Погрешности вычислений Численное дифференцирование

Скалько Юрий Иванович **Цыбулин Иван**

Материалы по курсу вычислительной математики

- Материалы курса (методички, лекции, учебники и др.) можно найти на сайте кафедры вычислительной математики
- Любые вопросы по курсу (и не только) можно присылать на почтовый ящик tsybulin@crec.mipt.ru

Абсолютная и относительная погрешность

Если про величину X известно, что $X \in [ar{X} - rac{\Delta X}{2}, ar{X} + rac{\Delta X}{2}]$, то

- ullet абсолютной погрешностью X называется величина ΔX
- ullet относительной погрешностью отношение $rac{\Delta X}{|ar{X}|}$

Задача

Задача

Как вычислить сложную функцию (например, $f(x) = \sin x$) в некоторой заданной точке?

• Воспользоваться большой таблицей заранее посчитанных значений функций

Задача

Как вычислить сложную функцию (например, $f(x) = \sin x$) в некоторой заданной точке?

• Воспользоваться большой таблицей заранее посчитанных значений функций Но ведь эту таблицу необходимо еще составить! Не ясно, как искать значения, которые в таблице отсутствуют

Цыбулин Иван

Задача

- Воспользоваться большой таблицей заранее посчитанных значений функций Но ведь эту таблицу необходимо еще составить! Не ясно, как искать значения, которые в таблице отсутствуют
- Численно решить дифференциальное уравнение y''(x) + y(x) = 0

Задача

- Воспользоваться большой таблицей заранее посчитанных значений функций Но ведь эту таблицу необходимо еще составить! Не ясно, как искать значения, которые в таблице отсутствуют
- Численно решить дифференциальное уравнение y''(x) + y(x) = 0 Пока совершенно не ясно, как это сделать (но это только пока!)

Задача

- Воспользоваться большой таблицей заранее посчитанных значений функций Но ведь эту таблицу необходимо еще составить! Не ясно, как искать значения, которые в таблице отсутствуют
- Численно решить дифференциальное уравнение y''(x) + y(x) = 0 Пока совершенно не ясно, как это сделать (но это только пока!)
- Воспользоваться представлением в виде рядов

Задача

- Воспользоваться большой таблицей заранее посчитанных значений функций Но ведь эту таблицу необходимо еще составить! Не ясно, как искать значения, которые в таблице отсутствуют
- Численно решить дифференциальное уравнение y''(x) + y(x) = 0 Пока совершенно не ясно, как это сделать (но это только пока!)
- Воспользоваться представлением в виде рядов
 Простейший вариант воспользоваться рядом Тейлора

Для функции $\sin x$ ряд Тейлора в окрестности точки x=0 выглядит следующим образом

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Для функции $\sin x$ ряд Тейлора в окрестности точки x=0 выглядит следующим образом

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Вопрос

Какой радиус сходимости этого ряда?

Для функции $\sin x$ ряд Тейлора в окрестности точки x=0 выглядит следующим образом

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Вопрос

Какой радиус сходимости этого ряда?

 $R=\infty$, Ряд сходится при любом $x\in\mathbb{C}$

Для функции $\sin x$ ряд Тейлора в окрестности точки x=0 выглядит следующим образом

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Вопрос

Какой радиус сходимости этого ряда?

 $R=\infty$, Ряд сходится при любом $x\in\mathbb{C}$

• Но как суммировать бесконечный ряд на практике?

Для функции $\sin x$ ряд Тейлора в окрестности точки x=0 выглядит следующим образом

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Вопрос

Какой радиус сходимости этого ряда?

 $R=\infty$, Ряд сходится при любом $x\in\mathbb{C}$

- Но как суммировать бесконечный ряд на практике?
- Ограничимся только несколькими членами этого ряда

Для функции $\sin x$ ряд Тейлора в окрестности точки x=0 выглядит следующим образом

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Вопрос

Какой радиус сходимости этого ряда?

