Uncertainty and Learning in Pharmaceutical Demand

Gregory S. Crawford and Matthew Shum Econometrica, 2005

presented by Jonathan Elliott

March 25, 2019

Outline

Introduction

Model

Empirical Setup

Results & Counterfactuals

Motivation

- What is the impact of uncertainty on consumers' decisions in experience good markets?
- To what extent can learning counteract the effect of uncertainty?
- In medicine, heterogeneity in effectiveness of drugs across patients
 this paper: anti-ulcer drugs
- Doctors uncertain about patient-drug match quality, but can learn about match quality through prescribing
- This paper: drugs have both curative and symptomatic effects, patients/doctors can learn about these effects through noisy signals and optimally prescribe drugs

Industry Background

- Anti-ulcer market "almost entirely drug-based"
- Drugs mostly distinguished by active ingredient (or molecule)
- Drug prices set by regulatory agent
 - ullet same active ingredient, same route of administration \Rightarrow same price
- No differences in insurance status
 - patients pay 50% copay

Drugs in Market

Summary Statistics from the Data									
#	Molecule	Patent-Holder	In-Sample Mkt. Share ^c	Major Brands ^a in Italian Mkt.	Date of Entry	Avg. ^b Price			
1	Ranitidine	Glaxo	64.4	Zantac*, Ranidil	1981	\$2.90			
2	Omeprazole	Astra	11.0	Losec*, Omeprazen	1990	\$3.14			
3	Famotidine	Merck	6.8	Pepcid*, Famodil	1986	\$2.59			
4	Nizatidine	Lilly	3.2	Axid*, Zanizal	1988	\$2.74			
5	19 others		14.6	Various	< 1981	\$1.42 ^d			

Data

- \bullet All anti-ulcer prescriptions of 10% sample of patients ages 15–85 in Rome from 1990 1992
 - 55,000 patients
 - observe the sequence of prescriptions over time period
- Aggregate by active ingredient (molecule)
- Left censoring: Drop patients first observed before the sixth month
- **Right censoring**: Patients with last in-sample prescription within final six months (don't drop, but deal with differently)

Data

Outline

Introduction

Model

Empirical Setup

Results & Counterfactuals

Overview

- Patient arrives and doctor diagnoses illness
- Doctor selects initial drug treatment
- Patient completes initial drug treatment and returns if not healed
- Doctor prescribes same drug or different drug
- Forward-looking and risk aversion work in opposite directions for prescription decisions
 - forward-looking: want to experiment using several drugs to learn about match quality
 - risk aversion: want to stay with current drug if working pretty well (functions kind of like switching cost)

Doctor's Problem

Select sequence of drugs that maximize patient's expected utility

$$\max_{D \equiv \left\{ \left\{d_{jnt}\right\}_{n=1}^{N}\right\}_{t=1}^{\infty}} \mathbb{E}\left[\sum_{t=1}^{\infty} \beta^{t} \left(1 - w_{j,t-1}\right) d_{jnt} u_{jnt}\right]$$

- d_{int} indicator = 1 if patient j takes n in t
- ullet w_{jt} indicator for whether j recovers after period t
- Uncertainty over (1) match value
 - μ_{jn} symptomatic effect of n on j
 - ν_{jn} curative effect of n on j
- and (2) patient's length of treatment
 - prescriptions continue until recovery $(w_{it} = 1)$

Patient Types

- Econometrician doesn't know patient's diagnosis or doctor's beliefs
- Assume: Patient conditions fall into one of K types
 - let h_{0j} denote probability j can be healed without treatment
 - can take one of K values

$$h_{0j} = \theta_k$$
 with probability p_k , $k = 1, ..., K$

where

$$0 < p_i < 1, \quad \sum_i p_i = 1, \quad 0 \le \theta_1, \dots, \theta_K \le 1$$

- Doctor's prior beliefs allowed to differ across patient types
 - but conditional on patient type, doctors have rational expectations

Preferences

- Linear utility specification too restrictive because implies risk neutrality
- Constant Absolute Risk Aversion specification:

$$u\left(x_{jnt}, p_n, \epsilon_{jnt}\right) = -\exp\left(-r * x_{jnt}\right) - \alpha * p_n + \epsilon_{jnt}$$

- x_{int} is patient j's symptomatic signal from taking drug n in period t
- r > 0 measures degree of risk aversion

Recovery Probabilities

- Let h_{it} be probability that j recovers by the end of t
- Sequence of recovery probabilities

$$h_{jt}(h_{jt-1}, y_{jnt}) = \frac{\frac{h_{jt-1}}{1 - h_{jt-1}} + d_{jnt}y_{jnt}}{1 + \frac{h_{jt-1}}{1 - h_{jt-1}} + d_{jnt}y_{jnt}}$$

• y_{jnt} is curative signal for drug n prescribed to j in t

Learning Process

• Doctor's prior beliefs

$$\left(\begin{array}{c}\mu_{jn}\\\nu_{jn}\end{array}\right) \sim \mathcal{N}\left(\left[\begin{array}{c}\underline{\mu}_{nk}\\\underline{\nu}_{nk}\end{array}\right], \left[\begin{array}{cc}\underline{\sigma}_{n}^{2} & 0\\0 & \underline{\tau}_{n}^{2}\end{array}\right]\right)$$

• Doctor does not know (μ_{jn}, ν_{jn}) but receives i.i.d. signals (x_{jnt}, y_{jnt})

$$\left(\begin{array}{c} x_{jnt} \\ y_{jnt} \end{array}\right) \sim \mathcal{N}\left(\left[\begin{array}{c} \mu_{jn} \\ \nu_{jn} \end{array}\right], \left[\begin{array}{cc} \sigma_n^2 & 0 \\ 0 & \tau_n^2 \end{array}\right]\right)$$

Learning Process

- Let J_{jn}^t denote number of times j has taken n up to and including period t
- Initial values $\mu_{jn}^0 = \underline{\mu}_{nk}$, $V_{jn}^0 = \underline{\sigma}_n$ (rational expectations)
- Posterior symptomatic mean and variance

$$\mu_{jn}^{t+1} = \begin{cases} \frac{\sigma_n^2 \mu_{jn}^t + V_{jn}^t x_{jnt+1}}{\sigma_n^2 + V_{jn}^t} & \text{if drug } n \text{ taken in period } t+1, \\ \mu_{jn}^t & \text{otherwise} \end{cases}$$

$$V_{jn}^{t+1} = \left\{ \begin{array}{ll} \frac{\sigma_n^2 \underline{\sigma}_n^2}{\sigma_n^2 + l_{jn}^{t+1} \underline{\sigma}_n^2} & \text{if drug } n \text{ taken in period } t+1, \\ V_{jn}^t & \text{otherwise} \end{array} \right.$$

• Analogous for curative posteriors v_{jn}^{t+1} , R_{jn}^{t+1}

Dynamic Problem

State variable

$$\mathcal{S}_t \equiv \left(\mu_{j1}^t, \dots, \mu_{j5}^t, \nu_{j1}^t, \dots, \nu_{j5}^t, l_{j1}^t, \dots, l_{jn}^t, h_{jt}, \epsilon_{j1t}, \dots, \epsilon_{j5t}\right)$$

• Value function $W(S_t)$

$$=\max_{n}\left\{\mathbb{E}\left[\left.u\left(x_{jnt},p_{n},\epsilon_{jnt}\right)+\beta\left(1-w_{jt}\right)\mathbb{E}\left[\left.W\left(\mathcal{S}_{t+1}\right)\right|x_{jnt},y_{jnt},n\right]\right|\mathcal{S}_{t}\right]\right\}$$

Outline

Introduction

Model

Empirical Setup

Results & Counterfactuals

Likelihood Function

- ullet Observe d_{j1t},\ldots,d_{jNt} and treatment length T_j
- Likelihood

$$\prod_{n} \mathbb{E} \left[\mathbf{1} \left\{ W_{jn1,k} > W_{jn'1k}, n' \neq n \right\}^{d_{jn1}} \right] \qquad t = 1 \\
\mathbb{E} \left[(1 - h_{jt-1k}) \left(\prod_{n} \mathbb{E} \left[\mathbf{1} \left\{ W_{jntk} > W_{jn'tk}, n' \neq n \right\}^{d_{jnt}} \right] \right) \right] \qquad 1 < t < T_{j} \\
\mathbb{E} \left[(1 - I_{j}) h_{jT_{j}k} \right] \qquad t = T_{j}$$

where $\emph{I}_{\emph{j}}$ indicator =1 if \emph{j} 's treatment length censored by end of sample period

ullet we don't know whether or not those patients healed after period \mathcal{T}_j

