Obsah

1	Systémový návrh					
	1.1	Požadavky	2			
	1.2	Blokové schéma	2			
	1.3	Komunikační rozhraní	4			
		1.3.1 Výběr datové sběrnice	4			
		1.3.2 Sběrnice CAN	5			
2	Návrh řídící jednotky					
	2.1	Mikrokontrolér	6			
	2.2	Návrh zapojení a tvorba DPS	7			
		2.2.1 Zapojení ESP32 modulu	7			
		2.2.2 Napájecí obvod	8			
		2.2.3 Deska plošných spojů	10			
	2.3	Konektivita	10			
	2.4	Konektor - TODO: pryč	11			
3	Obecný modul periferie					
	3.1	Mikrokontrolér	12			
	3.2	Návrh zapojení a tvorba DPS	13			
4	Volba a návrh periferií					
	4.1	LED osvětlení	14			
	4.2	Senzor teploty	14			
	4.3	Senzor výšky hladiny	14			
	4.4	Senzor pH				
	4.5	Ovládání 230V periferií				
5	Software 10					
	5.1	Architektura	16			
	5.2	Firmware řídící jednotky	16			
	5.3	Firmware periferií	16			
	5.4	Webové rozhraní	16			
6	Ses	tavení a testování	17			
Seznam příloh						

1 Systémový návrh

Tato část práce popisuje proces návrhu vlastního zařízení, které by mělo být výstupem této práce. Věnuje se konkretizaci požadavků na zařízení a koncepčního návrhu na systémové úrovni, který je zde podpořen blokovým schématem. Po celou dobu tvorby zařízení je kladen důraz na požadavky stanovené v této kapitole a na jejich základě jsou tvořena vhodná technická řešení. Detailně se jednotlivým blokům a jejich návrhu věnuje kapitola ??.

1.1 Požadavky

Cílem je vytvořit zařízení, které umožní co nejvíce automatizovat provoz akvária. Hlavním aspektem by měla být jednoduchost použití pro koncového uživatele, vše by mělo být nanejvýš intuitivní a přehledné. Zařízení musí mít možnost připojení k internetu prostřednictvím sítě Wi-Fi, uživatel tak bude moci zařízení konfigurovat a sledovat z libovolného místa za pomoci webové stránky popř. mobilní aplikace.

Požadavky jednotlivých akvaristů se mohou lišit a zároveň se v čase měnit. Vytvoření dokonalého a všestaranného zařízení, které vyhoví všem účelům použití není v časových ani finančních možnostech bakalářské práce, proto byl stanoven požadavek, aby bylo zařízení co nejvíce modulární a rozšiřitelné. Musí být zvolena taková architektura, aby bylo možné v budoucnu přidat další funkce a periferie bez nutnosti modifikovat stávající hardware.

Výstupem bakalářské práce by mělo být zařízení schopné monitorovat některé akvaristické veličiny a na základě jejich hodnoty informovat uživatele a ovládat akvárium. Zařízení bude přímo řídit LED páskové osvětlení na 12 V a spínat popř. vypínat již existující akvaristické přístroje pracující se sítovým napětím 230 V.

Jelikož modulární architektura bude nepochybně vyžadovat použití více než jednoho mikrokontroleru a tedy také více různých firmwarů, je potřeba zajistit jejich vzájemnou kompatibilitu a stabilitu celého systému. Veškerý firmware tak musí být verzovaný a po připojení nové periferie musí řídící jednotka rozpoznat, o jakou periferii se jedná. V případě připojení nekompatibilní periferie (např. z důvodu zastaralého firmwaru řídící jednotky) musí být uživatel upozorněn a nesmí být nijak narušena funkce zbytku systému. Aby bylo možné těmto situacím předejít, musí mít řídící jednotka možnost vzdálené aktualizace firmwaru.

1.2 Blokové schéma

Blokové schéma zařízení se nachází na obr. 1.1. Pro pohodlné použití je hlavní část zařízení soustředěna do jedné krabičky napájené přívodním sítovým kabelem. Uživa-

tel pak dle potřeby připojí příslušenství pracující s napětím 230 V do integrovaných sítových zásuvek a veškeré další periferie za pomoci jednoho z univerzálních konektorů. O stavu zařízení bude uživatel informován sérií notifikačních LED a malým displayem.

