STAT 88: Lecture 25

Contents

Section 8.1: The Distribution of a Sample Sum

Section 8.2: Standard Normal Curve

Warm up: (Exercise 7.4.11) Each Data 8 student is asked to draw a random sample and estimate a parameter using a method that has chance 95% of resulting in a good estimate.

Suppose there are 1300 students in Data 8. Let X be the number of students who get a good estimate. Assume that all the students' samples are independent of each other.

- (a) Find the distribution of X.
- (b) Find E(X) and SD(X).
- (c) Find the chance that more than 1250 students get a good estimate.

```
(a) \times \sim \text{BTnown}([360, 0.95])

(b) E(x) = [360 \cdot [0.95], SD(x) = \int [360 \cdot (0.95)(0.05)]

(c) P(X7|250) = \sum_{k=125}^{[360]} {1360 \cdot (0.95)^k (0.05)^{360-k}}

Approximate Using CLT (Central Chart Theolem)
```

Last time

SD of sample sum:

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim}$ with mean μ and SD σ . Let $S_n = X_1 + X_2 + \cdots + X_n$. Then

$$E(S_n) = n\mu, \quad SD(S_n) = \sqrt{n}\sigma.$$

SD of sample mean:

Let $\bar{X}_n = S_n/n$. Then

$$E(\bar{X}_n) = \mu, \quad SD(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}.$$

The law of large numbers: For a fixed c > 0,

$$P(\mu - c < \bar{X}_n < \mu + c) = P(|\bar{X}_n - \mu| < c) \to 1 \text{ as } n \to \infty.$$

Today: How the shape of the distribution of S_n look like?

LLN:
$$\frac{S_n}{n} = \overline{X}_n$$
 concentrates around M as $n \to \infty$

What is the distribution of \overline{X}_n (or S_n)?

8.1. The Distribution of a Sample Sum

У₆

Sum of IID Indicators If $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$, then $S_n = X_1 + X_2 + \cdots + X_n$ has the Binomial(n, p) distribution. What the distribution of S_n look like?

Lab 1: $X_1, \dots, X_n \sim Bernoulli(p)$ Get $S_n = X_1 + X_2 + \dots + X_n$ Lab 2: $X_1, \dots, X_n \sim Bernoulli(p)$ Get $S_n = X_1 + X_2 + \dots + X_n$

Lab lose to $X_1, \dots, X_n \sim |3emoun|^2(p)$ Get $S_n = X_1 + X_2 + \dots + X_n$ U
Distillution of S_n

 $\begin{array}{ccc}
9 & E(S_n) = & h \cdot M \\
SD(S_n) & = & J \overline{h} \cdot G
\end{array}$

n=12

n=1

h=60

Sum of IID Uniform Random Variables Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}\{1, 2, 3, 4, 5, 6\}$ and $S_n = X_1 + X_2 + \cdots + X_n$. What the distribution of S_n look like?

h=1

n=Z

A Wild One Let $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}\{0, 1, 8\}$ and $S_n = X_1 + X_2 + \cdots + X_n$. What the distribution of S_n look like?

<u>n=1</u>

N=10

h=30

Central Limit Theorem Let X_1, X_2, \ldots, X_n be i.i.d. with $E(X_1) = \mu$ and $SD(X_1) = \sigma$. Let $S_n = X_1 + X_2 + \cdots + X_n$ be the sample sum. If n is large, the distribution of S_n is approximately normal $\{bell-shaped curve\}$, regardless of the distribution of the X_i 's.

Approximate Distribution of S_n for Large n

8.2. Standard Normal Curve

The normal or Gaussian curves are a family of bell-shaped curves named for the German mathematician and scientist Carl Friedrich Gauss.

The Standard Normal Curve

The standard normal curve is defined by

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, -\infty < z < \infty.$$

Properties:

- The curve is bell-shaped and symmetric about 0.
- The points of inflection are at z = -1 and z = 1.
- For |z| > 3, the curve is pretty close to 0.
- The total area under the curve is 1. ~ approximation to a pub distribution.

The Standard Normal 'CDF'

If you think of the standard normal curve as a probability histogram, then it is natural to think of areas under the curve as probabilities.

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx.$$

 Φ gives all the area under the curve to the left of z:

The area under the curve over any interval (z_1, z_2) is then $\Phi(z_2) - \Phi(z_1)$:

Numerical Values of the Areas

Calculating $\Phi(z)$ in Python:

By symmetry:

Percentiles

We saw the area under the curve to the left of 1 is about 84%

$$\Phi(1) \approx 84\%$$
.

The point z=1 is therefore called the 84th percentile of the curve. If you think of the curve as a probability histogram, then about 84% of the probability lies below z=1.

The 90th percentile must be to the right of 1. But how far to the right?

We need to find the inverse of $\Phi(z)$. The 90th percentile is the point z such that $\Phi(z) = 0.9$, or

$$z = \Phi^{-1}(0.9).$$

Calculating $\Phi^{-1}(q)$ in Python:

Example: Find the area

- (a) to the right of 1.25.
- (b) between -0.3 and 0.9.
- (c) Outside -1.5 and 1.5.

Example: The standard normal curve is sketched below. Solve for z.

