

Lesweek 12 - Hoorcollege 3

Gert den Neijsel

November 2022

DE HAAGSE HOGESCHOOL

Inhoud van deze presentatie

Stukje digitale techniek:

- Digitale poorten
- Circuits
- Waarheidstabellen
- Logische functies

Bewerkingen op bitniveau

• Met AND, OR en XOR

Logic Gate Symbols

Digitale poorten

Nog meer enen (1) en nullen(0)

overzicht

buffer	y = a	a :
NOT	$y = \overline{a}$	a
AND	$y = a \cdot b$	a y
OR	y = a + b	b. y
XOR	$y = a \oplus b$	а b
NAND	$y = \overline{a \cdot b}$	a
NOR	$y = \overline{a+b}$	ау
NXOR	$y = \overline{a \oplus b}$	a

Overzicht

- Bij elke poort hoort een waarheidstabel.
- Ken je bijvoorbeeld de tabel die hoort bij
- $L = \overline{A \cdot B}$?
- Herken je dan de NAND poort hierin?

A	B	A • B
0	0	0
0	1	0
1	0	0
1	1	1

Overzicht

- Bij elke poort hoort een waarheidstabel.
- Ken je bijvoorbeeld de tabel die hoort bij
- $L = \overline{A + B}$?
- Herken je dan de NOR poort hierin?

A	B	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Overzicht

- Bij elke poort hoort een waarheidstabel.
- Ken je bijvoorbeeld de tabel die hoort bij
- $L = \overline{A \oplus B}$?
- Herken je dan de NXOR poort hierin?

A	B	$A \oplus B$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Circuits (hardware)

- Een circuit is een combinatie van twee of meer poorten.
- Een circuit heeft een bepaalde functionaliteit.
- Deze functionaliteit is op verschillende manieren te 'verwoorden':
 - ☐ Tekstueel (requirements).
 - Waarheidstabel.
 - ☐ Logische functie.
 - ☐ Schema, tekening, simulatie.

Voorbeeld

Ontwerp een logische schakeling (= circuit) om een geluidssignaal te produceren in een auto om de bestuurder te waarschuwen bij het uitstappen dat de lichten nog branden.

Voorbeeld

Het al of niet produceren van het geluidssignaal is afhankelijk van drie sensoren:

- A, onder de bestuurdersstoel meet het al (1) of niet (0) bezet zijn van de stoel.
- B, meet het open (1) of gesloten (0) zijn van de deur aan de kant van de bestuurder.
- C, meet wel (1) of geen (0) sleutel in het startcontact.

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Voorbeeld

Requirements:

- Het geluidssignaal dient gegeven te worden (X = 1), zodra de bestuurder de sleutel uit het startcontact haalt, ook tijdens het openen van de deur, zelfs wanneer de sleutel nog in het startcontact zit.
- Er is geen geluidssignaal (X = 0) wanneer de deur dicht is en er geen bestuurder in het voertuig zit.

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Waarheidstabel

Α	В	С	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Waarheidstabel

Er is **geen** geluidssignaal (X = 0) wanneer de deur dicht is **en** er geen bestuurder in het voertuig zit.

Deur dicht: B = 0 en Geen bestuurder: A = 0

A	B	С	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Waarheidstabel

Het geluidssignaal dient gegeven te worden (X = 1), zodra de bestuurder de **sleutel** uit het startcontact haalt. Geen sleutel: C = 0.

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	
1	0	0	1
1	0	1	
1	1	0	1
1	1	1	

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Waarheidstabel

Het geluidssignaal dient gegeven te worden (X = 1), ook tijdens het openen van de deur, zelfs wanneer de sleutel nog in het startcontact zit.

Deur open: B = 1 en wel sleutel: C = 1.

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	
1	0	0	1
1	0	1	
1	1	0	1
1	1	1	

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	
1	1	0	1
1	1	1	1

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Waarheidstabel

Eén situatie is nog niet benoemd: A = 1, B = 0, C = 1. Wat is dan de situatie? En wil je dan geluid of niet?

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	
1	1	0	1
1	1	1	1

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

vervolg?

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- In de volgende fase proberen we vanuit de waarheidstabel een logische functie te ontwerpen.
- De aanpak hiervoor is te kijken naar de enen in de antwoordkolom, hier *X*.

	Α	В	С	X
	0	0	0	0
	0	0	1	0
	0	1	0	1
Ī	0	1	1	1
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	1

- De aanpak hiervoor is te kijken naar de enen in de antwoordkolom, hier *X*.
- Bij elke X = 1, hoort een bepaalde (vaste combinatie) van waarden van A, B en C.
- Zo is bijvoorbeeld X = 1 als de combinatie A = 0en B = 1 en C = 0 geldt.

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Zo is bijvoorbeeld X = 1 als de combinatie A = 0 en B = 1 en C = 0 geldt.
- Hoe maak je hier een functie van?
 Een logische AND is in formulevorm de logische vermenigvuldiging:
- $X = A \cdot B \cdot C$, maar met de bovenstaande combinatie voor de inputs wordt dit:

$$X = 0 \cdot 1 \cdot 0 = 0$$
 ?

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- $X = A \cdot B \cdot C$, maar met de gegeven combinatie voor de inputs wordt dit $X = 0 \cdot 1 \cdot 0 = 0$
- Hoe kunnen we uitkomen op X = 1?
- Alleen als alle ingangen 'hoog' zijn.
- Dus als: $X = \bar{A} \cdot B \cdot \bar{C}$
- Of wel: $X = \overline{0} \cdot 1 \cdot \overline{0} = 1 \cdot 1 \cdot 1 = 1$
- Dit is wel het gewenste resultaat.

	Α	В	С	X
	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	1
Ī	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	1

- De volgende combinatie welke X=1 oplevert, is A=0, B=1, C=1.
- Overeenkomstig moet dit dan worden vertaalt als $X = \bar{A} \cdot B \cdot C$

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

• Zo zijn er nog eens drie combinaties welke X = 1 opleveren:

•
$$X = A \cdot \overline{B} \cdot \overline{C}$$

•
$$X = A \cdot B \cdot \bar{C}$$

•
$$X = A \cdot B \cdot C$$

• Hoe worden deze vijf mogelijkheden voor X = 1 met elkaar gecombineerd?

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Hoe worden deze vijf mogelijkheden voor X=1 met elkaar gecombineerd?
- In elk geval niet met een logische AND, want op een zeker moment kan het niet zo zijn dat er twee (of meer) rijen in de waarheidstabel gelijktijdig van toepassing zijn!
- De vijf mogelijkheden worden derhalve met elkaar gecombineerd met een logische OR.

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

• De vijf mogelijkheden worden derhalve met elkaar gecombineerd met een logische OR.

$$X = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + AB\bar{C} + ABC$$

Voorbeeld

Ontwerp een logische schakeling (=circuit) om een geluidssignaal te produceren in een auto om de bestuurder te waarschuwen bij het uitstappen dat de lichten nog branden.

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1 1		1
1	0	0	1
1	0	1	0
1	1	1 0 1	
1	1	1	1

$$X = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + AB\bar{C} + ABC$$

Circuit?

Circuit

$$X = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + AB\bar{C} + ABC$$

Circuit eigenschappen

Circuit vereenvoudigen

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	1
1	0	1	0
1	1	0	
1	1	1	1

- Bij vier combinaties geldt, als B=1, dan X=1 ongeacht de waarde van A en/of C.
- Voor de 1-na laatste 1 in kolom X, geldt ook nog iets bijzonders, namelijk als A=1, C=0 doet de waarde van B er niet toe.
- Voor de vereenvoudigde functie X' geldt dan ook:

$$\bullet \quad X' = B + A\bar{C}.$$

Circuit vereenvoudigen

$$X' = B + A\bar{C}$$
.

#poorten: ?

#ingangen: ?

#poorten: 3

#ingangen: 5

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

<u>Circuit vereenvoudigen</u>

$$X' = B + A\bar{C}.$$

Wat is nu de functionele betekenis van X'?

Wanneer, als de autolampen aanstaan, komt er een geluidsignaal?

- 1. De deur gaat open.
- 2. De stoel is bezet en er is geen sleutel in het startcontact.

Deur (B): 1 = open

Contact (C): 1 = wel sleutel

Hoe kan dit in een programmeeromgeving gedaan worden?

$$X' = B + A\bar{C}$$
.

```
boolean stoel = BEZET;
boolean deur = OPEN;
boolean contact = SLEUTEL_IN;
```

Bewerkingen doen op bits

m.b.v OR, AND en XOR bewerkingen

8 LEDs worden aangesloten

• We willen de LEDs:

- aan- en uitzetten.
- controleren is aan.
- toggelen.

Bewerkingen doen op de bits

samenvatting

bewerking	bitwise- operator	masker	opmerking
check bit	AND	000100	Is het resultaat 0, dan is het oorspronkelijk bit een 0; is het resultaat niet-0, dan is het bit een 1.

vooraf

De bitnummering in 1 byte is als volgt:

- Wanneer we in het vervolg praten over <u>het 5^e bit</u> (van rechts) dan bedoelen we
 Bit4.
- Informatie nuttig voor een willekeurige microcontroller, wordt opgeslagen in specifieke stukjes geheugen, register genoemd.
- Elk register is te benaderen op basis van zijn unieke, specifieke naam.
- De meeste registers in een willekeurige (kleine) microcontroller zijn 1 byte groot.

8 LEDs worden aangesloten

 We willen de LEDs aan en uitzetten, dit gebeurt door het overeenkomstige bit te setten of te resetten.

Toekennen van een waarde

• Laten we voor de LEDs op bit2, bit 6 en bit 7 aanzetten.

- m1 moet de waarde 11000100 krijgen.
- Hoe komt deze waarde in m1?

Het aanzetten van een bit

(Zonder de andere bits te beinvloeden).

