MTH1008 - Algèbre linéaire appliquée

Nombres complexes - exercice récapitulatif

Nathan Allaire - Théo Denorme

Polytechnique Montréal

February 16, 2025

Exercice 1 - Vrai ou Faux Nombres Complexes

Répondez par vrai ou faux, justifiez bien vos réponses.

- **1.** Soit $z \in \mathbb{C}$, si z = Re(z) alors $z \in \mathbb{R}$.
- 2. Le module d'un nombre complexe z est toujours un nombre réel positif ou nul.
- **3.** Soit n un entier positif, alors l'ensemble des solutions (dans \mathbb{C}) de $z^n=1$ est inclus dans celui de $z^{2n}=1$.
- 4. L'argument d'un nombre complexe est unique.
- **5.** Si z_1 et z_2 sont deux nombres complexes, alors $|z_1 + z_2| = |z_1| + |z_2|$.

Exercice 1 - Vrai ou Faux Nombres Complexes (suite)

- **6.** Tout nombre complexe non nul a deux racines carrées distinctes.
- **7.** Si z est un nombre complexe, alors e^z est toujours un nombre réel.
- **8.** Si $A \in \mathbb{C}^{n \times n}$, alors $B = \frac{1}{2}(A^{\top} + A)$ est hermitienne.
- **9.** Si $A \in \mathbb{C}^{n \times n}$, alors $B = \frac{1}{2}(A^* + A)$ est hermitienne.
- **10.** Pour tout $z_1, z_2 \in \mathbb{C}$, on a toujours $Re(z_1z_2) = Re(z_1)Re(z_2)$.

Exercice 2 - De Sacha Benarroch-Lelong

Soient
$$z_1 = 1 + i$$
 et $z_2 = 1 - i\sqrt{3}$

- 1. Donnez les formes exponentielles de z_1 et z_2 .
- **2.** Donnez z_1z_2 sous forme exponentielle puis sous forme polaire.

Exercice 3 - De Sacha Benarroch-Lelong

Soit $z \in \mathbb{C}^*$ tel que sa partie imaginaire est égale à sa partie réelle.

- $\textbf{1.} \quad \text{Montrez que } \frac{z}{\bar{z}} = i.$
- **2.** Supposons en plus que $\mathrm{Re}(z)>0$, écrivez z sous forme exponentielle en fonction de $\mathrm{Re}(z)$.

Exercice 4

Soit $z_1 \in \mathbb{C}$ défini par $z_1 = 2 + 2\sqrt{3}i$.

- **1.** Exprimer z_1 sous sa forme exponentielle.
- **2.** Calculer z_1^3 en utilisant la formule de De Moivre.
- **3.** Déterminer les racines cubiques de z_1 .

Exercice 5

Soit $z \in \mathbb{C}$, $a, b, c, d \in \mathbb{R}$, $p \in \mathbb{P}_3$ tel que $p(z) = a + bz + cz^2 + dz^3 = 0$.

- **1.** Montrez que $P(\bar{z}) = 0$.
- **2.** Soit $z_0 = a + ib \in \mathbb{C}$ tel que $\bar{z}_0 = z_0$. Montrez que $z_0 \in \mathbb{R}$.
- **3.** On rappelle que p a exactement 3 racines complexes, on a pu constater que deux d'entre elles sont z et \bar{z} . Soit $r \in \mathbb{C}$ sa dernière racine $(r \neq z \text{ et } r \neq \bar{z})$. Montrez que $r \in \mathbb{R}$ (par exemple en montrant que $\bar{r} = r$).

Exercice 6

Soit $A \in \mathbb{C}^{n \times n}$.

- **1.** Montrez que $B = A^*A$ est hermitienne.
- **2.** Montrez que $\overline{B} = B^{\top}$.
- **3.** On peut facilement généraliser le résultat de la question 2 de l'exercice 5 en : Pour toute matrices $M \in \mathbb{C}^{n \times n}$, si $\overline{M} = M$ alors $M \in \mathbb{R}^{n \times n}$. Montrez que $B^\top + B \in \mathbb{R}^{n \times n}$.