Giorno 14: numeri razionali

Ora giochiamo lo stesso gioco per definire i numeri razionali $\mathbb Q$ su cui abbiamo che anche la divisione è ben definita.

Nota: Da piccoli vi hanno detto che una frazione è una roba che si scrive con 2 numeri interi $n,d\in\mathbb{Z}$ (con $d\neq 0$) e si scrive $\frac{n}{d}$.

Poi vi hanno insegnato a sommare e moltiplicare le frazioni. E lì è spesso per molti finito il mondo. Il fatto è che è antipatico definire le cose così perché $\frac{n}{d}$ è il numerale di un numero razionale. Invece noi che siamo uomini di mondo, prima definiamo i numeri razionali e poi introduciamo le frazioni come notazione per rappresentare i razionali. Come abbiamo introdotto la notazione -a = [(0,a)] per rappresentare i numeri negativi.

Consideriamo le coppie di numeri interi $(a,b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$, con $b \neq 0$. Dichiariamo equivalenti 2 coppie $(a,b) \sim (c,d)$ se e solo se ad = cb.

Un numero razionale è una classe di equivalenza [(a,b)] che è un sottoinsieme che contiene tutte le coppie $[(a,b)] = \{(ak,bk) : k \in \mathbb{Z} - \{0\}\}$. L'insieme dei numeri razionali si scrive come \mathbb{Q} .

Sui numeri razionali definite la somma e il prodotto come

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)] \qquad [(a,b)][(c,d)] = [(ac,bd)]$$

Quindi se sapete sommare e moltiplicare numeri interi, sapete farlo pure per le frazioni.

Potete definire la mappa $i: \mathbb{Z} \to \mathbb{Q}: a \mapsto [(a,1)]$, che rappresenta i numeri interi come razionali preservando le operazioni

$$i(a) + i(b) = [(a, 1)] + [(b, 1)] = [(a + b, 1)] = i(a + b)$$

 $i(a)i(b) = [(a, 1)][(b, 1)] = [(ab, 1)] = i(ab)$

come prima abbiamo mostrato che i numeri naturali erano particolari numeri interi.

Se prendete $[(a,1)] \in \mathbb{Q}$ e lo moltiplicate per [(1,a)] otteniamo [(a,1)][(1,a)] = [(a,a)] = [(1,1)]. Quindi [(1,a)] è quel numero in \mathbb{Q} che moltiplicato per il numero intero a (pensato come numero razionale) dà 1. Questo si chiama il reciproco di a, o l'inverso rispetto al prodotto.

Ora che sappiamo operare in \mathbb{Q} con somma e prodotto, sono entrambe associative e commutative, entrambe ammettono elemento neutro [0,1] e [(1,1)] ed entrambe ammettono inverso (tranne per il reciproco di 0), -[(a,b)] = [(-a,b)] e $[(a,b)]^{-1} = [(b,a)]$ e in più vale in generale la proprietà distributiva della somma rispetto alla moltiplicazione, allora diciamo che \mathbb{Q} è un *campo*.

In un campo se abbiamo l'equazione AX + B = C possiamo risolverla come

$$AX + B = C$$
 $AX = C - B$ $X = A^{-1}(C - B)$

Infine diciamo che il numero razionale [(a,b)] si può scrivere come $\frac{a}{b}$. In \mathbb{Q} abbiamo la divisione ben definita (a parte che non si può dividere per 0), nel

senso che la divisione di $\frac{a}{b}$ e $\frac{c}{d}$ è quel numero $q \in Q$ tale che $q\frac{c}{d} = \frac{a}{b}$. Se scriviamo q = n/m possiamo espandere quest'ultima condizione

$$\frac{n}{m}\frac{c}{d} = \frac{nc}{md} = \frac{a}{b}$$

che è vera se e e solo se ncb = amd che è vera se n = ad e m = cb (infatti adcb = acbd). Quindi abbiamo la divisione

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b}\frac{d}{c} = \frac{ad}{bc}$$

Abbiamo anche il principio di semplificazione per le frazioni $\frac{ak}{bk} = \frac{a}{b}$ sempre quando $k \neq 0$.

Se ci pensate, avete ora quasi tutto quello che avete fatto alle elementari e qualcosa delle medie. Tutto quello che vi serve per risolvere qualunque equazione lineare in $\mathbb Q$. Abbiamo un bel contesto in cui sommare e dividere numeri in modo generale. Come si sa dai tempi di Pitagora, non sappiamo ancora risolvere le radici quadrate di tutti i numeri razionali. Ad esempio non sappiamo risolvere in $\mathbb Q$ l'equazione $x^2=2$.

E questo è fastidioso, nel senso che abbiamo un campo $\mathbb Q$ possiamo scrivere un'equazione in $\mathbb Q$ che però non possiamo risolvere in $\mathbb Q$ (come nei naturali possiamo scrivere x+3=0 ma non possiamo risolverla, e come negli interi possiamo scrivere 3x=2 ma non possiamo risolverla). La situazione migliora a ogni giro (possiamo risolvere x+3=0 in $\mathbb Z$ e 3x=2 in $\mathbb Q$) ma sempre troviamo nuove equazioni che non possono essere risolte dove sono definite.

E notate che non abbiamo ancora parlato di virgola, la frazione 3/2 per noi è una frazione e ancora neanche sappiamo cosa significa 1.5, tantomeno che 3/2 = 1.5. Anche senza saperlo abbiamo risolto tutte le equazioni lineari.

Lasciatemi aggiungere una cosa: Il gruppo $(\mathbb{Z},+)$ è abbastanza semplice, logicamente possiamo dimostrare che è un ambiente scevro da contraddizioni e in cui possiamo decidere di ogni proposizione se è vera o falsa. Già per $(\mathbb{Q},+,*)$ vale il teorema di Gödel, cioè possiamo dimostrare che ci sono proposizioni indecidibili (una delle quali è che il sistema formale è coerente, un'altra è il problema dell'arresto). Non siamo neanche in 4 elementare e siamo già esposti al teorema di indecidibilità di Gödel!

Che volete farci: la natura è malevola pure quando parlavamo di numeri naturali eravamo comunque esposti agli infiniti visto che i numeri naturali sono infiniti.

Mi piace chiudere ricordando che in greco *máthema* è *ciò che si impara*, per dire che chi dice che la matematica è naturale banfa. La matematica si deve imparare perché non è lo stato naturale se no le scimmie sarebbero matematiche.