SYDNEY TECHNICAL HIGH SCHOOL

Mathematics Department Trial HSC – Mathematics 2 Unit August 2016

General Instructions

- Reading time 5 minutes.
- Working time 180 minutes.
- Approved calculators may be used.
- Write using blue or black pen.
- A BOSTES reference sheet is provided at the back of this paper.
 You may tear it off.
- In Question 11-16, show relevant mathematical reasoning and/or calculations.
- Begin each question on a new page of the answer booklet.
- Marks shown are a guide and may need to be adjusted.
- Full marks may <u>not</u> be awarded for <u>careless</u> work or <u>illegible</u> writing.

NAME:
TEACHER:
Total marks – 100
SECTION 1
10 marks
 Attempt Questions 1 – 10 Allow about 15 minutes

Attempt Questions 11 – 16

Allow about 2 hours 45 minutes.

SECTION 2

90 marks

- For what values of k does the equation $x^2 6x 3k = 0$ have real roots? 1.
 - $k \geq -3$ A)
- B) $k \le -3$ C) $k \ge 3$
- D) $k \leq 3$
- For the function y = f(x), a < x < b graphed below: 2.

Which of the following is true?

- and f''(x) > 0f'(x) > 0A)
- B) f'(x) > 0 and f''(x) < 0
- f'(x) < 0and f''(x) > 0C)
- D) f'(x) < 0 and f''(x) < 0

3. Which expression will give the area of the shaded region bounded by the curve $y = x^2 - x - 2$, the *x*-axis and the lines x = 0 and x = 5?

A)
$$A = \left| \int_0^1 (x^2 - x - 2) dx \right| + \int_1^5 (x^2 - x - 2) dx$$

B)
$$A = \int_0^1 (x^2 - x - 2) dx + \left| \int_1^5 (x^2 - x - 2) dx \right|$$

C)
$$A = \int_0^2 (x^2 - x - 2) dx + \int_2^5 (x^2 - x - 2) dx$$

D)
$$A = \int_0^2 (x^2 - x - 2) dx + \left| \int_2^5 (x^2 - x - 2) dx \right|$$

- 4. What are the coordinates of the focus of the parabola $4y = x^2 8$?
 - A) (0, -8)
- B) (0, -7)
- C) (0, -2)
- D) (0, -1)

5. What are the domain and range of the function $f(x) = \sqrt{4 - x^2}$?

A) Domain: $-2 \le x \le 2$,

Range:

 $0 \le y \le 2$

B) Domain:

 $-2 \le x \le 2$,

Range:

 $-2 \le y \le 2$

C) Domain:

 $0 \le x \le 2,$

Range:

 $-4 \le y \le 4$

D) Domain:

 $0 \le x \le 2$,

Range:

 $0 \le y \le 4$

6. When the curve $y = e^x$ is rotated about the x - axis between x = -2 and x = 2, the volume of the solid generated is given by:

A)
$$\pi \int_{-2}^{2} e^{x} dx$$

B)

$$2\pi \int_0^2 e^{x^2} dx$$

C)
$$\pi \int_{-2}^{2} e^{x^2} dx$$

D)

$$\pi \int_{-2}^2 e^{2x} \, dx$$

7. The sector below has an area of 10π square units.

What is the value of r?

A)
$$\sqrt{60}$$

B)

 $\pi\sqrt{60}$

C)

 $\sqrt{\frac{\pi}{3}}$

D)

- 8. An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio?
 - A) $\frac{1}{6}$
- B) $\frac{1}{4}$
- C) $\frac{1}{5}$
- D) $\frac{1}{2}$

- 9. If $\int_0^a 4 2x \, dx = 4$, find the value of a.
 - A) a = -2
- B) a=0
- C) a=4
- D) a = 2
- 10. What is the greatest value taken by the function $f(x) = 4 2\cos x$ for $x \ge 0$?
 - A) 2
- B)
- C) 6
- D) 8

Section 2

j) Find $\int_0^1 e^{2x} dx$

(90 marks)

	•	
Ques	estion 11 (15 marks)	Marks
a)	Find $\sqrt[3]{9.8^2}$ correct to 2 decimal places	1
b)	Factorise fully $ax + 3ay - x - 3y$	1
c)	Solve for a and d:	1
	a + 9d = 20	
	2a + 9d = 12	
d)	Express $\frac{2}{5+\sqrt{3}}$ with a rational denominator	1
e)	Solve $ 3x - 1 = 5$	2
f)	Solve the following equation:	2
	$\log_2 x + \log_2(x+7) = 3$	
g)	Solve $\cos x = \frac{-1}{2}$ for $0 \le x \le 2\pi$	2
h)	Find the primitive of $x^2 \sqrt{x}$	2
i)	Differentiate $\frac{3}{(2x+1)^2}$	2

1

a) On the diagram below, A (2, -2) B (-2, -3) and C (0, 2) are the vertices of a triangle ABC. Copy this diagram into your answer booklet.

i) Find the gradient of AC

- 1
- ii) Find the angle of inclination that AC makes with the positive direction of the $x\ axis$, to the nearest degree.
- 1

iii) Show that the equation of AC is 2x + y - 2 = 0

1

iv) Calculate the perpendicular distance of B from the line AC

2

v) Find the area of \triangle ABC

2

vi) Find the coordinates of D such that ABCD is a parallelogram.

