National Institute of Technology Meghalaya

Class Test-1, September 2023

Subject: Discrete Mathematics (CS205)

3

3

3

Branch: Computer Science and Engineering Semester: 3rd

	Time: 45 minutes.	
1.	Given $f(x) = x^2 + 6$ and $g(x) = 2x - 1$, find	
	a) $(f \circ g)(x)$ b) $(g \circ f)(x)$	
2	Show that if 11 positive numbers are chosen, two cf them will have the same remainder when	
۷.	divided by ten. Use pigeonhole principle.	
	•	
4.	Wnat is Skolemization process? Why is it needed?	
	Convert the wffs into clausal form	
	$\exists x \forall y \left(\left(\forall z P(f(x), y, z) \right) \cup \left(\exists u Q(x, u) \right) \right) \rightarrow \left(\exists v R(y, v) \right)$	
5	. Find the inverse of the function.	2

$$f(x) = \frac{7+4x}{6-5x}$$
 and $f(x) = \frac{10}{\sqrt[5]{7-3x}}$

6. A local grocery stores in the outback newly opened. They were offering 1 free bottle milk to every 11th customer and 5 Kg of Rice for every 13th customer. If there were 1000 customers that visited them on opening day, how many customers walked away with free goodies?

National Institute of Technology Meghalaya An Institute of National Importance

Programme

Computer Science and Engineering

TEST 2 (SET A)

CLASS

B.Tech

Course Name Course Code Time: 01 Hrs		CS 205 Year		Semest	er		111	
				Year/Pe	Year/Period Maximum Marks		2023/Autumn 15	
				Maximu				
Knowledge Level (KL)		K1 : Remembering	K3 : Applying	K5 : Evaluati		valuating	ng	
		K2 : Understanding	K4 : Analysing		K6 : Creating			
No.		Quest	tions		Marks	KL		
X		the generating function for the 1, 16, 25,>.	e sequence		04	CO1, CO2	K1 and K2	
£	The nThe nThe nThereThere	any ways can we fill a bag with ints? Find out the generating full umber of apples must be even, umber of bananas must be a man can be at most four oranges, can be at most one pear.	04	CO3	K2			
8		The set Zn* with the multiplication operator, G <zn*, ×="">, is also an abelian group. Prove it.</zn*,>			04	CO3	К3	
A	and two	Charles tosses two coins, what is the probability that he gets two heads and two tails.			01	CO2	K2	
15		nd out the simplified polynomial representation of the bit string 0101001).		g	01	CO2, CO3	К3	
6	Write a	the Catalan numbers from 1-100			01	CO3	K4	

