异律分节有节肢的原口动物

节肢动物门 (Arthropoda)

动物界中最大的一门

据记载,现存的节肢动物已达 120~150万种,约占动物界总 数的3/4,

生活环境极其广泛,它们与人 类的关系也很密切。

节肢动物异律分节和身体分部

<mark>异律分节:</mark>不同体节间外形 有一定差异,有的较粗,有 的较细,有的有附肢,有的 没有附肢,内部器官也有不 同

身体分部: 形态和功能类似的体节愈合,形成身体的分部。

昆虫: 头、胸、腹 蜈蚣: 头、躯干两部分 虾: 头胸部、腹部

体节的分化导致机能的分化

分为头、胸、腹3部 分的昆虫:

头部司感觉、摄<mark>食</mark>, 胸部司运动,

腹部司营养、生殖。

身体结构和功能复杂 化,大大地加强了对环境 的适应力能。

节肢动物外骨骼

来源:节肢动物的 体表覆盖着由表皮 细胞分泌形成的外 骨骼。

外骨骼的结构

✓蜡质外层:可防止外界水 分的渗入或内部水分的蒸发

√几丁质内层:复杂的含氮 多糖类,β-(1,4)-N-乙酰氨 基-2-脱氧-D-葡聚糖,又称 <mark>壳多糖</mark>或甲壳素,是外骨骼 的主要组成部分。

外骨骼的作用

- 1、保护身体,抵抗化学和机械损伤。
- 2、防止体内水分蒸发,接受外界刺激。
- 3、和附着的肌肉产生强有力的动作。
- 4、外骨骼抑制生长,因此节肢动物在发育过程 中必须蜕皮,促进生长。

节肢动物能适应多种生活环境,特别是对陆上 生活环境的高度适应能力,具有外骨骼是主要原 因之一。

蜕皮特点

- >蜕皮时,易受伤害,是杀灭虫害时机 或易感染时期。
- 》甲壳类动物蜕皮直至死亡,昆虫蜕皮 至成熟。
- **➢蜕皮受到激素的双重调控(**蜕皮类固醇激素,蜕皮抑制激素**)。**

分节的附肢

- ▼节肢动物具分节的附肢,与环节动物的疣足不同。
- ✓ 功能: 處營、运动、捕食、咀嚼、呼吸、 生殖都与附肢有关。

有关节的附肢

- 1) 节肢动物的附肢与身体相连的地方有关节, 附肢本身也具若干关节,并形成不同形状。
- 2) 外骨骼在关节的地方变成薄膜状,通过肌肉 把相邻的外骨骼联系起来,使关节间能做各种活 动(灵活性和多样性)。

节肢动物肌肉系统

- 1) 横纹肌
- 2) 肌纤维集合成肌肉束,伸缩迅速有力
- 3) 肌肉束成对排列,可相互拮抗

节肢动物。 化条 统 节肢动物的消化道分前肠、中肠和后肠前肠包括咽、食道、嗉囊和前胃,由外胚层内陷形成,具研磨和过滤食物功能 中肠:又称胃,消化吸收功能,含各种消化酶 后肠:外胚层来源,排除消化和代谢废物,保持水分和离子平衡 前肠之前为口前腔,由口器围成 是由的消化系统

节肢动物呼吸系统

节肢动物的呼吸器官:

- 较小的节肢动物如剑水蚤,蚜虫或恙螨,靠全身体表行呼吸
- 水生种类有螺和书螺
- 陆生种类有气管和书肺

位于头胸部两侧的鳃腔内,外面为鳃盖所覆盖

循环系统和呼吸系统的关系 若呼吸器官只局限在身体的某一部分(如虾的鳃),循环系统就比较复杂;若呼吸系统分散在身体各部分(如昆虫的气管),循环系统就比较简单。小节肢动物靠全身体表进行呼吸,循环系统完全退化。如剑水蚤、恙螨和蚜虫等。

变态(Metamorphosis)发育 1、变态的概念 指动物个体整体形态的重大改变,并常伴随有生活方式和生活习性的变化。 2、变态的规律 如虫的特殊结构被放弃,如蝌蚪的鳃和尾。 通应性调整组织并保留到成体财期,如NS。 成体特有结构的发育,如昆虫的翅、两栖类的肺。

