

기본 개념

서버(Server)

- 특화된 어떤 임무를 수행하기 위해 설계된 컴퓨터
- 일반 노트북 또는 데스크톱 컴퓨터도 서버가 될 수 있음
- 서버는 일반 컴퓨터보다 고성능의 CPU, 빠르고 고용량의 메모리, 대용량의 디스크를 요구

Amazon EC2 (Elastic Compute Cloud) = 가상 서버(Server)

1) 기본 개념

하드디스크(Hard Disk)

- 데이터 저장 장치
- HDD
 - 스핀들 모터 방식의 기계식 하드 디스크
- SSD(Solid-State Drive)
 - 플래시 메모리 기반의 전자식으로 동작하는 디스크

Amazon EBS (Elastic Block Storage) = EC2의 하드디스크

하드디스크(Hard Disk)

- 데이터 저장 장치
- HDD
 - 스핀들 모터 방식의 기계식 해 디스크
- SSD(Solid-State Drive)
 - 플래시 메모리 기반의 전자식. 동작하는 디스크
- 기계식 디스크보다 향상된 검색 속도
- 낮은지연속도 및소음
- 용량대비비용이 HDD보다높음

Amazon EBS (Elastic Block Store) = EC2의 하드디스크

기본 개념

방화벽(Firewall)

- 외부 네트워크(예:인터넷)를 통한 불법적인 침입으로부터 내부 네트워크의 중요한 정보를 보호하기 위한 시스템
- 외부 사용자 또는 외부 시스템이 내부의 서버 및 자원에 접근하기 위해서는 반드시 방화벽을 거쳐야 함

Amazon EC2의 보안 그룹(Security Group)

인스턴스 수준에서 동작하는 가상 방화벽 인스턴스에 대한 인바운드, 아웃바운드 트래픽 통제

Amazon EC2 (Elastic Compute Cloud)

2) Amazon EC2 (Elastic Compute Cloud)

Amazon EC2 (Elastic Compute Cloud)

Amazon EC2 (Elastic Computing Cloud) 특징 🚳 세종사이버대학교

유연한 가상 컴퓨팅 제공

• 단 몇 분이면 용량을 늘리거나 줄일 수 있음

폭 넓은 선택 옵션

- 워크로드에 적합한 다양한 인스턴스 타입 선택
- OS(다양한 리눅스, 윈도우 서버) 및 소프트웨어 패키지 선택

Amazon EC2 (Elastic Computing Cloud) 특징 🚇 세종사이버대학교

다른 AWS 서비스와 통합성

우수한 보안

- AWS 제공 물리적 보안
- 인스턴스 수준 보안 제공 그룹(Security Group)
- 가상 프라이빗 클라우드를 제공하는 VPC와 함께 작동

Amazon EC2 (Elastic Computing Cloud) 특징 🚳 세종사이버대학교 3)

다양한 OS(운영체제) 지원

MS Windows

Amazon Linux

Debian / Suse / CentOS / Ubuntu

Redhat Enterprise Linux

기타 Marketplace 지원 운영체제

c5d.4xlarge

c5d.4xlarge

인스턴스 세대 c5d.4xlarge 인스턴스 패밀리

인스턴스 세대 *추가역량 C5d.4xlarge 인스턴스 인스턴스 패밀리 - 추가역량은 모든 인스턴스에 제공되지는 않으며, 오래된 인스턴스(예, c3)에도 제공안됨 - d:호스트서버에 물리적으로 연결된 local NVMe 스토리지

- 인스턴스
 - 컴퓨트, 메모리, 스토리지, 네트워크 성능으로 구성
- 하이퍼바이저 옵션
 - Xen(기존 인스턴스)
 - 커스텀 KVM 기반 하이퍼바이저 (Nitro Hypervisor
 - 최신 인스턴스) - · · · ·
 - No hypervisor : 베어메탈(AWS Nitro System)

범용 인스턴스

메모리, CPU, 네트워킹 자원의 균형 (T, M, A)

컴퓨팅 최적화 인스턴스

CPU 비율이 높은 인스턴스(C, Z)

스토리지와 I/O 최적화

높은 디스크 처리량(D, H), 초고속 랜덤 I/O 성능(I)

❷ 인스턴스 패밀리

메모리 최적화

R, X

가속화 지원

P(GPU compute), G(GPU graphics), F(programmable FPGA)

인스턴스 크기가 클수록 고성능, 작은 인스턴스 여러 개 사용 것이 비용 효율적

≗ 보안 그룹(Security Group) : 인스턴스 수준 보안 제공

보안그룹 규칙

- 보안 그룹 이름(Name)
- 보안 그룹 설명(Description)
- 허용할 프로토콜
- 허용할 포트(Port) 범위
- 허용할 IP 주소, IP 범위(range),
 다른 보안 그룹

- ≗ 보안 그룹(Security Group) : 인스턴스 수준 보안 제공
 - ▶웹 어플리케이션에 대한 보안 그룹 적용 예

인스턴스에 대한 인바운드, 아웃바운드의 네트워크 트래픽을 제어하는 가상의 방화벽 역할을 수행

인스턴스내 네트워크 인터페이스 당 최대 5개 보안 그룹 가능, 1개 보안 그룹당 50개의 규칙 가능

보안 그룹은 네트워크 트래픽에 대한 "허용(Allow)"만 가능하며, "차단(Deny)"은 설정 불가

차단 기능 적용을 위해서는, VPC 기능 중 하나인 "네트워크 ACL(Network ACL)"을 통해 서브넷(Subnet) 수준에서 N/W 트래픽 흐름 제어 필요

Amazon EC2 서비스 요금제

온디맨드 (On-demand)

예약 (Reserved)

스팟 (Spot)

전용 (Dedicated)

약정없이 사용한 만큼 시간 혹은 초 단위 비용 지불

- 선결제 금액이나 장기 약정 없이 저렴하고 유연하게 사용하고자 할 경우
- 단기에 갑작스럽게 예측할 수 없는 워크로드가 있으며, 중단되어서는 안되는 어플리케이션
- Amazon EC2에서 처음 개발 혹은 시험 중인 어플리케이션

· 하나의 어플리케이션에 다양한 요금제 기반 인스턴스를 석어서 사용하는 것도 좋은 전략입니다.

Amazon EC2 서비스 요금제

온디맨드 (On-demand)

예약 (Reserved)

스팟 (Spot)

전용 (Dedicated)

1년 혹은 3년 약정으로 온디맨드 대비 최대 75% 절약 (선결제 선택시 할인 폭 커짐)

• 수요가 꾸준한 어플리케이션, 예약 용량이 필요한 어플리케이션, 총 비용 절감을 위해 기간 약정을 원할 경우

하나의 어플리케이션에 다양한 요금제 기반 인스턴스를 섞어서 사용하는 것도 좋은 전략입니다.

5)

Amazon EC2 서비스 요금제

온디맨드 (On-demand)

예약 (Reserved)

스팟 (Spot)

전용 (Dedicated)

예비 컴퓨팅 용량을 통해 온디맨드 대비 최대 90% 절감

- 시작 및 종료가 자유로운 워크로드
- 컴퓨팅 가격이 저렴해야만 수익이 나는 어플리케이션
- 시간 제한이 없는 배치성 워크로드

· 아나의 어플리케이션에 다양한 요금제 기반 인스턴스를 석어서 사용하는 것도 좋은 전략입니다.

Amazon EC2 서비스 요금제

온디맨드 (On-demand)

예약 (Reserved)

스팟 (Spot)

전용 (Dedicated)

민감한 정보, 회사 내규, 법적인 문제가 있을 경우

- 전용 호스트 테넌시
 - Host 제약이 존재하는 S/W 라이선스 혹은 규제로 인해 전용(격리된) 물리적 호스트에서 수행 필요시
- 전용 인스턴스 테넌시
 - -전용 인스턴스가 수행되는 물리적 호스트에는 동일 계정의 다른 인스턴스들만 수행 가능

1/2

· 하나의 어플리케이션에 다양한 요금제 기반 인스턴스를 석어서 사용하는 것도 좋은 전략입니다.

5)

Amazon EC2 서비스 요금제

온디맨드 (On-demand)

예약 (Reserved)

스팟 (Spot)

전용 (Dedicated)

민감한 정보, 회사 내규, 법적인 문제가 있을 경우

• 온디맨드(시간당 빌링만 가능) 혹은 예약 인스턴스로 구매 가능

2/2

장 하나의 어플리케이션에 다양한 요금제 기반 인스턴스를 섞어서 사용하는 것도 좋은 전략입니다.

