

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Разработка программного обеспечения для визуализации геометрической модели водопада

Студент: Цветков Иван Алексеевич ИУ7-53Б

Научный руководитель: Оленев Антон Александрович

Цель и задачи

Цель работы: разработать программное обеспечение для визуализации геометрической модели водопада.

Задачи:

- проанализировать методы и алгоритмы, моделирующие водопады;
- определить алгоритм, который наиболее эффективно справляется с поставленной задачей;
- реализовать алгоритм;
- разработать структуру классов проекта;
- провести эксперимент по замеру производительности полученного программного обеспечения.

Классификация методов моделирования водопадов

Метод	К1	К2	К3	K4
Уравнение Навье- Стокса	-	-	+	-
Система частиц	+	+	+	+
Сетка	+	+	-	-
Комбинированный метод	-	+	+	+

К1 – простота реализации

К2 – эффективность

К3 – реалистичность

К4 – возможность реализовать брызги и аэрозольное облако

Классификация методов рендера изображения

Метод	К1	К2	К3	К4
OpenGL	+	+	+	+
Vulkan	-	+	+	+
DirectX	+	-	-	-

К1 – библиотека для Python

К2 – открытый код

К3 – кроссплатформенность

К4 – работа с видеокартами прошлого поколения Схема алгоритма перемещения частицы водопада за один кадр

Структур классов программы

Средства реализации

- Язык программирования: Python 3.8.10
- Разработка интерфейса: QtDesigner 4.4.3
- Среда разработки: Visual Studio Code 1.64.2
- Библиотеки: numpy, PyQt5, OpenGL, random, copy

Интерфейс программы

Управление водопадом

Управление камерой

Результаты эксперимента

Частиц, штук	Производительность, к/с		
500	210		
1000	120		
2000	80		
3000	50		
4000	34		
5000	27		
6000	21		
7000	18		
8000	16		
9000	14		
10000	12		
11000	11		
12000	10		
13000	9		
14000	8		
15000	7		

Заключение

Цель курсовой работы была достигнута и выполнены следующие задачи:

- рассмотрены методы реализации модели водопада;
- выбран алгоритм, который наиболее эффективно решает поставленную задачу;
- реализован выбранный алгоритм;
- разработана структура классов проекта;
- проведен эксперимент по замеру производительности полученного программного обеспечения.