מדינת ישראל ספר על־יסודיים א. בגרות לבתי ספר על־יסודיים

ב. בגרות לנבחנים אקסטרניים

מועד הבחינה: קיץ תשע"ד, 2014

מספר השאלון: 036002, 655

נספח: נוסחאות ונתונים בפיזיקה ל־5 יח"ל

פיזיקה חשמל

לתלמידי 5 יחידות לימוד

הוראות לנבחן

א. משך הבחינה: שעה ושלושה רבעים (105 דקות).

ב. מבנה השאלון ומפתח ההערכה:

בשאלון זה חמש שאלות, ומהן עליך לענות על שלוש שאלות בלבד.

לכל שאלה $-\frac{1}{3}$ 33 נקודות; 3 \times 33 נקודות לכל

- ג. חומר עזר מותר בשימוש: (1) מחשבון.
- (2) נספח נוסחאות ונתונים בפיזיקה המצורף לשאלון.

ד. הוראות מיוחדות:

משרד החינור

- ענה על מספר שאלות כפי שהתבקשת. תשובות לשאלות נוספות לא ייבדקו. (1) (התשובות ייבדקו לפי סדר הופעתן במחברת הבחינה.)
- 2) בפתרון שאלות שנדרש בהן חישוב, רשום את הנוסחאות שאתה משתמש בהן. כאשר אתה משתמש בסימן שאינו בדפי הנוסחאות, כתוב במילים את פירוש הסימן. לפני שאתה מבצע פעולות חישוב, הצב את הערכים המתאימים בנוסחאות. רשום את התוצאה שקיבלת ביחידות המתאימות. אי־רישום הנוסחה או אי־ביצוע ההצבה או אי־רישום היחידות עלולים להפחית נקודות מהציון.
 - (3) כאשר אתה נדרש להביע גודל באמצעות נתוני השאלה, רשום ביטוי מתמטי הכולל את נתוני השאלה או חלקם; במידת הצורך אפשר להשתמש גם בקבועים בסיסיים, כגון e או המטען היסודי g או המטען היסודי
 - . בחישוביך השתמש בערך $10~{
 m m/s}^{2}$ לתאוצת הנפילה החופשית.
 - (5) כתוב את תשובותיך בעט. כתיבה בעיפרון או מחיקה בטיפקס לא יאפשרו ערעור. מותר להשתמש בעיפרון לסרטוטים בלבד.

כתוב <u>במחברת הבחינה בלבד,</u> בעמודים נפרדים, כל מה שברצונך לכתוב <u>כטיוטה</u> (ראשי פרקים, חישובים וכדומה). רשום "טיוטה" בראש כל עמוד טיוטה. רישום טיוטות כלשהן על דפים שמחוץ למחברת הבחינה עלול לגרום לפסילת הבחינה!

ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד.

בהצלחה!

השאלות

ענה על <u>שלוש</u> מהשאלות 5-1.

(לכל שאלה $-\frac{1}{3}$ 33 נקודות; מספר הנקודות לכל סעיף רשוּם בסופו.)

.1 מערכות חשמליות רבות, לדוגמה מערכת להאצת חלקיקים, כוללות לוחות טעונים בדומה למערכת המוצגת לפניך.

המערכת כוללת שלושה לוחות ארוכים מאוד וטעונים: C , B , A , המוצבים במקביל זה לזה במרחקים שונים, כמתואר באיור. במרכזו של לוח B יש חור קטן.

הגרף שלפניך מתאר את הפוטנציאל החשמלי בין הלוחות.

- א. קבע את הכיוון של השדה החשמלי בין לוח A ללוח B, ואת הכיוון של השדה החשמלי בין לוח B ללוח B ללוח B ללוח B ללוח B
- ב. חשב את עוצמת השדה החשמלי בין לוח A ללוח (${\rm E_{AB}}$), ואת עוצמת השדה החשמלי בין לוח (${\rm E_{BC}}$). (${\rm E_{BC}}$) (כקודות)

