- Many business enterprises accumulate large quantities of data from their daily operations.
- These data are commonly known as market basket transactions.
- Each row in the table corresponds to a transaction, which contains
 - A unique identifier labeled TID
 - A set of items bought by a given customer

TID	Items			
1	{Bread, Milk}			
2	{Bread, Diapers, Beer, Eggs}			
3	{Milk, Diapers, Beer Cola}			
4	{Bread, Milk, Diapers, Beer}			
5	{Bread, Milk, Diapers, Cola}			

- Retailers are interested in analyzing the data to learn about the purchasing behavior of their customers.
- These information can be used to support a variety of business-related applications such as
 - Marketing promotions
 - Inventory management
 - Customer relationship management.

- Association analysis is useful for discovering interesting relationships hidden in large data sets.
- The uncovered relationships can be represented in the form of association rules or sets of frequent items.

- The following rule can be extracted from the previous data set
 - {Diapers}→{Beer}
- The rule suggests that a strong relationship exists between the sale of diapers and beer.
- Retailers can use this type of rules to help them identify new opportunities for crossselling their products to customers.

- There are two key issues that need to be addressed when applying association analysis to market basket data.
- First, discovering patterns from a large transaction data set can be computationally expensive.
- Second, some of the discovered patterns are potentially spurious because they may happen simply by chance.

Binary representation

- Market basket data can be represented in a binary format as shown in the following table.
- Each row corresponds to a transaction.
- Each column corresponds to an item.
- An item can be treated as a binary variable whose value is
 - One if the item is present in a transaction
 - Zero otherwise

Binary representation

TID	Bread	Milk	Diapers	Beer	Eggs	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

Binary representation

- The presence of an item in a transaction is often considered more important than its absence.
- This is an example of an asymmetric binary variable.
- The binary representation ignores certain aspects of the data such as
 - The quantity of items sold
 - The price paid to purchase them

Itemset and support count

- Let I={i₁,i₂,....,i_d} be the set of all items in a market basket data.
- Let $T=\{t_1,t_2,\ldots,t_N\}$ be the set of all transactions.
- Each transaction t_i contains a subset of items chosen from I.

Itemset and support count

- A collection of zero or more items is called an itemset.
- If an itemset contains k items, it is called a kitemset.
- The null (or empty) set is an itemset that does not contain any items.

Itemset and support count

- A transaction t_j is said to contain an itemset X if X is a subset of t_j.
- The support count of an itemset is the number of transactions which contain that particular itemset.
- Formally, the support count $\sigma(X)$ for an itemset X can be stated as

$$\sigma(X) = \left| \left\{ t_i \mid X \subseteq t_i, t_i \in T \right\} \right|$$

Association rule

- An association rule is an implication expression of the form $X \rightarrow Y$.
- X and Y are disjoint itemsets.
- The strength of an association rule can be measured in terms of its support and confidence.

- Support determines how often a rule is applicable to a given data set.
- Confidence determines how frequently items in Y appear in transactions that contain X.
- The formal definition of these metrics are

Support,
$$s(X \to Y) = \frac{\sigma(X \cup Y)}{N}$$

Confidence, $c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$

- Consider the rule {Milk, Diapers}→{Beer}
- From the previous table
 - The support count for {Milk, Diapers, Beer} is2.
 - The total number of transactions is 5.
- Therefore, the rule's support is 2/5=0.4.

- The rule's confidence is obtained by dividing the support count for {Milk, Diapers, Beer} by the support count for {Milk, Diapers}.
- There are 3 transactions that contain milk and diapers.
- Therefore, the confidence for this rule is 2/3=0.67.

- A rule that has very low support may occur simply by chance.
- A low support rule is likely to be uninteresting from a business perspective.
- For this reason, support is often used to eliminate uninteresting rules.

- Confidence measures the reliability of the inference made by a rule.
- For a given rule X→Y, the higher the confidence, the more likely it is for Y to be present in transactions that contain X.
- Confidence also provides an estimate of the conditional probability of Y given X.

- The inference made by an association rule does not necessarily imply causality.
- Instead, it suggests a strong co-occurrence relationship between items in the antecedent and consequent of the rule.
- Causality, on the other hand, requires knowledge about cause and effects in the data.

Association rule mining

- The association rule mining problem can be formally stated as follows:
 - Given a set of transactions T, find all the rules having support ≥ minsup and confidence ≥ minconf.
 - minsup and minconf are the corresponding support and confidence thresholds.

Association rule mining

- A brute force approach for mining association rules is to compute the support and confidence for every possible rule.
- This approach is prohibitively expensive because there are a large number of rules that can be extracted from a data set.

Association rule mining

- A common strategy is to decompose the problem into two major subtasks:
 - Frequent itemset generation
 - The objective of this step is to find all the itemsets that satisfy the minsup threshold.
 - These itemsets are called frequent itemsets.
 - Rule generation
 - The objective of this step is to extract all the highconfidence rules from the frequent itemsets found in the previous step.
 - These rules are called strong rules.

- A lattice structure can be used to enumerate the list of all possible itemsets.
- The following figure shows an itemset lattice for I={a,b,c,d,e}.
- In general, a data set that contains k items can potentially generate up to 2^k-1 frequent itemsets, excluding the null set.
- As a result, the search space of itemsets that need to be explored is exponentially large.

- A brute force approach for finding frequent itemsets is to determine the support count of every candidate itemset in the lattice.
- To do this, we need to compare every candidate against every transaction.
- If the candidate is contained in a transaction, its support count will be incremented.
- In the following figure, the support count for {Bread, Milk} is incremented three times because the itemset is contained in transactions 1,4 and 5.

- There are several ways to reduce the computational complexity of frequent itemset generation
 - Reduce the number of candidate itemsets
 - The Apriori principle is an effective way to eliminate some of the candidate itemsets without counting their support values.
 - Reduce the number of comparisons
 - We can reduce the number of comparisons by using more advanced data structures.

- The support measure helps to reduce the number of candidate itemsets explored during frequent itemset generation.
- The use of support for pruning candidate itemsets is guided by the Apriori principle.
- The Apriori principle
 - If an itemset is frequent, then all of its subsets must also be frequent.

- We consider the itemset lattice shown in the following figure.
- Suppose {c,d,e} is a frequent itemset.
- Any transaction that contains {c,d,e} must also contain its subsets, {c,d}, {c,e}, {d,e}, {c}, {d} and {e}.
- As a result, if {c,d,e} is frequent, then all subsets of {c,d,e} must also be frequent.

- Conversely, if an itemset is infrequent, then all of its supersets must be infrequent.
- This strategy of trimming the search space based on the support measure is known as support-based pruning.
- Such a pruning strategy is made possible by the anti-monotone property of the support measure.

- Let I be a set of items.
- Let J=2^I be the power set of I.
- A measure f is monotone if
 - $\forall X, Y \in J : (X \subseteq Y) \to f(X) \leq f(Y)$
- A measure f is anti-monotone if
 - $\forall X, Y \in J : (X \subseteq Y) \to f(Y) \leq f(X)$

The Apriori algorithm

- Apriori is the first algorithm that uses supportbased pruning to control the exponential growth of candidate itemsets.
- We apply this algorithm to the transactions shown in the previous example.
- We assume that the support threshold is 60%.
- This is equivalent to a minimum support count of 3.

The Apriori algorithm

- Initially, every item is considered as a candidate 1-itemset.
- After counting their supports, the candidate itemsets (Cola) and (Eggs) are discarded.
- This is because they appear in fewer than three transactions.

The Apriori algorithm

- In the next iteration, candidate 2-itemsets are generated using only the frequent 1-itemsets.
- This is because the Apriori principle ensures that all supersets of the infrequent 1-itemsets must be infrequent.
- There are only four frequent 1-itemsets.
- As a result, the number of candidate 2itemsets generated is $\binom{4}{2} = 6$

- Two of these six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently found to be infrequent.
- The remaining four candidates are frequent.
- They will be used to generate candidate 3itemsets.

- Without support-based pruning, there are $\binom{6}{3}$ = 20 candidate 3-itemsets that can be formed using the six items in this example.
- With the Apriori principle, we only need to keep candidate 3-itemsets whose subsets are frequent.
- The only candidate that has this property is {Bread, Diapers, Milk}.

The number of candidates produced based on a brute force strategy of enumerating all itemsets is

With the Apriori principle, this number decreases to

$$\binom{6}{1} + \binom{4}{2} + 1 = 6 + 6 + 1 = 13$$

This represents a significant reduction in the number of candidate itemsets.

- Let C_k denote the set of candidate k-itemsets.
- Let F_k denote the set of frequent k-itemsets.
- The algorithm initially makes a single pass over the data set to determine the support count of each item.
- Upon completion of this step, the set of all frequent 1-itemsets, F₁, will be known.

- Next, the algorithm will iteratively generate new candidate k-itemsets.
- These itemsets are generated using the frequent (k-1)-itemsets found in the previous iteration.

- To count the support of the candidates, the algorithm needs to make an additional pass over the data set.
- After determining their support counts, the algorithm eliminates all candidate itemsets whose support counts are less than the threshold.
- The algorithm terminates when there are no new frequent itemsets generated.

- The frequent itemset generation part of the Apriori algorithm has two important characteristics.
- First, it is a level-wise algorithm
 - It traverses the itemset lattice one level at a time, from frequent 1-itemsets to the maximum size of frequent itemsets.
- Second, it employs a generate-and-test strategy for finding frequent itemset.
 - At each iteration, new candidate itemsets are generated from the frequent itemsets found in the previous iteration.
 - After a pruning process, the support count of each remaining candidate is then determined and tested against the threshold.

- Candidate itemsets are generated by performing the following two operations
 - Candidate generation
 - This operation generates new candidate kitemsets based on the frequent (k-1)-itemsets found in the previous iteration.
 - Candidate pruning
 - This operation eliminates some of the candidate k-itemsets.

- Consider a candidate k-itemset, $X=\{i_1,i_2,\ldots,i_k\}$.
- The algorithm must determine whether all of the subsets, X-{i_i}, j=1,2,....,k, are frequent.
- If one of them is infrequent, then X is immediately pruned.
- This approach can effectively reduce the number of candidate itemsets considered during support counting.

- We do not have to examine all k subsets of a given candidate itemset.
- Suppose m of the k subsets were used to generate a candidate.
- In this case, we only need to check the remaining k-m subsets during candidate pruning.

- There are a number of requirements for an effective candidate generation procedure.
- First, it should avoid generating too many unnecessary candidates.
 - A candidate itemset is unnecessary if at least one of its subsets is infrequent.
 - Such a candidate is guaranteed to be infrequent according to the anti-monotone property of support.

- It must ensure that the candidate set is complete.
 - In other words, no frequent itemsets are left out by the candidate generation procedure.
 - To ensure completeness, the set of candidate itemsets must subsume the set of all frequent itemsets, i.e., $\forall k : F_k \subseteq C_k$
- It should not generate the same candidate itemset more than once.
 - Generation of duplicate candidates leads to wasted computations.

- We now introduce the candidate generation procedure used in the Apriori algorithm.
- In this algorithm, a pair of frequent (k-1)itemsets are merged only if their first k-2 items are identical.
- This process is called apriori-gen.

- Let $A=\{a_1,a_2,\ldots,a_{k-1}\}$ and $B=\{b_1,b_2,\ldots,b_{k-1}\}$ be a pair of frequent (k-1)-itemsets.
- A and B are merged if they satisfy the following conditions:

$$a_i = b_i$$
 (for $i = 1, 2, \dots, k - 2$) and $a_{k-1} \neq b_{k-1}$

- In the following example, the frequent itemset {Bread, Diapers} and {Bread, Milk} are merged to form {Bread, Diapers, Milk}.
- An additional candidate pruning step is required to ensure that the remaining k-2 subsets of the candidate are frequent.

- Support counting is the process of determining the frequency of occurrence for every candidate itemset that survives the candidate pruning step.
- We need to compare a transaction against the candidate itemsets.
- We then update the support counts of candidates contained in the transaction.

- Consider a transaction t that contains five items, {1,2,3,5,6}.
- The following example shows a systematic way for enumerating the 3-itemsets contained in t.
- We assume that each itemset keeps its items in increasing lexicographic order.

- Let t={1,2,3,5,6}
- All the 3 itemsets contained in t must begin with item 1,2 or 3.
- It is not possible to construct a 3-itemset that begins with items 5 or 6.
- This is because there are only two items in t whose labels are greater than or equal to 5.

- The number of ways to specify the first item of a 3-itemset in t is illustrated by the Level 1 prefix structures in the previous figure.
- For example, 1 2 3 5 6 represents a 3-itemset that
 - Begins with item 1 and
 - Followed by two more items chosen from the set {2,3,5,6}

- After fixing the first item, the prefix structures at Level 2 represent the number of ways to select the second item.
- For example, 1 2 3 5 6 corresponds to itemsets that
 - Begin with prefix {1 2} and
 - Followed by items 3,5 or 6.

- Finally, the prefix structures at Level 3 represent the complete set of 3-itemsets in t.
- For example, the 3-itemsets that begin with {1,2} are {1,2,3}, {1,2,5} and {1,2,6}.
- On the other hand, those that begin with prefix {2,3} are {2,3,5} and {2,3,6}.

We can partition the candidate itemsets into different buckets and store them in a hash tree.

- The following figure shows an example of a hash tree structure.
- Each internal node of the tree implements the hash function, h(p)=p mod 3.
- This function is used to determine which branch of the current node should be followed next.
- For example, items 1,4 and 7 are hashed to the same branch, i.e., the leftmost branch.
- This is because they have the same remainder after diving the number by 3.

- Consider a transaction t={1,2,3,5,6}
- To update the support counts of the candidate itemsets, we need to traverse the hash tree.

- The 3-itemsets in t must begin with items 1,2 or 3, as indicated by the Level 1 prefix structures.
- At the root node of the hash tree, the items 1,2 and 3 are hashed separately
 - Item 1 is hashed to the left child
 - Item 2 is hashed to the middle child
 - Item 3 is hashed to the right child

- At the next level, the transaction is hashed on the second item listed in the Level 2 structures.
- For example, after hashing on item 1 at the root node, items 2, 3, and 5 are hashed.
 - Items 2 and 5 are hashed to the middle child.
 - Item 3 is hashed to the right child.

- This process continues until the leaf nodes of the hash tree are reached.
- If a candidate is a subset of the transaction, its support count is incremented.
- In this example, 5 out of the 9 leaf nodes are visited.

- Each frequent k-itemset Y can produce up to 2^k-2 association rules.
- We ignore rules that have empty antecedents and consequents, e.g. $\varnothing \rightarrow Y$ or $Y \rightarrow \varnothing$.
- An association rule can be extracted by partitioning the itemset Y into two non-empty subsets.
- Specifically, the subsets X and Y-X should form a rule X→Y-X that satisfies the confidence threshold.
- All such rules must have already met the support threshold since they are generated from a frequent itemset.

- Let $Y=\{1,2,3\}$ be a frequent itemset.
- There are six candidate association rules that can be generated from Y
 - **■** {1,2}→{3}
 - **■** {1,3}→{2}
 - **■** {2,3}→{1}
 - \blacksquare {1} \rightarrow {2,3}
 - **■** {2}→{1,3}
 - **■** {3}→{1,2}
- The support of each rule is identical to the support for Y.
- As a result, the rules satisfy the support threshold.

- Consider the rule {1,2}→{3} generated from the frequent itemset Y={1,2,3}.
- The confidence of this rule is $\sigma(\{1,2,3\})/\sigma(\{1,2\})$.
- Since {1,2,3} is frequent, the anti-monotone property of support ensures that {1,2} is also frequent.
- The support counts for both itemsets were already found during frequent itemset generation.

- The following property holds for the confidence measure:
 - Suppose a rule X→Y-X does not satisfy the confidence threshold.
 - Then any rule $X' \rightarrow Y X'$, where X' is a subset of X, will not satisfy the confidence threshold.

- To verify this property, consider the following two rules
 - $X \rightarrow Y-X$
 - \blacksquare X' \rightarrow Y-X', where X' is a subset of X.
- The confidence of the rules are $\sigma(Y)/\sigma(X)$ and $\sigma(Y)/\sigma(X')$ respectively.
- Since X' is a subset of X, $\sigma(X') \ge \sigma(X)$.
- As a result, the second rule cannot have a higher confidence than the first rule.

- The Apriori algorithm uses a level-wise approach for generating association rules.
- Each level corresponds to the number of items that belong to the rule consequent.
- Initially, all the high-confidence rules that have only one item in the rule consequent are extracted.
- These rules are then used to generate new candidate rules.

- We consider the frequent itemset {a,b,c,d}.
- The following figure shows a lattice structure for the association rules generated from {a,b,c,d}.

- Suppose the confidence for $\{b,c,d\}\rightarrow \{a\}$ is low.
- All the rules containing item a in its consequent can be discarded.
- In general, if any node in the lattice has low confidence, then the entire subgraph spanned by the node can be pruned immediately.

- An example of rule generation:
 - Suppose {a,c,d}→{b} and {a,b,d}→{c} are high confidence rules.
 - Then the candidate rule {a,d}→{b,c} is generated by merging the consequents of both rules.
- In general, new rules are generated by merging the consequents of two high confidence rules using the apriori-gen step.