1017	
	Tutorial 3
	. Let R, & R2 be two equivalence relatives on B.
	Consider Ri 1R2.
	. Ris reflexive, (a, a) ER, YaEA.
1.00 P	, Rz is reflexive, (a,a) eRz VacA.
	- RINR, will contain (a, a) + acA.
	in Rinky & reflexive.
	Let $(a,b) \in R.\Omega R_2$
	$=$ $(a,b) \in R$, and $(a,b) \in R$,
	=) (b,a)eR, and (b,a)eR, : R, and R, are symmetric.
	$= \sum_{n=1}^{\infty} (b,a) \in R_1 \cap R_2$
	=) R. A.R. is symmother.
	Let (a,b) & (b,c) $\in R(\Lambda R_1)$
	$=) (a,b) & (b,c) \in \mathbb{R}, \text{and} (a,b) & (b,c) \in \mathbb{R},$ $=) (a,b) & (a,b) & (b,c) \in \mathbb{R},$
}	=) (a,c) eR, and (a,c) eR, ". R. & Re are Transh
	=) (a,c) \in R, \lambda R, \lambda R, \lambda R, \lambda R, \tag{\text{Trusifine}}
	RICK2 B Trusitive
2	
2	Conside $A = \{1, 2, 3\}$ $R_1 = \{(11), (2, 2), (3, 3), (1, 2), (2, 1)\}$
_2	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,1), (3,3), (2,2), (3,3)\}$
2	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 R_2 R_3 R_4 R_4 R_5 R_6
	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R , R , are Equivalent. R, R ,
2	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R , R , are Equivalent. R, R ,
	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 R_2 are Equivalent. $R_3 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ For trasition property $(1,2)$ $(2,3)$ $(1,2)$ $(2,3)$ $(3,2$
	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 & R_2 are Equivalent. R_1 & R_2 (1,1)(2,2)(3,3)(1,2)(2,1)(2,3)(8,2) $\}$ For transitive property, $(1,2)$ & $(2,3)$ \rightarrow $(1,3)$ $(3,2)$ & $(2,1)$ \rightarrow $(3,3)$ Since there elements are not contained in R_1 $\downarrow 0$
2	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 & R_2 are Equivalent. R_1 & R_2 (1,1)(2,2)(3,3)(1,2)(2,1)(2,3)(8,2) $\}$ For transitive property, $(1,2)$ & $(2,3)$ \rightarrow $(1,3)$ $(3,2)$ & $(2,1)$ \rightarrow $(3,3)$ Since there elements are not contained in R_1 $\downarrow 0$
	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 R_2 are Equivalent. $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (3,2)\}$ For trasition property, $(1,2)$ R_2 R_3 R_4 R_4 R_5 $R_$
	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 R_2 are Equivalent. R_1 R_2 R_3 are Equivalent. R_2 R_3 R_4 R_5 R
3)	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both $R_1, 2R_2$ are Equivalent. $R_1, UR_2 = \{(1,1)(2,2), (3,3), (1,2)(2,1), (2,3), (3,2)\}$ For transitin property, $(1,2) \approx (2,3) \rightarrow (4,3)$ $(3,2) \approx (2,1) \rightarrow (3,2)$ Since there elements are not contained in $R_1 \cup R_2$. The union of two equivalent relations $R_1 \cup R_2$ and $R_2 = \{(1,2,3,4)\}$. $R_1 = \{(1,2,3,4)\}$. $R_2 = \{(1,2,3,4)\}$. $R_3 = \{(1,2,3,4)\}$. $R_4 = \{(1,2,3,4)\}$. $R_4 = \{(1,2,3,4)\}$.
3) An	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,1), (3,3), (2,3), (3,2)\}$ Both $R_1, 2R_2$ are Equivalent. REPROPER ((1,1)(2,2)(3,3) (1,2)(2,1)(2,3)(3,2)\} For transitin property, (1,2) & (2,3) \rightarrow (1,3) (3,2) & (2,1) \rightarrow (3, 2) Since there elements are not contained in RivR. The union of two equivalent relations is not necessarily equivalent A: \{1,2,3,4\}. (a,b) R(b,d) if ad=b(\frac{1}{2},2), (3,3) (4,4) \{4\approx}(1,1)\} R = \{(2,1), (2,2), (3,3), (4,4)\}.
3) As	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$ $R_2 = \{(1, 1), (2, 1), (3, 3), (2, 3), (3, 2)\}$ Both R_1 , R_2 , are Equivalent. $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$ For trasition property, $(1, 2)$, R_2 , R_3 , R_4 , R_5 , R
3) As	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ $R_2 = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ Both R_1 , R_2 , are Equivalent. R_2 , R_3 R_4 R_4 R_5
As As	Conside $A = \{1, 2, 3\}$ $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$ $R_2 = \{(1, 1), (2, 1), (3, 3), (2, 3), (3, 2)\}$ Both R_1 , R_2 , are Equivalent. $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$ For trasition property, $(1, 2)$, R_2 , R_3 , R_4 , R_5 , R

-) R & TransAlv -6) ell a Rh ett (Ra+5b) %7 = 0 7a + 7b = 7h + 96 + 86 + 2b + 5a =)2a + 5c = 7(m + n - b) 7(a + b - h) = 2b + 5a Multiple of 7 $(a,c) \in \mathbb{R}$ $(b,a) \in \mathbb{R}$: \mathbb{R} is Symmetric =) \mathbb{R} is Fransithan

5) hat R & = a+b 13 even.

a + a = 2a = Even Number.

Let a \(\mathcal{Z}