Package 'fdadensity'

October 13, 2022

URL https://github.com/functionaldata/tDENS

BugReports https://github.com/functionaldata/tDENS/issues

Type Package

Title Functional Data Analysis for Density Functions by Transformation to a Hilbert Space

Version 0.1.2 **Date** 2019-12-03

Author A. Petersen, P. Z. Hadjipantelis and H.G. Mueller

Maintainer Alexander Petersen petersen@pstat.ucsb.edu>
Description An implementation of the methodology described in

Petersen and Mueller (2016) <doi:10.1214/15-AOS1363> for the functional data analysis of samples of density functions. Densities are first transformed to their corresponding log quantile densities, followed by ordinary Functional Principal Components Analysis (FPCA). Transformation modes of variation yield improved interpretation of the variability in the data as compared to FPCA on the densities themselves. The standard fraction of variance explained (FVE) criterion commonly used for functional data is adapted to the transformation setting, also allowing for an

alternative quantification of variability for density data through the

Wasserstein metric of optimal transport.

Depends R (>= 3.3.0)

License BSD_3_clause + file LICENSE

LazyData false

Imports Rcpp (>= 0.11.5), fdapace (>= 0.3.0)

LinkingTo Rcpp

NeedsCompilation yes

Suggests testthat

RoxygenNote 7.0.2

Encoding UTF-8

Repository CRAN

Date/Publication 2019-12-05 06:20:02 UTC

2 BacteriaPI

R topics documented:

	BacteriaPI	2
	CreateModeOfVarPlotLQ2D	3
	dens2lqd	4
	dens2qd	5
	dens2quantile	6
	DeregulariseByAlpha	7
	FPCAdens	8
	GetFVE	9
	getWFmean	10
	lqd2dens	12
	lqd2quantile	13
	MakeDENsample	14
	MakeLQDsample	15
	normaliseDensities	16
	qd2dens	17
	RegulariseByAlpha	18
	Top50BabyNames	19
Index		20

BacteriaPI

pH distribution of 813 bacterial organisms

Description

The approximate kernel density estimates of the 813 bacterial organisms' isoelectric point (pI) protein distributions.

Format

A matrix with 813 rows and 768 columns:

rowname General organism identifier **colspace** pH in [0,14]

References

The authors would like to thank Dr. Chris Knight for providing the original data

CreateModeOfVarPlotLQ2D

Transformation Mode of Variation Plot

Description

Create the k-th transformation mode of variation plot.

Usage

```
CreateModeOfVarPlotLQ2D(
  fpcaObj,
  domain = "D",
  k = 1,
  dSup = NULL,
  Qvec = -2:2,
  alpha = 0,
  useAlpha = FALSE,
   ...
)
```

Arguments

fpcaObj	An FPCA class object returned by FPCA() on the log quantile density functions.
domain	should the mode be plotted in LQD ('Q') or density space ('D', the default).
k	The k-th mode of variation to plot (default $k = 1$)
dSup	The common support of the original densities. Only relevant for domain = $^{\prime}D^{\prime}$
Qvec	Vector of values Q to be plotted. If 0 is not included, it will be added (default is -2:2). Only relevant for domain = 'D'
alpha	(De)regularisation parameter (default is 0). See details.
useAlpha	logical - should deregularisation be performed? Default:FALSE
	Additional arguments for the 'plot' function.

Details

If domain = 'D' (the default), the a transformation mode of variation is plotted. The red-line is $\psi^{-1}(\nu)$, where ν is the mean in LQD space and ψ is the LQD transformation. Other lines correspond to perturbations by adding multiples of the LQD eigenfunctions ρ_k (with eigenvalues τ_k): $\psi^{-1}(\nu+Q\sqrt{\tau_k}\rho_k)$ for the values Q in Qvec. If alpha is positive, will attempt to deregularise (see DeregulariseByAlpha). This will throw an error if alpha is too large.

If domain = 'Q', ordinary modes of variation are plotted in LQD space (see documentation for CreateModeOfVarPlot in fdapace).

