Master I d'informatique INFO0809 : info. théorique Pascal Mignot

Examen terminal

deuxième session de juin 2012

Notes:

- Seul l'aide-mémoire est autorisé. Tout autre document est interdit.
- L'utilisation de propriétés autres que celles de l'aide-mémoire devront être démontrées.
- Lorsque cela n'est pas précisé, l'alphabet Σ est $\{0, 1\}$.

Questions élémentaires

- 1. Soit le langage qui contient la totalité des livres en langue française existants et futurs ¹. Ce langage est-il régulier? On justifiera.
- 2. Que peut se dire un étudiant s'il écrit un programme capable de résoudre le problème PATH en temps polynomial? On rappelle que PATH est le langage contenant $\langle G, s, t \rangle$ qui contient les graphes G qui ont un chemin de s vers t.
- 3. Y-a-t-il un rapport entre le fait qu'un langage soit libre de contexte, et la classe de complexité dans laquelle il se trouve?
- 4. Y-a-t-il un rapport entre le fait qu'un langage soit indécidable, et la classe de complexité dans laquelle il se trouve.
- 5. Donner un exemple d'un $w \in SUBSET-SUM$. Puis donner son certificat et le code de son vérificateur.
- 6. Donner un exemple d'un *w* ∈ SAT₃. Puis donner l'arbre d'exécution de la machine de Turing non déterministe à temps polynomial qui le décide.

Exercice 1 : régularité d'un langage

Soit le langage Σ^* qui contient 101 comme sous chaine.

- 1. Donner l'automate déterministe fini qui reconnait ce langage.
- 2. Donner l'automate non-déterministe fini qui reconnait ce langage.
- 3. Donner l'expression régulière qui reconnait ce langage.
- 4. Donner les classes d'équivalence de ce langage (au sens de Myhill-Nerode).
- 5. Peut-on dire combien d'autres langages partagent ces mêmes classes d'équivalence? On justifiera.
- 6. Peut-on utiliser le lemme de l'étoile pour démontrer la régularité de ce langage ? Si oui, effectuer la démonstration, sinon expliquer pourquoi.
- 7. A partir des questions ci-dessus, quelles sont celles qui permettent de conclure que le langage est régulier?

Exercice 2: E_{ADF}

Soit $E_{ADF} = \{ \langle G \rangle \mid G \text{ est une ADF et } \mathcal{L}(G) = \emptyset \}.$

- 1. Montrer que $E_{ADF} \in \mathcal{R}$.
- 2. Montrer que $E_{ADF} \in \mathbf{P}$.

Exercice 3: RE, coRE et R

Soit le langage $L_w = \{M \text{ tel que } w \text{ appartient au langage reconnu par } M\}.$

- 1. Est-ce que $L_w \in \mathcal{RE}$?
- 2. Est-ce que $L_w \in coRE$?
- 3. Peut-on déduire des deux questions précédentes si $L_w \in \mathbb{R}$?
- 4. Aurait-on pu arriver au même résultat qu'à la question précédente plus rapidement?
- 5. Est-ce que $\bigcup_{w} L_{w} \in \mathcal{R}$?

^{1.} On pourra faire l'hypothèse optimiste que des livres seront écrits jusqu'à ce que le soleil se transformera en supernova, et détruise la terre.

Exercice 4 : indécidabilité de $A_{\epsilon MT}$

Soit $A_{\epsilon MT} = \{ \langle M \rangle \mid M \text{ est une MT qui accepte } \epsilon \}.$

- 1. Montrer que $A_{\epsilon MT}$ est indécidable de A_{MT} à $A_{\epsilon MT}$.
- 2. Démontrer ce résultat en utilisant une autre méthode.

Exercice 5 : fermeture par concaténation

- 1. RE est-il fermé par concaténation?
- 2. coRE est-il fermé par concaténation?
- 3. \mathcal{R} est-il fermé par concaténation?
- 4. **P** est-il fermé par concaténation?
- 5. **NP** est-il fermé par concaténation?

Exercice 6 : classes de complexité

On suppose que l'on dispose de quatre langages A, B, C et D dont on ne connait que les faits suivants sur ces langages :

- Il existe une réduction en temps polynomial de A en B.
- Il existe une réduction en temps polynomial de B en C.
- Il existe une réduction en temps polynomial de *D* en *C*.

Pour chacune des affirmations ci-dessous, indiquer si elles sont toujours vraies, toujours fausses (dans ces deux cas, on justifiera pourquoi) ou possibles (on donnera alors une condition que la rend vraie).

- 1. si A est **NP**-complet, alors C est **NP**-complet.
- 2. A est **NP**-complet et $C \in \mathbf{P}$.
- 3. B est **NP**-complet et $D \in \mathbf{P}$.
- 4. si *A* est **NP**-complet et $B \in \mathbf{NP}$, alors *B* est **NP**-complet.
- 5. si *C* est **NP**-complet, alors $D \in \mathbf{NP}$.
- 6. $C \in \mathbf{P}$ et le complément de $D \notin \mathbf{P}$.
- 7. $B \notin \mathbf{P}$ et $A \in \mathbf{NP}$.

Exercice 7: Tautologie

Une formule booléenne ϕ est une tautologie si elle est vraie quelque soit la valeur de vérité de ses littéraux. Soit le langage TAUTOLOGY :

TAUTOLOGY = $\{\langle \phi \rangle \text{ tel que } \phi \text{ est une tautologie } \}$

- 1. Donner un exemple d'une formule booléenne $\phi \in TAUTOLOGY$.
- 2. Est-ce-que TAUTOLOGY $\in \mathbb{NP}$?
- 3. Soit FALSIFIABLE, l'ensemble complémentaire de TAUTOLOGY. Décrire le langage FALSIFIABLE, et donner un exemple d'une formule booléenne $\phi \in$ FALSIFIABLE.
- 4. Est-ce-que FALSIFIABLE \in **NP**?
- 5. Est-ce-que SAT \leq_p FALSIFIABLE en temps polynomial?
- 6. Que peut-on en déduire sur FALSIFIABLE?
- 7. Que peut-on en déduire sur TAUTOLOGY?