	A. I. Robotics (Murphy, 2000)	
5	Robotic parabigms:	
	1. FUNCTIONS: SENSE - ACT - PIAN (PRIMATIVES)	
	2. Global V. local - DATA Distribution	
	HIEFARCHICAL : 1967-1990 : SENSE-PIAN-ACT	
2	REALTIVE : Biol. / Cos. 4 : SENSE - ACT	
	Skinner	
	FAST Processing	
	HYBRID DELIBERATIVE - REACTIVE	
	. planned decomposition	
10	Architectures:	
	Organization / Constraint	
	INTERACTION	
	EVAL. CRITERIA: Modular, Niche, portability, Robustness	
34	7 A.I. AREAS	
	2 Hierarchical Paradigm:	
41	Oldest - SENSE . PIAN - ACT	
	· EYES Closed PIANNING	
43	· Global data structure	
44	· Single Representation .: Slow	
	-> STRIPS : GPS - REDUCTION = MEANS-END	
	PIAN HANDOFF -> EXECUTION Program	
	· RECUISIVE	
52	STRIPS EXECUTION STEPS	
	Closed world Problem:	
	· NON-INTUITIVE TO MAINTAIN	
	· multiple Abstraction levels	
54	SAMPLE Architectures : NHC /RCS	
	· INTERICANING, TASK- DEPENDENCE, MODULARITY, FERTURE EXTRACTION	
61	DISACVATAGES: PIANNIN - UPDATE WORLD MODEL	
	3 Biological:	
67	Arbib / Braitcubers	
	Braitenberg : Add more complexity	
68	KEY: Behavior Requires Perception	
A 1 1 2 1		

*>

- 1		
69	Animals = Open world wio Frame problem	
	AGENT : SEIF-CONTAINED / INDEPEN.	
	Computational Theory: MARR	
7/	.~ Goal: INTElliGENCE OFGANIZATION	
	Behavior: Fund. building black. INTElligence	
	· REFICEIVE - REACTIVE - CS	
	· REFIEXIVE : NO COGNITION	
77	IRM'S : Spec. STIM RELEASES ACTION PATTERN	
	: Simple program	
82	: RESULT = COMPLEX ACTION SEQUENCE	
	CONCULTENT / INDEPEN EXECUTION	
	ACTION - PERCEPTION CYCLE	
85	Gibson: AFFORDANCES : PERCEIVABLE POTENTIALITIES : directly perceivable	
	: WORLD = DEST MODEL	
	: Perception Evalues to support Actions	
88	- VISION : TRAD. = STIUCTURE : COMPONENTS	
	: Function "le FORM	
91	Schemas : how to Act + comp. process	
	: DATA + METHODS : Generic TEMPLATE	
	: MOTOR + PERCEPTION	
97	Pemuples From NATURE:	
	decomposition	
	- boolean Activation	
	· Filter SENSING TO FELEVANCE	
	· Direct percen	
	· Behav. = IND but = combinable / Inhibitory	
	4. REACTIVE	
106	VETTICAL decomp.	
108	All Actions & Accomplished via behaviors	
	. behaviors = TRANSER FUNCTION	
	SENSE - ACT U/O PIAN	
ĮII.	1. Situated Ayeuts	
	2. behau. = building blacks	
	3. Locat severy only	
	h Modelari)	
	J. Biological	

113	Subsumption:	
	· Embedded proc behavior	
	· AFSM'S	
	1. CAYERS OF COMPETANCE	
115	2. Subsumption	
	3. INTERNAL STATES AVOIDED	
	Y. TASK : ACTIVATE layer	L
115	INhibition / Suppression = SUBSUMP, Methods	
/22	POTENTIAL FIELDS	
	· motor Action must = rep. by vectors (mag / dia) (m,d)	
124	· Force Field Actions	
134	· VECTOR SUMMATION	
145	-, oros / coms	
149	REACTIVE EVAL:	
	· portability - ~ Meeds unadifications	-
	EMERGENCE : building block consequence	
	5. DESIGN	
163	DESIGN STEPS	
165	CASE STUDY	
177	FSA'S	
184	Drawbacks : prediction - based	
	DIFFERENT INITIALIZATION SEQUENCES	
	6. Common Sensing:	
197	Logical Sensor - Equivalence in data output	
	SENSOR FUSION	
200	SENSOR Fission (Brooks)	
	" Fashion : Charge of CircumsTANCES	
	Sensor Suita design	
203	. ATTIONTES	

