Math 214 Homework 10

Keshav Balwant Deoskar

April 18, 2024

Q10-15. Let V be a finite(n)-dimensional real vector space, and let $G_k(V)$ be the Grassmannian of k-dimensional subspaces of V. Let T be the subset $G_k(V) \times V$ defined by

$$T = \{ (S, v) \in G_k(V) \times V : v \in S \}$$

Show that T is a smooth rank-k subbundle of the product bundle $G_k(V) \times V \to G_k(V)$, and is thus a smooth rank-k vector bundle over $G_k(V)$.

Proof:

We have a product bundle $G_k(V) \times V \to G_k(V)$ and want to show that $T = \{(S, v) \in G_k(V) \times V : v \in S\}$ is a subbundle.

Notice that for each k-dimensional subspace of $x \in G_k(V)$, we have a linear subspace

$$T_x = \{(x, v) : x \in G_k(V), v \in x\} \subseteq G_k(V) \times V$$

Lemma 10.32 tells us that $T = \bigcup_{x \in G_k(V)} T_x$ is a subbundle of $G_k(V) \times V$ if and only if each point of $G_k(V)$ has a neighborhood U on which there exist smooth sections $\sigma_1, \dots, \sigma_{\dim(G_k(V))} : U \to G_k(V) \times V$ with the property that $\sigma_1, \dots, \sigma_{k(n-k)}$ form a basis for T_x at each $x \in U$.

Recall that we can cover $G_k(V)$ with charts that look like $\phi_I: \mathrm{GL}(V_I, V_J) \to \mathrm{Gr}_k(V)$ defined by

$$\phi_I(L) = \operatorname{graph}(L) = \{v + L(v) : v \in V_I\} \subset V$$

where $I \subseteq \{1, \dots, n\}$, $J = \{1, \dots, n\} \setminus I$, and $V_I = \operatorname{span}(e_i)_{i \in I}$. Also, note that $\dim \operatorname{GL}(V_I, V_J) = k(n-k)$.

Each $x \in G_k(V)$ is a k-dimensional linear space whose elements are n-dimensional vectors. So, for an open set U containing $x = \operatorname{span}\{v_1, \dots, v_k\} \in G_k(V)$ we can define the section $\sigma_i : U \to G_k(V) \times V$ by

$$x \mapsto (x, x^i)$$

where x^i is the i^{th} coordinate function in the coordinate $\phi_I(L)$ for $1 \leq i \leq k(n-k)$. Then, certainly, the sections $\sigma_1, \dots, \sigma_{k(n-k)}$ form a basis for T_x . So, Lemma 10.32 gives us the desired result.

Q10-17. Suppose $M \subseteq \mathbb{R}^n$ is an immersed submanifold. Prove that the ambient tangent bundle $T\mathbb{R}^n|_M$ is isomorphic to the Whitney sum $TM \oplus NM$, where $NM \to M$ is the normal bundle.

Proof:

Given an immersed submanifold $M \subseteq \mathbb{R}^n$, we define the ambient tangent bundle $T\mathbb{R}^n|_M$ to be the set

$$T\mathbb{R}^n\big|_M = \bigcup_{p \in M} E_p = \bigcup_{p \in M} T_p \mathbb{R}^n$$

with the projection $\pi_M: T\mathbb{R}^n\big|_M \to M$ obtained by restricting π .

Recall that the normal space to a manifold M at a point $x \in M$ is the (n-m) dimensional subspace $N_x M \subseteq T_x \mathbb{R}^n$ consisting of all vectors orthogonal to $T_x M$ and the normal bundle to manifold M is the subset of $T\mathbb{R}^n \approx \mathbb{R}^n \times \mathbb{R}^n$ defined as

$$NM = \{(x, v) \in \mathbb{R}^n \times \mathbb{R}^n : x \in M, v \in N_x M\}$$

To show that $T\mathbb{R}^n|_M \cong TM \oplus NM$, let's construct an isomorphism between the two. For any $p \in M$, since N_pM and T_pM are orthogonal compliments in $T_p\mathbb{R}^n$ we have a natural isomorphism $N_pM \oplus T_pM \cong T_p\mathbb{R}^n$. Then, we have

$$\bigcup_{p \in M} N_p M \oplus T_p M \cong \bigcup_{p \in M} T_p \mathbb{R}^n$$

We want to show that these local isomorphisms can be "combined" to get isomorphism between the whitney sum bundle and the ambient bundle.

