

ST7 - MULTIMODAL INTERFACES FOR NATURAL HUMAN COMPUTER INTERACTION: THEORY AND APPLICATIONS

Assessing the Usability of Gaze-Adapted Interface against Conventional Eye-based Input Emulation

Chandan Kumar, Raphael Menges and Steffen Staab

Motivation

 Social platforms are an opportunity for physically impaired people to connect with others

- Eye gaze tracking is an emerging input device
- Two interface approaches to include eye gaze
 - Emulation of traditional input devices
 - Gaze-adapted interface

Research Question: What is the impact on Usability and Task Load for the user?

Assessment of Usability

Eye Tracking

There are two major challenges¹ for eye tracking

Limited Accuracy

- Maximal accuracy is one degree due eye geometry
- Calibration drift through head movements
- → Size and position of interface elements

Midas Touch

- Eye is both sensor and controller
- → Dwell time based interaction

¹Kumar, C., Menges, R., & Staab, S. (2016). Eye-Controlled Interfaces for Multimedia Interaction. IEEE Multimedia, 23(4), 6-13.

Emulation of traditional input devices

- Emulation of mouse and keyboard using gaze
- Dwell time based button interaction
- Example of left mouse button click
 - Dwell on left mouse click button \rightarrow Dwell on click area \rightarrow Magnification of area and another dwell on exact position

Gaze-adapted Twitter

- Content Area displays recent tweets and provides no interaction
- Action Bar provides contextual actions by dwell time buttons

Gaze-adapted Twitter: Demo

Experimental Setup

Hardware

 Tobii EyeX consumer eye tracking device

Software

- Our gaze-adapted Twitter application
- OptiKey operating Firefox with mobile Twitter page

Study

- Learning: Eye tracking tutorial provided by Tobii executed
- Think-aloud study, including SUS and NASA-TLX survey
- Counter-balancing between the two softwares performed

Task

 Write a tweet and publish it, find a particular user and follow her, find and like a certain tweet. Explore the application (5-10 min)

Participants

13 students (10M, 3F), aged between 20 and 39

Results: System Usability Score

¹https://measuringu.com/sus

Results: Task Load Average Raw Score

p = .0238 < 5%

Results: Task Load Average Weightings

- Frustration weighting being two times higher for the emulation
- Mental demand, effort and frustration were judged as the most relevant scales by the participants

Results: Task Load Average Raw Score

Observations

- Participants felt stressed when the interface reacted constantly to their gaze
- Users are very focused on the visual search task and overlook system's help (e.g., auto text suggestions while typing)
- Participants prefer the option to personalize the interaction with respect to their experience

Conclusion

- Gaze-adapted interface for Twitter was presented
- Evaluation showed an advantage in both usability and mental demand for gaze-adapted interface over emulation approach
- Future Work: We implement and evaluate Web browsing with eyes and mind, for gaze-adaption of various service interfaces

Chandan Kumar, Raphael Menges and Steffen Staab

Thank you for your Attention!

This work is part of project MAMEM that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement number: 644780.