AD-A058 963

NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF BIOSTATISTICS F/6 12/1
ON JACKKNIFING IN ESTIMATING THE FINITE END-POINTS OF A DISTRIB--ETC(U)
1978 P K SEN
AFOSR-TR-78-1271
NL

UNCLASSIFIED

OF AD A058963

ON JACKKNIFING IN ESTIMATING THE FINITE END-POINTS OF A DISTRIBUTION

by

Pranab Kumar/Sen

University of North Carolina, Chapel Hill

9) Interim rept.

DDC

PROCEDURE

SEP 25 1978

USUSJUTE

B

Sample extreme values are biased estimators of the end-points of a distribution, and hence, jackknifing is useful. However, the properties of jackknifing in such a case differ considerably from those in the regular case. These are studied here. Along with a modification of jackknifing, some applications are also considered.

C FILE COPY

AD AO

AMS 1970 Classification No. 62G30, 62F99.

jackknifing; mean squ

Key Words & Phrases: bias; extreme values; jackknifing; mean square; order of terminal contact; studentized form; Tukey-estimator of variance.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
HOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer

*Nork supported by the Air Force Office of Scientific Research, A.F.S.C., U.S.A.F., Grant No AFOSR-74-2736. Reproduction in part or whole permitted for any purpose of the U.S. Government.

408 985

78 09 05 007

Approved for public release; distribution unlimited.

43

1. INTRODUCTION

Let $\{X_i, i \ge 1\}$ be a sequence of independent and identically distributed random variables (i.i.d.r.v.) with a distribution function (df) F, defined on $(-\infty,\infty)$. It is assumed that F has a finite (unknown) lower end-point θ , that is

$$(1.1) \qquad -\infty < \theta = \sup\{x: F(x) = 0\} < \infty$$

and that F(x) is continuous and monotonic in $x \in (\theta, \theta + \delta)$, for some $\delta > 0$. A natural estimator of θ is the sample minimum i.e.,

(1.2)
$$\hat{\theta}_n = \min\{X_1, \dots, X_n\} = X_{n,1} \quad (n \ge 1)$$
,

where $X_{n,1} \leq \ldots \leq X_{n,n}$ stand for the ordered variables corresponding to $X_1,\ldots,X_n; \ n\geq 1.$ $\hat{\theta}_n$ is a (strongly) consistent estimator of θ , but it is not an unbiased one; the nature of its bias depends on the order of terminal contact of F (at θ). It may therefore be appealing to use the jackknife estimator corresponding to $\hat{\theta}_n$.

Under quite general regularity conditions (viz., [1,2,4]), jackknifing meets three objectives: (a) Bias reduction. If θ_n^* be the jackknife estimator then $nE(\theta_n^*-\theta) \to 0$ as $n \to \infty$. (b) Asymptotic normality. If $n^{\frac{1}{2}}(\hat{\theta}_n - \theta)$ is asymptotically normal, then the same limit law holds for $n^{\frac{1}{2}}(\theta_n^* - \theta)$. (c) The Tukey estimator v_n^2 [defined by (2.5)] is a (strongly) consistent estimator of the variance of $n^{\frac{1}{2}}(\theta_n^* - \theta)$.

Since the asymptotic distributions of sample extrema are non-normal and, depending on the order of terminal contact, the bias of $\hat{\theta}_n$ is $O(n^{-a})$

BISTRIBUTION/AVAILABILITY CODES
Dist. and/or SPECIAL

78 09 05 007

for some $0 < a \le 1$, the effectiveness of jackknifing in regard to (a) and (b) remains to be examined carefully. Further, in this case, v_n^2 does not converge (stochastically). Along with the preliminary notions, expressions for θ_n^* and v_n^2 are considered in Section 2. The main results are studied in Section 3. Section 4 deals with a modification of jackknifing appropriate for the case of the bias of $O(n^{-a})$ for some a < 1. Some general remarks are made in the concluding section.

2. PRELIMINARY NOTIONS

We assume that for some non-negative integer m, F(x) has continuous jth derivative $F^{(j)}(x) = f^{(j-1)}(x)$ for all $x \in (\theta, \theta + \delta)$, $\delta > 0$, $1 \le j \le m+1$. We denote the (right hand) derivatives at θ by $F_+^{(j)}(\theta) = f_+^{(j-1)}(\theta)$, $1 \le j \le m+1$ and $F_+^{(0)}(\theta) = 0$, $f_+^{(0)}(\theta) = f_+^{(0)}(\theta)$. Then, a terminal contact of order m is defined by

(2.1)
$$F_{+}^{(j)}(\theta) = 0$$
, $0 \le j \le m$ and $0 < f_{+}^{(m)}(\theta) < \infty$.

