Corrigé du DM n°25

Problème

Partie I. Préliminaires

 $\boxed{\mathbf{1}}$ Puisque $S_2 = \{ \mathrm{Id}; (12) \}$ et que (12) est de signature -1 (c'est une transposition),

$$A_2 = \{ \mathrm{Id} \, \}$$

Parmi les éléments de S_3 donnés en classe, seuls Id et les deux 3-cycles sont de signature 1 (rappelons qu'un p-cycle est de signature $(-1)^{p-1}$ et qu'une transposition est de transposition -1). Dès lors,

$$A_3 = \{ Id; (123); (132) \}$$

2 Un noyau est un sous-groupe donc

 A_n est un sous-groupe de S_n .

Comme pour S_n , certains puristes utilisent le gothique et notent cet ensemble \mathfrak{A}_n .

Quand on demande de montrer que φ est bien définie, on demande de prouver que φ est bien à valeurs dans $S_n \setminus A_n$. Or, pour toute permutation $\sigma \in A_n$, $\varepsilon(\sigma) = 1$ et puisque ε est un morphisme,

$$\varepsilon(\varphi(\sigma)) = \varepsilon((1\,2)) \times \varepsilon(\sigma)$$

$$= -1$$

et donc on a bien $\varphi(\sigma) \notin A_n$. Montrons à présent que φ est bijective. Soient σ_1 et σ_2 deux éléments de A_n tels que $\varphi(\sigma_1) = \varphi(\sigma_2)$. Alors

$$(12)\sigma_1 = (12)\sigma_2$$

En composant à gauche par $(1\,2)^{-1}=(1\,2)$, on obtient que $\sigma_1=\sigma_2$ donc φ est injective.

Attention, on ne peut pas dire que φ est injective entre deux ensembles de même cardinal fini puisqu'on cherche précisément le cardinal de A_n .

Montrons enfin que φ est surjective. Soit $s \in S_n \setminus A_n$ et soit $\sigma = (1 \ 2) \circ s$. De même que ci-dessus, ε étant un morphisme, $\varepsilon(\sigma) = -\varepsilon(s) = 1$ puisque $\varepsilon(s) = -1$ (car $s \notin A_n$). Enfin, puisque $(1 \ 2)^2 = \operatorname{Id}$, $\varphi(\sigma) = s : \varphi$ est surjective.

$$\varphi$$
 est bien définie et bijective.

4 Deux ensembles finis en bijection ont le même cardinal donc Card $(A_n) = \text{Card }(S_n \setminus A_n)$. Or, S_n est l'union disjointe de ces deux ensembles donc

$$\operatorname{Card}(S_n) = \operatorname{Card}(A_n) + \operatorname{Card}(S_n \backslash A_n)$$

= $2 \operatorname{Card}(A_n)$

En conclusion

$$\operatorname{Card}\left(\mathbf{A}_{n}\right) = \frac{\operatorname{Card}\left(\mathbf{S}_{n}\right)}{2} = \frac{n!}{2}$$

On aurait aussi pu utiliser l'exercice 32 du chapitre 18: si G est un groupe fini, H un groupe (pas forcément fini) et si $f: G \to H$ est un morphisme de groupes, alors $\operatorname{Card}(G) = \operatorname{Card}(\operatorname{Ker}(f)) \times \operatorname{Card}(\operatorname{Im}(f))$. Or, la signature est surjective dans $\{\pm 1\}$ donc son image est de cardinal 2, donc on obtient le même résultat en appliquant l'exercice 32 du chapitre 18 à la signature.

5 On a:

$$A_4 = \{\operatorname{Id}; (1\,2)(3\,4); (1\,3)(2\,4); (1\,4)(2\,3); (1\,2\,3); (1\,3\,2); (1\,2\,4); (1\,4\,2); (1\,3\,4); (1\,4\,3); (2\,3\,4); (2\,4\,3)\}$$

Il suffit de voir que les cycles (123) et (124) ne commutent pas: en effet,

$$(123)(124) = (13)(24)$$
 et $(124)(123) = (14)(32)$

et donc

 A_4 n'est pas abélien.

Partie II. A_n ET LES 3-CYCLES

1 D'après le cours, un 3-cycle est de signature $(-1)^2 = 1$ donc

Les 3-cycles sont bien des éléments de A_n .

 A_n étant un groupe, il est stable par produit (rappelons que, quand on parle de produit, on parle en fait de composition de bijections).

Un produit de 3-cycles est un élément de $\mathbf{A}_n.$

Toute permutation de S_n peut s'écrire comme produit de transpositions, et on sait que la signature d'une transposition est égale à (-1) à la puissance le nombre de transpositions dans cette écriture (le nombre de transpositions peut varier, pas sa parité). Le résultat en découle:

Une permutation est un élément de A_n ssi elle peut s'écrire comme produit d'un nombre pair de transpositions.

