STATS 507 Data Analysis in Python

Week13-1: Deep Sequential Modeling (RNN, LSTM)

Dr. Xian Zhang

Adapted from slides by Ava Amini MIT Introduction to Deep Learning

Recap: Core Foundation Review

The perceptron

- Structural building blocks
- Numerical operator
- Nonlinear activation functions

Neural Networks

- Stacking Perceptions to form neural networks (MLP)
- Optimization through backpropagation

Training in Practice

Applying DNN: Will I pass this class?

- Adaptive learning rate
- Batching
- Regularization

Recap: Gradient descent

Full Batch

- Batch size = N
- 1 update per epoch
- Use all the data

$$\frac{\partial L}{\partial \mathbf{W}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_i(\mathbf{W})}{\partial \mathbf{W}}$$

- Very slow updates
- Most stable
- Can stuck in local minima

Mini-batch GD

- Batch size = bs
- N/32 updates per epoch
- Use sub dataset

$$\frac{\partial L}{\partial \mathbf{W}} = \frac{1}{B} \sum_{i=1}^{B} \frac{\partial L_i(\mathbf{W})}{\partial \mathbf{W}}$$

More accurate estimation of

Smoother convergence

gradient

Allow for larger learning rates

Stochastic gradient descent

- Batch size = 1
- N updates per epoch
- Use single sample

$$\frac{\partial L_i}{\partial \mathbf{W}}$$

- Most efficient
- Very noisy updates
- Unstable

Recap: Training in practice

Model is doing really well on training data, but very badly on test data

Overfitting

Use regulation to discourage complex models

Slide Credit: Alexander Amini Modified from MIT open course: 6.S191

1. What is sequence modeling

2. RNN

3. LSTM

Intro: Sequence Data?

Given an image of a ball, can you predict where it will go next?

Audio:

Stock Market:

Language: This is Stats 507, where we learn data analytics using Python...

Slide Credit: Ava Amini

Intro: Sequence modeling applications

"A baseball player throws a ball."

Machine Translation

How to build models for sequence?

The perceptron (revisited)

Feed-forward Networks (revisited)

Adding the notion of time

Handling individual time steps

Apply the same model stepwise to **time** slice

What could the issue?

There is no link between time steps.

Slide Credit: Ava Amini

Neurons with Recurrence

We need to build a neural network that can explicitly model the time step to time step relation: neuron with **recurrence**.

$$\widehat{y_t} = f(x_t, h_{t-1})$$
output input past memory

Slide Credit: Ava Amini

1. What is sequence modeling

2. RNN

3. LSTM

Recurrent Neural Networks (RNNs)

Add a cell state: where we apply a recurrence relation at very time step to process sequence data.

$$h_t = f_w(x_t, h_{t-1})$$
Hidden State input Past memory
Function weights

Note: in RNN, we use the **SAME** function and set of parameters at every time step.

State update and output update

Update hidden state (cell state)

$$h_t = anh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$$
Hidden StateActivation Previous Input vector function hidden state

$$\widehat{y_t} = W_{hy}^T h_t$$

Note: in RNN, we use the **SAME** function and set of parameters at every time step.

RNNs: computational Graph

Forward Pass

$$h_t = \tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$$

$$\widehat{y_t} = W_{hy}^T h_t$$

Backpropagation to update the weights

Slide Credit: Ava Amini

In-class practice

RNNs from Scratch

RNNs from Scratch


```
class SimpleRNNCell(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
       # Define the weights as Parameters so they're tracked by PyTorch
        self.Wxh = nn.Parameter(torch.randn(hidden_size, input_size) * 0.01)
        self.Whh = nn.Parameter(torch.randn(hidden_size, hidden_size) * 0.01)
        self.Why = nn.Parameter(torch.randn(output_size, hidden_size) * 0.01)
        self.hidden_size = hidden_size
        self.h = None
    def forward(self, x):
       if self.h is None:
            self.h = torch.zeros(x.size(0), self.hidden size, device=x.device)
        self.h = torch.tanh(
            x @ self.Wxh.t() +
                                    # Changed F.linear to matrix multiplication
                                    # Changed F.linear to matrix multiplication
            self.h @ self.Whh.t()
        output = F.linear(self.h, self.Why)
        return output
```

Simple one-line RNN using predefined module

```
self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=1)
self.fc = nn.Linear(hidden_size, output_size)
```

RNNs: design criteria

- Handle variable-length sequences
- Track long-term dependencies
- Maintain information about order
- Share parameters across the sequence

RNN meets those criteria.

Example: predict the next word

This morning, I took my cat for a ___

walk

Representing the word (encoding language)

Neural networks cannot interpret words

Neural networks require numerical inputs

Encoding language for NN

Neural networks cannot interpret words

Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size

I. Vocabulary:Corpus of words

2. Indexing: Word to index

One-hot embedding

Learned embedding

Slide Credit: Ava Amini

Capture differences in order

The food was good, not bad at all.

The food was bad, not good at all.

Define the loss

In the case of a RNN, the loss function of all time steps is defined based on the loss at every

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{i}; \mathbf{W}), y^{i})$$

$$\mathcal{L}(\widehat{y},y) = \sum_{t=1}^{T_y} \mathcal{L}(\widehat{y}^{< t>}, y^{< t>})$$
 Slide Cred

Backpropagation through time

Backpropagation is done at each point in time. At timestep T, the derivate of the loss with respect to weight matric W is expressed as:

$$\left. rac{\partial \mathcal{L}^{(T)}}{\partial W} = \sum_{t=1}^{T} \left. rac{\partial \mathcal{L}^{(T)}}{\partial W}
ight|_{(t)}$$

In-class practice

Predict the next word in PyTorch

Implement the training loop

Problem with gradients

It is difficult to capture long term dependencies because of multiplicative gradient that can be exponentially decreasing/increasing with respect to the number of layers.

Exploding gradient

Many values > 1: exploding gradients

Gradient clipping to scale big gradients Vanishing gradient

Many values < 1: vanishing gradients

- Activation function
- Weight initialization
- Network architecture

Slide Credit: Ava Amini

The problem of long-term dependencies

Why is vanishing gradient is a problem?

Vanishing gradient is a problem because if we multiply many small numbers together, we would have smaller and smaller gradient, and the bias parameters are only there to capture short-term dependencies.

The idea of gated cells

To resolve vanishing gradient, one of the ideas is to use **gates** to selectively add or remove information within each recurrent unit with:

Gates can optionally let information through the cell

Gated Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM) use gated cells

The idea of gated cells

In order to remedy the vanishing gradient problem, specific gates are used and each has a well-defined purpose.

Type of gate	Role	Used in
Update gate Γ_u	How much past should matter now?	GRU, LSTM
Relevance gate Γ_r	Drop previous information?	GRU, LSTM
Forget gate Γ_f	Erase a cell or not?	LSTM
Output gate Γ_o	How much to reveal of a cell?	LSTM

LSTM

Use gates to control the flow of information. (Forget, store, update and output ...)

Characterization	Gated Recurrent Unit (GRU)	Long Short-Term Memory (LSTM)
$ ilde{c}^{< t>}$	$\tanh(W_c[\Gamma_r\star a^{< t-1>},x^{< t>}]+b_c)$	$\tanh(W_c[\Gamma_r\star a^{< t-1>},x^{< t>}]+b_c)$
$c^{< t>}$	$\Gamma_u\star ilde{c}^{< t>} + (1-\Gamma_u)\star c^{< t-1>}$	$\Gamma_u\star ilde{c}^{< t>} + \Gamma_f\star c^{< t-1>}$
$a^{< t>}$	$c^{< t>}$	$\Gamma_o \star c^{< t>}$
Dependencies	$c^{< t-1>} \xrightarrow{\tilde{c}^{< t>}} c^{< t>}$ $a^{< t-1>} \xrightarrow{\tilde{c}^{< t>}} a^{< t>}$	$c^{< t-1>} \xrightarrow{\tilde{C}^{< t>}} c^{< t>}$ $a^{< t-1>} \xrightarrow{\tilde{\Gamma}_u} \Gamma_v \xrightarrow{\Gamma_o} a^{< t>}$

Other things

HW8 out.

Final project guideline out (start early)

Coming next:

Deep Sequential model (RNN, LSTM, Transformer...)