Méthode de Newton:

Le développement

Le but de ce développement est de démontrer l'efficacité de la méthode de Newton en termes de vitesse de convergence.

Théorème 1 : Méthode de Newton [Rouvière, p.152] :

Soit $f:[c;d] \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^2 .

On suppose que f(c) < 0 < f(d) et f' > 0 sur [c; d] et on considère la suite $(x_n)_{n \in \mathbb{N}}$ définie par $x_0 \in [c;d]$ et $x_{n+1} = F(x_n)$ où $F(x) = x - \frac{f(x)}{f'(x)}$. * f possède un unique zéro noté a et pour tout $x \in [c;d]$, il existe $z \in [a;x]$ tel que

- $F(x) a = \frac{1}{2} \frac{f''(z)}{f'(x)} (x a)^2$.
- * Il existe C > 0 tel que pour tout $x \in [c;d], |F(x) a| \le C|x a|^2$ et il existe $\alpha > 0$ tel que $I = [a - \alpha; a + \alpha]$ soit stable par F et que pour tout $x_0 \in I$, la suite $(x_n)_{n\in\mathbb{N}}$ a une convergence d'ordre 2 vers a dans I.
- * Si on suppose de plus que f'' > 0 sur [c;d], alors l'intervalle I = [a;d] est stable par F et pour tout $x_0 \in I$, la suite $(x_n)_{n \in \mathbb{N}}$ est strictement décroissante (ou constante) avec :

$$0 \le x_{n-1} - a \le C(x_n - a)^2$$
 et $x_{n+1} - a \underset{n \to +\infty}{\sim} \frac{1}{2} \frac{f''(a)}{f'(a)} (x_n - a)^2$

Preuve:

Soit $f:[c;d] \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^2 .

On suppose que f(c) < 0 < f(d) et f' > 0 sur [c;d] et on considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in[c;d]$ et $x_{n+1}=F(x_n)$ où $F(x)=x-\frac{f(x)}{f'(x)}$

* La fonction f est continue sur le segment [c;d], vérifie f(c) < 0 et f(d) > 0et est strictement croissante, donc par le théorème des valeurs intermédiaires, il existe un unique point $a \in]c; d[$ tel que f(a) = 0.

On a de plus les relations $F(a) = a - \frac{f(a)}{f'(a)} = a$ (car a racine de f) et $F'(a) = 1 - \frac{f'(a)f'(a) - f(a)f''(a)}{f'(a)^2} = 1 - 1 = 0$. On s'attend donc à avoir F(x) - a de l'ordre de $(x-a)^2$, ce que l'on va préciser :

Comme f(a) = 0, on peut écrire, pour tout $x \in [c; d]$:

$$F(x) - a = x - a - \frac{f(x) - f(a)}{f'(x)} = \frac{f(a) - f(x) - (a - x)f'(x)}{f'(x)}$$

En appliquant au numérateur la formule de Taylor à l'ordre deux d'origine x et d'extrémité a, il existe $z \in]a; x[$ tel que :

$$F(x) - a = \frac{1}{2} \frac{f''(z)}{f'(x)} (x - a)^2$$

* En reprenant $C = \frac{\|f''\|_{\infty,[c;d]}}{2 \min_{x \in [c,d]} |f'(x)|}$ (bien défini car f est de classe \mathcal{C}^2 sur le segment [c;d], on a:

$$|F(x) - a| = \left| \frac{1}{2} \frac{f''(z)}{f'(x)} (x - a)^2 \right| \le C(x - a)^2$$

On considère $\alpha > 0$ assez petit pour que $C\alpha < 1$ et $I = [a - \alpha; a + \alpha]$ soit contenu dans [c;d].

Pour tout $x \in I$, on a alors :

$$|F(x) - a| \le C|x - a|^2 \le C\alpha^2 < \alpha \text{ (car } C\alpha < 1)$$

On a donc $F(I) \subseteq I$, c'est-à-dire I stable par F.

Soit $x_0 \in I$.

Par ce qui précède, on a $x_n \in I$ pour tout $n \in \mathbb{N}$. Ainsi :

$$|x_{n+1} - a| = |F(x_n) - a| \le C |x_n - a|^2$$

Par récurrence, on a donc :

$$C|x_n - a| \le (C|x_0 - a|)^{2^n} \le (C\alpha)^{2^n}$$

La suite $(x_n)_{n\in\mathbb{N}}$ a donc une convergence d'ordre 2 (puisque $C\alpha<1$) vers a (car c'est le seul point fixe de F sur [c;d]). Ce résultat se confirme effectivement avec un dessin:

* Supposons que plus que f'' > 0 sur [c; d].

La fonction f' est donc une fonction croissante et f est ainsi convexe sur [c;d]. Pour $x \in [a;d]$, on a f'(x) > 0 et f(x) > 0 (car f strictement croissante et f(a) = 0, d'où:

$$F(x) = x - \frac{f(x)}{f'(x)} \le x$$
 (avec inégalité stricte si $x > a$)

D'après le premier point, on a également :

$$F(x) - a = \frac{1}{2} \frac{f''(z)}{f'(x)} (x - a)^2 \ge 0 \text{ (strict ement si } x > a)$$

Ces deux inégalités montrent que l'intervalle I=[a;d] est stable par F (car on a sur I que $a \leq F(x) \leq x \leq d$) et que, pour $x_0 \in]a;d]$, les itérées x_n vérifient aussi $x_n \in]a;d]$ et forment une suite strictement décroissante. La suite $(x_n)_{n\in\mathbb{N}}$ est donc strictement décroissante et minorée par a, donc elle converge vers une limite notée ℓ qui vérifie $F(\ell) = \ell$, soit $f(\ell) = 0$ et donc $\ell = a$ (seule racine de f sur I).

De plus, la convergence est quadratique car on a comme au deuxième point :

$$0 \le x_{n-1} - a \le C(x_n - a)^2$$

Enfin, cette égalité est essentiellement optimale. En effet, si $x_0 \in]a;d]$, on a alors par le premier point que pour tout $n \in \mathbb{N}$:

$$x_n > a$$
 et $\frac{x_{n+1} - a}{(x_n - a)^2} = \frac{1}{2} \frac{f''(z_n)}{f'(x_n)}$ (avec $a < z_n < x_n$)

La fraction tend donc vers $\frac{f''(a)}{2f'(a)}$ lorsque n tend vers $+\infty$ et ainsi, on a :

$$x_{n+1} - a \underset{n \to +\infty}{\sim} \frac{1}{2} \frac{f''(a)}{f'(a)} (x_n - a)^2$$

On a ainsi démontré tous les résultats voulus.

II Remarques sur le développement

II.1 Heuristique

Pour résoudre f(x)=0, on cherche à transformer l'équation en un problème équivalent de point fixe de la forme F(x)=x. Cela peut se faire de bien des manières, par exemple en prenant $F(x)=x+\lambda(x)f(x)$ où λ est une fonction ne s'annulant pas. Or, on sait que la convergence des itérées $x_{n+1}=F(x_n)$ vers la solution a recherchée sera très rapide si ce point est superattractif (c'est-à-dire F'(a)=0). Or, f(a)=0, d'où $F'(a)=1+\lambda(a)f'(a)$, ce qui incite à choisir $\lambda(x)=-\frac{1}{f'(x)}$ est à considérer la suite récurrente :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

C'est la **méthode de Newton**, à l'interprétation géométrique très claire : L'égalité $f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0$ exprime que $x_{n+1} = F(x_n)$ est l'abscisse de l'intersection de l'axe des abscisses avec la droite $y = f(x_n) + f'(x_n)(x_{n+1} - x_n)$, qui est la tangente au graphe de f au point d'abscisse x_n (cf. schéma du développement).

Si $e_n = x_n - a$ est l'erreur commise à la n-ième étape de la récurrence, on voit que e_{n+1} sera un $o(e_n)$ (écart d'une courbe à sa tangente), et en fait un $O(e_n^2)$ si f est deuxfois dérivable. La méthode de Newton donne effectivement une convergence rapide vers a, à condition de partir d'un x_0 suffisamment proche de la solution (on peut assouplir cette contrainte sur f si f est convexe par exemple).

II.2 Étude d'un exemple

On fixe y > 0 et on considère $f(x) = x^2 - y$.

On cherche à résoudre la relation de récurrence et à donner une estimation de l'erreur x_n-a avec $a=\sqrt{y}$.

Toutes les hypothèses du développement sont vérifiées pour f sur un intervalle [c;d] tel que 0 < c < d et $c^2 < y < d^2$. Pour approcher le nombre $a = \sqrt{y}$, on doit itérer la fonction :

$$F(x) = x - \frac{x^2 - y}{2x} = \frac{1}{2} \left(x + \frac{y}{x} \right)$$

On a (par un calcul immédiat) que $F(x) - a = \frac{(x-a)^2}{2x}$. Pour approcher l'autre racine carrée $-a = -\sqrt{y}$ la méthode conduirait à itérer la même fonction F, qui satisfait donc aussi à $F(x) + a = \frac{(x-a)^2}{2x}$.

Par suite, on a :

$$\frac{F(x) - a}{F(x) + a} = \left(\frac{x - a}{x + a}\right)^2 \text{ pour } a > 0$$

Autrement dit, $F = \varphi^{-1} \circ G \circ \varphi$, avec :

$$\varphi(x) = \frac{x-a}{x+a}$$
 et $G(x) = x^2$

Ainsi F est conjuguée par φ à la fonction $x \longmapsto x^2$. L'itération $x_n = F^n(x_0)$ s'explicite alors en :

$$x_n = \left(\varphi^{-1} \circ G^n \circ \varphi\right)(x_0), \text{ soit } \frac{x_n - a}{x_n + a} = \left(\frac{x_0 - a}{x_0 + a}\right)^{2^n}$$

Pour $x_0 > a$, on en déduit que $x_n > a$ et :

$$1 + \frac{2a}{x_n - a} = \left(1 + \frac{2a}{x_0 - a}\right)^{2^n} \ge 1 + \left(\frac{2a}{x_0 - a}\right)^{2^n}$$

D'où la majoration de l'erreur :

$$0 \le x_n - a \le 2a \left(\frac{x_0 - a}{2a}\right)^{2^n}$$

II.3 Recasages

Recasages: 218 - 223 - 226 - 228 - 229.

III Bibliographie

— François Rouvière, Petit quide du calcul différentiel.