MNUM – Projekt 2.15

Zadanie 1

Obliczanie wartości własnych macierzy nieosobliwych metodą rozkładu QR w wersji z przesunięciami oraz bez przesunięć

Idea pojedynczego kroku metody QR bez przesunięć (przekształcenie $A^{(k)}$ do $A^{(k+1)}$):

$$A^{(k)} = Q^{(k)} R^{(k)}$$

$$A^{(k+1)} = R^{(k)} O^{(k)}$$

Ponieważ $Q^{(k)}$ jest ortogonalna, więc

$$R^{(k)} = (Q^{(k)})^{-1} A^{(k)}$$

$$A^{(k+1)} = Q^{(k)T} A^{(k)} Q^{(k)}$$

Macierz $A^{(k+1)}$ jest macierzą $A^{(k)}$ przekształconą przez podobieństwo, więc ma te same wartości własne. Można pokazać, że dla macierzy symetrycznej A, macierz $A^{(k)}$ będzie zbiegać do macierzy diagonalnej $diag\{\lambda_i\}$.

Algorytm metody QR z przesunięciami

$$A^{(k)} - p_k I = Q^{(k)} R^{(k)}$$

$$A^{(k+1)} = R^{(k)} Q^{(k)} + p_k I$$

$$= Q^{(k)T} (A^{(k)} - p_k I) Q^{(k)} + p_k I$$

$$= Q^{(k)T} A^{(k)} Q^{(k)}$$

Za p_k przyjmuje się bliższą wartość własną podmacierzy 2x2 z prawego dolnego rogu macierzy $A^{(k)}$. Po wyzerowaniu wszystkich elementów ostatniego wiersza poza ostatnim elementem (diagonalnym) postępujemy analogicznie z macierzą zmniejszoną do wymiarowości (n-1)x(n-1).

Kod algorytmu metody QR bez przesunięć (plik: eigval.m):

```
function [ w, iteracje, success ] = eigval( A ,tol, imax )
%eigval Oblicznie wartosci wlasnych metoda rozkladu QR bez
przesuniec
% tol - tolerancja
   imax - maksymalna liczba iteracji
% w - wektor wartości własnych
% iteracje - liczba iteracji potrzebnych do znalezienia
wartości własnych
    success - czy udało się uzyskać wynik zanim liczba
iteracji
   przekroczyła imax
    success = 1;
    z = zeros(size(A,1));
    for i= 1:imax
        b = A - diag(diag(A));
        if (b == z) \mid max(max(abs(b))) < tol
            break;
        end
        [q, r] = qrmqs(A);
        A = r * q; %macierz przekształcona
    end
    if i == imax
        success = 0;
        disp('Uwaga: osiągnięto imax');
    end
    w = diag(A);
    iteracje = i;
end
```

Kod algorytmu metody QR z przesunięciami (plik: eigvalS.m):

```
function [ eigenvalues, iteracje, success] = eigvalS( A, tol,
imax )
%eigvalS Oblicznie wartosci wlasnych metoda rozkladu QR z
przesunieciami
    tol - tolerancja
    imax - maksymalna liczba iteracji
    success = 1;
    n=size(A,1);
    eigenvalues = diag(zeros(n));
    INITIALsubmatrix = A; %macierz początkowa (oryginalna)
    iteracje = 0;
    for k = n:-1:2
        DK = INITIALsubmatrix; %macierz startowa dla jednej
wart. własnej
        i = 0;
        while i \le \max \& \max(abs(DK(k, 1:k-1))) > tol
            DD = DK(k-1:k, k-1:k); %macierz 2x2 prawego dolnego
rogu
            [ev1, ev2] = quadpolynroots(1, -(DD(1, 1) + DD(2, 2)),
DD(2,2)*DD(1,1)-DD(2,1)*DD(1,2));
            %najbliższa DK(k,k) wartość własna podmacierzy DD
            if abs(ev1 - DD(2,2)) < abs(ev2-DD(2,2))
                shift = ev1;
            else
                shift = ev2;
            end
            DK = DK - eye(k)*shift; %macierz przesunieta
            [Q1,R1] = qrmgs(DK); %faktoryzajca QR
            DK = R1 *Q1 +eye(k)*shift; %macierz przekształcona
            i = i+1;
            iteracje = iteracje + 1;
        end
        if i >imax
            success = 0;
            disp('imax reached')
        eigenvalues(k) = DK(k,k);
        if k>2
            INITIALsubmatrix = DK(1:k-1,1:k-1); %deflacja
macierzy
        else
            eigenvalues(1) = DK(1,1); %ostatnia wartość własna
        end
    end
end
```

```
Kod algorytmu rozkładu QR - zmodyfikowany algorytm Grama-Shmidta (plik: qrmqs.m):
```

```
function [ Q, R ] = qrmgs( A )
%qrmqs Rozkład QR zmodyfikowanym algorytmem Grama-Schmidta
    [m, n] = size(A);
    Q = zeros(m,n);
    R = zeros(n,n);
    d = zeros(1,n);
    %Rozkład QR
    for i =1:n
        Q(:,i) = A(:,i);
        R(i,i) = 1;
        d(i) = Q(:,i)' * Q(:,i);
        for j = i+1:n
            R(i,j) = (Q(:,i)'*A(:,j))/d(i);
            A(:,j) = A(:,j) - R(i,j)*Q(:,i);
        end
    end
    %Normowanie układu
    for i=1:n
        dd = norm(Q(:,i));
        Q(:,i) = Q(:,i)/dd;
        R(i,i:n) = R(i,i:n) *dd;
    end
end
Kod algorytmu oblicznia pierwiastków równania kwadratowego (plik: quadpolynroots.m):
function [ x1, x2 ] = quadpolynroots( a,b,c )
%quadpolynroots Funkcja zwracajaca pierwistki wielomianu
stopnia 2
    a,b,c - wspolczynniki wielomianu
    11 = -b + sqrt(b*b - 4*a*c);
    12 = -b - sqrt(b*b - 4*a*c);
    %wybieramy licznik o wiekszym module
    if abs(11) > abs(12)
       licznik = 11;
    else
        licznik = 12;
    end
    x1 = licznik/(2*a);
    %drugi pierwiastek obliczmy ze wzorów Viete'a
    x2 = ((-b)/a) - x1;
```

end

Wyniki:

Badane będzie 30 losowych macierzy o rozmiarach 5x5, 10x10 i 20x20. Maksymalna liczba iteracji (imax) została ustawiona na 10 000.

Rozmiar 5x5

W tym przypadku wszystkie metody były zbieżne.

Macierz i metoda	Średnia liczba iteracji	Liczba nieudanych prób
Macierz symetryczna	413.8000	0
Algorytm bez przesunięć	413.8000	0
Macierz symetryczna	7.3667	0
Algorytm z przesunięciami	7.3007	0
Macierz niesymetryczna	9.4000	0
Algorytm z przesunięciami	9.4000	0

Rozmiar 10x10

W jednym przypadku metoda bez przesunięć okazała się rozbieżna. Algorytm z przesunięciami był zbieżny dla wszystkich macierzy

Macierz i metoda	Średnia liczba iteracji	Liczba nieudanych prób	
Macierz symetryczna	808.3667	1	
Algorytm bez przesunięć	808.3007		
Macierz symetryczna	14.3333	0	
Algorytm z przesunięciami	14.5555		
Macierz niesymetryczna	20 5667	0	
Algorytm z przesunięciami	20.5667	0	

Rozmiar 20x20

W jednym przypadku metoda bez przesunięć okazała się rozbieżna. Algorytm z przesunięciami był zbieżny dla wszystkich macierzy

Macierz i metoda	Średnia liczba iteracji	Liczba nieudanych prób	
Macierz symetryczna	1.9205e+03	1	
Algorytm bez przesunięć	1.92056+05	1	
Macierz symetryczna	27.6333	0	
Algorytm z przesunięciami	27.0555	0	
Macierz niesymetryczna	43.9667	0	
Algorytm z przesunięciami	45.9007		

Wnioski:

Rozkład QR w wersji bez przesunięć wymaga znacznie większej liczby iteracji, nie będzie działał także w przypadku macierzy niesymetrycznych. Algorytm w wersji z przesunięciami wymaga mniejszego nakładu obliczeniowego, mimo większej złożoności każdego kroku, gdyż jest szybciej zbieżny. Jest on ponadto bardziej uniwersalny ze względu na obsługę macierzy niesymetrycznych.

Wyniki:

Przetestowane zostały pojedyncze przypadkowe macierze o danych rozmiarach i wyniki powyższych algorytmów zostały porównane z wynikami otrzymanymi za pomocą wbudowanej funkcji eig(). W tabeli przedstawiono średnią różnic wartości własnych otrzymanych tymi dwoma sposobami

	5x5	10x10	20x20
Macierz symetryczna	1,56104379422928	9,60175688957676	3,69694691526590
Algorytm bez przesunięć	e-11	e-12	e-12
Macierz symetryczna	1,26287869051112	1,18366427770411	6,32764327046509
Algorytm z przesunięciami	e-15	e-12	e-11
Macierz niesymetryczna	2,85144689765145	8,60442913801266	1,00270065059626
Algorytm z przesunięciami	e-08	e-08	e-07

Wnioski:

Jak widać rezultaty otrzymane za pomocą powyższych algorytmów można uznać za dokładne w stosunku do wbudowanej funkcji eig(). Dla macierzy niesymetrycznych uzyskujemy najmniejszą dokładność ze względu na występowanie wśród wartości własnych liczb zespolonych.

