New stochastic sketching methods for Big Data Ridge Regression

Cheikh Saliou Touré

Student at ENS Cachan

Tutor: Robert Gower

Inria Paris (Sierra department)

July, 2017

Abstract

//

Contents

1	General Sketching method	2
2	Block Coordinate Descent Method 2.1 Algorithm	4 4 4
3	Randomized orthonormal systems 3.1 Algorithm	5 5 5
4	Count-min Sketches 4.1 Algorithm	7 7 7 9
5	Conclusion	12

1. General Sketching method

A is a $n \times n$ positive definite matrix representing our problem. s is the sketch size.

 $\{S_i\}_{i=1,\dots,r}$ is the set of r realizations of our $s\times n$ sketch matrix.

We denote by S the $s \times n$ random sketch matrix, which is such that $S = S_i$ with probability p_i .

Throughout the computations, we denote by $Z = AS^T(SAS^T)^{-1}SA$. That is a quantity that intervenes in the computation of the convergence rate¹.

The convergence rate is defined by $\rho = 1 - \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$.

By defiition,
$$A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}=\sum_{i}p_{i}A^{\frac{1}{2}}S_{i}^{T}(S_{i}AS_{i}^{T})^{-1}S_{i}A^{\frac{1}{2}}$$

for any $i \in \{1, ..., n\}$, $A^{\frac{1}{2}}S_i^T(S_iAS_i^T)^{-1}S_iA^{\frac{1}{2}}$ is a projection matrix (a matrix such that $M^2 = M$) and then its eigenvalues are a nonempty subset of $\{0, 1\}$.

Since λ_{max} is a convex function, we obtain that :

$$0 \leqslant \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \leqslant \lambda_{max}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \leqslant \sum_{i} p_{i}\lambda_{max}(A^{\frac{1}{2}}S_{i}^{T}(S_{i}AS_{i}^{T})^{-1}S_{i}A^{\frac{1}{2}}) \leqslant 1.$$

Denote by $C = (S_1^T, \dots, S_r^T)$ which is of size $n \times rs$.

Lemma 1.0.1
$$A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}} = (A^{\frac{1}{2}}\mathbf{C}D)(D\mathbf{C}^TA^{\frac{1}{2}})$$
 where $D = \operatorname{diag}(\sqrt{p_1}(S_1AS_1^T)^{-\frac{1}{2}}, \dots, \sqrt{p_r}(S_rAS_r^T)^{-\frac{1}{2}}) \in \mathcal{M}_{rs}(\mathbb{R}).$ Plus :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}\mathbf{C}^T)}{\lambda_{max}(A)} \min_{i} \frac{p_i}{\lambda_{max}(S_i^T S_i)}$$

Proof:

$$A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}} = \sum_{i} p_{i}A^{\frac{1}{2}}S_{i}^{T}(S_{i}AS_{i}^{T})^{-1}S_{i}A^{\frac{1}{2}}$$

Then we straightforwardly obtain that : $A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}=A^{\frac{1}{2}}\mathbf{C}D^2\mathbf{C}^TA^{\frac{1}{2}}$.

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \lambda_{min}(\mathbf{C}^T A \mathbf{C})\lambda_{min}(D^2)$$

¹ will put before the intervention of the convergence rate in the convergence of our sequence to the optimal solution

Cheikh Touré _____ page 3 ●□

Block Coordinate Descent Method

Algorithm 2.1

2.2 Convergence rate

A is a $n \times n$ positive definite matrix representing our problem.

For any subset C of $\{1,\ldots,n\}$ of length s, we denote by I_C the $s\times n$ matrix which rows are $\{e_i^T\}_{i\in C}$ up to a permutation, where $\{e_i\}_{i=1,\dots,n}$ is a canonical basis of \mathbb{R}^n .

Denote by $\{C_i\}_{i=1,\dots,r}$ the subsets of $\{1,\dots,n\}$ of size s: that implies that $r\stackrel{\scriptscriptstyle def}{=}\binom{n}{s}$. Throughout the computations, we denote by $Z=AI_C^T(I_CAI_C^T)^{-1}I_CA$.

The convergence rate is defined by $\rho = 1 - \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$.

Denote by $C = (I_{C_1}^T, \dots, I_{C_r}^T)$ which is of size $n \times rs$.

By **lemma 1.0.1**, we have that : $\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})\geqslant \frac{\lambda_{min}(A)\lambda_{min}(\mathbf{CC}^T)}{\lambda_{max}(A)}\min_i \frac{p_i}{\lambda_{max}(I_{C_i}^TI_{C_i})}$

For any $i \in \{1, \dots, n\}$, for any x in \mathbb{R}^n , $\left\langle I_{C_i}^T I_{C_i} x \, | \, x \right\rangle = \|I_{C_i} x\|^2 \leqslant \|x\|^2$, then $\lambda_{max}(I_{C_i}^T I_{C_i}) \leqslant 1$.

Therefore, $\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}\mathbf{C}^T)}{\lambda_{max}(A)} \min_{i} p_i$.

 $\mathbf{CC}^T = \sum_{i=1}^r I_{C_i}^T I_{C_i} = \binom{n-1}{s-1} I_n$ and then we obtain that corollary :

Corollary 2.2.1

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \binom{n-1}{s-1} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \min_{i} p_{i}.$$

If we choose $\{p_i\}_{i=1}^r$ as the uniform probability of choosing s rows uniformly on $\{1,\ldots,n\}$, *i.e.* for any i, $p_i = \frac{1}{\binom{n}{c}}$, then :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)}$$

Robert: This is already pretty interesting! It shows an improvement for using bigger bachsize! We should try to push this further, for instance, when s=n we know the method converges in one step. It would be great if we have a convergence rate that shows this phenomena. In other words, when s=n we have $\lambda_{\min}(A^{-1/2}E[Z]A^{-1/2})=1$! Also, please have a look at the paper "paving_kaczmarz.pdf" which I've just added to our repo.

Randomized orthonormal systems

This type of randomized sketch is well-suited for big data regression, thanks to the efficiency of matrix multiplication used in this method.

When the dimension of our matrix A is n, we denote by H_n the Hadamard matrix (well defined if the dimension of the problem n is a power of 2) defined recursively as :

$$H_{2^p} = \begin{pmatrix} H_{2^{p-1}} & -H_{2^{p-1}} \\ H_{2^{p-1}} & H_{2^{p-1}} \end{pmatrix}$$
 for $p = 1, 2, \dots$ and $H_1 = 1$.

The Hadamard sketch consists of choosing a random sketch matrix $S \in \mathcal{M}_{s,n}$ where s is the sketch size of the problem, as follows:

we sample s i.i.d. rows of the form $s^T = e_j^T H_n D$ with probability $\frac{1}{n}$ for $j = 1, \ldots, n$, where $(e_j)_j$ forms a canonical basis of \mathbb{R}^n , and $D = diag(\nu)$ is a diagonal matrix of i.i.d. Rademacher variables $\nu \in \{-1, 1\}^n$.

3.1 Algorithm

3.2 Convergence rate

Now we denote by $Z = AS^T(SAS^T)^{-1}SA$, where S is our Hadamard random matrix. For any subset C of $\{1,\ldots,n\}$ of length s, we denote by I_C the $s\times n$ matrix which rows are $\left\{e_i^T\right\}_{i\in C}$ up to a permutation, where $\left\{e_i\right\}_{i=1,\ldots,n}$ is a canonical basis of \mathbb{R}^n .

By construction, $S = I_C H D$ where C is a uniform random subset of $\{1, \ldots, n\}$ of size s, H is the Hadamard matrix ($HH^T = nI_n$) and $D = diag(\nu)$ is a diagonal matrix of i.i.d. Rademacher variables $\nu \in \{-1, 1\}^n$.

Recall that the convergence rate is $\rho=1-\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$. From **lemma 1.0.1**, we have that :

Corollary 3.2.1
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)}$$

Proof:

Let's condition on the Rademacher diagonal matrix D.

Define by $\tilde{A}_D = \frac{H}{\sqrt{n}} DAD \frac{H^T}{\sqrt{n}}$. We obtain that :

$$\begin{split} A^{-\frac{1}{2}}E[Z|D]A^{-\frac{1}{2}} &= E[A^{\frac{1}{2}}S^{T}(SAS^{T})^{-1}SA^{\frac{1}{2}}|D] \\ &= \sum_{i} p_{i}A^{\frac{1}{2}}DH^{T}I_{C_{i}}^{T}(I_{C_{i}}HDADH^{T}I_{C_{i}}^{T})^{-1}I_{C_{i}}HDA^{\frac{1}{2}} \\ &= \frac{1}{n}A^{\frac{1}{2}}DH^{T}E[I_{C}^{T}(I_{C}\tilde{A}_{D}I_{C}^{T})^{-1}I_{C}]HDA^{\frac{1}{2}} \\ &= DH^{-1}HD\frac{1}{n}A^{\frac{1}{2}}DH^{T}E[I_{C}^{T}(I_{C}\tilde{A}_{D}I_{C}^{T})^{-1}I_{C}]HDA^{\frac{1}{2}}DH^{T}(H^{T})^{-1}D \\ &= DH^{-1}\tilde{A}_{D}^{\frac{1}{2}}E[I_{C}^{T}(I_{C}\tilde{A}_{D}I_{C}^{T})^{-1}I_{C}]\tilde{A}_{D}^{\frac{1}{2}}n(H^{T})^{-1}D \\ &= DH^{-1}\tilde{A}_{D}^{\frac{1}{2}}E[I_{C}^{T}(I_{C}\tilde{A}_{D}I_{C}^{T})^{-1}I_{C}]\tilde{A}_{D}^{\frac{1}{2}}HD \end{split}$$

Hence:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) = \lambda_{min}\left(E_D\left[DH^{-1}\tilde{A}_D^{\frac{1}{2}}E[I_C^T(I_C\tilde{A}_DI_C^T)^{-1}I_C]\tilde{A}_D^{\frac{1}{2}}HD\right]\right).$$
We note by (D_C) and the 2^n possible values of the random matrix D .

Denote by $(D_i)_{i=1,\dots,2^n}$ the 2^n possible values of the random matrix D. We obtain that:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) = \lambda_{min}\left(\sum_{i=1}^{2^n} \frac{1}{2^n}D_iH^{-1}\tilde{A}_{D_i}^{\frac{1}{2}}E[I_C^T(I_C\tilde{A}_{D_i}I_C^T)^{-1}I_C]\tilde{A}_{D_i}^{\frac{1}{2}}HD_i\right).$$

And thanks to the concavity of λ_{min} , we obtain that :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geq \sum_{i=1}^{2^{n}} \frac{1}{2^{n}} \lambda_{min} \left(D_{i}H^{-1}\tilde{A}_{D_{i}}^{\frac{1}{2}}E[I_{C}^{T}(I_{C}\tilde{A}_{D_{i}}I_{C}^{T})^{-1}I_{C}]\tilde{A}_{D_{i}}^{\frac{1}{2}}HD_{i} \right)$$

$$= \sum_{i=1}^{2^{n}} \frac{1}{2^{n}} \lambda_{min} \left(\tilde{A}_{D_{i}}^{\frac{1}{2}}E[I_{C}^{T}(I_{C}\tilde{A}_{D_{i}}I_{C}^{T})^{-1}I_{C}]\tilde{A}_{D_{i}}^{\frac{1}{2}} \right)$$

We then straightforwardly use the uniform case in Corollary 2.2.1 to obtain that :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \sum_{i=1}^{2^n} \frac{1}{2^n} \frac{s}{n} \frac{\lambda_{min}(\tilde{A}_{D_i})}{\lambda_{max}(\tilde{A}_{D_i})}.$$

For all $i = 1, ..., 2^n$, \tilde{A}_{D_i} is similar to A, and then finally:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \bullet$$

4. Count-min Sketches

4.1 Algorithm

4.2 Convergence rate

Denote by $(e_i)_{i=1,\dots,n}$ a canonical basis of \mathbb{R}^n and $(f_i)_{i=1,\dots,s}$ a canonical basis of \mathbb{R}^s . Then we obtain that every count-min random matrix is of the form :

$$S = \sum_{i=1}^{n} \epsilon(i) f_{\pi(i)} e_i^T \in \mathcal{M}_{s,n}(\mathbb{R}), \text{ where } \epsilon : \{1, \dots, n\} \to \{1, -1\} \text{ and } \pi : \{1, \dots, n\} \to \{1, \dots, s\}.$$

We therefore can rewrite S as :

$$S = \left(\epsilon(1) f_{\pi(1)}, \epsilon(2) f_{\pi(2)}, \dots, \epsilon(n) f_{\pi(n)}\right) \begin{pmatrix} e_1^T \\ \vdots \\ e_n^T \end{pmatrix} = \left(f_{\pi(1)}, f_{\pi(2)}, \dots, f_{\pi(n)}\right) \operatorname{diag}\left(\epsilon(1), \dots, \epsilon(n)\right).$$

For any $\pi:\{1,\ldots,n\}\to\{1,\ldots,s\}$, define by f_π the $s\times n$ matrix $\left(f_{\pi(1)},f_{\pi(2)},\ldots,f_{\pi(n)}\right)$.

Let S be a random count-min sketch matrix.

 $S = f_{\pi}D$ where π is a uniform random element of $\{1, \dots, s\}^{\{1, \dots, n\}}$ and $D = diag(\nu)$ is a diagonal matrix of i.i.d. Rademacher variables $\nu \in \{-1, 1\}^n$.

Denote again by $Z=AS^T(SAS^T)^{-1}SA$, where S is our count-min random matrix. Recall that the convergence rate is $\rho=1-\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$.

Denote $r \stackrel{def}{=} s^n$ and $\{\pi_1, \dots, \pi_r\}$ the elements of $\{1, \dots, s\}^{\{1, \dots, n\}}$ which is of size $r = s^n$. Then, $\pi = \pi_k$ with probability $p_k \stackrel{def}{=} s^{-n}$.

Denote by $\mathbf{C} = (f_{\pi_1}^T, \dots, f_{\pi_r}^T)$ which is a $n \times rs$ matrix.

Corollary 4.2.1

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{(s-1)\,\lambda_{min}(A)}{n\,s\,\lambda_{max}(A)}$$

Proof:

Denote by $\tilde{A} = DAD$.

$$\begin{split} A^{-\frac{1}{2}}E[Z|D]A^{-\frac{1}{2}} &= E[A^{\frac{1}{2}}S^T(SAS^T)^{-1}SA^{\frac{1}{2}}|D] \\ &= \sum_i p_i A^{\frac{1}{2}}Df_{\pi_i}^T(f_{\pi_i}DADf_{\pi_i}^T)^{-1}f_{\pi_i}DA^{\frac{1}{2}} \\ &= A^{\frac{1}{2}}DE[f_{\pi}^T(f_{\pi}\tilde{A}_Df_{\pi}^T)^{-1}f_{\pi}]DA^{\frac{1}{2}} \\ &= D\tilde{A}_D^{\frac{1}{2}}E[f_{\pi}^T(f_{\pi}\tilde{A}_Df_{\pi}^T)^{-1}f_{\pi}]\tilde{A}_D^{\frac{1}{2}}D \end{split}$$

Then:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) = \lambda_{min}\left(E_D\left[D\tilde{A}_D^{\frac{1}{2}}E[f_\pi^T(f_\pi\tilde{A}_Df_\pi^T)^{-1}f_\pi]\tilde{A}_D^{\frac{1}{2}}D\right]\right).$$
 Denote again by $(D_i)_{i=1,\dots,2^n}$ the 2^n possible values of the random matrix D .

We obtain that:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) = \lambda_{min}\left(\sum_{i=1}^{2^n} \frac{1}{2^n} D_i \tilde{A}_{D_i}^{\frac{1}{2}} E[f_{\pi}^T (f_{\pi} \tilde{A}_{D_i} f_{\pi}^T)^{-1} f_{\pi}] \tilde{A}_{D_i}^{\frac{1}{2}} D_i\right).$$

And thanks to the concavity of λ_{min} , we obtain that :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geq \sum_{i=1}^{2^{n}} \frac{1}{2^{n}} \lambda_{min} \left(D_{i} \tilde{A}_{D_{i}}^{\frac{1}{2}} E[f_{\pi}^{T} (f_{\pi} \tilde{A}_{D_{i}} f_{\pi}^{T})^{-1} f_{\pi}] \tilde{A}_{D_{i}}^{\frac{1}{2}} D_{i} \right)$$

$$= \sum_{i=1}^{2^{n}} \frac{1}{2^{n}} \lambda_{min} \left(\tilde{A}_{D_{i}}^{\frac{1}{2}} E[f_{\pi}^{T} (f_{\pi} \tilde{A}_{D_{i}} f_{\pi}^{T})^{-1} f_{\pi}] \tilde{A}_{D_{i}}^{\frac{1}{2}} \right)$$

