#### ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

# Τεχνικές Βελτιστοποίησης

## 3η Εργαστηριακή Άσκηση

Μέθοδος Μέγιστης Καθόδου με Προβολή

> Ονοματεπώνυμο: Κυπριανίδης Άρης-Ευτύχιος

➤ AEM: 10086

➤ Email: <u>akyprian@ece.auth.gr</u>

## Θέμα 1

Αρχεία: thema\_1.m, steepest\_descent.m

Η συνάρτηση μας είναι η  $f(x) = \frac{1}{3}x_1^2 + 3x_2^2$ .



Το ελάχιστο βρίσκεται στο σημείο (0,0). Η παράγωγος της συνάρτησης είναι:  $\nabla f(x) = \begin{cases} \frac{2}{3} x_1 \\ 6x_2 \end{cases}$ . Για να δούμε αν θα

συγκλίνει η συνάρτηση για βήμα 
$$\gamma_{\kappa}$$
 παίρνουμε:

$$x_{k+1} = x_k - \gamma_k \nabla f(x_k) =>$$

$$\begin{cases} x_{1,k+1} = x_{1,k} \left( 1 - \frac{2\gamma_k}{3} \right) \\ x_{2,k+1} = x_{2,k} (1 - 6\gamma_k) \end{cases}$$

Για να συγκλίνει πρέπει  $\frac{|x_{1,k+1}|}{|x_{1,k}|} < 1$  και  $\frac{|x_{2,k+1}|}{|x_{2,k}|} < 1$ , άρα  $\left|1 - \frac{2\gamma_k}{3}\right| < 1 \implies \gamma_k < 3$  και  $|1 - 6\gamma_k| < 1 \implies \gamma_k < \frac{1}{3}$ .

Άρα για  $\gamma_k < \frac{1}{3}$ , η συνάρτηση συγκλίνει στο ελάχιστο.

Οπότε για την μέθοδο μέγιστης καθόδου χωρίς προβολή με ε = 0.001 για το σημείο (5,5) έχουμε:

I. 
$$\Gamma \iota \alpha \gamma_{\kappa} = 0.1$$
:





### II. $\Gamma \iota \alpha \gamma_{\kappa} = 0.3$ :





III.  $\Gamma \iota \alpha \gamma_{\kappa} = 3$ :





IV.  $\Gamma \iota \alpha \gamma_{\kappa} = 5$ :





Παρατηρούμε ότι για τις τιμές 0.1 και 0.3 η συνάρτηση συγκλίνει ενώ για 3 και 5 όχι, όπως και αποδείξαμε παραπάνω. Στα διαγράμματα όπου  $x_k, y_k$  εννοούμε  $x_{1,k}, x_{2,k}$ .

## Θέμα 2

 $Aρχεία: thema\_2.m$ ,  $steepest\_descent\_projection.m$ 

Για το θέμα 2 και τα επόμενα χρησιμοποιούμαι την μέθοδο μέγιστης καθόδου με προβολή. Έχουμε  $s_k$  = 5,  $\gamma_k$  = 0.5,  $\epsilon$  = 0.01, για το σημείο (5,-5) :

Steepest Descent Projection for step\$: 5 and step6: 0.5. Starting Point: [5 -5]





Παρατηρούμε ότι σε αντίθεση με το πρώτο θέμα για μεγάλο βήμα, αυτή η μέθοδος δεν ξεφεύγει στο άπειρο, αλλά μένει μέσα στους αρχικούς περιορισμούς  $-10 < x_1 < 5$  και  $-8 < x_2 < 12$ . Παρόλα αυτά δεν καταφέρνει να συγκλίνει στο ελάχιστο, αλλά ταλαντώνεται σε δύο τιμές επ'άπειρον (έχουμε βάλει μέγιστες επαναλήψεις 500).

## Θέμα 3

 $Aρχεία: thema_3.m$ ,  $steepest\_descent\_projection.m$ 

Έχουμε  $s_k = 15$ ,  $\gamma_k = 0.1$ ,  $\epsilon = 0.01$ , για το σημείο (-5,10) :





Σε αυτήν την περίπτωση, λόγω του μεγάλου βήματος κάνει λίγες επαναλήψεις αλλά δεν μπορεί να φτάσει εύκολα κοντά στο ελάχιστο, οπότε είναι σαν να ταλαντώνεται το  $x_2$  κοντά στο 0. Με μείωση του  $s_k$  μπορεί να λυθεί αυτό, αλλά θα αυξηθούν οι επαναλήψεις.

# Θέμα 4

Aρχεία: thema\_4.m, steepest\_descent\_projection.m

Έχουμε  $s_k$  = 0.1,  $\gamma_k$  = 0.2,  $\epsilon$  = 0.01,  $\gamma$ ια το σημείο (8,-10) :





Steepest Descent Projection. StepS: 0.1. StepG: 0.2. Starting Point: [8 -10]



Το αρχικό μας σημείο είναι μη εφικτό, αλλά η μέθοδος το φέρνει το σημείο μέσα στους περιορισμούς μετά από μερικές επαναλήψεις. Βλέπουμε πως επιτυγχάνεται σύγκλιση λόγω της επιλογής μικρού βήματος.

#### Συμπεράσματα:

Για μεγάλα βήματα, η μέθοδος μέγιστης καθόδου με προβολή βοηθάει στο να μην ξεφύγει στο άπειρο η συνάρτηση, αλλά δεν συγκλίνει. Για μικρά βήματα δουλεύει επιθυμιτά ο αλγόριθμος.