HT	TD·//	\ <i>\</i> /\ <i>\</i> /	N/ N/	ΔΚΔΙ	JT.COM

Name:	
Gall No.	
leweglator's Signature	

CS/B.TECH (NEW)/SEM-1/M-101/2013-14 2013 MATHEMATICS - I

Time Allotted 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A [Multiple Choice Type Questions]

Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

i) The value of the determinant

a) 0

b) 10

e) 100

0001 - 15

1151 (N)

I Turn over

- The equation x + y + z = 0 has
 - intimite number of solutions
 - no solution
 - umque solution C.
 - two solutions
- iii) The value of $\int_{-\infty}^{0} \int_{-\infty}^{\infty} (x + y) dxdy =$
 - a) 2
- Ы 3
- c) 1

- iv) $f(x, y) = \frac{\sqrt{y} + \sqrt{x}}{y + x}$ is a homogeneous function degree

 - $a = \frac{1}{2}$ bi $\frac{-1}{2}$
 - cl 1

- In the MVT $f(h) = f(0) + hf'(\theta h), 0 < \theta < 1$ $f(x) = \frac{1}{1+x}$ and h = 3, then the value of θ is
 - a) I

-b} $\frac{1}{3}$

- d) none of these.
- vi) If $y = e^{-\alpha x + b}$ then $(y_5)0 =$

 - $a = ae^{a}$ b) $a^{5}e^{b}$

 - c) $a^{ij}e^{i\alpha x}$ d) none of these

- (ii) The series $\sum_{i=1}^{n} \frac{1}{(2n+1)^{n-1}}$ is
 - a) convergent
- b) divergent
- oscillatory
- (ii) none of these

viii)
$$\int_{0}^{\frac{\pi}{2}} \cos^{6} x \, dx \text{ is equal to}$$

- is) If $[\vec{a} \ \vec{b}' \ \vec{c}] = 0$ then the vectors $\vec{a} \ \vec{b}' \ \vec{c}'$ are
 - a) colinear
- b) coplanar
- c) orthogonal d) none of these.
- x) If $u(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$, then the value of

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$$
 is

a) 0

- b) 2u(x,y)
- c) u(x, y)
- d) none of these

And. The centre of the sphere gives by the equation

$$w = \begin{bmatrix} \frac{b}{a} & \frac{1}{a} & \frac{1}{a} \end{bmatrix}$$

c)
$$\left\{ \begin{array}{cccc} -b & -c & -d \\ 2a & 2a & 2a \end{array} \right\}$$

$$\mathbf{d} = \left(\begin{array}{ccc} b & c & d \\ \mathbf{2}a & \mathbf{2}a & \mathbf{2}a \end{array} \right)$$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following: 3 < 5 = 1

- Prove that every square matrix can be expressed as the sun of a symmetric matrix and a skew symmetric matrix
- Show that

$$\vec{J}' = \left(6xy + z^2\right) \hat{i} + \left(3x^2 - z\right) \hat{j} + \left(3xz^2 - y\right) \hat{k}$$

is irrotational. Hence find a scalar function $|\phi|$ such that $|\vec{l}| = |\vec{\nabla}|\phi|.$

Using Mean Value Theorem prove that

$$x < \sin^{-1} x < \frac{x}{\sqrt{1 - x^2}}$$
 . $0 < x < 1$

Show that the area bounded by a simple closed curve C i given by $\frac{1}{2} \oint (xdy - ydx)$

Prove that the function

has neither tauxima for minima at the origin

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- of If $f = |\overrightarrow{r}|$ where $\overrightarrow{r} = x \overrightarrow{l} + y \overrightarrow{f} + z \overrightarrow{k}$,

 prove that $\overrightarrow{\nabla} \left(\frac{1}{r} \right) = -\frac{\overrightarrow{r}}{r^3}$.
- b) Prove that

$$\begin{vmatrix} b^{2} + c^{2} & a^{2} & a^{2} \\ b^{2} & c^{2} + a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2} + b^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$

c) If $y = \cos(m \sin^{-1} x)$ then prove that

$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}+(m^2-n^2)y_n=0.$$
 5+5+5

- If the vector function \vec{F} and \vec{G} are irrotational, prove that $\vec{F} \times \vec{G}$ is solenoidal.
- b) If $f(x, y) = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$, verify that $f_{xy} = f_{yx}$.
- c) Find the maxima and minima of the function $x^3 + y^3 = 3x + 12y + 20$. Also find the saddle point

$$5 + 5 + 5$$

CS/B TECH (NEW)/SEM 1/M 101/2013 14

9. u		0	44	ti	81		
	, l	Es shoarn	- u	()	(1	€′	by Laplace
	÷ # f	Evaluate	- b	- 4	()	Ĵ	
		- (· (*)	f	0		

expansion method.

b) Verify Green's theorem for

$$\oint_C \left[(3x - 8y^2) dx + (4y - 6x) dy \right]$$
 where (

region bounded by x = 0, y = 0 and x + y = 1

For what values of λ and μ , the system of equations x+y+z=6

x + 2y + 3z = 10, has (i) Unique solution. (ii) solution. (iii) Infinite solutions. $x + 2y + \lambda z = \mu$

$$5 + 5$$

10. a) If
$$u_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta$$
, then prove that
$$n \left(u_{n+1} + u_{n+1} \right) = 1.$$

- b) Prove that
- +if 0 < a < b), $\frac{(b-a)}{(1+b^2)} < \tan^{-1} b \tan^{-1} a < \frac{(b-a)}{(1+a^2)}$

Hence show that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} + \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$

Test the convergence of the series

$$\frac{6}{13.5} + \frac{8}{3.5.7} + \frac{10}{5.7.9} + \dots$$
 5 + 5

HTTP://WWW.MAKAUT.COM

44 at State Leibnitz's theorem for convergence of a series Hence test the convergence of the following series

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots$$

- b) If z = f(x, y) where $x = e^{x} \cos y$ and $y = e^{y} \sin y$. show that $y \frac{\partial z}{\partial u} + x \frac{\partial z}{\partial v} = e^{-2u} \frac{\partial z}{\partial u}$
- Evaluate 11

$$\int_{0}^{0} \int_{0}^{\infty} \int_{0}^{x+y} e^{x+y+z} \, dx \, dy \, dz.$$
 5 + 5 + 5