面向二十一世纪的嵌入式系统设计技术

第一讲:

实时嵌入式系统设计综述

Embedded System Designing

主讲教员:徐欣

国防科大电子科学与工程学院嵌入式系统开放研究小组

前 言(1)

- 课程设置的必要性
 - 应用需求日趋复杂
 - 微处理器技术长足发展
 - 嵌入式软件技术成为核心
- 课程涉及的主要内容
 - 全面阐述嵌入式系统的要素
 - 嵌入式系统软硬件设计基础
 - 介绍嵌入式系统最新设计理念
 - 项目开发流程与自由实验

前 言(2)

- 课程设置的预期目标
 - 使学员对嵌入式系统设计技术有全面的了解,并 具备一定的设计实践能力,为深入开展相关研究 奠定良好的基础。
 - 树立IP资源复用理念,掌握IP设计方法
 - 理解并掌握实时操作系统和实时软件开发技术

课程安排

- 嵌入式系统综述 - 1次课
- 嵌入式系统硬件设计 - 2次课
 - 处理器开发基础;系统设计方法;PCB设计工具;FPGA开发工具
- 嵌入式系统软件设计 - XX次课
 - RTOS基础; uc/OSII; Linux;
 VxWworks; BSP & Device Driver;
 GNU集成开发环境使用
- 主题Project设计 - 2次课
- Project报告交流 - 2次课

参考文献 (not necessary)

- 嵌入式系统开发圣经,探砂工作室,中国青年出版 社,2002
- 嵌入式Li nux系统设计与应用. 王学龙. 清华大学出版社, 2001年
- UC/OS-II 源代码公开的实时嵌入式操作系统. 邵贝贝. 中国电力出版社, 2001
- VxWorks及其开发环境Tornado. 孔祥营, 柏桂枝. 嵌入式实时操作系统中国电力出版, 2002
- 可编程逻辑器件及设计理念, www.Xilinx.com

评分与考核方式

- Your final grade will be determined by
 - 10%: class participation
 - 30%: homework and reading assignment
 - 60%: final project and presentation
- Grading Scale
 - A = 90-100, B=80-89, C=70-79, D=60-69, F = 0-59.
 - +/- designator for boundary cases

一、<u>嵌入式系统的定义(E)</u>

- <u>专用计算机系统</u>(非PC智能电子设备)
 - 以应用为中心
 - 以计算机技术为基础
 - 软件硬件可裁剪
 - 适应应用系统对功能、可靠性、成本、体积、 功耗严格要求
- 知识集成系统(CSEA)
 - 技术密集资金密集
 - 高度分散不可垄断
 - 面向应用不断创新

二、嵌入式系统的分类

- 按表现形式分: (硬件范畴)
 - 芯片级嵌入(含程序或算法的处理器)
 - 模块级嵌入(系统中的某个核心模块)
 - 系统级嵌入
- 按实时性要求分: (软件范畴)
 - 非实时系统(PDA)
 - 软实时系统(消费类产品)
 - 硬实时系统(导引头等工业和军工系统)

三、嵌入式系统的基本要素

- 嵌入式处理器系统
 - 嵌入式处理器
 - 各种类型存储器
 - 模拟电路及电源
 - 接口控制器及接插件
- 嵌入式软件系统
 - 实时操作系统(RTOS)
 - 板级支持包(BSP)
 - 设备驱动 (Device Driver)
 - 协议栈(Protocol Stack)
 - 应用程序(Application)

四、嵌入式处理器

- 嵌入式处理器的发展趋势
 - 经济性(成本)
 - 微型化(封装、功耗)
 - 智能化(功能、速度)
- 嵌入式处理器的分类和现状
 - 微控制器 (MCU)
 - 微处理器 (MPU)
 - 数字信号处理器(DSP)
 - 混合处理器和片上系统(SOC)
 - 可编程片上系统(SOPC)

五、硬件设计工具(EDA工具)

- ◆ 系统级设计工具
 - ◆ Cadence的SPW
 - System View
- ◆ 模拟电路系统仿真工具
 - Pspice
 - EWB
- ◆ PCB设计工具
 - Protel
 - ◆ PADs 的Power PCB & Tool Kit
 - ◆ Mentor的Expedition & Tool Kit
- ◆ 可编程逻辑器件设计工具
 - Mentor FPGA Advantage & ModelSim
 - Xilinx Foundation ISE & Tool Kit
 - ◆ 各种综合和仿真第三方工具

六、实时操作系统(RTOS)

RTOS的基本特征:

- ◆ 高效的任务管理
 - 1.支持多任务
 - 2.优先级管理
 - 3.任务调度:基于优先级的抢占式调度、 时间片轮转调度的算法
 - 4.支持快速而确定的上下文切换
- 快速灵活的任务间通信
 - 1.信号量:二进制、互斥、计数器
 - 2.通信机制:消息队列、管道等
- 高度的可剪裁性
- 动态链接与部件增量加载
- 快速有效的中断和异常事件处理
- 优化的浮点支持
- 动态内存管理
- 系统时钟和定时器

几种最常见的RTOS:

- 软实时RTOS
 - 嵌入式Linux
 - Win CE
- 硬实时RTOS
 - VxWorks
 - OSE
 - Nuclear
- 著名的open RTOS
 - ucOS/II
 - RTEMS
- 自主知识产权的RTOS
 - HOPEN
 - Delta OS

七、嵌入式软件开发工具

- 开发工具
 - 编译器 (Compiler)
 - 调试器 (In Circuit Emulator)
 - 软仿真(Simulator)
 - 集成开发环境(IDE)
- 典型的商业开发工具及供应商
 - Windriver公司的Tornado for VxWorks
 - MontVisa公司的HardHat Linux 开发工具包
 - AMC公司的SuperTAP调试器
- 免费开发工具
 - GNU系列开发工具
 - Wiggler调试器

八、最新进展之:嵌入式Internet技术

定义:嵌入式Internet是近几年发展起来的一项新兴概念和技术,是指设备通过嵌入式模块而非PC系统直接接入Internet,以Internet为介质实现信息交互的过程,通常又称为非PC Internet接入。

■ 应用:

- 智能家居(家电上网)
- 工业远程监控与数据采集
- Internet Reconfigurable Logic (IRL) 及其相关应用
- 等等

图:嵌入式Internet应用

九、最新进展之:可编程片上系统(SOPC)

- SOPC:可编程逻辑器件在嵌入式应用中的完美体现
- SOPC的技术基础
 - 超大规模可编程逻辑器件及其开发工具的成熟
 - FPGA密度提高
 - FPGA成本足以与ASIC抗衡
 - FPGA设计、综合、仿真、测试工具性能飞速提高
 - 微处理器核以IP的形式嵌入到FPGA中
 - IP Core开发理念的发展与深入人心
 - 信号处理算法、软件算法模块、控制逻辑等均可以IP Core形式 体现
- 目前已经成熟的SOPC开发平台:
 - Xilinx Spartanl I FPGA和MicroBlaze软处理器IP Core
 - Xilinx VirtexII Pro FPGA和PowerPC硬处理器IP Core
 - Altera 等其它FPGA和处理器IP Core

十、图:SOPC 示例

■谢谢大家!

一些典型的嵌入式系统应用实例

返回

goReader Internet eBook

Tektronix TDS7000 Digital Oscilloscopes

Samsung AnyWeb Internet Screen Phone

Nixvue Digital Album Digital Photo Album

eRemote Intelligent Home Controller

嵌入式系统硬件

嵌入式系统软件

