3. Analízis modell kidolgozása 1

10 – itee_team

Konzulens:

Budai Péter

Csapattagok:

Elekes Tamás Csaba E30C8Z elekestamas22@gmail.com Seres Márk Dániel EUQ8V5 seres.dani@gmail.com Rédey Bálint Attila DAVRIZ botvinnik09@gmail.com Nagy András VWBG06 nagyandrasgall@gmail.com Fuksz Domonkos GIT0NQ fukszdomonkos@gmail.com

3. Analízis modell kidolgozása 1

3.1. Objektum katalógus

3.1.1. Akadály (Obstacle)

Az akadály (Obstacle) objektum felelőssége egyrészt az, hogy amikor áthalad rajta egy ellenség (Enemy) lelassítsa. Másfelől felelőssége az is, hogy egy-egy ellenség áthaladtával amortizálódjon, valamint ha már teljesen elhasználódott, értesítse azt az út elemet (Path), amelyiken áll.

3.1.2. Ellenség (Enemy)

Egy ellenséget (tünde, hobbit, törp vagy ember) megvalósító objektum. Nyilvántartja a saját életét, sebességét, és azt is, hogy pillanatnyilag melyik mezőn (Field) tartózkodik. Az ő felelőssége még, hogy egy adott lövedék (Bullet) hatására, mennyire sebződjön, vagy ha már sokat sebződött, akkor haljon meg.

3.1.3. GemStat

Ez az osztály azért felel, hogy egy toronyról (Tower) egyszerűen le tudjuk kérdezni a tulajdonságait. Milyen kristályokat vett már rá a játékos, az egész torony értéke mennyi.

3.1.4. Játék (Game)

A játék (Game) objektum felelőssége többek közt a játék ütemezése, az idő múlásának kontrollálása. Ezenkívül az inicializálás, vagyis a játék kezdeti állapotának felvétele, továbbá a modell állapotának folyamatos változása miatti frissítés, valamint ennek a grafikus felületen való megjelenítése.

3.1.5. Kristály (Gem)

Ha a játékos vesz a toronyra/akadályra valamilyen kristályt, akkor jön létre, megkapja a torony, és beépíti magába. Felelőssége, hogy általa érvényre jussanak a fejlesztések.

3.1.6. Lövedék (Bullet)

A tornyok egy lövedéket tárolnak, amit minden lövésnél átadnak a lövő függvénynek. Ennek a lövedéknek a feladata, hogy az ellenségnek megmondja mennyit sebez rajta.

3.1.7. Mező (Field)

A Field osztály a Cell osztály leszármazottja. A nem út típusú cellákat (mező) reprezentálja. Egy mezőre egy torony helyezhető.

3.1.8. Pálya (Map)

A Map osztály a játéktér elemeit, mint cellák tárolja, egy két dimenziós tömbben. Megadja minden egyes cellához, a szomszédjai referenciáját. A pályák egy külső XML fájlban kerülnek tárolásra. A pálya ebből a fájlból töltődik be. Az XML fájlban tárolódik a pálya neve, nehézségi szintje, és a térkép struktúrája. Megadja, hogy a tartalmazott cella út vagy mező típusú-e. Minden út cella tartalmaz egy tulajdonságot, ami következő cella irányát adja meg.

3.1.9. Torony (Tower)

Az egyetlen tervezett toronytípus, le lehet rakni a pályán az úton kívül bárhova. A hatósugarába belépett ellenségekre lőnie kell, lehet fejleszteni lövési sebességét, erejét, újratöltési idejét és egy ellenségtípusra még hatásosabbá tenni a lövedékeit. A játékos varázserőért tud lerakni, illetve eladni tornyokat. Ez a legfontosabb eszköz amivel a játékos meg tudja akadályozni az ellenségek célbajutását.

3.1.10. Út (Path)

A Path a Cell osztály leszármazottja. Az út típusú cellákat reprezentálja. Tartalmazza a rajta lévő ellenségeket és esetleg akadályt.

3.2. Statikus struktúra diagramok

3.1. ábra. Osztálydiagram

3.3. Osztályok leírása

3.3.1. Bullet

• Felelősség

Ellenség kapja meg, és ebből tudja meg mennyire sebződik.

