aws re: Invent

NET402

Networking wizards: Ask me anything (AMA)

Nick Matthews

Principal Solutions Architect Amazon Web Services

Matt Lehwess

Principal Solutions Architect Amazon Web Services

AWS Transit Gateway

Regional service

 Centralize VPN and AWS Direct Connect

Scalable

- Thousands of VPCs across accounts
- Spread traffic over many VPN connections

Flexible routing

- Network interfaces in subnets
- Control segmentation and sharing with routing domains

AWS HyperPlane and AWS Transit Gateway

Attachments

- One network interface per Availability Zone
- Highly available per Availability Zone
- Network capacity shards
- Tens of microseconds of latency

AWS HyperPlane

- Horizontally-scalable state management
- Terabits of multi-tenant capacity
- Supports NLB, NAT Gateway, Amazon EFS and now Transit Gateway

Try STNO

http://tiny.cc/aws-stno

Accelerated VPN

Leverage Amazon's Global Network

- Combine Amazon Global Accelerator with VPN
- Lower latency
- Ideal for branch connectivity

Method one: Interface attachment

Method one: NAT gateway

Spoke route table

Interface service insertion design notes

Instance must be able to support:

Source NAT, or add NAT gateway

Performance

- No overhead (8500 MTU)
- Limited to one Transit Gateway attachment per Availability Zone, so one route table
- Traffic is forwarded within the same Availability Zone if possible
 - Likely that traffic isn't evenly distributed across instances

High availability

- There are no built-in health checks for the VPC routes, requires monitoring and management
- Optionally place instances in Amazon EC2 automatic recovery

Stateful services

Use Source NAT to guarantee the return flow to the same instance

Simpler performance pattern, DIY heatlh checks

Stay within the performance of a single service instance (worst-case scenario) and configure your own high availability checks.

Method two: VPN attachment

Spoke route table

VPN service insertion design notes

Instance must be able to support:

- VPN to the Transit Gateway
- BGP to the Transit Gateway (ECMP requirement)
- Source NAT

Performance

- IPsec overhead
- Compatible with auto-scaling architectures
- No cumulative bandwidth limit, each tunnel ~1.25 gbps

High availability

- BGP and VPN Dead Peer Detection handle failover
- No API calls required for fault tolerance

Stateful services

Use Source NAT to guarantee the return flow to the same instance

Horizontally scalable service pattern, more overhead

Preferred method if the service supports BGP, VPN and NAT.

Outbound services: Interface

Use cases:

NAT gateways, services without VPN support

VPC Attachment route table, per AZ

Outbound services: VPN

Use cases:

URL filtering, firewalls, IPS, web proxy services

BGP advertisement

Ingress services

VPC A

10.1.0.0/16

Use cases:

WAF, inspection, Load balancing

Edge VPC route table

Route	Destination
100.64.0.0/16	Local
0.0.0.0/0	igw-xxxxxxxxx

100.64.0.0/16

100.64.1.9/32

Local IP

Local IP

Spoke route table

Route	Destination
10.1.0.0/16	Local
100.64.0.0/16	tgw-xxxxxxxxx

100.64.0.0/16 Edge VPC VPN
100.64.1.9/32 Edge VPC VPN
100.64.2.7/32 Edge VPC VPN
100.64.3.8/32 Edge VPC VPN
VPC route domain

10.1.0.0/16 vpc-att-a

Edge route domain

Transit Gateway

BGP advertisement

Edge services: SDWAN, VPN, Firewalls

Use an edge services VPC in front of Transit Gateway

- Encryption over DX or the internet
- Scalable VPN access for third-party VPN, SDWAN
- Also how used to migrate or extend existing Transit VPCs
- Helpful for hosted VIF (<1 Gbps) DX
- Ingress firewall inspection use case

Inline service: VPN

Use cases:

Intrusion detection/prevention (IDS/IPS), firewalls

Multicast on AWS Transit Gateway

Cross-region Transit Gateway peering

- Static peering between regions (US only at launch)
- New attachment type
- Uses encrypted VPC peering across the AWS backbone
- No peering within the same Region

AWS Transit Gateway Cross-Region Peering

Full mesh network across multiple regions with static peering

Private and performant connectivity across the AWS Global Network

All traffic across Transit Gateway Cross-Region peering is encrypted

Horizontally scalable

Global network connectivity

AWS

Regio

P

VPN

Lower latency, less jitter, consistent connectivity

Ideal for branch connectivity

My global network

Thank you!

Nick Matthews

@nickpowpow

Matt Lehwess

mattyloo@amazon.com

Please complete the session survey in the mobile app.

