TEOREMAS INTEGRALES

PROBLEMAS

Curso 2019-2020

Dados $\Omega \subset \mathbb{R}^3$ abierto, $u \in \mathcal{C}^1(\Omega)$ y f, $g \in \mathcal{C}^1(\Omega; \mathbb{R}^3)$, entonces

- $$\begin{split} \text{ o} & \operatorname{rot}(\mathbf{f} \times \mathbf{g}) = \operatorname{fdiv}(\mathbf{g}) \operatorname{gdiv}(\mathbf{f}) + (\mathbf{g} \cdot \nabla)\mathbf{f} (\mathbf{f} \cdot \nabla)\mathbf{g}, \text{ donde} \\ & (\mathbf{f} \cdot \nabla)\mathbf{g} = \Big(\langle \mathbf{f}, \nabla g_1 \rangle, \langle \mathbf{f}, \nabla g_2 \rangle, \langle \mathbf{f}, \nabla g_3 \rangle \Big) \end{split}$$

Dados $\Omega \subset \mathbb{R}^3$ abierto, $u \in \mathcal{C}^1(\Omega)$ y f, $g \in \mathcal{C}^1(\Omega; \mathbb{R}^3)$, entonces

Si r és el camp radial de \mathbb{R}^3 , calculeu el rotacional dels camps vectorials a \times r i \langle a, r \rangle · b on a, b $\in \mathbb{R}^3$ són vectors constants.

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, g $\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

- $\begin{array}{l} \bullet \ \, \mathrm{rot}(\mathsf{f}\times\mathsf{g}) = \mathsf{f}\mathrm{div}(\mathsf{g}) \mathsf{g}\mathrm{div}(\mathsf{f}) + (\mathsf{g}\cdot\nabla)\mathsf{f} (\mathsf{f}\cdot\nabla)\mathsf{g}, \, \mathsf{donde} \\ \\ (\mathsf{f}\cdot\nabla)\mathsf{g} = \Big(\langle\mathsf{f},\nabla g_1\rangle, \langle\mathsf{f},\nabla g_2\rangle, \langle\mathsf{f},\nabla g_3\rangle\Big) \end{array}$

Si r és el camp radial de \mathbb{R}^3 , calculeu el rotacional dels camps vectorials a \times r i \langle a, r \rangle · b on a, b $\in \mathbb{R}^3$ són vectors constants.

 $ightharpoonup \operatorname{rot}(\mathsf{a} \times \mathsf{r}) = 2\mathsf{a}, \ \operatorname{rot}(\langle \mathsf{a}, \mathsf{r} \rangle \cdot \mathsf{b}) = \mathsf{a} \times \mathsf{b}$

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, $\mathbf{g}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

Si f i g són camps escalars de classe $\mathcal{C}^2(\mathbb{R}^3)$, què val $\operatorname{div}(\nabla f \times \nabla g)$?

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, $\mathbf{g}\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

- $\begin{array}{l} \bullet \ \, \mathrm{rot}(\mathsf{f}\times\mathsf{g}) = \mathsf{f}\mathrm{div}(\mathsf{g}) \mathsf{g}\mathrm{div}(\mathsf{f}) + (\mathsf{g}\cdot\nabla)\mathsf{f} (\mathsf{f}\cdot\nabla)\mathsf{g}, \, \mathsf{donde} \\ \\ (\mathsf{f}\cdot\nabla)\mathsf{g} = \Big(\langle\mathsf{f},\nabla g_1\rangle, \langle\mathsf{f},\nabla g_2\rangle, \langle\mathsf{f},\nabla g_3\rangle\Big) \end{array}$

Si f i g són camps escalars de classe $\mathcal{C}^2(\mathbb{R}^3)$, què val $\operatorname{div}(\nabla f \times \nabla g)$?

Dados $\Omega\subset\mathbb{R}^3$ abierto, $u\in\mathcal{C}^1(\Omega)$ y f, g $\in\mathcal{C}^1(\Omega;\mathbb{R}^3)$, entonces

Un fluid gira al voltant de l'eix OZ amb velocitat angular $\omega(x,y,z)$.

- Calculeu el seu camp de velocitats $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$, on $\boldsymbol{\omega} = (0, 0, \omega)$.
- Calculeu el rotacional de v.
- **3** En el cas que ω només depengui de la distància ρ a l'eix OZ, esbrineu quan v ès irrotacional.

- f(x,y) = (xy,1).
- **2** f(x,y) = (y,x).
- **3** $f(x,y) = (x+2y,2x+y^3).$
- $(x,y) = (x^2 3xy, x^2 x^3 + y).$
- **6** $f(x,y) = (e^{x-y}(1+x+y), e^{x-y}(1-x-y)).$
- $f(x,y) = \left(\frac{2x}{x^2 + y}, \frac{1}{y + x^2}\right)$.

