

AD-A086 714 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB FEB 20/14  
A PREDICTOR MODEL FOR SHF AND EMF MILSATCOM SYSTEM AVAILABILITY--ETC(U)  
FEB 80 L M SCHWAB F19628-80-C-0002  
UNCLASSIFIED TN-1980-15 NL

2 2

11  
20 1980

END

DATE

FORMED

8 80

DTIC



```

55
C PROGRAM NAME: SAPH IFTRAK
C PURPOSE: GENERATE SYSTEM AVAILABILITY CONTOUR ON A MERCATOR WORLD MAP
C           WITH DRAWN SATELLITE VISIBILITY LIMIT
C DATE: 11/15/78
C WRITTEN BY: YI-LEE CHEN LO

C INPUT PARAMETERS:
C   IU: DATA REFERENCE NUMBER
C   ITEX: ELECTRONIC OUTPUT PARAMETER
C   FGHZ: FREQUENCY IN GHZ
C   SATAV: SATELLITE AVAILABILITY
C   TERAUT: TERMINAL AVAILABILITY (TRANSMITTING)
C   TERARU: TERMINAL AVAILABILITY (RECEIVING)
C   SATSUB: SATELLITE SUBPOINT
C   DEMRGH: MARGIN IN DB
C   RP: TABULATED RAIN RATE FOR EACH OF THE 8 REGIONS

C SUBROUTINES USED:
C THIS PROGRAM IS RUN BY SAPH EXEC
C
C     IMPLICIT REAL*8(A-H,O-Z)
C     REAL*4 SYSAU(78,23),LAT,LON
C     DIMENSION MSP(8),RLAT(1000),RLON(1000),REG(8)
C     DIMENSION RP(12,8),R(12),P(12),RINT(4),RAIN(4,4),B(4,1),WKAREA(28)
C     DATA REG/'A','B','C','D','E','F','G','H'/
C     DATA MSP/400,100,500,100,30,200,400,100/
C     NAMELIST/SAPH/IU,ITEX,FGHZ,SATAV,TERAUT,SATSUB,DEMRGH,RP

C UTILIZE GRAPHIC ROUTINES IN GRLL
C
C NPLOTS=0
C CALL DATE(IRO, IDAY, IVR)
C READ(S,SAPH,END=1000)
C IF(NPLOTS .EQ. 0)
C CALL TEK22(ITEX,0,'FF',1)
C CALL TEKSCH('XS')
C CALL MODE50
C CALL SCOUT(98,140,'S')
C CALL SETBKG(18,-1.0)
C CALL FILFRC(1)
C END IF
C NPLOTS=NPLOTS+1

C COMPUTE ALPHA(F), BETA(F), THE MULTIPLIER AND EXPONENT IN
C ATTENUATION MODEL RESP.
C
C     RPD=3.14159/100.
C     F1=FGHZ/100.
C     F2=F1**2
C
C

