Package 'latentSNA'

June 17, 2024

Type Package

Title LatentSNA
Version 0.1.0
Author Selena Wang
Maintainer Selena Wang <selewang@iu.edu></selewang@iu.edu>
Description Neuroimaging connectivity analysis needs network science for brain-behavior linking (Wang et al. (2023) < arXiv:2309.11349>).
License GPL (>= 2)
Encoding UTF-8
LazyData true
Depends R (>= 4.3.2), MASS, base
Imports dplyr, plyr
RoxygenNote 7.3.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
latentSNA 2 rbeta_a 3 rFl_nrm 4 rH_bin 4 rH_nrm 5 rs1_b 5 rs2 6 rSu 6 rTheta_b 7 rU 7

2 latentSNA

Indov	Y	11
	Xv	
	simZ	10
	simY_nrm	10

latentSNA

Attribute informed brain connectivity

Description

An MCMC algorithm for fitting the latentSNA model

Usage

```
latnetSNA(X, Y, W, H, seed = 1, nscan =
10000, burn = 500, odens = 25,
prior=list())
```

Arguments

X a list of V x V brain connectivity data.
Y a matrix of N x P individual outcome data.
W a matrix of N x Q covariates for the connectivity data.
H a matrix of N x Q1 covariates for the attribute data.
seed random seed
nscan number of iterations of the Markov chain (beyond burn-in)
burn burn in for the Markov chain

prior list: A list of hyperparameters for the prior distribution

Value

odens

COV posterior mean of the covariance parameters between brain and behaviors

BETAPM posterior mean of the regression coefficient parameters for the connectivity data

GAMMAPM posterior mean of the regression coefficient parameters for the attribute data

THETAPM posterior mean of the latent person variable

APM posterior mean of connectivity intercepts

BPM posterior mean of attribute intercepts

output density for the Markov chain, chain thinning every odens iterations

U last iteration of latent connectivity for all regions

UPM posterior mean of U

UVPM.1 list of posterior mean of connectivity

Theta the last iteration of the Theta estimate

X observed X
Y observed Y

rbeta_a 3

EF1PM	posterior mean estimates of X
ETPM	posterior mean estiamtes of Y

TMPM posterior mean estimates of latent behavior component FLPM posterior mean estiamtes of latent connectivity component

input input values

Author(s)

Selena Wang

Examples

```
attach(X)
attach(Y)

## More MCMC burn-in iterations and iterations are needed than specified here.
model1=latentSNA(X, Y,W=NULL, H=NULL,
seed = 1, nscan = 1, burn = 1, odens = 1,
prior=list())
```

rbeta_a

Conditional simulation of intercept and regression coefficients

Description

Simulates from the joint full conditional distribution of (beta) in a brain connectivity model

Usage

```
rbeta_a(F1, W = NULL, s2 = 1, U = U, ivA = NULL, beta0 = NULL, S0 = NULL)
```

Arguments

Fl	a list of V X V normal connectivity matrix
W	N x Q covariate matrix

s2 variance

U a V by V by N array

ivA prior inverse variance for the intercept parameters
 beta0 prior mean vector for regression parameters
 s0 prior precision matrix for regression parameters

Value

beta	regression coefficients
a	subject-specific intercept

Author(s)

4 rH_bin

rFl_nrm

Simulate missing values in a normal connectivity model

Description

Simulates missing values of a sociomatrix under a normal connectivity model

Usage

```
rFl_nrm(Z, EZ, s2, X)
```

Arguments

Z a square matrix, the current value of Z

EZ expected value of Z s2 dyadic variance

X square relational matrix

Value

a square matrix, equal to at non-missing values

Author(s)

Selena Wang

rH_bin

Simulate H

Description

Simulates a random latent matrix H given its expectation and a behavior matrix Y

Usage

```
rH_bin(H, EH, Y)
```

Arguments

H a n X m matrix, the current value of H

EH expected value of H

Y n X m binary item response matrix

s1 item response variance

Value

a n X m matrix, the new value of H

Author(s)

rH_nrm 5

rH_nrm

Simulate missing values in a normal behavior model

Description

Simulates missing values under a behavior model

Usage

```
rH_nrm(H, EH,s1, Y)
```

Arguments

H a matrix, the current value of H

EH expected value of H
s1 behavior variance
Y behavior matrix

Value

a behavior matrix, equal to at non-missing values

Author(s)

Selena Wang

rs1_b

Gibbs update for behavior variance

Description

Gibbs update for behavior variance

Usage

```
rs1(Tm, offset=0,nu1=NULL,s10=NULL)
```

Arguments

Tm a list of V X P normal behavior matrix

nu1 prior degrees of freedom s10 prior estimate of s1

Value

a new value of s1

Author(s)

6 rSu

rs2

Gibbs update for connectivity variance

Description

Gibbs update for connectivity variance

Usage

```
rs2(F1, offset=0,nu2=NULL,s20=NULL)
```

Arguments

F1 a list of V X V normal connectivity matrix

nu2 prior degrees of freedom

s20 prior estimate of s2

Value

a new value of s2

Author(s)

Selena Wang

rSu

Gibbs update for latent effects covariance

Description

Gibbs update for latent effects covariance

Usage

```
rSu(U,Su0=NULL,etau=NULL)
```

Arguments

U latent connectivity and behavior

Su0 prior (inverse) scale matrix for the prior distribution etau prior degrees of freedom for the prior distribution

Author(s)

rTheta_b

rTheta_b	Gibbs sampling of Theta	

Description

A Gibbs sampler for updating the Person latent effect Theta.

Usage

```
rTheta(H, beta, Alpha, Theta ,U, Stheta, Sutheta, Su, s1)
```

Arguments

H N X P normal behavior matrix beta P X 1 behavior intercept vector

Alpha 1 X 1 intercept vector
Theta current value of Theta

U matrix containing current value of U

Stheta covariance of Theta

Sutheta covariance between U and Theta Su matrix containing covariance of U

s1 behavior variance

Value

Theta a new value of Theta

Author(s)

Selena Wang

rU Gibbs sampling of U

Description

A Gibbs sampler for updating U.

Usage

```
rU(F1,U,Theta, Stheta, Sutheta, Su, s2=1, offset=offset)
```

rXi

Arguments

F1 a list of V X V normal relational matrix

EF1 a list of the same dimension as Fl. It is assumed that Fl-offset follows a SRRM,

so the offset should contain any multiplicative effects (such as U%*% t(U))

U V X K matrix containing current value of U

Theta D X V current value of Theta
Stheta D X D covariance of Theta

Sutheta D X K covariance between U and Theta Su K X K matrix containing covariance of U

s2 dyadic variance

Value

U a new value of U

Author(s)

Selena Wang

rXi

Gibbs sampling of behaivor parameters Xi

Description

A Gibbs sampler for updating the behavior parameters.

Usage

```
rXi(H, beta, Alpha, Theta, mxi, Sigmaxi, s1 = 1)
```

Arguments

H normal behavior matrix beta behavior intercept vector Alpha behavior intercept vector Theta current value of Theta

mxi vector of prior for the mean of Xi Sigmaxi matrix of prior for the variance of Xi

s1 behavior variance

Value

beta a new value of beta
Alpha a new value of Alpha

Author(s)

simH 9

simH

Simulate H given its expectation and covariance

Description

Simulate H given its expectation and covariance

Usage

```
simH(EH, s1 = 1)
```

Arguments

EH expected value of H s1 attribute variance

Value

a simulated value of H

Author(s)

Selena Wang

simX_nrm

Simulate a normal connectivity matrix

Description

Simulates a normal connectivity matrix

Usage

```
simX_nrm(EX, s2)
```

Arguments

EX square matrix giving the expected value of the connectivity matrix

s2 dyadic variance

Value

a square matrix

Author(s)

10 simZ

simY_nrm

Simulate a normal behavior matrix

Description

Simulates a normal behavior matrix

Usage

```
simY_nrm(EY, s1)
```

Arguments

EY matrix giving the expected value of the behavior matrix

s1 variance

Value

a N by P matrix

Author(s)

Selena Wang

simZ

Simulate Z given its expectation and covariance

Description

Simulate Z given its expectation and covariance

Usage

```
simZ(EZ, rho, s2 = 1)
```

Arguments

EZ expected value of Z s2 dyadic variance

Value

a simulated value of Z

Author(s)

X 11

Χ

Simulated a list of V by V connectivity data

Description

The dataset contains a list of V by V connectivity data

Usage

Χ

Format

List including a list of weighted adjacency matrices of length N.

Details

a list of V by V connectivity data

Υ

Simulated a matrix of N by P individual outcomes data

Description

The dataset contains a matrix of N by P individual outcomes data

Usage

Υ

Format

List including a matrix of N by P individual outcomes data about N individuals and P variables measuring a latent construct

Details

a matrix of N by P individual outcomes data

Index

```
*\ datasets
    X, 11
    Y, 11
latentSNA, 2
rbeta_a, 3
rFl_nrm, 4
rH_bin,4
rH_nrm, 5
rs1_b, 5
rs2, 6
rSu, 6
rTheta_b, 7
rU, 7
rXi,8
simH, 9
simX_nrm, 9
simY_nrm, 10
simZ, 10
X, 11
Y, 11
```