## MANUAL DE LECTURAS DEL CURSO:

# Introducción a la Topología y a la Teoría de Homotopía

FREDY VIDES
Centro de Innovación en Cómputo Científico e Industrial
Departamento de Matemática Aplicada
Escuela de Matemática y Ciencias de la Computación
Universidad Nacional Autónoma de Honduras

E-mail: fredy.vides@unah.edu.hn

6 de Agosto de 2019

# Presentación

En este documento presentaremos algunas técnicas y resultados topológicos junto con algunos problemas y ejercicios de práctica.

El material presentado en este documento está orientado a estudiantes avanzados e intermedios de Matemática aplicada a nivel de licenciatura. Es recomendable que el lector tenga conocimientos sólidos en matemática discreta, cálculo avanzado, y funciones de una variable compleja.

# Índice general

| 1. | Top  | ología General                            | 7  |
|----|------|-------------------------------------------|----|
|    | 1.1. | Espacios Topológicos                      | 7  |
|    |      | 1.1.1. La Topología Métrica               | 9  |
|    | 1.2. | Sub-Espacios Topológicos                  | 10 |
|    | 1.3. | Continuidad de Funciones                  | 11 |
|    | 1.4. | Base de una Topología                     | 11 |
|    | 1.5. | Axiomas de Separación                     | 12 |
|    | 1.6. | Compacidad                                | 13 |
|    |      | 1.6.1. Compacidad Local                   | 14 |
|    | 1.7. | Conectividad                              | 14 |
|    | 1.8. | Conectividad por Trayectorias             | 15 |
|    | 1.9. | Productos Finitos de Espacios Topológicos | 15 |
|    |      | Topología Cociente                        |    |
|    |      | Ejercicios                                |    |

# Capítulo 1

# Topología General

## Objetivos

- 1. Definir las conceptos fundamentales de espacios topológicos.
- 2. Presentar las propiedades y resultados fundamentales en espacios topológicos.

### 1.1. Espacios Topológicos

Dado un conjunto cualquiera A escribiremos  $\mathcal{P}(A)$  para denotar el conjunto potencia o de partes de A definido por  $\mathcal{P}(A) = \{S \subseteq A\}$ .

Dado un conjunto X diremos que el conjunto  $\mathcal{T} \subseteq \mathcal{P}(X)$  es una **topología** sobre X si se cumplen las sisguientes condiciones.

- T1: Tenemos que  $\emptyset \in \mathcal{T}$  y  $X \in \mathcal{T}$ .
- T2: Dado  $S \subseteq \mathcal{T}$ , tenemos que  $\bigcup S = \bigcup_{S \in S} S \in \mathcal{T}$ .
- T3: Dado  $S_n = \{S_1, \dots, S_n\} \subseteq \mathcal{T}$  (note que  $S_n$  está restringido por la condición  $|S_n| \le n < \infty$ ), tenemos que  $\bigcap S_n = \bigcap_{S \in S_n} S = \bigcap_{1 \le j \le n} S_j \in \mathcal{T}$ .

Un espacio topológico (ET) es un par  $(X, \mathcal{T})$ , donde X es un conjunto y  $\mathcal{T} \subseteq \mathcal{P}(X)$  es una topología sobre X. Los elementos en la *lista* se denominan *conjuntos abiertos* o *abiertos* en X con respecto a  $\mathcal{T}$ . En otras palabras  $U \subseteq X$  es abierto ssi  $U \in \mathcal{T}$ . Aquí y en lo sucesivo escribimos ssi para abreviar si y solo si.

Dado un ET  $(X, \mathcal{T})$  decimos que  $S \subseteq X$  es **cerrado** en X con respecto a  $\mathcal{T}$  si  $X \setminus S \in \mathcal{T}$ . Si consideramos la colección  $X \setminus \mathcal{T} = \{X \setminus U | U \in \mathcal{T}\}$  de conjuntos **cerrados** en X con respecto a  $\mathcal{T}$ , tenemos que por las condiciones T1-T3 y las leyes de De Morgan:

T1': Tenemos que  $\emptyset \in X \setminus \mathcal{T}$  y  $X \in X \setminus \mathcal{T}$ .

- T2': Dado  $\mathcal{C} \subseteq X \setminus \mathcal{T}$ , tenemos que  $\bigcap \mathcal{C} = \bigcap_{C \in \mathcal{C}} C \in X \setminus \mathcal{T}$ .
- T3': Dado  $C_n = \{C_1, \ldots, C_n\} \subseteq X \setminus \mathcal{T}$  (note que  $C_n$  está restringido por la condición  $|C_n| \le n < \infty$ ), tenemos que  $\bigcup C_n = \bigcup_{C \in C_n} C = \bigcup_{1 \le j \le n} C_j \in X \setminus \mathcal{T}$ .

Cada vez que se escribe que un conjunto X es un ET, asumimos que esto se afirma con respecto a alguna topología T sobre X, cuyo nombre explícito omitiremos cuando no se presente una confusión potencial entre varias posibles topologías sobre X.

Dado un punto x en un ET X (con respecto a alguna topología  $\mathcal{T}$ ), un **vecindario** V de x es un conjunto  $V \subseteq X$  tal que existe  $U \in \mathcal{T}$  con  $x \in U$  y  $U \subseteq V$ .

Dado un conjunto  $S \subseteq X$  en un ET X, decimos que un punto  $x \in X$  es un **punto** interior de S si S es un vecindario de x. El conjunto de todos los puntos interiores de S se denotará por int(S), y se denomina el interior de S.

Dado un conjunto  $S \subseteq X$  en un ET X, decimos que un punto  $x \in X$  es un **punto de** adherencia de S si todo vecindario V de x cumple que  $V \cap S \neq \emptyset$ . El conjunto de todos los puntos de adherencia de S se denotará por  $\overline{S}$ , y se denomina la *clausura* o *cerradura* de S.

