Machine-Checked Semantic Session Typing

Jonas Kastberg Hinrichsen, IT University of Copenhagen

Joint work with
Daniël Louwrink, University of Amsterdam
Robbert Krebbers, Delft University of Technology
Jesper Bengtson, IT University of Copenhagen

27 May 2020 TU Delft, The Netherlands

Consider the following program:

$$\lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z. ?Z. \text{end}) \multimap (Z \times Z)$$

Consider the following program:

$$\lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is it typeable?

Consider the following program:

$$\lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is it typeable? No

Consider the following program:

$$\lambda c. (\texttt{recv} \ c \mid\mid \texttt{recv} \ c) : \texttt{chan} \ (\textbf{?Z}. \textbf{?Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is it typeable? No It violates the ownership discipline

Consider the following program:

```
\lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)
```

Is it typeable? No It violates the ownership discipline Is it safe?

Consider the following program:

```
\lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)
```

Is it typeable? No It violates the ownership discipline Is it safe? Yes

Consider the following program:

$$\lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z.?Z. \text{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter

Consider the following program:

```
\lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z. ?Z. \text{end}) \multimap (Z \times Z)
```

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really?

Consider the following program:

$$\lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z. ?Z. \text{end}) \multimap (Z \times Z)$$

Is it typeable? No Is it safe? Yes Really? Well...

It violates the ownership discipline Order of receives does not matter

Consider the following program:

$$\lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z.?Z. \text{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really? Well... It could be added as an ad-hoc rule

Adding ad-hoc typing rules is infeasible

Adding ad-hoc typing rules is infeasible in a syntactic type system

► **Types** defined as a closed inductive definition

- ▶ **Types** defined as a closed inductive definition
- ▶ Rules defined as a closed inductive relation

- ► **Types** defined as a closed inductive definition
- Rules defined as a closed inductive relation
- ► Soundness proven as progress and preservation

- ► **Types** defined as a closed inductive definition
- Rules defined as a closed inductive relation
- ▶ **Soundness** proven as **progress** and **preservation** using induction over the relation

Adding ad-hoc typing rules is infeasible in a **syntactic type system**

- ▶ **Types** defined as a closed inductive definition
- Rules defined as a closed inductive relation
- ▶ **Soundness** proven as **progress** and **preservation** using induction over the relation

Supporting $\lambda c. (\text{recv } c \mid\mid \text{recv } c)$: chan (?Z.?Z.end) \multimap (Z × Z)

Adding ad-hoc typing rules is infeasible in a **syntactic type system**

- ► **Types** defined as a closed inductive definition
- Rules defined as a closed inductive relation
- ▶ Soundness proven as progress and preservation using induction over the relation

Supporting $\lambda c. (\text{recv } c \mid\mid \text{recv } c)$: chan (?Z.?Z. end) \multimap (Z × Z)

► Requires adding ad-hoc rule for it (and all reductions to satisfy **preservation**)

Adding ad-hoc typing rules is infeasible in a **syntactic type system**

- ► **Types** defined as a closed inductive definition
- Rules defined as a closed inductive relation
- ▶ Soundness proven as progress and preservation using induction over the relation

Supporting $\lambda c. (\text{recv } c \mid\mid \text{recv } c)$: chan (?Z.?Z. end) \multimap (Z × Z)

- ► Requires adding ad-hoc rule for it (and all reductions to satisfy **preservation**)
- Must reprove progress and preservation for any such addition

Adding ad-hoc typing rules is infeasible in a **syntactic type system**

- ► **Types** defined as a closed inductive definition
- Rules defined as a closed inductive relation
- ▶ Soundness proven as progress and preservation using induction over the relation

Supporting $\lambda c. (\text{recv } c \mid\mid \text{recv } c)$: chan (?Z.?Z. end) \multimap (Z × Z)

- ▶ Requires adding ad-hoc rule for it (and all reductions to satisfy **preservation**)
- Must reprove progress and preservation for any such addition
- Resulting proof effort is infeasible and immodular

Goal: Session type system where ad-hoc rules can be added modularly

A **semantic type system** is defined in terms of the language semantics:

▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- **▶ Judgement** defined as safety-capturing evaluation: $\Gamma \models e : A$

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A e does not get stuck

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get *stuck* and if e reduces to a value v, A v holds.
- ▶ Rules are proven as lemmas

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get *stuck* and if e reduces to a value v, Av holds.
- Rules are proven as lemmas:

$$\Gamma \vDash i : \mathbf{Z}$$

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get *stuck* and if e reduces to a value v, Av holds.
- ▶ Rules are proven as lemmas:

$$\Gamma \vDash i : \mathbf{Z}$$
 $\Gamma, (x : A) \vDash x : A$

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get *stuck* and if e reduces to a value v, A v holds.
- ▶ Rules are proven as lemmas:

$$\Gamma \vDash i : \mathbf{Z}$$
 $\Gamma, (x : A) \vDash x : A$ $\frac{\Gamma_1 \vDash e_1 : A_1 \qquad \Gamma_2 \vDash e_2 : A_2}{\Gamma_1 \circ \Gamma_2 \vDash (e_1, e_2) : A_1 \times A_2}$

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get *stuck* and if e reduces to a value v, A v holds.
- Rules are proven as lemmas:

$$\Gamma \models i : \mathbf{Z}$$
 $\Gamma, (x : A) \models x : A$
$$\frac{\Gamma_1 \models e_1 : A_1 \qquad \Gamma_2 \models e_2 : A_2}{\Gamma_1 \circ \Gamma_2 \models (e_1, e_2) : A_1 \times A_2}$$

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values: $\mathbf{Z} \triangleq \lambda w. w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get *stuck* and if e reduces to a value v, A v holds.
- ▶ Rules are proven as lemmas:

$$\Gamma \vDash i : \mathbf{Z} \qquad \Gamma, (x : A) \vDash x : A \qquad \frac{\Gamma_1 \vDash e_1 : A_1 \qquad \Gamma_2 \vDash e_2 : A_2}{\Gamma_1 \circ \Gamma_2 \vDash (e_1, e_2) : A_1 \times A_2}$$
$$\vDash \lambda c. (\mathbf{recv} \ c \mid\mid \mathbf{recv} \ c) : \mathbf{chan} \ (\mathbf{?Z}. \mathbf{?Z}. \mathbf{end}) \multimap (\mathbf{Z} \times \mathbf{Z})$$

▶ **Soundness** is a consequence of the judgement definition

Key Idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

Supports adding ad-hoc rules modularly

Key Idea

Semantic Typing using **Iris**

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

Supports adding ad-hoc rules modularly

Iris [Iris project]

- Higher-Order: Recursion, Polymorphism
- Concurrent: Ghost state mechanisms to reason about concurrency
- Separation Logic: Implicit separation of linear ownership
- Mechanised in Coq

Key Idea

Semantic Typing using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

Supports adding ad-hoc rules modularly

Iris [Iris project]

- ▶ **Higher-Order:** Recursion, Polymorphism
- Concurrent: Ghost state mechanisms to reason about concurrency
- Separation Logic: Implicit separation of linear ownership
- Mechanised in Coq

Actris [Hinrichsen et al., POPL'20]

- Dependent separation protocols (logical session types)
- Mechanised in Coq

Contributions

Semantic approach to Session Typing

- Supports adding ad-hoc rules modularly
- Rich extensible type system for session types
 - ► Term and session type equi-recursion
 - ► Term and session type polymorphism
 - Term and (asynchronous) session type subtyping
 - Unique and shared reference types
 - Copyable types
 - Lock types
- ► Full mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris)

Semantic Approach to Session Typing

Language

Language: ML-like language extended with concurrency, state and message passing

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f(x) = e \mid e_1(e_2) \mid e_1 \mid \mid e_2 \mid \mathtt{ref} \ (e) \mid \mid e \mid e_1 \leftarrow e_2 \mid \mathtt{new_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots$$

Message-passing is:

- Binary: Each channel have one pair endpoints
- Asynchronous: send does not block, two buffers per endpoint pair
- ► Affine: No close expression, channels can be thrown away

Types as Iris predicates:

 $\mathsf{Type}_\bigstar \triangleq \mathsf{Val} \to \mathsf{iProp}$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} o \mathsf{iProp}$$
 $\mathbf{Z} \triangleq \lambda \, w. \, w \in \mathbb{Z}$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathbf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathbf{Z} \triangleq \lambda \, w. \, w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \, w. \, \exists w_1, w_2. \, w = (w_1, w_2) * \triangleright (A_1 \, w_1) * \triangleright (A_2 \, w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} \, A \triangleq \lambda \, w. \, \exists v. \, w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \, v)$$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathbf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathtt{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Types as Iris predicates:

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathbf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Judgement as Iris weakest precondition:

$$\Gamma \vDash \sigma \triangleq \bigstar_{(x,A) \in \Gamma}. \ \exists v. (x,v) \in \sigma * A v$$

$$\Gamma \vDash e : A \exists \Gamma' \triangleq \forall \sigma. (\Gamma \vDash \sigma) \twoheadrightarrow \text{wp } e[\sigma] \{v.A v * (\Gamma' \vDash \sigma)\}$$

Types as Iris predicates:

$$\mathsf{Type}_\bigstar \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathbf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathtt{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Judgement as Iris weakest precondition:

$$\Gamma \vDash \sigma \triangleq \bigstar_{(x,A) \in \Gamma}. \ \exists v. (x,v) \in \sigma * A v$$

$$\Gamma \vDash e : A \exists \Gamma' \triangleq \forall \sigma. (\Gamma \vDash \sigma) \twoheadrightarrow \text{wp } e[\sigma] \{v.A v * (\Gamma' \vDash \sigma)\}$$

Type soundness: If $\varnothing \models e : A \dashv \Gamma$ then *e* does not get stuck

Consequence of Iris's adequacy of weakest precondition

But what about session types?

Semantic Session Types - Definitions

Session types as ?:

```
Type_{\blacklozenge} \triangleq? Type_{\bigstar} \triangleq Val \rightarrow iProp
!A. S \triangleq? chan S \triangleq \lambda w.?
?A. S \triangleq?
end \triangleq?
```

Requires capturing:

- ► Linearity of channel endpoint ownership
- **▶ Delegation** of linear types / channels
- ▶ Session fidelity of communicated messages

Actris Dependent Separation Protocols - Definitions

Session type inspired protocols for functional correctness

	Dependent separation protocols	Syntactic session types
Symbols	$prot \triangleq \begin{tabular}{l} ! \vec{x} : \vec{\tau} \langle v \rangle \{P\}. \ prot \ \ ? \vec{x} : \vec{\tau} \langle v \rangle \{P\}. \ prot \ \ end \ \end \ \end$	$S \triangleq A.S$?A.S end
Example	$(x:\mathbb{Z})\langle x\rangle\{True\}.?(y:\mathbb{Z})\langle y\rangle\{x+y=10\}.$ end	?Z . ?Z . end
Duality	$ \frac{\vec{1} \vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot}{\vec{?} \vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot} = \vec{?} \vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot}{\vec{?} \vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot} = \vec{!} \vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot} $ $ \frac{\vec{n} \vec{x} : \vec{\tau} \langle v \rangle \{P\}. prot}{\vec{n} \vec{n} \vec{n}} = \vec{n} \vec{n} $	$ \overline{\underline{1A.S}} = ?A.\overline{S} \overline{?A.S} = !A.\overline{S} \overline{end} = end $
Usage	$c ightarrow \mathit{prot}$	c : S

Actris Dependent Separation Protocols - Rules

$\begin{array}{|c|c|c|c|} \hline \textbf{Dependent separation protocols} & & \textbf{Syntactic session types} \\ \hline \textbf{New} & & \text{wp new_chan } () \, \{(c,c'). \, c \rightarrowtail \textit{prot} * c' \rightarrowtail \overline{\textit{prot}} \} & & & & & & & & & & & & & \\ \hline \textbf{Send} & & & & & & & & & & & & & & \\ \hline c \rightarrowtail ! \, \vec{x} \colon \vec{\tau} \, \langle v \rangle \{P\}. \, \textit{prot} \, \twoheadrightarrow \triangleright P[\vec{t}/\vec{x}] \, \twoheadrightarrow & & & & & & & & \\ \hline \text{wp send } c \, (v[\vec{t}/\vec{x}]) \, \{c \rightarrowtail \textit{prot}[\vec{t}/\vec{x}] \} & & & & & & & \\ \hline \textbf{Recv} & & & & & & & & \\ \hline \textbf{Recv} & & & & & & & & \\ \hline \textbf{wp recv } c \, \Big\{ w. \, \exists \vec{y}. \, \begin{pmatrix} w = v[\vec{y}/\vec{x}] \, \ast \\ c \rightarrowtail \textit{prot}[\vec{y}/\vec{x}] \, \ast \, P[\vec{y}/\vec{x}] \\ \end{pmatrix} & & & & & & \\ \hline \Gamma, (c:?A. \, S) \vdash \text{recv } c: A \dashv \Gamma, (c:S) \\ \hline \end{array}$

Dependent separation protocols:

Symbols: $!\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot | $?\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot | end

Example: $(x:\mathbb{Z})\langle x\rangle\{\text{True}\}.?(y:\mathbb{Z})\langle y\rangle\{x+y=10\}.$ end

Ownership: $c \rightarrow prot$

Semantic Session Types - Definitions

Session types as dependent separation protocols:

```
Type_{\blacklozenge} \triangleq i \text{Proto} Type_{\bigstar} \triangleq \text{Val} \rightarrow i \text{Prop}
!A. S \triangleq ! (v : \text{Val}) \langle v \rangle \{ \triangleright (A v) \}. S chan S \triangleq \lambda w. w \mapsto S
!A. S \triangleq ? (v : \text{Val}) \langle v \rangle \{ \triangleright (A v) \}. S end \triangleq \text{end}
```

Dependent separation protocols:

Symbols: $!\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot $|\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot $|\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot $|\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. end Example: $?(x:\mathbb{Z})\langle x\rangle\{\text{True}\}$. $?(y:\mathbb{Z})\langle y\rangle\{x+y=10\}$. end

Example: $(x:\mathbb{Z})\langle x\rangle\{\text{ Irue}\}.\ (y:\mathbb{Z})\langle y\rangle\{x+y=10\}.\$ end

Ownership: $c \rightarrow prot$

Semantic Session Types - Rules

Rules are proven as lemmas using the rules for dependent separation protocols

	Semantic session types	Dependent separation protocols
New	$\Gamma \vDash \mathtt{new_chan}$ (): chan $S \times \mathtt{chan}$ $\overline{S} \dashv \Gamma$	$wp \ new_chan \ () \ \{(c,c'). \ c \rightarrowtail \mathit{prot} \ast c' \rightarrowtail \overline{\mathit{prot}} \}$
Send	Γ , $(c: \text{chan } !A. S)$, $(x: A) \vDash \text{send } c \times : 1 \exists \Gamma$, $(c: \text{chan } S)$	$c \mapsto ! \vec{x} : \vec{\tau} \langle v \rangle \{P\}. \ prot \twoheadrightarrow \triangleright P[\vec{t}/\vec{x}] \twoheadrightarrow \text{wp send } c \ (v[\vec{t}/\vec{x}]) \{c \mapsto prot[\vec{t}/\vec{x}]\}$
Recv	Γ , $(c: \text{chan } (?A. S)) \models \text{recv } c: A = \Gamma$, $(c: \text{chan } S)$	$c \rightarrowtail ?\vec{x} : \vec{\tau} \langle v \rangle \{ \triangleright P \}. \ prot \ -*$ $\text{wp recv } c \left\{ w. \ \exists \vec{y}. \ (w = v[\vec{y}/\vec{x}]) \ * \atop c \rightarrowtail prot[\vec{y}/\vec{x}] * P[\vec{y}/\vec{x}] \right\}$

Dependent separation protocols:

Symbols: $!\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot | $?\vec{x}:\vec{\tau}\langle v\rangle\{P\}$. prot | end

Example: $(x:\mathbb{Z})\langle x\rangle\{\text{True}\}.?(y:\mathbb{Z})\langle y\rangle\{x+y=10\}.$ end

Ownership: $c \rightarrow prot$

Typing the Untypeable

The rule:

```
\vDash \lambda c. (\texttt{recv} \ c \mid\mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)
```

Is just another lemma

The rule:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
 end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c \rangle \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

The rule:

$$\models \lambda c. (\text{recv } c \mid\mid \text{recv } c) : \text{chan } (?Z.?Z. \text{end}) \multimap (Z \times Z)$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
 end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c \rangle \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

And then using Iris's ghost state machinery!

The rule:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
 end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c) \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

And then using Iris's ghost state machinery! Beyond the scope of this talk

The rule:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
 end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c \rangle \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

And then using Iris's ghost state machinery! Beyond the scope of this talk

Adding ad-hoc rules for safe untypeable programs

The rule:

$$\vDash \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
 end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c) \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

And then using Iris's ghost state machinery! Beyond the scope of this talk

Adding ad-hoc rules for safe untypeable programs \checkmark

The rule:

$$\vDash \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
 end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c) \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

And then using Iris's ghost state machinery! Beyond the scope of this talk

Adding ad-hoc rules for safe untypeable programs ✓ Extensibility of type system

The rule:

$$\vDash \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\textbf{Z}. ?\textbf{Z}. \texttt{end}) \multimap (\textbf{Z} \times \textbf{Z})$$

Is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{ \triangleright (v_1 \in \mathbb{Z}) \}. ?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{ \triangleright (v_2 \in \mathbb{Z}) \}.$$
end) \twoheadrightarrow wp (recv $c \mid | \text{recv } c) \{ v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$

