MATH 518 Notes

Jiantong Liu

August 28, 2023

1 Aug 21, 2023

Definition 1.1. Let M be a topological space. An *atlas* on M is a collection $\{\varphi_{\alpha}: U_{\alpha} \to W_{\alpha}\}_{\alpha \in A}$ of homeomorphisms called *coordinate charts*, so that

- 1. $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of M,
- 2. for all $\alpha \in A$, W_{α} is an open subset of some $\mathbb{R}^{n_{\alpha}}$,
- 3. for all $\alpha, \beta \in A$, the induced map $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}|_{U_{\alpha} \cap U_{\beta}}$ is C^{∞} , i.e., smooth.

Figure 1: Atlas and Coordinate Chart

Example 1.2. Let $M = \mathbb{R}^n$ be equipped with standard topology, and let $A = \{*\}$, so $U_* = \mathbb{R}^n$ is the open cover of itself. Now the identity map

$$\varphi_*: U_* \to \mathbb{R}^r$$
$$u \mapsto u$$

is an atlas on \mathbb{R}^n .

Example 1.3. Let $M=S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$ be equipped with subspace topology. Let $U_\alpha=S^1\setminus\{(1,0)\}$ and $U_\beta=S^1\setminus\{(-1,0)\}$, and let $A=\{\alpha,\beta\}$. Let $W_\alpha=(0,2\pi)$ and $W_\beta=(-\pi,\pi)$. We define $\varphi_\alpha^{-1}(\theta)=(\cos(\theta),\sin(\theta))$ and $\varphi_\beta^{-1}(\theta)=(\cos(\theta),\sin(\theta))$, then

$$(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})(\theta) = \begin{cases} \theta, 0 < \theta < \pi \\ \theta - 2\pi, \pi < \theta < 2\pi \end{cases}$$

is smooth.

Example 1.4. Let X be a topological space with discrete topology, and let A = X, then $\{\varphi_x : \{x\} \to \mathbb{R}^0\}_{x \in X}$ gives an atlas.

Example 1.5. Let V be a finite-dimensional real vector space of dimension n. Pick a basis $\{v_1, \ldots, v_n\}$ of V, then there is a linear bijection φ with inverse

$$\varphi^{-1}: \mathbb{R}^n \to V$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i v_i.$$

The topology on V needs to make φ^{-1} a homeomorphism, and the obvious choice is just the collection of preimages, namely

$$\mathcal{T} = \{ \varphi^{-1}(W) \mid W \subseteq \mathbb{R}^n \text{ open} \},$$

then $\varphi: V \to \mathbb{R}^n$ becomes an atlas.

Definition 1.6. Two atlases $\{\varphi_{\alpha}: U_{\alpha} \to W_{\alpha}\}_{\alpha \in A}$ and $\{\psi_{\beta}: V_{\beta} \to O_{\beta}\}_{\beta \in B}$ on a topological space M are equivalent if for all $\alpha \in A$ and $\beta \in B$,

$$\psi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap V_{\beta}) \subseteq \mathbb{R}^{n_{\alpha}} \to \psi_{\beta}(U_{\alpha} \cap V_{\beta}) \subseteq \mathbb{R}^{n_{\beta}}$$

is always C^{∞} , with C^{∞} -inverses. Such continuous maps are called *diffeomorphisms*. Alternatively, the two atlases are equivalent if their union $\{\varphi_{\alpha}\}_{{\alpha}\in A}\cup\{\psi_{\beta}\}_{{\beta}\in B}$ is always an atlas.

Exercise 1.7. Equivalence of atlases is an equivalence condition.

Definition 1.8. A (smooth) manifold is a topological space together with an equivalence class of atlases.

Convention. All manifolds are assumed to be smooth of C^{∞} , but not necessarily *Haudorff* and/or second countable.

Example 1.9. Continuing from Example 1.5, now suppose $\{w_1, \ldots, w_n\}$ gives another basis of V, with

$$\psi^{-1}: \mathbb{R}^n \to V$$

$$(y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i w_i.$$

This gives a change-of-basis matrix, so it is automatically C^{∞} as a multiplication of invertible matrices. Therefore, the topology here does not depend on the chosen basis.

Recall. A topological space X is *Hausdorff* if for all distinct points $x, y \in X$, there exists open neighborhoods $U \ni x$ and $V \ni y$ such that $U \cap V = \emptyset$.