**Observación:** Es un ejercicio interesante para el lector verificar las siguientes condiciones para un conjunto  $S \subseteq X$ , con X ET.

$$int(S) \subseteq S \subseteq \overline{S}$$

**Propiedades:** Dado un ET X y dados  $S, T \subseteq X$ :

- 1. int(S) es abierto en X.
- 2. S es abierto en X ssi int(S) = S.
- 3.  $\overline{T}$  es cerrado en X.
- 4. T es cerrado en X ssi  $\overline{T} = T$ .

Dada una sucesión  $\{x_n\}_{n\geq 1}\subseteq X$ , con X ET, decimos que  $\{x_n\}$  converge a  $x\in X$  si para cualquier vecindario U de x existe  $N\in \mathbf{Z}^+$  tal que  $x_j\in U$ , j>N. Escribiremos  $x_n\to x$  para denotar que  $\{x_n\}$  converge a  $x\in X$ , de ser necesario especificar la topología  $\mathcal{T}$  sobre X con respecto a la cual se considera la convergencia, escribiremos  $x_n\to_{\mathcal{T}} x$ .

**Propiedad:** Dado un ET X y dados  $\{x_n\} \subseteq S \subseteq X$ , si  $x_n \to x \in X$  entonces  $x \in \overline{S}$ .

Dado  $S \subseteq X$  con X ET,  $x \in X$  se dice **punto frontera** de S si  $x \in \overline{S}$  y  $x \in \overline{X \setminus S}$ . El conjunto de todos los puntos frontera del conjunto S se denota por  $\partial S$ , con base en la defición previa es claro que.

$$\partial S = \overline{S} \cap \overline{X \backslash S} = \partial (X \backslash S)$$

De aquí en adelante escribiremos  $\sqcup$  para denotar la operación de unión disjunta de conjuntos.

**Propiedad:** Dada un ET X y dado  $S \subseteq X$ ,  $\overline{S} = int(S) \sqcup \partial S$ .

#### 1.1.1. La Topología Métrica

Dado un conjunto X se denomina métrica en X a cualquier función  $d: X \times X \to \mathbf{R}$  (con valores en los números reales) que cumple con las siguientes restricciones.

M1:  $d(x,y) \ge 0$  para cada  $x,y \in X$ .

M2: d(x, y) = 0 ssi x = y.

M3: d(x,y) = d(y,x) para cada  $x, y \in X$ .

M4: (Designal dad triangular) d(x,y) = d(x,z) + d(z,y) para cada  $x,y,z \in X$ .

Dado un conjunto X y una métrica d en X, el par (X, d) se denomina espacio métrico (EM). Cuando escribimos que X es un EM, se entiende que existe una métrica  $d_X$  tal que  $(X, d_X)$  determina un EM.

Dados  $x \in X$  con (X, d) EM y dado r > 0. Escribimos B(x; r) para denotar el conjunto que llamaremos **bola abierta** con centro en x y radio r  $\{y \in \}$ , el cual estará definido por la expresión.

$$B(x;r) = \{ y \in X \mid d(y,r) < r \}$$
(1.1)

Dado  $S \subseteq X$  con (X,d) EM, decimos que  $x \in X$  es un punto interior de S si existe r > 0 tal que  $B(x;r) \subseteq S$ . Escribiremos int(S) para denotar el conjunto de puntos interiores de S, el cual llamaremos interior de S. Decimos que  $S \subseteq X$  es abierto en X (con respecto a la métrica d), si S = int(S).

Dado  $S \subseteq X$  con (X, d) EM, decimos que  $x \in X$  es un punto de adherencia de S si para cada r > 0  $B(x; r) \cap S \neq \emptyset$ . Escribiremos *overlineS* para denotar el conjunto de puntos de adherencia de S, el cual llamaremos *clausura o cerradura* de S. Decimos que  $S \subseteq X$  es *cerrado* en X (con respecto a la métrica d), si  $S = \overline{S}$ .

Observación: Dado  $S \subseteq X$  con X EM.

$$int(S) \subseteq S \subseteq \overline{S}$$

Dado un EM (X, d) se demonina **topología métrica** (inducida por la métrica d), a la topología más pequeña sobre X que contiene el conjunto  $\mathcal{A}_X = \{S \subseteq X | int(S) = S\}$ , donde el interior de cada conjunto en X se calcula con respecto a las bolas abiertas determinadas por d. Escribiremos  $\mathcal{T}_d$  para denotar la topología métrica sobre X inducida por d.

Dado un ET  $(X, \mathcal{T})$  diremos que el espacio topológico X es metrizable, si existe una métrica d para X tal que  $\mathcal{T} = \mathcal{T}_d$ .

Dada una sucesión  $\{x_n\}_{n\geq 1}\subseteq X$  con (X,d) EM, decimos que  $\{x_n\}$  converge a  $x\in X$ , si  $\lim_{n\to\infty} d(x_n,x)=0$ , escribiremos  $x_n\to x$  para indicar que la sucesión converge a x.

Propiedad El límite de toda sucesión convergente en un EM es único.

Decimos que una sucesión  $\{s_n\} \subseteq X$  con (X, d) EM, es de Cauchy si  $\lim_{n,m\to\infty} d(s_n, s_m) = 0$ , es decir, dado  $\varepsilon > 0$  existe  $N \in \mathbf{Z}^+$  tal que  $d(s_n, s_m) < \varepsilon$  para cada  $n, m \ge N$ .

**Propiedades.** Dado un EM (X, d):

- Si  $\{x_n\}_{n\geq 1}\subset X$  es convergente, entonces es de Cauchy.
- Si  $\{x_n\}_{n\geq 1}\subset X$  es de Cauchy, y si  $\{x_{n_k}\}_{k\geq 1}\subset \{x_n\}_{n\geq 1}$  es una subsucesión tal que  $x_{n_k}\to x$ , entonces  $x_n\to x$ .

