Machine Learning in Biosciences

Instructor: Peng Qiu

Biomedical Engineering Georgia Tech and Emory

Logistics

Class attendance tracked from week 02

Project done in teams of 1~3 students.

Project does not have to be biology related, but a biology focus is preferred.

Public data resources.

Bulk-tissue vs. Single-cell

A few single-cell technologies

Bulk-tissue vs. Single-cell

Early-term Project

Classification of AML

The goal of this project is to predict patient's AML or normal status from patient blood samples profiled by flow cytometry.

Flow cytometry

- Flow: what is it?
 - Evaluate cells in single-cell suspension
 - Sample is prepared in liquid form
 - Cells flow in a thin stream (usually saline)
 - Cells pass a detector one by one.
- Cytometry: what does the detector measure?
 - How much of something exists inside or on the surface of a cell?
 - Surface protein markers: CD19/20, CD3/4/8, ...
 - Proteins markers inside: pStat3/5, pAKT, ...
 - Size, granularity, DNA content, viability ...

Flow cytometry

Decide what to measure:

- 'SSC'

'Kappa' - 'FITC'

'Lambda' - 'PE'

'CD45' - 'ECD'

'CD19' - 'PC5'

'CD20' - 'PC7'

(<= 12)

			T		0	
FSC	SSC	Карра	Lambda	CD45	CD19	CD20
830	597	407	406	559	43	150
391	386	71	85	624	0	0
1023	868	614	640	409	481	494
571	618	438	425	557	32	59

PMT 5

Limitation

Mass cytometry (CyTOF)

Decide what to measure:

Flow cytometry data for one sample

FSC	SSC	Карра	Lambda	CD45	CD19	CD20
830	597	407	406	559	43	150
391	386	71	85	624	0	0
1023	868	614	640	409	481	494
571	618	438	425	557	32	59
				***		***

Flow cytometry data for one sample

Many many cells

Features

CD20	150	0	494	29	ı	ŧ	ŧ	÷	ŧ	ŧ	ŧ
CD19	43	0	481	32	i	ŧ	ŧ	ŧ	i	ŧ	i
CD45	559	624	409	557	i	÷	i	i	ı	ŧ	ı
Kappa Lambda	406	82	640	425	i	ı	ŧ	ŧ	ŧ	ŧ	ŧ
Карра	407	71	614	438	i	i	i	ŧ	i	ŧ	ı
SSC	297	386	898	618	÷	ŧ	i	:	÷	÷	÷
FSC	830	391	1023	571	i	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ

Biology questions

- Relationship among cells
 - Identify cell types
 - Infer how different cell types are related
- Relationship among markers
 - Identify signaling network
- Relationship between cells and overall phenotype
 - cellular composition of a tumor vs. survival, (drug response, ...)

- Relationship between markers and overall phenotype
 - whether a signaling pathway is cell type specific, or disease specific?

Conventional analysis of flow cytometry data

Example data

- Flow cytometry
- Mouse bone marrow
- Parameters: c-kit, Sca-1, CD11b, B220, TCR-b, CD4,
 CD8

Traditional analysis: Gating

(Kenny, Nolan lab)

Flow cytometry data for one sample

FSC	SSC	Карра	Lambda	CD45	CD19	CD20
830	597	407	406	559	43	150
391	386	71	85	624	0	0
1023	868	614	640	409	481	494
571	618	438	425	557	32	59

CD20	150	0	494	29	i	ij	i	ŧ	i	ŧ	ŧ
CD19	43	0	481	32	i	ŧ	i	÷	i	i	ŧ
CD45	559	624	409	557	i	i	i	i	i	i	÷
Lambda	406	85	640	425	:	:	ı	:	:	:	:
pa Lan											
СКарра	7 407	5 71	3 614	3 438	i	E	i	I	1	E	i
FSC SSC	30 597	386	1023 868	71 618	:	:		:	:	:	:
S	830	391	10	571	1	E	E	Ē	Ē	1	E

Classification of AML Project

- 359 subjects
 - 316 normal subjects
 - 43 AML samples
- For each subject, one blood sample is taken, and split into 8 tubes.

- For each tube, 7 channels are measured
 - FSC, SSC
 - 5 protein markers
- Normal/AML class labels of 179 samples are given
- Task: predict the class labels of the remaining 180 samples

Classification of AML Project

	FL1	FL2	FL3	FL4	FL5
Tube 1	IgG1-FITC	IgG1-PE	CD45-ECD	IgG1-PC5	IgG1-PC7
Tube 2	Kappa-FIT	Lambda-PE	CD45-ECD	CD19-PC5	CD20-PC7
Tube 3	CD7-FITC	CD4-PE	CD45-ECD	CD8-PC5	CD2-PC7
Tube 4	CD15-FITC	CD13-PE	CD45-ECD	CD16-PC5	CD56-PC7
Tube 5	CD14-FITC	CD11c-PE	CD45-ECD	CD64-PC5	CD33-PC7
Tube 6	HLA-DR-FITC	CD117-PE	CD45-ECD	CD34-PC5	CD38-PC7
Tube 7	CD5-FITC	CD19-PE	CD45-ECD	CD3-PC5	CD10-PC7
Tube 8	Non Specific				

Classification of AML Project

- 359 subjects
 - 316 normal subjects
 - 43 AML samples
- For each subject, one blood sample is taken, and split into 8 tubes.

- For each tube, 7 channels are measured
 - FSC, SSC
 - 5 protein markers
- Normal/AML class labels of 179 samples are given
- Task: predict the class labels of the remaining 180 samples

Data

2872 data files in total (359 subjects * 8 tubes)

http://pengqiu.gatech.edu/MLB/CSV.zip

Data

2872 data files in total (359 subjects * 8 tubes)

http://pengqiu.gatech.edu/MLB/CSV.zip

Data

Normal/AML class labels of 179 samples are given

http://pengqiu.gatech.edu/MLB/AMLTraining.csv.zip

Data preprocessing: step 0

```
>> data = csvread('0001.CSV',1,0);
>> mean(data)

ans =

663.9823  0.5544  0.2052  0.2023  0.5893  0.1818  0.1620

>> std(data)

ans =

218.8498  0.0950  0.0522  0.0487  0.1073  0.0432  0.0261
```

>>

Data preprocessing: step 0

```
>> data(:,1) = data(:,1)-mean(data(:,1));
>> data(:,1) = data(:,1)/std(data(:,1))*0.1;
>> mean(data)
ans =
 0.0000
                  0.2052 0.2023 0.5893
                                             0.1818
          0.5544
                                                     0.1620
>> std(data)
ans =
 0.1000
          0.0950
                   0.0522
                           0.0487
                                    0.1073 0.0432
```

>>

1D and 2D visualization

```
>> subplot(2,2,1); hist(data(:,1))
```

- >> subplot(2,2,2); hist(data(:,1),30)
- >> subplot(2,2,3); ksdensity(data(:,1))
- >> subplot(2,2,4); FlowJo_contour2D(data(:,1),data(:,2),10)

More data preprocessing ???

Subject 1:

Subject 2:

:

Data in supervised setting

