Лекция 6

Ilya Yaroshevskiy

10 марта 2021 г.

Содержание

1	Пос	становка задачи	1
	1.1	Свойства квадратичных форм	2
	1.2	Свойства выпуклых множеств и выпуклых функций	2
	1.3	Необходимое и достаточное условие безусловного экстремума	9
		131 Проверка выполнения условий	9

1 Постановка задачи

- 1. $x^* = (x_1, x_2, \dots, x_n)^T$, $x_i \in U \subset E_n$, где U множество допустимых значений, E_n эвклидово пространство размера n. $f(x^*) = \min_{x \in U} f(x)$. Если ствится задача найти максимум, то млжно перейти к поиску минимума: $f(x^*) = \max_{x \in U} f(x) = -\min_{x \in U} (-f(x))$
- 2. $f(x^*) = \operatorname{extr}_{x \in U} f(x)$
- 3. Если U задается ограничением на вектор x, то задача поиска условного экстремума. Если $U=E_n$ не имеет ограничений, то задача поиска безусловного экстремума
- 4. Решение задачи поиска экстремума пара $(x^*, f(x^*))$

Если $\forall x \in U$ $f(x^*) \leq f(x)$ — то x^* — глобальный минимум. Локальный минимум $x^* \in U$: если $\exists \varepsilon > 0$, что $\forall x \in U$ и $\|x - x^*\| < \varepsilon$, то $f(x^*) \leq f(x)$

Определение. Поверхностью уровня функции f(x) называется множество точек, в которых функция принимает постоянные значения, т.е. f(x) = const

Определение. Градиентом ∇ f(x) непрерывно жифференцируемой функции f(x) в x:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Градиент направлен по нормали к поверхности уровня, т.е. перпендикулярно к касательной плоскости в точке x, проведенной в сторону наибольшего возрастания функции

Определение. Матрицей Гессе H(x) дважды непрерывно дифференцируемой в точке x функции f(x) называется матрица частных производных второго порядка, вычисленных в данной точке.

$$H(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_1 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n x_1} & \frac{\partial^2 f(x)}{\partial x_n x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

- 1. H(x) симметричная, размер nn
- 2. Антиградиент: вектор, равный по модулю вектору градиента, но противоположный по направлению. Указывает в сторну наибольшего убывания функции f(x)
- 3. $\nabla f(x) = f(x + \Delta x) f(x) = \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T H(x) \Delta x + o(\|\Delta x\|^2)$

 $o(\|\Delta x\|^2)$ — сумма всех членов разложения, имеющих порядок выше второго, $\Delta x^T H(x) \Delta x$ — квадратичная форма

1.1 Свойства квадратичных форм

Квадратичная форма $\Delta x^T H(x) \Delta x$ (и соответсвующая матрица H(x)) называется:

- положительно опрделенной H(x) > 0, если $\forall \Delta x \neq 0 \ \Delta x^T H(x) \Delta x > 0$
- отрицательно определенной H(x) < 0, если $\forall \Delta x \neq 0 \ \Delta x^T H(x) \Delta x < 0$
- положительно полуопределенной $H(x) \ge 0$, если $\forall \Delta x \ne 0 \ \Delta x^T H(x) \Delta x \ge 0$ и имеется $\Delta x \ne 0$: $\Delta x^T H(x) \Delta x = 0$
- отрицательно полуопределенной $H(x) \le 0$, если $\forall \Delta x \ne 0$ $\Delta x^T H(x) \Delta x \le 0$ и имеется $\Delta x \ne 0$: $\Delta x^T H(x) \Delta x = 0$
- неопределнной, если $\exists \Delta x, \Delta \tilde{x} : \Delta x^T H(x) \Delta x > 0, \ \Delta \tilde{x}^T H(\tilde{x}) \Delta \tilde{x} < 0$
- тождественно равной нулю $H(x) \equiv 0$, если $\forall \Delta x \ \Delta x^T H(x) \Delta x = 0$

1.2 Свойства выпуклых множеств и выпуклых функций

Определение. Пусть $x, y \in E_n$. Множество точек вида $\{z\} \subset E_n : z = \alpha x + (1-\alpha)y, \ \alpha \in [0,1], \ z$ отрезок, соединяющий x и y.