And then using Iris's ghost state machinery! Beyond the scope of this talk

Adding ad-hoc rules for safe untypeable programs Extensibility of type system

 $\textbf{Iris} \ \text{and} \ \textbf{Actris} \ \text{gives immediate rise to many type features}$

Linear products Separation Conjunction (*)
--

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto \nu)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (\Box)

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (\Box)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers
Session polymorphism	Higher-order impredicative protocols binders

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers
Session polymorphism	Higher-order impredicative protocols binders
Term subtyping	Predicates closed under wand $(\forall v. A_1 \ v \twoheadrightarrow A_2 \ v)$

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products	Separation Conjunction (*)
Unique references	Points-to connective $(\ell \mapsto v)$
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Copyable types	Persistent modality (□)
Shared references	Invariants (P)
Lock types	Invariants (P) and Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers
Session polymorphism	Higher-order impredicative protocols binders
Term subtyping	Predicates closed under wand $(\forall v. A_1 \ v \twoheadrightarrow A_2 \ v)$
Session subtyping	Actris 2.0 subprotocols (□)

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \boxed{\exists v. (w \mapsto v) * \Box (A v)}$

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)$

Lock types: $\text{mutex } A \triangleq \lambda \text{ } w. \exists lk, \ell. \text{ } (w = (lk, \ell)) * \text{isLock } lk \text{ } (\exists v. \text{ } (\ell \mapsto u) * \triangleright (A \text{ } v))$

 $\overline{\mathtt{mutex}}\, A \triangleq \lambda\, w.\, \exists \mathit{lk}, \ell.\, (w = (\mathit{lk}, \ell)) * \mathtt{isLock}\, \mathit{lk}\, (\exists v.\, (\ell \mapsto u) * \triangleright (A\,v)) * (\ell \mapsto -)$

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)$

 $\mathbf{u}_{\mathbf{u}}(\mathbf{e}_{\mathbf{u}}) = \mathbf{u}_{\mathbf{u}}(\mathbf{u}_{\mathbf{u}}) + \mathbf{u}_{\mathbf{u}}(\mathbf{u}_{\mathbf$

Session choice: $\oplus \{\vec{S}\} \triangleq !(I:\mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \} . \vec{S}(I)$

 $\&\{\vec{S}\} \triangleq ?(I:\mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \}. \vec{S}(I)$

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)$

 $\mathbf{muce}(\mathbf{x}) = \mathbf{x} \cdot \mathbf{w} \cdot \mathbf{m}(\mathbf{x}, \mathbf{c}) + \mathbf{m}(\mathbf{x}, \mathbf{c}) +$

Session choice: $\oplus \{\vec{S}\} \triangleq ! (I: \mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \}. \vec{S}(I)$

 $\&\{\vec{S}\} \triangleq ?(I:\mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \}. \vec{S}(I)$

Recursion: $\mu(X:k)$. $K \triangleq \mu(X:\mathsf{Type}_k)$. $K \qquad (K \text{ must be contractive in } X)$

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)$

 $\overline{\mathtt{mutex}}\, A \triangleq \lambda\, w.\, \exists \mathit{lk}, \ell.\, (w = (\mathit{lk}, \ell)) * \mathtt{isLock}\, \mathit{lk}\, (\exists \mathit{v}.\, (\ell \mapsto \mathit{u}) * \triangleright (A\,\mathit{v})) * (\ell \mapsto -)$

Session choice: $\oplus \{\vec{S}\} \triangleq !(I:\mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \} . \vec{S}(I)$

& $\{\vec{S}\} \triangleq ?(I:\mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \}. \vec{S}(I)$

Recursion: $\mu(X:k)$. $K \triangleq \mu(X:\mathsf{Type}_k)$. K (K must be contractive in X)

Polymorphism: $\forall (X : k). A \triangleq \lambda w. \forall (X : \mathsf{Type}_k). \mathsf{wp} \ w \ () \{A\}$

 $\exists (X : k). A \triangleq \lambda w. \exists (X : \mathsf{Type}_k). \, \triangleright (A w)$

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)$

 $\overline{\mathtt{mutex}}\, A \triangleq \lambda\, w.\, \exists \mathit{Ik}, \ell.\, (w = (\mathit{Ik}, \ell)) * \mathtt{isLock}\, \mathit{Ik}\, (\exists v.\, (\ell \mapsto u) * \triangleright (A\,v)) * (\ell \mapsto -)$