Figure 2: Hausdorff Condition

Convention. Via our definition (Definition 1.8), not all manifolds are Hausdorff.

Example 1.10. Let $Y = \mathbb{R} \times \{0,1\}$, i.e., a space with two parallel lines, with a fixed topology. Define \sim to be the smallest equivalence relation on Y such that $(x,0) \sim (x,1)$ for $x \neq 0$, and define $X = Y / \sim$. X is called the *line with two origins*, and it is second countable but not Hausdorff.

Figure 3: Line with Two Origins

Example 1.11. Take charts

$$\{\varphi: M = \mathbb{R} \to \mathbb{R}\}$$
$$x \mapsto x$$

and

$$\{\psi: M = \mathbb{R} \to \mathbb{R}\}$$
$$x \mapsto x^3$$

on $M = \mathbb{R}$, then

$$\varphi \circ \psi^{-1} : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{\frac{1}{3}}$$

is not C^{∞} , so φ and ψ are two different charts, hence give two different manifolds.

Definition 1.12. A map $F: M \to N$ between two manifolds is *smooth* if

- 1. F is continuous, and
- 2. for all charts $\varphi: U \to \mathbb{R}^m$ on M and charts $\psi: V \to \mathbb{R}^n$ on $N, \psi^{-1} \circ F \circ \varphi|_{\varphi(U \cap F^{-1}(V))}$ is C^{∞} .

Figure 4: Smooth Map between Manifolds

2 Aug 23, 2023

Exercise 2.1. 1. $id: M \to M$ is smooth.

2. If $f:M\to N$ and $g:N\to Q$ are smooth maps between manifolds, then so is $gf:M\to Q$.

Punchline. The manifolds and the smooth maps between manifolds form a category.

Recall. A smooth map $f: M \to N$ is called a *diffeomorphism*, as seen in Definition 1.6, if it has a smooth inverse. This is the notion of an isomorphism in the category of manifolds.

Warning. 1. Following Example 1.11,

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^3$$

has an inverse

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{\frac{1}{3}}.$$

but f^{-1} is not differentiable at x=0. Hence, f is not a diffeomorphism.

2. Take \mathbb{R} with discrete topology, then all singletons are open sets, then the map

$$f: \mathbb{R}_{\mathrm{dis}} \to \mathbb{R}_{\mathrm{std}}$$
$$x \mapsto x$$

is a smooth bijection, but f^{-1} is not continuous.

Example 2.2. Consider $M=(\mathbb{R},\{\psi=\mathrm{id}:\mathbb{R}\to\mathbb{R}\})$ and $N=(\mathbb{R},\{\psi:\mathbb{R}\to\mathbb{R},x\mapsto x^3\})$ as two manifolds on \mathbb{R} with standard topology. To see that they are equivalent, consider the homeomorphism

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{\frac{1}{3}},$$

then $(\psi \circ f \circ \varphi^{-1})(x) = \psi(f(x)) = (x^{\frac{1}{3}})^3 = x$, so f is smooth, and $(\psi \circ f \circ \varphi^{-1})^{-1} = \varphi \circ f^{-1} \circ \psi^{-1} = id$, therefore f^{-1} is also smooth. Hence, f is a diffeomorphism.

We will now consider the real projective space $\mathbb{R}P^{n-1}$ and the quotient map $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}P^{n-1}$.

Definition 2.3. Define a binary relation on $\mathbb{R}^n\setminus\{0\}$ by $v_1 \sim v_2$ if and only if there exists $\lambda \neq 0$ such that $v_1 = \lambda v_2$. This is an equivalence relation, and we identify the equivalence class [v] of $v \in \mathbb{R}^n\setminus\{0\}$ as a line $\mathbb{R}v = \operatorname{span}_{\mathbb{R}}\{v\}$ through v. Then we define the *real projective space* $\mathbb{R}P^{n-1} = (\mathbb{R}^n\setminus\{0\})/\infty$.

The natural topology on $\mathbb{R}P^{n-1}$ is the quotient topology, where $\pi:\mathbb{R}^n\setminus\{0\} \to \mathbb{R}P^{n-1}$ is surjective and continuous, so we define $U\subseteq\mathbb{R}P^{n-1}$ to be open if and only if $\pi^{-1}(U)$ is open in $\mathbb{R}^n\setminus\{0\}$.

Figure 5: Stereographical Projection

Claim 2.4. $\mathbb{R}P^{n-1}$ is a manifold.

Proof. Define

$$\varphi_i: U_i \to \mathbb{R}^{n-1}$$
$$[v_1, \dots, v_n] \mapsto \left(\frac{v_1}{v_i}, \dots, \frac{v_{i-1}}{v_i}, \frac{v_{i+1}}{v_i}, \dots, \frac{v_n}{v_i}\right),$$

then

$$\varphi_i^{-1} : \mathbb{R}^{n-1} \mapsto U_i$$

 $(x_1, \dots, x_{n-1}) \mapsto [(x_1, \dots, x_{i-1}, 1, x_i, \dots, x_{n-1})],$

therefore

$$\begin{split} \varphi_{j} \circ \varphi_{i}^{-1} &: \varphi_{i}(U_{i} \cap U_{j}) \to \varphi_{j}(U_{i} \cap U_{j}) \\ &(x_{1}, \dots, x_{n-1}) \mapsto \varphi_{j}(\left[(x_{1}, \dots, x_{i-1}, 1, x_{i}, \dots, x_{n-1})\right]) \\ &= \begin{cases} \left(\frac{x_{1}}{x_{j}}, \dots, \frac{x_{j-1}}{x_{j}}, \frac{x_{j+1}}{x_{j}}, \dots, \frac{x_{n-1}}{x_{j}}\right), & j < i \\ (x_{1}, \dots, x_{n-1}), & j = i \\ \left(\frac{x_{1}}{x_{j-1}}, \dots, \frac{1}{x_{j-1}}, \dots, \frac{x_{j-2}}{x_{j-1}}, \frac{x_{j}}{x_{j-1}}, \dots, \frac{x_{n-1}}{x_{j-1}}\right), & j > i \end{cases} \end{split}$$

Therefore, this is C^{∞} as a rational map on $\varphi_i(U_i \cap U_j)$, and so this gives an atlas, hence $\mathbb{R}P^{n-1}$ is a manifold.

Claim 2.5. $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}P^{n-1}$ is smooth.

Proof. Note that

$$\psi: \mathbb{R}^n \backslash \{0\} \hookrightarrow \mathbb{R}^n$$
$$x \mapsto x$$

is an atlas on $\mathbb{R}^n \setminus \{0\}$, and

$$\varphi_i \circ \pi \circ \varphi_i^{-1} : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^{n-1}$$

$$(v_1, \dots, v_n) \mapsto \varphi_i([(v_1, \dots, v_n)])$$

$$= \left(\frac{v_1}{v_i}, \dots, \frac{v_{i-1}}{v_i}, \frac{v_{i+1}}{v_i}, \dots, \frac{v_n}{v_i}\right).$$

This is C^{∞} on $\pi^{-1}(U_i) = \{(v_1, \dots, v_n) \mid v_i \neq 0\}$, so π is smooth.

Definition 2.6. A smooth function on a manifold M is a function $f: M \to \mathbb{R}$ so that for any coordinate chart $\varphi: U \to \varphi(U)$ open in \mathbb{R}^m , the function $f \circ \varphi^{-1}: \varphi(U) \to \mathbb{R}$ is smooth.

Remark 2.7. $f: M \to \mathbb{R}$ is smooth if and only if $f: M \to (\mathbb{R}, \{ \text{id} : \mathbb{R} \to \mathbb{R} \})$, usually called the *standard manifold structure on* \mathbb{R} , is smooth.

Notation. We denote $C^{\infty}(M)$ to be the set of all smooth functions $f:M\to\mathbb{R}$.

Remark 2.8. $C^{\infty}(M)$ is a smooth \mathbb{R} -vector space, that is, for all $\lambda, \mu \in \mathbb{R}$ and $f, g \in C^{\infty}(M)$,

- $(\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x)$ for all $x \in M$,
- $(f \cdot g)(x) = f(x)g(x)$ for all $x \in M$.

Therefore, $C^{\infty}(M)$ becomes a (commutative, associative) \mathbb{R} -algebra.

Fact. Connecting manifolds have the notion of dimension. That is, the dimensions of open subsets induced by coordinate charts are the same.

Definition 3.1. Let M be a manifold, then for every point $q \in M$, there exists a well-defined non-negative integer $\dim_M(q)$, so that for any coordinate chart $\varphi: U \to \mathbb{R}^m$ for $U \ni q$, we have $\dim_M(q) = m$ for some non-negative integer m that only depend on M. Consequently, $\dim_M: M \to \mathbb{Z}^{\geqslant 0}$ is a locally constant function. This integer m is called the *dimension* of M.

