

DATASET FROM KAGGLE

1337 ROWS × 8 COLUMNS

DATA PREPARATION AND DATA CLEANING

Check Missing value and Duplicate

Check Missing value

Check Duplicate

No Duplicate

DATA PREPARATION AND DATA CLEANING

Ordinal encode

4 3 2 1
obesity > overweight > healthy weight > underweight

DATA PREPARATION AND DATA CLEANING

Pie chart showing distribution of region

One-hot encode

region_southwest	region_southeast	region_northwest	region_northeast
1	0	0	0
0	1	0	0
0	1	0	0
0	0	1	0
0	0	1	0
0	0	1	0
0	0	0	1
0	1	0	0
1	0	0	0
0	0	1	0

EXPLORATORY DATA ANALYSIS (OUTLIERS)

Target

DATASET FOR MODEL

	age	sex	bmi	ranking	children	smoker	charges	region_northeast	region_northwest	region_southeast	region_southwest
0	0.021739	0	-0.452689	-1.0	-0.5	1	16884.92	0	0	0	1
1	0.000000	1	0.506737	0.0	0.0	0	1725.55	0	0	1	0
2	0.217391	1	0.380884	0.0	1.0	0	4449.46	0	0	1	0
3	0.326087	1	-1.300972	-2.0	-0.5	0	21984.47	0	1	0	0
4	0.304348	1	-0.292512	-1.0	-0.5	0	3866.86	0	1	0	0
1332	0.695652	1	0.049089	0.0	1.0	0	10600.55	0	1	0	0
1333	0.000000	0	0.204362	0.0	-0.5	0	2205.98	1	0	0	0
1334	0.000000	0	1.010149	0.0	-0.5	0	1629.83	0	0	1	0
1335	0.065217	0	-0.795925	-1.0	-0.5	0	2007.95	0	0	0	1
1336	0.934783	0	-0.261458	-1.0	-0.5	1	29141.36	0	1	0	0

1328 rows × 11 columns

1328 ROWS * 11 COLUMNS

MAKE A MODEL

TRAIN TEST SPLIT

Original Data

Train Test split

Split the DataFrame

80% for training

20% for testing

CROSS-VALIDATION

K-Fold Cross Validation

dataaspirant.com

https://dataaspirant.com/cross-validation/

EVALUATION

R2
$$1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

MSE

$$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$$

$$\frac{1}{n}\sum_{i=1}^n |y_i-\hat{y}_i|$$

RMSE

$$\sqrt{MSE}$$

MULTIPLE LINEAR REGRESSIONS

The general form of a Multiple Linear regression equation is :

$$\hat{y}=\hat{eta}_0+\hat{eta}_1x_1+\hat{eta}_2x_2+\cdots+\hat{eta}_px_p$$

$$\beta = \left(X^T X\right)^{-1} X^T y$$

MULTIPLE LINEAR REGRESSIONS

MODEL	MATRICES	TEST SCORE	TRAIN SCORE
Linear Regression	R2 score	0.7729	0.7384
Linear Regression	MSE	3.5277e+07	3.6583e+07
Linear Regression	RMSE	5939.4635	6048.4181
Linear Regression	MAE	4321.2180	4289.0964

Evaluation metrics to measure model performance

RIDGE REGRESSION

The general form of a Ridge regression equation is:

$$\hat{eta} = rg \min_{eta} \left(\sum_{i=1}^n \left(y_i - \mathbf{x}_i^ op eta
ight)^2 + \lambda \sum_{j=1}^p eta_j^2
ight)$$

RIDGE REGRESSION

MODEL	MATRICES	TEST SCORE	TRAIN SCORE
Ridge Regression	R2 score	0.7727	0.7384
Ridge Regression	MSE	3.5310e+07	3.6586e+07
Ridge Regression	RMSE	5942.2248	6048.6755
Ridge Regression	MAE	4331.7117	4298.5781

Evaluation metrics to measure model performance

LASSO REGRESSION

The general form of a Lasso regression equation is:

$$\hat{eta} = rg \min_{eta} \left(\sum_{i=1}^n \left(y_i - \mathbf{x}_i^ op eta
ight)^2 + \lambda \sum_{j=1}^p |eta_j|
ight)$$

