Cálculo Diferencial

Juan Cribillero Aching

Abril 5, 2024

Contenido

- 1 Límites en el infinito
- 2 Asíntotas a la gráfica de una función
 - Asíntota vertical
 - Asíntota horizontal
 - Asíntotas oblicuas
- 3 Referencias

Sesión 02

- 1 Límites en el infinito
- 2 Asíntotas a la gráfica de una funciór
 - Asíntota vertical
 - Asíntota horizontal
 - Asíntotas oblicuas
- 3 Referencias

Definición

Sea A un subconjunto de $\mathbb R$ no acotado superiormente, $f:A\to\mathbb R$, y $L\in\mathbb R$. Decimos que f tiene límite L en $+\infty$ (o cuando x tiende al infinito) si, para cada $\epsilon>0$, existe un N>0 (que depende de ϵ) tal que, si $x\in A$ y x>N, entonces $|f(x)-L|<\epsilon$. Denotamos entonces

$$\lim_{x \to +\infty} f(x) = L .$$

Es decir.

Definición

Sea A un subconjunto de $\mathbb R$ no acotado inferiormente, $f:A\to\mathbb R$, y $L\in\mathbb R$. Decimos que f tiene límite L en $-\infty$ (o cuando x tiende a menos infinito) si, para cada $\epsilon>0$, existe un N>0 (que depende de ϵ) tal que, si $x\in A$ y 0x<-N, entonces $|f(x)-L|<\epsilon$. Denotamos entonces

$$\lim_{x \to x_0} f(x) = L .$$

Es decir,

$$\lim_{x\to x_0} f(x) = L \Longleftrightarrow \forall \epsilon>0, \exists N>0: \text{si } x\in A \land x<-\sum_{\text{orange in the problem of the problem$$

Ejemplo: Demostrar que

$$\lim_{x \to -\infty} \frac{x^2}{1 - x^2} = -1$$

Ejemplo: Demostrar que para n un número natural se cumple:

a)

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

b)

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

$$\operatorname{Si} \lim_{x \to +\infty} f(x) = L \quad \text{ y } \quad \lim_{x \to +\infty} g(x) = M.$$

Entonces

a)
$$\lim_{x \to +\infty} (f+g)(x) = L + M.$$

b)
$$\lim_{x \to +\infty} \lambda f(x) = \lambda L$$
.

c)
$$\lim_{x \to +\infty} \lambda(gf)(x) = L \cdot M$$
.

d)
$$\lim_{x \to +\infty} \left(\frac{f}{g}\right)(x) = \frac{L}{M}. \quad M \neq 0$$

Se deja como ejercicio la prueba.

Ejemplo: Calcule
$$\lim_{x\to-\infty} \left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)$$

Resolución:

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right) = \lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x}}$$
$$= \frac{-2}{1+1} = -1$$

Ejercicio: Calcule $\lim_{x \to +\infty} \frac{x \arctan x}{x+1}$

Supongamos que hemos calculado $\lim_{x\to *}=L$ y que queremos calcular $\lim_{x\to *}\frac{1}{f(x)}=0.$

Teorema

- \blacksquare Si $\lim_{x\to *}f(x)=+\infty 0$ o $\lim_{x\to *}=-\infty$, entonces $\lim_{x\to *}\frac{1}{f(x)}=0.$
- Cuando $\lim_{x \to *} f(x) = 0$ tenemos que distinguir dos casos:

Si
$$f(x) \to o^+$$
 se tiene $\lim_{x \to x} \frac{1}{f(x)} = +\infty$

Si
$$f(x) \to o^-$$
 se tiene $\lim \frac{1}{f(x)} = -\infty$

IGENIERÍA TEMÁTICA

200

Ejemplo:

■ Calculemos $\lim \frac{\ln x}{}$:

Usemos que
$$\frac{\ln x}{x} = \left(\frac{1}{x}\right) \ln x$$
, para todo $x > 0$.

Analizamos cada factor:

cuando
$$x \to *$$
 tenemos $\frac{1}{x} \to +\infty$ y $\ln x \to -\infty$.

Por la aritmética de límites, $\lim_{x \to \infty} \frac{\ln x}{1 - \infty} = -\infty$.

