

Pertemuan 15 Graf (Graph)

Tim Ajar Algoritma dan Struktur Data 2021

Tujuan

- Mahasiswa memahami definisi Graf dan terminologinya
- Mahasiswa mampu memodelkan permasalahan di dunia nyata menggunakan Graf
- Mahasiswa mampu merepresentasikan struktur data Graf

Outline

- Graf, sejarah Graf, Definisi istilah pada Graf
- Contoh Graf
- Representasi Graf

Graf

 Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut

Gambar di bawah ini merepresentasikan jalan dan jarak antar kota di

provinsi Jawa Tengah

Sejarah Graf

- Jembatan Königsberg tahun 1973
- Graf yang merepresentasikan jembatan Königsberg:
 vertex (titik) → menyatakan daratan
 edge (tepi/garis) → menyatakan jembatan

Bisakah melalui setiap jembatan tepat sekali dan kembali lagi ke titik semula?

Definisi Graf

Graph G = (V, E) adalah suatu sistem himpunan berhingga tak kosong V(G) dan himpunan E(G) (mungkin kosong) yang elemen-elemennya merupakan himpunan pasangan tak berurut 2 elemen berbeda dari V(G)

```
Graph G = (V, E), yang dalam hal ini:
```

```
V = himpunan tidak-kosong dari titik-titik (vertices)
= {a, b, ..., vn }
```

E = himpunan garis (edges) yang mengubungkan titik-titik = $\{e_1, e_2, ..., e_n\}$ atau $\{(a,b) (a,c) (n, n)\}$

Istilah pada Graf

Vertex (Titik atau simpul)

Titik dalam *graph* disebut dengan *vertex*. Biasanya disimbolkan dengan bentuk lingkaran .

Edge (Garis atau sisi atau tepi)

Garis-garis penghubung antar titik dalam *graph* disebut dengan garis (edge)

Adjacency (Bertetangga)

Dua titik (vertex) dinamakan bertetangga (adjacent) jika saling terhubung melalui satu garis (edge).

• Path (Lintasan)

Path atau intasan adalah representasi sebuah jalan dari satu titik ke titik lainnya.

Contoh

Graf G

v1, v2, v3, v4, v5, v6 adalah titik e₁, e₂, e₃, e₄, e₅, e₆ adalah garis v1 bertetangga dengan v2, v3 dan v4 v2 tidak bertetangga dengan v3, v5 dan v6 Path dari v4 ke v6 yaitu $v4 \rightarrow v2 \rightarrow v1 \rightarrow v3 \rightarrow v6$ Path dari v4 ke v6 bisa juga $v4 \rightarrow v1 \rightarrow v3 \rightarrow v6$ Path terkecil biasa disebut the shortest path

Istilah pada Graph

Terhubung (Connected)

Suatu graph dikatakan *connected* jika ada setidaknya satu garis (*edge*) antara satu titik (*vertex*) ke titik lainnya. Gambar 1 adalah contoh *connected graph*. Sedangkan *graph* tidak terhubung (*unconnected graph*) jika satu atau lebih titik-titiknya tidak terhubung ke titik-titiknya lainnya.

Istilah pada Graph

Directed Graph dan Weighted Graph

Directed and weighted Graph adalah graph dengan garis antar titik yang memiliki arah dan mempunyai bobot.

Directed graph

Undirected graph

Istilah pada Graph

• Degree (derajat), in-degree dan out-degree

Degree sebuah titik adalah jumlah busur yang incident (terkait) dengan titik tersebut.

Atau jumlah garis yang terkait dengan titik tersebut.

- *In-degree* sebuah titik pada *graph* berarah adalah jumlah busur yang kepalanya *incident* dengan titik tersebut, atau jumlah busur yang "masuk" atau menuju titik tersebut.
- Out-degree sebuah titik pada graph berarah adalah jumlah busur yang ekornya incident dengan titik tersebut, atau jumlah busur yang "keluar" atau berasal dari titik tersebut.
- Dinotasikan d(v)

Directed graph

$$D_{in}(A) = 1$$

 $D_{out}(A) = 2$

Jenis representasi graph

Adjacency list

Adjacency list menggunakan suatu array pada linked list. Array tersebut digunakan untuk menyimpan jumlah *vertex*. Nilai pada linked list dapat digunakan untuk menyimpan bobot graph.

Adjacency matrix

Adjacency matrix merupakan array 2D dengan size V x V dimana V adalah jumlah titik pada graph. Jika adj[i][j] = 1 dapat diartikan terdapat suatu garis (edge) pada titik i ke titik j.

Adjacency list undirected graph

Graph dan matrix adjacency directed graph

(a) Adjacency matrix for nondirected graph

(b) Adjacency matrix for directed graph

Representasi Graph dalam bentuk Linked List

- Adjency List graph tak berarah/berarah
- Digambarkan sebagai sebuah vertex yang memiliki 2 pointer (pointer titik dan pointer garis)

Contoh(1)-Adjacency Undirected Graph

• untuk vertex A, memiliki 2 garis yang terhubung yaitu e₁ dan e₂

Contoh(1)

Bentuk yang lebih sederhana dari contoh 1

Contoh(2)-Adjacency Directed Graph

Contoh(3)-Directed and Weighted Graph

Latihan 1

Ubahlah Graf berikut ke dalam bentuk matriks

Latihan 2

Ubahlah matriks berikut ke dalam bentuk Graf

	V1	V2	V3	V4	V5	V6
V1	0	1	0	0	0	0
V2	1	1	1	0	0	0
V3	0	1	0	1	1	1
V4	0	0	1	0	0	0
V5	0	0	1	0	0	0
V6	0	0	1	0	0	0

Latihan 3

Ubahlah matriks berikut ke dalam bentuk Graf

	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈
V1	1	1	0	1	1	0	0	0
V2	1	0	1	0	0	0	0	0
V3	0	1	1	0	0	1	1	0
V4	0	0	0	1	0	1	0	1
V5	0	0	0	0	0	0	0	1