Fach:

Doz.:

Bordnetze und Signalübertragung

Online-Klausurteil: Bordnetze

Prof. P. Köhring

Wintersemester 2021/2022

Name:			Vorname:		
Mit Eintragen meines Namens bestätige ich die Kenntnisnahme der Prüfungsbedingungen!			Mit Eintragen meines Namens bestätige ich die Kenntnisnahme der Prüfungsbedingungen!		
Matrikelnummer:		Datum:			
Aufgabe:	1/8	2/ 34			
Punkte:					
Gesamt:					
Bewertung:	1 : ≥ 91%	6 2: ≥ 76%	3: ≥ 61%	4: ≥ 50%	5: < 50%

Prüfungsbedingungen und wichtige Hinweise

- 1. Tragen Sie in den Kopfbogen die von Ihnen geforderten Angaben ein!
- 2. Überprüfen Sie die Ihnen vorliegende Klausur auf Vollständigkeit!
- 3. Das Auseinanderheften ist untersagt und wird als Betrugsversuch gewertet.
- 4. Mobiltelefone sind während der Klausur auszuschalten, ihre Benutzung ist untersagt. Zuwiderhandlungen werden als Betrugsversuch gewertet.
- 5. Nutzen Sie die Blattrückseiten für Nebenrechnungen. Von Ihnen ohne unsere Zustimmung angefügte Seiten werden nicht gewertet.
- 6. Bei Fragen mit Auswahlmöglichkeit ist/sind die richtige/n Antwort/en durch einen Kreis um den entsprechenden Buchstaben zu kennzeichnen. Es können alle Antworten richtig, alle falsch bzw. nur einzelne Antworten richtig sein.
- 7. Die Bearbeitungszeit beträgt 45 Minuten.
- 8. Als Hilfsmittel sind zugelassen: grafischer Taschenrechner, Stift und Lineal.

Aufgabe 1 Verbindungstechnik

Um welche Art von Crimpverbindung handelt es sich? (2Pkt.)

Welche Aussagen sind richtig (bitte mit Kreuz markieren)? (6Pkt.)

Die Buchstabenkombination FL steht für "Fahrzeugleitung"
PVC-Kabelisolierungen dürfen über 60°C nicht eingesetzt werden
bei Kabelquerschnitten oberhalb von 50mm² werden nur
Aluminiumkabel verwendet
Sonderkabel für Fahrzeuge mit Batterie-, Hybrid- oder
Brennstoffzellenantrieb werden durch Orange gekennzeichnet.
ein Wackelkontakt kann zu Überspannungen im Bordnetz führen.
Schmelzsicherungen zeigen ein schnelleres Ansprechen bei einer
Kabelüberlastung als elektronische Sicherungen.

2 Elektrische Maschinen und Antriebe

Aufgabe 2.1 - Entwurfsgleichung

Der Zusammenhang von Masse und Leistung einer elektrischen Maschine wird durch die Entwurfsgleichung $\frac{P_{mech}}{n} = c_{mech} \cdot D^2 \cdot l_i$ beschrieben. Im Fahrzeugbau strebt man eine möglichst geringe Masse und einen kleinen Bauraum bei möglichst hoher Leistung an. Welche zwei Größen dieser Gleichung sollten daher möglichst groß werden? (2Pkt.)

Aufgabe 2.2 - Generator

An einem Generator werden die folgenden Werte gemessen: $U=14,4V,\ I=37,5A.$

Berechnen Sie die folgenden Werte unter Angabe der Gleichung: (6Pkt.)

a) elektr. Leistungsabgabe	P=
b) Antriebsleistung bei $\eta = 55\%$	P _{zu} =
c) Drehmoment an Generatorriemenscheibe für n1=6000U/min	M=

Aufgabe 2.3 - Riementrieb

Für den dargestellten Riementrieb gelten die Werte: $d_1 = 145$ mm; $d_2 = 70,0$ mm und d = 155,0mm (Lüfter). Der Generator beginnt ab einer Drehzahl $n_2=1000$ U/min Strom zu liefern.

Die höchstzulässige Drehzahl betrage n_{2max} =13.000U/min.

Berechnen Sie die folgenden Werte unter Angabe der Gleichung: (8Pkt.)

a) Übersetzungsverhältnis	ü=
b) Kurbelwellendrehzahl n ₁ bei einsetzender Stromabgabe	n_1 =
c) Kurbelwellendrehzahl bei maximaler Drehzahl	n ₁ =
d) maximale Umfangsgeschwindigkeit des Lüfters	v_u =

Aufgabe 2.4 - Regler

Bei der Vorerregung des Generators sind die Kontrolllampe 12V/2W und die Polradwicklung (Läuferwicklung) mit 4Ohm in Reihe geschaltet, der Spannungsfall an den Bürsten betrage insgesamt 0,6V. Die Bordnetzspannung betrage vor Start 12,5V.

Berechnen Sie die folgenden Werte: (6Pkt.)

a) Lampenwiderstand	R _K =
b) Vorerregerstrom	$I_{E} =$
b) Erregerstrom bei Generatornennspannung (14,4V) Spannungsfall über Regler darf vernachlässigt werden	I _{Emax} =

Aufgabe 2.5 – Starter-Antrieb

Zum Starten eines Dieselmotors werden an der Kurbelwelle ein Drehmoment M_2 =120Nm und eine Drehzahl n_2 =80U/min benötigt.

Zahnkranz z_2 = 154; Ritzel z_1 = 9. Für den Starter gelten die Werte U=8,5V; Wirkungsgrad 34%.

Berechnen Sie die folgenden Werte unter Angabe der Gleichung: (8Pkt.)

a) Drehzahl n ₁	n_1 =
b) Drehmoment M ₁ mit einem Getriebewirkungsgrad von 96%	M_1 =
c) Leistung d. Starters	P ₁ =
d) Strom d. Starters	I=

Aufgabe 2.6 - Starter

An einem Starter werden die folgenden Werte gemessen: Strom I=280A und Spannung U=9,5V.

Berechnen Sie die folgenden Werte unter Angabe der Gleichung: (4Pkt.)

a) Leistungsabgabe bei einem Gesamtwirkungsgrad von 45%	P=
b) Drehmoment am Verbren-	M —
nungsmotor bei 200U/min	M=
Kurbelwellendrehzahl	