KIẾN TRÚC MÁY TÍNH

Dr. Nguyen Dang Khoa

Email: khoa.nguyendang@phenikaa-uni.edu.vn

<u>khoaulsan@gmail.com</u>

Phone: 0974.844.618

^	_	
TAD	T TONITI	I MIPS
IAP	LENE	LIVILPS
1 2 11		LIVILLO

- 1. Giới thiệu
- 2. Các phép tính
- 3. Toán hạng
- 4. Biểu diễn lệnh
- 5. Các phép tính Logic
- 6. Các lệnh điều kiện và nhảy

1. GIỚI THIỆU

- Cần một phương thức để giao tiếp với máy tính Sử dụng ngôn ngữ của máy tính Các lệnh (instructions) và tập hợp tất cả các từ gọi là bộ lệnh (instruction set)
- Bộ lệnh trong chương này là MIPS, một bộ lệnh kiến trúc máy tính được thiết kế từ năm 1980. Cùng với hai bộ lệnh thông dụng nhất ngày nay:
 - √ARM (rất giống M**I**PS)
 - √The Intel x86

	_
-	
	_
	_
	_

2. CÁC PHÉP TÍNH	
❖ Java, C, C++ a=b+c;	
d=a-e; ♦ MIPS ???	
, , ,]
2. CÁC PHÉP TÍNH	-
◆ Java, C, C++ a=b+c; d=a-e;	
❖ MIPS Java, C, C++ MIPS	
a=b+c; add a.b.c d=a-e; sub d.a.e	
2. CÁC PHÉP TÍNH	
❖ Java, C, C++	
f = (g + h) − (i + j);	

$ ♣$ Java, C, C++ $ f = (g + h) - (i + j); $ $ ♣$ MIPS $ \frac{\text{Java, C, C++}}{f = (g + h) - (i + j);} $ $ \frac{\text{add } 0, g, h}{\text{add } 0, t, i, j} $	$f = (g + h) - (i + j);$ \Rightarrow MIPS $ \frac{\text{Java, C, C++}}{f = (g + h) - (i + j);} $ add $0, g, h$	2. CÁC PH	IÉP TÍNH
	Java, C, C++ MPS $f = (g + h) - (i + j); \qquad \text{add } 10, g, h$ add $11, l, l, l$	(9 ' 11) = (1 ']),	
add t1, i, j	add t1, i, j	Java, C, C++	MIPS
sub f. t0. t1			add t0, g, h add t1, i, j

		2. CÁ0	СΡ	HÉP	ΤÍΝ	NH
Nhóm	Lệnh	Ý nghĩa		Nhóm	Lệnh	Ý nghĩa
Arithmetic	add	Add			and	And
	sub	Subtract			or	Or
	addi	Add immediate			nor	Nor
	lw	Load word		Logical	andi	And immediate
	sw	Store word			ori	Or immediate
	lh	Store half			sll	Shift left logical
Data transfer	lb	Load byte			sll	Shift rightlogical
Bellator	lbu	Load byte unsigned				
	sb	Store byte				
	11	Load linked word				
	sc	Store condition, word				
	lui	Load upper immediate				

3. TOÁN HẠNG

- 1. Toán hạng thanh ghi (Register Operands)
- 2. Toán hạng bộ nhớ (Memory Operands)
- 3. Toán hạng hằng (Constant or Immediate Operands)

3.1. TOÁN HẠNG THANH GHI

- ❖ Ở slide trước: a=b+c; → add a,b,c (toán hạng b,c và tổng a ở đây được cơi là các biến)
- Tuy nhiên trong MIPS, không giống như các chương trình trong ngôn ngữ cấp cao, các toán hạng của các lệnh số học bị hạn chế, chúng phải sử dụng các thanh ghi được quy đinh sẵn.
- ❖ Kích thước của một thanh ghi trong kiến trúc MIPS là 32 bit (đặt tên word trong kiến trúc MIPS. (Một số kiến trúc bộ lệnh khác có thể không là 32 bit)

