Tecnologia de Redes Wireless

Danilo Dolci

O que é?

```
Wireless também como Wi-Fi (Wireless Fidelity), provém do inglês:
Wire (fio, cabo);
Less (sem);
ou seja: sem fios.
```


Definição

Qualquer tipo de conexão para transmissão de informação sem a utilização de fios ou cabos.

Exemplos: ??

Exemplos

Amplitude X Velocidade

Aplicações para Redes sem fio. Quando utilizar?

- -Aplicações Móveis; ou
- -Onde os cabos não chegam, seja perto ou longe.

Classificação das Redes sem fio: Topologia

- WPAN: (Wireless Personal Area Network) Redes Pessoais sem Fio;
- WLAN: (Wireless Local Area Network) Redes Locais sem Fio;
- WMAN: (Wireless Metropolitan Area Network) Redes Metropolitanas sem Fio;
- WWAN: (Wireless Wide Area Network)Redes de Longa Distância sem Fio.

Classificação das Redes sem fio:

Topologia

Classificação das Redes sem fio: Topologia WPAN

Classificação das Redes sem fio: Topologia WLAN

Classificação das Redes sem fio: Topologia WMAN

Classificação das Redes sem fio: Topologia WWAN

Classificação das Redes sem fio: Forma de transmissão

ponto-a-ponto: objetivo de viabilizar o maior volume de sinais irradiados possível entre dois

locais.

Classificação das Redes sem fio: Forma de transmissão

ponto-multiponto: Um ponto de acesso que proporcione serviço *wireless* a área designada.

Padrões IEEE Institute of Eletrical and Eletronics Engineers

Normas e padrões para Redes sem fio:

- -IEEE 802.11 Wi-Fi
- -IEEE 802.15 ZigBee Alliance
- -IEEE 802.16 WIMAX
- -IEEE 802.20 Mobile-Fi

Sub-padrões IEEE 802.11 utilizados no mercado

```
802.11b
802.11d - hardware
802.11e - QoS
802.11f - Interoperabilidade
802.11g
802.11h - Versão do 802.11a
802.11i - Segurança
802.11j - 4.9GHz e 5GHz,
Japão
802.11k - em
desenvolvimento
```

```
802.11n - 65 Mbps a 600 Mbps
802.11p - Veículos
802.11r - Troca de bases
802.11s - Redes Mesh
802.11t - Métodos de testes
802.11u - Interoperabilidade
com redes celular
802.11v - Gerência
802.11v - Não utilizado
802.11v - Segurança
802.11z - 3650 a 3700 MHz EUA
```

Sub-padrões IEEE 802.11 utilizados no mercado

Padrão	Frequência	Taxa Máxima
IEEE 802.11a	5,8 GHz	54 Mbps
IEEE 802.11b	2,4 GHz	11 Mbps
IEEE 802.11g	2,4 GHz	54 Mbps

- Os principais objetivos na criação deste padrão foram:
- O aumento de velocidade e banda para suportar serviços como HDTV (High DefinitionTelevision), VoD (VideoonDemand) entre outros, e
- Prover meios que permitissem a interoperabilidade desse novo padrão com as tecnologias antecessoras.

♦ O padrão 802.11n introduziu a possiblidade de utilização de canais com 40 MHz de banda, permitindo praticamente duplicar as taxas de transferência por canal. Mais do que isto, permite que 2 canais adjacentes (sem superposição) de 20 MHz sejam combinados para formar um único canal de 40 MHz.

• Quando se utiliza o padrão 802.11n com canais de 20MHz na banda de 2,4GHz pode-se atingir até 288,9 Mbps. De forma análoga, na banda de 5 GHz, qualquer canal disponível pode ser designado com largura de 40 MHz, permitindo atingir a expressiva taxa de 600 Mbps.

- Nova geração da tecnologia de redes sem fio pertencentes a família 802.11 de alto desempenho na frequência de 5GHz.
- O padrão foi desenvolvido a partir de 2011 até 2013, após a aprovação do grupo de trabalho que previa o lançamento somente para o início de 2014.
- De acordo com um estudo, os dispositivos fabricados com essa especificação deverão se tornar padrão, pois se estima que serão encontrados em torno de um bilhão de aparelhos em todo o mundo em 2017.

♦

- Esta especificação trabalhará com multiestações de transferência sem-fio de pelo menos um gigabit por segundo e de um link único de transferência de 500 megabits por segundo (500 Mb/s).
- Pode chegar à velocidades de alguns Gbits com o uso de múltiplas estações;
- Isso é dado graças ao conceito de extensão de interface, que já é implementada no modelo 802.11n

•

Vantagens da tecnologia Wi-Fi 802.11ac:

*1. Aumento na velocidade

Uma solução 11ac pode oferecer velocidades de até 5,3 Gbps, que é pelo menos 35x mais rápido que o padrão de 11n, que atinge no máximo 300 Mbps.

*2. Maior cobertura de sinal

Os roteadores AC mais potentes podem cobrir áreas maiores que 200m², com melhor performance e estabilidade de sinal

*3. Suporte a mais usuários conectados simultaneamente

Com o advento dos tablets, smartphones e smart TVs, o número de dispositivos conectados a um único roteador wireless mais que triplicou. Com a capacidade de processamento da tecnologia 11AC, que é indicada para substituir as redes Wireless mais usadas atualmente, os problemas de lentidão na rede sem fio devem acabar.

