

LG

ИНСТРУКЦИЯ ПО СЕРВИСНОМУ ОБСЛУЖИВАНИЮ ТЕЛЕФОНА

Model : G1610

ИНСТРУКЦИЯ ПО СЕРВИСНОМУ ОБСЛУЖИВАНИЮ ТЕЛЕФОНА

G1610

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	5	4. Обнаружение и устранение неисправностей	43
1.1 Назначение.....	5	4.1 Компоненты РЧ части.....	43
1.2 Регламентирующие положения.....	5	4.2 Неисправности приемника	44
1.3 Список сокращений.....	7	4.3 Неисправности передатчика.....	51
2. РАБОЧИЕ ХАРАКТЕРИСТИКИ	9	4.4 Неисправности при включении	59
2.1 Аппаратные характеристики	9	4.5 Неисправности зарядки	61
2.2 Технические характеристики	10	4.6 Неисправности ЖК-дисплея	63
3. Краткая техническая информация.....	15	4.7 Неисправности громкоговорителя ...	64
3.1 Приемопередатчик (SI4205, U401) ...	15	4.8 Неисправности динамика	65
3.2 Усилитель мощности (RF3133, U400)	20	4.9 Неисправности микрофона	67
3.3 Тактовый генератор частоты 13 МГц	21	4.10 Неисправности виброзвонка	68
3.4 Питание РЧ схем	21	4.11 Неисправность подсветки клавиатуры	70
3.5 Цифровой центральный процессор (AD6525, U100).....	22	4.12 Неисправности определения SIM-карты	71
3.6 Аналоговый центральный процессор (AD6521, U101).....	27	4.13 Неисправности гарнитуры.....	72
3.7 Интегральная схема управления питанием (ADP3522, U301)	30	5. ИНСТРУКЦИЯ ПО РАЗБОРКЕ	76
3.8 Память (U300)	32		
3.9 ЖК-дисплей и подсветка ЖКД.....	33	6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА	82
3.10 Кнопки клавиатуры и подсветка клавиатуры	34		
3.11 Микрофон.....	37	6.1 Загрузка программного обеспечения	82
3.12 Двухрежимный динамик и ИС синтезатора MIDI	37	6.2 Калибровка.....	89
3.13 Интерфейс разъема гарнитуры	40	7. БЛОК-СХЕМА.....	92
3.14 Описание блока Bluetooth.....	41	8. ПРИНЦИПИАЛЬНАЯ СХЕМА	95
		9. ТОПОЛОГИЯ ПЕЧАТНОЙ ПЛАТЫ	101

10. ИНЖЕНЕРНОЕ МЕНЮ	103	
10.1 Тест НЧ части [Пункт меню 1].....	103	
10.2 Тест РЧ части [Пункт меню 2].....	105	
10.3 Режим MF [Пункт меню 3].....	105	
10.4 Трассировка [Пункт меню 4]	106	
10.5 Счетчик времени разговора [Пункт меню 5].....	106	
10.6 Сброс на заводские настройки [Пункт меню 6].....	106	
10.7 Версия ПО [Пункт меню 7]	106	
11. ТЕСТ «STAND ALONE».....	107	
11.1 Что такое тест «Stand alone»?	107	
11.2 Подключение оборудования, необходимого для проведения теста «Standalone»	108	
11.3 Аппаратное тестирование : Установка ПО для теста «Standalone».....	109	
11.4 Установки параметров «Standalone» теста передающего устройства.....	110	
11.5 Установки параметров «Standalone» теста принимающего устройства.....	112	
12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА.....	114	
12.1 Описание	114	
12.2. Список оборудования.....	114	
12.3 Установка оборудования.....	115	
12.4 АРУ принимающего устройства..	116	
12.5 АРМ передающего устройства ...	116	
12.6 АЦП	117	
12.7 Как провести калибровку.....	117	
13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ.....	119	
13.1 Сборочный чертеж.....	119	
13.2 Список заменяемых деталей <Механические детали>	121	
13.3 Аксессуары	132	

1. ВВЕДЕНИЕ

1.1 Назначение

В данном руководстве приводится техническое описание устройства G1610, и необходимая информация для выполнения его ремонта, калибровки, а также для загрузки программного обеспечения.

1.2 Регламентирующие положения

A. Безопасность

Коммутационное мошенничество, т. е. несанкционированное использование телекоммуникационной системы неуполномоченной стороной (например, лицами, не являющимися служащими компании, ее представителями, субподрядчиками, либо действующими от имени компании) может стать причиной представления необоснованных счетов за пользование телекоммуникационными услугами. Пользователи системы несут ответственность за безопасность собственной системы. Имеется определенный риск коммутационного мошенничества в отношении Вашей телекоммуникационной системы. Пользователи системы несут ответственность за программирование и конфигурирование своего оборудования с целью предотвращения несанкционированного использования системы. Изготовитель не может гарантировать защищенность данного изделия в отношении вышеупомянутых случаев, и его возможностей по предотвращению несанкционированного пользования телекоммуникационными услугами коммерческих линий связи путем получения доступа или подключения оборудования. Изготовитель не несет ответственности за любые расходы, понесенные в результате подобного несанкционированного пользования телекоммуникационными услугами.

B. Причинение ущерба

В случае если компания телефонной связи определит, что предоставленное клиенту оборудование является неисправным и его использование может нанести ущерб или нарушить работу телефонной сети связи, компания может временно приостанавливать оказание услуг телефонной связи на время необходимое для ремонта.

C. Изменения предоставляемых услуг.

Местная компания телефонной связи может вносить изменения в свое оборудование связи и изменять порядок его работы. При наличии оснований полагать, что такие изменения способны оказать воздействие на работу данного телефонного аппарата, либо его совместимость с телефонной сетью, компании телефонной связи следует заранее письменно уведомить об этих изменениях пользователя, предоставляя тем самым ему возможность предпринять необходимые меры с целью продолжения пользования услугами телефонной связи.

1. ВВЕДЕНИЕ

D. Ограничения на выполнение техобслуживания.

Некоторые работы по техническому обслуживанию данной модели могут быть выполнены только предприятием-изготовителем, либо его уполномоченными представителями. Следует иметь в виду, что любые несанкционированные модификации либо ремонт могут повлечь изменение нормативного статуса системы и стать основанием для аннулирования всего периода гарантии.

E. Уведомление о наличии излучения.

Настоящее изделие соответствует действующим в стране законодательным нормативам в отношении высокочастотного излучения. Согласно этим положениям, необходимая информация должна быть предоставлена потребителю.

F. Иллюстрации

Иллюстрации в настоящем руководстве приведены исключительно для наглядности. Реальное оборудование может выглядеть несколько иначе.

G. Помехи и подавление сигнала.

Телефон может создавать помехи в работе чувствительного лабораторного оборудования, медицинского оборудования и т.п. На работу самого телефона могут оказывать влияние помехи, исходящие от машин и электродвигателей, не оборудованных устройствами подавления помех.

H. Приборы, чувствительные к электростатическим разрядам.

ВНИМАНИЕ

Платы, детали которых чувствительны к электростатическим разрядам, обозначены следующей пиктограммой (). Ниже приведена информация о порядке работы с такими деталями:

- Выполняя замену плат системы, технические специалисты должны иметь закрепленную на кисти руки линию заземления;
- При выполнении работ на системной плате специалист должен стоять на антистатическом покрытии (также заземленном);
- Паяльник (соответствующий выполняемой работе) должен быть заземлен;
- Чувствительные к статическому электричеству детали следует хранить в защитной упаковке вплоть до их непосредственного использования;
- Перед отправкой на завод системные платы, а также электрически перепрограммируемые ПЗУ и им подобные детали необходимо упаковать указанным способом.

1.3 Список сокращений

В настоящем «Руководстве используются следующие сокращения:

APC	Автоматическая регулировка мощности
BB	Низкочастотная часть
BER	Частота ошибок по битам
CC-CV	Постоянный ток-постоянное напряжение
DAC	Цифро-аналоговый преобразователь (ЦАП)
DCS	Система цифровой связи
дБм	дБ на 1 милливатт (дБм)
DSP	Цифровой сигнальный процессор
ESD	Электростатический разряд
FPCB	Гибкая печатная плата
GMSK	Модуляция GMSK
GPIB	Интерфейс общего назначения
GSM	Глобальная система мобильной связи
IPIU	Международный код абонента мобильной связи
IF	Промежуточная частота (ПЧ)
LCD	Жидкокристаллический дисплей (ЖКД)
LDO	Стабилизатор напряжения
LED	Светоизлучающий диод
OPLL	Схема фазовой автоподстройки частоты (ФАПЧ)
PAM	Усилитель мощности
PCB	Печатная плата
PGA	Усилитель с программируемым усилением
PLL	Система фазовой автоподстройки частоты (система ФАПЧ)
PSTN	Коммутируемая телефонная сеть общего пользования
RF	Радиочастота (РЧ)
RLR	Номинал громкости приема
RMS	Среднеквадратичное действующее значение (СДЗ)
RTC	Генератор импульсов реального времени
SAW	Поверхностная акустическая волна (ПАВ)
SIM	Модуль идентификации абонента
SLR	Номинал громкости передачи

1. ВВЕДЕНИЕ

SRAM	Статическое запоминающее устройство с произвольной выборкой
PSRAM	Псевдостатическое запоминающее устройство с произвольной выборкой
STMR	Противоместный эффект
TA	Зарядное устройство
TDD	Дуплекс временного разделения
TDMA	Множественный доступ с временным разделением
UART	Универсальный асинхронный интерфейс приема/передачи
VCO	Генератор, управляемый напряжением (ГУН)
VCTCXO	Термостабилизированный генератор, управляемый напряжением
WAP	Протокол WAP (для распространения данных по Internet)

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

2.1 Аппаратные характеристики

Наименование	Характеристики	Примечания
Стандартная батарея	Ионно-литиевая, 950 мА/ч; Габариты: 35.00 x 53.45 x 5.7 мм; Масса: 30.00 г	
Сила тока в дежурном режиме	В условиях минимального расхода электроэнергии сила тока в дежурном режиме не превышает 4 мА.	
Продолжительность разговора	До 3 часов (GSM, уровень передачи 7)	
Продолжительность работы в дежурном режиме	До 200 часов (уровень сигнала: -85 дБм)	
Продолжительность подзарядки	3.5 часа	
Чувствительность приемного устройства	GSM, EGSM: -105 дБм, DCS: -105 дБм	
Выходная мощность передатчика	GSM, EGSM: 32 дБм (Уровень 5), DCS: 29 дБм (Уровень 0)	
Совместимость GPRS	Класс 10	
Тип SIM-карты	Малая, 3В	
Дисплей	128 x 128 пикселей, 65000 цветов	
Индикация состояния	Контрастные пиктограммы, клавиатура: 0 – 9, #, *, навигационная клавиша (Положения: «Вверх», «Вниз», «Вправо», «Влево»), кнопка подтверждения «OK», кнопки «Сброс», «Назад», «Отправить», и «Окончание»/ВКЛ.	
Антenna	Внутренняя	
Разъем гарнитуры	Есть	
Разъем для соединения с ПК	Есть	
Речевая кодировка	EFR/FR/HR	
Передача данных и факс	Есть	
Виброзвонок	Есть	
Громкая связь	Есть	
Запись речевого сигнала	Есть	
Отдельный микрофон	Есть	
Ресивер	Есть	
Зарядное устройство	Есть	
Дополнительно	Гарнитура, автомобильный адаптер, комплект для передачи данных	

