fn score_candidates

Michael Shoemate

August 7, 2025

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of score_candidates in mod.rs at commit f5bb719 (outdated¹). score_candidates returns a score for each candidate passed in, where the score is the distance between the candidate and the ideal alpha-quantile.

1 Hoare Triple

Precondition

Compiler Verified

• Generic TI (input atom type) is a type with trait PartialOrd.

Caller Verified

- x has at most 2^{64} elements.
- x elements are totally ordered (excluding non-nan/non-null).
- candidates is strictly increasing
- alpha_numer / alpha_denom ≤ 1
- size_limit · alpha_denom < u64.MAX

Function

```
def score_candidates(
      x: Iterator[TIA],
      candidates: list[TIA],
      alpha_num: u64,
      alpha_den: u64,
      size_limit: u64
  ) -> Iterator[usize]:
      # count of the number of records between...
      # (-inf, c1), [c1, c2), [c2, c3), ..., [ck, inf)
      hist_ro = [0] * candidates.len() + 1 # histogram of right-open intervals
10
      \# (-inf, c1], (c1, c2], (c2, c3], ..., (ck, inf)
11
      hist_lo = [0] * candidates.len() + 1 # histogram of left-open intervals
12
13
   for x_i in x:
```

 $^{^{1}\}mathrm{See}\ \mathrm{new}\ \mathrm{changes}\ \mathrm{with}\ \mathrm{git}\ \mathrm{diff}\ \mathrm{f5bb719..c137471}\ \mathrm{rust/src/transformations/quantile_score_candidates/mod.rs}$

```
idx_lt = candidates.partition_point(lambda c: c < x_i)
          hist_lo[idx_lt] += 1 #
16
17
18
          idx_eq = idx_lt + candidates[idx_lt:].partition_point(lambda c: c == x_i)
          hist_ro[idx_eq] += 1 #
19
20
      n: u64 = hist_lo.iter().sum()
21
22
      # don't care about the number of elements greater than all candidates
23
      hist_ro.pop() #
24
      hist_lo.pop()
25
26
      1t, le = 0, 0
27
      for ro, lo in zip(hist_ro, hist_lo): #
28
          # cumsum the right-open histogram to get the total number of records less than the
29
      candidate
30
          lt += ro #
          # cumsum the right-open histogram to get the total number of records lt or equal to
31
      the candidate
          le += lo #
32
33
          gt = n - le #
34
35
          # the number of records equal to the candidate is the difference between the two
36
      cumsums
          lt_lim, gt_lim = lt.min(size_limit), gt.min(size_limit)
37
38
          # a_den * |
                          (1 - a)
                                           * #(x < c)
39
          yield ((alpha_den - alpha_num) * lt_lim).abs_diff(alpha_num * gt_lim) #
```

Postcondition

Theorem 1.1. Let C denote candidates and let l denote size_limit. For each index i in $\{1, \ldots, |C|\}$,

```
score\_candidates_i(x, C, \alpha_{num}, \alpha_{den}, l) = |\alpha_{den} \cdot \min(\#(x < C_i), l) - \alpha_{num} \cdot \min(\#(x > C_i), l)|
```

where $\#(x < C_i)$ is the number of elements in x less than C_i , $\#(x > C_i)$ is the number of elements in x greater than C_i .

Proof. The function breaks down into two parts:

- Compute histograms, where the edges are the candidates.
- Uses the histograms to compute scores.

The histograms are initialized at zero, with one more bin than candidates, since the bins start at $-\infty$ and end at $+\infty$.

The bins in hist_ro are closed on the left, and open on the right. The bins in hist_lo are open on the left, and closed on the right.

This is reflected in line 16, where idx_lt is the index of the first bin smaller than x_i. Similarly, idx_eq is the index of the first bin greater than or equal to x_i. It is sufficient to search on equality, because if no candidate is equal to x_i, then the partition point will be zero, so idx_eq will be equal to idx_lt, as expected.

Line 21 computes the total number of elements in the data as each element in x incremented a bin in hist_lo. No arithmetic thus far can overflow due to the precondition that x has at most 2^64 elements.

Notice that there is one more bin than candidates. With n, the last bin in each of the histograms (the number of elements beyond the largest candidate), is not needed to compute the score. Therefore, the last bin is discarded on lines 24 and 25.

The scores can now be computed in one linear pass over the histograms on line 28. The number of elements less than the candidate lt is the cumulative sum of hist_lo, and the number of elements less than or equal to the candidate le is the cumulative sum of hist_ro.

The number of elements greater than the candidate gt is then simply n - le on line 34.

To ensure that the score computation does not overflow, the counts are bounded by size_limit on line 37.

By the precondition that alpha_numer / alpha_denom ≤ 1 , then both alpha_den - alpha_num and alpha_num are less than or equal to alpha_den. Using this, and the precondition that size_limit · alpha_denom < u64.MAX, then the computation of the score on line 40 is guaranteed to not overflow.

The computation on line 40 directly satisfies the postcondition.