

- Priyansh Agarwal

Divide & Conjur mindset trivial Subfootoms Elw smalle Selation for Find the answer out Ligger produm

Dynamic rogramming - making sur that onsur to a sudjædben is not calculated more than any 2) Grid pollm D'hlonacci poblem # state # toomition
meaning of the state

At Time & Space Complenity T.C = # of states x toqueition time 100 state total transition time of all states S.C = # & states X sfau fer

Goid Problem At states × slace ler state $O(\eta, m) \times O(1)$ 0 (n·m)

$$f(2) = 1$$
 $f(1) = 1$

$$f(3) = 2$$
 $f(4) = 3$

int
$$f(n+1)$$
;
 $f(1)=1$, $f(2)=1$
for (int $i=3$; $i \le n$; $i+1$) $f(i)=f(i-1)+f(i-2)$

$$f(G)$$
 $f(S)$
 $f(Y)$
 $f(Y)$
 $f(Y)$

Recubline

$$f(1) = 1$$
 $f(2) = 1$
 $f(3) = f(2) + f(1)$
 $f(n) = f(n-1) + f(n-2)$
Herative

Recursive vs Iterative DP

	Recursive	Iterative
1	Slower (runtime)	Faster (runtime)
	No need to care about the flow	Important to calculate states in a way that current state can be derived from previously calculated states
	Does not evaluate unnecessary states	All states are evaluated
	Cannot apply many optimizations	Can apply optimizations

NXM

find out whother you can go from top- left to doftom - right

f(i,j) = tow if you can go from (i,j) = to (n-1, m-1)

f(i,j) = (i,j) must not be an obstock f(i,j) = (i,j) or f(i,j+1) = Town

f(1,j)

nxm sulfoolleurs

do i know the > answer already -((5) Ca/cul ate return

f(S) = f(Y) + f(2)

good test case for Acuril Code

Converting Recursive to Iterative

Rule 1:

All the states that a particular state depends on must be evaluated before that state

Note:

You don't have to convert Recursive to Iterative if it is not intuitive at this point.

min Sallitholi)

Allihlitholi)

+ grid (i) (i)

General Technique to solve any DP problem

State

Clearly define the subproblem. Clearly understand when you are saying dp[i][j][k], what does it represent exactly

Transition: 1

Define a relation b/w states. Assume that states on the right side of the equation have been calculated. Don't worry about them.

3. Base Case

When does your transition fail? Call them base cases answer before hand. Basically handle them separately.

4. Final Subproblem

What is the problem demanding you to find?

delissi)

Allissi)

Allissi

A

 $L(1) \int_{\mathbb{R}^{n-1}} (m-1) = g \sin d(n-1)$ $(m-1) = g \sin d(n-1)$ for (int i = m-2; i) $\partial \mathcal{E}[n-1)[j] = gsid(n-1)[i]$ J D, C (2)

+ dp[n-1)[i+1 for (int i = n-2; i>, o; i--)q df(i)(m-1) = grid(i)(m-1)Jant Column + dessitisfim-1)

Afor (int i = n-2; $i \ge 0$; i--)

for (int j = m-2; $j \ge 0$; j--) des(i)(j)= minsdes(i)(j)

des(i)(j)= minsdes

Problem 1: Link

f(i)) = man sum we can get from ith element to n-1th element Pick arr(i) + f(i+2)

(f(i) xmax not pick f(i+1) f(n-2) f(n-1) = arr(n-1) $man \begin{cases} arr(n-1) \\ man \begin{cases} arr(n-1) \\ arr(n-2) \end{cases}$ Tf(0) = final custrollms

dp(i)(i) = man sum lup can get from ith house to that we pick up the ith howe deli)(o) = man (such that) the home is not picked

$$dP[i][i] = arr[r] + dP[i+i][r]$$

$$dP[i][i] = man (dP[i+i][r])$$

$$dP[i-1][i] = arr[n-1)$$

$$dP[i-1][i] = arr[n-1)$$

 $f.s = man \begin{cases} df(0)(1) \\ df(0)(0) \end{cases}$

Some ways to solve the problem

1. Having 2 parameters to represent the state

State:

```
dp[i][0] = maximum sum in (0 to i) if we don't pick i<sup>th</sup> element <math>dp[i][1] = maximum sum in (0 to i) if we pick i<sup>th</sup> element
```

Transition:

```
dp[i][0] = max(dp[i - 1][1], dp[i - 1][0])
dp[i][1] = arr[i] + dp[i - 1][0]
```

Final Answer:

```
max(dp[n - 1][0], dp[n - 1][1])
```

Some ways to solve the problem

2. Having only 1 parameter to represent the state

State:

dp[i] = max sum in (0 to i) not caring if we picked ith element or not

Transition: 2 cases

- pick ith element: cannot pick the last element : arr[i] + dp[i 2]
- leave ith element: can pick the last element : dp[i 1]

dp[i] = max(arr[i] + dp[i - 2], dp[i - 1])

Final Answer:

dp[n - 1]

```
int a[n]; // input array
int dp[n]; // filled with -INF to represent uncalculated state
// f(i) = max sum till index i
int f(int index){
    if(index < 0) // reached outside the array
        return 0;
    if(dp[index] != -INF) // state already calculated
        return dp[index];
   // try both cases and store the answer
    dp[index] = max(a[index] + f(index - 2), f(index - 1));
    return dp[index];
void solve(){
    cout \ll f(n - 1) \ll nline;
```