Tutorium 9

Funktionentheorie

7. und 8. Juli 2025

Konforme Abbildungen

Definition

Seien $U, V \subset \mathbb{C}$ offen. Eine Abbildung $f: U \to V$ heißt *konform*, falls sie holomorph und bijektiv ist.

Konforme Abbildungen

Definition

Seien $U, V \subset \mathbb{C}$ offen. Eine Abbildung $f: U \to V$ heißt *konform*, falls sie holomorph und bijektiv ist.

Existiert eine konforme Abbildung $f: U \to V$, so heißen U und V konform äquivalent.

Konforme Abbildungen

Definition

Seien $U, V \subset \mathbb{C}$ offen. Eine Abbildung $f: U \to V$ heißt *konform*, falls sie holomorph und bijektiv ist.

Existiert eine konforme Abbildung $f: U \to V$, so heißen U und V konform äquivalent.

Bemerkung. Ist f konform, so ist $f'(z) \neq 0$ für alle $z \in U$ und $f^{-1} \colon V \to U$ ist ebenfalls holomorph.

Im Folgenden bezeichne $\mathbb D$ die Einheitskreisscheibe.

Im Folgenden bezeichne $\mathbb D$ die Einheitskreisscheibe.

Lemma

Sei $f: \mathbb{D} \to \mathbb{D}$ holomorph mit f(0) = 0. Dann gilt

Im Folgenden bezeichne $\mathbb D$ die Einheitskreisscheibe.

Lemma

Sei $f: \mathbb{D} \to \mathbb{D}$ holomorph mit f(0) = 0. Dann gilt

1 $|f(z)| \le |z|$ für alle $z \in \mathbb{D}$. Gleichheit gilt genau dann für ein $0 \ne z_0 \in \mathbb{D}$, wenn $f(z) = e^{i\theta}z$ für alle $z \in \mathbb{D}$ und ein $\theta \in \mathbb{R}$.

Im Folgenden bezeichne $\mathbb D$ die Einheitskreisscheibe.

Lemma

Sei $f: \mathbb{D} \to \mathbb{D}$ holomorph mit f(0) = 0. Dann gilt

- **1** $|f(z)| \le |z|$ für alle $z \in \mathbb{D}$. Gleichheit gilt genau dann für ein $0 \ne z_0 \in \mathbb{D}$, wenn $f(z) = e^{i\theta}z$ für alle $z \in \mathbb{D}$ und ein $\theta \in \mathbb{R}$.
- **②** $|f'(0)| \le 1$ und Gleichheit gilt genau dann, wenn $f(z) = e^{i\theta}z$ für alle $z \in \mathbb{D}$ und ein $\theta \in \mathbb{R}$.

Definition

Sei $\Omega\subset\mathbb{C}$ offen. Eine konforme Abbildung $f\colon\Omega\to\Omega$ heißt *Automorphismus* von $\Omega.$ Wir schreiben

 $\operatorname{Aut}(\Omega) := \{f : \Omega \to \Omega : f \text{ ist ein Automorphismus}\}.$

Definition

Sei $\Omega\subset\mathbb{C}$ offen. Eine konforme Abbildung $f:\Omega\to\Omega$ heißt *Automorphismus* von $\Omega.$ Wir schreiben

 $\operatorname{Aut}(\Omega) := \{ f : \Omega \to \Omega : f \text{ ist ein Automorphismus} \}.$

In der Vorlesung wurde gezeigt:

Definition

Sei $\Omega\subset\mathbb{C}$ offen. Eine konforme Abbildung $f\colon\Omega\to\Omega$ heißt Automorphismus von $\Omega.$ Wir schreiben

$$\operatorname{Aut}(\Omega) := \{ f : \Omega \to \Omega : f \text{ ist ein Automorphismus} \}.$$

In der Vorlesung wurde gezeigt:

$$\mathsf{Aut}(\mathbb{D}) = \{ \mathrm{e}^{\mathrm{i} heta} \psi_{lpha} : heta \in \mathbb{R}, lpha \in \mathbb{D} \}, \qquad \psi_{lpha}(z) = rac{lpha - z}{1 - \overline{lpha} z}.$$
 $\mathsf{Aut}(\mathbb{H}) = \left\{ z \mapsto rac{\mathsf{a} z + b}{\mathsf{c} z + d} : \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{a} \mathsf{d} - \mathsf{b} \mathsf{c} = 1
ight\}.$

Hierbei bezeichnet $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ die obere komplexe Halbebene.

Theorem (Riemann)

Sei $\emptyset \neq \Omega \subsetneq \mathbb{C}$ offen und einfach zusammenhängend. Dann existiert für jedes $z_0 \in \Omega$ eine eindeutige konforme Abbildung $F \colon \Omega \to \mathbb{D}$ mit

$$F(z_0) = 0$$
 und $F'(z_0) > 0$.

Theorem (Riemann)

Sei $\emptyset \neq \Omega \subsetneq \mathbb{C}$ offen und einfach zusammenhängend. Dann existiert für jedes $z_0 \in \Omega$ eine eindeutige konforme Abbildung $F \colon \Omega \to \mathbb{D}$ mit

$$F(z_0)=0 \qquad \text{ and } \qquad F'(z_0)>0.$$

Insbesondere sind alle offenen, nicht-leeren, einfach zusammenhängenden echte Teilmengen von $\mathbb C$ konform äquivalent.

Theorem (Riemann)

Sei $\emptyset \neq \Omega \subsetneq \mathbb{C}$ offen und einfach zusammenhängend. Dann existiert für jedes $z_0 \in \Omega$ eine eindeutige konforme Abbildung $F: \Omega \to \mathbb{D}$ mit

$$F(z_0)=0 \qquad \text{ and } \qquad F'(z_0)>0.$$

Insbesondere sind alle offenen, nicht-leeren, einfach zusammenhängenden echte Teilmengen von $\mathbb C$ konform äquivalent.

Wir wiederholen an dieser Stelle nicht die Sätze von Arzelà–Ascoli und Montel, allerdings ist gerade Ersterer natürlich extrem wichtig, auch über die Funktionentheorie hinaus.