

Je veux discuter à nouveau les produits tensoriels. Une très grande remarque, bilinéaire implique pas linéaire! Et inversement.

0.1 Cadre

On se place toujours dans le cadre où on a des R-modules M et N ou des R-algèbres

$$R \to A$$

et

$$R \to B$$

dans le cas d'anneaux M = A et N = B bah c'est des R-algèbres.

0.2 Construction

Comme d'hab, on prends un gros quotient de $A \times B$.

0.3 Propriété universelle

Voir produits fibrés.

0.4 Codiagonale, ou pas

Étant donné $id_{A\times B}$, on pourrait dire qu'on obtient $c: A\otimes_C B\to A\times B$ tel que $c\circ\otimes=id_{A\times B}$. Mais en fait ça aurait pas de sens vu que $c(a\otimes b)=(a,b)$ voudrait dire que (ra,b)=r(a,b)=(a,rb). Le problème c'est que $id_{A\times B}$ est pas bilinéaire, vu que

$$(a + a', 2b) = (a, b) + (a', b) \neq (a + a', b)$$

mais elle est bien linéaire.

Remarque 1. De cette manière on voit que la bilinéarité c'est vachement différent de la linéarité en un sens.

0.5 Exactitude

Là c'est croustillant. On regarde

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} D \stackrel{g}{\longrightarrow} E \longrightarrow 0$$

$$A \otimes_R B \xrightarrow{f \otimes id_B} D \otimes_R B \xrightarrow{f \otimes id_B} E \otimes_R B \longrightarrow 0$$

La surjectivité à droite est immédiate! Pour l'exactitude au milieu, pour un élément du noyau $g \otimes id_B(\sum d_i \otimes b_i) = 0$ on remarque que la flèche bilinéaire (!!)

$$D \times B \to E \times B \to E$$

se factorise en

$$D \times B \longrightarrow E \times B \xrightarrow{p_1} E$$

$$\downarrow \qquad \qquad \downarrow$$

$$E \otimes_C B$$

d'où le noyau de $D \otimes_C B \to E \otimes_C B$ est contenu dans $\ker(D \to E) \otimes_C B$. Et l'inverse est clair.

Remarque 2. Pas besoin de parler de R-algèbre, on aurait juste pu raccourcir la preuve en regardant les (d, 1) quoi.

Maintenant pourquoi c'est pas nécessairemment injectif à gauche? En fait la propriété universelle pour $A \otimes_R B$ est pas entièrement vérifiée. C'est à dire que $\sum f(a_i) \times b_i$ est d'image nulle pour tout $D \times B \to F$, mais c'est pas assez pour que ça implique que $v = \sum (a_i, b_i)$ soit nul. Simplement parce que v est d'image nulle seulement pour les $A \times B \to F$ qui se factorisent par $A \times B \to D \times B \to F$. Il en manque.

0.6 Produits de corps

Un jour je regarderai bien ça sur MO. Apparemment étant donné L/k, E/k deux extensions de k. On a

$$\dim_{Krull}(L \otimes_k K) = \min(dimtr_k(L), dimtr_k(K))$$

c'est trop marrant. Donc pour que le produit soit un corps y faut forcément que l'un des deux corps soit algébrique sur k. Ça discute une condition suffisante aussi!

0.7 Produits d'algèbres

Si on remplace $A \times B \to F$ un morphisme bilinéaire de R-modules. Par un morphisme de R-algèbres en plus d'être bilinéaire. Le morphisme $A \otimes_R B \to F$ devient un morphisme de R-algèbres.

0.7.1 Polynomes

En particulier si on a $R \to A$ alors

$$R[X] \otimes_R A = A[X]$$

parce que A[X] représente $B\mapsto B$ le foncteur

$$Mod_A \rightarrow Set$$

c'est à dire que suffit de connaître l'image de X. Je détaille parce que c'est pas entièrement clair. Faut aussi montrer que étant donné $b \in B$ on peut toujours définir entièrement $f: R[X] \times A \to B$ à partir de f(X,1). Mais on les envoie où les (1,a)? Bah B a forcément une structure de A-algèbre ici. D'où

$$f(1,a) = af(1,1) = a$$

dans A-Alg.

0.7.2 Nouvelle conditions pour $a \otimes b = 0$

Cette fois on a $a \otimes b = (a \otimes 1).(1 \otimes b) = 0$. D'où si on a $\varphi(a).\psi(b) = 0$ pour tout deux morphismes de R-algèbres compatibles, et qu'on peut envoyer dans une algèbre intègre ben on obtient $\varphi(a) = 0$ ou $\psi(b) = 0$. Est-ce qu'y en a un non constant canonique ?

0.8 Remarques

Si on étudie plus en détail des familles génératrices dans $A \times B$ comparées à $A \otimes_C B$ on se rend compte de plusieurs trucs. On "perd" des éléments dans $A \otimes_C B$ mais ça force la dimension à augmenter ! Je parle du fait qu'on perd après parce que c'est bizarre.