Proof. Indeed, say $\psi: V \to \mathbb{R}^n$ is another chart with $U \cap V \ni q$, then $\psi \circ \varphi^{-1}|_{\varphi(U \cap V)}: \varphi(U \cap V) \subseteq \mathbb{R}^m \to \psi(U \cap V) \subseteq \mathbb{R}^n$ is a diffeomorphism, therefore the Jacobian $D(\psi \circ \varphi^{-1})(\varphi(a)): \mathbb{R}^m \to \mathbb{R}^n$ is a linear isomorphism, thus m = n.

Definition 3.2. Suppose $(M, \{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^m\}_{\alpha \in A})$ and $(N, \{\psi_{\alpha} : V_{\beta} \to \mathbb{R}^n\}_{\beta \in B})$ are two manifolds. One can give a manifold structure to the product set $M \times N$, called the *product manifold*, as follows:

- give $M \times N$ the product topology,
- let $\{\varphi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \to \mathbb{R}^{m} \times \mathbb{R}^{n}\}_{(\alpha,\beta) \in A \times B}$ to be the atlas on $M \times N$. This is well-defined since the transition maps of $\alpha, \alpha' \in A$ and $\beta, \beta' \in B$ are over $(U_{\alpha} \times V_{\beta}) \cap U_{\alpha'} \times V_{\beta'} = (U_{\alpha} \cap U_{\alpha'}) \times (V_{\beta} \cap V_{\beta'})$ with $(\varphi_{\alpha'} \times \psi_{\beta'}) \circ (\varphi_{\alpha} \times \psi_{\beta})^{-1} = (\varphi_{\alpha'} \circ \varphi_{\alpha}^{-1}, \psi_{\beta'} \circ \psi_{\beta}^{-1})$. This is smooth since products of smooth maps are smooth.

Punchline. The product construction of manifolds gives the categorical product in the category of manifolds.

Property. 1. The projection maps

$$p_M: M \times N \to M$$
$$(m, n) \mapsto m$$

and

$$p_N: M \times N \to N$$
$$(m, n) \mapsto n$$

are C^{∞} .

2. Universal Property of Product: for any manifold Q and smooth maps $f_M:Q\to M$ and $f_N:Q\to N$, there exists a unique map

$$g:Q\to M\times N$$

$$q\mapsto (f(q),g(q))$$

such that $p_M \circ g = f_M$, and $p_N \circ g = f_N$.

Figure 6: Universal Property of Product

Recall. • A topological space X is *second countable* if the topology has a countable basis: there exists a collection $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ of open sets so that any open set of X is a union of some B_i 's.

• A cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of a topological space is *locally finite* if for all $x\in X$, there exists a neighborhood N of X such that $N\cap U_{\alpha}=\varnothing$ for all but finitely many α 's.

Example 3.3. Let $X = \mathbb{R}$, then

- $\{U_n = (-n, n)\}_{n \ge 0}$ is an open cover, but is not locally finite,
- $\{U_n = (n, n+2)\}_{n \in \mathbb{Z}}$ is a locally finite open cover of \mathbb{R} ,
- $\{U_n=(n,n+2]\}_{n\in\mathbb{Z}}$ is a locally finite cover of \mathbb{R} , but is not an open cover.

Recall. An (open) cover $\{V_{\beta}\}_{{\beta}\in B}$ is a refinement of a cover $\{U_{\alpha}\}_{{\alpha}\in A}$ if for all β , there exists $\alpha=\alpha(\beta)$ such that $V_{\beta}\subseteq U_{\alpha(\beta)}$.

Definition 3.4. A Hausdorff topological space is *paracompact* if every open cover has a locally finite open refinement.

Fact. A connected Hausdorff manifold is paracompact if and only if it is second countable.

Corollary 3.5. A Haudorff manifold is paracompact if and only if its connected components are second countable.

Example 3.6. \mathbb{R} with discrete topology is paracompact but not second countable.

Convention. Usually, we assume manifolds are paracompact, except when we need a non-Haudorff manifold. This condition is required for the existence of *partition of unity* (i.e., constant function id).

Recall. If X is a space, and $Y \subseteq X$ is a subset, then the closure \overline{Y} of Y is the smallest closed set containing Y.