Then by **lemma 1.0.1**:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geq \sum_{i=1}^{2^{n}} \frac{1}{2^{n}} \frac{\lambda_{min}(\tilde{A}_{D_{i}})\lambda_{min}(\mathbf{C}\mathbf{C}^{T})}{\lambda_{max}(\tilde{A}_{D_{i}})} \min_{k} \frac{p_{k}}{\lambda_{max}(f_{\pi_{k}}^{T}f_{\pi_{k}})}$$
$$= \frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}\mathbf{C}^{T})}{\lambda_{max}(A)} \min_{k} \frac{p_{k}}{\lambda_{max}(f_{\pi_{k}}^{T}f_{\pi_{k}})}$$

Recall that $p_k = s^{-n}$ for any $k \in \{1, \dots, r\}$.

For any x in \mathbb{R}^n , for any $k \in \{1, \dots, r\}$,

$$\left\langle f_{\pi_k}^T f_{\pi_k} x \, | \, x \right\rangle = \|f_{\pi_k} x\|^2 = \|\sum_{i=1}^n x_i f_{\pi_k(i)}\|^2 \leqslant \left(\sum_{i=1}^n |x_i|\right)^2 \leqslant n \|x\|^2 \text{ and then } \lambda_{max}(f_{\pi_k}^T f_{\pi_k}) \leqslant n.$$

$$\mathbf{CC}^T = \sum_{k=1}^r f_{\pi_k}^T f_{\pi_k} = s^{n-1} \left(egin{array}{cccc} s & & & \mathbf{1} & \ & s & & \mathbf{1} & \ & & \ddots & & \ & \mathbf{1} & & s & \ & & s & s \end{array}
ight)$$
 , thanks to the facts that :

For all
$$i \neq j$$
, $\sum_{k=1}^{r} f_{\pi_k(i)}^T f_{\pi_k(i)} = r = s^n$ and $\sum_{k=1}^{r} f_{\pi_k(i)}^T f_{\pi_k(j)} = \sum_{k=1}^{r} 1_{\{\pi_k(i) = \pi_k(j)\}} = s \times s^{n-2} = s^{n-1}$.

Cheikh Touré

Denote by $M = \frac{1}{s^{n-1}} \mathbf{C} \mathbf{C}^T$.

By subtracting $(s-1)I_n$ from M, we recognize that s-1 is an eigenvalue of M with multiplicity n-1. Then the trace of M gives us that n+s-1 is the other eigenvalue of M. Hence, $\lambda_{min}(\mathbf{CC}^T) = (s-1)s^{n-1}$.

Thereby we obtain that:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{\lambda_{min}(A)(s-1)s^{n-1}}{\lambda_{max}(A)} \frac{s^{-n}}{n} = \frac{(s-1)\,\lambda_{min}(A)}{n\,s\,\lambda_{max}(A)} \bullet$$

4.3 Sparse Shuffling (Spashu)

Robert: I was calling this Radamacher sketch before, but in truth it is not the Radamacher sketch. So we need to give this a new name. How about Sparse Shuffling Sketch? Or a Spashu sketch for short:)

Let $\phi:\{1,\ldots,n\}\to\{1,\ldots,n\}$ be a permutation, selected uniformly at random for all the n! possible permutations. Let $s\in\mathbb{N}$ be an integer that divides n, that is, there exists $m\in\mathbb{N}$ such that n=ms. We define $S\in\mathbb{R}^{n\times s}$ as a $s\times n$ Sparse Shuffling sketch when

$$S = \sum_{i=1}^{s} f_{i} \sum_{j=1+m(i-1)}^{mi} \epsilon(j) e_{\phi(j)}^{\top}.$$

Note that there are exactly m non-zero elements in each row of S.

We can also define a subsampled Spashu by considering $m \in \mathbb{N}$ as a free parameter such that $m \leq \lfloor \frac{n}{s} \rfloor$.

Notice that S can be rewriting as : $S = \sum_{j=1}^n \epsilon_j f_{\pi(j)} e_{\phi(j)}^T$, where π is the function $\left\{ \begin{array}{c} \{1,\dots,n\} \longrightarrow \{1,\dots,s\} \\ j \longmapsto -\lfloor -\frac{j}{m} \rfloor \end{array} \right\}$

 π verifies that for all $i \in \{1, \dots, s\}$, for all $j \in \{1 + m(i-1), \dots, mi\}$, $\pi(j) = i$.