3.1. TOÁN HẠNG THANH GHI

Tên thanh ghi	Số thứ tự	Ý nghĩa
\$zero	0	The Constant value 0
\$at	1	Assembler Temporary
\$v0-\$v1	2-3	Values for funtion results and Expression Evaluation
\$a0-\$a3	4-7	Arguments
\$t0-\$t7	8-15	Temporaries
\$s0-\$s7	16-23	Saved Temporaries
\$18-\$19	24-25	Temporaries
Sk0-Sk1	26-27	Reserved for OS Kernel
\$gp	28	Global Pointer
\$sp	29	Stack Pointer
Sfp	30	Frame Pointer
Sra	31	Return Address

3.2. TOÁN HẠNG BỘ NHỚ

- ❖ Với lệnh MIPS, phép tính số học chỉ xảy ra trên thanh ghi, do đó, phải sử dụng lưu trữ trong các bộ nhớ để làm trung gian. MIPS phải có các lệnh chuyển dữ liệu giữa bộ nhớ và thanh ghi. Lệnh như vậy được gọi là lệnh chuyển dữ liệu.
- ❖ Lệnh chuyển dữ liệu: Một lệnh di chuyển dữ liệu giữa bộ nhớ và thanh ghi
- Để truy cập vào một từ trong bộ nhớ, lệnh phải cung cấp địa chỉ bộ nhớ.
- ❖ Lệnh chuyển dữ liệu từ bộ nhớ vào thanh ghi gọi là nạp (load) (viết tắt *lw load word*). Định dang của các lênh nap:

lw \$s1,20(\$s2)

- S51: thanh ghi nạp dữ liệu vào.
 Một hằng số (20) và thanh ghi (\$s2) được sử dụng để truy cập vào bộ nhớ. Tổng số của hằng số và nói dựng của thanh ghi này là địa chỉ bộ nhớ của phần từ cần truy cập đến. Nội dựng của từ nhớ này sẽ được đưa từ bộ nhớ vào thanh ghi \$51
 S51 = MEM(\$s2 + 20]

	1
3.2. TOÁN HẠNG BỘ NHỚ	
❖ $\forall i$ du. $g = h + A[4];$	
#Đọc được giá trị trong A[4]. Ví dụ \$s3 lưu địa chỉ của A[0]	
W \$t0, 16(\$s3)	
❖ Tại sao là 16	
3.2. TOÁN HẠNG BỘ NHỚ	
5.2. TOAN HẠNG ĐỘ NHƠ * Ví dụ.	
g = h + A[4]: Nv \$10, 18(ss3) # \$10 nhán A[4]	
add \$s1.8s2.\$iO # $g = h + A[4]$	
❖ Tại sao là 16: Thực tế trong MIPS một word là 4 bytes, do đó lệnh đúng phải là: lw \$ 10, 16(\$s3)	
3.2. TOÁN HẠNG BỘ NHỚ	
❖ Lệnh chuyển dữ liệu từ thanh ghi ra bộ nhớ, gọi là lệnh lưu (store) (viết tắt sw - store word). Định dạng của các lệnh lưu:	
 Ss1,20(\$\$2) Ss1,20(\$\$2) Một hàng số (20) và thanh ghi (\$\$2\$) được sử dụng để truy cập vào bộ nhỏ. Tổng số của hằng số và nội dưng có ta hàng số nhỏ thờ nhỏ của phân từ cần truy cập đến. Nội 	
dung của thanh ghi trong \$s1 sẽ được lưu trở trong bộ nhớ nây.	
am 001,20(002) ₩ mEm[002+20]-001	

	,		^	,
2 2	$T \cap A N$	HANG	$\mathbf{D} \cap \mathbf{X}$	TITC
• /	ILIAN	HANGT	$\mathbf{R} \cup \mathbf{N}$	H
J.4.	1 02 11	\mathbf{I}	$\mathbf{D}\mathbf{O}$ \mathbf{r}	

Ví dụ: Giả sử biến h được kết nối với thanh ghi \$s2 và địa chỉ cơ sở của mảng A là trong \$s3. Biên dịch câu lệnh C thực hiện dưới đây sang MIPS?

A[12] = h + A[8];

3.2. TOÁN HẠNG BỘ NHỚ

Ví dụ: Giả sử biến h được kết nối với thanh ghi \$s2 và địa chỉ cơ sở của màng A là trong \$s3, Biên dịch câu lệnh C thực hiện đười đây sang MIPS?

