WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA WYDZIAŁ INFORMATYKI

WIELODOSTĘPNE SYSTEMY OPERACYJNE II

Zagadnienia zaawansowane

CZĘŚĆ 3

WPROWADZENIE DO SYSTEMÓW ROZPROSZONYCH

Semestr 4

Lech Kruś,

WPROWADZENIE DO SYSTEMÓW ROZPROSZONYCH

Postęp technologii:

mikroprocesory szybkie sieci komputerowe łatwość budowy sieci - łączenia wielu jednostek centralnych w jeden system - budowa sieci - LAN, WAN

Podstawowy problem:

wymagane jest oprogramowanie odmienne niż w systemach scentralizowanych

Co to jest system rozproszony?

Układ niezależnych komputerów, który sprawia wrażenie na jego użytkownikach, że jest jednym komputerem

CELE BUDOWY SYSTEMÓW ROZPROSZONYCH

Zalety (w porównaniu z systemami scentralizowanymi)

- . lepszy współczynnik cena/wydajność
- . uzyskanie wydajności nieosiągalnych w systemach scentralizowanych
- . wymagane w przypadku wewnętrznego rozproszenia zastosowań.
- . większa niezawodność
- . możliwość stopniowego rozszerzania systemu

Zalety (w porównaniu z niezależnymi komputerami PC)

- . umożliwienie użytkownikom dostępu do wspólnej bazy danych
- . dostęp wielu użytkowników do wspólnych urządzeń zewnętrznych
- . komunikacja między użytkownikami
- . powiększenie elastyczności

OBLICZENIA W CHMURZE (CLOUD COMPUTING)

Synonim obliczeń rozproszonych realizowanych przez sieć komputerową, z możliwością wykonywania programu lub aplikacji na wielu połączonych komputerach w tym samym czasie.

Użytkownicy mogą się łączyć przez sieć z serwerem (realizowanym przez jedną lub grupę maszyn) i wykorzystywać jego zasoby: moc obliczeniową, pamięć operacyjną, przestrzeń dyskową,...

Oferowane modele usług w ramach cloud computing:

Infrastruktura jako usługa - Infrastucture as a service (laaS)

Dostawca oferuje dostęp do maszyn wirtualnych i innych zasobów.

Platforma jako usługa - Platform as a service (PaaS)

Oferta korzystania z platformy obliczeniowej obejmującej system operacyjny, środowisko języków programowania i wykonywania programów, bazy danych, serwer web-owy.

Oprogramowanie jako usługa - Software as a service (SaaS)

Dostawca instaluje i administruje oprogramowanie aplikacyjne w "chmurze" i udostępnia je klientom. Klienci nie musza zarządzać infrastrukturą ani platformą obliczeniową.

Bezpieczeństwo jako usługa - Security as a service (SECaaS)

Model biznesowy, w którym duży dostawca usług integruje usługi bezpieczeństwa w infrastrukturze korporacyjnej – efektywniej niż mogą to zrealizować usługobiorcy samodzielnie.

Pojęcia związane z "cloud computing"

"Client – server model"

Model pracy rozproszonej aplikacji, w której rozróżnia się dostawcę usługi (serwer) oraz klienta/klientów .

"Grid Computing" (obliczenia w " Gridzie")

Forma obliczeń rozproszonych, w której wirtualny superkomputer jest realizowany jako klaster komputerów luźno połączonych siecią, realizujących bardzo duże zadania obliczeniowe.

"Utility computing"

Traktowanie zasobów komputerowych dostępnych przez sieć analogicznie jak inne media, takie jak energia elektryczna, woda, gaz.

"Peer-to-peer"

Rozproszona architektura bez potrzeby centralnej koordynacji.

"Cloud gaming"

Gry na żądanie. Forma dostarczania gier na komputery graczy. Dane procesu gry są przechowywane na serwerze dostawcy.

