	M3.3 Study - Effect of K-anonymity on Titanic unalive prediction
In []:	<pre>import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import anonypy from random import random from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression</pre>
	from sklearn.metrics import accuracy_score, precision_score, recall_score Datasets (raw data & anonymized data)
In []:	<pre>Looking at the dataset #loading dataset titanic = sns.load_dataset('titanic') titanic.head()</pre>
Out[]:	survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone 0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False 2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True 3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
	4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True Columns were chosen and k-anonymized with the Anonypy library
In []:	 Sex, age, sibsp (sibling & spouse), parch (parent & child), fare, survived was choosen as the "relevant features" added a "count" column added some interesting intervals titanicAnonymized = sns.load_dataset('titanic')
2 [].	<pre># print(titanicAnonymized.columns) # print(titanicAnonymized['embarked'].value_counts()) #makes some columns categorical catagorical = set(('sex', 'embarked'))</pre>
	<pre>for name in catagorical: titanicAnonymized[name] = titanicAnonymized[name].astype("category") featureColumns = ['sex', 'age', 'sibsp', 'parch', 'fare'] # Removes: pclass, deck, 'class', 'who', 'adult_male', 'embark_town', 'alive', 'alone', 'embarked' sensitiveColumn = "survived"</pre>
	<pre># print(featureColumns + [sensitiveColumn]) #k-anonymity using anonypy library p = anonypy.Preserver(titanicAnonymized, featureColumns, sensitiveColumn) rows = p.anonymize_k_anonymity(k=4)</pre>
Out[]:	<pre>#new dataset with k-anonmity applied titanicAnonymized = pd.DataFrame(rows) titanicAnonymized.head() sex age sibsp parch</pre>
	1 [male] [0.42-16.0] [0-1] [7.2292-9.5] 1 2 2 [male] [32.0] [0] [0] [7.75-10.5] 0 6 3 [male] [32.0] [0] [0] [7.75-10.5] 1 3 4 [female] [5.0-14.5] [0-1] [0] [7.2292-14.4542] 0 2
	Processing data for training • every cell except survived has been generalized in order to fulfill k-anonomyziation • this data in its current form is not yet ready for training
In []:	<pre>• How would a model handle the intervals? #based on count column repeat rows titanicAnonymized = titanicAnonymized.loc[titanicAnonymized.index.repeat(titanicAnonymized['count'])].reset_index(drop=True) titanicAnonymized = titanicAnonymized.drop(columns=['count'])</pre>
	<pre>def transform_cell(cell): # If not a list, return as-is if not isinstance(cell, list): return cell # Flatten the comma-separated string inside the list if len(cell) == 1 and isinstance(cell[0], str) and ',' in cell[0]:</pre>
	<pre>parts = cell[0].split(',') else: parts = cell # Remove any "nan" strings cleaned = [v for v in parts if v != "nan"] if len(cleaned) == 1:</pre>
	<pre>item = cleaned[0] # Handle range like '15.0-16.0' if '-' in item and not item.startswith('-') and any(char.isdigit() for char in item): try: lower, upper = map(float, item.split('-')) return [lower, upper] except ValueError:</pre>
	<pre>return item return item return item # categorical elif len(cleaned) > 1: return cleaned return vone # If all were "nan", return None (or np.nan if preferred)</pre>
	# Apply transformation to all cells except the last two columns (which are int) cols_to_transform = titanicAnonymized.columns.difference(['survived', 'count']) titanicAnonymized[cols_to_transform] = titanicAnonymized[cols_to_transform].map(transform_cell)
