A Graph Auto-Encoder for Haplotype Assembly and Viral Quasispecies Reconstruction

Ziqi Ke and Haris Vikalo

The University of Texas at Austin

The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) New York February 7-12, 2020

Motivation: Analysis of Haplotype Assembly

- Haplotypes
 - diploid (Human), polyploid (Potato et al.)

Motivation: Analysis of Viral Quasispecies

- RNA Viruses
 - HIV, HCV, Ebola, Zika

High-Throughput Sequencing Data

Reconstructing Genomic Components

- Challenging for several reasons
 - Haplotype assembly
 - limited read length
 - sequencing errors

- Existing methods
 - Haplotype assembly: HapCompass [Aguiar et al., 2012], H-PoP [Xie et al., 2016], HapCUT2 [Edge, et al., 2017], AltHap (Hashemi, et al. 2018)

Reconstructing Genomic Components

- Challenging for several reasons
 - Haplotype assembly
 - limited read length
 - sequencing errors
 - Viral quasispecies reconstruction
 - unknown population size
 - uneven frequencies of strains
- Existing methods
 - Haplotype assembly: HapCompass [Aguiar et al., 2012],
 H-PoP [Xie et al., 2016], HapCUT2 [Edge, et al., 2017],
 AltHap (Hashemi, et al. 2018)
 - Viral reconstruction: PredictHaplo [Prabhakaran et al., 2014], aBayesQR [Ahn, et al. 2017], TenSQR [Ahn, et al. 2018]

Preliminaries: Organizing Data in a Read Matrix

- Organize data into a matrix R, rows correspond to reads
 - utilize only the heterozygous sites

	SNPs (Mutations)											
Reads	1	2	0	4								
	1	0	3	4								
	0	3	2	1								
Rea	4	3	2	0								
	2	4	0	3								
	0	4	1	3								

SNP Fragment Matrix

Preliminaries: Organizing Data in a Read Matrix

- Organize data into a matrix R, rows correspond to reads
 - utilize only the heterozygous sites

SNPs (Mutations)														
	1	2	0	4										
	1	0	3	4										
Reads	0	3	2	1										
	4	3	2	0										
	2	4	0	3										
	0	4	1	3										

SNP Fragment Matrix

• The goal: analyze R to jointly identify origins of the reads and assemble haplotypes or viral quasispecies/haplotypes

Preliminaries: Organizing Data in a Read Matrix

- Organize data into a matrix R, rows correspond to reads
 - utilize only the heterozygous sites

SNPs (Mutations)											
Reads	1	2	0	4							
	1	0	3	4							
	0	3	2	1							
	4	3	2	0							
	2	4	0	3							
	0	4	1	3							

SNP Fragment Matrix

- The goal: analyze *R* to jointly identify origins of the reads and assemble haplotypes or viral quasispecies/haplotypes
- Note: R is obtained by sampling, with errors, an underlying ground truth matrix M; each row of M is one of the haplotypes

The Genomic Mixture Reconstruction Problem

• The read matrix can be represented as

$$R = \mathcal{P}_{\Omega}(UH + N)$$

U is the read origin indicator matrix, H is the component matrix, $\mathcal{P}_{\Omega}(.)$ is the sampling operator, N models errors

The Genomic Mixture Reconstruction Problem

• The read matrix can be represented as

$$R = \mathcal{P}_{\Omega}(UH + N)$$

U is the read origin indicator matrix, H is the component matrix, $\mathcal{P}_{\Omega}(.)$ is the sampling operator, N models errors

• The GMR problem: Given R, find U and H

The Genomic Mixture Reconstruction Problem

The read matrix can be represented as

$$R = \mathcal{P}_{\Omega}(\mathit{UH} + \mathit{N})$$

U is the read origin indicator matrix, H is the component matrix, $\mathcal{P}_{\Omega}(.)$ is the sampling operator, N models errors

- The GMR problem: Given R, find U and H
- Performance: correct phasing rate (CPR) and MEC score

$$\mathsf{CPR} = 1 - \frac{1}{kn} (\min \sum_{i=1}^k \mathsf{HD}(H_{i:}, \mathcal{M}(H_{i:})))$$

$$MEC = \sum_{i=1}^{m} \min_{j=1,2,...,k} HD(R_{i:}, H_{j:})$$

Solving the GMR Problem via a Graph Auto-Encoder

• An undirected bipartite graph G = (V, E, W)

