

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

AIPO OMP

NEGO BINGRA N DIGUE KAN BAKK BIKA BIKA KIKA KAN KANDARA KAN BAKA BIKA BIKA BIKA BIKA BIKA BIKA KAN BIKA KAN BIKA

(43) Date de la publication internationale
28 septembre 2006 (28.09.2006)

PCT

(10) Numéro de publication internationale
WO 2006/100316 A1

- (51) Classification internationale des brevets :

 C07C 29/62 (2006.01) C07C 31/42 (2006.01)

 C07C 31/36 (2006.01)
- C07C 31/36 (2006.01)
 (21) Numéro de la demande internationale :
- (22) Date de dépôt international : 19 mai 2006 (19.05,2006)
- (25) Langue de dépôt :

français

PCT/EP2006/062445

(26) Langue de publication :

français

b) Langue de publication : irai

(30) Données relatives à la priorité :

05104321.4	20 mai 2005 (20.05.2005)	EP
0505120	20 mai 2005 (20.05.2005)	FR
60/734,635	8 novembre 2005 (08.11.2005)	US
60/734,657	8 novembre 2005 (08.11.2005)	US
60/734,636	8 novembre 2005 (08.11.2005)	US
60/734,627	8 novembre 2005 (08.11.2005)	US
60/734,634	8 novembre 2005 (08.11.2005)	US
60/734,658	8 novembre 2005 (08.11.2005)	US
60/734,637	8 novembre 2005 (08.11.2005)	US
60/734,659	8 novembre 2005 (08.11.2005)	US

- (71) Déposant (pour tous les États désignés sauf US): SOLVAY (Société Anonyme) [BE/BE]; Rue du Prince Albert, 33, B-1050 Brussels (BE).
- (72) Inventeur; et
- (75) Inventeur/Déposant (pour US seulement): GILBEAU, Patrick [BE/BE]; Chemin de la Fontenelle, 20, B-7090 Braine-le-Comte (BE).

- (74) Mandataires: VANDE GUCHT, Anne etc.; SOLVAY (Société Anonyme), Intellectual Property Department, Rue de Ransheek. 310. B-1120 Brussels (BE).
- (81) États désignés (sauf indication contraîre, pour tout tire de protection nationale disponible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, DI, II, NI, SI, PK, EK, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PI, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): A RAIPO (BN, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FF, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPT (GF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues
- sur requête du déposant, avant l'expiration du délai mentionné à l'article 21.2)a)

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: METHOD FOR MAKING CHLOROHYDRIN IN LIQUID PHASE IN THE PRESENCE OF HEAVY COMPOUNDS
- (54) Titre: FABRICATION DE CHLORHYDRINE EN PHASE LIQUIDE EN PRESENCE DE COMPOSES LOURDS
- (57) Abstract: The invention concerns a method for making chlorohydrin, which consists in reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof, with a chlorinating agent, in the presence of a liquid phase comprising heavy compounds other than polyhydroxylated aliphatic hydrocarbon and whereof the boiling point under a pressure of 1 bar absolute is not less than 15 °C higher than the boiling point of the chlorohydrin under a pressure of 1 bar absolute.
- (57) Abrégé: Procédé de fabrication d'une chlorhydrine, dans lequel on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec un agent de chloration, en présence d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé et dont la température d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé et dont la température d'une pression de l'une pression de l'bar absolu est d'au moins 15 °C supérieure à la température d'ébullition de la chlorhydrine sous une pression de l'bar absolu.

WO 2006/100316 A1

Chlorohydrin in a liquid phase

The present patent application claims the benefit of patent application FR 05.05120 and of patent application EP 05104321.4, both filed on 20 May 2005, and of provisional US patent applications 60/734659, 60/734627, 60/734657, 60/734658, 60/734635, 60/734634, 60/734637 and 60/734636, all filed on 8 November 2005, the content of all of which is incorporated here by reference.

5

10

15

20

25

30

The present invention relates to a process for preparing a chlorohydrin. It relates more specifically to a process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon in a liquid phase comprising heavy compounds.

Chlorohydrins are reaction intermediates in the preparation of epoxides. Dichloropropanol is a reaction intermediate in the preparation of epichlorohydrin and of epoxy resins (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons, Inc.).

According to known processes it is possible to obtain dichloropropanol in particular by hypochlorinating allyl chloride, by chlorinating allyl alcohol and by hydrochlorinating glycerol. This latter process has the advantage that the dichloropropanol can be obtained starting from fossil raw materials or from renewable raw materials, and it is known that natural petrochemical resources, from which the fossil materials are obtained, such as petroleum, natural gas or coal, for example, are limited in their terrestrial availability.

International application WO 2005/021476 describes a process for preparing dichloropropanol by reacting glycerol with gaseous hydrogen chloride in the absence of solvent. The dichloropropanol is separated off by successive distillation operations and the final, heavy residue of these operations is stored as waste in a reservoir. Application US 2,144,612 describes a process for preparing dichloropropanol by reacting glycerol with gaseous hydrogen chloride in the presence of a water-immiscible solvent. The presence of an extraneous solvent complicates the operations of separating the reaction products. Application WO 2005/054167 of SOLVAY SA describes a process for preparing dichloropropanol by reacting glycerol with hydrogen chloride in the presence of an organic acid so as to give reaction products containing dichloropropanol. In

that process the dichloropropanol is often separated from the other products of the reaction, and the latter are recycled to the reactor for chlorinating the glycerol. The other reaction products may contain high-boiling-point compounds, which have a tendency to accumulate in the reactor for chlorinating glycerol. It is possible to take off a fraction of these other reaction products via a purge and to subject said fraction to various treatments prior to optional discharge. Discharge does not represent an acceptable solution from an environmental standpoint. Moreover, the extra cost associated with the treatment prior to discharge may be prohibitive to the economics of the process. In that process, the unreacted glycerol is a cause of loss of selectivity.

The aim of the invention is to provide a process for preparing chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon which does not exhibit these drawbacks.

The invention accordingly provides a process for preparing chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and having a boiling temperature under a pressure of 1 bar absolute of at least 15°C more than the boiling temperature of the chlorohydrin under a pressure of 1 bar absolute.

It has been found, surprisingly, that in the presence of a minimal amount of heavy compounds in the chlorination step it is possible to improve the yield of the process. Without wishing to be tied by one theoretical explanation, it is thought that the principal formation of non-utilizable by-products originates from the oligomerization of the polyhydroxylated aliphatic hydrocarbon and/or its esters with itself and that the presence and/or the maintenance of heavy compounds in the chlorination step allows the unreacted polyhydroxylated aliphatic hydrocarbon to be diluted in the reaction mixture without adversely affecting the yield of the reaction. It is thought that the presence of these compounds allows, at the same time, the reaction to be carried out at a higher temperature and thereby to compensate the effect of the dilution of the polyhydroxylated aliphatic hydrocarbon on the yield of the reaction and the productivity of the process.

The term "polyhydroxylated aliphatic hydrocarbon" refers to a hydrocarbon which contains at least two hydroxyl groups attached to two

35

5

10

15

20

25

different saturated carbon atoms. The polyhydroxylated aliphatic hydrocarbon may contain, but is not limited to, from 2 to 60 carbon atoms.

5

10

15

35

Each of the carbons of a polyhydroxylated aliphatic hydrocarbon bearing the hydroxyl functional group (OH) cannot possess more than one OH group and must have sp3 hybridization. The carbon atom carrying the OH group may be primary, secondary or tertiary. The polyhydroxylated aliphatic hydrocarbon used in the present invention must contain at least two sp3-hybridized carbon atoms carrying an OH group. The polyhydroxylated aliphatic hydrocarbon includes any hydrocarbon containing a vicinal diol (1,2-diol) or a vicinal triol (1,2,3-triol), including the higher, vicinal or contiguous orders of these repeating units. The definition of the polyhydroxylated aliphatic hydrocarbon also includes, for example, one or more 1,3-, 1,4-, 1,5- and 1,6-diol functional groups. The polyhydroxylated aliphatic hydrocarbon may also be a polymer such as polyvinyl alcohol. Geminal diols, for example, are excluded from this class of polyhydroxylated aliphatic hydrocarbons.

The polyhydroxylated aliphatic hydrocarbons may contain aromatic moieties or heteroatoms, including, for example, heteroatoms of halogen, sulphur, phosphorus, nitrogen, oxygen, silicon and boron type, and mixtures thereof.

Polyhydroxylated aliphatic hydrocarbons which can be used in the present 20 invention comprise, for example, 1,2-ethanediol (ethylene glycol), 1.2-propanediol (propylene glycol), 1,3-propanediol, 1-chloro-2,3-propanediol (chloropropanediol), 2-chloro-1,3-propanediol (chloropropanediol), 1,4-butanediol, 1,5-pentanediol, cyclohexanediols, 1,2-butanediol, 1,2-cyclohexanedimethanol, 1,2,3-propanetriol (also known as "glycerol" or 25 "glycerin"), and mixtures thereof. With preference the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, for example, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, chloropropanediol and 1.2.3-propanetriol, and mixtures of at least two thereof. More preferably the polyhydroxylated aliphatic hydrocarbon used in the present invention includes, 30 for example, 1,2-ethanediol, 1,2-propanediol, chloropropanediol and 1,2,3-propanetriol, and mixtures of at least two thereof. 1,2,3-Propanetriol or glycerol is the most preferred.

The esters of polyhydroxylated aliphatic hydrocarbon may be present in the polyhydroxylated aliphatic hydrocarbon and/or may be produced in the process for preparing the chlorohydrin and/or may be prepared prior to the process for preparing the chlorohydrin. Examples of esters of the polyhydroxylated aliphatic hydrocarbon comprise ethylene glycol monoacetate, propanediol monoacetates, glycerol monoacetates, glycerol monostearates, glycerol diacetates and mixtures thereof.

5

10

15

20

25

30

35

The term "chlorohydrin" is used here in order to describe a compound containing at least one hydroxyl group and at least one chlorine atom attached to different saturated carbon atoms. A chlorohydrin which contains at least two hydroxyl groups is also a polyhydroxylated aliphatic hydrocarbon. Accordingly the starting material and the product of the reaction may each be chlorohydrins. In that case the "product" chlorohydrin is more chlorinated than the starting chlorohydrin, in other words has more chlorine atoms and fewer hydroxyl groups than the starting chlorohydrin. Preferred chlorohydrins are chloroethanol, chloropropanol, chloropropanediol, dichloropropanol and mixtures of at least two thereof. Dichloropropanol is particularly preferred. Chlorohydrins which are more particularly preferred are 2-chloroethanol, 1-chloropropan-2-ol, 2-chloropropan-1-ol, 1-chloropropane-2,3-diol, 2-chloropropan-1,3-diol, 1,3-dichloropropan-2-ol, 2,3-dichloropropan-1-ol and mixtures of at least two thereof.

In the preparation process according to the invention the reaction may be conducted in continuous mode or in discontinuous (batch) mode. The continuous mode is preferred.

The polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon, or the mixture thereof in the process according to the invention may be obtained starting from fossil raw materials or starting from renewable raw materials, preferably starting from renewable raw materials.

By fossil raw materials are meant materials obtained from the processing of petrochemical natural resources, such as petroleum, natural gas and coal, for example. Among these materials preference is given to organic compounds containing 2 and 3 carbon atoms. When the polyhydroxylated aliphatic hydrocarbon is glycerol, allyl chloride, allyl alcohol and "synthetic" glycerol are particularly preferred. By "synthetic" glycerol is meant a glycerol generally obtained from petrochemical resources. When the polyhydroxylated aliphatic hydrocarbon is ethylene glycol, ethylene and "synthetic" ethylene glycol are particularly preferred. By "synthetic" ethylene glycol is meant an ethylene glycol generally obtained from petrochemical resources. When the polyhydroxylated aliphatic hydrocarbon is propylene glycol, propylene and

"synthetic" propylene glycol are particularly preferred. By "synthetic" propylene glycol is meant a propylene glycol generally obtained from petrochemical resources.

By renewable raw materials are meant materials obtained from the processing of renewable natural resources. Among these materials preference is given to "natural" ethylene glycol, "natural" propylene glycol and "natural" glycerol, "Natural" ethylene glycol, propylene glycol and glycerol are obtained for example by conversion of sugars by thermochemical processes, it being possible for these sugars to be obtained starting from biomass, as described in "Industrial Bioproducts: Today and Tomorrow", Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56. One of these processes is, for example, the catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose. Another process is, for example, the catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose. The xylose may for example be obtained by hydrolysis of the hemicellulose present in maize fibres. By "natural glycerol" or "glycerol obtained from renewable raw materials" is meant, in particular, glycerol obtained during the production of biodiesel or else glycerol obtained during conversions of animal or vegetable oils or fats in general, such as saponification, transesterification or hydrolysis reactions.

Among the oils which can be used to prepare natural glycerol, mention may be made of all common oils, such as palm oil, palm kernel oil, copra oil, babassu oil, former or new (low erucic acid) colza oil, sunflower oil, maize oil, castor oil and cotton oil, peanut oil, soya bean oil, linseed oil and crambe oil, and all oils obtained, for example, from sunflower plants or colza plants obtained by genetic modification or hybridization.

It is also possible to employ used frying oils, various animal oils, such as fish oils, tallow, lard and even squaring greases.

Among the oils used mention may also be made of oils which have been partly modified by means, for example, of polymerization or oligomerization, such as, for example, the "stand oils" of linseed oil and of sunflower oil, and blown vegetable oils.

A particularly suitable glycerol may be obtained during the conversion of animal fats. Another particularly suitable glycerol may be obtained during the production of biodiesel. A third, very suitable glycerol may be obtained during

35

5

10

15

20

25

the conversion of animal or vegetable oils or fats by transesterification in the presence of a heterogeneous catalyst, as described in documents FR 2752242, FR 2869612 and FR 2869613. More specifically, the heterogeneous catalyst is selected from mixed oxides of aluminium and zinc, mixed oxides of zinc and titanium, mixed oxides of zinc, titanium and aluminium, and mixed oxides of bismuth and aluminium, and the heterogeneous catalyst is employed in the form of a fixed bed. This latter process can be a process for producing biodiesel.

5

10

15

20

25

30

35

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof may be as described in the patent application entitled "Process for preparing chlorohydrin by converting polyhydroxylated aliphatic hydrocarbons", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin wherein a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose total metal content, expressed in elemental form, is greater than or equal to 0.1 µg/kg and less than or equal to 1000 mg/kg is reacted with a chlorinating agent.

In the process according to the invention it is preferred to use a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon or a mixture thereof obtained starting from renewable raw materials.

In the process according to the invention it is preferred to use glycerol, a glycerol ester or a mixture thereof obtained starting from renewable raw materials.

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof may be a crude product or a purified product, such as are specifically disclosed in application WO 2005/054167 of SOLVAY SA, from page 2 line 8 to page 4 line 2.

