

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 03-12-2004	2. REPORT TYPE Technical Paper (View Graph)	3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE Reactivity Ratios of Isobutyl POSS-Styrene and Styrene Monomers		5a. CONTRACT NUMBER F04611-99-C-0025		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Brian Moore, Timothy Haddad, Rene Gonzalez, Constance Schlaefer		5d. PROJECT NUMBER 2303		
		5e. TASK NUMBER M1A3		
		5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ERC Incorporated 555 Sparkman Drive Huntsville, AL 35816-0000		8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRSB 4 Draco Drive Edwards AFB CA 93524-7160		10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2004-067		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.				
13. SUPPLEMENTARY NOTES American Chemical Society Anaheim, CA, 1 April 2004				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Linda Talon
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A 16	19b. TELEPHONE NUMBER (include area code) (661) 275-5865

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

20040503 187
Best Available Copy

Reactivity Ratios of Isobutyl POSS- Styrene and Styrene Monomers

Brian Moore[†], Timothy Haddad[†], Rene Gonzalez[‡],
and Constance Schlaefter[‡]
[†]ERC Inc., [‡]Air Force Research Lab

Introduction

Copolymers containing POSS (Polyhedral Oligomeric Silsesquioxane) generally have higher mechanical and thermal properties than polymers without POSS.

The microstructure that leads to these increases may be caused by POSS nanoparticle units or aggregates of these units to form larger POSS clusters.

To help define the microstructure of the addition copolymers, the POSS macromer and organic monomer reactivity ratios (r_1 and r_2) need to be known.

Alternating Copolymerization: $r_1 = r_2 = 0$

Block Copolymerization: $r_1 > 1, r_2 > 1$

Random Copolymerization: $r_1 r_2 = 1$

Hybrid Inorganic/Organic Polymers

Hybrid plastics bridge the differences between ceramics and polymers.

POSS Synthesis

RSiX₃ acid or base hydrolysis

Brown & Vogt: JACS, 1965, 4313
 Feher et al: JACS, 1989, 1741;
 Organometallics, 1991, 2526;
 Chem Comm, 1999, 1705, 2309

3

POSS-Styrene Monomer Synthesis

R-Groups

- High-yield syntheses.
- Phenyl derivative requires inverse addition.
- J. Inorg. Organomet. Polym., Vol 11, 2002, p. 155.

phenyl

isobutyl

cyclohexyl

cyclopentyl

POSS-Styrene Copolymer Synthesis

R = isobutyl

- Solution polymerization in toluene or bulk polymerization possible.
- Polymerization is limited by solubility of the POSS-macromer.
- Isobutyl-POSS is the most soluble, Phenyl-POSS the least soluble.
- *Macromolecules* Vol. 29, 1996 p. 7302.

Reactivity Ratios for Styrene / POSS-Styrene

r_1 : reactivity ratio for Styrene

r_2 : reactivity ratio for POSS-Styrene

$$r_1 = \frac{k_{11}}{k_{12}}$$
$$r_2 = \frac{k_{22}}{k_{21}}$$

The composition of a copolymer cannot be determined by the homopolymerization rates of the two monomers.

Assume the chemical reactivity of the propagating chain in a copolymerization to be dependent on the monomer at the growing end.

Reactivity Ratios for Styrene / POSS-Styrene

$$r_1 = \frac{k_{11}}{k_{12}}$$

$$r_2 = \frac{k_{22}}{k_{21}}$$

Alternating Copolymerization: $r_1 = r_2 = 0$

Block Copolymerization: $r_1 > 1, r_2 > 1$

Random Copolymerization: $r_1 r_2 = 1$

Reactivity Ratios calculated using the copolymer composition equation:

$$F_1 = \frac{(r_1 f_1 f_1 + f_1 f_2)}{(r_1 f_1 f_1 + 2f_1 f_2 + r_2 f_2 f_2)}$$

r_1 = reactivity ratio for styrene

r_2 = reactivity ratio for POSS-styrene

F_1 = mole fraction of styrene in copolymer

f_1 = mole fraction of styrene monomer in feed

f_2 = mole fraction of POSS monomer in feed

Reactivity Ratios: Challenges

- Polymerizations must be carried out to only 3-5% completion.
 - Reactions were run for 3 hours and monitored by $^1\text{H NMR}$.
- The small amount of polymer formed (a solid) must be separated from unreacted POSS-monomer (also a solid).
 - Achieved with precipitation of copolymer using Chloroform/MeOH
- Carry out a full (10-90) range of mole % POSS reactions while maintaining the same concentration of monomers and initiator.
 - Achieved best with isoButylPOSS as it has favorable solubility.
- Accurately determine the amount of POSS in each copolymer.
 - NMR integration is more accurate than IR analysis over the full mole % range.

Compositional Analysis with FTIR

FTIR can be used to determine weight % POSS in a copolymer as there is a linear response between weight % POSS and absorbance. However, because a POSS is a such a large macromer, there is NOT a linear response using mole % POSS (see graph below).

Note that IR analysis is an excellent method for determining mole % POSS in the low to 25 mole % POSS range

^1H NMR Spectrum of Crude Reaction Solids

This spectrum shows mostly POSS-monomer with some copolymer. 10

^1H NMR Spectrum of Isolated Copolymer

This spectrum shows monomer-free copolymer.

Distribution A. Approved for public release, distribution unlimited.

Copolymer Composition

Composition determined from 2 equations and 2 unknowns using ^1H NMR

x = mole fraction POSS-styrene

y = mole fraction styrene

$$x + y = 1 \quad (1)$$

$$\text{Integral Ratio (IR)} = \frac{\text{Aromatic Integral}}{\text{Aliphatic Integral}} = \frac{4x + 5y}{66x + 3y} \quad (2)$$

Solving for x :

$$x = \frac{5 - 3IR}{63IR + 1}$$

Experimental Data

Mole % Feed vs. Mole % Copolymer

Experiment #	POSS in Feed		POSS in Copolymer	
	weight %	mole %	weight %	mole %
1	48.91	9.78	53.60	11.57
2	70.42	21.24	69.33	20.38
3	78.98	29.85	77.19	27.71
4	88.73	47.14	85.39	39.83
5	90.01	50.50	86.98	43.07
6	92.53	58.38	89.97	50.39
7	94.58	66.40	91.40	54.62
8	95.42	70.24	92.85	59.53
9	98.42	87.57	96.43	75.38

Determination of Reactivity Ratios

Method	Reactivity Ratios	
	r_{styrene}	r_{POSS}
Fineman-Ross	0.77	0.34
Kelen-Tudos	0.82	0.37
Yezrielev-Brokhina-Roskin	0.79	0.35
Tidwell - Mortimer	0.84	0.38

Tidwell-Mortimer is a nonlinear least squares method.

Calculations and Confidence Interval were obtained using a program supplied in the book "Copolymerization Toward a Systematic Approach" by Cornel Hagiopol.

Summary and Future Work

- $r_{\text{styrene}} = 0.84$ and $r_{\text{POSS}} = 0.38$, therefore a copolymer sequence should be close to random.
- Copolymer compositions are best analyzed using NMR and not FTIR spectroscopy because copolymerizations are done over a full 10 to 90 mole % POSS. FTIR analysis is accurate up to approximately 25 mole % POSS incorporation.
- Q and e values (polarity and reactivity) for i-butyl POSS styrene will be determined after reactivity ratios with methacrylate and acrylonitrile are completed.

ACKNOWLEDGEMENT\$

The Polymer Working Group at Edwards Air Force Base is:

Maj Constance Schlaefter
Mr. Patrick Ruth
Dr. Sandra Tomczak
2Lt Amy Palecek
Mr. Brian Moore
Mrs. Sherly Largo
Dr. Darrell Merchant

Dr. Shawn Phillips
2Lt Will Cooper
Dr. Rusty Blanski
Mr. Scott Barker
Dr. Joseph Mabry
2Lt Laura Moody
Dr. Timothy Haddad

Financial \$upport:
Air Force Office of Scientific Research
Air Force Research Laboratory, Propulsion Directorate