Package 'stfit'

October 18, 2022

Type Package

Title Spatio-Temporal Functional Imputation Tool
Version 0.99.9
Date 2022-10-17
Description A general spatiotemporal satellite image imputation method based on sparse functional data analytic techniques. The imputation method applies and extends the Functional Principal Analysis by Conditional Estimation (PACE). The underlying idea for the proposed procedure is to impute a missing pixel by borrowing information from temporally and spatially contiguous pixels based on the best linear unbiased prediction.
BugReports https://github.com/mingsnu/stfit/issues
License GPL-3
LazyData true
Depends R (>= $3.5.0$)
Imports Rcpp, Matrix, doParallel, foreach, abind, fda, raster, rasterVis, RColorBrewer
LinkingTo Rcpp
Suggests testthat, dplyr
RoxygenNote 7.1.0
Encoding UTF-8
NeedsCompilation yes
Author Weicheng Zhu [aut, cre]
Maintainer Weicheng Zhu <mingsnu@gmail.com></mingsnu@gmail.com>
Repository CRAN
Date/Publication 2022-10-18 12:20:04 UTC
R topics documented:
stfit-package

2 ARE

	epan	3
	getMask	3
	getMissingLayers	4
	landsat106	4
	landsatVis	5
	lc_cov_1d	5
	lc_cov_1d_est	6
	llreg	6
	lpreg	7
		8
	NMSE	0
	opts_stfit	0
	outlier	1
	pctMissing	1
	rmOutlier	2
	RMSE	2
	seffEst	3
	smooth_spline	4
	spreg	5
	stfit_landsat	6
	teffEst	8
	weightMatrix	0
	weightVector	0
Index	2	1

Description

stfit-package

The stfit package provides functions to impute missing values for a sequence of observed images for the same location using functional data analysis technique

stfit: Spatial-Temporal Functional Imputation Tool

ARE Absolute relative error

Description

Absolute relative error

Usage

ARE(y, ypred)

epan 3

Arguments

y vector ypred vector

Value

numeric number. A measure of difference between y and ypred.

epan

Epanicnicov kernel function

Description

Epanicnicov kernel function

Usage

epan(x)

Arguments

x numeric vector

Value

vector

getMask

Get image mask

Description

Get image mask

Usage

```
getMask(object, tol = 0.95)
```

Arguments

object A numeric matrix. Each row is an row stacked image.

tol If the percentage of missing values for a pixel over time is greater than this value,

this pixel is treated as a mask value.

4 landsat106

getMissingLayers

Get missing layer index

Description

Get missing layer index

Usage

```
getMissingLayers(rst.list)
```

Arguments

rst.list

a RasterStack or RasterBrick object or a list of them

Value

index of the missing layers

landsat106

Landsat data example

Description

A dataset containing observation values of a 31x31 pixcels landsat image observed between year 1982 and 2015.

Usage

landsat106

landsat2

Format

A data frame with 990 rows and 963 columns:

- year year
- · doy day of the year
- pixeli pixel value for the i-th pixel of the image

An object of class tbl_df (inherits from tbl, data.frame) with 990 rows and 963 columns.

landsatVis 5

landsatVis Data visualization for landsat data
--

Description

Data visualization for landsat data

Usage

Arguments

mat	A matrix, each row corresponds to a vectorized image pixel values.
img.nrow	number of rows of the image
byrow	logical value indicating whether the pixcel values are stored by row or by column. Default to FALSE
colthm	Color theme for the plot, passing to the par. settings parameter of the levelplot function in the raster $\!$
	All other options passed to levelplot function in the rasterVis package

Examples

```
landsatVis(landsat106[landsat106$year == 2015, -c(1:2)],
names.attr = as.character(landsat106$doy[landsat106$year == 2015]))
```

lc_cov_1d

Local constant covariance estimation

Description

Local constant covariance estimation

Usage

```
lc_cov_1d(ids, time, resid, W, t1, t2)
```

6 llreg

Arguments

ids	a vector indicating subject/group ids
time	integer vector of observed time points, the minimum time unit is 1
resid	vector of residual values used for covariance calculation
W	weight vector, it contains both kernel and bandwidth information in general local polynomial estimation setting up
t1	time point 1
t2	time point 2

lc_cov_1d_est

Local constant covariance estimation

Description

Local constant covariance estimation

Usage

```
lc_cov_1d_est(ids, time, resid, W, tt)
```

Arguments

ids	a vector indicating subject/group ids
time	integer vector of observed time points, the minimum time unit is 1
resid	vector of residual values used for covariance calculation
W	weight vector, it contains both kernel and bandwidth information in general local polynomial estimation setting up
tt	time vector

Local linear	regression
7	ocal linear

Description

Local linear regression

Usage

```
llreg(x, y, x.eval = x, minimum.num.obs = 4, h = 60, Kern = epan)
```

lpreg 7

Arguments

x independent variabley response variable

x.eval dnew data to predict on

minimum.num.obs

minimum number of observations needed to run the regression

h bandwidth Kern Kernel

Value

predicted values at 'x.eval'

lpreg

Local Polynomial Regression

Description

Local Polynomial Regression

Usage

```
lpreg(x, y, x.eval, minimum.num.obs = 4, span = 0.3, ...)
```

Arguments

x independent variabley response variablex.eval vector to predict on

minimum number of observations needed to run the regression

span see 'loess' function

... other parameters passed to 'loess' function

Value

predicted values at 'x.eval'

minimum.num.obs

8 meanEst

meanEst

STFIT Mean Estimation

Description

The function is used for pixel-wise mean estimation.

Usage

```
meanEst(
   doy,
   mat,
   doyeval = seq(min(doy), max(doy)),
   msk = rep(FALSE, ncol(mat)),
   outlier.tol = 0.5,
   minimum.num.obs = 4,
   cluster = NULL,
   redo = TRUE,
   clipRange = c(-Inf, Inf),
   clipMethod = c("truncate", "nnr"),
   img.nrow = NULL,
   img.ncol = NULL
)
```

Arguments

day	vector of day of year	(DOV) index
dov	vector of day of year	(I)() Y) index

mat data matrix. Each row contains a row stacked image pixel values.

doyeval a vector of DOY on which to get the mean imputation

msk an optional logistic vector. TRUE represent the corresponding pixel is always

missing.

outlier.tol the tolerance value in defining an image as outlier. The percent of outlier pixels

in an image exceed this value is regarded as outlier image which will not be used

in temporal mean estimation.

 $\verb|minimum.num.obs|$

minimum number of observations needed for mean estimation. Too few obser-

vations may lead to big estimation error.

cluster an optional vector defining clusters of pixels. If NULL, mean estimation is

conducted on each pixel, otherwise all pixels from the same cluster are combined

for mean estimation.

redo whether to recalculate the mean estimation if there is an outlier (only redo once).

clipRange vector of length 2, specifying the minimum and maximum values of the predic-

tion value

clipMethod "nnr" or "truncate". "nnr" uses average of nearest neighbor pixels to impute;

"truncate use the clipRange value to truncate.

meanEst 9

```
img.nrow number of rows for an image, only used when 'clipMethod' is "nnr"
img.ncol number of columns for an image, only used when 'clipMethod' is "nnr"
```

Details

There are several predefined methods for mean estimation: smooth_spline, llreg, lpreg and spreg. User can use opt\$get() to check the current registered method and use opt\$set() function to set the method. For exmaple, one can run opt\$set(smooth_spline) first and then run the meanEst function to use smoothing spline regression for mean estimation. User can also customize the methods for mean estimation. For example, mean estimation through fourier basis expansion:

```
.X = fda::eval.basis(1:365, fda::create.fourier.basis(rangeval=c(0,365), nbasis=11))
customfun <- function(x, y, x.eval=1:365, minimum.num.obs = 10){
    nonna.idx = !is.na(y)
    if(sum(nonna.idx) < minimum.num.obs)
        return(rep(NA, 365))
    ## lmfit = lm.fit(.X[unlist(lapply(x, function(x) which(x == x.eval))),], y[nonna.idx])
    lmfit = lm.fit(.X[x[nonna.idx],], y[nonna.idx])
    return(.X[x.eval,]
}
stfit::opts_stfit$set(temporal_mean_est = customfun)</pre>
```

Value

a list containing the following entries:

- doyeval: same as input doyeval
- meanmat: estimated mean matrix, with number of rows equals length of doyeval and number of columns equal ncol(mat)
- idx: a list of image indexes
 - idx.allmissing: completely missing image indexes,
 - idx.partialmissing: partially observed image indexes,
 - idx.fullyobserved: fully observed image indexes,
 - idx.outlier: outlier image indexes.
- outlier: a list of image outliers information
 - outidx: index of the outlier image
 - outpct: percentage of outlier pixels corresponding to outidx,
 - outlst: a list of the same length as outldx, with each list the missing pixel index.

opts_stfit

NMSE

Normalized Mean Square Estimation

Description

Normalized Mean Square Estimation

Usage

```
NMSE(y, ypred)
```

Arguments

y vector ypred vector

Value

numeric number. A measure of difference between y and ypred.

 ${\tt opts_stfit}$

Options for stfit

Description

Options for stfit

Usage

 ${\tt opts_stfit}$

Format

An object of class list of length 3.

outlier 11

outlier

Image Outlier Detection

Description

Image Outlier Detection

Usage

```
outlier(mat)
```

Arguments

mat

data matrix. Each row is a row stacked image.

Value

a list containing the following entries:

- outidx: index of the outlier image
- outpct: percentage of outlier pixels corresponding to outidx,
- outlst: a list of the same length as outlidx, with each list the missing pixel index.

Examples

```
dfB = landsat106[landsat106$year >= 2000,]
matB = as.matrix(dfB[,-c(1:2)])
outlier(matB)
```

pctMissing

Missing value percentages

Description

Missing value percentages

Usage

```
pctMissing(x, mc.cores)
```

Arguments

x A RasterStack object mc.cores Numer of cores to use

Value

A vector of percent of missing values for each layer

12 RMSE

rmOutlier

Remove outlier

Description

An outlier is defined as points outside the whiskers of the boxplot over the time domain (DOY).

Usage

```
rmOutlier(rst)
```

Arguments

rst

a *Raster object

Value

a *Raster object

RMSE

Root Mean Square Estimation

Description

Root Mean Square Estimation

Usage

```
RMSE(y, ypred)
```

Arguments

y vector ypred vecotr

Value

numeric number. A measure of difference between y and ypred.

seffEst 13

seffEst

STFIT Spatial Effect Estimation

Description

STFIT Spatial Effect Estimation

Usage

```
seffEst(
  rmat,
  img.nrow,
  img.ncol,
  h.cov = 2,
  h.sigma2 = 2,
  weight.cov = NULL,
  weight.sigma2 = NULL,
  nnr,
  method = c("lc", "emp"),
  partial.only = TRUE,
  pve = 0.99,
  msk = NULL,
  msk.tol = 0.95,
  var.est = FALSE
)
```

Arguments

rmat	residual matrix
img.nrow	image row dimension
img.ncol	image column dimension
h.cov	bandwidth for spatial covariance estimation; ignored if weight.cov is supplied
h.sigma2	bandwidth for sigma2 estimation
weight.cov	weight matrix for spatial covariance estimation
weight.sigma2	weight vector for spatial variance estimation
nnr	maximum number of nearest neighbor pixels to use for spatial covariance estimation
method	"lc" for local constant covariance estimation and "emp" for empirical covariance estimation
partial.only	calculate the spatical effect for partially observed images only, default is TRUE
pve	percent of variance explained of the selected eigen values. Default is 0.99.
msk	an optional logistic vector. TRUE represent the corresponding pixel is always missing.

smooth_spline

msk.tol	if 'msk' is not given, the program will determine the mask using getMask function. If the percentage of missing values for a pixel over time is greater than this
var.est	Whether to estimate the variance of the temporal effect. Default is FALSE.

