Class 1 Document no.: 0004-6207 V05 2010-11-19

General Specification V90–1.8/2.0 MW 50 Hz VCS

General Specification Table of Contents

Date: 2010-11-19 Class: 1 Page 2 of 79

Table of Contents

General Description	
Rotor	
Blades	
Blade Bearing	
Pitch System	
Hub	
Main Shaft	
Bearing Housing	
Main Bearings	
Gearbox	
Generator Bearings	
High-Speed Shaft Coupling	
Yaw System	
Crane	
Tower Structure	
Nacelle Bedplate and Cover	
Cooling	10
Water Cooling System	
Gearbox Cooling	
Hydraulic Cooling	12
VCS Converter Cooling	12
Generator Cooling	13
HV Transformer Cooling	
Nacelle Conditioning	
Electrical Design	
Generator	
HV Cables	
Transformer	
Converter	
AUX System	
Wind Sensors	
Turbine Controller	
Uninterruptible Power Supply (UPS)	
Turbine Protection Systems	
Braking Concept	
Short Circuit Protections	
Overspeed Protection	
EMC System	
Lightning Protection System	
Earthing (Also Known as Grounding)	
Corrosion Protection	
Safety	
Access	
Escape	
Rooms/Working Areas	
Platforms, Standing and Working Places	
Climbing Facilities	
Moving Parts, Guards and Blocking Devices	
Lighting	
Noise	
Emergency Stop	22

PUBLIC

Document no.: 0004-6207 V05 Issued by: Technology R&D Type: T05 - General Description

General Specification Table of Contents

Date: 2010-11-19 Class: 1 Page 3 of 79

5.10	Power Disconnection	23
5.11	Fire Protection/First Aid	23
5.12	Warning Signs	23
5.13	Manuals and Warnings	
6	Environment	23
6.1	Chemicals	23
7	Approvals, Certificates and Design Codes	24
7.1	Type Approvals	24
7.2	Design Codes – Structural Design	24
7.3	Design Codes – Mechanical Equipment	25
7.4	Design Codes – Electrical Equipment	25
7.5	Design Codes – I/O Network System	
7.6	Design Codes – EMC System	
7.7	Design Codes – Lightning Protection	27
7.8	Design Codes – Earthing	27
8	Colour and Surface Treatment	27
8.1	Nacelle Colour and Surface Treatment	27
8.2	Tower Colour and Surface Treatment	28
8.3	Blades Colour	_
9	Operational Envelope and Performance Guidelines	
9.1	Climate and Site Conditions	
9.1.1	Complex Terrain	
9.1.2	Altitude	
9.1.3	Wind Farm Layout	
9.2	Operational Envelope – Temperature and Wind	
9.3	Operational Envelope – Grid Connection*	
9.4	Operational Envelope – Reactive Power Capability	
9.5	Performance – Fault Ride Through	
9.6	Performance – Reactive Current Contribution	
9.6.1	Symmetrical Reactive Current Contribution	33
9.6.2	Asymmetrical Reactive Current Contribution	
9.7	Performance – Multiple Voltage Dips	
9.8	Performance – Active and Reactive Power Control	
9.9	Performance – Voltage Control	
9.10	Performance – Frequency Control	
9.11	Performance – Own Consumption	
9.12	Operational Envelope Conditions for Power Curve, Ct Values (at Hub Height)	
10	Drawings	37
10.1	Structural Design – Illustration of Outer Dimensions	
10.2	Structural Design – Side View Drawing	
11	General Reservations, Notes and Disclaimers	
12	Appendices	40
12.1	Performance – V90-1.8 MW	
12.1.1	V90-1.8 MW Power Curves	
12.1.2	V90-1.8 MW C _t Values	
12.1.3	V90-1.8 MW Sound Power Level at Hub Height	
12.2 12.2.1	Performance – V90-2.0 MW	
12.2.1	V90-2.0 MW Power Curves	
12.2.2	V90-2.0 MW C _t Values V90-2.0 MW Sound Power Level at Hub Height	
14.4.0	V 3U-Z.U IVIVY QUUIU FUWEI LEVEI ALI IUD I IEIUIIL	/ U

PUBLIC

Document no.: 0004-6207 V05 Issued by: Technology R&D Type: T05 - General Description

General Specification Table of Contents Date: 2010-11-19 Class: 1 Page 4 of 79

Buyer acknowledges that these general specifications are for Buyer's informational purposes only and do not create or constitute a warranty, guarantee, promise, commitment, or other representation by supplier, all of which are disclaimed by supplier except to the extent expressly provided by supplier in writing elsewhere.

See section 11 General Reservations, Notes and Disclaimers, p. 39 for general reservations, notes, and disclaimers applicable to these general specifications.

Date: 2010-11-19 Class: 1 Page 5 of 79

General Description

The Vestas V90-1.8/2.0 MW wind turbine is a pitch regulated upwind turbine with active yaw and a three-blade rotor. The Vestas V90-1.8/2.0 MW turbine has a rotor diameter of 90 m with a generator rated at 1.8 MW or 2.0 MW, depending on wind conditions. The turbine utilises a microprocessor pitch control system called OptiTip[®] and the OptiSpeed[™] (variable speed) feature. With these features, the wind turbine is able to operate the rotor at variable speed (rpm), helping to maintain the output at or near rated power.

2 **Mechanical Design**

2.1 Rotor

The V90-1.8/2.0 MW is equipped with a 90-metre rotor consisting of three blades and the hub. Based on the prevailing wind conditions, the blades are continuously positioned to help optimise the pitch angle.

Rotor	
Diameter	90 m
Swept Area	6362 m ²
Rotational Speed Static, Rotor	14.9 rpm
Speed, Dynamic Operation Range	9.6-17.0 rpm
Rotational Direction	Clockwise (front view)
Orientation	Upwind
Tilt	6°
Hub Coning	2°
Number of Blades	3
Aerodynamic Brakes	Full feathering

Table 2-1: Rotor data.

2.2 **Blades**

The 44 m Prepreg (PP) blades are made of carbon and fibre glass. They consist of two airfoil shells bonded to a supporting beam.

PP Blades	
Type Description	Airfoil shells bonded to supporting beam
Blade Length	44 m
Material	Fibre glass reinforced epoxy and carbon fibres
Blade Connection	Steel roots inserts
Air Foils	RISØ P + FFA – W3

PP Blades	
Maximum Chord	3.512 m
Blade Tip (R44.5)	0.391 m
Twist (blade root / blade tip)	27°
Approximate Weight	6750 kg

Table 2-2: PP blades data.

2.3 Blade Bearing

The blade bearings are double-row four-point contact ball bearings.

Blade Bearing	
Туре	Double-row four-point contact ball bearing
Lubrication	Grease lubrication, manually re-greased

Table 2-3: Blade bearing data.

2.4 Pitch System

The energy input from the wind to the turbine is adjusted by pitching the blades according to the control strategy. The pitch system also works as the primary brake system by pitching the blades out of the wind. This causes the rotor to idle.

Double-row four-point contact ball bearings are used to connect the blades to the hub. The pitch system relies on hydraulics and uses a cylinder to pitch each blade. Hydraulic power is supplied to the cylinder from the hydraulic power unit in the nacelle through the main gearbox and the main shaft via a rotating transfer.

Hydraulic accumulators inside the rotor hub ensure sufficient power to pitch the turbine in case of failure.

Pitch System	
Туре	Hydraulic
Cylinder	Ø 125/80-760
Number	1 piece/blade
Range	-5° to 90°

Table 2-4: Pitch system data.

Hydraulic System	
Pump Capacity	44 l/min.
Working Pressure	180-200 bar
Oil Quantity	260 I
Motor	18.5 kW

Table 2-5: Hydraulic system data.

Date: 2010-11-19

Class: 1

Page 6 of 79

Date: 2010-11-19 Class: 1 Page 7 of 79

2.5 Hub

The hub supports the three blades and transfers the reaction forces to the main bearing. The hub structure also supports blade bearings and pitch cylinder.

Hub	
Туре	Cast ball shell hub
Material	Cast iron EN GJS 400-18U-LT / EN 1560

Table 2-6: Hub data.

2.6 Main Shaft

Main Shaft	
Туре	Forged, trumpet shaft
Material	42 CrMo4 QT / EN 10083

Table 2-7: Main shaft data.

2.7 Bearing Housing

Bearing Housing	
Туре	Cast foot housing with lowered centre
Material	Cast iron EN-GJS-400-18U-LT / EN 1560

Table 2-8: Bearing housing data.

2.8 Main Bearings

Main Bearings	
Туре	Spherical roller bearings
Lubrication	Grease lubrication, manually re-greased

Table 2-9: Main bearings data.

2.9 Gearbox

The main gearbox transmits rotational torque from the rotor to the generator.

The main gearbox consists of a planetary stage combined with a two-stage parallel gearbox, torque arms and vibration dampers.

Torque is transmitted from the high-speed shaft to the generator via a flexible composite coupling, located behind the disc brake. The disc brake is mounted directly on the high-speed shaft.

Document no.: 0004-6207 V05 Issued by: Technology R&D Type: T05 - General Description

General Specification Mechanical Design

Date: 2010-11-19 Class: 1 Page 8 of 79

Gearbox	
Туре	1 planetary stage + 2 helical stages
Ratio	1:112.8 nominal
Cooling	Oil pump with oil cooler
Oil Heater	2 kW
Maximum Gear Oil Temp	80°C
Oil Cleanliness	-/15/12 ISO 4406

Table 2-10: Gearbox data.

2.10 Generator Bearings

The bearings are greased and grease is supplied continuously from an automatic lubrication unit when the nacelle temperature is above -10°C. The yearly grease flow is approximately 2400 cm³.

2.11 **High-Speed Shaft Coupling**

The flexible coupling transmits the torque from the gearbox high-speed output shaft to the generator input shaft. The flexible coupling is designed to compensate misalignments between gearbox and generator. The coupling consists of two composite discs and an intermediate tube with two aluminium flanges and a fibre glass tube. The coupling is fitted to three-armed hubs on the brake disc and the generator hub.

High-Speed Shaft Coupling	
Type Description	VK 420

Table 2-11: High-speed shaft coupling data.

2.12 Yaw System

The yaw system is designed to keep the turbine upwind. The nacelle is mounted on the yaw plate, which is bolted to the turbine tower. The yaw bearing system is a plain bearing system with built-in friction. Asynchronous yaw motors with brakes enable the nacelle to rotate on top of the tower.

The turbine controller receives information about the wind direction from the wind sensor. Automatic yawing is deactivated when the mean wind speed is below 3 m/s.

Yaw System	
Туре	Plain bearing system with built-in friction
Material	Forged yaw ring heat-treated Plain bearings PETP
Yawing Speed	< 0.5°/second

Table 2-12: Yaw system data.

Date: 2010-11-19 Class: 1 Page 9 of 79

Yaw Gear	
Туре	Non-locking combined worm gear and planetary gearbox
	Electrical motor brake
Motor	1.5 kW, 6 pole, asynchronous
Number of Yaw Gears	6
Ratio Total (Four Planetary Stages)	1,120 : 1
Rotational Speed at Full Load	Approximately 1 rpm at output shaft

Table 2-13: Yaw gear data.

2.13 Crane

The nacelle houses the service crane. The crane is a single system chain hoist.

Crane	
Lifting Capacity	Maximum 800 kg

Table 2-14: Crane data.

2.14 **Tower Structure**

Tubular towers with flange connections, certified according to relevant type approvals, are available in different standard heights. Magnets provide load support in a horizontal direction and internals, such as platforms, ladders, etc., are supported vertically (i.e. in the gravitational direction) by mechanical connections.

The hub heights listed include a distance from the foundation section to the ground level of approximately 0.6 m depending on the thickness of the bottom flange and a distance from the tower top flange to the centre of the hub of 1.70 m.

Tower Structure	
Type Description	Conical tubular
Hub Heights	80 m/95 m/105 m/125 m
Material	S355 according to EN 10024 A709 according to ASTM
Weight	80 m IEC IIA, 125 metric tonnes* 95 m IEC IIA/DIBt II, 205 metric tonnes* 105 m IEC IIA/DIBt II, 235 metric tonnes* 125 m DIBt II, 335 metric tonnes*

Table 2-15: Tower structure data.

Date: 2010-11-19 Class: 1 Page 10 of 79

NOTE

* Typical values. Dependent on wind class, and can vary with site/project conditions.

2.15 Nacelle Bedplate and Cover

The nacelle cover is made of fibre glass. Hatches are positioned in the floor for lowering or hoisting equipment to the nacelle and evacuation of personnel.

The roof is equipped with wind sensors and skylights that can be opened from inside the nacelle to access the roof and from outside to access the nacelle. The nacelle cover is mounted on the girder structure. Access from the tower to the nacelle is through the yaw system.

The nacelle bedplate is in two parts and consists of a cast-iron front part and a girder structure rear part. The front of the nacelle bedplate is the foundation for the drive train and transmits forces from the rotor to the tower through the yaw system. The bottom surface is machined and connected to the yaw bearing and the yaw gears are bolted to the front nacelle bedplate.

The nacelle bedplate carries the crane girders through vertical beams positioned along the site of the nacelle. Lower beams of the girder structure are connected at the rear end.

The rear part of the bedplate serves as foundation for controller panels, the generator and transformer.

Type Description	Material
Nacelle Cover	GRP
Bedplate Front	Cast iron EN-GJS-400-18U-LT / EN 1560
Bedplate Rear	Welded grid structure

Table 2-16: Nacelle bedplate and cover data.

2.16 Cooling

The cooling of the main components (gearbox, hydraulic power pack and VCS converter) in the turbine is done by a water cooling system. The generator is air cooled by nacelle air and the high-voltage (HV) transformer is cooled by mainly ambient air.

Component	Cooling Type	Internal Heating at Low Temperature
Nacelle	Forced air	Yes
Hub/spinner	Natural air	No (Yes for low-temperature (LT) turbine)
Gearbox	Water/oil	Yes
Generator	Forced air/air	No (heat source)
Slip rings	Forced air/air	Yes

Date: 2010-11-19 Class: 1 Page 11 of 79

Component	Cooling Type	Internal Heating at Low Temperature
Transformer	Forced air	No (heat source)
vcs	Forced water/air	Yes
VMP section	Forced air/air	Yes
Hydraulics	Water/oil	Yes

Table 2-17: Cooling, summary.

All other heat generating systems are also equipped with fans and/or coolers but are considered as minor contributors to nacelle thermodynamics.

2.17 Water Cooling System

The water cooling system is designed as a semi-closed system (closed system but not under pressure) with a free wind water cooler on the roof of the nacelle. This means that the heat loss from the systems (components) is transferred to the water system and the water system is cooled by ambient air.

The water cooling system has three parallel cooling circuits that cool the gearbox, the hydraulic power unit and the VCS converter.

The water cooling system is equipped with a three-way thermostatic valve. The valve is closed (total water flow bypassing the water cooler) if the temperature of the cooling water is below 35°C and fully open (total water flow led to the water cooler) if the temperature is above 43°C.

2.18 Gearbox Cooling

The gearbox cooling system consists of two oil circuits that remove the gearbox losses through two plate heat exchangers (oil coolers). The first circuit is equipped with a mechanically driven oil pump and a plate heat exchanger. The second circuit is equipped with an electrically driven oil pump and a plate heat exchanger. The water circuit of the two plate heat exchangers is coupled in serial.

Gearbox Cooling		
Gear Oil Plate Heat Exchanger 1 (Mechanically driven oil pump)		
Nominal Oil Flow	50 l/min.	
Oil Inlet Temperature	80°C	
Number of Passes	2	
Cooling Capacity	24.5 kW	
Gear Oil Plate Heat Exchanger 2 (Electrically driven oil pump)		
Nominal Oil Flow	85 l/min.	
Oil Inlet Temperature	80°C	
Number of Passes	2	

Date: 2010-11-19 Class: 1 Page 12 of 79

Gearbox Cooling		
Cooling Capacity	41.5 kW	
Water Circuit		
Nominal Water Flow	Approximately 150 l/min. (50% glycol)	
Water Inlet Temperature	Maximum 54°C	
Number of Passes	1	
Heat Load	66 kW	

Table 2-18: Cooling, gearbox data.

2.19 Hydraulic Cooling

The hydraulic cooling system consists of a plate heat exchanger that is mounted on the power pack. In the plate heat exchanger, the heat from the hydraulics is transferred to the water cooling system.

Hydraulic Cooling		
Hydraulic Oil Plate Heat Exchanger		
Nominal Oil Flow	40 l/min.	
Oil Inlet Temperature	66°C	
Cooling Capacity	10.28 kW	
Water Circuit		
Nominal Water Flow	Approximately 45 l/min. (50% glycol)	
Water Inlet Temperature	Maximum 54°C	
Heat Load	10.28 kW	

Table 2-19: Cooling, hydraulic data.

2.20 VCS Converter Cooling

The converter cooling system consists of a number of switch modules that are mounted on cooling plates where the cooling water is led through.

Converter Cooling	
Nominal Water Flow	Approximately 45 l/min. (50% glycol)
Water Inlet Pressure	Maximum 2.0 bar
Water Inlet Temperature	Maximum. 54°C
Cooling Capacity	10 kW

Table 2-20: Cooling, converter data.

Date: 2010-11-19 Class: 1 Page 13 of 79

2.21 **Generator Cooling**

The generator cooling systems consists of an air-to-air cooler mounted on the top of the generator, two internal fans and one external fan. All the fans can run at low or high speed.

Generator Cooling	
Air Inlet Temperature: External	50°C
Nominal Air Flow: Internal	8000 m³/h
Nominal Air Flow: External	7500 m³/h
Cooling Capacity	60 kW

Table 2-21: Cooling, generator data.

2.22 **HV Transformer Cooling**

The transformer is equipped with forced air cooling. The cooling system consists of a central fan that is located under the service floor, an air distribution manifold, and six hoses leading to locations beneath and between the HV and LV windings.

Transformer Cooling	
Nominal Air Flow	1920 m ³ /h
Air Inlet Temperature	Maximum 40°C

Table 2-22: Cooling, transformer data.

2.23 **Nacelle Conditioning**

The nacelle conditioning system consists of one fan and two air heaters. There are two main circuits of the nacelle conditioning system:

- 1. Cooling of the HV transformer.
- 2. Heating and ventilation of the nacelle.

For both systems, the airflow enters the nacelle through louver dampers in the weather shield underneath the nacelle.

The cooling of the HV transformer is described in section 2.22 HV Transformer Cooling, p. 13.

The heating and ventilation of the nacelle is done by means of two air heaters and one fan. To avoid condensation in the nacelle, the two air heaters keep the nacelle temperature +5°C above the ambient temperature. At start-up in cold conditions, the heaters will also heat the air around the gearbox.

The ventilation of the nacelle is done by means of one fan that removes hot air from the nacelle generated by mechanical and electrical equipment.

Date: 2010-11-19 Class: 1 Page 14 of 79

Nacelle Cooling	
Nominal Air Flow 1.2 m ³ /s	
Air Inlet Temperature	Maximum 50°C

Table 2-23: Cooling, nacelle data.

Nacelle Heating	
Rated Power	2 x 6 kW

Table 2-24: Heating, nacelle data.

3 Electrical Design

3.1 Generator

The generator is a three-phase asynchronous generator with wound rotor that is connected to the Vestas Converter System (VCS) via a slip ring system. The generator is an air-to-air cooled generator with an internal and external cooling circuit. The external circuit uses air from the nacelle and expels it as exhaust out the rear end of the nacelle.

The generator has four poles. The generator is wound with form windings in both rotor and stator. The stator is connected in Star at low power and Delta at high power. The rotor is connected in Star and is insulated from the shaft.

Generator V90-1.8 MW	
Type Description	Asynchronous with wound rotor, slip rings and VCS
Rated Power (PN)	1.8 MW
Rated Apparent Power	2.0 MVA (Cosφ = 0.9)
Frequency	50 Hz
Voltage, Generator	690 Vac
Voltage, Converter	480 Vac
Number of Poles	4
Winding Type (Stator/Rotor)	Random/Form
Winding Connection, Stator	Star/Delta
Rated Efficiency (Generator only)	> 97%
Power Factor (cos)	0.90 ind-0.95 cap
Overspeed Limit According to IEC (2 Minute)	2900 rpm
Vibration Level	≤ 1.8 mm/s
Weight	Approximately 7500 kg

Date: 2010-11-19 Class: 1 Page 15 of 79

Generator V90-1.8 MW	
Generator Bearing - Temperature	2 PT100 sensors
Generator Stator Windings - Temperature	3 PT100 sensors placed at hot spots and 3 as backup

Table 3-1: Generator data for V90-1.8 MW.

Generator V90-2.0 MW	
Type Description	Asynchronous with wound rotor, slip rings and VCS
Rated Power (PN)	2.0 MW
Rated Apparent Power	2.08 MVA (Cosφ = 0.96)
Frequency	50 Hz
Voltage, Generator	690 Vac
Voltage, Converter	480 Vac
Number of Poles	4
Winding Type (Stator/Rotor)	Random/Form
Winding Connection, Stator	Star/Delta
Rated Efficiency (Generator only)	> 97%
Power Factor (cos)	0.96 ind-0.98 cap
Overspeed Limit According to IEC (2 Minute)	2900 rpm
Vibration Level	≤ 1.8 mm/s
Weight	Approximately 7500 kg
Generator Bearing - Temperature	2 PT100 sensors
Generator Stator Windings - Temperature	3 PT100 sensors placed at hot spots and 3 as backup

Table 3-2: Generator data for V90-2.0 MW.

3.2 HV Cables

The high-voltage cable runs from the transformer in the nacelle down the tower to the switchgear located in the bottom of the tower (switchgear is not included). The high-voltage cable is a four-core, rubber-insulated, halogen-free, high-voltage cable.

Date: 2010-11-19 Class: 1 Page 16 of 79

HV Cables	
High-Voltage Cable Insulation Compound	Improved ethylene-propylene (EP) based material-EPR or high modulus or hard grade ethylene-propylene rubber-HEPR
Conductor Cross Section	3 x 70/70 mm ²
Rated Voltage	12/20 kV (24 kV) or 20/35 kV (42 kV) depending on the transformer voltage

Table 3-3: HV cables data.

3.3 Transformer

The transformer is located in a separate locked room in the nacelle with surge arresters mounted on the high-voltage side of the transformer. The transformer is a two-winding, three-phase, dry-type transformer. The windings are Deltaconnected on the high-voltage side unless otherwise specified.

The low-voltage windings have a voltage of 690 V and a tapping at 480 V and are Star-connected. The 690 V and 480 V systems in the nacelle are TN-systems, which means the star point is connected to earth.

Transformer	
Type Description	Dry-type cast resin
Primary Voltage	6.0-35.0 kV
Rated Power	2100 kVA
Secondary Voltage 1	690 V
Rated Power 1 at 690 V	1900 kVA
Secondary Voltage 2	480 V
Rated Power 2 at 480 V	200 kVA
Vector Group	Dyn5 (option YNyn0)
Frequency	50 Hz
HV-Tappings	± 2 x 2.5 % off-circuit
Insulation Class	F
Climate Class	C2
Environmental Class	E2
Fire Behaviour Class	F1

Table 3-4: Transformer data.

3.4 Converter

The converter controls the energy conversion in the generator. The VCS converter feeds power from the grid into the generator rotor at sub-sync speed and feeds power from the generator rotor to the grid at super-sync speed.

Document no.: 0004-6207 V05 Issued by: Technology R&D Type: T05 - General Description

General Specification Electrical Design

Date: 2010-11-19 Class: 1 Page 17 of 79

Converter V90-1.8 MW	
Rated Slip	12%
Rated rpm	1680 rpm
Rated Rotor Power (@ rated slip)	193 kW
Rated Grid Current	232 A
(@ rated slip, PF = 1 and 480 V)	
Rated Rotor Current	573 A
(@ rated slip and PF = 1)	

Table 3-5: Converter data V90-1.8 MW.

Converter V90-2.0 MW	
Rated Slip	12%
Rated rpm	1680 rpm
Rated Rotor Power (@ rated slip)	214 kW
Rated Grid Current	258 A
(@ rated slip, PF = 1 and 480 V)	
Rated Rotor Current	636 A
(@ rated slip and PF = 1)	

Table 3-6: Converter data V90-2.0 MW.

3.5 AUX System

The AUX System is supplied from the 690/480 V socket from the HV transformer. All motors, pumps, fans and heaters are supplied from this system.

All 230 V power sockets are supplied from a 690/230 V transformer.

Power Sockets	
Single Phase	230 V (13 A)
Three Phase	690 V (16 A)

Table 3-7: AUX system data.

3.6 Wind Sensors

The turbine is equipped with two ultrasonic wind sensors with built-in heaters.

Wind Sensors	
Туре	FT702LT
Principle	Acoustic resonance
Built-In Heat	99 W

Table 3-8: Wind sensor data.

Date: 2010-11-19 Class: 1 Page 18 of 79

3.7 Turbine Controller

The turbine is controlled and monitored by the System 3500 controller hardware and Vestas controller software.

The turbine controller is based on four main processors (ground, nacelle, hub and converter) which are interconnected by an optically based 2.5 Mbit ArcNet network.

I/O modules are connected either as rack modules in the System 3500 rack or by CAN.

The turbine control system serves the following main functions:

- Monitoring and supervision of overall operation.
- Synchronizing of the generator to the grid during connection sequence in order to limit the inrush current.
- Operating the wind turbine during various fault situations.
- Automatic yawing of the nacelle.
- OptiTip[®] blade pitch control.
- Noise emission control.
- Monitoring of ambient conditions.
- Monitoring of the grid.

The turbine controller hardware is built from the following main modules:

Module	Function	Network
CT3603	Main processor. Control and monitoring (nacelle and hub).	ArcNet, CAN, Ethernet, serial
СТ396	Main processor. Control, monitoring, external communication (ground).	ArcNet, CAN, Ethernet, serial
CT360	Main processor. Converter control and monitoring.	ArcNet, CAN, Ethernet
CT3218	Counter/encoder module. rpm, azimuth and wind measurement.	Rack module
CT3133	24 VDC digital input module. 16 channels.	Rack module
CT3153	24 VDC digital output module. 16 channels.	Rack module
CT3320	4 channel analogue input (0-10 V, 4-20 mA, PT100).	Rack module
CT6061	CAN I/O controller.	CAN node
CT6221	Three-channel PT100 module.	CAN I/O module
CT6050	Blade controller.	CAN node
Balluff	Position transducer.	CAN node
Rexroth	Proportional valve.	CAN node

Table 3-9: Turbine controller hardware.

General Specification **Turbine Protection Systems**

Date: 2010-11-19 Class: 1 Page 19 of 79

3.8 **Uninterruptible Power Supply (UPS)**

The UPS supplies power to critical wind turbine components.

The actual backup time for the UPS system is proportional to the power consumption. Actual backup time may vary.

UPS		
Battery Type	Valve-Regulated Lead Acid	d (VRLA)
Rated Battery Voltage	2 x 8 x 12 V (192 V)	
Converter Type	Double conversion online	
Rated Output Voltage	230 Vac	
Converter Input	230 V ±20%	
Backup Time*	Controller system	30 seconds
	Safety systems	35 minutes
Re-charging Time	Typical	Approximately 2.5 hours

Table 3-10: UPS data.

NOTE

4 **Turbine Protection Systems**

4.1 **Braking Concept**

The main brake on the turbine is aerodynamic. Braking the turbine is done by feathering the three blades. During emergency stop, all three blades will feather simultaneously to full end stop, thereby slowing the rotor speed.

In addition, there is a mechanical disc brake on the high-speed shaft of the gearbox. The mechanical brake is only used as a parking brake and when activating the emergency stop push buttons.

4.2 **Short Circuit Protections**

Breakers	Generator / Q8 ABB E2B 2000 690 V	Controller / Q15 ABB S3X 690 V	VCS-VCUS / Q7 ABB S5H 400 480 V
Breaking Capacity I _{cu} , I _{cs}	42, 42 kA	75, 75 kA	40, 40 kA
Making Capacity I _{cm (415 V Data)}	88 kA	440 kA	143 kA
Thermo Release I _{th}	2000 A	100 A	400 A

Table 4-1: Short circuit protection data.

^{*} For alternative backup times, consult Vestas.

Date: 2010-11-19 Class: 1 Page 20 of 79

4.3 Overspeed Protection

The generator rpm and the main shaft rpm are registered by inductive sensors and calculated by the wind turbine controller in order to protect against overspeed and rotating errors.

The turbine is also equipped with a VOG (Vestas Overspeed Guard), which is an independent computer module that measures the rotor rpm. In case of an overspeed situation, the VOG activates the emergency feathered position (full feathering) of the three blades.

Overspeed Protection	
VOG Sensors Type	Inductive
Trip Levels	17.8 (Rotor rpm) / 2013 (Generator rpm)

Table 4-2: Overspeed protection data.

4.4 EMC System

 The turbine and related equipment must fulfil the EU Electromagnetic Compatibility (EMC)-Directive with later amendments, including Council Directive 2004/108/EC of December 2004 on the approximation of the laws of the Member States relating to Electromagnetic Compatibility.

4.5 Lightning Protection System

The Lightning Protection System (LPS) consists of three main parts.

- Lightning receptors.
- Down conducting system.
- Earthing system.

Lightning Protection Design Parameters			Protection Level I
Current Peak Value	i _{max}	[kA]	200
Total Charge	Q _{total}	[C]	300
Specific Energy	W/R	$[MJ/\Omega]$	10
Average Steepness	di/dt	[kA/µs]	200

Table 4-3: Lightning design parameters.

NOTE

The Lightning Protection System is designed according to IEC standards (see section 7.7 Design Codes – Lightning Protection, p. 27).

4.6 Earthing (Also Known as Grounding)

The Vestas Earthing System is based on foundation earthing.

Vestas document no. 0000-3388 contains the list of documents pertaining to the Vestas Earthing System.

General Specification Safety

Date: 2010-11-19 Class: 1 Page 21 of 79

Requirements in the Vestas Earthing System specifications and work descriptions are minimum requirements from Vestas and IEC. Local and national requirements, as well as project requirements, may require additional measures.

4.7 **Corrosion Protection**

Classification of corrosion categories for atmospheric corrosion is according to ISO 9223:1992.

Corrosion Protection	External Areas	Internal Areas
Nacelle	C5	C3 and C4 Climate strategy: Heating the air inside the nacelle compared to the outside air temperature lowers the relative humidity and helps ensure a controlled corrosion level.
Hub	C5	C3
Tower	C5-I	C3

Table 4-4: Corrosion protection data for nacelle, hub and tower.

5 Safety

The safety specifications in this safety section provide limited general information about the safety features of the turbine and are not a substitute for Buyer and its agents taking all appropriate safety precautions, including but not limited to (a) complying with all applicable safety, operation, maintenance, and service agreements, instructions, and requirements, (b) complying with all safety-related laws, regulations, and ordinances, (c) conducting all appropriate safety training and education, and (d) reading and understanding all safety-related manuals and instructions. See section 5.13 Manuals and Warnings, p. 23 for additional guidance.

5.1 Access

Access to the turbine from the outside is through the bottom of the tower. The door is equipped with a lock. Access to the top platform in the tower is by a ladder or service lift. Access to the nacelle from the top platform is by ladder. Access to the transformer room in the nacelle is controlled with a lock. Unauthorised access to electrical switch boards and power panels in the turbine is prohibited according to IEC 60204-1 2006.

5.2 **Escape**

In addition to the normal access routes, alternative escape routes from the nacelle are through the crane hatch.

The hatch in the roof can be opened from both the inside and outside.

Escape from the service lift is by ladder.

Document no.: 0004-6207 V05 Issued by: Technology R&D Type: T05 - General Description

General Specification Safety

Date: 2010-11-19 Class: 1 Page 22 of 79

5.3 Rooms/Working Areas

The tower and nacelle are equipped with connection points for electrical tools for service and maintenance of the turbine.

5.4 Platforms, Standing and Working Places

The bottom tower section has three platforms. There is one platform at the entrance level (door level), one safety platform approximately three metres above the entrance platform and finally a platform in the top of the tower section.

Each middle tower section has one platform in the top of the tower section.

The top tower section has two platforms, a top platform and a service lift platform, where the service lift stops, below the top platform.

There are places to stand at various locations along the ladder.

The platforms have anti-slip surfaces.

Foot supports are placed in the turbine for maintenance and service purposes.

5.5 Climbing Facilities

A ladder with a fall arrest system (rigid rail or wire system) is mounted through the tower.

Rest platforms are provided at intervals of 9 metres along the tower ladder between platforms.

There are anchorage points in the tower, nacelle, hub and on the roof for attaching a full body harness (fall arrest equipment).

Over the crane hatch there is an anchorage point for the emergency descent equipment. The anchorage point is tested to 22.2 kN.

Anchorage points are coloured yellow and are calculated and tested to 22.2 kN.

5.6 Moving Parts, Guards and Blocking Devices

Moving parts in the nacelle are shielded.

