Definitions:

• $\log_2(n)$ is x such that $2^x = n$. $\lfloor \log_2(n) \rfloor$ is the unique i s.t. $2^i \le n < 2^{i+1}$

e.g.
$$\lfloor \log_2(2) \rfloor = 1$$
, $\lfloor \log_2(3) \rfloor = 1$, $\lfloor \log_2(4) \rfloor = 2$ $\lfloor \log_2(31) \rfloor = 4$, $\lfloor \log_2(32) \rfloor = 5$, $\lfloor \log_2(33) \rfloor = 5$

Definitions:

• $\log_2(n)$ is x such that $2^x = n$. $\lfloor \log_2(n) \rfloor$ is the unique i s.t. $2^i \le n < 2^{i+1}$

e.g.
$$\lfloor \log_2(2) \rfloor = 1$$
, $\lfloor \log_2(3) \rfloor = 1$, $\lfloor \log_2(4) \rfloor = 2$ $\lfloor \log_2(31) \rfloor = 4$, $\lfloor \log_2(32) \rfloor = 5$, $\lfloor \log_2(33) \rfloor = 5$

ullet Prime factorization of n is the representation of n as multiplication of a list of primes.

e.g.
$$12 = 2 \times 2 \times 3$$
, $6! = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$

Definitions:

• $\log_2(n)$ is x such that $2^x = n$. $|\log_2(n)|$ is the unique i s.t. $2^i \le n < 2^{i+1}$

e.g.
$$\lfloor \log_2(2) \rfloor = 1$$
, $\lfloor \log_2(3) \rfloor = 1$, $\lfloor \log_2(4) \rfloor = 2$ $\lfloor \log_2(31) \rfloor = 4$, $\lfloor \log_2(32) \rfloor = 5$, $\lfloor \log_2(33) \rfloor = 5$

ullet Prime factorization of n is the representation of n as multiplication of a list of primes.

e.g.
$$12 = 2 \times 2 \times 3$$
, $6! = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$

• Define SIZE(n) to be the number of prime factors in prime factorization of n.

e.g.
$$SIZE(12) = 3$$
, $SIZE(6!) = SIZE(720) = 7$

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$. Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false. Let p be a prime factor of m. Then,

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$. Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false. Let p be a prime factor of m. Then, SIZE(m)

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$. Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Let p be a prime factor of m. Then,

$$SIZE(m) = SIZE(m/p \times p)$$

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$. Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Let p be a prime factor of m. Then,

$$SIZE(m)$$

$$= SIZE(m/p \times p)$$

$$= SIZE(m/p) + 1$$

By definition

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Let p be a prime factor of m. Then,

$$SIZE(m)$$

$$= SIZE(m/p \times p)$$

$$= SIZE(m/p) + 1$$

$$\leq |\log_2(m/p)| + 1$$

By definition m/p < m, so P(m/p) is true.

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Let p be a prime factor of m. Then,

$$SIZE(m)$$

$$= SIZE(m/p \times p)$$

$$= SIZE(m/p) + 1$$

$$\leq \lfloor \log_2(m/p) \rfloor + 1$$

$$\leq \lceil \log_2(m/2) \rceil + 1$$

By definition m/p < m, so P(m/p) is true. By definition

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Let p be a prime factor of m. Then,

$$SIZE(m)$$

$$= SIZE(m/p \times p)$$

$$= SIZE(m/p) + 1$$

$$\leq \lfloor \log_2(m/p) \rfloor + 1$$

$$\leq \lfloor \log_2(m/2) \rfloor + 1$$

$$\leq \lfloor \log_2(m) \rfloor$$

By definition m/p < m, so P(m/p) is true. By definition

Contradiction!

Theorem:

There are infinitely many number of primes.

Theorem:

There are infinitely many number of primes.

Proof:

Assume the number of primes is finite.

Let m be the largest prime. Consider n = m! + 1,

Theorem:

There are infinitely many number of primes.

Proof:

```
Assume the number of primes is finite.
```

Let m be the largest prime. Consider n = m! + 1,

```
n \mod 2 = 1
```

$$n \mod 3 = 1$$

$$n \mod 5 = 1$$

•

$$n \mod m = 1$$

Theorem:

There are infinitely many number of primes.

Proof:

Assume the number of primes is finite.

Let m be the largest prime. Consider n = m! + 1,

```
n \mod 2 = 1
```

$$n \mod 3 = 1$$

$$n \mod 5 = 1$$

.

$$n \mod m = 1$$

 \Rightarrow No prime is a factor of n.

 $\Rightarrow n$ is a prime greater than m. Contradiction!