Mixed Games

ECON 420: Game Theory

Spring 2018

Mixed simultaneous and sequential games

of these games

- ▶ Real world games are often combinations of sequential and simultaneous
- games

▶ We can use a combination of roll-back and best response analysis to find NE

crosstalk: (invest, low if GD invests, high if GD doesn't)

Second stage: pricing game

First stage: coaches choose alignment

				-1-00
		DEFENSE TO COVER		7 no pure stra
		Safe	Rinky	NE.
OFFENSE TO PLAY	Safe	22	6,-6	
	Risky	30,-30	2,-7	
		OFF	ENSE	Change play DEFENSE Don't 6, -6

Simultaneous as sequential

► First or second mover advantages

- Simultaneous games with multiple equilibria might have different outcomes if played sequentially (change the rules of the game)
 - ▶ Payoffs may be better for one of the players depending on move order

Example: Chicken (6.5)

3

		Swerve	Straight
A	Suerve	0,0	- <u>7</u> ' *
	Straight	し、二**	-7,-2

Example: Tennis (4.14)

Marrifiloua

		DL	دد
Everet	PL	50,50	80,70
	دد	90,10	70,80

Example: Monetary-Fiscal Policy Game (6.6a)

		Fed	
		Low interest rate	high inkrest rate
rest	balanced budget	3, <u>પ</u>	1,3
	deficit	4,1	2,2

Expressing simultaneous games in extensive form

(within the set)

- ► Simultaneous-move games don't actually require players to move at the same time
 - ► Players are simply unaware of what other player chooses when they make their choice
 - $\,\blacktriangleright\,$ We can use information sets to describe this situation in simultaneous games
 - We draw a circle around nodes that are in the same information set
 Players at a particular information set do not know which node they are at

Expressing sequential games in normal form

▶ This includes actions on *off equilibrium paths*

- ► Strategies are complete plans of action
- ▶ In a sequential game, this means we must describe the action of a player at
- any possible node where they might move

Fed
$$(b,d)$$
 SPNE

HH LL HL LH /

 b 1, 3 3, 4 1, 3 3, 4*

 d 2, 2* 4,1 4,1 7,2

not SPNE

Subgame Perfect NE (SPNE)

- ► Some NE are supported by *threats* of actions that may not be *credible* if the player is actually made to choose at that particular node
- ▶ We can describe the NE outcomes that don't require threats as SPNE
- ▶ A *subgame* is any possible "mini game" that results after any path of play
- ► The NE that are also NE for their respective subgames are SPNE