1. Graph the equation below.

$$f(x) = (x-1)^2 + 12$$

A.

C.

D.

В.

E. None of the above.

2. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-12x^2 - 9x + 2 = 0$$

A.
$$x_1 \in [-1.22, -0.45]$$
 and $x_2 \in [-0.98, 0.69]$

B.
$$x_1 \in [-14.11, -13.56]$$
 and $x_2 \in [12.66, 13.16]$

C.
$$x_1 \in [-0.3, 0.07]$$
 and $x_2 \in [0.71, 1.12]$

D.
$$x_1 \in [-2.35, -1.93]$$
 and $x_2 \in [10.81, 11.87]$

E. There are no Real solutions.

3. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$16x^2 - 40x + 25$$

A.
$$a \in [7.53, 9.57], b \in [-14, -3], c \in [1.77, 3.95], and $d \in [-8, -4]$$$

B.
$$a \in [1.91, 3.55], b \in [-14, -3], c \in [7.21, 9.2], and $d \in [-8, -4]$$$

C.
$$a \in [3.34, 5.88], b \in [-14, -3], c \in [3.86, 4.01], and $d \in [-8, -4]$$$

D.
$$a \in [0.64, 1.35], b \in [-24, -19], c \in [0.53, 1.17], and d \in [-23, -16]$$

- E. None of the above.
- 4. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 + 60x + 36 = 0$$

A.
$$x_1 \in [-6.81, -5.76]$$
 and $x_2 \in [-0.36, 0.06]$

B.
$$x_1 \in [-30.51, -28.26]$$
 and $x_2 \in [-30.28, -29.95]$

C.
$$x_1 \in [-3.92, -3.48]$$
 and $x_2 \in [-0.47, -0.38]$

D.
$$x_1 \in [-2.6, -2.14]$$
 and $x_2 \in [-0.95, -0.45]$

E.
$$x_1 \in [-2.12, 0.44]$$
 and $x_2 \in [-1.65, -1.18]$

5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$19x^2 + 11x - 9 = 0$$

A.
$$x_1 \in [-20.03, -19.59]$$
 and $x_2 \in [7.1, 8.8]$

B.
$$x_1 \in [-29.09, -27.92]$$
 and $x_2 \in [26.9, 28.8]$

C.
$$x_1 \in [-1.26, -0.72]$$
 and $x_2 \in [-2, 0.9]$

D.
$$x_1 \in [-0.89, -0.22]$$
 and $x_2 \in [0.8, 1.3]$

E. There are no Real solutions.

6. Graph the equation below.

$$f(x) = (x+3)^2 + 18$$

A.

C.

D.

В.

- E. None of the above.
- 7. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$10x^2 - 33x - 54 = 0$$

- A. $x_1 \in [-2.15, -1.09]$ and $x_2 \in [4.46, 5.37]$
- B. $x_1 \in [-0.69, -0.37]$ and $x_2 \in [12.39, 13.71]$
- C. $x_1 \in [-2.66, -1.74]$ and $x_2 \in [1.04, 3.51]$
- D. $x_1 \in [-6.77, -5.51]$ and $x_2 \in [-1.09, 2.11]$
- E. $x_1 \in [-12.07, -11.74]$ and $x_2 \in [44.34, 46.23]$
- 8. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [1, 2], b \in [-5, -1], and <math>c \in [-2, 3]$
- B. $a \in [-3, 0], b \in [-5, -1], \text{ and } c \in [-8, -3]$
- C. $a \in [1, 2], b \in [3, 6], \text{ and } c \in [-2, 3]$
- D. $a \in [-3, 0], b \in [3, 6], \text{ and } c \in [-8, -3]$
- E. $a \in [-3, 0], b \in [-5, -1], \text{ and } c \in [-2, 3]$
- 9. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$36x^2 - 60x + 25$$

- A. $a \in [3, 5], b \in [-11, 1], c \in [11.52, 12.36], and <math>d \in [-9, 1]$
- B. $a \in [-2, 2], b \in [-36, -29], c \in [0.92, 1.31], and <math>d \in [-36, -22]$
- C. $a \in [9, 19], b \in [-11, 1], c \in [2.88, 3.42], and <math>d \in [-9, 1]$
- D. $a \in [4, 7], b \in [-11, 1], c \in [5.85, 6.18], and <math>d \in [-9, 1]$
- E. None of the above.
- 10. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [1, 2], b \in [-4, -1], \text{ and } c \in [10, 15]$
- B. $a \in [-1, 0], b \in [-4, -1], \text{ and } c \in [3, 7]$
- C. $a \in [1, 2], b \in [4, 8], \text{ and } c \in [10, 15]$
- D. $a \in [-1, 0], b \in [4, 8], \text{ and } c \in [3, 7]$
- E. $a \in [-1, 0], b \in [4, 8], \text{ and } c \in [-13, -10]$

2790-1423 Summer C 2021