Introduction Methods applied Results & conclusions

Human Gut Microbiome Viewed Across Age and Geography

Nature Vol. 486, June 2012

T. Yatsunenko, F. E. Rey, M. J. Manary et al.

Mai 6th 2014

What is a microbiome?

general

- entirity of microorganisms normally living on a creature
- distinct biomes on surface & inside of skin, salive and mucosa
- ▶ includes bacteria, fungi, archaea
- ▶ about 10x as many as cells on the human

functions

- digestive enzyme activity
- synthesis of vitamins
- ▶ interaction with immune system
- protection from pathogens

What to learn from microbiomes

- ► taxonomic diversity
 - number and composition of microbial communities
 - Operational Taxonomic Units (OTUs)
 - population diversity

- functional metagenomics
 - functions of communities
 - proteins
 - enzymes

Human Gut Microbiome Viewed Across Age and Geography

▶ part of the Human Microbiome Project

Origin	individuals	families	age 0-17	age 18-70
Malawi	115	34	83	31
Venezuela	100	19	65	35
USA	316	98	178	136
total	531	151	326	202

Impact

- demonstration project to search for patterns related to locations and lifestyles
- understand how westernization changes microbiomes
- understand nutritional needs
- ▶ increase sustainability of agriculture

Methods: 16s rRNA

- ► component of the 30S small subunit of prokaryotic ribosomes
- ▶ constant (C_n) regions \rightarrow location
- "hypervariable" (V_n) regions: \rightarrow identify
 - ▶ moleculare clock → phylogeny
 - ▶ analyze taxonomy

Methods: Whole genome sequencing

- ► shotgun sequencing & reassembly
- subset of samples used
- ► functional analysis

Analysis of 16s rRNA

- ► UniFrac distance
 - shared phylogeny branch fraction
 - ▶ → phylogenetic distance
- clustered into OTUs (by genetic similarity)
 - ► Greengenes database
 - ▶ OTU measure: 97% similarity
- diversities of OTUs compared

Analysis of whole genome sequences

- BLAST against KEGG and COG databases
 - ► mapped with 95% similarity
- ▶ Random Forest analysis (OTU abundances \rightarrow US/non US)

Evolution of phylogenetic composition

⇒ Child- to adult-composition within first three years

Evolution of phylogenetic composition

- ▶ Bifidobacterium longum: sugar → lactic acid, acetic adic
- ► Ruminococcaceae: buthyrate productions

Comparison of compositions

- ▶ interpersonal variation greater among children
- significant differences between countries (esp. USA)
- ▶ no significance between villages/regions inside countries

Comparison of compositions

 \Rightarrow diversity increases with age

Clustering analysis

- Random Forest analysis
 - younger: Bifidobacterium longum
 - ▶ strong predictors for US ↔ non-US
 - ▶ weaker predictors Malawia ↔ Venezuela

Shared functional changes over time

- ▶ no unicque ECs (Enzyme Commission id)
- total num of ECs constant
- assignable ECs decline with age increasing complexity?
- ▶ differences in vitamine synthesis, fermentation pathways

Shared functional changes over time

young	old		
folate de novo	dietary folate		
lactic acid	methanogenesis		
cis	arg, glu, asp, lys		

 \Rightarrow confirms other researchers' findings

Population- and age-specific differences

US	Δt	non-US	Δt
		B2 biosynthesis	_
lpha-fucosidase	+	specific glycans	-
urease	low	urease	-

- ▶ urease: nitrogen recycling
- lacktriangledown α -fucosidase, glycans: oligosaccharide metabolism

Population- and age-specific differences

Differences in adult fecal microbiomes

- differential ECs:
 - **▶** US ↔ non-US: 893
 - ► Malawian ↔ Amerindian 445
- non-US:
 - glu-synthase
 - starch degradation
- ► US:
 - degradation of asp, pro, lys, gln, ornithin, simple sugars, sugarsubstitutes, host glycans
 - biosynthesis of vitamins, biotin, lipoic acid
 - metabolism of xenobiotics (aromatic compounds, mercury), bile salts
- ⇒ parallels to difference carnivorous/herbivorous mammals

Effects of kinship across countries

- ► twin studies (almost exclusively US twins)
 - microbiome heritability is low
 - monozygotic twins no different from dizygotic twins

Effects of kinship across countries

- mother's microbiomes not more similar to child's than father's
- co-habitating non-biological fathers more similar than other families
- similarities among families consistent across populations
- ⇒ environmental exposure shapes gut microbiome

Conclusion

- nutrition and lifestyle affect microbiome composition
- ► inter-personal variances ≫ functional variances
- different needs for ages / cultural backgrounds
 - ▶ health
 - nutrition

Introduction Methods applied Results & conclusions Taxonomic composition Predictive clustering Functional cluster analysis

The end

- ▶ 16s rRNA image from www.clinchem.org
- additional information: Phillip E. Melton: Bioinformatic and statistical analysis of microbiome sequence data In: www.academia.edu