National Cheng Rung University	y —
◎:補充. w(g,, g.).	
一組函枚集合 {u(x), u(x) ··· u(x) }	
考慮C,U,(x)+C,U,(x)+…+CnUn(x)=0,其中C,~Cn	e const
	••••
AJ 若上代成立 \iff $C_1 = C_2 = \cdots = C_n = 0$	
則 U(x), Uz(x) Un(x) 微線性獨立 (linearly independe	nt).
BJ.发习Ci≠ost上式成立	
則 U,(x), Udx) … Un(x) 為線性相依 (linearly dependent	;)
其中(i(X)可用((X), U,(X), U;-(X), U;+(X), un(X) 來表	
pf: 全Ci≠o·	
$C_{i}U_{i}+C_{z}U_{z}+\cdots+C_{i}U_{i}+\cdots+C_{n}U_{n}=0$	
$\Rightarrow u_{\lambda} = \frac{-C_{1}}{C_{\lambda}}u_{1} + \frac{-C_{2}}{C_{\lambda}}u_{2} + \dots + \frac{-C_{\lambda-1}}{C_{\lambda}}u_{\lambda-1} + \frac{-C_{\lambda+1}}{C_{\lambda}}u_{\lambda+1} + \dots + \frac{-C_{\lambda}}{C_{\lambda}}u_{\lambda}$	An
ex. U,(x)=3x, U,(x)=-2x.	
$\Rightarrow C_1(3x) + C_2(-2x) = 0 \Rightarrow (3G - 2C_2)x = 0$	
⇒ $3C_1 = 2C_2$ $\Re C_1 = 1$, $C_2 = \frac{3}{2}$.	
ラ u.(x)+u.(x) 总線性相依	
$\Rightarrow u_{r}(x) = 3X = -\frac{C_{2}}{C_{r}}(-2X).$	
$ex.$ $u_{i}(x)=x^{2}$, $u_{2}(x)=x$	
$\Rightarrow C_1 \times^2 + C_2 \times = 0 \iff C_{1,1} C_2 = 0$	
⇒ u,(x) + u,(x) 銀性獨立	
推廣: 內分函 数.	
⇒ § C, U, + C, U, + ··· + C, U, = 0	
$C_1U_1' + C_2U_2' + \cdots + C_nU_n' = 0$	
	-

现 计
聯立 $C_1U_1^{n-1} + C_2U_2^{n-1} + \cdots + C_nU_n^{n-1} = 0$
$\begin{cases} ax + by = 0 \\ cx + dy = 0 \end{cases} \Rightarrow x = \begin{cases} \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} \\ \begin{vmatrix} a & b \\ 0 & d \end{vmatrix} \end{cases} = \begin{vmatrix} a & b \\ 0 & d \end{vmatrix}$
$\begin{cases} cx + dy = 0 \end{cases} \qquad \begin{cases} a & b \\ c & d \end{cases} \qquad \begin{cases} a & b \\ c & d \end{cases}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(a) b c d -0 · c d -0 · c d -0 ·
上述聯立方程式的行列式為
u, uz ··· un
Uí Uí … Un = Wronski (U., U2 … Un)
(n-1) (n-1) (n-1) (n-1) (n-1) (n-1)
(A). W(U,,U2… Un)=O <⇒至少有非電餅在C,~Cu2間
→ ⇔ 线 性 相 依 .
(B). W(u,, u, un) ≠ 0 <=> C,, C, Cn = 0
⇔幾性独立
ex, $3x$, $-2x$.
⇒ N = 3× -2× = 0 ⇒ 幾性相依
,
$ex \cdot x \cdot x$ $\Rightarrow w = \begin{bmatrix} x & x \\ y & x \end{bmatrix} \phi = x^2 \neq 0 \forall x \Rightarrow $
フルー 1, zx (・ハ ナンハ ジベンガレ

ex. e ^x , e	2X, e3x		
=> W =	$ e^x e^{ix} e^{ix} $	$=2e^{6x}$	⇒线性独立
	ex zex 3e3x		
1	ex 4exx 9exx		

$$a_0 x^n z^{(n)} + a_1 x^{(n-1)} + \cdots + a_{n-1} x z' + a_n z = r(x)$$

$$Y(X) = 0$$
 homogeneous case.

$$ex. x^{2}g'' - 2xg' + 2g = 0$$

$$x = e^{t}$$

$$\Rightarrow \frac{dx}{dt} = e^{t}, \quad \frac{dy}{dx} = \frac{dy}{dx} \cdot e^{t} = \frac{dy}{dx} x$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dx} \left(\frac{dy}{dt} \right) \cdot \frac{dx}{dt}$$

$$= \frac{d}{dx} \left(x \cdot \frac{d^{3}}{dx} \right) \cdot x = \left(\frac{d^{3}}{dx} + x \cdot \frac{d^{2}g}{dx^{2}} \right) \cdot x$$

$$= \times \frac{d^2 \dot{q}}{dx^2} + \times \frac{d\dot{q}}{dx}$$

$$\Rightarrow xg' = x \cdot \frac{dg}{dx} = \frac{dg}{dx}$$

$$\chi^2 g'' = \chi \cdot \frac{d\chi}{d\chi} = \frac{d\chi}{d\chi}$$

$$\chi^2 g'' = \chi^2 \frac{d^2 g}{d\chi^2} = \frac{d^2 g}{d\chi^2} - \chi \frac{dg}{d\chi} = \frac{d^2 g}{d\chi} \cdot \frac{dg}{d\chi}$$

