## Double-dimer condensation and the $dP_3$ quiver

#### Helen Jenne

CNRS, Institut Denis Poisson, Université de Tours and Université d'Orléans

ETH Zürich Algebraic geometry and moduli seminar November 13, 2020

### Outline

- 1 The Dimer Model and Kuo Condensation
- 2 Main Result: Double-Dimer Condensation
- Ideas of Proof
- 4 Application: the  $dP_3$  quiver and the associated cluster algebra

#### The dimer model

• Today  $G = (V_1, V_2, E)$  is a finite bipartite planar graph.

## Definition (Dimer configuration/Perfect matching)



A collection of edges that covers each vertex exactly once

- Given a graph, we can assign a weight w(e) to each edge.
- If M is a perfect matching (dimer configuration),  $w(M) = \prod_{e \in M} w(e)$

$$w(M) = xyz$$

• Let  $Z^D(G) = \sum_{M} w(M)$ , called the partition function.

$$Z^D(G) = xyz + x + z$$



#### The dimer model

#### Theorem (Kas67)

If G is a bipartite planar graph, there is a matrix K with the property that  $Z^D(G) = \det(K)$ .

K is a bipartite adjacency matrix, with signs.



$$\det(K) = xyz + x + z$$

#### Kuo condensation

#### Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If a,  $c \in V_1$  and b,  $d \in V_2$ , then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$



#### **Kuo Condensation**

#### Theorem (Kuo04, Theorem 5.1)

Let vertices a,b,c, and d appear in a cyclic order on a face of G. If  $a,c\in V_1$  and  $b,d\in V_2$ , then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$

Examples of non-bijective proofs:

- Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of Matchings
- Speyer, Variations on a theme of Kasteleyn, with Application to the TNN Grassmannian

## Theorem (Desnanot-Jacobi identity/Dodgson condensation)

$$\det(M)\det(M_{i,j}^{i,j})=\det(M_i^i)\det(M_j^j)-\det(M_i^j)\det(M_j^i)$$

 $M_i^j$  is the matrix M with the ith row and the jth column removed.

## Applications of Kuo's work

- Tiling enumeration New proof of MacMahon's product formula for the generating function for plane partitions that are subsets of an  $r \times s \times t$  box.
- Cluster algebras (LM17, LM20) Combinatorial interpretation of toric cluster variables for the dP<sub>3</sub> quiver



Main result. An analogue of Kuo's theorem for double-dimer configs.

Application #1: Give combinatorial interpretations of toric cluster variables for the  $dP_3$  quiver in the case where the single dimer model was not sufficient (joint with Tri Lai and Gregg Musiker).

Application #2: A problem in Donaldson-Thomas theory and Pandharipande-Thomas theory (joint with Ben Young and Gautam Webb).

## Double-dimer configurations

N is a set of special vertices called *nodes* on the outer face of G.

### Definition (Double-dimer configuration on $(G, \mathbf{N})$ )



Configuration of

- ullet  $\ell$  disjoint loops
- Doubled edges
- Paths connecting nodes in pairs

Its weight is the product of its edge weights  $\times~2^{\ell}$ 

## Tripartite pairings

#### Definition (Tripartite pairing)

A planar pairing  $\sigma$  of **N** is *tripartite* if the nodes can be divided into  $\leq 3$  sets of circularly consecutive nodes so that no node is paired with a node in the same set.



We often color the nodes in the sets red, green, and blue, in which case  $\sigma$  has no monochromatic pairs.

Dividing nodes into three sets R, G, and B defines a tripartite pairing.

#### Main Result

 $Z^{DD}_{\sigma}(G, \mathbf{N})$  denotes the weighted sum of all DD config with pairing  $\sigma$ .