KLASYFIKACJA SYSTEMÓW ROZPROSZONYCH

SISD - jeden strumień instrukcji i jeden strumień danych

SIMD - jeden strumień instrukcji, wiele strumieni danych

MIMD - grupa niezależnych komputerów z własnymi licznikami rozkazów, programami i danymi

Systemy MIMD

podział ze względu na budowę:

wieloprocesory multikomputery

podział ze względu na architekturę sieci powiązań:

szynowe (bus)
przełączane (switched)
systemy ściśle powiązane ..
systemy luźno powiązane

WIELOPROCESORY SZYNOWE

WIELOPROCESORY PRZEŁĄCZANE

Wybierak krzyżowy

Sieć przełączająca omega

Rysunki podano za pracą: A. S. Tanenbaum; Rozproszone systemy operacyjne. PWN, Warszawa, 1997

Problem opóźnienia w sieci Omega z poczwórnymi przełącznikami

n procesorów, n modułów pamięci liczba potrzebnych stopni przełączających: log2n, w każdym stopniu potrzeba n/2 przełączników

to czas działania przełącznika ≤ 0,5 ns = 500 ps.

Przykład

n = 1024: potrzeba 10 stopni przełączających, zamówienie od procesora do pamięci musi przejść 10 stopni przełączających, a wracające słowo - również 10 stopni przełączających. Procesory RISC o szybkości 100 MIPS => czas wykonania instrukcji 10 ns. Jeśli zamówienie ma przejść 20 stopni w czasie wykonywania instrukcji,

Zadanie A

2048 procesorów RISC o szybkości 50 MIPS połączono w sieci Omega z poczwórnymi przełącznikami.

Jakie powinny być czasy przełączników, aby zamówienie do pamięci wróciło do procesora w czasie wykonywania jednej instrukcji? Odpowiedź proszę uzasadnić.

Zadanie B

W wieloprocesorze zawierającym 4096 procesorów RISC połączonych w sieci Omega poczwórnymi przełącznikami

zastosowano przełączniki o czasie działania 0,5 ns.

Jak szybkie mogą być procesory, aby zamówienie skierowane do pamięci wróciło do procesora w czasie wykonywania jednej instrukcji?

Wynik proszę podać w liczbie MIPS. Odpowiedź uzasadnić.

MULTIKOMPUTERY SZYNOWE

Rys. 3. Multikomputer złożony ze stacji roboczych i sieci LAN

MULTIKOMPUTERY PRZEŁĄCZANE

Rys. 4. (a) Krata. (b) Hiperkostka

OPROGRAMOWANIE

Sieciowe systemy operacyjne

Stacje robocze połączone siecią LAN

Każda maszyna ma własny system operacyjny

Podstawowe usługi:

logowanie na innej maszynie kopiowanie plików między maszynami

Serwer plików realizuje globalny system plików dzielonych

Program użytkowy wykonywany tylko na lokalnej maszynie

Rys.5. Dwaj klienci i serwer w sieciowym systemie operacyjnym

Rys. 6. Możliwy różny obraz zasobów widzianych przez klientów w systemie sieciowym

Prawdziwe systemy rozproszone

Wiele komputerów połączonych siecią

Wrażenie jednolitego systemu (single system image) (wirtualny monoprocesor - virtual uniprocessor)

Wymagania:

Jednolity, globalny system komunikacji między procesami

Jednakowe zarządzanie procesami

Jednolity system plików

Ten sam interfejs odwołań systemowych

Znaczna kontrola sprawowana przez jądro nad własnymi zasobami

Systemy wieloprocesorowe z podziałem czasu

Wiele jednostek centralnych z pamięcią podręczną Wspólna pamięć dzielona Wspólny dysk (dyski) Połączenie szyną. Jedna kolejka uruchomień procesów

