

Lecture 7: Bond Valuation

An Application of Time Value of Money

Presentation to Cox Business Students

FINA 3320: Financial Management

Purpose of This Lecture

- Provide an application of time value of money to bond valuation
 - (1) Understand basics of bonds
 - (2) Discuss bond valuation
 - (3) Discuss coupon rate, current yield, YTM
 - (4) Review a few special cases

What is a Bond?

- Bond: A security that obligates the issuer to make specific payments to the bondholder
 - Result of money being borrowed with the promise to repay
 - Bond contract specifics the details of the repayment
- Two parties involved:
 - Issuer: Party borrowing money (bond is a liability)
 - Investor (or Bondholder): Party loaning or investing money (bond is an asset)

Coupon Bonds

- Coupon Bond: Obligates the issuer to make...
 - (1) Payments (usually semi-annual) of interest (coupons) to the bondholder for the life of the bond
 - (2) Pay, in addition, the par value (face value) at maturity
- Coupon Rate: Usually set at an initial level that enables issuer to sell securities at or near par value (i.e., \$1,000)
 - In practice, bond buyer must pay the asked price for the bond plus any accrued interest
 - If bond is purchased between coupon payments, buyer must pay seller for the prorated share of the upcoming coupon
 - Sale (i.e., *invoice price*) of the bond would equal stated price plus accrued interest

Types of Coupon Bonds

- Types of coupon bonds:
 - (1) U.S. Treasury bonds (and notes)
 - (2) Corporate bonds (investment grade)
 - (3) Junk bonds
 - (4) Municipal bonds
 - (5) International bonds

U.S. Treasury Bonds and Notes

Prototype default-free coupon bonds (not risk-free)

T-notes

- Maturities range from 1 year up to 10 year
- Make semiannual coupon payments

T-bonds

- Issued with maturities ranging from 10 to 30 years
- Also make semiannual coupon payments
- Callable for a given period, usually during last 5 year of bond's life

Investment-Grade Corporate Bonds

- To compensate investors for the possibility of bankruptcy, corporate bonds offer a *default premium*
 - Premium is a differential in promised yield between the corporate bond and an otherwise identical T-bond that is risk free in terms of default
- Bonds rated BBB and above (S&P) or Baa and above (Moody's) are considered investment grade bonds

Junk Bonds

- Bonds rate below BBB (S&P) or below Baa (Moody's) are classified as speculative grade or junk bonds
- Before 1977 almost all junk bonds were "fallen angels"
 - Junk bonds constituted only 3.7% of corporate bond market in 1977
- In 1977, Michael Milken (Drexel Burnham Lambert) began to issue original-issue junk bonds
- Junk bonds gained notoriety in 1980s when used to finance leveraged buyouts and hostile takeover attempts
 - Junk bonds accounted for 23% of corporate bond market by 1987

Municipal Bonds

- Issued by state and local governments (municipalities)
- Exempt from federal taxes (on interest only) if issued to build roads, schools, hospitals, finance deficits, etc.
 - Exempt from state and local taxes if financed within the state
- Lower coupon rate because of tax status
- The rate taxable must pay to match the after-tax yield on "munis" is:

$$rate_{taxable} = rate_{muni}/(1-t)$$

where t = tax rate of investor (in decimal form)

International Bonds

- Issued by foreign governments or foreign corporations
- Types:
 - Sovereign Bonds: Issued by governments
 - e.g., UK *gilts*, Japanese *JGBs*, German *Bunds*, and US *Treasuries*
 - Foreign Bonds: Issued by an issuer in a currency other than its national currency
 - e.g., *Yankee bonds*: bonds issued in US in US \$s by foreign issuers, or *Samurai bonds*: yen denominated bonds issued in Japan by foreign issuers, etc.
 - Eurobonds: Denominated in single currency, euro
 - World's largest corporate bond market
 - World's only unregulated market

Contract Details

- Face Value: The amount of the debt to be repaid at some future date (i.e., the maturity date)
 - Aka Par Value
 - Typically \$1,000
- Coupon Payments: Periodic interest payments to be made while the bond is outstanding
 - Name came from physical coupons
 - Typically happens once every 6 months (i.e., semi-annually)
- Coupon Rate: Percentage of par value paid in coupon payments each year (expresses as an APR)

Contract Details continued...

