

- a) Probar que A^tA es semidefinida positiva (es decir, si $0 \leqslant x^tAx$ $(\forall x \neq 0)$).
- b) Si m < n demostrar que $A^t A$ no es definida positiva.
- c) Si $m \ge n$ demostrar que $A^t A$ es definida positiva si y sólo si A tiene rango máximo.

a)

 $X^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||_{2}^{2} > 0$ por ser una norma

6)

A $\in \mathbb{R}^{m \times n}$ con m<n. Las columnas de A son vectores en \mathbb{R}^m y hay n > m columnas. Es decir hay mas vectores columnas que la dimensión del espacio donde viven. Necesariamente las columnas van a ser LD, luego $\exists x \neq 0 \ \text{tg} \ Ax = 0$.

Más Formal: la Im(A) = IRⁿ es el espacio columna de A \(\ext{IR}^{m \times n} \)
Por Teo de la dimensión:

dim(Nu(A)) + dim(Im(A)) = n

 \iff dim(Nu(A)) = n - dim(Im(A))

Como maximo la dim(Im(A)) = m < n

=> dim(Nu(A))> 0

=> Ax≠o +q Ax= o

 $X^T A^T A X = X^T A^T \cdot O = O$ con $X \neq O$

∴ No vale que x^TA^TAx > 0 ∀x ≠ 0.
Luego A^TA no es definida positiva.

