Análise de Dados com Base em Processamento Massivo em Paralelo

Aula 6: Processamento Paralelo e Distribuído

Cristina Dutra de Aguiar Ciferri ICMC/USP cdac@icmc.usp.br

- Ambientes Computacionais
- Modelo MapReduce
- Apache Spark RDD

Ambientes Computacionais

- Características
 - Grande capacidade de armazenamento e processamento
 - Suporte para a manipulação de big data
- Tipos
 - o *Cluster* de computadores
 - Ambiente de computação em nuvem

Cluster de Computadores

- Popularizado em meados da década de 90
- Modelo composto por uma coleção de computadores
 - Chamados de nós
 - o Dispostos de forma paralela e distribuída
 - Interconectados por redes de alta velocidade

Características

- Processamento
 - Recebimento das tarefas
 - Divisão das tarefas entre os nós
 - Execução simultânea das tarefas nos nós
- Transparência
 - Cluster deve ser visto como um único computador
- Computadores
 - o Hardware não precisa ser exatamente igual em cada nó
 - Podem ser dedicados ou não

Software

- Sistema operacional
 - Todos os nós devem utilizar o mesmo sistema operacional
 - Objetivos
 - Diminuir a complexidade de configuração e manutenção
 - Facilitar monitoramento, distribuição de tarefas e controle de recursos
- Middleware
 - Sistema que permite o gerenciamento do *cluster*
 - Diretamente relacionado ao sistema operacional
 - Oferece uma interface para configuração

instalado em uma máquina chamada nó mestre (nó controlador)

Tipos de Cluster

- Voltados a atender aos requisitos específicos das aplicações
 - Cluster de alto desempenho
 - Cluster de alta disponibilidade
 - Cluster para balanceamento de carga
- Combinação de tipos de *cluster*
 - Suprir às demandas das aplicações
 - Exemplo
 - cluster de alta disponibilidade para funcionamento 24 x 7
 - cluster de balanceamento de carga para garantir eventual aumento de requisições em períodos de pico

Cluster de Alto Desempenho

- Voltado à computação intensiva
 - Realiza o processamento coletivo de uma única tarefa computacional complexa
- Os nós devem, idealmente
 - Ser majoritariamente homogêneos em termos de arquitetura de processadores e de sistema operacional
 - Compartilhar uma rede dedicada
 - Estar acoplados de forma próxima

Cluster de Alta Disponibilidade

- O sistema deve funcionar continuamente
 - Mesmo em caso de eventuais falhas
- Manutenção de nós redundantes
 - Quando um nó falha, ele é substituído por outro nó sem prejuízo
- Recursos que podem ser utilizados
 - o Ferramentas de monitoramento dos nós para investigar falhas
 - o Replicação (redundância) de sistemas
 - o Computadores para substituição imediata de máquinas com problemas
 - Uso de geradores para garantir o funcionamento do sistema

Cluster para Balanceamento de Carga

- Divisão o mais uniforme possível das tarefas entre os nós
 - Cada nó deve receber e atender a uma tarefa
 - Nós não devem, necessariamente, dividir uma tarefa com outros nós
- Recursos que podem ser utilizados
 - Ferramentas de monitoramento dos nós para analisar a carga
 - Direcionamento de tarefas para nós que possuam menor quantidade de tarefas

Cluster Beowulf

- Padrão de cluster disponibilizado pela NASA em 1994
- Características
 - A conexão entre os nós pode ser feita por redes Ethernet
 - Não é necessário o uso de hardware específico ou potente
 - Sistema operacional
 - Deve ser baseado em código aberto
 - Deve conter as ferramentas necessárias para a configuração do cluster

Cluster Beowulf: Nó Mestre e Nós Escravos

Cluster Beowulf: Nó Mestre e Nós Escravos

Dificuldades de Cluster de Computadores

- Usuários
 - Enxergam o *cluster* como uma coleção de computadores independentes
- Manipulação do cluster pode ser uma tarefa complexa
 - Manipulação dos componentes
 - Divisão de tarefas entre os nós
 - Gerenciamento da comunicação entre os nós

Computação em Nuvem

- Modelo que possibilita acesso a
 - o Recursos computacionais compartilhados e interligados via rede
- Exemplos de recursos
 - o Redes, servidores, equipamentos de armazenamento
 - Aplicações, serviços
- Nuvem
 - o Abstração que oculta a complexidade de infraestrutura

