Задание 14 (на 13.05).

СС 26. (подсказка: NEXP^{NP}vs.NEXP) Докажите, что если P = NP, то существует язык из EXP, схемная сложность которого не меньше $\frac{2^n}{10n}$.

СС 44. Покажите, что:

(B) $\mathbf{BPP} \subseteq \mathbf{BPTime}(n^{\log n}) \subsetneq \mathbf{BPTime}(2^n)$.

СС 45. Определим язык

QNR = $\{(y, m) \mid y$ не является квадратичным вычетом по модулю $m\}$.

Докажите, что $QNR \in \mathbf{IP}$.

Определим класс **UP**. $L \in \mathbf{UP}$, если существует такая недетерминированная машина Тьюринга M, что для любого x выполнено: M(x) = L(x) и существует не более одной подсказки, которая принимается машиной M.

СС 54. Докажите, что:

- (a) язык простых чисел лежит в классе UP;
- (б) если $USAT \in UP$, то NP = co NP.

CC 55. Покажите, что существует такой оракул A и язык $L \in \mathbf{NP}^A$, что L не сводится по Тьюрингу к 3SAT, даже если сведение может использовать оракул A.

 \mathbf{CC} 57. Покажите, что $\mathbf{AM} = \mathbf{AM}_1$

[CC 59.] Покажите, что если $PSPACE \subseteq P/poly$, то PSPACE = MA (подсказака: используйте IP = PSPACE).

[CC 62.] Пусть есть оракул, который считает перманент матрицы $n \times n$ над полем \mathbb{F} верно для доли матриц $1 - \frac{1}{3n}$. Пусть $|\mathbb{F}| > 3n$). Докажите, что используя этот оракул можно построить вероятностный полиномиальный по времени алгоритм, который для каждой матрицы с большой вероятностью находит ее перманент.