Un EM (X,d) se dice completo si toda sucesión de Cauchy en X converge en x, es decir, si para cada sucesión de Cauchy  $\{t_n\}_{n\geq 1}\subseteq X$  existe  $t\in X$  tal que  $t_n\to t$ .

**Propiedades.** Dado un EM (X, d):

- Si X es completo, todo subespacio cerrado  $Y \subset X$  es completo.
- Todo subespacio  $Y \subset X$  completo es cerrado en X.

## 1.2. Sub-Espacios Topológicos

Dado un conjunto  $S \subseteq X$  con X ET con respecto a alguna topología  $\mathcal{T}$ , es fácil verificar que el conjunto  $S \cap \mathcal{T} = \{S \cap U | U \in \mathcal{T}\}$  define una topología sobre S. Denotaremos por  $\mathcal{T}_{X|S}$  la topología  $S \cap \mathcal{T}$ , la cual llamaremos topología relativa o de sub-espacio topológico (SET) respecto de  $\mathcal{T}$ , diremos además que S es un sub-espacio topológico de X con respecto a la topología relativa despecto (heredada) de X.

**Observación:** Note que  $V \subseteq S$  es un *abierto relativo* en S, ssi  $V = S \cap U$  para algún abierto U en X. De forma equivalente,  $C \subseteq S$  es un *cerrado relativo* en S, ssi  $S \setminus C$  es un abierto relativo en S, es decir, si  $S \setminus C = S \cap G$  para algún abierto G en X.

Dado  $E\subseteq S$  con S SET de un ET X, escribimos  $\overline{E}^S$  para denotar la  $clausura\ relativa$  de E en S.

**Propiedades:** Dado un ET X y un SET  $S \subseteq X$ :

- 1. E es cerrado relativo en S, ssi  $E = S \cap F$  para algún  $F \subseteq X$  cerrado en X.
- 2.  $\overline{E}^S = \overline{E} \cap S$ , donde  $\overline{E}$  es la clausura de E en X.

Dado  $S \subseteq X$  con X ET, decimos que S es **denso** en X, si  $\overline{S} = X$ . Decimos que un ET Y es **separable** si contiene una sucesión densa, es decir, si existe  $\{y_n\}_{n\geq 1} \subseteq Y$  tal que  $\overline{\{y_n\}_{n\geq 1}} = Y$ .

Decimos que un EM (X,d) es totalmente acotado (TA) si para cada  $\varepsilon > 0$  existen  $x_1, \ldots, x_n \in X$  tales que:

$$X \subseteq \bigcup_{1 \le j \le n} B(x_j; \varepsilon)$$

#### 1.3. Continuidad de Funciones

De aquí en adelante escribiremos  $Y^X$  para denotar el conjunto de funciones del conjunto X al conjunto Y.

Dada  $f \in Y^X$  con X e Y ET, decimos que f es **continua** en X, si para cada  $V \subseteq Y$  abierto en Y,  $f^{-1}(V)$  es abierto en X. Escribimos C(X,Y) para denotar el conjunto de funciones continuas de X a Y.

Dada  $f \in Y^X$  con X e Y ET, diremos que f es **continua en el punto**  $x \in X$ , si para cualquier vecindario abierto V de f(x), existe un vecindario abierto U de x tal que  $f(U) \subseteq V$ .

**Propiedades:** Dados ET X, Y y Z:

- 1.  $f \in C(X,Y)$  ssi f es continua en cada punto  $x \in X$ .
- 2. Si  $f \in C(X,Y)$  y  $g \in C(Y,Z)$ , entonces  $g \circ f \in C(X,Z)$ .

Dados ET X e Y, decimos que  $f \in Y^X$  es un **homeomorfismo** de X a Y, si f es biyectiva y bicontinua, es decir, si f es inyectiva, sobreyectiva,  $f \in C(X,Y)$  y  $f^{-1} \in C(Y,X)$ . Cuando existe un homemorfismo f entre dos ET X,Y decimos que X e Y son **homeomorfos**, lo cual denotamos por  $X \simeq_H Y$ .

**Observación:** Es posible observar que la relación  $\simeq_H$  entre espacios topológicos es una relación de equivalencia.

Dado un ET X, una propiedad o característica  $\mathbf{P}[X]$  del ET X que puede ser expresada en términos de sus conjuntos abiertos (o cerrados), se denomina **propiedad topológica** de X. En particular, si un ET X tiene una propiedad  $\mathbf{P}$ , y si cada  $Y \simeq_H X$  tiene dicha propiedad,  $\mathbf{P}$  es una propiedad topológica.

# 1.4. Base de una Topología

Dado un ET  $(X, \mathcal{T})$  decimos que un conjunto  $\mathcal{B} \subseteq \mathcal{T}$  es una base de  $\mathcal{T}$  si cada elemento de  $\mathcal{T}$  es una unión de elementos de  $\mathcal{B}$ , es decir,  $\mathcal{T} = \{ \cup \mathcal{S} | \mathcal{S} \subseteq \mathcal{B} \}$ .

**Propiedades:** Dado un ET  $(X, \mathcal{T})$ :

- 1. Un conjunto  $\mathcal{B} \subseteq \mathcal{T}$  es base de  $\mathcal{T}$  ssi, para cada  $x \in X$  y cada vecindario  $U \subseteq X$  de x, existe  $V \in \mathcal{B}$  tal que  $x \in V \subseteq U$ .
- 2. Un conjunto  $\hat{\mathcal{B}} \subseteq \mathcal{P}(X)$  es base de  $\mathcal{T}$  ssi  $\hat{\mathcal{B}}$  tiene las siguientes propiedades:

- Para cada  $x \in X$ , existe  $V \in \hat{\mathcal{B}}$  tal que  $x \in V$ .
- Si  $U, V \in \hat{\mathcal{B}}$  y  $x \in U \cap V$ , existe  $W \in \hat{\mathcal{B}}$  tal que  $x \in W \subset U \cap V$ .

