Supervised learning

- Multi-class
- Support vector machines
- Neural networks
- Feature selection

Muti-class classification

Classification task with K classes {C₁,C₂,...C_K}

Currently, there is no clear solution to the problem of multi-class classification

3 approaches:

- One vs All
- All vs All
- Hierarchical classification

One vs All

K classifiers: a class VS all other classes

$$\begin{cases} C_1 \text{ VS } \{C_2, C_3, \dots C_K\} \text{ -> score}_1 \\ C_2 \text{ VS } \{C_1, C_3, \dots C_K\} \text{ -> score}_2 \\ \dots \\ C_i \text{ VS } \{C_1, \dots, C_{i-1}, C_{i+1}, \dots C_K\} \text{ -> score}_i \\ \dots \\ C_K \text{ VS } \{C_1, C_2, \dots C_{K-1}\} \text{ -> score}_K \end{cases}$$

C* <- argmax_i{score₁, score₂,...score_i,...score_K}

All VS All

K(K-1)/2 binary classifiers: C_i VS C_j for all i>j

	C ₁	C ₂	 C _j	 C _K	Total
C ₁		0	1	0	6
C_2	1		1	0	5
				0	
C _i	1	1		0	10
C _K	0	0	0		2

 $C^* \leftarrow argmax_i \{Total_1, Total_2, ... Total_K\}$

Hierarchical classification

Performance of multi-class classifiers

Confusion matrix

Cost Matrix

	C ₁	C_2	 C_{j}	 C_{K}
C_1	M ₁₁	M ₁₂	M_{1j}	M _{1K}
C_2	M ₂₁	M ₂₂		
C _i	M_{j1}	M_{j2}	M_{jj}	M_{jK}
C _K	M _{K1}	M _{K2}	M_{Kj}	M _{KK}

	C ₁	C ₂	 C _j	 C _K
C ₁	α ₁₁	α ₁₂	α_{1j}	α_{1K}
C_2	α_{21}	α_{22}		
C _i	α_{j1}	α_{j2}	α_{jj}	α_{jK}
C _K	α_{K1}	α_{K2}	α_{Kj}	α_{KK}

No ROC space can be defined Evaluation done by classification cost

Support Vector Machine (SVM)

Supervised Learning

Introduction

- Binary classification method
- Introduced by Vladimir Vapnik in 1995
- Competitive in many cases
- Relatively easy to use
- Many extention: Regression, density estimation, kernel PCA,...

Classification problem

- Training examples: x_i, i=1,...,l
- Consider a simple case with two classes:
 Define a class vector y

$$y_i = \begin{cases} 1 & \text{if } \mathbf{x}_i \text{ in class P} \\ -1 & \text{if } \mathbf{x}_i \text{ in class N} \end{cases}$$

Classifier: hyperplane that separates all examples

Particular examples in classification

• A separating hyperplane: $\mathbf{w}^T \mathbf{x} + b = 0$

$$(\mathbf{w}^T \mathbf{x}_i) + b > 0$$
 if $y_i = 1$
 $(\mathbf{w}^T \mathbf{x}_i) + b < 0$ if $y_i = -1$

• Decision function $f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x} + b)$, \mathbf{x} : test data Many possible choices of \mathbf{w} and \mathbf{b}

Maximal Margin

Maximal Margin

- Margin = distance between the support vector lines
- Linear \rightarrow f(x) = w.x + b = 0
- Distance between a point and the hyperplane separator
 d(x) = |w.x + b|/||w||
- Margin size: 2/||W||
- Maximize the margin = minimize ||w||

Maximal Margin

• Distance between $\mathbf{w}^T \mathbf{x} + b = 1$ and -1:

$$2/\|\mathbf{w}\| = 2/\sqrt{\mathbf{w}^T\mathbf{w}}$$

 A quadratic programming problem [Boser et al., 1992]

$$\min_{\mathbf{w},b} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 $\mathbf{y}_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1,$
 $i=1,\ldots,I.$

Problem: not optimal

Slacking Variables

- It may be not possible or not optimal to separate perfectily the two classes in trainning set.
- We add slacking variables to make the model tolerant to the errors.
- C defines the tradeoff between margin and constraint.

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{I} \xi_i$$

subject to
$$y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \ i = 1, \dots, I.$$

Problem: not linearly separable

Kernel Trick

- Solving a non linear problem?
- We change the dimensionality in using a kernel:
- The data are projected in a new higher dimension space
- A linear classifier is consructed in this kernel space

Kernel Trick: example

Example of the XOR problem:

The XOR problem is not linearly separable.

Let see in a 2-D space:

Points: (0,0); (0,1); (1,0); (1,1)

Kernel Trick: example

We take a polynomial kernel : $(x, y) \rightarrow (x, y, x.y)$ We project the example from a 2-D space to a 3-D space The class are linearly separable in this new space:

$$(0,0) \rightarrow (0,0,0)$$

$$(0,1) \rightarrow (0,1,0)$$

$$(1,0) \rightarrow (1,0,0)$$

$$(1,1) \rightarrow (1,1,1)$$

Kernel Trick

An example:

- Allow training errors
- Higher dimensional (maybe infinite) feature space

$$\phi(x) = (\phi_1(x), \phi_2(x), ...).$$

SVM Formulation

Standard SVM [Cortes and Vapnik, 1995]

$$\min_{\mathbf{w},b,\xi} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{I} \xi_i$$
subject to
$$y_i (\mathbf{w}^T \phi(\mathbf{x}_i) + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \ i = 1, \dots, I.$$

