2004 年光电子专业 线性代数试题参考答案

【注意:此次课本为《高等数学》,四川大学版】

1. -2 (n-2)!

2.
$$A^{-1} = \begin{pmatrix} 1 \\ -4/5 & 3/5 & 1/5 \\ -3/5 & 1/5 & 2/5 \end{pmatrix}$$
, $\operatorname{rank}(B)=2$, $X = \begin{pmatrix} 8/5 & -1/5 & -2/5 \\ 1/5 & 2/5 & -1/5 \\ -8/5 & 3/5 & 1/5 \end{pmatrix}$ $\overrightarrow{\mathbb{R}}$

$$X = \frac{1}{5} \begin{pmatrix} 8 & -1 & -2 \\ 1 & 2 & -1 \\ 8 & 3 & 1 \end{pmatrix}$$

3. 反证法。假设 α_1 , α_2 , · · · , α_m 线性相关,则存在一组非全零的数 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 使得

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_m \alpha_m = 0 \tag{1}$$

设向量 β 由向量组 α_1 , α_2 , … , α_m 线性表出,表示法为

$$h_1 \alpha_1 + h_2 \alpha_2 + \dots + h_m \alpha_m = \beta \tag{2}$$

(2)+(1)得
$$\beta = (h_1 + \lambda_1)\alpha_1 + (h_2 + \lambda_2)\alpha_2 + \dots + (h_m + \lambda_m)\alpha_m$$

显然, h_1,h_2,\cdots,h_m 与 $h_1+\lambda_1,h_2+\lambda_2,\cdots,h_m+\lambda_m$ 不全相等,因此 $oldsymbol{\beta}$ 由向量组

 α_1 , α_2 , ···· , α_m 线性表出有两种表示法,这与表示法唯一矛盾。故 α_1 , α_2 , ···· , α_m 线性无关。

4.
$$y_1^2 + y_2^2 + y_3^2$$
, $C = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbb{E}\mathbb{E}$

5. 由基底 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 到基底 η_1, η_2, η_3 的过渡矩阵为 $M_1 = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$ 故由 η_1, η_2, η_3 到

$$\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$$
的过渡矩阵为 $M = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 2 & -2 \end{pmatrix}$,特征根 $\lambda_1 = \lambda_2 = -1$,

对应特征向量 $\eta_1=(-1,1,0)$, $\eta_2=(-1,0,1)$, $k_1\eta_1+k_2\eta_2$, k_1 与 k_2 取遍同时不为零的 所有实数对;特征根 $\lambda_3=2$ 对应特征向量 $\eta_3=(1,1,1)$, $k_3\eta_3$, k_3 取遍所有不为零实数,

$$P = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \text{Iff } P^{-1}AP = D = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 2 \end{pmatrix}$$