A חלקיק טעון במטען שלילי משוחרר ממנוחה ממרכז לוח

- ג. הסבר מדוע תנועת החלקיק בין לוח A ללוח B היא תנועה שוות תאוצה (הזנח את כוח הכבידה הפועל על החלקיק). (6 נקודות)
- . B א ללוח A ללוח A את המהירות המרבית (המקסימלית) אל החלקיק בתנועתו בין לוח A ללוח A השב את המהירות המרבית (המקסימלית) אינ תון: מסת החלקיק $m=8\times 10^{-25}{\rm kg}$ (8 נקודות)
- ה. B החלקיק עובר לאזור שבין לוח B ללוח B ללוח B דרך החור הקטן שבלוח B. המשך בעמוד B האם החלקיק יגיע ללוח B? B נקודות (6 נקודות)

2. תלמידה הרכיבה שני מעגלים חשמליים הכוללים מרכיבים זהים:

A ומד זרם V מד מתח R, מד משתנה , r והתנגדות פנימית והתנגדות פנימית ϵ אות כא"מ סוללה בעלת כא"מ והתנגדות פנימית פנימית והתנגדות והתנגדות והתרשים ב).

א. התלמידה הרכיבה במעגלים מד זרם ש<u>אינו</u> אידאלי. קבע אם המתח הנמדד בשני המעגלים שווה – הסבר מדוע. שווה או שונה. אם המתח הנמדד שווה – הסבר מדוע.

אם המתח הנמדד שונה - קבע באיזה מעגל הוא גדול יותר, והסבר מדוע. (8) נקודות).

התלמידה החליפה את מד הזרם במעגל המתואר בתרשים א, במד זרם <u>אידאלי</u>. היא ערכה ניסוי שבו שינתה כמה פעמים את ההתנגדות של הנגד המשתנה. תוצאות הניסוי מוצגות בטבלה שלפניך.

0.6	0.5	0.4	0.3	0.2	I(A)
0	0.20	0.36	0.60	0.79	V(V)

- ב. סרטט גרף של המתח כפונקציה של עוצמת הזרם, לפי המדידות של התלמידה. (7 נקודות)
- הסוללה. (ϵ) את הכא"מ (ϵ) ואת ההתנגדות הפנימית (ϵ) של הסוללה. (ϵ) את הכא"מ (ϵ) את הכא"מ (ϵ)
 - ד. האם יש דרך למדוד ישירות (ללא חישוב) כא"מ של סוללה?אם כן הסבר כיצד. אם לא הסבר מדוע. (4 נקודות)
- ה. האם יש דרך למדוד ישירות (ללא חישוב) התנגדות פנימית של סוללה? אם כן הסבר כיצד. אם לא הסבר מדוע. $(\frac{1}{3})$ נקודות) המשך בעמוד 4/

 ${f .}$ באיור שלפניך מוצג מעגל חשמלי שמחוברים בו ארבעה נגדים וסוללה אידאלית שהכא"מ שלה ${f .}$ עוצמת הזרם העובר דרך הסוללה מסומנת ב־ ${f .}$

- א. קבע אם המתח על הנגד R_3 גדול יותר מהמתח על הנגד R_4 , קטן ממנו או שווה לו. $\frac{1}{2} \frac{1}{2} \frac{$
 - (6 נקודות) בלבד. ϵ חשב את המתח על כל נגד, ובטא אותו באמצעות
 - ג. סדר את ארבעת הנגדים בסדר <u>עולה</u>, על פי ההספק המתפתח בכל אחד מהם. <u>נמק</u>.(6) נקודות)
 - ד. מחליפים את הנגד R_4 בנגד שלו התנגדות גדולה יותר. קבע אם תשתנה עוצמת הזרם מחליפים את הנגד R_1 . אם כן, כיצד היא תשתנה? R_1 אם כן, כיצד היא תשתנה?
 - ה. מחליפים את הנגד R_4 בחוט מבוֹדד. חשב את עוצמת הזרם העובר דרך כל אחד מחליפים את הנגדים.

נקודות) $7\frac{1}{3}$ י. מקורי. באמצעות את הזרם במעגל המקורי. באמצעות – ניטא את תשובותיך באמצעות

/המשך בעמוד 5/

4. לצורך ניסוי, קבוצת תלמידים שיחררה ממנוחה מסגרת ריבועית העשויה מתיל מוליך.