A[12] = h + A[8];

lw \$t0,32(\$s3) add \$t0,\$s2,\$t0 sw \$t0,48(\$s3) # \$t0 = A[8] # \$t0 = h + A[8] # A[12] = \$t0

A0 A1 A2 A3 A4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3.3. TOÁN HẠNG HẰNG

- Một hằng số/số tức thời (constant/immediate number) có thể được sử dụng trong một phép toán
- ❖ Ví dụ:

addi \$s3, \$s3, 4

\$s3 = \$s3 + 4

4. BIỂU DIỄN LỆNH

- ❖ Máy tính chỉ có thể làm việc với các tín hiệu điện tử thấp và cao, do đó một lệnh lưu giữ trong máy tính phải được biểu diễn như là một chuỗi của "0" và "1", được gọi là mã máy/lệnh máy.
- ❖ Ngôn ngữ máy (Machine language): biểu diễn nhị phân được sử dụng để giao tiếp trong một hệ thống máy tính.
- ❖ Để chuyển đổi từ một lệnh sang mã máy (machine code) sử dụng định dạng lệnh (instruction format).

 $ilde{ ilde{ heta}}$ inh dạng lệnh: Một hình thức biểu diễn của một **l**ệnh bao gồm các trường của số nhị phân.

Ví dụ một định dạng lệnh:

	rs				
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

4. BIỂU DIỄN LỆNH

❖ Để chuyển đổi từ một lệnh sang mã máy (machine code) sử dụng định dạng lệnh (instruction format).

Lệnh	Định dạng	Ор	Rs	Rt	Rd	sham t	Funct	Address
add	R	0	Reg	Reg	Reg	0	3210	n.a
sub	R	0	Reg	Reg	Reg	0	3410	n.a
addi	ı	810	Reg	Reg	n.a	n.a	n.a	Constant
lw	ı	3510	Reg	Reg	n.a	n.a	n.a	Address
sw	ı	4310	Reg	Reg	n.a	n.a	n.a	Address

- ✓ "reg" nghĩa là chỉ số thanh ghi (giữa 0 và 31)
 ✓ "address" nghĩa là 1 địa chỉ 16 bit.
 ✓ "n.a." (không áp dụng) nghĩa là trường này không xuất hiện trong định dạng này

4. BIỂU DIỄN LỆNH

❖ Ví dụ: Chuyển đổi một lệnh cộng trong MIPS thành một lệnh máy: add \$t0,\$s1,\$s2 Với định dạng lệnh:

Lệnh	Định dạng	Op	Rs	Rt	Rd	shamt	Funct	Address
add	R	0	Reg	Reg	Reg	0	3210	n.a
sub	R	0	Reg	Reg	Reg	0	3410	n.a
addi	I	8 ₁₀	Reg	Reg	n.a	n.a	n.a	Constant
lw	ı	3510	Reg	Reg	n.a	n.a	n.a	Address
sw	I	4310	Reg	Reg	n.a	n.a	n.a	Address
St0-\$t7	8-15	Temporar	ine					
310-417		remporar	100					

7	8-15	Tempora	Temporaries					
7	16-23	Saved Te						
	ор	rs	rt	rd	shamt	func		

5 bits

5 bits

5 bits

6 bits

5 bits

6 bits

Tên thanh ghi	Số thứ tự	Ý	nghïa							
Szero	0	The Constant value 0								
Sat	1	Assembler Temporary								
\$v0-\$v1	2-3	Values for funtion results a	nd Expression	Evaluation						
\$a0-\$a3	4-7	Arguments			Bài tập 1: (2p) sub \$t3,\$s3,\$s0					
\$t0-\$t7	8-15	Temporaries								
\$s0-\$s7	16-23	Saved Temporaries								
\$t8-\$t9	24-25	Temporaries								
Sk0-Sk1	26-27	Reserved for OS Kernel								
\$gp	28	Global Pointer								
Ssp	29	Stack Pointer								
Sfp	30	Frame Pointer								
\$ra	31	Return Address			add \$t	0,\$s1,\$s2				
			ор	Rs (\$s1)	Rt (\$s2)	Rd (\$t0)				
			000000	10001	10010	01000	00000	1000		
			6 bits	5 bits	5 bits	5 bits	5 bits	6 bit		

