

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Etudier la convergence (simple, uniforme) de la suite de fonctions $(f_n)_{n\geq 1}$ définie par :

$$\forall n \in \mathbb{N}^*, \, \forall x \in \mathbb{R}^+, \, f_n(x) = \frac{n(x^3 + x)}{nx + 1} e^{-x}.$$

EXERCICE 2 [Indication] [Correction]

Etudier la convergence (simple, uniforme) de la suite de fonctions (f_n) définie par : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = n^k x^2 e^{-nx}$, où k est un réel donné.

Exercice 3 [Indication] [Correction]

Etudier la convergence (simple, uniforme) de la suite de fonctions (f_n) définie par :

$$\forall n \in \mathbb{N}^*, \, \forall x \in \mathbb{R}^+, \, f_n(x) = \frac{n^3 x}{n^4 + x^4}.$$

Exercice 4 [Indication] [Correction]

Soit (f_n) une suite de fonctions de [a,b] dans \mathbb{R} , lipschtiziennes de même rapport $M \geq 0$.

On suppose que la suite (f_n) est simplement convergente sur [a,b], vers une application f.

Montrer que la convergence est uniforme.

EXERCICE 5 [Indication] [Correction]

Etudier la convergence (simple, uniforme) de la suite de fonctions (f_n) définie par :

$$\forall n \in \mathbb{N}^*, \, \forall x \in \mathbb{R}^+, \, f_n(x) = \frac{x}{n(1+x^n)}.$$

Suites de fonctions (I)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

- Montrer que la suite $(f_n)_{n\geq 1}$ est CVS sur \mathbb{R}^+ vers $f: x \mapsto \begin{cases} (x^2+1)e^{-x} & \text{si } x>0\\ 0 & \text{si } x=0 \end{cases}$
- Il n'y a pas CVU sur [0, a], pour tout a > 0.

Montrer qu'il y a CVU sur $[a, +\infty[$.

On montrera que $\forall x \ge a > 0, \ 0 \le f(x) - f_n(x) \le \frac{1}{e(na+1)}$.

Indication pour l'exercice 2 [Retour à l'énoncé]

- Se limiter à $x \geq 0$. Montrer que la suite $(f_n)_{n\geq 0}$ est CVS sur \mathbb{R}^+ vers 0.
- Étudier les variations de f_n sur \mathbb{R}^+ .

Montrer que si k < 2, il y a CVU sur \mathbb{R}^+ vers 0.

Si $k \geq 2$, montrer qu'il y a CVU sur tout intervalle $[a, +\infty[$.

INDICATION POUR L'EXERCICE 3 [Retour à l'énoncé]

- Montrer que la suite $(f_n)_{n\geq 1}$ est simplement convergente, sur \mathbb{R}^+ , vers la fonction nulle.
- Montrer qu'il n'y a pas convergence uniforme sur \mathbb{R}^+ .

Montrer qu'il y a CVU vers 0 sur tout intervalle [0, a], avec a > 0.

Indication pour l'exercice 4 [Retour à l'énoncé]

– On traite le cas particulier f = 0.

Se donner $\varepsilon > 0$ et une subdivision (x_k) de [a,b] de pas inférieur à ε .

En déduire qu'il existe n_0 tel que $n \ge n_0 \Rightarrow \sup_{x \in [a,b]} |f_n(x)| \le (M+1)\varepsilon$.

– Dans le cas général, montrer que f est M-lispchitzienne sur [a,b].

Considérer alors les applications $g_n = f - f_n$.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

Sur [0,1], minorer $1+x^n$ par 1. Sur $[1,+\infty[$, minorer $1+x^n$ par x^n .

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

- Convergence simple :

Pour tout n de \mathbb{N}^* , $f_n(0) = 0$. Pour tout $x \neq 0$, $f_n(x) \sim (x^2 + 1)e^{-x}$ quand $n \to \infty$. Ainsi $(f_n)_{n\geq 1}$ est simplement convergente sur \mathbb{R}^+ vers $f: x \mapsto \begin{cases} (x^2 + 1)e^{-x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$

- Convergence uniforme:

Les applications f_n sont continues en 0, mais pas l'application f.

La convergence de $(f_n)_{n\geq 1}$ n'est donc pas uniforme sur \mathbb{R}^+ , ni même sur [0,a] avec a>0. On va montrer qu'il a convergence uniforme sur $[a,+\infty[$, où a>0 est donné.

Pour tout
$$x > 0$$
, on a $f(x) - f_n(x) = \left(x^2 + 1 - n\frac{x^3 + x}{nx + 1}\right)e^{-x} = \frac{x^2 + 1}{nx + 1}e^{-x} = \frac{f(x)}{nx + 1}$.