- Bond Indentures: Contract between the issuer and the bondholder
 - Part of indenture is a set of restrictions on the firm issuing the bond to protect the rights of the bondholders (recall bondholders' wealth expropriation issue!)
 - Such restrictions include provisions relating to collateral, sinking funds, dividend policy, and allowed further debt

Bond Indenture Details

- Sinking Funds: Help ensure that repayment does not create a cash flow crisis, operate in one of three ways:
 - (1) Firm repurchases a faction of outstanding bonds in the open market each year
 - (2) Firm purchases a fraction of outstanding bonds at a special call price each year (bonds chosen for recall randomly)
 - (3) Although uncommon, periodic payments to trustee with these payments invested
- **Dividend Restrictions**: Limit dividend payouts
 - Protect bondholder from liquidating dividend
 - Forces firm to retain assets rather than paying them to shareholders

Bond Indenture Details continued...

- Collateral: Provides assets that can be used to repay bondholders in the event of a liquidation
 - *Mortgage bond*: has collateral in the form of PP&E
 - *Collateral trust bond*: collateral takes the form of other securities held by the firm
 - **Debenture**: has no specific collateral they are unsecured
- Subordination of Further Debt: Restricts the amount of additional borrowing
 - Prevents firm from harming existing bondholders by issuing significant amounts of debt with equal priority
 - In event of bankruptcy, subordinated or junior bondholders will not be paid unless and until senior bondholders are fully repaid

Coupon Bond: Example

- Consider a 10-year bond with a 6% coupon rate
 - Annual coupon payments are 6% of \$1,000 or \$60
 - If coupons are made semi-annually, then each would be \$30
- Note: Coupon rate is a feature of the bond contract...
 Unless specified in the contract, it is constant
 throughout the life of the bond

Valuing a Bond

- A bond generates a stream of cash flows for its owner
 - Can be represented as a timeline
 - Can be valued just like any other asset by finding the present value of its cash flows
- Two components to the bond's cash flows:
 - Coupon payments are an annuity
 - Repayment of principal at maturity is a single cash flow
- The present value of the cash flows represent the price of the bond

Bond Valuation and Time Lines

- Determining present value of the cash flow stream from a coupon bond involves discounting 2 items
 - Present value of an annuity (coupon payments or CPs)
 - Present value of a single cash flow (principal or P)

Bond Valuation and Time Lines: Example

- Example: Consider a 10-year bond with a 6% coupon rate payable semi-annually
 - Present value of an annuity (coupon payments of \$30 S/A)
 - Present value of a single cash flow (principal of \$1,000)

Bond Valuation: Mechanics

- Assume 6% discount rate (i.e., 3% semiannual rate)
- Component 1: Present Value of an Annuity
 - Example: \$30 semi-annual coupon payments
 - Formula: $$30*[1-1/(1.03)^{20}]/0.03 = 446.32
 - Financial Calculator: 20n; 3i; 30PMT; $\overline{PV} = \$446.32$
- Component 2: Present value of a Single Sum
 - Example: \$1,000 principal
 - Formula: $$1,000/(1.03)^{20} = 553.68
 - Financial Calculator: 20n; 3i; 1,000FV; PV = \$553.68
- Bond Value = Σ of PVs of 2 Components
 - Bond Value = \$446.32 + \$553.68 = \$1,000

Bond Valuation: Mechanics

- Question: Is there an easier way to calculate a bond's value???
- Answer: Yes!!!
- Financial Calculator: 20n; 3i; 30PMT; 1,000FV; PV = \$1,000
- What did this do?
- It calculated *both* the annuity and the single cash flow at the same time!

