Examen de fin d'études secondaires 2015

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

A. Champ magnétique et champ électrique

(15 points)

Un électron, émis en M sans vitesse initiale, est accéléré entre M et N par une tension U_{MN} qui existe entre les plaques parallèles P_M et P_N .

En N l'électron pénètre dans une région où règne un champ magnétique uniforme \vec{B} perpendiculaire au plan de la figure. Dans ce champ l'électron décrit un quart de cercle de rayon R.

En Q, l'électron quitte la région où existe le champ \vec{B} et entre dans une région où règne un champ électrique uniforme \vec{E} parallèle à l'axe (Oy).

Dans tout le problème on supposera que le mouvement de l'électron a lieu dans le vide et que son poids est négligeable devant les autres forces auxquelles il est soumis.

- 1. <u>Déterminez</u> la tension U_{MN} sachant que l'électron passe en N avec la vitesse $v_N = 8.0 \cdot 10^6 \text{ m/s}!$ (2)
- 2. <u>Déterminez</u> les caractéristiques de \vec{B} (direction, sens et intensité) pour que $R=10,0~\text{mm}\,!$

Faites une figure! (4)

- 3. <u>Établissez</u> les équations horaires et l'équation cartésienne de l'électron entre les points Q et S!
- 4. <u>Déterminez</u> les caractéristiques de \vec{E} (sens et intensité) sachant que les coordonnées de S sont $x_S = 3 \cdot R$ et $y_S = 0$! <u>Indiquez</u> le champ \vec{E} dans une figure! (3)

Examen de fin d'études secondaires 2015

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

B. Etude des oscillations libres électriques dans un dipôle RLC (15 points)

- 1. Etablissez l'équation différentielle du circuit LC (R=0) par une considération énergétique! (4)
- Vérifiez qu'une fonction sinusoïdale du temps est solution de l'équation différentielle!
 Déduisez-en l'expression de la période propre!
- 3. <u>Montrez</u> que que la tension aux bornes du condensateur est une tension alternative sinusoïdale. (1)
- 4. Représentez un montage par lequel on peut observer les oscillations électriques dans le cas d'un circuit *RLC*! (2)
- 5. La courbe de résonance du circuit *RLC* est représentée ci-après. <u>Montrez</u> chaque fois dans une nouvelle figure comment change l'allure de la courbe dans les cas suivants :
 - 5.1. on diminue la capacité;
 - 5.2. on augmente l'inductance;
 - 5.3. on augmente la résistance!

Examen de fin d'études secondaires 2015 Section B et C

Branche: Physique

Numéro d'ordre du candidat:	

C. Expérience des fentes de Young

(15 points)

L'expérience des fentes de Young est réalisée dans le vide avec une source de lumière de fréquence $f=6,1\cdot 10^{14}$ Hz placée devant une plaque opaque percée de deux fentes parallèles. Les centres S_1 et S_2 des deux fentes sont espacés d'une distance a. Un écran est placé parallèlement à la plaque opaque à une distance D=3,0 m de celle-ci. Un point M de l'écran est repéré à l'aide de son abscisse x, l'origine de l'axe O(x) étant le point d'intersection de la médiatrice de S_1S_2 avec l'écran.

- 1. Etablissez l'expression de la différence de marche δ en fonction de la distance a, la distance D et l'abscisse x du point M sachant que $D \gg a$ et $D \gg x$! (6)
- 2. <u>Déterminez</u> la position des maxima et des minima sur l'écran et <u>déduisez</u>-en l'expression pour l'interfrange *i*! (5)
- 3. <u>Expliquez</u> pourquoi l'expérience des fentes de Young démontre la nature ondulatoire de la lumière! (2)
- 4. Sur l'écran, on mesure une distance de 6,0 mm entre les centres des deux franges brillantes extrêmes d'une série de 6 franges brillantes consécutives. Déterminez la distance a entre S_1 et S_2 !

D. Radioactivité (15 points)

Dans les calculs, on pourra négliger l'énergie du neutrino ou de l'antineutrino.