## Theorem (J.)

Divide **N** into sets R, G, and B and let  $\sigma$  be the corr. tripartite pairing. Let  $x, y, w, v \in \mathbf{N}$  such that  $x < w \in V_1$  and  $y < v \in V_2$ . If  $\{x, y, w, v\}$  contains at least one node of each RGB color and x, y, w, v appear in cyclic order then

$$\begin{split} Z^{DD}_{\sigma}(G,\mathbf{N})Z^{DD}_{\sigma_{xywv}}(G,\mathbf{N}-\{x,y,w,v\}) &= \\ Z^{DD}_{\sigma_{xy}}(G,\mathbf{N}-\{x,y\})Z^{DD}_{\sigma_{wv}}(G,\mathbf{N}-\{w,v\}) + Z^{DD}_{\sigma_{xv}}(G,\mathbf{N}-\{x,v\})Z^{DD}_{\sigma_{wy}}(G,\mathbf{N}-\{w,y\}) \end{split}$$

#### Example.

$$Z_{\sigma}^{DD}(\mathbf{N})Z_{\sigma_{1258}}^{DD}(\mathbf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathbf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathbf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathbf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathbf{N}-2,5)$$

#### Corollaries

#### Theorem (Kuo04, Theorem 5.1)



$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$

#### Theorem (J.)

Let  $x, y, w, v \in \mathbb{N}$  such that  $x < w \in V_1$  and  $y < v \in V_2$ . If  $\{x, y, w, v\}$  contains at least one node of each RGB color and x, y, w, v appear in cyclic order then

$$Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_{xywv}}^{DD}(G - \{x, y, w, v\}, \mathbf{N} - \{x, y, w, v\}) = Z_{\sigma_{xv}}^{DD}(G - \{x, y\}, \mathbf{N} - \{x, y\}) Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}, \mathbf{N}$$

$$Z_{\sigma_{vv}}^{DD}(G - \{x, v\}, \mathbf{N} - \{x, v\})Z_{\sigma_{wv}}^{DD}(G - \{w, y\}, \mathbf{N} - \{w, y\})$$



#### Corollaries

#### Theorem (Kuo04, Theorem 5.1)



$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$

### Theorem (J.)

Let  $x, y, w, v \in \mathbb{N}$  such that  $x < w \in V_1$  and  $y < v \in V_2$ . If  $\{x, y, w, v\}$  contains at least one node of each RGB color and x, y, w, v appear in cyclic order then

$$Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_{xywv}}^{DD}(G - \{x, y, w, v\}, \mathbf{N} - \{x, y, w, v\}) = Z_{\sigma_{xy}}^{DD}(G - \{x, y\}, \mathbf{N} - \{x, y\}) Z_{\sigma_{wv}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xy}}^{DD}(G - \{w, v\}, \mathbf{N} - \{w, v\}, \mathbf{N}$$

$$Z_{\sigma_{vv}}^{DD}(G - \{x, v\}, \mathbf{N} - \{x, v\})Z_{\sigma_{vv}}^{DD}(G - \{w, y\}, \mathbf{N} - \{w, y\})$$



# Background: Double-dimer pairing probabilities

$$\widehat{\Pr}\left(\begin{smallmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{smallmatrix}\right) = X_{1,4}X_{2,5}X_{3,6} + X_{1,2}X_{3,4}X_{5,6}$$

$$\widehat{\Pr}\left(\frac{1}{8} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 5 \\ 2 \end{vmatrix} \begin{vmatrix} 7 \\ 6 \end{pmatrix} = X_{1,8} X_{3,4} X_{5,2} X_{7,6} - X_{1,4} X_{3,8} X_{5,2} X_{7,6} + X_{1,6} X_{3,4} X_{5,8} X_{7,2} - X_{1,8} X_{3,6} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,2} + X_{1,6} X_{3,8} X_{5,2} X_{7,4} - X_{1,4} X_{3,6} X_{5,8} X_{7,8} - X_{1,4} X_{1,6} X_{1,6}$$

#### Definition (KW11a)

 $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$ , where  $G^{BW} \subseteq G$  only contains nodes that are black and odd or white and even.



•  $X_{i,j} = 0$  if i and j have the same parity



- Each term in  $\widehat{\Pr}(\sigma)$  is of the form  $X_{\tau} := \prod_{(i,i) \in \tau} X_{i,j}$ , where  $\tau$  is an odd-even pairing.
- Kenyon and Wilson made a simplifying assumption that all nodes are black and odd or white and even.