Branch		Computer Science and	Engineering	Programm	e	I	3.Tech	
Course Name		Discrete Mathematics Semester			III			
Course Code		CS 205		Year/Perio	Year/Period		2023/Spring	
Time: 03 Hrs		Answer All Questions in Q1 Answer 4 Questions out of 6 from Q2 to Q7 Maximum M				100		
Knowledge		K1 : Remembering	K3 : Applying		K5 : Evalu	ating		
Level ((KL)	K2 : Understanding	K4 : Analysing		K6 : Creatin			
		Each Question Ca	rry 02 Marks from	Q1a to Q1j				
Q.No		Questions	3		Marks	COs	KL	
la	$A = \{ x: x \in A \}$	$\in \mathbb{R}$ and $x^2+7=0$ }. Find out the power	er set of A.		02	CO1	K2	
Ub	Define log	ical equivalence and the principle	of duality.		02	CO2	К3	
16	Show that	$\neg (p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logical	lly equivalent		02	CO3	K2	
14	What is th	What is the truth value of $\forall x P(x)$, where $P(x)$ is the statement " $x^2 < 10$ ", and the domain consists of the positive integers not exceeding 4?					КЗ	
10/	Convert the $\neg(\neg P \rightarrow 0)$	is into CNF form $(P \rightarrow Q)$)			02	CO4	К2	
M	which of	the following relation mapping is a $ \begin{array}{c} -1 \\ 2 \\ 3 \end{array} $	2 -1 3	2 - 3 2 0	02	CO3	КЗ	
lg	Write the	recurrence relation of "Tower of Ha	anoi" problem.		02	CO5	K2	
TH,	Prove that	t for every integer n, if n is odd, the	n n² is odd.		02	CO2	K2	
K	Charles to tails?	arles tosses two coins, what is the probability that he gets two heads and two s?				CO2	К3	
N	Define G	alois field using example.			02	СО3	К3	
	.,		arry 20 Marks from (,			
2a	ii. Con	e and explain in detail the wffs to clavert the wffs to clausal form $(\forall y P(f(x), y) \rightarrow (\exists z Q(x,z))) \rightarrow (\exists z Q(x,z)))$		ı .	06	COI	K2	
26	Prove tha	t if n is an integer and $n^3 + 5$ is odd	then n is even.(Use i	ndirect proof)	04	CO1	K2, K3	
ž	functions i. f	the sequence generated by each of $(x) = \frac{x^3}{1 - x^2}$ $(x) = \frac{(2x - 3)^3}{1 - x^2}$	the following genera	ting	10	CO3	K3, K4	
) da	Show the	at if 11 numbers are chosen from all be a multiple of another. (Use P	-		05	CO2	K2	
26	following	recurrence relation with initial condit g geometric progressions 28/25, 56/125.	tion that uniquely dete	ermines the	07	CO3	К3	
30	Find the	cyclic subgroup of G <z<sub>6, +>. Justify</z<sub>	your answer		08	CO4	K4	
A.	Among 5	0 patients admitted to a hospital, 25 anchitis, and 10 with both pneumonia	are diagnosed with pr		05	CO3	K2	

On the lines.

	(a) The number of patients diagnosed with pneumonia or bronchitis (or both).(b) The number of patients not diagnosed with pneumonia or bronchitis.Use Inclusion-Exclusion Principle and show the respective Venn diagram.		-	
28	Let A={1, 2, 3} and f_1 , f_2 , f_3 and f_4 be functions from A to A given by $f_1 = \{(1, 2), (2, 3), (3, 1)\} \qquad f_2 = \{(1, 2), (2, 1), (3, 3)\}$ $f_3 = \{(1, 1), (2, 2), (3, 1)\} \qquad f_4 = \{(1, 1), (2, 2), (3, 3)\}$ Compute f_1 o f_2 ; f_2 o f_1 ; f_1 o f_3 o f_2 ; f_2 o f_4 ; f_4 o f_2 .	05	CO1	К3
(ac)	Find the coefficient of I. x^5 in $(1-2x)^{-7}$. II. x^8 in $1/(x-3)(x-2)^2$	10	CO3	K5
(Sa)	Determine whether the following posets are lattices i. $(\{1, 3, 6, 9, 12\}, /)$ ii. (Z, \ge) iii. $(P(S), \supseteq)$	05	CO5	К2
26	Find the generating functions for the no. of integers solution to the equation $C_1 + C_2 + C_3 + C_4 = 20$ Where, $-3 \le C_1$, $-3 \le C_2$, $-5 \le C_3 \le 5$ and $0 \le C_4$	07	CO4	КЗ
56	How many bit strings of length 8 either start with a 1 or end with 00 can be constructed? Derive the process in details.	08	CO3	K4, K6
S a	 i. How many different binary relations on A are there? ii. How many of them are reflexive? iii. How many of them are symmetric? iv. How many of them are reflexive and symmetric? v. How many of them are total ordering relations? 	05	CO2	К2
(B)	For $n\ge 1$ let $S=\{1,2,3,,n\}$ where $n=0$, $S=\emptyset$. And let a_n denote the number of subset of S that contain no consecutive integers. Find and solve the recurrence relation for a_n .	05	CO2	КЗ
foc	Solve the relation 1. $a_n = n$. a_{n-1} where, $n \ge 1$ and $a_0 = 1$. 1. $a_n = 7$. a_{n-1} where, $n \ge 1$ and $a_2 = 98$. 1. Find the result of $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF(28) with irreducible	10	CO3	К5
Ja	Find the result of $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF(2 ⁸) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$. \otimes : Represent the multiplication of two polynomials.	05	СО3	К2
76	Find the unique solution for the recurrence relation $a_{n+1} - 1.5a_n = 0, n \ge 0$	07	CO4	кз
J.	Draw a Hasse diagram for (A,) (divisibility relation), Find out maximal and minimal elements. i. A = {1, 2, 3, 4, 5, 6}; ii. A = {1, 2, 3, 5, 7, 11, 13}; iii. A = {1,2,4,8,16,32}; iv. A = {1,2,3,6,12,24};)	08	CO5	K4

