کاربرد ریاضیات تغییرات در کنترل بهینه

معادله ديناميك

$$\vec{\dot{x}}(t) = \vec{a}\left(\vec{x}(t), \vec{u}(t), t\right)$$

 $\vec{x}(t)$ جالت جالت بردار متغیرهای

 $\vec{u}(t)$ بردار کنترل

$$\vec{x}_{\scriptscriptstyle n\times 1} = \begin{pmatrix} x_{\scriptscriptstyle 1} \\ x_{\scriptscriptstyle 2} \\ \vdots \\ x_{\scriptscriptstyle n} \end{pmatrix} \qquad \vec{u}_{\scriptscriptstyle m\times 1} = \begin{pmatrix} u_{\scriptscriptstyle 1} \\ u_{\scriptscriptstyle 2} \\ \vdots \\ u_{\scriptscriptstyle m} \end{pmatrix}$$

تابع هزينه

$$J(\vec{u}(t)) = h(\vec{x}(t_{\scriptscriptstyle f}), t_{\scriptscriptstyle f}) + \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}} g(\vec{x}(t), \vec{u}(t), t) \, dt$$

(زمان و موقعیت نهایی) هزینه مربوط به شرایط انتهایی $h(\vec{x}(t_{\scriptscriptstyle f}),t_{\scriptscriptstyle f})$

هزينه مسير
$$\int_{t_0}^{t_f} g(ec{x}(t), ec{u}(t), t) \, dt$$

% داشت؛ اگر اثر داشت $h(\vec{x}(t_0),t_0)$ اسوال: اگر

اثر انتگرال می رود. چرا؟ اثر ال $h(\vec{x}(t_{\scriptscriptstyle f}),t_{\scriptscriptstyle f})$

$$h(\vec{x}(t_{_{\! f}}),t_{_{\! f}}) = h(\vec{x}(t_{_{\! 0}}),t_{_{\! 0}}) + \int_{t_{_{\! 0}}}^{t_{_{\! f}}} \frac{dh(\vec{x}(t),t)}{dt} \ dt$$

$$\frac{dh(\vec{x}(t),t)}{dt} = \frac{dh}{dt} = \frac{\partial h}{\partial \vec{x}}^{^T} \vec{\dot{x}} + \frac{\partial h}{\partial t} \Rightarrow h(\vec{x}(t_{_{\! f}}),t_{_{\! f}}) = h(\vec{x}(t_{_{\! 0}}),t_{_{\! 0}}) + \int_{t_{_{\! 0}}}^{t_{_{\! f}}} (\frac{\partial h}{\partial \vec{x}}^{^T} \vec{\dot{x}} + \frac{\partial h}{\partial t}) \, dt$$

تابع هزينه كلى:

$$J(\vec{x}(t),\vec{u}(t)) = h(\vec{x}(t_{_{\! 0}}),t_{_{\! 0}}) + \int_{t_{_{\! 0}}}^{t_{_{\! f}}} \Bigl[g(\vec{x},\vec{u},t) + h_{_{\! x}}{}^{T}\vec{\dot{x}} + h_{_{\! t}}\Bigr]dt$$

به علاوه قید دیفرانسیلی:

$$\vec{\dot{x}}(t) = \vec{a}\left(\vec{x}(t), \vec{u}(t), t\right)$$

augmented تابع هزينه

$$g_{_{\boldsymbol{a}}}(\vec{x},\vec{u},t,\vec{p}) = g(\vec{x},\vec{u},t) + h_{_{\!\!\boldsymbol{x}}}{}^{^{T}}\vec{\dot{x}} + h_{_{\!\!\boldsymbol{t}}} + \vec{p}^{^{T}}(t)(-\vec{\dot{x}}+\vec{a})$$

(co-state ضرایب لاگرانژ (متغیرهای شبه حالت $\vec{p}(t)$

$$\vec{p}_{\scriptscriptstyle n\times 1} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}$$

 $\underbrace{\vec{x}, \vec{u}, \vec{p}}_{\vec{x}_{max}}$ (variation نسبت به متغیرهای δJ

از این به بعد فرض می کنیم شرایط ابتدایی مشخص است (نسبت به شرایط اولیه بهینه سازی است و کنترل بهینه نیست)

مشخص است که:

$$\frac{\partial g_{_{a}}}{\partial \dot{\vec{p}}} = \frac{\partial g_{_{a}}}{\partial \dot{\vec{u}}} = \vec{0}$$

نهایتا:

 $\delta J = 0$ شرط لازم بهینگی

$$\begin{split} \frac{\partial g_{a}}{\partial \overrightarrow{x}} - \frac{d}{dt} \frac{\partial g_{a}}{\partial \overrightarrow{x}} &= 0 \xrightarrow{g_{a} = g + h_{\overrightarrow{x}}^{T} \overrightarrow{x} + h_{t} + \overrightarrow{p}^{T} (-\overrightarrow{x} + \overrightarrow{a})} \\ \frac{\partial g}{\partial \overrightarrow{x}} + \frac{\partial}{\partial \overrightarrow{x}} \left(\frac{\partial h}{\partial t} + \left(\frac{\partial h}{\partial \overrightarrow{x}} \right)^{T} \overrightarrow{x} \right) + \left(\frac{\partial \overrightarrow{a}}{\partial \overrightarrow{x}} \right)^{T} \overrightarrow{p} - \frac{d}{dt} \left(\frac{\partial h}{\partial \overrightarrow{x}} - \overrightarrow{p} \right) &= 0 \Rightarrow \\ \dot{\overrightarrow{p}} &= -\frac{\partial g}{\partial \overrightarrow{x}} - \left(\frac{\partial \overrightarrow{a}}{\partial \overrightarrow{x}} \right)^{T} \overrightarrow{p} \end{split}$$

توجه شود که

$$\begin{split} \frac{\partial^2 h}{\partial \vec{x} \partial t} + & \left(\frac{\partial^2 h}{\partial \vec{x}^2} \right) \dot{\vec{x}} - \frac{d}{dt} \frac{\partial h}{\partial \vec{x}} = \vec{0} \\ \frac{\partial \vec{a}}{\partial \vec{x}} = & \begin{bmatrix} \frac{\partial a_1}{\partial x_1} & \frac{\partial a_1}{\partial x_2} & \dots & \frac{\partial a_1}{\partial x_n} \\ \frac{\partial a_2}{\partial x_1} & \frac{\partial a_2}{\partial x_2} & & \vdots \\ \vdots & & \ddots & \vdots \\ \frac{\partial a_n}{\partial x_1} & \frac{\partial a_n}{\partial x_2} & \dots & \frac{\partial a_n}{\partial x_n} \end{bmatrix} \end{split}$$

$$\begin{split} \frac{\partial g_a}{\partial \vec{u}} &= \vec{0} \xrightarrow{g_a = g + h_{\vec{x}}^T \vec{x} + h_t + \vec{p}^T (-\vec{x} + \vec{a})} \xrightarrow{} \frac{\partial g}{\partial \vec{u}} + \left(\frac{\partial \vec{a}}{\partial \vec{u}}\right)^T \vec{p} = \vec{0} \\ \frac{\partial g_a}{\partial \vec{p}} &= \vec{0} \xrightarrow{g_a = g + h_{\vec{x}}^T \vec{x} + h_t + \vec{p}^T (-\vec{x} + \vec{a})} \xrightarrow{} \vec{x} = \vec{a}(\vec{x}, \vec{u}, t) \end{split}$$

شروط مرزی:

$$\left(\frac{\partial g_a}{\partial \dot{\vec{x}}} \right)_{*,t_f}^T \delta \vec{x}_f \xrightarrow{g_a = g + h_{\vec{x}}^T \dot{\vec{x}} + h_t + \vec{p}^T (-\vec{x} + \vec{a})} \left(\frac{\partial h}{\partial \vec{x}} - \vec{p} \right)_{*,t_f}^T \delta \vec{x}_f$$

$$\left(g_a - \dot{\vec{x}}^T \frac{\partial g_a}{\partial \dot{\vec{x}}} \right)_{*,t_f} \delta t_f \xrightarrow{g_a = g + h_{\vec{x}}^T \ddot{\vec{x}} + h_t + \vec{p}^T (-\vec{x} + \vec{a})} \left(g + h_t + \vec{p}^T \vec{a} \right) \delta t_f$$

با تعريف تابع هميلتونين

$$\mathcal{H} = g(\vec{x}, \vec{u}, t) + \vec{p}^T \vec{a}(\vec{x}, \vec{u}, t)$$

$$\frac{\partial \mathcal{H}}{\partial \vec{x}} = \frac{\partial g}{\partial \vec{x}} + \left(\frac{\partial a}{\partial \vec{x}}\right)^T \vec{p}$$

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = \frac{\partial g}{\partial \vec{u}} + \left(\frac{\partial a}{\partial \vec{u}}\right)^T \vec{p}$$

$$\frac{\partial \mathcal{H}}{\partial \vec{p}} = \vec{a} = \vec{x}$$

شروط مرزى:

$$\begin{split} \left(\frac{\partial h}{\partial \vec{x}} - \vec{p}\right)_{*,t_f}^T \delta \vec{x}_f \\ \left(g + h_t + \vec{p}^T \vec{a}\right)_{*,t_f} \delta t_f &\to \left(\mathcal{H} + h_t\right)_{*,t_f} \delta t_f \\ \delta J &= \int_{t_0}^{t_f} \left[\left(\frac{\partial \mathcal{H}}{\partial \vec{x}} + \dot{\vec{p}}\right)^T \delta \vec{x} + \left(\frac{\partial \mathcal{H}}{\partial \vec{u}}\right)^T \delta \vec{u} + \left(\frac{\partial \mathcal{H}}{\partial \vec{p}} - \dot{\vec{x}}\right)^T \delta \vec{p} \right] dt \\ \left(h_{\vec{x}} - \vec{p}\right)_{*_t}^T \delta \vec{x}_f + \left(\mathcal{H} + h_t\right)_{*_t} \delta t_f \end{split}$$