Definition 3.7. Given a topological space X and a function $f: X \to \mathbb{R}$, the support of f over X is

$$\operatorname{supp}(f) = \overline{\{x \in X \mid f(x) \neq 0\}}.$$

Example 3.8. The function

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

is C^{∞} , with support $\overline{(0,\infty)} = [0,\infty)$.

Definition 3.9. Let M be a topological space and let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover. A partition of unity subordinate to the cover is a collection of continuous functions $\{\psi_{\alpha}: M \to [0,1]\}_{{\alpha}\in A}$ such that

- 1. $\operatorname{supp}(\psi_{\alpha}) \subseteq U_{\alpha}$ for all $\alpha \in A$,
- 2. $\{\operatorname{supp}(\psi_{\alpha})\}_{{\alpha}\in A}$ is a locally finite closed cover of M,
- 3. $\sum_{\alpha \in A} \psi_{\alpha}(x) = 1$ for all $x \in M$.

Remark 3.10. For all $x \in M$, there exists $\alpha_1, \ldots, \alpha_n$ such that $x \in \text{supp}(\psi_{\alpha_i})$. Hence, for $\alpha \neq \alpha_1, \ldots, \alpha_n, \psi_{\alpha}(x) = 0$. Therefore, the summation in Definition 3.9 is finite.

Theorem 3.11. Let M be a paracompact manifold with open cover $\{U_{\alpha}\}_{{\alpha}\in A}$, then there exists a partition of unity $\{\psi_{\alpha}:U_{\alpha}\to[0,1]\}_{{\alpha}\in A}\subseteq C^{\infty}(M)$ subordinate to the cover.

Example 3.12. Let $M = \mathbb{R}$ and consider for n > 0 the open sets $\{U_n = (-n, n)\}_{n \in \mathbb{N}}$. This is not locally finite at one point.

Example 3.13. Let $M = \mathbb{R}^n$, then for all $x \in \mathbb{R}^n$ and for r > 0, we have $B_r(x) = \{x' \in \mathbb{R}^n \mid ||x - x'|| < r\}$ and so $\{B_r(x)\}_{r>0, x \in \mathbb{R}^n}$ is an open cover, but this is not locally finite everywhere.

We will start to talk about tangent vectors.

Recall. For any point $q \in \mathbb{R}^n$ and any vector $v \in \mathbb{R}^n$, and any $f \in C^{\infty}(\mathbb{R}^n)$, the directional derivative of q in direction v with respect to f is

$$D_v f(q) = \frac{d}{dt}|_{0} f(q + tv).$$

This gives a map $D_v(-)(q): C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ which is

· linear, and

· Leibniz rule holds, i.e.,

$$D_v(fg)(q) = D_v(f)(q) \cdot g(q) + f(q)D_v(g)(q).$$

In other words, $D_v(-)(q): C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is a derivation.

Definition 4.1. Let q be a point of a manifold M. A tangent vector to M at q is an \mathbb{R} -linear map $v: C^{\infty}(M) \to \mathbb{R}$ such that for all $f, g \in C^{\infty}(M)$,

$$v(fg) = v(f)g(q) + f(q)v(g).$$

Remark 4.2. v gives smooth vector fields over M an $C^{\infty}(M)$ -module structure via evaluation.

Lemma 4.3. The set T_qM of all tangent vectors to M at q is an \mathbb{R} -vector space.

Lemma 4.4. Suppose $c \in C^{\infty}(M)$ is a constant function, then for all q and all $v \in T_qM$, v(c) = 0.

Proof. We have $v(1) = v(1 \cdot 1) = 1(q)v(1) + v(1)1(q) = 2v(1)$, so v(1) = 0. For a constant function c, we have

$$v(c) = v(c \cdot 1) = cv(1) = c(0) = 0.$$

Lemma 4.5 (Hadamard). For any $f \in C^{\infty}(\mathbb{R}^n)$, there exists $g_1, \ldots, g_n \in C^{\infty}(\mathbb{R}^n)$ such that

• $f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x)$, and

•
$$g_i(0) = \left(\frac{\partial}{\partial x_i} f\right)(0).$$

Proof. We have

$$f(x) - f(0) = \int_0^1 \frac{d}{dt} (f(tx)) dt$$
$$= \int_0^1 \sum_{i=1}^n \frac{\partial f}{\partial x_i} (tx) \cdot x_i dt$$
$$= \sum_{i=1}^n x_i \int_0^1 \frac{\partial f}{\partial x_i} (tx) dt$$
$$= \sum_{i=1}^n x_i g_i(x).$$

Therefore, $g_i(0) = \int_0^1 \frac{\partial f}{\partial x_i}(t \cdot 0) dt = \frac{\partial f}{\partial x_i}(0)$.

