Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the above identified application.

Listing of Claims:

1. (Currently Amended): A compound of bis-cationic compound wherein the bis-cation of the compound is of Formula (I)

$$\begin{array}{c}
R_1 \oplus \\
R_2 \longrightarrow Y_1 - C(R_7 R_{7'}) - (A) \longrightarrow C(R_8 R_{8'}) \longrightarrow Y_2 \longrightarrow R_5 \\
R_6
\end{array}$$
(I)

wherein:

(1) Y₁ and Y₂ may be the same or different and are independently selected from N and P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

R₇, R₇, R₈ and R₈ may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

R₁₂ and R₁₃, together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C₁₋₄ alkyl, hydroxyl, halogen, amino, and C(O)OR₁₁;

and when $Y_1 = Y_2 = N$, A comprises one or more groups selected from substituted alkylene, substituted alkenylene, substituted alkynylene, substituted phenyl, substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C_4 - C_6 alkyl, C_{4-6} alkenyl, C_{4-6} alkynyl, hydroxyl, halogen, NO_2 , $C(O)R_{10}$, OR_{11} , CH_2OR_{11} , $CH_2NR_{12}R_{13}$, SR_{11} , $NR_{12}R_{13}$, $CONR_{12}R_{13}$, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and when $Y_1 = Y_2 = P$, A comprises one or more groups selected from substituted alkylene, substituted alkenylene, substituted phenyl, substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, NO_2 , $C(O)R_{10}$, OR_{11} , CH_2OR_{11} , $CH_2NR_{12}R_{13}$, SR_{11} , $NR_{12}R_{13}$, $CONR_{12}R_{13}$, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and when A is $-CH_2-C(O)PhCH_2CH_2-Ph-C(O)-CH_2-$, and R_1 and R_4 are hydroxy substituted ethyl, then one of R_2 , R_3 , R_5 and R_6 is different;

and salts thereof;

or:

(2) Y₁ and Y₂ may be the same or different and are independently selected from N and P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$

 R_7 , R_7 , R_8 and $R_{8'}$ may be the same or different and are independently selected from F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6}

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; and salts thereof,

or:

(3) Y_1 and Y_2 are both nitrogen;

R₇, R₇, R₈ and R₈ may be the same or different and are independently selected from hydrogen, F and Cl;

R₁ and R₂ together with the Y₁ group to which they are attached, or R₁, R₂ and R₃ together with the Y₁ group to which they are attached may optionally form a heterocycloalkyl group; and

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

 R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

R₁₂ and R₁₃, together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C₁₋₄ alkyl, hydroxyl, halogen, amino, and C(O)OR₁₁;

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10, 11 or 12 alkylene groups and when R_1 , R_2 and Y_1 form a heterocycloalkyl group and when R_4 , R_5 and Y_2 form a heterocycloalkyl group, then R_3 and R_6 are different; and

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al.
Date of Response: April 19, 2010

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10 or 12 alkylene groups and R_1 , R_2 , R_3 and Y_1 form a bicyclic group, then R_1 , R_2 , R_3 and Y_1 together are different to R_4 , R_5 , R_6 and Y_2 when taken together;

and salts thereof,

or:

(4) Y_1 and Y_2 are both nitrogen;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$

R₇, R₇, R₈ and R_{8'} may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*.

Date of Response: April 19, 2010

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from $C_{1.4}$ alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 12 alkylene groups, one of R_1 to R_6 is different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ — is 10 alkylene groups and four of R_1 to R_6 are C_{1-3} alkyl, the remaining two of R_1 to R_6 are different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10, 11 or 12 alkylene groups and when R_1 , R_2 and Y_1 form a heterocycloalkyl group and when R_4 , R_5 and Y_2 form a heterocycloalkyl group, then R_3 and R_6 are different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10 or 12 alkylene groups and R_1 , R_2 , R_3 and Y_1 form a bicyclic group, then R_1 , R_2 , R_3 and Y_1 together are different to R_4 , R_5 , R_6 and Y_2 when taken together;

and salts thereof

or:

