МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

«Гомельский государственный технический университет имени П.О. Сухого»

Кафедра «НГРиГПА»

Курсовая работа

по дисциплине «Подземная гидромеханика»

Тема:

«Расчет параметров фильтрации нефти к скважине и группе скважин»

Выполнил студент группы ЗНР-41

Рабцевич С.В.

Проверил преподаватель

Семёнова В.А.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. РАСЧЕТ ПАРАМЕТРОВ РАБОТЫ СКВАЖИНЫ	5
1.1. Расчёт совершенства скважины	5
1.2 Расчёт дебита одиночной скважины	9
1.3 Расчет коэффициента продуктивности скважины	13
1.4 Оценка применимости закона Дарси	14
1.5 Расчет давления на различных расстояниях от скважины	15
1.6 Расчет условного времени отбора нефти	18
1.7 Расчет изменения дебита скважины, расположенной в центре пласта	18
1.8 Расчет дебита скважины (пласт разрабатывается пятью скважинами).	19
1.9 Расчет дебита кольцевой батареи скважин	21
1.10 Расчет распределения давления и дебита одиночной скважины	24
1.11 Расчет положения фронта водонасыщенности	32
ГЛАВА 2. РАСЧЁТ УПРУГОГО НЕУСТАНОВИВШЕГОСЯ РЕЖИМА	
ПЛАСТА	34
2.1 Расчет упругого запаса нефти в пласте	34
2.2 Расчет изменения дебита после пуска скважины в эксплуатацию	36
2.3 Расчет давления на забое после остановки скважины	37
ЗАКЛЮЧЕНИЕ	40
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	41

ВВЕДЕНИЕ

Подземная гидромеханика — наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах. Она изучает фильтрационные потоки, поэтому служит теоретической основой разработки нефтяных, газовых и газоконденсатных месторождений. Так как движение этих потоков в глубинных условиях характеризуется рядом специфических особенностей, отличающих его от движения по трубам или открытым руслам, то их знание является необходимым для успешной разработки нефтяных и газовых месторождений.

Первые исследования проблемы движения нефти и газа в пластах, базировавшиеся на известных законах гидромеханики, появились в начале двадцатых годов прошлого столетия. В настоящее время проектирование разработки нового месторождения нефти и газа, а также его эксплуатация не мыслятся без широкого применения законов подземной гидромеханики, которое предполагает решение следующих задач оптимизации: правильность в расстановке скважин в пласте, их оптимальное количество и последовательность ввода в эксплуатацию, выбор оптимального режима работы скважин, выбор нагнетаемого в пласт агента для поддержания пластового давления и ряд других задач.

Методы подземной гидромеханики позволили разработать теорию взаимодействия скважин в условиях водонапорного пластового режима. Формулы дебитов и давлений легли в основу тех расчетных уравнений, которые применяются при проектировании разработки нефтяных и газовых месторождений. Гидродинамические расчеты, на основании внедряются передовые методы технологии нефтедобычи, способствовать сокращению сроков разработки, числа скважин, уменьшению капиталовложений, увеличению нефтедобычи, а, как следствие, и получению огромного экономического эффекта.

Главной задачей данной курсовой является расчет параметров фильтрации нефти к скважине и группе скважин при различных вариантах их расположения в плоском круговом пласте с ограниченным контуром питания для водонапорного и упругого режимов работы пласта.

Исходные данные для расчета (вариант 4.4.4)

Горизонтальный однородный круговой пласт имеет следующие параметры:

Радиус контура питания (R_k) 5000 м;

Мощность пласта (h) 16 м;

Коэффициент пористости пласта (m) 0,18;

Коэффициент проницаемости пласта (K) 0, 5 Д;

Динамический коэффициент вязкости ($\mu_{\rm H}$) 7 мПа · c;

Плотность нефти ($\rho_{\rm H}$) 850 кг/м³;

Коэффициент сжимаемости нефти ($\beta_{\rm H}$) 1,04 · 10⁻⁹ 1/Па;

Коэффициент сжимаемости породы пласта (β_c) 0,72 · 10⁻¹⁰ 1/Па;

Водонасыщенность нефтяного пласта (σ_0) 12%;

Коэффициент вязкости пластовой воды ($\mu_{\rm B}$) 1,2 мПа · c;

Коэффициент сжимаемости пластовой воды ($\beta_{\rm B}$) 4, 6 · 10⁻¹⁰ 1/Па;

Пласт вскрывается скважинами на глубину (b) 15 м;

Диаметр скважины (D_c) 24,8 см;

Забой скважины обсажен и перфорирован при помощи кумулятивного перфоратора. Число круглых отверстий на 1 м забоя (n) 10 шт.;

Диаметр отверстий (d_0) 16 мм;

Глубина проникновения пуль в породу (l') 100 мм;

Давление на контуре питания (P_k) 16 Мпа;

Давление на забое скважины (P_c) 13 Мпа;

В ходе расчета все данные были переведены в СИ.

ГЛАВА 1. РАСЧЕТ ПАРАМЕТРОВ РАБОТЫ СКВАЖИНЫ

1.1. Расчёт совершенства скважины

Промысловый опыт показывает, что две рядом стоящие скважины, пробуренные на один и тот же продуктивный пласт и работающие в одинаковых горно-геологических условиях, могут иметь различную продуктивность. Этот факт можно объяснить различной гидродинамической связью между пластом и забоем, что связано с различной конструкцией забоя скважин и различной гидропроводностью пористой среды в призабойной зоне пласта.

Степень гидродинамической связи между пластом и скважиной принято оценивать по величине коэффициента гидродинамического совершенства скважины δ :

$$\delta = \frac{Q_{\phi a \kappa m}}{Q_{cos}},\tag{1}$$

где Q_{cos} – дебит совершенной скважины, соответствующий потенциальным природным условиям пласта;

 $Q_{\phi a \kappa m}$ – фактический дебит скважины.

Если коэффициент гидродинамического совершенства меньше единицы, то такая скважина называется гидродинамически несовершенной. В ПЗП и на забое такой скважины возникают дополнительные фильтрационные сопротивления из-за искривления и сгущения линий токов. Принято различать следующие виды гидродинамического несовершенства скважин:

- по <u>степени вскрытия</u> пласта, когда скважина вскрывает пласт не на всю толщину;
- по <u>характеру вскрытия</u>, когда приток флюида в скважину осуществляется через перфорационные отверстия в обсадной эксплуатационной колонне;
- по качеству вскрытия, если гидропроводность пористой среды в ПЗП меньше, чем остальной части дренирования пласта, что связано с загрязнением прискважинной области, формирующимся на протяжении всей жизни скважины: при бурении, цементировании, перфорации, освоении и эксплуатации [1, с.10-11].

Так, например, в процессе бурения в прискважинной зоне образуется зона кольматации, что обусловлено проникновением дисперсной фазы промывочной жидкости в пласт, при этом проницаемость снижается в

среднем на 40%, а глубина проникновения кольматанта составляет 20-40 см и более; в процессе эксплуатации добывающей скважины происходит загрязнение призабойной зоны мельчайшими частицами глины и породы, выносимыми фильтрующимися жидкостями, может происходить выпадение асфальтенов и солей [2, с.6-7].

Широкое распространение получил метод расчета дебитов несовершенных скважин, основанный на электрогидродинамической аналогии фильтрационных процессов, когда за контур питания принимается кольцевой электрод, погруженный в электролит, а степень вскрытия пласта моделируется другим электродом, погружённым на заданную глубину в центр ванны с электролитом

К обоим электродам подводится разность потенциалов, являющаяся аналогом перепада давления, а сила тока служит аналогом дебита скважины [3, c.120].