Obr. 1.1: Blokové schéma systému.

Pro napájení vlastní elektroniky zařízení bude v šasi umístěn hotový modul spínaného zdroje převádějící síťové napětí $230\,\mathrm{V}$ na stejnosměrných $24\,\mathrm{V}$ se kterými pak zařízení dále pracuje (viz sekce 2.2.2).

Z hlediska bezpečnosti je potřeba zajistit, aby se uživatel ani samotná nízkonapěťová část obvodu nemohli dostat do kontaktu s nebezpečným napětím. Toho bude dosaženo galvanickým oddělením částí zařízení pracujících se sítovým napětím. V blokovém schématu (obr. 1.1) jsou všechny tyto části podbarveny šedou barvou. Galvanického oddělení bude dosaženo použitím vhodných komerčně dostupných modulů, které již mají tento problém vyřešen. U relé modulu je potřeba zvolit variantu s optočlenem a pro napájecí zdroj s výstupem 24 V pak zkontrolovat v dokumentaci přítomnost galvanického oddělení.

1.3 Komunikační rozhraní

Před návrhem jednotlivých částí zařízení je zapotřebí definovat komunikační rozhraní mezi řídícím modulem a periferiemi, protože právě od jeho specifikace se následně odvíjí tvorba zbytku zařízení.

Úkolem rozhraní je obousměrně komunikovat s periferiemi, tedy např. stahovat data z připojených sensorů a zároveň za pomoci přikazů periferie řídit. Kromě datové komunikace musí rozhraní periferie také napájet a to i v případě energeticky náročnějších obvodů jako např. osvětlení.

1.3.1 Výběr datové sběrnice

Existuje celá řada datových sběrnic, které jsou v elektrotechnice hojně využívány. Každá z nich má své výhody a nevýhody stejně jako jisté limitace použití. V tab. 1.1 se nachází výčet různých sběrnic, které byly při výběru uvažovány.

Protože hlavní šasi zařízení nabízí dva konektory, ale žádoucí je připojit větší předem nedefinovaný počet periferií, je potřeba, aby sběrnice umožnila připojení více zařízení. Obecný problém všech sběrnic je omezení jejich maximální délky, s rostoucí délkou se sběrnice snáze zaruší, navíc z důvodu parazitních vlastností vedení dochází k zaoblení ostrých hran signálu, dlouhé vedení se chová jako filtr typu dolní propust. V důsledku toho se snižuje maximální rychlost sběrnice.

Sběrnice SPI nebo **i2c!** je obecně doporučeno používat pouze v rámci DPS, tedy na krátké vzdálenosti. Při snížení rychlosti je možné je používat i na větší vzdálenost, ovšem modulární scénář vytvářeného systému teoreticky nestanovuje žádný délkový limit a bylo by velmi obtížné spolehlivě určit, kolik periferií uživatel může za sebe zapojit při zachování spolehlivé komunikace.

UART je výhodný svou jednoduchou implementací a umožňuje obousměrnou asynchronní komunikaci. Nevýhodou je že funguje pouze pro dvě zařízení. Jednou z možností jak tuto limitaci obejít by bylo zavedení řetězového způsobu komunikace, kdy by každé zařízení komunikovalo se dvěmi sousedními a informace by se postupně předávala dále až k cílovému zařízení. Tento systém je relativně jednoduchý, ale například v případě poruchy jednoho zařízení se odpojí všechna následující zařízení, což může mít neočekávané následky.

Tab. 1.1: Datové sběrnice, porovnání [1].

Typ	Výhody	Nevýhody	Limitace
SPI	- Více zařízení na sběr-	- Nutný CS pin pro	- Určeno na krátkou
	nici	každé zařízení	vzdálenost
	- Vysoká rychlost pře-		
	nosu dat		
	- Jednoduchý protokol		
I^2C	- Pouze 2 piny	- Riziko kolize adres	- Určeno na krátkou
	- Více zařízení – 128	- Nižší rychlost pře-	vzdálenost
	adres	nosu dat proti SPI	
CAN	- Vysoká spolehlivost	- Vyšší náklady na im-	- Nepodporovano běž-
	- Dlouhé propojení	plementaci	nými MCU – nutný
		- Nižší rychlost pře-	externí řadič
		nosu dat	
UART	- Jednoduchá imple-	- Nižší rychlost pře-	- Pouze 2 zařízení
	mentace	nosu dat proti SPI	- Určeno na krátkou
	- Možnost asyn-	- Pouze 2 zařízení	vzdálenost
	chronní komunikace		

Sběrnice CAN je určena pro provoz v průmyslovém prostředí (zejména je používána v automobilovém průmyslu) a díky své robustnější konstrukci ji lze bez problému použít i na delší vzdálenosti a pro více zařízení. Při komunikaci je používán diferenční pár vodičů, takže i odolnost proti rušení je výrazně lepší. Nevýhodou je ale její o něco složitěkší a dražší implementace. Většina běžných mikrokontrolerů nemá pro CAN vestavěnou periferii a je tak potřeba buďto zvolit dražší mikrokontroler nebo připojit externí ovladač řízený např. přes SPI, dále je nutné přidat i řadič, který převede signál na diferenční a zároveň umožní zvýšit provozní napětí na 12 nebo 24 V, čímž dojde ještě k lepšímu potlačení šumu.

1.3.2 Sběrnice CAN

Po důkladné rešerši a zvážení zmíněných kladů a záporů byla zvolena sběrnice CAN. ESP32 jakožto již zvolený mikrokontroler řídící jednotky obsahuje vestavený CAN kontroler a pro moduly periferií byl na základě tohoto rozhodnutí zvolen také vhodný mikrokontroler. Co se týče nutnosti přidání řadiče, jedná se sice o další součástku, která na první pohled navyšuje cenu zařízení, kromě převodu signálu na diferenční ale zajišťuje také ochranu konektorů proti mnoha nežádoucím jevům jako je zkrat, ESD výboj nebo přepětí. Tímto se ve výsledku celé zapojení zlevní a zjednoduší.

2 Návrh řídící jednotky

Řídící jednotka je jádrem celého zařízení. Její funkcí je řízení systému a zároveň komunikace s uživatelem za pomoci Wi-Fi. Musí v sobě nést informaci o konfiguraci systému a na jejím základě zpracovávat data z jednotlivých připojených periferií. Podle uživatelem nastavených scénářů pak dynamicky reaguje na změny hodnot měřených akvaristických veličin a ovládá akční členy (osvětlení, ohřev, filtr vody). Za pomoci displaye a LED pásku také informuje uživatele o momentálním stavu zařízení.

2.1 Mikrokontrolér

Při výběru vhodného mikrokontroleru bylo potřeba zohlednit výše zmíněné požadavky, tedy zejména Wi-Fi konektivitu a dostatečný výkon k její obsluze, periferii CAN a dostatek GPIO pinů pro připojení zbylých modulů v hlavním šasi (viz obr. 1.1). Na trhu existuje vícero výrobců nabízejících mikrokontrolery s vhodnými parametry, z důvodu jednoduchosti použití a nízké ceny byl nakonec zvolen model ESP32 od firmy Espressif, konkrétně modul WROOM-32E [2] s čipem ESP32-D0WDR2-V3 [3]. Tento modul je často využíván v různých hobby projektech, ale také v komerčních aplikacích zejména v oblasti chytré domácnosti. Z tohoto důvodu k němu existuje velká škála softwarových knihoven a v rámci komunity uživatelů je také sdíleno mnoho projektů, kterými je možné se inspirovat.

2.2 Návrh zapojení a tvorba DPS

Řídící jednotka je tvořena jednou speciálně navrženou DPS, která kromě samotného mikrokontroleru obsahuje také měnič napětí typu BUCK ke snížení napájecího napětí externího zdroje na hodnotu 5,2 V (odůvodnění v sekci 2.3). Toto napětí pak bude dále používáno pro napájení samotného mikrokontroleru řídící jednotky a zároveň vyvedeno na konektor pro připojení periferií. Blokové schéma na úrovni logických bloků v rámci jedné DPS je na obr. 2.1, jednotlivým částem se blíže věnují další sekce. Celé schéma je k dispozici v příloze ??.

Obr. 2.1: Blokové schéma řídící jednotky. Vytvořeno v KiCad 7.0.

2.2.1 Zapojení ESP32 modulu

Při tvorbě schématu bylo vycházeno z dokumentace výrobce [2] a také ze schématů různých existujících vývojových desek. K zajištění správné a spolehlivé funkce modulu je potřeba dodržet několik věcí. Výřez schématu obsahující potřebné doplňující obvody je na obr. 2.2.

Na napájecí pin (3V3) je třeba přivést stabilní napětí a opatřit ho blokovacími kondenzátory (C1, C3). Ke snížení napětí z původních 5,2 V na požadovaných 3,3 V je použit lineární regulátor TLV76133 (U4).

Dále je potřeba přivést kladné napětí na povolovací pin (EN), z dokumentace vyplývá, že by mělo být přivedeno až po ustálení napájecí linky. Uvedený čas nutný ke stabilizaci je roven $t_{STBL} = 50 \,\mu\text{s}$ [3]. Požadované zpoždění zajistí RC článek (R1, C2) s časovou konstantou τ :

$$\tau = R_1 C_2 = 10 \,\mathrm{k}\Omega \cdot 1 \,\mathrm{\mu F} = 10 \,\mathrm{ms}$$
 (2.1)

Jak je vidět, byla zvolena dostatečná návrhová rezerva.

Obr. 2.2: Podpůrné obvody pro modul ESP32-WROOM-E. Vytvořeno v KiCad 7.0.

Pro možnost resetu zařízení a vstupu do bootloaderu byla doplněna také dvě tlačítka (SW1, SW2).

2.2.2 Napájecí obvod

Pro napájení celého zařízení je použit externí zdroj stejnosměrného napětí 24 V, toto napětí je rozvedeno všem připojeným periferiím (viz sekce 2.3). Pro většinu komponent je ale nutné napětí snížit. K tomuto účelu byl navržen DC/DC měnič typu buck s požadovaným výstupním napětím 5,2 V. Existuje celá řada čipů vyvinutých pro tento účel. Aplikace v tomto zařízení je specifická svými požadavky na výstupní

proud, zatímco samotná řídící jednotka nebude odebírat velký proud, není jasně dané, kolik periferí a s jakými výkonovými požadavky uživatel k systému připojí. Navržený měnič tak musí fungovat v širším rozsahu proudů (řádově od desítek mA po jednotky A) a to s co nejlepší účinností.

Obr. 2.3: Napájecí obvod řídící jednotky. Vytvořeno v KiCad 7.0.

Aby bylo vyhověno zmíněným požadavkům a zachována návrhová rezerva, byl jako základ buck měniče zvolen čip LM5148 [4]. Jedná se o moderní součástku firmy Texas Instruments s velkou výkonovou rezervou. Tento čip funguje pouze jako buck kontroler a je potřeba doplnit zapojení dvěma externími MOSFET tranzistory, většina tepelných ztrát vzniká právě na nich, čímž se sníží ohřev samotného čipu a generované teplo se lépe rozloží. Na volbě tranzistorů závisí také výsledná účinnost měniče. Při návrhu zapojení této součástky byl použit nástroj Webench Power Designer [5], který podle zadaných porametrů navrhne konkrétní schéma zapojení, provede simulaci a zobrazí grafy upravené na míru podle zvolených hodnot. Tento nástroj uvádí přibližnou účinnost zapojení jako 88%. V navrženém schématu bylo posléze provedeno několik změn, aby vše odpovídalo požadavkům uvedeným v katalogovém listu součástky [4]. Výsledné zvolené zapojení se nachází na obr. 2.3. V obrázku se nachází také odkazy ke konkrétním kapitolám katalogového listu relevantních k volbě hodnot vybraných součástek.

TODO: výpočty

2.2.3 Deska plošných spojů

Ačkoliv se jedná o relativně jednoduchou DPS, je potřeba při návrhu dbát jistých pravidel a doporučení

2.3 Konektivita

Z hlediska datové komunikace jsou zapotřebí dva vodiče (TX a RX), kromě toho je ale nutné periferiím dodat napájení. Většina periferií by měla být v principu dosti jednoduchá a energeticky nenáročná zařízení, typicky obsahující mikrokontroler pracující s napětím 3,3 nebo 5 V s jedním nebo několika málo připojenými senzory. Pro jejich napájení postačí další dva vodiče, jeden zemní, společný i pro datové vodiče, a druhý s napětím 5,2 V. Periferie musí být navrženy tak, aby je drobné změny této hodnoty neovlivnily. V případě několika periferí zapojených za sebe bude na delším vedení zákonitě docházet k poklesu napětí, proto byla zvolena návrhová rezerva 0,2 V, která na základě praktického testu bude možná v budoucnu ještě navýšena. Každá periferie musí obsahovat vlastní regulátor, kterým si pro svůj provoz vytvoří potřebné stabilní napětí 5 nebo 3,3 V.

Č. Zkratka Napětí **Popis** 2, 7 24V $24 \, \mathrm{V}$ Napájení z externího zdroje, pro náročné periferie 1, 5, 6, 9 GND Společná zem $0\,\mathrm{V}$ 8 5V Napájení pro MCU periferií $5.2\,\mathrm{V}$ 3 **CANH** Kladný vodič diferenční datové linky 0 až 3,3 V 4 Záporný vodič diferenční datové linky CANL 0 až 3,3 V

Tab. 2.1: Přiřazení vodičů pro konektor D-sub.

Některé periferie mohou mít vyšší výkonové nároky a navržené nízkonapěťové napájení by jim nemuselo stačit, zároveň by vysokým odběrem proudu klesala stabilita celé sběrnice. Pro tyto periferie je proto potřeba přivést další napájecí větev, opět o dvou vodičích. Krom zemního vodiče přivedeme napájení 24 V, které pochází přímo z externího zdroje v hlavním šasi zařízení. Daná periferie pak musí obsahovat vlastní měnič, kterým si vytvoří napětí o potřebné velikosti.

Všechny zmíněné vodiče jsou pro lepší přehlednost shrnuty v tab. 2.1.

Dále bylo nutné vybrat vratnou pojistku s vhodnými parametry. Maximální provozní proud, který může po sběrnici téct je limitovaný sériovým odporem a pro zvolenou hodnotu 100Ω odpovídá $I_{max} = 33 \,\text{mA}$, této hodnoty ale nikdy nedosáhne stabilně nýbrž pouze na krátký čas při změně mezi logickou nulou a jedničkou. Byla

proto zvolena pojistka s hodnotou limitního proudu $I_{trip}=60\,\mathrm{mA}$ a běžného provozního proudu $I_{hold}=20\,\mathrm{mA}$.

2.4 Konektor - TODO: pryč

Hlavní šasi bude disponovat dvěma konektory typu samice. Každá periferie bude mít napevno připevněn kabel zakončený konektorem typu samice a na své krabičce pak opět jeden konektor typu samice. Periferie tedy bude možné připojit buďto přímo do jednoho ze slotů hlavního šasi anebo do série s některou jinou již připojenou periferií.

V principu lze zvolit jakýkoliv typ konektoru disponující alespoň šesti piny, musí však být možné konektor pohodlně použít jak na zakončení kabelu, tak i jako montovaný do panelu, např. na hlavním šasi. Volba konkrétního typu dosud nebyla provedena.

3 Obecný modul periferie

Díky zvolené koncepci systému je možné za periferii považovat jakékoliv zařízení schopné obousměrně komunikovat po navržené sběrnici. Není vyloučeno, aby byla každá periferie navržena zcela odlišně na základě svých vlastních požadavků na výkon, počet pinů nebo dostupná rozhraní daného MCU. Hlavní výhodou této koncepce je to, že periferie mohou být vyvíjeny postupně a přidávány do již funkčního a odladěného systému bez nutnosti modifikovat stávájící hardware. V případě chyby v návrhu periferie je také oprava méně náročná, než by tomu bylo v případě zabudování veškeré funkcionality přímo do řídící jednotky.

Nicméně pokud by byl pro každou periferii zvolen zcela jiný mikrokontroler a vytvořen vlastní návrh DPS, vývoj více periferií by byl zbytečně drahý a časově náročný. Proto byl zvolen koncept "obecného modulu periferie", tedy jedné DPS s konkrétním mikrokontrolerem zajišťující připojení k oběma stranám komunikačního rozhraní, napájení periferie a rozhraní pro programování. Kromě toho budou na DPS dvě dutinkové lišty, do kterých bude možné vsadit druhou DPS (popř. během vývoje pouze prototypovací desku) ve funkci dceřinné desky (ang. daughterboard). Vložená deska pak bude obsahovat obvody nutné přímo pro danou konkrétní periferii, např. pro teploměr to bude elektronika umožňující připojení teplotního čidla k mikrokontroleru.

V aktuální fázi tento práce byl pouze zvolen vyhovující mikrokontroler, návrh konkrétního schématu a rozložení DPS bude předmětem práce budoucí.

3.1 Mikrokontrolér

Kritéria pro výběr mikrokontroleru byla následující:

- Musí nutně splňovat:
 - 2x UART periferie pro komunikaci po sběrnici
 - PWM výstup řízení LED, popř. jiné
 - Nízká cena
- Je výhodou:
 - Dobrá dokumentace, komunita uživatelů
 - Zkušenost autora s danou platformou
 - Další periferie (**i2c!**, SPI, ...)

Na základě těchto kritérií byl vybrán mikrokontroler **PIC16F15325** od firmy Microchip, ten splňuje všechna kritéria a disponuje také množstvím dalších periferií, které by mohly být v budoucnu užitečné [6].

3.2 Návrh zapojení a tvorba DPS

4 Volba a návrh periferií

- 4.1 LED osvětlení
- 4.2 Senzor teploty
- 4.3 Senzor výšky hladiny
- 4.4 Senzor pH

4.5 Ovládání 230V periferií

Jak vyplývá z požadavků zařízení a přehledu používané akvaristické techniky, pro automatizovaný provoz akvária je nutné umožnit řídící jednotce ovládat několik okruhů se sítovým napětím a spínat tak zvlášť zakoupené hotové spotřebiče pracující s tímto napětím. Jedná se typicky o ohřev vody, filtr, popř. některé druhy osvětlení.

Obr. 4.1: Relé modul, ilustrační foto. Převzato z [7].

Aby uživatel mohl zařízení bezpěčně zapojit bez nutnosti odborné způsobilosti, budou se na hlavním šasi zařízení nacházet čtyři standartní zásuvky (typ E) s jednofázovým napětím 230 V. Fázové vodiče budou uvnitř zařízení přerušeny spínacími relé. Bude použit předpřipravený modul disponující osmi relé,kupříkladu modul na obr. 4.1. Zbylé čtyři relé slouží jako rezerva pro případ poškození některého z používaných relé nebo při potřebě rozšíření o další zásuvky.

Obr. 4.2: Modul expandéru GPIO pinů, ilustrační foto. Převzato z [8].

Z důvodu nedostatku pinů na mikrokontroleru řídící jednotky (ESP32) bude k relé modulu připojen ještě jeden externí modul a to expandér GPIO pinů komunikující přes sběrnici **i2c!** [8], ilustrační foto na obr. 4.2. Z pohledu mikrokontroleru tak budou všechny 230 V zásuvky řízeny pomocí dvou datových pinů (SDA, SCL), které je navíc možné dále využít pro připojení jiných periferií jako např. OLED displaye pro zobrazení stavu zařízení.

Možným zlepšením a rozšířením práce by bylo také zahrnutí obou zmíněných modulů přímo na DPS řídící jednotky.

- **5** Software
- 5.1 Architektura
- 5.2 Firmware řídící jednotky
- 5.3 Firmware periferií
- 5.4 Webové rozhraní

6 Sestavení a testování

Seznam příloh