CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

Block Cipher: CBC Mode

- Cipher Block Chaining (CBC)
 - Probabilistic, is CPA-secure if F is a PRP
 - IV (initialization vector) chosen uniformly from {0,1}ⁿ

FIGURE 3.7: Cipher Block Chaining (CBC) mode.

Message Authentication

Attacker <u>modifies</u> messages from Alice to Bob

 Bob needs to prove a message is <u>correct</u> (i.e., unchanged)

Message Authentication

Attacker <u>fakes</u> messages from Alice to Bob

 Bob needs to prove a message is <u>authentic</u>, i.e., from Alice

- Alice computes a <u>tag</u> for a message
- Bob can verify a message m using its tag t
 - If valid, accept a message
 - Otherwise, drop or ignore a message

Message Authentication Code (MAC)

- KeyGen: takes a security parameter 1^n as input, outputs key k
- Mac: takes a key k and a message $m \in \{0, 1\}^*$ as input, outputs a tag t
- Verify: takes a key k, a message m, and a tag t, outputs 1 if $\mathsf{Mac}_k(m) == t$, otherwise outputs 0.

Mac is deterministic (i.e., same m, same t)

- Alice sends (m="\$1000", t) to Bob
- Bob receives (m, t), verifies m by checking tag t
 - If m="\$1000", then accept
 - If m= "\$999", then drop it
- Basic requirements for message authentication
 - 1. Something (a secret) only Alice and Bob know
 - 2. Changing messages can be easily detected

Message Authentication

- How about simply use Encryption?
 - 1. Alice and Bob share a secure key
 - 2. An attacker cannot easily get a new meaningful message by a changing ciphertext.
- If use Encryption as Message Authentication
 - Alice only sends c to Bob, Bob decrypts c, if it is meaningful, then m is authentic; otherwise, it is not.

Message Authentication

- E.g., m = Tu, c = 0x307aed45
 - Attacker changes ciphertext to c' = 0x307aed46
 - Decryption of c' will not be {M, Tu, W, Th, F}
- However, data is not always meaningful
 - E.g., data is simply a <u>binary string</u>.
 - Alice sends c to Bob, attacker changes to c', the decryption of c' is m' a valid binary string, Bob will take m' as a valid message, but should be m.
 - Encryption cannot authenticate messages

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

- Use C as a tag:
- CBC Mode Decryption:

•
$$C = (IV, 100110)$$

- k = 11, IV = 00
- each block has 2 bits
- M = 10 11 11

$$c_0 = IV, m_i = F_k^{-1}(c_i) \oplus c_{i-1}$$

FIGURE 3.7: Cipher Block Chaining (CBC) mode.

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

$$c_0 = IV, m_i = F_k^{-1}(c_i) \oplus c_{i-1}$$

$$C = (00, 100110) \& k = 11$$

- $F_{k^{-1}}(10) = 10$, $m_1 = F_{k^{-1}}(10) \oplus IV = 10 \oplus 00 = 10$
- $F_{k^{-1}}(01) = 01$, $m_2 = F_{k^{-1}}(01) \oplus c_1 = 01 \oplus 10 = 11$
- $F_{k^{-1}}(10) = 10$, $m_3 = F_{k^{-1}}(10) \oplus c_2 = 10 \oplus 01 = 11$
- M = 10 11 11

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

- Change one bit in C
- CBC Mode Decryption:

•
$$C' = (IV, 100111)$$

- k = 11, IV = 00
- each block has 2 bits
- M' = 10 11 10

$$c_0 = IV, m_i = F_k^{-1}(c_i) \oplus c_{i-1}$$

FIGURE 3.7: Cipher Block Chaining (CBC) mode.

