Лабораторная работа 7

Имитационное моделирование

Оразгелдиев Язгелди

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	11

Список иллюстраций

3.1	Начальные данные	7
3.2	Параметры моделирования	7
3.3	Суперблок моделирующий поступление заявок	8
3.4	Суперблок моделирующий процесс обработки заявок	9
3.5	модель системы массового обслуживания типа М М 1 ∞	9
3.6	Динамика размера очереди	10
3.7	Динамика размера очереди	10

Список таблиц

1 Цель работы

Рассмотреть пример моделирования системы массового обслуживания типа $M|M|1|\infty$

2 Задание

- 1. Реализовать модель системы массового обслуживания типа $\mathrm{M}|\mathrm{M}|1|\infty$
- 2. Построить график поступления и обработки заявок
- 3. Построить график динамики размера очереди

3 Выполнение лабораторной работы

Фиксируем данные начальные (задаем контекст) lambda = 0.3, mu=0.35, z0=6

Рис. 3.1: Начальные данные

Кроме того, я задал параметры моделирования

Рис. 3.2: Параметры моделирования

Суперблок моделирующий поступление заявок представлен ниже. Тут у нас заявки поступают в систему по пауссоновскому закону. Поступает заявка в суперблок, идёт в синхронизатор входных и выходных сигналов, происходит равномерное распределение на интервале [0, 1], еще заявка идёт в обработчик событий и выходит их суперблока. Далее идёт в преобразование в эскпоненциальное распределение с параметром lambda, далее заявка опять попадает в обработчик событий и выходит из суперблока

Рис. 3.3: Суперблок моделирующий поступление заявок

Суперблок моделирующий процесс обработки заявок, представлен ниже на рисунке. Тут уже идёт обработка заявок в очереди по экспоненциальному закону

Рис. 3.4: Суперблок моделирующий процесс обработки заявок

Дальше вы можете видеть готовую модель $M|M|1|\infty$. Тут есть селектор, два суперблока(которые мы описали выше), первоначальное событие на вход в суперблок, суммирование, оператор задержки(очередь), также регистрирующие блоки: регистратор размера очереди и регистратор событий.

Рис. 3.5: модель системы массового обслуживания типа $M|M|1|\infty$

Результат моделирования представлен ниже. График динамики размера очереди начинается со значения 6, т.к. мы задали начальное значение z0=6

Рис. 3.6: Динамика размера очереди

Поступление и обработка заявок

Рис. 3.7: Динамика размера очереди

4 Выводы

В процессе выполнения лабораторной работы я рассмотрел пример моделирования системы массового обслуживания типа $M|M|1|\infty$.