The turbine is equipped with a rotor lock to block the rotor and drive train.

It is possible to block the pitch of the cylinder with mechanical tools in the hub.

5.7 Lighting

The turbine is equipped with lighting in the tower, nacelle and in the hub.

There is emergency lighting in case of loss of electrical power.

5.8 Noise

When the turbine is out of operation for maintenance, the sound level in the nacelle is below 80 dB(A). Ear protection is required during operation mode.

5.9 Emergency Stop

There are emergency stops in the nacelle and in the bottom of the tower.

General Specification Environment

Date: 2010-11-19 Class: 1 Page 23 of 79

5.10 Power Disconnection

The turbine is designed to allow for disconnection from all its power sources during inspection or maintenance. The switches are marked with signs and are located in the nacelle and in the bottom of the tower.

5.11 Fire Protection/First Aid

A 5 kg CO_2 fire extinguisher must be located in the nacelle at the left yaw gear. The location of the fire extinguisher, and how to use it, must be confirmed before operating the turbine.

A first aid kit must be placed by the wall at the back end of the nacelle. The location of the first aid kit, and how to use it, must be confirmed before operating the turbine.

Above the generator there must be a fire blanket which can be used to put out small fires.

5.12 Warning Signs

Warning signs inside or on the turbine must be reviewed before operating or servicing of the turbine.

5.13 Manuals and Warnings

The Vestas Corporate OH&S Manual and manuals for operation, maintenance and service of the turbine provide additional safety rules and information for operating, servicing or maintaining the turbine.

6 Environment

6.1 Chemicals

Chemicals used in the turbine are evaluated according to Vestas Wind Systems A/S Environmental System certified according to ISO 14001:2004.

- Anti-freeze liquid to help prevent the cooling system from freezing.
- Gear oil for lubricating the gearbox.
- Hydraulic oil to pitch the blades and operate the brake.
- Grease to lubricate bearings.
- Various cleaning agents and chemicals for maintenance of the turbine.

Date: 2010-11-19 Class: 1 Page 24 of 79

7 Approvals, Certificates and Design Codes

7.1 Type Approvals

The turbine is type certified according to the certification standards listed below:

V90-1.8 MW

Certification	Wind Class	Hub Height
IEC WT-01	IEC IIA	80 m
		95 m
		105 m

Table 7-1: Type approval data for V90-1.8 MW.

V90-2.0 MW

Certification	Wind Class	Hub Height
IEC WT-01	IEC IIIA	80 m
		95 m
		105 m
Typenprüfung	DIBt II	95 m
		105 m
		125 m

Table 7-2: Type approval data for V90-2.0 MW.

7.2 Design Codes – Structural Design

The structural design has been developed and tested with regard to, but not limited to, the following main standards.

Design Codes – Structural Design	
Nacelle and Hub	IEC 61400-1:1999
	EN 50308
	ANSI/ASSE Z359.1-2007
Bed Frame	IEC 61400-1:2005
Tower	IEC 61400-1:2005
	Eurocode 3
	DIBt: Richtlinie für Windenergieanlagen,
	Einwirkungen und Standsicherheitsnachweise für
	Turm und Gründung, 4th edition.

Table 7-3: Structural design codes.

Date: 2010-11-19 Class: 1 Page 25 of 79

7.3 Design Codes – Mechanical Equipment

The mechanical equipment has been developed and tested with regard to, but not limited to, the following main standards:

Design Codes – Mechanical Equipment		
Gear	Designed in accordance to rules in ISO 81400-4	
Blades	DNV-OS-J102 IEC 1024-1 IEC 60721-2-4 IEC 61400 (Part 1, 12 and 23)	
Diades	IEC WT 01 IEC DEFU R25 ISO 2813 DS/EN ISO 12944-2	

Table 7-4: Mechanical equipment design codes.

7.4 Design Codes – Electrical Equipment

The electrical equipment has been developed and tested with regard to, but not limited to, the following main standards:

Design Codes – Electrical Equipment		
High-Voltage AC Circuit Breakers	IEC 60056	
High-Voltage Testing Techniques	IEC 60060	
Power Capacitors	IEC 60831	
Insulating Bushings for AC Voltage above 1 kV	IEC 60137	
Insulation Coordination	BS EN 60071	
AC Disconnectors and Earth Switches	BS EN 60129	
Current Transformers	IEC 60185	
Voltage Transformers	IEC 60186	
High-Voltage Switches	IEC 60265	
Disconnectors and Fuses	IEC 60269	
Flame Retardant Standard for MV Cables	IEC 60332	
Transformer	IEC 60076-11	
Generator	IEC 60034	
Specification for Sulphur Hexafluoride for Electrical Equipment	IEC 60376	
Rotating Electrical Machines	IEC 34	

General Specification Approvals, Certificates and Design Codes

Date: 2010-11-19 Class: 1 Page 26 of 79

Design Codes – Electrical Equipment		
Dimensions and Output Ratings for Rotating Electrical Machines	IEC 72 and IEC 72A	
Classification of Insulation, Materials for Electrical Machinery	IEC 85	
Safety of Machinery – Electrical Equipment of Machines	IEC 60204-1	

Table 7-5: Electrical equipment design codes.

7.5 Design Codes – I/O Network System

The distributed I/O network system has been developed and tested with regard to, but not limited to, the following main standards:

Design Codes – I/O Network System		
Salt Mist Test	IEC 60068-2-52	
Damp Head, Cyclic	IEC 60068-2-30	
Vibration Sinus	IEC 60068-2-6	
Cold	IEC 60068-2-1	
Enclosure	IEC 60529	
Damp Head, Steady State	IEC 60068-2-56	
Vibration Random	IEC 60068-2-64	
Dry Heat	IEC 60068-2-2	
Temperature Shock	IEC 60068-2-14	
Free Fall	IEC 60068-2-32	

Table 7-6: I/O Network system design codes.

7.6 Design Codes – EMC System

To fulfil EMC requirements the design must be as recommended for lightning protection. See section 7.7 Design Codes – Lightning Protection, p. 27.

Design Codes – EMC System		
Designed According to IEC 61400-1: 2005		
Further Robustness Requirements According to	TPS 901795	

Table 7-7: EMC system design codes.

General Specification Colour and Surface Treatment

Date: 2010-11-19 Class: 1 Page 27 of 79

7.7 Design Codes – Lightning Protection

The LPS is designed according to Lightning Protection Level (LPL) I:

Design Codes – Lightning Protection		
	IEC 62305-1: 2006	
Designed According to	IEC 62305-3: 2006	
	IEC 62305-4: 2006	
Non-Harmonized Standard and Technically Normative Documents	IEC/TR 61400-24:2002	

Table 7-8: Lightning protection design codes.

7.8 Design Codes – Earthing

The Vestas Earthing System design is based on and complies with the following international standards and guidelines:

- IEC 62305-1 Ed. 1.0: Protection against lightning Part 1: General principles.
- IEC 62305-3 Ed. 1.0: Protection against lightning Part 3: Physical damage to structures and life hazard.
- IEC 62305-4 Ed. 1.0: Protection against lightning Part 4: Electrical and electronic systems within structures.
- IEC/TR 61400-24. First edition. 2002-07. Wind turbine generator systems Part 24: Lightning protection.
- IEC 60364-5-54. Second edition 2002-06. Electrical installations of buildings -Part 5-54: Selection and erection of electrical equipment – Earthing arrangements, protective conductors and protective bonding conductors.
- IEC 61936-1. First edition. 2002-10. Power installations exceeding 1kV a.c.-Part 1: Common rules.

8 Colour and Surface Treatment

8.1 Nacelle Colour and Surface Treatment

Surface Treatment of Vestas Nacelles			
Standard Nacelle Colours RAL 7035 (light grey)			
Gloss	According to ISO 2813		

Table 8-1: Surface treatment, nacelle.

Date: 2010-11-19 Class: 1 Page 28 of 79

8.2 Tower Colour and Surface Treatment

Surface Treatment of Vestas Tower Section			
External: Internal:			
Tower Colour Variants	RAL 7035 (light grey)	RAL 9001 (cream white)	
Gloss	50-75% UV resistant	Maximum 50%	

Table 8-2: Surface treatment, tower.

8.3 Blades Colour

Blades Colour	
Blade Colour	RAL 7035 (light grey)
Tip-End Colour Variants	RAL 2009 (traffic orange), RAL 3000 (flame red), RAL 3020 (traffic red)
Gloss	< 20%

Table 8-3: Colours, blades.

9 Operational Envelope and Performance Guidelines

Actual climate and site conditions have many variables and must be considered in evaluating actual turbine performance. The design and operating parameters set forth in this section do not constitute warranties, guarantees, or representations as to turbine performance at actual sites.

NOTE

As evaluation of climate and site conditions is complex, it is necessary to consult Vestas for every project.

9.1 Climate and Site Conditions

Values refer to hub height:

Extreme Design Parameters			
Wind Climate	IEC IIA	IEC IIIA	
Ambient Temperature Interval (Standard Temperature Turbine)	-30°C to +50°C		
Extreme Wind Speed (10 Minute Average)	42.5 m/s	37.5 m/s	
Survival Wind Speed (3 Second Gust)	59.5 m/s	52.5 m/s	

Table 9-1: Extreme design parameters.

Document no.: 0004-6207 V05 Issued by: Technology R&D Type: T05 - General Description

General Specification Operational Envelope and Performance Guidelines

Date: 2010-11-19 Class: 1 Page 29 of 79

Average Design Parameters			
Wind Climate	IEC IIA	IEC IIIA	
Wind speed	8.5 m/s	7.5 m/s	
A-Factor	9.59 m/s	8.46 m/s	
Form Factor, c	2.0	2.0	
Turbulence Intensity According to IEC 61400-1, Including Wind Farm Turbulence (@15 m/s – 90% quantile)	18%		
Wind Shear	0.20		
Inflow Angle (Vertical)	8°		

Table 9-2: Average design parameters.

9.1.1 Complex Terrain

Classification of complex terrain according to IEC 61400-1:2005 Chapter 11.2.

For sites classified as complex, appropriate measures are to be included in site assessment.

9.1.2 Altitude

The turbine is designed for use at altitudes up to 1500 m above sea level as standard.

Above 1500 m, special considerations must be taken regarding, for example, HV installations and cooling performance. Consult Vestas for further information.

9.1.3 Wind Farm Layout

Turbine spacing is to be evaluated site-specifically. Spacing, in any case, must not be below three rotor diameters (3D).

DISCLAIMER

As evaluation of climate and site conditions is complex, consult Vestas for every project. If conditions exceed the above parameters, Vestas must be consulted.

9.2 Operational Envelope – Temperature and Wind

Values refer to hub height and are determined by the sensors and control system of the turbine.

Date: 2010-11-19 Class: 1 Page 30 of 79

Operational Envelope – Temperature and Wind		
Ambient Temperature Interval (Standard Temperature Turbine)	-20° to +40°C	
Cut-In (10 Minute Average)	4 m/s	
Cut-Out (100 Seconds Exponential Average)	25 m/s	
Re-Cut In (100 Seconds Exponential Average)	20 m/s	

Table 9-3: Operational envelope - temperature and wind.

Operational Envelope – Grid Connection* 9.3

Values refer to hub height and are determined by the sensors and control system of the turbine.

Operational Envelope – Grid Connection			
Nominal Phase Voltage	U _{P, nom}	400 V	
Nominal Frequency	f _{nom}	50 Hz	
Maximum Steady State Voltage Jump	± 2%		
Maximum Frequency Gradient	± 4 Hz/s		
Maximum Negative Sequence Voltage	e 3%		

Operational envelope - grid connection. Table 9-4:

The generator and the converter will be disconnected if:

	U _P	U _N
Voltage Above 110% of Nominal for 60 Seconds	440 V	759 V
Voltage Above 115% of Nominal for 2 Seconds	460 V	794 V
Voltage Above 120% of Nominal for 0.08 Seconds	480 V	828 V
Voltage Above 125% of Nominal for 0.005 Seconds	500 V	863 V
Voltage Below 90% of Nominal for 60 Seconds	360 V	621 V
Voltage Below 85% of Nominal for 11 Seconds	340 V	586 V
Frequency is Above [Hz] for 0.2 Seconds	53 Hz	
Frequency is Below [Hz] for 0.2 Seconds	47 Hz	

Table 9-5: Generator and converter disconnecting values.

NOTE

* Over the turbine lifetime, grid drop-outs are to occur at an average of no more than 50 times a year.

Date: 2010-11-19 Class: 1 Page 31 of 79

9.4 Operational Envelope – Reactive Power Capability

The turbine has a reactive power capability dependent on power rating as illustrated in Figure 9-1, p. 31.

V90-1.8 MW reactive capability chart

V90-2.0 MW reactive capability chart

Figure 9-1: Reactive power capability.

The above chart applies at the low-voltage side of the HV transformer. Reactive power is produced by the rotor converter, and therefore traditional capacitors are not used in the turbine.

At maximum active and reactive power, the turbine reduces either active or reactive power depending on which type of power has priority (e.g. if reactive power has priority, the active power is reduced).

9.5 Performance – Fault Ride Through

The turbine is equipped with a reinforced Vestas Converter System to gain better control of the generator during grid faults. The controllers and contactors have a UPS backup system to keep the turbine control system running during grid faults.

The pitch system is optimised to keep the turbine within normal speed conditions and the generator speed is accelerated in order to store rotational energy and be able to resume normal power production faster after a fault and keep mechanical stress on the turbine at a minimum.

The turbine is designed to stay connected during grid disturbances within the voltage tolerance curve in Figure 9-2, p. 32.

Figure 9-2: Low-voltage tolerance curve for symmetrical and asymmetrical faults.

For grid disturbances outside the protection curve in Figure 9-3, p. 32, the turbine will be disconnected from the grid.

Figure 9-3: Default low voltage protection settings for symmetrical and asymmetrical faults.

Power Recovery Time	
Power Recovery to 90% of Pre-Fault Level	Maximum 1.0 second

Table 9-6: Power recovery time.

9.6 Performance – Reactive Current Contribution

The reactive current contribution depends on whether the fault applied to the turbine is symmetrical or asymmetrical.

9.6.1 Symmetrical Reactive Current Contribution

During voltage dips, the turbine is switched from normal active and reactive power control to rotor current control. This enables the turbine to perform voltage control by supplying reactive current to the grid. The reactive current at the generator terminals is set according to the voltage level at the generator terminals.

The default value gives a reactive current part of 1 pu of the rated turbine current at the generator terminals. Figure 9-4, p. 33 indicates the reactive current contribution as a function of the voltage at the generator terminals for Star and Delta operation. The reactive current contribution is independent from the actual wind conditions and pre-fault power level.

Figure 9-4: Reactive current contribution in Star and Delta drawn for 100% reactive current contribution.

In Star connection, the reactive current contribution is lowered by a factor $1/\sqrt{3}$ compared to the Delta connection. Turbines may be operated in forced Delta connection. This ensures full current injection by low wind.

During faults in the grid, high-voltage step (du/dt) in the grid voltage can occur which may pause the rotor current control for up to 50 ms before the rotor current control is resumed. During these 50 ms the generator can draw a low magnetization current from the grid.

Date: 2010-11-19 Class: 1 Page 34 of 79

9.6.2 Asymmetrical Reactive Current Contribution

Current reference values are reduced during asymmetrical faults to ensure ride through. The current reference values are reduced from the symmetrical case with the following reduction factor on the current references:

$$1-(u_{pu_high} - u_{pu_low})$$

With ' u_{pu_high} ' as the highest phase-to-phase or phase-to-ground RMS per unit voltage measured and ' u_{pu_low} ' as the lowest phase-to-phase or phase-to-ground RMS per unit voltage.

9.7 Performance – Multiple Voltage Dips

The turbine is designed to handle re-closure events and multiple voltage dips within a short period of time due to the fact that voltage dips are not evenly distributed during the year. As an example, six voltage dips of duration of 200 ms down to 20% voltage within 30 minutes will normally not lead to a problem for the turbine.

9.8 Performance – Active and Reactive Power Control

The turbine is designed for control of active and reactive power via the VestasOnline™ SCADA system.

Maximum Ramp Rates for External Control	
Active Power	0.1 pu/s
Reactive Power	2.5 pu/s

Table 9-7: Maximum ramp rates for external control.

To protect the turbine, active power cannot be controlled to values below the curve in Figure 9-5, p. 35.

Date: 2010-11-19 Class: 1 Page 35 of 79

Figure 9-5: Minimum active power output dependent on wind speed.

9.9 Performance – Voltage Control

The turbine is designed for integration with VestasOnline[™] voltage control by utilising the turbine reactive power capability.

