ЛАБОРАТОРНА РОБОТА № 5

РОЗРОБКА ПРОСТИХ НЕЙРОННИХ МЕРЕЖ

Посилання на GitHub: https://github.com/FrancIwanicki/OAI.git

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python навчитися створювати та застосовувати прості нейронні мережі.

2. ЗАВДАННЯ НА ЛАБОРАТОРНУ РОБОТУ ТА МЕТОДИЧНІ РЕКОМЕНДАЦІЇ ДО ЙОГО ВИКОНАННЯ

Завдання 2.1. Створити простий нейрон

Лістинг програми:

```
import numpy as np
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
class Neuron:
        self.bias = bias
тивації
   def feedforward(self, inputs):
       total = np.dot(self.weights, inputs) + self.bias
       return sigmoid(total)
weights = np.array([0, 1]) \#w1 = 0, w2 = 1
bias = 4 \# b = 4
n = Neuron(weights, bias)
x = np.array([2, 3]) #x1 = 2, x2 = 3
print(n.feedforward(x))
```

Результат виконання:

					ДУ «Житомирська політехніка».23.121.8.000— Лр5			000 — Лр5
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	0 б.	Іваницький Ф.А.				Літ.	Арк.	Аркушів
Пере	евір.	Голенко М. Ю.			Звіт з		1	
Керівник						ФІКТ Гр. ІПЗ-20-3		
Н. контр.					лабораторної роботи			73-20-3
328	каф						•	

Завдання 2.2. Створити просту нейронну мережу для передбачення статі людини

Лістинг програми:

```
import numpy as np
    def feedforward(self, inputs):
weights = np.array([0, 1]) \#w1 = 0, w2 = 1
bias = 4 #b = 4
n = Neuron(weights, bias)
x = np.array([2, 3]) #x1 = 2, x2 = 3
print(n.feedforward(x))
    def feedforward(self, x):
        out o1 = self.o1.feedforward(np.array([out h1, out h2]))
network = IvanytskyiNeuralNetwork()
x = np.array([2, 3])
```

Результат виконання:

```
sys.path.extend(['C:\\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc/OneDrive/Desktop/labsOAI/lab5'])

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]

0.9990889488055994

0.7216325609518421
```

Висновки:

Функція Sigmoid – перетворює ваговані суми вхідних сигналів в діапазон значень між 0 і 1.

Mean Squared Error - визначає середньоквадратичну помилку між прогнозованими значеннями та фактичними значеннями вихідної змінної.

 $Ap\kappa$.

2

		Іваницький Ф.А.			
		Голенко М. Ю.			ДУ «Житомирська політехніка».23.121.8.000 – Лр5
Змн.	Арк.	№ докум.	Підпис	Дата	

Можливості нейронних мереж прямого поширення:

- 1. Вони можуть бути використані для вирішення багатьох типів завдань, включаючи класифікацію, регресію, розпізнавання образів та багато інших.
- 2. Вони можуть навчатися на прикладах і вдосконалювати свої параметри, щоб наближати вихід до бажаного результату (наприклад, мінімізувати втрати).
- 3. Нейронні мережі можуть автоматично визначати ваги та зміщення для вирішення конкретних завдань, що робить їх потужними і універсальними інструментами для багатьох додатків.

Завдання 2.3. Класифікатор на основі перцептрону з використанням бібліотеки NeuroLab

```
import numpy as np
import matplotlib.pyplot as plt
data = text[:, : 2]
labels = text[:, 2]. reshape((text. shape[0],1))
plt. figure()
plt.scatter(data[:, 0], data[:, 1])
plt. xlabel('Размерность 1 ')
plt.ylabel('Размерность 2')
plt. title('Входные данные')
dim1 min, dim1 max, dim2 min, dim2 max = 0,1,0,1
num output = labels.shape[1]
dim1 = [dim1 min,dim1 max]
dim2 = [dim2 min, dim2 max]
perceptron = nl.net.newp([dim1,dim2],num output)
error progress = perceptron.train(data, labels, epochs=100, show=20, lr=0.03)
plt.figure()
plt.plot(error_progress)
plt.xlabel('Количество эпох')
plt.ylabel('Ошибка обучения')
plt.title('Изменение ошибки обучения')
plt.grid()
plt.show()
```

		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Графік №1. Вхідні дані.

Графік №2. Класифікування вхідних даних.

Висновок: Другий графік показує зміну помилки навчання впродовж епох під час навчання перцептрону. З часом помилка навчання зменшується і стає близькою до нуля. Це означає, що перцептрон зміг навчитися правильно класифікувати вхідні дані.

		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.4. Побудова одношарової нейронної мережі

Створіть одношарову нейронну мережу, що складається з незалежних нейронів, для вхідного файлу data_simple_nn.txt.

```
import numpy as np
import matplotlib.pyplot as plt
text = np.loadtxt('data simple nn.txt')
data = text[:, 0:2]
labels = text[:, 2:]
plt. figure()
plt.scatter(data[:, 0], data[:, 1])
plt. xlabel('Размерность 1 ')
plt.ylabel('Размерность 2')
plt. title('Входные данные')
dim1 min, dim1 max = data[:, 0].min(), data[:, 0].max()
dim2 min, dim2 max = data[:, 1].min(), data[:, 1].max()
num output = labels.shape[1]
dim1 = [dim1 min,dim1 max]
dim2 = [dim2 min, dim2 max]
nn = nl.net.newp([dim1, dim2], num output)
error progress = nn.train(data, labels, epochs=100, show=20, lr=0.03)
# Побудова графіка просування процесу навчання
plt.figure()
plt.plot(error progress)
plt.xlabel('Количество эпох')
plt.ylabel('Ошибка обучения')
plt.title('Изменение ошибки обучения')
plt.grid()
plt.show()
print('\n Test results:')
data test = [[0.4, 4.3], [4.4, 0.6], [4.7, 8.1]]
for item in data test:
```

		I ваницький Φ . A .		
		Голенко М. Ю.		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата

```
sys.path.extend(['C:\\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc/OneDrive/Desktop/labsOAI/lab5'])
Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]

Epoch: 20; Error: 4.0;

Epoch: 40; Error: 4.0;

Epoch: 60; Error: 4.0;

Epoch: 80; Error: 4.0;

Epoch: 100; Error: 4.0;

The maximum number of train epochs is reached

Test results:
[0.4, 4.3] --> [0. 0.]
[4.4, 0.6] --> [1. 0.]
[4.7, 8.1] --> [1. 1.]
```


Графік №1. Вхідні дані.

Графік №2. Класифікування вхідних даних.

Висновок: Другий графік відображає зміну помилки під час навчання нейронної мережі. Рівень помилки зменшився з 8.0 до 4.0 (приблизно за 5 епох), але значення 4.0 не змінилось за 100 епох, можна зробити висновок, що мережа

Арк.

		Іваницький Ф.А.			
		Голенко М. Ю.			ДУ «Житомирська політехніка».23.121.8.000 – Лр5
Змн.	Арк.	№ докум.	Підпис	Дата	

здатна вдосконалити своє рішення під час навчання, але вона не досягла задовільної точності класифікації даних.

З тестових результатів можна зробити висновок,що мережа видає виведення [0, 0] для першої тестової точки, [1, 0] для другої точки і [1, 1] для третьої точки. Ці виведення вказують на класифікацію точок, але вони є некоректними, оскільки вони не відповідають очікуваним класам.

Завдання 2.5. Побудова багатошарової нейронної мережі

```
import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl
min val = -15
max val = 15
num points = 130
x = np. linspace(min val, max val, num points)
y = 3 * np.square(x) + 5
data = x.reshape(num points,1)
labels = y.reshape(num points,1)
#Побудуємо графік вхідних даних.
plt. figure()
plt.scatter(data,labels)
plt. xlabel('Размерность 1 ')
plt.ylabel('Размерность 2')
plt. title('Входные данные')
nn = nl.net.newff([[min val, max val]],[10,6,1])
nn.trainf = nl.train.train gd
error progress = nn.train(data, labels, epochs=2000, show=100, qoal=0.01)
output = nn.sim(data)
y pred = output.reshape(num points)
plt.figure()
plt.plot(error_progress)
plt.xlabel('Количество эпох')
plt.ylabel('Ошибка обучения')
plt.title('Изменение ошибки обучения')
x_dense = np. linspace(min_val, max_val, num_points * 2)
y_dense_pred = nn.sim(x_dense.reshape(x_dense.size, 1)).reshape(x_dense.size)
plt. figure ()
plt.plot(x_dense, y_dense_pred, '-',x, y,'.',x,y pred,'p')
plt.title('фактические и прогнозные значения')
plt.show()
```

		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
sys.path.extend(['C:\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc\OneDrive\Desktop\labsOAI/\lab5'])

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]

Epoch: 100; Error: 2.1608077624110766;

Epoch: 200; Error: 0.974265737626848;

Epoch: 200; Error: 0.3716567937626848;

Epoch: 400; Error: 0.2762075249388611;

Epoch: 500; Error: 0.2538630673921808;

Epoch: 500; Error: 0.2557640572766321;

Epoch: 700; Error: 0.2557640572766321;

Epoch: 900; Error: 0.2553065592766472;

Epoch: 1000; Error: 0.253124132798518812;

Epoch: 1100; Error: 0.23124132798518812;

Epoch: 1100; Error: 0.17284614753493005;

Epoch: 1200; Error: 0.17284614753493005;

Epoch: 1500; Error: 0.16626215360340254;

Epoch: 1500; Error: 0.18122214110280041;

Epoch: 1500; Error: 0.09182120801932978;

Epoch: 1700; Error: 0.052990189563879075;

Epoch: 1900; Error: 0.041154085849587276;

Epoch: 2000; Error: 0.033100694757080634;

The maximum number of train epochs is reached
```


Висновок: В терміналі було показано навчання мережі(номер епохи та значення її помилки), навчання відбулось протягом 2000 епох, найкраща досягнута помилка становила приблизно 0.0331(при початковій – 2.16).

		I ваницький Φ . A .			
		Голенко М. Ю.			ДУ«
Змн.	Арк.	№ докум.	Підпис	Дата	

Завдання 2.6. Побудова багатошарової нейронної мережі для свого варіанту

№ варіанта	Тестові дані
Варіант 8	$y = 3x^2 + 8$

Номер	Багатошаровий персептрон			
варіанта	Кількість	Кількості		
	шарів	нейронів у		
		шарах		
8	3	5-5-1		

```
import numpy as np
import matplotlib.pyplot as plt
import neurolab as nl
min_val = -15
max_val = 15
num_points = 130
x = np. linspace(min_val, max_val, num_points)
y = 3 * np.square(x) + 8
y /= np.linalg.norm(y)
data = x.reshape(num points,1)
labels = y.reshape(num points,1)
#Побудуємо графік вхідних даних.
plt. figure()
plt.scatter(data, labels)
plt. xlabel('Размерность 1 ')
plt.ylabel('Размерность 2')
plt. title('Входные данные')
nn = nl.net.newff([[min val, max val]], [5,5,1])
nn.trainf = nl.train.train gd
error_progress = nn.train(data, labels, epochs=2000, show=100, goal=0.01)
output = nn.sim(data)
# Побудова графіка помилки навчання
plt.figure()
plt.plot(error_progress)
plt.xlabel('Количество эпох')
plt.ylabel('Ошибка обучения')
plt.title('Изменение ошибки обучения')
```

		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
y_dense_pred = nn.sim(x_dense.reshape(x_dense.size, 1)).reshape(x_dense.size)
plt. figure ()
plt.plot(x_dense, y_dense_pred, '-',x, y,'.',x,y_pred,'p')
plt.title('фактические и прогнозные значения')
plt.show()
```

```
sys.path.extend(['C:\\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc/OneDrive/Desktop/labsOAI/lab5'])
Epoch: 100; Error: 12.624911357218284;
Epoch: 300; Error: 1.4843917056795104;
Epoch: 800; Error: 0.28988842570953566;
Epoch: 1000; Error: 0.25655495793776634;
Epoch: 1100; Error: 0.24114451211721338;
Epoch: 1200; Error: 0.22656685294209553;
Epoch: 1300; Error: 0.2100430894894728;
Epoch: 1400; Error: 0.1905609255138166;
Epoch: 1500; Error: 0.16842099291820653;
Epoch: 1600; Error: 0.14484886917387724;
Epoch: 1700; Error: 0.12178145070189894;
Epoch: 1800; Error: 0.10115887456887097;
Epoch: 1900; Error: 0.0841197426459148;
Epoch: 2000; Error: 0.07081787104948606;
The maximum number of train epochs is reached
```


		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Висновок: В терміналі було показано навчання мережі(номер епохи та значення її помилки), навчання відбулось протягом 2000 епох, найкраща досягнута помилка становила приблизно 0.070(при початковій – 12.62).