In the process for preparing a chlorohydrin according to the invention, the polyhydroxylated aliphatic hydrocarbon may be a polyhydroxylated aliphatic hydrocarbon whose alkali metal and/or alkaline earth metal content may be less than or equal to 5 g/kg, as described in the application entitled "Process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic

hydrocarbon", filed in the name of SOLVAY SA on the same day as the present application, and whose content is incorporated here by reference. The alkali metals may be selected from lithium, sodium, potassium, rubidium and cesium and the alkaline earth metals may be selected from magnesium, calcium, strontium and barium.

5

10

15

20

25

30

35

In the process according to the invention, the alkali metal and/or alkaline earth metal content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is less than or equal to $5 \, \text{g/kg}$, often less than or equal to $1 \, \text{g/kg}$, more particularly less than or equal to $0.5 \, \text{g/kg}$ and in certain cases less than or equal to $0.01 \, \text{g/kg}$. The alkali metal and/or alkaline earth metal content of the glycerol is generally greater than or equal to $0.1 \, \mu \text{g/kg}$.

In the process according to the invention the alkali metals are generally lithium, sodium, potassium and cesium, often sodium and potassium, and frequently sodium.

In the process for preparing a chlorohydrin according to the invention, the lithium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process according to the invention, the sodium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process according to the invention, the potassium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μ g/kg.

In the process according to the invention, the rubidium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 $\mu g/kg$.

In the process according to the invention, the cesium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process according to the invention the alkaline earth metal elements are generally magnesium, calcium, strontium and barium, often magnesium and calcium and frequently calcium.

5

10

15

20

25

30

35

In the process according to the invention, the magnesium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 $\mu g/kg$.

In the process according to the invention, the calcium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process according to the invention, the strontium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 μ g/kg.

In the process according to the invention, the barium content of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is generally less than or equal to 1 g/kg, often less than or equal to 0.1 g/kg and more particularly less than or equal to 2 mg/kg. This content is generally greater than or equal to 0.1 µg/kg.

In the process according to the invention the alkali and/or alkaline earth metals are generally present in the form of salts, frequently in the form of chlorides, sulphates and mixtures thereof. Sodium chloride is the most often encountered.

In the process for preparing a chlorohydrin according to the invention, the chlorinating agent may be as described in application WO 2005/054167 of SOLVAY SA, from page 4 line 25 to page 6 line 2.

In the process for preparing a chlorohydrin according to the invention, the chlorinating agent may be hydrogen chloride as described in application WO 2005/054167 of SOLVAY SA, from page 4 line 30 to page 6 line 2.

Particular mention is made of a chlorinating agent which may be aqueous hydrochloric acid or hydrogen chloride which is preferably anhydrous. The hydrogen chloride may come from a process of pyrolysing organic chlorine compounds, such as, for example, a vinyl chloride preparation, from a process for preparing 4,4-methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI), from metal pickling processes or from the reaction of an inorganic acid such as sulphuric or phosphoric acid with a metal chloride such as sodium chloride, potassium chloride or calcium chloride.

In one advantageous embodiment of the process for preparing a chlorohydrin according to the invention, the chlorinating agent is gaseous hydrogen chloride or an aqueous solution of hydrogen chloride, or a combination of the two.

In the process for preparing a chlorohydrin according to the invention the hydrogen chloride may be an aqueous solution of hydrogen chloride or the hydrogen chloride, preferably anhydrous, obtained from plant for preparing allyl chloride and/or for preparing chloromethanes and/or for chlorinolysis and/or for high-temperature oxidation of chlorine compounds, as described in the application entitled "Process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon with a chlorinating agent", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin from a polyhydroxylated aliphatic hydrocarbon, from an ester of a polyhydroxylated aliphatic hydrocarbon or from a mixture thereof, and from a chlorinating agent, the chlorinating agent comprising at least one of the following compounds: nitrogen, oxygen, hydrogen, chlorine, an organic hydrocarbon compound, an organic halogen compound, an organic oxygen compound and a metal.

Particular mention is made of an organic hydrocarbon compound selected from saturated and unsaturated aliphatic and aromatic hydrocarbons and mixtures thereof.

Particular mention is made of an unsaturated aliphatic hydrocarbon selected from acetylene, ethylene, propylene, butene, propadiene, methylacetylene and mixtures thereof, of a saturated aliphatic hydrocarbon

30

25

5

10

15

20

selected from methane, ethane, propane, butane and mixtures thereof and of an aromatic hydrocarbon which is benzene.

Particular mention is made of an organic halogen compound which is an organic chlorine compound selected from chloromethanes, chloroethanes, chloropropanes, chlorobutanes, vinyl chloride, vinylidene chloride, monochloropropenes, perchloroethylene, trichloroethylene, chlorobutadienes, chlorobenzenes and mixtures thereof.

Particular mention is made of an organic halogen compound which is an organic fluorine compound selected from fluoromethanes, fluoroethanes, vinyl fluoride, vinylidene fluoride and mixtures thereof.

Particular mention is made of an organic oxygen compound selected from alcohols, chloroalcohols, chloroethers and mixtures thereof.

Particular mention is made of a metal selected from alkali metals, alkaline earth metals, iron, nickel, copper, lead, arsenic, cobalt, titanium, cadmium, antimony, mercury, zinc, selenium, aluminium, bismuth and mixtures thereof.

Mention is made more particularly of a process wherein the chlorinating agent is obtained at least partly from a process for preparing allyl chloride and/or a process for preparing chloromethanes and/or a process of chlorinolysis and/or a process for oxidizing chlorine compounds at a temperature greater than or equal to 800°C.

In one particularly advantageous embodiment of the process for preparing a chlorohydrin according to the invention the hydrogen chloride is an aqueous solution of hydrogen chloride and does not contain gaseous hydrogen chloride.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in a reactor as described in application WO 2005/054167 of SOLVAY SA on page 6 lines 3 to 23.

Mention is made particularly of plant made from or covered with materials which are resistant, under the conditions of the reaction, to the chlorinating agents, in particular to hydrogen chloride. Mention is made more particularly of plant made of enamelled steel or of tantalum.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of the polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in apparatus which is made of or covered

20

25

5

10

15

30

with materials that are resistant to chlorinating agents, as described in the patent application entitled "Process for preparing a chlorohydrin in corrosion-resistant apparatus", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

5

10

15

20

25

30

35

Particular mention is made of a process for preparing a chlorohydrin that includes a step in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent containing hydrogen chloride and to at least one other step carried out in an apparatus made of or covered with materials resistant to the chlorinating agent, under the conditions in which that step is realized. Mention is made more particularly of metallic materials such as enamelled steel, gold and tantalum and of non-metallic materials such as high-density polyethylene, polypropylene, poly(vinylidene fluoride), polytetrafluoroethylene, perfluoroalkoxyalkanes and poly(perfluoropropyl vinyl ether), polysulphones and polysulphides, and unimpregnated and impregnated graphite.

In the process for preparing dichloropropanol according to the invention, the reaction of the glycerol with the hydrogen chloride may be carried out in a reaction medium as described in the application entitled "Continuous process for preparing chlorohydrins", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a continuous process for producing chlorohydrin in which a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid in a liquid reaction medium whose steady-state composition comprises polyhydroxylated aliphatic hydrocarbon and esters of polyhydroxylated aliphatic hydrocarbon for which the sum of the amounts, expressed in moles of polyhydroxylated aliphatic hydrocarbon, is greater than 1.1 mol % and less than or equal to 30 mol %, the percentage being based on the organic part of the liquid reaction medium.

The organic part of the liquid reaction medium consists of all of the organic compounds of the liquid reaction medium, in other words the compounds whose molecule contains at least one carbon atom.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of

polyhydroxylated aliphatic hydrocarbon or the mixture thereof and the chlorinating agent may be carried out in the presence of a catalyst as described in application WO 2005/054167 of SOLVAY SA from page 6 line 28 to page 8 line 5.

Mention is made particularly of a catalyst based on a carboxylic acid or on a carboxylic acid derivative having an atmospheric boiling point of greater than or equal to 200°C, especially adipic acid and derivatives of adipic acid.

The process for preparing a chlorohydrin according to the invention may be carried out in the presence of an organic acid.

The organic acid may be a product originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon or a product not originating from this process. In this latter case the product in question may be an organic acid which is used in order to catalyse the reaction of the polyhydroxylated aliphatic hydrocarbon with the chlorinating agent and/or may be an acid which is generated in the process of preparing the chlorohydrin. Consideration is given, for example, to acids generated starting from aldehydes which are present in the polyhydroxylated aliphatic hydrocarbon or formed during the preparation of the chlorohydrin. The organic acid may also be a mixture of an organic acid originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon, and an organic acid not originating from the process for preparing the polyhydroxylated aliphatic hydrocarbon.

In the process according to the invention the esters of the polyhydroxylated aliphatic hydrocarbon may originate from the reaction between the polyhydroxylated aliphatic hydrocarbon and the organic acid, before, during or within the steps which follow the reaction with the chlorinating agent.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof and the chlorinating agent may be carried out at a catalyst concentration, temperature and pressure and for residence times as described in the application WO 2005/054167 of SOLVAY SA from page 8 line 6 to page 10 line 10.

Mention is made particularly of a temperature of at least 20°C and not more than 160°C, of a pressure of at least 0.3 bar and not more than 100 bar and of a residence time of at least 1 h and not more than 50 h.

In the process for preparing a chlorohydrin according to the invention, the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of

35

Ś

10

15

20

25

polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent may be carried out in the presence of a solvent as described in application WO 2005/054167 of SOLVAY SA at page 11 lines 12 to 36.

Mention is made particularly of organic solvents such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether, a non-aqueous solvent which is miscible with the polyhydroxylated aliphatic hydrocarbon, such as chloroethanol, chloropropanol, chloropropanediol, dichloropropanol, dioxane, phenol, cresol and mixtures of chloropropanediol and dichloropropanol, or heavy products of the reaction such as at least partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon.

5

10

15

20

25

30

. 35

In the process for preparing a chlorohydrin according to the invention the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent is preferably carried out in a liquid reaction medium. The liquid reaction medium may be a single-phase or multi-phase medium.

The liquid reaction medium is composed of all of the dissolved or dispersed solid compounds, dissolved or dispersed liquid compounds and dissolved or dispersed gaseous compounds at the temperature of the reaction.

The reaction medium comprises the reactants, the catalyst, the solvent, the impurities present in the reactants, in the solvent and in the catalyst, the reaction intermediates, the products and the by-products of the reaction.

By reactants are meant the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon and the chlorinating agent.

Among the impurities present in the polyhydroxylated aliphatic hydrocarbon mention may be made of carboxylic acids, salts of carboxylic acids, esters of fatty acid with the polyhydroxylated aliphatic hydrocarbon, esters of fatty acids with the alcohols used in the transesterification, and inorganic salts such as alkali metal or alkaline earth metal sulphates and chlorides.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, the impurities in the glycerol that may be mentioned include carboxylic acids, salts of carboxylic acids, fatty acid esters such as mono-, di- and triglycerides, esters of fatty acids with the alcohols used in the transesterification and inorganic salts such as alkali metal or alkaline earth metal sulphates and chlorides.

Among the reaction intermediates mention may be made of monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and/or polyesters, the esters and/or polyesters of the polyhydroxylated aliphatic hydrocarbon and the esters of polychlorohydrins.

When the chlorohydrin is dichloropropanol, the reaction intermediates that may be mentioned include glycerol monochlorohydrin and its esters and/or polyesters, the esters and/or polyesters of glycerol and the esters of dichloropropanol.

The ester of polyhydroxylated aliphatic hydrocarbon may therefore be, at each instance, a reactant, an impurity of the polyhydroxylated aliphatic hydrocarbon or a reaction intermediate.

By products of the reaction are meant the chlorohydrin and water. The water may be the water formed in the chlorination reaction and/or water introduced into the process, for example via the polyhydroxylated aliphatic hydrocarbon and/or the chlorinating agent, as described in the application WO 2005/054167 of SOLVAY SA at page 2 lines 22 to 28 to page 3 lines 20 to 25, at page 5 lines 7 to 31 and at page 12 lines 14 to 19.

Among the by-products mention may be made for example of the partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon.

By non-utilizable by-products are meant products which are obtained from the polyhydroxylated aliphatic hydrocarbon or its derivatives and which under the reaction conditions do not permit the generation of chlorohydrin. Partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon are examples of non-utilizable by-products.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, the nonutilizable by-products that may be mentioned include, for example, the partially chlorinated and/or esterified oligomers of glycerol.

The reaction intermediates and the by-products may be formed in the different steps of the process, such as, for example, during the step of preparing the chlorohydrin and during the steps of separating off the chlorohydrin.

The liquid reaction mixture may therefore contain the polyhydroxylated aliphatic hydrocarbon, the chlorinating agent in solution or dispersion in the form of bubbles, the catalyst, the solvent, the impurities present in the reactants, in the solvent and in the catalyst, such as dissolved or solid salts, for example, the reaction intermediates, the products and the by-products of the reaction.

The process according to the invention may be carried out in batch mode or in continuous mode. The continuous mode is preferred.

20

15

5

10

25

30

When the chlorohydrin is chloroethanol, the heavy compounds have a boiling temperature under a pressure of 1 bar of greater than or equal to 145°C, preferably greater than or equal to 165°C, more preferably greater than or equal to 185°C and with very particular preference greater than or equal to 195°C.

When the chlorohydrin is chloropropanol, the heavy compounds have a boiling temperature under a pressure of 1 bar of greater than or equal to 150°C, preferably greater than or equal to 170°C, more preferably greater than or equal to 190°C and with very particular preference greater than or equal to 200°C.

5

10

15

2.0

25

30

35

When the chlorohydrin is chloropropanediol, the heavy compounds have a boiling temperature under a pressure of 1 bar of greater than or equal to 235°C, preferably greater than or equal to 255°C, more preferably greater than or equal to 275°C and with very particular preference greater than or equal to 285°C.

When the chlorohydrin is dichloropropanol, the heavy compounds have a boiling temperature under a pressure of 1 bar of greater than or equal to 200°C, preferably greater than or equal to 220°C, more preferably greater than or equal to 240°C and with very particular preference greater than or equal to 250°C.

In a distillative separating operation in the presence of water and chlorohydrin, for example, these heavy compounds emerge at the bottom of the distillation column, while the water and the chlorohydrin emerge at the top of the distillation column.

The heavy compounds content of the liquid phase is generally greater than or equal to 10 % by weight of the liquid phase, preferably greater than or equal to 15 % by weight and with particular preference greater than or equal to 20 % by weight. Said content is generally less than or equal to 90 % by weight, preferably less than or equal to 80 % by weight and with particular preference less than or equal to 75 % by weight of the liquid phase.

The heavy compounds may be "external" or "internal", to the process according to the invention. The expression "external" refers to heavy compounds which have not been produced in the process according to the invention; for example, a heavy solvent. The expression "internal" refers to heavy compounds which are products formed in the process according to the invention. These products may result from secondary reactions between the polyhydroxylated aliphatic hydrocarbon, the chlorinating agent, the products of the chlorination reaction and the acids present in the polyhydroxylated aliphatic hydrocarbon and/or used as catalysts of the reaction. The heavy compounds may be considered as a constituent of the solvent. The use of these "internal" heavy

compounds in the process offers the additional advantage of limiting the presence of an extraneous solvent in the process, thereby simplifying the separating steps.