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

$$c_0 = IV, m_i = F_k^{-1}(c_i) \oplus c_{i-1}$$

$$C' = (00, 100111) \& k = 11$$

- $F_{k^{-1}}(10) = 10$, $m_1 = F_{k^{-1}}(10) \oplus IV = 10 \oplus 00 = 10$
- $F_{k^{-1}}(01) = 01$, $m_2 = F_{k^{-1}}(01) \oplus c_1 = 01 \oplus 10 = 11$
- $F_{k^{-1}}(10) = 10$, $m_3 = F_{k^{-1}}(11) \oplus c_2 = 11 \oplus 01 = 10$
- M' = 10 11 10
- Bob takes M' = 101110, but should be M = 101111

Assumptions on Adversary

- Assumptions on an <u>adversary</u>:
 - Knows messages (is not about privacy)
 - Knows Mac and Verify algorithm,
 - Can eavesdrop
 - Can collect previous message-tag pairs
 - Does not know key k
 - Has <u>limited</u> computational power
 - Run efficient (polynomial-time) algorithms

- <u>Unforgeable</u> under chosen-message attacks
 - A PPT adversary has access to a <u>MAC oracle</u>
 - Submits a message m, obtains a valid tag t
 - Unlimited number of queries
 - Can have many message-tag pairs

• E.g., (m_1, t_1) , (m_2, t_2) , ..., (m_n, t_n)

Adversary

- <u>Unforgeable</u> under chosen-message attacks
 - A PPT adversary has access to a <u>MAC oracle</u>
 - Adversary cannot generate a valid tag t' for a "new" message m'
 - Message m' that was not submitted to oracle
 - Verify(m', t')=1 happens with a negligible probability

- Example: Alice sent 3 messages with tags to Bob
 - (packers, 0x34dt)
 - (patriots, 0xd5ac)
 - (eagles, 0xa70b)
- Adversary learns above 3 message-tag pairs, sends
 - (patriots, 0xd5ac) to Bob, Bob takes it
 - (patriots, 0xd5ab) to Bob, Bob drops it
 - (bengals, 0x1234) to Bob, Bob drops it

- Practice: Alice sent 3 messages with tags to Bob
 - (packers, 0x34dt)
 - (patriots, 0xd5ac)
 - (eagles, 0xa70b)
- Adversary sends
 - (patriot, 0xd5ac) to Bob, Bob??
 - (steelers, 0x1234) to Bob, Bob??
 - (packers, 0xa70b) to Bob, Bob??

A security game $\mathsf{MacForge}_{\mathcal{A},\Pi}(n)$:

- 1. A key k is generated by running $KeyGen(1^n)$
- 2. Adversary \mathcal{A} has access to a MAC oracle $\mathsf{Mac}_k(\cdot)$. Let \mathcal{Q} denotes the set of all queries \mathcal{A} submitted to the oracle. Eventually, \mathcal{A} outputs (m', t'), where $m' \notin \mathcal{Q}$
- 3. \mathcal{A} outputs 1 if Verify(m', t') = 1, and outputs 0 otherwise

$$\Pr[\mathsf{MacForge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$$

- MAC does not prevent <u>replay attacks</u>
 - If (m,t) has been sent before, send (m,t) again
 - Alice —> ("Pay \$1,000", t) —> Bob
 - Attacker —> ("Pay \$1,000", t) —> Bob
 - Both valid, and \$2,000 was paid in total.
 - But Bob only needs to pay \$1,000
- Two possible solutions
 - Counters, but messages could drop
 - Time stamps, synchronize clocks may not be easy

A MAC from PRF

Build a fixed-length MAC for n-bit messages

- KeyGen: outputs a key k, where $k \stackrel{u}{\leftarrow} \{0,1\}^n$
- Mac: given a key k and a message $m \in \{0,1\}^n$, outputs a tag $t \leftarrow F_k(m)$, where F is a PRF
- Verify: given a key k, a message m and a tag $t \in \{0,1\}^n$, outputs 1 if $F_k(m) == t$, otherwise outputs 0

Guessing a valid tag for a new message is equivalent of guessing an output of PRF, which is negligible

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

 $\mathsf{Mac}: t \leftarrow F_k(m)$

Verify : $F_k(m) \stackrel{?}{=} t$

Practice: given key k = 10

• Q1: m = 10, what is its tag t = ??

