# Mathematics

## Oliver Brady

# April 2, 2023

# Contents

| 1 | 1.1  | culus<br>Differe         | entiation              | <b>3</b> |  |  |  |  |  |  |  |  |  |  |  |  |
|---|------|--------------------------|------------------------|----------|--|--|--|--|--|--|--|--|--|--|--|--|
| 2 | Seri | Series                   |                        |          |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | Mu   | Multivariable Calculus 4 |                        |          |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | Vec  | tor Ca                   | lculus                 | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 4.1  | Opera                    | tors                   | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 4.1.1                    | Grad                   | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 4.1.2                    | Div                    | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 4.1.3                    | Curl                   | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 4.1.4                    | Laplacian              | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 4.2  | Integra                  | al Theorems            | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 4.2.1                    | Divergence Theorem     | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 4.2.2                    | Stokes's Theorem       | 5        |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | Flui | id Mec                   | chanics                | 6        |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 5.1  | Kinem                    | natics                 | 6        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.1                    | Coordinates            | 6        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.2                    | Velocity               | 6        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.3                    | Stagnation Points      | 6        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.4                    | Streamlines            | 6        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.5                    | Particle Paths         | 7        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.6                    | Steady Flow            | 7        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.7                    | Convective Derivative  | 7        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.8                    | Vorticity              | 8        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.9                    | Incompressible Flow    | 8        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.10                   | Velocity Potential     | 8        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.11                   | Equipotential Surfaces | 8        |  |  |  |  |  |  |  |  |  |  |  |  |
|   |      | 5.1.12                   | The Stream Function    | 9        |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 5.2  | Pressu                   | rre in a Fluid         | 9        |  |  |  |  |  |  |  |  |  |  |  |  |
|   | 5.3  |                          | Oynamics               | 9        |  |  |  |  |  |  |  |  |  |  |  |  |

| 5.4 | Tow-dimensional Flow |  |  |  |  |  |  |  |  |  |  |  |  | ( |
|-----|----------------------|--|--|--|--|--|--|--|--|--|--|--|--|---|
| 5.5 | Vorticity Dynamics   |  |  |  |  |  |  |  |  |  |  |  |  | Ç |
| 5.6 | Free Surface Waves   |  |  |  |  |  |  |  |  |  |  |  |  | ( |

- 1 Calculus
- 1.1 Differentiation

- 2 Series
- 3 Multivariable Calculus

## 4 Vector Calculus

- 4.1 Operators
- 4.1.1 Grad
- 4.1.2 Div
- 4.1.3 Curl
- 4.1.4 Laplacian
- 4.2 Integral Theorems
- 4.2.1 Divergence Theorem
- 4.2.2 Stokes's Theorem

## 5 Fluid Mechanics

### 5.1 Kinematics

#### 5.1.1 Coordinates

**Lagrangian**  $\underline{x}(\underline{a}, t)$ : The motion of individual particles is studied; the position  $\underline{x}$  of a particle at time t is related to its position at a reference point in time  $\underline{a}$  (typically at t = 0).

**Eulerian**  $(\underline{x}, t)$ : The 'flow field' is considered as a whole and the state of a fluid is described in terms of the values at a fixed location  $\underline{x}$  and at a fixed time

#### 5.1.2 Velocity

In Cartesian coordinates the velocity of a fluid particle at position  $\underline{x}(x,y,z)$  is given by:

$$\underline{u}(x,y,z) = u(x,y,z)\underline{\hat{i}} + v(x,y,z)\underline{\hat{j}} + w(x,y,z)\underline{\hat{k}}$$

## 5.1.3 Stagnation Points

Stagnation points occur when the velocity vector  $\underline{u}$  is equal to  $\underline{0}$ 

$$u = 0$$

$$v = 0$$

$$w = 0$$

#### 5.1.4 Streamlines

A streamline is a curve C drawn at one point in time such that the fluid velocity vector  $\underline{u}$  is tangent to C at every point along C.



$$\frac{d\underline{x}}{ds} = \underline{u}$$

$$\frac{dx}{ds} = u, \frac{dy}{ds} = v, \frac{dz}{ds} = w$$

$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} (= ds)$$

## 5.1.5 Particle Paths

Particle path is obtained by solving the initial value problem:

$$\frac{d\underline{x}}{dt} = \underline{u}(\underline{x}, t) , \underline{x} = x_0 \text{ at } t = 0$$

$$\frac{dx}{dt} = u , x(0) = x_0$$

$$\frac{dy}{dt} = v, y(0) = y_0$$

$$\frac{dz}{dt} = w, z(0) = z_0$$

### 5.1.6 Steady Flow

**Steady Flow**: The flow velocity vector  $\underline{u}$  is independent of time t **Unsteady Flow**:  $\underline{u}$  depends on t; the pattern of streamlines changes with t

#### 5.1.7 Convective Derivative

The convective derivative tells us how a property changes as it moves with a flow.

