/	1	R
	_	$\mathbf{\circ}$

SiSy: Wiskunde - zittijd 1 – Reeks B

/4

1) Bepaal het convergentiegebied van de functiereeks $\sum_{n=1}^{\infty} \frac{(x-4)^n}{(3n^2+n+1)2^n}$ Wees volledig!

$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{(3n^2+n+1)2^n}$$

- 2) Gegeven: $r=\sqrt{x^2+y^2}$ Bereken indien mogelijk en vereenvoudig het resultaat. Leg kort uit indien niet mogelijk.
 - a) $\Delta(e^{r^2})$ b) $div(\sin(r))$

3) Bepaal a zodat het vectorveld $\overrightarrow{F} = \left\{ e^{xy}(a+xy), \ x^2e^{xy} \right\}$ conservatief is. Bereken daarna de arbeid geleverd door \overrightarrow{F} bij een verplaatsing van p(-1,0) naar q(0,-2).

- 4) Gegeven de functie f(x) over $\left[\frac{\pi}{2}, 3\pi\right]$, gedefinieerd door $f(x) = \begin{cases} \cos(2x) & \frac{\pi}{2} \le x < \pi \\ x \pi & \pi < x \le 3\pi \end{cases}$
 - a) **Defineer** de uitbreiding $f_{uitbr}(x)$ van f(x), over $[-3\pi, 3\pi]$ zodat deze uitbreiding aanleiding heeft tot een fourier-**sinus** reeks.
 - b) Stel de meest eenvoudige integralen op om de coëfficienten a_0 , a_k en b_k te berekenen van $\sum fuitbr(x)$ (Enkel opstellen, niet berekenen)

/3

FORMULARIUM

Mc-Laurinreeksen van enkele functies met hun convergentieinterval

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots \qquad] - \infty, + \infty[$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots \qquad] - \infty, + \infty[$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots \qquad] - \infty, + \infty[$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots \qquad] - 1, 1]$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots + (-1)^n x^n + \dots \qquad] - 1, 1[$$

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!} x^2 + \dots + \frac{m^{(n)}}{n!} x^n + \dots \qquad m > 0: [-1, 1]$$

$$-1 < m < 0:] -1,1]$$

$$m^{(n)} = m(m-1)(m-2)\cdots(m-n+1), \quad m \in \mathbf{Q} \qquad m \le -1:]-1, 1[$$

Fourierreeks en coëfficiënten

$$\sum (x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi x}{L} + b_k \sin \frac{k\pi x}{L} \right)$$
$$a_k = \frac{1}{L} \int_a^b f(x) \cos \frac{k\pi x}{L} dx \text{ en } b_k = \frac{1}{L} \int_a^b f(x) \sin \frac{k\pi x}{L} dx$$

٠