DETERMINAN DAN MATRIKS ORDE TIGA

Matematika Industri I

TIP - FTP - UB

Determinan Orde-Ketiga

- Sebuah determinan orde-ketiga punya 3 baris dan 3 kolom.
- Setiap elemen determinan dikaitkan dengan minornya yang diperoleh dengan menghilangkan baris dan kolom yang berisi elemen yang bersangkutan.
- Sebagai contoh:

the minor of a_1 is $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$ obtained thus $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

Determinan Orde-Ketiga

- Menentukan nilai determinan orde-ketiga
 - Untuk menguraikan determinan orde-ketiga, kita dapat menulis masing-masing elemen di sepanjang baris atas, mengalikannya dengan minornya, dan memberi suku-sukunya tanda plus dan minus secara bergantian

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

Determinan Orde-Ketiga

 Menentukan nilai determinan dengan mengekspansi pada sebarang baris dan kolom

Contoh

Contoh 1

$$\begin{vmatrix} 1 & 3 & 2 \\ 4 & 5 & 7 \\ 2 & 4 & 8 \end{vmatrix} = 1 \begin{vmatrix} 5 & 7 \\ 4 & 8 \end{vmatrix} - 3 \begin{vmatrix} 4 & 7 \\ 2 & 8 \end{vmatrix} + 2 \begin{vmatrix} 4 & 5 \\ 2 & 4 \end{vmatrix} = 12 - 54 + 12 = -30$$

Contoh 2

$$\begin{vmatrix} 1 & 3 & 2 \\ 4 & 5 & 7 \\ 2 & 4 & 8 \end{vmatrix} = 1 \begin{vmatrix} 5 & 7 \\ 4 & 8 \end{vmatrix} - 4 \begin{vmatrix} 3 & 2 \\ 4 & 8 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} = 12 - 64 + 22 = -30$$

Determinan Suatu Matriks Bujursangkar

Kofaktor

 Jika A=(a_{ij}) adalah suatu matriks bujursangkar, setiap elemen menghasilkan kofaktor, minor dari elemen dalam determinan beserta 'tanda tempatnya'

$$A = \begin{pmatrix} 5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7 \end{pmatrix} \rightarrow \det A = |A| = \begin{vmatrix} 5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7 \end{vmatrix} = 150$$

kofaktor

$$5 \rightarrow +(42-12) = +30$$

$$2 \rightarrow -(0-24) = +24$$

Determinan Suatu Matriks Bujursangkar

- Adjoin suatu matriks bujursangkar
 - Misal matriks bujursangkar C dibentuk dari matriks bujursangkar A dimana elemenelemen C secara respektif merupakan kofaktor dari elemen A, maka:

$$\mathbf{A} = (a_{ij})$$
 and A_{ij} is the cofactor of a_{ij} then $\mathbf{C} = (A_{ij})$

 Transpos dari C disebut adjoin A, dinotasikan adj A.

Determinan Suatu Matriks Bujursangkar

• Contoh
$$A = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0 \end{pmatrix}$$

· Jika C adalah matriks kofaktor dari A,

maka
$$C = \begin{pmatrix} -24 & 6 & 15 \\ 20 & -5 & -5 \\ 13 & 8 & -10 \end{pmatrix}$$

• Adj
$$\mathbf{A} = C^T = \begin{pmatrix} -24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10 \end{pmatrix}$$

Invers Suatu Matriks Bujursangkar

 Jika setiap elemen adjoin matriks bujursangkar A dibagi dengan determinan A, yaitu |A|, maka matriks yang dihasilkan disebut invers A dan dinyatakan dengan A⁻¹.

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \left(\operatorname{adj} \mathbf{A} \right)$$

Note: jika det A=0 maka invers tidak ada

Invers Suatu Matriks Bujursangkar

•
$$A = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0 \end{pmatrix}$$
 $\rightarrow det A = |A| = \begin{vmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0 \end{vmatrix} = 45$
• Adj $A = C^T = \begin{pmatrix} -24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10 \end{pmatrix}$
• $A^{-1} = \begin{pmatrix} -\frac{24}{45} & \frac{20}{45} & \frac{13}{45} \\ \frac{6}{45} & -\frac{5}{45} & \frac{8}{45} \\ \frac{15}{45} & -\frac{5}{45} & -\frac{10}{45} \end{pmatrix} = \frac{1}{45} \begin{pmatrix} -24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10 \end{pmatrix}$

TUGAS-2

(dikumpulkan Jum'at sebelum jam 11)

1. Tentukan invers dari matriks $\begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \\ 5 & 3 & 4 \end{pmatrix}$

$$\begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \\ 5 & 3 & 4 \end{pmatrix}$$

2. Tentukan invers dari matriks
$$\begin{pmatrix} 8 & -56 & 38 \\ 6 & -4 & 0 \\ -5 & 35 & -19 \end{pmatrix}$$

3. Diketahui matriks A= $\begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$ dan matriks B = $\begin{pmatrix} 5 & 1 \\ 2 & 3 \end{pmatrix}$, tentukan matriks X berordo 2x2 yang memenuhi X.A=B.

TUGAS-2

4. Diketahui matriks A =
$$\begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$$
; B = $\begin{pmatrix} x+y & 2 \\ 3 & y \end{pmatrix}$; dan C = $\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}$.

Apabila B - A = C^T, maka nilai x.y adalah ...

5. Matriks A = $\begin{pmatrix} 3 & -x \\ 6 & 8 \end{pmatrix}$ adalah matriks singular, maka nilai x adalah ...