

Product Design Review

Devin Bidstrup

Justin Melville

Joseph Walsh

Our client, NanoView Biosciences, is a biotechnology company which makes machines capable of detecting markers on exosomes and other biological systems

They are a startup company based in Brighton, and their President is a former BU professor, David Freedman

Problem Statement

- NanoView currently uses a person with tweezers
 when they transfer silicon chips from their lab
 container, "the traveler" into user cases, "clamshells"
- Our job is to automate the process of transferring the chips from the traveler to clamshell
- This will speed up the process, prevent human error, and reduce risk of contamination

Deliverables

We will deliver a product meeting the following requirements:

- 1. Comprised of packing machine and accompanying software package
- 2. 10x increase in packing speed
- 3. Same level of care as a human
- 4. Check chip ID as chips are packaged
- 5. Integrate into existing manufacturing pipeline
- 6. No damage to chips during packing
- 7. Fit inside the manufacturing facility

Visualization

System Block Diagram

Technical Design - TinyG Microcontroller

- Serial G-code → stepper motor
- Communicate via Python and pySerial
- Serial port detected automatically with the VID of the board
- TinyG motor and communication protocols are configurable via serial
- G-code commands to move the machine are sent JSON format
 - e.g. {'gc', 'G0 X 1'} to perform a G0movement on the X-axis

Technical Design - GUI

Traveler Visualization

Port Selection

Example of inter-process communication

NanoPack V. 0.1 Home Options Console debugging Give me CSV, initialize Sending packing report 0 Sending packing report 1 Sending packing report 2 Exited with code: NormalExit

	Reading CSV
	ipNumber -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
52	26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 2, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]
3	lipIO -> [25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25, 11, 1, 3, 25,
C1	11, 1, 3, 25, 11, 1, 3] LamshellGroup -> [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16]
	Chip Locations from Sample Image
	LOOP 0ssage from .NET GUI: Data Received
	LOOP 1ssage from .NET GUI: Data Received
	LOOP 2
	kited normally cosing pipe
C:	\Users\justi\Documents\GitHub\NanoView_G33\dev\first_prototype>

Technical Design - ML

Text Scanning

- Use a CNN to classify images into number categories.
- Verify against csv before starting chip placement
- Only done at the beginning of the processes.
- Generated noise on top of existing image set to create a larger training.

Technical Design - ML

Technical Design - Mechanical

- Modified design from LitePlacer robot
- Custom tweezer actuator designed to pick up chips
- Added 3D printed mount for tweezers + stepper arm to pinch tweezers

Schedule (Gantt Chart)

Gantt Chart								
	September	October	November	December	January	February	March	April
Task								
Planning								
Brainstorm different robotic designs								
Software								
Develop chip and location recognizing algorithms								
Design a UI which can be utilized by NanoView employees								
Program a microcontroller to communicate with python program								
Program a microcontroller for motor control								
Utilize piping to ensure all programs connect with each other								
Create pathing program								
Debug Control Loop								
Mechanical								
Create a parts list and sketch overall design								
Create a full CAD model of our design								
Construct the physical robot								
Electrical								
Choose electrical compnents to fit design specifications								
Wiring and Motor Connection								
Test and tune the robot								
Installation and Presenation								