Mathématiques Générales 1

Feuille d'exercice 3

Institut Villebon-Charpak

Année 2017 - 2018

Dans cette feuille, K désigne \mathbb{R} ou \mathbb{C} .

On s'intéresse à résoudre les équations différentielles linéaires d'odre n à coefficients constants. Il est facile de vérifier que les fonctions données par le cours sont bien des solutions. Mais cela soulève deux questions : Comment les a-t-on trouvées ? Et surtout, comment-être certain qu'il n'y en a pas d'autres ?

Nous commençons par queques notions générales d'algèbre linéaire. En particulier, on revient sur la notion de somme directe (pour n espaces vectoriels) afin d'établir un résultat connu sous le nom de lemme des noyaux.

1 Autour du lemme des noyaux

1.1 Sommes directes

Définition 1.1 (Somme directe d'espaces vectoriels). Soit E un K-espace vectoriel, et $F_1, F_2, \ldots F_n \subset E$ des sous-espaces vectoriels de E.

On dit que les sous-espaces vectoriels $F_1, F_2, ..., F_n$ sont en **somme directe** si pour tous $f_1 \in F_1, f_2 \in F_2, ..., f_n \in F_n$, tels que

$$f_1 + f_2 + \ldots + f_n = 0$$

alors $f_1 = f_2 = \dots = f_n = 0$.

Par ailleurs, si $E = F_1 + F_2 + \dots + F_n = \{e \in E, \exists (f_1, f_2, \dots, f_n) \in F_1 \times F_2 \times \dots \times F_n, e = f_1 + f_2 + \dots + f_n\} = \{f_1 + f_2 + \dots + f_n, (f_1, f_2, \dots, f_n) \in F_1 \times F_2 \times \dots \times F_n\}, \text{ alors on \'ecrit}$

$$E = F_1 \oplus F_2 \oplus \ldots \oplus F_n$$

1. Soit E un espace vectoriel, justifier que

$$E = E \oplus \{0\}$$

- 2. Soit E un espace vectoriel, et $F_1, F_2 \subset E$ des sous-espace vectoriels. Montrer que les espaces F_1 et F_2 sont en somme directe si et seulement si $F_1 \cap F_2 = \{0\}$.
- 3. (a) Soient $F_1 = \{(x, y) \in \mathbb{R}^2, 3x + 2y = 0\}$ et $F_2 = \{(x, y) \in \mathbb{R}^2, x 4y = 0\}$. Justifier que F_1 et F_2 sont des sous-espace vectoriels de \mathbb{R}^2 et montrer que

$$F_1 \oplus F_2 = \mathbb{R}^2$$

- (b) On considère $F_3 = \{(x, y) \in \mathbb{R}^2, x = 0\}$. Montrer que $F_1 \cap F_2 = F_1 \cap F_3 = F_2 \cap F_3 = \{0\}$ mais que les espaces F_1 , F_2 et F_3 ne sont pas en somme directe.
- 4. On se donne E un espace vectoriel, et $F_1, F_2, \dots F_n \subset E$ des sous-espaces vectoriels de E. On considère l'application

$$\Sigma: F_1 \times F_2 \times \ldots \times F_n \longrightarrow E$$

 $(f_1, f_2, \ldots, f_n) \longmapsto f_1 + f_2 + \ldots + f_n$

- (a) Justifier que Σ est linéaire.
- (b) Montrer que Σ est injective si et seulement si les espaces $F_1, F_2, \dots F_n$ sont en somme directe.
- (c) Montrer que Σ est surjective si et seulement si

$$F_1 + F_2 + \ldots + F_n = E$$

(d) Conclure que φ est bijective si et seulement si

$$E = F_1 \oplus F_2 \oplus \ldots \oplus F_n$$

1.2 Le lemme des noyaux pour $(X - \lambda_1)(X - \lambda_2)$

Soit E un K-espace vectoriel et $u:E\to E$ un endomorphisme de E. On suppose qu'il existe deux scalaires distincts $\lambda_1,\lambda_2\in K$ tels que

$$u^2 - (\lambda_1 + \lambda_2).u + (\lambda_1 \lambda_2).\operatorname{Id}_E = 0$$

- 1. Soit $e \in E$, montrer que $u(e) \lambda_1 \cdot e \in \ker(u \lambda_2 \operatorname{Id}_E)$ et $u(e) \lambda_2 \cdot e \in \ker(u \lambda_1 \operatorname{Id}_E)$
- 2. Montrer que $\ker(u \lambda_1 \operatorname{Id}_E) \cap \ker(u \lambda_2 \operatorname{Id}_E) = \{0\}.$
- 3. Conclure que

$$\ker(u - \lambda_1 \operatorname{Id}_E) \oplus \ker(u - \lambda_2 \operatorname{Id}_E) = E$$

Ce résultat est connu sous le nom de lemme des noyaux.

4. On considère l'application $s:(x,y)\mapsto (y,x).$ Montrer que $s^2=\mathrm{Id}_{\mathbb{R}^2}.$ En déduire que

$$\mathbb{R}^2 = \ker(s - \mathrm{Id}_E) \oplus \ker(u + \mathrm{Id}_E)$$

A quoi correspondent géométriquement ces deux espaces?