1 Inverses of functions

Riemann surfaces naturally arise when trying to invert complex functions. As in the real case, the inverse of the function $f(x) = x^2$ is not well-defined. There are multiple ways to remedy this, but the most geometric solution is to study the graph $y = x^2$ as a subset of \mathbb{R}^2 and use this to construct inverses wherever they make sense.

We do the same for complex functions. Let p(z) be a polynomial of degree n. Finding the inverse function is equivalent to solving

$$w = p(z)$$

to get z in terms of w. This is almost never possible, so instead we study the graph

$$\Gamma_{p(z)} := \{(z, w) : w = p(z)\} \subseteq \mathbb{C}^2$$

Denote by $\pi: \mathbb{C}^2$ the projection onto the w- coordinate axis¹. $\Gamma_{p(z)}$ is an example of a Riemann surface! Our first goal is to undestand the geometry of this object. We'll do this using the projection π .

1.1 Ramified coverings

Consider the restriction of π to $\Gamma_{p(z)}$.

$$\pi:\Gamma_{p(z)}\to\mathbb{C}$$

Q. 1. Show that this map is surjective.

The inverse set $\pi^{-1}(w)$ (called the *fiber* over w) is the set of roots of p(z)-w.

Q. 2. Prove that there are only finitely many values of w for which $\pi^{-1}(w)$ has size < n. And that outside this set the fiber has size exactly n.

Definition 1.1. For $w \in \mathbb{C}$, if the polynomial p(z) - w has distinct roots, then w is called *unramified*. This is equivalent to requiring that the fiber $\pi^{-1}(w)$ has size n. If p(z) - w has repeated roots then, if z is a repeated root of p(z) - w of order k we say that the *ramification index* e_P of P = (z, w) is k.

 $^{^1}$ We are working over complex numbers, so everything is twice the dimension of real numbers. So a complex axis is complex dimension 1 but real dimension 2.

Q. 3. For
$$w_0 \in \mathbb{C}$$
, let $\pi^{-1}(w_0) = \{P_1, \dots, P_l\}$, then $e_{P_1} + \dots + e_{P_l} = n$

Figure 1: Picture of ramification

A much stronger statement is true on the topological level. Let w be an unramified value. Then p(z) - w has n distinct roots z_1, \ldots, z_n . If we perturb w slightly then the corresponding roots z_i will also get perturbed slightly.

For $\epsilon \in \mathbb{R}$ let $B_{\epsilon}(w) \subset \mathbb{C}$ denote a ball of radius ϵ around w.

Theorem 1.2. For an unramified value $w \in \mathbb{C}$, let z_1, \ldots, z_n be the distinct roots of p(z) - w. Then there exists an ϵ such that $\pi^{-1}(B_{\epsilon}(w))$ has the following properties.

- 1. $\pi^{-1}(B_{\epsilon}(w))$ has n-connected components U_1, \ldots, U_n ,
- $2. \ z_i \in U_i,$
- 3. the projections $\pi: U_i \to B_{\epsilon}(w)$ are a homeomorphism.

Theorem 1.2 is saying that the map π restricted to the fibers of unramified values is a *covering map*

$$\pi:\pi^{-1}(\{\text{unramified values}\})\longrightarrow \{\text{unramified values}\}.$$

In Figure 1 the ramified points appear to be singular, but A graph is always homeomorphic to the base i.e. the

$$\mathbb{C} \to \Gamma_{p(z)}z \mapsto (z, p(z))$$

is always a homeomorphism. So the Riemann surface we have constructed is homeomorphic to $\mathbb C$ itself! We'll improve upon this in the following sections.

1.2 Sections as inverse functions

We now have a way of constructing inverse functions, which relies on the following theorem from topology.

A space is said to be simply-connected if it is path-connected and every loop in X can be continuously deformed to a point.

Theorem 1.3. If X is a simply-connected space and $\pi: Y \to X$ is a finite covering of X of degree n then Y is homeomorphic to n-disjoint copies of X and the projection map on each connected component is a homeomorphism.

$$Y \cong X_1 \sqcup \cdots \sqcup X_n$$

$$X_i$$
 $\pi \downarrow \cong X$

This statement is also true when the covering is not finite. In this case, Y is a disjoint union of infinitely many components.

Now we have a meaninful procedure to construct inverse functions of ramified coverings of \mathbb{C} . Consider the ramified covering $\pi: \Gamma_{p(z)} \to \mathbb{C}$ with ramified values w_1, \ldots, w_l (these are called the *branch points*).

- 1. Consider the set of unramified points $\mathbb{C} \setminus \{w_1, \ldots, w_l\}$. This set is never simply-connected (unless l = 0).
- 2. Pick an arbitrary open subset U of $\mathbb{C} \setminus \{w_1, \ldots, w_l\}$ which is simply-connected. This is usually done by removing rays (called *branch cuts*) emanating from the points w_i .
- 3. The restriction $\pi: p^{-1}(U) \to U$ is a finite covering of a simply-connected connected space U, hence $U \cong U_1 \sqcup \cdots \sqcup U_n$.
- 4. Pick an aribtrary connected component U_i so that $\pi: U_i \to U$ is a homeomorphism. Because this is a homeomorphism it has an inverse $\pi_i^{-1}: U \to U_i$.
- 5. The function π_i^{-1} followed by projection onto the z-coordinate is then an inverse of the function p. It is called a *branch* of the inverse function (and so there are n possible branches).

We need to choose *branch cuts* and a *branch* to define an inverse function. **Example 1.4.**

add an example here.

Figure 2: Not sure how to adjust width in this case.

2 Compactification

We saw that the Riemann surface $\Gamma_{p(z)}$ is homeomorphic to \mathbb{C} . We can generalize the previous constructions to studying graphs of

$$p(z) = w^p$$
$$p(z, w) = 0$$

But before we do this, we need to make one more leap which is again inspired from topology.

The surface $\Gamma_{p(z)}$ costructed above is not compact. Non-compact objects are harder¹ to study than compact ones because the behaviour of limits is harder to control for non-compact surfaces and functions on non-compact .

- **Q. 4.** (Optional exercise) Let X be a subset of \mathbb{C} .
 - 1. Show that if X is compact then every function $f:X\to\mathbb{R}$ is bounded.
 - 2. If X is open, find an unbounded continuous function $f: X \to \mathbb{C}$.

Furthermore, non-compact subsets come in all shapes and sizes (for example, every open subset of \mathbb{C} is non-compact) but as we'll see in the next section there are various classification theorems for compact ones.

2.1 Behaviour at ∞

¹In most case, but of course not always.