TG-51 Output Calibration for Electron Beams

Reference Conditions

 Clinical reference dosimetry for electron beams is performed in an open beam with the point of at a water-equivalent depth of

$$d_{ref} = 0.6 R_{50} - 0.1$$

 $R_{50} = 1.029 I_{50} - 0.06$ (cm) (for $2 \le I_{50} \le 10$ cm)
 $R_{50} = 1.059 I_{50} - 0.37$ (cm) (for $I_{50} > 10$ cm)

- Where the R_{50} is calculated from the depth ionization curve (I_{50})
- For beams with R_{50} <= 8.5 cm, field size = 10x10 cm² at the phantom surface with SSD=100cm
- For higher-energy beams (R₅₀>8.5 cm), field size is 20x20 cm², SSD=100cm
- By going to d_{ref}, this protocol makes use of stopping power ratios which account for the realistic nature of the electron beams.
 - $-d_{ref} \approx d_{max}$ for E < 10 MeV; $d_{ref} > d_{max}$ for E > 10 MeV

$$D_w^Q = Mk_Q N_{D,w}^{60} \text{Co} \quad (Gy)$$

- D_w^Q
 - absorbed dose to water (Gy) for electron beam quality Q at the point of measurement of the ion chamber when it is absent.
- M
 - fully corrected electrometer reading in coulombs
- $N_{D,w}^{60}$ Co
 - absorbed-dose to water ion chamber calibration factor for a 60Co beam (Gy/C). Traceable to national standards of absorbed dose to water maintained by Primary Standard Laboratories (NIST). Direct traceability is also obtained from an Accredited Dosimetry Calibration Laboratory (ADCL).

$$D_w^Q = Mk_Q N_{D,w}^{60} \text{Co} \quad (Gy)$$

$$k_Q = P_{gr}^Q k_{R_{50}}$$
 $k_{R_{50}} = k'_{R_{50}} k_{ecal}$

Dose to water at reference depth, d_{ref} :

$$D_{w}^{Q} = MP_{gr}^{Q} k_{R_{50}}^{'} k_{ecal} N_{D,w}^{60_{Co}} = [9 \cdot 10a \cdot 5b \cdot 5a \cdot 2c]$$

• k_{ecal}

photon-electron conversion factor. Fixed for a given chamber model.
 Converts absorbed dose to water calibration factor for a Co-60 beam to the calibration factor for an electron beam with beam quality Qecal (R50 = 7.5 cm).

• $k'_{R_{50}}$

 electron beam quality conversion factor. Beam quality dependent; small variation chamber-to-chamber. Converts absorbed dose to water calibration factor for a electron beam with quality Q_{ecal} to calibration factor for electron beam with beam quality Q.

P^Q_{gr}

 ionization gradient correction factor. Only necessary for cylindrical chambers. Depends on radius of chamber cavity and ionization gradient at point of measurement.

Beam Quality

Beam quality for electrons is specified by the depth at which the dose falls to 50% of dmax (R₅₀) in a beam with a field size >= 10x10 cm² on the surface of the phantom at an SSD of 100 cm (>=20x20 cm² for R₅₀>8.5 cm).

Beam Quality (Sec.VIII.C)

Measure I_{50} by measuring depth-ionization curve and, for cylindrical chambers only, shifting curve upstream by $0.5 r_{cav}$

I_{50} :	cm
a.i. If $2 \le I_{50} \le 10$ cm:	
$R_{50} = 1.029I_{50} - 0.06$	cm
ii . If $I_{50} > 10$ cm:	
$R_{50} = 1.059I_{50} - 0.37$	cm
b. Reference depth $d_{\text{ref}} = 0.6R_{50}$ -0.1	cm (water equivale

Beam Quality

• Can calculate $k'_{R_{50}}$ and $P^Q_{\rm gr}$ analytically for Farmer-like cylindrical chambers, given that R_{50} is between 2-9cm (with max error of 0.2%)

$$k'_{R_{50}}$$
(cyl) = 0.9905 + 0.0710 $e^{(-R_{50}/3.67)}$

$$P_{\text{gr}}^{Q} = \frac{M_{\text{raw}}(d_{\text{ref}} + 0.5r_{\text{cav}})}{M_{\text{raw}}(d_{\text{ref}})}$$
 (for cylindrical chambers)

 Similarly for plan-parallel chambers, given R₅₀ is between 2-20cm

$$k'_{R_{50}}(pp) = 1.2239 - 0.145(R_{50})^{0.214}$$

Beam Quality

• For photon beams 6 MV - 18 MV, k_Q varies by < 3% (~ 0.995 - 0.974).

