Learn Me a Haskell

Jacob Bishop

2023-07-01

1 INTRODUCTION 2

1 Introduction

2 Starting Out

第一个函数

在 ./test/ 文件夹下创建一个 baby.hs 的文件,写入:

```
doubleMe x = x + x
```

使用 ghci 加载该文件(在本项目根目录时使用 :1 tests/baby):

```
ghci>:l baby
[1 of 1] Compiling Main (baby.hs, interpreted)
3 Ok, modules loaded: Main.
4 ghci> doubleMe 9
5 18
6 ghci> doubleMe 8.3
7 16.6
```

一个带有 if 的函数:

```
doubleSmallNumber x =
   if x > 100
   then x
   else x * 2
```

Haskell 中的 if 声明是一个 表达式,那么 else 是强制性的,因为表达式一定要有所返回。因此加上述函数可以改写为:

```
doubleSmallNumber' x = (if x > 100 then x else x * 2) + 1
```

这里的 ' 符号是 Haskell 中的有效字符,且在 Haskell 中并没有特殊的意义,因此可以用作于函数名。通常情况下,使用 ' 代表着一个函数(非懒加载的函数)的严格版本,或是一个有细微变化的函数或者变量。又因为 ' 是一个有效字符,那么可以创建以下函数:

```
conanO'Brien = "It's a-me, Conan O'Brien!"
```

这里又有两点值得注意的地方。首先,函数名不能以大写开头,稍后会进行说明;其次,该函数并没有任何入参。当一个函数没有入参,我们通常称其为一个 定义 definition,因为一旦定义了它便不能修改其名称,以及其返回。

list 的介绍

Haskell 中的 list 是 同质的 homogenous 数据结构。

Note

在 GHCI 中可以使用 let 关键字定义一个名称。换言之,GHCI 中的 let a=1 等同于脚本中的 a=1 。

通常使用 ++ 操作符将两个数组进行合并:

```
ghci> [1,2,3,4] ++ [9,10,11,12]
[1,2,3,4,9,10,11,12]
ghci> "hello" ++ " " ++ "world"

"hello world"
ghci> ['w','o'] ++ ['o','t']
"woot"
```

可以使用: 操作符将元素直接添加至数组头部:

```
1 ghci> 'A':" SMALL CAT"
2 "A SMALL CAT"
3 ghci> 5:[1,2,3,4,5]
4 [5,1,2,3,4,5]
```

实际上, [1, 2, 3] 是 1:2:3:[] 的语法糖, 其中 [] 为一个空数组。如果头部追加 3, [] 就变成了 [3], 再次进行头部追加 2,则变为 [2, 3],以此类推。

如果希望通过索引获取数组中的元素,那么可以使用!! 操作符:

```
ghci> "Steve Buscemi" !! 6
by 'B'
ghci> [9.4,33.2,96.2,11.2,23.25] !! 1
33.2
```

超出索引时则会报错。

数组还可以通过操作符 〈 , <= , == , > 以及 >= 操作符来进行比较,而比较的方式则是顺序比较。当进行头部比较元素相等时,再进行下一个元素进行比较。

数组的四种基础操作 head, tail, last 以及 init:

```
ghci > head [5,4,3,2,1]

ghci > tail [5,4,3,2,1]

[4,3,2,1]

ghci > last [5,4,3,2,1]

ghci > init [5,4,3,2,1]

[5,4,3,2]
```

当使用上述四种操作时,需要注意是否应用于空数组,这样的错误在编译期并不能被发现。 其它的操作:

- 1. length 获取数组长度;
- 2. null 检查数组是否为空;
- 3. reverse 翻转数组;
- 4. take 获取数组的头几个元素的数组;

- 5. drop 移除数组的头几个元素,并返回剩余元素的数组;
- 6. maximum 获取最大值;
- 7. minimum 获取最小值;
- 8. sum 求和;
- 9. product 求积;
- 10. elem 元素是否存在于数组中。

```
ghci > length [5,4,3,2,1]
1
2
   ghci > null [1,2,3]
   ghci> null []
6
    ghci> reverse [5,4,3,2,1]
9
    [1,2,3,4,5]
10
11
    ghci > take 3 [5,4,3,2,1]
12
    [5,4,3]
13
    ghci> take 1 [3,9,3]
14
15
   ghci > take 5 [1,2]
   ghci > take 0 [6,6,6]
18
19
20
    ghci > drop 3 [8,4,2,1,5,6]
21
    [1,5,6]
23
    ghci > drop 0 [1,2,3,4]
    [1,2,3,4]
24
    ghci> drop 100 [1,2,3,4]
25
26
27
    ghci > minimum [8,4,2,1,5,6]
28
29
    ghci > maximum [1,9,2,3,4]
30
31
32
    ghci> sum [5,2,1,6,3,2,5,7]
33
35
    ghci> product [6,2,1,2]
36
ghci > product [1,2,5,6,7,9,2,0]
```

Texas 排列

```
1  ghci> [1..20]
2  [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
3  ghci> ['a'..'z']
4  "abcdefghijklmnopqrstuvwxyz"
5  ghci> ['K'..'Z']
6  "KLMNOPQRSTUVWXYZ"
```

带有 step 的排列:

```
ghci> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]
ghci> [3,6..20]
[3,6,9,12,15,18]
```

而对于浮点数的排列需要注意精度问题:

```
ghci> [0.1, 0.3 .. 1]
[0.1,0.3,0.5,0.7,0.899999999999999999999999999999]
```

以下是若干用于生产无限长度数组的函数:

cycle 循环周期:

```
ghci> take 10 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1]
ghci> take 12 (cycle "LOL ")
"LOL LOL LOL "
```

repeat 重复:

```
ghci> take 10 (repeat 5)
[5,5,5,5,5,5,5,5,5]
```

另外就是 replicate 函数可以重复单个元素:

```
ghci> replicate 3 10
[10,10,10]
```

列表表达式

数学里的 集合表达式 set comprehensions 例如 $S=2\cdot x|x\in\mathbb{N},x\leq 10$; Haskell 中的列表表达式,例如 1 至 10 数组中每个元素乘以 2:

```
ghci> [x*2 | x <- [1..10]]
[2,4,6,8,10,12,14,16,18,20]
```

为列表表达式添加条件(或称谓语 predicate):

```
ghci> [x*2 | x <- [1..10], x*2 >= 12]

[12,14,16,18,20]

ghci> [x | x <- [50..100], x `mod` 7 == 3]

[52,59,66,73,80,87,94]
```

将列表表达式置于一个函数中便于复用:

```
ghci> boomBangs xs = [ if x < 10 then "B00M!" else "BANG!" | x <- xs, odd x]
ghci> boomBangs [7..13]
["B00M!","B00M!","BANG!","BANG!"]
```

多个谓语也是可以的:

```
ghci> [ x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20]
```

除此之外,还可以处理若干数组:

```
ghci> [ x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110]
```

当然也可以加上谓语:

```
ghci> [ x*y | x <- [2,5,10], y <- [8,10,11], x*y > 50]
[55,80,100,110]
```

那么对于字符串也可以使用列表表达式:

```
ghci> let nouns = ["hobo", "frog", "pope"]

ghci> let adjectives = ["lazy", "grouchy", "scheming"]

ghci> [adjective ++ " " ++ noun | adjective <- adjectives, noun <- nouns]

["lazy hobo", "lazy frog", "lazy pope", "grouchy hobo", "grouchy frog",

"grouchy pope", "scheming hobo", "scheming frog", "scheming pope"]
```

现在让我们编写一个自己的 length,命名 lenght'(这里的_ 意为无需使用的变量):

```
1 length' xs = sum [1 | _ <- xs]
```

由于字符串是数组,因此我们可以使用列表表达式处理并生产字符串。以下是一个移除所有字符但保留大写字符的函数:

```
removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']]
removeUppercase st = [ c | c <- st, c `notElem` ['A'..'Z']]
```

元组

在某种程度上,元组类似于数组 – 存储若干值至单个变量上。然而有一些基础的差异:数组长度可以无限,元组长度固定;数组中元素类型是同质的,而元组则可以是异质的 heterogenous。对于对元组(当且仅当包含两个元素)有以下操作:

fst 获取对元组的第一个元素:

```
ghci> fst (8,11)
8
ghci> fst ("Wow", False)
"Wow"
```

snd 获取对元组的第二个元素:

```
ghci> snd (8,11)
11
ghci> snd ("Wow", False)
4 False
```

另外一个有意思的函数则是 zip,它可以将两个数组按对拼接成对元组的数组

```
ghci> zip [1,2,3,4,5] [5,5,5,5,5]
[(1,5),(2,5),(3,5),(4,5),(5,5)]
ghci> zip [1 .. 5] ["one", "two", "three", "four", "five"]
[(1,"one"),(2,"two"),(3,"three"),(4,"four"),(5,"five")]
```

当两个数组的长度不一时, zip 则按最短的那个进行对齐,长的数组剩余部分则被丢弃,这是因为 Haskell 是懒加载的缘故。

```
ghci> zip [5,3,2,6,2,7,2,5,4,6,6] ["im","a","turtle"]
[(5,"im"),(3,"a"),(2,"turtle")]
ghci> zip [1..] ["apple", "orange", "cherry", "mango"]
[(1,"apple"),(2,"orange"),(3,"cherry"),(4,"mango")]
```

3 Types and Typeclasses

4 Syntax in Functions

5 RECURSION 11

5 Recursion

6 Higher Order Functions

7 MODULES 13

7 Modules

8 Making Our Own Types and Typeclasses

9 Input and Output

10 Functionally Solving Problems

11 Functors, Applicative Functors and Monoids

12 A Fistful of Monads

13 For a Few Monads More

14 ZIPPERS 20

14 Zippers