To do so, note that the map $\phi: TM \oplus NM \to T\mathbb{R}^n\big|_M$ defined by $\phi(p,(v,w)) = (p,\phi_p(v,w))$ is smooth since the local isomorphisms ϕ_p are linear and bundle structures are smooth. Also, ϕ restricts to a linear isomorphism on each fiber, since ϕ_p is a linear isomorphism for each $p \in M$.

To show that ϕ is an isomorphism, we need to construct the inverse. Define a map $\psi : T\mathbb{R}^n|_M \to TM \oplus NM$ by $\psi(p,x) = (p,(x_p,y_p))$ where x_p is the orthogonal projection of x onto T_pM and $y_p = x - x_p$ is the orthogonal projection of x onto N_xM . Note that ψ is smooth, since the orthogonal prjections are smooth linear maps.

Both maps are one-to-one and onto, thus we have that ϕ is an isomorphism. So,

$$\left| \left. T\mathbb{R}^n \right|_M \cong TM \oplus NM \right|$$

Q11-5. For any smooth manifold M, show that T^*M is a trivial vector bundle if and only if TM is trivial.

Proof:

Suppose TM is trivial. Then, M is parallelizable and admits a global frame (E_1, \dots, E_n) which serves as a basis of T_pM , for all $p \in M$. Take some open cover $\{U_\alpha\}_{\alpha \in A}$ of M. Then, $(E_1, \dots, E_n) \mid_{U_\alpha}$ is a smooth local frame for all $\alpha \in A$.

Then, as in Example 11.13 in LeeSM, every smooth local frame has a dual smooth local coframe $\left(\epsilon^1,\cdots,\epsilon^n\right)\big|_{U_\alpha}$ such that $\left.\epsilon^j\big|_{U_\alpha}E_i\big|_{U_\alpha}=\delta_i^j$. Then, by the gluing lemma for smooth manifolds applied to $\left.\epsilon^j:M\to T^*M\right.$ we can extend to a global section of the tangent bundle to obtain global coframe for T^*M . Thus T^*M is also trivial.

The converse follows exactly the same procedure.

- **Q11-6.** Suppose M is a smooth n-manifold, $p \in M$, and y^1, \dots, y^k are smooth real-valued functions defined on a neighborhood of p in M. Prove the following statements.
 - (a) If k = n and $\left(dy^1 \big|_p, \cdots, dy^n \big|_p \right)$ is a basis for T_p^*M , then (y^1, \cdots, y^n) are smooth coordinates for M in some neighborhood of p.
- (b) If $(dy^1|_p, \dots, dy^k|_p)$ is a linearly independent k-tuple of covectors and k < n, then there are smooth functions y^{k+1}, \dots, y^n such that (y^1, \dots, y^n) are smooth coordinates for M in a neighborhood of p.

(c) If $\left(dy^1|_p, \dots, dy^k|_p\right)$ span T_p^*M , there are indices i_1, \dots, i_n such that $\left(y^{i_1}, \dots, y^{i_n}\right)$ are smooth coordinates for M in a neighborhood of p.

Proof:

(a) Let $\phi = (y^1, \dots, y^n) : U \to M$ for some open subset $p \in U \subseteq_{open} M$. To show that y^1, \dots, y^n form smooth coordinates for M in some neighborhood of p we need to show that ϕ is a local diffeomorphism.