5

10

15

20

25

30

The heavy compounds are selected preferably from monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and/or polyesters, partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon and their mixtures, and, with particular preference, from the partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon and their mixtures. These oligomers of the polyhydroxylated aliphatic hydrocarbon may be linear or cyclic.

When the polyhydroxylated aliphatic hydrocarbon is ethylene glycol, a heavy compound is, for example, 2-chloroethyl acetate.

When the polyhydroxylated aliphatic hydrocarbon is propylene glycol, heavy compounds are, for example, chloropropyl acetates.

When the polyhydroxylated aliphatic hydrocarbon is glycerol, heavy compounds are, for example, 3-acetoxypropane-1,2-diol, 2-acetoxypropane-1,3-diol, 2,3-acetoxypropan-1-ol, 1,3-acetoxypropan-2-ol, 1,2,3-triacetoxypropane, 3-chloro-2-hydroxypropyl acetate, 2-chloro-1-hydroxypropyl acetate, 1,2-diacetoxy-3-chloropropane, 2-chloro-3-hydroxypropyl acetate, 1,3-diacetoxy-2-chloropropane, 1,3-dichloro-2-propyl acetate and 2,3-dichloro-1-propyl acetate.

In the process according to the invention at least a fraction of the heavy compounds has been separated from the other compounds of the reaction mixture, in particular the chlorohydrin, and has subsequently been recycled into the reaction of the polyhydroxylated aliphatic hydrocarbon with the chlorinating agent.

In a first embodiment of the process according to the invention use is made of heavy compounds which are external to the process according to the invention.

In a second, preferred embodiment of the process according to the invention use is made of heavy compounds which are internal to the process according to the invention.

In a third embodiment of the process according to the invention use is made of a mixture of heavy compounds internal and external to the process according to the invention.

In the process according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture may be carried out in accordance with the methods as described in the application WO 2005/054167 of SOLVAY SA from page 12 line 1 to page 16 line 35 and page 18 lines 6 to 13. These other compounds are those mentioned above and include unconsumed reactants, the impurities present in the reactants, the catalyst, the solvent, the reaction intermediates, the water and the by-products of the reaction.

5

10

15

20

25

30

35

Particular mention is made of separation by azeotropic distillation of a water/chlorohydrin/chlorinating agent mixture under conditions which minimize the losses of chlorinating agent, followed by isolation of the chlorohydrin by phase separation.

In the process for preparing a chlorohydrin according to the invention, the isolation of the chlorohydrin and of the other compounds from the reaction mixture may be carried out in accordance with methods of the kind described in patent application EP 05104321.4, filed in the name of SOLVAY SA on 20/05/2005 and the content of which is incorporated here by reference. Particular mention is made of a separation method including at least one separating operation intended to remove the salt from the liquid phase.

Particular mention is made of a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent wherein the polyhydroxylated aliphatic hydrocarbon, an ester of the polyhydroxylated aliphatic hydrocarbon or a mixture thereof that is used comprises at least one solid or dissolved metal salt, the process including a separation operation intended to remove part of the metal salt. Mention is made more particularly of a process for preparing a chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent wherein the polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof that is used comprises at least one chloride and/or a sodium and/or potassium sulphate and in which the separating operation intended to remove part of the metal salt is a filtering operation. Particular mention is also made of a process for preparing a chlorohydrin wherein (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating

agent in a reaction mixture, (b) continuously or periodically, a fraction of the reaction mixture containing at least water and the chlorohydrin is removed, (c) at least a part of the fraction obtained in step (b) is introduced into a distillation step and (d) the reflux ratio of the distillation step is controlled by providing water to the said distillation step. Mention is made very particularly of a process for preparing a chlorohydrin wherein (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with hydrogen chloride in a reaction mixture, (b) continuously or periodically, a fraction of the reaction mixture containing at least water and chlorohydrin is removed, (c) at least part of the fraction obtained in step (b) is introduced into a distillation step in which the ratio between the hydrogen chloride concentration and the water concentration in the fraction introduced into the distillation step is smaller than the hydrogen chloride/water concentration ratio in the binary azeotropic hydrogen chloride/water composition at the distillation temperature and pressure.

In the process for preparing the chlorohydrin according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled "Process for preparing a chlorohydrin" filed in the name of SOLVAY SA on the same day as the present application and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing a chlorohydrin which comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid so as to give a mixture containing the chlorohydrin and esters of the chlorohydrin, (b) at least part of the mixture obtained in (a) is subjected to one or more treatments subsequent to step (a), and (c) the polyhydroxylated aliphatic hydrocarbon is added to at least one of the steps subsequent to step (a), in order to react at a temperature greater than or equal to 20°C with the esters of the chlorohydrin, so as to form, at least partly, esters of the polyhydroxylated aliphatic hydrocarbon. Mention is made more particularly of a process in which the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloropropanol.

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and the other compounds from the reaction

35

5

10

15

20

25

mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled "Process for preparing a chlorohydrin starting from a polyhydroxylated aliphatic hydrocarbon", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

5

10

15

20

25

30

35

Particular mention is made of a process for preparing chlorohydrin by reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent in a reactor which is supplied with one or more liquid streams containing less than 50 % by weight of the polyhydroxylated aliphatic hydrocarbon, of the ester of polyhydroxylated aliphatic hydrocarbon or of the mixture thereof relative to the weight of the entirety of the liquid streams introduced into the reactor. More particular mention is made of a process comprising the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent so as to give at least one mixture containing the chlorohydrin, water and the chlorinating agent. (b) at least a fraction of the mixture formed in step (a) is removed, and (c) the fraction removed in step (b) is subjected to an operation of distillation and/or stripping wherein the polyhydroxylated aliphatic hydrocarbon is added in order to isolate, from the fraction removed in step (b), a mixture containing water and the chlorohydrin and exhibiting a reduced chlorinating agent content as compared with the fraction removed in step (b).

In the process for preparing a chlorohydrin according to the invention, the separation of the chlorohydrin and of the other compounds from the reaction mixture from chlorination of the polyhydroxylated aliphatic hydrocarbon may be carried out in accordance with methods as described in the application entitled "Process for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference. Particular mention is made of a process for preparing a chlorohydrin that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent so as to give a mixture containing the chlorohydrin, chlorohydrin esters and water, (b) at least a fraction of the mixture obtained in step (a) is subjected to a distillation and/or stripping treatment so as to give a portion concentrated in water, in chlorohydrin and in chlorohydrin esters, and (c)

at least a fraction of the portion obtained in step (b) is subjected to a separating operation in the presence of at least one additive so as to obtain a moiety concentrated in chlorohydrin and in chlorohydrin esters and containing less than 40 % by weight of water.

The separating operation is more particularly a decantation.

5

10

15

20

25

30

35

In the process for preparing a chlorohydrin according to the invention, the isolation and the treatment of the other compounds of the reaction mixture may be carried out in accordance with methods as described in the application entitled "Process for preparing a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon", filed in the name of SOLVAY SA on the same day as the present application. A preferred treatment consists in subjecting a fraction of the by-products of the reaction to a high-temperature oxidation.

Particular mention is made of a process for preparing a chlorohydrin that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof whose alkali metal and/or alkaline earth metal content is less than or equal to 5 g/kg, a chlorinating agent and an organic acid are reacted so as to give a mixture containing at least the chlorohydrin and by-products, (b) at least a portion of the mixture obtained in step (a) is subjected to one or more treatments in steps subsequent to step (a), and (c) at least one of the steps subsequent to step (a) consists in an oxidation at a temperature greater than or equal to 800°C. More particular mention is made of a process wherein, in the subsequent step, a portion of the mixture obtained in step (a) is removed and this portion is subjected to oxidation at a temperature greater than or equal to 800°C in the course of the removal. Particular mention is also made of a process wherein the treatment of step (b) is a separating operation selected from phase separation, filtration, centrifugation, extraction, washing, evaporation, stripping, distillation, and adsorption operations or the combinations of at least two of these operations.

In the process according to the invention, when the chlorohydrin is monochloropropanol, it is generally obtained in the form of a mixture of compounds comprising the isomers of 1-chloropropan-2-ol and 2-chloropropan-1-ol. This mixture generally contains more than 1 % by weight of the two isomers, preferably more than 5 % by weight and particularly more than 50 %. The mixture commonly contains less than 99.9 % by weight of the two isomers, preferably less than 95 % by weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds

originating from the processes for preparing the chloropropanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

The mass ratio of the isomers, 1-chloropropan-2-ol and 2-chloropropan-1-ol, is commonly greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25.

5

10

15

20

25

30

35

In the process according to the invention, when the chlorohydrin is monochloroethanol, it is generally obtained in the form of a mixture of compounds comprising the 2-chloroethanol isomer. This mixture generally contains more than 1 % by weight of the isomer, preferably more than 5 % by weight and particularly more than 50 %. The mixture commonly contains less than 99.9 % by weight of the isomer, preferably less than 95 % by weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloroethanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

In the process according to the invention, when the chlorohydrin is monochloropropanediol, it is generally obtained in the form of a mixture of compounds comprising the isomers of 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol. This mixture generally contains more than 1 % by weight of the two isomers, preferably more than 5 % by weight and particularly more than 50 %. The mixture commonly contains less than 99.9 % by weight of the two isomers, preferably less than 95 % by weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the chloropropanediol, such as residual reactions, reaction by-products, solvents and, in particular, water.

The mass ratio between the 1-chloropropane-2,3-diol and 2-chloropropane-1,3-diol isomers is commonly greater than or equal to 0.01, preferably greater than or equal to 0.4. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25. In the process according to the invention, when the chlorohydrin is dichloropropanol, it is generally obtained in the form of a mixture of compounds comprising the isomers of 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol. This mixture generally contains more than 1 % by weight of the two isomers, preferably more than 5 % by weight and in particular more than 50 %. The mixture commonly contains less than 99.9 % by weight of the two isomers, preferably less than 95 % by

weight and more particularly less than 90 % by weight. The other constituents of the mixture may be compounds originating from the processes for preparing the dichloropropanol, such as residual reactants, reaction by-products, solvents and, in particular, water.

The mass ratio between the 1,3-dichloropropan-2-ol and 2,3-dichloropropan-1-ol isomers is commonly greater than or equal to 0.01, often greater than or equal to 0.4, frequently greater than or equal to 1.5, preferably greater than or equal to 3.0, more preferredly greater than or equal to 7.0 and with very particular preference greater than or equal to 20.0. This ratio is commonly less than or equal to 99 and preferably less than or equal to 25.

The chlorohydrin obtained in the process according to the invention may include a heightened amount of halogenated ketones, in particular of chloroacetone, as described in the patent application FR 05.05120 of 20/05/2005, filed in the name of the applicant, and the content of which is incorporated here by reference. The halogenated ketone content may be reduced by subjecting the chlorohydrin obtained in the process according to the invention to an azeotropic distillation in the presence of water or by subjecting the chlorohydrin to a dehydrochlorination treatment as described in this application from page 4 line 1 to page 6 line 35.

Particular mention is made of a process for preparing an epoxide wherein halogenated ketones are formed as by-products and which comprises at least one treatment of removal of at least a portion of the halogenated ketones formed. Mention is made more particularly of a process for preparing an epoxide by dehydrochlorinating a chlorohydrin of which at least one fraction is prepared by chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof, a treatment of dehydrochlorination and a treatment by azeotropic distillation of a water/halogenated ketone mixture, which are intended to remove at least a portion of the halogenated ketones formed, and a process for preparing epichlorohydrin wherein the halogenated ketone formed is chloroacetone.

The chlorohydrin obtained in the process according to the invention may be subjected to a dehydrochlorination reaction in order to produce an epoxide, as described in the patent applications WO 2005/054167 and FR 05.05120, both filed in the name of SOLVAY SA.

The term "epoxide" is used herein to describe a compound containing at least one oxygen bridged on a carbon-carbon bond. Generally speaking, the

20

25

30

5

10

15

carbon atoms of the carbon-carbon bond are adjacent and the compound may contain atoms other than carbon atoms and oxygen atoms, such as hydrogen atoms and halogens. The preferred epoxides are ethylene oxide, propylene oxide and epichlorohydrin.

The dehydrochlorination of the chlorohydrin may be carried out as described in the application entitled "Process for preparing an epoxide starting from a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing an epoxide wherein a reaction mixture resulting from the reaction between a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof with a chlorinating agent, the reaction mixture containing at least 10 g of chlorohydrin per kg of reaction mixture, is subjected to a subsequent chemical reaction without intermediate treatment.

Mention is also made of the preparation of an epoxide that comprises the following steps: (a) a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is reacted with a chlorinating agent and an organic acid so as to form the chlorohydrin and chlorohydrin esters in a reaction mixture containing the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon, water, the chlorinating agent and the organic acid, the reaction mixture containing at least 10 g of chlorohydrin per kg of reaction mixture, (b) at least a fraction of the reaction mixture obtained in step (a), this fraction having the same composition as the reaction mixture obtained in step (a), is subjected to one or more treatments in steps subsequent to step (a), and (c) a basic compound is added to at least one of the steps subsequent to step (a) in order to react at least partly with the chlorohydrin, the chlorohydrin esters, the chlorinating agent and the organic acid so as to form the epoxide and salts.

The process for preparing the chlorohydrin according to the invention may be integrated within an overall plan for preparation of an epoxide, as described in the application entitled "Process for preparing an epoxide starting from a chlorohydrin", filed in the name of SOLVAY SA on the same day as the present application, and the content of which is incorporated here by reference.

Particular mention is made of a process for preparing an epoxide that comprises at least one step of purification of the epoxide formed, the epoxide

35

30

5

10

15

20

being at least partly prepared by a process of dehydrochlorinating a chlorohydrin, the latter being at least partly prepared by a process of chlorinating a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof.

5

10

15

20

2.5

30

35

In the process according to the invention, the polyhydroxylated aliphatic hydrocarbon is preferably glycerol and the chlorohydrin is preferably dichloropropanol.

When the chlorohydrin is dichloropropanol, the process according to the invention may be followed by preparation of epichlorohydrin by dehydrochlorination of dichloropropanol, and the epichlorohydrin may be employed in the preparation of epoxy resins.

Figure 1 shows a particular plan of plant which can be used to implement the process according to the invention.

