Partiel S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (5 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour le montage ci-dessous.

Partiel S2 – Corrigé

Exercice 3 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées J et K de chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : J0 = 1, $K1 = \overline{Q2}$).

Exercice 4 (4 points)

On souhaite réaliser une mémoire RAM d'une capacité de 2 Mio (que l'on notera *M*) à l'aide de plusieurs mémoires RAM d'une capacité de 16 Kio (que l'on notera *m*). La mémoire *M* possède un bus de donnée de 16 bits et la mémoire *m* un bus de donnée de 8 bits. Répondez aux questions sur le <u>document réponse</u>.

Partiel S2 – Corrigé 2/5

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	E	M
-146,3125	1	10000110	0010010010100000000000
0,34375	0	01111101	0110000000000000000000

2.

Représentation IEEE 754	Représentation associée
246800000000000016	3 × 2 ⁻⁴⁴²
7FFF00000000000 ₁₆	NaN
00068000000000016	13 × 2 ⁻¹⁰²⁷

Exercice 3

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
1	1	1	Ф	0	Ф	1	Ф	1
1	0	0	Ф	0	0	Ф	1	Ф
1	0	1	Φ	0	1	Ф	Ф	1
1	1	0	Φ	1	Ф	0	1	Ф
0	1	1	0	Ф	Ф	1	Ф	0
0	0	1	0	Φ	0	Φ	Φ	1
0	0	0	1	Ф	1	Ф	1	Ф

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

		Q1 Q0									
	J0	J0 00 01 11 10									
	0										
Q2	1										

$$J0 = 1$$

			Q1 Q0							
	J1	J1 00 01 11 10								
03	0	1	0	Ф	Φ					
Q2	1	0	1	Ф	Φ					

$$\mathbf{J1} = \overline{\mathbf{Q2}}.\ \overline{\mathbf{Q0}} + \mathbf{Q2}.\mathbf{Q0} = \overline{\mathbf{Q2} \oplus \mathbf{Q0}}$$

		Q1 Q0								
	J2	J2 00 01 11 10								
03	0									
Q2	1									

$$J2 = \overline{Q0}$$

$$\mathbf{K0} = \mathbf{Q2} + \overline{\mathbf{Q1}}$$

	Q1 Q0										
	K1	K1 00 01 11 10									
03	0										
Q2	1										

$$K1 = Q0$$

	Q1 Q0						
	K2	00	01	11	10		
03	0	Ф	Ф	Ф	Φ		
Q2	1	0	0	0	1		

$$K2 = Q1.\overline{Q0}$$

Exercice 4

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	2 ¹⁴ mots
Quelle est la profondeur de la mémoire M ?	2 ²⁰ mots
Donnez le nombre de fils du bus d'adresse de la mémoire m .	14 fils
Donnez le nombre de fils du bus d'adresse de la mémoire M .	20 fils
Combien de mémoires doit-on assembler en parallèle ?	2 mémoires
Combien de mémoires doit-on assembler en série ?	64 mémoires
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	6 bits d'adresse
Quand la mémoire M est active, combien de mémoires m sont actives simultanément ?	2 mémoires <i>m</i>

 	cadre ci-desso		