

Pathways to incorporate Physics-Based Ground-Motion Modelling into the New Zealand National Seismic Hazard Model

Felipe Kuncar

Brendon Bradley

Ground Motion Prediction

"Empirical" Ground-Motion Models (GMMs)

"Physics-Based" Ground-Motion Simulations

Why Explore the Use of Simulations?

1. Lack of observations at relevant ranges Magnitude, PGA = 0.01 c 10^{-1} Source-to-site distance, R [km]

2. Increasing utilization of groundmotion time series

3. Explicit consideration of salient physics

Potential to generate more accurate and precise predictions

Example 1: Rupture Directivity

Alpine Fault Scenarios

(Bradley et al., 2017a)

Simulation / Empirical

Example 2: Multi-Fault Ruptures

Kaikōura Earthquake

(Bradley et al., 2017b)

t = 0.00s

176°

NZ CFM v1.0 (Seebeck et al., 2024)

Example 3: Nonlinear Site Effects

Wellington Case Study

(de la Torre et al., 2024)

Observations (limited intensity range)

+

1D Time-Domain Nonlinear Site-Response Analysis

Use of Simulations in the Context of a NSHM

Seismic Source Model

 $\lambda(IM > im) = \sum_{i=1}^{n_{rup}} P(IM > im \mid rup_i, site) \lambda(rup_i)$

What is the role that physics-based ground-motion simulations can play?

Hazard Curve

Use of Simulations in the Context of a NSHM

Seismic Source Model

Hazard Curve

- Use of physics-based simulations to inform specific GMM components through parametric adjustments
- This is done when predictions are poorly constrained by data or extrapolation is needed beyond the data
- Examples of physics-based adjustments incorporated into the GMM CB14 (Campell & Bozorgnia, 2014):
 - Donahue and Abrahamson (2014) for the hanging-wall effect
 - Walling et al. (2008) for nonlinear site response

CB14 median ground motion model:

$$\ln Y = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip} + f_{atn}$$

- Data was not sufficient to determine how soil nonlinear effects varied with Vs30, ground motion amplitude, and oscillator period
- Functional form based on Walling et al. (2008):

$$\ln(Amp) = \begin{cases} a \ln\left(\frac{V_{S30}}{V_{LIN}}\right) - b \ln(PGA_{rock} + c_1) \\ + b \ln\left(PGA_{rock} + c\left(\frac{V_{S30}}{V_{LIN}}\right)^n\right) + d & for \ V_{S30} < V_{LIN} \end{cases}$$

$$(a + bn) \ln\left(\frac{V_{S30}}{V_{LIN}}\right) + d & for \ V_{S30} \ge V_{LIN}$$

- Parameter a (linear site response) constrained by data
- Other parameters constrained by multiple (physics-based) 1D equivalent-linear siteresponse analyses

CB14 median ground motion model:

$$\ln Y = f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip} + f_{atn}$$

Functional form based on Donahue and Abrahamson (2014)

Based on multiple hybrid broadband ground-motion simulations

3D Physics-Based Ground-Motion Simulations in Wellington CBD (Lee et al., 2023, 2024)

3D Physics-Based Ground-Motion Simulations in Wellington CBD (Lee et al., 2023, 2024)

Validation:

3D Physics-Based Ground-Motion Simulations in Wellington CBD (Lee et al., 2023, 2024)

Validation:

3D Physics-Based Ground-Motion Simulations in Wellington CBD (Lee et al., 2023, 2024)

Limitations:

- Uncertainty in the basin model
- Lack of (direct) site-characterization at depth

Spatial resolution (grid spacing 50 m)

Validation against observations is crucial to develop confidence in simulations and improve them

This process requires two key ingredients:

- Ground-motion observations (Brendon's talk)
- Site-characterization data (Liam's talk)

Validation

$$\Delta_{es} = \ln IM_{Obs,es} - \ln IM_{Sim,es}$$

What are the causes that explain the differences between the observation and the simulation?

Simulation method? Source model? Velocity model? Site Parameters?

Multiple events and sites:

$$\Delta_{es} = a + \delta B_e + \delta S2S_s + \delta W_{es}^0$$

Lee et al. (2022)
479 Small-Magnitude Events | 212 Sites

Magnitude

Learning from Validation

$$\Delta_{es} = a + \delta B_e + \delta S2S_s + \delta W_{es}^0$$

Constant value of $\Delta \sigma$ used in simulations

Regionalization of $\Delta \sigma$ in simulations?

(Lee et al., 2022)

- In the "short" term, "Approach 2": Informing GMMs through simulations
- Advances in Subduction GMMS

Disaggregations •

Advances in Subduction GMMS

NGA-Sub Database:

NZ NSHM Database:

Advances in Subduction GMMS

Use of physics-based ground-motion simulations for NZ-specific extrapolation beyond the data (e.g., distant and magnitude scaling of the ground motion)

Significant overprediction throughout and to the west of the Taupō Volcanic Zone

Back-arc anelastic attenuation

(Ghofrani and Atkinson, 2011)

- Back-arc anelastic attenuation effect was incorporated using a generic adjustment
- Use of simulations for a NZ-specific adjustment

(Lee et al., 2024)

Closing Remarks

- Simulations can be used for direct computation of PSHA (Approach 1) or to inform empirical GMM components (Approach 2)
- Due to ongoing challenges in Approach 1 regarding validation and uncertainty treatment, Approach 2 will most likely be the initial focus, with progressively greater use of Approach 1

- Validation (with a large number of observations and high-quality site-characterization data) is key to adopt simulations
- Possible uses of simulations: regionalization, extrapolation, back-arc attenuation effects

Pathways to incorporate Physics-Based Ground-Motion Modelling into the New Zealand National Seismic Hazard Model

Felipe Kuncar

Brendon Bradley