For any permutation ϕ on $\{1,\ldots,n\}$, denote by P_ϕ the $n\times n$ matrix $\begin{pmatrix} e_{\phi(1)}^T \\ \vdots \\ e_{\phi(n)}^T \end{pmatrix}$.

Denote by $\phi_1, \ldots, \phi_{n!}$ the different permutations of \mathfrak{S}_n and define $(p_k)_{k=1,\ldots,n!}$ such that $p_k = \frac{1}{n!}$ for all k.

Let's consider that uniform probability on \mathfrak{S}_n .

Then $\phi = \phi_k$ with probability $\frac{1}{n!}$.

Let ϵ be a uniform random vector of $\{-1,1\}^n$ and ϕ a uniform random permutation of \mathfrak{S}_n .

Let S be a random shuffling sketch such that : $S = \sum_{i=1}^{n} \epsilon_{i} f_{\pi(i)} e_{\phi(j)}^{T}$.

Denote by $f_{\pi} = (f_{\pi(1)}, f_{\pi(2)}, \dots, f_{\pi(n)})$ and $D = \operatorname{diag}(\epsilon(1), \dots, \epsilon(n))$.

We have that:

$$S = \left(\epsilon(1) f_{\pi(1)}, \epsilon(2) f_{\pi(2)}, \dots, \epsilon(n) f_{\pi(n)}\right) \begin{pmatrix} e_{\phi(1)}^T \\ \vdots \\ e_{\phi(n)}^T \end{pmatrix} = \left(f_{\pi(1)}, f_{\pi(2)}, \dots, f_{\pi(n)}\right) \operatorname{diag}\left(\epsilon(1), \dots, \epsilon(n)\right) P_{\phi}.$$

Cheikh Touré _____ page 9 ●□

Then : $S = f_{\pi}DP_{\phi}$

Denote by $C_D = ((P_{\phi_1}^T D f_{\pi}^T, \dots, P_{\phi_{n'}}^T D f_{\pi}^T)$ which is a $n \times n! n$ matrix.

Recall that $Z = AS^T(SAS^T)^{-1}SA$, where S is our sparse shuffling random matrix, and that the convergence rate is $\rho = 1 - \lambda_{min} (A^{-\frac{1}{2}} E[Z] A^{-\frac{1}{2}})$.

Corollary 4.3.1
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \left(1 - \sqrt{\frac{n}{s(n-1)}}\right)$$

Proof:

The **lemma1.0.1** gives us that :

$$\lambda_{min}(A^{-\frac{1}{2}}E\left[Z|D\right]A^{-\frac{1}{2}})\geqslant\frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}_D\mathbf{C}_D^T)}{\lambda_{max}(A)}\min_{k}\frac{p_k}{\lambda_{max}(P_{\phi_k}^TDf_\pi^Tf_\pi DP_{\phi_k})}.$$
 For all $k=1,\ldots,n!,\ p_k=\frac{1}{n!}$ and P_{ϕ_k} is an orthogonal matrix ($i.e.\ P_{\phi_k}P_{\phi_k}^T=I_n$). Therefore one obtains that

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z|D]A^{-\frac{1}{2}}) \geqslant \frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}_D\mathbf{C}_D^T)}{n!\,\lambda_{max}(A)\lambda_{max}(f_\pi^Tf_\pi)}.$$

For any positive integer k, denote by $J_k \in \mathcal{M}_k(\mathbb{R})$ the all-ones matrix of size k, i.e. $J_k(i,j)=1$ for all $i, j = 1, \dots, k$.

$$\mathbf{C}_{D}\mathbf{C}_{D}^{T} = \sum_{k=1}^{n!} P_{\phi_{k}}^{T} D f_{\pi}^{T} f_{\pi} D P_{\phi_{k}}$$

$$= (n-1)! \begin{pmatrix} \operatorname{Tr}(f_{\pi}^{T} f_{\pi}) & \frac{\operatorname{Tr}(f_{\pi}^{T} f_{\pi}) & \frac{\operatorname{Tr}(D f_{\pi}^{T} f_{\pi} D (J-I_{n}))}{n-2} & \\ \frac{\operatorname{Tr}(D f_{\pi}^{T} f_{\pi} D (J-I_{n})) & \operatorname{Tr}(f_{\pi}^{T} f_{\pi}) & \\ \frac{\operatorname{Tr}(f_{\pi}^{T} f_{\pi}) & \operatorname{Tr}(f_{\pi}^{T} f_{\pi}) & \\ \end{array}$$