1

b) Evaluate $\lim_{x\to 0} \frac{\sin 2x}{3x}$

- 2
- c) In \triangle ABC, AB = 2cm, \angle ABC = 105° and \angle BCA = 30°. Find the length of BC correct to 1 d.p.
- 2

3

d) Max is saving to buy a new car. He needs \$12700. In the first month he saves \$25, in the second \$40 followed by \$55 in the next.

If he continues to increase the amount he saves by \$15 each month, how many months will it take him to save for the car?

Question 13

(15 marks)

Marks

a) Differentiate:

i) x tan 2x

2

ii) $e^{\sin x} + \frac{1}{x}$

2

$$iii) \qquad \frac{3x-7}{3+2x}$$

2

b) Find

i)
$$\int (5x-1)^9 \, dx$$

2

ii)
$$\int \sin \frac{3x}{4} \, dx$$

2

c)

In \triangle PQR, point T lies on side QR and point S lies on side PR such that QT = TR,

QS = QP and $ST \perp QT$.

i) Copy the diagram into your answer booklet showing all given information.

1

ii) Prove that
$$\triangle$$
 QTS \equiv \triangle RTS

2

iii) Prove that
$$\angle$$
 QPS = $2 \angle$ TQS

2

a) Consider the curve

$$f(x) = -\frac{1}{3}x^3 - x^2 + 3x + 1$$

- i) Find the coordinates of any stationary points and determine their nature.
- 3

ii) Find any point(s) of inflexion

2

iii) Sketch the curve in the domain, $-6 \le x \le 3$

2

iv) What is the maximum value of f(x) in the given domain?

1

b) Simplify $\frac{1-\sin^2 x}{\cot x}$

2

c)

The shaded region bounded by the graph $y=e^{x^2}$, the line y=5 and the y axis is rotated about the y – axis to form a solid revolution.

i) Show that the volume of the solid is given by

1

$$V = \pi \int_{1}^{5} log_{e} y \, dy$$

Marks

ii) Copy and complete the following table into your writing booklet.Give your answer correct to 3 decimal places.

1

3

у	1	2	3	4	5
$log_e y$	U	0.693	1.099		1.609

iii) Use Simpson's Rule with five function values to approximate the volume of the solid of revolution V_y , correct to three decimal places.

Question 15

(15 marks)

Marks

a)

The shaded region OAB is bounded by the parabola $y=x^2$, the line y=2-x and the x-axis.

i) Find the x coordinates of A and B.

- 2
- ii) Show that the exact area of the shaded region OAB is given by $\frac{5}{6}$ square units.
- 2

b) i) Show that $\frac{d}{dx}(xe^x) = e^x + xe^x$

1

ii) Find $\int xe^x dx$

2

c) Find the trigonometric equation for the graph below:

- d) Mr Egan borrows \$P from a bank to fund his house extensions. The term of the loan is 20 years with an annual interest rate of 9%. At the end of each month, interest is calculated on the balance owing and added to the balance owing.

 Mr Egan repays the loan in equal monthly instalments of \$1050.
- i) Write an expression for the amount, A_1 , Mr Egan owes at the end of the first month
- ii) Show that at the end of n months, the amount owing, A_n , is given by: $A_n = P(1.0075)^n 140000(1.0075)^n + 140000$
- iii) If the loan is repaid at the end of 20 years, calculate the amount Mr Egan 2 originally borrowed, correct to the nearest dollar.

Question 16 (15 marks)

- a) Find $\int 2^x dx$
- b) Let \propto and β be the solutions of $x^2 + 5x + 3 = 0$. Find:
- i) $\frac{1}{\alpha} + \frac{1}{\beta}$
- ii) A quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
- c) Evaluate $\int_0^2 \frac{6x}{x^2+2} \, dx$ 3

Question 16 (cont)

d)

The water's edge is a straight line ABC which runs east-west. A lighthouse is 6km from the shore on a rocky outcrop, due north of A.