Q2: given (m=11, t=01), is it valid?

Q3: given (m=01, t=10), is it valid?

• Q4: given (m=10, t=10), is it valid?

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

 $\mathsf{Mac}: t \leftarrow F_k(m)$

Practice: given key k = 10

Verify: $F_k(m) \stackrel{?}{=} t$

• Q1: m = 10, tag t = 11

Q2: given (m=11, t=01), not valid (t should be 00)

Q3: given (m=01, t=10), valid

Q4: given (m=10, t=10), not valid (t should be 11)

Build a fixed-length MAC for I*n-bit messages

- 1 message, multiple blocks, 1 tag
- Secure if F is a PRF

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

- Practice: given key k = 10
- Q1: m = 101110, tag t = ??
- Q2: (m=1101, t=01), is it valid?
- Q3: (m=1011, t=01), is it valid?

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

Given key k = 10

Q1:
$$m = 101110$$
, tag $t = ??$
 $F_k(10)=11$, $11 \oplus m_2 = 00$
 $F_k(00)=01$, $01 \oplus m_3 = 11$
 $F_k(11)=00$, $t = 00$

X	00	01	10	11
k=00,F(x)	11	00	01	10
k=01,F(x)	10	11	00	01
k=10,F(x)	01	10	11	00
k=11,F(x)	00	01	10	11

Given key k = 10

Q2: (m=1101, t=01), is it valid? $F_k(11)=00, 00 \oplus m_2 = 01$

$$F_k(01)=10, t=10!=01$$

Q3: (m=1011, t=01), is it valid?

$$F_k(10)=11, 11 \oplus m_2=00$$

$$F_k(00)=01$$
, $t=01==01$

Build a fixed-length MAC for I*n-bit messages

- Secure if F is a PRF, only for I*n-bit messages
 - Not secure for messages with arbitrary length

- l=1, adversary already has (m₁, t₁) and (m₂, t₂)
- Fakes a message $m = m_1 m'$, where $m' = m_2 \oplus t_1$
 - m is a "new" message, should not be valid
 - But (m, t₂) will pass the verification

- Example: Adversary knows $(m_1,t_1) = (10,11), (m_2,t_2)$ = (01,10)
 - compute $m'=m_2 \oplus t_1 = 01 \oplus 11 = 10$
 - fake "new" m=m₁m'=1010, send (m,t₂) to Bob
 - Bob will accept (m,t₂), since Verify(m,t₂) will output Yes

- <u>Practice</u>: Adversary knows $(m_1,t_1) = (1011,1110)$, $(m_2,t_2) = (0110,1000)$
 - fake a "new" message m, s.t. (m, t₁) will pass
 - computes $m'=m_1 \oplus t_2 = 1011 \oplus 1000 = 0011$
 - m=m₂m'=01100011
 - $(m, t_1) = (01100011, 1110)$

• CBC-MAC v.s. CBC-ENC

	CBC-MAC	CBC-ENC
Goal	Message Auth.	Encryption
Key	n bits	n bits
Message	I*n bits	I*n bits
IV	No IV	Random IV
Output	n bits	I*n bits

- Adversary only has (m₁, IV, t₁)
- Fakes a message m'=IV'⊕IV⊕m₁, where IV' is "new"
 - m' is a "new" message, should not be valid
 - But (m', IV', t₁) will pass the verification

- Practice: assume random IVs are used in CBC-MAC
 - Adversary knows (m, IV, t) is valid, where message m is 11010010, its IV is 11000011, tag is t.
 - Given another IV' = 00001111, create a "new" message m', s.t. (m', IV', t) will pass

Additional Reading

Chapter 4, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition