes comprises contacting a NH₂-terminally truncated MEX2 peptide with a ligand and a cofactor, wherein a stable tempary complex of a MEX2 peptide ligand: cofactor is formed, and then growing a crystal of the MEK2 peptide: ligand: cofactor complex by adding the solution of the ternary complex to a precipitating solution. For example, in order to produce crystals of a MEK2 peptide: ligand: cofactor complex, a solution ("MEK2 solution") containing the MEK2 peptide, a ligand and a cofactor and a precipitant solution are provided. The concentration of MEK2 in the MEK2 solution is from about 2 mg/mL to about 40 mg/mL, perferably from about 10 mg/mL to about 40 mg/mL, and about 10 mg/mL about 10 mg/mL to about 40 mg/mL. The concentration of ligand is from about 15 mg/mL a

[0219] The cofactor may include, but is not limited to, an ATP-cation, non-hydrolyzable ATP analogue such as AMP-PNP (adenylyl-imidodiphosphate), or ATP-Gamma-S (Adenosine 5'-O-3-thiotriphosphate). The ATP-cation may include, but is not limited to, a lithium, sodium, magnesium, or potassium salt of ATP. Preferably, the ATP-cation is a sodium or magnesium salt of ATP. More preferably, the ATP-cation is a magnesium salt of ATP ("Mg-ATP").

[0220] The MEK2 solution may comprise, but is not limited to, MEK2, ligand, cofactor, a buffering agent, a reducing agent and a source of foinc strength. The concentrations of the protein, ligand and cofactor are described above. The buffering agent may be, but is not limited to, phosphate, MES, HEPES (N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid), Tris, bis-Tris, or bis-Tris propane. Preferably, the buffering agent is HEPES of a concentration between about 10 mM and about 10 mM and a hydraule between about ptf 6.8 and about ptf 8.8 More preferably, the buffering agent is about 20 mM HEPES (ptf 7.5). The reducing agent may be, but is not limited to, 2-mercaptoethanol, TCEP of TTT. Preferably, the reducing agent is CEPE at a concentration between about 0.1 mM and about 10 mM. More preferably, the roducing agent is about 2.0 mM TCEP. The MEK2 solution may contain a salt as source of ionic strength. The salt may be, but is not limited to, NaCl. KCI, ammonium accataer or sodium sulfate. Preferably, the salt is ammonium accatae at a concentration between about 5 mM ammonium accataer.

[0221] The MEK2 solution may optionally contain any suitable chelating agent(s). The chelating agent may be sodium critate. When the MEK2 solution contains a chelating agent, about 0.1 mM EDTA is preferably used as the chelating

[0222] In addition, any precipitating solution ("MEK2 precipitant solution") may also be used in the crystallization of MEK2 peptide: ligand: cofactor complex. When mixed with the MEK2 solution described above, the precipitant solution preferably causes the tenary complex to form well-diffracting crystals. The MEK2 precipitant solution may comprise a variety of components designed to stabilize the formation of the MEK2 peptide: ligand: cofactor complex as a crystalline solid. For example, the precipitant solution may include, but is not limited to, a source of ionic strength, a buffering accent, and a reduction accent.

[0223] The buffering agent of the MEK2 precipitant solution may be, but is not limited to, sodium / potassium phos-

phate ammonium phosphate, acetate, imidazole, MES, HEPES, Tris, or bis-Tris propane, or any combination thereof. Preferably, the buffering agent is also the source of ionic strength using a mixed solution of sodium monobasic phosphate and potassium dibasic phosphate buffered to about pH 6 to about pH 8. The concentration of the sodium potassium phosphate buffer may preferably be in the range of about 1.4 to about 1.9 M sodium monobasic phosphate and potassium dibasic phosphate to Most preferably, the mixed phosphate buffer system may be in the range of about 1.4 to about 1.9 M sodium monobasic phosphate and potassium dibasic phosphate buffered to about pH 6.7 to about

[0224] The MEK2 precipitant solution also may contain any suitable reducing agent(s). The reducing agent may include, but is not limited to, 2-mercaptoethanol, TCEP or DTT at a concentration of about 0.1 mM to about 100 mM. Preferably, DTT may be used. Most preferably, about 20 mM DTT may be used.

5

15

20

30

45

50

55

Preferably, DTT may be used. Most preferably, about 20 mM DTT may be used. [IQ226] Many possible method could be used to grow the crystals of the MEK2 peptide: ligand: cofactor complex, including, but is not limited to, hanging-drop vapor diffusion, sitting-drop vapor diffusion, microbatch, batch, or counter diffusion in gels or oils. Preferably, the crystaltization may be performed by hanging-drop vapor diffusion. When using the method of hanging drop vapor diffusion to grow the MEK2: ligand: cofactor crystals, the MEK2 solution is mixed with a droplet of the MEK2 precipitant solution to tobtain a mixed droplet solution. The mixed droplet solution is then suspended over a well of precipitant solution in a tasto from about 1.4 to about 4.1, and preferably from about 1.2 to about 2.1. More preferably, the ratio of the MEK2 solution to the MEK2 precipitant solution is a tabout 1.1.1 in one embodiment, the mixed droplet and by as usepended over a well solution containing between 0.6 mL and 1.2 mL, and more preferably about 1.3 mL, and one preferably solution. The crystallization temperature may be between about 4°C and about 20°C, and preferably is about 13°C. The mixed droplet solution is allowed to stand suspended over the well solution containing the MEK2 precipitant solution at the temperature described above for a period of about 5 days to about 5 weeks until the MEK2 peptide: ligand: cofactor crystalls reach a size appropriate for crystallographic data collection, preferably between about 0.05 x ab

25 [0226] Standard micro and/or macro seeding may also be used to obtain a crystal of X-ray diffraction quality, i.e. a crystal that will diffract to a resolution greater than 5.0 Å. In the preferred form, no seeding is used to grow diffraction quality crystals.

[0227] After the desired growth is achieved, the crystals of MEK2 peptide: ligand: cofactor complex, may be harvested and bathed in a cryoprotective solution. The cryoprotective solution may comprise a variety of components designed to stabilize the formation of a vitreous solid containing the MEK2 peptide: ligand: cofactor complex as a crystalline solid at a temperature of about 110 Kelvin. The cryoprotective solution may comprise, but is not limited to, a low molecular weight polyethylene glycol (PEG), glycorol or ethylene glycol, and / or a cryo oil solution made up of about 70% Paratone-N oil and 30% mineral oil. The cryo solution may be used by combining the ethylene glycol with the Paratone-N and mineral oil mixture as was done with MeK1 or by using either the Paratone-N / mineral oil mixture of the ethylene glycol was used at a concentration of about 5 -30% made by mixing a 100% solution of ethylene glycol with the well solution from the crystallization condition. In the most preferred form, the crystals may be removed from the mother-liquor crystal growth solution directly to the Paratone-N and mineral oil mixture using a mounted loop and manipulated in the oil to remove the aqueous solution prior to quickly placing the cryo-protected crystal into a foliud introgen bath.

40 [0228] Although any ligand for the NH₂-terminally truncated MEK2 peptide may be used, preferably the ligand comprises a MEK2 or MEK2 inhibitor. Preferably, the ligand is (5-[3.4-Diffuoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-1.3.4-oxadiazol-2-yl-(2-morpholin-4-y-letw)ly-amine having the following chemical structure.

26

[0229] A crystal of the present invention may take a variety of crystal forms, all of which are included in the present invention. In one embodiment the crystals may be triclinic, monoclinic, orthorhombic, totragonal, cubic, trigonal or hoxagonal. In a proferred embodiment the crystal has hexagonal symmetry. In a more preferred embodiment the crystal has hexagonal symmetry and has the space group P6,22. In the most preferred form the crystal has the space group P6,22 and has a unit cell clonsitisting of approximately: a = b = 161.89±0.3Å; o = 12.99±0.3Å; o = \$B = 90.0°; v= 120.0°.

X-ray data collection and structural determination

20

40

50

55

[0230] The present invention further includes methods for collecting X-ray diffraction data on the MEX1 and MEX2 peptide: Ilgand: cofactor crystals. The data collection conditions and methods listed herein are provided to elucidate the approach used for structural determination of the MEX1 and MEX2 peptide: Ilgand: cofactor crystals. Of course those of ordinary skill in the art would be aware of other conditions and techniques that may be suitable for the X-ray data collection and structural determination of the modified MEX1 or MEX2 protein crystals described herein. For examples see, Glusker, J., Crystal Structure Analysis for Chemists and Biologists, Wiley-VCH Press (1994) or the International Tables for X-Ray Crystallography, Volume F, edited by M.G. Rosssman and E. Arnold, Kluwer Academic Publishers (2001).

[0231] Generally, collecting the X-ray diffraction data for the MEK1 or MEK2 peptide: ligand: cofactor complex crystals comprises mounting the crystals in a cryo loop, bathing the crystals in a cryo protectant solution, rapidly cooling the crystals to about 100 K and collecting diffraction data in the oscillation mode. The source of X-rays may be, but is not limited to, a rotating anode home source such as a Rikagu RU-H3R generator, or a high energy synchrotron source such as that found on bearnine 17 (7-ID or 17-8M, MICA-CAT) at the Argonen National Laboratory Advanced Phoson Sources. The preferred method of data collection is to collect an initial data set using the home source to evaluate the crystal quality and then collecting a complete data set at IMCA-CAT. The method of detection and quantitating the diffraction data may be performed by using, for example, an image plate such as a R-Axis IV++ from MSC/Rigaku, or a charge-coupled device like a MAR-CCD, or ADSC Quantum 210 X-ray detector. Preferably, the resulting MEK1 crystal diffracts X-rays for the determination of the atomic coordinates of the MEK1 peptide: ligand: cofactor complex, to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution better than 5.0 Å, more preferably to a resolution bet

[0232] Once the data is collected, it is generally corrected for Lorenz and polarization effects and converted to indexed structure factor amplitudes using data processing software, for example DENZO or HKL2000 (Otwinowski, Z. and Minor, W., Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymoi. 278: 307-326 (1997)), d*Trek (Rigaku MSC) or Mosflim (Leslie, A.G.W., Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography, No. 26 (1992). The preferred processing software may be HKL2000. The scaled and reduced diffraction data from the crystal may be used to determinae the three-dimensional crystal structure using one or more of the following methods or by other similar methods not included in this list. Fourier difference methods, molecular replacement (MFN), multiwavelength anomalous dispersion (MAD), single-wavelength anomalous dispersion (SAD), single isomorphous replacement (MRI).

MEK1 and MEK2 Crystallographic Structural Analysis

[0233] The present invention further includes methods for solving the three-dimensional structural coordinates of the MEK1 and MEK2 peptide: ligand: cofactor crystalline complexes using the X-ray diffraction data. The methods used for structural determination are provided to elucidate the approach used for the structural determination of the crystalline MEK1 and MEK2 peptide: ligand: cofactor crystalline complexes. Those of ordinary skill in the art would be aware of other conditions and techniques that may be suitable for the X-ray structural determination of the modified MEK1 and MEK2 protein complexes described herein. For examples see, Glusker, J., Crystal Structure Analysis for Chemiats and Biologists, Wiley-VCH Press (1994) or the International Tables for X-Pay Crystallography, Volume F, edited by M. G. Rosssman and E. Arnold, Kluwer Academic Publishers (2001).

[0234] In the structural determination of the first MAPK kinase, it was necessary to use methods other than molecular replacement to solve the phase problem. In this case, an iodine atom contained within the bound ligand/inhibitor was used for SAD phase estimation. Other methods like MIR, MAD or SAD could have alternatively been used. In a preferred embodiment, the data may be scaled isomorphously using the SCALEPACK module in HKL2000 (Otwinowski et al, Methods Enzyma 27:8:03-7386 (1997)). Alternatively, the data could have been scaled using d*Trek (Rigisakt using country of the COPA sould in the COPA programs for Protein Crystallography? Acta Cryst. D50, 760-763 (1994)). All subsequent calculations may be done using the CNX package (Accelys. San Diosoc. CA). Alternatively, the state routed coordinates could have been identified using the CCPA program.

suite, or a combination of other software packages known to those skilled in the art.

[0235] After the structures of MEK1 and MEK2 were solved, the three-dimensional structures were prepared for use in structure-based drug design. The preparation and analysis of the MEK1 and MEK2 templates may be performed by using, for example, SYBYL®, GRIN/GRID®, MolCad®, GOLD®, FlexX®. Additionally, suitable computer modeling software can optionally be used to perform structural determination. Such software includes, but is not limited to, QUAN-TA® (Accelrys, San Diego, CA), CHARMm9 (Accelrys), INSIGHT® (Accelrys), SYBYL® (Trops, Inc., St. Louis), MacroMode® (Schrödinger, Inc.) and ICM (MolSoft, LLC), with SYBYL® being the most preferable program. The computer program such as GRAMM (Ilya. A Valser, Rookfeller Univ.), FlexX® (Tripos Inc.), FlexXidox® (Tripos Inc.), GOLD (commercially available via Carrbridge Crystallographic Data Centre, Cambridge, UK), DOCK (Irvin Kuntz, Department of Pharmacoutical Chemistry at the University of Callorial, San Francisco), or AutoDocx® (Molecular Graphics Laboratory). These docking computer programs scan known databases of small molecules to find core compounds that roughly fit the binding sites. GOLD® may most preferably be used

[0236] If necessary, crystallographic data in PDB (Protein DataBank) files can be "cleaned up" by modifying the atom types of the inhibitor and cofactor and any water molecules that are present so that the water molecules find their lowest energy rotamer. Suitable software for performing this "clean up" include, but are not limited to, SYBYL®, WAT-CHECK (part of CCP4 suite, COLLABORATIVE COMPUTATIONAL PROJECT, No. 4, "The CCP4 suite. Programs for Protein Crystallography," Acta Cryst BDS, 766-763 (1994), and REDUCE (Worl, et al., "Asparagine and gutamine: using hydrogen atom contacts in the choice of side chain amide orientation" J. Mol. Bio. 285: 1733-45 (1999)), with REDUCE, or any software performing the equivalent function as REDUCE, being the most preferred software. Any sultable docking computer program may be used to further validate the refined protein structure by adding all of the hydrogens in the most favorable protonation state as well as rotating all water molecules into orientations that give the optimal interactions with the protein.

[0237] Further, the binding sites may be characterized using, for example, GRIN/GRID® (Molecular Discovery Limicd), MOL-CAD® (Tripos, Inc.) contouring, CAVEAT (PA Bartlett, et al., CAVEAT: A program to facilitate the structure-derived design of biologically active molecules, in molecular recognition in chemical and biological problems, special Publication, Royal Chem. Soc., 78, 182-196 (1989), available from the University of California, Berkely, CA), GRASP (A, Nicholis, Columbia University), SitelD® (Tripos, Inc.), INSGHT®, or SYBYL®. Theses oftwares may be used in-dividually or in combination. For example, the combination of GRID/GRID®, MolCad® (Tripos, Inc.) and SYBYL® may be preferably used.

[0238] According to one embodiment of the invention, it has been discovered that the MEK1 peptide comprises a ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within 4 Å of a MEK1 inhibitor located in the ligand-binding site: G77, N78, G79, G80, K87, I99, L115, L118, V127, F129, I141, M143, C207, D208, F209, G210, V211, S212, L215, I216, M219 of SEQ ID NO: 2; or by structural coordinates of the following amino acid residues within 5 Å of a MEK1 inhibitor located in the ligand-binding site: G77, N78, G79, G80, K97, I99, L115, L118, I126, V127, G128, F129, I141, M143, D190, N195, L206, C207, D208, F209, G210, V211, S212, L215,

1216, M219, F223 of SEQ ID NO: 2.

[0239] Further, it has been discovered that the MEK1 peptide comprises a cofactor-binding pocket that is defined by the structural coordinates of the following residues within 4 & of the ATP notecule in the contactor-binding site. L74, G75, A76, G77, N78, G80, V81, V82, A95, K97, V127, M143, E144, H145, M146, G149, S150, D152, Q153, K192, S194, N195, L197, D208, V224 of SEQ ID NO: 2; or structural coordinates of the following residues within 5 Å of the ATP molecule in the cofactor-binding site: L74, G75, A76, G77, N78, G79, 80, V81, V82, A95, K97, V127, M143, E144, H145, M146, D147, G149, S150, D152, Q153, D190, K192, S194, N195, L197, C207, D208, V224, G225 of SEQ ID

[0240] It has also been discovered that the MER2 peptide comprises a ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within 4.6 of a MERC inhibitor located in the ligand-binding site: G81, N82, G83, G84, K101, I103, L119, L122, V131, F133, I145, M147, C211, D212, F213, G214, V215, S216, L219, I220, M223 of SEO IN DN. 4, or a conservatively substituted variant thereof; and is defined by site: cuttural coordinates of the following amino acid residues within 5.6 of a MEX2 inhibitor located in the ligand-binding site: G81, N82, G83, G84, K101, I103, L119, L122, I130, V131, G132, F133, I145, M147, D194, N199, L210, C211, D212, F213, G214, V215, S216, L219, L220, M223, F227 of SEO ID NO: 4, or a conservatively substituted variant thereof.

[0241] Additionally, it has been discovered that the MEK2 peptide comprises a co-factor-binding pocket that is defined by the structural coordinates of the following residues within 4 A of the ATP molecule in the cofactor-binding site: L78, G79, A80, G81, N82, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, G153, S154, D156, Q157, K196, S198, N199, L201, D212, V228 of SEQ ID NO: 4, or a conservatively substituted variant thereof; and is defined by the structural coordinates of the following residues within 5 Å of the ATP molecule in the cofactor-binding site: L78, G79, A80, G81, N82, G83, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, D151, G153, S154, D156, Q157, D144, K196, S198, N199, L201, C211, D212, V228, G229 of SEQ ID NO: 4, or a conservatively substituted variant

thereof.

15

20

50

55

[0242] Those of skill in the art will recognize that a set of structural coordinates for a peptide or a peptide ligand: cofactor complex or a subset hereof, is a relative set of points in space that defines a complex three dimensional surface. As such it is possible to represent the same surface using an entirely different set of coordinates. Also, due to small errors in the measurement of all crystallographic data, slight variations in the inividual coordinates will have titled or no effect on the overall surface. Thus, a binding pocket could be generated from the structural coordinates provided in Table 1 or Table 2 from some variation of the structural coordinate that still retains similar surface flatures, including, but not limited to, volume (both internally in cavities or in total), solvent accessibility, and surface charged and hydrophobicity, in addition, the structural coordinates could be modified by crystallographic permutations, including, but not limited to, or fractionalization, integer addition or substraction, inversion or any combination thereof.

[0243] In addition, it would be apparent to one skilled in the art that the binding pockets described in detail above could be modified in order to obtain somewhat different three-dimesional coordiates.

[0244] It should also be recognized that minor modification of any or all of the components of the peptide: ligand: cofactor complexes that results in the generation of structural coordinates that still retains the basic features of the three-dimensional structure is should be considered part of the invention.

Computers, Computer Software, Computer Modeling

[0245] Once the atomic coordinates are known, a computer may be used for producing a three-dimensional representation of a MEK1 peptide, a MEK2 peptide, or a structurally related peptide. Likewise, the atomic coordinates, or related set of structural coordinates, may be used to generate a three dimensional representation of a MEK1 peptide binding pocket. MEK-2 peptide binding pocket or MEK-like peptide binding pocket. Thus, another aspect of the invention involves using the structural coordinates generated from the MEK1 and MEK2 complexes as set forth in Table 1 or Table 2, or a related set of structural coordinates, to generate three-dimensional representations of MEK1 peptide. MEK2 peptide, or a structurally related peptide, or a MEK1, MEK2, or MEK1ke peptide binding pocket. This is achieved through the use of commercially available software that is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of atomic coordinates.

[0246] Suitable computers are known in the art and typically include a central processing unit (CPU), and a working memory, which can be random-access memory, core memory, mass-storage memory, or a combiation thereof. The CPU may encode one or more programs. Computers also typically include display, input and output devices, such as one or more cathode-ray tube display terminals, keyboards, modems, input lines and output lines. Further, computers may be networked to computer servers (the machine on which large calculations can be run in batch) and file servers (the main machine for all the centralized databases).

[0247] Machine-readable media containing data, such as the atomic coordinates set forth in Table 1 and Table 2, or 5 a related set of atomic coordinates, may be inputted using various hardware, including moderns, CD-ROM drives, disk drives, or keyboards.

[0248] Machine-readable data medium can be, for example, a floppy diskette, hard disk, or an optically-readable data storage medium, which can be either read only memory, or rewritable, such as a magneto-optical disk.

[0249] Output hardware, such as a CRT display terminal, may be used for displaying a graphical representation of the three-dimensional structural coordinates of the MEK1 or MEK2 peptides as set forth in Tablel or Table 2 respectively, of a structurally related pedide, or of a MEK1, MEK2, or MEK-like binding pocket, as described herein. Output hardware may also include a printer and disk drives.

[0250] The CPU coordinates the use of the various input and output devices, coordinates data access from storage and access to and from working memory, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data. Such programs are discussed herein in reference to the computational methods of drug discovery.

[0251] In a preferred embodiment of the invention, atomic coordinates capable of being processed into a threedimensional representation of a molecule or molecular complex that comprises a MEK1, MEK2, or MEK-like peptide binding pocket are stored in a machine-readable storage medium. As described below, the three-dimensional structure of a molecule or molecular complex comprising a MEK1, MEK2, or MEK-like peptide binding pocket is useful for a variety of purposes, such as in drug discovery and drug design. For example, the three-dimensional structure derived from the atomic coordinate data may be computationally evaluated for its ability to associate with chemical entities.

MEK1 or MEK2 Activity Inhibitors and/or Enhancers

[0252] The association of natural ligands with their corresponding brinding pockets on receptors or enzymes is the basis of many biological mechanisms of action. Similarly, many drugs exert their biological effects via an interaction with the binding pockets of a receptor or enzyme. An understanding of such associations can lead to the design of

drugs having more favorable and specific interactions with their target receptors or enzymes, and thus, improved biological effects. Therefore, information related to ligand association with the MEK1, MEK2, or MEK-like peptide binding sites is valuable in designing and/or/identifying potential inhibitors or enhancers of MEK1, MEK2, or peptides structurally related thereto. Further, the more specific the design of a potential drug, the more likely that the drug will not interact with similar proteins, thus, minimizing potential side effects due to unwanted cross interactions.

[0253] Computer programs can be employed to estimate the attraction, repulsion, and steric hindrance of a ligand to a MEK1, MEK2, or MEK-like binding pocket. For example, one can screen computationally small molecule databases for chemical entities or compounds that can bind in whole, or in part, to a MEK1, MEK2, or MEK-like binding pocket. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy (Meng, et al., J. Comp. Chem., 13505-524 (1992)]. Generally, the tighter the fit, e.g., the lower the steric hindrance and/or the greater the attractive force, the more potent the drug is prolected to be since these procedies are consistent with a tighter-binding constant.

[0254] The present invention provides methods for screening candidate compounds as potential therapeutic agents for the treatment of various diseases associated with MEK1 and MEK2, including, but not limited to, disease states that involve diverse cellular processes including, but not limited to, apoptosis, differentiation, angiogenisis and inflammation. Such disease states include, for example, cancer, psoriasis, arthritis, septic shock, viral infections and cardiovascular disease.

[0255] More specifically, the present invention provides methods of using the three-dimensional representations of the MEK1, MEK2, and structurally related peptides, or binding pockets thereof, generated from the X-ray crystallographic data, or a related set of structural coordinates, to model the binding of candidate compounds. The methods include methods for screening and identifying potential inhibitors or enhancers of MEK1, MEK2, or a structurally peptide; and for the design of or modification of chemical entities having the potential to associate with MEK1, MEK2, a structurally related peptide, or binding pocket thereof.

[0256] The compound design or modification process begins after the structure of the target, e.g., a MEK1 or MEK2 peptide, is resolved to of greater than 5.6 Å, As described above, the data generated from the resolved crystal structure is applied to a computer algorithm to generate a three-dimensional representation and, ultimately, model, of the MEK1, MEK2 or structurally related peptide and MEK1, MEK2, MEK-like peptide binding pockets. Resolving the MEK1 and MEK2 three-dimensional structures using the X-ray organizationgraphic coordinates, as described above, enables one to determine whether a compound could occupy the ligand or cofactor binding site, as demonstrated in Figures 4 and 5, or a MEK1ike binding pocket.

30

40

50

55

[0257] After a three-dimensional representation of the MEKT or MEK2 petpide molecule, a structurally related peptide molecule, or a MEKT, MEK2 or MEK-like binding pocket is generated, a ligand having the potential to associate with the peptide or binding pocket is generated by, for example, (i) assembling molecular fragments into the chemical entity; (ii) do novo design of the chemical entity; (iii) selecting a chemical entity from a small molecule database; or (IV) modifying a known inhibitor, or portion thereof, of MEK1 or MEK2 activity.

[0258] If a chemical entity is designed, the following factors may be considered. First, the entity must be capable of physically and structurally associating with some or the entite MEK1, MEK2, or MEK-like binding pocket. Second, the entity must be able to assume a conformation that allows it to associate with a MEK1, MEK2, or MEK-like binding pocket directly. Although certain portions of the entity will not directly participate in these associations, those portions of the entity may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity in relation to all or a portion of the binding pocket, and the spacing between functional groups of an entity comprising several chemical entities that directly interact with the MEK1, MEK2, or MEK-like binding pocket.

[0259] The deslign of new compounds or the modification of known compounds may involve synthesizing or modifying compounds, or fragments thereof, via compute programs which build and link fragments or atoms into a target binding site(s) based upon steric and electrostatic complementarity, without reference to substrate analog structures. The computer programs unaleyse emolecular structure and interactions. The computer analysis can be performed, for example, with one or more of the following computer programs: QUANTA®, CHRAMM®, INSIGHT®, SYBTVL®, MACRO-MODEL® or ICM [Dunbrack et al., 1997, supra]. Selected compounds, or fragments thereof, may be positioned in a variety of orientations, or docked, within the MEK1, MEK2, or MEK-like binding pocket(s) as defined by the atomic coordinates. If compounds have been selected, then they may be assembled into a single complex. If fragments have been selected, then they may be assembled into a single compound. Assembly may be preceded by visual inspection of the relationship of the compounds or fragments to each other on the three-dimensional MEK1, MEK2, or MEK-like peptide binding pocket representation displayed on a computer screen in relation to the atomic coordinates. This visual image step may be followed by manual model building using appropriate software programs. Alternatively, compounds may be designed as a whole using either empty binding pocket(s) or binding pocket(s) containing the natural ligand(s). (0260) Computer programs that may be used in the design or modification of the potential tigand include, but are not initiated to, alone or in combination. QUANTA (Accelyrs Inc.) and/or SYBYL® (Firpos. Inc.) and/or a docking computer

program such as GOLD (commercially available via Cambridge Crystallographic Data Centre, Cambridge UK, Jones, G., J. Mol. Biol. 245: 43-53 (1995)), FlexX (Tripos, Inc.), GRAMM (Ilya A. Vakser, Rockefeller Univ), FlexXidock (Tripos, Inc.), Dock (Ewing, T.J.A. et al., J. Comput-Aided Mol. Des. 15: 411-428 (2001)), or AutoDock (Molecular Graphics Laboratory (Scripps Research Inst.); Goodsell, D. S., J. Mol. Recognit. 9: 1-5 (1996)). In addition, other related computer programs may be used.

5

20

25

50

[0261] The potential inhibitory or binding effect of the chemical entity on a MEK1, MEK2, or MEK-like peptide binding pocket may be analyzed prior to its actual synthesis and testing through the use of computer modeling techniques. The "modeling' includes applying an iterative or rational process to individual or multiple potential ligands, or fragments thereof, to evaluate their association with the MEK1, MEK2, or MEK-like binding pocket and to evaluate their inhibition and/or enhancement of MEK1 or MEK2 activity. This procedure may include, for example, computer fitting a potential ligand into a MEK1, MEK2, or MEK-like peptide binding site(s) to ascertain how well the shape and chemical structure of the potential ligand complements or inteferes with the peptide. Computer programs, such as, for example, they program GOLD-09, may also be used to estimate the attraction, repulsion and sterior hindrance of the ligand to the MEK1, MEK2, or MEK-like binding sites. Generally, the tighter the fit, e.g., the lower the steric hindrance and/or the greater the attractive force, the more antagonistic orapointsic the potential ligand will be since these properties are consistent with a tighter-binding constant. If the theoretical structure, i.e., computational structure, incicates insufficient interaction and association, further testing may not be necessary. However, if computer modeling indicates a strong interaction, then the ligand may be synthesized and tested for its ability to bind to a MEK1, MEK2, or MEK-like binding site(s). Thus, a potential inhibitor or enhancer may be identified and selected, based on its computational ability to positively associate with the amino acid residues found within any one or all of the binding sites.

[0262] Sulfable computer programs to be used for computer modeling include, but are not limited to, QUANTA9. CharmM9, INSIGHT®, SYBYL®, MacroModel® and ICM (Dunbrack et al., 1997, supra). SYBYL® may be preferably used. The computer program may be used alone or combined with a docking computer program such as GRAM®, FlexX®, Flexidock®, GOLD® or AUTO DOCK [Dunbrack et al., 1997, supra]. For this purpose, GOLD® may be preferably used.

[0263] The screening method and subsequent identification of potential ligands, may be accomplished in vivo, in vitro or av vivo. Initial ligand computation analysis is optional. Instead, or additionally, high-throughput screening may be employed which may be capable of full automation at robotic workstations such that large collections of compound libraries may be screened.

[0284] In one embodiment of the screening and identification method, the initial computer modeling is performed with one or more of the following docking computer modeling programs: Dock (Ewing, T.J.A. et al., J. Comput.-Aided Mol. Des. 15: 411-428 (2001)), AutoDock (Molecular Graphics Laboratory: Goodsell, D.S., J. Mol. Recognit. 9: 1-5 (1996)), GOLID (commercially available via Cambridge Crystallographic Data Centre, Cambridge, UK; Jones, G., J. Alol. Biol. 245: 43-53 (1995) or FlaxX (Tripos, Inc.). Potential Iligands initially identified by the docking program(s) are elaborated using standard modeling methods as found in, for example, SYBYL® (Tripos, Inc.), CUANTA (Accelys Inc.), INSIGHT®-II (Accelys Inc.), GINIVGRID (Molecular Discovery Ltd.), UNITY® (Tripos, Inc.), LigBuilder (Want, R., J. Mol. Model 6: 498-516 (2000)), or SPROUT (developed and distributed by ICAMS (Institute for Computer Applications in Molecular Sciences) at the University of Leeds, United Kingdom (Gillet, V. et al., J. Comput. Aided Mol. Design 7: 127-153 (1993)).

40 [0265] After a potential activity inhibitor and/or enhancer is identified, it can either be selected from commercial libraries of compounds or alternatively the potential inhibitor and/or enhancer may be synthesized and assayed to determine its effect(s) on the activity of MEK1, MEK2, or a structurally related peptide. Optionally, the assay may be radioactive. However, in a preferred embodiment, the assay is a nonradioactive EUSA.

[0266] In one embodiment of screening and identifying potential ligands via computer modeling, the method comprises: (a) generating a three-dimensional representation of MEK1 peptide, a MEK2 peptide, a structurally related peptide or a MEK-1, MEK.2 or MEK-1 like peptide binding pocket; (b) designing and/or building (e.g. computationally) de novo potential ligands: and (b) identifying the ligands that associate with the MEK1, MEK2, or ME-like binding site(s). Such ligands may be identified by, for example, contacting the ligand with a cell that expresses MEK1 or MEK2. A MEK1 or MEK2 inhibitor may be identified, for example, as a compound that inhibits the MEK1 or MEK2 catalyzed phosphorylation of ERK1 in the cell. The cell may be a eukaryotic cell, including, but not limited to, a yeast cell or vertebrate. Preferably, the cell is a mammalian cell. More preferably, the cell is a human cell. The protein assay can be an in vitro, in situ or in vivro, but is preferably an in vitro assay, in one such embodiment, the MEK1 or MEK2 catalyzed phosphorylation of ERK1 may be determined by Western blot analysis of ERK4 di-phosphorylation with ERK phospho-specific antibodies as a direct read-out of MEK2 activity in the cell. The inhibitory activity of MEK1 or MEK2 gualdyzed shops be stransferased usion protein of kinase-inactive ERK1 (SEFRIK1KT/R) as substrate.

[0267] In an alternative embodiment of screening and identifying potential ligands via computer modeling, the method comprises: (a) generating a three-dimensional representation of MEK1, MEK2, a structurally related peptide or a MEK-

 MEK-2 or MEK-like peptide binding pocket; (b) building (e.g. computationally) and, optionally, modifying known potential ligands; and (c) identifying the ligands that associate with the MEK-1, MEK-2 or MEK-like peptide binding pocket binding site(s).

[0288] In an alternative embodiment, the compound screening and identification method comprises evaluating the ability of de novo compounds to function as MEK1 or MEK2 activity inhibitors and/or enhancers by, for example: (a) generating a MEK1, MEK2, or MEK-like virtual binding cavity, the binding cavity defined by the binding sites; (b) designing (e.g. computationally) a compound structure that spatially conforms to the binding cavity; (c) synthesizing the compound and, optionally, analogs thereof, and (d) testing to determine whether the compound binds to at least one of the binding sites.

[0269] In an alternative embodiment, the compound screening and identification method comprises evaluating the ability of known compounds to function as MEK1 or MEK2 activity inhibitors and/or enhancers by, for example: (a) generating a MEK1, MEK2, or MEK-like withus binding caivity defined by the binding sites; by generating (e.g. computationally) and, optionally, modifying, a known compound structure; (c) determining whether that compound spatially conforms to the binding caivity; (d) synthesizing the compound and, optionally, analogs thereof; and (e) testing to determine whether the compound binds to at least one of the binding sites by

[0270] In another embodiment, wherein a potential ligand has been selected, the identification method comprises: (a) generating a three-dimensional representation of MEK1, MEK2, or a structurally related peptide with the potential ligand bound thereto; (b) modifying the potential ligand bound thereto; (b) modifying the potential ligand based on the three-dimensional representation; and (c) generating a second three-dimensional representation with the modified potential ligand bound thereto. Then, one can test the potential ligand in a biochemical assay known in the art, if desired.

[0271] In addition, when a potential ligand is identified, a supplemental crystal may be grown comprising the ligand in complex with MEKI, MEK2, or a structurally related peptide, and optionally a cofactor. Molecular replacement analysis, for example, may be used to determine the three-dimensional structure of the supplemental crystal. Molecular replacement analysis may also be used in the initial crystal structure determination.

25 [0272] It should be understood that in all of the structure-based drug design strategies provided herein, a number of iterative cycles of any or all of the steps may be performed to optimize the selection.

[0273] Thus, according to another embodiment, the invention provides compounds that associate with a MEK1, MEK2 and MEK1like peptide binding pocket(s) produced or identified by any one or a combination of the methods set forth above.

MEK1 and MEK2 Variants

5

15

20

30

50

55

[0274] As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the proteins, allelio' sequence variants of the proteins, non-naturally occurring recombinantly derived variants of the proteins, and orthologs and paralogs of the proteins. Such variants can be generated using techniques that are known by those skilled in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any orteins or pectides disclosed prior to the invention.

[0275] Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other proteins based on sequence and/or structural homology to the proteins of the present invention. The degree of homology/identity present will be based primarily
on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog
family, and the evolutionary distance between the orthologs. An alternative method to using the primary sequence for
describing the structural relationship between two proteins or peptides is to use the three-dimensional structures
of the two related proteins. In this method, the two structures are solved by X-ray crystallography or by NRH, and then
the similarity is determined by comparing the root mean square (RMS) deviation of the backbone C-alpha trace of the
two species.

[0276] To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In one aspect of the invention, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably 40%, more preferably 50%, even more preferably 60%. In one preferred embodiment, it is preferably at least 70%, more preferably 80%, or most preferably 90% or more of the length of the reference sequence. The amino acid residues or nucleotides at corresponding points or or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid 'identity' is equivalent to amino acid or nucleic acid 'identity' is equivalent to amino acid or nucleic acid 'identity' is equivalent to amino acid or nucleic acid 'identity' is equivalent to amino acid or shared by the sequences, it king into account the number of identity between the two

of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0277] The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinie, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48): 444-453 (1970)) algorithm which has been incorporated into commercially available computer programs, such as GAP in the GCG software package, using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences can be determined using the commercially available computer programs including the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res, 12(1): 387 (1984)), the NWS gap DNA CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4: 11-17 (1989)) which has been incorporated into commercially available computer programs, such as ALIGN (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a

[0278] The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using commercially available search engines, such as the BLASTN and BLASTX programs (version 2.0) of Altschul, et al. (J. Mol. Biol. 21s. 405-10 (1990)). BLAST nucleotide searches can be performed with the BLASTN program, score - 100, wordlength = 12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 26(17): 3389-3402 (1997)). When utilizing BLAST programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) can be used.

20

55

[0279] Full-length clones comprising one of the proteins of the present invention can readily be identified as having of complete sequence identify to one of the kinases of the present invention as well as being encoded by the same genetic locus as the MEK1 or MEK2 peptide provided herein.

[0280] Allelic variants of a peptide can readily be identified as having a high degree (significant) of sequence homology/identity to at least a portion of the protein as well as being encoded by the same genetic locus as the MEK1 or MEK2 peptide provided herein. As used herein, two proteins (or a region of the proteins) have significant homology when the amino acid sequences are typically at least 70%, preferably 75%, more preferably 80%, or even more preferably 85% or more homologous. In one preferred embodiment, it is at least 90%, or preferably 95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a protein encoding nucleic acid molecule under stringent conditions as more fully described below.

10 2611 Paralogs of a protein can readily be identified as having some degree of significant sequence homologyl identity to at least a portion of the MEK1 or MEK2 peptide, as being encoded by a gene from same species, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least 70%, preferably 75%, more preferably 80%, even more preferably 85% or more homologous through a given region or domain. In one preferred embodiment, two proteins will typically be considered paralogs when the amino acid sequences are typically 90% or more preferably 80% or more homologous through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below. An example of a paralog is the relationship between MEK2 and MEK1. These proteins are 80% homologous overall, 85% homologous in the kinase domain and 100% homologous in the ATP- and ligand-binding domain. In addition, as MEK2 is inhibitors, crycisallographic coordinates of the MEK1 peptide may be used to identify MEK2 inhibitors. Conversely, the three-dimensional structure or X-ray crystallographic coordinates of the MEK2 pecified may be used to identify MEK2 inhibitors. Conversely, the three-dimensional structure or X-ray crystallographic coordinates of the MEK2 pecified may be used to identify MEK2 inhibitors. Conversely, the three-dimensional structure or X-ray crystallographic coordinates of the MEK2 pecified may be used to identify MEK2 inhibitors.

[0282] Orthologs of a protein can readily be identified as having some degree of significant sequence homology identity to at least a portion of the protein as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably human, for the development of human therapeutic targets and agents, or other invertebrates, particularly insects of economical/agriculture importance, e.g. members of the Lepidopteran and Coleopteran orders, for the development of insecticides and insecticidal targets. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a MEK1 or MEK2 encoding nucleic acid molecule under

moderate to stringent conditions, as more described below, depending on the degree of relatedness of the two organisms yielding the proteins.

[0283] Non-naturally occurring variants of the MEK1 or MEK2 peptide of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deteitons, additions and substitutions in the amino acid sequence of the protein. For example, one class of substitutions is conserved amino acid substitutions. Such substitutions are those that substitute a given amino acid in a protein by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids. Ala, Val, Leu, and lie, interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues As pand Glit; usubstitution between the arrived residues As and Glir; exchange of the basic residues Is and Arg; and replacements among the aromatic residues Phe, Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowler at a. Science 247:1306-1310 (1990).

[0284] Variants can be fully functional or can lack function in one or more activities. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. Functional variants can also contain substitution of similar amino acids, which result in no change or an insignificant change in function. Alternatively such substitutions may positively or negatively affect function to some degree.

[0285] Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or in vitro proliferative activity. Sites that are critical for binding can also be determined by structural analysis such as X-ray crystallography, nuclear magnetic resonance or photoatfility labelino (Smith et al., J.M.G. Biol. 224-899-904 (1992); de Vos et al. Science 255:306-312 (1992)).

[0286] The following examples illustrate preferred embodiments and aspects of the invention, and are intended to be non-limiting.

25 EXAMPLES

20

35

40

50

55

Example 1: Cloning of modified MEK1s

[0287] Human MEK1 cDNA (GenBank Accession Number L11284; SEQ ID NO: 1) was modified via PCR and subcloned into pET24b (Novagen) at 5'Nde/13'HindIII sites. Wild type MEK1 was modified via PCR for cloning into pET21b and pET24b expression vectors by the addition of 5'Ndel and 3'HindIII restriction sites with the following oligonuclecitides:

5'CATATGCCGAAAAAGAAGCCGACCCCGATCCAG3' (SEQ ID NO: 5)

5'AAGCTTGACGCCAGCAGCATGGGTT3' (SEO ID NO: 6)

[0288] Conditions for PCR were as follows: 20ng MEK DNA, 20pmoles of both 5' and 3' primers, 200µM dNTP mix, 1X PCR 10X Vent buffer, 1 unit Vent DNA polymerase in a reaction volume of 100µl. Reactions were run at 95°C for 5 min (1 cycle), followed by 25 cycles of 95°C 1 min, 56°C 1 min, 72°C for 1 min 30 sec, Wild-type MEK1 ("MEK1(wt)") sequence was altered on the region spanning from bp 73 to bp 99 for tRNA bias in E. coli, with the following base changes, highlighted in bold and underlined: 5'ATGCCGAAA AAGAAGCCGACCCCGATC3' (amino acid residues 73-99 of SEQ ID NO: 2). A NH2-terminally truncation of MEK1 was also generated by PCR, designated C1 ("MEK1-C1"), encoding amino acids 51-393 of SEQ ID NO: 2. The MEK1-C1 clone was subcloned into pET21b (Novagen, Madison, WI) at the 5'Nde1/3'Xho1 sites. Additionally, both MEK1 (wt) and MEK1-C 1 clones were modified by deletion of a proline-rich insertion loop, comprised of residues 280-323 to give MEK1 (wt)(d280-323) and MEK1-C1 (d280-323), respectively. This deletion was created by introducing an internal HindIII site which encoded residues 324 and 325 with the following sequence: AAG(K280)CTT(L323). Fragment A, containing the coding sequence NH2-terminally to the deletion (amino acids 1-279 for MEK1 (wt), and residues 51-279 for the MEK1-C1), was modified by PCR to contain a HindIII site on the 3' end downstream of amino acid 279 (V). This fragment was then ligated to fragment B, a 0.2kb fragment containing sequence for residues 324-393, including the codon changes for amino acids 324 and 325 to become a HindIII site. Both MEK1 (wt)(d280-323) and MEK1-C1 (d280-323) clones were subcloned into pET24b (Novagen, Madison, WI) at 5'Nde1/3'Xho1 sites. All modified MEK cDNA sequences were verified using MEK1-specific sequencing primers in an automated sequencing apparatus (ABI technologies). Once a nucleotide sequence was obtained, it was compared to the deposited sequence for MEK1 to confirm sequence integrity.

FP 1 321 518 A1 [0289] By following a similar procedure, the following NH2-terminally truncated MEK1 peptides were prepared: MEK1-C2: NH2-terminally truncated MEK1 having peptide of amino acid residues 62 to 393 of the sequence of SEQ ID NO: 2. MEK1-C2 (d280-323): MEK1-C2 having a deletion from amino acid residues from 280 to 323 of the sequence of SEQ ID NO: 2. MEK1-C3; NH₂-terminally truncated MEK1 having peptide of amino acid residues 42 to 393 of the sequence of SEQ ID NO: 2. MEK1-C3 (d280-323); MEK1-C3 having a deletion from amino acid residues from 280 to 323 of the sequence of SEQ ID NO: 2 MEK1 (d280-323); MEK1 having a deletion from amino acid residues from 280 to 323 of the SEQ ID NO: 2. MEK1 (d264-310); MEK1 having a deletion from amino acid residues from 264 to 310 of the SEQ ID NO; 2. MEK1 (d270-310): MEK1 having a deletion from amino acid residues from 270 to 310 of the SEQ ID NO: 2. MEK1 (d264-305): MEK1 having a deletion from amino acid residues from 264 to 305 of the SEQ ID NO: 2. MEK1 (d267-307); MEK1 having a deletion from amino acid residues from 267 to 307 of the SEQ ID NO; 2. MEK1 (d265-304); ME The software may be used to add hydrogens to the PDB molecular structure file in standardized geometry with optimization of orientations of OH, SH, NH₃+, Met methyls, Asn and Gin sidechain amides, and His rings.K1 having a deletion from amino acid residues from 265 to 304 of the SEQ ID NO: 2. [0290] The following primers were used for PCR of the modified MEK1s. MEK1-C1 and MEK1-C1 (d280-323): For fragment A: 5' CTTGCATATG GAGGCCTTTC TTACCCAGA 3' (SEQ ID NO: 7) For fragment B: 5' CTTGAAGCTT CACCTGGCAC CCAAACATC 3' (SEO ID NO: 8) MEK1-C2 and MEK1-C2 (d280-323): For fragment A: 5' CTTGCATATG GAACTGAAGG ATGACGACTT 3' (SEQ ID NO: 9) For fragment B: 5' CTTGAAGCTT CACCTGGCAC CCAAACATC 3' (SEO ID NO: 8)

MEK1-C3 and MEK1-C3 (d280-323):

For fragment A: 5' CTTGCATATG CTTGATGAGC AGCAGCGAA 3' (SEQ ID NO: 10)

55

5

15

20

25

30

35

40

45

50

For fragment B: 5' CTTGAAGCTT CACCTGGCAC CCAAACATC 3' (SEO ID NO: 8)

Example 2: Cloning of modified MEK2s

5

15

35

50

[0291] Human MEK2 cDNA (GenBank Accession Number NM, 030682; SEQ ID NO: 3) was modified via PCR and subcloned into pET24b (Novagen) at 5*Nde1/3*HindIII sites. Wild type MEK2 was modified via PCR for cloning into pET24b expression vectors by the addition of 5*Nde1 and 3*HindIII restriction sites with the following oligonucleotides:

5'CATATG AAGCCGGTGCTGCCGGCGCTCACCATC3' (SEQ ID NO: 11) 5'AAGCTTGGCCACTGTCACACGGCGGTG3' (SEQ ID NO: 12)

[0292] Conditions for PCR wore as follows: 20ng MEK DNA, 20pmoles of both 5' and 3' primers, 200µM dNTP mix, 1X PCR 10X Vent buffer, 1 unit Vent DNA polymerase in a reaction volume of 100µL. Reactions were run at 95°C for 5 min (1 cycle), followed by 25 cycles of 95°C 1 min, 56°C 1 min, 72°C for 1 min 30 sec.

[0293] Six N-termina truncations of wild type human MEK2 cDNA were generated via PCR amplification and cloned into pET201 TA-TOPO vector (Invitrogen). Each is fused with a C-terminal His6 tag.

[0294] Sequencing of the template DNA pET24b MEK2 wild type revealed a silent mutation on amino acid residual V64: GTC to GTT.

5 [0295] Conditions for PCR were as follows: pET24b MEK2 wild type DNA 1 ng/ul, 5' and 3' primers 1 µM, 1x PK. Amplification Buffer, 0.3 mtd MTP mixture, 5 unit Platinum Pfx DNA polymerase in a reaction volume of 100µl. Reactions were run at 94°C for 3 min (1 cycle), followed by 35 cycles of 94°C 1 min, 55°C 30 seconds, 68°C 1 min 30 sec, followed by 1 cycle of 68°C 10 min. The 3' A overhangs of the PCR products were added by 1 cycle of 68°C 10 min in the above PCR mixture plus 0.1 mM ad47 and 2.5 intl of Tag DNA Polymerase.

[0296] Six varied NH₂-terminal truncations were used in the creation of the modified MEK2 peptides. Each of the six constructs possessed a Hexahistidine tag fused to the COOH-terminal:

MEK2-C1: amino acid residues 46 to 400 of the sequence of SEQ ID NO:3;

MEK2-C2: amino acid residues 55 to 400 of the sequence of SEQ ID NO:3;

MEK2-C3: amino acid residues 66 to 400 of the sequence of SEQ ID NO:3; MEK2-C4: amino acid residues 59 to 400 of the sequence of SEQ ID NO:3;

MEK2-C4: amino acid residues 62 to 400 of the sequence of SEQ ID NO:3; MEK2-C6: amino acid residues 62 to 400 of the sequence of SEQ ID NO:3:

40 [0297] The following primers were used for PCR generation of the MEK2 N-terminal truncations:

MEK2-C1: forward primer: 5' ATGCTTGACGAGCAGCAGAAGAAG 3'

45 (SEQ ID NO: 13)

MEK2-C2: forward primer: 5' ATGGAAGCCTTTCTCACCCAGAAAGCC
3' (SEQ ID NO: 14)

MEK2-C3: forward primer: 5' ATGGCCTTTCTCACCCAGAAAGCC 3'
(SEQ ID NO: 15)

MEK2-C4: forward primer: 5' ATGACCCAGAAAGCCAAGGTTGG 3'
(SEO ID NO: 16)

MEK2-C5: forward primer: 5'

ATGGCCAAGGTCGGCGAACTCAAAGAC 3' (SEQ ID NO: 17)

MEK2-C6: forward primer: 5'

ATGGTCGGCGAACTCAAAGACGATGAC 3' (SEO ID NO: 18)

[0298] The common reverse primer for all the above six MEK2 trunctions:

5'

15

20

30

40

50

TCAATGATGATGATGATGTTCAAGCACAGCGGTGCGCGTGGGTG 3' (SEO ID NO: 19)

[0299] Sequences for the above six MEK2 truncations were varified using pET201 vector sequencing primers (T7 promoter and T7 Taminator primers) in an automated sequencing apparatus (ABI technologies). Once a nucleotide sequence was obtained, it was compared to the deposited sequence for MEK2 to confirm sequence integrits.

Example 3: Large scale expression of the modified MEK1s in E. coli

[0300] The recombinant MEK1 constructs obtained from Example 1 were grown at 37°C in E. colf B121 (DE3) in a 10-liter fermentor containing rich media. A starter culture of Kanamycin resistant MEK1 was grown by inoculating at 1 L shake flask of LB media with 100 µL of glycorol stock. The culture was grown overnight at 30°C in a shaking inclusor set to 250 rpm. The next morning the entire liter of culture was added to a 10-liter fermentor containing rich media prepared using the necipe (260 of go assien korte.) (Dirco 0275) 280.0 g B8Lh 2016ase peptione, 260.0 g castione (Dirco 0259) dissolved in distilled water to 4.0 L. Add 260.0 g dry gelatone (Dirco 0657) then 28.0 g KH₂PO₄ anhydrous, 28.0 g K₃HPO₄.7H₂O, dissolved with distilled water to 2.0 L and added 0.5% (v/v) glycerol) or Super Broth (KD Medical, Columbia, MID). At an optical density at 600mm of 10, the temperature was decreased to 22-25°C for one hour and recombinant protein expression was induced by addition of IPTG (isopropythio-beta-D-galactoside) to a concentration of 1.0 mM. For the Rich media preparation without glycerol supplementation the fermentor was harvested eighteen hours after induction. For the Super Broth preparation or the Rich media preparation with glycerol supplementation the fermentor was harvested displacent the fermentor was harvested displacent the fermentor was harvested displacent the fermentor was harvested thirty-six hours after induction. A typical yield was about 7000 whole cells / 10.1 fermentation.

[0301] The cell pellet was resuspended 1:5 (w/v) in 50mM K₂HPO₄, 2mM TCEP (Tri(2-carboxyethyl)phosphine), 300mM NaCl, 5 mM MgCl₃, 10mM CHAPS (3-(3-cholamidopropyl)dimethylammonio)-1-propanesulionate), at pH 8.0. Cell disruption was carried out using a Dyno-Mill KDL. Fifty µL of Benzonase (EM Industries, Hawthome, NY) was included during lysis. The lysis was clarified by centrifugation for 45 minutes at 13.800 times g at 4°C.

Example 4: Large scale expression of the modified MEK2s in E. coli

[0302] The recombinant MEK2 constructs obtained from Example 2 were grown at 37°C in E. coli BL21 (DE3) in a 10-liter fementor containing rich media. A starter culture of Kanamycin resistant MEK1 was grown by inoculating a 1 L shake flask of LB media with 100 µL of glycerol stock. The culture was grown overnight at 30°C in a shaking incubator set to 250 pm. The next morning the entire liter of culture was added to a 10-liter femmentor containing rich media prepared using the recipie (260 o) g yeast cytract (016co 0127), 260 o) g BBL Acidicase peptions, 260 o) g castion (016co 0259) dissolved in distilled water to 4.0 L. Add 26.0 g div gleatone (016co 0657) then 28.0 g KH_PQ4, arhydrous, 26.0 g Na₂HPQ4, TH₂O, dissolved with distilled water to 2.0 L and added 0.5% (v/v) glycero) or Super Broth (KD Medical, Columbia, MD). At an optical density at 800mm of 10, the temperature was decreased to

22:25°C for one hour and recombinant protein expression was induced by addition of IPTG (isoprogylthio-beta-Dgalactoside) to a concentration of 1.0 mM. For the Rich media preparation without glycerol supplementation the formentor was harvested eighteen hours after induction. For the Super Broth preparation or the Rich media preparation with glycerol supplementation the fermentor was harvested thirty-six hours after induction. A typical yield was about 700g whole cells / 101 Erremtation.

[0303] The cell pellet was resuspended 1:3 (w/y) in 50mM K_HPO₄. 2mM TCEP (Tri(2-carboxyethyl)phosphine), 5 mM Imidiazole. 300mM NaCl, 5 mM MgCl₂. 2mM pyrrole-2-carboxytate and 100µM ZnCl₂, 10mM CHAPS (3-(3-choia-midopropyl/dimethylammonio)-1-propanesulfonate), at pH 8.0. Cell disruption was carried out using a Dyno-Mill KDL. Fifty µL of Benzonase (EM Industries, Hawthorne, NY) was included during lysis. The lysis was clarified by centrifu-action for 45 minutes at 11.360 times q at 4°C.

Example 5: Purification of modified MEK1s

15

20

25

40

50

55

[0304] The cell lysate was mixed 1:1 with 2X binding buffer (50mM K₂HPO₄, 10mM imidazole, 4mM TCEP, 300mM NaCl. 10mM CHAPS, 2mM pyrrole-2-carboxylate and 100uM ZnCl₂, pH=8.0) and combined with washed TALON™ metal affinity resin (CionTech, Cat # 8908-2) at a ratio of 2mL of resin per 1g of cells. The mixture was stirred at 4°C for 1 hour, then batch-loaded into a 5-L Amicon (Vantage-S) column. Any additional unbound proteins/impurities were eluted with the washing buffer (50mM K2HPO4, 5mM imidazole, 2mM TCEP, pH 8.0 and 300mM NaCl, 1mM pyrrole-2-carboxylate, 50µM ZnCl₀) until a baseline reading was reached. The protein was eluted with 4-5 column volumes of elution buffer (20mM HEPES, 100mM EDTA disodium salt, 2mM TCEP, pH 8.0 and 10%v/v glycerol) and concentrated 10-fold using a Millipore (S1Y10) spiral cartridge. The protein concentrate was then diluted 10-fold in HS buffer A (20mM MES (2-(N-morpholino)-ethanesulfonic acid), 2mM TCEP, pH 6.4 and 20% ethylene glycol) and loaded onto a pre-equilibrated HS column (POROS HS/20 25X100, Applied Biosystems). The protein was eluted with a linear gradient from 0-100% HS Buffer B (Buffer A and 1M ammonium acetate). The protein containing fractions were pooled together and concentrated using a Millipore ultrafiltration stir-cell (YM10 membrane). The protein concentrate was then diluted 50X in HQ Buffer A (20mM TRIS Tris(hydroxymethyl) aminomethane), 2mM TCEP, pH 8.0 and 10mM ammonium acetate) and loaded on to a pre-equilibrated HQ column (POROS HQ/20 16X100, Applied Biosystems). The protein was eluted in the unbound fraction and was immediately concentrated using a Millipore ultrafiltration stir-cell (YM10 membrane). The protein inhibitor complexes were purified by adding a 10-fold molar excess of the inhibitor was and stirring overnight at 4°C. The sample was then filtered using a 0.22µm polyethersulfone filter, further concentrated using a YM10 membrane fitted stir-cell, centrifuged at 8000 rpm for 30 minutes at 4°C, and loaded onto a pre-equilibrated size exclusion column (HiLoad 26/60 Superdex 200 prep grade, Pharmacia, # 17-1071-01). The protein was eluted in approximately 5 hours using the size exclusion chromatography buffer (20mM HEPES, 0.5mM EDTA disodium salt, 2mM TCEP, pH 7.5 and 150 ammonium acetate and 50nM inhibitor). The inhibitor used to form the ternary complex was 5-bromo-N-(2.3-dihydroxy-propoxy)-3.4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide. The protein-containing fractions were pooled together, concentrated using a Millipore ultrafiltration stir-cell (YM10 membrane), centrifuged at 14,000 rpm for 10 minutes at 4°C, aliquoted into microcentrifuge tubes, and snap-frozen in liquid nitrogen. The protein aliquots were stored at -80°C until needed for crystallization. The same procedure was followed for the purification of the apo protein except that the concentrated HQ flow-through was loaded directly onto the pre-equilibrated size exclusion column.

Example 6: Purification of modified MEK2s

[0305] The cell lysate was combined with washed TALON™ metal affinity resin (ClonTech, Cat # 8908-2) at a ratio of 1mL of resin per 5g of cells. The mixture was stirred at 4°C for 1 hour, then batch-hoaded into a Biorad Econo column. Any additional unbound proteins/fmpurities were eluted with the washing buffer (50mM K_PHO_5, 5mM imidazioe). e.7mM TCEP, pH 8.0 and 300mM NaCl, 1mM pyrrole-2-carboxylate, 50µM ZnCl₅) until a baseline reading was reached. The protein was eluted with 4-5 column volumes of elution buffer (20mM HEPES, 100mM EDTA diseddum sait, 2mM TCEP, pH 7.5 and 10%v/v glycerol). The eluted protein was then diluted 10-fold in HS buffer A (20mM MES (2-{N-morpholino})-ethanesulionic acid), 2mM TCEP, pH 6.4 and 20% ethylene glycol) and loaded onto a pre-equilibrated HS column (PQROS HS/202 25X100, Applied Biosystema). The protein was eluted with a linear gradient from 0-100% HS Buffer B (Buffer A and 1M armonium acetate. The protein containing fractions were pooled together and concentrated using a Millipore ultrafilitation stirce (ell (YM10 membrane). The protein concentrate was then loaded onto a pre-equilibrated size exclusion column (HiLoad 26/60 Superdex 200 prep grade, Pharmacia, # 17-107-01). The protein was eluted in approximately 5 hours using SEC buffer (20mM HEPES, 0.1mM EDTA discolumn sait, 2mM TCEP, pH 7.5 and 150 ammonium acetate). The protein containing fractions were pooled and protein-ligand complex was formed by adding 10-fold molar excess of the ligand, (5-[3.4-Difluor-2-(2-fluor-6-iode-phenylamino)-phenyli-1,3.4-oxadiazol-2yl) (2/morn-brin) and the protein containing dissolved in DMSO), drowies into the protein solution under constant stirring. After

stirring overnight at 4°C, the complex was concentrated using a YM10 membrane fitted stir-cell, centrifuged at 8000 rpm for 30 minutes at 4°C, aliquoted into microcentrifuge tubes, and snap-frozen in liquid nitrogen. The protein aliquots were stored at -80°C until needed for crystallization.

Example 7: In vivo and in vitro MEK1 and MEK2 activity assays

[0306] The kinase activity of the modified MEK1 peptides was assayed using a glutathione-S-transferase fusion protein of kinase-inactive ERK1 (GSTERK1K17H) as substrate. The modified MEK peptides (Song) were assayed in 20mM HEPES (N-2-hydroxyethyl-piperazine-N'2-ethanesulfonic acid) pH 7.5, 10mM MgCl₂, 1mM EGTA (ethylene glycol bis(2-aminoethyl ether)-N,N,NN-tetraacetic acid), 10µM ATP, with 5µCl (p-32P) ATP. Appropriate samples had 0.5 units of Ral-1 (UBI) added, and the reaction started with the addition of 1 µg GSTERK1 (K71h). The reactions were incubated at room temperature for 20 minutes, then quenched with 5µl 6x Laernmil sample buffer. The samples were then resolved by SDS-PAGE, and the phosphoproteins visualized by autoradiography. Radiolabel incorporated into ERK was quantitated by excision of the protein band from the gel and counting in a standard schilllation counter, initial experiments with the modified MEK1s generated the following specific activities in units of pmol PO4 min-1 mg-1 after Raf activation: WT: 8380.6, WgTPR: 40.1, C1FL: 773.3, C1§PR: 35.9, C2FL: S37.5, C2§PR: 24.1, C3FL: 441.7, and C3SPR: 26.9.

[0307] In the evaluation of ligand that has been designed using the three-dimensional structural information of the MEK1: ligand: cofactor complexes, 5-bromo-N/c_3-d-flydroxy-proxy)-3-d-fluoro-2-(cl-puny-lamino)-20 benzamide was added to 96 well format plates with filter bottomed wells. Kinase-inactive ERK1 (K71R mutant) in HEPES butfer is then added to see help and the reaction of MEK1 (2D mutant) diluted in a 17th buffer before being added to the plate, and the reaction is initiated by the addition of radioactive ATP, diluted in 0.05% Tween 20. After 1 hour incubation at room temperature, lee-cold 20% TCA is added to each well to stop the reaction and to precipitate the protein in solution. Filtration is done the following day, followed by scintillation counting of the incorporate radioactivity using a Perkin Elmer Wallac microBeta 1450 counter. Inhibition is expressed as a percentage of the vehicle control.

(1) Evaluation of ex vivo tissue samples for pMAPK levels

30 [308] A lysis buffer of 50mM glycorol phosphate, 10mM HEPES, pH7.4, 1% Trition.×100, 70mM NaCl, 1mM Na₂VO₂, 100, MM PMSF 1 quill leuppetin, and 10 gM pepstatin. (Only add the inhibitors when ready to use) was prepared. Tumors are removed at -70° and placed onto dry toe immediately. 40-50 mg of each tumor is weighed and sliced using a scalpel. The mixture was homogenized with polytron and centrifuged at 2500 rpm at 4°II for 15 minutes. A supernatant was transferred to a 15 mL Fation tube. The protein easaey was then run and protein was normalized to about 15 gg, 5µL -35 (b)L of 6X laermini was added to each tube depending on the amount of lysate. The mixture was boiled for 3 minutes, spin and run on 10% tirts gy gets at 140V (80-Rad). Transfer was accomplished at 125V for 1.5 - 2 hours. The membrane was rinsed in water, and was then placed into blocking solution of TBST (Trits-buffered saline-Tween 20), 1% BSA and 1% ovalbumin. The membrane was rinsed three times for 5 minutes in TBST and was placed into the primary antibody (Promega) for 3-4 hours. The membrane was then washed for 5 minutes in TBST and was placed into the secondary antibody (Bio-Rad Goat anti-rabbit HRP) for 1.5 hours. The blots were visualized by ECC. (Pierce). Protein bands, identified as phosphorylated MAPK were measured using densitoretry using a Biorad Flur-S Multilanger Max.

(2) In vivo Colon26 Cellular MAP Kinase Western Assay:

45 [0309]

50

Day 1 Colon26 (murino) cells were seeded in twelve-well plates at roughly 2x10° cells/well (1.5 m/lwell). The cells were grown in media consisting of DMEM/F12 #11330-032 (Gibco), 10% FBS and 1% antibiotic/antimycotic and incubated at 37°C, 5% CO₂ overnight.

<u>Day 2</u> Compounds were prepared in DMSO at concentrations of $(1, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001 \,\mu\text{M})$ in a 96-well plate. The DMSO concentration in the cell preparations should never be greater than 0.2 %, therefore, a total of 3 μ l of each DMSO solution was added to a 1.5 ml well containing cells. The cells were then incubated at 37° in a 5% CO, incubator for one hour.

55 [0310] The plates and eppendorf tubes were kept on ice. The cells were washed in 1 ml PBS (containing 1mM Na₃Vo₄) followed by removal of PBS. The state of threonine and tyrosine phosphorylation of cellular MAPK was determined after treatment by lysing cells in 100 uLµ of a solution containing 70 mM Na₀Cl. 50 mM glycerol phosphate, 10 mM HEPES, pH 7.4, 1% Triton X-100, 1 mM Na₃VO₄, 100 µM PMSF, 10 µM leupeptin and 10 µM pepstatin. The

cells were scraped from the wells and transferred to an eppendorf tube. The eppendorf tubes were soun at 13,000 mm at 4 degrees for 5 min. The supernatant was then transferred to cold oppendorf tubes and the pellet was discarded. The Pierce BCA protein assay was then run and proteins were standardized to 20 µg. Either a 10% tris-glycine 10 well or 15 well gel was loaded and the gel was run at 130V for 1.5 hours. Transfer was accomplished at 125V for 2 hours or at 25V overnight. The membrane was rinsed in water, and was then placed into blocking solution for 1-18 hours. The membrane was insed throst times for 5 minutes in TBST and was then placed into the primary antibody (pMAPK) for 3-18 hours. The membrane was then washed for 5 minutes in TBST and was placed into the secondary antibody (Bio-Rad Goat anti-rabbit HRP) for one hour. The membrane was finally washed three times for 15 minutes in TBST. The biots were visualized by ECL (Pierce). Protein bands, identified as phosphorylated MAPK were measured using densitometry using a Biorad Elurs Multilanger Max. To evaluate total MAPK (levels, blots were subsequently stripped and re-probed with a 1:1 mixture of polyclonal antibodies recognizing unphosphorylated ERK1 and ERK2 (Santa Cruz Botechnology, Santa Cruz, California).

(3) Materials List:

[0311]

5

15

20

40

55

TBST buffer 0.9% NaCl, 10mM Tris, 0.1% Tween-20, pH 7.5 pMAPK Promega pMAPK: (1:5,000 in 0.5% BSA) #V8031-Polyclonal Secondary BioRad Goat-anti-Rabbit HRP (1:10,000 in 0.5% BSA) Catalogue # 170-6515 Blocking Solution: 1% BSA, 1%Ovalbumin in TBST, filter sterilized with 0.01% Na Azide

25 Example 8: Crystallization of the MEK1: ligand: cofactor complexes

[0312] The purified protein: Ilgand complexes (MEK1-C2, MEK1-C1, MEK1-C1(d280-323)) described in Example 4 were quick-thawed and incubated overnight at 4°C with a collactor solution consisting of 5 mM Mg-ATP dissolved in the size exclusion chromatography buffer as described above. After incubation, the protein ligand: cofactor complexes were centrifuged for 30 minutes at 14,000 x g at 4°C. Crystals of the MEK1 C2 peptide: ligand: cofactor complexes were grown by hanging drop vapor diffusion at 13°C using 1 µL drops of the ternary complex, with a protein to precipitant ratio of 1:1 over a 1 mL well solution. The precipitant used was 6:16% (w/v) PEG 8K, 150-450 mM NH₂H₃PO₄, 20 mM DTT, and 100 mM imidazole/malate buffer, pH 7.0. The crystals grow to about 0.2 x 0.1 x 0.1 mm in about 8 days. Classification of 1:10 can be completed with the complete of the purified aport protein solution described in Example 4 was combined with about 0.2 mg of an inhibitor for a period between 2 - 8 hours. The solution of the MEK1 peptide: ligand complex was then incubated overnight at 4°C with a cofactor solution consisting of 5 mM Mg-ATP dissolved in the size exclusion chromatography buffer and crystalized as described above.

[0314] The crystals were prepared for low temperature data collection by bathing the crystal in a cryoprotectant solution consisting of 10% ethylene glycol glycol diluted with the well solution. The procedure comprises adding a 1 µL drop of the 100% ethylene glycol solution to the inverted coversity containing the crystal. The crys solution was then thoroughly mixed with 9µL of the well solution to create a 10% ethylene glycol cryo solution. The mixed cryo solution was then added in a ratio of 1:1 (v/v) to the drop containing the crystal and allowed to slowly mix by diffusion. The drop containing the crystal, called the mother liquor, is now composed of 5% ethylene glycol. After about 2 minutes, the crystal was removed from the cryo/ mother liquor solution and transferred into a mixture of 70% Paratone-N obtained from Hampton Research, Laguna Niguel, CA. The crystal was then manipulated in the oil mixture to completely remove the aqueous solution and then quickly cooled by immersion directly into liquid nitrogen. Alternatively, the crystals may be dipped in a stream of cold nitrogen gas at about 100 K.

50 Example 9: Crystallization of the MEK2: ligand: cofactor complexes

[0315] The purified protein: ligand complexes MEK2-C2, described in Example 6 were quick-thawed and incubated overnight at 4"C with a cofactor solution consisting of 5 mM Mg-TP dissolved in the size exclusion chromatography buffer as described above. After incubation, the protein: ligand: cofactor complexes were centrifuged for 30 minutes at 14,000 x g at 4"C. Crystals of the MEK2 peptide: ligand: cofactor complexes were grown by harging drop vapor diffusion at 13"C using 1" µL drops of the termay complex, with a protein to precipitant ratio of 1:1 over a 1 mL well solution. The precipitant used was 1.4-1.85 M NaH₂PO4/ K₂HPO4, 0-20 mM DTT, pH 6.7-7.1. The crystals grew to about 0.2 x 0.1 x 0.1 mm in about 8 days.

[0316] The crystals were prepared for low temperature data collection by bathing the crystal in a cryoprotectant solution consisting of a mixture of 70% Paratone-N obtained from Hampton Research, Laguna Niguel, CA. and 30% (light, white minoral oil mixture using a mounted cryo loop, also obtained from Hampton Research, Laguna Niguel, CA. The crystal was then manipulated in the oil mixture to completely remove the aqueous solution and then quickly cooled by immersion directly into liquid nitrogen. Alternatively, the crystals may be dipped in a stream of cold nitrogen gas at about 100 K.

Example 10: Crystallographic data collection of the MEK1 and MEK2: ligand: cofactor complex crystals

(1) In-house analysis and collection of diffraction data:

[0317] The initial data set used for phase determination was collected at 100 Kehin on an R-AXIS IV⁺ mounted on a Rigaku RU-H3R rotating anode X-ray source operating at 50 kV and 100 mA equipped with an Osmic-comolacul mirror. The detector was positioned at a 2 theta value of 0 degrees with a crystal to detector distance of 225 mm. A rotation angle of 0.5 degree per frame was used with an exposure time of 10 minutes per frame. The inverse-beam method was used with two 80° sweeps collected 180° apart.

(2) Synchrotron data collection:

20

25

40

50

55

[0318] Synchrotron data sets of MEK1 and MEK2 were collected 2.4 Å and 3.2 Å resolution respectively at 100 K on the 17-ID beamline (IMCA) at the Advanced Photon Source Argonne, IL. A wavelength of 1.0 Å was used with crystal to detector distance of 170 mm, with a rotation angle of 0.5 degrees per frame and an exposure time of 10 sec per frame using a MAR CCD for the MEK1 data collection. A wavelength of 1.0 Å was used with crystal to detector distance of 200 mm, with a rotation angle of 0.5 degrees per frame and an exposure time of 10 sec per frame using an ADSC QUANTUM 210 CCD detector was used for the MEK2 data collection.

Example 11: Structural determination of the initial MEK1: ligand: cofactor complex

[0319] Typical crystals of the ternary complex belong to the hexagonal space group, P6₂ with unit cell dimensions of approximately a=b=81.4, c=129.2 Å with one molecule per asymmetric unit.

[0320] The initial crystal structure of MEK1 was solved using the SAD method using in-house data from the anomolous signal created by the lodine atom in the ligand. The data collection statistics are a total of 6699 anomalous pairs out of 26338 measured reflections were found in the resolution range of 36 - 3.4 Å About 83% of the reflections were measured with a redundancy of 4 and 11% of the reflections were measured with a redundancy of 3, with an overall R_{summ}0.051.

[0321] Áll data were processed with HKL2000 and scaled with SCALEPACK (Otwinowski et al., "Processing of x-ray all first cities and total collected in oscillation mode," Methods Enzymol. 276:307-326 (1997). All subsequent calculations were done with the CNX package (Molecular Simulations Incorporated). A single position of an iodine atom was found from 3.5 Å anomalous difference Patterson map and later confirmed with the automated Patterson search program. Ten ovcles of heavy atom parameters (positional as well as thermal) and phase calculations were performed. An overall

figure-of-merit (FOM) was 0.258 for the reflections between 38 and 3.5 Å. Density modification was used to minimize any ambiguity in phase information. A solvent content of 64% was assumed according to a Matthews analyses (Mathews, B.W. J. Mol. Biol. 491-497 (1988)). After the density modification procedure, the new phases had FOM-0.858. In order to find a correct enantiomorph similar calculations were done in P6₅ space group with flipped positional coordinates of lodine atom. Analyses of the electron density calculated in both space groups confirmed P6₂ as a correct one. Phases were extended to 2.38 Å after higher resolution data became available. A 2.38 Å electron density map calculated with these new phases was used for protein model tracing and fitting of the inhibitor and ATP, with the QUNATA 2000 graphical application (Molecular Simulations Incorporated). Atomic models at different stages of completeness were refined with CNX refinement programs (minimize & individual). For the 2.38 Å resolution native data set collected at a wavelength of 1.0 Å at the 17ID line of the APS, a complete sweep of 720 degrees of data was collected. In order to minimize the radiation induced crystal decay only the first 240 out of 720 frames were processed with the HKL2000 and scaled with SCALEPACK. Unit cell dimensions for this crystal were estimated as a-b-81.6, c-123.2 Å. Data included 18590 unique reflections out of 35816 measured in the 36 to 2.38 Å resolution range (about 95 % coverage) with R_{mammon}. O44.

Example 12: Refinement of the MEK1: ligand: cofactor structure complexes

[0322] Positional and simulated annealing refinements to the initial structural coordinates were carried out using the

multi-stage maximum likelihood minimization procedure implemented in the program X-PLOR version 98.1 (Accelrys, San Diego, CA.) against data from 25-2.4Å. One round of simulated annealing using the slow-cool procedure (3000 K to 300 K in stops of 25 K) followed by several cycles of standard positional refinement reduced the R_{profit} to 0.372 (R_{finee} 0.428). The (2Fo - Fo) and (Fo - Fc) different electron density maps clearly revealed most of the side chains of the model and the binding sites for inhibitor compound (5-brono-N-(2,3-diffuors-y-propsy)-3,4-difuor-2-(2-fluoro-4-iodo-phenylamino)benzamide), ATP and Mg²⁺. The first round of model rebuilding and positional refinement, followed by individually restrained B-factor refinement reduced the R_{mote} to 0.302 (F_{finee} 0.347). Application of bulk solvent correction further reduced the R_{mote} to 0.3202 (F_{finee} 0.347). Application of bulk solvent molecules and modeling in the inhibitor and MgATP, followed by positional and restrained individual 3 refinements produced the current model with R_{mote} of 0.237 (R_{finee} 0.276). The current model contains 2159 non-hydrogen protein atoms corresponding to 276 residues of the NH₂-terminally truncated MEK1 in a ternary complex with one ATP molecules. one Mg²-in one inhibitor molecules and 80 water molecules.

5

15

20

40

50

[0323] The crystal coordinates of the MEK1 peptide (MEK1-C1): Mg-ATP: 5-bromo-N-(2,3-dihydroxy-propoxy)-3,4-difluoro-2-(2-fluoro-4-lodo-phenylamino)benzamide are shown in Table 1.

Example 13; Structural Determination and Refinement of MEK2; ligand; cofactor structure complexes

[0324] Typical crystals of the ternary MEK2 complex belong to the hexagonal space group, P6,22 with unit cell dimensions of approximately a=b=161.89, e-12.99 Å with two molecules per asymmetric unit. All data were processed with HKL2000 and scaled with SCALEPACK (Otwinowski et al., "Processing of x-ray diffraction data collected in oscillation mode," Methods Enzymol. 276:307-326 (1997)). For the ternary co-complex of MEX-C2C, MgATP and 6-[34.4-Dilucro-2-(2-fluor-x-loo-phenylmino)-phenyll-1,3-d-xoadiazlo-2-yll-(2-morpholin-4-yl-tyl-ymin)ne, a total of 152,386 measured reflections were identified, with 16,131 unique reflections in the resolution range of 36 - 3.2 Å, with an overall R_{min}=0.084

[0325] The structure was solved by molecular replacement using the MEK1: MgATP: inhibitor complex coordinates as search model using the program Molrep in CCP4 (Collaborative Computational Project, Number 4, 1994. "The CCP4 Sulte: Programs for Protein Crystallography". Acta Cryst. D50, 760-763.) A rigid body refinement was performed, followed by one cycle of positional refinement using Refinac in CCP4. A 3.2 A electron density map was calculated and used for manual fitting of the protein using the program QUNATA-2000 graphical application (According to the Collaboration of the Collaboration (According to the Collaboration (Accor

[0326]. Positional and simulated annealing refinements to the initial structural coordinates were carried out using the multi-stage maximum likelihood minimization procedure implemented in the program CNX version 2002 (Accelys, San Diego, CA.) against data from 25-3.2Å. One round of simulated annealing using the slow-cool procedure (2500 K to 300 K in steps of 25 K) followed by several cycles of standard positional refinement reduced the P_{rout} to 0.338 (P_{rout} o 0.338 (P_{rout} o 0.339 K). The (2Fo - Fc) and (Fo - Fc) different electron density maps clearly revealed most of the side chains of the model and the binding sites for inhibitor compound (513.4-Diffuoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-1,3.4-ox-diazoi-2-yl]-(2-morphoini-4-yl-ethyl)-amine, ATP and Mg²-T. The first round of model rebuilding and positional refinement was followed by modeling in the inhibitor and MgATP. Then positional and group restrained B-factor refinement reduced the P_{rout} to 0.29 (P_{rout} o 0.37). The crystal coordinates of the MEK2 popitiod (MEK2-C2). Mg-ATP: (5/3,4-C)-fluoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-1,3,4-oxadiazoi-2-yl)-(2-morpholin-4-yl-ethyl)-amine are provided in Table 2.

Example 14: Analysis of the crystal structures of the MEK1: ligand: cofactor complexes

[0327] The crystal structure of the ternary complex was obtained in the PDB file format and analyzed using software that performed the functions performed by SYBYL® and REDUCE® software. Initially, the structural data were processed by modifying the atom types of the ligand and cofactor and any waters that were present. The software was then used to ttrate the protein by adding all of the hydrogens in the most favorable protonation state, as well as by rotating all the water molecules into orientations that gave the optimal interactions with the protein. After this modification, the protein complexes were ready for binding site characterization and docking simulation. The ligand and cofactor binding sites were characterized using GRIN/GRIPM and MOLCAD® contouring, in this procedure, at and 5 Å radius was traced around each atom of the ligand and the cofactor and all the amino acid residues that fell within that radius were identified.

[0328] After analysis of the binding site characterization and the docking studies using the X-ray crystallographic structural data, it was discovered that the MEK1 peptide comprises a ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within 4 Å of the MEK1 inhibitors located in the ligand-binding site: G77, N78, G79, G80, K97, H99, L115, L118, V127, F129, 1141, M143, C207, D208, F209, G210, V211,

S212, L215, I216, M219 of SEQ ID NO: 2. Further, it was discovered that the MEK1 peptide has a ligand-binding pocket that is defined by structural coordinates of the following amino acid residues within 5 Å of the MEK1 inhibitors located in the ligand-binding site: G77, N78, G79, G80, K97, 199, L115, L118, I126, V127, G128, F129, I141, M143, D190, N195, L206, C207, D208, F209, G210, V211, S212, L215, I216, M219, F223 of SEQ ID NO: 2.

[0329] It was also discovered that the MEK1 peptide comprises a cofactor-binding pocket that is defined by the structural coordinates of the following residues within 4 A for the ATP molecule in the cofactor-binding site: 1.74, G75, A76, G77, N78, G80, V81, V82, A85, K97, V127, M143, E144, H145, M146, G149, S150, D152, Q153, K192, S194, N195, L197, D208, V224 of SEQ ID NO. 2. Further, it was discovered that the MEK1 peptide comprises a cofactor-binding potect that is defined by structural coordinates of the following residues within 5 A of the ATP molecule in the cofactor-binding site: L74, G75, A76, G77, N78, G79, 80, V81, V82, A95, K97, V127, M143, E144, H145, M145, D147, G149, S150, D152, Q153, D190, K192, S194, N195, L197, C207, D208, V224, G225 of SEC ID NO. 2.

Example 15: Analysis of the crystal structures of the MEK2: ligand: cofactor complexes

[0330] The crystal structure of the ternary complex was obtained in the PDB file format and analyzed using software that performed the functions performed by SYBYL® and REDUCE® software. Initially, the structural data were processed by modifying the atom types of the ligand and cofactor and any waters that were present. The software was then used to titrate the protein by adding all of the hydrogens in the most favorable protonation state, as well as by rotating all the water molecules into rientations that gave the optimal interactions with the protein. After this modification, the protein complexes were ready for binding site were ready for binding site were characterized using GRIN/GRIPD and MOLCADO contouring. In this procedure, a 4 Å and 5 Å radius was traced around each atom of the ligand and the cofactor and all the amino acid residues that fell within that radius were identified.

[0331] After analysis of the binding site characterization and the docking studies using the X-ray crystallographic structural data, it was discovered that the MEX2 peptide comprises a ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within 4 A of the MEX2 inhibitors located in the ligand-binding site: G81, N82, G83, G84, K101, I103, L119, L122, V131, F133, I145, M147, C211, D212, F213, G214, V215, S216, L219, J220, M223 of SEQ ID NO: 4, Futher, it was discovered that the MEX2 peptide has a ligand-binding pocket that is defined by structural coordinates of the following amino acid residues within 5 Å of the MEX2 inhibitors located in the ligand-binding site: G81, N82, G83, G84, K101, I103, L119, L122, I130, V131, G132, F133, I145, M147, D194, N199, L210, C211, D212, F213, G214, V215, S216, L219, B20, M223, F220, O15SEQ INSC, V159, L210, C211, D212, F213, G214, V215, S216, L219, B20, M223, F220, O15SEQ INSC, V159, L210, V159, L210, C211, D212, F213, G214, V215, S216, L219, B20, M223, F220, O15SEQ INSC, V159, L210, V159, L210, V159, L210, V159, V159, L210, V159, V159, L210, V159, V159, L210, V159, V

[0332] It was also discovered that the MERZ peptide comprises a cofactor-binding pocket that is defined by the structural coordinates of the following residues within 4 Å of the ATP molecule in the cofactor-binding site. 178, G79, A80, G81, N82, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, G153, S154, D156, G157, K196, S198, N199, L201, D212, V228 of SEQ ID NO: 4. Further, it was discovered that the MERZ peptide comprises a cofactor-binding pocket that is defined by structural coordinates of the following residues within 5 A of the ATP molecule in the cofactor-binding site: L78, G79, A80, G81, N82, G83, G84, V95, V86, A99, K101, V131, M147, E148, H149, M150, D151, G153, S154, D156, G157, D194, K196, S198, N199, L201, C211, D212, V228, G229 of SEQ ID NO: 4.

[0333] After analysis of the binding site characterization and the docking studies using the X-ray crystallographic of structural data, it was discovered that cortain features of MEX1 and MEX2 are responsible for the high affinity binding of the ligand to the MEX1 of MEX2 ligand binding site. With the inhibitors described above, a binding mode was observed that involves the orientation of the ligand into the hydrophobic prime pocket with a hydrogen bond donor and acception interaction with several residues of the activation loop. However, it is expected that continued crystallization of other classes of compounds may reveal novel binding modes that are not currently seen. For example, modeling and docking simulations have revealed alternative binding modes for other more novel classes of compounds. This information can be used, for example, in the evaluation, screening and/or design and modification of a chemical entity that may associate with MEX1 or MEX2 activity.

[0334] The binding sites according to the invention can serve as a basis for screening a virtual library using various screening techniques known in the art, including, for example, UNITY® (Tripos, Inc.) and anyother 3D database screening software. For example, the X-ray crystallographic data found in Table 1 has allowed for the detailed identification of MEK1's three-dimensional structure for the first time. Likewise, the X-ray crystallographic data found in Table 2 has allowed for the detailed identification of MEK2's three-dimensional structure for the first time.

Example 16: Calculation of RMSD's between the MEK1 and MEK2 structures

50

55

[0335] The RMS deviations (RMSD's) between the C alpha and/or backbone (N, C, O, and C alpha) atoms of MEK1 and MEK2 structures were calculated herein using the Superimpose command in InsightII (Acceirys). The RMSD's can also be calculated using other modeling programs or scripts. What the Superimpose command does is to perform

a minimum RMS alignment of two molecules on selected sets of atoms from each molecule and output the RMSD value between the selected atoms of the superimposed molecules.

[0336] The RMSD values between several sets of selected C alpha and/or backbone atoms of MEK1 and MEK2 structures have been calculated and listed in Table 8. The RMSD for the C alpha and/or backbone atoms of the overall MEK1 and MEK2 structures was calculated using the following residues: E62-N221, V224-P266, and P307-L381 of MEK1; and E66-N225, V228-P270, and P315-L389 of MEK2. The RMSD for the C alpha and/or backbone atoms of the kinase domain of MEK1 and MEK2 was calculated using the following residues: F68-N221, V224-P266, and P307-1361 of MEK1; and F72-N225, V228-P270, and P315-1389 of MEK2.

[0337] The RMSD for the C alpha and/or backbone atoms of the 4 Å inhibitor binding site residues of MEK1 and MEK2 was calculated using G77, N78, G79, G80, K97, I99, L115, L118, V127, F129, I141, M143, C207, D208, F209, G210, V211, S212, L215, I216 and M219 of SEQ ID NO: 2 (MEK1) and their corresponding residues in MEK2 (Table 2). The RMSD for the C alpha and/or backbone atoms of the 5 Å inhibitor binding site residues of MEK1 and MEK2 was calculated using G77, N78, G79, G80, K97, I99, L115, L118, I126, V172, G128, F129, I141, IM143, D190, N195, L206, C207, D208, F209, G210, V211, S212, L215, I216, M219 of SEQ ID NO: 2 (MEK1) and their corresponding residues in MEK2 (Table 2).

[0338] All references cited herein are incorporated by reference in their entirety.

[0339] While the invention has been described in conjunction with examples thereof, it is to be understood that the foregoing description is exemplary and explanatory in nature, and is intended to illustrate the invention and its preferred embodiments. Through routine experimentation, the artisan will recognize apparent modifications and variations that may be made without departing from the spirit of the invention. Thus, the invention is intended to be defined not by the above description, but by the following calaims and their equivalents.

[0340] The following Tables are included in the application.

Table 1 Crystal Coordinates of the MEK1: MgATP: 5-bromo-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide **Ternary Complex**

10	ATOM	1	CB	GLU	63	1.911	41.776	24.865	1.00	47.12	CDK1
	ATOM	2	CG	GLU	63	1.329	43.151	24.968	1.00	43.66	CDK1
	ATOM	3	CD	GLU	63	2.206	44.096	25.817	1.00	54.98	CDK1
15	ATOM	4	OE1	GLU	63	3.094	44.782	25.218	1.00	49.96	CDK1
15	ATOM	5	OE2	GLU	63	2.016	44.166	27.094	1.00	55.25	CDK1
	ATOM	6	С	GLU	63	-0.364	40.840	25.534	1.00	51.68	CDK1
	MOTA	7	0	GLU	63	-1.007	41.032	26.560	1.00	60.94	CDK1
20	ATOM	8	N	GLU	63	1.520	39.342	25.100	1.00	51.25	CDK1
	ATOM	9	CA	GLU	63	1.149	40.680	25.628	1.00	49.43	CDK1
	ATOM	10	N	LEU	64	-0.961	40.735	24.349	1.00	49.14	CDK1
	ATOM	11	CA	LEU	64	-2.422	40.859	24.271	1.00	47.94	CDK1
25	ATOM	12	СВ	LEU	64	-2.840	41.426	22.926	1.00	50.37	CDK1
	ATOM	13	CG	LEU	64	-3.452	42.824	22.974	1.00	49.88	CDK1
	ATOM	14	CD1	LEU	64	-2.480	43.780	23.629	1.00	43.59	CDK1
	ATOM	15	CD2	LEU	64	-3.764	43.289	21.575	1.00	43.10	CDK1
30	ATOM	16	С	LEU	64	-3.133	39.520	24.516	1.00	53.50	CDK1
	ATOM	17	0	LEU	64	-2.899	38.550	23.797	1.00	56.21	CDK1
	ATOM	18	N	LYS	65	-3.989	39.481	25.546	1.00	57.95	CDK1
	ATOM	19	CA	LYS	65	-4.750	38,278	25.952	1.00	56.48	CDK1
35	ATOM	20	CB	LYS	65	-4.444	37.916	27.414	1.00	58.05	CDK1
	ATOM	21	CG	LYS	65	-3.065	37.326	27.659	1.00	62.60	CDK1
	ATOM	22	CD	LYS	65	-3.003	36.592	29.002	1.00	62.37	CDK1
	ATOM	23	CE	LYS	65	-3.085	37.556	30.173	1.00	61.71	CDK1
40	ATOM	24	NZ	LYS	65	-4.391	37.461	30.884	1.00	51.87	CDK1
	ATOM	25	С	LYS	65	-6.269	38.455	25.821	1.00	55.10	CDK1
	ATOM	26	0	LYS	65	-6.778	39.577	25.841	1.00	56.94	CDK1
45	ATOM	27	N	ASP	66	-6.998	37.348	25.720	1.00	51.16	CDK1
40	ATOM	28	CA	ASP	66	-8.451	37.421	25.585	1.00	50.31	CDK1
	ATOM	29	CB	ASP	66	-9.027	36.029	25.312	1.00	48.53	CDK1
	MOTA	30	CG	ASP	66	-10.550	36.031	25.221	1.00	49.64	CDK1
50	ATOM	31	OD1	ASP	66	-11.142	36.969	24.642	1.00	51.91	CDK1
	ATOM	32	OD2	ASP	66	-11.169	35.080	25.730	1.00	60.30	CDK1
	ATOM	33	С	ASP	66	-9.133	38.022	26.820	1.00	53.61	CDK1

5

	MOTA	34	0	ASP	66	-10.058	38.834	26.697	1.00	49.78	CDK1
	MOTA	35	N	ASP	67	-8.663	37.632	28.004	1.00	56.17	CDK1
5	MOTA	36	CA	ASP	67	-9.236	38.109	29.267	1.00	60.12	CDK1
	ATOM	37	CB	ASP	67	-8.711	37.288	30.454	1.00	64.33	CDK1
	ATOM	38	CG	ASP	67	-7.494	36.449	30.105	1.00	78.36	CDK1
	ATOM	39	OD1	ASP	67	-7.421	35.910	28.974	1.00	84.85	CDK1
10	ATOM	40	OD2	ASP	67	-6.604	36.322	30.977	1.00	84.15	CDK1
	ATOM	41	C	ASP	67	-9.031	39.594	29.557	1.00	56.52	CDK1
	ATOM	42	0	ASP	67	-9.896	40.231	30.158	1.00	56.00	CDK1
	MOTA	43	N	ASP	68	-7.904	40.149	29.127	1.00	49.31	CDK1
15	ATOM	44	CA	ASP	68	-7.625	41.557	29.363	1.00	43.05	CDK1
	MOTA	45	СВ	ASP	68	-6.148	41.823	29.100	1.00	47.50	CDK1
	MOTA	46	CG	ASP	68	-5.248	40.983	29.989	1.00	52.01	CDK1
	ATOM	47	OD1	ASP	68	-4.007	41.147	29.953	1.00	46.97	CDK1
20	ATOM	48	OD2	ASP	68	-5.797	40.147	30.734	1.00	56.12	CDK1
	MOTA	49	С	ASP	68	-8.486	42.549	28.577	1.00	43.93	CDK1
	ATOM	50	0	ASP	68	-8.183	43.742	28.573	1.00	45.17	CDK1
	ATOM	51	N	PHE	69	-9.562	42.067	27.942	1.00	41.39	CDK1
25	ATOM	52	CA	PHE	69	-10.460	42.918	27.139	1.00	40.09	CDK1
	ATOM	53	CB	PHE	69	-10.586	42.395	25.690	1.00	38.16	CDK1
	ATOM	54	CG	PHE	69	-9.408	42.706	24.828	1.00	33.20	CDK1
	MOTA	55	CD1	PHE	69	-9.234	43.977	24.321	1.00	30.42	CDK1
30	ATOM	56	CD2	PHE	69	-8.425	41.750	24.606	1.00	31.00	CDK1
	ATOM	57	CE1	PHE	69	-8.089	44.299	23.619	1.00	34.47	CDK1
	ATOM	58	CE2	PHE	69	-7.270	42.062	23.901	1.00	30.56	CDK1
	MOTA	59	CZ	PHE	69	-7.095	43.338	23.408	1.00	25.48	CDK1
35	ATOM	60	С	PHE	69	-11.861	42.941	27.701	1.00	40.30	CDK1
	MOTA	61	0	PHE	69	-12.258	42.014	28.376		40.70	CDK1
	MOTA	62	И	GLU	70	-12.623	43.979	27.373		43.63	CDK1
	MOTA	63	CA	GLU	70	-14.011	44.089	27.816		48.94	CDK1
40	MOTA	64	CB	GLU	70	-14.103	44.936	29.101		56.95	CDK1
	MOTA	65	CG.	GLU	70	-15.501	45.449	29.450		61.99	CDK1
	MOTA	66	CD	GLU	70	-15.596	46.979	29.421		73.96	CDK1
	ATOM	67	OE1		70	-14.553	47.654	29.589		76.19	CDK1
45	MOTA	68	OE2		70	-16.717	47.511	29.230		77.39	CDK1
	MOTA	69	С	GLU	70	-14.817	44.736	26.688		49.67	CDK1
	ATOM	70	0	GLU	70	-14.461	45.804	26.179		47.32	CDK1
	MOTA	71	N	LYS	71	-15.904	44.087	26.296		48.53	CDK1
50	MOTA	72	CA	LYS	71	-16.730	44.603	25.214		51.94	CDK1
	ATOM	73	CB	LYS	71	-17.830	43.590	24.866		53.44	CDK1
	MOTA	74	CG	LYS	71	-17.931	43.211	23.398		55.21	CDK1
	MOTA	75	CD	LYS	71	-17.570	41.734	23.195		62.97	CDK1
55	MOTA	76	CE	LYS	71	-18.789	40.879	22.829	1.00	61.29	CDK1

	ATOM	77	NZ	LYS	71	-20.072	41.651	22.889	1.00 62.20	CDK1
	ATOM	78	С	LYS	71	-17.364	45.937	25.573	1.00 52.10	CDK1
	ATOM	79	0	LYS	71	-18.006	46.055	26.606	1.00 57.97	CDK1
5	MOTA	80	N	ILE	72	-17.185	46.937	24.717	1.00 51.76	CDK1
	ATOM	81	CA	ILE	72	-17.778	48.253	24.930	1.00 50.77	CDK1
	ATOM	82	СВ	ILE	72	-16.820	49.385	24.520	1.00 48.80	CDK1
10	MOTA	83	CG2	ILE	72	-17.584	50.679	24.368	1.00 41.25	CDK1
10	ATOM	84	CG1	ILE	72	-15.715	49.545	25.563	1.00 49.54	CDK1
	ATOM	85	CD1	ILE	72	-14.608	50.498	25.130	1.00 52.47	CDK1
	MOTA	86	С	ILE	72	-19.029	48.346	24.058	1.00 58.25	CDK1
15	MOTA	87	0	ILE	72	-20.152	48.307	24.565	1.00 59.88	CDK1
	ATOM	88	N	SER	73	-18.822	48.464	22.745	1.00 60.54	CDK1
	ATOM	89	CA	SER	73	-19.922	48.546	21.788	1.00 62.18	CDK1
	MOTA	90	CB	SER	73	-20.277	50.004	21.526	1.00 62.22	CDK1
20	ATOM	91	OG	SER	73	-19.595	50.476	20.385	1.00 72.58	CDK1
	ATOM	92	С	SER	73	-19.609	47.842	20.460	1.00 61.03	CDK1
	ATOM	93	0	SER	73	-18.469	47.463	20.188	1.00 65.74	CDK1
	ATOM	94	N	GLU	74	-20.636	47.667	19.640	1.00 60.49	CDK1
25	ATOM	95	CA	GLU	74	-20.503	46.997	18.342	1.00 61.43	CDK1
	ATOM	96	CB	GLU	74	-21.804	46.253	18.032	1.00 61.77	CDK1
	ATOM	97	CG	GLU	74	-22.028	45.950	16.570	1.00 74.67	CDK1
	ATOM	98	CD	GLU	74	-21.712	44.508	16.232	1.00 82.79	CDK1
30	ATOM	99		GLU	74	-22.506	43.888	15.488	1.00 85.38	CDK1
	ATOM	100		GLU	74	-20.670	43.998	16.711	1.00 86.15	CDK1
	MOTA	101	С	GLU	74	-20.182	47.989	17.214	1.00 57.99	CDK1
	MOTA	102	0	GLU	74	-20.972	48.890	16.942	1.00 57.45	CDK1
35	MOTA	103	N	LEU	75 .	-19.037	47.812	16.551	1.00 54.73	CDK1
	ATOM	104	CA	LEU	75	-18.628	48.718	15.471	1.00 54.78	CDK1
	MOTA	105	СВ	LEU	75	-17.102	48.739	15.359	1.00 51.93	CDK1
	MOTA	106	CG	LEU	75	-16.384	49.546	16.440	1.00 41.57	CDK1
40	ATOM	107		LEU	75	-14.897	49.267	16.417	1.00 35.33	CDK1
	MOTA	108		LEU	75	-16.674	51.021	16.215	1.00 43.91	CDK1
	MOTA	109	С	LEU	75	-19.233	48.406	14.096	1.00 55.61	CDK1
	MOTA	110	0	LEU	75	-19.424	49.301	13.284	1.00 54.15	CDK1
45	MOTA	111	N	GLY	76	-19.534	47.136	13.848	1.00 55.37	CDK1
	MOTA	112	CA	GLY	76	-20.113	46.735	12.586	1.00 53.17	CDK1
	ATOM	113	C	GLY	76	-19.905	45.247	12.405	1.00 60.26	CDK1
50	ATOM	114	0	GLY	76	-19.228	44.608	13.224	1.00 56.56	CDK1
50	ATOM	115	N	ALA	77	-20.499	44.690	11.349	1.00 64.98	CDK1
	ATOM	116	CA	ALA	77	-20.367	43.266	11.038	1.00 67.86	CDK1
	ATOM	117	СВ	ALA	77	-21.596	42.501	11.492	1.00 67.58	CDK1
55	MOTA	118	С	ALA	77	-20.204	43.118	9.540	1.00 68.86	CDK1
55	ATOM	119	0	ALA	77	-20.741	43.921	8.775	1.00 68.97	CDK1

	ATOM	120	N	GLY	78	-19.464	42.096	9.125	1.00	68.72	CDK1
	ATOM	121	CA	GLY	78	-19.260	41.875	7.709	1.00	70.24	CDK1
5	MOTA	122	С	GLY	78	-19.598	40.458	7.310	1.00	73.13	CDK1
	ATOM	123	0	GLY	78	-20.221	39.721	8.074	1.00	71.82	CDK1
	MOTA	124	N	ASN	79	-19.199	40.084	6.099	1.00	77.45	CDK1
	ATOM	125	CA	ASN	79	-19.428	38.736	5.587	1.00	81.51	CDK1
10	ATOM	126	CB	ASN	79	-19.041	38.645	4.108	1.00	86.42	CDK1
	ATOM	127	CG	ASN	79	-20.248	38.580	3.193	1.00	92.12	CDK1
	ATOM	128	OD1	ASN	79	-20.794	39.611	2.786	1.00	95.79	CDK1
	MOTA	129	ND2	ASN	79	-20.673	37.363	2.860	1.00	94.64	CDK1
15	ATOM	130	С	ASN	79	-18.533	37.834	6.420	1.00	80.68	CDK1
	ATOM	131	0	ASN	79	-17.631	37.159	5.912	1.00	78.09	CDK1
	ATOM	132	N	GLY	80	-18.799	37.852	7.718	1.00	79.54	CDK1
	MOTA	133	CA	GLY	во	-18.031	37.075	8.660	1.00	82.19	CDK1
20	MOTA	134	C	GLY	80	-17.778	37.931	9.882	1.00	82.11	CDK1
	ATOM	135	0	GLY	80	-18.707	38.500	10.471	1.00	83.24	CDK1
	ATOM	136	N	GLY	81	-16.509	38.035	10.250	1.00	81.24	CDK1
	ATOM	137	CA	GLY	81	-16.127	38.815	11.409	1.00	78.16	CDK1
25	ATOM	138	С	GLY	B1	-17.010	39.984	11.804	1.00	74.13	CDK1
	ATOM	139	0	GLY	81	-17.522	40.736	10.972	1.00	71.77	CDK1
	ATOM	140	N	VAL	82	-17.227	40.100	13.106	1.00	73.17	CDK1
	ATOM	141	CA	VAL	82	-17.983	41.214	13.652	1.00	66.83	CDK1
30	ATOM	142	CB	VAL	82	-19.064	40.775	14.643	1.00	65.38	CDK1
	ATOM	143	CG1	VAL	82	-18.420	40.170	15.887	1.00	64 - 61	CDK1
	ATOM	144	CG2	VAL	82	-19.930	41.966	14.997	1.00	56.65	CDK1
	ATOM	145	С	VAL	82	-16.862	41.926	14.389	1.00	61.57	CDK1
35	MOTA	146	0	VAL	82	-15.899	41.287	14.830	1.00	58.85	CDK1
	ATOM	147	N	VAL	83	-16.956	43.238	14.501	1.00	55.91	CDK1
	MOTA	148	CA	VAL	83	-15.887	43.961	15.151	1.00	53.12	CDK1
	MOTA	149	CB	VAL	83	-15.064	44.764	14.092	1.00	56.58	CDK1
40	MOTA	150	CG1	VAL	83	-16.003	45.405	13.083	1.00	60.32	CDK1
	ATOM	151	CG2	VAL	83	-14.174	45.804	14.760	1.00	44.19	CDK1
	ATOM	152	С	VAL	83	-16.429	44.849	16.251	1.00	50.23	CDK1
	MOTA	153	0	VAL	83	-17.302	45.703	16.043	1.00	44.02	CDK1
45	ATOM	154	N	PHE	84	-15.899	44.619	17.442	1.00	50.96	CDK1
	ATOM	155	CA	PHE	84	-16.322	45.355	18.618	1.00	47.93	CDK1
	ATOM	156	CB	PHE	84	-16.435	44.409	19.815	1.00	48.47	CDK1
50	MOTA	157	CG	PHE	84	-17.317	43.207	19.582	1.00	50.89	CDK1
50	ATOM	158	CD1	PHE	84	-16.759	41.942	19.422	1.00	50.80	CDK1
	MOTA	159	CD2	PHE	84	-18.707	43.327	19.614	1.00	52.86	CDK1
	ATOM	160	CE1	PHE	84	-17.574	40.809	19.306	1.00	52.24	CDK1
55	ATOM	161	CE2	PHE	84	-19.533	42.202	19.502	1.00	48.57	CDK1
55	ATOM	162	CZ	PHE	84	-18.965	40.943	19.350	1.00	51.67	CDK1

	ATO	M 163	С	PHE	84	-15.380	46.473	19.004	1.00	46.06	CDK1
	ATO	M 164	0	PHE	84	-14.150	46.342	18.897	1.00	41.74	CDK1
	ATO	M 165	i N	LYS	85	-15.967	47.582	19.444	1.00	44.27	CDK1
5	ATO	M 166	CA	LYS	85	-15.169	48.687	19.953	1.00	45.57	CDK1
	ATO	M 167	СВ	LYS	85	-16.000	49.955	20.051	1.00	47.54	CDK1
	ATC	M 168	CG	LYS	85	-15.527	50.888	21.138	1.00	51.54	CDK1
10	ATC	M 169	CD	LYS	85	-15.515	52.311	20.649	1.00	53.90	CDK1
70	ATO	M 170	CE	LYS	85	-16.382	53.194	21.523	1.00	50.73	CDK1
	ATO	M 171	NZ	LYS	85	-15.664	54.466	21.841	1.00	57.37	CDK1
	ATO	M 172	С	LYS	85	-14.901	48.160	21.358	1.00	48.89	CDK1
15	ATO	м 173	0	LYS	85	-15.844	47.863	22.082	1.00	48.31	CDK1
	ATO	M 174	N	VAL	86	-13.642	48.013	21.750	1.00	48.98	CDK1
	ATO	M 175	CA	VAL	86	-13.369	47.484	23.072	1.00	44.37	CDK1
	ATO	M 176	CB	VAL	86	-12.948	45.993	23.022	1.00	42.84	CDK1
20	ATO	M 177	CG1	VAL	86	-13.931	45.197	22.193	1.00	44.53	CDK1
	ATO	M 178	CG2	VAL	86	-11.532	45.868	22.474	1.00	45.66	CDK1
	ATO	M 179	С	VAL	86	-12.307	48.214	23.862	1.00	47.62	CDK1
	ATO	M 180	0	VAL	86	-11.640	49.131	23.368	1.00	46.67	CDK1
25	ATO	M 181	N	SER	87	-12.162	47.781	25.113	1.00	47.01	CDK1
	ATO	M 182	CA	SER	87	-11.175	48.349	26.012	1.00	42.71	CDK1
	ATO	M 183	CB	SER	87	-11.841	48.900	27.276	1.00	47.77	CDK1
	ATO	M 184	OG	SER	87	-11.176	50.070	27.727	1.00	50.76	CDK1
30	ATO	M 185	С	SER	87	-10.168	47.291	26.403	1.00	33.62	CDK1
	ATO	M 186	0	SER	87	-10.531	46.174	26.766	1.00	36.85	CDK1
	ATO	M 187	N	HIS	88	-8.894	47.626	26.290	1.00	26.31	CDK1
	ATO	M 188	CA	HIS	88	-7.870	46.689	26.701	1.00	32.04	CDK1
35	ATO	м 189	CB	HIS	88	-6.637	46.857	25.827	1.00	23.47	CDK1
	ATO		CG	HIS	88	-5.485	46.014	26.260	1.00	21.27	CDK1
	ATO			HIS	88	-5.379	44.677	26.453	1.00	21.42	CDK1
	ATO	M 192	ND1	HIS	88	-4.244	46.545	26.549	1.00	28.91	CDK1
40	ATO			HIS	88	-3.420	45.569	26.900	1.00	28.99	CDK1
	ATO			HIS	88	-4.083	44.426	26.851	1.00	24.28	CDK1
	ATO		С	HIS	88	-7.591	47.108	28.167	1.00	35.46	CDK1
45	ATO		0	HIS	88	-6.864	48.067	28.427	1.00	29.93	CDK1
43	ATO		N	LYS	89	-8.190	46.390	29.113	1.00	36.24	CDK1
	ATO		CA	LYS	89	-8.066	46.721	30.536	1.00	40.58	CDK1
	ATO		CB	LYS	89	-8.687	45.617	31.387	1.00	44.05	CDK1
50	ATO		CG	LYS	89	-10.211	45.664	31.377	1.00	51.48	CDK1
30	ATO		CD	LYS	89	-10.812	44.497	32.149	1.00	52.19	CDK1
	ATO		CE	LYS	89	-10.426	43.160	31.544	1.00	52.76	CDK1
	ATO		NZ	LYS	89	-11.391	42.103	31.962	1.00	54.49	CDK1
55	ATO		С	LYS	89	-6.682	47.057	31.064	1.00	35.19	CDK1
	ATO	1 205	0	LYS	89	-6.498	48.069	31.707	1.00	36.45	CDK1

	ATOM	206	N	PRO	90	-5.688	46.225	30.787	1.00 33.18	CDK1
	ATOM	207	CD	PRO	90	-5.685	44.957	30.043	1.00 31.41	CDK1
5	ATOM	208	CA	PRO	90	-4.368	46.571	31.309	1.00 30.45	CDK1
	ATOM	209	CB	PRO	90	-3.487	45.400	30.880	1.00 28.71	CDK1
	ATOM	210	CG	PRO	90	-4.463	44.270	30.574	1.00 23.30	CDK1
	ATOM	211	C	PRO	90	-3.783	47.904	30.863	1.00 39.35	CDK1
10	ATOM	212	0	PRO	90	-2.958	48.494	31.575	1.00 47.08	CDK1
	ATOM	213	N	SER	91	-4.200	48.405	29.704	1.00 39.40	CDK1
	ATOM	214	CA	SER	91	-3.616	49,650	29.222	1.00 33.27	CDK1
	ATOM	215	CB	SER	91	-3.004	49.428	27.830	1.00 34.00	CDK1
15	ATOM	216	OG	SER	91	-4.007	49.533	26.820	1.00 37.38	CDK1
	MOTA	217	С	SER	91	-4.563	50.832	29.178	1.00 29.42	CDK1
	MOTA	218	0	SER	91	-4.128	51.984	29.105	1.00 31.11	CDK1
	MOTA	219	N	GLY	92	-5.855	50.555	29.212	1.00 31.04	CDK1
20	ATOM	220	CA	GLY	92	-6.837	51.627	29.144	1.00 33.29	CDK1
	MOTA	221	С	GLY	92	-7.103	52.092	27.713	1.00 37.82	CDK1
	ATOM	222	0	GLY	92	-7.943	52.963	27.473	1.00 39.74	CDK1
	ATOM	223	N	LEU	93	-6.383	51.517	26.756	1.00 40.09	CDK1
25	ATOM	224	CA	LEU	93	-6.557	51.886	25.349	1.00 39.55	CDK1
	ATOM	225	CB	LEU	93	-5.416	51.335	24.497	1.00 39.71	CDK1
	MOTA	226	CG	LEU	93	-4.104	52.104	24.448	1.00 44.79	CDK1
	MOTA	227	CD1	LEU	93	-3.092	51.348	23.574	1.00 41.83	CDK1
30	ATOM	228		LEU	93	-4.377	53.503	23:917	1.00 47.22	CDK1
	ATOM	229	С	LEU	93	-7.846	51.339	24.783	1.00 33.39	CDK1
	ATOM	230	0	LEU	93	-8.157	50.168	24.966	1.00 38.01	CDK1
35	MOTA	231	N	VAL	94	-8.610	52.189	24.113	1.00 38.49	CDK1
35	ATOM	232	CA	VAL	94	-9.825	51.725	23.472	1.00 42.84	CDK1
	ATOM	233	CB	VAL	94	-10.759	52.884	23.183	1.00 48.07	CDK1
	ATOM	234		VAL	94	-11.827	52.453	22.201	1.00 49.00	CDK1
40	ATOM	235		VAL	94	-11.390	53.349	24.474	1.00 46.68	CDK1
10	ATOM	236	С	VAL	94	-9.301	51.134	22,154	1.00 42.55	CDK1
	ATOM	237	0	VAL	94	-8.453	51.731	21.513	1.00 37.15	CDK1
	MOTA	238	N	MET	95	-9.762	49.949	21.776	1.00 43.79	CDK1
45	ATOM	239	CA	MET	95	-9.294	49.316	20.544	1.00 41.17	CDK1
	MOTA	240	CB	MET	95	-8.346	48.144	20.882	1.00 36.23	CDK1
	ATOM	241	CG	MET	95	-7.031	48.579	21.544	1.00 35.68	CDK1
	ATOM	242	SD	MET	95	-5.769	47.282	21.958	1.00 43.36	CDK1
50	ATOM	243	CE	MET	95	-6.647	45.910	21.684	1.00 37.22	CDK1
	ATOM	244	С	MET	95	-10.475	48.808	19.715	1.00 43.77	CDK1
	ATOM	245	0	MET	95	-11.632	48.923	20.126	1.00 45.55	CDK1
	ATOM	246	N	ALA	96	-10.186	48.288	18.523	1.00 44.44	CDK1
55	MOTA	247	CA	ALA	96	-11.227	47.713	17.672	1.00 38.61	CDK1
	ATOM	248	CB	ALA	96	-11.218	48.330	16.292	1.00 40.19	CDK1