$$\chi^2 g'' = \chi^2 \frac{d^2 g}{d\chi} = \frac{d^2 g}{d\chi} - \chi \frac{dg}{d\chi} = \frac{d^2 g}{d\chi} \cdot \frac{dg}{d\chi}$$

$$\chi^2 g'' = \chi^2 \frac{d^2 g}{d\chi} = \frac{d^2 g}{d\chi^2} - \chi \frac{dg}{d\chi} = \frac{d^2 g}{d\chi} \cdot \frac{dg}{d\chi}$$

$$\frac{\Rightarrow}{dt^2} \frac{d^2y}{dt^2} = \frac{d^2y}{dt} - 2 \cdot \frac{d^2y}{dt} + 2y = 0$$

$$\Rightarrow \frac{d^2y}{dt^2} \Rightarrow \frac{d^2y}{dt} + 2y = 0 \Rightarrow \text{ if } \text{$$

 $\Rightarrow \chi^2 - 3\chi + 2 = 0 \Rightarrow \chi = 1, 2.$ $\Rightarrow \Im(t) = C_1 e^{t} + C_2 e^{2t}$ 3(x)=c,x +c,x2. #

note: $O \times \frac{d^3}{dx} = \frac{d^3}{dx}$

0: xDy = Dy

@: x'b'g = D'g - Dg = D(D-1) g

3: x3D33 = D(D-1)(D-2) g

 $\chi^{h}D^{n}g = D(D-1) \cdots (D-(n-1))g$

回頭來看 ao x ng(n) + a, x n-1 g(n-1) + , , , + an -1 x g" + an g = 0 => a. D(D-1)...(D-(n-1))q+a,D(D-1)...(D-(n-2))q+...+anq=0 意即上(少)了一口

ex. $x^{2}g'' + 4xg' + 2g = 0$ $x^{2}x - e^{x}$ $x^{2}y + 4xg' + 2g = 0$ $\Rightarrow (D^2 + 3D + 2)q = D$

$$\Rightarrow \lambda^{2}+3\lambda+2=0 \Rightarrow \lambda=-1, -2.$$

$$\Rightarrow z=c, e^{-t}+c_{2}e^{-2t}$$

$$=c, x^{-1}+c_{2}x^{-2} + t.$$

$$ex. \quad x^{3}z'''+4x^{2}z''-5x^{2}z'-15z=0$$

$$x^{2}x=e^{t}, D=\frac{d}{dt}.$$

$$\Rightarrow D(D-1)(D-2)z+4D(D-1)z-5Dz-15z=0$$

$$\Rightarrow (D^{3}+D^{2}-1D-15)z=0$$

$$\Rightarrow \lambda^{3}+\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{3}+\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{3}+\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{3}+\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{3}+\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{2}+\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{2}-\lambda^{2}-12-15z=0$$

$$\Rightarrow \lambda^{2}-\lambda^{2}-\lambda^{2}-\lambda^{2}-\lambda^{2}-\lambda^{2}-\lambda^{2}-\lambda^{$$

(1) UC (未定係故法).

⇒
$$3^{\mu}$$
 - $\sqrt{3}^{\mu}$ -

⇒ (D-3)(D+1)
$$J_p = 4e^{\frac{1}{4}}$$
 $I_1 = e^{\frac{1}{4}}$, $I_2 = e^{\frac{1}{4}}$

⇒ $J_p = I_1^{-1} I_1 I_1^{-1} I_1^{-1}$

$$\frac{d^{3}}{dx^{2}} = \frac{d}{dx} \cdot \left(\frac{d^{3}}{dx}\right) = \frac{d}{dx} \left(2\frac{d^{3}}{dx}\right) = 4\frac{d^{2}}{dx^{2}}$$

$$\frac{d^{3}}{dx^{2}} = \frac{d}{dx} \cdot \left(\frac{d^{3}}{dx}\right) = \frac{d}{dx} \cdot \left(2\frac{d^{3}}{dx}\right) = 4\frac{d^{2}}{dx^{2}}$$

$$\frac{d}{dx^{2}} = \frac{d}{dx} \cdot \left(2\frac{d}{dx}\right) + 12 \cdot \frac{d}{dx} + 12 \cdot \frac{d}{dx} = 0$$

$$\frac{d}{dx^{2}} = \frac{d}{dx} \cdot \left(2\frac{d}{dx}\right) + 12 \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} + 12 \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (4D^{2} - 1(D + 12)) \cdot \frac{d}{dx} + 12 \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12)) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{2} - 1(D + 12) \cdot \frac{d}{dx} = 0$$

$$\Rightarrow (2D^{$$

 $ex. \times \frac{dI}{dx} + I = x^2 I^2$, n=2

⇒
$$\frac{d^2y}{dx} + (\frac{1}{x}) \cdot \hat{y} = x \hat{y}^2 = x \hat{y}^{-1}$$
 $\hat{z} = 3^{1-n} = 3^{-1}$
 $\hat{z} = 3^{1-n} = 3^{1-n}$
 $\hat{z$

dg + p(x)·g = g(x) + g2· r(x) 当引為上式之

特解時 则令马马子