Intro to Interactive Theorem Proving

Joomy Korkut

Wesleyan University

October 5th, 2017

http://github.com/joom/presentations

Why?

• Proofs are too long to write formally!

Why?

- Proofs are too long to write formally!
- Proofs are too long to check carefully!

Why?

- Proofs are too long to write formally!
- Proofs are too long to check carefully!
- Seeing what we proved so far helps during the proof process.

Examples

Four color theorem (required checking 1,936 cases)
 Appel & Haken 1976 with computer assistance
 Werner & Gonthier 2005 with Coq

Examples

- Four color theorem (required checking 1,936 cases)
 Appel & Haken 1976 with computer assistance
 Werner & Gonthier 2005 with Coq
- Kepler conjecture (hexagonal close packing of spheres)
 Hales 1998 with computer assistance (C++ etc.)
 Hales 2014 with HOL Light and Isabelle (Flyspeck)

How?

• Curry-Howard isomorphism

How?

- Curry-Howard isomorphism
- Martin-Löf type theory

for simply typed λ -calculus and intuitionistic prop logic,

Types are propositions!

for simply typed λ -calculus and intuitionistic prop logic,

- Types are propositions!
- Terms are proofs!

for simply typed λ -calculus and intuitionistic prop logic,

- Types are propositions!
- Terms are proofs!

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

for simply typed λ -calculus and intuitionistic prop logic,

- Types are propositions!
- Terms are proofs!

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x.t : A \rightarrow B}$$

1

 $^{^{1}\}lambda x.t$ is a different notation for a function $x\mapsto t$

for simply typed λ -calculus and intuitionistic prop logic,

- Types are propositions!
- Terms are proofs!

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B}$$

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

1

 $^{{}^{1}\}lambda x.t$ is a different notation for a function $x\mapsto t$

for simply typed λ -calculus and intuitionistic prop logic,

- Types are propositions!
- Terms are proofs!

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B}$$

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \qquad \frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a, b) : A \times B}$$

1

 $^{^{1}\}lambda x.t$ is a different notation for a function $x\mapsto t$

Martin-Löf type theory

- Extension of Curry-Howard to a full intuitionistic logic
- ullet It allows dependent types and quantification (\forall and \exists)

Martin-Löf type theory

- Extension of Curry-Howard to a full intuitionistic logic
- ullet It allows dependent types and quantification $(\forall$ and $\exists)$

Note

MLTT is constructive, but you can add the law of excluded middle as an axiom and prove classical theorems.

Some Proof Assistants

- Isabelle (1986) (tactics!)
- Coq (1989) (tactics!)
- Agda (2007)
- Idris (2007) (actually mainly a general purpose language)