- $R=\infty$, Ряд сходится при любом $x\in\mathbb{C}$
 - Но как суммировать бесконечный ряд на практике?
 - Ограничимся только несколькими членами этого ряда
 - Необходимо оценить ошибку, допущенную при этом

Практический метод

Итак, для приближенного вычисления $\sin x$ можно просуммировать несколько первых членов ряда Тейлора. Для оценки ошибки воспользуемся формулой Тейлора с остаточным членом в форме Лагранжа

$$\sin x = \underbrace{\sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!}}_{S_n} + \underbrace{\frac{x^{2n+2}}{(2n+2)!}}_{\sin^{(2n+2)}} \sin^{(2n+2)} \xi, \quad \xi \in [0, x]$$

Практический метод

Итак, для приближенного вычисления $\sin x$ можно просуммировать несколько первых членов ряда Тейлора. Для оценки ошибки воспользуемся формулой Тейлора с остаточным членом в форме Лагранжа

$$\sin x = \underbrace{\sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}}_{S_{n}} + \underbrace{\frac{x^{2n+2}}{(2n+2)!}}_{\text{sin}} \sin^{(2n+2)} \xi, \quad \xi \in [0, x]$$

Отбросив остаточный член, мы тем самым допускаем ошибку

$$arepsilon_{\mathsf{METOA}} \equiv \left| rac{x^{2n+2}}{(2n+2)!} \sin^{(2n+2)} \xi
ight| \leqslant rac{x^{2n+2}}{(2n+2)!} M_{2n+2}$$

Здесь для максимума модуля 2n + 2-й производной использовано стандартное в вычислительной математике обозначение M_{2n+2} .

Погрешность метода

Ошибка $\varepsilon_{\text{метод}}$ обусловлена тем, что метод, который мы применяем для вычисления значения функции, является *неточным*. Данная ошибка называется *ошибкой метода* (или *погрешностью метода*)

Погрешность метода

Ошибка $\varepsilon_{\text{метод}}$ обусловлена тем, что метод, который мы применяем для вычисления значения функции, является *неточным*. Данная ошибка называется *ошибкой метода* (или *погрешностью метода*) Так как все производные функции $\sin x$ ограничены по модулю единицей, $M_{2n+2}=1$ и

$$\varepsilon_{\text{метод}} = \frac{x^{2n+2}}{(2n+2)!}$$

При стремлении $n \to \infty$ ошибка метода начиная с $n = n_0 > x/2$ монотонно стремится к нулю.

Погрешность метода

Для знакопеременных рядов, члены которого монотонно убывают по модулю (начиная с некоторого n_0) справедлива следующая

Теорема

Сумма «хвоста» монотонно убывающего знакопеременного ряда не превосходит по модулю модуля первого слагаемого в «хвосте».

Из этой теоремы сразу следует, что ошибка метода (сумма отброшенного «хвоста» ряда) при суммировании ряда для синуса не превосходит

$$arepsilon_{\mathsf{METOA}} \leq rac{x^{2n+3}}{(2n+3)!}.$$

Данная оценка не содержит максимумов производных, и, поэтому, удобнее на практике для сложных функций.

Проверка

Для проверки посчитаем $\sin \frac{\pi}{2}$ суммируя до 50 членов ряда.

После сложения 10 членов ряда фактическая ошибка составила 10^{-16} и перестала уменьшаться. Такое поведение говорит про наличие еще какой-то погрешности, кроме ошибки метода.

Но ведь 10^{-16} это же совсем немного? Или нет?

Проверка №2

Проделаем аналогичные вычисления, но уже для $\sin \frac{17\pi}{2}$ *

Теперь ошибка перестает уменьшаться после 40 слагаемого и составляет уже 10^{-6} . Определенно, данная ошибка может стать серьезной проблемой.

 $^{^*}x = \frac{17\pi}{2} \approx 26.7$

Машинная арифметика

До сих пор все вычисления мы рассматривали в идеальной арифметике, где все математические операции производятся абсолютно точно. На практике, приходится иметь дело с машинной арифметикой, которая оперирует с приближенными значениями чисел. Чаще всего, числа представлены в вычислительной технике в виде чисел с плавающей запятой (floating-point values). Каждое число хранится в виде

$$x = \pm s \cdot 2^e$$
, $s = \overline{1.s_1 s_2 \dots s_K}$

где $1\leqslant s<2$ - мантисса, число с фиксированным количеством знаков после запятой, e - экспонента или показатель степени, целое число. Поскольку целая часть мантиссы всегда равна 1, число значащих цифр в машинном представлении x всегда совпадает с количеством знаков в мантиссе.

