Anomalous propagators and the particle-particle correlation channel of many-body perturbation theory

Antoine Marie, Pina Romaniello and Pierre-François Loos

Laboratoire de Chimie et Physique Quantiques, Toulouse

October 4, 2024

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

Table of Contents

- 1. Definitions, Hedin's equations and usual approximations
- 2. An alternative closed set of equations for G
- 3. The particle-particle Bethe-Salpeter equation
- 4. Conclusion and perspectives

Definitions, Hedin's equations and usual

approximations

One-body Green's function

Definition

$$G(11') = (-\mathrm{i}) \left\langle \begin{array}{c} \Psi_0^N \middle| \hat{T} \left[\begin{array}{c} \hat{\psi}(1) & \hat{\psi}^\dagger(1') \end{array} \right] \middle| \begin{array}{c} \Psi_0^N \\ N \end{array} \right\rangle$$
Field operators

N-electron ground-state

Charged excitations

Definition

$$G(11') = (-i) \left\langle \Psi_0^N \middle| \hat{T} \left[\hat{\psi}(1) \hat{\psi}^\dagger(1') \right] \middle| \Psi_0^N \right\rangle$$

Lehmann representation

$$\frac{X_{1} = (\mathbf{r}_{1}, \sigma_{1})}{G(\mathbf{x}_{1}\mathbf{x}_{1'}; \omega) = \sum_{S} \frac{\mathcal{I}_{S}(\mathbf{x}_{1})\mathcal{I}_{S}^{*}(\mathbf{x}_{1'})}{\omega - (E_{0}^{N} - E_{S}^{N-1}) - i\eta} + \sum_{S} \frac{\mathcal{A}_{S}(\mathbf{x}_{1})\mathcal{A}_{S}^{*}(\mathbf{x}_{1'})}{\omega - (E_{S}^{N+1} - E_{0}^{N}) + i\eta}}$$
S-th ionization potentials

The Dyson equation

$$G(11') = G_0(11') + \int d(22') G_0(12) \sum_{\text{(22')}} G(2'1')$$
Self-energy

The Dyson equation

$$G(11') = G_0(11') + \int d(22') G_0(12) \Sigma(22') G(2'1')$$

$$=$$
 $+$ $+$ \sum

The Dyson equation

$$\begin{split} \textit{G}(11') &= \textit{G}_0(11') + \int d(22')\,\textit{G}_0(12)\Sigma(22')\textit{G}_0(2'1') \\ &+ \int d(22'33')\,\textit{G}_0(12)\Sigma(22')\textit{G}_0(2'3)\Sigma(33')\textit{G}_0(3'1') + \dots \end{split}$$

$$= \longrightarrow + \longrightarrow (\Sigma) \longrightarrow + \longrightarrow (\Sigma) \longrightarrow (\Sigma) \longrightarrow + \cdot$$

The Dyson equation

$$G(11') = G_0(11') + \int d(22') G_0(12) \Sigma(22') G(2'1')$$

An exact expression for the self-energy

Another exact formalism

Self-consistent set of equations

$$\begin{split} & \textbf{G}(11') = \textit{G}_0(11') + \textit{G}_0(12)\Sigma(22')\textbf{G}(2'1') \\ & \Sigma(11') = \Sigma_{\text{H}}(11') + i \int d(22'33') \ \textit{V}(12;2'3)\textbf{G}(2'3')\Gamma(3'3;1'2) \\ & \Gamma(12;1'2') = \delta(12')\delta(1'2) + \int d(33'44') \, \frac{\delta\Sigma(11')}{\delta\textbf{G}(33')} \textbf{G}(34)\textbf{G}(4'3')\Gamma(42;4'2') \end{split}$$

A few iterations

Initial condition

$$\Sigma^{(0)}(11') = 0$$

$$\Rightarrow$$

$$\frac{\delta\Sigma^{(0)}(11')}{\delta G(33')} = 0$$

First iteration

$$\Gamma^{(1)}(12 \cdot 1'2') = \delta(12)$$

$$\Gamma^{(1)}(12;1'2') = \delta(12')\delta(1'2) \qquad \Sigma^{(1)}(11') = \Sigma_{H}(11') + i \int d(22') \ V(12;2'1') G(2'2)$$