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

2.2 Технические характеристики

№	Наименование	Характеристики					
1	Диапазон частот	GSM Передача: $890 + n \times 0.2 \text{ МГц}$ Прием: $935 + n \times 0.2 \text{ МГц}$ ($n=1 \sim 124$) EGSM Передача: $890 + (n-1024) \times 0.2 \text{ МГц}$ Прием: $935 + (n-1024) \times 0.2 \text{ МГц}$ ($n=975 \sim 1024$) DCS Передача: $1710 + (n-512) \times 0.2 \text{ МГц}$ Прием: $1805 + (n-512) \times 0.2 \text{ МГц}$ ($n=512 \sim 885$)					
2	Фазовая погрешность	Среднеквадратичное действующее значение < 5 градусов Пиковая погрешность < 20 градусов					
3	Погрешность по частоте	< 0.1 промилле					
4	Уровень мощности	GSM, EGSM					
		Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение
		5	33 дБм	$\pm 2 \text{ дБ}$	13	17 дБм	$\pm 3 \text{ дБ}$
		6	31 дБм	$\pm 3 \text{ дБ}$	14	15 дБм	$\pm 3 \text{ дБ}$
		7	29 дБм	$\pm 3 \text{ дБ}$	15	13 дБм	$\pm 3 \text{ дБ}$
		8	27 дБм	$\pm 3 \text{ дБ}$	16	11 дБм	$\pm 5 \text{ дБ}$
		9	25 дБм	$\pm 3 \text{ дБ}$	17	9 дБм	$\pm 5 \text{ дБ}$
		10	23 дБм	$\pm 3 \text{ дБ}$	18	7 дБм	$\pm 5 \text{ дБ}$
		11	21 дБм	$\pm 3 \text{ дБ}$	19	5 дБм	$\pm 5 \text{ дБ}$
		12	19 дБм	$\pm 3 \text{ дБ}$			
		DCS					
		Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение
		0	30 дБм	$\pm 2 \text{ дБ}$	8	14 дБм	$\pm 3 \text{ дБ}$
		1	28 дБм	$\pm 3 \text{ дБ}$	9	12 дБм	$\pm 4 \text{ дБ}$
		2	26 дБм	$\pm 3 \text{ дБ}$	10	10 дБм	$\pm 4 \text{ дБ}$
		3	24 дБм	$\pm 3 \text{ дБ}$	11	8 дБм	$\pm 4 \text{ дБ}$
		4	22 дБм	$\pm 3 \text{ дБ}$	12	6 дБм	$\pm 4 \text{ дБ}$
		5	20 дБм	$\pm 3 \text{ дБ}$	13	4 дБм	$\pm 4 \text{ дБ}$
		6	18 дБм	$\pm 3 \text{ дБ}$	14	2 дБм	$\pm 5 \text{ дБ}$
		7	16 дБм	$\pm 3 \text{ дБ}$	15	0 дБм	$\pm 5 \text{ дБ}$

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

№	Наименование	Характеристики	
		GSM, EGSM	
5	Спектр РЧ на выходе (из-за модуляции)	Смещение от несущей (кГц).	Макс. дБм
		100	+0.5
		200	-30
		250	-33
		400	-60
		600~ <1,200	-60
		1,200~ <1,800	-60
		1,800~ <3,000	-63
		3,000~ <6,000	-65
		6,000	-71
		DCS	
		Смещение от несущей (кГц).	Макс. дБм
6	Спектр РЧ на выходе (из-за переходного процесса при коммутации)	100	+0.5
		200	-30
		250	-33
		400	-60
		600~ <1,200	-60
		1,200~ <1,800	-60
		1,800~ <3,000	-65
		3,000~ <6,000	-65
		6,000	-73
		GSM, EGSM	
		Смещение от несущей (кГц).	Макс. дБм
		400	-19
		600	-21
		1,200	-21
		1,800	-24
		GSM, EGSM	
		Смещение от несущей (кГц).	Макс. дБм
		400	-22
		600	-24
		1,200	-24
		1,800	-27

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

№	Наименование	Характеристики		
7	Побочное радиоизлучение	Проводимость, излучение		
8	Частота ошибок по битам (ЧОБ)	GSM, EGSM BER (Класс II) < 2.439% @ -102 дБм DCS BER (Класс II) < 2.439% @ -100 дБм		
9	Точность информации об уровне приема	± 3 дБ		
10	Номинал громкости передачи	± 8 3 дБ		
11	Частотная характеристика передачи	Частота (Гц)	Макс.(дБ)	Мин.(дБ)
		100	-12	-
		200	0	-
		300	0	-12
			0	-6
		2,000	0	-6
		3,000	4	-6
		3,400	4	-9
		4,000	4	-
12	Номинал громкости приема	± 2 3 дБ		
13	Частотная характеристика приема	Частота (Гц)	Макс.(дБ)	Мин.(дБ)
		100	-12	-
		200	0	-
		300	2	-7
		500	*	-5
		1,000	0	-5
		3,000	2	-5
		3,400	2	-10
		4,000	2	
		* Означает прямую между 300 Гц и 1.000 Гц, принятую в качестве максимального уровня в данном диапазоне.		
14	Противоместный эффект	± 13 5 дБ		
15	Запас устойчивости	> 6 дБ		

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

№	Наименование	Характеристики	
16	Искажение сигнала	дБ к приемл. уровню надежности (дБ)	Соотношение уровня (дБ)
		-35	17.5
		-30	22.5
		-20	30.7
		-10	33.3
		0	33.7
		7	31.7
		10	25.5
17	Искажение побочного тона	Трехкаскадное искажение < 10%	
18	Допустимое отклонение частоты (13 МГц)	≤ 2.5 промилле	
19	Допустимое отклонение (32.768 кГц)	≤ 30 промилле	
20	Громкость звонка	Не менее 80 дБ при следующих условиях: 1. Сигнал вызова установлен на «звонок». 2. Расстояние при тестировании: 50 см.	
21	Ток подзарядки	Заряд постоянным током : < 500 мА Медленная подзарядка : < 60 мА	
22	Индикатор приема	Отображаемое кол-во делений индикатора приема	Мощность
		5	-85 дБм ~
		4	-90 дБм ~ -86 дБм
		3	-95 дБм ~ -91 дБм
		2	-100 дБм ~ -96 дБм
		1	-105 дБм ~ -101 дБм
		0	~ -105 дБм
23	Индикатор заряда батареи	Отображаемое кол-во делений индикатора заряда батареи	Напряжение
		0	~ 3.62В
		1	3.62 ~ 3.73В
		2	3.73 ~ 3.82В
		3	3.82В ~
24	Предупреждение о разрядке аккумулятора	3.5 ± 0.03В (Режим ожидания)	
		3.62 ± 0.03В (Во время разговора)	

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

№	Наименование	Характеристики
25	Напряжение принудительного отключения	3.35 ± 0.03В
26	Тип батареи	1 Ионно-литиевая батарея Среднее напряжение = 3.7В Напряжение при полном заряде = 4.2В Емкость : 950mA/ч
27	Зарядное устройство	Импульсное зарядное устройство Входное : 100 ~ 240В, 50/60 Гц Выходное : 5.2В, 800 mA

3. Краткая техническая информация

3.1 Приемопередатчик (SI4205, U401)

В число радиочастотных компонентов входит передающее устройство, приемное устройство, синтезатор частот, источник напряжения и термостабилизированный генератор, управляемый напряжением.

Aero I представляет собой многодиапазонный высокочастотный приемопередатчик, предназначенный для обеспечения связи сотовых телефонов и беспроводных модемов форматов GSM/GPRS. Данное решение позволяет избавиться от необходимости использования промежуточной частоты (фильтр ПАВ ПЧ), трехдиапазонного внешнего малошумящего усилителя радиочастот передающего устройства, модуля генератора управляемого напряжением (ГУН), и других компонентов, используемых в стандартных схемах.

Принцип работы

Рис. 3-1. Блок-схема SI4205

(1) Приемное устройство

Приемопередатчик Aero I использует архитектуру приемного устройства с низкой промежуточной частотой, что позволяет разместить на кристалле фильтр выбора каналов, устраняющий необходимость применения фильтров зеркальных частот и фильтра ПАВ ПЧ, которые являются элементами обычной супергетеродинной схемы.

3. Краткая техническая информация

A. Радиочастотный входной каскад.

Радиочастотный входной каскад состоит из антенного переключателя (FL400), двух ПАВ фильтров (FL401, FL402) и двухдиапазонный малошумящий усилитель, интегрированный в приемопередатчик (U401).

Принимаемые РЧ сигналы (GSM 925МГц ~ 960МГц, DCS 1805МГц ~ 1880МГц) подаются на антенный или аппаратный переключатель.

Антенный переключатель (FL400) служит для управления радиоканалами приема и передачи. Управляющие входные сигналы VC1 и VC2 FL400 подключены непосредственно к контроллеру низкочастотной части для переключения радиотракта либо на прием, либо на передачу.

Логические уровни и параметры тока приведены в таблице 3-1.

Таблица 3-1. Логические уровни и параметры тока

	VC1	VC2	Ток
DCS TX	0B	2.5 ~ 3.0B	10.0 мА макс.
GSM TX	2.5 ~ 3.0B	0B	10.0 мА макс.
GSM/DCS RX	0B	0B	< 0.1 мА

В Si4205 интегрированы три малошумящего усилителя с дифференциальными входами. Вход GSM поддерживает диапазон GSM 850 (869-849 МГц) или E-GSM 900 (925-960МГц). Вход DCS поддерживает диапазон DCS 1800 (1805-1880 МГц). Вход PCS поддерживает диапазон PCS 1900 (1930-1990 МГц).

Вход малошумящего усилителя согласован с выходным сопротивлением 150 Ом фильтра ПАВ при помощи внутренней согласующей LC-цепи.

Коэффициент усиления малошумящего усилителя управляется битами LNAG[1:0] и LNAC[1:0] в регистре 05h (Рис. 3-2).

Рис. 3-2. Блок-схема приемного устройства микросхемы Si4205

3. Краткая техническая информация

В. Промежуточная частота (ПЧ) и демодуляция

Квадратурный смеситель с подавлением зеркальной частоты с помощью РЧ сигнала, поступающего с синтезатора частоты (гетеродина) преобразует входной РЧ сигнал в промежуточную частоту 100 кГц. Частота РЧ гетеродина находится в пределах от 1737.8 МГц до 1989.9 МГц, и делится на 2 внутри схемы для режимов GSM 850 и E-GSM 900. Выходной сигнал смесителя усиливается при помощи аналогового усилителя с программируемым коэффициентом усиления, который управляется при помощи битов AGAIN[2:0] в регистре 05h (Рис. 3-2). Квадратурный сигнал ПЧ оцифровывается с высоким разрешением при помощи аналого-цифровой преобразователя (АЦП).

Выходной сигнал аналого-цифровой преобразователя (АЦП) трансформируется при помощи цифрового 100КГц квадратурного генератора и подается на низкочастотную часть.

Цифровая обработка сигнала и БИХ-фильтры (с бесконечной импульсной характеристикой) применяются для выбора канала с целью устранения блокировки и помех.

