GÉOMÉTRIE ET ARITHMÉTIQUE

Syllabus

1 Cordonnées du prof

Nom: Annamaria IEZZI

E-mail: annamaria.iezzi@univ-amu.fr

Bureau: 114 (TPR2) (Le bureau se trouve au premier étage du TPR2: pour y arriver, il faut monter l'escalier à côté de la scolarité jusqu'au deuxième étage, traverser le couloir sur la droite et redescendre d'un étage. Une fois devant la porte d'accès à l'Institut de Mathématiques, rentrer dans le couloir et suivre les nombres jusqu'au 114).

2 Contenu du cours

- 1. Calcul vectoriel (~ 4 semaines):
 - le plan \mathbb{R}^2 et l'espace \mathbb{R}^3 ; opérations sur les vecteurs;
 - Produit scalaire, orthogonalité et norme ; inégalité de Cauchy-Schwarz et inégalité triangulaire ; déterminant (de 2 vecteurs du plan) et produit vectoriel (de 2 vecteurs de l'espace) ;
 - Bases et repères (quelconques, orthonormés, directs); vecteur directeur d'une droite et base d'un plan (de l'espace);
 - Système d'équations paramétriques (pour une droite ou un plan); vecteur normal à un droite (du plan) ou à un plan (de l'espace); équation cartésienne d'une droite (du plan) ou d'un plan (de l'espace) et système d'équations cartésiennes (pour une droite de l'espace).
- 2. Nombres complexes (~ 4 semaines):
 - Rappels sur les complexes; notation algébrique; opérations; conjugué et module; calcul de l'inverse; calcul des racines carrées.
 - Formules d'Euler; exponentielle imaginaire; argument et notation exponentielle; calcul du produit et de l'inverse (en notation exponentielle); racines n-ièmes de l'unité, puis d'un complexe quelconque; somme des racines n-ièmes de l'unité;
 - Liens avec le calcul vectoriel; interprétation géométrique de C et affixe d'un point (du plan);
 - Utilisation de $\mathbb C$ en géométrie plane : problèmes d'angles et de distances, transformations du plan.
- 3. Polynômes ($\sim 4 \text{ semaines}$):
 - $\mathbb{R}[X]$ et $\mathbb{C}[X]$; degré d'un polynôme; opérations sur les polynômes; dérivé d'un polynôme; formule du binôme;
 - racines d'un polynôme; théorème de d'Alembert-Gauss; démonstration dans les cas particuliers suivants : degré 2 (coefficients complexes) et degré impair (coefficients réels);
 - division euclidienne; factorisation d'un polynôme; multiplicité d'une racine; nombre de racines d'un polynôme (non nul) de degré n.

3 Modalités de contrôle des connaissances :

— 1ère session : Note Finale = $\frac{\text{Note Partiel 1 + Note Partiel 2 + Note Examen + Note Contrôle Continu}}{4}$

— 2nde session : Note Finale= Note Examen

 $\frac{\text{Partiel 1}}{\text{Partiel 2}}: \text{ vendredi 14 octobre 2016 14h-16h}$ $\frac{\text{Partiel 2}}{\text{Partiel 2}}: \text{ vendredi 25 novembre 2016 14h-16h}$

Remarque : Le $\underline{\text{contrôle continu}}$ (CC) est un contrôle des connaissances hebdomadaire d'environ 20 minutes. Il est normalement constitué de deux parties :

- une partie théorique (définitions, énoncé d'un théorème, petite démonstration, etc.);
- une partie "pratique" (un ou plusieurs exercices).

Chaque contrôle continu est noté sur 5. Une absence non justifiée au contrôle continu vaut 0. La note finale des n contrôles contenus est calculée comme la moyenne arithmétique des n-1 notes les plus élevées, reportée sur 20.