A reactor (4) is supplied in continuous mode or in batch mode with a polyhydroxylated aliphatic hydrocarbon, an ester of polyhydroxylated aliphatic hydrocarbon or a mixture thereof via line (1) and with catalyst via line (2): chlorinating agent is supplied in continuous mode or in batch mode via line (3); a distillation column (6) is supplied via line (5) with vapours produced in reactor (4); a stream is taken off from column (6) via line (7) and is introduced into a condenser (8); the stream obtained from the condenser is introduced via line (9) into a decanter (10), in which the aqueous and organic phases are separated. A fraction of the separated aqueous phase is optionally recycled via line (11) to the top of the column in order to maintain the reflux. Fresh water may be introduced into line (11) via line (12). The production of chlorohydrin is distributed between the organic phase taken off via line (14) and the aqueous phase taken off via line (13). The residue from column (6) may be recycled to reactor (4) via line (15). A fraction of the heavy products is taken off from reactor (4) via the purge (16) and is introduced via line (17) into an evaporator (18), in which a partial evaporation operation is conducted, for example, by heating or by gas scavenging with nitrogen or with water vapour: the gaseous phase containing the majority of the chlorinating agent from stream (17) is recycled via line (19) to column (6) or via line (20) to reactor (4); a distillation or stripping column (22) is supplied with the liquid phase coming from stripping apparatus (18) via line (21); the major part of the chlorohydrin is collected at the top of column (22) via line (23) and the residue is introduced via line (24) into the filtering column (25), in which the liquid and solid phases are

separated; and the liquid phase is recycled via line (26) to reactor (4). The solid may be taken off from filtering unit (25) via line (27) in the form of a solid or a solution. Solvents may be added to the filtering unit (25) via lines (28) and (29) for the washing and/or dissolving of the solid, and may be taken off via line (29). Optionally a stream is taken off from purge (16) and introduced via line (30) into the filtering column (25). Evaporator (18) and distillation column (22) are in that case short-circuited.

The examples below are intended to illustrate the invention without, however, imposing any limitation thereon.

Example 1 (in accordance with the invention)

5

10

15

20

25

Into a reactor containing 800 g of glycerol, 63 g of adipic acid and 500 g of a mixture composed of 350 g of dichlorinated diglycerol and 150 g of glycerol monochlorohydrin, maintained at a temperature of 120°C and at atmospheric pressure, is bubbled gaseous hydrogen chloride, at a rate of 1.26 g/min for 10 h. The water of reaction is removed by continuous distillation of the azeotrope formed with 1,3-DCPol. This gives a total of 1207 g of-dichloropropanol, 327 g of water and 69 g of hydrogen chloride. The loss, measured in terms of oligomeric compounds (essentially chlorinated diglycerol and chlorinated cyclic diglycerol) amounts to 0.7 % of the glycerol employed.

Example 2 (not in accordance with the invention)

Into a reactor containing 800 g of glycerol and 63 g of adipic acid, maintained at a temperature of 120°C and at a pressure of 1 bar, is bubbled gaseous hydrogen chloride, at a rate of 1.26 g/min for 10 h. The water of reaction is removed by continuous distillation of the azeotrope formed with 1,3-DCPol. This gives a total of 998 g of dichloropropanol, 296 g of water and 171 g of hydrogen chloride. The loss, measured in terms of oligometric compounds amounts to 3 % of the glycerol employed.

CLAIMS

1. Process for preparing a chlorohydrin, wherein a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and having a boiling temperature under a pressure of 1 bar absolute which is at least 15°C greater than the boiling temperature of the chlorohydrin under a pressure of 1 bar absolute.

5

10

- Process according to Claim 1, wherein the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent takes place in the liquid phase.
- 3. Process according to Claim 1 or 2, wherein the reaction is conducted continuously.
- Process according to any one of Claims 1 to 3, wherein a carboxylic acid and/or a carboxylic acid derivative is used as catalyst.
- 5. Process according to any one of Claims 1 to 4, wherein the heavy compounds content is greater than or equal to 10 % by weight of the liquid phase and less than or equal to 90 % by weight of the liquid phase.
- 20 6. Process according to any one of Claims 1 to 5, wherein the heavy compounds are selected from monochlorohydrins of the polyhydroxylated aliphatic hydrocarbon and their esters and/or polyesters, the partially chlorinated and/or esterified oligomers of the polyhydroxylated aliphatic hydrocarbon, and mixtures thereof.
- 7. Process according to any one of Claims 1 to 6, wherein a fraction of the heavy compounds is separated from the chlorohydrin and recycled into the reaction of the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof with the chlorinating agent.

- 8. Process according to any one of Claims 1 to 7, wherein a fraction of the heavy compounds is formed during the reaction of chlorinating the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof.
- 9. Process according to any one of Claims 1 to 8, wherein the polyhydroxylated aliphatic hydrocarbon, the ester of polyhydroxylated aliphatic hydrocarbon or the mixture thereof is obtained starting from renewable raw materials.
 - 10. Process according to any one of Claims 1 to 9, wherein the polyhydroxylated aliphatic hydrocarbon is selected from ethylene glycol, propylene glycol, chloropropanediol, glycerol and mixtures of at least two thereof.

15

- 11. Process according to any one of Claims 1 to 10, wherein the chlorohydrin is selected from chloroethanol, chloropropanol, chloropropanol and mixtures of at least two thereof.
- 12. Process according to Claim 11, wherein the chlorohydrin is chloroethanol and the boiling temperature of the heavy compounds is greater than or equal to 145°C under a pressure of 1 bar absolute.
- 13. Process according to Claim 11, wherein the chlorohydrin is chloropropanol and the boiling temperature of the heavy compounds is greater than or equal to 150°C under a pressure of 1 bar absolute.
- 14. Process according to Claim 11, wherein the chlorohydrin is chloropropanediol and the boiling temperature of the heavy compounds is greater than or equal to 235°C under a pressure of 1 bar absolute.
- 25 15. Process according to Claim 11, wherein the chlorohydrin is dichloropropanol and the boiling temperature of the heavy compounds is greater than or equal to 200°C under a pressure of 1 bar absolute.
- 16. Process according to any one of Claims 10, 11 or 15, wherein the polyhydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is
 dichloropropanol.

17. Process according to Claim 16, followed by preparation of epichlorohydrin by dehydrochlorination of dichloropropanol.

- 18. Process according to Claim 17, wherein the epichlorohydrin is used in the preparation of epoxy resins.
- 19. Process according to any one of Claims 1 to 18, wherein the chlorinating agent is a combination of gaseous hydrogen chloride and an aqueous solution of hydrogen chloride, or an aqueous solution of hydrogen chloride.

ABSTRACT

Process for preparing a chlorohydrin in a liquid phase

Process for preparing a chlorohydrin, wherein a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof is subjected to reaction with a chlorinating agent in the presence of a liquid phase comprising heavy compounds other than the polyhydroxylated aliphatic hydrocarbon and having a boiling temperature under a pressure of 1 bar absolute which is at least 15°C greater than the boiling temperature of the chlorohydrin under a pressure of 1 bar absolute.

No figure.

Figure 1

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle Bureau international

T (DO LA BANKATA NI BANTA NIKA BANTA B

(43) Date de la publication internationale 28 septembre 2006 (28.09.2006)

(10) Numéro de publication internationale

(51) Classification internationale des brevets : C07C 29/62 (2006.01) C07C 31/42 (2006.01)

(21) Numéro de la demande internationale :

- C07C 31/36 (2006.01)
- PCT/EP2006/062445 (22) Date de dépôt international: 19 mai 2006 (19.05.2006)

français

(25) Langue de dépôt : (26) Langue de publication :

français

(30) Données relatives à la priorité :

05104321.4 20 mai 2005 (20.05.2005) EP 0505120 20 mai 2005 (20.05,2005) FR 60/734.635 8 novembre 2005 (08.11.2005) US 60/734,657 8 novembre 2005 (08.11.2005) US 60/734.636 8 novembre 2005 (08 11 2005) HS 8 novembre 2005 (08.11.2005) US US

60/734.627 60/734 634 8 novembre 2005 (08.11.2005) 60/734.658 8 novembre 2005 (08.11.2005) US 60/734.637 8 novembre 2005 (08.11.2005) US 60/734,659 8 novembre 2005 (08.11.2005) US

- (71) Déposant (pour tous les États désignés sauf US) : SOLVAY (Société Anonyme) [BE/BE]; Rue du Prince Albert, 33, B-1050 Brussels (BE).
- (72) Inventeur; et
- (75) Inventeur/Déposant (pour US seulement): GILBEAU, Patrick [BE/BE]; Chemin de la Fontenelle, 20, B-7090 Braine-le-Comte (BE)

- WO 2006/100316 A1 (74) Mandataires: VANDE GUCHT, Anne etc.: SOLVAY (Société Anonyme), Intellectual Property Department, Rue de Ransbeek, 310, B-1120 Brussels (BE),
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible); AE, AG, AL, AM, AT. AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO. CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB. GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG. KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA. MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ. OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW,
- (84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée .

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont re-
- sur requête du déposant, avant l'expiration du délai mentionné à l'article 21.2)a)

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: METHOD FOR MAKING CHLOROHYDRIN IN LIQUID PHASE IN THE PRESENCE OF HEAVY COMPOUNDS
- (54) Titre: FABRICATION DE CHLORHYDRINE EN PHASE LIQUIDE EN PRESENCE DE COMPOSES LOURDS
- (57) Abstract: The invention concerns a method for making chlorohydrin, which consists in reacting a polyhydroxylated aliphatic hydrocarbon, an ester of a polyhydroxylated aliphatic hydrocarbon or a mixture thereof, with a chlorinating agent, in the presence of a liquid phase comprising heavy compounds other than polyhydroxylated aliphatic hydrocarbon and whereof the boiling point under a pressure of 1 bar absolute is not less than 15 °C higher than the boiling point of the chlorohydrin under a pressure of 1 bar absolute.
- (57) Abrégé: Procédé de fabrication d'une chlorhydrine, dans lequel on soumet un hydrocarbure aliphatique poly hydroxylé,un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec un agent de chloration, en présence 🤁 d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé et dont la température d'ébullition sous une pression de 1 bar absolu est d'au moins 15 °C supérieure à la température d'ébullition de la chlorhydrine sous une pression de 1 bar absolu.

WO 2006/100316 PCT/EP2006/062445

FABRICATION DE CHIORHYDRINE EN PHASE LIQUIDE EN PRESENCE DE COMPOSES LOURDS

La présente demande de brevet revendique le bénéfice de la demande de brevet FR 05.05120 et de la demande de brevet EP 05104321.4, déposées le 20 mai 2005 et des demandes de brevet US provisoires 60/734659, 60/734627, 60/734657, 60/734658, 60/734635, 60/734634, 60/734637 et 60/734636, déposées le 8 novembre 2005, dont les contenus sont ici incorporés par référence.

5

10

15

20

25

30

La présente invention se rapporte à un procédé de fabrication d'une chlorhydrine. Elle se rapporte plus spécifiquement à un procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé dans une phase liquide comprenant des composés lourds.

Les chlorhydrines sont des intermédiaires réactionnels dans la fabrication des époxydes. Le dichloropropanol est un intermédiaire réactionnel dans la fabrication de l'épichlorhydrine et des résines époxy (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons. Inc.).

Selon des procédés connus, on peut obtenir le dichloropropanol notamment par hypochloration du chlorure d'allyle, par chloration de l'alcool allylique et par hydrochloration du glycérol. Ce dernier procédé présente l'avantage que le dichloropropanol peut être obtenu au départ de matières premières fossiles ou de matières premières renouvelables et il est connu que les ressources naturelles pétrochimiques, dont sont issues les matières fossiles, par exemple le pétrole, le gaz naturel ou le charbon, disponibles sur la terre sont limitées.

La demande internationale WO 2005/021476 décrit un procédé de fabrication de dichloropropanol par réaction entre du glycérol et du chlorure d'hydrogène gazeux en absence de solvant. Le dichloropropanol est séparé par des opérations de distillation successives et le résidu ultime lourd de ces opérations est stocké comme déchet dans un réservoir. La demande US 2,144,612 décrit un procédé de fabrication de dichloropropanol par réaction entre du glycérol et du chlorure d'hydrogène gazeux en présence d'un solvant non miscible à l'eau. La présence d'un tiers solvant complique les opérations de séparation des produits de la réaction. La demande WO 2005/054167 de

10

15

20

25

30

35

SOLVAY SA décrit un procédé de fabrication de dichloropropanol par réaction entre du glycérol et du chlorure d'hydrogène en présence d'un acide organique de façon à obtenir des produits de réaction contenant du dichloropropanol. Dans ce procédé, on sépare souvent le dichloropropanol des autres produits de la réaction et on recycle ces derniers au réacteur de chloration du glycérol. Les autres produits de réaction peuvent contenir des composés à haut point d'ébullition qui ont tendance à s'accumuler dans le réacteur de chloration du glycérol. On peut soutirer une fraction de ces autres produits de réaction via une purge et soumettre cette fraction à différents traitements avant une éventuelle mise en décharge. La mise en décharge ne constitue pas une solution acceptable d'un point de vue environnemental. De plus, le surcoût lié au traitement préalable à la mise en décharge peut être prohibitif pour l'économie du procédé. Dans ce procédé, le glycérol n'ayant pas réagi est une cause de perte de sélectivité.

Le but de l'invention est de fournir un procédé de fabrication de chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé qui ne présente pas ces inconvénients.

L'invention concerne donc un procédé de fabrication de chlorhydrine, dans lequel on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration, en présence d'une phase liquide comprenant composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé et dont la température d'ébullition sous une pression de 1 bar absolu est d'au moins 15 °C supérieure à la température d'ébullition de la chlorhydrine sous une pression de 1 bar absolu.

On a trouvé de façon surprenante qu'en présence d'une quantité minimale de composés lourds dans l'étape de chloration, on pouvait améliorer le rendement du procédé. Sans vouloir être lié par une explication théorique, on pense que la formation principale de sous-produits non valorisables provient de l'oligomérisation de l'hydrocarbure aliphatique poly hydroxylé et/ou de ses esters sur lui-même et que la présence et/ou le maintien de composés lourds dans l'étape de chloration permet de diluer l'hydrocarbure aliphatique poly hydroxylé n'ayant pas réagi dans le milieu réactionnel sans affecter négativement le rendement de la réaction. On pense que la présence de ces composés permet concomitamment d'effectuer la réaction à une température plus élevée et d'ainsi

10

15

20

25

30

35

compenser l'effet de la dilution de l'hydrocarbure aliphatique poly hydroxylé sur le rendement de la réaction et la productivité du procédé.

L'expression « hydrocarbure aliphatique poly hydroxylé » se rapporte à un hydrocarbure qui contient au moins deux groupements hydroxyles attachés à deux atomes de carbone différents saturés. L'hydrocarbure aliphatique poly hydroxylé peut contenir, mais n'est pas limité à, de 2 à 60 atomes de carbone.

