

Statistical Geophysics

Chapter 5

Regression Diagnostics

Contents

Contents

- Classical Linear Regression
- Munich Rent Data
- Partial Residuals
- Spatial Covariates
- More Diagnostics
- Model Selection

Classical Linear Regression

Classical Linear Regression

Recall the linear regression model. For i = 1, ..., n:

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik} + \varepsilon_{i}$$

$$= \beta_{0} + \sum_{j=1}^{k} \beta_{j}x_{ij} + \varepsilon_{i}$$

$$= \mathbf{x}_{i}^{\top} \boldsymbol{\beta} + \varepsilon_{i}.$$

In matrix notation:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

and $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

Classical Linear Regression

Least squares: minimize

$$LS(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \beta)^2 = \varepsilon^{\top} \varepsilon.$$

Matrix notation:

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix} \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} \quad \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}.$$

Minimize $||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 \Rightarrow \mathbf{X}^\top \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^\top \mathbf{y} \Rightarrow \hat{\boldsymbol{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$.

The aim is to establish a rent index to provide information on the "typical rent for a flat".

Variable	Description.
rent	Net rent per month (EUR).
rentsqm	Net rent per month per square meter (EUR).
area	Living area in square meters.
yearc	Year of construction.
location	Quality of location: "average", "good", "top".
bath	Quality of the bathroom: "standard", "premium".
kitchen	Quality of the kitchen: "standard", "premium".
cheating	Central heating system: "yes", "no".
district	District in Munich.

A simple linear regression.

R> summary(b1)

```
Call:
lm(formula = rentsqm ~ area + yearc + bath + kitchen + cheating +
   location, data = rent99)
Residuals:
    Min
             10 Median 30
                                      Max
-12.5390 -2.7556 -0.2092 2.5825 16.8582
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
             -88.677193 7.027361 -12.619 < 2e-16 ***
             -0.063044 0.003214 -19.618 < 2e-16 ***
area
            0.052569 0.003599 14.606 < 2e-16 ***
yearc
bathpremium 1.487475 0.307240 4.841 1.35e-06 ***
kitchenpremium 2.216971 0.357021 6.210 6.02e-10 ***
cheatingyes 3.442259 0.251683 13.677 < 2e-16 ***
locationgood 1.515409 0.149897 10.110 < 2e-16 ***
locationtop 3.363883 0.460321 7.308 3.45e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.96 on 3074 degrees of freedom
Multiple R-squared: 0.3065, Adjusted R-squared: 0.3049
F-statistic: 194.1 on 7 and 3074 DF, p-value: < 2.2e-16
```

Useful tool for exploring whether the influence of x_j is modeled correctly.

The partial residuals regarding covariate x_i are defined by

$$\hat{\varepsilon}_{x_j,i} = y_i - \hat{\beta}_0 - \hat{\beta}_{j-1}x_{i,j-1} - \hat{\beta}_{j+1}x_{i,j+1} - \ldots - \hat{\beta}_k x_{xik} = \hat{\varepsilon}_i + \hat{\beta}_j x_{ij}.$$

In the partial residuals $\hat{\varepsilon}_{x_j,i}$, all covariate effects with exception of the one associated with x_i are removed.

Partial residuals for term area in model b1.

$$\begin{split} \hat{\varepsilon}_{\text{area},i} &= \text{rentsqm}_i - \hat{\beta}_0 - \hat{\beta}_3 \text{yearc}_i - \ldots - \hat{\beta}_8 \text{locationtop}_i \\ &= \hat{\varepsilon}_i + \hat{\beta}_1 \text{area}_i \end{split}$$

In R:

```
R> res <- residuals(b1)
R> b2 <- coef(b1)["area"]
R> farea <- b2 * rent99$area
R> p.res <- res + farea</pre>
```

```
R> plot(p.res ~ rent99$area)
R> i <- order(rent99$area)
R> lines(farea[i] ~ rent99$area[i], col = "red", lwd = 2)
```