Пример. $E_n : n \leq 3: z$ — отрезок(обычный)

Определение. $U \subset E_n$ выпуклое, если вместе с точками x и $(y \in U)$ оно содержит и весь отрезок $z = \alpha x + (1 - \alpha)y, \alpha \in [0, 1]$

Определение. Функция f(x), заданая на выпуклом $U \subset E_n$ называется:

- выпуклой, если $\forall x,y \in U$ и $\forall \alpha[0,1]$ выполняется $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$
- строго выпуклой, если $\forall \alpha \in (0,1)$ выполняется $f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$
- сильно выпуклой с константой l>0, если $\forall x,y\in U$ и $\forall \alpha\in [0,1]$ выполняется $f(\alpha x+(1-\alpha)y)\leq \alpha f(x)+(1-\alpha)f(y)-\frac{l}{2}\alpha(1-\alpha)\|x-y\|^2$

Свойства:

- 1. Функция f(x) выпуклая, если ее грфик целиком лежит не выше отрезка, соединяющего две ее произвольные точки Функция f(x) строго выпуклая, если ее график лежит целиком ниже отрезка, соединяющего две ее произвольные, но не совпадающие точки
- 2. Если функция f(x) сильно выпуклая, то она одноверменно строго выпуклая и выпуклая Если функция f(x) строго выпуклая, то она одновременно выпуклая
- 3. Выпуклость функции можно определить по матрице Гессе H(x)
 - Если $H(x) \ge 0 \ \forall x \in E_n$, то f(x) выпуклая
 - Если $H(x) > 0 \ \forall x \in E_n$, то f(x) строго выпуклая
 - ullet Если $H(x) \ge lE \ \forall x \in E_n$, где E единичная матрица, то f(x) сильно выпуклая

Свойства выпуклых функций:

- 1. Если f(x) выпуклая функция на выпуклом множестве U, то всякая точка локального минимума есть точка глобального минимума на U
- 2. Если выпуклая функция достигает своего минимума в двух различных точках, то она достигает миниума во всех точках отрезка, соединяющих это точки.
- 3. Если f(x) строго выпуклая функция множества U, то она может достигать своего глобального минимума на U не более чем в одной точке

1.3 Необходимое и достаточное условие безусловного экстремума

Теорема 1.1 (Необходимое условие экстремума первого порядка). Пусть $x^* \in E_n$ — локальный минимум или максимум f(x) на E_n и f(x) — дифференцируема в точке x^* Тогда $\nabla f(x)$ в точке x^* равен нулю $\nabla f(x^*) = 0$, т.е.

$$\frac{\partial f(x^*)}{\partial x_i} = 0, \ i = \overline{1, n}$$

Определение. Точки $x^* : \nabla f(x^*) = 0$ — стационарные

Теорема 1.2 (Необходимое условие экстремума второго порядка). Пусть $x^* \in E_n$ — точка локального минимума или максимума f(x) на E_n и f(x) — дважды дииференцируемая в точке. Тогда $H(x^*)$ — является положительно или отрицательно(если максимум) полуопределенной, т.е. $H(x^*) \ge 0$ или $H(x^*) \le 0$ (если максимум)

Теорема 1.3 (Достаточное условие экстремума). Пусть f(x) в $x^* \in E_n$ дважды дифференцируема, ее $\nabla f(x) = 0$, а $H(x^*) > 0$ или $H(x^*) < 0$ (для максимума). Тогда x^* — точка локального минимума(максимума) f(x) на E_n

1.3.1 Проверка выполнения условий

- вычисление угловых миноров H(x)
- вычисление главных миноров H(x)
- 1. Ислледование положительной или отрицательной определнности угловых и главных миноров
- 2. Анализ собственных значений матрицы H(x)