Полоса пропускания частот БИХ-фильтра может быть установлена в один из двух режимов: узкополосный (CSEL = 1) или широкополосный (CSEL = 0). Узкополосный режим подключает фильтр разделения каналов, входящий в состав НЧ микросхемы. После выбора канала, цифровой сигнал усиливается при помощи цифрового усилителя с программируемым коэффициентом усиления, который управляется при помощи битов DGAIN [5:0] в регистре 05h.

Усиленный выходной цифровой сигнал проходит через цифро-аналоговый преобразователь (ЦАП), а затем, дифференцированный аналоговый сигнал подается на входы RXIP, RXIN, RXQP и RXQN для сопряжения с интегральными схемами НЧ части стандартного аналогового АЦП. Сигнал, поступающий в НЧ часть, не требует специальной обработки для компенсации искажений или расширения динамического диапазона.

По сравнению с прямым преобразованием, архитектура с низкой ПЧ в гораздо большей степени устойчива к смещениям постоянной составляющей, вызываемым самопреобразованием РЧ гетеродина, искажениями второго порядка от блокирующих элементов, и помехами 1/f.

(2) Передающее устройство

Передающее устройство состоит из повышающего преобразователя сигналов I/Q НЧ части, схемы фазовой автоподстройки частоты (ФАПЧ), и двух выходных буферов приводящих в действие внешние усилители мощности (УМ). Один буфер для диапазонов GSM 850 (824-849 МГц) и E-GSM 900 (880-915 МГц), а другой для стандартов DCS 1800 (1710-1785 МГц) и PCS 1900 (1850-1910МГц).

3. Краткая техническая информация

Рис. 3-3. Блок-схема передающего устройства микросхемы Si4205

A. Модулятор промежуточной частоты

Преобразователь сигнала низкочастотной части, входящий в состав микропроцессорного набора GSM, генерирует сигналы I и Q для модулятора вектора передачи. Этот модулятор обеспечивает более 40 дБс несущей частоты и подавлению зеркальных частот, и генерирует GMSK-модулированный сигнал. Программное обеспечение позволяет устранить дифференциальные смещения постоянной составляющей сигналов I/Q низкочастотной части, вызываемые некорректной работой цифро-аналоговых преобразователей (ЦАП).

Модулятор сигнала передачи является прямоугольным. Квадратурный смеситель преобразует дифференцированные синфазные (TXIP, TXIN) и квадратурные (TXQP, TXQN) сигналы с повышением частоты при помощи гетеродина для создания SSB ПЧ сигнала, который затем фильтруется и используется для прямого соединения со схемой фазовой автоподстройки частоты (ФАПЧ).

ПЧ сигнал, генерируемый гетеродином, находится в пределах от 766 МГц до 896 МГц и делится на 2 для создания квадратурного сигнала гетеродина, предназначенного для квадратурного модулятора, результатом работы которого является ПЧ, находящаяся в пределах от 383 МГц до 448 МГц.

При работе с диапазоном E-GSM 900, для раздельного использования необходимы две разные ПЧ.

Поэтому при использовании данного диапазона, ФАПЧ ПЧ должна быть запрограммирована для каждого канала в отдельности.

B. Схема фазовой автоподстройки частоты (ФАПЧ)

ФАПЧ состоит из смесителя с обратной связью, фазового детектора, контурного фильтра и интегрированного ГУН. Несущая частота ГУН находится между диапазонами DCS 1800 и PCS 1900, и выходной сигнал делится пополам между диапазонами GSM 850 и E-GSM 900. Частота, генерируемая гетеродином, находится между 1272 МГц и 1483 МГц. Для того, чтобы

3. Краткая техническая информация

сделать возможным использование одного ГУН для РЧ гетеродина, применяется подача сигнала в верхней части диапазонов GSM 850 и E-GSM 900, и в нижней части диапазонов DCS 1800 и PCS 1900. Когда переключается диапазон, сигналы I и Q автоматически меняются местами. Так же, эти сигналы можно поменять вручную, используя бит SWAP, находящийся в регистре 03h. Фильтр низких частот находящийся перед фазовым детектором ФАПЧ уменьшает гармоническую составляющую выходных сигналов прямоугольного модулятора и смесителя с обратной связью.

Границная частота фильтра программируется битом FIF[3:0], находящимся в регистре 04h (Рис. 3-3), который рекомендуется установить в режим по умолчанию, описанный в комментарии регистра.

(3) Синтезатор частот

Рис. 3-4. Блок-схема синтезатора частоты микросхемы Si4205

В приемопередатчик Aero I интегрированы две полные системы ФАПЧ, включающие в себя генераторы ГУН, параметрические диоды, резонаторы, контурные фильтры, делители опорной частоты и делители частоты ГУН, фазовые детекторы. РЧ ФАПЧ использует два совмещенных ГУН. РЧ1 ГУН используется в режиме приема, а РЧ2 ГУН - в режиме передачи. ПЧ ФАПЧ используется только в режиме передачи. В каждый ГУН интегрирована подстроичная катушка индуктивности. Частоты РЧ и ПЧ устанавливаются программированием регистра N-Divider, NRF1, NRF2 и NIF. При установке регистра N-Divider в режим РЧ1 или РЧ2, автоматически выбирается соответствующий ГУН. Выходная частота каждого ФАПЧ рассчитывается по следующей формуле:

$$F_{out} = N \times F_\phi$$

Бит DIV2 в регистре 31h управляет программируемым делителем на входе XIN, переключая несущую частоту в режим 13 МГц или 26 МГц. В режиме приема, частота обновления фазового детектора РЧ1 ФАПЧ (f_ϕ), для диапазонов DCS 1800 и PCS 1900 должна быть запрограммирована на 100 КГц ($f_\phi = 100$ КГц), а для GSM 850 и E-GSM 900 - $f_\phi = 200$ КГц. В режиме передачи, частота обновления фазового детектора РЧ2 и ПЧ ФАПЧ постоянна ($f_\phi = 200$ КГц).

3. Краткая техническая информация

3.2 Усилитель мощности (RF3133, U400)

RF3133 является высокоэффективным усилителем с регулируемой мощностью. Модуль оснащен входом и выходом, с волновым сопротивлением 50 Ом. Встроенный регулятор мощности позволяет отказаться от направленных ответвителей, детекторных диодов, специализированных интегральных схем регулировки мощности и некоторых других схем, используемых для тех же целей+ это нововведение позволяет управлять модулем непосредственно с выхода ЦАП.

Модуль используется как РЧ выходной каскад для сотовых телефонов с диапазонами GSM 850, E-GSM 900, DCS и PCS, а так же других стандартов в диапазонах 824-849 МГц, 880-915 МГц, 1710-1785 МГц, и 1850-1910 МГц.

Встроенный регулятор мощности позволяет регулировать мощность в диапазоне свыше 37 дБ при использовании аналоговой подачи напряжения (TX_RAMP)+ и отключение питания для режима ожидания при получении логического нуля. (TX_ENABLE).

Внешнее управление (BAND_SELECT) используется для выбора диапазона GSM или DCS при получении логической единицы или нуля. Логический нуль включает режим диапазона GSM, а логическая единица включает режим диапазона DCS.

Рис. 3-5. Функциональная блок-схема RF3133

3. Краткая техническая информация

3.3 Тактовый генератор частоты 13 МГц

Генератор частоты 13 МГц (X400) содержит ТГУН (термокомпенсированный генератор управляемый напряжением), генерирующий частоту 13 МГц. Эта частота используется Si4205, аналоговым процессором (U101, AD6521), цифровым процессором (U100, AD6525) и синтезатором MIDI (U200).

Рис. 3-6. Схема ТГУН

3.4 Питание РЧ схем

РЧ схемы используют два стабилизатора. Один из них – MIC5255 (U402), а другой – один из выходов ADP3522 (U301).

MIC5255 (U402) подает напряжение на приемопередатчик (Si4205, U401).

Один из выходов ADP3522 обеспечивает питание ТГУН (X400).

Основное питание (VBAT) с батареи подается на усилитель мощности (RF3133, U400), так как он требует высокой мощности.

Таблица 3-2. Источники питания РЧ схем.

Стабилизатор	Напряжение	Питаемые элементы	Разрешающий сигнал
U402	2.85В	U401	RF_EN
U301	2.75В	X400	
Батарея	3.4~4.2В	U400	

3. Краткая техническая информация

Рис. 3-7. Схема U402

3.5 Цифровой центральный процессор (AD6525, U100)

(1) Общая блок-схема

Рис. 3-8. Блок-схема AD6525

3. Краткая техническая информация

Архитектура AD6525 схематически изображена на рисунке 3-8. AD6525 состоит из трех основных подсистем соединенных друг с другом динамической и гибкой сетью.

Процессор имеет встроенную память RAM (Статическая память RAM) и интерфейсы с внешней флэш-памятью, функциями НЧ конвертора, такими функциями как пользовательский интерфейс (MMI), служебный интерфейс (SIM) и универсальный системный разъем (USC).

Подсистема обработки цифровых сигналов (DSP) предназначена для обработки речи, компенсации помех и работы с функциями кодеков канала. Программное обеспечение, призванное осуществлять такого рода функции, может храниться во внешней флэш-памяти и по желанию в любой момент быть загружено в ОЗУ DSP и в кэш инструкций.

Подсистема микроконтроллера поддерживает все возможности программного обеспечения GSM, включая 1, 2 и 3 уровня протоколов GSM, Пользовательский интерфейс (MMI) и прикладных приложений. Подсистема микроконтроллера содержит статическую память RAM, а так же загрузочную ROM память, которая содержит специализированное программное обеспечение, предназначенное для инициализации внешней флэш-памяти, загружаемое через последовательное соединение.

Периферийная подсистема включает в себя такие функциональные элементы, как контроллер прерывания, часы реального времени, следящий таймер, управление питанием и модули синхронизации и управления. Она так же содержит внешний интерфейс, состоящий из таких элементов как: клавиатура, контроль заряда батареи, радио и дисплей. Как подсистема обработки цифровых сигналов (DSP), так и микропроцессор (MCU) могут использовать периферийную подсистему, получая к ней доступ через шину PBUS.

MCU и подсистема обработки цифровых сигналов имеют доступ к встроенной статической памяти, а так же внешней памяти, такой, как, например, флэш-память, чтобы иметь возможность сохранять программное обеспечение и другие данные. Доступ к статической памяти организован через шину RAM (RBUS), под управлением логики модуля прямого доступа к памяти и общейшине (DMA and BUS ARBITRATION). Так же, доступ к флэш-памяти организован через параллельную внешнюю шину (EBUS).

3. Краткая техническая информация

Рис. 3-9. Межэлементные соединения внешнего интерфейса AD6525

3. Краткая техническая информация

(2) Межэлементные соединения с внешними устройствами

A. Интерфейс блока часов реального времени

Управляется внешним квartzевым генератором (MC-146, X100) частотой 32,768 КГц.

B. Интерфейс ЖК-дисплея

Управляется сигналами LCD_CS, LCD_RES, ADD1, WR, DATA[0:15], LCD_DIM и LCD_ID.