4 dens2lqd

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

See Also

DeregulariseByAlpha

Examples

dens21qd

Function for converting densities to log quantile density functions

Description

Function for converting densities to log quantile density functions

Usage

```
dens2lqd(dens, dSup, N = length(dSup), lqdSup = NULL)
```

Arguments

dens	density values on dSup - must be strictly positive and integrate to 1
dSup	support (grid) for Density domain
N	desired number of points on a [0,1] grid for lqd function; default length(dSup)
lqdSup	support for lqd domain - must begin at 0 and end at 1; default [0,1] with N-equidistant support points

dens2qd 5

Value

lqd log quantile density on lqdSup

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

See Also

normaliseDensities

Examples

```
x \leftarrow seq(0,2,length.out =512)

y \leftarrow rep(0.5,length.out =512)

y.lqd \leftarrow dens2lqd(dens=y, dSup = x) # should equate # log(2)
```

dens2qd

Function for converting Densities to Quantile Densities

Description

Function for converting Densities to Quantile Densities

Usage

```
dens2qd(
  dens,
  dSup = seq(0, 1, length.out = length(dens)),
  qdSup = seq(0, 1, length.out = length(dens)),
  useSplines = TRUE
)
```

Arguments

dens density on dSup
dSup support for Density domain - max and min values mark the boundary of the

support.

qdSup support for quantile density domain - must begin at 0 and end at 1

useSplines fit spline to the qd when doing the numerical integration (default: TRUE)

Value

qd quantile density values on qdSup

6 dens2quantile

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

See Also

```
normaliseDensities
```

Examples

```
x <- seq(0,2,length.out =512)
y <- rep(0.5,length.out =512)
y.qd <- dens2qd(dens=y, dSup = x) # should equate # 2</pre>
```

dens2quantile

Function for converting Densities to Quantile Functions

Description

Function for converting Densities to Quantile Functions

Usage

```
dens2quantile(
  dens,
  dSup = seq(0, 1, length.out = length(dens)),
  qSup = seq(0, 1, length.out = length(dens)),
  useSplines = TRUE
)
```

Arguments

dens density on dSup

dSup support for Density domain - max and min values mark the boundary of the

support.

qSup support for quantile domain - must begin at 0 and end at 1

useSplines fit spline to the qd when doing the numerical integration (default: TRUE)

Value

Q quantile function on qSup

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

DeregulariseByAlpha

See Also

normaliseDensities

Examples

```
x <- seq(0,2,length.out =512)
y <- rep(0.5,length.out =512)
y.quantile <- dens2quantile(dens=y, dSup = x) # should equate # 2*seq(0, 1, length.out = 512)</pre>
```

DeregulariseByAlpha

Function to deregularise densities to have (smaller) minimum value

7

Description

If possible, deregularises the input density y to have minimum density value is alpha. See details.

Usage

```
DeregulariseByAlpha(x, y, alpha = 0)
```

Arguments

alpha

x support of the densityy values of the density

scalar to deregularise with (default = 0) - this will be the minimum value of the

deregularised density, unless min(y) < alpha, in which case no deregularisation

will be performed

Details

If $min(y) \le alpha$, or y is the uniform distribution, no deregularisation is performed and y is returned. If min(y)*diff(range(x)) > 1, the deregularisation is not possible and an error is thrown. Otherwise, the deregularised density in an inverse manner to RegulariseByAlpha.

Value

dens density values on x

See Also

RegulariseByAlpha

8 FPCAdens

Examples

```
x = seq(0,1,length.out=122)
y = seq(0.1,1.9,length.out=122)
z = DeregulariseByAlpha(x=x, y=y, alpha = 0)
```

FPCAdens

FPCA for densities by log quantile density transformation

Description

Perform FPCA on LQD-transformed densities

Usage

```
FPCAdens(
  dmatrix,
  dSup,
  lqdSup = seq(0, 1, length.out = length(dSup)),
  useAlpha = FALSE,
  alpha = 0.01,
  optns = list(dataType = "Dense", error = FALSE)
)
```

Arguments

dmatrix	Matrix holding the density values on dSup - all rows must be strictly positive and integrate to $\boldsymbol{1}$
dSup	Support (grid) for Density domain
lqdSup	Support grid for lqd domain (default = $seq(0, 1, length.out = length(dSup)))$
useAlpha	should regularisation be performed (default=FALSE)
alpha	Scalar to regularise the supports with (default=0.01)
optns	A list of options for FPCA. See documentation for FPCA.

Details

Densities are transformed to log-quantile densities, followed by standard FPCA. If useAlpha = TRUE, densities are regularized before transformation

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

GetFVE 9

See Also

RegulariseByAlpha, lqd2dens, MakeLQDsample, FPCA

Examples

GetFVE

Compute Metric-based Fraction of Variance Explained

Description

When FPCA is performed on the log quantile density functions, the fraction of variance explained by the first K components is computed based on the density reconstruction and chosen metric.

Usage

```
GetFVE(fpcaObj, dmatrix, dSup, metric = "L2", useAlpha = FALSE, alpha = 0.01)
```

Arguments

fpcaObj	PACE output (FPCA on LQDs)
dmatrix	matrix of original densities measures on grid dSup, rows correspond to individual densities
dSup	support for Density domain - max and min mark the boundary of the support.
metric	metric for measuring variance - 'L2' for Euclidean or 'W' for Wasserstein
useAlpha	should regularisation be performed to densities in dmatrix? This should be set to TRUE if densities were regularised prior to FPCA (default = FALSE)

10 getWFmean

alpha

scalar to regularise before computing FVE. If useAlpha = TRUE, this should match the value used to regularise prior to FPCA (default = 0.01)

Details

The fraction of variance explained (FVE) by the first K principal components corresponding to the LQD functions is computed by taking the K-dimensional LQD representations, transforming back to densities, and comparing the reconstruction to the original densities using the chosen metric. If densities were regularised prior to transformation and FPCA, the same regularisation parameters should be used here.

Value

FVEvector

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

See Also

```
RegulariseByAlpha, lqd2quantile
```

Examples

getWFmean

Wasserstein Frechet Mean Computation

Description

Function for computing the Wasserstein Frechet mean through quantile density averaging

getWFmean 11

Usage

```
getWFmean(
  dmatrix,
  dSup,
  N = length(dSup),
  qdSup = seq(0, 1, length.out = N),
  useAlpha = FALSE,
  alpha = 0.01
)
```

Arguments

dmatrix	matrix of density values on dSup - must be strictly positive and each row must integrate to 1
dSup	support (grid) for Density domain
N	desired number of points on a $[0,1]$ grid for quantile density functions; default length(dSup)
qdSup	support for LQ domain - must begin at 0 and end at 1; default $[0,1]$ with N-equidistant support points
useAlpha	should regularisation be performed (default=FALSE)
alpha	Scalar to regularise the supports with (default=0.01)

Value

wfmean the Wasserstein-Frechet mean density

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

Examples

12 lqd2dens

	2		

Function for converting log quantile densities to densities

Description

Function for converting log quantile densities to densities

Usage

```
lqd2dens(
  lqd,
  lqdSup = seq(0, 1, length.out = length(lqd)),
  dSup,
  useSplines = TRUE
)
```

Arguments

lqd log quantile density on lqdSup

1qdSup support forlqd domain - must begin at 0 and end at 1

dSup support for Density domain - max and min values mark the boundary of the

support.

useSplines fit spline to the lqd when doing the numerical integration (default: TRUE)

Value

dens density values on dSup

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

Examples

```
x <- seq(0,2,length.out =512)
y.lqd <- rep(log(2), times = 512)
y <- lqd2dens(dSup=x, lqd = y.lqd) # should equate # 1/2</pre>
```

lqd2quantile 13

lad2quantil	2

Function for converting log quantile densities to quantile functions

Description

Function for converting log quantile densities to quantile functions

Usage

```
lqd2quantile(
  lqd,
  lqdSup = seq(0, 1, length.out = length(lqd)),
  lb = 0,
  useSplines = TRUE
)
```

Arguments

lqd log quantile density on lqdSup

1qdSup support for lqd domain - must begin at 0 and end at 1

1b lower bound of support for Density domain - default is 0.

useSplines fit spline to the lqd when doing the numerical integration (default: TRUE)

Value

quantile values on lqdSup

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

Examples

```
x \leftarrow seq(1,3,length.out =512)

y.lqd \leftarrow rep(log(2), times = 512)

y \leftarrow lqd2quantile(lqd = y.lqd, lb = 1) # should equate # seq(1, 3, length.out = 512)
```

14 MakeDENsample

				_
Ma	keDI	FΝς	amr	ılو

Convenience function for converting log quantile densities to densities

Description

See 'lqd2dens' and 'DeregulariseByAlpha' for more details. This function transforms the log quantile densities in 'qmatrix' to density functions, optionally followed by deregularisation.

Usage

```
MakeDENsample(
  qmatrix,
  lqdSup = seq(0, 1, length.out = ncol(qmatrix)),
  dSup = seq(0, 1, length.out = ncol(qmatrix)),
  useAlpha = FALSE,
  alpha = 0
)
```

Arguments

qmatrix	Matrix holding the log quantile density values on [0,1]
lqdSup	Support grid for input log quantile densities (default = seq(0, 1, length.out = ncol(qmatrix)))
dSup	Support grid for output densities (default = $seq(0, 1, length.out = ncol(qmatrix)))$
useAlpha	Logical indicator to deregularise the densities (default = FALSE)
alpha	Scalar to deregularise the density - where possible, this will be the minimum value for the deregularised densities (default=0)

Value

list with the 'DEN' transformed data, and 'dSup' that matches the input argument.

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

See Also

DeregulariseByAlpha,lqd2dens

MakeLQDsample 15

Examples

```
x <- seq(0,1,length.out = 101)
# linear densities on (0, 1)
y <- t(sapply(seq(0.5, 1.5, length.out = 10), function(b) b + 2*(1 - b)*x))
# Get LQDs

y.lqd = MakeLQDsample(dmatrix = y, dSup = x)
matplot(y.lqd$lqdSup, t(y.lqd$LQD), ylab = 'LQD', type = 'l', lty = 1, col = 'black')

# Get Densities Back

y.dens = MakeDENsample(y.lqd$LQD, lqdSup = x, dSup = x) # should equate to y above
# These should look the same
matplot(y.dens$dSup, t(y.dens$DEN), ylab = 'Density', type = 'l', lty = 1, col = 'blue')
matplot(x, t(y), ylab = 'Original Density', type = 'l', lty = 1, col = 'red')</pre>
```

MakeLQDsample

Convenience function for converting densities to log-quantile densities

Description

See 'dens2lqd' and 'RegulariseByAlpha' for more details. This function first (transforms the densities in 'dmatrix' to log quantile density functions, optionally followed by regularisation.

Usage

```
MakeLQDsample(
  dmatrix,
  dSup,
  lqdSup = seq(0, 1, length.out = length(dSup)),
  useAlpha = FALSE,
  alpha = 0.01
)
```

Arguments

dmatrix	Matrix holding the density values on dSup - all rows must be strictly positive and integrate to 1
dSup	Support (grid) for Density domain
lqdSup	Support grid for lqd domain (default = $seq(0, 1, length.out = length(dSup)))$
useAlpha	should regularisation be performed (default=FALSE)
alpha	Scalar to regularise the supports with (default=0.01)

16 normaliseDensities

Value

list with 'LQD', a matrix of log quantile density functions, and 'lqdSup' that matches the input argument

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

See Also

RegulariseByAlpha, dens2lqd

Examples

```
x <- seq(0,1,length.out = 101)
# some log quantile densities on (0, 1)
y <- t(sapply(seq(0.5, 1.5, length.out = 10), function(b) -log(b^2 + 4*(1-b)*x)/2))
# Get densities

y.dens = MakeDENsample(qmatrix = y, lqdSup = x, dSup = x)$DEN
matplot(x, t(y.dens), ylab = 'Density', type = 'l', lty = 1, col = 'black')

# Get LQDs Back

y.lqd = MakeLQDsample(y.dens, lqdSup = x, dSup = x)
# These should match
matplot(y.lqd$lqdSup, t(y.lqd$LQD), ylab = 'LQD', type = 'l', lty = 1, col = 'blue')
matplot(x, t(y), ylab = 'LQD', type = 'l', lty = 1, col = 'red')</pre>
```

normaliseDensities

Normalise Densities

Description

Preprocessing function to ensure densities integrate to 1

Usage

```
normaliseDensities(dmatrix, dSup = 1:ncol(dmatrix))
```

Arguments

dmatrix Matrix with rows representing distinct densities on dSup - all entries must be

nonnegative

dSup Support (grid) for Density domain

qd2dens 17

Details

Uses trapezoidal integration to normalise the densities to have integral 1

Value

matrix 'dmatrix' consisting of rows of input of the same name that have been normalised to have integral 1

