CMPT 310: Artificial Intelligence Particle Filters and Applications of HMMs

Instructor: Steven Bergner --- Simon Fraser University

Recap: Reasoning Over Time

Markov models

Hidden Markov models

P(E	X)
•		

X	Е	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Video of Demo Ghostbusters Markov Model (Reminder)

Recap: Filtering

Elapse time: compute P($X_t \mid e_{1:t-1}$)

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P($X_t \mid e_{1:t}$)

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

$$P(X_1)$$
 <0.5, 0.5> Prior on X_1

$$P(X_1 \mid E_1 = umbrella)$$
 <0.82, 0.18> *Observe*

$$P(X_2 \mid E_1 = umbrella)$$
 <0.63, 0.37> Elapse time

$$P(X_2 \mid E_1 = umb, E_2 = umb)$$
 <0.88, 0.12> Observe

[Demo: Ghostbusters Exact Filtering (L15D2)]

Video of Ghostbusters Exact Filtering (Reminder)

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store P(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point

- So, many x may have P(x) = 0!
- More particles, more accuracy
- For now, all particles have a weight of 1

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3)

(3,2) (1,2)

(3,3)

(3,3)

(2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (3,3) (2,3)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$P(X) \propto P(e|X)P'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2)

Particles:

(2,2)

(3,2) w=.9 (2,3) w=.2 (3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2,3) w=.2

(3,2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3.1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,2) w=.9
- (2,2) w=.4

(New) Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)

[Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

Particle Filter SLAM – Video 2

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

Video of Demo Pacman Sonar Ghost DBN Model

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: P(E|X)

- New query: most likely explanation: $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$
- New method: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} o x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

$$f_{t}[x_{t}] = P(x_{t}, e_{1:t})$$

$$m_{t}[x_{t}] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_{t}, e_{1:t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$= P(e_{t}|x_{t}) \max_{x_{t-1}} P(x_{t}|x_{t-1}) m_{t-1}[x_{t-1}]$$

AI in the News

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)

Challenge

- Setting
 - User we want to spy on use HTTPS to browse the internet
- Measurements
 - IP address
 - Sizes of packets coming in
- Goal
 - Infer browsing sequence of that user

• E.g.: medical, financial, legal, ...

HMM

- Transition model
 - Probability distribution over links on the current page + some probability to navigate to any other page on the site

- Noisy observation model due to traffic variations
 - Caching
 - Dynamically generated content
 - User-specific content, including cookies
 - → Probability distribution P(packet size | page)

Results

Results

Speech Recognition

Digitizing Speech

Thanks to Bryan Pellom for this slide!

Speech Recognition in Action

Digitizing Speech

Speech in an Hour

Speech input is an acoustic waveform

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)

Darkness indicates energy at each frequency

Part of [ae] from "lab"

Complex wave repeating nine times

- Plus smaller wave that repeats 4x for every large cycle
- Large wave: freq of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz

Why These Peaks?

Articulator process:

- Vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

Resonances of the Vocal Tract

The human vocal tract as an open tube

- Air in a tube of a given length will tend to vibrate at resonance frequency of tube
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end

Figure: W. Barry Speech Science slides

Spectrum Shapes

Figure: Mark Liberman [Demo: speech synthesis]

Video of Demo Speech Synthesis

Vowel [i] sung at successively higher pitches

Graphs: Ratree Wayland

Acoustic Feature Sequence

Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

These are the observations E, now we need the hidden states X

Speech State Space

HMM Specification

- P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- P(X|X') encodes how sounds can be strung together

State Space

- We will have one state for each sound in each word
- Mostly, states advance sound by sound
- Build a little state graph for each word and chain them together to form the state space X

States in a Word

Transitions with a Bigram Model

198015222 the first 194623024 the same 168504105 the following 158562063 the world ... 14112454 the door 23135851162 the *

$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$
$$= 0.0006$$

Decoding

- Finding the words given the acoustics is an HMM inference problem
- Which state sequence $x_{1:T}$ is most likely given the evidence $e_{1:T}$?

$$x_{1:T}^* = \underset{x_{1:T}}{\operatorname{arg\,max}} P(x_{1:T} | e_{1:T}) = \underset{x_{1:T}}{\operatorname{arg\,max}} P(x_{1:T}, e_{1:T})$$

From the sequence x, we can simply read off the words

Next Time: Bayes' Nets!