HLS-Assignment 3

March 21, 2023

ramesh randhi FWC22076

1 Problem Statement

Repeat the experiment in Assignment 2.3 but by configuring the module as pipelined.

Record your observations wrt timing and resource consumption. Explain why you think pipeline affected those numbers.

Include all code, entire synthesis report, simulation output, and $\mathrm{C/RTL}$ co simulation output and report.

```
#include "ap_cint.h"
#include<hls_stream.h>
#include<stdio.h>
typedef int in;
typedef long long out;

void multi(hls::stream<in> &A,hls::stream<in> &B,hls::stream<out> &C){
#pragma HLS PIPELINE
    in in1,in2;
    in1=A.read();
    in2=B.read();
    C.write(in1*in2);
}
```

Figure 1: cpp file 3.1.1

```
2 #include "ap_int.h"
3 using namespace std;
4 #include<hls_stream.h>
5 #include <iostream>
typedef int in;
typedef long long out;
void multi(hls::stream<in> &A,hls::stream<in> &B,hls::stream<out> &C);
9⊖ int main(){
          hls::stream<in> in1,in2;
0
          hls::stream<out> c;
         in p;
int i;
for (i=0;i<10;i++){
4
               p=i+2;
in1.write(p);
in2.write(p+5);
5
6
               multi(in1,in2,c);
std::cout<<p<"x"<<p+5<<"="<<c.read()<<std::endl;</pre>
8
0 1 }
          }
```

Figure 2: testbench file 3.1.2

Figure 3: csim file 3.1.3

Pipelining in HLS can improve the throughput of a system by allowing multipl operations to be executed simultaneously.

It can also reduce the latency of a system by dividing the computation into stages that can be executed in parallel.

Pipelining can make better use of hardware resources and make timing closure

In the above 2 examples we can observe that usage of LUT will be decreased by using the pipeline

Figure 4: stimulation file 3.1.4.1

Figure 5: synthesis file 3.1.4.2

Interface ─ Summary RTL Ports Dir Bits Protocol Source Object C Type multi return value ap_clk in 1ap_ctrl_hs ap_rst 1ap_ctrl_hs 1ap_ctrl_hs multi return value in multi return value ap_start in ap_done out 1ap_ctrl_hs multi return value ap_idle multi return value out 1ap_ctrl_hs ap_ready out 1ap_ctrl_hs multi return value A_V_dout 32 ap_fifo A_V pointer in A_V_empty_n in 1 ap fifo A V pointer A_V_read B_V_dout pointer out 1 ap_fifo A_V in 32 ap_fifo B_V pointer ap_fifo B_V_empty_n in 1 BV pointer B_V_read ap_fifo pointer out 1 B_V C_V_din C_V_full_n ap_fifo ap_fifo out C_V pointer pointer in C_V ap_fifo C_V_write 1 C_V pointer out Export the report(.html) using the Export Wizard Open Analysis Perspective Analysis Perspective

Figure 6: synthesis file 3.1.4.3

Cosimulation Report for 'multi'

ı	Result												
			La	ter	су	Interval							
	RTL	Status	min	avg	max	min	avg	max					
	VHDL			NΑ	NA	NA	NΑ	NA					
	Verilog	Pass	4	4	5	1	1	2					

Export the report (.html) using the Export Wizard

Figure 7: co simulation 3.1.5

```
#include <ap_fixed.h>
#include<hls_stream.h>
#include<stdio.h>
typedef ap_ufixed<28,4> in;
typedef ap_ufixed<56,8> out;

void multi(hls::stream<in> &A,hls::stream<in> &B,hls::stream<out> &C){
#pragma HLS PIPELINE
in in1,in2;
in1=A.read();
in2=B.read();
C.write(in1*in2);
}
```

Figure 8: cpp file 3.2.1

```
#include<stdio.h>
 #include "ap_fixed.h"
 using namespace std;
#include<hls_stream.h>
#include"ap_fixed.h"
 using namespace std;
 #include <iostream>
typedef ap_ufixed<28,4>in;
typedef ap_ufixed<28,4>in;
typedef ap_ufixed<56,8>out;
 void multi(hls::stream<in> &in1,hls::stream<in> &in2,hls::stream<out> &c);
int main(){
hls::stream<in> in1,in2;
      hls::stream<out> c;
     in p;
int i;
for (i=0;i<10;i++){
           p=i+0.5;
           in1.write(p);
           in2.write(p+5);
           multi(in1,in2,c);
           std::cout<<p<<"x"<<p+5<<"="<<c.read()<<<u>std::endl</u>;
 }
```

Figure 9: testbech file 3.2.2

Figure 10: csim 3.2.3

```
Synthesis Report for 'multi'
 General Information
                Tue Mar 21 11:39:39 2023
 Date:
 Version:
                 2018.3 (Build 2405991 on Thu Dec 06 23:56:15 MST 2018)
 Project:
                 assignment
 Solution:
                solution1
 Product family: zynq
  Target device: xc7z020clg484-1
 Performance Estimates
 □ Timing (ns)

    Summary

   Clock Target Estimated Uncertainty
   ap_clk 10.00
                    7.447
 ☐ Latency (clock cycles)
   ■ Summary
   Latency Interval min max min max Type 2 2 1 1 function
   ⊡ Detail
     ⊞ Loop
```

Figure 11: synthesis file 3.2.4.1

Figure 12: synthesis file 3.2.4.2

Figure 13: synthesis file 3.2.4.3

Cosimulation Report for 'multi' Result Latency Interval RTL Status min avg max min avg max NA NA NA NA NA Verilog Pass 4 4 5 1 1 2 Export the report (.html) using the Export Wizard

Figure 14: co simulation 3.2.5

					omp							
All Com	раге	d So	lutio	ns								
solution1: xc7z020clg484-1												
solution												
50101101	ILI A	.,	ocig									
Perform	ance	Est	imate	es								
⊡ Timir	oa (n	د)										
	19 (11.	-	- 1 - 1		1							
Clock					1 solu		2					
ap_clk	arge	t	10.00	0	10.0	0						
			0 547	n	8.51	0						
E	Estim	ated	8.510	0	0.01	U						
E Later					0.51	U						
	ncy (d	lock	cycl	es)	tion2							
	ncy (d	clock solut	cycl	es)								
- Late	ncy (d	clock solut 2	cycl	es) solu								
- Late	mcy (o min max	clock solut 2 2	cycl	es) solu 2								

Utilization Estimates

	solution1	solution2
BRAM_18K	0	0
DSP48E	3	3
FF	99	99
LUT	70	53

Figure 15: comparasion results 3.1

Figure 16: comparasion results 3.2