A view of
$$x^p+y^p=z^p$$
 from $x^2+y^2=z^2$
B. L. Ly

1. Introduction

Even though Andrew Wiles has proved Fermat's Last Theorem, people still wonder if Fermat had a simple proof as he claimed. How wonderful if Fermat had divulged his proof.

To prove Fermat's Last Theorem, one only needs to investigate impossibility of $x^4+y^4=z^4$ and $x^p+y^p=z^p$, respectively, where $p\ge 3$ is a prime number.

Fermat himself proved impossibility of $x^4+y^4=z^4$ by using his own method of infinite descent. He did not, however, give a proof of impossibility of $x^p+y^p=z^p$.

It was known in India and China more than two millennia ago that $x^2+y^2=z^2$ admits integer solutions. To explain why $x^p+y^p=z^p$ has no integer solutions, we decided to look for a clue in $x^2+y^2=z^2$. The finding reveals if $x^p+y^p=z^p$ is assumed to have integer triplets, z cannot have a lower bound.

2. Why $x^2+y^2=z^2$ has integer solutions

It is well known $x^2+y^2=z^2$ has irreducible integer triplets. Three observations can be made:

- One of x and y, say x, is an odd number because G.C.D. (x, y, z)=1.
- Any odd number can be represented by a difference of two squares of relatively prime integers. Therefore, integers z and y can be found such that $x^2=z^2-y^2$.
- z has a smallest integer solution because integers are bounded from below.

If x is an odd number, so is x^2 . Then, we have $x=m^2-n^2$ and $x^2=a^2-b^2$, where m is relatively prime to n and a is relatively prime to b. With $x=m^2-n^2$, it can be shown $a=m^2+n^2$ and b=2mn.

We can choose z=a and y=b to obtain an integer solution triplet:

$$(x, y, z)=(m^2-n^2, 2mn, m^2+n^2)$$
 (1)

Also, z indeed has a smallest integer solution, which is equal to $2^2+1^2=5$.

We can conclude that the key to $x^2+y^2=z^2$ having integer solutions is x can be an odd number and an odd number can be written as a difference of two squares of integers. Hence integers a and b exist such that $x^2=a^2-b^2$, thereby assuring $x^2=z^2-y^2$ will have integer solutions.

3. Why $x^p+y^p=z^p$, $p\ge 3$ being a prime, has no integer solution Here, we will examine $x^p+y^p=z^p$, $p\ge 3$ being a prime number, in the light of $x^2+y^2=z^2$.

Suppose $x^p+y^p=z^p$ has irreducible integer triplets. One of x and y, say x, is an odd number and z must have a smallest integer solution. If x is an odd number, so is x^p . Then, x^p has the form:

$$x^{p}=a^{2}-b^{2}=z^{p}-y^{p}$$
 (2)

where a and b are relative primes. Eq. (2) shows x^p is not only a difference of two squares of integers but also a difference of two p-powers of integers.

Integer solution x^p will have a dual form as shown in Eq. (2) if some relatively prime integers c and d exist such that

$$x^{p} = (c^{p})^{2} - (d^{p})^{2} = (c^{2})^{p} - (d^{2})^{p}$$
(3)

Eq. (3) is possible only if both $c = a^{\frac{1}{p}}$ and $d = b^{\frac{1}{p}}$ are integers. If they are, we can choose c^2 to be z and d^2 to be y. Then, we will have an integer solution triplet for $x^p + y^p = z^p$:

$$(x, y, z)=(x, d^2, c^2)$$
 (4)

To prove impossibility of $x^p+y^p=z^p$, we choose to show z will descend indefinitely rather than to show $c=a^{\frac{1}{p}}$ and $d=b^{\frac{1}{p}}$ are not integers.

From Eq. (3),
$$x^p = (c^p)^2 - (d^p)^2$$
 yields

$$x^{p} = (c^{p} + d^{p})(c^{p} - d^{p})$$
 (5)

Both c^p-d^p and c^p+d^p are relatively prime because c and d are relative primes.

The integer solution x is either a prime, a power of a prime, or a composite number consisting of mutually prime factors.

Suppose x is a prime or a power of a prime. Because c^p-d^p and c^p+d^p are relatively prime, we have $c^p-d^p=1$, which is impossible because it contradicts $c^p-d^p>1$.

If x=fg is a composite number, with 1 < f < g and G.C.D. (f, g)=1, Eq. (5) results in:

$$d^p + f^p = c^p \tag{6a}$$

$$c^p + d^p = g^p \tag{6b}$$

Both are Diophantine equation also of power p. In Eq. (6a), $c < c^2 = z$ violates z is the smallest integer solution. In Eq. (6b), g < x < z also violates z is the smallest integer solution. As z has no lower bound, z cannot be an integer.

4. Conclusion

Suppose $x^p+y^p=z^p$, where $p\ge 3$ is a prime, has integer solutions. Then, x can be an odd number and x^p has a dual form of representation $x^p=a^2-b^2=z^p-y^p$. This dual form was used to show z will descend indefinitely.