■ Calculemos $\lim_{x \to +\infty} (\sqrt{x+3} + \sqrt{x})$:

Teorema

$$\mathrm{Si}\, \lim_{x\to *} \frac{f(x)}{g(x)} \quad \text{existe y} \quad \lim_{x\to *} g(x) = 0 \quad \text{entonces} \quad \lim_{x\to *} f(x) = 0.$$

Demostración:

Que $\lim_{x\to *} \frac{f(x)}{g(x)}$ exista quiere decir que $\lim_{x\to *} \frac{f(x)}{g(x)} = L$ y que L es un número

real. Por la aritmética de límites

$$\lim_{x \to *} f(x) = \lim_{x \to *} \left(\frac{f(x)}{g(x)} \right) g(x) = (L)(0) = 0$$

Observe que fue importante en la demostración del teorema que

 $\lim_{x \to *} \frac{f(x)}{g(x)}$ sea igual a un número real.

En el siguiente ejemplo se muestra que esta condición es necesaria.

Ejemplo: Justifique la veracidad o falsedad de la siguiente proposición:

$$\operatorname{Si} \lim_{x \to 0} \frac{f(x)}{g(x)} \quad \text{existe y} \quad \lim_{x \to 0} g(x) = 0 \quad \text{entonces} \quad \lim_{x \to 0} f(x) = 0.$$

Falso: Justifiquelo mediante un contraejemplo.

Teorema

Si $\lim_{x \to a} f(x) = +\infty$ y $\lim_{x \to a} g(x) = c$ donde c es un número real, entonces:

- $\lim_{x \to a} (f(x) + g(x)) = +\infty$
- **2** Si c > 0:

 - $\blacksquare \lim_{x \to a} \frac{f(x)}{g(x)} = +\infty$
- **3** Si c < 0:

 - $\blacksquare \lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$

IGENTERÍA TEMÁTICA

Teorema

- I Si $\lim_{x\to a}f(x)=+\infty$ y $\lim_{x\to a}g(x)=+\infty$ entonces $\lim_{x\to a}(f(x)+g(x))=+\infty$
- 2 Si $\lim_{x\to a}f(x)=+\infty$ y $\lim_{x\to a}g(x)=+\infty$ entonces $\lim_{x\to a}f(x)\cdot g(x)=+\infty$
- 3 Si $\lim_{x\to a}f(x)=+\infty$ y $\lim_{x\to a}g(x)=-\infty$ entonces $\lim_{x\to a}f(x)\cdot g(x)=-\infty$
- 4 Si $\lim_{x\to a}f(x)=-\infty$ y $\lim_{x\to a}g(x)=-\infty$ entonces $\lim_{x\to a}f(x)\cdot g(x)=+\infty$

Observación:

- En algunos casos no se puede predecir el límite de la operación conociendo simplemente el de cada operando.
- Las formas anteriores corresponden a las llamadas "formas indeterminadas":

$$0\cdot\infty, \ \infty-\infty, \ \frac{0}{0}, \ \frac{\infty}{\infty}, \ 1^{\infty}, \ \infty^0, \ 0^0$$

Ejercicios:

- I Un profesor dijo en su clase lo siguiente: Si $\lim_{x\to 0} (g(x))^2 = 9$ entonces, o bien $\lim_{x\to 0} g(x) = 3$, o bien $\lim_{x\to 0} g(x) = -3$ Muéstrele que está equivocado.
- Días después dijo lo siguiente:

Ya que
$$\lim_{x\to 0}g(x)=0$$
 entonces concluimos que $\lim_{x\to 0}f(x)\cdot g(x)=0.$

Muéstrele que está equivocado.

3. Calcule los límites

$$\lim_{x \to 0^+ \frac{x^k}{|x|^3}} \quad \text{y} \quad \lim_{x \to 0^-} \frac{x^k}{|x|^3}$$

para k=1 y para k=2.

4. Encuentre todos los valores enteros positivos de k para los cuales $\lim_{x\to 0}\frac{x^k}{|x|^3}$ existe.

Sesión 02

- 1 Límites en el infinito
- 2 Asíntotas a la gráfica de una función
 - Asíntota vertical
 - Asíntota horizontal
 - Asíntotas oblicuas
- 3 Referencias

Asíntotas a la gráfica de una función

Asíntota vertical

Definición (Asíntota vertical)

La recta x = a es una asíntota vertical de la gráfica de una función f si

- $\lim_{x \to \infty} f(x) = +\infty$: Asíntota superior izquierda.
- $\lim_{x \to a^+} f(x) = +\infty$: Asíntota superior derecha.
- $\lim_{x \to \infty} f(x) = -\infty$: Asíntota inferior izquierda.
- lacksquare $\lim_{x o a^+} f(x) = -\infty$: Asíntota inferior derecha.

