Kubernetes

Cluster

- Conjunto de equipos gestionado por Kubernetes.
- Nodo Master.
 - Plano de control.
 - Gestiona los nodos worker.
- Nodo Worker.
 - Componentes de la aplicación.
- Ejecuta contenedores (Docker, CRI-O, rktkit..).

- Los principales proveedores de cloud computing ofrecen este servicio mediante un "cloud virtual"
- Ya preparado para kubernetes.

Nodos

- Equipo para ejecutar pods.
- Kubelet es el agente que está en cada nodo.
- Kube-proxy es un proxy de red en cada nodo.
- Container runtime: docker, containerd, cri-o, rktlet
 - kubect get node
 - kubectl describe node <NODO>
- Node Status
 - Direcciones
 - Condiciones
 - Capacity y Allocatable
 - Info

Conditions: Type	Status	LastHea						Γransit			Reason	Message
MemoryPressure DiskPressure PIDPressure Ready Addresses: InternalIP: 10.	False False False False False False True 0.2.15 ikube 2: 17784 0 20386 110 2: 16390 0 19362 110 Version n:	Sun, 01 Sun, 01 Sun, 01 Sun, 01 772Ki 24Ki 445849 24Ki 11452 48D75 c3bf6 4.15. Build linux amd64 c docke v1.14 v1.14	Dec 2 Dec 2 Dec 2 Dec 2 Dec 2	2019 1 2019 1 2019 1 2019 1 2019 1 904ef4 287-4E 954-4e	L6:42:00 L6:42:00 L6:42:00 L6:42:00 L6:42:00 L6:42:00 L6:42:00	+0100 +0100	Sat, Sat, Sat, Sat,	30 Nov 30 Nov 30 Nov	2019 2019 2019 2019	+0100 +0100	Reason KubeletHasSufficientMemory KubeletHasNoDiskPressure KubeletHasSufficientPID KubeletReady	Message kubelet has sufficient memory available kubelet has no disk pressure kubelet has sufficient PID available kubelet is posting ready status
TO THE COLUMN TO												

Controladores

- Node Controller
 - Responsable del nodo.
- Replication Controller
 - Mantiene el número concreto de pods con sus réplicas.
- Endpoint Controller
 - Rellena de contenido los objetos "endpoint" (servicios, pod)
- Service Account y Token Controller
 - Gestiona las cuentas y los tokens de accedo al API para los namespaces.

Entidades de kubernetes

Namespaces

- Nombres para establecer particiones del cluster virtual en el cluster real.
- Se emplea para agrupar y separar equipos independientes.

Labels

- Par clave/valor asociado a objetos definidas por el usuario, sin semántica.
- Se usan para cualificar, organizar y seleccionar objetos.
- Se aplican al crear el objeto o dinámicamente.

Selector de campo

- Para seleccionar objetos/recursos en funcion de valores de campos.
- metadata.name
- metadata.namespace
- status.phase
 - kubectl get pods –field-selector status.phase=Running

Roles

- Role
 - Se aplica a nivel de namespace
- ClusterRole
 - Se aplica a nivel de cluster
 - cluster-admin
 - admin
 - edit
 - view

- RoleBinding
- ClusterRoleBinding

Pods

- Unidad basica de ejecución.
- Conjunto de uno o más contenedores constituyendo una instancia única de una aplicación.
- Dirección IP única a nivel de pod.
 - Los contenedores comparten la dirección IP
 - Coordinación en el uso de puertos.
- Almacenamiento
 - Volúmenes compartidos entre los contenedores.

Pod con varios contenedores

- Todos los contenedores se ubican automáticamente en el mismo nodo.
 - Pueden compartir recursos.
 - Un pod tiene una única IP.
 - Los contenedores puede comunicarse con "localhost".
 - Los puertos de los contenedores son únicos en el pod.
 - Los contenedores tienen que coordinarse en el uso de puertos.
 - Pueden compartir Volúmenes.