Tên thanh ghi	Số thứ tự	Lệnh	Định dạng	Op	Rs	Rt	Rd	sham	Funct	Addres
\$zero	0							t		
\$at	1	add	R	0	Reg	Reg	Reg	0	3210	n.a
\$v0-\$v1	2-3	sub	R	0	Reg	Reg	Reg	0	3410	n.a
\$a0-\$a3	4-7	addi	1	810	Reg	Reg	n.a	n.a	n.a	Consta
\$t0-\$t7	8-15	lw	1	3510	Reg	Reg	n.a	n.a	n.a	Address
\$s0-\$s7	16-23	sw	ı	4310	Reg	Reg	n.a	n.a	n.a	Address
\$t8-\$t9	24-25			10	J					
Sk0-Sk1	26-27				Bài tập su	1: (2p) b \$t3,\$s3,	\$s0			
\$gp	28		ор	Rs (\$s3)	Rt (\$s		d (\$t3)	shamt	func	t
Ssp	29		000000	10011	1000	0	01011	00000	1000	10
Sfp	30		6 bits	5 bits	5 bit	s	5 bits	5 bits	6 bit	s
\$ra	31									

Tên thanh ghi	Số thứ tự	Lênh	BIÊU I Đinh dang	Ор	Rs	Rt	Rd	sham	Funct	Address
Szero	0	Lým	Dinn aging	Ор				t	i unot	Addicas
Sat	1	add	R	0	Reg	Reg	Reg	0	3210	n.a
\$v0-\$v1	2-3	sub	R	0	Reg	Reg	Reg	0	3410	n.a
\$a0-\$a3	4-7	addi	ı	810	Reg	Reg	n.a	n.a	n.a	Constant
\$t0-\$t7	8-15	lw	1	3510	Reg	Reg	n.a	n.a	n.a	Address
\$s0-\$s7	16-23	sw	ı	4310	Reg	Reg	n.a	n.a	n.a	Address
\$18-\$19	24-25			10	_	Ū				
Sk0-Sk1	26-27				Bài tập ad	3: (2p) di \$s2,\$s5	5.24			
\$gp	28		ор	Rs (\$s5)	Rt (\$s			Address		
\$sp	29		001000	10101	1001	0	0000	0000 0001	1000	
Sfp	30		6 bits	5 bits	5 bit	s	5 bits	5 bits	6 bit	в
\$ra	31									

4.	BI	EU	DI	ΕN	LE	NH

❖ Bài tập 4 (4 điểm): Biên dịch câu lệnh C thực hiện dưới đây sang MIPS (1 điểm). Từ đó viết mã lệnh cho các lệnh (3 điểm) (10p)

m = h + k + 34; m = m + 5;

4. BIỂU DIỄN LỆNH

❖ Bài tập 4 (4 điểm): Biên dịch câu lệnh C thực hiện dưới đây sang MIPS (1 điểm). Từ đó viết mã lệnh cho các lệnh (3 điểm) (10p)

m = h + k + 34; m = m + 5;

Lời giải: Giả sử h, k, m được lưu trữ trong thanh ghi \$t1, \$t2, \$t3. Lệnh MIPS cho đoạn chương trình C được biểu diễn như sau:

add	R	0	Reg	Reg	Reg	0	3210	n.a
sub	R	0	Reg	Reg	Reg	0	3410	n.a
addi	- 1	810	Reg	Reg	n.a	n.a	n.a	Constant
lw	1	3510	Reg	Reg	n.a	n.a	n.a	Address
sw	1	4310	Reg	Reg	n.a	n.a	n.a	Address

\$t0-\$t7 8-15 Temporaries

4. BIỂU DIỄN LỆNH Summary: Rs, Rt, Rd Lệnh Định dạng Op Rs Rt Rd shamt Funct Address add Reg Reg 0 32₁₀ n.a 0 Reg 34₁₀ sub Reg Reg 0 n.a addi 810 Reg Reg n.a n.a n.a Constant w 3510 Reg Reg n.a n.a n.a Address sw 43₁₀ Reg Reg n.a n.a n.a Address

4. BIỂU DIỄN LỆNH

- Chuyển câu lệnh sau sang assembly MIPS và sau đó chuyển thành mã máy:
 A[200] = h + A[200]
- Điết A là một màng nguyên, mỗi phần tử của A cần một từ nhớ để lưu trữ; \$t1 chứa địa chỉ nền/cơ sở của mảng A và \$s2 tương ứng với biến nguyên h.

