# Magnetic Excitations I

**Andrew Wildes** 

Institut Laue-Langevin



#### Plan:

- · Basic tools
- Dynamic susceptibility
- · Harmonic oscillators
- Calculating S(Q, ω)
  - Crystal Electric Field Levels
  - Spin Waves



#### Tools:

# Learn your Fourier transforms!

## Learn and understand the convolution theorem!

$$f(r) \otimes g(r) = \int f(x)g(r-x) \cdot dx$$
$$\Im(f(r)) = F(q)$$
$$\Im(g(r)) = G(q)$$
$$\Im(f(r) \otimes g(r)) = F(q) \times G(q)$$



#### **Fourier Transforms**

$$F(\mathbf{Q}) = \int f(\mathbf{r})e^{i\mathbf{Q}\cdot\mathbf{r}} \cdot d\mathbf{r}$$





#### Tools:

## Learn to work with vectors









b







#### The fundamental rule of neutron magnetic scattering

# Neutrons only ever see the components of the magnetization that are perpendicular to the scattering vector!



#### The fundamental rule of neutron magnetic scattering

Comes from the Fourier transform of  $\widehat{V}_m(\mathbf{r}) = -\gamma \mu_N \widehat{\mathbf{\sigma}} \cdot \mathbf{B}(\mathbf{r})$ 

Magnetism is caused by unpaired electrons or movement of charge.  $\mathbf{B}(\mathbf{r})$  can be separated into two momentum contributions:





$$G(\mathbf{r},t)$$

Time-dependent pair-correlation function

$$I(\mathbf{Q},t) = \int G(\mathbf{r},t) e^{i\mathbf{Q}\cdot\mathbf{r}} d\mathbf{r}$$

Intermediate scattering function

$$S(\mathbf{Q}, \omega) = \frac{1}{2\pi\hbar} \int I(\mathbf{Q}, t) e^{i\omega t} dt$$

Response function (or dynamic structure factor)

$$= \frac{1}{2\pi\hbar} \int G(\mathbf{r}, t) e^{i(\mathbf{Q} \cdot \mathbf{r} - \omega t)} d\mathbf{r} dt$$

Condensed matter theorists love  $S(\mathbf{Q}, \omega)$ :

- The Fourier Transforms mean that:
  - sums over enormous numbers of objects in real space (e.g. moles) become sums over a few objects in reciprocal space.
- It is expressed in variables appropriate for wave motion (i.e. fluctuations)
- S(Q, ω) can be calculated directly from a Hamiltonian.



(Boothroyd, section 3.4)

$$\frac{d^2\sigma}{d\Omega dE_f} \propto \frac{k_f}{k_i} S(\mathbf{Q}, \omega)$$

For magnetic scattering,

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} \left(\frac{\gamma r_0}{2\mu_B}\right)^2 \sum_{\alpha,\beta} \left(1 - \hat{Q}_{\alpha}\hat{Q}_{\beta}\right) S_{\alpha\beta}(\mathbf{Q},\omega)$$

 $\alpha$  and  $\beta$  are directions

The neutron cross-section is directly proportional to the dynamic structure factor.

 $S(\mathbf{Q}, \omega)$  can be calculated directly from a Hamiltonian. Therefore, neutron scattering probes the Hamiltonian *directly* and *quantitatively* 

#### Magnetic excitations in CuSO<sub>4</sub>









M. Mourigal et al., Nature Phys. 9 (2013) 435

#### Zero magnetic field state







#### Neutron scattering and magnetic susceptibility

Magnetic susceptibility is a fundamental property of a material. It is defined as:

$$\chi = \frac{M}{H}$$

In a magnetic system, **M** is a vector which varies as a function of space, **r**, and (due to fluctuations) as a function of time, t.

The time is related to the susceptibility by:

$$M_{\alpha}(t) \propto \chi_{\alpha\alpha}(\omega) H_{0\alpha} e^{-i\omega t} + \chi_{\alpha\alpha}^*(\omega) H_{0\alpha}^* e^{i\omega t}$$

The susceptibility is a complex tensor:

$$\chi_{\alpha\alpha}(\omega) = \chi'_{\alpha\alpha}(\omega) + i\chi''_{\alpha\alpha}(\omega)$$

The rate of energy gain is given by:

$$\frac{d\overline{E}}{dt} = -M_{\alpha} \frac{dH}{dt} \propto \chi_{\alpha\alpha}''(\omega)$$

