Class 17 Homework

Grace Wang (PID: A16968688)

Table of contents

```
#BiocManager::install("tximport")
library(tximport)

library(ggplot2)
library(ggrepel)

library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)

folders <- dir(pattern = "SRR21568*")
samples <- sub("_quant", "", folders)
files <- file.path(folders, "abundance.h5")
names(files) <- samples</pre>
txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)
```

1 2 3 4

```
head(txi.kallisto$counts)
```

```
SRR2156848 SRR2156849 SRR2156850 SRR2156851
ENST00000539570
                                    0.00000
ENST00000576455
                               0 2.62037
ENST00000510508
                               0.00000
ENST00000474471
                      0
                               1 1.00000
                                                   0
ENST00000381700
                      0
                               0.00000
                                                   0
ENST00000445946
                              0.00000
```

```
colSums(txi.kallisto$counts)
SRR2156848 SRR2156849 SRR2156850 SRR2156851
   2563611
              2600800
                          2372309
                                     2111474
sum(rowSums(txi.kallisto$counts)>0)
[1] 94561
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]</pre>
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]
pca <- prcomp(t(x), scale=TRUE)</pre>
summary(pca)
Importance of components:
                                      PC2
                                               PC3
                                                      PC4
                             PC1
Standard deviation
                       183.6379 177.3605 171.3020 1e+00
Proportion of Variance
                          0.3568 0.3328 0.3104 1e-05
Cumulative Proportion
                          0.3568
                                   0.6895
                                            1.0000 1e+00
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))</pre>
rownames(colData) <- colnames(txi.kallisto$counts)</pre>
y <- as.data.frame(pca$x)</pre>
y$Condition <- as.factor(colData$condition)</pre>
ggplot(y) +
  aes(PC1, PC2, col=Condition) +
  geom_point() +
  geom_text_repel(label=rownames(y)) +
  theme_bw()
```



```
ggplot(y) +
  aes(PC1, PC3, col=Condition) +
  geom_point() +
  geom_text_repel(label=rownames(y)) +
  theme_bw()
```



```
ggplot(y) +
  aes(PC2, PC3, col=Condition) +
  geom_point() +
  geom_text_repel(label=rownames(y)) +
  theme_bw()
```



```
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
```

using counts and average transcript lengths from tximport

```
dds <- DESeq(dds)
```

estimating size factors

using 'avgTxLength' from assays(dds), correcting for library size

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

-- note: fitType='parametric', but the dispersion trend was not well captured by the function: y = a/x + b, and a local regression fit was automatically substituted. specify fitType='local' or 'mean' to avoid this message next time.

final dispersion estimates

fitting model and testing

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): condition treatment vs control Wald test p-value: condition treatment vs control DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENST00000539570	0.000000	NA	NA	NA	NA
ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261
ENST00000510508	0.000000	NA	NA	NA	NA
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
ENST00000381700	0.000000	NA	NA	NA	NA
ENST00000445946	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENST00000539570	NA				
ENST00000576455	NA				
ENST00000510508	NA				
ENST00000474471	NA				
ENST00000381700	NA				
ENST00000445946	NA				

^{&#}x27;select()' returned 1:many mapping between keys and columns

```
mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$log2FoldChange >= 2] <- "blue"
mycols[res$padj >= 0.05] <- "gray"

ggplot(res) +
   aes(x = log2FoldChange, y = -log(padj), label = symbol) +
   geom_point(col = mycols, alpha = 0.5) +
   geom_vline(xintercept = c(-2, 2), col = "red") +
   geom_hline(yintercept = -log(0.05), col = "red") +
   labs(x = "Log2(Fold Change)", y = "-Log(adjusted p-value)") +
   geom_text_repel(max.overlaps = 50) +
   theme_bw()</pre>
```

Warning: Removed 147246 rows containing missing values or values outside the scale range (`geom_point()`).

Warning: Removed 174212 rows containing missing values or values outside the scale range (`geom_text_repel()`).

Warning: ggrepel: 2763 unlabeled data points (too many overlaps). Consider increasing max.overlaps

