PRINTABLE VERSION

Practice Test 4

Question 1

Differentiate $y = 2e^{3x}\arcsin(x)$.

a)
$$2e^{3x} \arcsin(x) + \frac{2e^{3x}}{\sqrt{1-x^2}}$$

b)
$$\bigcirc 6e^{3x}\arcsin(x) + \frac{2e^{3x}}{\sqrt{1+x^2}}$$

c)
$$\bigcirc 6e^{3x} \arcsin(x) + \frac{2e^{3x}}{\sqrt{1-x^2}}$$

$$\mathbf{d)} \bigcirc \frac{6\mathrm{e}^{3x}}{\sqrt{1+x^2}}$$

$$e) \quad \bigcirc \frac{6e^{3x}}{\sqrt{1-x^2}}$$

Question 2

Differentiate the given function $y=\cosh\Bigl(\ln\Bigl(6x^4\Bigr)\Bigr)$.

a)
$$012x^3 - \frac{2}{x^4}$$

b)
$$\bigcirc 3x^3 + \frac{1}{3x^5}$$

c)
$$012x^3 - \frac{1}{3x^5}$$

d)
$$\bigcirc 3x^3 - \frac{4}{x^5}$$

e)
$$\bigcirc 4x^3 + \frac{1}{3x^4}$$

Determine A, B, and C so that $y = A \cosh(Cx) + B \sinh(Cx)$ satisfies the conditions y'' - 25y = 0, y(0) = 1, y'(0) = 2 Take C > 0.

a)
$$\bigcirc [A = 5/2, B = 2, C = 5]$$

b)
$$\bigcirc [A=4, B=2/5, C=1]$$

c)
$$\bigcirc [A=3, B=1/2, C=5]$$

d)
$$\bigcirc [A=1, B=2/5, C=5]$$

e)
$$\bigcirc [A=5, B=5/2, C=0]$$

Question 4

A rectangular playground is to be fenced off and divided into two parts by a fence parallel to one side of the playground. 1080 feet of fencing is used. Find the dimensions of the playground that will enclose the greatest total area.

- a) \bigcirc 290 by 190 feet with the divider 190 feet long
- **b)** 270 by 270 feet with the divider 270 feet long
- c) 265 by 185 feet with the divider 266 feet long

- **d)** 280 by 190 feet with the divider 280 feet long
- e) 270 by 180 feet with the divider 180 feet long

Find A and B given that the function $y=\frac{A}{\sqrt{x}}+B\sqrt{x}$ has a minimum value of 32 at $\mathbf{x}=16$.

- **a)** \bigcirc A = 128 and B = 8
- **b)** \bigcirc A = 128 and B = 4
- **c)** \bigcirc A = 64 and B = 12
- **d)** \bigcirc A = 64 and B = 4
- **e)** \bigcirc A = 64 and B = 8

Question 6

Use differentials to estimate the value $(80.8)^{1/4}$.

- a) $\bigcirc \frac{1619}{540}$
- **b)** \bigcirc $\frac{1621}{540}$
- c) $\bigcirc \frac{1349}{540}$
- **d)** $\bigcirc \frac{1889}{540}$

e)
$$\bigcirc \frac{14}{5}$$

Use differentials to estimate the value $\cos(58^{\circ})$.

a)
$$0 \frac{1}{2} + \frac{\sqrt{3}}{180} \pi$$

b)
$$\bigcirc \frac{1}{2} + \frac{\sqrt{3}}{90} \pi$$

c)
$$\bigcirc \frac{\sqrt{3}}{2} - \frac{1}{180} \pi$$

d)
$$\bigcirc \frac{1}{2} - \frac{\sqrt{3}}{180} \pi$$

e)
$$\bigcirc \frac{\sqrt{3}}{2} - \frac{1}{90} \pi$$

Question 8

Find the derivative of $(8x+3)^{3x}$.

a)
$$\left(3\ln(8x+3) + \frac{24x}{8x+3}\right)$$

b)
$$24x(8x+3)^{3x-1}$$

c)
$$(8x+3)^{3x} \left(3\ln(8x+3) + \frac{24x}{8x+3}\right)$$

d)
$$\bigcirc (8x+3)^{3x} \left(3\ln(8x+3) - \frac{3}{8x+3} \right)$$

e)
$$0 3x(8x+3)^{3x-1}$$

Calculate the limit: $\lim_{x o 0} rac{\mathrm{e}^x + \mathrm{e}^{-x} - 2}{1 - \cos(5x)}$.

- a) 01
- $\mathbf{b)} \bigcirc \frac{2}{25}$
- c) $\bigcirc 0$
- **d)** $\bigcirc \frac{4}{25}$
- **e)** $\bigcirc \frac{25}{2}$

Question 10

Calculate the limit: $\lim_{x o \infty} \left(x^9 + 1
ight)^{rac{1}{\ln(x)}}.$

- a) $\bigcirc -e^9$
- **b)** \circ e^{10}
- c) $-e^{10}$
- $\mathbf{d)} \quad \bigcirc \, \mathrm{e}^9$
- **e)** 0

Question 11

Compute the upper Riemann sum for the given function $f(x)=\sin(x)$ over the interval $x\in[0,\pi]$ with respect to the partition $P=\left[0,\frac{\pi}{3}\,,\frac{5\pi}{6}\,,\pi\right]$.

a)
$$\bigcirc \frac{5}{12} \pi + \frac{\sqrt{3}}{12} \pi$$

b)
$$\bigcirc \frac{17}{36} \pi + \frac{\sqrt{3}}{9} \pi$$

c)
$$\bigcirc \frac{1}{4}\pi$$

d)
$$\bigcirc \frac{13}{36} \pi + \frac{\sqrt{3}}{18} \pi$$

e)
$$\bigcirc \frac{7}{12} \pi + \frac{\sqrt{3}}{6} \pi$$

Question 12

Given that

$$\int_0^1 f(x) \, \mathrm{d}x = 4, \int_0^4 f(x) \, \mathrm{d}x = 6 ext{ and } \int_4^5 f(x) \, \mathrm{d}x = 3 ext{ find } \int_5^1 f(x) \, \mathrm{d}x.$$

a)
$$0 - 3$$

b)
$$0 - 1$$

e)
$$0-5$$

The graph of f is shown below on the interval [-2,4].

The area bounded between the graph of f and the x-axis on [-2,-1] is $\frac{7}{3}$, the area bounded between the graph of f and the x-axis on [-1,3] is $\frac{32}{3}$, and the area bounded between the graph of f and the x-axis on [3,4] is $\frac{7}{3}$. Determine $\int_{-2}^{-1} f(x) \, \mathrm{d}x$.

- a) $\bigcirc \frac{7}{3}$
- **b)** 0
- $\mathbf{c)} \bigcirc \frac{46}{3}$

d)
$$0 - \frac{7}{3}$$

e) 13

Question 14

Find a formula for f(x) given that f is continuous and $x^6+x^4+7\,x=\int_0^x f(t)\,dt.$

a)
$$\bigcirc f(x) = x^6 + x^4 + 8x$$

b)
$$\bigcirc f(x) = 1/7 x^7 + 1/5 x^5 + 7/2 x^2 + 7$$

c)
$$\bigcirc f(x) = x^6 + x^4 + 7x$$

d)
$$\bigcirc f(x) = 1/7 x^7 + 1/5 x^5 + 7/2 x^2$$

e)
$$\bigcirc f(x) = 6x^5 + 4x^3 + 7$$

Question 15

Evaluate the definite integral: $\int_{1}^{4}\leftert x-3
ightert dx$

a)
$$0 - 1$$

$$\mathbf{b)} \bigcirc \frac{5}{2}$$

c)
$$\bigcirc \frac{33}{2}$$

d)
$$0 - \frac{111}{2}$$

e)
$$0-\frac{3}{2}$$

Find $\int_{-3}^4 f(x)\,dx$ given that $f(x)=\left\{egin{array}{ll} x+2 & -3\leq x\leq 0 \ 2 & 0< x\leq 1 \ 4-2x & 1< x\leq 4 \end{array}
ight.$

a)
$$\bigcirc \frac{1}{2}$$

b)
$$\bigcirc -3$$

c)
$$\bigcirc \frac{35}{2}$$

d)
$$0-21$$

Question 17

Calculate the indefinite integral: $\int \frac{2 x^3 - 5}{x^2} \ dx$.

a)
$$x^2 + \frac{5}{x} + C$$

b)
$$x^2 - 5x + C$$

c)
$$06 - \frac{4x^3 - 10}{x^3} + C$$

d)
$$\bigcirc \frac{2}{3} x^3 - 5x + C$$

e)
$$\bigcirc 2x + \frac{5}{x} + C$$

Calculate the indefinite integral: $\int \left(5x^3 + 2\sqrt{x} + \frac{1}{x^3}\right) dx$.

a)
$$\bigcirc 15x^2 + \frac{1}{\sqrt{x}} - \frac{3}{x^4} + C$$

b)
$$\bigcirc \frac{5}{4} x^4 + \frac{4}{3} x^{3/2} - \frac{1}{x} + C$$

c)
$$\bigcirc \frac{5}{3} x^3 - \frac{4}{3} x^{3/2} - \frac{1}{2 x^2} + C$$

d)
$$\bigcirc \frac{5}{4} x^4 + \frac{4}{3} x^{3/2} - \frac{1}{2 x^2} + C$$

e)
$$\bigcirc \frac{5}{4} x^4 - \frac{4}{3} x^{3/2} - \frac{1}{2 x^2} + C$$

Question 19

Find f givent that f'(x) = 4x - 6 and f(1) = 1.

a)
$$0 f(x) = 4x - 1$$

b)
$$\bigcirc f(x) = 4x + 2$$

c)
$$Of(x) = 2x^2 - 6x + 5$$

d)
$$\bigcirc f(x) = 2x^2 - 6x + 8$$

e)
$$Of(x) = 2x^2 - 6x + 2$$

Calculate:
$$\int \sec(2 x + 4) \tan(2 x + 4) dx$$

a)
$$0 \frac{1}{2} \sec(2x+4) \tan(2x+4) + C$$

b)
$$\bigcirc \frac{1}{2} \sec(2x+4) + C$$

c)
$$0 \frac{1}{2} \tan(2x+4) + C$$

d)
$$2 \tan(2x+4) + C$$

e)
$$2 \sec(2x+4) + C$$