9.10 Performance – Frequency Control

The turbine can be configured to perform frequency control by decreasing the output power as a linear function of the grid frequency (over frequency).

Dead band and slope for the frequency control function are configurable.

9.11 Performance – Own Consumption

The consumption of electrical power by the wind turbine is defined as consumption when the wind turbine is not producing energy (generator is not connected to the grid). This is defined in the control system as Production Generator (zero).

The following components have the largest influence on the power consumption of the wind turbine:

Own Consumption		
Hydraulic M	otor	20 kW
Yaw Motors 6 x 1.75 kW		10.5 kW
Oil Heating	3 x 0.76 kW	2.3 kW
Air Heaters	2 x 6 kW (Standard)	12 kW (Standard)
	3 x 6 kW (Low Temperature)	18 kW (Low Temperature)

Date: 2010-11-19 Class: 1 Page 36 of 79

Own Consumption	
Oil Pump for Gearbox Lubrication	3.5 kW
HV Transformer located in the nacelle has	3.9 kW @ grid voltage ≤ 33.0 kV
a no-load loss of	4.8 kW @ grid voltage ≥ 33.1 kV
	Standard IEC tolerances apply.

Table 9-8: Own consumption data.

9.12 Operational Envelope Conditions for Power Curve, C_t Values (at Hub Height)

See appendix section 12.1 Performance – V90-1.8 MW, p. 40 for power curve, C_t value, and sound power level data for the V90-1.8 MW. See appendix section 12.2 Performance – V90-2.0 MW, p. 60 for power curve, C_t value, and sound power level data for the V90-2.0 MW.

Conditions for Power Curve, Ct Values (at Hub Height)		
Wind Shear	0.00-0.30 (10 minute average)	
Turbulence Intensity	6-12% (10 minute average)	
Blades	Clean	
Rain	No	
Ice/Snow on Blades	No	
Leading Edge	No damage	
Terrain	IEC 61400-12-1	
Inflow Angle (Vertical)	0 ±2°	
Grid Frequency	50 ±0.5 Hz	

Table 9-9: Conditions for power curve, C_t values.

General Specification Drawings

Date: 2010-11-19 Class: 1 Page 37 of 79

10 Drawings

10.1 Structural Design – Illustration of Outer Dimensions

For information on hub heights, see section 2.14 Tower Structure, p. 9.

Figure 10-1: Illustration of outer dimensions: structure.

General Specification Drawings

Date: 2010-11-19 Class: 1

Page 38 of 79

10.2 Structural Design – Side View Drawing

Figure 10-2: Side-view drawing.

General Specification General Reservations, Notes and Disclaimers

Date: 2010-11-19 Class: 1 Page 39 of 79

11 General Reservations, Notes and Disclaimers

- The general specifications described in this document apply to the current version of the V90-1.8/2.0 MW wind turbine. Updated versions of the V90-1.8/2.0 MW wind turbine, which may be manufactured in the future, may have general specifications that differ from these general specifications. In the event that Vestas supplies an updated version of the V90-1.8/2.0 MW wind turbine, Vestas will provide updated general specifications applicable to the updated version.
- Vestas recommends that the grid be as close to nominal as possible with little variation in frequency.
- A certain time allowance for turbine warm-up must be expected following grid dropout and/or periods of very low ambient temperature.
- The estimated power curve for the different estimated noise levels (sound power levels) is for wind speeds at 10 minute average value at hub height and perpendicular to the rotor plane.
- All listed start/stop parameters (e.g. wind speeds and temperatures) are equipped with hysteresis control. This can, in certain borderline situations, result in turbine stops even though the ambient conditions are within the listed operation parameters.
- The earthing system must comply with the minimum requirements from Vestas, and be in accordance with local and national requirements and codes of standards.
- This document, 'General Specifications', is not, and does not contain, any
 guarantee, warranty and/or verification of the power curve and noise
 (including, without limitation, the power curve and noise verification method).
 Any guarantee, warranty and/or verification of the power curve and noise
 (including, without limitation, the power curve and noise verification method)
 must be agreed to separately in writing.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 40 of 79

12 Appendices

12.1 Performance – V90-1.8 MW

12.1.1 V90-1.8 MW Power Curves

V90-1.8 MW Power Curves, Noise Mode 0

				V90-1	1.8 MW	Power	Curve	s, Nois	se Mod	e 0				
						Ai	r densi	ity kg/r	m³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	78	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	125	129	132	136	139	146	149
5	204	154	158	163	167	172	177	181	186	191	195	200	209	213
5.5	279	211	217	224	230	236	242	248	254	260	266	272	285	291
6	368	280	288	296	304	312	320	328	336	344	352	360	376	383
6.5	470	356	366	377	387	398	408	418	429	439	449	459	480	490
7	594	453	465	478	491	504	517	530	542	555	568	581	606	619
7.5	736	563	579	595	611	626	642	658	673	689	705	720	751	767
8	896	688	707	726	745	764	783	802	821	840	858	877	915	933
8.5	1069	823	846	868	890	913	935	957	979	1002	1024	1046	1091	1113
9	1247	963	989	1015	1041	1067	1093	1118	1144	1170	1196	1222	1273	1298
9.5	1423	1104	1134	1163	1193	1223	1252	1281	1310	1339	1367	1395	1450	1477
10	1578	1241	1274	1307	1339	1372	1403	1434	1465	1497	1524	1551	1601	1623
10.5	1689	1374	1409	1444	1478	1513	1541	1570	1599	1627	1648	1668	1704	1720
11	1765	1504	1538	1572	1606	1640	1662	1685	1707	1730	1741	1753	1771	1778
11.5	1787	1618	1644	1671	1698	1725	1737	1749	1761	1773	1778	1783	1790	1793
12	1796	1704	1721	1737	1753	1769	1774	1780	1785	1790	1792	1794	1797	1798
12.5	1799	1756	1764	1772	1780	1788	1790	1793	1795	1797	1798	1799	1799	1800
13	1800	1781	1785	1788	1792	1796	1797	1798	1799	1800	1800	1800	1800	1800
13.5	1800	1794	1795	1797	1798	1799	1800	1800	1800	1800	1800	1800	1800	1800
14	1800	1798	1799	1799	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
14.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
15	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
15.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
16	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
16.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
17	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 41 of 79

				V90-1	1.8 MW	Power	Curve	s, Nois	se Mod	e 0				
						Ai	r densi	ity kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
17.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
20	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
20.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
25	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

Table 12-1: V90-1.8 MW power curves, noise mode 0.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 42 of 79

V90-1.8 MW Power Curves, Noise Mode 1

				V90-1	1.8 MW	Power	Curve	s, Nois	se Mod	e 1				
						Ai	r densi	ty kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	77	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	125	129	132	136	139	146	149
5	204	153	158	163	167	172	177	181	186	190	195	200	209	213
5.5	278	211	217	223	229	236	242	248	254	260	266	272	284	291
6	367	280	288	296	304	312	320	328	336	344	352	360	375	383
6.5	470	356	366	377	387	397	408	418	428	439	449	459	480	490
7	594	453	466	478	491	504	517	530	543	555	568	581	606	619
7.5	736	563	579	595	610	626	642	658	673	689	705	720	751	767
8	895	687	706	725	744	763	782	800	819	838	857	876	913	932
8.5	1063	819	841	863	886	908	930	952	975	997	1019	1041	1085	1107
9	1233	952	977	1003	1029	1055	1080	1106	1131	1157	1182	1208	1259	1284
9.5	1399	1083	1112	1141	1170	1199	1228	1257	1286	1315	1343	1371	1426	1453
10	1549	1209	1241	1274	1306	1338	1369	1400	1431	1462	1491	1520	1574	1599
10.5	1665	1332	1367	1401	1436	1470	1501	1532	1563	1594	1618	1641	1683	1701
11	1750	1454	1490	1525	1561	1597	1623	1650	1677	1703	1719	1735	1760	1769
11.5	1782	1569	1600	1631	1662	1693	1710	1727	1744	1760	1768	1775	1786	1789
12	1794	1665	1687	1709	1730	1752	1760	1769	1777	1785	1788	1791	1796	1797
12.5	1799	1732	1744	1756	1768	1780	1784	1788	1791	1795	1796	1797	1799	1800
13	1800	1769	1775	1781	1787	1793	1794	1796	1797	1799	1799	1799	1800	1800
13.5	1800	1787	1790	1793	1795	1798	1799	1799	1800	1800	1800	1800	1800	1800
14	1800	1796	1797	1798	1799	1800	1800	1800	1800	1800	1800	1800	1800	1800
14.5	1800	1799	1799	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
15	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
15.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
16	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
16.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
17	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
17.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 43 of 79

				V90-1	.8 MW	Power	Curve	s, Nois	se Mod	e 1				
						Ai	r densi	ty kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
20.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
25	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

Table 12-2: V90-1.8 MW power curves, noise mode 1.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 44 of 79

V90-1.8 MW Power Curves, Noise Mode 2

				V90-1	1.8 MW	Power	Curve	s, Nois	se Mod	e 2				
						Ai	r densi	ty kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	77	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	125	129	132	136	139	146	149
5	204	153	158	163	167	172	177	181	186	190	195	200	209	213
5.5	278	211	217	223	230	236	242	248	254	260	266	272	284	291
6	368	280	288	296	304	312	320	328	336	344	352	360	375	383
6.5	470	356	367	377	387	398	408	418	429	439	449	460	480	490
7	594	453	466	479	492	504	517	530	543	556	568	581	607	619
7.5	732	560	576	591	607	623	638	654	669	685	701	716	747	763
8	874	671	690	708	727	745	764	782	801	819	838	856	893	911
8.5	1014	781	802	823	845	866	887	909	930	951	972	993	1036	1057
9	1150	886	910	934	959	983	1007	1030	1054	1078	1102	1126	1174	1198
9.5	1284	991	1017	1044	1071	1098	1124	1151	1178	1204	1231	1257	1310	1336
10	1411	1091	1121	1150	1179	1209	1238	1267	1296	1326	1354	1382	1438	1466
10.5	1528	1191	1223	1255	1287	1319	1349	1380	1411	1442	1471	1500	1554	1579
11	1631	1290	1324	1358	1392	1427	1458	1490	1522	1553	1579	1605	1650	1669
11.5	1698	1388	1423	1458	1494	1529	1558	1586	1614	1643	1661	1679	1708	1719
12	1733	1484	1518	1551	1585	1618	1639	1660	1681	1703	1713	1723	1738	1744
12.5	1751	1574	1601	1629	1657	1685	1698	1711	1724	1737	1741	1746	1753	1756
13	1760	1650	1669	1688	1707	1727	1733	1740	1747	1754	1756	1758	1761	1762
13.5	1767	1704	1716	1728	1740	1752	1755	1758	1762	1765	1766	1767	1767	1768
14	1773	1740	1747	1754	1760	1767	1768	1769	1771	1772	1772	1772	1773	1773
14.5	1778	1764	1767	1770	1773	1776	1777	1777	1778	1778	1778	1778	1778	1778
15	1784	1778	1779	1781	1782	1783	1784	1784	1784	1784	1784	1784	1784	1784
15.5	1789	1787	1787	1788	1788	1789	1789	1789	1789	1789	1789	1789	1789	1789
16	1793	1792	1792	1793	1793	1793	1793	1793	1793	1793	1793	1793	1793	1793
16.5	1796	1796	1796	1796	1796	1796	1796	1796	1796	1796	1796	1796	1796	1796
17	1798	1798	1798	1798	1798	1798	1798	1798	1798	1798	1798	1798	1798	1798
17.5	1799	1799	1799	1799	1799	1799	1799	1799	1799	1799	1799	1799	1799	1799
18	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 45 of 79

				V90-1	1.8 MW	Power	Curve	s, Nois	se Mod	e 2				
						Ai	r densi	ty kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
20.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
25	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

Table 12-3: V90-1.8 MW power curves, noise mode 2.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 46 of 79

V90-1.8 MW Power Curves, Noise Mode 3

				V90-1	1.8 MW	Power	r Curve	s, Nois	se Mod	e 3				
						Ai	r densi	ity kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	77	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	126	129	132	136	139	146	149
5	203	153	157	162	167	171	176	180	185	189	194	198	208	212
5.5	276	209	215	221	227	234	240	246	252	258	264	270	282	288
6	363	277	285	293	301	309	316	324	332	340	348	355	371	379
6.5	469	356	366	376	387	397	407	417	428	438	448	458	479	489
7	591	451	464	476	489	502	515	527	540	553	565	578	603	616
7.5	730	559	575	590	606	622	637	653	668	684	699	715	746	761
8	884	679	698	716	735	754	772	791	810	828	847	865	902	921
8.5	1049	808	830	852	874	896	918	940	961	983	1005	1027	1071	1092
9	1223	944	970	995	1021	1046	1072	1097	1122	1148	1173	1198	1248	1274
9.5	1402	1087	1116	1146	1175	1204	1232	1261	1290	1318	1346	1374	1428	1455
10	1563	1229	1261	1293	1326	1358	1389	1420	1451	1481	1509	1536	1586	1608
10.5	1679	1366	1400	1435	1469	1504	1532	1561	1589	1618	1638	1659	1695	1711
11	1762	1498	1532	1566	1600	1634	1657	1680	1702	1725	1737	1749	1768	1775
11.5	1786	1614	1641	1668	1695	1722	1735	1747	1759	1771	1776	1781	1789	1791
12	1796	1703	1719	1736	1752	1768	1774	1779	1784	1790	1792	1794	1797	1798
12.5	1799	1756	1764	1772	1779	1787	1790	1792	1795	1797	1798	1798	1799	1800
13	1800	1781	1785	1788	1792	1796	1797	1798	1799	1800	1800	1800	1800	1800
13.5	1800	1794	1795	1797	1798	1799	1800	1800	1800	1800	1800	1800	1800	1800
14	1800	1798	1799	1799	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
14.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
15	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
15.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
16	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
16.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
17	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
17.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
18.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
19.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 47 of 79

				V90-1	1.8 MW	Power	Curve	s, Nois	se Mod	e 3				
						Ai	r densi	ty kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
20.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
21.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
22.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
23.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
24.5	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
25	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800

Table 12-4: V90-1.8 MW power curves, noise mode 3.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 48 of 79

12.1.2 V90-1.8 MW Ct Values

V90-1.8 MW Ct Values, Noise Mode 0

				V	90-1.8 I	MW C _t \	/alues,	Noise	Mode 0)				
						Α	ir dens	ity kg/n	n ³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.838	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838	0.838
4.5	0.819	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.819	0.819
5	0.808	0.807	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.809	0.809
5.5	0.804	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804	0.804	0.804	0.804	0.804	0.804
6	0.804	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804	0.804	0.804	0.804	0.804	0.804
6.5	0.807	0.806	0.806	0.806	0.806	0.806	0.806	0.806	0.806	0.807	0.807	0.807	0.807	0.807
7	0.807	0.805	0.805	0.806	0.806	0.806	0.806	0.806	0.807	0.807	0.807	0.807	0.807	0.807
7.5	0.801	0.799	0.799	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801
8	0.784	0.783	0.783	0.783	0.783	0.783	0.783	0.783	0.784	0.784	0.784	0.784	0.784	0.784
8.5	0.755	0.754	0.754	0.754	0.754	0.755	0.755	0.755	0.755	0.755	0.755	0.755	0.755	0.755
9	0.717	0.716	0.716	0.716	0.717	0.717	0.717	0.717	0.717	0.717	0.717	0.717	0.717	0.717
9.5	0.672	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.673	0.673	0.672	0.670	0.669
10	0.618	0.629	0.629	0.629	0.629	0.629	0.628	0.627	0.626	0.625	0.623	0.620	0.613	0.608
10.5	0.552	0.586	0.585	0.584	0.584	0.583	0.580	0.577	0.573	0.570	0.564	0.558	0.544	0.537
11	0.483	0.546	0.543	0.541	0.539	0.536	0.530	0.524	0.517	0.511	0.502	0.493	0.473	0.463
11.5	0.414	0.503	0.497	0.492	0.486	0.481	0.471	0.462	0.453	0.443	0.434	0.424	0.405	0.396
12	0.357	0.456	0.448	0.439	0.431	0.422	0.412	0.402	0.393	0.383	0.374	0.366	0.349	0.341
12.5	0.310	0.407	0.397	0.388	0.378	0.368	0.359	0.351	0.342	0.333	0.325	0.318	0.303	0.297
13	0.272	0.359	0.350	0.341	0.332	0.323	0.315	0.307	0.299	0.291	0.285	0.278	0.266	0.260
13.5	0.240	0.318	0.310	0.301	0.293	0.285	0.278	0.271	0.264	0.257	0.252	0.246	0.235	0.230
14	0.214	0.282	0.274	0.267	0.260	0.252	0.246	0.240	0.235	0.229	0.224	0.219	0.210	0.205
14.5	0.191	0.251	0.244	0.238	0.232	0.225	0.220	0.215	0.210	0.204	0.200	0.196	0.188	0.184
15	0.172	0.225	0.219	0.213	0.208	0.202	0.197	0.193	0.188	0.184	0.180	0.176	0.169	0.165
15.5	0.156	0.202	0.197	0.192	0.187	0.182	0.178	0.174	0.170	0.166	0.162	0.159	0.153	0.149
16	0.141	0.183	0.178	0.174	0.169	0.165	0.161	0.158	0.154	0.150	0.147	0.144	0.138	0.136
16.5	0.129	0.166	0.162	0.158	0.154	0.150	0.147	0.143	0.140	0.137	0.134	0.131	0.126	0.124
17	0.118	0.152	0.148	0.144	0.141	0.137	0.134	0.131	0.128	0.125	0.123	0.120	0.115	0.113
17.5	0.108	0.138	0.135	0.132	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.110	0.106	0.103
18	0.099	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.101	0.097	0.095
18.5	0.091	0.117	0.114	0.111	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.093	0.090	0.088
19	0.085	0.108	0.106	0.103	0.101	0.098	0.096	0.094	0.092	0.090	0.088	0.087	0.083	0.082

Vestas®

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 49 of 79

				V	90-1.8 I	MW C _t	Values,	Noise	Mode 0)				
						Α	ir dens	ity kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
19.5	0.079	0.100	0.098	0.096	0.093	0.091	0.089	0.087	0.085	0.083	0.082	0.080	0.077	0.076
20	0.073	0.093	0.091	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.075	0.072	0.070
20.5	0.068	0.087	0.085	0.083	0.081	0.079	0.077	0.075	0.074	0.072	0.071	0.069	0.067	0.066
21	0.064	0.081	0.079	0.077	0.075	0.073	0.072	0.070	0.069	0.067	0.066	0.065	0.062	0.061
21.5	0.060	0.076	0.074	0.072	0.070	0.069	0.067	0.066	0.065	0.063	0.062	0.061	0.059	0.057
22	0.056	0.071	0.069	0.068	0.066	0.064	0.063	0.062	0.060	0.059	0.058	0.057	0.055	0.054
22.5	0.052	0.066	0.065	0.063	0.062	0.060	0.059	0.058	0.057	0.056	0.054	0.053	0.052	0.051
23	0.049	0.062	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.048	0.047
23.5	0.046	0.058	0.057	0.056	0.054	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.045	0.045
24	0.044	0.055	0.054	0.053	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042
24.5	0.041	0.052	0.051	0.050	0.048	0.047	0.046	0.045	0.045	0.044	0.043	0.042	0.041	0.040
25	0.039	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042	0.041	0.040	0.040	0.038	0.038

Table 12-5: V90-1.8 MW C_t values, noise mode 0.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 50 of 79

V90-1.8 MW Ct Values, Noise Mode 1

				V	90-1.8 I	MW C _t \	/alues,	Noise	Mode 1					
						Α	ir dens	ity kg/n	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.838	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838
4.5	0.817	0.816	0.816	0.816	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817
5	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.806	0.806	0.806
5.5	0.801	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801	0.801	0.801
6	0.801	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801
6.5	0.804	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804	0.804	0.804	0.804	0.805	0.805
7	0.804	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804	0.804	0.804	0.804	0.804	0.805
7.5	0.797	0.796	0.796	0.796	0.796	0.796	0.796	0.797	0.797	0.797	0.797	0.797	0.797	0.797
8	0.778	0.776	0.776	0.777	0.777	0.777	0.777	0.777	0.777	0.777	0.777	0.778	0.778	0.778
8.5	0.744	0.743	0.743	0.743	0.743	0.743	0.743	0.743	0.744	0.744	0.744	0.744	0.744	0.744
9	0.699	0.698	0.698	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699
9.5	0.649	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.649	0.648
10	0.596	0.602	0.602	0.602	0.602	0.602	0.601	0.601	0.601	0.600	0.599	0.598	0.593	0.591
10.5	0.536	0.557	0.557	0.556	0.556	0.556	0.554	0.552	0.551	0.549	0.545	0.541	0.531	0.525
11	0.476	0.517	0.516	0.515	0.514	0.513	0.509	0.505	0.501	0.497	0.490	0.483	0.467	0.459
11.5	0.411	0.479	0.476	0.473	0.469	0.466	0.459	0.452	0.445	0.438	0.429	0.420	0.403	0.394
12	0.356	0.440	0.434	0.428	0.421	0.415	0.407	0.398	0.389	0.381	0.372	0.364	0.348	0.340
12.5	0.310	0.398	0.390	0.382	0.374	0.365	0.357	0.349	0.340	0.332	0.325	0.317	0.303	0.296
13	0.272	0.355	0.347	0.338	0.330	0.321	0.314	0.306	0.299	0.291	0.285	0.278	0.266	0.260
13.5	0.240	0.316	0.308	0.300	0.292	0.284	0.277	0.271	0.264	0.257	0.252	0.246	0.235	0.230
14	0.214	0.281	0.274	0.267	0.259	0.252	0.246	0.240	0.234	0.229	0.224	0.219	0.210	0.205
14.5	0.191	0.251	0.244	0.238	0.231	0.225	0.220	0.215	0.210	0.204	0.200	0.196	0.188	0.184
15	0.172	0.225	0.219	0.213	0.208	0.202	0.197	0.193	0.188	0.184	0.180	0.176	0.169	0.165
15.5	0.156	0.202	0.197	0.192	0.187	0.182	0.178	0.174	0.170	0.166	0.162	0.159	0.153	0.149
16	0.141	0.183	0.178	0.174	0.169	0.165	0.161	0.158	0.154	0.150	0.147	0.144	0.138	0.136
16.5	0.129	0.166	0.162	0.158	0.154	0.150	0.147	0.143	0.140	0.137	0.134	0.131	0.126	0.124
17	0.118	0.152	0.148	0.144	0.141	0.137	0.134	0.131	0.128	0.125	0.123	0.120	0.115	0.113
17.5	0.108	0.138	0.135	0.132	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.110	0.106	0.103
18	0.099	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.101	0.097	0.095
18.5	0.091	0.117	0.114	0.111	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.093	0.090	0.088
19	0.085	0.108	0.106	0.103	0.101	0.098	0.096	0.094	0.092	0.090	0.088	0.087	0.083	0.082
19.5	0.079	0.100	0.098	0.096	0.093	0.091	0.089	0.087	0.085	0.083	0.082	0.080	0.077	0.076

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 51 of 79

				V	90-1.8 [MW C _t	Values,	Noise	Mode 1					
						Α	ir dens	ity kg/r	n ³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	0.073	0.093	0.091	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.075	0.072	0.070
20.5	0.068	0.087	0.085	0.083	0.081	0.079	0.077	0.075	0.074	0.072	0.071	0.069	0.067	0.066
21	0.064	0.081	0.079	0.077	0.075	0.073	0.072	0.070	0.069	0.067	0.066	0.065	0.062	0.061
21.5	0.060	0.076	0.074	0.072	0.070	0.069	0.067	0.066	0.065	0.063	0.062	0.061	0.059	0.057
22	0.056	0.071	0.069	0.068	0.066	0.064	0.063	0.062	0.060	0.059	0.058	0.057	0.055	0.054
22.5	0.052	0.066	0.065	0.063	0.062	0.060	0.059	0.058	0.057	0.056	0.054	0.053	0.052	0.051
23	0.049	0.062	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.048	0.047
23.5	0.046	0.058	0.057	0.056	0.054	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.045	0.045
24	0.044	0.055	0.054	0.053	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042
24.5	0.041	0.052	0.051	0.050	0.048	0.047	0.046	0.045	0.045	0.044	0.043	0.042	0.041	0.040
25	0.039	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042	0.041	0.040	0.040	0.038	0.038

Table 12-6: V90-1.8 MW C_t values, noise mode 1.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 52 of 79

V90-1.8 MW Ct Values, Noise Mode 2

				V	90-1.8 I	MW C _t	Values,	Noise	Mode 2	2				
						Α	ir dens	ity kg/n	n ³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.838	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838
4.5	0.817	0.816	0.816	0.816	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817
5	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.806	0.806	0.806
5.5	0.801	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801	0.801
6	0.800	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.800	0.800	0.800	0.800	0.800
6.5	0.800	0.798	0.798	0.798	0.798	0.798	0.799	0.799	0.799	0.799	0.799	0.799	0.800	0.800
7	0.789	0.787	0.787	0.787	0.788	0.788	0.788	0.788	0.788	0.788	0.788	0.788	0.789	0.789
7.5	0.762	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.762	0.762	0.762	0.762
8	0.719	0.718	0.718	0.718	0.718	0.718	0.718	0.718	0.718	0.719	0.719	0.719	0.719	0.719
8.5	0.666	0.665	0.665	0.665	0.665	0.665	0.665	0.665	0.666	0.666	0.666	0.666	0.666	0.666
9	0.612	0.611	0.611	0.611	0.611	0.611	0.611	0.611	0.612	0.612	0.612	0.612	0.612	0.612
9.5	0.562	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561
10	0.516	0.515	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.515	0.514
10.5	0.472	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.475	0.475	0.474	0.473	0.471	0.469
11	0.431	0.441	0.441	0.441	0.441	0.441	0.440	0.440	0.439	0.438	0.436	0.433	0.427	0.422
11.5	0.385	0.410	0.409	0.409	0.408	0.408	0.406	0.404	0.401	0.399	0.394	0.390	0.379	0.373
12	0.340	0.381	0.380	0.378	0.377	0.375	0.371	0.367	0.363	0.358	0.352	0.346	0.334	0.327
12.5	0.299	0.354	0.351	0.348	0.345	0.341	0.336	0.330	0.324	0.319	0.312	0.306	0.293	0.287
13	0.264	0.327	0.322	0.317	0.312	0.307	0.301	0.295	0.289	0.282	0.276	0.270	0.259	0.253
13.5	0.235	0.299	0.293	0.287	0.281	0.276	0.270	0.263	0.257	0.251	0.246	0.240	0.230	0.225
14	0.210	0.271	0.265	0.259	0.253	0.247	0.241	0.236	0.230	0.224	0.219	0.215	0.205	0.201
14.5	0.188	0.245	0.239	0.234	0.228	0.222	0.217	0.211	0.206	0.201	0.197	0.193	0.184	0.181
15	0.170	0.222	0.216	0.211	0.205	0.200	0.195	0.191	0.186	0.181	0.178	0.174	0.167	0.163
15.5	0.154	0.201	0.196	0.191	0.186	0.181	0.177	0.172	0.168	0.164	0.161	0.157	0.151	0.148
16	0.140	0.182	0.178	0.173	0.169	0.164	0.160	0.157	0.153	0.149	0.146	0.143	0.137	0.135
16.5	0.128	0.166	0.162	0.158	0.154	0.149	0.146	0.143	0.140	0.136	0.134	0.131	0.125	0.123
17	0.117	0.151	0.148	0.144	0.140	0.137	0.134	0.131	0.128	0.125	0.122	0.120	0.115	0.113
17.5	0.107	0.138	0.135	0.132	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.110	0.105	0.103
18	0.099	0.127	0.124	0.121	0.118	0.115	0.112	0.110	0.107	0.105	0.103	0.101	0.097	0.095
18.5	0.091	0.117	0.114	0.111	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.093	0.090	0.088
19	0.085	0.108	0.106	0.103	0.101	0.098	0.096	0.094	0.092	0.090	0.088	0.086	0.083	0.082
19.5	0.079	0.100	0.098	0.096	0.093	0.091	0.089	0.087	0.085	0.083	0.082	0.080	0.077	0.076

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 53 of 79

		V90-1.8 MW C _t Values, Noise Mode 2													
	Air density kg/m ³														
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275	
20	0.073	0.093	0.091	0.089	0.087	0.085	0.083	0.081	0.079	0.077	0.076	0.075	0.072	0.070	
20.5	0.068	0.087	0.085	0.083	0.081	0.079	0.077	0.075	0.074	0.072	0.071	0.069	0.067	0.066	
21	0.064	0.081	0.079	0.077	0.075	0.073	0.072	0.070	0.069	0.067	0.066	0.065	0.062	0.061	
21.5	0.060	0.076	0.074	0.072	0.070	0.069	0.067	0.066	0.065	0.063	0.062	0.061	0.059	0.057	
22	0.056	0.071	0.069	0.068	0.066	0.064	0.063	0.062	0.060	0.059	0.058	0.057	0.055	0.054	
22.5	0.052	0.066	0.065	0.063	0.062	0.060	0.059	0.058	0.057	0.056	0.054	0.053	0.052	0.051	
23	0.049	0.062	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.048	0.047	
23.5	0.046	0.058	0.057	0.056	0.054	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.045	0.045	
24	0.044	0.055	0.054	0.053	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042	
24.5	0.041	0.052	0.051	0.050	0.048	0.047	0.046	0.045	0.045	0.044	0.043	0.042	0.041	0.040	
25	0.039	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042	0.041	0.040	0.040	0.038	0.038	

Table 12-7: V90-1.8 MW C_t values, noise mode 2.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 54 of 79

V90-1.8 MW Ct Values, Noise Mode 3

				V	90-1.8 I	MW C _t V	∕alues,	Noise	Mode 3	3				
						Α	ir dens	ity kg/n	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.836	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.836	0.836
4.5	0.800	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.800	0.800	0.800	0.800
5	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.767	0.767
5.5	0.748	0.747	0.747	0.747	0.747	0.747	0.748	0.748	0.748	0.748	0.748	0.748	0.748	0.748
6	0.745	0.744	0.744	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745
6.5	0.765	0.764	0.764	0.764	0.764	0.764	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.766
7	0.758	0.756	0.756	0.756	0.756	0.757	0.757	0.757	0.757	0.757	0.757	0.757	0.758	0.758
7.5	0.748	0.746	0.747	0.747	0.747	0.747	0.747	0.748	0.748	0.748	0.748	0.748	0.748	0.748
8	0.731	0.730	0.730	0.730	0.730	0.731	0.731	0.731	0.731	0.731	0.731	0.731	0.731	0.731
8.5	0.707	0.706	0.706	0.706	0.706	0.706	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707
9	0.680	0.679	0.679	0.679	0.679	0.679	0.679	0.679	0.679	0.679	0.680	0.680	0.679	0.679
9.5	0.646	0.648	0.648	0.648	0.649	0.649	0.648	0.648	0.648	0.648	0.648	0.647	0.645	0.644
10	0.604	0.615	0.615	0.614	0.614	0.614	0.613	0.613	0.612	0.611	0.609	0.606	0.599	0.595
10.5	0.544	0.578	0.577	0.577	0.576	0.575	0.572	0.569	0.566	0.563	0.557	0.551	0.537	0.530
11	0.481	0.541	0.539	0.537	0.535	0.533	0.527	0.520	0.514	0.508	0.499	0.490	0.471	0.461
11.5	0.413	0.501	0.495	0.490	0.485	0.479	0.470	0.461	0.452	0.442	0.433	0.423	0.404	0.395
12	0.356	0.456	0.447	0.439	0.430	0.422	0.412	0.402	0.392	0.383	0.374	0.365	0.349	0.341
12.5	0.310	0.407	0.397	0.387	0.378	0.368	0.359	0.350	0.342	0.333	0.325	0.318	0.303	0.297
13	0.272	0.359	0.350	0.341	0.332	0.322	0.315	0.307	0.299	0.291	0.285	0.278	0.266	0.260
13.5	0.240	0.318	0.310	0.301	0.293	0.284	0.278	0.271	0.264	0.257	0.252	0.246	0.235	0.230
14	0.214	0.282	0.274	0.267	0.260	0.252	0.246	0.240	0.235	0.229	0.224	0.219	0.210	0.205
14.5	0.191	0.251	0.244	0.238	0.232	0.225	0.220	0.215	0.210	0.204	0.200	0.196	0.188	0.184
15	0.172	0.225	0.219	0.213	0.208	0.202	0.197	0.193	0.188	0.184	0.180	0.176	0.169	0.165
15.5	0.156	0.202	0.197	0.192	0.187	0.182	0.178	0.174	0.170	0.166	0.162	0.159	0.153	0.149
16	0.141	0.183	0.178	0.174	0.169	0.165	0.161	0.158	0.154	0.150	0.147	0.144	0.138	0.136
16.5	0.129	0.166	0.162	0.158	0.154	0.150	0.147	0.143	0.140	0.137	0.134	0.131	0.126	0.124
17	0.118	0.152	0.148	0.144	0.141	0.137	0.134	0.131	0.128	0.125	0.123	0.120	0.115	0.113
17.5	0.108	0.138	0.135	0.132	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.110	0.106	0.103
18	0.099	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.101	0.097	0.095
18.5	0.091	0.117	0.114	0.111	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.093	0.090	0.088
19	0.085	0.108	0.106	0.103	0.101	0.098	0.096	0.094	0.092	0.090	0.088	0.087	0.083	0.082
19.5	0.079	0.100	0.098	0.096	0.093	0.091	0.089	0.087	0.085	0.083	0.082	0.080	0.077	0.076

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 55 of 79

		V90-1.8 MW C _t Values, Noise Mode 3													
	Air density kg/m³														
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275	
20	0.073	0.093	0.091	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.075	0.072	0.070	
20.5	0.068	0.087	0.085	0.083	0.081	0.079	0.077	0.075	0.074	0.072	0.071	0.069	0.067	0.066	
21	0.064	0.081	0.079	0.077	0.075	0.073	0.072	0.070	0.069	0.067	0.066	0.065	0.062	0.061	
21.5	0.060	0.076	0.074	0.072	0.070	0.069	0.067	0.066	0.065	0.063	0.062	0.061	0.059	0.057	
22	0.056	0.071	0.069	0.068	0.066	0.064	0.063	0.062	0.060	0.059	0.058	0.057	0.055	0.054	
22.5	0.052	0.066	0.065	0.063	0.062	0.060	0.059	0.058	0.057	0.056	0.054	0.053	0.052	0.051	
23	0.049	0.062	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.048	0.047	
23.5	0.046	0.058	0.057	0.056	0.054	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.045	0.045	
24	0.044	0.055	0.054	0.053	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042	
24.5	0.041	0.052	0.051	0.050	0.048	0.047	0.046	0.045	0.045	0.044	0.043	0.042	0.041	0.040	
25	0.039	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042	0.041	0.040	0.040	0.038	0.038	

Table 12-8: V90-1.8 MW C_t values, noise mode 3.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 56 of 79

12.1.3 V90-1.8 MW Sound Power Level at Hub Height

V90-1.8 MW Sound Power	r Level at Hub	Height, Noise Mo	de 0
Conditions for Sound Power Level:	Wind shear Maximum t Inflow angl		1400-11 ed. 2 2002 etre height: 16%
Hub Height	80 m	95 m	105 m
LwA @ 3 m/s (10 m above ground) [dBA]	92.6	92.8	92.9
Wind speed at hub height [m/s]	4.2	4.3	4.4
LwA @ 4 m/s (10 m above ground) [dBA]	95.6	96.1	96.4
Wind speed at hub height [m/s]	5.6	5.7	5.8
L _{wA} @ 5 m/s (10 m above ground) [dBA]	99.8	100.3	100.6
Wind speed at hub height [m/s]	7.0	7.2	7.3
L _{wA} @ 6 m/s (10 m above ground) [dBA]	102.8	103.0	103.1
Wind speed at hub height [m/s]	8.4	8.6	8.7
L _{wA} @ 7 m/s (10 m above ground) [dBA]	103.7	103.8	103.8
Wind speed at hub height [m/s]	9.8	10.0	10.2
L _{wA} @ 8 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	11.2	11.5	11.7
L _{wA} @ 9 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	12.6	12.9	13.1
LwA @ 10 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	13.9	14.3	14.6
LwA @ 11 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	15.3	15.8	16.0
LwA @ 12 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	16.7	17.2	17.5
LwA @ 13 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	18.1	18.6	18.9

Table 12-9: V90-1.8 MW sound power level at hub height, noise mode 0.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 57 of 79

V90-1.8 MW Sound Power	Level at Hub Hei	ght, Noise Mode	
Conditions for Sound Power Level:	Wind shear: 0.1	llence at 10 metre ertical): 0 ±2°	
Hub Height	80 m	95 m	105 m
LwA @ 3 m/s (10 m above ground) [dBA]	92.6	92.8	92.9
Wind speed at hub height [m/s]	4.2	4.3	4.4
L _{wA} @ 4 m/s (10 m above ground) [dBA]	95.6	96.1	96.4
Wind speed at hub height [m/s]	5.6	5.7	5.8
LwA @ 5 m/s (10 m above ground) [dBA]	99.8	100.3	100.6
Wind speed at hub height [m/s]	7.0	7.2	7.3
LwA @ 6 m/s (10 m above ground) [dBA]	102.7	102.9	103.0
Wind speed at hub height [m/s]	8.4	8.6	8.7
LwA @ 7 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	9.8	10.0	10.2
LwA @ 8 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	11.2	11.5	11.7
L _{wA} @ 9 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	12.6	12.9	13.1
LwA @ 10 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	13.9	14.3	14.6
LwA @ 11 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	15.3	15.8	16.0
L _{wA} @ 12 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	16.7	17.2	17.5
LwA @ 13 m/s (10 m above ground) [dBA]	103.0	103.0	103.0
Wind speed at hub height [m/s]	18.1	18.6	18.9

Table 12-10: V90-1.8 MW sound power level at hub height, noise mode 1.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 58 of 79

V90-1.8 MW Sound Power	Level at Hub He	ight, Noise Mode	2
Conditions for Sound Power Level:	Measurement s	standard IEC 6140	0-11 ed. 2 2002
	Wind shear: 0.	16	
		ulence at 10 metre	height: 16%
	Inflow angle (v	•	
	Air density: 1.2		I
Hub Height	80 m	95 m	105 m
L _{wA} @ 3 m/s (10 m above ground) [dBA]	92.6	92.8	92.9
Wind speed at hub height [m/s]	4.2	4.3	4.4
LwA @ 4 m/s (10 m above ground) [dBA]	95.6	96.1	96.4
Wind speed at hub height [m/s]	5.6	5.7	5.8
LwA @ 5 m/s (10 m above ground) [dBA]	99.8	100.1	100.2
Wind speed at hub height [m/s]	7.0	7.2	7.3
LwA @ 6 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	8.4	8.6	8.7
LwA @ 7 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	9.8	10.0	10.2
LwA @ 8 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	11.2	11.5	11.7
L _{wA} @ 9 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	12.6	12.9	13.1
L _{wA} @ 10 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	13.9	14.3	14.6
LwA @ 11 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	15.3	15.8	16.0
L _{wA} @ 12 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	16.7	17.2	17.5
L _{wA} @ 13 m/s (10 m above ground) [dBA]	101.0	101.0	101.0
Wind speed at hub height [m/s]	18.1	18.6	18.9

Table 12-11: V90-1.8 MW sound power level at hub height, noise mode 2.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 59 of 79

V90-1.8 MW Sound Power	Level at Hub Hei	ght, Noise Mode 3	3
Conditions for Sound Power Level:	Wind shear: 0.1	llence at 10 metre ertical): 0 ±2°	
Hub Height	80 m	95 m	105 m
LwA @ 3 m/s (10 m above ground) [dBA]	92.5	92.5	92.6
Wind speed at hub height [m/s]	4.2	4.3	4.4
L _{wA} @ 4 m/s (10 m above ground) [dBA]	94.6	95.0	95.3
Wind speed at hub height [m/s]	5.6	5.7	5.8
LwA @ 5 m/s (10 m above ground) [dBA]	98.8	99.3	99.6
Wind speed at hub height [m/s]	7.0	7.2	7.3
LwA @ 6 m/s (10 m above ground) [dBA]	101.8	102.0	102.1
Wind speed at hub height [m/s]	8.4	8.6	8.7
LwA @ 7 m/s (10 m above ground) [dBA]	103.5	103.8	103.8
Wind speed at hub height [m/s]	9.8	10.0	10.2
LwA @ 8 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	11.2	11.5	11.7
LwA @ 9 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	12.6	12.9	13.1
LwA @ 10 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	13.9	14.3	14.6
LwA @ 11 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	15.3	15.8	16.0
LwA @ 12 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	16.7	17.2	17.5
LwA @ 13 m/s (10 m above ground) [dBA]	104.0	104.0	104.0
Wind speed at hub height [m/s]	18.1	18.6	18.9

Table 12-12: V90-1.8 MW sound power level at hub height, noise mode 3.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 60 of 79

12.2 Performance - V90-2.0 MW

12.2.1 V90-2.0 MW Power Curves

V90-2.0 MW Power Curves, Noise Mode 0

				V90-2	2.0 MW	Power	Curve	s, Nois	se Mod	e 0				
						Ai	r densi	ity kg/r	n³					
Wind speed														
[m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	78	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	125	129	132	136	139	146	149
5	204	154	158	163	167	172	177	181	186	191	195	200	209	213
5.5	279	211	217	224	230	236	242	248	254	260	266	272	285	291
6	368	280	288	296	304	312	320	328	336	344	352	360	376	383
6.5	470	356	366	377	387	398	408	418	429	439	449	459	480	490
7	594	453	465	478	491	504	517	530	542	555	568	581	606	619
7.5	736	563	579	595	611	626	642	658	673	689	705	720	751	767
8	896	688	707	726	745	764	783	802	821	840	858	877	915	933
8.5	1069	823	846	868	890	913	935	957	979	1002	1024	1046	1091	1113
9	1247	963	989	1015	1041	1067	1093	1118	1144	1170	1196	1222	1273	1299
9.5	1428	1104	1134	1163	1193	1223	1252	1281	1311	1340	1370	1399	1457	1485
10	1599	1241	1274	1307	1340	1374	1406	1439	1472	1505	1536	1568	1629	1660
10.5	1753	1375	1412	1448	1484	1521	1555	1590	1625	1660	1691	1722	1780	1806
11	1881	1506	1545	1585	1624	1664	1698	1733	1767	1802	1828	1855	1900	1919
11.5	1951	1633	1672	1711	1751	1790	1818	1847	1875	1903	1919	1935	1960	1969
12	1981	1752	1786	1820	1854	1889	1906	1924	1942	1959	1967	1974	1985	1989
12.5	1994	1852	1876	1900	1924	1949	1957	1966	1975	1984	1987	1990	1995	1997
13	1998	1923	1937	1951	1964	1978	1982	1986	1990	1994	1996	1997	1999	1999
13.5	2000	1962	1969	1977	1985	1992	1994	1996	1997	1999	1999	2000	2000	2000
14	2000	1984	1988	1991	1994	1998	1998	1999	1999	2000	2000	2000	2000	2000
14.5	2000	1994	1996	1997	1998	2000	2000	2000	2000	2000	2000	2000	2000	2000
15	2000	1998	1998	1999	1999	2000	2000	2000	2000	2000	2000	2000	2000	2000
15.5	2000	1999	1999	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
16	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
16.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
17	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
17.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
18	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 61 of 79

V90-2.0 MW Power Curves, Noise Mode 0															
	Air density kg/m³														
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275	
18.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
19	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
19.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
20	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
20.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
21	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
21.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
22	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
22.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
23	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
23.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
24	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
24.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
25	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	

Table 12-13: V90-2.0 MW power curves, noise mode 0.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 62 of 79

V90-2.0 MW Power Curves, Noise Mode 1

				V90-2	2.0 MW	Power	Curve	s, Nois	se Mod	e 1				
						Ai	r densi	ity kg/r	m³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	77	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	125	129	132	136	139	146	149
5	204	153	158	163	167	172	177	181	186	190	195	200	209	213
5.5	278	211	217	223	229	236	242	248	254	260	266	272	284	291
6	367	280	288	296	304	312	320	328	336	344	352	360	375	383
6.5	470	356	366	377	387	397	408	418	428	439	449	459	480	490
7	594	453	466	478	491	504	517	530	543	555	568	581	606	619
7.5	736	563	579	595	610	626	642	658	673	689	705	720	751	767
8	895	687	706	725	744	763	782	800	819	838	857	876	913	932
8.5	1063	819	841	863	886	908	930	952	975	997	1019	1041	1085	1107
9	1233	952	977	1003	1029	1055	1080	1106	1131	1157	1182	1208	1259	1284
9.5	1401	1082	1111	1140	1169	1199	1227	1256	1285	1314	1343	1372	1429	1458
10	1561	1209	1241	1273	1306	1338	1370	1402	1434	1467	1498	1529	1591	1622
10.5	1710	1332	1368	1403	1439	1474	1509	1543	1578	1613	1645	1677	1739	1768
11	1842	1455	1493	1531	1570	1608	1644	1680	1717	1753	1783	1812	1866	1890
11.5	1928	1575	1615	1655	1695	1735	1768	1800	1832	1865	1886	1907	1941	1954
12	1971	1693	1730	1768	1806	1843	1867	1890	1914	1937	1948	1960	1976	1982
12.5	1989	1800	1830	1860	1890	1920	1933	1947	1960	1974	1979	1984	1992	1994
13	1996	1886	1905	1925	1944	1963	1970	1976	1983	1989	1992	1994	1997	1999
13.5	1999	1938	1950	1961	1973	1984	1988	1991	1994	1997	1998	1999	2000	2000
14	2000	1971	1977	1983	1989	1995	1996	1997	1998	1999	2000	2000	2000	2000
14.5	2000	1989	1991	1994	1996	1999	1999	1999	2000	2000	2000	2000	2000	2000
15	2000	1996	1997	1998	1998	2000	2000	2000	2000	2000	2000	2000	2000	2000
15.5	2000	1998	1999	1999	1999	2000	2000	2000	2000	2000	2000	2000	2000	2000
16	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
16.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
17	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
17.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
18	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
18.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
19	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
19.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 63 of 79

V90-2.0 MW Power Curves, Noise Mode 1															
	Air density kg/m³														
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275	
20	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
20.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
21	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
21.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
22	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
22.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
23	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
23.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
24	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
24.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
25	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	

Table 12-14: V90-2.0 MW power curves, noise mode 1.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 64 of 79

V90-2.0 MW Power Curves, Noise Mode 2

				V90-2	2.0 MW	Power	Curve	s, Nois	se Mod	e 2				
						Ai	r densi	ity kg/r	n³					
Wind speed	1.225	0.95	0.975	1.0	1.025	1.05	1.075	4.4	1.125	1.15	1.175	1.2	1.25	1.275
[m/s]	89	63		68				1.1	80					
4			66		70	73	75	77		82	85	87	92 146	94
4.5	142	105	108	112	115	119	122	125	129	132	136	139		149
5	204	153	158	163	167	172	177	181	186	190	195	200	209	213
5.5	278	211	217	223	230	236	242	248	254	260	266	272	284	291
6	368 470	280	288	296	304	312	320	328	336	344	352 449	360	375	383 490
6.5		356	367	377	387	398	408	418	429	439		460	480	
7	594	453	466	479	492	504	517	530	543	556	568	581	607	619
7.5	732	560	576	591	607	623	638	654	669	685	701	716	747	763
8	874	671	690	708	727	745	764	782	801	819	838	856	893	911
8.5	1014	781	802	823	845	866	887	909	930	951	972	993	1036	1057
9	1150	886	910	934	959	983	1007	1030	1054	1078	1102	1126	1174	1198
9.5	1284	991	1017	_	1071	1098	1124	1151	1178	1204	1231	1257	1310	1337
10	1413	1091	1121	1150	1179	1209	1238	1267	1297	1326	1355	1384	1442	1471
10.5	1539	1191	1223	1255	1287	1319	1350	1382	1414	1446	1477	1508	1569	1599
11	1662	1290	1324	1359	1393	1427	1461	1496	1530	1564	1596	1629	1692	1721
11.5	1768	1388	1425	1461	1498	1535	1571	1606	1642	1677	1707	1738	1793	1817
12	1849	1486	1525	1564	1603	1642	1675	1709	1742	1776	1800	1824	1865	1882
12.5	1899	1585	1624	1662	1701	1740	1768	1796	1824	1852	1867	1883	1908	1918
13	1927	1683	1718	1753	1788	1823	1842	1862	1881	1901	1909	1918	1931	1936
13.5	1944	1772	1800	1827	1854	1882	1894	1906	1918	1930	1935	1940	1946	1948
14	1955	1845	1864	1883	1903	1922	1929	1936	1943	1950	1951	1953	1955	1956
14.5	1963	1900	1912	1925	1937	1949	1952	1955	1958	1962	1962	1963	1964	1964
15	1973	1939	1946	1953	1960	1967	1968	1969	1970	1972	1972	1972	1973	1973
15.5	1980	1965	1968	1972	1975	1978	1979	1979	1980	1980	1980	1980	1980	1980
16	1987	1981	1982	1983	1985	1986	1986	1986	1987	1987	1987	1987	1987	1987
16.5	1992	1989	1990	1990	1991	1991	1991	1992	1992	1992	1992	1992	1992	1992
17	1995	1994	1994	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995
17.5	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
18	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
18.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
19	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
19.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 65 of 79

				V90-2	2.0 MW	Power	Curve	s, Nois	se Mod	e 2				
						Ai	r densi	ity kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
20.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
21	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
21.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
22	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
22.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
23	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
23.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
24	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
24.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
25	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

Table 12-15: V90-2.0 MW power curves, noise mode 2.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 66 of 79

V90-2.0 MW Power Curves, Noise Mode 3

				V90-2	2.0 MW	Power	r Curve	s, Nois	se Mod	e 3				
						Ai	r dens	ity kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	89	63	66	68	70	73	75	77	80	82	85	87	92	94
4.5	142	105	108	112	115	119	122	126	129	132	136	139	146	149
5	203	153	157	162	167	171	176	180	185	189	194	198	208	212
5.5	276	209	215	221	227	234	240	246	252	258	264	270	282	288
6	363	277	285	293	301	309	316	324	332	340	348	355	371	379
6.5	469	356	366	376	387	397	407	417	428	438	448	458	479	489
7	591	451	464	476	489	502	515	527	540	553	565	578	603	616
7.5	730	559	575	590	606	622	637	653	668	684	699	715	746	761
8	884	679	698	716	735	754	772	791	810	828	847	865	902	921
8.5	1049	808	830	852	874	896	918	940	961	983	1005	1027	1071	1092
9	1224	944	970	995	1021	1046	1072	1097	1122	1148	1173	1198	1249	1274
9.5	1407	1087	1116	1146	1175	1204	1233	1262	1291	1320	1349	1378	1435	1463
10	1583	1229	1261	1294	1327	1360	1392	1424	1457	1489	1521	1552	1613	1643
10.5	1743	1367	1403	1439	1475	1511	1546	1581	1615	1650	1681	1712	1769	1795
11	1876	1499	1539	1578	1617	1656	1691	1726	1761	1796	1822	1849	1895	1915
11.5	1949	1628	1668	1707	1747	1786	1815	1843	1871	1900	1916	1932	1958	1967
12	1980	1749	1783	1818	1852	1886	1904	1922	1940	1958	1965	1973	1984	1988
12.5	1993	1851	1875	1899	1923	1948	1956	1965	1974	1983	1986	1990	1995	1996
13	1998	1922	1936	1950	1964	1977	1982	1986	1990	1994	1995	1997	1999	1999
13.5	2000	1961	1969	1977	1985	1992	1994	1996	1997	1999	1999	2000	2000	2000
14	2000	1984	1987	1991	1994	1998	1998	1999	1999	2000	2000	2000	2000	2000
14.5	2000	1994	1996	1997	1998	1999	1999	2000	2000	2000	2000	2000	2000	2000
15	2000	1998	1998	1999	1999	2000	2000	2000	2000	2000	2000	2000	2000	2000
15.5	2000	1999	1999	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
16	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
16.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
17	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
17.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
18	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
18.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
19	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
19.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 67 of 79

				V90-2	2.0 MW	Power	Curve	s, Nois	se Mod	e 3				
						Ai	r densi	ty kg/r	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
20.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
21	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
21.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
22	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
22.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
23	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
23.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
24	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
24.5	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
25	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

Table 12-16: V90-2.0 MW power curves, noise mode 3

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 68 of 79

12.2.2 V90-2.0 MW C_t Values

V90-2.0 MW Ct Values, Noise Mode 0

				V	90-2.0 [MW C _t	/alues,	Noise	Mode ()				
						Α	ir dens	ity kg/n	n ³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.838	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838	0.838
4.5	0.819	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.818	0.819	0.819
5	0.808	0.807	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.809	0.809
5.5	0.804	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804	0.804	0.804	0.804	0.804	0.804
6	0.804	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804	0.804	0.804	0.804	0.804	0.804
6.5	0.807	0.806	0.806	0.806	0.806	0.806	0.804	0.804	0.804	0.807	0.807	0.807	0.807	0.807
7		0.805			0.806	0.806	0.806		0.807		0.807	0.807	0.807	0.807
	0.807		0.805	0.806				0.806		0.807				
7.5	0.801	0.799	0.799	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801
8	0.784	0.783	0.783	0.783	0.783		0.783	0.783	0.784	0.784	0.784	0.784	0.784	0.784
8.5	0.755	0.754	0.754	0.754	0.754	0.755	0.755	0.755	0.755	0.755	0.755	0.755	0.755	0.755
9	0.717	0.716	0.716	0.716	0.717	0.717	0.717	0.717	0.717	0.717	0.717	0.717	0.717	0.717
9.5	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674
10	0.628	0.629	0.629	0.630	0.630	0.630	0.630	0.630	0.629	0.629	0.629	0.628	0.627	0.626
10.5	0.578	0.586	0.586	0.586	0.586	0.586	0.586	0.585	0.585	0.584	0.582	0.580	0.575	0.571
11	0.525	0.546	0.546	0.546	0.546	0.546	0.544	0.542	0.541	0.539	0.534	0.530	0.519	0.512
11.5	0.463	0.508	0.507	0.506	0.505	0.504	0.499	0.494	0.490	0.485	0.478	0.470	0.454	0.445
12	0.402	0.472	0.469	0.465	0.462	0.458	0.451	0.443	0.436	0.428	0.419	0.411	0.393	0.384
12.5	0.349	0.435	0.428	0.422	0.416	0.409	0.401	0.392	0.383	0.374	0.366	0.358	0.342	0.334
13	0.306	0.395	0.387	0.378	0.370	0.362	0.353	0.345	0.336	0.328	0.321	0.313	0.299	0.292
13.5	0.270	0.354	0.345	0.337	0.329	0.320	0.312	0.305	0.297	0.289	0.283	0.276	0.264	0.258
14	0.239	0.316	0.308	0.300	0.292	0.284	0.277	0.270	0.263	0.256	0.251	0.245	0.234	0.229
14.5	0.214	0.282	0.275	0.267	0.260	0.253	0.247	0.241	0.235	0.229	0.224	0.219	0.209	0.205
15	0.192	0.252	0.246	0.239	0.233	0.226	0.221	0.216	0.210	0.205	0.201	0.196	0.188	0.184
15.5	0.173	0.227	0.221	0.215	0.209	0.204	0.199	0.194	0.190	0.185	0.181	0.177	0.170	0.166
16	0.157	0.205	0.200	0.194	0.189	0.184	0.180	0.176	0.172	0.168	0.164	0.161	0.154	0.151
16.5	0.143	0.186	0.181	0.177	0.172	0.167	0.164	0.160	0.156	0.152	0.149	0.146	0.140	0.137
17	0.131	0.169	0.165	0.161	0.157	0.153	0.149	0.146	0.142	0.139	0.136	0.133	0.128	0.126
17.5	0.119	0.154	0.151	0.147	0.143	0.139	0.136	0.133	0.130	0.127	0.124	0.122	0.117	0.115
18	0.110	0.142	0.138	0.135	0.131	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.108	0.106
18.5	0.101	0.130	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.099	0.097
19	0.094	0.121	0.118	0.115	0.112	0.109	0.107	0.104	0.102	0.100	0.098	0.096	0.092	0.090

Vestas®

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 69 of 79

				V	90-2.0 [MW C _t V	Values,	Noise	Mode 0)					
						Α	ir dens	ity kg/r	n³						
Wind speed [m/s]	1.225														
19.5	0.087	0.112	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.092	0.091	0.089	0.085	0.084	
20	0.081	0.103	0.101	0.099	0.096	0.094	0.092	0.090	0.088	0.086	0.084	0.082	0.079	0.078	
20.5	0.075	0.096	0.094	0.092	0.089	0.087	0.085	0.083	0.082	0.080	0.078	0.077	0.074	0.072	
21	0.070	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.074	0.073	0.072	0.069	0.068	
21.5	0.066	0.084	0.082	0.080	0.078	0.076	0.074	0.073	0.071	0.070	0.068	0.067	0.065	0.063	
22	0.062	0.078	0.076	0.075	0.073	0.071	0.070	0.068	0.067	0.065	0.064	0.063	0.060	0.059	
22.5	0.058	0.073	0.072	0.070	0.068	0.067	0.065	0.064	0.063	0.061	0.060	0.059	0.057	0.056	
23	0.054	0.069	0.067	0.065	0.064	0.062	0.061	0.060	0.059	0.057	0.056	0.055	0.053	0.052	
23.5	0.051	0.064	0.063	0.062	0.060	0.059	0.057	0.056	0.055	0.054	0.053	0.052	0.050	0.049	
24	0.048	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.049	0.047	0.046	
24.5	0.045	0.057	0.056	0.055	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044	
25	0.043	0.054	0.053	0.052	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.044	0.042	0.041	

Table 12-17: V90-2.0 MW C_t values, noise mode 0

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 70 of 79

V90-2.0 MW Ct Values, Noise Mode 1

				V	90-2.0 [MW C _t	/alues,	Noise	Mode 1					
						Α	ir dens	ity kg/n	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.838	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838
4.5	0.817	0.816	0.816	0.816	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817
5	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.806	0.806	0.806
5.5	0.801	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801	0.801	0.801
6	0.801	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801
6.5	0.804	0.802	0.802	0.802	0.803	0.803	0.803	0.803	0.803	0.803	0.803	0.804	0.804	0.804
7	0.802	0.800	0.800	0.800	0.801	0.801	0.801	0.801	0.801	0.801	0.801	0.802	0.802	0.802
7.5	0.793	0.791	0.791	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0.793	0.793	0.793	0.793
8	0.773	0.771	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.773	0.773
8.5	0.740	0.739	0.739	0.739	0.739	0.739	0.740	0.740	0.740	0.740	0.740	0.740	0.740	0.740
9	0.697	0.696	0.696	0.696	0.696	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697	0.697
9.5	0.649	0.648	0.648	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649
10	0.601	0.601	0.601	0.601	0.601	0.601	0.601	0.602	0.602	0.602	0.601	0.601	0.600	0.600
10.5	0.554	0.557	0.557	0.557	0.557	0.557	0.557	0.557	0.556	0.556	0.555	0.554	0.552	0.550
11	0.507	0.517	0.518	0.518	0.518	0.518	0.517	0.516	0.516	0.515	0.512	0.510	0.503	0.498
11.5	0.453	0.481	0.481	0.481	0.480	0.480	0.477	0.474	0.472	0.469	0.464	0.458	0.446	0.439
12	0.398	0.448	0.447	0.445	0.443	0.441	0.436	0.431	0.425	0.420	0.413	0.405	0.390	0.382
12.5	0.348	0.416	0.412	0.408	0.404	0.400	0.393	0.385	0.378	0.371	0.363	0.356	0.341	0.333
13	0.305	0.383	0.377	0.370	0.364	0.357	0.350	0.342	0.334	0.327	0.319	0.312	0.299	0.292
13.5	0.270	0.347	0.340	0.333	0.325	0.318	0.311	0.303	0.296	0.289	0.282	0.276	0.264	0.258
14	0.239	0.313	0.305	0.298	0.290	0.283	0.276	0.270	0.263	0.256	0.251	0.245	0.234	0.229
14.5	0.214	0.281	0.274	0.267	0.259	0.252	0.246	0.241	0.235	0.229	0.224	0.219	0.209	0.205
15	0.192	0.252	0.245	0.239	0.232	0.226	0.221	0.216	0.210	0.205	0.201	0.196	0.188	0.184
15.5	0.173	0.227	0.221	0.215	0.209	0.204	0.199	0.194	0.190	0.185	0.181	0.177	0.170	0.166
16	0.157	0.205	0.200	0.194	0.189	0.184	0.180	0.176	0.172	0.168	0.164	0.161	0.154	0.151
16.5	0.143	0.186	0.181	0.177	0.172	0.167	0.164	0.160	0.156	0.152	0.149	0.146	0.140	0.137
17	0.131	0.169	0.165	0.161	0.157	0.153	0.149	0.146	0.142	0.139	0.136	0.133	0.128	0.126
17.5	0.119	0.154	0.151	0.147	0.143	0.139	0.136	0.133	0.130	0.127	0.124	0.122	0.117	0.115
18	0.110	0.142	0.138	0.135	0.131	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.108	0.106
18.5	0.101	0.130	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.099	0.097
19	0.094	0.121	0.118	0.115	0.112	0.109	0.107	0.104	0.102	0.100	0.098	0.096	0.092	0.090
19.5	0.087	0.112	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.092	0.091	0.089	0.085	0.084

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 71 of 79

				V	90-2.0 [MW C _t	Values,	Noise	Mode 1					
						Α	ir dens	ity kg/n	n ³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	0.081	0.103	0.101	0.099	0.096	0.094	0.092	0.090	0.088	0.086	0.084	0.082	0.079	0.078
20.5	0.075	0.096	0.094	0.092	0.089	0.087	0.085	0.083	0.082	0.080	0.078	0.077	0.074	0.072
21	0.070	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.074	0.073	0.072	0.069	0.068
21.5	0.066	0.084	0.082	0.080	0.078	0.076	0.074	0.073	0.071	0.070	0.068	0.067	0.065	0.063
22	0.062	0.078	0.076	0.075	0.073	0.071	0.070	0.068	0.067	0.065	0.064	0.063	0.060	0.059
22.5	0.058	0.073	0.072	0.070	0.068	0.067	0.065	0.064	0.063	0.061	0.060	0.059	0.057	0.056
23	0.054	0.069	0.067	0.065	0.064	0.062	0.061	0.060	0.059	0.057	0.056	0.055	0.053	0.052
23.5	0.051	0.064	0.063	0.062	0.060	0.059	0.057	0.056	0.055	0.054	0.053	0.052	0.050	0.049
24	0.048	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.049	0.047	0.046
24.5	0.045	0.057	0.056	0.055	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044
25	0.043	0.054	0.053	0.052	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.044	0.042	0.041

Table 12-18: V90-2.0 MW C_t values, noise mode 1.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 72 of 79

V90-2.0 MW Ct Values, Noise Mode 2

				V	90-2.0 [MW C _t	/alues,	Noise	Mode 2	2				
						Α	ir dens	ity kg/n	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.838	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838
4.5	0.817	0.816	0.816	0.816	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817	0.817
5	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.806	0.806	0.806
5.5	0.801	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801	0.801
6	0.800	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.800	0.800	0.800	0.800	0.800
6.5	0.800	0.798	0.798	0.798	0.798	0.798	0.799	0.799	0.799	0.799	0.799	0.799	0.800	0.800
7	0.789	0.787	0.787	0.787	0.788	0.788	0.788	0.788	0.788	0.788	0.788	0.788	0.789	0.789
7.5	0.762	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.762	0.762	0.762	0.762
8	0.719	0.718	0.718	0.718	0.718	0.718	0.718	0.718	0.718	0.719	0.719	0.719	0.719	0.719
8.5	0.666	0.665	0.665	0.665	0.665	0.665	0.665	0.665	0.666	0.666	0.666	0.666	0.666	0.666
9	0.612	0.611	0.611	0.611	0.611	0.611	0.611	0.611	0.612	0.612	0.612	0.612	0.612	0.612
9.5	0.562	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.562	0.562
10	0.516	0.515	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516
10.5	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.476	0.475
11	0.440	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.441	0.439	0.438
11.5	0.404	0.409	0.410	0.410	0.410	0.410	0.409	0.409	0.409	0.409	0.407	0.405	0.401	0.398
12	0.366	0.382	0.382	0.382	0.381	0.381	0.380	0.379	0.377	0.376	0.373	0.370	0.362	0.357
12.5	0.329	0.357	0.356	0.356	0.355	0.354	0.351	0.349	0.346	0.343	0.338	0.333	0.323	0.317
13	0.292	0.334	0.332	0.330	0.329	0.327	0.322	0.318	0.314	0.309	0.304	0.298	0.287	0.281
13.5	0.261	0.312	0.309	0.305	0.302	0.299	0.293	0.288	0.283	0.278	0.272	0.266	0.256	0.250
14	0.233	0.289	0.285	0.280	0.276	0.271	0.266	0.260	0.255	0.249	0.244	0.238	0.228	0.223
14.5	0.209	0.267	0.261	0.256	0.251	0.245	0.240	0.235	0.229	0.224	0.219	0.214	0.205	0.201
15	0.189	0.244	0.238	0.233	0.227	0.222	0.217	0.212	0.207	0.202	0.197	0.193	0.185	0.181
15.5	0.171	0.223	0.217	0.212	0.206	0.201	0.196	0.192	0.187	0.183	0.179	0.175	0.168	0.164
16	0.156	0.203	0.198	0.193	0.188	0.183	0.178	0.174	0.170	0.166	0.163	0.159	0.152	0.149
16.5	0.142	0.185	0.180	0.176	0.171	0.166	0.163	0.159	0.155	0.151	0.148	0.145	0.139	0.136
17	0.130	0.169	0.165	0.160	0.156	0.152	0.149	0.145	0.142	0.139	0.136	0.133	0.127	0.125
17.5	0.119	0.154	0.150	0.147	0.143	0.139	0.136	0.133	0.130	0.127	0.124	0.122	0.117	0.114
18	0.110	0.141	0.138	0.135	0.131	0.128	0.125	0.122	0.119	0.117	0.114	0.112	0.107	0.105
18.5	0.101	0.130	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.099	0.097
19	0.094	0.121	0.118	0.115	0.112	0.109	0.107	0.104	0.102	0.100	0.098	0.096	0.092	0.090
19.5	0.087	0.112	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.092	0.091	0.089	0.085	0.084

