Physically-based Modelling

Kiematics

Young-Min Kang Tongmyong University

Kinematics

- * Kinematics vs. Dynamics
 - kinematics
 - force is not considered
 - * location, velocity, and acceleration are considered as
 - * functions of time
 - * x(t), v(t), a(t)
 - * dynamics
 - force plays the most essential role
 - * compute f(t)

$$*$$
 $a(t) = f(t)/m$

- v(t+dt) += a(t)dt
- * x(t+dt) += v(t+dt)dt

Statics, Kinetics, Kinematics and Dynamics

- * Statics
 - * the study of equilibrium and its relation to forces
- * Kinetics
 - * the study of motion and its relation to forces
- * Kinematics
 - the study of observed motions without regard for circumstances causing them

classical mechanics

- * Dynamics
 - * Statics + Kinetics

Particle and Rigid Body

- * Particle
 - very very tiny object with mass
 - volume can be ignored
 - rocket trajectory analysis
 - the volume of the rocket can be ignored
 - * rocket can be regarded a particle
- Rigid body (= idealised solid body)
 - object with mass and volume
 - the shape does not change in any condition
 - valid animation of rigid body = rotation and translation

Velocity

- * velocity
 - * a vector
 - * speed: the magnitude of velocity
 - * velocity = (speed + direction)
 - * direction of velocity
 - moving direction
 - * magnitude of velocity
 - ratio of moving distance to time

$$\mathbf{v} = rac{\Delta \mathbf{s}}{\Delta t}$$

ratio of displacement to time interval

Instantaneous Velocity

- * Reduce the time interval
 - * the more precise velocity at the moment
 - * if the time interval approaches to 0
 - * instantaneous velocity

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{s}}{\Delta t} = \frac{d\mathbf{s}}{dt}$$

displacement

integration of velocity

$$\int \mathbf{v} dt = \int d\mathbf{s}$$

* integration from t1 to t2

$$\int_{t_1}^{t_2} \mathbf{v} dt = \int_{s(t_1)}^{s(t_2)} d\mathbf{s}$$

* equivalent to the displacement

$$\int_{t_1}^{t_2} \mathbf{v} dt = \mathbf{s}(t_2) - \mathbf{s}(t_1) = \Delta \mathbf{s}$$

- If we know the velocity
 - we can predict where the particle will be located in the future

Acceleration

- * Average acceleration
 - ratio of velocity change to the time interval

$$\mathbf{a} = \Delta \mathbf{v} / \Delta t$$

* Instantaneous acceleration

$$\mathbf{a} = \lim_{\Delta t \to 0} \Delta \mathbf{v} / \Delta t = d\mathbf{v} / dt$$

- Integration of acceleration
 - velocity change

$$\mathbf{a}dt = d\mathbf{v}$$

$$\int_{t_1}^{t_2} \mathbf{a} dt = \int_{\mathbf{v}(t_1)}^{\mathbf{v}(t_2)} d\mathbf{v} = \Delta \mathbf{v}$$

Constant Acceleration

- * Simple problem for Kinematics
 - * example of constant acceleration: gravity
 - * gravitational acceleration
 - * magnitude: 9.81 m/s²
 - * direction: downwards (0,-1,0)
- * We can easily "integrate the acceleration" to compute
 - velocity change at every time
 - * this makes it possible to know the velocity at every time: v(t)

Gravitational Acceleration

- * gravitational acceleration: g
 - velocity change and the integration of acceleration

$$\int_{\mathbf{v}(t_1)}^{\mathbf{v}(t_2)} d\mathbf{v} = \int_{t_1}^{t_2} \mathbf{g} dt$$
$$\mathbf{v}_2 - \mathbf{v}_1 = \mathbf{g}(t_2 - t_1)$$

- If we know every thing at time t₁
 - We can easily predict the velocity at time t₂

$$\mathbf{v}_2 = \mathbf{g}t_2 - \mathbf{g}t_1 + \mathbf{v}_1$$

* if $t_1 = 0 (t_2 = t)$

$$\mathbf{v}_2 = \mathbf{v}_1 + \mathbf{g}t$$

Velocity as f(Displacement)

Another differential equation

$$\mathbf{v}\frac{d\mathbf{v}}{dt} = \frac{d\mathbf{s}}{dt}\mathbf{a}$$

$$\mathbf{v}d\mathbf{v} = \mathbf{a}d\mathbf{s}$$

* Integration
$$\int_{\mathbf{v}_1}^{\mathbf{v}_2} \mathbf{v} d\mathbf{v} = \int_{\mathbf{s}_1}^{\mathbf{s}_2} \mathbf{a} d\mathbf{s}$$

$$\frac{1}{2}\mathbf{v}^2|_{\mathbf{v}_1}^{\mathbf{v}_2} = \mathbf{a}\mathbf{s}|_{\mathbf{s}_1}^{\mathbf{s}_2} = \mathbf{g}\mathbf{s}|_{\mathbf{s}_1}^{\mathbf{s}_2}$$

* Relation between velocity and displacement

$$\frac{1}{2}(\mathbf{v}_2^2 - \mathbf{v}_1^2) = \mathbf{g}(\mathbf{s}_2 - \mathbf{s}_1)$$
$$\mathbf{v}_2^2 = 2\mathbf{g}(\mathbf{s}_2 - \mathbf{s}_1) + \mathbf{v}_1^2$$

Location

Velocity and displacement

$$\mathbf{v}dt = d\mathbf{s}$$
$$(\mathbf{v}_1 + \mathbf{g}t)dt = d\mathbf{s}$$

* Integration
$$\int_0^t (\mathbf{v}_1 + \mathbf{g}t)dt = \int_{\mathbf{s}_1}^{\mathbf{s}_2} d\mathbf{s}$$
$$v_1 t + \frac{1}{2}\mathbf{g}t^2 = \mathbf{s}_2 - \mathbf{s}_1$$

Location at time to

$$\mathbf{s}_2 = v_1 t + \frac{1}{2} \mathbf{g} t^2 + \mathbf{s}_1$$