Таблица 3-3 Интерфейс ЖК-дисплея

	Описание
LCD_CS	Запуск микросхемы ЖКД. ИС запуска ЖКД имеет свой вывод управляющего сигнала.
LCD_RES	Сброс данных модуля ЖКД.
ADD1	Этот вывод определяет, являются ли поступающие на модуль ЖКД данные управляющими, либо данными дисплея. ADD1 производит выбор 16-разрядной параллельной шины. ADD1 также используется для обращения к флэш-памяти.
WR	Управление записью
DATA[0:15]	Параллельные информационные линии . Микросхема запуска цветного ЖКД использует 16-разрядный информационный интерфейс.
LCD_DIM	Управляющий сигнал для ИС, запускающей белый светодиод подсветки.
LCD_ID	Зарезервировано для использования в будущем

C. Интерфейс РЧ части

AD6525 осуществляет управление РЧ компонентами с помощью сигналов RF_EN, ANT_SW1/2, PA_EN, PA_BAND, PDNB, S_EN, S_DATA, AND S_CLK.

Таблица 3-4 Интерфейс РЧ части

Вывод	Наим. сигнала	Описание
4	RF_EN	Вкл./выкл. РЧ части
9	ANT_SW1	Выбор диапазона антенного переключателя
11	ANT_SW2	Выбор диапазона антенного переключателя
16	PA_EN	Вкл./Выкл. Усилитель мощности
17	PA_BAND	Выбор диапазона усилителя мощности
18	PDNB	Ввод сигнала отключения питания
19	S_EN	Вход разрешения последовательной шины

3. Краткая техническая информация

Вывод	Нам. сигнала	Описание
20	S_DATA	Вход данных последовательной шины
21	S_CLK	Вход синхронизации последовательной шины

D. Интерфейс модуля идентификации абонента (SIM)

Когда телефон включен, AD6525 периодически проверяет наличие SIM-карты. Однако когда телефон находится в режиме глубокого сна, проверки не происходит.

Управляющие сигналы: SIM_DATAOP, SIM_CLK, SIM_RST, SIM_EN.

Таблица 3-5 Интерфейс модуля идентификации абонента (SIM)

	Описание
SIM_DATAOP	Через этот вывод осуществляется обмен данными с SIM-картой. Данная модель поддерживает только SIM-карты с интерфейсом 3,0 В.
SIM_CLK	Тактовый генератор частоты 3.25МГц.
SIM_RST	Сброс данных блока SIM-карты.
SIM_EN	Включение блока SIM-карты.

E. Интерфейс клавиатуры.

Состоит из 5 вертикальных (KEYCOL[0:4]) и 5 горизонтальных (KEYROW[0:4]) рядов. AD6525 определяет нажатую кнопку по сигналу прерывания.

F. Интерфейс ADP3522 (PMIC, U301)

Интерфейс PMIC (ИС управления питанием) поддерживает 4 сигнала

Таблица 3-6 Интерфейс PMIC

	Описание
CHRDET	Данный вывод активен, когда подключено зарядное устройство.
CHG_EN	Включение режима заряда батареи
EOC	PMIC активирует данный вывод, когда VBAT достигает 4.2В.
GATE_EN	Управляющий сигнал с AD6525 на зарядку никель-металлогидридных батарей. Не используется.

3.6 Аналоговый центральный процессор (AD6521, U101)

(1) Блок-схема

Рис. 3-10. Функциональная блок-схема AD6521

3. Краткая техническая информация

(2) Блок НЧ передатчика

Данный блок генерирует синфазные и квадратурные НЧ модулированные GMSK сигналы ($BT = 0,3$) в соответствии с техническими требованиями Фазы 2 GSM 05.05

Передающие каналы состоят из цифрового GMSK модулятора, согласованной пары 10-битных ЦАП, и согласованной пары восстанавливающих фильтров

Передающие каналы: TXIP, TXIN, TXQP, TXQN и RAMPDAC.

(3) Блок НЧ приемника

Данный блок состоит из 2-х идентичных АЦП каналов, которые обрабатывают синфазные (I) и прямоугольные (Q) входные сигналы.

Каждый канал состоит из фильтра грубой очистки входного сигнала, реализованного на переключаемом конденсаторе, после которого следует сигма-дельта-модулятор высшего разряда и цифровой фильтр низких частот.

АЦП каналы: RXIP, RXIN, RXQP и RXQN.

(4) Вспомогательный блок

Данный блок состоит из 2-х вспомогательных ЦАП (AFC DAC, IDAC) для управления системой.

Участок также включает вспомогательный АЦП и источник базового напряжения.

Вспомогательный АЦП (AUX ADC): 6 каналов 10 бит

АПЧ ЦАП (AFC DAC): 13 бит

ЦАП I-сигнала (IDAC): 10 бит

(5) Блок обработки речевого сигнала

Получает звуковой сигнал с микрофона. Телефон использует дифференциальную конфигурацию.

Посыпает звуковой сигнал на динамик. Телефон использует дифференциальную конфигурацию.

Связывает между собой такие внешние устройства как микрофон, динамик, наушник и гарнитуру через VINNORP, VINNORN, VOUTNORP, VOUTNORN, VINAUXP,

VINAUXN, VOUTAUXP и VOUTAUXN

VINNORP, VINNORN : Положительный/отрицательный вывод главного микрофона.

VOUTNORP, VOUTNORN : Положительный/отрицательный вывод главного динамика устройства.

VINAUXP, VINAUXN : Положительный/отрицательный вывод микрофона гарнитуры.

VOUTAUXP, VOUTAUXON : Положительный/отрицательный вывод динамика гарнитуры.

3. Краткая техническая информация

Рис. 3-11. Схема соединений AD6521.

3. Краткая техническая информация

3.7 Интегральная схема управления питанием (ADP3522, U301)

Блок-схема

Рис. 3-12. Блок-схема ADP3522.

3. Краткая техническая информация

Таблица 3-7 Стабилизированные напряжения ADP3522.

	Описание
VSIM	2.85В (Подается на SIM-карту)
VCORE	1.8В (Подается на цифровое ядро AD6525 и AS6521)
VRTC	2.0В (Подается к часам реального времени и резервной батарее)
VAN	2.55В (подается к вводу/выводу AD6521 и используется для подачи напряжения смещения микрофона)
VTCXO	2.75В (Подается на флэш-память)
VMEM	2.8В (Подается на флэш-память)

Последовательность включения

При подключенном батарее, питание подается на 6 стабилизаторов напряжения.

При обнаружении сигнала PWRONKEY, стабилизаторы начинают выдавать стабилизированные напряжения.

Выдается разрешающий сигнал REFOUT и посыпается сигнал сброса на процессор AD6525.

Блок стабилизации напряжений

ADP3522 содержит 6 стабилизаторов напряжений.

Процесс зарядки

1. Проверка наличия подключенного зарядного устройства.
2. Если ADP3522 определяет, что зарядное устройство подключено, начинается процесс зарядки постоянным током-постоянным напряжением.
3. Исключение: Если напряжение батареи ниже 3.2В, сначала включается режим предварительной зарядки (зарядка малым током). После того, как уровень напряжения батареи достигает 3.2В, включается процесс зарядки постоянным током-постоянным напряжением.

Блок зарядки батареи

Блок может быть использован для зарядки ионно-литиевых и никеле-металлогидридных батарей. В данной модели телефона используются только ионно-литиевые батареи. Аппаратура выполняет управление инициализацией зарядного устройства, процессом непрерывной подзарядки малым током, зарядкой ионно-литиевой батареи.

Выводы используемые при зарядке

CHGDET: Сигнал прерывания AD6525 при обнаружении подключенного зарядного устройства.

CHG_EN: Управляющий сигнал AD6525 на зарядку батареи.

EOC: Сигнал, посыпаемый на AD6525 когда батарея полностью заряжена.

GATE_EN: Управляющий сигнал AD6525 на зарядку никеле-металлогидридной батареи. Не используется.

3. Краткая техническая информация

Зарядное устройство

Входное напряжение : Переменное напряжение: 110В ~ 240В, 50~60Гц

Выходное напряжение : Постоянное напряжение: 5.2В (0.2В)

Выходной ток : Макс. 800mA/ч

Батареи

Ионно-литиевая батарея : Макс. 4.2В, Ном. 3.7В

Стандартная батарея : Емкость – 950mA/ч, Ионно-литиевая

3.8 Память (U300)

Память состоит из 128Мбит флэш-памяти и 32Мбит псевдостатической памяти RAM. Она содержит 16-битную параллельную шину данных и 22-битную адресную шину.

Флэш-память содержит программное обеспечение, данные РЧ калибровки, звуковые параметры и параметры калибровки батареи.

Рис. 3-13. Блок-схема модуля памяти.

3. Краткая техническая информация

Таблица 3-8. Описание выводов модуля памяти U300.

A-1, A0 to A21	Адресная шина
DQ0 to DQ15	Двунаправленная шина данных
CE1ps, CE2ps	Сигнал разрешения для псевдостатической памяти RAM
CEf1, CEf2	Сигнал разрешения для флэш-памяти
OE	Разрешение считывания
WE	Разрешение записи
LB, UB	Управляющие биты для псевдостатической памяти
WP / ACC	Сигнал Вкл./Выкл. защиты от записи флэш-памяти
RESET	Аппаратный сброс флэш-памяти
BYTE	Выбор типа данных для флэш-памяти (Word/Byte)
RY / BYf	Сигнал готовности/занятости флэш-памяти
Vccps	Питание псевдостатической памяти RAM
Vccf	Питание флэш-памяти
Vss	Заземление
DU	Не используется
NC	Не подключен

3.9 ЖК-дисплей и подсветка ЖКД

(1) Характеристики ЖК дисплея

Режим дисплея: ЖК-дисплей просветный 65000 цветов по технологии STN

Глубина цвета: 32 (Красный) * 64 (Зеленый) * 32 (Синий) = 65000 цветов

Разрешение: Цветная матрица 128 * 128 точек RGB

Интерфейс: 80-битный последовательный MPU интерфейс

Шина данных: 16-битный параллельный интерфейс

Коэффициент заполнения: 1/96 для цветного дисплея

Угол обзора: 180°

Процессор ЖК-дисплея: S6B33B2 (Производство SEC)

Размер памяти дисплея: 132 x 16 x 162 = 342.144.000 бит для цветного дисплея

Управляющие сигналы описаны в таблице 3-3.

3. Краткая техническая информация

(2) Подсветка ЖК дисплея

Подсветкой ЖК-дисплея управляет микросхема U600, которая в свою очередь управляет микропроцессором AD6525 при помощи сигнала LCD_DIM. Микросхема снабжается питанием от напряжения VBAT.

Рис. 3-14. Схема подключения микросхемы управляющей подсветкой ЖК-дисплея.

3.10 Кнопки клавиатуры и подсветка клавиатуры

(1) Кнопки клавиатуры

На нижней части кнопок нанесено металлическое покрытие, которое при нажатии создает контакт между двумя концентрическими дорожками на плате клавиатуры.

Клавиатура состоит из 21 клавиши (KB500-KB522), подключенной к печатной плате (матрице 5 рядов, 5 колонок), как показано на рисунке, за исключением кнопки выключения питания (KB500), которая подключена отдельно. Ряды и колонки клавиатуры подключены к контактам микропроцессора AD6525. Колонки являются выводами, тогда как ряды являются вводами и содержат встроенные нагрузочные резисторы. При нажатии клавиши, соответствующие ряд и колонка соединяются, сопротивление цепи уменьшается, и на вводе ряда появляется сигнал. Ряды и колонки постоянно сканируются микропроцессором AD6525 на предмет нажатия клавиши.

