

Figure 37.6: A schematic illustration of the Hausdorff separation property

Given a topological space (E, \mathcal{O}) , given any subset A of E, since $E \in \mathcal{O}$ and E is a closed set, the family $\mathcal{C}_A = \{F \mid A \subseteq F, F \text{ a closed set}\}$ of closed sets containing A is nonempty, and since any arbitrary intersection of closed sets is a closed set, the intersection $\bigcap \mathcal{C}_A$ of the sets in the family \mathcal{C}_A is the smallest closed set containing A. By a similar reasoning, the union of all the open subsets contained in A is the largest open set contained in A.

Definition 37.10. Given a topological space (E, \mathcal{O}) , given any subset A of E, the smallest closed set containing A is denoted by \overline{A} , and is called the *closure*, or adherence of A. See Figure 37.7. A subset A of E is dense in E if $\overline{A} = E$. The largest open set contained in A is denoted by A, and is called the *interior* of A. See Figure 37.8. The set $Fr A = \overline{A} \cap \overline{E} - \overline{A}$ is called the *boundary (or frontier) of* A. We also denote the boundary of A by ∂A . See Figure 37.9.

Figure 37.7: The topological space (E, \mathcal{O}) is \mathbb{R}^2 with topology induced by the Euclidean metric. The subset A is the section $B_0(1)$ in the first and fourth quadrants bound by the lines y = x and y = -x. The closure of A is obtained by the intersection of A with the closed unit ball.