МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

> Лабораторная работа №13 по курсу «Информационный поиск» «Анализ тональности»

> > Выполнил: студент группы ИУ9-21М Беляев А. В.

Проверила: Лукашевич Н. В.

1 Цель работы

Даны 2 коллекции цитат - обучающая и тестовая. Необходимо провести анализ тональности цитат и оценить работу классификатора из пакета scikit-learn на разных типах векторизации:

- TF-iDF
- частоты
- булевские вектора

В качестве метода классификации был выбран алгоритм AdaBoost (Adaptive Boosting). В основе алгоритма лежат т.н. «weak learners» — слабые классификаторы, которые случайным образом «угадывают» результат. Такие классификаторы объединены в «комитеты классификации». На каждой итерации алгоритма проверяются неверно классифицированные объекты, чтобы на следующей итерации алгоритма коммитет классификации «сфокусирвал свое внимание» на них.

1.1 Ход работы

```
from datetime import datetime
  from xml.dom import minidom
  import nltk
3
4 import numpy as np
5 from nltk.corpus import stopwords
 from sklearn.ensemble import AdaBoostClassifier
  from sklearn.feature_extraction.text import TfidfVectorizer,
   \hookrightarrow CountVectorizer
  from sklearn import metrics
  from lab16 import clean_up_sentence, normalize_sentence
10
  TRAIN_DATA = 'news_eval_train.xml'
11
  TEST_DATA = 'news_eval_test.xml'
12
  TONALITY = ['+', '-', '0']
  BOOL_VECT_TRUE = 1
15
  BOOL_VECT_FALSE = 0
16
17
  nltk.download('stopwords')
18
  STOP_WORDS = stopwords.words('russian')
19
  STOP_WORDS_EXCEPTIONS = [
       'все', 'ничего', 'никогда', 'наконец', 'больше', 'хорошо', 'лучше',
21
       'всегда', 'конечно', 'всю', 'такой', 'впрочем', 'так', 'можно',
22
  STOP_WORDS = list(set(STOP_WORDS) - set(STOP_WORDS_EXCEPTIONS))
23
  class Cite:
```

```
def __init__(self, speech_: str, eval_: str):
26
           self.speech = speech_.strip()
27
           self.evaluation = eval_.strip()
           self.tokenized = tokenize(self.speech)
29
           self.tokenized_str = ' '.join(self.tokenized)
30
31
32
  # [[1, 2, 3], [4], [5, 6]] -> [1, 2, 3, 4, 5, 6]
  def flatten(lst: list) -> list:
      flat_list = []
      for sublist in 1st:
36
           for item in sublist:
37
               flat_list.append(item)
38
      return flat_list
39
41
  def tokenize(text: str) -> list:
42
      def remove_stopwords(sentence: str) -> list:
43
           words = sentence.split(' ')
44
           return list(filter(lambda w: w not in STOP_WORDS, words))
45
46
       sentences = nltk.sent_tokenize(text)
47
       clean_sents = list(map(lambda s: clean_up_sentence(s), sentences))
      norm_sents = list(map(lambda s: normalize_sentence(s), clean_sents))
49
      no_stopwords_sents = list(map(lambda s: remove_stopwords(s),
50
       → norm_sents))
      return flatten(no_stopwords_sents)
51
52
  def classify(vectorizer, train_cites: list, test_cites: list,
   → boolean_vectorizer=False):
      tokenized_train = [c.tokenized_str for c in train_cites]
55
      x_train = vectorizer.fit_transform(tokenized_train).toarray()
56
      if boolean_vectorizer:
57
           x_train = np.where(x_train > 0, BOOL_VECT_TRUE, BOOL_VECT_FALSE)
58
      y_train = [c.evaluation for c in train_cites]
60
      tokenized_test = [c.tokenized_str for c in test_cites]
61
      x_test = vectorizer.transform(tokenized_test).toarray()
62
      y_test = [c.evaluation for c in test_cites]
63
64
       classifier = AdaBoostClassifier(n_estimators=10)
65
      classifier.fit(x_train, y_train)
      predicted = classifier.predict(x_test)
67
68
```

```
print(metrics.classification_report(y_test, predicted))
69
      print(f'classified: {datetime.now()}')
70
71
72
  def parse(filename: str) -> list:
73
      xmldoc = minidom.parse(filename)
74
      document = xmldoc.getElementsByTagName('document')[0]
75
      sentences = document.getElementsByTagName('sentence')
77
      citations = []
78
      for s in sentences:
79
          speech =
80
          s.getElementsByTagName('speech')[0].childNodes[0].nodeValue
          evaluation =
81
          if evaluation in TONALITY:
              citations.append(Cite(speech, evaluation))
83
      return citations
84
85
  def main():
86
      train_cites = parse(TRAIN_DATA)
87
      test_cites = parse(TEST_DATA)
      print(f'classify:
                          {datetime.now()}')
90
      vectorizer = TfidfVectorizer()
91
      # vectorizer = CountVectorizer()
92
93
      classify(vectorizer, train_cites, test_cites,
94
          boolean_vectorizer=False)
  if __name__ == '__main__':
96
      main()
97
```

2 Результаты

Входные XML файлы были разобраны, цитаты с неоднозначий тональностью были исключены, а остальные были нормализованы.

