Faire attention à la rédaction : finir le calcul littéral avant l'application numérique.

## Exercice 1 : Fibre optique à saut d'indice

Une fibre optique à saut d'indice est constitué d'un cœur en silice d'indice  $n_1$  entouré d'une gaine d'indice  $n_2$ .

Elle permet de tranporter des informations à l'intérieur de la fibre par réflexion totale.

**1**. Les pertes par transmission X sont exprimées en  $dB \cdot km^{-1}$ .

On rappelle que  $X=10\log(P_2/P_1)$ , avec  $P_1$  puissance optique à l'entrée de la fibre et  $P_2$  puissance optique au bout d'un kilomètre de parcours.

Vers 1970, l'attéuation était de  $10~\mathrm{dB}\cdot\mathrm{km}^{-1}$  ( $X=-10~\mathrm{dB}\cdot\mathrm{km}^{-1}$ ). Actuellement, une attéuation de  $0.005~\mathrm{dB}\cdot\mathrm{km}^{-1}$  ( $X=-0.005~\mathrm{dB}\cdot\mathrm{km}^{-1}$ ) est courante. Dans les deux cas, exprimer en % les pertes au bout d'un km.

**2.** Le plan d'incidence d'un rayon se propageant dans l'air et tombant sur la fibre est le plan du schéma ci-dessous :



**2.a.** Montrer que si  $\theta_i$  reste inférieur à un angle  $\theta_a$ , un rayon peut être guidé dans le cœur. Un rayon est guidé dans le cœur s'il subit des réflexions totales (voir la figure ci-dessous).



**2.b.** On appelle ouverture numérique (O.N.) la quantité  $\sin\theta_a$ . Exprimer O.N. en fonction de  $n_1$  et  $\Delta = \frac{n_1^2 - n_2^2}{2n_1^2}$ .

**2.c.** Données :  $\Delta = 10^{-2}$  et  $n_1 = 1,5$ . Calculer O.N et puis  $\theta_a$ .

## **Exercice 2 : Distance hyperfocale**

On modélise l'objectif d'un appareil photo sur une lentille convergente L, de centre O et de distance focale image f'.

- 1. Lorsque l'appareil est mis au point à l'infini (objet à l'infini), où doit-on placer la pellicule?
- **2.** On considère un point objet A à distance  $d_A$  devant la lentille. La pellicule est dans la position de la question 1.
- **2.a.** Exprimer la position  $\overline{OA'}$  de l'image A' de A.
- **2.b.** On note  $D_L$  le diamètre utile de la lentille (diamètre du faiseau au niveau de la lentille) et  $D_A$  le diamètre de la tache du faisceau sur la pellicule. Montrer que :

$$D_A = D_L \frac{f'}{d_A}$$

Pour montrer cette relation, on trace deux rayons incidents s'appuyant sur le bord de la lentille. On trace ensuite le rayon passant par le centre de la lentille et parallèle à l'un des rayons incidents. Ces deux rayons donnent des rayons émergents qui se croisent en  $F_s$ ' dans le plan focal image de L. L'image A' se trouve donc au-delà de la pellicule qui est dans le plan focal de L (voir la figure).



**2.c.** La pellicule est fomée de grains de diamètre  $\epsilon$ . Dans le cas d'un appareil ou numérique avec un capteur C.C.D.,  $\epsilon$  est la taille d'un pixel (picture element). Une image sera nette tant que l'image du point A aura un diamètre inférieur ou égal à  $\epsilon$ .

Calculer la distance  $d_A$  minimale (appelée distance hyperfocale) qui donnera une image nette sur la pellicule. Application numérique pour  $f'=3.0~{\rm cm}$ ;  $D_L=2~{\rm mm}$  et  $\epsilon=20~{\rm \mu m}$ .