Question	Scheme	Marks
6 (a)	$(V =) 5 \times \frac{1}{2} \times r^2 \times \sin\left(\frac{\pi}{3}\right) = \frac{5\sqrt{3}}{4} r^2 *$	B1*cso [1]
(b)	$\left(\frac{dV}{dr} = \right) \frac{5\sqrt{3}}{2} r \text{oe}$ (When the area of $BCDF = 60 \text{ cm}^2$, $BC = DF = r =)12 \text{ cm}$	M1 B1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t} \qquad \text{oe}$	M1
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = \right) \frac{5\sqrt{3}}{2} \times 12 \times 0.2 = 6\sqrt{3} \text{oe } \left(\mathrm{cm}^3 / \mathrm{s}\right)$	dM1A1 [5]
Total 6 marks		

Part	Mark	Notes	
(a)	B1* cso	For a correct expression for the volume of a prism $V = 5 \times \frac{1}{2} \times r^2 \times \sin\left(\frac{\pi}{3}\right)$	
		followed by the given answer stated. No errors. Use of 60° for $\frac{\pi}{3}$ is fine.	
(b)	M1	For differentiating the expression for V to given an expression of the form pr	
		where p is a positive constant. We don't need to see $\left(\frac{dV}{dr}\right)$ if it's clear the	
		candidate has attempted to differentiate the given volume.	
	B 1	For finding the length BC or DF when the area of the face $BCDF = 60$ and	
		deducing that $r = 12$ cm.	
	M1	For a correct chain rule involving $\frac{dV}{dt}$, $\frac{dV}{dr}$ and $\frac{dr}{dt}$ [Can be implied by later correct substitution.]	
	dM1	For substituting their $\frac{dV}{dr}$, their r and the given value of $\frac{dr}{dt} = 0.2$	
		Dependent on the first method mark.	
	A1	For $\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right) = 6\sqrt{3} \left(\mathrm{cm}^3/\mathrm{s}\right)$	