Modelling the Opioid Epidemic in New York

Noah Igra, Roland Chen, Simon Zhao

Procedure Break-down

Goal: Model the Prescription Opioid Epidemic for New York City and New York State excluding NYC, compare the impact of the parameters on the different outcomes.

- 1. History of epidemiology
- 2. Prescription opioid model
- 3. Sensitivity analysis
- 4. Results

References

- Battista, N.A., Pearcy, L.B. & Strickland, W.C. "Modeling the Prescription Opioid Epidemic." Bull Math Biol (2019) 81: 2258. https://doi.org/10.1007/s11538-019-00605-0
- Saltelli, Andrea et al. "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index." Computer Physics Communications 181 (2010): 259-270.
 https://www.sciencedirect.com/science/article/pii/S0010465509003087?via%3dihub
- J.W.Jansen, Michiel, "Analysis of variance designs for model output". Computer Physics Communications 117 (1999) 35-43,
 https://reader.elsevier.com/reader/sd/pii/S0010465598001544?token=C7428AFE2266B047AD77021B9535BF62D542AB6EB999F141AA3C37340AEBDB80B5660C1BC55172CC903105C5041D59C3
- Saltelli, Andrea. "Making best use of model evaluations to compute sensitivity indices." Computer Physics Communications, Volume 145, Issue 2, (2002), Pages 280-297, https://www.sciencedirect.com/science/article/pii/S0010465502002801
- Sobol, I.M. "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates."
 Mathematics and Computers in Simulation, Volume 55, Issues 1–3, (2001), Pages 271-280,
 https://www.sciencedirect.com/science/article/pii/S0378475400002706
- Sobol, I.M. "Sensitivity estimates for nonlinear mathematical models." Matem. Modelirovanie 2 (1) (1990) 112–118 (in Russian), MMCE, 1(4) (1993) 407–414 (in English),
 https://pdfs.semanticscholar.org/d339/b9cc42d6a7286d96814e6713fd13cdde87e7.pdf
- "About U.S. Opioid Epidemic." U.S. Department of Health and Human Services (2019), https://www.hhs.gov/opioids/about-the-epidemic/index.html

The Opioid Epidemic

- More than 130 people die every day from opioid overdose
- Dangerous uptrend of death caused by opioid overdose since 1990
- Prescription misuse accounted for 78.5 billion a year in U.S
- 11.4 million people misused prescription opioids in 2017
- A large amount of people become Opioid-dependent because of severe accidents such as car crash
- Overdose death more than doubled from 2007 to 2017

Motives & History

Model Overview

Model Validation
Method

Sensitivity Analysis and Decomposition Scheme

Monte Carlo and Pseudocode

Results

Why We Care: The Opioid Epidemic in NYS

- Roland: Had own experience with opioids, consulting (can include pharma companies)
- Noah: Medicine, public health, data driven treatment
- Simon: Investment in pharmaceutical stocks

Figure 1.5 Overdose deaths involving any opioid, age-adjusted rate per 100,000 population, by region, New York State, 2010-2016

Data source: CDC WONDER; Data accessed August 2018

Why NYC vs NYS

- Urban/Rural divide in the opioid epidemic
- Ability to keep most other factors (geographic, etc) equal
- Difference could mean that different approaches are needed for different demographics

History of Epidemiology

Definition: Epidemiology is the study of the distribution and determinants of public health events in specified populations.

