Wavefront reconstruction for adaptive optics

Marcos van Dam and Richard Clare

W.M. Keck Observatory

Friendly people

- We borrowed slides from the following people:
 - Lisa Poyneer
 - Luc Gilles
 - Curt Vogel
 - Corinne Boyer
- Mahalo!

Imke de Pater et al

Outline

- System matrix, H: from actuators to centroids s = Ha
- Reconstructor, R: from centroids to actuators a = Rs
- Fast algorithms and hardware

Case Study

- Consider a Shack-Hartmann wavefront sensor
- Actuators in a square array with a separation equal to the lenslet size
- Fried geometry between subapertures and actuators

DM to lenslet registration

How do we ensure that we have the right registration?

DM to lenslet registration

Add waffle to the DM and adjust lenslet array or the beam until no centroids are measured

System matrix generation

System matrix describes how a signal applied to the actuators, *a*, affects the centroids, *s*.

$$s = Ha$$

Can be calculated theoretically or, preferably, experimentally

Theoretical system matrix

For an actuator at (n+1/2,n+1/2),

$$s_x = 1$$

$$s_x = -1$$

$$s_y = -1$$

$$s_y = -1$$

$$s_x = 1$$

$$s_x = -1$$

$$s_y = 1$$

$$s_{v} = 1$$

Experimental system matrix

Poke one actuator at a time in the positive and negative directions and record the centroids

Set centroid values from subapertures far away from

the actuators to 0

Inverting the system matrix

- We have the system matrix s = Ha
- We need a reconstructor matrix to convert from centroids to actuator voltages a = Rs

$$Ha = S$$

$$H^{T}Ha = H^{T}S$$

$$a = (H^{T}H)^{-1}H^{T}S$$

Least-squares reconstructor R

- Least squares reconstructor is $(H^T H)^{-1} H^T$
- Minimizes $(s Ha)^2$
- But H^TH is not invertible because some modes are invisible!
- Two invisible modes are piston and waffle

Singular value decomposition

- The SVD reconstructor is found by rejecting small singular values of H.

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & \\ & & & O \end{bmatrix} \quad \lambda_i \text{ are the eigenvalues of } H^T H$$

The pseudo inverse is $H^+ = V \Lambda^{-1} U^T$

Singular value decomposition

The pseudo inverse is $H^+ = V\Lambda^{-1}U^T$

$$\Lambda^{-1} = \begin{bmatrix} \lambda_1^{-1} & & & \\ & \lambda_2^{-1} & & \\ & & \lambda_3^{-1} & \\ & & & O \end{bmatrix}$$

Replace all the λ_i^{-1} with 0 for small values of λ_i

Singular value decomposition

Noise propagation

- Suppose we only have centroid noise in the system with variance σ^2
- Variance of actuator commands is:

$$Var(a) = Var(Rs)$$

$$= E[(Rs)^{2}] - (E[(Rs)])^{2}$$

$$= E[(Rs)^{2}]$$

$$= |R|^{2}E[s^{2}]$$

$$= |R|^{2}\sigma^{2}$$

Noise propagation

- Recall $Var(a) = |R|^2 \sigma^2$
- The total noise for all actuators is $|R|^2 = \sum R_{i,j}^2$
- For the SVD, this is equal to the sum of the singular modes of the reconstructor $|R|^2 = \sum \lambda_i^{-2}$

Throw away the noisiest modes!

The average noise propagation is $|R|^2 = \sum R_{i,j}^2 / N$ where N is the number of actuators.

For well-conditioned *H* matrices, we can penalize piston, *p*, and waffle, *w*:

$$p = [1,1,1,1,1,1,...]^T$$
 Invertible
$$w = [1,-1,1,-1,1,...]^T$$

$$R = (H^T H + pp^T + ww^T)^{-1} H^T$$

Minimizes $(s - Ha)^2 + (p^T a)^2 + (w^T a)^2$

Choose the actuator voltages that best cancel the measured centroids

For well-conditioned H matrices, just heavily penalize piston, *p*, and waffle, *w*:

$$p = [1,1,1,1,1,1,...]^{T}$$

$$w = [1,-1,1,-1,1,...]^{T}$$

$$R = (H^{T}H + pp^{T} + ww^{T})^{-1}H^{T}$$

Minimizes
$$(s - Ha)^2 + (p^T a)^2 + (w^T a)^2$$

Choose the actuator voltages such that there is no piston

For well-conditioned H matrices, just heavily penalize piston, *p*, and waffle, *w*:

$$p = [1,1,1,1,1,1,...]^{T}$$

$$w = [1,-1,1,-1,1,...]^{T}$$

$$R = (H^{T}H + pp^{T} + ww^{T})^{-1}H^{T}$$

Choose the actuator voltages such that there is no waffle

- Most modes have local waffle but no global waffle
- Must regularize before inverting

- Penalize waffle in the inversion:
 - 1. Inverse covariance matrix of Kolmogorov turbulence or
 - 2. Waffle penalization matrix

2

$$R = (H^T H + \alpha C_{\phi}^{-1})^{-1} H^T$$

Inverse covariance matrix for Kolmogorov turbulence

SVD

Bayesian

$$R = (H^T H + \alpha C_{\phi}^{-1})^{-1} H^T$$

Noise-to-signal parameter

Minimizes $(s - Ha)^2 + \alpha a^T C_{\phi}^{-1} a$

Bright star $\alpha=1$

Faint star α =30

SVD vs Bayesian

Noise propagation

SVD vs Bayesian

Slaved actuators

- Some actuators are located outside the pupil and do not directly affect the wavefront
- They are often "slaved" to the average value of its neighbors

Slaved to average value of its neighbors

Modal reconstructors

- Can choose to only reconstruct certain modes
- Avoids reconstructing unwanted modes (e.g., waffle)

Zernike modes

Modal reconstructors

$$Z = [z_1, z_2, z_3, \dots]$$
 Zernike modes

HZ Centroids measured by applying Zernike modes to the DM

$$R = Z[(HZ)^{T}(HZ)]^{-1}(HZ)^{T}$$
 Zernike reconstructor

The slope measurements are derivatives of the phase, φ

$$s_x[m,n] = \phi[m+1,n] - \phi[m,n]$$
 $s_y[m,n] = \phi[m,n+1] - \phi[m,n]$

We can take the Fourier transform of both equations

$$S_x[m,n] = \phi[m+1,n] - \phi[m,n]$$

Fourier transform

$$S_x[k,l] = \Phi[k,l] \exp[j2\pi k/N] - \Phi[k,l]$$

$$s_y[m,n] = \phi[m,n+1] - \phi[m,n]$$

Fourier transform

$$S_{y}[k,l] = \Phi[k,l] \exp[j2\pi l/N] - \Phi[k,l]$$

Solve for $\Phi[k,l]$

$$\hat{\Phi} = \frac{(\exp[-j2\pi k/N] - 1)S_x[k,l] + (\exp[-j2\pi l/N] - 1)S_y[k,l]}{4(\sin^2[\pi k/N] + \sin^2[\pi l/N])}$$

- We can now apply any filter in the Fourier domain: e.g., we can low pass filter the signal to remove high spatial frequencies.
- Take the inverse Fourier transform to get the phase

Boundary problem

Finite sized aperture creates a boundary problem leading to incorrect wavefront estimation

Boundary problem

Matrix extent

- Solve by managing slopes outside the aperture
- Extend slopes in orthogonal directions outside the aperture
- Set wrap-around slopes to enforce periodicity

Summary of FFT Reconstructor

Control laws

Now that we have the reconstructed wavefront, a, what do we do?

$$u[n] = a$$
 Wavefront error at time n

$$y[n]$$
 Mirror position at time n

Simplest control law is integrator with variable loop gain, k

$$y[n] = y[n-1] + ku[n]$$

New mirror command Current mirror command Reconstructed wavefront

Control laws

Need to clip the voltages to the maximum voltage, Vmax

$$y[n] = \min(y[n], V \max)$$

Actuator clipping and DM hysteresis can introduce invisible modes. These can be removed using a "leaky" integrator

$$y[n] = 0.99y[n-1] + ku[n]$$

$$y[n] = \min(y[n], V \max)$$

Control laws

Controllers can preempt the response

$$y[n] = y[n-1] + ku[n] + c(u[n] - u[n-1])$$

Add a fraction of the way the error is changing

Or to allow for computational delay (Smith compensator)

$$y[n] = y[n-1] - c(y[n-1] - y[n-2]) + ku[n]$$

Remove portion of the way the DM is moving

Multi-conjugate adaptive optics

System complexity increases

Next generation telescopes and AO systems will have much greater computational demands than current systems

Computationally efficient reconstructors

- For example, for the Thirty Meter Telescope (TMT) AO system NFIRAOS
 - DM with 60x60 actuators
 - 6 LGS with 60x60 subapertures per WFS
 - 800 Hz sampling rate for LGS

TMT reconstructor example

- 3600 actuators and 43200 slope measurements
- H is 43200 x 3600 element matrix
- Offline calculation (not in real time but as pupil rotates, etc):

$$R = (H^T H + \alpha C_{\phi}^{-1})^{-1} H^T$$

- Inverse is $O(a^3) \approx 5x10^{10}$ floating point operations (flops)
- 1000 times more flops than Keck!

TMT reconstructor example

Online calculation (at 800 Hz) is

$$a = Rs$$

- 2000 times more than Keck
- Online and offline calculations for TMT are not feasible using current algorithms and hardware

Now for the good stuff!

Fast reconstructors

Bayesian reconstructor:

$$R = (H^T H + \alpha C_{\phi}^{-1})^{-1} H^T$$

Slopes to actuators:

$$a = (H^T H + \alpha C_{\phi}^{-1})^{-1} H^T s$$

Substitute and rearrange:

$$(H^T H + \alpha C_{\phi}^{-1})a = H^T s$$

Problem formulation

Problem formulation:

$$(H^T H + \alpha C_{\phi}^{-1})a = H^T s$$

$$P \qquad v$$

We want to solve the linear system: Pa = y

Conjugate gradient algorithm

- Solve Pa=y by minimizing $|Pa-y|^2$.
- Conjugate gradient is an iterative method
- Get closer to solution with more iterations
- Trade-off speed vs accuracy
- Convergence depends on condition number of P

Preconditioning

Preconditioning matrix M applied to transform problem to speed up convergence

$$Pa = y$$

$$M^{-1}PM^{-1}Ma = M^{-1}y$$

$$P' \quad a' \quad y'$$

- Apply conjugate gradient algorithm to transformed problem
- Choice of preconditioner M is critical to speed and accuracy
- Convergence now dependent on condition number of P' not P

Multi-grid preconditioned CG

- This a multiple resolution solution
- Example: consider the problem Pa=y in 2 different grid sizes (coarse and smooth)

- Perform CG method with fast convergence for high frequencies to the smooth grid
- Project the low frequency error onto the coarser grid
- Perform CG method on the coarse grid
- Project the coarse grid solution back to the smooth grid
- Perform CG method on the smooth grid using high frequencies from the smooth grid solution and low frequencies from the coarse grid solution

Fourier domain preconditioned CG

Key idea is to transform P to Fourier domain where F is Fourier transform matrix $P' = F^{-1}PF$

Pupil Mask Fourier transform of pupil mask

- In spatial domain, pupil mask matrix is almost full
- In Fourier domain, truncate the FT of the pupil mask to only a few pixels
- This matrix is now sparse so far fewer matrix multiplies

Complexity of methods

Approximate number of operations to solve: a = Rs where there are n actuators

Method	Operations
Direct solve	O(n ³)
Fourier transform reconstructor	O(n log n)
Multi-grid preconditioned CG	O(n log n)
Fourier domain preconditioned CG	O(n log n)

Hardware approaches

- Lick uses 2 Pentium processors for online and offline computation
- Need to use more processors and be able to split the problem into parallel blocks
- DSP Digital Signal Processor (a fast mathematical processor)
- FPGA Field Programmable Gate Array (lots and lots of logic gates)

Hardware approach for TMT

- Proposed TMT hardware solution is to use combination of FPGAs and DSPs
- DSP does pixel processing (centroiding etc)
- FPGAs do tomography and fitting steps

Mahalo!

