OPEN PRESENTATION

PROJECT WHELS

08-10-2021

created by: Collin van adrichem Jake van der Valk Sjoerd Rietveld Martijn Kok Alejandro Oliver Llorente Daan Gielen

TABLE OF CONTENT

INTRODUCTION

Project background story
Research question & sub questions

REQUIREMENTS

must haves should haves could haves

PROJECT ACTIVITIES

ways to accomplish the requirements

END RESULT

products the project group deliver

INTRODUCTION

Project Wheels

- Background
- Research question:
 - How can IMU data be used to identify wheelchair basketballspecific movements?
- Sub-questions
 - Which form of data processing will be used?
 - Which specific movements can be detected?
 - Which sensor data is used for each movement?
 - Can movements be used to predict fatigue?
 - Can movements be used to detect overload?

Requirements

MUST HAVE

- Link the data points to the timestamps
 - Calculating:
 - Top Speed
 - Rotation
 - Collision
 - Average speed
 - Fast break
 - Fast defence
 - Documentation
 - Presentation

SHOULD HAVE

- Prediction
 - Fatigue
- Detection
 - o Slip

COULD HAVE

- User manual
- Prediction
 - Overload
- Detection:
- Repetitive movements
- Classify player:
- explosive playing or
 - stamina for a
 - longer time

PROJECT ACTIVITIES

RESEARCH

- Desk research
- Defining the dataset
- Applying the research to
 - execute pattern recognition
 - Determine the machine learning

PROGRAMMING

- Dividing the tasks
- Code
- Test the code
- Solve problems

Here we are going to predict the 100 % sprint speed

END RESULT

RESEARCH PAPER

Document explaining the choice of the machine learning method

PROGRAM

Machine learning program classifying all the actions in combination with a matchtime

PROGRAM MANUAL

Code manual for the user

DATA RESULTS

Document with the results obtained from the program