TEAM NAME (printed): * SOLUTION 5 * Team members PRESENT (printed names):

- All 5 questions are equally weighted
- Show your work for partial credit
- Box-in your final answer for each problem

See Figure 6.1. Find the total resistance R_T $R_T = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{8} \frac{$ 1.

$$+ \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{100} \frac{1}{100}$$

$$\boxed{R_7 = 2.11}$$

See Figure 6.1. If I_T = 10A, find I_3 2.

See Figure 6.1. If
$$T = ToA$$
, III. $ToA = ToA =$

See Figure 6.1. What is the voltage across the resistors if $I_T = 6A$? 3.

$$V_s = I_{\tau} \cdot R_{\tau} = (6A)(2.11_*) = [12.7V]$$

4. See Figure 6.4. Which two resistors are in parallel?

- a. 10 ohm and 47 ohm
- 10//47 = (8.25m)
- b. 10 ohm and 33 ohm \times
- c. 10 ohm and 56 ohm \propto

5. See Figure 6.4. What is the current through the 47 ohm resistor?

$$I_{47} = I\left(\frac{10n//47}{47n}\right) = 1A\left[\frac{8.25n}{47n}\right]$$

$$I_{47} = 175 \text{ mA}$$