For comparison of multiple effects, it is often useful to require that all functions are "centered around zero". For the area effect this can be done, e.g., by

$$\hat{f}(\text{area}) = \hat{f}(\text{area}) - \overline{\hat{f}(\text{area})}.$$
R> farea <- b2 * rent99\$area
R> farea <- farea - mean(farea)
R> sum(farea)
[1] 9.992007e-13
R> p.res.area <- res + farea
R> fyearc <- coef(b1)["yearc"] * rent99\$yearc
R> fyearc <- fyearc - mean(fyearc)
R> sum(fyearc)
[1] -1.105604e-11
R> p.res.yearc <- res + fyearc

```
R > par(mfrow = c(1, 2))
R> j <- order(rent99$yearc)</pre>
R> plot(p.res.area ~ rent99$area)
R> lines(farea[i] ~ rent99$area[i], col = "red", lwd = 2)
R> plot(p.res.yearc ~ rent99$yearc)
R> lines(fyearc[j] ~ rent99$yearc[j], col = "red", lwd = 2)
                                      p.res.yeard
                                        9
                                140
                                           1920
                                                          1980
```

rent99\$area

rent99\$yearc

```
R> par(mfrow = c(1, 2))
R> termplot(b1, term = 1:2, se = TRUE, partial.resid = TRUE,
+ col.res = "black", pch = ".")
```


Quadratic functions.

```
R> par(mfrow = c(1, 2))
R> termplot(b2, term = 1:2, se = TRUE, partial.resid = TRUE,
+ col.res = "black", pch = ".")
```



```
R> par(mfrow = c(1, 2))
R> termplot(b2, term = 3:4, se = TRUE, partial.resid = TRUE,
+ col.res = "black", pch = ".")
```


Replace polynomials by so-called orthognal polynomials.

This implies that the columns of the design matrix **X** corresponding to, e.g., variable area are centered and orthogonal, which leads to stable computation of the least-squares estimator.

In R use function poly():

```
R> par(mfrow = c(1, 2))
R> termplot(b2, term = 1:2, se = TRUE, partial.resid = TRUE,
+ col.res = "black", pch = ".")
```


Visualization of spatial variation using function plotmap().

```
R> md <- with(rent99, aggregate(rentsqm,
    by = list(as.factor(district)),
    FUN = mean, na.rm = TRUE))
R> head(md)
  Group.1
     113 16.284670
  121 17.160000
 122 12.417570
   124 6.870833
  125 9.632732
     133 10.191534
R> data("MunichBnd", package = "bamlss")
R> plotmap(MunichBnd, x = md, col = heat_hcl,
     symmetric = FALSE, swap = TRUE)
```


Adding the district effect.

```
R> b3 <- lm(rentsqm ~ poly(area, 2) + poly(yearc, 2) +
     bath + kitchen + cheating + location + as.factor(district),
 data = rent99)
R > cb < - coef(b3)
R> nb <- names(cb)
R> i <- grep("district", nb)
R > csp <- cb[1] + cb[i]
R> id <- sapply(strsplit(nb[i], ")"), function(x) { x[2] })</pre>
R> xr <- quantile(csp, probs = c(0.1, 0.9))
R> xr
      10% 90%
 7.426949 13.186785
R> plotmap(MunichBnd, x = csp, id = id,
     col = heat_hcl, symmetric = FALSE,
     swap = TRUE, range = xr)
+
```


More Regression Diagnostics

- The two basic components of many diagnostics are the fitted values and the residuals.
- The *i*th fitted value is the estimate of $E(y_i)$ from the model,

$$\hat{\mathbf{y}}_i = \mathbf{x}_i^{\top} \hat{\boldsymbol{\beta}},$$

where \mathbf{x}_i is the *i*th row of the design matrix \mathbf{X} .

• The vector of all *n* fitted values is

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{y},$$

where

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}.$$

The ith residual is defined to be

$$\varepsilon_i = \mathbf{y}_i - \hat{\mathbf{y}}_i$$
.

Properties of the hat matrix:

- H is symmetric.
- **2 H** is idempotent, $\mathbf{H} = \mathbf{H}^{\top} = \mathbf{H}^{2}$.
- $rank(\mathbf{H}) = trace(\mathbf{H}) = p$.
- **1** I H is symmetric and idempotent, rank(I H) = n p.

- Any patterns in the residuals reflect extra structure that is not accommodated by the model.
- Example, electricity usage study, $log(kwh) = \beta_0 + \beta_1 temp$.

- The points are scattered around the zero line without any strong patterns. The simple log-linear model is reasonable in this case.
- If there had been a curvelinear pattern to the residuals, this would have been evidence of lack of fit of the simple linear model.
- Example, electricity usage study, $kwh = \beta_0 + \beta_1 temp$.