Also, for the study of the bias, we assume that

(2.2)
$$v_{\alpha} = \int_{\theta}^{\infty} |x|^{\alpha} dF(x) < \infty \text{ for some } \alpha > 0.$$

To define θ_n^* , we let for each i: $1 \le i \le n$,

$$(2.3) \hat{\theta}_{n-1}^{i} = \min\{X_{1}, \dots, X_{i-1}, X_{i+1}, \dots, X_{n}\}, \hat{\theta}_{n,i} = n\hat{\theta}_{n} - (n-1)\hat{\theta}_{n-1}^{i}.$$

Then, $\hat{\theta}_{n-1}^{i}$ is equal to $X_{n,1}$ or $X_{n,2}$ according as X_{i} is \neq or $= X_{n,1}$, $1 \le i \le n$. Also,

(2.4)
$$\theta_{n}^{*} = n^{-1} \sum_{i=1}^{n} \hat{\theta}_{n,i}$$

$$= X_{n,1} - n^{-1} (n-1) (X_{n,2} - X_{n,1}), \quad n \ge 2.$$

The Tukey estimator v_n^2 , defined by

(2.5)
$$v_n^2 = \frac{1}{(n-1)} \sum_{i=1}^n (\hat{\theta}_{n,i} - \theta_n^*)^2 = (n-1) \sum_{i=1}^n (\hat{\theta}_{n-1}^i - \theta_n^*)^2,$$

reduces in our case to

$$(2.6) v_n^2 = (X_{n,2} - X_{n,1})^2 (n-1) (n^2 + n-1)/n (\sim \{n(X_{n,2} - X_{n,1})\}^2) .$$

For a terminal contact of order $m(\geq 0)$, we define

(2.7)
$$b_{n,m} = \{nf_{+}^{(m)}(\theta)/(m+1)!\}^{1/(m+1)}, a_{m} = 1/(m+1).$$

Then, the limiting distribution of $b_{n,m}(\hat{\theta}_n - \theta)$ is known to be

(2.8)
$$\Lambda_{m}(x) = \begin{cases} 0, & x \leq 0, \\ 1 - \exp(-x^{m+1}), & x > 0. \end{cases}$$

Also, by Theorem 3.1 of Sen (1961), as $n \rightarrow \infty$,

(2.9)
$$b_{n,m}^{E(X_{n,r}-\theta)} = \overline{r+a_m}/\overline{r}+o(1)$$
, for every (fixed) $r(\ge 1)$.

3. BASIC PROPERTIES OF JACKKNIFING

It follows from (2.4) that

(3.1)
$$n(\theta_n^* - \theta) = n(X_{n,1} - \theta) - (n-1)(X_{n,2} - X_{n,1})$$
$$= (2n-1)(X_{n,1} - \theta) - (n-1)(X_{n,2} - \theta).$$

Hence, from (2.9) and (3.1), we obtain that for a terminal contact of order m,

(3.2)
$$b_{n,m} E(\theta_n^* - \theta) = (1-a_m) \overline{1+a_m} + o(1)$$
$$= (1-a_m) \{b_{n,m} E(\hat{\theta}_n - \theta)\} + o(1) .$$

For m=0 i.e., $a_m=1$, the right hand side (rhs) of (3.2) converges to 0, as $n \to \infty$, while for $m \ge 1$ (i.e., $a_m \le \frac{1}{2}$), jackknifing leads to effectively $100(1-a_m)$ % reduction in bias. Thus, the basic role of jackknifing is partially impaired for a terminal contact of order $m(\ge 1)$.

Theorem 1. For a terminal contact of order $m(\geq 0)$,

$$\Lambda_{n}^{*}(x) = \frac{\lim_{n \to \infty} P\{b_{n,m}(\theta_{n}^{*} - \theta) \le x\}}{\lim_{n \to \infty} P\{b_{n,m}(\theta_{n}^{*} - \theta) \le x\}}$$

$$= \begin{cases} \int_{0}^{\infty} \exp\{-(2y^{a_{m}} - x)^{m+1}\} dy, & -\infty < x \le 0, \\ 1 - \exp(-x^{m+1}) + \int_{x^{m+1}}^{\infty} \exp\{-(2y^{m} - x)^{m+1}\} dy, & x > 0, \end{cases}$$

where a_{m} and $b_{n,m}$ are defined by (2.7).