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 73 of 79

				V	90-2.0 [MW C _t v	Values,	Noise	Mode 2	2				
						Α	ir dens	ity kg/n	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	0.081	0.103	0.101	0.099	0.096	0.094	0.092	0.090	0.088	0.086	0.084	0.082	0.079	0.078
20.5	0.075	0.096	0.094	0.092	0.089	0.087	0.085	0.083	0.082	0.080	0.078	0.077	0.074	0.072
21	0.070	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.074	0.073	0.072	0.069	0.068
21.5	0.066	0.084	0.082	0.080	0.078	0.076	0.074	0.073	0.071	0.070	0.068	0.067	0.065	0.063
22	0.062	0.078	0.077	0.075	0.073	0.071	0.070	0.068	0.067	0.065	0.064	0.063	0.060	0.059
22.5	0.058	0.073	0.072	0.070	0.068	0.067	0.065	0.064	0.063	0.061	0.060	0.059	0.057	0.056
23	0.054	0.069	0.067	0.065	0.064	0.062	0.061	0.060	0.059	0.057	0.056	0.055	0.053	0.052
23.5	0.051	0.064	0.063	0.062	0.060	0.059	0.057	0.056	0.055	0.054	0.053	0.052	0.050	0.049
24	0.048	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.049	0.047	0.046
24.5	0.045	0.057	0.056	0.055	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044
25	0.043	0.054	0.053	0.052	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.044	0.042	0.041

Table 12-19: V90-2.0 MW C_t values, noise mode 2.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 74 of 79

V90-2.0 MW Ct Values, Noise Mode 3

				V	90-2.0 [MW C _t V	Values,	Noise	Mode 3	3				
						Α	ir dens	ity kg/n	n³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
4	0.836	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.836	0.836
4.5	0.800	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.800	0.800	0.800	0.800
5	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.766	0.767	0.767
5.5	0.748	0.747	0.747	0.747	0.747	0.747	0.748	0.748	0.748	0.748	0.748	0.748	0.748	0.748
6	0.745	0.744	0.744	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745	0.745
6.5	0.765	0.764	0.764	0.764	0.764	0.764	0.765	0.765	0.765	0.765	0.765	0.765	0.765	0.766
7	0.758	0.756	0.756	0.756	0.756	0.757	0.757	0.757	0.757	0.757	0.757	0.757	0.758	0.758
7.5	0.748	0.746	0.747	0.747	0.747	0.747	0.747	0.748	0.748	0.748	0.748	0.748	0.748	0.748
8	0.731	0.730	0.730	0.730	0.730	0.731	0.731	0.731	0.731	0.731	0.731	0.731	0.731	0.731
8.5	0.707	0.706	0.706	0.706	0.706	0.706	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707
9	0.680	0.679	0.679	0.679	0.679	0.679	0.679	0.679	0.679	0.679	0.680	0.680	0.680	0.680
9.5	0.649	0.648	0.648	0.648	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.648
10	0.613	0.615	0.615	0.615	0.615	0.615	0.615	0.615	0.615	0.615	0.614	0.614	0.612	0.611
10.5	0.571	0.579	0.579	0.579	0.579	0.578	0.578	0.577	0.577	0.576	0.574	0.573	0.567	0.563
11	0.522	0.542	0.542	0.542	0.542	0.542	0.540	0.538	0.537	0.535	0.531	0.526	0.516	0.509
11.5	0.461	0.506	0.505	0.504	0.503	0.502	0.497	0.493	0.488	0.484	0.476	0.469	0.453	0.444
12	0.401	0.471	0.468	0.464	0.461	0.457	0.450	0.442	0.435	0.428	0.419	0.410	0.393	0.384
12.5	0.349	0.434	0.428	0.422	0.415	0.409	0.400	0.392	0.383	0.374	0.366	0.358	0.342	0.334
13	0.306	0.395	0.386	0.378	0.370	0.362	0.353	0.345	0.336	0.328	0.321	0.313	0.299	0.292
13.5	0.270	0.354	0.345	0.337	0.329	0.320	0.312	0.305	0.297	0.289	0.283	0.276	0.264	0.258
14	0.239	0.316	0.308	0.300	0.292	0.284	0.277	0.270	0.263	0.256	0.251	0.245	0.234	0.229
14.5	0.214	0.282	0.275	0.267	0.260	0.253	0.247	0.241	0.235	0.229	0.224	0.219	0.209	0.205
15	0.192	0.252	0.246	0.239	0.233	0.226	0.221	0.216	0.210	0.205	0.201	0.196	0.188	0.184
15.5	0.173	0.227	0.221	0.215	0.209	0.204	0.199	0.194	0.190	0.185	0.181	0.177	0.170	0.166
16	0.157	0.205	0.200	0.194	0.189	0.184	0.180	0.176	0.172	0.168	0.164	0.161	0.154	0.151
16.5	0.143	0.186	0.181	0.177	0.172	0.167	0.164	0.160	0.156	0.152	0.149	0.146	0.140	0.137
17	0.131	0.169	0.165	0.161	0.157	0.153	0.149	0.146	0.142	0.139	0.136	0.133	0.128	0.126
17.5	0.119	0.154	0.151	0.147	0.143	0.139	0.136	0.133	0.130	0.127	0.124	0.122	0.117	0.115
18	0.110	0.142	0.138	0.135	0.131	0.128	0.125	0.122	0.120	0.117	0.114	0.112	0.108	0.106
18.5	0.101	0.130	0.127	0.124	0.121	0.118	0.115	0.113	0.110	0.108	0.105	0.103	0.099	0.097
19	0.094	0.121	0.118	0.115	0.112	0.109	0.107	0.104	0.102	0.100	0.098	0.096	0.092	0.090
19.5	0.087	0.112	0.109	0.106	0.104	0.101	0.099	0.097	0.095	0.092	0.091	0.089	0.085	0.084

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 75 of 79

				V	90-2.0 I	MW C _t	Values,	Noise	Mode 3	3				
						Α	ir dens	ity kg/n	n ³					
Wind speed [m/s]	1.225	0.95	0.975	1.0	1.025	1.05	1.075	1.1	1.125	1.15	1.175	1.2	1.25	1.275
20	0.081	0.103	0.101	0.099	0.096	0.094	0.092	0.090	0.088	0.086	0.084	0.082	0.079	0.078
20.5	0.075	0.096	0.094	0.092	0.089	0.087	0.085	0.083	0.082	0.080	0.078	0.077	0.074	0.072
21	0.070	0.089	0.087	0.085	0.083	0.081	0.079	0.078	0.076	0.074	0.073	0.072	0.069	0.068
21.5	0.066	0.084	0.082	0.080	0.078	0.076	0.074	0.073	0.071	0.070	0.068	0.067	0.065	0.063
22	0.062	0.078	0.076	0.075	0.073	0.071	0.070	0.068	0.067	0.065	0.064	0.063	0.060	0.059
22.5	0.058	0.073	0.072	0.070	0.068	0.067	0.065	0.064	0.063	0.061	0.060	0.059	0.057	0.056
23	0.054	0.069	0.067	0.065	0.064	0.062	0.061	0.060	0.059	0.057	0.056	0.055	0.053	0.052
23.5	0.051	0.064	0.063	0.062	0.060	0.059	0.057	0.056	0.055	0.054	0.053	0.052	0.050	0.049
24	0.048	0.061	0.059	0.058	0.057	0.055	0.054	0.053	0.052	0.051	0.050	0.049	0.047	0.046
24.5	0.045	0.057	0.056	0.055	0.053	0.052	0.051	0.050	0.049	0.048	0.047	0.046	0.045	0.044
25	0.043	0.054	0.053	0.052	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.044	0.042	0.041

Table 12-20: V90-2.0 MW C_t values, noise mode 3.

General Specification Appendices Date: 2010-11-19 Class: 1 Page 76 of 79

12.2.3 V90-2.0 MW Sound Power Level at Hub Height

V90-2.0 MW Sound Powe	r Level at Hu	b Height, Noi	se Mode 0	
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 2 2002			
	Wind shear	r: 0.16		
		urbulence at	_	ght: 16%
	Inflow angle (vertical): 0 ±2°			
	Air density: 1.225 kg/m ₃			
Hub Height	80 m	95 m	105 m	125 m
L _{wA} @ 3 m/s (10 m above ground) [dBA]	92.6	92.8	92.9	93.0
Wind speed at hub height [m/s]	4.2	4.3	4.4	4.5
L _{wA} @ 4 m/s (10 m above ground) [dBA]	95.6	96.1	96.4	96.9
Wind speed at hub height [m/s]	5.6	5.7	5.8	6.0
LwA @ 5 m/s (10 m above ground) [dBA]	99.8	100.3	100.6	101.2
Wind speed at hub height [m/s]	7.0	7.2	7.3	7.5
LwA @ 6 m/s (10 m above ground) [dBA]	102.8	103.0	103.1	103.3
Wind speed at hub height [m/s]	8.4	8.6	8.7	9.0
LwA @ 7 m/s (10 m above ground) [dBA]	103.7	103.8	103.8	103.8
Wind speed at hub height [m/s]	9.8	10.0	10.2	10.5
LwA @ 8 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0
Wind speed at hub height [m/s]	11.2	11.5	11.7	12.0
LwA @ 9 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0
Wind speed at hub height [m/s]	12.6	12.9	13.1	13.5
LwA @ 10 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0
Wind speed at hub height [m/s]	13.9	14.3	14.6	15.0
L _{wA} @ 11 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0
Wind speed at hub height [m/s]	15.3	15.8	16.0	16.5
L _{wA} @ 12 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0
Wind speed at hub height [m/s]	16.7	17.2	17.5	18.0
LwA @ 13 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0
Wind speed at hub height [m/s]	18.1	18.6	18.9	19.5

Table 12-21: V90-2.0 MW sound power level at hub height, noise mode 0.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 77 of 79

V90-2.0 MW Sound Powe	r Level at Hul	Height, Nois	se Mode 1		
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 2 2002				
	Wind shear	: 0.16			
		Maximum turbulence at 10 metre height: 16%			
	Inflow angle (vertical): 0 ±2°				
		1.225 kg/m₃			
Hub Height	80 m	95 m	105 m	125 m	
L _{wA} @ 3 m/s (10 m above ground) [dBA]	92.6	92.8	92.9	93.0	
Wind speed at hub height [m/s]	4.2	4.3	4.4	4.5	
L _{wA} @ 4 m/s (10 m above ground) [dBA]	95.6	96.1	96.4	96.9	
Wind speed at hub height [m/s]	5.6	5.7	5.8	6.0	
L _{wA} @ 5 m/s (10 m above ground) [dBA]	99.8	100.3	100.6	101.1	
Wind speed at hub height [m/s]	7.0	7.2	7.3	7.5	
L _{wA} @ 6 m/s (10 m above ground) [dBA]	102.7	102.9	103.0	103.0	
Wind speed at hub height [m/s]	8.4	8.6	8.7	9.0	
L _{wA} @ 7 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	9.8	10.0	10.2	10.5	
LwA @ 8 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	11.2	11.5	11.7	12.0	
L _{wA} @ 9 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	12.6	12.9	13.1	13.5	
LwA @ 10 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	13.9	14.3	14.6	15.0	
L _{wA} @ 11 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	15.3	15.8	16.0	16.5	
LwA @ 12 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	16.7	17.2	17.5	18.0	
L _{wA} @ 13 m/s (10 m above ground) [dBA]	103.0	103.0	103.0	103.0	
Wind speed at hub height [m/s]	18.1	18.6	18.9	19.5	

Table 12-22: V90-2.0 MW noise mode 1, sound power level at hub height.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 78 of 79

V90-2.0 MW Sound Power Level at Hub Height, Noise Mode 2					
Conditions for Sound Power Level:	Measureme	Measurement standard IEC 61400-11 ed. 2 2002			
	Wind shear	: 0.16			
		Maximum turbulence at 10 metre height: 16%			
	Inflow angle (vertical): 0 ±2°				
		1.225 kg/m₃	l		
Hub Height	80 m	95 m	105 m	125 m	
L _{wA} @ 3 m/s (10 m above ground) [dBA]	92.6	92.8	92.9	93.0	
Wind speed at hub height [m/s]	4.2	4.3	4.4	4.5	
LwA @ 4 m/s (10 m above ground) [dBA]	95.6	96.1	96.4	96.9	
Wind speed at hub height [m/s]	5.6	5.7	5.8	6.0	
LwA @ 5 m/s (10 m above ground) [dBA]	99.8	100.1	100.2	100.5	
Wind speed at hub height [m/s]	7.0	7.2	7.3	7.5	
LwA @ 6 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	8.4	8.6	8.7	9.0	
LwA @ 7 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	9.8	10.0	10.2	10.5	
LwA @ 8 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	11.2	11.5	11.7	12.0	
LwA @ 9 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	12.6	12.9	13.1	13.5	
L _{wA} @ 10 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	13.9	14.3	14.6	15.0	
LwA @ 11 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	15.3	15.8	16.0	16.5	
LwA @ 12 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	16.7	17.2	17.5	18.0	
LwA @ 13 m/s (10 m above ground) [dBA]	101.0	101.0	101.0	101.0	
Wind speed at hub height [m/s]	18.1	18.6	18.9	19.5	

Table 12-23: V90-2.0 MW sound power level at hub height, noise mode 2.

General Specification Appendices

Date: 2010-11-19 Class: 1 Page 79 of 79

V90-2.0 MW Sound Powe	r Level at Hul	b Height, Nois	se Mode 3		
Conditions for Sound Power Level:	Measureme	Measurement standard IEC 61400-11 ed. 2 2002			
	Wind shear	: 0.16			
		Maximum turbulence at 10 metre height: 16%			
	Inflow angle (vertical): 0 ±2°				
		Air density: 1.225 kg/m ₃			
Hub Height	80 m	95 m	105 m	125 m	
LwA @ 3 m/s (10 m above ground) [dBA]	92.5	92.5	92.6	92.7	
Wind speed at hub height [m/s]	4.2	4.3	4.4	4.5	
LwA @ 4 m/s (10 m above ground) [dBA]	94.6	95.0	95.3	95.7	
Wind speed at hub height [m/s]	5.6	5.7	5.8	6.0	
LwA @ 5 m/s (10 m above ground) [dBA]	98.8	99.3	99.6	100.1	
Wind speed at hub height [m/s]	7.0	7.2	7.3	7.5	
LwA @ 6 m/s (10 m above ground) [dBA]	101.8	102.0	102.1	102.3	
Wind speed at hub height [m/s]	8.4	8.6	8.7	9.0	
LwA @ 7 m/s (10 m above ground) [dBA]	103.5	103.8	103.8	103.8	
Wind speed at hub height [m/s]	9.8	10.0	10.2	10.5	
LwA @ 8 m/s (10 m above ground) [dBA]	103.6	104.0	104.0	104.0	
Wind speed at hub height [m/s]	11.2	11.5	11.7	12.0	
LwA @ 9 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0	
Wind speed at hub height [m/s]	12.6	12.9	13.1	13.5	
LwA @ 10 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0	
Wind speed at hub height [m/s]	13.9	14.3	14.6	15.0	
LwA @ 11 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0	
Wind speed at hub height [m/s]	15.3	15.8	16.0	16.5	
LwA @ 12 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0	
Wind speed at hub height [m/s]	16.7	17.2	17.5	18.0	
LwA @ 13 m/s (10 m above ground) [dBA]	104.0	104.0	104.0	104.0	
Wind speed at hub height [m/s]	18.1	18.6	18.9	19.5	

Table 12-24: V90-2.0 MW sound power level at hub height, noise mode 3.