#### The dynamic structure factor and generalized susceptibility

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} \left(\frac{\gamma r_0}{2\mu_B}\right)^2 \sum_{\alpha,\beta} \left(1 - \hat{Q}_{\alpha} \hat{Q}_{\beta}\right) S_{\alpha\beta}(\mathbf{Q}, \omega)$$

# Through the Fluctuation-Dissipation Theorem (Boothroyd, Appendix D)

$$S_{\alpha\beta}(\mathbf{Q},\omega) = \frac{1+n(\omega)}{\pi} \chi_{\alpha\beta}^{\prime\prime}(\mathbf{Q},\omega)$$

$$S(\mathbf{Q},\omega) = \sum_{\alpha,\beta} \left(1 - \hat{Q}_{\alpha} \hat{Q}_{\beta}\right) \frac{1 + n(\omega)}{\pi} \chi_{\alpha\beta}^{"}(\mathbf{Q},\omega)$$

The inelastic cross-section is related to a generalized susceptibility

#### Spin excitations in Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>

L. Capogna et al., Phys. Rev. B. 67 (2003) 012504

Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub> is from a family of materials that are low-dimensional magnetic, and superconductors



Inelastic neutron scattering at 1.5K





#### Temperature dependence of the spin excitations in Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>

L. Capogna et al., Phys. Rev. B. 67 (2003) 012504



#### How do you calculate $S(\mathbf{Q}, \omega)$

Quantum harmonic oscillators

$$\mathcal{H}\psi = E\psi$$
$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi$$



Raising  $(a^{\dagger})$  and lowering (a) operators move  $\psi$  up and down one quantum state

$$U = \frac{1}{2}m\omega^2 x^2$$

$$E = \hbar \omega \left( n + \frac{1}{2} \right)$$

#### How do you calculate $S(\mathbf{Q}, \omega)$

$$\mathcal{H} = \sum_{k=0}^{2l} \sum_{q=-k}^{k} B_q^k C_q^{(k)} \qquad \begin{array}{l} B_q^k = \text{crystal field parameters} \\ \\ C_q^{(k)} = \text{Wybourne tensor operators} \end{array}$$

$$B_q^k$$
 = crystal field parameters

$$C_q^{(k)}$$
 = Wybourne tensor operators

Heisenberg Hamiltonian: 
$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

 $J_{ij}$  = magnetic exchange parameters

#### Crystal field levels

$$\mathcal{H} = \sum_{k=0}^{2l} \sum_{q=-k}^{k} B_q^k C_q^{(k)}$$

 $B_q^k$  = crystal field parameters

 $C_q^{(k)}$  = Wybourne tensor operators



S. Blundell, Magnetism in Condensed Matter (2006) OUP (Oxford)



Moment size changes on individual atoms

Depends on both spin and orbital angular momentum

A Delta function in space



\_\_\_\_\_\_A

F(Q)

Q -independent

#### Crystal field levels

O. Moze., Handbook of magnetic materials vol. 11, 1998 Elsevier, Amsterdam, p.493

Crystal Electric Fields:

$$\mathcal{H} = \sum_{k=0}^{2l} \sum_{q=-k}^{k} B_q^k C_q^{(k)} \quad B_q^k = \text{crystal field parameters} \\ C_q^{(k)} = \text{Wybourne tensor operators}$$

The crystal field modifies the potential, and therefore the energy levels



$$S(\widehat{\mathbf{Q}},\omega) \propto \sum_i p_i \sum_j \left| \left\langle \Gamma_i \middle| \mathbf{M}_\perp \middle| \Gamma_j \right\rangle \right|^2 \delta(E)$$

Neutrons see the *perpendicular* components of the magnetization to **Q** 

#### Crystal fields in NdPd<sub>2</sub>Al<sub>3</sub>

$$\mathcal{H} = \sum_{m,n} B_n^m O_n^m$$



O = Stevens parameters (K. W. Stevens, Proc. Phys. Soc A65 (1952) 209) B = CF parameters, measured by neutrons



A. Dönni et al., J. Phys.: Condens. Matter 9 (1997) 5921

Neutron Energy Loss [meV]



#### Spin waves

- D. C. Mattis, The Theory of Magnetism I, Springer-Verlag, Berlin, 1988
- C. Kittel, Quantum Theory of Solids, Wiley, 1991
- F. Keffer, Handbuch der Physik vol 1811, 1966 Springer-Verlag, Berlin
- P. A. Lindgård et al., J. Phys. Chem. Solids 28 (1967) 1357
- R. M. White et al., Phys. Rev. 139 (1965) A 450
- C. Tsallis, J. Math. Phys. 19 (1978) 277