Proof. Let
$$Z_n = b_{n,m}(\theta_n^* - \theta)$$
 and let

(3.4)
$$Y_{n(1)} = nF(X_{n,1})$$
 and $Y_{n(2)} = n[F(X_{n,2}) - F(X_{n,1})]$.

Then, by (2.1), (2.2), (2.7), (3.1) and (3.4) and proceeding as in the proof of Theorem 3.1 of Sen (1961), we obtain that

(3.5)
$$E[Z_n - 2Y_{n(1)}^a + (Y_{n(1)} + Y_{n(2)})^a]^2 \to 0 \text{ as } n \to \infty$$
.

and hence, by the Chebychev inequality, we have

$$(3.6) \quad \Lambda_{m}^{*}(x) = \lim_{n \to \infty} \left\{ 2Y_{n(1)}^{a_{m}} - (Y_{n(1)} + Y_{n(2)})^{a_{m}} \le x \right\}, \quad \forall - \infty < x < \infty,$$

We may recall that $Y_{n(1)}$ and $Y_{n(2)}$ are asymptotically independently distributed according to a common simple exponential law and they are nonnegative rv's. For $x \le 0$, $\begin{bmatrix} 2Y_{n(1)}^{a_m} & (Y_{n(1)} + Y_{n(2)})^{a_m} \le x \end{bmatrix} \iff \begin{bmatrix} Y_{n(2)} \ge (2Y_{n(1)}^{m} - x)^{m+1} - Y_{n(1)} \end{bmatrix}$ and the first equation in (3.3) follows directly by finding the conditional probability given $Y_{n(1)}$ and then itegrating it out over $Y_{n(1)}$. For x > 0, if $Y_{n(1)} \le x^{m+1}$, then $2Y_{n(1)}^{m} - (Y_{n(1)} + Y_{n(2)})^{a_m} \le Y_{n(1)}^{m} \le x$, while for $Y_{n(1)} > x^{m+1}$, as before we need $Y_{n(2)} \ge (2Y_{n(1)}^{a_m} - x)^{m+1} - Y_{n(1)}^{a_m}$, and hence, the last equation in (3.3) follows on parallel lines. Q.E.D.

For m=0 (i.e., $a_m=1$), Λ_0 in (2.8) is the simple exponential while Λ_0^* in (3.3) is the double exponential df. For $m \ge 0$, Λ_m and Λ_m^* are not the same df.

Theorem 2. For a terminal contact of order $m(\ge 0)$,

$$(3.7) \quad \lim_{n\to\infty} \left\{ E\left[b_{n,m}^{2}(\theta_{n}^{*}-\theta)^{2}\right] \right\} = \left\{ 1 - \frac{2a_{m}(1-a_{m})}{1+a_{m}} \right\} \left[\lim_{n\to\infty} \left\{ E\left[b_{n,m}^{2}(\hat{\theta}_{n}-\theta)^{2}\right] \right\} \right]$$

$$= \left(2a_{m} \left[2a_{m} \left[1 - 2a_{m}(1-a_{m})/(1+a_{m}) \right] \right) .$$

<u>Proof.</u> Since $\hat{\theta}_n = X_{n,1}$, by an appeal to Theorem 3.1 of Sen (1961), we get that

(3.8)
$$b_{n,m}^2 E(\hat{\theta}_n - \theta)^2 + \sqrt{1+2a_m} = 2a_m \sqrt{2a_m} > 0$$
.

Hence, to prove (3.7), by (3.5), it suffices to show that as $n + \infty$,

(3.9)
$$E\left(2Y_{n(1)}^{a} - (Y_{n(1)} + Y_{n(2)})^{a}\right)^{2} + 2a_{m}\left[2a_{m}\left(1 - 2a_{m}\left(1 - a_{m}\right)/\left(1 + a_{m}\right)\right)\right]$$

Towards this, we may note that $E\begin{bmatrix} 2a_m \\ Y_n(1) \end{bmatrix} = \begin{bmatrix} 1+2a_m \\ 1+2a_m \end{bmatrix} = 2a_m \begin{bmatrix} 2a_m \\ 2a_m \end{bmatrix}, E(Y_{n(1)} + Y_{n(2)})^{a_n} + \begin{bmatrix} 2a_m \\ 2a_m \end{bmatrix} = 2a_m (1+2a_m) \begin{bmatrix} 2a_m \\ 2a_m \end{bmatrix}$ while $E\{Y_{n(1)}^{a_m}(Y_{n(1)} + Y_{n(2)})^{a_m}\} = E\{E(Y_{n(1)}^{a_m} | Y_{n(1)} + Y_{n(1)})^{a_m}\} = E\{Y_{n(1)}^{a_m} | Y_{n(1)} + Y_{n(1$