- f(x,y) = (xy,1).
- **2** f(x,y) = (y,x).
- **3** $f(x,y) = (x+2y,2x+y^3).$
- $(x,y) = (x^2 3xy, x^2 x^3 + y).$
- $f(x,y) = \left(\frac{2x}{x^2 + y}, \frac{1}{y + x^2}\right)$.
- $lackbox{}\Omega=\mathbb{R}^2$ (excepto 6) y por tanto en forma de estrella con centro en (0,0)

- f(x,y) = (xy,1).
- **2** f(x,y) = (y,x).
- **3** $f(x,y) = (x+2y,2x+y^3).$
- $(x,y) = (x^2 3xy, x^2 x^3 + y).$
- **6** $f(x,y) = \left(\frac{2x}{x^2 + y}, \frac{1}{y + x^2}\right).$
- lacksquare $\Omega=\mathbb{R}^2$ (excepto 6) y por tanto en forma de estrella con centro en (0,0)
- ▶ f = (f_1, f_2) \Longrightarrow f admite una funció potencial sii $\frac{\partial f_1}{\partial u} = \frac{\partial f_2}{\partial x}$.

- f(x,y) = (xy,1).
- **2** f(x,y) = (y,x).
- **3** $f(x,y) = (x+2y,2x+y^3).$
- $(x,y) = (x^2 3xy, x^2 x^3 + y).$
- $f(x,y) = (e^{x-y}(1+x+y), e^{x-y}(1-x-y)).$
- $f(x,y) = \left(\frac{2x}{x^2 + y}, \frac{1}{y + x^2}\right).$
- lacksquare $\Omega=\mathbb{R}^2$ (excepto 6) y por tanto en forma de estrella con centro en (0,0)
- ▶ f = (f_1, f_2) \Longrightarrow f admite una funció potencial sii $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$.
- ▶ Por el Lema de Poincaré, $u(x,y) = \int_0^1 (xf_1(tx,ty) + yf_2(tx,ty))dt$.

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz = 4$$

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Donada la relació $\nabla \times \mathbf{f} = \left(x(y^2+z^2), y(x^2+z^2) - z(x^2+y^2+az^2)\right)$, determineu a.

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Donada la relació $\nabla \times \mathbf{f} = \left(x(y^2+z^2), y(x^2+z^2) - z(x^2+y^2+az^2)\right)$, determineu a.

►
$$a = \frac{2}{3}$$

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Donada la relació $\nabla \times \mathbf{f} = \left(x(y^2+z^2), y(x^2+z^2) - z(x^2+y^2+az^2)\right)$, determineu a.

Trobeu P(x, y, z) per tal que rot(P, (x - z)y, 0) = (y, z, x).

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Donada la relació $\nabla \times \mathbf{f} = \left(x(y^2+z^2), y(x^2+z^2) - z(x^2+y^2+az^2)\right)$, determineu a.

Trobeu P(x, y, z) per tal que rot(P, (x - z)y, 0) = (y, z, x).

►
$$P(x, y, z) = \frac{1}{2}(y^2 + z^2 - 2xy) + \phi(x)$$
, con $\phi \in \mathcal{C}^1(\mathbb{R})$

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Donada la relació $\nabla \times \mathbf{f} = \left(x(y^2+z^2), y(x^2+z^2) - z(x^2+y^2+az^2)\right)$, determineu a.

Trobeu P(x, y, z) per tal que rot(P, (x - z)y, 0) = (y, z, x).

Demostreu que el camp vectorial

$$f(x,y,z) = (y-z)i + (z-x)j + (x-y)k$$

és solenoïdal, i obteniu un camp vectorial g tal que f = rotg.

Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Donada la relació $\nabla \times$ f = $\left(x(y^2+z^2),y(x^2+z^2)-z(x^2+y^2+az^2)\right)$, determineu a.

Trobeu P(x, y, z) per tal que rot(P, (x - z)y, 0) = (y, z, x).

Demostreu que el camp vectorial

$$f(x, y, z) = (y - z)i + (z - x)j + (x - y)k$$

és solenoïdal, i obteniu un camp vectorial g tal que $f = \operatorname{rot} g$.

Problemas 10 y 11

Sigui φ una funció de classe \mathcal{C}^1 en un obert simplement connex D, i f un camp vectorial conservatiu de classe \mathcal{C}^1 en D. Proveu que el camp vectorial φ f és conservatiu sii φ i f són en cada punt proporcionals.

Problemas 10 y 11

Sigui φ una funció de classe \mathcal{C}^1 en un obert simplement connex D, i f un camp vectorial conservatiu de classe \mathcal{C}^1 en D. Proveu que el camp vectorial φ f és conservatiu sii φ i f són en cada punt proporcionals.

Problemas 10 y 11

Sigui φ una funció de classe \mathcal{C}^1 en un obert simplement connex D, i f un camp vectorial conservatiu de classe \mathcal{C}^1 en D. Proveu que el camp vectorial φ f és conservatiu sii φ i f són en cada punt proporcionals.

Comproveu que els camps vectorials següents són conservatius, i calculeu-ne potencials escalars.

- 2 $f = \frac{r}{r^2}$.
- $(x, y, z) = (2xy + z^3, x^2, 3xz^2).$
- $(x, y, z) = (y^2z, 2xyz, xy^2 1).$
- $div(r^{\alpha}r) = (3+\alpha)r^{\alpha}$
- $\nabla r^{\alpha} = \alpha r^{\alpha 2} \mathbf{r}$

Sigui el camp vectorial $\mathbf{f} = \frac{\mathbf{r}}{r^{\frac{3}{2}}}$ definit a $\mathbb{R}^3 \setminus \{(0,0,0)\}$.

- Proveu que no existeix un camp vectorial g tal que f = rotg.
- 2 Proveu que $f = \nabla(u)$, per a cert camp escalar u; trobeu-lo.
- $div(r^{\alpha}r) = (3+\alpha)r^{\alpha}$