What Discount Rate Should be Used?

- The coupon rate (i.e., the discount rate we assumed on the previous example)?
 - Not usually, because this is determined at the time the bond is issued and may or may not reflect current market conditions
 - Defined based on cash flows and par value
- Instead, use a market-determined discount rate
 - Should reflect the risk of the cash flows
 - We'll call it the *market rate* for now
 - Rate changes when market conditions change

Example

- A 3-year bond has a 6.5% coupon rate and makes payments semi-annually
- Find the present value if the market rate (expressed as APR) is:
 - 3.95%
 - 6.5%
 - 10%

Example: 3.95% APR Discount Rate

- A 3-year bond has a 6.5% coupon rate and makes payments semi-annually
- Formula: $\$32.50*[1-1/(1.01975)^6]/0.01975 = \182.20
- Financial Calculator: 6n; 1.975i; 32.50PMT; PV = \$182.20
- Formula: $$1,000/(1.01975)^6 = 889.28
- Financial Calculator: 6n; 1.975i; 1,000FV; PV = \$889.28
- Bond Value = \$182.20 + \$889.28 = \$1,071.48

Example: 6.5% APR Discount Rate

- A 3-year bond has a 6.5% coupon rate and makes payments semi-annually
- Formula: $$32.50*[1-1/(1.0325)^6]/0.0325 = 174.61
- Financial Calculator: 6n; 3.25i; 32.50PMT; PV = \$174.61
- Formula: $$1,000/(1.0325)^6 = 825.39
- : 6n; 3.25i; 1,000FV; PV = \$825.39
- Bond Value = \$174.61 + \$825.39 = \$1,000.00

Example: 10% APR Discount Rate

- A 3-year bond has a 6.5% coupon rate and makes payments semi-annually
- Formula: $$32.50*[1-1/(1.05)^6]/0.05 = 164.96
- Financial Calculator: 6n; 5i; 32.50PMT; PV = \$164.96
- Formula: $$1,000/(1.05)^6 = 746.22
- Financial Calculator: 6n; 5i; 1,000FV; PV = \$746.22
- Bond Value = \$164.96 + \$746.22 = \$911.18

Example: Using the Easier Way

• A 3-year bond has a 6.5% coupon rate and makes payments semi-annually

Market rate of 3.95% (1.975% semiannual)

Financial Calculator: 6n; 1.975i; 32.50PMT; 1,000FV; PV = \$1,071.48

Market rate of 6.5% (3.25% semiannual)

Financial Calculator: 6n; 3.25i; 32.50PMT; 1,000FV; PV = \$1,000.00

Market rate of 10% (5% semiannual)

Financial Calculator: 6n; 5i; 32.50PMT; 1,000FV; PV = \$911.18

Coupon and Market Rates

- In general, how will the price of the bond vary with the market rate of interest?
- Specific scenarios:
 - Market rate = Coupon rate implies price = par value
 - Market rate > Coupon rate implies price < par value
 - Bond sells at a *discount*
 - Market rate < Coupon rate implies price > par value
 - Bond sells at a *premium*

Bond Yields

- Bonds are traded in the market, so price can be viewed as the market's assessment of the present value of its cash flows
- Yield-to-Maturity (YTM): Discount rate that equates bond price to the present value of all promised cash flows
 - When solving for price, we took the cash flows and the discount rate as given
 - When solving for YTM (i.e., the discount rate), we now take the cash flows and price as given

Example

- Consider a 10% coupon bond with semiannual payments, 10 years to maturity, and a market price of \$1,200
- Statements we made before hold in the other direction too:
 - Price = par implies Market rate = Coupon rate
 - Bonds sells at a *Discount* implies Market rate > Coupon rate
 - Bond sells at a *Premium* implies Market rate < Coupon rate

