Binary relations and equivalences

3-1. The answers are:

```
\begin{array}{lll} \rho & = & \{(1,4),(4,1),(2,3),(2,6),(3,6),(3,2),(6,2),(6,3)\} \cup \Delta_6 \\ \sigma & = & \{(3,5),(3,1),(3,6),(4,5),(4,1),(4,6),(2,6),(5,1),(5,6)\} \cup \Delta_6 \\ \rho \cap \sigma & = & \sigma \cap \rho & = \{(4,1),(3,6),(2,6)\} \cup \Delta_6 \\ \rho \cup \sigma & = & \{(1,4),(4,1),(2,3),(2,6),(3,6),(3,2),(6,2),(6,3),(3,5),(3,1),\\ & & (4,5),(4,6),(5,1),(5,6)\} \cup \Delta_6 \\ \sigma^{-1} & = & \{(5,3),(1,3),(6,3),(5,4),(1,4),(6,4),(6,2),(1,5),(6,5)\} \cup \Delta_6 \\ \rho \circ \sigma & = & \{(3,5),(3,1),(3,6),(4,5),(4,1),(4,6),(2,6),(1,4),(4,1),(2,3),(2,6),\\ & & (3,6),(3,2),(6,2),(6,3),(1,5),(1,6),(2,5),(6,5),(6,1)\} \cup \Delta_6 \\ \sigma \circ \rho & = & \sigma \cup \rho \cup \Delta_6 \cup \{(3,4),(3,2),(4,2),(4,3)\}, \end{array}
```

where $\Delta_6 = \{ (x, x) : x \in \{1, \dots, 6\} \}.$

- **3-2**. (a) ρ is reflexive if and only if $(x,x) \in \rho$ for all $x \in X$ if and only if $\{(x,x) : x \in X\} \subseteq \rho$;
 - (b) ρ is symmetric if and only if $(x,y) \in \rho$ implies $(y,x) \in \rho$ if and only if $\rho^{-1} \subseteq \rho$;
 - (c) ρ is transitive if and only if $(x,y),(y,z)\in\rho$ implies $(x,z)\in\rho$ if and only if $\rho\circ\rho=\{(x,z):\exists y\in X \text{ with } (x,y),(y,z)\in\rho\}\subseteq\rho$.

3-3. It suffices to prove that $\rho \cap \sigma$ is reflexive, symmetric and transitive.

Reflexive: by Problem 3-2(a) $\Delta_X \subseteq \rho$ and $\Delta_X \subseteq \sigma$. It follows that $\Delta_X \subseteq \rho \cap \sigma$ and so $\rho \cap \sigma$ is reflexive.

Symmetric: $(x,y) \in \rho \cap \sigma$ implies that $(y,x) \in \rho$ and $(y,x) \in \sigma$. It follows that $(y,x) \in \rho \cap \sigma$.

Transitive: $(x,y), (y,z) \in \rho \cap \sigma$ implies that $(x,y), (y,z) \in \rho$ and $(x,y), (y,z) \in \sigma$. Thus $(x,z) \in \rho$ and $(x,z) \in \sigma$ and so $(x,z)\rho \cap \sigma$.

The classes of $\rho \cap \sigma$ are intersections of the classes of ρ and σ . For example, if $\rho = \{\{1, 2, 3, 4\}, \{5, 6\}\}\}$ and $\sigma = \{\{1, 2, 3\}, \{4, 5\}, \{6\}\},$ then $\rho \cap \sigma = \{\{1, 2, 3\}, \{4\}, \{5\}, \{6\}\}\}.$

3-4. Let $\sigma = \{(1,2),(2,1)\} \cup \Delta_2$ and $\rho = \{(2,3),(3,2)\} \cup \Delta_3$. Then $(1,2),(2,3) \in \rho \cup \sigma$ but $(1,3) \notin \rho \cup \sigma$ and so $\rho \cup \sigma$ is not transitive and hence not an equivalence relation.

If σ is the relation with classes $\{\{1,2\},\{3\}\}$, and ρ is the equivalence relation with classes $\{\{1\},\{2,3\}\}$, then $(1,3) \in \sigma \circ \rho$ but $(3,1) \notin \sigma \circ \rho$. Hence $\sigma \circ \rho$ is not symmetric and hence not an equivalence relation.

3-5. (\Leftarrow) Since $(x,x) \in \alpha$ and $(x,x) \in \beta$, for all $x \in X$, it follows that $(x,x) \in \alpha \circ \beta$ and so $\alpha \circ \beta$ is reflexive.

From the definition and Problem **3-2**(b), $(\alpha \circ \beta)^{-1} = \beta^{-1} \circ \alpha^{-1} \subseteq \beta \circ \alpha = \alpha \circ \beta$. It follows that $\alpha \circ \beta$ is symmetric. By Problem **3-2**(c) it suffices to show that $(\alpha \circ \beta)^2 \subseteq \alpha \circ \beta$. But $\alpha \circ \beta \circ \alpha \circ \beta = \alpha^2 \circ \beta^2 = \alpha \circ \beta$. It follows that $\alpha \circ \beta$ is transitive.

 (\Rightarrow) $\alpha \circ \beta$ is an equivalence relation implies that $\alpha \circ \beta$ is symmetric and so by Problem 3-2(b) $(\alpha \circ \beta)^{-1} \subseteq \alpha \circ \beta$. But $(\alpha \circ \beta)^{-1} = \beta^{-1} \circ \alpha^{-1} = \beta \circ \alpha$. Thus $\beta \circ \alpha \subseteq \alpha \circ \beta$.