```

```

88      F3=F1223
F4=F1224
ALFA=1-2DFP(.11162F1-8.083F2-1.012F3)
BETA=0.53(1+3.84088F1-81.813F2+48.5F3-38.78F4)

C   READ SAMPLE POINT LATITUDE AND LONGITUDE FOR EACH OF THE 8 REGION A-H
C
IREG=30
DO(MP=1,8)
  WRITE(IU,333)REG(MP)
333  FORMAT(//3X,'REGION',3X,A1)
  WRITE(IU,444)
444  FORMAT(//3X,'J',3X,'RLON',4X,'RLAT',4X,'SYSAU')
IREG=IREG+1
NJ=MSP(MP)
  WRITE(IU,505)NJ
505  FORMAT(2X,'NJ',I4)
  READ(IPRQ,111)(RLAT(J),J=1,NJ)
  READ(IPRQ,111)(RLON(J),J=1,NJ)
111  FORMAT(1X,5S(10F7.0))

C   DO(KK=1,128)
  R(KK)=RP(KK,MP)
  WRITE(IU,100)KK,R(KK)
100  FORMAT(2X,'KK',13.3X,'R(KK)',F8.2)
END DO

C   DETERMINE RAIN ATTENUATION FOR EACH (LAT,LON)
C
  DO(J=1,NJ)
    RABS=DABG(RLON(J))-SATSUB
    IF(RABS .EQ. 0.0)
      ELEV=RP0000
    END IF
    IF(RABS .LE. 71.43 AND RABS .NE. 0.0)
      COSCOS=COS(RLAT(J)*RPD)/DCOS((RLON(J))-SATSUB)*RPD
      XX=DSQRT(1+6.00032E-13.2163COSCOS)
      ANGSAT=ARCCOS((6.000-COSCOS)/XX)
      ELEV=(RPD*90 - ANGSAT - DABSIM((XX*DSIN(ANGSAT)))/RPD
      WRITE(IU,501)J,ELEV
501  FORMAT(2X,'J',13.3X,'ELEV',F8.1)
    IF(ELEV .NE. 10.0)
      CCOSA=6.000/5.000*DCOS(ANGSAT)
      DIFF=CCOSA*2E-7.000/5.000
      IF(DIFF .LT. 0.0)
        DIFF=0.0
      END IF
    WRITE(IU,606)COSCOS,XX,CCOSA
606  FORMAT(2X,'COSCOS',E18.11,3X,'XX',E18.11,3X,'CCOSA',E18.11)
    SLANT=50.5D0*10(CCOSA-DSQRT(DIFF))
    ATTN=DSQRT(SLANT)
    WRITE(IU,606)SLANT,ATTN,ALFA,BETA
606  FORMAT(2X,'SLANT',E18.6,4X,'ATTN',F8.1,3X,F8.3)
C

```

```

L 53 COMPUTE MELTING LAYER HEIGHT, HT
C
C IF(MR.LE.4)
C8=0.1549823113
C4=-1.5479334777
C6=-0.5719446200
C81= 4784124177
ELSE
C8=-0.27000
C4=3.705076
C6=-14.218159
C81= 932150
END IF
C
C SINLAT=DSIN(GLAT(J)*RPD)
HT=4.88*(1+C28SINLAT222+C48SINLAT228+C68SINLAT234)
C
C COMPUTE D,BELTA(D),GAMMA(D)
C
C IF(ELEV.EQ.99.0)
GAMMA=1.0
BELTA=0.0
ELSE
D=HT/STAN(ELEV*RPD)
IF(D.GT.-99.5)
D=-99.5
END IF
SOL=D/4.5
SOL=D/21.5
GAMMA=1+2.5*SOL-0.233333L328+0.00153333L323
BELTA=SOL-0.003333L328+0.446666L323
END IF
C
C COMPUTE RAIN RATE, RR, FOR EACH POINT
C
C WRITE(IU,200)J,HT,BELTA,GAMMA
200 FORMAT(2X,'J=',I3,'HT=',F8.3X,'BELTA=',F8.3X,'GAMMA=',F8.3)
RR=EXP(BLOG(ATMHD*DSIN(ELEV*RPD)/(HT*BAMF*GAMMA))/(BELTA-BELTA))
C
C FIND % OF YEAR EXCEEDANCE, PROB, VIA CURVE FITTING
C
CALL POFPR(R,RR,PROB,IU)
END IF
END IF
C
C FIND SAMPLE POINT INDICES (ILAT,ILON) FROM (GLAT,GLON)
C
LAT=GLAT(J)
LON=GLON(J)
ILAT=180.0*FINT(GLAT/5.)
ILON=360.0*FINT(GLON/5.)
C
C WRITE(IU,200)ILAT,ILON
200 FORMAT(2X,'ILAT=',I4.4X,'ILON=',I4)

```

199 FOR POINTS WITHIN THE SATELLITE VISIBILITY LIMIT.  
C GENERATE SATURN AVAILABILITY, SYSAU, FROM TERMINAL AVAILABILITY,  
C TERMINAL SATELLITE, SATELLITE AVAILABILITY SYSAU, AND N OF YEAR  
C EXCEDDANCE, PROB.  
C  
IF(RADS LE 71.43 AND ELEV GE 10.)  
SYSAU(NLON,NLAT)=11.-PROB)222,STERANTSTERAURSSATAU  
C WRITE(IU,221)I,SYSAU(NLON,NLAT)  
221 FORMAT(IK,'J=',I4,3X,'SYSAU=',F8.4)  
C WRITE(IU,222)I,NLON(J),NLAT(J),SYSAU(NLON,NLAT)  
222 FORMAT(IK,I3,X,I4,3X,I4,4X,F8.4)  
C ELSE  
SYSAU(NLON,NLAT)=0.0  
END IF  
END DO  
END DO  
CALL FILPR(1)  
GO TO 1  
1000 REMIND S  
CALL ENDS  
RETURN  
END  
EOF.

**APPENDIX C**

**HPL LISTING OF MAIN PROGRAM  
(HP-9825)**

```

0: dim C[8,12],R[8,9,4],N[520],O[2,725];sfs 14;ldf 9,R[*]
1: .0001+C[1,1];.0001+C[2,1];.0001+C[3,1];.0001+C[4,1];.0001+C[5,1]
2: .0001+C[6,1];.0001+C[7,1];.0001+C[8,1]
3: 1.1+C[1,2];1.2+C[2,2];1.2+C[3,2];1.8+C[4,2];2+C[5,2];4+C[6,2]
4: 1.7+C[1,3];1.8+C[2,3];1.9+C[3,3];3+C[4,3];4+C[5,3];8+C[6,3]
5: 2.5+C[1,4];2.7+C[2,4];2.8+C[3,4];5.2+C[4,4];8.5+C[5,4];1.2+C[6,4]
6: 4+C[1,5];4.8+C[2,5];4.8+C[3,5];9.5+C[4,5];21+C[5,5];3.2+C[6,5]
7: 6.5+C[1,6];6.8+C[2,6];7.2+C[3,6];15+C[4,6];35+C[5,6];5.5+C[6,6]
8: 8+C[1,7];9.5+C[2,7];11+C[3,7];22+C[4,7];52+C[5,7];8+C[6,7]
9: 12+C[1,8];14+C[2,8];18+C[3,8];35+C[4,8];77+C[5,8];14+C[6,8]
10: 15+C[1,9];19+C[2,9];28+C[3,9];49+C[4,9];98+C[5,9];23+C[6,9]
11: 19+C[1,10];26+C[2,10];41+C[3,10];64+C[4,10];117+C[5,10];34+C[6,10]
12: 24+C[1,11];40+C[2,11];62+C[3,11];86+C[4,11];144+C[5,11];51+C[6,11]
13: 28+C[1,12];54+C[2,12];80+C[3,12];102+C[4,12];164+C[5,12];66+C[6,12]
14: 1.6+C[7,2];2.8+C[8,2];3.7+C[7,3];6.4+C[8,3]
15: 7+C[7,4];13+C[8,4];14+C[7,5];31+C[8,5];22+C[7,6];51+C[8,6]
16: 33+C[7,7];77+C[8,7];51+C[7,8];115+C[8,8];67+C[7,9];147+C[8,9]
17: 85+C[7,10];178+C[8,10];109+C[7,11];220+C[8,11];129+C[7,12];251+C[8,12]
18: ent "LINK MARGIN PARAMETER in dB=?",M
19: ent "FREQUENCY in GHz(<50)=?",r0
20: ent "SUBPOINT in degr. (+=E,-=W)=?",S
21: ent "SATELLITE AVAIL.(<0.xxx)=?",r2
22: ent "TERMINAL AVAIL.(<0.xxx)=?",r3
23: 0+r27
24: 1+r28
25: r0/100+r0
26: 1-exp(.1115r0-2.02r0r0-1.01r0↑3)+r4
27: .9(1+3.8408r0-21.81r0↑2+48.8r0↑3-39.7r0↑4)+r5
28: r27+1+r27
29: if r27>8;goto "end"
30: ldf r27,N[*]
31: for I=1 to 520
32: if N[I]=0;goto "next"
33: 70-5int((N[I]-1)/72)+r6
34: ((N[I]-1)mod72)5+r7
35: if r7>180;r7-360+r7
36: r((r7-S)(r7-S))+r30
37: if r30>180;r30-r30+r30
38: if r30>71.43;goto "next point"
39: r(44.665664-13.216cos(r6)cos(r7-S))+r8
40: acs((6.608-cos(r6)cos(r7-S))/r8)+r9

