

Mojsovska Marija Orlando Filippo

OUTLINES

1. EXPLORATORY ANALYSIS

2. LINEAR MODEL

3. **GAM**

4. ARIMA

5. GRADIENT BOOSTING

6. RESULT AND CONCLUSION

Data from European Commission Agriculture and rural development

Drought and extreme heatwaves have halved Spanish olive oil production.

The price at origin has increased by 112 per cent since last year.

Olive Oil production in Spain

(based on production by (1000t)) for years 2013-2022

TIME SERIES ANALYSIS

No evident seasonality

CORRELATION AND COLLINEARITY

0.92

0.80

1.00

DAP

0.42

0.86

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.500e+02
                       3.152e+01
                                  20.620 < 2e-16 ***
                       2.057e-02
                                  -6.537 1.84e-09 ***
production -1.344e-01
                                   2.301 0.02322 *
inflation
            6.537e+00
                       2.841e+00
                                  -7.472 1.73e-11 ***
export
           -7.162e-03
                       9.585e-04
import
           -4.454e-03
                       1.493e-03
                                  -2.983
                                          0.00349 **
            1.587e+00
                       2.708e-01
                                   5.860 4.58e-08 ***
trend
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

Residual standard error: 62.03 on 114 degrees of freedom

Multiple R-squared: 0.7115, Adjusted R-squared: 0.6989

F-statistic: 56.23 on 5 and 114 DF, p-value: < 2.2e-16

AIC = 1339.028

Durbin-Watson test

DW = 0.71294, p-value = 2.773e-14 alternative hypothesis: true autocorrelation is greater than 0

CAN WE IMPROVE THE PREVIOUS MODEL?

DYNAMIC REGRESSION MODEL WITH ARIMA ERRORS

Coefficients:

800

200

900

500

400

300

200

2014

Price (€/100kg)

ME RMSE MAE MPE MAPE MASE Training set 1.456792 13.55568 9.902572 0.4133479 3.021596 0.7701124

Ljung-Box test

data: Residuals from Regression with ARIMA(0,2,3) errors $Q^* = 3.4469$, df = 7, p-value = 0.8408

Model df: 3. Total lags used: 10

|--|--|--|

model	AIC
price ~ lo(production) + lo(inflation) + lo(export) + lo(import) + lo(tt)	1216.74
price ~ production + s(inflation) + export + import + s(tt)	1121.72
price ~ s(production) + s(inflation) + export + import + s(tt)	1109.29
price ~ s(production) + s(inflation) + s(export) + s(import) + s(tt)	1094.02
price ~ production + s(inflation) + s(export) + s(import) + s(tt)	1100.01

Durbin-Watson test

DW = 0.71294, p-value = 2.773e-14 alternative hypothesis: true autocorrelation is greater than 0

ARIMA - FIRST ANALYSIS

Looking at the time-serie:

- It is non stationary
- Need to difference

ARIMA - DIFFERENCING

Lag

24

Differencing:

- Try to eliminate the trend
- First difference
- Need to difference: there is still a trend

Ljung-Box test

data: Residuals Q* = 225.21, df = 23, p-value < 2.2e-16

ARIMA - DIFFERENCING

Differencing:

- Another first difference
- Trend is eliminated
- Infer in p and q values for AR and MA
- p:0,1,2,3,4
- q:1,2,3,5

Ljung-Box test

data: Residuals Q* = 32.916, df = 24, p-value = 0.1058

ARIMA "MANUAL" RESULTS

TOP 4	AIC
ARIMA(0, 2, 3)	974,32
ARIMA(3, 2, 1)	976,36
ARIMA(3, 2, 2)	976,41
ARIMA(4, 2, 1)	977,03

OTHER	AIC
ARIMA(1, 2, 1)	977,39
ARIMA(1, 2, 5)	977,5
ARIMA(2, 2, 1)	979,29
ARIMA(0, 2, 2)	982,2

ARIMA "AUTO" RESULTS

AIC = 977,39 RMSE = $14.17 \in /100 \text{ kg}$

Search on all possible models AIC = 974,32 RMSE = 13.86 €/100 kg

PARAMETERS - GRID SEARCH

PARAMETER	VALUE
n.trees	2000
interaction_depth (max node per tree)	4
Shrinkage (learning rate)	0.1

Parameters:

- Using Grid Search we can make a fine selection of parameters based on the accuracy of the model
- Variation of these parameters may cause a different evaluation of relevance variables

PARAMETERS AND RESULT

VARIABLE	RELATIVE INFLUENCE
Production	37.38
Stock	15.88
Potassium	15.63
Export	10.98
Inflation	10.59
DAP	4.77
Urea	3.40
Imports	1.34

Initially we considered all variables.

Parameters and result

VARIABLE	RELATIVE INFLUENCE
Production	37.38
Stock	15.88
Potassium	15.63
Export	10.98
Inflation	10.59
DAP	4.77
Urea	3.40
Imports	1.34

After multicollinearity considerations

VARIABLE	RELATIVE INFLUENCE
Production	54.28
Inflation	20.6
Export	18.69
Imports	6.42

FIT

RMSE = 30.84 €/100 kg

RESULTS

MODEL	AIC
ARIMA (0, 2, 3)	974,32
Regression + ARIMA errors (1, 1, 0)	983.04
GAM	1094.02
Linear Model	1339.03

ARIMA(0,2,3)

Coefficients:

ma1 ma2 ma3 -0.4114 -0.0213 -0.3442 s.e. 0.0848 0.1000 0.0974

sigma^2 = 200.5: log likelihood = -483.16 AIC=974.33 AICC=974.68 BIC=985.44

Ljung-Box test

data: Residuals from ARIMA(0,2,3)
Q* = 14.607, df = 21, p-value = 0.8421

THE BEST MODEL - ARIMA(0, 2, 3)

One-year forecast for monthly price of olive oil from ARIMA(0,2,3)

	МАРЕ
Train	2.96 %
Test	2.65 %

CONCLUSION

- The best model in term of AIC is the **ARIMA(0, 2, 3)**
- The variables that are significant: production, inflation, export and import
- Future work: include production cost and consumption

