POWERED BY Dialog

Radio tuner resonance circuit - applying DC bias voltage to each varactor diode according to its characteristic NoAbstract Dwg 4/4

Patent Assignee: TRIO ELECTRONICS INC

Inventors: SASAO H

Patent Family (1 patent, 1 country)

Patent Number	Kind	Date	Application Number	Kind	Date	Update Type
JP 59229914	Α	19841224	JP 1983103550	A	19830611	198506 B

Priority Application Number (Number Kind Date): JP 1983103550 A 19830611

Patent Details

Patent Number	Kind	Language	Pages	Drawings	Filing Notes
JP 59229914	A	JA	10		

International Classification (Additional/Secondary): H03H-005/00, H03J-007/28

Publication Number: JP 59229914 A (Update 198506 B)

Publication Date: 19841224

RESONANCE CIRCUIT

Assignee: TRIO ELECTRONICS INC (TRIR) TRIO KENWOOD CORP

Inventor: SASAO HIROMI

Language: JA (10 pages)

Application: JP 1983103550 A 19830611 (Local application)

Original IPC: H03H-5/00 H03J-7/28 Current IPC: H03H-5/00 H03J-7/28

Derwent World Patents Index

© 2006 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 3275214

(9) 日本国特許庁 (IP)

⑩ 特許出願公開

⑩公開特許公報(A)

昭59-229914

6DInt. Cl.3 H 03 H 5/00 H 03 I 7/28

識別記号 庁内整理番号

7328-5 I 7117-5K 母公開 昭和59年(1984)12月24日

発明の数 1 審査請求 未請求

(全 4 頁)

60共振回路

20特 願 昭58-103550 22 HH

願 昭58(1983)6月11日

②発 明 者 笹尾裕巳

東京都渋谷区渋谷2丁目17番5

号トリオ株式会社内 ⑦出 願 人 トリオ株式会社

東京都渋谷区渋谷2丁目17番5

79代 理 人 弁理十 砂子信夫

1. 発明の名称

共 振 回 路

2. 特許請求の範囲

(1) 同一方向に直列接続された複数の可変容量 グイオードと、可変容量ダイオードのそれぞれに 可変容量ダイオードの特性に対応した直旋パイア ス電圧を同時に印加する電圧供給手段とを備えて なることを特徴とする共振同略。

(2) 複数の可変容量ダイオードはほぼ同一特性 の可変容量ダイオードであることを特徴とする特 許請求の範囲第1項記載の共振回路。

(3) 電圧供給手段は抵抗分圧回路であることを 特徴とする特許請求の範囲第1項記載の共振回路。

3. 発明の詳細な説明

本発明は可変容量ダイオードを用いた共振回路 に関し、さらに詳言すれば周波数シンセサイザチ ユーナにおける同調回路、局部発振器等に使用で きる共振回路に関する。

(従来技術)

従来の馬波数シンセサイザチューナに使用され る共振回路は第1回に示す如く、逆商列に接続さ れた2個の可変容量ダイオード1,2と、可変容 量ダイオード1,2の陽極間に接続されたコイル 3とから構成され、遊直列に接続された可変容量 ダイオード1,2の際極に直旋パイアス電圧 Vr を印加し、直流ペイアス電圧Vrを変化させて共振 周波数を変化させていた。

しかるに、上記した従来の共振回路を周波数シ ンセサイザチューナの同題回路として、まか局部 発振器のタンク回路として使用したとき、共振回 路に発生または加えられる信号の振幅が大きくた ると可変容量ダイオードの市産パイプスが影響を 受けて可変容量ダイオードの容量が変化し、共振 特性が悪化するたどの欠点があつか。

(発明の目的)

本発明は上記にかんがみなされたもので、上記 の欠点を解消し、信号の振幅が増大した大振幅動 作時の共振特性が改善される共振回路を提供する

ことを目的とする。

この目的は本発明によれば、複数側の可変容量 ダイオードを同一方向に直列接続し、かつ金での 可変容量ダイオードにそれぞれ対応する直底ペイ プス電圧を供給して同時に駆動することにより違 成される。

以下、本発明を実施例により説明する。

(発明の構成)

