Optimisation d'un procédé chimique

Agrégation

Variation avec la pression

$$2 \text{ NO}_2(g) = \text{N}_2\text{O}_4(g)$$

Optimisation de la quantité de matière initiale

	N ₂ (g) -	+ 3 H ₂ (g) -	→ 2 NH ₃ (g)
Initialement	$n_0(N_2)$	$n_0(H_2)$	
A l'équilibre	$n(N_2) = n_0(N_2) - \xi$	n ₀ (H ₂)-3ξ	2ξ

$$dx_{\rm NH3} = 0$$

$$dx_{NH3} + dx_{N2} + dx_{H2} = 1$$

$$différentielle$$

$$dx_{NH3} = -dx_{H2}$$

Tableau
$$x_{H2} = 3x_{N2} \xrightarrow{\times n_{\text{tot}}} n(H_2) = 3n(N_2) \xrightarrow{\text{d'avancement}} n_0(H_2) = 3n_0(N_2)$$

Dismutation des ions thiosulfate en milieu acide

$$S_2O_3^{2-}(aq) + 3H_3O^+(aq) \rightarrow S(s) + SO_2(aq) + 3H_2O(l)$$

 $V_0 = 10 \text{ mL}$ de thiosulfate de sodium à 0,25 mol.L⁻¹

V₁ = 5mL d'acide chlorhydrique concentré

 $V_2 = 40 \text{ mL d'eau}$

Procédé Haber-Bosch

Les différentes catalyses

	Homogène	Hétérogène	Enzymatique
Avantages	Toutes les molécules du catalyseur sont disponibles	Facilement recyclable	 Coûts plus bas Peu de rejet Très efficace dans les bonnes conditions de pH et température Sélective Catalyseur biosourcé
Inconvénients	Difficilement recyclable	Seule la surface du catalyseur est disponible	 Efficacité fortement dépendante du milieu Pas recyclable industriellement

Merci