clustering_moroccan_cities2

June 4, 2020

1 Morocco Cities Clustering

1.1 Introduction and description

The goal of this project it to **cluster** the cities of my country **Morocco**. The clustering algorithm will use **geographical** data such as *population*, *number of hotels* and *number and type of industries**. This clustering could serve for serveral purposes:

- Say I had to move from my current city, I would like to choose another city which is similar to my current city.
- For a foreign tourist, Say you visited a city *A* and you liked it but didn't like city *B*. In future visit to Morocco, you'll would like to avoid all the cities in the *B* cluster and try to discover more cities in the *A* cluster. Better application for this would be a **Recommender system** but can also use *clustering*.

1.2 Loading the data

The data was already prepared in the previous week. It is a list of Moroccan cities with a set of features

```
[11]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline
```

```
[97]: data = pd.read_csv("morocan_cities.csv" ,index_col=0)
    data.head()
```

[97]:		Population	Region	latitude	longitude	Café	\
	City						
	Casablanca	3359818	Casablanca-Settat	33.595063	-7.618777	4.0	
	Fez	1112072	Fès-Meknès	34.034653	-5.016193	0.0	
	Tangier	947952	Tanger-Tetouan-Al Hoceima	35.777103	-5.803792	4.0	
	Marrakesh	928850	Marrakesh-Safi	31.625826	-7.989161	6.0	
	Salé	890403	Rabat-Salé-Kénitra	34.044889	-6.814017	1.0	

Hotel Moroccan Restaurant Coffee Shop Diner

City

Casablanca	6.0	3.0	1.0	1.0
Fez	0.0	1.0	1.0	0.0
Tangier	3.0	1.0	0.0	5.0
Marrakesh	11.0	12.0	0.0	0.0
Salé	0.0	0.0	0.0	0.0

1.3 Exploratory data analysis

Let's plot some variables to see if there is a relation between the variables. But first I need to drop the Region field as it not a numeric variable.

```
[98]: data.drop(['Region'], axis=1, inplace=True)
      data.head()
[98]:
                  Population
                               latitude longitude Café Hotel \
      City
                                                      4.0
      Casablanca
                     3359818
                              33.595063 -7.618777
                                                             6.0
     Fez
                     1112072
                              34.034653 -5.016193
                                                      0.0
                                                             0.0
                                                      4.0
      Tangier
                      947952
                              35.777103 -5.803792
                                                             3.0
      Marrakesh
                              31.625826 -7.989161
                                                      6.0
                                                            11.0
                      928850
      Salé
                      890403
                              34.044889 -6.814017
                                                      1.0
                                                             0.0
                  Moroccan Restaurant Coffee Shop
                                                    Diner
      City
      Casablanca
                                  3.0
                                                1.0
                                                       1.0
                                  1.0
                                                1.0
                                                       0.0
      Fez
                                  1.0
                                               0.0
                                                       5.0
      Tangier
      Marrakesh
                                 12.0
                                                0.0
                                                       0.0
      Salé
                                  0.0
                                                0.0
                                                       0.0
```

1.4 Population

```
[26]: fig, axs = plt.subplots(1,2,figsize=(10,5))

#box plot
data['Population'].plot(kind='box',ax=axs[0])
sns.distplot(data.Population, ax=axs[1])
axs[0].set_title("Box plot for the population")
axs[1].set_title("Distribution plot for the population")
```

[26]: Text(0.5, 1.0, 'Distribution plot for the population')

We can see the data is not well distributed as the city of `Casablanca` has almost all the mass.

1.5 Features venues variables

Let's plot and see the values on the venues variables. This is data that was gathered for each town using the **foursquare** api

```
[42]: venues = ['Café','Hotel', 'Moroccan Restaurant', 'Coffee Shop', 'Diner']

[51]: fig, axs = plt.subplots(1,2,figsize=(10,5))

#box plot
data['Café'].plot(kind='box',ax=axs[0])
sns.distplot(data['Café'], ax=axs[1])
axs[0].set_title("Box plot for the Café")
axs[1].set_title("Distribution plot for the Café")
```