0.8.1 "On perd"

On a une flèche surjective $A \times B \to A \otimes_C B$ ce qui est étonnant vu les histoires de dimension. On a un noyau qui contient $0 \times B$ et $A \times 0$ par exemple. Le truc c'est que c'est une flèche bilinéaire mais pas linéaire! $(f(ra, rb) = r^2 f(a, b))$

0.8.2 Ca force la dimension à augmenter!

Par exemple si on a $(a_i) \in A$ et $(b_j) \in B$ des familles alors

$$(a_i, b_i)$$

sont engendrés par les $(a_i, 0)$ et $(0, b_j)$. Sauf que par bilinéarité $a_i \otimes 0 = 0 \otimes b_j = 0$. On est obligés de considérer les

$$a_i \otimes b_i$$

d'où si C = k un corps par exemple on a

$$\dim_k A \times B = \dim_k(A) + \dim_k(B)$$

tandis que

$$\dim_k A \otimes_k B = \dim_k(A). \dim_k(B)!$$

Pour prouver le deuxième on peut juste remarque que les $(a_i \otimes b_j)_j$ sont libres en indexant à droite. D'où la liberté se ramène à une liberté terme à terme.

0.9 Résumé

Pour la construction, on peut le voir comme le quotient du R-module libre sur $A \times B$, E, où on quotiente par les conditions nécessaires à ce que toute $f: A \times B \to F$ bilinéaire s'étende en $E \to F$ par $\bar{f}(e_{(a,b)}) = f(a,b)$. En particulier c'est engendré par

$$e_{ax+by,z} - ae_{x,z} - be_{y,z} = e_{x,az+bt} - ae_{x,z} - be_{x,t} = 0$$

c'est là qu'on voit que le produit est engendré par les

$$x \otimes y$$

0.9.1 Même définitions

Donc la construction en tant que R-module est exactement la même que la construction en tant que R-algèbres, juste on rajoute le produit terme à terme (loi de composition pas quotient).

0.9.2 Deux propriétés universelles

En tant que R-modules : les R-flèche bilinéaires

$$A \times B \to C$$

se factorisent par $A \otimes_R B \to F$ en flèche linéaire de manière unique une fois \otimes fixé. En tant que R-algèbres : Toutes deux R-flèches d'algèbres

$$A \to C, B \to C$$

fournissent une unique flèche $A\times_R B\to C$ de R-algèbres. C'est le produit fibré.

Remarque 3. La dernière remarque c'est que les R-flèches doivent coincider, faut donc former le carré du push-out. La flèche bilinéaire fait rentrer ça dans sa définition. La différence c'est qu'un R-module c'est pas qu'un morphisme $R \to A$ nécessairemment! C'est plutôt $R \to End(A,A)$ (qui a une structure d'anneau via celle de A) j'ai l'impression.

Chapitre 1

Revisite

Cette réf de Conrad est super claire. Ducoup je note ce que j'ai vu. Le chapitre de Liu là dessus est ultra clair en fait faudra le lire.

1.1 Construction

On prend $\bigoplus_{(m,n)\in M\times N} \delta_{(m,n)}/D$ où D est le module de relations. C'est un produit libre qui vérifie la même adjonction que d'habitude. Et on note $m\otimes n:=\delta_{(m,n)}\mod D$.

1.2 Familles génératrices et libres

La flèche $M \times N \to M \otimes N$ est surjective sur les tenseurs purs. I.e. $\{m \otimes n | (m,n)\}$ est une famille génératrice. Quand on a deux familles libres $(e_i)_i$ et $(v_j)_j$ de M et N respectivement, on peut considérer

$$\delta_i \delta_j \colon M \times N \to R$$

les produits de deux dirac qui est alors bilinéaire! Je galérais car je considérais que les projections. Mais ça suffit pas. Ça permet de prouver que $(e_i \otimes v_j)$ est libre.

1.3 Techniques

Donc un truc qui m'embête à chaque fois que je reviens c'est que je sais pas comment traiter les sommes de tenseurs. En fait c'est vraiment situationnel.

1.3.1 $R/I \otimes M$

Pour montrer que $R/I \otimes M \simeq M/IM$ on ramène tout dans M: On a $R/I \times M \to M/IM$ surjective d'où $R/I \otimes M \to M/IM$ aussi. Maintenant si $\sum \bar{r}_i \otimes m_i \mapsto 0$, on a $\sum r_i m_i \in IM$. Et le truc de gauche vit dans M. En fait $\sum r_i \otimes m_i = 1 \otimes \sum r_i m_i$. Mais là c'est particulièrement facile vu qu'on a qu'une droite dans R/I en temps que R-module.

1.3.2 Différents morphismes $M \otimes N$

J'voulais juste mentionner les projections $M \times N \to M$ et $M \times N \to N$ avec aussi $\delta_i \delta_j \colon M \times N \to R$ quand on a des bases de M et N.