Машинная арифметика в вычислениях

На практике, хранение чисел в форме с плавающей запятой приводит к хранению каждого числа с фиксированной относительной погрешностью. Например, в десятичной системе, если в мантиссе числа 5 значащих цифр (не считая первой единицы), то относительная погрешность хранения данного числа составляет 10^{-5}

$$\begin{aligned} 1.23456 \cdot 10^{78} &= (1.23456 \pm 0.000005) \cdot 10^{78} \\ \bar{X} &= 1.23456 \cdot 10^{78}, \ \Delta X = 0.00001 \cdot 10^{78}, \\ \frac{\Delta X}{|\bar{X}|} &= \frac{0.00001 \cdot 10^{78}}{1.23456 \cdot 10^{78}} = \frac{0.00001}{1.23456} < 10^{-5} \end{aligned}$$

Машинная арифметика в вычислениях

Аналогично, только с использованием двоичной, а не десятичной системы счисления, определяются относительные погрешности хранения стандартных числе с плавающей запятой

- тип single или float (32 бита) мантисса имеет 23 значащих бита, относительная погрешность составляет $2^{-23}\approx 1.2\cdot 10^{-7}$
- тип double (64 бита) мантисса имеет 53 значащих бита, относительная погрешность составляет $2^{-53} \approx 1.1 \cdot 10^{-16}$

Действительное число х в машинном представлении имеет вид

$$x_{\text{маш}} = x(1 + \varepsilon(x)),$$

где

$$|\varepsilon(x)| \leqslant 2^{-K}|x|$$

Вычислительные ошибки

Теперь понятно, что ошибка 10^{-16} , которую мы получили при вычислении $\sin\frac{\pi}{2}$ — это просто погрешность, с которой может быть представлен ответ в вычислительной технике.

Вычислительные ошибки

Теперь понятно, что ошибка 10^{-16} , которую мы получили при вычислении $\sin\frac{\pi}{2}$ — это просто погрешность, с которой может быть представлен ответ в вычислительной технике.

Но как объяснить ошибку 10^{-6} , которую мы получили, вычисляя $\sin \frac{17\pi}{2}$?

Ошибка округления. Оценка сверху

Так как округление до 16 значащих цифр[†] происходит при *каждой* операции, необходимо подсчитать суммарную ошибку округления всех слагаемых. Поскольку заранее неизвестно, в какую сторону происходит округление, необходимо сложить погрешности округления по модулю.

[†]подразумеваем операции с double

Ошибка округления. Оценка сверху

Так как округление до 16 значащих цифр † происходит при *каждой* операции, необходимо подсчитать суммарную ошибку округления всех слагаемых. Поскольку заранее неизвестно, в какую сторону происходит округление, необходимо сложить погрешности округления по модулю. Оценим ошибку округления S_n .

$$S_n = \sum_{k=0}^n (-1)^k rac{x^{2k+1}}{(2k+1)!}$$
 $arepsilon_{
m okpyr} = \sum_{k=0}^n \left| 2^{-K} (-1)^k rac{x^{2k+1}}{(2k+1)!}
ight| = 2^{-K} \sum_{k=0}^n rac{x^{2k+1}}{(2k+1)!} \lesssim 2^{-K} \sh x$ Для $x = rac{17\pi}{2} pprox 26.7$

$$\varepsilon_{
m okpyr} \lesssim 2^{-K} \sinh x = 2.1 \cdot 10^{-5}$$

[†]подразумеваем операции с double

Ошибка округления. Оценка снизу

Итак, хотя исходный ряд был знакопеременным, и по модулю сумма ряда не превосходила единицы, отдельные слагаемые могли достигать весьма существенных значений по модулю.

$$\max_{k} \frac{x^{2k+1}}{(2k+1)!} \approx \frac{x^{x}}{x!} \approx \frac{x^{x}}{\sqrt{2\pi x} \left(\frac{x}{e}\right)^{x}} = \frac{e^{x}}{\sqrt{2\pi x}}$$

Ошибка округления. Оценка снизу

Итак, хотя исходный ряд был знакопеременным, и по модулю сумма ряда не превосходила единицы, отдельные слагаемые могли достигать весьма существенных значений по модулю.

$$\max_{k} \frac{x^{2k+1}}{(2k+1)!} \approx \frac{x^{x}}{x!} \approx \frac{x^{x}}{\sqrt{2\pi x} \left(\frac{x}{e}\right)^{x}} = \frac{e^{x}}{\sqrt{2\pi x}}$$

Возвращаясь к случаю $\sin\frac{17\pi}{2}$, $x\approx26.7$

$$\frac{e^x}{\sqrt{2\pi x}} = 3 \cdot 10^{10}.$$

Погрешность округления только этого слагаемого $\varepsilon_{\text{округ}} = 2^{-53} \times 3 \cdot 10^{10} \approx 3.3 \cdot 10^{-6}$, что вполне соответствует фактической ошибке при вычислении $\sin \frac{17\pi}{2}$.

Вывод

Практически все прикладные задачи, которые приходится решать в рамках вычислительной математики, невозможно решить точно. Этому препятствует два основных источника погрешности — неточные (приближенные) методы и неидеальная (машинная) арифметика. Ошибке метода соответствует погрешность решения задачи в идеальной арифметике (в которой все действия выполняются точно). В ошибку округления входят погрешности всех вычислений при реализации данного метода.

Производная

Задача

Допустим, задана функция f(x), то есть мы можем вычислить ее значение в любой точке x. Как вычислить ее производную в заданной точке x_0 ?

Производная

Задача

Допустим, задана функция f(x), то есть мы можем вычислить ее значение в любой точке x. Как вычислить ее производную в заданной точке x_0 ?

Вспомним определение производной

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Вопрос

Какие еще определения производной Вы знаете?

Численный метод

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Поиск предела, так же как и суммирование бесконечной суммы, является нетривиальной операцией.

Численный метод

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Поиск предела, так же как и суммирование бесконечной суммы, является нетривиальной операцией.

Заменим предел значением отношения при некотором маленьком значении $\Delta x = h > 0$.

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

Такие выражения называются в вычислительной математике конечными разностями.

Ошибка метода

В первую очередь, нас интересует ошибка метода, которая возникает в результате замены предела конечной разностью. Здесь нам снова поможет формула Тейлора. Разложим f(x) в окрестности точки $x=x_0$.

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(\xi), \quad \xi \in [x_0, x]$$

Ошибка метода

В первую очередь, нас интересует ошибка метода, которая возникает в результате замены предела конечной разностью. Здесь нам снова поможет формула Тейлора. Разложим f(x) в окрестности точки $x=x_0$.

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(\xi), \quad \xi \in [x_0, x]$$

Подставляя $x = x_0 + h$,

$$f(x_0+h)=f(x_0)+hf'(x_0)+\frac{h^2}{2}f''(\xi), \quad \xi\in[x_0,x_0+h]$$

Ошибка метода

$$f(x_0+h)=f(x_0)+hf'(x_0)+\frac{h^2}{2}f''(\xi), \quad \xi\in[x_0,x_0+h]$$

Группируем и делим на h

$$\frac{f(x_0+h)-f(x_0)}{h}-f'(x_0)=\frac{h}{2}f''(\xi)$$

$$arepsilon_{ ext{метод}} = \left| rac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)
ight| = \left| rac{h}{2} f''(\xi)
ight| \leqslant rac{M_2 h}{2}$$

Чем меньше h, тем меньшим оказывается погрешность метода. Погрешность метода линейно зависит от h.

Метод неопределенных коэффициентов

Будем искать другие способы вычисления производной. Допустим, мы хотим построить наиболее точный метод для вычисления производной, который бы использовал значения функции в трех точках — в $x_0, x_0 + h$ и $x_0 - h$.

Некоторые соображения о том, в каком виде следует искать требуемый метод дают свойства оператора дифференцирования. Известно, что операция дифференцирования линейна, т.е.

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

Вполне логично искать *линейную* формулу дифференцирования, т.е. такую, в которую значения дифференцируемой функции входят *линейно*

Метод неопределенных коэффициентов

Запишем линейную функцию от $f(x_0), f(x_0+h), f(x_0-h)$ в виде линейной комбинации с неопределенными коэффициентами

$$f'(x_0) \approx \frac{\alpha f(x_0 - h) + \beta f(x_0) + \gamma f(x_0 + h)}{h}$$

За счет надлежащего выбора α, β, γ добьемся максимального совпадения левой и правой части равенства.

