KHÔLLES 25 ET 26: PROBABILITÉS - SÉRIES NUMÉRIQUES

I. PROBABILITÉS

- 1. $\mathbb{P}(\varnothing) = 0$.
 - Soit E un événement de Ω . Alors on a : $0 \leq \mathbb{P}(E) \leq 1$ et $\mathbb{P}(\overline{E}) = 1 \mathbb{P}(E)$.
 - Soit $(E_i)_{i\in [1,n]}$ une famille d'événements de Ω deux à deux incompatibles. Alors

$$\mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \mathbb{P}(E_i)$$

• Soient E_1 et E_2 deux événements de Ω . Alors

$$\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1 \cap E_2)$$

- Soient E_1 et E_2 deux événements de Ω . Si $E_1 \subset E_2$ alors $\mathbb{P}(E_1) \leq \mathbb{P}(E_2)$.
- **2.** Si A et B sont deux événements indépendants, alors A et \overline{B} le sont également.
- 3. Espérance et variance d'une loi de Bernoulli et d'une loi binomiale. (Expression et démonstration).
- 4. Inégalité de Markov et Inégalité de Bienaymé-Tchebychev (Énoncés et démonstration)

II. SÉRIES NUMÉRIQUES

1. Théorème de comparaison

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que : $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \leq v_n$. \leadsto Si $\sum v_n$ converge, alors $\sum u_n$ converge. \leadsto Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

- **2.** Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs, telles que $\lim_{n\to+\infty} \frac{u_n}{v_n} = L \in \mathbb{R}$.

 - \rightsquigarrow Si $L \neq 0$, alors les deux séries sont de même nature. \rightsquigarrow Si L = 0 et si $\sum v_n$ converge, alors $\sum u_n$ converge.
- **3.** Soient $n_0 \in \mathbb{N}$, et f une fonction réelle définie sur $[n_0, +\infty[$, continue, positive et croissante. Pour $p \in \mathbb{N}$, on note S_p la somme partielle d'ordre p de la série de terme général $u_n = f(n)$. Alors, pour tout $n \ge n_0 + 1$ on a :

$$S_{n-1} \le \int_{n_0}^n f(t) dt \le S_n - f(n_0)$$

- **4.** Soient $n_0 \in \mathbb{N}$, et f une fonction réelle définie sur $[n_0, +\infty[$, continue, positive et décroissante. La série de terme général $u_n = f(n)$ converge si, et seulement si la fonction $F: x \mapsto \int_{-\infty}^{x} f(t) dt$ admet une limite finie en $+\infty$.
- 5. Une série de Riemann converge si, et seulement si a > 1.