Dado un ET X y dada una colección  $\mathcal{C} \subseteq \mathcal{P}(X)$  de abiertos en X, decimos que  $\mathcal{C}$  es una *cubierta* de X si  $X \subseteq \cup \mathcal{C}$ . Decimos además que  $\mathcal{S} \subseteq \mathcal{C}$  es una *sub-cubierta* (abierta) de X con respecto a  $\mathcal{C}$ , si  $X \subseteq \cup \mathcal{S}$ .

Un ET  $(X, \mathcal{T})$  se dice **segundo contable** si existe una base contable  $\{B_n\}_{n\geq 1}$  para  $\mathcal{T}$ . Dados X, Y EM decimos que  $f \in Y^X$  es uniformemente continua si para cada  $\varepsilon > 0$  existe  $\delta > 0$ , tal que para cada  $x, y \in X$  tales que  $d_X(x, y) < \delta$ , se tiene que  $d_Y(f(x), f(y)) < \varepsilon$ .

**Propiedades:** Dado un ET X segundo contable.

- 1. Teorema de Lindelöf. Toda cubierta abierta abierta de X tiene una sub-cubierta contable.
- 2. X es separable.

## 1.5. Axiomas de Separación

Diremos que un ET  $(X_1, \mathcal{T}_1)$  es  $\mathbf{T}_1$  si para cada  $x, y \in X$  tales que  $x \neq y$ , existe  $U \in \mathcal{T}_1$  tal que  $y \in U$  y  $x \notin U$ .

**Observación:** Es posible observar que un ET  $(X, \mathcal{T})$  es  $\mathbf{T}_1$  ssi para cada  $x \in X$ ,  $X \setminus \{x\} \in \mathcal{T}$ . Es decir, X es  $\mathbf{T}_1$  ssi para cada  $x \in X$ ,  $\{x\}$  es cerrado con respecto a  $\mathcal{T}$ .

Un  $ET(X_2, \mathcal{T}_2)$  se denomina **Hausdorff** o  $\mathbf{T}_2$  si para cada  $x, y \in X$  tales que  $x \neq y$ , existen  $U, V \in \mathcal{T}_2$  que cumplen con las siguientes restricciones.

$$\begin{cases} x \in U \\ y \in V \\ U \cap V = \emptyset \end{cases}$$

Un ET  $(X_3, \mathcal{T}_3)$  se denomina **regular** si para cada  $x \in X$  y cada  $F \subseteq X$  cerrado tales que  $x \notin F$ , existen  $U, V \in \mathcal{T}_2$  que cumplen con las siguientes restricciones.

$$\begin{cases} x \in U \\ F \subseteq V \\ U \cap V = \emptyset \end{cases}$$

Un ET se dice  $T_3$  si es regular y  $T_1$ .

Un  $ET(X_4, \mathcal{T}_4)$  se denomina **normal** si para cada  $E, F \subseteq X$  cerrados tales que  $E \cap F = \emptyset$ , existen  $U, V \in \mathcal{T}_2$  que cumplen con las siguientes restricciones.

$$\begin{cases}
E \subseteq U \\
F \subseteq V \\
U \cap V = \emptyset
\end{cases}$$

1.6. COMPACIDAD

Un ET se dice  $T_4$  si es normal y  $T_1$ .

Observación:  $T_4 \Longrightarrow T_3 \Longrightarrow T_2 \Longrightarrow T_1$ 

**Propiedad:** Todo EM es  $T_4$ .

**Propiedad:** Un ET X es normal ssi para cada  $E \subset X$  cerrado y cada  $W \subset X$  abierto tal que  $E \subset W$ , existe  $U \subset X$  abierto tal que  $E \subset U$  y  $\overline{U} \subset W$ .

**Propiedad:** (Lema de Urysohn) Dados dos conjuntos cerrados disjuntos E y F en un ET normal X, existe  $f \in C(X, [0, 1])$  tal que f = 0 en E y f = 1 en F.

### 1.6. Compacidad

Decimos que un ET X es **compacto** si toda cubierta abierta de X tiene una subcubierta finita. Es decir, si para toda colección de abiertos  $\mathcal{C} \subseteq \mathcal{P}(X)$  en X tales que  $X \subseteq \bigcup \mathcal{C}$ , existen  $C_1, \ldots, C_n \in \mathcal{C}$  tales que  $X \subseteq \bigcup_{1 < j < n} C_j$ .

Dado un conjunto  $S \subseteq X$  decimos que S es compacto (como sub-espacio topológico de X) con respecto a la topología relativa en X, si para toda colección de abiertos  $\mathcal{D} \subseteq \mathcal{P}(X)$  en X tales que  $S \subseteq \bigcup \mathcal{D}$ , existen  $D_1, \ldots, D_m \in \mathcal{D}$  tales que  $S \subseteq \bigcup_{1 \le j \le m} D_j$ .

**Propiedades** Dados ET  $X \in Y$ .

- 1. Toda unión finita de sub-conjuntos compactos de X es compacta.
- 2. Si  $C \subseteq X$  es cerrado y X es compacto, entonces C es compacto.
- 3. Si  $S \subset X$  es compacto y X es  $T_2$ . Para cada  $x \in X \setminus S$  existen abiertos  $U, V \subset X$  tales que  $x \in U$ ,  $S \subset V$  y  $U \cap V = \emptyset$ .
- 4. Si X es compacto y  $T_2$ , entonces X es normal.
- 5. Si X es compacto y  $f \in C(X,Y)$ , entonces f(X) es compacto.
- 6. Si X es compacto, Y es Hausdorff,  $f \in C(X,Y)$  y  $f: X \hookrightarrow Y$ , entonces f es un homeomorfismo de X a f(X).

**Propiedades** Dados EM  $X \in Y$ .

- 1. X es compacto ssi es completo y totalmente acotado.
- 2. X es compacto ssi toda sucesión en X tiene una subsucesión convergente en X.
- 3. Si X es compacto, entonces X es separable y segundo contable.
- 4. Si X es compacto, entonces cada  $f \in C(X,Y)$  es uniformemente continua.

**Propiedades** (Teorema de Heine-Borel) Dado  $X \subseteq \mathbf{R}^n$  subsepacio de  $\mathbf{R}^n$  con respecto a la métrica Euclidiana usual.

- 1. X es compacto ssi es cerrado y acotado.
- 2. X es compacto ssi toda sucesión en X tiene una subsucesión convergente en X.

#### 1.6.1. Compacidad Local

Un ET X se dice localmente compacto (LC) si, para cada  $p \in X$ , existe un abierto  $W \subset X$  tal que  $p \in W$  y  $\overline{W}$  es compacto.

**Propiedad.** (Compactificación unipuntual) Sea X un ET T2 LC y sea  $Y = X \cup \{\infty\}$  para algún punto  $\infty \notin X$ . Entonces existe una única topología  $\mathcal{T}_{\infty}$  tal que  $(T, \mathcal{T}_{\infty})$  es un ET T2 compacto y la topología relativa en X heredada de Y coincide con la topología original para X.

En general un ET compacto Y se dice una **compactificación** de un ET X, si existe  $S \subseteq Y$  tal que  $X \simeq_H S$  y  $\overline{S} = Y$ .

#### 1.7. Conectividad

Dado un ET  $(X, \mathcal{T})$  un par  $U, V \subset X$  se dice una **separación** de X, si:

$$\begin{cases} U \cup V = X \\ U \cap V = \emptyset \\ U, V, X \setminus U, X \setminus V \in \mathcal{T} \\ U \neq \emptyset, V \neq \emptyset \end{cases}$$

Un ET  $(X, \mathcal{T})$  se dice **desconexo** si existe una separación  $U, V \subset X$  de X, en caso contrario se dice que el ET X es **conexo**. Un subconjunto S de un ET X se dice conexo, si es conexo en la topología relativa.

**Propiedades.** Dados ET X, Y:

- Si X es conexo y  $f \in C(X,Y)$ , entonces  $f(X) \subseteq Y$  es conexo.
- Sea  $\{E_{\alpha}\}_{{\alpha}\in A}$  una familia de sub-conjuntos conexos de X tales que  $E_{\alpha}\cap E_{\beta}\neq\emptyset$  para cada  $\alpha,\beta\in A$ . Entonces  $\bigcup_{{\alpha}\in A}E_{\alpha}$  es conexo.

Dado un punto x en un ET X, la componente conexa de x, denotada por C(x), es la unión de todos los sub-conjuntos conexos de X a los que pertenece x (que contienen a  $\{x\}$ ).

**Propiedad.** Dos componentes conexas de un ET X son disjuntas ó coinciden. Las componentes conexas de X forman una partición de X en subconjuntos conexos maximales.

**Propiedad.** Cada intervalo (abierto, cerrado,...) en **R** es conexo.

### 1.8. Conectividad por Trayectorias

Sea X un ET y sean  $x_0, x_1 \in X$ . Una trayectoria en X de  $x_0$  a  $x_1$  es una función  $\gamma \in C([0,1], X)$  tal que  $\gamma(0) = x_0$  y  $\gamma(1) = x_1$ .

Decimos que un ET X es conexo por trayectorias (CPT) si para cada par  $x_0, x_1 \in X$  existe una trayectoria  $\gamma$  en X de  $x_0$  a  $x_1$ .

**Propiedad.** La relación  $x \sim_{CPT} y \iff$  "existe una trayectoria en X de x a y. es una relación de equivalencia en X.

Dado  $x \in X$  con X ET, la clase  $[x]_{CPT} = \{y \in X | y \sim_{CPT} x\}$  de denomina componente de trayectorias de x en X.

**Propiedades.** Dado un ET X:

- $Si\ X\ es\ CPT\ entonces\ X\ es\ conexo.$
- Cada componente conexa de X es una unión de componentes de trayectorias.

#### 1.9. Productos Finitos de Espacios Topológicos

Sean  $(X_1, \mathcal{T}_{X_1}), \ldots, (X_n, \mathcal{T}_{X_n})$  ET. La topología producto  $\mathcal{T}_{\Pi}$  en el producto cartesiano  $X = \prod X_j = X_1 \times \cdots \times X_n$  es la topología para la cual una base de abiertos está dada por los rectángulos:

$$\mathcal{R}_X = \{U_1 \times \cdots \times U_n | U_j \in \mathcal{T}_{X_i}, 1 \le j \le n\}$$

Que  $\mathcal{R}_X$  determina una base es consecuencia de resultados previos, junto con el hecho de teoría de conjuntos:

$$(U_1 \times \cdots \times U_n) \cap (V_1 \times \cdots \times V_n) = (U_1 \cap V_1) \times \cdots \times (U_n \cap V_n)$$

A menos que se especifique lo contrario, supondremos que cada producto finito de espacios topológicos es provisto automáticamente con la toplogía producto.

Sea  $\pi_j: \prod X_k \to X_j$  el mapa proyección definido por  $\pi_j((x_1, \dots, x_n)) = x_j, 1 \le j \le n$ . Si  $U_j \in \mathcal{T}_{X_j}$ , entonces

$$\pi_j^{-1}(U_j) = X_1 \times \cdots X_{j-1} \times U_j \times X_{j+1} \times \cdots X_n$$

es un abierto básico. Esto implica que  $\pi_j \in C(\prod X_k, X_j)$  para cada  $1 \leq j \leq n$ .

Dado  $x = (x_1, ..., x_n) \in \prod X_k$ , definimos el **j-slice**  $S_j(x)$  como  $S_j(x) = \{x_1\} \times ... \times \{x_{j-1}\} \times X_j \times \{x_{j+1}\} \times ... \times \{x_n\}$ . Tenemos que el embebimiento  $X_j \hookrightarrow S_j(x)$  define un homeomorfismo  $X_j \simeq_H S_j(x)$  para cada  $1 \le j \le n$ .