Из-за того, что классификаторы, состоящие в комитете классификации не намного лучше слуйчаного гадания (как следует из документации), алгоритм часто используется в сочетании с другими методами. В данной работе AdaBoost был применен отдельно от других алгоритмов. Можно выделить его плюс по сравнению с другими методами - главным настраиваемым параметром метода является n_estimators - количество классификаторов в комитете.

Были проверены результаты работы с комитетом из 10, 100 и 300 классификато-

ров.

На листингах ниже педставлены результаты классификации с использованием разных способов векторизации.

_	_			_	
′ ' '	H'_	Н)	Η,	•

	TF-IDF:				
1	============ N = 10 ====================				
2		precision	recall	f1-score	support
3	+	0.56	0.30	0.39	1448
4	_	0.45	0.89	0.59	1890
5	0	0.00	0.00	0.00	1235
6					
7	micro avg	0.47	0.47	0.47	4573
8	macro avg	0.34	0.40	0.33	4573
9	weighted avg	0.36	0.47	0.37	4573
10	=========	====== N =	= 100 ===		
11	+	0.54	0.48	0.51	1448
12	_	0.50	0.76	0.61	1890
13	0	0.40	0.14	0.21	1235
14					
15	micro avg	0.50	0.50	0.50	4573
16	macro avg	0.48	0.46	0.44	4573
17	weighted avg			0.47	4573
18	=========	====== N =	= 300 ===		
19	+	0.52	0.50	0.51	1448
20	_	0.54	0.66	0.59	1890
21	0	0.40	0.28	0.33	1235
22					
23	micro avg	0.51	0.51	0.51	4573
24	macro avg	0.48	0.48	0.48	4573
25	weighted avg	0.49	0.51	0.49	4573

Частотная векторизация:

1	N = 10				
2		precision	recall	f1-score	support
3	+	0.57	0.31	0.40	1448
4	_	0.45	0.89	0.59	1890
5	0	0.00	0.00	0.00	1235
6					
7	micro avg	0.47	0.47	0.47	4573
8	macro avg	0.34	0.40	0.33	4573
9	weighted avg	0.36	0.47	0.37	4573
10	=========	====== N =	= 100 ===	========	======
11	+	0.53	0.55	0.54	1448
12	_	0.52	0.74	0.61	1890
13	0	0.44	0.14	0.21	1235

14						
15	micro	avg	0.52	0.52	0.52	4573
16	macro	avg	0.50	0.48	0.46	4573
17	weighted	avg	0.50	0.52	0.48	4573
18			====== N =	300 =====		======
19		+	0.55	0.54	0.54	1448
20		_	0.57	0.69	0.63	1890
21		0	0.41	0.28	0.33	1235
22						
23	micro	avg	0.53	0.53	0.53	4573
24	macro	avg	0.51	0.50	0.50	4573
25	weighted	avg	0.52	0.53	0.52	4573

Булевская векторизация:

1	========	====== N	= 10 ===		
2		precision	recall	f1-score	support
3	+	0.57	0.31	0.40	1448
4	_	0.45	0.89	0.59	1890
5	0	0.00	0.00	0.00	1235
6					
7	micro avg	0.47	0.47	0.47	4573
8	macro avg	0.34	0.40	0.33	4573
9	weighted avg	0.36	0.47	0.37	4573
10	=========	====== N	= 100 ===		
11	+	0.56	0.51	0.53	1448
12	_	0.51	0.78	0.62	1890
13	0	0.44	0.14	0.21	1235
14					
15	micro avg	0.52	0.52	0.52	4573
16	_	0.50			4573
17	weighted avg				4573
18	=========				
19	+	0.54	0.54	0.54	1448
20	_	0.58	0.68	0.63	1890
21	0	0.45	0.32	0.37	1235
22					
23	micro avg	0.54	0.54	0.54	4573
24	macro avg			0.52	
25	weighted avg			0.53	4573
	0-1				

Поскольку комитет из 10 слабых классиикаторов дает посредственные резуьтаты, а комитет из 300 слишком долго работает (порядка 30 минут), считаем комитет из 100 классификаторов оптимальным.

Исключим из STOP_WORDS слова, содержащиеся в STOP_WORDS_EXCEPTIONS, чтобы по-другому учитывать эмоциональную окраску цитат.

Проверим результаты для Count Vectorizer'a, т.к. он дал наилучший результат по отношению к временным затратам. В комитете 100 классификаторов:

1			precision	recall	f1-score	support
2		+	0.53	0.53	0.53	1448
3		-	0.52	0.75	0.61	1890
4		0	0.43	0.12	0.19	1235
5						
6	micro	avg	0.51	0.51	0.51	4573
7	macro	avg	0.49	0.47	0.45	4573
8	weighted	avg	0.50	0.51	0.47	4573

3 Выводы

Был произведен анализ тональности с помощью метода AdaBoost пакета scikitlearn. Выбранный метод показал сравнительно слабые результаты, как и было заявлено в документации к нему. При попытке подогнать параметры метода под результат, ожидаемо выигрываем в одних резльутатах и проигрываем в других.

Тем не менее, этот метод может быть хорошим дополнением к другим методам, т.к. слабо подвержен проблеме переобучения.