- lacksquare Our estimate for P(y=0|x; heta) is 0.8.
- $\square$  Our estimate for P(y=0|x; heta) is 0.2.
- lacksquare Our estimate for P(y=1|x; heta) is 0.8.
- Our estimate for  $P(y=1|x;\theta)$  is 0.2.
- 2. Suppose you have the following training set, and fit a logistic regression classifier  $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2).$

1 point

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 1     | 0.5   | 0 |
| 1     | 1.5   | 0 |
| 2     | 1     | 1 |
| 3     | 1     | 0 |



Which of the following are true? Check all that apply.

- lacksquare J( heta) will be a convex function, so gradient descent should converge to the global minimum.
- Adding polynomial features (e.g., instead using  $h_\theta(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{ ) could increase how well we can fit the training data.}$
- The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.
- Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.
- 3. For logistic regression, the gradient is given by  $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$ . Which of these is a correct gradient descent update for logistic regression with a learning rate of  $\alpha$ ? Check all that apply.

1 point

- $\square$   $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left( heta^T x y^{(i)} 
  ight) x_j^{(i)}$  (simultaneously update for all j).
- $lacksquare heta:= heta-lpharac{1}{m}\sum_{i=1}^m\left(rac{1}{1+e^{- heta^Tx^{(i)}}}-y^{(i)}
  ight)x^{(i)}.$
- $lacksquare heta:= heta-lpharac{1}{m}\sum_{i=1}^m (h_ heta(x^{(i)})-y^{(i)})x^{(i)}.$
- Which of the following statements are true? Check all that apply.

1 point

- The cost function  $J(\theta)$  for logistic regression trained with  $m\geq 1$  examples is always greater than or equal to zero.
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- $\hbox{ The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values. }$
- Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).
- 5. Suppose you train a logistic classifier  $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$ . Suppose  $\theta_0=6, \theta_1=0, \theta_2=-1$ . Which of the following figures represents the decision boundary found by your
  - O Figure:



O Figure:



Figure:



O Figure:

