Computing Posterior Probabilities

CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Overview of Candy Bag Example

As described in Russell and Norvig, for Chapter 20 of the 2nd edition:

- Five kinds of bags of candies.
 - 10% are h₁: 100% cherry candies
 - 20% are h_2 : 75% cherry candies + 25% lime candies
 - -40% are h_3 : 50% cherry candies + 50% lime candies
 - 20% are h_4 : 25% cherry candies + 75% lime candies
 - 10% are h_5 : 100% lime candies
- Each bag has an infinite number of candies.
 - This way, the ratio of candy types inside a bag does not change as we pick candies out of the bag.
- We have a bag, and we are picking candies out of it.
- Based on the types of candies we are picking, we want to figure out what type of bag we have.

Hypotheses and Prior Probabilities

- Five kinds of bags of candies.
 - 10% are h₁: 100% cherry candies
 - 20% are h₂: 75% cherry candies + 25% lime candies
 - 40% are h₃: 50% cherry candies + 50% lime candies
 - 20% are h₄: 25% cherry candies + 75% lime candies
 - 10% are h₅: 100% lime candies
- Each h_i is called a hypothesis.
- The initial probability that is given for each hypothesis is called the prior probability for that hypothesis.
 - It is called *prior* because it is the probability we have before we have made any observations.

Observations and Posteriors

- Out of our bag, we pick T candies, whose types are: $Q_1, Q_2, ..., Q_T$.
 - Each Q_i is equal to either C (cherry) or L ("lime").
 - These Q_i's are called the *observations*.
- Based on our observations, we want to answer two types of questions:
- What is P(h_i | Q₁, ..., Q_t)?
 - Probability of hypothesis i after t observations.
 - This is called the *posterior* probability of h_i.
- What is $P(Q_{t+1} = C \mid Q_1, ..., Q_t)$?
 - Similarly, what is $P(Q_{t+1} = L \mid Q_1, ..., Q_t)$
 - Probability of observation t+1 after t observations.

Simplifying notation

• Define:

- $P_t(h_i) = P(h_i \mid Q_1, ..., Q_t)$
- $P_t(Q_{t+1} = C) = P(Q_{t+1} = C \mid Q_1, ..., Q_t)$?
- Special case: t = 0 (no observations):
 - $-P_0(h_i) = P(h_i)$
 - P₀(h_i) is the prior probability of h_i
 - $-P_0(Q_1 = C) = P(Q_1 = C)$
 - $P_0(Q_1 = C)$ is the probability that the first observation is equal to C.

Questions We Want to Answer, Revisited

Using the simplified notation of the previous slide:

- What is P_t(h_i)?
 - Posterior probability of hypothesis i after t observations.
- What is $P_t(Q_{t+1} = C)$?
 - Similarly, what is $P_t(Q_{t+1} = L)$
 - Probability of observation t+1 after t observations.

A Special Case of Bayes Rule

- In the solution, we will use the following special case of Bayes rule:
 - $P(A \mid B, C) = P(B \mid A, C) * P(A \mid C) / P(B \mid C).$

Computing P_t(h_i)

- Let t be an integer between 1 and T:
- $P_t(h_i) = P(h_i \mid Q1, ..., Q_t) =$

$$\frac{P(Q_{t} \mid h_{i}, Q_{1}, ..., Q_{t-1}) * P(h_{i} \mid Q_{1}, ..., Q_{t-1})}{= (Q_{t} \mid h_{i}, Q_{t}, ..., Q_{t-1})} = (Q_{t} \mid h_{i}, Q_{t}, ..., Q_{t-1})$$

$$P(Q_t | Q_1, ..., Q_{t-1})$$

=>
$$P_t(h_i) = \frac{P(Q_t | h_i) * P_{t-1}(h_i)}{P_{t-1}(Q_t)}$$

Computing P_t(h_i) (continued)

• The formula
$$P_t(h_i) = \frac{P(Q_t \mid h_i) * P_{t-1}(h_i)}{P_{t-1}(Q_t)}$$
 is recursive, as it requires knowing $P_{t-1}(h_i)$.

- The base case is $P_0(h_i) = P(h_i)$.
- To compute $P_t(h_i)$ we also need $P_{t-1}(Q_t)$. We show how to compute that next.

Computing $P_{t+1}(Q_t)$

•
$$P_t(Q_{t+1}) = P(Q_{t+1} | Q_1, ..., Q_t) =$$

$$\sum_{i=1}^{5} (P(Q_{t+1} | h_i) P(h_i | Q_1, ..., Q_t)) =>$$

$$P_t(Q_{t+1}) = \sum_{i=1}^{5} (P(Q_{t+1} | h_i) P_t(h_i))$$

Computing $P_t(h_i)$ and $P_t(Q_{t+1})$

- Base case: t = 0.
 - $-P_0(h_i) = P(h_i)$, where $P(h_i)$ is known.
 - $P_0(Q_1) = \sum_{i=1}^{5} (P(Q_1 | h_i) * P(h_i)), \text{ where } P(Q_1 | h_i) \text{ is known.}$
- To compute $P_t(h_i)$ and $P_t(Q_{t+1})$:
- For j = 1, ..., t

- Compute
$$P_j(h_i) = \frac{P(Q_j | h_i) * P_{j-1}(h_i)}{P_{j-1}(Q_j)}$$

- Compute
$$P_j(Q_{j+1}) = \sum_{i=1}^{5} (P(Q_{j+1} | h_i) * P_j(h_i))$$

Computing $P_{t}(h_{i})$ and $P_{t}(Q_{t+1})$

- Base case: t = 0.
 - $-P_0(h_i) = P(h_i)$, where $P(h_i)$ is known.
 - $P_0(Q_1) = \sum (P(Q_1 | h_i) * P(h_i))$, where $P(Q_1 | h_i)$ is known.
- To compute $P_t(h_i)$ and $P_t(Q_{t+1})$:
- For j = 1, ..., t

computed at previous round known - Compute $P_j(h_i) = \frac{P(Q_j \mid h_i) * P_{j-1}(h_i)}{P_{j-1}(h_i)}$

computed at previous round

- Compute
$$P_j(Q_{j+1}) = \sum_{i=1}^{5} (P(Q_{j+1} \mid h_i)) * P_j(h_i)$$

computed at previous line