

Universidade do Minho

Escola de Engenharia

METI - 2024/2025

Projeto Integrador em Telecomunicações e Informática Relatório de Especificação - Fase C

Grupo 5

Fernando João Santos Mendes (PG55807) Bruno Miguel Fernandes Araújo (PG55806) Junlin Lu (A101270)

Índice

Lista de Acrónimos	
Lista de Figuras	
1. Introdução	
2. Objetivos	
3.Arquitetura	
4. Protocolo de Camada de Aplicação	
A. Definição das tramas	
B. Multiplexagem	
5. Aplicações	
6. Ferramentas utilizadas	
8. Referências	10

Lista de Acrónimos

LED - Light-Emitting Diode. UART - Universal Asynchronous Receiver /Transmitter CSV - Comma-Separated Values

Lista de Figuras

1 Arquitetura geral da Fase C	5
2 Fluxo de comunicação da Fase C	.5
3 Estrutura da trama da camada ligação e aplicação	.6
4 Estrutura do payload	. 6
5 Diagrama de Gantt	10

1. Introdução

A Fase C do projeto marca a conclusão do sistema de comunicação, com foco na camada de aplicação. Nesta fase, o objetivo principal é implementar uma aplicação útil e funcional para um ambiente de aeroporto, permitindo a consulta de informações em tempo real, bem como a transferência de ficheiros digitais, como revistas, mapas ou cartões de embarque.

2. Objetivos

A Fase C do projeto visa a implementação da camada de aplicação (nível 7) sobre o protocolo de transmissão fiável desenvolvido na Fase B, criando uma aplicação funcional voltada para o ambiente de um aeroporto. Os principais objetivos desta fase são::

- 1. Desenvolver e implementar um protocolo de aplicação (nível 7).
- Conceber uma aplicação de consulta, que permita aceder a informações de voo (check-ins, horários, portões de embarque, etc.) e receber documentos digitais (revistas, mapas, cartões de embarque).
- 3. Assegurar que a aplicação permite o uso simultâneo de várias funcionalidades (consulta + transferência), através de multiplexagem.
- 4. Desenvolver uma interface de utilizador (gráfica ou textual)
- 5. Integrar o sistema completo (software + hardware).

3.Arquitetura

Figura 1: Arquitetura geral da Fase C

A Fase C do projeto tem como objetivo a implementação da camada de aplicação (nível 7), permitindo a criação de uma aplicação cliente-servidor com funcionalidades de consulta de informações e transferência de ficheiros no contexto de um aeroporto.

Nesta fase, o PC cliente envia pedidos formatados segundo um protocolo de aplicação para o PC servidor, que responde de acordo com o tipo de pedido (.consulta de voo ou envio de ficheiro). A camada 2 desenvolvida na fase anterior é reutilizada para garantir a transmissão fiável dos dados.

Fluxo de comunicação

Figura 2: Fluxo de comunicação da Fase C

- 1. O utilizador no Cliente interage com a interface gráfica.
- 2. O pedido é enviado ao Servidor.
- 3. O Servidor processa o pedido e gera uma resposta (consulta ou envio de ficheiro).
- 4. Os pacotes da resposta são transmitidos pelo Emissor.
- 5. O Recetor capta o sinal e entrega os dados ao Cliente.

4. Protocolo de Camada de Aplicação

A. Definição das tramas

Na Fase C do projeto, o campo Payload passou a incorporar uma estrutura interna adicional que permite a multiplexagem de diferentes tipos de conteúdo, como dados de consulta e blocos de ficheiros, respeitando os requisitos da camada de aplicação e mantendo a separação das camadas inferiores..

Figura 3: Estrutura da trama da camada ligação e aplicação

Figura 4: Estrutura do payload

Os seguintes campos da trama são definidos por:

• Bloco Tipo:

Este bloco é responsável por definir o tipo das tramas que estão a ser enviadas.

• Bloco do ID do Payload:

Este campo serve como um identificador único de cada fluxo de dados associado a um cliente.

• Bloco Tamanho Total:

Indica o **tamanho total do ficheiro ou mensagem** completa que está a ser enviado. Esse campo só é útil no primeiro Payload de uma sequência ou em mensagens únicas. Ajuda o recetor a saber quando terminou a receção completa.

Bloco do Tamanho dos Dados

Contém o número de bytes efetivamente usados no campo Dados deste Payload.

Bloco Dados

É o conteúdo efetivo transportado neste segmento.

