Στοιχεία Προτασιακής Λογικής

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Μαθηματικές Προτάσεις

- (Μαθηματική) πρόταση: δήλωση που μπορεί να είναι αληθής ή ψευδής (όχι και τα δύο).
 - Το ὁνομά μου είναι Δημήτρης.
 - Χθες χιόνισε στην Καστοριά.
 - Ο Σεφέρης τιμήθηκε με το Νόμπελ Λογοτεχνίας.
 - Σήμερα είναι η πρώτη μέρα της άνοιξης.
- Άλλα ὁχι:
 - Τι ώρα είναι;
 - Κάνετε ησυχία παρακαλώ.
 - Σχεδόν κάθε μέρα βρέχει (χωρίς το σχεδόν;)

Προτασιακή Λογική

- Προτάσεις συνδυάζονται λογικά: σύνθετες προτάσεις.
 - Αν χιονίσει, θα πάω για σκι ή θα παίξω χιονοπόλεμο.
 - Ο Δ είναι καλός ή ο Δ δεν είναι καλός.
 - Θα κάνω μάθημα στις 9 και θα παίζω μπάσκετ στις 10.
- Στοιχειώδεις προτάσεις: προτασιακές μεταβλητές p, q, r.
 - Βασικά δομικά στοιχεία. Διακριτές τιμές A ή Ψ (1 ή 0).
- Συνδυασμοί προτάσεων με (λογικούς) συνδέσμους:

```
\neg , \wedge , \vee , \oplus , \rightarrow , \leftrightarrow .
```

- Προτασιακός τύπος:
 - Είτε προτασιακή μεταβλητή p, q, r, ...
 - Eiτε $(\neg \phi)$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \oplus \psi)$, $(\phi \to \psi)$, $(\phi \leftrightarrow \psi)$, $(\phi \lor \psi)$, $(\phi$
- Δομή π.τ. αποτυπώνεται σε δενδροδιάγραμμα.

Δενδροδιαγράμματα

- Η δομή ενός προτασιακού τύπου μπορεί να απεικονιστεί με τη βοήθεια ενός δενδροδιαγράμματος.
 - Παράδειγμα: Ο προτασιακός τύπος $\neg(p \to q) \land (r \lor s)$ μπορεί να παρασταθεί με το δενδροδιάγραμμα:

Σημασιολογική Προσέγγιση

- Λογικοί σύνδεσμοι ορίζονται με πίνακες αλήθειας.
- Αποτίμηση: ανάθεση τιμών αλήθειας στις μεταβλητές ενός π.τ.
 - Από τιμές αλήθειας μεταβλητών, δενδροδιάγραμμα, και πίνακες αλήθειας λογικών συνδέσμων, υπολογίζουμε τιμή αλήθειας π.τ.

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \oplus q$
A	A	Ψ	A	A	A	A	Ψ
A	Ψ	Ψ	Ψ	A	Ψ	Ψ	A
Ψ	A	A	Ψ	A	A	Ψ	A
Ψ	Ψ	A	Ψ	Ψ	A	A	Ψ

Σημασιολογική Προσέγγιση

- Αποτίμηση της τιμής αληθείας ενός τύπου εφαρμόζεται σταδιακά στο δενδροδιάγραμμα:
 - Ξεκινάμε από προτασιακές μεταβλητές
 - Προχωράμε στο επόμενο επίπεδο με πίνακα αληθείας.
 - Παράδειγμα. Έστω a(p) = a(s) = A και a(q) = a(r) = Ψ. Για $\neg(p \to q) \land (r \lor s)$ έχουμε:

Σημασιολογική Προσέγγιση

- \square Ταυτολογική ισοδυναμία $\varphi = \psi$
 - Για κάθε αποτίμηση, φ και ψ έχουν ίδια τιμή αλήθειας.
 - lacksquare $\Pi.\chi. <math>(p \wedge q) o r \equiv p o (q o r)$
- Ταυτολογία φ: φ πάντα Α (για κάθε αποτίμηση).
 - Αντίφαση φ: φ πάντα Ψ (για κάθε αποτίμηση).
 - lacksquare Αντίφαση $oldsymbol{arphi}$ ανν $eg oldsymbol{arphi}$ ταυτολογία.
- Ικανοποιήσιμος φ: φ δεν είναι αντίφαση.
 - $T = \{\varphi_1, ..., \varphi_k\}$ ικανοποιήσιμο: $\varphi_1 \wedge ... \wedge \varphi_k$ ικανοποιήσιμος.
 - Υπάρχει αποτίμηση που ικανοποιεί (ταυτόχρονα) όλους τους τύπους του Τ.

Παραδείγματα

- Ο Νδο $\varphi \equiv ((p \land q) \to r) \to ((p \lor q) \to r)$ ούτε αντίφαση (άρα ικανοποιήσιμος) ούτε ταυτολογία.
 - **Ι** Ικανοποιήσιμος φ : p = q = r = A ή p = q = A και $r = \Psi$.
 - **Οχι ταυτολογία \varphi:** $r = \Psi$ και είτε p = A, $q = \Psi$ είτε $p = \psi$, q = A.

p	q	r	$p \wedge q$	$p \lor q$	$(p \land q) \rightarrow r$	$(p \lor q) \to r$	φ
A	A	A	A	A	A	A	A
A	A	Ψ	A	A	Ψ	Ψ	A
A	Ψ	A	Ψ	A	A	A	A
A	Ψ	Ψ	Ψ	A	A	Ψ	Ψ
Ψ	A	A	Ψ	A	A	A	A
Ψ	A	Ψ	Ψ	A	A	Ψ	Ψ
Ψ	Ψ	A	Ψ	Ψ	A	A	A
Ψ	Ψ	Ψ	Ψ	Ψ	A	A	A

Παραδείγματα

- lacksquare Νδο $\psi \equiv ((p
 ightarrow q)
 ightarrow p)
 ightarrow p$ ταυτολογία.
 - Av p = A, τότε A
 (αληθές συμπέρασμα).
 - **A** $P = \Psi$, τότε A (ψευδής υπόθεση).

p	q	$p \rightarrow q$	$(p \to q) \to p$	$((p \to q) \to p) \to p$
A	A	A	A	A
A	Ψ	Ψ	A	A
Ψ	A	A	Ψ	A
Ψ	Ψ	A	Ψ	A

- \square Νδο $p \land (p \rightarrow q) \rightarrow q$ ταυτολογία.
 - Κάθε π.τ. με ίδια συντακτική μορφή $\phi \wedge (\phi \rightarrow \psi) \rightarrow \psi$ (για κάθε ϕ , ψ) είναι ταυτολογία!

Ταυτολογική Συνεπαγωγή

- \square Σύνολο π.τ. Τ συνεπάγεται ταυτολογικά π.τ. φ , $\top \mid = \varphi$:
 - Κάθε αποτίμηση που ικανοποιεί το Τ ικανοποιεί και τον φ. (φ έπεται αναγκαία από υποθέσεις στο T).
 - $T \models \varphi$ ανν $T \cup \{\neg \varphi\}$ μη ικανοποιήσιμο.
 - \emptyset |= ϕ (ή απλά |= ϕ) δηλώνει ότι ϕ ταυτολογία.
 - Αν Τ μη ικανοποιήσιμο, τότε Τ $|= \varphi$ για κάθε π.τ. $\varphi!$

Παραδείγματα

lacksquare Έστω σύνολο π.τ. $T = \{p_1 \lor \neg p_2, p_1 \land p_2, p_1 \lor p_3\}$ Ποιές από τις παρακάτω αληθεύουν;

$$T \models \neg p_1 \to (p_1 \land p_2) \qquad T \models (p_2 \lor p_3) \to (p_1 \land p_3)$$
$$T \models (p_1 \land p_2) \to p_3 \qquad T \models (p_1 \lor p_2) \to (\neg p_1 \to \neg p_3)$$

Παραδείγματα

Ποιές ταυτολογικές συνεπαγωγές αληθεύουν:

$$\varphi \to (\psi \to \varphi) \models (\varphi \to \psi) \to \varphi \qquad \Psi$$

$$(\varphi \to \psi) \to \varphi \models \varphi \to (\psi \to \varphi) \qquad A$$

$$\neg(\varphi \to (\psi \to \varphi)) \models \varphi \to (\psi \to \varphi) \qquad A$$

$$\neg(\varphi \to (\psi \to \varphi)) \models (\varphi \to \psi) \to \varphi \qquad A$$

$$(\varphi \to \psi) \to \varphi \models \neg(\varphi \to (\psi \to \varphi)) \qquad \Psi$$

$$\varphi \to (\psi \to \varphi) \models \neg(\varphi \to (\psi \to \varphi)) \qquad \Psi$$

$$\neg(\varphi \to (\psi \to \varphi)) \models \varphi \land \neg\varphi \qquad A$$

- Παρατηρήσεις για ταυτολογικές συνεπαγωγές:
 - μη ικανοποιήσιμο |= οτιδήποτε
 - οτιδήποτε |= ταυτολογία
 - **ταυτολογία** |= **μόνο** ταυτολογία
 - μόνο μη ικανοποιήσιμο |= αντίφαση

Ιδιότητες Λογικών Συνδέσμων (Ι)

Αντιμεταθετική	$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$	
Προσεταιριστική	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$ $p \vee (q \vee r) \equiv (p \vee q) \vee r$	
Επιμεριστική	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
Διπλή άρνηση	$\neg \neg p \equiv p$	
Αντικατάσταση συνεπαγωγής	$p \to q \equiv \neg p \lor q$	

Ιδιότητες Λογικών Συνδέσμων (ΙΙ)

Αποκλεισμός τρίτου	$p \lor \neg p \equiv A$
Αντιθετοαναστροφή	$p \to q \equiv \neg q \to \neg p$
Εξαγωγή	$p \land q \to r \equiv p \to (q \to r)$
De Morgan	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$
Άρνηση συνεπαγωγής	$\neg (p \to q) \equiv p \land \neg q$

Παράδειγμα

Απλοποίηση προτασιακού τύπου:

$$((\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)) \lor (\neg \varphi \land \neg \psi)$$

$$\dots \equiv (\varphi \land \neg \psi) \lor ((\neg \varphi \land \psi) \lor (\neg \varphi \land \neg \psi))$$

$$\equiv (\varphi \land \neg \psi) \lor ((\neg \varphi \land (\psi \lor \neg \psi)))$$

$$\equiv (\varphi \land \neg \psi) \lor \neg \varphi$$

$$\equiv (\varphi \lor \neg \varphi) \land (\neg \psi \lor \neg \varphi)$$

$$\equiv \neg \psi \lor \neg \varphi$$

$$\equiv \neg (\psi \land \varphi)$$

Παράδειγμα

- Υποπτος δηλώνει: «Λέω την αλήθεια ανν είμαι ένοχος».
 - Γνωρίζουμε ότι είτε λέει πάντα αλήθεια είτε πάντα ψέματα.
 - Μπορούμε να αποφανθούμε αν είναι ένοχος;
- \square $p \equiv «λέει αλήθεια»$ q = «είναι ἐνοχος»
 - Δ ήλωση: $p \leftrightarrow q$.
 - Πρέπει να αληθεύει ότι: $p \leftrightarrow (p \leftrightarrow q)$

p	q	$p \leftrightarrow q$	$p \leftrightarrow (p \leftrightarrow q)$
A	A	A	A
A	Ψ	Ψ	Ψ
Ψ	A	Ψ	A
Ψ	Ψ	A	Ψ

Παράδειγμα

- Ο κόσμος χωρίζεται σε ευγενείς και απατεώνες.
 - Ευγενείς: πάντα αλήθεια. Απατεώνες: πάντα ψέματα.
- Κάποιος δηλώνει:
 - «Αν είμαι ευγενής, τότε η σύζυγός μου είναι ευγενής».
 - Είναι ευγενής; Η σύζυγός του;
- = «άνδρας λέει αλήθεια» q = «σύζυγος ευγενής»
 - Δήλωση: $p \rightarrow q$.
 - Πρέπει να αληθεύει ότι: $p \leftrightarrow (p \rightarrow q)$

p	q	$p \rightarrow q$	$p \leftrightarrow (p \rightarrow q)$
A	A	A	A
A	Ψ	Ψ	Ψ
Ψ	A	A	Ψ
Ψ	Ψ	A	Ψ

Παραδείγματα

- Συναντάμε 3 ανθρώπους, Α, Β, Γ, και ρωτάμε τον Α αν είναι ευγενής:
 - Ο Α λέει κάτι, αλλά δεν τον ακούμε.
 - Ο Β πετάγεται και λέει: «Ο Α είπε ότι είναι απατεώνας».
 - Ο Γ λέει: «Μην τον πιστεύεις, ο Β είναι ψεύτης!».
- Είναι οι δηλώσεις: «το καλό φαγητό δεν είναι φθηνό» και «το φθηνό φαγητό δεν είναι καλό» ισοδύναμες;
 - Ισοδυναμία κ → ¬φ και φ → ¬κ;
- Είναι το «αυτή η πρόταση είναι ψευδής» μαθ. πρόταση;
 - Μπορεί να είναι αληθής; Ψευδής;

Μαθηματική Λογική

- Αντικείμενο: θεμελίωση των μαθηματικών.
 - Πότε μια πρόταση ισχύει / μια απόδειξη είναι σωστή;
 - Σημασιολογικά: συμπέρασμα έπεται αναγκαία από υποθέσεις.
 - Ενδιαφέρει αλλά δεν ελέγχεται (αποδοτικά).
 - Συντακτικά: όταν στην αποδεικτική διαδικασία εφαρμόζουμε σωστά συγκεκριμένους κανόνες (συντακτικής φύσης).
 - Διατύπωση με νοημοσύνη «μηχανιστικός» έλεγχος.
 - Ζητούμενο ισοδυναμία: σωστές «συντακτικά» αποδείξεις θεμελιώνουν (όλες και μόνο τις) «σημασιολογικά» σωστές προτάσεις.
 - Εγκυρότητα Πληρότητα.

Συντακτική Προσέγγιση -Προτασιακός Λογισμός

- Αξιωματικό Σύστημα (όχι μοναδικό):
 - AS1: $\varphi \rightarrow (\psi \rightarrow \varphi)$
 - AΣ2: $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - AΣ3: $(\neg \varphi \rightarrow \neg \psi) \rightarrow ((\neg \varphi \rightarrow \psi) \rightarrow \varphi)$
- Αποδεικτικός κανόνας Modus Ponens: $\frac{\varphi, \varphi \to \psi}{\varphi}$
- Ξεκινώντας από αξιώματα (ή υποθέσεις, ή τυπικά θεωρήματα), και μόνο με συντακτική αντικατάσταση και ΜΡ, αποδεικνύουμε τυπικά θεωρήματα.
 - <mark>- φ : φ</mark> είναι τυπικό θεώρημα.
 - Τ |- φ : φ αποδεικνύεται τυπικά από υποθέσεις Τ.

$$(\varphi \to (\psi \to \varphi))$$

$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(\neg \varphi \to \neg \psi) \to ((\neg \varphi \to \psi) \to \varphi)$$

 \square Τυπική απόδειξη για $|-\varphi \rightarrow \varphi|$

1.
$$(\varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi) \rightarrow ((\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)))$$

 $A\Sigma 2 \ \mu\epsilon \ (\varphi, \ \varphi), \ (\psi, \ \varphi \rightarrow \varphi), \ \kappa\alpha (\chi, \ \varphi)$

2.
$$\varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$$

3.
$$(\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

4.
$$\varphi \rightarrow (\varphi \rightarrow \varphi)$$

5.
$$\varphi \rightarrow \varphi$$

AΣ1 με
$$(\varphi, \varphi)$$
, $(\psi, \varphi \rightarrow \varphi)$

AΣ1 με
$$(\varphi, \varphi)$$
, (ψ, φ)

$$(\varphi \to (\psi \to \varphi))$$

$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(\neg \varphi \to \neg \psi) \to ((\neg \varphi \to \psi) \to \varphi)$$

Τυπική απόδειξη για $\neg \varphi \mid \neg (\neg \psi \rightarrow \varphi) \rightarrow \psi$

1.
$$(\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)$$
 AS3 µε (ϕ, ψ) και (ψ, ϕ)

ΑΣ3 με
$$(\varphi, \psi)$$
 και (ψ, φ)

2.
$$\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi)$$

ΑΣ1 με
$$(\varphi, \neg \varphi)$$
 και $(\psi, \neg \psi)$

$$3. \neg \varphi$$

4.
$$\neg \psi \rightarrow \neg \phi$$

5.
$$(\neg \psi \rightarrow \phi) \rightarrow \psi$$

Ποια από τα παρακάτω προκύπτουν άμεσα από αξιώματα;

$$lacksquare$$
 $\phi o \phi$

$$\chi \to (\chi \to \chi)$$

$$(\varphi \to (\psi \to \varphi))$$

$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

$$(\neg \varphi \to \neg \psi) \to ((\neg \varphi \to \psi) \to \varphi)$$

- Eivai σωστή τυπική απόδειξη για $\psi \mid (\neg \phi \rightarrow \neg \psi) \rightarrow \phi$

 - $\psi o (\neg \phi o \psi)$
 - 3. $\neg \phi \rightarrow \psi$
 - **4.** $(\neg \phi \rightarrow \psi) \rightarrow ((\neg \phi \rightarrow \neg \psi) \rightarrow \phi)$
 - 5. $(\neg \phi \rightarrow \neg \psi) \rightarrow \phi$
- Το βήμα 4 είναι λάθος!!!

Υπόθεση

ΑΣ1 με (φ, ψ) και $(\psi, \neg \varphi)$

2, 1, MP

ΑΣ3 με (φ, φ) και $(\psi, \neg \psi)$

4, 3, MP

$$\varphi \to (\psi \to \varphi)$$

$$\to \psi) \to (\varphi \to \chi))$$

$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$
$$(\neg \varphi \to \neg \psi) \to ((\neg \varphi \to \psi) \to \varphi)$$

- Σωστή τυπική απόδειξη για $\neg\neg\psi$ $[\neg(\neg\phi\rightarrow\neg\psi)\rightarrow\phi]$
 - 1. $\neg\neg\psi$
 - 2. $\neg\neg\psi\rightarrow(\neg\phi\rightarrow\neg\neg\psi)$
 - 3. $\neg \varphi \rightarrow \neg \neg \psi$
 - 4. $(\neg \phi \rightarrow \neg \neg \psi) \rightarrow ((\neg \phi \rightarrow \neg \psi) \rightarrow \phi)$ A Σ 3 µ ϵ (ϕ , ϕ) Kal (ψ , $\neg \psi$)
 - 5. $(\neg \phi \rightarrow \neg \psi) \rightarrow \phi$

- Υπόθεση
- **ΑΣ1** με $(\phi, \neg \neg \psi)$ και $(\psi, \neg \phi)$
- 2, 1, MP
- 4, 3, MP
- Με χρήση του $|-\psi \rightarrow \neg \neg \psi|$ μπορούμε να αποδείξουμε каі оті $\psi \mid \neg (\neg \phi \rightarrow \neg \psi) \rightarrow \phi$

- Θεώρημα Απαγωγής: $T \cup \{\varphi\} \vdash \psi \Leftrightarrow T \vdash \varphi \to \psi$
- Θ. Αντιθετοαναστροφής: $T \cup \{\varphi\} \vdash \neg \psi \Leftrightarrow T \cup \{\psi\} \vdash \neg \varphi$
 - Τυπική απόδειξη για | φ → ¬¬φ

$$\vdash \varphi \to \neg \neg \varphi \overset{\Theta. A\pi\alpha\gamma.}{\Leftrightarrow} \varphi \vdash \neg \neg \varphi \overset{\Theta. A\nu/\varphi\eta\varsigma}{\Leftrightarrow} \neg \varphi \vdash \neg \varphi$$

- Θ. Απαγωγής σε Άτοπο: Αν Τ \cup $\{\phi\}$ αντιφατικό, Τ $|-\neg\phi|$
- Για νδο $[-(\varphi \rightarrow \chi) \rightarrow ((\varphi \rightarrow (\chi \rightarrow \psi)) \rightarrow (\varphi \rightarrow \psi)) \dots]$
 - ... αρκεί νδο $\{ \varphi \rightarrow \chi, \varphi \rightarrow (\chi \rightarrow \psi), \varphi \} \mid -\psi$.
 - 1. ϕ

- Υπόθεση
- 2. $\varphi \rightarrow (\chi \rightarrow \psi)$ Υπόθεση

3. $\chi \rightarrow \psi$

2, 1, MP

4. $\varphi \rightarrow \chi$

Υπόθεση

5. X

4, 1 MP

 $6. \quad \psi$

3, 5, MP

Συντακτική vs Σημασιολογική Προσέγγιση

Σημασιολογική Προσέγγιση

- ταυτολογία: |= *φ*
- ταυτολ. συνεπαγωγή Τ |= φ
- ικανοποιήσιμο Τ
- μη ικανοποιήσιμο Τ
- αν Τ μη ικανοποιήσιμο, τότε $T \mid = \varphi$, για κάθε φ .
- Εγκυρότητα: $\forall T, \ \forall \varphi, \ T \vdash \varphi \Rightarrow T \models \varphi$
- Πληρότητα: $\forall T, \ \forall \varphi, \ T \models \varphi \Rightarrow T \vdash \varphi$

Συντακτική Προσέγγιση

- τυπικό θεώρημα: |- *φ*
- απόδειξη με υποθέσεις Τ |- φ
- συνεπές Τ: $\not\exists \varphi (T \vdash \varphi \text{ και } T \vdash \neg \varphi)$
- αντιφατικό Τ: $\exists \varphi (T \vdash \varphi \text{ και } T \vdash \neg \varphi)$ $\forall \varphi \ T \vdash \varphi$
- αν Τ αντιφατικό, τότε Τ $|-\varphi, \gamma|$ ια κάθε φ .