- 1. Le zirconium $^{99}_{40}$ Zr est émetteur β^- de temps de demi-vie 2,1 s. <u>Ecrivez</u> l'équation de désintégration !
- 2. Expliquez d'où provient l'énergie dégagée lors de cette réaction et montrez par le calcul qu'elle vaut approximativement 4,6 MeV!
- 3. Sur l'énergie dégagée lors de cette réaction, seuls 3,5 MeV sont emportés par la particule β^- . Expliquez où est passé le reste! (1)
- 4. <u>Calculez</u> la vitesse relativiste de la particule β^- émise! (4)
- 5. <u>Calculez</u> en J l'énergie produite par 1,0 mg de zirconium $^{99}_{40}$ Zr en 10,0 secondes! On ne tient pas compte de l'énergie émise par les substances « filles », c.-à-d. les éléments radioactifs qui résultent des désintégrations successives. (5)

On donne les masses nucléaires suivantes :

Noyau	⁹⁹ Zr	⁹⁹ Nb	99Y 39
Masse (u)	98,8946	98,8891	98,9032

Examen de fin d'études secondaires 2015

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

Formules trigonométriques

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = \frac{1}{1 + tg^2 x}$$

$$\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

$$\sin (\pi - x) = \sin x$$

 $\cos (\pi - x) = -\cos x$
 $tg (\pi - x) = -tg x$

$$sin (\pi + x) = - sin x$$

$$cos (\pi + x) = - cos x$$

$$tg (\pi + x) = tg x$$

$$sin (-x) = - sin x
cos (-x) = cos x
tg (-x) = - tg x$$

$$\sin\left(\frac{\pi}{2}-x\right)=\cos x$$

$$\cos\left(\frac{\pi}{2}-x\right)=\sin x$$

$$tg\left(\frac{\pi}{2}-x\right)=\cot g\,x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$tg\left(\frac{\pi}{2} + x\right) = -\cot g x$$

$$\sin (x + y) = \sin x \cos y + \cos x \sin y$$

 $\sin (x - y) = \sin x \cos y - \cos x \sin y$

$$cos(x + y) = cos x cos y - sin x sin y$$

 $cos(x - y) = cos x cos y + sin x sin y$

$$tg (x + y) = \frac{tg x + tg y}{1 - tg x tg y}$$

$$tg (x - y) = \frac{tg x - tg y}{1 + tg x tg y}$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$2 \cos^2 x = 1 + \cos 2x$$
$$2 \sin^2 x = 1 - \cos 2x$$

$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2}$$

$$\sin 2x = \frac{2 \text{ tg x}}{1 + \text{ tg}^2 x}$$
 $\cos 2x = \frac{1 - \text{ tg}^2 x}{1 + \text{ tg}^2 x}$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x}$$

$$\sin 3 x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = -3\cos x + 4\cos^3 x$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$tg p + tg q = \frac{\sin(p+q)}{\cos p \cos q}$$

$$tg p - tg q = \frac{\sin(p-q)}{\cos p \cos q}$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

 $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$

$$\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$$

Examen de fin d'études secondaires 2015

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité
	usuel	numérique	
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	N m ² kg ⁻²
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10 ⁹	N m ² C ⁻²
Célérité de la lumière dans le vide	С	2,998·10 ⁸	m s ⁻¹
Perméabilité du vide	μ0	$4\pi \cdot 10^{-7}$	H m ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹
Charge élémentaire	е	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,1094.10 ⁻³¹	kg
		5,4858.10-4	u
		0,5110	MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷	kg
		1,0073	u
		938,27	MeV/c ²
Masse au repos du neutron	m _n	1,6749·10 ⁻²⁷	kg
		1,0087	u
		939,57	MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg
		4,0015	u
		3727,4	MeV/c ²
Constante de Planck	h	6,626·10 ⁻³⁴	Js
Constante de Rydberg de l'atome d'hydrogène	R _H	1,097·10 ⁷	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondamental	E_1	-13,59	eV

Grandeurs liées à la Terre et au Soleil		Valeur utilisée sauf indication contraire	
(elles peuvent dépendre du lieu ou du temps)			
Composante horizontale du champ magnétique terrestre	Bh	2.10-5	T
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²
Rayon moyen de la Terre	R	6370	km
Jour sidéral	T	86164	S
Masse de la Terre	M_{T}	$5,98 \cdot 10^{24}$	kg
Masse du Soleil	Ms	1,99·10 ³⁰	kg

Conversion d'unités en usage avec le SI

1 angström = 1 $\mathring{A} = 10^{-10}$ m 1 électronvolt = 1 eV = 1,602·10⁻¹⁹ J

1 unité de masse atomique = 1 u = 1,6605·10⁻²⁷ kg = 931,49 MeV/c²

Numéro d'ordre du candidat:

Section B et C

Examen de fin d'études secondaires 2015