18ECE223T - Satellite Communication and Broadcasting

Unit 2 – Link Design

Formulas for Problem Solving

1. To find the power flux density at a distance R from the transmitting antenna

$$\Psi_M = rac{ ext{GP}_S}{4\pi r^2}$$

 Ψ_m – Maximum Power Flux Density at a point

 $P_{\text{s}}-Source$ Power or Transmitted Power also denoted as P_{t}

r – distance between transmitting antenna and the point where flux density is measured

G – Gain of the transmitting antenna

2. To find Gain of a Parabolic Reflector Antenna

$$G = \eta (10.472 fD)^2$$

f is the carrier frequency in GHz D is the reflector diameter in m η is the aperture efficiency η range (0.55 to 0.73)

18ECE223T – Satellite Communication and Broadcasting Unit 2 – Link Design Formulas for Problem Solving

3. To find Equivalent Isotropic Radiated Power

$$EIRP = GP_S$$

EIRP in dBW (decibel relative to 1 W) is expressed as

$$[EIRP]_{dBW} = 10log_{10}(G) + 10log_{10}(P_s)$$

4. To find received power P_R in a receiver at a distance r from the transmitting antenna (considering only free space loss)

$$P_{R} = \Psi_{M} A_{\text{eff}}$$

$$= \frac{\text{EIRP}}{4\pi r^{2}} \frac{\lambda^{2} G_{R}}{4\pi}$$

$$= (\text{EIRP}) (G_{R}) \left(\frac{\lambda}{4\pi r}\right)^{2}$$

G_R – Gain of the receiving antenna

EIRP - G_TP_T (Product of Gain of transmitting antenna and transmitted power)

 $\lambda = c/f$ - Wavelength of the signal

c – Velocity of light in free space (3 x 10⁸ m/s)

f – frequency of the signal

5. To calculate received power in dBW (only with free space loss)

$$[P_R] = [\text{EIRP}] + [G_R] - 10 \log \left(\frac{4\pi r}{\lambda}\right)^2$$

18ECE223T – Satellite Communication and Broadcasting Unit 2 – Link Design Formulae for Problem Solving

Formulas for Problem Solving

$$[P_R] = [EIRP] + [G_R] - [FSL]$$

[FSL] =
$$10 \log \left(\frac{4\pi r}{\lambda}\right)^2$$

FSL is Free Space Loss

6. To find received power considering all losses

$$[P_R] = [EIRP] + [G_R] - [LOSSES]$$

$$[LOSSES] = [FSL] + [RFL] + [AML] + [AA] + [PL]$$

where [PR] = received power, dBW

[EIRP] = equivalent isotropic radiated power, dBW

[FSL] = free-space spreading loss, dB

[RFL] = receiver feeder loss, dB

[AML] = antenna misalignment loss, dB

[AA] = atmospheric absorption loss, dB

[PL] = polarization mismatch loss, dB