Pods y Controladores

- Un controlador puede crear y gestionar varios pods.
 - Replicación, Rollout,
- Pod Template
 - Especificación de un pod que se usa en otros objetos
- Controladores de replicación, Jobs y DaemonSets

Init Containers

- Se ejecutan antes que los contenedores "regulares" del pod.
- Ejecutan hasta acabar.
- Cuando acaba uno, se ejecuta el siguiente.
 - Si falla la ejecución, se rearranca el pod hasta que termina bien.

```
apiVersion: v1
kind: Pod
metadata:
  name: myapp-pod
  labels:
   app: myapp
spec:
  containers:
  - name: myapp-container
    image: busybox:1.28
    command: ['sh', '-c', 'echo The app is running! && sleep 3600']
  initContainers:
  - name: init-myservice
    image: busybox:1.28
    command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice; sleep 2; done;']
  - name: init-mydb
    image: busybox:1.28
    command: ['sh', '-c', 'until nslookup mydb; do echo waiting for mydb; sleep 2; done;']
```

Topología de pods

 Se utilizan las etiquetas en los nodos del cluster.

NAME STATUS ROLES AGE VERSION LABELS node1 Ready <none> 4m26s v1.16.0 node=node1,zone=zoneA node2 Ready <none> 3m58s v1.16.0 node=node2,zone=zoneA node3 Ready <none> 3m17s v1.16.0 node=node3,zone=zoneB node4 Ready <none> 2m43s v1.16.0 node=node4,zone=zoneB</none></none></none></none>
--

```
kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  containers:
```

- name: pause

image: k8s.gcr.io/pause:3.1

Controllers - ReplicaSet

 Mantener un conjunto estable de réplicas de un pod.

```
apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: frontend
  labels:
    app: guestbook
    tier: frontend
spec:
  # modify replicas according to your case
  replicas: 3
  selector:
    matchLabels:
      tier: frontend
  template:
    metadata:
      labels:
        tier: frontend
    spec:
      containers:
      - name: php-redis
        image: gcr.io/google_samples/gb-frontend:v3
```

```
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
   name: frontend-scaler
spec:
```

targetCPUUtilizationPercentage: 50

scaleTargetRef:

minReplicas: 3
maxReplicas: 10

kind: ReplicaSet name: frontend

Controllers - Deployments

- Conjunto de pods.
- Arrancar.
- Actualizar.
- Revertir actualización.

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.7.9
        ports:
        - containerPort: 80
```

Controllers – StatefulSets

- Gestión y escalado de un conjunto de pods.
- Garantiza el orden y la "exclusividad" de estos pods.

```
apiVersion: apps/v1
apiVersion: v1
                        kind: StatefulSet
kind: Service
                        metadata:
metadata:
                          name: web
 name: nginx
                        spec:
 labels:
                          selector:
    app: nginx
                            matchLabels:
spec:
                              app: nginx # has to match .spec.template.metadata.labels
 ports:
                          serviceName: "nginx"
  - port: 80
                          replicas: 3 # by default is 1
    name: web
                          template:
 clusterIP: None
                            metadata:
  selector:
                              labels:
    app: nginx
                                app: nginx # has to match .spec.selector.matchLabels
                            spec:
                              terminationGracePeriodSeconds: 10
                              containers:
                              - name: nginx
                                image: k8s.gcr.io/nginx-slim:0.8
                                ports:
                                - containerPort: 80
                                  name: web
                                volumeMounts:
                                - name: www
                                  mountPath: /usr/share/nginx/html
                          volumeClaimTemplates:
                          - metadata:
                              name: www
                            spec:
                              accessModes: [ "ReadWriteOnce" ]
                              storageClassName: "my-storage-class"
                              resources:
                                requests:
```

storage: 1Gi

Controllers – ReplicationController

- Obsoleto.
- Deployment + ReplicaSet

Controllers - DaemonSet

- Asegurar que se ejecuta una copia de un pod en los nodos (todos o parte).
- Cluster storage daemon
 - Glusterd, ceph
- Logs collection daemon
 - Fluentd, logtash
- Monitoring daemon
 - Prometheus, flowmill, collectd, Dynatrace OneAgent, appDynamics agent, Datadog agent, Instana

```
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd-elasticsearch
  namespace: kube-system
  labels:
    k8s-app: fluentd-logging
spec:
  selector:
   matchLabels:
      name: fluentd-elasticsearch
  template:
    metadata:
      labels:
        name: fluentd-elasticsearch
    spec:
      tolerations:
      - key: node-role.kubernetes.io/master
        effect: NoSchedule
      containers:
      - name: fluentd-elasticsearch
        image: quay.io/fluentd_elasticsearch/fluentd:v2.5.2
        resources:
         limits:
            memory: 200Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
```

Controllers - Jobs

- Para ejecutar un conjunto de pods asegurando que un número definido de pods terminan bien.
 - Fallo de un nodo.
- Paralelismo.

```
apiVersion: batch/v1
kind: Job
metadata:
   name: pi-with-timeout
spec:
   backoffLimit: 5
   activeDeadlineSeconds: 100
template:
   spec:
      containers:
      - name: pi
      image: perl
      command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
```

Controllers - CronJob

 Para crear jobs planificados en el tiempo.

```
apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: hello
spec:
  schedule: "*/1 * * * *"
 jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: hello
            image: busybox
            args:
            - /bin/sh
            - date; echo Hello from the Kubernetes cluster
          restartPolicy: OnFailure
```

Endpoint Slices (alpha)

- Referencias a un conjunto de endpoints de red.
- Agrupar servicios cuando hay un número muy elevado.

```
apiVersion: discovery.k8s.io/v1alpha1
kind: EndpointSlice
metadata:
  name: example-abc
  labels:
    kubernetes.io/service-name: example
addressType: IP
ports:
  - name: http
    protocol: TCP
    port: 80
endpoints:
  - addresses:
    - "10.1.2.3"
    - "2001:db8::1234:5678"
    conditions:
      ready: true
    hostname: pod-1
    topology:
      kubernetes.io/hostname: node-1
      topology.kubernetes.io/zone: us-west2-a
```

Servicios

- Exponer una aplicación ejecutando en unos pods como un servicio de red.
 - Ocultan los pods.
- Tiene una IP que sirve para acceder a los pods.

```
apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: MyApp
  ports:
    - protocol: TCP
    port: 80
    targetPort: 9376
```

Sin selector de pod hay que añadir el endpoint manualmente

```
apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  ports:
    - protocol: TCP
    port: 80
    targetPort: 9376
```

```
apiVersion: v1
kind: Endpoints
metadata:
  name: my-service
subsets:
  - addresses:
     - ip: 192.0.2.42
  ports:
     - port: 9376
```

Multipuerto

```
apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
  selector:
    app: MyApp
 ports:
    - name: http
      protocol: TCP
      port: 80
      targetPort: 9376
    - name: https
      protocol: TCP
      port: 443
      targetPort: 9377
```

Variables de entorno automáticas

```
REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11
```

ClusterIP

- Accesible únicamente desde dentro del cluster.

NodePort

- El servicio se expone en cada nodo con la IP del nodo y el puerto.

LoadBalancer

- El servicio se expone utilizando un loadbalancer, creando rutas entre la direccion expuesta y las direcciones internas.

ExternalName

Asocia el servicio al contenido del campo externalName por DNS.

```
apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
  selector:
    app: MyApp
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  clusterIP: 10.0.171.239
  type: LoadBalancer
status:
  loadBalancer:
    ingress:
    - ip: 192.0.2.127
```

apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 9376
 externalIPs:
 - 80.11.12.10

Ingress

- Ingress expone rutas http y
 https desde fuera del cluster a
 servicios dentro del cluster.
- Las rutas se controlan mediante reglas.
- Si no hay reglas, el tráfico se enruta al backend por defecto.
 - Definido en el controlador Ingress.

```
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
  - http:
      paths:
      - path: /testpath
        backend:
          serviceName: test
          servicePort: 80
```

Servicio único

```
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
   name: test-ingress
spec:
   backend:
    serviceName: testsvc
   servicePort: 80
```

Más de un servicio

```
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: simple-fanout-example
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - path: /foo
        backend:
          serviceName: service1
          servicePort: 4200
      - path: /bar
        backend:
          serviceName: service2
          servicePort: 8080
```

Enrutar por "Host header"

```
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: name-virtual-host-ingress
spec:
  rules:

    host: foo.bar.com

    http:
      paths:
      - backend:
          serviceName: service1
          servicePort: 80
  - host: bar.foo.com
    http:
      paths:
      - backend:
          serviceName: service2
          servicePort: 80
```

```
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: name-virtual-host-ingress
spec:
  rules:
  - host: first.b
    http:
      paths:
      backend:
          serviceName: service1
          servicePort: 80
  - host: second.foo.com
    http:
      paths:
      - backend:
          serviceName: service2
          servicePort: 80
  - http:
      paths:
      - backend:
          serviceName: service3
          servicePort: 80
```

Network Policies

- Especificación de como grupos de pods tienen permiso para comunicarse entre si con otros endpoints de la red
 - Reglas mediante "labels".
- Ingress para tráfico entrante.
- Egress para tráfico saliente.

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: test-network-policy
  namespace: default
spec:
  podSelector:
    matchLabels:
      role: db
  policyTypes:
  - Ingress
  - Egress
  ingress:
  - from:
    - ipBlock:
        cidr: 172.17.0.0/16
        except:
        - 172.17.1.0/24
    - namespaceSelector:
        matchLabels:
          project: myproject
    - podSelector:
        matchLabels:
          role: frontend
    ports:
    - protocol: TCP
      port: 6379
  egress:
  - to:
    - ipBlock:
        cidr: 10.0.0.0
    ports:
    - protocol: TCP
      port: 5978
```

Permitir, Denegar Ingress

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
   name: allow-all
spec:
   podSelector: {}
   ingress:
   - {}
   policyTypes:
   - Ingress
```

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
   name: default-deny
spec:
   podSelector: {}
   policyTypes:
   - Ingress
```

Permitir, Denegar Egress

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
   name: allow-all
spec:
   podSelector: {}
   egress:
   - {}
   policyTypes:
   - Egress
```

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
   name: default-deny
spec:
   podSelector: {}
   policyTypes:
   - Ingress
   - Egress
```

VOLÚMENES

https://kubernetes.io/docs/concepts/storage/volumes/

- awsElasticBlockStore
- azureDisk
- azureFile
- cephfs
- cinder
- configMap
- csi
- downwardAPI
- emptyDir

- fc (fibre channel)
- flexVolume
- flocker
- gcePersistentDisk
- gitRepo (deprecated)
- glusterfs
- hostPath
- iscsi
- local

- nfs
- persistentVolumeClaim
- projected
- portworxVolume
- quobyte
- rbd
- scaleIO
- secret
- storageos
- vsphereVolume

PersistentVolume

- Separación entre provisión y uso.
- PersistentVolume
 - Almacenamiento provisionado por un administrador, o dinámicamente mediante la API.
 - · Recurso del cluster.
- PersistentVolumeClaim.
 - Petición de almacenamiento de un usuario.
 - Un Pod consume recursos de un nodo.
 - Un PVC consume recursos PV.

Ciclo de vida de un volumen

- Provisión
 - Estática o dinámica. Se genera un PV.
- Ajuste (binding).
 - Entre una petición PVC y un PV.
- Uso
 - Como un volúmen en un pod.
- Liberación.
 - Cuando se elimina la PVC, el PV sigue existiendo, "desasociado", pero con datos.
 - Hay que liberarlo manualmente.
- Borrado.
- Reciclado.
 - Eliminación de los datos y libre para nuevo uso.

Seguridad

Cloud Provider Security Table

laaS Provider	Link
Alibaba Cloud	https://www.alibabacloud.com/trust-center
Amazon Web Services	https://aws.amazon.com/security/
Google Cloud Platform	https://cloud.google.com/security/
IBM Cloud	https://www.ibm.com/cloud/security
Microsoft Azure	https://docs.microsoft.com/en-us/azure/security/azure-security
VMWare VSphere	https://www.vmware.com/security/hardening-guides.html