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

Examples

```
## Normalise collection of truncated normal densities

mu <- seq(-2, 2, by = 0.5)
dSup = seq(-3, 3, length.out = 101)
y <- t(sapply(mu, function(m) dnorm(x = dSup, mean = m)))

# Should return warnings about densities not integrating to 1
lqd = MakeLQDsample(dmatrix = y, dSup = dSup)

# Normalise and rerun without warning
dens <- normaliseDensities(dmatrix = y, dSup = dSup)
lqd = MakeLQDsample(dmatrix = dens, dSup = dSup)</pre>
```

qd2dens

Function for converting Quantile Densities to Densities

Description

Function for converting Quantile Densities to Densities

Usage

```
qd2dens(
   qd,
   qdSup = seq(0, 1, length.out = length(qd)),
   dSup,
   useSplines = TRUE
)
```

18 RegulariseByAlpha

Arguments

qd quantile density on qdSup

qdSup support for quantile domain - must begin at 0 and end at 1 (default = seq(0, 1,

length.out = length(qd)))

dSup support for Density domain - max and min values mark the boundary of the

support.

useSplines fit spline to the qd when doing the numerical integration (default: TRUE)

Value

dens density values on dSup

References

Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016

Examples

```
x \leftarrow seq(0,1,length.out =512)
y <- rep(2,length.out =512)
y.dens <- qd2dens(qd=y, qdSup = x, dSup = seq(0, 2, length.out = 512)) # should equate # 1/2
```

RegulariseByAlpha

Function to regularise densities to have (larger) minimum value

Description

If possible, regularises the input density y to have minimum density value is alpha. See details.

Usage

```
RegulariseByAlpha(x, y, alpha = 0.01)
```

Arguments

x support of the densityy values of the density

alpha scalar to regularise with (default = 0.01) - this will be the minimum value of the

regularised density, unless min(y) > alpha, in which case no regularisation will

be performed

Top50BabyNames

Details

If min(y) >= alpha or y is the uniform distribution, no regularisation is performed and y is returned. If alpha*diff(range(x)) > 1, the regularisation is not possible and an error is thrown. Otherwise, the regularised density is computed by adding an appropriate constant gam y, followed by renormalisation to have integral 1.

Value

dens density values on x

See Also

DeregulariseByAlpha, normaliseDensities

Examples

```
x = seq(0,1,length.out=122)
y = seq(0,2,length.out=122)
z = RegulariseByAlpha(x=x, y=y, alpha = 0.1)
```

Top50BabyNames

Baby name popularity densities for 50 male and 50 female names in the USA

Description

Baby name popularity densities, obtained by smoothing year-to-year popularity indices from 1950 to 2016, after normalization to have integral equal to 1. The top 50 names, in absolute popularity, are included for each gender.

Format

A list with two variables

x grid of years between 1950 and 2016, of length 67.

dens list of length two, corresponding to male (dens\$male) and female(dens\$female) names. Each is a 67-by-50 matrix of density estimates, where each column corresponds to a unique baby name given by the corresponding column name.

References

Data from the R package babynames, originally from the US Social Security Administration

Index

```
{\tt BacteriaPI}, {\color{red} 2}
CreateModeOfVarPlotLQ2D, 3
dens21qd, 4, 16
dens2qd, 5
{\tt dens2quantile}, {\color{red} 6}
DeregulariseByAlpha, 4, 7, 14, 19
FPCA, 9
FPCAdens, 8
GetFVE, 9
getWFmean, 10
1qd2dens, 9, 12, 14
lqd2quantile, 10, 13
MakeDENsample, 14
MakeLQDsample, 9, 15
normaliseDensities, 5-7, 16, 19
qd2dens, 17
RegulariseByAlpha, 7, 9, 10, 16, 18
Top50BabyNames, 19
```