Information Theory and Network Coding

Final Examination

Due date: 2pm, Sun., 17 April, 2021 (Beijing Time)

Notice: Do not forget to write your name and SID on your answer sheet.

Merge your answer sheets into a SINGLE FILE, with your Student ID as the file name;

Email your single answer file to me gfsun@ustb.edu.cn before the deadline.

Name:	Student ID:

I. Short Answer Questions

- 1. (10pts) Briefly describe the different goals of source coding, channel coding, and network coding.
- 2. (10pts) Briefly describe what the Source Coding Theorem and the Channel Coding Theorem respectively state.
- 3. (10pts) In the Venn diagram representation below, H(X, Y, Z) can be divided into 7 areas, labeled with A, B, C, D, E, F, G respectively. Write down the respective information measure corresponding to *area A*, *area D*, *area A+B+D*, and *area E+F+G*. Which one among the 7 areas (A to G) is possible to take a negative value?

// e.g. $H(X \mid Z)$ corresponds to area A+D.)

4. (10pts) There are 4 binary codes $C_1 = \{000, 11, 001, 010, 101\}$, $C_2 = \{0, 10, 0010, 0011\}$, $C_3 = \{0, 10, 11, 0100\}$, $C_4 = \{01, 00, 011, 001\}$. Which ones do not satisfy Kraft's inequality? Which are not uniquely decodable? Which are prefix codes?

II. (15pts) The *joint distribution* of two binary random variables X, Y is given by the table

X	a	b	С
0	1/4	0	1/4
1	0	1/4	1/4

Calculate H(X, Y), H(X), H(Y|X), H(Y | X = 0), I(X; Y).

III. (15pts) Let $X = \{x_1, x_2, x_3\}$ be a ternary random variable with probability distribution $\{0.6, 0.3, 0.1\}$.

1. Construct a binary Huffman code for X. Calculate the code's expected length \overline{L}_1 and code efficiency $\eta_1 = H(X)/\overline{L}_1$?

2. Construct a binary Huffman code for two i.i.d. copies X^2 of X, calculate the code's expected length \overline{L}_2 and code efficiency $\eta_2 = H(X^2)/\overline{L}_2 = 2H(X)/\overline{L}_2$?

IV. (15pts) Consider a stationary (1st order) Markov source $X_1, X_2, \ldots X_j, \ldots$ Every random variable X_j in the stationary source has an identical probability distribution (1/4, 1/4, 1/4, 1/4). The conditional probability distribution of X_{j+1} given X_j is known via the transition matrix

$$P_{X_{j+1}|X_j} = \begin{bmatrix} 1/2 & 1/4 & 0 & 1/4 \\ 0 & 1/2 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/2 & 0 \\ 1/4 & 0 & 1/4 & 1/2 \end{bmatrix}$$

1. Calculate $H(X_j)$, the entropy rate H_X of this source, and $H(X_j, X_{j+1})/2$. Rank $H(X_j)$, $H(X_j, X_{j+1})/2$, and H_X in a descending order.

2. What value is $I(X_{j-1}; X_{j+1} | X_j)$ equal to?

V. (15pts) The figure on the right depicts a channel with input random variable $X \in \{0, 1\}$ and output random variable $Y \in \{0, e, 1\}$.

1. Write down corresponding transition matrix of this channel.

2. When p(X = 1) = 0, p(X = 1) = 1, calculate $H(Y \mid X)$, H(Y), and I(X; Y).

3. When p(X = 0) = 1/2, p(X = 1) = 1/2, calculate H(Y | X), H(Y), and I(X; Y);

2/2

4. What is the capacity of this channel? Explain it.