	ATOM	249	С	ALA	96	-10.778	46.275	17.623	1.00 34.38	CDK1
	MOTA	250	0	ALA	96	-9.607	45.994	17.372	1.00 33.58	CDK1
5	MOTA	251	N	ARG	97	-11.697	45.369	17.911	1.00 34.08	CDK1
	MOTA	252	CA	ARG	97	-11.359	43.958	17.950	1.00 38.52	CDK1
	MOTA	253	СВ	ARG	97	-11.665	43.375	19.331	1.00 33.96	CDK1
	ATOM	254	CG	ARG	97	-10.924	42.086	19.627	1.00 36.60	CDK1
10	ATOM	255	CD	ARG	97	-11.670	41.212	20.626	1.00 32.78	CDK1
	MOTA	256	NE	ARG	97	-10.915	39.987	20.891	1.00 35.53	CDK1
	MOTA	257	CZ	ARG	97	-11.155	39.155	21.900	1.00 43.85	CDK1
	ATOM	258	NH1	ARG	97	-12.137	39.406	22.754	1.00 42.34	CDK1
15	ATOM	259	NH2	ARG	97	-10.405	38.073	22.059	1.00 42.46	CDK1
	ATOM	260	С	ARG	97	-12.143	43.197	16.904	1.00 40.90	CDK1
	MOTA	261	0	ARG	97	-13.378	43.191	16.933	1.00 36.53	CDK1
	ATOM	262	N	LYS	98	-11.413	42.560	15.989	1.00 36.10	CDK1
20	ATOM	263	CA	LYS	98	-12.036	41.788	14.926	1.00 36.12	CDK1
	ATOM	264	CB	LYS	98	-11.364	42.071	13.579	1.00 37.72	CDK1
	ATOM	265	CG	LYS	98	-12.230	41.670	12.395	1.00 42.54	CDK1
	ATOM	266	CD	LYS	98	-11.411	41.124	11.248	1.00 44.17	CDK1
25	MOTA	267	CE	LYS	98	-11.118	42.226	10.226	1.00 44.61	CDK1
	ATOM	268	NZ	LYS	98	-12.304	42.541	9.393	1.00 40.71	CDK1
	ATOM	269	С	LYS	98	-11.930	40.308	15.235	1.00 33.57	CDK1
	ATOM	270	0	LYS	98	-10.840	39.797	15.528	1.00 29.10	CDK1
30	MOTA	271	N	LEU	99	-13.072	39.627	15.180	1.00 33.62	CDK1
	ATOM	272	CA	LEU	99	-13.115	38.189	15.439	1.00 41.28	CDK1
	ATOM	273	CB	LEU	99	-14.215	37.850	16.465	1.00 41.70	CDK1
	ATOM	274	CG	LEU	99	-14.113	38.226	17.954	1.00 43.80	CDK1
35	ATOM	275	CD1		99	-12.674	38.170	18.450	1.00 40.92	CDK1
	ATOM	276	CD2		99	-14.694	39.611	18.134	1.00 42.47	CDK1
	ATOM	277	С	LEU	99	-13.415	37.437	14.136	1.00 43.56	CDK1
	ATOM	278	0	LEU	99	-14.455	37.658	13.514	1.00 39.81	CDK1
40	ATOM	279	N	ILE	100	-12.509	36.554	13.731	1.00 44.07	CDK1
	ATOM	280	CA	ILE	100	-12.714	35.766	12.520	1.00 45.79	CDK1
	ATOM	281	CB	ILE	100	-11.501	35.862	11.546	1.00 44.29	CDKI
	ATOM	282	CG2		100	-11.695	34.931	10.363	1.00 35.49	CDK1
45	ATOM	283	CG1		100	-11.351	37.282	11.024	1.00 38.35	CDK1
	ATOM	284	CD1		100	-9.991	37.549	10.447	1.00 43.96	CDK1
	ATCM	285	С	ILE	100	-12.833	34.335	12.986	1.00 46.58	CDK1
	ATOM	286	0	ILE	100	-11.868	33.791	13.505	1.00 46.37	CDKI
50	ATOM	287	N	HIS	101	-13.999	33.725	12.802	1.00 51.41	CDK1
	ATCM	288	CA	HIS	101	-14.182	32.353	13.244	1.00 61.90	CDK1
	ATCM	289	CB	HIS	101	-15.517	31.788	12.776	1.00 71.49	CDK1
	ATOM	290		HIS	101	-15.936	30.545	13.509	1.00 81.14	CDK1
55	MOTA	291	CD2	nis	101	-15.750	29.232	13.223	1.00 84.78	CDK1

	MOTA	292		HIS	101	-16.649	30.579	14.690	1.00 84.74	CDK1
	ATOM	293		HIS	101	-16.883	29.343	15.097	1.00 86.15	CDK1
5	MOTA	294		HIS	101	-16.348	28.507	14.225	1.00 84.95	CDK1
	MOTA	295	С	HIS	101	~13.059	31.464	12.751	1.00 67.25	CDK1
	ATOM	296	0	HIS	101	-11.965	31.488	13.312	1.00 74.70	CDK1
	ATOM	297	N	LEU	102	-13.327	30.672	11.719	1.00 67.82	CDK1
10	ATOM	298	CA	LEU	102	-12.320	29.772	11.154	1.00 73.45	CDK1
	ATOM	299	CB	LEU	102	-10.943	30.451	11.128	1.00 69.76	CDK1
	ATOM	300	CG	LEU	102	-10.498	31.193	9.867	1.00 69.16	CDK1
	ATOM	301	CD1	LEU	102	-11.711	31.672	9.081	1.00 66.05	CDK1
15	ATOM	302	CD2	LEU	102	-9.618	32.362	10.267	1.00 68.00	CDK1
	ATOM	303	С	LEU	102	-12.178	28.421	11.862	1.00 77.61	CDK1
	ATOM	304	0	LEU	102	-11.366	28.278	12.778	1.00 78.63	CDK1
	ATOM	305	N	GLU	103	-12.961	27.432	11.437	1.00 82.39	CDK1
20	ATOM	306	CA	GLU	103	-12.869	26.095	12.016	1.00 85.59	CDK1
	ATOM	307	CB	GLU	103	-14.034	25.225	11.554	1.00 89.41	CDK1
	MOTA	308	CG	GLU	103	-15.318	25.413	12.329	1.00 92.70	CDK1
	ATOM	309	CD	GLU	103	-16.516	24.848	11.584	1.00 97.14	CDK1
25	ATOM	310	OE1	GLU	103	-17.662	25.160	11.973	1.00 99.14	CDK1
	ATOM	311	OE2	GLU	103	-16,310	24.090	10.606	1.00 98.54	CDK1
	ATOM	312	С	GLU	103	-11.572	25.530	11.456	1.00 86.27	CDK1
	ATOM	313	0	GLU	103	-11.570	24.861	10.419	1.00 84.90	CDK1
30	ATOM	314	N	ILE	104	-10.470	25.807	12.142	1.00 86.88	CDK1
	ATOM	315	CA	ILE	104	-9.169	25.357	11.681	1.00 86.24	CDK1
	ATOM	316	CB	ILE	104	-8.424	26.549	11.013	1.00 87.91	CDK1
	ATOM	٠317		ILE	104	-7.167	26.917	11.792	1.00 87.65	CDK1
35	ATOM	318	CG1	ILE	104	-8.117	26.201	9.554	1.00 89.75	CDK1
	ATOM	319	CD1	ILE	104	-9.357	25.980	8.691	1.00 89.86	CDK1
	ATOM	320	С	ILE	104	-8.311	24.715	12.775	1.00 85.28	CDK1
	ATOM	321	0	ILE	104	-8.389	25.088	13.947	1.00 84.21	CDK1
40	ATOM	322	N	ALA	105	-7.499	23.741	12.373	1.00 84.76	CDK1
	ATOM	323	CA	ALA	105	-6.623	23.026	13.291	1.00 83.74	CDK1
	ATOM	324	CB	ALA	105	-6.049	21.789	12.618	1.00 82.13	CDK1
	ATOM	325	С	ALA	105	-5.497	23.920	13.769	1.00 85.19	CDK1
45	ATOM	326	0	ALA	105	-4.932	24.699	13.002	1.00 83.35	CDK1
	ATOM	327	N	PRO	106	-5.154	23.813	15.055	1.00 88.28	CDK1
	ATOM	328	CD	PRO	106	-5.790	22.910	16.036	1.00 88.80	CDK1
	ATOM	329	CA	PRO	106	-4.084	24.617	15.655	1.00 88.28	CDK1
50	ATOM	330	CB	PRO	106	-3.792	23.891	16.966	1.00 89.78	CDK1
	ATOM	331	CG	PRO	106	-5.121	23.279	17.338	1.00 89.44	CDK1
	ATOM	332	С	PRO	106	-2.837	24.791	14.786	1.00 85.45	CDK1
	ATOM	333	0 .	PRO	106	-2.149	25.807	14.879	1.00 85.86	CDK1
55	ATOM	334	N	ALA	107	-2.556	23.810	13.936	1.00 81.97	CDK1

	ATOM	335	CA	ALA	107	-1.380	23.875	13.075	1.00	81.68	CDK1
	ATOM	336	CB	ALA	107	-1.303	22.628	12.199	1.00	83.93	CDK1
5	ATOM	337	C	ALA	107	-1.384	25.125	12.203	1.00	81.35	CDK1
	MOTA	338	0	ALA	107	-0.430	25.906	12.207	1.00	81.76	CDK1
	ATOM	339	N	ILE	108	-2.463	25.312	11.454	1.00	78.50	CDK1
	ATOM	340	CA	ILE	108	-2.577	26.459	10.573	1.00	75.53	CDK1
10	ATOM	341	CB	ILE	108	-3.633	26.205	9.460	1.00	75.16	CDK1
	ATOM	342	CG2	ILE	108	-4.219	24.814	9.600	1.00	72.14	CDK1
	ATOM	343	CG1	ILE	108	-4.746	27.248	9.519	1.00	76.59	CDK1
	MOTA	344	CD1	ILE	108	-5.515	27.365	8.231	1.00	77.95	CDK1
15	ATOM	345	С	ILE	108	-2.936	27.703	11.365	1.00	73.53	CDK1
	ATOM	346	0	ILE	108	-2.375	28.780	11.145	1.00	70.18	CDK1
	MOTA	347	N	ARG	109	-3.880	27.551	12.284	1.00	72.26	CDK1
	ATOM	348	CA	ARG	109	-4.302	28.666	13.112	1.00	74.10	CDK1
20	ATOM	349	CB	ARG	109	-5.252	28.156	14.213	1.00	76.96	CDK1
	ATOM	350	CG	ARG	109	-5.118	28.783	15.597	1.00	79.46	CDK1
	ATOM	351	CD	ARG	109	-4.517	27.788	16.584	1.00	85.84	CDK1
	ATOM	352	NE	ARG	109	-5.505	27.075	17.401	1.00	93.07	CDK1
25	ATOM	353	cz	ARG	109	-6.448	26.258	16.927	1.00	95.63	CDK1
	ATOM	354	NH1	ARG	109	-6.554	26.037	15.624	1.00	96.95	CDK1
	ATOM	355	NH2	ARG	109	-7.276	25.636	17.759	1.00	92.83	CDK1
	ATOM	356	С	ARG	109	-3.037	29.307	13.685	1.00	73.72	CDK1
30	ATOM	357	0	ARG	109	-2.964	30.517	13.894	1.00	73.53	CDK1
	ATOM	358	N	ASN	110	-2.016	28.494	13.898	1.00	73.68	CDK1
	ATOM	359	CA	ASN	110	-0.779	29.023	14.437	1.00	75.47	CDK1
	ATOM	360	СВ	ASN	110	-0.009	27.911	15.150	1.00	80.16	CDK1
35	ATOM	361	CG	ASN	110	-0.404	27.791	16.614	1.00	84.31	CDK1
	ATOM	362	OD1	ASN	110	0.114	28.516	17.465	1.00	86.63	CDK1
	MOTA	363	ND2	ASN	110	-1.334	26.887	16.911	1.00	84.03	CDK1
	ATOM	364	С	asn	110	0.055	29.663	13.336	1.00	71.95	CDK1
40	ATOM	365	0	ASN	110	0.922	30.498	13.599	1.00	71.80	CDK1
	ATOM	366	N	GLN	111	-0.223	29.270	12.099	1.00	66.89	CDK1
	ATOM	367	CA	GLN	111	0.471	29.824	10.943	1.00	61.97	CDK1
	ATOM	368	CB	GLN	111	0.151	29.000	9.699	1.00	65.42	CDK1
45	ATOM	369	CG	GLN	111	1.341	28.299	9.101	1.00	69.69	CDK1
	ATOM	370	CD	GLN	111	1.901	29.048	7.932	1.00	72.85	CDK1
	ATOM	371	OE1	GLN	111	2.916	29.743	8.051	1.00	77.37	CDK1
	ATOM	372	NE2	GLN	111	1.245	28.920	6.784	1.00	69.82	CDK1
50	ATOM	373	С	GLN	111	-0.059	31.236	10.748	1.00	56.49	CDK1
	ATOM	374	0	GLN	111	0.698	32.199	10.593	1.00	52.79	CDK1
	ATOM	375	N	ILE	112	-1.382	31.333	10.760	1.00	51.92	CDK1
	ATOM	376	CA	ILE	112	-2.071	32.598	10.586	1.00	49.17	CDK1
55	ATOM	377	СВ	ILE	112	-3.586	32.385	10.706	1.00	45.37	CDK1

	ATOM	378	CG2	ILE	112	-4.320	33.725	10.701	1.00	46.42	CDK1
	ATOM	379	CG1	ILE	112	-4.032	31.471	9.566	1.00	42.34	CDK1
5	ATOM	380	CD1	ILE	112	-5.506	31.301	9.436	1.00	41.68	CDK1
	ATOM	381	С	ILE	112	-1.590	33.598	11.619	1.00	51.57	CDK1
	ATOM	382	0	ILE	112	-1.130	34.697	11.284	1.00	49.80	CDK1
	ATOM	383	N	ILE	113	-1.686	33.211	12.885	1.00	53.49	CDK1
10	ATOM	384	CA	ILE	113	-1.239	34.087	13.958	1.00	50.26	CDK1
	ATOM	385	СВ	ILE	113	-1.329	33.381	15.343	1.00	48.04	CDK1
	ATOM	386	CG2	ILE	113	-0.765	34.277	16.421	1.00	46.83	CDK1
	ATOM	387	CG1	ILE	113	-2.780	33.042	15.669	1.00	45.10	CDK1
15	ATOM	388	CD1	ILE	113	-3.666	34.248	15.756	1.00	44.59	CDK1
	ATOM	389	С	ILE	113	0.212	34.450	13.670	1.00	46.14	CDK1
	ATOM	390	0	ILE	113	0.609	35.611	13.789	1.00	42.78	CDK1
	MOTA	391	N	ARG	114	0.990	33.446	13.273	1.00	47.90	CDK1
20	MOTA	392	CA	ARG	114	2.408	33.635	12.978	1.00	55.34	CDK1
	MOTA	393	CB	ARG	114	3.037	32.298	12.570	1.00	63.33	CDK1
	MOTA	394	CG	ARG	114	4.551	32.346	12.352	1.00	70.69	CDK1
	ATOM	395	CD	ARG	114	5.065	31.070	11.662	1.00	77.06	CDK1
25	ATOM	396	NE	ARG	114	4.884	31.073	10.206	1.00	84.21	CDK1
	ATOM	397	CZ	ARG	114	5.536	31.876	9.363	1.00	84.59	CDK1
	ATOM	398	NH1	ARG	114	6.420	32.751	9.829	1.00	80.46	CDK1
	ATOM	399	NH2	ARG	114	5.307	31.802	8.054	1.00	84.00	CDK1
30	ATOM	400	С	ARG	114	2.619	34.663	11.876	1.00	55.70	CDK1
	MOTA	401	0	ARG	114	3.445	35.569	11.998	1.00	54.83	CDK1
	MOTA	402	N	GLU	115	1.863	34.522	10.796	1.00	56.18	CDK1
	ATOM	403	CA	GLU	115	1.990	35.443	9.681	1.00	56.04	CDK1
35	MOTA	404	CB	GLU	115	1.294	34.865	8.447	1.00	58.68	CDK1
	ATOM	405	CG	GLU	115	2.019	33.682	7.807	1.00	55.29	CDK1
	ATOM	406	CD	GLU	115	1.140	32.936	6.805	1.00	56.66	CDK1
	ATOM	407	OE1	GLU	115	1.587	31.900	6.265	1.00	49.98	CDK1
40	MOTA	408		GLU	115	-0.001	33.390	6.560	1.00	55.37	CDK1
	ATOM	409	С	GLU	115	1.405	36.814	10.018	1.00	52.31	CDK1
	MOTA	410	0	GLU	115	1.859	37.833	9.496	1.00	54.38	CDK1
	ATOM	411	N	LEU	116	0.403	36.836	10.894	1.00	50.32	CDK1
45	ATOM	412	CA	LEU	116	-0.256	38.087	11.288	1.00	45.58	CDK1
	ATOM	413	CB	LEU	116	-1.478	37.786	12.145	1.00	43.27	CDK1
	ATOM	414	CG	LEU	116	-2.891	37.962	11.605	1.00	46.75	CDK1
	ATOM	415	CD1		116	-2.897	38.080	10.084	1.00	44.45	CDK1
50	ATOM	416	CD2	LEU	116	-3.712	36.762	12.070	1.00	41.67	CDK1
	MOTA	417	С	LEU	116	0.673	39.017	12.055	1.00	41.14	CDK1
	ATOM	418	0	LEU	116	0.396	40.200	12.185	1.00	43.42	CDK1
	ATOM	419	N	GLN	117	1.781	38.478	12.551	1.00	45.96	CDK1
55	ATOM	420	CA	GLN	117	2.761	39.267	13.304	1.00	48.47	CDK1

	ATOM	421	CB	GLN	117	3.837	38.348	13.899	1.00 51.42	CDK1
	ATOM	422	CG	GLN	117	3.312	37.373	14.946	1.00 49.25	CDK1
5	ATOM	423	CD	GLN	117	2.231	37.995	15.818	1.00 51.87	CDK1
	ATOM	424	OE1	GLN	117	1.133	37.445	15.967	1.00 49.51	CDK1
	ATOM	425	NE2	GLN	117	2.537	39.153	16.392	1.00 52.38	CDK1
	ATOM	426	С	GLN	117	3.426	40.344	12.453	1.00 48.67	CDK1
10	ATOM	427	0	GLN	117	3.954	41.332	12.979	1.00 48.37	CDK1
	ATOM	428	N	VAL	118	3.413	40.153	11.137	1.00 48.39	CDK1
	ATOM	429	CA	VAL	118	4.008	41.133	10.238	1.00 42.75	CDK1
	ATOM	430	CB	VAL	118	3.834	40.718	8.760	1.00 48.51	CDK1
15	MOTA	431	CG1	VAL	118	4.494	41.756	7.851	1.00 37.54	CDK1
	ATOM	432	CG2	VAL	118	4.430	39.329	8.537	1.00 46.05	CDK1
	ATOM	433	С	VAL	118	3.343	42.489	10.440	1.00 38.54	CDK1
	ATOM	434	0	VAL	118	3.958	43.531	10.234	1.00 39.78	CDK1
20	ATOM	435	N	LEU	119	2.082	42.477	10.850	1.00 38.55	CDK1
	ATOM	436	CA	LEU	119	1.356	43.716	11.057	1.00 40.41	CDK1
	ATOM •	437	CB	LEU	119	-0.084	43.392	11.475	1.00 38.33	CDK1
	ATOM	438	CG	LEU	119	-0.875	42.779	10.303	1.00 37.22	CDK1
25	ATOM	439	CD1	LEU	119	-2.272	42.345	10.759	1.00 37.85	CDK1
	ATOM	440	CD2	LEU	119	-0.985	43.809	9.178	1.00 32.79	CDK1
	MOTA	441	С	LEU	119	2.027	44.696	12.033	1.00 45.93	CDK1
	ATOM	442	0	LEU	119	1.824	45.908	11.934	1.00 50.15	CDK1
30	ATOM	443	N	HIS	120	2.840	44.194	12.963	1.00 50.31	CDK1
	ATOM	444	CA	HIS	120	3.530	45.087	13.896	1.00 52.77	CDK1
	ATOM	445	CB	HIS	120	4.301	44.283	14.952	1.00 52.90	CDK1
	ATOM	446	CG	HIS	120	3.467	43.870	16.127	1.00 54.80	CDK1
35	ATOM	447	CD2		120	2.749	44.602	17.014	1.00 51.20	CDK1
	ATOM	448	ND1		120	3.297	42.548	16.494	1.00 54.79	CDK1
	ATOM	449	CE1		120	2.510	42.485	17.554	1.00 53.44	CDK1
	ATOM	450	NE2		120	2.163	43.717	17.889	1.00 52.87	CDK1
40	ATOM	451	С	HIS	120	4.507	45.972	13.117	1.00 54.96	CDK1
	ATOM	452	0	HIS	120	4.824	47.082	13.536	1.00 57.39	CDK1
	ATOM	453	N ·	GLU	121	4.969	45.470	11.975	1.00 58.29	CDK1
	ATOM	454	CA	GLU	121	5.914	46.183	11.114	1.00 60.73	CDK1
45	ATOM	455	CB	GLU	121	6.778	45.178	10.341	1.00 65.38	CDK1
	ATOM	456	CG	GLU	121	7.888	44.544	11.149	1.00 72.79	CDK1
	ATOM	457	CD	GLU	121	7.585	44.512	12.634	1.00 81.01	CDK1
50	ATOM	458	OE1		121	7.347	43.407	13.169	1.00 85.74	CDK1
50	ATOM	459	OE2		121	7.587	45.592	13.266	1.00 86.07	CDK1
	ATOM	460	С	GLU	121	5.271	47.155	10.112	1.00 60.03	CDK1
	ATOM	461	0	GLU	121	5.983	47.905	9.437	1.00 58.90	CDK1
55	MOTA	462	N	CYS	122	3.943	47.146	10.004	1.00 56.14	CDK1
33	ATOM	463	CA	CYS	122	3.271	48.056	9.083	1.00 54.53	CDK1

	ATOM	464	CB	CYS	122	2.033	47.392	8.468	1.00	50.85	CDK1
	ATOM	465	SG	CYS	122	2.417	45.911	7.505	1.00	46.69	CDK1
5	ATOM	466	С	CYS	122	2.878	49.348	9.787	1.00	56.52	CDK1
	MOTA	467	0	CYS	122	1.752	49.500	10.261	1.00	61.33	CDK1
	ATOM	468	N	ASN	123	3.825	50.275	9.860	1.00	58.19	CDK1
	MOTA	469	CA	ASN	123	3.590	51.569	10.494	1.00	58.56	CDK1
10	MOTA	470	СВ	ASN	123	4.709	51.899	11.496	1.00	62.19	CDK1
	ATOM	471	CG	ASN	123	5.346	50.658	12.100	1.00	67.77	CDK1
	ATOM	472	OD1	ASN	123	4.655	49.778	12.613	1.00	68.61	CDK1
	MOTA	473	ND2	ASN	123	6.674	50.583	12.040	1.00	72.39	CDK1
15	MOTA	474	С	ASN	123	3.547	52.632	9.407	1.00	54.27	CDK1
	ATOM	475	0	ASN	123	4.518	52.824	8.673	1.00	55.58	CDK1
	MOTA	476	N	SER	124	2.419	53.321	9.296	1.00	49.54	CDK1
	ATOM	477	CA	SER	124	2.282	54.346	8.275	1.00	48.71	CDK1
20	MOTA	478	CB	SER	124	2.299	53.714	6.876	1.00	46.49	CDK1
	MOTA	479	OG	SER	124	1.362	54.355	6.020	1.00	46.97	CDK1
	ATOM	480	C	SER	124	1.002	55.141	8.439	1.00	47.55	CDK1
	MOTA	481	0	SER	124	-0.065	54.583	8.669	1.00	53.05	CDK1
25	ATOM	482	N	PRO	125	1.094	56.464	8.304	1.00	47.17	CDK1
	ATOM	483	CD	PRO	125	2.340	57.191	8.017	1.00	41.69	CDK1
	ATOM	484	CA	PRO	125	-0.059	57.357	8.432	1.00	45.89	CDK1
	ATOM	485	CB	PRO	125	0.426	58.669	7.829	1.00	41.81	CDK1
30	ATOM	486	CG	PRO	125	1.891	58.606	7.851	1.00	40.25	CDK1
	ATOM	487	С	PRO	125	-1.264	56.832	7.663	1.00	47.40	CDK1
	ATOM	488	0	PRO	125	-2.402	57.166	7.979	1.00	50.73	CDK1
	ATOM	489	N	TYR	126	-1.003	56.013	6.648	1.00	48.48	CDK1
35	ATOM	490	CA	TYR	126	-2.068	55.480	5.800		47.17	CDK1
	ATOM	491	CB	TYR	126	-1.642	55.612	4.336	1.00	43.20	CDK1
	MOTA	492	CG	TYR	126	-1.201	57.015	4.020	1.00	38.69	CDK1
	ATOM	493		TYR	126	0.147	57.340	3.915	1.00	41.99	CDK1
40	MOTA	494		TYR	126	0.555	58.654	3.732		42.30	CDK1
	ATOM	495		TYR	126	-2.131	58.041	3.925	1.00	44.26	CDK1
	ATOM	496	CE2	TYR	126	-1.734	59.354	3.742	1.00	44.20	CDK1
	ATOM	497	CZ	TYR	126	-0.397	59.652	3.650	1.00	43.47	CDK1
45	ATOM	198	OH	TYR	126	-0.026	60.958	3.476		53.32	CDK1
	ATOM	499	С	TYR	126	-2.528	54.060	6.105	1.00	46.91	CDK1
	ATOM	500	0	TYR	126	-3.520	53.590	5.537	1.00	46.21	CDK1
	ATOM	501	N	ILE	127	-1.824	53.387	7.011	1.00	41.71	CDK1
50	ATOM	502	CA	ILE	127	-2.190	52.037	7.395		38.87	CDK1
	ATOM	503	CB	ILE	127	-0.989	51.077	7.352		33.27	CDK1
	ATOM	504	CG2		127	-1.416	49.706	7.910		28.20	CDK1
	ATON	505	CG1		127	-0.505	50.897	5.913		34.41	CDK1
55	ATOM	506	CD1	TPE	127	-1.631	50.680	4.888	1.00	33.61	CDK1

	ATOM	507	С	ILE	127	-2.741	52.014	8.808	1.00	38.38	CDK1
	ATOM	508	0	ILE	127	-2.098	52.499	9.733	1.00	36.34	CDK1
5	ATOM	509	N	VAL	128	-3.926	51.442	8.973	1.00	38.31	CDK1
	MOTA	510	CA	VAL	128	-4.545	51.346	10.293	1.00	40.78	CDK1
	MOTA	511	CB	VAL	128	-5.912	50.606	10.212	1.00	42.58	CDK1
	MOTA	512	CG1	VAL	128	-6.448	50.317	11.617	1.00	35.52	CDK1
10	ATOM	513	CG2	VAL	128	-6.920	51.460	9.429	1.00	33.65	CDK1
	ATOM	514	С	VAL	128	-3.617	50.630	11.287	1.00	40.15	CDK1
	ATOM	515	0	VAL	128	-3.220	49.483	11.075	1.00	37.55	CDK1
	ATOM	516	N	GLY	129	-3.269	51.334	12.368	1.00	39.83	CDK1
15	ATOM	517	CA	GLY	129	-2.391	50.793	13.398	1.00	36.87	CDK1
	ATOM	518	С	GLY	129	-2.884	49.468	13.932	1.00	38.58	CDK1
	ATOM	519	0	GLY	129	-4.083	49.261	14.086	1.00	42.20	CDK1
	MOTA	520	N	PHE	130	-1.953	48.569	14.215	1.00	35.41	CDK1
20	ATOM	521	CA	PHE	130	-2.287	47.246	14.703	1.00	37.73	CDK1
	ATOM	522	СВ	PHE	130	-1.722	46.209	13.728	1.00	36.20	CDK1
	MOTA	523	CG	PHE	130	-1.503	44.825	14.318	1.00	33.41	CDK1
	ATOM	524	CD1	PHE	130	-0.235	44.426	14.729	1.00	30.03	CDK1
25	ATOM	525	CD2	PHE	130	-2.512	43.873	14.271	1.00	27.78	CDK1
	ATOM	526	CE1	PHE	130	0.033	43.090	15.059	1.00	30.52	CDK1
	MOTA	527	CE2	PHE	130	-2.267	42.531	14.597	1.00	30.18	CDK1
	ATOM	528	cz	PHE	130	-0.991	42.136	14.986	1.00	32.22	CDK1
30	MOTA	529	С	PHE	130	-1.679	47.084	16.080	1.00	37.86	CDK1
	ATOM	530	0	PHE	130	-0.579	47.590	16.334	1.00	36.91	CDK1
	ATOM	531	N	TYR	131	-2.393	46.377	16.958	1.00	41.16	CDK1
	ATOM	532	CA	TYR	131	-1.926	46.157	18.340	1.00	43.64	CDK1
35	MOTA	533	CB	TYR	131	-2.997	46.588	19.357	1.00	35.59	CDK1
	MOTA	534	CG	TYR	131	-3.313	48.068	19.353	1.00	32.39	CDK1
	ATOM	535	CD1	TYR	131	-2.331	49.018	19.645	1.00	41.47	CDK1
	ATOM	536	CE1	TYR	131	-2.608	50.397	19.604	1.00	38.50	CDK1
40	'ATOM	537	CD2	TYR	131	-4.583	48.520	19.031	1.00	30.65	CDK1
	ATOM	538	CE2	TYR	131	-4.879	49.890	18.986	1.00	34.44	CDK1
	ATOM	539	CZ	TYR	131	-3.887	50.823	19.265	1.00	42.86	CDK1
	ATOM	540	OH	TYR	131	-4.170	52.180	19.133	1.00	46.26	CDK1
45	ATOM	541	С	TYR	131	-1.515	44.709	18.621	1.00	45.30	CDK1
	ATOM	542	0	TYR	131	-0.627	44.464	19.438	1.00	53.94	CDK1
	ATOM	543	N	GLY	132	-2.165	43.749	17.964	1.00	42.83	CDK1
	MOTA	544	CA	GLY	132	-1.803	42.357	18.163	1.00	34.17	CDK1
50	MOTA	545	С	GLY	132	-2.874	41.379	17.730	1.00	38.88	CDK1
	ATOM	546	0	GLY	132	-4.047	41.733	17.594	1.00	39.99	CDK1
	ATOM	547	N	ALA	133	-2.465	40.132	17.525		38.56	CDK1
	ATOM	548	CA	ALA	133	-3.387	39.089	17.104		39.62	CDK1
55	ATOM	549	CB	ALA	133	-3.179	38.764	15.622	1.00	41.73	CDK1

	ATOM	550	C	ALA	133	-3.170	37.842	17.926	1.00	39.85	CDK1
	MOTA	551	0	ALA	133	-2.035	37.489	18.253	1.00	40.21	CDK1
5	ATOM	552	N	PHE	134	-4.260	37.163	18.246	1.00	35.61	CDK1
	MOTA	553	CA	PHE	134	-4.159	35.941	19.022	1.00	45.12	CDK1
	ATOM	554	CB	PHE	134	-4.040	36.268	20.526	1.00	41.96	CDK1
	MOTA	555	CG	PHE	134	-5.179	37.089	21.058	1.00	31.91	CDK1
10	ATOM	556	CD1	PHE	134	-6.351	36.482	21.475	1.00	33.97	CDK1
	ATOM	557	CD2	PHE	134	-5.097	38.472	21.088	1.00	32.23	CDK1
	MOTA	558	CEL	PHE	134	-7.444	37.248	21.915	1.00	36.95	CDK1
	MOTA	559	CE2	PHE	134	-6.182	39.252	21.523	1.00	37.90	CDK1
15	MOTA	560	CZ	PHE	134	-7.362	38.634	21.937	1.00	33.70	CDK1
	ATOM	561	С	PHE	134	-5.409	35.125	18.746	1.00	50.09	CDK1
	ATOM	562	0	PHE	134	-6.397	35.657	18.237	1.00	52.08	CDK1
	ATOM	563	N	TYR	135	-5.361	33.838	19.069	1.00	56.87	CDK1
20	ATOM	564	CA	TYR	135	-6.501	32.959	18.837	1.00	67.31	CDK1
	ATOM	565	CB	TYR	135	-6.036	31.645	18.201	1.00	72.19	CDK1
	ATOM	566	CG	TYR	135	-7.152	30.637	18.014	1.00	79.89	CDK1
	ATOM	567	CD1	TYR	135	-7.135	29.411	18.685	1.00	80.25	CDK1
25	ATOM	568		TYR	135	-8.181	28.501	18.541	1.00	83.86	CDK1
	ATOM	569		TYR	135	-8.246	30.926	17.189	1.00	82.34	CDK1
	ATOM	570		TYR	135	-9.296	30.023	17.039	1.00	83.77	CDK1
00	ATOM	571	CZ	TYR	135	-9.259	28.814	17.717		84.64	CDK1
30	ATOM	572	OH	TYR	135	-10.302	27.925	17.575	1.00	86.01	CDK1
	MOTA	573	C .	TYR	135	-7.234	32.657	20.136	1.00	69.30	CDK1
	ATOM	574	0	TYR	135	-6.649	32.088	21.058	1.00	70.72	CDK1
35	ATOM	575	N	SER	136	-8.513	33.019	20.209	1.00	70.59	CDK1
55	ATOM	576	CA	SER	136	-9.277	32.769	21.423		71.94	CDK1
	ATOM	577	CB	SER	136	-9.650	34.085	22.108	1.00	72.42	CDK1
	ATOM	578	OG	SER	136	-10.682	33.870	23.056		64.50	CDK1
40	ATOM	579	c	SER	136	-10.541	31.947	21.254		72.35	CDK1
	ATOM	580	0	SER	136	-11.504	32.377	20.617		71.71	CDK1
	ATOM	581	N	ASP	137	-10.519	30.765	21.856		75.45	CDK1
	MOTA	582	CA	ASP	137	-11.644	29.841	21.857		78.40	CDK1
45	ATOM	583	СВ	ASP	137	-12.505	30.085	23.107		86.60	CDK1
	MOTA	584	CG	ASP	137	-11.719	29.902	24.419		94.95	CDK1
	ATOM	585		ASP	137	-11.770	28.791	25.007		97.24	CDK1
	ATOM	586		ASP	137	-11.055	30.872	24.862		95.41	CDK1
50	MOTA	587	С	ASP	137	-12.518	29.899	20.614		76.04	CDK1
	ATOM	588	0	ASP	137	-13.611	30.470	20.637		75.62	CDK1
	ATOM	589	N	GLY	138	-12.026	29.303	19.532		74.00	CDK1
	ATOM	590	CA	GLY	138	-12.771	29.265	18.286		73.59	CDK1
55	ATOM	591	C	GLY	138	-12.802	30.544	17.468		75.39	CDK1
	MOTA	592	0	GLY	138	-13.701	30.729	16.639	1.00	75.51	CDK1

	ATOM	593	N	GLU	139	-11.830	31.428	17.673	1.00	70.82	CDK1
	ATOM	594	CA	GLU	139	-11.823	32.667	16.923	1.00	66.85	CDK1
5	MOTA	595	CB	GLU	139	-12.924	33.584	17.429	1.00	66.45	CDK1
	ATOM	596	CG	GLU	139	-13.895	33.991	16.353	1.00	72.15	CDK1
	ATOM	597	CD	GLU	139	-15.318	33.613	16.697	1.00	79.37	CDK1
	ATOM	598	OE1	GLU	139	-15.673	32.427	16.533	1.00	84.26	CDK1
10	MOTA	599	OE2	GLU	139	-16.081	34.501	17.136	1,00	83.42	CDK1
	ATOM	600	С	GLU	139	-10.522	33.428	16.935	1.00	63.77	CDK1
	ATOM	601	0	GLU	139	-10.111	33.954	17.965	1.00	68.67	CDK1
	ATOM	602	14	ILE	140	-9.879	33.491	15.775	1.00	61.01	CDK1
15	ATOM	603	CA	ILE	140	-8.641	34.235	15.647	1.00	55.58	CDK1
	ATOM	604	CB	ILE	140	-8.049	34.108	14.241	1.00	51.04	CDK1
	ATOM	605	CG2	ILE	140	-9.093	34.471	13.199	1.00	56.56	CDK1
	ATOM	606	CG1	ILE	140	-6.829	35.016	14.119	1.00	53.86	CDK1
20	ATOM	607	CD1	ILE	140	-7.145	36.427	13.681	1.00	52.77	CDK1
	ATOM	608	С	ILE	140	-9.020	35.689	15.908	1.00	51.08	CDK1
	ATOM	609	0	ILE	140	-10.060	36.158	15.446	1.00	53.47	CDK1
	ATOM	610	N	SER	141	-8.171	36.397	16.640	1.00	43.43	CDK1
25	ATOM	611	CA	SER	141	-8.443	37.782	17.000	1.00	43.26	CDK1
	ATOM	612	CB	SER	141	-8.468	37.909	18.537	1.00	44.99	CDK1
	ATOM	613	OG	SER	141	-9.730	38.332	19.016	1.00	37.13	CDK1
	MOTA	614	С	SER	141	-7.411	38.749	16.455	1.00	40.70	CDK1
30	MOTA	615	0	SER	141	-6.218	38.445	16.476	1.00	40.42	CDK1
	MOTA	616	N	ILE	142	-7.873	39.914	15.987	1.00	37.09	CDK1
	ATOM	617	CA	ILE	142	-6.989	40.978	15.469	1.00	39.42	CDK1
	ATOM	618	CB	ILE	142	-7.058	41.116	13.891	1.00	38.19	CDK1
35	ATOM	619	CG2	ILE	142	-6.182	42.271	13.423	1.00	32.01	CDK1
	ATOM	620	CG1	ILE	142	-6.557	39.834	13.216	1.00	44.44	CDK1
	ATOM	621	CD1	ILE	142	-6.740	39.819	11.682	1.00	40.16	CDK1
	ATOM	622	С	ILE	142	-7.406	42.322	16.097	1.00	36.06	CDK1
40	ATOM	623	0	ILE	142	-8.583	42.707	16.053	1.00	37.32	CDK1
	ATOM	624	N	CYS	143	-6.443	43.044	16.659	1.00	33.42	CDK1
	ATOM	625	CA	CYS	143	-6.752	44.317	17.310	1.00	33.84	CDK1
	ATOM	626	CB	CYS	143	-6.402	44.227	18.800	1.00	36.04	CDK1
45	ATOM	627	SG	CYS	143	-6.847	42.624	19.565	1.00	43.97	CDK1
	ATOM	628	С	CYS	143	-6.054	45.508	16.650	1.00	38.10	CDK1
	MOTA	629	О	CYS	143	-4.819	45.527	16.420	1.00	30.00	CDK1
	ATOM	630	N	MET	144	-6.858	46.519	16.356	1.00	35.26	CDK1
50	ATOM	631		MET	144	-6.340	47.681	15.685	1.00	37.24	CDK1
	ATOM	632		MET	144	-6.783	47.659	14.215	1.00	41.01	CDK1
	ATOM	633		MET	144	-7.553	46.417	13.771	1.00	48.56	CDK1
	ATOM	634		MET	144	-8.778	46.771	12.467	1.00	52.36	CDK1
55	ATOM	635	Œ	MET	144	-9.908	45.358	12.674	1.00	42.79	CDK1

	ATOM	636	С	MET	144	-6.753	49.006	16.290	1.00	39.86	CDK1
	ATOM	637	0	MET	144	-7.629	49.092	17.165	1.00	42.43	CDK1
5	ATOM	638	N	GLU	145	-6.102	50.046	15.794	1.00	38.93	CDK1
	ATOM	639	CA	GLU	145	-6.408	51.397	16.197	1.00	40.38	CDK1
	ATOM	640	CB	GLU	145	-5.587	52.355	15.345	1.00	38.81	CDK1
	ATOM	641	CG	GLU	145	-6.237	53.671	15.000	1.00	37.85	CDK1
10	ATOM	642	CD	GLU	145	-5.272	54.537	14.223	1.00	41.96	CDK1
	ATOM	643	OE1	GLU	145	-5.504	55.759	14.111	1.00	41.59	CDK1
	ATOM	644	OE2	GLU	145	-4.264	53.980	13.725	1.00	38.99	CDK1
	ATOM	645	C	GLU	145	-7.895	51.538	15.910	1.00	43.92	CDK1
15	ATOM	646	0	GLU	145	-8.392	51.048	14.889	1.00	47.32	CDK1
	ATOM	647	N	HIS	146	-8.614	52.163	16.829	1.00	45.41	CDK1
	ATOM	648	CA	HIS	146	-10.041	52.357	16.662	1.00	39.21	CDK1
	ATOM	649	CB	HIS	146	-10.698	52.534	18.042	1.00	39.51	CDK1
20	ATOM	650	CG	HIS	146	-12.063	53.146	17.997	1.00	41.31	CDK1
	ATOM	651	CD2	HIS	146	-12.475	54.418	18.207	1.00	41.75	CDK1
	ATOM	652	ND1	HIS	146	-13.189	52.435	17.642	1.00	47.14	CDK1
	ATOM	653	CE1	HIS	146	-14.235	53.243	17.632	1.00	41.18	CDK1
25	ATOM	654	NE2	HIS	146	-13.827	54.452	17.971	1.00	35.61	CDK1
	ATOM	655	С	HIS	146	-10.143	53.608	15.804	1.00	38.15	CDK1
	ATOM	656	0	HIS	146	-9.387	54.551	15.992	1.00	40.97	CDK1
	ATOM	657	N	MET	147	-11.041	53.612	14.830	1.00	38.08	CDK1
30	MOTA	658	CA	MET	147	-11.166	54.776	13.972	1.00	40.67	CDK1
	ATOM	659	CB	MET	147	-10.879	54.397	12.510	1.00	41.89	CDK1
	ATOM	660	CG	MET	147	-9.474	53.843	12.278	1.00	32.94	CDK1
	ATOM	661	SD	MET	147	-8.141	55.102	12.256	1.00	40.39	CDK1
35	ATOM	662	CE	MET	147	-8.881	56.336	11.082	1.00	33.20	CDK1
	ATOM	663	С	MET	147	-12.558	55.354	14.127	1.00	44.96	CDK1
	ATOM	664	0	MET	147	-13.517	54.897	13.514	1.00	44.70	CDK1
	ATOM	665	N	ASP	148	-12.640	56.378	14.962		49.75	CDK1
40	ATOM	666	CA	ASP	148	-13.891	57.043	15.290	1.00	53.81	CDK1
	ATOM	667	CB	ASP	148	-13.617	58.150	16.315	1.00	62.08	CDK1
	ATOM	668	CG	ASP	148	-12.709	59.236	15.779		64.51	CDK1
	ATOM	669	OD1		148	-12.651	60.311	16.407		65.57	CDK1
45	ATOM	670	OD2		148	-12.059	59.016	14.736		66.33	CDK1
	ATOM	671	С	ASP	148	-14.705	57.604	14.136		53.89	CDK1
	MOTA	672	0	ASP	148	-15.893	57.883	14.299	1.00	54.66	CDK1
	ATOM	673	N	GLY	149	~14.077	57.785	12.980		56.00	CDK1
50	ATOM	674	CA	GLY	149	-14.795	58.306	11.834		50.16	CDK1
	ATOM	675	С	GLY	149	-15.542	57.185	11.138		50.14	CDK1
	ATOM	676	0	GLY	149	-16.547	57.413	10.473		47.39	CDK1
	ATOM	677	N	GLY	150	-15.053	55.960	11.309		49.29	CDK1
55	ATOM	678	CA	GLY	150	-15.682	54.818	10.670	1.00	49.79	CDK1

	ATOM	679	C	GLY	150	-15.095	54.483	9.300	1.00	47.68	CDK1
	ATOM	680	0	GLY	150	-13.989	54.919	8.946	1.00	46.35	CDK1
5	ATOM	681	21	SER	151	-15.840	53.692	8.535	1.00	43.32	CDK1
	ATOM	682	CA	SER	151	-15.417	53.279	7.203	1.00	45.70	CDK1
	ATOM	683	CB	SER	151	-15.704	51.800	6.998	1.00	42.39	CDK1
	ATOM	684	OG	SER	151	-17.062	51.527	7.290	1.00	43.65	CDK1
10	ATOM	685	С	SER	151	-16.206	54.099	6.198		48.52	CDK1
	ATOM	686	0	SER	151	-17,396	54.372	6.407	1.00	48.08	CDK1
	ATOM	687	N	LEU	152	-15.556	54.469	5.099		46.59	CDK1
	MOTA	688	CA	LEU	152	-16.195	55.301	4.088	1.00	44.86	CDK1
15	ATOM	689	CB	LEU	152	-15.234	55.558	2.927		39.28	CDK1
	ATOM	690	CG	LEU	152	-14.068	56.504	3.268		40.54	CDK1
	ATOM	691	CD1	LEU	152	-13.277	56.863	2.006		40.41	CDK1
	ATOM	692	CD2	LEU	152	-14.604	57.766	3.938		41.33	CDK1
20	ATOM	693	С	LEU	152	-17.547	54.844	3.567		43.60	CDK1
	ATOM	694	0	LEU	152	-18.313	55.664	3.086		44.81	CDK1
	ATOM	695	N	ASP	153	-17.866	53.559	3.653		46.08	CDK1
	ATOM	696	CA	ASP	153	-19.186	53.136	3.186		49.64	CDK1
25	ATOM	697	СВ	ASP	153	-19,321	51.610	3.163		51.94	CDK1
	ATOM	698	CG	ASP	153	-19.096	50.987	4.517		57.34	CDK1
	ATOM	699	OD1	ASP	153	-20.000	50.271	5.005	1.00	58.71	CDK1
	ATOM	700	OD2	ASP	153	-18.010	51.215	5.089	1.00	59.88	CDK1
30	ATOM	701	С	ASP	153	-20.232	53.740	4.124		50.52	CDK1
	ATOM	702	0	ASP	153	-21.318	54.126	3.694	1.00	51.30	CDK1
	ATOM	703	N	GLN	154	-19.906	53.829	5.408	1.00	51.16	CDK1
	ATOM	704	CA	GLN	154	-20.837	54.429	6.356	1.00	54.80	CDK1
35	ATOM	705	CB	GLN	154	-20.371	54.198	7.805	1.00	55.16	CDK1
	ATOM	706	CG	GLN	154	-19.538	52.934	8.033	1.00	60.53	CDK1
	ATOM	707	CD	GLN	154	-19.219	52.682	9.510	1.00	62.13	CDK1
	MOTA	708	OE1	GLN	154	-18.057	52.735	9.943	1.00	56.52	CDK1
40	ATOM	709	NE2	GLN	154	-20.253	52.401	10.286	1.00	63.87	CDK1
	ATOM	710	С	GLN	154	-20.917	55.936	6.053	1.00	53.44	CDK1
	ATOM	711	0	GLN	154	-22.003	56.487	5.870	1.00	52.56	CDK1
	MOTA	712	N	VAL	155	-19.759	56.590	5.985	1.00	52.33	CDK1
45	ATOM	713	CA	VAL	155	-19.693	58.021	5.694	1.00	48.04	CDK1
	MOTA	714	СВ	VAL	155	-18.222	58.486	5.561	1.00	45.68	CDK1
	MOTA	715	CG1	VAL	155	-18.152	59.966	5.215	1.00	38.72	CDK1
	MOTA	716	CG2	VAL	155	-17.483	58.209	6.855	1.00	31.90	CDK1
50	MOTA	717	C	VAL	155	-20.453	58.365	4.410	1.00	53.41	CDK1
	MOTA	718	0	VAL	155	-21.019	59.446	4.284		56.08	CDK1
	ATOM	719	N	LEU	156	-20.471	57.438	3.458	1.00	56.29	CDK1
	ATOM	720	CA	LEU	156	-21.170	57.650	2.195		53.42	CDK1
55	ATOM	721	CB	LEU	156	-20.717	56.616	1.161		54.21	CDK1

	ATOM	722	CG	LEU	156	-20.961	56.868	-0.334	1.00	52.87	CDK1
	ATOM	723	CD1	LEU	156	-22.332	56.373	-0.697	1.00	54.42	CDK1
5	ATOM	724	CD2	LEU	156	-20.815	58.343	-0.665	1.00	49.22	CDK1
,	ATOM	725	С	LEU	156	-22.677	57.547	2.381	1.00	53.72	CDK1
	ATOM	726	0	LEU	156	-23.434	58.259	1.726	1.00	58.13	CDK1
	ATOM	727	N	ALA	157	-23.118	56.653	3.262	1.00	51.68	CDK1
10	ATOM	728	CA	ALA	157	-24.547	56.485	3.507	1.00	52.70	CDK1
,,,	ATOM	729	CB	ALA	157	-24.807	55.270	4.391	1.00	44.13	CDK1
	AT CM	730	С	ALA	157	-25.080	57.745	4.172	1.00	57.46	CDK1
	ATOM	731	0	ALA	157	-26.151	58.244	3.809	1.00	62.34	CDK1
15	MOTA	732	N	ALA	158	-24.322	58.269	5.133	1.00	59.17	CDK1
	ATOM	733	CA	ALA	158	-24.718	59.477	5.846	1.00	59.90	CDK1
	MOTA	734	CB	ALA	158	-24.165	59.451	7.274	1.00	52.49	CDK1
	ATOM	735	С	ALA	158	-24.252	60.739	5.125	1.00	63.87	CDK1
20	ATOM	736	0	ALA	158	-24.166	61.803	5.729	1.00	67.93	CDK1
	ATOM	737	N	ALA	159	-23.953	60.624	3.833	1.00	68.87	CDK1
	ATOM	738	CA	ALA	159	-23.496	61.777	3.053	1.00	68.84	CDK1
	ATOM	739	CB	ALA	159	-21.968	61.883	3.108	1.00	71.09	CDK1
25	MOTA	740	С	ALA	159	-23.946	61.740	1.600	1.00	70.75	CDK1
	ATOM	741	0	ALA	159	-23.514	62.572	0.803	1.00	74.10	CDK1
	ATOM	742	N	GLY	160	-24.800	60.779	1.255	1.00	69.95	CDK1
	ATOM	743	CA	GLY	160	-25.281	60.666	-0.115	1.00	70.09	CDK1
30	ATOM	744	С	GLY	160	-24.153	60.379	-1.090	1.00	70.08	CDK1
	ATOM	745	0	GLY	160	-23.952	59.234	-1.505	1.00	68.88	CDK1
	MOTA	746	N	ARG	161	-23.428	61.432	-1.465	1.00	68.91	CDK1
	ATOM	747	CA	ARG	161	-22.286	61.322	-2.365	1.00	67.50	CDK1
35	ATOM	748	CB	ARG	161	-22.665	61.761	-3.788	1.00	68.34	CDK1
	ATOM	749	CG	ARG	161	-22.596	63.247	-4.040	1.00	69.19	CDK1
	ATOM	750	CD	ARG	161	-23.933	63.770	-4.534	1.00	78.96	CDK1
	ATCM	751	NE	ARG	161	-24.028	63.775	-5.991		84.58	CDK1
40	ATOM	752	ĊZ	ARG	161	-23.845	64.853	-6.754	1.00	89.53	CDK1
	ATOM	753		ARG	161	-23.555	66.029	-6.201	1.00	86.18	CDK1
	ATOM	754		ARG	161	-23.949	64.753	-8.076	1.00	88.45	CDK1
	ATOM	755	С	ARG	161	-21.196	62.214	-1.792	1.00	62.65	CDK1
45	ATCM	756	0	ARG	161	-21.469	63.331	-1.368	1.00	65.06	CDK1
	ATOM	757	N	ILE	162	-19.971	61.708	-1.742	1.00	59.14	CDK1
	ATOM	758	CA	ILE	162	-18.864	62.486	-1.213	1.00	54.59	CDK1
	ATOM	759	CB	ILE	162	-17.758	61.548	-0.691	1.00	49.92	CDK1
50	ATOM	760		ILE	162	-16.467	62.296	-0.491	1.00	47.22	CDK1
	ATOM	761		ILE	162	-18.204	60.956	0.655	1.00	48.38	CDK1
	MOTA	762	CD1		162	-17.453	59.710	1.087		44.55	CDK1
	ATOM	763	С	ILE	162	-18.360	63.413	-2.320	1.00	58.76	CDK1
55	ATOM	764	0	ILE	162	-18.345	63.044	-3.487	1.00	60.70	CDK1

	ATOM	765	И	PRO	163	-17.981	64.651	-1.966	1.00 60.66	CDK1
	ATOM	766	CD	PRO	163	-18.024	65.170	-0.591	1.00 62.92	CDK1
5	ATOM	767	CA	PRO	163	-17.481	65.660	-2.911	1.00 58.60	CDK1
,	ATOM	768	CB	PRO	163	-17.481	66.959	-2.106	1.00 57.75	CDK1
	MOTA	769	CG	PRO	163	-18.152	66.639	-0.799	1.00 60.35	CDK1
	MOTA	770	С	PRO	163	-16.110	65.384	-3.506	1.00 58.01	CDK1
10	MOTA	771	0	PRO	163	-15.216	64.852	-2.842	1.00 61.16	CDK1
10	ATOM	772	N	GLU	164	-15.952	65.779	-4.763	1.00 55.56	CDK1
	ATOM	773	CA	GLU	164	-14.713	65.580	-5.489	1.00 59.06	CDK1
	ATOM	774	CB	GLU	164	-14.782	66.292	-6.835	1.00 58.49	CDK1
15	MOTA	775	CG	GLU	164	-13.539	66.116	-7.652	1.00 59.06	CDK1
15	MOTA	776	CD	GLU	164	-13.612	66.834	-8.972	1.00 61.77	CDK1
	ATOM	777	OE1	GLU	164	-14.702	67.339	-9.322	1.00 66.13	CDK1
	ATOM	778	OE2	GLU	164	-12.571	66.891	-9.657	1.00 61.75	CDK1
20	ATOM	779	С	GLU	164	-13.468	66.034	-4.736	1.00 59.68	CDK1
20	ATOM	780	0	GLU	164	-12.444	65.357	-4.754	1.00 64.02	CDK1
	ATOM	781	N	GLN	165	-13.546	67.177	-4.072	1.00 59.85	CDK1
	ATOM	782	CA	GLN	165	-12.391	67.675	-3.343	1.00 60.52	CDK1
25	ATOM	783	CB	GLN	165	-12.705	69.046	-2.745	1.00 62.75	CDK1
25	MOTA	784	CG	GLN	165	-11.621	70.077	-2.990	1.00 66.27	CDK1
	ATOM	785	CD	GLN	165	-11.964	71.017	-4.127	1.00 72.52	CDK1
	ATOM	786	OE1	GLN	165	-12.968	71.731	-4.075	1.00 70.95	CDK1
30	MOTA	787	NE2	GLN	165	-11.132	71.022	-5.167	1.00 71.27	CDK1
30	MOTA	788	С	GLN	165	-11.955	66.698	-2.251	1.00 59.33	CDK1
	MOTA	789	0	GLN	165	-10.762	66.431	-2.078	1.00 59.08	CDK1
	ATOM	790	N	ILE	166	-12.926	66.161	-1.521	1.00 57.69	CDK1
	ATOM	791	CA	ILE	166	-12.637	65.210	-0.457	1.00 58.51	CDK1
35	ATOM	792	CB	ILE	166	-13.856	65.059	0.476	1.00 60.75	CDK1
	ATOM	793	CG2	ILE	166	-13.856	63.703	1.160	1.00 64.06	CDK1
	ATOM	794	CG1	ILE	166	-13.802	66.148	1.543	1.00 58.23	CDK1
	ATOM	795	CD1	ILE	166	-15.071	66.913	1.660	1.00 62.11	CDK1
40	MOTA	796	С	ILE	166	-12.222	63.860	-1.058	1.00 55.32	CDK1
	ATOM	797	0	ILE	166	-11.289	63.208	-0.578	1.00 51.78	CDK1
	ATOM	798	N	LEU	167	-12.900	63.444	-2.120	1.00 56.45	CDK1
	ATOM	799	CA	LEU	167	-12.531	62.198	-2.772	1.00 53.31	CDK1
45	ATOM	800	CB	LEU	167	-13.457	61.924	-3.956	1.00 51.32	CDK1
	MOTA	801	CG	LEU	167	-14.835	61.419	-3.520	1.00 50.35	CDK1
	ATOM	802	CD1	LEU	167	-15.623	60.902	-4.736	1.00 44.19	CDK1
	ATOM	803	CD2	LEU	167	-14.641	60.327	-2.459	1.00 43.10	CDK1
50	ATOM	804	С	LEU	167	-11.087	62.334	~3.243	1.00 53.82	CDK1
	MOTA	805	0	LEU	167	-10.396	61.339	-3.457	1.00 55.98	CDK1
	MOTA	806	N	GLY	168	-10.633	63.579	-3.391	1.00 55.85	CDK1
	ATOM	807	CA	GLY	168	-9.270	63.831	-3.821	1.00 53.39	CDK1

	ATOM	808	С	GLY	168	-8.280	63.485	-2.723	1.00 53.65	CDK1
	ATOM	809	0	GLY	168	-7.228	62.896	-2.980	1.00 54.15	CDK1 -
5	ATOM	810	N	ALA	169	-8.616	63.855	-1.491	1.00 54.79	CDK1
	ATOM	811	CA	ALA	169	-7.753	63.562	-0.352	1.00 54.11	CDK1
	ATOM	812	СВ	ALA	169	-8.222	64.326	0.880	1.00 50.78	CDK1
	ATOM	813	С	ALA	169	-7.756	62.052	-0.085	1.00 55.44	CDK1
10	ATOM	814	0	ALA	169	-6.724	61.477	0.288	1.00 58.90	CDK1
	ATOM	815	N	AMT	170	-8.909	61.412	-0.294	1.00 52.10	CDK1
	ATOM	816	CA	VAL	170	-9.036	59.967	-0.088	1.00 43.11	CDK1
	ATOM	817	CB	VAL	170	-10.477	59.486	-0.368	1.00 42.20	CDK1
15	ATOM	818	CG1	VAL	170	-10.552	57.948	-0.279	1.00 38.19	CDK1
	ATOM	819	CG2	VAL	170	-11.437	60.129	0.632	1.00 37.74	CDK1
	ATOM	820	¢	VAL	170	-8.080	59.240	-1.027	1.00 44.85	CDK1
	ATOM	821	0	VAL	170	-7.342	58.331	-0.619	1.00 44.80	CDK1
20	ATOM	822	N	SER	171	-8.092	59.662	-2.287	1.00 43.55	CDK1
	ATOM	823	CA	SER	171	-7.231	59.070	-3,298	1.00 40.59	CDK1
	ATOM	824	CB	SER	171	-7.442	59.767	-4.643	1.00 43.06	CDK1
	ATOM	825	OG	SER	171	-8.791	59.652	-5.069	1.00 42.32	CDK1
25	ATOM	826	С	SER	171	-5.774	59.159	-2.859	1.00 40.31	CDK1
	ATOM	827	0	SER	171	-5.069	58.158	-2.864	1.00 44.03	CDK1
	ATOM	828	N	ILE	172	-5.321	60.346	-2.469	1.00 40.37	CDK1
	ATOM	829	CA	ILE	172	-3.946	60.498	-2.007	1.00 41.03	CDK1
30	ATOM	830	CB	ILE	172	-3.696	61.931	-1.460	1.00 41.58	CDK1
	ATOM	831		ILE	172	-2.467	61.957	~0.572	1.00 46.32	CDK1
	ATOM	832		ILE	172	-3.430	62.880	-2.620	1.00 47.24	CDK1
	ATOM	833		ILE	172	-4.261	64.126	-2.594	1.00 54.48	CDK1
35	ATOM	834	С	ILE	172	-3.649	59.454	-0.915	1.00 41.13	CDK1
	ATOM	835	0	ILE	172	-2.616	58.779	-0.955	1.00 39.77	CDK1
	ATOM	836	N	ALA	173	-4.573	59.302	0.036	1.00 38.74	CDK1
	ATOM	837	CA	ALA	173	-4.412	58.335	1.131	1.00 38.83	CDK1
40	ATOM	838	CB	ALA	173	-5.558	58.481	2.132	1.00 41.99	CDK1
	ATOM	839	С	ALA	173	-4.340	56.890	0.654	1.00 37.38	CDK1
	ATOM	840	0	ALA	173	-3.430	56.150	1.044	1.00 35.37	CDK1
	ATOM	841	N	LAV	174	-5.308	56.487	-0.171	1.00 36.64	CDK1
45	ATOM	842	CA	JAV	174	-5.344	55.120	-0.699	1.00 38.40	CDK1
	MOTA	843	CB	VAL	174	-6.551	54.875	-1.671	1.00 37.46	CDK1
	MOTA	844		VAL	174	-6.410	53.519	-2.360	1.00 28.72	CDK1
	ATOM	845	CG2		174	-7.855	54.928	-0.924	1.00 31.19	CDK1
50	ATOM	846	С	VAL	174	-4.059	54.805	-1.455	1.00 40.23	CDK1
	ATOM	847	0	VAL	174	-3.452	53.761	-1.236	1.00 46.99	CDK1
	ATOM	848	N	ILE	175	-3.639	55.699	-2.342	1.00 42.47	CDK1
	ATOM	849	CA	ILE	175	-2.419	55.451	-3.102	1.00 45.02	CDK1
55	ATOM	850	CB	ILE	175	-2.269	56.430	-4.294	1.00 48.70	CDK1

	ATOM	851	CG2	ILE	175	-2.681	57.803	-3.892	1.00 54.62	CDK1
	MOTA	852	CG1	ILE	175	-0.817	56.467	-4.763	1.00 55.56	CDK1
5	ATOM	853	CD1	ILE	175	-0.525	55.540	-5.936	1.00 64.48	CDK1
	MOTA	854	С	ILE	175	-1.160	55.492	-2.230	1.00 44.48	CDK1
	ATOM	855	0	ILE	175	-0.324	54.608	-2.339	1.00 44.80	CDK1
	ATOM	856	N	LYS	176	-1.009	56.493	-1.367	1.00 42.50	CDK1
10	ATOM	857	CA	LYS	176	0.178	56.523	-0.507	1.00 45.31	CDK1
	ATOM	858	CB	LYS	176	0.134	57.725	0.433	1.00 47.45	CDK1
	ATOM	859	CG	LYS	176	0.087	59.058	-0.301	1.00 50.22	CDK1
	ATOM	860	CD	LYS	176	1.436	59.740	-0.332	1.00 48.08	CDK1
15	ATOM	861	CE	LYS	176	1.497	60.877	0.677	1.00 58.33	CDK1
	ATOM	862	NZ	LYS	176	1.590	62.216	0.028	1.00 54.23	CDK1
	ATOM	863	С	LYS	176	0.206	55.228	0.305	1.00 42.53	CDK1
	ATOM	864	0	LYS	176	1.269	54.685	0.621	1.00 40.95	CDK1
20	MOTA	865	N	GLY	177	-0.988	54.734	0.623	1.00 41.24	CDK1
	ATOM	866	CA	GLY	177	-1.119	53.498	1.376	1.00 37.73	CDK1
	ATOM	867	С	GLY	177	-0.709	52.247	0.615	1.00 37.54	CDK1
	ATOM	868	0	GLY	177	0.126	51.462	1.085	1.00 35.90	CDK1
25	ATOM	869	N	LEU	178	-1.296	52.042	-0.562	1.00 36.51	CDK1
	ATOM	870	CA	LEU	178	-0.953	50.871	-1.362	1.00 34.24	CDK1
	ATOM	871	CB	LEU	178	-1.815	50.822	-2.624	1.00 29.21	CDK1
	MOTA	872	CG	LEU	178	-3.275	50.496	-2.338	1.00 27.26	CDK1
30	ATOM	873	CD1	LEU	178	-4.184	51.131	-3.365	1.00 36.36	CDK1
	MOTA	874	CD2	LEU	178	-3.435	49.013	-2.356	1.00 36.72	CDK1
	MOTA	875	С	LEU	178	0.532	50.839	-1.727	1.00 35.27	CDK1
	MOTA	876	0	LEU	178	1.140	49.761	-1.735	1.00 37.41	CDK1
35	MOTA	877	N	THR	179	1.142	51.999	-1.994	1.00 41.48	CDK1
	ATOM	878	CA	THR	179	2.560	51.980	-2.363	1.00 43.74	CDK1
	ATOM	879	CB	THR	179	3.012	53.280	-3.130	1.00 40.51	CDK1
	ATOM	880	OG1		179	4.219	53.799	-2.565	1.00 45.88	CDK1
40	ATOM	881	CG2		179	1.967	54.326	-3.094	1.00 40.22	CDK1
	ATOM	882	С	THR	179	3.476	51.679	-1.175	1.00 46.52	CDK1
	ATOM	883	0	THR	179	4.564	51.110	-1.355	1.00 44.65	CDK1
	ATOM	884	N	TYR	180	3.037	52.033	0.036	1.00 47.42	CDK1
45	ATOM	885	CA	TYR	180	3.831	51.728	1.225	1.00 40.45	CDK1
	ATOM	886	CB	TYR	180	3.250	52.395	2.474	1.00 45.09	CDK1
	ATOM	887	CG	TYR	180	3.801	51.801	3.753	1.00 46.20	CDK1
	ATOM	888	CD1		180	4.989	52.271	4.308	1.00 43.87	CDK1
50	ATOM	889	CE1	TYR	180	5.537	51.676	5.434	1.00 46.15	CDK1
	MOTA	890	CD2		180	3.172	50.718	4.366	1.00 45.97	CDK1
	ATOM	891	CE2		180	3.714	50.118	5.492	1.00 51.36	CDK1
	ATOM	892	CZ	TYR	180	4.896	50.600	6.019	1.00 50.17	CDK1
55	ATOM	993	OH	TYR	180	5.428	50.000	7.132	1.00 55.71	CDK1

	ATOM	894	C	TYR	180	3.821	50.214	1.422	1.00	40.28	CDK1
	ATOM	895	0	TYR	180	4.867	49.595	1.621	1.00	39.98	CDK1
5	ATOM	896	N	LEU	181	2.632	49.619	1.352	1.00	39.91	CDK1
	ATOM	897	CA	LEU	181	2.492	48.180	1.533	1.00	42.05	CDK1
	ATOM	898	CB	LEU	181	1.010	47.772	1.450	1.00	44.75	CDK1
	ATOM	899	CG	LEU	181	0.083	48.026	2.653	1.00	44.42	CDK1
10	ATOM	900	CD1	LEU	181	-1.349	47.791	2.231	1.00	32.18	CDK1
	MOTA	901	CD2	LEU	181	0.440	47.098	3.810	1.00	38.81	CDK1
	ATOM	902	С	LEU	181	3.302	47.428	0.482	1.00	47.62	CDK1
	ATOM	903	0	LEU	181	4.030	46.479	0.795	1.00	49.55	CDK1
15	ATOM	904	N	ARG	182	3.176	47.859	-0.770	1.00	47.07	CDK1
	ATOM	905	CA	ARG	182	3.892	47.227	-1.870	1.00	50.18	CDK1
	ATOM	906	CB	ARG	182	3.309	47.737	-3.211	1.00	54.86	CDK1
	ATOM	907	CG	ARG	182	4.281	47.859	-4.371	1.00	52.58	CDK1
20	ATOM	908	CD	ARG	182	3.802	47.097	-5.589	1.00	61,35	CDK1
	ATOM	909	NE	ARG	182	4.836	46.171	-6.035	1.00	67.08	CDK1
	ATOM	910	CZ	ARG	182	5.085	44.994	-5.467	1.00	70.86	CDK1
	ATOM	911	NH1	ARG	182	4.369	44.586	-4.425	1.00	74.99	CDK1
25	ATOM	912	NH2	ARG	182	6.080	44.241	-5.914	1.00	71.22	CDK1
	ATOM	913	С	ARG	182	5.418	47.446	-1.795	1.00	52.73	CDK1
	ATOM	914	0	ARG	182	6.201	46.489	-1.910	1.00	48.17	CDK1
	ATOM	915	N	GLU	183	5.843	48.688	-1.575	1.00	51.47	CDK1
30	ATOM	916	CA	GLU	183	7.268	48.989	-1.508	1.00	55.51	CDK1
	ATOM	917	CB	GLU	183	7.486	50.494	-1.681	1.00	62.91	CDK1
	ATOM	918	CG	GLU	183	8.020	50.908	-3.056	1.00	70.81	CDK1
	MOTA	919	CD	GLU	183	7.497	52.270	-3.509	1.00	77.75	CDK1
35	ATOM	920	OE1	GLU	183	6.875	52.335	-4.595	1.00	82.33	CDK1
	ATOM	921	OE2	GLU	183	7.709	53.273	-2.785	1.00	78.81	CDK1
	ATOM	922	С	GLU	183	7.937	48.517	-0.213	1.00	59.74	CDK1
	ATOM	923	0	GLU	183	9.015	47.920	-0.237	1.00	60.73	CDK1
40	ATOM	924	N	LYS	184	7.294	48.768	0.920	1.00	58.07	CDK1
	ATOM	925	CA	LYS	184	7.871	48.378	2.190	1.00	54.98	CDK1
	ATOM	926	СВ	LYS	184	7.348	49.300	3.284	1.00	54.68	CDK1
	ATOM	927	CG	LYS	184	7.746	50.753	3.079	1.00	57.51	CDK1
45	ATOM	928	CD	LYS	184	9.208	50.876	2.666	1.00	61.42	CDK1
	ATOM	929	CE	LYS	184	9.803	52.202	3.104	1.00	61.67	CDK1
	ATOM	930	NZ	LYS	184	8.938	53.338	2.671	1.00	64.63	CDK1
	ATOM	931	С	LYS	184	7.655	46.931	2.590	1.00	54.22	CDK1
50	ATOM	932	0	LYS	184	8.455	46.380	3.332	1.00	57.79	CDK1
	ATOM	933	N	HIS	185	6.595	46.300	2.099	1.00	56.92	CDK1
	ATOM	934	CA	HIS	185	6.320	44.913	2.476	1.00	52.80	CDK1
	ATOM	935	CB	HIS	185	5.154	44.897	3.468	1.00	52.24	CDK1
55	MOTA	936	CG	HIS	185	5.409	45.733	4.685	1.00	54.70	CDK1

	ATOM	937	CD2	HIS	185	5.065	47.012	4.974	1.00	53.43	CDK1
	MOTA	938	ND1	HIS	185	6.203	45.302	5.730	1.00	48.34	CDK1
5	MOTA	939	CE1	HIS	185	6.340	46.283	6.604	1.00	43.18	CDK1
	ATOM	940	NE2	HIS	185	5.661	47.331	6.171	1.00	43.20	CDK1
	MOTA	941	С	HIS	185	6.076	43.945	1.319	1.00	50.76	CDK1
	ATOM	942	0	HIS	185	5.792	42.768	1.515	1.00	47.19	CDK1
10	ATOM	943	N	LYS	186	6.202	44.445	0.103	1.00	53.16	CDK1
	ATOM	944	CA	LYS	186	6.028	43.609	-1.071	1.00	48.89	CDK1
	ATOM	945	CB	LYS	186	7.193	42.617	-1.170	1.00	50.41	CDK1
	ATOM	946	CG	LYS	186	8.585	43.272	-1.218	1.00	59.45	CDK1
15	ATOM	947	ÇD	LYS	186	9.666	42.343	-1.798	1.00	59.65	CDK1
	ATOM	948	CE	LYS	186	10.692	43.118	-2.630	1.00	66.06	CDK1
	ATOM	949	NZ	LYS	186	11.624	43.951	-1.804	1.00	64.91	CDK1
	ATOM	950	С	LYS	186	4.719	42.845	-1.080	1.00	46.84	CDK1
20	ATOM	951	0	LYS	186	4.716	41.655	-1.377	1.00	50.01	CDK1
	ATOM	952	N	ILE	187	3.606	43.508	-0.767	1.00	45.68	CDK1
	ATOM	953	CA	ILE	187	2.310	42.822	-0.774	1.00	45.75	CDK1
	ATOM	954	CB	ILE	187	1.892	42.305	0.657	1.00	50.41	CDK1
25	ATOM	955	CG2	ILE	187	3.102	41.811	1.426	1.00	46.80	CDK1
	ATOM	956	CG1	ILE	187	1.202	43.412	1.462	1.00	48.16	CDK1
	ATOM	957	CD1	ILE	187	2.076	44.602	1.738	1.00	52.11	CDK1
	ATOM	958	С	ILE	187	1.181	43.695	-1.316	1.00	47.21	CDK1
30	ATOM	959	0	ILE .	187	1.229	44.923	-1,204	1.00	43.79	CDK1
	ATOM	960	N	MET	188	0.178	43.058	-1.922		44.08	CDK1
	ATOM	961	CA	MET	188	-0.965	43.790	-2.440		37.55	CDK1
	ATOM	962	CB	MET	188	-1.431	43.207	-3.787	1.00	41.80	CDK1
35	ATOM	963	CG	MET	188	-1.940	41.766	-3.764		39.96	CDK1
	ATOM	964	SD	MET	188	-2.830	41.217	-5.313		38.86	CDK1
	ATOM	965	CE	MET	188	-4.083	42.543	-5.537		21.07	CDK1
	ATOM	966	С	MET	188	-2.106	43.768	-1.422		40.19	CDK1
40	ATOM	967	0	MET	188	-2.205	42.888	-0.570		39.18	CDK1
	ATOM	968	N	HIS	189	-2.974	44.753	-1.497		37.84	CDK1
	ATOM	969	CA	HIS	189	-4.076	44.805	-0.572		34.00	CDK1
	MOTA	970	CB	HIS	189	-4.825	46.102	-0.766		30.23	CDK1
45	ATOM	971	CG	HIS	189	-5.719	46.430	0.375		42.70	CDK1
	MOTA	972	CD2		189	-5.657	47.412	1.304		30.70	CDK1
	ATOM	973	ND1		189	-6.861	45.706	0.648		45.65	CDK1
50	ATOM	974	CE1		189	-7.469	46.233	1.695		34.17	CDK1
30	ATOM	975	NE2		189	-6.758	47.269	2.110		42.24	CDK1
	MOTA	976	С	HIS	189	-5.004	43.614	-0.782		36.63	CDK1
	ATOM	977	0	HIS	189	-5.089	42.717	0.061		35.98	CDK1
55	ATOM		N	ARG	190	-5.678	43.610	-1.928		28.20	CDK1
55	ATOM	979	CA	AŔG	190	-6.580	42.553	-2.329	1.00	21.48	CDK1

	ATOM	980	CB	ARG	190	-6.123	41.200	-1.822	1.00	13.57	CDK1
	MOTA	981	CG	ARG	190	-4.692	40.943	-2.188	1.00	32.55	CDK1.
5	MOTA	982	CD	ARG	190	-4.148	39.748	-1.465	1.00	44.90	CDK1
	MOTA	983	NE	ARG	190	-4.208	38.578	-2.321	1.00	49.78	CDK1
	MOTA	984	CZ	ARG	190	-5.349	38.020	-2.702	1.00	59.03	CDK1
	MOTA	985	NH1	ARG	190	-6.497	38.537	-2.293	1.00	65.18	CDK1
10	MOTA	986	NH2	ARG	190	-5.349	36.953	-3.488	1.00	61.12	CDK1
	ATOM	987	С	ARG	190	-7.982	42.747	-1.920	1.00	23.83	CDK1
	ATOM	988	0	ARG	190	-8.794	41.898	-2.206	1.00	27.41	CDK1
	MOTA	989	N	ASP	191	-8.290	43.855	-1.255	1.00	32.32	CDK1
15	ATOM	990	CA	ASP	191	-9.666	44.072	-0.818	1.00	29.82	CDK1
	MOTA	991	СВ	ASP	191	-9.968	43.220	0.425	1.00	30.20	CDK1
	ATOM	992	CG	ASP	191	-11.481	43.067	0.704	1.00	38.26	CDK1
	ATOM	993	OD1	ASP	191	-12.316	43.358	-0.186	1.00	40.42	CDK1
20	ATOM	994	OD2	ASP	191	-11.837	42.650	1.835	1.00	45.82	CDK1
	ATOM	995	С	ASP	191	-9.975	45.530	-0.535	1.00	31.17	CDK1
	ATOM	996	0	ASP	191	-10.562	45.861	0.493	1.00	34.44	CDK1
	ATOM	997	19	VAL	192	-9.590	46.415	-1.450	1.00	29.26	CDK1
25	MOTA	998	CA	VAL	192	-9.903	47.802	-1.232	1.00	31.21	CDK1
	MOTA	999	CB	VAL	192	-8.873	48.771	-1.897	1.00	31.12	CDK1
	MOTA	1000	CG1	VAL	192	-7.788	47.990	-2.595	1.00	33.67	CDK1
	MOTA	1001	CG2	VAL	192	-9.570	49.759	-2.807	1.00	31.38	CDK1
30	MOTA	1002	С	VAL	192	-11.310	48.062	-1.707	1.00	33.82	CDK1
	ATOM	1003	0	VAL	192	-11.728	47.574	-2.749	1.00	39.89	CDK1
	MOTA	1004	N	LYS	193	-12.052	48.795	-0.883	1.00	38.91	CDK1
	ATOM	1005	CA	LYS	193	-13.431	49.180	-1.142	1.00	33.59	CDK1
35	ATOM	1006	CB	LYS	193	-14.346	47.979	-1.059	1.00	32.79	CDK1
	ATOM	1007	CG	LYS	193	-13.974	46.971	-0.004	1.00	36.22	CDK1
	ATOM	1008	CD	LYS	193	-15.133	46.016	0.219	1.00	27.48	CDK1
	ATOM	1009	CE	LYS	193	-14.625	44.664	0.607	1.00	37.64	CDK1
40	ATOM	1010	NZ	LYS	193	~15.537	43.986	1.570	1.00	37.76	CDK1
	ATOM	1011	С	LYS	193	-13.754	50.167	-0.044	1.00	36.43	CDK1
	ATOM	1012	0	LYS	193	-13.041	50.235	0.935	1.00	40.61	CDK1
	ATOM	1013	N	PRO	194	-14.840	50.932	-0.175	1.00	37.75	CDK1
45	ATOM	1014	CD	PRO	194	-15.848	50.913	~1.249	1.00	36.30	CDK1
	ATOM	1015	CA	PRO	194	-15.166	51.907	0.875	1.00	38.77	CDK1
	MOTA	1016	CB	PRO	194	-16.578	52.373	0.504	1.00	37.29	CDK1
	ATOM	1017	CG	PRO	194	-16.675	52.142	-0.964	1.00	38.67	CDK1
50	ATOM	1018	С	PRO	194	-15.083	51.420	2.340	1.00	44.63	CDK1
	MOTA	1019	0	PRO	194	-14.517	52.103	3.206	1.00	48.14	CDK1
	MOTA	1020	N	SER	195	-15.632	50.241	2.619	1.00	40.34	CDK1
	ATOM	1021	CA	SER	195	-15.639	49.718	3.982	1.00	35.21	CDK1
55	ATOM	1022	CB	SER	195	-16.545	48,495	4.060	1.00	26.17	CDK1

		ATOM	1023	OG	SER	195	-15.878	47.379	3.510	1.00	27.32	CDK1
5		ATOM	1024	С	SER	195	-14.278	49.369	4.580	1.00	36.09	CDK1
	5	ATOM	1025	0	SER	195	-14.178	49.166	5.790	1.00	39.00	CDK1
		ATOM	1026	N	ASN	196	-13.233	49.269	3.762	1.00	36.41	CDK1
		ATOM	1027	CA	ASN	196	-11.907	48.950	4.302	1.00	26.38	CDK1
		ATOM	1028	CB	ASN	196	-11.280	47.755	3.566	1.00	30.51	CDK1
	10	ATOM	1029	CG	ASN	196	-12.033	46.441	3.830	1.00	39.46	CDK1
		MOTA	1030	ODI	ASN	196	-12.965	46.413	4.633	1.00	45.75	CDK1
		ATOM	1031	ND2	ASN	196	-11.631	45.356	3.159	1.00	28.32	CDK1
		ATOM	1032	С	ASN	196	-10.993	50.168	4.252	1.00	26.73	CDK1
	15	ATOM	1033	0	ASN	196	-9.777	50.047	4.221	1.00	26.84	CDK1
		ATOM	1034	N	ILE	197	-11.599	51.350	4.224	1.00	33.41	CDK1
		ATOM	1035	CA	ILE	197	-10.866	52.616	4.238	1.00	34.28	CDK1
		ATOM	1036	CB	ILE	197	-11.162	53.496	2.988	1.00	31.76	CDK1
	20	MOTA	1037	CG2	ILE	197	-10.331	54.767	3.033	1.00	27.11	CDK1
		MOTA	1038	CG1	ILE	197	-10.866	52.712	1.703	1.00	36.65	CDK1
		ATOM	1039	CD1	ILE	197	-11.138	53.490	0.422	1.00	32.46	CDK1
		ATOM	1040	С	ILE	197	-11.434	53.306	5.484	1.00	37.59	CDK1
,	25	ATOM	1041	0	ILE	197	-12.587	53.749	5.497	1.00	35.03	CDK1
		ATOM	1042	N	LEU	198	-10.632	53.381	6.535	1.00	36.49	CDK1
		ATOM	1043	CA	LEU	198.	-11.098	53.980	7.776	1.00	41.38	CDK1
		ATOM	1044	CB	LEU	198	-10.584	53.147	8.941	1.00	32.98	CDK1
	30	ATOM	1045	CG	LEU	198	-11.446	51.962	9.352	1.00	37.33	CDK1
•	50	ATOM	1046	CD1	LEU	198	-12.228	51.451	8.187	1.00	33.52	CDK1
		ATOM	1047	CD2	LEU	198	-10.565	50.879	9.924	1.00	38.84	CDK1
		ATOM	1048	С	LEU	198	-10.696	55.441	7.965	1.00	44.12	CDK1
	35	ATOM	1049	0	LEU	198	-9.576	55.839	7.642	1.00	47.34	CDK1
•	35	ATOM	1050	N	VAL	199	-11.624	56.248	8.463	1.00	43.02	CDK1
		ATOM	1051	CA	VAL	199	-11.319	57.652	8.722	1.00	48.28	CDK1
		ATOM	1052	CB	VAL	199	-12.232	58.594	7.895	1.00	46.24	CDK1
		ATOM	1053	CG1	VAL	199	-11.841	58.528	6.432	1.00	49.27	CDK1
•	40	ATOM	1054	CG2	VAL	199	-13.687	58.214	8.075	1.00	49.75	CDK1
		ATOM	1055	С	VAL	199	-11.459	57.977	10.229	1.00	49.12	CDK1
		ATOM	1056	0	VAL	199	-11.860	57.123	11.023	1.00	45.64	CDK1
		ATOM	1057	N	ASN	200	-11.092	59.197	10.622	1.00	49.47	CDK1
45 50	45	ATOM	1058	CA	ASN	200	-11.198	59.608	12.018	1.00	47.10	CDK1
		ATOM	1059	CB	ASN	200	-10.042	59.015	12.844	1.00	32.98	CDK1
		ATOM	1060	CG	ASN	200	-8.728	59.766	12.680	1.00	39.34	CDK1
		ATOM	1061	OD1	ASN	200	-7.672	59.265	13.080	1.00	40.04	CDK1
	50	ATOM	1062	ND2	ASN	200	-8.777	60.959	12.110	1.00	33.26	CDK1
		ATOM	1063	С	ASN	200	-11.307	61.123	12.200	1.00	52.62	CDK1
		ATOM	1064	0	ASN	200	-10.941	61.900	11.318	1.00	47.44	CDK1
		ATOM	1065	N	SER	201	-11.833	61.530	13.351	1.00	60.21	CDK1
	55											

EP 1 321 518 A1 ATOM 1066 CA SER 201 -12.042 62.943 13.672 1.00 63.99 CDK1

	ATOM	1000	CA	SER	201	-12.042	62.943	13.672	1.00 63.99	CDK1
	MOTA	1067	СВ	SER	201	-12.475	63.069	15.124	1.00 59.89	CDK1
5	MOTA	1068	OG	SER	201	-11.588	62.334	15.942	1.00 64.14	CDK1
	ATOM	1069	С	SER	201	-10.816	63.816	13.442	1.00 65.64	CDK1
	ATOM	1070	0	SER	201	-10.920	65.029	13.290	1.00 66.70	CDK1
	MOTA	1071	N	ARG	202	-9.652	63.192	13.421	1.00 67.54	CDK1
10	ATOM	1072	CA	ARG	202	-8.412	63.917	13.224	1.00 66.63	CDK1
	MOTA	1073	СВ	ARG	202	-7.271	63.114	13.830	1.00 69.61	CDK1
	ATOM	1074	CG	ARG	202	-7.751	62.093	14.855	1.00 78.51	CDK1
	ATOM	1075	CD	ARG	202	-6.746	61.933	15.966	1.00 85.70	CDK1
15	MOTA	1076	NE	ARG	202	-5.389	61.822	15.441	1.00 92.72	CDK1
	MOTA	1077	CZ	ARG	202	-4.712	60.681	15.365	1.00 98.60	CDK1
	MOTA	1078	NH1	ARG	202	-5.267	59.546	15.782	1.00100.00	CDK1
	ATOM	1079	NH2	ARG	202	-3.479	60.673	14.867	1.00100.00	CDK1
20	ATOM	1080	С	ARG	202	-8.135	64.199	11.756	1.00 66.96	CDK1
	ATOM	1081	0	ARG	202	-7.156	64.860	11.427	1.00 71.35	CDK1
	MOTA	1082	Ŋ	GLY	203	-8.995	63.705	10.871	1.00 64.87	CDK1
	MOTA	1083	CA	GLY	203	-8.797	63.936	9.448	1.00 62.43	CDK1
25	ATOM	1084	С	GLY	203	-7.940	62.881	8.770	1.00 57.70	CDK1
	ATOM	1085	0	GLY	203	-7.580	63.007	7.598	1.00 51.17	CDK1
	MOTA	1086	N	GLU	204	-7.623	61.832	9.521	1.00 57.83	CDK1
	ATOM	1087	CA	GLU	204	-6.808	60.737	9.018	1.00 57.63	CDK1
30	ATOM	1088	CB	GLU	204	-6.131	60.021	10.193	1.00 59.21	CDK1
	ATOM	1089	CG	GLU	204	-4.783	60.615	10.603	1.00 61.87	CDK1
	MOTA	1090	CD	GLU	204	-4.190	59.941	11.831	1.00 65.24	CDK1
	ATOM	1091	OE1		204	-4.955	59.649	12.773	1.00 65.94	CDK1
35	ATOM	1092	OE2		204	-2.962	59.699	11.857	1.00 67.59	CDK1
	ATOM	1093	С	GLU	204	-7.626	59.741	8.172	1.00 55.60	CDK1
	ATOM	1094	0	GLU	204	-8.811	59.504	8.415	1.00 52.71	CDK1
	MOTA	1095	N	ILE	205	-6.970	59.169	7.170	1.00 52.72	CDK1
40	MOTA	1096	CA	ILE	205	-7.604	58.219	6.266	1.00 46.58	CDK1
	ATOM	1097	CB	ILE	205	-7.807	58.850	4.885	1.00 44.45	CDK1
	MOTA	1098	CG2		205	-8.546	57.886	3.989	1.00 47.47	CDK1
	MOTA	1099	CG1		205	-8.561	60.180	5.030	1.00 43.77	CDK1
45	ATOM	1100	CD1		205	-8.886	60.873	3.704	1.00 46.52	CDK1
	ATOM	1101	С	ILE	205	-6.653	57.057	6.141	1.00 42.70	CDK1
	ATOM	1102	0	ILE	205	-5.546	57.227	5.645	1.00 41.44	CDK1
	MOTA	1103	N	LYS	206	-7.075	55.877	6.587	1.00 40.82	CDK1
50	ATOM	1104	CA	LYS	206	-6.202	54.715	6.544	1.00 33.80	CDK1
	MOTA	1105	CB	LYS	206	-5.694	54.398	7.951	1.00 43.43	CDK1
	ATOM	1106	CG	LYS	206	75.341	55.618	8.778	1.00 45.41	CDK1
	ATOM	1107	CD	LYS	206	-4.585	55.216	10.053	1.00 51.29	CDK1
55	MOTA	1108	CE	LYS	206	-3.855	56.410	10.670	1.00 47.41	CDK1

	ATOM	1109	NZ	LYS	206	-3.650	56.270	12.136	1.00	47.69	CDK1
	ATOM	1110	С	LYS	206	-6.840	53.475	5.965	1.00	32.65	CDK1
5	ATOM	1111	0	LYS	206	-8.059	53.366	5.875	1.00	34.25	CDK1
	ATOM	1112	N	LEU	207	-5.990	52.520	5.616	1.00	31.60	CDK1
	ATOM	1113	CA	LEU	207	-6.419	51.258	5.028	1.00	33.33	CDK1
	MOTA	1114	CB	LEU	207	-5.522	50.882	3.833	1.00	34.61	CDK1
10	ATOM	1115	CG	LEU	207	-5.726	51.277	2.374	1.00	30.82	CDK1
	MOTA	1116	CD1	TEO	207	-6.665	52.420	2.211	1.00	34.23	CDK1
	ATOM	1117	CD2	LEU	207	-4.397	51.639	1.831	1.00	24.90	CDK1
	ATOM	1118	С	LEU	207	-6.293	50.127	6.021	1.00	33.20	CDK1
15	ATOM	1119	0	LEU	207	-5.303	50.041	6.748	1.00	34.47	CDK1
	ATOM	1120	N	CYS	208	-7.271	49.234	6.016	1.00	27.95	CDK1
	ATOM	1121	CA	CYS	208	-7.223	48.058	6.871	1.00	31.63	CDK1
	ATOM	1122	CB	CYS	208	-8.280	48.130	7.960	1.00	29.75	CDK1
20	ATOM	1123	SG	CYS	208	-9.930	48.318	7.270	1.00	36.61	CDK1
	ATOM	1124	С	CYS	208	-7.543	46.856	6.002	1.00	36.74	CDK1
	ATOM	1125	0	CYS	208	-7.766	46.977	4.797	1.00	33.98	CDK1
	MOTA	1126	N	ASP	209	-7.568	45.694	6.635	1.00	39.00	CDK1
25	ATOM	1127	CA	ASP	209	-7.921	44.458	5.972	1.00	40.54	CDK1
	ATOM	1128	CB	ASP	209	-9.421	44.483	5.653	1.00	41.88	CDK1
	ATOM	1129	CG	ASP	209	-10.285	44.454	6.897	1.00	45.90	CDK1
	ATOM	1130		ASP	209	-11.483	44.762	6.792	1.00	43.66	CDK1
30	ATOM	1131		ASP	209	-9.772	44.122	7.983	1.00	49.77	CDK1
	MOTA	1132	С	ASP	209	-7.144	44.059	4.713	1.00	42.06	CDK1
	ATOM	1133	0	ASP	209	-7.747	43.562	3.760	1.00	41.33	CDK1
	ATOM	1134	N	PHE	210	-5.829	44.262	4.693	1.00	37.85	CDK1
35	ATOM	1135	CA	PHE	210	-5.057	43.850	3.535	1.00	42.09	CDK1
	ATOM	1136	СВ	PHE	210	-3.883	44.786	3.266		40.96	CDK1
	MOTA	1137	CG	PHE	210	-3.238	45.328	4.491		36.21	CDK1
	MOTA	1138		PHE	210	-3.708	46.502	5.070		41.00	CDK1
40	ATOM	1139		PHE	210	-2.106	44.720	5.012		30.89	CDK1
	ATOM	1140		PHE	210	-3.054	47.070	6.148		37.05	CDK1
	ATOM	1141		PHE	210	-1.441	45.272	6.084		32.91	CDK1
	ATOM	1142	CZ	PHE	210	-1.917	46.455	6.654		37.53	CDK1
45	ATOM	1143	c	PHE	210	-4.570	42.431	3.762		43.82	CDK1
	MOTA	1144	0	PHE	210	-4.702	41.915	4.858		43.37	CDK1
	ATOM	1145	N	GLY	211	-4.005	41.808	2.730		42.75	CDK1
	ATOM	1146	CA	GLY	211	-3.569	40.427	2.841		40.45	CDK1
50	ATOM	1147	c	GLY	211	-2.141	40.173	3.261		46.95	CDK1
	ATOM	1148	0	GLY	211	-1.278	39.936	2.408		46.58	CDK1
	ATOM	1149	N	VAL	212	-1.892	40.194	4.573		41.91	CDK1
	ATOM	1150	CA	VAL	212	-0.554	39.957	5.108		39.14	CDK1
55	ATOM	1151	CB	VAL	212	-0.332	40.664	6.484	1.00	38.71	CDK1

	ATOM	1152	CG:	1 VAL	212	-0.055	42.140	6.276	1.00 43.39	CDK1
	MOTA	1153	CG	2 VAL	212	-1.558	40.477	7.386	1.00 31.35	CDK1
5	ATOM	1154	С	VAL	212	-0.287	38.471	5.313	1.00 41.55	CDK1
	ATOM	1155	0	VAL	212	0.866	38.049	5.393	1.00 46.32	CDK1
	ATOM	1156	N	SER	213	-1.346	37.676	5.399	1.00 39.36	CDK1
	ATOM	1157	CA	SER	213	-1.168	36.252	5.630	1.00 40.11	CDK1
10	ATOM	1158	CB	SER	213	-1.820	35.854	6.967	1.00 45.77	CDK1
	MOTA	1159	OG	SER	213	-2.261	34.499	6.998	1.00 37.98	CDK1
	ATOM	1160	C	SER	213	-1.699	35.370	4.511	1.00 40.97	CDK1
	MOTA	1161	0	SER	213	-2.906	35.317	4.243	1.00 34.74	CDK1
15	MOTA	1162	N	GLY	214	-0.784	34.668	3.859	1.00 41.74	CDK1
	MOTA	1163	CA	GLY	214	-1.195	33.777	2.798	1.00 45.99	CDK1
	ATOM	1164	С	GLY	214	-2.156	32.750	3.356	1.00 45.47	CDK1
	MOTA	1165	0	GLY	214	-3.179	32.424	2.741	1.00 43.51	CDK1
20	MOTA	1166	N	GLN	215	-1.822	32.244	4.541	1.00 50.63	CDK1
	ATOM	1167	CA	GLN	215	-2.641	31.238	5.208	1.00 48.48	CDK1
	ATOM	1168	CB	GLN	215	-1.958	30.762	6.493	1.00 53.76	CDK1
	ATOM	1169	CG	GLN	215	-1.793	29.260	6.586	1.00 55.51	CDK1
25	ATOM	1170	CD	GLN	215	-2.927	28.522	5.916	1.00 60.04	CDK1
	ATOM	1171	OE1	GLN	215	-4.095	28.873	6.086	1.00 62.33	CDK1
	ATOM	1172	NE2	GLN	215	-2.592	27.497	5.145	1.00 57.24	CDK1
	ATOM	1173	С	GLN	215	-4.021	31.799	5.520	1.00 47.39	CDK1
30	ATOM	1174	0	GLN	215	-5.015	31.077	5.456	1.00 47.96	CDK1
55	ATOM	1175	N	LEU	216	-4.091	33.086	5.859	1.00 45.09	CDK1
	ATOM	1176	CA	LEU	216	-5.387	33.683	6.139	1.00 45.86	CDK1
	ATOM	1177	CB	LEU	216	-5.243	35.081	6.752	1.00 45.00	CDK1
35	ATOM	1178	CG	LEU	216	-6.507	35.520	7.499	1.00 46.21	CDK1
55	MOTA	1179		LEU	216	-7.117	34.309	8.191	1.00 35.59	CDK1
	ATOM	1180		LEU	216	-6.181	36.595	8.510	1.00 44.27	CDK1
	ATOM	1181	С	LEU	216	-6.153	33.749	4.821	1.00 48.22	CDK1
40	ATOM	1182	0	LEU	216	-7.286	33.266	4.738	1.00 46.36	CDK1
	MOTA	1183	N	ILE	217	-5.520	34.322	3.790	1.00 48.35	CDK1
	ATOM	1184	CA	ILE	217	-6.128	34.419	2.458	1.00 49.65	CDK1
	ATOM	1185	CB	ILE	217	-5.079	34.792	1.371	1.00 47.77	CDK1
45	ATOM	1186	CG2		217	-5.667	34.589	-0.023	1.00 47.48	CDK1
	ATOM	1187	CG1		217	-4.683	36.258	1.476	1.00 40.61	CDK1
	ATOM	1188	CD1		217	-3.259	36.534	1.009	1.00 41.04	CDK1
	ATOM	1189	С	ILE	217	-6.713	33.040	2.100	1.00 52.30	CDK1
50	ATOM	1190	0	ILE	217	-7.887	32.912	1.727	1.00 48.47	CDK1
	MOTA	1191		ASP	218	-5.878	32.013	2.222	1.00 54.85	CDK1
	ATOM	1192		ASP	218	-6.299	30.656	1.920	1.00 61.04	CDK1
	ATOM	1193		ASP	218	-5.187	29.665	2.272	1.00 69.47	CDK1
55	MOTA	1194	CG	ASP	218	-4.168	29.513	1.156	1.00 79.30	CDK1
55										

	ATOM	1195	OD1	ASP	218	-4.111	30.403	0.276	1.00	83.30	CDK1
	ATOM	1196	OD2	ASP	218	-3.422	28.505	1.156	1.00	84.20	CDK1
5	MOTA	1197	С	ASP	218	~7.555	30.311	2.701	1.00	61.92	CDK1
	ATOM	1198	0	ASP	218	-8.628	30.156	2.122	1.00	60.20	CDK1
	ATOM	1199	N	SER	219	-7.422	30.213	4.020	1.00	61.64	CDK1
	ATOM	1200	CA	SER	219	-8.547	29.861	4.872	1.00	62.74	CDK1
10	ATOM	1201	CB	SER	219	-8.109	29.829	6.330	1.00	60.68	CDK1
	MOTA	1202	OG	SER	219	-7.046	28.916	6.484	1.00	62.79	CDK1
	ATOM	1203	С	SER	219	-9.764	30.750	4.725	1.00	64.64	CDK1
	MOTA	1204	0	SER	219	-10.754	30.560	5.418	1.00	67.75	CDK1
15	MOTA	1205	N	MET	220	-9.704	31.731	3.841	1.00	69.53	CDK1
	MOTA	1206	CA	MET	220	-10.864	32.584	3,635	1.00	76.98	CDK1
	MOTA	1207	CB	MET	220	-10.487	34.064	3.787	1.00	77.28	CDK1
	MOTA	1208	CG	MET	220	-9.612	34.380	5.000	1.00	79.21	CDK1
20	MOTA	1209	SD	MET	220	-10.371	35.434	6.268	1.00	78.08	CDK1
	MOTA	1210	CE	MET	220	-11.606	34.292	6.924	1.00	70.02	CDK1
	MOTA	1211	С	MET	220	-11.410	32.305	2.233	1.00	80.06	CDK1
	MOTA	1212	0	MET	220	-11.685	33.223	1.460	1.00	83.43	CDK1
25	MOTA	1213	N	ALA	221	-11.561	31.021	1.920	1.00	83.08	CDK1
	MOTA	1214	CA	ALA	221	-12.066	30.578	0.620	1.00	82.29	CDK1
	ATOM	1215	СВ	ALA	221	-11.884	29.068	0.484	1.00	80.44	CDK1
	ATOM	1216	С	ALA	221	-13.534	30.941	0.401	1.00	82.23	CDK1
30	ATOM	1217	0	ALA	221	-13.893	31.501	-0.638	1.00	78.47	CDK1
	MOTA	1218	N	ASN	222	-14.373	30.623	1.387	1.00	83.70	CDK1
	ATOM	1219	CA	ASN	222	-15.814	30.886	1.320	1.00	83.23	CDK1
	ATOM	1220	CB	ASN	222	-16.581	29.749	2.015	1.00	82.64	CDK1
35	ATOM	1221	CG	ASN	222	-16.028	28.361	1.673	1.00	85.09	CDK1
	ATOM	1222	OD1	ASN	222	-14.841	28.200	1.371	1.00	81.92	CDK1
	ATOM	1223	ND2	ASN	222	-16.897	27.350	1.723	1.00	86.26	CDK1
	ATOM	1224 .	С	ASN	222	-16.240	32.239	1.916	1.00	80.42	CDK1
40	ATOM	1225	0	ASN	222	-17.063	32.923	1.274	1.00	76.53	CDK1
	ATOM	1226	OT	ASN	222	-15.757	32.603	3.014	1.00	80.92	CDK1
	ATOM	1227	CB	VAL	225	-17.531	40.172	-1.163	1.00	96.71	CDK2
	ATOM	1228	CG1	VAL	225	-18.443	41.304	-1.649	1.00	98.94	CDK2
45	ATOM	1229	CG2	VAL	225	-16.609	40.684	-0.068	1.00	94.24	CDK2
-	ATOM	1230	С	VAL	225	-19.738	38.919	-1.288	1.00	94.14	CDK2
	ATOM	1231	0	VAL	225	-19.970	38.104	-2.180	1.00	95.78	CDK2
	ATOM	1232	N	VAL	225	-17.665	37.669	-0.895	1.00	96.27	CDK2
50	ATOM	1233	CA	VAL	225	-18.365	38.961	-0.623	1.00	95.65	CDK2
50	ATOM	1234	N	GLY	226	-20.648	39.779	-0.839	1.00	92.50	CDK2
	ATOM	1235	CA	GLY	226	-21.982	39.806	-1.413	1.00	90.19	CDK2
	ATOM	1236	C	GLY	226	-21.983	40.184	-2.884	1.00	88.16	CDK2
55	ATOM	1237	0	GLY	226	-20.925	40.198	-3.521	1.00	87.24	CDK2
95											

	ATOM	1238	N	THR	227	-23.171	40.476	-3.421	1.00 84.	61 CDK2
	ATOM	1239	CA	THR	227	-23.331	40.875	-4.820	1.00 77.	94 CDK2
5	ATOM	1240	СВ	THR	227	-24.729	41.481	-5.076	1.00 79.	05 CDK2
	ATOM	1241	OG1	THR	227	-25.597	41.148	-3.988	1.00 72.	89 CDK2
	ATOM	1242	CG2	THR	227	-25.319	40.958	-6.397	1.00 77.	02 CDK2
	ATOM	1243	С	THR	227	-22.284	41.932	-5.184	1.00 76.	19 CDK2
10	ATOM	1244	ο`	THR	227	-21.242	41.615	-5.760	1.00 78.	
	ATOM	1245	N	ARG	228	-22.567	43.187	-4.849	1.00 67.	16 CDK2
	ATOM	1246	CA	ARG	228	-21.644	44.277	-5.131	1.00 63.	25 CDK2
	MOTA	1247	СВ	ARG	228	-21.942	45.441	-4.183	1.00 62.	74 CDK2
15	ATOM	1248	CG	ARG	228	-23.410	45.855	-4.194	1.00 69.	29 CDK2
	ATOM	1249	CD	ARG	228	-23.916	46.215	-2.806	1.00 75.	28 CDK2
	ATOM	1250	NE	ARG	228	-24.025	47.661	-2.616	1.00 76.	75 CDK2
	ATOM	1251	CZ	ARG	228	-22.995	48.459	-2.337	1.00 76.	48 CDK2
20	ATOM	1252	NH1	ARG	228	-21.774	47.952	-2.215	1.00 77.	38 CDK2
	MOTA	1253	NH2	ARG	228	-23.184	49.765	-2.179	1.00 71.	79 CDK2
	MOTA	1254	С	ARG	228	-20.173	43.836	-5.009	1.00 60.	44 CDK2
	ATOM	1255	0	ARG	228	-19.658	43.643	-3.904	1.00 66.	04 CDK2
25	ATOM	1256	N	SER	229	-19.511	43.664	-6.152	1.00 50.	91 CDK2
	ATOM	1257	CA	SER	229	-18.107	43.252	-6.192	1.00 44.	26 CDK2
	ATOM	1258	CB	SER	229	-17.912	42.114	-7.196	1.00 39.	65 CDK2
	ATOM	1259	OG	SER	229	-16.635	41.524	-7.045	1.00 40.	81 CDK2
30	ATOM	1260	С	SER	229	-17.181	44.407	-6.567	1.00 40.	73 CDK2
	ATOM	1261	0	SER	229	-17.570	45.315	-7.288	1.00 41.	83 CDK2
	MOTA	1262	N	TYR	230	-15.957	44.381	-6.055	1.00 42.	20 CDK2
	MOTA	1263	CA	TYR	230	-14.985	45.418	-6.363	1.00 34.	
35	ATOM	1264	CB	TYR	230	-14.549	46.178	-5.105	1.00 32.	07 CDK2
	ATOM	1265	CG	TYR	230	-15.656	46.987	-4.473	1.00 30.	29 CDK2
	ATOM	1266		TYR	230	-15.830	48.327	-4.777	1.00 30.	
	ATOM	1267		TYR	230	-16.906	49.050	-4.253	1.00 35.	
40	MOTA	1268	CD2		230	-16.576	46.383	-3.617	1.00 33.	27 CDK2
	ATOM	1269	CE2		230	-17.645	47.089	-3.093	1.00 26.	
	ATOM	1270	CZ	TYR	230	-17.810	48.415	-3.417	1.00 33.	
	ATOM	1271	OH	TYR	230	-18.913	49.078	-2.943	1.00 36.	
45	ATOM	1272	C	TYR	230	-13.806	44.707	-6.982	1.00 33.	
	MOTA	1273	0	TYR	230	-12.737	45.295	-7.173	1.00 32.	
	ATOM	1274	N	MET	231	-14.012	43.426	-7.282	1.00 27.	
	ATOM	1275	CA	MET	231	-12.982	42.618	-7.919	1.00 34.	
50	ATOM	1276	CB	MET	231	-13.402	41.163	-7.982	1.00 41.	
	ATOM	1277	CG	MET	231	-13.857	40.587	-6.693	1.00 41.	
	ATOM	1278	SD	MET	231	-12.978	39.068	-6.468	1.00 51.	
	ATOM	1279	CE	MET	231	-14.039	38.292	-5.238	1.00 57.	
55	ATOM	1280	С	MET	231	-12.729	43.087	-9.364	1.00 37.	37 CDK2

	ATOM	1281	. 0	MET	231	-13.653	43.455 -10.093	1.00 29.01	CDK2
	ATOM	1282	N	SER	232	-11.468	43.054 -9.769	1.00 35.06	CDK2
5	MOTA	1283	CA	SER	232	-11.110	43.459 -11.108	1.00 37.18	CDK2
	ATOM	1284	CB	SER	232	-9.591	43.659 -11.220	1.00 29.03	CDK2
	ATOM	1285	OG	SER	232	-8.933	42.415 -11.374	1.00 28.99	CDK2
	ATOM	1286	С	SER	232	-11.572	42.370 -12.075	1.00 39.52	CDK2
10	ATOM	1287	0	SER	232	-11.758	41.197 -11.694	1.00 37.59	CDK2
	MOTA	1288	N	PRO	233	-11.783	42.750 -13.344	1.00 39.25	CDK2
	ATOM	1289	CD	PRO	233	-11.643	44.113 -13.883	1.00 39.41	CDK2
	ATOM	1290	CA	PRO	233	-12.222	41.797 -14.367	1.00 35.72	CDK2
15	MOTA	1291	CB	PRO	233	-12.236	42.619 -15.646	1.00 39.66	CDK2
	MOTA	1292	CG	PRO	233	-12.382	44.029 -15.184	1.00 40.71	CDK2
	MOTA	1293	С	PRO	233	-11.271	40.616 -14.455	1.00 32.71	CDK2
	MOTA	1294	0	PRO	233	-11.714	39.466 -14.567	1.00 32.61	CDK2
20	MOTA	1295	N	GLU	234	-9.969	40.889 -14.382	1.00 25.80	CDK2
	ATOM	1296	CA	GTO	234	-8.997	39.796 -14.460	1.00 31.29	CDK2
	ATOM	1297	CB	GLU	234	-7.548	40.331 -14.615	1.00 27.93	CDK2
	ATOM	1298	CG	GLU	234	-6.941	41.038 -13.420	1.00 35.25	CDK2
25	ATOM	1299	CD	GLU	234	-7.122	42.543 -13.491	1.00 46.04	CDK2
	MOTA	1300		GLU	234	-6.343	43.244 -12.792	1.00 34.59	CDK2
	MOTA	1301		GLU	234	-8.042	43.011 -14.235	1.00 34.13	CDK2
	ATOM	1302	С	GLU	234	-9.126	38.866 -13.252	1.00 36.15	CDK2
30	MOTA	1303	0	GLU	234	-9.230	37.642 -13.415	1.00 36.00	CDK2
	ATOM	1304	N	ARG	235	-9.152	39.443 -12.046	1.00 36.25	CDK2
	ATOM	1305	CA	ARG	235	-9.308	38.631 -10.842	1.00 30.67	CDK2
	ATOM	1306	СВ	ARG	235	-9.357	39.498 -9.589	1.00 33.14	CDK2
35	ATOM	1307	CG	ARG	235	-8.916	38.751 -8.347	1.00 38.41	CDK2
	ATOM	1308	CD	ARG	235	-9.155	39.546 -7.078	1.00 35.72	CDK2
	ATOM	1309	NE	ARG	235	-9.403	38.641 -5.970	1.00 49.08	CDK2
	MOTA	1310	CZ	ARG	235	-9.156	38.906 -4.692	1.00 43.29	CDK2
40	MOTA	1311		ARG	235	-8.643	40.073 -4.320	1.00 36.78	CDK2
40	ATOM	1312		ARG	235	-9.407	37.972 -3.796	1.00 35.72	CDK2
	MOTA	1313	С	ARG	235	-10.588	37.825 -10.946	1.00 26.85	CDK2
	MOTA	1314	0	ARG	235	-10.589	36.640 -10.646	1.00 30.69	CDK2
45	MOTA	1315	N	LEU	236	-11.674	38.459 -11.388	1.00 22.65	CDK2
45	ATOM	1316	CA	LEU	236	-12.947	37.759 -11.539	1.00 29.34	CDK2
	MOTA	1317	CB	LEU	236	-14.015	38.722 -12.040	1.00 25.84	CDK2
	ATOM	1318	CG	LEU	236	-14.711	39.705 -11.106	1.00 37.33	CDK2
	ATOM	1319		LEU	236	-15.989	40.164 -11.777	1.00 28.71	CDK2
50	ATOM	1320		LEU	236	-15.032	39.051 -9.761	1.00 35.07	CDK2
	ATOM	1321	С	LEO	236	-12.876	36.568 -12.517	1.00 36.60	CDK2
	MOTA	1322	0	LEU	236	-13.612	35.591 -12.371	1.00 39.06	CDK2
	ATOM	1323	N	GLN	237	-11.983	36.637 -13.505	1.00 38.27	CDK2

	ATOM	1324	CA	GLN	237	-11.894	35.572 -	14.500	1.00	40.29	CDK2	
	MOTA	1325	CB	GLN	237	-11.702	36.198 -	15.895	1.00	41.52	CDK2	
	ATOM	1326	CG	GLN	237	-13.006	36.799 -	16.460	1,00	45.94	CDK2	
5	MOTA	1327	CD	GLN	237	-12.798	37.893 -	17.528	1.00	55.13	CDK2	
	MOTA	1328	OE1	GLN	237	-11.707	38.449 -	17.673	1.00	48.77	CDK2	
	ATOM	1329	NE2	GLN	237	-13.864	38.204 -	18.268	1.00	55.35	CDK2	
	ATOM	1330	C	GLN	237	-10.866	34.457 -	14.260	1.00	40.06	CDK2	
10	ATOM	1331	0	GLN	237	-11.048	33.328 -	14.725	1.00	42.61	CDK2	
	ATOM	1332	N	GLY	238	-9.792	34.738 -	13.537	1.00	36.28	CDK2	
	ATOM	1333	CA	GLY	238	-8.836	33.671 -	13.308	1.00	36.18	CDK2	
15	ATOM	1334	С	GLY	238	-7.776	34.012 -	12.289	1.00	41.42	CDK2	
15	ATOM	1335	0	GLY	238	-7.970	34.867 -	11.439	1.00	42.04	CDK2	
	ATOM	1336	N	THR	239	-6.647	33.329 -	12.402	1.00	47.91	CDK2	
	MOTA	1337	CA	THR	239	-5.496	33.502 -	11.522	1.00	51.06	CDK2	
20	MOTA	1338	CB	THR	239	-4.719	32.171 -	11.392	1.00	54.87	CDK2	
20	MOTA	1339	OG1	THR	239	-3.981	31.944 -	12.604	1.00	59.65	CDK2	
	ATOM	1340	CG2	THR	239	-5.672	30.992 -	11.181	1.00	52.61	CDK2	
	MOTA	1341	С	THR	239	-4.501	34.540 -	12.066	1.00	52.06	CDK2	
25	ATOM	1342	0	THR	239	-3.462	34.796 -	11.451	1.00	52.89	CDK2	
25	ATOM	1343	N	HIS	240	-4.795	35.125 -	13.220	1.00	52.16	CDK2	
	ATOM	1344	CA	HIS	240	-3.861	36.085 -	13.792	1.00	52.77	CDK2	
	MOTA	1345	CB	HIS	240	-3.808	35.940 -	15.314	1.00	54.03	CDK2	
30	ATOM	1346	CG	HIS	240	-3.257	34.623 -	15.769	1.00	57.16	CDK2	
50	ATOM	1347	CD2	HIS	240	-1.988	34.154 -	15.810	1.00	57.93	CDK2	
	ATOM	1348	ND1	HIS	240	-4.058	33.595 -	16.220	1.00	59.40	CDK2	
	MOTA	1349	CE1	HIS	240	-3.308	32.550 -	16.518	1.00	56.19	CDK2	
35	ATOM	1350	NE2	HIS	240	-2.047	32.863 -	16.277	1.00	59.84	CDK2	
55	MOTA	1351	С	HIS	240	-4.149	37.522 -	13.408	1.00	51.27	CDK2	
	ATOM	1352	0	HIS '	240	-4.684	38.315 -	14.198	1.00	52.88	CDK2	
	ATOM	1353	N	TYR	241	-3.788	37.844 -	12.174	1.00	45.79	CDK2	
40	ATOM	1354	CA	TYR	241	-3.956	39.180 -	11.649	1.00	43.36	CDK2	
.=	ATOM	1355	CB	TYR	241	-5.353	39.359 -	11.065	1.00	47.66	CDK2	
	ATOM	1356	CG	TYR	241	-5.532	38.616	-9.771	1.00	54.30	CDK2	
	ATOM	1357	CD1	TYR	241	-5.471	39.283	-8.544	1.00	56.86	CDK2	
45	ATOM	1358	CE1	TYR	241	-5.579	38.592	-7.342	1.00	51.46	CDK2	
	ATOM	1359	CD2	TYR	241	-5.711	37.236	-9.766	1.00	54.60	CDK2	
	ATOM	1360	CE2	TYR	241	-5.821	36.536	-8.578	1.00	58.01	CDK2	
	ATOM	1361	CZ	TYR	241	-5.751	37.219	-7.370	1.00	56.44	CDK2	
50	ATOM	1362	OH	TYR	241	-5.832	36.516	-6.201	1.00	57.07	CDK2	
	ATOM	1363	С	TYR	241	-2.913	39.351 -	10.559	1.00	42.95	CDK2	
	ATOM	1364	0	TYR	241	-2.317	38.368 -	10.097		38.50	CDK2	
	ATOM	1365	N	SER	242	-2.691	40.603 -	10.164	1.00	37.42	CDK2	
55	ATOM	1366	CA	SER	242	-1.741	40.939	-9.119	1.00	29.57	CDK2	

	ATOM	1367	CB	SER	242	-0.316	40.863	-9.666	1.00	34.82	CDK2
	ATOM	1368	OG	SER	242	0.619	41.387	-8.737	1.00	44.90	CDK2
5	ATOM	1369	С	SER	242	-2.043	42.336	-8.569	1.00	25.30	CDK2
	MOTA	1370	0	SER	242	-3.211	42.722	-8.466	1.00	26.18	CDK2
	ATOM	1371	N	VAL	243	-1.005	43.107	-8.251	1.00	25.51	CDK2
	ATOM	1372	CA	VAL	243	-1.191	44.432	-7.670	1.00	32.16	CDK2
10	ATOM	1373	CB	VAL	243	0.156	45.050	-7.326	1.00	40.33	CDK2
	ATOM	1374	CG1	VAL	243	0.943	44.086	-6.451	1.00	39.31	CDK2
	ATOM	1375	CG2	VAL	243	0.909	45.372	-8.602	1.00	40.74	CDK2
	ATOM	1376	С	VAL	243	-2.002	45.446	-8.468	1.00	38.53	CDK2
15	MOTA	1377	0	VAL	243	-2.588	46.376	-7.886	1.00	38.34	CDK2
	MOTA	1378	N	GLN	244	-2.027	45.288	-9.793	1.00	36.78	CDK2
	ATOM	1379	CA	GLN	244	-2.792	46.186	-10.650	1.00	30.13	CDK2
	MOTA	1380	CB	GLN	244	-2.592	45.807	-12.128	1.00	41.56	CDK2
20	MOTA	1381	CG	GLN	244	-1.484	46.572	-12.864	1.00	36.91	CDK2
	MOTA	1382	CD	GLN	244	-1.439	48.041	-12.514	1.00	39.13	CDK2
	ATOM	1383	OE1	GLN	244	-0.749	48.437	-11.587	1.00	44.56	CDK2
	ATOM	1384	NE2	GLN	244	-2.178	48.859	-13.259	1.00	44.07	CDK2
25	ATOM	1385	С	GLN	244	-4.268	46.065	-10.290	1.00	28.12	CDK2
	ATOM	1386	0	GLN	244	-5.029	47.020	-10.409	1.00	36.39	CDK2
	ATOM	1387	N	SER	245	-4.676	44.870	-9.873	1.00	29.37	CDK2
	ATOM	1388	CA	SER	245	-6.060	44.614	-9.477	1.00	28.17	CDK2
30	ATOM	1389	CB	SER	245	-6.189	43.181	-8.997	1.00	26.36	CDK2
	ATOM	1390	OG	SER .	245	-7.547	42.804	-9.000	1.00	41.30	CDK2
	ATOM	1391	С	SER	245	-6.586	45.575	-8.387	1.00	33.42	CDK2
	ATOM	1392	0	SER	245	-7.793	45.860	-8.331	1.00	34.65	CDK2
35	ATOM	1393	N	ASP	246	-5.683	46.082	-7.538	1.00	31.38	CDK2
	ATOM	1394	CA	ASP	246	-6.072	47.009	-6.483	1.00	36.15	CDK2
	ATOM	1395	CB	ASP	246	-4.920	47.241	-5.483	1.00	40.03	CDK2
	ATOM	1396	CG	ASP	246	-4.655	46.036	-4.556	1.00	39.89	CDK2
40	ATOM	1397	OD1	ASP	246	-3.480	45.863	-4.158	1.00	35.19	CDK2
	ATOM	1398	OD2	ASP	246	-5.596	45.266	-4.228	1.00	36.20	CDK2
	ATOM	1399	С	ASP	246	-6.481	48.352	-7.081	1.00	41.37	CDK2
	ATOM	1400	0	ASP	246	-7.352	49.050	-6.528	1.00	41.85	CDK2
45	ATOM	1401	N	ILE	247	-5.857	48.719	-8.208	1.00	40.77	CDK2
	ATOM	1402	CA	ILE	247	-6.153	49.994	-8.861	1.00	37.16	CDK2
	ATOM	1403	CB	ILE	247	-5.234	50.268	-10.095	1.00	42.74	CDK2
	ATOM	1404	CG2	ILE	247	-5.637	51.597	-10.777	1.00	36.99	CDK2
50	MOTA	1405	CG1	ILE	247	-3.779	50.367	-9.644	1.00	36.34	CDK2
	MOTA	1406	CD1	ILE	247	-3.550	51.437	-8.603	1.00	40.80	CDK2
	ATOM	1407	С	ILE	247	-7.592	50.045	-9.317	1.00	35.14	CDK2
	ATOM	1408	0	ILE	247	-8.269	51.065	-9.132	1.00	33.24	CDK2
55	ATOM	1409	N	TRP	248	-8.060	48.948	-9.913	1.00	39.12	CDK2

	ATOM	1410	CA	TRP	248	-9.444	48.867	-10.393	1.00	38.37	CDK2
	MOTA	1411	CB	TRP	248	-9.706	47.486	-11.036	1.00	37.84	CDK2
5	ATOM	1412	CG	TRP	248	-11.170	47.203	-11.309	1.00	41.03	CDK2
	ATOM	1413	CD	2 TRP	248	-11.871	47.442	-12.533	1.00	47.69	CDK2
	ATOM	1414	CE	2 TRP	248	-13.233	47.124	-12.307	1.00	51.25	CDK2
10	ATOM	1415	CE:	3 TRP	248	-11.484	47.899	-13.802	1.00	45.71	CDK2
10	ATOM	1416	CD	L TRP	248	-12.108	46.751	-10.416	1.00	44.55	CDK2
	ATOM	1417	NE:	TRP	248	-13.351	46.705	-11.008	1.00	44.17	CDK2
	ATOM	1418		TRP	248	-14.209	47.251	-13.310	1.00	54.89	CDK2
15	MOTA	1419	CZ3	TRP	248	-12.453	48.029	-14.793	1.00	48.74	CDK2
,,,	ATOM	1420		TRP	248	-13.799	47.707	-14.542	1.00	47.54	CDK2
	ATOM	1421	С	TRP	248	-10.399	49.105	-9.203	1.00	40.74	CDK2
	MOTA	1422	0	TRP	248	-11.292	49.982	-9.251	1.00	35.01	CDK2
20	ATOM	1423	N	SER	249	-10.188	48.339	-8.130	1.00	36.81	CDK2
20	MOTA	1424	CA	SER	249	-11.021	48.455	-6.921	1.00	34.72	CDK2
	ATOM	1425	CB	SER	249	-10.475	47.567	-5.793	1.00	32.01	CDK2
	ATOM	1426	OG	SER	249	-10.307	46,215	-6.203	1.00	33.59	CDK2
25	ATOM	1427	С	SER	249	-11.067	49.901	-6.444	1.00	33.09	CDK2
	ATOM	1428	0	SER	249	-12.134	50.440	-6.130		29.78	CDK2
	ATOM	1429	N	MET	250	-9.907	50.541	-6.394	1.00	27.73	CDK2
	ATOM	1430	CA	MET	250	-9.884	51.920	-5.948		31.21	CDK2
30	ATOM	1431	CB	MET	250	-8.455	52.457	-5.918		33.74	CDK2
	ATOM	1432	CG	MET	250	-8.370	53.943	-5.645		41.23	CDK2
	ATOM ATOM	1433	SD	MET	250	-6.648	54.465	-5.569		48.82	CDK2
	ATOM	1434	CE	MET	250	-6.298	54.631	-7.348		46.30	CDK2
35	ATOM	1436	0	MET	250 250	-10.730	52.767	-6.870		33.18	CDK2
	ATOM	1437	И	GLY	251	-11.505	53.597	-6.408		43.42	CDK2
	ATOM	1438	CA	GLY	251	-10.595	52.548	-8.178		36.22	CDK2
	ATOM	1439	C	GLY	251	-11.357 -12.852	53.330 53.141	-9.142 -9.048		31.16	CDK2
40	ATOM	1440	0	GLY	251	-13.620	54.108	-9.126		32.65	CDK2
	ATOM	1441	N	LEU	252	-13.020	51.886	-8.906		34.23	CDK2
	ATOM	1442	CA	LEU	252	-14.690	51.570	-8.781		35.32	CDK2
	ATOM	1443	СВ	LEU	252	-14.868	50.046	-8.756		33.29	CDK2
45	ATOM	1444	CG	LEU	252	-16.116	49.372	-9.341		41.00	CDK2 CDK2
	ATOM	1445	CD1		252	-16.812	48.610	-8.244		30.48	CDK2
	ATOM	1446	CD2		252	-17.070	50.384	-9.963		35.01	
	ATOM	1447	С	LEU	252	-15.224	52.223	-7.482		38.96	CDK2 CDK2
50	ATOM	1448	0	LEU	252	-16.303	52.831	-7.474		37.59	CDK2
	ATOM	1449	N	SER	253	-14.441	52.135	-6.403		36.68	CDK2
	ATOM	1450	CA	SER	253	-14.828	52.712	-5.103		41.36	CDK2
	ATOM	1451	СВ	SER	253	-13.783	52.382	-4.026		33.13	CDK2
55	ATOM	1452	OG	SER	253	-13.699	50.978	-3.838	1.00		CDK2
								5.000	00		CDMZ

	ATOM	1453	С	SER	253	-15.021	54.220	-5.167	1.00	40.63	CDK2
	ATOM	1454	0	SER	253	-15.976	54.742	-4.605	1.00	42.49	CDK2
5	ATOM	1455	N	LEU	254	-14.114	54.916	-5.851	1.00	42.40	CDK2
	ATOM	1456	CA	LEU	254	-14.203	56.373	-5.999	1.00	41.53	CDK2
	ATOM	1457	CB	LEU	254	-12.948	56.921	-6.660	1.00	42.27	CDK2
	ATOM	1458	CG	LEU	254	-11.715	57.129	-5.800	1.00	37.89	CDK2
10	ATOM	1459	CD1	LEU	254	-10.516	57.368	-6.708	1.00	35.93	CDK2
	ATOM	1460	CD2	LEU	254	-11.944	58.304	-4.863	1.00	41.44	CDK2
	ATOM	1461	C	LEU	254	-15.408	56.809	-6.828	1.00	42.25	CDK2
	ATOM	1462	0	LEU	254	-15.968	57.871	-6.597	1.00	45.58	CDK2
15	ATOM	1463	N	VAL	255	-15.793	56.004	-7.814	1.00	48.22	CDK2
	ATOM	1464	CA	VAL	255	-16.948	56.341	-8.643	1.00	48.45	CDK2
	MOTA	1465	CB	VAL	255	-17.041	55.441	-9.905	1.00	50.14	CDK2
	ATOM	1466	CG1	VAL	255	-18.421	55.576	-10.533	1.00	48.28	CDK2
20	ATOM	1467	CG2	VAL	255	-15.947	55.809	-10.911	1.00	46.02	CDK2
	ATOM	1468	С	VAL	255	-18.207	56.145	-7.803	1.00	49.95	CDK2
	ATOM	1469	0	VAL	255	-19.166	56.910	-7.918	1.00	51.43	CDK2
	MOTA	1470	N	GLU	256	-18.205	55.110	-6.961	1.00	50.58	CDK2
25	ATOM	1471	CA	GLU	256	-19.354	54.841	-6.088	1.00	46.90	CDK2
	ATOM	1472	CB	GLU	256	-19.160	53.548	-5.288	1.00	37.96	CDK2
	ATOM	1473	CG	GLU	256	-20.244	53.354	-4.254	1.00	39.26	CDK2
	MOTA	1474	CD	GLU	256	-20.210	51.996	-3.602	1.00	44.24	CDK2
30	ATOM	1475	OE1	GLU	256	-21.191	51.654	-2.916	1.00	45.88	CDK2
	MOTA	1476	OE2	GLU	256	-19.214	51.268	-3.773	1.00	43.79	CDK2
	ATOM	1477	С	GLU	256	-19.571	55.994	-5.103	1.00	48.13	CDK2
	MOTA	1478	0	GLU	256	-20.681	56.526	-4.988	1.00	44.18	CDK2
35	MOTA	1479	И	MET	257	-18.502	56.373	-4.398	1.00	47.57	CDK2
	ATOM	1480	CA	MET	257	-18.569	57.449	-3.416	1.00	48.56	CDK2
	ATOM	1481	CB	MET	257	-17.233	57.558	-2.678	1.00	50.19	CDK2
	ATOM	1482	CG	MET	257	-16.869	56.298	-1.901	1.00	50.08	CDK2
40	ATOM	1483	SD	MET	257	-15.432	56.495	-0.839	1.00	51.23	CDK2
	ATOM	1484	CE	MET	257	-14.083	56.038	-1.943	1.00	48.94	CDK2
	ATOM	1485	С	MET	257	-18.939	58.796	-4.031	1.00	51.94	CDK2
	ATOM	1486	0	MET	257	-19.564	59.633	-3.385	1.00	52.56	CDK5
45	ATOM	1487	N	ALA	258	-18.553	58.998	-5.287	1.00	56.87	CDK2
	MOTA	1488	CA	ALA	258	-18.847	60.240	-5.993	1.00	55.56	CDK2
	MOTA	1489	CB	ALA	258	-17.894	60.398	-7.182	1.00	55.20	CDK2
	ATOM	1490	С	ALA	258	-20.308	60.312	-6.463	1.00	56.01	CDK2
50	ATOM	1491	0	ALA	258	-20.886	61.397	-6.507	1.00	58.36	CDK2
	ATOM	1492		VAL	259	-20.907	59.170	-6.810	1.00	53.70	CDK2
	ATOM	1493		VAL '	259	-22.296	59.159	-7.267	1.00	54.75	CDK2
	ATOM	1494	CB	VAL	259	-22.471	58.259	-8.502	1.00	52.35	CDK2
55	ATOM	1495	CG1	VAL	259	-21.462	58.652	-9.565	1.00	49.67	CDK2

		ATOM	1496	CG2	VAL	259	-22.306	56.808	-8.118	1.00	55.21	CDK2
		ATOM	1497	C	VAL	259	-23.289	58.726	-6.187	1.00	57.73	CDK2
£	:	MOTA	1498	0	VAL	259	-24.503	58.851	-6.355	1.00	59.52	CDK2
		MOTA	1499	N	GLY	260	-22.770	58.225	-5.075	1.00	58.64	CDK2
		MOTA	1500	CA	GLY	260	-23.634	57.803	-3.991	1.00	55.55	CDK2
		ATOM	1501	С	GLY	260	-24.363	56.504	-4.238	1.00	53.40	CDK2
1	n	ATOM	1502	0	GLY	260	-25.480	56.328	~3.777	1.00	55.92	CDK2
,		ATOM	1503	N	ARG	261	-23.736	55.583	-4.955	1.00	56.53	CDK2
		ATOM	1504	CA	ARG	261	-24.371	54.303	-5.235	1.00	57.03	CDK2
		MOTA	1505	CB	ARG	261	-25.672	54.564	-5.993	1.00	64.44	CDK2
1	5	MOTA	1506	CG	ARG	261	-26.264	53.382	-6.715	1.00	67.68	CDK2
	-	ATOM	1507	CD	ARG	261	-26.969	53.839	-7.987	1.00	69.38	CDK2
		ATOM	1508	NE	ARG	261	-26.238	53.401	-9.173	1.00	78.16	CDK2
		ATOM	1509	CZ	ARG	261	-26.748	53.341	-10.399	1.00	77.41	CDK2
2	n	ATOM	1510	NH1	ARG	261	-28.008	53.692	-10.626	1.00	78.33	CDK2
-	•	ATOM	1511	NH2	ARG	261	-25.990	52.920	-11.402	1.00	78.41	CDK2
		ATOM	1512	С	ARG	261	-23.435	53.409	-6.047	1.00	55.57	CDK2
		ATOM	1513	0	ARG	261	-22.761	53.886	-6.955	1.00	55.93	CDK2
2	5	ATOM	1514	N	TYR	262	-23.369	52.126	-5.697	1.00	52.95	CDK2
-	•	ATOM	1515	CA	TYR	262	-22.521	51.185	-6.424	1.00	49.78	CDK2
		ATOM	1516	CB	TYR	262	-22.873	49.760	-6.024	1.00	43.66	CDK2
		ATOM	1517	CG	TYR	262	-22.029	48.710	~6.691	1.00	39.85	CDK2
3	2	ATOM	1518	CD1	TYR	262	-20.691	48.549	-6.363	1.00	35.96	CDK2
	•	ATOM	1519	CE1	TYR	262	-19.915	47.561	-6.972	1.00	36.69	CDK2
		ATOM	1520	CD2		262	-22.579	47.862	-7.647	1.00	38.71	CDK2
		ATOM	1521	CE2		262	-21.823	46.880	-8.260	1.00	36.12	CDK2
3	5	ATOM	1522	CZ	TYR	262	-20.492	46.731	-7.921	1.00	38.37	CDK2
	•	ATOM	1523	OH	TYR	262	-19.758	45.742	-8.538	1.00		CDK2
		ATOM	1524	С	TYR	262	-22.841	51.447	-7.895	1.00	51.68	CDK2
		ATOM	1525	0	TYR	262	-23.978	51.293	-8.329	1.00	49.78	CDK2
4	n	ATOM	1526	N	PRO	263	-21.830	51.828	-8.680	1.00	52.54	CDK2
	•	MOTA	1527	CD	PRO	263	-20.441	51.891	-8.200	1.00		CDK2
		ATOM	1528	CA	PRO	263	-21.905		-10.106	1.00		CDK2
		MOTA	1529	CB	PRO	263	-20.613		-10.331	1.00		CDK2
4	4	ATOM	1530	CG	PRO	263	-19.662	52.236	-9.455	1.00		CDK2
	•	ATOM	1531	С	PRO	263	-22.126		-11.199	1.00		CDK2
		ATOM	1532	0	PRO	263	-21.950		-12.381	1.00		CDK2
		ATOM	1533	N	ILE	264	-22.494		-10.833	1.00		CDK2
5	n	ATOM	1534	CA	ILE	264	-22.737		-11.844	1.00		CDK2
9	•	ATOM	1535	СВ	ILE	264	-21.646		-11.827	1.00		CDK2
		ATOM	1536	CG2		264	-22.022		-12.763	1.00		CDK2
		ATOM	1537		ILE	264	-20.319		-12.303	1.00		CDK2
5		MOTA	1538	CD1	ILE	264	-19.175	47.379	-12.250	1.00	55.31	CDK2
9	,											

	MOTA	1539	С	ILE	264	-24.095	48.238 -11.572	1.00 56.64	CDK2
	MOTA	1540	0	ILE	264	-24.334	47.708 -10.491	1.00 57.40	CDK2
5	MOTA	1541	N	PRO	265	-25.008	48.289 -12.552	1.00 58.57	CDK2
-	MOTA	1542	CD	PRO	265	-26.375	47.784 -12.339	1.00 57.51	CDK2
	ATOM	1543	CA	PRO	265	-24.867	48.874 -13.889	1.00 59.89	CDK2
	ATOM	1544	CB	PRO	265	-26.095	48.364 -14.621	1.00 58.68	CDK2
10	ATOM	1545	CG	PRO	265	-27.118	48.294 -13.545	1.00 59.97	CDK2
	ATOM	1546	С	PRO	265	-24.846	50.388 -13.855	1.00 58.62	CDK2
	ATOM	1547	0	PRO	265	-25.394	50.998 -12.945	1.00 58.78	CDK2
	ATOM	1548	N	PRO	266	-24.225	51.013 -14.865	1.00 59.73	CDK2
15	MOTA	1549	CD	PRO	266	-23.576	50.382 -16.018	1.00 60.58	CDK2
	ATOM	1550	CA	PRO .	266	-24.139	52.471 -14.944	1.00 60.72	CDK2
	ATOM	1551	CB	PRO	266	-23.712	52.733 -16.387	1.00 59.69	CDK2
	ATOM	1552	CG	PRO	266	-23.790	51.394 -17.084	1.00 61.26	CDK2
20	ATOM	1553	С	PRO	266	-25.463	53.137 -14.608	1.00 62.40	CDK2
	ATOM	1554	0	PRO	266	-26.533	52.601 -14.891	1.00 55.48	CDK2
	MOTA	1555	N	PRO	267	-25.404	54.315 -13.977	1.00 67.28	CDK2
	ATOM	1556	CD	PRO	267	-24.205	55.059 -13.555	1.00 70.50	CDK2
25	MOTA	1557	CA	PRO	267	-26.641	55.012 -13.624	1.00 71.69	CDK2
	ATOM	1558	CB	PRO	267	-26.156	56.313 -12.986	1.00 73.35	CDK2
	MOTA	1559	CG	PRO	267	-24.745	56.021 -12.544	1.00 75.01	CDK2
	MOTA	1560	С	PRO	267	-27.466	55.256 -14.875	1.00 74.96	CDK2
30	ATOM	1561	0	PRO	267	-26.850	55.614 -15.906	1.00 74.46	CDK2
	ATOM	1562	OT	PRO	267	-28.701	55.076 -14.808	1.00 75.82	CDK2
	ATOM	1563	CB	PRO	302	-32.709	43.995 -10.284	1.00 86.46	CDK3
	ATOM	1564	CG	PRO	302	-33.660	45.170 -9.977	1.00 87.23	CDK3
35	ATOM	1565	С	PRO	302	-30.432	43.438 -9.344	1.00 84.52	CDK3
	ATOM	1566	0	PRO	302	-29.486	43.745 -8:615	1.00 85.35	CDK3
	ATOM	1567	N	PRO	302	-31.958	45.201 -8.309	1.00 88.31	CDK3
	ATOM	1568	CD	PRO	302	-33.131	45.973 -8.765	1.00 88.49	CDK3
40	ATOM	1569	CA	PRO	302	-31.865	43.896 -9.016	1.00 87.73	CDK3
	ATOM	1570	N	MET	303	-30.297	42.692 -10.439	1.00 80.45	CDK3
	ATOM	1571	CA	MET	303	-29.023	42.146 -10.915	1.00 71.88	CDK3
	ATOM	1572	CB	MET	303	-27.917	43.194 -10.851	1.00 72.73	CDK3
45	ATOM	1573	CG	MET	303	-26.717	42.836 -11.709	1.00 78.99	CDK3
	MOTA	1574	SD	MET	303	-26.129	44.227 -12.694	1.00 85.97	CDK3
	ATOM	1575	CE	MET	303	-26.722	43.823 -14.323	1.00 76.44	CDK3
50	ATOM	1576	С	MET	303	-28.578	40.879 -10.176	1.00 66.23	CDK3
50	ATOM	1577	0	MET	303	-28.117	40.928 -9.031	1.00 68.99	CDK3
	ATOM	1578	N	ALA	304	-28.728	39.742 -10.849	1.00 55.51	CDK3
	ATOM	1579	CA	ALA	304	-28.351	38.459 -10.291	1.00 42.92	CDK3
66	ATOM	1580	СВ	ALA	304	-28.813	37.344 -11.203	1.00 42.46	CDK3
55	MOTA	1581	С	ALA	304	-26.847	38.401 -10.134	1.00 42.14	CDK3

	ATOM	1582	0	ALA	304	-26.129	39.277 -10.604	1.00	44.69	CDK3
	ATOM	1583	N	ILE	305	-26.361	37.353 -9.490	1.00	44.54	CDK3
5	ATOM	1584	CA	ILE	305	-24.933	37.220 -9.281	1.00	44.03	CDK3
	ATOM	1585	CB	ILE	305	-24.637	35.989 -8.424	1.00	41.60	CDK3
	ATOM	1586	CG2	ILE	305	-23.150	35.776 -8.325	1.00	39.49	CDK3
	ATOM	1587	CG1	ILE	305	-25.247	36.193 -7.026	1.00	48.67	CDK3
10	ATOM	1588	CD1	ILE .	305	-25.335	34.943 -6.163	1.00	45.66	CDK3
	ATOM	1589	С	ILE	305	-24.188	37.147 -10.611	1.00	47.91	CDK3
	ATOM	1590	0	ILE	305	-23.256	37.917 -10.853	1.00	46.71	CDK3
	ATOM	1591	N	PHE	306	-24.592	36.224 -11.478	1.00	50.53	CDK3
15	ATOM	1592	CA	PHE	306	-23.941	36.121 -12.776	1.00	48.49	CDK3
	ATOM	1593	CB	PHE	306	-24.462	34.915 -13.560	1.00	53.18	CDK3
	ATOM	1594	CG	PHE	306	-23.835	34.778 -14.915	1.00	54.00	CDK3
	MOTA	1595	CD1	PHE	306	-22.678	34.038 -15.080	1.00	53.50	CDK3
20	MOTA	1596	CD2	PHE	306	-24.361	35.455 -16.008	1.00	52.35	CDK3
	ATOM	1597	CE1	PHE	306	-22.051	33.978 -16.307	1.00	56.00	CDK3
	MOTA	1598	CE2	PHE	306	-23.738	35.400 -17.237	1.00	55.40	CDK3
	MOTA	1599	CZ	PHE	306	-22.578	34.660 -17.388	1.00	54.98	CDK3
25	MOTA	1600	С	PHE	306	-24.215	37.412 -13.559	1.00	46.48	CDK3
	MOTA	1601	0	PHE	306	-23.316	37.988 -14.171	1.00	42.25	CDK3
	MOTA	1602	N	GLU	307	-25.461	37.870 -13.531	1.00	40.46	CDK3
	MOTA	1603	CA	GLU	307	-25.821	39.095 -14.225		46.36	CDK3
30	MOTA	1604	CB	GLU	307	-27.251	39.488 -13.863		45.53	CDK3
	MOTA	1605	CG	GLU	307	-27.717	40.748 -14.556		55.41	CDK3
	ATOM	1606	CD	GLU	307	-29.202	41.028 -14.354		66.96	CDK3
	ATOM	1607	OE1		307	-29.837	41.563 -15.292		70.72	CDK3
35	ATOM	1608	OE2		307	-29.738	40.715 -13.265		68.73	CDK3
	ATOM	1609	С	GLU	307	-24.866	40.254 -13.904		49.73	CDK3
	ATOM	1610	0	GLU	307	-24.495	41.023 -14.783		50.94	CDK3
40	ATOM	1611	N	LEU	308	-24.463	40.377 -12.643		52.65	CDK3
40	ATOM	1612	CA	LEU	308	-23.567	41.454 -12.223		47.13	CDK3
	ATOM	1613	CB	LEU	308	-23.624	41.595 -10.689		47.72	CDK3
	ATOM	1614	CG	LEU	308	-23.146	42.863 -9.963		42.73	CDK3
45	ATOM	1615	CD1		308	-21.684	42.732 -9.634		45.17	CDK3
	ATOM	1616	CD2		308	-23.359	44.083 -10.826		49.65	CDK3
	ATOM	1617	С	LEU	308	-22.114	41.234 -12.667		47.51	CDK3
	ATOM	1618	0	LEU	308	-21.437	42.165 -13.131		43.11	CDK3
50	ATOM	1619	N CA	LEU	309	-21.639	40.000 -12.523		44.73	CDK3
	ATOM	1620		LEU	309	-20.260	39.666 -12.855		47.11	CDK3
	ATOM	1621	CB	LEU	309	-19.915	38.304 -12.262		43.48	CDK3
	ATOM	1622	CG	LEU	309	-19.206	38.362 -10.900		51.03	CDK3
55	ATOM ATOM	1623 1624	CD1		309	-19.838	39.423 -10.017		43.46	CDK3
	MION	1024	CD2	TEO	309	-19.264	37.003 -10.231	1.00	41.31	CDK3

	MOTA	1625	С	LEU	309	-19.939	39.698 -14.348	1.00	52.38	CDK3
	ATOM	1626	0	LEU	309	-18.816	40.035 -14.747	1.00	47.00	CDK3
5	ATOM	1627	N	ASP	310	-20.932	39.348 -15.164	1.00	56.64	CDK3
	ATOM	1628	CA	ASP	310	-20.781	39.348 -16.612	1.00	56.70	CDK3
	ATOM	1629	CB	ASP	310	-21.962	38.638 -17.275	1.00	62.07	CDK3
	ATOM	1630	Œ	ASP	310	-21.838	38.588 -18.789	1.00	69.70	CDK3
10	ATOM	1631	OD1	ASP	310	-20.762	38.199 -19.306	1.00	69.68	CDK3
	ATOM	1632	OD2	ASP	310	-22.828	38.942 -19.463	1.00	75.42	CDK3
	MOTA	1633	С	ASP	310	-20.707	40.791 -17.080	1.00	53.16	CDK3
	ATOM	1634	0	ASP	310	-20.026	41.102 -18.053	1.00	54.22	CDK3
15	ATOM	1635	N	TYR	311	-21.392	41.671 -16.362	1.00	47.70	CDK3
	ATOM	1636	CA	TYR	311	-21.384	43.079 -16.702	1.00	49.16	CDK3
	ATOM	1637	CB	TYR	311	-22.475	43.823 -15.939	1.00	51.19	CDK3
	ATOM	1638	CG	TYR	311	-22.757	45.177 -16.535	1.00	60.25	CDK3
20	ATOM	1639	CD1	TYR	311	-21.824	46.219 -16.438	1.00	61.63	CDK3
20	MOTA	1640	CE1	TYR	311	-22.051	47.454 -17.054	1.00	62.65	CDK3
	ATOM	1641	CD2	TYR	311	-23.929	45.405 -17.256	1.00	63.40	CDK3
	MOTA	1642	CE2	TYR	311	-24.167	46.631 -17.874	1.00	68.27	CDK3
25	ATOM	1643	CZ	TYR	311	-23.226	47.649 -17.772	1.00	67.65	CDK3
25	ATOM	1644	OH	TYR	311	-23.463	48.844 -18.413	1.00	71.55	CDK3
	ATOM	1645	С	TYR	311	-20.044	43.765 -16.430	1.00	51.51	CDK3
	ATOM	1646	0	TYR	311	-19.626	44.648 -17.179	1.00	53.84	CDK3
30	ATOM	1647	N	ILE	312	-19.356	43.389 -15.362	1.00	48.90	CDK3
30	ATOM	1648	CA	ILE	312	-18.102	44.066 -15.106	1.00	42.50	CDK3
	ATOM	1649	CB	ILE	312	-17.658	43.957 -13.594	1.00	41.93	CDK3
	ATOM	1650	CG2	ILE	312	-18.841	43.606 -12.691	1.00	47.16	CDK3
	ATOM	1651	CG1	ILE	312	-16.572	42.906 -13.433	1.00	32.83	CDK3
35	ATOM	1652	CD1	ILE	312	-15.228	43.498 -13.314	1.00	32.73	CDK3
	ATOM	1653	С	ILE	312	-17.017	43.545 -16.044	1.00	44.71	CDK3
	ATOM	1654	0	ILE	312	-16.155	44.308 -16.475	1.00	45.76	CDK3
	ATOM	1655	N	VAL	313	-17.056	42.262 -16.387	1.00	45.98	CDK3
40	MOTA	1656	CA	VAL	313	-16.021	41.738 -17.266	1.00	49.67	CDK3
	ATOM	1657	CB	VAL	313	-15.717	40.223 -17.019	1.00	48.66	CDK3
	ATOM	1658	CG1	VAL	313	-16.023	39.840 -15.589	1.00	50.93	CDK3
	ATOM	1659	CG2	VAL	313	-16.497	39.363 -17.984	1.00	50.03	CDK3
45	ATOM	1660	С	VAL	313	-16.316	41.923 -18.752	1.00	54.76	CDK3
	ATOM	1661	0	VAL	313	-15.397	42.169 -19.527	1.00	53.47	CDK3
	ATOM	1662	N	ASN	314	-17.585	41.814 -19.143	1.00	56.24	CDK3
	ATOM	1663	CA	ASN	314	-17.974	41.935 -20.553	1.00	56.61	CDK3
50	ATOM	1664	CB	ASN	314	-18.753	40.697 -20.988	1.00	48.44	CDK3
	ATOM	1665	CG	ASN	314	-17.880	39.487 -21.087	1.00	53.73	CDK3
	ATOM	1666	OD1	ASN	314	-18.307	38.366 -20.801	1.00	54.62	CDK3
	ATOM	1667	ND2	ASN	314	-16.635	39.699 -21.487	1.00	54.50	CDK3

		MOTA	1668	С	ASN	314	-18.778	43.174	-20.944	1.00	60.24	CDK3
		ATOM	1669	0	ASN	314	-19.580	43.129	-21.877	1.00	64.10	CDK3
	5	ATOM	1670	N	GLU	315	-18.578	44.274	-20.233	1.00	59.85	CDK3
		ATOM	1671	CA	GLU	315	-19.269	45.511	-20.559	1.00	56.33	CDK3
		ATOM	1672	CB	GLU	315	-20.499	45.706	-19.684	1.00	48.93	CDK3
		ATOM	1673	CG	GLU	315	-21.639	44.771	-20.002	1.00	58.46	CDK3
,	0	MOTA	1674	CD	GLU	315	-22.301	45.077	-21.329	1.00	64.58	CDK3
		ATOM	1675	OE1	GLU	315	-22.040	46,162	-21.893	1.00	63.47	CDK3
		ATOM	1676	OE2	GLU	315	-23.083	44.225	-21.804	1.00	65.68	CDK3
		ATOM	1677	С	GLU	315	-18.264	46.611	-20.309	1.00	59.01	CDK3
1	5	ATOM	1678	0	GLU	315	-17.141	46.344	-19.900	1.00	57.44	CDK3
		ATOM	1679	N	PRO	316	-18.650	47.865	-20.542	1.00	64.01	CDK3
		ATOM	1680	CD	PRO	316	-19.949	48.384	-21.010	1.00	68.32	CDK3
		ATOM	1681	CA	PRO	316	-17.683	48.939	-20.311	1.00	64.87	CDK3
2	20	ATOM	1682	CB	PRO	316	-18.210	50.075	-21.176	1.00	65.51	CDK3
		MOTA	1683	CG	PRO	316	-19.702	49.875	-21.156	1.00	67.38	CDK3
		MOTA	1684	С	PRO	316	-17.592	49.337	-18.853	1.00	63.28	CDK3
		ATOM	1685	0	PRO	316	-18.586	49.320	-18.133	1.00	67.04	CDK3
2	25	MOTA	1686	N	PRO	317	-16.394	49.704	-18.398	1.00	59.37	CDK3
		ATOM	1687	CD	PRO	317	-15.126	49.780	-19.136	1.00	58.91	CDK3
		ATOM	1688	CA	PRO	317	-16.233	50.105	-17.003	1.00	60.19	CDK3
		ATOM	1689	CB	PRO	317	-14.734	50.355	-16.879	1.00	59.74	CDK3
3	10	ATOM	1690	CG	PRO	317	-14.306	50.682	-18.264	1.00	59.92	CDK3
		ATOM	1691	С	PRO	317	-17.038	51.371	-16.755	1.00	59.17	CDK3
		ATOM	1692	0	PRO	317	-17.337	52.098	-17.690	1.00	57.29	CDK3
		ATOM	1693	N	PRO	318	-17.431	51.629	-15.498	1.00	57.79	CDK3
3	15	ATOM	1694	CD	PRO	318	-17.214	50.798	-14.308	1.00	57.66	CDK3
		MOTA	1695	CA	PRO	318	-18.201	52.839	-15.182	1.00	58.05	CDK3
		ATOM	1696	CB	PRO	318	-18.456	52.725	-13.681	1.00	56.41	CDK3
		MOTA	1697	CG	PRO	318	-18.296	51.273	-13.388	1.00	58.37	CDK3
4	10	MOTA	1698	С	PRO	318	-17.346	54.054	-15.549	1.00	60.19	CDK3
		ATOM	1699	0	PRO	318	-16.158	53.898	-15.848	1.00	60.33	CDK3
		MOTA	1700	N	LYS	319	-17.912	55.258	-15.506	1.00	61.87	CDK3
		ATOM	1701	CA	LYS	319	-17.133	56.415	-15.929	1.00	67.58	CDK3
4	5	MOTA	1702	CB	LYS	319	-17.496	56.763	-17.383	1.00	69.91	CDK3
		MOTA	1703	CG	LYS	319	-16.684	56.014	-18.444	1.00	77.10	CDK3
		ATOM	1704	CD	LYS	319	-16.479	56.855	-19.709	1.00	81.25	CDK3
		ATOM	1705	CE	LYS	319	-17.570	56.601	-20.752	1.00	83.69	CDK3
5	io	ATOM	1706	NZ	LYS	319	-18.952	56.833	-20.231	1.00	77.88	CDK3
		ATOM	1707	С	LYS	319	-17.162	57.696	-15.116	1.00	68.31	CDK3
		ATOM	1708	0	LYS	319	-16.170	58.434	-15.115	1.00	73.00	CDK3
		ATOM	1709	N	LEU	320	-18.280	57.974	-14.449	1.00	66.44	CDK3
5	15	ATOM	1710	CA	LEU	320	-18.440	59.208	-13.665	1.00	69.03	CDK3

	ATOM	1711	CB	LEU	320	-17.076	59.747 -13.197	1.00 62.36	CDK3
	ATOM	1712	CG	LEU	320	-16.941	60.534 -11.894	1.00 61.94	CDK3
5	ATOM	1713	CD1	LEU	320	-17.519	59.720 -10.752	1.00 60.53	CDK3
	ATOM	1714	CD2	LEU	320	-15.467	60.850 -11.630	1.00 54.68	CDK3
	ATOM	1715	С	LEU	320	-19.119	60.251 -14.565	1.00 72.44	CDK3
	ATOM	1716	0	LEU	320	-18.556	60.651 -15.589	1.00 75.34	CDK3
10	ATOM	1717	N	PRO	321	-20.336	60.701 -14.204	1.00 73.29	CDK3
	ATOM	1718	CD	PRO	321	-21.119	60.346 -13.012	1.00 74.03	CDK3
	ATOM	1719	CA	PRO	321	-21.039	61.699 -15.021	1.00 74.68	CDK3
	ATOM	1720	CB	PRO	321	-22.192	62.166 -14.124	1.00 74.13	CDK3
15	MOTA	1721	CG	PRO	321	-21.902	61.599 -12.765	1.00 73.85	CDK3
	ATOM	1722	¢	PRO	321	-20.129	62.855 -15.412	1.00 75.85	CDK3
	ATOM	1723	0	PRO	321	-19.131	63.115 -14.746	1.00 77.46	CDK3
	ATOM	1724	N	SER	322	-20.463	63.545 ~16.496	1.00 77.94	CDK3
20	MOTA	1725	CA	SER	322	-19.643	64.671 -16.915	1.00 77.74	CDK3
	MOTA	1726	CB	SER	322	-19.391	64.636 -18.424	1.00 78.27	CDK3
	MOTA	1727	OG	SER	322	-18.450	65.636 -18.786	1.00 77.21	CDK3
	MOTA	1728	С	SER	322	-20.280	66.000 -16.541	1.00 76.63	CDK3
25	MOTA	1729	0	SER	322	-21.478	66.079 -16.241	1.00 72.22	CDK3
	MOTA	1730	N	GLY	323	-19.461	67.045 -16.556	1.00 76.88	CDK3
	MOTA	1731	CA	GLY	323	-19.951	68.366 -16.221	1.00 80.16	CDK3
	MOTA	1732	С	GLY	323	-20.176	68.540 -14.736	1.00 80.63	CDK3
30	MOTA	1733	0	GLY	323	-20.085	69.654 -14.215	1.00 82.68	CDK3
	MOTA	1734	N	VAL	324	-20.480	67.439 -14.054	1.00 79.42	CDK3
	ATOM	1735	CA	VAL	324	-20.705	67.468 -12.614	1.00 75.52	CDK3
	MOTA	1736	CB	VAL	324	-21.668	66.332 -12.170	1.00 75.24	CDK3
35	MOTA	1737	CG1		324	-22.182	66.611 -10.770	1.00 72.71	CDK3
	MOTA	1738	CG2		324	-22.831	66.206 -13.153	1.00 72.54	CDK3
	MOTA	1739	С	VAL	324	-19.357	67.299 -11.900	1.00 74.32	CDK3
	MOTA	1740	0	VAL	324	-19.203	67.691 -10.740	1.00 74.18	CDK3
40	MOTA	1741	N	PHE	325	-18.386	66.724 -12.612	1.00 70.26	CDK3
	MOTA	1742	CA	PHE	325	-17.047	66.487 -12.074	1.00 67.49	CDK3
	ATOM	1743	CB	PHE	325	-16.828	64.995 -11.800	1.00 62.60	CDK3
	MOTA	1744	CG	PHE	325	-17.766	64.424 -10.793	1.00 57.28	CDK3
45	MOTA	1745	CD1		325	-17.520	64.575 -9.435	1.00 49.48	CDK3
	MOTA	1746	CD2		325	-18.909	63.743 -11.202	1.00 54.27	CDK3
	MOTA	1747	CE1		325	-18.406	64.051 -8.496	1.00 52.93	CDK3
	MOTA	1748	CE2		325	-19.802	63.215 -10.269	1.00 53.02	CDK3
50	MOTA	1749	CZ	PHE	325	-19.552	63.368 -8.914	1.00 47.52	CDK3
	ATOM	1750	С	PHE	325	-15.951	66.963 -13.019	1.00 67.59	CDK3
	MOTA	1751	0	PHE	325	-16.044	66.797 -14.239	1.00 66.10	CDK3
	MOTA	1752	N	SER	326	-14.901	67.529 -12.433	1.00 67.53	CDK3
55	MOTA	1753	CA	SER	326	-13.763	68.036 -13.182	1.00 65.24	CDK3

	ATOM	1754	CB	SER	326	-12.653	68.452 -12.223	1.00 63.35	CDK3
	ATOM	1755	OG	SER	326	-11.512	67.639 -12.412	1.00 65.72	CDK3
5	ATOM	1756	С	SER	326	-13.217	67.010 -14.167	1.00 65.84	CDK3
	ATOM	1757	0	SER	326	-13.314	65.805 -13.947	1.00 66.77	CDK3
	ATOM	1758	N	LEU	327	-12.643	67.507 -15.255	1.00 66.25	CDK3
	ATOM	1759	CA	LEU	327	-12.072	66.659 -16.285	1.00 66.92	CDK3
10	ATOM	1760	CB	LEU	327	-11.536	67.517 -17.438	1.00 67.30	CDK3
	ATOM	1761	CG	LEU	327	-12.411	67.859 -18.655	1.00 67.99	CDK3
	ATOM	1762	CD1	LEU	327	-11.860	67.113 -19.855	1.00 66.89	CDK3
	ATOM	1763	CD2	LEU	327	-13.879	67.506 -18.424	1.00 65.62	CDK3
15	MOTA	1764	С	LEU	327	-10.938	65.843 -15.687	1.00 67.57	CDK3
	MOTA	1765	0	LEU	327	-10.750	64.682 -16.052	1.00 68.43	CDK3
	MOTA	1766	N	GLU	328	-10.184	66.458 -14.775	1.00 66.69	CDK3
	MOTA	1767	CA	GLU	328	-9.057	65.798 -14.112	1.00 67.49	CDK3
20	ATOM	1768	CB	GLU	328	-8.425	66.735 -13.089	1.00 70.05	CDK3
	ATOM	1769	CG	GLU	328	-7.028	67.192 -13.450	1.00 79.69	CDK3
	ATOM	1770	CD	GLU	328	-6.909	68.708 -13.487	1.00 84.86	CDK3
	ATOM	1771	OE1	GLU	328	-5.766	69.224 -13.411	1.00 87.51	CDK3
25	ATOM	1772		GLU	328	-7.963	69.380 -13.593	1.00 84.88	CDK3
	ATOM	1773	С	GLU	328	-9.496	64.521 -13.399	1.00 68.12	CDK3
	ATOM	1774	0	GLU	328	-8.926	63.447 -13.611	1.00 65.67	CDK3
30	ATOM	1775	N	PHE	329	-10.501	64.657 -12.538	1.00 66.93	CDK3
30	ATOM	1776	CA	PHE	329	-11.046	63.535 -11.786	1.00 65.84	CDK3
	ATOM	1777	CB	PHE	329	-12.213	64.019 -10.918	1.00 65.11	CDK3
	ATOM	1778	CG	PHE	329	-12.771	62.978 -9.982	1.00 62.51	CDK3
35	ATOM	1779		PHE	329	-12.026	61.866 -9.615	1.00 62.91	CDK3
55	ATOM	1780		PHE	329	-14.050	63.130 -9.453	1.00 61.41	CDK3
	ATOM	1781		PHE	329	-12.546	60.927 -8.739	1.00 62.91	CDK3
	ATOM ATOM	1782 1783	CZ	PHE	329	-14.577	62.198 -8.578	1.00 58.95	CDK3
40	ATOM	1784	C	PHE	329 329	-13.826	61.094 -8.219	1.00 62.24	CDK3
	ATOM	1785	0	PHE	329	-11.520 -11.185	62.464 -12.764	1.00 67.41	CDK3
	ATOM	1786	N	GLN	330	-12.286	61.291 -12.624	1.00 72.63	CDK3
	ATOM	1787	CA	GLN	330	-12.785	62.867 -13.769 61.912 -14.743	1.00 63.92	CDK3
45	ATOM	1788	СВ	GLN	330	-13.567	62.651 -15.835	1.00 62.78	CDK3
	ATOM	1789	CG	GLN	330	-14.785	63.409 -15.299	1.00 63.85	CDK3
	ATOM	1790	CD	GLN	330	-15.671	63.976 -16.401	1.00 63.25	CDK3
	ATOM	1791		GLN	330	-16.151	65.112 -16.314	1.00 64.08	CDK3
50	ATOM	1792		GLN	330	-15.891	63.186 -17.442	1.00 59.25	
	ATOM	1793	С	GLN	330	-11.656	61.065 -15.343	1.00 59.25	CDK3
	ATOM	1794	0	GLN	330	-11.765	59.836 -15.407	1.00 60.76	CDK3
	ATOM	1795	N	ASP	331	-10.572	61.714 -15.764	1.00 61.24	CDK3
55	ATOM	1796	CA	ASP	331	-9.427	61.005 -16.348	1.00 62.03	CDK3
			-	-				2.00 02.03	CDRS

		MOTA	1797	CB	ASP	331	-8.323	61.990 -16.774	1.00 66.28	CDK3
		MOTA	1798	CG	ASP	331	-7.212	61.321 -17.592	1.00 66.50	CDK3
5		ATOM	1799	OD1	ASP	331	-7.508	60.793 -18.686	1.00 62.76	CDK3
		ATOM	1800	OD2	ASP	331	-6.043	61.321 -17.144	1.00 65.92	CDK3
		ATOM	1801	c	ASP	331	-8.849	60.022 -15.343	1.00 60.53	CDK3
		MOTA	1802	0	ASP	331	-8.621	58.854 -15.664	1.00 64.37	CDK3
10)	MOTA	1803	N	PHE	332	-8.607	60.507 -14.128	1.00 56.58	CDK3
		ATOM	1804	CA	PHE	332	-8.058	59.675 -13.060	1.00 55.06	CDK3
		MOTA	1805	CB	PHE	332	-8.059	60.454 -11.741	1.00 51.63	CDK3
		ATOM	1806	CG	PHE	332	-7.404	59.727 -10.610	1.00 55.37	CDK3
15	5	MOTA	1807	CD1	PHE	332	-8.174	59.069 -9.649	1.00 54.90	CDK3
		ATOM	1808	CD2	PHE	332	-6.021	59.683 -10.507	1.00 54.18	CDK3
		ATOM	1809	CE1	PHE	332	-7.576	58.378 -8.603	1.00 55.50	CDK3
		MOTA	1810	CE2	PHE	332	-5.409	58.992 -9.462	1.00 55.56	CDK3
20)	ATOM	1811	CZ	PHE	332	-6.190	58.338 -8.508	1.00 57.42	CDK3
		MOTA	1812	С	PHE	332	-8.856	58.373 -12.910	1.00 51.32	CDK3
		ATOM	1813	0	PHE	332	-8.301	57.282 -13.019	1.00 48.95	CDK3
		ATOM	1814	N	VAL	333	-10.158	58.504 -12.674	1.00 49.39	CDK3
25	5	ATOM	1815	CA	VAL	333	-11.043	57.361 -12.512	1.00 47.74	CDK3
		ATOM	1816	CB	VAL	333	-12.501	57.811 -12.392	1.00 47.02	CDK3
		ATOM	1817	CG1	VAL	333	-13.427	56.704 -12.850	1.00 54.16	CDK3
		ATOM	1818	CG2	VAL	333	-12.803	58.203 -10.968	1.00 48.30	CDK3
30)	MOTA	1819	С	VAL	333	-10.927	56.479 -13.737	1.00 50.98	CDK3
		ATOM	1820	0	VAL	333	-10.777	55.257 -13.637	1.00 53.45	CDK3
		ATOM	1821	N	ASN	334	-10.992	57.113 -14.901	1.00 52.37	CDK3
		ATOM	1822	CA	ASN	334	-10.917	56.390 -16.153	1.00 51.49	CDK3
35	5	ATOM	1823	CB	ASN	334	-11.146	57.356 -17.312	1.00 58.32	CDK3
		ATOM	1824		ASN	334	-12.620	57.524 -17.638	1.00 64.24	CDK3
		ATOM	1825	OD1	ASN	334	-13.356	58.215 -16.922	1.00 69.23	CDK3
		MOTA	1826	ND2	ASN	334	-13.064	56.880 -18.715	1.00 67.90	CDK3
40)	ATOM	1827	С	ASN	334	-9.618	55.605 -16.339	1.00 49.64	CDK3
		ATOM	1828		ASN	334	-9.625	54.525 -16.943	1.00 50.44	CDK3
		ATOM	1829	N	LYS	335	-8.516	56.130 -15.808	1.00 46.50	CDK3
		ATOM	1830	CA	LYS	335	-7.221	55.465 -15.917	1.00 46.70	CDK3
45	5	ATOM	1831		LYS	335	-6.102	56.456 -15.596	1.00 51.90	CDK3
		ATOM	1832	CG	LYS	335	-6.121	57.710 -16.450	1.00 49.82	CDK3
		ATOM	1833	CD	LYS	335	-4.707	58.229 -16.698	1.00 60.79	CDK3
		ATOM	1834	CE	LYS	335	-4.267	58.023 ~18.149	1.00 64.53	CDK3
50)	ATOM	1835	NZ	LYS	335	-5.140	58.762 -19.107	1.00 62.26	CDK3
			1836		LYS	335	-7.116	54.250 -14.989	1.00 46.99	CDK3
		MOTA	1837	0	LYS	335	-6.271	53.367 -15.191	1.00 44.82	CDK3
		ATOM	1838	N	CYS	336	-7.978	54.226 -13.974	1.00 44.91	CDK3
55	5	MOTA	1839	CA	CYS	336	-8.023	53.143 -12.995	1.00 48.98	CDK3

	ATOM	1840	СВ	CYS	336	-8.580	53.635	-11.651	1.00	45.66	CDK3
	ATOM	1841	SG	CYS	336	-7.634	54.878	-10.799	1.00	44.56	CDK3
5	ATOM	1842	С	CYS	336	~8.959	52.058	-13.487	1.00	50.12	CDK3
	ATOM	1843	0	CYS	336	-8.739	50.876	-13.231	1.00	48.67	CDK3
	ATOM	1844	N	LEU	337	-10.018	52.475	-14.180	1.00	50.05	CDK3
	ATOM	1845	CA	LEU	337	-11.026	51.540	-14.659	1.00	45.46	CDK3
10	ATOM	1846	СВ	LEU	337	-12.407	52.194	-14.541	1.00	40.38	CDK3
	ATOM	1847	CG	LEU	337	-12.749	52.535	-13.070	1.00	41.93	CDK3
	ATOM	1848	CD1	LEU	337	-14.092	53.253	-12.953	1.00	39.02	CDK3
	ATOM	1849	CD2	LEU	337	-12.781	51.239	-12.257	1.00	30.55	CDK3
15	ATOM	1850	С	LEU	337	-10.794	50.961	-16.049	1.00	50.11	CDK3
	ATOM	1851	0	LEU	337	-11.740	50.554	-16.730	1.00	50.94	CDK3
	ATOM	1852	N	ILE	338	-9.525	50.911	-16.455	1.00	49.86	CDK3
	ATOM	1853	CA	ILE	338	-9.135	50.346	-17.743	1.00	47.57	CDK3
20	ATOM	1854	СВ	ILE	338	-7.707	50.783	-18.157	1.00	49.83	CDK3
	ATOM	1855	CG2	ILE	338	-7.169	49.850	-19.223	1.00	48.39	CDK3
	ATOM	1856	CG1	ILE	338	-7.722	52.214	-18.698	1.00	52.52	CDK3
	ATOM	1857	CD1	ILE	338	-6.339	52.810	-18.861	1.00	55.57	CDK3
25	ATOM	1858	С	ILE	338	-9.132	48.830	-17.559	1.00	49.51	CDK3
	ATOM	1859	0	ILE	338	-8.327	48.290	-16.804	1.00	49.16	CDK3
	ATOM	1860	N	LYS	339	-10.026	48.143	-18.252	1.00	47.94	CDK3
	ATOM	1861	CA	LYS	339	-10.114	46.701	-18.129	1.00	47.62	CDK3
30	ATOM	1862	CB	LYS	339	-11.038	46.154	-19.198	1.00	44.94	CDK3
	ATOM	1863	CG	LYS	339	-12.464		-18.745		49.15	CDK3
	ATOM	1864	CD	LYS	339	-12.942	44.597	-18.996	1.00	45.51	CDK3
	ATOM	1865	CE	LYS	339	-14.254		-19.740		50.34	CDK3
35	ATOM	1866	NZ	LYS	339	-15.033		-19.331		50.54	CDK3
	ATOM	1867	С	LYS	339	-8.795		-18.166		47.28	CDK3
	ATOM	1868	0	LYS	339	-8.626		-17.428		52.56	CDK3
	ATOM	1869	N	ASN	340	-7.856		-19.009		46.97	CDK3
40	ATOM	1870	CA	ASN	340	-6.589		-19.084		43.38	CDK3
	ATOM	1871	CB	ASN	340	-5.962		-20.463		40.09	CDK3
	ATOM	1872	CG	ASN	340	-4.780		-20.647		41.43	CDK3
	ATOM	1873	OD1		340	-4.896		-21.245		51.43	CDK3
45	ATOM	1874	ND2		340	-3.635		-20.113		44.36	CDK3
	ATOM	1875	С	ASN	340	-5.595		-18.018		43.08	CDK3
	ATOM	1876	0	ASN	340	-5.225		-17.951		45.44	CDK3
	ATOM	1877	N	PRO	341	-5.114		-17.198		39.50	CDK3
50	ATOM	1878	CD	PRO	341	-5.465		-17.339		36.93	CDK3
	ATOM	1879	CA	PRO	341	-4.159		-16.099		40.45	CDK3
	ATOM	1880	CB	PRO	341	-3.879		-15.532		39.10	CDK3
	ATOM	1881	CG	PRO	341	-4.971		-16.045		38.89	CDK3
55	ATOM	1882	С	PRO	341	-2.871	46.083	-16.479	1.00	41.90	CDK3

	MOTA	1883	0	PRO	341	-2.497	47.076 -15.844	1.00 38.80	CDK3
	ATOM	1884	N	ALA	342	-2.197	45.579 -17.513	1.00 44.17	CDK3
5	ATOM	1885	CA	ALA	342	-0.938	46.164 -17.987	1.00 39.97	CDK3
	MOTA	1886	CB	ALA	342	-0.326	45.265 -19.031	1.00 37.41	CDK3
	MOTA	1887	С	ALA	342	-1.181	47.565 -18.548	1.00 38.44	CDK3
	ATOM	1888	0	ALA	342	-0.390	48.498 -18.345	1.00 37.55	CDK3
10	ATOM	1889	N	ALA	343	-2.303	47.727 -19.223	1.00 38.73	CDK3
	ATOM	1890	CA	ALA	343	-2.633	49.026 -19.775	1.00 42.83	CDK3
	ATOM	1891	CB	ALA	343	-3.782	48.895 -20.782	1.00 42.19	CDK3
	ATOM	1892	С	ALA	343	-3.019	49.965 -18.637	1.00 44.61	CDK3
15	MOTA	1893	0	ALA	343	-2.545	51.097 -18.569	1.00 50.37	CDK3
	ATOM	1894	N	ARG	344	-3.881	49.489 -17.742	1.00 43.91	CDK3
	ATOM	1895	CA	ARG	344	-4.335	50.285 -16.600	1.00 41.14	CDK3
	ATOM	1896	CB	ARG	344	-4.993	49.373 -15.564	1.00 44.20	CDK3
20	ATOM	1897	CG	ARG	344	-5.750	50.092 -14.457	1.00 40.28	CDK3
	ATOM	1898	CD	ARG	344	-6.904	49.209 -13.965	1.00 37.88	CDK3
	ATOM	1899	NE	ARG	344	-6.456	47.911 -13.480	1.00 29.47	CDK3
	ATOM	1900	CZ	ARG	344	-7.039	46.762 -13.782	1.00 36.21	CDK3
25	ATOM	1901	NH1	ARG	344	-8.092	46.746 -14.572	1.00 40.12	CDK3
	ATOM	1902	NH2	ARG	344	-6.592	45.626 -13.266	1.00 40.45	CDK3
	ATOM	1903	С	ARG	344	-3.175	50.998 -15.943	1.00 31.00	CDK3
	MOTA	1904	0	ARG	344	-2.076	50.454 -15.873	1.00 35.63	CDK3
30	MOTA	1905	N	ALA	345	-3.405	52.215 -15.470	1.00 29.43	CDK3
50	ATOM	1906	CA	ALA	345	-2.345	52.946 -14.779	1.00 32.63	CDK3
	ATOM	1907	CB	ALA	345	-2.816	54.332 -14.381	1.00 29.32	CDK3
	ATOM	1908	С	ALA	345	-1.938	52.179 -13.526	1.00 38.92	CDK3
35	MOTA	1909	0	ALA	345	-2.698	51.357 -12.994	1.00 36.34	CDK3
30	ATOM	1910	N	ASP	346	-0.735	52.461 -13.056	1.00 39.04	CDK3
	ATOM	1911	CA	ASP	346	-0.221	51.825 -11.866	1.00 44.89	CDK3
	ATOM	1912	CB	ASP	346	1.057	51.053 -12.210	1.00 41.80	CDK3
	ATOM	1913	CG	ASP	346	2.262	51.959 -12.361	1.00 44.19	CDK3
40	ATOM	1914	OD1	ASP	346	2.077	53.181 -12.580	1.00 40.15	CDK3
	ATOM	1915	OD2	ASP	346	3.397	51.445 -12.253	1.00 46.57	CDK3
	ATCM	1916	С	ASP	346	0.031	52.920 -10.811	1.00 47.78	CDK3
	ATOM	1917	0	ASP	346	-0.171	54.107 -11.085	1.00 52.73	CDK3
45	ATOM	1918	N	LEU	347	0.465	52.523 -9.618	1.00 47.31	CDK3
	ATOM	1919	CA	LEU	347	0.706	53.460 -8.515	1.00 46.91	CDK3
	ATOM	1920	CB	LEU	347	1.277	52.702 -7.299	1.00 40.94	CDK3
	ATOM	1921	CG	LEU	347	0.344	52.212 -6.184	1.00 37.81	CDK3
50	ATOM	1922	CD1	LEU	347	-1.074	52.386 -6.571	1.00 33.79	CDK3
	ATOM	1923	CD2	LEU	347	0.622	50.760 -5.872	1.00 37.80	CDK3
	ATOM	1924	C	LEU	347	1.618	54.633 -8.872	1.00 44.46	CDK3
	ATOM	1925	o	LEU	347	1.295	55.783 -8.580	1.00 46.76	CDK3
55									

	ATOM	1926	N	LYS	348	2.751	54.337 -9.498	1.00 45.69	CDK3
	ATOM	1927	CA	LYS	348	3.723	55.355 -9.903	1.00 49.70	CDK3
5	ATOM	1928	CB	LYS	348	4.795	54.726 -10.790	1.00 55.43	CDK3
	ATOM	1929	CG	LYS	348	6.133	54.498 -10.104	1.00 68.59	CDK3
	ATOM	1930	CD	LYS	348	6.534	53.012 -10.102	1.00 78.68	CDK3
	ATOM	1931	CE	LYS	348	7.100	52.555 -11.453	1.00 79.23	CDK3
10	MOTA	1932	NZ	LYS	348	6.899	51.084 -11.687	1.00 80.86	CDK3
	ATOM	1933	С	LYS	348	3.094	56.507 -10.674	1.00 50.42	CDK3
	MOTA	1934	0	LYS	348	3.322	57.678 -10.373	1.00 45.05	CDK3
	ATOM	1935	N	GLN	349	2.308	56.158 -11.686	1.00 51.91	CDK3
15	ATOM	1936	CA	GLN	349	1.668	57.153 -12.527	1.00 52.37	CDK3
	ATOM	1937	СВ	GLN	349	1.161	56.503 -13.802	1.00 49.90	CDK3
	ATOM	1938	CG	GLN	349	2.261	55.846 -14.623	1.00 52.77	CDK3
	MOTA	1939	CD	GLN	349	1.698	54.977 -15.724	1.00 51.44	CDK3
20	ATOM	1940	OE1	GLN	349	0.505	54.698 -15.742	1.00 57.40	CDK3
	ATOM	1941	NE2	GLN	349	2.551	54.544 -16.647	1.00 56.98	CDK3
	ATOM	1942	С	GLN	349	0.541	57.899 -11.848	1.00 55.12	CDK3
	ATOM	1943	0	GLN	349	0.505	59.129 -11.882	1.00 57.70	CDK3
25	ATOM	1944	N	LEU	350	-0.386	57.169 -11.237	1.00 55.29	CDK3
	ATOM	1945	CA	LEU	350	-1.495	57.827 -10.556	1.00 51.73	CDK3
	ATOM	1946	CB	LEU	350	-2.358	56.802 -9.802	1.00 50.66	CDK3
	ATOM	1947	CG	LEU	350	-3.181	55.786 -10.605	1.00 51.30	CDK3
30	ATOM	1948	CD1	LEU	350	-3.905	54.853 -9.641	1.00 47.33	CDK3
	ATOM	1949	CD2	LEU	350	-4.182	56.502 -11.500	1.00 43.67	CDK3
	ATOM	1950	С	LEU	350	-0.920	58.856 -9.577	1.00 52.44	CDK3
	ATOM	1951	0	LEU	350	-1.514	59.911 -9.365	1.00 48.13	CDK3
35	ATOM	1952	N	MET	351	0.241	58.554 -8.995	1.00 54.29	CDK3
	ATOM	1953	CA	MET	351	0.872	59.467 -8.041	1.00 60.35	CDK3
	ATOM	1954	CB	MET	351	2.154	58.861 -7.452	1.00 62.76	CDK3
	ATOM	1955	CG	MET	351	1.952	57.989 -6.213	1.00 72.22	CDK3
40	ATOM	1956	SD	MET	351	2.080	58.836 -4.606	1.00 77.14	CDK3
	ATOM	1957	CE	MET	351	1.030	60.277 -4.886	1.00 71.16	CDK3
	ATOM	1958	С	MET	351	1,225	60.798 -8.686	1.00 61.25	CDK3
	ATOM	1959	0	MET	351	1.205	61.838 -8.031	1.00 64.89	CDK3
45	ATOM	1960	N	VAL	352	1.566	60.768 -9.967	1.00 60.15	CDK3
	ATOM	1961	CA	VAL	352	1.929	61.992 -10.660	1.00 59.41	CDK3
	ATOM	1962	CB	VAL	352	3.189	61.790 -11.532	1.00 59.52	CDK3
	ATOM	1963	CG1	VAL	352	4.307	61.198 -10.689	1.00 52.11	CDK3
50	ATOM	1964	CG2	VAL	352	2.873	60.885 -12.725	1.00 56.42	CDK3
	ATOM	1965	С	VAL	352	0.800	62.504 -11.537	1.00 62.49	CDK3
	ATOM	1966	0	VAL	352	1.002	63.430 -12.318	1.00 63.78	CDK3
	ATOM	1967	N	HIS	353	-0.387	61.910 -11.404	1.00 61.50	CDK3
55	ATOM	1968	CA	HIS	353	-1.545	62.317 -12.200	1.00 55.52	CDK3

	ATOM	1969	CB	HIS	353	-2.687	61.318	-12.040	1.00	50.17	CDK3
	ATOM	1970	CG	HIS	353	-3.809	61.510	-13.017	1.00	45.39	CDK3
5	ATOM	1971	CD2	HIS	353	-4.142	60.824	-14.136	1.00	36.04	CDK3
	ATOM	1972	ND1	HIS	353	-4.780	62.479	-12.859	1.00	42.68	CDK3
	ATOM	1973	CE1	HIS	353	-5.664	62.378	-13.836	1.00	42.75	CDK3
	ATOM	1974	NE2	HIS	353	-5.299	61.382	-14.624	1.00	43.30	CDK3
10	MOTA	1975	С	HIS	353	-2.032	63.697	-11.809	1.00	59.50	CDK3
	ATOM	1976	0	HIS	353	-1.936	64.099	-10.653	1.00	59.36	CDK3
	ATOM	1977	N	ALA	354	-2.564	64.417	-12.787	1.00	62.49	CDK3
	ATOM	1978	CA	ALA	354	-3.055	65.765	-12.559	1.00	63.74	CDK3
15	ATOM	1979	СВ	ALA	354	-3.707	66.301	-13.820	1.00	63.53	CDK3
	ATOM	1980	С	ALA	354	-4.033	65,851	-11.406	1.00	66.04	CDK3
	ATOM	1981	0	ALA	354	-3.900	66.718	-10.542	1.00	69.66	CDK3
	ATOM	1982	N	PHE	355	-5.017	64.957	-11.389	1.00	66.02	CDK3
20	ATOM	1983	CA	PHE	355	-6.030	64.987	-10.339	1.00	64.52	CDK3
	ATOM	1984	CB	PHE	355	-6.968	63.784	-10.448	1.00	64.76	CDK3
	MOTA	1985	CG	PHE	355	-8.006	63.741	-9.367	1.00	64.48	CDK3
	ATOM	1986	CD1		355	-9.058	64.657	-9.361		67.82	CDK3
25	ATOM	1987	CD2	PHE	355	-7.916	62.813	-8.330	1.00	62.22	CDK3
	ATOM	1988	CEL	PHE	355	-10.009	64.653	-8.337		65.40	CDK3
	ATOM	1989	CE2		355	-8.858	62.799	-7.303		61.94	CDK3
	MOTA	1990	CZ	PHE	355	-9.907	63.722	-7.306		63.76	CDK3
30	ATOM	1991	С	PHE	355	-5.466	65.056	-8.927		59.23	CDK3
	ATOM	1992	0	PHE	355	-5.910	65.865	-8.116		60.18	CDK3
	MOTA	1993	N	ILE	356	-4.494	64.216	-8.615		57.62	CDK3
	ATOM	1994	CA	ILE	356	-3.960	64.269	-7.275		57.94	CDK3
35	ATOM	1995	CB	ILE	356	-3.260	62.941	-6.865		57.42	CDK3
	ATOM	1996	CG2		356	-4.084	61.754	-7.322		56.22	CDK3
	ATOM	1997	CG1		356	-1.843	62.890	-7.407		55.36	CDK3
	ATOM	1998	CD1		356	-0.830	62.824	-6.303		56.28	CDK3
40	ATOM	1999	С	ILE	356	-3.032	65.460	-7.113		59.61	CDK3
	MOTA	2000	0	ILE	356	-3.049	66.106	-6.068		65.47	CDK3
	MOTA	2001	N	LYS	357	-2.241	65.778	-8.139		60.51	CDK3
	ATOM	2002	CA	LYS	357	-1.334	66.934	-8.064		56.57	CDK3
45	MOTA	2003	СВ	LYS	357	-0.580	67.120	-9.382		57.29	CDK3
	ATOM	2004	CG	LYS	357	0.578	66.149	-9.567		59.80	CDK3
	MOTA	2005	CD	LYS	357	1.670		-10.442		66.45	CDK3
	ATOM	2006	CE	LYS	357	3.066	66.350	-9.945		71.83	CDK3
50	ATOM	2007	NZ	LYS	357	3.904	67.531	-9.542		69.60	CDK3
	ATOM	2008	С	LYS	357	-2.143	68.186	-7.743		54.93	CDK3
	ATOM	2009	0	LYS	357	-1.755	68.988	-6.896		52.41	CDK3
	MOTA	2010	N	ARG	358	-3.270	68.347	-8.427	1.00	55.98	CDK3
55	ATOM	2011	CA	ARG	358	-4.151	69.478	-8.180	1.00	59.41	CDK3

ATOM 2012 CB ARG 358 -5.146 69.673 -9.336 1.00 60.96 CDK3

	ALOR	2012	CB	ANG	330	~3.146	69.673	-9.330	1.00 00.90	CDKS
	ATOM	2013	CG	ARG	358	-6.313	70.624	-9.000	1.00 64.19	CDK3
5	ATOM	2014	CD	ARG	358	-7.653	70.211	-9.639	1.00 66.39	CDK3
	ATOM	2015	NE	ARG	358	-8.532	69.492	-8.711	1.00 68.46	CDK3
	ATOM	2016	CZ	ARG	358	-9.584	68.763	-9.081	1.00 68.21	CDK3
	ATOM	2017	NH1	ARG	358	-9.897	68.653	-10.365	1.00 68.26	CDK3
10	ATOM	2018	NH2	ARG	358	-10.317	68.130	-8.172	1.00 66.20	CDK3
	ATOM	2019	С	ARG	358	-4.927	69.187	~6.903	1.00 61.53	CDK3
	ATOM	2020	0	ARG	358	-5.579	70.068	-6.351	1.00 62.91	CDK3
	ATOM	2021	N	SER	359	-4.849	67.944	-6.433	1.00 65.16	CDK3
15	ATOM	2022	CA	SER	359	-5,569	67.546	-5.228	1.00 67.90	CDK3
	ATOM	2023	CB	SER	359	-6.055	66.104	-5.360	1.00 65.86	CDK3
	ATOM	2024	og	SER	359	-7.135	65.875	-4.483	1.00 66.18	CDK3
	ATOM	2025	С	SER	359	-4.793	67.710	-3.922	1.00 67.73	CDK3
20	ATOM	2026	0	SER	359	-5.300	68.310	-2.976	1.00 67.64	CDK3
	ATOM	2027	N	ASP	360	-3.577	67.178	-3.849	1.00 70.10	CDK3
	ATOM	2028	CA	ASP	360	-2.801	67.323	-2.620	1.00 74.70	CDK3
	MOTA	2029	CB	ASP	360	-1.675	66.280	-2.527	1.00 74.92	CDK3
25	ATOM	2030	CG	ASP	360	-0.813	66.234	-3.761	1.00 73.84	CDK3
	ATOM	2031	OD1	ASP	360	-1.205	66.843	-4.776	1.00 75.39	CDK3
	ATOM	2032	OD2	ASP	360	0.257	65.585	-3.716	1.00 69.92	CDK3
	ATOM	2033	С	ASP	360	-2.220	68.723	-2.538	1.00 76.36	CDK3
30	ATOM	2034	0	ASP	360	-1.311	68.992	-1.755	1.00 76.36	CDK3
	ATOM	2035	N	ALA	361	-2.761	69.611	-3.363	1.00 79.94	CDK3
	ATOM	2036	CA	ALA	361	-2.343	71.000	-3.396	1.00 80.32	CDK3
	ATOM	2037	CB	ALA	361	-1.696	71.321	-4.729	1.00 78.83	CDK3
35	ATOM	2038	С	ALA	361	-3.598	71.834	-3.205	1.00 82.57	CDK3
	ATOM	2039	0	ALA	361	-3.719	72.922	-3.756	1.00 86.26	CDK3
	ATOM	2040	N	GLU	362	-4.537	71.309	-2.425	1.00 84.04	CDK3
	MOTA	2041	CA	GLU	362	-5.791	72.002	-2.170	1.00 84.94	CDK3
40	ATOM	2042	CB	GLU	362	-6.965	71.137	-2.633	1.00 87.42	CDK3
	ATOM	2043	CG	GLU	362	-7.480	71.491	-4.027	1.00 92.22	CDK3
	ATOM	2044	CD	GLU	362	-8.199	70.335	-4.721	1.00 96.96	CDK3
	ATOM	2045	OE1	GLU	362	-8.377	69.261	-4.100	1.00100.00	CDK3
45	ATOM	2046	OE2	GLU	362	-8.587	70.505	-5.897	1.00 98.37	CDK3
	ATOM	2047	С	GLU	362	-5.942	72.362	-0.695	1.00 85.89	CDK3
	ATOM	2048	0	GLU	362	-5.101	71.998	0.122	1.00 84.68	CDK3
	ATOM	2049	N	GLU	363	-7.023	73.071	-0.369	1.00 88.39	CDK3
50	ATOM	2050	CA	GLU	363	-7.302	73.524	0.994	1.00 90.70	CDK3
	ATOM	2051	CB	GLU	363	-8.092	74.842	0.944	1.00 94.22	CDK3
	ATOM	2052	CG	GLU	363	-7.217	76.108	0.894	1.00 99.19	CDK3
	ATOM	2053	CD	GLU	363	-7.806	77.230	0.026	1.00100.00	CDK3
55	ATOM	2054	OE1	GLU	363	-7.025	77.924	-0.671	1.00100.00	CDK3

	ATOM	2055	OE2	GLU	363	-9.044	77.421	0.041	1.00100.00	CDK3
	ATOM	2056	C	GLU	363	-8.030	72.524	1.906	1.00 92.38	CDK3
5	ATOM	2057	0	GLU	363	-7.388	71.865	2.726	1.00 94.13	CDK3
	ATOM	2058	N	VAL	364	-9.356	72.424	1.765	1.00 91.55	CDK3
	ATOM	2059	CA	VAL	364	-10.219	71.534	2.577	1.00 90.10	CDK3
	ATOM	2060	CB	VAL	364	-10.968	70.504	1.702	1.00 90.03	CDK3
10	MOTA	2061	CG1	VAL	364	-11.956	71.224	0.783	1.00 89.48	CDK3
	ATOM	2062	CG2	VAL	364	-9.973	69.664	0.915	1.00 84.62	CDK3
	ATOM	2063	С	VAL	364	-9.563	70.767	3.728	1.00 88.07	CDK3
	ATOM	2064	0	VAL	364	-8.625	69.999	3.522	1.00 86.37	CDK3
15	ATOM	2065	N	ASP	365	-10.088	70.960	4.937	1.00 86.95	CDK3
	ATOM	2066	CA	ASP	365	-9.535	70.311	6.127	1.00 89.34	CDK3
	MOTA	2067	CB	ASP	365	-9.931	71.094	7.390	1.00 89.54	CDK3
	ATOM	2068	CG	ASP	365	-11.377	70.865	7.797	1.00 90.95	CDK3
20	ATOM	2069	OD1	ASP	365	-11.734	71.254	8.931	1.00 88.91	. CDK3
	ATOM	2070	OD2	ASP	365	-12.152	70.302	6.988	1.00 91.26	CDK3
	ATOM	2071	С	ASP	365	-9.952	68.854	6.283	1.00 87.94	CDK3
	ATOM	2072	0	ASP	365	-9.338	68.096	7.050	1.00 89.61	CDK3
25	ATOM	2073	N	PHE	366	-10.985	68.468	5.544	1.00 82.36	CDK3
	ATOM	2074	CA	PHE	366	-11.506	67.112	5.608	1.00 77.09	CDK3
	ATOM	2075	CB	PHE	366	-10.431	66.079	5.278	1.00 71.64	CDK3
	ATOM	2076	CG	PHE	366	-10.936	64.680	5.326	1.00 68.05	CDK3
30	ATOM	2077	CD1	PHE	366	-10.683	63.875	6.428	1.00 68.33	CDK3
	ATOM	2078	CD2	PHE	366	-11.743	64.190	4.306	1.00 66.46	CDK3
	ATOM	2079	CE1	PHE	366	-11.237	62.599	6.520	1.00 66.39	CDK3
	ATOM	2080	CE2	PHE	366	-12.298	62.921	4.387	1.00 68.12	CDK3
35	ATOM	2081	CZ	PHE	366	-12.047	62.123	5.498	1.00 65.74	CDK3
	ATOM	2082	С	PHE	366	-12.019	66.855	7.011	1.00 74.10	CDK3
	ATOM	2083	0	PHE	366	-13.222	66.682	7.215	1.00 72.06	CDK3
	ATOM	2084	N	ALA	367	-11.092	66.833	7.969	1.00 71.16	CDK3
40	ATOM	2085	CA	ALA	367	-11.410	66.610	9.374	1.00 68.61	CDK3
-	ATOM	2086	CB	ALA	367	-10.267	67.095	10.238	1.00 67.70	CDK3
	ATOM	2087	С	ALA	367	-12.699	67.328	9.760	1.00 68.66	CDK3
	ATOM	2088	0	ALA	367	-13.495	66.817	10.545	1.00 70.22	CDK3
45	ATOM	2089	N	GLY	368	-12.901	68.516	9.199	1.00 68.97	CDK3
	MOTA	2090	CA	GLY	368	-14.098	69.276	9.498	1.00 67.88	CDK3
	ATOM	2091	С	GLY	368	-15.318	68.734	8.781	1.00 69.80	CDK3
	ATOM	2092	0	GLY	368	-16.361	68.499	9.401	1.00 70.20	CDK3
50	ATOM	2093	N	TRP	369	-15.187	68.528	7.472	1.00 69.92	CDK3
	ATOM	2094	CA	TRP	369	-16.290	68.012	6.668	1.00 68.55	CDK3
	ATOM	2095	CB	TRP	369	-15.851	67.852	5.209	1.00 64.24	CDK3
	ATOM	2096	CG	TRP	369	-16.818	67.074	4.406	1.00 64.28	CDK3
55	ATOM	2097	CD2	TRP	369	-16.840	65.652	4.236	1.00 66.13	CDK3
55										

	ATOM	2098	CE 2	TRP	369	-17.968	65.345	3.447	1.00	68.08	CDK3
	ATOM	2099	CE3	TRP	369	-16.016	64.605	4.675	1.00	63.77	CDK3
5	ATOM	2100	CD1	TRP	369	-17.896	67.557	3.731	1.00	63.14	CDK3
	ATOM	2101	NE1	TRP	369	-18.595	66.528	3.152	1.00	61.49	CDK3
	ATOM	2102	CZ2	TRP	369	-18.295	64.029	3.088	1.00	65.55	CDK3
	ATOM	2103	CZ3	TRP	369	-16.342	63.299	4.319	1.00	62.74	CDK3
10	ATOM	2104	CH2	TRP	369	-17.470	63.025	3.534	1.00	64.65	CDK3
	ATOM	2105	C	TRP	369	-16.809	66.678	7.211	1.00	68.90	CDK3
	ATOM	2106	0	TRP	369	-18.013	66.411	7.168	1.00	68.89	CDK3
	ATOM	2107	N	LEU	370	-15.899	65.849	7.721	1.00	66.17	CDK3
15	ATOM	2108	CA	LEU	370	-16.260	64.548	8.275	1.00	64.64	CDK3
	ATOM	2109	CB	LEU	370	-15.012	63.828	8.804	1.00	59.39	CDK3
	MOTA	2110	CG	LEU	370	-14.857	62.312	8.653	1.00	52.55	CDK3
	MOTA	2111	CD1	LEU	370	-13.704	61.856	9.504	1.00	49.58	CDK3
20	MOTA	2112	CD2	LEU	370	-16.111	61.592	9.064	1.00	50.86	CDK3
	MOTA	2113	С	LEU	370	-17.256	64.738	9.409	1.00	68.06	CDK3
	ATOM	2114	О	LEU	370	-18.432	64.409	9.274	1.00	69.83	CDK3
	ATOM	2115	N	CYS	371	-16.776	65.282	10.523	1.00	70.84	CDK3
25	MOTA	2116	CA	CYS	371	-17.613	65.516	11.694	1.00	72.10	CDK3
	ATOM	2117	CB	CYS	371	-16.834	66.329	12.712	1.00	73.51	CDK3
	ATOM	2118	SG	CYS	371	-15.191	65.648	12.974	1.00	82.20	CDK3
	MOTA	2119	С	CYS	371	-18.934	66.197	11.358	1.00	71.16	CDK3
30	ATOM	2120	0	CYS	371	-19.971	65.871	11.934	1.00	70.42	CDK3
	ATOM	2121	N	SER	372	-18.903	67.140	10.428	1.00	70.60	CDK3
	ATOM	2122	CA	SER	372	-20.127	67.815	10.024	1.00	72.40	CDK3
	MOTA	2123	CB	SER	372	-19.849	68.777	8.872	1.00	73.08	CDK3
35	MOTA	2124	OG	SER	372	-19.411	70.034	9.346	1.00	75.30	CDK3
	MOTA	2125	С	SER	372	-21.119	66.755	9.554	1.00	73.09	CDK3
	MOTA	2126	0	SER	372	-22.235	66.662	10.062	1.00	74.85	CDK3
	MOTA	2127	N	THR	373	-20.689	65.954	8.584	1.00	72.44	CDK3
40	MOTA	2128	CA	THR	373	-21.513	64.899	8.007	1.00	70.86	CDK3
	MOTA	2129	CB	THR	373	-20.917	64.409	6.676	1.00	69.10	CDK3
	ATOM	2130		THR	373	-20.040	65.407	6.146		68.71	CDK3
	MOTA	2131	CG2	THR	373	-22.015	64.131	5.676	1.00	66.50	CDK3
45	MOTA	2132	С	THR	373	-21.676	63.692	8.927	1.00	72.35	CDK3
	MOTA	2133	0	THR	373	-22.792	63.257	9.203	1.00	69.68	CDK3
	MOTA	2134	N	ILE	374	-20.556	63.143	9.383		76.62	CDK3
	MOTA	2135	CA	ILE	374	-20.560	61.981	10.270	1.00	79.38	CDK3
50	ATOM	2136	CB	ILE	374	-19.116	61.479	10.517	1.00	77.35	CDK3
	MOTA	2137	CG2		374	-18.343	62.504	11.311	1.00	80.65	CDK3
	ATOM	2138	CG1		374	-19.123	60.175	11.302	1.00	73.92	CDK3
	ATOM	2139		ILE	374	-17.737	59.729	11.726	1.00	72.50	CDK3
55	MOTA	2140	С	ILE	374	-21.202	62.336	11.610	1.00	83.05	CDK3

	ATOM	2141	0	ILE	374	-21.590	61.458	12.378	1.00 85.50	CDK3
	ATOM	2142	N	GLY	375	-21.314	63.633	11.883	1.00 85.38	CDK3
5	ATOM	2143	CA	GLY	375	-21.904	64.075	13.130	1.00 84.58	CDK3
	ATOM	2144	c	GLY	375	-20.966	63.883	14.305	1.00 86.76	CDK3
	ATOM	2145	0	GLY	375	-21.362	63.356	15.340	1.00 84.45	CDK3
	ATOM	2146	N	LEU	376	-19.715	64.302	14.148	1.00 89.97	CDK3
10	ATOM	2147	CA	LEU	376	-18.729	64.175	15.216	1.00 92.83	CDK3
	ATOM	2148	CB	LEU	376	-17.408	63.642	14.655	1.00 93.90	CDK3
	ATOM	2149	CG	LEU	376	-17.242	62.119	14.614	1.00 93.66	CDK3
	ATOM	2150	CD1	LEU	376	-15.982	61.762	13.836	1.00 93.31	CDK3
15	ATOM	2151	CD2	LEU	376	-17.174	61.568	16.032	1.00 91.79	CDK3
	ATOM	2152	С	LEU	376	-18.512	65.537	15.873	1.00 95.46	CDK3
	ATOM	2153	0	LEU	376	-17.540	65.747	16.604	1.00 94.72	CDK3
	ATOM	2154	N	ALA	377	-19.435	66.457	15.603	1.00 98.71	CDK3
20	ATOM	2155	CA	ALA	377	-19.383	67.810	16.150	1.00 99.99	CDK3
	ATOM	2156	CB	ALA	377	-19.210	68.827	15.013	1.00 99.14	CDK3
	ATOM	2157	С	ALA	377	-20.653	68,118	16.952	1.00100.00	CDK3
	ATOM	2158	0	ALA	37 7	-21.243	67.168	17.516	1.00 98.40	CDK3
25	ATOM	2159	OT	ALA	377	-21.040	69.308	17.008	1.00100.00	CDK3
	ATOM	2160	C1	318	1	-6.500	44.841	10.293	1.00 41.59	INH_
	ATOM	2161	C2	318	1	-7.148	43.585	9.859	1.00 36.80	INH_
	ATOM	2162	C3	318	1	-6.541	42.782	8.781	1.00 40.22	INH_
30	ATOM	2163	C4	318	1	-5.251	43.279	8.147	1.00 32.59	INH_
	MOTA	2164	C5	318	1	-4.628	44.463	8.552	1.00 40.44	INH_
	ATOM	2165	C6	318	1	-5.256	45.242	9.628	1.00 39.82	INH_
	MOTA	2166	11	318	1	-4.302	46.888	10.123	1.00 44.61	INH_
35	MOTA	2167	C8	318	1	-8.091	40.202	6.520	1.00 45.14	INH_
	ATOM	2168	C9	318	1	-7.824	39.225	5.473	1.00 35.85	INH_
	ATOM	2169	C10	318	1	-6.475	38.655	5.329	1.00 38.09	INH_
	ATOM	2170	C11		1	-5.379	39.052	6.234	1.00 40.23	INH_
40	MOTA	2171	C12		1	-5.635	39.986	7.238	1.00 39.98	INH_
	ATOM	2172	C13		1	-6.965	40.608	7.430	1.00 39.86	INH_
	MOTA	2173	CL1		1	-6.247	37.438	3.974	1.00 29.67	INH_
	MOTA	2174	F1	318	1	-4.113	38.558	6.151	1.00 48.51	INH_
45	ATOM	2175	F2	318	1	-4.640	40.297	8.001	1.00 43.48	INH_
	ATOM	2176	F3	318	1	-8.265	43.239	10.476	1.00 51.02	INH_
	ATOM	2177	N1	318	1	-7.236	41.564	8.418	1.00 37.83	INH_
	MOTA	2178	C 7	318	1	-9.458	40.776	6.669	1.00 50.44	INH_
50	ATOM	2179	01	318	1	-9.709	41.591	7.543	1.00 55.21	INH_
	ATOM	2180	N2	318	1	-10.427	40.367	5.815	1.00 52.60	INH_
	ATOM	2181	02	318	1	~11.804	41.104	6.159	1.00 69.87	INH_
	ATOM	2182	03	318	1	-16.065	40.590	7.270	1.00 75.43	INH_
55	ATOM	2183	04	318	1	-13.623	40.219	8.431	1.00 70.02	INH_

	ATOM	2184	C14	318	1	-12.954	40.092	5.887	1.00	66.96	INH_
	ATOM	2185	C15	318	1	-13.808	39.712	7.103	1.00	70.71	INH
5	MOTA	2186	C16	318	1	-15.159	39.895	6.401	1.00	72.65	INH_
	ATOM	2187	03G i	ATP	400	-15.568	42.181	3.829	1.00	44.15	ATP_
	ATOM	2188	PG Z	ATP	400	-17.053	42.591	3.985	1.00	44.92	ATP_
	ATOM	2189	01G /	ATP	400	-17.892	41.366	4.366	1.00	58.57	ATP_
10	ATOM	2190	02G I	ATP	400	-17.637	43.187	2.678	1.00	61.48	ATP_
	MOTA	2191	03B A	ATP	400	-17.217	43.571	5.141	1.00	49.44	ATP_
	MOTA	2192	PB A	ATP	400	-16.565	44.698	6.001	1.00	38.78	ATP_
	ATOM	2193	01B 2	ATP	400	-15.135	45.272	5.763	1.00	31.80	ATP_
15	ATOM	2194	02B #	ATP	400	-17.591	45.846	6.010	1.00	22.91	ATP_
	ATOM	2195	03A A	ATP	400	-16.451	44.136	7.380	1.00	39.48	ATP_
	ATOM	2196	PA A	ATP	400	-15.455	43.881	8.477	1.00	41.79	ATP_
	ATOM	2197	Ola A	ATP	400	-15.932	42.594	9.200	1.00	43.90	ATP_
20	ATOM	2198	02A A	ATP	400	-13.936	43.715	8.096	1.00	49.00	ATP_
	ATOM	2199	05* A	ATP	400	-15.612	45.251	9.228	1.00	36.00	ATP_
	MOTA	2200	C5* A	ATP	400	-16.999	45.650	9.506	1.00	38.86	ATP_
	ATOM	2201	C4 * F	ATP	400	-17.268	47.152	9.700	1.00	47.98	ATP_
25	ATOM	2202	C3* F	ATP	400	-16.671	48.206	8.721	1.00	46.21	ATP_
	ATOM	2203	C2* F	ATP	400	-16.420	49.399	9.676	1.00	44.34	ATP_
	ATOM	2204	C1* F	ATP	400	-16.159	48.732	11.025	1.00	40.50	ATP_
	MOTA	2205	04* F	ATP	400	-16.894	47.516	11.044	1.00	46.25	ATP_
30	ATOM	2206	C4 F	ATP	400	-14.040	49.644	12.235	1.00	33.84	ATP_
	ATOM	2207	N9 #	ATP	400	-14.731	48.699	11.449	1.00	31.46	ATP_
	ATOM	2208	C8 P	ATP	400	-13.870	47.689	11.110	1.00	23.90	ATP_
	ATOM	2209	N7 F	ATP	400	-12.640	47.958	11.653	1.00	30.76	ATP_
35	ATOM	2210	C5 F	ATP	400	-12.725	49.143	12.340	1.00	24.46	ATP_
	ATOM	2211	C2 F	ATP	400	-13.505	51.536	13.539	1.00	29.27	ATP_
	MOTA	2212	N3 P	ATP	400	-14.444	50.856	12.839	1.00	32.24	ATP_
	ATOM	2213	C6 P	ATP	400	-11.840	49.910	13.073	1.00	30.06	ATP_
40	ATOM	2214	N1 F	TP	400	-12.236	51.090	13.661	1.00	26.42	ATP_
	ATOM	2215	02* F	ATP	400	-17.628	50.185	9.792	1.00	48.68	ATP_
	ATOM	2216	03* F	TP	400	-17.638	48.686	7.748	1.00	51.62	ATP_
	ATOM	2217	N6 P	ATP	400	-10.544	49.505	13.220	1.00	22.69	ATP_
45	ATOM	2218	MG2 N		500	-13.179	45.151	6.491	1.00	37.75	MG
	ATOM	2219	OH2 T	CIP3	601	3.025	37.344	6.739	1.00	53.17	W
	ATOM	2220	OH2 T	CIP3	602	-13.683	43.453	4.857	1.00	34.52	W
	ATOM	2221	OH2 T	PIP3	603	0.029	51.965	10.856	1.00	39.17	W
50	ATOM	2222	OH2 T	CIP3	604	-11.555	46.113	9.597	1.00	37.07	WW
	MOTA	2223	OH2 T	CIP3	605	-3.444	42.053	27.061	1.00	47.09	W
	ATOM	2224	OH2 T	PIP3	606	8.199	50.693	8.139	1.00	73.41	W
	ATOM	2225	OH2 T		607	-25.760	57.484	-0.801	1.00	65.11	w
55	ATOM	2226	OH2 T	PIP3	608	-0.365	50.730	16.444	1.00	48.92	W

	ATOM	2227	OH2 TIP3	609	1.924	47.459	16.182	1.00 61.85	W
	ATOM	2228	OH2 TIP3	610	3.756	61.475	3.241	1.00 68.67	W
5	MOTA	2229	OH2 TIP3	611	-8.237	45.166	-4.274	1.00 40.78	W
	ATOM	2230	OH2 TIP3	612	4.049	54.701	-6.071	1.00 44.38	W
	ATOM	2231	OH2 TIP3	613	-17.770	48.776	0.444	1.00 52.53	W
	ATOM	2232	OH2 TIP3	614	-9.547	43.756	-7.764	1.00 40.97	W
10	MOTA	2233	OH2 TIP3	615	-10.853	56.267	20.980	1.00 71.55	W
	ATOM	2234	OH2 TIP3	616	-13.421	56.230	22.695	1.00 68.64	W
	ATOM	2235	OH2 TIP3	617	-9.657	67.634	-5.721	1.00 57.63	w
	ATOM	2236	OH2 TIP3	618	3.439	41.911	-4.619	1.00 43.43	W
15	ATOM	2237	OH2 TIP3	619	-24.225	63.324	-10.630	1.00 62.89	W
	ATOM	2238	OH2 TIP3	620	-15.557	70.845	-10.249	1.00 60.89	w
	ATOM	2239	OH2 TIP3	621	0.534	37.266	1.709	1.00 44.51	W
	ATOM	2240	OH2 TIP3	622	-6.632	52.860	18.986	1.00 28.55	w
20	MOTA	2241	OH2 TIP3	623	~4.050	59.469	6.428	1.00 42.86	W
	ATOM	2242	OH2 TIP3	624	-19.724	63.593	-5.680	1.00 65.70	w
	ATOM	2243	OH2 TIP3	625	-11.123	35.564	19.665	1.00 61.26	w
	ATOM	2244	OH2 TIP3	626	3.587	55.888	0.634	1.00 41.35	w
25	ATOM	2245	OH2 TIP3	627	0.067	38.213	-6.671	1.00 56.60	w
	ATOM	2246	OH2 TIP3	628	-11.916	41.396	-20.060	1.00 62.25	W
	ATOM	2247	OH2 TIP3	629	-16.623	46.898	-16.807	1.00 52.26	W
	ATOM	2248	OH2 TIP3	630	2.880	37.359	1.906	1.00 52.99	W
30	ATOM	2249	OH2 TIP3	631	-14.180	70.642	-7.649	1.00 64.98	W
50	ATOM	2250	OH2 TIP3	632	-17.316	51.891	12.735	1.00 41.22	w
	ATOM	2251	OH2 TIP3	633	-20.586	59.455	14.363	1.00 62.98	w
	ATOM	2252	OH2 TIP3	634	-16.171	72.773	-8.183	1.00 79.27	W
35	ATOM	2253	OH2 TIP3	635	-1.030	32.622	-11.872	1.00 71.42	W
35	ATOM	2254	OH2 TIP3	636	-32.155	40.676	-13.246	1.00 55.63	W
	MOTA	2255	OH2 TIP3	637	-5.106	56.011	-20.714	1.00 43.06	w
	ATOM	2256	OH2 TIP3	63B	-3.311	26.862	19.215	1.00 75.69	W
40	ATOM	2257	OH2 TIP3	639	-4.723	60.999	-21.970	1.00 89.78	W
40	ATOM	2258	OH2 TIP3	640	-0.377	39.847	21.273	1.00 52.42	W
	ATOM	2259	OH2 TIP3	641	-12.209	52.786	27.788	1.00 64.87	w
	ATOM	2260	OH2 TIP3	642	1.993	35.335	4.568	1.00 76.31	W
45	ATOM	2261	OH2 TIP3	643	~9.760	42.230	-5.069	1.00 49.26	w
40	ATOM	2262	OH2 TIP3	644	9.035	51.460	11.840	1.00 61.28	W
	ATOM	2263	OH2 TIP3	645	-18.773	48.711	-26.779	1.00 64.38	w
	ATOM	2264	OH2 TIP3	646	-17.321	53.047	-19.961	1.00 52.72	w
	MOTA	2265	OH2 TIP3	647	0.455	35.903	19.143	1.00 50.49	w
50	ATOM	2266	OH2 TIP3	648	-15.950	50.772	29.139	1.00 58.49	w
	ATOM	2267	OH2 TIP3	649	-13.391	47.071	7.553	1.00 43.80	W
	ATOM	2268	OH2 TIP3	650	-16.832	67.979	-8.019	1.00 76.40	W
	ATOM	2269	OH2 TIP3	651	-20.162	55.718	11.696	1.00 81.21	W
55									

	ATOM	2270	OH2 TIP3	652	-2.070	53.141 31.04	8 1.00 36.42	W
	MOTA	2271	OH2 TIP3	653	-15.438	42.458 -4.01	7 1.00 24.54	W
5	ATCM	2272	OH2 TIP3	654	-15.505	45.102 -9.92	0 1.00 30.66	w
	ATOM	2273	OH2 TIP3	655	-23.593	52.736 -2.58	4 1.00 50.00	w
	ATOM	2274	OH2 TIP3	656	-16.328	40.130 -3.90	1 1.00 45.83	W
	ATOM	2275	OH2 TIP3	657	-9.692	57.673 15.85	3 1.00 55.14	W
10	ATOM	2276	OH2 TIP3	658	-16.420	39.179 -6.53	6 1.00 48.09	w
	ATOM	2277	OH2 TIP3	659	1.502	40.580 -5.44	4 1.00 43.26	w
	ATOM	2278	OH2 TIP3	660	-26.007	51.379 -3.65	2 1.00 53.45	w
	MOTA	2279	OH2 TIP3	661	-5.859	67.920 -0.05	7 1.00 52.36	w
15	MOTA	2280	OH2 TIP3	662	-7.502	56.436 15.49	1 1.00 33.61	w
	MOTA	2281	OH2 TIP3	663	-1.321	40.428 -0.22	3 1.00 46.80	w
	MOTA	2282	OH2 TIP3	664	-7.584	55.239 18.42	9 1.00 43.98	w
	MOTA	2283	OH2 TIP3	665	-21.246	50.532 -18.23	6 1.00 56.71	w
20	ATOM	2284	OH2 TIP3	666	-22.943	66.872 4.38	4 1.00 70.38	w
	MOTA	2285	OH2 TIP3	667	0.334	39.519 28.39	0 1.00 56.47	w
	MOTA	2286	OH2 TIP3	668	-17.809	45.837 2.07	4 1.00 59.28	w
25	MOTA	2287	OH2 TIP3	669	-25.765	65.209 -10.51	7 1.00 67.23	w
25	ATOM	2288	OH2 TIP3	670	-17.027	36.269 -21.03	1 1.00 47.08	W
	ATOM	2289	OH2 TIP3	671	-1.660	31.898 -0.22	9 1.00 48.35	W
	ATOM	2290	OH2 TIP3	672	-0.621	58.566 11.65	3 1.00 75.01	W
30	ATOM	2291	OH2 TIP3	673	-30.112	55.477 -10.24	6 1.00 77.58	W
	ATOM	2292	OH2 TIP3	674	-21.608	69.267 6.49	2 1.00 87.08	W
	ATOM	2293	OH2 TIP3	675	-20.130	51.711 -0.20	8 1.00 48.81	W
	ATOM	2294	OH2 TIP3	676	-14.303	40.664 22.09	0 1.00 76.34	w
35	ATOM	2295	OH2 TIP3	677	-0.457	49.839 -8.99	4 1.00 77.62	w
	MOTA	2296	OH2 TIP3	678	-33.589	56.072 -14.19	8 1.00100.00	W
	ATOM	2297	OH2 TIP3	679	0.880	48.786 13.63	8 1.00 50.42	W
	ATOM	2298	OH2 TIP3	680	5.938	50.884 15.01	6 1.00 65.16	W

END

Table 2
Crystal Coordinates of the MEK2: MgATP: {5-[3,4-Difluoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-1,3,4-oxadiazol-2-yl}-(2-morpholin-4-yl-ethyl)-amine

						Ternary Comple	ex			
	MOTA	1	СВ	ALA A	62	24.914 145.101	16.487	1.00 49.09	A	С
10	MOTA	2	С	ALA A	62	24.557 142.674	15,866	1.00 60.39	A	С
	MOTA	3	0	ALA A	62	24.249 142.030	16.882	1.00 60.85	A	0
	ATOM	4	N	ALA A	62	22.639 144.240	16.031	1.00 60.72	A	N
	MOTA	5	CA	ALA A	62	24.076 144.117	15.661	1.00 60.38	A	С
15	MOTA	6	N	LYS A	63	25.312 142.181	14.882	1.00103.30	A	N
	MOTA	7	CA	LYS A	63	25.833 140.812	14.869	1.00105.41	A	С
	MOTA	8	CB	LYS A	63	25.447 140.130	13.549	1.00 65.41	A	С
	MOTA	9	CG	LYS A	63	24.017 140.436	13.049	1.00 65.48	A	С
20	MOTA	10	CD	LYS A	63	22.891 139.693	13.811	1.00 65.65	A	С
	MOTA	11	CE	LYS A	63	22.642 140.221	15.223	1.00 65.41	A	С
	MOTA	12	NZ	LYS A	63	22.023 141.573	15.259	1.00 65.35	A	N
25	MOTA	13	С	LYS A	63	27.350 140.735	15.033	1.00106.31	A	С
25	MOTA	14	0	LYS A	63	28.042 140.197	14.171	1.00106.08	A	0
	ATOM	15	N	VAL A	64	27.859 141.258	16.143	1.00 78.44	A	N
	ATOM	16	CA	VAL A	64	29.291 141.248	16.407	1.00 77.77	A	С
30	ATOM	17	CB	VAL A	64	29.636 142.225	17.534	1.00 46.45	A	С
	MOTA	18	CG1	VAL A	64	28.367 142.948	17.985	1.00 46.43	A	С
	MOTA	19	CG2	VAL A	64	30.307 141.482	18.695	1.00 47.47	A	С
	ATOM	20	С	VAL A	64	29.811 139.867	16.790	1.00 78.33	A	С
35	MOTA	21	0	VAL A	64	29.184 139.154	17.581	1.00 78.22	A	0
	MOTA	22	N	GLY A	65	30.965 139.501	16.229	1.00 87.05	A	N
	ATOM	23	CA	GLY A	65	31.565 138.208	16.517	1.00 86.59	A	С
	MOTA	24	С	GLY A	65	33.023 138.289	16.941	1.00 85.82	A	С
40	ATOM	25	0	GLY A	65	33.896 138.568	16.115	1.00 85.51	A	0
	ATOM	26	N	GLU A	66	33.278 138.040	18.227	1.00196.62	A	N
	MOTA	27	CA	GLU A	66	34.629 138.069	18.801	1.00196.16	A	С
	MOTA	28	CB	GLU A	66	34.817 139.330	19.653	1.00 95.24	A	С
45	MOTA	29	CG	GLU A	66	36.005 139.275	20.615	1.00 96.53	A	С
	MOTA	30	CD	GLU A	66	35.579 139.326	22.077	1.00 98.06	A	С
	ATOM	31	OE1	GLU A	66	36.461 139.313	22.959	1.00 98.88	A	0
	ATOM	32	OE2	GLU A	66	34.361 139.382	22.347	1.00 98.60	A	0
50	MOTA	33	С	GLU A	66	34.902 136.839	19.668	1.00195.80	A	С
	MOTA	34	0	GLU A	66	34.601 136.839	20.862	1.00194.35	A	0
	ATOM	35	N	LEU A	67	35.479 135.796	19.074	1.00 72.53	A	N
55	ATOM	36	CA	LEU A	67	35.769 134.578	19.828	1.00 71.13	A	С
33	MOTA	37	СВ	LEU A	67	34.481 134.025	20.448	1.00110.03	A	С

	ATOM	38	CG	LEU	A	67	33.497	133.378	19.467	1.00107.97	A	С
	ATOM	39	CD1	LEU	Α	67	33.381	131.888	19.789	1.00107.39	A	С.
5	ATOM	40	CD2	LEU	A	67	32.133	134.069	19.547	1.00105.11	A	С
	ATOM	41	С	LEU	A	67	36.427	133.471	19.010	1.00 71.78	A	С
	ATOM	42	0	LEU	A	67	36.430	133.515	17.780	1.00 71.36	A	0
	ATOM	43	N	LYS	Α	68	36.982	132.489	19.725.	1.00157.42	A	N
10	ATOM	44	CA	LYS	A	68	37.643	131.313	19.145	1.00156.89	A	С
	ATOM	45	CB	LYS	A	68	39.036	131.661	18.594	1.00150.17	A	С
	ATOM	46	CG	LYS	А	68	39.721	130.515	17.821	1,00151.06	A	С
	ATOM	47	CD	LYS	A	68	38.896	130.067	16.610	1.00152.37	A	С
15	ATOM	48	CE	LYS	A	68	39.503	128.856	15.897	1.00151.85	A	С
	ATOM	49	NZ	LYS	A	68	40.811	129.146	15.245	1.00150.48	A	N
	ATOM	50	С	LYS	A	68	37.767	130.239	20.229	1.00156.18	A	С
	MOTA	51	0	LYS	A	68	36.769	129.876	20.852	1.00155.87	A	0
20	MOTA	52	N	ASP	A	69	38.979	129.741	20.472	1.00 91.56	A	N
	ATOM	53	CA	ASP	A	69	39.156	128.698	21.484	1.00 91.07	A	С
	MOTA	54	CB	ASP	A	69	38.426	127.435	21.036	1.00146.37	A	С
	MOTA	55	CG	ASP	A	69	38.742	127.067	19.603	1.00146.93	A	С
25	MOTA	56	OD1	ASP	A	69	38.209	127.732	18.689	1.00149.03	A	0
	ATOM	57	OD2	ASP	A	69	39.533	126.125	19.391	1.00146.17	A	0
	ATOM	58	С	ASP	A	69	40.594	128.321	21.843	1.00 89.27	A	С
	ATOM	59	0	ASP	A	69	41.241	127.572	21.114	1.00 88.69	A	0
30	ATOM	60	N	ASP	A	70	41.071	128.813	22.983	1.00102.16	A	N
	ATOM	61	CA	ASP	A	70	42.423	128.517	23.448	1.00101.34	A	С
	MOTA	62	CB	ASP		70	43.426	128.602	22.295	1.00109.37	A	С
	MOTA	63	CG	ASP		70	44.868	128.510	22.769	1.00110.03	A	С
35	ATOM	64		ASP		70	45.312	129.405	23.525	1.00109.11	A	0
	MOTA	65		ASP		70	45.557	127.539	22.385	1.00112.08	A	0
	MOTA	66	С	ASP		70		129.473	24.539	1.00100.17	A	С
	MOTA	67	0	ASP		70		129.070	25.540	1.00100.21	A	0
40	ATOM	68	N	ASP		71		130.751	24.324	1.00111.53	A	N
	MOTA	69	CA	ASP		71		131.780	25.271	1.00110.44	A	С
	ATOM	70	СВ	ASP		71		133.150	24.679	1.00136.33	A	С
	ATOM	71	CG	ASP		71	43.431	133.418	23.392	1.00135.16	A	С
45	ATOM	72		ASP		71	44.662	133.628	23.457	1.00134.65	A	0
	ATOM	73		ASP		71	42.797	133.413	22.314	1.00134.71	A	0
	MOTA	74	С	ASP		71	42.277	131.613	26.611	1.00109.38	A	С
	ATOM	75	0	ASP		71		132.484	27.031	1.00108.12	A	0
50	ATOM	76	N	PHE		72	42.517	130.482	27.271	1.00 92.50	A	N
	ATOM	77	CA	PHE		72	41.919	130.203	28.572	1.00 90.40	A	С
	ATOM	78	CB	PHE		72	40.645	129.355	28.453	1.00 46.35	A	С
	ATOM	79	CG	PHE		72		129.792	27.374	1.00 43.59	A	С
55	MOTA	80	CD1	PHE	A	72	39.976	129.487	26.052	1.00 41.55	A	С

	MOTA	81	CD:	2 PHE	A	72	38.549 130.469	27.683	1.00 42.18	A	С
	ATOM	82	CE:	l PHE	A	72	39.103 129.843	25.066	1.00 40.19	A	c.
5	ATOM	83	CE:	PHE	A	72	37.671 130.829	26.701	1.00 41.57	A	С
	ATOM	84	cz	PHE	A	72	37.944 130.515	25.390	1.00 40.24	A	С
	ATOM	85	С	PHE	A	72	42.894 129.419	29.432	1.00 90.64	A	С
	ATOM	86	0	PHE	A	72	43.212 128.270	29.120	1.00 89.73	A	0
10	ATOM	87	N	GLU	A	73	43.361 130.029	30.516	1.00 68.60	A	N
	ATOM	88	CA	GLU	A	73	44.275 129.348	31.425	1.00 69.96	A	C
	MOTA	89	CB	GLU	A	73	45.329 130.313	31.974	1.00159.16	A	С
	ATOM	90	CG	GLU	A	73	46.237 130.926	30.929	1.00161.01	A	С
15	ATOM	91	CD	GLU	A	73	46.865 129.888	30.024	1.00162.55	A	С
	MOTA	92	OE1	GLU	A	73	47.331 128.850	30.543	1.00163.42	A	0
	MOTA	93	OE2	GLU	A	73	46.899 130.114	28.795	1.00164.96	A	0
	MOTA	94	С	GLU	A	73	43.479 128.787	32.593	1.00 71.43	A	С
20	ATOM	95	0	GLU	A	73	42.949 129.547	33.395	1.00 71.30	A	0
	ATOM	96	N	ARG	A	74	43.369 127.467	32.677	1.00 62.36	A	N
	ATOM	97	CA	ARG	A	74	42.650 126.871	33.788	1.00 63.19	A	С
	ATOM	98	CB	ARG	A	74	42.984 125.383	33.927	1.00140.82	A	С
25	MOTA	99	CG	ARG	A	74	42.120 124.433	33.123	1.00141.51	A	С
	ATOM	100	CĐ	ARG	A	74	42.645 123.012	33.268	1.00139.81	A	С
	MOTA	101	NE	ARG	A	74	43.935 122.849	32.597	1.00139.25	A	N
	ATOM	102	CZ	ARG		74	44.078 122.618	31.294	1.00138.86	A	С
30	ATOM	103		ARG		74	43.011 122.514	30.512	1.00138.88	A	N
	ATOM	104		ARG		74	45.289 122.498	30.769	1.00138.63	A	N
	ATOM	105	С	ARG		74	43.155 127.597	35.023	1.00 63.52	A	С
	ATOM	106	0	ARG .	A	74	44.195 127.245	35.564	1.00 63.01	A	0
35	ATOM	107	N	ILE .	A	75	42.441 128.623	35.460	1.00 67.77	A	N
	ATOM	108	CA	ILE .		75	42.865 129.362	36.638	1.00 69.65	A	С
	ATOM	109	CB	ILE .	A	75	42.413 130.842	36.558	1.00 91.85	A	С
	ATOM	110	CG2	ILE :	A	75	41.313 130.990	35.531	1.00 93.51	A	С
40	ATOM	111	CG1	ILE .	A	75	41.957 131.342	37.930	1.00 92.07	A	С
	ATOM	112		ILE A	A	75	41.585 132.812	37.950	1.00 92.80	A	С
	ATOM	113	С	ILE 2	A	75	42.300 128.697	37.887	1.00 69.80	A	С
	ATOM	114	0	ILE A	A	75	42.787 128.913	38.998	1.00 69.14	A	0
45	ATOM	115	N	SER I	A	76	41.283 127.864	37.689	1.00 94.92	A	N
	ATOM	116	CA	SER I	A	76	40.641 127.148	38.786	1.00 95.75	Α	С
	ATOM	117	CB	SER I	A	76	39.989 128.128	39.771	1.00107.49	A	С
	ATOM	118	OG	SER I	A	76	40.940 128.972	40.397	1.00107.47	A	0
50	MOTA	119	С	SER I		76	39.567 126.209	38.253	1.00 95.64	A	С
	ATOM	120	0	SER 2	A	76	39.193 126.264	37.083	1.00 97.35	A	0
	ATOM	121	N	GLU 1	A.	77	39.076 125.343	39.127	1.00 96.80	A	N
	MOTA	122	CA	GLU 1	A	77	38.025 124.410	38.765	1.00 95.51	A	С
55	ATOM	123	CB	GLU A	A	77	38.532 122.973	38.912	1.00 50.29	A	С

	ATOM	124	CG	GLU	Α	77	39.385	122.498	37.735	1.00 49.05	A	C
	ATOM	125	CD	GLU	A	77	38.548	121.952	36.577	1.00 48.46	A	C
5	MOTA	126	Œ1	GLU	A	77	39.078	121.842	35.453	1.00 49.14	A	0
3	ATOM	127	OE2	GLU	A	77	37.365	121.615	36.789	1.00 46.77	A	0
	ATOM	128	С	GLU	A	77	36.869	124.701	39.712	1.00 96.22	A	С
	ATOM	129	0	GLU	A	77	37.032	124.664	40.930	1.00 96.70	A	0
10	ATOM	130	N	LEU	A	78	35.706	125.011	39.148	1.00103.61	A	N
10	ATOM	131	CA	LEU	A	78	34.538	125.353	39.951	1.00105.65	A	С
	ATOM	132	CB	LEU	A	78	33.616	126.272	39.147	1.00 45.76	A	С
	ATOM	133	CG	LEU	Α	78	34.289	127.517	38.570	1.00 45.20	A	С
15	ATOM	134	CD1	LEU	A	78	33.269	128.393	37.881	1.00 43.93	A	С
15	ATOM	135	CD2	LEU	A	78	34.972	128.280	39.686	1.00 44.41	A	С
	ATOM	136	С	LEU	Α	78	33.742	124.159	40.467	1.00106.69	A	С
	ATOM	137	0	LEU	A	78	33.685	123.916	41.678	1.00106.47	A	0
20	ATOM	138	N	GLY	A	79	33.118	123.426	39.548	1.00 44.50	A	N
	MOTA	139	CA	GLY	A	79	32.329	122.273	39.937	1.00 46.32	A	С
	ATOM	140	С	GLY	Α	79	32.029	121.362	38.768	1.00 47.26	A	С
	ATOM	141	0	GLY	A	79	32.739	121.376	37.763	1.00 48.04	A	0
25	ATOM	142	N	ALA	A	80	30.974	120.567	38.905	1.00 77.76	A	N
	ATOM	143	CA	ALA	A	80	30.569	119.639	37.861	1.00 76.70	A	С
	ATOM	144	CB	ALA	A	80	31.717	118.701	37.515	1.00 29.17	A	С
	ATOM	145	С	ALA	A	80	29.356	118.822	38.283	1.00 77.52	A	С
30	ATOM	146	0	ALA	A	80	29.236	118.406	39.435	1.00 78.22	A	0
	ATOM	147	N	GLY	A	81	28.458	118.597	37.333	1.00 76.59	A	N
	ATOM	148	CA	GLY	A	81	27.271	117.813	37.592	1.00 77.33	A	С
	ATOM	149	С	GLY	A	81	27.093	116.865	36.427	1.00 77.54	A	С
35	ATOM	150	0	GLY	A	81	28.075	116.374	35.864	1.00 77.93	A	0
	ATOM	151	N	asn	A	82	25.845	116.600	36.061	1.00 78.30	A	N
	ATOM	152	CA	ASN	A	82	25.571	115.722	34.937	1.00 80.35	A	С
	ATOM	153	CB	ASN	A	82	24.470	114.719	35.293	1.00192.95	A	С
40	ATOM	154	CG	ASN	A	82	25.011	113.496	36.010	1.00194.40	A	С
	ATOM	155	OD1	asn	A	82	25.853	112.774	35.473	1.00194.61	A	0
	ATOM	156	ND2	ASN	A	82	24.530	113.257	37,225	1.00195.32	A	N
	ATOM	157	С	ASN	A	82	25.161	116.563	33.740	1.00 80.83	A	С
45	ATOM	158	0	ASN	A	82	24.217	117.346	33.813	1.00 81.51	A	0
	ATOM	159	N	GLY	A	83	25.888	116.397	32.641	1.00113.81	A	N
	ATOM	160	CA	GLY	A	83	25.607	117.151	31.436	1.00112.43	A	С
	ATOM	161	С	GLY	A	83	26.845	117.904	30.991	1.00111.16	A	С
50	ATOM	162	0	GLY	A	83	26.958	118.311	29.837	1.00111.08	A	0
	ATOM	163	N	GLY	A	84	27.781	118.089	31.916	1.00 74.91	A	N
	ATOM	164	CA	GLY	A	84	29.004	118.796	31.594	1.00 72.12	A	С
	ATOM	165	С	GLY	A	84	29.967	118.874	32.761	1.00 70.95	A	С
55	ATOM	166	0	GLY	A	84	30.248	117.878	33.419	1.00 71.32	A	0

	ATOM	167	N	VAL	A 8	30.473 120.075	33.008	1.00 49.49	A	N
	ATOM	168	CA	VAL	A 8	31.419 120.350	34.083	1.00 48.80	A	С
5	ATOM	169	CB	VAL	A 8	32.512 119.274	34.183	1.00 38.40	A	С
	ATOM	170	CG1	VAL	A 8	33.086 118.955	32.794	1.00 38.94	A	С
	MOTA	171	CG2	VAL	A 8	33.599 119.754	35.130	1.00 38.78	A	С
	ATOM	172	С	VAL	A 85	32.048 121.699	33.755	1.00 47.13	A	С
10	ATOM	173	0	VAL	A 85	32.489 121.922	32.629	1.00 45.92	A	0
	ATOM	174	N	VAL	A 8	32.093 122.589	34.742	1.00 41.32	A	N
	ATOM	175	CA	VAL	A 86	32.593 123.947	34.534	1.00 40.22	A	С
	MOTA	176	CB	VAL	A 86	31.452 124.972	34.785	1.00 51.28	A	С
15	ATOM	177	CG1	VAL	A 86	30.397 124.366	35.686	1.00 52.20	A	С
	MOTA	178	CG2	VAL	A 86	32.008 126.227	35.433	1.00 52.04	A	С
	ATOM	179	С	VAL	A 86	33.815 124.388	35:317	1.00 38.65	A	С
	MOTA	180	0	VAL	A 86	33.878 124.259	36.536	1.00 38.37	A	0
20	MOTA	181	N	THR	A 87	34.777 124.951	34.602	1.00 73.63	A	N
	ATOM	182	CĄ	THR	A 87	36.010 125.414	35.219	1.00 73.38	A	С
	MOTA	183	CB	THR	A 87	37.213 124.650	34.642	1.00 58.83	A	С
	ATOM	184	0G1	THR .	A 87	38.379 125.478	34.696	1.00 59.67	A	0
25	MOTA	185	CG2	THR .	A 87	36.944 124.256	33.206	1.00 57.85	A	С
	MOTA	186	С	THR .	A 87	36.238 126.905	35.005	1.00 73.60	A	С
	MOTA	187	0	THR .	A 87	36.018 127.415	33.904	1.00 74.23	A	0
	MOTA	188	N	LYS .	A 88	36.668 127.609	36.054	1.00 63.79	A	N
30	MOTA	189	CA	LYS .	A 86	36.939 129.040	35.915	1.00 63.61	A	С
	MOTA	190	CB	LYS .	A 86	37.112 129.755	37.260	1.00 36.81	A	С
	ATOM	191	CG	LYS .	A 88	37.365 131.256	37.075	1.00 38.64	A	С
	MOTA	192	CD	LYS .	A 86	37.990 131.936	38.298	1.00 39.59	A	С
35	MOTA	193	CE	LYS .	A 86	37.030 132.063	39.473	1.00 40.95	A	С
	MOTA	194	NZ	LYS .	A 88	37.563 132.965	40.537	1.00 41.07	A	N
	ATOM	195	С	LYS .	A 88	38.231 129.178	35.143	1.00 64.41	A	С
	ATOM	196	0	LYS .	A BE	39.305 128.858	35.643	1.00 62.13	A	0
40	ATOM	197	N	VAL .	A 89	38.113 129.649	33.915	1.00 75.08	A	N
	ATOM	198	CA	VAL .	A 89	39.265 129.836	33.067	1.00 75.12	A	С
	ATOM	199	CB	VAL .		39.077 129.079	31.754	1.00 48.39	A	С
	MOTA	200		VAL .			32.041	1.00 50.04	A	С
45	ATOM	201		VAL .			31.008	1.00 47.84	A	C
	ATOM	202	С	VAL .			32.789	1.00 75.38	A	С
	ATOM	203	0	VAL .	A 89	38.405 132.062	33.017	1.00 74.93	A	0
	ATOM	204	N	GLN .			32.324	1.00 63.94	A	N
50	ATOM	205	CA	GLN .			32.005	1.00 65.40	A	C
	MOTA	206	CB	GLN .			32.859	1.00103.39	A	С
	MOTA	207	CG	GLN .			32.480	1.00104.28	A	С
	ATOM	208	CD	GLN :			33.265	1.00105.52	A	С
55	MOTA	209	OE1	GLN :	A 90	44.230 135.555	33.178	1.00107.81	A	0

	ATOM	210	NE2	GLN	A	90	42.721	136.978	34.041	1.00106.37	A	N
	ATOM	211	C	GLN	A	90	41.044	133.396	30.550	1.00 66.25	A	С
5	ATOM	212	0	GLN	A	90	42.070	132.895	30.100	1.00 66.96	A	0
	MOTA	213	И	HIS	A	91	40.210	134.119	29.808	1.00120.02	A	N
	ATOM	214	CA	HIS	A	91	40.532	134.373	28.414	1.00120.92	A	С
	MOTA	215	CB	HIS	A	91	39.487	135.272	27.747	1.00 76.79	A	С
10	MOTA	216	CG	HIS	A	91	39.482	135.191	26.248	1.00 77.08	A	С
	ATOM	217	CD2	HIS	A	91	39.892	136.072	25.305	1.00 77.69	A	С
	ATOM	218	ND1	HIS	A	91	39.009	134.092	25.563	1.00 78.34	A	N
	ATOM	219	CE1	HIS	A	91	39.127	134.300	24.264	1.00 79.73	A	С
15	MOTA	220	NE2	HIS	A	91	39.661	135.494	24.080	1.00 79.56	A	N
	MOTA	221	С	HIS	A	91	41.867	135.093	28.518	1.00120.54	A	С
	ATOM	222	0	HIS	A	91	42.158	135.707	29.544	1.00121.22	A	0
	ATOM	223	N	ARG	A	92	42.686	135.023	27.479	1.00100.86	A	N
20	ATOM	224	CA	ARG	A	92	43.987	135.663	27.549	1.00 99.32	A	С
	ATOM	225	CB	ARG	A	92	45.034	134.717	26.955	1.00160.49	A	С
	MOTA	226	CG	ARG	A	92	44.962	133.333	27.608	1.00163.63	A	С
	ATOM	227	CD	ARG	A	92	45.925	132.304	27.028	1.00165.89	A	C
25	ATOM	228	NE	ARG	A	92	47.310	132.550	27.412	1.00167.52	A	N
	ATOM	229	CZ	ARG	A	92	48.125	133.388	26.781	1.00168.78	A	С
	ATOM	230	NH1	ARG	A	92	47.695	134.062	25.724	1.00170.17	A	N
	ATOM	231	NH2	ARG	A	92	49.369	133.556	27.209	1.00169.04	A	N
30	ATOM	232	C	ARG	A	92	44.030	137.047	26.912	1.00 96.83	A	С
	ATOM	233	0	ARG	A	92	44.498	137.997	27.530	1.00 96.93	* A	0
	ATOM	234	N	PRO	A	93	43.538	137.186	25.672	1.00 96.35	A	N
	MOTA	235	CD	PRO	A	93	43.110	136.142	24.732	1.00 72.67	A	С
35	ATOM	236	CA	PRO	A	93	43.546	138.492	25.010	1.00 95.47	A	С
	ATOM	237	CB	PRO	A	93	43.466	138.125	23.540	1.00 72.12	A	C
	ATOM	238		PRO	A	93	42.563	136.952	23.572	1.00 72.52	A	¢
	ATOM	239	С	PRO	A	93	42.336	139.293	25.457	1.00 93.17	A	С
40	ATOM	240	0	PRO	A	93	41.361	139.418	24.716	1.00 92.94	A	0
40	ATOM	241	N	SER	A	94	42.413	139.824	26.673	1.00 45.22	A	N
	ATOM	242	CA	SER	A	94	41.338	140.608	27.259	1.00 44.33	A	C
	ATOM	243	CB	SER	A	94	39.983	140.017	26.894	1.00 57.85	A	C
45	ATOM	244	OG	SER	A	94	39.896	138.678	27.348	1.00 58.48	A	0
45	ATOM	245	С	SER	A	94	41.506	140.535	28.759	1.00 43.61	A	С
	ATOM	246	0	SER	A	94	41.492	141.549	29.448	1.00 43.83	A	0
	ATOM	247	N	GLY	A	95	41.676	139.319	29.260	1.00 87.93	A	N
	ATOM	248		GLY	A	95	41.839	139.130	30.687	1.00 87.12	A	С
50	ATOM	249	С	GLY	A	95	40.495	138.814	31.304	1.00 87.41	A	С
	ATOM	250		GLY		95		138.627	32,516	1.00 88.30	A	0
	MOTA	251	N	LEU	A	96	39.479	138.764	30.454	1.00 66.37	A	N
	MOTA	252	CA	LEU	A	96	38.144	138.459	30.921	1.00 64.54	А	С

	ATOM	253	CB	LEU	Α	96	37.145	138.456	29.758	1.00	56.05	A	С
	ATOM	254	CG	LEU	A	96	36.744	139.737	29.024	1.00	54.71	A	С
5	ATOM	255	CD1	LEU	A	96	35.836	139.377	27.834	1.00	55.16	A	С
	ATOM	256	CD2	LEU	A	96	36.040	140.678	29.991	1.00	54.17	A	с
	ATOM	257	С	LEU	A	96	38.137	137.081	31.562	1.00	63.31	A	С
	MOTA	258	0	LEU	A	96	38.462	136.085	30.916	1.00	62.79	A	0
10	ATOM	259	N	ILE	A	97	37.789	137.017	32.840	1.00	73.86	A	N
	MOTA	260	CA	ILE	A	97	37.692	135.722	33.483	1.00	74.62	A	С
	MOTA	261	CB	ILE	A	97	37.383	135.846	34.984	1.00	68.67	A	С
	ATOM	262	CG2	ILE	A	97	37.047	134.480	35.557	1.00	68.07	A	С
15	ATOM	263	CG1	ILE	A	97	38.595	136.416	35.725	1.00	70.68	А	С
	ATOM	264	CD1	ILE	A	97	39.741	135.439	35.863	1.00	71.88	A	С
	ATOM	265	С	ILE	A	97	36.491	135.120	32.769	1.00	74.24	A	С
	ATOM	266	0	ILE	A	97	35.781	135.816	32.051	1.00	74.16	A	0
20	ATOM	267	N	MET	A	98	36.258	133.834	32.946	1.00	39.66	A	N
	ATOM	268	CA	MET	A	98	35.130	133.212	32.287	1.00	40.33	A	С
	ATOM	269	CB	MET	A	98	35.522	132.806	30.860	1.00	43.61	A	С
	ATOM	270	CG	MET	A	98	34.732	133.523	29.776	1.00	45.60	A	С
25	ATOM	271	SD	MET	A	98	35.730	134.459	28.595	1.00	44.38	A	s
	ATOM	272	CE	MET	A	98	35.283	133.641	27.060	1.00	45.27	A	С
	ATOM	273	С	MET	A	98	34.671	131.995	33.061	1.00	40.37	A	С
	ATOM	274	0	MET	A	98	35.121	131.740	34.179	1.00	40.10	A	0
30	MOTA	275	N	ALA	A	99	33.743	131.265	32.462	1.00	32.92	A	N
	MOTA	276	CA	ALA	A	99	33.228	130.039	33.037	1.00	31.07	A	С
	MOTA	277	СВ	ALA	A	99	31.842	130.254	33.614	1.00	4.67	A	С
	MOTA	278	С	ALA	A	99	33.182	129.118	31.829	1.00	29.43	A	С
35	MOTA	279	0	ALA	A	99	32.546	129.425	30.812	1.00	28.56	A	0
	MOTA	280	N	ARG	Α:	100	33.908	128.014	31.916	1.00	78.51	A	N
	MOTA	281	CA	ARG	Α :	100	33.950	127.072	30.817	1.00	78.40	A	С
	MOTA	282	CB	ARG	Α :	100	35.391	126.855	30.352	1.00	68.52	A	С
40	MOTA	283	CG	ARG	Α :	100	35.524	125.953	29.140	1.00	67.18	A	С
	MOTA	284	CD	ARG	Α:	100	36.883	125.290	29.148	1.00	67.72	A	С
	MOTA	285	NE	ARG	Α:	100	37.189	124.584	27.907	1.00	68.34	A	N
	MOTA	286	CZ	ARG	Α:	L00	37.397	125.182	26.739	1.00	68.25	A	С
45	MOTA	287	NH1	ARG	Α:	100	37.328	126.501	26.647	1.00	67.33	A	N
	MOTA	288	NH2	ARG	Α:	100	37.692	124.466	25.667	1.00	67.11	A	N
	MOTA	289	С	ARG	A :	100	33.350	125.759	31.265	1.00	78.98	A	С
	MOTA	290	0	ARG	A :	L00	33.948	125.017	32.045	1.00	75.97	A	0
50	MOTA	291	N	LYS	A :	101	32.143	125.495	30.788	1.00	42.29	A	N
	ATOM	292	CA	LYS	A :	101	31.457	124.261	31.107	1.00	42.92	A	С
	ATOM	293	CB	LYS	A :	L01	29.952	124.508	31.311	1.00	40.90	A	С
	ATOM	294	CG	LYS	Α:	101	29.083	123.244	31.280	1.00	41.06	A	С
55	MOTA	295	CD	LYS	A I	L01	27.652	123.523	31.702	1.00	40.43	A	С

ATOM 296 CE LYS A 101 27.649 124.024 33.124 1.00 40.31 A C

	ATOM	250	CE	DIS H	101	27.049 124.024	33.124	1.00 40.31	^	•
	MOTA	297	NZ	LYS A	101	28.573 123.208	33.972	1.00 40.19	A	N :
5	ATOM	298	C	LYS A	101	31.705 123.326	29.934	1.00 44.28	A	С
	ATOM	299	0	LYS A	101	31.234 123.554	28.815	1.00 42.69	A	0
	ATOM	300	N	LEU A	102	32.469 122.277	30.200	1.00 57.28	A	N
	ATOM	301	CA	LEU A	102	32.805 121.306	29.179	1.00 60.21	A	С
10	ATOM	302	CB	LEU A	102	34.212 120.755	29.435	1.00 94.89	A	С
	ATOM	303	CG	LEU A	102	35.319 121.794	29.668	1.00 96.25	A	С
	ATOM	304	CD1	LEU A	102	35.194 122.366	31.074	1.00 94.82	A	С
	ATOM	305	CD2	LEU A	102	36.687 121.149	29.484	1.00 96.99	A	С
15	ATOM	306	С	LEU A	102	31.784 120.176	29.144	1.00 62.02	A	С
	MOTA	307	0	LEU A	102	31.554 119.481	30.132	1.00 62.82	A	0
	ATOM	308	N	ILE A	103	31.169 120.005	27.987	1.00 28,51	A	N
	ATOM	309	CA	ILE A	103	30.172 118.975	27.813	1.00 29.87	A	С
20	ATOM	310	СВ	ILE A	103	28.867 119.558	27.263	1.00 22.71	Α	С
	ATOM	311	CG2	ILE A	103	27.789 118.499	27.254	1.00 20.90	A	С
	ATOM	312	CG1	ILE A	103	28.432 120.752	28.105	1.00 24.28	A	c
	ATOM	313	CD1	ILE A	103	27.176 121.390	27.607	1.00 23.84	A	С
25	ATOM	314	С	ILE A	103	30.634 117.895	26.843	1.00 32.46	A	С
	ATOM	315	0	ILE A	103	30.425 118.012	25.625	1.00 33.69	A	0
	MOTA	316	N	HIS A	104	31.259 116.848	27.386	1.00 51.64	A	N
	ATOM	317	CA	HIS A	104	31.721 115.709	26.587	1.00 53.00	A	С
30	MOTA	318	CB	HIS A	104	32.494 114.710	27.460	1.00192.39	A	С
	ATOM	319	CG	HIS A	104	33.983 114.848	27.379	1.00192.22	A	С
	ATOM	320	CD2	HIS A	104	34.924 114.036	26.841	1.00193.15	A	С
	ATOM	321	ND1	HIS A	104	34.664 115.927	27.903	1.00191.98	A	N
35	ATOM	322	CE1	HIS A	104	35.959 115.771	27.693	1.00192.89	A	С
	ATOM	323	NE2	HIS A	104	36.144 114.632	27.050	1.00193.47	A	N
	MOTA	324	С	HIS A	104	30.516 114.998	25.960	1.00 54.27	A	С
	MOTA	325	0	HIS A	104	29.974 114.055	26.520	1.00 54.09	A	0
40	ATOM	326	N	LEU A	105	30.089 115.459	24.796	1.00 58.86	A	N
	ATOM	327	CA	LEU A	105	28.956 114.840	24.141	1.00 59.27	A	С
	ATOM	328	CB	LEU A	105	28.068 115.908	23.513	1.00151.52	A	С
	ATOM	329	CG	LEU A	105	27.405 116.795	24.562	1.00153.49	A	С
45	ATOM	330	CD1	LEU A	105	26.619 117.910	23.898	1.00153.90	A	С
	ATOM	331		LEU A	105	26.507 115.931	25.428	1.00153.15	A	С
	ATOM	332	С	LEU A	105	29.410 113.854	23.083	1.00 60.93	A	С
	ATOM	333	0	LEU A	. 105	29.770 114.237	21.963	1.00 58.49	A	0
50	ATOM	334	N	CLU A	106	29.416 112.577	23.449	1.00 97.60	A	N
	ATOM	335	CA	GLU A		29.804 111.550	22.506	1.00 99.97	A	С
	MOTA	336	CB	GLU A		29.838 110.171	23.170	1.00203.67	A	С
	ATOM	337	CG	GLU A		30.439 109.085	22.284	1.00203.67	A	C
55	ATOM	338	CD	GLU A	106	31.924 109.290	22.016	1.00203.67	A	C

	ATOM	339	OE	1 GLU	A	106	32.316 110.401	21.596	1.00203.67	A	0
	ATOM	340	OE	2 GLU	A	106	32.700 108.333	22.219	1.00203.67	A	0
5	ATOM	341	С	GLU	A	106	28.720 111.607	21.440	1.00100.72	A	С
	MOTA	342	0	GLU	А	106	27.552 111.297	21.701	1.00100.41	A	0
	ATOM	343	N	ILE	A	107	29.110 112.037	20.250	1.00 88.26	A	N
	ATOM	344	CA	ILE	A	107	28.183 112.160	19.148	1.00 89.67	A	С
10	ATOM	345	CB	ILE	A :	107	27.194 113.323	19.402	1.00157.96	A	С
	ATOM	346	CG	2 ILE	Α :	107	27.948 114.653	19.432	1.00156.74	A	С
	ATOM	347	CG	ILE	Α :	107	26.103 113.332	18.330	1.00160.27	A	С
	ATOM	348	CD	ILE	A I	107	25.246 112.069	18.300	1.00161.75	A	С
15	ATOM	349	С	ILE	A I	107	28.944 112.393	17.835	1.00 89.73	A	С
	ATOM	350	0	ILE	A I	107	30.017 113.022	17.833	1.00 89.13	А	0
	ATOM	351	N	LYS	A I	108	28.401 111.892	16.748	1.00 87.28	А	N
	ATOM	352	CA	LYS	A 1	108	29.036 112.039	15.441	1.00 88.15	А	С
20	ATOM	353	CB	LYS	A I	108	28.491 110.994	14.465	1.00138.97	A	С
	ATOM	354	CG	LYS	A I	108	28.796 109.555	14.837	1.00140.15	A	С
	ATOM	355	CD	LYS	A 1	108	28.336 108.611	13.737	1.00141.41	A	С
	ATOM	356	CE	LYS	A 1	108	28.535 107.152	14.119	1.00142.51	A	С
25	ATOM	357	NZ	LYS	A 1	108	27.697 106.728	15.279	1.00143.21	A	N
	ATOM	358	С	LYS	A 1	108	28.867 113.421	14.831	1.00 86.89	A	С
	ATOM	359	0	LYS	A 1	108	27.774 113.802	14.429	1.00 87.82	A	0
	MOTA	360	N	PRO	A 1	109	29.974 114.174	14.736	1.00 57.42	A	N
30	ATOM	361	CD	PRO	A 1	109	31.279 113.565	15.066	1.00119.11	A	С
	ATOM	362	CA	PRO	A 1	.09	30.168 115.529	14.212	1.00 57.17	A	С
	ATOM	363	CB	PRO	A 1	09	31.600 115.471	13.711	1.00118.30	А	С
	ATOM	364	CG	PRO	A 1	.09	32.243 114.721	14.822	1.00118.00	A	С
35	ATOM	365	С	PRO	A 1	.09	29.176 115.959	13.128	1.00 55.61	A	С
	ATOM	366	0	PRO	A 1	.09	28.751 117.122	13.065	1.00 56.03	A	0
	ATOM	367	N	ALA	A 1	.10	28.818 114.990	12.284	1.00110.62	A	N
	ATOM	368	CA	ALA	A 1	10	27.884 115.189	11.188	1.00110.97	A	С
40	ATOM	369	CB	ALA	A 1	.10	27.101 113.879	10.928	1.00 62.46	A	С
	ATOM	370	С	ALA	A 1	10	26.899 116.351	11.384	1.00109.04	A	С
	ATOM	371	0	ALA	A 1	10	26.991 117.365	10.691	1.00107.81	A	0
	ATOM	372	N	ILE	A 1	11	25.966 116.205	12.311	1.00190.06	A	N
45	ATOM	373	CA	ILE	A 1	11	24.968 117.249	12.530	1.00189.32	A	С
	ATOM	374	CB	ILE	A 1	11	23.529 116.643	12.684	1.00 78.88	A	С
	ATOM	375	CG2	ILE	A 1	11	23.236 115.679	11.518	1.00 79.41	A	С
	ATOM	376	CG1	ILE .	A 1	11	23.387 115.905	14.030	1.00 80.16	A	С
50	ATOM	377	CD1	ILE .	A 1	11	22.932 116.775	15.178	1.00 81.58	A	С
	ATOM	378	C	ILE .	A 1	11	25.273 118.104	13.753	1.00187.30	А	С
	MOTA	379	0	ILE .	A 1	11	24.652 119.146	13.939	1.00185.38	A	0
	ATOM	380	N	ARG 2	A 1	12	26.229 117.661	14.565	1.00 87.18	A	N
55	MOTA	381	CA	ARG :	A 1:	12	26.618 118.359	15.795	1.00 88.54	A	С

	ATOM	382	CB	ARG	A 112	28.004 117.879	16.269	1.00 82.15	A	С
	ATOM	383	CG	ARG	A 112	29.079 118.984	16.318	1.00 82.66	A	C.
5	ATOM	384	CD	ARG	A 112	30.475 118.411	16.216	1.00 83.36	A	С
	ATOM	385	NE	ARG	A 112	31.169 119.013	15.082	1.00 85.67	A	N
	ATOM	386	CZ	ARG	A 112	32.343 118.605	14.622	1.00 86.98	A	С
	ATOM	387	NH1	ARG .	A 112	32.900 119.218	13.584	1.00 87.20	A	N
10	ATOM	388	NH2	ARG .	A 112	32.957 117.581	15.203	1.00 87.68	A	N
	ATOM	389	С	ARG .	A 112	26.655 119.865	15.667	1.00 88.24	A	c
	ATOM	390	0	ARG .	A 112	26.284 120.577	16.603	1.00 88.17	A	0
	ATOM	391	N	ASN A	A 113	27.111 120.352	14.524	1.00136.92	A	N
15	ATOM	392	CA	ASN A	A 113	27.206 121.782	14.329	1.00138.08	A	С
	ATOM	393	СВ	ASN A	A 113	27.685 122.156	12.910	1.00171.85	A	С
	MOTA	394	CG	ASN 2	A 113	28.332 120.983	12.163	1.00171.77	A	c
	ATOM	395	OD1	ASN A	A 113	29.013 120.130	12.738	1.00171.91	А	0
20	ATOM	396	ND2	ASN A	A 113	28.130 120.966	10.846	1.00171.41	A	N
	ATOM	397	С	ASN A	A 113	25.836 122.377	14.611	1.00138.72	A	C
	ATOM	398	0	ASN A	A 113	25.722 123.511	15.055	1.00138.47	A	0
	ATOM	399	N	GLN A	114	24.799 121.583	14.359	1.00133.26	A	N
25	ATOM	400	CA	GLN A	A 114	23.419 121.973	14.614	1.00133.48	A	c
	ATOM	401	CB	GLN 2	114	22.488 120.800	14.324	1.00 75.04	A	С
	ATOM	402	CG	GLN A	114	21.037 121.095	14.548	1.00 78.76	A	С
	ATOM	403	CD	GLN A	114	20.186 119.875	14.426	1.00 82.05	A	С
30	ATOM	404	OE1	GLN A	114	19.004 119.899	14.740	1.00 83.03	A	0
	ATOM	405	NE2	GLN A	114	20.780 118.787	13.961	1.00 83.78	A	N
	ATOM	406	С	GLN A	114	23.282 122.369	16.097	1.00131.58	A	С
	ATOM	407	0	GLN A	114	22.265 122.946	16.490	1.00129.92	A	٥
35	ATOM	408	N	ILE A	115	24.281 122.073	16.893	1.00 65.62	A	N
	ATOM	409	CA	ILE A	115	24.253 122.377	18.327	1.00 62.15	A	С
	ATOM	410	CB	ILE A	115	25.004 121.285	19.137	1.00 45.96	A	С
	ATOM	411	CG2	ILE A	115	25.573 121.866	20.444	1.00 44.90	A	С
40	ATOM	412	CG1	ILE A	115	24.089 120.062	19.289	1.00 46.07	A	С
	ATOM	413	CD1	ILE A	115	24.662 119.006	20.182	1.00 47.57	A	С
	ATOM	414	С	ILE A	115	24.872 123.719	18.573	1.00 62.14	A	С
	ATOM	415	0	ILE A	115	24.350 124.516	19.345	1.00 61.44	A	0
45	ATOM	416	N	ILE A	116	26.006 123.981	17.950	1.00 52.01	A	N
	ATOM	417	CA	ILE A	116	26.619 125.285	18.122	1.00 51.07	A	С
	ATOM	418	CB	ILE A	116	28.072 125.357	17.590	1.00 55.07	A	С
	ATOM	419	CG2	ILE F	116	28.621 126.765	17.723	1.00 55.00	A	С
50	ATOM	420	CG1	ILE A	116	28.974 124.453	18.419	1.00 56.57	A	С
	ATOM	421	CD1	ILE F		28.639 122.993	18.317	1.00 58.61	A	С
	MOTA	422	С	ILE #	116	25.722 126.248	17.347	1.00 51.72	A	С
	ATOM	423	0	ILE P	116	25.526 127.395	17.754	1.00 51.77	A	0
55	MOTA	424	N	ARG P	117	25.160 125.753	16.245	1.00 70.65	A	N

	ATOM	425	CA	ARG	A 117	24.255	126.538	15.419	1.00	69.60	A	С
	ATOM	426	CB	ARG	A 117	23.728	125.715	14.247	1.00	65.91	A	С
5	ATOM	427	CG	ARG	A 117	22.621	126.411	13.472	1.00	68.37	A	С
	ATOM	428	CD	ARG	A 117	21.780	125.433	12.654	1.00	72.75	A	С
	ATOM	429	NE	ARG	A 117	20.548	126.054	12.156	1.00	76.75	A	N
	MOTA	430	CZ	ARG	A 117	20.453	126.791	11.048	1.00	78.33	A	С
10	ATOM	431	NH1	ARG	A 117	21.523	127.010	10.290	1.00	78.17	A	N
	MOTA	432	NH2	ARG	A 117	19.282	127.315	10.699	1.00	79.41	A	N
	MOTA	433	С	ARG	A 117	23.093	126.926	16.316	1.00	68.33	A	C
	MOTA	434	0	ARG	A 117	22.778	128.106	16.477	1.00	68.99	A	0
15	ATOM	435	N	GLU	A 118	22.456	125.928	16.916	1.00	88.35	A	N
	ATOM	436	CA	GLU	A 118	21.338	126.217	17.799	1.00	86.50	A	С
	ATOM	437	СВ	GLU	A 118	20.692	124.913	18.295	1.00	89.15	A	С
	ATOM	438	CG	GLU	A 118	19.863	124.168	17.240	1.00	89.91	A	С
20	ATOM	439	CD	GLU	A 118	19.118	122.962	17.807	1.00	90.63	A	С
	ATOM	440	OE1	GLU	A 118	18.302	123.145	18.729	1.00	89.94	A	0
	ATOM	441	OE2	GLU	A 118	19.340	121.828	17.334	1.00	90.54	A	0
	ATOM	442	С	GLU	A 118	21.817	127.074	18.978	1.00	84.07	A	С
25	MOTA	443	0	GLU	A 118	21.202	128.088	19.321	1.00	83.43	A	0
	ATOM	444	N	LEU	A 119	22.936	126.672	19.574	1.00	44.43	A	N
	ATOM	445	CA	LEU	A 119	23.509	127.378	20.708	1.00	40.61	A	С
	ATOM	446	CB	LEU	A 119	24.782	126.683	21.185	1.00	38.74	A	C .
30	ATOM	447	CG	LEU	A 119	24.615	125.543	22.183	1.00	37.45	A	c
	ATOM	448	CD1	LEU	A 119	25.971	125.024	22.589	1.00	38.08	A	С
	ATOM	449	CD2	LEU	A 119	23.885	126.034	23.406	1.00	38.25	A	С
	ATOM	450	С	LEU	A 119	23.836	128.829	20.437	1.00	40.66	A	C
35	MOTA	451	0	LEU	A 119	24.324	129.516	21.325	1.00	41.33	A	0
	ATOM	452	N	GLN	A 120	23.575	129.305	19.228	1.00	62.19	A	N
	ATOM	453	CA	GLN	A 120	23.889	130.690	18.905	1.00	62.47	A	С
	ATOM	454	CB	GLN	A 120	24.137	130.830	17.408	1.00	44.16	A	C
40	MOTA	455	CG	GLN	A 120	25.471	130.269	17.008	1.00	45.80	A	С
	ATOM	456	CD	GLN	A 120	26.587	130.799	17.892	1.00	46.88	A	С
	MOTA	457	OE1	GLN	A 120	26.732	132.010	18.054	1.00	47.02	A	0
	MOTA	458	NE2	GLN	A 120	27.380	129.897	18.467	1.00	46.18	A	N
45	MOTA	459	С	GLN	A 120	22.865	131.721	19.363	1.00	60.45	A	С
	MOTA	460	0	GLN	A 120	23.214	132.870	19.625	1.00	59.07	A	0
	MOTA	461	N	VAL	A 121	21.607	131.316	19.472	1.00	36.12	A	N
	MOTA	462	CA	VAL	A 121	20.561	132.230	19.902	1.00	35.49	A	C
50	MOTA	463	CB	VAL	A 121	19.217	131.506	20.038	1.00	96.62	A	С
	MOTA	464	CG1	VAL	A 121	19.019	130.568	18.858	1.00	98.72	A	С
	MOTA	465	CG2	VAL	A 121	19.162	130.756	21.363	1.00	98.97	A	С
	ATOM	466	С	VAL	A 121	20.897	132.849	-21.252	1.00	32.85	A	C
55	ATOM	467	0	VAL	A 121	20.190	133.728	21.735	1.00	30.62	A	0

	ATOM	468	N	LEU	A	122	21.978	132.380	21.860	1.00	40.57	A	N
	ATOM	469	CA	LEU	A	122	22.397	132.882	23.157	1.00	38.34	A	С
5	ATOM	470	CB	LEU	A	122	23.408	131.926	23.780	1.00	52.23	A	C
	ATOM	471	CG	LEU	A	122	22.785	130.695	24.429	1.00	52.21	А	С
	ATOM	472	CD1	LEU	A	122	23.852	129.808	25.060	1.00	51.08	A	С
	ATOM	473	CD2	LEU	A	122	21.806	131.177	25.487	1.00	51.40	А	С
10	ATOM	474	С	LEU	А	122	22.974	134.281	23.080	1.00	35.40	А	С
	ATOM	475	0	LEU	А	122	23.087	134.976	24.085	1.00	34.19	А	0
	ATOM	476	N	HIS	A	123	23.336	134.702	21.880	1.00	34.03	A	N
	ATOM	477	CA	HIS	A	123	23.889	136.034	21.703	1.00	34.71	A	c
15	ATOM	478	CB	HIS	Α	123	24.701	136.086	20.415	1.00	29.62	А	С
	ATOM	479	CG	HIS	А	123	26.073	135.508	20.562	1.00	27.02	A	С
	MOTA	480	CD2	HIS	A	123	26.939	135.526	21.603	1.00	26.42	A	С
	ATOM	481	ND1	н́іs	A	123	26.712	134.832	19.546	1.00	27.19	A	N
20	ATOM	482	CE1	HIS	A	123	27.912	134.458	19.954	1.00	27.44	A	С
	ATOM	483	NE2	HIS	A	123	28.075	134.867	21.199	1.00	26.90	A	N
	MOTA	484	С	HIS	A	123	22.759	137.039	21.696	1.00	36.88	A	С
	ATOM	485	0	HIS	A	123	22.958	138.213	21.971	1.00	36.10	A	0
25	ATOM	486	N	GLU	A	124	21.562	136.554	21.406	1.00	18.26	A	N
	ATOM	487	CA	GLU	A	124	20.396	137.401	21.390	1.00	19.99	A	c
	MOTA	488	CB	GLU	A	124	19.345	136.842	20.438	1.00	99.84	A	C
	ATOM	489	CG	GLU	A	124	19.845	136.683	19.030	1.001	05.65	A	С
30	ATOM	490	CD	GLU			20.262	138.000	18.419	1.001	09.81	A	C
	ATOM	491		GLU				137.969	17.359	1.001	12.87	A	0
	ATOM	492		GLU			19.926	139.063	18.989	1.001	11.16	A	0
35	ATOM	493	С	GLU				137.470	22.796		22.12	A	С
35	ATOM	494	0	GLU				138.424	23.125	1.00	24.01	A	0
	ATOM	495	N	CYS				136.463	23.619	1.00	46.56	A	N.
	ATOM	496	CA	CYS				136.369	25.005		46.88	A	С
40	ATOM	497	CB	CYS				134.986	25.578		26.51	A	С
40	ATOM	498	SG	CYS				133.729	25.056		29.07	A	S
	ATOM	499	¢	CYS				137.318	25.955		44.97	A	С
	ATOM	500	0	CYS				137.004	26.483		46.02	A	0
45	ATOM	501	N	ASN				138.460	26.213		59.62	A	N
40	ATOM	502	CA	ASN				139.398	27.132		61.39	A	С
	ATOM	503	CB	ASN				140.367	26.360		86.54	A	С
	ATOM	504	CG	ASN				139.731	25.977		88.51	A	С
50	ATOM	505		ASN				139.325	26.846		87.95	A	0
	ATOM	506		ASN.				139.640	24.679		88.39	A	N
	ATOM	507	С	ASN				140.141	28.004		60.55	A	С
	ATOM	508	0	ASN				141.038	27.548		61.27	A	0
55	ATOM	509	N	SER				139.721	29.267		20.51	A	N
55	ATOM	510	CA	SER .	Α :	127	18.375	140.288	30.285	1.00	18.01	A	С

		MOTA	511	CB	SER	Α	127	17.167	139.376	30.494	1.00	32.92	A	С
		ATOM	512	OG	SER	A	127	16.406	139.752	31.629	1.00	33.29	A	0
£	5	ATOM	513	С	SER	A	127	19.216	140.322	31.548	1.00	18.24	А	С
		ATOM	514	0	SER	A	127	20.160	139.566	31.674	1.00	21.10	A	0
		ATOM	515	N	PRO	A	128	18.901	141.201	32,500	1.00	39.21	A	N
		ATOM	516	CD	PRO	A	128	17.843	142.225	32.544	1.00	41.28	A	С
1	0	ATOM	517	CA	PRO	A	128	19.713	141.230	33.724	1.00	39.51	A	С
		ATOM	518	CB	PRO	A	128	19.313	142.549	34.364	1.00	41.81	A	С
		ATOM	519	CG	PRO	A	128	17.845	142.628	34.011	1.00	40.66	A	С
		ATOM	520	С	PRO	A	128	19.378	140.046	34.622	1.00	37.87	A	С
1	5	ATOM	521	0	PRO	A	128	19.581	140.082	35.830	1.00	38.86	A	0
		MOTA	522	M	TYR	A	129	18.859	138.995	34.018	1.00	24.94	A	N
		ATOM	523	CA	TYR	A	129	18.469	137.837	34.771	1.00	23.80	A	С
		ATOM	524	CB	TYR	Α	129	16.947	137.832	34.892	1.00	31.68	A	С
2	0	ATOM	525	CG	TYR			16.420	139.073	35.570	1.00	31.86	A	С
		MOTA	526		TYR			17.001	139.532	36.736	1.00	33.86	A	С
		ATOM	527		TYR			16.560	140.693	37.348	1.00	34.92	A	C
		ATOM	528	CD2	TYR	A	129	15.371	139.804	35.033	1.00	31.61	A	С
2	5	MOTA	529		TYR	A	129		140.972	35.646	1.00	32.41	A	С
		ATOM	530	CZ	TYR			15.524	141.409	36.802	1.00	33.41	A	С
		ATOM	531	OH	TYR			15.122	142.566	37.424	1.00	33.43	A	0
		ATOM	532	С	TYR			18.981	136.540	34.153	1.00	23.99	A	С
3	0	ATOM	533	0	TYR				135.462	34.705		25.69	A	0
		ATOM	534	N	ILE				136.641	32.998		30.30	A	N
		ATOM	535	CA	ILE				135.474	32.336	1.00	30.47	A	С
		ATOM	536	CB	ILE				135.158	31.003		41.94	A	С
3	5	ATOM	537		ILE				134.200	30.219		43.21	A	С
		ATOM	538		ILE				134.490	31.236		41.91	A	С
		ATOM	539		ILE				135.350	31.927		46.10	A	С
		ATOM	540 541	C	ILE				135.697	32.073		28.68	A	С
4	0	ATOM ATOM	542	O N	ILE				136.660	31.424		27.48	A	0
		ATOM	543	CA	VAL				134.781	32.583		24.17	A	N
			544	CB	VAL				134.816	32.465		24.06	A	С
		ATOM ATOM	545		VAL				133.493	32.941		12.82	A	С
4	5	ATOM	546		VAL				133.312	32.467		12.22	A	С
		ATOM	547	C	VAL					34.447		11.74	A	С
		ATOM	548		VAL .				135.151	31.106		26.00	Α.	С
		ATOM	549		GLY .				134.827	30.069		24.82	A	0
5	0	ATOM	550		GLY .				135.806	31.124		53.27	A	N
		ATOM	551		GLY .				136.176 134.986	29.885		58.26	A	C
		ATOM	552		GLY .				134.986	29.034		62.37	A	C
		MOTA	553		PHE .				135.238	29.528 27.742		64.19	A	0
5	5			.,					100.236	21.142	1.00	39.62	A	N

	ATOM	554	CA		A 133	27.262 134.195	26.810	1.00 41.34	A	С
	ATOM	555	CB		A 133	26.070 133.758	25.970	1.00 45.32	A	С
5	ATOM	556	CG		A 133	26.410 132.718	24.936	1.00 47.44	A	С
	ATOM	557	CDI		A 133	26.867 131.466	25.315	1.00 48.46	A	С
	ATOM	558	CD2	PHE	A 133	26.275 132.990	23.588	1.00 49.55	A	С
	ATOM	559	CE1	PHE	A 133	27.180 130.507	24.371	1.00 49.76	A	C
10	ATOM	560	CE2	PHE	A 133	26.587 132.034	22.642	1.00 49.98	A	С
	ATOM	561	CZ	PHE .	A 133	27.040 130.792	23.037	1.00 50.60	A	С
	ATOM	562	С	PHE .	A 133	28.373 134.644	25.880	1.00 41.29	A	С
	ATOM	563	0	PHE .	A 133	28.120 135.289	24.862	1.00 42.43	A	0
15	ATOM	564	N	TYR .	A 134	29.608 134.294	26.223	1.00 37.59	A	N
	ATOM	565	CA	TYR :	A 134	30.737 134.661	25.391	1.00 38.30	A	С
	ATOM	566	СВ	TYR A	A 134	32.032 134.541	26.163	1.00 37.67	A	С
	ATOM	567	CG	TYR A	A 134	32.161 135.480	27.316	1.00 38.57	A	С
20	ATOM	568	CD1	TYR A	A 134	31.798 135.090	28.600	1.00 38.56	A	С
	ATOM	569	CEL	TYR A	A 134	31.991 135.937	29.684	1.00 37.63	A	С
	ATOM	570	CD2	TYR A	A 134	32.710 136.745	27.139	1.00 38.75	A	С
	ATOM	571	CE2	TYR I	A 134	32.905 137.600	28.213	1.00 38.46	A	С
25	ATOM	572	CZ	TYR A	A 134	32.549 137.188	29.480	1.00 38.08	A	С
	MOTA	573	OH	TYR A	A 134	32.782 138.017	30.548	1.00 39.20	A	0
	MOTA	574	С	TYR A	A 134	30.855 133.809	24.134	1.00 38.98	A	С
	ATOM	575	0	TYR I	A 134	31.422 134.250	23.144	1.00 40.23	A	0
30	ATOM	576	N	GLY A	A 135	30.340 132.586	24.163	1.00 66.72	A	N
	ATOM	577	CA	GLY A	A 135	30.453 131.755	22.978	1.00 68.14	A	С
	ATOM	578	С	GLY A	135	30.496 130.269	23.229	1.00 68.29	A	С
	MOTA	579	0	GLY 2	A 135	30.655 129.801	24.362	1.00 67.51	A	0
35	ATOM	580	N	ALA A	136	30.357 129.534	22.129	1.00114.41	A	N
	ATOM	581	CA	ALA A	136	30.346 128.078	22.140	1.00116.31	A	С
	ATOM	582	CB	ALA A	136	28.907 127.572	22.100	1.00140.32	A	С
	ATOM	583	С	ALA A	136	31.081 127.578	20.906	1.00116.09	A	С
40	ATOM	584	0	ALA A	136	31.163 128.288	19.906	1.00116.90	A	0
	ATOM	585	N	PHE A	137	31.634 126.374	20.968	1.00100.40	A	N
	ATOM	586	CA	PHE A	137	32.291 125.842	19.795	1.00101.65	A	С
	ATOM	587	CB	PHE A	137	33.701 126.384	19.658	1.00 51.69	A	С
45	ATOM	588	CG	PHE A	137	34.396 126.603	20.949	1.00 50.20	A	С
	ATOM	589	CD1	PHE A	137	34.255 127.797	21.649	1.00 48.83	A	С
	ATOM	590	CD2	PHE A	137	35.200 125.615	21.470	1.00 49.63	A	С
	ATOM	591	CE1	PHE A	137	34.930 127.998	22.856	1.00 49.79	A	С
50	ATOM	592	CE2	PHE A	137	35.875 125.803	22.673	1.00 49.70	A	С
	ATOM	593	cz	PHE A	137	35.744 126.997	23.367	1.00 49.20	A	С
	ATOM	594	С	PHE A	137	32.308 124.326	19.780	1.00104.51	A	c
	ATOM	595	0	PHE A	137	31.267 123.668	19.927	1.00104.42	A	0
55	ATOM	596	N	TYR A	138	33.485 123.763	19.598	1.00197.50	A	N
									-	

	ATOM	597	CA	TYR A 138	33.589 122.326	19.528	1.00200.36	A	С
	ATOM	598	CB	TYR A 138	33.438 121.871	18.064	1.00203.13	A	C ·
5	MOTA	599	CG	TYR A 138	33.970 122.838	17.007	1.00203.13	A	С
	ATOM	600	CD1	TYR A 138	34.792 122.383	15.985	1.00203.13	A	С
	ATOM	601	CE1	TYR A 138	35.299 123.247	15.029	1.00203.13	A	С
	ATOM	602	CD2	TYR A 138	33.663 124.199	17.036	1.00203.13	A	С
10	ATOM	603	CE2	TYR A 138	34.167 125.073	16.086	1.00203.13	A	С
	ATOM	604	CZ	TYR A 138	34.988 124.591	15.086	1.00203.13	A	С
	ATOM	605	OH	TYR A 138	35.519 125.454	14.153	1.00203.13	A	0
	ATOM	606	C	TYR A 138	34.897 121.855	20.117	1.00202.81	A	С
15	MOTA	607	0	TYR A 138	35.078 121.900	21.334	1.00202.56	A	0
	ATOM	608	N	SER A 139	35.795 121.423	19.242	1.00176.35	A	N
	ATOM	609	CA	SER A 139	37.115 120.916	19.609	1.00178.55	A	С
	ATOM	610	CB	SER A 139	37.309 120.896	21.128	1.00167.15	A	С
20	ATOM	611	OG	SER A 139	38.603 120.450	21.471	1.00167.47	A	0
	ATOM	612	С	SER A 139	37.227 119.500	19.069	1.00178.84	A	С
	ATOM	613	0	SER A 139	36.834 119.241	17.928	1.00178.83	A	0
	ATOM	614	N	ASP A 140	37.750 118.584	19.878	1.00178.63	A	N
25	ATOM	615	CA	ASP A 140	37.901 117.198	19.453	1.00179.43	A	С
	ATOM	616	CB	ASP A 140	39.289 116.955	18.865	1.00173.23	A	С
	ATOM	617	CG .	ASP A 140	39.400 115.627	18.134	1.00175.19	A	С
	ATOM	618		ASP A 140	38.366 114.926	18.020	1.00175.60	A	0
30	ATOM	619	OD2	ASP A 140	40.502 115.282	17.670	1.00176.80	A	0
	ATOM	620	С	ASP A 140	37.680 116.263	20.633	1.00178.50	λ	С
	ATOM	621	0	ASP A 140	38.484 115.365	20.898	1.00178.52	A	0
	ATOM	622	N	GLY A 141	36.582 116.486	21.342	1.00149.44	A	N
35	ATOM	623	CA	GLY A 141	36.276 115.658	22.484	1.00147.42	A	С
	ATOM	624	С	GLY A 141	35.615 116.402	23.628	1.00145.22	A	С
	ATOM	625	0	GLY A 141	35.848 116.074	24.794	1.00146.30	A	0
	MOTA	626	N	GLU A 142	34.805 117.395	23.307	1.00 75.48	A	N
40	ATOM	627	CA	GLU A 142	34.104 118.150	24.342	1.00 71.63	A	С
	MOTA	628	CB	GLU A 142	35.054 118.459	25.502	1.00203.67	A	С
	ATOM	629	CG	GLU A 142	34.610 119.559	26.441	1.00203.67	A	С
	ATOM	630	CD	GLU A 142	35.317 120.853	26.125	1.00203.67	A	С
45	ATOM	631		GLU A 142	36.478 120.772	25.675	1.00203.67	A	0
	ATOM	632		GLU A 142	34.736 121.938	26.325	1.00203.67	A	0
	ATOM	633	С	GLU A 142	33.470 119.432	23.842	1.00 68.49	A	С
	ATOM	634	0	GLU A 142		23.060	1.00 68.37	A	0
50	ATOM	635	N	ILE A 143	32.242 119.681	24.278	1.00 55.15	A	N
	ATOM	636	CA	ILE A 143	31.534 120.902	23.913	1.00 50.81	A	С
	ATOM	637	CB	ILE A 143	30.044 120.715	23.862	1.00 24.95	A	С
80	ATOM	638		ILE A 143	29.379 121.992	24.346	1.00 22.99	A	С
55	ATOM	639	CG1	ILE A 143	29.599 120.445	22.425	1.00 26.47	A	С

	ATOM	640	CD1	ILE	A	143	29.381	121.723	21.611	1.00	29.74	A	С
	MOTA	641	С	ILE	A	143	31.794	121.935	24.986	1.00	48.71	A	С
5	ATOM	642	0	ILE	A	143	31.694	121.640	26.185	1.00	46.48	A	0
	ATOM	643	N	SER	A	144	32.111	123.149	24.572	1.00	48.84	A	N
	ATOM	644	CA	SER	A	144	32.400	124.187	25.550	1.00	48.41	A	С
	ATOM	645	СВ	SER	A	144	33.905	124.498	25.577	1.00	59.42	A	С
10	ATOM	646	OG	SER	A	144	34.619	123.794	24.574	1.00	60.91	A	0
	ATOM	647	С	SER	A	144	31.603	125.469	25.372	1.00	46.45	A	С
	ATOM	648	0	SER	A	144	31.641	126.088	24.306	1.00	45.81	A	0
	ATOM	649	N	ILE	A	145	30.876	125.859	26.414	1.00	29.11	A	N
15	ATOM	650	CA	ILE	A	145	30.058	127.064	26.439	1.00	28.12	A	С
	ATOM	651	CB	ILE	A	145	28.626	126.780	26.972	1.00	18.49	A	С
	MOTA	652	CG2	ILE	Α	145	27.898	128.078	27.281	1.00	19.03	A	С
	ATOM	653	CG1	ILE	A	145	27.824	125.963	25.963	1.00	17.94	A	С
20	MOTA	654	CD1	ILE	A	145	26.453	125.610	26.480	1.00	17.14	A	С
	ATOM	655	С	ILE	A	145	30.735	127.991	27.421	1.00	27.52	A	С
	ATOM	656	0	ILE	A	145	30.626	127.790	28.620	1.00	26.12	A	0
	ATOM	657	N	CYS	A	146	31.448	128.995	26.922	1.00	39.61	A	N
25	ATOM	658	CA	CYS	A	146	32.121	129.939	27.793	1.00	43.33	A	С
	ATOM	659	CB	CYS	A	146	33.256	130.603	27.029	1.00	54.97	A	С
	ATOM	660	SG	CYS	A	146	34.357	129.377	26.342	1.00	58.71	A	s
	ATOM	661	С	CYS	A	146	31.068	130.953	28.198	1.00	43.61	A	c
30	MOTA	662	0	CYS	A	146	30.325	131.449	27.349	1.00	44.47	A	0
	ATOM	663	N	MET	A	147	30.987	131.252	29.488	1.00	45.90	A	N
	MOTA	664	CA	MET	A	147	29.975	132.179	29.959	1.00	46.19	A	С
	ATOM	665	CB	MET	A	147	28.789	131.402	30.531	1.00	80.46	A	С
35	MOTA	666	CG	MET			29.168	130.514	31.693	1.00	83.32	A	С
	ATOM	667	SD	MET	A	147	28.050	129.127	31.873	1.00	87.75	A	s
	MOTA	668	CE	MET			27.161	129.575	33.350	1.00	86.59	A	С
	MOTA	669	С	MET			30.481	133.138	31.003	1.00	44.56	A	С
40	MOTA	670	0	MET				133.110	31.382	1.00	44.47	A	0
	ATOM		N	GLU				133.979	31.461		36.34	A	N
	MOTA	672	CA	GLU				134.989	32.465		34.74	A	С
45	MOTA	673	CB	GLU				135.977	32.428		51.33	A	С
***	MOTA	674	CG	GLU				136.567	33.741		52.17	A	С
	ATOM	675	CD	GLU				137.619	33.517		52.82	A	С
	ATOM	676		GLU				137.293	32.899		49.32	A	0
50	MOTA	677		GLU				138.773	33.948		53.93	A	0
	MOTA		С	GLU				134.414	33.869		33.53	A	C
	ATOM	679	0	GLU				133.924	34.502		34.73	A	0
	MOTA		N	HIS				134.480	34.351		25.76	A	N
55	MOTA		CA	HIS				133.969	35.672		24.86	A	С
	MOTA	682	CB	HIS.	Α :	149	33.088	134.031	35.912	1.00	50.14	A	С

	ATOM	683	CG	HIS	A	149	33.486	133.744	37.325	1.00	46.99	A	С
	ATOM	684	CD2	HIS	A	149	33.697	132.572	37.969	1.00	44.20	A	С.
5	ATOM	685	ND1	HIS	A	149	33.719	134.737	38.250	1.00	45.24	A	N
,	ATOM	686	CE1	HIS	A	149	34.061	134.190	39.402	1.00	43.11	A	С
	ATOM	687	NE2	ніз	A	149	34.055	132.878	39.258	1.00	40.98	A	N
	MOTA	688	С	HIS	A	149	30.881	134.746	36.763	1.00	26.23	A	C
10	ATOM	689	0	HIS	A	149	30.989	135.959	36.833	1.00	28.55	A	0
	ATOM	690	N	MET	A	150	30.159	134.039	37.620	1.00	10.86	A	N
	MOTA	691	CA	MET	A	150	29.428	134.649	38.718	1.00	11.68	A	С
	ATOM	692	CB	MET	A	150	28.052	133.995	38.860	1.00	55.70	A	С
15	MOTA	693	CG	MET	A	150	27.201	134.046	37.604	1.00	57.05	A	С
	MOTA	694	SD	MET	A	150	26.843	135.732	37.086	1.00	59.51	A	3
	MOTA	695	CE	MET	A	150	25.784	136.272	38.423	1.00	56.65	A	С
	MOTA	696	С	MET	A	150	30.215	134.452	39.999	1.00	11.01	A	С
20	MOTA	697	0	MET			30.227	133.367	40.565	1.00	10.33	A	0
	ATOM	698	N	ASP	A	151	30.875	135.504	40.464	1.00	34.31	A	N
	ATOM	699	CA	ASP			31.651	135.407	41.690	1.00	35.29	A	С
	ATOM	700	CB	ASP	A	151	32.502	136.673	41.872	1.00	51.01	A	С
25	ATOM	701	CG	ASP				137.918	42.142	1.00	52.97	A	С
	ATOM	702		ASP				138.219	41.349	1.00	52.30	A	0
	ATOM	703		ASP				138.601	43.148		55.01	A	0
	ATOM	704	С	ASP				135.161	42.912		37.14	A	С
30	MOTA	705	0	ASP				135.514	44.031		37.24	A	0
	ATOM	706	N	GLY				134.554	42.690		36.51	A	N
	MOTA	707	CA	GLY				134.265	43.797		37.54	A	С
	MOTA	708	С	GLY				132.781	43.764		39.41	A	С
35	ATOM	709	0	GLY				132.182	44.765		40.69	A	0
	ATOM	710	N CA	GLY				132.176	42.600		22.25	A	N
	ATOM	711 712	CA	GLY				130.763	42.456		21.33	A	С
	ATOM ATOM	712	0	GLY				130.538	42.656		21.83	A	C
40	ATOM	714	N	GLY SER				131.483	42.919		23.58	A	0
	ATOM	715	CA	SER				129.297	42.534		11.75	A	N
	ATOM	716	CB	SER				127.507	42.705 42.502		11.50	A	C
	ATOM	717	OG	SER				126.685	43.294		36.66	A	C
45	ATOM	718	c	SER				129.450	44.065		39.60 9.74	A	0
	ATOM	719	0	SER				129.575	45.020		8.80	A	С
	ATOM	720	N	LEU				129.720	44.148		27.43	A A	O N
	ATOM	721	CA	LEU				130.124	45.419		28.82	A	C
50	ATOM	722	СВ	LEU				130.272	45.326		23.74	A	
	ATOM	723	CG	LEU				131.485	44.615		25.19	A	c
	ATOM	724		LEU				131.496	44.835		24.64	A	c
55	ATOM	725		LEU				132.756	45.156		25.58	A	c
33											20.30		•

	MOTA	726	С	LEU	A	155	22.920	128.965	46.321	1.00	29.95	A	С
	ATOM	727	0	LEU	A	155	23.214	129.123	47.500	1.00	31.14	A	0
5	ATOM	728	N	ASP	A	156	22.868	127.786	45.729	1.00	29.30	A	N
	ATOM	729	CA	ASP	A	156	23.184	126.562	46.424	1.00	26.79	A	С
	ATOM	730	CB	ASP	A	156	23.394	125.452	45.402	1.00	80.89	A	С
	ATOM	731	CG	ASP	A	156	23.083	124.091	45.954	1.00	82.14	A	С
10	ATOM	732	OD1	ASP	A	156	21.923	123.872	46.369	1.00	83.33	A	0
	ATOM	733	OD2	ASP	A	156	23.997	123.242	45.966	1.00	82.60	A	0
	ATOM	734	С	ASP	A	156	24.468	126.795	47.209	1.00	24.70	A	¢
	ATOM	735	0	ASP	A	156	24.575	126.407	48.364	1.00	25.77	A	0
15	ATOM	736	N	GLN	A	157	25.437	127.448	46.575	1.00	25.35	A	N
	ATOM	737	CA	GLN	A	157	26.719	127.732	47.216	1.00	26.58	A	С
	ATOM	738	СВ	GLN	A	157	27.704	128.360	46.235	1.00	65.71	A	С
	ATOM	739	CG	GLN	A	157	27.864	127.674	44.903	1.00	68.13	A	С
20	ATOM	740	CD	GLN	A	157	28.912	128.371	44.059	1.00	70.33	A	С
	MOTA	741	OE1	GLN	A	157	29.083	128.079	42.873	1.00	72.22	A	0
	ATOM	742	NE2	GLN	A	157	29.627	129.308	44.674	1.00	71.85	A	N
	ATOM	743	C	GLN	A	157	26.517	128.716	48.346	1.00	25.10	A	С
25	ATOM	744	0	GLN	A	157	27.184	128.646	49.372	1.00	23.67	A	0
	ATOM	745	N	VAL	A	158	25.610	129,655	48.124	1.00	25.08	A	N
	ATOM	746	CA	VAL	A.	158	25.302	130.671	49.106	1.00	25.32	A	С
	ATOM	747	CB	VAL	Α.	158	24.388	131.757	48.491	1.00	48.72	A	С
30	MOTA	748	CG1	VAL	A	158	24.121	132.861	49.498	1.00	48.90	A	С
	MOTA	749	CG2	VAL	A :	158	25.034	132.334	47.262	1.00	47.90	A	С
	MOTA	750	С	VAL	A :	158	24.602	130.040	50.305	1.00	24.29	A	С
	ATOM	751	0	VAL	A :	158	24.760	130.489	51.437	1.00	23.32	A	0
35	ATOM	752	N	LEU	A :	159	23.831	128.989	50.064	1.00	43.47	A	N
	ATOM	753	CA	LEU	Α:	159	23.114	128.350	51.152	1.00	43.91	A	С
	ATOM	754	CB	LEU	A :	159	22.072	127.378	50.595	1.00	30.29	A	¢
	ATOM	755	CG	LEU	A :	159	21.140	126.769	51.647	1.00	28.44	A	С
40	ATOM	756	CD1	LEU	Α :	159	20.667	127.870	52.554	1.00	27.40	A	С
	ATOM	757	CD2	LEU	Α :	159	19.951	126.070	50.996	1.00	28.92	A	¢
	ATOM	758	С	LEU	Α:	159	24.048	127.636	52.126	1.00	43.36	A	С
	ATOM	759	0	LEU	A :	159	23.783	127.595	53.331	1.00	43.94	A	0
45	ATOM	760	N	LYS	A :	160	25.141	127.078	51.612	1.00	44.16	A	N
	ATOM	761	CA	LYS	A :	160	26.079	126.384	52.477	1.00	46.53	A	С
	ATOM	762	CB	LYS	A :	160	27.265	125.838	51.685	1.00	65.55	A	С
	ATOM	763	CG	LYS	A :	160	28.449	125.465	52.589	1.00	67.52	A	С
50	ATOM	764	CD	LYS .	A 1	160	29.568	124.730	51.845	1.00	69.50	A	С
	ATOM	765	CE	LYS .	A 1	160	30.773	124.428	52.754	1.00	69.72	A	С
	ATOM	766	NZ	LYS .	A 1	L 60	31.568	125.634	53.141	1.00	71.96	A	N
	ATOM	767	С	LYS	A 1	L60	26.590	127.325	53.554	1.00	48.43	A	С
55	ATOM	768	0	LYS	A 1	160	26.681	126.955	54.730	1.00	47.87	A	0

	ATOM	769	N	GLU	A	161	26.917 128	. 547	53.144	1.00	61.96	A	N
	ATOM	770	CA	GLU	A	161	27.434 129	.554	54.060	1.00	61.47	A	С.
5	ATOM	771	СВ	GLU	A	161	28.321 130	.550	53.309	1.001	01.57	A	С
	ATOM	772	CG	GLU	A	161	29.768 130	. 131	53.175	1.001	06.66	A	С
	ATOM	773	CD	GLU	A	161	30.660 131	.295	52.800	1.001	09.89	A	С
	ATOM	774	OE1	GLU	A	161	30.463 131	.870	51.707	1.001	11.30	A	0
10	ATOM	775	OE2	GLU	A	161	31.553 131	. 641	53.603	1.001	10.99	A	0
	ATOM	776	С	GLU	A	161	26.373 130	.331	54.835	1.00	60.11	A	С
	ATOM	777	0	GLU	A	161	26.645 130	. 838	55.924	1.00	59.94	A	0
	ATOM	778	N	ALA	A	162	25.167 130	.420	54.289	1.00	59.64	A	N
15	ATOM	779	CA	ALA	A	162	24.108 131	.172	54.948	1.00	59.64	A	С
	ATOM	780	CB	ALA	A	162	23.307 131	. 929	53.904	1.00	40.04	A	С
	ATOM	781	С	ALA	A	162	23.171 130	.346	55.833	1.00	58.18	A	С
	ATOM	782	0	ALA	A	162	22.421 130	.907	56.632	1.00	56:75	A	0
20	ATOM	783	N	LYS	A	163	23.220 129	.023	55.695	1.00	68.51	A	14
	ATOM	784	CA	LYS	A	163	22.368 128	.134	56.479	1.00	67.86	A	С
	ATOM	785	CB	LYS	A	163	22.351 128	.564	57.941	1.00	75.09	A	С
	ATOM	786	CG	LYS	A	163	23.718 128	.507	58.594	1.00	76.89	A	С
25	ATOM	787	CD	LYS	A	163	24.352 127	.137	58.402	1.00	79.53	A	С
	ATOM	788	CE	LYS	A	163	25.786 127	.120	58.896	1.00	78.29	A	С
	ATOM	789	NZ	LYS	A	163	25.869 127	.499	60.339	1.00	78.07	A	N
	ATOM	790	С	LYS	A	163	20.965 128	.162	55.908	1.00	66.82	A	С
30	ATOM	791	0	LYS	A	163	20.546 127	.221	55.239	1.00	66.92	A	0
	MOTA	792	N	ARG	A	164	20.231 129	.230	56.196	1.00	42.34	A	N
	ATOM	793	CA	ARG	A	164	18.891 129	.401	55.645	1.00	39.65	A	С
	ATOM	794	CB	ARG			17.804 128	.994	56.662	1.001	20.19	A	С
35	ATOM	795	CG	ARG	A	164	17.947 129	.507	58.091	1.001	24.58	A	С
	ATOM	796	CD	ARG	A	164	17.352 130	.899	58.293	1.001	25.42	A	С
	ATOM	797	NE	ARG	A	1 64	18.271 131	.970	57.903	1.001	26.82	A	N
	ATOM	798	CZ	ARG	A	164	18.025 133	.271	58.051	1.001	26.66	A	С
40	MOTA	799	NH1	ARG	A	164	16.883 133	.682	58.586	1.001	26.27	A	И
	ATOM	800		ARG	A	164	18.925 134	.165	57.666	1.001	26.02	A	N
	ATOM	801	С	ARG			18.741 130	.857	55.170	1.00	35.62	A	С
	ATOM	802	0	ARG	A	164	19.320 131	.769	55.747	1.00	37.58	A	0
45	ATOM	803	N	ILE	A	165	17.994 131	.072	54.096	1.00	40.22	A	N
	ATOM	804	CA	ILE	A	165	17.837 132	.412	53.562	1.00	35.51	A	С
	ATOM	805	СВ			165	17.655 132	.379	52.049	1.00	13.61	A	С
	ATOM	806	CG2	ILE	A	165	17.946 133	.729	51.473	1.00	13.20	A	С
50	ATOM	807	CG1	ILE	A	165	18.623 131	.388	51.415	1.00	13.20	A	С
	ATOM	808		ILE	A	165	19.699 132	.028	50.572	1.00	13.20	A	С
	MOTA	809	С	ILE	A	165	16.656 133	.165	54.144	1.00	34.51	A	С
	ATOM	810	0	ILE	A	165	15.643 132	. 577	54.514	1.00	34.51	A	0
55	ATOM	811	N	PRO	A	166	16.784 134	.489	54.253	1.00	15.61	A	N

	ATOM	812	CD	PRO	A 166	18.098	135.154	54.281	1.00 32.45	A	С
	ATOM	813	CA	PRO	A 166	15.746	135.376	54.775	1.00 16.93	A	C
5	ATOM	814	CB	PRO	A 166	16.498	136.680	54.991	1.00 32.16	A	C
	ATOM	815	CG	PRO	A 166	17.883	136.209	55.318	1.00 32.44	A	C
	ATOM	816	С	PRO	A 166	14.659	135.507	53.714	1.00 18.32	A	С
	ATOM	817	0	PRO	A 166	14.965	135.703	52.550	1.00 21.03	A	0
10	ATOM	818	N	GLU	A 167	13.393	135.399	54.107	1.00 29.02	A	N
	ATOM	819	CA	GLU	A 167	12.295	135.488	53.147	1.00 28.65	A	С
	ATOM	820	CB	GLU .	A 167	10.949	135.377	53.861	1.00 20.33	A	С
	ATOM	821	CG	GLU .	A 167	10.120	136.607	53.680	1.00 20.50	A	С
15	ATOM	822	CD	GLU .	A 167	8.636	136.350	53.752	1.00 20.68	A	С
	ATOM	823	OE1	GLU .	A 167	8.144	135.832	54.774	1.00 23.43	A	0
	ATOM	824	OE2	GLU .	A 167	7.952	136.683	52.773	1.00 21.54	A	0
	ATOM	825	С	GLU .	A 167	12.290	136.738	52.254	1.00 29.27	A	C
20	ATOM	826	0	GLU .	A 167	11.751	136.711	51.157	1.00 28.66	A	0
	ATOM	827	N	GLU .	A 168	12.882	137.833	52.710	1.00 35.90	A	N
	ATOM	828	CA	GLU .	A 168	12.907	139.030	51.888	1.00 38.87	Α	C
	ATOM	829	CB	GLU .	A 168	13.045	140.276	52.755	1.00 82.82	A	С
25	ATOM	830	CG	GLU .	A 168	11.702	140.772	53.240	1.00 91.11	A	С
	ATOM	831	CD	GLU .	A 168	10.698	140.927	52.100	1.00 96.97	A	C
	MOTA	832	OE1	GLU .	A 168	10.930	141.769	51.206	1.00100.74	A	0
	ATOM	833	OE2	GLU .	A 168	9.677	140.204	52.094	1.00101.06	A	0
30	ATOM	834	С	GLU .	A 168	14.007	138.981	50.843	1.00 37.26	A	С
	ATOM	835	0	GLU .	A 168	13.999	139.743	49.882	1.00 38.57	A	0
	ATOM	836	N	ILE .	A 169	14.963	138.088	51.030	1.00 31.58	A	N
	ATOM	837	CA	ILE .	A 169	16.026	137.950	50.060	1.00 29.77	A	С
35	ATOM	838	CB		A 169	17.267	137.270	50.667	1.00 23.39	A	С
	ATOM	839			A 169		136.869	49.568	1.00 22.81	A	С
	ATOM	840			A 169		138.217	51.650	1.00 22.59	A	С
40	ATOM	841			A 169		139.481	51.014	1.00 21.36	A	С
40	ATOM	842	С	ILE .	A 169	15.440	137.053	48.988	1.00 29.29	A	С
	ATOM	843	0		A 169		137.290	47.790	1.00 27.77	A	0
	ATOM	844	N		A 170		136.024	49.431	1.00 31.09	A	N
45	ATOM	845	CA		A 170		135.101	48.502	1.00 32.10	A	С
40	ATOM	846	CB		A 170		133.939	49.249	1.00 44.67	A	С
	ATOM	847	CG		A 170		133.050	49.992	1.00 45.28	A	С
	ATOM	848			A 170		131.776	50.452	1.00 45.00	A	С
50	ATOM	849			A 170		132.733	49.074	1.00 43.53	A	С
-	ATOM	850	С		A 170		135.854	47.658	1.00 32.46	A	С
	ATOM	851	0		A 170		135.406	46.575	1.00 34.64	A	0
	ATOM	852	N		A 171		137.010	48.145	1.00 22.61	A	N
55	ATOM	853	CA		A 171		137.789	47.368	1.00 21.78	A	С
	ATOM	854	C	GLY .	A 171	12.509	138.338	46.165	1.00 21.41	A	С

	ATOM	855	o	GLY	A 171	12.060	138.226	45.023	1.00	20.42	A	О
	ATOM	856	N	LYS	A 172	13.674	138.923	46.419	1.00	45.53	A	N
5	ATOM	857	CA	LYS	A 172	14.458	139.491	45.344	1.00	45.84	A	С
	ATOM	858	CB	LYS	A 172	15.681	140,222	45.893	1.00	54.88	A	С
	ATOM	859	CG	LYS	A 172	15.971	141.519	45.154	1.00	57.22	A	С
	ATOM	860	CD	LYS	A 172	17.153	142.260	45.759	1.00	59.59	A	С
10	ATOM	861	CE	LYS	A 172	17.093	143.774	45.477	1.00	59.34	A	С
	ATOM	862	NZ	LYS	A 172	17.026	144.136	44.027	1.00	60.24	A	N
	MOTA	863	С	LYS	A 172	14.862	138.338	44.454	1.00	45.25	A	С
	ATOM	864	0	LYS	A 172	15.047	138.494	43.249	1.00	47.10	A	0
15	ATOM	865	N	VAL	A 173	14.987	137.164	45.045	1.00	40.54	A	N
	MOTA	866	CA	VAL	A 173	15.338	136.008	44.253	1.00	40.09	A	С
	MOTA	867	CB	VAL	A 173	15.758	134.839	45.132	1.00	43.09	A	С
	ATOM	868	CG1	VAL	A 173	15.864	133.581	44.297	1.00	44.23	A	С
20	ATOM	869	CG2	VAL	A 173	17.087	135.153	45.780	1.00	43.99	A	С
	ATOM	870	С	VAL	A 173	14.134	135.598	43.417	1.00	39.88	A	С
	MOTA	871	0	VAL	A 173	14.253	135.378	42.208	1.00	39.58	A	0
	MOTA	872	N	SER	A 174	12.972	135.516	44.064	1.00	31.51	A	N
25	ATOM	873	CA	SER	A 174	11.729	135.134	43.397	1.00	31.80	A	С
	ATOM	874	CB	SER	A 174	10.605	134.995	44.418	1.00	27.06	A	С
	ATOM	875	OG	SER	A 174	10.759	133.813	45.168	1.00	27.06	A	0
	MOTA	876	С	SER	A 174	11.281	136.075	42.282	1.00	31.24	A	С
30	ATOM	877	0	SER	A 174	10.397	135.742	41.499	1.00	31.24	A	0
	ATOM	878	N	ILE	A 175	11.884	137.252	42.210	1.00	33.25	A	N
	MOTA	879	CA	ILE	A 175	11.531	138.199	41.161	1.00	33.25	A	С
	MOTA	880	CB	ILE	A 175	11.750	139.658	41.616	1.00	30.01	A	С
35	ATOM	881	CG2	ILE	A 175	11.686	140.594	40.433	1.00	29.51	A	¢
	ATOM	882	CG1	ILE	A 175	10.687	140.029	42.657	1.00	32.34	A	С
	ATOM	883	CD1	ILE	A 175	10.988	141.274	43.440	1.00	34.32	A	С
	ATOM	884	С	ILE	A 175	12.353	137.926	39.920	1.00	33.35	A	С
40	ATOM	885	0	ILE	A 175	11.809	137.873	38.833	1.00	33.25	A	0
	ATOM	886	N	ALA	A 176	13.656	137.725	40.083	1.00	25.63	A	N
	ATOM	887	CA	ALA	A 176	14.529	137.462	38.946	1.00	25.52	A	С
45	MOTA	888	CB	ALA	A 176	15.950	137.562	39.367	1.00	4.67	A	С
45	ATOM	889	С	ALA	A 176	14.285	136.106	38.300	1.00	25.52	A	С
	ATOM	890	0	ALA	A 176	14.431	135.955	37.084	1.00	25.52	A	0
	ATOM	891	N	VAL	A 177	13.937	135.108	39.104	1.00	27.76	A	N
50	ATOM	892	CA	VAL	A 177	13.664	133.781	38.566	1.00	27.76	A	С
50	ATOM	893	CB	VAL	A 177	13.309	132.808	39.674	1.00	18.77	A	С
	ATOM	894	CG1	VAL	A 177	13.028	131.423	39.085	1.00	18.77	A	С
	MOTA	895	CG2	VAL	A 177	14.428	132.789	40.694	1.00	18.77	A	С
55	MOTA	896	С	VAL	A 177	12.452	133.919	37.676	1.00	27.76	A	С
	ATOM	897	0	VAL	A 177	12.432	133.514	36.519	1.00	27.76	A	0

	ATOM	898	N	LEU	A 178	11.429 134.51	6 38.252	1.00 24.57	A	N
	ATOM	899	CA	LEU	A 178	10.186 134.74	4 37.563	1.00 25.93	A	С
5	ATOM	900	CB	LEU	A 178	9.193 135.30	3 38.572	1.00 12.91	A	С
	ATOM	901	CG	LEU	A 178	7.717 135.01	4 38.423	1.00 13.83	A	С
	MOTA	902	CD1	LEU	A 178	7.463 133.56	2 38.700	1.00 12.38	A	С
	ATOM	903	CD2	LEU	A 178	6.966 135.90	5 39.390	1.00 14.17	A	С
10	ATOM	904	С	LEU	A 178	10.370 135.70	8 36.375	1.00 26.02	A	С
	ATOM	905	0	LEU	A 178	9.556 135.75	3 35.474	1.00 26.84	A	0
	ATOM	906	N	ARG	A 179	11.432 136.48	9 36.361	1.00 27.42	A	N
	ATOM	907	CA	ARG	A 179	11.615 137.38	8 35.239	1.00 29.12	A	С
15	ATOM	908	CB	ARG	A 179	12.175 138.72	7 35.701	1.00 29.61	A	С
	MOTA	909	CG	ARG	A 179	11.144 139.54	4 36.434	1.00 32.74	A	С
	ATOM	910	CD	ARG	A 179	11.592 140.95	7 36.683	1.00 36.42	A	С
	MOTA	911	NE	ARG	A 179	10.706 141.61	4 37.633	1.00 40.58	A	N
20	MOTA	912	CZ	ARG	A 179	10.893 142.84	38.092	1.00 42.89	A	c
	MOTA	913	NH1	ARG	A 179	10.043 143.36	7 38.963	1.00 45.42	A	N
	MOTA	914	NH2	ARG	A 179	11.929 143.54	9 37.672	1.00 42.71	A	N
	MOTA	915	C	ARG	A 179	12.517 136.77	6 34.193	1.00 28.23	A	С
25	ATOM	916	0	ARG	A 179	12.365 137.03	6 32.998	1.00 29.46	A	0
	ATOM	917	N	GLY	A 180	13.465 135.96	4 34.641	1.00 36.88	A	N
	ATOM	918	CA	GLY	A 180	14.354 135.30	9 33.706	1.00 36.46	A	С
	ATOM	919	С	GLY	A 180	13.567 134.24	32.979	1.00 35.03	A	С
30	ATOM	920	0	GLY	A 180	13.678 134.08	4 31.772	1.00 34.75	A	0
	ATOM	921	N	LEU	A 181	12.756 133.51	1 33.732	1.00 20.70	A	N
	MOTA	922	CA	LEU	A 181	11.937 132.45	33.176	1.00 21.10	A	С
	ATOM	923	CB	LEU	A 181	11.052 131.85	4 34.272	1.00 4.67	A	C
35	ATOM	924	CG		A 181	11.146 130.33	7 34.459	1.00 5.06	A	С
	ATOM	925	CD1	LEU	A 181	12.542 129.86	5 34.137	1.00 5.95	A	C
	ATOM	926	CD2	LEU	A 181	10.776 129.97	9 35.873	1.00 4.67	A	С
	MOTA	927	С	LEU	A 181	11.074 133.07	32.095	1.00 20.95	A	C
40	ATOM	928	0	LEU	A 181	10.987 132.57	30.962	1.00 21.25	A	0
	ATOM	929	N		A 182	10.449 134.18	32.462	1.00 45.47	A	N
	ATOM	930	CA	ALA	A 182	9.569 134.90	31.571	1.00 46.06	A	С
45	ATOM	931	CB	ALA	A 182	8.958 136.03	32.325	1.00 4.67	A	С
45	ATOM	932	С	ALA	A 182	10.268 135.43	5 30.315	1.00 45.46	A	С
	ATOM	933	0	ALA	A 182	9.745 135.30	29.211	1.00 46.13	A	0
	ATOM	934	N	TYR	A 183	11.437 136.04	30.495	1.00 27.66	A	N
50	ATOM	935	CA	TYR	A 183	12.212 136.59	6 29.397	1.00 29.18	A	С
30	ATOM	936	CB	TYR	A 183	13.526 137.13	29.922	1.00 34.60	A	С
	MOTA	937	CG		A 183	14.444 137.62	3 28.833	1.00 34.56	A	С
	MOTA	938			A 183	14.267 138.878	3 28.267	1.00 34.56	A	С
55	MOTA	939	CE1	TYR .	A 183	15.092 139.330	27.267	1.00 34.95	A	С
	MOTA	940	CD2	TYR .	A 183	15.482 136.828	3 28.361	1.00 34.56	A	С

	ATOM	941	CE2	TYR A	183	16.310	137.270	27.355	1.00	35.13	A	С
	ATOM	942	CZ	TYR A	183	16.108	138.524	26.808	1.00	35.69	A	C.
5	ATOM	943	ОН	TYR A	183	16.889	138.967	25.765	1.00	38.39	A	0
	ATOM	944	С	TYR A	183	12.499	135.536	28.347	1.00	27.78	A	С
	ATOM	945	0	TYR A	183	12.407	135.786	27.151	1.00	30.13	A	0
	ATOM	946	N	LEU A	184	12.884	134.355	28.795	1.00	5.40	A	N
10	ATOM	947	CA	LEU A	184	13.149	133.280	27.874	1.00	6.16	A	С
	ATOM	948	СВ	LEU A	184	13.707	132.086	28.609	1.00	13.95	А	С
	ATOM	949	CG	LEU A	184	14.985	132.444	29.342	1.00	13.50	A	¢
	ATOM	950	CD1	LEU A	184	15.496	131.216	30.031	1.00	13.24	A	С
15	ATOM	951	CD2	LEU A	184	16.014	132.987	28.374	1.00	14.33	A	С
	ATOM	952	С	LEU A	184	11.856	132.888	27.213	1.00	9.15	A	С
	ATOM	953	0	LEU A	184	11.805	132.709	26.011	1.00	8.33	A	0
	ATOM	954	N	ARG A	185	10.789	132.750	28.017	1.00	13.27	A	N
20	MOTA	955	CA	ARG A	185	9.497	132.368	27.464	1.00	18.44	A	С
	ATOM	956	CB	ARG A	185	8.400	132.366	28.530	1.00	13.15	A	С
	ATOM	957	CG	ARG A	185	7.535	131.117	28.379	1.00	17.39	A	С
	ATOM	958	CD	ARG A	185	6.026	131.311	28.499	1.00	20.29	A	С
25	MOTA	959	NE	ARG A	185	5.341	130.105	28.030	1.00	26.10	A	N
	MOTA	960	CZ	ARG A	185	4.025	129.938	28.009	1.00	29.27	A	С
	ATOM	961	NH1	ARG A	185	3.221	130.898	28.439	1.00	32.97	A	N
	MOTA	962	NH2	ARG A	185	3.510	128.814	27.538	1.00	30.75	A	N
30	MOTA	963	С	ARG A	185	9.125	133.300	26.346	1.00	20.19	A	С
	MOTA	964	0	ARG A	185	9.344	133.004	25.182	1.00	20.65	A	0
	ATOM	965	N	GLU A	186	8.598	134.474	26.722	1.00	29.26	A	N
	MOTA	966	CA	GLU A	186	8.156	135.497	25.784	1.00	31.82	A	С
35	ATOM	967	CB	GLU A	186	7.837	136.764	26.561	1.00	50.08	A	С
	ATOM	968	CG	GLU A	186	6.746	136.569	27.605	1.00	49.00	A	С
	ATOM	969	CD	GLU A		6.774	137.639	28.668	1.00	47.82	A	С
	ATOM	970	OE1	GLU A	186	6.184	137.428	29.747	1.00	48.06	A	0
40	ATOM	971	OE2	GLU A	186	7.396	138.693	28.416	1.00	47.27	A	0
	ATOM	972	С	GLU A			135.831	24.588	1.00	33.17	A	С
	ATOM	973	0	GLU A			135.597	23.446	1.00	35.08	A	0
	ATOM	974	N	LYS A	187	10.226	136.367	24.834	1.00	37.34	A	И
45	MOTA	975	CA	LYS A	187	11.108	136,754	23.737	1.00	37.86	A	c
	ATOM	976	СВ	LYS A	187	12.271	137.563	24.294	1.00	80.48	A	¢
	ATOM	977	CG	LYS A	187	11.812	138.822	24.997	1.00	83.34	A	С
	ATOM	978	CD	LYS A	187	11.035	139.722	24.055	1.00	85.98	A	С
50	MOTA	979	CE	LYS A	187	10.581	140.985	24.749	1.00	87.49	A	С
	MOTA	980	NZ	LYS A	187	10.148	141.982	23.737	1.00	90.60	A	N
	ATOM	981	С	LYS A	187	11.646	135.650	22.848	1.00	37.53	A	С
	ATOM	982	0	LYS A			135.630	21.648		38.18	A	0
55	ATOM	983	N	HIS A	188	12.387	134.733	23.441	1.00	34.96	A	N

	ATOM	984	CA	HIS	A 188	12.984 133.615	22.727	1.00 34.41	A	¢
	ATOM	985	CB	HIS	A 188	14.340 133.336	23.320	1.00 59.70	A	C
5	MOTA	986	CG	HIS.	A 188	15.252 134.506	23.295	1.00 56.86	Α	C
	ATOM	987	CD2	HIS.	A 188	15.446 135.504	24.183	1.00 54.78	A	С
	ATOM	988	ND1	HIS .	A 188	16.109 134.743	22,251	1.00 56.23	A	N
	ATOM	989	CE1	HIS.	A 188	16.805 135.835	22.497	1.00 55.39	A	С
10	ATOM	990	NE2	HIS.	A 188	16.424 136.314	23.666	1.00 53.27	A	N
	ATOM	991	С	HIS .	A 188	12.231 132.288	22.726	1.00 35.80	A	С
	ATOM	992	0	HIS .	A 188	12.838 131.263	22.444	1.00 36.43	A	0
	MOTA	993	N	GLN .	A 189	10.946 132.261	23.040	1.00 38.19	A	N
15	MOTA	994	CA	GLN A	A 189	10.240 130.978	23.089	1.00 40.76	A	С
	MOTA	995	CB	GLN 2	A 189	9.601 130.656	21.733	1.00 60.17	A	С
	MOTA	996	CG	GLN 2	A 189	8.630 131.710	21.259	1.00 64.35	A	С
	MOTA	997	CD	GLN 2	A 189	9.326 132.854	20.550	1.00 68.11	A	С
20	MOTA	998	OE1	GLN 2	A 189	8.772 133.949	20.415	1.00 69.02	A	0
	MOTA	999	NE2	GLN 2	A 189	10.543 132.601	20.075	1.00 69.63	A	N
	ATOM	1000	С	GLN 2	A 189	11.126 129.792	23.540	1.00 40.91	A	С
	MOTA	1001	0	GLN 2	189	11.501 128.931	22.739	1.00 41.24	A	0
25	MOTA	1002	n	ILE 2	190	11.462 129.748	24.825	1.00 35.51	A	N
	MOTA	1003	CA	ILE A	A 190	12.263 128.655	25.336	1.00 33.88	A	С
	ATOM	1004	СВ	ILE A	A 190	13.753 128.886	25.034	1.00 62.27	A	С
	MOTA	1005	CG2	ILE A	A 190	14.479 129.370	26.266	1.00 63.56	A	С
30	MOTA	1006	CG1	ILE 2	190	14.369 127.579	24.540	1.00 63.51	A	С
	ATOM	1007	CD1	ILE A	190	13.614 126.955	23.364	1.00 65.10	A	С
	MOTA	1008	С	ILE 2	190	12.036 128.480	26.831	1.00 30.65	A	С
	MOTA	1009	0	ILE A	190	11.993 129.464	27.568	1.00 29.37	A	0
35	ATOM	1010	N	MET A	191	11.869 127.225	27.264	1.00 28.95	A	N
	ATOM	1011	CA	MET :	191	11.637 126.890	28.676	1.00 27.94	A	С
	ATOM	1012	CB	MET 2	A 191	10.675 125.719	28.801	1.00 21.84	A	С
	ATOM	1013	CG	MET I	191	9.630 125.682	27.724	1.00 26.83	A	С
40	ATOM	1014	SD	MET A	191	8.703 124.186	27.853	1.00 34.46	A	s
	ATOM	1015	CE	MET :	191	7.045 124.782	27.588	1.00 32.21	A	С
	MOTA	1016	С	MET A	191	12.954 126.512	29.316	1.00 25.43	A	С
	MOTA	1017	0	MET :	191	13.941 126.285	28.624	1.00 24.34	A	0
45	MOTA	1018	N	HIS	192	12.963 126.406	30.637	1.00 25.76	A	N
	MOTA	1019	CA	HIS 2	A 192	14.199 126.104	31.351	1.00 25.38	A	С
	MOTA	1020	CB	HIS 2	A 192	14.115 126.625	32.778	1.00 32.34	A	С
	MOTA	1021	CG	HIS 2	192	15.439 126.990	33.339	1.00 29.31	A	С
50	MOTA	1022	CD2	HIS	A 192	15.952 128.185	33.707	1.00 29.50	A	¢
	MOTA	1023	ND1	HIS I	A 192	16.456 126.076	33.477	1.00 27.51	A	N
	ATOM	1024			A 192	17.544 126.692	33.903	1.00 28.37	A	С
	ATOM	1025	NE2	HIS .	A 192	17.265 127.974	34.049	1.00 29.05	A	N
55	ATOM	1026	С	HIS 2	A 192	14.633 124.648	31.397	1.00 24.77	A	С

	MOTA	1027	0	HIS A 192	15.797 124.324	31.147	1.00 26.08	A	0
	MOTA	1028	N	ARG A 193	13.700 123.775	31.745	1.00 34.20	A	N
5	ATOM	1029	CA	ARG A 193	13.989 122.363	31.833	1.00 35.28	A	C
	ATOM	1030	CB	ARG A 193	14.518 121.862	30.496	1.00 45.77	A	С
	ATOM	1031	CG	ARG A 193	13.800 122.409	29.291	1.00 48.75	A	С
	ATOM	1032	CD	ARG A 193	14.200 121.610	28.067	1.00 51.24	A	С
10	ATOM	1033	NE	ARG A 193	13.342 120.443	27.869	1.00 55.34	A	N
	ATOM	1034	CZ	ARG A 193	12.181 120.470	27.218	1.00 56.23	A	С
	ATOM	1035	NH1	ARG A 193	11.726 121.603	26.692	1.00 55.68	A	N
	ATOM	1036	NH2	ARG A 193	11.474 119.358	27.086	1.00 56.63	A	N
15	ATOM	1037	С	ARG A 193	15.005 122.050	32.929	1.00 36.38	A	С
	ATOM	1038	0	ARG A 193	15.453 120.912	33.050	1.00 37.15	A	0
	ATOM	1039	N	ASP A 194	15.376 123.042	33.730	1.00 31.52	A	N
	MOTA	1040	CA	ASP A 194	16.348 122.790	34.787	1.00 30.05	A	С
20	MOTA	1041	CB	ASP A 194	17.714 122.498	34.155	1.00 34.62	A	С
	ATOM	1042	CG	ASP A 194	18.620 121.672	35.059	1.00 35.80	A	C
	ATOM	1043	OD1	ASP A 194	18.091 120.912	35.898	1.00 36.47	A	0
	ATOM	1044	OD2	ASP A 194	19.862 121.758	34.916	1.00 38.05	A	0
25	ATOM	1045	С	ASP A 194	16.464 123.915	35.820	1.00 28.41	A	С
	ATOM	1046	0	ASP A 194	17.543 124.455	36.049	1.00 26.95	A	0
	ATOM	1047	N	VAL A 195	15.344 124.253	36.448	1.00 26.14	A	N
	ATOM	1048	CA	VAL A 195	15.334 125.290	37.469	1.00 26.17	A	¢
30	ATOM	1049	CB	VAL A 195	13.959 125.938	37.616	1.00 20.94	A	С
	ATOM	1050	CG1	VAL A 195	13.941 126.779	38.863	1.00 21.72	A	С
	MOTA	1051		VAL A 195	13.629 126.766	36.382	1.00 20.51	A	С
	ATOM	1052	С	VAL A 195	15.663 124.675	38.810	1.00 25.35	A	С
35	MOTA	1053	0	VAL A 195	14.898 123.890	39.342	1.00 25.80	A	0
	ATOM	1054	N	LYS A 196	16.809 125.019	39.359	1.00 17.39	A	N
	MOTA	1055	CA	LYS A 196	17.194 124.486	40.648	1.00 17.56	A	С
	ATOM	1056	CB	LYS A 196	17.758 123.068	40.503	1.00 73.82	A	С
40	MOTA	1057	CG	LYS A 196	18.672 122.873	39.309	1.00 75.77	A	С
	ATOM	1058	CD	LYS A 196	19.319 121.495	39.298	1.00 79.13	A	С
	ATOM	1059	CE	LYS A 196	20.247 121.316	40.489	1.00 82.20	A	С
	MOTA	1060	NZ	LYS A 196	21.157 120.137	40.354	1.00 83.24	A	N
45	ATOM	1061	С	LYS A 196	18.221 125.412	41.253	1.00 17.05	A	С
	ATOM	1062	0	LYS A 196	18.966 126.092	40.544	1.00 17.83	A	0
	ATOM	1063	N	PRO A 197	18.259 125.472	42.579	1.00 33.46	A	N
	ATOM	1064	CD	PRO A 197	17.391 124.688	43.473	1.00 14.08	A	C
50	ATOM	1065	CA	PRO A 197	19.185 126.311	43.338	1.00 33.48	A	С
	ATOM	1066	СВ	PRO A 197	19.196 125.637	44.692	1.00 14.99	A	C
	ATOM	1067	CG	PRO A 197	17.743 125.242	44.833	1.00 14.47	A	С
55	ATOM	1068	С	PRO A 197	20.592 126.489	42.753	1.00 34.35	A	С
55	ATOM	1069	0	PRO A 197	21.173 127.569	42.865	1.00 33.04	A	0

	ATOM	1070	N	SER	A	198	21.147	125.453	42.128	1.00	43.42	A	N
	ATOM	1071	CA	SER	A	198	22.495	125.571	41.561	1.00	43.01	A	C
5	MOTA	1072	CB	SER	A	198	23.173	124.210	41.520	1.00	46.08	A	С
	ATOM	1073	OG	SER	A	198	22.368	123.279	40.824	1.00	45.86	A	0
	ATOM	1074	C	SER	A	198	22.575	126.193	40.173	1.00	44.56	A	С
	ATOM	1075	0	SER	A	198	23.667	126.364	39.633	1.00	44.78	A	0
10	ATOM	1076	N	ASN	A	199	21.430	126.520	39.588	1.00	20.07	A	N
	MOTA	1077	CA	ASN	A	199	21.416	127.110	38.266	1.00	21.65	A	С
	ATOM	1078	CB	asn	A	199	20.511	126.322	37.317	1.00	21.22	A	С
	MOTA	1079	CG	ASN	A	199	21.096	124.966	36.925	1.00	23.57	A	С
15	MOTA	1080	OD1	asn	A	199	22.309	124.819	36.745	1.00	26.70	A	0
	MOTA	1081	ND2	ASN	A	199	20.225	123.975	36.770	1.00	25.53	A	N
	MOTA	1082	C	asn	A	199	20.938	128.538	38.379	1.00	22.16	A	С
	ATOM	1083	0	ASN	A	199	20.622	129.187	37.380	1.00	21.91	A	0
20	MOTA	1084	N	ILE	A	200	20.879	129.008	39.621	1.00	20.03	A	N
	MOTA	1085	CA	ILE	A	200	20.488	130.379	39.956	1.00	20.69	A	С
	ATOM	1086	CB	ILE	A	200	19.402	130.398	41.049	1.00	12.72	A	С
	MOTA	1087	CG2	ILE	A	200	19.171	131.814	41.517	1.00	13.96	A	С
25	ATOM	1088	CG1	ILE	A	200	18.123	129.727	40.517	1.00	10.59	A	С
	ATOM	1089	CD1	ILE	A	200	16.972	129.731	41.469	1.00	7.37	A	С
	MOTA	1090	С	ILE	A	200	21.772	130.968	40.504	1.00	23.72	A	С
	MOTA	1091	0	ILE	A	200	22.155	130.686	41.628	1.00	24.27	A	0
30	MOTA	1092	N	LEU	A	201	22.449	131.774	39.700	1.00	22.45	A	N
	MOTA	1093	CA	LEU	A	201	23.727	132.344	40.104	1.00	25.85	A	С
	MOTA	1094	CB	LEU	A	201	24.706	132.238	38.936	1.00	29.40	A	С
	ATOM	1095	CG	LEU	A	201	24.622	130.918	38.168	1.00	29.13	A	С
35	ATOM	1096	CD1					130.888	37.078		26.41	A	С
	MOTA	1097	CD2	LEU	A	201	24.817	129.757	39.133	1.00	30.35	A	С
	MOTA	1098	С	LEU				133.781	40.606		28.48	A	C
	ATOM	1099	0	LEU				134.584	40.180		29.08	A	0
40	MOTA	1100	N	VAL				134.098	41.511		28.12	A	N
	MOTA	1101	CA	VAL				135.440	42.082		31.97	A	С
	MOTA	1102	CB	VAL				135.430	43.586		31.68	A	С
	MOTA	1103	CG1					135.169	43.761		33.20	A	С
45	MOTA	1104	CG2					134.362	44.307		32.69	A	С
	MOTA	1105	С	VAL				136.015	41.892		34.69	A	С
	MOTA	1106		VAL				135.298	41.506		34.81	A	0
	MOTA	1107		ASN				137.308	42.153		54.40	A	N
50	MOTA	1108	CA	ASN	A	203	27.598	137.941	41.984	1.00	55.96	A	С
	MOTA	1109	CB	ASN				138.510	40.560		35.71	A	С
	MOTA			asn				139.653	40.306		37.27	A	С
	ATOM	1111	OD1					139.856	41.068		38.58	A	0
55	MOTA	1112	ND2	ASN	A	203	26.990	140.399	39.232	1.00	37.90	A	N