For electron beams 6 MeV - 20 MeV, $k'_{R_{50}}$ varies by < 3% (~1.026 - 0.997)

- For electrons, there is significant change in the stopping power ratio with depth
- Therefore the measured depth-ionization must be further corrected to obtain depth-dose (TG-25).
- However, the conversion is not needed in this protocol.
- TG 51 provides equations to convert the depth of 50% maximum ionization (I50) determined from the shifted depth-ionization curve - to R50.

• Measure percent depth-ionization (PDI) distribution with a well-guarded plane-parallel ionization chamber. The water equivalent thickness (in g.cm-2) of the front window and any waterproofing material should be taken into account when positioning the chamber at the position of interest. Determine the depth of the 50% of the maximum ionization on the depth-ionization curve. This depth gives ISO. Determine RSO using eq. (16) or (17) of the protocol as appropriate.

$$\left(\frac{\overline{L}}{\rho}\right)_{air}^{w}(z, R_{50}) = \frac{a + b(\ln R_{50}) + c(\ln R_{50})^{2} + d(z/R_{50})}{1 + e(\ln R_{50}) + f(\ln R_{50})^{2} + g(\ln R_{50})^{3} + h(z/R_{50})}$$

where z denotes the depth of measurement and

$$a = 1.0752$$
 $b = -0.50867$ $c = 0.088670$ $d = -0.08402$

$$e = -0.42806$$
 $f = 0.064627$ $g = 0.003085$ $h = -0.12460$

$$R_{50} = 1.029I_{50} - 0.06$$
 (cm) (for $2 \le I_{50} \le 10$ cm)

$$R_{50} = 1.059I_{50} - 0.37$$
 (cm) (for $I_{50} > 10$ cm)

• One must also shift the chamber reading UPSTREAM for the effective point of measurement – it is an implicit correction for the chamber's inherent charged particle fluence perturbation. For electron beams, we shift reading upstream by $0.5r_{cav}$. Where r_{cav} is the radius of the ion chamber cavity

- The effective point of measurement for a cylindrical chamber is upstream of the point of measurement (CAX of chamber) due to the predominantly forward direction of the secondary electrons.
- For cylindrical and spherical chambers, the measured depth ionization curve is shifted upstream by 0.6r_{cav} and 0.5r_{cav} for photons and electrons respectively.
- These shifted curves are used to determine beam quality.
- For pp chambers, the center of the front face of the chamber is the point of measurement and is taken as the effective point of measurement.
- No shift in the depth-ionization curve is required for the purposes of beam quality specification.

TG-51 v. TG-21

TG-51

- Dose in water: N_D
- Msmts in water phantom with dimensions >= 30x30x30 cm3.
- Measurement at d_{ref}
- $E_0 = 2.33 R_{50}$
- Stopping power corrections are more realistic

TG-21

Dose in cavity gas: N_{gas}

- Measurement at depth of ionization maximum
- $E_0 = 2.33 I_{50}$
- Stopping power corrections are monoenergetic

TG-51 Worksheet B: Electron Beams – Cylindrical Chambers

For electrons with $R_{50} \ge 2.6$ cm (energies > 6 MeV) only and preferably ≥ 4.3 cm (10 MeV).

- For beams with R₅₀ < 4.3cm (10 MeV or less), well-guarded plane parallel chambers are preferred
- Plane parallel chambers must be used for beams with R₅₀ <= 2.6cm (6 MeV or less)

TG-51 Worksheet D: Electron Beams using Plane-Parallel Chambers

Electrons: 4-50 MeV

Chambers

 For electrons, minor construction details significantly alter response of pp chambers in 60Co beams and this makes determination of kecal uncertain. PP chambers should be crosscalibrated in high-energy electron beams against calibrated cylindrical chambers.

