Argumentos - Regras de inferência

Exercícios retirados da obra: ALENCAR FILHO, E. d.Iniciação à Lógica Matemática. 21. ed. São Paulo: Nobel, 1913. ISBN 9788521304036.

1. Indique a Regra de Inferência que justifica a validade dos seguintes argumentos:

(a)
$$p \rightarrow q \vdash (p \rightarrow q) \lor \sim r$$

(b)
$$\sim p \land (q \rightarrow r) \vdash \sim p$$

(c)
$$p \rightarrow q, q \rightarrow \sim r \vdash p \rightarrow \sim r$$

(d)
$$p \rightarrow (q \rightarrow r), p \vdash q \rightarrow r$$

(e)
$$(q \lor r) \rightarrow \sim p, \sim p \vdash \sim (q \lor r)$$

(f)
$$p \rightarrow q, r \rightarrow \sim s \vdash (p \rightarrow q) \land (r \rightarrow \sim s)$$

(g)
$$(p \wedge q) \vee (\sim p \wedge r), \sim (\sim p \wedge r) \vdash p \wedge q$$

(h)
$$x + y = z \rightarrow y + x = z$$
, $x + y = z \vdash y + x = z$

(i)
$$x, y \in \mathbb{R} \to x + y \in \mathbb{R}, x + y \notin \mathbb{R} \vdash x, y \notin \mathbb{R}$$

(i)
$$x \neq 0$$
, $x \neq 1 \vdash x \neq 0 \land x \neq 1$

(k)
$$x = 1 \rightarrow x < 3$$
, $x < 3 \rightarrow x + y < 5 \mapsto x = 1 \rightarrow x + y < 5$

2. Em cada um dos seguintes pares ou trios de premissas, utilize a Regra de Inferência indicada para deduzir a conclusão do argumento:

(a) Modus ponens

(1)
$$x = y \wedge y = z$$

(2)
$$(x = y \land y = z) \rightarrow x = z$$

(b) Modus tollens

(1)
$$(p \leftrightarrow q) \rightarrow (r \land s)$$

$$(2) \sim (r \wedge s)$$

e) Dilema Construtivo

$$(1) p \rightarrow r$$

$$(2) \sim q \rightarrow \sim s$$

$$(3) p \lor \sim q$$

(c) Silogismo disjuntivo

(1)
$$y < 6 \lor x + y < 10$$

(2)
$$x + y \nleq 10$$

(d) Silogismo hipotético

(1)
$$xy = 6 \rightarrow xy + 5 = 11$$

(2)
$$xy + 5 = 11 \rightarrow y = 2$$

f) Dilema destrutivo

(1)
$$x < 3 \rightarrow x \neq y$$

(2)
$$x > 4 \rightarrow x < y$$

(3)
$$x = y \lor x \nleq y$$

3. Use a regra "Modus ponens" para deduzir de cada um dos seguintes conjuntos de premissas a conclusão indicada:

- (a) (1) $p \rightarrow q$
 - (2) $q \rightarrow r$
 - (3) p ∴ r
- (b) (1) $\sim p \rightarrow q \vee r$
 - (2) $s \lor t \to \sim p$
 - (3) $s \lor t$
 - \therefore q \vee r

- (c) (1) x + 1 = 2
 - (2) $x + 1 = 2 \rightarrow y + 1 = 2$
 - (3) $y + 1 = 2 \rightarrow x = y$
 - $\therefore x = y$
- (d) (1) $p \vee q$
 - (2) $p \lor q \rightarrow \sim r$
 - (3) $\sim r \rightarrow s \wedge \sim t$
 - (4) $s \land \sim t \rightarrow u \lor v$
 - $\therefore u \lor v$
- 4. Utilize as Regras de Inferências para verificar que são válidos os seguintes argumentos:
 - (a) $r \rightarrow p \lor q$, $r, \sim p \vdash q$
 - (b) $p \land q$, $p \rightarrow r$, $q \rightarrow s \vdash r \land s$
 - (c) $\sim p \lor \sim q$, $\sim \sim q$, $r \to p \vdash \sim r$
 - (d) (1) $x + 8 = 12 \lor x \neq 4$
 - (2) $x = 4 \land y < x$
 - (3) $x + 8 = 12 \land y < x \rightarrow y + 8 < 12$
 - \therefore y + 8 < 12
 - (e) (1) $3x + 2y = 18 \land x + 4y = 16$
 - (2) $x = 2 \rightarrow 3x + 2y \neq 18$
 - (3) $x = 2 \lor y = 3$
 - (4) $x \neq 4 \rightarrow y \neq 3$
 - $\therefore \quad \chi = 4$
 - (f) (1) $x = y \lor x < y$
 - (2) y = x + 4
 - (3) $(x < 3 \lor x > 5) \land y = x + 4 \rightarrow y \neq 8$
 - (4) $x \neq y$
 - (5) $y = 6 \lor x < y \to x < 3$
 - $\therefore (x = 4 \lor y \neq 8) \land x < 3$
 - (g) $p \land \sim q$, $q \lor \sim r$, $s \to r \vdash p \land \sim s$
 - (h) $p \rightarrow q$, $q \rightarrow r$, $(p \rightarrow r) \rightarrow \sim s$, $s \lor t \vdash t$
 - (i) $q \lor (r \to t)$, $q \to s$, $\sim s \to (t \to p)$, $\sim s \vdash r \to p$

RESPOSTAS

- 1. (a) AD
- (c) SH
- (e) MT
- (g) SD
- (i) MT
- (k) SH

- (b) SIMP
- (d) MP
- (f) CONJ
- (h) MP
- (j) CONJ

2. (a) x = z

(c) y < 6

(e) r∨ ~ s

(b) $\sim (p \leftrightarrow q)$

- (d) $xy = 6 \rightarrow y = 2$
- (f) $x \nleq 3 \lor x \ngeq 4$

- 3.
- 4. f)
 - (1) $x = y \lor x < y$

(2) y = x + 4

- P
- (3) $(x < 3 \lor x > 5) \land y = x + 4 \rightarrow y \neq 8$ P

(4) $x \neq y$

- (5) $y = 6 \lor x < y \to x < 3$

(6) x < y

1,4 SD

(7) $y = 6 \lor x < y$

6 AD

(8) x < 3

5,7 MP

- (9) $x < 3 \lor x > 5$
- 8 AD
- (10) $(x < 3 \lor x > 5) \land y = x + 4$
- 2,9 CONJ

 $(11) y \neq 8$

- 3,10 MP
- (12) $x = 4 \lor y \ne 8$
- 11 AD
- (13) $(x = 4 \lor y \ne 8) \land x < 3$
- 8,12 CONJ