Performance analysis (and optimization) of BERT on RISC-V processors with SIMD units

Fourth International workshop on RISC-V for HPC

Francisco D. Igual

Carlos García

Universidad Complutense de Madrid

> UNIVERSIDAD COMPLUTENSE

Héctor Martinez

Universidad de Córdoba

Sandra Catalán

Universitat Jaume I de Castelló Adrián Castelló

Enrique S. Quintana-Ortí

Universitat Politècnica de València

Outline

- 1. Introduction
- 2. Dissecting BERT
- 3. Profiling BERT on RISC-V + RVV
- 4. Notes on optimizing BERT for RVV
- 5. Conclusions

Introduction

Introduction

Transformers

- Introduced by Vaswani et al. in 2017
- Widespread popularity, mainly in NLP:
 - BERT (Bidirectional Pre-trained Transformers)
 - GPT (Generative Pre-trained Transformers)
- Also applied to computer vision tasks (classification, detection, segmentation, ...)

• **Inference** in transformer-based models

- Much cheaper and less compute-hungry than training
- Usually run on commodity CPU-based systems. Severe time limitations
- Cumulative impact of numerous devices –from desktop computers to wearablesrunning models

Introduction. BERT

- Transformers. In general, based on an encoder-decoder structure
 - Can be adapted depending on tasks that only require one of the components
 - Transformer encoders (e.g. BERT) suitable for classification
 - Transformer decoders (e.g. GPT) suitable for text generation
 - Full transformers (e.g. T5) suitable for translation/question answering
- We focus on BERT + inference
 - Useful across several NLP tasks
 - Illustrative of the potential of architectures and space for optimization in transformers
 - Inference typically deployed on low-power CPUs, typically with SIMD

Dissecting BERT

Dissecting BERT (I). General structure

- BERT. Encoder-only transformer:
 - Input embedding
 - Several encoder layers
 - Final classification (layer adapted to specific problem)
- # of encoders depends on BERT configuration
 - BERT-tiny|base|large contain 2|12|24 encoder layers
- Each encoder layer is further decomposed into:
 - MHA (Multi-Head Attention) module
 - FFN (Feed-Forward Network) module

Dissecting BERT (II). Input embedding

- The embedding layer receives an input sentence of l tokens (words)
- Converts them to a (d x l) array
 - Each token represented as a vector of *d* embeddings
- In batch mode, it is possible to infer b sequences simultaneously
 - Stacking each one as a separate column of a (dx lb) input to the encoder
- E_I: encoder input, provided to the MHA module as an input

Dissecting BERT (III). MHA and FFN

Dissecting BERT (IV). GEMM operations

		m	n	k
МНА	M1-M3. $(Q,K,V)=(W_Q,W_K,W_V)\cdot E_I$	d	lb	\overline{d}
	M4. $Split(Q,K,V) o$			
	$(Q^{i,j}, K^{i,j}, V^{i,j})_{i=1:h}^{j=1:b}$			
	for $j=1:b$			
	for $i = 1:h$			
	M5. $ar{E}_1^{i,j} = ((K^{i,j})^T \cdot Q^{i,j})/\sqrt{d_k}$	l	l	d/h
	M6. $E_1^{\overline{i},j}=$ Softmax $(ar{E}_1^{i,j})$			
	M7. $E_2^{\overline{i},j} = V^{i,j} \cdot E_1^{i,j}$	d/h	l	l
	M8. Concatenate $(E_2^{i,j})_{i=1:h}^{j=1:b} ightarrow E_2$			
	M9. $ar{A}_O=W_O\cdot E_2$	d	lb	d
	M10. $A_O=$ Lnorm (\bar{A}_O+E_I)			
FFN	F11. $ar{E}_3 = W_1 \cdot A_O$	f	lb	d
	F12. $E_3=$ GELU $(ar{E}_3)$			
	F13. $ar{E}_O=W_2\cdot E_3$	d	lb	f
	F14. $E_O = \text{Lnorm } (\bar{E}_O + A_O)$			

Param.	BERT _B	BERT _L
#Layers	12	24
d	768	1,024
h	12	16
f	3,072	4,096

Table 1. Left: Operations in the MHA and FNN modules. Right: Dimensions of BERT transformers employed in this work.