• Example: $\mathbf{x} \in R^3$, $\phi(\mathbf{x}) \in R^{10}$

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3)$$

Finding the decision function

- w: maybe infinite variables
- The dual problem

min
$$\frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$$

subject to $0 \le \alpha_i \le C, i = 1, \dots, I$
 $\mathbf{y}^T \boldsymbol{\alpha} = 0,$

where
$$Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
 and $\mathbf{e} = [1, \dots, 1]^T$

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \phi(\mathbf{x}_i)$$

A finite problem: #variables = #training data

Decision function

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \phi(\mathbf{x}_i)$$

Decision function

$$\mathbf{w}^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{I} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}) + b$$

$$= \sum_{i=1}^{I} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Only $\phi(\mathbf{x}_i)$ of $\alpha_i > 0$ used \Rightarrow support vectors

Kernel function

- The problem and the solution depend only on the dot product Φ(x).Φ(x')
- In practice we do not choice Φ but K
 K: XxX → R such that k(x,x') = Φ(x).Φ(x')
- K is called kernel function
- Pb: How to choice the kernel function

Mercer Condition

- K is a kernel ⇔ (k(xi,xj))i,j is a definite positive matrix
- K is symetric
- In this case the function Φ tq: $k(x,x') = \Phi(x).\Phi(x')$ is defined
- Probleme:
 - These conditions are difficult to check
 - Ф stays unknown
 - Do not help for the choice of the kernel

Kernel example

General Kernel:

- Linéaire
- Polynomial
- Gaussien
- Laplacien

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x} \cdot \boldsymbol{x}'$$

$$k(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x} \cdot \boldsymbol{x}')^d$$
 ou $(c + \boldsymbol{x} \cdot \boldsymbol{x}')^d$

$$k(\boldsymbol{x}, \boldsymbol{x}') = e^{-\|\boldsymbol{x} - \boldsymbol{x}'\|^2/\sigma}$$

$$k(\boldsymbol{x},\boldsymbol{x}') = e^{-\|\boldsymbol{x}-\boldsymbol{x}'\|_1/\sigma}$$

Kernel example

Guassian function $\sigma = 2$, 5, 10 and C = 10000

Selecting Kernels

- For beginners, use Gaussian (RBF) first
- Linear Kernel: special case of RBF
- Polinomial: numerical difficulties
 More parameters than RBF
- Researchers design many kernels specialized to different domains
- We can combine different kernel to construct a more complex kernel

Parameters selection

- Is important
- Now parameters are
 C, kernel parameters
- Example:

$$\gamma$$
 of $e^{-\gamma ||\mathbf{x}_i - \mathbf{x}_j||^2}$
 a, b, d of $(\mathbf{x}_i^T \mathbf{x}_j / a + b)^d$

How to select them?
 So performance better?

Parameters selection

Parameters selection

- In practice
 Available data ⇒ training and validation
- Train the training
- Test the validation
- k-fold cross validation:
 Data randomly separated to k groups
 Each time k 1 as training and one as testing
- Using CV on training + validation
- Predict testing with the best parameters from CV

Data scaling

- Problem: Features in greater numeric range may dominate the construction of the separator
- Scale the features to the range [0,1]

$$x^{j}_{i} = \frac{x^{j}_{i} - x^{min}_{i}}{x^{max}_{i} - x^{min}_{i}}$$

- Scalling generally helps but not always
- Same scaling factor have to be used on training and testind set

A simple procedure

- Conduct simple scaling on the data
- Occupant Consider RBF kernel $K(\mathbf{x}, \mathbf{y}) = e^{-\gamma ||\mathbf{x} \mathbf{y}||^2}$
- Use cross-validation to find the best parameter C and γ
- Use the best C and γ to train the whole training set
- Test

For beginners only, you can do a lot more

Computing time

- n = Number of training example
- d = Number of features
- $dn^2 \le complexity \le dn^3$
- Kernel matrix size= n²
- => SVM can deal with problem up to 100.000 examples

Function svm() du package e1071

```
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
   "radial", degree = 3, coef0 = 0, cost = 1, nu = 0.5,
   class.weights = NULL, cachesize = 40, tolerance =
   0.001, epsilon = 0.1, shrinking = TRUE, cross = 0,
   probability = FALSE, fitted = TRUE, ..., subset, na.action
   = na.omit)
```

x: a data matrix.

y: a response vector with one label for each row/component of x

Scale: A logical vector indicating the variables to be scaled. If scale is of length 1, the value is recycled as many times as needed. Per default, data are scaled internally (both x and y variables) to zero mean and unit variance.

Type: svm can be used as a classification machine, as a regression machine. (C-classification, eps-regression)

Kernel: the kernel used in training and predicting.

- linear: u'*v
- polynomial: (gamma*u'*v + coef0)^degree
- radial basis: exp(-gamma*|u-v|^2)
- sigmoid: tanh(gamma*u'*v + coef0)

Degree, gamma, coef0: parameter needed for kernel

Cost: cost of constraints violation (default: 1)—it is the 'C'-constant of the regularization term in the Lagrange formulation.

Class.weights: a named vector of weights for the different classes, used for asymetric class sizes.

Cross: if a integer value k>0 is specified, a k-fold cross validation on the training data is performed to assess the quality of the model

Probability: logical indicating whether the model should allow for probability predictions.

Demo: http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml