Zjazd 7

Maciej Rosoł

Agenda

- Regresja
- Metoda Najmniejszych Kwadratów
- Współczynnik determinacji \mathbb{R}^2

Regresja

Regresja – metoda statystyczna pozwalająca na opisanie współzmienności kilku zmiennych przez dopasowanie do nich funkcji. Umożliwia przewidywanie nieznanych wartości jednych wielkości na podstawie znanych wartości innych.

Czyli znamy przykładowe wartości (x_i, y_i) , ktoś nam podaje nowy punkt x_0 i chcemy przewidzieć wartość y_0 .

W roku 1801 astronomowie zgubili z oczu asteroidę, i chodziło o to by odszukać ją z powrotem na niebie. Gauss stworzył **Metodę Najmniejszych Kwadratów** właśnie w celu by ja odszukać, co mu się udało – znalazła się dokładnie tam, gdzie Gauss przewidział, że będzie.

Dokonaliśmy pomiarów pewnej funkcji:

$$\begin{array}{c|cccc} x_i & 1 & 2 & 4 \\ \hline y_i & 1 & 2 & 3 \\ \end{array}$$

Podejrzewamy, że dane mogą być dobrze przybliżone za pomocą funkcji liniowej

$$y = ax + b$$

W związku z tym szukamy takich parametrów a, b aby przybliżenie

$$y_i = ax_i + b$$

dla i = 1, ..., n (gdzie w naszym przypadku n = 3) było **optymalne**.

Inaczej mówiąc szukamy takich a, b

$$\begin{cases} 1a + b \approx 1 \\ 2a + b \approx 2 \\ 4a + b \approx 3 \end{cases}$$

co w zapisie macierzowym możemy przedstawić następująco:

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} \approx \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Pojawia się problem co to znaczy optymalne, oraz (jak to już doprecyzujemy) jak to optymalne znaleźć. Precyzyjniej mówiąc potrzebujemy dookreślić jaką **funkcję kosztu** tu dopasujemy, która będzie nam mówiła ile "kosztuje" nas dany błąd (w zależności od doboru parametrów a, b).

Naturalnym wydawałoby się posumowanie modułów błędów:

$$error(a,b) = \sum_{i} |y_i - (ax_i + b)|$$

Tak się czasami robi, ale takie podejście ma wadę, bo nie da się tych współczynników wyliczyć jawnym wzorem. W związku z tym, dokonamy naturalnej modyfikacji, zastępując moduł kwadratem (Square Error):

$$se(a,b) = \sum_{i} (y_i - (ax_i + b))^2$$

Można pokazać, że funkcja kosztu se(a,b) przyjmuje minimum w:

$$a = \frac{\sum y_i x_i - b \sum x_i}{\sum x_i^2}$$

$$b = \frac{\sum y_i - a \sum x_i}{n}$$

W naszym przypadku otrzymujemy układ:

$$a = \frac{17 - 7b}{21}, \quad b = \frac{6 - 7b}{3}$$

i wynik: a = 9/10, b = 1/2

Metoda Najmniejszych Kwadratów $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} \approx \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Można ten problem rozwiązać przy użyciu macierzy

Aby znaleźć optymalne przybliżenie, mnożymy obie strony przez A^T :

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Rozwiązujemy prosty układ równań:

$$\begin{bmatrix} 3 & 7 \\ 7 & 21 \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 6 \\ 17 \end{bmatrix}$$

I otrzymujemy a = 9/10, b = 1/2

Możemy zastosować metodę regresji liniowej, gdy chcemy przewidzieć wartość jednej zmiennej na podstawie innych zmiennych. Np.:

- Kaloryczność pokarmu na podstawie ilości węglowodanów,
- Zużycie energii elektrycznej w gospodarstwie domowym na podstawie liczby i wieku domowników,
- Wartość nieruchomości na podstawie powierzchni i odległości od centrum,
- Liczbę zachorowań na COVID na podstawie liczby osób w transporcie publicznym tydzień temu.

Szukamy parametrów (a,b) które **minimalizują błąd kwadratowy**

(squared residuals) ε_i w modelu:

$$y_i = ax_i + b + \varepsilon_i$$

gdzie α jest nachyleniem linii, b przesunięciem, ε_i (residua) są różnicami między zaobserwowanymi wartościami, a przewidywanymi wartościami.

