DKN: Deep Knowledge-Aware Network for News Recommendation

Hongwei Wang^{1,2}, Fuzheng Zhang², Xing Xie², Minyi Guo¹

Shanghai Jiao Tong University
 Microsoft Research Asia

April 25, 2018

People read / listen to / watch news everyday...

Ancient Chinese newspaper (1803)

New York Times (1914)

Radio (1920s)

The Era of Internet ...

Web portals

CNN

BBC

FOX

News platforms

Sports SciTisch Health

Top Stories

Top Stories

World

World

Saudi Arabia's crown
prince slams Obama's
Iran ...
Socience
Iran ...

■ Google News Q Search

Home News Products Company Info Directory Media Callery Investor Relations

March 29, 2018

Hard Questions: What is Facebook Doing to Protect Election Security?

We want to provide regular updates on what we're doing and the progress we're making. Read more

Category: Hard Questions

Bing News

Google News

Facebook Newsroom

The Era of Mobile Internet ...

News Recommendation

The volume of articles can be overwhelming to users ...

News Recommendation

It's critical to help users target their interests and make personalized recommendations ...

Challenges

- News articles are highly time-sensitive
 - News expires quickly
 - Out-of-date news are replaced by newer ones frequently
- Readers are topic-sensitive
 - They are usually interested in specific news categories
- News language is highly condensed, containing a large amount of knowledge entities
 - Topic models or semantic models can hardly find their latent knowledge-level connection

Challenges

News the user have read

Boris Johnson Has Warned Donald Trump
To Stick To The Iran Nuclear Deal

News the user may also like

North Korean EMP Attack Would Cause Mass U.S. Starvation, Says Congressional Report

Our Task

Click history

Elon Musk offers Tesla Model 3 sneak peek ... Google fumbles while Tesla sprints toward a driverless future ... Trump pledges aid to Silicon Valley during tech meeting ...

Knowledge graph

General Motors is ramping up its self-driving car: **Ford** should be nervous ...

Candidate news

Will the user click it?

Knowledge Graph Embedding

- A knowledge graph consists of millions of triples (head, relation, tail)
- KGE aims to learn a low-dimensional representation vector for each entity and relation
- Translational distance models (TransX)
 - TransE: $f_r(h, t) = \|\mathbf{h} + \mathbf{r} \mathbf{t}\|_2^2$
 - TransH: $f_r(h,t) = \|\mathbf{h}_{\perp} + \mathbf{r} \mathbf{t}_{\perp}\|_2^2$, where $\mathbf{h}_{\perp} = \mathbf{h} \mathbf{w}_r^{\mathrm{T}} \mathbf{h} \mathbf{w}_r$ and $\mathbf{t}_{\perp} = \mathbf{t} \mathbf{w}_r^{\mathrm{T}} \mathbf{t} \mathbf{w}_r$
 - TransR: $f_r(h,t) = \|\mathbf{h}_r + \mathbf{r} \mathbf{t}_r\|_2^2$, where $\mathbf{h}_r = \mathbf{h} \mathbf{h}\mathbf{M}_r$ and $\mathbf{t}_r = \mathbf{h} \mathbf{t}\mathbf{M}_r$
 - TransD: $f_r(h,t) = \|\mathbf{h}_{\perp} + \mathbf{r} \mathbf{t}_{\perp}\|_2^2$, where $\mathbf{h}_{\perp} = (\mathbf{r}_p \mathbf{h}_p^{\mathrm{T}} + \mathbf{I})\mathbf{h}$ and $\mathbf{t}_{\perp} = (\mathbf{r}_p \mathbf{t}_p^{\mathrm{T}} + \mathbf{I})\mathbf{t}$

5/7/2018

10

Knowledge Graph Embedding

$$\mathcal{L} = \sum_{\substack{(h,r,t) \in \Delta \ (h',r,t') \in \Delta'}} \sum_{\substack{\text{max} \ (0, f_r(h,t) + \gamma - f_r(h',t'))}} \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Correct triples Incorrect triples Margin

Knowledge Distillation

Trump praises Las Vegas medical team

Apple CEO Tim Cook: iPhone 8 and Apple
Watch Series 3 are sold out in some places

EU Spain: Juncker does not want **Catalonian** independence

•••••

Entity linking Donald Trump: Donald Trump is the 45th president ...

Las Vegas: Las Vegas is the 28th-most populated city ...

Apple Inc.: Apple Inc. is an American multinational ...

CEO: A chief executive officer is the position of the ...

Tim Cook: Timothy Cook is an American business ...

iPhone 8: iPhone 8 is smartphone designed, ...

