Lecture1: Circuit theory

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

A simple problem

- Solve the problem.
 - What is the current?

It is an easy problem.

Elements

- Resistors, capacitors, etc
 - They can have multiple terminals.
 - A resistor has two terminals.
 - A diode has two terminals.
 - A MOSFET has three (or four) terminals.

Convention for current

Terminal current

Conventionally, an in-coming current is regarded as positive.

Nodes

- A point to which multiple terminals are tied.
 - (Usually, a dot is used to represent a node.)
 - There is a special node, GND.

How to describe a circuit

- Of course, we can draw a circuit schematic. What else?
- A netlist for this circuit looks like:

Format for two-terminal devices

elementlabel node1 node2 value

RC filter

A netlist for this circuit looks like:

```
c1 in out 5e-12
r1 out 0 2e6
vin in 0 1.5
```


Circuit analysis (1)

- The basis principle of circuit analysis is...
 - Kirchhoff's current law (KCL)!
 - At any node in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node.

Circuit analysis (2)

- Our simple problem
 - Following equations are identified.

$$I_{va} + I_{r1} = 0 \qquad \qquad \mathbf{K}$$

$$V(out) - 0.0 = 1.0$$

Voltage source

$$I_{r1} = \frac{V(out)}{1000}$$

Resistor

Circuit analysis (2)

- Our simple problem
 - Following equations are identified.

$$I_{va} + I_{r1} = 0$$

KCL

$$V(out) - 0.0 = 1.0$$

Voltage source

$$I_{r1} = \frac{V(out)}{1000}$$

Resistor

Circuit analysis (3)

- Our real-world example
 - Write a netlist.
 - Calculate the node voltage of out.

Homework#1 (1)

- Due: 09:00, March 12
 - Submit your Homework answer sheet (hardcopy) to Mr. Geon-Tae Jang, our TA.
 - His office: EECS building C-411
- Write a simple program.
 - It accepts an input file name.
 - It prints "Hello, world!"
 - It prints the contents for the input file.
 - It prints "Bye!"
 - (Attach the source code and the screen shot.)

Homework#1 (2)

Draw a circuit schematic of the following netlist.

```
v1 batt 0 1.5
r1 batt xx 1000
r2 xx yy 2000
r3 yy 0 2000
r4 yy 0 3000
```