a System Flow Overview

Building sewage → Holding Tank → Pump Station → ATU

Benefits of Using a Holding Tank First

- 1. Flow equalization Reduces shock loading to the pumps and downstream ATU.
- Buffer capacity Allows for intermittent flows and gives you a safety buffer during high-use periods.
- Maintenance access Easier to service than direct pump wells if designed properly.

Design Considerations

1. Tank Sizing:

- Should be sized for peak daily flow + emergency storage (often 24–48 hours of capacity).
- o Consider **alarm levels** (high level for overflow alert, low level to protect pumps).

2. Access & Location:

- Must be accessible for pumping (vacuum truck) and routine inspection.
- Account for vehicle loads if it's under or near the parking garage.

3. Ventilation & Odor Control:

 Holding tanks can generate odors—especially in a confined site. You may need carbon filters or active ventilation.

4. Pump Design:

Use duplex pumps for redundancy, controlled by float switches or level sensors.

 Pumps must be sized for both flow rate and head pressure required to reach the ATU.

5. Controls & Alarms:

- o Include an audible/visual alarm system, ideally connected to a remote monitoring panel.
- Backup power or a generator might be required depending on local code.

Reasons Accessibility is Required

1. Maintenance:

o Pumps, floats, filters, and tank baffles will eventually require cleaning, repairs, or replacement.

2. Inspection:

o Local health departments or regulatory agencies often require periodic inspections.

3. Emergency Access:

o If a pump fails or a tank overflows, immediate access is needed to avoid system backup or environmental hazard.

National Accessibility Requirements

- Manhole or riser lids must be:
 - At **finished grade** or just below with minimal cover.
 - Minimum 24–36 inches in diameter for ease of entry.
 - Lockable or secured to prevent unauthorized access (especially in public or traffic areas).

- **Pumps and controls** should be reachable **without confined space entry** if possible, or designed to meet confined space safety standards.
- Vent pipes and alarms should also be accessible and visible.

M Special Cases (e.g., under garage slab)

- If the tank or pump is located **under a structure**, you'll need:
 - Removable access hatch or utility vault with code-compliant access.
 - Traffic-rated lids if in drive areas.
 - Clear pathways to bring in service equipment (e.g., pump truck hose reach).

Typical Maximum Burial Depths

Component	Typical Max Burial Depth	Notes
Plastic/Poly Holding Tanks	2 to 4 feet	Some reinforced models allow up to 6 feet. Deeper requires engineering.
Concrete Tanks	4 to 6 feet (or more)	Can be buried deeper if designed for the load and hydrostatic pressure.
ATUs	2 to 4 feet typically	May vary—some are rated for deeper burial with risers.
Pump Chambers	4 to 6 feet	Must maintain serviceable access. Float switches must remain reachable.
Risers and Lids	Extend to grade	Must be watertight, secured, and rated if in traffic area.

Important Considerations

1. Structural Load:

 If under a driveway or garage, you'll need traffic-rated tanks and lids (HS-20) rated).

2. Buoyancy/Floatation:

Tanks deeper in wet soils are at high risk of **floating** when empty or partially full—anti-floatation anchors or concrete backfill may be required.

3. Access Requirements:

• Even if buried deep, you must have risers to surface grade for pump, inspection, and cleaning access.

4. Pump Limits:

 Very deep tanks increase TDH (Total Dynamic Head) on pumps—ensure your pump is rated for the lift.

Recommendation

Don't bury deeper than manufacturer-approved depths—and if you must go deeper, you'll likely need an engineered solution and local health department approval.

Would you like help determining max burial depth for a specific product or code jurisdiction?

You said:

in the case that the pre tank and pumps are going to be deeper then 6 ft what would you recommend

ChatGPT said:

If your holding tank and pump chamber need to be deeper than 6 feet, you're entering territory where standard systems aren't sufficient and extra precautions are required. Here's what I strongly recommend:

Recommended Design Approach for >6 ft Burial Depth

1. Use a Traffic- or Deep-Bury-Rated Concrete Tank

- Concrete tanks are best for deep burial due to:
 - Higher structural strength
 - Better resistance to hydrostatic pressure (floating)
- Specify a tank rated for deep burial and vehicular loading if under a garage or driveway (typically HS-20 rated).

2. Install Traffic-Rated, Watertight Risers to Grade

- Risers should be:
 - Concrete or reinforced plastic (e.g., Tuf-Tite or Polylok)
 - Sealed with gaskets or mastic for watertightness
 - Rated for **surface loads** (including garage vehicle weight if applicable)

3. Engineer a Secure Anti-Floatation System

- When the tank is **deeper than 6 ft**, especially in areas with **high groundwater**, floatation is a major risk.
 - Use **concrete backfill**, **ballast slabs**, or **tie-downs** with anchor systems
 - Have a professional engineer calculate the buoyancy uplift force and design appropriate countermeasures

4. Upgrade to a Heavy-Duty Pump System

- You'll need a pump with:
 - Sufficient head rating (based on vertical lift and pipe friction losses)

- Duplex pumps (for redundancy)
- Control panel with high-level alarms
- Possibly guide rail systems for safe pump removal from grade level

5. Include Confined Space Safety Features

- A >6 ft deep chamber qualifies as a confined space under OSHA
 - Add **safety grates** or platforms under lids
 - Use **removable guide rails** or brackets for pump access
 - o Ensure future maintenance can be done without entering the tank if possible

✓ Recommendation

- VJ Rice Concrete: Ready-mix Concrete and Concrete Products Bridgetown, Kentville,
 Digby, Mount Uniacke | Halifax NS
- Southwest Fiberglass Products Ltd. Coming Soon
- Alberta's Precast Concrete Manufacturer | Westcon Precast
- https://caseyconcrete.ca/