Zadanie 2

Wyznaczanie metodą najmniejszych kwadratów funkcji wielomianowej najlepiej aproksymującej dane.

Definiując macierz A jako macierz Nxn, gdzie N – ilość próbek, n – stopień wielomianu, dla której

$$A_{(i,j)} = x_j^{i-1}$$

 $i = 1, 2, 3, ..., n; j = 1, 2, 3, ..., N$

Rozwiązanie zadania najmniejszych kwadratów polega na znalezieniu wektora a zawierającego współczynniki wielomianu. W tym przypadku zrobimy to na dwa sposoby:

Układ równań normalnych:

$$A^T A a = A^T y$$

Układ równań wynikający z rozkładu QR:

$$A = QR$$
$$Ra = Q^{T} y$$

Kod algorytmu aproksymującego (plik: aproksymacja.m):

```
function [ a, res ] = aproksymacja( x, y, n, meth )
%aproksymacja Summary of this function goes here
   n - stopien wielomianu
    meth: 1 - uklad rownan normalnych; 2 - rozklad gr
    N = size(x, 1);
    A = zeros(N,n);
    %Wypelniamy macierz A odpowiednimi potęgami x
    for i=1:N
        for j = 1:n
            A(i,j) = x(i,1)^{(j-1)};
        end
    end
    %uklad rownan normalnych
    if meth == 1
        ata = A'*A;
        aty = A'*y;
        a = ata \setminus aty;
        res = norm(aty - ata*a);
    %uklad wynikajacy z rozkladu QR
    elseif meth == 2
        [Q,R] = qrmqs(A);
        a = R \setminus Q' * y;
        res = norm(R*a - Q'*y);
    end
end
```

Kod algorytmu obliczającego wartości wielomianu (plik: pval.m):

```
function [ w ] = pval(a , x)

%    pval oblicza wartosci wielomianu o wspolczynnikach a w

%    punktach x (a(1) odpowiada x^0)

%    w - wartosci wielomianu w danych punktach x
    ilprobek = size(x,1);
    stwiel = size(a,1);
    w = zeros(ilprobek,1);
    for i = 1: ilprobek
        for j = 1:stwiel
            w(i) = w(i) + a(j) * x(i)^(j-1);
        end
    end
end
```

Wyniki:

Błędy rozwiązania obliczone jako norma residuum:

Stopień wielomianu	Błąd rozwiązania	Błąd rozwiązania
	Układ równań normalnych	Rozkład QR
0	0	0
1	0	3,55271367880050e-15
2	7,10542735760100e-15	8,14028967780416e-15
3	7,10542735760100e-15	7,32410687763558e-15
4	3,63800656256145e-12	3,55271367880050e-15
5	2,91038339261805e-11	5,33167196845001e-15
6	1,19998167083181e-10	5,77742823859925e-15
7	4,80930315469239e-10	5,09051482459403e-14
8	4,66571281122666e-10	1,02447329786068e-13
9	1,86499304351714e-08	2,73369781880071e-13
10	1,37415774943358e-06	5,99787696540388e-13

Błędy aproksymacji:

Stopień wielomianu	Maksymalny błąd aproksymacji	Maksymalny błąd aproksymacji
	Układ równań normalnych	Rozkład QR
0	9,19745454545455	9,19745454545455
1	10,4721218181818	10,4721218181818
2	8,60677491841492	8,60677491841492
3	4,93266899766900	4,93266899766900
4	0,720822144522122	0,720822144522149
5	0,694955477855475	0,694955477855482
6	0,481961591937421	0,481961591937473
7	0,232988062526106	0,232988062525711
8	0,257555186299342	0,257555186299766
9	0,170669953885007	0,170669953885225
10	3,26312421528030e-10	2,59603449848100e-12

Wnioski:

Jak widać układ równań wynikający z rozkładu QR zachowuje dobre uwarunkowanie dłużej w przeciwieństwie do układu równań normalnych, który szybko traci dokładność. Mimo tego dla stopni wielomianów stopnia większego bądź równego 10 przebieg funkcji aproksymującej w obu przypadkach zaczyna odbiegać od poprzednich rezultatów. Wynika to z faktu, że w pewnym momencie przestajemy aproksymować funkcję a jedynie dane pomiarowe. Jak widać w obu przypadkach błędy aproksymacji maleją wraz z zwiększaniem stopnia wielomianu.