

Hipoteza statystyczna

```
#Dowolne przypuszczenie co do rozkładu populacji generalnej
#Prawdziwość tego przypuszczenia jest oceniana na podstawie wyników próby
losowej
```

#Hipotezę, która podlega weryfikacji to hipoteza zerowa (H0) a jej przeciwieństwo to hipoteza alternatywna (H1)

H0: μ1 = μ2 dwie średnie z populacji nie różnią się istotnie

H1: μ1 < μ2 dwie średnie z populacji różnią się istotnie

Poziom istotności

#Maksymalne ryzyko błędu jakie badacz jest skłonny zaakceptować prawdopodobieństwo odrzucenia hipotezy zerowej gdy jest ona prawdziwa

Prawdopodobieństwo P-value

```
#Krytyczny (graniczny) poziom istotności; prawdopodobieństwo testowe).
#Najmniejszy poziom istotności przy którym dla zaobserwowanej wartości statystyki testowej odrzucilibyśmy hipotezę zerową.
#Hipotezę zerową odrzucamy, gdy wyliczone prawdopodobieństwo testowe
```

okaże się nie większe od przyjętego przez nas poziomu istotności (zwykle 0,05).

Size effect

#Obecnie coraz częściej odchodzi się od klasycznych założeń statystycznych w wykrywaniu zależności pomiędzy zmiennymi oraz ich porównywaniu, np.:

- liczba prób nie mniejsza niż 30
- *P*<0.05
- Wielkość współczynnika korelacji r, czy determinacji R²

Biol. Rev. (2007), 82, pp. 591–605. doi:10.1111/j.1469-185X.2007.00027.x 591

Effect size, confidence interval and statistical significance: a practical guide for biologists

Shinichi Nakagawa^{1,*} and Innes C. Cuthill²

Moving to a World Beyond "p < 0.05"

Ronald L. Wasserstein, Allen L. Schirm & Nicole A. Lazar

To cite this article: Ronald L. Wasserstein, Allen L. Schirm & Nicole A. Lazar (2019) Moving to a World Beyond "p<0.05", The American Statistician, 73:sup1, 1-19, DOI: 10.1080/00031305.2019.1583913

To link to this article: https://doi.org/10.1080/00031305.2019.1583913

Dlaczego?

#Ponieważ często dysponując mniejszymi zbiorami danych (np. w sytuacjach, gdzie pobór prób jest ekstremalnie trudny), już wtedy można zaobserwować jakąś tendencję interpretowalną pod względem ekologicznym

#Z drugiej strony, posiadając większy zbiór danych można:

- a) Albo zaobserwować brak istotnych różnic (P>0.05) przy stosunkowo wielkich różnicach pomiędzy średnimi z prób
- b) Albo zaobserwować istotną różnicę (*P>*0.0000001) przy nikłych różnicach pomiędzy średnimi z prób (w przypadku, gdy liczebność prób jest ogromna)

#Dlatego bardziej informatywne jest podanie wielkości różnic oraz ich wyjaśnienie w sensie ekologicznym, gdyż będzie to mniej obciążone artefaktami związanymi z wielkością próby, co może prowadzić do sformułowania nieprawdziwych wniosków

Normalność rozkładu

#Rozkład zbliżony do normalnego jest jednym z najważniejszych rozkładów w biologii. Rozwiązanie wielu zagadnień statystycznych jest "prostsze", jeśli analizowana cecha ma rozkład normalny.

#Wiele analiz statystycznych i testów wymaga założenia o normalności rozważanej zmiennej (testy t-Studenta, analiza wariancji, regresja itd.).

Ocena normalności rozkładu

> [orosty				
	habitat	time	EIV_N	Rich	Shan
1	decid	h	3.125000	28	3.245232
2	decid	n	3.158730	40	3.589339
3	decid	h	2.921569	33	3.404548
4	decid	n	3.253968	42	3.633877
5	decid	h	2.925000	32	3.394398
6	decid	n	3.225806	43	3.645540
7	decid	h	3.134615	36	3.486709
8	decid	n	3.350877	40	3.606988
9	decid	h	3.226415	36	3.499831
10	decid	n	3.094340	41	3.615386
11	decid	h	3.058824	40	3.606320
12	decid	n	3.116667	44	3.678743

Science of the Total Environment 643 (2018) 468-478

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Changes in the epiphytic lichen biota of Białowieża Primeval Forest are not explained by climate warming

Anna Łubek ^{a,*}, Martin Kukwa ^b, Bogdan Jaroszewicz ^c, Patryk Czortek ^c

#Histogram

#Pytanie: czy proporcja gatunków nitrofilnych porostów epifitycznych w próbach historycznych reprezentuje rozkład zbliżony do normalnego?

hist(porosty\$EIV_N[porosty\$time=="h"], breaks=10)

Histogram of porosty\$EIV_N[porosty\$time == "h"]

#Testy pozwalające na ocenę normalności rozkładu:

test Kołmogorova-Smirnova

fBasics::ksnormTest()

test W Shapiro-Wilka (preferowany ze względu na dużą moc)

stats::shapiroTest()

#Współcześnie mało kto używa tych testów do sprawdzania normalności rozkładu. Częściej stosuje się metody wizualizacji danych w postaci histogramów. Ponadto, oceny rozkładu zmiennych można dokonać intuicyjnie, znając strukturę danych

Testy statystyczne

#Służą do badania istotności różnic pomiędzy próbami

Rozkład normalny

Zakładamy, że zbliżony

Inny, niż zbliżony

Testy parametryczne

Testy nieparametryczne

#Test t Studenta dla par niewiązanych #Test t Studenta dla par wiązanych #Test Chi kwadrat #Test Manna-Whitneya dla par niewiązanych #Test Manna-Whitneya dla par

związanych

Testy parametryczne

Test t Studenta dla par niewiązanych

#Stosowany, gdy obserwacje z próby
A (habitat='decid') nie
odpowiadają obserwacjom z próby B
(habitat='conif')

#Liczba obserwacji z próby **A** może być równa liczbie obserwacji z próby **B** lub różna od liczby obserwacji z próby **B**

```
> summary(porosty$habitat)
conif decid
  100 188
```

```
porosty
 habitat time
                   EIV_N Rich
    decid
             h 3.125000
    decid
             n 3.158730
    decid
    decid
    decid
    decid
    decid
             h 3.134615
    decid
             n 3.350877
    decid
             h 3.226415
    decid
             n 3.094340
                            41 3.615386
```

...

92 93 94 95 96 97 98	decid conif conif conif conif conif conif	n 3.195122 h 2.931034 n 3.232558 h 3.846154 n 3.581395 h 3.285714 n 3.388889 h 2.818182	30 3.296836 19 2.840565 25 3.082018 8 1.951260 26 3.163942 19 2.858006 35 3.452254 20 2.898746

#HO: Średnia bogactwo gatunkowe bioty porostów epifitycznych nie różni się pomiędzy borami a grądami

#H1: Średnie bogactwo gatunkowe bioty porostów epifitycznych różni się istotnie pomiędzy dwoma typami lasów

```
Welch Two Sample t-test

data: porosty$Rich[porosty$habitat == "conif"] and porosty$Rich[porosty$habitat == "decid"]
t = -9.7105, df = 162.14, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -16.33801 -10.81604
sample estimates:
mean of x mean of y
24.29000 37.86702</pre>
```

Test t Studenta dla par wiązanych

#Stosowany, gdy obserwacje z próby **A** odpowiadają obserwacjom z próby **B** #Liczba obserwacji z próby **A** równa liczbie obserwacji z próby **B**

```
porosty
 habitat time
                   EIV_N Rich
                                   shar
    decid
             h 3.125000
                            28 3.245232
    decid
             n 3.158730
                              3.589339
    decid
             h 2.921569
    decid
             n 3.253968
    decid
             h 2.925000
    decid
             n 3.225806
                              3.645540
    decid
             h 3.134615
                              3.486709
    decid
             n 3.350877
                              3.606988
    decid
             h 3.226415
                            36 3.499831
    decid
             n 3.094340
                           41 3.615386
```