Abstração Nuvem

Metáfora para
Internet ou infraestrutura
de comunicação entre
ambientes computacionais

Definição Segundo NIST

Computação em nuvem é um modelo que permite acesso ubíquo, conveniente e sob demanda via rede a um conjunto compartilhado e configurável de recursos computacionais que pode ser rapidamente fornecido e liberado com esforços mínimos de gerenciamento ou interação com o provedor de serviços

Composição Segundo NIST

- Tecnologias chave
 - Redes de longa distância rápidas
 - Computadores servidores poderosos e/ou baratos
 - Virtualização de alto desempenho
- Ambiente de nuvem
 - Cinco características essenciais.
 - o Três modelos de serviços
 - Quatro modelos de implantação

Composição Segundo NIST

- Tecnologias chave
 - Redes de longa distância rápidas
 - Computadores servidores poderosos e/ou baratos
 - Virtualização de alto desempenho
- Ambiente de nuvem
 - Cinco características essenciais
 - Três modelos de serviços
 - Quatro modelos de implantação

Características Essenciais

- Serviço sob demanda
 - Recursos são acessados de forma direta e sob demanda
 - Alocação e liberação de recursos ocorre sem interação entre o usuário e o provedor
 - Usuários têm interação mínima com o provedor
- Serviço sob demanda
 - Recursos são acessados de forma direta e sob demanda
 - Alocação e liberação de recursos ocorre sem interação entre o usuário e o provedor
 - Usuários têm interação mínima com o provedor

Características Essenciais

- Compartilhamento de recursos
 - Recursos são agrupados e compartilhados entre diversos usuários
 - Usuários não precisam ter conhecimento acerca da localização dos recursos
- Rápida elasticidade
 - Recursos são rapidamente alocados e liberados a qualquer momento
 - Aplicação pode demandar qualquer quantidade de recursos
 - Usuários têm a sensação de capacidade de armazenamento e processamento infinita

Características Essenciais

- Serviço mensurável
 - o Baseado no modelo *pay-as-you-go*
 - Identificação de quais recursos foram utilizados
 - Cobrança apenas desses recursos utilizados
 - > Usuários pagam apenas os serviços que usam e não pagam pelos recursos ociosos

Infraestrutura da Nuvem

- Coleção de hardware e software
 - Oferece suporte para as cinco características essenciais

software

Camada de Abstração

<u>exemplos</u> sistema operacional, sistema gerenciador de banco de dados

hardware

Camada Física

<u>exemplos</u> rede, servidores, armazenamento

Modelos de Serviços

Software as a Service (SaaS)

- Recursos fornecidos são os programas aplicativos
- Acesso
 - Diferentes dispositivos cliente
 - Uso de uma interface de navegador ou uma interface de programa
- Usuários
 - Podem apenas configurar seus aplicativos específicos

Platform as a Service (PaaS)

- Recurso fornecido é a plataforma para a execução dos aplicativos
 - Implantação de aplicativos criados ou adquiridos

Aplicativos

- Desenvolvidos usando linguagens de programação, bibliotecas, serviços e ferramentas presentes no provedor
- Devem ser executados nos recursos da nuvem

Usuários

- Têm controle sobre os aplicativos implantados
- Podem definir configurações para o ambiente de hospedagem de aplicativos

Infrastructure as a Service (laaS)

- Recursos fornecidos são relacionados à infraestrutura
 - Processamento, armazenamento, redes
 - Outros recursos necessários para implantar e executar qualquer software
 - Uso de máquinas virtuais acessadas de forma transparente

Usuários

- Têm controle sobre os sistemas operacionais, armazenamento e aplicativos implantados
- Podem ter controle limitado sobre componentes de rede selecionados

Modelos de Implantação

- Diferenciam-se pelas restrições de acesso
- Modelos
 - Nuvem privada
 - Nuvem comunitária
 - Nuvem pública
 - Nuvem híbrida

Cluster de Computadores e Computação em Nuvem

	Cluster de Computadores	Computação em Nuvem
Funcionamento dos Componentes	responsabilidade do usuário	responsabilidade do provedor de serviços
Custos de Funcionamento	todos os custos envolvidos, inclusive os referentes aos recursos ociosos	somente os recursos usados (serviço mensurável)