ATOM															
ATOM			ATOM	1113	С	ASN	A	203	27.835	139.041	43.018	1.00	56.35	A	С
ATOM 1116 CA SERA 204 29.451 410.568 41.05 51.00 59.50 A N CA CANNO 1117 CB SERA 204 30.905 140.990 43.835 1.00 67.61 A CA CANNO 1119 CB SERA 204 30.905 140.990 43.835 1.00 67.61 A CA CANNO 1119 C SERA 204 28.452 141.765 43.926 1.00 58.45 A CA CANNO 1119 C SERA 204 28.452 141.765 43.926 1.00 58.45 A CA CANNO 1120 C SERA 204 28.452 141.765 43.926 1.00 58.45 A CA CANNO 1120 C SERA 204 28.452 141.765 43.926 1.00 58.45 A CA CANNO 1122 C A RAGA 205 27.868 141.850 42.783 1.00 60.64 A N CANNO 1122 C A RAGA 205 27.868 141.850 42.783 1.00 60.64 A N CANNO 1122 C A RAGA 205 26.668 143.500 41.052 1.00176.25 A CANNO 1125 C B ARG A 205 28.699 144.025 40.582 1.00180.43 A CA CANNO 1126 C B ARG A 205 29.728 142.901 42.537 1.00 61.13 A CANNO 1126 C B ARG A 205 29.728 142.478 39.518 1.00180.706 A N CANNO 1127 C B ARG A 205 29.728 142.478 39.518 1.00180.706 A N CANNO 1128 NIL ARGA 205 31.991 44.212 40.139 1.00190.69 A N CANNO 1128 NIL ARGA 205 31.991 42.112 40.139 1.00190.69 A N CANNO 1128 NIL ARGA 205 31.991 42.112 40.139 1.00190.69 A N CANNO 1133 C B ARGA 205 25.601 142.235 42.977 1.00 59.58 A CANNO 1133 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A N CANNO 1133 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A N CANNO 1133 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.329 1.00 66.69 A CANNO 1134 C B ARGA 205 24.592 143.015 43.029 1.00 64.01 A CANNO 1134 C B ARGA 205 24.592 143.015 43.029 1.00 64.01 A CANNO 1134 C B ARGA 205 24.592 143.015 43.029 1.00 64.01 A CANNO 1134 C B ARGA 205 24.592 143.015 43.029 1.00 64.01 A CANNO		_	ATOM	1114	0	ASN	A	203	26.912	139.437	43.723	1.00	56.23	A	٥
ATOM		•	ATOM	1115	N	SER	A	204	29.079	139.518	43.105	1.00	59.50	А	N
ATOM			ATOM	1116	CA	SER	A	204	29.454	140.568	44.056	1.00	58.93	A	С
ATOM			ATOM	1117	CB	SER	A	204	30.905	140.990	43.835	1.00	67.61	A	С
ATOM 1120 O SERA 2004 28.438 142.599 44.22 1.00 59.45 A C			ATOM	1118	OG	SER	A	204	31.219	141.001	42.455	1.00	67.29	A	0
ATCM	1	0	ATOM	1119	С	SER	A	204	28.532	141.765	43.926	1.00	58.45	A	С
ATOM 1122 CA ARG A 205 26.503 142.901 42.537 1.00 61.13 A CA			ATOM	1120	0	SER	A	204	28.438	142.599	44.824	1.00	59.03	A	0
150 ATOM 1123 CB ARG A 205 26.666 143.250 41.052 1.00176.25 A A CO ATOM 1124 CG ARG A 205 28.089 144.025 40.582 1.00180.43 A C A C A C A C A C A C A C A C A C A			ATOM	1121	N	ARG	A	205	27.868	141.850	42.783	1.00	60.64	А	N
ATOM 1124 G ARG A 205 28.089 144.025 0.582 1.00180.133 A CATOM 1125 CD ARG A 205 29.933 143.237 40.723 1.00183.79 A CATOM 1126 NN ARG A 205 29.933 143.237 40.723 1.00183.79 A CATOM 1127 CL ARG A 205 29.728 142.478 39.518 1.00187.06 A NATOM 1127 CL ARG A 205 30.927 141.857 39.269 1.00188.56 A CATOM 1128 NN1 ARG A 205 31.919 142.112 40.139 1.00190.32 A NATOM 1130 C ARG A 205 25.610 142.235 42.977 1.00 59.58 A CATOM 1131 C ARG A 205 25.514 141.011 43.006 1.00 59.00 A CATOM 1131 C ARG A 205 25.514 141.011 43.006 1.00 59.00 A CATOM 1132 C ARG A 205 25.514 141.011 43.006 1.00 59.00 A CATOM 1133 CA GLY A 206 22.5514 141.011 43.006 1.00 59.00 A CATOM 1134 C GLY A 206 22.358 142.008 43.785 1.00 66.09 A NATOM 1136 C GLY A 206 22.666 141.584 42.753 1.00 62.64 A CATOM 1137 CA GLU A 207 22.666 140.448 40.579 1.00 62.64 A CATOM 1137 CA GLU A 207 22.666 140.448 40.579 1.00 49.29 A CATOM 1136 C GLU A 207 22.667 140.448 40.579 1.00 49.29 A CATOM 1140 C GLU A 207 23.451 141.877 39.358 1.00 64.01 A CATOM 1140 C GLU A 207 23.451 141.877 39.251 1.00 24.97 A CATOM 1140 C GLU A 207 23.451 141.877 39.251 1.00 24.97 A CATOM 1140 C GLU A 207 23.451 141.877 37.291 1.00 24.97 A CATOM 1140 C GLU A 207 23.451 141.877 37.291 1.00 24.97 A CATOM 1140 C GLU A 207 23.451 141.877 37.291 1.00 24.95 A CATOM 1140 C GLU A 207 23.867 142.260 32.22 1.00 22.37 A CATOM 1140 C GLU A 207 23.867 142.260 32.22 1.00 22.37 A CATOM 1140 C GLU A 207 23.867 142.260 32.22 1.00 24.97 A CATOM 1140 C GLU A 207 23.867 143.823 37.342 1.00 24.97 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140 C GLU A 207 23.867 138.220 14.105 1.00 48.17 A CATOM 1140			ATOM	1122	CA	ARG	A	205	26.903	142.901	42.537	1.00	61.13	A	С
ATOM 1125 CD ARG A 205 29,393 143,237 (0.723 1.00183.79 A CA C	1	5	ATOM	1123	CB	ARG	A	205	26.868	143.250	41.052	1.001	76.25	A	С
ATOM 1126 NE ARG A 205 29.720 142.478 39.518 1.00187.06 A N N N N N N N N N			ATOM	1124	CG	ARG	A	205	28.089	144.025	40.582	1.001	80'. 43	A	С
20 AROM 1127 CL ARG A 205 30.927 141.957 39.259 1.00189.56 A A CAN 1128 NH1 ARG A 205 31.140 141.284 38.145 1.00190.699 A N A CAN 1128 NH2 ARG A 205 31.919 142.112 40.139 1.00190.320 A N A CAN 1128 NH2 ARG A 205 25.514 141.011 43.006 1.00 59.00 A CAN 1131 0 ARG A 205 25.514 141.011 43.006 1.00 59.00 A CAN 1131 0 ARG A 205 25.514 141.011 43.006 1.00 59.00 A CAN 1131 0 ARG A 205 25.514 141.011 43.006 1.00 59.00 A CAN 1132 0 ARG A 205 25.514 141.011 43.006 1.00 59.00 A CAN 1133 CAN 1134 C GLY A 206 22.616 141.584 42.753 1.00 64.01 A CAN 1134 C GLY A 206 22.616 141.584 42.753 1.00 64.01 A CAN 1135 C GLY A 206 22.616 141.584 42.753 1.00 62.84 A CAN 1136 C GLY A 206 22.616 141.584 42.753 1.00 62.84 A CAN 1136 C GLY A 207 22.616 140.484 40.579 1.00 63.70 A CAN 1137 CAN 1137 CAN 1137 CAN 1138 CAN 1148 C CON 22.676 140.448 40.579 1.00 49.29 A CAN 1139 CAN 1139 CAN 1139 CAN 1148 CAN 1148 CAN 1148 CAN 1148 C CA			ATOM	1125	CD	ARG	A	205	29.393	143.237	40.723	1.001	183.79	A	С
ATOM 1128 NH1 ARG A 205 31.140 141.284 88.145 1.00190.69 A NATOM 1129 NH2 ARG A 205 31.919 142.112 40.139 1.00190.32 A NATOM 1130 C ARG A 205 25.601 142.235 42.977 1.00 59.58 A C ARG A 205 25.501 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 26.514 141.011 43.006 1.00 59.00 A C ARG A 205 26.514 141.011 43.006 1.00 59.00 A C ARG A 205 26.516 141.584 42.753 1.00 66.69 A NATOM 1134 C GUY A 206 22.616 141.584 42.753 1.00 62.84 A C ARG A 205 26.616 141.584 42.753 1.00 62.84 A C ARG A 206 22.616 141.594 42.753 1.00 62.84 A C ARG A 206 22.616 141.594 40.579 1.00 49.29 A C ARG A 207 22.546 140.48 40.579 1.00 49.29 A C ARG A 207 23.451 141.1847 38.568 1.00 24.17 A C ARG A 207 23.451 141.1847 38.568 1.00 24.17 A C ARG A 207 24.274 141.779 37.291 1.00 24.97 A C ARG A 207 24.274 141.779 37.291 1.00 24.97 A C ARG A 207 24.274 141.793 37.321 1.00 24.97 A C ARG A 207 24.274 141.793 37.321 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.97 A C ARG A 207 24.274 141.793 37.322 1.00 24.95 A C ARG A 207 24.274 141.793 37.322 1.00 24.95 A C ARG A 207 24.274 141.793 37.322 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.293 37.342 1.00 24.95 A C ARG A 207 24.274 141.2			ATOM	1126	NE	ARG	A	205	29.728	142.478	39.518	1.001	187.06	A	N
## ATOM 1129 NN2 ARG A 205 31.919 142.112 40.139 1.00190,32 A N ARG A 205 25.601 142.235 42.977 1.00 59.58 A C ARG A 205 25.601 142.235 42.977 1.00 59.58 A C C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 25.514 141.011 43.006 1.00 59.00 A C ARG A 205 24.592 143.015 43.329 1.00 66.69 A N ARG A 205 23.358 142.408 43.785 1.00 64.01 A C C C A 206 22.466 141.584 42.753 1.00 64.01 A C C C A 206 22.466 141.584 42.753 1.00 64.01 A C ARG A 206 23.458 142.408 42.753 1.00 64.01 A C ARG A 206 23.492 141.215 41.666 1.00 61.70 A C ARG A 206 23.493 141.287 42.954 1.00 61.70 A C ARG A 207 23.453 140.553 39.331 1.00 22.37 A C ARG A 206 23.451 141.847 38.586 1.00 24.17 A C ARG A 207 23.451 141.847 38.586 1.00 24.17 A C ARG A 207 23.451 141.847 38.586 1.00 24.17 A C ARG A 207 23.451 141.847 38.586 1.00 24.97 A C ARG A 207 23.451 141.847 38.586 1.00 24.97 A C ARG A 207 23.451 141.847 38.586 1.00 24.97 A C ARG A 207 23.451 141.847 38.586 1.00 24.97 A C ARG A 207 23.451 141.847 38.586 1.00 24.97 A C ARG A 207 23.451 141.847 38.586 1.00 24.95 A C ARG A 207 23.451 141.847 38.586 1.00 24.95 A C ARG A 207 23.451 141.583 37.342 1.00 24.95 A C ARG A 207 23.451 141.583 37.342 1.00 24.95 A C ARG A 207 23.451 141.583 37.342 1.00 24.95 A C ARG A 207 23.451 38.563 40.298 1.00 24.95 A C ARG A 207 23.451 38.563 40.298 1.00 24.95 A C ARG A 207 23.451 38.563 40.298 1.00 23.35 A C ARG A 207 23.451 38.563 40.298 1.00 23.35 A C ARG A 207 23.451 38.563 40.298 40.203 35.50 A C ARG A 207 23.451 38.563 40.298 40.203 35.50 A	2	20	ATOM	1127	CZ	ARG	A	205	30.927	141.957	39.269	1.001	189.56	A	С
## ATOM 1130 C ARG A 205 25.601 142.235 42.977 1.00 55.58 A A A A A A A A A			ATOM	1128	NH1	ARG	A	205	31.140	141.284	38.145	1.001	90.69	A	N
25 ATOM 1131 O ARG A 205 25.514 141.011 33.006 1.00 59.00 A C ATOM 1132 N GLY A 206 24.592 143.015 43.329 1.00 66.69 A N A C ATOM 1133 CA GLY A 206 22.656 141.584 42.753 1.00 66.69 A N A C ATOM 1134 C GLY A 206 22.656 141.584 42.753 1.00 62.84 A A C ATOM 1135 O GLY A 206 21.443 141.270 42.954 1.00 61.70 A A C ATOM 1136 N GLU A 207 23.292 141.215 41.666 1.00 51.62 A N ATOM 1137 CA GLU A 207 23.292 141.215 41.666 1.00 51.62 A N ATOM 1139 CG GLU A 207 23.543 140.553 39.331 1.00 22.37 A C ATOM 1139 CG GLU A 207 23.543 140.553 39.331 1.00 22.37 A C ATOM 1139 CG GLU A 207 24.274 141.779 37.291 1.00 24.97 A C ATOM 1140 CD GLU A 207 24.274 141.779 37.291 1.00 24.97 A C ATOM 1141 CC GLU A 207 24.274 141.779 37.291 1.00 24.97 A C ATOM 1140 CD GLU A 207 24.274 141.729 37.291 1.00 24.97 A C ATOM 1140 CD GLU A 207 24.274 141.729 37.291 1.00 24.97 A C ATOM 1140 CD GLU A 207 24.274 141.233 37.342 1.00 24.97 A C ATOM 1146 CG GLU A 207 22.328 138.967 40.822 1.00 48.14 A C ATOM 1146 CG GLU A 207 22.328 138.967 40.822 1.00 24.95 A C ATOM 1146 CA LEE A 208 21.688 139.696 40.282 1.00 24.95 A C ATOM 1146 CA LEE A 208 21.688 139.696 40.282 1.00 24.95 A C ATOM 1147 CG LU A 207 22.328 139.967 40.822 1.00 24.95 A C ATOM 1147 CG LU A 207 22.328 139.967 40.822 1.00 24.95 A C ATOM 1148 CA LUE A 208 19.426 137.129 41.303 1.00 24.95 A C ATOM 1148 CA LUE A 208 19.426 137.129 41.303 1.00 24.95 A C ATOM 1149 CG LUE A 208 19.426 137.129 41.303 1.00 24.95 A C ATOM 1149 CG LUE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CG LUE A 208 19.806 135.746 41.207 1.00 7.68 A C ATOM 1150 CG1 LUE A 208 19.806 135.746 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.746 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.742 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.742 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.742 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.742 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.742 41.207 1.00 7.68 A C ATOM 1151 CG1 LUE A 208 19.806 135.742 41.207 1.00 7.68 A C			ATOM	1129	NH2	ARG	A	205	31.919	142.112	40.139	1.001	90.32	A	N
ATOM 1132 N GLY A 206 24.592 143.015 43.329 1.00 66.69 A N A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			MOTA	1130	С	ARG	A	205	25.601	142.235	42.977	1.00	59.58	A	С
ATOM	2	25	ATOM	1131	0	ARG	A	205	25.514	141.011	43.006	1.00	59.00	A	0
35 ATOM 1134 C GLU A 207 22.616 141.584 22.753 1.00 62.84 A C C ATOM 1135 N GLU A 207 22.2616 141.584 12.753 1.00 62.84 A C C ATOM 1135 N GLU A 207 23.252 141.215 41.666 1.00 51.62 A C ATOM 1137 CA GLU A 207 22.676 140.448 40.579 1.00 49.29 A C C ATOM 1139 CB GLU A 207 23.543 140.553 39.331 1.00 22.37 A C C ATOM 1139 CB GLU A 207 24.751 141.847 38.568 1.00 24.17 A C C ATOM 1140 CD GLU A 207 24.751 141.847 38.568 1.00 24.17 A C C ATOM 1141 CD GLU A 207 24.751 141.847 38.568 1.00 24.17 A C C ATOM 1141 CD GLU A 207 24.751 141.253 37.321 1.00 25.21 A C C ATOM 1142 CD C C GLU A 207 24.751 141.233 37.321 1.00 25.21 A C C ATOM 1142 CD C C GLU A 207 22.368 138.967 40.822 1.00 48.14 A C C GLU A 207 22.328 138.967 40.822 1.00 48.14 A C ATOM 1145 C GLU A 207 22.328 138.967 40.822 1.00 48.14 A C ATOM 1145 CA GLU A 207 22.328 138.967 40.822 1.00 48.14 A C ATOM 1146 CA GLE A 208 21.68 139.563 40.298 1.00 24.86 A C A ATOM 1147 CB ILE A 208 12.68 139.563 40.298 10.00 24.86 A C A ATOM 1147 CB ILE A 208 12.68 139.196 40.416 1.00 23.35 A C C ATOM 1148 CA ILE A 208 19.426 137.129 41.303 1.00 9.53 A C C ATOM 1149 CB ILE A 208 19.426 137.129 41.303 1.00 9.53 A C C ATOM 1149 CB ILE A 208 19.806 135.746 41.207 1.00 7.68 A C ATOM 1149 CB ILE A 208 19.806 135.746 41.207 1.00 7.68 A C ATOM 1150 CDI ILE A 208 18.606 135.746 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1.00 7.68 A C ATOM 1151 CDI ILE A 208 18.606 135.745 41.207 1			ATOM	1132	N	GLY	A	206	24.592	143.015	43.329	1.00	66.69	A	N
36 ATOM 1135 O GLY A 206 21.443 141.270 42.954 1.00 61.70 A CA ATOM 1136 N GUD A 207 23.292 141.215 41.666 1.00 51.62 A N CA ATOM 1137 CA GUD A 207 23.493 141.215 41.666 1.00 51.62 A N CA ATOM 1139 CB GUD A 207 23.493 140.215 41.666 1.00 51.62 A N CA ATOM 1139 CB GUD A 207 23.493 140.539 39.391 1.00 22.37 A CA GUD A 207 23.493 140.853 39.391 1.00 22.37 A CA CA ATOM 1140 CD GUD A 207 23.491 141.877 38.586 1.00 24.17 A CA C			MOTA	1133	CA	GLY	A	206-	23.358	142.408	43.785	1.00	64.01	A	С
35 ATOM 1136 N GLU A 207 23.292 141.215 11.666 1.00 51.62 A N N ATOM 1137 CA GLU A 207 22.292 141.215 11.666 1.00 51.62 A N N ATOM 1139 CB GLU A 207 22.676 140.448 40.599 1.00 49.29 A C ATOM 1139 CB GLU A 207 23.451 141.847 38.568 1.00 24.17 A C G ATOM 1140 CD GLU A 207 24.274 141.779 37.291 1.00 24.97 A C ATOM 1141 CB GLU A 207 24.274 141.779 37.291 1.00 24.97 A C ATOM 1142 CB GLU A 207 25.402 141.233 37.342 1.00 24.95 A C ATOM 1144 C GLU A 207 23.807 142.260 36.222 1.00 24.95 A C ATOM 1145 C GLU A 207 23.807 138.220 41.45 1.00 48.17 A C ATOM 1146 C GLU A 207 23.807 138.220 41.45 1.00 48.17 A C ATOM 1147 CB GLE A 208 21.686 137.196 40.416 1.00 23.35 A C ATOM 1147 CB GLE A 208 20.666 137.196 40.416 1.00 23.35 A C ATOM 1148 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CB GLE A 208 19.791 137.497 42.742 1.00 10.23 A C ATOM 1150 CB GLE A 208 19.436 137.503 43.696 1.00 9.94 A C ATOM 1151 CB GLE A 208 19.4301 137.229 38.463 1.00 22.99 A C ATOM 1151 N GLE A 208 19.300 137.229 38.463 1.00 22.99 A C ATOM 1152 N GLE A 208 19.300 137.229 38.463 1.00 22.99 A C ATOM 1152 N GLE A 208 19.300 137.323 38.151 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224 37.182 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224 37.182 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224 37.182 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224 37.182 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224 37.182 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224 37.182 1.00 48.95 A ATOM 1154 N GLE A 208 20.951 135.224			ATOM	1134	С	GLY	A	206	22.616	141.584	42.753	1.00	62.84	A	С
ATOM 1136 N GUD A 207 23.292 141.215 41.666 1.00 51.62 A N N 1138 CB GUD A 207 22.676 140.448 40.579 1.00 49.29 A C GUD A 207 23.451 140.553 39.331 1.00 22.37 A C GUD A 207 23.451 140.553 39.331 1.00 22.37 A C GUD A 207 23.451 141.847 38.568 1.00 24.17 A C GUD A 207 24.474 141.779 37.291 1.00 24.97 A C GUD A 207 24.474 141.779 37.291 1.00 24.95 A C A C GUD A 207 24.474 141.779 37.291 1.00 24.95 A C A C GUD A 207 24.674 141.779 37.291 1.00 24.95 A C G GUD A 207 24.874 141.789 37.291 1.00 24.95 A C G GUD A 207 24.874 141.789 37.291 1.00 24.95 A C G A C GUD A 207 24.874 141.789 37.291 1.00 24.95 A C G A C G GUD A 207 24.874 141.233 37.342 1.00 24.95 A C G A C G G G G G G G G G G G G G G G		en.	ATOM	1135	0	GLY	A	206	21.443	141.270	42.954	1.00	61.70	A	0
ATOM 1138 CB GLU A 207 23.543 140.553 39.331 1.00 22.37 A C C C C C C C C C C C C C C C C C C			ATOM	1136	N	GLU	A	207	23.292	141.215	41.666	1.00	51.62	A	N
35 ATOM 1139 CG GLU A 207 23.451 141.847 38.568 1.00 24.17 A C C ATOM 1140 CG GLU A 207 24.274 141.779 37.291 1.00 24.97 A C C C C C C C C C C C C C C C C C C			ATOM	1137	CA	GLU	A	207	22.676	140.448	40.579	1.00	49.29	A	С
35 ATOM 1140 CD GLU A 207 24.274 141.779 37.291 1.00 24.97 A CA C			ATOM	1138	CB	GLU	A	207	23.543	140.553	39.331	1.00	22.37	A	С
ATCM 1140 CB GLD A 207 24.274 141.779 37.291 1.00 24.97 A C A C A C A C A C A C A C A C A C A			ATOM	1139	CG	GLU	A	207	23.451	141.847	38.568	1.00	24.17	A	С
ATOM 1142 OE2 GLU A 207 25.402 141.233 37.342 1.00 24.95 A C C C C C C C C C C C C C C C C C C	2	15	ATOM	1140	CD	GLU	A	207	24.274	141.779	37.291	1.00	24.97	A	С
ATOM 1143 C GLU A 207 22.328 138.967 40.822 1.00 48.14 A C GLU A 207 23.087 138.220 41.450 1.00 48.77 A C GLU A 207 23.087 138.220 41.450 1.00 48.77 A C G A C GLU A 207 23.087 138.220 41.450 1.00 48.77 A C G A C G GLU A 207 23.087 138.220 41.450 1.00 48.77 A C G G G G G G G G G G G G G G G G G G			ATOM	1141					23.807	142.260	36.232	1.00	25.21	A	0
40 ATOM 1144 O GLU A 207 23.087 138.220 41.450 1.00 48.77 A C A ATOM 1145 N ILE A 208 21.168 139.563 40.298 1.00 24.86 A N ATOM 1146 CA ILE A 208 20.168 139.563 40.298 1.00 24.86 A N ATOM 1147 CB ILE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1148 CG2 ILE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CG1 ILE A 208 19.426 137.129 41.303 1.00 7.68 A C ATOM 1149 CG1 ILE A 208 19.806 135.746 41.207 1.00 7.68 A C ATOM 1150 CD1 ILE A 208 18.606 135.746 41.207 1.00 7.68 A C ATOM 1150 CD1 ILE A 208 18.606 137.303 43.696 1.00 9.94 A C ATOM 1151 CD1 ILE A 208 20.264 136.171 39.038 1.00 22.99 A C ATOM 1152 D ILE A 208 20.264 136.717 39.038 1.00 22.99 A C ATOM 1153 N INS A 209 20.973 135.721 39.518 1.00 48.95 A ATOM 1154 CA INS A 209 20.973 135.721 39.518 1.00 4			ATOM	1142	OE2	GLU	A	207	25.402	141.233	37.342	1.00	24.95	A	0
ATOM 1145 N ILEA 208 20.666 137.196 40.416 1.00 23.35 A CAND 1146 CA ILEA 208 20.666 137.196 40.416 1.00 23.35 A CAND 1147 CB ILEA 208 19.426 137.129 41.303 1.00 9.53 A CAND 1148 CG2 ILEA 208 19.426 137.129 41.303 1.00 9.53 A CAND 1149 CG1 ILEA 208 19.791 137.497 42.742 1.00 10.23 A CAND 1150 CD1 ILEA 208 19.791 137.497 42.742 1.00 10.23 A CAND 1150 CD1 ILEA 208 18.606 137.503 43.696 1.00 9.94 A CAND 1151 C ILEA 208 20.264 136.717 39.038 1.00 22.99 A CAND 1151 C ILEA 208 19.791 137.229 38.463 1.00 22.99 A CAND 1155 N INSA 209 20.973 135.721 39.518 1.00 48.95 A CAND 1155 N INSA 209 20.983 135.221 39.518 1.00 48.95 A CAND 1155 C ILEA 208 20.983 135.221 39.518 1.00 48.95 A CAND 1155 C ILEA 208 20.983 135.221 39.518 1.00 48.95 A CAND 1155 C ILEA 208 20.983 135.224 37.182 1.00 48.95 A CAND 1154 C ILEA 208 20			MOTA	1143	С	GLU	A	207	22.328	138.967	40.822	1.00	48.14	A	c
ATOM 1146 CA ILE A 208 20.666 137.196 40.416 1.00 23.35 A C ATOM 1147 CB ILE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1148 CG2 ILE A 208 19.426 137.129 41.303 1.00 9.53 A C ATOM 1149 CG1 ILE A 208 19.791 137.497 42.742 1.00 10.23 A C ATOM 1150 CD1 ILE A 208 19.791 137.497 42.742 1.00 10.23 A C ATOM 1151 C ILE A 208 19.606 137.503 43.696 1.00 9.94 A C ATOM 1151 C ILE A 208 20.264 136.717 39.038 1.00 22.99 A C ATOM 1152 C ILE A 208 19.791 137.229 38.463 1.00 22.98 A C ATOM 1155 N LYS A 209 20.973 135.721 39.518 1.00 48.95 A ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1155 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C ATOM 1154 CA	4	10	ATOM	1144	0	GLU	A	207	23.087	138.220	41.450	1.00	48.77	A	0
ATOM 1147 CB ILE A 208 19.426 137.129 41.303 1.00 9.53 A C A C A C A C A C A C A C A C A C A			ATOM	1145					21.168	138.563	40.298	1.00	24.86	A	N
45 ATOM 1148 CG2 ILE A 208 18.806 135.746 41.207 1.00 7.68 A CA ATOM 1149 CG1 ILE A 208 19.791 137.497 42.742 1.00 10.23 A CA ATOM 1150 CD1 ILE A 208 18.606 135.750 34.56 1.00 9.94 A CA ATOM 1151 CD1 ILE A 208 20.264 136.717 39.038 1.00 22.99 A CA ATOM 1152 CD ILE A 208 20.264 136.717 39.038 1.00 22.99 A CA ATOM 1152 N IXTS A 209 20.973 135.721 38.518 1.00 48.95 A ATOM 1154 N IXTS A 209 20.973 135.721 38.181 1.00 48.95 A ATOM 1154 CA IXTS A 209 20.973 135.721 38.181 1.00 48.95 A ATOM 1154 CA IXTS A 209 20.973 135.721 38.181 1.00 48.95 A ATOM 1154 CA IXTS A 209 20.973 135.721 38.181 1.00 48.95 A ATOM 1154 CA IXTS A 209 20.973 135.721 38.721 38.181 1.00 48.95 A ATOM 1154 CA IXTS A 209 20.973 135.721 38.721 38.181 1.00 48.95 A ATOM 1154 CA IXTS A 209 20.973 135.721 38.721			ATOM	1146	CA	ILE	A	208	20.666	137.196	40.416	1.00	23.35	A	С
ATOM 1149 CGI ILE A 208 19.791 137.497 42.742 1.00 10.23 A C			ATOM	1147	CB	ILE	A	208	19.426	137.129	41.303	1.00	9.53	A	С
ATOM 1150 CD1 ILE A 208 18.606 137.503 43.696 1.00 9.94 A C ATOM 1151 C ILE A 208 20.264 136.717 39.038 1.00 22.99 A C ATOM 1152 O ILE A 208 19.310 137.229 38.463 1.00 22.99 A C ATOM 1155 N LYS A 209 20.973 135.721 38.518 1.00 48.95 A K ATOM 1154 CA LYS A 209 20.973 135.721 39.518 1.00 48.95 A ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C	4	5	ATOM	1148	CG2	ILE	A	208	18.806	135.746	41.207	1.00	7.68	A	С
ATOM 1151 C ILE A 208 20.264 136.717 39.038 1.00 22.99 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ATOM	1149					19.791	137.497	42.742	1.00	10.23	A	С
50 ATOM 1152 O ILE A 208 19.310 137.229 38.463 1.00 22.98 A C ATOM 1153 N LY3 A 209 20.973 135.721 38.518 1.00 48.95 A K ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C			ATOM	1150	CD1	ILE	A	208	18.606	137.503	43.696	1.00	9.94	A	С
ATOM 1153 N LYS A 209 20.973 135.721 38.518 1.00 48.95 A N ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A C			ATOM	1151	C	ILE	A	208	20.264	136.717	39.038	1.00	22.99	A	С
ATOM 1154 CA LYS A 209 20.685 135.224 37.182 1.00 48.19 A	5	io	ATOM	1152	0	ILE	A	208	19.310	137.229	38.463	1.00	22.98	A	0
			ATOM	1153	N	LYS	A	209	20.973	135.721	30.518	1.00	48.95	A	N
ATOM 1155 CB LYS A 209 21.861 135.535 36.272 1.00 54.62 A C									20.685	135.224	37.182	1.00	48.19	A	С
			ATOM	1155	CB	LYS	A	209	21.861	135.535	36.272	1.00	54.62	A	С

	ATOM	1156	CG	LYS	А	209	22.279	136.980	36.387	1.00	56.31	A	С
	MOTA	1157	CD	LYS	A	209		137.379	35.386		60.80	A	c
5	ATOM	1158	CE	LYS	A	209		138.864	35.500		64.03	A	C
	ATOM	1159	NZ	LYS	A	209		139.349	34.451	1.00	67.14	A	N
	MOTA	1160	С	LYS	A	209		133.754	37.052		47.24	A	С
	ATOM	1161	0	LYS	A	209	20.326	133.003	38.030		47.34	A	0
10	ATOM	1162	N	LEU	A	210	20.034	133.362	35.819		47.33	A	N
	ATOM	1163	CA	LEU	A	210		131.991	35.483		45.09	A	c
	ATOM	1164	СВ	LEU	A	210	18.359	131.941	34.737		21.98	A	c
	MOTA	1165	CG	LEU	A	210		132.245	35.474		21.89	A	c
15	MOTA	1166	CD1	LEU	A	210	*	132.194	34.494		20.92	Α.	c
	ATOM	1167	CD2	LEU	A	210		131.232	36.573	1.00	21.60	A	c
	ATOM	1168	С	LEU	A	210		131.447	34.572	1.00	44.94	A	c
	MOTA	1169	0	LEU	A	210	21.731	132.148	34.246	1.00	46.12	A	0
20	ATOM	1170	N	CYS	A	211	20.614	130.196	34.164	1.00	36.27	A	N
	ATOM	1171	CA	CYS	A	211	21.564	129.545	33.264	1.00	35.26	A	С
	ATOM	1172	CB	CYS	A	211	22.992	129.670	33.789	1.00	51.86	A	С
	ATOM	1173	SG	CYS	A	211	23.325	128.629	35.192	1.00	60.23	A	s
25	MOTA	1174	С	CYS	A	211	21.215	128.075	33.076	1.00	33.37	A	С
	ATOM	1175	0	CYS	A	211	20.174	127.605	33.540	1.00	33.15	A	0
	MOTA	1176	N	ASP	A	212	22.109	127.359	32.408	1.00	53.41	A	N
	MOTA	1177	CA	ASP	A	212	21.904	125.946	32.095	1.00	53.22	A	С
30	ATOM	1178	CB	ASP	A	212	22.194	125.061	33.317	1.00	54.27	A	c ´
	MOTA	1179	CG	ASP	A	212	23.648	125.149	33.780	1.00	59.13	A	С
	MOTA	1180	OD1	ASP	A	212	24.523	125.445	32.938	1.00	62.53	A	0
	ATOM	1181	OD2	ASP	A	212	23.925	124.907	34.975	1.00	57.75	A	0
35	ATOM	1182	С	ASP	A	212	20.479	125.704	31.572	1.00	52.99	A	С
	MOTA	1183	О	ASP	A	212	19.910	124.637	31.794	1.00	52.65	A	0
	ATOM	1184	N	PHE	A	213	19.907	126.691	30.872	1.00	28.84	A	N
	ATOM	1185	CA	PHE	A	213	18.555	126.564	30.316	1.00	30.14	A	С
40	ATOM	1186	CB	PHE	A	213	17.809	127.897	30.395	1.00	25.94	A	С
	MOTA	1187	CG	PHE	A	213	18.612	129.071	29.954	1.00	24.15	A	С
	ATOM	1188	CD1	PHE	A	213	18.535	129.526	28.657	1.00	22.83	A	С
	ATOM	1189	CD2	PHE	A	213	19.449	129.720	30.838	1.00	23.09	A	С
45	ATOM	1190		PHE			19.263	130.608	28.250	1.00	22.72	A	С
	MOTA	1191		PHE	A	213	20.190	130.812	30.434	1.00	23.20	A	С
	ATOM	1192	CZ	PHE			20.093	131.257	29.134	1.00	23.97	A	С
	ATOM	1193	С	PHE	A	213	18.619	126.048	28.882	1.00	32.27	A	С
50	ATOM	1194	O	PHE .				126.407	28.127	1.00	35.09	A	0
	ATOM	1195	N	GLY .				125.206	28.525	1.00	28.87	A	N
	MOTA	1196	CA	GLY .				124.577	27.215	1.00	32.74	A	С
55	ATOM	1197	С	GLY :				125.391	25.958	1.00	35.13	A	С
55	ATOM	1198	0	GLY A	A	214	16.389	125.391	25.362	1.00	37.40	A	0

	ATOM	1199	N	VAL	A	215	18.522 126.043	25.516	1.00 32.06	A	N
	MOTA	1200	CA	VAL	A	215	18.446 126.860	24.319	1.00 34.14	A	С.
5	ATOM	1201	CB	VAL	A	215	19.600 127.843	24.269	1.00 40.55	A	С
-	ATOM	1202	CG1	VAL	A	215	19.743 128.513	25.611	1.00 40.57	A	С
	ATOM	1203	CG2	VAL	A	215	20.873 127.124	23.901	1.00 41.33	A	С
	ATOM	1204	С	VAL	A	215	18.446 126.066	23.022	1.00 36.13	A	С
10	ATOM	1205	0	VAL	A	215	17.936 126.547	22.016	1.00 36.39	A	0
70	ATOM	1206	N	SER	A	216	19.017 124.864	23.023	1.00 32.42	A	N
	ATOM	1207	CA	SER	A	216	19.045 124.060	21.802	1.00 35.47	A	С
	ATOM	1208	СВ	SER	A	216	20.487 123.771	21.366	1.00 40.17	A	С
15	ATOM	1209	OG	SER	A	216	21.159 122.956	22.303	1.00 41.17	A	0
15	ATOM	1210	c	SER	A	216	18.286 122.747	21.920	1.00 36.65	A	С
	ATOM	1211	0	SER	A	216	18.586 121.907	22.771	1.00 36.42	A	0
	MOTA	1212	N	GLY	A	217	17.294 122.583	21.050	1.00135.31	A	N
20	ATOM	1213	CA	GLY	A	217	16.499 121.372	21.048	1.00136.89	A	C
20	ATOM	1214	С	GLY	A	217	17.383 120.164	20.825	1.00137.34	A	С
	ATOM	1215	0	GLY	A	217	16.969 119.029	21.059	1.00137.23	A	0
	ATOM	1216	N	GLN	A	218	18.605 120.408	20.364	1.00 36.49	A	N
25	ATOM	1217	CA	GLN	A	218	19.540 119.327	20.128	1.00 38.71	A	С
25	ATOM	1218	CB	GLN	A	218	20.583 119.708	19.071	1.00 67.45	A	c
	MOTA	1219	CG	GLN	A	218	20.365 119.025	17.712	1.00 67.78	A	С
	ATOM	1220	CD	GLN	A	218	20.269 117.501	17.820	1.00 69.08	A	С
30	MOTA	1221	OE1	GLN	A	218	21.209 116.834	18.271	1.00 71.18	A	0
30	MOTA	1222	NE2	GLN	A	218	19.128 116.947	17.409	1.00 68.45	A	N
	ATOM	1223	С	GLN	A	218	20.208 119.002	21.437	1.00 39.62	A	С
	ATOM	1224	0	GLN	A	218	19.791 118.076	22.110	1.00 39.34	A	0
35	MOTA	1225	N	TEU	A	219	21.230 119.775	21.795	1.00 51.15	A	N
35	ATOM	1226	CA	LEU	A	219	21.979 119.594	23.042	1.00 51.21	A	С
	ATOM	1227	СВ	LEU	A	219	22.409 120.948	23.589	1.00 33.75	A	С
	ATOM	1228	CG	LEU	A	219	23.813 120.997	24.167	1.00 33.30	A	С
40	ATOM	1229	CD1	LEU	A	219	24.014 122.313	24.879	1.00 31.59	A	С
40	ATOM	1230	CD2	LEU	A	219	24.012 119.834	25.102	1.00 33.30	A	С
	ATOM	1231	С	LEU	A	219	21.149 118.877	24.099	1.00 54.40	A	С
	ATOM	1232	0	LEU	A	219	21.606 117.899	24.699	1.00 54.06	A	0
45	ATOM	1233	N	ILE	A	220	19.941 119.386	24.338	1.00 35.07	A	N
40	ATOM	1234	CA	ILE	A	220	19.027 118.770	25.291	1.00 34.36	A	С
	ATOM	1235	CB	ILE	A	220	17.596 119.339	25.167	1.00 35.67	A	C
	ATOM	1236	CG2	ILE	A	220	16.646 118.519	26.012	1.00 36.68	A	С
	ATOM	1237	CG1	ILE	A	220	17.553 120.805	25.598	1.00 35.98	A	С
50	ATOM	1238	CD1	ILE	A	220	17.660 121.010	27.095	1.00 35.27	A	C
	ATOM	1239	С	ILE	A	220	18.974 117.323	24.842	1.00 36.39	A	С
	ATOM	1240	0	ILE	A	220	19.608 116.446	25.429	1.00 37.33	A	0
	ATOM	1241	N	ASP	A	221	18.230 117.113	23.760	1.00 49.00	A	N
55											

	ATOM	1242	CA	ASP A	221	18.032	115.813	23.132	1.00 50.55	A	С
	ATOM	1243	СВ	ASP A	221	17.529	116.026	21.701	1.00100.62	A	C.
5	ATOM	1244	CG	ASP A	221	16.920	114.778	21.101	1.00100.47	A	C
	ATOM	1245	OD1	ASP A	221	15.677	114.638	21.143	1.00100.93	A	0
	ATOM	1246	OD2	ASP A	221	17.683	113.933	20.591	1.00100.24	A	0
	ATOM	1247	С	ASP A	221	19.304	114.963	23.094	1.00 53.12	A	С
10	ATOM	1248	0	ASP A	221	19.237	113.736	23.068	1.00 53.43	A	0
	ATOM	1249	N	SER A	222	20.459	115.620	23.103	1.00 50.42	A	N
	ATOM	1250	CA	SER A	222	21.744	114.932	23.034	1.00 51.84	A	С
	ATOM	1251	CB	SER A	222	22.811	115.896	22.499	1.00108.54	A	С
15	ATOM	1252	OG	SER A	222	22.552	116.239	21.145	1.00107.30	A	0
	ATOM	1253	С	SER A	222	22.209	114.310	24.347	1.00 53.14	A	С
	ATOM	1254	0	SER A	222	22.544	113.122	24.399	1.00 53.64	A	0
	ATOM	1255	N	MET A	223	22,243	115.125	25.398	1.00 93.88	A	N
20	ATOM	1256	CA	MET A	223	22.652	114.664	26.723	1.00 94.11	A	C
	ATOM	1257	CB	MET A	223	23.359	115.774	27.497	1.00 65.44	A	c
	ATOM	1258	CG	MET A	223	23.589	117.041	26.711	1.00 64.05	A	С
	ATOM	1259	SD	MET A	223	24.173	118.384	27.762	1.00 63.71	A	s
25	ATOM	1260	CE	MET A	223	22.611	119.067	28.373	1.00 63.10	A	С
	ATOM	1261	С	MET A	223	21.412	114.252	27.505	1.00 94.32	A	С
	ATOM	1262	0	MET A			114.351	28.732	1.00 97.29	A	0
	ATOM	1263	N	ALA A			113.803	26.776	1.00115.21	A	N
30	ATOM	1264	CA	ALA A			113.369	27.370	1.00115.42	A	C
	ATOM	1265	CB	ALA A			112.597	26.338	1.00104.19	A	С
	ATOM	1266	С	ALA A			112.538	28.638	1.00115.12	A	С
35	ATOM	1267	0	ALA A			112.167	29.078	1.00114.85	A	0
30	ATOM	1268	N	ASN A			112.239	29.206	1.00 80.78	A	N
	ATOM	1269	CA	ASN A			111.477	30.426	1.00 80.93	A	С
	ATOM	1270	СВ	ASN A			110.118	30.111	1.00203.67	A	c
40	ATOM	1271	CG	ASN A			110.177	30.212	1.00203.67	A	С
40	ATOM	1272		ASN A			110.479	31.291	1.00203.67	A	0
	ATOM	1273		ASN A			109.948	29.107	1.00203.67	A	N
	ATOM	1274	c	ASN A			111.398	31.358	1.00 81.62	A	С
45	ATOM	1275	0	ASN A			112.448	31.885	1.00 81.87	A	0
·=	ATOM	1276	N	SER A			110.247	31.537	1.00183.29	A	N
	ATOM	1277	CA CB	SER A			110.165	32.475	1.00183.13	A	c
	ATOM	1278		SER A			110.232	31.766	1.00166.71	A	C
50	ATOM	1279	OG	SER A			108.959	31.313	1.00166.57	A	0
	ATOM	1280	c o	SER A			111.394	33.328	1.00182.94	A	С
	ATOM	1281	N	SER A PHE A			112.307	33.410	1.00183.02	A	0
	ATOM		CA				111.405	33.927	1.00203.67	A	N
55	ATOM ATOM	1283 1284	CB	PHE A			112.557	34.669	1.00203.67	A	С
	ATOM	1204	CD	ine A	221	17.518	112.5/2	34.604	1.00203.67	A	С

	MOTA	1285	CG	PHE A	227	16.935	113.853	34.066	1.00203.67	A	С
	ATOM	1286	CD1	PHE A	227	17.028	115.038	34.790	1.00203.67	A	C,
5	MOTA	1287	CD2	PHE A	227	16.306	113.869	32.829	1.00203.67	A	С
	ATOM	1288	CE1	PHE A	227	16.492	116.210	34.290	1.00203.67	A	С
	ATOM	1289	CE2	PHE A	227	15.768	115.031	32.325	1.00203.67	A	С
	MOTA	1290	CZ	PHE A	227	15.856	116.203	33.057	1.00203.67	A	С
10	MOTA	1291	С	PHE A	227	19.471	112.904	36.086	1.00203.67	A	С
	MOTA	1292	0	PHE A	227	20.656	112.936	36.410	1.00203.67	A	0
	MOTA	1293	N	VAL A	228	18.470	113.210	36.899	1.00202.30	A	N
	MOTA	1294	CA	VAL A	228	18.675	113.609	38.286	1.00202.30	A	С
15	ATOM	1295	CB	VAL A	228	17.325	113.762	39.020	1.00126.18	A	C
	ATOM	1296	CG1	VAL A	228	16.448	112.552	38.753	1.00126.47	A	С
	MOTA	1297	CG2	VAL A	228	17.563	113.909	40.513	1.00126.11	A	С
	ATOM	1298	С	VAL A	228	19.586	112.699	39.105	1.00202.30	A	С
20	ATOM	1299	0	VAL A	228	20.780	112.964	39.222	1.00202.30	A	0
	ATOM	1300	N	GLY A	229	19.036	111.627	39.661	1.00121.71	A	N
	ATOM	1301	CA	GLY A	229	19.850	110.749	40.481	1.00119.74	A	С
	ATOM	1302	С	GLY A	229	19.973	111.385	41.854	1.00118.64	A	С
25	ATOM	1303	0	GLY A	229	20.759	112.310	42.041	1.00118.26	A	0
	ATOM	1304	И	THR A	230	19.178	110.890	42.796	1.00114.88	A	N
	MOTA	1305	CA	THR A		19.125	111.362	44.186	1.00113.66	A	С
	MOTA	1306	CB	THR A	230	20.471	111.991	44.661	1.00 99.30	A	С
30	MOTA	1307		THR A		21.495	110.990	44.632	1.00101.04	A	0
	ATOM	1308		THR A	230	20.355	112.514	46.095	1.00 98.89	A	C
	ATOM	1309	С	THR A			112.361	44.388	1.00111.81	A	С
	ATOM	1310	0	THR A			111.952	44.559	1.00110.80	A	0
35	MOTA	1311	N	ARG A			113.653	44.357	1.00 50.63	A	И
	ATOM	1312	CA	ARG A		17.306	114.708	44.555	1.00 47.01	A	С
	ATOM	1313	CB	ARG A			115.843	45.341	1.00 73.50	A	С
	ATOM	1314	CG	ARG A			115.425	46.600	1.00 76.79	A	Ċ
40	MOTA	1315	CD	ARG A			116.556	47.031	1.00 80.20	A	С
	MOTA	1316	NE	ARG A			117.863	46.498	1.00 83.47	A	N
	MOTA	1317	CZ	ARG A			119.018	46.755	1.00 84.03	A	С
	ATOM	1318		ARG A			119.052	47.550	1.00 84.51	A	N
45	ATOM	1319		ARG A			120.146	46.202	1.00 83.92	A	N
	ATOM	1320	С	ARG A			115.267	43.233	1.00 44.29	A	С
	ATOM	1321	0	ARG A			115.871	42.488	1.00 44.44	A	0
	ATOM	1322	N	SER A			115.079	42.945	1.00 37.83	A	N
50	MOTA	1323	CA	SER A			115.596	41.709	1.00 33.87	A	С
	MOTA	1324	CB	SER A			114.564	41.086	1.00 41.67	A	С
	MOTA	1325	OG	SER A			114.193	41.991	1.00 40.66	A	0
	ATOM	1326	С	SER A			116.892	41.979	1.00 30.67	A	С
55	MOTA	1327	0	SER A	232	13.808	117.202	43.112	1.00 30.75	A	0

	ATOM	1328	N	TYR	A 233	13.959 117.664	40.915	1.00 47.41	A	N
	ATOM	1329	CA	TYR	A 233	13.225 118.912	41.007	1.00 43.54	A	C,
5	ATOM	1330	CB	TYR .	A 233	14.156 120.105	40.755	1.00 22.72	A	C
	ATOM	1331	CG	TYR .	A 233	15.012 120.501	41.941	1.00 17.80	Α	С
	ATOM	1332	CD1	TYR .	A 233	14.474 121.217	42.999	1.00 17.68	Α	С
	ATOM	1333	CE1	TYR .	A 233	15.259 121.598	44.074	1.00 17.07	Α	С
10	ATOM	1334	CD2	TYR .	A 233	16.366 120.172	41.997	1.00 15.44	A	С
	ATOM	1335	CE2	TYR	A 233	17.162 120.550	43.072	1.00 15.13	A	С
	ATOM	1336	cz	TYR	A 233	16.597 121.264	44.103	1.00 15.74	A	С
	ATOM	1337	OH	TYR :	A 233	17.337 121.666	45.176	1.00 14.60	А	0
15	ATOM	1338	С	TYR 2	A 233	12.119 118.866	39.956	1.00 44.02	A	С
	ATOM	1339	0	TYR A	A 233	11.456 119.867	39.682	1.00 45.41	A	0
	ATOM	1340	N	MET A	A 234	11.924 117.687	39.379	1.00 39.23	A	N
	ATOM	1341	CA	MET 2	A 234	10.919 117.490	38.352	1.00 37.91	A	С
20	ATOM	1342	CB	MET 2	A 234	11.179 116.206	37.596	1.00 60.51	A	c
	ATOM	1343	CG	MET A	A 234	12.009 116.384	36.363	1.00 62.85	A	С
	ATOM	1344	SD	MET A	234	12.429 114.770	35.676	1.00 65.21	A	s
	ATOM	1345	CE	MET A	A 234	14.198 114.506	36.245	1.00 64.29	A	С
25	ATOM	1346	С	MET A	A 234	9.559 117.411	38.958	1.00 36.94	A	С
	ATOM	1347	0	MET A	A 234	9.363 116.699	39.933	1.00 36.32	A	0
	ATOM	1348	N	ALA A	A 235	8.618 118.134	38.368	1.00 24.72	A	N
	ATOM	1349	CA	ALA A	235	7.252 118.152	38.850	1.00 25.89	A	С
30	MOTA	1350	CB	ALA A	235	6.443 119.143	38.049	1.00 51.94	A	С
	ATOM	1351	С	ALA A	235	6.674 116.768	38.688	1.00 26.75	A	С
	ATOM	1352	0	ALA A	235	7.068 116.023	37.797	1.00 27.54	A	0
	ATOM	1353	N	PRO A	236	5.729 116.401	39.561	1.00 26.89	A	N
35	ATOM	1354	CD	PRO A	236	5.094 117.297	40.536	1.00 12.25	A	С
	ATOM	1355	CA	PRO A	236	5.061 115.099	39.544	1.00 27.95	A	C
	ATOM	1356	CB	PRO P	236	3.782 115.368	40.325	1.00 11.39	A	С
	ATOM	1357	CG	PRO A	236	4.223 116.347	41.332	1.00 12.09	A	С
40	ATOM	1358	С	PRO A	236	4.763 114.696	38.106	1.00 29.59	A	С
	ATOM	1359	0	PRO A	236	4.984 113.561	37.708	1.00 30.04	A	0
	ATOM	1360	N	GLU 1	237	4.264 115.679	37.364	1.00 23.55	A	N
	ATOM	1361	CA	GLU A	237	3.874 115.578	35.958	1.00 24.81	A	c
45	ATOM	1362	CB	GLU A	237	3.318 116.926	35.503	1.00 41.40	A	С
	ATOM	1363	CG	GLU F	237	3.639 118.042	36.456	1.00 40.26	A	С
	ATOM	1364	CD	GLU F	237	3.898 119.316	35.731	1.00 39.49	A	С
	ATOM	1365	OE1	GLU A	237	4.157 120.341	36.399	1.00 39.40	A	0
50	ATOM	1366	OE2	GLU F	237	3.844 119.285	34.483	1.00 37.88	A	0
	ATOM	1367	С	GLU A	237	4.965 115.130	34.974	1.00 26.07	A	С
	ATOM	1368	0	GLU F	237	4.741 114.131	34.295	1.00 27.52	A	0
	ATOM	1369	N	ARG A	238	6.072 115.799	34.879	1.00 74.49	A	N
55	ATOM	1370	CA	ARG A	238	7.065 115.312	33.921	1.00 77.86	A	С

	ATOM	1371	CB	ARG	A	238	8.036	116.394	33.452	1.00119.18	A	С
	ATOM	1372	CG	ARG	A	238	8.760	115.896	32.214	1.00124.27	A	C.
5	ATOM	1373	CD	ARG	A	238	9.818	116.799	31.620	1.00129.12	A	С
	ATOM	1374	NE	ARG	A	238	10.405	116.111	30.467	1.00134.45	A	N
	MOTA	1375	CZ	ARG	A	238	11.386	116.581	29.702	1.00136.53	A	С
	ATOM	1376	NH1	ARG	A	238	11.835	115.859	28.682	1.00137.34	A	N
10	ATOM	1377	NH2	ARG	A	238	11.921	117.768	29.948	1.00138.23	A	N
	ATOM	1378	С	ARG	A	238	7.838	114.127	34.455	1.00 78.98	А	С
	ATOM	1379	0	ARG	A	238	8.959	113.846	34.042	1.00 79.41	A	0
	MOTA	1380	N	LEU	A	239	7.223	113.442	35.419	1.00 43.85	A	N
15	ATOM	1381	CA	LEU	A	239	7.797	112.244	35.995	1.00 44.89	A	С
	ATOM	1382	CB	LEU	Α	239	7.846	112.302	37.526	1.00 12.83	A	С
	MOTA	1383	CG	LEU	A	239	8.962	113.115	38.212	1.00 10.51	A	С
	MOTA	1384	CD1	LEU	A	239	8.931	112.764	39.683	1.00 6.96	A	С
20	ATOM	1385	CD2	LEU	A	239	10.369	112.831	37.640	1.00 8.81	A	С
	MOTA	1386	С	LEU	A	239	6.773	111.231	35.548	1.00 47.18	A	С
	ATOM	1387	0	LEU	A	239	7.086	110.297	34.809	1.00 46.02	A	0
	ATOM	1388	N	GLN	A	240	5.537	111.447	35.982	1.00 41.08	A	N
25	ATOM	1389	CA	GLN	A	240	4.442	110.588	35.596	1.00 45.44	A	С
	ATOM	1390	CB	GLN	A	240	3.172	110.960	36.353	1.00186.67	A	С
	MOTA	1391	CG	GLN	A	240	2.015	110.044	36.050	1.00187.75	A	С
	MOTA	1392	CD.	GLN	A	240	0.737	110.506	36.701	1.00189.86	A	С
30	MOTA	1393	OE1	GLN	A	240	-0.320	109.887	36.535	1.00192.76	A	0
	ATOM	1394	NE2	GLN	A	240	0.820	111.602	37.451	1.00190.51	A	N
	ATOM	1395	С	GLN	A	240	4.275	110.891	34.119	1.00 48.89	A	C
	ATOM	1396	0	GLN	A	240	3.382	111.630	33.730	1.00 49.42	A	0
35	MOTA	1397	N	GLY	A	241	5.149	110.332	33.294	1.00 60.71	A	N
	ATOM	1398	CA	GLY	A	241	5.061	110.588	31.873	1.00 65.43	A	С
	ATOM	1399	С	GLY	A	241	6.101	111.620	31.519	1.00 69.18	A	С
	ATOM	1400	0	GLY	A	241	7.181	111.639	32.107	1.00 69.40	A	0
40	ATOM	1401	N	THR	A	242	5.786	112.476	30.561	1.00 88.15	A	N
	ATOM	1402	CA	THR	A	242	6.712	113.516	30.151	1.00 89.76	A	С
	ATOM	1403	CB	THR	A	242	7.881	112.932	29.321	1.00203.67	A	С
	ATOM	1404	OG1	THR	A	242	8.732	113.995	28.871	1.00203.67	A	0
45	ATOM	1405	CG2	THR	A	242	7.360	112.157	28.119	1.00203.67	A	С
	MOTA	1406	С	THR	A	242	5.972	114.559	29.332	1.00 91.42	A	С
	MOTA	1407	0	THR	A	242	5.349	114.238	28.325	1.00 93.93	A	0
	MOTA	1408	N	HIS	A	243	6.022	115.808	29.790	1.00 45.09	A	N
50	MOTA	1409	CA	HIS	A	243	5.361	116.921	29.110	1.00 45.17	A	С
	ATOM	1410	CB	HIS	A	243	3.855	116.817	29.282	1.00 70.28	A	С
	MOTA	1411	CG	HIS	A	243	3.440	115.704	30.185	1.00 71.67	A	C
55	ATOM	1412	CD2	HIS	A	243	3.163	115.681	31.511	1.00 72.42	A	С
J.J	MOTA	1413	ND1	HIS	A	243	3.322	114.406	29.745	1.00 72.24	A	N

ATOM 1415 NE2 HIS A 243 2.1 5 ATOM 1416 C HIS A 243 5.1 ATOM 1417 O HIS A 243 5.1 ATOM 1418 N TYR A 244 7.3	187 113.628 30.759 1.00 73.16 A 181 114.378 31.843 1.00 73.26 A 140 118.232 29.732 1.00 44.54 A 164 118.924 30.395 1.00 45.04 A 02 118.564 29.518 1.00 76.08 A 351 119.788 30.081 1.00 74.49 A 08 119.956 29.693 1.00 67.10 A 49 120.725 30.739 1.00 70.19 A 34 120.091 31.870 1.00 72.03 A	C 0 N C C C
5 ATOM 1416 C HIS A 243 5.1 ATOM 1417 O HIS A 243 5.1 ATOM 1418 N TYR A 244 7.3	40 118.232 29.732 1.00 44.54 A 164 118.924 30.395 1.00 45.04 A 02 118.564 29.518 1.00 76.08 A 515 119.788 30.081 1.00 74.49 A 08 119.956 29.693 1.00 67.10 A 49 120.725 30.739 1.00 70.19 A	C C C
ATOM 1417 O HIS A 243 5.0 ATOM 1418 N TYR A 244 7.3	164 118.924 30.395 1.00 45.04 A 02 118.564 29.518 1.00 76.08 A 151 119.788 30.081 1.00 74.49 A 08 119.956 29.693 1.00 67.10 A 49 120.725 30.739 1.00 70.19 A	0 N C
ATOM 1418 N TYR A 244 7,	02 118.564 29.518 1.00 76.08 A 151 119.788 30.081 1.00 74.49 A 08 119.956 29.693 1.00 67.10 A 149 120.725 30.739 1.00 70.19 A	N C C
	551 119.788 30.081 1.00 74.49 A 08 119.956 29.693 1.00 67.10 A 49 120.725 30.739 1.00 70.19 A	c
ATOM 1419 CA TYR A 244 7.6	08 119.956 29.693 1.00 67.10 A 49 120.725 30.739 1.00 70.19 A	С
	49 120.725 30.739 1.00 70.19 A	
10 ATOM 1420 CB TYR A 244 9.3		С
ATOM 1421 CG TYR A 244 9.8	34 120.091 31.870 1.00 72.03 A	
ATOM 1422 CD1 TYR A 244 10.3		С
ATOM 1423 CE1 TYR A 244 10.5	38 120.798 32.876 1.00 73.61 A	С
15 ATOM 1424 CD2 TYR A 244 9.5	94 122.096 30.643 1.00 70.42 A	С
ATOM 1425 CE2 TYR A 244 10.5	95 122.816 31.646 1.00 72.12 A	С
ATOM 1426 CZ TYR A 244 11.0	65 122.164 32.762 1.00 73.52 A	С
ATOM 1427 OH TYR A 244 11.6	54 122.882 33.775 1.00 75.14 A	0
20 ATOM 1428 C TYR A 244 6.8	93 121.017 29.632 1.00 70.59 A	С
ATOM 1429 O TYR A 244 6.5	87 121.452 28.490 1.00 70.62 A	0
ATOM 1430 N SER A 245 6.3	26 121.576 30.566 1.00 46.31 A	N
ATOM 1431 CA SER A 245 5.3	48 122.768 30.306 1.00 41.50 A	С
25 ATOM 1432 CB SER A 245 4.0	00 122.672 31.023 1.00 54.63 A	С
ATOM 1433 OG SER A 245 3.2	06 123.816 30.786 1.00 56.06 A	0
ATOM 1434 C SER A 245 6.1	42 123.920 30.877 1.00 38.46 A	С
ATOM 1435 O SER A 245 7.3	64 123.885 30.937 1.00 40.39 A	0
30 ATOM 1436 N VAL A 246 5.4	30 124.951 31.301 1.00 41.06 A	N
ATOM 1437 CA VAL A 246 6.0	39 126.115 31.911 1.00 37.79 A	С
ATOM 1438 CB VAL A 246 5.2	94 127.408 31.517 1.00 29.02 A	С
ATOM 1439 CG1 VAL A 246 6.1	54 128.613 31.809 1.00 27.27 A	С
35 ATOM 1440 CG2 VAL A 246 4.8	98 127.355 30.049 1.00 29.13 A	С
ATOM 1441 C VAL A 246 5.7	67 125.829 33.366 1.00 34.07 A	C
ATOM 1442 O VAL A 246 6.5	73 126.116 34.230 1.00 33.11 A	0
ATOM 1443 N GLN A 247 4.6	04 125.229 33.595 1.00 35.73 A	N
40 ATOM 1444 CA GLN A 247 4.1	10 124.857 34.911 1.00 30.75 A	С
ATOM 1445 CB GLN A 247 2.8	22 124.055 34.772 1.00 63.51 A	C
ATOM 1446 CG GLN A 247 1.9	16 124.520 33.668 1.00 66.34 A	С
ATOM 1447 CD GLN A 247 1.5	07 125.944 33.852 1.00 68.42 A	С
45 ATOM 1448 OE1 GLN A 247 1.3	08 126.394 34.979 1.00 70.92 A	0
ATOM 1449 NE2 GLN A 247 1.3	61 126.672 32.746 1.00 69.35 A	N
ATOM 1450 C GLN A 247 5.1	17 124.004 35.660 1.00 29.18 A	С
ATOM 1451 O GLN A 247 5.0	38 123.845 36.884 1.00 29.36 A	0
50 ATOM 1452 N SER A 248 6.0	53 123.427 34.925 1.00 29.95 A	N
ATOM 1453 CA SER A 248 7.0	49 122.597 35.562 1.00 28.20 A	С
ATOM 1454 CB SER A 248 7.5	80 121.593 34.553 1.00 10.01 A	С
ATOM 1455 OG SER A 248 6.5	20 120.766 34.098 1.00 9.31 A	0
55 ATOM 1456 C SER A 248 8.1	55 123.468 36.164 1.00 26.29 A	С

	MOTA	1457	0	SER	A	248	8.574	123.230	37.287	1.00	26.36	А	0
	ATOM	1458	N	ASP	A	249	8.607	124.487	35.435	1.00	21.00	А	N
5	ATOM	1459	CA	ASP	A	249	9.628	125.394	35.955	1.00	19.49	A	С
	MOTA	1460	CB	ASP	A	249	9.947	126.505	34.969	1.00	26.12	A	С
	MOTA	1461	CG	ASP	А	249	10.677	126.004	33.769	1.00	27.48	A	С
	MOTA	1462	OD1	ASP	A	249	11.648	125.260	33.960	1.00	28.22	A	0
10	MOTA	1463	OD2	ASP	A	249	10.295	126.347	32.631	1.00	28.78	A	0
	ATOM	1464	С	ASP	А	249	9.073	126.024	37.201	1.00	18.46	A	¢
	ATOM	1465	0	ASP	A	249	9.751	126.119	38.226	1.00	19.31	A	0
	ATOM	1466	N	ILE	A	250	7.832	126.477	37.091	1.00	16.36	A	N
15	MOTA	1467	ÇA	ILE	А	250	7.163	127.086	38.211	1.00	13.55	A	С
	MOTA	1468	CB	ILE	A	250	5.673	127.311	37.941	1.00	20.29	A	С
	MOTA	1469	CG2	ILE	А	250	4.939	127.408	39.235	1.00	20.41	A	С
	ATOM	1470	CG1	ILE	A:	250	5.450	128.612	37.173	1.00	20.29	A	С
20	ATOM	1471	CD1	ILE	A :	250	5.960	128.580	35.788	1.00	20.29	A	С
	MOTA	1472	С	ILE	A	250	7.312	126.132	39.374	1.00	14.03	A	С
	ATOM	1473	0	ILE	A	250	7.626	126.566	40.473	1.00	14.18	A	0
	ATOM	1474	N	TRP	A	251	7.104	124.832	39.136	1.00	22.50	A	N
25	ATOM	1475	CA	TRP	A:	251	7.235	123.829	40.202	1.00	22.48	A	С
	ATOM	1476	СВ	TRP	A:	251	6.835	122.434	39.710	1.00	23.28	A	С
	MOTA	1477	CG	TRP	A :	251	7.258	121.318	40.650	1.00	23.28	A	С
	ATOM	1478	CD2	TRP	A:	251	6.429	120.593	41.567	1.00	23.28	A	С
30	MOTA	1479	CE2	TRP	A:	251	7.264	119.703	42.271	1.00	23.68	A	С
	MOTA	1480	CE3	TRP	A:	251	5.064	120.612	41.862	1.00	23.28	A	С
	ATOM	1481	CD1	TRP	A:	251	8.523	120.840	40.832	1.00	23.28	A	С
	ATOM	1482	NE1	TRP	A:	251	8.536	119.872	41.802	1.00	23.28	A	N
35	ATOM	1483	CŽ2	TRP	A	251	6.783	118.845	43.249	1.00	23.84	A	С
	MOTA	1484	CZ3	TRP	A	251	4.582	119.760	42.832	1.00	23.64	A	С
	MOTA	1485	CH2	TRP	A	251	5.440	118.888	43.518	1.00	24.78	A	С
	ATOM	1486	С	TRP	A:	251	8.654	123.777	40.741	1.00	22.48	A	С
40	MOTA	1487	0	TRP	A	251	8.872	123.841	41.939	1.00	22.52	A	0
	MOTA	1488	N	SER	A	252	9.623	123.652	39.851	1.00	18.78	A	N
	ATOM	1489	CA	SER	A	252	11.011	123.605	40.263	1.00	20.04	A	С
	MOTA	1490	СВ	SER	A	252	11.909	123.428	39.039	1.00	29.86	A	С
45	MOTA	1491	OG	SER	A	252	11.671	122.176	38.418	1.00	34.06	A	0
	ATOM	1492	С	SER	A	252	11.395	124.867	41.039	1.00	19.68	A	¢
	MOTA	1493	0	SER	A	252	12.300	124.829	41.870	1.00	21.46	A	0
	MOTA	1494	N	MET	A	253	10.716	125.985	40.778	1.00	15.76	A	N
50	ATOM	1495	CA	MET	A	253	11.013	127.211	41.514	1.00	16.96	A	С
	MOTA	1496	CB	MET	A:	253	10.404	128.431	40.836		21.07	A	С
	MOTA	1497	ÇG	MET	A:	253	10.728	129.740	41.569	1.00	22.82	A	С
	ATOM	1498	SD	MET	A :	253	10.120	131.224	40.766	1.00	24.37	A	s
55	MOTA	1499	CE	MET	A :	253	8.344	130.888	40.865	1.00	24.40	A	С

	ATOM	1500	С	MET	A	253	10.476	127.122	42.937	1.00	16.57	Α	С
	MOTA	1501	0	MET	A	253	11.172	127.468	43.895	1.00	17.32	A	0
5	MOTA	1502	N	GLY	A	254	9.235	126.653	43.063	1.00	24.19	A	N
	ATOM	1503	CA	GLY	A	254	8.595	126.499	44.365	1.00	23.51	A	С
	MOTA	1504	С	GLY	A	254	9.368	125.574	45.281	1.00	23.51	A	С
	ATOM	1505	0	GLY	A	254	9.570	125.860	46.461	1.00	23.57	A	0
10	ATOM	1506	N	LEU	A	255	9.800	124.447	44.736	1.00	30.88	A	N
	MOTA	1507	CA	LEU	A	255	10.580	123.520	45.518	1.00	30.88	A	С
	MOTA	1508	СВ	LEU	A	255	10.812	122.228	44.747	1.00	27.13	A	С
	ATOM	1509	CG	LEU	A	255	11.235	121.111	45.695	1.00	26.31	A	С
15	ATOM	1510	CD1	LEU	A	255	9.990	120.562	46.374	1.00	26.57	A	С
	MOTA	1511	CD2	LEU	A	255	11.974	120.027	44.949	1.00	26.68	A	С
	ATOM	1512	С	LEU	A	255	11.931	124.173	45.837	1.00	33.11	A	С
	ATOM	1513	0	LEO	A	255	12.474	123.996	46.925	1.00	30.88	A	0
20	ATOM	1514	N	SER	A	256	12.469	124.933	44.887	1.00	42.19	A	N
	MOTA	1515	CA	SER	A	256	13.752	125.597	45.082	1.00	41.87	A	С
	MOTA	1516	CB	SER	A	256	14.243	126.191	43.768	1.00	26.18	A	¢.
	MOTA	1517	OG	SER	A	256	14.631	125.171	42.874	1.00	27.27	A	0
25	MOTA	1518	С	SER	A	256	13.702	126.688	46.144	1.00	42.01	A	С
	MOTA	1519	0	SER	A	256	14.694	126.933	46.838	1.00	41.23	A	0
	MOTA	1520	N	LEU	A	257 ·	12.556	127.350	46.261	1.00	31.99	A	N
	MOTA	1521	CA	LEU	A	257	12.394	128.396	47.262	1.00	32.06	A	С
30	MOTA	1522	CB	LEU	A	257	11.124	129.219	46.976	1.00	22.21	A	С
	ATOM ·	1523	CG	LEU				130.588	46.290	1.00	21.67	A	С
	MOTA	1524	CD1	TEO	A	257	12.493	130.734	45.513	1.00	21.14	A	С
	MOTA	1525	CD2	TEO	A	257	10.000	130.750	45.379	1.00	23.42	A	С
35	MOTA	1526	С	TEO	A	257	12.307	127.747	48.648	1.00	34.23	A	С
	ATOM	1527	0	TEO	A	257		128.174	49.590	1.00	35.10	A	0
	MOTA	1528	N	VAL	A	258	11.475	126.713	48.765	1.00	24.04	A	N
	MOTA	1529	CA	VAL				126.005	50.025	1.00	24.21	A	С
40	ATOM	1530	CB	VAL			10.330	124.859	49.892	1.00	11.72	A	С
	ATOM	1531		VAL			10.487	123.908	51.066	1.00	12.01	A	С
	ATOM	1532		VAL				125.398	49.860	1.00	10.67	A	С
	MOTA	1533	С	VAL	Α.	258		125.429	50.525	1.00	25.33	A	С
45	MOTA	1534	0	VAL				125.265	51.727	1.00	25.66	A	0
	MOTA	1535	N	GLU				125.113	49.592	1.00	23.91	A	N
	MOTA	1536	CA	GLU				124.566	49.929	1.00	22.93	A	С
	MOTA	1537	CB	GLU				124.073	48.667	1.00	46.78	A	С
50	MOTA	1538	CG	GLU				123.540	48.904	1.00	47.15	A	С
	ATOM	1539	CD	GLU				122.502	47.874	1.00	45.54	A	С
	ATOM	1540		GLU				122.256	47.726	1.00	44.00	A	0
	ATOM	1541		GLU				121.922	47.220		44.40	A	0
55	MOTA	1542	С	GLU	A :	259	15.678	125.627	50.607	1.00	23.21	A	С

	ATOM	1543	0	GLU	A	259	16.098	125.458	51.743	1.00	21.22	A	0
	ATOM	1544	N	LEU	A	260	15.905	126.727	49.900	1.00	29.08	A	N.
5	ATOM	1545	CA	LEU	A	260	16.688	127.854	50.406	1.00	29.17	A	С
	ATOM	1546	CB	LEU	A	260	16.825	128.907	49.318	1.00	8.66	A	С
	ATOM	1547	CG	LEU	A	260	17.583	128.457	48.080	1.00	10.10	A	С
	ATOM	1548	CD1	LEU	A	260	17.187	129.323	46.889	1.00	9.89	A	С
10	ATOM	1549	CD2	LEU	A	260	19.086	128.516	48.380	1.00	9.05	A	С
	ATOM	1550	С	LEU	A	260	16.027	128.481	51.621	1.00	28.89	A	С
	ATOM	1551	0	LEU	A	260	16.672	129.174	52.406	1.00	27.14	A	0
	ATOM	1552	N	ALA	A	261	14.731	128.234	51.762	1.00	44.26	A	N
15	ATOM	1553	CA	ALA	A	261	13.977	128.769	52.880	1.00	44.28	A	С
	ATOM	1554	CB	ALA	A	261	12.499	128.828	52.520	1.001	.02.24	A	С
	ATOM	1555	С	ALA	A	261	14.178	127.940	54.150	1.00	43.25	A	С
	ATOM	1556	0	ALA	A	261	14.289	128.475	55.251	1.00	44.09	A	0
20	ATOM	1557	N	VAL	A	262	14.245	126.631	53.995	1.00	13.81	A	N
	ATOM	1558	CA	VAL	A	262	14.403	125.764	55.137	1.00	13.99	A	С
	ATCM	1559	CB	VAL	A	262	13.421	124.604	55.025	1.00	11.33	A	С
	ATOM	1560	CG1	VAL	A	262	13.723	123.561	56.060	1.00	11.22	A	С
25	ATOM	1561	CG2	VAL	A	262	12.012	125.129	55.194	1.00	11.14	A	С
	ATOM	1562	С	VAL	A	262	15.821	125.241	55.350	1.00	15.56	A	С
	ATOM	1563	0	VAL	A	262	16.168	124.797	56.444	1.00	13.43	A	0
	ATOM	1564	N	GLY	A	263 .	16.656	125.281	54.324	1.00	30.40	A	N
30	ATOM	1565	CA	GLY	A	263	18.014	124.810	54.525	1.00	31.79	A	С
	ATOM	1566	С	GLY	A	263	18.345	123.431	53.987	1.00	32.88	A	С
	ATOM	1567	0	GLY	A	263	19.509	123.025	53.977	1.00	34.12	A	0
	ATOM	1568	N	ARG	A	264	17.339	122.696	53.539	1.00	22.31	A	N
35	ATOM	1569	CA	ARG				121.388	52.987	1.00	23.20	A	С
	ATOM	1570	CB	ARG			17.514	120.318	54.069	1.00	77.11	A	С
	ATOM	1571	CG	ARG	A	264	16.110	119.885	54.360	1.00	82.08	A	С
	ATOM	1572	CD	ARG				118.927	55.510	1.00	85.94	A	С
40	ATOM	1573	NE	ARG			15.186	117.817	55.250	1.00	89.65	A	N
	ATOM	1574	CZ	ARG			14.770	116.982	56.189	1.00	92.90	A	С
	ATOM	1575		ARG			13.953	115.985	55.872	1.00	94.99	A	N
45	ATOM	1576		ARG			15.164	117.156	57.450	1.00	94.91	A	N
45	ATOM	1577	С	ARG				121.062	51.878		23.61	A	С
	ATOM	1578	0	ARG				121.738	51.700	1.00	22.37	A	0
	ATOM	1579	N	TYR				120.026	51.118		25.52	A	N
50	ATOM	1580	CA	TYR				119.584	50.042	1.00	25.01	A	С
50	ATOM	1581	CB	TYR				118.447	49.270		12.79	A	C
	ATOM	1582	CG	TYR				117.839	48.195		11.37	A	С
	ATOM	1583		TYR				118.546	47.060		11.20	A	С
55	ATOM	1584		TYR				117.935	46.055		11.51	A	С
55	ATOM	1585	CD2	TYR	A	265	15.500	116.530	48.294	1.00	10.81	A	С

		ATOM	1586	CE2	TYR	A	265	14.762	115.928	47.307	1.00 10	.23	A	С
		ATOM	1587	CZ	TYR	A	265	14.411	116.619	46.196	1.00 10	.15	A	C
	5	ATOM	1588	OH	TYR	A	265	13.700	115.972	45.222	1.00 8	.54	A	0
		ATOM	1589	С	TYR	A	265	14.900	119.108	50.778	1.00 28	.16	A	С
		ATOM	1590	0	TYR	A	265	14.925	118.134	51.514	1.00 28	.48	A	О
		ATOM	1591	N	PRO	A	266	13.801	119.824	50.607	1.00 20	.07	A	N
	10	ATOM	1592	CD	PRO	A	266	13.620	120.977	49.718	1.00 36	. 60	A	С
		ATOM	1 59 3	CA	PRO	A	266	12.553	119.467	51.277	1.00 21	.90	A	С
		MOTA	1594	CB	PRO	A	266	11.588	120.542	50.801	1.00 39	.09	A	С
		ATOM	1595	CG	PRO	A	266	12.151	120.953	49.466	1.00 37	. 63	A	С
	15	MOTA	1596	C	PRO	A	266	12.010	118.066	51.066	1.00 27	.55	A	С
		ATOM	1597	0	PRO	A	266	11.962	117.281	52.004	1.00 29	.14	A	0
		ATOM	1598	N	ILE	A	267	11.610	117.763	49.822	1.00118	.97	A	N
		ATOM	1599	CA	ILE	A	267	11.011	116.473	49.458	1.00120	.11	A	С
-	20	ATOM	1600	CB	ILE	A	267	11.624	115.830	48.249	1.00 60	.15	A	С
		ATOM	1601	CG2	ILE	A	267	11.242	114.313	48.215	1.00 59	.04	A	С
		ATOM	1602	CG1	ILE	A	267	11.079	116.524	47.017	1.00 59	.01	A	С
		ATOM	1603	CD1	ILE	A	267	9.652	116.879	47.204	1.00 58	.07	A	С
2	?5	ATOM	1604	c	ILE	A	267	10.936	115.390	50.466	1.00125	.16	A	С
		MOTA	1605	0	ILE	A	267	9.874	114.837	50.699	1.00125	.24	A	0
		ATOM	1606	N	PRO	A	268	12.068	114.962	51.025	1.00 53	.93	A	N
		MOTA	1607	CD	PRO	A	268	13.495	115.014	50.670	1.00 35	. 94	A	С
	30	MOTA	1608	CA	PRO	A	268	11.801	113.907	52.002	1.00 53	.27	A	С
		ATOM	1609	CB	PRO	A	268	13.146	113.204	52.113	1.00 39	. 49	A	С
		ATOM	1610	CG	PRO	A	268	14.106	114.335	51.867	1.00 37	.41	A	С
		ATOM	1611	C	PRO	A	268	11.396	114.579	53.323	1.00 58	.09	A	С
	35	ATOM	1612	0	PRO	A	268	12.238	115.082	54.036	1.00 57	. 93	A	0
		ATOM	1613		PRO	A	269	10.082	114.608	53.649	1.00120	.81	A	N
		ATOM	1614		PRO	A	269	9.166	113.574	53.144	1.00203	. 67	A	С
		ATOM	1615		PRO	A	269	9.545	115.210	54.874	1.00119	. 67	A	С
	10	MOTA	1616	CB	PRO			8.683	114.098	55.424	1.00203	. 67	A	С
		ATOM	1617		PRO				113.636	54.150	1.00203	. 67	A	С
		ATOM	1618		PRO				115.680	55.837	1.00122	.77	A	С
		ATOM	1619		PRO				114.882	56.311	1.00123	.52	A	0
	15	ATOM	1620		PRO			10.669	116.978	56.147	1.00130	.19	A	N
		ATOM	1621		PRO				117.951	55.890	1.00 51	. 48	A	С
		ATOM	1622		PRO				117.549	57.041	1.00127	-82	A	С
		MOTA	1623		PRO			11.368	119.052	57.016	1.00 52	.87	A	С
	50	MOTA	1624		PRO				119.217	55.887	1.00 52	. 68	A	С
		MOTA	1625		PRO				116.999	58.448	1.00128	. 46	A	С
		ATOM			PRO				116.051	58.777	1.00126	. 60	A	0
		ATOM			ASP .				117.591	59.276	1.00192		A	N
	55	MOTA	1628	CA .	ASP .	A :	271	10.645	117.195	60.669	1.00191	.08	A	С

	ATOM	1629	CB	ASP A	271	10.242	115.717	60.750	1.00 75.02	A	C
	ATOM	1630	CG	ASP A	271	10.484	115.120	62.113	1.00 75.77	A	С
5	ATOM	1631	OD1	ASP A	271	11.663	114.907	62.470	1.00 75.51	A	0
	ATOM	1632	OD2	ASP A	271	9.492	114.867	62.825	1.00 76.42	A	0
	ATOM	1633	С	ASP A	271	12.003	117.474	61.342	1.00191.86	A	С
	MOTA	1634	0	ASP A	271	12.902	116.622	61.343	1.00191.44	A	0
10	ATOM	1635	N	ALA A	272	12.131	118.686	61.891	1.00 98.30	A	N
	ATOM	1636	CA	ALA A	272	13.364	119.145	62.544	1.00 98.14	A	С
	ATOM	1637	CB	ALA A	272	14.532	118.814	61.673	1.00 15.10	A	С
	ATOM	1638	С	ALA A	272	13.390	120.652	62.844	1.00 99.21	A	С
15	ATOM	1639	0	ALA A	272	12.348	121.298	62.937	1.00 99.39	A	0
	ATOM	1640	N	LYS A	273	14.606	121.188	62.977	1.00 65.32	A	N
	ATOM	1641	CA	LYS A	273	14.846	122.617	63.250	1.00 66.46	A	С
	ATOM	1642	CB	LYS A	273	15.721	122.791	64.508	1.00 4.67	A	С
20	ATOM	1643	œ	LYS A	273	14.956	122.630	65.798	1.00 4.67	A	С
	ATOM	1644	CD	LYS A	273	13.800	123.627	65.941	1.00 4.67	A	С
	ATOM	1645	CE	LYS A	273 -	12.476	123.116	65.355	1.00 5.66	A	С
	ATOM	1646	NZ	LYS A	273	12.251	123.438	63.894	1.00 6.41	A	N
25	ATOM	1647	C	LYS A	273	15.488	123.377	62.075	1.00 66.44	A	С
	ATOM	1648	0	LYS A	273	15.839	124.560	62.194	1.00 65.91	A	0
	ATOM	1649	N	ASP A	311	19.688	112.154	63.895	1.00178.38	A	N
	ATOM	1650	CA	ASP A	311	20.423	112.413	65.128	1.00179.40	A	С
30	ATOM	1651	СВ	ASP A	311	19.938	113.723	65.761	1.00158.88	A	С
	ATOM	1652	CG	ASP A	311	20.664	114.055	67.052	1.00158.62	A	С
	ATOM	1653	OD1	ASP A	311	20.436	115.158	67.593	1.00157.70	A	0
	MOTA	1654	OD2	ASP A	311	21.459	113.216	67.529	1.00158.55	A	0
35	ATOM	1655	С	ASP A	311	20.245	111.260	66.111	1.00179.42	A	С
	ATOM	1656	0	ASP A	311	19.816	110.170	65.732	1.00179.43	A	0
	ATOM	1657	N	SER A	312	22.642	110.131	60.919	1.00190.27	A	N
	ATOM	1658	CA	SER A	312	21.367	110.833	60.835	1.00188.90	Α	С
40	ATOM	1659	CB	SER A	312	21.604	112.323	60.565	1.00160.42	Α	С
	MOTA	1660	OG	SER A	312	22.470	112.898	61.532	1.00160.30	A	0
	MOTA	1661	С	SER A		20.522	110.233	59.713	1.00187.76	A	С
	ATOM	1662	0	SER A	312	21.038	109.493	58.873	1.00186.93	A	0
45	MOTA	1663	N	ARG A		19.228	110.548	59.703	1.00203.67	A	N
	ATOM	1664	CA	ARG A	313		110.034	58.670	1.00203.67	A	С
	ATOM	1665	СВ	ARG A		16.958	110.709	58.738	1.00 98.77	A	С
	ATOM	1666	CG	ARG A	313	16.001	110.125	59.764	1.00 99.54	A	С
50	ATOM	1667	CD	ARG A	313	14.557	110.341	59.326	1.00 99.90	A	С
	ATOM	1668	NE	ARG A	313	14.242	109.588	58.110	1.00101.08	A	N
	MOTA	1669	CZ	ARG A		13.097	109.683	57.438	1.00101.58	A	С
	MOTA	1670		ARG A			110.507	57.859	1.00100.91	A	N
55	ATOM	1671	NH2	ARG A	313	12.899	108.950	56.349	1.00101.49	A	N

	ATOM	1672	С	ARG	A	313	18.928	110.257	57.286	1.00203.67	A	С
	ATOM	1673	0	ARG	A	313	19.038	111.391	56.815	1.00203.67	A	0
5	ATOM	1674	N	PRO	A	314	19.326	109.167	56.620	1.00167.83	A	N
	MOTA	1675	CD	PRO	A	314	19.371	107.811	57.193	1.00195.98	A	С
	ATOM	1676	CA	PRO	A	314	19.920	109.189	55.279	1.00164.36	A	C
	MOTA	1677	CB	PRO	A	314	20.262	107.719	55.033	1.00194.24	A	C
10	ATOM	1678	CG	PRO	A	314	20.501	107.187	56.422	1.00195.13	A	С
	MOTA	1679	С	PRO	A	314	18.980	109.746	54.209	1.00160.39	A	С
	ATOM	1680	0	PRO	A	314	17.898	110.254	54.508	1.00159.44	A	0
	ATOM	1681	N	ALA	A	315	19.408	109.648	52.958	1.00104.00	A	N
15	ATOM	1682	CA	ALA	A	315	18.609	110.124	51.841	1.00 99.77	A	С
	MOTA	1683	CB	ALA	A	315	19.520	110.557	50.697	1.00103.35	A	С
	MOTA	1684	С	ALA	A	315	17.696	108.990	51.389	1.00 96.97	A	С
	MOTA	1685	0	ALA	A	315	17.904	107.837	51.755	1.00 97.14	A	0
20	ATOM	1686	N	MET	A	316	16.681	109.319	50.602	1.00 45.22	A	N
	ATOM	1687	CA	MET	A	316	15.760	108.313	50.102	1.00 40.82	A	С
	ATOM	1688	CB	MET	A	316	14.436	108,943	49.710	1.00 38.21	A	С
	ATOM	1689	CG	MET	A	316	13.545	109.344	50.838	1.00 32.89	A	С
25	ATOM	1690	SD	MET	A	316	12.159	110.108	50.058	1.00 29.33	A	S
	ATOM	1691	CE	MET	A	316	10.827	109.006	50.388	1.00 31.07	A	С
	ATOM	1692	С	MET	A	316	16.348	107.689	48.859	1.00 39.34	A	¢
	ATOM	1693	0	MET	A	316		108.343	48.133	1.00 39.76	A	0
30	ATOM	1694	N	ALA	A	317	16.026	106.427	48.602	1.00 55.95	A	N
	ATOM	1695	CA	ALA				105.783	47.392	1.00 53.74	A	С
	ATOM	1696	CB	ALA				104.333	47.358	1.00107.40	A	С
	ATOM	1697	С	ALA				106.578	46.267	1.00 51.31	A	С
35	ATOM	1698	0	ALA				107.182	46.487	1.00 51.08	A	0
	ATOM	1699	N	ILE				106.597	45.074	1.00 26.23	A	N
	ATOM	1700	CA	ILE				107.370	43.995	1.00 26.82	A	С
	ATOM	1701	CB	ILE				107.185	42.652	1.00 43.92	A	С
40	MOTA	1702		ILE				107.613	41.533	1.00 43.98	A	С
	ATOM	1703		ILE				108.051	42.581	1.00 44.78	A	C
	MOTA	1704		ILE				107.976	41.223	1.00 46.89	A	С
45	ATOM	1705	С	ILE				107.064	43.751	1.00 25.98	A	С
45	ATOM	1706	0	ILE				107.966	43.724	1.00 25.78	A	0
	MOTA	1707	N	PHE				105.801	43.549	1.00 38.81	A	N
	ATOM	1708	CA	PHE				105.518	43.300	1.00 37.37	A	С
50	MOTA	1709	CB	PHE				104.039	42.979	1.00 29.42	A	С
••	ATOM	1710	CG	PHE				103.731	42.510	1.00 26.72	A	С
	ATOM	1711		PHE				103.375	43.409	1.00 26.08	A	С
	MOTA	1712		PHE				103.867	41.172	1.00 27.06	A	С
55	ATOM	1713		PHE				103.160	42.981	1.00 26.09	A	С
	ATOM	1714	CE2	PHE	A	319	9.386	103.657	40.735	1.00 26.41	A	С

	ATOM	1715	CZ	PHE A 319	8.405 103.303	41.641	1.00 25.24	A	С
	ATOM	1716	С	PHE A 319	11.839 105.929	44.537	1.00 36.13	A	C
5	ATOM	1717	0	PHE A 319	10.752 106.496	44.447	1.00 34.50	A	0
	ATOM	1718	N	GLU A 320	12.440 105.661	45.691	1.00 49.11	A	N
	ATOM	1719	CA	GLU A 320	11.858 105.995	46.984	1.00 50.67	A	С
	ATOM	1720	CB	GLU A 320	12.861 105.698	48.094	1.00 90.58	A	С
10	ATOM	1721	CG	GLU A 320	12.283 105.715	49.488	1.00 94.98	A	С
	ATOM	1722	CD	GLU A 320	13.370 105.672	50.537	1.00 97.30	A	С
	ATOM	1723	OE1	GLU A 320	14.366 104.948	50.319	1.00 98.87	A	0
	ATOM	1724	OE2	GLU A 320	13.231 106.353	51.578	1.00 97.52	A	0
15	ATOM	1725	С	GLU A 320	11.504 107.472	47.014	1.00 49.63	A	С
	ATOM	1726	0	GLU A 320	10.547 107.875	47.673	1.00 50.28	A	0
	ATOM	1727	N	LEU A 321	12.301 108.265	46.300	1.00 28.99	A	N
	ATOM	1728	CA	LEU A 321	12.115 109.712	46,194	1.00 28.04	A	С
20	ATOM	1729	CB	LEU A 321	13.421 110.388	45.766	1.00 48.42	A	С
	ATOM	1730	CG	LEU A 321	13.296 111.908	45.680	1.00 48.69	A	С
	ATOM	1731	CD1		13.611 112.412	47.061	1.00 48.76	A	С
	ATOM	1732		LEU A 321	14.230 112.548	44.646	1.00 48.06	A	С
25	ATOM	1733	С	LEU A 321	11.038 110.049	45.160	1.00 26.11	A	С
	MOTA	1734	0	LEU A 321	9.951 110.509	45.506	1.00 23.10	A	0
	ATOM	1735	N	LEU A 322	11.368 109.820	43.888	1.00 40.80	A	N
	MOTA	1736	CA	LEU A 322	10.470 110.081	42.765	1.00 40.99	A	C.
30	ATOM	1737	CB	LEU A 322	10.948 109.326	41.531	1.00 14.45	A	С
	ATOM	1738	CG	LEU A 322	12.054 110.003	40.748	1.00 15.41	A	С
	ATOM	1739		LEU A 322	13.072 110.616	41.670	1.00 17.89	A	¢
	ATOM	1740		LEU A 322	12.678 108.985	39.847	1.00 18.35	A	C
35	ATOM	1741	0	LEU A 322 LEU A 322	9.038 109.675	43.055	1.00 41.98	A	C.
	ATOM	1742	N	ASP A 323	8.089 110.339 8.892 108.559	42.635	1.00 39.39	A	0
	ATOM ATOM	1744	CA	ASP A 323	7.580 108.061	43.758	1.00 49.55	A	N
	ATOM	1745	СВ	ASP A 323	7.669 106.684	44.749	1.00 50.42	A	C
40	ATOM	1746	CG	ASP A 323	6.376 105.916	44.633	1.00 84.22	A A	C
	ATOM	1747		ASP A 323	6.186 104.919	45.362	1.00 86.08	A	0
	ATOM	1748		ASP A 323	5.550 106.316	43.791	1.00 83.63	A	0
	ATOM	1749	С	ASP A 323		45.092	1.00 50.69	A	c
45	ATOM	1750	0	ASP A 323		44.931	1.00 51.43	A	0
	ATOM	1751	N	TYR A 324	7.785 109.344	46.120	1.00 50.92	A	N
	ATOM	1752	CA	TYR A 324	7.309 110.274	47.117	1.00 50.92	A	C
	ATOM	1753	СВ	TYR A 324	8.451 110.795	47.987	1.00 63.45	Α	c
50	ATOM	1754	CG	TYR A 324	7.899 111.438	49.221	1.00 65.46	A	c
	ATOM	1755	CD1		7.747 110.711	50.384	1.00 65.71	Α.	c
	ATOM	1756	CE1		7.067 111.224	51.446	1.00 65.31	A	c
	ATOM	1757		TYR A 324	7.363 112.715	49.171	1.00 66.05	A	c
55									-

	ATOM	1758	CE2	TYR	A	324	6.681 113.237	50.229	1.00 66.70	A	С
	ATOM	1759	CZ	TYR	A	324	6.529 112.485	51.362	1.00 66.03	A	C
5	ATOM	1760	OH	TYR	A	324	5.784 112.977	52.401	1.00 67.67	A	0
	ATOM	1761	С	TYR	A	324	6.632 111.452	46.424	1.00 50.82	A	С
	ATOM	1762	0	TYR	A	324	5.464 111.747	46.672	1.00 49.49	A	0
	ATOM	1763	N	ILE	A	325	7.380 112.104	45.544	1.00 49.82	A	N
10	ATOM	1764	CA	ILE	A	325	6.893 113.255	44.801	1.00 46.63	A	C
	MOTA	1765	CB	ILE	A	325	7.895 113.703	43.779	1.00 11.84	A	С
	ATOM	1766	CG2	ILE	A	325	7.236 114.697	42.844	1.00 13.93	A	С
	ATOM	1767	CG1	ILE	A	325	9.126 114.281	44.468	1.00 10.61	A	С
15	ATOM	1768		ILE	A	325	10.195 114.726	43.498	1.00 10.40	A	C
	MOTA	1769	С	ILE			5.589 113.087	44.039	1.00 47.94	A	С
	MOTA	1770	0	ILE	A	325	4.614 113.775	44.311	1.00 48.37	A	0
	MOTA	1771	N	VAL			5.584 112.205		1.00 31.50	A	N
20	MOTA	1772	CA	VAL			4.387 112.001		1.00 31.73	A	С
	MOTA	1773	СВ	VAL			4.653 111.032		1.00 41.65	A	С
	ATOM	1774		VAL			5.556 111.689		1.00 39.85	A	С
	ATOM	1775		VAL			5.324 109.789		1.00 42.38	A	С
25	MOTA	1776	С	VAL			3.222 111.505		1.00 34.52	A	C
	ATOM	1777	0	VAL			2.284 112.263		1.00 35.65	A	0
	ATOM	1778	N	ASN			3.293 110.252		1.00 51.08	A	N
30	ATOM	1779	CA	ASN			2.248 109.627		1.00 51.78	A	С
30	ATOM	1780	CB	ASN			2.784 108.368		1.00155.81	A	С
	ATOM	1781	CG	ASN			2.970 107.227		1.00159.57	A	С
	ATOM	1782		ASN			3.284 106.111		1.00160.40	A	0
35	ATOM	1783	ND2	ASN			2.776 107.493		1.00159.02	A	N
55	ATOM	1784 1785	0	ASN			1.606 110.513		1.00 51.05	A	С
	ATOM	1786	N	ASN			0.382 110.564		1.00 51.16	A	0
	ATOM	1787	CA				2.404 111.201		1.00 18.28	A	N
40	ATOM	1788	CB	GLU			1.839 112.069		1.00 17.66	A	С
	ATOM ATOM	1789	CG	GLU			0.989 111.247 1.571 111.139		1.00 50.35	A	c
	ATOM	1790	CD	GLU			2.697 110.120		1.00 50.42	A	C
	ATOM	1791		GLU			2.400 108.957		1.00 50.79	A	C
45	ATOM	1792		GLU			3.871 110.477		1.00 49.76	A A	0
	ATOM	1793	c	GLU			2.926 112.729		1.00 33.82		0
	ATOM	1794	0	GLU			3.902 112.075		1.00 17.64	A	С
	ATOM	1795	N	PRO			2.825 114.042		1.00 39.31	A	0
50	ATOM	1796	CD	PRO			3.050 113.915	49.751	1.00 59.51	A	N
	ATOM	1797	CA	PRO			2.037 115.262		1.00 68.50	A A	C
	ATOM	1798	CB	PRO			1.062 115.222	49.316	1.00 41.53	A	c
	ATOM	1799	CG	PRO			1.670 114.221	50.296	1.00 69.37		
55	ATOM	1800	С	PRO			3.033 116.449	48.236	1.00 42.07	A A	c
		2000	•	-110	••	523	3.035 110.449	40.230	1.30 42.07	А	C

	ATOM	1801	0	PRO F	329	4.093	116.340	48.871	1.00	41.03	A	0
	ATOM	1802	N	PRO F	330	2.680	117.614	47.661	1.00	33.11	A	N,
5	ATOM	1803	CD	PRO F	330	1.328	118.041	47.264	1.00	57.29	A	С
	ATOM	1804	CA	PRO F	330	3.574	118.769	47.704	1.00	36.23	A	С
	ATOM	1805	CB	PRO F	330	2.778	119.838	46.978	1.00	57.89	A	С
	ATOM	1806	CG	PRO F	330	1.403	119.550	47.431	1.00	56.52	A	С
10	ATOM	1807	С	PRO F	330	4.002	119.219	49.077	1.00	37.76	A	С
	ATOM	1808	0	PRO F	330	3.239	119.170	50.037	1.00	38.13	A	0
	ATOM	1809	N	PRO A	331	5.249	119.673	49.176	1.00	30.77	A	N
	ATOM	1810	CD	PRO F	331	6.199	119.643	48.054	1.00	36.99	A	С
15	MOTA	1811	CA	PRO P	331	5.890	120.169	50.392	1.00	32.67	A	С
	ATOM	1812	CB	PRO P	331	7.367	120.112	50.042	1.00	38.05	A	С
	ATOM	1813	CG	PRO F	331	7.354	120.449	48.591	1.00	37.86	A	С
	ATOM	1814	С	PRO P	331	5.416	121.584	50.654	1.00	34.88	A	С
20	ATOM	1815	0	PRO P	331	5.009	122.288	49.731	1.00	35.42	A	0
	ATOM	1816	N	LYS A	332	5.467	121.999	51.910	1.00	43.36	A	N
	ATOM	1817	CA	LYS A	332	5.030	123.333	52.284	1.00	43.81	A	С
	ATOM	1818	CB	LYS A	332	3.682	123.242	53.001	1.00	51.45	A	С
25	ATOM	1819	CG	LYS F	332	3.584	122.044	53.918	1.00	53.34	A	С
	ATOM	1820	CD	LYS A	332	2.155	121.742	54.338	1.00	55.20	A	С
	ATOM	1821	CE	LYS F	332	2.096	120.437	55.151	1.00	53.90	A	С
	ATOM	1822	NZ	LYS P	332	0.717	120.028	55.573	1.00	54.05	A	N
30	ATOM	1823	С	LYS F	332	6.070	123.990	53.176	1.00	44.24	A	С
	ATOM	1824	0	LYS F	332	7.074	123.370	53.528	1.00	45.01	A	0
	MOTA	1825	N	LEU A	333	5.842	125.251	53.525	1.00	52.24	A	N
	ATOM	1826	CA	LEU F	333	6.765	125.977	54.393	1.00	53.79	A	С
35	ATOM	1827	CB	LEU F	333	6.810	127.465	54.016	1.00	35.39	A	С
	MOTA	1828	CG	LEU A	333	7.419	127.897	52,683	1.00.	34.11	A	С
	ATOM	1829	CD1	LEU F	333	7.029	129.311	52.400	1.00	33.43	A	С
	MOTA	1830		LEU A	333	8.920	127.768	52.722	1.00	33.64	A	С
40	ATOM	1831	С	LEU A		6.278	125.857	55.829		55.31	A	С
	ATOM	1832	0	LEU A	333		125.537	56.070		53.95	A	О
	ATOM	1833	N	PRO F			126.092	56.801		71.09	A	N
	ATOM	1834	CD	PRO F			126.210	56.638		98.35	A	С
45	ATOM	1835	CA	PRO I			126.018	58.218		72.19	A	С
	MOTA	1836	CB	PRO P			126.294	58.922		98.14	A	С
	MOTA	1837	CG	PRO A			125.712	57.966		98.53	A	С
	ATOM	1838	С	PRO I			127.109	58.447		73.51	A	С
50	ATOM	1839	0	PRO I			128.080	57.690		75.51	A	0
	ATOM	1840	N	ASN A			126.984	59.487		56.06	A	N
	ATOM	1841	CA	ASN I			127.951	59.680		55.87	A	С
	ATOM	1842	CB	ASN F			127.284	60.399		73.49	A	С
55	ATOM	1843	CG	ASN A	335	1.362	127.820	59.933	1.00	74.92	A	С

	ATOM	1844	OD1	ASN :	A 335	1.119 127.947	58.732	1.00 76.33	A	0
	ATOM	1845	ND2	ASN .	A 335	0.483 128.129	60.878	1.00 74.05	A	N ·
5	ATOM	1846	С	ASN I	A 335	4.141 129.305	60.311	1.00 55.03	A	С
	ATOM	1847	0	ASN A	A 335	4.390 130.269	59.606	1.00 54.64	A	0
	ATOM	1848	N	GLY 2	A 336	4.072 129.399	61.629	1.00 53.63	A	N
	ATCM	1849	CA	GLY :	A 336	4.279 130.687	62.264	1.00 51.53	A	С
10	ATOM	1850	С	GLY 2	A 336	5.453 131.524	61.785	1.00 50.23	A	С
	MOTA	1851	0	GLY 2	A 336	5.454 132.745	61.956	1.00 51.41	A	0
	ATOM	1852	N	VAL A	A 337	6.434 130.882	61.159	1.00 31.85	A	N
	ATOM	1853	CA	VAL	A 337	7.652 131.558	60.704	1.00 31.02	A	С
15	MOTA	1854	CB	VAL A	A 337	8.765 130.551	60.525	1.00 19.62	A	С
	ATOM	1855	CG1	VAL 2	A 337	8.178 129.237	60.097	1.00 20.24	A	С
	ATOM	1856	CG2	VAL 2	337	9.744 131.058	59.488	1.00 20.07	A	С
	ATOM	1857	С	VAL A	A 337	7.703 132.468	59.481	1.00 30.50	A	С
20	ATOM	1858	0	VAL 2	337	8.289 133.543	59.553	1.00 32.10	A	0
	ATOM	1859	N	PHE 2	338	7.154 132.045	58.351	1.00 45.86	A	и
	ATOM	1860	CA	PHE 2	338	7.199 132.895	57.161	1.00 44.46	A	С
	ATOM	1861	CB	PHE A	338	7.560 132.062	55.927	1.00 35.06	A	С
25	ATOM	1862	CG	PHE A	338	8.868 131.323	56.058	1.00 31.81	A	С
	ATOM	1863	CD1	PHE 2	338	10.070 131.939	55.759	1.00 32.06	A	С
	ATOM	1864	CD2	PHE A	338	8.892 130.008	56.489	1.00 29.92	A	С
	ATOM	1865	CE1	PHE A	338	11.274 131.248	55.886	1.00 32.87	A	С
30	ATOM	1866	CE2	PHE A	338	10.084 129.324	56.615	1.00 29.00	A	С
	ATOM	1867	CZ	PHE 2	338	11.272 129.943	56.314	1.00 30.66	A	С
	ATOM	1868	С	PHE A	338	5.872 133.622	56.951	1.00 45.14	A	C
	ATOM	1869	0	PHE A	338	4.830 133.193	57.440	1.00 46.65	A	0
35	MOTA	1870	N	THR A	339	5.912 134.733	56.229	1.00 25.25	A	N
	ATOM	1871	CA	THR A	339	4.704 135.508	55.994	1.00 26.88	A	C
	ATOM	1872	CB	THR A	339	5.051 136.830	55.296	1.00 15.42	A	С
	ATOM	1873	OG1	THR A	339	5.729 136.580	54.063	1.00 18.04	A	0
40	MOTA	1874	CG2	THR A	339	5.977 137.622	56.162	1.00 12.82	A	С
	ATOM	1875	С	THR A	339	3.662 134.725	55.200	1.00 27.11	A	С
	ATCM	1876	0	THR I	339	3.993 134.002	54.270	1.00 26.99	A	0
	ATCM	1877	И	PRO 1	340	2.383 134.845	55.583	1.00 41.59	A	N
45	ATCM	1878	CD	PRO 2	340	1.953 135.490	56.834	1.00 24.23	A	С
	MOTA	1879	CA	PRO 1	340	1.251 134.167	54.946	1.00 42.29	A	С
	ATOM	1880	CB	PRO I	340	0.051 134.718	55.703	1.00 26.51	A	C
50	ATCM	1881	CG	PRO 1	340	0.595 134.848	57.081	1.00 26.27	A	С
50	ATOM	1882	С	PRO I	340	1.096 134.302	53.443	1.00 42.47	A	C
	ATOM	1883	0	PRO A	340	0.367 133.528	52.833	1.00 44.10	A	0
	ATOM	1884	N	ASP A	341	1.750 135.280	52.835	1.00 60.98	A	N
55	ATOM	1885	CA	ASP A	A 341	1.646 135.413	51.393	1.00 62.37	A	C
55	ATOM	1886	CB	ASP A	A 341	1.652 136.879	50.978	1.00 61.36	A	c

	ATOM	1887	œ	ASP A	4 341	0.305	137.525	51.163	1.00	61.94	A	С
	ATOM	1888	OD1	ASP :	A 341	-0.704	136.887	50.799	1.00	63.45	A	0 -
5	ATOM	1889	OD2	ASP A	A 341	0.249	138.666	51.656	1.00	60.41	A	0
	ATOM	1890	С	ASP 2	A 341	2.803	134.669	50.756	1.00	62.45	A.	С
	ATOM	1891	O	ASP 2	A 341	2.719	134.204	49.623	1.00	63.61	A	0
	ATOM	1892	N	PHE :	A 342	3.893	134.555	51.497	1.00	47.78	A	N
10	ATOM	1893	CA	PHE 2	4 342	5.047	133.828	51.007	1.00	46.75	A.	С
	ATOM	1894	СВ	PHE 2	342	6.200	133.961	51.981	1.00	30.06	A	С
	ATOM	1895	CG	PHE 2	342	7.412	133.191	51.590	1.00	29.99	A	С
	ATOM	1896	CD1	PHE 2	342	7.978	133.357	50.349	1.00	30.65	A.	C
15	MOTA	1897	CD2	PHE 2	342	8.026	132.360	52.492	1.00	30.43	A	С
	MOTA	1898	CE1	PHE 2	342	9.131	132.721	50.016	1.00	32.11	A	С
	MOTA	1899	CE2	PHE 2	342	9.182	131.720	52.162	1.00	30.02	A.	С
	MOTA	1900	CZ	PHE 2	342	9.737	131.904	50.918	1.00	31.65	A	C
20	MOTA	1901	С	PHE 2	342	4.624	132.379	50.937	1.00	45.40	A	C
	ATOM	1902	0	PHE 2	342	4.924	131.680	49.974	1.00	45.36	A	0
	ATOM	1903	N	GLN 1	343	3.929	131.938	51.982	1.00	24.69	A	N
	MOTA	1904	CA	GLN 2	343	3.455	130.576	52.046	1.00	24.94	A	C
25	MOTA	1905	СВ	GLN A	343	2.723	130.304	53.352	1.00	63.15	A	C.
	MOTA	1906	CG	GLN A	4 343	3.495	130.651	54.595	1.00	63.34	A	С
	MOTA	1907	CD	GLN 2	343	2.816	130.132	55.845	1.00	64.04	A	С
	MOTA	1908		GLN 2		3.090	130.594	56.952	1.00	64.23	A	0
30	MOTA	1909		GLN A			129.156	55.677		64.68	A	N
	MOTA	1910	С	GLN 2	343	2.492	130.433	50.902	1.00	24.42	A	С
	MOTA	1911	0		343		129.494	50.128		25.51	A	0
	MOTA	1912	14		344		131.380	50.782		26.30	A	N
35	ATOM	1913	CA	GLU 2			131.331	49.718		26.38	A	С
	ATOM	1914	CB	GLU 2			132.583	49.762		72.86	A	С
	ATOM	1915	CG		A 344		132.578	48.747		79.86	A	С
	ATOM	1916	CD		344		133.582	49.083		83.57	A	С
40	ATOM	1917		GLU 2			133.631	48.361		84.94	A	0
	ATOM	1918		GLU 2			134.319	50.074		84.24	A	0
	ATOM	1919	С		4 344		131.195	48.348		23.79	A	С
45	MOTA	1920	0		344		130.345	47.546		24.68	A	0
45	MOTA	1921	N		345		132.033	48.105		26.31	A	N
	ATOM	1922	CA		A 345		132.060	46.860		23.73	A	С
	ATOM	1923	СВ		A 345		133.024	47.028		15.18	A	С
50	ATOM	1924	CG		A 345		133.233	45.787		13.30	A	С
50	ATOM	1925		PHE I			133.757	44.651		12.42	A	С
	ATOM	1926		PHE			132.921	45.753		13.51	A	С
	ATOM	1927		PHE 2			133.967	43.495		11.32	A	С
55	ATOM	1928		PHE A			133.127	44.607		14.83	A	C
33	ATOM	1929	CZ	PHE	1 345	6.465	133.652	43.471	1.00	12.81	A	C

	ATOM	1930	С	PHE	A	345	3.538	130.674	46.508	1.00	24.04	A	С
	ATOM	1931	0	PHE	A	345	3.179	130.098	45.484	1.00	23.31	A	0 -
5	MOTA	1932	N	VAL	A	346	4.390	130.155	47.389	1.00	40.87	A	N
	ATOM	1933	CA	VAL	A	346	5.023	128.848	47.246	1.00	41.14	A	С
	ATOM	1934	CB	VAL	A	346	5.913	128.559	48.458	1.00	32.63	A	С
	ATOM	1935	CG1	VAL	A	346	6.543	127.209	48.316	1.00	34.30	A	С
10	ATOM	1936	CG2	VAL	A	346	6.983	129.612	48.572	1.00	34.08	A	С
	ATOM	1937	c	VAL	A	346	4.044	127.686	47.074	1.00	41.37	A	С
	ATOM	1938	0	VAL	A	346	4.309	126.721	46.345	1.00	42.54	A	0
	MOTA	1939	N	ASN	A	347	2.911	127.778	47.750	1.00	20.79	A	N
15	ATOM	1940	CA	ASN	A	347	1.910	126.742	47.655	1.00	22.04	A	С
	ATOM	1941	СВ	ASN	A	347	0.833	126.982	48.689	1.00	38.04	A	С
	ATOM	1942	CG	ASN	A	347	1.272	126.598	50.082	1.00	38.10	A	С
20	ATOM	1943	OD1	ASN	A	347	2.431	126.757	50.461	1.00	35.13	A	0
20	ATOM	1944	ND2	ASN	A	347	0.334	126.100	50.861	1.00	39.71	A	N
	ATOM	1945	С	ASN	A	347	1.296	126.713	46.270	1.00	22.73	A	С
	ATOM	1946	0	asn	A	347	0.878	125.655	45.802	1.00	23.98	A	0
25	ATOM	1947	N	LYS	A	348	1.237	127.871	45.611	1.00	31.92	A	N
25	ATOM	1948	CA	LYS	A	348	0.670	127.949	44.262	1.00	34.81	A	С
	MOTA	1949	CB	LYS	A	348	0.328	129.400	43.902	1.00	48.25	A	С
	ATOM	1950	CG	LYS	A	348	-0.990	129.875	44.513	1.00	51.16	A	С
30	ATOM	1951	CD	LYS			-1.216	131.387	44.364	1.00	53.88	A	С
50	MOTA	1952	CE	LYS	A	348	-2.399	131.855	45.230	1.00	56.96	A	С
	MOTA	1953	NZ	LYS	A	348	-2.583	133.336	45.293	1.00	56.97	A	N
	ATOM	1954	С	LYS				127.350	43.227		34.92	A	С
35	ATOM	1955	0	LYS				126.748	42.258		35.41	A	0
55	ATOM	1956	N	CYS				127.513	43.446		45.78	A	N
	ATOM	1957	CA	CYS				126.962	42.540		43.77	A	С
	ATOM	1958	СВ	CYS				127.485	42.855		22.22	A	¢
40	MOTA	1959	SG	CYS				129.236	43.020		22.51	A	S
	ATOM	1960	С	CYS				125.466	42.747		44.23	A	С
	ATOM	1961	0	CYS				124.696	41.787		45.92	A	0
	ATOM	1962	N	LEU				125.062	44.015		50.11	A	N
45	ATOM	1963	CA	LEU				123.653	44.356		50.75	A	С
	ATOM	1964	СВ	LEU				123.458	45.668	1.00	7.57	A	С
	ATOM	1965	CG	LEU				123.770	45.677	1.00	7.57	A	С
	ATOM	1966		LEU				123.686	47.110	1.00	7.07	A	С
50	ATOM	1967		LEU				122.807	44.769	1.00	6.39	A	С
	ATOM	1968	C	LEU				122.967	44.436		51.76	A	С
	ATOM	1969	0	LEU				122.513	45.495		53.73	A	0
	ATOM	1970	N	ILE				122.898	43.307		12.84	A	N
55	ATOM	1971	CA	ILE				122.231	43.225		13.77	A	С
	ATOM	1972	CB	ILE	A	351	-0.422	123.151	42.650	1.00	17.52	A	С

	ATOM	1973	CG2	ILE	A 351	-1.667	122.371	42.310	1.00 16.89	A	С
5	ATOM	1974	CG1	ILE	A 351	-0.738	124.254	43.643	1.00 15.78	A	C
	ATOM	1975	CD1	ILE	A 351	-1.964	124.984	43.269	1.00 16.88	A	С
	ATOM	1976	С	ILE	A 351	0.868	121.094	42.255	1.00 15.06	A	С
	ATOM	1977	0	ILE	A 351	1.203	121.340	41.103	1.00 16.03	A	0
10	ATOM	1978	N	LYS	A 352	0.677	119.856	42.703	1.00 64.60	A	N
10	ATOM	1979	CA	LYS	A 352	0.909	118.703	41.837	1.00 65.04	A	С
	ATOM	1980	CB	LYS	A 352	0.568	117.411	42.579	1.00 65.12	A	С
	ATOM	1981	CG	LYS	A 352	1.485	117.192	43.780	1.00 65.43	A	¢
	MOTA	1982	CD	LYS	A 352	1.715	115.721	44.108	1.00 63.18	A	С
15	ATOM	1983	CE	LYS	A 352	0.429 1	115.028	44.504	1.00 62.06	A	¢
	ATOM	1984	NZ	LYS	A 352	0.649 1	113.604	44.870	1.00 62.44	A	N
	ATOM	1985	С	LYS	A 352	0.212 1	118.767	40.481	1.00 65.93	A	C
	ATOM	1986	0	LYS	A 352	0.813	118.456	39.453	1.00 66.96	A	0
20	ATOM	1987	N	ASN	A 353	-1.051 1	119.163	40.460	1.00 27.97	A	N
	ATOM	1988	CA	asn	A 353	-1.717 1	119.287	39.179	1.00 28.91	A	С
	ATOM	1989	CB	ASN	A 353	-3.209 1	119.516	39.323	1.00 32.32	A	С
	MOTA	1990	CG	ASN	A 353	-3.846 1	119.819	37.999	1.00 30.87	A	С
25	ATOM	1991	OD1	ASN	A 353	-3.155 1	120.184	37.051	1.00 27.07	A	0
	ATOM	1992	ND2	ASN	A 353	-5.159 1	119.675	37.915	1.00 33.42	A	N
	ATOM	1993	С	ASN	A 353	-1.123 1	120.507	38.503	1.00 28.36	A	C
	ATOM	1994	0	ASN	A 353	-1.255 1	121.635	38.984	1.00 27.72	A	0
30	ATOM	1995	N	PRO	A 354	-0.487 1	120.306	37.358	1.00 22.90	A	N
	ATOM	1996	CD	PRO	A 354	-0.471 1	119.095	36.530	1.00 23.51	A	С
	ATOM	1997	CA	PRO	A 354	0.117 1	121.419	36.649	1.00 22.52	A	С
	ATOM	1998	CB	PRO	A 354	0.835 1	120.732	35.511	1.00 23.78	A	С
35	ATOM	1999	CG	PRO	A 354	-0.118 1	119.645	35.168	1.00 24.60	A	С
	MOTA	2000	С	PRO	A 354	-0.938 1	122.351	36.134	1.00 22.17	A	¢
	MOTA	2001	0	PRO	A 354	-0.742 1	123.560	36.090	1.00 21.55	A	0
	ATOM	2002	N	ALA .	A 355	-2.062 1	121.766	35.746	1.00 24.27	A	N
40	MOTA	2003	CA	ALA	A 355	-3.168 1	122.502	35.158	1.00 26.32	A	C
	ATOM	2004	С₿	ALA	A 355	-4.159 1	121.530	34.536	1.00127.21	A	С
	ATOM	2005	С	ALA .	A 355	-3.907 1	123.473	36.036	1.00 26.06	A	¢
	MOTA	2006	0	ALA.	A 355	~4.712 1	124.243	35.536	1.00 25.57	A	0
45	ATOM	2007	N	GLU .	A 356	-3.669 1	123.458	37.336	1.00 70.69	A	N
	ATOM	2008	CA	GLU .	A 356	-4.392 1	124.409	38.155	1.00 71.73	A	c
	ATOM	2009	CB	GLU .	A 356	-5.486 1	123.706	38.958	1.00 74.31	A	C
	MOTA	2010	CG	GLU .	A 356	-5.020 1	122.970	40.171	1.00 81.06	A	С
50	ATOM	2011	CD	GLU .	A 356	-6.188 1	122.441	40.967	1.00 83.85	A	С
50	MOTA	2012	OE1	GLU :	A 356	-5.965 1	121.889	42.066	1.00 84.92	A	0
	MOTA	2013			A 356	-7.335 1	122.579	40.489	1.00 83.88	A	0
	ATOM	2014	С	GLU	A 356	-3.477 1	25.202	39.066	1.00 71.37	A	С
	ATOM	2015	0	GLU	A 356	-3.929 1	125.963	39.920	1.00 70.05	A	0
55											