Rys. 7. Wieloprocesor z jedną kolejką uruchomień

Porównanie klas systemów operacyjnych z wieloma (N) jednostkami centralnymi

Zagadnienie	Sieciowy system operacyjny	Rozproszony system operacyjny	Wieloprocesorowy system operacyjny
Czy wygląda jak wirtualny monoprocesor	nie	tak	tak
Czy wszyscy muszą wykonywać ten sam system operacyjny	nie	tak	tak
Ile jest kopii systemu operacyjnego	N	N	1
Sposób komunikacji	pliki dzielone	komunikaty	pamięć dzielona
Czy uzgadnia się protokoły komunikacji	tak	tak	nie
Czy istnieje jedna kolejka uruchomień	nie	nie	tak
Czy dzielenie plików ma dobrze określoną semantykę?	zwykle nie	tak	tak

PODSTAWOWE WYMAGANIA (OCZEKIWANIA) WOBEC SYSTEMÓW ROZPROSZONYCH

Przezroczystość

Przezroczystość dostępu i położenia: dostęp do lokalnych i zdalnych obiektów informacji za pomocą identycznych działań, bez znajomości ich lokalizacji.

Przezroczystość wędrówki (migration transparency): zasoby mogą być przemieszczane bez wpływu na działania użytkowników i programów użytkowych.

Przezroczystość zwielokrotniania (replication transparency): możliwość użycia wielu kopii obiektów informacji bez wiedzy użytkowników i programów użytkowych o zwielokrotnieniach.

Przezroczystość współbieżności (concurrency transparency): automatyczne, niezakłócone dzielenie zasobów między użytkowników działających współbieżnie.

Przezroczystość działań równoległych (parallelism transparency): zadania wykonywane równolegle bez wiedzy (konieczności działań) użytkowników

Elastyczność

Dwie struktury systemów:

- **1. Idea Jądra Monolitycznego**. Każda maszyna wykonuje monolityczne jądro dostarczające większości usług.
- **2. Idea Mikrojądra** zapewniającego nieliczne usługi, a większość usług zapewniana przez specjalizowane serwery poziomu użytkownika.

Niezawodność - Tolerowanie awarii - Dostępność

Integralność danych, Bezpieczeństwo

Tolerowanie awarii

Wydajność

Skalowalność

Idea algorytmów zdecentralizowanych

Pytania podstawowe z zakresu wprowadzenia do systemów rozproszonych (przykłady)

- 1. Co to jest system rozproszony?
- 2. Jakie są różnice między wieloprocesorami a multikomputerami?
- 3. Czym różni się architektura powiązań szynowych od przełączanych?
- 4. Co to jest szyna? Jak procesory korzystają z szyny porozumiewając się z pamięcią?
- 5. Wyjaśnić pojęcie spójności pamięci w wieloprocesorach.
- 6. Jakie właściwości muszą posiadać pamięci podręczne w wieloprocesorach, aby zapewnić spójność pamięci?
- 7. Czy wieloprocesory szynowe mogą być budowane z większej liczby procesorów niż przełączane, czy z mniejszej? Wyjaśnić, dlaczego?
- 8. Wyjaśnić ideę przełącznika krzyżowego stosowanego w wieloprocesorach.
- 9. Wyjaśnić ideę sieci "Omega" stosowaną w wieloprocesorach.
- 10. Czym różnią się prawdziwe systemy rozproszone od stosowanych obecnie powszechnie systemów sieciowych?
- 11. Jak działa system operacyjny w przypadku wieloprocesora?
- 12. Wyjaśnić pojęcie przezroczystości w systemach rozproszonych?
- 13. Co oznacza przezroczystość położenia (location transparency) w systemach rozproszonych?
- 14. Co oznacza przezroczystość zwielokrotnienia w systemach rozproszonych?
- 15. Co oznacza przezroczystość wędrówki migracji (migration transparency) w systemach rozproszonych?
- 16. Jakie są dwie podstawowe koncepcje budowy operacyjnych systemów rozproszonych?