For m=0 (i.e., $a_m=1$), the second factor on the rhs of (3.7) is equal to 1, so that both $\hat{\theta}_n$ and θ_n^* have the same asymptotic variance, though their df's are not the same. For $m\geq 1$ (i.e., $a_m\leq \frac{1}{2}$), $2a_m(1-a_m)/(1+a_m)>0$ and is bounded from above by 1/3. Thus, from (3.2) and (3.7) we have that jackknifing reduces both the asymptotic bias and the asymptotic mean square to a fractional extent. This characteristic is different from the regular case where there is a complete reduction of asymptotic bias but no reduction of the asymptotic mean square.

From (2.6), (2.7) and (3.4), it follows that for a terminal contact of order $m(\geq 0)$,

(3.10)
$$\left| n^{-1} b_{n,m} v_n - \left\{ (Y_{n(1)} + Y_{n(2)})^{a_m} - Y_{n(1)}^{a_m} \right\} \right| \stackrel{p}{\to} 0$$
, as $n \to \infty$.

Since $(Y_{n(1)} + Y_{n(2)})^{a_m} - Y_{n(1)}^{a_m} + \{(Y_1 + Y_2)^{a_m} - Y_1^{a_m}\}$, where Y_1 and Y_2 are i.i.d.r.v. having the simple exponential df on $[0,\infty)$, $n^{-1}b_{n,m}$ either converges to a positive constant (when m=0) or goes to 0 (when $m \ge 1$), it follows that either (for m=0) v_n has a non-degenerate asymptotic df

or (for $m \ge 1$) it goes to $+\infty$, in probability as $n \to \infty$. This characteristic is also different from the regular case where $v_n \to a$ constant, as $n \to \infty$. Nevertheless, for the studentized form, we have for a terminal contact of order $m(\ge 0)$,

$$T_{n} = n(\theta_{n}^{*} - \theta)/v_{n} = b_{n,m}(X_{n,1} - \theta)/b_{n,m}(X_{n,2} - X_{n,1}) - (n-1)/n$$

$$+ o_{p}(1) \stackrel{?}{+} Y_{1}^{m}/\left\{(Y_{1} + Y_{2})^{a_{m}} - Y_{1}^{a_{m}}\right\} - 1 ,$$

so that noting that $Y^* = Y_2/Y_1$ has the Fisher's variance-ratio distribution with degrees of freedom (2,2), we have from (3.11) that

$$[1 + (1 + T_n)^{-1}]^{m+1} - 1 \stackrel{?}{+} Y^* = Y_2/Y_1.$$

For m = 0, we have a simplified form

(3.13)
$$T_{n} + 1 \stackrel{p}{+} Y_{1}/Y_{2} \stackrel{p}{=} Y^{*}.$$

Both (3.12) and (3.13) have important statistical applications.

4. A MODIFICATION OF θ_n^*

We have observed in (3.2) that for $m \ge 1$, $b_{n,m} E(\theta_n^* - \theta)$ does not converge to 0 as $n + \infty$. Let C_n be the sigma-field generated by $X_{n,1}, \ldots, X_{n,n}$ and by X_{n+j} , $j \ge 1$ (so that C_n is non-increasing in n). Then, in the regular case, [cf. (2.11) of Sen (1977)], we have

(4.1)
$$\theta_n^* - \hat{\theta}_n = (n-1)E\{(\hat{\theta}_n - \hat{\theta}_{n-1}) | C_n\}$$
.