Bond Equivalent Yield and Semiannual Coupons

- WSJ quotes YTM calculated based upon annual percentage rate (APR)
 - APR sometimes referred to as bond equivalent yield
- What does this mean?
- Bond equivalent yield takes semiannual yield and multiplies by 2 (i.e., 2*r)
- Unlike effective annual rate (EAR), which is calculated as $EAR = [1+(r/2)]^2 1$

Example

- Consider a 10% coupon bond with semiannual payments, 10 years to maturity, and a market price of \$1,200. What is the yield to maturity?
- YTM (i.e., bond equivalent yield) would be 7.17%

```
Financial Calculator: 20n; -1,200PV; 50PMT; 1,000FV; i = 3.58228% 3.58228% x 2 = 7.17%
```

• EAR would be 7.30%

$$[1+(.0717/2)]^2 -1 = 7.30\%$$

As Maturity Approaches

- At maturity, the only cash flows for the bond are the par repayment and the final coupon
 - If sold at maturity, the buyer is not entitled to the coupon
 - Price at maturity = Par Value = \$1,000
- Implications:
 - Premium bond has built-in capital loss
 - Discount bond has built-in capital gains

As Maturity Approaches

As Maturity Approaches

Current Yield (CY)

- Current Yield (CY) = annual coupon scaled by price
 - Current Yield = \$Annual Coupon Payment/Current Price
- For a discount bond:
 - CY < YTM (due to built-in capital gains in YTM)
- For a premium bond:
 - CY > YTM (due to built-in capital loss in YTM)

Selling a Bond Early

- Recall that YTM is yield promised to an investor who holds the bond until maturity
- Question: What if you sell the bond early?
 - Bond prices change when interest rates change
 - If you sell prior to maturity, calculate return based on price at which you sell the bond
- Example: Pay \$1,100 for a bond, hold for 6 months and receive coupon payment of \$50, then sell for \$1,050

Selling a Bond Early

- Example: Pay \$1,100 for a bond, hold for 6 months and receive coupon payment of \$50, then sell for \$1,050
- Formula: $i = [FV/PV]^{1/t}-1 = [(1,050+50)/1,100]^{1/1}-1 = 0\%$
- Financial Calculator: 1n; \$1,100PV; \$50PMT; \$1,050FV; i = 0%

Risks Faced by Bond Investor

- Is bond investing risky?
 - Yes!
- Three risk faced by bond investor:
 - *Interest rate risk* (or *price risk*) Risk associated with price fluctuations caused by interest rate changes
 - *Reinvestment rate risk* Risk associated with the rate at which coupons are reinvested
 - *Default risk* (or *credit risk*) Risk associated with issuer's ability to make payments as specified

Interest Rate Risk

- Price moves inversely with interest rates
 - Interest rates increase Bond prices decrease
 - Interest rates decrease Bond prices increase
- Longer-term bonds have greater interest rate risk
- Lower-coupon bonds have greater interest rate risk
- If a bond is held to maturity, interest rate risk is irrelevant

Interest Rate Risk

Negative slope illustrates inverse relationship between bond prices and interest rates

Reinvestment Rate Risk

- YTM calculation: Coupons are reinvested at the YTM
 - Think back to the annuity formula...Same is true there
 - What if you cannot reinvest at YTM...Then you cannot earn the YTM!
- Example: Purchase 1-year bond with a 10% coupon for \$1,050
 - YTM =???
 - \$1,050 and the bond are equivalent in value...Each should give you the same FV at the end of year 1
 - For this to be true, you must invest all coupons at YTM

Reinvestment Rate Risk

- Reinvestment risk is the risk related to the rate at which coupons are reinvested
- Note: Interest rate risk and reinvestment risk work in opposite directions
 - Long-term bonds are subject to greater interest rate risk (also called maturity risk) on principal than are shortterm bonds
 - Short-term bonds are subject to greater reinvestment rate risk on principal than are long-term bonds
 - Both L-T and S-T bonds are subject to reinvestment risk on coupons!

