Analysis of Algorithms

V. Adamchik

CSCI 570

Lecture 1

University of Southern California

Review

Reading: chapter 1

Chapter 1.1: Runtime Complexity

The term analysis of algorithms is used to describe approaches to study the performance of computer programs. We interested to find a runtime complexity of a particular algorithm as a function of T(n) that describes a relation between algorithm's execution time and the input size n.

time and the input size n.

CPU: 64 bits

2+2 > O(1) cohst.

Imput

Size

O(n) lihear

Runtime Complexity

In this course we will perform the following types of analysis:

- •the worst case complexity "pher bound
- the best case complexity lower bound -
- •the average case complexity []
- the amortized time complexity

We measure the run time of an algorithm using following asymptotic notations: O, Ω, Θ .

Big-O (upper bound)

For any monotonic functions f, g from the positive integers to the positive integers, we say

$$f(n) = O(g(n))$$

if

g(n) eventually dominates f(n)

Formally: there exists a constant c such that for all sufficiently large n: $f(n) \le c * g(n)$

logz

Discussion Problem 1

Arrange the following functions (in increasing order) of growth rate with g(n) following f(n) in your list if and only if f(n) = O(g(n)), $h \rightarrow \infty$

log nⁿ, n², n^{log n}, n log log n, n^{1/log n} 2^{log n}, log² n, n^{1/2}

Suppose that f(n) and g(n) are two positive non-decreasing functions such that f(n) = O(g(n)).

Is it true that
$$2f(n) = O(2g(n))$$
? FALSE

if it's true, then prove it

if it's false, then provide an example

 $f(n) = 7n$, $g(n) = 6$, $2n = 60(n)$
 $2^{f(n)} = 4^{f(n)} = 2^{f(n)} = 2^{f(n)}$
 $2^{f(n)} = 4^{f(n)} = 2^{f(n)} = 2^{f(n)}$
 $2^{f(n)} = 4^{f(n)} = 2^{f(n)} = 2^{f(n)}$
 $2^{f(n)} = 2^{f(n)} = 2^{f(n)} = 2^{f(n)}$

Omega:
$$\Omega$$
 (lower bound)

For any monotonic functions f, g from the positive integers to the positive integers, we say

$$f(n) = \Omega(g(n))$$

if:

f(n) eventually dominates g(n)

Formally: there exists a constant c such that for all sufficiently large n: $f(n) \ge c \cdot g(n)$ $\nearrow efin 1/104$

$$4^{7} = 52(2^{4}) = 52(4)$$

Suppose that f(n) and g(n) are two positive nondecreasing functions such that $f(n) = \Omega(g(n))$.

Is it true that
$$2^{f(n)} = \Omega(2^{g(n)})$$
?
$$f(h) = h, g(h) = 2^{h}, h = \Omega(2^{h})$$

Theta: Θ

For any monotonic functions f, g from the positive integers to the positive integers, we say

if:

$$f(n) = \Theta(g(n))_{(25)}(1) + f(n) + C_{1} g(1)$$

$$f(n) = O(g(n)) \quad and \quad f(n) = \Omega(g(n))$$

In this class we will be mostly concerned with a big-O notation.

$$T(h) \in [L, U]$$

Quickies

1.
$$n = \Omega(n^2)$$
?

2.
$$n = \Theta(n + \log n)$$
?

3.
$$\log n = \Omega(n)$$
?

4.
$$n^2 = \Omega(n^2 \log n)$$
?

5.
$$n^2 (\log n) = \Theta(n^2)$$
?

6.
$$3n^2 + 4n + 5 = \Theta(n^2)$$
?

7.
$$(2^n)+100n^2+n^{100}=\Omega(n^{101})$$
?

8.
$$(1/3)^n + 100 = \Theta(1)$$
? $| 1 \text{ im } n \to \infty$

Chapter 1.2: Sorting Lower Bound

We will show here that any deterministic comparison-based sorting algorithm must take $\Omega(n \log n)$ time to sort an array of n elements in the worst-case.

hz/log(n!)=log(h.(n-1)(n-2)...2.1)3 $\frac{5}{5}\log(h(h-1)(h-2)\cdots\frac{5}{2})^{5}$ 2/69(2, 2, 2, ..., 2) = $= \log \left(\frac{h}{2}\right)^{h/2} = \frac{h}{2} \cdot \log \left(\frac{h}{2}\right)$ Definition of Sh = 52 (n. log h)

What is the Big-O runtime complexity of the following function? Give the tightest bound.

void bigOh1(int n):

for i=1 to n

$$j=1;$$
while $j < i$

$$j = (j*2;)$$

$$k$$

= 1/-X

What is the Big-O runtime complexity of the following $\chi = \frac{1}{4}$ function? Give the tightest bound.

void bigOh2(int[] L, int n)

while (n > 0)
$$\phi(h)$$
 $\phi(h)$ $\phi(h)$

What is the Big-O runtime complexity of the following function? Give the tightest bound.