### Theorem (KW11a, Theorem 1.3)

 $\widehat{Pr}(\sigma)$  is an integer-coeff homogeneous polynomial in the quantities  $X_{i,j}$ 

## Background: Determinant formula

#### Theorem (KW09, Theorem 6.1)

When  $\sigma$  is a tripartite pairing,

$$\widehat{\textit{Pr}}(\sigma) = \det[1_{i,j \; \textit{RGB-colored differently}} \; \textit{X}_{i,j}]_{j=\sigma(1),\sigma(3),\dots,\sigma(2n-1)}^{i=1,3,\dots,2n-1}.$$

$$\widehat{\Pr}\left(\frac{1}{6}\begin{vmatrix}3\\5\end{vmatrix}\right) = \begin{vmatrix}X_{1,6} & 0 & X_{1,4}\\X_{3,6} & X_{3,2} & 0\\0 & X_{5,2} & X_{5,4}\end{vmatrix}$$

Since  $\widehat{\Pr}(\sigma) := \frac{Z_{\sigma}^{DD}(G, \mathbf{N})}{(Z^{D}(G^{BW}))^{2}}$ , the idea of the proof is to combine K-W's matrix with the Desnanot-Jacobi identity:

$$\det(M)\det(M_{i,j}^{i,j})=\det(M_i^i)\det(M_j^j)-\det(M_i^j)\det(M_j^j)$$



## Example

$$\det(M)\det(M_{1,3}^{1,3}) = \det(M_1^1)\det(M_3^3) - \det(M_1^3)\det(M_3^1)$$

$$\det(M) = \frac{Z_{\sigma}^{DD}(\mathbf{N})}{(Z^{D}(G^{BW}))^{2}} \qquad \checkmark$$



$$\det(M_3^3) \stackrel{?}{=} \frac{Z^{DD}_{\sigma_2}(G, \mathbf{N} - \{2, 5\})}{(Z^D(G^{BW}))^2}, \text{ where } M_3^3 = \begin{pmatrix} X_{1,8} & X_{1,4} & X_{1,6} \\ X_{3,8} & X_{3,4} & X_{3,6} \\ 0 & X_{7,4} & X_{7,6} \end{pmatrix}$$

• The nodes are not numbered consecutively.

$$\det(M_3^3) \stackrel{?}{=} \frac{Z^{DD}_{\sigma_2}(G, \mathbf{N} - \{2, 5\})}{(Z^D(G^{BW}))^2}, \text{ where } M_3^3 = \begin{pmatrix} X_{1,8} & X_{1,4} & X_{1,6} \\ X_{3,8} & X_{3,4} & X_{3,6} \\ 0 & X_{7,4} & X_{7,6} \end{pmatrix}$$



- Relabel the nodes.
- Node 2 is black and node 3 is white.

$$\det(M_3^3) \stackrel{?}{=} \frac{Z_{\sigma_2}^{DD}(G, \mathbf{N} - \{2, 5\})}{(Z^D(G^{BW}))^2}, \text{ where } M_3^3 = \begin{pmatrix} X_{1,8} & X_{1,4} & X_{1,6} \\ X_{3,8} & X_{3,4} & X_{3,6} \\ 0 & X_{7,4} & X_{7,6} \end{pmatrix}$$

- Add edges of weight 1 to nodes 2 and 3.
- Since  $X_{i,j} = \frac{Z^D(G_{i,j}^{BW})}{Z^D(G^{BW})}$ , the K-W matrix for this new graph will have different entries!

**Observation.** We need to lift the assumption that the nodes of the graph are black and odd or white and even.

## Our Approach

• When the nodes are black and odd or white and even,  $G = G^{BW}$ , so

$$X_{i,j} = \frac{Z^{D}(G_{i,j}^{BW})}{Z^{D}(G_{i,j}^{BW})} = \frac{Z^{D}(G_{i,j})}{Z^{D}(G)}.$$

- Let  $Y_{i,j} = \frac{Z^D(G_{i,j})}{Z^D(G)}$  and let  $\widetilde{\Pr}(\sigma) = \frac{Z^{DD}_{\sigma}(G)}{(Z^D(G))^2}$
- We establish analogues of K-W without their node coloring constraint.

$$\widehat{\Pr}\left(\frac{1}{2} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \right) = X_{1,4} X_{2,5} X_{3,6} + X_{1,2} X_{3,4} X_{5,6}$$

$$\widehat{\Pr}\left(\frac{1}{2} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \right) = Y_{1,3} Y_{2,5} Y_{4,6} + Y_{1,5} Y_{2,6} Y_{4,3}$$

$$\widehat{\Pr}\left(\frac{1}{2} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \right) = Y_{1,3} Y_{2,5} Y_{4,6} + Y_{1,5} Y_{2,6} Y_{4,3}$$

- $X_{i,j} = 0$  if i and j are the same parity
- $Y_{i,j} = 0$  if i and j are the same color

$$\widehat{\Pr}\left(\frac{1}{2} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 5 \\ 6 \end{vmatrix} = X_{1,4} X_{2,5} X_{3,6} + X_{1,2} X_{3,4} X_{5,6}$$

$$\widehat{\Pr}\left(\frac{1}{2} \begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 5 \\ 6 \end{vmatrix} = Y_{1,3} Y_{2,5} Y_{4,6} + Y_{1,5} Y_{2,6} Y_{4,3}$$

- Each term in  $\widehat{\Pr}(\sigma)$  is of the form
  - $X_{\tau} := \prod_{(i,j) \in \tau} X_{i,j}$ , where  $\tau$  is an odd-even pairing.
- Each term in  $\widetilde{Pr}(\sigma)$  is of the form

$$Y_{\rho} := \prod_{(i,j) \in \rho} Y_{i,j}$$
, where  $\rho$  is an black-white pairing.

## A disaster of signs!

#### Lemma (KW11a, Lemma 3.4)

For odd-even pairings  $\rho$ ,

$$sign_{OE}(\rho) \prod_{(i,j) \in \rho} (-1)^{(|i-j|-1)/2} = (-1)^{\# \text{ crosses of } \rho}.$$

We need a version of this for black-white pairings.

Example (
$$sign_{OE}(\rho)$$
)

If 
$$\rho = \begin{pmatrix} 1 & 3 & 5 \\ 6 & 2 & 4 \end{pmatrix}$$
, then  $\operatorname{sign}_{OE}(\rho)$  is the parity of  $\begin{pmatrix} \frac{6}{2} & \frac{2}{2} & \frac{4}{2} \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$ 

When  $\rho$  is black-white, we define sign( $\rho$ ) similarly.

#### Example

If 
$$\rho = \begin{pmatrix} 1 & 2 & 3 & 6 \\ 7 & 8 & 4 & 5 \end{pmatrix}$$
, sign<sub>BW</sub> $(\rho)$  is the sign of  $(3\ 4\ 1\ 2)$ .

#### Lemma (KW11a, Lemma 3.4)

For odd-even pairings  $\rho$ ,

$$sign_{OE}(
ho)\prod_{(i,j)\in
ho}(-1)^{(|i-j|-1)/2}=(-1)^{\#\ crosses\ of\ 
ho}.$$

#### Definition

If (i,j) is a pair in a black-white pairing, let  $sign(i,j) = (-1)^{(|i-j|+a_{i,j}-1)/2}$ 

$$a_{7,3} = 1$$
, so sign $(7,3) = (-1)^{(|7-3|+1-1)/2} = 1$   
 $a_{8,3} = 2$ , so sign $(8,3) = (-1)^{(|8-3|+2-1)/2} = -1$ 

## Lemma (J.)

If  $\rho$  is a black-white pairing,

$$sign_c(\mathbf{N})sign_{BW}(\rho)\prod_{(i,j)\in\rho}sign(i,j)=(-1)^{\#\ crosses\ of\ \rho}.$$

#### Determinant Formula

#### Theorem (KW09, Theorem 6.1)

When  $\sigma$  is a tripartite pairing,

$$\begin{split} \widehat{Pr}(\sigma) &= \det[1_{i,j} \text{ }_{RGB\text{-}colored \ differently} \ X_{i,j}]_{j=\sigma(1),\sigma(3),\dots,\sigma(2n-1)}^{i=1,3,\dots,2n-1} \\ &= sign_{OE}(\sigma) \det[1_{i,j} \text{ }_{RGB\text{-}colored \ diff} \ X_{i,j}]_{j=2,4,\dots,2n}^{i=1,3,\dots,2n-1} \end{split}$$

#### Theorem (J.)

When  $\sigma$  is a tripartite pairing,

$$\widetilde{\textit{Pr}}(\sigma) = \textit{sign}_{\textit{OE}}(\sigma) \det[1_{i,j} \;_{\textit{RGB-colored differently}} \; \mathsf{Y}_{i,j}]_{j=w_1,w_2,\dots,w_n}^{i=b_1,b_2,\dots,b_n}$$