Завдання 2.7. Побудова нейронної мережі на основі карти Кохонена, що самоорганізується

Лістинг програми:

```
import numpy as np
import neurolab as nl
skv = 0.05
centr = np.array([[0.2, 0.2], [0.4, 0.4], [0.7, 0.3], [0.2, 0.5]])
rand_norm = skv * rand.randn(100, 4, 2)
inp = np.array([centr + r for r in rand_norm])
inp.shape = (100 * 4, 2)
rand.shuffle(inp)
net = nl.net.newc([[0.0, 1.0],[0.0, 1.0]], 4)
# train with rule: Conscience Winner Take All algoritm (CWTA)
error = net.train(inp, epochs=200, show=20)
pl.title('Classification Problem')
pl.subplot(211)
pl.plot(error)
pl.xlabel('Epoch number')
pl.ylabel('error (default MAE)')
w = net.layers[0].np['w']
pl.subplot(212)
pl.plot(inp[:,0], inp[:,1], '.',\
pl.legend(['train samples', 'real centers', 'train centers'])
```

Результат виконання:

```
Sys.path.extend(['C:\\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc/OneDrive/Desktop/labsOAI/lab5'])

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]

Epoch: 20; Error: 33.032468604201384;

Epoch: 40; Error: 32.366723868744685;

Epoch: 60; Error: 32.39983155095098;

Epoch: 80; Error: 32.39935103246758;

Epoch: 100; Error: 32.399630796638476;

Epoch: 120; Error: 32.39968370122053;

Epoch: 140; Error: 32.39969513155501;

Epoch: 160; Error: 32.39969502665073;

Epoch: 180; Error: 32.39969507176634;

The maximum number of train epochs is reached
```

		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Висновок: Ми побудували нейрону мережу на основі карти Кохонена, модель не справилась з завданням (не покращувала свою точність), значення через 200 епох зменшилось на 0.633. Помилка МАЕ — вимірює наскільки середньоквадратична похибка змінюється під час навчання нейромережі.

Завдання 2.8. Дослідження нейронної мережі на основі карти Кохонена, що самоорганізується

№ варіанту	Центри кластера	skv
Варіант 8	[0.1, 0.2], [0.4, 0.3], [0.7, 0.3], [0.2, 0.5], [0.5, 0.3]	0,04

Створіть нейронну мережу Кохонена з 2 входами та 4 нейронами

```
import numpy as np
import neurolab as nl
import numpy.random as rand
import pylab as pl
skv = 0.05
centr = np.array([[0.1, 0.2], [0.4, 0.3], [0.7, 0.3], [0.2, 0.5], [0.5, 0.3]])
rand_norm = skv * rand.randn(100, 5, 2)
inp = np.array([centr + r for r in rand_norm])
inp.shape = (100 * 5, 2)
rand.shuffle(inp)
#Create net with 2 inputs and 4 neurons
```

		I ваницький Φ . A .		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
sys.path.extend(['C:\\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc/OneDrive/Desktop/labsOAI/lab5'])
Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]
Epoch: 20; Error: 46.70276655408858;
Epoch: 40; Error: 45.403123444208845;
Epoch: 60; Error: 45.224667991013334;
Epoch: 80; Error: 45.20893760867882;
Epoch: 100; Error: 45.2073273970846;
Epoch: 120; Error: 45.2073273970846;
Epoch: 140; Error: 45.20731452520573;
Epoch: 160; Error: 45.207314426797076;
Epoch: 200; Error: 45.20731441760479;
The maximum number of train epochs is reached
```


		Іваницький Ф.А.		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Створіть нейронну мережу Кохонена з 2 входами та 5 нейронами

Результат виконання:

```
sys.path.extend(['C:\\Users\\franc\\OneDrive\\Desktop\\labsOAI\\lab5', 'C:/Users/franc/OneDrive/Desktop/labsOAI/lab5'])
Python 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]
Epoch: 20; Error: 41.01342382632121;
Epoch: 40; Error: 40.02608979111954;
Epoch: 60; Error: 39.96627777405012;
Epoch: 80; Error: 39.94555762244039;
Epoch: 100; Error: 39.941571451801156;
Epoch: 120; Error: 39.940162569365654;
Epoch: 140; Error: 39.940162569365654;
Epoch: 160; Error: 39.94008278250279;
Epoch: 180; Error: 39.94008419459332;
Epoch: 200; Error: 39.94105042823992;
The maximum number of train epochs is reached
```


Висновок: Зменшення кількості кластерів при незмінній кількості нейронів може поліпшити точність моделі, оскільки відображає кількість класів або кластерів, які модель намагається розрізнити. У другому випадку (5 нейронів і 4 кластери), зменшення кількості кластерів знизило помилку МАЕ. Таким чином, вибір кількості нейронів і кластерів повинен враховувати природу даних і завдання, яке ви намагаєтеся вирішити. При 5 кластерах і 5 нейронах було отримано значення МАЕ — 39.94, при 5 кластерах і 4 нейронах — 45,20. Якщо порівнювать з попереднім завданням, то в цьому нейрона мережа відпрацювала краще, т.к., значення помилки значно зменшилось.

		I ваницький Φ . A .		
		Голенко М. Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата