Computational Methods Summer 2021 I **HOMEWORK 1**

Due Date: Thursday, June 3

Homework should be handed in *individually*, though you may work with others and collaboration is encouraged. For MATLAB problems please follow the guidelines specified in ELMS (in particular see the file "Formatting MATLAB assignments")

- 1. Let $f(x) = e^x + x^2 5x$.
 - (a) The bracket [1.5, 2] contains a root. Explain why using the Intermediate Value Theorem. For this bracket, estimate the number of iterations N that would be needed to compute the root to an accuracy of 10^{-4} .
 - (b) The bracket given in (a) contains a root, but there is another root. Find a bracket for it. Then use the bisection method to find the two roots to an accuracy of 10^{-4} .
- 2. Consider the cubic $f(x) = x^3 x 1$.
 - (a) Use the MATLAB command fzero to find a root in the interval [1, 2].
 - (b) Show that f(x) = 0 can be rewritten as a fixed point problem for both the functions (i) $g_1(x) = x^3 1$, and (ii) $g_2(x) = (1+x)^{1/3}$.
 - (c) Which of the functions g_1 and g_2 is a contraction mapping near the root r from part (a)? Which of g_1 or g_2 will be successful in making the iteration $x_{i+1} = g(x_i)$ converge locally to the root r?
 - (d) Write a script in MATLAB to carry out 10 steps of the fixed point iteration (use a for or while loop to do this) for both g_1 and g_2 , each starting with the guess $x_0 = 0$. What approximate root does your algorithm give for g_1 ? For g_2 ? Are your results consistent with the analysis from part (c)?