

NOP项目展示

第七届"龙芯杯"全国大学生计算机系统能力培养大赛

计算机系 刘明追高焕昂王博文花佳诚 2023.8.21

微架构设计

Microarchitecture Design

执行模型

迈向成功的第一步

NOP: LoongArch Out-of-order Processor

- 避免了顺序执行导致的不必要等待
- 现代处理器几乎全部为乱序超标量
- LA32R 指令集首个开源、完善、有教育意义的乱序 超标量处理器

面对挑战

欲戴王冠 必承其重

- WAR 和 WAW 数据冲突
- 保证指令执行的效果顺序提交
- 复杂逻辑导致高延迟,最高频率受限

兵来将挡 水来土掩

- 数据冲突
- 难保证顺序提交
- · 复杂逻辑导致高延迟

兵来将挡 水来土掩

- 数据冲突
- 难保证顺序提交
- 复杂逻辑导致高延迟

数据冲突

逐个击破

兵来将挡 水来土掩

寄存器重命名技术

兵来将挡 水来土掩

- 数据冲突
- · 难保证顺序提交
- 复杂逻辑导致高延迟

兵来将挡 水来土掩

- 数据冲突
- 难保证顺序提交
- 复杂逻辑导致高延迟

兵来将挡 水来土掩

乱序超标量开发的挑战

- 数据冲突
- 难保证顺序提交
- 复杂逻辑导致高延迟

Store Buffer

兵来将挡 水来土掩

增加重排序缓存与 Store Buffer

兵来将挡 水来土掩

乱序超标量开发的挑战

- 数据冲突
- 难保证顺序提交
- 复杂逻辑导致高延迟

Store Buffer

兵来将挡 水来土掩

- 数据冲突
- 难保证顺序提交
- · 复杂逻辑导致高延迟

兵来将挡 水来土掩

- 数据冲突
- 难保证顺序提交
- 复杂逻辑导致高延迟

复杂逻辑导致高延迟

逐个击破

兵来将挡 水来土掩

流水线切分

3.00 1.02 3.00 1.02 1.02 3.00 1.02 3.00 1.02 3.00 1.02 3.00 突破边际效应 创造新的纪录 1.02 3.00 1.02 3.00 3.00 1.02 3.00 1.02 1.02 3.00 1.02 3.00

NOP 处理器主频 107.69 M			
任务	PerfUp	IPCUp	IPCReal
bit_count	3.86	1.79	1.63
buble_sort	2.28	1.06	0.63
coremark	2.58	1.20	0.87
crc32	4.89	2.27	1.42
dhrystone	2.51	1.19	0.89
quick_sort	1.95	0.91	0.68
select_sort	3.40	1.58	1.14
sha	3.81	1.77	1.34
stream_copy	2.73	1.27	0.87
stringsearch	3.11	1.44	1.15
Geo. Mean	3.00	1.40	1.02

龙芯杯历史上首个 IPC > 1 的处理器!

分支预测

敢猜会猜

基于实际问题

- 乱序处理器逻辑复杂, 需要更深的流水线保证频率
- 分支预测失败时,恢复代价极高

设计优化方案

- 相关预测器: 综合考虑全局与局部模式, 预测是否跳转
- 分支目标缓存(BTB): 缓存最近的分支指令的跳转地址
- 返回地址栈 (RAS): 记录调用地址, 在返回时直接预测

分支预测

敢猜会猜

设计优化方案

- 相关预测器: 综合考虑全局与局部模式, 预测是否跳转
- 分支目标缓存(BTB): 缓存最近的分支指令的跳转地址
- 返回地址栈 (RAS): 记录调用地址, 在返回时直接预测

架构	永远预测跳转失败 (朴素)	相关预测器 + 分支目标缓存	相关预测器 + 分支目标缓存 + 返回地址栈 (NOP)
分支预测 失败率(↓)	68.28	<u>9.43</u> (-86.2%)	7.22 (-89.4%)

缓存设置

昨事重来心不变 往昔足迹永留痕

访存优化

提前启程 因为大概率不会晚点

流水线切分

- LA32R 中全相联 TLB 查找逻辑成为性能瓶颈
- 大道至简,将地址翻译过程切分为两个流水段

推测唤醒

- · 流水线切分更深后, Load-Use 指令对间隔进一步增大
- 假设缓存总是有效,提前唤醒等待指令
- Load-Use 指令对间隔周期: 4 → 3

架构	单阶段地址翻译 (朴素)	二阶段地址翻译	二阶段地址翻译 +推测唤醒(NOP)
频率(↑)	86.67	98.46 (+13.6%)	107.69 (+24.3%)
加速比(↑)	2.37	<u>2.66</u> (+12.2%)	3.00 (+26.7%)

SoC 设计 & 系统软件

SoC Design & System Software

系统软件构建

- 移植 Chiplab-PMON 并修复其中的 bug 和未定义行为
- · 移植 la32r-Linux, 修复错误, 适配驱动
- · 各类用户程序: buildroot → Linux 镜像

