DYNAMIC PROGRAMMING

INTRODUCTION

FIBONACCI SERIES

$$F(n) = F(n-1) + F(n-2)$$
 for $n > 1$

$$F(0) = 0,$$
 $F(1) = 1.$

INTRODUCTION

Recursive Tree of Fibonacci Series

DYNAMIC PROGRAMMING

• Dynamic programming is a technique for solving problems with overlapping sub problems.

• Typically, these sub problems arise from a recurrence relating a given problem's solution to solutions of its smaller sub problems.

DYNAMIC PROGRAMMING

 Rather than solving overlapping sub problems again and again, dynamic programming suggests solving each of the smaller sub problems only once and recording the results in a table from which a solution to the original problem can then be obtained.

- Problem and Goal
- We have n requests labeled 1, . . . , n, with each request i specifying a start time si and a finish time fi.
- Each interval i now also has a value, or weight vi.
- Two intervals are compatible if they do not overlap.

- Problem and Goal
- The goal of our current problem is to select a subset $S \subseteq \{1, \ldots, n\}$ of mutually compatible intervals, so as to maximize the sum of the values of the selected intervals, $\sum_{i \in S} Vi$

GREEDY DOES NOT WORK

Compute predecessor of a request

We define p(j), for an interval j, to be the largest index i < j such that intervals i and j are disjoint i.e. interval i doesn't overlap with j.

Compute predecessor of a request

- Dynamic Programming Approach
- Let us consider there is an optimal schedule OPT for the given set of requests and their values.
- Let "n" be the last interval in the given set of requests.
- If we want to find whether an interval "n" belongs to OPT there are 2 choices left. They are:
 - 1. Interval "n" belongs to the OPT. If it belongs then we have to continue for further intervals that are compatible with interval "n" using p(n) calculated for the nth interval.
 - 2. If it does not belong then, consider the set of intervals from set of $\{1,...,n-1\}$.

Dynamic Programming Approach

• Dynamic Programming Approach

• The **recurrence relation** of a request "j" in the optimal set of requests can be denoted as OPT(j) given by

$$OPT(j) = \max egin{cases} v_j + OPT(p(j)) & j ext{ in OPT solution} \ OPT(j-1) & j ext{ not in solution} \ 0 & j=0 \end{cases}$$

Algorithm implementing recurrence relation

```
//Purpose: To find the optimal weights for weighted interval scheduling problem.
//Input: 1....n requests each having start time "s" and finish time "f" and weight "v"
//Output: Optimal weight of the given set of "n" intervals.
```

```
Sort the intervals according to their finish times f1 \le f2 \le f3..... \le fn
Compute p(1), p(2)....., p(n)
j = nth interval
Compute-Opt (j):
```

If j = 0Return 0 Else

Return max(v[j] + Compute-Opt (p[j]),Compute-Opt (j-1))₁₄

Example

Recursive Tree

MAX ([v[j] + Compute-Opt (p[j])] , Compute-Opt (j-1))

• This Takes Exponential Time

- The exponential time of the recursive procedure for weighted interval scheduling can be reduced using Memoization technique.
- We can store the value of Compute-Opt in a globally accessible place the first time we compute it and then simply use this precomputed value in place of all future recursive calls.
- This technique of saving values that have already been computed is referred to as memoization.

Memoization Algorithm

```
//Purpose: To find the optimal weights for weighted interval scheduling problem.
```

//Input: 1....n requests each having start time "s" and finish time "f" and weight "v"

//Output: Optimal weight of the given set of "n" intervals.

```
M-Compute-Opt(j)
```

If j = 0 then

Return 0

Else if M[j] is not empty then

Return M[j]

Else

```
Define M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
```

Return M[j]

Endif

• EXAMPLE

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j - 1))

- Find the intervals that belong to the output set.
- Given the global array M we can find the intervals that belong to the output set using the following relation and algorithm.
- Relation: $vj + OPT(p(j)) \ge OPT(j-1)$.

• Apply the Memoization algorithm for the following problem.

_			V = 8	
		V = 6		
	•		_	V = 9
$\mathbf{V} =$	10			
			V = 7	
				 V = 8

Solution:

- 1. Sort the Intervals according to the finish time. (f1 < f2 < f3 . . . < f6)
- 2. Compute Predecessors.
- 3. Draw Recursive Call Tree.

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]
0	10	10	17	17	25	25

Algorithm Find-Solution(j)

```
//Purpose: To find the intervals belonging to the output set for
  weighted interval scheduling problem.
//Input: 1....n requests each having start time "s" and finish time "f"
  and weight "v"
//Output: The intervals belonging to the output set for weighted
  interval scheduling problem.
Find-Solution(j)
if (i > 0)
  if (v_i + M[p(i)] > M[i-1])
       print j
       Find-Solution(p(j))
  else
       Find-Solution(j-1)
```

• Example:

• Example:

N	Global Array M	Vj + M[p(j)]	M[j-1]	Output Set
6	0 2 4 6 7 8 8	1 + 6 = 7	8	{ } Find_solution(5)
5	0 2 4 6 7 8 8	2 + 6 = 8	7	{5} Find_solution(3)
3	0 2 4 6 7 8 8	4 + 2 = 6	4	{5, 3} Find_solution(1)
1	0 2 4 6 7 8 8	2 + 0 = 2	0	{5, 3, 1} Find_solution(0)

• We have **Iterative Procedure** to calculate the global array "M" and use the find solution method to find the max weight possible and intervals in the output set respectively.

Iterative Algorithm

//Purpose: To find the optimal weights for weighted interval scheduling problem.

//**Input**: 1....n requests each having start time "s" and finish time "f" and weight "v"

//Output: Optimal weight of the given set of "n" intervals.

Iterative-Compute-Opt

$$M[0]=0$$

For
$$j = 1, 2, ..., n$$

$$M[j] = max (vj + M[p(j)], M[j - 1])$$

Endfor

• Example:

• Example:

0	1	2	3	4	5	6
0	2					

- j = 1
- M[1] = max (vj + M[p(j)], M[j-1])

$$M[1] = max (2 + M[0], M[0])$$

$$M[1] = max (2 + 0, 0)$$

• Example:

0	1	2	3	4	5	6
0	2	4				

- j = 2
- M[2] = max (vj + M[p(j)], M[j 1])

$$M[2] = max (4 + M[0], M[1])$$

$$M[2] = \max(4 + 0, 2)$$

• Example:

0	1	2	3	4	5	6
0	2	4	6			

- j = 3
- M[3] = max (vj + M[p(j)], M[j-1])

$$M[3] = max (4 + M[1], M[2])$$

$$M[3] = max (4 + 2, 4)$$

• Example:

0	1	2	3	4	5	6
0	2	4	6	7		

- j = 4
- M[4] = max (vj + M[p(j)], M[j 1])M[4] = max (7 + M[0], M[3])

$$M[4] = max (7 + 0, 6)$$

• Example:

0	1	2	3	4	5	6
0	2	4	6	7	8	

- j = 5
- M[5] = max (vj + M[p(j)], M[j-1])

$$M[5] = max (2 + M[3], M[4])$$

$$M[5] = max (2 + 6, 7)$$

• Example:

0	1	2	3	4	5	6
0	2	4	6	7	8	8

- j = 6
- M[6] = max (vj + M[p(j)], M[j-1])

$$M[6] = max (1 + M[3], M[5])$$

$$M[6] = max (1 + 6, 8)$$

THANK YOU