	MOTA	2016	N	ARG A	357	-2.181	125.040	38.862	1.00	38.87	1	4	N
	MOTA	2017	CA	ARG A	357	-1.217	125.754	39.661	1.00	37.08	2	Ą	C.
5	ATOM	2018	CB	ARG A	357	0.036	124.908	39.835	1.00	32.03	2	Ą	С
	ATOM	2019	CG	ARG A	357	1.283	125.435	39.181	1.00	27.34	1	A	С
	ATOM	2020	CD	ARG A	357	2.398	124.463	39.445	1.00	26.49	2	Ą	С
	ATOM	2021	NE	ARG A	357	2.079	123.138	38.914	1.00	24.34	i	A	N
10	ATOM	2022	CZ	ARG A	357	2.856	122.068	39.053	1.00	22.58		A	С
	ATOM	2023	NH1	ARG A	357	3.994	122.172	39.714	1.00	21.55		A	N
	ATOM	2024	NH2	ARG A	357	2.511	120.903	38.521	1.00	21.62	2	A	N
	ATOM	2025	С	ARG A	357	-0.872	127.062	38.987	1.00	36.31	i	A	С
15	MOTA	2026	0	ARG A	357	-1.148	127.260	37.804	1.00	36.68		A.	0
	ATOM	2027	N	ALA A	358	-0.261	127.952	39.755	1.00	27.23		A	N
	ATOM	2028	CA	ALA A	358	0.138	129.268	39.281	1.00	26.92	1	A	С
	MOTA	2029	CB	ALA A	358	0.958	129.953	40.353	1.00	24.81		A	С
20	ATOM	2030	С	ALA A	358	0.917	129.276	37.984	1.00	27.40		A	С
	MOTA	2031	0	ALA A	358	1.812	128.466	37.782	1.00	28.30		A	0
	MOTA	2032	N	ASP A	359	0.567	130.202	37.102	1.00	26.78		A	N
	ATOM	2033	CA	ASP A	359	1.288	130.362	35.849	1.00	26.91		A	С
25	MOTA	2034	CB	ASP A	359	0.347	130.675	34.696	1.00	53.41		A	С
	ATOM	2035	CG	ASP A	359	-0.236	132.063	34.795	1.00	52.77		A	С
	MOTA	2036	OD1	ASP A	359	-1.219	132.241	35.544	1.00	48.93		A	0
	ATOM	2037	OD2	ASP A	359	0.302	132.980	34.136	1.00	53.95		A	0
30	ATOM	2038	С	ASP A	359	2.117	131.595	36.157	1.00	26.48		A	С
	ATOM	2039	0	ASP A	359	1.974	132.171	37.237	1.00	24.84		A	0
	MOTA	2040	N	LEU I	360	2.958	132.017	35.217	1.00	27.98		A	N
	ATOM	2041	CA	LEU A	360	3.817	133.178	35.432	1.00	26.03		A	С
35	ATCM	2042	СВ	LEU A	3 60	4.720	133.398	34.218	1.00	14.79		A	С
	ATCM	2043	CG	LEU A	360	5.803	132.321	34.079	1.00	13.54		A	C
	ATCM	2044	CD1	LEU A	3 60	6.638	132.552	32.836	1.00	12.21		A	C .
	ATCM	2045	CD2	LEU I	360	6.685	132.335	35.301	1.00	14.39		A	С
40	ATOM	2046	С	LEU 2	360	3.081	134.457	35.797	1.00	24.70		A	С
	ATOM	2047	0	LEU 2	3 60	3.665	135.361	36.394	1.00	24.33		A	0
	ATOM	2048	N	LYS	361	1.797	134.523	35.470	1.00	22.05		A	N
	MOTA	2049	CA	LYS	361	0.999	135.705	35.791	1.00	24.77		A	С
45	ATOM	2050	CB	LYS	361	-0.284	135.726	34.970	1.00	61.70		A	С
	ATOM	2051	CG	LYS	361	-1.271	136.757	35.467	1.00	60.64		A	C
	ATOM	2052	CD	LYS .	A 361	-1.459	137.874	34.469	1.00	59.82		A	C
	ATOM	2053	CE	LYS .	A 361	-2.202	137.380	33.247	1.00	58.71		A	C
50	ATOM	2054	NZ	LYS	A 361	-2.447	138.487	32.292	1.00	61.68		A	N
	ATOM	2055	С	LYS	A 361	0.637	135.831	37.273	1.00	26.20		A	С
	ATOM	2056	0	LYS	A 361	1.113	136.750	37.944	1.00	26.16		A	0
	ATOM	2057	N	MET :	A 362	-0.206	134.925	37.779	1.00	25.24		A	N
55	MOTA	2058	CA	MET .	A 362	-0.614	134.957	39.188	1.00	26.30		A	С

	MOTA	2059	CB	MET	Α	362	-1.198	133.610	39.656	1.00	70.42	A	С
	MOTA	2060	CG	MET	A	362	-2.600	133.285	39.175	1.00	75.52	A	C
5	ATOM	2061	SD	MET	A	362	-2.652	132.165	37.761	1.00	81.47	A	s
	MOTA	2062	CE	MET	A	362	-2.954	130.596	38.586	1.00	81.28	A	С
	ATOM	2063	С	MET	A	362	0.607	135.245	40.029	1.00	25.24	A	С
	MOTA	2064	0	MET	A	362	0.649	136.168	40.839	1.00	25.21	A	0
10	ATOM	2065	N	LEU	A	363	1.613	134.425	39.817	1.00	21.47	A	N
	MOTA	2066	CA	LEU	A	363	2.830	134.567	40.554	1.00	21.24	A	С
	MOTA	2067	CB	LEU	A	363	3.837	133.534	40.080	1.00	29.74	A	С
	MOTA	2068	CG	LEU	A	363	3.470	132.110	40.450	1.00	29.05	A	С
15	MOTA	2069	CD1	LEU	A	363	4.758	131.320	40.482	1.00	29.06	A	С
	MOTA	2070	CD2	LEU	A	363	2.782	132.058	41.806	1.00	26.46	A	С
	MOTA	2071	С	LEU	A	363	3.426	135.942	40.428	1.00	20.17	A	С
	ATOM	2072	0	LEU	A	363	3.705	136.603	41.429	1.00	20.62	A	0
20	MOTA	2073	N	THR	A	364	3.626	136.366	39.190	1.00	10.32	A	N
	ATOM	2074	CA	THR	A	364	4.241	137.644	38.940	1.00	10.90	A	С
	MOTA	2075	CB	THR	A	364	4.453	137.819	37.456	1.00	27.33	A	С
	ATOM	2076	OG1	THR	A	364	5.836	138.126	37.211	1.00	26.24	A	0
25	MOTA	2077	CG2	THR	A	364	3.556	138.911	36.925	1.00	29.11	A	С
	MOTA	2078	С	THR	A	364	3.485	138.828	39.551	1.00	10.41	A	С
	ATOM	2079	0	THR	A	364	4.047	139.908	39.770	1.00	11.18	A	0
	MOTA	2080	N	ASN	A	365	2.213	138.627	39.855	1.00	21.74	A	N
30	ATOM	2081	CA	ASN	A	365	1.456	139.689	40.483	1.00	20.59	A	С
	ATOM	2082	CB	ASN	A	365	0.231	140.030	39.643	1.00	56.73	A	С
	ATOM	2083	CG	ASN	A	365	0.605	140.645	38.317	1.00	59.50	A	С
	ATOM	2084	OD1	ASN	A	365	1.416	141.567	38.259	1.00	63.75	A	0
35	ATOM	2085	ND2	ASN	A	365	0.017	140.143	37.242	1.00	60.94	A	N
	MOTA	2086	С	ASN	A	365	1.050	139.281	41.894	1.00	19.27	A	С
	MOTA	2087	0	ASN	A	365	0.257	139.952	42.540	1.00	20.31	A	0
	ATOM	2088	N	HIS	A	366	1.603	138.177	42.384	1.00	33.33	A	N
40	ATOM	2089	CA	HIS	A	366	1.258	137.728	43.724	1.00	32.13	A	С
	ATOM	2090	СВ	HIS	A	366	2.040	136.484	44.138	1.00	25.48	A	С
	MOTA	2091	CG	HIS	A	366	1.549	135.897	45.418	1.00	24.78	A	С
	ATOM	2092	CD2	HIS	A	366	1.747	136.276	46.700	1.00	24.06	A	С
45	ATOM	2093	ND1	HIS	A	366	0.610	134.890	45.460	1.00	26.20	A	N
	ATOM	2094	CE1	HIS	A	366	0.242	134.682	46.710	1.00	26.38	A	С
	MOTA	2095	NE2	HIS	A	366	0.918	135.512	47.483	1.00	25.72	A	N
	MOTA	2096	С	HIS	A	366	1.563	138.832	44.705	1.00	29.66	A	С
50	MOTA	2097	0	HIS	A	366	2.600	139.473	44.625	1.00	28.49	A	0
	MOTA	2098	N	THR	A	367	0.658	139.048	45.642	1.00	38.52	A	N
	ATOM	2099	CA	THR	A	367	0.845	140.096	46.625	1.00	38.52	A	С
	MOTA	2100	CB	THR			-0.277	140.036	47.677		27.85	A	С
55	MOTA	2101	OG1	THR	A	367	-0.343	141.273	48.385	1.00	28.85	A	0

	ATOM	2102	CG2	THR F	367	-0.019	138.932	48.650	1.00	28.92	A	С
	MOTA	2103	C	THR F	367	2.226	140.005	47.298	1.00	37.37	A	C.
5	MOTA	2104	0	THR F	367	2.698	140.971	47.889	1.00	38.03	A	0
	ATOM	2105	N	PHE F	368	2.882	138.855	47.172	1.00	15.68	A	N
	ATOM	2106	CA	PHE A	368	4.204	138.624	47.770	1.00	16.25	A	С
	ATOM	2107	CB	PHE P	368	4.441	137.106	47.918	1.00	28.85	A	С
10	ATOM	2108	CG	PHE A	368	5.880	136.719	48.101	1.00	26.40	A	С
	ATOM	2109	CD1	PHE A	368	6.541	136.965	49.295	1.00	26.51	A	С
	ATOM	2110	CD2	PHE A	368	6.588	136.135	47.058	1.00	25.60	A	С
	MOTA	2111	CE1	PHE A	368	7.890	136.639	49.443	1.00	26.85	A	С
15	MOTA	2112	CE2	PHE A	368	7.938	135.805	47.200	1.00	25.60	A	С
	ATOM	2113	CZ	PHE A	368	8.585	136.061	48.393	1.00	25.60	A	С
	MOTA	2114	С	PHE A	368	5.317	139.269	46.950	1.00	15.34	A	С
	MOTA	2115	0	PHE A	368	6.228	139.878	47.500	1.00	13.15	A	0
20	ATOM	2116	N	ILE A	369	5.230	139.123	45.630	1.00	11.11	A	N
	ATOM	2117	CA	ILE A	369	6.200	139.691	44.694	1.00	14.50	A	С
	ATOM	2118	CB	ILE A	369	5.959	139.207	43.246	1.00	30.14	Α.	С
	ATOM	2119	CG2	ILE A	369	6.917	139.901	42.312	1.00	28.77	A	С
25	MOTA	2120	CG1	ILE A	369	6.146	137.697	43.159	1.00	30.02	A	С
	MOTA	2121	CD1	ILE A	369	7.492	137.262	43.662	1.00	32.00	A	С
	ATOM	2122	С	ILE A	369	6.053	141.194	44.693	1.00		A	С
	MOTA	2123	0	ILE A	369	7.027	141.916	44.486	1.00	17.69	A	0
30	MOTA	2124	N	LYS A	370	4.813	141.644	44.899	1.00		A	N
	ATOM	2125	CA	LYS A	370	4.475	143.061	44.957	1.00		A	С
	ATOM	2126	CB	LYS A			143.243	45.053	1.00		A	С
	ATOM	2127	CG	LYS A			143.219	43.713	1.00		A	С
35	MOTA	2128	CD	LYS A			143.227	43.896	1.00		A	С
	MOTA	2129	CE	LYS A	370		144.404	44.744	1.00	76.93	A	C
	MOTA	2130	NZ	LYS A			145.743	44.082	1.00		A	N
	MOTA	2131	С	LYS F			143.660	46.184	1.00		A	С
40	ATOM	2132	0	LYS P			144.558	46.072	1.00		A	0
	MOTA	2133	N	ARG A			143.160	47.357	1.00		A	N
	ATOM	2134	CA	ARG A			143.616	48.601	1.00		A	С
	ATOM	2135		ARG A			142.573	49.679	1.00		A	¢
45	MOTA	2136	CG	ARG A			143.002	51.114	1.00		A	С
	MOTA	2137	CD	ARG F	371	5.047	141.783	52.005	1.00	40.41	A	С
	MOTA	2138	NE	ARG F			140.912	51.985		39.64	A	N
	MOTA	2139	CZ	ARG F			139.592	52.186		37.69	A	С
50	MOTA	2140		ARG F			138.923	52.423		36.14	A	N
	ATOM	2141		ARG F			138.942	52.161	1.00		A	N
	ATOM	2142	С	ARG F			143.673	48.316	1.00		A	С
	ATOM	2143	0	ARG F			144.667	48.555	1.00		A	0
55	ATOM	2144	N	SER A	372	7.375	142.581	47.755	1.00	40.79	A	N

	ATOM	2145	CA	SER A 372	8.779 142.417	47.434	1.00 44.14	A	С
	MOTA	2146	CB	SER A 372	8.982 141.060	46.757	1.00 39.16	A	C-
5	MOTA	2147	OG	SER A 372	8.706 139.999	47.657	1.00 39.94	A	0
	ATOM	2148	С	SER A 372	9.413 143.512	46.591	1.00 46.18	A	С
	ATOM	2149	0	SER A 372	10.464 144.027	46.934	1.00 46.43	A	0
	ATOM	2150	N	GLU A 373	8.792 143.865	45.479	1.00 53.20	A	N
10	MOTA	2151	CA	GLU A 373	9.368 144.888	44.621	1.00 54.19	A	С
	ATOM	2152	CB	GLU A 373	8.570 144.976	43.329	1.00 40.00	A	С
	ATOM	2153	CG	GLU A 373	8.526 143.693	42.551	1.00 44.22	A	С
	ATOM	2154	CD	GLU A 373	7.449 143.714	41.501	1.00 47.00	A	С
15	MOTA	2155	OE1	GLU A 373	7.467 142.839	40.609	1.00 49.04	A	0
	ATOM	2156	OE2	GLU A 373	6.575 144.602	41.570	1.00 46.91	A	0
	ATOM	2157	С	GLU A 373	9.389 146.248	45.301	1.00 53.99	A	С
	ATOM	2158	0	GLU A 373	10.063 147.176	44.852	1.00 53.28	A	0
20	ATOM	2159	N	VAL A 374	8.661 146.355	46.402	1.00 44.45	A	N
	ATOM	2160	CA	VAL A 374	8.569 147.615	47.116	1.00 45.54	A	С
	ATOM	2161	CB	VAL A 374	7.187 147.736	47.797	1.00 21.85	A	С
	ATOM	2162	CG1	VAL A 374	6.964 149.133	48.330	1.00 21.24	A	С
25	ATOM	2163	CG2	VAL A 374	6.124 147.395	46.807	1.00 20.37	A	С
	ATOM	2164	С	VAL A 374	9.660 147.823	48.150	1.00 44.46	A	С
	ATOM	2165	0	VAL A 374	10.253 148.896	48.209	1.00 46.04	A	0
	ATOM	2166	N	GLU A 375	9.935 146.798	48.953	1.00 34.81	A	N
30	ATOM	2167	CA	GLU A 375	10.936 146.912	50.007	1.00 34.94	A	С
	ATOM	2168	CB	GLU A 375	10.900 145.670	50.904	1.00140.12	A	С
	ATOM	2169	CG	GLU A 375	11.954 145.648	52.021	1.00134.14	A	С
	ATOM	2170	CD	GLU A 375	11.954 146.893	52.919	1.00128.86	A	С
35	ATOM	2171	OE1	GLU A 375	12.672 146.869	53.945	1.00129.22	A	0
	ATOM	2172	OE2	GLU A 375	11.256 147.889	52.608	1.00127.22	A	0
	ATOM	2173	С	GLU A 375	12.363 147.177	49.552	1.00 36.57	A	С
	MOTA	2174	0	GLU A 375	12.725 146.908	48.419	1.00 36.94	A	0
40	ATOM	2175	N	GLU A 376	13.154 147.755	50.452	1.00 51.96	A	14
	ATOM	2176	CA	GLU A 376	14.552 148.045	50.187	1.00 54.71	A	c ·
	ATOM	2177	CB	GLU A 376	14.992 149.333	50.905	1.00203.67	A	C
	ATOM	2178	CG	GLU A 376	14.514 149.456	52.358	1.00203.67	A	C
45	ATOM	2179	CD	GLU A 376	15.269 150.513	53.159	1.00203.67	A	С
	ATOM	2180	OE1	GLU A 376	16.407 150.232	53.595	1.00203.67	A	0
	ATOM	2181	OE2	GLU A 376	14.723 151.623	53.347	1.00203.67	A	0
	ATOM	2182	C	GLU A 376	15.333 146.861	50.728	1.00 55.81	A	С
50	MOTA	2183	0	GLU A 376	15.566 146.767	51.931	1.00 57.62	A	0
	MOTA	2184	N	VAL A 377	15.712 145.937	49.857	1.00 83.31	A	N
	ATOM	2185	CA	VAL A 377	16.476 144.780	50.313	1.00 85.22	A	С
	ATOM	2186	CB	VAL A 377	15.844 143.436	49.864	1.00107.94	A	С
55	ATOM	2187	CG1	VAL A 377	16.083 142.366	50.922	1.00107.24	A	С

	ATOM	2188	CG2	VAL	A	377	14.369	143.610	49.592	1.00	106.74	A	С
	ATOM	2189	C	VAL	A	377	17.846	144.886	49.671	1.00	85.66	A	C
5	ATOM	2190	0	VAL	A	377	17.969	144.809	48.445	1.00	85.34	A	0
	ATOM	2191	N	ASP	A	378	18.879	145.071	50.481	1.00	59.00	A	N
	ATOM	2192	CA	ASP	A	378	20.216	145.179	49.936	1.00	59.40	A	С
	ATOM	2193	CB	ASP	A	378	21.122	145.893	50.933	1.00	41.87	A	С
10	ATOM	2194	CG	ASP	A	378	22.507	146.156	50.390	1.00	38.94	A	С
	ATOM	2195	OD1	ASP	A	378	23.371	146.584	51.175	1.00	37.73	A	0
	ATOM	2196	OD2	ASP	A	378	22.732	145.938	49.181	1.00	36.31	A	0
	ATOM	2197	С	ASP	A	378	20.764	143.784	49.638	1.00	61.15	A	С
15	ATOM	2198	0	ASP	A	378	21.470	143.207	50.466	1.00	63.19	A	0
	MOTA	2199	N	PHE	A	379	20.432	143.232	48.462	1.00	76.82	A	N
	ATOM	2200	CA	PHE	A	379	20.919	141.904	48.100	1.00	75.79	A	С
	ATOM	2201	CB	PHE	A	379	20.265	141.370	46.813	1.00	40.93	A	С
20	ATOM	2202	CG	PHE	A	379	20.782	140.016	46.395	1.00	40.05	A	c
	ATOM	2203	CD1	PHE	A	379	21.978	139.900	45.705	1.00	40.60	A	С
	MOTA	2204	CD2	PHE	A	379	20.135	138.861	46.793	1.00	38.49	A	С
	ATOM	2205	CE1	PHE	A	379	22.519	138.662	45.424	1.00	40.10	A	С
25	MOTA	2206	CE2	PHE	A	379	20.674	137.630	46.515	1.00	37.47	A	С
	ATOM	2207	CZ	PHE			21.871	137.532	45.828	1.00	38.18	A	С
	MOTA	2208	С	PHE	A	379	22.428	141.936	47.919	1.00	75.49	A	С
	MOTA	2209	0	PHE				140.972	48.246	1.00	75.96	A	0
30	MOTA	2210	N	ALA				143.046	47.389	1.00	50.73	A	N
	ATOM	2211	CA	ALA				143.201	47.188		52.48	A	С
	ATOM	2212	CB	ALA .				144.552	46.566		91.86	A	С
	MOTA	2213	С	ALA .				143.110	48.573		52.93	A	С
35	ATOM	2214	0	ALA .				142.289	48.823		51.50	A	0
	ATOM	2215	N	GLY .				143.949	49.473		45.14	A	N
	ATOM	2216	CA	GLY .				143.962	50.835		46.97	A	¢
	ATOM	2217	c	GLY .				142.584	51.459		48.85	A	С
40	ATOM	2218	0	GLY .				141.949	51.656		49.66	A	0
	ATOM	2219	N	TRP .				142.110	51.764		43.15	A	N
	MOTA	2220	CA	TRP .				140.797	52.375		42.26	A	С
45	ATOM	2221	CB	TRP .				140.336	52.326		54.96	A	С
40	MOTA	2222	CG	TRP .				138.893	52.734		54.92	A	С
	MOTA	2223		TRP :				137.744	51.871		54.89	A	С
	ATOM	2224		TRP				136.602	52.691		55.62	A	С
50	ATOM	2225		TRP				137.573	50.483		54.54	A	С
••	ATOM	2226		TRP				138.408	54.002		55.75	A	С
	ATOM	2227		TRP				137.035	53.988		55.73	A	N
	ATOM	2228		TRP A				135.306	52.173		55.36	A	С
55	ATOM	2229		TRP I				136.284	49.972		55.38	A	С
	ATOM	2230	CHZ	TRP I	M 3	002	22.079	135.169	50.816	1.00	55.83	A	C

		ATOM	2231	С	TRP	A	382	24.358	139.694	51.745	1.00 42.31	A	C
		MOTA	2232	0	TRP	A	382	24.861	138.829	52.449	1.00 42.68	A	0
5		MOTA	2233	N	LEU	A	383	24.474	139.702	50.421	1.00 53.39	A	N
		ATOM	2234	CA	LEU	A	383	25.211	138.651	49.728	1.00 55.83	A	С
		ATOM	2235	CB	LEU	Α	383	25.152	138.842	48.216	1.00 44.38	A	С
		MOTA	2236	CG	LEU	A	383	25.743	137.657	47.452	1.00 44.54	A	С
10		ATOM	2237	CD1	LEU	A	383	24.847	136.447	47.613	1.00 44.55	A	С
		ATOM	2238	CD2	LEU	A	383	25.882	138.009	45.998	1.00 43.21	A	С
		MOTA	2239	С	LEU	A	383	26.658	138.572	50.146	1.00 57.21	A	С
		ATOM	2240	0	LEU	A	383	27.251	137.498	50.134	1.00 55.74	A	0
15		MOTA	2241	N	CYS	A	384	27.231	139.713	50.504	1.00 59.50	A	N
		ATOM	2242	CA	CYS	A	384	28.626	139.771	50.931	1.00 60.36	A	С
		ATOM	2243	СВ	CYS	A	384	29.230	141.094	50.476	1.00 46.87	A	С
		ATOM	2244	SG	CYS	A	384	28.568	141.628	48.883	1.00 48.73	A	s
20	1	ATOM	2245	С	CYS	A	384	28.702	139.635	52.453	1.00 61.86	A	С
		ATOM	2246	0	CYS	A	384	29.606	138.998	52.984	1.00 61.41	A	0
		ATOM	2247	N	LYS	A	385	27.740	140.233	53.147	1.00 94.97	A	N
		MOTA	2248	CA	LYS	A	385	27.683	140.153	54.602	1.00 96.00	A	С
25	:	ATOM	2249	CB	LYS	A	385	26.414	140.846	55.113	1.00172.89	A	С
		ATOM	2250	CG	LYS	A	385	26.101	140.599	56.588	1.00175.33	A	¢
		ATOM	2251	CD	LYS	A	385	24.718	141.126	56.965	1.00177.89	A	С
		ATOM	2252	CE	LYS	A	385	24.356	140.780	58.405	1.00179.02	A	С
30	1	MOTA	2253	NZ	LYS	A	385	22.974	141.214	58.760	1.00179.48	A	N
		ATOM	2254	С	LYS	A	385	27.668	138.684	55.027	1.00 94.41	A	С
		ATOM	2255	0	LYS	A	385	27.920	138.355	56.189	1.00 94.43	A	0
		ATOM	2256	N	THR	A	386	27.376	137.802	54.076	1.00 75.18	A	N
35		MOTA	2257	CA	THR	A	386	27.308	136.379	54.362	1.00 76.30	A	С
		MOTA	2258	CB	THR	A	386	25.865	135.838	54.118	1.00 51.08	A	С
		ATOM	2259	0G1	THR	A	386	25.534	135.914	52.726	1.00 50.03	A	0
		MOTA	2260		THR	A	386	24.854	136.667	54.911	1.00 50.94	A	С
40	1	MOTA	2261	С	THR	A	386	28.328	135.545	53.580	1.00 77.55	A	С
		MOTA	2262	0	THR	A	386	28.983	134.673	54.153	1.00 77.88	A	0
		ATOM	2263	N	LEU	A	387	28.472	135.808	52.284	1.00 46.03	λ	N
		ATOM	2264	CA	LEU	A	387	29.430	135.059	51.472	1.00 45.60	A	С
45		MOTA	2265	CB	LEU	A	387	29.108	135.168	49.990	1.00 28.96	A	C
		ATOM	2266	CG	LEU	A	387	29.015	133.792	49.339	1.00 25.43	A	С
		ATOM	2267	CD1	LEU	A	387	27.776	133.103	49.871	1.00 23.53	A	С
		MOTA	2268	CD2	LEU	A	387	28.960	133.911	47.825	1.00 23.76	A	С
50	1	MOTA	2269	С	LEU	A	387	30.829	135.585	51.705	1.00 48.02	A	С
		MOTA	2270		LEU	A	387	31.805	135.024	51.209	1.00 49.33	A	0
		ATOM	2271	N	ARG	A	388	30.900	136.685	52.449	1.00 81.34	A	N
		ATOM	2272	CA	ARG	A	388	32.151	137.336	52.813	1.00 83.08	A	С
55	'	MOTA	2273	СВ	ARG	A	388	32.926	136.426	53.769	1.00148.48	A	С

	ATOM	2274	CG	ARG	A 388	34.123 137.084	54.429	1.00149.70	A	C
	MOTA	2275	CD	ARG	A 388	34.866 136.093	55.314	1.00151.22	A	С
5	ATOM	2276	NE	ARG	A 388	36.099 136.652	55.864	1.00154.03	A	N
	MOTA	2277	CZ	ARG	A 388	36.940 135.980	56.644	1.00155.04	A	С
	ATOM	2278	NH:	L ARG	A 388	38.037 136.569	57.097	1.00155.61	A	N
	ATOM	2279	NH	2 ARG	A 388	36.684 134.719	56.973	1.00155.49	A	N
10	ATOM	2280	С	ARG	A 388	33.058 137.768	51.655	1.00 82.79	A	С
	ATOM	2281	0	ARG	A 388	34.234 137.407	51.626	1.00 82.33	A	0
	ATOM	2282	N	LEU	A 389	32.528 138.536	50.703	1.00 76.82	A	N
	ATOM	2283	CA	LEU	A 389	33.356 139.015	49.592	1.00 78.14	A	С
15	ATOM	2284	CB	LEU	A 389	33.070 138.234	48.298	1.00 86.92	A	С
	ATOM	2285	CG	LEU	A 389	31.669 137.915	47.774	1.00 87.95	A	С
	ATOM	2286	CD1	LEU	A 389	30.840 139.172	47.565	1.00 87.29	A	С
	ATOM	2287	CD2	LEU	A 389	31.833 137.162	46.463	1.00 88.60	A	С
20	ATOM	2288	С	LEU	A 389	33.217 140.517	49.352	1.00 78.91	A	С
	MOTA	2289	0	LEU	A 389	32.129 141.077	49.461	1.00 77.45	A	0
	MOTA	2290	N	ASN	A 390	34.337 141.167	49.045	1.00103.39	A	N
	MOTA	2291	CA	ASN	A 390	34.353 142.605	48.804	1.00105.14	A	С
25	ATOM.	2292	CB	ASN	A 390	35.770 143.157	48.989	1.00194.94	A	ċ
	ATOM	2293	CG	ASN .	A 390	36.050 143.581	50.421	1.00195.17	A	С
	ATOM	2294	OD1	ASN .	A 390	35.843 142.814	51.363	1.00195.16	A	0
	ATOM	2295	ND2	ASN .	A 390	36.527 144.810	50.589	1.00194.79	A	N
30	ATOM	2296	С	ASN .	A 390	33.832 142.984	47.426	1.00106.37	A	С
	ATOM	2297	0	ASN .	A 390	33.197 142.179	46.748	1.00105.95	A ·	0
	ATOM	2298	N	GLN .	A 391	34.105 144.221	47.022	1.00203.67	A	N
	ATOM	2299	CA	GLN .	A 391	33.662 144.732	45.729	1.00203.67	A	С
35	ATOM	2300	CB	GLN .	A 391	33.984 146.225	45.619	1.00157.13	A	С
	ATOM	2301	CG	GLN A	391	33.296 146.935	44.460	1.00158.68	A	С
	ATOM	2302	CD	GLN A	391	31.795 146.692	44.433	1.00159.60	A	С
	ATOM	2303	OE1	GLN A	391	31.141 146.642	45.477	1.00159.79	A	0
40	ATOM	2304	NE2	GLN A	391	31.241 146.552	43.233	1.00160.01	A	N
	ATOM	2305	C	GLN A	391	34.312 143.976	44.575	1.00203.67	A	С
	ATOM	2306	0	GLN A	391	33.570 143.524	43.675	1.00203.67	A	0
	ATOM	2307	OXT	GLN I	391	35.556 143.854	44.581	1.00157.01	A	0
45	TER	2308		GLN A	391				A	
	ATOM	2309	CB	ALA I	62	54.184 93.777	51.733	1.00 27.55	В	С
	ATOM	2310	С	ALA I	62	53.913 95.911	50.432	1.00 43.70	В	С
	ATOM	2311	0	ALA I	62	52.892 96.234	51.068	1.00 44.16	В	0
50	ATOM	2312	N	ALA I	62	55.785 94.232	49.925	1.00 44.03	В	N
	ATOM	2313	CA	ALA I		54.369 94.429	50.372	1.00 43.69	В	С
	ATOM	2314	N	LYS E		54.669 96.792	49.763	1.00103.65	В	N
	ATOM	2315	CA	LYS E	63	54.394 98.241	49.725	1.00105.76	_ B	С
55	ATOM	2316	СВ	LYS E	63	54.979 98.915	50.975	1.00 62.62	В	С
55										

	ATOM	2317	CG	LYS	В	63	54.472	100.323	51.263	1.00 62.69	В	С
	ATOM	2318	CD	LYS	В	63	53.062	100.296	51.869	1.00 62.86	В	C-
5	ATOM	2319	CE	LYS	В	63	52.605	101.684	52.373	1.00 62.62	В	С
,	ATOM	2320	NZ	LYS	В	63	51.314	101.684	53.160	1.00 62.56	В	N
	ATOM	2321	c	LYS	В	63	55.017	98.893	48.480	1.00106.66	В	С
	ATOM	2322	0	LYS	В	63	55.296	100.089	48.482	1.00106.43	В	0
10	ATOM	2323	N	VAL	В	64	55.227	98.098	47.433	1.00 45.88	В	N
,,,	ATOM	2324	CA	VAL	В	64	55.839	98.535	46.164	1.00 45.21	В	С
	MOTA	2325	CB	VAL	В	64	55.634	97.446	45.071	1.00 98.14	В	С
	MOTA	2326	CG1	VAL	В	64	56.335	96.151	45.479	1.00 98.12	В	С
15	MOTA	2327	CG2	VAL	В	64	54.149	97.178	44.873	1.00 99.16	В	С
	ATOM	2328	С	VAL	В	64	55.385	99.899	45.604	1.00 45.77	В	С
	ATOM	2329	0	VAL	В	64	54.560	99.976	44.694	1.00 45.66	В	0
	ATOM	2330	N	GLY	В	65	55.961	100.975	46.123	1.00 63.83	В	N
20	ATOM	2331	CA	GLY	В	65	55.570	102.303	45.683	1.00 63.37	В	С
	ATOM	2332	С	GLY	В	65	55.933	102.747	44.280	1.00 62.60	В	С
	ATOM	2333	0	GLY	В	65	56.893	103.499	44.114	1.00 62.29	В	0
	MOTA	2334	N	GLU	В	66	55.176	102.298	43.277	1.00188.38	В	N
25	ATOM	2335	CA	GLU	В	66	55.405	102.698	41.882	1.00187.92	В	С
	ATOM	2336	CB	GLU	В	66	55.272	101.504	40.926	1.00166.34	В	С
	ATOM	2337	CG	GLU	В	66	53.897	100.851	40.912	1.00167.63	В	С
	MOTA	2338	CD	GLU		66	53.645	99.998	42.137	1.00169.16	В	С
30	MOTA	2339		GLU		66	54.283	98.930	42.259	1.00169.98	В	0
	MOTA	2340	OE2	GLU	В	66	52.814	100.397	42.980	1.00169.70	В	0
	MOTA	2341	С	GLU		66	54.349	103.749	41.534	1.00187.56	В	С
	MOTA	2342	0	GLU	В	66	53.182	103.595	41.899	1.00186.11	В	0
35	ATOM	2343	N	LEU	В	67	54.743	104.807	40.827	1.00 78.81	В	N
	ATOM	2344	CA	LEU	В	67	53.792	105.868	40.496	1.00 77.41	В	С
	MOTA	2345	CB	LEU		67	53.351	106.566	41.790	1.00133.93	В	С
	ATOM	2346	CG	LEU		67	54.350	107.483	42.522	1.00131.87	В	С
40	MOTA	2347		LEU		67	53.909	107.632	43.973	1.00131.29	В	С
	ATOM	2348		LEU		67	55.763	106.914	42.474	1.00129.01	В	С
	ATOM	2349	С	LEU		67	54.329	106.920	39.528	1.00 78.06	В	С
	MOTA	2350	0	LEU		67	55.373	106.732	38.899	1.00 77.64	В	0
45	ATOM	2351	N	LYS	В	68		108.021	39.415	1.00161.33	В	N
	MOTA	2352	CA	LYS	В	68	53.949	109.161	38.571	1.00160.80	В	С
	MOTA	2353	CB	LYS	В	68	54.372	108.710	37.174	1.00180.06	В	С
	ATOM	2354	CG	LYS	В	68	55.071	109.802	36.362	1.00180.95	В	С
50	ATOM	2355	CD	LYS	В	68	56.407	110.275	36.966	1.00182.26	В	С
	ATOM	2356		LYS	В	68	56.251	111.319	38.079	1.00181.74	В	С
	ATOM	2357		LYS	В	68	56.115	110.734	39.445	1.00180.37	В	N
	ATOM	2358		LYS		68		110.164	38.476	1.00160.09	В	С
55	ATOM	2359	0	LYS	В	68	51.918	110.166	39.333	1.00159.78	В	0

	ATOM	2360	N	ASP	В	69	52.806 111.011	37.446	1.00162.59	В	N
	ATOM	2361	CA	ASP	В	69	51.752 112.020	37.308	1.00162.10	В	c
5	ATOM	2362	CB	ASP	В	69	51.917 113.071	38.404	1.00160.80	В	С
	ATOM	2363	OG	ASP	В	69	53.187 113.882	38.238	1.00161.36	В	С
	MOTA	2364	OD1	ASP	В	69	53.219 114.758	37.348	1.00163.46	В	0
	ATOM	2365	OD2	ASP	В	69	54.157 113.635	38.987	1.00160.60	В	0
10	ATOM	2366	С	ASP	В	69	51.665 112.741	35.960	1.00160.30	В	С
	MOTA	2367	0	ASP	В	69	51.128 113.850	35.891	1.00159.72	В	0
	MOTA	2368	N	ASP	В	70	52.184 112.124	34.901	1.00174.31	В	N
	MOTA	2369	CA	ASP	В	70	52.147 112.724	33.566	1.00173.49	В	С
15	MOTA	2370	CB	ASP	В	70	52.604 114.184	33.606	1.00169.56	В	С
	MOTA	2371	CG	ASP	В	70	54.102 114.333	33.370	1.00170.22	В	С
	ATOM	2372	OD1	ASP	В	70	54.898 113.838	34.196	1.00169.30	В	0
	MOTA	2373	OD2	ASP	В	70	54.483 114.943	32.350	1.00172.27	В	0
20	MOTA	2374	С	ASP	В	70	53.077 111.972	32.629	1.00172.32	В	С
	ATOM	2375	0	ASP	В	70	53.120 112.248	31.430	1.00172.36	В	0
	MOTA	2376	N	ASP	В	71	53.829 111.030	33.186	1.00107.55	В	N
	ATOM	2377	CA	ASP	В	71	54.781 110.255	32.406	1.00106.46	В	С
25	ATOM	2378	CB	ASP	В	71	55.651 109.406	33.328	1.00152.56	В	С
	ATOM	2379	CG	ASP	В	71	57.019 109.143	32.750	1.00151.39	В	С
	ATOM	2380	OD1	ASP	В	71	57.103 108.863	31.536	1.00150.88	в.	0
	ATOM	2381	OD2	ASP	В	71	58.008 109.214	33.510	1.00150.94	В	0
30	ATOM	2382	С	ASP	В	71	54.080 109.351	31.405	1.00105.40	В	С
	ATOM	2383	0	ASP	В	71	54.471 108.201	31.215	1.00104.14	В	0
	ATOM	2384	N	PHE	В	72	53.043 109.876	30.765	1.00131.42	В	N
	MOTA	2385	CA	PHE	В	72	52.299 109.107	29.783	1.00129.32	В	С
35	ATOM	2386	CB	PHE	В	72	50.882 108.837	30.283	1.00 69.93	В	С
	MOTA	2387	CG	PHE	В	72	50.831 107.983	31.502	1.00 67.17	В	С
	ATOM	2388	CD1	PHE	В	72	50.870 108.552	32.762	1.00 65.13	В	С
	ATOM	2389	CD2	PHE	В	72	50.775 106.606	31.389	1.00 65.76	В	С
40	ATOM	2390		PHE		72	50.853 107.764	33.888	1.00 63.77	В	С
	MOTA	2391	CE2	PHE	В	72	50.760 105.812	32.506	1.00 65.15	В	С
	MOTA	2392	CZ	PHE		72	50.799 106.387	33.761	1.00 63.82	В	С
	ATOM	2393	С	PHE		72	52.232 109.804	28.436	1.00129.56	В	С
45	MOTA	2394	0	PHE	В	72	52.594 110.972	28.308	1.00128.65	В	0
	ATOM	2395	N	GLU	В	73	51.759 109.071	27.435	1.00 64.57	В	N
	ATOM	2396	CA	GLU	В	73	51.632 109.591	26.082	1.00 65.93	В	С
	ATOM	2397	CB	GLU	В	73	52.808 109.126	25.216	1.00109.43	В	С
50	ATOM	2398		GLU	В	73	54.196 109.374	25.801	1.00111.28	В	С
	ATOM	2399	CD	GLU	В	73	54.555 110.845	25.899	1.00112.82	В	С
	ATOM	2400	OE1	GLU :	В	73	55.726 111.149	26.215	1.00113.69	В	0
	ATOM	2401	OE2	GLU :	В	73	53.673 111.698	25.666	1.00115.23	В	0
55	ATOM	2402	C	GLU :	В	73	50.337 109.071	25.474	1.00 67.40	В	С

	ATOM	2403	0	GLU E	73	50.234 107.890	25.153	1.00 67.27	В	0
	ATOM	2404	N	ARG E	74	49.352 109.949	25.323	1.00 86.41	В	N
5	ATOM	2405	CA	ARG E	74	48.071 109.562	24.737	1.00 87.24	В	С
	ATOM	2406	CB	ARG E	74	47.191 110.804	24.539	1.00129.71	В	С
	ATOM	2407	CG	ARG E	74	47.192 111.771	25.726	1.00130.40	В	С
	ATOM	2408	CD	ARG E	74	46.643 113,146	25.339	1.00128.70	В	С
10	ATOM	2409	NE	ARG E	74	47.276 114.229	26.096	1.00128.14	В	N
	ATOM	2410	CZ	ARG E	74	46.922 114.615	27.319	1.00127.75	В	С
	ATOM	2411	NH1	ARG E	74	45.921 114.014	27.950	1.00127.77	В	N
	ATOM	2412	NH2	ARG E	74	47.578 115.601	27.919	1.00127.52	В	N
15	ATOM	2413	С	ARG E	74	48.378 108.914	23.384	1.00 87.57	В	С
	ATOM	2414	0	ARG E	74	49.265 109.376	22.662	1.00 87.06	В	0
	ATOM	2415	N	ILE E	75	47.669 107.841	23.043	1.00 89.30	В	N
	ATOM	2416	CA	ILE E	75	47.913 107.168	21.769	1.00 91.18	В	С
20	ATOM	2417	CB	ILE B	75	49.030 106.115	21.882	1.00 77.93	В	С
	ATOM	2418	CG2	ILE B	75	50.290 106.749	22.448	1.00 79.59	В	С
	ATOM	2419	CG1	ILE B	75	48.553 104.939	22.736	1.00 78.15	В	С
	ATOM	2420	CD1	ILE B	75	49.575 103.830	22.865	1.00 78.88	В	С
25	MOTA	2421	С	ILE B	75	46.699 106.463	21.175	1.00 91.33	В	С
	MOTA	2422	0	ILE B	75	46.765 105.967	20.052	1.00 90.67	В	0
	ATOM	2423	N	SER B	76	45.602 106.410	21.924	1.00128.82	В	N
	ATOM	2424	CA	SER B	76	44.374 105.758	21.465	1.00129.65	В	С
30	ATOM	2425	CB	SER B	76	44.587 104.245	21.304	1.00203.67	В	С
	ATOM	2426	OG	SER B	76	45.477 103.935	20.245	1.00203.67	В	0
	ATOM	2427	С	SER B	76	43.263 105.991	22.481	1.00129.54	.B	С
	ATOM	2428	0	SER B	76	43.147 105.245	23.450	1.00131.25	В	0
35	ATOM	2429	N	GLU B	77	42.443 107.014	22.267	1.00 83.52	В	N
	ATOM	2430	CA	GLU B	77	41.369 107.288	23.212	1.00 82.23	В	С
	ATOM	2431	CB	GLU B	77	40.678 108.610	22.899	1.00179.96	В	С
	ATOM	2432	CG	GLU B	77	39.897 109.129	24.087	1.00178.72	В	С
40	ATOM	2433	CD	GLU B	77	39.465 110.561	23.920	1.00178.13	В	С
	ATOM	2434		GLU B	77	40.324 111.396	23.559	1.00178.81	В	0
	ATOM	2435	OE2	GLU B	77	38.272 110.851	24.159	1.00176.44	В	0
	ATOM	2436	С	GLU B	77	40.362 106.146	23.227	1.00 82.94	В	С
45	ATOM	2437	0	GLU B	77	39.962 105.638	22.180	1.00 83.42	В	0
	ATOM	2438	N	LEU B	78	39.949 105.754	24.425	1.00 60.08	В	N
	ATOM	2439	CA	LEU B	78	39.049 104.629	24.583	1.00 62.12	В	С
	ATOM	2440	CB	LEU B	78	39.441 103.849	25.841	1.00 96.73	В	C
50	ATOM	2441	CG	LEU B	78	40.876 103.311	25.907	1.00 96.17	В	С
	ATOM	2442		LEU B	78	41.206 102.916	27.329	1.00 94.90	В	С
	ATOM	2443		LEU B	78	41.040 102.130	24.971	1.00 95.38	В	С
	ATOM	2444	С	LEU B	78	37.573 104.967	24.627	1.00 63.16	В	С
55	ATOM	2445	0	LEU B	78	36.843 104.675	23.685	1.00 62.94	В	0

	ATOM	2446	N	GLY	В	79	37.131	105.562	25.730	1.00 72.51	В	N
	MOTA	2447	CA	GLY	В	79	35.728	105.910	25.874	1.00 74.33	В	C-
5	ATOM	2448	C	GLY	в	79	35.473	106.862	27.029	1.00 75.27	В	С
	ATOM	2449	0	GLY	в	79	36.407	107.280	27.726	1.00 76.05	В	0
	ATOM	2450	N	ALA	В	80	34.203	107.210	27.229	1.00 84.31	В	N
	ATOM	2451	CA	ALA	В	80	33.808	108.113	28.307	1.00 83.25	В	С
10	ATOM	2452	CB	ALA	В	80	34.016	109.559	27.885	1.00 95.52	В	С
	ATOM	2453	С	ALA	В	80	32.351	107.888	28.682	1.00 84.07	В	С
	ATOM	2454	0	ALA	В	80	31.668	107.054	28.084	1.00 84.77	В	0
	ATOM	2455	N	GLY	В	81	31.883	108.636	29.677	1.00110.56	В	N
15	ATOM	2456	CA	GLY	В	81	30.508	108.504	30.116	1.00111.30	В	С
	ATOM	2457	С	GLY	В	81	30.264	109.040	31.514	1.00111.51	В	С
	ATOM	2458	0	GLY	В	81	31.187	109.134	32.326	1.00111.90	В	0
	MOTA	2459	N	ASN	В	82	29.008	109.387	31.783	1.00 64.71	В	N
20	MOTA	2460	CA	ASN	В	82	28.564	109.922	33.068	1.00 66.76	В	С
	MOTA	2461	CB	ASN	В	82	27.574	108.956	33.714	1.00117.42	В	С
	ATOM	2462	CG	asn	В	82	26.139	109.355	33.477	1.00118.87	В	С
	ATOM	2463	OD1	ASN	В	82	25.706	110.428	33.892	1.00119.08	В	0
25	ATOM	2464	ND2	ASN	В	82	25.390	108.492	32.806	1.00119.79	В	N
20	MOTA	2465	С	asn	В	82	29.616	110.294	34.108	1.00 67.24	В	С
	MOTA	2466	0	ASN	В	82	29.603	109.758	35.212	1.00 67.92	В	0
	MOTA	2467	N	GLY	В	83	30.514	111.215	33.768	1.00123.47	В	N
30	MOTA	2468	CA	GLY	В	83	31.526	111.642	34.723	1.00122.09	В	С
30	MOTA	2469	С	GLY	В	83	32.838	110.879	34.721	1.00120.82	В	С
	MOTA	2470	0	GLY	В	83	33.475	110.717	35.762	1.00120.74	В	0
	MOTA	2471	N	GLY	В	84	33.252	110.415	33.549	1.00124.43	В	N
	MOTA	2472	CA	GLY	В	84	34.495	109.681	33.451	1.00121.64	В	С
35	MOTA	2473	С	GLY	В	84	34.872	109.425	32.007	1.00120.47	В	С
	ATOM	2474	0	GLY	В	84	34.071	108.899	31,231	1.00120.84	В	0
	ATOM	2475	N	VAL	В	85	36.089	109.810	31.640	1.00 93.27	В	N
	ATOM	2476	CA	VAL		85			30.284	1.00 92.58	В	С
40	ATOM	2477	CB	VAL		85	36.729	110.943	29.536	1.00 51.56	В	С
	ATOM	2478		VAL		85	37.385	111.992	30.435	1.00 52.10	В	С
	ATOM	2479		VAL		85	37.545	110.727	28.281	1.00 51.94	В	С
	ATOM	2480	С	VAL		85	37.938	108.904	30,332	1.00 90.91	В	С
45	ATOM	2481	0	VAL	В	85	38.872	109.381	30.982	1.00 89.70	В	0
	ATOM	2482	N	VAL	в	86	38.037	107.765	29.648	1.00 68.49	В	N
	ATOM	2483	CA	VAL	В	86	39.271	106.984	29.643	1.00 67.39	В	С
	ATOM	2484	CB	VAL		86			30.200	1.00 69.07	В	С
50	MOTA	2485		VAL		86	38.085	105.607	31.367	1.00 69.99	В	С
	MOTA	2486		VAL	В	86	38.534	104.657	29.114	1.00 69.83	В	С
	ATOM	2487	С	VAL		86			28.252	1.00 65.82	В	С
	ATOM	2488	0	VAL	В	86	39.190	107.104	27.250	1.00 65.54	В	0

	ATOM	2489	N	THR	В	87	41.113	106.431	28.200	1.00 41.72	В	N
	MOTA	2490	CA	THR	В	87	41.807	106.295	26.938	1.00 41.47	В	C
5	MOTA	2491	CB	THR I	3	87	42.134	107.673	26.362	1.00 58.61	В	С
	ATOM	2492	OG1	THR I	3	87	43.188	107.545	25.397	1.00 59.45	В	0
	MOTA	2493	CG2	THR I	3	87	42.561	108.630	27.480	1.00 57.63	В	С
	ATOM	2494	С	THR E	3	87	43.113	105.535	27.058	1.00 41.69	В	С
10	ATOM	2495	0	THR I	3	87	43.821	105.653	28.058	1.00 42.32	В	0
	MOTA	2496	N	LYS E	3	88	43.424	104.762	26.024	1.00 44.55	В	N
	MOTA	2497	CA	LYS F	3	88	44.662	103.997	25.971	1.00 44.37	В	С
	MOTA	2498	CB	LYS E	3 1	88	44.733	103.249	24.638	1.00 67.69	В	С
15	MOTA	2499	CG	LYS E	3 1	88	45.948	102.371	24.444	1.00 69.52	В	С
	MOTA	2500	CD	LYS E	3 1	88	45.820	101.582	23.146	1.00 70.47	В	С
	MOTA	2501	CE	LYS E	3 1	88	46.991	100.625	22.956	1.00 71.83	В	С
	MOTA	2502	NZ	LYS E	3 1	88	46.878	99.798	21.720	1.00 71.95	В	N
20	MOTA	2503	С	LYS F	3 1	88	45.807	105.009	26.092	1.00 45.17	В	С
	ATOM	2504	0	LYS E	3 1	88	45.792	106.039	25.419	1.00 42.89	В	0
	MOTA	2505	N	VAL E		89	46.785	104.737	26.954	1.00 83.47	В	N
	MOTA	2506	CA	VAL E	8	89	47.901	105.665	27.139	1.00 83.51	В	С
25	MOTA	2507	CB	VAL E		89	47.489	106.855	28.038	1.00174.05	В	С
	MOTA	2508	CG1	VAL E		89	47.100	106.360	29.420	1.00175.70	В	С
	ATOM	2509	CG2	VAL E		89	48.624	107.856	28.125	1.00173.50	В	C
	ATOM	2510	С	VAL E		39	49.127	104.995	27.746	1.00 83.77	В	С
30	ATOM	2511	0	VAL E		B 9	49.082	104.503	28.873	1.00 83.32	В	0
	ATOM	2512	N	GLN E		90	50.227	105.005	26.994	1.00 99.42	В	N
	ATOM	2513	CA	GLN E	9	90	51.478	104.377	27.413	1.00100.88	В	C
	MOTA	2514	CB	GLN E		90	52.357	104.104	26.193	1.00 81.42	В	С
35	ATOM	2515	CG	GLN E		90	53.712	103.515	26.566	1.00 82.31	В	С
	ATOM	2516	CD	GLN E	9	90	54.536	103.116	25.361	1.00 83.55	В	С
	MOTA	2517	OE1	GLN B	9	90	55.594	102.499	25.491	1.00 85.84	В	0
	MOTA	2518	NE2	GLN B		90	54.055	103.466	24.179	1.00 84.40	В	N
40	MOTA	2519	С	GLN B	9	90	52.332	105.101	28.453	1.00101.73	В	С
	MOTA	2520	0	GLN E		90	52.444	106.327	28.442	1.00102.44	В	0
	MOTA	2521	N	HIS B	9	91	52.942	104.312	29.339	1.00112.50	В	N
	ATOM	2522	CA	HIS B	9	91	53.831	104.819	30.383	1.00113.40	В	С
45	ATOM	2523	CB	HIS E		91	53.743	103.962	31.644	1.00 83.66	В	С
	ATOM	2524	CG	HIS E		91	54.450	104.552	32.825	1.00 83.95	В	С
	MOTA	2525	CD2	HIS B	9	91	55.612	104.211	33.431	1.00 84.56	В	C
50	ATOM	2526	ND1	HIS B	9	91	53.954	105.628	33.529	1.00 85.21	В	N
50	ATOM	2527		HIS B		91	54.777	105.924	34.519	1.00 86.60	В	С
	ATOM	2528		HIS B		91	55.792	105.079	34.482	1.00 86.43	В	N
	ATOM	2529	С	HIS B		91		104.704	29.809	1.00113.02	В	С
55	ATOM	2530	0	HIS B		91		103.623	29.788	1.00113.70	В	0
33	ATOM	2531	N	ARG B	9	92	55.759	105.829	29.346	1.00118.52	В	N

	ATOM	2532	CA	ARG	В 92	57.075	105.882	28.727	1.00116.98	В	С
	ATOM	2533	CB	ARG	В 92	57.542	107.340	28.652	1.00203.67	В	C.
5	ATOM	2534	CG	ARG	в 92	58.871	107.519	27.945	1.00203.67	В	С
	ATOM	2535	CD	ARG	B 92	59.295	108.977	27.903	1.00203.67	В	С
	ATOM	2536	NE	ARG	В 92	60.553	109.148	27.182	1.00203.67	В	N
	ATOM	2537	CZ	ARG	В 92	61.163	110.315	27.006	1.00203.67	В	С
10	ATOM	2538	NHI	ARG	В 92	62.305	110.375	26.334	1.00203.67	В	N
	ATOM	2539	NH2	ARG	B 92	60.632	111.424	27.502	1.00203.67	В	N
	ATOM	2540	С	ARG	B 92	58.178	105.017	29.345	1.00114.49	В	¢
	MOTA	2541	0	ARG	в 92	58.661	104.073	28.719	1.00114.59	В	0
15	ATOM	2542	N	PRO	В 93	58.582	105.320	30.587	1.00113.76	В	N
	ATOM	2543	CD	PRO :	B 93	57.909	106.238	31.519	1.00117.78	В	С
	ATOM	2544	CA	PRQ :	B 93	59.636	104.578	31.283	1.00112.88	В	С
	ATOM	2545	CB	PRO :	в 93	59.524	105.085	32.718	1.00117.23	В	С
20	ATOM	2546	CG	PRO !	в 93	58.978	106.467	32.548	1.00117.63	В	С
	ATOM	2547	С	PRO I	B 93	59.514	103.064	31.209	1.00110.58	В	С
	ATOM	2548	0	PRO I	в 93	60.518	102.358	31.172	1.00110.35	В	0
	ATOM	2549	N	SER I	B 94	58.285	102.568	31.184	1.00 71.16	В	N
25	MOTA	2550	CA	SER I	94	58.051	101.132	31.146	1.00 70.27	В	С
	MOTA	2551	CB	SER I	94	57.014	100.764	32.204	1.00 62.16	В	С
	ATOM	2552	OG	SER I	94	55.824	101.508	32.014	1.00 62.79	В	0
	MOTA	2553	С	SER I	3 94	57.599	100.618	29.784	1.00 69.55	В	С
30	ATOM	2554	0	SER I	3 94	57.612	99.410	29.531	1.00 69.77	В	0
	ATOM	2555	N	GLY I			101.527	28.900	1.00 66.99	В	N
	ATOM	2556	CA	GLY I		56.753	101.095	27.595	1.00 66.18	В	С
	ATOM	2557	С	GLY E	95	55.664	100.076	27.829	1.00 66.47	В	С
35	ATOM	2558	0	GLY E		55.886	98.877	27.674	1.00 67.36	В	0
	MOTA	2559	N	LEU E		54.494	100.571	28.228	1.00 92.99	В	N
	MOTA	2560	CA	LEU E		53.321	99.748	28.526	1.00 91.16	В	С
	ATOM	2561	CB	LEU E		53.336	99.325	29.998	1.00 48.20	В	С
40	ATOM	2562	CG	LEU E		54.028	98.027	30.396	1.00 46.86	В	С
	ATOM	2563		LEU E		54.253	98.024	31.887	1.00 47.31	В	С
	ATOM	2564		LEU E		53.175	96.838	29.961	1.00 46.32	В	С
	ATOM	2565	С	LEU E			100.498	28.255	1.00 89.93	В	С
45	MOTA	2566	0	LEU E			101.504	28.902	1.00 89.41	В	0
	ATOM	2567	N	ILE E		51.231	100.010	27.305	1.00 70.75	В	N
	MOTA	2568	CA	ILE E			100.658	27.011	1.00 71.51	В	С
	ATOM	2569	CB	ILE E			100.126	25.711	1.00 61.48	В	С
50	ATOM	2570		ILE B			100.331	24.576	1.00 60.88	В	С
	ATOM	2571		ILE B		49.040	98.634	25.837	1.00 63.49	В	С
	ATOM	2572		ILE B		48.361	98.039	24.616	1.00 64.69	В	С
	MOTA	2573	С	ILE B			100.378	28.167	1.00 71.13	В	С
55	ATOM	2574	0	ILE B	97	48.606	99.238	28.389	1.00 71.05	В	0

	ATOM	2575	N	MET	В	98	48.664	101.419	28.912	1.00	62.24	В	N
	ATOM	2576	CA	MET	В	98	47.769	101.258	30.042	1.00	62.91	В	C
5	ATOM	2577	CB	MET	В	98	48.182	102.196	31.161	1.00	40.92	В	С
	MOTA	2578	CG	MET	В	98	49.644	102.488	31.156	1.00	42.91	В	С
	ATOM	2579	SD	MET	В	98	50.472	101.914	32.614	1.00	41.69	В	S
	ATOM	2580	CE	MET	В	98	49.900	103.110	33.800	1.00	42.58	В	С
10	ATOM	2581	С	MET	В	98	46.343	101.574	29.635	1.00	62.95	В	С
	MOTA	2582	0	MET	В	98	45.755	100.927	28.764	1.00	62.68	В	0
	ATOM	2583	N	ALA	В	99	45.800	102.590	30.284	1.00	53.35	В	N
	MOTA	2584	CA	ALA	В	99	44.449	103.043	30.043	1.00	51.50	В	С
15	MOTA	2585	CB	ALA	В	99	43.485	101.881	30.109	1.00	74.31	В	¢
	ATOM	2586	С	ALA	В	99	44.204	103.997	31.183	1.00	49.86	В	C
	ATOM	2587	0	ALA	В	99	43.971	103.574	32.313	1.00	48.99	В	0
	ATOM	2588	N	ARG	В	100	44.289	105.288	30.892	1.00	62.75	В	N
20	ATOM	2589	CA	ARG	В	100	44.089	106.307	31.911	1.00	62.64	В	С
	MOTA	2590	CB	ARG	В	100	44.862	107.576	31.529	1.00	70.50	В	С
	ATOM	2591	CG	ARG	В	100	45.000	108.632	32.614	1.00	69.16	В	С
	ATOM	2592	CD	ARG	В	100	45.536	109.897	31.984	1.00	69.70	В	С
25	MOTA	2593	NE	ARG	В	100	45.969	110.897	32.952	1.00	70.32	В	N
	MOTA	2594	CZ	ARG	В	100	47.037	110.777	33.737	1.00	70.23	В	С
	MOTA	2595	NH1	ARG	В	100	47.789	109.689	33.677	1.00	69.31	В	N
	MOTA	2596	NH2	ARG	В	100	47.367	111.759	34.567	1.00	69.09	В	N
30	ATOM	2597	С	ARG	В	100	42.607	106.620	32.040	1.00	63.22	В	С
	ATOM	2598	0	ARG	В	100	41.899	106.760	31.042	1.00	60.21	В	0
	ATOM	2599	N	LYS	В	101	42.132	106.705	33.276	1.00	46.13	В	N
	ATOM	2600	CA	LYS	В	101	40.738	107.028	33.495	1.00	46.76	В	С
35	ATOM	2601	CB	LYS	В	101	40.057	106.042	34.437	1.00	63.93	В	С
	ATOM	2602	CG	LYS	В	101	38.590	106.381	34.599	1.00	64.09	В	С
	ATOM	2603	CD	LYS	В	101	37.815	105.331	35.339	1.00	63.46	В	С
	MOTA	2604	CE	LYS	В	101	36.335	105.607	35.211	1.00	63.34	В	C
40	ATOM	2605	NZ	LYS	В	101		104.646	35.986	1.00	63.22	В	N
	ATOM	2606	С	LYS	В	101	40.653	108.406	34.093	1.00	48.12	В	C
	MOTA	2607	0	LYS	В	101	41.081	108.638	35.224	1.00	46.53	В	0
	MOTA	2608	N	LEU	В	102	40.098	109.325	33.318	1.00	71.93	В	N
45	MOTA	2609	CA	LEU	В	102	39.948	110.688	33.769	1.00	74.86	В	С
	MOTA	2610	CB	LEU	В	102	40.131	111.647	32.595	1.00	103.17	В	С
	MOTA	2611	CG	LEU	В	102	41.456	111.580	31.834	1.00	104.53	В	С
	ATOM	2612	CD1	LEU	В	102	41.435	112.598	30.698	1.00	103.10	В	С
50	ATOM	2613	CD2	LEU	В	102	42.605	111.861	32.780	1.00	105.27	В	С
	ATOM	2614	С	LEU	В	102	38.582	110.910	34.407	1.00	76.67	В	С
	ATOM	2615	0	LEU	В	102	37.581	111.103	33.717	1.00	77.47	В	0
	MOTA	2616	N	ILE	В	103	38.546	110.840	35.731	1.00	74.86	В	N
55	MOTA	2617	CA	ILE	В	103	37.323	111.091	36.478	1.00	76.22	В	С

	MOTA	2618	CB	ILE	В	103	37.187	110.169	37.691	1.00 82.83	В	С
	ATOM	2619	CG	2 ILE	: в	103	35.887	110.456	38.417	1.00 81.02	В	С
5	ATOM	2620	CG:	ILE	В	103	37.246	108.714	37.243	1.00 84.40	В	С
	ATOM	2621	CDI	LILE	В	103	37.110	107.732	38.379	1.00 83.96	В	С
	ATOM	2622	С	ILE	В	103	37.613	112.483	36.987	1.00 78.81	В	С
	ATOM	2623	0	ILE	В	103	38.054	112.648	38.122	1.00 80.04	В	0
10	ATOM	2624	N	HIS	В	104	37.403	113.486	36.143	1.00135.10	В	N
	ATOM	2625	CA	HIS	В	104	37.698	114.842	36.562	1.00136.46	В	С
	ATOM	2626	СВ	HIS	В	104	37.261	115.867	35.529	1.00119.66	В	С
	ATOM	2627	CG	HIS	В	104	37.692	117.254	35.879	1.00119.49	В	С
15	ATOM	2628	CD2	HIS	В	104	37.003	118.300	36.392	1.00120.42	В	С
	ATOM	2629	NDI	HIS	В	104	39.009	117.656	35.816	1.00119.25	В	N
	ATOM	2630	CE1	HIS	В	104	39.113	118.888	36.277	1.00120.16	В	c
	ATOM	2631	NE2	HIS	В	104	37.910	119.302	36.634	1.00120.74	В	N
20	ATOM	2632	С	HIS	в	104	37.028	115.179	37.874	1.00137.73	В	С
	ATOM	2633	0	HIS	В	104	37.547	114.864	38.944	1.00137.55	В	0
	ATOM	2634	N	LEU	В	105	35.876	115.832	37.790	1.00117.96	В	N
	MOTA	2635	CA	LEU	В	105	35.149	116.196	38.990	1.00118.37	В	С
25	MOTA	2636	CB	LEU	В	105	34.593	114.938	39.648	1.00128.33	В	c
	ATOM	2637	CG	LEU	в	105	34.103	115.090	41.082	1.00130.30	В	С
	ATOM	2638	CD1	LEU	В	105	32,977	116.110	41.151	1.00130.71	В	С
	ATOM	2639	CD2	LEU	В	105	33,648	113.740	41.577	1.00129.96	В	С
30	MOTA	2640	С	LEU	В	105	36.092	116.890	39.953	1.00120.03	В	С
	MOTA	2641	0	LEU	В	105	36.685	116.239	40.810	1.00117.59	В	0
	MOTA	2642	N	GLU	в	106	36.236	118.204	39.807	1.00134.20	В	N
	ATOM	2643	CA	GLU	В	106	37.120	118.971	40.680	1.00136.57	В	С
35	ATOM	2644	CB	GLU	В	106	36.711	120.445	40.693	1.00203.67	В	С
	MOTA	2645	CG	GLU	В	106	37.293	121.254	41.855	1.00203.67	В	C
	ATOM	2646	CD	GLU	В	106	38.810	121.173	41.956	1.00203.67	В	С
	MOTA	2647	OE1	GLU	В	106	39.338	120.091	42.291	1.00203.67	В	0
40	ATOM	2648	OE2	GLU	В	106	39.479	122.197	41.702	1.00203.67	В	0
	ATOM	2649	С	GLU	В	106	37.139	118.433	42.110	1.00137.32	В	С
	ATOM	2650	0	GLU	В	106	36.216	118.674	42.896	1.00137.01	В	٥
	ATOM	2651	N	ILE	В	107	38.203	117.701	42.431	1.00181.30	В	N
45	ATOM	2652	CA	ILE	В	107	38.376	117.112	43.753	1.00182.71	В	С
	ATOM	2653	CB	ILE	В	107	39.208	115.812	43.685	1.00134.90	В	С
	ATOM	2654	CG2	ILE	В	107	39.263	115.164	45.055	1.00133.68	В	С
	ATOM	2655	CG1	ILE	В	107	38.594	114.841	42.676	1.00137.21	В	С
50	ATOM	2656	CD1	ILE	В	107	37.202	114.378	43.038	1.00138.69	В	С
50	ATOM	2657	С	ILE	В	107	39.106	118.080	44.673	1.00182.77	В	c
	ATOM	2658	0	ILE	В	107	40.295	118.343	44.490	1.00182.17	В	0
	ATOM	2659	N	LYS	в	108	38.395		45.660	1.00148.35	В	N
55	ATOM	2660	CA	LYS	в:	108	39,007	119.537	46.602	1.00149.22	В	C
35										11		

	MOTA	2661	CB	LYS B	108	38.020	119.878	47.724	1.00132.63	В	С
	ATOM	2662	CG	LYS B	108	37.018	118.778	48.040	1.00133.81	В	C.
5	ATOM	2663	CD	LYS B	108	36.054	119.220	49.132	1.00135.07	В	С
	ATOM	2664	CE	LYS B	108	34.929	118.214	49.329	1.00136.17	В	С
	ATOM	2665	NZ	LYS B	108	34.067	118.087	48.119	1.00136.87	В	N
	ATOM	2666	С	LYS B	108	40.276	118.914	47.177	1.00147.96	В	С
10	ATOM	2667	0	LYS B	108	40.297	117.732	47.518	1.00148.89	В	0
	ATOM	2668	N	PRO B	109	41.360	119.703	47.275	1.00110.67	В	N
	ATOM	2669	CD	PRO B	109	41.464	121.122	46.892	1.00154.46	В	С
	MOTA	2670	CA	PRO B	109	42.636	119.217	47.810	1.00110.42	В	С
15	MOTA	2671	CB	PRO B	109	43.472	120.489	47.905	1.00153.65	В	С
	MOTA	2672	CG	PRO B	109	42.959	121.308	46.763	1.00153.35	В	С
	ATOM	2673	С	PRO B	109	42.440	118.559	49.165	1.00108.86	В	c
	MOTA	2674	0	PRO B	109	43.192	117.668	49.553	1.00109.28	В	0
20	MOTA	2675	N	ALA B	110	41.411	119.012	49.871	1.00151.90	В	N
	ATOM	2676	CA	ALA B	110	41.077	118.502	51.192	1.00152.25	В	С
	MOTA	2677	CB	ALA B	110	39.809	119.185	51.703	1.00136.51	В	С
	MOTA	2678	С	ALA B	110	40.892	116.990	51.216	1.00150.32	В	С
25	MOTA	2679	0	ALA B	110	41.471	116.303	52.058	1.00149.09	В	0
	MOTA	2680	N	ILE B	111	40.094	116.473	50.286	1.00 97.29	В	N
	MOTA	2681	CA	ILE B	111	39.817	115.043	50.247	1.00 96.55	В	С
30	MOTA	2682	CB	ILE B		38.355	114.769	49.834	1.00 43.90	В	С
30	MOTA	2683	CG2	ILE B	111	37.417	115.601	50.681	1.00 44.43	В	С
	ATOM	2684		ILE B			115.091	48.354	1.00 45.18	В	С
	ATOM	2685		ILE B			114.841	47.841	1.00 46.60	В	С
35	MOTA	2686	С	ILE B			114.166	49.376	1.00 94.53	В	С
35	ATOM	2687	0	ILE B			113.067	49.785	1.00 92.61	В	0
	MOTA	2688	N	ARG B			114.626	48.185	1.00 72.07	В	N
	MOTA	2689	CA	ARG B			113.802	47.319	1.00 73.43	В	С
40	MOTA	2690	CB	ARG B			114.591	46.102	1.00110.65	В	С
:=	ATOM	2691	CG	ARG B			116.062	46.328	1.00111.16	В	С
	ATOM	2692	CD	ARG B			116.670	45.042	1.00111.86	В	С
	ATOM	2693	NE	ARG B			116.375	43.886	1.00114.17	В	N
45	ATOM	2694	CZ	ARG B			116.518	42.623	1.00115.48	В	С
	ATOM	2695		ARG B			116.952	42.347	1.00115.70	В	Ŋ
	ATOM	2696		ARG B			116.227	41.635	1.00116.18	В	И
	ATOM	2697	С	ARG E			113.146	48.025	1.00 73.13	В	С
50	ATOM	2698	0	ARG E			112.027	47.675	1.00 73.06	В	0
	ATOM	2699	N	ASN E			113.822	49.013	1.00180.29	В	N
	ATOM	2700	CA	ASN B			113.243	49.765	1.00181.45	В	С
	ATOM	2701	CB	ASN B			114.211	50.849	1.00120.28	В	C
55	ATOM	2702	CG	ASN B			115.452	50.277	1.00120.20	В	С
	ATOM	2703	OD1	ASN B	113	45.427	116.550	50.330	1.00120.34	В	0

	MOTA	2704	ND:	2 ASN	В	113	47.177	115.280	49.732	1.00	119.84		В	N
	MOTA	2705	С	ASN	В	113	44.278	111.973	50.438	1.00	182.09		В	C
5	ATOM	2706	0	ASN	В	113	45.019	111.015	50.678	1.00	181.84		В	0
	MOTA	2707	N	GLN	В	114	42.983	112.000	50.739	1.00	124.93		В	N
	ATOM	2708	CA	GLN	В	114	42.266	110.904	51.372	1.00	125.15		В	с
	ATOM	2709	CB	GLN	В	114	41.177	111.480	52.283	1.00	145.34		В	С
10	ATOM	2710	CG	GLN	В	114	40.124	110.498	52.758	1.00	149.06		В	С
	ATOM	2711	CD	GLN	В	114	40.708	109.304	53.472	1.00	152.35		В	С
	ATOM	2712	OE 1	GLN	В	114	41,229	108.389	52.841	1.00	153.33		В	0
	ATOM	2713	NE2	GLN	В	114	40.634	109,308	54.798	1.00	154.08		В	N
15	ATOM	2714	С	GLN	В	114	41.655	110.018	50.288	1.00	123.25		В	С
	ATOM	2715	0	GLN	В	114	41.624	108.797	50.417	1.00	121.59		В	0
	ATOM	2716	N	ILE	В	115	41.174	110.641	49.216	1.00	78.11		В	N
	MOTA	2717	CA	ILE	В	115	40.590	109.899	48.102	1.00	74.64		В	С
20	MOTA	2718	CB	ILE	В	115	40.119	110.837	46.969	1.00	97.49		В	С
	ATOM	2719	CG2	ILE	В	115	40.009	110.061	45.656	1.00	96.43		В	С
	ATOM	2720	CG1	ILE	В	115	38.786	111.481	47.357	1.00	97.60		В	С
	MOTA	2721	CD1	ILE	В	115	38.162	112.289	46.255	1.00	99.10		В	С
25	MOTA	2722	С	ILE	В	115	41.646	108.962	47.551	1.00	74.63		В .	С
	MOTA	2723	0	ILE	В	115	41.344	107.897	47.020	1.00	73.93		В	0
	ATOM	2724	N	ILE	В	116	42.897	109.376	47.676	1.00	69.86		В	N
	MOTA	2725	CA	ILE	В	116	43.996	108.552	47.222	1.00	68.92		В	С
30	ATOM	2726	CB	ILE	В :	116	45.267	109.390	47.015	1.00	128.18		В	С
	ATOM	2727	CG2	ILE	В :	116	46.477	108.482	46.841	1.00	128.11	2	В	С
	ATOM	2728	CG1	ILE	в:	116	45.083	110.288	45.792	1.00	129.68		В	С
	ATOM	2729	CD1	ILE	В :	116	44.708	109.528	44.535	1.00	131.72		В	С
35	ATOM	2730	С	ILE	В:	116	44.236	107.494	48.295	1.00	69.57		В	С
	ATOM	2731	0	ILE	В:	116	44.692	106.388	48.010	1.00	69.62		В	0
	MOTA	2732	N	ARG	в:	117	43.909	107.840	49.533	1.00	101.63		В	N
	ATOM	2733	CA	ARG	в:	117	44.084	106.908	50.630	1.00	100.58		В	С
40	MOTA	2734	CB	ARG	в :	117	43.872	107.615	51.975	1.00	162.45		В	С
	MOTA	2735	CG	ARG	в:	117	44.123	106.728	53.201	1.00	164.91		В	С
	MOTA	2736	CD	ARG	B 1	117	43.137	107.002	54.347	1.00	169.29		В	С
	MOTA	2737	NE	ARG	в :	117	43.530	108.083	55.254	1.00	173.29		В	N
45	MOTA	2738	CZ	ARG	B 1	117	43.670	109.362	54.913	1.00	174.87		В	С
	ATOM	2739	NH1	ARG	В 1	117	43.457	109.755	53.668	1.00	174.71		В	N
	MOTA	2740	NH2	ARG	В 1	117	44.015	110.257	55.828	1.00	175.95		В	N
	ATOM	2741	С	ARG :	В 1	117	43.090	105.752	50.491	1.00	99.31		В	С
50	ATOM	2742	0	ARG :	В 1	117	43.356	104.639	50.960	1.00	99.97		В	0
	ATOM	2743	N	GLU I	В 1	118	41.955	106.007	49.839	1.00	L20.49		В	N
	ATOM	2744	CA	GLU 1	В 1	18	40.927	104.977	49.671	1.00	118.64		В	С
	ATOM	2745	CB	GLU 1			39.530	105.601	49.756	1.00	63.52		В	C
55	ATOM	2746	CG	GLU 1	В 1	18	39.263	106.306	51.076	1.00	64.28		В	С

	MOTA	2747	CD	GLU	В	118	37.804	106.674	51.265	1.00 65.00	В	С
	ATOM	2748	OE1	GLU	В	118	37.223	107.285	50.343	1.00 64.31	В	0
5	MOTA	2749	OE2	GLU	В	118	37.239	106.359	52.338	1.00 64.91	В	0
	ATOM	2750	С	GLU	В	118	41.048	104.168	48.385	1.00116.21	В	С
	MOTA	2751	0	GLU	В	118	40.684	102.994	48.352	1.00115.57	В	0
	ATOM	2752	N	LEU	В	119	41.560	104.793	47.331	1.00 79.58	В	N
10	MOTA	2753	CA	LEU	В	119	41.729	104.114	46.048	1.00 75.76	В	С
	ATOM	2754	CB	LEU	В	119	41.753	105.141	44.912	1.00 35.82	В	С
	ATOM	2755	CG	LEU	В	119	40.374	105.455	44.337	1.00 34.53	В	С
	ATOM	2756	CD1	LEU	В	119	40.441	106.440	43.189	1.00 35.16	В	С
15	ATOM	2757	CD2	LEU	В	119	39.818	104.187	43.845	1.00 35.33	В	С
	ATOM	2758	С	LEU	В	119	42.993	103.256	45.987	1.00 75.81	В	С
	ATOM	2759	0	TEA	В	119	43.288	102.628	44.966	1.00 76.48	В	0
	ATOM	2760	N	GLN	В	120	43.725	103.218	47.094	1.00 79.60	В	N
20	ATOM	2761	CA	GLN	В	120	44.966	102.465	47.164	1.00 79.88	В	С
	ATOM	2762	СВ	GLN	В	120	45.911	103.137	48.163	1.00 64.89	В	С
	ATOM	2763	CG	GLN	В	120	46.525	104.438	47.650	1.00 66.53	В	С
	MOTA	2764	CD	GLN	В	120	47.378	104.220	46.425	1.00 67.61	В	С
25	ATOM	2765	OE1	GLN	В	120	48.290	103.401	46.438	1.00 67.75	В	0
	ATOM	2766	NE2	GLN	В	120	47.087	104.952	45.359	1.00 66.91	В	N
	ATOM	2767	С	GLN	В	120	44.831	100.977	47.486	1.00 77.86	В	C
	ATOM	2768	0	GLN	В	120	45.811	100.236	47.411	1.00 76.48	В	0
30	ATOM	2769	N	VAL	В	121	43.634	100.534	47.852	1.00 33.28	В	N
	ATOM	2770	CA	VAL	В	121	43.431	99.119	48.145	1.00 32.65	В	С
	ATOM	2771	CB	VAL	В	121	42.118	98.851	48.929	1.00 32.30	В	С
	ATOM	2772		VAL			41.781	100.046	49.808	1.00 34.40	В	С
35	ATOM	2773		VAL	В	121	40.980	98.521	47.966	1.00 34.65	В	С
	ATOM	2774	c.	VAL	В	121	43.341	98.405	46.808	1.00 30.01	В	С
	ATOM	2775	0	VAL	В	121	43.442	97.188	46.739	1.00 27.78	В	0
	ATOM	2776	N	LEU	В	122	43.128	99.178	45.748	1.00 43.35	В	N
40	ATOM	2777	CA	LEU	В	122	43.051	98.634	44.405	1.00 41.12	В	¢
	ATOM	2778	CB	LEU	В	122	42.891	99.765	43.403	1.00 49.66	В	С
	ATOM	2779	CG	LEU	В	122	41.458	100.018	42.946	1.00 49.64	В	С
	ATOM	2780	CD1	LEU	В	122	41.245	101.520	42.794	1.00 48.51	В	С
45	ATOM	2781	CD2	LEU	В	122	41.181	99.245	41.631	1.00 48.83	В	С
	ATOM	2782	C	LEU	В	122	44.381	97.944	44.201	1.00 38.18	В	¢
	MOTA	2783	0	LEU	В	122	44.500	96.959	43.462	1.00 36.97	В	0
	ATOM	2784	N	HIS	В	123	45.377	98.498	44.886	1.00 55.34	В	N
50	ATOM	2785	CA	HIS	В	123	46.741	97.998	44.880	1.00 56.02	В	Ċ
	ATOM	2786	CB			123	47.638	98.999	45.615	1.00 42.65	В	С
	ATOM	2787	CG	HIS	В	123	48.357	99.952	44.708	1.00 40.05	В	С
	ATOM	2788	CD2	HIS	В	123	48.804	99.809	43.437	1.00 39.45	В	С
55	ATOM	2789	NDI	HIS	В	123	48.746	101.212	45.110	1.00 40.22	В	N

	MOTA	2790	CE1	HIS B	123	49.401	101.804	44.126	1.00 40.47	В	C
	MOTA	2791	NE2	HIS B	123	49.451	100.975	43.101	1.00 39.93	В	N
5	ATOM	2792	С	HIS B	123	46.738	96.644	45.595	1.00 58.19	В	С
	ATOM	2793	0	HIS B	123	47.427	95.700	45.189	1.00 57.41	В	0
	ATOM	2794	N	GLU B	124	45.948	96.556	46.658	1.00 41.93	В	N
	MOTA	2795	CA	GLU B	124	45.832	95.329	47.414	1.00 43.66	В	C
10	ATOM	2796	CB	GLU B	124	45.421	95.665	48.843	1.00 73.24	В	С
	ATOM	2797	CG	GLU B	124	46.531	96.349	49.629	1.00 79.05	В	C
	ATOM	2798	CD	GLU B	124	46.019	97.292	50.721	1.00 83.21	В	С
	ATOM	2799	OE1	GLU B	124	45.635	98.444	50.398	1.00 86.27	В	0
15	ATOM	2800	OE2	GLU B	124	45.998	96.879	51.904	1.00 84.56	В	0
	ATOM	2801	С	GLU B	124	44.836	94.346	46.765	1.00 45.79	В	C
	ATOM	2802	0	GLU B	124	44.490	93.333	47.363	1.00 47.68	В	0
	MOTA	2803	N	CYS B	125	44.390	94.634	45.541	1.00 62.70	В	N
20	ATOM	2804	CA	CYS B	125	43.446	93.756	44.838	1.00 63.02	В	С
	ATOM	2805	CB	CYS B	125	42.267	94.537	44.272	1.00 28.50	В	С
	ATOM	2806	SG	CYS B	125	41.248	95.405	45.422	1.00 31.06	В	s
	ATOM	2807	С	CYS B	125	44.101	93.070	43.660	1.00 61.11	В	С
25	ATOM	2808	0	CYS B	125	44.792	93.712	42.872	1.00 62.16	В	0
	ATOM	2809	N	ASN B	126	43.859	91.772	43.518	1.00 40.37	В	N
	ATOM	2810	CA	ASN B	126	44.419	91.022	42.402	1.00 42.14	В	С
	ATOM	2811	СВ	ASN B	126	45.948	90.889	42.536	1.00 77.47	В	С
30	ATOM	2812	CG	ASN B	126	46.389	89.492	42.961	1.00 79.44	В	С
	ATOM	2813	OD1	ASN B	126	46.378	89.153	44.149	1.00 78.88	В	0
	ATOM	2814	ND2	ASN B	126	46.772	88.671	41.986	1.00 79.32	В	N
	ATOM	2815	C	ASN B	126	43.790	89.645	42.248	1.00 41.30	В	C
35	ATOM	2816	0	ASN B	126	43.878	88.794	43.123	1.00 42.02	В	0
	ATOM	2817	N	SER B	127	43.138	89.453	41.114	1.00 30.58	В	N
	ATOM	2818	CA	SER B	127	42.495	88.203	40.767	1.00 28.08	В	С
	ATOM	2819	CB	SER B	127	41.094	88.129	41.343	1.00 25.30	В	С
40	ATOM	2820	OG	SER B	127	40.347	87.137	40.666	1.00 25.67	В	0
	ATOM	2821	C	SER B	127	42.392	88.226	39.271	1.00 28.31	В	С
	ATOM	2822	0	SER B	127	42.253	89.291	38.678	1.00 31.17	В	0
	MOTA	2823	N	PRO B	128	42.473	87.063	38.629	1.00 17.20	В	N
45	MOTA	2824	CD	PRO B	128	43.059	85.805	39.110	1.00 51.72	В	С
	ATOM	2825	CA	PRO B	128	42.372	87.056	37.170	1.00 17.50	В	С
	ATOM	2826	CB	PRO B	128	42.663	85.603	36.826	1.00 52.25	В	С
	ATOM	2827	CG	PRO B	128	43.680	85.246	37.850	1.00 51.10	В	С
50	ATOM	2828	С	PRO B	128	41.011	87.521	36.670	1.00 15.86	В	С
	ATOM	2829	0	PRO B	128	40.660	87.322	35.510	1.00 16.85	В	0
	ATOM	2830	N	TYR B	129	40.263	88.153	37.564	1.00 29.83	В	N
	ATOM	2831	CA	TYR B	129	38.930	88.649	37.263	1.00 28.69	В	С
55	ATOM	2832	CB	TYR B	129	37.901	87.827	38.011	1.00 40.87	В	С

	ATOM	2833	CG	TYR	В	129	38.090	86.362	37.794	1.00	41.05	В	С
	ATOM	2834	CD1	TYR	В	129	37.872	85.798	36.545	1.00	43.05	В	C
5	ATOM	2835	CE1	TYR	В	129	38.008	84.454	36.350	1.00	44.11	В	С
	ATOM	2836	CD2	TYR	В	129	38.459	85.537	38.836	1.00	40.80	В	С
	ATOM	2837	CE2	TYR	в	129	38.599	84.199	38.648	1.00	41.60	В	С
	ATOM	2838	cz	TYR	В	129	38.367	83.657	37.404	1.00	42.60	В	С
10	ATOM	2839	OH	TYR	В	129	38.453	82.302	37.220	1.00	42.62	В	0
	ATOM	2840	С	TYR	В	129	38.748	90.104	37.621	1.00	28.88	В	С
	ATOM	2841	0	TYR	В	129	37.683	90.664	37.397	1.00	30.58	В	0
	ATOM	2842	N	ILE	В	130	39.764	90.704	38.222	1.00	54.75	В	N
15	ATOM	2843	CA	ILE	В	130	39.683	92.109	38.552	1.00	54.92	В	С
	ATOM	2844	CB	ILE	В	130	39.932	92.371	40.039	1.00	50.09	В	С
	ATOM	2845	ÇG2	ILE	В	130	40.163	93.863	40.274	1.00	51.36	В	С
	ATOM	2846	CG1	ILE	В	130	38.713	91.926	40.851	1.00	50.06	В	С
20	ATOM	2847	CD1	ILE	В	130	38.279	90.507	40.606	1.00	54.25	В	С
	ATOM	2848	С	ILE	В	130	40.740	92.780	37.694	1.00	53.13	В	С
	ATOM	2849	0	ILE	В	130	41.839	92.250.	37.525	1.00	51.93	В	0
	ATOM	2850	N	VAL	В	131	40.387	93.931	37.133	1.00	27.94	В	N
25	ATOM	2851	CA	VAL	В	131	41.264	94.673	36.250	1.00	27.83	В	С
	ATOM	2852	CB	VAL	В	131	40.498	95.843	35.643	1.00	18.06	В	¢
	ATOM	2853	CG1	VAL	В	131	41.436	97.010	35.379	1.00	17.46	В	С
	ATOM	2854	CG2	VAL	В	131	39.829	95.372	34.356	1.00	16.90	В	С
30	MOTA	2855	С	VAL	В	131	42.552	95.170	36.882	1.00	29.77	В	C
	MOTA	2856	0	VAL	В	131	42.526	95.875	37.881	1.00	28.59	В	0
	MOTA	2857	N	GLY			43.678	94.781	36,288	1.00	36.19	В	N
	ATOM	2858	CA	GLY	В	132	44.972	95.197	36.793	1.00	41.18	В	С
35	ATOM	2859	С	GLY			44.942	96.679	37.079		45.29	В	С
	ATOM	2860	0	GLY	В	132	44.387	97.443	36.292	1.00	47.11	В	0
	ATOM	2861	N	PHE			45.539	97.088	38.195		39.71	в .	N
	ATOM	2862	CA	PHE	В	133	45.544	98.494	38.586		41.43	В	С
40	ATOM	2863	СВ	PHE			44.718	98.670	39.868		54.85	В	С
	ATOM	2864	CG	PHE			44.883	100.013	40.520	1.00	56.97	В	С
	MOTA	2865		PHE				101.132	40.014		57.99	В	C
	ATOM	2866		PHE				100.158	41.626		59.08	В	С
45	ATOM	2867		PHE				102.367	40.603		59.29	В	С
	ATOM	2868		PHE				101.389	42.217		59.51	В	С
	ATOM	2869	CZ	PHE	В	133	45.236	102.492	41.709	1.00	60.13	В	С
50	MOTA	2870	С	PHE			46.935	99.061	38.807	1.00	41.38	В	С
50	MOTA	2871	0	PHE	В	133	47.511	98.860	39.859	1.00	42.52	В	0
	ATOM	2872	N	TYR			47.479	99.777	37.831		31.69	В	N
	MOTA	2873	CA	TYR				100.355	38.015		32.40	В	С
55	ATOM	2874	CB	TYR				100.939	36.724		55.82	В	С
55	ATOM	2875	CG	TYR	В	134	49.384	99.981	35.570	1.00	56.72	В	C

	MOTA	2876	CD1	TYR	В	134	48.416	100.052	34.572	1.00	56.71	В	С
	ATOM	2877	CE1	TYR	В	134	48.416	99.176	33.511	1.00	55.78	В	C.
5	ATOM	2878	CD2	TYR	В	134	50.359	98.999	35.475	1.00	56.90	В	С
	MOTA	2879	CE2	TYR	В	134	50.369	98.110	34.417	1.00	56.61	В	С
	ATOM	2880	CZ	TYR	В	134	49.390	98.203	33.436	1.00	56.23	В	С
	ATOM	2881	OH	TYR	В	134	49.358	97.303	32.390	1.00	57.35	В	0
10	MOTA	2882	С	TYR	В	134	48.737	101.458	39.054	1.00	33.08	В	С
	ATOM	2883	0	TYR	В	134	49.550	101.490	39.975	1.00	34.33	В	0
	ATOM	2884	N	GLY	В	135	47.786	102.378	38.924	1.00	40.63	В	N
	MOTA	2885	CA	GLY	В	135	47.720	103.440	39.914	1.00	42.05	В	С
15	MOTA	2886	С	GLY	В	135	46.899	104.667	39.579	1.00	42.20	В	С
	MOTA	2887	0	GLY	В	135	46.535	104.902	38.420	1.00	41.42	В	0
	ATOM	2888	N	ALA	в	136	46.624	105.446	40.627	1.00	65.81	В	N
	ATOM	2889	CA	ALA	В	136	45.835	106.677	40.548	1.00	67.71	В	С
20	ATOM	2890	CB	ALA	В	136	44.483	106.485	41.243	1.00	19.66	В	С
	ATOM	2891	С	ALA	В	136	46.594	107.815	41.211	1.00	67.49	В	С
	ATOM	2892	0	ALA	В	136	47.515	107.581	41.989	1.00	68.30	В	0
	MOTA	2893	N	PHE	В	137	46.194	109.046	40.915	1.00	74.77	В	N
25	ATOM	2894	CA	PHE	В	137	46.872	110.204	41.475	1.00	76.02	В	С
	ATOM	2895	СВ	PHE	В	137	48.246	110.353	40.834	1.00	53.43	В	С
	ATOM	2896	CG	PHE	В	137	48.229	110.274	39.331	1.00	51.94	В	С
	ATOM	2897	CD1	PHE	В	137	48.111	109.051	38.685	1.00	50.57	В	С
30	MOTA	2898	CD2	PHE	В	137	48.374	111.412	38.564	1.00	51.37	В	С
	ATOM	2899	CE1	PHE	в:	137	48.148	108.967	37.306	1.00	51.53	В	С
	ATOM	2900	CE2	PHE	В	137	48.410	111.329	37.183	1.00	51.44	В	С
	ATOM	2901	CZ	PHE	В	137	48.298	110.106	36.558	1.00	50.94	В	С
35	ATOM	2902	С	PHE	В	137	46.112	111.503	41.282	1.00	78.88	В	С
	ATOM	2903	0	PHE	В	137	45.292	111.614	40.379	1.00	78.79	В	0
	ATOM	2904	N	TYR	В :	138	46.411	112.488	42.128	1.00	86.27	В	N
	ATOM	2905	CA	TYR	В:	138	45.773	113.803	42.061	1.00	89.13	В	С
40	ATOM	2906	CB	TYR	В :	138	46.358	114.773	43.096	1.002	03.67	В	С
	ATOM	2907	CG	TYR	в :	138	46.589	114.245	44.495	1.002	03.67	В	С
	ATOM	2908	CD1	TYR	в:	138	47.369	113.117	44.721	1.002	03.67	В	С
	ATOM	2909	CE1	TYR	В :	138	47.656	112.691	46.006	1.002	03.67	В	С
45	ATOM	2910	CD2	TYR	B 1	138	46.097	114.930	45.599	1.002	03.67	В	С
	ATOM	2911	CE2	TYR	В:	138	46.379	114.513	46.886	1.002	03.67	В	С
	ATOM	2912	CZ	TYR	B 1	138	47.161	113.394	47.084	1.002	03.67	В	С
	ATOM	2913	OH	TYR	В	138	47.461	112.986	48.364	1.002	03.67	В	0
50	MOTA	2914	С	TYR :	В 1	138	46.065	114.406	40.693	1.00	91.58	В	С
	ATOM	2915	0	TYR :	В 1	L38	46.619	113.749	39.816	1.00	91.33	В	0
	ATOM	2916	N	SER :	В	139	45.708	115.677	40.548	1.001	.07.14	В	N
	MOTA	2917	CA	SER !	B 1	L39	45.941	116.441	39.329	1.001	.09.34	В	С
55	MOTA	2918	CB	SER I	В 1	L39	45.903	115.550	38.085	1.00	85.34	В	С

	ATOM	2919	OG	SER E	139	46.204	116.303	36.920	1.00 85.66	В	0
	ATOM	2920	C	SER E	139	44.911	117.544	39.178	1.00109.63	В	C-
5	ATOM	2921	0	SER E	139	43.874	117.547	39.846	1.00109.62	В	0
	ATOM	2922	N	ASP E	140	45.211	118.490	38.297	1.00174.14	В	N
	ATOM	2923	CA	ASP E	140	44.307	119.594	38.042	1.00174.94	В	С
	ATOM	2924	CB	ASP E	140	45.090	120.829	37.590	1.00164.55	В	С
10	ATOM	2925	CG	ASP B	140	46.124	121.272	38.614	1.00166.51	в .	С
	ATOM	2926	OD1	ASP E	140	45.776	121.384	39.810	1.00166.92	В	0
	ATOM	2927	OD2	ASP B	140	47.284	121.518	38.222	1.00168.12	В	0
	ATOM	2928	С	ASP B	140	43.347	119.146	36.950	1.00174.01	В	С
15	ATOM	2929	0	ASP B	140	42.131	119.136	37.141	1.00174.03	В	0
	ATOM	2930	N	GLY B	141	43.903	118.759	35.808	1.00141.71	В	N
	ATOM	2931	CA	GLY B	141	43.072	118.305	34.713	1.00139.69	В	С
	ATOM	2932	С	GLY B	141	42.349	117.007	35.035	1.00137.49	В	С
20	ATOM	2933	0	GLY B	141	41.353	116.679	34.390	1.00138.57	В	0
	ATOM	2934	N	GLU B	142	42.838	116.270	36.033	1.00 99.50	В	N
	ATOM	2935	CA	GLU B	142	42.221	115.000	36.408	1.00 95.65	В	С
	ATOM	2936	CB	GLU B	142	42.538	113.938	35.356	1.00152.49	В	С
25	ATOM	2937	CG	GLU B	142	44.022	113.625	35.196	1.00153.65	В	С
	ATOM	2938	CD	GLU B	142	44.755	114.625	34.319	1.00154.02	В	С
	MOTA	2939	OE1	GLU B	142	44.996	115.765	34.766	1.00154.25	В	0
	ATOM	2940	OE2	GLU B	142	45.088	114.265	33.170	1.00153.93	В	0
30	ATOM	2941	C	GLU B	142	42.624	114.458	37.782	1.00 92.51	В	С
	ATOM	2942	0	GLU B	142	43.233	115.157	38.589	1.00 92.39	В	0
	ATOM	2943	N	ILE B	143	42.261	113.199	38.027	1.00162.15	В	N
	MOTA	2944	CA	ILE B	143	42.560	112.500	39.279	1.00157.81	В	С
35	ATOM	2945	СВ	ILE B	143	41.300	112.291	40.125	1.00 51.10	В	С
	ATOM	2946	CG2	ILE B	143	40.472	111.158	39.525	1.00 49.14	В	С
	ATOM	2947	CG1	ILE B	143	41.684	111.959	41.572	1.00 52.62	В	Ç
	MOTA	2948	CD1	ILE B	143	40.493	111.647	42.475	1.00 55.89	В	С
40	ATOM	2949	С	ILE B	143	43.092	111.124	38.900	1.00155.71	В	С
	ATOM	2950	0	ILE B	143	43.481	110.329	39.752	1.00153.48	В	0
	ATOM	2951	N	SER B	144	43.064	110.862	37.600	1.00100.59	В	N
	ATOM	2952	CA	SER B	144	43.542	109.627	36.989	1.00100.16	В	С
45	ATOM	2953	СВ	SER B	144	44.937	109.854	36.406	1.00 46.31	В	C
	ATOM	2954	OG	SER B	144	44.906	110.792	35.355	1.00 47.80	В	0
	ATOM	2955	C	SER B	144	43.585	108.324	37.774	1.00 98.20	В	С
	ATOM	2956	0	SER B	144	43.967	108.279	38.942	1.00 97.56	В	0
50	ATOM	2957	N	ILE B	145	43.196	107.261	37.080	1.00 77.44	В	N
	ATOM	2958	CA	ILE B	145	43.224	105.899	37.593	1.00 76.45	В	С
	ATOM	2959	CB	ILE B	145	41.855	105.408	38.137	1.00 40.95	В	С
	ATOM	2960	CG2	ILE B	145	41.898	103.899	38.329	1.00 41.49	В	С
55	ATOM	2961	CG1	ILE B	145	41.534	106.093	39.476	1.00 40.40	В	С

	ATOM	2962	CD1	ILE	В	145	40.240	105.605	40.159	1.00 3	9.60	В -	С
	ATOM	2963	¢	ILE	В	145	43.626	105.043	36.392	1.00 7	5.85	В	C
5	ATOM	2964	0	ILE	в	145	42.790	104.618	35.594	1.00 7	4.45	В	0
	ATOM	2965	N	CYS	В	146	44.930	104.836	36.256	1.00 4	9.38	В	N
	ATOM	2966	CA	CYS	В	146	45.481	104.043	35.176	1.00 5	3.10	В	С
	ATOM	2967	СВ	CYS	В	146	46.918	104.484	34.916	1.00 7	7.23	В	С
10	ATOM	2968	SG	CYS	В	146	47.188	106.229	35.296	1.00 8	0.97	В	s
	ATOM	2969	С	CYS	В	146	45.442	102.588	35.637	1.00 5	3.38	В	С
	ATOM	2970	0	CYS	В	146	45.830	102.281	36.763	1.00 5	4.24	В	0
	ATOM	2971	N	MET	В	147	44.972	101.707	34.760	1.00 4	4.34	В	N
15	MOTA	2972	CA	MET	В	147	44.843	100.289	35.065	1.00 4	4.63	В	С
	ATOM	2973	CB	MET	В	147	43.408	99.995	35.500	1.0010	2.48	В	С
	ATOM	2974	CG	MET	В	147	42.366	100.537	34.532	1.0010	5.34	В	С
	MOTA	2975	SD	MET	В	147	40.668	100.258	35.060	1.0010	9.77	В	s
20	MOTA	2976	CE	MET	В	147	40.000	99.420	33.647	1.0010	8.61	В	¢
	ATOM	2977	С	MET	В	147	45.190	99.417	33.866	1.00 4	3.00	В	С
	ATOM	2978	0	MET	В	147	45.591	99.916	32.821	1.00 4	2.91	В	0
	MOTA	2979	N	GLU	В	148	45.008	98.111	34.008	1.00 4	5.57	В	N
25	ATOM	2980	CA	GLU	В	148	45.329	97.194	32.924	1.00 4	3.97	В	С
	ATOM	2981	CB	GLU	В	148	45.185	95.739	33.384	1.00 5	1.13	В	С
	ATOM	2982	CG	GLU	В	148	44.739	94.790	32.265	1.00 5	1.97	В	C
	ATOM	2983	CD	GLU	В	148	44.794	93.328	32.658	1.00 5	2.62	В	С
30	ATOM	2984	OE1	GLU	В	148	44.425	92.994	33.803	1.00 4	9.12	В	0
	ATOM	2985	OE2	GLU	В	148	45.195	92.507	31.812	1.00 5	3.73	В	0
	ATOM	2986	С	GLU	В	148	44.522	97.381	31.647	1.00 4	2.76	В	C
	ATOM	2987	0	GLU			43.294	97.394	31.664	1.00 4	3.96	В	0
35	ATOM	2988	N	HIS	В	149	45.234	97.498	30.532	1.00 4	2.26	В	N
	ATOM	2989	CA	HIS			44.605	97.655	29.229	1.00 4	1.36	В	С
	ATOM	2990	CB	HIS			45.645	98.120	28.211	1.00 7	3.73	В	С
	ATOM	2991	CG	HIS			45.070	98.467	26.875	1.00 7		В	С
40	ATOM	2992		HIS			45.323	99.499	26.039	1.00 6		В	С
	ATOM	2993		HIS			44.129	97.685	26.243	1.00 6		В	N
	ATOM	2994		HIS			43.824	98.221	25.077	1.00 6		В	С
	ATOM	2995		HIS			44.536	99.322	24.928	1.00 6		В	N
45	ATOM	2996	С	HIS			44.003	96.322	28.773	1.00 4	2.73	В	С
	ATOM	2997	0	HIS			44.587	95.267	28.997	1.00 4		В	0
	ATOM	2998	N -	MET			42.835	96.380	28.134	1.00 3		В	N
	ATOM	2999	CA	MET			42.150	95.187	27.632	1.00 3		В	С
50	ATOM	3000	CB	MET			40.810	95.011	28.353	1.00 6		В	¢
	ATOM	3001	CG	MET			40.898	95.034	29.886	1.00 7		В	С
	ATOM	3002		MET			41.909	93.727	30.667	1.00 7		В	S
	ATOM	3003		MET			40.852	92.291	30.449	1.00 6		В	С
55	ATOM	3004	С	MET	В :	150	41.919	95.277	26.119	1.00 3	0.64	В	С

	MOTA	3005	0	MET	B 15	0 41.400	96.277	25.629	1.00	29.96	В	0
	MOTA	3006	N	ASP	B 15	1 42.321	94.232	25.395	1.00	47.67	В	N
5	MOTA	3007	CA	ASP	В 15	1 42.166	94.171	23.943	1.00	48.65	В	С
	MOTA	3008	CB	ASP	B 15	1 42.665	92.844	23.386	1.00	87.39	В	С
	ATOM	3009	CG	ASP	B 15	1 44.090	92.575	23.740	1.00	89.35	В	С
	ATOM	3010	OD1	ASP	В 15	1 44.331	92.083	24.856	1.00	88.68	В	0
10	ATOM	3011	OD2	ASP	в 15	1 44.973	92.864	22,908	1.00	91.39	В	0
	ATOM	3012	С	ASP	в 15	1 40.710	94.318	23.575	1.00	50.50	В	С
	MOTA	3013	0	ASP	B 15	1 40.367	94.988	22.601	1.00	50.60	В	0
	MOTA	3014	N	GLY	B 15	2 39.854	93.647	24.331	1.00	71.87	В	N
15	MOTA	3015	CA	GLY	B 15	2 38.439	93.773	24.078	1.00	72.90	В	С
	ATOM	3016	С	GLY	в 15	2 38.044	95.047	24.797	1.00	74.77	В	C
	ATOM	3017	0	GLY :	в 15	2 38.898	95.788	25.290	1.00	76.05	В	0
	ATOM	3018	N	GLY :	B 15	3 36.755	95.322	24.866	1.00	72.72	В	N
20	ATOM	3019	CA	GLY :	B 15	36.334	96.517	25.559	1.00	71.80	В	С
	ATOM	3020	С	GLY	в 15	35.144	96.134	26.395	1.00	72.30	В	C
	MOTA	3021	0	GLY :	B 15	34.891	94.945	26.578	1.00	74.05	В	0
	ATOM	3022	N	SER :	В 15	34.419	97.122	26.906	1.00	38.65	В	N
25	ATOM	3023	CA	SER :	B 15	33.246	96.832	27.697	1.00	38.40	В	С
	ATOM	3024	CB	SER :	3 15	4 32.416	98.096	27.893	1.00	96.55	В	C
	MOTA	3025	OG	SER :	3 15	33.002	98.938	28.866	1.00	99.49	В	0
	ATOM	3026	С	SER !	3 15	32.464	95.784	26.922	1.00	36.64	В	С
30	ATOM	3027	0	SER I	3 15	32.230	95.943	25.733	1.00	35.70	В	0
	`ATOM	3028	N	LEU I	3 15	32.089	94.701	27.592	1.00	42.20	В	N
	ATOM	3029	CA	LEU I	3 15	31.355	93.642	26.937	1.00	43.59	В	C
	ATOM	3030	CB	LEU I	3 15	30.749	92.714	27.986	1.00	18.62	В	C
35	ATOM	3031	CG	LEU I	3 15	31.346	91.305	28.187	1.00	20.07	В	С
	ATOM	3032	CD1	LEU I	3 15	30.274	90.433	28.857	1.00	19.52	В	С
	ATOM	3033	CD2	LEU I	3 15	31.777	90.663	26.864	1.00	20.46	В	С
	ATOM	3034	С	LEU !	3 15	30.274	94.156	25.966	1.00	44.72	В	С
40	ATOM	3035	0	LEU I	3 15	30.046	93.562	24.911	1.00	45.91	В	0
	ATOM	3036	N	ASP I	3 15	29.603	95.253	26.290	1.00	60.92	В	N
	ATOM	3037	CA	ASP I	3 15	28.604	95.742	25.348	1.00	58.41	В	С
	ATOM	3038	CB	ASP I	3 15	27.879	96.976	25.874	1.00	36.48	В	С
45	ATOM	3039	CG	ASP I	3 15	28.813	98.094	26.179	1.00	37.73	В	С
	ATOM	3040	OD1	ASP I	3 15	28.353	99.253	26.170	1.00	38.92	В	0
	ATOM	3041	OD2	ASP I	3 15	29.997	97.803	26.434	1.00	38.19	В	0
	ATOM	3042	С	ASP I	3 15	29.326	96.089	24.054	1.00	56.32	В	С
50	ATOM	3043	0	ASP I	3 15	28.786	95.898	22.974	1.00	57.39	В	0
	ATOM	3044	N	GLN I	3 15	7 30.542	96.612	24.163	1.00	51.52	В	N
	MOTA	3045	CA	GLN I	3 15	31.317	96.927	22.971	1.00	52.75	В	С
	ATOM	3046	CB	GLN I	3 15	32.761	97.260	23.315	1.00	53.06	В	С
55	ATOM	3047	CG	GLN I	3 15	7 32.999	98.609	23.916	1.00	55.48	В	С

	ATOM	3048	CD	GLN	B 157	34.454	98.993	23.796	1.00 57.68	В	С
	MOTA	3049	CE1	GLN	B 157	35.050	98.831	22.736	1.00 59.57	В	0
5	ATOM	3050	NE2	GLN	B 157	35.036	99.503	24.869	1.00 59.20	В	N
	ATOM	3051	C	GLN	B 157	31.329	95.682	22.101	1.00 51.27	В	С
	MOTA	3052	0	GLN :	B 157	30.806	95.674	20.989	1.00 49.84	В	0
	MOTA	3053	N	VAL :	B 158	31.941	94.623	22.615	1.00 65.04	В	N
10	MOTA	3054	CA	VAL	B 158	32.013	93.380	21.874	1.00 65.28	В	C
	ATOM	3055	СВ	VAL :	3 158	32.582	92.250	22.740	1.00 73.04	В	С
	ATOM	3056	CG1	VAL :	B 158	33.649	92.808	23.661	1.00 73.22	В	¢
	MOTA	3057	CG2	VAL	3 158	31.478	91.579	23.522	1.00 72.22	В	C
15	ATOM	3058	С	VAL	3 158	30.601	93.036	21.441	1.00 64.25	В	С
	ATOM	3059	0	VAL	3 158	30.391	92.484	20.369	1.00 63.28	В	0
	ATOM	3060	N	LEU I	3 159	29.626	93.382	22.272	1.00 61.25	В	N
	ATOM	3061	CA	LEU :	3 159	28.243	93.106	21.924	1.00 61.69	В	С
20	MOTA	3062	СВ	LEU !	3 159	27.305	93.466	23.082	1.00 32.63	В	C
	MOTA	3063	CG	LEU I	3 159	25.823	93.279	22.747	1.00 30.78	В	С
	MOTA	3064	CD1	LEU I	3 159	25.665	92.117	21.807	1.00 29.74	В	С
	MOTA	3065	CD2	LEU I	3 159	25.016	93.051	24.010	1.00 31.26	В	С
25	MOTA	3066	С	LEU I	3 159	27.903	93.937	20.702	1.00 61.14	В	С
	ATOM	3067	0	LEU I	3 159	27.395	93.422	19.704	1.00 61.72	В	0
	ATOM	3068	N	LYS	3 160	28.197	95.229	20.796	1.00 86.49	В	N
	MOTA	3069	CA	LYS	3 160	27.941	96.167	19.717	1.00 88.86	В	С
30	MOTA	3070	CB	LYS 1	3 160	28.729	97.460	19.940	1.00120.57	В	С
	MOTA	3071	CG		3 160	28.830	98.360	18.716	1.00122.54	В	С
	MOTA	3072	CD		3 160	27.469	98.875	18.265	1.00124.52	В	С
	MOTA	3073	CE		3 160	27.589	99.769	17.030	1.00124.74	В	С
35	MOTA	3074	NZ		3 160		100.326	16.594	1.00126.98	В	N
	MOTA	3075	С		3 160	28.332	95.553	18.391	1.00 90.76	В	С
	ATOM	3076	0		3 160	27.583	95.634	17.424	1.00 90.20	В	0
	MOTA	3077	N		3 161	29.497	94.916	18.351	1.00 89.91	В	N
40	ATOM	3078	CA		3 161	29.965	94.310	17.114	1.00 89.42	В	С
	MOTA	3079	CB		3 161	31.429	94.696	16.875	1.00 77.68	В	С
	ATOM	3080	CG		3 161	31.586	96.108	16.339	1.00 82.77	В	С
	MOTA	3081	CD		3 161	33.017	96.460	15.989	1.00 86.00	В	С
45	MOTA	3082		GLU I		33.816	96.695	16.917	1.00 87.41	В	0
	ATOM	3083		GLU I		33.347	96.500	14.785	1.00 87.10	В	0
	MOTA	3084	C		3 161	29.798	92.796	16.984	1.00 88.06	В	C
	ATOM	3085	0		3 161	30.507	92.165	16.198	1.00 87.89	В	0
50	ATOM	3086	N		3 162	28.853	92.216	17.723	1.00 29.74	В	N
	ATOM	3087	CA		3 162	28.628	90.774	17.668	1.00 29.74	В	С
	ATOM	3088	СВ		3 162	29.389	90.086	18.764	1.00 37.59	В	С
	ATOM	3089	С		3 162	27.166	90.436	17.785	1.00 28.28	В	С
55	ATOM	3090	0	ALA I	3 162	26.793	89.278	17.684	1.00 26.85	В	0

