K_I	FR	BP											
2020年	₹11月4	4日 水1	翟日	午後	1:54								

KFR1

Example: Free-Return Trajectories

Consider circumlunar trajectories

Assume Coplanar orbits

Moon's orbit circular

Sun is old

Note: patched-conic approach less accurate in this problem than

If C has no gravity

1. Jump to ellipse from parking orbit

2. At \mathbb{C} , with no $\Delta \overline{v}$, remains on transfer ellipse

3. Returns to ⊕ at radius of parking orbit

Change vel mag. 4 vel dir. — w.r.t Farth \mathcal{T}^+

Consider:

- 1. make transfer ellipse larger
- 2. $\Delta \overline{v}$ still tangential (most efficient)
- 3. apogee ≥ r_{\emptyset}
- 4. reach ℂ sooner at different angle

If pass C such that

$$v_r^+ = -v_r^ v_\theta^+ = +v_\theta^-$$
 end up on same trajectory for \oplus return

| Val > [v-1

Vector Diagram

Same relative velocity equation:

$$\overline{v}^{-} = \overline{v}_{\infty/\zeta}^{-} + \overline{v}_{\zeta}$$
Solve for $\overline{V}_{00/\zeta}$

$$\overline{v}^{+} = \overline{v}_{\alpha} + \overline{V}_{00/\zeta}^{+}$$

Notes:

- Early Apollo flights → free-return
 Typical 3-day outbound leg
 Pass ahead of ℂ so s/c could enter 3-day return leg if failure occurs
 Apollo 11 (for landing) 3 day out; 2.5 day return (if insertion did not occur would not return to vicinity of Earth)
- 2. Apollo 17 altered its initial free-return translunar trajectory to get a more precise landing $r_{p/\mathbb{C}} = 1849 \, (111 \, \text{altitude}) \, / \, \text{passed ahead}$

Entered lunar orbit

- - Apollo 13 \rightarrow same trajectory / failure enroute to \mathbb{C} / lunar module descent engines did fire Lunar approach: $v_r = +.244$ $v_o = 0$