## More general result

#### Theorem (J.)

Divide **N** into sets R, G, and B and let  $\sigma$  be the corr. tripartite pairing. Let  $x, y, w, v \in \mathbf{N}$  such that  $x < w \in V_1$  and  $y < v \in V_2$ . Then

$$\begin{aligned} sign_{OE}(\sigma)sign_{OE}(\sigma'_{xywv})Z^{DD}_{\sigma}(G,\mathbf{N})Z^{DD}_{\sigma_{xywv}}(G,\mathbf{N}-\{x,y,w,v\}) \\ &= sign_{OE}(\sigma'_{xy})sign_{OE}(\sigma'_{wv})Z^{DD}_{\sigma_{xy}}(G,\mathbf{N}-\{x,y\})Z^{DD}_{\sigma_{wv}}(G,\mathbf{N}-\{w,v\}) \\ &- sign_{OE}(\sigma'_{xv})sign_{OE}(\sigma'_{wy})Z^{DD}_{\sigma_{xy}}(G,\mathbf{N}-\{x,v\})Z^{DD}_{\sigma_{wy}}(G,\mathbf{N}-\{w,y\}) \end{aligned}$$

#### Corollary

Divide **N** into sets R, G, and B and let  $\sigma$  be the corr. tripartite pairing. Let  $x, y, w, v \in \mathbf{N}$  such that  $x < w \in V_1$  and  $y < v \in V_2$ . If  $\{x, y, w, v\}$  contains at least one node of each RGB color and x, y, w, v appear in cyclic order then

$$Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_{xyw}}^{DD}(G, \mathbf{N} - \{x, y, w, v\}) = Z_{\sigma_{xy}}^{DD}(G, \mathbf{N} - \{x, y\}) Z_{\sigma_{wy}}^{DD}(G, \mathbf{N} - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G, \mathbf{N} - \{x, v\}) Z_{\sigma_{wy}}^{DD}(G, \mathbf{N} - \{w, y\})$$

## Application: the $dP_3$ Quiver

**Object of study.** The  $dP_3$  quiver<sup>1</sup> and its associated cluster algebra.

**Goal.** Understand combinatorial interpretations for *toric cluster variables* obtained from sequences of *mutations*.





Main result. [LMNT, LM17, LM20] In many cases, the Laurent expansion of the toric cluster variables is equal to the partition function for a certain subgraph of the  $dP_3$  lattice (with appropriate edge-weights).

Images shown are Figures 1 and 2 from T. Lai and G. Musiker, *Dungeons and Dragons: Combinatorics for the dP*<sub>3</sub> *Quiver* 

 $<sup>^1</sup>$  The quiver Q associated with the Calabi-Yau threefold complex cone over the third del Pezzo surface of degree 6 ( $\mathbb{CP}^2$  blown up at three points).

## Quiver, quiver mutations, and cluster variables

A *quiver Q* is a directed finite graph.

#### Definition (Mutation at a vertex i)

- ullet For every 2-path j o i o k, add j o k
- Reverse all arrows incident to i
- Delete 2-cycles



- Define a cluster algebra from a quiver Q by associating a cluster variable  $x_i$  to every vertex labeled i.
- When we mutate at vertex i we replace  $x_i$  with  $x'_i$ , where

$$x_i' = \frac{\prod\limits_{i \to j \text{ in } Q} x_j^{a_{i \to j}} + \prod\limits_{j \to i \text{ in } Q} x_j^{b_{j \to i}}}{x_i}$$

• When we mutate at vertex 1 we replace  $x_1$  with  $x_1'=\frac{x_4x_6+x_3x_5}{x_1}$ . Now we have the cluster:  $\{\frac{x_4x_6+x_3x_5}{x_1},x_2,x_3,\ldots,x_6\}$ 

## Quiver, quiver mutations, and cluster variables



Mutate at 4: replace 
$$x_4$$
 with 
$$x_4' = \frac{x_3x_6 + x_2x_1'}{x_4} = \frac{x_1x_3x_6 + x_2x_3x_5 + x_2x_4x_6}{x_1x_4}$$

#### Theorem (FZ02)

Every cluster variable is a Laurent polynomial in  $x_1, \ldots, x_n$ .

A *toric mutation* is a mutation at a vertex with both in-degree and out-degree 2.

Image shown is Figure 2 from T. Lai and G. Musiker, *Dungeons and Dragons: Combinatorics for the dP*<sub>3</sub> *Quiver* 

### Combinatorial formula for some toric cluster variables

**Example.** (Z12) Toric cluster variables from the periodic mutation  $1, 2, 3, 4, 5, 6, 1, 2, \ldots$  agree with partition functions for subgraphs of the  $dP_3$  lattice with appropriate edge weights (the edge bordering faces i and j has weight  $\frac{1}{x_i x_i}$ ).



$$\underbrace{\frac{x_4x_6+x_3x_5}{x_1}}_{x_1}\underbrace{\frac{x_4x_6+x_3x_5}{x_1}}_{x_2} = \left(\frac{1}{x_1^2x_3x_5} + \frac{1}{x_1^2x_4x_6}\right)x_1x_3x_4x_5x_6 = Z^D(G)m(G)$$

$$x_3$$
 in  $\mu_3\mu_2\mu_1(Q)$ :  $\frac{x_2x_3x_5^2+x_1x_3x_5x_6+x_2x_4x_5x_6+x_1x_4x_6^2}{x_1x_2x_3}$ 

$$(4x_6)^2$$
  $(4x_6)^2$ 

$$x_5$$
 in  $\mu_5\mu_4\mu_3\mu_2\mu_1(Q)$ : 
$$\frac{(x_2x_5+x_1x_6)(x_1x_3+x_2x_4)(x_3x_5+x_4x_6)^2}{x_1^2x_2^2x_3x_4x_5}$$

These subgraphs are Aztec Dragons (see for example CY10).

# $\ensuremath{\mathbb{Z}}^3$ parameterization for toric cluster variables and an algebraic formula

Lai and Musiker (LM17) showed that the set of toric cluster variables is parameterized by  $\mathbb{Z}^3$ .

Let  $z_{i,j,k}$  denote the toric cluster variable corresponding to  $(i,j,k) \in \mathbb{Z}^3$ .

#### Theorem (LM17)

Let 
$$A = \frac{x_3x_5 + x_4x_6}{x_1x_2}$$
,  $B = \frac{x_1x_6 + x_2x_5}{x_3x_4}$ ,  $C = \frac{x_1x_3 + x_2x_4}{x_5x_6}$ ,  $D = \frac{x_1x_3x_6 + x_2x_3x_5 + x_2x_4x_6}{x_1x_4x_5}$ ,  $E = \frac{x_2x_4x_5 + x_1x_4x_6}{x_2x_3x_6}$ . Then

$$z_{i,j,k} = x_r A^{\lfloor \frac{(i^2+ij+j^2+1)+i+2j}{3} \rfloor} B^{\lfloor \frac{(i^2+ij+j^2+1)+2i+j}{3} \rfloor} C^{\lfloor \frac{i^2+ij+j^2+1}{3} \rfloor} D^{\lfloor \frac{(k-1)^2}{4} \rfloor} E^{\lfloor \frac{k^2}{4} \rfloor}$$

 $x_r$  is an initial cluster variable with r depending on (i - j) mod 3 and k mod 2.

# Combinatorial interpretation of $z_{i,i,k}$

Map from  $\mathbb{Z}^3$  to  $\mathbb{Z}^6$ :

$$(i,j,k) \to (a,b,c,d,e,f) = (j+k,-i-j-k,i+k,j-k+1,-i-j+k-1,i-k+1)$$

Given a six-tuple  $(a, b, c, d, e, f) \in \mathbb{Z}^6$ , superimpose the contour C(a, b, c, d, e, f) on the  $dP_3$  lattice.



#### **Examples:**

$$(1,2,1) \rightarrow (3,-4,2,2,-3,1) \ (-2,-2,3) \rightarrow (1,1,1,-4,6,-4) \ (1,2,3) \xrightarrow[d=0]{} (5,-6,4,0,-1,-1)$$







# Combinatorial interpretation of $z_{i,j,k}$

Some possible shapes of the contours:



#### Theorem (LM17)

Let G be the subgraph cut out by the contour (a,b,c,d,e,f)=(j+k,-i-j-k,i+k,j-k+1,-i-j+k-1,i-k+1). As long as C(a,b,c,d,e,f) has no self-intersections,

$$z_{i,j,k}=Z^D(G)m(G)$$

What about when C(a, b, c, d, e, f) is self-intersecting?