4. BIỂU DIỄN LỆNH

- Chuyển câu lệnh sau sang assembly MIPS và sau đó chuyển thành mã máy:
 A[200] = h + A[200]
- Điết A là một mảng nguyên, mỗi phần từ của A cần một từ nhớ để lưu trữ; \$t1 chứa địa chỉ nền/cơ sở của mảng A và \$s2 tương ứng với biến nguyên h.

lw \$t0,800(\$t1) add \$t0,\$s2,\$t0 sw \$t0,800(\$t1) # Dùng thanh ghi tạm \$10 nhận A[300] # Dùng thanh ghi tạm \$10 nhận h + A[300] # Lưu h + A[300] trở lại vào A[300]

100011	01001	01000	000	0 0011 0010 0	000
000000	10001	01000	01000	00000	100000
101011	01001	01000	000	0 00 11 0010 0	1000

5. CÁC PHÉP TÍNH LOGIC

- Một số phép tính logic
 - ✓ Shift: Lệnh dịch chuyển bit.
 - ✓ AND: là phép toán logic "VÁ".
 - ✓ OR: là một phép toán logic "HOĂC"
 - ✓ NOT: kết quả là 1 nếu bit đó là 0 và ngược lại.
 - ✓ NOR: NOT OR.
 - Yhảng số rất hữu lich trong các phép toán logic AND và OR cũng như trong phép tính số học, vì vậy MIPS cung cấp các lệnh trực tiếp andi và ơri.

Bit-by-bit AND

Bit-by-bit OR

 Phép tinh Logic
 C/C++
 Java
 MIPS
 opcode

 Shift left
 <</td>
 <<</td>
 sil
 000000

 Shift right
 >>
 >>
 srl
 000000

1 1

Bit-by-bit NOT ~ ~ nor

& & and 000000 andi 001100

5. CÁC PHÉP TÍNH LOGIC											
Phép tính Logic	MIPS	Synta	Syntax		Meaning		opcode Rs		Rt	Rd	
Shift left	sll	SLL Rd,	Rt,h		Rd=Rt< <h< td=""><td></td><td>000000</td><td>Any</td><td>5 bits</td><td>5 bits</td><td>000000</td></h<>		000000	Any	5 bits	5 bits	000000
Shift right	srl	SRL Rd,	SRL Rd,Rt,h		Rd=Rt>>h		000000	Any	5 bits	5 bits	000010
Bit-by-bit AND	and	AND Rd, Rs, \$Rt		\$Rd = \$Rs & \$Rt		Rt	000000	5 bits	5 bits	5 bits	000 0010 0100
	andi	ANDI Rt, R	ANDI Rt, Rs, imm		t = \$Rs & in	nm	001100	5 bits	5 bits	No	16 bits
Bit-by-bit OR	or	OR Rd, Rs, Rt		t \$Rd = \$I		Rt	000000	5 bits	5 bits	5 bits	000 0010 0101
	ori	ORI Rt, Rs	, imm	\$F	Rt = \$Rs im	ım	001101	5 bits	5 bits	No	16 bits
Bit-by-bit NOT	nor	NOR Rd,I			Rd=~(Rs Rt))	000000	5 bits	5 bits	5 bits	000 0010 0111
		MIF	PS .		Giải thích						
sll \$t1,\$t3,2					# Assum t3 # \$t1 = 1<-						
				sll \$t*	1,\$t3,2						
		opcode Rs	(\$t0) F	t (\$t3)	Rd (\$t1)	(11.1	oits) = 2 +				
		000000 0.1	1000 0	.1011	0.1001	000	10.00000	0			

		5. C	ÁC I	PHÉ	P TÍN	ΗL	OG	IC		
Phép tính Logic	MIPS	Sy	ntax		Meaning	opcode	Rs	Rt	Rd	Bít cuối (16bits)
Shift left	sll	SLL	Rd,Rt,h	F	Rd=Rt< <h< td=""><td>000000</td><td>Any</td><td>5 bits</td><td>5 bits</td><td>h.000000</td></h<>	000000	Any	5 bits	5 bits	h.000000
Shift right	srl	SRL	Rd,Rt,h		Rd=Rt>>h	000000	Any	5 bits	5 bits	h.000010
Bit-by-bit AND	and	AND R	AND Rd, Rs, \$Rt \$F		= \$Rs & \$Rt	000000	5 bits	5 bits	5 bits	000 0010 0100
	andi	ANDI R	tt, Rs, imm \$R		= \$Rs & imm	001100	5 bits	5 bits	No	16 bits
Bit-by-bit OR	or	OR R			I = \$Rs \$Rt	000000	5 bits	5 bits	5 bits	000 0010 0101
	ori	ORI R			= \$Rs imm	001101	5 bits	5 bits	No	16 bits
Bit-by-bit NOT	nor	NOR	Rd,Rs,Rt	R	d=~(Rs Rt)	000000	5 bits	5 bits	5 bits	000 0010 0111
MIPS ori \$12,\$11,15				Giải ·	thích					
			ar	di \$t2,\$t1,	.5					
		opcode	Rs (\$t1)	Rt (\$t2)	16 bits (15)				
		001101	0.1001	0.1010	00.000.0000	0000.0000.0000.1111				

6. CÁC LỆNH ĐIỀU KIỆN VÀ NHẢY]
❖ Bài tập: biểu diễn if(a>=b) và if(a <b)< td=""><td></td></b)<>	

6. CÁC LỆNH ĐIỀU KIỆN VÀ NHẢY	
❖ Biểu diễn if(a>=b) và if(a <b)< td=""><td></td></b)<>	
MPS Giái thích	·
# \$10 = 1 if \$50 <\$51 # \$10 = 0 if \$50 >\$51	
Beq== beq \$10.\$zero.skip \$19=0	
# if \$90 >= \$s1, goto skip <stuff> # do if \$s0 < \$s1</stuff>	
slt \$(0,\$s0,\$s1 #\$(0 = 1 if \$s0 < \$s1 bne \$(0,\$zero,skip #if \$s0 < \$s1, goto skip	
<stuff> # do if \$s0 >= \$s1</stuff>	
6. CÁC LỆNH ĐIỀU KIỆN VÀ NHẢY	
❖ Biểu diễn if-then-else	
if (i == j) f = g + h; else f = g - h;	
Biết <i>f, g, h, i</i> và <i>j</i> là các biến. Nếu năm biến <i>f</i> đến <i>j</i> tương ứng với 5 thanh ghi \$s0 đến \$s4, mã	
MIPS cho câu lệnh <i>if</i> này là gì?	
6. CÁC LỆNH ĐIỀU KIỆN VÀ NHẢY	
❖ Biểu diễn if-then-else	
if $(i == j) f = g + h$; else $f = g - h$;	-
Biết <i>f, g, h, i</i> và <i>j</i> là các biến. Nếu năm biến <i>f</i> đến <i>j</i> tương ứng với 5 thanh ghi \$s0 đến \$s4, mã	
MIPS cho câu lệnh if này là gì?	·
MIPS Glái thích bne \$s3,\$s4, Else #go to Else if i l= j	
add \$s0, \$s1, \$s2 $\# f = g + h \text{ (skipped if } i != j)$	
j exit #go to Exit Else: sub \$s0, \$s1, \$s2 #f = g - h (skipped if i = j)	
exit: # if \$s0 < \$s1, goto skip	