معادلات اويلر

$$\dot{\vec{x}} = \frac{\partial \mathcal{H}}{\partial \vec{p}} = \vec{a}(\vec{x}, \vec{u}, t)$$
$$\dot{\vec{p}} = -\frac{\partial \mathcal{H}}{\partial \vec{x}}$$
$$\vec{0} = \frac{\partial \mathcal{H}}{\partial \vec{u}}$$

مسائل مقدار مرزی دو نقطهای Two Point Boundary Value Problem TPBVP

- معادله ديفرانسيل) معادله ديفرانسيل) متغيرهاي حالت \vec{x}
- متغیرهای شبه-حالت یا ضرایب Vگرانژ \vec{p} معادله دیفرانسیل)
 - \bullet ورودیهای کنترلی \vec{u} معادله جبری)

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = \vec{0} \Rightarrow \vec{u} = \vec{u}(\vec{x}, \vec{p}, t)$$

شروط مرزى Boundary Conditions

 $\vec{x}(t_{\scriptscriptstyle 0}) = \vec{x}_{\scriptscriptstyle 0}$ است می شود شرط اولیه مشخص است

$$\left(h_{ec{x}}-ec{p}
ight)_{*,t_{f}}^{T}\deltaec{x}_{\scriptscriptstyle{f}}+\left(\mathcal{H}+h_{\scriptscriptstyle{t}}
ight)_{*,t_{\scriptscriptstyle{f}}}\delta t_{\scriptscriptstyle{f}}=0$$

زمان نهایی ثابت fixed final time

$$\delta t_{\scriptscriptstyle f} = 0$$

$$\left(h_{\!_{\vec{x}}} - \vec{p}\right)_{*,t_{\scriptscriptstyle f}}^{^{T}} \delta \vec{x}_{\scriptscriptstyle f} = 0$$

شرایط نهایی مشخص fixed final condition

$$\vec{x}(t_{\scriptscriptstyle f}) = \vec{x}_{\scriptscriptstyle f} \qquad \Rightarrow \qquad \delta \vec{x}_{\scriptscriptstyle f} = \vec{0}$$

شرایط نهایی آزاد free final condition

$$\delta \vec{x}_{\scriptscriptstyle f} \neq 0 \qquad \Rightarrow \qquad \vec{p}(t_{\scriptscriptstyle f}) = \frac{\partial h}{\partial \vec{x}}(t_{\scriptscriptstyle f})$$

شرایط نهایی روی تقاطع رویه ها

$$\label{eq:mass_equation} \vec{m}_{\boldsymbol{k} \! \times \! 1}(\vec{x}(t_{\boldsymbol{f}})) = \vec{0} \qquad \quad \text{or} \qquad \, m_{\boldsymbol{i}}(\vec{x}(t_{\boldsymbol{f}})) = 0, \\ \boldsymbol{i} = 1, 2, \dots, k < n$$

یود:
$$dm_i = \frac{\partial m_i}{\partial \vec{x}} \cdot \delta \vec{x}_f = 0 \qquad \qquad i=1,2,...,k$$

$$dm_i = \frac{\partial m_i}{\partial \vec{x}} \cdot \delta \vec{x}_f = 0 \qquad \qquad i=1,2,...,k$$
 شرط مرزی از قبل
$$\left(h_{\vec{x}} - \vec{p}\right)_{*,t_f} \cdot \delta \vec{x}_f = 0$$

$$(h_{\vec{x}} - \vec{p})_{*,t_f} \cdot \delta \vec{x}_f = 0$$
 پس می توان $h_{\vec{x}} - \vec{p}$ رو ترکیب خطی از $\frac{\partial m_i}{\partial \vec{x}}$ ها نوشت:

$$\frac{\partial h}{\partial \vec{x}} - \vec{p} = \sum_{i=1}^k d_i \frac{\partial m_i}{\partial \vec{x}}$$

 $(ec{m}(ec{x}(t_{\scriptscriptstyle f})) = ec{0}$ مجهول جدید $d_{\scriptscriptstyle i}$ (با k مجهول مجهو

زمان نهایی آزاد free final time

شرایط نهایی مشخص fixed final condition

$$\begin{split} \vec{x}(t_{\scriptscriptstyle f}) &= \vec{x}_{\scriptscriptstyle f} \qquad \Rightarrow \qquad \delta \vec{x}_{\scriptscriptstyle f} = \vec{0} \\ \left(h_{\scriptscriptstyle \vec{x}} - \vec{p}\right)_{*,t_{\scriptscriptstyle f}}^{\scriptscriptstyle T} \delta \vec{x}_{\scriptscriptstyle f} + \left(\mathcal{H} + h_{\scriptscriptstyle t}\right)_{*,t_{\scriptscriptstyle f}} \delta t_{\scriptscriptstyle f} = 0 & \xrightarrow{\delta t_{\scriptscriptstyle f} \neq 0} \mathcal{H}(t_{\scriptscriptstyle f}) + h_{\scriptscriptstyle t}(t_{\scriptscriptstyle f}) = 0 \end{split}$$

شرایط نهایی آزاد free final condition

$$\delta \vec{x}_f \neq 0 \qquad \Rightarrow \qquad \vec{p}(t_f) = \frac{\partial h}{\partial \vec{x}}(t_f)$$

$$\delta t_f \neq 0 \qquad \Rightarrow \qquad \mathcal{H}(t_f) = -\frac{\partial h}{\partial t}(t_f)$$

شرایط نهایی تابع زمان

$$\begin{split} \vec{x}(t_{\scriptscriptstyle f}) &= \vec{\theta}(t_{\scriptscriptstyle f}) \quad \Rightarrow \qquad \delta \vec{x}_{\scriptscriptstyle f} = \dot{\vec{\theta}} \; \delta t_{\scriptscriptstyle f} \\ \left(h_{\scriptscriptstyle \overline{x}} - \vec{p}\right)_{*,t_{\scriptscriptstyle f}}^{\scriptscriptstyle T} \; \delta \vec{x}_{\scriptscriptstyle f} + \left(\mathcal{H} + h_{\scriptscriptstyle t}\right)_{*,t_{\scriptscriptstyle f}} \; \delta t_{\scriptscriptstyle f} = 0 \Rightarrow \qquad \left(\dot{\vec{\theta}}^{\scriptscriptstyle T} \left(h_{\scriptscriptstyle \overline{x}} - \vec{p}\right) + \mathcal{H} + h_{\scriptscriptstyle t}\right)_{*,t_{\scriptscriptstyle f}} = 0 \end{split}$$

شرایط نهایی روی تقاطع رویه ها

$$\vec{m}_{\mathbf{k} \times \mathbf{l}}(\vec{x}(t_{\mathbf{f}})) = \vec{0} \qquad \text{or} \qquad m_{\mathbf{i}}(\vec{x}(t_{\mathbf{f}})) = 0, i = 1, 2, \dots, k < n$$

مشابه قبل:

$$\frac{\partial h}{\partial \vec{x}} - \vec{p} = \sum_{i=1}^k d_i \frac{\partial m_i}{\partial \vec{x}}$$

n معادله

 d_i مجهول جدید k

زمان هایی هم آزاد است

$$\mathcal{H}(t_{\scriptscriptstyle f}) + h_{\scriptscriptstyle t}(t_{\scriptscriptstyle f}) = 0$$

شرایط نهایی روی تقاطع رویه های متحرک در زمان نهایی

$$\vec{m}_{\mathbf{k} \times \mathbf{l}}(\vec{x}(t_{\mathbf{f}}), t_{\mathbf{f}}) = \vec{0} \qquad \text{or} \qquad m_{\mathbf{i}}(\vec{x}(t_{\mathbf{f}}), t_{\mathbf{f}}) = 0, i = 1, 2, \dots, k < n + 1$$

$$dm_{_{i}} = \frac{\partial m_{_{i}}}{\partial \vec{x}_{_{f}}} \cdot \delta \vec{x}_{_{f}} + \frac{\partial m_{_{i}}}{\partial t_{_{f}}} \cdot \delta t_{_{f}} = 0 \qquad \qquad i = 1, 2, \dots, k$$
 عملا بردار
$$\begin{pmatrix} \frac{\partial m_{_{i}}}{\partial \vec{x}_{_{f}}} \\ \frac{\partial m_{_{i}}}{\partial t_{_{f}}} \end{pmatrix} \text{ مجاز عمود بر} \begin{pmatrix} \delta \vec{x}_{_{f}} \\ \frac{\partial m_{_{i}}}{\partial t_{_{f}}} \end{pmatrix}$$
 ها می شود.

شرط مرزی از قبل:

$$\left(h_{\vec{x}} - \vec{p}\right)_{*,t_{f}}^{^{T}} \delta \vec{x}_{\scriptscriptstyle f} + \left(\mathcal{SH} + h_{\scriptscriptstyle t}\right)_{*,t_{\scriptscriptstyle f}} \delta t_{\scriptscriptstyle f} = 0$$

. مثل اینکه بردار
$$egin{pmatrix} h_{ec{x}}-ec{p} \\ \mathcal{H}+h_t \end{pmatrix}_{*_t}$$
 مثل اینکه بردار $egin{pmatrix} \delta ec{x}_f \\ \delta t_f \end{pmatrix}$ شود.