206	Suite ATTIBUTES: SIMPLICITY - MODULARITY - REDUDANCY (physical / logical)	
	Parameters and and archaeting a standard grown SELE	
	Proprioception : dead reckoning : signal From SELF	
	Shaff ENCODER	
	INS : ACCELEROMETERS - COST / JARRING	
208	GPS : NON- EXTEROCEPTIVE	
	ERROR	
	Building inveriors	
210	Proximity: most = Active	
	SOMAR : MOTAVEC : Rings	
	: 1-25' / 30°	
2/2	Specular Reflection, ETC.	
	· Cross- TAIK (RINGS)	
	· Code V. ENVIRONMENT	
215	Power Levels - Average of 3 readings	
	I.R.	
217	Light WAShout / Absorbtion	
	TACTILE : Adjustment / SENSITIVITY	
	Vision : multiple readings	
	SEPARATE: DISCIPLINE	
	. CCD - A/D = SIOW TRANSIATION	
	· Framegrabbers	
226	REGION SEGMENTATION : COLOT (Thresholding)	CMU CAM
	· Color Histogramming	
23/	RANGE FROM VISION	
	· Algorithmic complexity	
	· LASER Ranging	
241	· Lightweight Vision (Norwill) : MAP	
	7. Hybrid	
257	REACTIVE = NEW processors	
	NO Planning	
* >	EMERGENT behavior: Art 'lo science	
	10 200	

258	RESTORE PLANMING COMPONENT	
	CONSENSUS: behavioral / REACTIVE: 10W IEVEL	
	AURA: (ARKIN): Add Cognitive FEATURES	
	BOTTOM- UP layering : NEW by brid approach	
	REACTIVE PLANNING: NEW Model	
	· MOTE TOP-DOWN	
	. BEST Architectural Solution	
	· Asynahranaus deliberation	
	· SELECTIVE USE OF DELIBERATION - MODULARITY	
	· planning = decoupled From Execution	
261	Hybrid Behavior : # purely REFIEXIVE	
	· ETHOLOGICAL - REFLEXIVE + INNATE + LEARNED (SK:11)	
	· ASSEMBIAGES OF DEHAVIORS "TO PRIMITIVES	
	Global models : # purely global - CONTACT W/ CULTENT STATE	
263	COMPONENTS:	
	SEQUENCER	
	Behav. RESOURE MANAGER	
	CATTOGRAPHER	
	· Mission PIANNER	
	· PErf. Moniror	
265	Architectures:	
	MANAGERIAI	
	AURA : Schema / 00	
267	· Biology / Homeostatic	
	· SENSOF FUSION : SENSOF STREAM	
274	STATE HIERATCHY : TIME	12.
	Model Oriented : More Top - Down / Symbolic	
	world model: Supplies perception	
278	EAVESdropping on behaviors = dismib, processing	
270	SAPHIRA: COORDINATION	
200	! Deyond REACTIVE	
280	TASK CONTROL	
203	SHAKEY COMPARISON	
286	20n 0/0	
408	Path Planning Algorithms	
	FASTER PROCESSING	
	Symbolic V. REACTIVE MIXING	
	· Selective Attention + planner	

288	COGNIZANT FAILURE: WESSON OIL Problem	
	8. Multi-AGENTS:	
295	EMERGENT SOCIAL BEHAVIOR	
300	SOCIAL ENTROPY : diversity FACTOR	
	II. NAVIGATION	
317	4 Questions	
319		-
	PATH PIANNING: PROGRAMMING CRITERIA	
Beer and		
	SENSOR UNCERTAINTY: LOCALIZATION (MIS-) ASSUMPTION	
	Accuracy (mis.) Assumption	
321	Panning - As- Deliberative	
3 - (SPATIAL MEMORY:	
	ATTENTION	
	· REPORTING	
	· PATH PLANNING	
	FORMS: ROUTE / QUALITATIVE + /AYOUT / METRIC	
	· ROUTE : PETS PECTIVE / EGO CENTRIC · LAYOUT : MAP : NON- PETSPECTIVE	
	TRADEOFFS FACTORS: TIME EFFICIENCY DENSITY	
	O Trockerink i	
	9. Topological:	
300	RELATIONAL : CONNECT DOTS	
326	LANDMARK - GATEWAY	
347		
	DESIGN IMPLICATIONS	
	10. METRIC	
3.5	. MEASURE "To LANDMARKS	
331		
353	CSPACE CSPACE	
360	A* search Algorithm	