```

```

41: 1.178317cos(r9)+r10
42: 20log(r10-r(r10r10-1.356633))+r11
43: 90-r9-asin(r8sin(r9))+r12
44: if r12<10:sto "next point"
45: if r0>.22:jmp 3
46: exp(-.617564r0+43.2368r0↑2-444.45r0↑3+1358r0↑4)-1+r29
47: jmp 2
48: exp(13.03032r0-81.6987r0↑2+156.48r0↑3-74r0↑4)-1+r29
49: r29/sin(r12)+r29
50: sin(r6)↑2+r13
51: if r27>4:sto +3
52: 4.8(1+.154989r13-1.547593*r13↑2-.871944*r13↑3+1.472412*r13↑4)+r14
53: sto +2
54: 4.8(1-.276r13+3.705036r13r13-14.212189r13↑3+12.032159r13↑4)+r14
55: r14/tan(r12)+r15
56: r15/4.5+r16
57: r15/21.5+r17
58: 1+r16-.23r16r16+.0215r16↑3+r18
59: r17-.98r17r17+.446r17↑3+r19
60: M-r11-r29+r20
61: exp(ln(r20sin(r12))/(r14*r4*r18))/(r5-r19))+r21
62: 3+r22
63: if r21<C[r27,r22]:sto 67
64: r22+1+r22
65: if r22>12|.00001+r26:sto 71
66: sto 63
67: r22-2+r22
68: if r22>9|r22
69: R[r27,r22,1]+R[r27,r22,2]r21+R[r27,r22,3]*r21↑2+R[r27,r22,4]*r21↑3+r23
70: exp(r23)+r26
71: 1-r26+r24
72: r2+r3+r24+r25
73: N[I]+0[1,r28]
74: r25+0[2,r28]
75: 1+r28+r28
76: "next point":next I
77: "next":sto 28
78: sto "next point"
79: "end":rcf 10,0[*]
80: endispe
*15505

```

**UNCLASSIFIED**

**SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)**

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               | READ INSTRUCTIONS BEFORE COMPLETING FORM |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|
| 1. REPORT NUMBER<br>ESD-TR-80-24                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. GOVT ACCESSION NO.<br><i>AD-A086 714</i>                                                   | 3. RECIPIENT'S CATALOG NUMBER            |
| 4. TITLE (and Subtitle)<br><br>A Predictor Model for SHF and EHF MILSATCOM System<br>Availabilities in the Presence of Rain                                                                                                                                                                                                                                                                                                                                          | 5. TYPE OF REPORT & PERIOD COVERED<br><br>Technical Note                                      |                                          |
| 7. AUTHOR(s)<br><br>Leonard M. Schwab                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. PERFORMING ORG. REPORT NUMBER<br>Technical Note 1980-15                                    |                                          |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br>Lincoln Laboratory, M.I.T.<br>P.O. Box 73<br>Lexington, MA 02173                                                                                                                                                                                                                                                                                                                                                  | 8. CONTRACT OR GRANT NUMBER(/s)<br><br>F19628-80-C-0002                                       |                                          |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><br>Defense Communications Agency<br>8th Street and So. Courthouse Road<br>Arlington, VA 22204                                                                                                                                                                                                                                                                                                                            | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><br>Program Element No. 33126K |                                          |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br><br>Electronic Systems Division<br>Hanscom AFB<br>Bedford, MA 01731                                                                                                                                                                                                                                                                                                                   | 12. REPORT DATE<br>21 February 1980                                                           |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13. NUMBER OF PAGES<br>106                                                                    |                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                              | 15. SECURITY CLASS. (of this report)<br>Unclassified                                          |                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                           | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE                                                    |                                          |
| 18. SUPPLEMENTARY NOTES<br><br>None                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                               |                                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><br>System Availability<br>MILSATCOM                                                                                                                                                                                                                                                                                                                                           | Millimeter Wave Links<br>Satellite System Architecture                                        |                                          |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>✓ A numerical method for computing MILSATCOM system availability based on predicted link availability is described. Link availability can be computed in the model for frequencies of 10-50 GHz, arbitrary geostationary satellite subpoint, and arbitrary value of link margin in dB. Computed availability contours are plotted on a Mercator grid of the world. <i>X</i> |                                                                                               |                                          |

**DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE**  
1 JAN 73

**UNCLASSIFIED**

**SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)**

**DATE  
ILMEL  
-8**