				-			
(CÁCIÊNI	I DIỀU KIÊN X	7 Å NIII Å 37				
		H ĐIỀU KIỆN V	ANHAY				
Biểu diễn while							
while (save[i] i += 1;	I == k)						
			nền/cơ sở của mảng save l ưu				
trong \$s6. Mã ass	sembly MIPS tương ứi	ng với đoạn mã C trên là gì?					
				1			
6.	. CÁC LÊNF	H ĐIỀU KIỆN V	/À NHẢY				
❖ Biểu diễn while							
while (save[i]							
i += 1;	,,						
			nền/cơ sở của mảng save l ưu				
trong \$s6. Mä ass		ng với đoạn mã C trên là gì?					
	MIPS	Giải thích					
	Loop: sll \$t1,\$s3,2	# Temp reg \$t1 = 4 * i		I —			
	Loop: sll \$t1,\$s3,2 add \$t1,\$t1,\$s6	# Temp reg \$t1 = 4 * i # \$t1 = address of save[i]					
	add \$t1,\$t1,\$s6 lw \$t0,0(\$t1)	# \$t1 = address of save[i] # Temp reg \$t0 = save[i]					
	add \$t1,\$t1,\$s6	# \$t1 = address of save[i]					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$11 = address of save[i] # Temp reg \$10 = save[i] # go to Exit if save[i] != k		_			
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1		_			
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$11,\$11,\$s6 lw \$10,0(\$11) bne \$10,\$s5, Exit addi \$s3,\$s3,1 j Loop	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1					
	add \$1,311,386 W \$10,0(\$1) bne \$10,355, Exit addi \$43,\$50,1]Loop Exit:	# \$1 = address of save(i) # Temp rog \$10 = save(i) # go to Exit if save(i) != k # != ! + 1 # go to Loop] _			
6.	add \$1,311,386 W \$10,0(\$1) bne \$10,355, Exit addi \$43,\$50,1]Loop Exit:	# \$t1 = address of save[i] # Temp reg \$t0 = save[i] # go to Exit if save[i] != k # i = i + 1	'À NHẢY				
	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLOOP Exit:	# \$t1 = address of save(i) # Temp reg \$t0 = save(i) # go to Exit frave(i) != k # != !+ 1 # go to Loop	Á NHẢY cơ sở của mảng A là trong				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit frave(i) != k # != !+ 1 # go to Loop I ĐIỀU KIỆN V /ởi thanh ghi \$52 và địa chỉ dưới đây sang MIPS? Chuyể	cơ sở của mảng A là trong				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$t1 = address of save(i) # Temp rog \$t0 = save(i) # go to Exit fsave(i) != k # = + 1 # go to Loop	cơ sở của mảng A là trong				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$11 = address of save(i) # Temp rog \$10 = save(i) # go to Exit fsave(i) != k # = + 1 # go to Loop # go to Loop // Company to Loop # go to Loop #	cơ sở của mảng A là trong				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit fsave(i) != k # != !+ 1 # go to Loop # go to Loop # do to Loop # go to Loop # do to	cơ sở của mảng A là trong n sang mã lệnh				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit fsave(i) != k # = + 1 # go to Loop // Or it thanh ghi \$2 và địa chì dưới đây sang MIPS? Chuyể A[3] = h + A[9]; if(A[3]<8) A[3]=A[3]+25; else	cơ sở của mảng A là trong n sang mã lệnh				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit fsave(i) != k # != !+ 1 # go to Loop # go to Loop # do to Loop # go to Loop # do to	cơ sở của mảng A là trong n sang mã lệnh				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit fsave(i) != k # != !+ 1 # go to Loop # go to Loop # do to Loop # go to Loop # do to	cơ sở của mảng A là trong n sang mã lệnh				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit fsave(i) != k # != !+ 1 # go to Loop # go to Loop # do to Loop # go to Loop # do to	cơ sở của mảng A là trong n sang mã lệnh				
❖ Ví dụ: Giả sử	add \$1,511,546 Iw \$10,0(\$11) Inne \$10,35, Exit add \$3,35,3,1 JLoop Exit: CÁC LỆNF biến h được kết nổi v	# \$1 = address of save(i) # Temp reg \$10 = save(i) # go to Exit fsave(i) != k # != !+ 1 # go to Loop # go to Loop # do to Loop # go to Loop # do to	cơ sở của mảng A là trong n sang mã lệnh				