**Propiedades.** Sean  $X_1, \ldots, X_n$  espacios topológicos:

- $\mathcal{T}_{\Pi}$  es la topología más pequeña sobre  $\prod X_k$  tal que  $\pi_j \in C(\prod X_k, X_j)$  para cada  $1 \leq j \leq n$ .
- Para cada  $U \in \mathcal{T}_{\Pi}$ ,  $\pi_j(U) \in \mathcal{T}_{X_j}$  para cada  $1 \leq j \leq n$ .
- Sea E un ET y sea  $f \in (\prod X_k)^E$ . Entonces  $f \in C(E, \prod X_k)$  ssi  $\pi_j \circ f \in C(E, X_j)$  para cada  $1 \leq j \leq n$ .
- Si cada  $X_i$  es  $T_2$ , entonces  $\prod X_k$  es  $T_2$ .
- Si cada  $X_j$  es CPT, entonces  $\prod X_k$  es CPT.
- Si cada  $X_j$  es conexo, entonces  $\prod X_k$  es conexo.
- (Teorema de Tychonoff) Si cada  $X_j$  es compacto, entonces  $\prod X_k$  es compacto.

# 1.10. Topología Cociente

Sea  $(X, \mathcal{T})$  un ET, y sea  $\sim$  una relación de equivalencia en X. Consideremos el conjunto cociente  $X/\sim$  definido por:

$$X/\sim = \{[x]|x \in X\}$$

donde  $[x] = \{y \in X | y \sim x\}$ . Existe una proyección natural  $\pi : X \to X/\sim$  definida por  $\pi(x) = [x]$ , para cada  $x \in X$ . Se define como topología cociente en X con respecto a  $\sim$ , la topología  $\mathcal{T}_{X/\sim}$  sobre  $X/\sim$  determinada por todos los conjuntos  $U \subset X/\sim$  tales que  $\pi^{-1}(U) \in \mathcal{T}$ .

**Propiedad.** Sea X un ET y sea  $\sim$  una relación de equivalencia en X. Entonces  $\mathcal{T}_{X/\sim}$  es la topología más grande para la que la proyección  $\pi: X \to X/\sim$  es continua.

**Propiedad.** Sea X un ET y sea  $\sim$  una relación de equivalencia en X y  $\pi: X \to X/\sim$  el mapa de proyección. Dado un ET Y,  $f \in C(X/\sim,Y)$  ssi  $f \circ \pi \in C(X,Y)$ .

**Propiedad.** Sea  $f \in C(X,Y)$  con X,Y ET. Sea  $\sim$  una relación de equivalencia en X tal que f es constante en cada clase de equivalencia. Entonces existe  $g \in C(X/\sim,Y)$  tal que  $f = g \circ \pi$ . Es decir el diagrama siguiente es soluble.



**Propiedad.** Sean X,Y ET  $T_2$  compactos y sea  $f \in C(X,Y)$  tal que f(X) = Y. Si definimos una relación de equivalencia en X como  $x \sim x' \iff f(x) = f(x')$ . Entonces  $Y \simeq_H X/\sim$ .

1.11. EJERCICIOS 17

## 1.11. Ejercicios

**Instrucciones:** Resolver las siguientes problemas, dejando evidencia de argumentos precisos y riqurosos que respalden sus resultados y conclusiones.

1. Dado un conjunto  $X \neq \emptyset$ . Probar que la función  $d: X \times X \to \mathbf{R}$  definida por

$$d(x,y) = \begin{cases} 1, & x \neq y, \\ 0, & x = y. \end{cases}$$

Define una métrica en X. Probar que cada subconjunto del EM(X,d) resultante es abierto y cerrado a la vez.

2. Probar que la función  $d: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$  definida por

$$d(\mathbf{x}, \mathbf{y}) = \max_{1 \le k \le n} |x_k - y_k|.$$

Define una métrica en  $\mathbb{R}^n$ . En el caso particular n=2, dibuje una representación gráfica de la bola B((0,0),1) en  $\mathbb{R}^2$  y del conjunto  $\overline{B((0,0),1)}$ .

- 3 Para los siguientes ejercicios asumir que (X,d) es un espacio métrico.
  - a Probar que si  $Y \subset X$ , Int(Y) coincide con la unión de todos los subconjuntos abiertos de X que están contenidos en Y.
  - b Probar que si  $Y \subset X$ ,  $\overline{Y}$  coincide con la intersección de todos los subconjuntos cerrados de X que contienen a Y.
  - c Un conjunto de la forma  $\hat{B}(x;r) := \{y \in Y | d(x,y) \le r\}$  es llamado una bola cerrada. Probar que una bola cerrada es un conjunto cerrado. Es  $\hat{B}(x;r)$  siempre igual a  $\overline{B}(x;r)$ ? Es cierto lo anterior para  $X = \mathbb{R}^n$ ? Probar sus respuestas.
  - d Un punto  $x \in X$  es un punto límite de un subconjunto S de X si toda bola B(x;r) contiene infinitos puntos de S. Probar que x es un punto límite de S ssi existe una sucesión  $\{x_n\}$  en S tal que  $x_n \to x$  y  $x_n \neq x$  para cada n. Probar que el conjunto de puntos límite de S es cerrado.
  - e Un punto  $x \in S$  es un punto aislado de S si existe r > 0 tal que  $B(x;r) \cap S = \{x\}$ . Probar que la clausura de un subconjunto S de X es la unión disjunta de los puntos límite y los puntos aislados de S.
  - f Tenemos que dos métricas d y  $\rho$  son equivalentes ssi las sucesiones convergetes en (X,d) son las mismas sucesiones convergentes en  $(X,\rho)$ . Dada la función  $\rho$ en  $X\times X$  definida por

$$\rho(x,y):=\min\{1,d(x,y)\},\ x,y\in X.$$

Probar que  $\rho$  es una métrica y que es equivalente d.

