CS & IT

DISCRETE MATHS GRAPH THEORY

Lecture No. 1

By- SATISH YADAV SIR

TOPICS TO BE COVERED

01 Definition of Graph

02 Handshaking Lemma

...

03 Types of Graphs

...

04 No of Graphs

.

05 Simple Graphs theorem

Graph Theory.
$$(4-6)$$
 $109ic$ $(2-4)$

Set theory $(2-4)$

Combinatorics $(2-4)$

1) All bridges.

point/joint/node = verten/vertices.

Line/arc/branch = edge/edges.

Graph G = (v, E) set gledges.

set grertices.

e1 0 v2.
e1 -) (v1 v2)

each edge must be associated with unredeved pair of vertices.

$$S = (V, E)$$

$$V = \{ v_1, v_2, v_3, v_4, v_5 \}, \{ o = 0 \}$$

$$E = \{ e_1, e_2, e_3, \dots, e_7 \}, \{ o = 0 \}$$

e2 -> (v2, v3)

$$G_1 = (v, E, \psi)$$

$$V = \{ \dots \}$$

$$E = \{ \dots \}$$

$$V = \{ \dots \}$$

incident point: meeting point grevten la edge.

end vertices :

each edge is associated with unander pair quevtices called as endvertices.

loop/seif-loop: if endvertices are same, edge is called loop.


```
11 edges:
2 or more edges e6-3 (v4.v5)
associated with
sam end vertices
```


d(v5) = 3.

Basics of Graph

pendant verten.

deg(v1)= 1

Dequee 1 verten is called

pendant verten.

eg: V1

 $\frac{e_3}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_2}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_2}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_2}{\sqrt{2}}$ $\frac{e_1}{\sqrt{2}}$ $\frac{e_$

Isolated verten:

Requee 0 verten is called isolated verten.

deq(vs)=0

Pw

null graph: set of isolated vertices.

$$deg(v_1) + deq(v_2) + deq(v_3) + deq(v_4) + deq(v_5)$$

$$= 1 + 3 + 4 + 3 + 3$$

L. H. S

R. H. S

Qeqvees: =
$$2 \times 100 \text{ yedges}$$

2 = $2 \times 11 \times 110 \times 100 \times$

1+3+5

d(v1) + d(v2) + d(v3) Even -> sum of degrees of all vertices will be even.

Thm2: no of odd degree vertices in a graph will always be even.

no. godd degrees vertices=2.

Simple Graph.

Multigraph.

Pseudograph.

Thm3: manimum dequee in simple quaph. \le n-1.

n= Total no of vertices.

Thm4: manimum no gledges in (simple Graph) $\leq \frac{n(n-1)}{2}$

$$e = \frac{n(n-1)}{2}$$

 $\text{manimumcodges} = 4.3 = 6. \\
 \text{Total noif Graphs} = 2^6 = 2^{1.3}$

Q.2: How many graphs are possible. With 4 vertices & I edge.

6c1

n= Total vertices.

n(n-1)

Total nord Graphs = 2.

How many graphs are possible with n vertices & e edges nin-1)

4 vertices - 1 edge. - 6c1
4 vertices -> 2 edges -> 6c2.

ocotécitécz+6cz....6ce = 2°

Total

Total

Total

possible with 4 vertices & atleast 2

edges

 $m_1 \rightarrow 6c_2 + 6c_3 + 6c_4 + 6c_5 + 6c_6$ $m_2 \rightarrow Q - 6c_6 - 6c_1$

note: if degrees of all vertices aren-1. 1 then it have enactly.

 $\frac{n(n-1)}{2}$ edges

$$E=45 = \frac{n(n-1)}{2} = \frac{10.9}{2} = 45.$$

Simple Graph.

Multigraph.

Pseudograph.

Simple Graph.

Multigraph.

Pseudograph.

$$\Sigma d(vi) = 2e$$
.
6x++ $\pi x3+(8-\pi)x5=2.27$.