- **3** Le cardinal de cette intersection peut valoir 0, 1 ou 2.
 - Si ce cardinal vaut 2, c'est que les deux ensembles sont égaux donc (a b) = (c d) donc $(a b) \circ (c d) = (a b) \circ (a b) = Id$ donc on peut dire que c'est un produit vide de 3-cycles ou simplement $(1 2 3)^3$.
 - Si ce cardinal vaut 1, alors ces ensembles ont un seul élément en commun : sans perte de généralité, supposons que b=c donc a,b et d sont deux à deux distincts. On en déduit que $(a\,b)\circ(c\,d)=(a\,b)\circ(b\,d)=(a\,b\,d)$ (on trouve facilement que a est envoyé sur b qui est envoyé sur d qui est envoyé sur a).
 - Supposons enfin que ce cardinal soit nul, alors les quatre entiers a, b, c, d sont deux à deux distincts. La permutation $(a \, b) \circ (c \, d)$ n'est pas un 3-cycle, pas la peine de rêver, mais en tâtonnant un peu, on trouve que $(a \, b) \circ (c \, d) = (a \, c \, d) \circ (a \, b \, d)$.

Dans tous les cas

 $(a b) \circ (c d)$ est un produit de 3-cycle.

Il suffit de combiner les résultats des trois premières questions: d'une part, tout produit de 3-cycles est un élément de A_n , et d'autre part, tout élément de A_n s'écrit comme produit d'un nombre pair de transpositions, donc comme produit de permutations du type $(ab) \circ (cd)$ qui sont, comme on l'a vu, des produits de 3-cycles.

 A_n est exactement l'ensemble des permutations qui peuvent s'écrire comme produit de 3-cycles.

Partie III. A_n est le seul sous-groupe de S_n d'Indice 2

- 1 Tout d'abord, H étant un sous-groupe de S_n , H est stable par produit (la composition) donc $x^2 \in H$. Supposons à présent que $x \notin H$. Alors S_n est l'union disjointe de H et de xH. En effet :
 - H et xH sont disjoints. Supposons en effet qu'il existe $h \in H \cap x$ H. Puisque $h \in x$ H, alors il existe h_1 tel que $h = xh_1$ et donc $x = h{h_1}^{-1} \in H$ car H est un sous-groupe de S_n ce qui est absurde car $x \notin H$.
 - \bullet H et xH ont même cardinal. En effet, l'application

$$f \colon \begin{cases} \mathbf{H} \longrightarrow x\mathbf{H} \\ h \longmapsto xh \end{cases}$$

est surjective par définition de xH, et également injective: s'il existe h_1 et h_2 tels que $xh_1 = xh_2$ alors $h_1 = h_2$ car tout élément d'un groupe est régulier (ou, ce qui revient au même, en multipliant à gauche par x^{-1}).

On en déduit que H et xH ont même cardinal, n!/2, et puisqu'ils sont disjoints,

$$\operatorname{Card}(H \cup xH) = \operatorname{Card}(H) + \operatorname{Card}(xH) = n! = \operatorname{Card}(S_n)$$

d'où le résultat annoncé. Il en découle que $x^2 \in \mathcal{H}$ ou $x^2 \in x\mathcal{H}$. Si $x^2 \in x\mathcal{H}$ alors il existe $h \in \mathcal{H}$ tel que $x^2 = xh$ donc (comme précédemment, tout élément est régulier) $x = h \in \mathcal{H}$ ce qui est absurde : $x^2 \in \mathcal{H}$.

H contient tous les carrés.

2 Il suffit de voir que, si a, b, c sont deux à deux distincts, $(a b c) = (a c b) \circ (a c b)$.

Un 3-cycle est un carré.

 $\fbox{3}$ D'après les deux questions précédentes, les 3-cycles sont dans H et H est un sous-groupe de S_n donc est stable par produit si bien que H contient tous les produits de 3-cycles, donc contient A_n d'après la question 4 de la partie précédente. Or, H et A_n ont même cardinal donc sont égaux.

 A_n est le seul sous-groupe de S_n d'indice 2.

Partie IV. SIMPLICITÉ DE \mathbf{A}_n POUR $n\geqslant 5$

 $\boxed{\mathbf{1}}$ Soit $x \in G$. Alors

$$xex^{-1} = e$$

ce qui signifie que $\{e\}$ est distingué dans G. Enfin, le fait que G soit distingué est immédiat : pour tous $x \in G$ et $h \in G, xhx^{-1} \in G$.

 $\{e\}$ et G sont toujours distingués dans G.