A decisão de definir o payload com 100 bytes surgiu após identificarmos uma limitação na transmissão de dados dos ficheiros através do link óptico, sempre que o valor ultrapassava os 100 bytes, os dados eram enviados de forma corrompida.

B. Multiplexagem

Para garantir que vários utilizadores possam utilizar simultaneamente o sistema — seja para consultar informações de voo, seja para transferir ficheiros digitais — a camada 7 foi desenvolvida com suporte a multiplexagem.

Do lado do emissor (servidor), o programa Python recorre a multithreading, criando uma nova thread para tratar cada pedido de cliente individualmente. Desta forma, é possível responder a diferentes utilizadores ao mesmo tempo, sem bloquear o sistema durante uma transferência de ficheiro, por exemplo.

Além disso, a multiplexagem é suportada na camada 7 através da inclusão de um ID de Payload em cada pacote. Este identificador funciona como um marcador único do fluxo de dados, permitindo ao sistema distinguir a que cliente ou a que pedido pertence cada pacote. Assim, mesmo com múltiplos pedidos a ocorrer em paralelo, é possível manter a organização e a integridade das sessões de comunicação.

5. Aplicações

A aplicação utilitária que será desenvolvida para um aeroporto permitirá a consulta de informações relacionadas com voos, bem como o download de documentos digitais, como mapas e trajetos. A comunicação entre os dois sistemas será baseada num protocolo de camada 7 (camada de aplicação do modelo OSI), comum a ambos os computadores.

O computador emissor atuará como servidor, contendo localmente uma base de dados ou um ficheiro CSV (Comma-Separated Values) com as informações dos voos, assim como os ficheiros disponíveis para transferência. Esta base de dados/ficheiro CSV não será atualizada(o) dinamicamente pelo emissor, apenas será consultada.

A aplicação a nível do emissor incluirá uma interface gráfica simples destinada à monitorização dos logs de comunicação (mensagens enviadas e recebidas). Está prevista a expansão desta interface com funcionalidades adicionais, como a visualização dos ficheiros disponíveis para transferência ou a possibilidade de encerrar a aplicação de forma controlada.

O computador recetor funcionará como cliente, assumindo o papel de utilizador na comunicação. Este contará com uma interface gráfica que disponibilizará várias funcionalidades: consulta de informações sobre voos, transferência de ficheiros digitais disponíveis no servidor e envio de mensagens de erro (para fins de teste). Adicionalmente, a interface incluirá uma área de visualização dos logs de comunicação, permitindo ao utilizador acompanhar as mensagens trocadas entre si e o servidor.

Seria interessante desenvolver um pequeno programa para a simulação do funcionamento do aeroporto, que atualizasse aleatoriamente o ficheiro ou base de dados contendo as informações dos voos, com o objetivo de simular a introdução dinâmica de novos voos nos horários.

6. Ferramentas utilizadas

As ferramentas a nível do software que usamos as seguintes:

- Programa Arduino IDE, para o desenvolvimento de código para os ESP32.
- Programa **VisualStudio Code**, para o desenvolvimento de Python script e C + + script.
- Programa **Discord**, para a comunicação e partilha de ficheiros entre os membros do grupo.
- Programa **Tina**, para a simulação dos circuitos do emissor e do recetor.
- Programa Excel, para a criação do diagrama de Gantt.
- Plataforma **Draw.io**, para a criação do diagrama da arquitetura do sistema desta fase.
- Plataforma Google Docs, para o desenvolvimento deste relatório.

7. Planeamento Temporal

Apresentaremos a planificação temporal da Fase C do projeto através de um Diagrama de Gantt, que contém a lista completa de todas as tarefas e subtarefas desta fase, este encontra-se ilustrado na Figura 6.

Figura 5: Diagrama de Gantt.

8. Referências

- Copperhill Technologies. (2021). ESP32/ESP32S2 Serial Port (Native USB) Access Using Arduino IDE. Copperhill Technologies.
 https://copperhilltech.com/blog/esp32-esp32s2-serial-port-native-usb-access-using-arduino-ide/
- GeeksforGeeks. (n.d.). *Stop and Wait ARQ*. GeeksforGeeks. https://www.geeksforgeeks.org/stop-and-wait-arq/

Cloudflare. (n.d.). *O que é e como funciona a camada 7?* Cloudflare. https://www.cloudflare.com/pt-br/learning/ddos/what-is-layer-7/