Graph Encoder

The messages from read nodes to SNP nodes

$$M_{(1)} = \sigma(\sum_{w=1}^{4} D_{s}^{-1} A_{w}^{T} R W_{w}^{(1)} + B_{w}^{(1)})$$

D is the diagonal degree matrix, A is the graph adjacency matrix, W and B denote the weights and biases

Graph Encoder

The messages from SNP nodes to read nodes

$$M_{(2)} = \sigma(\sum_{w=1}^{4} D_{r}^{-1} A_{w} M_{(1)} W_{w}^{(2)} + B_{w}^{(2)})$$

D is the diagonal degree matrix, A is the graph adjacency matrix, W and B denote the weights and biases

Graph Encoder

The dense layer with softmax funcation

$$O = \sigma(M_{(2)}W_d + B_d)$$

$$Z_{ij} = \frac{e^{\beta O_{ij}}}{\sum_{j=1}^k e^{\beta O_{ij}}}$$

Component Decoder

• Reconstruct component matrix via majority voting

Component Decoder

• Reconstruct component matrix via majority voting

•
$$\mathcal{L} = \frac{1}{2}||\mathcal{P}_{\Omega}(\mathcal{R} - Z\mathcal{H})||_F^2$$

					1	2	3	4		
0.998	0.001	0.001		7	4	3	2	1		
					2	4	1	3		
0.998	0.001	0.001			Com	pone	ent M	Iatri	X	
0.001	0.998	0.001	Component	, ,		•				
0.001	0.998	0.001	Decoder		1.00)4	2.00	03_	2.997	3.996
0.001	0.001	0.998			1.00)4	2.00	03	2.997	3.996
0.001	0.001	0.998			3.99	95	3		2	1.005
Approxi	mated Re	ad Origin	1		3.99	95	3		2	1.005
	licator M	·			2.00	01	3.99	97	1.003	2.999
					2.00	01	3.99	97	1.003	2.999
						Re	econs	struc	ted SNP	

Fragment Matrix

Determining the Number of Strains, k

Improvement rate of MEC [Ahn, et al. 2017]

$$MECimpr(k) = \frac{\mathsf{MEC}(k) - \mathsf{MEC}(k+1)}{\mathsf{MEC}(k)}$$

... $\mathsf{MEC}(k-2) \gg \mathsf{MEC}(k-1) \gg \mathsf{MEC}(k) \ge \mathsf{MEC}(k+1) \dots$

Determining the Number of Strains, k

Improvement rate of MEC [Ahn, et al. 2017]

$$MECimpr(k) = \frac{\mathsf{MEC}(k) - \mathsf{MEC}(k+1)}{\mathsf{MEC}(k)}$$

... $\mathsf{MEC}(k-2) \gg \mathsf{MEC}(k-1) \gg \mathsf{MEC}(k) \ge \mathsf{MEC}(k+1)$...

- Estimate k based on binary search
 - Starting from k_0

$$egin{aligned} k_{ au+1} \leftarrow 2k_{ au} & ext{ or } \lfloor (k_{ au} + \min_{i=1,\ldots, au-1} k_i)/2
floor & ext{ if } \textit{MECimpr}(k_{ au}) > \eta \ (k_i > k_{ au}) \ k_{ au+1} \leftarrow \lfloor (k_{ au} + \max_{i=1,\ldots, au-1} \{1,k_i\})/2
floor & ext{ if } \textit{MECimpr}(k_{ au}) \leq \eta \end{aligned}$$

• $\hat{k} \leftarrow k_{\tau} + 1$ when $k_{\tau+1} = k_{\tau}$

Results on Semi-Experimental Data

- Solanum Tuberosum semi-experimental data
 - 2 × 250bp-long Illumina's MiSeq
 - 5kbp genome (Solanum Tuberosum chromosome 5)
 - 10 instances
- Performance
 - MEC Score
 - Correct Phasing Rate: fraction of accuracy of each reconstructed strain

$$\mathsf{CPR} = 1 - \frac{1}{kn}(\min\sum_{i=1}^k \mathsf{HD}(H_{i:},\mathcal{M}(H_{i:})))$$