This can be achieved by showing that $d\phi$ is invertible (since then the Inverse Function Theorem will imply that ϕ is a local diffeomorphism).

We know that $d\phi_p: T_pU \cong T_pM \to T_{\phi(p)}\mathbb{R}^n$ is a map between tangent spaces of equal dimension. So, to show bijection, it suffices to show $d\phi$ is injective.

Since $\left(dy^1\big|_p, \cdots, dy^n\big|_p\right)$ forms a smooth coframe for the cotangent bundle, we know there must be a smooth frame $(\partial/\partial y^1, \cdots, \partial/\partial y^n)$ for the tangent bundle dual to the coframe.

Now, if (x^1, \dots, x^n) are the coordinate functions on \mathbb{R}^n , the coordinate representation of ϕ has components $\hat{\phi}^j = x^j \circ \phi = y^j$. Then, consider any $v = v^i \frac{\partial}{\partial x^i} \in T_p M, v \neq 0$. Then,

$$\begin{split} d\phi_p(v) &= d\phi_p \left(v^i(p) \frac{\partial}{\partial y^i} \right) \\ &= \frac{\partial \hat{\phi}^j}{\partial y^i} (\hat{p}) \frac{\partial}{\partial x^j} \\ &= \underbrace{\frac{\partial y^j}{\partial y^i}}_{\delta^j_i} (\hat{p}) \frac{\partial}{\partial x^j} \\ &= v^j \frac{\partial}{\partial x^j} \end{split}$$

which is non-zero since at least one of the components v^j is non-zero. This shows that $d\phi$ is injective.

Therefore, $d\phi$ is a bijection i.e. it is invertible, so by the Inverse Function Theorem, ϕ is a local diffeomorphism meaning (y^1, \dots, y^n) form coordinate functions on some open neighborhood of p.

Lemma for (b): Let M be a smooth manifold and $p \in M$ with $\lambda \in T_p^*M$. Then, there exists a neighborhood U of p and smooth function $y^j : M \to \mathbb{R}$ such that $dy|_p = \lambda_p$.

Proof: Let $(U,(x^i))$ be a smooth chart with $p \in U$. Let $\frac{\partial}{\partial x^i}|_p$ be the standard basis for T_pM , and $dx^i|_p$ be the dual basis i.e. basis for T_p^*M . Then, we can write

$$\lambda = \lambda_i dx^i \big|_{p}$$

for scalars λ_i . Define $y = \lambda^i x_i$ where $\lambda^i = \lambda_i$. This is smooth since its just a linear combination of the coordinate functions. Then, indeed, we find

$$dy\big|_{p} = d\left(\lambda^{i} x_{i}\right)$$

$$= \lambda_{i} dx^{i}$$

$$= \lambda$$

- (b) T_p^*M is an n-dimensional vector space, so we can choose $\omega^{k+1}, \dots, \omega^n \in T_p^*M$ such that $(dy^1, \dots, dy^k, \omega^{k+1}, \dots, \omega^n)$ form a basis for T_p^*M . Then, we know from the Lemma above that there exists an open neighborhood U of p and smooth coordinate maps y_{k+1}, \dots, y_n such that $d(y_{k+1})|_p = \omega^{k+1}, \dots, d(y_n)|_p = \omega^n$. Then, by part (a), y_1, \dots, y_n form smooth coordinates for M in a neighborhood of p.
- (c) Assuming k > n, the fact that $\left(dy^1\big|_p, \cdots, dy^k\big|_p\right)$ span T_p^*M means that there is some subset of n of these vectors which also span T_p^*M i.e. there exist indices i_1, \cdots, i_n such that $\left(dy^{i_1}\big|_p, \cdots, dy^{i_n}\big|_p\right)$ form a basis for T_p^*M . Then, once again, by part (a) we get the desired result.

Q11-7. In the following problems, M and N are smooth manifolds, $F: M \to N$ is a smooth map, and $\omega \in \mathfrak{X}^*(N)$. Compute $F^*\omega$ in each case.

