Chapter 3 Machania

Robot Mechanisms

Robot Mechanisms

Photos of various robots removed for copyright reasons. Sony Aibo™, Honda ASIMO, robotic hands, industrial manipulator arm.

Courtesy of JPL.

Sample Return Rovers with articulated suspension mechanisms

Photos of various robots removed for copyright reasons. Sony $Aibo^{TM}$, Honda ASIMO, robotic hands, industrial manipulator arm.

Open-Loop Kinematic Chains

Biped Locomotion

Photo removed for copyright reasons: ASIMO robot descending stairs. See http://world.honda.com/ASIMO/.

Two-Branches of Open-Kinematic Chains

Figure by MIT OCW.

Primitives of Robot Mechanisms Two Types of Single-Axis Joints

Three Prismatic Joints

Figures by MIT OCW.

Cylindrical Coordinate Robot

Photo removed for copyright reasons. GMF Robotics M-100 arm.

Figures by MIT OCW.

Spherical Coordinate Robot

Figures by MIT OCW.

Scala-Type Robot

Figure by MIT OCW.

Articulated Rohot

Figure by MIT OCW.

Pros and Cons of Open-Loop Kinematic Chains

Pros

- Large work space
- Dexterity
- (Lower inertia)
- (Lower cost)

Cons

- Low stiffness
- Low accuracy
- Rapid increase of inertial load along the linkage
- Small load bearing capacity

Closed Kinematic Chain

Schematic removed for copyright reasons.

Parallel Linkage Parallel Linkage

Position and Orientation Position and Orientation

Figure by MIT OCW.

Stewart Mechanism

Figure by MIT OCW.

A High-Speed Robot with Closed Kinematic Chains

Figure by MIT OCW.

Closed-Loop

Open-Loop