Cluster de Computadores e Computação em Nuvem

	Cluster de Computadores	Computação em Nuvem
Adição ou Remoção de Componentes	responsabilidade do usuário	responsabilidade do provedor de serviços (serviço sob demanda)
Visão do Usuário	transparente (vários computadores conectados para suprir uma necessidade)	ubíqua (serviço criado para atender uma necessidade, sem conhecer detalhes de funcionamento)

- Ambientes Computacionais
- Modelo MapReduce
- Apache Spark RDD

MapReduce

- Introduzido pela Google em 2004
- Modelo de programação funcional
- Voltado ao processamento massivo de dados
 - Projetado para *clusters* formados por computadores comuns
 - Foco em processamento paralelo e distribuído
 - Garante alta disponibilidade e tolerância a falhas

Abstração

- Esconde a complexidade inerente ao paralelismo e à distribuição
 - Armazenamento dos dados
 - o Particionamento (distribuição e replicação) dos dados de entrada
 - Balanceamento de carga
 - Escalonamento da execução das tarefas nos nós do cluster
 - Manipulação de falhas
 - o Gerenciamento da comunicação entre os nós do *cluster*
- Possibilita
 - Manipulação de gigantescos volumes de dados

Funções Base

Map

- Processa dados de entrada na forma de pares chave-valor
- o Transforma esses dados em saídas intermediárias na forma de pares chave-valor

Reduce

- Processa as saídas intermediárias na forma de pares chave-valor
- o Agrupa os valores associados a uma mesma chave em um resultado único
- Produz pares chave-valor
- > Cada job MapReduce executa as funções map e reduce em sequência

Contador de Palavras

HDFS (Hadoop Distributed File System)

- Sistema de arquivos distribuídos
 - Baseado no Google File System (GoogleFS)
- Características
 - Nó mestre
 - Controle dos outros nós
 - Servidores de dados
 - Armazenamento dos "pedaços" dos arquivos

Arquitetura do HDFS

Arquitetura do HDFS

Comunicação

Comunicação

Implementações do MapReduce

- Objetivo
 - Abstrair e facilitar o uso dos conceitos subjacentes
- Frameworks de processamento paralelo e distribuído
 - Hadoop
 - Spark

Apache Hadoop

- Escrito na linguagem de programação Java
- Evolução
 - Originalmente projetado para
 - Executar sobre o HDFS
 - Incorporar os conceitos relacionados a MapReduce
 - Evoluiu para uma plataforma que integra um número variado de máquinas de armazenamento e processamento
- Necessidade de incluir YARN como um novo componente

Visão Geral da Arquitetura do Hadoop

HDFS

sistema de arquivos para gerenciar o armazenamento dos dados Yarn

plataforma para gerenciamento MapReduce

modelo de programação

Apache Spark

- Escrito na linguagem de programação Scala
- Características
 - Executa sobre o HDFS
 - Incorpora e estende os conceitos relacionados a MapReduce
 - Baseado no uso de conjuntos de dados distribuídos e resilientes (RDDs)
 - Possibilita o agendamento de tarefas na forma de grafos acíclicos e direcionados

Resilient Distributed Datasets (RDDs)

- Abstrações para a manipulação de dados
 - Toda manipulação de dados deve ser feita sobre os RDDs
- Coleções de blocos de dados distribuídos
 - Capazes de serem reconstruídos em caso de falhas
 - o Permitem o armazenamento de resultados intermediários em memória primária
 - Importante quando se deseja reutilizar essas saídas em operações futuras
- Resultado: Uso de RDDs diminui o número de acessos a disco

Grafos Acíclicos Direcionados

- Permitem o agendamento de estágios
 - Processamento de tarefas consiste de vários estágios
- Executam os estágios de forma paralela
 - Desde que não existam dependências entre os estágios
- Resultado: Uso de grafos acíclicos direcionados melhora o desempenho computacional

Fluxo de Dados no Hadoop

Fluxo de Dados no Hadoop

Fluxo de Dados no Spark

Fluxo de Dados no Spark

Ecossistema Hadoop (Tecnologias)

HBase armazenamento NoSQL Pig criação de

aplicações

Hive motor de consulta

Apache Hadoop MapReduce SparkMLlib machine learning

SparkSQL linguagem SQL

Apache Spark

Yarn

gerenciamento do cluster

HDFS

sistema de arquivos distribuídos

