

PARTIE 1 : CARACTÉRISTIQUES DES SIGNAUX SONORES

- Comment notre oreille perçoit-elle les sons ?
- Quelles sont les caractéristiques fréquentielles des signaux perceptibles par l'oreille humaine?
- Comment les sons sont-ils transmis dans l'air jusqu'à notre oreille ?
- Comment les sons sont-ils générés ?

- Quelle est la plage des fréquences utilisée pour transmettre un signal en radiodiffusion AM? en
- radiodiffusion FM ? pour enregistrer une musique en qualité CD ?
- Donner des exemples de plages de fréquence de quelques instruments de musique.

COMMENT NOTRE OREILLE PERÇOIT-ELLE LES SONS?

Source: Cotral Lab

QUELLES SONT LES CARACTÉRISTIQUES FRÉQUENTIELLES DES SIGNAUX PERCEPTIBLES PAR L'OREILLE HUMAINE?

COMMENT LES SONS SONT-ILS TRANSMIS DANS L'AIR JUSQU'À NOTRE OREILLE?

ONDES SONORES

COMMENT LES SONS SONT-ILS GÉNÉRÉS?

QUELLE EST LA PLAGE DES FRÉQUENCES UTILISÉE POUR TRANSMETTRE UN SIGNAL EN RADIODIFFUSION AM ? EN RADIODIFFUSION FM ? POUR ENREGISTRER UNE MUSIQUE DE QUALITÉ CD ?

Compact Disc 12 cm (4 3/4") 33 1/3 rpm Digital 16bit 44kHz

Source: ANFR

EXEMPLES DE PLAGES DE FRÉQUENCE DE QUELQUES INSTRUMENTS DE MUSIQUE.

PARTIE 2: ETUDE D'UNE CHAÎNE D'ACQUISITION DES SIGNAUX SONORES

- Expliquer comment transformer un signal sonore analogique en un signal électrique analogique.
- Expliquer les étapes de numérisation d'un signal (conversion analogique/numérique).
- Détailler les caractéristiques de chacune des étapes précédentes et donner des exemples concrets.

- Illustrer ce principe par un schéma mettant en évidence la nature des signaux et les opérations effectuées.
- Expliquer comment est choisie la période d'échantillonnage.

EXPLIQUER COMMENT TRANSFORMER UN SIGNAL SONORE ANALOGIQUE EN UN SIGNAL ÉLECTRIQUE ANALOGIQUE

Source : Conversion d'un signal analogique en signal numérique - Maxicours

EXPLIQUER LES ÉTAPES DE NUMÉRISATION D'UN SIGNAL (CONVERSION ANALOGIQUE/NUMÉRIQUE).

DÉTAILLER LES CARACTÉRISTIQUES DE CHACUNE DES ÉTAPES PRÉCÉDENTES ET DONNER DES EXEMPLES CONCRETS.

2ⁿ bits

EXPLIQUER COMMENT EST CHOISIE LA PÉRIODE D'ÉCHANTILLONNAGE.

$$u(t) = \sum_{k=-\infty}^{+\infty} u_k \operatorname{sinc}\left(\frac{t - kT_e}{T_e}\right)$$
$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

PARTIE 3 : ETUDE D'UNE CHAÎNE DE RESTITUTION DE SIGNAUX SONORES

- Expliquer, de manière détaillée, les différentes étapes de la conversion numérique/analogique permettant de transformer une suite de nombre en un signal électrique analogique.
- Illustrer ce principe par un schéma mettant en évidence la nature des signaux et les opérations effectuées.
- Expliquer ce qu'est un « bloqueur d'ordre zéro » et quel est son rôle dans la conversion numérique/analogique. Illustrer graphiquement son fonctionnement. effectuées.

- Expliquer comment convertir un signal analogique électrique en un signal audible par l'oreille humaine.
- Expliquer comment est choisie la période d'échantillonnage.

EXPLIQUER, DE MANIÈRE DÉTAILLÉE, LES DIFFÉRENTES ÉTAPES DE LA CONVERSION NUMÉRIQUE/ANALOGIQUE PERMETTANT DE TRANSFORMER UNE SUITE DE NOMBRE EN UN SIGNAL ÉLECTRIQUE ANALOGIQUE.

Exemple de conversion pour un CNA 3 bits.

Source: www.emse.fr

EXPLIQUER CE QU'EST UN « BLOQUEUR D'ORDRE ZÉRO » ET QUEL EST SON RÔLE DANS LA CONVERSION NUMÉRIQUE/ANALOGIQUE. ILLUSTRER GRAPHIQUEMENT SON FONCTIONNEMENT.

Source: iutenligne.net

EXPLIQUER COMMENT CONVERTIR UN SIGNAL ANALOGIQUE ÉLECTRIQUE EN UN SIGNAL AUDIBLE PAR L'OREILLE HUMAINE.

Source: Wikipedia

EXPLIQUER COMMENT EST CHOISIE LA PÉRIODE D'ÉCHANTILLONNAGE.

MERCIPOUR VOTRE ATTENTION