Chacun des carbones d'un hydrocarbure aliphatique poly hydroxylé portant le groupement hydroxyle (OH) fonctionnel ne peut pas posséder plus d'un groupement OH, et doit être d'hybridation sp3. L'atome de carbone portant le groupement OH peut être primaire, secondaire ou tertiaire. L'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention doit contenir au moins deux atomes de carbone d'hybridation sp3 portant un groupement OH. L'hydrocarbure aliphatique poly hydroxylé inclut n'importe quel hydrocarbure contenant un diol vicinal (1,2-diol) ou un triol vicinal (1,2,3-triol) y compris des ordres plus élevés de ces unités répétitives, vicinales ou contiguês. La définition de l'hydrocarbure aliphatique poly hydroxylé inclut aussi par exemple un ou plus de groupements fonctionnels 1,3-, 1,4-, 1,5- et 1,6-diol. L'hydrocarbure aliphatique poly hydroxylé peut aussi être un polymère tel que l'alcool polyvinylique. Les diols géminés, par exemple, sont exclus de cette classe d'hydrocarbures aliphatiques poly hydroxylés.

Les hydrocarbures aliphatiques poly hydroxylés peuvent contenir des entités aromatiques ou des hétéro atomes incluant par exemple les hétéro atomes de type halogène, soufre, phosphore, azote, oxygène, silicium et bore, et leurs mélanges.

Des hydrocarbures aliphatiques poly hydroxylés utilisables dans la présente invention comprennent par exemple, le 1,2-éthanediol (éthylène glycol), le 1,2-propanediol (propylène glycol), le 1,3-propanediol, le 1-chloro-2,3-propanediol (chloropropanediol), le 2-chloro-1,3-propanediol (chloropropanediol), le 1,5-pentanediol, les cyclohexanediols, le 1,2-butanediol, le 1,2-cyclohexanediméthanol, le 1,2,3-propanetriol (aussi connu comme « glycérol » ou « glycérine »), et leurs mélanges. De façon préférée, l'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention inclut par exemple le 1,2-éthanediol, le 1,2-propanediol, le 1,3-propanediol, le chloropropanediol et 1,2,3-propanetriol, et les mélanges d'au moins deux d'entre-eux. De façon plus préférée, l'hydrocarbure aliphatique poly hydroxylé utilisé dans la présente invention inclut par exemple le 1,2-éthanediol,

10

15

20

25

30

35

le 1,2-propanediol, le chloropropanediol et 1,2,3-propanetriol, et les mélanges d'au moins deux d'entre-eux. Le 1,2,3-propanetriol ou glycérol est le plus préféré.

Les esters d'hydrocarbure aliphatique poly hydroxylé peuvent être présents dans l'hydrocarbure aliphatique poly hydroxylé et/ou être produits dans le procédé de fabrication de la chlorhydrine et/ou être fabriqués préalablement au procédé de fabrication de la chlorhydrine. Des exemples d'esters de l'hydrocarbure aliphatique poly hydroxylé comprennent le monoacétate de l'éthylène glycol, les monoacétates de propanediol, les monoacétates de glycérol, les monoacétates de glycérol, les monoacétates de glycérol et leurs mélanges.

L'expression « chorhydrine » est ici utilisée pour décrire un composé contenant au moins un groupement hydroxyle et au moins un atome de chlore attaché à des différents atomes de carbone saturés. Une chlorhydrine qui contient au moins deux groupements hydroxyles est aussi un hydrocarbure aliphatique poly hydroxylé. Donc, le matériau de départ et le produit de la réaction peuvent chacun être des chlorhydrines. Dans ce cas, la chlorohydrine « produit » est plus chlorée que la chlorhydrine de départ, c'est-à-dire qu'elle a plus d'atomes de chlore et moins de groupements hydroxyles que la chlorhydrine de départ. Des chlorhydrines préférées sont le chloroéthanol, le chloropropanelol, le dichloropropanol et les mélanges d'au moins deux d'entre-eux. Le dichloropropanol est particulièrement préféré. Des chlorhydrines plus particulièrement préférées sont le 2-chloropropane-2-ol, le 2-chloropropane-1-ol, le 1-chloropropane-2,3-diol, le 2-chloropropane-1,3-diol, le 1,3-dichloropropane-2-ol, le

2,3-dichloropropane-1-ol et les mélanges d'au moins deux d'entre-eux.
Dans le procédé de fabrication selon l'invention, la réaction peut être menée en mode continu ou en mode discontinu. Le mode continu est préféré.

L'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, dans le procédé selon l'invention peuvent être obtenus au départ de matières premières fossiles ou au départ de matières premières renouvelables, de préférence au départ de matières premières renouvelables.

Par matières premières fossiles, on entend désigner des matières issues du traitement des ressources naturelles pétrochimiques, par exemple le pétrole, le gaz naturel, et le charbon. Parmi ces matières, les composés organiques comportant 2 et 3 atomes de carbone sont préférés. Lorsque l'hydrocarbure

10

35

aliphatique poly hydroxylé est le glycérol, le chlorure d'allyle, l'alcool allylique et le glycérol « synthétique » sont particulièrement préférés. Par glycérol « synthétique », on entend désigner un glycérol généralement obtenu à partir de ressources pétrochimiques. Lorsque l'hydrocarbure aliphatique poly hydroxylé est l'éthylène glycol, l'éthylène et l'éthylène glycol « synthétique » sont particulièrement préférés. Par éthylène glycol « synthétique », on entend désigner un éthylène glycol généralement obtenu à partir de ressources pétrochimiques. Lorsque l'hydrocarbure aliphatique poly hydroxylé est le propylène glycol, le propylène et le propylène glycol « synthétique » sont particulièrement préférés. Par propylène glycol « synthétique », on entend désigner un propylène glycol généralement obtenu à partir de ressources pétrochimiques.

Par matières premières renouvelables, on entend désigner des matières issues du traitement des ressources naturelles renouvelables. Parmi ces matières, 15 l'éthylène glycol « naturel », le propylène glycol « naturel » et le glycérol « naturel » sont préférés. De l'éthylène glycol, du propylène glycol et du glycérol « naturels » sont par exemple obtenus par conversion de sucres via des procédés thermochimiques, ces sucres pouvant être obtenus au départ de biomasse, comme décrit dans "Industrial Bioproducts: Today and Tomorrow, 20 Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56". Un de ces procédés est par exemple l'hydrogénolyse catalytique du sorbitol obtenu par conversion thermochimique du glucose. Un autre procédé est par exemple l'hydrogénolyse catalytique du xylitol obtenu par 25 hydrogénation du xylose. Le xylose peut par exemple être obtenu par hydrolyse de l'hemicellulose contenue dans les fibres de maïs. Par « glycérol naturel » ou « glycérol obtenu à partir de matières premières renouvelables » on entend désigner en particulier du glycérol obtenu au cours de la fabrication de biodiesel ou encore du glycérol obtenu au cours de transformations de graisses ou huiles 30 d'origine végétale ou animale en général telles que des réactions de saponification, de trans-estérification ou d'hydrolyse.

Parmi les huiles utilisables pour fabriquer le glycérol naturel, on peut citer toutes les huiles courantes, comme les huiles de palme, de palmiste, de coprah, de babassu, de colza ancien ou nouveau, de tournesol, de maïs, de ricin et de coton, les huiles d'arachide, de soja, de lin et de crambe et toutes les huiles issues

10

15

20

25

30

par exemple des plantes de tournesol ou de colza obtenues par modification génétique ou hybridation.

On peut même utiliser des huiles de friture usagées, des huiles animales variées, comme les huiles de poisson, le suif, le saindoux et même des graisses d'équarrissage.

Parmi les huiles utilisées, on peut encore indiquer des huiles partiellement modifiées par exemple par polymérisation ou oligomérisation comme par exemple les "standolies" d'huiles de lin, de tournesol et les huiles végétales soufflées.

Un glycérol particulièrement adapté peut être obtenu lors de la transformation de graisses animales. Un autre glycérol particulièrement adapté peut être obtenu lors de la fabrication de biodiesel. Un troisième glycérol tout particulièrement bien adapté peut être obtenu lors de la transformation de graisses ou d'huiles, animales ou végétales, par trans-estérification en présence d'un catalyseur hétérogène, tel que décrit dans les documents FR 2752242, FR 2869612 et FR 2869613. Plus spécifiquement, le catalyseur hétérogène est choisi parmi les oxydes mixtes d'aluminium et de zinc, les oxydes mixtes de zinc et de titane, les oxydes mixtes de zinc, de titane et d'aluminium, et les oxydes mixtes de bismuth et d'aluminium, et le catalyseur hétérogène est mis en œuvre sous la forme d'un lit fixe. Ce dernier procédé peut être un procédé de fabrication de biodiesel.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé peut être tel que décrit dans la demande de brevet intitulée « Procédé de préparation de chlorhydrine par conversion d'hydrocarbures aliphatiques poly hydroxylés » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine dans lequel on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur totale en métaux exprimés sous forme d'éléments est supérieure ou égale à 0,1 µg/kg et inférieure ou égale à 1 000 mg/kg, avec un agent de chloration.

Dans le procédé selon l'invention, on préfère utiliser un hydrocarbure

35 aliphatique poly hydroxylé, un ester d'hydrocarbure aliphatique poly hydroxylé,

10

15

20

25

30

35

ou un mélange d'entre eux, obtenu au départ de matières premières renouvelables.

Dans le procédé selon l'invention, on préfère utiliser du glycérol, un ester de glycérol, ou un mélange d'entre eux, obtenu au départ de matières premières renouvelables.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, peut être un produit brut ou un produit épuré, tels que spécifiquement divulgués dans la demande WO 2005/054167 de SOLVAY SA, de la page 2, ligne 8, à la page 4, ligne 2.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'hydrocarbure aliphatique poly hydroxylé peut être un hydrocarbure aliphatique poly hydroxylé dont la teneur en métaux alcalin et/ou alcalino-terreux peut être inférieure ou égale à 5 g/kg tel que décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence. Les métaux alcalins peuvent être sélectionnés parmi le lithium, le sodium, le potassium, le rubidium et le césium et les métaux alcalino-terreux peuvent être sélectionnés parmi le magnésium, le calcium, le strontium et le barium.

Dans le procédé selon l'invention, la teneur en métaux alcalins et/ou alcalino-terreux de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est inférieure ou égale à 5 g/kg, souvent inférieure ou égale à 1 g/kg, plus particulièrement inférieure ou égale à 0,5 g/kg et dans certains cas inférieure ou égale à 0,01 g/kg. La teneur métaux alcalins et/ou alcalino-terreux du glycérol est généralement supérieure ou égale à 0.1 µg/kg.

Dans le procédé selon l'invention, les métaux alcalins sont généralement le lithium, le sodium, le potassium et le césium, souvent le sodium et le potassium, et fréquemment le sodium.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la teneur en lithium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.

15

20

25

30

35

Dans le procédé selon l'invention, la teneur en sodium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé selon l'invention, la teneur en potassium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé selon l'invention, la teneur en rubidium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2mg/kg. Cette teneur est généralement supérieure ou égale à 0.1 us/kg.

Dans le procédé selon l'invention, la teneur en césium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé selon l'invention, les éléments alcalino-terreux sont généralement le magnésium, le calcium, le strontium et le barium, souvent le magnésium et le calcium et fréquemment le calcium.

Dans le procédé selon l'invention, la teneur en magnésium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 µg/kg.

Dans le procédé selon l'invention, la teneur en calcium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à

15

20

25

30

35

1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0.1 ug/kg.

Dans le procédé selon l'invention, la teneur en strontium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 ug/kg.

Dans le procédé selon l'invention, la teneur en barium de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, est généralement inférieure ou égale à 1 g/kg, souvent inférieure ou égale à 0,1 g/kg et plus particulièrement inférieure ou égale à 2 mg/kg. Cette teneur est généralement supérieure ou égale à 0,1 μg/kg.

Dans le procédé selon l'invention, les métaux alcalins et/ou alcalinoterreux sont généralement présents sous la forme de sels, fréquemment sous la forme de chlorures, de sulfates et de leurs mélanges. Le chlorure de sodium est le plus souvent rencontré.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'agent de chloration peut être tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 4, ligne 25, à la page 6, ligne 2.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, l'agent de chloration peut être du chlorure d'hydrogène peut être tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 4, ligne 30, à la page 6, ligne 2.

Mention particulière est faite d'un agent de chloration qui peut être de l'acide chlorhydrique aqueux ou du chlorure d'hydrogène de préférence anhydre. Le chlorure d'hydrogène peut provenir d'un procédé de pyrolyse de composés organiques chlorés comme par exemple d'une fabrication de chlorure de vinyle, d'un procédé de fabrication de 4,4-méthylènediphenyl diisocyanate (MDI) ou dede toluène diisocyanate (TDI), de procédés de décapage des métaux ou d'une réaction entre un acide inorganique comme l'acide sulfurique ou phosphorique et un chlorure métallique tel que le chlorure de sodium, le chlorure de potassium ou le chlorure de calcium.

10

15

20

25

30

35

Dans un mode de réalisation avantageux du procédé de fabrication d'une chlorhydrine selon l'invention, l'agent de chloration est du chlorure d'hydrogène gazeux ou une solution aqueuse de chlorure d'hydrogène ou une combinaison des deux.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, le chlorure d'hydrogène peut être une solution aqueuse de chlorure d'hydrogène ou du chlorure d'hydrogène de préférence anhydre, issu d'une installation de fabrication de chlorure d'allyle et/ou de fabrication de chlorométhanes et/ou de chlorinolyse et/ou d'oxydation à haute température de composés chlorés tels que décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé et un agent de chloration » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine à partir d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, et d'un agent de chloration, ce dernier contenant au moins un des composés suivants : azote, oxygène, hydrogène, chlore, un composé organique hydrocarboné, un composé organique halogéné, un composé organique oxygéné et un métal.

Mention particulière est faite d'un composé organique hydrocarboné qui est choisi parmi les hydrocarbures aromatiques, aliphatiques saturés ou insaturés et leurs mélanges.

Mention particulière est faite d'un hydrocarbure aliphatique insaturé qui est choisi parmi l'acétylène, l'éthylène, le propylène, le butène, le propadiène, le méthylacétylène, et leurs mélanges, d'un hydrocarbure aliphatique saturé qui est choisi parmi le méthane, l'éthane, le propane, le butane, et leurs mélanges, et d'un hydrocarbure aromatique qui est le benzène.

Mention particulière est faite d'un composé organique halogéné qui est un composé organique chloré choisi parmi les chlorométhanes, les chlorofethanes, les chloropropanes, les chlorobutanes, le chlorure de vinyle, le chlorure de vinylidène, les monochloropropènes, le perchloroéthylène, le trichloréthylène, les chlorobutadiène, les chlorobenzènes et leurs mélanges.

Mention particulière est faite d'un composé organique halogéné qui est un composé organique fluoré choisi parmi les fluorométhanes, les fluorote de vinyle, le fluorure de vinylidène, et leurs mélanges.

WO 2006/100316 PCT/EP2006/062445

- 11 -

Mention particulière est faite d'un composé organique oxygéné qui est choisi parmi les alcools, les chloroalcools, les chloroéthers et leurs mélanges

Mention particulière est faite d'un métal choisi parmi les métaux alcalins, les métaux alcalino-terreux, le fer, le nickel, le cuivre, le plomb, l'arsenic, le cobalt, le titane, le cadmium, l'antimoine, le mercure, le zinc, le sélénium, l'aluminium. le bismuth, et leurs mélanges.