e (s) (someont s)			stitute of Technology Institute of National Importa			MID TERM
Branch Course Name		Compater Comments and any		Programme Semester		
Course	e Code			Year/Period		2023/ Autumn
	02 Hrs			Maximum Mark	S	50
Knowledge Level (KL)		K1 : RememberingK2 : Understanding	K3 : Applying K4 : Analysing		Evaluating Creating	
			Answer All Questions			
		Each Questi	ion Carry 02 Marks from C	Q1a to Q1e		
Q.No		Ques		Marks	COs	KL
14	Convert (P, λ, C)	the expression to CNF for \rightarrow R)) \rightarrow (P \rightarrow (R \rightarrow Q))	m ~ r v ev ~ R	02	CO1	K2
16	What is S	Skolemization process. Ho	ow it is helpful in getting the	02	CO3	К3
10/	clausal fo					
	Which of the following relation mapping is a function? State the reason. How do you determine if a relation is a function?					
	3 1 0 -	2 3	2 -1 3 -2 0	02	CO2	К2
10			mmetric relations from Set a fry with a suitable example.	A to 02	CO1	K2
10	Let f be t	the function from $\{a, b, c, (c)=1, f(d)=3\}$. Is f a biject	4, 02	CO3	К3	
		Each Quest	ion Carry 10 Marks from	Q2 to Q5		
23	Let f and integers of	defined by $f(x) = 2x + 3$ osition of f and g ? What	the set of integers to the set of and $g(x) = 3x + 2$. What is the composition of g and	t is 05	CO3	K2, K3
2b	where f:I	$R \rightarrow R$ and $g: R \rightarrow R$, then find $(f \circ g)^{-1}$ and $(g \circ f)^{-1}$.	as $f(x) = e^x$ and $g(x) = 3x$ d the function $f \circ g$ and $g \circ g$	$\begin{array}{ccc} x - 2 \\ f. & 5 \\ e^{x} - 2 \end{array}$	CO2	K3, K4 ²
_3a	laws you (a (t	are using at each stage of a) B \cup ($\emptyset \cap A$) = B b) (A' \cap U)' = A	•	05	CO2	К3
316	Convert $\exists x \forall y ((x \in \mathbb{R}^n))$	A) \cap (B \cup A) = A \cup (B \cap the wffs into clausal form $\exists z P(f(x), y, z)) \rightarrow (\exists u Q)$ (a clause. Define horn claus	$(x, u) \lor \exists v \forall w R (y, v, w))$	05	CO1	K4

If the function f and g are defined as $f(x) = e^x$ and g(x) = 3x - 2where $f:R \rightarrow R$ and $g:R \rightarrow R$, then find the function $f \circ g$ and $g \circ f$. 05 CO₂ K4, K5 Also find $(f \circ g)^{-1}$ and $(g \circ f)^{-1}$. What is logical consequences. State with example. Give the proof of theorem "The proposition s is a logical consequences of s_1, s_2, \dots, s_n 5 CO₃ **K5** iff $s_1 \& s_2 \& \cdots \& s_n \& \tilde{s}$ is inconsistent" A local grocery store in the outback newly opened. They were offering 1 free bottle Marmite to every 11th customer and 1 free pound of meat for every 13th customer. If there were 1000 customers 5 CO₄ K3, K4 that visited them on opening day, how many customers walked away with free goodies? 160 What is Generalized Pigeonhole Principle? Show that in a group of 10 people (where any two people are either friends or enemies), there are either three mutual friends or four 5 CO₃ K5, K6 mutual enemies, and there are either three mutual enemies or four mutual friends.

Good Luck