

Part. 04
Ensemble Learning

| Ensemble | Ensemble

FASTCAMPUS ONLINE

머신러닝과 데이터분석 A-Z

강사. 이경택

Stacking이란

V1		V2
0.3		0.42
0.4		-0.01
-0.4	15	0.17

SVM_pr	KNN_pr	RF_pr	GBM_pr
불량	불량	정상	불량
정상	정상	정상	불량
불량	불량	불량	불량

Stacking이란

0.3	
0.5	0.42
0.4	-0.01
-0.45	0.17

SVM_pr	KNN_pr	RF_pr	GBM_pr
불량	불량	정상	불량
정상	정상	정상	불량
불량	불량	불량	불량

FAST CAMPUS ONLINE

이경택 강사.

ONLINE

이경택 강사.

I Ensemble의 Ensemble

-0.5

0.17

불량

불량

불량

Stacking이란

새로운 학습데이터

V 1	V2	SVM_pr	KNN_pr	RF_pr	GBM_pr
0.2	0.2	 불량	불량	정상	불량
0.45	-0.1	정상	정상	정상	불량
0.2	0.2	불량	불량	정상	불량
0.45	-0.1	정상	정상	정상	불량
0.2	0.2	불량	불량	정상	불량
0.45	-0.1	정상	정상	정상	불량
0.2	0.2	불량	불량	정상	불량
0.45	-0.1	정상	정상	정상	불량
0.2	0.2	불량	불량	정상	불량
0.45	-0.1	정상	정상	정상	불량
-0.5	0.17	불량	불량	불량	불량

기존학습데이터

각 모델별 prediction 값

Stacking이란

새로운 검증데이터

V1	V2		SVM_pr	KNN_pr	RF_pr	GBM_pr
0.2	0.2		불량	불량	정상	불량
0.4	-0.1	_	정상	정상	정상	불량
0.12	0.12		불량	불량	정상	불량
0.45	-0.1		정상	정상	불량	정상
0.2	0.12		불량	정상	정상	불량
0.35	-0.15		정상	정상	정상	정상
0.21	0.21		불량	불량	정상	불량
0.45	-0.1		정상	불량	불량	불량
0.02	0.2		불량	불량	정상	불량
0.45	-0.1		정상	정상	정상	정상
-0.5	0.17		불량	불량	불량	불량

기존검증데이터

각 모델별 prediction 값

Stacking이란

- Stacking이란
 - 기존 feature를 쓰지 않고 각 모델 별 prediction만을 사용하기도함

fold1 fold2 fold3 fold4 fold5

학습데이터

새로운 학습데이터

KNN_pr	RF_pr	GBM_pr
불량	정상	불량
정상	정상	불량
불량	정상	불량
정상	정상	불량
불량	정상	불량
정상	정상	불량
불량	정상	불량
정상	정상	불량
불량	정상	불량
정상	정상	불량
불량	불량	불량
	불량 정상 불량 정상 불량 정상 불량 정상 불량 정상 불량 정상	불량 정상 정상 정상 불량 정상 정상 정상 불량 정상 정상 정상 불량 정상 정상 정상 불량 정상

각 모델별 prediction 값

Learner

이 경우, 일반적으로, regression 모델 사용

- Ensemble Learning
 - 여러 개의 <u>기본 모델</u>을 활용하여 하나의 새로운 모델을 만들어내는 개념

- Ensemble의 Ensemble
 - Ensemble 모델을 단일 모델로 사용하자

- Ensemble의 Ensemble
 - Ensemble의 기본조건 "다양한 모델"
 - Boosting계열 알고리즘들은 hyper parameter에 민감한 경향이 있음 -> hyper parameter 다양화
 - Bagging, RandomForest 컨셉과 같이 <u>데이터 및 변수 random추출</u>
 - 일반적으로 단일 ensemble 모델에 비해 성능이 좋음

Part. 04
Ensemble Learning

IEnsemble의 기법 review

FASTCAMPUS ONLINE

머신러닝과 데이터분석 A-Z

강사. 이경택