Experimental results

Platforms and experimental setup

XuantieL (C910)

- LicheePi4a board (T-Head 1520 SoC)
- 4 x C910@1.85GHz
- 12-stage, out-of-order superscalar
- 2 vector slices (pipelines), 128-bit (VLEN)
- RVV 0.7.1
- L1: 64 KiB, 2-way. L2: 1 MiB, 16-way

XuantieM (C908)

- CanMV-K230 board (Kendryte K230 SoC)
- 1 x C908@1.6GHz
- Out-of-order superscalar
- 2 vector slices (pipelines), 128-bit (VLEN)
- RVV 1.0
- L1: 32 KiB, 2-way. L2: 0.25 MiB, 16-way

XuantieS (C906)

- LicheeRV board (Allwinner D1 SoC)
- 1 x C906@1GHz
- 5-stage, in-order
- 1 vector slice, 128-bit (VLEN)
- RVV 0.7.1
- L1: 32 KiB, 4-way. L2: 0.25 MiB, 16-way

Compiler:

- GCC toolchain 10.2 (port by T-HEAD, v. 2.8.1)
- Flags: -march=rv64imafdcv0p7_zfh_xtheadc mabi=lp64d, and -mtune=c910|c906

Name	Processor	Freq. (GHz)	#Cores	ISA (vector)	RAM (GB)	L1 (KB)	L2 (MB)
XUANTIEL	XuanTie C910	1.85	4	RVV 0.7.1	4.0 LPDDR4	64	1
XUANTIEM	XuanTie C008	1.60	1	RVV 1.0	0.5 LPDDR4	32	0.25
XUANTIES	XuanTie C906	1.00	1	RVV 0.7.1	0.5 LPDDR4	32	0.25

Table 2. Summary of the target RISC-V processors.

BLAS:

- OpenBLAS (C910/C906)
- Kendryte OpenBLAS (C908)

BERT-Base. Performance and time breakdown

- The primary contributor to execution time is the computation of six large GEMM operations, namely M1, M2, M3, M9, F11 and F13
- As b or l increase, the contribution of the two BGEMM (M5-M7) and Softmax is more prominent
- Lnorm or GELU are negligible in terms of time in all cases
- Focus only on b=1 for comparison across architectures

BERT-Large. Performance and time breakdown

- Execution time exhibits a linear growth with b
 - 4x from b=32 to b=128
- Execution time is linear for GEMM and quadratic for BGEMM and Softmax on l, resulting in a combined global effect
 - Time for GEMM operations grows by a factor of 3 from l=128 to l=384
 - Time for BGEMM operations grows by a factor of 9 from l=128 to l=384

	$\mathrm{BERT_L}\ (l=384)$			$BERT_L\ b = 128$		
Operation	b = 32	b = 128	\overline{Ratio}	l = 128	l = 384	Ratio
M1+M2+M3+M9	19.70	78.70	3.99	26.30	78.70	2.99
M5	1.39	5.46	3.93	0.65	5.46	8.36
M6	1.10	4.37	3.97	0.48	4.37	9.07
M7	1.21	4.87	4.02	0.57	4.87	8.50
F11	21.40	85.80	4.01	28.60	85.80	3.00
F13	20.00	79.70	3.99	26.60	79.70	3.00
Other	0.35	1.47	4.20	0.49	1.47	3.00
Total	65.15	260.37	4.00	83.69	260.37	3.11

Table 3. Breakdown of execution time (in seconds) per operation on XUANTIEL.

Parallel efficiency

Fig. 5. Speed-up of BERT_B (left) and BERT_L (right) on XUANTIEL using 4 threads.

- GEMM offers speed-ups around 3.5 for BERT_B and 3.2 for BERT_L
- BGEMM offers speed-ups around 2 for both models (small dimensions)
- The overall improvement is that of GEMM, due to its weight in the overall computation of the transformer block

RVV. Performance comparison on RVV boards

Fig. 6. Token processing throughput, normalized to processor frequency, for BERT_B (left) and BERT_L (right) using 1 thread.

- Throughput: tokens per second
 - In our case, normalized to isolate frequency
- XuantieL is the most efficient platform in terms of throughput, followed closely by XuantieM
- Lack of memory limits the experiments with higher batch size in XuantieM and XuantieS
- Regardless of the platform, BERT_B throughput is almost twice that of BERT_L
- Energy consumption analysis is work in progress