	MOTA	3091	N	LYS	B 163	26.352	91.460	18.017	1.00	69.62	В	N
	ATOM	3092	CA	LYS	B 163	24.903	91.326	18.132	1.00	68.97	В	C
5	ATOM	3093	СВ	LYS	B 163	24.285	91.225	16.733	1.00	77.40	В	С
	ATOM	3094	CG	LYS	B 163	24.857	92.217	15.726	1.00	79.20	В	С
	ATOM	3095	CD	LYS	B 163	24.846	93.670	16.234	1.00	81.84	В	С
	ATOM	3096	CE	LYS	B 163	23.450	94.303	16.213	1.00	80.60	В	C
10	ATOM	3097	NZ	LYS	B 163	23.466	95.750	16.598	1.00	80.38	В	N
	ATOM	3098	С	LYS	B 163	24.420	90.151	18.981	1.00	67.93	В	С
	ATOM	3099	0	LYS	B 163	23.584	89.369	18.535	1.00	68.03	В	0
	ATOM	3100	N	ARG	B 164	24.960	90.062	20.195	1.00	53.65	В	N
15	ATOM	3101	CA	ARG	B 164	24.679	89.055	21.231	1.00	50.96	В	С
	ATOM	3102	СВ	ARG	B 164	23.218	88.542	21.208	1.00	59.67	В	С
	ATOM	3103	CG	ARG	B 164	22.765	87.620	20.078	1.00	64.06	В	С
	ATOM	3104	CD	ARG	B 164	23.423	86.253	20.044	1.00	64.90	В	С
20	ATOM	3105	NE	ARG	B 164	24.745	86.300	19.429	1.00	66.30	В	N
	ATOM	3106	CZ	ARG	B 164	25.330	85.273	18.819	1.00	66.14	В	С
	ATOM	3107	NH1	ARG	B 164	24.705	84.104	18.732	1.00	65.75	В	N
	ATOM	3108	NH2	ARG	B 164	26.548	85.408	18.306	1.00	65.50	В	N
25	ATOM	3109	С	ARG	B 164	25.613	87.876	21.297	1.00	46.93	В	С
	ATOM	3110	0	ARG	B 164	26.409	87.629	20.399	1.00	48.89	В	0
	ATOM	3111	N	ILE	B 165	25.512	87.165	22.407	1.00	54.63	В	N
	ATOM	3112	CA	ILE	B 165	26.322	85.997	22.653	1.00	49.92	В	С
30	ATOM	3113	CB	ILE	B 165	27.155	86.151	23.898	1.00	21.60	В	С
	ATOM	3114	CG2	ILE	B 165	28.576	85.870	23.541	1.00	21.19	В	С
	ATOM	3115			B 165	27.113	87.588	24.413	1.00	21.19	В	С
	ATOM	3116	CD1	ILE	B 165	27.922	88.564	23.579	1.00	21.19	В	С
35	ATOM	3117	С	ILE	B 165	25.368	84.817	22.804	1.00	48.92	В	С
	MOTA	3118	0	ILE	B 165	24.152	84.996	22.896	1.00	48.92	В	0
	ATOM	3119	N	PRO	B 166	25.885	83.583	22.856	1.00	48.95	В	N
	ATOM	3120	CD	PRO	B 166	25.991	84.006	21.448	1.00	63.42	В	С
40	MOTA	3121	CA	PRO	B 166	26.706	82.389	22.884	1.00	50.27	В	С
	ATOM	3122	CB	PRO	B 166	28.002	82.872	22.285	1.00	63.13	В	С
	ATOM	3123	CG	PRO	B 166	27.453	83.608	21.061	1.00	63.41	В	С
	ATOM	3124	С	PRO	B 166	26.796	81.825	24.277	1.00	51.66	В	С
45	ATOM	3125	0	PRO	B 166	27.780	81.999	24.987	1.00	54.37	В	0
	ATOM	3126	N	GLU	B 167	25.712	81.130	24.644	1.00	37.46	В	N
	ATOM	3127	CA	GLU	B 167	25.578	80.534	25.941	1.00	37.09	В	С
	ATOM	3128	CB	GLU	B 167	24.633	79.349	25.886		26.69	В	С
50	ATOM	3129	CG	GLU	B 167	24.306	78.813	27.244	1.00	26.86	В	С
	MOTA	3130	CD	GLU	B 167	23.120	77.884	27.228	1.00	27.04	В	С
	ATOM	3131	OE1	GLU	B 167	22.067	78.294	26.698	1.00	29.79	В	0
	ATOM	3132	CE2	GLU	B 167	23.232	76.752	27.749	1.00	27.90	В	0
55	ATOM	3133	С	GLU	B 167	26.911	80.120	26.515	1.00	37.71	В	С

	MOTA	3134	0	GLU	В	167	27.390	80.761	27.450	1.00	37.10	В	0
	ATOM	3135	N	GLU	В	168	27.541	79.092	25.949	1.00	50.86	В	N.
5	MOTA	3136	CA	GLU	В	168	28.814	78.637	26.504	1.00	53.83	В	С
	ATOM	3137	CB	GLU	В	168	29.458	77.556	25.632	1.00	71.15	В	С
	MOTA	3138	CG	GLU	В	168	30.122	76.400	26.447	1.00	79.44	В	С
	MOTA	3139	CD	GLU	В	168	29.149	75.618	27.354	1.00	85.30	В	С
10	ATOM	3140	OE1	GLU	В	168	29.440	74.443	27.681	1.00	89.07	В	0
	ATOM	3141	OE2	GLU	В	168	28.103	76.172	27.753	1.00	89.39	В	0
	ATOM	3142	С	GLU	В	168	29.756	79.808	26.721	1.00	52.22	В	С
	ATOM	3143	0	GLU	В	168	30.525	79.814	27.686	1.00	53.53	В	0
15	ATOM	3144	N	ILE	В	169	29.686	80.806	25.844	1.00	47.66	В	N
	MOTA	3145	CA	ILE	В	169	30.510	81.993	26.021	1.00	45.85	В	С
	ATOM	3146	СВ	ILE	В	169	30.385	82.997	24.862	1.00	43.49	В	С
	ATOM	3147	CG2	ILE	В	169	30.865	84.370	25.320	1.00	42.91	В	С
20	ATOM	3148	CG1	ILE	В	169	31.273	82.570	23.706	1.00	42.69	В	С
	ATOM	3149	CD1	ILE	В	169	32.752	82.590	24.076	1.00	41.26	В	С
	ATOM	3150	С	ILE	В	169	30.027	82.700	27.278	1.00	45.37	В	С
	ATOM	3151	0	ILE	В	169	30.780	82.861	28.241	1.00	43.85	В	0
25	ATOM	3152	N	LEU	В	170	28.765	83.126	27.266	1.00	32.65	В	И
	ATOM	3153	CA	LEU	В	170	28.200	83.808	28.417	1.00	33.66	В	С
	ATOM	3154	CB	LEU	В	170	26.741	84.141	28.158	1.00	35.12	В	С
	MOTA	3155	CG	LEU	В	170	26.653	85.313	27.184		35.73	В	С
30	ATOM	3156		LEU			25.257	85.910	27.245		35.45	В	С
	MOTA	3157		LEU			27.708	86.362	27.543		33.98	В	С
	ATOM	3158	С	LEU			28.351	82.961	29.674		34.02	В	С
35	ATOM	3159	0	LEU			28.339	83.473	30.799		36.20	В	0
35	ATOM	3160	N	GLY			28.487	81.656	29.473		25.65	В	N
	ATOM	3161	CA	GLY			28.701	80.757	30.586		24.82	В	С
	ATOM	3162	С	GLY			30.146	80.969	30.998		24.45	В	С
40	ATOM	3163	0	GLY			30.490	80.915	32.164		23.46	В	0
	ATOM	3164	N	LYS			31.013	81.215	30.033		39.28	В	N
	ATOM	3165	CA	LYS			32.393	81.454	30.387		39.59	В	С
	ATOM	3166	CB	LYS			33.284	81.509	29.145		35.96	В	С
45	ATOM	3167	CG	LYS			34.203	80.318	28.982		38.30	В	С
	ATOM	3168	CD	LYS			35.553	80.752	28.435		40.67	В	С
	MOTA	3169	CE	LYS			36.263	81.735	29.378		40.42	В	С
	ATOM	3170	NZ	LYS			37.752	81.840	29.156		41.32	В	N
50	MOTA	3171	С	LYS			32.460	82.788	31.108		39.00	В	C
	ATOM	3172	0	LYS			33.416	83.055	31.835		40.85	В	0
	ATOM	3173	N	VAL			31.439	83.619	30.904		36.11	В -	N
	ATOM	3174	CA	VAL			31.380	84.945	31.519		35.66	В	C
55	ATOM	3175	CB	VAL			30.524	85.904	30.691		43.16	В	C
	ATOM	3176	CG1	VAL	В	173	30.421	87.240	31.396	1.00	44.30	В	С

	MOTA	3177	CG2	VAL	B 173	31.124	86.072	29.322	1.00	44.06	В	С
	ATOM	3178	С	VAL	B 173	30.820	84.949	32.931	1.00	35.45	В	С
5	ATOM	3179	0	VAL	B 173	31.236	85.741	33.771	1.00	35.15	В	0
	ATOM	3180	N	SER	B 174	29.858	84.081	33.193	1.00	38.94	В	N
	ATOM	3181	CA	SER	B 174	29.281	84.021	34.518	1.00	39.23	В	С
	ATOM	3182	СВ	SER	B 174	28.153	82.991	34.530	1.00	36.15	В	С
10	ATOM	3183	OG	SER	B 174	27.279	83.203	33.429	1.00	36.15	В	0
	ATOM	3184	С	SER	B 174	30.407	83.643	35.480	1.00	38.67	В	С
	ATOM	3185	0	SER	B 174	30.639	84.313	36.487	1.00	38.67	В	0
	ATOM	3186	N	ILE	B 175	31.114	82.571	35.152	1.00	37.40	В	N
15	MOTA	3187	CA	ILE	B 175	32.242	82.117	35.953	1.00	37.40	В	С
	MOTA	3188	CB	ILE	B 175	33.092	81.099	35.174	1.00	17.11	В	С
	ATOM	3189	CG2	ILE	B 175	34.416	80.885	35.873	1.00	16.61	В	С
	ATOM	3190	CG1	ILE	B 175	32.305	79.804	34.974	1.00	19.44	В	С
20	ATOM	3191	CD1	ILE	B 175	32.864	78.930	33.862	1.00	21.42	В	С
	ATOM	3192	С	ILE	B 175	33.143	83.300	36.302	1.00	37.50	В	С
	ATOM	3193	0	ILE	B 175	33.641	83.403	37.410	1.00	37.40	В	0
	ATOM	3194	N	ALA	B 176	33.361	84.193	35.348	1.00	23.37	В	N
25	ATOM	3195	CA	ALA	B 176	34.215	85.355	35.578	1.00	23.26	В	С
	ATOM	3196	CB	ALA	B 176	34.423	86.103	34.270	1.00	78.62	В	С
	ATOM	3197	С	ALA	B 176	33.643	86.301	36.638	1.00	23.26	В	С
	ATOM	3198	0	ALA	B 176	34.154	86.392	37.753	1.00	23.26	В	0
30	ATOM	3199	N	VAL	B 177	32.588	87.017	36.269	1.00	37.32	В	N
	ATOM	3200	CA	VAL	B 177	31.932	87.949	37.175	1.00	37.32	В	С
	ATOM	3201	CB		B 177	30.584	88.409	36.593	1.00	20.71	В	С
	ATOM	3202			B 177	29.766	89.107	37.659	1.00	20.71	В	С
35	ATOM	3203			B 177	30.826	89.329	35.428	1.00	20.71	В	С
	ATOM	3204	С		В 177	31.675	87.285	38.521	1.00	37.32	В	С
	ATOM	3205	0		В 177	32.091	87.777	39.568	1.00	37.32	В	0
10	ATOM	3206	N		B 178	30.987	86.152	38.463	1.00	33.82	В	N
40	ATOM	3207	CA		B 178	30.630	85.388	39.637	1.00	35.18	В	С
	ATOM	3208	CB		B 178	29.992	84.076	39.183	1.00	8.43	В	С
	ATOM	3209	CG		B 178	28.876	83.458	40.027	1.00	9.35	В	С
45	ATOM	3210			B 178	27.983	84.515	40.640	1.00	7.90	В	С
***	ATOM	3211			B 178	28.073	82.547	39.144	1.00	9.69	В	С
	ATOM	3212	С		B 178	31.863	85.140	40.507	1.00	35.27	В	С
	ATOM	3213	0		B 178	31.788	85.115	41.736	1.00	36.09	В	0
50	ATOM	3214	N		B 179	33.012	84.969	39.871		21.12	В	N
50	ATOM	3215	CA		В 179	34.224	84.723	40.625	1.00	22.82	В	С
	ATOM	3216	CB		B 179	35.247	84.007	39.749	1.00	55.33	В	С
	ATOM	3217	CG		В 179	36.089	83.016	40.509		58.46	В	С
55	ATOM	3218	CD		B 179	36.779	82.000	39.590		62.14	В	С
	ATOM	3219	NE	ARG	B 179	35.878	81.022	38.978	1.00	66.30	В	N

	ATOM	3220	CZ	ARG	В	179	36.280	79.838	38.522	1.00	68.61	В	C
	MOTA	3221	NH1	ARG	В	179	35.413	78.995	37.978	1.00	71.14	В	N.
5	MOTA	3222	NH2	ARG	В	179	37.557	79.495	38.622	1.00	68.43	В	N
	MOTA	3223	C	ARG	В	179	34.737	86.071	41.081	1.00	21.93	В	С
	ATOM	3224	0	ARG	В	179	34.951	86.294	42,263	1.00	23.16	В	0
	ATOM	3225	N	GLY	В	180	34.910	86.982	40.136	1.00	24.73	В	N
10	ATOM	3226	CA	GLY	В	180	35.375	88.303	40.494	1.00	24.31	В	С
	ATOM	3227	С	GLY	В	180	34.492	88.862	41.588	1.00	22.88	В	С
	ATOM	3228	0	GLY	В	180	34.972	89.536	42.491	1.00	22.60	В	0
	ATOM	3229	N	LEU	В	181	33.200	88.563	41.513	1.00	23.51	В	N
15	ATOM	3230	CA	LEU	В	181	32.229	89.042	42.494	1.00	23.91	В	С
	ATOM	3231	CB	LEU	В	181	30.835	88.515	42.152	1.00	21.40	В	С
	ATOM	3232	CG	LEU	В	181	29.711	89.554	42.064	1.00	22.49	В	С
	ATOM	3233	CD1	LEU	В	181	30.292	90.951	41.952	1.00	23.38	В	С
20	ATOM	3234	CD2	LEU	В	181	28.824	89.247	40.866	1.00	21.40	В	С
	ATOM	3235	С	LEU	В	181	32.609	88.616	43.902	1.00	23.76	В	С
	ATOM	3236	0	LEU	В	181	32.642	89.436	44.822	1.00	24.06	В	0
	MOTA	3237	N	ALA	В	182	32.907	87.329	44.060	1.00	22.74	В	N
25	MOTA	3238	CA	ALA	В	182	33.295	86.777	45.353	1.00	23.33	В	С
	MOTA	3239	CB	ALA	В	182	33.144	85.284	45.340	1.00	7.18	В	С
	ATOM	3240	С	ALA	В	182	34.722	87.148	45.738	1.00	22.73	В	C
	ATOM	3241	0	ALA	В	182	35.062	87.172	46.908	1.00	23.40	В	0
30	ATOM	3242	N	TYR	В	183	35.572	87.424	44.766	1.00	18.05	В	N
	MOTA	3243	CA	TYR	В	183	36.920	87.806	45.123	1.00	19.57	В	С
	MOTA	3244	CB	TYR	В	183	37.719	88.282	43.907	1.00	33.64	В	C
	ATOM	3245	CG	TYR			39.070	88.832	44.281	1.00	33.60	В	С
35	ATOM	3246	CD1	TYR	В	183	40.045	88.003	44.804	1.00	33.60	В	С
	ATOM	3247	CE1	TYR	В	183	41.240	88.508	45.254	1.00	33.99	В	C
	ATOM	3248		TYR			39.336	90.193	44.203	1.00	33.60	В	С
	ATOM	3249		TYR			40.526	90.710	44.648	1.00	34.17	В	С
40	ATOM	3250	CZ	TYR			41.469	89.862	45.178	1.00	34.73	В	С
	ATOM	3251	ОН	TYR			42.634	90.366	45.687		37.43	В	0
	ATOM	3252	С	TYR			36.717	88.960	46.067		18.17	В	С
	ATOM	3253	0	TYR			36.915	88.843	47.266	1.00	20.52	В	0
45	ATOM	3254	N	LEU			36.274	90.076	45.513	1.00	31.76	В	N
	MOTA	3255	CA	LEU			36.044	91.267	46.300	1.00	32.52	В	С
	MOTA	3256	CB	LEU			35.178	92.229	45.494	1.00	36.92	В	С
	ATOM	3257	CG	LEU			35.749	92.565	44.108		36.47	В	С
50	ATOM	3258		LEU			34.749	93.408	43.353		36.21	В	С
	ATOM	3259		LEU			37.068	93.300	44.221		37.30	В	С
	ATOM	3260	С	LEU			35.403	90.939	47.650		35.51	В	С
	ATOM	3261	0	LEU			35.908	91.342	48.699		34.69	В	0
55	ATOM	3262	N	ARG	В	185	34.305	90.189	47.624	1.00	23.71	В	N

	MOTA	3263	CA	ARG	B 185	33.607	89.817	48.857	1.00 28.88	В	С
	MOTA	3264	CB	ARG	B 185	32.505	88.796	48.594	1.00123.05	В	Ċ.
5	ATOM	3265	CG	ARG	B 185	31.184	89.360	48.150	1.00127.29	В	С
	ATOM	3266	CD	ARG	B 185	30.076	88.522	48.761	1.00130.19	В	С
	ATOM	3267	NE	ARG	В 185	29.926	88.787	50.193	1.00136.00	В	N
	ATOM	3268	CZ	ARG	B 185	29.382	87.941	51.065	1.00139.17	В	С
10	MOTA	3269	NH1	ARG	B 185	28.940	86.758	50.658	1.00142.87	В	N
	ATOM	3270	NH2	ARG	B 185	29.266	88.288	52.342	1.00140.65	В	N
	ATOM	3271	С	ARG	B 185	34.541	89.221	49.878	1.00 30.63	В	С
	MOTA	3272	0	ARG	B 185	34.799	89.820	50.909	1.00 31.09	В	0
15	ATOM	3273	N	GLU	В 186	35.035	88.024	49.584	1.00 29.62	В	N
	ATOM	3274	CA	GLU	B 186	35.920	87.327	50.498	1.00 32.18	В	С
	ATOM	3275	CB	GLU	B 186	36.266	85.948	49.935	1.00 79.30	В	С
	ATOM	3276	CG	GLU	B 186	35.041	85.227	49.385	1.00 78.22	В	С
20	MOTA	3277	CD	GLU	B 186	35.325	83.810	48.923	1.00 77.04	В	C
	MOTA	3278	OE1	GLU	B 186	36,449	83.551	48.446	1.00 77.28	В	0
	ATOM	3279	OE2	GLU	B 186	34.414	82.959	49.018	1.00 76.49	В	0
	ATOM	3280	С	GLU	B 186	37.155	88.175	50.694	1.00 33.53	В	С
25	ATOM	3281	0	GLU	B 186	37.642	88.790	49.748	1.00 35.44	В	0
	ATOM	3282	N	LYS	B 187	37.641	88.227	51.931	1.00102.68	В	N
	ATOM	3283	CA	LYS	B 187	38.824	89.014	52.275	1.00103.20	В	С
	ATOM	3284	СВ	LYS	B 187	40.038	88.091	52.447	1.00116.34	В	С
30	ATOM	3285	CG	LYS	B 187	39.930	87.156	53.665	1.00119.20	В	С
	ATOM	3286	CD	LYS	B 187	39.868	87.941	54.982	1.00121.84	В	C
	ATOM	3287	CE	LYS	B 187	39.499	87.059	56.182	1.00123.35	В	С
	ATOM	3288	NZ	LYS	B 187	40.507	86.010	56.516	1.00126.46	В	N
35	ATOM	3289	С	LYS	B 187	39.104	90.113	51.245	1.00102.87	В	С
	ATOM	3290	0	LYS	B 187	39.882	89.937	50.303	1.00103.52	В	0
	ATOM	3291	N	HIS	B 188	38.421	91.235	51.464	1.00 53.35	В	N
	ATOM	3292	CA	HIS	B 188	38.454	92.452	50.655	1.00 52.80	В	C
40	MOTA	3293	СВ	HIS	B 188	38.660	92.153	49.173	1.00 59.25	В	С
	MOTA	3294	CG	HIS :	B 188	39.990	92.597	48.653	1.00 56.41	В	С
	ATOM	3295	CD2	HIS	B 188	40.860	92.005	47.800	1.00 54.33	В	С
	MOTA	3296	ND1	HIS	B 188	40.564	93.796	49.014	1.00 55.78	В	N
45	ATOM	3297	CE1	HIS	B 188	41.730	93.921	48.408	1.00 54.94	В	C
	MOTA	3298	NE2	HIS:	B 188	41.933	92.848	47.666	1.00 52.82	В	N
	MOTA	3299	С	HIS :	B 188	37.098	93.123	50.837	1.00 54.19	В	C
	ATOM	3300	0	HIS	B 188	36.883	94.235	50.385	1.00 54.82	В	0
50	ATOM	3301	N	GLN I	B 189	36.194	92.415	51.507	1.00 46.71	В	N
	ATOM	3302	CA	GLN 1	3 189	34.837	92.865	51.799	1.00 49.28	В	C
	ATOM	3303	CB	GLN I	B 189	34.729	93.248	53.279	1.00114.45	В	С
	ATOM	3304	CG	GLN 1	3 189	35.931	94.010	53.852	1.00118.63	В	С
55	ATOM	3305	CD	GLN I	3 189	36.014	95.464	53.403	1.00122.39	В	С

	ATOM	3306	OE1	GLN	В	189	36.413	95.762	52.277	1.001	23.30	В	0
	ATOM	3307	NE2	GLN	В	189	35.631	96.377	54.290	1.001	23.91	В	N.
5	MOTA	3308	С	GLN	В	189	34.301	93.996	50.950	1.00	49.43	В	С
	ATOM	3309	0	GLN	В	189	33.843	94.994	51.482	1.00	49.76	В	0
	ATOM	3310	N	ILE	В	190	34.329	93.855	49.634	1.00	64.77	В	N
	ATOM	3311	CA	ILE	В	190	33.832	94.937	48.804	1.00	63.14	В	С
10	ATOM	3312	СВ	ILE	В	190	34.998	95.708	48.134	1.00	72.79	В	С
	ATOM	3313	CG2	ILE	В	190	35.949	94.759	47.453	1.00	74.08	В	С
	ATOM	3314	CG1	ILE	В	190	34.440	96.697	47.120	1.00	74.03	В	С
	ATOM	3315	CD1	ILE	В	190	33.467	97.696	47.722	1.00	75.62	В	С
15	ATOM	3316	С	ILE	В	190	32.814	94.539	47.745	1.00	59.91	В	С
	ATOM	3317	0	ILE	В	190	33.061	93.668	46.920	1.00	58.63	В	0
	ATOM	3318	N	MET	В	191	31.665	95.207	47.791	1.00	49.97	В	N
	ATOM	3319	CA	MET	В	191	30.553	94.999	46.869	1.00	48.96	В	С
20	ATOM	3320	СВ	MET	В	191	29.299	95.647	47.455	1.00	35.10	В	С
	ATOM	3321	CG	MET	В	191	27.991	95.290	46.780	1.00	40.09	В	С
	ATOM	3322	SD	MET	В	191	26.641	96.193	47.553	1.00	47.72	В	s
	ATOM	3323	CE.	MET	В	191	27.115	96.094	49.237	1.00	45.47	В	С
25	ATOM	3324	С	MET	В	191	30.901	95.687	45.566	1.00	46.45	В	С
	ATOM	3325	0	MET	В	191	31.648	96.664	45.572	1.00	45.36	В	0
	MOTA	3326	N	HIS	В	192	30.371	95.203	44.447	1.00	30.26	В	N
	ATOM	3327	CA	HIS	В	192	30.670	95.858	43.177	1.00	28.88	В	¢
30	MOTA	3328	CB	HIS	В	192	30.441	94.924	42.008	1.00	41.95	В	С
	MOTA	3329	CG	HIS	В	192	31.184	95.334	40.778	1.00	38.92	В	С
	MOTA	3330	CD2	HIS	В	192	31.885	94.612	39.871	1.00	39.11	В	С
	ATOM	3331	ND1	HIS	В	192	31.277	96.647	40.377	1.00	37.12	В	N
35	MOTA	3332	CE1	HIS	В	192	32.005	96.716	39.278	1.00	37.98	В	С
	ATOM	3333	NE2	HIS	В	192	32.388	95.496	38.950	1.00	38.66	В	N
	ATOM	3334	С	HIS	В	192	29.805	97.102	42.994	1.00	28.27	В	С
	ATOM	3335	0	HIS	В	192	30.312	98.205	42.768	1.00	29.58	В	0
40	ATOM	3336	N	ARG	В	193	28.492	96.908	43.090	1.00	67.52	В	N
	ATOM	3337	CA	ARG	В	193	27.524	97.991	42.965	1.00	68.60	В	С
	MOTA	3338	CB	ARG	В	193	27.865	99.108	43.953	1.00	79.46	В	С
	ATOM	3339	CG	ARG	В	193	27.722	98.673	45.390	1.00	82.44	В	С
45	ATOM	3340	CD	ARG	В	193	28.344	99.643	46.374	1.00	84.93	В	С
	ATOM	3341	NE	ARG	В	193	28.595	98.959	47.642	1.00	89.03	В	N
	MOTA	3342	CZ	ARG	В	193	29.215	99.493	48.690	1.00	89.92	В	С
	ATOM	3343	NH1	ARG	В	193	29.661	100.743	48.643	1.00	89.37	В	N
50	MOTA	3344	NH2	ARG	В	193	29.403	98.767	49.786	1.00	90.32	В	N
	MOTA	3345	С	ARG	В	193	27.387	98.562	41.562	1.00	69.70	В	С
	ATOM	3346	0	ARG	В	193	26.686	99.554	41.366	1.00	70.47	В	0
	ATOM	3347	N	ASP			28.048	97.941	40.588		33.06	В	N
55	ATOM	3348	CA	ASP	В	194	27.959	98.408	39.208	1.00	31.59	В	С

	ATOM	3349	CB	ASP	В	194	28.840	99.638	38.994	1.00 95.44	В	С
	ATOM	3350	CG	ASP	В	194	28.543	100.343	37.682	1.00 96.62	В	C.
5	ATOM	3351	OD1	ASP	В	194	27.448	100.929	37.551	1.00 97.29	В	0
	MOTA	3352	OD2	ASP	В	194	29.404	100.304	36.779	1.00 98.87	В	0
	ATOM	3353	С	ASP	В	194	28.315	97.356	38.169	1.00 29.95	В	С
	ATOM	3354	0	ASP	в	194	29.319	97.467	37.467	1.00 28.49	В	0
10	MOTA	3355	N	VAL	в	195	27.485	96.325	38.081	1.00 48.93	В	N
	ATOM	3356	CA	VAL	в	195	27.695	95.282	37.100	1.00 48.96	В	С
	ATOM	3357	CB	VAL	В	195	27.294	93.909	37.622	1.00 31.09	В.	С
	ATOM	3358	CG1	VAL	В	195	27.280	92.915	36.470	1.00 31.87	В	С
15	ATOM	3359	CG2	VAL	В	195	28.266	93.470	38.684	1.00 30.66	В	С
	ATOM	3360	С	VAL	В	195	26.813	95.616	35.920	1.00 48.14	В	С
	ATOM	3361	0	VAL	В	195	25.680	96.049	36.091	1.00 48.59	В	0
	MOTA	3362	N	LYS	В	196	27.352	95.417	34.727	1.00 34.77	В	N
20	MOTA	3363	CA	LYS	В	196	26.648	95.690	33.488	1.00 34.94	В	С
	ATOM	3364	CB	LYS	В	196	26.207	97.153	33.430	1.00 62.60	В	С
	ATOM	3365	CG	LYS	В	196	27.316	98.170	33.672	1.00 64.55	В	С
	ATOM	3366	CD	LYS	В	196	26.741	99.577	33.650	1.00 67.91	В	С
25	ATOM	3367	CE	LYS	В	196	27.668	100.576	34.305	1.00 70.98	В	С
	ATOM	3368	NZ	LYS	В	196	26.968	101.862	34.576	1.00 72.02	В	N
	ATOM	3369	С	LYS	В	196	27.612	95.403	32.354	1.00 34.43	В	С
	ATOM	3370	0	LYS	В	196	28.816	95.284	32.564	1.00 35.21	В	0
30	ATOM	3371	N	PRO	в	197	27.105	95.313	31.127	1.00 36.31	В	N
	ATOM	3372	CD	PRO	В	197	25.709	95.249	30.675	1.00 27.08	В	С
	ATOM	3373	CA	PRO	В	197	28.022	95.027	30.027	1.00 36.33	В	С
35	ATOM	3374	CB	PRO			27.097	95.008	28.815	1.00 27.99	В	С
35	ATOM	3375	CG	PRO	В	197	25.840	94.453	29.387	1.00 27.47	В	С
	ATOM	3376	С	PRO	В	197	29.209	95.970	29.862	1.00 37.20	В	С
	MOTA	3377	0	PRO	В	197	30.265	95.554	29.395	1.00 35.89	В	0
40	ATOM	3378	N	SER			29.044	97.229	30.246	1.00 45.24	В	N
	ATOM	3379	CA	SER			30.124	98.202	30.112	1.00 44.83	В	C
	ATOM	3380	CB	SER			29.549	99.621	30.075	1.00116.74	В	С
	ATOM	3381	OG	SER			28.683	99.857	31.172	1.00116.52	В	0
45	ATOM	3382	С	SER			31.188	98.118	31.206	1.00 46.38	В	С
	ATOM	3383	0	SER			32.192	98.826	31.168	1.00 46.60	В	0
	ATOM	3384	N	ASN			30.984	97.243	32.177	1.00 38.63	В	N
	ATOM	3385	CA	ASN			31.944	97.131	33.260	1.00 40.21	В	C
50	ATOM	3386	CB	ASN			31.252	97.450	34.588	1.00 31.87	В	С
	ATOM	3387	CG	ASN			31.570	98.839	35.089	1.00 34.22	В	С
	ATOM	3388		ASN			31.733	99.771	34.311	1.00 37.35	В	0
	MOTA	3389		ASN			31.649	98.983	36.398	1.00 36.18	В	N
55	ATOM	3390	С	ASN			32.637	95.778	33.320	1.00 40.72	В	C
	ATOM	3391	0	ASN	В	199	33.202	95.404	34.339	1.00 40.47	В	0

	ATOM	3392	N	ILE	В	200	32.577	95.040	32.222	1.00	47.09	В	N
	ATOM	3393	CA	ILE	В	200	33.248	93.754	32.135	1.00	47.75	В	C-:
5	ATOM	3394	СВ	ILE	В	200	32.262	92.593	31.907	1.00	41.93	В	С
	ATOM	3395	CG2	ILE	В	200	33.016	91.273	31.786	1.00	43.17	В	С
	MOTA	3396	CG1	ILE	В	200	31.290	92.502	33.075	1.00	39.80	В	С
	ATOM	3397	CD1	ILE	В	200	30.229	91.463	32.859	1.00	36.58	В	С
10	ATOM	3398	С	ILE	В	200	34.177	93.854	30.933	1.00	50.78	В	С
	ATOM	3399	0	ILE	В	200	33.725	93.867	29.790	1.00	51.33	В	0
	MOTA	3400	N	LEU	В	201	35.475	93.938	31.197	1.00	40.58	В	N
	ATOM	3401	CA	LEU	В	201	36.454	94.047	30.130	1.00	43.98	В	С
15	ATOM	3402	CB	LEU	В	201	37.538	95.023	30.544	1.00	32.97	В	С
	ATOM	3403	CG	LEU	В	201	36.895	96.153	31.338	1.00	32.70	В	С
	ATOM	3404	CD1	LEU	В	201	37.902	97.281	31.587	1.00	29.98	В	С
	ATOM	3405	CD2	LEU	В	201	35.686	96.645	30.560	1.00	33.92	В	С
20	ATOM	3406	С	LEU	В	201	37.069	92.702	29.751	1.00	46.61	В	С
	ATOM	3407	0	LEU	В	201	37.159	91.786	30.568	1.00	47.21	В	0
	ATOM	3408	N	VAL	В	202	37.501	92.600	28.499	1.00	42.60	В	N
	ATOM	3409	CA	VAL	В	202	38.082	91.371	27.976	1.00	46.45	В	С
25	ATOM	3410	CB	VAL	В	202	37.052	90.669	27.107	1.00	19.28	В	С
	ATOM	3411	CG1	VAL	в	202	35.753	90.495	27.896	1.00	20.80	В	С
	ATOM	3412	CG2	VAL	В	202	36.798	91.496	25.864	1.00	20.29	В	C
	MOTA	3413	С	VAL	В	202	39.342	91.646	27.148	1.00	49.17	В	С
30	ATOM	3414	0	VAL	В	202	39.812	92.781	27.089	1.00	49.29	В	0
	ATOM	3415	N	ASN	В	203	39.898	90.610	26.521	1.00	59.31	В	N
	ATOM	3416	CA	ASN	В	203	41.103	90.804	25.707	1.00	60.87	В	С
	ATOM	3417	СВ	ASN	В	203	42.261	91.325	26.566	1.00	48.04	В	С
35	ATOM	3418	CG	ASN	В	203 ,	42.661	90.363	27.656	1.00	49.60	В	С
	ATOM	3419	OD1	ASN	В	203	42.403	89.163	27.565	1.00	50.91	В	0
	ATOM	3420	ND2	ASN	В	203	43.311	90.884	28.693	1.00	50.23	В	N
	ATOM	3421	С	ASN	В	203	41.622	89.632	24.874	1.00	61.26	В	С
40	ATOM	3422	0	ASN	В	203	40.991	88.581	24.777	1.00	61.14	В	0
	ATOM	3423	N	SER	В	204	42.789	89.858	24.270	1.00	64.59	В	N
	ATOM	3424	CA	SER	В	204	43.466	88.891	23.410	1.00	64.02	В	С
	MOTA	3425	CB	SER	В	204	44.968	89.194	23.364	1.00	97.55	В	С
45	ATOM	3426	OG	SER	В	204	45.236	90.386	22.647	1.00	97.23	В	0
	ATOM	3427	c	SER	В	204	43.261	87.446	23.832	1.00	63.54	В	С
	ATOM	3428	0	SER	В	204	42.795	86.617	23.049	1.00	64.12	В	0
	ATOM	3429	N	ARG	В	205	43.638	87.145	25.068	1.00	85.38	В	N
50	MOTA	3430	CA	ARG	В	205	43.481	85.804	25.602	1.00	85.87	В	С
	ATOM	3431	CB	ARG	В	205	44.422	85.609	26.788	1.00	175.80	В	С
	MOTA	3432	CG	ARG	В	205	45.800	86.194	26.522	1.00	179.98	В	C
	ATOM	3433	CD	ARG	В	205	46.918	85.341	27.097	1.00	183.34	В	С
55	ATOM	3434	NE	ARG	В	205	48.231	85.919	26.813	1.00	186.61	В	N

	1	ATOM	3435	cz	ARG	В 205	49.389	85.355	27.145	1.001	89.11		В	С
	1	MOTA	3436	NH1	ARG	B 205	50.532	85.958	26.846	1.001	90.24		В	N
5	1	MOTA	3437	NH2	ARG	В 205	49.406	84.189	27.774	1.001	89.87		В	N
		ATOM	3438	С	ARG	B 205	42.027	85.696	26.027	1.00	84.32		В	C
	2	MOTA	3439	0	ARG :	В 205	41.308	86.692	26.031	1.00	83.74		В	0
	1	MOTA	3440	N	GLY :	В 206	41.573	84.502	26.374	1.00	71.98		В	N
10	1	MOTA	3441	CA	GLY :	B 206	40.183	84.382	26.765	1.00	69.30		В	С
	2	MOTA	3442	С	GLY :	B 206	39.879	85.091	28.070	1.00	68.13		В	С
	1	MOTA	3443	0	GLY :	В 206	38.980	84.675	28.794	1.00	66.99		В	0
	1	MOTA	3444	N	GLU I	B 207	40.605	86.168	28.363	1.00	66.25		В	N
15	1	ATOM	3445	CA	GLU :	B 207	40.426	86.897	29.613	1.00	63.92		В	С
	1	ATOM	3446	CB	GLU :	B 207	41.696	87.667	29.947	1.00	43.77		В	С
	2	ATOM	3447	CG	GLU :	3 207	42.852	86.727	30.157	1.00	45.57		В	С
	1	ATOM	3448	CD	GLU :	3 207	43.983	87.327	30.946	1.00	46.37		В	С
20	7	ATOM	3449	OE1	GLU :	B 207	44.776	86.544	31.513	1.00	46.61		В	0
	7	MOTA	3450	OE2	GLU :	B 207	44.086	88.569	30.997	1.00	46.35		В	0
	7	MOTA	3451	С	GLU I	3 207	39.221	87.813	29.736	1.00	62.77		В	С
	3	ATOM	3452	0	GLU :	3 207	38.944	88.647	28.870	1.00	63.40		В	0
25	3	ATOM	3453	N	ILE !	3 208	38.513	87.632	30.846	1.00	46.59		В	N
	7	ATOM	3454	CA	ILE 1	3 208	37.319	88.385	31.183	1.00	45.08		В	С
	7	MOTA	3455	СВ	ILE I	3 208	36.104	87.478	31.161	1.00	28.80		В	С
	7	ATOM	3456	CG2	ILE	3 208	34.936	88.178	31.816	1.00	26.95		В	С
30	7	ATOM	3457	CG1	ILE !	3 208	35.795	87.048	29.732	1.00	29.50		В	C
	1	ATOM	3458	CD1	ILE	3 208	34.622	86.102	29.656	1.00	29.21	17	В	С
	3	MOTA	3459	С	ILE	3 208	37.506	88.885	32.606	1.00	44.72		В	С
	7	ATOM	3460	0	ILE 1	208	37.951	88.135	33.464	1.00	44.71		В	0
35	7	NTOM	3461	N	LYS	3 209	37.168	90.138	32.873	1.00	32.16		В	N
	7	MOTA	3462	CA	LYS 1	3 209	37.344	90.663	34.223	1.00	31.40		В	С
	2	ATOM	3463	CB	LYS	3 209	38.721	91.327	34.331	1.00	49.55		В	С
	2	MOTA	3464	CG	LYS	3 209	39.862	90.382	33.970	1.00	51.24		В	С
40	2	NOTA	3465	CD	LYS I	209	41.234	90.987	34.226	1.00	55.73		В	С
	2	MOTA	3466	CE	LYS I	209	42.329	89.958	33.955	1.00	58.96		В	С
	2	ATOM	3467	NZ	LYS	3 209	43.698	90.530	34.064	1.00	62.07		В	N
	2	ATOM	3468	С.	LYS	3 209	36.248	91.644	34.628	1.00	30.45		В	С
45	1	MOTA	3469	0	LYS	3 209	35.508	92.124	33.786	1.00	30.55		В	0
	1	ATOM	3470	N	LEU :	3 210	36.113	91.907	35.921	1.00	27.34		В	N
	1	ATOM	3471	CA	LEU I	3 210	35.120	92.864	36.374	1.00	25.10		В	C
	1	ATOM	3472	CB	LEU I	3 210	34.702	92.624	37.816	1.00	19.32		В	C
50	1	ATOM	3473	CG	LEU I	3 210	33.842	91.381	37.985	1.00	19.23		В	C
	1	ATOM	3474	CD1	LEU 1	3 210	33.198	91.402	39.346	1.00	18.26		В	С
	i	ATOM	3475	CD2	LEU I	210	32.796	91.326	36.880	1.00	18.94		В	С
	1	MOTA	3476	С	LEU 1	3 210	35.811	94.190	36.282	1.00	24.95		В	С
55	1	ATOM	3 477	0	LEU 1	3 210	37.016	94.229	36.052	1.00	26.13		В	0

	ATOM	3478	N	CYS	B 211	35.058	95.273	36.467	1.00	68.11	В	N
	MOTA	3479	CA	CYS	B 211	35.627	96.613	36.385	1.00	67.10	В	C,
5	ATOM	3480	CB	CYS	B 211	35.678	97.061	34.930	1.00	72.82	В	С
	ATOM	3481	SG	CYS	B 211	36.661	98.529	34.700	1.00	81.19	В	s
	ATOM	3482	С	CYS	B 211	34.838	97.633	37.199	1.00	65.21	В	С
	ATOM	3483	0	CYS	B 211	33.733	97.354	37.635	1.00	64.99	В	0
10	ATOM	3484	N	ASP	B 212	35.426	98.812	37.394	1.00	79.65	В	N
	ATOM	3485	CA	ASP	B 212	34.816	99.915	38.146	1.00	79.46	В	С
	ATOM	3486	СВ	ASP	B 212	33.975	100.796	37.219	1.00	56.99	В	С
	MOTA	3487	CG	ASP	B 212	34.792	101.418	36.121	1.00	61.85	В	С
15	MOTA	3488	OD1	ASP	B 212	35.905	101.898	36.418	1.00	65.25	В	0
	ATOM	3489	OD2	ASP	B 212	34.321	101.434	34.964	1.00	60.47	В	0
	ATOM	3490	С	ASP	B 212	33.971	99.559	39.358	1.00	79.23	В	С
	ATOM	3491	0	ASP	B 212	32.778	99.309	39.241	1.00	78.89	В	0
20	ATOM	3492	N	PHE	B 213	34.594	99.556	40.528	1.00	31.93	В	N
	ATOM	3493	CA	PHE	B 213	33.878	99.269	41.761	1.00	33.23	В	С
	ATOM	3494	СВ	PHE	B 213	34.050	97.797	42.172	1.00	34.40	В	С
	ATOM	3495	CG	PHE	B 213	35.436	97.291	42.019	1.00	32.61	В	С
25	ATOM	3496	CD1	PHE	B 213	36.315	97.327	43.083	1.00	31.29	В	С
	ATOM	3497	CD2	PHE	B 213	35.892	96.854	40.789	1.00	31.55	В	С
	ATOM	3498	CE1	PHE	B 213	37.621	96.945	42.917	1.00	31.18	В	С
	ATOM	3499	CE2	PHE	B 213	37.199	96.471	40.616	1.00	31.66	В	С
30	ATOM	3500	CZ	PHE	B 213	38.067	96.517	41.675	1.00	32.43	В	С
	ATOM	3501	С	PHE	B 213	34.292	100.233	42.880	1.00	35.36	В	С
	ATOM	3502	0	PHE	B 213	35.392	100.795	42.873	1.00	38.18	В	0
	ATOM	3503	N	GLY	B 214	33.381	100.425	43.828	1.00	55.99	В	N
35	MOTA	3504	CA	GLY	B 214	33.608	101.360	44.910	1.00	59.86	В	С
	ATOM	3505	С	GLY	B 214	34.592	100.999	45.986	1.00	62.25	В	С
	ATOM	3506	o'	GLY	B 214	34.206	100.869	47.144	1.00	64.52	В	0
	MOTA	3507	N	VAL	B 215	35.861	100.840	45.639	1.00	48.79	В	N
40	MOTA	3508	CA	VAL	B 215	36.819	100.511	46.680	1.00	50.87	В	С
	ATOM	3509	CB	VAL	В 215	38.278	100.325	46.136	1.00	45.25	В	С
	MOTA	3510	CG1	VAL	B 215	38.323	99.195	45.123	1.00	45.27	В	С
	ATOM	3511	CG2	VAL	B 215	38.796	101.612	45.541	1.00	46.03	В	С
45	ATOM	3512	С	VAL	B 215	36.774	101.694	47.633	1.00	52.86	В	С
	MOTA	3513	0	VAL	B 215	36.749	101.534	48.861	1.00	53.12	В	0
	ATOM	3514	N	SER	B 216	36.718	102.878	47.029	1.00	58.08	В	N
	ATOM	3515	CA	SER	B 216	36.683	104.157	47.727	1.00	61.13	В	С
50	ATOM	3516	CB	SER	B 216	37.161	105.267	46.793	1.00	30.78	В	С
	ATOM	3517	OG	SER	B 216	36.845	106.539	47.320	1.00	31.78	В	0
	ATOM	3518	С	SER	B 216	35.301	104.515	48.222	1.00	62.31	В	С
	MOTA	3519	0	SER	B 216	34.319	104.368	47.498	1.00	62.08	В	0
55	ATOM	3520	N	GLY :	B 217	35.233	104.997	49.457	1.00	66.37	В	N

	ATOM	3521	CA	GLY	В	217	33.961	105.400	50.023	1.00 67.95	В	С
	ATOM	3522	С	GLY	В	217	33.717	106.824	49.581	1.00 68.40	В	C
5	ATOM	3523	0	GLY	В	217	32.702	107.122	48.953	1.00 68.29	В	0
	ATOM	3524	N	GLN	В	218	34.657	107.706	49.909	1.00 82.57	В	N
	ATOM	3525	CA	GLN	В	218	34.552	109.101	49.514	1.00 84.79	В	С
	ATOM	3526	CB	GLN	В	218	35.859	109.849	49.775	1.00 96.19	В	С
10	ATOM	3527	CG	GLN	В	218	35.902	111.236	49.149	1.00 96.52	В	С
	ATOM	3528	CD	GLN	В	218	34.945	112,216	49.803	1.00 97.82	В	С
	ATOM	3529	OE 1	GLN	В	218	34.681	113.288	49.263	1.00 99.92	В	0
	ATOM	3530	NE2	GLN	В	218	34.429	111.857	50.975	1.00 97.19	В	N
15	MOTA	3531	С	GLN	В	218	34.255	109.112	48.029	1.00 85.70	В	С
	ATOM	3532	0	GLN	В	218	33.133	109.409	47.630	1.00 85.42	В	0
	ATOM	3533	N	LEU	В	219	35.253	108.786	47.208	1.00 49.14	В	N
	ATOM	3534	CA	LEU	В	219	35.027	108.755	45.768	1.00 49.20	В	С
20	ATOM	3535	CB	LEU	В	219	36.270	108.324	45.002	1.00112.27	В	С
	MOTA	3536	CG	LEU	В	219	36.070	108.517	43.495	1.00111.82	В	С
	ATOM	3537	CD1	LEU	В	219	35.103	107.488	42.935	1.00110.11	В	С
	ATOM	3538	CD2	LEU	В	219	35.548	109.923	43.252	1.00111.82	В	C.
25	MOTA	3539	С	LEU	В	219	33.917	107.755	45.539	1.00 52.39	В	С
	ATOM	3540	0	LEU	В	219	34.089	106.552	45.730	1.00 52.05	В	0
	MOTA	3541	N	ILE	В	220	32.786	108.287	45.105	1.00 76.50	В	N
30	MOTA	3542	CA	ILE			31.558	107.542	44.874	1.00 75.79	В	С
	MOTA	3543	CB	ILE				106.398	45.922	1.00 75.74	В	С
	ATOM	3544		ILE				106.390	46.442	1.00 76.75	В	С
	MOTA	3545		ILE				105.039	45.311	1.00 76.05	В	C
35	MOTA	3546		ILE				103.870	46.271	1.00 75.34	В	С
55	MOTA	3547	С	ILE				108.649	45.185	1.00 77.82	В	С
	MOTA	3548	0	ILE				108.758	44.581	1.00 78.76	В	0
	MOTA	3549	N	ASP				109.480	46.142	1.00157.52	В	N
40	MOTA	3550	CA	ASP				110.617	46.622	1.00159.07	В	С
	ATOM	3551	CB	ASP				110.610	48.148	1.00 92.31	В	С
	ATOM	3552	CG	ASP				109.325	48.695	1.00 92.16	В	C
	ATOM	3553		ASP				108.308	48.717	1.00 92.62	В	0
45	ATOM	3554		ASP				109.326	49.093	1.00 91.93	В	0
	ATOM	3555	c	ASP				111.943	46.173	1.00161.64	В	С
	ATOM	3556	0	ASP				112.970	46.244	1.00161.95	В	0
	ATOM	3557	N	SER				111.939	45.734	1.00167.80	В	N
50	MOTA	3558	CA	SER				113.184	45.268	1.00169.22	В	С
	ATOM	3559	CB	SER				112.951	44.617	1.00 87.83	В	С
	ATOM	3560	OG	SER				114.189	44.319	1.00 86.59	В	0
55 P	ATOM	3561	С	SER				113.627	44.244	1.00170.52	В	С
	ATOM	3562	0	SER				114.822	44.048	1.00171.02	В	0
	ATOM	3563	N	MET	В	223	30.995	112.626	43.617	1.00149.31	В	N

	ATOM	3564	CA	MET	B 223	29.929	112.824	42.643	1.00149.54	В	С
5	ATOM	3565	CB	MET	B 223	30.015	111.812	41.493	1.00156.64	В	C,
3	MOTA	3566	CG	MET	B 223	31.249	111.960	40.614	1.00155.25	В	C
	MOTA	3567	SD	MET	B 223	31.207	110.920	39.135	1.00154.91	В	s
	ATOM	3568	CE	MET	B 223	32.012	109.415	39.742	1.00154.30	В	С
10	ATOM	3569	С	MET	B 223	28.662	112.571	43.443	1.00149.75	В	С
10	ATOM	3570	0	MET	B 223	27.807	113.447	43.548	1.00152.72	В	0
	MOTA	3571	N	ALA	B 224	28.572	111.375	44.021	1.00112.40	В	N
	MOTA	3572	CA	ALA	B 224	27.444	110.956	44.847	1.00112.61	В	С
15	ATOM	3573	СВ	ALA	B 224	27.060	112.050	45.843	1.00116.84	В	С
15	MOTA	3574	С	ALA	B 224	26.232	110.560	44.053	1.00112.31	В	С
	MOTA	3575	0	ALA	B 224	25.890	109.382	44.013	1.00112.04	В	0
	ATOM	3576	N	ASN	B 225	25.586	111.558	43.445	1.00198.83	В	N
20	ATOM	3577	CA	ASN	B 225	24.375	111.355	42.660	1.00198.98	В	С
20	MOTA	3578	СВ	ASN	B 225	23.992	112.647	41.975	1.00176.84	В	С
	MOTA	3579	CG	ASN	B 225	23.706	113.723	42.984	1.00177.11	В	С
	ATOM	3580	OD1	ASN	B 225	22.650	113.731	43.625	1.00176.85	В	0
25	MOTA	3581	ND2	asn	B 225	24.672	114.604	43.189	1.00177.26	В	N
25	MOTA	3582	C	ASN	B 225	24.623	110.239	41.721	1.00199.67	В	С
	ATOM	3583	0	ASN	B 225	24.722	110.367	40.488	1.00199.92	В	0
	MOTA	3584	N	SER	B 226	24.741	109.091	42.358	1.00203.67	В	N
30 A	ATOM	3585	CA	SER	B 226	25.001	107.940	41.579	1.00203.67	В	С
	MOTA	3586	CB	SER	B 226	25.444	106.727	42.408	1.00203.67	В	С
	MOTA	3587	OG	SER	B 226	26.652	106.259	41.821	1.00203.67	В	0
	ATOM	3588	С	SER	B 226	23.756	107.629	40.795	1.00203.67	В	С
35	MOTA	3589	0	SER	B 226	22.653	107.734	41.289	1.00203.67	В	0
35	MOTA	3590	N	PHE	B 227	24.026	107.415	39.514	1.00203.67	В	N
	MOTA	3591	CA	PHE	B 227	23.145	106.912	38.460	1.00203.67	В	С
	MOTA	3592	CB	PHE	B 227	22.502	105.633	38.985	1.00203.67	В	С
40	MOTA	3593	CG	PHE	B 227	23.433	104.511	39.056	1.00203.67	В	С
40	MOTA	3594	CD1	PHE	B 227	24.110	104.225	40.230	1.00203.67	В	С
	ATOM	3595	CD2	PHE	B 227	23.674	103.779	37.913	1.00203.67	В	С
	ATOM	3596	CE1	PHE	B 227	25.013	103.214	40.241	1.00203.67	В	С
45	MOTA	3597	CE2	PHE	B 227	24.553	102.798	37.922	1.00203.67	В	С
45	ATOM	3598	CZ	PHE	B 227	25.228	102.500	39.069	1.00203.67	В	С
	ATOM	3599	С	PHE	B 227	22.225	107.441	37.442	1.00203.67	В	С
	ATOM	3600	0	PHE	B 227	21.753	108.552	37.416	1.00203.67	В	0
50	ATOM	3601	N	VAL	B 228	22.221	106.474	36.452	1.00176.22	В	N
50	ATOM	3602	CA	VAL	B 228	21.466	106.274	35.241	1.00175.44	В	С
	ATOM	3603	CB	VAL	B 228	20.195	105.346	35.680	1.00125.13	В	С
	ATOM	3604	CG1	VAL	B 228	19.104	106.266	36.402	1.00125.42	В	С
55	MOTA	3605	CG2	VAL	B 228	19.629	104.579	34.505	1.00125.06	В	С
33	ATOM	3606	С	VAL	B 228	20.926	107.366	34.246	1.00174.58	В	С

	ATOM	3607	0	VAL	В	228	21.533	108.445	33.935	1.00174.73	В	0
	ATOM	3608	N	GLY	В	229	19.783	107.015	33.762	1.00146.34	В	N.
5	ATOM	3609	CA	GLY	В	229	19.095	107.849	32.808	1.00144.37	В	¢
	ATOM	3610	С	GLY	В	229	19.005	106.836	31.695	1.00143.27	В	С
	ATOM	3611	0	GLY	В	229	17.894	106.393	31.503	1.00142.89	В	0
	ATOM	3612	N	THR	В	230	20.066	106.451	30.965	1.00200.92	В	N
10	ATOM	3613	CA	THR	В	230	19.859	105.365	29.945	1.00199.70	В	С
	ATOM	3614	CB	THR	В	230	20.862	105.393	28.700	1.00178.33	В	С
	ATOM	3615	0G1	THR	В	230	20.303	104.626	27.607	1.00180.07	В	0
	MOTA	3616	CG2	THR	В	230	22.207	104.751	29.063	1.00177.92	В	С
15	ATOM	3617	С	THR	В	230	19.905	103.903	30.526	1.00197.85	В	С
	MOTA	3618	0	THR	В	230	20.877	103.486	31.176	1.00196.84	В	0
	ATOM	3619	N	ARG	В	231	18.860	103.121	30.254	1.00 72.55	В	N
	MOTA	3620	CA	ARG	В	231	18.757	101.728	30.719	1.00 68.93	В	С
20	MOTA	3621	CB	ARG	В	231	19.944	100.917	30.173	1.00203.67	В	С
	MOTA	3622	CG	ARG	В	231	20.142	101.127	28.668	1.00203.67	В	С
	MOTA	3623	CD	ARG	В	231	18.833	100.897	27.908	1.00203.67	В	С
	ATOM	3624	NE	ARG	В	231	18.823	99.619	27.200	1.00203.67	В	N
25	MOTA	3625	CZ	ARG	В	231	19.094	99.488	25.909	1.00203.67	В	С
	MOTA	3626	NH1	ARG	В	231	19.386	100.568	25.189	1.00203.67	В	N
	MOTA	3627	NH2	ARG	В	231	19.105	98.287	25.338	1.00203.67	В	N
	MOTA	3628	С	ARG	В	231	18.667	101.650	32.251	1.00 66.21	В	С
30	ATOM	3629	0	ARG	В	231	17.718	102.169	32.820	1.00 66.36	В	0
	MOTA	3630	N	SER	В	232	19.646	101.023	32.900	1.00 38.12	В	N
	MOTA	3631	CA	SER	В	232	19.739	100.849	34.375	1.00 34.16	В	С
	ATOM	3632	CB	SER	В	232	18.510	101.352	35.125	1.00 53.49	В	С
35	ATOM	3633	OG	SER	В	232	18.619	101.014	36.496	1.00 52.48	В	0
	MOTA	3634	c	SER	В	232	19.917	99.383	34.740	1.00 30.96	В	С
	MOTA	3635	0	SER	В	232	19.209	98.534	34.228	1.00 31.04	В	0
	MOTA	3636	N	TYR	В	233	20.831	99.095	35.649	1.00 66.68	В	N
40	MOTA	3637	CA	TYR	В	233	21.097	97.709	36.021	1.00 62.81	В	С
	ATOM	3638	CB	TYR	В	233	22.478	97.337	35.531	1.00 35.15	В	С
	MOTA	3639	CG	TYR	В	233	22.564	97.337	34.043	1.00 30.23	В	С
	MOTA	3640	CD1	TYR	В	233	22.052	96.276	33.310	1.00 30.11	В	С
45	ATOM	3641	CE1	TYR	В	233	22.113	96.260	31.939	1.00 29.50	В	С
	MOTA	3642	CD2	TYR	В	233	23.140	98.391	33.365	1.00 27.87	В	C
	MOTA	3643	CE2	TYR	В	233	23.207	98.390	32.000	1.00 27.56	В	С
	ATOM	3644	CZ	TYR	В	233	22.692	97.316	31.284	1.00 28.17	В	C
50	ATOM	3645	ОН	TYR	В	233	22.764	97.289	29.908	1.00 26.88	В	0
	ATOM	3646	С	TYR	В	233	21.011	97.474	37.508	1.00 63.29	В	С
	ATOM	3647	0	TYR	В	233	21.419	96.428	38.021	1.00 64.68	В	0
55	ATOM	3648	N	MET	В	234	20.474	98.471	38.192	1.00 41.61	В	N
33	ATOM	3649	CA	MET	В	234	20.323	98,436	39.624	1.00 40.29	В	С

	ATOM	3650	CB	MET	B 234	20.159	99.847	40.132	1.00 54.77	В	С
	ATOM	3651	CG	MET	B 234	19.922	99.922	41.588	1.00 57.11	В	C.
5	MOTA	3652	SD	MET	B 234	20.256	101.580	42.028	1.00 59.47	В	s
	MOTA	3653	CE	MET	B 234	21.744	101.889	41.003	1.00 58.55	В	C
	ATOM	3654	С	MET	B 234	19.134	97.609	40.032	1.00 39.32	В	C
	ATOM	3655	0	MET	B 234	18.070	97.692	39.430	1.00 38.70	В	0
10	ATOM	3656	N	ALA	B 235	19.327	96.816	41.075	1.00 35.39	В	N
	ATOM	3657	CA	ALA	B 235	18.275	95.953	41.588	1.00 36.56	В	С
	ATOM	3658	CB	ALA	в 235	18.868	94.942	42.564	1.00121.70	В	С
	ATOM	3659	С	ALA	B 235	17.144	96.720	42.260	1.00 37.42	В	С
15	ATOM	3660	0	ALA	B 235	17.326	97.831	42.758	1.00 38.21	В	0
	ATOM	3661	N	PRO	B 236	15.950	96.127	42.274	1.00 41.47	В	N
	ATOM	3662	CD	PRO	B 236	15.588	94.831	41.675	1.00 34.73	В	С
	ATOM	3663	CA	PRO	B 236	14.790	96.760	42.893	1.00 42.53	В	С
20	MOTA	3664	CB	PRO	В 236	13.785	95.614	42.958	1.00 33.87	В	С
	ATOM	3665	CG	PRO	B 236	14.074	94.873	41.697	1.00 34.57	В	С
	ATOM	3666	С	PRO	B 236	15.123	97.324	44.273	1.00 44.17	В	С
	ATOM	3667	0	PRO	B 236	15.013	98.521	44.510	1.00 44.62	В	0
25	ATOM	3668	N	GLU	B 237	15.551	96.448	45.173	1.00 39.53	В	N
	ATOM	3669	CA	GLU	B 237	15.874	96.844	46.535	1.00 40.79	В	С
	ATOM	3670	СВ	GLU	B 237	16,477	95.686	47.329	1.00 48.23	В	С
	ATOM	3671	CG	GLU	B 237	17.921	95.416	47.000	1.00 47.09	В	С
30	MOTA	3672	CD	GLU	B 237	18.081	94.251	46.063	1.00 46.32	В	С
	ATOM	3673	OE1	GLU	B 237	17.320	94.180	45.080	1.00 46.23	В	0
	ATOM	3674	OE2	GLU	B 237	18.970	93.408	46.306	1.00 44.71	В	0
	MOTA	3675	С	GLU	B 237	16.836	97.993	46.605	1.00 42.05	В	С
35	ATOM	3676	0	GLU	B 237	16.917	98.663	47.616	1.00 43.50	В	0
	MOTA	3677	N		B 238	17.588	98.228	45.550	1.00 16.39	В	N
	ATOM	3678	CA		B 238	18.521	99.329	45.612	1.00 19.76	В	С
	MOTA	3679	CB		B 238	19.738	99.044	44.729	1.00 24.18	В	С
40	MOTA	3680	CG		B 238	21.031	99.646	45.247	1.00 29.27	В	С
	ATOM	3681	CD		В 238	22.180	99.394	44.307	1.00 34.12	В	С
	ATOM	3682	NE		B 238		100.168	44.699	1.00 39.45	В	N
	ATOM	3683	cz	ARG	B 238	24.373	100.450	43.900	1.00 41.53	В	C
45	ATOM	3684			B 238		100.028	42.642	1.00 42.34	В	N
	ATOM	3685	NH2	ARG	B 238	25.376	101.173	44.363	1.00 43.23	В	N
	ATOM	3686	С	ARG	B 238	17.818	100.613	45.177	1.00 20.88	В	С
50	ATOM	3687	0	ARG	B 238	18.362	101.704	45.305	1.00 21.31	В	0
50	ATOM	3688	N	LEU	B 239	16.595	100.472	44.678	1.00 46.46	В	N
	ATOM	3689	CA	LEU	B 239	15.817	101.617	44.227	1.00 47.50	В	С
	ATOM	3690	CB	LEU	B 239	15.369	101.439	42.780	1.00 19.24	В	С
55	ATOM	3691	CG		B 239		100.947	41.694	1.00 16.92	В	С
55	ATOM	3692	CD1	LEU :	3 239	15.465	100.431	40.540	1.00 13.37	В	С

	ATOM	3693	CD2	LEU	В	239	17.252	102.032	41.240	1.00	15.22	В	С
	ATOM	3694	С	LEU	В	239	14.564	101.767	45.067	1.00	49.79	В	C,
5	MOTA	3695	0	LEU	в	239	13.520	102.118	44.540	1.00	48.63	В	0
	MOTA	3696	N	GLN	в	240	14.634	101.487	46.358	1.00	45.31	В	N
	ATOM	3697	CA	GLN	В	240	13.445	101.629	47.179	1.00	49.67	В	С
	MOTA	3698	СВ	GLN	В	240	12.665	100.324	47.215	1.00	59.80	В	С
10	ATOM	3699	CG	GLN	в	240	12.343	99.778	45.852	1.00	60.88	В	С
	ATOM	3700	CD	GLN	в	240	11.360	98.630	45.901	1.00	62.99	В	С
	ATOM	3701	OE1	GLN	в	240	11.088	97.987	44.885	1.00	65.89	В	0
	ATOM	3702	NE2	GLN	в	240	10.811	98.371	47.083	1.00	63.64	В	N
15	ATOM	3703	C	GLN	В	240	13.808	102.031	48.586	1.00	53.12	В	С
	ATOM	3704	0	GLN	в	240	13.025	102.686	49.273	1.00	53.65	В	0
	ATOM	3705	N	GLY	в	241	15.004	101.638	49.006	1.00	39.31	В	N
	ATOM	3706	CA	GLY	в	241	15.473	101.939	50.341	1.00	44.03	В	С
20	ATOM	3707	C	GLY	В	241	16.956	101.650	50.385	1.00	47.78	В	С
	ATOM	3708	0	GLY	В	241	17.575	101.425	49.342	1.00	48.00	В	0
	ATOM	3709	N	THR	В	242	17.532	101.642	51.582	1.001	61.88	В	N
	ATOM	3710	CA	THR	в	242	18.963	101.406	51.738	1.001	63.49	В	С
25	ATOM	3711	CB	THR	В	242	19.576	102.426	52.727	1.001	.83.33	В	С
	MOTA	3712	CG1	THR	В	242	20.998	102.260	52.776	1.001	83.20	В	0
	MOTA	3713	CG2	THR	В	242	18.997	102.231	54.121	1.001	82.11	В	С
	MOTA	3714	C	THR	В	242	19.313	99.996	52.207	1.001	65.15	В	С
30	ATOM	3715	0	THR	В	242	20.330	99.793	52.868	1.001	67.66	В	0
	ATOM	3716	N	HIS	В	243	18.482	99.018	51.863	1.00	89.69	В	N
	ATOM	3717	CA	HIS	В	243	18.760	97.648	52.277	1.00	89.77	В	С
	ATOM	3718	CB	HIS	В	243	17.481	96.955	52.757	1.002	03.67	В	С
35	ATOM	3719	CG	HIS	В	243	17.208	97.134	54.219	1.002	03.67	В	С
	ATOM	3720	CD2	HIS	В	243	16.076	97.470	54.882	1.002	03.67	В	C
	ATOM	3721	ND1	HIS	в	243	18.169	96.927	55.185	1.002	03.67	В	N
	ATOM	3722	CE1	HIS	В	243	17.642	97.127	56.379	1.002	03.67	В	C
40	ATOM	3723	NE2	HIS	В	243	16.372	97.457	56.223	1.002	03.67	В	N
	ATOM	3724	С	HIS	В	243	19.417	96.805	51.193	1.00	89.14	В	С
	ATOM	3725	0	HIS	В	243	19.057	95.642	51.000	1.00	89.64	В	0
	ATOM	3726	N	TYR	В	244	20.382	97.387	50.487	1.00	61.14	В	N
45	ATOM	3727	CA	TYR	В	244	21.069	96.647	49.443	1.00	59.55	В	C
	ATOM	3728	CB	TYR	В	244	21.525	97.582	48.305	1.001	22.00	В	С
	ATOM	3729	CG	TYR	в	244	22.631	98.565	48.632	1.001	25.09	В	С
	MOTA	3730	CD1	TYR	в	244	23.928	98.135	48.871	1.001	26.93	В	С
50	ATOM	3731	CE1	TYR :	В :	244	24.943	99.035	49.147	1.001	28.51	В	С
	ATOM	3732	CD2	TYR !	в:	244	22.379	99.930	48.676	1.001	25.32	В	С
	ATOM	3 73 3	CE2	TYR :	в	244	23.386	100.838	48.949	1.001	27.02	В	C
	ATOM	3734	CZ	TYR I	в :	244	24.665	100.385	49.185	1.001	28.42	В	С
55	ATOM	3735	OH	TYR 1	в :	244	25.666	101.285	49.472	1.001	30.04	В	0

	ATOM	3736	C	TYR	B 244	22.246	95.889	50.035	1.00	55.65	В	С
	ATOM	3737	0	TYR	B 244	22.944	96.392	50.916	1.00	55.68	В	0
5	ATOM	3738	N	SER	B 245	22.439	94.659	49.569	1.00	58.50	В	N
	ATOM	3739	CA	SER	B 245	23.533	93.822	50.039	1.00	53.69	В	С
	ATOM	3740	СВ	SER	B 245	22.983	92.555	50.684	1.00	89.45	В	С
	ATOM	3741	OG	SER	B 245	24.037	91.766	51.203	1.00	90.88	В	0
10	ATOM	3742	С	SER	B 245	24.437	93.446	48.873	1.00	50.65	В	С
	ATOM	3743	0	SER	B 245	24.854	94.292	48.092	1.00	52.58	В	0
	ATOM	3744	N	VAL	B 246	24.741	92.166	48.760	1.00	51.19	В	N
	ATOM	3745	CA	VAL	B 246	25.581	91.695	47.680	1.00	47.92	В	С
15	ATOM	3746	СВ	VAL	B 246	26.648	90.724	48.200	1.00	74.56	В	С
	ATOM	3747	CG1	VAL	B 246	27.564	90.276	47.056	1.00	72.81	В	С
	ATOM	3748	CG2	VAL	B 246	27.435	91.401	49.317	1.00	74.67	В	С
	ATOM	3749	С	VAL	B 246	24.685	90.985	46.692	1.00	44.20	В	С
20	ATOM	3750	0	VAL	B 246	25.127	90.545	45.644	1.00	43.24	В	0
	MOTA	3751	N	GLN	B 247	23.415	90.861	47.036	1.00	46.46	В	N
	ATOM	3752	CA	GLN	B 247	22.493	90.205	46.135	1.00	41.48	В	С
	ATOM	3753	СВ	GLN	B 247	21.219	89.785	46.873	1.00	46.49	В	С
25	ATOM	3754	CG	GLN	B 247	21.419	88.656	47.886	1.00	49.32	В	С
	ATOM	3755	CD	GLN	B 247	22.190	87.469	47.317	1.00	51.40	В	С
	ATOM	3756			B 247	21.946	87.037	46.189	1.00	53.90	В	0
	MOTA	3757			B 247	23.120	86.933	48.104	1.00	52.33	В	N
30	ATOM	3758	С	GLN	B 247	22.167	91.175	45.005	1.00	39.91	В	С
	ATOM	3759	0	GLN	B 247	21.837	90.765	43.888	1.00	40.09	В	0
	MOTA	3760	N		B 248	22.284	92.468	45.295	1.00	41.90	В	N
	ATOM	3761	CA		B 248	22.002	93.479	44.295	1.00	40.15	В	С
35	ATOM	3762	СВ		B 248	22.203	94.864	44.882		40.73	В	С
	MOTA	3763	OG		B 248	23.582	95.159	44.937		40.03	В	0
	ATOM	3764	С		B 248	22.940	93.282	43.103		38.24	В	С
40	ATOM	3765	0		В 248	22.637	93.705	41.991		38.31	В	0
40	MOTA	3766	N		В 249	24.080	92.639	43.338		26.45	В	N
	ATOM	3767	CA		B 249	25.034	92.396	42.268		24.94	В	С
	ATOM	3768	СВ		B 249	26.458	92.215	42.808		43.77	В	C
45	MOTA	3769	CG		B 249	27.126	93.530	43.171		45.13	В	С
	MOTA	3770			B 249	26.915	94.531	42.459		45.87	В	0
	ATOM	3771			B 249	27.883	93.557	44.159		46.43	В	0
	ATOM	3772	C		В 249	24.634	91.169	41.469		23.91	В	С
50	ATOM	3773	0		B 249	24.981	91.052	40.292		24.76	В	0
	ATOM	3774	N		B 250	23.914	90.240	42.089		40.28	В	N
	ATOM	3775	CA		B 250	23.493	89.069	41.334		37.47	В	С
	ATOM	3776	CB		B 250	22.773	88.009	42.200		42.48	В	С
55	ATOM	3777			B 250	22.363	86.845	41.317		42.60	В	С
	ATOM	3778	CG1	TPE	В 250	23.692	87.488	43.321	1.00	42.48	В	С

	MOTA	3779	CDI	ILE	B 250	24.829	86.612	42.856	1.00 42.48	В	С
	ATOM	3780	С	ILE	B 250	22.516	89.583	40.283	1.00 37.95	В	С
5	MOTA	3781	0	ILE	В 250	22.603	89.200	39.120	1.00 38.10	В	0
	MOTA	3782	N	TRP	B 251	21.604	90.467	40.699	1.00 28.95	В	N
	MOTA	3783	CA	TRP	B 251	20.609	91.065	39.793	1.00 28.93	В	С
	ATOM	3784	CB	TRP	B 251	19.698	92.058	40.558	1.00 29.90	В	С
10	ATOM	3785	CG	TRP	в 251	18.800	92.916	39.677	1.00 29.90	В	С
	ATOM	3786	CD2	TRP	в 251	17.422	92.680	39.350	1.00 29.90	В	С
	ATOM	3787	CE2	TRP	В 251	17.026	93.690	38.441	1.00 30.30	В	С
	ATOM	3788	CE3	TRP	В 251	16.485	91,709	39.730	1.00 29.90	В	С
15	MOTA	3789	CD1	TRP	в 251	19.163	94.034	38.978	1.00 29.90	В	С
	ATOM	3790	NE1	TRP	в 251	18.106	94.503	38.233	1.00 29.90	В	N
	ATOM	3791	CZ2	TRP	B 251	15.743	93.757	37.908	1.00 30.46	В	С
	MOTA	3792	CZ3	TRP	B 251	15.208	91.775	39.198	1.00 30.26	В	С
20	MOTA	3793	CH2	TRP	B 251	14.849	92.795	38.292	1.00 31.40	В	С
	MOTA	3794	С	TRP :	3 251	21.309	91.764	38.629	1.00 28.93	В	С
	ATOM	3795	0	TRP	B 251	21.088	91.431	37.464	1.00 28.97	В	0
	ATOM	3796	N	SER :	3 252	22.162	92.727	38.944	1.00 31.12	В	N
25	MOTA	3797	CA	SER :	3 252	22.872	93.439	37.902	1.00 32.38	В .	С
	MOTA	3798	CB	SER :	3 252	24.006	94.274	38.494	1.00 42.77	В	С
	ATOM	3799	OG	SER :	3 252	23.486	95.337	39.274	1.00 46.97	В	0
	ATOM	3800	С	SER :	3 252	23.429	92.409	36.947	1.00 32.02	В	С
30	MOTA	3801	0	SER I	3 252	23.238	92.513	35.738	1.00 33.80	В	0
	MOTA	3802	N	MET I	3 253	24.101	91.398	37.492	1.00 9.88	~ в	N
	MOTA	3803	CA	MET I	3 253	24.679	90.365	36.653	1.00 11.08	В	С
	MOTA	3804	CB	MET I	3 253	25.423	89.340	37.482	1.00 29.48	В	C
35	MOTA	3805	CG	MET 1	253	25.720	88.077	36.693	1.00 31.23	В	C
	ATOM	3806	SD	MET 1	3 253	25.889	86.664	37.762	1.00 32.78	В	s
	MOTA	3807	CE	MET 1	253	27.547	86.927	38.174	1.00 32.81	В	С
	MOTA	3808	С	MET I	253	23.615	89.645	35.872	1.00 10.69	В	С
40	MOTA	3809	0	MET I	253	23.785	89.392	34.686	1.00 11.44	В	0
	MOTA	3810	N	GLY 1	3 254	22.523	89.311	36.555	1.00 36.83	В	N
	MOTA	3811	CA	GLY I	3 254	21.422	88.596	35.934	1.00 36.15	В	С
	MOTA	3812	С	GLY 1	254	20.834	89.287	34.721	1.00 36.15	В	С
45	MOTA	3813	0	GLY I	254	20.505	88.638	33.729	1.00 36.21	В	0
	MOTA	3814	N	LEU 1	255	20.695	90.604	34.798	1.00 23.53	В	N
	MOTA	3815	CA	LEU I	255	20.156	91.368	33.689	1.00 23.53	В	С
	MOTA	3816	СВ	LEU I	255	19.820	92.782	34.151	1.00 32.07	В	С
50	MOTA	3817	CG	LEU I	255	18.804	93.574	33.328	1.00 31.25	В	С
	ATOM	3818	CD1	LEU I	255	17.401	93.049	33.587	1.00 31.51	В	С
	MOTA	3819	CD2	LEU I	255	18.906	95.023	33.703	1.00 31.62	В	C
	MOTA	3820	С	LEU F	255	21.172	91.434	32.547	1.00 25.76	В	С
55	ATOM	3821	0	LEU I	255	20.850	91.121	31.406	1.00 23.53	В	0

	ATOM	3822	N	SER	В	256	22.393	91.851	32.868	1.00	36.71	В	N
	ATOM	3823	CA	SER	В	256	23.482	91.962	31.900	1.00	36.39	В	С
5	MOTA	3824	CB	SER	в	256	24.804	92.204	32.642	1.00	27.70	В	С
	MOTA	3825	OG	SER	В	256	24.690	93.187	33.656	1.00	28.79	В	0
	MOTA	3826	С	SER	В	256	23.620	90.694	31.032	1.00	36.53	В	С
	ATOM	3827	0	SER	В	256	23.873	90.771	29.818	1.00	35.75	В	0
10	ATOM	3828	N	LEU	В	257	23.478	89.528	31.661	1.00	23.61	В	N
	MOTA	3829	CA	LEU	В	257	23.575	88.270	30.938	1.00	23.68	В	С
	MOTA	3830	СВ	LEU	В	257	23.491	87.080	31.905	1.00	14.08	В	С
	ATOM	3831	CG	LEU	В	257	24.755	86.282	32.266	1.00	13.54	В	С
15	ATOM	3832	CD1	LEU	В	257	26.009	87.116	32.040	1.00	13.01	В	С
	ATOM	3833	CD2	LEU	В	257	24.635	85.820	33.714	1.00	15.29	В	С
	ATOM	3834	C	LEU	В	257	22.441	88.204	29.932	1.00	25.85	В	С
	ATOM	3835	0	LEU	В	257	22.664	87.853	28.781	1.00	26.72	В	0
20	ATOM	3836	N	VAL	В	258	21.230	88.548	30.368	1.00	34.52	В	N
	MOTA	3837	CA	VAL	В	258	20.061	88.543	29.490	1.00	34.69	В	С
	MOTA	3838	CB	VAL	В	258	18.795	88.913	30.258	1.00	52.73	В	С
	ATOM	3839	CG1	VAL	В	258	17.591	88.873	29.340	1.00	53.02	В	С
25	ATOM	3840	CG2	VAL	В	258	18.606	87.951	31.401	1.00	51.68	В	С
	ATOM	3841	С	VAL	В	258	20.224	89.530	28.338	1.00	35.81	В	С
	ATOM	3842	0	VAL	В	258	19.761	89.291	27.226	1.00	36.14	В	0
	ATOM	3843	N	GLU	В	259	20.881	90.647	28.607	1.00	38.67	В	N
30	ATOM	3844	CA	GLU	В	259	21.108	91.651	27.584	1.00	37.69	В	С
	ATOM	3845	CB	GLU	В	259	21.786	92.869	28.197	1.00	52.24	В	C
	MOTA	3846	CG	GLU	В	259	22.162	93.953	27.212	1.00	52.61	В	С
	ATOM	3847	CD	GLU	В	259	22,296	95.289	27.896	1.00	51.00	В	С
35	ATOM	3848	OE1	GLU	В	259	22.667	96.277	27.238	1.00	49.46	В	0
	ATOM	3849	OE2	GLU	В	259	22.019	95.344	29.108	1.00	49.86	В	0
	ATOM	3850	С	GLU	В	259	21.987	91.068	26.497	1.00	37.97	В	С
	ATOM	3851	0	GLU			21.573	90.970	25.346	1.00	35.98	В	0
40	ATOM	3852	N	LEU	В	260	23.203	90.679	26.871	1.00	71.01	В	N
	ATOM	3853	CA	LEU	В	260	24.158	90.090	25.932	1.00	71.10	В	С
	MOTA	3854	CB	LEU			25.440	89.714	26.678	1.00	37.85	В	С
45	MOTA	3855	CG	LEU			26.140	90.842	27.446	1.00	39.29	В	С
40	ATOM	3856		LEU			26.972	90.266	28.569	1.00	39.08	В	С
	ATOM	3857		LEU			27.016	91.648	26.496	1.00	38.24	В	С
	ATOM	3858	С	LEU			23.562	88.849	25.261	1.00	70.82	В	С
50	ATOM	3859	0	LEU	В.	260	24.029	88.409	24.221	1.00	69.07	В	0
	MOTA	3860	N	ALA			22.520	88.298	25.869	1.00	30.15	В	N
	ATOM	3861	CA	ALA			21.843	87.119	25.358	1.00	30.17	В	С
	ATOM	3862	CB	ALA			21.111	86.424	26.491	1.00	4.67	В	С
55	ATOM	3863	С	ALA :				87.481	24.261	1.00	29.14	В	С
	ATOM	3864	0	ALA :	в 2	261	20.770	86.809	23.234	1.00	29.98	В	0

	ATOM	3865	N	VAL E	262	20.079	88.538	24.494	1.00 41.21	В	N
	ATOM	3866	CA	VAL E	262	19.081	88.988	23.531	1.00 41.39	В	C.
5	ATOM	3867	CB	VAL E	262	17.682	89.107	24.165	1.00 26.46	В	С
	ATOM	3868	CG1	VAL E	262	16.628	88.909	23.095	1.00 26.35	В	С
	ATOM	3869	CG2	VAL B	262	17.511	88.127	25.298	1.00 24.48	В	С
	ATOM	3870	С	VAL B	262	19.402	90.364	22.967	1.00 42.96	В	С
10	ATOM	3871	0	VAL B	262	18.691	91.312	23.260	1.00 40.83	В	0
	ATOM	3872	N	GLY B	263	20.463	90.477	22.176	1.00 80.74	В	N
	ATOM	3873	CA	GLY B	263	20.834	91.752	21.573	1.00 82.13	В	С
	ATOM	3874	С	GLY B	263	20.818	93.034	22.402	1.00 83.22	В	С
15	ATOM	3875	0	GLY B	263	21.827	93.735	22.473	1.00 84.46	В	0
	ATOM	3876	N	ARG B	264	19.686	93.358	23.022	1.00 74.74	В	N
	ATOM	3877	CA	ARG B	264	19.569	94.582	23.820	1.00 75.63	В	С
	ATOM	3878	CB	ARG B	264	18.594	95.541	23.132	1.00 89.01	В	С
20	MOTA	3879	CG	ARG B	264	17.480	94.831	22.369	1.00 93.98	В	С
	ATOM	3880	CD	ARG B	264	16.653	93.947	23.281	1.00 97.84	В	С
	ATOM	3881	NE	ARG B	264	15.763	94.734	24.124	1.00101.55	В	N
	ATOM	3882	CZ	ARG B	264	14.686	95.366	23.674	1.00104.80	В	С
25	ATOM	3883	NH1	ARG B	264	14.369	95.299	22.386	1.00106.89	В	N
	MOTA	3884	NH2	ARG B	264	13.925	96.061	24.510	1.00106.81	В	N
	ATOM	3885	С	ARG B	264	19.163	94.417	25.293	1.00 76.04	В	С
	ATOM	3886	0	ARG B	264	19.060	93.302	25.808	1.00 74.80	В	0
30	ATOM	3887	N	TYR B	265	18.930	95.554	25.950	1.00 12.23	В	N
	ATOM	3888	CA	TYR B	265	18.543	95.628	27.360	1.00 11.72	В	С
	ATOM	3889	CB	TYR B	265	18.812	97.062	27.862	1.00 30.64	В	С
	ATOM	3890	CG	TYR B	265	18.411	97.430	29.280	1.00 29.22	В	С
35	ATOM	3891	CD1	TYR B	265	19.212	97.123	30.383	1.00 29.05	В	С
	ATOM	3892	CE1			18.847	97.542	31.669	1.00 29.36	В	С
	ATOM	3893		TYR B		17.247	98.148	29.507	1.00 28.66	В	С
	ATOM	3894	CE2			16.881	98.564	30.773	1.00 28.08	В	С
40	ATOM	3895	CZ	TYR B		17.670	98.272	31.844	1.00 28.00	В	С
	ATOM	3896	OH	TYR B		17.249	98.790	33.044	1.00 26.33	В	0
	ATOM	3897	С	TYR B		17.078	95.212	27.538	1.00 14.87	В	С
	ATOM	3898	0	TYR B	265	16.166	95.816	26.981	1.00 15.19	В	0
45	ATOM	3899	N	PRO B		16.861	94.146	28.321	1.00 46.31	В	N
	ATOM	3900	CD	PRO B		18.010	93.599	29.051	1.00 59.76	В	С
	ATOM	3901	CA	PRO B		15.645	93.439	28.732	1.00 48.14	В	С
	MOTA	3902	CB	PRO B	266	16.147	92.484	29.817	1.00 62.25	В	С
50	ATOM	3903	CG	PRO B		17.363	93.155	30.326	1.00 60.79	В	С
	ATOM	3904	С	PRO B	266	14.412	94.207	29.181	1.00 53.79	В	C
	ATOM	3905	0	PRO B		13.468	94.332	28.417	1.00 55.38	В	0
	ATOM	3906	N		267	14.399	94.695	30.415	1.00 84.19	В	N
55	ATOM	3907	CA	ILE B	267	13.230	95.409	30.927	1.00 85.33	В	С

	ATOM	3908	CB	ILE	B 267	13.628	96.575	31.852	1.00 64.71	В	С
_	ATOM	3909	CG2	! ILE	B 267	12.404	97.437	32.130	1.00 63.60	В	C.
5	MOTA	3910	CG1	ILE	B 267	14.244	96.048	33.151	1.00 63.57	В	c
	ATOM	3911	CD1	ILE	B 267	15.690	95.698	33.037	1.00 62.63	В	С
	MOTA	3912	C	ILE	B 267	12.277	95.963	29.855	1.00 90.38	В	С
	ATOM	3913	0	ILE	B 267	11.138	95.501	29.717	1.00 90.46	В	0
10	ATOM	3914	N	PRO	B 268	12.728	96.965	29.085	1.00 53.14	В	N
	ATOM	3915	CD	PRO :	B 268	14.052	97.609	29.123	1.00 37.36	В	С
	ATOM	3916	CA	PRO :	B 268	11.883	97.556	28.035	1.00 52.48	В	С
	ATOM	3917	CB	PRO :	B 268	12.786	98.633	27.439	1.00 40.91	В	С
15	ATOM	3918	CG	PRO I	B 268	13.737	98.965	28,576	1.00 38.83	В	С
	ATOM	3919	С	PRO 1	B 268	11.495	96.488	27.011	1.00 57.30	В	С
	ATOM	3920	0	PRO 1	3 268	12.146	95.452	26.927	1.00 57.14	В	0
	ATOM	3921	N	PRO I	3 269	10.476	96.755	26.178	1.00174.81	В	N
20	ATOM	3922	CD	PRO I	3 269	10.221	98.118	25.674	1.00105.34	В	С
	ATOM	3923	CA	PRO I	3 269	10.044	95.770	25.182	1.00173.67	В	С
	ATOM	3924	CB	PRO I	269	10.266	96.513	23.877	1.00107.01	В	С
	ATOM	3925	CG	PRO E	3 269	9.739	97.875	24.230	1.00106.77	В	С
25	ATOM	3926	С	PRO I	3 269	10.775	94.429	25.245	1.00176.77	В	C
	ATOM	3927	0	PRO E	269	11.619	94.131	24.399	1.00177.52	В	0
	ATOM	3928	N	PRO E	270	10.466	93.607	26.267	1.00 67.66	В	N
	ATOM	3929	CD	PRO E	3 270	9.648	93.877	27.467	1.00 53.56	В	С
30	ATOM	3930	CA	PRO E	270	11.124	92.310	26.391	1.00 65.29	В	С
	ATOM	3931	CB	PRO E	270	10.509	91.743	27.676	1.00 54.95	В	С
	ATOM	3932	CG	PRO E	270	10.276	92.968	28.507	1.00 54.76	В	С
	ATOM	3933	С	PRO E	270	10.904	91.405	25.183	1.00 65.93	В	C
35	ATOM	3934	0	PRO E	270	11.716	91.375	24.255	1.00 64.07	В	0
	ATOM	3935	N	ASP E	271	9.785	90.688	25.208	1.00 66.78	В	N
	ATOM	3936	CA	ASP E	271	9.421	89.740	24.160	1.00 65.63	В	С
	ATOM	3937	CB	ASP E	271	8.358	88.791	24.701	1.00120.82	В	С
40	ATOM	3938	CG	ASP E	271	8.718	88.246	26.069	1.00121.57	В	С
	ATOM	3939	OD1	ASP E	271	7.874	87.548	26.674	1.00121.31	В	0
	ATOM	3940		ASP E	271	9.847	88.518	26.537	1.00122.22	В	0
	ATOM	3941	С	ASP B	271	8.930	90.375	22.864	1.00 66.41	В	C
45	ATOM	3942	0	ASP B	271	9.365	91.468	22.485	1.00 65.99	В	0
	ATOM	3943	N	ALA B	272	8.032	89.669	22.183	1.00100.50	В	N
	ATOM	3944	CA	ALA B	272	7.465	90.144	20.924	1.00100.34	В	C
	MOTA	3945	CB	ALA B	272	6.669	91.430	21.159	1.00148.84	В	С
50	ATOM	3946	С	ALA B	272	. 8.556	90.378	19.879	1.00101.41	В	С
	ATOM	3947	0	ALA B	272	9.101	91.482	19.760	1.00101.59	В	0
	MOTA	3948	N	LYS B	273	8.862	89.328	19.121	1.00 80.04	В	N
	MOTA	3949	CA	LYS B	273	9.893	89.393	18.094	1.00 81.18	В	С
55	ATOM	3950	CB	LYS B	273	9.985	88.059	17.346	1.00 72.72	В	С

	ATOM	3951	CG	LYS B 273	9.996 86.818	18.230	1.00 72.43	В	С
	ATOM	3952	CD	LYS B 273	10.043 85.565	17.369	1.00 73.66	В	C
5	MOTA	3953	CE	LYS B 273	9.552 84.314	18.109	1.00 75.67	В	С
	ATOM	3954	NZ	LYS B 273	10.457 83.820	19.191	1.00 76.42	В	N
	ATOM	3955	С	LYS B 273	9.597 90.509	17.103	1.00 81.16	В	C
	ATOM	3956	0	LYS B 273	10.470 90.912	16.335	1.00 80.63	В	0
10	ATOM	3957	N	ASP B 311	10.335 99.628	18.017	1.00106.32	В	N
	ATOM	3958	CA	ASP B 311	10.523 98.186	17.913	1.00107.34	В	С
	ATOM	3959	CB	ASP B 311	9.816 97.653	16.656	1.00186.18	В	С
	MOTA	3960	CG	ASP B 311	10.392 98.223	15.365	1.00185.92	В	С
15	ATOM	3961	OD1	ASP B 311	9.783 98.006	14.293	1.00185.00	В	0
	ATOM	3962	OD2	ASP B 311	11.453 98.879	15.415	1.00185.85	В	0
	MOTA	3963	С	ASP B 311	12.008 97.824	17.877	1.00107.36	В	c
	ATOM	3964	0	ASP B 311	12.673 97.766	18.914	1.00107.37	В	0
20	ATOM	3965	N	SER B 312	12.426 101.290	15.047	1.00197.00	В	N
	MOTA	3966	CA	SER B 312	12.174 101.436	16.475	1.00195.63	В	С
	ATOM	3967	CB	SER B 312	13.495 101.646	17.224	1.00117.65	В	С
	ATOM	3968	CG	SER B 312	14.372 100.547	17.044	1.00117.53	В	0
25	ATOM	3969	С	SER B 312	11.233 102.606	16.758	1.00194.49	В	С
	ATOM	3970	0	SER B 312	11.023 103.469	15.905	1.00193.65	В	0
	ATOM	3971	N	ARG B 313	10.662 102.622	17.958	1.00203.67	В	N
	ATOM	3972	CA	ARG B 313	9.758 103.691	18.362	1.00202.73	В	С
30	ATOM	3973	CB	ARG B 313	8.295 103.261	18.178	1.00154.97	В	¢
	ATOM	3974	CG	ARG B 313	7.856 102.024	18.961	1.00155.74	В	С
	ATOM	3975	CD	ARG B 313	7.036 102.396	20.193	1.00156.10	В	C
	ATOM	3976	NE	ARG B 313	7.872 102.652	21.361	1.00157.28	В	N
35	ATOM	3977	CZ	ARG B 313	8.479 101.701	22.062	1.00157.78	В	C
55	ATOM	3978	NH1	ARG B 313	8.338 100.429	21.717	1.00157.11	В	N
	ATOM	3979	NH2	ARG B 313	9.238 102.017	23.101	1.00157.69	В	N
	ATOM	3980	С	ARG B 313	10.030 104.082	19.810	1.00199.44	В	С
40	ATOM	3981	0	ARG B 313	10.466 103.262	20.617	1.00198.75	В	0
40	ATOM	3982	N	PRO B 314	9.795 105.357	20.147	1.00193.99	В	N
	ATOM	3983	CD	PRO B 314	9.554 106.423	19.161	1.00149.20	В	С
	ATOM	3984	CA	PRO B 314	10.000 105.925	21.486	1.00190.52	В	С
45	ATOM	3985	CB	PRO B 314	9.887 107.432	21.244	1.00147.46	В	С
45	ATOM	3986	CG	PRO B 314	10.263 107.585	19.792	1.00148.35	В	C
	ATOM	3987	C	PRO B 314	9.028 105.455	22.573	1.00186.55	В	С
	ATOM	3988	0	PRO B 314	7.892 105.072	22.286	1.00185.60	В	0
50	ATOM	3989	N	ALA B 315	9.495 105.504	23.819	1.00 96.94	В	N
50	ATOM	3990	CA	ALA B 315	8.703 105.121	24.990	1.00 92.71	В	С
	ATOM	3991	СВ	ALA B 315	7.886 103.855	24.709	1.00 98.38	В	С
	MOTA	3992	C	ALA B 315	9.611 104.900	26.194	1.00 89.91	В	С
55	ATOM	3993	0	ALA B 315	10.779 105.305	26.183	1.00 90.08	В	0
55									

	MOTA	3994	N	MET I	3 3 1 6	9.066 104.2	244 27.217	1.00 88.35	В	N
	ATOM	3995	CA	MET I	316	9.796 103.9	72 28.448	1.00 83.95	В	C.
5	ATOM	3996	CB	MET I	316	10.599 102.6	578 28.327	1.00106.05	В	С
	ATOM	3997	CG	MET I	316	9.829 101.4	152 28.788	1.00100.73	В	С
	MOTA	3998	SD	MET E	316	9.662 101.3	358 30.595	1.00 97.17	В	s
	MOTA	3999	CE	MET I	316	9.558 99.5	30.844	1.00 98.91	В	С
10	ATOM	4000	C	MET E	316	10.711 105.1	L28 28.794	1.00 82.47	В	С
	ATOM	4001	0	MET E	316	11.855 105.1	198 28.337	1.00 82.89	В	0
	ATOM	4002	N	ALA E	317	10.185 106.0	49 29.592	1.00 75.04	В	N
	MOTA	4003	CA	ALA E	317	10.948 107.2	206 30.006	1.00 72.83	В	С
15	ATOM	4004	CB	ALA E	317	10.033 108.2	75 30.541	1.00 59.22	В	С
	ATON	4005	C	ALA B	317	11.924 106.7	74 31.076	1.00 70.40	В	С
	ATOM	4006	0	ALA E	317	12.931 106.1	42 30.773	1.00 70.17	В	0
	ATOM	4007	N	ILE B	318	11.634 107.1	.23 32.327	1.00 54.47	В	N
20	ATOM	4008	CA	ILE B	318	12.518 106.7	86 33.441	1.00 55.06	В	С
	MOTA	4009	CB	ILE B	318	13.374 107.9	82 33.871	1.00 54.35	В	С
	ATOM	4010	CG2	ILE B	318	14.095 107.6	66 35.172	1.00 54.41	В	С
	ATOM	4011	CG1	ILE B	318	14.344 108.3	38 32.752	1.00 55.21	В	С
25	ATOM	4012	CD1	ILE B	318	13.637 108.7	41 31.467	1.00 57.32	В	С
	MOTA	4013	С	ILE B	318	11.760 106.3	31 34.663	1.00 54.22	В	С
	ATOM	4014	0	ILE B	318	12.074 105.3	05 35.257	1.00 54.02	В	0
	ATOM	4015	N	PHE B	319	10.778 107.1	19 35.065	1.00 68.33	В	N
30	ATOM	4016	CA	PHE B	319	9.991 106.7	52 36.220	1.00 66.89	В	С
	ATOM	4017	СВ	PHE B	319	8.880 107.7	69 36.470	1.00 48.73	В	С
	ATOM	4018	CG	PHE B		8.105 107.5	22 37.729	1.00 46.03	В	С
	ATOM	4019	CD1	PHE B	319	6.731 107.6	34 37.743	1.00 45.39	В	С
35	ATOM	4020	CD2	PHE B	319	8.759 107.2	08 38.907	1.00 46.37	В	С
	ATOM	4021	CE1	PHE B	319	6.023 107.4	39 38.913	1.00 45.40	В	С
	MOTA	4022		PHE B	319	8.054 107.0	13 40.081	1.00 45.72	В	C
	ATOM	4023	CZ	PHE B	319	6.685 107.1	28 40.084	1.00 44.55	В	С
40	MOTA	4024	С	PHE B	319	9.369 105.4	22 35.871	1.00 65.65	В	С
	MOTA	4025	0	PHE B	319	9.395 104.4	97 36.678	1.00 64.02	В	0
	MOTA	4026	N	GLU B	320	8.822 105.3	43 34.655	1.00 52.00	В	N
	MOTA	4027	CA	GLU B	320	8.162 104.1	35 34.151	1.00 53.56	В	С
45	ATOM	4028	CB	GLU B	320	7.652 104.3	61 32.720	1.00104.89	В	С
***	ATOM	4029	CG	GLU B	320	6.465 103.4	80 32.334	1.00109.29	В	С
	MOTA	4030	CD	GLU B	320	6.592 102.8	83 30.945	1.00111.61	В	С
	MOTA	4031	OE1	GLU B	320	6.955 103.6	23 30.007	1.00113.18	В	0
50	MOTA	4032	OE2	GLU B	320	6.319 101.6	74 30.794	1.00111.83	В	0
50	ATOM	4033	С	GLU B	320	9.160 102.98	89 34.161	1.00 52.52	В	С
	MOTA	4034	0	GLU B	320	8.902 101.92	20 34.719	1.00 53.17	В	0
	MOTA	4035	N	LEU B		10.303 103.22		1.00 50.82	В	N
	ATOM	4036	CA	LEU B	321	11.356 102.23	32 33.489	1.00 49.87	В	С

	ATOM	4037	СВ	LEI	В	321	12 576	102.807	32.794	1 00	21 05	_	
	ATOM	4038	CG			321		102.320	33.385			В	С
5	ATOM	4039		1 LEU				102.320	32.282		32.12	В	C
	ATOM	4040		2 LEU				103.315	34.424		32.19	В	C
	ATOM	4041	c			321		101.827	34.919		31.49	В	C
	ATOM	4042	0			321		100.649	35.212		47.94	В	С
10	ATOM	4043	N			322		102.811			44.93	В	0
	ATOM	4044	CA			322		102.565	35.808		34.81	В	N
	ATOM	4045	СВ			322		102.565	37.218 37.920		35.00	В -	С
	ATOM	4046	CG			322		104.095	38.543		24.26	В	c
15	ATOM	4047		LEU				104.057	37.499		25.22	В	С
	ATOM	4048		LEU				105.447	39.239			В	С
	ATOM	4049	C			322		101.885	37.889		28.16	В	С
	MOTA	4050	0			322		101.056			35.99	В	С
20	ATOM	4051	N			323			38.785		33.40	В	0
	ATOM	4052	CA			323		102.239	37.453 38.005		75.87	В	N
	ATOM	4053	CB	ASP				102.395	37.524		76.74	В	С
	ATOM	4054	CG	ASP				101.705	37.941		80.08	В	C
25	ATOM	4055		ASP				101.757	39.136			В	c
	ATOM	4056		ASP				101.105	37.069		84.64	В	0
	ATOM	4057	c	ASP				100.210	37.529		77.01	В	o c
	ATOM	4058	0	ASP			8.035	99.303	38.297		77.75	B B	
30	ATOM	4059	N	TYR				100.008	36.249		69.52	В	O
	ATOM	4060	CA	TYR			8.595	98.671	35.702		69.52	В	C
	ATOM	4061	СВ	TYR			9.154	98.633	34.282		74.68	В	c
	ATOM	4062	CG	TYR			8.896	97.308	33.600		76.69	В	c
35	ATOM	4063	CD1	TYR			7.898	97.176	32.645		76.94	В	c
	ATOM	4064	CE1	TYR	в	324	7.622	95.957	32.071		76.54	В	c
	ATOM	4065	CD2	TYR	в	324	9.612	96.176	33.958		77.28	В	c
	ATOM	4066	CE2	TYR	в	324	9.341	94.954	33.393		77.93	В	c
40	ATOM	4067	CZ	TYR	в	324	8.345	94.847	32.451		77.26	В	c
	ATOM	4068	ОН	TYR	в	324	8.070	93.615	31.899		78.90	В	0
	ATOM	4069	С	TYR	в	324	9.470	97.838	36.605		69.42	В	c
	ATOM	4070	0	TYR	В	324	8.991	96.977	37.339		68.09	В	0
45	ATOM	4071	N	ILE	В	325	10.761	98.136	36.553		41.08	В	N
	ATOM	4072	CA	ILE	В	325	11.768	97.449	37.340		37.89	В	c
	ATOM	4073	СВ	ILE	В	325	13.047	98.284	37.391		15.26	В	c
	ATOM	4074	CG2	ILE	В	325	13.963	97.786	38.477		17.35	В	С
50	ATOM	4075	CG1	ILE	в	325	13.729	98.251	36.034		14.03	В	c
	ATOM	4076	CD1	ILE	В	325	14.811	99.290	35.902		13.82	В	c
	ATOM	4077	С	ILE	В	325	11.382	97.078	38.769		39.20	В	c
	ATOM	4078	0	ILE	В	325	11.278	95.893	39.088		39.63	В	0
55	ATOM	4079	N	VAL	в	326	11.153	98.078	39.622		57.64	В	N
												-	

	MOTA	4080	CA	VAL	B 326	10.846	97.810	41.031	1.00 57.87	В	С
	ATOM	4081	CB	VAL	B 326	10.843	99.099	41.910	1.00 39.98	В	С
5	ATOM	4082	CG1	VAL	B 326	11.859	100.111	41.395	1.00 38.18	В	С
	ATOM	4083	CG2	VAL	326	9.455	99.668	41.976	1.00 40.71	В	С
	MOTA	4084	С	VAL	B 326	9.557	97.075	41.338	1.00 60.66	В	С
	ATOM	4085	0	VAL 1	326	9.293	96.778	42.503	1.00 61.79	В	0
10	MOTA	4086	N	ASN I	3 327	8.750	96.767	40.329	1.00 52.16	В	N
	ATOM	4087	CA	ASN I	3 3 2 7	7.514	96.068	40.641	1.00 52.86	В	С
	ATOM	4088	СВ	ASN I	3 327	6.649	96.937	41.553	1.00 53.39	В	С
	ATOM	4089	CG	ASN I	327	6.403	98.298	40.973	1.00 57.15	В	С
15	ATOM	4090	OD1	ASN E	3 327	6.163	98.434	39.773	1.00 57.98	В	0
	ATOM	4091	ND2	ASN E	327	6.455	99.320	41.818	1.00 56.60	В	N
	MOTA	4092	С	ASN E	3 3 2 7	6.611	95.522	39.550	1.00 52.13	В	С
	ATOM	4093	0	ASN E	3 327	5.400	95.619	39.701	1.00 52.24	В	0
20	ATOM	4094	N	GLU E	328	7.162	94.956	38.476	1.00 62.44	В	N
	ATOM	4095	CA	GLU E	328	6.303	94.365	37.451	1.00 61.82	В	С
	ATOM	4096	СВ	GLU E	328	5.025	95.174	37.279	1.00189.08	В	С
	ATOM	4097	CG	GLU F	328	3.965	94.448	36.480	1.00189.15	В	C
25	MOTA	4098	CD	GLU E	328	3.102	95.391	35.679	1.00189.52	В	C
	MOTA	4099	OE1	GLU E	328	2.632	96.396	36.250	1.00188.49	В	0
	ATOM	4100	OE2	GLU E	328	2.892	95.125	34.477	1.00192.55	В	0
	ATOM	4101	С	GLU E	328	6.848	94.118	36.052	1.00 61.66	В	С
30	MOTA	4102	0	GLU E	328	6.553	94.903	35.150	1.00 61.80	В	0
	ATOM	4103	N	PRO E	329	7.655	93.067	35.854	1.00 64.88	В	N
	ATOM	4104	CD	PRO E	329	7.161	92.472	34.587	1.00 27.73	В	С
	MOTA	4105	CA	PRO B	329	8.256	91.984	36.629	1.00 67.10	В	С
35	MOTA	4106	CB	PRO B		7.270	90.854	36.423	1.00 28.60	В	С
	ATOM	4107	CG	PRO E	329	6.985	90.961	34.946	1.00 28.32	В	С
	MOTA	4108	С	PRO B		9.611	91.733	35.934	1.00 67.64	В	С
	MOTA	4109	0	PRO B		9.921	92.379	34.928	1.00 66.60	В	0
40	MOTA	4110	N	PRO B		10.416	90.780	36.430	1.00 35.83	В	N
	ATOM	4111	CD	PRO B		10.085	89.806	37.481	1.00 54.51	В	С
	ATOM	4112	CA	PRO B		11.727	90.478	35.838	1.00 38.95	В	С
	MOTA	4113	CB	PRO B		12.263	89.383	36.751	1.00 55.11	В	C
45	MOTA	4114	CG	PRO B		11.022	88.674	37.163	1.00 53.74	В	С
	ATOM	4115	С	PRO B		11.732	90.079	34.364	1.00 40.48	В	C
	ATOM	4116	0	PRO B		10.781	89.477	33.873	1.00 40.85	В	0
	ATOM	4117	N	PRO B		12.816	90.423	33.642	1.00 57.05	В	N
50	ATOM	4118	CD	PRO B		13.895	91.251	34.205	1.00 80.91	В	С
	ATOM	4119	CA	PRO B		13.070	90.168	32.220	1.00 58.95 .	В	С
	ATOM	4120	CB	PRO B	331	14.513	90.604	32.054	1.00 81.97	В	С
	MOTA	4121	CG	PRO B		14.568	91.784	32.955	1.00 81.78	В	С
55	ATOM	4122	С	PRO B	331	12.845	88.733	31.807	1.00 61.16	В	С

	MOTA	4123	0	PRO I	B 331	11.698	88.341	31.599	1.00 61.70	В	0
	MOTA	4124	N	LYS	B 332	13.930	87.968	31.666	1.00 66.13	В	N.
5	ATOM	4125	CA	LYS	B 332	13.865	86.550	31.292	1.00 66.58	В	С
	ATOM	4126	CB	LYS I	3 3 3 2	12.464	86.007	31.547	1.00 40.79	В	C
	ATOM	4127	CG	LYS I	3 3 3 2	12.202	84.638	31.021	1.00 42.68	В	С
	ATOM	4128	CD	LYS I	3 3 3 2	10.842	84.202	31.507	1.00 44.54	В	С
10	ATOM	4129	CE	LYS E	3 3 3 2	9.779	85.261	31.183	1.00 43.24	В	С
	ATOM	4130	NZ	LYS E	3 3 3 2	9.549	85.460	29.715	1.00 43.39	В	N
	ATOM	4131	С	LYS E	332	14.291	86.190	29.871	1.00 67.01	В	С
	MOTA	4132	0	LYS E	332	14.017	86.918	28.924	1.00 67.78	В	0
15	MOTA	4133	N	LEU E	333	14.957	85.044	29.744	1.00 45.26	В	N
	ATOM	4134	CA	LEU E	333	15.451	84.542	28.468	1.00 46.81	В	С
	ATOM	4135	CB	LEU E	333	16.657	83.631	28.678	1.00 39.71	В	С
	MOTA	4136	CG	LEU E	333	17.995	84.195	29.136	1.00 38.43	В	С
20	MOTA	4137	CD1	LEU B	333	18.974	83.055	29.359	1.00 37.75	В	С
	ATOM	4138	CD2	LEU B	333	18.528	85.148	28.087	1.00 37.96	В	c
	ATOM	4139	С	LEU B	333	14.392	83.738	27.756	1.00 48.33	В	c
	ATOM	4140	0	LEU B	333	13.713	82.915	28.372	1.00 46.97	В	0
25	ATOM	4141	N	PRO B	334	14.250	83.953	26.437	1.00 55.01	В	N
	ATOM	4142	CD	PRO B	334	15.058	84.886	25.632	1.00 69.65	В	С
	ATOM	4143	CA	PRO B	334	13.272	83.246	25.601	1.00 56.11	В	c
	ATOM	4144	CB	PRO B	334	13.457	83.895	24.230	1.00 69.44	В	С
30	ATOM	4145	CG	PRO B	334	.14.900	84.324	24.245	1.00 69.83	В	c
	ATOM	4146	С	PRO B	334	13.587	81.753	25.598	1.00 57.43	В	c
	ATOM	4147	0	PRO B	334	14.590	81.315	25.033	1.00 59.43	В	0
	ATOM	4148	N	ASN B	335	12.731	80.975	26.248	1.00 63.56	В	N
35	ATOM	4149	CA	ASN B	335	12.948	79.539	26.344	1.00 63.37	В	c
	ATOM	4150	CB	ASN B	335	11.888	78.897	27.239	1.00 74.06	В	c
	ATOM	4151	CG	ASN B	335	10.505	79.002	26.667	1.00 75.49	В	c
	ATOM	4152	OD1	ASN B	335	9.568	78.381	27.165	1.00 76.90	В	0
40	ATOM	4153	ND2	ASN B	335	10.362	79.795	25.615	1.00 74.62	В	N
	ATOM	4154	С	ASN B	335	12.937	78.856	24.992	1.00 62.53	В	c
	ATOM	4155	0	ASN B	335	12.075	78.021	24.725	1.00 62.14	В	0
	ATOM	4156	N	GLY B	336	13.904	79.187	24.146	1.00 51.39	В	N
45	ATOM	4157	CA	GLY B	336	13.930	78.581	22.830	1.00 49.29	В	C
	ATOM	4158	С	GLY B	336	15.272	78.060	22.372	1.00 47.99	В	С
	ATOM	4159	o	GLY B	336	15.448	76.854	22.192	1.00 49.17	В	0
	ATOM	4160	N	VAL B	337	16.217	78.972	22.173	1.00118.38	В	и
50	ATOM	4161	CA	VAL B	337	17.545	78.592	21.721	1.00117.55	В	
	ATOM	4162	СВ	VAL B		18.121	79.651	20.782	1.00 84.33	В	C
	ATOM	4163		VAL B		18.228	80.978	21.507	1.00 84.95	В	c
	ATOM	4164		VAL B		19.475	79,199	20.271	1.00 84.78	В	
55	ATOM	4165	С	VAL B		18.526	78.364	22.872	1.00117.03		С
						,,,,,			1.0011/.03	В	С

	ATOM	4166	0	VAL I	3 337	19.490	77.609	22.726	1.00118.63	В	0
	ATOM	4167	N	PHE I	338	18.287	79.009	24.011	1.00 53.61	В	N
5	ATOM	4168	CA	PHE I	338	19.163	78.835	25.162	1.00 52.21	В	С
	ATOM	4169	CB	PHE I	338	19.089	80.039	26.083	1.00 53.41	В	c
	ATOM	4170	CG	PHE F	338	19.447	81.323	25.418	1.00 50.16	В	c
	ATOM	4171	CDI	PHE E	338	18.531	81.986	24.629	1.00 50.41	В	c
10	ATOM	4172	CD2	PHE E	338	20.707	81.873	25.583	1.00 48.27	В	С
	ATOM	4173	CE1	PHE E	338	18.864	83.178	24.016	1.00 51.22	В	С
	ATOM	4174	CE2	PHE E	338	21.045	83.066	24.971	1.00 47.35	В	С
	ATOM	4175	cz	PHE E	338	20.122	83.720	24.187	1.00 49.01	В	С
15	ATOM	4176	С	PHE E	338	18.759	77.598	25.934	1.00 52.89	В	С
	ATOM	4177	0	PHE E	338	17.570	77.367	26.160	1.00 54.40	В	0
	ATOM	4178	N	THR E	339	19.756	76.813	26.343	1.00 47.54	В	N
	ATOM	4179	CA	THR B	339	19.530	75.575	27.089	1.00 49.17	В	С
20	ATOM	4180	CB	THR B	339	20.840	74.878	27.446	1.00 49.64	В	С
	ATOM	4181	OG1	THR B	339	21.435	75.535	28.571	1.00 52.26	В	0
	ATOM	4182	CG2	THR B	339	21.799	74.918	26.263	1.00 47.04	В	С
	ATOM	4183	С	THR B	339	18.789	75.831	28.382	1.00 49.40	В	С
25	ATOM	4184	0	THR B	339	18.994	76.846	29.048	1.00 49.28	В	0
	ATOM	4185	N	PRO B	340	17.935	74.888	28.766	1.00 45.72	В	N
	ATOM	4186	CD	PRO B	340	17.927	73.539	28.191	1.00 39.93	В	С
	MOTA	4187	CA	PRO B	340	17.117	74.942	29.976	1.00 46.42	В	С
30	ATOM	4188	CB	PRO B	340	16.714	73.492	30.186	1.00 42.21	В	С
	MOTA	4189	CG	PRO B	340	16.680	72.962	28.799	1.00 41.97	В	С
	ATOM	4190	C	PRO B	340	17.892	75.487	31.159	1.00 46.60	В	C
	ATOM	4191	0	PRO B	340	17.544	76.529	31.713	1.00 48.23	В	0
35	ATOM	4192	N	ASP B	341	18.955	74.784	31.538	1.00 63.66	В	N
	ATOM	4193	CA	ASP B		19.771	75.194	32.674	1.00 65.05	В	С
	ATOM	4194	CB	ASP B	341	20.940	74.230	32.833	1.00 57.12	В	С
	ATOM	4195	CG	ASP B		20.482	72.833	33.163	1.00 57.70	В	C
40	ATOM	4196		ASP B		19.754	72.664	34.160	1.00 59.21	В	0
	ATOM	4197		ASP B		20.845	71.901	32.426	1.00 56.17	В	0
	ATOM	4198	С	ASP B		20.272	76.638	32.623	1.00 65.13	В	С
	ATOM	4199	0	ASP B		20.401	77.285	33.664	1.00 66.29	В	0
45	ATOM	4200	N	PHE B		20.559	77.146	31.425	1.00 34.05	В	11
	ATOM	4201	CA	PHE B		21.022	78.518	31.311	1.00 33.02	В	С
	ATOM	4202	CB	PHE B		21.534	78.836	29.922	1.00 30.86	В	С
	ATOM	4203	CG	PHE B		21.992	80.252	29.779	1.00 30.79	В	С
50	ATOM	4204		PHE B		22.379	80.975	30.888	1.00 31.45	В	С
	ATOM	4205		PHE B		22.084	80.847	28.543	1.00 31.23	В	С
	ATOM	4206		PHE B		22.848	82.251	30.766	1.00 32.91	В	С
	ATOM	4207		PHE B		22.558	82.134	28.418	1.00 30.82	· в	С
55	ATOM	4208	CZ	PHE B	342	22.940	82.832	29.531	1.00 32.45	В	С

	ATOM	4209	С	PHE	В	342	19.842	79.387	31.591	1.00	31.67		В	С
	ATOM	4210	0	PHE	В	342	19.974	80.465	32.155	1.00	31.63		В	0
5	MOTA	4211	N	GLN	В	343	18.683	78.908	31.165	1.00	14.25		В	N
	MOTA	4212	CA	GLN	В	343	17.437	79.607	31.391	1.00	14.50		В	С
	ATOM	4213	СВ	GLN	В	343	16.320	78.800	30.754	1.00	93.57		В	С
	ATOM	4214	CG	GLN	В	343	14.968	79.445	30.704	1.00	93.76		В	С
10	ATOM	4215	CD	GLN	В	343	13.958	78.493	30.113	1.00	94.46		В	С
	ATOM	4216	0E1	GLN	В	343	13.174	77.867	30.829	1.00	94.65		в	0
	ATOM	4217	NE2	GLN	В	343	13.996	78.347	28.797	1.00	95.10		В	N
	ATOM	4218	С	GLN	В	343	17.243	79.702	32.919	1.00	13.98		В	C
15	ATOM	4219	0	GLN	В	343	17.126	80.780	33.492	1.00	15.07		В	0
	ATOM	4220	N	GLU	В	344	17.248	78.552	33.572	1.00	31.95		В	N
	ATOM	4221	CA	GLU	В	344	17.077	78.451	35.017	1.00	32.03		В	С
	ATOM	4222	CB	GLU	В	344	17.196	76.979	35.390	1.00	60.95		В	С
20	ATOM	4223	CG	GLU	В	344	16.956	76.640	36.827	1.00	67.95		В	С
	MOTA	4224	CD	GLU	В	344	16.706	75.157	36.991	1.00	71.66		В	С
	MOTA	4225		GLU			16.602	74.690	38.145	1.00	73.03		В	0
	ATOM	4226		GLU			16.605	74.460	35.955	1.00	72.33		В	0
25	ATOM	4227	С	GLU			18.043	79.289	35.869	1.00	29.44		В	С
	ATOM	4228	0	GLU			17.685	79.729	36.954	1.00	30.33		В	0
	MOTA	4229	N	PHE			19.259	79.498	35.371	1.00	37.02		В	N
	ATOM	4230	CA	PHE			20.300	80.254	36.067	1.00	34.44		В	C
30	MOTA	4231	СВ	PHE			21.641	79.915	35.426	1.00	8.25		В	С
	MOTA	4232	CG	PHE			22.787	80.779	35.876	1.00	6.37		В	С
	MOTA	4233		PHE			23.546	80.436	36.979	1.00	5.49		В	¢
	ATOM	4234		PHE			23.141	81.903	35.153	1.00	6.58		В	¢
35	MOTA	4235		PHE			24.638	81.201	37.340	1.00	4.67		В	С
	MOTA	4236		PHE			24.221	82.657	35.511	1.00	7.90		В	С
	ATOM	4237	C2 C	PHE			24.977	82.308	36.607	1.00	5.88		В	С
	ATOM	4238 4239		PHE			20.090	81.774	36.087		34.75		В	С
40	ATOM ATOM	4240	O N	PHE			20.408	82.431	37.083		34.02		В	0
	ATOM	4241	CA	VAL			19.576	82.342	34.997		31.29		В	N
	ATOM	4242	CB	VAL			19.334 19.316	83.781 84.371	34.973		31.56		В -	С
	ATOM	4243	CG1	VAL			20.621	84.053			16.03		В	С
45	ATOM	4244		VAL			18.109	83.859	32.836		17.70		В	C
	ATOM	4245	C	VAL			17.998	84.071	35.634		17.48		В	c
	ATOM	4246	0	VAL			17.783	85.159	36.152		31.79		В -	С
50	ATOM	4247	N	ASN			17.783	83.101	35.614		32.96		В	0
50	ATOM	4248	CA	ASN			15.814	83.306	36.255		26.87 28.12		В	N
	ATOM	4249	СВ	ASN :			14.866	82.146	35.983				В	С
	ATOM	4250	CG	ASN :		347	14.050	82.347	34.734		59.52 59.58		В	C
55	ATOM	4251		ASN :			14.593	82.575	33.661		56.61		В	С
55			001		٠.	J41	14.333	02.373	33.001	1.00	10.00	1	В	0

	ATOM	4252	ND2	ASN	В	347	12.736	82.261	34.864	1.00	61.19	В	N
5	ATOM	4253	С	ASN	В	347	16.151	83.360	37.724	1.00	28.81	В	С
	ATOM	4254	0	ASN	В	347	15.412	83.947	38.520	1.00	30.06	В	0
	ATOM	4255	N	LYS	В	348	17.285	82.752	38.074	1.00	27.37	В	N
	ATOM	4256	CA	LYS	В	348	17.746	82.695	39.458	1.00	30.26	В	С
10	MOTA	4257	CB	LYS	В	348	18.891	81.700	39.596	1.00	51.60	В	С
	ATOM	4258	CG	LYS	В	348	18.490	80.252	39.465	1.00	54.51	В	С
	ATOM	4259	CD	LYS	В	348	17.429	79.877	40.473	1.00	57.23	В	С
	MOTA	4260	CE	LYS	В	348	17.335	78.368	40.610	1.00	60.31	В	С
15	ATOM	4261	NZ	LYS	В	348	18.620	77.787	41.106	1.00	60.32	В	N
	ATOM	4262	C	LYS	В	348	18.209	84.038	39.972	1.00	30.37	В	С
	ATOM	4263	0	LYS	В	348	17.891	84.425	41.099	1.00	30.86	В	0
	ATOM	4264	N	CYS	В	349	18.963	84.734	39.127	1.00	47.77	В	N
20	ATOM	4265	CA	CYS	В	349	19.518	86.045	39.445	1.00	45.76	В	С
	MOTA	4266	CB	CYS	В	349	20.691	86.342	38.522	1.00	43.22	В	С
	MOTA	4267	SG	CYS	В	349	21.692	84.916	38.231	1.00	43.51	В	s
	ATOM	4268	C	CYS	В	349	18.510	87.175	39.317	1.00	46.22	В	С
25	ATOM	4269	0	CYS	В	349	18.614	88.179	40.012	1.00	47.91	В	0
	MOTA	4270	N	LEU	В	350	17.545	87.009	38.421	1.00	42.73	В	N
	ATOM	4271	CA	LEU	В	350	16.536	88.028	38.186	1.00	43.37	В	С
	ATOM	4272	CB	LEU	В	350	16.008	87.918	36.756	1.00	25.64	В	С
30	ATOM	4273	CG	LEU			16.442	88.905	35.667	1.00	25.64	В	С
	ATOM	4274		LEU			17.767	89.594	35.977	1.00	25.14	В	С
	MOTA	4275		LEU	В	350	16.518	88.116	34.368	1.00	24.46	В	С
	ATOM	4276	¢	LEU			15.368	88.002	39.157	1.00	44.38	В	С
35	ATOM	4277	0	LEU	В	350	14.371	88.673	38.936	1.00	46.35	В	0
	MOTA	4278	N	ILE			15.477	87.233	40.227	1.00	13.37	В	N
	MOTA	4279	CA	ILE :	В	351	14.406	87.183	41.217	1.00	14.30	В	С
	ATOM	4280	CB	ILE :			14.625	86.028	42.207	1.00	30.71	В	С
40	ATOM	4281		ILE :			13.679	86.145	43.373	1.00	30.08	В	С
	ATOM	4282		ILE :			14.431	84.693	41.495	1.00	28.97	В	С
	ATOM	4283		ILE :			14.916	83.526	42.294	1.00	30.07	В	С
	ATOM	4284	С	ILE :			14.425	88.494	41.991	1.00	15.59	В	С
45	ATOM	4285	0	ILE :	В	351	15.487	88.923	42.456	1.00	16.56	В	0
	ATOM	4286	N	LYS			13.272	89.144	42.145	1.00	51.75	В	N
	ATOM	4287		LYS			13.264	90.416	42.865	1.00	52.19	В	С
	MOTA	4288		LYS			11.888	91.091	42.798	1.00	41.79	В	С
50	ATOM	4289		LYS I			11.610	91.809	41.466		42.10	В	С
	ATOM	4290		LYS			10.431	92.768	41.592	1.00	39.85	В	С
	ATOM	4291		LYS 1			10.068	93.440	40.270	1.00	38.73	В	C
	MOTA	4292		LYS I			9.404	92.544	39.273	1.00	39.11	В	N
55	ATOM	4293		LYS I			13.735	90.291	44.310	1.00		В	С
	MOTA	4294	0	LYS I	3 :	352	14.913	90.488	44.581	1.00	54.11	В	0

	ATOM	4295	N	ASN	В	353	12.842	89.956	45.234	1.00	37.53	В	N
	ATOM	4296	CA	ASN	В	353	13.232	89.824	46.641	1.00	38.47	В	C.
5	ATOM	4297	CB	ASN	В	353	12.178	89.041	47.421	1.00	67.53	В	С
	ATOM	4298	CG	ASN	В	353	12.693	88.563	48.763	1.00	66.08	В	С
	ATOM	4299	OD1	ASN	В	353	13.588	89.170	49.357	1.00	62.28	В	0
	MOTA	4300	ND2	ASN	В	353	12.125	87.475	49.255	1.00	68.63	В	N
10	ATOM	4301	C	ASN	В	353	14.600	89.182	46.870	1.00	37.92	В	С
	ATOM	4302	0	ASN	В	353	14.803	87.998	46,632	1.00	37.28	В	0
	ATOM	4303	N	PRO	В	354	15.555	89.968	47.363	1.00	42.19	В	N
	ATOM	4304	CD	PRO	В	354	15.431	91.386	47.729	1.00	60.71	В	С
15	ATOM	4305	CA	PRO	В	354	16.905	89.491	47.623	1.00	41.81	В	С
	ATOM	4306	CB	PRO	В	354	17.506	90.625	48.434	1.00	60.98	В	С
	ATOM	4307	CG	PRO	В	354	16.878	91.813	47.803	1.00	61.80	В	С
	ATOM	4308	C	PRO	В	354	16.985	88.160	48.340	1.00	41.46	В	С
20	ATOM	4309	0	PRO	В	354	17.850	87.348	48.034	1.00	40.84	В	0
	ATOM	4310	N	ALA	В	355	16.095	87.929	49.295	1.00	32.37	В	N
	ATOM	4311	CA	ALA	В	355	16.136	86.681	50.035	1.00	34.42	В	С
	ATOM	4312	CB	ALA			15.018	86.616	50.996	1.00	8.24	В	С
25	ATOM	4313	С	ALA			16.036	85.526	49.079	1.00	34.16	В	C.
	ATOM	4314	0	ALA			16.922	84.675	49.031	1.00	33.67	В	0
	ATOM	4315	N	GLU			14.949	85.511	48.315	1.00	25.86	В	N
	ATOM	4316	CA	GLU			14.681	84.459	47.341	1.00	26.90	В	С
30	ATOM	4317	CB	GLU			13.304	84.704	46.734	1.00	75.50	В	С
	ATOM	4318	CG	GLU			12.230	84.627	47.799		82.25	В	С
	ATOM	4319	CD	GLU			10.907	85.212	47.376		85.04	В	С
	ATOM	4320		GLU			10.379	84.800	46.319		86.11	В	0
35	ATOM	4321		GLU			10.389	86.079	48.114		85.07	В	0
	ATOM	4322	С	GLU			15.750	84.312	46.251		26.54	В	С
	ATOM	4323	0	GLU			16.184	83.198	45.940		25.22	В	0
	ATOM	4324	N	ARG			16.179	85.435	45.684		34.12	В	N
40	ATOM	4325	CA	ARG			17.196	85.430	44.642		32.33	В	С
	ATOM	4326	CB	ARG			17.671	86.857	44.385		47.51	В	С
	ATOM	4327	CG	ARG			17.949	87.188	42.928		42.82	В	С
45	ATOM	4328	CD	ARG			18.457	88.619	42.794		41.97	В	C
45	MOTA	4329	NE CZ	ARG			17.620	89.570	43.522		39.82	В	N
	ATOM	4330		ARG			18.016	90.787	43.874		38.06	В	С
	ATOM			ARG			19.232	91.200	43.559		37.03	В	N
50	ATOM		C C	ARG			17.215	91.578	44.572		37.10	В	N
50	ATOM ATOM	4333	0	ARG			18.379	84.562	45.067		31.56	В	С
	ATOM		N	ARG			18.711	84.481	46.253		31.93	В	0
	ATOM		CA	ALA :			19.007	83.908	44.094		30.00		N
55	ATOM		CB	ALA :			20.155	83.049	44.361		29.69		С
55	ATOM	1337	CD	ALA :	в.	338	20.546	82.298	43.115	1.00	38.42	В	С

	ATOM	4338	С	ALA	B 358	21.322	83.880	44.843	1.00 30.17	В	С
	ATOM	4339	0	ALA	B 358	21.454	85.045	44.475	1.00 31.07	В	0
5	MOTA	4340	N	ASP	B 359	22.178	83.278	45.660	1.00 16.21	В	N
	ATOM	4341	CA	ASP	B 359	23.336	83.979	46.208	1.00 16.34	В	С
	ATOM	4342	CB	ASP	в 359	23.407	83.790	47.711	1.00 54.40	В	С
	ATOM	4343	CG	ASP	B 359	24.115	82.527	48.087	1.00 53.76	В	С
10	ATOM	4344	OD:	1 ASP	B 359	23.844	81.492	47.447	1.00 49.92	В	0
	ATOM	4345	OD:	2 ASP	В 359	24.941	82.570	49.018	1.00 54.94	В	0
	ATOM	4346	С	ASP	в 359	24.601	83.435	45.590	1.00 15.91	В	C
	ATOM	4347	0	ASP	в 359	24.621	82.318	45.104	1.00 14.27	В	0
15	ATOM	4348	N	LEU	B 360	25.661	84.230	45.636	1.00 43.28	В	N
	ATOM	4349	CA	LEU	в 360	26.944	83.859	45.054	1.00 41.33	В	С
	ATOM	4350	CB	LEU	B 360	28.075	84.600	45.758	1.00 17.18	В	c
	ATOM	4351	CG	LEU	В 360	29.096	85.257	44.831	1.00 15.93	В	c
20	ATOM	4352	CD1	LEU	B 360	28.370	86.068	43.798	1.00 14.60	В	С
	ATOM	4353	CD2	LEU :	B 360	30.034	86.158	45.619	1.00 16.78	В	С
	ATOM	4354	С	LEU I	B 360	27.236	82.375	45.063	1.00 40.00	В	С
	ATOM	4355	0	LEU I	B 360	27.576	81.813	44.028	1.00 39.63	В	0
25	ATOM	4356	N	LYS 1	B 361	27.096	81.736	46.220	1.00 36.43	В	N
	ATOM	4357	CA	LYS 1	B 361	27.379	80.308	46.320	1.00 39.15	В	С
	ATOM	4358	CB	LYS I	361	27.270	79.834	47.770	1.00126.40	В	С
	ATOM	4359	CG	LYS 1	361	27.610	78.361	47.961	1.00125.34	В	С
30	ATOM	4360	CD	LYS 1	3 61	27.616	77.976	49.436	1.00124.52	В	С
	ATOM	4361	CE	LYS E	3 3 6 1	27.607	76.457	49.643	1.00123.41	В	С
	ATOM	4362	NZ	LYS I	3 3 6 1	28.810	75.745	49.122	1.00126.38	В	N
	ATOM	4363	С	LYS E	3 61	26.451	79.495	45.436	1.00 40.58	В	С
35	MOTA	4364	0	LYS E	3 3 6 1	26.902	78.823	44.506	1.00 40.54	В	0
	MOTA	4365	N	MET E	3 62	25.156	79.557	45.728	1.00 22.71	В	N
	MOTA	4366	CA	MET F	362	24.162	78.831	44.946	1.00 23.77	В	С
	ATOM	4367	CB	MET E	362	22.763	79.406	45.223	1.00 80.07	В	С
40	ATOM	4368	CG	MET E	362	21.736	79.219	44.096	1.00 85.17	В	С
	MOTA	4369	SD	MET E	362	20.911	77.606	43.946	1.00 91.12	В	s
	ATOM	4370	CE	MET E	362	19.331	77.957	44.738	1.00 90.93	В	С
	MOTA	4371	С	MET E		24.495	78.915	43.453	1.00 22.71	В	C
45	ATOM	4372	0	MET E	362	24.409	77.931	42.725	1.00 22.68	В	0
	ATOM	4373	N	LEU E	363	24.903	80.091	43.003	1.00 33.99	В	N
	ATOM	4374	CA	LEU B	363	25.226	80.275	41.601	1.00 33.76	В	С
	MOTA	4375	СВ	LEU B	363	25.404	81.757	41.295	1.00 27.39	В	C
50	ATOM	4376	CG	LEU B	363	24.093	82.524	41.419	1.00 26.70	В	С
	ATOM	4377	CD1	LEU B	363	24.280	83.903	40.867	1.00 26.71	В	С
	ATOM	4378		LEU B	363	23.005	81.802	40.661	1.00 24.11	В	С
	ATOM	4379	С	LEU B		26.450	79.506	41.164	1.00 32.69	В	С
55	ATOM	4380	0	LEU B	363	26.441	78.886	40.111	1.00 33.14	В	0

	ATOM	4381	N	THR	В	364	27.507	79.542	41.965	1.00 62.52	В	N
	ATOM	4382	CA	THR	В	364	28.724	78.823	41.612	1.00 63.10	В	С
5	ATOM	4383	CB	THR	В	364	29.860	79.129	42.596	1.00 44.87	В	С
	ATOM	4384	OG1	THR	В	364	30.474	80.376	42.243	1.00 43.78	В	0
	MOTA	4385	CG2	THR	В	364	30.898	78.042	42.556	1.00 46.65	В	С
	ATOM	4386	С	THR	В	364	28.482	77.319	41.568	1.00 62.61	В	С
10	ATOM	4387	0	THR	. в	364	29.166	76.590	40.850	1.00 63.38	В	0
	ATOM	4388	N	ASN	В	365	27.496	76.860	42.328	1.00 36.61	В	N
	ATOM	4389	CA	ASN	В	365	27.172	75,444	42.355	1.00 35.46	В	С
	MOTA	4390	CB	ASN	В	365	26.434	75.089	43.645	1.00106.63	В	С
15	ATOM	4391	CG	ASN	В	365	27.312	75.231	44.877	1.00109.40	В	С
	ATOM	4392	OD1	ASN	В	365	26.854	75.058	46.011	1.00113.65	В	0
	ATOM	4393	ND2	ASN	В	365	28.585	75.544	44.659	1.00110.84	В	N
	ATOM	4394	C	ASN	В	365	26.319	75.096	41.155	1.00 34.14	В	С
20	ATOM	4395	0	ASN	В	365	26.641	74.190	40.417	1.00 35.18	В	0
	MOTA	4396	N	HIS	В	366	25.238	75.831	40.952	1.00 46.41	В	и.
	ATOM	4397	CA	HIS	В	366	24.331	75.588	39.828	1.00 45.21	В	С
	ATOM	4398	CB	HIS	В	366	23.751	76.914	39.348	1.00 72.79	В	С
25	ATOM	4399	CG	HIS	В	366	22.501	76.764	38.547	1.00 72.09	В	С
	ATOM	4400	CD2	HIS	В	366	22.310	76.583	37.220	1.00 71.37	В	С
	ATOM	4401	ND1	HIS	В	366	21.250	76.750	39.121	1.00 73.51	В	N
	ATOM	4402	CE1	HIS	В	366	20.340	76.567	38.181	1.00 73.69	В	С
30	ATOM	4403	NE2	HIS	В	366	20.957	76.462	37.019	1.00 73.03	В	N
	ATOM	4404	C	HIS	В	366	24.979	74.865	38.639	1.00 42.74	В	С
	ATOM	4405	0	HIS	В	366	26.050	75.257	38.174	1.00 41.57	В	0
	ATOM	4406	N	THR	В	367	24.313	73.826	38.138	1.00 29.64	В	N
35	ATOM	4407	CA	THR	В	367	24.838	73.045	37.021	1.00 29.64	В	С
	ATOM	4408	CB	THR	В	367	23.820	72.006	36.517	1.00 27.70	В	С
	ATOM	4409	OG1	THR	В	367	22.668	72.665	36.002	1.00 28.70	В	0
	ATOM	4410	CG2	THR	В	367	23.399	71.102	37.632	1.00 28.77	В	С
40	ATOM	4411	С	THR	В	367	25.299	73.844	35.810	1.00 28.49	В	С
	ATOM	4412	0	THR	В	367	26.273	73.474	35.147	1.00 29.15	В	0
	ATOM	4413	N	PHE	В	368	24.600	74.929	35.505	1.00 27.61	В	N
	MOTA	4414	CA	PHE	В	368	24.960	75.740	34.357	1.00 28.18	В	С
45	MOTA	4415	CB	PHE	В	368	24.097	76.991	34.287	1.00 39.85	В	С
	ATOM	4416	CG	PHE	В	368	24.544	77.963	33.244	1.00 37.40	В	С
	ATOM	4417	CD1	PHE	В	368	24.309	77.718	31.903	1.00 37.51	В	С
	ATOM	4418	CD2	PHE	В	368	25.246	79.096	33.596	1.00 36.60	В	С
50	ATOM	4419	CE1	PHE	В	368	24.768	78.582	30.928	1.00 37.85	В	С
	ATOM	4420	CE2	PHE	В	368	25.709	79.967	32.624	1.00 36.60	В	С
	ATOM	4421	cz	PHE	В	368	25.468	79.705	31.286	1.00 36.60	В	С
	ATOM	4422	С	PHE	В	368	26.411	76.166	34.419	1.00 27.27	В	С
55	ATOM	4423	0	PHE	В	368	27.161	75.992	33.452	1.00 25.08	В	0

	MOTA	4424	N	ILE	В	369	26.802	76.729	35.563	1.00	29.32	В	N
	MOTA	4425	CA	ILE	в	369	28.165	77.215	35.758	1.00	34.22	В	С
5	ATOM	4426	CB	ILE	В	369	28.333	77.983	37.074	1.00	20.96	В	С
	MOTA	4427	CG:	2 ILE	в	369	29.775	78.388	37.236	1.00	19.59	В	С
	ATOM	4428	CG:	1 ILE	В	369	27.489	79.255	37.049	1.00	20.84	В	С
	ATOM	4429	CD:	ILE	в	369	27.749	80.132	35.835	1.00	22.82	В	С
10	ATOM	4430	С	ILE	В	369	29.181	76.108	35.746	1.00	36.60	В	С
	MOTA	4431	0	ILE	В	369	30.275	76.269	35.222	1.00	37.41	В	0
	MOTA	4432	N	LYS	В	370	28.828	74.981	36.341	1.00	49.56	В	N
	MOTA	4433	CA	LYS	в	370	29.752	73.867	36.351	1.00	51.50	В	С
15	ATOM	4434	СВ	LYS	в	370	29.259	72.780	37.300	1.00	27.51	В	С
	MOTA	4435	CG	LYS	В	370	29.404	73.200	38.747	1.00	30.45	В	С
	MOTA	4436	CD	LYS	В	370	28.928	72.120	39.660	1.00	35.13	В	С
	ATOM	4437	CE	LYS	В	370	27.551	71.640	39.242	1.00	36.85	В	С
20	ATOM	4438	NZ	LYS	В	370	27.086	70.519	40.114	1.00	37.81	В	N
	ATOM	4439	С	LYS	В	370	29.869	73.380	34.919	1.00	51.41	В	С
	ATOM	4440	0	LYS	В	370	30.974	73.270	34.387	1.00	49.93	В	0
	ATOM	4441	N	ARG	В	371	28.732	73.114	34.286	1.00	26.13	В	N
25	ATOM	4442	CA	ARG	В	371	28.748	72.698	32.899	1.00	26.05	В	С
	ATOM	4443	CB	ARG	В	371	27.343	72.814	32.314	1.00	43.39	В	С
	ATOM	4444	CG	ARG	В	371	27.164	72.123	30.982	1.00	43.04	В	С
	MOTA	4445	CD	ARG	В	371	25.931	72.620	30.289	1.00	43.16	В	С
30	ATOM	4446	NE	ARG	В	371	26.096	74.025	29.953	1.00	42.39	В	N
	ATOM	4447	CZ	ARG			25.174	74.772	29.357	1.00	40.44	В	С
	ATOM	4448		ARG			24.002	74.254	29.019	1.00	38.89	В	N
	ATOM	4449		ARG	В	371	25.426	76.047	29.106	1.00	39.16	в.	N
35	ATOM	4450	С	ARG	В	371	29.702	73.666	32.165	1.00	25.45	В	С
	ATOM	4451	0	ARG	В	371	30.499	73.279	31.316	1.00	25.58	в	٥.
	ATOM	4452	N	SER	В	372	29.637	74.938	32.524	1.00	36.48	В	N
	ATOM	4453	CA	SER	В	372	30.478	75.936	31.886	1.00	39.83	В	С
40	ATOM	4454	CB	SER	В	372	29.993	77.339	32.260	1.00	124.79	В	С
	ATOM	4455	OG	SER			28.642	77.536	31.883	1.00	125.57	В	0
	ATOM	4456	С	SER	В	372	31.949	75.804	32.245	1.00	41.87	В	С
45	ATOM	4457	0	SER			32.813	76.160	31.457	1.00	42.12	В	0
45	ATOM	4458	N	GLU			32.240	75.297	33.435	1.00	35.21	В	N
	ATOM	4459	CA	GLU			33.624	75.176	33.866	1.00	36.20	В	С
	MOTA	4460	CB	GLU			33.679	74.854	35.357	1.00	90.65	В	С
50	ATOM	4461	CG	GLU			33.393	76.061	36.232	1.00	94.87	В	С
50	ATOM	4462	CD	GLU			33.450	75.734	37.702	1.00	97.65	В	С
	ATOM	4463		GLU			33.406	76.675	38.523		99.69	В	0
	ATOM	4464		GLU			33.535	74.531	38.031	1.00	97.56	В	0
55	ATOM	4465	С	GLU			34.420	74.158	33.062	1.00	36.00	В	С
55	MOTA	4466	0	GLU I	в:	373	35.600	73.903	33.332	1.00	35.29	В	0

	ATOM	4467	N	VAL	B 374	33.770	73.596	32.049	1.00 78.11	В	N
	ATOM	4468	CA	VAL	B 374	34.401	72.611	31.185	1.00 79.20	В	С
5	ATOM	4469	CB	VAL	B 374	34.044	71.181	31.645	1.00 42.85	В	С
	MOTA	4470	CG1	VAL	B 374	34.153	71.070	33.156	1.00 42.24	В	С
	MOTA	4471	CG2	VAL	B 374	32.644	70.830	31.193	1.00 41.37	В	С
	ATOM	4472	С	VAL	B 374	33.922	72.820	29.742	1.00 78.12	В	С
10	ATOM	4473	О	VAL	374	32.890	73.452	29.508	1.00 79.70	В	0
	ATOM	4474	N	GLU :	375	34.690	72.294	28.791	1.00131.24	В	N
	ATOM	4475	CA	GLU :	375	34.391	72.384	27.360	1.00131.37	В	С
	ATOM	4476	CB	GLU I	375	32.894	72.644	27.126	1.00108.91	В	С
15	MOTA	4477	CG	GLU I	3 375	32.495	72.737	25.653	1.00102.93	В	С
	ATOM	4478	CD	GLU I	375	32.649	71.419	24.906	1.00 97.65	В	С
	ATOM	4479	0E1	GLU I	375	31.663	70.654	24.842	1.00 98.01	В	0
	ATOM	4480	OE2	GLU I	375	33.755	71.146	24.392	1.00 96.01	В	0
20	ATOM	4481	С	GLU 1	375	35.223	73.439	26.613	1.00133.00	В	С
	ATOM	4482	О	GLU 1	375	35.868	74.296	27.221	1.00133.37	В	0
	ATOM	4483	N	GLU I	376	35.189	73.342	25.286	1.00102.49	В	N
	MOTA	4484	CA	GLU I	376	35.898	74.217	24.353	1.00105.24	В	С
25	ATOM	4485	CB	GLU I	376	35.441	73.876	22.929	1.00203.67	В	С
	MOTA	4486	CG	GLU I	376	36.186	74.587	21.814	1.00203.67	В	С
	ATOM	4487	CD	GLU E	376	35.698	74.162	20.441	1.00203.67	В	С
	ATOM	4488	CE1	GLU H	376	34.525	74.442	20.113	1.00203.67	В	0
30	ATOM	4489	OE2	GLU E	376	36.484	73.542	19.693	1.00203.67	В	0
	ATOM	4490	С	GLU H	376	35.757	75.729	24.582	1.00106.34	В	С
	ATOM	4491	0	GLU E	376	34.737	76.332	24.236	1.00108.15	В	0
	ATOM	4492	N	VAL E	377	36.794	76.335	25.155	1.00130.02	В	N
35	ATOM	4493	CA	VAL E	377	36.807	77.775	25.410	1.00131.93	В	С
	MOTA	4494	СВ	VAL E		38.066	78.210	26.241	1.00 88.03	В	С
	ATOM	4495		VAL E		37.829	77.994	27.724	1.00 87.33	В	С
	ATOM	4496		VAL E		39.291	77.408	25.802	1.00 86.83	В	С
40	ATOM	4497	С	VAL E		36.844	78.505	24.070	1.00132.37	В	С
	ATOM	4498	0	VAL E		35.863	78.530	23.325	1.00132.05	В	0
	ATOM	4499	N	ASP E		38.007	79.085	23.789	1.00143.23	В	N
	ATOM	4500	CA	ASP E		38.285	79.824	22.565	1.00143.63	В	С
45	ATOM	4501	CB	ASP E		37.755	79.078	21.339	1.00 82.02	В	С
	MOTA	4502	CG	ASP E		38.601	79.330	20.103	1.00 79.09	В	С
	ATOM	4503		ASP E		38.182	78.932	18.993	1.00 77.88	В	0
	ATOM	4504		ASP E		39.695	79.921	20.248	1.00 76.46	В	0
50	ATOM	4505	С	ASP E		37.719	81.232	22.596	1.00145.38	В	С
	ATOM	4506	0	ASP B		37.555	81.863	21.552	1.00147.42	В	0
	ATOM	4507	N	PHE B		37.415	81.720	23.794	1.00 64.54	В	N
	ATOM	4508	CA	PHE B		36.897	83.069	23.933	1.00 63.51	В	С
55	ATOM	4509	CB	PHE B	379	36.921	83.492	25.404	1.00 58.72	В	С

		ATOM	4510	CG	PHE	В	379	36.389	84.877	25.646	1.00	57.84	В	С
		ATOM	4511	CD1	PHE	В	379	37.226	85.889	26.083	1.00	58.39	В	C
	5	MOTA	4512	CD2	PHE	В	379	35.060	85.174	25.392	1.00	56.28	В	С
		ATOM	4513	CE1	PHE	В	379	36.750	87.174	26.259	1.00	57.89	В	С
		ATOM	4514	CE2	PHE	В	379	34.581	86.456	25.565	1.00	55.26	В	С
		MOTA	4515	cz	PHE	В	379	35.430	87.459	25.999	1.00	55.97	В	С
1	0	ATOM	4516	С	PHE	В	379	37.824	83.953	23.095	1.00	63.21	В	С
		ATOM	4517	0	PHE	В	379	37.378	84.792	22.312	1.00	63.68	В	0
		ATOM	4518	N	ALA	В	380	39.123	83.743	23.253	1.00	46.86	В	N
		ATOM	4519	CA	ALA	В	380	40.103	84.498	22.493	1.00	48.61	В	С
1	5	ATOM	4520	СВ	ALA	В	380	41.501	84.071	22.890	1.00	98.14	В	С
		MOTA	4521	С	ALA	В	380	39.876	84.243	21.000	1.00	49.06	В	С
		ATOM	4522	0	ALA	В	380	39.980	85.153	20.172	1.00	47.63	В	0
		ATOM	4523	N	GLY	В	381	39.565	82.995	20.666	1.00	87.24	В	N
2	0	ATOM	4524	CA	GLY	В	381	39.329	82.642	19.281	1.00	89.07	В	С
		MOTA	4525	С	GLY	В	381	38.164	83.417	18.708	1.00	90.95	В	С
		ATOM	4526	0	GLY	В	381	38.305	84.120	17.713	1.00	91.76	В	0
		ATOM	4527	N	TRP	в	382	37.010	83.285	19.347	1.00	54.45	В	N
2	5	ATOM	4528	CA	TRP	В	382	35.787	83.970	18.930	1.00	53.56	В	С
		ATOM	4529	CB	TRP	В	382	34.633	83.509	19.827	1.00	64.53	В	С
		ATOM	4530	CG	TRP	В	382	33.372	84.334	19.753	1.00	64.49	В	С
		ATOM	4531	CD2	TRP	В	382	33.071	85.520	20.506	1.00	64.46	В	С
3	0	ATOM	4532	CE2	TRP	В	382	31.774	85.930	20.139	1.00	65.19	В	С
		ATOM	4533	CE3	TRP	В	382	33.773	86.275	21.447	1.00	64.11	В	С
		MOTA	4534	CD1	TRP	В	382	32.272	84.083	18.984	1.00	65.32	В	С
		ATOM	4535	NE1	TRP	В	382	31.305	85.035	19.213	1.00	65.30	В	N
3	5	ATOM	4536	CZ2	TRP	В	382	31.166	87.055	20.686	1.00	64.93	В	C
		ATOM	4537	CZ3	TRP	В	382	33.167	87.393	21.986	1.00	64.95	В	С
		ATOM	4538	CH2	TRP	В	382	31.879	87.773	21.603	1.00	65.40	В	С
		MOTA	4539	С	TRP	В	382	35.908	85.501	18.992	1.00	53.61	В	С
4	0	ATOM	4540	0	TRP	В	382	35.558	86.198	18.035	1.00	53.98	В	0
		ATOM	4541	N	LEU	В	383	36.407	86.013	20.117	1.00	80.70	В	N
		ATOM	4542	CA	LEU	В	383	36,544	87.451	20.317	1.00	83.14	В	С
		ATOM	4543	CB	LEU	В	383	37.109	87.738	21.707	1.00	35.96	В	С
4	5	ATOM	4544	CG	LEU	В	383	37.200	89.222	22.085	1.00	36.12	В	С
		ATOM	4545	CD1	LEU	В	383	35.821	89.793	22.344	1.00	36.13	В	С
		ATOM	4546	CD2	LEU	В	383	38.055	89.375	23.321	1.00	34.79	В	С
		ATOM	4547	С	LEU	В	383	37.406	88.122	19.258	1.00	84.52	В	С
5	o	ATOM	4548	0	LEU	В	383	37.096	89.223	18.806	1.00	83.05	В	О
		ATOM	4549	N	CYS	В	384	38.487	87.467	18.856	1.00	73.09	В	N
		ATOM	4550	CA	CYS	В	384	39.356	88.036	17.837	1.00	73.95	В	С
		ATOM	4551	CB	CYS	В	384	40.690	87.298	17.813	1.00	97.24	В	С
5	5	ATOM	4552	SG	CYS	В	384	41.630	B7.562	19.319	1.00	99.10	В	s

	ATOM	4553	С	CYS E	384	38.691	87.988	16.466	1.00 75.45	В	С
	ATOM	4554	0	CYS E	384	38.771	88.954	15.706	1.00 75.00	В	0
5	ATOM	4555	N	LYS B	385	38.037	86.868	16.154	1.00 79.71	В	N
	ATOM	4556	CA	LYS E	385	37.339	86.722	14.877	1.00 80.74	В	С
	ATOM	4557	CB	LYS E	385	36.368	85.537	14.907	1.00108.91	В	С
	MOTA	4558	CG	LYS B	385	36.979	84.156	14.731	1.00111.35	В	С
10	ATOM	4559	CD	LYS B	385	35.878	83.094	14.753	1.00113.91	В	C
	ATOM	4560	CE	LYS B	385	36,414	81.694	14.483	1.00115.04	В	С
	ATOM	4561	NZ	LYS B	385	35.324	80.675	14.524	1.00115.50	В	N
	ATOM	4562	С	LYS B	385	36.524	87.987	14.685	1.00 79.15	В	С
15	ATOM	4563	О	LYS B	385	36.425	88.532	13.581	1.00 79.17	В	0
	ATOM	4564	N	THR B	386	35.942	88.435	15.793	1.00106.27	В	N
	ATOM	4565	CA	THR B	386	35.106	89.622	15.834	1.00107.39	В	С
	ATOM	4566	СВ	THR B	386	34.185	89.586	17.076	1.00 62.12	В	С
20	MOTA	4567	031	THR B	386	33.219	88.538	16.925	1.00 61.07	В	0
	MOTA	4568	CG2	THR B	386	33.458	90.911	17.251	1.00 61.98	В	С
	ATOM	4569	С	THR B	386	35.918	90.912	15.850	1.00108.64	В	С
	MOTA	4570	0	THR B	386	36.320	91.415	14.800	1.00108.97	В	0
25	MOTA	4571	N	LEU B	387	36.160	91.434	17.048	1.00 70.69	В	N
	MOTA	4572	CA	LEU B	387	36.903	92.675	17.231	1.00 70.26	В	С
	MOTA	4573	СВ	LEU B	387	37.358	92.806	18.688	1.00106.87	В	С
	MOTA	4574	CG	LEU B	387	36.314	92.478	19.755	1.00103.34	В	С
30	ATOM	4575	CD1	LEU B	387	36.813	92.936	21.119	1.00101.44	В	С
	MOTA	4576	CD2	LEU B	387	35.003	93.158	19.402	1.00101.67	⇒ B	C
	ATOM	4577	С	LEU B	387	38.120	92.817	16.315	1.00 72.68	В	С
	MOTA	4578	0	LEU B	387	38.692	93.905	16.209	1.00 73.99	В	0
35	ATOM	4579	N	ARG B	388	38.516	91.721	15.671	1.00 90.93	В	N
	ATOM	4580	CA	ARG B	388	39.663	91.716	14.764	1.00 92.67	В	C
	ATOM	4581	CB	ARG B	388	39.250	92.266	13.401	1.00119.06	В	C
	ATOM	4582	CG	ARG B	388	38.480	91.255	12.583	1.00120.28	В	C
40	ATOM	4583	CD	ARG B	388	39.063	89.860	12.813	1.00121.80	В	С
	ATOM	4584	NE	ARG B	388	38.777	88.926	11.726	1.00124.61	В	N
	ATOM	4585	CZ	ARG B	388	39.380	88.947	10.539	1.00125.62	В	С
	ATOM	4586	NH1	ARG B	388	40.311	89.855	10.274	1.00126.19	В	N
45	ATOM	4587	NH2	ARG B	388	39.050	88.061	9.611	1.00126.07	В	N
	ATOM	4588	С	ARG B	388	40.891	92.466	15.286	1.00 92.38	В	С
	ATOM	4589	0	ARG B	388	41.135	93.625	14.933	1.00 91.92	В	0
	ATOM	4590	N	LEU B	389	41.675	91.778	16.111	1.00149.52	В	N
50	ATOM	4591	CA	LEU B	389	42.868	92.366	16.702	1.00150.84	В	С
	ATOM	4592	CB	LEU B	389	42.774	92.277	18.230	1.00 70.18	В	С
	ATOM	4593	CG	LEU B	389	41.412	92.638	18.840	1.00 71.21	В	С
	MOTA	4594	CD1	LEU B	389	41.489	92.607	20.353	1.00 70.55	В	С
55	ATOM	4595	CD2	LEU B	389	40.988	94.013	18.371	1.00 71.86	В	С

	ATOM	4596	C	LEU	В	389	44.152	91.689	16.213	1.00151.61	В	С
	ATOM	4597	0	LEU	В	389	44.194	90.469	16.032	1.00150.15	В	0.
5	MOTA	4598	N	ASN	В	390	45.191	92.495	15.998	1.00203.67	В	N
	ATOM	4599	CA	ASN	В	390	46.488	92.002	15.534	1.00203.67	В	С
	ATOM	4600	CB	ASN	В	390	46.876	92.661	14.208	1.00106.37	В	С
	ATOM	4601	CG	ASN	В	390	45.953	92.279	13.077	1.00106.60	В	С
10	MOTA	4602	OD1	ASN	В	390	44.760	92.589	13.101	1.00106.59	В	0
,,	ATOM	4603	ND2	ASN	В	390	46.500	91.597	12.074	1.00106.22	B	N
	ATOM	4604	С	ASN	В	390	47.590	92.282	16.547	1.00203.67	В	С
	MOTA	4605	0	ASN	в	390	47.390	92.155	17.757	1.00203.67	В	0
15	MOTA	4606	N	GLN	в	391	48.753	92.667	16.031	1.00168.93	В	N
,,,	MOTA	4607	CA	GLN	в	391	49.911	92.978	16.858	1.00170.58	В	С
	MOTA	4608	CB	GLN	В	391	50.203	91.827	17.822	1.00184.34	В	С
	MOTA	4609	CG	GLN	в	391	51.060	92.214	19.019	1.00185.89	В	c
20	MOTA	4610	CD	GLN	в	391	50.353	93.178	19.957	1.00186.81	В	c
20	ATOM	4611	OE1	GLN	в	391	50.875	93.527	21.017	1.00187.00		0
	ATOM	4612	NE2	GLN	В	391	49.159	93.614	19.571	1.00187.22		N
	MOTA	4613	С	GLN	В	391	51.124	93.216	15.964	1.00170.59		С
25	MOTA	4614	0	GLN	в	391	50.951	93.201	14.726	1.00170.81	В	0
25	MOTA	4615	OXT	GLN	В	391	52.229	93.414	16.513	1.00184.22		0
	TER	4616		GLN	в	391					В	
	ATOM	4617	PG	ATP	С	1	23.028	120.762	36.245	1.00 24.10	CMEK	P
30	MOTA	4618	01G	ATP	С	1	22.221	120.220	37.473	1.00 25.10	CMEK	0
30	ATOM	4619	02G	ATP	С	1	22.236	121.899	35.706	1.00 26.10	CMEK	0
	ATOM	4620	03G	ATP	С	1	23.194	119.741	35.266	1.00 27.10	CMEK	
	ATOM	4621	PB	ATP	С	1	25.001	121.491	38.099	1.00 28.10	CMEK	P
35	ATOM	4622	01B	ATP	С	1	24.082	122.360	38.753	1.00 29.10	CMEK	0
35	ATOM	4623	02B	ATP	С	1	25.120	120.387	38.991	1.00 30.10	CMEK	٥
	ATOM	4624	03B	ATP	С	1	24.401	121.382	36.763	1.00 31.10	CMEK	0
	ATOM	4625	PA	ATP	С	1	27.234	122.379	36.725	1.00 32.10	CMEK	P
40	ATOM	4626	01A	ATP	С	1	28.194	121.216	36.635	1.00 33.10	CMEK	0
40	ATOM	4627	02A	ATP	С	1	26.352	122.674	35.497	1.00 34.10	CMEK	0
	ATOM	4628	A E0	ATP	С	1	26.350	122.197	37.938	1.00 35.10	CMEK	٥
	MOTA	4629	05'	ATP	С	1	27.940	123.698	37.398	1.00 36.10	CMEK	0
45	ATOM	4630	C5'	ATP	С	1	28.772	123.422	38.569	1.00 37.10	CMEK	С
***	MOTA	4631	C4 '	ATP	С	1	28.635	124.391	39.572	1.00 38.10	CMEK	С
	ATOM	4632	04	ATP	С	1	29.558	125.469	39.261	1.00 39.10	CMEK	0
	MOTA	4633	C3'	ATP	С	1	27.269	125.124	39.707	1.00 40.10	CMEK	С
50	ATOM	4634	03'	ATP	С	1	26.294	124.380	40.464	1.00 41.10	CMEK	o
30	ATOM	4635	C2'	ATP	С	1	27.717	126.449	40.303	1.00 42.10	CMEK	
	ATOM	4636	02'	ATP	С	1	27.812	126.351	41.745	1.00 43.10	CMEK	
	ATOM	4637	C1'	ATP (c	1	29.028	L26.711	39.681	1.00 44.10	CMEK	
55	ATOM	4638	N9	ATP (2	1	28.927	127.636	38.517	1.00 45.10	CMEK	
33												

206

		MOTA	4639	C8	ATP	С	1	28.311	127.466	37.245	1.00	46.10	CMEK	С
		ATOM	4640	N7	ATP	С	1	28.418	128.541	36.433	1.00	47.10	CMEK	N.
	5	ATOM	4641	C5	ATP	С	1	29.163	129.408	37.317	1.00	48.10	CMEK	¢
		ATOM	4642	C6	ATP	С	1	29.577	130.748	36.974	1.00	49.10	CMEK	С
		ATOM	4643	N6	ATP	С	1	29.349	131.405	35.809	1.00	50.10	CMEK	N
		ATOM	4644	N1	ATP	С	1	30.306	131.446	37.980	1.00	51.10	CMEK	N
	10	ATOM	4645	C2	ATP	С	1	30.574	130.793	39.242	1.00	52.10	CMEK	С
		ATOM	4646	NЗ	ATP	С	1	30.199	129.561	39.585	1.00	53.10	CMEK	N
		ATOM	4647	C4	ATP	С	1	29.470	128.901	38.536	1.00	54.10	CMEK	С
		TER	4648		ATP	С	1						CMEK	
	15	MOTA	4649	PG	ATP	D	2	29.424	104.838	32.878	1.00	75.15	DMEK	P
		ATOM	4650	01G	ATP	D	2	28.163	104.521	32.044	1.00	75.28	DMEK	0
		ATOM	4651	02G	ATP	D	2	29.347	103.988	34.063	1.00	76.99	DMEK	0
		ATOM	4652	03G	ATP	D	2	29.463	106.193	33.255	1.00	80.23	DMEK	0
2	20	ATOM	4653	PB	ATP	D	2	31.113	103.262	31.222	1.00	66.58	DMEK	P
		ATOM	4654	01B	ATP	D	2	31.019	102.134	32.097	1.00	73.34	DMEK	0
		ATOM	4655	02B	ATP	D	2	30.363	102.866	30.062	1.00	72.36	DMEK	0
		ATOM	4656	03B	ATP	D	2	30.725	104.378	32.109	1.00	76.32	DMEK	0
2	?5	ATOM	4657	PA	ATP	D	2	33.650	104.372	31.504	1.00	70.83	DMEK	P
		ATOM	4658	01A	ATP	D	2	33.308	105.811	31.297	1.00	74.45	DMEK	0
		ATOM	4659	02A	ATP	D	2	33.895	103.914	32.924	1.00	72.07	DMEK	0
		ATOM	4660	O3A	ATP	D	2	32.592	103.498	30.869	1.00	72.74	DMEK	0
2	30	ATOM	4661	05'	ATP	D	2	34.778	103.860	30.457	1.00	68.35	DMEK	0
		ATOM	4662	C5'	ATP	D	2	34.611	104.240	29.065	1.00	68.49	DMEK	С
		ATOM	4663	C4'	ATP	D	2	34.664	103.110	28.238	1.00	71.78	DMEK	С
		ATOM	4664	04 '	ATP	D	2	36.063	102.830	27.928	1.00	69.78	DMEK	0
2	35	MOTA	4665		ATP		2	34.162	101.779	28.829	1.00	71.02	DMEK	С
		ATOM	4666		ATP		2	32.729	101.656	28.752	1.00	73.14	DMEK	o
			4667		ATP		2	34.989	100.779	28.035	1.00	68.97	DMEK	С
		ATOM	4668		ATP		2	34.314	100.473	26.803	1.00	71.55	DMEK	0
4	10		4669		ATP			36.286	101.443	27.803	1.00	66.97	DMEK	С
					ATP	D	2	37.345	101.058	28.772	1.00	65.61	DMEK	N
					ATP				101.449	30.122	1.00	62.14	DMEK	С
					ATP			38.613	100.910	30.717	1.00	65.57	DMEK	N
4	15				ATP				100.134	29.616	1.00	64.85	DMEK	С
					ATP		2	40.304	99.324	29.690	1.00	65.51	DMEK	С
					ATP		2	41.103	99.177	30.755	1.00	62.71	DMEK	N
					ATP		2	40.666	98.612	28.510	1.00	64.42	DMEK	N
ź	50				ATP			39.825	98.745	27.334	1.00	63.10	DMEK	С
					ATP			38.702	99.501	27.238		65.01	DMEK	N
					ATP			38.393	100.195	28.467	1.00	66.09	DMEK	С
			4680		ATP		2						DMEK	
é	55	ATOM	4681	C1	LIG	P	1	23.850	126.521	29.116	1.00	35.58	LIG3	С

	MOTA	4682	C2	LIG	P	1	25.029	127.180	29.556	1.00 35.58	LIG3	С
	MOTA	4683	C3	LIG	P	1	25.081	128.581	29.780	1.00 35.58	LIG3	С
5	MOTA	4684	C4	LIG	P	1	23.895	129.328	29.548	1.00 35.58	LIG3	С
	MOTA	4685	C5	LIG	P	1	22.695	128.707	29.115	1.00 35.58	LIG3	С
	ATOM	4686	C6	LIG	P	1	22.655	127.310	28.898	1.00 35.58	LIG3	С
	MOTA	4687	N1	LIG	P	1	23.901	125.065	28.891	1.00 35.58	LIG3	N
10	MOTA	4688	11	LIG	P	1	23.913	131.362	29.843	1.00 35.58	LIG3	I
	ATOM	4689	F1	LIG	P	1	26.080	126.403	29.737	1.00 35.58	LIG3	F
	ATOM	4690	C7	LIG	P	1	21.134	122,450	28.213	1.00 35.58	LIG3	С
	ATOM	4691	C9	LIG	P	1	22.200	123.167	28.842	1.00 35.58	LIG3	¢
15	MOTA	4692	C11	LIG	P	1	22.803	124.326	28.242	1.00 35.58	LIG3	С
	MOTA	4693	C14	LIG	P	1	22.279	124.723	26.971	1.00 35.58	LIG3	С
	MOTA	4694	C17	LIG	P	1	21.219	124.007	26.347	1.00 35.58	LIG3	С
	ATOM	4695	C19	LIG	P	1	20.643	122.875	26.966	1.00 35.58	LIG3	С
20	ATOM	4696	F3	LIG	P	1	22.795	125.787	26.347	1.00 35.58	LIG3	F
	ATOM	4697	F2	LIG	P	1	20.778	124.429	25.153	1.00 35.58	LIG3	F
	ATOM	4698	N4	LIG	P	1	23.757	123.131	30.830	1.00 35.58	LIG3	N
	ATOM	4699	N2	LIG	P	1	23.912	122.424	31.875	1.00 35.58	LIG3	N
25	MOTA	4700	C12	LIG	P	1	22.949	121.427	31.914	1.00 35.58	LIG3	С
	ATOM	4701	01	LIG	P	1	22.213	121.589	30.812	1.00 35.58	LIG3	0
	ATOM	4702	C18	LIG	P	1	22.687	122.637	30.118	1.00 35.58	LIG3	С
	ATOM	4703	N3	LIG	P	. 1	22.748	120.420	32.906	1.00 35.58	LIG3	N
30	ATOM	4704	C10	LIG	P	1	21.601	119.516	32.648	1.00 35.58	LIG3	С
	ATOM	4705	C15	LIG	P	1	21.975	118.210	32.117	1.00 35.58	LIG3	С
	ATOM	4706	C8	LIG	P	1	18.975	116.257	30.712	1.00 35.58	LIG3	С
	MOTA	4707	02	LIG	P	1	19.403	114.957	31.236	1.00 35.58	LIG3	0
35	ATOM	4708	C13	LIG	P	1	20.031	115.019	32.569	1.00 35.58	LIG3	С
	MOTA	4709	C16	LIG	P	1	21.254	115.990	32.564	1.00 35.58	LIG3	С
	ATOM	4710	N5	LIG	P	1	20.789	117.333	32.100	1.00 35.58	LIG3	N
	ATOM	4711		LIG	P	1	20.175	117.244	30.715	1.00 35.58	LIG3	С
40	MOTA	4712	C1	LIG	P	2	37.669	102.120	39.312	1.00 35.58	LIG3	С
	MOTA	4713	C2	LIG	P	2	38.615	102.065	38.252	1.00 35.58	LIG3	С
	ATOM	4714	C3	LIG	P	2	39.410	100.923	38.021	1.00 35.58	LIG3	С
	ATOM	4715	C4	LIG	P	2	39.246	99.798	38.886	1.00 35.58	LIG3	¢
45	ATOM	4716	C5	LIG	P	2	38.314	99.798	39.944	1.00 35.58	LIG3	С
	ATOM	4717	C6	LIG	P	2	37.516	100.948	40.171	1.00 35.58	LIG3	С
	ATOM	4718	N1	LIG	P	2	36.892	103.363	39.509	1.00 35.58	LIG3	N
	ATOM	4719	11	LIG	P	2	40.419	98.138	38.591	1.00 35.58	LIG3	I
50	ATOM	4720	F1	LIG	P	2	38.720	103.148	37.495	1.00 35.58	LIG3	F
	MOTA	4721	C7	LIG	P	2	33.938	104.027	41.882	1.00 35.58	LIG3	С
	ATOM	4722	C9	LIG	P	2	34.714	103.836	40.700	1.00 35.58	LIG3	С
55	ATOM	4723	C11	LIG	P	2	36.102	103.565	40.732	1.00 35.58	LIG3	С
33	ATOM	4724	C14	LIG	P	2	36.698	103.491	42.023	1.00 35.58	LIG3	С

	MOTA	4725	C17	LIG	P	2	35.913	103.681	43.227	1.00	35.58	LIG3	С
	ATOM	4726	C19	LIG	P	2	34.538	103.949	43.146	1.00	35.58	LIG3	С.
5	ATOM	4727	F3	LIG	P	2	38.014	103.234	42.089	1.00	35.58	LIG3	F
	MOTA	4728	F2	LIG	P	2	36.500	103.599	44.433	1.00	35.58	LIG3	F
	MOTA	4729	N4	LIG	P	2	34.578	103.879	38.201	1.00	35.58	LIG3	N
10	MOTA	4730	N2	LIG	P	2	33.662	104.030	37.334	1.00	35.58	LIG3	N
10	ATOM	4731	C12	LIG	P	2	32.475	104.204	37.973	1.00	35.58	LIG3	С
	ATOM	4732	01	LIG	P	2	32.741	104.155	39.272	1.00	35.58	LIG3	0
	MOTA	4733	C18	LIG	₽	2	34.020	103.954	39.446	1.00	35.58	LIG3	С
15	MOTA	4734	N3	LIG	P	2	31.193	104.398	37.433	1.00	35.58	LIG3	N
	MOTA	4735	C10	LIG	P	2	30.192	104.523	38.513	1.00	35.58	LIG3	С
	ATOM	4736	C15	LIG	P	2	29.833	105.891	38.806	1.00	35.58	LIG3	С
	MOTA	4737	C8	LIG	P	2	26.225	106.056	37.870	1.00	35.58	LIG3	С
20	ATOM	4738	02	LIG	₽	2	26.130	107.521	37.705	1.00	35.58	LIG3	0
	MOTA	4739	C13	LIG	P	2	27.327	108.136	37.123	1.00	35.58	LIG3	C
	ATOM	4740	C16	LIG	P	2	28.602	107.702	37.928	1.00	35.58	LIG3	С
	ATOM	4741	N5	LIG	P	2	28.639	106.210	38.054	1.00	35.58	LIG3	N
25	MOTA	4742	C20	LIG	P	2	27.428	105.709	38.747	1.00	35.58	LIG3	С
	TER	4743		LIG	P	2						LIG3	
	HETATM	4744	MG+2	MG2		1	23.883	123.724	36.546	1.00	40.77	Mg	MG
	HETATM	4745	MG+2	MG2		2	32.455	101.975	33.764	1.00	40.77	Mg	MG
30	END												

Table 3

35	Multiple Sequ		te Residues of MEK1 and MEK2 That are Within 1 Inhibitor-Binding Site					
	Residu	es that are within 4 Å of the ligand	Residues that are within 5 Å of the ligand					
	MEK1	Corresponding residues in MEK2	MEK1	Corresponding residues in MEK2				
40	G77	G81	G77	G81				
	N78	N82	N78	N82				
	G79	G83	G79	G83				
45	G80	G84	G80	G84				
	K97	K101	K97	K101				
	199	1103	199	I103				
50	L115	L119	L115	L119				
50	L118	L122	L118	L122				
	V127	V131	1126	I130				
	F129	F133	V127	V131				
55	141	1145	G128	G132				
	M143	M147	F129	F133				

Table 3 (continued)

Multiple Sequ	uence Alignment of Inhibitor-Binding Si 4 Å or 5 Å of the MEK		
Residu	es that are within 4 Å of the ligand	Residu	ues that are within 5 Å of the ligand
MEK1	Corresponding residues in MEK2	MEK1	Corresponding residues in MEK2
C207	C211	1141	1145
D208	D212	M143	M147
F209	F213	D190	D194
G210	G214	N195	N199
V211	V215	L206	L210
S212	S216	C207	C211
L215	L219	D208	D212
1216	1220	F209	F213
M219	M223	G210	G214
		V211	V215
		S212	S216
		L215	L219
		1216	1220
		M219	M223
		F223	F227

30

Table 4

	Multiple Seq	uence Alignment of Inibitor-Binding Sit 4 Å or 5 Å of the MEK		MEK1 and MEK2 That are Within Either ling Site
35	Residues that	are within 4 Å of the ATP co-factor	Residues tha	t are within 5 Å of the ATP co-factor
	MEK1	Corresponding residues in MEK2	MEK1	Corresponding residues in MEK2
	L74	L78	L74	L78
40	G75	G79	G75	G79
-10	A76	A80	A76	A80
	G77	G81	G77	G81
	N78	N82	N78	N82
45	G80	G84	G79	G83
	V81	V85	G80	G84
	V82	V86	V81	V85
50	A95	A99	V82	V86
	K97	K101	A95	A99
	V127	V131	K97	K101
	M143	M147	V127	V131
55	E144	E148	M143	M147
	H145	H149	E144	E148

Table 4 (continued)

	Multiple Seq	uence Alignment of Inibitor-Binding Si 4 Å or 5 Å of the MER					
5	Residues that	are within 4 Å of the ATP co-factor	Residues that are within 5 Å of the ATP co-factor				
	M146 N G149 G S150 S D152 D O153 C K192 K S194 S	Corresponding residues in MEK2	MEK1	Corresponding residues in MEK2			
	M146	M150	H145	H149			
	G149	G153	M146	M150			
	S150	\$154	D147	D151			
	D152	D156	G149	G153			
	Q153	Q157	S150	S154			
	K192	K196	D152	D156			
	S194	\$198	Q153	Q157			
	N195	N199	D190	D194			
	L197	L201	K192	K196			
	D208	D212	S194	S198			
	V224	V228	N195	N199			
			L197	L201			
			C207	C211			
			D208	D212			
			V224	V228			
			G225	G229			

Table 5

35	Sequence Ide	ntities Within the	n the Kinase Domain and the Inhibitor-Binding Site for Human MEK1 Versus Other Members of the MEK Family								
	Sequence Name (Human)	Kinase Sequence Ide	Domain entity to MEK1		nding Site e Identity a) to MEK1	Ligand-Binding Site Sequence Identity (within 5 Å) to MEK1					
40		Counting gaps	Not counting gaps	Counting gaps	Not counting gaps	Counting gaps	Not counting gaps				
	MPK2	84.83	85.89	100	100	100	100				
	MPK3	35.26	41.88	71.43	71.43	62.96	62.96				
45	MPK4	35.74	42.96	71.43	71.43	70.37	70.37				
	MPK5	38.11	46.82	80.95	80.95	81.48	81.48				
	MPK6	35.56	42.55	71.43	71.43	62.96	62.96				
50	MPK7	34.45	40.79	61.90	61.90	62.96	62.96				

Table 6

Sequence Identities Within the Kinase Domain and the ATP-Binding Site for Human MEK1 Versus Other Members of the MEK Family 5 Sequence Kinase Domain ATP-Binding Site ATP-Binding Site Name Sequence Identity to MEK1 Sequence Identity Sequence Identity (Human) (within 4 Å) to MEK1 (within 5 Å) to MEK1 Counting Not counting Counting Not counting Counting Not counting 10 gaps gaps gaps gaps gaps gaps MPK2 84.83 85.89 100 100 100 100 MPK3 35.26 41.88 76.00 76.00 76.67 76.67 MPK4 35.74 42.96 68.00 68.00 66.67 66.67 15 MPK5 38.11 46.82 76.00 76.00 80.00 80.00 MPK6 35.56 42.55 76.00 76.00 76.67 76.67 MPK7 34.45 40.79 60.00 60.00 60.00 60.00 20

Table 7

Secondary Structure	Amino Acid Residues
Unstructured*	62:67
Beta Sheet	68:76
Beta Sheet	81:87
Beta Sheet	92:98
Alpha Helix	105:120
Beta Sheet	129:134
Beta sheet	139:143
Beta Sheet	149:150
Alpha Helix	151:156
Alpha Helix	163:184
Beta Sheet	196:198
Beta Sheet	204:206
Alpha Helix	213:218
Flexible Loop*	219:231
Alpha Helix	232:236
Alpha Helix	243:258
Flexible Loop*	259:309
Alpha Helix	310:318
Alpha Helix	332:341
Alpha Helix	352:357
Alpha Helix	359:362
Alpha Helix	372:379
Unstructured*	380:383

^{*} These features were not included in the structural model due to the lack of interpretable electron density.

Table 8

RMS D	eviation Valu	es for Selecte	ed C alpha and	Backbone Ato	oms of MEK1	and MEK2 Stru	uctures*	
RMSD between overall MEK1 and MEK2 structures		RMSD betwee domain of M MEK2 struct		RMSD between inhibitor bindi residues of MMEK2	ng site	RMSD between the 5 Å inhibitor binding site residues of MEK1 and MEK2		
Using C alpha only	Using Backbone atoms	Using C alpha only	Using Backbone atoms	Using C alpha only	Using Backbone atoms	Using C alpha only	Using Backbone atoms	
1.02	1.11	0.95	1.02	1.08	1.22	0.99	1.12	

^{*} The residues used in the RMS deviation calculations can be found in the embodiment.

SEQUENCE LISTING

5	<110>	Warn	er-Lambert	Company										
	<120>		LEX CONTAIN		YSTAL OF A DIFIED MEK1		IGAND: COFF AND METHODS	OF USE						
10	<130>	PC20	519A											
	<150>	US 6	0/341,882											
15	<151>	2001	-12-21											
	<160>	19												
	<170>	PatentIn version 3.1												
20	<210>	1												
	<211>	2222												
	<212>	DNA												
25	<213>	Homo	sapiens											
30	<400> attcgg	1 scacg	agggaggaag	cgagaggtgc	tgccctcccc	ccggagttgg	aagcgcgtta	60						
	cccggg	tcca	aaatgcccaa	gaagaagccg	acgcccatcc	agctgaaccc	ggccccgac	120						
	ggctct	gcag	ttaacgggac	cagctctgcg	gagaccaact	tggaggcctt	gcagaagaag	180						
35	ctggag	gagc	tagagettga	tgagcagcag	cgaaagcgcc	ttgaggcctt	tcttacccag	240						
	aagcag	jaagg	tgggagaact	gaaggatgac	gactttgaga	agatcagtga	gctgggggct	300						
40	ggcaat	ggcg	gtgtggtgtt	caaggtctcc	cacaagcctt	ctggcctggt	catggccaga	360						
	aagcta	attc	atctggagat	caaacccgca	atccggaacc	agatcataag	ggagctgcag	420						
	gttctg	gcatg	agtgcaactc	tccgtacatc	gtgggcttct	atggtgcgtt	ctacagcgat	480						
45	ggcgag	gatca	gtatctgcat	ggagcacatg	gatggaggtt	ctctggatca	agtcctgaag	540						
	aaagct	ggaa	gaattcctga	acaaatttta	ggaaaagtta	gcattgctgt	aataaaaggc	600						
	ctgaca	atatc	tgagggagaa	gcacaagatc	atgcacagag	atgtcaagcc	ctccaacatc	660						
50	ctagto	aact	cccgtgggga	gatcaagctc	tgtgactttg	gggtcagcgg	gcagctcatc	720						
	gacted	atgg	ccaactcctt	cgtgggcaca	aggtcctaca	tgtcgccaga	aagactccag	780						
	gggact	catt	actctgtgca	gtcagacatc	tggagcatgg	gactgtctct	ggtagagatg	840						
55	gcggtt	ggga	ggtatcccat	ccctcctcca	gatgccaagg	agctggagct	gatgtttggg	900						

tgccaggtgg	aaggagatgc	ggctgagacc	ccacccaggc	caaggacccc	cgggaggccc	960
cttagctcat	acggaatgga	cagccgacct	cccatggcaa	tttttgagtt	gttggattac	1020
atagtcaacg	agectectcc	aaaactgccc	agtggagtgt	tcagtctgga	atttcaagat	1080
tttgtgaata	aatgcttaat	aaaaaacccc	gcagagagag	cagatttgaa	gcaactcatg	1140
gttcatgctt	ttatcaagag	atctgatgct	gaggaagtgg	attttgcagg	ttggctctgc	1200
tecaccateg	gccttaacca	gcccagcaca	ccaacccatg	ctgctggcgt	ctaagtgttt	1260
gggaagcaac	aaagagcgag	teccetgece	ggtggtttgc	catgtcgctt	ttgggcetcc	1320
ttcccatgcc	tgtctctgtt	cagatgtgca	tttcacctgt	gacaaaggat	gaagaacaca	1380
gcatgtgcca	agattctact	cttgtcattt	ttaatattac	tgtctttatt	cttattacta	1440
ttattgttcc	cctaagtgga	ttggctttgt	gcttggggct	atttgtgtgt	atgctgatga	1500
tcaaaacctg	tgccaggctg	aattacagtg	aaatttttgg	tgaatgtggg	tagtcattct	1560
tacaattgca	ctgctgttcc	tgctccatga	ctggctgtct	gcctgtattt	tcggactttg	1620
acatttgaca	tttggtggac	tttatcttgc	tgggcatact	ttctctctag	gagggagcct	1680
tgtgagatcc	ttcacaggca	gtgcatgtga	agcatgcttt	gctgctatga	aaatgagcat	1740
cagagagtgt	acatcatgtt	attttattat	tattatttgc	ttttcatgta	gaactcagca	1800
gttgacatcc	aaatctagcc	agagcccttc	actgccatga	tagctggggc	ttcaccagtc	1860
tgtctactgt	ggtgatctgt	agacttctgg	ttgtatttct	atatttattt	tcagtatact	1920
gtgtgggata	cttagtggta	tgtctcttta	agttttgatt	aatgtttctt	aaatggaatt	1980
atttgaatgt	cacaaattga	tcaagatatt	aaaatgtcgg	atttatcttt	ccccatatcc	2040
aagtaccaat	gctgttgtaa	acaacgtgta	tagtgcctaa	aattgtatga	aaatcctttt	2100
aaccatttta	acctagatgt	ttaacaaatc	taatctctta	ttctaataaa	tatactatga	2160
aataaaaaaa	aaaggagaaa	gctaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2220
aa						222
	cttagcteat atagteaacg tttgtgaata gtteatgett teceaceateg gggaageaca tteceatgec gcatgtgeca ttattgttee teaaaacetg tacaattgea acatttgaca tgtgagatee cagagagtgt gttgacatee tgtgacatee tgtgagatea acttgaatgt aagtaceatt aaccatttta aataaaaaaa	cttagctcat acggaatgaa atagtcaacg agcctcctcc tttgtgaata aatgcttaat gttcatgctt ttatcaagag tccaccatcg gccttaacca gggaagcaac acagagcgag ttcccatgcc tgtctctgtt gcatgtgcca agattctact ttattgttcc cctaagtgga tcacaatcgc tgccaggctg tacaatcgca tttggtggac tgtgagatcc ttcacaggca cagagagtgt acatcatgtt gttgacatcc acatcatgtt gttgacatcc acatcatgtt gtggaatcc ttcatggtg tgtgacatcc acatcatgtt gtggaatcc ttcatgtgta atttgaatgt cacaattga aagtaccaat gctgttgtaa aacaatttaa acctagatgt aataaaaaaa aaaggagaaa	cttagctcat acggaatgga caqccgacct atagtcaacg agcctcctcc aaaactgccc tttgtgaata aatgcttaat aaaaaacccc gttcatgctt ttatcaagag atctgatgct tccaccatcg gccttaacca gcccagcaca gggaagcaac aaagagcgag tccctgccc ttcccatgcc tgtctctgtt cagatgtgca gcatgtgcca agattctact cttgtcattt ttattgttcc cctaagtgga ttggcttgt tcaaaacctg tgccaggetg aattacagtg tacaattgca ctgctgttcc tgctccatga acatttgaca tttggtggac tttatcttgc tgtgagatcc tcacaggca gtgcatgtga cagagagtgt acatcatgtt attttattat gttgacatcc aaatcatgt agaccttct tgtctactgt ggtgatcgt agaccttct tgtctactgt ggtgatcgt agaccttct tgtctactgt cacaattga tcacagtat acattgaact cacaattga tcacagtat acattgaact cacaattga tcacagtat acattgaact cacaattga tcacagtat acattgaact cacaattga tcacagtat acattgaactat cacaaattga tcacagtat aagtaccaat gctgtttaa acaacgtgta aaccatttta acctagatgt ttacaaaaca aataaaaaaa aaaggagaaa gctaaaaaaa	cttagctcat acggaatgga cagccgacct cccatggcaa atagtcaacg agcctcctcc aaaactgccc agtggagtgt tttgtgaata aatgcttaat aaaaaacccc gcagagagag gttcatgctt ttatcaagag atctgatgct gaggaagtgg tccaccatcg gccttaacca gcccagcaca ccaacccatg gggaagcaac aaagagcgag tccctgcc ggtggtttgc ttcccatgcc tgtctctgtt cagatgtgca tttcacctgt gcatgtgcca agattctact cttgtcattt ttaatattac ttattgttcc cctaagtgga ttggctttg gettgggct tcaaaacctg tgccaggetg aattacagtg aaatttttgg tacaattgca ctgctgttcc tgctccatga ctggctgtct acaattgca cttggtgac tttatcttgc tgggcatact tgtgagatcc ttcacaggca gtgcatgtga agcatgcttt cagagagtgt acatcatgtt attttattat tattattgc gttgacatcc aaactcatgt agcctctag ttgtacttgc gtggaatcc ttcacaggca gtgcatgtga tggatgttt tcagagagtgt acatcatgtt attttattat tattattgc gttgacatcc aaactcatgt agccttctag ttgtatttct gtgtgggata cttagtggta tgctcttta agttttgatt atttgatgt cacaaattga tcaagatat aaaaatgcogg aagtaccaat gctgttgtaa acaagtgta tagtgcctaa aaccatttta acctagatgt ttaacaaac taatccttaa aacaatttta acctagatgt ttaacaaac taatccttaa aaaaaaaaaa aaaggagaaa gctaaaaaa aaaaaaaaaa	cttagctcat acggaatgga cagccgacct cocatggcaa tittitgagtt atagtcaacg agcctcctcc aaaaccccc agtggagtgt tcagtctgaa titgtgaata aatgcttaat aaaaaacccc gcagagagag cagatttgaa gttcatgctt ttatcaagag atctgatgt gaggaagtgg attitgcagg tccaccatcg gccttaacca gcccagcaca ccaacccatg ctgctggggt gggaagcaac aaagagcgag tccctgccc ggtggtttgc catgtcgctt ttcccatgcc tgtctctgtt cagatgtgca tttcacctgt gacaaaggat gcatgtgcca agattctact cttgtcattt ttaatattac tgtctttatt ttattgttcc cctaagtgga ttggctttgt gcttggggt tccaagacctg tgccagggtg attatgcaggat tcaaaaccctg tgccaggctg aattacagtg aaatttttgg tgaatgtggt tcaaaacctg tgccaggctg aattacagtg aaatttttgg tgaatgtggg tacaattgca cttggtgttc tgctccatga ctggctgtct gcctgtattt acaattggaa tttggtggac tttatcttgc tgggcatact ttctctctag tgtgagatcc tcacaggca gtgcatgtga agcatgcttt gctgctatga cagagagtgt acatcatgtt attttattat tattatttgc ttttcatgta gttgacatcc aaatctagcc agagccctc actgccatga tagctggggc tgtctactgt ggtgatctgt agacttctgg ttgtatttc atattatte gtgtgggata cttagtggta tgtcacqtag ttgtatttc atattatte gtgtgggata cttagtggta tcacaattga tagacqctta agataccaat aattgtata aagtaccaat gctgtttgaa acaacgtgta tagacgccaa aattgtatga aaccatttta acctagatgt ttaaccaaac taacaaaaaa aaaaaaaaa aaaaaaaa	tegocagging aaggagatge ggetgagace ceaccagge caaggacece citagectat acggaatgga cagcegacet cocatggeaa tittigaggit gittigattat atagecaacg agectoctoc aaaacacgece agiggaggig teagtotga atticaagat titigigaata aatgetaata aaaaaaccce geagagagag cagatitigaa geaacteatg gitcaatget titateaagag atctgatget gaggaaggig attitigaaggi titigigaata atacaagag atctgatget gaggaaggig attitigaaggi titigigattat geagaaggig attitigiaaggi titigigaataa geaacaaaggaag accagacaa ceaaccaatg etgetgaggi titigigaatgi gitigigaagaaggig attitigiaaggi titigigaatgi gigaaggaaggig attitigiaaggi titigigaatgi ggaaggaaggaaggaaggaaggaaggaaggaaggaag

45 <210> 2 <211> 393

<212> PRT

50 <213> Homo sapiens

	<400> 2															
5	Met 1	Pro	Lys	Lys	Lys 5	Pro	Thr	Pro	Ile	G1n 10	Leu	Asn	Pro	Ala	Pro 15	Asp
	Gly	Ser	Ala	Val 20	Asn	Gly	Thr	Ser	ser 25	Ala	Glu	Thr	Asn	Leu 30	G1u	Ala
10	Leu	Gln	Lys 35	Lys	Leu	Glu	Glu	Leu 40	G1u	Leu	Asp	Glu	Gln 45	Gln	Arg	Lуs
15	Arg	Leu 50	Glu	Ala	Phe	Leu	Thr 55	Gln	Lys	Gln	Lys	Val 60	Gly	Gl u	Leu	Lys
	Asp 65	Asp	Asp	Phe	Glu	Lys 70	Ile	Ser	G1u	Leu	Gly 75	Ala	Gly	Asn	Gly	Gly 80
20	val	Val	Phe	Lys	Val 85	Ser	His	Lys	Pro	Ser 90	G1y	Leu	Val	Met	Ala 95	Arg
25	Lys	Leu	Ile	His 100	Leu	Glu	Ile	Lys	Pro 105	Ala	Ile	Arg	Asn	Gln 110	Ile	Ile
30	Arg	Glu	Leu 115	Gln	Va1	Leu	His	Glu 120	Cys	Asn	Ser	Pro	Tyr 125	Ile	Val	Gly
	Phe	Tyr 130	G1y	Ala	Phe	Tyr	Ser 135	Asp	Gly	Glu	Ile	Ser 140	Ile	Сув	Met	Glu
35	His 145	Met	Asp	Gly	Gly	Ser 150	Leu	Asp	Gln	Val	Leu 155	Lys	Lys	Ala	Gly	Arg
40	Ile	Pro	Glu	Gln	Ile 165		Gly	Lys	Va1	Ser 170	Ile	Ala	Va1	Ile	Lys 175	Gly
	Leu	Thr	Tyr	Leu 180	Arg	Glu	Lys	His	Lys 185		Met	His	Arg	Asp 190	Val	Lys
45	Pro	Ser	Asn 195	Ile	Leu	Val	Asn	Ser 200		Gly	Glu	Ile	Lys 205	Leu	Суз	Asp
50	Phe	Gly 210		Ser	Gly	Gln	Leu 215		Asp	Ser	Met	Ala 220		Ser	Phe	Va1

Gly Thr Arg Ser Tyr Met Ser Pro Glu Arg Leu Gln Gly Thr His Tyr $225 \hspace{1.5cm} 230 \hspace{1.5cm} 235 \hspace{1.5cm} 240$

55

	Ser	Val	Gln	Ser	Asp 245	Ile	Trp	Ser	Met	Gly 250	Leu	Ser	Leu	Va1	Glu 255	Met		
5	Ala	Val	Gly	Arg 260	Tyr	Pro	Ile	Pro	Pro 265	Pro	Asp	Ala	Lys	Glu 270	Leu	Glu		
10	Leu		Phe 275	Gly	Суз	Gln	Val	Glu 280	Gly	Asp	Ala	Ala	Glu 285	Thr	Pro	Pro		
15		Pro 290	Arg	Thr	Pro	Gly	Arg 295	Pro	Leu	Ser	Ser	Tyr 300	Gly	Met	Asp	Ser		
	Arg 305	Pro	Pro	Met	Ala	I1e 310	Phe	Glu	Leu	Leu	Asp 315	Tyr	Ile	Val	Asn	Glu 320		
20	Pro	Pro	Pro	Lys	Leu 325	Pro	Ser	Gly	Val	Phe 330	Ser	Leu	Glu	Phe	Gln 335	Asp		
25	Phe	Va1	Asn	Lys 340	Cys	Leu	Ile	Lys	Asn 345	Pro	Ala	Glu	Arg	A1a 350	Asp	Leu		
	Lys	G1n	Leu 355	Met	Val	His	Ala	Phe 360	Ile	ГÀЗ	Arg	Ser	Asp 365	Ala	Glu	Glu		
30	Val	Asp 370	Phe	A1a	Gly	Trp	Leu 375	Cys	Ser	Thr	Ile	Gly 380	Leu	Asn	Gln	Pro	,	
35	Ser 385	Thr	Pro	Thr	His	Ala 390	Ala	Gly	Val									
40	<210		3 1768															
	<212	2> :	DNA															
45	<213	3> :	Homo	sap	iens													
	<400		3 ggc	ccct	geet	ct c	ggac	tcgg	g ct	gcgg	cgtc	age	cttc	ttc	gggc	ctcggc		60
50	agc	ggta	gcg	gctc	gctc	ge e	tcag	cccc	a gc	gccc	ctcg	gct	accc	tcg	gccc	aggccc		120
	gcag	gege	cgc	ccgc	cctc	gg c	cgcc	ccga	c gc	cggc	ctgg	gcc	gcgg	ccg	cago	cccggg		180
55	ctc	gcgt	agg	cgcc	gacc	gc t	cccg	gccc	g cc	ccct	atgg	gcc	ccgg	cta	gagg	cgccgc		240

	cgccgccgg	gc	ccgcggagcc	ccgatgctgg	cccggaggaa	gccggtgctg	ccggcgctca	300
	ccatcaac	cc	taccategee	gagggcccat	cccctaccag	cgagggcgcc	tccgaggcaa	360
5	acctggtg	ga	cctgcagaag	aagctggagg	agctggaact	tgacgagcag	cagaagaagc	420
	ggctggaa	gc	ctttctcacc	cagaaagcca	aggtcggcga	actcaaagac	gatgacttcg	480
	aaaggatc	tc	agagctgggc	gcgggcaacg	gcggggtggt	caccaaagtc	cagcacagac	540
10	cctcgggc	ct	catcatggcc	aggaagctga	tccaccttga	gatcaagccg	gccatccgga	600
	accagato	at	ccgcgagctg	caggtcctgc	acgaatgcaa	ctcgccgtac	atcgtgggct	660
15	tctacggg	gc	cttctacagt	gacggggaga	tcagcatttg	catggaacac	atggacggcg	720
	gctccctg	ga	ccaggtgctg	aaagaggcca	agaggattcc	cgaggagatc	ctggggaaag	780
	tcagcatc	gc	ggttctccgg	ggcttggcgt	acctccgaga	gaagcaccag	atcatgcacc	840
20	gagatgtg	aa	gccctccaac	atcctcgtga	actctagagg	ggagatcaag	ctgtgtgact	900
	teggggtg	ag	cggccagctc	atagactcca	tggccaactc	cttcgtgggc	acgcgctcct	960
	acatggct	cc	ggagcggttg	cagggcacac	attactcggt	gcagtcggac	atctggagca	1020
25	tgggcctg	tc	cctggtggag	ctggccgtcg	gaaggtaccc	catccccccg	cccgacgcca	1080
	aagagctg	ga	ggccatcttt	ggccggcccg	tggtcgacgg	ggaagaagga	gagcctcaca	1140
	gcateteg	cc	teggeegagg	cccccgggc	gccccgtcag	cggtcacggg	atggatagcc	1200
30	ggeetgee	at	ggccatcttt	gaactcctgg	actatattgt	gaacgagcca	cctcctaagc	1260
	tgcccaac	gg	tgtgttcacc	cccgacttcc	aggagtttgt	caataaatgc	ctcatcaaga	1320
	acccagcg	ga	gcgggcggac	ctgaagatgc	tcacaaacca	caccttcatc	aagcggtccg	1380
35	aggtggaa	ga	agtggatttt	gccggctggt	tgtgtaaaac	cctgcggctg	aaccagcccg	1440
	gcacaccc	ac	gcgcaccgcc	gtgtgacagt	ggeegggete	cctgcgtccc	gctggtgacc	1500
40	tgcccacc	gt	ccctgtccat	gccccgccct	tccagctgag	gacaggctgg	cgcctccacc	1560
40	caccctcc	tg	cctcacccct	gcggagagca	ccgtggcggg	gcgacagcgc	atgcaggaac	1620
	gggggtct	cc	totootgccc	gtcctggccg	gggtgcctct	ggggacgggc	gacgctgctg	1680
45	tgtgtggt	ct	cagaggetet	gcttccttag	gttacaaaac	aaaacaggga	gagaaaaagc	1740
	aaaaaaa	aa	aaaaaaaaa	aaaaaaaa				1768
	<210> 4							
50								
	<211> 4	100						

<212> PRT <213> Homo sapiens

	<400)> 4	1													
5	Met 1	Leu	Ala	Arg	Arg 5	Lys	Pro	Val	Leu	Pro 10	Ala	Leu	Thr	Ile	Asn 15	Pro
10	Thr	Ile	Ala	Glu 20	Gly	Pro	Ser	Pro	Thr 25	Ser	Glu	Gly	Ala	Ser 30	Glu	Ala
	Asn	Leu	Val 35	Asp	Leu	Gln	Lys	Lys 40	Leu	Glu	Glu	Leu	Glu 45	Leu	Asp	Glu
15	Gln	G1n 50	Lys	Lys	Arg	Leu	Glu 55	Ala	Phe	Leu	Thr	Gln 60	Lys	Ala	Lys	Val
20	Gly 65	Glu	Leu	Lys	qaA	Asp 70	Asp	Phe	Glu	Arg	11e 75	Ser	Glu	Leu	Gly	Ala 80
25	Gly	Asn	Gly	Gly	Val 85	Val	Thr	Lys	Val	Gln 90	His	Arg	Pro	Ser	Gly 95	Leu
	Ile	Met	Ala	Arg 100	Lys	Leu	Ile	His	Leu 105	Glu	Ile	Lys	Pro	Al a 110	Ile	Arg
30	Asn	Gln	Ile 115	Ile	Arg	Glu	Leu	Gln 120	Val	Leu	His	Glu	Cys 125	Asn	Ser	Pro
35	Tyr	Ile 130	Val	Gly	Phe	Tyr	Cly 135	Ala	Phe	Tyr	Ser	Asp 140	Gly	Glu	Ile	Ser
	Ile 145		Met	Glu	His	Met 150	Asp	Gly	Gly	Ser	Leu 155	Asp	Gln	Val	Leu	Lys 160
40	Glu	Ala	Lys	Arg	Ile 165	Pro	Glu	Glu	Ile	Leu 170	Gly	Lys	Val	Ser	Ile 175	Ala
45	Va1	Leu	Arg	Gly 180	Leu	Ala	Tyr	Leu	Arg 185		Lys	His	Gln	Ile 190	Met	His
50	Arg	Asp	Val 195		Pro	Ser	Asn	Ile 200	Leu	Val	Asn	Ser	Arg 205	Gly	Glu	Ile
	Lys	Leu 210	Cys	Asp	Phe	Gly	Val 215	Ser	Gly	Gln	Leu	Ile 220	Asp	Ser	Met	Ala
55	Asn	Ser	Phe	Val	Gly	Thr	Arg	Ser	Туг	Met	Ala	Pro	Glu	Arg	Leu	Gln

	225		230			235		240
5	Gly Thr		Ser Val 245	Gln Ser	Asp Ile 250	Trp Ser	Met Gly I	Leu Ser 255
10	Leu Val	Glu Leu 260	Ala Val	Gly Arg	Tyr Pro 265	Ile Pro	Pro Pro 2 270	Asp Ala
	Lys Glu	Leu Glu . 275	Ala Ile	Phe Gly 280	Arg Pro	Val Val	Asp Gly 0 285	31u Glu
15	Gly Glu 290		Ser Ile	Ser Pro 295	Arg Pro	Arg Pro 300	Pro Gly	Arg Pro
20	Val Ser 305	Gly His	Gly Met 310	Asp Ser	Arg Pro	Ala Met 315	Ala Ile I	Phe Glu 320
	Leu Leu		Ile Val 325	Asn Glu	Pro Pro 330	Pro Lys	Leu Pro	Asn Gly 335
25	Val Phe	Thr Pro	Asp Phe	Gln Glu	Phe Val	Asn Lys	Cys Leu 350	Ile Lys
30	Asn Pro	Ala Glu 355	Arg Ala	Asp Leu 360		Leu Thr	Asn His '	Thr Phe
35	Ile Lys 370		Glu Val	Glu Glu 375	Val Asp	Phe Ala 380	Gly Trp	Leu Cys
	Lys Thr 385	Leu Arg	Leu Asn 390	Gln Pro	Gly Thr	Pro Thr 395	Arg Thr .	Ala Val 400
40	<210>	5						
	<211>	33						
	<212>	DNA						
45	<213>	Artificia	1 Seque	nce				
50	<220>							
50	<223>	Probe						
		5 cga aaaag	aagcc g	accccgat	c cag			33

	<210>	6	
	<211>	25	
5	<212>	DNA	
	<213>	Artificial Sequence	
10	<220>		
	<223>	Probe	
15	<400> aagctt	6 gacg ccagcagcat gggtt	25
	<210>	7	
20	<211>	29	
	<212>	DNA	
	<213>	Artificial Sequence	
25			
	<220>		
	<223>	Primer	
30	<400> cttgca	7 tatg gaggoottto ttacccaga	29
	<210>	8	
35	<211>	29	
	<212>	DNA	
40	<213>	Artificial Sequence	
	<220>		
	<223>	Primer	
45	<400>	8	
		ugett eacetggeac ceaaacate	25
50	<210>	9	
	<211>	30	
	<212>	DNA	
55			

	<213>	Artificial Sequence	
5	<220>		
	<223>	Primer	
10	<400> cttgcat	9 tatg gaactgaagg atgacgactt	30
	<210>	10	
15	<211>	29	
	<212>	DNA	
	<213>	Artificial Sequence	
20			
	<220>		
	<223>	Primer	
25		10 tatg cttgatgagc agcagcgaa	29
	<210>	11	
30	<211>	33	
	<212>	DNA	
35	<213>	Artificial Sequence	
	<220>		
40	<223>	Primer	
,,,	<400> catatg	11 aagc eggtgetgee ggegeteace atc	33
45	<210>	12	
	<211>	27	
	<212>	DNA	
50	<213>	Artificial Sequence	

<220>

<223> Primer

	<400> aagctt	12 ggcc actgtcacac ggcggtg	27
5	<210>	13	
	<211>	24	
10	<212>	DNA	
	<213>	Artificial Sequence	
15	<220>		
	<223>	Primer	
20	<400> atgetts	13 gacg agcagcagaa gaag	24
	<210>	14	
25	<211>	27	
25	<212>	DNA	
	<213>	Artificial Sequence	
30			
	<220>		
	<223>	Primer	
35	<400> atggaa	14 gcct ttctcaccca gaaagcc	27
	<210>	15	
40	<211>	24	
	<212>	DNA	
	<213>	Artificial Sequence	
45			
	<220>		
50	<223>	Primer	
		15 tttc tcacccagaa agcc	24
55	<210>	16	

	<211>	23	
	<212>	DNA	
5	<213>	Artificial Sequence	
	<220>		
10	<223>	Primer	
	<400> atgacc	16 caga aagccaaggt tgg	23
15			
	<210>	17	
	<211>	27	
20	<212>	DNA	
	<213>	Artificial Sequence	
25	<220>	(t)	
	<223>	Primer	
		17 aagg toggogaact caaagac	27
30			
	<210>	18	
	<211>	27	
35	<212>	DNA	
	<213>	Artificial Sequence	
40			
	<220>		
	<223>	Primer	
45	<400> atggtc	18 ggcg aactcaaaga cgatgac	27
	<210>	19	
50	<211>	47	
	<212>	DNA	
	<213>	Artificial Semience	

s <220>
<223> Primer

<400> 19
tcaatgatga tgatgatgat gttcaagcac agcggtgcgc gtgggtg 47

15 Claims

25

55

- 1. An isolated peptide selected from the group consisting of:
- a Mitogen Activated Protein Kinase 1 /ERK kinase 1 (MEK1) peptide having an NH₂-terminal truncation lacking from at least 30 to at most 70 amino acid residues from the NH₂-terminal region of the full-length MEK1 peptide set forth in SEQ ID NO: 2, or a conservatively substituted variant thereof;
 - a MEK1 peptide having a deletion of insertion loop-forming amino acid residues selected from amino acid 280 to amino acid 320 of SEQ ID NO: 2 or at least 40 amino acids from between amino acid residue 264 and amino acid 310 of SEQ ID NO: 2, or a conservatively substituted variant thereot;
 - a peptide comprising (1) an NH₂-terminal truncation lacking from at least 30 to at most 70 amino acid residues from the NH₂-terminal region of the full-length MEK1 peptide set forth in SEQ ID NO: 2; and (2) a deletion of insertion loop-forming amino acid residues selected from amino acid 280 to amino acid 320 of SEQ ID NO: 2 or at least 40 amino acids from between amino acid residue 284 and amino acid 310 of SEQ ID NO: 2, or a conservative vusualitude variant thereof:
- a Mitogen Activated Protein Kinase 2/ERK kinase 2 (MEK2) peptide having an NH₂-terminal truncation lacking from at least 34 to at most 74 amino acid residues from the NH₂-terminal region of the full-length MEK2 peptide set forth in SEO ID NO: 4, or a conservatively substituted variant thereof; and
- a peptide that is defined by the structural coordinates of the MEK1 or MEK2 peptide as set forth in Table 1 or Table 2 or a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2.
 - A peptide comprising a binding pocket selected from the group consisting of:

variant thereof:

- (a) a Mitogen Activated Protein Kinase 1 (FRK kinase 1 (MEK1) peptide ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within about 4 Å of a MEM inhibitor located in the ligand-binding site: G77, N78, G79, G80, K97, I99, L115, L118, V127, F129, I141, M143, C207, D208, F209, G270, V211, S212, L215, I216 and M219 of SEC ID ND·2, or a conservatively substituted variant thereof;
 (b) a MEK1 peptide ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within about 5 Å of a MEK1 inhibitor located in the ligand-binding site: G77, N78, G79, G80, K97, 199, L115, L118, I128, V127, G128, F129, I141, M149, D190, N195, L206, C207, D208, F209, G210, V211, S212, L215, I216, M219 and F223 of SEC ID NO². 2, or a conservatively substituted variant thereof;
 (c) a Mitogen Activated Protein Kinase 2/ERK kinase 2 (MEK2) MEK2 peptide ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within about 4 Å of a MEK2 hinbitor located in the ligand-binding site: G81, N82, G83, G84, K101, I103, L119, L122, V131, F133, I145, M147, C211, D212, F213, G214, V215, S216, L219, I230, M223 of SEC ID NO·1, 4, or a conservatively substituted
 - (d) a MEK2 peptide ligand-binding pocket that is defined by structural coordinates of the following amino acid residues within about 5 Å of a MEK2 inhibitor located in the ligand-binding site: G81, N82, G83, G84, K101, 103, L119, L122, H30, V131, G132, F133, I145, M147, D194, N199, L210, C211, D212, F213, G214, V215, S216, L219, I220, M223, F227, of SEQ ID NO: 4, or a conservatively substituted variant thereof;
 - (e) a MEK1 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 4 Å of a cofactor located in the cofactor-binding site: L74, G75, A76, G77, N78, G80, V81,

V82, A95, K97, V127, M143, E144, H145, M146, G149, S150, D152, Q153, K192, S194, N195, L197, D208 and V224 of SEQ ID NO: 2, or a conservatively substituted variant thereof;

(f) a MEK1 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 5 Å of a cofactor located in the cofactor-binding site: L74, G75, A76, G77, N78, G79, 80, V81, V82, A95, K97, V127, M143, E144, H145, M146, D147, G149, S150, D152, Q153, D190, K192, S194, N195, L197, C207, D208, V224 and G225 of SEO ID NO2. or a conservatively substituted variant thereof:

(g) a MEK2 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 4 Å of a cofactor located in the cofactor-binding site: L78, G79, A80, G81, N82, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, G153, S154, D156, G157, K196, S198, N199, L201, D212, V228 of SEQ ID N0: 4, or a conservatively substituted variant thereof:

(h) a MEK2 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 5 Å of a cofactor in the cofactor-binding site: L78, G79, A80, G81, N82, G83, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, D151, G153, S154, D156, Q157, D194, K196, S198, N199, L201, C211, D212, V228, G229 of SEQ ID NO: 4, or a conservatively substituted variant thereof; and

(i) a binding pocket that is defined by the atoms found in the structural coordinates of the MEK1 or MEK2 peptide as set forth in Table 1 or Table 2, or in a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the binding pocket C alpha atoms of the MEK1 or MEK2 binding pockets according to (a) - (f)), or a conservatively substituted variant thereof.

- A crystalline structure of a peptide:ligand:cofactor complex comprising a peptide according to claim 1 or claim 2.
 - 4. Three-dimensional structural coordinates of a peptide:ligand:cofactor complex, comprising:

a peptide; a cofactor; and

15

25

30

35

45

55

a ligand,

wherein the complex has the atomic coordinates set forth in Table 1 or Table 2, or a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2.

- 5. An expression vector for producing the peptide according to claim 1 or claim 2 in a host cell comprising a polynucleotide encoding the modified peptide, and transcriptional and translational regulatory sequences functional in the host cell operably linked to the modified peptide.
- A host cell stably transformed and transfected with a polynucleotide selected from the group consisting of a polynucleotide encoding the peptide according to claim 1 or claim 2, or a conservatively substituted variant thereof.
- A method of utilizing molecular replacement to obtain structural information about a molecule or a molecular complex of unknown structure comprising:

crystallizing said molecule or molecular complex;

generating an X-ray diffraction pattern from said crystallized molecule or molecular complex: and applying at least a portion of the structural coordinates set forth in Table 1 or Table 2, or a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2, to the X-ray diffraction pattern to generate a three-dimensional electron density map of at least a portion of the molecule or molecular complex whose structure is unknown.

- 8. A method for generating a three-dimensional computer representation of a peptide according to claim 1 or claim 2, or a binding pocket thereof, comprising applying the atomic coordinates set forth in Table 1 or Table 2, or a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or Table 2, to a computer algorithm to generate a three-dimensional representation of the people or peptide binding pocks.
 - 9. A machine-readable medium having stored thereon data comprising the atomic coordinates as set forth in Table 1 or Table 2. or a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the core C alpha atoms of the MEK1 or MEK2 structural coordinates as set forth in Table 1 or

Table 2.

5

10

15

25

30

35

40

45

50

55

- A method for modifying or designing a chemical entity having the potential to associate with a peptide according to claim 1 or claim 2, comprising.
 - (a) generating a three-dimensional computer representation of the peptide or a binding pocket of the peptide; and
 - (b) generating a chemical entity that spatially conforms to the three-dimensional representation of the peptide or the peptide binding pocket, wherein the chemical entity is generated by a method comprising (i) assembling molecular fragments into the chemical entity; (ii) de novo design of the chemical entity or a fragment thereor; (iii) selecting the chemical entity from a small molecule database; or (iv) modifying a known inhibitor, or portion thereor. of MEX activity.
- 11. A method for screening and identifying a potential inhibitor or enhancer of the activity of a peptide according to claim 1 or claim 2, comprising:
 - (a) generating a three-dimensional computer representation of the peptide or a binding pocket of the peptide; (b) applying an iterative process whereby a chemical entity is applied to the three-dimensional representation to determine whether the chemical entity associates with the peptide or peptide binding pocker; and
- (c) evaluating the effect(s) of the chemical entity on peptide activity to determine whether the chemical entity functions as an activity inhibitor or enhancer.
 - 12. A method for evaluating the potential of a chemical entity to associate with a peptide according to claim 1 or claim 2, comprising
 - (a) generating a three-dimensional representation of the peptide or a binding pocket of the peptide;
 - (b) applying a three-dimensional representation of a chemical entity to the three-dimensional representation; and

(a) a Mitogen Activated Protein Kinase 1 /ERK kinase 1 (MEK1) peptide ligand-binding pocket that is defined

- (c) quantifying the association between the chemical entity and the binding pocket.
- 13. The method according to any one of claims 8, 10, 11, or 12, wherein the peptide binding pocket is selected from the group consisting of:
- by the structural coordinates of the following amino acid residues within about 4 Å of a MEK1 inhibitor located in the ligand-binding site: G377, N78, G79, G80, K97, 199, L115, L118, V127, F129, I141, M143, C207, D208, F209, G210, V211, S212, L215, I216 and M219 of SEG ID NO: 2, or a conservatively substituted variant thereof; (b) a MEK1 peptide ligand-binding pocket that is defined by the structural coordinates of the following amino acid residues within about 5 Å of a MEK1 inhibitor located in the ligand-binding size: G77, N78, G79, G80, K97, 199, L115, L118, I126, V127, G128, F129, I141, M143, D190, N195, L208, C207, D208, F209, G210, V211, S212, L215, I216, M219 and F223 of SEQ ID NO: 2, or a conservatively substituted variant thereof; (c) a Mitogen Activated Protein Kinases 2/ERK kinase 2 (MEK2) MEK2 peptide ligand-binding pocket that is
 - (c) a Milogen Activised Protein Ninase 2/Ehri Ninase 2 (MEA2) MEA2 peptide ligand-o-finding pocket that is defined by the structural coordinates of the following amino acid residues within about 4 A of a MEK2 inhibitor located in the ligand-binding site: G81, N82, G83, G84, K101, I103, L119, L122, V131, F133, I145, M147, C211, D212, F213, G214, V215, S216, L219, I220, M223 of SEQ ID NO: 4, or a conservatively substituted variant three/ip.
 - (d) a MEK2 poptide ligand-binding pocket that is defined by structural coordinates of the following amino acid residues within about 5 Å of a MEK2 inhibitor located in the ligand-binding site: G81, N82, G83, G84, K101, 1103, L119, L122, I130, V131, G132, F133, I145, M147, D194, N199, L210, C211, D212, F213, G214, V215, S216, L219, I220, M223, F227 of SEQ ID NO: 4, or a conservatively substituted variant thereof;
 - (e) a MEK1 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 4 Å of a cofactor located in the cofactor-binding site: L74, G75, A76, G77, N78, G80, V81, V82, A95, K97, V127, M143, E144, H145, M146, G149, S150, D152, Q153, K192, S194, N195, L197, D208 and V224 of SEQ ID NO: 2, or a conservatively substituted variant thereof;
 - (f) a MEK1 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 5 Å of a cofactor in the cofactor-binding site: L74, G75, A76, G77, N78, G79, 80, V81, V82, A95, K87, V127, M143, E144, H145, M146, D147, G149, S150, D152, Q153, D190, K192, S194, N195, L197, C207, D208, V224 and G225 of SEQ ID NO22, or a conservatively substituted variant thereof;

- (g) a MEK2 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 4 Å of a cofactor located in the cofactor-binding site: L78, G79, A80, G81, N82, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, G153, S154, D156, Q157, K196, S198, N199, L201, D212, V228 of SE0 ID NO: 4. or a conservatively substituted variant thereof:
- (h) a MEK2 peptide cofactor-binding pocket that is defined by the structural coordinates of the following residues within about 5 A of a cofactor located in the cofactor-binding site: L78, G79, A80, G81, N82, G83, G84, V85, V86, A99, K101, V131, M147, E148, H149, M150, D151, G153, S154, D156, G157, D194, K196, S198, N199, L201, C211, D212, V228, G229 of SEQ ID NO: 4, or a conservatively substituted variant thereof, and (i) a binding pocket that is defined by the atoms found in the structural coordinates of the MEK1 or MEK2 peptide as set forth in Table 1 or Table 2, or in a related set of structural coordinates having a root mean square deviation of not more than about 1.25 Å away from the binding pocket C alpha atoms of the MEK1 or MEK2 binding nockets according to (a): (h), or a conservatively substituted variant threeof.
- 14. A method of purifying a peptide according to claim 1 or claim 2 from a fermentation broth containing the peptide and contaminant proteins other than the peptide, comprising subjecting the fermentation broth to immobilized metal chelate chromatography comprising pyrrole-2-carboxylate, zinc chloride, and an immobilized metal selected from the group consisting of nickel, zinc, copper and cobalt.
- 15. A method of growing the crystalline structure according to claim 3, comprising:

complex crystal grows to a size suitable for X-ray diffraction.

5

10

15

20

25

35

40

45

50

55

- providing a peptide solution comprising the peptide, a ligand, a cofactor, a buffering agent, a reducing agent, and a source of ionic strength; providing a precipitant solution comprising
 - (a) if the peptide is MEK1 peptide, polyethylene glycol (PEG), a source of ionic strength, a buffering agent, and a reducing agent; or
 - (b) if the peptide is MEK2 peptide, a source of ionic strength, a buffering agent, and a reducing agent;
- mixing a droplet of said peptide solution with a droplet of said precipitant solution;

 suspending the resulting mixed droplet over a well of said precipitant solution at a vapor pressure of the solution
 in said well being lower than in the resulting solution in the mixed droplet; and
 allowing the suspended mixed droplet to stand for a prolonged period until a peptide ligand cofector ternary

FIG. 2

FIG. 3

Dark green

DOCUMENTS CONSIDERED TO BE RELEVANT

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 02 25 8507 shall be considered, for the purposes of subsequent proceedings, as the European search report

Category	Citation of document with it of relevant passa	ndication, where appropriate ges		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL7)
х	DUESBERY ET AL: "FO MAP-kinase-kinas factor" SCIENCE, AMERICAN ADVANCEMENT OF SCIEVOL 280, no. 5364, 1 May 1998 (1998-05 XP002115820 ISSN: 0036-8075 * page 736, column figure 3C *	ASSOCIATION FOR T NCE,, US, -01), pages 734-	hal HE 737,	1,2,5,6, 14	C12N9/12
х	MANSOUR SAM J ET AL domains controlling of mitogen-activate 1." BIOCHEMISTRY, vol. 35, no. 48, 19 XP002235966 ISSN: 0006-2960	g the enzymatic a ed protein kinase 196, pages 15529-	ctivity kinase	1,2,5,6, 14	
	* page 15531, colum	n 2, line 16 *			TECHNICAL FIELDS SEARCHED (Int.Cl.7)
		-/-	-		C12N
INCO	MPLETE SEARCH				
not compl be carried	ch Division considers that the present ly with the EPC to such an extent that d out, or can only be carried out partial earched completely:	a meaningful search into the sta	olaims, does/d to of the art can	lo inot	
Claims se	earched incompletely:				
Claims no	ot searched.				
Reason to	or the limitation of the search:				
see	sheet C				
	Place of search	Date of completion of 26 March		Det	Examena m.i. D.
	MUNICH				ri, B
X part Y part docu A tech O non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot involginal background -written disclosure	vention hed on, or corresponding			
O.non	-written disclosure rmediate document		mber of the ser ument	ne patent family,	corresponding

INCOMPLETE SEARCH SHEET C

Application Number EP 02 25 8507

Claim(s) searched incompletely:

Claim(s) not searched: 4, 7-9, 11-12

Reason for the limitation of the search (non-patentable invention(s)):

The claims 4, 7-9, 11-12, and 13 as far it refers back to claims 8, 11-12 relate to subject-matter excluded from patentability under Article 52 (2)(d). Given that the claims are formulated in terms of such subject-matter or merely specify features which relate to presentation of information, the above mentioned claims will not be searches.

The claims 7-8, 11-12 and 13 as far it refers back to claims 8, 11-12, relate to subject-matter excluded from patentability under Article 52 (2)(c) EPC. Given that the claims are formulated in terms of such subject-matter or merely specify features which relate to programs for computers, the above mentioned claims will not be searched.

EP 02 25 8507

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Х	DATABASE SWALL [Online] 1 July 1993 (1993-07-01) *MPK1_Human; MEKI* retrieved from EBI Database accession no. Q02750 XP00223570 * the whole document *	2,5,6,14	
х	DATABASE SMALL [Online] 1 June 1994 (1994-06-01) "MYZ June 1995 (1994-06-01) "ANTA June 1995 (1995-06-07) "ATT STATE OF THE STATE OF TH	2,5,6,14	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
A	WANG ZHULUN ET AL: "The structure of mitogen-activated protein kinase p38 at 2.1-A resolution." PROCEEDINGS OF THE MATIONAL ACADEMY OF SCIENCES OF THE MATIED STATES, vol. 94, no. 6, 1997, pages 2327-2332, XP00223567 1997 158N: 0027-8424 * the whole document *	3,15	
Α΄	LEI MING ET AL: "Structure of PAKI in an autoinhibited conformation reveals a multistage activation switch." CELL, vol. 102, no. 3, 4 August 2000 (2000-08-04), pages 387-397, XP00223596 SSN: 0092-8674 * the whole document *	3,15	

European Patent PARTIAL EUROPEAN SEARCH REPORT Office

Application Number EP 02 25 8507

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Α	PEARSON GRAY ET AL: "Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions." ENDOCRIME REVIEWS, vol. 22, no. 2, April 2001 (2001-04), pages 153-183, XP002235969 ISSN: 0163-769X		
P,A	DELANEY AMY M ET AL: "Identification of a novel mitogen-activated protein kinase kinase activation domain recognized by the inhibitor PD 184392." MOLECULAR AND CELLULAR BIOLOGY, vol. 22, no. 21, Hoyember 2002 (2002-11), pages 7593-7602, XP009008410 November, 2002 15SN: 0270-7306		TECHNICAL FIELDS SEARCHED (InLCI.7)
P,A	ENGLISH JESSIE M ET AL: "Pharmacological inhibitors of MAPK pathways." TRENDS IN PHARMACOLOGICAL SCIENCES, vol. 23, no. 1, 20 January 2002 (2002-01-20), pages 40-45, XP002236079		
A	DATABASE PDB [Online] 4 July 1994 (1994-07-04) BOSSEMYER D ET AL: "Camp-Dependent Protein Kinase Catalytic Subunit (E.C. 2.7.1.37) "retrieved from PDB Database accession no. 1CDK XP002236080 * the whole document *		