0918 Assignment

Extract from:

Bradley Efron and Trevor Hastie

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science

Cambridge University Press, 2016

 $https://web.stanford.edu/{\sim}hastie/CASI_files/PDF/casi$

Modern Bayesian practice uses various strategies to construct an appropriate "prior" $g(\mu)$ in the absence of prior experience, leaving many statisticians unconvinced by the resulting Bayesian inferences. Our second example illustrates the difficulty.

Table 3.1*Scores from two tests taken by 22 students, mechanics and vectors.

	1	2	3	4	5	6	7	8	9	10	11
mechanics vectors	7 51	44 69	49 41	59 70	34 42	46 40	0 40	32 45	49 57	52 64	44 61
	10	10	1.4	1 5	1.0	177	10	10	90	0.1	
mechanics	$\frac{12}{36}$	$\frac{13}{42}$	$\frac{14}{5}$	$\frac{15}{22}$	$\frac{16}{18}$	$\frac{17}{41}$	18 48	$\frac{19}{31}$	$\frac{20}{42}$	$\frac{21}{46}$	$\frac{22}{63}$
vectors	59	60	30	58	51	63	38	42	69	49	63

Table 3.1 shows the scores on two tests, mechanics and vectors, achieved by n=22 students. The sample correlation coefficient between the two scores is $\theta=0.498$,

$$\hat{\Theta} = \sum_{i=1}^{22} (m_i - \bar{m})(v_i - \bar{v}) / [\sum_{i=1}^{22} (m_i - \bar{m})^2 \sum_{i=1}^{22} (v_i - \bar{v})^2]^{1/2}$$

with m and v short for **mechanics** and **vectors**, \bar{m} and \bar{v} their averages.