Notes on optimizing BERT for RISC-V

Anatomy of a high-performance GEMM

C = C + ABC: mxn; A: mxk; B: kxn


```
for (jc=0; jc<n; jc+=(nc) // Loop L1
    for (pc=0; pc<k; pc+(kc)) {
     // Pack B
    Bc := B(pc:pc+kc-1, jc:jc+nc-1);
     for (ic=0; ic<m; ic+=(mc)) {
     // Pack A
     Ac := A(ic:ic+mc-1,pc:pc+kc-1);
     for (jr=0; jr<nc; jr+=nr) // L4</pre>
      for (ir=0; ir<mc; ir+=mr) // L5</pre>
       // Micro-kernel
       C(ic+ir:ic+ir+mr-1,
11
          jc+jr:jc+jr+nr-1)
          += Ac(ir:ir+mr-1,0:kc-1)
          * Bc(0:kc-1, jr:jr+nr-1);
14
15
  }}
```


Automation of a high-performance GEMM

Cache Configuration
Parameters (CCPs)

GEMM micro-kernel

- Blocksize selection
 - mc,nc,kc (cache parameters)
 - mr,nr (micro-kernel dimension)
- Analytical modeling [1]
 - From cache hierarchy features
 - Size, cacheline size, associativity
 - Matrix dimensions (skinny matrices)

High-performance GEMM (Level-3 BLAS)

- Typically written in assembly/intrinsics
- Maximize register use, flops vs. memops
- Generic optimizations
 - Vectorization
 - Instruction mix/order
 - SW pipelining
 - Loop unrolling
- Automatic generation
 - Apache TVM [2]
 - Scripts

[2] Guillermo Alaejos, Adrián Castelló, Pedro Alonso-Jordá, Francisco D. Igual, Héctor Martínez, Enrique S. Quintana-Ortí, 2023. Automatic Generators for a Family of Matrix Multiplication Routines with Apache TVM.

CoRR abs/2310.20347 (2023)

[1] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough for High-Performance BLIS. ACM Trans. Math. Softw. 43, 2, Article 12 (June 2017), 18 pages. https://doi.org/10.1145/2925987

Results - C910, 8x8 microkernel, square matrices

- Auto-Baseline vs. OpenBLAS
 - 1.72x improvement vs. OpenBLAS RVV Generic
 - Similar performance than OpenBLAS C910
- Auto-Op1 (bcast)
 - 2.38x improvement vs. Auto-Baseline
- Auto-Op2 (gather)
 - 2.62x improvement vs. Auto-Baseline
- Auto-Op3 (load reorder)
 - 2.90x improvement vs. Auto-Baseline
 - 2.59x improvement vs. C910 OpenBLAS
- Auto-Op4 (SW pipelining)
 - 2.88x improvement vs. Auto-Baseline

Optimizing for single core

- GEMM-OP1: Selects optimal CCPs via dimension-aware analytical model on a per-GEMM basis
- GEMM-OP2: OP1 + Selects the optimal micro-kernel dimensions and automatically generates micro-kernel code

CCP selection. Tuned analytical model

	Cal	RMEL	Xuantie			
	BERT _B	BERT _L	BERT _B	BERT _L		
	$\overline{m_c}$ n_c k_c	m_c n_c k_c	m_c n_c k_c	m_c n_c k_c		
M1-M3, M9	768 128 409	128 64 128	448 128 512	64 128 128		
M5	$128 \ 128 \ 64$	$1024\ 1024\ 128$	$128 \ 128 \ 64$	$448\ 128\ 512$		
M7	$64\ 128\ 128$	$64 128 \ 128$	$64\ 128\ 128$	$128 \ 128 \ 64$		
F11	$1120\ 128\ 409$	$4096\ 1024\ 128$	$448\ 128\ 512$	$448\ 128\ 512$		
F13	$768\ 128\ 409$	$1024\ 1120\ 128$	$448\ 128\ 512$	448 128 512		

Optimizing for multi-core

- GEMM-OP3: Replaces B3A2C0 GEMM algorithm by an A3B2C0 alternative, parallelizing loop 4 and gaining potential parallelism
- GEMM-OP4: OP3 + Collapses two loops that process the head and batch dimensions in M5-M7 and extracts parallelism externally

General optimization overview

Conclusions

Conclusions

- Provided comprehensive characterization of two representative configurations of inference with the BERT transformer
- Comparative study on three state-of-the-art RISC-V + SIMD processors
- Identified optimization challenges and performance bottlenecks
- Room for performance optimization (GEMM optimization):
 - CCP selection via refined analytical model
 - Ad-hoc microkernels
 - Specific GEMM algorithm
 - Tuned parallel versions

Performance analysis (and optimization) of BERT on RISC-V processors with SIMD units