In our case, for $m \ge 1$, $nb_{n,m} E(\hat{\theta}_n - \hat{\theta}_{n-1}) = -a_m [1+a_m + o(1)]$, where as $b_{n,m} E(\hat{\theta}_n - \theta) = [1+a_m + o(1)]$, and thereby, we get the resulting bias in (3.2). To eliminate the, we may consider the modified estimator

(4.2)
$$\theta_{n,m}^{**} = \hat{\theta}_{n} + \frac{1}{a_{m}} E\{(\hat{\theta}_{n} - \hat{\theta}_{n-1}) | C_{n}\}$$

$$= X_{n,1} - (m+1)n^{-1}(n-1)(X_{n,2} - X_{n,1}).$$

In that case, we have

$$b_{n,m} E(\theta_{n,m}^{**} - \theta) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

Also, following the same line as in the proof of Theorem 1, we obtain that

$$\Lambda_{m}^{**}(x) = \frac{\lim_{n \to \infty} P\{b_{n,m}(\theta_{n,m}^{**} - \theta) \le x\}}{\lim_{n \to \infty} P\{b_{n,m}(\theta_{n,m}^{**} - \theta) \le x\}} = \begin{cases}
\int_{0}^{\infty} \exp\left\{-\left[\left\{(m+2)y^{a_{m}} - x\right\}/(m+1)\right]^{m+1}\right\} dy, & -\infty < x \le 0, \\
1 - \exp\{-x^{m+1}\} + \int_{x^{m+1}}^{\infty} \exp\left\{-\left[\left\{(m+2)y^{a_{m}} - x\right\}/(m+1)\right]^{m+1}\right\} dy, & 0 < x < \infty.
\end{cases}$$

Also, following the line of proof of Theorem 2, we have

$$\frac{\lim_{n\to\infty} \mathbb{E}\left\{b_{n,m}^{2}(\theta_{n,m}^{**}-\theta)^{2}\right\} = (2a_{m}\sqrt{2a_{m}})\left\{1 - \frac{2a_{m}}{1+a_{m}}(m+1)\left[(m+1)a_{m}-1\right]\right\} = 2a_{m}\sqrt{2a_{m}}$$

$$= \lim_{n\to\infty} \mathbb{E}\left\{b_{n,m}^{2}(\hat{\theta}_{n}-\theta)^{2}\right\} \ge \lim_{n\to\infty} \mathbb{E}\left\{b_{n,m}^{2}(\theta_{n}^{*}-\theta)^{2}\right\}.$$

Thus, whereas $\theta_{n,m}^{**}$ eliminates bias to the desired extent, it fails to reduce the mean square. In this sense, it is similar to the case of θ_n^* in the regular case. [Though Λ_m^{**} and Λ_m are not the same.]

Finally, for the studentized case, in (3.11)-(3.13), the only changes we need to made is to replace T_n by $T_n + m$; the rest remains the same.

5. SOME REMARKS

We have so far considered the case of the lower end-point. The case of the upper end-point (if finite) follows on parallel lines. Secondly, in practical applications, when the form of F is not specified but the order of terminal contact is assumed to be known [viz., m=0 when F is U-shaped or inverted J-shaped, etc.], the studentized form in (3.11)-(3.13) may most conveniently be used to provide a jackknife test for a null hypothesis $H_0: \theta=\theta_0$ (specified) or a confidence interval for the unknown θ . For a symmetric df with both end-points finite, jackknifing of the extreme mid-range (for estimating or testing for the location of the df) can be made — the jackknife estimator corresponding to the smallest and the largest order statistic are also asymptotically independent.

REFERENCES

- [1] Arvesen, J.M. (1969). Jackknifing U-statistics. Ann. Math. Statist. 40, 2076-2100.
- [2] Schucany, W.R., Gray, H.L. and Owen, D.M. (1971). Bias reduction in estimation. Jour. Amer. Statist, Assoc. 66, 524-533.
- [3] Sen, P.K. (1961). A note on the large sample behaviour of extreme sample values from distributions with finite end-points. Calcutta Statist. Assoc. Bull. 10, 106-115.
- [4] Sen, P.K. (1977). Some invariance principles relating to jackknifing and their role in sequential analysis. Ann. Statist. 5, 316-329.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Ente

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR-TR- 78 - 1271	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
ON JACKKNIFING IN ESTIMATING THE FINITE	Interim
END-POINTS OF A DISTRIBUTION	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)
Pranab Kumar Sen	AFOSR 74-2736
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
University of North Carolina	
Department of Biostatistics Chapel Hill, North Carolina 27514	61102F 2304/A5
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research/NM	13. NUMBER OF PAGES
Bolling AFB, Washington, DC 20332	11
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
blas; extreme values; jackknifing; mean square; order of terminal contact;
studentized form; Tukey-estimator of variance.

20 ABSTRACT (Continue on reverse side if necessary and identity by block number)

Sample extreme values are biased estimators of the end-points of a distribution, and hence, jackknifing is useful. However, the properties of jackknifing in such a case differ considerably from those in the regular case. These are studied here. Along with modification of jackknifing, some applications are also considered.