Definição 1 (Fórmulas da Lógica Proposicional Clássica). Seja \mathcal{P} o conjunto das proposições, então o conjunto \mathcal{L} de fórmulas proposicionais bem-formadas é tal que:

- $\mathcal{P}\subseteq\mathcal{L}$
- se $A \in \mathcal{L}$ então $(\neg A) \in \mathcal{L}$
- se $A, B \in \mathcal{L}$ então $(A \wedge B), (A \vee B), (A \rightarrow B) \in \mathcal{L}$
- nada mais pertence à \mathcal{L} .

Definição 2 (Subfórmulas). Dada uma fórmula da lógica proposicional A, o conjunto das subfórmulas de A, denotado por $\mathbf{Subf}(A)$, é definido por casos:

```
 \begin{array}{ll} \pmb{Caso} \ A = p, \ para \ p \in \mathcal{P} & \mathbf{Subf}(A) = \{p\} \\ \pmb{Caso} \ A = \neg B & \mathbf{Subf}(A) = \{A\} \cup \mathbf{Subf}(B) \\ \pmb{Caso} \ A = B \wedge C & \mathbf{Subf}(A) = \{A\} \cup \mathbf{Subf}(B) \cup \mathbf{Subf}(C) \\ \pmb{Caso} \ A = B \vee C & \mathbf{Subf}(A) = \{A\} \cup \mathbf{Subf}(B) \cup \mathbf{Subf}(C) \\ \pmb{Caso} \ A = B \rightarrow C & \mathbf{Subf}(A) = \{A\} \cup \mathbf{Subf}(B) \cup \mathbf{Subf}(C) \\ \end{pmatrix}
```

Definição 3 (Valoração). Uma valoração é uma função total V_0 que mapeia símbolos proposicionais para os valores-verdade 0 ou 1, ou seja, $V_0 : \mathcal{P} \to \{0,1\}$

Definição 4 (Valoração de fórmulas). Dada uma valoração V_0 , tem-se a valoração de fórmulas $V : \mathcal{L} \to \{0,1\}$ definida por casos:

Definição 5 (Satisfação de Conjunto de Fórmulas). Dados Γ um conjunto de fórmulas proposicionais e \mathcal{V} uma valoração de fórmulas, tem-se que \mathcal{V} satisfaz Γ (denotado por $\mathcal{V}(\Gamma) = 1$) se, e somente se, $\mathcal{V}(G) = 1$ para toda fórmula $G \in \Gamma$.

Definição 6 (Consequência Lógica). Dados Γ um conjunto de fórmulas proposicionais e A uma fórmula proposicional, tem-se que A é consequência lógica de Γ , denotado por $\Gamma \vDash A$ se, e somente se, toda valoração que satisfaz Γ também satisfaz X.

Definição 7 (Equivalência Lógica). Duas fórmulas proposicionais A e B são logicamente equivalentes, denotado por $A \equiv B$ se, e somente se, $A \models B$ e $B \models A$.

Equivalências Notáveis

Dupla negação:	$\neg\neg p \equiv p$
Implicação como disjunção:	$p \to q \equiv \neg p \vee q$
Associatividade de \wedge :	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
Associatividade de \vee :	$p \vee (q \vee r) \equiv (p \vee q) \vee r$
Comutatividade de ∧:	$p \wedge q \equiv q \wedge p$
Comutatividade de ∨:	$p\vee q\equiv q\vee p$
Idempotência de ∧:	$p \wedge p \equiv p$
Idempotência de ∨:	$p\vee p\equiv p$
Elemento Neutro de ∧:	$p \wedge 1 \equiv p$
Elemento Neutro de \vee :	$p \lor 0 \equiv p$
Elemento Absorvente de \wedge :	$p \wedge 0 \equiv 0$
Elemento Absorvente de \vee :	$p \lor 1 \equiv 1$
De Morgan (1):	$\neg (p \lor q) \equiv (\neg p \land \neg q)$
De Morgan (2):	$\neg(p \land q) \equiv (\neg p \lor \neg q)$
Distributividade de \land sobre \lor :	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Distributividade de \vee sobre \wedge :	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$