Chapter 1.3: Trees and Graphs

A graph G is a pair (V, E) where V is a set of vertices (or nodes) E is a set of edges connecting the vertices.

An undirected graph is connected when there is a path between every pair of vertices.

A (tree is a connected graph with no cycles.

A path in a graph is a sequence of distinct vertices.

A cycle is a path that starts and ends at the same vertex.

We start with reviewing mathematical proofs (induction and contradiction).

- **Theorem**. Let G be a graph with V vertices and E edges. The following statements are equivalent:
- 1. G is a tree (a connected graph with ho cycles).
- 2. Every two vertices of G are connected by a unique path.
- 3. G is connected and V = E + 1.
- 4. G is acyclic and V = E + 1.
- 5. G is acyclic and if any two non-adjacent vertices are joined by an edge, the resulting graph has exactly one cycle.

1->2: (Fiven I), prove 2 Prove that a path is unique. Proof by contradiction. Assume that a path is NOT unique. P,+Pzisacycle.

Contradiction.

2-3: Given 2, Prove V=E+1 Proof by induction on vertices

1. Base case. V=2 and V=E+1 2. IH: Assume V=E+1for graphs V<h. 3. IS: Prove V=E+1for graphs V=h.

$$V_{1} < h$$
 $V_{2} < h$
 $V_{3} < h$
 $V_{4} < h$
 $V_{5} < h$
 $V_{1} < h$
 $V_{5} < h$
 $V_{7} < h$
 $V_{7} < h$
 $V_{7} < h$
 $V_{7} < h$
 $V_{8} < h$
 $V_{1} < h$
 $V_{1} < h$
 $V_{1} < h$
 $V_{2} < h$
 $V_{3} < h$
 $V_{4} < h$
 $V_{5} < h$
 $V_{1} < h$
 $V_{1} < h$
 $V_{1} < h$
 $V_{2} < h$
 $V_{3} < h$
 $V_{4} < h$
 $V_{5} < h$
 $V_{1} < h$
 $V_{1} < h$
 $V_{2} < h$
 $V_{3} < h$
 $V_{4} < h$
 $V_{5} < h$
 $V_{1} < h$
 $V_{1} < h$
 $V_{2} < h$
 $V_{3} < h$
 $V_{4} < h$
 $V_{5} < h$
 $V_{5} < h$
 $V_{7} < h$
 V_{7

Theorem. Prove that in an undirected simple graph G = (V, E), there are at most V(V-1)/2 edges. In short, using the asymptotic notation, $E = O(V^2)$.

Representing Graphs

Adjacency List Spelse
or
Adjacency Matrix deuse

Vertex X is adjacent to vertex Y if and only if there is an edge (X, Y) between them.

Adjacency List Representation

Is vertex 1 adjacent to 3?

It takes linear time to figure it out.

Adjacency Matrix Representation

Is vertex 1 adjacent to 3?

It takes constant time to figure it out.

Representing Graphs

Adjacency List Representation is used for representation of the sparse (E = O(V)) graphs.

Adjacency Matrix Representation is used for representation of the dense ($E = \Omega(V^2)$) graphs.

Is the Facebook social graph sparse or dense?

We can say a connected graph is maximally sparse if it is a tree.

We can say a graph is maximally dense if it is complete.

Graph Traversals

Depth-First-Search (DFS)
Breadth-First-Search (BFS)

Visit All vedlices

DFS uses a stack for backtracking. BFS uses a queue for bookkeeping.

(g) (S) (S) (C)

Runtime complexity: O(V + E)

Result: spanning tree.

Perform a DFS on the following graph

Perform a BFS on the following graph level order

The complete graph on n vertices, denoted K_n , is a simple graph in which there is an edge between every pair of distinct vertices.

What is the height of the DFS tree for the complete graph K_n ?

What is the height of the BFS tree for the complete graph K_n?