Remarque:

 $f(\frac{1}{n}) - f_n(\frac{1}{n}) = \frac{1}{2} \left(\frac{1}{n^2} + 1\right) \exp(-\frac{1}{n})$ tend vers $\frac{1}{2}$ et non vers 0 quand $n \to \infty$.

Cela confirme que la suite $(f_n)_{n\geq 1}$ n'est pas CVU vers f sur \mathbb{R}^+ .

On a $f'(x) = (2x - x^2 - 1)e^{-x} = -(x - 1)^2e^{-x} \le 0$: f est décroissante et ≥ 0 sur \mathbb{R} .

En particulier sur \mathbb{R}^+ on $a:0\leq f(x)\leq f(0)=\frac{1}{e}$.

On en déduit : $\forall x \ge a > 0$, $0 \le f(x) - f_n(x) = \frac{f(x)}{nx+1} \le \frac{1}{e(na+1)}$.

Ainsi $\sup_{x>a} |f(x) - f_n(x)|$ tend vers 0 quand $n \to +\infty$.

Conclusion : la suite $(f_n)_{n\geq 1}$ est uniformément convergente vers f sur $[a, +\infty[$.

Remarque:

Ici il est maladroit d'étudier les variations de $f - f_n$ sur \mathbb{R}^+ (la dérivée n'est pas simple.) Voici les courbes de f (au dessus des autres) et des trente premières f_n . On vérifie facilement que $f_n \leq f_{n+1}$ pour tout n: la courbe de f_{n+1} est donc toujours "au-dessus" de celle de f_n .

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Tous droits de l'autour des couvres récervés. Souf autorisation la reproduction ainsi que toute utilisation des couvres autre que le consultation

Corrigé de l'exercice 2 [Retour à l'énoncé]

- Convergence simple :

On constate que si x < 0, alors $\lim_{n \to \infty} f_n(x) = +\infty$. On se limitera donc à $x \ge 0$.

Pour tout entier $n \geq 1$, la fonction f_n est nulle en x = 0.

Si x > 0, alors $0 < e^{-x} < 1$ et $\lim_{n \to \infty} n^k e^{-nx} = \lim_{n \to \infty} n^k (e^{-x})^n = 0$ (croissance comparée).

La suite $(f_n)_{n\geq 0}$ est donc simplement convergente, sur \mathbb{R}^+ , vers la fonction nulle.

- Convergence uniforme :

On étudie les variations de f_n sur \mathbb{R}^+ .

On constate que $f'_n(x) = n^k x(2 - nx)e^{-x}$ s'annule en $x_n = \frac{2}{n}$.

En ce point la fonction positive f_n atteint son maximum $M_n = f_n(x_n) = n^{k-2} \frac{4}{e^2}$.

- Si k < 2, alors $\lim_{n \to \infty} M_n = 0$: La suite $(f_n)_{n \ge 0}$ est CVU sur \mathbb{R}^+ vers 0.
- Si k ≥ 2, alors lim M_n ≠ 0 : Il n'y a plus convergence uniforme sur R⁺.
 Il y a cependant convergence uniforme sur tout intervalle [a, +∞[, avec a > 0.
 En effet, dès que ²/_n ≤ a, c'est-à-dire dès que n ≥ ²/_a, alors f_n est décroissante sur [a, +∞[.

Dans ces conditions, $\sup_{x>a} |f_n(x)| = f_n(a)$, qui tend vers 0 quand n tend vers $+\infty$.

On a représenté f_1, f_2, \dots, f_5 , sur le segment [0, 5], pour les trois valeurs k = 1, k = 2, k = 3.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 3 [Retour à l'énoncé]

- Convergence simple :

Notons tout d'abord que pour tout n de \mathbb{N}^* , $f_n(0) = 0$. Pour tout x > 0, on constate que $f_n(x) \underset{n \to \infty}{\sim} \frac{x}{n}$, qui tend vers 0 quand n tend vers $+\infty$. La suite $(f_n)_{n>1}$ est donc simplement convergente, sur \mathbb{R}^+ , vers la fonction nulle.

- Convergence uniforme:

On a $f_n(n) = \frac{1}{2}$. Cela suffit à prouver qu'il n'y a pas convergence uniforme sur \mathbb{R}^+ . La suite $(f_n)_{n\geq 1}$ est cependant CVU vers 0 sur tout intervalle [0,a], avec a>0. Sur cet intervalle on peut en effet majorer n^3x par n^3a et minorer n^4+x^4 par n^4 . On en déduit : $\sup_{0\leq x\leq a}|f_n(x)|\leq \frac{a}{n}$, quantité qui tend vers 0 quand $n\to +\infty$.

Autre méthode (moins rapide ici) :

On vérifie facilement que $f'_n(x) = -\frac{n^3(3x^4-n^4)}{(n^4+x^4)^2}$.

L'application positive f_n trouve son maximum M_n en $x_n = \frac{n}{\sqrt[4]{3}}$, et $M_n = \frac{1}{4}3^{3/4} \approx 0.57$.

Le fait que M_n ne tende pas vers 0 quand $n \to \infty$ confirme qu'il n'y a pas CVU sur \mathbb{R}^+ .

Fixons a > 0: dès que $x_n \ge a$, donc dès que $n \ge a\sqrt[4]{3}$, f_n est croissante sur [0, a].

Dans ces conditions $\sup_{0 \le x \le a} |f_n(x)| = f_n(a)$ qui tend vers 0 quand $n \to +\infty$.

Cela prouve la convergence uniforme sur [0, a].

On a représenté les fonctions $f_1, f_5, f_{10}, f_{15}, f_{20}$, sur le segment [0, 5] puis sur le segment [0, 20]. On doit imaginer que quand n augmente, la courbe $y = f_n(x)$ se "déforme" vers la droite.

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.
Tous droits de l'auteur des œuvres réservés. Sanf autorisation, la reproduction ainsi que toute utilisation des œuvres autre que la consultation

Corrigé de l'exercice 4 [Retour à l'énoncé]

– Cas particulier f = 0:

On se donne un réel ε strictement positif.

On considère une subdivision $x_0 = a < x_1 < \ldots < x_p = b$ telle que $x_{k+1} - x_k \le \varepsilon$ pour tout entier k.

Soit x un élément quelconque de [a, b]. Il existe un indice k tel que $x \in [x_k, x_{k+1}]$.

Avec ces notations, et pour tout entier n:

$$|f_n(x)| = |f_n(x) - f_n(x_k) + f_n(x_k)| \le |f_n(x) - f_n(x_k)| + |f_n(x_k)|$$

 $\le M |x - x_k| + |f_n(x_k)| \le M\varepsilon + |f_n(x_k)|$

Pour chaque entier k, la suite de terme général $f_n(x_k)$ converge vers 0 (hypothèse de convergence simple.)

Il en est donc de même de la suite de terme général $\lambda_n = \sup_{0 \le k \le p} |f_n(x_k)|$.

En particulier, il existe un entier n_0 tel que $n \ge n_0 \Rightarrow \lambda_n \le \varepsilon$.

On en tire, pour tout entier $n \ge n_0$ et pour tout x de $[a,b]: |f_n(x)| \le M\varepsilon + \lambda_n \le (M+1)\varepsilon$.

Autrement, dit, $n \ge n_0 \Rightarrow \sup_{x \in [a,b]} |f_n(x)| \le (M+1)\varepsilon$. On en déduit $\lim_{n \to \infty} \sup_{x \in [a,b]} |f_n(x)| = 0$.

Conclusion : la suite (f_n) est uniformément convergente, sur [a,b], vers la fonction nulle.

- Cas général :

Pour tout entier n et pour tous réels x et y de [a,b], on a $|f_n(x)-f_n(y)| \leq M|x-y|$.

En faisant tendre n vers $+\infty$ dans cette inégalité, on trouve : $|f(x) - f(y)| \le M|x - y|$.

L'application f est donc M-lispchitzienne sur [a, b].

Il en est alors de même des applications $g_n = f - f_n$.

Par hypothèse, la suite g_n converge simplement vers la fonction nulle. L'étude précédente montre que cette convergence est uniforme.

Ainsi la suite (f_n) est uniformément convergentesur [a,b] vers f: c'est ce qu'il fallait démontrer.

Corrigé de l'exercice 5 [Retour à l'énoncé]

Sur le segment [0,1], on minore $1+x^n$ par 1, et on trouve $0 \le f_n(x) \le \frac{x}{n} \le \frac{1}{n}$.

Sur l'intervalle $[1, +\infty[$, on minore $1+x^n$ par x^n , et on trouve $0 \le f_n(x) \le \frac{1}{nx^{n-1}} \le \frac{1}{n}$.

On constate donc que $\sup_{x>0} |f_n(x)| \leq \frac{1}{n}$.

Conclusion : la suite $(f_n)_{n\geq 0}$ est uniformément convergente, sur \mathbb{R}^+ , vers la fonction nulle.

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.