昆虫变态的激素调控

昆虫变态受激素的双重调控

- * 保幼微素 (juvenile hormone):
 - *幼虫期:抑制蜕皮发生,防治幼虫变态形成
 - *成虫期:为促性康滋素,刺激性康发育。
- - 。促进幼虫新亮的分泌、硬化和蛹壳形成等蜕 皮相关的生长和分化,刺激蛹变成成虫。

节肢动物门的主要类群 1、有鳃亚门 2、有螯亚门 3、有气管亚门 Branchiata Chelicerata **Tracheata** 大多陆生、书肺或气 管呼吸; 少数水生 大多陆生,少数水 生,气管呼吸。 大多水生,少数陆 生,鳃呼吸,有触 角1对或2对。 书鳃呼吸。无触角 第1对附肢是螯肢 第2对是脚须。 -原气管纲 Prototracheata -三叶虫纲 Trilobita -甲壳纲 Crustacea -多足纲 Myriopoda -肢口纲 Merostomata -昆虫纲 Insecta -蛛形纲 Arachnida

直翅目 Orthoptera

直翅目(Orthoptera): 大形或 中形昆虫。头属下口式;单眼2~3 个; 口器为标准的咀嚼式; 前翅 狭窄、皮质; 后翅宽大、膜质, 且能褶叠藏于前翅之下, 腹部常 具尾须及产卵器;发音器及听觉 器发达; 以左, 右翅相摩擦或以

沙漠飞蝗 Schistocerca gregaria

后足腿节内侧刮擦前翅而产生声 响。变态为渐变态。蝗虫、蝼蛄、油葫芦等皆属于此目。

等翅目 Isoptera

等翅目(Isoptera): 本目通称 白蚁。体软, 通常长形, 为多型 性的社群性昆虫。头前口式或下 口式,能自由活动。眼退化。口 器为典型的咀嚼式。触角念珠状。 有长翅、短翅及无翅类型, 具翅 者, 2对翅狭长, 膜质, 大小、形

家白蚁 Coptotermes formosanus

蚁后

状及脉序相同,故称"等翅目"。 繁殖蚁飞行一次后, 其翅即自行 脱落。在同一群体内, 按个体形 态与机能的不同, 可分为多种类 型。渐变态。生活史复杂。营巢 穴生活; 食性广, 包括植物、菌 丝、含纤维的加工产品等,是重 要建筑害虫之一。

虱目 Anoplura

虱目(Anoplura): 俗称虱子,体 小而扁, 无翅。头向前突出, 小而 尖, 能活动。前口式。复眼退化或 消失, 无单眼。口器刺吸式, 构造 特殊, 适于吸血。胸部三节愈合。 足适于攀接寄主毛发。渐变态。虱 子终生外寄生于哺乳动物上。传播 疾病,是重要的卫生害虫。

虱子的脚爪构造便于抓住毛发。

半翅目 Hemiptera

半翅目(Hemiptera): 体型小到 大型,身体略扁平;多数具翅,少 数无翅; 前翅大部分角质、端部膜 质,后翅体息时褶叠藏于前翅之下。 口器刺吸式,下唇变为圆柱形的喙管,通常4节,也有3或1节的;上 颚和下颚变为四条细长的口针,包

在喙内; 口器着生在头部的前端, 不用时置于头、胸部的腹面; 触角 4或5节; 具复眼, 单眼2个或无; 前胸背板发达, 中胸有发达的小盾 片;身体腹面有臭腺开口,能分泌 挥发性油, 散发出类似臭椿的气味, 故又称"椿象"。发育为渐变态。 多为植食性,吮吸茎叶或果实的汁 液, 如二星蝽、梨蝽。少数为肉食 性, 捕捉其它小虫, 如刺蝽。

红纹椿象 Graphosoma lineatum

同翅目 Homoptera

同翅目(Homoptera): 口器刺吸式, 下唇变成的喙,分节(最多3节)或部分 分节,着生于头的后方。上唇小,盖在 喙管缝的基部; 上、下颚变为四根细长 的颚刺, 包在喙管里。成虫多具翅, 介 壳虫及蚜虫的雌虫多无翅。休息时翅置

于背上, 呈屋脊状, 触角短, 呈刚毛状 或丝状。有些种类体部有分泌腺, 能分 泌蜡质的粉末或其他物质, 可保护虫体。 都为植食性, 多为农作物、果树等的重 要害虫。少数种类的分泌物是重要的轻 工原料及药物, 目前多为人工放养。同 翅目常见种类有稻叶蝉、吹棉蚧、蚜虫、 白蜡虫等。