10

15

20

25

30

Mention est plus particulièrement faite d'un procédé dans lequel l'agent de chloration est issu au moins partiellement d'un procédé de fabrication de chlorure d'allyle et/ou d'un procédé de fabrication de chlorométhanes et/ou d'un procédé de chlorinolyse et/ou d'un procédé de chlorinolyse et/ou d'un procédé d'oxydation de composés chlorés à une température sunérieure ou évale à 800 °C.

Dans un mode de réalisation particulièrement avantageux du procédé de fabrication d'une chlorhydrine selon l'invention, le chlorure d'hydrogène est une solution aqueuse de chlorure d'hydrogène et ne comprend pas de chlorure d'hydrogène gazeux.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans un réacteur tel que décrit dans la demande WO 2005/054167 de SOLVAY SA. à la page 6. lignes 3 à 23.

Mention est particulièrement faite d'une installation réalisée en, ou recouverte de, matériaux résistants dans les conditions de la réaction aux agents de chloration, en particulier au chlorure d'hydrogène. Mention est plus particulièrement faite d'une installation réalisée en acier émaillé ou en tantale.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration, peut être effectuée dans des équipements, réalisés en ou recouverts de, matériaux résistant aux agents de chloration, tels que décrit dans la demande intitulée « Procédé de fabrication d'une chlorhydrine dans des équipements résistant à la corrosion » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est jei incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant une étape dans laquelle on soumet un hydrocarbure

35 aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration

10

15

20

25

30

35

contenant du chlorure d'hydrogène et au moins une autre étape effectuée dans un équipement réalisé en ou recouvert de matériaux résistant à l'agent de chloration, dans les conditions de réalisation de cette étape. Mention est plus particulièrement faite de matériaux métalliques tels que l'acier émaillé, l'or et le tantale et de matériaux non-métalliques tels que le polyéthylène haute densité, le polypropylène, le poly(fluorure-de-vinylidène), le polytétrafluoroéthylène, les perfluoro alcoxyalcanes et le poly(perfluoropropylvinyléther), les polysulfones et les polysulfures, le graphite et le graphite imprégné.

Dans le procédé de fabrication de dichloropropanol selon l'invention, la réaction entre le glycérol et le chlorure d'hydrogène, peut être effectuée dans un milieu réactionnel, tel que décrit dans la demande intitulée « Procédé continu de fabrication de chlorhydrines » déposée au nom de SOLVAY SA le même jour que la présente demande, dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé continu de production de chlorhydrine dans lequel on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, avec un agent de chloration et un acide organique dans un milieu réactionnel liquide dont la composition à l'état stationnaire comprend de l'hydrocarbure aliphatique poly hydroxylé et des esters de l'hydrocarbure aliphatique poly hydroxylé est seneurs exprimée en mole d'hydrocarbure aliphatique poly hydroxylé est supérieure à 1,1 mol % et inférieure ou égale à 30 mol %, le pourcentage étant rapporté à la partie organique du milieu réactionnel liquide.

La partie organique du milieu réactionnel liquide consiste en l'ensemble des composés organiques du milieu réactionnel liquide c'est-à-dire les composés dont la molécule contient au moins l atome de carbone.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et agent de chloration, peut être effectuée en présence d'un catalyseur tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, de la page 6, ligne 28, à la page 8, ligne 5.

Mention est particulièrement faite d'un catalyseur basé sur un acide carboxylique ou sur un dérivé d'acide carboxylique ayant un point d'ébullition atmosphérique supérieur ou égal à 200 °C, en particulier l'acide adipique et les dérivés de l'acide adipique.

10

15

20

25

30

35

Le procédé de fabrication d'une chlorhydrine selon l'invention, peut être réalisé en présence d'un acide organique.

L'acide organique peut être un produit provenant du procédé de fabrication de l'hydrocarbure aliphatique poly hydroxylé ou un produit ne provenant pas de ce procédé. Dans ce dernier cas, il peut s'agir d'un acide organique utilisé pour catalyser la réaction entre l'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration et/ou d'un acide généré dans le procédé de fabrication de la chlorhydrine. On pense par exemple à des acides générés au départ d'aldéhydes présents dans l'hydrocarbure aliphatique poly hydroxylé ou formés lors de la fabrication de la chlorhydrine. L'acide organique peut aussi être un mélange d'acide organique provenant du procédé de fabrication de l'hydrocarbure aliphatique poly hydroxylé et d'un acide organique ne provenant pas du procédé de fabrication l'hydrocarbure aliphatique poly hydroxylé.

Dans le procédé selon l'invention, les esters de l'hydrocarbure aliphatique polyhydroxylé peuvent provenir de la réaction entre l'hydrocarbure aliphatique polyhydroxylé et l'acide organique, avant, pendant ou dans les étapes qui suivent la réaction avec l'agent de chloration.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut être effectuée à une concentration en catalyseur, une température, à une pression et pour des temps de séjour tels que décrits dans la demande WO 2005/054167 de SOLVAY SA, de la page 8, ligne 6 à la page 10, ligne 10.

Mention est particulièrement faite d'une température d'au moins 20 °C et d'au plus 160 °C, d'une pression d'au moins 0,3 bar et d'au plus, 100 bar, et d'un temps de séjour d'au moins 1 h et d'au plus 50 h.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration peut être effectuée en présence d'un solvant tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 11, lignes 12 à 36.

Mention est particulièrement faite d'un solvant organique tel qu'un solvant organique chloré, un alcool, une cétone, un ester ou un éther, un solvant non aqueux miscible avec l'hydrocarbure aliphatique polyhydroxylé tel que le chlroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol, le dioxanne, le phénol, le crésol, et les mélanges de chloropropanediol et de

10

15

20

2.5

30

35

ou alcalino-terreux.

dichloropropanol, ou des produits lourds de la réaction tels que les oligomères de l'hydrocarbure aliphatique poly hydroxylé au moins partiellement chlorés et ou estérifiés

Dans le procédé de fabrication de chlorhydrine selon l'invention, la réaction entre l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration est préférentiellement effectuée dans un milieu réactionnel liquide. Le milieu réactionnel liquide peut être mono- ou multiphasique.

Le milieu réactionnel liquide est constitué par l'ensemble des composés solides dissous ou dispersés, liquides dissous ou dispersés et gazeux dissous ou dispersés, à la température de la réaction.

Le milieu réactionnel comprend les réactifs, le catalyseur, le solvant, les impuretés présentes dans les réactifs, dans le solvant et dans le catalyseur, les intermédiaires de réaction, les produits et les sous-produits de la réaction.

Par réactifs, on entend désigner l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration.

Parmi les impuretés présentes dans l'hydrocarbure aliphatique poly hydroxylé, on peut citer les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras avec l'hydrocarbure aliphatique poly hydroxylé, les esters d'acides gras avec les alcools utilisés lors de la trans-estérification, les sels inorganiques tels que les chlorures et les sulfates alcalins ou alcalino-terreux.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, on peut citer parmi les impuretés du glycérol les acides carboxyliques, les sels d'acides carboxyliques, les esters d'acide gras tels que les mono-, les di- et les triglycérides, les esters d'acides gras avec les alcools utilisés lors de la trans-estérification, les sels inorganiques tels que les chlorures et les sulfates alcalins

Parmi les intermédiaires réactionnels on peut citer les monochlorhydrines de l'hydrocarbure aliphatique poly hydroxylé et leurs esters et/ou polyesters, les esters et/ou polyesters de l'hydrocarbure aliphatique poly hydroxylé et les esters des polychlorhydrines.

Lorsque la chlorhydrine est le dichloropropanol, on peut citer parmi les intermédiaires réactionnels, la monochlorhydrine de glycérol et ses esters et/ou polyesters, les esters et/ou polyesters de glycérol et les esters de dichloropropanol.

10

15

20

25

30

35

L'ester d'hydrocarbure aliphatique poly hydroxylé peut donc être selon le cas, un réactif, une impureté de l'hydrocarbure aliphatique poly hydroxylé ou un intermédiaire réactionnel.

Par produits de la réaction, on entend désigner la chlorhydrine et l'eau. L'eau peut être l'eau formée dans la réaction de chloration et/ou de l'eau introduite dans le procédé, par exemple via l'hydrocarbure aliphatique poly hydroxylé et/ou l'agent de chloration, tel que décrit dans la demande WO 2005/054167 de SOLVAY SA, à la page 2, lignes 22 à 28, à la page 3, lignes 20 à 25, à la page 5, lignes 7 à 31 et à la page 12, lignes 14 à 19.

Parmi les sous-produits, on peut citer par exemple, les oligomères de l'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés.

Par sous-produits non-valorisables, on entend désigner des produits issus de l'hydrocarbure aliphatique polyhydroxylé ou de ses dérivés qui dans les conditions de réaction ne permettent pas de générer de chlorhydrine. Les oligomères de l'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés sont des exemples de sous-produits non-valorisables.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, parmi les sous-produits non-valorisables, on peut citer par exemple, les oligomères du glycérol partiellement chlorés et/ou estérifiés.

Les intermédiaires réactionnels et les sous-produits peuvent être formés dans les différentes étapes du procédé comme par exemple, au cours de l'étape de fabrication de la chlorhydrine et au cours des étapes de séparation de la chlorhydrine.

Le milieu réactionnel liquide peut ainsi contenir l'hydrocarbure aliphatique poly hydroxylé, l'agent de chloration dissous ou dispersé sous forme de bulles, le catalyseur, le solvant, les impuretés présentes dans les réactifs, le solvant et le catalyseur, comme des sels dissous ou solides par exemple, le solvant, le catalyseur, les intermédiaires réactionnels, les produits et les sous-produits de la réaction.

Le procédé selon l'invention peut être effectué en mode batch ou en mode continu. Le mode continu est préféré.

Lorsque la chlorhydrine est le chloroéthanol, les composés lourds ont une température d'ébullition sous une pression de 1 bar supérieure ou égale à 145°C, de préférence supérieure ou égale à 165 °C, de manière plus préférée supérieure ou égale à 185 °C et de manière tout particulièrement préférée supérieure ou égale à 195 °C.

10

15

20

25

30

35

Lorsque la chlorhydrine est le chloropropanol, les composés lourds ont une température d'ébullition sous une pression de 1 bar supérieure ou égale à 150°C, de préférence supérieure ou égale à 170 °C, de manière plus préférée supérieure ou égale à 190 °C et de manière tout particulièrement préférée supérieure ou égale à 200 °C.

Lorsque la chlorhydrine est le chloropropanediol, les composés lourds ont une température d'ébullition sous une pression de 1 bar supérieure ou égale à 235 °C, de préférence supérieure ou égale à 255 °C, de manière plus préférée supérieure ou égale à 275 °C et de manière tout particulièrement préférée supérieure ou égale à 285 °C.

Lorsque la chlorhydrine est le dichloropropanol, les composés lourds ont une température d'ébullition sous une pression de 1 bar absolu supérieure ou égale à 200 °C, de préférence supérieure ou égale à 220 °C, de manière plus préférée supérieure ou égale à 240 °C et de manière tout particulièrement préférée supérieure ou égale à 250 °C.

Dans une opération de séparation par distillation en présence d'eau et de chlorhydrine par exemple, ces composés lourds sortent en pied de la colonne de distillation tandis que l'eau et la chlorhydrine sortent en tête de la colonne de distillation.

La teneur de la phase liquide en composés lourds, est généralement supérieure ou égale à 10 % en poids de la phase liquide, de préférence supérieure ou égale à 15 % en poids et de manière particulièrement préférée supérieure ou égale à 20 % en poids. Cette teneur est généralement inférieure ou égale à 90 % en poids, de préférence inférieure ou égale à 80 % en poids et de manière particulièrement préférée inférieure ou égale à 75 % en poids de la phase liquide.

Les composés lourds peuvent être « externes » ou « internes » au procédé selon l'invention. Par l'expression « externe », on entend désigner des composés lourds qui n'ont pas été produits dans le procédé selon l'invention, par exemple un solvant lourd. Par l'expression « interne », on entend désigner des composés lourds qui sont des produits formés dans le procédé selon l'invention. Ces produits peuvent résulter de réactions secondaires entre l'hydrocarbure aliphatique poly hydroxylé, l'agent de chloration, les produits de la réaction de chloration et les acides présents dans l'hydrocarbure aliphatique poly hydroxylé et/ou utilisés comme catalyseurs de la réaction. Les composés lourds peuvent être considérés comme un constituant du solvant. L'utilisation de ces composés lourds « internes » au procédé offre l'avantage supplémentaire de limiter la

10

15

20

25

30

35

présence d'un tiers solvant dans le procédé, ce qui simplifie les étapes de séparation.

Les composés lourds sont sélectionnés de préférence parmi les monochlorohydrines de l'hydrocarbure aliphatique poly hydroxylé et leurs esters et/ou polyesters, les oligomères de l'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés et leurs mélanges et de façon particulièrement préférée parmi les oligomères de l'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés et leurs mélanges. Ces oligomères de l'hydrocarbure aliphatique poly hydroxylé peuvent être linéaires ou cycliques.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est l'éthylène glycol, un composé lourd est par exemple l'acétate de 2-chloroéthyle.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est le propylène glycol, des composés lourds sont par exemple les acétates de chloropropyle.

Lorsque l'hydrocarbure aliphatique poly hydroxylé est le glycérol, des composés lourds sont par exemple le 3-acétoxy-propane-1,2-diol, le 2-acétoxy-propane-1,3-diol, le 2,3-acétoxy-propane-1-ol, le 1,3-acétoxy-propane-2-ol, le 1,2,3-triacétoxypropane, l'acétate de 3-chloro-1-hydroxy-propyle, le 1,2-diacétoxy-3-chloropropane, l'acétate de 2-chloro-3-hydroxy-propyle, le 1,3-diacétoxy-2-chloropropane, l'acétate de 1,3-dichloro-2-propyle et l'acétate de 2,3-dichloro-1-propyle.

Dans le procédé selon l'invention, au moins une fraction des composés lourds a été séparée des autres composés du milieu réactionnel, notamment de la chlorhydrine et a ensuite été recyclée dans la réaction entre l'hydrocarbure aliphatique poly hydroxylé et l'agent de chloration.

Dans un premier mode de réalisation du procédé selon l'invention, on utilise des composés lourds qui sont externes au procédé selon l'invention.

Dans un deuxième mode de réalisation du procédé selon l'invention qui est préféré, on utilise des composés lourds qui sont internes au procédé selon l'invention.

Dans un troisième mode de réalisation du procédé selon l'invention, on utilise un mélange de composés lourds internes et externes au procédé selon l'invention.

Dans le procédé selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel peut être effectuée selon les modes tels que décrits dans la demande WO 2005/054167 de SOLVAY SA, de la page 12, WO 2006/100316

5

10

15

20

25

30

35

ligne 1, à la page 16, ligne 35 et à la page 18, lignes 6 à 13. Ces autres composés sont ceux mentionnés ci-dessus et comprennent les réactifs non consommés, les impuretés présentes dans les réactifs, le catalyseur, le solvant, les intermédiaires réactionnels, l'eau et les sous produits de la réaction.