Asíntota horizontal

Definición (Asíntota horizontal)

La recta y = b es una asíntota horizontal de la gráfica de una función f si

Asíntotas a la gráfica de una función

ŏ •000000

- $\blacksquare \lim_{x \to +\infty} f(x) = b \in \mathbb{R}$: Asíntota horizontal derecha.
- $\blacksquare \lim_{x \to -\infty} f(x) = b \in \mathbb{R}$: Asíntota horizontal izquierda.

Definición (Asíntota oblicua)

■ Si $\lim_{x \to +\infty} \frac{f(x)}{x} = m$ y $\lim_{x \to +\infty} [f(x) - mx] = b$.

Entonces diremos que la recta

$$L: y = mx + b$$

്ററററററ

Asíntotas a la gráfica de una función

es una asíntota oblicua derecha de la gráfica de f.

$$\blacksquare \ \operatorname{Si} \lim_{x \to -\infty} \frac{f(x)}{x} = m \quad \ \text{y} \quad \lim_{x \to -\infty} [f(x) - mx] = b.$$

Entonces diremos que la recta

$$L: y = mx + b$$

IGENTERÍA

Asíntota oblicua.

Asíntota horizontal derecha.

Asíntotas a la gráfica de una función

Asíntotas oblicuas

Ejemplo: Determinar las asíntotas de la función:

$$f(x) = \frac{2x^2 + 5x - 8}{x + 3}, \ \forall x \neq -3.$$

Resolución:

a) Asíntotas verticales: x=-3 es una posible asíntota vertical pues anula el denominador.

$$\lim_{x \to 3^+} \frac{2x^2 + 5x - 8}{x + 3} = \frac{-5}{0^+} = -\infty$$

$$\lim_{x \to 3^{-}} \frac{2x^2 + 5x - 8}{x + 3} = \frac{-5}{0^{-}} = +\infty$$

entonces x=-3 es una asíntota vertical para f .

Asíntotas a la gráfica de una función

b) Asíntotas horizontales:

$$\lim_{x \to \pm \infty} \frac{2x^2 + 5x - 8}{x + 3} = \frac{2x + 5 - \frac{8}{x}}{1 + \frac{3}{x}} = \pm \infty$$

entonces f no tiene asíntotas verticales.

c) Asíntotas oblicuas:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{2x^2 + 5x - 8}{x^2 + 3x} = \lim_{x \to \pm \infty} \frac{2 + \frac{5}{x} - \frac{8}{x^2}}{1 + \frac{3}{x}} = 2$$

Entonces m=2

$$b = \lim_{x \to \pm \infty} (f(x) - 2x) = \lim_{x \to \pm \infty} \left(\frac{2x^2 + 5x - 8}{x + 3} - 2x \right) = \lim_{x \to \pm \infty} \frac{-x - 8}{x + 3} = 0$$

8000000

Asíntotas a la gráfica de una función

Entonces b = -1.

Por lo tanto:

- y = 2x 1 es una asíntota oblicua derecha de f.
- y = 2x 1 es una asíntota oblicua izquierda de f.

Ejercicio: Determinar las asíntotas de la función:

$$f(x) = \frac{x^2}{\sqrt{x^2 - 1}}, \ x \in \langle -\infty, -1 \rangle \cup \langle 1, +\infty \rangle.$$

ŏ 00000•0

Asíntotas a la gráfica de una función

Solución:

Ejercicio: Sea

$$f(x) = \begin{cases} x + 1 + \frac{1}{x+1} & , \text{ si } x < -1 \\ \frac{2x^2}{x^2 + 1} & , \text{ si } x \ge -1 \end{cases}$$

ŏ oooooo

Asíntotas a la gráfica de una función

Hallar todas las asíntotas de la función f.

Solución:

- 1 Límites en el infinito
- 2 Asíntotas a la gráfica de una funciór
 - Asíntota vertical
 - Asíntota horizontal
 - Asíntotas oblicuas
- 3 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