Session choice: $\oplus \{\vec{S}\} \triangleq ! (I : \mathbb{Z}) \langle I \rangle \{ \bowtie (\vec{S}) \} . \vec{S}(I)$

 $\&\{\vec{S}\} \triangleq ?(I:\mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \}. \vec{S}(I)$

Recursion: $\mu(X:k)$. $K \triangleq \mu(X:\mathsf{Type}_k)$. K (K must be contractive in X)

Polymorphism: $\forall (X : k). A \triangleq \lambda w. \forall (X : \mathsf{Type}_k). \mathsf{wp} \ w \ () \{A\}$

 $\exists (X : k). A \triangleq \lambda w. \exists (X : \mathsf{Type}_k). \triangleright (A w)$

 $!_{\vec{X}:\vec{k}} A. S \triangleq ! (\vec{X} : \mathsf{Type}_k)(v : \mathsf{Val}) \langle v \rangle \{ \triangleright (A v) \}. S$ $?_{\vec{x}:\vec{x}} A. S \triangleq ? (\vec{X} : \mathsf{Type}_k)(v : \mathsf{Val}) \langle v \rangle \{ \triangleright (A v) \}. S$

20

Copyable types: $copv A \triangleq \lambda w. \square (A w)$

 $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)$ Shared references:

Lock types: $\mathtt{mutex}\, A \triangleq \lambda\, w.\, \exists lk, \ell.\, (w = (lk, \ell)) * \mathtt{isLock}\, lk\, (\exists v.\, (\ell \mapsto u) * \triangleright (A\,v))$

 $\overline{\mathtt{mutex}} \ A \triangleq \lambda \ w. \ \exists \mathit{lk}, \ell. \ (w = (\mathit{lk}, \ell)) * \mathtt{isLock} \ \mathit{lk} \ (\exists v. \ (\ell \mapsto u) * \triangleright (A \, v)) * (\ell \mapsto -)$

 $\oplus \{\vec{S}\} \triangleq !(I:\mathbb{Z})\langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \} . \vec{S}(I)$ Session choice:

 $\&\{\vec{S}\} \triangleq ?(I:\mathbb{Z})\langle I\rangle\{\triangleright(I\in\mathrm{dom}(\vec{S}))\}.\vec{S}(I)$

 $\mu(X:k)$. $K \triangleq \mu(X:\mathsf{Type}_k)$. K (K must be contractive in X) Recursion:

 $\forall (X:k). A \triangleq \lambda w. \forall (X: \mathsf{Type}_{k}). \mathsf{wp} w() \{A\}$ Polymorphism:

 $\exists (X:k). A \triangleq \lambda w. \exists (X: \mathsf{Type}_k). \triangleright (Aw)$

 $!_{\vec{v},\vec{t}}A.S \triangleq !(\vec{X} : Type_{k})(v : Val) \langle v \rangle \{ \triangleright (Av) \}. S$ $?_{\vec{x},\vec{x}} A. S \triangleq ?(\vec{X} : Type_{k})(v : Val) \langle v \rangle \{ \triangleright (Av) \}. S$

 $A <: B \triangleq \forall v. A v \rightarrow B v$ Term subtyping:

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

Shared references: $\operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * [\exists v. (w \mapsto v) * \Box (A v)]$

Session choice: $\oplus \{\vec{S}\} \triangleq ! (I : \mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \} . \vec{S}(I)$ $\& \{\vec{S}\} \triangleq ? (I : \mathbb{Z}) \langle I \rangle \{ \triangleright (I \in \text{dom}(\vec{S})) \} . \vec{S}(I)$

Recursion: $\mu(X:k)$. $K \triangleq \mu(X:\mathsf{Type}_k)$. K (K must be contractive in X)

Polymorphism: $\forall (X : k). A \triangleq \lambda w. \forall (X : \mathsf{Type}_k). \mathsf{wp} \ w \ () \{A\}$

 $\exists (X : k). A \triangleq \lambda w. \exists (X : \mathsf{Type}_k). \, \triangleright (A w)$ $!_{\vec{\mathsf{v}}.\vec{\mathsf{r}}} A. S \triangleq ! (\vec{X} : \mathsf{Type}_k)(v : \mathsf{Val}) \langle v \rangle \{ \triangleright (A v) \}. S$

 $?_{\vec{X}:\vec{k}} A.S \triangleq ?(\vec{X} : Type_k)(v : Val) \langle v \rangle \{ \triangleright (A v) \}. S$

