Concours d'entrée 2010

Filière Ingénieur : Génie Energétique

Thermodynamique

Durée 1h

Documents non-autorisés

Le cycle d'un moteur Diesel comporte les transformations suivantes :

- AB : L'air admis subit une ² compression adiabatique de l'état initial $A(P_1, V_1, T_1)$ à l'état $B(P_2, V_2, T_2)$
- BC: Injection du Gasoil avec combustion immédiate (On assimilera cette transformation à un échauffement à pression constante) C(P₃, V₃)
- CD : Le mélange subit une détente adiabatique jusqu'à l'état $D(V_4 = V_1, T_4)$
- DA : Refroidissement isochore de 4 à 1

On définit dans ce problème le taux de compression $a = \frac{V_1}{V_2}$ et le taux de détente $b = \frac{V_1}{V_3}$. On

appelle γ le rapport des chaleurs massiques $\gamma = \frac{c_p}{c_\nu}$.

- 1. Représenter ce cycle Diesel sur le diagramme de Clapeyron.
- 2. Exprimer les températures T_2 , T_3 et T_4 en fonction T_1 , a, b et γ .
- 3. Donner l'expression du rendement du cycle Diesel en fonction :
 - Des températures T_1 , T_2 , T_3 et T_4 et du rapport γ des chaleurs massiques.
 - Du taux de compression a, du taux de détente b et du rapport $\gamma = \frac{c_p}{c_v}$.
- 4. Calculer numériquement le rendement pour :

$$a = 21$$
 ; $b = 7$; $\gamma = \frac{7}{5}$

 La vitesse maximale du véhicule v = 150Km/h correspond à un nombre de tours de l'ordre de N = 4500tours/min. Toujours à cette vitesse, la consommation est égale à 8 litres de Gasoil par 100 Km de trajet.

On donne la masse volumique du Gasoil $\rho = 800 \text{ Kg/m}^3$ et son pouvoir calorifique q = 46.8 Kj/g

- Calculer la distance parcourue par le véhicule par cycle (Pour cela, il faudra calculer d'abord le temps d'un cycle. Un cycle correspond à 2 tours)
- En déduire le volume et la masse du Gasoil introduit par cycle.
- Calculer la chaleur apportée par le carburant par cycle.
- En déduire la puissance maximale de ce moteur Diesel.