General

$$\boxed{\frac{D*}{Dt} = \frac{\partial *}{\partial t} + (\underline{u} \cdot \nabla)* = \frac{\partial *}{\partial t} + u\frac{\partial *}{\partial x} + v\frac{\partial *}{\partial y} + w\frac{\partial *}{\partial z}}$$

Scalar

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + (\underline{u} \cdot \nabla)\rho = \frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + v\frac{\partial\rho}{\partial y} + w\frac{\partial\rho}{\partial z}$$

Vector

$$\frac{D\underline{\mathbf{u}}}{Dt} = \frac{\partial\underline{\mathbf{u}}}{\partial t} + (\underline{u} \cdot \nabla)\underline{\mathbf{u}} = \frac{\partial\underline{\mathbf{u}}}{\partial t} + u\frac{\partial\underline{\mathbf{u}}}{\partial x} + v\frac{\partial\underline{\mathbf{u}}}{\partial y} + w\frac{\partial\underline{\mathbf{u}}}{\partial z}$$

## 5.1.8 Vorticity

Vorticity  $\underline{\omega}$  is a measure of the local rotation of fluid particles in flow.

$$\underline{\omega} = \nabla \times \underline{u}$$

$$\nabla \times \underline{u} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}$$

Irrotational Flow:

$$\underline{\omega} = \underline{0}$$

## 5.1.9 Incompressible Flow

$$\nabla \cdot \underline{u} = 0$$

When this is true the convective derivative of the fluid density is zero:

$$\frac{D\rho}{Dt} = 0$$

### 5.1.10 Velocity Potential

For an irrotational flow the velocity can be described as the gradient of a scalar field known as the *Velocity Potential*.

$$\nabla \times u = 0$$

The curl of the gradient of a scalar field is zero:

$$\nabla \times (\nabla \phi) = 0$$
$$u = \nabla \phi$$

If the flow is also incompressible

$$\nabla \cdot \underline{u} = 0$$
$$\nabla \cdot (\nabla \phi) = 0$$

Therefore the velocity potential of an irrotational, incompressible flow satisfies Laplace's Equation:

$$\nabla^2 \phi = 0$$

## 5.1.11 Equipotential Surfaces

Lines/surfaces of constant  $\phi$  are equipotentials.

The velocity potential can be considered a surface:

$$\phi(x, y, z) = c$$

Let  $\underline{a}$  be tangent to the surface, the derivative of  $\phi$  in the direction of  $\underline{a}$ :

$$\underline{a} \cdot \nabla \phi = 0$$

Because the derivative of a constant c is zero:  $\nabla \phi$  is normal to the surface.

$$\hat{\underline{n}} = \frac{\nabla \phi}{|\nabla \phi|}$$

#### 5.1.12 The Stream Function

Considering incompressible two dimensional flow:

$$\nabla \cdot \underline{u} = 0$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

We can introduce the stream function  $\psi(x,y,t)$  such that:

$$\boxed{u = \frac{\partial \psi}{\partial y}, v = -\frac{\partial \psi}{\partial x}}$$

This satisfies the previous equations:

$$\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0$$

Vorticity of an incompressible two dimensional flow:

$$\underline{\omega} = \nabla \times \underline{u}$$

$$\underline{\omega} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

$$\underline{\omega} = -\frac{\partial^2 \psi}{\partial^2 x} - \frac{\partial^2 \psi}{\partial^2 y}$$

$$\underline{\omega} = -\nabla^2 \psi$$

- 5.2 Pressure in a Fluid
- 5.3 Flow Dynamics
- 5.4 Tow-dimensional Flow
- 5.5 Vorticity Dynamics
- 5.6 Free Surface Waves