A few iterations

Second iteration

$$\begin{split} \frac{\delta \Sigma^{(1)}(11')}{\delta G(33')} &= V(13';31') - V(13';1'3) = \bar{V}(13';31') \\ \Gamma^{(2)}(12;1'2') &= \delta(12')\delta(1'2) + \int \mathrm{d}(33'44') \, \frac{\delta \Sigma^{(1)}(11')}{\delta G(33')} G(34)G(4'3')\Gamma^{(1)}(42;4'2') \\ \Sigma^{(2)}(11') &= \Sigma_{\mathsf{Hx}}(11') + \mathrm{i} \int \mathrm{d}(22'33'44') \, \, V(12;2'3)G(2'3')\bar{V}(3'4';41')G(42)G(34) \end{split}$$

Hedin's Pentagon

Hedin, Phys Rev 139 (1965) A796

The wonderful equations of Hedin

$$\begin{split} & \underbrace{\tilde{\Gamma}(12;1'2')}_{\text{vertex}} = \delta(12')\delta(1'2) + \int G_0(12)\Sigma(22')G(2'1')\,\mathrm{d}(34) \\ \underbrace{\tilde{\Gamma}(12;1'2')}_{\text{vertex}} = \delta(12')\delta(1'2) + \int \frac{\delta\Sigma_{\text{xc}}(11')}{\delta G(33')}G(34)G(4'3')\tilde{\Gamma}(42;4'2') \\ \underbrace{\tilde{L}(12;1'2')}_{\text{polarizability}} = -\mathrm{i}\int G(13)G(3'1')\tilde{\Gamma}(32;3'2')\,\mathrm{d}(33') \\ \underbrace{W(12;1'2')}_{\text{screening}} = V(12;1'2') + \int W(14;1'4')\tilde{L}(3'4';34)V(23;2'3') \end{split}$$

$$\underbrace{\sum_{\text{xc}(12)}}_{\text{self-energy}} = i \int \mathbf{G}(33') \mathbf{W}(12'; 32) \tilde{\Gamma}(3'2; 1'2') \, d(22'33')$$

Hedin's Square

Hedin, Phys Rev 139 (1965) A796

The GW approximation

$$\begin{split} & \underbrace{\tilde{\mathbf{G}}(11') = \mathbf{G}_0(11') + \int \mathbf{G}_0(12) \Sigma(22') \tilde{\mathbf{G}}(2'1') \, \mathrm{d}(34)}_{\text{Vertex}} \\ & \underbrace{\tilde{\mathbf{\Gamma}}(12; 1'2')}_{\text{vertex}} = \delta(12') \delta(1'2) \\ & \underbrace{\tilde{\mathbf{L}}(12; 1'2')}_{\text{polarizability}} = -\mathrm{i} \mathbf{G}(12') \tilde{\mathbf{G}}(21') \\ & \underbrace{\mathbf{W}}(12; 1'2') = V(12; 1'2') + \int \mathbf{W}(14; 1'4') \tilde{\mathbf{L}}(3'4'; 34) V(23; 2'3') \\ & \underbrace{\mathbf{\Sigma}_{\text{xc}}(12)}_{\text{self-energy}} = \mathrm{i} \int \underline{\mathbf{G}}(32') \mathbf{W}(12'; 31') \, \mathrm{d}(2'3) \end{split}$$

Diagrammatic content of the *GW* **approximation**

The GW resummation

Diagrammatic content of the *GW* **approximation**

The GW resummation

$$\Sigma = +$$

Particle-particle T-matrix

Particle-particle *T*-matrix

Electron-hole *T*-matrix

Romaniello, Bechstedt and Reining, Phys. Rev. B 85 (2012) 155131

Particle-particle T-matrix

What's missing with respect to the GW self-energy?

Particle-particle T-matrix

What's missing with respect to the GW self-energy?

A systematic way to go beyond!

Vertex corrections to the *GW* **self-energy**

Zeroth iteration

First iteration

Mejuto-Zaera and Vlček, Phys. Rev. B 106 (2022) 165129

An alternative closed set of equations for ${\cal G}$

Key step of the derivation

Self-energy and equation of motion

$$\Sigma(11') = -i \int \frac{d(33'44') \, V(13;4'3') \, G_2(4'3';43) \, G^{-1}(41')}{\text{Two-body Green's function}}$$

Key step of the derivation

Self-energy and equation of motion

$$\Sigma(11') = -i \int \frac{d(33'44') \, V(13;4'3') \, G_2(4'3';43) \, G^{-1}(41')}{\text{Two-body Green's function}}$$

The Schwinger relation

$$G_2(12; 1'2') = -\left. \frac{\delta G(11'; [U])}{\delta U^{\text{eh}}(2'2)} \right|_{U=0} + G(11')G(22')$$

External potential

Key step of the derivation

Self-energy and equation of motion

$$\Sigma(11') = -i \int \frac{d(33'44') \, V(13;4'3') \, G_2(4'3';43) \, G^{-1}(41')}{\text{Two-body Green's function}}$$

The Schwinger relation

$$G_2(12; 1'2') = -\left. \frac{\delta G(11'; [U])}{\delta U^{\text{eh}}(2'2)} \right|_{U=0} + G(11')G(22')$$

External potential

The external potential

$$\hat{\mathcal{U}}(t_1) = \int d(\mathbf{x}_1 \mathbf{x}_{1'} t_1') \, \hat{\psi}^{\dagger}(\mathbf{x}_1) U^{\mathsf{eh}}(11') \hat{\psi}(\mathbf{x}_{1'})$$

Alternative Schwinger

Another external potential ...

$$\hat{\mathcal{U}}(t_1) = \frac{1}{2} \left(\int d(\mathbf{x}_1 \mathbf{x}_{1'} t_1') \, \hat{\psi}(\mathbf{x}_1) U^{\mathsf{hh}}(11') \hat{\psi}(\mathbf{x}_{1'}) + \int d(\mathbf{x}_1 d\mathbf{x}_{1'} t_1') \, \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) U^{\mathsf{ee}}(11') \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) \right)$$

Alternative Schwinger

Another external potential ...

$$\hat{\mathcal{U}}(t_1) = \frac{1}{2} \left(\int d(\mathbf{x}_1 \mathbf{x}_{1'} t_1') \, \hat{\psi}(\mathbf{x}_1) U^{\mathsf{hh}}(11') \hat{\psi}(\mathbf{x}_{1'}) + \int d(\mathbf{x}_1 d\mathbf{x}_{1'} t_1') \, \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) U^{\mathsf{ee}}(11') \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) \right)$$

...leading to an alternative Schwinger relation

Anomalous propagator

$$G_2(12;1'2') = -2 \left. rac{\delta \left. rac{\mathsf{G^{ee}}(1'2')}{\delta \mathit{U^{hh}}(12)} \right|_{\mathit{U}=0}}{} \right|_{\mathit{U}=0}$$

Description of a non-number conserving Hamiltonian

Anomalous propagators

$$\mathsf{G}^{\mathsf{hh}}(11') = (-\mathrm{i}) \, \langle \Psi_0 | \hat{\mathcal{T}} \Big[\hat{\psi}(1) \hat{\psi}(1') \Big] | \Psi_0 \rangle \qquad \mathsf{G}^{\mathsf{ee}}(11') = (-\mathrm{i}) \, \langle \Psi_0 | \hat{\mathcal{T}} \Big[\hat{\psi}^\dagger(1) \hat{\psi}^\dagger(1') \Big] | \Psi_0 \rangle$$

Description of a non-number conserving Hamiltonian

Anomalous propagators

$$\label{eq:Ghh} \textit{G}^{\text{hh}}(11') = (-\mathrm{i}) \, \langle \Psi_0 | \hat{\mathcal{T}} \Big[\hat{\psi}(1) \hat{\psi}(1') \Big] | \Psi_0 \rangle \qquad \textit{G}^{\text{ee}}(11') = (-\mathrm{i}) \, \langle \Psi_0 | \hat{\mathcal{T}} \Big[\hat{\psi}^\dagger(1) \hat{\psi}^\dagger(1') \Big] | \Psi_0 \rangle$$

Nambu formalism and the Gorkov propagator

$$\mathbf{G}(11') = (-i) \langle \Psi_0 | \hat{\mathcal{T}} \begin{bmatrix} (\hat{\psi}(1)\hat{\psi}^{\dagger}(1') & \hat{\psi}(1)\hat{\psi}(1') \\ \hat{\psi}^{\dagger}(1)\hat{\psi}^{\dagger}(1') & \hat{\psi}^{\dagger}(1)\hat{\psi}(1') \end{bmatrix} | \Psi_0 \rangle = \begin{pmatrix} G^{\text{he}}(11') & G^{\text{hh}}(11') \\ G^{\text{ee}}(11') & G^{\text{eh}}(11') \end{pmatrix}.$$

Description of a non-number conserving Hamiltonian

Anomalous propagators

$$\mathsf{G}^{\mathsf{hh}}(11') = (-\mathrm{i}) \, \langle \Psi_0 | \hat{\mathcal{T}} \Big[\hat{\psi}(1) \hat{\psi}(1') \Big] | \Psi_0 \rangle \qquad \mathsf{G}^{\mathsf{ee}}(11') = (-\mathrm{i}) \, \langle \Psi_0 | \hat{\mathcal{T}} \Big[\hat{\psi}^\dagger(1) \hat{\psi}^\dagger(1') \Big] | \Psi_0 \rangle$$

Nambu formalism and the Gorkov propagator

$$\mathbf{G}(11') = (-i) \langle \Psi_0 | \hat{\mathcal{T}} \begin{bmatrix} (\hat{\psi}(1)\hat{\psi}^{\dagger}(1') & \hat{\psi}(1)\hat{\psi}(1') \\ \hat{\psi}^{\dagger}(1)\hat{\psi}^{\dagger}(1') & \hat{\psi}^{\dagger}(1)\hat{\psi}(1') \end{bmatrix} | \Psi_0 \rangle = \begin{pmatrix} G^{\text{he}}(11') & G^{\text{hh}}(11') \\ G^{\text{ee}}(11') & G^{\text{eh}}(11') \end{pmatrix}.$$

Strategy

Derive a closed set of equations for the Gorkov propagator and then take the number-conserving limit.

The particle-particle Hedin's equations

A new set of equations

$$\begin{split} & \mathbf{G}(12) = G_0(12) + \int G_0(13) \Sigma(34) \mathbf{G}(42) \, \mathrm{d}(34) \\ & \tilde{\Gamma}(12; 1'2') = \frac{1}{2} \left(\delta(1'2) \delta(2'1) - \delta(1'1) \delta(2'2) \right) - \left. \frac{\delta \Sigma_{\mathsf{c}}^{\mathsf{ee}}(1'2')}{\delta \mathsf{G}^{\mathsf{ee}}(33')} \right|_{U=0} \mathbf{G}(43) \mathbf{G}(4'3') \tilde{\Gamma}(12; 44') \\ & \tilde{\mathbf{K}}(12; 1'2') = \mathrm{i} \mathbf{G}(31') \mathbf{G}(3'2') \tilde{\Gamma}(12; 33') \\ & \mathbf{T}(12; 1'2') = - \bar{V}(12; 1'2') - \mathbf{T}(12; 33') \tilde{\mathbf{K}}(33'; 44') \bar{V}(44'; 1'2') \\ & \Sigma(11') = \mathrm{i} \mathbf{G}(2'2) \mathbf{T}(12; 33') \tilde{\Gamma}(33'; 2'1') \end{split}$$