(a)
$$M = N = \mathbb{R}^2$$
;
 $F(s,t) = (st, e^t)$;
 $\omega = xdy - ydx$

(b)
$$M = \mathbb{R}^2, N = \mathbb{R}^3;$$

 $F(\theta, \phi) = ((\cos \phi + 2) \cos \theta, (\cos \phi + 2) \sin \theta, \sin \phi);$
 $\omega = z^2 dx$

(c)
$$M = \{(s,t) \in \mathbb{R}^2 : s^2 + t^2 < 1\}, N = \mathbb{R}^3 \setminus \{0\};$$

 $F(s,t) = (s,t,\sqrt{1-s^2-t^2});$
 $\omega = (1-x^2-y^2) dz$

Solutions:

Using Proposition 11.26, we can compute the pullback of a covector field $\omega \in \mathfrak{X}^*(N)$ under the action of smooth map $F: M \to N$ using the formula

$$F^*\omega = (\omega_i \circ F) d(y^j \circ F)$$

(a) We have

$$F^*\omega = (x \circ F) d(y \circ F) + (y \circ F) d(x \circ F)$$

$$= st \cdot d(e^t) + e^t d(st)$$

$$= st \cdot te^t + st \cdot e^t$$

$$\implies F^*\omega = st \cdot (e^t + 1)$$

(b)

$$F^*\omega = (z^2 \circ F) d(x \circ F)$$

$$= (\sin^2 \phi) \cdot d((\cos \phi + 2) \cos \theta)$$

$$= \sin^2 \phi \cdot [-(\cos \phi + 2) \sin \theta - \sin \phi \cos \theta]$$

$$= -\sin^2 \phi \cdot [(\cos \phi + 2) \sin \theta + \sin \phi \cos \theta]$$

(c)

$$F^*\omega = ((1 - x^2 - y^2) \circ F) d(z \circ F)$$

$$= (1 - s^2 - t^2) \cdot d(\sqrt{1 - s^2 - t^2})$$

$$= (1 - s^2 - t^2) \cdot \left[\frac{-s - t}{\sqrt{1 - s^2 - t^2}}\right]$$

$$= -(s + t)\sqrt{1 - s^2 - t^2}$$

Q11-11. Let M be a smooth manifold, and $C \subseteq M$ be an embedded submanifold. Let $f \in C^{\infty}(M)$, and suppose $p \in C$ is a point at which f attains a local maximum or minmium value among points in C. Given a smooth local defining function $\Phi: U \to \mathbb{R}^k$ for C on a neighborhood U of p in M, show that there are real numbers $\lambda_1, \dots, \lambda_k$ (called **Lagrange Multipliers**) such that

$$df_p = \lambda_1 d\Phi^1 \big|_p + \dots + \lambda_1 d\Phi^k \big|_p$$

Proof:

The smooth function $f: M \to \mathbb{R}$ attains a local maximum or minmium on $C \subseteq_{\text{embed}} M$. So, for $p \in C$ and $v \in T_pC$, we have $df_p(v) = 0$. Now, Φ is a local defining function for C, so its differential has full rank k at every $p \in C$. So the component functions of the differential, $d\Phi^i$ for $i = 1, \dots, k$, are linearly independent.

The component functions $d\Phi^i$ form a basis for a k-dimensional subspace of the cotangent space T_p^*M . In fact, this subspace is exactly the annihilator of T_pC i.e. the set of all covectors that vanish on T_pC .

This can be seen as

• For any $v \in T_pC$ we have $d\Phi^i(v) = 0$ because f attains a local extremum on C.

Now, any covector that vanishes on T_pC must be a linear combination of the basis elements, so

$$df_p = \lambda_1 d\Phi^1 \big|_p + \dots + \lambda_k d\Phi^k \big|_p$$

for scalars $\lambda_1, \dots, \lambda_k$.