Results on Semi-experimental Data

Performance comparison on biallelic Solanum Tuberosum semi-experimental data

		MEC		CPR	
Coverage		Mean	SD	Mean	SD
	GAEseq	8.200	4.686	0.822	0.048
15	HapCompass	100.700	66.150	0.763	0.046
13	H-PoP	28.700	32.667	0.783	0.066
	AltHap	59.100	28.125	0.709	0.054
	GAEseq	8.400	4.719	0.831	0.081
25	HapCompass	124.800	132.156	0.810	0.063
23	H-PoP	33.800	47.434	0.798	0.046
	AltHap	92.600	83.649	0.756	0.068
	GAEseq	10.700	3.234	0.857	0.087
35	HapCompass	217.400	174.135	0.775	0.072
33	H-PoP	41.700	53.971	0.823	0.094
	AltHap	164.000	101.583	0.754	0.093

Results on HIV-1 Data

• 5 HIV-1 strains, frequency 10-27%, pairwise distances 2.61-8.45%

		p17	p24	p2-p6	PR	RT	RNase	int	vif	vpr	vpu	gp120	gp41	nef
GAEseq	PredProp	1	1	1	1	1.2	1	1	1	1	1.2	1	1	1
-	CPR_{HXB2}	100	99.4	100	100	100	100	100	100	100	100	96.2	96.7	100
	$CPR_{89.6}$	100	99.4	100	100	100	100	100	100	100	99.2	99.4	100	98.2
	CPR_{JR-SCF}	100	100	100	100	100	100	100	100	100	100	99.9	100	99.3
	CPR_{NL4-3}	100	100	100	100	100	100	100	100	100	100	100	100	99.8
	CPR_{YU2}	100	100	100	100	100	100	100	100	100	100	99.6	100	98.1
PredictHap	PredProp	1	0.6	1	1	1	0.8	0.8	0.8	1	0.8	0.8	0.8	0.8
	CPR_{HXB2}	100	0	100	100	100	98.9	100	100	100	93.2	0	0	0
	$CPR_{89.6}$	100	100	100	100	100	100	99.8	100	100	0	97.8	100	98.8
	CPR_{JR-SCF}	100	100	100	100	100	100	100	100	100	100	99.7	100	100
	CPR_{NL4-3}	100	99.1	100	100	100	100	100	100	100	100	100	100	100
	CPR_{YU2}	100	0	100	100	100	0	0	0	100	100	98.6	100	100
TenSQR	PredProp	1	1.6	1	1	1.4	1	1	1	1	1.6	2.2	1.2	0.8
	CPR_{HXB2}	100	98.9	100	100	99.2	100	100	100	100	92.8	96.0	99.0	0
	$CPR_{89.6}$	100	100	100	100	98.0	100	100	100	100	94.0	97.2	100	95.7
	CPR_{JR-SCF}	100	100	100	100	100	100	100	100	100	100	98.3	97.7	99.8
	CPR_{NL4-3}	100	99.3	100	100	99.5	100	100	100	100	100	99.8	99.5	99.7
	CPR_{YU2}	100	99.3	100	99.7	99.7	100	100	100	100	100	94.9	100	98.6
aBayesQR	PredProp	1	1	1	1	1	1	1	1	1.2	1	0.8	0.8	1.2
	CPR_{HXB2}	100	99.4	100	100	98.5	100	99.9	100	100	99.6	98	0	95.8
	$CPR_{89.6}$	100	98.7	100	100	98.6	100	100	100	100	92	96.5	98.9	95.5
	CPR_{JR-SCF}	100	99.6	100	100	99	100	100	100	100	98.8	97.7	99.1	98.2
	CPR_{NL4-3}	100	100	100	100	98.9	100	100	99.8	100	100	96.3	98.8	100
	CPR_{YU2}	100	99.7	100	100	99.2	100	99.5	99.7	100	100	0	98.6	99.2

Summary and Acknowledgements

- GAEseq: The first learning framework for haplotype assembly and viral quasispecies reconstruction
 - an undirected bipartite graph
 - a graph auto-encoder
 - not discussed: computational setting and more results details in the paper and supplementary material
- Software: https://github.com/WuLoli/GAEseq
- Acknowledgements
 - support from NSF CCF 1618427