Term subtyping: $A <: B \triangleq \forall v. A \ v \twoheadrightarrow B \ v$

Session subtyping: $S_1 <: S_2 \triangleq S_1 \sqsubseteq S_2$

Concluding Remarks

Concluding Remarks

Semantic typing and separation logic is a good fit for session types

- Linearity is implicit from separation logic
- Binders are inherited from meta-logic

Using a strong logic gives immediate rise to advanced features

- ▶ Iris: Polymorphism, recursion, locks and more
- Actris: Session types, session polymorphism, session subtyping

Sources:

- Paper (https://iris-project.org/pdfs/2020-actris2-submission.pdf)
- Mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris)

Subtyping

Semantic Asynchronous Session Subtyping

Conventional subtyping:

$$\frac{S_1 <: S_2}{\text{chan } S_1 <: \text{chan } S_2} \qquad \frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2} \qquad \frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

Semantic Asynchronous Session Subtyping

Conventional subtyping:

$$\frac{S_1 <: S_2}{\text{chan } S_1 <: \text{chan } S_2} \qquad \frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2} \qquad \frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

$$\frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2}$$

$$\frac{A_1 <: A_2}{?A_1. S_1 <: ?A_2. S_2}$$

Asynchronous Subtyping:

$$?A_1. !A_2. S <: !A_2. ?A_1. S$$

Semantic Asynchronous Session Subtyping

Conventional subtyping:

$$\frac{S_1 <: S_2}{\text{chan } S_1 <: \text{chan } S_2} \qquad \frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2} \qquad \frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

Asynchronous Subtyping:

$$?A_1. !A_2. S <: !A_2. ?A_1. S$$

Polymorphism subtyping:

Goal:

$$\mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \ !X. \ ?Y. \ \mathit{rec} <: \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \ !X_1. \ !(X_2 \multimap \mathsf{Z}). \ !X_2. \ ?\mathsf{B}. \ ?\mathsf{Z}. \ \mathit{rec}$$

Goal:

$$\mu\left(\mathit{rec}: \blacklozenge\right). !_{(X,Y:\bigstar)}\left(X \multimap Y\right). !X.?Y. \mathit{rec} <: \mu\left(\mathit{rec}: \blacklozenge\right). !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). !X_1. !(X_2 \multimap \mathsf{Z}). !X_2.?\mathsf{B}. ?\mathsf{Z}. \mathit{rec}$$

Derivation:

$$\mu$$
 (rec : \blacklozenge). $!_{(X,Y:\bigstar)}$ ($X \multimap Y$). $!X$. ? Y . rec

Goal:

$$\mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \ !X. \ ?Y. \ \mathit{rec} <: \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \ !X_1. \ !(X_2 \multimap \mathsf{Z}). \ !X_2. \ ?\mathsf{B}. \ ?\mathsf{Z}. \ \mathit{rec}$$

Derivation:

$$\begin{split} &\mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \, !X.\, ?Y.\, \mathit{rec} \\ &<: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,Y_1:\bigstar)}\left(X_1 \multimap Y_1\right). \, !X_1.\, ?Y_1. \, !_{(X_2,Y_2:\bigstar)}\left(X_2 \multimap Y_2\right). \, !X_2.\, ?Y_2.\, \mathit{rec} \end{split} \tag{L\"OB}$$

Goal:

$$\mu (rec : \phi). !_{(X,Y:\bigstar)} (X \multimap Y). !X. ?Y. rec <: \mu (rec : \phi). !_{(X_1,X_2:\bigstar)} (X_1 \multimap B). !X_1. !(X_2 \multimap Z). !X_2. ?B. ?Z. rec >: \mu (rec : \phi). ?X_2. ?B. ?Z. rec >: \mu (rec : \phi). ?X_2. ?Z. rec >: \mu (rec : \phi). ?Z. rec >:$$

Derivation:

$$\begin{array}{l} \mu\left(rec: \blacklozenge\right). \, !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \, !X.\, ?Y.\, rec \\ <: \mu\left(rec: \blacklozenge\right). \, !_{(X_{1},Y_{1}:\bigstar)}\left(X_{1} \multimap Y_{1}\right). \, !X_{1}.\, ?Y_{1}. \, !_{(X_{2},Y_{2}:\bigstar)}\left(X_{2} \multimap Y_{2}\right). \, !X_{2}.\, ?Y_{2}.\, rec \\ <: \mu\left(rec: \blacklozenge\right). \, !_{(X_{1},X_{2}:\bigstar)}\left(X_{1} \multimap B\right). \, !X_{1}.\, ?B. \, !\left(X_{2} \multimap Z\right). \, !X_{2}.\, ?Z.\, rec \end{array} \tag{S-ELIM, S-INTRO) \\ \end{array}$$

```
Rules:  \frac{S\text{-ELIM}}{S_1 <: \ !A. \ S_2} \\ \overline{S_1 <: \ !(\vec{X} : \vec{k})} A. \ S_2} \\ |_{(\vec{X} : \vec{k})} A. \ S_2  S-INTRO  !_{(\vec{X} : \vec{k})} A. \ S <: \ !A[\vec{K}/\vec{X}]. \ S[\vec{K}/\vec{X}]
```