Фактический дебит гидродинамически несовершенной скважины при этом подсчитывается по формуле Дюпюи:

$$Q_{\phi a \kappa m} = \frac{2\pi k h(P_{\kappa} - P_{c})}{\mu \left(ln \frac{R_{\kappa}}{r_{c}} + C_{I} + C_{2} \right)}, \tag{2}$$

где k — естественная проницаемость пласта, M^2 ;

h - эффективная толщина пласта, м; <math>h = 16 м;

 P_{κ} – давление на контуре питания, Πa ;

 P_c – давление на забое скважины, Πa ;

 $\Delta P = P_{\kappa} - P_{c}$ — депрессия, под действием которой жидкость притекает к скважине, Πa ;

 μ — динамическая вязкость флюида, $\Pi a \cdot c$;

 R_{κ} – радиус контура питания, M; $R_{\kappa} = 5 \text{ км} = 5 \cdot 10^3 \text{м}$;

 r_c — радиус скважины по долоту, M;

- C_1 безразмерная величина, определяющая дополнительное фильтрационное сопротивление, обусловленное несовершенством скважины по степени вскрытия пласта;
- C_2 безразмерная величина, определяющая дополнительное фильтрационное сопротивление, обусловленное несовершенством скважины по характеру вскрытия пласта [4, с.16].

 $C = C_1 + C_2$ — скин-эффект — безразмерная величина, которая определяет дополнительное фильтрационное сопротивление, вызывающее падение

давления в призабойной зоне; помимо коэффициентов C_1 и C_2 она также может включать коэффициент, контролирующий качество вскрытия пласта, а также псевдоскин-факторы, которые определяются изменением фазового состава и скоростей фильтрации [2, c.7].

Величина C_i может быть определена по формуле А.М. Пирвердяна [4, с.17]:

$$C_{1} = \left(\frac{1}{\overline{h}} - 1\right) \left(\frac{1}{1 - \frac{r_{c}}{b}} \ln \frac{b}{r_{c}} - 1\right) = \left(\frac{1}{\overline{h}} - 1\right) \left(\frac{1}{1 - \frac{D_{c}}{2b}} \ln \frac{2b}{D_{c}} - 1\right),\tag{3}$$

b – глубина вскрытия пласта, m; b = 15м;

 \overline{h} — относительное вскрытие пласта:

$$\bar{h} = \frac{b}{h} = \frac{15M}{16M} = 0,938$$

 D_c – диаметр скважины, м; $D_c = 24.8cM = 0.248M$;

$$C_1 = \left(\frac{1}{1} - 1\right) \left(\frac{1}{1 - \frac{0.248M}{2 \cdot 15M}} \ln \frac{2 \cdot 15M}{0.248M} - 1\right) = 0.256$$

Величина C_2 может быть определена аналитически по формуле, приведённой в статье [1, c.11]:

$$C_2^{a \text{налит}} = 3,58 \cdot a \cdot b \cdot c - 1$$
, (4)
где $a = 0,34 - 0,3 \cdot ln(l) + 0,17 \cdot ln^2(l)$; $b = 2,07 - 1,64 \cdot ln(n \cdot D_c) + 0,41 \cdot ln^2(n \cdot D_c)$; $c = 0,3 - 0,24 \cdot ln \alpha + 0,01 \cdot ln^2 \alpha$; $l = \frac{l'}{D_c}$;

l' – глубина проникновения пуль в породу, m; $l' = 100_{MM} = 0.100_{M}$;

$$l = \frac{0,100M}{0,248M} = 0,403;$$

n — число перфорационных отверстий на один метр вскрытой толщины пласта (плотность перфорации), M^{-1} ; $n = 10 M^{-1}$;

$$n \cdot D_c = 10 M^{-1} \cdot 0.248 M = 2.48;$$

$$\alpha = \frac{d_0}{D_c};$$

 d_0 – диаметр перфорационных отверстий (каналов), M;

$$\alpha = \frac{d_0}{D_c} = \frac{16 \cdot 10^{-3} \,\text{M}}{248 \cdot 10^{-3} \,\text{M}} = 6,45 \cdot 10^{-2}$$

$$a = 0.34 - 0.3 \cdot \ln 0.403 + 0.17 \cdot \ln^2 0.403 = 0.753;$$

$$b = 2.07 - 1.64 \cdot \ln 2.48 + 0.41 \cdot \ln^2 2.48 = 0.919;$$

$$c = 0.3 - 0.24 \cdot \ln (6.45 \cdot 10^{-2}) + 0.01 \cdot \ln^2 (6.45 \cdot 10^{-2}) = 1.033;$$

$$C_{2}^{aha.num} = 3.58 \cdot a \cdot b \cdot c - 1 = 3.58 \cdot 0.753 \cdot 0.919 \cdot 1.033 - 1 = 1.557.$$

Значения параметров C_1 и C_2 можно также найти графически по графикам В.И. Щурова, построенным по данным исследования притока жидкости к скважине на электролитических моделях:

$$a = \frac{h}{b_c} = \frac{16 \,\mathrm{M}}{0.248 \mathrm{M}} = 64,5;$$

$$C_1^{\mathrm{spa}\phi}(a,\bar{h}) = C_1^{\mathrm{spa}\phi}(a_1,\bar{h}) + \frac{a - a_1}{a_2 - a_1} \Big[C_1^{\mathrm{spa}\phi}(a_2,\bar{h}) - C_1^{\mathrm{spa}\phi}(a_1,\bar{h}) \Big];$$

$$C_1^{\mathrm{rpa}\phi}(a_1,\bar{h}) = C_1^{\mathrm{rpa}\phi}(40;0,94) = 0,24 \, [4, \,\mathrm{рисунок} \, 11];$$

$$C_1^{\mathrm{rpa}\phi}(a_2,\bar{h}) = C_1^{\mathrm{rpa}\phi}(80;94) = 0,29 \, [4, \,\mathrm{рисунок} \, 11];$$

$$C_1^{\mathrm{rpa}\phi}(64,5;1) = 0,24 + \frac{64,5 - 40}{80 - 40} \big[0,24 - 0,29 \big] = 0,27;$$

$$C_2^{\mathrm{spa}\phi}(l,\alpha_1,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(l_1,\alpha_1,n \cdot D_c) + \frac{l - l_1}{l_2 - l_1} \Big[C_2^{\mathrm{spa}\phi}(l_2,\alpha_1,n \cdot D_c) - C_2^{\mathrm{spa}\phi}(l_1,\alpha_1,n \cdot D_c) \Big];$$

$$C_2^{\mathrm{spa}\phi}(l,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) + \frac{l - l_1}{a_2 - a_1} \Big[C_2^{\mathrm{spa}\phi}(l_2,\alpha_2,n \cdot D_c) - C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) \Big];$$

$$C_2^{\mathrm{spa}\phi}(l,\alpha,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(l,\alpha_1,n \cdot D_c) + \frac{\alpha - \alpha_1}{\alpha_2 - \alpha_1} \Big[C_2^{\mathrm{spa}\phi}(l,\alpha_2,n \cdot D_c) - C_2^{\mathrm{spa}\phi}(l,\alpha_1,n \cdot D_c) \Big];$$

$$[4, \,\mathrm{рисуноk} \, 13, \,\mathrm{кривая} \, Ne4];$$

$$C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(0,25;0,060;2,5) = 4,2;$$

$$C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(0,5;0,060;2,5) = 1,95;$$

$$C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(0,5;0,060;2,5) = 3,9;$$

$$C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(0,25;0,080;2,5) = 3,9;$$

$$C_2^{\mathrm{spa}\phi}(l_1,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(0,5;0,080;2,5) = 1,81;$$

$$C_2^{\mathrm{spa}\phi}(l_2,\alpha_2,n \cdot D_c) = C_2^{\mathrm{spa}\phi}(0,5;0,080;2,5) = 1,81;$$

$$C_2^{\mathrm{spa}\phi}(0,403;0,070;2,5) = 3,9 + \frac{0,403 M - 0,25 M}{0,5 M - 0,25 M}} \big[1,81 - 3,9 \big] = 2,62;$$

$$C_2^{\mathrm{spa}\phi}(0,403;0,070;2,5) = 3,9 + \frac{0,403 M - 0,25 M}{0,5 M - 0,25 M}} \big[1,81 - 3,9 \big] = 2,62;$$

Учитывая, что объёмный дебит совершенной скважины определяется по формуле:

$$Q_{coe} = \frac{2\pi kh(P_{\kappa} - P_{c})}{\mu \ln \frac{R_{\kappa}}{r_{c}}},$$
(5)

а несовершенной по формуле (2), то для расчёта коэффициента совершенства скважины на основании формулы (1) получим следующее выражение:

$$\delta = \frac{Q_{\phi a \kappa m}}{Q_{cos}} = \frac{ln \frac{R_{\kappa}}{r_{c}}}{ln \frac{R_{\kappa}}{r_{c}} + C_{I} + C_{2}} = \frac{ln \frac{2R_{\kappa}}{D_{c}}}{ln \frac{2R_{\kappa}}{D_{c}} + C_{I} + C_{2}};$$
(6)

$$\begin{split} \delta^{\text{аналит}} &= \frac{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}}}{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}} + C_1 + C_2^{\text{аналит}}} = \frac{\ln \frac{2 \cdot 5 \cdot 10^3 \text{M}}{0.248 \text{M}}}{\ln \frac{2 \cdot 5 \cdot 10^3 \text{M}}{0.248 \text{M}} + 0.555 + 1.557} = 0.854; \\ \delta^{\text{гра}} &= \frac{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}}}{\ln \frac{2R_{\text{K}}}{D_{\textit{C}}} + C_1^{\text{гра}} + C_2^{\text{гра}}} \approx \frac{\ln \frac{2 \cdot 5 \cdot 10^3 \text{M}}{0.248 \text{M}}}{\ln \frac{2 \cdot 5 \cdot 10^3 \text{M}}{0.248 \text{M}} + 0.418 + 2.69} = 0.782; \\ \delta^{\text{аналит}} &\approx \delta^{\text{гра}} . \end{split}$$

1.2 Расчёт дебита одиночной скважины

Для определения дебита эксцентрично расположенной скважины в круговом пласте вводится функция $\Phi(x, y, z)$, называемая <u>потенциалом</u> скорости фильтрации. <u>Потенциалом скорости фильтрации</u> называется функция, производная которой с обратным знаком вдоль линии тока равна скорости фильтрации:

$$\Phi = \frac{k}{\mu} (P + \rho gz); \tag{7}$$

$$-\frac{\partial \Phi}{\partial x} = -\frac{k}{\mu} \frac{\partial P}{\partial x} = \upsilon_{x}$$

$$-\frac{\partial \Phi}{\partial y} = -\frac{k}{\mu} \frac{\partial P}{\partial y} = \upsilon_{y}$$

$$-\frac{\partial \Phi}{\partial z} = -\frac{k}{\mu} \left(\frac{\partial P}{\partial z} + \rho g \right) = \upsilon_{z}$$
(8)

Для расчёта введём также понятия точечного источника и стока.

Под <u>точечным стоком</u> понимается точка на плоскости, поглощающая жидкость, которую можно рассматривать как модель гидродинамически совершенной эксплуатационной скважины бесконечно малого радиуса в пласте единичной мощности.

Под <u>точечным источником</u> понимается точка, выделяющая жидкость, которую можно рассматривать как модель нагнетательной скважины.

Дебиты стоков принято считать положительными, дебиты источников – отрицательными.

Итак, найдём потенциал точечного стока на плоскости, вокруг которого будет наблюдаться плоскорадиальное движение:

$$\upsilon = \frac{Q}{S} = \frac{Q}{2\pi rh} = \frac{d\Phi}{dr},$$
$$d\Phi = \frac{Q}{2\pi rh}dr,$$

где S — площадь фильтрации.

После интегрирования получим выражение потенциала для точечного стока на плоскости:

$$\Phi = \frac{Q}{2\pi h} \ln r + C, \qquad (9)$$

где r — расстояние от точки, в которой определяется потенциал, до точечного стока;

C – постоянная интегрирования [5, c.47-48].

Итак, если скважина находится в пласте с круговым контуром питания, но расположена на расстоянии δ от его центра O, то для расчета дебита такой скважины прибегают к методу отображения источников и стоков, который заключается в отображении реальной скважины-стока A в фиктивную скважину-источник A', расположенную от первой на некотором расстоянии a и лежащую на продолжении линии OA, что проиллюстрировано на рисунке 1.

Рисунок 1 – Схема притока жидкости к скважине, эксцентрично расположенной в круговом пласте

Расстояние a определим из условия постоянства потенциалов на контуре и, следовательно, в точках M_1 и M_2 , которые согласно принципу суперпозиции и формуле (9) будут определяться следующим образом:

$$\Phi_{k} = \Phi_{M_{l}} = \frac{Q}{2\pi h} ln(R_{k} - \delta) - \frac{Q}{2\pi h} ln[a - (R_{k} - \delta)] + C = \frac{Q}{2\pi h} ln \frac{R_{k} - \delta}{a - (R_{k} - \delta)} + C$$

$$\tag{10}$$

$$\Phi_{k} = \Phi_{M_{2}} = \frac{Q}{2\pi h} \ln(R_{k} + \delta) - \frac{Q}{2\pi h} \ln[a + (R_{k} + \delta)] + C = \frac{Q}{2\pi h} \ln\frac{R_{k} + \delta}{a + (R_{k} + \delta)} + C$$
(11)

$$\frac{R_k - \delta}{a - (R_k - \delta)} = \frac{R_k + \delta}{a + (R_k + \delta)},$$

откуда

$$a = \frac{R_k^2 - \delta^2}{\delta} \,. \tag{12}$$

Для того чтобы определить дебит скважины A, определим потенциал на её забое:

$$\Phi_c = \Phi_A = \frac{Q}{2\pi h} \ln r_c - \frac{Q}{2\pi h} \ln a + C = \frac{Q}{2\pi h} \ln \frac{r_c}{a} + C.$$
(13)

Вычитая из равенства (10) соотношение (13) с учётом выражения (12), получим

$$\Phi_{k} - \Phi_{c} = \frac{Q}{2\pi h} \ln \frac{R_{k} - \delta}{a - (R_{k} - \delta)} \frac{a}{r_{c}} = \frac{Q}{2\pi h} \ln \frac{\left(R_{k}^{2} - \delta^{2}\right)\left(R_{k} - \delta\right)}{r_{c} \delta \left[\frac{R_{k}^{2} - \delta^{2}}{\delta} - \left(R_{k} - \delta\right)\right]} = \frac{Q}{2\pi h} \ln \left[\frac{R_{k}}{r_{c}} \left(1 - \frac{\delta^{2}}{R_{k}^{2}}\right)\right]$$

(14)

Из выражений (7) и (14) получим окончательную формулу для расчёта дебита скважины, эксцентрично расположенной в круговом пласте, для случая плоского установившегося фильтрационного потока, то есть при z=0:

$$Q = \frac{2\pi k h(P_k - P_c)}{\mu \ln \left[\frac{R_k}{r_c} \left(1 - \frac{\delta^2}{R_k^2} \right) \right]}.$$
 (15)

Следует заметить, что при эксцентриситете, равном нулю, выражение (15) обращается в формулу Дюпюи (5) [6, с.468-469].

Используя формулу (15), рассчитаем дебиты одиночной скважины для различных вариантов её расположения в круговом пласте. Результаты расчётов представим в численной и графической форме (рисунок 2):

1) Определяем дебит одиночной скважины несовершенной по характеру вскрытия в центре кругового пласта (r=0), необходимо учесть, что $r_c=0.5\cdot D_c=12.4$ см.

$$Q_1 = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m}}{7 \cdot 10^{-3} \Pi a \cdot c} \cdot \frac{3 \cdot 10^6 \Pi a}{\ln \frac{5 \cdot 10^3 \text{m}}{0.124 \text{m}}} \simeq 2,005 \cdot 10^{-3} \frac{\text{m}^3}{c}.$$

2) Определяем дебит одиночной скважины Q на расстоянии $0,1\cdot R_k$ от ее центра:

$$Q_2 = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \Pi \text{a}}{7 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \left[\frac{5 \cdot 10^3 \text{m}}{0{,}124 \text{m}} \cdot (1 - 0{,}1^2) \right]} \simeq 2{,}01 \cdot 10^{-2} \frac{\text{m}^3}{\text{c}}.$$

3) Определяем дебит одиночной скважины на расстоянии $0,5 \cdot R_k$ от ее центра:

$$Q_3 = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \Pi \text{a}}{7 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \left[\frac{5 \cdot 10^3 \text{m}}{0,124 \text{m}} \cdot (1-0.5^2) \right]} \simeq 2,06 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

4) Определяем дебит одиночной скважины на расстоянии $0,9 \cdot R_k$ от ее контура:

$$Q_4 = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{ Ha}}{7 \cdot 10^{-3} \text{Ha} \cdot \text{c} \cdot \text{ln} \left[\frac{5 \cdot 10^3 \text{m}}{0,124 \text{m}} \cdot (1 - 0,9^2) \right]} \simeq 2,38 \cdot 10^{-2} \frac{\text{m}^3}{\text{c}}.$$

$$\frac{8 \times 10^{-3}}{4 \times 10^{-3}}$$

4×10³

6×10³

Рисунок 2 – График зависимости дебита скважины, эксцентрично расположенной в круговом пласте, от эксцентриситета, то есть расстояние от центра скважины до центра кругового пласта для случая гидродинамически совершенной скважины

 2×10^{3}

С поправкой на гидродинамическое несовершенство скважины рассчитаем её фактический дебит по формуле (1):

$$\begin{split} Q_0^{\rm факт} &= \delta^{\rm аналит} Q_0^{\rm cob} = 0.854 \cdot 2.005 \cdot 10^{-3} \, \frac{\rm m^3}{\rm c} = 1.712 \cdot 10^{-3} \, \frac{\rm m^3}{\rm c}; \\ Q_1^{\rm факт} &= \delta^{\rm аналит} Q_1^{\rm cob} = 0.854 \cdot 2.01 \cdot 10^{-3} \, \frac{\rm m^3}{\rm c} = 1.714 \cdot 10^{-\frac{\rm m^3}{\rm c}}; \\ Q_2^{\rm факт} &= \delta^{\rm аналит} Q_2^{\rm cob} = 0.854 \cdot 2.061 \cdot 10^{-3} \, \frac{\rm m^3}{\rm c} = 1.76 \cdot 10^{-3} \, \frac{\rm m^3}{\rm c}; \end{split}$$

$$Q_3^{\phi {
m akt}} = \delta^{{
m ahaлит}} Q_3^{{
m cob}} = 0.854 \cdot 2.377 \cdot 10^{-3} \frac{{
m m}^3}{{
m c}} = 2.03 \cdot 10^{-3} \frac{{
m m}^3}{{
m c}}.$$

1.3 Расчет коэффициента продуктивности скважины

Для определения фильтрационных характеристик пласта определим коэффициент продуктивности скважины K, представляющий отношение дебита скважины Q к перепаду давления ΔP , то есть депрессии на пласт [4, c.9]:

$$K = \frac{Q}{\Delta P},$$

$$K_{0} = \frac{Q_{0}^{\phi \text{akt}}}{P_{\text{K}} - P_{\text{C}}} = \frac{2,005 \cdot 10^{-3} \frac{\text{m}^{3}}{\text{c}}}{16 \cdot 10^{6} \Pi \text{a} - 13 \cdot 10^{6} \Pi \text{a}} = 5,707 \cdot 10^{-10} \frac{\text{m}^{3}}{\Pi \text{a} \cdot \text{c}};$$

$$K_{1} = \frac{Q_{1}^{\phi \text{akt}}}{P_{\text{K}} - P_{\text{C}}} = \frac{2,01 \cdot 10^{-3} \frac{\text{m}^{3}}{\text{c}}}{16 \cdot 10^{6} \Pi \text{a} - 13 \cdot 10^{6} \Pi \text{a}} = 5,712 \cdot 10^{-10} \frac{\text{m}^{3}}{\Pi \text{a} \cdot \text{c}};$$

$$K_{2} = \frac{Q_{2}^{\phi \text{akt}}}{P_{\text{K}} - P_{\text{C}}} = \frac{1,486 \cdot 10^{-3} \frac{\text{m}^{3}}{\text{c}}}{16 \cdot 10^{6} \Pi \text{a} - 13 \cdot 10^{6} \Pi \text{a}} = 5,866 \cdot 10^{-10} \frac{\text{m}^{3}}{\Pi \text{a} \cdot \text{c}};$$

$$K_{3} = \frac{Q_{3}^{\phi \text{akt}}}{P_{\text{K}} - P_{\text{C}}} = \frac{1,691 \cdot 10^{-3} \frac{\text{m}^{3}}{\text{c}}}{16 \cdot 10^{6} \Pi \text{a} - 13 \cdot 10^{6} \Pi \text{a}} = 6,767 \cdot 10^{-10} \frac{\text{m}^{3}}{\Pi \text{a} \cdot \text{c}}.$$

По результатам расчёта коэффициентов продуктивности построим индикаторные линии, то есть графики зависимостей расхода от разности давлений на контуре питания и галерее для различных вариантов расположения скважины в пласте, которые в пределах закона Дарси представляют прямые линии (рисунок 3).

Рисунок 3 – Индикаторные линии плоскорадиального потока несжимаемой жидкости по закону Дарси

1.4Оценка применимости закона Дарси

В ряде случаев линейность связи между скоростью фильтрации и градиентом давления нарушается, что наблюдается как при высоких скоростях, то есть турбулентном режиме фильтрации, так и при низких скоростях, то есть структурном режиме. Таким образом, можно выделить верхнюю и нижнюю границы применимости закона Дарси и соответствующие им две основные группы причин. Верхняя граница определяется группой причин, связанных с проявлением инерционных сил при достаточно высоких скоростях фильтрации, и связывается с некоторым критическим значением числа Рейнольдса, определяемого по следующей формуле:

$$Re = \frac{\upsilon \cdot \overline{d} \cdot \rho}{\mu}, \tag{17}$$

где v – скорость фильтрации, $\frac{M}{c}$;

 \bar{d} – некоторый характерный линейный размер поровых каналов;

 μ – динамический коэффициент вязкости флюида, $\Pi a \cdot c$.

Линейный параметр поровых каналов может быть определён одним из следующих способов:

• по В.Н. Щелкачёву:

$$\left. \begin{array}{l} \overline{d} = \frac{10\sqrt{k}}{m^{2,3}} \\ 1 \le Re_{\kappa p} \le 12 \end{array} \right\};$$
(18)

• по М.Д. Миллионщикову:

$$\bar{d} = \frac{\sqrt{k}}{m^{1.5}}
0.022 \le Re_{sp} \le 0.29$$
; (19)

где k — коэффициент проницаемости пористой среды, M^2 ;

т – коэффициент пористости;

 $Re_{_{\kappa p}}$ — критическое значение числа Рейнольдса, за пределами верхней границы которого фильтрация становится неламинарной и линейный закон фильтрации Дарси становится неприменим.

Нижняя граница определяется проявлением неньютоновских реологических свойств жидкости: её взаимодействием с твердым скелетом пористой среды при достаточно малых скоростях фильтрации [3, c.18-19, 22].