Ponieważ równanie regresji liniowej jest stworzone w celu zminimalizowania sumy kwadratowej reszt (residua), regresja liniowa czasami nazywana jest **Ordinary Least-Squares** (**OLS**) Regression

Załóżmy, że mamy kilka punktów (x_i, y_i) , gdzie i = 1, 2, . . . , 7. Wtedy najprostszy model regresji liniowej ma postać:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

Taki model można też zapisać w postaci macierzowej:

$$\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
y_7
\end{bmatrix} =
\begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
1 & x_3 \\
1 & x_4 \\
1 & x_5 \\
1 & x_6 \\
1 & x_7
\end{bmatrix} +
\begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\epsilon_3 \\
\epsilon_4 \\
\epsilon_5 \\
\epsilon_6 \\
\epsilon_7
\end{bmatrix}$$

gdzie pierwsza kolumna w macierzy reprezentuje przesunięcie, a druga kolumna to wartości x_i odpowiada nachyleniu.

Możemy zastosować regresję liniową również do bardziej złożonych modeli, jak na przykład:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$$

W postaci macierzowej:
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \\ 1 & x_6 & x_6^2 \\ 1 & x_7 & x_7^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix}$$

Jest to również przypadek regresji liniowej, ponieważ nieznane parametry βi pojawiają się liniowo, a składniki macierzy pojawiają się z kwadratami.

- Zestaw danych zawiera wartości y_i , z których każda ma skojarzoną wartość modelową \hat{y}_i (czasami również oznaczaną f_i).
- ullet Wartości y_i nazywane są wartościami zaobserwowanymi observed values,
- Wartości modelowe f_i lub \hat{y}_i wartościami przewidywanymi -predicted values ,
- Wartość \bar{y} jest średnią z zaobserwowanych danych:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

gdzie n oznacza liczbę obserwacji.

Sum of squares

Sum of squares (SS) to miara, która służy do opisu "zmienność" danych i tego jak dobrze model dopasowuje się do naszych danych. Miary z wykorzystaniem SS to:

Model Sum of Squares (Explained Sum of Squares)

$$SS_{mod} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Residuals Sum of Squares (sum of squares for the errors)

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Total Sum of Squares (równoważne wariancji próbki pomnożonej przez (n − 1)).

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Współczynnik determinacji

Dla modelu regresji liniowej mamy:

$$SS_{mod} + SS_{res} = SS_{tot}$$

Przy powyższych oznaczeniach współczynnik determinacji (coeficient of determination) oznaczamy \mathbb{R}^2 :

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{SS_{model}}{SS_{tot}}$$

Współczynnik determinacji, to stosunek sumy kwadratów odległości zmiennej wyjaśnianej przez model do całkowitej sumy kwadratów.

Współczynnik determinacji

 R^2 jest jedną z miar jakości dopasowania modelu do danych uczących. Wartości R^2 zbliżone do 1 odpowiada ścisłej korelacji, wartości zbliżone do 0 odpowiada słabej:

- 0,0 0,5 dopasowanie niezadowalające,
- 0,5 0,6 dopasowanie słabe,
- 0,6 0,8 dopasowanie zadowalające,
- 0,8 0,9 dopasowanie dobre,
- 0,9 1,0 dopasowanie bardzo dobre.

$$R^2 = rac{\sum\limits_{i=1}^n (\hat{y}_i - \overline{y})^2}{\sum\limits_{i=1}^n (y_i - \overline{y})^2}$$

Kwartet Anscombe'a to zestaw czterech zestawów danych o identycznych cechach statystycznych, takich jak średnia arytmetyczna, wariancja, współczynnik korelacji, współczynnik determinacji R^2 czy równanie regresji liniowej, jednocześnie wyglądających zgoła różnie przy przedstawieniu graficznym.

Bardzo ogólna definicja modelu regresji jest następująca:

$$y = f(x, \varepsilon)$$

W przypadku prostego modelu regresji liniowej model może zostać zapisany jako:

$$y = X\beta + \varepsilon$$

Dla danych w postaci:

$$\{y_i, x_{i1}, \dots, x_{ip}\}_{i=1}^n$$

mówimy, że y_i jest zmienną objaśnianą, a x_{i1}, \dots, x_{ip} są zmiennymi objaśniającymi, a model regresji ma postać:

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = x_i^T \beta + \varepsilon_i$$

gdzie T oznacza transpozycję, a $x_i^T \beta$ oznacza iloczyn skalarny.

