Selbststudium/Übung

Aufgabe 5.1. Finden Sie den Fehler! (Aus: Beutelspacher, Lineare Algebra, 2014)

Gnutpuaheb Wenn eine Relation symmetrisch und transitiv ist, ist sie auch reflexiv, also eine Äquivalenzrelation.

Sieweb. Sei \sim eine symmetrische und transitive Relation auf einer Menge X. Sei $x \in X$ beliebig, und sei $x \sim y$. Wegen der Symmetrie ist dann auch $y \sim x$ und aufgrund der Transitivität folgt dann auch $x \sim x$. Also ist \sim reflexiv.

Aufgabe 5.2. Sei $\varphi \colon G \to H$ ein Gruppenhomomorphismus und seien e_G und e_H die neutralen Elemente der Gruppen G und H. Setze $\operatorname{Kern}(\varphi) := \{g \in G \mid \varphi(g) = e_H\}$. Zeigen Sie:

- (a) $\varphi(e_G) = e_H$
- (b) φ ist injektiv genau dann, wenn $\operatorname{Kern}(\varphi) = \{e_G\}$

Aufgabe 5.3. Sei $M = \{n \in \mathbb{N} \mid \exists k, l \in \mathbb{N}_0 \colon n = 2^k 5^l\}$. Dann ist $A = \{\frac{p}{q} \mid p \in \mathbb{Z}, q \in M\} \subset \mathbb{Q}$ die Menge der abbrechenden Dezimalbrüche (warum?).

- (a) Ist (A, +, *) ein Ring?
- (b) Ist $(\mathbb{Q} \setminus A, +, *)$ ein Ring?

Aufgabe 5.4. Sei $R := \mathbb{R} \cup \{-\infty\}$. Define für alle $a, b \in R$ die Operationen $a \oplus b = \max\{a, b\}$ und $a \otimes b = a + b$. Für alle $a \in R$ gelte $-\infty \leq a$ und $-\infty + a = -\infty = a + (-\infty)$. Welche Eigenschaften eines kommutativen Rings mit Eins erfüllt (R, \oplus, \otimes) ?

Zum Abgeben bis zum 21. November 2022, 12:00 Uhr

Aufgabe 5.5. Beweisen Sie Satz III.5 aus der Vorlesung:

(H,*) ist genau dann eine Untergruppe von (G,*), wenn folgendes gilt:

- (1) $\emptyset \neq H$ und $H \subseteq G$
- (2) $\forall a, b \in H : a * b \in H$
- (3) $\forall a \in H : a^{-1} \in H$

Aufgabe 5.6. (a) Sei $G := \{x \in \mathbb{R} \mid x > 1\}$ und

$$*: G \times G \to G, \quad (x,y) \mapsto x \cdot y - x - y + 2.$$

Zeigen Sie, dass * wohldefiniert ist, und beweisen Sie, dass (G, *) eine Gruppe ist.

(b) Beweisen Sie: Eine Gruppe (G, *) mit $\forall g \in G : g = g^{-1}$ ist abelsch.

Aufgabe 5.7. Zeigen Sie, dass

$$U := \left\{ x \in \mathbb{R} \mid \exists \ k \in \mathbb{Z} : x = 2^k \right\}$$

eine Untergruppe von $(\mathbb{Q}\setminus\{0\},\cdot)$ ist.

Aufgabe 5.8. Definiere für zwei Mengen X, Y die symmetrische Differenz $X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$. Sei M eine nichtleere Menge. Zeigen Sie, dass $(\mathcal{P}(M), \triangle, \cap)$ ein kommutativer Ring mit Eins ist.

Bemerkung: Es handelt sich um einen Booleschen Ring, in dem jedes Element a idempotent ist, d. h. $a^2=a$ erfüllt.