Week 1 Notes: Practical Machine Learning

Process:

question -> input data -> features -> algorithm -> parameters -> evaluation

Features matter!

Properties of good features

- Lead to data compression
- Retain relevant information
- Are created based on expert application knowledge

Common mistakes

- Trying to automate feature selection
- Not paying attention to data-specific quirks
- Throwing away information unnecessarily

Algorithms matter less than you'd think

Issues to consider:

Interpretable

Simple

Accurate

Fast

Scalable

In sample and out sample error

In Sample Error: The error rate you get on the same data set you used to build your predictor. Sometimes called resubstitution error.

Out of Sample Error: The error rate you get on a new data set. Sometimes called generalization error.

Key ideas

- 1. Out of sample error is what you care about
- 2. In sample error < out of sample error
- 3. The reason is overfitting
- Matching your algorithm to the data you have
- Data have two parts
- Signal
- Noise
- The goal of a predictor is to find signal
- You can always design a perfect in-sample predictor
- You capture both signal + noise when you do that
- Predictor won't perform as well on new samples

Prediction Study Design

- 1. Define your error rate
- 2. Split data into:
- Training, Testing, Validation (optional)
- 3. On the training set pick features
- Use cross-validation
- 4. On the training set pick prediction function
- Use cross-validation
- 6. If no validation
- Apply 1x to test set
- 7. If validation
- Apply to test set and refine
- Apply 1x to validation

http://www2.research.att.com/~volinsky/papers/ASAStatComp.pdf

Rules of thumb for prediction study design

- If you have a large sample size
- 60% training
- 20% test
- 20% validation
- If you have a medium sample size
- 60% training
- 40% testing
- If you have a small sample size
- Do cross validation
- Report caveat of small sample size

Basic terms

```
In general, Positive = identified and negative = rejected. Therefore:

True positive = correctly identified

False positive = incorrectly identified

True negative = correctly rejected

False negative = incorrectly rejected

** Summary **
```

For continuous data

Mean squared error (MSE):

General population as fractions

Sensitivity \rightarrow 99 / (99+1) = 99%

Specificity \rightarrow 98901 / (999+98901) = 99%

Positive Predictive Value $\rightarrow 99$ / (99+999) $\approx 9\%$

Negative Predictive Value \rightarrow 98901 / (1+98901) > 99.9% Accuracy \rightarrow (99+98901) / 100000 = 99%

http://www.biostat.jhsph.edu/~iruczins/teaching/140.615/

Figure 1:

Figure 2:

$$\frac{1}{n}\sum_{i=1}^{n}(Prediction_{i}-Truth_{i})^{2}$$

Root mean squared error (RMSE):

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Prediction_{i}-Truth_{i})^{2}}$$

Cross Validation:

Key idea

- 1. Accuracy on the training set (resubstitution accuracy) is optimistic
- 2. A better estimate comes from an independent set (test set accuracy)
- 3. But we can't use the test set when building the model or it becomes part of the training set
- 4. So we estimate the test set accuracy with the training set.

Approach:

- 1. Use the training set
- 2. Split it into training/test sets

Figure 3:

- 3. Build a model on the training set
- 4. Evaluate on the test set
- 5. Repeat and average the estimated errors

$Used\ for:$

- 1. Picking variables to include in a model
- 2. Picking the type of prediction function to use
- 3. Picking the parameters in the prediction function
- 4. Comparing different predictors

K-Fold

Considerations

- For time series data, data must be used in "chunks"
- For k-fold cross validation
- \bullet Larger k = less bias, more variance

- \bullet Smaller k = more bias, less variance
- $\bullet\,$ Random sampling must be done without replacement
- $\bullet\,$ Random sampling with replacement is the bootstrap
- Underestimates of the error
- Can be corrected, but it is complicated (0.632 Bootstrap)
- If you cross-validate to pick predictors estimate you must estimate errors on independent data.