3. Краткая техническая информация

Рис. 3-15. Схема подключения клавиатуры.

3. Краткая техническая информация

(2) Подсветка клавиатуры

Подсветка клавиатуры осуществляется при помощи 6 голубых светодиодов, управляемых сигналом KEY_BACKLIGHT микропроцессора AD6525.

Рис. 3-16. Схема подключения подсветки клавиатуры.

3. Краткая техническая информация

3.11 Микрофон

Микрофон расположен на передней части корпуса и подключен к основной плате. Аудиосигнал проходит на контакты VINNORP и VINNORN микропроцессора AD6521. Подача напряжения осуществляется с вывода 2V55_VAN микросхемы ADP3522. Это напряжение является напряжением смещения VINNORP.

Сигналы VINNORP и VINNORN преобразуются в АЦП речевого канала микропроцессора AD6521.

Оцифрованный речевой сигнал передается в модуль цифрового процессора сигналов микропроцессора AD6525 и обрабатывается (Кодируется, уплотняется и т.д.).

Рис. 3-17. Схема подключения микрофона.

3.12 Двухрежимный динамик и ИС синтезатора MIDI

(1) Двухрежимный динамик

В аппарате используется двухрежимный динамик. Для переключения между режимом звонка и режимом громкоговорителя используется управляющий сигнал (SPK_RCV_EN). Сигнал генерируется микропроцессором AD6525 и управляет аналоговым переключателем (U201). Двухрежимный динамик расположен на передней части корпуса и подключен к основной плате.

A. Режим громкоговорителя

Двухрежимный динамик, в режиме громкоговорителя, использует управляющие сигналы VOUTNORP и VOUTNORN, подаваемые через аналоговый переключатель (U201) микропроцессором AD6521. Коэффициент усиления регулируется PGA микропроцессора AD6521.

3. Краткая техническая информация

В. Режим звонка

Двухрежимный динамик, в режиме звонка, использует управляющие сигналы SPOUT1 и SPOUT2 подаваемые через аналоговый переключатель (U201) микросхемой YM759B (U200).

Рис. 3-18. Схема подключения двухрежимного динамика.

3. Краткая техническая информация

(2) Микросхема синтезатора MIDI (YMU759B, U200)

Телефон использует микросхему, способную воспроизводить громкий и мелодичный звук. Схема использует 6 управляющих сигналов (MIDI_RST, ADD0, RD, MIDI_CS, WR, MIDI_INT), подаваемых микропроцессором AD6525 для управления микросхемой синтезатора.

Мелодия в цифровом виде (DATA[8:15]) передается на микросхему синтезатора и проигрывается с помощью двухрежимного динамика.

Для питания микросхемы синтезатора используется внешний стабилизатор на 3.3В (U202), так как максимальный выходной ток аналогового усилителя синтезатора составляет 300mA.

Рис. 3-19. Схема подключения ИС MIDI синтезатора и внешнего стабилизированного питания.

3. Краткая техническая информация

3.13 Интерфейс разъема гарнитуры

Разъем гарнитуры состоит из 3-х контактов: Receiver+ (Наушник), Mic+ (Микрофон), и GND (Заземление).

Этот тип обычно поддерживает только несимметричную конфигурацию аудио канала (VOUTAUXP для динамика гарнитуры VINAUXP для микрофона гарнитуры).

Интерфейс разъема поддерживает два управляющих сигнала. Один - JACK_DETECT, предназначенный для определения наличия подключенной гарнитуры, второй - HOOK_DETECT определяет, нажата ли кнопка гарнитуры. Контакты (JACK_DETECT и HOOK_DETECT) ведут к микропроцессору AD6525.

Рис. 3-20. Схема подключения интерфейса гарнитуры.

3.14 Описание блока Bluetooth

Рисунок 3-21 Блок-диаграмма модуля Bluetooth

1. Общее описание

ARM-450-2CSP(M1) - модуль Bluetooth. Bluetooth содержит радиоблок и блок управления соединения с НЧ частью. Он содержит микросхему приемопередатчика Bluetooth, EEPROM, генератор (X-tal), а согласующее устройство (Balun) и полосовой фильтр. Компоненты разработаны для поверхностного монтажа и использования в мобильных устройствах. Они полностью совместимы с системой Bluetooth для передачи данных и голоса. Физический интерфейс хоста UART поддерживает полную скорость передачи данных Bluetooth 723.2к/57.6 кбит/с. Доступен синхронный двунаправленный аудиоинтерфейс с кодеками A-Law, -Law, 13 бит или 16 бит PCM, 8 к отсчетов в секунду.

Блок Bluetooth содержит интегральную antennу (ANT1)

2. ИМС Bluetooth (трансивер)

BC03-CSP - однокристальный трансивер системы беспроводной технологии Bluetooth 2.4 ГГц. Поддерживается 2-й класс мощности излучения без установки внешнего усилителя или Tx/Rx переключателя. Передатчик преобразует информацию НЧ части в ЧМ ВЧ сигнал. Скачкообразное изменение частоты и формирование импульса происходит на этом же уровне. Для передачи, эти сигналы от ГУН модулятора смешиваются, формируя оконечный РЧ сигнал. В приемнике находится обычный частотный дискриминатор или IQ преобразователь совмещенный с АЦП.

3. Краткая техническая информация

1. Описание

ABM-450-2CSP(M1) : модуль bluetooth

NLAS4717FCT1(U601) : Аналоговый переключатель для переключения управляющих сигналов.

BH28FB1WHFV(U603) : подает питание на блок bluetooth.

TC7SH08FS(U602) : ИКМ конвертор тактовой частоты для bluetooth (до 8 кГц)

2. Спецификация

- Bluetooth™ V1.1 или совместим с 1.2
- Мощность излучения +4 дБм (Класс 2)
- Напряжение 1.8В до 3.6В
- Полная скорость передачи данных Bluetooth через USART
- Поддержка двунаправленного порта USART
- Сверхнизкое энергопотребление

4. Обнаружение и устранение неисправностей

4. Обнаружение и устранение неисправностей

4.1 Компоненты РЧ части

Рис. 4-1

Таблица 4-1

Обозначение	Описание	Обозначение	Описание
SW400	Мобильный переключатель	U400	Модуль усилителя мощности
FL400	Антенный переключатель	U401	Приемопередатчик
FL401	Фильтр ПАВ для GSM	U402	Стабилизатор напряжения
FL402	Фильтр ПАВ для DCS	X400	ТГУН

4. Обнаружение и устранение неисправностей

4.2 Неисправности приемника

Рис. 4-2.

4. Обнаружение и устранение неисправностей

4.2.1 Проверка цепи стабилизатора

Рис. 4-3.

График 4-1

4. Обнаружение и устранение неисправностей

4.2.2 Проверка цепи ТГУН

Рис. 4-4.

График 4-2

График 4-3

4. Обнаружение и устранение неисправностей

4.2.3 Проверка управляемых сигналов ФАПЧ

Рис. 4-5.

График 4-4

График 4-5

4. Обнаружение и устранение неисправностей

4.2.4 Проверка антенного и мобильного переключателей

Рис. 4-6.

Таблица 4-2

ANT SW	VC1	VC2
DCS TX	0	1
EGSM TX	1	0
EGSM, DCS RX	0	0

4. Обнаружение и устранение неисправностей

4.2.5 Проверка ПАВ фильтра

Рис. 4-7.

4. Обнаружение и устранение неисправностей

4.2.6 Проверка I/Q сигналов приемной части

Рис. 4-8.

График 4-6

4. Обнаружение и устранение неисправностей

4.3 Неисправности передатчика

Рис. 4-9.

4. Обнаружение и устранение неисправностей

4.3.1 Проверка цепи стабилизатора

Рис. 4-10

График 4-7

4. Обнаружение и устранение неисправностей

4.3.2 Проверка цепи ТГУН

Рис. 4-11

График 4-8

График 4-9

4. Обнаружение и устранение неисправностей

4.3.3 Проверка управляющих сигналов ФАПЧ

Рис. 4-12

График 4-10

График 4-11

4. Обнаружение и устранение неисправностей

4.3.4 Проверка IQ сигналов передающей части

Рис. 4-13

График 4-12

4. Обнаружение и устранение неисправностей

4.3.5 Проверка управляющего сигнала усилителя мощности

Рис. 4-14

График 4-13

4. Обнаружение и устранение неисправностей

4.3.6 Проверка антенного и мобильного переключателей

Рис. 4-15

Для выполнения этой проверки требуется режим «Stand alone»
Обратитесь к главе 00 (PL=7 для GSM, PL=2 для DCS)

Таблица 4-3.

ANT SW	VC 1	VC2
DCS TX	0	1
EGSM TX	1	0
EGSM, DCS RX	0	0

4. Обнаружение и устранение неисправностей

График 4-14 DCS TX

График 4-15 EGSM TX

4. Обнаружение и устранение неисправностей

4.4 Неисправности при включении

Установки : подсоедините PIF, и установите переключатель в режим выключенного PIF.
• Обратитесь к рис. 4-16.

4. Обнаружение и устранение неисправностей

Рис. 4-16.

4. Обнаружение и устранение неисправностей

4.5 Неисправности зарядки

Установки : Подключите батарею (3.4 ~4В) и зарядное устройство

4. Обнаружение и устранение неисправностей

Рис. 4-17

4. Обнаружение и устранение неисправностей

4.6 Неисправности ЖК-дисплея

Рис. 4-18

Рис. 4-19

4. Обнаружение и устранение неисправностей

4.7 Неисправности громкоговорителя

Рис. 4-20.

4. Обнаружение и устранение неисправностей

4.8 Неисправности динамика

Установки : Подсоедините PIF к телефону, и включите. Войдите в режим настройки и установите опцию “Melody on” в режим Buzzer в меню BB test.

4. Обнаружение и устранение неисправностей

Рис. 4-21.

4. Обнаружение и устранение неисправностей

4.9 Неисправности микрофона

Рис. 4-22.

Рис. 4-23.

4. Обнаружение и устранение неисправностей

4.10 Неисправности виброзвонка

Установки : После инициализации Agilent 8960, проверка EGSM, подключите PIF к телефону, и включите питание. Войдите в режим настройки и установите опцию “Vibrator on” в режим Vibration в меню BB test.

4. Обнаружение и устранение неисправностей

Рис. 4-24.

4. Обнаружение и устранение неисправностей

4.11 Неисправность подсветки клавиатуры

УСТАНОВКА: Подключить PIF к телефону и включить его. Войти в инженерное меню и включить подсветку “Backlight on” в меню “BB test-Backlight”

Рис. 4-25.

Рис. 4-26

4. Обнаружение и устранение неисправностей

4.12 Неправильное определение SIM-карты

Установки: Вставьте SIM-карту в J301. Подключите PIF к телефону, и включите питание.

Рис. 4-27. Контакт. 1

4. Обнаружение и устранение неисправностей

4.13 Неисправности гарнитуры

4. Обнаружение и устранение неисправностей

Рис. 4-28.

Рис. 4-30.

Рис. 4-29.

4. Обнаружение и устранение неисправностей

Рисунок 4-31

4. Обнаружение и устранение неисправностей

5. ИНСТРУКЦИЯ ПО РАЗБОРКЕ

5. ИНСТРУКЦИЯ ПО РАЗБОРКЕ

5. ИНСТРУКЦИЯ ПО РАЗБОРКЕ

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

6.1 Загрузка программного обеспечения

А. Подключение оборудования для загрузки ПО

Рис. 6-1 описывает процесс подключения.