#### Spin waves

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

 $J_{ij}$  = magnetic exchange parameters

Take a simple ferromagnet:





Change the energy by one quantum



$$\mathbf{S}_{i} \cdot \mathbf{S}_{j} = S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} + S_{i}^{z} S_{j}^{z}$$

$$S^{+} = S^{x} + i S^{y} \qquad \text{Raising operator}$$

$$S^- = S^x - iS^y$$
 Lowering operator

$$\mathbf{S}_{i} \cdot \mathbf{S}_{j} = \frac{1}{2} \left( S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+} \right) + S_{i}^{z} S_{j}^{z}$$

#### The Holstein-Primakoff transformation

$$\mathbf{S}_{i} \cdot \mathbf{S}_{j} = \frac{1}{2} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+}) + S_{i}^{z} S_{j}^{z}$$

$$S^{+} = (2S)^{\frac{1}{2}} a \left( 1 - \frac{a^{\dagger} a}{2S} \right)^{\frac{1}{2}} \approx (2S)^{\frac{1}{2}} a$$

$$S^{-} = (2S)^{\frac{1}{2}} \left( 1 - \frac{a^{\dagger} a}{2S} \right)^{\frac{1}{2}} a^{\dagger} \approx (2S)^{\frac{1}{2}} a^{\dagger}$$

$$S^{z} = S - a^{\dagger} a$$

### Linear spin-wave theory

#### Propagating spin waves

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

- Expand the Hamiltonian and group the terms
- Fourier-transform the raising and lowering operators,  $a^{\dagger}$  and a
- Fourier transform  $J(q) = \sum_{\mathbf{r}_i \mathbf{r}_j} J_{ij} \exp \left( i\mathbf{q} \cdot (\mathbf{r}_i \mathbf{r}_j) \right)$
- Group the terms and respect the commutation relations

$$\mathcal{H} = \frac{1}{2} N S^2 J(0) + S \sum_{\mathbf{q}} \left( J(\mathbf{q}) - J(0) \right) a^{\dagger} a$$

Zero-point energy Propagating modes

$$E_{\mathbf{q}} = \hbar\omega_{\mathbf{q}} = S\sum_{\mathbf{q}} (J(\mathbf{q}) - J(0))$$

#### Magnons and reciprocal space

#### Square lattice, reciprocal space



#### nearest-neighbour exchange

$$S\sum_{\mathbf{q}} (J(\mathbf{q}) - J(0)) = 2SJ(2 - \cos 2\pi h - \cos 2\pi k)$$

#### Spin wave dispersion



 $\propto q^2$  for  $qa \ll 1$ 

#### Magnons in crystalline iron

G. Shirane et al., J. Appl. Phys. 39 (1968) 383





 $\propto q^2$  for  $qa \ll 1$ 



#### Spin waves and magnons

The classical picture of a spin wave

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$



The spin waves might look like this:



Spin waves have a frequency ( $\omega$ ) and a wavevector ( $\mathbf{q}$ )



The frequency and wavevector of the waves are directly measurable with neutrons

#### Magnons



The Fourier Transform for a periodic function:





Each wavelength for the magnon has its own periodicity.

Each wavevector for the magnon has its own frequency (energy)

#### Modelling magnons



$$S(\mathbf{Q},\omega) = \sum_{\alpha,\beta} \left(1 - \hat{Q}_{\alpha} \hat{Q}_{\beta}\right) \frac{1 + n(\omega)}{\pi} \chi_{\alpha\beta}^{\prime\prime}(\mathbf{Q},\omega)$$

$$\chi_{\alpha\beta}^{\prime\prime}(\mathbf{Q},\omega) = \text{Lorentzian}(\omega_{\mathbf{q}}) - \text{Lorentzian}(-\omega_{\mathbf{q}})$$



#### Anisotropy

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$
 + anisotropy

#### Spin wave dispersion





#### Magnetic excitations in CuSO<sub>4</sub>

M. Mourigal et al., Nature Phys. 9 (2013) 435









#### Antiferromagnets

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

The increase by a quantum on one sublattice is equivalent to the decrease by a quantum on the other sublattice





 $\hbar \omega_q \propto q$ for  $qa \ll 1$ 

A. R. Wildes et al., JPCM 10 (1998) 6417

#### Take home messages

- Neutron scattering gives a quantitative measurement of S(Q, ω) over all the Brillouin zone
- $S(\mathbf{Q}, \omega)$  can be calculated from the Hamiltonian
- The inelastic cross-section is linked to the magnetic susceptibility