Goal:

$$\mu(\textit{rec}: \blacklozenge). \ !_{(X_{1},Y_{2};\bigstar)}(X \multimap Y). \ !X.?Y. \ \textit{rec} <: \mu(\textit{rec}: \blacklozenge). \ !_{(X_{1},X_{2};\bigstar)}(X_{1} \multimap B). \ !X_{1}. \ !(X_{2} \multimap Z). \ !X_{2}. \ ?B. \ ?Z. \ \textit{rec}$$

Derivation:

$$\begin{array}{l} \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \ !X. \ ?Y. \ \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X_1,Y_1:\bigstar)}\left(X_1 \multimap Y_1\right). \ !X_1. \ ?Y_1. \ !_{(X_2,Y_2:\bigstar)}\left(X_2 \multimap Y_2\right). \ !X_2. \ ?Y_2. \ \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \ !X_1. \ ?\mathsf{B}. \ !(X_2 \multimap \mathsf{Z}). \ !X_2. \ ?\mathsf{Z}. \ \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \ !X_1. \ !(X_2 \multimap \mathsf{Z}). \ ?\mathsf{B}. \ !X_2. \ ?\mathsf{Z}. \ \mathit{rec} \end{array} \tag{SSAP}$$

Rules:

$$\frac{S-\text{ELIM}}{S_1 <: !A. S_2}$$
$$\overline{S_1 <: !_{(\vec{X}:\vec{k})} A. S_2}$$

```
S-INTRO |_{(\vec{X}:\vec{K})}A.S <: |A[\vec{K}/\vec{X}].S[\vec{K}/\vec{X}]
```

SWAP
$$?A_1. !A_2. S <: !A_2. ?A_1. S$$

Goal:

```
\mu(\textit{rec}: \blacklozenge). \ !_{(X_{1},Y_{2};\bigstar)}(X \multimap Y). \ !X.?Y. \ \textit{rec} <: \mu(\textit{rec}: \blacklozenge). \ !_{(X_{1},X_{2};\bigstar)}(X_{1} \multimap B). \ !X_{1}. \ !(X_{2} \multimap Z). \ !X_{2}. \ ?B. \ ?Z. \ \textit{rec}
```

Derivation:

$$\mu(rec: \blacklozenge). !_{(X,Y:\bigstar)}(X \multimap Y). !X.?Y. rec$$

$$<: \mu(rec: \blacklozenge). !_{(X_{1},Y_{1:\bigstar)}}(X_{1} \multimap Y_{1}). !X_{1}.?Y_{1}. !_{(X_{2},Y_{2:\bigstar)}}(X_{2} \multimap Y_{2}). !X_{2}.?Y_{2}. rec$$

$$<: \mu(rec: \blacklozenge). !_{(X_{1},X_{2:\bigstar)}}(X_{1} \multimap B). !X_{1}.?B. !(X_{2} \multimap Z). !X_{2}.?Z. rec$$

$$<: \mu(rec: \blacklozenge). !_{(X_{1},X_{2:\bigstar)}}(X_{1} \multimap B). !X_{1}. !(X_{2} \multimap Z).?B. !X_{2}.?Z. rec$$

$$<: \mu(rec: \blacklozenge). !_{(X_{1},X_{2:\bigstar)}}(X_{1} \multimap B). !X_{1}. !(X_{2} \multimap Z). !X_{2}.?B. ?Z. rec$$

$$(SWAP)$$

Rules:

$$\frac{S-\text{ELIM}}{S_1 <: !A. S_2}$$
$$\frac{S_1 <: !(\vec{X}:\vec{k}) A. S_2}{S_1 <: !(\vec{X}:\vec{k}) A. S_2}$$

S-INTRO
$$!_{(\vec{X}:\vec{k})} A.S <: !A[\vec{K}/\vec{X}].S[\vec{K}/\vec{X}]$$

SWAP
$$?A_1. !A_2. S <: !A_2. ?A_1. S$$