3. Una sucesión  $\{x_k\}_{k=1}^{\infty}$  en un EM (X,d) es una sucesión rápida de Cauchy is

$$\sum_{k=1}^{\infty} d(x_k, x_{k+1}) < \infty.$$

Probar que una sucesión rápida de Cauchy es una sucesión de Cauchy.

- 4. Probar que toda sucesión de Cauchy tiene un subsucesión que es una sucesión rápida de Cauchy.
- 5. Probar que el conjunto de puntos aislados de un EM completo contable (X, d) forma un subconjunto denso de X.
- 6. Sea  $S \neq \emptyset$ , sea (X,d) un EM, y sea  $\mathcal{F}$  el conjunto de funciones de S a X. Para  $f,g \in \mathcal{F}$ , definir

$$\rho(f,g) = \sup_{s \in S} \min\{1, d(f(s),g(s))\}.$$

Probar que  $\rho$  es una métrica en  $\mathcal{F}$ . Probar que una sucesión  $\{f_n\}$  converge a f en el  $EM(\mathcal{F},\rho)$  ssi  $\{f_n\}$  converge uniformemente a f en X. Probar que  $(\mathcal{F},\rho)$  es completo ssi (X,d) es completo.

- 7. Probar que el conjunto de números irracionales es denso en R.
- 8. Si consideramos a los números racionales  $\mathbf{R}_0$  como un subespacio de  $\mathbf{R}$ . Existen puntos aislados en el EM  $(\mathbf{R}_0, d)$ ? Cuál es la razón por la que no se contradice lo establecido en el ejercicio 6?
- 9. Proveer un ejemplo de un EM totalmente acotado que no es compacto.
- 10. Proveer un ejemplo de un EM completo que no es compacto.
- 11. Probar directamente que un espacio métrico compacto es totalmente acotado.
- 12. Probar que si (X,d) es un EM, entonces d es una función contínua de  $X \times X$  a  $\mathbf{R}$ . Probar que para cada  $x_0 \in X$ , la función  $X \to \mathbf{R}, x \mapsto d(x_0, x)$  es una función uniformemente contínua de X a  $\mathbf{R}$ .
- 13. Probar que dos métricas d y  $\rho$  para X son equivalentes ssi el mapa identidad id :  $(X,d) \to (X,\rho), x \mapsto x$  es bicontínuo (es decir, el mapa y su inverso son contínuos).
- 15. Probar que si (X, d) es un EM, para cada  $x_0 \in X$ , la función  $X \to \mathbf{R}, x \mapsto d(x_0, x)$  es una función uniformemente contínua de X a  $\mathbf{R}$ .

1.11. EJERCICIOS 19

- 16. Sea (X,d) un EM. Probar o refutar las siguientes proposiciones:
  - (a) Si  $Y \subset X$ , int(Y) coincide con la unión de todos los subconjuntos abiertosde X que están contenidos en X.
  - (b) Si  $Y \subset X$ ,  $\overline{Y}$  coincide con la intersección de todos los subconjuntos cerrados de X que contienen a Y.
  - (c) Para cada  $x \in X$ ,  $int(X \setminus \{x\}) = X \setminus \{x\}$ .
- 17. Determine las clausuras de los siguientes SE métricos de R respecto de la métrica usual:
  - (a)  $A = \{1/n | x \in \mathbf{Z}^+\}$
  - (b)  $B = \{1 1/n | n \in \mathbf{Z}^+ \}$
  - (c)  $C = \{x | 0 < x < 1\}$
  - (d)  $C = \{x | 0 < x < 1\}$
- 18. Probar que una función  $f: X \to Y$  es contínua ssi  $f^{-1}(E)$  es un subconjunto cerrado de X para todo subconjunto cerrado E de Y.
- 19. Probar que si S es un subconjunto de un ET X, entonces  $\overline{S}$  es la intersección de todos los conjuntos cerrados que contienen a S.
- 20. Probar que si B es una base para una topología sobre X, entonces la topología generada por B es igual a la intersección de todas las topologías sobre X que contienen a B. Calcular una base para la topología relativa del conjunto de números enteros Z ⊂ R, con respecto a la topología usual en R.
- 21. Sea  $\{\mathcal{T}_{\alpha}\}$  una familia de topologías sobre X. Pruebe que existe una única topología sobre X más pequeña entre todas las que contienen a todas las colecciones  $\mathcal{T}_{\alpha}$ , y una única topología más grande entre todas las que están contenidas en toda  $\mathcal{T}_{\alpha}$ .
- 22. Sea  $X = [0, 8] \cap \mathbf{Z}$  y sea  $f \subset X \times X$  la función definida por

$$f = \{(0,0), (1,1), (2,2), (3,0), (4,1), (5,2), (6,0), (7,1), (8,2)\}.$$

Sea  $\sim$  la relación de equivalencia en  $X \times X$  definida por la regla  $x \sim y$  ssi f(x) = f(y). Calcular:

- (a) La topología más pequeña  $\mathcal{T}_X$  de X que contiene a  $\{\{0,3,6\},\{1,4,7\},\{2,5,8\}\}$ .
- (b) La topología cociente  $\mathcal{T}_{X/\sim}$  con respecto a  $\mathcal{T}_X$ .
- (c) Calcular las componentes conexas  $C(\pi(x))$  y  $\pi(C(x))$  para cada  $x \in X$ . Donde  $\pi: X \to X/\sim$  es la proyección natural sobre el espacio cociente  $X/\sim$ .