Mention particulière est faite d'une séparation par distillation azéotropique d'un mélange eau/chlorhydrine/agent de chloration dans des conditions minimisant les pertes en agent de chloration suivie d'une séparation de la chlorhydrine par décantation.

Dans le procédé de fabrication d'une chlorhydrine selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel, peut être effectuée selon des modes tels que décrits dans la demande de brevet EP 05104321.4 déposée au nom de SOLVAY SA le 20/05/2005 dont le contenu est ici incorporé par référence. Mention particulière est faite d'un mode de séparation comprenant au moins une opération de séparation destinée à enlever le sel de la phase liquide.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux. et un agent de chloration dans lequel l'hydrocarbure aliphatique poly hydroxylé. un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, utilisé contient au moins un sel métallique solide ou dissous, le procédé comprenant une opération de séparation destinée à enlever une partie du sel métallique. Mention est plus particulièrement est faite d'un procédé de fabrication d'une chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, et un agent de chloration dans lequel l'hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, utilisé contient au moins un chlorure et/ou un sulfate de sodium et/ou potassium et dans lequel l'opération de séparation destinée à enlever une partie du sel métallique est un opération de filtration. Mention est aussi particulièrement faite d'un procédé de fabrication d'une chlorhydrine dans leguel (a) on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé ou un mélange d'entre eux, à une réaction avec un agent de chloration dans un milieu réactionnel, (b) on prélève en continu ou périodiquement une fraction du milieu réactionnel contenant au moins de l'eau et la chlorhydrine, (c) au moins une

WO 2006/100316

5

10

15

20

25

30

35

partie de la fraction obtenue à l'étape (b) est introduite dans une étape de distillation et (d) le taux de reflux de l'étape de distillation est contrôlé en fournissant de l'eau à ladite étape de distillation. Mention est tout particulièrement faite d'un procédé de fabrication d'une chlorhydrine dans lequel (a) on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, un ester d'un eréaction avec du chlorure d'hydrogène dans un milieu réactionnel, (b) on prélève en continu ou périodiquement une fraction du milieu réactionnel contenant au moins de l'eau et la chlorhydrine, (c) au moins une partie de la fraction obtenue à l'étape (b) est introduite dans une étape de distillation, dans lequel le rapport entre la concentration en chlorure d'hydrogène et la concentration en eau dans la fraction introduite dans l'étape de distillation est plus petit que le rapport de concentrations chlorure d'hydrogène/eau dans la composition binaire azéotropique chlorure d'hydrogène/eau à la température et à la pression de distillation.

Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine » déposée au nom de SOLVAY SA, le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration et un acide organique de façon à obtenir un mélange contenant de la chlorhydrine et des esters de la chlorhydrine, (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a), pour qu'il réagisse à une température supérieure ou égale à 20 °C, avec les esters de la chlorhydrine de façon à former au moins partiellement des esters de l'hydrocarbure aliphatique polyhydroxylé. Mention est plus particulièrement faite d'un procédé dans lequel l'hydrocarbure aliphatique polyhydroxylé. Mention est plus particulièrement faite d'un procédé dans lequel l'hydrocarbure aliphatique polyhydroxylé est le glycérol et la chlorhydrine est le dichloropropanol.

10

15

20

25

30

35

Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine au départ d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication de chlorhydrine par réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, et un agent de chloration dans un réacteur qui est alimenté en un ou plusieurs flux liquides contenant moins de 50 % en poids de l'hydrocarbure aliphatique poly hydroxylé. de l'ester d'hydrocarbure aliphatique polyhydroxylé, ou du mélange d'entre eux. par rapport au poids de la totalité des flux liquides introduits dans le réacteur. Mention plus particulière est faite d'un procédé comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration de facon à obtenir au moins un milieu contenant du de la chlorhydrine, de l'eau et de l'agent de chloration, (b) on prélève au moins une fraction du milieu formé à l'étape (a) et (c) on soumet la fraction prélevée à l'étape (b) à une opération de distillation et/ou de stripping dans laquelle on ajoute de l'hydrocarbure aliphatique poly hydroxylé de facon à séparer de la fraction prélevée à l'étape (b) un mélange contenant de l'eau et de la chlorhydrine présentant une teneur réduite en agent de chloration comparée à celle de la fraction prélevée à l'étape (b).

Dans le procédé de fabrication de l'époxyde selon l'invention, la séparation de la chlorhydrine et des autres composés du milieu réactionnel de chloration de l'hydrocarbure aliphatique polyhydroxylé peut être effectuée selon les modes tels que décrits dans la demande intitulée « Procédé de conversion d'hydrocarbures aliphatiques poly hydroxylés en chlorhydrines » déposée au nom de SOLVAY SA le même jour que la présente demande et dont les contenus sont ici incorporés par référence. Mention particulière est faite d'un procédé de préparation d'une chlorhydrine comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique polyhydroxylé, un ester d'un hydrocarbure aliphatique polyhydroxylé, ou un mélange d'entre eux, avec un agent de chloration de façon à obtenir un mélange contenant de la chlorhydrine, des esters

10

15

20

25

30

de chlorhydrine et de l'eau, (b) on soumet au moins une fraction du mélange obtenu à l'étape (a) à un traitement de distillation et/ou de stripping de façon à obtenir une partie concentrée en eau, en chlorhydrine et en esters de chlorhydrine et (c) on soumet au moins une fraction de la partie obtenue à l'étape (b) à une opération de séparation en présence d'au moins un additif de façon à obtenir une portion concentrée en chlorhydrine et en esters de chlorhydrine et qui contient moins de 40 % en poids d'eau.

L'opération de séparation est plus particulièrement une décantation.

Dans le procédé de fabrication d'une chlorhdyrine selon l'invention, la séparation et le traitement des autres composés du milieu réactionnel peuvent être effectués selon des modes tels que décrits dans la demande intitulée « Procédé de fabrication d'une chlorhydrine par chloration d'un hydrocarbure aliphatique poly hydroxylé » déposée au nom de SOLVAY SA le même jour que la présente demande. Un traitement préféré consiste à soumettre une fraction des sous-produits de la réaction à une oxydation à haute température.

Mention particulière est faite d'un procédé de fabrication d'une chlorhydrine comprenant les étapes suivantes (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d' un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, dont la teneur en métaux alcalins et/ou alcalino-terreux est inférieure ou égale à 5 g/kg, un agent oxydant et un acide organique de façon à obtenir un mélange contenant au moins de la chlorhydrine et des sous-produits. (b) on soumet au moins une partie du mélange obtenu à l'étape (a) à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) et (c) au moins une des étapes ultérieures à l'étape (a), consiste en une oxydation à une température supérieure ou égale à 800 °C. Mention plus particulière est faite d'un procédé dans lequel dans l'étape ultérieure, on prélève une partie du mélange obtenu à l'étape (a) et on soumet cette partie à une oxydation à une température supérieure ou égale à 800 °C, pendant le prélèvement. Mention particulière est aussi faite d'un procédé dans lequel le traitement de l'étape (b) est une opération de séparation choisie parmi les opérations de décantation, de filtration, de centrifugation, d'extraction, de lavage, d'évaporation, de stripping, de distillation, d'adsorption ou les combinaisons d'au moins deux d'entre-elles.

Dans le procédé selon l'invention, lorsque la chlorhydrine est le monochloropropanol, celui-ci est généralement obtenu sous la forme d'un 35 mélange de composés comprenant les isomères de 1-chloropropane-2-ol et de 2-chloropropane-1-ol. Ce mélange contient généralement plus de 1 % en poids

10

15

20

2.5

30

35

des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloropropanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau

Le rapport massique entre les isomères 1-chloropropane-2-ol et 2-chloropropane-1-ol est usuellement supérieur ou égal à 0,01, de préférence supérieur ou égal 0,4. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25.

Dans le procédé selon l'invention, lorsque la chlorhydrine est le monochloroéthanol, celui-ci est généralement obtenu sous la forme d'un mélange de composés comprenant l'isomère 2-chloroéthanol. Ce mélange contient généralement plus de 1 % en poids de l'isomère, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids de l'isomère, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloroéthanol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.

Dans le procédé selon l'invention, lorsque la chlorhydrine est le monochloropropanediol, celui-ci est généralement obtenu sous la forme d'un mélange de composés comprenant les isomères de 1-chloropropane-2,3-diol et de 2-chloropropane-1,3-diol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du chloropropanediol, tels que des réactifs résiduels, des sous-produits de réaction, des solvants et notamment de l'eau.

Le rapport massique entre les isomères 1-chloropropane-2,3-diol et 2-chloropropane-1,3-diol est usuellement supérieur ou égal à 0,01, de préférence supérieur ou égal 0,4. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25. Dans le procédé selon l'invention, lorsque la

WO 2006/100316

5

10

15

20

25

30

35

chlorhydrine est le dichloropropanol, celui-ci est généralement obtenu sous la forme d'un mélange de composés comprenant les isomères de 1,3-dichloropropane-2-ol et de 2,3-dichloropropane-1-ol. Ce mélange contient généralement plus de 1 % en poids des deux isomères, de préférence plus de 5 % en poids et de manière particulière plus de 50 %. Le mélange contient usuellement moins de 99,9 % en poids des deux isomères, de préférence moins de 95 % en poids et tout particulièrement moins de 90 % en poids. Les autres constituants du mélange peuvent être des composés provenant des procédés de fabrication du dichloropropanol, tels que des réactifs résiduels, des sous-produits de réaction. des solvants et notamment de l'eau.

Le rapport massique entre les isomères 1,3-dichloropropane-2-ol et 2,3-dichloropropane-1-ol est usuellement supérieur ou égal à 0,01, souvent, supérieur ou égal à 0,4, fréquemment supérieur ou égal à 1,5, de préférence supérieur à ou égal à 3,0, de manière plus préférée supérieur ou égal à 7,0 et de manière tout particulièrement préférée supérieur ou égal à 20,0. Ce rapport est usuellement inférieur ou égal à 99 et de préférence inférieur ou égal à 25.

La chlorhydrine obtenue dans le procédé selon l'invention peut contenir une teneur élevée en cétones halogénées, en particulier en chloroacétone, comme décrit dans la demande de brevet FR 05.05120 du 20/05/2005 déposée au nom de la demanderesse, et dont le contenu est ici incorporé par référence. La teneur en cétone halogénée peut être réduite en soumettant la chlorhydrine obtenue dans le procédé selon l'invention à une distillation azéotropique en présence d'eau ou en soumettant la chlorhydrine à un traitement de déshydrochloration comme décrit dans cette demande, de la page 4, ligne 1, à la page 6, ligne 35.

Mention particulière est faite d'un procédé de fabrication d'un époxyde dans lequel des cétones halogénées sont formées comme sous-produits et qui comprend au moins un traitement d'élimination d'au moins une partie des cétones halogénées formées. Mention est plus particulièrement faite d'un procédé de fabrication d'un époxyde par déshydrochloration d'une chlorhydrine dont au moins une fraction est fabriquée par chloration d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux, d'un traitement de déshydrochloration et d'un traitement par distillation azéotropique d'un mélange eau-cétone halogénée destinés à éliminer au moins une partie des cétones halogénées formées et d'un procédé de fabrication d'épichlorhydrine dans lequel la cétone halogénée formée est la chloroacétone.

WO 2006/100316

5

10

15

20

25

30

35

PCT/EP2006/062445

- 24 -

La chlorhydrine obtenue dans le procédé selon l'invention peut être soumise à une réaction de déshydrochloration pour produire un époxyde comme décrit dans les demandes de brevet WO 2005/054167 et FR 05.05120 déposées au nom de SOLVAY SA

L'expression « époxyde » est utilisée ici pour décrire un composé comportant au moins un oxygène ponté sur une liaison carbone-carbone. Généralement les atomes de carbone de la liaison carbone-carbone sont adjacents et le composé peut contenir d'autres atomes que des atomes de carbone et d'oxygène, tels que des atomes d'hydrogène et des halogènes. Les époxydes préférés sont l'oxyde d'éthylène, l'oxyde de propylène et l'épichlorhydrine.

La déshydrochloration de la chlorhydrine peut être effectuée comme décrit dans la demande intitulée « Procédé de fabrication d'un époxyde au départ d'un hydrocarbure aliphatique poly hydroxylé et d'un agent de chloration » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'un époxyde dans lequel on soumet un milieu réactionnel résultant de la réaction entre un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, et un agent de chloration, le milieu réactionnel contenant au moins 10 g de chlorhydrine par kg de milieu réactionnel, à une réaction chimique ultérieure sans traitement intermédiaire.

Mention est également faite de fabrication d'un époxyde comprenant les étapes suivantes : (a) on fait réagir un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, avec un agent de chloration et un acide organique de façon à former de la chlorhydrine et des esters de chlorhydrine dans un milieu réactionnel contenant de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, de l'eau, l'agent de chloration et l'acide organique, le milieu réactionnel contenant au moins 10 g de chlorhydrine par kg de milieu réactionnel, (b) on soumet au moins une fraction du milieu réactionnel obtenu à l'étape (a), fraction qui a la même composition que le milieu réactionnel obtenu à l'étape (a), à un ou plusieurs traitements dans des étapes ultérieures à l'étape (a) et (c) on ajoute un composé basique à au moins une des étapes ultérieures à l'étape (a) pour qu'il réagisse au moins partiellement avec la chlorhydrine, les esters de chlorhydrine, l'agent de chloration et l'acide organique de façon à former de l'époxyde et des sels.

10

15

20

25

30

35

Le procédé de fabrication de la chlorhydrine selon l'invention peut être intégré dans un schéma global de fabrication d'un époxyde tel que décrit dans la demande intitulée « Procédé de fabrication d'un époxyde au départ d'une chlorhydrine » déposée au nom de SOLVAY SA le même jour que la présente demande, et dont le contenu est ici incorporé par référence.

Mention particulière est faite d'un procédé de fabrication d'un époxyde comprenant au moins une étape de purification de l'époxyde formé, l'époxyde étant au moins en partie fabriqué par un procédé de déshydrochloration d'une chlorhydrine, celle-ci étant au moins en partie fabriquée par un procédé de chloration d'un hydrocarbure aliphatique poly hydroxylé, d'un ester d'un hydrocarbure aliphatique poly hydroxylé, ou d'un mélange d'entre eux.

Dans le procédé selon l'invention, l'hydrocarbure aliphatique polyhydroxylé est de préférence le glycérol et la chlorhydrine est de préférence le dichloropropanol.

Lorsque la chlorhydrine est le dichloropropanol, le procédé selon l'invention peut être suivi d'une fabrication d'épichlorhydrine par déshydrochloration de dichloropropanol et l'épichlorhdyrine peut entrer dans la fabrication de résines époxy.

La Figure 1 montre un schéma particulier d'installation utilisable pour mettre en œuvre le procédé selon l'invention.

Un réacteur (4) est alimenté en mode continu ou en mode batch avec un hydrocarbure aliphatique poly hydroxylé, un ester d'hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, via la ligne (1) et en catalyseur via la ligne (2), l'alimentation en agent de chloration est réalisée en mode continu ou en mode batch via la ligne (3), une colonne de distillation (6) est alimentée via la ligne (5) avec des vapeurs produites dans le réacteur (4), un flux est soutiré de la colonne (6) via la ligne (7) et est introduit dans un condenseur (8), le flux issu du condenseur est introduit via la ligne (9) dans un décanteur (10) dans lequel des phases aqueuses et organiques sont séparées. Une fraction de la phase aqueuse séparée est optionnellement recyclée via la ligne (11) au sommet de la colonne pour maintenir le reflux. De l'eau fraîche peut être introduite dans la ligne (11) via la ligne (12). La production de chlorhydrine est distribuée entre la phase organique soutirée via la ligne (14) et la phase aqueuse soutirée via la ligne (15). Une fraction des produits lourds est soutirée du réacteur (4) via la ligne (16) et

est introduite via la ligne (17) dans un évaporateur (18) dans lequel une opération

10

15

20

25

30

35

partielle d'évaporation est menée par exemple par chauffage ou par balayage gazeux avec de l'azote ou de la vapeur d'eau, la phase gazeuse contenant la plus majeure partie de l'agent de chloration du flux (17) est recyclée via la ligne (19) à la colonne (6) ou via la ligne (20) au réacteur (4), une colonne de distillation ou de stripping (22) est alimentée avec la phase liquide en provenance de l'appareil de stripping (18) via la ligne (21), la majeure partie de la chlorhydrine est recueillie au sommet de la colonne (22) via la ligne (23) et le résidu est introduit via la ligne (24) dans la colonne de filtration (25) dans laquelle des phases liquides et solides sont séparées, la phase liquide est recyclée via la ligne (26) au réacteur (4). Le solide peut être soutiré de l'unité de filtration (25) via la ligne (27) sous la forme d'un solide ou d'une solution. Des solvants peuvent être ajoutés à l'unité de filtration (25) via les lignes (28) et (29) pour le lavage et/ou la dissolution du solide et soutirés via la ligne (29). Optionnellement, un flux est soutiré de la purge (16) et introduit via la ligne (30) dans la colonne de filtration (25). L'évaporateur (18) et la colonne de distillation (22) sont alors court-circuités.

Les exemples ci-après entendent illustrer l'invention sans toutefois la limiter.

Exemple 1 (conforme à l'invention)

Dans un réacteur contenant 800 g de glycérol, 63 g d'acide adipique, et 500 g d'un mélange constitué de 350 g de diglycérol dichloré et de 150 g de monochlorhydrine de glycérine maintenu à une température de 120 °C à pression atmosphérique, on fait barboter du chlorure d'hydrogène gazeux à un débit de 1,26 g/min pendant 10 h. L'eau de réaction est éliminée par distillation continue de l'azéotrope formé avec le 1,3-DCPol. On obtient au total 1207 g de dichloropropanol, 327 g d'eau et 69 g de chlorure d'hydrogène. La perte mesurée en composés oligomères (essentiellement diglycérine et diglycérine cyclique chlorées) s'élève à 0,7 % de la glycérine mise en œuvre.

Exemple 2 (non-conforme à l'invention)

Dans un réacteur contenant 800 g de glycérol et 63 g d'acide adipique, et maintenu à une température de 120 °C et à une pression de 1 bar, on fait barboter du chlorure d'hydrogène gazeux à un débit de 1,26 g/min pendant 10 h. L'eau de réaction est éliminée par distillation continue de l'azéotrope formé avec le 1,3-DCPol. On obtient au total 998 g de dichloropropanol, 296 g d'eau et 171 g de chlorure d'hydrogène. La perte mesurée en composés oligomères s'élève à 3 % de la glycérine mise en œuvre.

20

25

30

REVENDICATIONS

- 1. Procédé de fabrication d'une chlorbydrine, dans lequel on soumet un hydrocarbure aliphatique poly hydroxylé, un ester d'un hydrocarbure aliphatique poly hydroxylé, ou un mélange d'entre eux, à une réaction avec un agent de chloration, en présence d'une phase liquide comprenant des composés lourds autres que l'hydrocarbure aliphatique poly hydroxylé et dont la température d'ébullition sous une pression de 1 bar absolu est d'au moins 15 °C supérieure à la température d'ébullition de la chlorbydrine sous une pression de 1 bar absolu.
- Procédé selon la revendication 1 dans lequel la réaction entre
 l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, et l'agent de chloration se produit dans la phase liquide.
 - 3. Procédé selon la revendication 1 ou 2 dans lequel la réaction est menée en continu.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel un acide carboxylique et/ou un dérivé d'acide carboxylique est utilisé comme catalyseur.
 - 5. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel la teneur en composés lourds est supérieure ou égale à 10 % en poids de la phase liquide et inférieure ou égale à 90 % en poids de la phase liquide.
 - 6. Procédé selon l'une quelconque des revendications 1 à 5 dans lequel les composés lourds sont sélectionnés parmi les monochlorhydrines de l'hydrocarbure aliphatique poly hydroxylé et leurs esters et/ou polyesters, les oligomères de l'hydrocarbure aliphatique poly hydroxylé partiellement chlorés et/ou estérifiés et leurs mélanges.
 - 7. Procédé selon l'une quelconque des revendications 1 à 7 dans lequel une fraction des composés lourds est séparée de la chlorhydrine et recyclée dans la réaction de l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux, avec l'agent de chloration.

15

25

- 8. Procédé selon l'une quelconque des revendications 1 à 8 dans lequel une fraction des composés lourds est formée au cours de la réaction de chloration l'hydrocarbure aliphatique poly hydroxylé, de l'ester d'hydrocarbure aliphatique poly hydroxylé, ou du mélange d'entre eux.
- 9. Procédé selon l'une quelconque des revendications 1 à 9 dans lequel l'hydrocarbure aliphatique poly hydroxylé, l'ester d'hydrocarbure aliphatique poly hydroxylé, ou le mélange d'entre eux, est obtenu au départ de matières premières renouvelables.
 - 10. Procédé selon l'une quelconque des revendications 1 à 9 dans lequel l'hydrocarbure aliphatique poly hydroxylé est choisi parmi l'éthylène glycol, le propylène glycol, le chloropropanediol, le glycérol et les mélanges d'au moins deux d'entre-eux.
 - 11. Procédé selon l'une quelconque des revendications 1 à 10 dans lequel la chlorhydrine est choisie parmi le chloroéthanol, le chloropropanol, le chloropropanediol, le dichloropropanol et les mélanges d'au moins deux d'entreeux
 - 12. Procédé selon la revendication 11 dans lequel la chlorhydrine est le chloroéthanol et la température d'ébullition des composés lourds est est supérieure ou égale 145 °C sous une pression de 1 bar absolu.
- 20 13. Procédé selon la revendication 11 dans lequel la chlorhydrine est le chloropropanol et la température d'ébullition des composés lourds est supérieure ou égale à 150 °C sous une pression de 1 bar absolu.
 - 14. Procédé selon la revendication 11 dans lequel la chlorhydrine est le chloropropanediol et la température d'ébullition des composés lourds est supérieure ou égale 235 °C sous une pression de 1 bar absolu.
 - 15. Procédé selon la revendication 11 dans lequel la chlorhydrine est le dichloropropanol et la température d'ébullition des composés lourds est supérieure ou égale 200 °C sous une pression de 1 bar absolu.
- Procédé selon l'une quelconque des revendications 10, 11 ou 15, dans
 lequel l'hydrocarbure aliphatique polyhydroxylé est le glycérol et la chlorhydrine est le dichloropropanol.

- 17. Procédé selon la revendication 16 suivi d'une fabrication d'épichlorhydrine par déshydrochloration de dichloropropanol
- Procédé selon la revendication 17 dans lequel l'épichlorhdyrine entre dans la fabrication de résines époxy.
- 19. Procédé selon l'une quelconque des revendications 1 à 18 dans lequel l'agent de chloration est une combinaison de chlorure d'hydrogène gazeux et d'une solution aqueuse de chlorure d'hydrogène ou une solution aqueuse de chlorure d'hydrogène.

1/1

Figure 1

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

International application No PCT/EP2006/062445

ADD.	C07C31/42						
According	hternational Patent Classification (IPC) or to both national classification	tion and IPC					
	SEARCHED	NOT WIND IN U					
Minimum do	cumentation searched (classification system followed by classification	n symbols)	····				
C07C (C07D	* .					
Documentat	ilon searched other than minimum documentation to the extent that su	ich documents are included. In the fields sea	irched				
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)					
EPO-In	ternal, PAJ, WPI Data, BEILSTEIN Dat	a					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with Indication, where appropriate, of the rele	vant passages	Relevant to claim No.				
X,P	WO 2005/054167 A (SOLVAY ; KRAFFT PHILIPPE; GILBEAU, PATRICK; GOSSE		1-19				
	BENOIT; CLAESSE) 16 June 2005 (20						
	cited in the application						
	page 11, last paragraph page 24, lines 6,7	Í					
	page 26 - page 27; examples 3-11						
	page 28; tables						
Х	US 2 144 612 A (LYMAN HEINDEL ROY	ET AL)	1-19				
	24 January 1939 (1939-01-24)						
	page 2 - page 3; examples 1,4,6						
X.	WO 2005/021476 A (SPOLEK PRO CHEM		1-19				
	HUTNI VYROBU, AKCIOVA SPOLECNOST; PAVE) 10 March 2005 (2005-03-10)	KUBICEK,					
ſ	page 8; example 4						
1		/					
	_	/					
1	her documents are listed in the continuation of Box C.	X See patent family annex.					
	ategories of cited documents :	"T" later document published after the little or priority date and not in conflict with	mational filing date				
consid	ant defining the general state of the art which is not sered to be of particular relevance document but published on or after the International	cited to understand the principle or the invention	ory underlying the				
filing o	"X" document of particular relevance; the cl cannot be considered novel or cannot	be considered to					
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	Involve an inventive step when the do "Y" document of particular relevance; the o	almed Invention				
"O" docum	n or other special reason (as specified) ent referring to an oral disclosure, use; exhibition or	cannot be considered to involve an involve an involve and involve	re other such docu-				
P docume	ent published prior to the international filing date but	ments, such combination being obvious in the art.					
	nan'the priority date claimed actual completion of the international search	*&" document member of the same patent: Date of mailing of the international sea.					
9 August 2006 21/08/2006							
Name and r	mailing address of the ISA/ European Patent Office, P.B. 5618 Patentlaan 2	Authorized officer					
	NL - 2280 HV Rijswijk						
1	Fax: (+31-70) 340-3016	Bedel, C					

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2006/062445

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	GIBSON G P: "THE PREPARATION, PROPERTIES AND USES OF GLYCEROL DERIVATIVES. Part III. THE CHLOROHYDRINS" CHEMISTRY AND INDUSTRY, CHEMICAL SOCIETY, LECHWORTH, GB, 1931, pages 949-975, XPO09042263 ISSN: 0009-3068 page 972, right-hand column, paragraphs 3,4	1-19
		*
		-

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

	_				2000/ 002445
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 2005054167	Α	16-06-2005	CA EP	2546683 A1 1687248 A1	16-06-2005 09-08-2006
US 2144612	A	24-01-1939	NONE		
WO 2005021476	Α	10-03-2005	CA CZ EP	2537131 A1 20032346 A3 1663924 A1	10-03-2005 13-04-2005 07-06-2006

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale nº PCT/EP2006/062445

A. CLASSEMENT DE L'OBJET DE LA DEMANDE INV. CO7C29/62 CO7C31/36 ann C07C31/42

Seton la classification internationale des brevets (CtB) ou à la fois seton la classification nationale et la CtB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

entation minimale consultée (système de classification suivi des symboles de classement) CO7C CO7D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recharche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et sì ceta estréalisable, termes de

EPO-Internal, PAJ, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERES COMME PERTIN	CHITC

Catégorie*	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no, des revendications visées
Х,Р	WO 2005/054167 A (SOLVAY; KRAFFT, PHILIPPE; GILBEAU, PATRICK; GOSSELIN, BENOIT; CLAESSE) 16 juin 2005 (2005-06-16) cité dans la demande page 11, dernier alinéa page 24, 11gne 6,7 page 26 - page 27; exemples 3-11 page 28; tableaux	1-19
X	US 2 144 612 A (LYMAN HEINDEL ROY ET AL) 24 janvier 1939 (1939-01-24) page 2 - page 3; exemples 1,4,6	1-19
х	WO 2005/021476 A (SPOLEK PRO CHEMICKOU A HUTNI VYROBU, AKCIOVA SPOLECNOST; KUBICEK, PAYE) 10 mars 2005 (2005-03-10) page 8; exemple 4	1-19

l x l	Voir la suite du cadre C pour la fin de la liste des documents
-------	--

X Les documents de familles de brevets sont indiqués en annexe "To document utifrieur publié après la date de dépôt internetional ou la date de priorité et n'appartenenant pas à fétat de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

ou la treone consusuant la Dese de l'invention

de document particulèmemen perintent l'avveni lon revendiquée ne peut
ére considérée comme souvele ou comme impliquant une activité
inventive par paport au document considéré soldent des les peut des considérée comme impliquant une activité inventive par peut des considérée comme impliquant une activité inventive lonque le document est associate à une qu'absileurs autres documents de même nature, cette combinaison étant évidente pour une personne du mêtier.

- Catégories spéciales de documents cités:
- *A* document définissani l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou lous autres moyens
- 'P' document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

Date à laquelle la recherche internationale a été effectivement achevée

*& document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale

9 août 2006

21/08/2006

Bedel, C

Nom et adresse postale de l'administration chargée de la recherche internationale Enncilonnaire autorisé posace or - attrinstration charges or a fectivitate in COTIce Européen des Brevets, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk TEL (+31-70) 340-2040, Tx. 31 851 epo nl, Fax (+31-70) 340-3016

Formulaire PCT/ISA/210 (deuxième feuille) (avril 2005)

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/EP2006/062445

Catégorie*	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no, des revendications visées	
Α .	GIBSON G P: "THE PREPARATION, PROPERTIES AND USES OF GLYCEROL DERIVATIVES. Part III. THE CHLOROHYDRINS" CHEMISTRY AND INDUSTRY, CHEMICAL SOCIETY, LECHWORTH, 6B, 1931, pages 949-975, XPO09042263 ISSN: 0009-3068 page 972, colonne de droite, alinéas 3,4	1–19	
	v.	• - 	
	+		
	,		
	,		

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

PCT/EP2006/062445

Document brevet cité au rapport de recherche	T	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication	
WO 2005054167	A	16-06-2005	CA EP	2546683 A1 1687248 A1	16-06-2005 09-08-2006	
US 2144612	Α	24-01-1939	AUCU	N		
WO 2005021476	A	10-03-2005	CA CZ EP	2537131 A1 20032346 A3 1663924 A1	10-03-2005 13-04-2005 07-06-2006	