Image shown is Figure 12 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in the dP<sub>3</sub> Quiver

## Cross-section when k is positive



Figure 20 from T. Lai and G. Musiker, Beyond Aztec Castles: Toric cascades in the dP<sub>3</sub> Quiver

# Combinatorial interpretation for self-intersecting contours

#### Theorem (J.-Lai-Musiker 2020+)

For the  $dP_3$  quiver, we complete the assignment of combinatorial interpretations to toric cluster variables. In particular, for (i,j,k) corresponding to a self-intersecting contour we express  $z_{i,j,k}$  as a partition function for a tripartite double-dimer configuration.



$$(-1, -2, 4) \rightarrow (2, -1, 3, -5, 6, -4)$$



$$(1,-2,4) \rightarrow (2,-3,5,-5,4,-2)$$

◆ロト ◆個ト ◆差ト ◆差ト 差 める

## Sketch of proof for self-intersecting contours

Our proof uses a bijection between dimers and double dimers, the dimer interpretations of LM17 as a base case, and then proceeds by induction via double-dimer condensation.

$$Z_{-1,-2,4} \cdot Z_{0,-2,2} = Z_{-1,2,3} \cdot Z_{0,-2,3} + Z_{-1,-1,3} \cdot Z_{0,-3,3}$$

$$Z_{\sigma}^{DD}(G, \mathbf{N}) Z_{\sigma_5}^{DD}(G - ACEF, \mathbf{N} - ACEF) = Z_{\sigma_1}^{DD}(G - AC, \mathbf{N} - AC) Z_{\sigma_2}^{DD}(G - EF, \mathbf{N} - EF)$$

$$+ Z_{\sigma_2}^{DD}(G - CE, \mathbf{N} - CE) Z_{\sigma_2}^{DD}(G - AF, \mathbf{N} - AF)$$





## Thank you for listening, and happy Friday the 13th!



...and now, on to Minecraft!

Image credit: https://www.grabcraft.com/minecraft/jason-voorhees-friday-the-13th/movie-characters-185

- C. Cottrell and B. Young. Domino shuffling for the Del Pezzo 3 lattice. October 2010. arXiv:1011.0045.
- N. Elkies, G. Kuperberg, M. Larsen, and J. Propp. Alternating-Sign matrices and Domino Tilings (Part I). *J. Algebraic Combin.* 1(2):111-132, 1992.
- M. Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of matchings. *Electron. J. Comb.*, 17, 2010.
- H. Jenne. Combinatorics of the double-dimer model. arXiv preprint arXiv:1911.04079, 2019
- R. W. Kenyon and D. B. Wilson. Combinatorics of tripartite boundary connections for trees and dimers. *Electron. J Comb.*, 16(1), 2009.
- R. W. Kenyon and David B. Wilson. Boundary partitions in trees and dimers. *Trans. Amer. Math. Soc.*, 363(3):1325-1364, 2011.
- E. H. Kuo. Applications of graphical condensation for enumerating matchings and tilings. *Theoret. Comput. Sci.*, 319(1-3):29-57, 2004.
- $\bullet$  T. Lai and G. Musiker. Beyond Aztec castles: toric cascades in the  $dP_3$  quiver. Comm. Math. Phys., 356(3):823-881, 2017.
- T. Lai and G. Musiker. Dungeons and Dragons: Combinatorics for the  $dP_3$  Quiver. Annals of Combinatorics, Volume 24 (2020), no. 2, 257–309.
- ullet M. Leoni, G. Musiker, S. Neel, and P. Turner. Aztec Castles and the  $dP_3$  Quiver, Journal of Physics A: Math. Theor. 47 474011.
- D. E. Speyer. Variations on a theme of Kasteleyn, with Application to the Totally Nonnegative Grassmannian. *Electron. J. Comb.*, 23(2), 2016.
- S. Zhang, Cluster Variables and Perfect Matchings of Subgraphs of the *dP*<sub>3</sub> Lattice, 2012 REU Report, arXiv:1511.06055.