Denote by
$$\lambda_1 = (n-1)! \operatorname{Tr}(f_{\pi}^T f_{\pi}) - (n-2)! \operatorname{Tr}\left(D f_{\pi}^T f_{\pi} D (J - I_n)\right)$$
 and $\lambda_2 = (n-1)! (n-1) \operatorname{Tr}(f_{\pi}^T f_{\pi}) + (n-2)! \operatorname{Tr}\left(D f_{\pi}^T f_{\pi} D (J - I_n)\right)$.

By subtracting $\lambda_1 I_n$ from $\mathbf{C}_D \mathbf{C}_D^T$, we straightforwardly observe that λ_1 is an eigenvalue of $\mathbf{C}_D \mathbf{C}_D^T$ of multiplicity n-1. And then taking the trace shows that λ_2 is the remaining eigenvalue.

Hence,
$$\lambda_{min}(\mathbf{C}_D\mathbf{C}_D^T) = (n-1)! \operatorname{Tr}(f_{\pi}^T f_{\pi}) - (n-2)! \operatorname{Tr}\left(Df_{\pi}^T f_{\pi}D(J-I_n)\right)$$
.

Now denote by $1_m=\underbrace{(1,\dots,1)}_{m \text{ times } 1}$. One observes that $f_\pi=(f_11_m,f_21_m,\dots,f_s1_m)$.

Cheikh Touré

Then:

Then:

$$\lambda_{max}(f_{\pi}^T f_{\pi}) = m \text{ and } \operatorname{Tr}(f_{\pi}^T f_{\pi}) = n.$$

Right now we have that:

$$\lambda_{min}(A^{-\frac{1}{2}}E\left[Z|D\right]A^{-\frac{1}{2}}) \geqslant \frac{\lambda_{min}(A)\left(n! - (n-2)!\operatorname{Tr}\left(Df_{\pi}^{T}f_{\pi}D(J-I_{n})\right)\right)}{n!\,m\,\lambda_{max}(A)}.$$

By Cauchy-Schwarz inequality, $\operatorname{Tr}\left(Df_{\pi}^{T}f_{\pi}D(J-I_{n})\right)\leqslant\sqrt{\operatorname{Tr}\left(Df_{\pi}^{T}f_{\pi}D^{2}f_{\pi}^{T}f_{\pi}D\right)}\sqrt{\operatorname{Tr}\left(J-I_{n}\right)^{2}}$. Then: $\operatorname{Tr}\left(Df_{\pi}^{T}f_{\pi}D(J-I_{n})\right) \leqslant \sqrt{\operatorname{Tr}\left(f_{\pi}^{T}f_{\pi}f_{\pi}^{T}f_{\pi}\right)}\sqrt{n^{2}-n} \leqslant \sqrt[4]{sm^{2}}\sqrt{n^{2}-n}.$

$$\lambda_{min}(A^{-\frac{1}{2}}E\left[Z|D\right]A^{-\frac{1}{2}})\geqslant \frac{\lambda_{min}(A)\left(n!-(n-2)!m\sqrt{sn(n-1)}\right)}{n!\,m\,\lambda_{max}(A)}=\frac{s}{n}\frac{\lambda_{min}(A)}{\lambda_{max}(A)}\left(1-\frac{m\sqrt{sn(n-1)}}{n(n-1)}\right).$$
 Then :

Then:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z|D]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \left(1 - \frac{\sqrt{sn(n-1)}}{s(n-1)}\right) = \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \left(1 - \sqrt{\frac{n}{s(n-1)}}\right).$$

We finally finish the proof thanks to the concavity of the function λ_{min} :

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant E_D\left[\lambda_{min}(A^{-\frac{1}{2}}E[Z|D]A^{-\frac{1}{2}})\right] \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \left(1 - \sqrt{\frac{n}{s(n-1)}}\right) \bullet$$

Cheikh Touré

5. Conclusion

References

[1] ROBERT GOWER AND PETER RICHTARIK, <u>Randomized iterative methods for linear systems</u>, SIAM, (2015).