(5) Y_1 and Y_2 are both nitrogen;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al.
Date of Response: April 19, 2010

heterocycloalkyl, wherein said substituents are independently selected from C_{4-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6})(C_$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups is substituted with one or more groups selected from C_{4-6} alkyl, C_{4-6} alkenyl, C_{4-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6})(C_$

 R_7 , R_7 , R_8 and $R_{8'}$ may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and salts thereof,

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 12 alkylene groups, one of R_1 to R_6 is different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 10 alkylene groups and four of R_1 to R_6 are C_{1-3} alkyl, the remaining two of R_1 to R_6 are different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10 or 12 alkylene groups and R_1 , R_2 , R_3 and Y_1 form a bicyclic group, then R_1 , R_2 , R_3 and Y_1 together are different to R_4 , R_5 , R_6 and Y_2 when taken together;

or:

(6) Y_1 and Y_2 are both P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

R₇, R₇, R₈ and R₈ may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

R₁₂ and R₁₃, together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C₁₋₄ alkyl, hydroxyl, halogen, amino, and C(O)OR₁₁;

provided that the compound of formula (I) is not selected from the following:

Examiner: Binta M. Robinson Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

$$R_1 \oplus R_2$$
 R_3
 $R_4 = R_4 = R_5 = R_6$
 $R_5 \oplus R_6$
 $R_5 \oplus R_6$
 $R_6 \oplus R_6$
 $R_7 \oplus R_8$
 $R_8 \oplus R_8$

R1 = R2 = R3 = R4 = R5 = R6 = Me, Et, 3

R1 = R2 = R4 = R5 = Me, R3 = R6 = Et, Pr

R1 = R2 = R4 = R5 = Et, R3 = R6 = Me

R1 = R2 = R4 = R5 = Pr, R3 = R6 = Me

R1 = R2 = R4 = R5 = allyl, R3 = R6 = Me

R1 = R2 = R3 = R4 = R5 = R6 = Me, Et, Pr, Bu, pentyl, allyl

R1 = R2 = R4 = R5 = Me, R3 = R6 = Pr, Bu, Decyl

R1 = R4 = Me, R2 = R3 = R5 = R6 = Hexyl, allyl

R1 = R4 =Me, R2 = R5 = Bu, R3 = R6 = octyl

$$\begin{matrix} R_1 \\ P_2 \\ R_2 \\ R_3 \end{matrix} \xrightarrow{\begin{matrix} R_4 \\ P_4 \\ R_6 \end{matrix}} R_6$$

R1 = R2 = R3 = R4 = R5 = R6 = n-Bu, t-Bu, octyl

$$\begin{matrix} R_1 \overset{\oplus}{\underset{R_2 \\ R_3}} \end{matrix} \qquad \begin{matrix} \overset{\oplus}{\underset{R_4 \\ R_3}} \end{matrix} \qquad \begin{matrix} R_4 \overset{\oplus}{\underset{R_4 \\ R_4}} \end{matrix} \qquad \begin{matrix} R_5 \\ R_6 \end{matrix} \qquad \begin{matrix} R_7 \\ R_6 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} R_7 \\ R_7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \qquad$$

2
 \dot{R}_{3} \dot{R}_{6} 1 \dot{R}_{6} 1 \dot{R}_{6} 1 \dot{R}_{1} = R2 = R3 = R4 = R5 = R6 = Me, Et, allyl

R1 = R2 = R4 = R5 = Me, R3 = R6 = Pr, pentyl

R = Pr, H, pentyl, hexyl, butyl, Me, Et

R1 = R2 = R4 = R5 = allyl, R3 = R6 = Et

R1 = R2 = R3 = R4 = R5 = R6 = Me, Pr, pentyl, butyl, allyl, ethyl, hexyl

R1 = R2 = R3 = R4 = R5 = R6 = Bu, Et, hexyl, heptyl, pentyl, propyl, decyl, i-Pr, octyl

