### Risky USBusiness

Say "what the fuzz."... If you can't say it, you can't do it.

#### Jordan BOUYAT

jbouyat@quarkslab.com @la\_F0uin3

#### Fernand LONE-SANG

flonesang@quarkslab.com



Contexte

### Constat

#### Omniprésence de l'USB

- Postes de travail
- Bornes automatiques en tout genre
- Imprimantes
- Matériel embarqué
- Etc

Massivement utilisé, mais fonctionnement interne assez peu connu.



Contexte

### Intêrets

#### Attaques possibles

Les périphériques USB sont un vecteur d'attaque

- Accès physique à une machine pour peu de temps
- Périphérique qu'on laisse traîner volontairement
- Attaque sur un réseau coupé du Net



### Sommaire de la présentation

- Principes d'USB
- Approches de fuzzing
- Notre outil
- A Résultats
- Conclusion



### Sommaire de la présentation

- Principes d'USB
- Approches de fuzzing
- 3 Notre outil
- 4 Résultats
- Conclusion



### Hiérarchie



Figure: Topologie USB

- Une topologie hiérarchisée
- 1 contrôleur hôte : 127 périphériques
- Un hub peut être connecté à un autre hub
- Les connexions sont initiées par l'hôte (sauf OTG)



### Vue d'un périphérique



- Une interface fournit une fonctionnalité
- Elle est composée d'endpoints
- Les *endpoints* sont des liens logiques entre le périphérique et les pilotes
- Ils peuvent envoyer ou recevoir des données d'un type de transfert spécifique :
  - Control
  - Interrupt
  - Bulk
  - Isochronous



### Descripteurs

Structures de données décrivant un périphérique :

- ses caractéristiques (version USB, VID, PID...);
- ses interfaces (type, nombre d'endpoints...);
- ses *endpoints* (direction, type de transfert...);



Un descripteur de configuration correspond à différentes associations d'interfaces.



### Requêtes standards

Les descripteurs sont récupérés pendant la phase d'énumération.







# Énumération

| No. | Time        | Source | Destination | Protocol L | ength Info                                          |
|-----|-------------|--------|-------------|------------|-----------------------------------------------------|
|     | 1 0.000000  | host   | 0.0         | USB        | 36 GET DESCRIPTOR Request DEVICE                    |
|     | 2 0.000104  | 0.0    | host        | USB        | 46 GET DESCRIPTOR RESPONSE DEVICE                   |
|     | 3 0.041951  | host   | 0.0         | USB        | 36 SET ADDRESS Request                              |
|     | 4 0.064879  | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request DEVICE                    |
|     | 5 0.064948  | 1.0    | host        | USB        | 46 GET DESCRIPTOR RESPONSE DEVICE                   |
|     | 6 0.080860  | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request CONFIGURATION             |
|     | 7 0.080987  | 1.0    | host        | USB        | 60 GET DESCRIPTOR RESPONSE CONFIGURATION            |
|     | 8 0.101878  | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 9 0.102372  | 1.0    | host        | USB        | 62 GET DESCRIPTOR RESPONSE STRING                   |
|     | 10 0.123878 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 11 0.123943 | 1.0    | host        | USB        | 32 GET DESCRIPTOR Response STRING                   |
|     | 12 0.138879 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 13 0.138943 | 1.0    | host        | USB        | 50 GET DESCRIPTOR RESPONSE STRING                   |
|     | 14 0.157873 | host   | 1.0         | USB        | 36 GET DESCRIPTOR REQUEST DEVICE QUALIFIER          |
|     | 15 0.157938 | 1.0    | host        | USB        | 38 GET DESCRIPTOR RESPONSE DEVICE QUALIFIER         |
|     | 16 0.182785 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request DEVICE                    |
|     | 17 0.182851 | 1.0    | host        | USB        | 46 GET DESCRIPTOR Response DEVICE                   |
|     | 18 0.198830 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request CONFIGURATION             |
|     | 19 0.198912 | 1.0    | host        | USB        | 37 GET DESCRIPTOR Response CONFIGURATION            |
|     | 20 0.212812 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request CONFIGURATION             |
|     | 21 0.212884 | 1.0    | host        | USB        | 60 GET DESCRIPTOR RESPONSE CONFIGURATION            |
|     | 22 0.231808 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 23 0.231869 | 1.0    | host        | USB        | 30 GET DESCRIPTOR Response STRING[Malformed Packet] |
|     | 24 0.244788 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 25 0.244866 | 1.0    | host        | USB        | 32 GET DESCRIPTOR Response STRING                   |
|     | 26 0.257752 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 27 0.257816 | 1.0    | host        | USB        | 30 GET DESCRIPTOR Response STRING[Malformed Packet] |
|     | 28 0.270781 | host   | 1.0         | USB        | 36 GET DESCRIPTOR Request STRING                    |
|     | 29 0.270844 | 1.0    | host        | USB        | 62 GET DESCRIPTOR Response STRING                   |
|     | 30 0.289728 | host   | 1.0         | USB        | 36 SET CONFIGURATION Request                        |
|     | 31 0.312729 | host   | 1.0         | USBMS      | 36 GET MAX LUN Request                              |
|     | 32 0.312779 | 1.0    | host        | USBMS      | 29 GET MAX LUN Response                             |



