1. COURANT SIGMA MODEL

1.1. Courant algebroids.

Definition 1.1. A *Courant algebroid* on a manifold X is a tuple $(E, \langle -, - \rangle, a, \llbracket -, - \rrbracket)$ where

- (i) $E \to X$ is a (finite rank) vector bundle, whose sheaf of smooth sections we denote \mathcal{E} ;
- (ii) $\langle -, \rangle : \mathcal{E} \times \mathcal{E} \to C_X^{\infty}$ is a nondegenerate, symmetric, bilinear pairing;
- (iii) $a: \mathcal{E} \to \mathfrak{T}_X$ is a C_X^{∞} -linear map, called the anchor;
- (iv) $\llbracket -, \rrbracket : \mathcal{E} \times \mathcal{E} \to \mathcal{E}$ is a bilinear operator.

This data is required to satisfy the following equations. We denote $x, y, z \in \mathcal{E}$, $f \in C_X^{\infty}$.

(1) BW: list

Every Courant algebroid defines a Lie algebroid in the obvious way. The conditions above imply that the tuple $(\mathcal{E}, a, [\![-, -]\!])$ has the structure of a Lie algebroid on X.

The collection of Courant algebroids on X form a 1-groupoid that we denote $\mathcal{CA}(X)$. The objects are simply Courant algebroids, and the morphisms are bundle isomorphisms preserving the pairing, anchor, and bracket. Note that given any $U \subset X$ one has a natural map of groupoids $\mathcal{CA}(X) \to \mathcal{CA}(U)$ given by restriction. The 1-groupoid of Courant algebroids satisfies a nice gluing law with respect to affine charts on X. Namely, there is an equivalence of groupoids

$$\mathcal{CA}(X) \simeq \lim_{U \subset X} \mathcal{CA}(U)$$

where the limit is taken over the category of affine subsets of *X*.

Theorem 1.2 ([?Roytenberg]). Let L be a Lie algebroid. There is a one-to-one correspondence between 2-shifted (Roytenberg) symplectic structures on the dg manifold $[X/L] = (X, \mathbf{C}^*(L))$ and Courant algebroid structures on L. BW: say as equivalence of groupoids

If we relax the symplectic definition to include homotopy coherent 2-shifted symplectic structures one finds the notion of a *twisted* Courant algebroid.

There is a particularly well-behaved class of Courant algebroids that are important for us. First, note that the linear dual of the anchor map determines a map

$$a^*: \mathfrak{I}_X^{\vee} = \Omega_X^1 \to \mathcal{E}^{\vee} \cong \mathcal{E}.$$

In the isomorphism, we have identified \mathcal{E} with its dual via the pairing $\langle -, - \rangle$. A Courant algebroid is *exact* if the resulting sequence of locally free sheaves

$$0 o \Omega^1_X \xrightarrow{a^\vee} \mathcal{E} \xrightarrow{a} \mathfrak{T}_X o 0$$

is exact. The above exact sequence determines a class in $H^1(X, \Omega^2_{cl})$.

Theorem 1.3. [?Severa, ?SafPym, ?...] The stack of exact Courant algebroids on X is equivalent to the stack of of 1-shifted closed two-forms $\Omega^2_{cl}(X)[1]$. In particular, every exact Courant algebroid is completely determined, up to isomorphism, by the class $[H] \in H^1(X, \Omega^2_{cl})$, called its "Ševera" class.

1.2. **The Courant** σ **-model.** Every Courant algebroid defines the following dg Lie algebroid

$$\left(\mathfrak{I}_X^{\vee}[1] \xrightarrow{a^{\vee}} \mathcal{E}\right) \xrightarrow{a} \mathfrak{I}_X,$$

that we denote by $\mathcal{L}_{\mathbb{C}}$. Here, the parentheses indicate the differential on the Lie algebroid, and a is the anchor. By [???] we know $(X, \operatorname{enh}(\mathcal{L}_{\mathbb{C}}))$ is an L_{∞} -space equipped with a 2-shifted symplectic structure that we denote by $\omega_{\mathcal{L}}$.

Definition 1.4. Let \mathcal{E} be a Courant algebroid and M a three-manifold. The perturbative Courant σ -model of maps from M to \mathcal{E} near the smooth map $f: M \to X$ has underlying space of fields

$$\Omega^*(M, f^* \operatorname{enh}(\mathcal{L}_{\mathfrak{C}}))[1].$$

The (-1)-shifted pairing is defined by:

$$\langle \alpha, \alpha' \rangle = \int \omega_{\mathcal{L}}(\alpha \wedge \alpha').$$

The action functional is encoded by the local L_{∞} -structure on $\Omega^*(M, f^*\text{enh}(\mathcal{L}_{\mathfrak{C}}))$.

To begin, let's suppose that f is a constant map. Then, as a graded $\Omega_X^{\#}$ -module, the space of fields has the form

$$\Omega^{\#}(M)\otimes\Omega^{\#}(X,T_X^{\vee}[2]\oplus E[1]\oplus T_X).$$

RG: Exact Courant algebroids are classified by their Severa class $H \in \Omega^3_{cl}(X)$. Twisting the canonical topological boundary condition via this class may give a description of the A-model with H-flux H. See R. Szabo's work or the JHEP article of Bonechi–Cattaneo–Iraso (RG: they get it as a certain gauged fixing for the Poisson sigma model where the Poisson structure is the inverse of a Kahler form).

1.3. **Dirac Structures.** Suppose \mathcal{E} is a Courant algebroid (may or may not be exact) on X.

A Dirac structure is a subbundle $L \subset E$ such that

- (i) *L* is Largrangian with respect to the pairing $\langle -, \rangle$;
- (ii) L is involutive with respect to the bracket [-,-].

There is a slightly modified version of a Dirac structure that is relative to a closed submanifold $i: Y \hookrightarrow X$. A Dirac structure on the pair (\mathcal{E}, Y) is a subbundle $L \subset f^*E$ such that

- (i) *L* is Largrangian with respect to the pairing $\langle -, \rangle$;
- (ii) *L* is compatible with the anchor, in the sense that $a(L) \subset TY \subset f^*TX$.
- (ii) L is involutive with respect to the bracket [-,-].

BW: Pavel classifies Lagrangian structures on morphisms $[Y/M] \to [X/\mathcal{E}]$ where \mathcal{E} is a Courant algebroid so $[X/\mathcal{E}]$ is 2-symplectic. In the case Y = X you get the first type of Dirac structures. In the general case, you get the second type.

In the exact case.

Proposition 1.5. Suppose we use the Dirac structure for the standard exact Courant algebroiod $\mathcal{E} = T_X \oplus T_X^{\vee}$ defined by a Poisson structure (X,Π) . The corresponding boundary theory for the Courant σ -model of maps from $\Sigma \times \mathbb{R}_{\geq 0}$ is equivalent to the Poisson σ -model on Σ with target (X,Π) .

1.4. **Link Invariants.** Let *E* be a Courant algebroid and *R* a representation up to homotopy of the associated 2-symplectic Lie algebroid. Further, assume that *R* is equipped with an invariant trace. Wilson loop observables determine invariants for links in a 3-manifold source manifold (anomalies?).

BW: I claim there are no anomalies for any Courant σ -model. This should probably wait till a later paper, but perhaps it's good for us to study the local deformation complex still...