R1 = R4 = Me, R2 = R3 = R5 = R6 = allyl, ethyl R1 = R2 = R4 = R5 = Et, R3 = R6 = hexyl

$$\begin{matrix} R_1, \bigoplus \\ P \\ R_2 \end{matrix} \begin{matrix} R_3 \end{matrix} \begin{matrix} R_4 \\ P \\ R_6 \end{matrix}$$

R1 = R2 = R3 = R4 = R5 = R6 = Me, Et, Bu, octyl

$$\begin{matrix} R_1 \\ N \end{matrix} \\ R_2 \\ R_3 \end{matrix} \qquad \begin{matrix} \bigoplus \\ R_1 \\ N \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_2 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_2 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_2 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\ R_3 \\ R_3 \\ R_3 \\ \end{matrix} \\ \begin{matrix} R_1 \\ R_3 \\$$

R1 = R2 = R3 = R4 = R5 = R6 = Me, Et

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

R1 = R2 = R3 = R4 = R5 = R6 = Me, Et R1 = R2 = R4 = R5 = Et, R3 = R6 = Me R1 = R4 = Me, R2 = R5 = Et, R3 = R6 = Pr

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

QB\990784.00004\10178\074.1

$$R_1$$
 \oplus R_2 R_3 R_4 R_5 R_6 R_6

$$\begin{array}{c} R_1 \oplus \\ R_2 & \\ R_3 & \\ R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = M_e, \ Et, \ Pr \\ R_1 = R_4 = M_e, \ R_2 = R_5 = Et, \ R_3 = R_6 = Pr \end{array}$$

$$\begin{array}{c} R_{9} \\ \hline \\ N \oplus \\ \hline \\ R_{3} \\ \hline \\ R_{b} \\ \hline \\ R_{3} \\ \hline \\ R_{4} \\ \hline \\ R_{5} \\ \hline \\ R_{6} \\ \hline \\ R_{7} \\ \\ R_{7} \\ \hline \\ R_{$$

Examiner: Binta M. Robinson Date of Office Action: 19 JAN 2010 Applicant(s): Widmer et al.

Date of Response: April 19, 2010

Ra,Rb = H Ra ≖ Me, Rb = Et

$$\begin{array}{c} \text{Me} \\ \text{N} \oplus \\ \text{R} \end{array}$$

$$\text{R} = \text{H, CH2OH}$$

$$\text{R} = \text{H, CH2OH}$$

$$\text{Me} \\ \text{Ph} \\ \text{Ph} \\ \text{Ph} \\ \text{HOH}_2\text{C} \\ \text{N} \oplus \\ \text{Me} \\ \text{CH}_2\text{OH} \\ \text{CH}_2$$

2. (Previously Presented): A compound according to claim 1, wherein Y_1 and Y_2 are each N.

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010
Applicant(s): Widmen et al.

Applicant(s): Widmer et al.

Date of Response: April 19, 2010

3. (Previously Presented): A compound according to claim 1, wherein Y_1 and Y_2 are different.

4. (Previously Presented): A compound according to claim 1, wherein R_1 to R_6 are independently selected from the group consisting of optionally substituted C_{1-10} alkylene, optionally substituted aryl, and optionally substituted heterocycloalkyl, or

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached form a heterocycloalkyl group; wherein said optional substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$

- 5. (Previously Presented): A compound according to claim 1, wherein A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, and -C(O)-, wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl.
- 6. (Previously Presented): A compound according to claim 1, wherein the length of A is from 5 to 9 carbon atoms.

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

7. (Currently Amended): A compound according to claim 1, of Formula (Ia) wherein the bis-cation of the compound is of Formula (Ia):

$$R_1 \oplus R_2 \longrightarrow Y_1 - CH_2 - \cdots - (A) \longrightarrow CH_2 - Y_2 \longleftarrow R_5 R_6$$
(Ia)

wherein

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl,

Y₁ and Y₂ may be the same or different and are independently selected from N and P;

optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, $O(C_{1-6})$

alkyl), C(O)O(C₁₋₆ alkyl), NO₂, amino, hydroxy C₁₋₆ alkyl, aryl, and OC(O)Ph; or

 R_1 and R_2 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), amino, hydroxy C_{1-6} alkyl, and aryl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, and optionally substituted phenyl, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halogen, C(O)R₁₀, OR₁₁, SR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, and optionally substituted C_{3-10} cycloalkyl, wherein said optional substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, aryl, and hydroxyl;

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, aryl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, amino, and $C(O)OR_{115}$ and salts thereof.

8. (Previously Presented): A compound according to claim 1, selected from 1,11-bis-(tributylammonium)undecane, 1,16-bis-(tributylammonium)hexadecane, 1,12-bis-(tripentylammonium)dodecane, 1,12-bis-(triisobutylammonium)dodecane, 1,12-bis-(triisobutylammonium)dodecane, 1,12-bis-(triisopentylammonium)dodecane, and 1,12-bis-(1-butylpyrrolidinium)dodecane, and salts thereof.

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*. Date of Response: April 19, 2010

9. (Withdrawn): A method for one or more of treating, inhibiting, and preventing a bacterial or fungal infection in a vertebrate, said method comprising administering to said vertebrate an effective amount of at least one compound of Formula (II):

$$\begin{array}{c}
R_1 \oplus \\
R_2 \longrightarrow Y_1 - C(R_7 R_{7'}) - (A) \longrightarrow C(R_8 R_{8'}) \longrightarrow Y_2 \longrightarrow R_5 \\
R_6
\end{array}$$
(II)

wherein

 Y_1 and Y_2 may be the same or different and are independently selected from N and P; R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), C_{2-6} alkyl, aryl, C_{2-6}

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form an heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, and halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$

R₇, R₇, R₈ and R₈, may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and - C(O)-, wherein the length of A is from 4 to 18 carbon atoms, wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, hydroxyl, halogen, nitro, C(O)R₁₀, OR₁₁,

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer *et al*.

Date of Response: April 19, 2010

CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl, optionally substituted amino- C_{1-6} -alkylsulfonate, optionally substituted amino- C_{1-6} -alkyl-guanidinyl, and optionally substituted amino- C_{1-6} -alkyl-tri(C_{1-6} - alkyl)ammonium;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted amino- C_{1-6} -alkylsulfonate, optionally substituted amino- C_{1-6} -alkyl-guanidinyl, and optionally substituted amino- C_{1-6} -alkyl-tri(C_{1-6} -alkyl)ammonium, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted arylalkyl, optionally substituted alkylheteroaryl, optionally substituted amino- C_{1-6} - alkylsulfonate, optionally substituted amino- C_{1-6} -alkylphophonate, optionally substituted amino- C_{1-6} -alkyl-guanidinyl, and optionally substituted amino- C_{1-6} -alkyl-tri(C_{1-6} - alkyl)ammonium, wherein said substituents are independently selected from C_{1-3} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-3} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$.

- 10. (Withdrawn): The method according to claim 9, wherein said compound is a compound of Formula (I) as defined in claim 1.
- 11. (Withdrawn): The method according to claim 9, wherein the infection is a fungal infection.

Examiner: Binta M. Robinson
Date of Office Action: 19 JAN 2010

Applicant(s): Widmer et al. Date of Response: April 19, 2010

12. (Withdrawn): The method according to claim 9, wherein the infection is a bacterial infection.

13. (Withdrawn): A method of inhibiting phospholipase in an organism comprising contacting said organism with an effective amount of at least one compound of Formula (I) or at least one compound of Formula (II).

14. (Withdrawn): The method according to claim 13, wherein the organism is selected from bacteria, fungi, virus, and parasite.

15. (Withdrawn): The method according to claim 13, wherein the phospholipase is Phospholipase B.

16. (Withdrawn): The method according to claim 13, wherein the organism is selected from the group consisting of: bacteria, fungi and virus.

17. (Withdrawn): A method for identifying an antimicrobial agent comprising contacting microbial cells with a compound of Formula (I) or Formula (II) suspected of having antimicrobial properties, determining whether said compound inhibits a microbial phospholipase enzyme, wherein inhibition of said phospholipase enzyme indicates antimicrobial activity, and thereby identifying an antimicrobial agent.

18. (Canceled).

19. (Canceled).