### Sommaire de la présentation

- Principes d'USE
- Approches de fuzzing
- 3 Notre outil
- 4 Résultats
- Conclusion



### Qemu: configuration 1

Dumb fuzzer en interceptant le traffic circulant entre un périphérique et une machine virtuelle.





#### Périphérique virtuel avec fuzzer intégré





### Qemu: configuration 3

Les trames sont remontées en espace utilisateur, *fuzzées* et renvoyées dans la VM via le périphérique.





#### Avantages :

- Restauration rapide du système dans un état grâce aux snapshots
- Instrumentation et monitoring plus poussés de l'OS cible
- Parallélisation possible

#### Inconvénients:

- On ne peut pas virtualiser tous les systèmes
- Bugs possibles dans l'implémentation même d'USB au sein de l'hyperviseur



Résultats

### Possibilités

#### Matériel dédié classique

Avantage : Capture bas niveau/rejeu, langage de scripting

Inconvénient : Cher, peu flexible au niveau de l'API

Exemple: Beagle USB\* de Totalphase

#### Micro-contrôleurs classiques et FPGA

Avantage: Peu cher

Inconvénient : Re-flashage à chaque modification du fuzzer : peu

pratique

Exemple: PIC, AVR dont le Teensy avec LUFA, Daisho pour le FPGA

Solution intermédiaire : Facedancer ?



### Facedancer

#### Présentation

- Développé par Travis Goodspeed
- Comprend un adaptateur série/USB, un micro-contrôleur et un contrôleur USB
- Permet d'émuler des périphériques USB en les contrôlant via des scripts Python sur une machine distante



Figure: http://int3.cc/



- Uniquement 3 endpoints
- Pas de support des transferts isochrones
- Débit limité en raison de la liaison série over USB
- Pas de support d'USB3

Néanmoins, le Facedancer suffit pour commencer à fuzzer.



### Sommaire de la présentation

- Principes d'USE
- 2 Approches de fuzzing
- Notre outil
- 4 Résultats
- Conclusion



### Architecture visée

(3) : Capture du trafic avec un sniffer physique



Figure: Architecture de fuzzing USB



### Utilisation





#### Base

- Basé sur l'outil open source Umap développé par Andy Davis.
- Umap repose sur le code du dépôt SVN de Travis Goodspeed.



Fonctionnalités

#### Modifications

- Capture en PCAP et rejeu strict
- Mutations des trames rejouées avec Radamsa
- Choix des trames, octets et patterns de fuzzing à appliquer
- Moniteur avec rapport de crash
- Rejeu en mode "pas à pas" pour le debug



### Sommaire de la présentation

- Principes d'USE
- 2 Approches de fuzzing
- Notre outil
- 4 Résultats
- 6 Conclusion



### Résultats obtenus sur Windows 8.1

#### Parsing HID

D'autres valeurs d'octets déclenchant le même crash que Davis : Non exploitable.

#### Périphérique de stockage de masse

Mauvais contrôle des informations concernant les interfaces dans USBSTOR.sys : Non exploitable.