Рис. 6-1. Подключение оборудования для загрузки ПО

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

В. Процесс загрузки ПО

1. Войти в программу загрузки флэш-памяти в компьютере (Floader), щелкнуть на «Erase». (Не отмечайте пункт OWCD)

2. Нажмите «Start» и подождите, пока закончится стирание.

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

3. Измените адрес и размер (Адрес : 18000000, Размер : 0x800000), и нажмите «Start», затем подождите пока операция не закончится снова (Alchemy 8W8Cerase)

4. Нажмите «Write» для начала загрузки, а затем клавишу «...», чтобы выбрать нужное ПО (AlchemyData.mot)

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

5. Выбор программного обеспечения для загрузки

6. Подождите окончания процесса конвертирования из MOT в BIF (Не отмечайте пункт OWCD)

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

7. Нажмите «Start» и «Power» на телефоне, используя при использовании выносного включения питания телефона на JIG. (переключатель 1)

8. Дождитесь завершения передачи данных

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

9. Нажмите кнопку «Write», чтобы начать загрузку программного обеспечения, и кнопку «...», чтобы выбрать нужный файл (CodeData.mot).

10. Выбор ПО

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

11. Дождитесь завершения передачи данных

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

6.2 Калибровка

A. Необходимое оборудование

Таблица 6-1. Список необходимого оборудования для калибровки

Оборудование для калибровки	Тип/Модель	Производитель
Набор для тестирования беспроводной связи	HP-8960	Agilent
Кабель RS-232 и JIG		LG
РЧ кабель		LG
Источник питания	HP-66311B	Agilent
Интерфейсная карта GPIB	HP-GPIB	Agilent
ПО для калибровки и финального тестирования		LG
Проверочная SIM-карта	Pentium II не менее	
ПК (Для установки ПО)	300МГц	

B. Подключение оборудования

Набор для тестирования GSM (8960)

Рис. 6-2.

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

Рис 6-3. JIG. Вид сверху.

C. Работа с Jig

Таблица 6-2. Оборудование для калибровки

Источник питания	Описание
Источник питания	Обычно 4.0В
Зарядное устройство	Используйте зарядное устройство TA-20G (24 контакта)

Таблица 6-3. Оборудование для калибровки

Номер переключателя	Наименование	Описание
Переключатель 1	ADI-REMOTE	В положении «ON», телефон переходит в активное состояние. Используется чипсет ADI.
Переключатель 2	TI-REMOTE	В положении «ON», телефон переходит в активное состояние. Используется чипсет TI
Переключатель 3	VBAT	Телефон питается от батареи
Переключатель 4	PS	Телефон питается от источника питания

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

Таблица 6-4. Оборудование для калибровки

№ светодиода	Наименование	Описание
Светодиод 1	Power	Подача питания на JIG
Светодиод 2	TA	Индикация уровня зарядки батареи телефона
Светодиод 3	UART	Индикация состояния передачи данных через порт UART
Светодиод 4	MON	Индикация состояния передачи данных через порт MON

1. Подключите, как показано на рисунке 6-2 (последовательный кабель RS232 должен соединять COM порт ПК и MON порт JIG)
2. Установите напряжение питания 4.0В
3. Установите 3 и 4 микропереключатели DIP в положение «ON»
4. Нажмите кнопку включения питания телефона, если используется дистанционное включение питания – установить 1-й микропереключатель DIP в положение «ON»

D. Процесс калибровки

1. Подключите, как показано на рисунке 6-2 (последовательный кабель RS232 должен соединять COM порт ПК и MON порт JIG)
2. Когда компьютер запущен, загрузите Windows 98 Замечание: Программа может не работать под Windows 2000
3. Запустите файл AUTOCAL.exe, откроется окно программы AUTOCAL.

7. БЛОК-СХЕМА

7. БЛОК-СХЕМА

RF block = РЧ модуль

Vibrator = Виброзвонок

LCD Module = Модуль ЖК-дисплея

Digital Baseband processor = Цифровой процессор НЧ части

Charging block = Блок зарядки

Battery = Батарея

Voiceband baseband codec = Модуль обработки речи НЧ части

Flash memory = Флэш-память

SRAM = Статическая память RAM

MIDI block = Блок MIDI синтезатора

SIM connector = Подключение SIM-карты

7. БЛОК-СХЕМА

I/O connector = Канал ввода/вывода

Analog switch = Аналоговый переключатель

MIC = Микрофон

Speaker = Динамик

Accessory = Дополнительное оборудование

Charging = Зарядка

Audio downlink path = Канал вывода звукового сигнала

Audio uplink path = Канал ввода звукового сигнала

Note.

8. ПРИНЦИПИАЛЬНАЯ СХЕМА

8. ПРИНЦИПИАЛЬНАЯ СХЕМА

8. ПРИНЦИПИАЛЬНАЯ СХЕМА

8. ПРИНЦИПИАЛЬНАЯ СХЕМА

8. ПРИНЦИПИАЛЬНАЯ СХЕМА

8. ПРИНЦИПИАЛЬНАЯ СХЕМА

9. ТОПОЛОГИЯ ПЕЧАТНОЙ ПЛАТЫ

G1610-BLUETOOTH-REV1.0-TOP

9. ТОПОЛОГИЯ ПЕЧАТНОЙ ПЛАТЫ

G1610-BLUETOOTH-REV1.0-BTM

10. ИНЖЕНЕРНОЕ МЕНЮ

A. Зачем нужен режим настройки

Режим настройки существует для использования обслуживающим персоналом в целях проведения тестирования основных функций сотового телефона.

B. Последовательность клавиш для входа в режим настройки

Чтобы войти в режим настройки, необходимо ввести следующую последовательность символов: 2945#*#. Нажатие клавиши «END» снова вернет телефон в обычный режим.

C. Кнопки навигации

Используйте клавиши «Вверх» и «Вниз» для выбора пункта меню и клавишу «Select» для перехода к выбранному тесту. Нажатие клавиши «END» вернет вас в главное меню режима настройки.

10.1 Тест НЧ части [Пункт меню 1]

Тест НЧ части

A. ЖКД [1-1]

Этот пункт предназначен для тестирования контраста ЖК-дисплея.

- Уровень контраста [1-1-1] : Вы можете изменять это значение при помощи клавиш «Вверх» и «Вниз».

B. Подсветка [1-2]

Этот пункт предназначен для тестирования подсветки ЖК-дисплея и клавиатуры.

- Вкл. подсвтку [1-2-1] : Подсветка ЖК-дисплея и клавиатуры одновременно зажигаются.
- Выкл. подсвтку [1-2-2] : Подсветка ЖК-дисплея и клавиатуры одновременно гаснут.
- Яркость подсветки [1-2-3] : Этот пункт регулирует яркость подсветки. Уровень яркости подсветки будет отображаться на экране. Используйте клавиши «Влево» и «Вправо», чтобы изменить уровень яркости подсветки. Уровень яркости, установленный в этом пункте будет сохранен в памяти NVRAM.

C. Зуммер [1-3]

Этот пункт позволяет протестировать функцию проигрывания мелодий.

- Вкл. мелодию [1-3-1] : Мелодия проигрывается через динамик.
- Выкл. мелодию [1-3-1] : Прекращает проигрывание мелодии.

10. ИНЖЕНЕРНОЕ МЕНЮ

D. Виброзвонок [1-4]

Этот пункт предназначен для тестирования виброзвонка.

- Вкл. виброзвонок [1-4-1] : Включает виброзвонок.
- Выкл. виброзвонок [1-4-2] : Выключает виброзвонок.

E. АЦП [1-5]

Отображает значение каждого АЦП.

- MVBAT ADC (АЦП основной батареи) [1-5-1]
- AUX ADC (Вспомогательный АЦП) [1-5-2]
- TEMPER ADC (АЦП датчика температуры) [1-5-3]

F. Батарея [1-6]

- Bat Cal [1-6-1] : Калибровка батареи.

Отображает следующие пункты+ BATLEV_4V, BATLEV_3LIMIT,
BATLEV_2LIMIT, BATLEV_1LIMIT, BATIDLELIMIT, BATINCALLLIMIT,
SHUTDOWN_VOLTAGE, BATRECHARGE_LMT

- TEMP Cal [1-6-2] : Калибровка температуры.

Отображает следующие пункты+ TEMP_HIGH_LIMIT,
TEMP_HIGH_RECHARGE_LMT, TEMP_LOW_RECHARGE_LMT,
TEMP_LOW_LIMIT

G. Звук [1-7]

Устанавливает управляющий регистр кодека речевой обработки чипа НЧ части.

В случае, если не будут установлены приемлемые значения, после выключения и включения телефона, будут установлены значения по умолчанию.

- VbControl1 [1-7-1] : VbControl1 bit Register Value Setting
- VbControl2 [1-7-2] : VbControl2 bit Register Value Setting
- VbControl3 [1-7-3] : VbControl3 bit Register Value Setting
- VbControl4 [1-7-4] : VbControl4 bit Register Value Setting
- VbControl5 [1-7-5] : VbControl5 bit Register Value Setting
- VbControl6 [1-7-6] : VbControl6 bit Register Value Setting

H. DAI (Digital Audio Interface) [1-8]

Позволяет устанавливать режим цифрового аудио интерфейса для транскодера речи, а также тестирования акустических данных телефона.

- DAI AUDIO [1-8-1] : Аудио режим DAI
- DAI UPLINK [1-8-2] : Тестирование кодирования речи
- DAI DOWNLINK [1-8-3] : Тестирование декодирования речи
- DAI OFF [1-8-4] : Выключение режима DAI

10.2 Тест РЧ части [Пункт меню 2]

Тестирование радио частоты

A. SAR Test [2-1]

Пункт позволяет тестировать показатель удельной мощности поглощения.

- **SAR Test On [2-1-1]** : Непрерывно работает передающее устройство телефона.
Специального оборудования не требуется.
- **SAR Test Off [2-1-2]** : Передающее устройство выключено

10.3 Режим MF [Пункт меню 3]

Этот режим предназначен для автоматического тестирования НЧ части. Выбор этого пункта меню запустит тест, который пройдет в автоматическом режиме. По окончании теста телефон вернется в главное меню.

A. Полное автоматическое тестирование [3-1]

Запускает одновременное автоматическое тестирование ЖК-дисплея, светодиодов, подсветки, виброзвонка, зуммера, и клавиатуры.

B. Подсветка [3-2]

На 1.5 секунды включает одновременно подсветку ЖК-дисплея и клавиатуры. Затем подсветка отключается.

C. Зуммер [3-3]

Пункт предназначен для тестирования громкости проигрывания мелодий. Данный тест проходит в следующей последовательности: Уровень громкости 1, Уровень громкости 2, Уровень громкости 3, Уровень громкости 0 (звук отключен), Уровень громкости 4, Уровень громкости 5.

D. Виброзвонок [3-4]

Виброзвонок включается на 1.5 секунды.

E. ЖКД [3-5]

Тест предназначен для проверки разрешения ЖК-дисплея. Экран заполняется пиксельно.

