

On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence

Université de Lille

CONTROL C

Achraf Azize, Marc Jourdan, Aymen Al Marjani, Debabrota Basu Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France.

Setting

FC-BAI with ϵ -global Differential Privacy

A BAI strategy π interacts with a set of users $\{u_1,\ldots,u_T\}$ using the protocol

Algorithm 1 Interaction protocol

- 1: **Input:** A BAI strategy $\pi = (S_t, \operatorname{Rec}_t)_{t\geq 1}$ and Users $\{u_t\}_{t\geq 1}$ represented by the table $\underline{\mathbf{d}}$
- 2: Output: A stopping time τ , a sequence of samples actions $\underline{a}^{\tau}=(a_1,\ldots,a_{\tau})$ and a recommendation \hat{a} satisfying ϵ -global DP
- 3: **for** t = 1, ... **do**
- 4: π samples $a_t \sim S_t(. \mid a_1, r_1, \dots, a_{t-1}, r_{t-1})$
- 5: if $a_t = \top$ then
- 6: Halt.
- 7: Return $\hat{a} \sim \operatorname{Rec}_t(. \mid a_1, r_1, \dots, a_{t-1}, r_{t-1})$ and $\tau = t$
- 3: **else**
- 9: u_t sends the **sensitive** reward $r_t \triangleq \underline{\mathbf{d}}_{t,a_t}$
- LO: end if
- 11: end for

Goal: Protect the privacy of the users by designing a Differentially Private (DP) BAI strategy π , that is δ correct, with $\mathbb{E}[\tau]$ as small as possible.

Illustration: K medicine testing with T patients

The private input: Each user u_t is represented by $\mathbf{x}_t \triangleq (x_{t,1}, \dots, x_{t,K})$, but only x_{t,a_t} is observed. We represent a set of users $\{u_t\}_{t=1}^T$ until T by the table of potential rewards $\underline{\mathbf{d}}^T \triangleq \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$.

The mechanism: A BAI strategy π interacts with the private table $\underline{\mathbf{d}}^T$, following the interaction of Algorithm 1, to halt at time T, produce a sequence of action \underline{a}^T and recommend the action \hat{a} , with probability $\pi(\underline{a}^T, \widehat{a}, T \mid \underline{\mathbf{d}}^T) \triangleq \operatorname{Rec}_{T+1}(\widehat{a} \mid \mathcal{H}_T) \operatorname{S}_{T+1}(\top \mid \mathcal{H}_T) \prod_{t=1}^T \operatorname{S}_t(a_t \mid \mathcal{H}_{t-1})$.

Neighboring tables: Two reward tables $\underline{\mathbf{d}}^T$ and $\underline{\mathbf{d'}}^T$ are neighbouring if they only differ in one row, i.e. $d_{\mathsf{Ham}}(\underline{\mathbf{d}}^T,\underline{\mathbf{d'}}^T)=1$.

 ϵ -global DP for BAI: A BAI strategy π is ϵ -global DP, if for all $T \geq 1$, all neighbouring table of rewards $\underline{\mathbf{d}}^T$ and $\underline{\mathbf{d'}}^T$, all sequences of sampled actions \underline{a}^T and recommended actions $\widehat{a} \in [K]$ we have that

$$\pi(\underline{a}^T, \widehat{a}, T \mid \underline{\mathbf{d}}^T) \le e^{\epsilon} \pi(\underline{a}^T, \widehat{a}, T \mid \underline{\mathbf{d'}}^T)$$

Correctness: A BAI strategy π is δ -correct for a class \mathcal{M} , if for every instance $\boldsymbol{\nu} \in \mathcal{M}$, π recommends the optimal action $a^{\star}(\boldsymbol{\nu}) = \arg\max_{a \in [K]} \mu_a$ with probability at least $1 - \delta$, i.e. $\mathbb{P}_{\boldsymbol{\nu},\pi}(\tau < \infty, \widehat{a} = a^{\star}(\boldsymbol{\nu})) \geq 1 - \delta$.

Contributions

- 1. We derive the first lower bound on sample complexity of any δ -correct ϵ -global DP BAI strategy.
- 2. We design an ϵ -global DP variant of Top Two algorithms, named AdaP-TT, based on two simple design techniques, i.e. adaptive episodes for each arm and Laplacian mechanism.
- 3. We derive an asymptotic upper bound on the sample complexity of AdaP-TT. We show that AdaP-TT enjoys both theoretical near-optimality and good experimental performance.

Algorithm Design

Main Ingredients:

- 1. Per-arm doubling (Line 5).
- 2. Forgetting, i.e. the private empirical estimate of arm a is only computed using the rewards collected in the last phase of arm a (Line 8).
- 3. Each empirical mean (Line 9) is made ϵ -DP by adding Laplace noise.

Algorithm 2 AdaP-TT

- 1: Input: $\beta \in (0,1)$, risk $\delta \in (0,1)$, privacy budget ϵ , thresholds $c_{\epsilon,k_1,k_2} \colon \mathbb{N}^2 \times (0,1) \to \mathbb{R}^+$
- 2: Output: Recommendation \hat{a} and Stopping time τ satisfying ϵ -global DP
- 3: Initialization: $\forall a \in [K]$, pull arm a, set $k_a = 1$, $T_1(a) = K + 1$, $L_{n,a} = 0$, $N_{n,a} = 1$, n = K + 1.
- 4: for n > K do
- 5: if there exists $a \in [K]$ such that $N_{n,a} \geq 2N_{T_{k_a}(a),a}$ then
- 6: Change phase $k_a \leftarrow k_a + 1$ for this arm a
- 7: Set $T_{k_a}(a)=n$ and $\tilde{N}_{k_a,a}=N_{T_{k_a}(a),a}-N_{T_{k_a-1}(a),a}$
- 8: Set $\hat{\mu}_{k_a,a} = \tilde{N}_{k_a,a}^{-1} \sum_{s=T_{k_a-1}(a)}^{T_{k_a}(a)-1} X_s \mathbb{1} \{I_s=a\}$
- 9: Set $\tilde{\mu}_{k_a,a}=\hat{\mu}_{k_a,a}+Y_{k_a,a}$ where $Y_{k_a,a}\sim$ Lap $((\epsilon \tilde{N}_{k_a,a})^{-1})$
- 10: end if
- 11: Set $\hat{a}_n = \arg\max_{b \in [K]} \tilde{\mu}_{k_b, b}$
- 12: if $\frac{(\tilde{\mu}_{k_{\hat{a}_n},\hat{a}_n} \tilde{\mu}_{k_b,b})^2}{1/\tilde{N}_{k_{\hat{a}_n},\hat{a}_n} + 1/\tilde{N}_{k_b,b}} \geq \begin{bmatrix} 2c_{\epsilon,k_{\hat{a}_n},k_b}(\tilde{N}_{k_{\hat{a}_n},\hat{a}_n},\tilde{N}_{k_b,b},\delta) & \text{for all } b \neq \hat{a}_n \\ \text{then} \end{bmatrix}$
- 13: return (\hat{a}_n, n)
- L4: end if
- 15: Set $B_n = \arg\max_{a \in [K]} \{ \tilde{\mu}_{k_a,a} + \sqrt{k_a/\tilde{N}_{k_a,a}} + k_a/(\epsilon \tilde{N}_{k_a,a}) \}$
 - Set $C_n = \arg\min_{a \neq B_n} \frac{\tilde{\mu}_{k_{B_n}, B_n} \tilde{\mu}_{k_a, a}}{\sqrt{1/N_{n, B_n} + 1/N_{n, a}}}$
- 17: Set $I_n=B_n$ if $N_{n,B_n}^{B_n}\leq \beta L_{n+1,B_n}$, else $I_n=C_n$
- 8: Pull I_n and observe $X_n \sim
 u_{I_n}$
- 19: Set $N_{n+1,I_n} \leftarrow N_{n,I_n} + 1$, $N_{n+1,I_n}^{\tilde{B}_n} \leftarrow N_{n,I_n}^{B_n} + 1$ and $L_{n+1,B_n} \leftarrow L_{n,B_n} + 1$. Set $n \leftarrow n+1$
- 20: **end for**

Privacy analysis: For rewards in [0,1], AdaP-TT is ϵ -global DP. A change in one user *only affects* the empirical mean at one episode of an arm, which is made private using the Laplace Mechanism.

Correctness: AdaP-TT is δ -correct for thresholds $\tilde{c}_{\epsilon,k_1,k_2}(n,m,\delta)$ which verify $\tilde{c}_{\epsilon,k_1,k_2}(n,m,\delta) \approx 2\log(1/\delta) + (1/n+1/m)\log(1/\delta)^2/\epsilon^2$.

Upper bound on expected sample complexity:

AdaP-TT with thresholds $\tilde{c}_{\epsilon,k_1,k_2}$ satisfies that, for all $\mu \in \mathbb{R}^K$ such that $\min_{a \neq b} |\mu_a - \mu_b| > 0$,

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\log(1/\delta)} \le 4T_{\mathrm{kl},\beta}^{\star}(\boldsymbol{\mu}) \left(1 + \sqrt{1 + \frac{\Delta_{\mathrm{max}}^2}{2\epsilon^2}}\right)$$

Comparison to lower bound For instances where gaps have the same order of magnitude, i.e. there exists a constant $C \geq 1$ such that $\Delta_{\max}/\Delta_{\min} \leq C$, there exists a universal constant c, such that

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\log(1/\delta)} \le c \max \left\{ T_{\mathrm{kl},1/2}^{\star}(\boldsymbol{\mu}), C\epsilon^{-1} \sum_{a \neq a^{\star}} \Delta_a^{-1} \right\}$$

Comparison to DP-SE. DP-SE is a ϵ -global DP version of the successive elimination algorithm, with a sample complexity $\mathcal{O}(\sum_{a\neq a^\star} \Delta_a^{-2} + \sum_{a\neq a^\star} (\epsilon \Delta_a)^{-1})$. DP-SE too achieves (to constants) the high-privacy lower bound $T_{\mathrm{TV}}^\star(\mu)/\epsilon$, but has two drawbacks:

- 1. DP-SE is less adaptive than AdaP-TT, i.e. in a phase, DP-SE continues to sample arms that might already be known to be bad.
- 2. AdaP-TT is anytime, i.e. its sampling strategy does not depend on the risk δ .

Sample complexity lower bound

The lower bound: Let $\delta \in (0,1)$ and $\epsilon > 0$. For any δ -correct ϵ -global DP BAI strategy, we have that

$$\mathbb{E}_{\boldsymbol{\nu}}[\tau] \ge T^{\star}(\boldsymbol{\nu}, \epsilon) \log(1/3\delta)$$

where
$$(T^{\star}(\boldsymbol{\nu}, \epsilon))^{-1} \triangleq \sup_{\omega \in \Sigma_K} \inf_{\boldsymbol{\lambda} \in \mathrm{Alt}(\boldsymbol{\nu})} \min_{\boldsymbol{\lambda} \in \Sigma_K} \sum_{\boldsymbol{\lambda} \in \mathrm{Alt}(\boldsymbol{\nu})} \min_{\boldsymbol{\lambda} \in \Sigma_K} \sum_{\boldsymbol{\lambda} \in \mathrm{Alt}(\boldsymbol{\nu})} \sum_{\boldsymbol$$

$$\left(\sum_{a=1}^{K} \omega_a D_{\mathrm{KL}} \left(\nu_a \parallel \lambda_a\right), 6\epsilon \sum_{a=1}^{K} \omega_a \mathrm{TV} \left(\nu_a \parallel \lambda_a\right)\right).$$

Simplification:

$$T^{\star}(\boldsymbol{\nu}, \epsilon) \ge \max\left(T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}), \frac{1}{6\epsilon}T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu})\right),$$

where $(T_{\mathbf{d}}^{\star}(\boldsymbol{\nu}))^{-1} \triangleq \sup_{\omega \in \Sigma_K} \inf_{\boldsymbol{\lambda} \in \mathrm{Alt}(\boldsymbol{\nu})} \sum_{a=1}^K \omega_a \mathbf{d}(\nu_a, \lambda_a)$, and \mathbf{d} is either KL or TV.

 T_{TV}^{\star} for Bernoulli instances: $\nu_a = \mathrm{Bernoulli}(\mu_a)$ and $\mu_1 > \mu_2 \geq \ldots \geq \mu_K$. Let $\Delta_a \triangleq \mu_1 - \mu_a$ and

$$\Delta_{\min} \triangleq \min_{a \neq 1} \Delta_a$$
.
$$T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu}) = \frac{1}{\Delta_{\min}} + \sum_{a=2}^{K} \frac{1}{\Delta_a}$$

Pinsker inequality: $T_{\mathrm{TV}}^{\star}(\nu) \geq \sqrt{2T_{\mathrm{KL}}^{\star}(\nu)}$.

Technical result of interest: Transportation lemma under ϵ -global DP. Let $\delta \in (0,1)$ and $\epsilon > 0$. Let ν be a bandit instance and $\lambda \in \mathrm{Alt}(\nu)$. For any δ -correct ϵ -global DP BAI strategy,

$$6\epsilon \sum_{a=1}^{K} \mathbb{E}_{\boldsymbol{\nu},\pi} \left[N_a(\tau) \right] \text{TV} \left(\nu_a \parallel \lambda_a \right) \ge \text{kl}(1-\delta,\delta),$$

$$\operatorname{kl}(1-\delta,\delta) \triangleq x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y}$$
 for $x,y \in (0,1)$.

Experimental analysis

- 1. AdaP-TT outperforms DP-SE.
- 2. The performance of AdaP-TT has two regimes: a high-privacy regime (for $\epsilon < 0.2$) and a low privacy regime (for $\epsilon > 0.2$).

Conclusion and future works

What do we achieve?

- The hardness of a BAI bandit problem with ϵ -global DP depends on a coupled effect of the privacy budget ϵ and the TV and KL characteristic times.
- In the low-privacy regime, bandits with ϵ -global DP are not harder than non-private bandits.
- Adaptive episodes with doubling, coupled with forgetting, allows adding less noise to the empirical means.
- AdaP-TT is near-optimal and enjoys good empirical performance.

What remains to be done?

- Closing the gap between the lower and upper bounds with a tighter theoretical analysis.
- Extending the analysis to other DP settings, like (ϵ, δ) -DP and Rényi-DP, or other trust models, namely local DP and shuffle DP.