Vantagens da tecnologia Wi-Fi 802.11ac:

4. Melhor custo-benefício

É possível encontrar equipamentos AC com velocidade de 750 Mbps por preços menores que os roteadores 11n com velocidade de 300 Mbps.

5. Menor interferência

O 11AC foi planejado para atuar tanto na frequência de 2.4GHz como 5GHz simultaneamente.

6. Economia de energia

Mesmo os roteadores mais velozes que funcionam com esse novo padrão Wi-Fi consomem menos energia, pois utilizam uma codificação mais eficiente e que exige menos esforço.

7. Compatibilidade com DLNA

Compartilhar conteúdos como fotos e vídeos em qualquer dispositivo com o recurso DLNA (como Smart TVs, consoles de jogos e smartphones).

Vantagens da tecnologia Wi-Fi 802.11ac:

8. Inteligência na distribuição do sinal Wi-Fi

Os equipamentos 11AC são capazes de distribuir o tráfego da conexão por meio das bandas de 2.4 e 5 GHz para garantir o melhor rendimento possível.

A Tecnologia SmartConnect é exclusiva de soluções AC e combina as bandas como se fossem apenas uma. O resultado é diminuição da interferência e congestionamento na rede sem fio a partir do direcionamento automático dos dispositivos para a rede menos ocupada, aumentando a eficiência e disponibilidade de sinal.

Já a tecnologia Advanced AC Beamforming melhora a força e o alcance do sinal, concentrando a potência de sinal na direção física onde os computadores estão espalhados.

Vantagens da tecnologia Wi-Fi 802.11ac:

9. Preparada para o futuro

As soluções AC estão preparadas para suportar conexões, protocolos e dispositivos que ainda serão desenvolvidos.

É possível encontrar roteadores wireless AC com performance superior à 3,2 Gbps.

10. Portfólio diversificado

Mesmo com tantos benefícios e tecnologias inovadoras e diferenciadas, atualmente os principais fabricantes oferecem portfólio diversificado para todos os gostos e bolsos.

O novo padrão Wi-Fi 802.11ax, e que também é conhecido como **Max WiFi**, é o sucessor do atual padrão 802.11ac e combina as frequências de 2.4GHz e 5GHz.

Os chips da Broadcom com o novo padrão oferecem velocidade de download quatro vezes maior, velocidade de upload seis vezes maior e alcance quatro vezes maior do que o que é oferecido hoje pelos produtos compatíveis com Wi-Fi 802.11ac e sem aumentar drasticamente o consumo de energia.

O novo padrão Wi-Fi 802.11ax, e que também é conhecido como **Max WiFi**, é o sucessor do atual padrão 802.11ac e combina as frequências de 2.4GHz e 5GHz.

Os chips da Broadcom com o novo padrão oferecem velocidade de download quatro vezes maior, velocidade de upload seis vezes maior e alcance quatro vezes maior do que o que é oferecido hoje pelos produtos compatíveis com Wi-Fi 802.11ac e sem aumentar drasticamente o consumo de energia.

Especificações dos chips:

BCM43684:

https://www.broadcom.com/products/wireless/wireless-lan-infrastructure/bcm43684

BCM43694:

https://www.broadcom.com/products/wireless/wireless-lan-infrastructure/bcm43694

BCM4375:

https://www.broadcom.com/products/wireless/wireless-lan-bluetooth/bcm4375

O press release da Broadcom:

https://www.broadcom.com/company/news/product-releases/2293974

Segurança

- ·SSID (Service Set ID)
- WEP (Wired Equivalency Privacy)
- •WPA (Wi-Fi Protected Access)- chave pré-compartilhada (PSK) (IEEE 802.11i)
- WPA2 -Advanced EncryptionStandard (AES)
- MAC Address

O FUTURO

WIMAX

(*Worldwide Interoperability for Microwave Access*)
Interoperabilidade Mundial para Acesso Microondas

WIMAX

Empresas que lideram as pesquisas no mundo:

Intel, Airspan Networks, Alvarion, AT&T, Aperto Networks, British Telecom, Fujitsu, KT Corp, Motorola, Samsung, Sprint Nextel, Wi-LAN e ZTE Corporation.

No Brasil: Intel Embratel

WIMAX

Redes Wireless WIMAX Faixas de Frequência:

Frequency (GHz)	Allocation	Countries	Target Group
2.5	Licensed	United States, Mexico, Brazil, Southeast Asia, and Korea (2.3 GHz)	Operators
3.5	Licensed	Most of the countries	Most of the countries
5.8	Unlicensed or light licensing	Most of the countries	ISPs (grass root)

Redes Wireless wimax

Fases de implementação:

-10 fase: Antenas externas

-20 fase: Antenas internas

-3o fase: Mobilidade

Referências:

- •AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES RESOLUÇÃO No 506, DE 1º DE JULHO DE 2008
- •ROSSI, S. R. Implementação de um nó IEEE 1451, baseado em ferramentas abertas e padronizadas, para aplicações em ambientes de instrumentação distribuída. Tese (Doutorado). Universidade Estadual Paulista, Departamento de Engenharia Elétrica. Ilha Solteira. 2004.
- "Can WiMAX Address Your Applications?". October 24, 2005 Prepared by Westech Communications Inc. on behalf of the WiMAX Forum
 - http://www.rnp.br/newsgen/9806/wireless-wan.html
 - http://www.rnp.br/newsgen/9805/wireless.html

Danilo Dolci danilo@fatecgarca.edu.br