Ősosztályok

Object

Interfészek

Nincs

- Attribútumok
 - int damage: alapsebzés
 - Enemy enemyType: a torony itt tárolja, hogy melyik ellenség típusra erősebb a sebzése
- Metódusok
 - void refresh(Gem gem): frissíti kristály vásárlás után a sebzési értékeket.
 - int getHobbitDamage(): ha hobbitot sebez, ezzel a függvénnyel kérdezi le a sebzés értékét.
 - int getHumanDamage(): ha embert sebez, ezzel a függvénnyel kérdezi le a sebzés értékét.
 - int getDwarfDamage(): ha törpöt sebez, ezzel a függvénnyel kérdezi le a sebzés értékét.
 - int getElfDamage(): ha tündét sebez, ezzel a függvénnyel kérdezi le a sebzés értékét
 - Bullet(int damage, Enemy enemyType): konstruktor

3.3.2. Enemy

• Felelősség

Tudja, hogy mennyi élete van még, milyen sebességgel haladt eredetileg, és milyen sebességgel halad most. Ez egy absztrakt ősosztály, ami összefogja a 4 ellenségtípust (Hobbit, Elf, Dwarf, Human).

Ősosztályok

Object

Interfészek

IPathPlaceable

- Attribútumok
 - int speed: a normál sebessége
 - int modSpeed: a módosított sebessége (ha egy akadályon halad keresztül)
 - health: élete
 - myPath: az a mező, ahol tartózkodik
- Metódusok
 - Metódusok
 - registerPath(Path p): új mezőre léptetik

5

- eliminate(): meghal
- hurt(Bullet): sebződik (abstract method)
- move(): mozog, a következő path-ra lép, cellát vált
- Enemy(int sp, int msp, int h): konstruktor

3.3.3. Enemy subclasses: Elf, Hobbit, Dwarf, Human

• Felelősség

Sebződés: egy Bullet alapján a saját életét csökkenteni, és ha kell, meghalni. Tehát felüldefiniálja az Enemy ősosztály hurt metódusát.

- Ősosztályok
 Object → Enemy
- Interfészek
 IPathPlaceable
- Metódusok
 - hurt(Bullet): sebződik

3.3.4. ITower

Felelősség
 A torony funkciói vannak benne.

- Metódusok
 - void setPaths(): a saját cellájából kiindulva a hatósugarával lefedett területen felkeresi, és beregisztrálja a paths listába a path cellákat.
 - void shoot(): A torony akkor lő, ha letelt az újratöltési idő, ekkor megnézi, hogy lőtávon belül van-e ellenség, és ha van meghívja a sebzés függvényét, átadva paraméterként a lövedékét.
 - void addGem(Gem gem): paraméterként megkapja a kiválasztott kristályt, a gameStat-ot frissíti, és a bullet-et is.
 - void sell(): A játékos eladhatja a tornyot, amiért a fejlesztések árának felét kapja meg. A torony eltűnik és felszabadul az alatta lévő hely. Az értékét a gemStat változóból nyeri ki.

3.3.5. Game

- Felelősség Lásd objektum katalógus.
- Ősosztályok Object
- Interfészek Nincs
- Attribútumok
 - Map map: játék térképe

- List<Enemy> enemies: ellenségek listája
- static int mana: maradék varázserő

Metódusok

- void update(): frissíti a modellt, grafikát
- void initialize(): kezdeti állapotot felveszi
- void tick(): ütemező függvény
- static void changeMana(): mana jóváírására, csökkentésére (fejlesztés/eladás bekövetkeztekor)
- Game(Map map, ArrayList<Enemy> enemies, int mana): konstruktor

3.3.6. GemStat

- Felelősség
 Lásd objektumkatalógus.
- Ősosztályok Object
- Interfészek Nincs
- Attribútumok
 - boolean isDamage: vásároltak-e már sebzésnövelő kristályt a toronyra
 - boolean isRange: vásároltak-e már hatósugárnövelő kristályt a toronyra
 - boolean isSpeed: vásároltak-e már lövés sebességnövelő kristályt a toronyra
 - boolean isEnemy: vásároltak-e már ellenségre specializáló kristályt a toronyra
- Metódusok
 - void refresh(Gem gem): egy Kristályt kap, amit beépít a toronyba
 - int getValue: kiszámolja a torony értékét

3.3.7. Gem

- Felelősség
 - A kristály osztály frissíti a torony GemStat-ját és Bullet-jét.
- Ősosztályok Object
- Interfészek
 - Nincs
- Attribútumok
 - int damage: sebzés növelés értéke
 - int range: hatósugár növelés értéke

- int speed: két lövés közt eltelt idő
- static int price: az ára, amennyi manába kerül
- Enemy enemyType: ellenség típus amire erősíti a tornyot

Metódusok

- Gem(int damage, int range, int speed, int price, Enemy enemyType): konstruktor

3.3.8. IObstacle

• Felelősség

Olyan metódusok használatát teszi lehetővé, amelyek az Obstacle típusú elemek viselkedését modellezik.

Ősosztályok

Nincs

- Metódusok
 - void slow(int intesity, Path p): szól p-nek, hogy lassítsa le az ellenséget intensity-vel
 - void amortization(): amortizál

3.3.9. Obstacle

Felelősség

Lásd objektum katalógus.

Ősosztályok

Nincs

Interfészek

IObsacle, IPathPlaceable

- Attribútumok
 - int slowIntens: lassítás mértéke
 - Path myPath: a mező, amin rajta van
 - int amort: az elhasználódottság mértéke
 - static int price: az ára
 - bool upgrade: volt-e fejlesztve

Metódusok

- void slow(int intesity, Path p): lelassítja a p-n lévő ellenséget intesity-vel
- void amortization(): csökkenti az amort értékét, ha nulla lesz, hívja az eliminate-et
- void eliminate(Path p): szól a p-nek, hogy távolítsa el az akadályt
- void registerPath(Path p): myPath-t beállítja p-re
- void increaseIntensity(int intensity): fejleszztéskor megnöveli a lassytás mértékét
- bool isUpgraded(): upgrade-l tér vissza
- Obstacle(int intens, Path p, int amort, int price, bool up): konstruktor

3.3.10. Tower

- Felelősség
 Lásd objektumkatalógus
- Ősosztályok Nincs
- Interfészek
 ITower, IFieldPlaceable
- Attribútumok
 - Bullet bullet: A torony tárol egy lövedéket, mindig ezt lövi ki.
 - GemStat gemStat: A megvásárolt kristályokról tárol statisztikát.
 - List<Path> paths: Hatósugárba eső út cellák.
 - Field myField: mező, amin áll
 - static int price: az áraint range: lőtáv, hatókör
- Metódusok
 - Enemy chooseEnemy(): A torony tárolja a környező path cellákat. Minden tick-ben végig megy rajtuk, és kiválaszt egyet, amelyiken van ellenség, és oda fog lőni. Azzal tér vissza, hogy sikerült-e ellenséget találni.
 - void register(Field field): beregisztrálja, hogy melyik mezőn van
 - setPaths(): beállítja a paths-t
 - shoot(): enemy kiválasztása után rátüzel
 - sell(): tornyot eladjuk: töröljük a mezőjéről és jóváírjuk az érte kapott összeget
 - addGem(Gem g): fejlesztéskor a kapott g Gem alapján beállítjuk a range-t és a bullet tagváltozóit
 - Tower(int rang, int pr): konstruktor

3.3.11. Map

- Felelősség Ld. objektum katalógus
- Ősosztályok
 - Nincs
- Interfészek Nincs
- Attribútumok
 - String name: a pálya neve, egyben az azonosítója
 - int level: a pálya szintje
 - Array<Array<Cell» grid: A cellákat tartalmazó 2 dimenziós tömb

• Metódusok

- Map(string name): az osztály konstruktora, a paraméterként megadott névvel rendelkező fájlból betölti a pálya térképét
- void load(string name): megnyitja a paraméterként kapott nevű XML fájlt, és abból betölti a pálya celláinak tulajdonságait, felépíti a pályát.

3.3.12. Cell

• Felelősség

A Cell a pálya egy egységét reprezentáló osztály. Létrehozásakor megkapja a 4 szomszédja referenciáját. Maga a cella nem tudja, hogy hol van a térképen. A cella tárolja a rajta éppen tartózkodó ellenségek referenciáit. A Cell osztály absztrakt.

Ősosztályok

Nincs

Interfészek

Nincs

- Attribútumok
 - Array<Cell> neighbours: 4 elemű tömb, tárolja 4 irányban a szomszédjai referenciáját.
- Metódusok
 - Cell(Array<Cell>): konstruktor, paraméterként kapja a szomszédos mezők referenciáit.
 - bool isPath(): olyan értékkel tér vissza amilyen típusú a cella

3.3.13. Field

• Felelősség

Ld. objektum katalógus

Ősosztályok

Object \rightarrow Cell

Interfészek

Nincs

- Attribútumok
 - ITower itower: a mezőn álló torony interfészű elem tárolása
- Metódusok
 - bool isPath(): hamis értékkel tér vissza
 - void addIFieldPlaceable(): egy új tornyot ad hozzá a mezőhöz
 - void deleteIFieldPlaceable(IFieldPlaceable ifield): eltávolítja a tornyot a mezőről
 - void registerITower(itower ITower): beteszi ifieldbe a kapott tornyot
 - Field(): konstruktor