The particle-particle vertex

The T-matrix as a first approximation

$$\begin{split} \mathbf{G}(12) &= G_0(12) + \int G_0(13) \Sigma(34) \mathbf{G}(42) \, \mathrm{d}(34) \\ \tilde{\Gamma}(12; 1'2') &= \frac{1}{2} \left(\delta(1'2) \delta(2'1) - \delta(1'1) \delta(2'2) \right) \\ \tilde{K}(12; 1'2') &= \frac{\mathrm{i}}{2} \left(\mathbf{G}(12') \mathbf{G}(21') - \mathbf{G}(22') \mathbf{G}(11') \right) \\ \mathbf{T}(12; 1'2') &= -\bar{V}(12; 1'2') - \mathbf{T}(12; 33') \tilde{K}(33'; 44') \bar{V}(44'; 1'2') \\ \Sigma(11') &= \mathrm{i} \mathbf{G}(2'2) \mathbf{T}(12; 1'2') \end{split}$$

The particle-particle vertex

The T-matrix as a first approximation

$$\begin{split} \mathbf{G}(12) &= G_0(12) + \int G_0(13) \Sigma(34) \mathbf{G}(42) \, \mathrm{d}(34) \\ \tilde{\Gamma}(12; 1'2') &= \frac{1}{2} \left(\delta(1'2) \delta(2'1) - \delta(1'1) \delta(2'2) \right) \\ \tilde{K}(12; 1'2') &= \frac{\mathrm{i}}{2} \left(\mathbf{G}(12') \mathbf{G}(21') - \mathbf{G}(22') \mathbf{G}(11') \right) \\ \mathbf{T}(12; 1'2') &= -\bar{V}(12; 1'2') - \mathbf{T}(12; 33') \tilde{K}(33'; 44') \bar{V}(44'; 1'2') \\ \Sigma(11') &= \mathrm{i} \mathbf{G}(2'2) \mathbf{T}(12; 1'2') \end{split}$$

Vertex corrections to the GT self-energy

Zeroth iteration

Vertex corrections to the GT self-energy

Zeroth iteration

Second iteration: outer and inner corrections

The particle-particle Bethe-Salpeter equation

Two-body Bethe-Salpeter equations

The electron-hole Bethe-Salpeter equation

$$L(12;1'2') = L_0(12;1'2') + \int d(3456) L_0(14;1'3) \Xi^{\text{eh}}(36;45) L(52;62').$$

Two-body Bethe-Salpeter equations

The electron-hole Bethe-Salpeter equation

$$L(12;1'2') = L_0(12;1'2') + \int d(3456) L_0(14;1'3) \Xi^{\text{eh}}(36;45) L(52;62').$$

The particle-particle Bethe-Salpeter equation

$$\textit{K}(12;1'2') = \textit{K}_0(12;1'2') - \int d(3456)\,\textit{K}(12;56) \Xi^{\text{pp}}(56;34) \textit{K}_0(34;1'2')$$

What's the difference?

The two kernels

$$\Xi^{\rm eh}(12;34) = \left. \frac{\delta \Sigma^{\rm eh}(13)}{\delta G^{\rm eh}(42)} \right|_{U=0}$$

What's the difference?

The two kernels

$$\Xi^{\text{eh}}(12;34) = \left. \frac{\delta \Sigma^{\text{eh}}(13)}{\delta G^{\text{eh}}(42)} \right|_{U=0} \qquad \qquad \int \mathrm{d}(3'44') \, G(24) \Xi^{\text{pp}}(34;3'4') \mathcal{K}(3'4';1'2') = \\ \int \mathrm{d}(3'44') \, G(41') \Xi^{\text{eh}}(34';43') \mathcal{L}(3'2;4'2')$$

Csanak, Taylor and Yaris, Adv. Atom. Mol. Phys. 7 (1971) 287-361

What's the difference?

The two kernels

$$\Xi^{\text{eh}}(12;34) = \left. \frac{\delta \Sigma^{\text{eh}}(13)}{\delta \textit{G}^{\text{eh}}(42)} \right|_{\textit{U}=0} \\ \int \mathrm{d}(3'44') \, \textit{G}(24) \Xi^{\text{pp}}(34;3'4') \textit{K}(3'4';1'2') = \\ \int \mathrm{d}(3'44') \, \textit{G}(41') \Xi^{\text{eh}}(34';43') \textit{L}(3'2;4'2')$$

Csanak, Taylor and Yaris, Adv. Atom. Mol. Phys. 7 (1971) 287-361

A new expression for the particle-particle kernel

$$\Xi^{\text{pp}}(12;34) = \left. \frac{\delta \Sigma^{\text{ee}}(34)}{\delta G^{\text{ee}}(12)} \right|_{U=0}$$

Valence double ionization potentials

Conclusion and perspectives

Conclusions

- A set of equations has been derived for the one-body propagator
- The pp *T*-matrix self-energy has no second-order term and the third order term might be really expensive
- Can we couple W and T thanks to the Nambu formalism?

Conclusion and perspectives

Conclusions

- A set of equations has been derived for the one-body propagator
- The pp T-matrix self-energy has no second-order term and the third order term might be really expensive
- Can we couple W and T thanks to the Nambu formalism?

Anomalous propagators are also useful for two-body equations

- Simple expression for the kernel of the particle-particle channel!
- Accuracy of the particle-particle Bethe-Salpeter for double ionization?
- "Spin-flip-like" strategy for neutral excited states?

Gorkov-Hedin equations: effective interaction

Generalized T-matrix

Bozek, Phys Rev C 65 (2002) 034327

Gorkov GW

Self-energy

$$\Sigma(11') = i \int d(33') \begin{pmatrix} W(13'; 31') G^{he}(33') & -W(13'; 31') G^{hh}(33') \\ -W(31'; 13') G^{ee}(33') & W(31'; 13') G^{eh}(33') \end{pmatrix}$$
(1)

Screened interaction

Lehman representations

Electron-hole propagator

$$L(\mathbf{x}_{1}\mathbf{x}_{2}; \mathbf{x}_{1'}\mathbf{x}_{2'}; \omega) = \sum_{\nu>0} \frac{L_{\nu}^{N}(\mathbf{x}_{2}\mathbf{x}_{2'})R_{\nu}^{N}(\mathbf{x}_{1}\mathbf{x}_{1'})}{\omega - (E_{\nu}^{N} - E_{0}^{N} - i\eta)} - \sum_{\nu>0} \frac{L_{\nu}^{N}(\mathbf{x}_{2}\mathbf{x}_{2'})R_{\nu}^{N}(\mathbf{x}_{1}\mathbf{x}_{1'})}{\omega - (E_{0}^{N} - E_{\nu}^{N} + i\eta)}$$
(2)

Particle-particle interaction

$$K(\mathbf{x}_{1}\mathbf{x}_{2}; \mathbf{x}_{1'}\mathbf{x}_{2'}; \omega) = \sum_{\nu} \frac{L_{\nu}^{N+2}(\mathbf{x}_{1}\mathbf{x}_{2})R_{\nu}^{N+2}(\mathbf{x}_{1}'\mathbf{x}_{2}')}{\omega - (E_{\nu}^{N+2} - E_{0}^{N} - i\eta)} - \sum_{\nu} \frac{L_{\nu}^{N-2}(\mathbf{x}_{1}'\mathbf{x}_{2}')R_{\nu}^{N-2}(\mathbf{x}_{1}\mathbf{x}_{2})}{\omega - (E_{0}^{N} - E_{\nu}^{N-2} + i\eta)}$$
(3)

Particle-hole and particle-particle RPA eigenvalue problem

phRPA

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}, \quad (4)$$

$$A_{ia,bj}^{RPA} = (\epsilon_a - \epsilon_i)\delta_{ab}\delta_{ij} + \langle ib|aj\rangle$$

$$B_{ia,bj}^{RPA} = \langle ij|ab\rangle$$
(5)

ppRPA

$$\begin{pmatrix} \mathbf{C} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}, \quad (6)$$

$$C_{ab,cd}^{RPA} = (\epsilon_a + \epsilon_b)\delta_{ac}\delta_{bd} + \langle ab||cd\rangle$$

$$B_{ab,ij}^{RPA} = \langle ab||ij\rangle$$

$$D_{ii,bl}^{RPA} = -(\epsilon_i + \epsilon_i)\delta_{ik}\delta_{il} + \langle ij||kl\rangle$$
(7)