Default Risk

- Default risk is the risk issuer won't make payments as specified in the contract
 - Default = not paying the full amount
 - Default = not paying at the appropriate time
- Bond rating agencies assess the default risk of borrowers
- Default premium = higher interest rate to compensate the bondholder for the risk of default

Bond Ratings

<u>Moody' s</u>	Standard & Poor's	Safety					
Aaa	AAA	The strongest rating; ability to repay interest and principal is very strong.					
Aa	AA	Very strong likelihood that interest and principal will be repaid					
A	A	Strong ability to repay, but some vulnerability to changes in circumstances					
Baa	BBB	Adequate capacity to repay; more vulnerability to changes in economic circumstances					
Ba	BB	Considerable uncertainty about ability to repay.					
В	В	Likelihood of interest and principal payments over sustained periods is questionable.					
Caa	CCC	Bonds in the Caa/CCC and Ca/CC classes may already be					
Ca	CC	in default or in danger of imminent default					
С	C	C-rated bonds offer little prospect for interest or principal on the debt ever to be repaid.					

Financial Ratios and Default Risk

	Three-Year (1998–2000) Medians						
_	AAA	AA	A	BBB	BB	В	CCC
Operating income/sales (%)	24.6	23.4	18.1	14.7	15.9	13.9	9.4
Free cash flow/sales (%)	14.8	10.9	7.8	5.6	3.9	1.3	-0.9
EBITDA int. + div. coverage	4	3.9	4.11	4.5	3	1.7	1
Total liabilities/net worth (%)	70.3	123.6	138.8	152.6	198.7	206.9	-208.3
EBIT DA/total assets (%)	22.2	21.2	16.3	13.7	12.9	10.3	6.9
Total debt/market capitalization (%)	0.5	8.1	17.2	27.5	43.5	55.8	79.7
Historical default rate (%)	0.5	1.3	2.3	6.6	19.5	35.8	54.4

Note: EBITDA is earnings before interest, taxes, depreciation, and amortization. Sources: Default rates from "Statement of Standard & Poor's on Credit Rating Agencies to SEC," Public Hearing, November 2002; all other data from Standard & Poor's

YTM and Expected Return

- Promised YTM = Calculation based on what is specified in the contract
- Expected Return (i.e., expected YTM) = Calculation based on expected payments
 - If default becomes more likely, expected payments go down
 - Example: 10% coupon bond with 5 years remaining has a price of \$700...Promised maturity payment is \$1,000, but market expects only \$800...Recalculate yield using \$800 as final cash flow rather than \$1,000
- Expected Return ≤ Promised YTM

Special Cases

- Zero-Coupon Bonds: Coupon rate of 0%
 - Par repayment is only cash flow
 - Sells at a discount
 - All else equal, they have greater interest rate risk
- Floating-Rate Bonds: Coupon payments change over the bond's life
 - Rate typically indexed to some market rate
 - Reduce interest rate risk

Bonds with Options Attached

- Option gives one party the ability to change the terms of the contract
- How does this affect the interest rate?
 - Option benefits the borrower...Higher interest rate
 - Option benefits the lender (investor)...Lower interest rate

Convertible Bonds

- Conversion option gives the bondholder the ability to convert the bond into a specified number of shares of the issuer's stock
 - Often issued by young firms
 - If stock price increases, bondholder converts
 - If stock price doesn't increase, bondholder does nothing (i.e., continues to hold the bond)
- Convertible bond will have a lower interest rate, all else equal

Callable Bonds

- Call option allows issuer to pay bond off early at a prespecified price and time (call it in)
 - Call price typically greater than par value
 - Call period is typically later in the bond's life
 - If interest rates go down, issuer can call the bonds in and then re-issue new bonds at a lower rate
 - Yield-to-Call (YTC) = yield calculation that assumes bond will be called in
 - Call price serves as a ceiling for the market price of the bond
- Callable bond will have a higher interest rate, all else equal

Thank You!

Charles B. (Chip) Ruscher, PhD

Department of Finance and Business Economics