Out[]:	titanicAnonymized.head(10) sex age sibsp parch fare survived O male [0.42, 16.0] [0.0, 1.0] [0.0, 1.0] [7.2292, 9.5] 0 1 male [0.42, 16.0] [0.0, 1.0] [0.0, 1.0] [7.2292, 9.5] 0
	2 male [0.42, 16.0] [0.0, 1.0] [7.2292, 9.5] 0 3 male [0.42, 16.0] [0.0, 1.0] [0.0, 1.0] [7.2292, 9.5] 0 4 male [0.42, 16.0] [0.0, 1.0] [0.0, 1.0] [7.2292, 9.5] 0 5 male [0.42, 16.0] [0.0, 1.0] [7.2292, 9.5] 1
	6 male [0.42, 16.0] [0.0, 1.0] [0.0, 1.0] [7.2292, 9.5] 1 7 male 32.0 0 0 [7.75, 10.5] 0 8 male 32.0 0 0 [7.75, 10.5] 0 9 male 32.0 0 0 [7.75, 10.5] 0
	Now some choices have to be made • how do we handle the ranges that the cells now are in? • took the average of upper and lower bound of the range • also tried random variable in the interval
In []:	<pre>accuracy and statistical information was traded for privacy X = titanicAnonymized.copy() for col in X.columns: for i in range(len(X[col])):</pre>
Out[]:	<pre>if not isinstance(X[col][i], list):</pre>
	0 male 8.21 0.5 0.5 8.3646 0 1 male 8.21 0.5 0.5 8.3646 0 2 male 8.21 0.5 0.5 8.3646 0 4 male 8.21 0.5 0.5 8.3646 0
In []:	Evaluating logistic regression model on raw data # Step 1: Define X (features) and y (target)
	<pre># X = titanic.drop(columns=['survived']) # 'survived' is the target column in the Seaborn Titanic dataset X = titanic[['sex', 'age', 'sibsp', 'parch', 'fare']].copy() y = titanic['survived'] # Step 2: Handle missing values and encode categorical variables X['age'] = X['age'].fillna(X['age'].mean()) # Fill missing values in 'age' with the mean X['fare'] = X['fare'].fillna(X['fare'].mean()) # Fill missing values in 'fare' with the mean</pre>
	<pre># Encode categorical variables X = pd.get_dummies(X, columns=['sex'], drop_first=True) # One-hot encode 'sex' and 'embarked' # Step 3: Split the data into training and testing sets x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Step 4: Train a logistic regression model model = logistic Pagession()</pre>
	<pre>model = LogisticRegression() model.fit(x_train, y_train) # Step 5: Evaluate the model y_pred = model.predict(x_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred)</pre>
	<pre>print(f'Precision: {precision}') print(f'Recall: {recall}') print(f'Accuracy: {accuracy}') raw_accuracy = accuracy Precision: 0.8041237113402062</pre>
In []:	Recall: 0.7027027027027027 Accuracy: 0.8059701492537313 Evaluating logistic regression model on anonymized data # Step 1: Define X (features) and y (target)
	<pre># X = titanic.drop(columns=['survived']) # 'survived' is the target column in the Seaborn Titanic dataset X = titanicAnonymized.drop(columns=['survived']).copy() for col in X.columns: for i in range(len(X[col])): if not isinstance(X[col][i], list):</pre>
	<pre>continue X.loc[i, col] = (X[col][i][0]+X[col][i][1])/2 y = titanicAnonymized['survived'] # Step 2: Handle missing values and encode categorical variables # X['age'] = X['age'].fillna(X['age'].mean()) # Fill missing values in 'age' with the mean</pre>
	<pre># X['fare'] = X['fare'].fillna(X['fare'].mean()) # Fill missing values in 'fare' with the mean # Encode categorical variables X = pd.get_dummies(X, columns=['sex'], drop_first=True) # One-hot encode 'sex' and 'embarked' # Step 3: Split the data into training and testing sets x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)</pre>
	<pre># Step 4: Train a logistic regression model model = LogisticRegression() model.fit(x_train, y_train) # Step 5: Evaluate the model y_pred = model.predict(x_test) accuracy = accuracy_score(y_test, y_pred)</pre>
	<pre>precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) print(f'Precision: {precision}') print(f'Recall: {recall}') print(f'Accuracy: {accuracy}')</pre> Precision: 0.7619047619047619 Precision: 0.7101011235055056
In []:	Recall: 0.7191011235955056 Accuracy: 0.7916666666666666 Plot of k effect on accuracy titanicAnonymized = sns.load_dataset('titanic')
	<pre>featureColumns = ['sex', 'age', 'sibsp', 'parch', 'fare'] # Removes: pclass, deck, 'class', 'who', 'adult_male', 'embark_town', 'alive', 'alone', 'embarked' sensitiveColumn = "survived" catagorical = set(('sex', 'embarked')) for name in catagorical: titanicAnonymized[name] = titanicAnonymized[name].astype("category")</pre>
	<pre>anonymizedDataSets = [] k_values = range(2, 11) for i in k_values: p = anonypy.Preserver(titanicAnonymized, featureColumns, sensitiveColumn) rows = p.anonymize_k_anonymity(k=i) k_anom_data = pd.DataFrame(rows)</pre>
	<pre>k_anom_data = k_anom_data.loc[k_anom_data.index.repeat(k_anom_data['count'])].reset_index(drop=True) k_anom_data = k_anom_data.drop(columns=['count']) cols_to_transform = k_anom_data.columns.difference(['survived', 'count']) k_anom_data[cols_to_transform] = k_anom_data[cols_to_transform].map(transform_cell) anonymizedDataSets.append(k_anom_data)</pre>
In []:	<pre>accuracy_list = [] for i in range(len(anonymizedDataSets)): dataSet = anonymizedDataSets[i] X = dataSet.drop(columns=['survived']).copy() y = dataSet['survived'] for col in X.columns:</pre>
	<pre>for i in range(len(X[col])): if not isinstance(X[col][i], list): continue X.loc[i, col] = (X[col][i][0]+X[col][i][1])/2 X = pd.get_dummies(X, columns=['sex'], drop_first=True) # One-hot encode 'sex' and 'embarked'</pre>
	<pre>x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model = LogisticRegression() model.fit(x_train, y_train) y_pred = model.predict(x_test) accuracy = accuracy_score(y_test, y_pred)</pre>
In []:	<pre>accuracy_list.append(accuracy) # print(k_values) # print(accuracy_list) import matplotlib.pyplot as plt</pre>
	<pre>y = k_values x = accuracy_list # Create the plot plt.plot(y, x, marker='o') # y on x-axis, x on y-axis (could reverse if needed) plt.axhline(y=raw_accuracy, color='red', linestyle='', label='Reference Accuracy') # Add labels and title</pre>
	<pre>plt.xlabel('k') # Replace with your actual label plt.ylabel('Accuracy') # Replace with your actual label plt.title('Accuracy based on different k values') # Replace with your plot's title # Optional: Show grid plt.grid(True)</pre>
	# Show the plot plt.show() Accuracy based on different k values 0.84
	0.83
	0.79 0.78
	0.77 2 3 4 5 6 7 8 9 10 k
In []:	Plot of k effect on accuracy using random distribution titanicAnonymized = sns.load_dataset('titanic') featureColumns = ['sex', 'age', 'sibsp', 'parch', 'fare'] # Removes: pclass, deck, 'class', 'who', 'adult_male', 'embark_town', 'alive', 'alone', 'embarked'
	<pre>sensitiveColumn = "survived" catagorical = set(('sex', 'embarked')) for name in catagorical: titanicAnonymized[name] = titanicAnonymized[name].astype("category") anonymizedDataSets = [] k_values = range(2, 11)</pre>
	<pre>for i in k_values: p = anonypy.Preserver(titanicAnonymized, featureColumns, sensitiveColumn) rows = p.anonymize_k_anonymity(k=i) k_anom_data = pd.DataFrame(rows) k_anom_data = k_anom_data.loc[k_anom_data.index.repeat(k_anom_data['count'])].reset_index(drop=True) k_anom_data = k_anom_data.drop(columns=['count'])</pre>
	<pre>cols_to_transform = k_anom_data.columns.difference(['survived', 'count']) k_anom_data[cols_to_transform] = k_anom_data[cols_to_transform].map(transform_cell) anonymizedDataSets.append(k_anom_data) accuracy_list = []</pre>
	<pre>for i in range(len(anonymizedDataSets)): dataSet = anonymizedDataSets[i] X = dataSet.drop(columns=['survived']).copy() y = dataSet['survived'] for col in X.columns: for i in range(len(X[col])):</pre>
	<pre>if not isinstance(X[col][i], list):</pre>
	<pre>model = LogisticRegression() model.fit(x_train, y_train) y_pred = model.predict(x_test) accuracy = accuracy_score(y_test, y_pred) accuracy_list.append(accuracy)</pre>
	<pre># print(k_values) # print(accuracy_list import matplotlib.pyplot as plt y = k_values</pre>
	<pre># Create the plot plt.plot(y, x, marker='o') # y on x-axis, x on y-axis (could reverse if needed) plt.axhline(y=raw_accuracy, color='red', linestyle='', label='Reference Accuracy') # Add labels and title plt.xlabel('k') # Replace with your actual label plt.ylabel('Accuracy') # Replace with your actual label</pre>
	plt.title('Accuracy based on different k values with random distribution ') # Replace with your plot's title # Optional: Show grid plt.grid(True) # Show the plot plt.show()
	Accuracy based on different k values with random distribution 0.84 0.83
	0.82 0.81 0.80
	0.79 0.78 0.77
	Plot of k effect on accuracy using only the 'fare' column
In []:	<pre>titanicAnonymized = sns.load_dataset('titanic') featureColumns = ['fare'] # Removes: pclass, deck, 'class', 'who', 'adult_male', 'embark_town', 'alive', 'alone', 'embarked' sensitiveColumn = "survived"</pre>
	<pre>anonymizedDataSets = [] k_values = range(2, 11) for i in k_values: p = anonypy.Preserver(titanicAnonymized, featureColumns, sensitiveColumn) rows = p.anonymize_k_anonymity(k=i) k_anom_data = pd.DataFrame(rows) k_anom_data = k_anom_data.loc[k_anom_data.index.repeat(k_anom_data['count'])].reset_index(drop=True)</pre>
	<pre>k_anom_data = k_anom_data.drop(columns=['count']) cols_to_transform = k_anom_data.columns.difference(['survived', 'count']) k_anom_data[cols_to_transform] = k_anom_data[cols_to_transform].map(transform_cell) anonymizedDataSets.append(k_anom_data) accuracy_list = []</pre>
	<pre>for i in range(len(anonymizedDataSets)): dataSet = anonymizedDataSets[i] X = dataSet.drop(columns=['survived']).copy() y = dataSet['survived'] for col in X.columns:</pre>
	<pre>for i in range(len(X[col])): if not isinstance(X[col][i], list): continue X.loc[i, col] = (X[col][i][0]+X[col][i][1])/2 x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) model = LogisticRegression()</pre>
	<pre>model.fit(x_train, y_train) y_pred = model.predict(x_test) accuracy = accuracy_score(y_test, y_pred) accuracy_list.append(accuracy) # print(k_values)</pre>
In []:	<pre># print(accuracy_list) import matplotlib.pyplot as plt y = k_values x = accuracy_list # Create the plot</pre>
	<pre># Create the plot plt.plot(y, x, marker='o') # y on x-axis, x on y-axis (could reverse if needed) plt.axhline(y=raw_accuracy, color='red', linestyle='', label='Reference Accuracy') # Add labels and title plt.xlabel('k') # Replace with your actual label plt.ylabel('Accuracy') # Replace with your actual label plt.title('Accuracy based on different k values (only \'fare\')') # Replace with your plot's title</pre>
	<pre># Optional: Show grid plt.grid(True) # Show the plot plt.show()</pre>
	0.800 Accuracy based on different k values (only 'fare') 0.775
	0.725 0.700 0.675
	0.650 0.625
	0.600 2 3 4 5 6 7 8 9 10