- 23. Sea  $S^1$  un ET homeomorfo a  $\{(x,y) \in \mathbf{R}^2 | x^2 + y^2 = 1\}$ . Probar que el ET  $S^1 \times S^1 \times S^1$  es compacto y CPT.
- 24. Un punto p de un ET X es un punto de corte si  $X \setminus \{p\}$  es desconexo.
  - (a) Probar que la propiedad de tener un punto de corte es una propiedad topológica.
  - (b) Utilizar la propiedad topológica de punto de corte para probar que (0,1) y [10,100) no son homeomorfos. Son  $[\pi,\sqrt{2})$  y  $(-\infty,\pi]$  homeomorfos?
- 25. (a) Probar en detalle que la propiedad de ser conexo es una propiedad topológica.
  - (b) Probar que si X es un ET homeomorfo a [0,1], entonces X es conexo.
- 26. Se dice que un ET X tiene la propiedad de punto fijo (PPF) si cada mapa  $f: X \to X$  tiene un punto fijo. Propiedad que la PPF es una propiedad topológica.
- 27. Probar or refutar que los siguientes ET son CPT:
  - (a)  $\mathbf{S}^1 \simeq_h \{(x,y) \in \mathbf{R}^2 | x^2 + y^2 = 1\}$
  - (b)  $\mathbf{S}^2 \simeq_h \{(x, y, z) \in \mathbf{R}^3 | x^2 + y^2 + z^2 = 1\}$
  - (c)  $\mathbf{X} = \mathbf{S}^1 \times \mathbf{S}^1 \times \mathbf{S}^1 \times \mathbf{S}^2$
  - (d)  $\mathbf{R}_2^* = \mathbf{R}^2 \setminus \{(0,0)\}.$
- 28. Probar en detalle que la propiedad de ser conexo es una propiedad topológica.
- 29. Probar que cada subconjunto conexo de R es un intervalo.
- 30. Un punto p de un ET X es un punto de corte si  $X \setminus \{p\}$  es desconexo. Probar que la propiedad de tener un punto de corte es una propiedad topológica.
- 31. Sea  $f \in C([0,1], \mathbf{R}^n)$ ,  $n \geq 2$ , una función uno-uno. Probar que f([0,1]) no tiene interior.
- 32. Un ET es totalmente desconexo si sus componentes conexas son todas singuletes. Probar que cualquier espacio métrico contable es totalmente desconexo.
- 33. Probar que cada componente conexa de un ET es cerrada.
- 34. Mostrar por contraejemplo que una componente conexa de un ET no es necesariamente abierta.
- 35. Un ET es localmente conexo (LC) si, para cada punto  $p \in X$  y cada conjunto abierto U que contiene a p, existe un conjunto abierto conexo V con  $p \in V$  y  $V \subset U$ . Probar que cada componente conexa de un ET LC es abierta.
- 36. Probar que cualquier subintervalo de R (cerrado, abierto, o semiabierto) es CPT.

1.11. EJERCICIOS 21

- 37. Probar que la propiedad de ser CPT es una propiedad topológica.
- 38. Probar que si X es CPT y  $f: X \to Y$  es un mapa, entonces f(X) es CPT.
- 39. Un espacio X es localmente conexo por trayectorias (LCPT) si, para cada subconjunto abierto V de X y cada  $x \in V$ , existe un vecindario U de x tal que x puede conectarse a cada punto de U por una trayectoria en V. Probar que las componentes de trayectorias de un ET LCPT coinciden con las componentes conexas.
- 40. Probar que si  $E_j$  es un subconjunto cerrado de  $X_j$ ,  $1 \le j \le n$ , entonces  $E_1 \times \cdots \times E_n$  es un subconjunto cerrado de  $X_1 \times \cdots \times X_n$ .
- 41. Probar que las componentes conexas de  $X_1 \times \cdots \times X_n$  son los conjuntos de la forma  $E_1 \times \times \cdots \times E_n$ , donde  $E_j$  es una componente conexa de  $X_j$ ,  $1 \le j \le n$ . Probar que un resultado similar es válido para componentes de trayectorias.
- 42. Probar que cada proyección  $\pi_{\beta}$  de  $\Pi X_{\alpha}$  sobre un espacio coordenado  $X_{\beta}$  es un mapa abierto.
- 43. Probar que el producto de espacios de Hausdorff es de Hausdorff.
- 44. Sea  $X/\sim$  el espacio cociente determinado por una relación de equivalencia  $\sim$  en un ET X. Probar las siguientes afirmaciones:
  - (a) Si X es compacto, entonces  $X/\sim$  es compacto.
  - (b) Si X es conexo, entonces  $X/\sim$  es conexo.
  - (c) Si X es CPT, entonces  $X/\sim es$  CPT.
- 45. Sea f un mapa abierto contínuo de un ET X sobre un ET Y. Probar que Y es homeomorfo al espacio cociente de X obtenido al identificar cada conjunto de nivel de f con un punto.
- 46. Sea  $X = X_1 \times \cdots \times X_n$  un producto de espacios topológicos. Definir una relación de equivalencia  $\sim$  en X declarando que  $(x_1, \ldots, x_n) \sim (y_1, \ldots, y_n)$  ssi  $x_1 = y_1$ . Probar que  $X/\sim$  es homeomorfo a  $X_1$ . Probar un resultado análogo para un espacio producto infinito  $X = \prod_{\alpha \in A} X_{\alpha}$ .

# Bibliografía

- [1] T. W. Gamelin, R. E. Greene. (1999). Introduction to Topology. 2a Ed. Dover Publications.
- [2] A. Hatcher. (2001). Algebraic Topology. Electronic version.
- [3] J. R. Munkres. Topology. 2a Ed. Pearson.
- [4] Hecht, F. FreeFEM Documentation. Release 4.2.1.
- [5] F. Vides (2018). Introducción al Cómputo Científico e Industrial con GNU Octave. (Lecturas de Clase UNAH)
- [6] F. Vides (2019). On Cyclic Finite-State Approximation of Data-Driven Systems. https://arxiv.org/pdf/1907.06568.pdf