Introduction to Operating System Day1: Sep 2021

Kiran Waghmare

Agenda

Introduction to OS

- Application Software
- Hardware dependent
- Components of OS
- Difference between :
 - Mobile OS, Embedded system OS,
 - Real Time OS,
 - desktop OS server machine os
- Functions of OS
- User and Kernel space & model
- Interrupts & system calls

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

The Layers in Systems

Applications

Operating Systems

Computer Organization

VLSI

Transistors

The Layers in Systems

e.g., compilers, interpreter, editors

Four Components of a Computer System

Four Components of a Computer System

Four Components of a Computer System

Kernel: one program which runs all the time in computer

Silberschatz, Galvin and Gagne ©2

Operating System Definition

- □ OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

Computer System Organization

Computer System Organization

A Simple Program

What is the output of the following program?

```
#include <stdio.h>
int main(){
  char str[] = "Hello World\n";
  printf("%s", str);
}
```

How is the string displayed on the screen?

Displaying on the Screen

Operating Systems provide Abstraction

OS as a Resource Manager

Multiple apps but limited hardware

Operating Systems

Allows sharing of hardware!!

Sharing the CPU

Sharing the CPU


```
Types of OS:
```

Simple Batch system:

- -no direct communication
- -submit a job, submit batch of jobs---->Results of progra

Multiprogramming Batch System:

Cpu processing:J1,J2,j2,j1,j4

IO Processing:-J2,J3,J1,

Main memory

OS

User programs

J1

J2

J3

J4

```
Types of OS:
Simple Batch system:
-no direct communication
-submit a job, submit batch of jobs---->Results of progra
                                             Main memory
Multiprogramming Batch System:
                                                05
   Cpu processing: J1,J2,j2,j1,j4
                                              User programs
                                                  J1
   IO Processing:-J2,J3,J1,
                                                  J2
             J1: 1hr
                          Time Sharing
              J2: 5min
                          Slice: 2min
             J4: 1min
```


Types of Operating Systems

- Following are some of the most widely used types of Operating system.
 - Simple Batch System
 - Multiprogramming Batch System
 - Multiprocessor System
 - Desktop System
 - Distributed Operating System
 - Clustered System
 - Realtime Operating System
 - Handheld System


```
Simple Batch system:
-no direct communication
-submit a job, submit batch of jobs---->Results of program
                                            Main memory
Multiprogramming Batch System:
                                               OS
   Cpu processing: J1,J2,j2,j1,j4
                                             User programs
                                                  J1
   IO Processing:-J2,J3,J1,
              J1: 1hr
                          Time Sharing
              J2: 5min
                          Slice: 2min
             J4: 1min
Multiprocessor System:more of processor
```

Types of OS:

Computing Environments (Cont)

Client-Server Computing

- Dumb terminals supplanted by smart PCs
- Many systems now servers, responding to requests generated by clients
 - Compute-server provides an interface to client to request services (i.e. database)
 - File-server provides interface for clients to store and retrieve files

Multiprocessor System:more of processor

Distributed Os:

- 1. Client server Arch
- 2. Peer to Peer Arch

Failure

Symmetric Multiprocessing Architecture

A Dual-Core Design

Peer-to-Peer Computing

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead all nodes are considered peers
 - May each act as client, server or both
 - Node must join P2P network
 - Registers its service with central lookup service on network, or
 - Broadcast request for service and respond to requests for service via discovery protocol
 - Examples include Napster and Gnutella

Multiprocessor System:more of processor

Distributed Os:

- 1. Client server Arch
- 2. Peer to Peer Arch

Clusters

Real Time Operating System

- It is defined as an operating system known to give maximum time for each of the critical operations that it performs, like OS calls and interrupt handling.
- The Real-Time Operating system which guarantees the maximum time for critical operations and complete them on time are referred to as Hard Real-Time Operating Systems.

■ While the real-time operating systems that can only guarantee a maximum of the time, i.e. the critical task will get priority over other tasks, but no assurity of completing it in a defined time. These systems are referred to as Soft Real-Time Operating Systems.

Interrupts:

-defined as an event that alters the sequence of instructions executed by a processor.

Bourne Shell Command Interpreter

				E	■ Tern	ninai				
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>T</u> erminal	Tabs	<u>H</u> elp						
fd0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
sd0	0.0	0.2	0.0	0.2	0.0	0.0	0.4	0	0	
sd1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
		exten	ded de	vice s	tatis	tics				
device	r/s	w/s	kr/s	kw/s	wait	actv	svc_t	: %w	%b	
fd0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
sd0	0.6	0.0	38.4	0.0	0.0	0.0	8.2	. 0	0	
5d1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	
-(/var/tm 12:53am (root@pbg -(/var/tm 4:07pm	up 9 -nv64 p/syst	min(s), -vm)-(13 tem-cont	3 us /pts)- ents/s	ers, (00:53 cripts	load 15-3)# w	averag un-200)7)-(g1	obal))	, 36.81
Jser .	tty			@ idl				what		
root	conso	le	15Jun0	718day	5	1		/usr/	bin/	ssh-agent /usr/bi
n/d										16.00 Th Th
root	pts/3	3	15Jun0	7		18	4	W		
root	pts/4		15Jun0	718day	5			W		
(root@pbg -(/var/ti						u1-200)7)-(g1	obal))	

The Mac OS X GUI

Traditional UNIX System Structure

(the users) shells and commands compilers and interpreters system libraries system-call interface to the kernel signals terminal file system CPU scheduling Kernel handling swapping block I/O page replacement character I/O system demand paging system terminal drivers disk and tape drivers virtual memory kernel interface to the hardware terminal controllers device controllers memory controllers terminals disks and tapes physical memory

Layered Operating System

The Java Virtual Machine

Operating System Generation

- Operating systems are designed to run on any of a class of machines; the system must be configured for each specific computer site
- SYSGEN program obtains information concerning the specific configuration of the hardware system
- Booting starting a computer by loading the kernel
- Bootstrap program code stored in ROM that is able to locate the kernel, load it into memory, and start its execution

- -0S
- -1969 AT&T Bell Lab
- -CLI: Command Line Interpreter

Linux:

- -invented by 1991, Linus Torvalds
- -open source
- -variant of UNIX
- -Supports Multiuser, Multitasking, Multiprocessor system
- -free, customizable, stability, security & portability

Kernel:

- -low level core of the system that is the interface between application & hardware
- -Functions
 - -Memory Management
 - -I/O devices
 - -allocates the time between user & processor
 - -interprocess communications
 - -sets process priority

Kernel:

- -low level core of the system that is the interface between application & hardware
- -Functions
 - -Memory Management
 - -I/O devices
 - -allocates the time between user & processor
 - -interprocess communications
 - -sets process priority etc

Shell:

program sits on the interface between the user and kernel.

Shell Types:

- -Bourne shell(sh)
- -C schell(csh)
- -Korn shell(ksh)
- -Bourne again shell(bash)

- -Bourne again shell(bash)
 - -CLI: Linux based Command Language Interpreter.
 - -It is a replacement of Bourne shell (sh).
 - -supports programming functionalities.
 - -Extension of files: .sh
 - -inventer: GNU Project :Brian Fox.

File system:

- -"Root": /
- -Hierarchical Structure for File organization:

-"Root": / -Hierarchical Structure for File organization: bin lib home cdac /bin /dev .-->directory /etc ..-->parent direntory /tmp ~-->home directory .sh-->