TG–51 Worksheet C: $k_{\text{ecal}} N_{D,w}^{60Co}$ for plane-parallel chambers

There are two methods for determining $k_{\text{ecal}}N_{D,w}^{60Co}$ for a plane-parallel chamber. Method A uses cross-calibration against a calibrated cylindrical chamber and is the preferred method. Method B uses a 60 Co absorbed-dose calibration factor.

Chambers

• $M = P_{\text{ion}} P_{\text{TP}} P_{\text{elec}} P_{\text{pol}} M_{\text{raw}}$ (C or rdg)

Corrected ion. ch. rdg M (Sec.VII) at d_{ref}

$$M = P_{ion}P_{TP}P_{elec}P_{pol}M_{raw} = [8 \cdot 6c \cdot 2bi \cdot 7b \cdot 7a]$$

Fully corrected M (Eq (8)): _____C or rdg

 M_{raw} = raw ion chamber reading (C) P_{pol} = polarity effect correction factor P_{TP} = temperature-pressure correction factor P_{ion} = ion recombination correction factor P_{elec} = electrometer calibration factor

P_{pol}

- Polarity effects vary with beam quality and conditions such as cable position.
- If the polarity correction is 0.3% or greater from unity for photon beams \leftarrow 6MV then one must establish the value of P_{pol} for the calibration laboratory beam.
- If there is a significant correction for the calibration beam, the user must use N(60Co) / Ppol(60Co).

Polarity Correction (Sec.VII.A) M_{raw}^+ : $C ext{ or rdg}$ M_{raw}^- : $C ext{ or rdg}$ a. M_{raw} (for polarity of calibration): $Eq.(9) = \frac{\left(M_{raw}^+ - M_{raw}^-\right)}{2M_{raw}}$

P_{TP}

- Calibration factors are given for standard environmental conditions of temperature at T=22°C and pressure at P=101.33 kPa (1 atm).
- It is assumed that the relative humidity is always in the range of 20%-80%. Error introduced by ignoring variation is humidity in this range is +/- 0.15%. Humid air may cause condensation inside the ion chamber volume and this can affect chamber response.

Temperature / Pressure Correction (Sec.VII.C) a. Temperature: $kPa \left[= mmHg \cdot \frac{101.33}{760.} \right]$ c. P_{TP} : $Eq.(10) = \left(\frac{273.2 + 6a}{295.2} \right) \left(\frac{101.33}{6b} \right)$

Pion

- The ion chamber readings in the user's beam must be corrected for the lack of complete collection efficiency.
- P_{ion} is a function of the dose per pulse in accelerator beams, and will change if either the pulse rate for a fixed dose rate, or the dose rate is changed.
- P_{ion} determined using this method is accurate to within <0.5%. However, if Pion > 1.05, the uncertainty becomes unacceptably large and another chamber should be used.

P _{ion} measurements (Sec.VII.D.2)	
Operating voltage= V _H :	V
Lower voltage V _L :	V
M_{raw}^{H} :	C or rdg
M_{raw}^{L} :	C or rdg
P _{ion} (V _H) (pulsed/swept beam, Eq.(12)):	$ \frac{1 - \frac{V_H}{V_L}}{\left(1 - \frac{V_H}{V_L}\right)} \left(\frac{M_{raw}^H}{M_{raw}^L} - \frac{V_H}{V_L}\right) $

If $P_{\text{ion}} > 1.05$, another ion chamber should be used.

When should you calibrate your ion chamber?

- Ion chamber should be calibrated when first purchased, when repaired, when redundant checks suggest a need, or once every two years.
- The physicist must perform at least two independent checks prior to sending a chamber for calibration and repeat the same checks when the chamber is returned to ensure that the chamber characteristics have not changed during transit.
- Electrometer should also be calibrated. All ranges routinely used for clinical reference dosimetry should be calibrated.