In order to determine the optimal number of channels for the FindSupportingPoints() goroutine, I collected 5 samples from each file of points (Point1.xyz, Point2.xyz, Point3.xyz) for each number of channels (1,2,3,4,5,6,7,8,9,10,20,30,40,50). Since there was a significant difference between each file of points, the analysis of the running times was conducted separately for each file. The graphs below show the relationship between the number of channels and the runtime for each file:

num_channels

These graphs seem pretty inconclusive. In order to better be able to determine which number of channels is optimal I did one-tailed t test (lower tail) comparing the running times of one number of channels with all the other numbers of channels. In the tables below, the p_values for the hypothesis test are shown with the number of channels they represent for each set of points, with the highlighted values being the smallest p-values which show the optimal number of channels:

Number of Channels	P-values for	P-values for	P-values for
	Point1.xyz	Point2.xyz	Point3.xyz
1	0.00655080617316	0.02276582944016	0.17970953222003
	4307	5187	289
2	0.81986445767747	0.38200480420824	0.17970953222003
	43	02	289
3	0.28274163911411	0.71622637395452	0.05735126484680
	154	91	638
4	0.74277520373285 43	0.29358538394734 7	0.37499625349234
5	0.52253348509424	0.79048893338020	0.85783882158527
	67	74	37
6	0.84840833379926	0.63196306477038	0.19436413379434
	14	58	228

7	0.13473192986006	0.73122121621353	0.09662488526908
	9	99	185
8	0.27357906507996	0.15386553402504	0.47915837984917
	643	7	02
9	0.33591963955500	0.75408935143974	0.99027402892389
	553	61	14
10	0.62964363658903	0.45338338068388	0.54082940742104
	81	26	45
20	0.62790679187207	0.81436492194138	0.55996759726874
	44	95	52
30	0.65310790980463	0.20393578450396	0.92812003164112
	55	688	58
40	0.58365686189044	0.10100409462589	0.90939345921875
	69	921	85
50	0.00269169851340	0.57834866511394	0.77167826422897
	<mark>4163</mark>	67	92

Since the p-values seem to be scattered around randomly, I am picking the optimal number of channels based on the one with the lowest mean running time. Below is a table showing the mean running times for each number of channels:

Number of channels	Mean running time(s)
1	1.7088602806
2	1.7180710528666665
3	1.7108568168
4	1.725013227933333
5	1.7501492056
6	1.7300035889999998
7	1.7238417693333332
8	1.7180524694666666
9	1.7438584638666663
10	1.7304409034666668
20	1.7393773833333335
30	1.7502868444000002
40	1.7263258971333333
50	1.7267694168

Therefore, the optimal number of channels is 1 according to my experiments.