Метод неопределенных коэффициентов

Запишем линейную функцию от $f(x_0), f(x_0+h), f(x_0-h)$ в виде линейной комбинации с неопределенными коэффициентами

$$f'(x_0) \approx \frac{\alpha f(x_0 - h) + \beta f(x_0) + \gamma f(x_0 + h)}{h}$$

За счет надлежащего выбора α, β, γ добьемся максимального совпадения левой и правой части равенства.

Потребуем совпадения максимального количества членов в представлении в виде формулы Тейлора в точке x_0 левой и правой частей.

Замечание

Здесь делается предположение, что у функции f(x) существует достаточное количество производных в точке x_0 . Необходимо иметь в виду, что если функция f(x) не имеет всех необходимых производных, погрешность метода может увеличиваться.

Формула Тейлора

$$f'(x_0) \approx \frac{\alpha f(x_0 - h) + \beta f(x_0) + \gamma f(x_0 + h)}{h}$$

Представляя значения в крайних точках с помощью формулы Тейлора

$$f(x_0 \pm h) = f(x_0) \pm hf'(x_0) + \frac{h^2}{2}f''(x_0) \pm \frac{h^3}{6}f'''(\xi_{1,2})$$
$$\xi_1 \in [x_0 - h, x_0], \xi_2 \in [x_0, x_0 + h]$$
$$f'(x_0) \approx \frac{\alpha + \beta + \gamma}{h}f(x_0) + (\gamma - \alpha)f'(x_0) + (\alpha + \gamma)\frac{h}{2}f''(x_0) + R$$
$$R = \frac{h^2}{6}\Big(\gamma f'''(\xi_2) - \alpha f'''(\xi_1)\Big)$$

Определение коэффициентов

После исключения значений функции в крайних точках, приближенное равенство приобретает вид

$$f'(x_0) \approx \frac{\alpha + \beta + \gamma}{h} f(x_0) + (\gamma - \alpha) f'(x_0) + (\alpha + \gamma) \frac{h}{2} f''(x_0) + R$$
$$R = \frac{h^2}{6} \left(\gamma f'''(\xi_2) - \alpha f'''(\xi_1) \right)$$

Потребуем, чтобы $\alpha+\beta+\gamma=0, (\gamma-\alpha)=1, (\alpha+\gamma)\frac{h}{2}=0.$ Искомые значения $\gamma=-\alpha=\frac{1}{2}, \beta=0.$ При этом равенство превратится в

$$f'(x_0) \approx f'(x_0) + R$$

Добавка R как раз будет ошибкой метода.

$$arepsilon_{ ext{метод}} = |R| = rac{h^2}{6} rac{1}{2} |f'''(\xi_2) + f'''(\xi_1)| \leqslant rac{h^2}{6} M_3$$

Формулы дифференцирования 1-го и 2-го порядков

Формула $f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$ называется формулой односторонней разности, а $f'(x_0) \approx \frac{f(x_0+h)-f(x_0-h)}{2h}$ — формулой центральной разности. Важное различие этих формул заключается в разной зависимости ошибки метода от h. Для односторонней разности эта зависимость линейная $\varepsilon_{\text{метод}} \leqslant \frac{M_2h}{2}$, в то время как для центральной — квадратичная $\varepsilon_{\text{метод}} \leqslant \frac{M_3h^2}{6}$.

Формулы дифференцирования 1-го и 2-го порядков

Формула $f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$ называется формулой односторонней разности, а $f'(x_0) \approx \frac{f(x_0+h)-f(x_0-h)}{2h}$ — формулой центральной разности. Важное различие этих формул заключается в разной зависимости ошибки метода от h. Для односторонней разности эта зависимость линейная $\varepsilon_{\text{метод}} \leqslant \frac{M_2h}{2}$, в то время как для центральной — квадратичная $\varepsilon_{\text{метод}} \leqslant \frac{M_3h^2}{6}$.

Говорят, что формула односторонней разности имеет первый порядок аппроксимации, а центральной - второй порядок аппроксимации

Проверка

Проверим, действительно ли зависимость ошибки имеет такой характер для каждой из формул. Рассчитаем $\sin' 1 = \cos 1$

Оказывается, поведение ошибки имеет такой характер только при сравнительно больших h. Для односторонней разности при $h>10^{-8}$, а для центральной — при $h>10^{-5}$.

Вычислительные погрешности

Проще всего объяснить постоянное значение ошибки при использовании $h<10^{-16}$. При данном значении величины $x_0+h=1+h$ и $x_0-h=1-h$ округляются до 1, при этом в числителе обеих формул стоит тождественный ноль, хотя реальное значение производной ненулевое.

