				19				
I	m	ag	e	Res	sh	8	idi	٥Ŋ

Degrador Image:

Cause of blux

Lo Connexa [toanslation

> Envisonment

> Device moise

Lo Quantisation noise

Obtal Blux - Caused due to limited depth of Feld Motion Blux Spatial Quantisation (Discode Finels) Additive intensity norse

Solution:

-> Light held
camea

-> Multipoeus
Trage
Fusion

Restoration from cornera shake:

B=K*L+N -> Senson Noise
Bluesed al J & Blue-Fore
Trage Blue Trage

**Eane Image

Consider blussed mag as convolution with degrandation.

Deconvolution is done to restore ving.

Image enhancement às subjective but image sest-contron is objective

Degradation Model Model a anvolution with Shift-invasion? Filter h(13y) 2028-06 into Chausing attenuates high spatial beginning and noise $f(r,y) \star h(r,y) = g(r,y)$ Gaussian is
preferred
-2/22
2702 - Out of bows is modelled as guission Limitations
Loss of into (blussing attenuates high spatial tag.) A noise Degradation model: Observed Image f(x,y) Degradation f g(x,y) Restosotion

Toue Image f(z,y)
Estimate of f(z,y)
from g(z,y) hCx,y) n(x,y)
Deg. Additive noise
Files 9(2,4)=h(2,4)+f(2,4)+1(2,4) G(v,v)=A(v,v)F(v,v)+N(v,v) Assumptions -> Degradation function (11) L> Linear L> Position-invariance Note: -> Inp. of spatial location

La Except periodic noise

Uncorrelated with image

> Doesn't papend on pixel coordinate but sathers on Functional value

Noise Models:

-> Gaussian
La Sensor Noise
La bowl high ben

> Unition Noise Random Num Generates

-> Rayleigh Noise La Noise in range image

→ Exponential Noise Lags Imaging Jama Voise Loser Imago

Impulse Noise (soil & pepper) Quick Tourietts (faulty switching

> How to study system noise

La Cave Io Imaging system available
La Nose callboation [Capture set of "Most image"]
La Nose callboation [Capture set of "Most image"]
La Select model with better statistical best some

Only images available			
La Cetimate par	MOKKST OF LAI	bom pathe of	onstant
by intensity			
La Compute vasion	nce k moon from	intensity levels	
storation (In presence of 1	(980)		
Lolbe spatial lite	sing techniques		
Mean biltes: - Geom	nebic mean altes		
Menn bil tes: - Geom	ontrad for papp	ers]	
12 monic filter		050 -s sal	#:
C 1 languent main v	ltes Colin	Ox > Done	emonic mean filt
some some some some	boths volze	8-0-30	sti. mean fitt
Migborup lyspex 3	>Alpha bolmor	ed filter	about intensities
	Kemove do	TAL Mean?	ghest intensities
	d = wu	[Ast Mem] -1 [Medran]	
Alaphnia Local Noise Re	duction - Var	rance of overall	L boier
f(re u) = 9	(274) - On 190	(4)-11/2	
Se 200 2 - Sedje, poor	ve it (sco	cal Vaerance	
©2=572 → Return m	on boal aska		

Cose 2:

Periodic noise; La Rand base/band seject

Estimation of degradations

3 ways La Observation La Espesimentation La Modelling

 $H_{S}(\mathbf{U}, \mathbf{V}) = G_{S}(\mathbf{U}, \mathbf{V})$

H(UN) = G(U,V)

A stength of impulse

Motion bluss

- Amb of light hithing sonses changes fast - Comesa motion

g(x,y) = Sf(x-x,6),4 y=(6)] 4+

xo(b)=at, yo(b)=bt -> Linear motion

Modelling Atmospheric bushoulena

H(U,V) = e

Response

Direct Invest Altresing

Assume Histon,

 $\widehat{F}(U,V) = \frac{G(U,V)}{F(U,V)} = F(U,V) + \frac{N(U,V)}{F(U,V)}$

scimib Noise apro costavi sadius