LASSO REGRESSION

MODEL	MATRICES	TEST SCORE	TRAIN SCORE
Lasso Regression	R2 score	0.7729	0.7384
Lasso Regression	MAE	4320.6320	4288.9472
Lasso Regression	MSE	3.5272e+07	3.6583e+07
Lasso Regression	RMSE	5939.0945	6048.4209

Evaluation metrics to measure model performance

KNN REGRESSION

The general form of a KNN regression equation is:

$$\hat{y} = \frac{1}{k} \sum_{i \in S} y_i$$

KNN REGRESSION

MODEL	MATRICES	TEST SCORE	TRAIN SCORE
KNN Regression	R2 score	0.1017	0.0980
KNN Regression	MAE	8361.2241	5956.3115
KNN Regression	MSE	1.3956e+08	7.8448e+07
KNN Regression	RMSE	11813.7344	8857.1173

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Evaluation metrics to measure model performance

COMPARISON

Lasso Regression was the most accurate on the Test data set because it had the best R², MSE, and MAE values.

MODEL	R2 SCORE	R2 SCORE MSE		MAE
Lasso Regression	0.7729	3.5272e+07	5939.0945	4320.6320
Ridge Regression	0.7727	3.5310e+07	5942.2248	4331.7117
KNN regression	0.1017	1.3956e+08	11813.7344	8361.2241
Linear Regression	0.7729	3.5277e+07	5939.4635	4321.280

OUR EXPERIENCE

SCALE

STANDARD SCALE

$$X_{scaled} = rac{X - \mu}{\sigma}$$

Before

LINEAR REGRESSIONS

RIDGE REGRESSIONS

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
Ridge Regression	0.77289	3.5285e+07	5940.1655	4322.8544	SCALE

LASSO REGRESSIONS

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
Lasso Regression	0.77294	3.5277e+07	5939.4648	4320.9714	SCALE

KNN REGRESSIONS

Actual

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
KNN Regression	0.84558	2.394e+07	4893.4685	2983.2659	SCALE

HYPERPARAMETER

GRID SEARCH

RIDGE REGRESSION

ALPHA = 8.01702

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
Ridge Regression	0.77248	3.534e+07	5945.51	4334.27	ALPHA = 8.01702

Test score before Hyperparameter and after Hyperparameter

LASSO REGRESSION

		Lasso (Be	st Hyperp	arameter	r: alpha = 11	.4.22934)	
50000	• Pred	ictions x					1000
50000						and the same of th	
40000				•	, production of the second	2000 80	
gg 30000			020	8 = 			•
70000 30000		00		profes			
20000				•	•		
10000				•	•		
0		5 0					
	0	10000	20000	300 Actual	000 400	000 50	000

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
Lasso Regression	0.77240	3.536e+07	5946.52	4302.85	ALPHA = 114.229

Test score before Hyperparameter and after Hyperparameter

KNN REGRESSION

n_neighbors = 7, weights = distance

Actual

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
KNN Regression	0.845875	2.394e+07	4893.46	293.26	SCALE

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
KNN Regression	0.85441	2.261e+07	4755.97	2812.45	n_neighbo rs = 7, weights = distance

Test score before Hyperparameter and after Hyperparameter

CONCLUSION

MODEL	R2 SCORE	MSE	RMSE	MAE	OTHER
KNN Regression	0.85441	2.261e+07	4755.97	2812.45	n_neighbors = 7, weights = distance
KNN Regression	0.84587	2.394e+07	4893.46	2983.26	SCALE
Lasso Regression	0.77297	3.527e+07	5939.09	4320.63	-
Lasso Regression	0.77294	3.527e+07	5939.46	4320.97	SCALE
Linear Regression	0.77294	3.527e+07	5939.46	4321.21	—

KNN Regression When hyperparameter is 'n_neighbors = 7, weights = distance' was the most accurate on the Test data set because it had the best R², MSE, RMSE and MAE values.

MODEL	MATRICES	TEST SCORE	TRAIN SCORE	OHTER
KNN Regression	R2 score	0.85441	0.80370	n_neighbors = 7 , weights = distance
KNN Regression	MSE	2.261e+07	2.841e+07	n_neighbors = 7 , weights = distance
KNN Regression	RMSE	4755.97	6048.4181	n_neighbors = 7 , weights = distance
KNN Regression	MAE	4321.2286	4289.1058	n_neighbors = 7 , weights = distance

THANK YOU Q&A