数列 $\{a_n\}$ の初項から第n 項までの和を S_n とするとき、

$$S_n = 2n^2 + n - a_n \quad (n = 1, 2, 3, \dots)$$

が成り立っている。この数列の一般項 a_n を求めよ。 この問題については、答えだけではなく、答えを導く過程も書くこと。 (2021 学習院)

$$a_1 = S_1 = 2 \cdot 1^2 + 1 - a_1$$
$$a_1 = \frac{3}{2}$$

$$a_2 = S_2 - a_1 = 2 \cdot 2^2 + 2 - a_2 - a_1$$

 $a_2 = \frac{17}{4}$

である。ここで

$$a_{n+1} = S_{n+1} - S_n$$

$$= 2(n+1)^2 + (n+1) - a_{n+1} - 2n^2 - n + a_n$$

$$= -a_{n+1} + a_n + 4n + 3$$

$$a_{n+1} = \frac{1}{2}a_n + 2n + \frac{3}{2}$$

$$a_{n+1} - 4(n+1) + 5 = \frac{1}{2}(a_n - 4n + 5)$$

したがって

$$a_n - 4n + 5 = \left(\frac{1}{2}\right)^{n-1} \cdot (a_1 - 4 \cdot 1 + 5)$$
$$= \left(\frac{1}{2}\right)^{n-1} \cdot \frac{5}{2}$$
$$= \frac{5}{2^n}$$
$$a_n = \frac{5}{2^n} + 4n - 5$$

別解 道中

$$a_{n+1} = \frac{1}{2}a_n + 2n + \frac{3}{2}$$

から

$$2a_{n+1} - a_n = 4n + 3$$

と変形できる。これは次のセットでも成り立つはずだから

$$2a_{n+2} - a_{n+1} = 4(n+1) + 3$$

二式の差をとると、

$$2(a_{n+2} - a_{n+1}) - (a_{n+1} - a_n) = 4$$

右辺の邪魔な n が消えたのであとは適当に $b_n = a_{n+1} - a_n$ とすれば

$$2b_{n+1} - b_n = 4$$

と簡略化できる。ただ、 b_n から a_n に戻す際に

$$a_n = b_n - b_{n-1}$$

となるが、第 (n-1) 項を扱うため $n \ge 2$ の制約があることに注意 (n=1) は別で考える)

コメント:数列の和から一般項を求める問題の解き方を理解しているか。ただ、結局は漸化式勝負になる。漸 化式の数字合わせは経験の差が出てしまう気がする。