МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИС

КУРСОВАЯ РАБОТА

по дисциплине «Архитектура информационных систем» Тема: проектирование сервиса каршеринга

Студенты гр. 2375	 Усачев Л.Е. Шитов Б.А.
Преподаватель	Водяхо А.И

Санкт-Петербург 2024

ЗАДАНИЕ

НА КУРСОВУЮ РАБОТУ

Студенты: Усачев Л.Е., Шитов Б.А.

Группа: 2	2375
-----------	------

Тема работы: проектирование сервиса каршеринга

Исходные данные: средствами ПО Enterprise Architect спроектировать сервис каршеринга. Сформировать технические требования, архитектурное описание и список тестов для проекта. Богдан Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан

Богдан Богдан

Содержание пояснительной записки: введение, требования, архитектурное описание, архитектурное обоснование, модели, UML описание, use case, классы, активности, развертка, тестирование, заключение, список литературы.

Предполагаемый объем пояснительной записки: не менее 25 страниц

Дата выдачи задания: 5.02.	2024	
Дата сдачи отчёта:		
Студенты гр. 2375		Усачев Л.Е. Шитов Б.А.
Преподаватель		Водяхо А.И.

АННОТАЦИЯ

Содержание курсовой работы заключается в проектировании сервиса каршеринга с помощью ПО Enterprise Architect. Были сформированы технические требования, архитектурное описание, диаграммы и список тестов для проекта.

СОДЕРЖАНИЕ

	Введение	5
1.	Требования	6
1.1.	Глоссарий	6
1.2.	Выделение и фиксация бизнес-требования	7
	функциональности системы	
1.3	Пользовательский требования	7
1.4	Системные требования	7
1.5	Функциональные требования	7
2.	Архитектурное описание	8
2.1.	Архитектурное обоснование	8
2.2.	Модели	9
2.3.	UML описание	10
	2.3.1 Use case	10
	2.3.2 Диаграмма классов	22

	2.3.3 Диаграмма активности	23
	2.3.4 Диаграмма последовательности	27
3.	Тестирование	29
	Заключение	30
	Список используемых источников	31

ВВЕДЕНИЕ

<u>Цель работы</u>: проектирование сервиса каршеринга.

Форма выполнения работы: курсовая работа.

Задание: Разработка базы данных для сервиса каршеринга, в которой хранится информация о автомобилях, их местоположении, состоянии, доступности, а также о клиентах и их арендных операциях. Для каждого автомобиля фиксируется: марка, модель, год выпуска, расход топлива, тип кузова, цвет, текущее местоположение, статус доступности. По каждому клиенту сохраняется следующая информация: ФИО, контактные данные, удостоверение, Аренда автомобилей водительское история аренд. планируется по дням и включает в себя список доступных автомобилей и продолжительность аренды каждого автомобиля. В сервисе каршеринга предусмотрена одна парковка. Поступление новых автомобилей на парковку отслеживается через акты приема-передачи. Каждый акт приема-передачи содержит следующие атрибуты: номер документа, дата документа, парковка,

на которую были доставлены автомобили, поставщик, марка и модель автомобиля, количество каждой модели, стоимость аренды за единицу времени и общая сумма за все автомобили.

1.Требования

1.1. Глоссарий

База данных - Набор постоянно хранимых данных, используемых прикладными программными системами.

Система управления базами данных (СУБД) - Программный комплекс, обеспечивающий централизированное хранения данных и предоставляющий приложениям услуги по обработке данных.

Фреймворк - Программное обеспечение, облегчающее разработку и объединение разных модулей программного проекта.

Use case - Описание поведения системы, когда она взаимодействует с кем-то (или чем-то) из внешней среды.

Автомобиль - Транспортное средство, доступное для аренды в сервисе каршеринга. Атрибуты автомобиля включают марку, модель, год выпуска, расход топлива, тип кузова, цвет, текущее местоположение и статус доступности.

Клиент - Человек, использующий услуги каршеринга. Данные о клиенте содержат ФИО, контактные данные, водительское удостоверение и историю аренд.

Аренда - Действие или период времени, в течение которого клиент использует автомобиль. Включает в себя продолжительность аренды и список выбранных автомобилей.

Парковка - Место, где хранятся автомобили сервиса каршеринга, когда они не используются. В данной системе предусмотрена одна парковка.

Акт приема-передачи - Документ, фиксирующий поступление новых автомобилей на парковку. Содержит номер документа, дату документа, информацию о парковке, поставщике, марке и модели автомобиля, количество каждой модели, стоимость аренды за единицу времени и общую сумму за все автомобили.

Местоположение автомобиля - Текущее расположение автомобиля, которое может быть использовано для определения его доступности для клиентов.

Статус доступности - Индикатор, показывающий, доступен ли автомобиль для аренды в данный момент.

История аренд - Записи о всех прошлых арендах, совершенных клиентом. Включает информацию о дате аренды, продолжительности и типе арендуемого автомобиля.

Расход топлива - Количество топлива, которое автомобиль потребляет на определенное расстояние (обычно измеряется в литрах на 100 км).

Тип кузова - Категория или стиль кузова автомобиля, например, седан, хэтчбек или внедорожник.