Normalized Residuals

- Technique in the detection of outliers.
- The vector of residuals is

$$arepsilon = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{H}\mathbf{y} = (\mathbf{I} - \mathbf{H})\mathbf{y},$$

where

$$Cov(\varepsilon) = Cov((\mathbf{I} - \mathbf{H})\mathbf{y}) = (\mathbf{I} - \mathbf{H})\sigma^2(\mathbf{I} - \mathbf{H})^{\top} = \sigma^2(\mathbf{I} - \mathbf{H}).$$

a

$$\widehat{\text{st.dev.}}(\varepsilon_i) = \hat{\sigma}\sqrt{1 - H_{ii}}$$

• The ith internally studentized (normalized) residual is

$$\varepsilon_i^{\star} \equiv \frac{\varepsilon_i}{\widehat{\text{st.dev.}}(\varepsilon_i)} = \frac{\varepsilon_i}{\widehat{\sigma}\sqrt{1 - H_{ii}}}.$$

Under normality and homoscedasticity ε_i^* should behave like a N(0,1) sample if the model is correct.

```
R> library("SemiPar")
R> data("elec.temp")
R> attach(elec.temp)
R> n <- length(temp)
R> X <- cbind(1, temp)
R> H <- X %*% solve(t(X) %*% X) %*% t(X)
R> e <- (diag(n) - H) %*% log(usage)
R> p <- sum(diag(H))
R > sigma < - sqrt(t(e) %*% e * 1 / (n - p))
R > e.norm <- e / (sigma * sqrt(1 - diag(H)))
R> plot(H %*% log(usage), e.norm, ylim = c(-4, 4),
     xlab = "Fitted values",
     vlab = "Normalized residuals")
R> abline(h = c(-3, -2, 0, 2, 3), lty = c(3, 2, 1, 2, 3))
```


- The residuals should be evenly scattered above and below zero.
- A trend in the mean would violate the assumption of independent response variables, usually results from an erroneous model structure.
- A trend in the variability of the residuals suggests that the variance of the response is related to its mean, violating the constant variance assumption.
- Transformation of the response or a *GLM* may help.

Quantile-Quantile Plots

• The cumulative distribution function of a random variable *X* is

$$F(x) = P(X \le x) = p$$
.

The inverse *Q* is called the quantile function.

• If F is a one to one function the inverse Q is uniquely determined

$$Q(p) = x$$
 if $F(x) = p$.

- The idea is to plot the theoretical quantiles against the quantiles we generated from the residuals.
- If the residuals are normally distributed then the resulting plot should look like a straight line relationship.

Hat Diagonals or Leverages

- How much potential do outliers have on the fitted line?
- The *i*th leverage value is the *i*th diagonal of the hat matrix, H_{ii} .
- From $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$ we get

$$\hat{y}_i = \sum_{j=1}^n H_{ij} y_j = H_{i1} y_1 + \ldots + H_{ii} y_i + \ldots H_{in} y_n.$$

- H_{ii} is the weight of y_i , i.e. the influence of y_i on its own fitted value.
- H_{ii} only depents on the predictors, H_{ii} measures only the potential for being influential and not actual influence.
- Example; in linear regression with a single predictor x, H_{ii} is a linear function of the squared distance from x_i to \bar{x} , a measure how "outlying" x_i is, the larger H_{ii} the more outlying is x_i .

- For large values of H_{ii} , $\sigma \sqrt{1 H_{ii}}$ is small.
- If H_{ii} is close to 1, (y_i, \mathbf{x}_i) almost surely lies on the regression line (plane).

Cook's Distance

- Another way to measure influence of certain data points on the regression line.
- Let $\hat{\mathbf{y}}$ and $\hat{\mathbf{y}}^{(k)}$ be, respectively, the vector of fitted values using all the data and with the kth case deleted.
- Cook's Distance is defined

$$D_i = \frac{||\hat{\mathbf{y}} - \hat{\mathbf{y}}^{(k)}||^2}{\rho \hat{\sigma}^2} = \frac{(\hat{\mathbf{y}} - \hat{\mathbf{y}}^{(k)})^\top (\hat{\mathbf{y}} - \hat{\mathbf{y}}^{(k)})}{\rho \hat{\sigma}^2}.$$

It can be shown that

$$D_i = \frac{(\varepsilon_i^{\star})^2 H_{ii}}{p(1 - H_{ii})}.$$

• Values of $D_i > 0.5$ are considered to be conspicuous.

```
R> yhat <- H %*% log(usage)
R > ind < -1:n
R> D <- NULL
R > for(k in 1:n) {
+ Xk <- X[ind != k, ]
+ beta <- solve(t(Xk) %*% Xk) %*% t(Xk) %*% log(usage)[ind != k]
+ vhatk <- X %*% beta
    D \leftarrow c(D, t((yhat - yhatk)) %*% (yhat - yhatk) / (p * sigma^2))
+ }
R> plot(D, type = "h", axes = FALSE,
     xlab = "Case number", ylab = "Cook's Distance")
R> axis(1, at = 1:n); axis(2); box()
R> col <- rep("black", n); bg.col <- rep(NA, n)
R > col[D == max(D)] <- "red"; bg.col[D == max(D)] <- "red"
R > points(1:n, D, pch = 21, col = col, bg = bg.col)
R > c((1:n)[D == max(D)], max(D))
[1] 47.0000000 0.1918169
```


Autocorrelation

- An important assumption in regression analysis is that the errors are independent or, at least, uncorrelated.
- If this assumption is false, then least squares estimation could be inefficient.
- More seriously, commonly used inferential procedures are invalid when there is autocorrelation.
- Denote $\hat{\rho}(k)$ as the sample correlation between ε_i and ε_{i-k} with $k+1 \le i \le n$.
- For general k = 0, 1, ..., n 1;

$$\hat{\rho}(k) = \frac{\sum_{i=k+1}^{n} \varepsilon_{i} \varepsilon_{i-k}}{\sum_{i=1}^{n} \varepsilon_{i}^{2}}.$$

• If the errors are independent, $\hat{\rho}(k)$ is approximately N(0, 1/n), thus, any value of $|\hat{\rho}(k)| > 2/\sqrt{n}$ is roughly significant (on a 95% level).


```
R> X.1 <- cbind(1, temp, c(NA, head(usage, -1)),
+    c(NA, head(temp, -1)))
R> X.1 <- na.omit(X.1)
R> H.1 <- X.1 %*% solve(t(X.1) %*% X.1) %*% t(X.1)
R> e.1 <- log(usage[2:n]) - H.1 %*% log(usage[2:n])</pre>
```


Model Selection

Extra Sums of Squares

- We often need to compare two or more models.
- E.g., if one uses kwh as the response variable then there is evidence of lack of fit to the straight line model.
- Now consider a quadratic model

$$kwh_i = \beta_0 + \beta_1 temp_i + \beta_2 temp_i^2 + \varepsilon_i$$
.

- The quadratic fit appears to be better, but is this just due to random variation or is there really a curvature that requires an alternative to the straight line model?
- We can address this question by testing

$$H_0: \beta_2 = 0 \text{ versus } H_1: \beta_2 \neq 0.$$

- The lest squares estimator minimizes $RSS = \varepsilon^{\top} \varepsilon$, which is a cursory measure of the quality of the fit. If one model fits better than the other, then this difference in fit should be evident in the RSS values.
- The extra sum of squares is $ExtraSS \equiv RSS_{linear} RSS_{quadratic}$, or more general

$$ExtraSS \equiv RSS_{smaller} - RSS_{larger}$$
.

- The extra sum of squares can be used to test the larger versus the smaller models.
- The null hypothesis is that the smaller models fit the data.
- Let p_{smaller} and p_{larger} be the number of parameters of the respective models. The F-test statistic is

$$F \equiv rac{ extit{ExtraSS/(p_{larger} - p_{smaller})}}{\hat{\sigma}_{larger}^2}.$$

- Under the null hypothesis and the normality assumption, F has a F-distribution with $p_{\text{larger}} p_{\text{smaller}}$ and $n p_{\text{larger}}$ degrees of freedom.
- The F-statistic compares the improvement per parameter to the data variability. The null hypothesis should be rejected when F is large.

• An α -level test is obtained by rejecting the null hypothesis when F exceeds the 1 $-\alpha$ quantile of the F-distribution with $p_{\text{larger}} - p_{\text{smaller}}$ and $n - p_{\text{larger}}$ degrees of freedom.

```
R> b1 <- lm(usage ~ temp); b2 <- lm(usage ~ temp + I(temp^2))
R> e1 <- residuals(b1); e2 <- residuals(b2)
R> RSS1 <- t(e1) %*% e1; RSS2 <- t(e2) %*% e2;
R> p1 <- length(coef(b1)); p2 <- length(coef(b2))
R> sigma2 <- drop(RSS2/b2$df.residual)
R> F <- drop(((RSS1 - RSS2) / (p2 - p1)) / sigma2)
R> F

[1] 22.55071
R> pvalue <- 1 - pf(F, p2 - p1, n - p2)
R> pvalue
[1] 0.00001647759
```

- Hypothesis testing is "biased" towards the null hypothesis in that we retain the null unless there is strong evidence to the contrary.
- When we want to compare two models, we often want to treat them on an equal footing rather than accepting one unless there is strong evidence against it.
- One alternative is to try to find the model that gets as close as possible to the true model.
- We can attempt to find the model which does the best job of predicting $E(y_i)$.

Cross Validation (CV)

- The RSS of a model is a measure of predictive ability, however, it is not satisfactory as a model selector.
- The problem is that the model with the largest number of parameters and containing the other models as special cases always has the smallest RSS.
- Now consider the model $y_i = f(x_{i1}, \dots, x_{ik}) + \varepsilon_i$. Ideally, it would be good to choose a model so that the estimate \hat{f} is as close as possible to f.
- A suitable criterion might be

$$M = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}_i - f_i \right)^2.$$

- Since f is unknown, M cannot be computed directly, but it is possible to derive an estimate of $E(M) + \sigma^2$.
- Let $\hat{f}^{(k)}$ be the model fitted to all data except y_k , the *ordinary cross* validation score is

$$V_o = \frac{1}{n} \sum_{i=1}^n \left(\hat{f}_i^{(k)} - y_i \right)^2.$$

• Substituting $y_i = f_i + \varepsilon_i$,

$$V_{o} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}_{i}^{(k)} - f_{i} - \varepsilon_{i}\right)^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}_{i}^{(k)} - f_{i}\right)^{2} - \left(\hat{f}_{i}^{(k)} - f_{i}\right) \varepsilon_{i} + \varepsilon_{i}^{2}.$$

• Since $E(\varepsilon_i) = 0$ and ε_i and $\hat{f}^{(k)}$ are independent, we get

$$E(V_o) = \frac{1}{n}E\left(\sum_{i=1}^n \left(\hat{f}_i^{(k)} - f_i\right)^2\right) + \sigma^2.$$

• Now, in the large limit, $\hat{f}^{(k)} \approx \hat{f}$, so $E(V_o) \approx E(M) + \sigma^2$, hence choosing the model that minimizes V_o is a reasonable approach if the ideal would be to minimize M.


```
R> cv(usage, temp)
[1] 134.7991
R> cv(usage, temp, temp^2)
[1] 95.41717
```

Akaike Information Criterion (AIC)

- Another popular model selection criterion is the AIC.
- The criterion is based on the maximum likelihood (ML) of the conditional probability density function of the response. In our case the likelihood is

$$L(\mathbf{y}|\mathbf{X}, \boldsymbol{\beta}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2}\right)$$

The log-likehood is

$$log(L) = -\frac{n}{2}log(2\pi) - \frac{n}{2}log(\sigma^2) - \frac{1}{2\sigma^2}\varepsilon^{\top}\varepsilon.$$

 Using ML would intuitively suggest to select the model with the largest (log-)likelihood

- Again, if model choice is based on ML, we would hence estimate models with an unnecessary large number of parameters.
- Now, suppose that the estimated parameters of a model are $\hat{\boldsymbol{\theta}}^{\top} = (\hat{\theta}_1, \dots, \hat{\theta}_p)$, to correct for the bias the AIC is defined by

$$AIC = -2log(L) + 2p.$$

 Comparing two (or more) models, the difference of AIC values is considered to be "significant" if

$$|AIC(M_1) - AIC(M_2)| > 2.$$

```
R> aic(usage, temp)
[1] 427.3915
R> aic(usage, temp, temp^2)
[1] 409.6466
```

Bayesian Information Criterion (BIC)

- A criterion that penalizes model complexity even more is the BIC.
- The BIC is defined by

$$BIC = -2log(L) + p \cdot log(n).$$

• For $log(n) \ge 2 \Leftrightarrow n \ge 8$, the BIC clearly penalizes model complexity more than the AIC.

Summary of Available Functions in R

Luckily, most of the described diagnostics and model selection tools are already implemented in R.

lm()	fits linear regression models
summary()	standard regression output
coefficients()	extracting the regression coefficients
residuals()	extracting residuals
fitted()	extracting fitted values
anova()	comparison of nested models
predict()	prediction for new data
plot()	diagnostic plots
confint()	confidence intervals for the regression coefficients
deviance()	residual sum of squares
vcov()	variance-covariace matrix
logLik()	log-likelihood
AIC(), BIC()	information criteria

Summary

- Nowadays, regression problems consistently grow in complexity.
- One problem all statistical models have in common is the question of how appropriate the relationships between variables can be examined?
- In a number of cases the classical regression model is not sufficient enough to model highly complex relationships, e.g., in cases where the shape of a functional relationship is not predetermined ordinary regression models do not produce satisfying fits.
- Transformation of covariates/response may improve the model fit but do not suffice in a number of cases.
- Dummy regression for spatial data seems not to account well for the inherent neighborhood structure of such data.
- ۵