1) EC2 기본 용어

1) EC2 기본 용어

AMI (Amazon Machine Image)

- 일반 컴퓨터에서의 루트 볼륨 이미지에 해당
- 가상머신(VM) 즉 인스턴스 시작(launch)시 필요한 OS 및 어플리케이션이 구성된 이미지
- AWS이외의 파트너, 커뮤니티 및 사용자도 직접 AMI 생성 가능

인스턴스

EBS (Elastic Block Store)

1) EC2 기본 용어

AMI (Amazon Machine Image)

인스턴스

• AMI로 부터 launch되어 실행된 실행 혹은 정지 상태의 가상머신

EBS (Elastic Block Store)

AMI (Amazon Machine Image)

인스턴스

EBS (Elastic Block Store)

- 일반 컴퓨터의 하드디스크에 해당
- 네트워크에 연결된 블록 디바이스로 가상 디스크 (Network Block Storage As A Service)
- EC2 인스턴스가 사용할 블록 스토리지 볼륨
- EBS 볼륨은 가용 영역내 자동 복제(Mirroring)

EC2 인스턴스 생성 및 이용

②AMI로 부터 인스턴스 론치(launch)

EC2 인스턴스 라이프사이클

과금 발생 상태

• Running, stop-hibernated(최대절전모드)로 전이를 위한 Stopping

신규 과금 사이클 발생

Pending → Running	Rebooting> Running
신규 과금 사이클 발생	기존 과금 사이클 지속

EC2 인스턴스 라이프사이클

빌링 단위

- 시간 단위 빌링
 - 윈도우, 마켓플레이스 OS, 일부 리눅스 (신규 과금 사이클 발생 시 최소 1시간 청구)
- 초 단위 빌링
 - Linux : 최소 청구 1분 (온디맨드, 예약, 스팟 인스턴스로 launch한 경우)

4) EC2 인스턴스 접속 시 인증 방법

♣ RSA 키페어(Key Pair) 활용

ID / 비밀번호 인증보다 안전함

공개키(Public Key) / 개인키(Private Key)의 조합

4) EC2 인스턴스 접속 시 인증 방법

♣ RSA 키페어(Key Pair) 활용

키페어(공개키 / 개인키) 최초 생성 시

공개키

• AWS는 공개키를 해당 리전 내 보관

개인키

사용자가 다운로드 받아 안전하게 보관 및 관리

- 인스턴스 시작(launch)시 인스턴스 내부로 공개키 복사
- 인스턴스 내부에서 해당 인스턴스 메타데이터 조회를 통해 공개키 확인 가능

EC2 인스턴스 접속 시 인증 방법

♣ RSA 키페어(Key Pair) 활용

키페어를 이용한 인증

Linux 인스턴스

• ssh login시 기본 사용자(예: ec2-user)에 대해 개인키를 사용하여 접속

- Amazon Linux AMI의 경우 기본 사용자는 ec2-user
- Ubuntu AMI의 경우 기본 사용자는 Ubuntu 등

EC2 인스턴스 접속 시 인증 방법

♣ RSA 키페어(Key Pair) 활용

키페어를 이용한 인증

Windows 인스턴스

- 윈도우 Administrator 사용자의 암호 복호화 시 개인키를 사용
- 이후 Administrator 사용자와 복호화된 패스워드를 이용하여 윈도우 인스턴스에 RDP 접속

실습 데모 순서

AWS 관리 콘솔 메뉴 이해하기

윈도우 인스턴스의 생성

- EC2 AMI 선택 메뉴이해하기
- 인스턴스 유형(Type) 선택 메뉴 이해하기
- 인스턴스세부정보구성메뉴이해하기
- 스토리지 추가 메뉴 이해하기
- 태그추가메뉴이해하기
- 보안그룹구성메뉴이해하기
- 키페어(Key Pair) 생성 이해하기

- 키페어(Key Pair)중개인키 보관의 중요성 및 개인키 분실시 데이터 복구 방법 이해하기
- 위도우인스턴스의시작
- 위도우서버 start 확인
- 리모트데스크톱클라이언트(RDP)를이용한 인스턴스연결
- Administrator 암호복호화 및 윈도우서버 접속
- 작업후윈도우인스턴스중단혹은종료로과금방지