Application cases:

- 1. Elimination of smallpox
 - Dr. Edward Jenner first discovered that cowpox infected milkmaids are immune to smallpox in 1796
 - eventually established the theory of vaccine in 1801
 - Mankind eradicated this devastating disease in 1997
- 2. Tobacco and lung cancer
 - found direct causations between smoking and lung cancer
 - helped push the law to mandate the label "smoking can kill you" on cigarette cases in 1965

The last patient of smallpox

Mathematical Methods in Epidemiology: A Timeline

(1927) Kermack and McKendrick:

- Introduce the original SIR model
- Focus on causal factors in contagious epidemics

(1979) Anderson and May:

Use population dynamics to explore spread of infectious diseases

(2007) White and Comiskey:

Revise model to address heroin epidemic in Ireland

(2019) Battista, Pearcy, Strickland:

- Apply model to prescription opioid epidemic in the US
- Formulated to address addiction

<u>Figure:</u> SIR model (top) and revised model for heroin use (bottom)

Prescription Opioid Model

Prescription Opioid Model

- Four different population classes:
 - o 'S': Susceptible
 - 'P': Prescribed Users
 - 'A': Addicted*
 - 'R': Rehabilitation/Treatment
- Assumptions for population model:

1.
$$S + P + R + A = 1 \ \forall t$$

$$2 \cdot \dot{S} + \dot{P} + \dot{R} + \dot{A} = 0 \ \forall t$$

3.
$$S, P, R, A > 0 \ \forall t$$

^{*: &#}x27;Addicted' here refers to the proportion of the population with an opioid related Substance Abuse Disorder (SUD)

Prescription Opioid Model: Flow from S to A

- α: Prescription rate
- v: Addiction rate
- β: Addiction rate via illicitly obtained opiates:
 - \circ $\beta_{\mathbf{A}}$: Addiction rate via <u>addict-sourced</u> prescription opiates
 - \circ $\beta_{\mathbf{p}}$: Addiction rate via prescription-sourced prescription opiates
 - Depend on existing populations A and P, respectively
- σ: Relapse rate

Prescription Opioid Model: Flow from A to S

- ε: End prescription without addiction rate
- ζ: Treatment entry rate
- δ: Treatment success rate

Prescription Opioid Model: Satisfying Assumptions

- μ/μ^* : Natural death rate and the addicted death rate.
- Returns all deaths back into the model at S S to maintain $S + P + R + A = 1 \ \forall t$

Prescription Opioid Model: 5-D Dynamical System

Can be expressed as four time-continuous differential equations:

(1)
$$\dot{S} = -\alpha S - \beta_A SA - \beta_P SP + \varepsilon P + \delta R + \mu (P + R) + \mu^* A$$

(2)
$$\dot{P} = \alpha S - (\varepsilon + \gamma + \mu) P$$

(3)
$$\dot{A} = \gamma P + \sigma R + \beta_A SA + \beta_P SP - (\zeta + \mu^*)A$$

(4)
$$\dot{R} = \zeta A - (\delta + \sigma + \mu)R$$

- I. Input parameters calculated from sourced data.
 - Values from various levels of the population: sub state, state, regional, and national
 - Manipulated to reflect yearly rates of change
 - 'Realistic' parameters, not real parameters
 - Varying values for 'difficult' parameters
 - Prescription rate
 - Rate of completing prescription without addiction
 - Treatment entry rate
 - Input data for overall population numbers, as well as all opioid OD deaths for 2010-2017
 - Calculate Addicted Opioid-Related Deaths $ORD_A(t)$

Method

Decomposition Scheme

Pseudocode

- I. Input parameters calculated from sourced data.
- II. Solve ODE's for 2010-2017:
 - \circ Solve for combinations of α,ε,ζ
 - Adaptive RK4 solver

• Scaling to minimize data-sourced parameters:

1)
$$\dot{S} = -\alpha S - \beta_A SA - \beta_P SP + \varepsilon P + \delta R + \mu (P + R) + \mu^* A$$

2)
$$\dot{P} = \alpha S - (\varepsilon + \gamma + \mu) P$$

3)
$$\dot{A} = \gamma P + \sigma R + \beta_A SA + \beta_P SP - (\zeta + \mu^*)A$$