第2図は本発明の一実施例の構成を示す回路図 である。

本発明の一実施例は第2図に示す如く同一条性の n 個の可変容量をイオード41,42,...,4nを面列 に接続した第1の可変容量をイオード群と、面倒の可 変容量をイオード51,62,...,5nを直列に直接した 第2の可変容量をイオード群とを道直列に直接した 第2の可変容量をイオード群とを道直列に直接して で変容量をイオード44の階極と可変容量をイオー ド51、の隔極との間にコイルのを接続して並列共野 の間を構成している。一方、n 個の抵抗61,62,...66。16回列に接続したから E avrを供給して分圧し、抵抗 61,62,...,6n の 各抵抗値を同一値に設定して、可変容量メイオー P 41 かよび51 の陰極に直旋パイアス電圧 V で の実容量メイオー P 41 かよび52 の陰極に直旋パイアス電圧 2V で を、 一 同様に可変容量メイオー P 4n かよび5n の陰極に直旋パイアス電圧 aVr を、 抵抗 71,72,...,7n,81,...,8n-1 を介して供給し、それぞれの可変容量メイオード41,42,...,4n,51,52,...,5nに同一の直旋パイアス電圧 V r が印加されるよりに構成してある。なか、抵抗71,72,...,7n,7n,17n,7n,8n-1 はナヨークコイルであつても英支えない。

(発明の作用)

以上の如く構成した本発明の一実施例は、第1 図に示した従来の共振国路と同様に、並列共振国 路を構成している。コイル9のインダクタンスと コイル3のインダクタンスのn倍に設定すること により、可変容量コンアンサ41,42,044nに配コン 学量コンアンサ1と同一のものを、可変容量コン アンサ51,52,05nに可変容量コンアンサ 2と同

一のものを用いた場合、第1図に示した共振回路 と第2図に示した本発明の一実施例の共振回路と は共振周波数に対して等価となる。

一方、直復ペイプス電圧 aVェが供給されるペテ よりみた場合、第1 図に示す共振回路にかいて直 ポペイプス電圧と馬波数の変化総別が10V-1MIs であつたとすれば、第2 図に示した本実施例のと きには a×10V-1MIs となり、直流ペイプス電圧 aVェに変るノイズが第1 図に示す共振回路の直流 パリース電圧に乗るノイズと同一とすれば、ホリー でも可変容量ダイオード41,...,4a,51,...,5a に 印加されるため、本発明の一実施例にかけるC/N は第1 図に示した従来の共振回路の C/Nの1/a 倍 に改善されるため、本発明の一実施例にかけるC/N は第1 図に示した従来の共振回路の C/Nの1/a 倍 に改善されるため、本発明の一実施例にかけるC/N

また以上説明した本発明の一実施例にかいて、 可変容量ダイオード41,42,…,4a,51,52,…5a の特性は同一のものとしたが、対応する可変容量 ゲイオード41と5i,42と52,…,4a,と5a,と5a 特性のものとして分圧関略を構成する振航61, 62,…,6n の抵抗値を設定することにより、対応 する電圧をそれぞれの対をなす可変容量ダイォード 41と51,42と52,…,4nと5nに印加するよりに してもよい。

さらに可変容量メイオード41,42,…4a,51, 52,…5aの特性が同一でない場合にも分圧回路を 2つ設けることにより対応させることができる。

またさらに、可変容量ダイオード51,52,…, 5nからなる第2の可変容量ダイオード群をコンデンサで置換しても同様である。

第3 図は本発明の使用例を示す回路図である。 第3 図に示した使用例は本発明を周波数シンセ すイザチューナの高周波増編数の同調回路として 使用した場合の例である。

高周披増福器 1 0 の入力側に n = 3 としたとき の本発明の一実施例からなる共振回路 A を同隣回 路として接たし、高周波増帰10 の出力例で n = 2 としの本発明の一実施例からなる共展 回路 B を同類図路として接続してある。

とこで共振 医路 A および B の一部を構成する可

特開昭59-229914(3)

この場合に各共振回路 A , B の可変容量 ダイオードの数 が異 なつていても、全体の同調特性が一致する。

また本発明の共振回路を同談図路として用いた ときは、同談回路のチューニング電圧(前記の底 ポパイプス電圧)を n 倍に高くするととができる ために C/N が1/n に改善され、その分だけ大信号 提供数件サニープの高周数段のタイナミックレンジ は拡大される。

第4図は本発明の他の使用例を示す回路図である。

第4 図に示した使用例は本発明を周波数シンセ サイザチューナの電圧制御発振器に使用した場合 の例である。

同間回路15,16、高周波增幅器10、混合 回路17およびPLL回路Dにより周波数シンセサ イザチユーナのフロントエンドが構成してある。 PLL同路D は電圧制御器振器18、プログラマブ ル分周器19、位相比較器20、基準発振器21、 プリスケーラとしての分周器22、ローパスフィ ルタ23、直流増幅器24とから構成してあり、 電圧制御祭振器18のタンク回路には本発明のn = 2とした場合における共振回路 C が用いてある。 直流増幅器24は従来の周波数シンセサイザチュ -ナにおける出力電圧 V_T の 2 倍の出力電圧 2 V_Tを 出力するように、そのゲインは2倍に設定してあ る。直流增幅器 2 4 の出力電圧 2VT は分圧回路 25 によつて 1/2 に分圧して、電圧 Vrを可変容量 ダイオード 41,51 の陰極に、電圧 2 VT を可変 容 景ダイオード42.52の陰極に供給してある。と とで可変容量ダイオード41,42,51,52 は同一特

件のものに粉定してある。

そで第4図に示したフロントエンドにかける 受信作用は従来の場合と全く同一であるが、共延 国路Cの一部を構成する各百度がイイアス電圧は 41,42,51,52に印加される区となく、電圧制 なあり従来の印加電圧は 2Vrとなつて従来の場合と変えとなく、電圧制 例の 提替であり、電圧制型発表の表のとないでは 従来の場合の対信となる。なか第4切に示すてレ ントエン場合のとがに対しています。 シントエン場合のとでは、 カリーにないては、 カリーにないています。 カリーにないています。 カリーにないています。 カリーにないています。 カリーにないています。 アレーアがインにないた。 アレーアがインにないといまか、 アレーアがインにないた。

しかるに、一紋にPLL国路のノイズは電圧制飾 発掘器に殆んど依存して定まり、電圧制御発振器 の変換ゲインを下げれば C/a が良好と なり PLL 助め フイズは低下する。しかし可変容量ダイエー アの使用耐圧電圧によつて電圧制御発振器の変換 ゲインは決定されてしまつている。

ところで、前記した如く本発明の共振回路を使 用したときは、可変容量ダイオード41,42,51, 52の使用耐圧電圧は従来と同一で、それぞれの可 変容量ダイオード41,42,51,52 区印加される電圧 は Vs であるが、電圧制得発振器 18の変換ゲインは 従来の 込倍と なる。 この結果 C/A は 向上する。 し たがつて PLL 図路 D のノイズ は減少し、 周波 数 ジ ンセサイザチューナ 復調出力 に高 S/A の出力 が得 もれる。

また、可変容量タイオード41,42,51,52Kは従来と同一の電圧が印加されているため、従来の場合と同一のトラッキング特性が得られる。

なか、第4図にかいて、同調回路15かよび
17に従来の第1図に示した共同語回路を用いた場合を倒示しているが、同調回路15かよび16に
第3図に示した如く本発明の共振回路を用いるとともできる。同調回路15かよび16に本発明の 共振回路を用いかつ電圧制御発振器18のメンク 回路に本発明の共振回路を用いれば、フロントエンドのダイナミックレンタが拡大することになる。

以上説明した如く本発明によれば、C/N が改善

され、周波数シンセサイザチューナの同調開始、 局部発振開始のタンP目略として用いたときにお いて大信号振嘱和作りの特性が改善され、周波数 シンセサイザチューナの高周波数のダイナミック レング、フロントエンチのダイナミックレンジが 拡大し、8/4 の良好な受信が行なえる。

4. 図面の簡単を説明

第1図は従来の共振回路の回路図。

第2図は本発明の一実施例を示す回路図。

第3図および第4図は本発明の使用例を示す回 路図。

41,42,…,4点,51,52…5n,441,442,443,541, 542,541,441,422,541かとび5n2…可変容量をイ オード、61,62…6n,71,72,…7n-1,81,…かと び8n-1…据抗、9…コイル、11かとび25…分 圧回路。