На основе вышеизложенного по формулам (17), (18) и (19) определим применимость закона Дарси для фильтрации нефти в скважину при её расположении, обеспечивающем максимальный дебит:

$$v_3 = \frac{Q_3^{\phi \text{akt}}}{S} = \frac{4Q_3^{\phi \text{akt}}}{\pi d_0^2 n b} = \frac{4 \cdot 2,03 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}}}{3,14 \cdot 0,016^2 \text{M}^2 \cdot 10 \text{M}^{-1} \cdot 15 \text{M}} = 0,247 \frac{\text{M}}{\text{c}};$$

по В.Н. Щелкачёву:

$$\bar{d} = \frac{10\sqrt{k}}{m^{2,3}} = \frac{10\sqrt{4,93\cdot10^{-13}M^2}}{0,18^{2,3}} = 3,627\cdot10^{-4}M;$$

$$Re_{Kp} = \frac{v_3 \cdot \bar{d} \cdot \rho_H}{\mu_H} = \frac{0.067 \frac{M}{c} \cdot 3.63 \cdot 10^{-6} M \cdot 850 \frac{K\Gamma}{M^3}}{7 \cdot 10^{-3} \Pi a \cdot c} = 2.9;$$

 $1 ≤ Re_{m} ≤ 12$ Тип течения: ламинарный

• по М.Д. Миллионщикову:

$$\bar{d} = \frac{\sqrt{k}}{m^{1,5}} = \frac{\sqrt{4,93 \cdot 10^{-13} \text{M}^2}}{0,18^{1,5}} = 9,19 \cdot 10^{-6} \text{M};$$

$$\text{Re}_{\text{KP}} = \frac{v_3 \cdot \bar{d} \cdot \rho_{\text{H}}}{\mu_{\text{H}}} = \frac{0,067 \frac{\text{M}}{\text{C}} \cdot 9,19 \cdot 10^{-6} \text{M} \cdot 850 \frac{\text{KF}}{\text{M}^3}}{7 \cdot 10^{-3} \text{\Pia} \cdot \text{c}} = 0,075.$$

 $0.022 \le \text{Re}_{\text{kn}} \le 0.29$ Тип течения: ламинарный

Рассчитанные значения чисел Рейнольдса не выходят за верхнюю границу критического значения для такого эксцентричного расположения скважины, которое обеспечивает максимальную скорость фильтрации, следовательно, закон Дарси будет выполняться и для других вариантов расположения скважины в круговом пласте, рассмотренных выше.

1.5 Расчет давления на различных расстояниях от скважины

Для определения распределения давления В пласте при плоскорадиальной фильтрации воспользуемся линейным фильтрации Дарси. Так как направление фильтрации жидкости радиальное, то выделим внутри пласта кольцевой слой радиусом r и толщиной dr, ограниченный поверхностями c однородной проницаемостью. соответствии с линейным законом фильтрации общий расход жидкости Q через единицу площади S будет вычисляться по следующей формуле:

$$\frac{Q}{S} = -\frac{k}{\mu} \frac{dP}{dr},\tag{20}$$

где S- площадь фильтрации жидкости, в качестве которой может быть взята площадь сечения цилиндра произвольного радиуса r, проведённого из центра скважины; $S=2\pi rh$;

$$\frac{dP}{dr}$$
 — радиальный градиент давления [7].

Знак «минус» в выражении (20) свидетельствует об уменьшении давления вдоль направления фильтрационного движения флюида.

Проинтегрируем выражение (20) в пределах области фильтрации:

$$\int_{r_c}^{R_\kappa} \frac{dr}{r\varepsilon} = -\frac{2\pi}{Q} \int_{P_\kappa}^{P_c} dP, \qquad (21)$$

где ε – коэффициент гидропроводности пласта, характеризующий зону с естественной проницаемостью, то есть зону пласта за пределами проникновения технологических жидкостей [8, с.7]:

$$\varepsilon = \frac{kh}{\mu} \tag{22}$$

Если $\varepsilon = const$, то на основании выражения (21) получим формулу Дюпюи, которая уже приводилась выше:

$$Q = \frac{2\pi k h(P_{\kappa} - P_c)}{\mu \ln \frac{R_{\kappa}}{r_c}}.$$
 (23)

Если верхние пределы в выражении (21) принять переменными, то формулу Дюпюи можно записать в другом виде:

$$Q = \frac{2\pi k h(P - P_c)}{\mu \ln \frac{r}{r_c}}.$$
 (24)

Так как выражения (23) и (24) эквивалентны, то, приравнивая их, получим формулу для распределения давления в круговом пласте:

$$P = P_c + \frac{P_{\kappa} - P_c}{\ln \frac{R_{\kappa}}{r_c}} \ln \frac{r}{r_c}.$$
 (25)

Если в выражении (21) нижние пределы принять переменными, то по аналогии можно получить и другую, эквивалентную формулу для распределения давления:

$$P = P_{\kappa} - \frac{P_{\kappa} - P_{c}}{\ln \frac{R_{\kappa}}{r_{c}}} \ln \frac{R_{\kappa}}{r} . \tag{26}$$

По формуле (25) определим давления на различных расстояниях от оси скважины, расположенной в центре кругового пласта:

$$P(r=0,5\mathrm{M})=13\mathrm{M}\Pi \mathrm{a}+rac{16\mathrm{M}\Pi \mathrm{a}-13\mathrm{M}\Pi \mathrm{a}}{\lnrac{5\cdot10^3\mathrm{M}}{0,124\mathrm{M}}}\lnrac{0,5\mathrm{M}}{0,124\mathrm{M}}=13,39\mathrm{M}\Pi \mathrm{a};$$
 $P(r=1\mathrm{M})=13\mathrm{M}\Pi \mathrm{a}+rac{16\mathrm{M}\Pi \mathrm{a}-13\mathrm{M}\Pi \mathrm{a}}{\lnrac{5\cdot10^3\mathrm{M}}{0,124\mathrm{M}}}\lnrac{1\mathrm{M}}{0,124\mathrm{M}}=13,59\mathrm{M}\Pi \mathrm{a};$

$$\begin{split} P(r=5\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{5\text{M}}{0,124\text{M}} = 14,05\text{M}\Pi \text{a}; \\ P(r=10\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{10\text{M}}{0,124\text{M}} = 14,24\text{M}\Pi \text{a}; \\ P(r=50\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{50\text{M}}{0,124\text{M}} = 14,70\text{M}\Pi \text{a}; \\ P(r=100\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{100\text{M}}{0,124\text{M}} = 14,89\text{M}\Pi \text{a}; \\ P(r=500\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{500\text{M}}{0,124\text{M}} = 15,35\text{M}\Pi \text{a}; \\ P(r=1000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{1000\text{M}}{0,124\text{M}} = 15,54\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 15,54\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{\ln\frac{5\cdot 10^{3}\text{M}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{0,124\text{M}}} \ln\frac{5000\text{M}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{0,124\text{M}} = 16,00\text{M}\Pi \text{a}; \\ P(r=5000\text{M}) &= 13\text{M}\Pi \text{a} + \frac{16\text{M}\Pi \text{a} - 13\text{M}\Pi \text{a}}{0,124\text{M}} = 16,00\text{M}$$

По данным расчёта построим кривую депрессии при заданном забойном давлении (рисунок 4).

Рисунок 4 - Распределение давления в круговом пласте при плоскорадиальном притоке несжимаемой жидкости к скважине

Из рисунка 4 видно, что при значениях радиуса, близких к радиусу контура питания, значения давления изменяются незначительно, а при приближении к скважине, напротив, наблюдается резкое изменение давления. Аналогично ведут себя градиент давления и скорость фильтрации с той лишь с разницей, что давление при приближении к скважине резко уменьшается, а скорость и градиент, напротив, возрастают.