يس مى توان
$$\left(rac{\partial m_{_i}}{\partial ec{x}_{_f}} \atop rac{\partial m_{_i}}{\partial t_{_f}}
ight)$$
 رو تركيب خطى از $\left(rac{h_{_{ec{x}}} - ec{p}}{\mathcal{H} + h_{_t}}
ight)_{*,t_{_f}}$ ها نوشت:

$$egin{pmatrix} \left(h_{ec{x}} - ec{p} \ \mathcal{H} + h_{t}
ight)_{*,t_{f}} = \sum_{i=1}^{k} d_{i} egin{pmatrix} rac{\partial m_{i}}{\partial ec{x}_{f}} \ rac{\partial m_{i}}{\partial t_{f}} \end{pmatrix}$$

 $(\vec{m}(\vec{x}(t_{\scriptscriptstyle f}),t_{\scriptscriptstyle f})=\vec{0}$ مجهول جدید k (با $d_{\scriptscriptstyle i}$ مجهول مجهو

 $(ec{x}(t_{\scriptscriptstyle f}), t_{\scriptscriptstyle f}, ec{d}$) مجهول یا شرط مرزی n+k+1 معادله و n+k+1

Problem	Description	Substitution in Eq. (5.1-18)	Boundary-condition equations	Remarks
t _f fixed	1. $\mathbf{x}(t_f) = \mathbf{x}_f$ specified final state	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f) = 0$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$	2n equations to determine 2n constants of integration
	2. $\mathbf{x}(t_f)$ free	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) - \mathbf{p}^*(t_f) = 0$	2n equations to determine 2n constants of integration
	3. $\mathbf{x}(t_f)$ on the surface $\mathbf{m}(\mathbf{x}(t)) = 0$	$ \delta \mathbf{x}_f = \delta \mathbf{x}(t_f) \\ \delta t_f = 0 $	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) - \mathbf{p}^*(t_f) = \sum_{i=1}^k d_i \left[\frac{\partial m_i}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) \right]$ $\mathbf{m}(\mathbf{x}^*(t_f)) = 0$	$(2n + k)$ equations to determine the $2n$ constants of integration and the variables d_1, \ldots, d_k
t _f free	4. $\mathbf{x}(t_f) = \mathbf{x}_f$ specified final state	$\delta \mathbf{x}_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$ $\mathcal{H}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f) = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f
	5. $\mathbf{x}(t_f)$ free		$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f) = 0$ $\mathcal{H}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f) = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f
	6. $\mathbf{x}(t_f)$ on the moving point $\mathbf{\theta}(t)$	$\delta \mathbf{x}_f = \left[\frac{d\mathbf{\theta}}{dt}(t_f)\right] \delta t_f$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{\theta}(t_f)$ $\mathcal{H}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)$ $+ \left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \left[\frac{\partial \theta}{\partial t}(t_f)\right] = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f
7. $\mathbf{x}(t_f)$ on the surface $\mathbf{m}(\mathbf{x}(t)) = 0$			$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f) = \sum_{i=1}^k d_i \left[\frac{\partial m_i}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) \right]$ $\mathbf{m}(\mathbf{x}^*(t_f)) = 0$ $\mathcal{X}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f) = 0$	$(2n + k + 1)$ equations to determine the $2n$ constants of integration, the variables d_1, \ldots, d_k , and t_f
_	8. $\mathbf{x}(t_f)$ on the moving surface $\mathbf{m}(\mathbf{x}(t), t) = 0$		$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f) = \sum_{i=1}^k d_i \left[\frac{\partial m_i}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) \right]$ $\mathbf{m}(\mathbf{x}^*(t_f), t_f) = 0$ $\mathcal{H}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)$ $= \sum_{i=1}^k d_i \left[\frac{\partial m_i}{\partial t}(\mathbf{x}^*(t_f), t_f) \right]$	$(2n + k + 1)$ equations to determine the $2n$ constants of integration, the variables d_1, \ldots, d_k , and t_f .

مثال:

 $\ddot{x} + \dot{x} = u$ سیستم

$$\begin{split} \dot{x}_{_{\! 1}}(t) &= x_{_{\! 2}}(t) \\ \dot{x}_{_{\! 2}}(t) &= -x_{_{\! 2}}(t) + u(t) \end{split}$$

تابع هزينه

$$J(u) = \frac{1}{2} \int_{t_0}^{t_f} u^2(t) dt$$

تشكيل تابع هميلتونين:

$$\mathcal{H} \Big(x(t), u(t), p(t) \Big) = \frac{1}{2} \, u^2(t) + \, p_{_1}(t) x_{_2}(t) - \, p_{_2}(t) x_{_2}(t) + \, p_{_2}(t) u(t)$$

معادلات شبه حالت:

$$\begin{split} &\dot{\boldsymbol{p}}_{\scriptscriptstyle 1}^*(t) = -\frac{\partial \mathcal{H}}{\partial \boldsymbol{x}_{\scriptscriptstyle 1}} = \boldsymbol{0} \\ &\dot{\boldsymbol{p}}_{\scriptscriptstyle 2}^*(t) = -\frac{\partial \mathcal{H}}{\partial \boldsymbol{x}_{\scriptscriptstyle 2}} = -\boldsymbol{p}_{\scriptscriptstyle 1}^*(t) + \boldsymbol{p}_{\scriptscriptstyle 2}^*(t) \end{split}$$

معادله اصلى كنترل بهينه

$$\frac{\partial \mathcal{H}}{\partial u} = u^*(t) + p_2^*(t) = 0$$

با جایگذاری u در معادله سیستم

$$\begin{split} \dot{x}_{_{1}}^{^{*}}(t) &= x_{_{2}}^{^{*}}(t) \\ \dot{x}_{_{2}}^{^{*}}(t) &= -x_{_{2}}^{^{*}}(t) - p_{_{2}}^{^{*}}(t) \end{split}$$

: $x_{\scriptscriptstyle 1}, x_{\scriptscriptstyle 2}, p_{\scriptscriptstyle 1}, p_{\scriptscriptstyle 2}$ حل معادلات ديفرانسيل مرتبه اول براى

$$\begin{split} x_1^*(t) &= c_1 + c_2 \left(1 - e^{-t} \right) + \frac{1}{2} c_3 \left(-2t - e^{-t} + e^t \right) + \frac{1}{2} c_4 \left(2 - e^{-t} - e^t \right) \\ x_2^*(t) &= c_2 e^{-t} + \frac{1}{2} c_3 \left(-2 + e^{-t} + e^t \right) + \frac{1}{2} c_4 \left(e^{-t} - e^t \right) \\ p_1^*(t) &= c_3 \\ p_2^*(t) &= c_3 \left(1 - e^t \right) + c_4 e^t \end{split}$$

نیاز به ۴ شرط مرزی برای پیدا کردن ثوابت

حالت اول: شرط ابتدایی و انتهایی ثابت:

$$\vec{x}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \vec{x}_f = \vec{x}(2) = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

ثوابت حرکت و معادله جواب:

$$\begin{split} c_1 &= c_2 = 0 \quad c_3 = -7.289 \quad c_4 = -6.103 \\ x_1^*(t) &= 7.289t - 6.103 + 6.696e^{-t} - 0.593e^t \\ x_2^*(t) &= 7.289 - 6.696e^{-t} - 0.593e^t. \end{split}$$

حالت دوم: شرط ابتدا مثل قبل. شرط انتهایی آزاد، ولی پنالتی برای همان شرایط قبلی

$$\begin{split} J(\vec{u}(t)) &= \frac{1}{2} \Big(\vec{x}(2) - \vec{x}_f \Big)^T \, H\Big(\vec{x}(2) - \vec{x}_f \Big) + \frac{1}{2} \int_0^2 u^2(t) dt \qquad \vec{x}_f = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \\ \Big(h_{\vec{x}} - \vec{p} \Big) \Big|_{*,t_f} &= \vec{0} \qquad \Rightarrow \qquad H\Big(\vec{x}(t_f) - \vec{x}_f \Big) - \vec{p}(t_f) = \vec{0} \end{split}$$

برخى شرايط تابع هميلتونين

$$\mathcal{H}(ec{x}(t),ec{u}(t),ec{p}(t),t)=g\left(ec{x}(t),ec{u}(t),t
ight)+ec{p}^{T}(t)\;ec{a}(ec{x}(t),ec{u}(t),t)$$
 برای کمینه کردن $J(ec{x}(t),ec{u}(t))=h(ec{x}(t_{_{f}}),t_{_{f}})+\int_{t_{_{0}}}^{t_{_{f}}}g(ec{x}(t),ec{u}(t),t)\,dt$ هست $\dot{ec{x}}(t)=ec{a}\left(ec{x}(t),ec{u}(t),t
ight)$ هست

$$\frac{d\mathcal{H}}{dt} = \frac{\partial \mathcal{H}}{\partial \vec{x}}^{T} \dot{\vec{x}} + \frac{\partial \mathcal{H}}{\partial \vec{u}}^{T} \dot{\vec{u}} + \frac{\partial \mathcal{H}}{\partial \vec{p}}^{T} \dot{\vec{p}} + \frac{\partial \mathcal{H}}{\partial t}$$

$$\frac{\frac{\partial \mathcal{H}}{\partial \vec{u}} = 0}{\dot{\vec{x}} = \frac{\partial \mathcal{H}}{\partial \vec{p}} \dot{\vec{p}} = -\frac{\partial \mathcal{H}}{\partial \vec{x}}}$$

$$= \frac{\partial \mathcal{H}}{\partial \vec{x}}^{T} \frac{\partial \mathcal{H}}{\partial \vec{p}} - \frac{\partial \mathcal{H}}{\partial \vec{p}}^{T} \frac{\partial \mathcal{H}}{\partial \vec{x}} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$$

اگر تابع صریح از زمان نباشد:

$$\frac{d\mathcal{H}}{dt} = \frac{\partial \mathcal{H}}{\partial t} = 0 \to \mathcal{H} = \text{constant}$$

اگر زمان نهایی آزاد باشد و $h(\vec{x}(t_f), t_f)$ هم تابع صریح از زمان نباشد:

$$\delta t_f \neq 0 \rightarrow (\mathcal{H} + h_t) \Big|_{*, t_f} = 0 \Rightarrow \mathcal{H}(t_f) = 0 \Rightarrow \mathcal{H}(t) = 0$$

اگر شکل درجه ۲ (Quadratic) داشته باشد:

$$\mathcal{H}(\vec{x},\vec{u},\vec{p},t) = f(\vec{x},\vec{p},t) + \vec{c}^T(\vec{x},\vec{p},t) \ \vec{u} + \frac{1}{2} \vec{u}^T R(\vec{x},\vec{p},t) \vec{u}$$
معمولا فقط $R(\vec{x},\vec{p},t) = R(t) = R$ معمولا فقط

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = \vec{c}(\vec{x}, \vec{p}, t) + R(\vec{x}, \vec{p}, t)\vec{u} = \vec{0} \quad \Rightarrow \quad \vec{u} = R^{-1}\vec{c}$$

و البته

$$\frac{\partial^2 \mathcal{H}}{\partial \vec{u}^2} = R(\vec{x}, \vec{p}, t)$$

اگر $R(\vec{x}, \vec{p}, t)$ در تمام شرایط مثبت معین باشد، نقطه جواب مینیمم است (شرط کافی) و همچنین مینیمم عمومی است.

نمونه مسائل كاربردى كنترل بهينه

Linear Quadratic Regulator (LQR) تنظیم کننده بهینه خطی

سيستم خطي

$$\dot{\vec{x}}(t) = \vec{a} = A(t)\,\vec{x}(t) + B(t)\,\vec{u}(t)$$

تابع هزینه درجه ۲ (Quadratic)

$$\begin{split} J(u(t)) &= \frac{1}{2} \left\| \vec{x}(t_{\scriptscriptstyle f}) \right\|_{\scriptscriptstyle H}^2 + \frac{1}{2} \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}} \left(\left\| \vec{x}(t) \right\|_{\scriptscriptstyle Q}^2 + \left\| \vec{u}(t) \right\|_{\scriptscriptstyle R}^2 \right) dt \\ &= \frac{1}{2} \vec{x}^{\scriptscriptstyle T}(t_{\scriptscriptstyle f}) H \, \vec{x}(t_{\scriptscriptstyle f}) + \frac{1}{2} \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}} \left(\vec{x}^{\scriptscriptstyle T}(t) Q(t) \vec{x}(t) + \vec{u}^{\scriptscriptstyle T}(t) R(t) \vec{u}(t) \right) dt \end{split}$$

هدف: ۱- نزدیک کردن موقعیت متغیرهای سیستم در کلیه زمانها به مقدار صفر است (با ماتریس Q)

۲- مصرف کم انرژی (با ماتریس ۲

۳- رساندن شرایط نهایی به صفر (با ماتریس H)

H, Q: real symmetric positive semi-definite matrix

R: real symmetric positive definite matrix

تابع هميلتونين:

$$\mathcal{H} = g + \vec{p}^T \vec{a}$$

$$= \frac{1}{2} \vec{x}^T(t) Q(t) \vec{x}(t) + \frac{1}{2} \vec{u}^T(t) R(t) \vec{u}(t) + \vec{p}^T \left(A(t) \vec{x}(t) + B(t) \vec{u}(t) \right)$$

معادلات حالت و شبه حالت:

$$\dot{\vec{x}} = \frac{\partial \mathcal{H}}{\partial \vec{p}} = \vec{a} = A \vec{x}(t) + B u(t)$$
$$\dot{\vec{p}} = -\frac{\partial \mathcal{H}}{\partial \vec{x}} = -Q \vec{x} - A^T \vec{p}$$

معادله كنترل:

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = 0 \qquad \Rightarrow \qquad R\vec{u} + B^T\vec{p} = 0 \to \vec{u} = -R^{-1}B^T\vec{p}$$

(feedback control) $\vec{x}(t)$ با $\vec{p}(t)$ با کردن ارتباط

جایگذاری در معادلات سیستم

$$\dot{\vec{x}} = A\,\vec{x} - B\,R^{-1}\,B^{T}\,\vec{p}$$

$$ec{z} = egin{pmatrix} ec{x} \ ec{p} \end{pmatrix}$$
 و با تعریف

$$\dot{\vec{z}} = \begin{pmatrix} \dot{\vec{x}} \\ \dot{\vec{p}} \end{pmatrix} = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \begin{pmatrix} \vec{x} \\ \vec{p} \end{pmatrix} = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \vec{z} = A'\vec{z} = A'_{2n\times 2n}\vec{z}_{2n\times 1}$$

$$\dot{\vec{z}} = A'\vec{z} = A'_{2n\times 2n}\vec{z}_{2n\times 1}$$

جواب سيستم خطى بر حسب ماتريس انتقال حالت State Trasition Matrix

$$\begin{split} \overrightarrow{z}(t) &= \Phi(t) \, \overrightarrow{z}_{\scriptscriptstyle 0} = \Phi(t,t_{\scriptscriptstyle 0}) \, \overrightarrow{z}(t_{\scriptscriptstyle 0}) \\ \\ \Phi(t,t_{\scriptscriptstyle 0}) &= e^{^{A'(t-t_{\scriptscriptstyle 0})}} \end{split}$$

یادآوری

$$\begin{split} &\Phi(t) = e^{A't} = \mathcal{L}^{-1} \left\{ \left(sI - A' \right)^{-1} \right\} = I + A't + \frac{1}{2!}A'^2t^2 + \cdots \\ &\dot{\Phi}(t) = A'\Phi(t), \qquad \Phi(0) = I \\ &\Phi(t,t_0) = e^{A'(t-t_0)} \qquad \Phi(t,t) = I \\ &\Phi(t_0,t) = e^{A'(t_0-t)} = e^{-A'(t-t_0)} = \Phi^{-1}(t,t_0) \end{split}$$

یس شرایط نهایی می شود:

$$\vec{z}(t_{\scriptscriptstyle f}) = \Phi(t_{\scriptscriptstyle f},t)\,\vec{z}(t) = e^{^{A'(t_{\scriptscriptstyle f}-t)}}\,\vec{z}(t)$$

ار تباط

$$\overrightarrow{z}(t_{\scriptscriptstyle f}) = \begin{pmatrix} \phi_{\scriptscriptstyle 11}(t_{\scriptscriptstyle f}-t) & \phi_{\scriptscriptstyle 12}(t_{\scriptscriptstyle f}-t) \\ \phi_{\scriptscriptstyle 21}(t_{\scriptscriptstyle f}-t) & \phi_{\scriptscriptstyle 22}(t_{\scriptscriptstyle f}-t) \end{pmatrix} \overrightarrow{z}(t) \rightarrow \begin{pmatrix} \overrightarrow{x}(t_{\scriptscriptstyle f}) \\ \overrightarrow{p}(t_{\scriptscriptstyle f}) \end{pmatrix} = \begin{pmatrix} \phi_{\scriptscriptstyle 11}(t_{\scriptscriptstyle f}-t) & \phi_{\scriptscriptstyle 12}(t_{\scriptscriptstyle f}-t) \\ \phi_{\scriptscriptstyle 21}(t_{\scriptscriptstyle f}-t) & \phi_{\scriptscriptstyle 22}(t_{\scriptscriptstyle f}-t) \end{pmatrix} \begin{pmatrix} \overrightarrow{x}(t) \\ \overrightarrow{p}(t) \end{pmatrix}$$

ماتریس های n imes n همگی $\phi_{11}, \phi_{12}, \phi_{21}, \phi_{22}$ هستند

$$\begin{split} \vec{x}(t_{\scriptscriptstyle f}) &= \phi_{\scriptscriptstyle 11}(t_{\scriptscriptstyle f} - t) \vec{x}(t) + \phi_{\scriptscriptstyle 12}(t_{\scriptscriptstyle f} - t) \vec{p}(t) \\ \vec{p}(t_{\scriptscriptstyle f}) &= \phi_{\scriptscriptstyle 21}(t_{\scriptscriptstyle f} - t) \vec{x}(t) + \phi_{\scriptscriptstyle 22}(t_{\scriptscriptstyle f} - t) \vec{p}(t) \end{split}$$

شرط مرزی:

$$\left. \left(h_{\overline{x}} - \overrightarrow{p} \right) \right|_{*,\,t_{\scriptscriptstyle f}} = 0 \qquad \Rightarrow \qquad \overrightarrow{p}(t_{\scriptscriptstyle f}) = \frac{\partial h}{\partial \overrightarrow{x}_{\scriptscriptstyle f}} = H \overrightarrow{x}(t_{\scriptscriptstyle f})$$

$$\begin{split} \vec{p}(t_f) &= H \vec{x}(t_f) \\ \Rightarrow \qquad \phi_{21}(t_f - t) \vec{x}(t) + \phi_{22}(t_f - t) \vec{p}(t) = H \Big[\phi_{11}(t_f - t) \vec{x}(t) + \phi_{12}(t_f - t) \vec{p}(t) \Big] \\ \Rightarrow \qquad \Big[\phi_{22}(t_f - t) - H \phi_{12}(t_f - t) \Big] \vec{p}(t) = \Big[H \phi_{11}(t_f - t) - \phi_{21}(t_f - t) \Big] \vec{x}(t) \\ \Rightarrow \qquad \vec{p}(t) = \Big[\phi_{22}(t_f - t) - H \phi_{12}(t_f - t) \Big]^{-1} \Big[H \phi_{11}(t_f - t) - \phi_{21}(t_f - t) \Big] \vec{x}(t) \end{split}$$

پس ارتباط $\vec{p}(t)$ با $\vec{p}(t)$ پیدا شد

$$\vec{p}(t) = K(t) \vec{x}(t)$$

K(t) پیدا کردن

راه اول (تعریف):

$$K_{_{n\times n}}(t) = \left[\phi_{_{22}}(t_{_f}-t) - H\phi_{_{12}}(t_{_f}-t)\right]^{^{-1}} \left[H\phi_{_{11}}(t_{_f}-t) - \phi_{_{21}}(t_{_f}-t)\right]$$

راه دوم:

فرض شود فرم کلی $\vec{p}(t) = K(t) \, \vec{x}(t)$ وجود دارد.

