CSEC 508: Applied Cryptanalysis Homework 2

DEADLINE: 25 May 2023 13:40

- 1. Obtain the inverses of the S-boxes that are given in Table 1. Name them as S_i^{-1} .
- 2. Compute the Difference Distribution Tables (DDTs) of the S-boxes that are given in Table 1. What is their differential uniformity?
- 3. Compute the DDTs of the S-boxes S_i^{-1} . In terms of differential uniformity, can you see a relation between S_i and S_i^{-1} ?
- 4. For a specific input difference α of an S-box, if some bits of the output difference remain invariant for every (x, y) pair where $x \oplus y = \alpha$, then we call such bits *undisturbed*. Obtain the undisturbed bits of the S-boxes that are given in Table 1.
- 5. Let S be a function from \mathbb{F}_2^n to \mathbb{F}_2^m . For all $x,y\in\mathbb{F}_2^n$ that satisfy $S(x)\oplus S(y)=\mu$ where $\mu\neq 0$, if we also have $S(x\oplus\lambda)\oplus S(y\oplus\lambda)=\mu$, then we say that the S-box has a differential factor λ for the output difference μ . (i.e. μ remains invariant for λ). Check the S-boxes that are given in Table 1 for differential factors. If they contain any, provide the λ and corresponding μ values.
- 6. Compute the differential factors of the S-boxes S_i^{-1} . In terms of λ and μ values, can you see a relation between S_i and S_i^{-1} ?
- 7. Compute the Linear Approximation Tables (LATs) of the S-boxes that are given in Table 1. What is their linear uniformity? (Please note that the previous questions are related to differential properties of S-boxes. Hence we are always considering the difference of two inputs x and x' and the difference of the outputs S(x) and S(x'). However, linear cryptanalysis deals with the relation between the input and output, namely x and S(x). Hence we are no longer considering input pairs. Let's consider 4-bit values a and x where their bit-representation is $a = a_3 a_2 a_1 a_0$ and $x = x_3 x_2 x_1 x_0$. We define the masking operation "·" as $a \cdot x = a_3 x_3 \oplus a_2 x_2 \oplus a_1 x_1 \oplus a_0 x_0$. Thus, masking operation result can either be 0 or 1. ij-entry of a LAT can be computed as

$$\left[\sum_{x=0}^{15} (i \cdot x) \oplus (j \cdot S(x))\right] - 8$$

Thus, LAT values are in [-8, 8]. Linear uniformity is the maximum absolute value of this table, except the first entry).

8. Compute the LATs of the S-boxes S_i^{-1} . In terms of linear uniformity, can you see a relation between S_i and S_i^{-1} ?

Table 1: 4×4 S-boxes

S-box	0123456789abcdef
$\overline{S_0}$	c56b90ad3ef84712
$\overline{S_1}$	e4d12fb83a6c5907
$\overline{S_2}$	0bc5619a3fe8d427