Example Grammar

```
V = \{\text{expr}, \text{op}\} \qquad \Sigma = \{\text{ID}, +\} \qquad P = \{\text{expr} \to \text{ID}, \quad \text{expr} \to \text{expr op expr}, \quad \text{op} \to +\} \qquad S = \text{expr}
```

Top-down parsing

Algorithm 1 Generic algorithm

```
\begin{array}{l} \delta \leftarrow S \\ \textbf{while } \delta \neq input \ \textbf{do} \\ \text{choose any } A \text{ st } \delta = \alpha A\beta \\ \text{oracle chooses } \gamma \text{ st } A \rightarrow \gamma \in P \text{ or rejects} \\ \delta \leftarrow \alpha \gamma \beta \\ \textbf{end while} \end{array}
```

Algorithm 2 Generic algorithm (left-canonical)

```
\delta \leftarrow S
while \delta \neq input do
choose any A st \delta = xA\beta
oracle chooses \gamma st A \rightarrow \gamma \in P or rejects
\delta \leftarrow x\gamma\beta
end while
```

Definition: Given a context-free grammar $G = (V, \Sigma, P, S)$, the corresponding <u>augmented grammar</u> is $G' = (V \cup \{S'\}, \Sigma \cup \{\vdash, \dashv\}, P \cup \{S' \rightarrow \vdash S \dashv\}, S')$, formed by adding a new production $S' \rightarrow \vdash S \dashv \vdash$ and \dashv are special symbols that denote the beginning and end of input.

Invariant: Consumed input + Stack = $\vdash \delta \dashv$

Derivation	Action	Consumed	Stack	Remaining
δ		input	top bottom	input
expr	initialize		$\vdash \operatorname{expr} \dashv$	$\vdash ID + ID \dashv$
expr	$read \vdash$	H	$\exp r \dashv$	$ID + ID \dashv$
expr op expr	expand $\exp r \to \exp r$ op $\exp r$	H	expr op expr \dashv	$ID + ID \dashv$
ID op expr	expand expr \rightarrow ID	H	ID op expr \dashv	$\vdash ID + ID \dashv$
ID op expr	read ID	$\vdash \mathrm{ID}$	op expr \dashv	+ ID ∃
ID + expr	expand op \rightarrow +	$\vdash \mathrm{ID}$	$+ \exp \dashv$	+ ID ∃
ID + expr	read +	\vdash ID +	$\exp r \dashv$	ID -
ID + ID	expand expr \rightarrow ID	\vdash ID +	$\operatorname{ID} \dashv$	ID -
ID + ID	read ID	$\vdash ID + ID$	\dashv	-
ID + ID	$read \dashv$	\vdash ID + ID \dashv		

Algorithm 3 Stack-based top-down algorithm (augmented input)

```
push \dashv

push S

push \vdash

for each a in \vdash input \dashv from left to right do

while top of stack is A \in V do

pop A

oracle chooses A \to \gamma \in P or rejects

push the symbols in \gamma (from right to left)

end while

reject if top of stack \neq a

pop a

end for

accept (stack is necessarily empty)
```

LL(1) pre-computation:

```
First(\gamma) = {b \mid \gamma \Rightarrow^* b\beta for some \beta}
Follow(A) = {c \mid S' \Rightarrow^* \alpha A c\beta for some \alpha, \beta}
Predict(A, a) = {A \rightarrow \gamma \mid a \in \text{First}(\gamma) \text{ or } (\gamma \Rightarrow^* \varepsilon \text{ and } a \in \text{Follow}(A))}
```

Definition: A grammar is LL(1) if $|Predict(A, a)| \le 1$ for all A, a.

Algorithm 4 LL(1) algorithm

```
push \dashv
push S
push \vdash
for each a in \vdash input \dashv from left to right do
while top of stack is A \in V do
pop A
find A \to \gamma in Predict[A,a] or reject
push the symbols in \gamma (from right to left)
end while
reject if top of stack \neq a
pop a
end for
accept (stack is necessarily empty)
```

Bottom-up parsing

Algorithm 5 Generic algorithm

```
\delta \leftarrow input
while \delta \neq S do
oracle chooses A \rightarrow \gamma st \delta = \alpha \gamma \beta or rejects
\delta \leftarrow \alpha A \beta
end while
```

Algorithm 6 Generic algorithm (right-canonical)

```
\delta \leftarrow input
while \delta \neq S do
oracle chooses A \rightarrow \gamma st \delta = \alpha \gamma x or rejects \delta \leftarrow \alpha A x
end while
```