10. ИНЖЕНЕРНОЕ МЕНЮ

F. Клавиатура [3-6]

При появлении сообщения «Press Any Key» (Нажмите любую клавишу), вы можете нажать любую клавишу, включая боковые клавиши, кроме кнопки [Soft2 Key]. Если клавиатура работает нормально, название клавиши отобразится на экране. Тест продолжается в течение 15 минут, затем телефон автоматически возвращается в предыдущее меню.

10.4 Трассировка [Пункт меню 4]

Этот пункт НЕ предназначен для использования как пользователями, так и обслуживающим персоналом.

10.5 Счетчик времени разговора [Пункт меню 5]

A. Все звонки [5-1]

Этот пункт отображает общую продолжительность разговоров. Пользователь не может сбросить показания этого счетчика.

B. Сброс настроек [5-2]

Этот пункт сбрасывает счетчик общей продолжительности разговоров на [00:00:00].

10.6 Сброс на заводские настройки [Пункт меню 6]

Этот пункт меню форматирует блок данных в флэш-памяти и возвращает телефон к заводским настройкам.

10.7 Версия ПО [Пункт меню 7]

Здесь отображается версия ПО, установленного в телефоне.

Внимание!

- Сброс на заводские настройки должен производиться только в процесс заводского тестирования.
Обслуживающий персонал не должен производить эту операцию, так как в итоге настройки телефона, данные калибровки и некоторые другие данные будут безвозвратно утеряны.

11. ТЕСТ «STAND ALONE»

11.1 Что такое тест «Stand alone»?

Тест «Stand alone» позволяет установить телефон в режим, когда работает только передающее устройство или только приемное устройство, для проведения их индивидуальной проверки.

1. Обычный режим работы

2. Режим «Standalone»

- Проведение «Standalone» теста приемного устройства

- Проведение «Standalone» теста передающего устройства

11. ТЕСТ «STAND ALONE»

11.2 Подключение оборудования, необходимого для проведения теста «Standalone»

11.3 Аппаратное тестирование : Установка ПО для теста «Standalone»

11. ТЕСТ «STAND ALONE»

11.4 Установки параметров «Standalone» теста передающего устройства

1. Установка оборудования в режим «Test Mode-BCH»

Пример)

Для HP8960

В окне управления

Режим работы: Тестирование

Режим тестирования: BCH

Для HP8922

Режим работы: Тестирование

2. Установка канала и питания

11. ТЕСТ «STAND ALONE»

Установки параметров «Standalone» теста передающего устройства

11. ТЕСТ «STAND ALONE»

11.5 Установки параметров «Standalone» теста принимающего устройства

1. Установка оборудования в режим «CW Mode»

Пример:

Для HP8960
В окне управления
Режим работы: Тестирование
Режим тестирования: CW

Для HP8922
Режим работы: Генератор непрерывных колебаний

2. Установка канала и источника питания

11. ТЕСТ «STAND ALONE»

Установки параметров «Standalone» теста принимающего устройства

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА

12.1 Описание

AutoCal (Auto Calibration – Автоматическая калибровка) это компьютерная программа, предназначенная для калибровки передающего и принимающего устройств с помощью Agilent 8960 или другого оборудования. AutoCal создает калибровочные данные, соединяется с телефоном и измерительным оборудованием, а затем записывает эти данные в флэш-память телефона GSM. Калиброка включает 3 пункта: калибровка АРУ принимающего устройства, АРМ передающего устройства, и АЦП батареи.

12.2. Список оборудования

Таблица 12-1. Список оборудования для калибровки.

Оборудование для калибровки	Тип/Модель	Производство
Набор для тестирования беспроводной связи	HP-8960	Agilent
Кабель RS-232 и JIG		LG
РЧ кабель		LG
Источник питания	Tektronix PS2521G	Agilent
Интерфейсная карта GPIO	HP-GPIB	Agilent
ПО для калибровки и финального тестирования		LG
Проверочная SIM-карта ПК (Для установки ПО)	Pentium II не менее 300МГц	

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА

12.3 Установка оборудования

Рис. 12-1. Установка оборудования

GPIB Cable

GSM Test Set (8960) = GSM-тестер (8960)

Mobile Switch Cable = РЧ-кабель

PC = ПК

JIG = JIG

Power Supply = Источник питания

Battery Simulator = Эмулятор батареи

TA = Зарядное устройство

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА

12.4 АРУ принимающего устройства

Установка АРУ позволяет НЧ части принимать сигнал одной и той же мощности независимо от уровня приема.

$$X \text{ (Уровень ввода)} + G \text{ (Мощность)} = Y$$

12.5 АРМ передающего устройства

Позволяет передающему устройству передавать сигнал с нужным уровнем мощности, используя информацию с базовой станции.

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА

12.6 АЦП

Это процедура предназначена для калибровки батареи.

Вы можете получить mainBatteryConfigTable и temperatureConfigTable.

12.7 Как провести калибровку

- A. Подключите телефон к последовательному порту ПК, используя интерфейсный кабель.
- B. Подключите оборудование Agilent 8960, программируемый источник питания и телефон.
- C. Нажмите кнопку «Start». Программа AutoCal автоматически проведет процедуру калибровки.
 - i. APY EGSM
 - ii. APY DCS
 - iii. APM EGSM
 - iv. APM DCS
 - v. АЦП

Note.

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

13.1 Сборочный чертеж

NO.	DESCRIPTION	Q'TY	DRAWING NO.	REMA
26	BATTERY PACK,LI-ION	1	SBPL0072162	
25	CAP,MOBILE SWITCH	1	MCCF0014201	
24	COVER,BATTERY	1	MCJA0006401	
23	COVER,REAR	1	MCJN0020401	
22	SCREW,MACHINE	6	GMZZ0001901	
21	CAP,EARPHONE JACK	1	MCCC0014001	
20	VIBRATOR,MOTOR	1	SJMY0003603	
19	PAD,MOTOR	1	MPBJ0020601	
18	ANTENNA,GSM,FIXED	1	SNGF0003901	
17	PCBASSY,MAIN	1	SAFY0119601	
16	MICROPHONE	1	SUMY0003802	
15	DOME ASSY,METAL	1	ADCA0027801	
14	GASKET,SHIELD FORM	3	MGAD0049601	
13	HOLDER,LCD		MHGD0002001	
12	PAD,LCD	1	MPBG0019503	
11	LCD	1	SVLY0018801	
10	SPEAKER	1	SUSY0006214	
9	PAD,LCD	1	MPBG0027701	
8	KEYPAD,ASSY	1	AKAZ0007301	
7	GASKET,SHIELD FORM	1	MGAD0073401	
6	TAPE,DECO	1	MTAA0061901	
5	DECO,RECEIVER	1	MDAH0010101	
4	COVER,FRONT	1	MCJK0033301	
3	TAPE,WINDOW	1	MTAD0030101	
2	DECO.FRONT	1	MDAG0008201	
1	WINDOW,LCD	1	MWAC0045901	