••••

Knowledge subgraph construction

Donald Trump: (0.32, 0.48) **Las Vegas:** (0.71, -0.49)

Apple Inc.: (-0.48, -0.41)

CEO: (-0.57, 0.06)

Tim Cook: (-0.61, -0.59) **iPhone 8:** (-0.46, -0.75)

Entity embedding

Knowledge graph embedding

Context Embedding

$$\overline{\mathbf{e}} = \frac{1}{|context(e)|} \sum_{e_i \in context(e)} \mathbf{e}_i$$

Kim's CNN

Knowledge-aware CNN (KCNN)

Attention-based User Interest Extraction

Attention net:

$$s_{t_k^i, t_j} = \operatorname{softmax} \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right) = \frac{\exp \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right)}{\sum_{k=1}^{N_i} \exp \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right)}$$

User interest extraction:

$$\mathbf{e}(i) = \sum_{k=1}^{N_i} s_{t_k^i, t_j} \mathbf{e}(t_k^i).$$

CTR prediction:

$$p_{i,t_j} = \mathcal{G}(\mathbf{e}(i), \mathbf{e}(t_j))$$

Dataset

- Dataset: Bing news
 - (timestamp, user_id, news_url, news_title, click_label)
 - Training set: October 16, 2016 ~ June 11, 2017
 - Test set: June 12, 2017 ~ August 11, 2017
- Knowledge graph: Microsoft Satori

# users	141,487	# triples	7,145,776
# news	535,145	avg. # words per title	7.9
# logs	1,025,192	avg. # entities per title	3.7
# entities	336,350	avg. # contextual	42.5
# relations	4,668	entities per entity	42.3

Statistics of the Dataset

(a) Distribution of the length of news life cycle

(d) Distribution of the number of entities in a news title

(b) Distribution of the number of clicked news of a user

(e) Distribution of the occurrence times of an entity in the news dataset

(c) Distribution of the number of words in a news title

(f) Distribution of the number of contextual entities of an entity in the knowledge graph

Comparison with Baselines

Models*	F1	AUC	<i>p</i> -value**
DKN	68.9 ± 1.5	65.9 ± 1.2	_
LibFM	61.8 ± 2.1 (-10.3%)	59.7 ± 1.8 (-9.4%)	$< 10^{-3}$
LibFM(-)	61.1 ± 1.9 (-11.3%)	58.9 ± 1.7 (-10.6%)	$< 10^{-3}$
KPCNN	$67.0 \pm 1.6 (-2.8\%)$	$64.2 \pm 1.4 (-2.6\%)$	0.098
KPCNN(-)	$65.8 \pm 1.4 (-4.5\%)$	$63.1 \pm 1.5 (-4.2\%)$	0.036
DSSM	$66.7 \pm 1.8 (-3.2\%)$	$63.6 \pm 2.0 \ (-3.5\%)$	0.063
DSSM(-)	66.1 ± 1.6 (-4.1%)	$63.2 \pm 1.8 (-4.1\%)$	0.045
DeepWide	66.0 ±1.2 (-4.2%)	$63.3 \pm 1.5 (-3.9\%)$	0.039
DeepWide(-)	$63.7 \pm 0.9 (-7.5\%)$	61.5 ± 1.1 (-6.7%)	0.004
DeepFM	$63.8 \pm 1.5 (-7.4\%)$	$61.2 \pm 2.3 (-7.1\%)$	0.014
DeepFM(-)	$64.0 \pm 1.9 (-7.1\%)$	$61.1 \pm 1.8 (-7.3\%)$	0.007
YouTubeNet	65.5 ± 1.2 (-4.9%)	$63.0 \pm 1.4 (-4.4\%)$	0.025
YouTubeNet(-)	$65.1 \pm 0.7 (-5.5\%)$	$62.1 \pm 1.3 (-5.8\%)$	0.011
DMF	$57.2 \pm 1.2 (-17.0\%)$	55.3 ± 1.0 (-16.1%)	$< 10^{-3}$

^{* &}quot;(-)" denotes "without input of entity embeddings".

^{**} p-value is the probability of no significant difference with DKN on AUC by t-test.

Comparison with Variants

Variants	F1	AUC
DKN with entity and context emd.	68.8 ± 1.4	65.7 ± 1.1
DKN with entity emd. only	67.2 ± 1.2	64.8 ± 1.0
DKN with context emd. only	66.5 ± 1.5	64.2 ± 1.3
DKN without entity nor context emd.	66.1 ±1.4	63.5 ± 1.1
DKN + TransE	67.6 ± 1.6	65.0 ± 1.3
DKN + TransH	67.3 ± 1.3	64.7 ± 1.2
DKN + TransR	67.9 ± 1.5	65.1 ± 1.5
DKN + TransD	68.8 ± 1.3	65.8 ± 1.4
DKN with non-linear mapping	69.0 ± 1.7	66.1 ± 1.4
DKN with linear mapping	67.1 ± 1.5	64.9 ± 1.3
DKN without mapping	66.7 ± 1.6	63.7 ± 1.6
DKN with attention	68.7 ± 1.3	65.7 ± 1.2
DKN without attention	67.0 ± 1.0	64.8 ± 0.8

Visualization of Attention

(a) without knowledge graph

(b) with knowledge graph

Q & A

Thanks!