### Descripteur muté

```
□ CONFIGURATION DESCRIPTOR

   bLength: 9
   bDescriptorType: CONFIGURATION (2)
   wTotalLength: 32
   bNumInterfaces: 1
   bConfigurationValue: 1
    iConfiguration: 4

■ Configuration bmAttributes: 0xe0 SELF-POWERED REMOTE-WAKEUP

   bMaxPower: 50 (100mA)
■ INTERFACE DESCRIPTOR (0.0): class Mass Storage
   bLength: 9
   bDescriptorType: INTERFACE (4)
   bInterfaceNumber: 0
   bAlternateSetting: 0
   bNumEndpoints: 0
   bInterfaceClass: Mass Storage (0x08)
   bInterfaceSubClass: 0x06
   bInterfaceProtocol: 0x50
    iInterface: 0
■ ENDPOINT DESCRIPTOR

■ ENDPOINT DESCRIPTOR
```

Création d'un descripteur de configuration renseignant une interface ne contenant aucun endpoints.

Résultat : crash.



### Enumération

Étude de cas

| Source | Destination | Protocol Length Info                                    |
|--------|-------------|---------------------------------------------------------|
| host   | 0.0         | USB 36 GET DESCRIPTOR Request DEVICE                    |
| 0.0    | host        | USB 46 GET DESCRIPTOR RESPONSE DEVICE                   |
| host   | 0.0         | USB 36 SET ADDRESS Request                              |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request DEVICE                    |
| 1.0    | host        | USB 46 GET DESCRIPTOR RESPONSE DEVICE                   |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request CONFIGURATION             |
| 1.0    | host        | USB 60 GET DESCRIPTOR RESPONSE CONFIGURATION            |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request STRING                    |
| 1.0    | host        | USB 62 GET DESCRIPTOR RESPONSE STRING                   |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request STRING                    |
| 1.0    | host        | USB 32 GET DESCRIPTOR RESPONSE STRING                   |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request STRING                    |
| 1.0    | host        | USB 50 GET DESCRIPTOR RESPONSE STRING                   |
| host   | 1.0         | USB 36 GET DESCRIPTOR REQUEST DEVICE QUALIFIER          |
| 1.0    | host        | USB 38 GET DESCRIPTOR RESPONSE DEVICE QUALIFIER         |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request DEVICE                    |
| 1.0    | host        | USB 46 GET DESCRIPTOR RESPONSE DEVICE                   |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request CONFIGURATION             |
| 1.0    | host        | USB 37 GET DESCRIPTOR RESPONSE CONFIGURATION            |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request CONFIGURATION             |
| 1.0    | host        | USB 60 GET DESCRIPTOR RESPONSE CONFIGURATION            |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request STRING                    |
| 1.0    | host        | USB 30 GET DESCRIPTOR Response STRING[Malformed Packet] |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request STRING                    |
| 1.0    | host        | USB 32 GET DESCRIPTOR RESPONSE STRING                   |
| host   | 1.0         | USB 36 GET DESCRIPTOR Request STRING                    |
| 1.0    | host        | USB 30 GET DESCRIPTOR Response STRING[Malformed Packet] |
| host   | 1.0         | USB 36 GET DESCRIPTOR REQUEST STRING                    |
| 1.0    | host        | USB 62 GET DESCRIPTOR RESPONSE STRING                   |
| host   | 1.0         | USB 36 SET CONFIGURATION Request                        |

Pilotes du contrôleur et pilotes du système

USBSTOR.sys



### Analyse du crash

Étude de cas

On passe dans USBSTOR\_SelectConfiguration

```
 page 12
       qword ptr [r15+10h], 0
and
mov
       [r15], rax
       rdx, r15 ; InterfaceList
mov
mov
       rcx, rbx
                       ; ConfigurationDescriptor
       [rbx+4], r14b
mov
call.
       cs: imp USBD CreateConfigurationRequestEx
       rdi rax
                        ; RAX pointe sur _URB_SELECT_CONFIGURATION
mov
test
       rax. rax
jz
       1oc 2D9AB
                rdx, rax
                                       ; PURB
               mov
                                       : PDEVICE OBJECT
               mov
                       rcx, rbp
               call
                       USBSTOR SuncSendUsbRequest
               mov
                       ebx. eax
               test
                       eax, eax
               js
                       clean and return
```

