Widać 100% (jej :D) Widać 95% (tak, damy radę :D) Widać 85% (może być problem...) Widać 55% (Panie, na tym się nie da pracować) Widać 48% (Mordor) Widać, po prostu widać Czy_Widać_Table

RSA

Prezentacja (chyba)

Algorytm Rivesta-Shamira-Adlemana

¿ RSA jakie jest, każdy widzi.?

 Jest to jeden z pierwszych i obecnie najpopularniejszych asymetrycznych algorytmów kryptograficznych z kluczem publicznym, zaprojektowany w 1977 przez Rona Rivesta, Adiego Shamira oraz Leonarda Adlemana Reddit: You can't make memes in Notepad

Me : *makes meme in notepad*

Reddit :

Opis algorytmu, (czyli czym to się je)

edit: (proszę nie mówić, że łyżeczką)

edit2: (tak naprawdę widelcem)

E-dit3: (Tak serio serio to łyżdelec)

Opis algorytmu

1) Wybieramy losowo dwie <u>DUZE</u> liczby pierwsze p , q np. p = 2, q = 3

Dwa) Obliczamy N = p * q;

- 3) Obliczamy wartość funkcji Eulera: $\varphi(N) = (p 1)(q 1)$
 - 4. Wybieramy liczbę e: $\begin{cases} 1 < e < \phi(N) \\ NWD(e, \phi(N)) = 1 \end{cases}$
- 5} Klucz publiczny = (e, N)
 - 6. Wybieramy liczbę d taką, że $(d^*e) \mod(\varphi(N)) = 1$

<< V < \ Klucz prywatny -> (d, N)

"O cholera to funkcja Eulera" ~ Wiadomo kto

Example:

SZYFROWANIE

(Na przykładzie p = 2, q = 7)

Klucz publiczny: (5, 14)

Wiadomość: "B"

$$B \to 2 \to 2^5 mod(14) = 32 mod(14) = 4 \to D$$

DESZYFROWANIE

(Na przykładzie p = 2, q = 7)

Klucz prywatny: (11, 14)

Wiadomość: "D"

$$D \to 4 \to 4^{11} mod(14) = 4194304 mod(14) = 2 \to B$$

Własności

Niech $C_{K_1}, D_{K_1}, C_{K_2}, D_{K_2}$ będą kolejno szyfrowaniem i deszyfrowaniem kluczami K_1 i K_2 . Wtedy zachodzi:

- ullet $C_{K_1}\left(C_{K_2}(M)
 ight)=C_{K_2}\left(C_{K_1}(M)
 ight)$ przemienność operacji szyfrowania
- $D_{K_1}\left(D_{K_2}(M)
 ight) = D_{K_2}\left(D_{K_1}(M)
 ight)$ przemienność operacji deszyfrowania

!! Ze względów bezpieczeństwa nie powinno się stosować więcej niż 2 zagnieżdżone szyfrowania ze względu na ataki oparte na chińskim twierdzeniu o resztach.

Ciekawostki

Dotychczas największym kluczem RSA, jaki rozłożono na czynniki pierwsze, jest klucz 768-bitowy

Dziękuję za uwagę!