Вычислительные погрешности

Проще всего объяснить постоянное значение ошибки при использовании $h < 10^{-16}$. При данном значении величины $x_0 + h = 1 + h$ и $x_0 - h = 1 - h$ округляются до 1, при этом в числителе обеих формул стоит тождественный ноль, хотя реальное значение производной ненулевое.

Учтем теперь, что значения $f(x_0), f(x_0+h)$ сами по себе могут содержать ошибки (например, из-за машинного хранения или вычисления по приближенному алгоритму):

$$f'(x_0)pprox rac{(f(x_0+h)\pm\Delta f)-(f(x_0)\pm\Delta f)}{h} \ arepsilon_{ ext{Bbiy}}\leqslant rac{2\Delta f}{h}$$

Если Δf обусловлена только ошибкой машинного представления, то

$$\Delta f \lesssim 2^{-K} |f(x_0)|, \qquad \varepsilon_{\text{выч}} \leqslant 2 \frac{2^{-K} |f(x_0)|}{h}$$

Оптимальное значение h

Итак, при слишком маленьких значениях h основной вклад в ошибку дает именно вычислительная погрешность, которая растет с уменьшением h, а при слишком больших становится значительной ошибка метода. Найдем оптимальное значение h, при котором сумма обеих ошибок имеет минимальную величину.

Оптимальное значение h

Итак, при слишком маленьких значениях h основной вклад в ошибку дает именно вычислительная погрешность, которая растет с уменьшением h, а при слишком больших становится значительной ошибка метода. Найдем оптимальное значение h, при котором сумма обеих ошибок имеет минимальную величину.

Для односторонней разности

$$arepsilon_{ ext{cymm}} = arepsilon_{ ext{выч}} + arepsilon_{ ext{метод}} = rac{2\Delta f}{h} + rac{M_2 h}{2}$$

$$h_{ exttt{ont}} = 2\sqrt{rac{\Delta f}{M_2}}, \;$$
при этом $arepsilon_{ exttt{cymm}} = 2\sqrt{M_2\Delta f}$

Для проверки подставим $M_2=1, \Delta f=10^{-16}$, тогда

$$h = 2 \cdot 10^{-8}, \quad \epsilon_{\text{cymm}} = 2 \cdot 10^{-8}$$

Оптимальное значение h

Итак, при слишком маленьких значениях h основной вклад в ошибку дает именно вычислительная погрешность, которая растет с уменьшением h, а при слишком больших становится значительной ошибка метода. Найдем оптимальное значение h, при котором сумма обеих ошибок имеет минимальную величину.

Для центральной разности

$$arepsilon_{\mathsf{сумм}} = arepsilon_{\mathsf{выч}} + arepsilon_{\mathsf{метод}} = rac{2\Delta f}{h} + rac{M_3 h^2}{6}$$

$$h_{\mathsf{ont}} = \sqrt[3]{rac{6\Delta f}{M_3}},$$
 при этом $arepsilon_{\mathsf{сумм}} = 3\sqrt[3]{rac{M_3\Delta f^2}{6}}$

Для проверки подставим $M_3=1, \Delta f=10^{-16}$, тогда

$$h \approx 8.4 \cdot 10^{-6}, \quad \epsilon_{\text{cymm}} \approx 3.6 \cdot 10^{-11}$$

Вывод

Важно отметить, что при использовании формулы второго порядка удалось получить меньшую суммарную погрешность не выходя за пределы той же машинной точности что и в формуле первого порядка, то есть только за счет выбора более качественного метода.

Вывод

Важно отметить, что при использовании формулы второго порядка удалось получить меньшую суммарную погрешность не выходя за пределы той же машинной точности что и в формуле первого порядка, то есть только за счет выбора более качественного метода. Однако, не стоит забывать что функция, которую мы дифференцировали была достаточное число раз (а именно 3 раза) непрерывно дифференцируема. Если формулу второго порядка применять к функции, у которой, например, $M_3 = \infty$, но $M_2 < \infty$, то оценка ошибки метода имела бы такой же вид, как у формулы односторонней разности 1го порядка. В этом случае выигрыш был бы совсем незначительным.

Спасибо за внимание!

Цыбулин Иван e-mail: tsybulin@crec.mipt.ru