W notacji macierzowej:

$$y = X\beta + \varepsilon$$

Gdzie:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, x = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ x_{21} & \dots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_p \end{bmatrix}$$

Dla regresji liniowej można wyznaczyć przedział ufności dla parametrów modelu (confidence interval) oraz dla predykowanych wartości (prediction interval)

Notebook – D10_Z01

- W następnej części wyjaśnimy wszystkie parametry.
- Na razie zwróćmy uwagę na Kryterium Akaike Information Criterion (AIC), które można wykorzystać do oceny jakości modelu.
- Im **niższa** jest wartość AIC, tym lepszy model.

Results: Ordinary least squares							
=======		========	=====	========			
Model:		OLS		Adj. R-squar	red: 0	3.470	
Dependent Variable:		у		AIC:		115.2971	
Date:		2020-11-22 11:18		BIC:		420.5075	
No. Observations:		100		Log-Likelihood:		205.65	
Df Model:		1		F-statistic:		88.70	
Df Residuals:		98		Prob (F-stat	tistic): 2	2.22e-15	
R-squared:		0.475		Scale:		3.6521	
	Coef.	Std.Err.	t	P> t	[0.02	0.975]	
const	2.9869	0.3877	7 70	44 0.0000	2.217	3.7562	
x1	2.1818	0.2317		81 0.0000	1.7221		
Omnibus:		22.265	Durbin-Watson:		:	1.818	
Prob(Omnibus):		0.000	Jarque-Bera (JB):			31.869	
Skew:		1.040	Prob(JB):		0.000		
Kurtosis:		4.822	Condition No.:		4		
=======		========	=====	========			

Notebook – D10_Z02

Lewa kolumna przeważnie ______OLS Regression zawiera informacje dotyczące użytej metody.

OLS Regression Results

R-squared:

0.615

Alcohol

Dep. Variable:

Model:		OLS	s Adj.	R-squared:		0.567
Method: Leas		Least Square	s F-st	atistic:		12.78
Date: Fr		Fri, 15 Jan 202	1 Prob	(F-statistio	:):	0.00723
Time:		11:28:0	7 Log-	Likelihood:		-4.9998
No. Observations:		10	aic:			14.00
Df Residuals:		;	B BIC:			14.60
Df Model:		:	1			
Covariance Type:		nonrobus	t			
=========	coef	std err	 t	P> t	[0.025	0.975]
Intercept	2.0412	1 001	2 029	0.076	-0 269	4.350
Tobacco	1.0059		3.576	0.007	0.357	1.655
=========		==========	======			========
Omnibus:		2.54	2 Durb	in-Watson:		1.975
Prob(Omnibus):		0.28	1 Jarq	ue-Bera (JB):	:	0.904
Skew:		-0.01	4 Prob	(JB):		0.636
Kurtosis:		1.52	7 Cond	. No.		27.2
=========		==========		=========		========

Df Model - oznacza stopnie swobody modelu czyli liczbę predyktorów (zmiennych objaśniających). Df Residuals - oznacza liczbę obserwacji pomniejszoną o stopnie swobody modelu minus jeden (dla przesunięcia).

OLS Regression Results Dep. Variable: Alcohol R-sauared: 0.615 Model: OLS Adj. R-squared: 0.567 Method: Least Squares F-statistic: 12.78 Fri, 15 Jan 2021 Prob (F-statistic): Date: 0.00723 Time: 11:28:07 Log-Likelihood: -4.9998 No. Observations: AIC: 14.00 Df Residuals: BIC: 14.60 Df Model: Covariance Type: std err P>|t| [0.025 0.975] coef Intercept 1.001 2.0412 -0.268 2.038 0.076 4.350 Tobacco 0.357 Omnibus: Durbin-Watson: 2.542 1.975 Prob(Omnibus): 0.281 Jarque-Bera (JB): 0.904 Skew: -0.014 Prob(JB): 0.636 Kurtosis:

Jeżeli oznaczymy przez n liczbę obserwacji, a k liczbę parametrów regresji/modelu (np. dla modelu liniowego z przykładu mamy k=2), a \hat{y} przewidywaną wartość modelu oraz \bar{y} średnią z zaobserwowanych wartości, to:

Model Degrees

$$DF_{mod} = k - 1$$

Residuals Degrees of Freedom

$$DF_{res} = n - k$$

Total Degrees of Freedom

$$DF_{tot} = DF_{tot} + DF_{res} = n - 1$$

Współczynnik determinacji R^2 wyraża się wzorem:

Dep. Variable:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{SS_{model}}{SS_{tot}}$$

The Adjusted R^2 Value jest modyfikacją R^2 biorącą pod uwagę karę za dużą liczbę parametrów w modelu.

OLS Regression Results

Alcohol R-squared:

Model: OLS		Adj.	R-squared:		0.56 <mark>7</mark>	
Method: Least Squares		F-sta	atistic:		12.78	
Date: Fri, 15 Jan 2021		Prob	Prob (F-statistic):			
Time: 11:28:07		Log-I	_ikelihood:		-4.9998	
No. Observations:		10	AIC:			14.00
Df Residuals:		8	BIC:			14.60
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.0412	1.001	2.038	0.076	-0.268	4.350
Tobacco	1.0059	0.281	3.576	0.007	0.357	1.655
Omnibus:	=======	 2.542	Durb:	======== in-Watson:		1.975
Prob(Omnibus): 0.281						
Skew: -0.014					0.904 0.636	
Kurtosis:		1.527		· /		27.2
========	=======		======			=======

The Adjusted R^2 Value określona jest wzorem:

$$1 - \bar{R}^2 = \frac{Residual Variance}{Total Variance}$$

gdzie Residual Variance to:

$$Residual Variance = SS_{res}/DF_{res} = SS_{res}/(n-k)$$

Total Variance to:

$$TotalVariance = SS_{tot}/DF_{tot} = SS_{tot}/(n-1)$$

F test dla regresji – sprawdza, czy chociaż jeden współczynnik modelu jest statystycznie istotnie różny od zera.

OLS Regression Results Dep. Variable: Alcohol R-squared: 0.615 Adi. R-squared: Model: OLS 0.567 Method: F-statistic: Least Squares 12.78 Date: Fri, 15 Jan 2021 Prob (F-statistic): 0.00723 Time: Log-Likelihood. 11:28:07 4.9990 No. Observations: AIC: 14.00 Df Residuals: BIC: 14.60 Df Model: Covariance Type: nonrobust coef std err P>|t| [0.025 0.975] Intercept 1.001 2.038 0.076 -0.268 2.0412 4.350 Tobacco 1,0059 0.281 3.576 1,655 Omnibus: Durbin-Watson: 2.542 1.975 Prob(Omnibus): 0.281 Jarque-Bera (JB): 0.904 Skew: -0.014 Prob(JB): 0.636 Kurtosis: Cond. No. 27.2

Dla modelu:

$$y_i = \alpha + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \alpha + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i$$

Chcemy przetestować hipotezę:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_n = 0$$
$$H_1: \beta_i \neq 0$$

Dla co najmniej jednego j

Notebook – Regresja

Notebook – D11_Z01

Notebook – D11_Z02

K-fold cross validation


```
from sklearn.model_selection import KFold
kf = KFold(n_splits=10)
for train, test in kf.split(X):
```

https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:K-fold_cross_validation_EN.svg

Leave-one-out

https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:LOOCV.gif

for train_index, test_index in loo.split(X):

loo = LeaveOneOut()

. . .

Schemat testowania modeli

Bias-variance tradeoff

Na błąd modelu składają się trzy czynniki:

- **Bias** wynika z błędnych założeń algorytmu uczenia się. Wysoki bias może spowodować, że algorytm przeoczy odpowiednie relacje między cechami a docelowymi wynikami (niedopasowanie underfitting).
- Variance wynika z wrażliwości na małe wahania w zbiorze uczącym. Wysoka wariancja może spowodować, że algorytm będzie modelował losowy szum w danych uczących, zamiast zamierzonych wyników (nadmierne dopasowanie overfitting).
- Noise szum zawarty w danych. Różnica między y przewidzianym a y prawdziwym.

$$E = E_b + E_v + E_n$$

Bias-variance tradeoff

Bias-variance tradeoff

https://www.ncbi.nlm.nih.gov/books/NBK543534/figure/ch8.Fig3/

Notebook - Crossvalidation

Notebook – of uf train test