3.3.14. Path

- Felelősség
 Ld objektum katalógus
- Ősosztályok
 Object → Cell
- Interfészek Nincs
- Attribútumok
 - IObstacle iobstacle: az esetleg az úton levő akadályt tárolja
 - ArrayList<Enemy> enemies: az éppen áthaladó ellenségek listája
 - ArrayList<Path> paths: következő path-ok címei
- Metódusok
 - ArrayList<Enemy> hasEnemy(): visszaadja a rajta lévő ellenségek listáját
 - bool isPath(): igaz értékkel tér vissza
 - void deleteIPathPlaceable(IPathPlaceable ipath): kitörli a tárolójából a paraméterként kapott referenciával megegyező tárolt referenciát
 - void registerIPathPlaceable(IPathPlaceable ipath): beregisztrálja a paraméterként kapott objektumot, mint saját magán tartózkodó ellenség
 - bool hasEnemy(): megmutatja, hogy van-e a cellán ellenség
 - void registerEnemy(Enemy e): a kapott ellenséget beteszi az enemies-be
 - void registerObstacel(Obstacle o): a o kapott akadály lesz az obstacle
 - ArrayList<Enemy> getEnemies(): visszatér az enemies-el
 - Path getNext(): paths-ből ad vissza egy elemet

3.4. Szekvencia diagramok

3.4.1. Akadály elhelyezése

3.2. ábra. Akadály elhelyezése szekvenciadiagram

3.4.2. Ellenfél mozgása

3.3. ábra. Ellenfél mozgása szekvenciadiagram

3.4.3. Torony eladása

3.4. ábra. Torony eladása szekvenciadiagram

3.4.4. Torony elhelyezése

3.5. ábra. Torony elhelyezése szekvenciadiagram

3.4.5. Torony fejlesztése

3.6. ábra. Torony fejlesztése szekvenciadiagram

3.4.6. Torony tüzelése

3.7. ábra. Torony tüzelése szekvenciadiagram

3.5. State-chartok

3.5.1. Field állapota

3.8. ábra. Field állapotdiagram

3.5.2. Path állapota

3.9. ábra. Path állapotdiagram

3.6. Napló

	K	ezdet Időtartam Rész	tvevők Leírás
2014.02.26.	1,5 óra	Elekes Fuksz	Konzultáció
08:00		Nagy Seres Rédey	
2014.02.27.	1,5 óra	Fuksz Elekes	Megbeszélés az analízis modellről. Use-
13:00			casek összeírása.
2014.02.27.	30 perc	Fuksz	2. dokumentáció kisebb részeinek javítása
17:00			
2014.02.27.	1 óra	Elekes	2. dokumentáció kiegészítés
18:00			3.3.3 Tower objektum leírása
2014.02.28.	5 óra	Elekes Fuksz	Osztályleírások, hozzájuk tartozó use casek,
14:00		Nagy Seres Rédey	szekvenciadiagrammok szövegesen:
			Tower, ITower, Bullet, Gem, GemStat: Elekes
			Enemy, és leszármazottai: Nagy
			Map, Cell, Field, IField, Path, IPath: Fuksz
			Obstacle, IObstacle Game: Rédey
			use case, szekvenciadiagrammok: Seres, Ré-
			dey
2014.03.01.	3 óra	Fuksz	2. dokumentáció L ^A T _E X formára hozása
10:00			
2014.03.01. 9:20	2,5 óra	Rédey	Obstacle, IObstacle, Game osztályok elkészí-
			tése

	Ke	ezdet Időtartam Rész	ztvevők Leírás
2014.03.01.	2,5 óra	Rédey	Osztálydiagram rajzolása a meglévő osztá-
12:30			lyokkal
2014.03.01.	2 óra	Elekes	Bullet, ITower, Gem, GemStat leírások, és ka-
13:00			talógusok megírása
2014.03.01.	2,5 óra	Rédey Fuksz Ele-	Skype értekezlet. Use case-k kifejtése.
15:00		kes	
2014.03.01 15:00	1,5 óra	Rédey	Osztálydiagram szerkesztése az értekezlet
			alapján
2014.03.01 17:00	1 óra	Rédey	Use casek szerkesztése az osztálydiagram
			alapján, osztálydiagram és a dokumentum
			szinkronba hozatala
2014.03.02. 7:00	4 óra	Seres	Szekvencia diagramok elkészítése
2014.03.02.	2 óra	Rédey, Seres	Osztálydiagram szerkesztése, use casek meg-
11:00			beszélése
2014.03.02.	2 óra	Rédey, Seres, Ele-	Skype konferencia, Enemy és leszármazot-
13:00		kes, Fuksz, Nagy	tai, osztálydiagramm szerkesztése, use case-
			ek rendszeresítése, szekvenciák rendszeresí-
			tése
2014.03.02.	3,5 óra	Rédey	State Chartok elkészítése, dokumentum szin-
19:30			nkronizálása az osztálydiagrammal, osztály-
			diagramm véglegesítése
2014.03.03.	2,5 óra	Fuksz	Dokumentáció véglegesítése
01:00			