Remark 4.6. For $1 \le i \le n$, we have canonical tangent vectors to \mathbb{R}^n at 0 given by

$$\frac{\partial}{\partial x_i}|_0: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$
$$f \mapsto \frac{\partial f}{\partial x_i}(0).$$

Lemma 4.7. $\left\{ \frac{\partial}{\partial x_1} |_0, \dots, \frac{\partial}{\partial x_n} |_0 \right\}$ is a basis of $T_0 \mathbb{R}^n$.

Proof. Suppose $\sum c_i \frac{\partial}{\partial x_i}|_{0} = 0$, then

$$0 = \left(\sum_{i} c_{i} \frac{\partial}{\partial x_{i}}|_{0}\right) (x_{j}) = \sum_{i} c_{i} \delta_{ij} = c_{j}.$$

Therefore, $c_j = 0$ for all j, thus we have linear independence. For all $v \in T_0\mathbb{R}^n$, i.e., $v : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is a derivation, then $v = \sum_i v(x_i) \frac{\partial}{\partial x_i}|_{0}$. Let $f \in C^{\infty}(\mathbb{R}^n)$, then $f(X) = f(0) + \sum x_i g_i(x)$, thus

$$v(f) = v(f(0)) + \sum_{i=1}^{n} v(x_i g_i(x))$$

$$= \sum_{i=1}^{n} v(x_i g_i(x))$$

$$= \sum_{i=1}^{n} (v(x_i) g_i(0) + x_i(0) v(g_i))$$

$$= \sum_{i=1}^{n} v(x_i) g_i(0)$$

$$= \sum_{i=1}^{n} v(x_i) \frac{\partial f}{\partial x_i}(0).$$

Remark 4.8. This shows $\dim(T_0\mathbb{R}^n) = n$ with the basis above.

Now let V be a finite-dimensional vector space with a basis e_1, \ldots, e_n , then

$$\varphi: \mathbb{R}^n \to V$$

$$(t_1, \dots, t_n) \mapsto \sum_{i=1}^n t_i e_i$$

is a linear bijection, with linear inverse

$$\psi: V \to \mathbb{R}^n$$
$$v \mapsto (\psi_1(v), \dots, \psi_n(v))$$

where $\psi_i(v)$'s are linear maps. To describe this with a basis, we have $\psi(\sum_i a_i e_i) = (a_1, \dots, a_n)$, i.e., $\psi_i(e_j) = \delta_{ij}$

Claim 4.9. $\{\psi_1,\ldots,\psi_n\}$ is a basis of $V^*=\operatorname{Hom}(V,\mathbb{R})$, called the dual basis of $\{e_1,\ldots,e_n\}$, denoted $e_i^*=\psi_j$.

Proof. Linear independence follows from $e_j^*(e_i) = \delta_{ij}$. Given $\ell: V \to \mathbb{R}$ to be a linear map, then $\ell = \sum \ell(e_i)e_i^*$ since $\left(\sum_i \ell(e_i)e_i^*\right)(e_j) = \ell(e_j)$. Given $v \in T_0\mathbb{R}^n$, $v(f) = \sum a_i \left(\frac{\partial}{\partial x_i}|_0f\right)$ for all $f \in C^\infty(\mathbb{R}^n)$. Note that $\frac{\partial}{\partial x_i}|_0(x_j) = \delta_{ij}$, so $v(x_j) = \sum a_i \frac{\partial}{\partial x_i}|_0(x_j) = \sum_i a_i \delta_{ij} = a_j$. Therefore, we have $a_i = v(x_i)$ for all i, thus $v(f) = \sum v(x_i) \left(\frac{\partial}{\partial x_i}|_0f\right)$. Thus, the dual basis to $\frac{\partial}{\partial x_i}|_0, \ldots, \frac{\partial}{\partial x_n}|_0$ is $\{d(x_i)_0\}_{i=1}^n$ where $(dx_i)_0(v) = v(x_i)$ for all i. Hence, we have $v = \sum (dx_i)_0(v) \frac{\partial}{\partial x_i}|_0$.

Remark 4.10. Via a change of basis, this works at every point q on the local chart, so we can describe the tangent space on any point on a local chart.