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

13.2 Список заменяемых деталей

<Механические детали>

Примечание: Эта глава может быть использована только для справки, заказ деталей производится по файлам SBOM сайта GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
3	SAFY00	PCB ASSY,MAIN	SAFY0119601	G1610 BAR 900/1800MHz	Red	17
4	SAFA00	PCB ASSY,MAIN,AUTO	SAFA0046101	G1610 BAR 900/1800MHz	Red	
5	ANT1	ANTENNA,MOBILE,FIXED	SNMF0008702	0 ,0 dB,CF 3880MHz ,3216 1.2T ,BLUETOOTH CHIP		
5	BAT100	CONN,JACK/PLUG, EARPHONE	ENJE0003001	2 ,2 PIN,W3000 Back Up Battery Holder		
5	C100	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C101	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C102	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C103	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C104	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C105	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C106	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C107	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C108	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C109	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C110	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C111	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C112	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C113	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C115	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C116	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C117	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C118	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C119	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C120	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C121	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C122	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C123	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C150	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C200	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C207	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C208	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C210	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C211	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C212	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C216	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C217	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C219	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C220	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C221	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C222	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C223	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C224	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C225	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C226	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C227	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C228	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C229	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C230	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C231	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C232	CAP,CERAMIC,CHIP	ECCH0000138	390 pF,50V,K,X7R,HD,1005,R/TP		
5	C233	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C234	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C235	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C236	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C237	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C238	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C239	CAP,CERAMIC,CHIP	ECCH0000379	2.2 uF,6.3V ,K ,X5R ,HD ,2012 ,R/TP		
5	C240	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C241	CAP,CERAMIC,CHIP	ECCH0003803	4.7 uF,10V ,Z ,Y5V ,HD ,2012 ,R/TP		
5	C250	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C251	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C300	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C301	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C302	CAP,TANTAL,CHIP	ECTH0002001	10 uF,10V ,M ,STD ,2012 ,R/TP		
5	C303	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C304	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C305	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C306	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C307	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C308	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C309	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C310	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C311	CAP,CERAMIC,CHIP	ECCH0000280	0.22 uF,10V ,K ,X7R ,HD ,1608 ,R/TP		
5	C312	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C313	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C314	CAP,CERAMIC,CHIP	ECCH0000280	0.22 uF,10V ,K ,X7R ,HD ,1608 ,R/TP		
5	C315	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C317	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C318	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C319	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C320	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C321	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C322	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C323	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C324	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C398	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C399	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C401	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C402	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C403	CAP,TANTAL,CHIP	ECTH0001701	10 uF,6.3V ,M ,L_ESR ,2012 ,R/TP		
5	C404	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C405	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C406	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C407	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C408	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C409	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
5	C410	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C411	CAP,CERAMIC,CHIP	ECCH0000701	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
5	C413	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C414	CAP,CERAMIC,CHIP	ECCH0000105	4 pF,50V,C,NP0,TC,1005,R/TP		
5	C415	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C416	CAP,CERAMIC,CHIP	ECCH0000101	0.5 pF,50V,C,NP0,TC,1005,R/TP		
5	C417	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C418	CAP,CERAMIC,CHIP	ECCH0000179	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP		
5	C419	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C420	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C421	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C422	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C423	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C424	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C425	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C426	CAP,CERAMIC,CHIP	ECCH0000159	22 nF,16V,K,X7R,HD,1005,R/TP		
5	C427	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C428	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C429	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C430	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C431	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C432	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C433	CAP,CERAMIC,CHIP	ECCH0000171	3.3 pF,16V ,J ,NP0 ,TC ,1005 ,R/TP		
5	C434	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C435	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C436	CAP,CERAMIC,CHIP	ECCH0003401	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP		
5	C437	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C438	CAP,CERAMIC,CHIP	ECCH0003401	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP		
5	C500	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C501	CAP,CERAMIC,CHIP	ECCH0001811	220000 pF,10V ,Z ,Y5V ,HD ,1005 ,R/TP		
5	C504	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C600	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C601	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C602	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C603	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C604	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C605	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C606	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C607	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C608	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C609	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C610	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C611	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C612	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C613	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C614	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C615	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C616	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C617	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C618	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C619	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C620	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C621	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C622	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C623	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C624	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
5	C625	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C626	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C627	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C628	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C630	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C631	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C640	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C641	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C642	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C643	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C644	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C645	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C646	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C647	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C648	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C649	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C650	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C651	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C652	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C653	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C654	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C655	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C656	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C657	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C658	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C659	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C663	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C665	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C666	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C667	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C668	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C669	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C670	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	CN500	CONNECTOR,BOARD TO BOARD	ENBY0001802	2 PIN,1.27 mm,STRAIGHT ,SILVER ,		
5	CN600	CONNECTOR,BOARD TO BOARD	ENBY0018701	41 PIN,0.3 mm,STRAIGHT , ,0.9t stacking height		
5	CN601	CONNECTOR,I/O	ENRY0000801	24 PIN,0.5 mm,ETC ,Au ,BAT ZERO		
5	CN602	CONNECTOR,ETC	ENZY0013002	3 PIN,3 mm,ETC ,AU ,BATTERY CONN.		
5	D100	DIODE,SWITCHING	EDSY0005701	EMT3 ,80 V,4 A,R/TP ,		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	D300	DIODE,SWITCHING	EDSY0012101	US-FLAT ,30 V,1 A,R/TP ,2.5*1.25*0.6(t)		
5	D500	DIODE,SWITCHING	EDSY0005301	SC-70 ,80 V,0.1 A,R/TP ,		
5	FB1	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
5	FL400	FILTER,SEPERATOR	SFAY0003702	900 ,1800 ,1.3 dB,1.5 dB,30 dB,25 dB,4532 ,Antenna switch		
5	FL401	FILTER,SAW	SFSY0021301	942.5 MHz,2.0*1.4*0.68 ,SMD ,		
5	FL402	FILTER,SAW	SFSY0021302	1842.5 MHz,2.0*1.4*0.68 ,SMD ,		
5	J200	CONN,JACK/PLUG, EARPHONE	ENJE0002301	3,5 PIN,G7000 EAR JACK 3 pole, 5 pin KSD		
5	J500	CONN,SOCKET	ENSY0007608	6 PIN,ETC ,BRIDGE NON PROTECTOR TYPE ,2.54 mm,2.7T		
5	L400	INDUCTOR,CHIP	ELCH0001406	4.7 nH,S ,1005 ,R/TP ,		
5	L401	INDUCTOR,CHIP	ELCH0001003	6.8 nH,J ,1005 ,R/TP ,		
5	L402	INDUCTOR,CHIP	ELCH0002715	27 nH,G ,1608 ,R/TP ,coil inductor		
5	L403	INDUCTOR,CHIP	ELCH0002714	7.5 nH,G ,1608 ,R/TP ,coil inductor		
5	L404	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		
5	L405	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		
5	L601	CAP,CERAMIC,CHIP	ECCH0000183	1.8 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
5	LD300	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD301	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD302	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD303	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD304	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD305	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD306	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD307	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	M1	MODULE,ETC	SMZY0008101	Bluetooth Module, Class2, 8 X 8 X 1.6mm		
5	PT400	THERMISTOR	SETY0001201	NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES		
5	Q300	TR,FET,P-CHANNEL	EQFP0004201	2.9*1.9*0.8(t) ,0.7 W,20 V,-6.0 A,R/TP ,NDC652P upgrade(substitution) item		
5	Q301	TR,BJT,NPN	EQBN0004801	SMT6 ,0.2 W,R/TP ,		
5	Q500	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW FREQUENCY		
5	R100	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R102	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R104	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R105	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R106	RES,CHIP	ERHY0000282	120K ohm,1/16W,J,1005,R/TP		
5	R107	RES,CHIP	ERHY0000512	10M ohm,1/16W,J,1608,R/TP		
5	R108	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
5	R109	RES,CHIP	ERHY0000278	82K ohm,1/16W,J,1005,R/TP		
5	R110	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R111	RES,CHIP	ERHY0000163	220K ohm,1/16W,F,1005,R/TP		
5	R112	RES,CHIP	ERHY0000106	100 ohm,1/16W,F,1005,R/TP		
5	R113	RES,CHIP	ERHY0000163	220K ohm,1/16W,F,1005,R/TP		
5	R114	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R115	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R206	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R207	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R208	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
5	R209	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R210	RES,CHIP	ERHY0000246	2K ohm,1/16W,J,1005,R/TP		
5	R211	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R212	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
5	R214	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R215	RES,CHIP	ERHY0000246	2K ohm,1/16W,J,1005,R/TP		
5	R216	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
5	R218	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
5	R219	RES,CHIP	ERHY0000250	3.3K ohm,1/16W,J,1005,R/TP		
5	R220	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R221	RES,CHIP	ERHY0006602	620 Kohm,1/16W ,J ,1005 ,R/TP		
5	R222	RES,CHIP	ERHY0006602	620 Kohm,1/16W ,J ,1005 ,R/TP		
5	R224	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R225	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R226	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R227	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
5	R229	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R230	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R231	RES,CHIP	ERHY0000138	33K ohm,1/16W,F,1005,R/TP		
5	R232	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R233	RES,CHIP	ERHY0000278	82K ohm,1/16W,J,1005,R/TP		
5	R234	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R235	RES,CHIP	ERHY0000250	3.3K ohm,1/16W,J,1005,R/TP		
5	R236	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R237	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R238	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R239	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R240	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R300	RES,CHIP	ERHY0001103	0.33 ohm,1/4W ,F ,2012 ,R/TP		
5	R301	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R302	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R303	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R304	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R305	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R306	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R307	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R308	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R309	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R310	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R311	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R312	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R313	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
5	R314	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
5	R315	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R316	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R317	RES,CHIP	ERHY0000205	15 ohm,1/16W,J,1005,R/TP		
5	R398	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R399	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R400	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R401	RES,CHIP	ERHY0000263	15K ohm,1/16W,J,1005,R/TP		
5	R402	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R403	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R404	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R405	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R406	RES,CHIP	ERHY0004301	130 ohm,1/16W ,J ,1005 ,R/TP		
5	R407	RES,CHIP	ERHY0004301	130 ohm,1/16W ,J ,1005 ,R/TP		
5	R410	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R411	RES,CHIP	ERHY0006603	36 ohm,1/16W ,J ,1005 ,R/TP		
5	R412	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
5	R413	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
5	R414	RES,CHIP	ERHY0000263	15K ohm,1/16W,J,1005,R/TP		
5	R415	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R416	RES,CHIP	ERHY0000289	270K ohm,1/16W,J,1005,R/TP		
5	R417	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R418	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R420	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
5	R500	RES,CHIP	ERHY0000205	15 ohm,1/16W,J,1005,R/TP		
5	R501	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
5	R502	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R504	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R505	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R506	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R507	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R508	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R509	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R510	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R511	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R512	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R513	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R514	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R515	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R600	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R601	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R602	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R603	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R604	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R605	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R606	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R607	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R608	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R610	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R611	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R612	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R613	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R614	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R615	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R616	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R617	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R618	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R619	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R620	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R621	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R622	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R624	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R625	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R626	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R627	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R628	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R629	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R630	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R632	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R633	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R634	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R636	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R637	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R638	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R639	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R641	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R642	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R643	INDUCTOR,CHIP	ELCH0005002	2.7 nH,S,1005 ,R/TP ,		
5	R653	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R655	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R660	RES,CHIP	ERHY0000230	330 ohm,1/16W,J,1005,R/TP		
5	R661	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R662	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R663	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R664	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R666	CAP,CERAMIC,CHIP	ECCH0000171	3.3 pF,16V ,J ,NP0 ,TC ,1005 ,R/TP		
5	R667	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
5	R668	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	SPFY00	PCB,MAIN	SPFY0093301	FR-4 ,1.0 mm,MULTI-8 ,	Red	
5	SW400	CONN,RF SWITCH	ENWY0003001	STRAIGHT ,SMD ,0.6 dB,3.8X3.0X3.6T		
5	U100	IC	EUSY0157001	LFBGA ,160 PIN,R/TP ,DIGITAL BASEBAND PROCESSOR		
5	U101	IC	EUSY0100701	64 BALL LFBGA / MINI-BGA ,64 PIN,R/TP ,DUAL-MODE VOICEBAND BASEBAND CODEC / AD20MSP430		
5	U200	IC	EUSY0098501	QFN ,32 PIN,R/TP ,		
5	U201	IC	EUSY0119001	10 uMAX ,10 PIN,R/TP ,DUAL SPDT ANALOG SWITCHES		
5	U202	IC	EUSY0122501	LLP-6 ,6 PIN,R/TP ,300mA CMOS LDO / 3.3V		
5	U203	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,		
5	U204	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,		
5	U300	IC	EUSY0145401	P-FBGA73 ,73 PIN,R/TP ,128M FLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS		
5	U301	IC	EUSY0145101	LFCSP-32 (5mmX5mm) ,32 PIN,R/TP ,2.8V LDO for Memory / GSM POWER MANAGEMENT SYSTEM		
5	U302	IC	EUSY0077301	SC70-6 ,6 PIN,R/TP ,SPDT Analog switch		
5	U400	PAM	SMPY0004001	35 dBm,53 %,50 mA,50 dBc,28 dB,10x7x1.4 ,SMD ,		
5	U401	IC	EUSY0161301	8x8 LGA ,28 PIN,R/TP ,		
5	U402	IC	EUSY0118602	SOT23 ,5 PIN,R/TP ,2.85V/150mA Low Noise uCap LDO Regulator		

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	U600	IC	EUSY0178201	TSOP JW12 ,12 PIN,R/TP ,Charge Pump For 4 White LED Driver		
5	U602	IC	EUSY0227901	SON5-P-0.35(fSV) ,5 PIN,R/TP ,2-INPUT AND GATE		
5	U603	IC	EUSY0223002	HVSOF5 ,5 PIN,R/TP ,150mA CMOS LDO WITH OUTPUT CONTROL / 2.8V		
5	U604	IC	EUSY0235001	Microbump-10 ,10 PIN,R/TP ,Dual SPDT Analog Switch (USB 1.1)		
5	VA200	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA201	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA202	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA203	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA204	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA205	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA206	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA500	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA600	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
5	VA601	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	X100	X-TAL	EXXY0004601	.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3 ,		
5	X400	VCTCXO	EXSK0003501	13 MHz,2.5 PPM,10 pF,SMD ,5.0*3.2*1.5 ,		
4	SBCL00	BATTERY,CELL,LITHIUM	SBCL0001302	2 V,1 mAh,COIN ,W3000 Back Up Battery		
4	SUMY00	MICROPHONE	SUMY0003802	FPCB ,-42 dB,4*1.5 ,	1	6
4	SVLY00	LCD	SVLY0018801	128x128 ,35.78x39.7 ,65K CSTN, S6B33B2, TM		11
3	SNGF00	ANTENNA,GSM,FIXED	SNGF0003901	3.0 ,-2.0 dBd,WHITE ,GSM+DCS,C310,INTENNA		18

13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК ЗАПЧАСТЕЙ

13.3 Аксессуары

Примечание: Эта глава может быть использована только для справки, заказ деталей производится по файлам SBOM сайта GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
3	MHBY00	HANDSTRAP	MHBY0000404	Hand Strap 135mm	Black	
3	SBPL00	BATTERY PACK,LI-ION	SBPL0072126	3.7 V,950 mAh,1 CELL,PRISMATIC ,C310,T510 INNERPACK BATTERY	Silver	26
3	SSAD00	ADAPTOR,AC-DC	SSAD0007828	100-240V ,60 Hz,5.2 V,800 mA,CE,CB,GOST ,EU PLUG(24P),STD		
3	WSYY00	SOFTWARE	WSYY0190401	G1610 P16-07-ESV009-Dec 08 2004		