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = 0 \qquad \rightarrow \qquad \vec{u} = -R^{-1} B^T \vec{p} = -R^{-1} B^T K \vec{x}$$

ازیک طرف:

$$\dot{\vec{p}} = -\frac{\partial \mathcal{H}}{\partial \vec{x}} = -Q\vec{x} - A^T\vec{p} = \left(-Q - A^TK\right)\vec{x}$$

ازطرف دیگر:

$$\begin{split} \vec{p}(t) &= K(t) \, \vec{x}(t) \quad \Rightarrow \quad \dot{\vec{p}} = \dot{K} \, \vec{x} + K \, \dot{\vec{x}} \\ \dot{\vec{x}} &= A \, \vec{x} + B \, \vec{u} = A \, \vec{x} - B \, R^{-1} \, B^T K \, \vec{x} \\ \Rightarrow \dot{\vec{p}} &= \dot{K} \, \vec{x} + K \Big(A \, \vec{x} - B \, R^{-1} \, B^T K \, \vec{x} \Big) \end{split}$$

تریب دو رابطه:

معادله ریکاتی دیفرانسیلی Riccati equation

شرط مرزی:

$$\vec{p}(t_{\scriptscriptstyle f}) = \frac{\partial h}{\partial \vec{x}} = H \vec{x}(t_{\scriptscriptstyle f}) \qquad \Rightarrow \qquad K(t_{\scriptscriptstyle f}) = H$$

یک ماتریس متقارن است. یعنی به دلیل متقارن بودن $\left(n(n+1) \, / \, 2 \right)$ معادله دیفراسیل حل Kمی شود

$$\dot{K}^{T} + A^{T}K^{T} + K^{T}A + Q^{T} - K^{T}B(R^{-1})^{T}B^{T}K^{T} = 0$$

ماتریس های Q,R,H همه متقارن هستند.

$$\dot{K}^{T} + A^{T}K^{T} + K^{T}A + Q - K^{T}B(R^{-1})B^{T}K^{T} = 0$$

عینا مشابه معادله اصلی ریکاتی، با شرط نهایی یکسان. پس هر دو یک جواب خواهد داشت.

نحوه حل:

۱- معادله ریکاتی برای K از انتها حل می شود.

$$\dot{K} = -KA - A^TK + KBR^{-1}B^TK - Q; \qquad K(t_{\scriptscriptstyle f}) = H$$

۲- ماتریس فیدبک خطی حاصل می شود.

$$\vec{u} = -R^{-1}B^T K \vec{x}$$

۳- سیستم اصلی با فیدبک شبیه سازی می شود (به ازای هر شرط اولیه ای)

رفتار زماني المان هاي K وقتى سيستم تابع زمان نيست

برای بیشتر مسیر می توان به فرم زیر نوشت:

$$\dot{K} = 0$$
 \Rightarrow $KA + A^T K - KB R^{-1} B^T K + Q = 0$

معادله جبری ریکاتی

مثل اینکه برای سیستم زیر بوده است

autonomous سیستم خطی

$$\dot{\vec{x}}(t) = A\,\vec{x}(t) + B\,\vec{u}(t)$$

تابع هزینه درجه ۲ (Quadratic)

$$J(u(t)) = \frac{1}{2} \int_0^\infty \left(\vec{x}^T(t) Q \vec{x}(t) + \vec{u}^T(t) R \vec{u}(t) \right) dt$$

جواب برای زمان محدود نسبت به زمان نامحدود کمی تفاوت دارد و در بسیاری موارد قابل صرف نظر است.

تعقیب کننده بهینه خطی Linear Quadratic Tracker

سيستم خطي

$$\dot{\vec{x}}(t) = \vec{a} = A(t)\,\vec{x}(t) + B(t)\,\vec{u}(t)$$

تابع هزينه درجه ۲ (Quadratic)

$$\begin{split} J(u(t)) &= \frac{1}{2} \left\| \vec{x}(t_{\scriptscriptstyle f}) - \vec{r}(t_{\scriptscriptstyle f}) \right\|_{\scriptscriptstyle H}^2 + \frac{1}{2} \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}} \left(\left\| \vec{x}(t) - \vec{r}(t) \right\|_{\scriptscriptstyle Q}^2 + \left\| \vec{u}(t) \right\|_{\scriptscriptstyle R}^2 \right) dt \\ &= \frac{1}{2} \Big(\vec{x}(t_{\scriptscriptstyle f}) - \vec{r}(t_{\scriptscriptstyle f}) \Big)^{\! \mathrm{\scriptscriptstyle T}} \, H \Big(\vec{x}(t_{\scriptscriptstyle f}) - \vec{r}(t_{\scriptscriptstyle f}) \Big) \\ &+ \frac{1}{2} \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}} \left[\left(\vec{x}(t) - \vec{r}(t) \right)^{\! \mathrm{\scriptscriptstyle T}} \, Q(t) \Big(\vec{x}(t) - \vec{r}(t) \Big) + \vec{u}^{\scriptscriptstyle T}(t) R(t) \vec{u}(t) \right] dt \end{split}$$

هدف: ۱- نزدیک کردن موقعیت متغیرهای سیستم در کلیه زمانها به مقدار مسیر هدف یا فرمان $ec{r}(t)$ است (با ماتریس Q)

(R - 1) مصرف کم انرژی (با ماتریس R

۳- رساندن شرایط نهایی به صفر (با ماتریس H)

H, Q: real symmetric positive semi-definite matrix

R: real symmetric positive definite matrix

تابع هميلتونين:

$$\begin{split} \mathcal{H} &= g + \vec{p}^T \vec{a} \\ &= \frac{1}{2} \Big(\vec{x}(t) - \vec{r}(t) \Big)^T \, Q(t) \Big(\vec{x}(t) - \vec{r}(t) \Big) + \frac{1}{2} \, \vec{u}^T(t) R(t) \vec{u}(t) \\ &+ \vec{p}^T \left(A(t) \, \vec{x}(t) + B(t) \, \vec{u}(t) \right) \end{split}$$

معادلات حالت و شبه حالت:

$$\dot{\vec{x}} = \frac{\partial \mathcal{H}}{\partial \vec{p}} = \vec{a} = A \vec{x}(t) + B u(t)$$

$$\dot{\vec{p}} = -\frac{\partial \mathcal{H}}{\partial \vec{x}} = -Q(\vec{x} - \vec{r}) - A^T \vec{p}$$

معادله كنترل:

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = 0 \qquad \Rightarrow \qquad R\vec{u} + B^T\vec{p} = 0 \to \vec{u} = -R^{-1}B^T\vec{p}$$

(feedback control) $\vec{x}(t)$ با $\vec{p}(t)$ با کردن ارتباط

جایگذاری در معادلات سیستم

$$\dot{\vec{x}} = A\,\vec{x} - B\,R^{-1}\,B^T\,\vec{p}$$

$$ec{z} = egin{pmatrix} ec{x} \ ec{p} \end{pmatrix}$$
 و با تعریف

$$\dot{\vec{z}} = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \vec{z} + \begin{pmatrix} \vec{0} \\ Q\vec{r} \end{pmatrix} = A'\vec{z} + \vec{b}'(t) = A'_{2n \times 2n} \vec{z}_{2n \times 1} + \vec{b}'_{2n \times 1}$$

$$\vec{z} = A'(t) \ \vec{z} + \vec{b}'(t)$$

جواب سيستم خطى بر حسب ماتريس انتقال حالت State Trasition Matrix

$$\vec{z}(t) = \Phi(t,t_{\scriptscriptstyle 0})\,\vec{z}(t_{\scriptscriptstyle 0}) + \int_{t_{\scriptscriptstyle 0}}^t \Phi(t,\tau)\,\,\vec{b}'(\tau)\,d\tau$$

برای شرایط نهایی می شود:

$$\vec{z}(t_{\scriptscriptstyle f}) = \Phi(t_{\scriptscriptstyle f}, t) \, \vec{z}(t) + \int_t^{t_{\scriptscriptstyle f}} \Phi(t_{\scriptscriptstyle f}, \tau) \, \vec{b}'(\tau) \, d\tau$$

$$\begin{split} \overrightarrow{z}(t_f) = & \begin{pmatrix} \phi_{11}(t_f - t) & \phi_{12}(t_f - t) \\ \phi_{21}(t_f - t) & \phi_{22}(t_f - t) \end{pmatrix} \overrightarrow{z}(t) + \begin{pmatrix} f_1(t_f, t) \\ f_2(t_f, t) \end{pmatrix} \\ \Rightarrow & \begin{pmatrix} \overrightarrow{x}(t_f) \\ \overrightarrow{p}(t_f) \end{pmatrix} = \begin{pmatrix} \phi_{11}(t_f - t) & \phi_{12}(t_f - t) \\ \phi_{21}(t_f - t) & \phi_{22}(t_f - t) \end{pmatrix} \begin{pmatrix} \overrightarrow{x}(t) \\ \overrightarrow{p}(t) \end{pmatrix} + \begin{pmatrix} f_1(t_f, t) \\ f_2(t_f, t) \end{pmatrix} \end{split}$$

$$\begin{split} \vec{x}(t_{\scriptscriptstyle f}) &= \phi_{\!\scriptscriptstyle 11}(t_{\scriptscriptstyle f} - t) \vec{x}(t) + \phi_{\!\scriptscriptstyle 12}(t_{\scriptscriptstyle f} - t) \vec{p}(t) + f_{\!\scriptscriptstyle 1}(t_{\scriptscriptstyle f}, t) \\ \vec{p}(t_{\scriptscriptstyle f}) &= \phi_{\!\scriptscriptstyle 21}(t_{\scriptscriptstyle f} - t) \vec{x}(t) + \phi_{\!\scriptscriptstyle 22}(t_{\scriptscriptstyle f} - t) \vec{p}(t) + f_{\!\scriptscriptstyle 2}(t_{\scriptscriptstyle f}, t) \end{split}$$