系统软件

麻雀虽小五脏俱全

PMON-Linux 两级启动引导系统

1. PMON: SPI Flash → 内存

2. Linux: Ethernet → 内存

系统软件

麻雀虽小五脏俱全

PMON-Linux 两级启动引导系统

- 1. PMON: SPI Flash → 内存
- 2. Linux: Ethernet → 内存

系统软件

麻雀虽小五脏俱全

NOP-SoC

支持除USB外全部外设

板上存储

- **DRAM** (128M DDR3)
- NAND Flash (128M)
- SPI Flash (1M)

输入输出

- 串口
- 以太网
- PS/2
- GPIO
- VGA
- NT35510 LCD

视频输出

PS2, VGA

LCD

复杂应用

QuickJS

2048

网页浏览

```
Page Redirection to this year's W4A conference
  REFRESH(1 sec): http://www.w4a.info/2024
  If you are not redirected automatically, follow the link to W4A 2024
  website
Making HTTP connection to www.w4a.info
 Arrow keys: Up and Down to move. Right to follow a link: Left to go back.
H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list
```

使用 Lynx 浏览 http://www.w4a.info/

总结致谢

Summary & Acknowledgement

总结

感谢观看 欢迎提问

NOP: 极致的性能、极致的功能

• 乱序 5 发射

- 乱序微架构: 寄存器重命名 / 重排序缓存 / StoreBuffer / 仲裁发射
- 性能优化:指令 & 数据缓存 / 关键路径切分 / 分支预测 / 推测唤醒
- 频率 107.69 MHz, IPC 1.02
- 对性能基线加速比 3.00, IPC 加速比 1.40
- 海量外设
 - 板上存储: DRAM / NAND Flash / SPI Flash
 - 输入输出: UART / Ethernet / PS-2 / GPIO / VGA / LCD

• 稳定丰富系统软件

• PMON / Linux / 各类用户程序

附录1: NOP 核微 架构设计图

前端:

• 取指1 取指2 译码 重命名 分发

后端:

• 发射 读寄存器 执行 写回 提交

流水线:

- 算术执行流水线 × 3
 - 其中一条非对称
- 乘除执行流水线 × 1
- 访存执行流水线 × 1

附录2: NOP SoC 结构图

板上存储:

- DRAM (128M DDR3)
- NAND Flash (128M)
- SPI Flash (1M)

输入输出:

- 串口
- 以太网
- PS/2
- GPIO
- VGA
- NT35510 LCD

附录3: NOP 核在比赛提供的性能测试程序上的结果

NOP 处理器主频 107.69 M				
任务	PerfUp	IPCUp	IPCReal	
bit_count	3.86	1.79	1.63	
buble_sort	2.28	1.06	0.63	
coremark	2.58	1.20	0.87	
crc32	4.89	2.27	1.42	
dhrystone	2.51	1.19	0.89	
quick_sort	1.95	0.91	0.68	
select_sort	3.40	1.58	1.14	
sha	3.81	1.77	1.34	
stream_copy	2.73	1.27	0.87	
stringsearch	3.11	1.44	1.15	
Geo. Mean	3.00	1.40	1.02	

附录4: NOP 核的分支预测模块消融实验的结果

NOP-B:

• 取消了分支预测学习功能的处理核,总是预测分支失败

NOP-R:

只开启了相关预测器和分支目标缓存的处理器核

NOP:

所有分支预测模块都启用的处理器核

NOP 核分支预测模块			
任务	架构		
任务	NOP-B	NOP-R	NOP
bit_count	42.93	19.35	5.55
buble_sort	50.27	15.94	15.94
coremark	46.40	10.59	9.85
crc32	93.23	3.68	1.87
dhrystone	68.19	5.09	2.44
quick_sort	31.36	22.98	22.95
select_sort	90.68	5.05	5.05
sha	86.46	1.65	1.36
stream_copy	98.75	1.53	1.21
stringsearch	74.48	8.44	6.02
Avg.	68.28	9.43	7.22

附录5: NOP 核在访存流水线上做出的优化的消融实验

NOP-S:

• 使用传统的单阶段地址翻译, 但访存阶段的 MEMADDR 段 取消,其所有功能并入 MEMI 段

NOP-D:

• 将单阶段地址翻译切分成两地址翻译,取指阶段两阶段为 IFI和IF2,访存阶段为 MEMADDR与MEMI

NOP:

 在 NOP-D 的基础上启用了推 测唤醒的处理器核

NOP 核访存流水线优化			
任务	架构		
在分	NOP-S	NOP-D	NOP
Freq. (MHz)	86.67	98.46	107.69
bit_count	3.11	3.55	3.86
buble_sort	1.84	1.95	2.28
coremark	2.04	2.22	2.58
crc32	3.19	4.46	4.89
dhrystone	2.24	2.30	2.51
quick_sort	1.61	1.76	1.95
select_sort	2.60	3.10	3.40
sha	2.76	3.28	3.81
stream_copy	2.23	2.30	2.73
stringsearch	2.57	2.68	3.11
Geo Mean.	2.37	2.66	3.00

附录6: NOP 核的指令/数据缓存评估结果

