TD 1: MARCHE ALÉATOIRE ET MARTINGALE EN TEMPS DISCRET.

Calcul stochastique M1 DUAS- Semestre 2 P.-O. Goffard

1. Soit $\{X_t : t \in \mathbb{N}\}$ une chaine de Markov homogène d'espace d'état $\{1, 2, 3, 4\}$ et de matrice de transition,

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/10 & 3/10 & 5/10 & 1/10 \\ 2/10 & 1/10 & 6/10 & 1/10 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(a) Soit $A = \{1, 4\}$, donner $\mathbb{E}_x(\tau_A)$ pour $x \in E$

Solution: On a $\mathbb{E}_1(\tau_A) = \mathbb{E}_4(\tau_A) = 0$ et on résout le système

$$\begin{cases} \mathbb{E}_{0}(\tau_{A}) = 1 + \frac{3}{10} \mathbb{E}_{0}(\tau_{A}) + \frac{5}{10} \mathbb{E}_{2}(\tau_{A}) \\ \mathbb{E}_{2}(\tau_{A}) = 1 + \frac{1}{10} \mathbb{E}_{0}(\tau_{A}) + \frac{6}{10} \mathbb{E}_{2}(\tau_{A}) \end{cases}$$

(b) On définit

F='Absorption dans l'état 4'

et

G ="L'état 2 est visité juste avant l'absorption"

Calculer $\mathbb{P}_x(F)$ et $\mathbb{P}_x(G)$ pour $x \in \{1, 2, 3, 4\}$.

Solution: On a $\mathbb{P}_1(F) = 0$ et $\mathbb{P}_4(F) = 1$. On note que pour $x \in \{1, 2\}$, on a

$$\mathbb{P}_x(F) = \sum_{y \in E} \mathbb{P}_y(F)Q(x,y).$$

On résout donc le sytème

$$\begin{cases} \mathbb{P}_0(F) = \frac{1}{10} + \frac{3}{10} \mathbb{P}_0(F) + \frac{5}{10} \mathbb{P}_2(F) \\ \mathbb{P}_2(F) = \frac{1}{10} + \frac{1}{10} \mathbb{P}_0(F) + \frac{6}{10} \mathbb{P}_2(F). \end{cases}$$

On effectue le même raisonnement pour $\mathbb{P}_x(G)$.

- (c) Ouvrir le fichier absorbing_time_boiler.ipynb (Illustration analyse à un pas) sur moodle
- 2. Un joueur entre dans un casino. il paie \$1 pour jouer à un jeu.
 - Il gagne et remporte \$2 avec probabilité $p \in (0,1)$
 - Il perd et remporte 0 avec probabilité q = 1 p

Soit $(X_n)_n$ sa richesse, avec $X_0 = x \ge 0$. On suppose que le joueur rentre chez lui si sa richesse tombe à 0 ou si elle atteint un niveau $a \ge x$. Soit les temps aléatoires

$$\tau_0 = \inf\{n \ge 0 ; X_n = 0\} \text{ et } \tau_a = \inf\{n \ge 0 ; X_n = a\}.$$

On suppose que $x, a \in \mathbb{N}$ et on souhaite calculer la probabilité

$$\psi(x, a) = \mathbb{P}_x(\tau_0 < \tau_a) = \mathbb{P}(\tau_0 < \tau_a | X_0 = x).$$

que le joueur rentre à la maison ruiné.

(a) Supposons que $p \neq q$, calculer $\psi(x, a)$ via une analyse à un pas.

<u>Indications 1:</u> Que valent $\psi(0,a)$ et $\psi(a,a)$?

<u>Indications 2:</u> Combiner à l'équation issue de l'analyse à un pas avec l'équation

$$\psi(x, a) = p\psi(x, a) + q\psi(x, a).$$

Indications 3: définir la suite

$$u_x = \psi(x, a) - \psi(x - 1, a), \text{ pour } x \ge 1$$

Solution: Si x = 0 alors $\tau_0 = 0 < \tau_a$ donc $\psi(0, a) = 1$. Si x = a alors $\tau_a = 0 < \tau_0$ et $\psi(a, a) = 0$. Supposon que 0 < x < a, via l'analyse à un pas on a

$$\psi(x,a) = p\psi(x+1,a) + q\psi(x-1,a)$$
 (1)

on a également

$$\psi(x,a) = p\psi(x,a) + q\psi(x,a) \tag{2}$$

Par différence entre (1) et (2), il vient

$$pu_{x+1} + qu_x = 0,$$

avec $u_x = \psi(x, a) - \psi(x - 1, a)$, pour $x \ge 1$. On en déduit que

$$u_x = \frac{q}{p}u_{x-1} = \ldots = \left(\frac{q}{p}\right)^{x-1}u_1.$$

On note que

$$\sum_{z=1}^{x} u_z = \psi(x, a) - 1 = u_1 \frac{1 - (q/p)^x}{1 - q/p}$$

et

$$\sum_{z=1}^{a} u_z = \psi(a, a) - 1 = -1 = u_1 \frac{1 - (q/p)^a}{1 - q/p}.$$

On a donc $u_1 = -\frac{1 - q/p}{1 - (q/p)^a}$ et

$$\psi(x,a) = \frac{(q/p)^x - (q/p)^a}{1 - (q/p)^a}.$$

(b) Même question en supposant que p = q.

Solution: En represnant les notation précédente, on a

$$u_x = u_{x-1} = \ldots = u_1$$

On en déduit que

$$\sum_{z=1}^{x} u_z = \psi(x, a) - 1 = xu_1,$$

et

$$\sum_{z=1}^{a} u_z = \psi(a, a) - 1 = -1 = au_1.$$

On a donc $u_1 = -1/a$ et

$$\psi(x,a) = (x-a)/a.$$

- 3. On montre le résultat de l'exercice précédent en utilisant les martingales et le théorème du temps d'arrêt optionel
 - (a) les temps τ_0 et τ_a sont-ils des temps d'arrêts.

Solution: Vu en cours

(b) Qu'en est il pour $\tau_0 \wedge \tau_a$?

Solution: On a

$$\{\tau_0 \wedge \tau_a \ge n\} = \{\tau_0 \ge n\} \cap \{\tau_a \ge n\} \in \mathcal{F}_N$$

(c) Montrer que $\mathbb{P}_x(\tau_a \wedge \tau_0 < \infty) = 1$. <u>Indication:</u> Soit $\tau = \tau_0 \wedge \tau_a$, On peut montrer que $\mathbb{E}(\tau) < \infty$. pour ce faire, exprimez $\mathbb{E}(X_{\tau \wedge n})$ en fonction de $\mathbb{E}(\tau \wedge n)$.

Solution: Soit $\tau = \tau_0 \wedge \tau_a$, on a pour $n \geq 0$,

$$\mathbb{E}(X_{\tau \wedge n}) = x + \mathbb{E}\left(\sum_{k}^{\tau \wedge n} \xi_{k}\right)$$

$$= x + \mathbb{E}\left[\mathbb{E}\left(\sum_{k}^{\tau \wedge n} \xi_{k} | \tau \wedge n\right)\right]$$

$$= x + \mathbb{E}\left[\mathbb{E}\left(\sum_{k}^{\tau \wedge n} \xi_{k} | \tau \wedge n\right)\right]$$

$$= x + \mathbb{E}\left[\tau \wedge n\mathbb{E}\left(\xi\right)\right]$$

$$= x + \mathbb{E}\left(\tau \wedge n\right)\left(2p - 1\right)$$

Comme $X_{\tau \wedge n} \in (0, a)$ alors $\mathbb{E}(X_{\tau \wedge n}) \in (0, a)$ et $\mathbb{E}(\tau \wedge n)$ est fini pour tout $n \geq 0$, en particulier pour $n \to$. Comme $\mathbb{E}(\tau \wedge n) < \infty$ alors $\mathbb{P}(\tau < \infty) = 1$.

(d) Supposons que p = q, montrer que X_n est une martingale.

Solution: Soit $(\xi_i)_{i\geq 0}$ une suite i.i.d. de v.a. distribuées comme ξ avec

$$\mathbb{P}(\xi = 1) = p$$
, et $\mathbb{P}(\xi = -1) = q$

On a

$$X_n = X_{n-1} + \xi_n.$$

Soit $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ une filtration adpatée au processus X. On a

$$\mathbb{E}(X_n|\mathcal{F}_{n-1}) = X_{n-1} + \mathbb{E}(\xi_n) = X_n - 1 + 2p - 1 = X_{n-1}.$$

X est bien une \mathcal{F}_n -martingale.

(e) En déduire $\psi(x,a)$ en appliquant le théorème du temps d'arrêt optionnel au temps $\tau_a \wedge \tau_0$.

Solution: Par application du temps d'arrêt optionnel au temps $\tau_a \wedge \tau_0$, on a

$$x = \mathbb{E}(X_0) = \mathbb{E}(X_{\tau_a \wedge \tau_0}) = \mathbb{E}(X_{\tau_a} \mathbb{I}_{\tau_a < \tau_0} + X_{\tau_0} \mathbb{I}_{\tau_0 < \tau_a}) = a(1 - \psi(x, a)).$$

puis après ré-arrangement

$$\psi(x,a) = \frac{x-a}{a}.$$

(f) Supposons que $p \neq q$, A quel condition $(e^{\theta^* X_n})_{n \geq 0}$ est une martingale?

Solution: D'après le cours, le processus

$$M_n = \exp(\theta X_n - n\kappa(\theta)), \text{ pour } n \geq 1,$$

où $\kappa(\theta)=\mathbb{E}(\mathrm{e}^{\theta\xi})$, est une \mathcal{F}_n -martingale. On cherche donc θ^* tel que

$$\kappa(\theta) = 0.$$

Ce qui est équivalent à

$$\ln(pe^{\theta} + qe^{-\theta}) = 0 \Leftrightarrow pe^{\theta} + qe^{-\theta} = 1.$$

On procède au changement de variable $u = e^{\theta}$ pour aboutir à

$$pu^2 - u + q = 0.$$

On trouve deux racines réelles (remplace q par 1-p)

$$u_1 = 1 \text{ et } u_2 = \frac{q}{p}$$

puis

$$\theta_1 = 0 \text{ et } \theta_2 = \ln\left(\frac{q}{p}\right).$$

On choisit $\theta^* = \ln\left(\frac{q}{p}\right)$ et le processus $(e^{\theta^*X_n})_{n\geq 0}$ est une martingale.

(g) En déduire $\psi(x,a)$ en appliquant le théorème du temps d'arrêt optionnel au temps $\tau_a \wedge \tau_0$ et au processus $(e^{\theta^* X_n})_{n \geq 0}$.

Solution: On applique le théorème du temps d'arrêt optionnel, on a

$$e^{\theta^* x} = \mathbb{E}(e^{\theta^* X_0}) = \mathbb{E}(e^{\theta^* X_{\tau_a \wedge \tau_0}}) = \psi(x, a) + [1 - \psi(x, a)]e^{\theta^* a}.$$

Après ré-arrangement, il vient

$$\psi(x,a) = \frac{e^{\theta^*x} - e^{\theta^*a}}{1 - e^{\theta^*a}} = \frac{(q/p)^x - (q/p)^a}{1 - (q/p)^a}.$$