介壳虫

虾夷蝉 Tibicen japonicus

蝉的口器

蝉的口器为刺吸式。 蝉是靠吸食树干中的汁液生 活,所以口器象一只硬管。口器 的各部分延长成针状, 相互抱握 成一针管。

欧洲黄环蛱蝶 Charaxes jasius

孔雀纹蛱蝶的幼虫

鳞翅目(Lepidoptera): 休表及膜质翅上都被有鳞片及毛。口器虹吸式; 复眼发达、单眼2个或无。完全变态,幼虫是毛虫型。大都是植食性,危害多种农作物、果树、森林等。危害方式多样,是重要的害虫。风蝶、菜粉蝶、棉蛉虫等皆属此目。

着羔在翅膀上的鳞片

珍珠扇天蚕蛾 Samia cynthia pryeri

虹吸式口器

带虹吸式口器的昆虫

虹吸式口器的大部分结构退化, 仅下 颚节延长并左右合抱而成管状, 且可在用 时伸出, 不用时盘卷成发条状的, 如蝶、 蛾等。

鞘翅目 Coleoptera

鞘翅目(Cotcoptera); 本目昆虫体躯坚硬, 前翅角质化, 合挑时盖在胸部和腹部背面, 称为鞘翅, 故称"鞘翅目", 通称甲虫。头 壳坚硬。咀嚼式口器。触角一般11节, 形态 变化极大, 有丝状、念珠状、锯齿状、棍棒 状、头状、膝状、鳃叶状、

状、头状、膝状、鳃叶状、鳃叶状、 栉齿状等。前翅质;后, 翅膜质常褶叠翅目是现存 昆虫中占优势的类群, 昆虫中占最大的一目; 是数势, 发繁多,布广泛,食性 极其复杂。

松材线虫病又称松枯萎病,是一种毁灭性虫害,感染后6个月内 致死。 松墨天牛是线虫的主要传播媒介。 从病树中羽化的天牛 100%携带线虫,携带的线虫最多可达25-30万条

双翅目 Diptera

双翅目(Diptera): 头小有颈, 活动自如: 复眼大,单眼3个或 无; 酸角多样; 头下口式,口器 刺吸式,刻舐式或舐吸式。前翅 发达,膜质,后翅退化成平衡棒, 少数种类无翅; 脉序较简单; 跗

家蝇 Musca 斑蚊 domestica vicina Aedes communis

节5节。腹部环节明显,有8对 气门。完全变态发育。生活习性 较复杂,有不少重要的卫生害虫。 种类较多,常见种类有: 蚊、虻、 规等。

蝇的舐吸式口器

紙吸式口器上下颚退化, 而由头壳一部分及下唇等延 长成基喙及喙,喙的前壁具 槽,槽内可藏上唇及舌,两 者闭合为食物管,喙的木端 有唇瓣,其上具许多伪气管, 能吸取液体食物,或从舌中 唾液管流出唾液,溶解固体 食物、糖等,然后再吸食, 如蝇等。

蚤目 Siphonaptera

蚤目(Siphonaptera): 通称跳蚤。体小,棕黑色,左右侧扁,无翅善跳。头小无颈,与胸部密接; 复眼的大小和发育情况因种类而异; 无单眼; 复眼后方有一椭圆形的沟槽,称触角沟,触角可

人養 Pulex irritans

节肢动物与人类的关系

有益方面:

- 🍲 🎮: 甲壳类中的虾、蟹、昆虫中的 龙虱、蜂蜜等
- 药用: 蝎、蜘蛛和可入药的昆虫不下 百种; 鲎试剂
- 工业: 蚕丝、蜂蜡等
- 仿生学: 蜜蜂的复眼、鲎复眼 有害方面: 农林业害虫和人畜害虫

棘皮动物门 Echinodermata

- ✓ 棘皮动物在动物演化上属后口动物(MRCATON CONTROL CAR TO THE METERS OF T
- √ 棘皮动物与半索动物和脊索动物同属后口动物 , 亲缘关系较近,为无脊椎动物中最高等的类 群。

棘皮动物次生性辐射对称

- ◆ 多数种类成体五辐射对称,但它们的幼体两侧对称,故成体的五辐对称是次生性的。
- 海盘车: 身体 由体盘和腕组成
- ◆ 体盘: 口面(较平,中央有口), 反口面(略凸,中央有 肛门)
- ◆ 腕: 一般5条,从体盘伸出,腕的顶端靠下有眼点,腕之间 为间步带区
- ◆腕腹面中央有1条步带沟,其中 具2~4排管足,管足末端有吸盘
- ◆反口面间步带区具1个多孔的筛 板

五辐对称

五辐对称: 就是通过虫体的口面自反口面的 中轴, 可以把身体做五次不同的切割, 所切出的 两部分基本上互相对称。或者说, 沿着身体的体 轴,整个身体有五个相似的部分构成,例如星形, 球形,圆形或呈树状分枝。

五辐对称更坚固

棘皮动物体壁

- ◆ 表皮层: 角质层 (薄) 和单层纤毛 柱状上皮
- ◆ 真皮层: 结缔组织和肌肉层: 其它 无脊椎动物没有真皮层
- ◆ 体腔上皮: 位于肌肉层内, 具纤毛
- ◆ 表皮和体腔上皮向外凸起形成皮螺 体腔液在皮鳃内循环,有呼吸及排 泄的功能。

棘皮动物内骨骼

- ◆ 棘皮动物具有中胚层形成的内骨骼, 由许多钙质骨片组成; 骨片上有小孔
- ◆ 骨片位于体壁的结缔组织内,依靠结 缔组织形成可活动关节;
- ◆ 骨片可以形成棘、叉棘、刺等,突出 于体表之外,体表粗糙不平,因此称 **棘皮动物。**
- ◆ 不同形式的棘——防卫、清除体表沉 积物等作用。

体腔与水管系统

棘皮动物真体腔发达,一部分形成水管系统。

- ◆ 组成: 筛板、石管、环管、辐管、 侧管和管足
- 管足:由坛、吸管构成,外壁为纤 毛上皮,与内壁的体腔上皮之间有 肌肉层
- → 水管系统的内壁是体腔上皮,里面充满液体:水管系统内的液体与海 水等渗
- 运动时——液压系统——使管足可以伸缩——管足末端的吸盘可以借液压产生的真空吸附在物体上。管足具有运动功能,并兼有呼吸和接食作用

血系统和围血系统

◆血系统包括一套与水管系统相应 的管道:

环血管-与环水管平行 辐血管-_与辐水管平行 轴腺 (axial gland)

- ◆ 血系统内有液体,轴腺、背囊 (筛板附近)均有搏动能力。血 系统可能与物质的运输有关
- ◆<mark>围血系统</mark>: 围绕在血系统之外的 一套窦隙,为体腔的一部分,包 括环窦、辐窦、轴窦等

棘皮动物消化系统

消化道短,内壁为纤毛上皮;胃宽大,充满体盘;肛门已无排遗功能,不能消化的食物仍有口吐出

过海盘车体盘和腕的纵切

海盘车摄食

- 1) 海盘车肉食性,以软 体动物、棘皮动物等为
- 2) 口可以张开较大,吞 食较大动物
- 3) 能捕食双壳类。身体 是是, 是是, 等足吸在贝壳上,将 两壳拉开。 贲门胃翻出 包住软体部分初步消化 ,然后缩回体内进一步 消化

生殖、发育

- ◆棘皮动物大多是雌雄异体(少数海蛇尾和海参除外)。再生能力很强
- ◆受精卵为辐射卵裂
- ◆内陷法形成原肠
- ◆肠腔法形成中胚层、3对体腔囊

- ◆原肠胚时的胚孔最 终发育成成体的肛门, 成体的口在原肠孔相 对的另一端形成(后 口)。
- ◆棘皮动物的幼虫期 是两侧对称
- ◆变态后形成辐射对称的幼虫: 棘皮动物的五辐射对称是次生性的。

棘皮动物特征和进化地位

- 棘皮动物为辐射型卵裂;内陷法形成原肠胚;肠腔法形成中胚层、真体腔
- ▶ 胚孔——成体肛门,口——于胚孔相对的一端形 成——最原始的后口动物
- ▶ 具有内骨骼——中胚层起源的钙化骨片形成
- 棘皮动物与无脊椎动物不同:
- 它的卵裂、早期胚胎发育、中胚层的产生、体腔的形成以 及骨骼由中胚层产生等,都与脊索动物有相同的地方,而不 同于无脊椎动物
- 从成体口的形成和肛门的形成看,棘皮动物也同于脊椎动 物——棘皮动物、脊椎动物都属于后口动物。普遍认为,脊 <mark>衰动物与棘皮动物</mark>具有相同的祖先