Un groupe est dit « simple » s'il n'admet pas d'autre sous-groupe distingué. Les groupes distingués sont très utiles car on peut « quotienter » » par un sous-groupe distingué et munir l'ensemble quotient (cf. partie hors programme du chapitre 16) d'une structure de groupe. En clair, les groupes distingués permettent de « dévisser » un groupe à l'aide de groupes plus petits (voir par exemple l'exercice sur le produit semi-direct dans le chapitre 18). Un groupe simple est donc un groupe qu'on ne peut pas dévisser en sous-groupes plus petits.

Une telle permutation σ existe bien.

 $\sigma \neq \operatorname{Id}$ donc son support a au moins deux éléments: en effet, il existe i tel que $\sigma(i) \neq i$ car $\sigma \neq \operatorname{Id}$ et σ est injective donc $\sigma(\sigma(i)) \neq \sigma(i)$ donc $\sigma(i)$ est un autre élément du support de σ . Enfin, si ce sont les deux seuls, alors σ est une transposition donc sa signature vaut -1, ce qui est absurde car on travaille dans $H \subset A_n$.

Le support de σ a au moins 3 éléments.

3.(a) Puisque ce sont des éléments de A_n , ils s'écrivent comme produit d'un nombre pair de transpositions d'après la partie II (ou on dit simplement que s'il n'y a qu'une transposition, alors sa signature vaut -1, ce qui est absurde).

 σ est le produit d'au moins deux transpositions.

3.(b) Par hypothèse, $n \ge 5$.

Il existe
$$k \neq i, j, r, s$$
.

 $\sigma \in H$ et H est un sous-groupe de G donc $\sigma^{-1} \in H$. Or, H est de plus distingué dans G donc $\tau \sigma^{-1} \tau^{-1} \in H$. Enfin, $\sigma \in H$ donc

$$\sigma' = \sigma \times \tau \sigma^{-1} \tau^{-1} \in \mathcal{H}$$

3.(d) Rappelons que $\sigma^{-1}(x)$ est l'unique antécédent de x par σ , c'est-à-dire x puisque x est un point fixe de σ , et donc $\sigma(x) = x$.

Si x est un point fixe de σ , alors x est un point fixe de σ^{-1} .

3.(e) On sait que $\tau^{-1}(k) = s$ (précisons que $\tau^{-1} = \tau^2 = (r k s)$), $\sigma^{-1}(s) = r$ puis $\tau(r) = s$ et enfin $\sigma(s) = r$ donc $\sigma'(k) = r$: on a prouvé que $\sigma' \neq \text{Id}$ (et en particulier k n'est pas un point fixe de σ').

 $\sigma'(k) = r$: en particulier, $\sigma' \neq \text{Id}$ et k n'est pas un point fixe de σ' .

Soit f un point fixe de σ . Alors $f \neq i, j, r, s$ car ceux-ci sont dans le support de σ . On ne sait pas si k est un point fixe de σ ou non, donc on supposera également $f \neq k$. Dès lors, $\tau(f) = f$ et puisque f est fixe par σ , il est aussi fixe par σ^{-1} d'après la question précédente, et donc $\sigma^{-1} \circ \tau^{-1}(f) = f$, puis vient le tour de τ qui laisse f stable, puis σ qui laisse stable f. On en déduit que tous les points fixes de σ (sauf peut-être f si c'est un point fixe) sont aussi points fixes de f.

Calculons à présent $\sigma'(i)$ et $\sigma'(j)$. Puisque i est distinct de k, r, s, i est fixe par τ^{-1} . Par conséquent, $\sigma^{-1} \circ \tau^{-1}(i) = \sigma^{-1}(i) = j$ (puisque i est dans la transposition (i j)) et j est laissé stable par τ donc on arrive à σ et $\sigma(j) = i$ si bien que $\sigma'(i) = i$: i est point fixe de σ' , et on prouve de même que j est point fixe de σ' .

En conclusion, σ' a au moins deux points fixes qui ne sont pas des points fixes de σ , et tous les points fixes de σ (sauf peut-être un: k) sont points fixes de σ' donc σ' a au moins un point de fixe de plus que σ .

 σ' a strictement plus de points fixes que σ .

Cependant $\sigma' \neq \text{Id}$ et $\sigma' \in H$ d'après la question 3.(c) ce qui contredit la définition de σ (une permutation distincte de Id ayant un nombre maximal de points fixes). On en déduit que l'hypothèse selon laquelle tous les cycles de σ sont de longueur 2 est absurde.

Un des cycles de σ a une longueur supérieure ou égale à 3.