Value

List of length 3 with entries:

- seff_mat: estimated spatial effect matrix of the same shape as rmat.
- seff_var_mat: estimated spatial effect variance matrix of the same shape as rmat.
- idx: a list of two entries:
 - idx.allmissing: index of the completely missing images.
 - idx.imputed: index of the partially observed images, where spatial effects are estimated.

smooth_spline Smoothing spline regression

Description

Smoothing spline regression

Usage

```
smooth\_spline(x, y, x.eval = x, minimum.num.obs = 4, ...)
```

Arguments

Value

predicted values at 'x.eval'

spreg 15

spreg

spline regression

Description

spline regression

Usage

```
spreg(
    x,
    y,
    x.eval,
    minimum.num.obs = 4,
    basis = c("fourier", "bspline"),
    rangeval = c(min(x.eval) - 1, max(x.eval)),
    nbasis = 11,
    ...
)
```

Arguments

Value

predicted values at 'x.eval'

16 stfit_landsat

stfit_landsat

STFIT for Landsat data

Description

This function is used for Landsat data imputation, which includes five steps: mean estimation, outlier detection, temporal effect estimation, spatial effect estimation and imputation. In real application, one can use this as a template to create a five steps imputation procedure depending on the real data structure.

Usage

```
stfit_landsat(
  year,
  doy,
 mat,
  img.nrow,
  img.ncol,
  doyeval = 1:365,
  h.tcov = 100,
  h.tsigma2 = 300,
  h.scov = 2,
 h.ssigma2 = 2,
  nnr = 10,
  outlier.action = c("keep", "remove"),
  outlier.tol = 0.2,
  intermediate.save = TRUE,
  intermediate.dir = "./intermediate_output/",
  use.intermediate.result = TRUE,
  teff = TRUE,
  seff = TRUE,
  doy.break = NULL,
  cycle = FALSE,
  t.grid = NULL,
  t.grid.num = 50,
  clipRange = c(0, 1800),
  clipMethod = "nnr",
  var.est = FALSE
)
```

Arguments

year vecotr of year

doy vecotr of DOY (day of the year)

mat a numeric matrix. Each row contains a row stacked image pixel values.

img.nrow number of rows of the image

17 stfit_landsat

number of columns of the image img.ncol doyeval a vector of DOY on which to get the mean and temporal imputation h.tcov bandwidth for temporal covariance estimation h.tsigma2 bandwith for temporal variance estimation h.scov bandwidth for spatial covariance estimation h.ssigma2 bandwidth for spatial variance estimation nnr maximum number of nearest neighbor pixels to use for spatial covariance estimation outlier.action "keep" to keep outliers; "remove" to replace outliers with imputed values outlier.tol The threshold to use to define outlier image. Default is 0.2, i.e. images with more than 20% outlier pixels are treated as outlier image. intermediate.save TRUE or FASLE; whether to save the intermediate results including mean, temporal effect and spacial effect imputation results. The intermediate results can be useful to avoid duplicating the computation for some imputation steps. intermediate.dir directory where to save the intermediate results use.intermediate.result whether to use the intermediate results in the 'intermediate.dir' folder. Default is TRUE. teff TRUE or FALSE, wheter to calculate the temporal effect. Default is TRUE. seff TRUE or FALSE, wheter to calculate the spatial effect. Default is TRUE.

doy.break a vector of break points for doy where the spatial effect are estimated seperately

on each interval. Default is NULL, i.e. the spatial effect is assumed to be the

same over doy.

cycle TRUE or FALSE. When doy.break is specified, whether to combine the first

doy.break interval and the last doy.break together for spatial effect estimation.

t.grid a vector of grid points on which to calculate the temporal covariance function

t.grid.num number of grid points to use for temporal covariance estimation. Ignored if

t.grid is given.

clipRange passed to meanEst function clipMethod passed to meanEst function

Whether to estimate the variance of the temporal and spatial effects. Default is var.est

FALSE.

Value

List of length 4 with entries:

- imat: imputed matrix of mat
- smat: standard error matrix of the same size as mat
- idx: a list of image indexes

18 teffEst

- idx.allmissing: completely missing image indexes,
- idx.partialmissing: partially observed image indexes,
- idx.fullyobserved: fully observed image indexes,
- idx.outlier: outlier image indexes.
- outlier: a list of image outliers information
 - outidx: image index with outlier pixels,
 - outpct: percentage of outlier pixels corresponding to outidx,
 - outlst: a list of the same length as outldx, with each list the missing pixel index.