1.6 Расчет условного времени отбора нефти

Определим средневзвешенное по объёму порового пространства V_n давление. Для этого воспользуемся следующей формулой [4, c.10]:

$$\widetilde{P} = \frac{1}{V_n} \int_{V_n} P dV_n = P_{\kappa} - \frac{P_{\kappa} - P_c}{2 \ln \frac{R_{\kappa}}{r_c}};$$

$$\widetilde{P} = 16 \text{M} \Pi a - \frac{16 \text{M} \Pi a - 13 \text{M} \Pi a}{2 \ln \frac{5 \cdot 10^3 \text{M}}{0.124 \text{M}}} = 15,86 \text{ M} \Pi a.$$
(27)

Получим формулу для определения условного времени отбора всей нефти из пласта T при поддержании постоянных давлений на контуре питания и на забое скважины, расположенной в центре пласта:

$$T = \frac{V_n}{Q} = \frac{\pi n h \left(R_\kappa^2 - r_c^2\right)}{Q};$$

$$T_0 = \frac{V_{\Pi}}{Q_0^{\phi \text{AKT}}} = \frac{3,14 \cdot 0,18 \cdot 16 \text{M} \cdot (5^2 \cdot 10^6 \text{M}^2 - 0,124^2 \text{M}^2)}{1,712 \cdot 10^{-3} \frac{\text{M}^3}{c}} = 1,32 \cdot 10^{11} c.$$
(28)

1.7 Расчет изменения дебита скважины, расположенной в центре пласта

Интерференция скважин. Принцип суперпозиции.

При пуске, остановке или изменении режима работы одной скважины изменяются дебиты и забойные давления других скважин, эксплуатирующих тот же пласт. Это явление взаимодействия и взаимовлияния скважин интерференцией. Для называется решения задач, связанных c интерференцией, используют принцип суперпозиции, согласно которому результирующий потенциал в любой точке пласта М при совместной работе алгебраической скважин равен сумме потенциалов, обусловленных работой каждой отдельной скважины. Если потенциал на контуре питания Φ_{κ} известен, то полагая, что расстояние от контура питания до каждой скважины приблизительно равно радиусу контура питания R_{κ} , и помещая точку М последовательно на забой каждой скважины, можно получить систему из n уравнений для определения дебитов, в которой n число скважин [4, с.11-12].

Воспользуемся принципом суперпозиции для решения следующей задачи: определим изменение дебита скважины, расположенной в центре пласта, обусловленное введением такой же скважины с тем же забойным давлением на некотором расстоянии a от первой.

Для этого составим систему уравнений для потенциалов:

$$\begin{cases}
\Phi_{\kappa} - \Phi_{a} = \frac{1}{2\pi\hbar} \left(Q_{a}^{\cos\theta} \ln \frac{R_{\kappa}}{r_{c}} + Q_{b}^{\cos\theta} \ln \frac{R_{\kappa}}{a} \right) \\
\Phi_{\kappa} - \Phi_{b} = \frac{1}{2\pi\hbar} \left(Q_{a}^{\cos\theta} \ln \frac{R_{\kappa}}{a} + Q_{b}^{\cos\theta} \ln \frac{R_{\kappa}}{r_{c}} \right)
\end{cases} (29)$$

где Q_a^{cos} и Q_b^{cos} — дебиты первой и второй гидродинамически совершенных скважин соответственно при их совместной работе, а Φ_a и Φ_b — их потенциалы.

Решая совместно уравнения системы (29), получим формулы для расчёта дебитов Q_a^{cos} и Q_b^{cos} :

$$\begin{split} Q_a^{cos} &= \frac{2\pi h}{\ln\frac{R_\kappa^2}{ar_c}} \Bigg[\varPhi_\kappa - \varPhi_a - \frac{\left(\varPhi_a - \varPhi_b\right)}{\ln\frac{a}{r_c}} \ln\frac{R_\kappa}{a} \Bigg], \\ Q_b^{cos} &= Q_a^{cos} + \frac{2\pi h \left(\varPhi_a - \varPhi_b\right)}{\ln\frac{a}{r_c}}. \end{split}$$

Так как $\Phi_a = \Phi_b = \Phi_c$, то

$$Q_a^{cos} = Q_b^{cos} = \frac{2\pi h(\Phi_{\kappa} - \Phi_c)}{\ln \frac{R_{\kappa}^2}{ar_c}}$$

или с учётом формул (1) и (7)

$$Q_a^{\phi a \kappa m} = Q_b^{\phi a \kappa m} = \frac{2\pi k h (P_{\kappa} - P_c)}{\mu \ln \frac{R_{\kappa}^2}{a r_c}} \delta^{a \mu a \pi \mu m}.$$
 (30)

На основании полученной формулы (30) рассчитаем изменение дебита скважины в результате её взаимодействия с введённой скважиной при условии, что расстояние между ними a = 200 M:

$$\Delta Q_0^{\phi \text{akt}} = 1,313 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} - \frac{2 \cdot 3,14 \cdot 4,934 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{Ha}}{7 \cdot 10^{-3} \text{Ha} \cdot \ln \frac{5^2 \cdot 10^6 \text{m}^2}{200 \text{m} \cdot 0,124 \text{m}}} 0,854$$
$$= 3,987 \cdot 10^{-4} \frac{\text{M}^3}{\text{c}}$$

1.8 Расчет дебита скважины (пласт разрабатывается пятью скважинами)

Рассмотрим ещё одну задачу. Определим дебиты скважин и суммарный дебит, если данный круговой пласт разрабатывается пятью скважинами, из которых четыре расположены в вершинах квадрата со стороной A = 500 M, а

пятая — в центре (рисунок 5). При этом все скважины идентичны и работают с одинаковым забойным давлением P_c .

Рисунок 5 – Схема расположения скважин

Очевидно, что дебиты скважин, находящихся в вершинах квадрата, в силу симметричного расположения и равенства забойных давлений, а, следовательно, и потенциалов ($\Phi_I = \Phi_{II} = \Phi_{III} = \Phi_{VI} = \Phi_V = \Phi_C$) будут равны, то есть $Q_I^{cos} = Q_{III}^{cos} = Q_{IV}^{cos} = Q_{IV}^{cos} = Q_{IV}^{cos} = Q_{IV}^{cos}$. Как и в предыдущей задаче, составим систему уравнений для потенциалов

$$\begin{split} & \left\{ \boldsymbol{\Phi}_{\kappa} - \boldsymbol{\Phi}_{c} = \frac{1}{2\pi h} \left(\boldsymbol{Q}_{V}^{\cos \ln \frac{\boldsymbol{R}_{\kappa}}{r_{c}}} + 4\boldsymbol{Q}^{\cos \ln \frac{\sqrt{2}\boldsymbol{R}_{\kappa}}{A}} \right) \right. \\ & \left\{ \boldsymbol{\Phi}_{\kappa} - \boldsymbol{\Phi}_{c} = \frac{1}{2\pi h} \left(\boldsymbol{Q}^{\cos \ln \frac{\boldsymbol{R}_{\kappa}}{r_{c}}} + 2\boldsymbol{Q}^{\cos \ln \frac{\boldsymbol{R}_{\kappa}}{A}} + \boldsymbol{Q}^{\cos \ln \frac{\sqrt{2}\boldsymbol{R}_{\kappa}}{2A}} + \boldsymbol{Q}_{V}^{\cos \ln \frac{\sqrt{2}\boldsymbol{R}_{\kappa}}{A}} \right) \right. \end{split}$$

которая после упрощения примет вид

$$\begin{cases}
\Phi_{\kappa} - \Phi_{c} = \frac{1}{2\pi h} \left(Q_{V}^{\cos \theta} \ln \frac{R_{\kappa}}{r_{c}} + Q^{\cos \theta} \ln \frac{4R_{\kappa}^{4}}{A^{4}} \right) \\
\Phi_{\kappa} - \Phi_{c} = \frac{1}{2\pi h} \left(Q_{V}^{\cos \theta} \ln \frac{\sqrt{2}R_{\kappa}}{A} + Q^{\cos \theta} \ln \frac{\sqrt{2}R_{\kappa}^{4}}{2A^{3}r_{c}} \right).
\end{cases} (31)$$

Совместное решение уравнений системы (31) с учётом (1) и (7) позволяет получить формулы для расчёта дебитов для данного расположения скважин:

$$Q^{\phi\alpha\kappa m} = \frac{2\pi k h(P_{\kappa} - P_{c})}{\mu \left[\ln \frac{R_{\kappa}}{r_{c}} \cdot \frac{\ln \frac{4\sqrt{2}r_{c}}{A}}{\ln \frac{\sqrt{2}r_{c}}{A}} + 4\ln \frac{R_{\kappa}}{A} \right]} \delta^{\alpha\eta\alpha,num}, \tag{32}$$

$$Q_{V}^{\phi a \kappa m} = \frac{2\pi k h(P_{\kappa} - P_{c})}{\mu \left[\ln \frac{R_{\kappa}}{r_{c}} + 4 \ln \frac{R_{\kappa}}{A} \cdot \frac{\ln \frac{\sqrt{2}r_{c}}{A}}{\ln \frac{4\sqrt{2}r_{c}}{A}} \right]} \mathcal{S}^{a \kappa a \lambda n m}. \tag{33}$$

По формулам (32) и (33) определим дебиты скважин, а также суммарный дебит:

$$\begin{split} Q_V^{\rm \varphi a k t} &= \frac{2 \cdot 3,14 \cdot 4,93 \cdot 10^{-13} \, \mathrm{m}^2 \cdot 16 \, \mathrm{m} \cdot 3 \cdot 10^6 \, \mathrm{\Pi} a}{7 \cdot 10^{-3} \, \mathrm{\Pi a} \cdot \mathrm{c} \left[\ln \frac{5 \cdot 10^3 \, \mathrm{m}}{0,124 \, \mathrm{m}} \cdot \frac{\ln \frac{4 \sqrt{2} \cdot 0,124 \, \mathrm{m}}{500 \, \mathrm{m}}}{\ln \frac{\sqrt{2} \cdot 0,124 \, \mathrm{m}}{500 \, \mathrm{m}}} + 4 \ln \frac{5 \cdot 10^3 \, \mathrm{m}}{500 \, \mathrm{m}} \right]}{8 \cdot 10^{-3} \, \mathrm{m} \cdot \mathrm{c} \left[\ln \frac{5 \cdot 10^3 \, \mathrm{m}}{0,124 \, \mathrm{m}} + 4 \ln \frac{5 \cdot 10^3 \, \mathrm{m}}{500 \, \mathrm{m}} \cdot \frac{\ln \frac{\sqrt{2} \cdot 0,124 \, \mathrm{m}}{500 \, \mathrm{m}}}{\ln \frac{4 \sqrt{2} \cdot 0,124 \, \mathrm{m}}{500 \, \mathrm{m}}} \right]} \, 0,854 = 8,34 \cdot 10^{-4} \, \frac{\mathrm{m}^3}{\mathrm{c}}; \\ Q_{\Sigma}^{\rm \varphi a k t} &= 4 \, Q^{\rm \varphi a k t} + Q_V^{\rm \varphi a k t} + 4 \ln \frac{5 \cdot 10^3 \, \mathrm{m}}{500 \, \mathrm{m}} \cdot \frac{\ln \frac{\sqrt{2} \cdot 0,124 \, \mathrm{m}}{500 \, \mathrm{m}}}{\ln \frac{4 \sqrt{2} \cdot 0,124 \, \mathrm{m}}{500 \, \mathrm{m}}}} \right] \, 0,854 = 8,34 \cdot 10^{-4} \, \frac{\mathrm{m}^3}{\mathrm{c}}; \end{split}$$

1.9 Расчет дебита кольцевой батареи скважин

Определим дебит кольцевой батареи скважин, расположенных по кругу на расстоянии $0.6R_{\kappa}$ от центра (рисунок 6). Для этого воспользуемся следующей формулой:

$$Q^{6am} = \frac{2\pi k h(P_{\kappa} - P_c)}{\mu \ln \left[\frac{R_{\kappa}^n}{n r_c R^{n-1}} \left\{ I - \left(\frac{R}{R_{\kappa}} \right)^{2n} \right\} \right]},$$
(34)

где R — радиус батареи, $R = 0.6R_{\kappa}$ (по условию); n — число скважин в батарее [4, c.14];

Рисунок 6 – Схема расположения скважин в кольцевой батарее

1) Батарея состоит из n=4 скважин

$$Q_1^{\text{CKB.6}} = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{\Pia}}{7 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \left[\frac{(5 \cdot 10^3 \text{m})^4}{4 \cdot 0{,}124 \text{ m} \cdot (8{,}4 \cdot 10^3 \text{m})^3} \cdot \left(1 - \frac{(3 \cdot 10^3 \text{m})^8}{(5 \cdot 10^3 \text{m})^8}\right) \right]} \simeq 1{,}981 \cdot 10^{-3} \frac{\text{m}^3}{c}.$$

2) Батарея состоит из n=5 скважин

$$Q_2^{\text{CKB}.6} = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \, \text{m}^2 \cdot 16 \, \text{m} \cdot 3 \cdot 10^6 \, \text{Ha}}{7 \cdot 10^{-3} \, \text{Ha} \cdot c \cdot \ln \left[\frac{(5 \cdot 10^3 \, \text{m})^5}{5 \cdot 0,124 \, \, \text{m} \cdot (3 \cdot 10^3 \, \text{m})^4} \cdot \left(1 - \frac{(3 \cdot 10^3 \, \text{m})^{10}}{(5 \cdot 10^3 \, \text{m})^{10}} \right) \right]} \simeq 1,927 \cdot 10^{-3} \, \frac{\text{m}^3}{c}.$$

3) Батарея состоит из n=6 скважин

$$Q_3^{\text{CKB.6}} = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \,\text{m}^2 \cdot 16 \,\text{m} \cdot 3 \cdot 10^6 \,\text{Hz}}{7 \cdot 10^{-3} \,\text{Hz} \cdot c \cdot \ln \left[\frac{(5 \cdot 10^3 \,\text{m})^6}{6 \cdot 0{,}124 \,\,\text{m} \cdot (3 \cdot 10^3 \,\text{m})^5} \cdot \left(1 - \frac{(3 \cdot 10^3 \,\text{m})^{12}}{(5 \cdot 10^3 \,\text{m})^{12}}\right) \right]} \simeq 1{,}871 \cdot 10^{-3} \, \frac{\text{m}^3}{c}.$$

4) Батарея состоит из n=8 скважин

$$Q_4^{\text{CKB}.6} = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \,\text{m}^2 \cdot 16 \,\text{m} \cdot 3 \cdot 10^6 \,\text{Ha}}{7 \cdot 10^{-3} \,\text{Ha} \cdot c \cdot \ln \left[\frac{(3 \cdot 10^3 \,\text{m})^8}{8 \cdot 0{,}124 \,\,\text{m} \cdot (3 \cdot 10^3 \,\text{m})^7} \cdot \left(1 - \frac{(3 \cdot 10^3 \,\text{m})^{16}}{(5 \cdot 10^3 \,\text{m})^{16}}\right) \right]} \simeq 1{,}757 \cdot 10^{-2} \, \frac{\text{m}^3}{c}.$$

5) Батарея состоит из n=10 скважин

$$Q_5^{\text{CKB}.6} = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{\Pia}}{7 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \left[\frac{(3 \cdot 10^3 \text{m})^{10}}{10 \cdot 0{,}124 \text{ m} \cdot (3 \cdot 10^3 \text{m})^9} \cdot \left(1 - \frac{(3 \cdot 10^3 \text{m})^{20}}{(5 \cdot 10^3 \text{m})^{20}}\right) \right]} \simeq 1{,}648 \cdot 10^{-2} \frac{\text{m}^3}{c}$$