Водительское удостоверение - Официальный документ, подтверждающий право клиента управлять автомобилем.

Поставщик - Компания или индивидуум, предоставляющий автомобили для сервиса каршеринга.

Стоимость аренды за единицу времени - Цена использования автомобиля за определенный период времени (час, день и т.д.).

1.2 Бизнес-требования

- 1. Система должна обеспечивать управление поставками автомобилей на парковку.
- 2. Система должна позволять отслеживать наличие автомобилей на парковке.

- 3. Система должна предоставлять возможность рассчитывать стоимость аренды автомобиля в зависимости от времени использования и километража.
- 4. Система должна автоматически предлагать доступные автомобили для аренды, исходя из текущих запросов пользователей.

1.3 Пользовательские требования

- 1. Интерфейс сервиса должен быть интуитивно понятным и удобным в использовании.
- 2. Доступ к системе разрешен только после прохождения авторизации.
- 3. Доступ к системе должен быть возможен через интернет, чтобы обеспечить доступность с любого устройства.
- 4. Пользователи должны иметь возможность изменять и удалять данные своих бронирований.

1.4 Системные требования

- 1. Система должна поддерживать функции создания, редактирования и удаления данных о бронированиях и автомобилях.
- 2. База данных должна быть доступна для работы через интернет.
- 3. Доступ к базе данных должен быть строго регламентирован с разделением прав пользователей.
- 4. Необходим выделенный сервер для хранения и обработки данных.
- 5. Система должна гарантировать сохранность данных в случае технических сбоев.

1.5 Функциональные требования

- 1. Учет базы данных автомобилей, клиентов и парковок.
- 2. Автоматическое предложение доступных автомобилей для аренды в зависимости от запросов пользователей.
- 3. Расчет стоимости аренды автомобиля на основе времени и пройденного расстояния.
- 4. Ввод данных о новых поставках автомобилей на парковку.
- 5. Мониторинг наличия автомобилей на парковке и оповещение о необходимости пополнения парка.
- 6. Возможность авторизации администратора для управления системой.
- 7. Ведение базы данных поставщиков автомобилей.
- 8. Создание актов приема-передачи при поставке новых автомобилей на парковку.
- 9. Регистрация новых пользователей в системе.

2. Архитектурное описание

2.1 Архитектурное обоснование

Для разработки нашего веб-приложения мы решили использовать Java и Spring. Java - это высокоуровневый язык программирования, который обладает простым и интуитивно понятным синтаксисом, а также множеством библиотек и фреймворков, что делает его очень удобным для разработки приложений. Spring - это фреймворк для разработки приложений на языке Java, предоставляющий инструменты и библиотеки для упрощения разработки, улучшения производительности и обеспечения безопасности.

Для хранения и обработки информации мы выбрали реляционную систему управления базами данных PostgreSQL. Она обладает высокой производительностью и масштабируемостью, а также имеет множество инструментов для обработки и анализа данных.

Для обеспечения безопасности и надежности при проведении платежей мы выбрали платежный шлюз системы Robokassa. Это позволит нам обеспечить высокий уровень защиты данных и обеспечить безопасность при проведении платежей. Платежный шлюз Robokassa поддерживает множество

способов оплаты, что позволит нашим пользователям выбирать наиболее удобный для них способ оплаты.

Наше веб-приложение будет создано с использованием клиентсерверной архитектуры. Клиентская часть приложения будет работать на стороне пользователя и обеспечивать интерфейс для взаимодействия с приложением. Серверная часть приложения будет обрабатывать запросы от клиентской части и взаимодействовать с базой данных и платежным шлюзом. Для взаимодействия между клиентской и серверной частями приложения мы будем использовать протокол HTTPS.

В целом, наше веб-приложение будет обладать высокой производительностью, масштабируемостью и безопасностью, что позволит нам обеспечить нашим пользователям удобный и безопасный опыт использования приложения.

2.2 Модели

В таблице 1. представлены данные и методы работы с ними.

Таблица 1. Данные и методы

Объект	Методы	Свойства
User	Регистрация, аренда автомобиля,	ID, ФИО, номер
	возврат автомобиля, просмотр	телефона, логин и
	информации о доступных	пароль, статус аренды,
	автомобилях, просмотр истории	история поездок,
	поездок	документы
Car	Отслеживание местоположения	ID автомобиля, марка и
	автомобиля, бронирование	модель автомобиля,
	автомобиля, завершение аренды	географические
		координаты, статус
		доступности
RentalHistory	Просмотр истории аренды	ID аренды, ID
	автомобилей, расчет общей	пользователя, ID
	стоимости аренды	автомобиля, координаты
		начала и окончания

	поездки, дата начала и
	окончания аренды,
	стоимость каждого дня
	аренды

2.3 UML описание

2.3.1 Use case

Пользователи делятся на два вида:

Администратор. Возможности: проверка документов новых пользователей, редактирование базы данных и состояний пользователей и доступных машин, круглосуточная поддержка пользователей.

Обычный пользователь. Возможности: бронирование доступных для поездки автомобилей, оплата поездок, загрузка документов, возможность связи с технической поддержкой.

Рисунок 1. Use case диаграмма проекта