Let $(x, y) \in \alpha \circ \beta$. Then $(y, x) \in \alpha \circ \beta$ and so there exists z such that $(y, z) \in \alpha$ and $(z, x) \in \beta$. Thus $(x, z) \in \beta$ and $(z, y) \in \alpha$. It follows that $(x, y) \in \beta \circ \alpha$.

- **3-6**. Recall from the definition that a binary relation is just a subset of $X \times X$. There are 2^{n^2} subsets of an n^2 element set.
- **3-7**. Clearly, the only partitions of the set $\{1, \ldots, n\}$ with a single part is $\{\{1, \ldots, n\}\}$ and the only partition with n parts is $\{\{1\}, \ldots, \{n\}\}$. Hence S(n, 1) = S(n, n) = 1.

In any partition of $\{1, \ldots, n\}$, either $\{n\}$ is a part, or n belongs to a part of size at least 2.

The number of partitions of $\{1, \ldots, n\}$ with r parts where $\{n\}$ is a part equals the number of partitions of $\{1, \ldots, n-1\}$ into r-1 parts. In other words, the number of partitions of $\{1, \ldots, n\}$ with r parts is S(n-1, r-1).

The number of partitions of $\{1, \ldots, n\}$ with r parts where n belongs to a part of size at least 2 can be determined by first partitioning $\{1, \ldots, n-1\}$ into r parts, and then adding n to one of those parts. There are S(n-1, r)

$n \setminus r$	1	2	3	4	5	6
1	1	-	-	-	-	-
2	1	1	-	_	-	_
3	1	3	1	_	-	_
4	1	7	6	1	-	-
5	1	15	25	10	1	-
6	1	31	90	65	15	1

Figure 1: The first few values of the Stirling numbers of the second kind.

partitions of $\{1, \ldots, n-1\}$ into r parts, and given such a partition, there are r distinct partitions arising from adding n to any of the parts. Hence there are rS(n-1,r) such partitions in total.

Therefore S(n,r) = S(n-1,r-1) + rS(n-1,r), as required.

The values of S(n,r) when $1 \le r \le n \le 6$ are displayed in Figure 1.

Homomorphisms and isomorphisms

3-8. Let $x \in S$ be an idempotent. Then $x^2 = x$ and so

$$(x)f = (x^2)f = (x)f(x)f.$$

Thus (x)f is an idempotent.

Let S be a monoid and T be a monoid with zero element 0. Then define a mapping $f: S \longrightarrow T$ by (s)f = 0 for all $s \in S$. Since 0 is an idempotent, f is a homomorphism and $(1_S)f = 0$ is not the identity of T.

Since f is onto, for all $t \in T$ there exists $s \in S$ such that (s)f = t. Now, if x is the identity of S, then for any $t \in T$

$$t(x)f = (s)f(x)f = (sx)f = (s)f = t$$

and

$$(x)ft = (x)f(s)f = (xs)f = (s)f = t.$$

Hence (x) f is the identity of T.

To see that (P)f is a subsemigroup it suffices to prove that it is closed. Let $(x)f, (y)f \in Pf$. Then $(x)f(y)f = (xy)f \in Pf$ since f is a homomorphism and so $xy \in P$, as required.

3-9. Suppose that S is a semigroup such that $x^2 = x$ and xyz = xz for all $x, y, z \in S$, and let $a \in S$ be arbitrary. We will show that $f: S \longrightarrow Sa \times aS$ defined by (s)f = (sa, as) is an isomorphism.

Injective: Suppose that (x)f = (y)f for some $x, y \in S$. Then (xa, ax) = (ya, ay) and so xa = ya and ax = ay. It follows that

$$x = x^2 = xax = yax = yay = y^2 = y,$$

and so f is injective.

Surjective: Trivial.

Homomorphism: If $x, y \in S$, then (x)f(y)f = (xa, ax)(ya, ay) = (xa, ay) and (xy)f = (xya, axy) = (xa, ay) = (x)f(y)f. Hence f is a homomorphism.

Further problems

3-10. By Problems **2-1** and **3-9**, S is a rectangular band if and only if xyz = xz and $x^2 = x$ for all $x, y, z \in S$.

 (\Rightarrow)

[First proof.] If S is a rectangular band, then we may assume without loss of generality that $S = I \times \Lambda$ for some I and Λ . If $a = (i, \lambda)$ and $b = (j, \mu)$, then ab = ba implies that $(i, \mu) = (i, \lambda)(j, \mu) = (j, \mu)(i, \lambda) = (j, \lambda)$ and so i = j and $\lambda = \mu$. Thus a = b.

[Second proof.] Suppose $a, b \in S$ are such that ab = ba. Then

$$a = a^2 = aba = ba^2 = ba = ab = ab^2 = bab = b^2 = b.$$

 (\Leftarrow) It suffices to show that xyz = xz and $x^2 = x$ for all $x, y, z \in S$.

If $x \in S$ is arbitrary, then since $x^2 \cdot x = x \cdot x^2$, it follows by the assumption of this implication that $x^2 = x$.

If $x, y \in S$ are arbitrary, then

$$xyx \cdot x = xyx^2 = xyx = x^2yx = x \cdot xyx$$

and so xyx = x. Hence

$$xyz \cdot xz = xyz = xz \cdot xyz$$

and so xyz = xz, as required.

3-11. It suffices, by Problem **2-3**, to show that there exist $e, a \in S$ such that ea = a. But S is finite, and so it contains an idempotent e by Problem **2-9**. In particular, ee = e and so e is the identity of S, and so S is a monoid. \Box