4.(a) $\sigma(j) = k, j \neq k \text{ et } \sigma \text{ est injective.}$

 $\sigma(k) \neq k$

 $\boxed{\textbf{4.(b)}}$ Par hypothèse, σ n'est pas un 3-cycle donc son support a au moins 4 éléments, donc est un soit un 4-cycle soit le produit de deux transpositions à supports disjoints. Le premier cas est exclu car un 4-cycle a une signature égale à -1 et le deuxième cas est exclu d'après la question 3.

Le support de σ a au moins 5 éléments.

A.(c) Notons $\tau = (r s k)$ et posons de même $\sigma' = \sigma \tau \sigma^{-1} \tau^{-1}$. De même que précédemment, $\sigma' \in H$. Si f est un point fixe de σ , alors $f \neq i, j, k, r, s$ donc f est point fixe de σ et τ donc est aussi fixe par σ' . On montre de même que $\sigma'(k) = \sigma(k) \neq k$ (inconnu mais on sait que ce n'est pas k d'après la question 4.(a)) donc σ' n'est pas l'identité. Enfin, de même, i est point fixe de σ' (ainsi que j mais ici un seul suffit) et on conclut à une absurdité de la même façon.

5.(a) D'après l'exercice 13, des cycles de même longueur sont conjugués.

Il existe
$$\rho \in S_n$$
 tel que $\rho \sigma \rho^{-1} = \sigma'$.

5.(b) Immédiat puisque $n \ge 5$.

Toujours d'après l'exercice 13, $\rho\sigma\rho^{-1}=(\rho(i)\,\rho(j)\,\rho(k))=(i'\,j'\,k')$ et si on pose $\tau=\rho\circ(r\,s)$, alors $\tau\sigma\tau^{-1}=(\tau(i)\,\tau(j)\,\tau(k))$. Or, i,j,k sont distincts de r et s donc i,j,k sont laissés fixes par $(r\,s)$ si bien que $\tau(i)=\rho(i)$ et idem pour les autres. On en déduit que

$$\rho \sigma \rho^{-1} = \tau \sigma \tau^{-1} = (i' \ j' \ k')$$

Or, parmi ρ et τ , on passe de l'un à l'autre en multipliant par une transposition donc la signature est multipliée par -1: au moins un des deux appartient à A_n , ce qui permet de conclure.

Il existe $s \in A_n$ tel que $\sigma' = s \circ \sigma \circ s^{-1}$.

5.(d) H étant distingué, $\sigma' \in H$, et σ' étant quelconque, tous les 3-cycles sont dans H. H étant un groupe, il est stable par produit, donc contient tous les produits de 3-cycles, donc contient A_n , mais H est un sous-groupe de A_n donc $H = A_n$.

 \mathbf{A}_n est simple : ses seuls sous-groupes distingués sont $\{\mathrm{Id}\,\}$ et lui-même.

6.(a) On a évidemment $H \cap A_n$ qui est un sous-groupe de A_n (sous-groupe de S_n car intersection de sous-groupes de S_n et inclus dans A_n). Soit $h \in H \cap A_n$, soit $x \in A_n$. Alors, en particulier, $x \in S_n$ et puisque H est distingué dans S_n , alors $xhx^{-1} \in H$. De plus, A_n est un groupe donc stable par produit et par inverse donc $xhx^{-1} \in A_n$ si bien que $xhx^{-1} \in H \cap A_n$:

$$H \cap A_n$$
 est un sous-groupe distingué de A_n .

Puisque $H \cap A_n = A_n$, alors $A_n \subset H$ donc A_n est un sous-groupe de H. D'après le théorème de Lagrange, le cardinal de A_n divise le cardinal de H. Si $Card(A_n) = Card(H)$, puisque $A_n \subset H$, alors $A_n = H$. Sinon, $Card(H) \geqslant 2 Card(A_n) = Card(S_n)$ mais H est un sous-groupe de S_n donc $H = S_n$.

Si
$$H \cap A_n = A_n$$
 alors $H = A_n$ ou S_n .

6.(c) On montre comme en algèbre linéaire que $\operatorname{Ker}(\varepsilon_{|H}) = \operatorname{H} \cap \operatorname{A}_n = \{\operatorname{Id}\}$ donc $\varepsilon_{|H}$ est injective, donc ε est une bijection de H sur son image, qui est incluse dans $\{\pm 1\}$. On en déduit que H admet un ou deux éléments. Si H admet un élément, alors $\operatorname{H} = \{\operatorname{Id}\}$, et si H admet deux éléments, alors l'autre élément σ vérifie : $\forall s \in \operatorname{S}_n, s \circ \sigma \circ s^{-1} \in \operatorname{H}$ car H est distingué, ce qui est impossible car on obtient de cette façon toutes les transpositions (car elles sont toutes conjuguées d'après la question 3 de l'exercice 12). Finalement :

Si
$$H \cap A_n = \{ \text{Id } \} \text{ alors } H = \{ \text{Id } \}.$$