•••

```
> summary(porosty$time)
h n
144 144
```

```
decid
                n 3.195122
                              30 3.296836
      conif
                h 2.931034
                              19 2.840565
      conif
                n 3.232558
                                 3.082018
95
      conif
                h 3.846154
                               8 1.951260
96
      conif
                              26 3.163942
                n 3.581395
97
      conif
                h 3.285714
                              19 2.858006
98
      conif
                n 3.388889
                                 3.452254
      conif
99
                h 2.818182
                              20 2.898746
100
      conif
                n 3.184615
                              43 3.656239
101
      decid
                h 3.272727
                              27 3.210176
```

#H0: średnie bogactwo gatunkowe epifitów nie różni się pomiędzy dwoma terminami badań h (1992) i n (2014)

#H1: średnie bogactwo gatunkowe epifitów różni się pomiędzy dwoma terminami badań h i n

```
Paired t-test

data: porosty$Rich[porosty$time == "h"] and porosty$Rich[porosty$time == "n"]
t = -16.962, df = 143, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -14.39094 -11.38684
sample estimates:
mean of the differences
    -12.88889</pre>
```

Testy nieparametryczne

Test Chi kwadrat (tylko dla par niewiązanych)

#Znakomity do badania różnic we frekwencji gatunku np. pomiędzy dwoma punktami w czasie

```
chisq.test(freq.epiphyte
s[,c(2:3)][8,])
```

```
> freq.epiphytes
   species freq.dec.old freq.dec.new
   Ram.far
                       15
                                     72
   Ino.bys
                       38
                                     72
   ope.niv
                       84
                                     73
   Cha.tri
                       28
                                     74
   Cha. fur
                       43
                                     74
   Prt.coc
                       52
                                     76
   Aly. var
                       72
   Coe.pin
```

```
Chi-squared test for given 
probabilities
```

```
data: freq.epiphytes[, c(2:3)][8, ]
X-squared = 65.79, df = 1,
p-value = 5.016e-16
```

Test Manna-Whitneya dla par niewiązanych

```
> cover.clearcut
[1] 7 28 19 29 2 7 24 5 30 14 18 10 28 8 11 6 54 34 29 37 32 31 13 37 12 22 19
[28] 11 31 17
> cover.forest
[1] 35 50 33 31 32 25 36 54 39 43 41 3 39 44 44 27 4 39 55 33 21 22 36 30 40 51 53
[28] 3 23 1 49
```

#H0: pokrycie gatunków leśnych nie różni się pomiędzy lasem a zrębem zupełnym #H1: pokrycie gatunków leśnych różni się pomiędzy lasem a zrębem zupełnym

wilcox.test(cover.clearcut, cover.forest, paired=FALSE)

```
Wilcoxon rank sum test with continuity correction

data: cover.clearcut and cover.forest
W = 229, p-value = 0.0006779
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(cover.clearcut, cover.forest, paired = FALSE):
nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi wartościam:
```

Test Manna-Whitneya dla par wiązanych

#H0: bogactwo gatunkowe wyleżysk nie różni się pomiędzy dwoma punktami w czasie

#H1: bogactwo gatunkowe wyleżysk różni się pomiędzy dwoma punktami w czasie

Folia Geobot https://doi.org/10.1007/s12224-018-9312-9

Plant species composition shifts in the Tatra Mts as a response to environmental change: a resurvey study after 90 years

Patryk Czortek 🕞 • Jutta Kapfer • Anna Delimat • Amy Elizabeth Eycott • John-Arvid Grytnes • Anna Orczewska • Halina Ratyńska • Antoni Zięba • Bogdan Jaroszewicz

wylezyska

> wy	lezysk	
	rich	time
58k	18	k
58n	28	n
67k	20	k
67n	17	n
32k	23	k
32n	25	n
85k	22	k
85n	22	n
8k	20	k
8n	21	n
30k	20	k
30n	18	n
122k	25	k
122n	26	n
100k	20	k
100n	33	n
107k	19	k
107n	33	n
45k	23	k

```
Wilcoxon signed rank test with continuity correction
```

data: wylezyskarich[wylezyska\$time == "k"] and wylezyskarich[wylezyska\$time == "n"] V = 8.5, p-value = 0.01067 alternative hypothesis: true location shift is not equal to 0