Examples

```
library(doParallel)
library(raster)
library(rasterVis)
library(RColorBrewer)
dfB = landsat106[landsat106$year >= 2000,]
matB = as.matrix(dfB[,-c(1:2)])
year = dfB$year
doy = dfB$doy
if(require(doParallel))
  registerDoParallel(1)
res <- stfit_landsat(year, doy, matB, 31, 31, nnr=30,</pre>
use.intermediate.result = FALSE, intermediate.save = FALSE, var.est = TRUE)
## visualize the imputed results
idx = c(res$idx$idx.allmissing[150], res$idx$idx.partialmissing[c(30, 60, 90)])
rst_list = list()
for(i in 1:length(idx)){
  rst_list[(i-1)*3+1] = raster(matrix(matB[idx[i],], 31))
  rst_list[(i-1)*3+2] = raster(matrix(res$imat[idx[i],], 31))
  rst_list[(i-1)*3+3] = raster(matrix(res$sdmat[idx[i],], 31))
}
s = stack(rst_list)
levelplot(s, index.cond=list(c(seq(1, 12, 3), seq(2, 12, 3), seq(3, 12, 3))),
          par.setting = rasterTheme(panel.background=list(col="black"),
                                    region = brewer.pal(9, 'YlOrRd')),
          names.attr = c(rbind(paste0("Original ", idx),
                               paste0("Imputed ", idx),
                               paste0("Std. Error ", idx))),
          layout = c(4,3))
```

teffEst

STFIT Temporal Effect Estimation

Description

STFIT Temporal Effect Estimation

teffEst 19

Usage

```
teffEst(
  ids,
  doy,
  rmat,
  doyeval = seq(min(doy), max(doy)),
  h.cov = 100,
  h.sigma2 = 300,
  weight.cov = NULL,
  weight.sigma2 = NULL,
  pve = 0.99,
  t.grid = NULL,
  t.grid.num = 50,
  var.est = FALSE
)
```

Arguments

ids	ids for 'group', for data with repeated measurement over years, year is ids; for pixels belong to certain clusters, cluster is ids.
doy	vecotr of DOY (day of the year)
rmat	residual matrix with rows corresponding to doy and columns corresponding to pixel index
doyeval	a vector of DOY on which to get the temporal imputation
h.cov	bandwidth for temporal covariance estimation; ignored if weight.cov is supplied
h.sigma2	bandwidth for temporal variance estimation
weight.cov	weight vector for temporal covariance estimation
weight.sigma2	weight vector for temporal variance estimation
pve	percentage of variance explained; used for number of eigen values selection. Default is 0.99.
t.grid	a vector of grid points on which to calculate the temporal covariance function
t.grid.num	number of grid points to use for temporal covariance estimation. Ignored if $t. grid$ is given.
var.est	Whether to estimate the variance of the temporal effect. Default is FALSE.

Value

List of length 2 with entries:

- teff_array: 3-d array with first dimention 'ids', second dimention 'doy' and third dimention pixel index.
- teff_var_array: same structure as teff_array if var.est is TRUE, otherwise NULL.

20 weight Vector

weightMatrix

Weight matrix calculation

Description

Weight matrix calculation

Usage

```
weightMatrix(h)
```

Arguments

h

'bandwith'

Value

a weighting matrix

weightVector

Weight vector calculation

Description

Weight vector calculation

Usage

```
weightVector(h)
```

Arguments

h

bandwidth, should be positive numbers

Value

a vector

Index

```
* datasets
    landsat106, 4
     opts\_stfit, 10
ARE, 2
epan, 3
getMask, 3
getMissingLayers, 4
landsat106, 4
landsat2 (landsat106), 4
landsatVis, 5
lc_cov_1d, 5
lc_cov_1d_est, 6
llreg, 6
1preg, 7
meanEst, 8
NMSE, 10
\mathtt{opts\_stfit}, \textcolor{red}{10}
outlier, 11
pctMissing, 11
rmOutlier, 12
RMSE, 12
seffEst, 13
smooth_spline, 14
spreg, 15
stfit-package, 2
stfit_landsat, 16
teffEst, 18
{\tt weightMatrix}, \textcolor{red}{20}
weightVector, 20
```