شرط مرزى:

$$\left. \left(h_{\overrightarrow{x}} - \overrightarrow{p} \right) \right|_{*,\,t_{f}} = 0 \qquad \Rightarrow \qquad \overrightarrow{p}(t_{\scriptscriptstyle f}) = \frac{\partial h}{\partial \overrightarrow{x}_{\scriptscriptstyle f}} = H \left(\overrightarrow{x}(t_{\scriptscriptstyle f}) - \overrightarrow{r}(t_{\scriptscriptstyle f}) \right)$$

ىا معادله

$$\begin{split} \vec{p}(t_f) &= H \vec{x}(t_f) - H \vec{r}(t_f) \\ \Rightarrow \qquad \phi_{21}(t_f - t) \vec{x}(t) + \phi_{22}(t_f - t) \vec{p}(t) + f_2(t_f, t) = \\ &\quad H \left[\phi_{11}(t_f - t) \vec{x}(t) + \phi_{12}(t_f - t) \vec{p}(t) + f_1(t_f, t) \right] - H \vec{r}(t_f) \\ \Rightarrow \qquad \left[\phi_{22}(t_f - t) - H \phi_{12}(t_f - t) \right] \vec{p}(t) = \left[H \phi_{11}(t_f - t) - \phi_{21}(t_f - t) \right] \vec{x}(t) + \\ &\quad H f_1(t_f, t) - H \vec{r}(t_f) - f_2(t_f, t) \\ \Rightarrow \qquad \vec{p}(t) = \left[\phi_{22}(t_f - t) - H \phi_{12}(t_f - t) \right]^{-1} \left\{ \left[H \phi_{11}(t_f - t) - \phi_{21}(t_f - t) \right] \vec{x}(t) + \\ &\quad + H f_1(t_f, t) - H \vec{r}(t_f) - f_2(t_f, t) \right\} \end{split}$$

پس ارتباط $\vec{p}(t)$ با $\vec{x}(t)$ به فرم زیر می شود

$$\vec{p}(t) = K(t)\vec{x}(t) + \vec{s}(t)$$

 $\vec{s}(t)$ و K(t) و پيدا کردن

راه اول (تعریف):

$$\begin{split} K_{_{n\times n}}(t) &= \left[\phi_{22}(t_{_f}-t) - H\phi_{12}(t_{_f}-t)\right]^{\!-1} \left[H\phi_{_{11}}(t_{_f}-t) - \phi_{_{21}}(t_{_f}-t)\right] \\ \vec{s}_{_{n\times 1}}(t) &= \left[\phi_{22}(t_{_f}-t) - H\phi_{_{12}}(t_{_f}-t)\right]^{\!-1} \left[Hf_{_1}(t_{_f},t) - H\vec{r}(t_{_f}) - f_{_2}(t_{_f},t)\right] \end{split}$$

راه دوم:

فرض شود فرم کلی $\vec{p}(t) = K(t) \, \vec{x}(t) + \vec{s}(t)$ وجود دارد.

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = 0 \qquad \rightarrow \qquad \vec{u} = -R^{-1} B^T \vec{p} = -R^{-1} B^T \left(K \vec{x} + \vec{s} \right)$$

ازیک طرف:

$$\dot{\vec{p}} = -\frac{\partial \mathcal{H}}{\partial \vec{x}} = -Q\,\vec{x} + Q\vec{r} - A^{T}\vec{p} = \left(-Q - A^{T}K\right)\vec{x} - A^{T}\vec{s} + Q\vec{r}$$

ازطرف دیگر:

$$\begin{split} \vec{p}(t) &= K(t)\,\vec{x}(t) + \vec{s}(t) \quad \Rightarrow \quad \dot{\vec{p}} = \dot{K}\,\vec{x} + K\,\dot{\vec{x}} + \dot{\vec{s}} \\ \dot{\vec{x}} &= A\,\vec{x} + B\,\vec{u} = A\,\vec{x} - B\,R^{-1}\,B^T\left(K\,\vec{x} + \vec{s}\right) \\ &\Rightarrow \dot{\vec{p}} = \dot{K}\,\vec{x} + K\left(A\,\vec{x} - B\,R^{-1}\,B^TK\,\vec{x} - B\,R^{-1}\,B^T\vec{s}\right) + \dot{\vec{s}} \end{split}$$

$$\Rightarrow \begin{cases} \dot{K} + KA + A^{T}K - KBR^{-1}B^{T}K + Q = 0\\ \dot{\vec{s}} + A^{T}\vec{s} - KBR^{-1}B^{T}\vec{s} - Q\vec{r} = \vec{0} \end{cases}$$

شرط مرزی:

$$\vec{p}(t_{\scriptscriptstyle f}) = \frac{\partial h}{\partial \vec{x}} = H \vec{x}(t_{\scriptscriptstyle f}) - H \vec{r}(t_{\scriptscriptstyle f}) \qquad \Rightarrow \qquad \begin{cases} K(t_{\scriptscriptstyle f}) = H \\ \vec{s}(t_{\scriptscriptstyle f}) = -H \vec{r}(t_{\scriptscriptstyle f}) \end{cases}$$

بحث های مربوط به ${
m K}$ مثل قبل برقرار است.

نحوه حل:

ا- معادله ${
m K}$ و ${
m s}$ از انتها حل می شود.

$$\begin{cases} \dot{K} = -KA - A^TK + KB\,R^{-1}\,B^TK - Q & K(t_f) = H \\ \dot{\vec{s}} = -A^T\vec{s} + KB\,R^{-1}\,B^T\vec{s} + Q\vec{r} & \vec{s}(t_f) = -H\vec{r}(t_f) \end{cases}$$

۲- ماتریس فیدبک خطی از متغیرهای حالت و فیدفوروارد حاصل می شود.

۳- سیستم اصلی با فیدبک و فیدفوروارد شبیه سازی می شود (به ازای هر شرط اولیه ای)

اگر ماتریسهای A و B و بردار \vec{r} تابعی از زمان نباشند، \vec{s} هم بهسمت عدد ثابت میل می کند.

ولی اگر بردار \vec{r} تابعی از زمان باشند (مثلا خطی)، \vec{s} هم بهسمت عدد ثابت میل نمی کند.

قیود نامساوی کنترل و حالت

Pontryagin Minimum Principle

تا حالا فرض بر این بود که سیگنال کنترل و متغیرهای حالت محدود نباشند

اگر قید مساوی برای کنترل یا حالت داشتیم:

۱- جایگذاری مستقیم (حذف همان تعداد کنترل یا حالت)

۲- استفاده از ضرایب لاگرانژ (ضرایب لاگرانژ جدید و معادلات جدید)

۳- استفاده از توابع جریمه (Penalty Function) در روش های عددی پرداخته می شود.

قيود نامساوي سيگنال كنترل

$$\begin{split} \min \ J(\vec{u}(t)) &= h(\vec{x}(t_{\scriptscriptstyle f}), t_{\scriptscriptstyle f}) + \int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}} g(\vec{x}(t), \vec{u}(t), t) \, dt \\ \text{subject to } \dot{\vec{x}}(t) &= \vec{a} \left(\vec{x}(t), \vec{u}(t), t \right) \\ u_{\scriptscriptstyle i \min} &\leq u_{\scriptscriptstyle i} \leq u_{\scriptscriptstyle i \max}; \qquad i = 1, 2, \dots, m \end{split}$$

هدف اصلی این بود که سیگنال کنترلی پیدا شود که:

$$\delta J(\vec{u}^*, \delta \vec{u}) = J(\vec{x}^*, \vec{p}^*, \vec{u}, t) - J(\vec{x}^*, \vec{p}^*, \vec{u}^*, t)$$

= $J(\vec{x}^*, \vec{p}^*, \vec{u}^* + \delta \vec{u}, t) - J(\vec{x}^*, \vec{p}^*, \vec{u}^*, t) \ge 0$

از قبل برای تغییرات داریم:

$$\begin{split} \delta J &= \int_{t_0}^{t_f} \biggl[(\frac{\partial \mathcal{H}}{\partial \vec{x}} + \dot{\vec{p}})^T \, \delta \vec{x} + (\frac{\partial \mathcal{H}}{\partial \vec{u}})^T \delta \vec{u} + (\frac{\partial \mathcal{H}}{\partial \vec{p}} - \dot{\vec{x}})^T \delta \vec{p} \biggr] \, dt \\ & \left(h_{\vec{x}} - \vec{p} \right)_{*,t_f}^T \, \delta \vec{x}_f + \left(\mathcal{H} + h_t \right)_{*,t_f} \, \delta t_f \end{split}$$

اگر معادلات زیر:

$$\begin{split} \dot{\vec{x}}^* &= \frac{\partial \mathcal{H}}{\partial \vec{p}} = \vec{a}(\vec{x}^*, \vec{u}^*, t) \\ \dot{\vec{p}}^* &= -\frac{\partial \mathcal{H}}{\partial \vec{x}} = \vec{a}_p(\vec{x}^*, \vec{u}^*, \vec{p}^*, t) \end{split}$$