Fourth International workshop on RISC-V for HPC

Francisco D. Igual

Carlos García

Universidad Complutense de Madrid

> UNIVERSIDAD COMPLUTENSE

Héctor Martinez

Universidad de Córdoba

Sandra Catalán

Universitat Jaume I de Castelló Adrián Castelló

Enrique S. Quintana-Ortí

Universitat Politècnica de València

Backup slides

Results - C910, microkernel comparison, Resnet-50

C910. STREAM – Roofline model

STREAM – C910 vs. Nvidia ORIN (Cortex A78AE) vs. Intel Atom (x7425E)

Results - C910, 16x4 microkernel optimizations. Square matrices

Results - C910, microkernel comparison, Resnet-50

Results - C906, 16x4 microkernel optimizations. Square matrices

Results - C906, microkernel comparison, Resnet-50

Baseline ASM micro-kernel (4x4)

- 1. Vector load (vle) of column of Ar
- 2. Scalar load (flw) of elements of row of Br
- Accumulation using vector-scalar (vfmacc.vf)


```
macro LOOP_BODY_4x4
                           # Load the pr-th column of
vle32.v A0, (Ar)
 addi Ar. Ar. 16
                           # Ar into vector registers
 flw ft0, 0(Br)
                           # Scalar load the pr-th row of
 flw ft1, 4(Br)
                           # Br into scalar registers
flw ft2, 8(Br)
 flw ft3, 12(Br)
 addi Br, Br, 16
vfmacc.vf C00, ft0, A0
                           # Scalar-vector accum. (Col. 0)
vfmacc.vf C01, ft1, A0
                           # Scalar-vector accum. (Col. 1)
vfmacc.vf C02, ft2, A0
                           # Scalar-vector accum. (Col. 2)
vfmacc.vf C03, ft3, A0
                           # Scalar-vector accum. (Col. 3)
endm
```

```
Stage 1. Load micro-tile Cr to V.Regs.
```

Stage 2. Updates Cr at each iteration

Stage 3. Writes back Cr to main memory

```
// gemm_ukernel_4x4(int kc, float *Ar, float *Br,
                            float *C, int ldC)
// mr x nr = 4 x 4 micro-kernel
// Inputs:
// - kc: k-dimension of micro-kernel
           packed micro-panel of Ac. with leading dimension mr
           packed micro-panel of Bc, with leading dimension nr
           micro-tile of C stored in column-major order
    - ldC: leading dimension of C
.text
.align 2
global gemm ukernel asm 4x4
#define kc
                   a1
#define Ar
#define Br
                   a2
#define ldC
#define C01_ptr
#define C02_ptr
#define C03_ptr
                            # Vector registers for...
                            # 4x4 micro-tile of C
#define C00
#define C01
#define C02
                   v2
#define C03
                   v3
#define A0
                            # Single column of Ar
 macro LOOP_BODY_4x4
 vle32.v A0, (Ar)
                            # Load the pr-th column of
 addi Ar, Ar, 16
                            # Ar into vector registers
 flw ft0, 0(Br)
                            # Scalar load the pr-th row of
 flw ft1, 4(Br)
                            # Br into scalar registers
 flw ft2, 8(Br)
 flw ft3, 12(Br)
 addi Br, Br, 16
 vfmacc.vf C00, ft0, A0
                            # Scalar-vector accum. (Col. 0)
 vfmacc.vf C01, ft1, A0
                            # Scalar-vector accum. (Col. 1)
 vfmacc.vf C02, ft2, A0
                            # Scalar-vector accum. (Col. 2)
 vfmacc.vf C03, ft3, A0
                            # Scalar-vector accum. (Col. 3)
gemm_ukernel_asm_4x4:
 vsetvli t1, t1, e32, m1
  add C01_ptr, C, ldC
  add C02_ptr, C01_ptr, ldC
  add C03_ptr, C02_ptr, 1dC
  vle32.v C00, (C)
                            # Load the micro-tile
 vle32.v C01, (C01_ptr)
                            # of C into vector
 vle32.v C02, (C02_ptr)
                            # registers
 vle32.v C03, (C03_ptr)
                            # Main loop
 LOOP_BODY_4x4
                            # for (pr=0; pr<kc; pr++)
 addi kc, kc, -1
  bne kc, zero, LOOP_4x4
 vse32.v C00, (C)
                            # Store the micro-tile
  vse32.v C01, (C01_ptr)
                            # of C back into memory
  vse32.v C02, (C02_ptr)
 vse32.v C03, (C03_ptr)
```