1.6 Correlation

Let plot and search if there is a correlation between the venues

```
[56]: corr = data[venues].corr()
[57]: sns.heatmap(corr)
```

[57]: <matplotlib.axes._subplots.AxesSubplot at 0x7f043ad02e10>

We can remark that there is a strong correlation between Café and Hotel and Moroccan Restaurant

to test that let's plot the the regression line between those two variables

```
[60]: fig, axs = plt.subplots(1,2,figsize=(10,5))
sns.regplot(data['Café'], data['Hotel'],ax=axs[0])
axs[0].set_title('Regression between Hotel and Café')
sns.regplot(data['Café'], data['Moroccan Restaurant'],ax=axs[1])
axs[1].set_title('Regression between Hotel and Moroccan Restaurant')
```

[60]: Text(0.5, 1.0, 'Regression between Hotel and Moroccan Restaurant')

1.7 Data preparation for clustering

The first step for the clustering is normalize the data

```
[90]: from sklearn.preprocessing import StandardScaler
      normalizer = StandardScaler()
[100]: for col in data.columns:
           data[col] = normalizer.fit_transform(data[[col]])
[101]: data
[101]:
                     Population latitude
                                           longitude
                                                           Café
                                                                    Hotel \
       City
       Casablanca
                       6.950718 -0.035651
                                           -0.196372
                                                      2.137331
                                                                 3.411629
       Fez
                                0.097944
                                           -0.034972 -0.712444 -0.325360
                       1.941305
       Tangier
                       1.575541
                                 0.627486
                                           -0.083815
                                                      2.137331
                                                                 1.543135
      Marrakesh
                       1.532969 -0.634115
                                           -0.219342
                                                      3.562218
                                                                 6.525787
       Salé
                       1.447285
                                0.101055
                                           -0.146465
                                                      0.000000 -0.325360
       . . .
      M'diq
                      -0.411792 0.598997
                                           -0.054012
                                                      1.424887 -0.325360
       Sidi Bennour
                      -0.412710 -0.322625
                                           -0.246321
                                                       0.712444 -0.325360
      Midelt
                      -0.413849 -0.313639
                                           -0.017837
                                                       0.000000
                                                                0.297472
      Azrou
                                                      0.000000 0.297472
                      -0.415975 -0.083955
                                           -0.047730
      Drargua
                      -0.423561 -1.012113
                                           -0.311575 -0.712444 -0.325360
                     Moroccan Restaurant Coffee Shop
                                                           Diner
```

```
City
                                         1.125446 0.956183
      Casablanca
                             1.757776
      Fez
                             0.441899
                                         1.125446 -0.378489
                                        -0.478913 6.294871
      Tangier
                             0.441899
      Marrakesh
                             7.679225
                                        -0.478913 -0.378489
      Salé
                            -0.216040
                                        -0.478913 -0.378489
      . . .
      M'diq
                            -0.216040
                                       -0.478913 -0.378489
      Sidi Bennour
                                        1.125446 0.956183
                            -0.216040
      Midelt
                            -0.216040
                                         1.125446 -0.378489
                            -0.216040
                                        -0.478913 -0.378489
      Azrou
      Drargua
                            -0.216040
                                        -0.478913 -0.378489
      [67 rows x 8 columns]
     Now it better, let's run the KMeans to cluster the data
[102]: from sklearn.cluster import KMeans
[103]: segmenter = KMeans(n_clusters=4)
[105]: segmenter.fit(data)
[105]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
            n_clusters=4, n_init=10, n_jobs=None, precompute_distances='auto',
            random_state=None, tol=0.0001, verbose=0)
[106]: print(segmenter.labels_)
      1.7.1 Plotting the results
[108]: import folium
[149]: position = [31.79, -7.02]
      morocco = folium.Map(position, zoom_start=7)
      sns.set_palette('muted')
      data = pd.read_csv("morocan_cities.csv", index_col=0) #normalizatin loose the_
      \rightarrow coordinates
      data['cluster'] = segmenter.labels_.astype('int')
      ax = sns.scatterplot(x='latitude', y = 'longitude', hue='cluster',data=data)
      ax.set_xlim([25, 36])
      ax.set_ylim([-9,0])
[149]: (-9, 0)
```