Figure: USBSTOR.sys: USBSTOR\_SelectConfiguration+EE



### Analyse du crash

Étude de cas

```
loc 11203:
MOVZX
        edx, [r9+USB INTERFACE DESCRIPTOR.bNumEndpoints]
        r8d. edx
mnu
1ea
       rax. [rdx+1]
1ea
       rax, [rax+rax*2]
1ea
       rcx, [r14+rax*8]
1ea
       rax, [r12+rbx]
cmp
       rcx, rax
ja
        1oc 11CB3
                                 pai 
                                        eax, [r9+USB INTERFACE DESCRIPTOR.bInterfaceNumber]
                                MOVZX
                                        [r14+USBD INTERFACE INFORMATION.InterfaceNumber]. al
                                mov
                                        eax, [r9+USB_INTERFACE_DESCRIPTOR.bAlternateSetting]
                                MOVZX
                                        [r14+USBD INTERFACE INFORMATION.NumberOfPipes], edx
                                mov
                                        [r14+USBD INTERFACE INFORMATION.AlternateSetting], al
                                mnu
                                test
                                        edx, edx
                                įΖ
                                        short loc 11315
```

Figure: usbd.sys : USBD\_CreateConfigurationRequestEx+113



### Analyse du crash

```
r12, [rdi+_URB_SELECT_CONFIGURATION.ConfigurationHandle]
                    1ea
                    1ea
                            r14, [rdi+ URB SELECT CONFIGURATION.Interface]
                            r8d, 'SAMU'
                                             ; Tag
                    mov
                            rcx, [r12]
                    mnv
                            [rsi+50h], rcx
                    mnv
                    MOVZX
                            edx, [r14+USBD INTERFACE INFORMATION.Length] : NumberOfButes
                    mnv
                            ecx, 200h
                                             : PoolTupe
                    call.
                            cs: imp ExAllocatePoolWithTag
                            [rsi+58h], rax : LIST ENTRY::Blink
                    mov
                    test
                            rax. rax
                    jz
                            return STATUS INSUFFICIENT RESOURCES
 page 128
                                                             r8d, [r14+USBD INTERFACE INFORMATION.Length]; Size
MOVZX
        rdx, r14
                                                             return_STATUS_INSUFFICIENT_RES
mnu
                        : Src
                        : Dst
                                                                     ebx, 00000009Ah
mnu
        rcx, rax
                                                             mnv
call
        memmove
                                                             imp
                                                                     1oc 2D866
```

Figure: USBSTOR.sys: USBSTOR\_SelectConfiguration+11



### Origine du crash en x64

Étude de cas

```
 page 128
        rax, [rsi+58h]
mov
        ebx.
mov
        edx. edx
xor
mov
        ecx, [rax+USBD INTERFACE INFORMATION.NumberOfPipes]
sub
        ecx, ebx
        r8, [rcx+rcx*2]
lea.
        rcx, rdi
mov
1ea
        r8, [r8*8+86]
ca11
        memset
```

```
ECX \leftarrow nombre d'endpoints

ECX \leftarrow ECX - 1

R8 \leftarrow 3 * RCX

R8 \leftarrow R8 * 8 + 80

memset (@dest, 0x0, R8)
```

```
Si nombre d'endpoints = 0 : ECX \longleftarrow 0 - 1 = 0xfffffffR8 \longleftarrow 0xffffffff * 3 = 0x0002fffffffdR8 \longleftarrow 0x0002fffffffd * 8 + 80 = 0x1800000038memset(@dest, 0x0, 0x1800000038)
```



### Problème en x86

Étude de cas

```
eax, [ebx+2Ch]
mov
                         ; sizeof( URB SELECT CONFIGURATION)
push
        38h
        esi
pop
mnv
        eax, [eax+USBD_INTERFACE_INFORMATION.NumberOfPipes]
dec
        eax
                         : sizeof(USBD PIPE INFORMATION)
imul
        eax, 14h
add
        eax. esi
push
        eax
push
push
        edi
call
         memset
```

Les 20 derniers octets de la structure \_URB\_SELECT\_CONFIGURATION ne sont pas initialisés.

### Sommaire de la présentation

- Principes d'USB
- 2 Approches de fuzzing
- 3 Notre outil
- Résultats
- Conclusion



### Conclusion et perspectives

#### Avancement

- Sources de capture opérationnelles : Facedancer et VMware
- Fuzzing d'hôte fonctionnel

#### Reste à faire

- Augmenter les performances :
  - FPGA
  - Carte ARM avec port OTG pour capture/rejeu et émulation avec USBGadget
- Implémenter le fuzzing de périphérique
- Ajouter d'autres sources de capture : sniffer matériel
- Support USB3



## Questions?

Merci à toute l'équipe de QuarksLab et en particulier à Fernand Lone-Sang, Kevin Szkudlapski et Damien Aumaître.



www.quarkslab.com

contact@quarkslab.com | @quarkslab.com