בעת נפילתה, המסגרת חולפת דרך אזור שבו מצוי שדה מגנטי שכיוונו אל תוך הדף (ראה איור). שים לב: השדה אינו פועל עד הרצפה.

המסגרת נפלה בצורה אנכית ולא הסתובבה באוויר, עד שהגיעה לרצפה.

אפשר לחלק את תנועת המסגרת לשלושה שלבים:

- i מתחילת כניסתה לתוך השדה המגנטי עד שכולה בתוכו.
 - ii כאשר המסגרת נמצאת כולה בתוך השדה ונעה בתוכו.
- iii מרגע שהמסגרת מתחילה לצאת מהשדה עד שהיא יוצאת ממנו לגמרי.
- א. במהלך <u>כל אחד</u> מהשלבים iii-i ציין את הכוחות הפועלים על המסגרת, וקבע אם <u>הכוח השקול</u> הפועל עליה גדַל, קטֵן או לא משתנה. <u>נמק את קביעותיך</u>.
 - (12 נקודות)
 - : iii-i לכל אחד מהשלבים

קבע אם זרם \mathfrak{z} רם דרך המסגרת, ואם כן \mathfrak{z} מהו כיוון הזרם (בכיוון השעון או נגד כיוון השעון); אם לא זרם זרם \mathfrak{z} הסבר מדוע. (9 נקודות)

. $R=1\Omega$ התנגדותה , $x=0.5~{\rm m}$, אורך צלעה , $m=0.1~{\rm kg}$, התנגדותה , עוצמת השדה המגנטי . $B=0.5~{\rm T}$

(a=0) ברגע מסוים בזמן הנפילה של המסגרת, התאוצה שלה התאפסה

- **ג.** חשב את עוצמת הזרם הזורם במסגרת ברגע זה, וציין את כיוונו. (7 נקודות)
 - $\frac{1}{3}$, חשב את מהירות התנועה של המסגרת ברגע זה. $\frac{1}{3}$ 5 נקודות)

בסדרת ניסויים חקרו את התנהגותם של חלקיקים טעונים באזור שבו הופעלו שדה מגנטי .5 . m ושדה חשמלי. מטענו של כל חלקיק הוא q + q ומסתו היא

(הזנח את השפעתו של כוח הכבידה.)

. x ביוון החיובי של ציר ה־ x ביוון החיובי של ציר ה־ בשלב ראשון, הפעילו באזור באזור הק

את החלקיקים הטעונים הכניסו אל תוך השדה המגנטי במהירות שגודלה v . נמצא שהחלקיקים המשיכו לנוע בקו ישר.

א. החלקיקים נעו במקביל לאחד הצירים z, y, x המוצגים במערכת הצירים שבתרשים א. קבע במקביל לאיזה ציר נעו החלקיקים. נמק את קביעתך. (6 נקודות)

. y המגנטי B בעירון החיובי של ציר ה־ בשלב שני נוסף על השדה המגנטי בעילו הפעילו בש

ב. שחררו את החלקיקים ממנוחה באזור הניסוי. קבע אם החלקיקים נשארו במנוחה, נעו בקו ישר או נעו בקו עקום. <u>נמק</u>. (6 נקודות)

(שים לב: המשך השאלה בעמוד הבא.)

בניסוי נוסף, באזור שבו פעלו שני השדות, החלקיקים נעו במקביל לציר ה־ z , ולאחר מכן הם עברו לאזור אחר שבו פעל רק השדה המגנטי (ראה תרשים ב).

תרשים ב

- **ג.** החלקיקים ינועו בקו ישר באזור שבו פועלים שני השדות רק כאשר מתקיים קשר מסוים בין העוצמות של שני השדות לבין גודל מהירות החלקיקים.
 - התבסס על עקרונות פיזיקליים ומצא קשר זה. <u>פרט את שיקוליר</u>. (9 נקודות)
 - **ד.** תאר במילים את מסלול החלקיקים באזור שבו פעל רק השדה המגנטי. (4 נקודות)
 - השתמש בפרמטרים: m , q , E , B , ופתח נוסחה המראה כי המערכת המתוארת השרמש בפרמטרים: $8\frac{1}{3}$ נקודות) בתרשים ב יכולה לשמש להפרדת איזוטופים של יסוד כלשהו.

בהצלחה!