به همراه شروط مرزی

$$\left(h_{\vec{x}} - \vec{p}\right)_{*,t_f}^T \delta \vec{x}_f + \left(\mathcal{H} + h_t\right)_{*,t_f} \delta t_f = 0$$

ارضا شوند، ترم زیر می ماند:

$$\delta J = \int_{t_0}^{t_f} \left(\frac{\partial \mathcal{H}}{\partial \vec{u}}\right)^T \delta \vec{u} \ dt \ge 0$$

پس در کل مسیر باید (چون کنترل در زمان های متفاوت مستقل از هم هستند):

$$(\frac{\partial \mathcal{H}}{\partial \vec{u}})^T \delta \vec{u} \ge 0 \quad \Rightarrow \quad \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}, t) - \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}^*, t) \ge 0$$
$$\Rightarrow \quad \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}, t) \ge \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}^*, t)$$

Pontryagin's minimum principle

و چون سیگنال های کنترل هم مستقل هستند:

$$\begin{split} \frac{\partial \mathcal{H}}{\partial u_i} \delta u_i &\geq 0; & i = 1, 2, \dots, \mathbf{m} \\ \frac{\partial \mathcal{H}}{\partial u_i} \Big(u_i - u_i^* \Big) &\geq 0; & i = 1, 2, \dots, \mathbf{m} \\ \\ \frac{\partial \mathcal{H}}{\partial u_i} &= 0 & \text{ in the position of } \mathbf{u}_i \\ \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}, t) &\geq \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}^*, t) \end{split}$$

باتوجه به نوع قید (side constraint) که محدوده سیگنال مشخص شده است:

$$u_{i\min} \leq u_{i} \leq u_{i\max} \xrightarrow{\text{in the current condition}} \begin{cases} \frac{\partial \mathcal{H}}{\partial u_{i}} < 0 & u_{i} = u_{i\max} \\ \frac{\partial \mathcal{H}}{\partial u_{i}} = 0 & \mathcal{H} \text{ is not a function of } u_{i} \\ \frac{\partial \mathcal{H}}{\partial u_{i}} > 0 & u_{i} = u_{i\min} \end{cases}$$

مثل بهینه سازی:

مثال:

 $\ddot{x} + \dot{x} = u$ سیستم (همان سیستم قبلی

$$\begin{split} \dot{x}_{\!\scriptscriptstyle 1}(t) &= x_{\!\scriptscriptstyle 2}(t) \\ \dot{x}_{\!\scriptscriptstyle 2}(t) &= -x_{\!\scriptscriptstyle 2}(t) + u(t) \end{split}$$

تابع هزينه:

$$J(u) = \frac{1}{2} \int_{t_0}^{t_f} \left[x_1^2(t) + u^2(t) \right] dt$$

به علاوه شروط مرزی

عميلتونين:

$$\mathcal{H}\Big(\vec{x}(t), u(t), \vec{p}(t)\Big) = \frac{1}{2}x_1^2(t) + \frac{1}{2}u^2(t) + p_1(t)x_2(t) - p_2(t)x_2(t) + p_2(t)u(t)$$

$$\begin{split} \dot{p}_{\scriptscriptstyle 1}(t) &= -\frac{\partial \mathcal{H}}{\partial x_{\scriptscriptstyle 1}} = -x_{\scriptscriptstyle 1}(t) \\ \dot{p}_{\scriptscriptstyle 2}(t) &= -\frac{\partial \mathcal{H}}{\partial x_{\scriptscriptstyle 2}} = -p_{\scriptscriptstyle 1}(t) + p_{\scriptscriptstyle 2}(t) \end{split}$$

شرط بهینگی

$$\frac{\partial \mathcal{H}}{\partial u} = u(t) + p_2(t)$$

اگر قید روی کنترل نداشته باشیم:

$$u(t) = -p_2(t)$$

اگر قید کنترلی زیر وجود داشته باشد:

$$-1 \leq u(t) \leq +1 \quad \text{ for all } t \in \left[t_{\scriptscriptstyle 0}, t_{\scriptscriptstyle f}\right]$$

معادله بالا مي شود:

$$u(t) = \begin{cases} -1, & \text{for } 1 < p_2(t) \\ -p_2(t), & \text{for } -1 \leq p_2(t) \leq 1 \\ +1, & \text{for } p_2(t) < -1 \end{cases}$$

قيود نامساوي متغيرهاي حالت

$$\begin{split} \min \ J(\vec{u}(t)) &= h(\vec{x}(t_{_f}), t_{_f}) + \int_{t_0}^{t_{_f}} g(\vec{x}(t), \vec{u}(t), t) \, dt \\ \text{subject to} \ \dot{\vec{x}}(t) &= \vec{a} \left(\vec{x}(t), \vec{u}(t), t \right) \\ \vec{f}_{_{\!\!\!\text{I}\!\!\times\!\!1}}(\vec{x}(t), t) &\leq \vec{0} \qquad \text{or} \qquad f_{_i}(\vec{x}(t), t) \leq 0, i = 1, 2, \dots, l \end{split}$$

 x_{n+1} عریف متغیر جدید

$$\dot{x}_{n+1}(t) = \sum_{i=1}^{l} f_i^2(\vec{x}(t), t) \ 1(f_i) = a_{n+1}(\vec{x}(t), t)$$

تابه یله:

$$1(f_i) = \begin{cases} 1 & f_i > 0 \\ 0 & f_i \le 0 \end{cases}$$

باتوجه به رابطه

$$x_{{\scriptscriptstyle n+1}}(t) = x_{{\scriptscriptstyle n+1}}(t_{{\scriptscriptstyle 0}}) + \int_{t_{{\scriptscriptstyle 0}}}^t \dot{x}_{{\scriptscriptstyle n+1}}(t) \, dt$$

اگر دو شرط زیر برقرار باشد، یعنی تمام قیود ارضا شده اند:

$$x_{n+1}(t_0) = 0$$
$$x_{n+1}(t_f) = 0$$

$$\mathcal{H} = g + \vec{p}^{\scriptscriptstyle T} \vec{a} + p_{\scriptscriptstyle n+1} a_{\scriptscriptstyle n+1}$$

تمام معادلات مشابه قبل است.

$$\dot{p}_{\scriptscriptstyle n+1} = -\frac{\partial \mathcal{H}}{\partial x_{\scriptscriptstyle n+1}} = 0 \quad \Rightarrow \qquad p_{\scriptscriptstyle n+1} = {\rm constant}$$

مساله کمینه زمان Minimum Time

min
$$J(\vec{u}(t)) = t_{f} - t_{0} = \int_{t_{0}}^{t_{f}} dt$$

subject to $\dot{\vec{x}}(t) = \vec{a}(\vec{x}(t), \vec{u}(t), t)$

$$u_{i\min} \le u_i \le u_{i\max}; \quad i = 1, 2, ..., m$$

آیا دو مساله زیر فرق دارند؟

$$h(\vec{x}(t_f), t_f) = t_f - t_0$$
$$g(\vec{x}(t), \vec{u}(t), t) = 1$$

سیستم های خطی نسبت به کنترل

$$\dot{\vec{x}}(t) = \vec{a} \left(\vec{x}(t), t \right) + \mathbf{B}(\vec{x}(t), t) \, \vec{u}(t)$$

 $B_{n\times m}(\vec{x}(t),t)$

هميلتونين:

$$\mathcal{H}(\vec{x}, \vec{p}, \vec{u}, t) = 1 + \vec{p}^{T} \left(\vec{a} \left(\vec{x}(t), t \right) + \mathbf{B}(\vec{x}(t), t) \, \vec{u}(t) \right)$$

با استفاده از Pontryagin's minimum principle در کل مسیر باید:

$$\mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}, t) \ge \mathcal{H}(\vec{x}^*, \vec{p}^*, \vec{u}^*, t)$$

یا

$$\frac{\partial \mathcal{H}}{\partial u_{i}} \left(u_{i} - u_{i}^{*} \right) \geq 0; \qquad i = 1, 2, \dots, m$$

چون نسبت به u خطی است، پس فقط شیب خط مهم است.

سى خط نسىت به u

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = \mathbf{B}^{T}(\vec{x}(t), t) \, \vec{p}(t)$$

را می توان به فرم زیر نوشت: $\mathrm{B}(\vec{x}(t),t)$

$$\mathbf{B}_{_{\!n\!\times\!m}}(\vec{x}(t),t) = \begin{bmatrix} \vec{b}_{_{\!1}}(\vec{x}(t),t) & \vec{b}_{_{\!2}}(\vec{x}(t),t) & \cdots & \vec{b}_{_{\!m}}(\vec{x}(t),t) \end{bmatrix}$$

ها بردارهای $n \times 1$ هستند \vec{b}

نتيجتا

$$\frac{\partial \mathcal{H}}{\partial u_{i}} = \vec{b}_{i}^{T}(\vec{x}(t), t) \, \vec{p}(t)$$

و معادله کنترل:

$$\boldsymbol{u}_{_{i}}^{^{*}} = \begin{cases} \boldsymbol{u}_{_{i\max}} & \quad & \vec{b}_{_{i}}^{^{T}}(\vec{x}(t),t)\,\vec{p}(t) < 0 \\ \text{undetrmined} & \quad & \vec{b}_{_{i}}^{^{T}}(\vec{x}(t),t)\,\vec{p}(t) = 0 \\ \boldsymbol{u}_{_{i\min}} & \quad & \vec{b}_{_{i}}^{^{T}}(\vec{x}(t),t)\,\vec{p}(t) > 0 \end{cases}$$

به این جواب Bang-Bang گفته می شود

متغیرهای حالت قابل دستیابی Reachable States

حداکثر کنترل (ماکزیمم یا مینیمم) که اعمال شود، باز هم در زمان های خاصی امکان دستیابی به متغیرهای حالت خاصی هست.

مثال:

$$\dot{x} = u$$
$$-1 \le u \le +1$$

جواب تابع u

$$x(t) = x_0 + \int_0^t u(\tau)d\tau$$

باتوجه به محدوده u می توان نوشت

$$x_0 - t \le x(t) \le x_0 + t$$

x امکان دارد هیچ زمانی را نتوان پیدا کرد که برخی متغیرهای حالت قابل دستیابی باشند. اگر x نهایی چنین جایی باشد، مساله زمان بهینه جواب ندارد.

مثال:

$$\dot{x} = -x + u$$
$$-1 < u < +1$$

جواب تابع u

$$x(t)=e^{-t}x_{_0}+\int_{_0}^te^{-(t-\tau)}u(\tau)d\tau$$

باتوجه به محدوده u می توان نوشت

$$e^{-t}x_0 + e^{-t} - 1 \le x(t) \le e^{-t}x_0 - e^{-t} + 1$$

$$\begin{array}{lll} u = +1 & \Rightarrow & \dot{x} = -x + 1 & \Rightarrow & x(t) = e^{-t}x_0 - e^{-t} + 1 \leq \max(x_0, 1) \\ \\ u = +1 & \Rightarrow & \dot{x} = -x - 1 & \Rightarrow & x(t) = e^{-t}x_0 + e^{-t} - 1 \leq \max(x_0, -1) \end{array}$$

مساله زمان كمينه سيستم خطى ثابت با زمان

$$\min\ J(\vec{u}(t))=t_{\scriptscriptstyle f}-t_{\scriptscriptstyle 0}=\int_{t_{\scriptscriptstyle 0}}^{t_{\scriptscriptstyle f}}dt$$

subject to $\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t)$

$$u_{i\min} \le u_i \le u_{i\max}; \quad i = 1, 2, ..., m$$

مشابه مساله قبل است. فقط نكات زير را دارد:

۱- اگر سیستم ناپایدار نباشد (مقدار حقیقی مقادیر ویژه منفی یا صفر باشد)، جواب بهینه برای رساندن سیستم به مبدا (Requlator)

- وجود دارد
- ىكتا است

۲- اگر مقادیر ویژه حقیقی باشند (بخش موهومی نداشته باشند و یعنی پاسخ نوسانی نباشد) تعداد سوئیچ بین ماکزیمم-مینیمم حداکثر n-1 است.

مثال: رساندن سیستم زیر از هر شرط ابتدایی به مبدا در مینیمم زمان

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = u(t) \end{cases} \qquad A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|u(t)| \leq 1$$

$$\mathcal{H}\big(\vec{x}(t),u(t),\vec{p}(t)\big) = 1 + p_{\scriptscriptstyle 1}(t)x_{\scriptscriptstyle 2}(t) + p_{\scriptscriptstyle 2}(t)u(t)$$

$$u(t) = \begin{cases} -1, & \text{for } p_2(t) > 0 \\ +1, & \text{for } p_2(t) < 0 \end{cases} \triangleq -\operatorname{sgn}\left(p_2(t)\right)$$

معادله شبه حالت:

$$\begin{split} \dot{p}_{\scriptscriptstyle 1}(t) &= 0 \qquad \Rightarrow \qquad p_{\scriptscriptstyle 1}(t) = c_{\scriptscriptstyle 1} \\ \dot{p}_{\scriptscriptstyle 2}(t) &= -p_{\scriptscriptstyle 1}(t) \Rightarrow \qquad p_{\scriptscriptstyle 2}(t) = -c_{\scriptscriptstyle 1}t + c_{\scriptscriptstyle 2} \end{split}$$

باتوجه به این جواب، حداکثر یکدفعه امکان دارد $p_{_{0}}$ تغییر علامت دهد

نتیجتا کنترل حداثکر یکی از حالتهای زیر است:

$$u^* = \begin{cases} +1, & \text{ for all } t \in \left[t_0, t^*\right], \text{ or } \\ -1, & \text{ for all } t \in \left[t_0, t^*\right], \text{ or } \\ +1, & \text{ for } t \in \left[t_0, t_1\right), \text{ and } -1, \text{ for } t \in \left[t_1, t^*\right], \text{ or } \\ -1, & \text{ for } t \in \left[t_0, t_1\right), \text{ and } +1, \text{ for } t \in \left[t_1, t^*\right] \end{cases}$$

 $u=\pm 1$ جواب سیستم در اثر کنترل

$$\begin{cases} x_2(t) = \pm t + c_3 \\ x_1(t) = \pm \frac{1}{2} t^2 + c_3 t + c_4 \end{cases}$$

رسم در فضای فاز:

$$x_{\!\scriptscriptstyle 1}(t) = \frac{1}{2} \, x_{\!\scriptscriptstyle 2}^2(t) + c_{\!\scriptscriptstyle 5}, \quad \text{ for } u = +1$$

$$x_{\!\scriptscriptstyle 1}(t) = -\frac{1}{2} \, x_{\!\scriptscriptstyle 2}^2(t) + c_{\!\scriptscriptstyle 6}, \quad \text{ for } u = -1$$

مسیری که سیستم را به مبدا میرساند

$$x_{_{\! 1}}(t) = -\frac{1}{2}\,x_{_{\! 2}}(t) \Big| x_{_{\! 2}}(t) \Big|$$

نمونه مسیرها:

منحنى سوئيچ (Switching curve)

$$s(\overrightarrow{x}(t)) \triangleq x_{\scriptscriptstyle 1}(t) + \frac{1}{2} x_{\scriptscriptstyle 2}(t) \Big| x_{\scriptscriptstyle 2}(t) \Big|$$

$$u^* = \begin{cases} -1, & \text{for } \vec{x}(t) \text{ such that } s(\vec{x}(t)) > 0 \\ +1, & \text{for } \vec{x}(t) \text{ such that } s(\vec{x}(t)) < 0 \\ -1, & \text{for } \vec{x}(t) \text{ such that } s(\vec{x}(t)) = 0 \text{ and } x_2(t) > 0 \\ +1, & \text{for } \vec{x}(t) \text{ such that } s(\vec{x}(t)) = 0 \text{ and } x_2(t) < 0 \\ 0, & \text{for } \vec{x}(t) = \vec{0} \end{cases}$$

مساله کمینه تلاش کنترلی Minimum Control Effort

$$\min \ J(\vec{u}(t)) = \int_{t_0}^{t_f} \sum_{i=1}^m w_i \left| u_i \right| dt$$

subject to
$$\dot{\vec{x}}(t) = \vec{a}\left(\vec{x}(t), \vec{u}(t), t\right)$$

$$u_{i\min} \le u_i \le u_{i\max}; \quad i = 1, 2, ..., m$$

وزن بین کنترل ها w_i

در خیلی از سیستمها
$$\left|u_{i}
ight|$$
 واقعی تر از u_{i}^{2} است.

ولی همیلتونین نسبت به u خطی می شود

سیستم های خطی نسبت به کنترل

$$\dot{\vec{x}}(t) = \vec{a}(\vec{x}(t), t) + B(\vec{x}(t), t)\vec{u}(t)$$

 $B_{n\times m}(\vec{x}(t),t)$

هميلتونين:

$$\mathcal{H}(\vec{x},\vec{p},\vec{u},t) = \sum_{i=1}^{m} w_{_{i}} \left| u_{_{i}} \right| + \vec{p}^{^{T}} \left(\vec{a} \left(\vec{x}(t),t \right) + \mathbf{B}(\vec{x}(t),t) \, \vec{u}(t) \right)$$

چون نسبت به u خطی است، پس فقط شیب خط مهم است.

$$\frac{\partial \mathcal{H}}{\partial \vec{u}} = \pm \vec{w} + \mathbf{B}^{T}(\vec{x}(t), t) \, \vec{p}(t)$$

ا می توان به فرم زیر نوشت: $\mathrm{B}(\vec{x}(t),t)$

$$\mathbf{B}_{n \times m}(\vec{x}(t), t) = \begin{bmatrix} \vec{b}_1(\vec{x}(t), t) & \vec{b}_2(\vec{x}(t), t) & \cdots & \vec{b}_m(\vec{x}(t), t) \end{bmatrix}$$

هستند $n \times 1$ هستند آغ ها بردارهای

نتبحتا

$$\frac{\partial \mathcal{H}}{\partial u_{_{i}}} = \pm \, w_{_{i}} + \vec{b}_{_{i}}^{\,T}(\vec{x}(t),t)\,\vec{p}(t) = \begin{cases} +\,w_{_{i}} + \vec{b}_{_{i}}^{\,T}(\vec{x}(t),t)\,\vec{p}(t) & u_{_{i}} > 0 \\ -\,w_{_{i}} + \vec{b}_{_{i}}^{\,T}(\vec{x}(t),t)\,\vec{p}(t) & u_{_{i}} < 0 \end{cases}$$

 $u_{i_{
m max}}>0$ فرض می شود که $u_{i_{
m min}}<0$ فرض می

نتيجتا معادله كنترل مي شود:

$$u_{i}^{*} = \begin{cases} u_{i\text{max}} & \vec{b}_{i}^{T}(\vec{x}(t),t) \, \vec{p}(t) < -w_{i} \\ u_{i\text{min}} & \vec{b}_{i}^{T}(\vec{x}(t),t) \, \vec{p}(t) > w_{i} \\ 0 & -w_{i} < \vec{b}_{i}^{T}(\vec{x}(t),t) \, \vec{p}(t) < w_{i} \\ \text{undetrmined nonnegative} & \vec{b}_{i}^{T}(\vec{x}(t),t) \, \vec{p}(t) = -w_{i} \\ \text{undetrmined nonpositive} & \vec{b}_{i}^{T}(\vec{x}(t),t) \, \vec{p}(t) = w_{i} \end{cases}$$

به این جواب Bang-off-Bang گفته می شود

