Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе N=2

По дисциплине «Моделирование» (семестр 5)

Студенты:

Дениченко Александр Р3312 Балин Артём Р3312 Кобелев Роман Р3312 Практик: Мартынчук Илья Геннадьевич

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей – систем массового обслуживания (СМО) с однородным потоком заявок.

1 Исходные данные

Система 1:

- Кол-во приборов: 2
- Ёмкость накопителей: 2/1 (для первого/второго приборов)

Система 2:

- Кол-во приборов: 1
- Закон распределения длительности обслуживания: гиперэкспоненциальный с коэф-том вариации v = 1.5
- Ёмкость накопителя: 2

Критерий эффективности: минимальные потери заявок

Параметры загрузки (12 группа):

- интенсивнось потока: $\lambda = 0.7 \ c^{-1}$
- средняя длительность обслуживания: $b=5\ c$
- вероятность занятия первого прибора: $p_1 = 0.8$
- вероятность занятия второго прибора: $p_2 = 0.2$

Интенсивность обслуживания: $\mu = \frac{1}{b} = 0.2 \ c^{-1}$

2 Выполнение

Состояния системы 1

Комбинация	Обозначение	Значение
0/0/0/0	S1	0.013593
1/0/0/0	S2	0.038061
1/0/1/0	S3	0.106570
1/0/2/0	S4	0.298397
0/1/0/0	S5	0.009515
0/1/0/1	S6	0.006661
1/1/0/0	S7	0.026643
1/1/1/0	S8	0.074599
1/1/2/0	S9	0.208878
1/1/0/1	S10	0.018650
1/1/1/1	S11	0.052219
1/1/2/1	S12	0.146214

Таблица 1: Система 1

Результат: Сумма вероятностей: 1.000000

Граф переходов системы 1

Матрица интенсивностей переходов системы 1

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	S_{12}
$\overline{S_1}$	-0.70	0.56	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S_2	0.20	-0.90	0.56	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00
S_3	0.00	0.20	-0.90	0.56	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00
S_4	0.00	0.00	0.20	-0.34	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00
S_5	0.20	0.00	0.00	0.00	-0.90	0.14	0.56	0.00	0.00	0.00	0.00	0.00
S_6	0.00	0.00	0.00	0.00	0.20	-0.76	0.00	0.00	0.00	0.56	0.00	0.00
S_7	0.00	0.20	0.00	0.00	0.20	0.00	-1.10	0.56	0.00	0.14	0.00	0.00
S_8	0.00	0.00	0.20	0.00	0.00	0.00	0.20	-1.10	0.56	0.00	0.14	0.00
S_9	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.20	-0.54	0.00	0.00	0.14
S_{10}	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.00	-0.96	0.56	0.00
S_{11}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.20	-0.96	0.56
S_{12}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.20	-0.40

Таблица 2: Матрица интенсивностей переходов

Характеристика системы 1

Характеристика	Прибор	Значение	Формула расчета
	П1	2.8000	$\rho_1 = \frac{\lambda p_1}{\mu} = \frac{0.7 \cdot 0.8}{5} \cdot 20 = 2.8$
Нагрузка	П2	0.7000	$\rho_2 = \frac{\lambda_{p_2}^2}{\mu} = \frac{0.7 \cdot 0.2}{5} \cdot 20 = 0.7$
	Сумм	3.5000	$\rho = \rho_1 + \rho_2$
	П1	0.9702	$Y_1 = 1 - P_1 - P_5 - P_6$
Загрузка	П2	0.5434	$Y_2 = 1 - P_1 - P_2 - P_3 - P_4$
	Сред	0.7568	$Y = \frac{Y_1 + Y_2}{2}$
	П1	1.5404	$L_1 = (P_3 + P_8 + P_{11}) + 2(P_4 + P_9 + P_{12})$
Длина очереди	П2	0.2237	$L_2 = P_6 + P_{10} + P_{11} + P_{12}$
	Сумм	1.7641	$L = L_1 + L_2$
Число заявок	П1	2.5106	$M_1 = L_1 + Y_1$
	П2	0.7671	$M_2 = L_2 + Y_2$
	Сумм	3.2777	I ' 2
	П1	2.7507	$W_1 = \frac{L_1}{\lambda n_1}$
Время ожидания	П2	1.5981	$W_2 = \frac{L_2}{\lambda p_2}$
	Сумм	2.5202	
	П1	7.7507	$U_1 = \hat{W}_1 + \frac{1}{\mu}$
Время пребывания	П2	6.5981	$U_2 = W_2 + \frac{r}{u}$
	Сумм	14.3488	$U = U_1 + U_2$
Вероятность потери	П1	0.3660	$e_1 = (P_4 + P_9 + P_{12}) \cdot p_1$
	П2	0.0313	$e_2 = (P_6 + P_{10} + P_{11} + P_{12}) \cdot p_2$
	Сумм	0.3973	$e = e_1 + e_2$
	П1	0.3551	$A_1 = \lambda p_1 (1 - e_1)$
Производительность	П2	0.1356	$A_2 = \lambda p_2 (1 - e_2)$
	Сумм	0.4907	$A = A_1 + A_2$

Таблица 3: Характеристики системы массового обслуживания с формулами расчета

Вывод