10km due east of A is a general store. To get to the general store as quickly as possible the lighthouse keeper rows to a point B, xkm from A, and then jogs to the general store. The lighthouse keeper's rowing speed is 6km/h and his jogging speed is 10km/h.

- i) Show that it takes the lighthouse keeper $\frac{\sqrt{36+x^2}}{6}$ hours to row from the 2 lighthouse to B.
- ii) Show that the total time taken for the lighthouse keeper to reach the general store is given by

$$T = \frac{\sqrt{36 + x^2}}{6} + \frac{10 - x}{10}$$
 hours

- iii) Hence, show that when $x=4\frac{1}{2}$ km, the time it takes the lighthouse keeper to travel from the lighthouse to the general store is a minimum (you may assume it is a minimum no testing required)
- iv) Find the quickest time it takes the lighthouse keeper to go to the general 1 store from the lighthouse. (You may leave your answer in hours).

Student Name: Question (I 75 M 1x - 8 = 0D: 01 \ \ \ \ \ \ 3x-1=5 Teacher Name: Working COS 2C = -7 J = T -2 = . F. Solutions

2700 a, 700 = 3-(2	1) 700 = 25 +	1)2 lim Sinlx = 2= 0	wi) D (4,3)	27.140 ST	(i) $0 = 2 \times -2 + \times $	Question 12 a) in MAC = 2 = -2 MAC = -2
15 + (n-1) 15 + 15 n 2 - 15 n	BC = 2.8 cm	e) # 105° 30° C			$-3 + -2$ (v) $+ = \frac{1}{2}$	(ii) m=tan0 (iii)
$\frac{3^{2}+7^{2}+35^{2}-25400}{3^{2}+7^{2}-5080}=0$ $\frac{3^{2}+7^{2}-5080}{7^{2}-7^{2}+349+12*5080}$	9 9			9 vn:+z 0	15 x 12 2 + (-2-2)	$\frac{(-) = -1(x - 0)}{(-) = -1x}$

·

Student Name: log/y . || .]] 3 { 0 + 1.609 + 4(0.693+1.386) +2x(-097) 12.695 Q 0.693 1.099 1.386 1.609 ۲ __ Teacher Name: ___ 14

_1		<u> </u>	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		Tx Tx	
form y= Asin'nx -: y= 2sin 3x	c) Amplitude 2 Period = 17 T=27 - 47 . n=3	$\frac{dx}{dx} = \frac{dx}{dx} = dx$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(i) $\lambda = \int x^2 dx + \int x^2 - 3x dx$ $= \left[x^3 \right] + \left[2x - 3x \right]^2 = 0$		Student Name: Teacher Name:
				. ·	· · · · · · · · · · · · · · · · · · ·	

<u>(ii</u>: (1,1,7) שניות ואפווויכי d) ci) A = A **P** 7 = Px1-0675 240- 140000 x1.0075 140 V = \$116702 {/ { ! 11 11 ľ ij 20 P x1.0075 P x1.0075" Px 1.0075 - 1050 x Px 1.0075 1-10 50 (1+1.0075+.... 1.0075 Px(1.0075) A x 1.0075-1050 P = 1.00752-1050(1+1.0075) Pr1-0075-1050 1-10075-1050 Kens, + 120 n = 240-140000,1.0075"+140000 - 140000(1.0075" -1 -1050 -1050 A = 0 x 1:0075"-1 a=1, ==1.0075, 1= - 25 00 . SO(VE P + 140000

	0	0 2 2)	
(iii) $\frac{dx}{dx} = \frac{6}{6} \times \frac{1}{2}(3x^2+36)^{\frac{7}{2}} \times 23x - \frac{1}{10}$ $0 6 3x^2+36 -\frac{1}{10} 0 \text{for } q$ $1 10 0 \text{for } q$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	3	$\frac{dx}{2x} = \frac{b}{3} \frac{dx}{dx} + \frac{b}{3} = 3 \frac{3x^2 + 5x + 1}{3x^2 + 5x + 1}$ $\frac{dx}{2x} + \frac{b}{3} = 3 \frac{3x^2 + 5x + 1}{3x^2 + 5x + 1}$	2 / 1

Student Name:

Teacher Name: _

 $\frac{\mathcal{X}}{6\sqrt{3c^2+36}} = \frac{1}{10}$

$$\frac{10x}{5x} = 6\sqrt{x^2 + 36}$$

$$\frac{25x^2}{9} = 3c^2 + 36$$

$$25x^2 = 9x^2 + 324$$

$$16x^2 = 3.24$$

$$x^2 = 20.25$$

(iv) Sub x = 4.5 into expression for

$$T = \frac{\sqrt{4.5^2 + 36}}{6} + \frac{10 - 4.5}{10}$$