Likelihood Function

Assume type 1 extreme value errors

$$\mathbb{E}\left[\mathbf{1}\left\{W_{jnt,k} > W_{kn't,k}, n \neq n'\right\}\right] = \frac{\exp\left(W_{jnt,k}\right)}{\sum_{n'=1}^{5} \exp\left(W_{jn't,k}\right)} \equiv \lambda_{jnt,k}$$

• Likelihood (for uncensored)

$$\sum_{k=1}^{K} p_k \cdot \mathbb{E} \left[\prod_{t=1}^{T_j-1} \left((1-h_{jt,k}) \prod_n \lambda_{jnt,k}^{d_{jnt}} \right) \right] \cdot h_{jT_j,k} \prod_n \lambda_{jnT_j,k}^{d_{jnT_j}}$$

• Expectations approximated by simulation

Identification

- Symptomatic match value distribution: variation in drug choices across patients and prescriptions
- Curative match value and illness heterogeneity distributions:
 variation in recovery frequencies conditional on different sequences of drug choices

Outline

Introduction

Model

Empirical Setup

Results & Counterfactuals

Types

- How many types?
 - ullet Start at K=2 and increase until negligible changes in results

$$\Rightarrow K = 4$$

Parameter	Est.	Std. Err.	Est.	Std. Err.
Illness heterogeneity distribution	Recovery Probability		Type Probability	
θ_1 (Type 1)	0.433	0.003	0.593	0.006
θ_2 (Type 2)	0.127	0.003	0.335	0.006
θ_3 (Type 3)	0.199	0.007	0.043	0.001
θ_4 (Type 4)	0.432	0.011	0.029	0.002

Symptomatic Match Values: Type 1

Symptomatic Match Values: Type 2

Match Values

- Overlap in support of density function implies drugs are horizontally differentiated
- Symptomatic ranking for Type 1: (2,1,3,5,4)
- Symptomatic ranking for Type 2: (1,2,3,4,5)
- Curative ranking for Type 1: (2, 1, 3, 4, 5)
- Curative ranking for Type 2: (4, 1, 2, 3, 5)
- Significant learning: for Type 1, perceived variance for symptomatic relief falls 70% after single prescription
 - majority of uncertainty reduction comes with first use

Counterfactuals

- What is the cost of uncertainty in anti-ulcer market?
- Counterfactual #1: Drug choice in world where patients have complete information about match values
 - Patients draw symptomatic and curative match values drawn from population distributions $\mathcal{N}(\underline{\mu}_{nk},\underline{\sigma}_{nk})$ and $\mathcal{N}(\underline{\nu}_{nk},\underline{\tau}_{nk})$
 - Perceived variances, V_{jn}^t and R_{jn}^t , set to zero
- Counterfactual #2: Drug choice in world where unable to switch after first drug prescribed (shutting down learning)
- Counterfactuals isolate effects of uncertainty and experimentation

Counterfactual Results

Baseline Specification ^a	
Avg. discounted utility	-28.7
Avg. treatment length	4.8
Avg. treatment cost	245
Avg. number of different drugs	1.4
Counterfactual I: Complete Informati	on ^b
Avg. discounted utility	-26.4
Avg. treatment length	8.8
Avg. treatment cost	385
Avg. number of different drugs	1.9
Counterfactual II: No Experimentation	on ^c
Avg. discounted utility	-30.6
Avg. treatment length	4.8
Avg. treatment cost	248

Counterfactual Results

- Number of drugs and treatment length actually increase under complete information
 - patients optimize choice of drugs over course of treatment
- Treatment length stays the same under no experimentation
- Discounted utility increase in complete information larger than discounted utility decrease in no experimentation
 - learning enables patients to realize discounted utility levels closer to those under first-best

Conclusion

Advantages

- Neat structural model of learning in dynamic setting
- Evidence of importance of learning in specific medical setting

Disadvantages

- Don't allow for doctors learning across patients they treat
- No agency problems that might exist