Invariant: Stack + Remaining input = $\vdash \delta \dashv$

Derivation	Action	Stack	Remaining input
δ		bottom top	
ID + ID	initialize	F	$ID + ID \dashv$
ID + ID	shift ID	⊢ ID	$+$ ID \dashv
expr + ID	$reduce expr \rightarrow ID$	⊢ expr	$+$ ID \dashv
expr + ID	shift +	$\vdash \exp r +$	ID ⊣
expr op ID	reduce op \rightarrow +	⊢ expr op	ID ⊣
expr op ID	shift ID	⊢ expr op ID	4
expr op expr	$\text{reduce expr} \to \text{ID}$	⊢ expr op expr	
expr	reduce expr o expr op expr	$\vdash \exp$ r	4
expr	shift ⊢	$\vdash \operatorname{expr} \dashv$	

Algorithm 7 Stack-based bottom-up algorithm (augmented input)

```
push \vdash for each symbol a in input \dashv from left to right do while oracle says "Reduce A \to \gamma" do pop |\gamma| times (the symbols in \gamma from right to left) push A end while reject if oracle says so push a end for accept (stack is necessarily \vdash S \dashv)
```

Definition: It may be that for any given contents of the stack and value of a, the oracle always says the same thing. That is, there may exist a function Reduce : $(\Sigma' \cup V')^* \to P \cup \{\text{shift}\}$ such that Reduce(stack a) returns $A \to \gamma$ if and only if the oracle says "Reduce $A \to \gamma$ " and a function Reject : $(\Sigma' \cup V')^* \to \{true, false\}$ that returns true if and only if the oracle says "Reject." When this is the case, we say the grammar is $\underline{LR(1)}$. When the grammar is LR(1), we can replace the oracle with the Reduce and Reject functions.

```
Algorithm 8 LR(1) algorithm (abstract)
```

```
push \vdash for each symbol a in input \dashv from left to right do

while Reduce(stack +a) is some production A \to \gamma do

pop |\gamma| times (the symbols in \gamma from right to left)

push A

end while

reject if Reject(stack +a)

push a

end for

accept (stack is necessarily \vdash S \dashv)
```

Theorem (Knuth, 1965): For any LR(1) grammar the set $\{\operatorname{stack} + a \mid \operatorname{Reject}(\operatorname{stack} + a)\}$ is a regular language.

```
Corollary: For any LR(1) grammar, for each A \to \gamma \in P, the set R_{A \to \gamma} = \{ \text{stack } a \mid \text{Reduce}(\text{stack } a) = A \to \gamma \} is a regular language.
```

Thus, there exists a finite transducer (DFA with output) that can replace the oracle. Knuth gives an algorithm to build one. The resulting transducer has a transition function Trans (which takes a state and a terminal or non-terminal, and returns the next state), and an output function Reduce (which takes a state and a terminal, and returns either nothing or a production to reduce by). As in DFAs, the Trans function is partial in that it may not be defined for a given input. In this case, the DFA enters an implicit error state, and the input string is rejected. Thus a single transducer implements the oracle functions Reduce and Reject.

Algorithm 9 LR(1) algorithm (concrete, quadratic time)

```
push ⊢
for each symbol a in input \dashv from left to right do
  loop
    state \leftarrow q_0
    for each symbol X in stack+a from left to right (bottom to top) do
       state \leftarrow Trans[state, X]
    end for
    if Reduce[state,a] is some production A \to \gamma then
       pop |\gamma| times (the symbols in \gamma from right to left)
       push A
    else
       exit loop
     end if
  end loop
  reject if state = ERROR
  push a
end for
accept (stack is necessarily \vdash S \dashv)
```

Algorithm 10 LR(1) algorithm (concrete, linear time)

```
symStack.push \vdash stateStack.push Trans[q_0, \vdash] for each symbol a in input \dashv from left to right do while Reduce[stateStack.top, a ] is some production A \to \gamma do symStack.pop |\gamma| times stateStack.pop |\gamma| times symStack.push A stateStack.push Trans[stateStack.top, A ] end while symStack.push a reject if Trans[stateStack.top, a ] = ERROR stateStack.push Trans[stateStack.top, a ] end for accept (symStack is necessarily \vdash S \dashv)
```

Algorithm 11 LR(1) algorithm (with tree building)

```
nodeStack.push leafnode(\vdash) stateStack.push Trans[q_0, \vdash] for each symbol a in input \dashv from left to right do while Reduce[stateStack.top,a] is some production A \to \gamma do nodeStack.pop |\gamma| child nodes (right end first) stateStack.pop |\gamma| times nodeStack.push treenode(A, child nodes) stateStack.push Trans[stateStack.top, A] end while nodeStack.push leafnode(a) reject if Trans[stateStack.top, a] = ERROR stateStack.push Trans[stateStack.top, a] end for accept (nodeStack is necessarily leafnode(\vdash) treenode(S,...) leafnode(\dashv))
```