4)
$$\dot{R} = \zeta A - (\delta + \sigma + \mu)R$$

1)
$$\dot{s} = -(\alpha + \alpha + p)s + \frac{(\epsilon + \mu)}{k}p + \alpha\left(\frac{1}{\sigma} - 1\right)r + \frac{\mu^*}{a}a$$

2)
$$\dot{p} = \alpha ks - (\epsilon + \gamma + \mu)p$$

3)
$$\dot{a} = \alpha gr + (h\gamma + gs)p + (gs - (\zeta + \mu^*))a$$

4)
$$\dot{r} = \frac{\zeta \sigma}{\alpha g} a - r$$

Assumptions and Definitions:

•
$$\delta + \sigma + \mu = 1$$

•
$$t = \tau * (\delta + \sigma + \mu)^{-1}$$

•
$$S = \frac{s}{\alpha}$$

•
$$P = \frac{p}{\beta_p}$$

•
$$A = \frac{a}{\beta_A}$$

•
$$R = \frac{r}{\sigma}$$

•
$$h = \frac{\beta_A}{\beta_p}$$

•
$$k = \frac{\beta_p}{\alpha}$$

•
$$g = \frac{\beta_{\alpha}}{\alpha} = h * k$$

Prescription Opioid Model: Adaptive RK45

Fourth Order Runge-Kutta-Fehlberg:

$$for \vec{X}_n = \begin{bmatrix} S_{(t_n)} \\ P_{(t_n)} \\ A_{(t_n)} \\ R_{(t_n)} \end{bmatrix} and \vec{F}(t_n, \vec{X}_n) = \begin{bmatrix} \dot{S} \\ \dot{P} \\ \dot{A} \\ \dot{R} \end{bmatrix} :$$

Let
$$\vec{X}_{n+h} = \vec{X}_n + \vec{K} + O(h^5)$$
 such that:

•
$$\vec{K}_1 = h * \vec{F}(t_n, \vec{X}_n)$$

•
$$\vec{K}_2 = h * \vec{F} \left(t_n + \frac{h}{2}, \vec{X}_n + \frac{\vec{K}_1}{2} \right)$$

•
$$\vec{K}_3 = h * \vec{F} \left(t_n + \frac{h}{2}, \vec{X}_n + \frac{\vec{K}_2}{2} \right)$$

•
$$\vec{K}_4 = h * \vec{F}(t_n + h, \vec{X}_n + \vec{K}_3)$$

•
$$\vec{K} = \frac{\vec{K}_1 + \vec{K}_4}{6} + \frac{\vec{K}_2 + \vec{K}_3}{3}$$

- I. Input parameters calculated from sourced data.
- II. Solve ODE's for 2010-2017:
 - Solve for combinations of α, ϵ, ζ
 - Adaptive time step fourth order Runge Kutta (RK4)
 - \circ Calculate simulated opioid related addict deaths $ORD_S(t)$
 - $lacksquare ORD_S(t) = population(t) * [A(t) * (\mu^* \mu)]$
 - Proportion of addict deaths attributed to opioid related causes for year t
 - \circ Find $d(S,A) := |ORD_S(t) ORD_A(t)|$

- I. Input parameters calculated from sourced data.
- II. Solve ODE's for 2010-2017
- III. Output Findings: Can we find realistic results?
 - \circ $ORD_S(t)$ vs. Year
 - \circ α, ϵ, ζ resulting in minimal d(S,A)

NYC Results: Simulated Deaths per Year

NYC Results: Parameter Plot

NYS\NYC Results: Simulated Deaths per Year

NYS\NYC Results: Parameter Plot

Variance Based Sensitivity Analysis

- Range of outcomes is still too wide
- What is the relative <u>impact</u> of our parameters?
 - Do the two groups react similarly to these factors?
 - If not, what's different?
- **Sensitivity Analysis:** How uncertainty in the output can be attributed to each source
 - Focus on parameter effect on output variance

Motives & History

Model Overview

2

Model Validation Method

3

Sensitivity Analysis and Decomposition Scheme

Pseudocode

Sensitivity

- I. Scalar Y is a function of all parameters X_i for i = 1, 2...k such that:
 - $\circ \ \ Y = f(X_1, \ldots X_k)$
 - $\circ \ Var(Y) := V(Y)$ (Uncertainty in the Output)
- II. Y can also be defined as a function of X_i such that:
 - $\circ \ Y = f_i(X_i)$ (Isolated Impact)
 - $\circ \ \ Var(Y\ attributed\ to\ X_i):=V_{X_i}(Y)$

Given I and II, can define sensitivity of Y to parameter X_i :

III. $S_i := rac{V_{X_i}(Y)}{V(Y)}$ (relative sensitivity of Y to Xi)

Functional Decomposition Scheme

- Different order of interactions between parameters
- For $Y = f(X_1, \dots X_k)$:
 - \circ First order components: $f_i(X_i)$
 - \circ Second order components: $f_{i,j}(X_i,X_j)$
 - And so forth for a total of 2^k terms!
- Hoeffding Decomposition of function Y=f:

$$f = f_0 + \sum_i f_i \; + \; \sum_i \sum_{i>i} f_{ij} \; + \; \dots \; + f_{12...k}$$

Function Decomposition Scheme: Unicity Condition

• Considering Y given $X_{i_s} \ \forall X_{i_s} \in [0,1]$

$$Y=f_0 + \int_0^1 f_i dx_i \ for \ f_0 = E(Y) \iff \int_0^1 f_i dx_i = 0$$

- Idea: Components are <u>orthogonal</u> in a K-dimensional space
- Unicity condition:

$$\int_0^1 f_{i_1 i_2 \ldots i_s}(X_{i_1}, X_{i_2}, \ldots, X_{i_s}) dX_k = 0, ext{ for } k = i_1, \ldots, i_s$$

Function Decomposition Scheme:

- ullet First order case: $Y=f=f_0+\sum_i f_i$ $For fixed\ X_i: E_{\mathbf{X}_{\sim \mathbf{i}}}(Y\,|X_i)=f_0+f_i$ $f_0=E(Y)$ $f_i=E_{\mathbf{X}_{\sim i}}(Y\,|X_i)-E(Y)$
- ullet Similarly, for a second order case: $f_{ij} = E_{\mathbf{X}_{\sim \mathbf{i}, \mathbf{i}}}(Y \, | X_i, X_j) f_0 \, \, f_i \, \, f_j$

Functional Decomposition Scheme: Variance

$$f = f_0 + \sum_i f_i \; + \; \sum_i \sum_{j>i} f_{ij} \; + \; \dots \; + f_{12...k}$$

Assuming that each f is square integrable,

$$V(f) = \sum_i V_i \; + \; \sum_i \sum_{j>i} V_{ij} \; + \; \dots \; + V_{12...k}$$

Considering the first order variance for parameter X_i :

$$V_i = V(f_i) = V_{X_i}[E_{\mathbf{X}_{\sim \mathbf{i}}}(Y \mid X_i)] \ + \ V(f_0) = V_{X_i}[E_{\mathbf{X}_{\sim \mathbf{i}}}(Y \mid X_i)]$$

Functional Decomposition Scheme: Variance

- ullet $V_{X_i}[E_{\mathbf{X}_{\sim \mathbf{i}}}(Y \mid X_i)]$: First order variance of output for parameter X_i
- ullet $V_{\mathbf{X}_{\sim \mathbf{i}}}[E_{X_i}(Y \mid \mathbf{X}_{\sim \mathbf{i}})]$: First order variance of output for all parameters EXCEPT X_i
 - \circ Sum of all components independent of X_i
 - Includes first and higher order components
- ullet $V(Y) V_{\mathbf{X}_{\sim \mathbf{i}}}[E_{X_i}(Y \mid \mathbf{X}_{\sim \mathbf{i}})]$: Total order variance of output depending on X_i
 - \circ Sum of all components dependent on X_i

Functional Decomposition Scheme: Sensitivity

$$rac{1}{V(f)}[V(f) = \sum_i V_i \; + \; \sum_i \sum_{j>i} V_{ij} \; + \; \dots \; + \; V_{12...k}]$$
 $1 = \sum_i S_i \; + \; \sum_i \sum_{j>i} S_{ij} \; + \; \dots \; + \; S_{12...k}$

Can define first and total order sensitivities of parameter X_i :

$$egin{aligned} S_i &= rac{V_{X_i}(E_{X_\sim i}(Y|X_i))}{V(Y)} \ S_i^T &= rac{1}{V(Y)}[V(Y) - V_{\mathbf{X}_\sim \mathbf{i}}[E_{X_i}(Y \mid \mathbf{X}_\sim \mathbf{i})]] = \mathbf{1} - rac{\mathbf{V}_{\mathbf{X}_\sim \mathbf{i}}[\mathbf{E}_{\mathbf{X}_\mathbf{i}}(\mathbf{Y} \mid \mathbf{X}_\sim \mathbf{i})]}{\mathbf{V}(\mathbf{Y})} \end{aligned}$$

Calculating Sensitivities

Computationally, V(Y) is quite easy. For the others, we have to use a Monte Carlo method:

$$V_{X_i}(E_{\mathbf{X}_{\sim \mathbf{i}}}(Y|X_i)) = rac{1}{N} \sum_{j=1}^N f(\mathbf{B})_j (f(\mathbf{A}_{\mathbf{B}}^{(\mathbf{i})})_j - f(\mathbf{A})_j)$$

Where A, B are two sampling matrices, and $A_B^{(i)}$ is A with the ith row replaced by B.

But how do we know this is the correct method?

Verifying Monte Carlo Method

By Statistical rules, we know that:

$$V(Y) = E(Y^2) - E(Y)^2$$

$$E(Y) = \int Y dY$$
 when probability density is normalized

That means,

$$egin{aligned} V_{X_i}(E_{\mathbf{X}_{\sim i}}(Y|X_i)) &= \int (E_{\mathbf{X}_{\sim i}}^2(Y|X_i)) dX_i - (\int E_{\mathbf{X}_{\sim i}}(Y|X_i) dX_i)^2 \ &= \int (E_{\mathbf{X}_{\sim i}}^2(Y|X_i)) dX_i - E(Y)^2 \end{aligned}$$

What is $\int (E^2_{\mathbf{X}_{\sim i}}(Y|X_i))dX_i$ and what is $E(Y)^2$?

Verifying Monte Carlo Method

First, $\int E^2(Y|X_j))dx_j$, By definition:

$$egin{aligned} \int E^2(Y|X_j))dx_j &= \int [\iint \ldots \int f(x_1,x_2,\ldots x_j,\ldots,x_k) \prod_{i=1,i
eq j}^k dx_i]^2 dx_j \ &= \iint \ldots \int f(x_1,x_2,\ldots x_j,\ldots,x_k) f(x_1^{'},x_2^{'},\ldots,x_j,\ldots x_k^{'}) \prod_{i=1,i
eq j}^k dx_i \prod_{i=1,i
eq j} dx_i^{'} dx_j \end{aligned}$$

These two sets of variables are going to be calculated using a Monte Carlo method:

$$\int_{\mathbf{R^m}} f(\mathbf{x}) d\mathbf{x} = rac{1}{N} \sum_{i=1}^N f(\mathbf{x})_i$$

where $\mathbf{x} = (x_1, x_2, \dots, x_m)$, and we take N samples, $(\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$

Saltelli Sampling

- Sobol guasi-random sequence:
 - A type of sequence that tries to fill an n-dimensional hypercube between [0,1]
 - O Designed to make true the statement:

$$\int_{\mathbf{R^m}} f(\mathbf{x}) d\mathbf{x} = rac{1}{N} \sum_{i=1}^N f(\mathbf{x})_i$$

- "Quasi-random" because the sampling tries to fill in spaces where there are no values rather than do it completely randomly
- \circ Create 3 different matrices using 2N dimensions: $\mathbf{A}, \mathbf{B}, \mathbf{A}_{\mathbf{B}}^{(i)}$

Ten-dimensional Sobol' quasi-random sequence. First eight points.

0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
0.2500	0.7500	0.2500	0.7500	0.2500	0.7500	0.2500	0.7500	0.7500	0.2500
0.7500	0.2500	0.7500	0.2500	0.7500	0.2500	0.7500	0.2500	0.2500	0.7500
0.1250	0.6250	0.8750	0.8750	0.6250	0.1250	0.3750	0.3750	0.8750	0.6250
0.6250	0.1250	0.3750	0.3750	0.1250	0.6250	0.8750	0.8750	0.3750	0.1250
0.3750	0.3750	0.6250	0.1250	0.8750	0.8750	0.1250	0.6250	0.1250	0.8750
0.8750	0.8750	0.1250	0.6250	0.3750	0.3750	0.6250	0.1250	0.6250	0.3750
0.0625	0.9375	0.6875	0.3125	0.1875	0.0625	0.4375	0.5625	0.8125	0.6875

Putting it all together

 $\int E^2(Y|X_j)dx_j$ can be seen as the Monte Carlo integration of two sample matrices: $f(\mathbf{B}), f(\mathbf{A}_{\mathbf{B}}^{(\mathbf{i})})$

 $E(Y)^2$ can be seen as the Monte Carlo integration of two sample matrices: $f(\mathbf{A}), f(\mathbf{B})$

That is why:
$$V_{X_i}(E_{\mathbf{X}_{\sim \mathbf{i}}}(Y|X_i)) = rac{1}{N}\sum_{j=1}^N f(\mathbf{B})_j (f(\mathbf{A}_{\mathbf{B}}^{(\mathbf{i})})_j - f(\mathbf{A})_j)$$

And similarly for total order.

Numerical Sensitivity Analysis - Pseudocode

- Perform sampling to get array for possible combinations of values (e.g. prescription rate between 0.1 and 0.8)
- 2. Run Sobol Analysis on parameters:
 - a. Evaluate all possible combinations through model
 - b. Run each output through sobol analysis

$$S_i = \frac{V_{X_i}(E_{X_{\sim i}}(Y|X_i))}{V(Y)} \quad \text{where} \qquad V_{X_i}(E_{\mathbf{X}_{\sim i}}(Y|X_i)) = \frac{1}{N} \sum_{j=1}^N f(\mathbf{B})_j (f(\mathbf{A_B^{(i)}}) - f(\mathbf{A})_j)$$

3. Plot Sensitivities

Results:

Results: Within Groups

- Both populations are highly sensitive to prescription rates.
- Difference in sensitivity to treatment entry rates hints at non-linear effects.

Results: Between Groups

- Comparing distribution of each populations sensitivities between the two sets, tested for no difference.
- Statistically significant (< 0.05) difference between groups for total sensitivity of addicted sub-group to the relapse rate.

Future of the field:

- Focus on fentanyl:
 - ~50-100 x more potent than heroin
 - 60% of overdoses in 2018 (NYC)
 - Most commonly involved in overdoses since 2017 (NYC)
- Focus on smaller communities:
 - HEALing communities study
 - Application of evidence-based treatments
- More data = more and better predictions
 - As more data gets recorded, modelling becomes more accurate and relevant to the field

Sources: NYC Office of the Chief Medical Examiner and NYC DOHMH Bureau of Vital Statistics, 2000–2018; 2018 data are provisional and subject to change.

What's next for us:

- Roland: Consulting/hopefully never taking opioids again
- Noah: Med school (?)
- Simon: Electronic trading hopefully

Our future in the field: TBD

Supplement 1: References for Data

- Han B, Compton WM, Blanco C, Crane E, Lee J, Jones CM. "Prescription opioid use, misuse, and use disorders in U.S. adults: 2015 national survey on drug use and health." Ann InternMed. (2015), 167(5):293–302, https://www.ncbi.nlm.nih.gov/pubmed/28761945
- Parsells Kelly J, Cook SF, Kaufman DW, et al. "Prevalence and characteristics of opioid use in the US adult population." Pain. (2008),
 138:507–513. https://journals.lww.com/pain/fulltext/2008/09150/Prevalence and characteristics of opioid use in.6.aspx
- NYS Department of Health. "Opioid Annual Data Report 2018." (2018),
 https://www.health.ny.gov/statistics/opioid/data/pdf/nys_opioid_annual_report_2018.pdf
- NYS Department of Health. "Opioid Annual Data Report 2017." (2017), https://www.health.ny.gov/statistics/opioid/data/pdf/nys_opioid_annual_report_2017.pdf
- NYS Department of Health. "Opioid Poisoning, Overdose and Prevention; 2015 Report to The Governor." (2015), https://www.health.ny.gov/diseases/aids/general/opioid_overdose_prevention/docs/annual_report2015.pdf
- NYC Department of Health. "Patterns of Opioid Analgesic Prescriptions for New York City Residents." (2013), https://www1.nyc.gov/assets/doh/downloads/pdf/epi/databrief32.pdf
- NYC Department of Health. "Opioid Analgesics in New York City: Prescriber Practices." (2012), https://www1.nyc.gov/assets/doh/downloads/pdf/epi/databrief15.pdf
- Office of the New York State Comptroller. "Prescription Opioid Abuse and Heroin Addiction in New York State." (2016), https://www.osc.state.ny.us/press/releases/june16/heroin_and_opioids.pdf
- Vowles KE, McEntee ML, Julnes PS, et al. "Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis." Pain. (2015), 156:569–576, https://www.ncbi.nlm.nih.gov/pubmed/25785523

Supplement 2: Opioid Model Overall PseudoCode

Supplement 3: Total Order Monte Carlo

WTF

$$V(Y) - V_{\mathbf{X}_{\sim \mathbf{i}}}(E_{X_i}(Y|\mathbf{X}_{\sim i}) = E_{\mathbf{X}_{\sim \mathbf{i}}}(V_{X_i}(Y|\mathbf{X}_{\sim i})$$

Where

$$E_{\mathbf{X}_{\sim \mathbf{i}}}(V_{X_i}(Y|\mathbf{X}_{\sim i}) = rac{1}{2N} \sum_{j=1}^{N} (f(\mathbf{A})_j - f(\mathbf{A_B^{(i)}})_j)^2$$

$$=rac{1}{2}\int \left[f(x_1,x_2,\ldots x_j,\ldots,x_k)-f(x_1,x_2,\ldots x_j',\ldots x_k)
ight]^2\prod_{i=1,i
eq j}^k dx_i dx_j dx_j'$$

Supplement 3: Continued

$$f(x_1,x_2,\ldots x_i',\ldots x_k)=f(y',z)$$

$$= \frac{1}{2} \int [f(y,z) - f(y',z)]^2 dz dy' dy$$

$$=rac{1}{2}\int f^2(\mathbf{x})d\mathbf{x}+rac{1}{2}\int f^2(y',z)dy'dz-\int f(\mathbf{x})f(y',z)d\mathbf{x}dy'$$

$$=\int f^2(\mathbf{x})d\mathbf{x}-(V_{\mathbf{X}_{\sim i}}(E_{X_i}(Y|\mathbf{X}_{\sim i})+f_0^2)$$

$$=V(Y)-V_{\mathbf{X}_{\sim i}}(E_{X_i}(Y|\mathbf{X}_{\sim i}))$$