Laten we voor de LED4 aanzetten.

m1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	R	R	R	R	R	R	R	R
	<u>T</u>	<u>T</u>	T	<u></u>	<u>T</u>	<u></u>	<u>T</u>	<u> </u>
Г		_		_		_		

A	В	$A \mid B$
0	0	0
0	1	1
1	0	1
1	1	1

```
m1 = 0b11000100; A
M1<sub>moet worden</sub> 0b11010100;
```

- m1 moet i.pv van 110<mark>0</mark>0100 de waarde 110<mark>1</mark>0100 krijgen.
- Hoe krijgen we dit voor elkaar?

Het aanzetten van een bit

(Zonder de andere bits te beinvloeden).

Het aanzetten van LED4.

A	В	A B
0	0	0
0	1	1
1	0	1
1	1	1

m1 =	0b	1	1	0	0	0	1	0	0	(huidige situatie)
	0b	0	0	0	1	0	0	0	0	(of bewerking)
M1 _{moet} worden	0b	1	1	0	1	0	1	0	0	(gewenste situatie)

Het aanzetten van een bit

(Zonder de andere bits te beinvloeden).

Laten we voor de LED4 aanzetten.

A	В	A B
0	0	0
0	1	1
1	0	1
1	1	1

```
m1 = 0b11000100;
0b00010000;
```

Het uitzetten van een bit

(Zonder de andere bits te beinvloeden).

Laten we voor de LED6 uitzetten.

A	В	A & B
0	0	0
0	1	0
1	0	0
1	1	1

```
m1 = 0b11000100; A
M1<sub>moet worden</sub> 0b10010100;
```

- m1 moet i.pv van 1<mark>1</mark>010100 de waarde 1<mark>0</mark>010100 krijgen.
- Hoe krijgen we dit voor elkaar?

Het uitzetten van een bit

(Zonder de andere bits te beinvloeden).

Het uitzetten van LED6.

A	В	A & B
0	0	0
0	1	0
1	0	0
1	1	1

m1 =	0b	1	1	0	1	0	1	0	0	(huidige situatie)
	0b	1	0	1	1	1	1	1	1	& (AND bewerking)
M1 _{moet} worden	0b	1	0	0	1	0	1	0	0	(gewenste situatie)

Het uitzetten van een bit

(Zonder de andere bits te beinvloeden).

Het uitzetten van LED6.

A	В	A & B
0	0	0
0	1	0
1	0	0
1	1	1

$$m1 = 0b11010100;$$

$$m1 = m1 \& 0xBF; => m1 \&= 0xBF;$$

Het wisselen van een bitwaarde

(Zonder de andere bits te beinvloeden).

Laten we LED5 aan- en LED2 uitzetten

A	В	A ^ B
0	0	0
0	1	1
1	0	1
1	1	0

- m1 moet i.pv van 10<mark>0</mark>10<mark>1</mark>00 de waarde 10<mark>1</mark>10<mark>0</mark>00 krijgen.
- Hoe krijgen we dit voor elkaar?

Het wisselen van een bitwaarde

(Zonder de andere bits te beinvloeden).

LED2 en LED5 krijgen een andere waarde.

A	В	A ^ B
0	0	0
0	1	1
1	0	1
1	1	0

Het wisselen van een bitwaarde

(Zonder de andere bits te beinvloeden).

LED2 en LED5 krijgen een andere waarde.

A	В	A ^ B
0	0	0
0	1	1
1	0	1
1	1	0

```
m1 = 0b110100;
0b1011111; ^
M1<sub>moet worden</sub> 0b10010100;
```

Of

$$m1 = m1 ^ 0x24; => m1 ^= 0x24;$$

(Heef een bit de waarde 0 of 1).

Stel we willen weten of LED3 aan of uit is.

m1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	R	R	R	R	R	R	R	R
1								

В	A & B
0	0
1	0
0	0
1	1
	0

- Is bit 3 van m1 (1011<mark>0</mark>000) nu een 0 of een 1.
- Hoe krijgen we dit voor elkaar?

(Heef een bit de waarde 0 of 1).

Stel we willen weten of LED3 aan of uit is.

A	В	A & B
0	0	0
0	1	0
1	0	0
1	1	1

m1 =	0b1	0	0	1	0	1	0	0;	(huidige situatie)
	9b9	0	0	0	1	0	0	0	& (AND bewerking)
	0	0	0	0	0	0	0	0	

Uitkomst is waar of niet waar

(Heef een bit de waarde 0 of 1).

Stel we willen weten of LED3 aan of uit is.

	O	O				
	0	1				
	1	0				
	1	1				
'						
situatie)						
•						
pewerking)						

A

0

B

A & B

0

0

0

Uitkomst is waar of niet waar

(Heef een bit de waarde 0 of 1).

Stel we willen weten of LED3 aan of uit is.

A	В	A & B
0	0	0
0	1	0
1	0	0
1	1	1

```
m1 = 0b11010100;
0b00001000; &
false 000000000;
```

```
if( m1 & 0b00001000 ) {
    LED is aan }
}
else {
    LED is uit }
}
```


let's change YOU. US. THE WORLD.