6) Батарея состоит из n=12 скважин

$$Q_6^{\text{CKB.6}} = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{\Pia}}{7 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \left[\frac{(3 \cdot 10^3 \text{m})^{12}}{12 \cdot 0,124 \text{ m} \cdot (3 \cdot 10^3 \text{m})^{11}} \cdot \left(1 - \frac{(3 \cdot 10^3 \text{m})^{24}}{(5 \cdot 10^3 \text{m})^{24}}\right) \right]} \simeq 1,55 \cdot 10^{-2} \frac{\text{m}^3}{c}$$

Определим суммарный дебит батареи скважин:

$$\begin{split} Q_{\Sigma}^{\text{6aT}}(n=4) &= 4 \cdot 1,987 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} = 7,923 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}}; \\ Q_{\Sigma}^{\text{6aT}}(n=5) &= 5 \cdot 1,927 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} = 9,635 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}}; \\ Q_{\Sigma}^{\text{6aT}}(n=6) &= 6 \cdot 1,871 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} = 0,011 \frac{\text{M}^3}{\text{c}}; \\ Q_{\Sigma}^{\text{6aT}}(n=8) &= 8 \cdot 1,757 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} = 0,014 \frac{\text{M}^3}{\text{c}}; \\ Q_{\Sigma}^{\text{6aT}}(n=10) &= 10 \cdot 1,648 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} = 0,016 \frac{\text{M}^3}{\text{c}}; \\ Q_{\Sigma}^{\text{6aT}}(n=12) &= 12 \cdot 1,547 \cdot 10^{-3} \frac{\text{M}^3}{\text{c}} = 0,019 \frac{\text{M}^3}{\text{c}}. \end{split}$$

По результатам расчёта построим графики зависимостей дебита одной скважины и суммарного дебита батареи скважин от их числа в батарее, представленные на рисунках 7 и 8 соответственно.

Из графиков, приведенных на рисунках 7 и 8, можно сделать вывод, что при вводе в эксплуатацию новых скважин суммарная добыча из месторождения растёт медленнее, чем число скважин, при этом дебит каждой скважины уменьшается. Из рисунка 7 видно, что при малом числе действующих скважин новая введённая скважина вызывает заметное увеличение добычи, однако последующий рост даёт всё меньшее

приращение и, начиная с некоторого числа скважин, дальнейший его рост оказывается нерентабельным.

Рисунок 7 – График зависимости дебита отдельной скважины от общего числа скважин

Рисунок 8 – График зависимости суммарного дебита от числа скважин

1.10 Расчет распределения давления и дебита одиночной скважины

Для решения практических задач разработки нефтяных и газовых месторождений большое значение имеет прогнозирование продвижения контактов пластовых флюидов, а также контроль и регулирование динамики перемещения, что позволяет оптимизировать систему разработки месторождения, правильно определить число и размещение добывающих и нагнетательных скважин на месторождениях при естественных эксплуатации. В общем случае искусственных режимах их гидродинамическое решение подобных задач, пригодное для практических расчётов, отсутствует в связи с тем, что линии тока на границе раздела жидкостей преломляются ввиду их различных физических свойств [9, с.33].

Исследованы лишь отдельные частные случаи. Так, например, без затруднений получается решение задачи о поступательном плоскорадиальном движении границы раздела двух жидкостей в пористой среде. Распределение давления в водоносной области $P_{\scriptscriptstyle B}$ в этом случае можно получить, если в формуле (26) изобару, совпадающую в данный момент с контуром нефтеносности радиуса $r_{\scriptscriptstyle f}$, принять за скважину:

$$P_{B} = P_{\kappa} - \frac{P_{\kappa} - P(t)}{\ln \frac{R_{\kappa}}{r_{f}}} \ln \frac{R_{\kappa}}{r}, \qquad (35)$$

где P(t) — давление на границе раздела жидкостей.

Если эту же изобару принять за контур питания, то с учётом формулы (25) можно получить распределение давления в нефтеносной области:

$$P_{H} = P_{c} + \frac{P(t) - P_{c}}{\ln \frac{r_{f}}{r_{c}}} \ln \frac{r}{r_{c}}.$$
(36)

Расходы для вышеприведенных случаев на основании формулы Дюпюи (23) можно записать следующим образом:

$$Q_{B} = \frac{2\pi k h [P_{\kappa} - P(t)]}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}}},$$
(37)

$$Q_{H} = \frac{2\pi k h [P(t) - P_{c}]}{\mu_{H} \ln \frac{r_{f}}{r}},$$
(38)

где $\mu_{\scriptscriptstyle B}$, $\mu_{\scriptscriptstyle H}$ – коэффициенты динамической вязкости воды и нефти, соответственно.

Так как расходы жидкостей в силу неразрывности потока на границе их контакта постоянны, то есть $Q_B = Q_H$, то, исключая из формул (37) и (38) P(t), получим

$$Q = \frac{2\pi k h \left(P_{\kappa} - P_{c}\right)}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}}.$$
(39)

На основании вышеприведенных выражений получим окончательные формулы, описывающие распределение давления в круговом пласте в водоносной и нефтеносной областях соответственно при вытеснении нефти водой:

$$P_{B} = P_{\kappa} - \frac{\mu_{B} \left(P_{\kappa} - P_{c}\right)}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \ln \frac{R_{\kappa}}{r}, \qquad (40)$$

$$P_{H} = P_{c} + \frac{\mu_{H} (P_{\kappa} - P_{c})}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \ln \frac{r}{r_{c}}.$$
 (41)

По формулам (39), (40) и (41) определим изменение распределения давления и дебита одиночной гидродинамически несовершенной скважины, расположенной в центре кругового пласта, при стягивании контура нефтеносности под напором контурных вод для различных случаев расположения контура нефтеносности:

1) Положение контура нефтеносности $r_{\scriptscriptstyle H} = R_{\scriptscriptstyle K} = 5000$ м

$$Q = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \,\text{m}^2 \cdot 16 \,\text{m} \cdot 3 \cdot 10^6 \,\text{\Pia}}{1{,}2 \cdot 10^{-3} \,\text{\Pia} \cdot c \cdot \ln 1 + 7 \cdot 10^{-3} \,\text{\Pia} \cdot c \cdot \ln \frac{500 \,\text{m}}{0{,}124 \cdot \text{m}}} \simeq 2{,}00 \cdot 10^{-3} \,\frac{\text{m}^3}{c}.$$

2) Положение контура нефтеносности $r_{\rm H} = 0.75 \cdot R_{\rm K} = 3750 {\rm M}$

$$Q = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{\Pia}}{1,2 \cdot 10^{-3} \text{\Pia} \cdot \text{c} \cdot \ln 1,33 + 7 \cdot 10^{-3} \text{\Pia} \cdot \text{c} \cdot \ln \frac{3750 \text{m}}{0,124 \cdot \text{m}}} \simeq 2,05 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

3) Положение контура нефтеносности $r_H = 0.5 \cdot R_K = 2500 \text{м}$

$$Q = \frac{2 \cdot \pi \cdot 4{,}93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{\Pia}}{1{,}2 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln 2 + 7 \cdot 10^{-3} \text{\Pia} \cdot c \cdot \ln \frac{2500 \text{m}}{0{,}124 \cdot \text{m}}} \simeq 2{,}12 \cdot 10^{-3} \frac{\text{m}^3}{c}.$$

4) Положение контура нефтеносности $r_{\rm H} = 0.25 \cdot R_{\rm K} = 1250 {\rm M}$

$$Q = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \Pi \text{a}}{1,2 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln 4 + 7 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \cdot \ln \frac{1250 \text{m}}{0,124 \cdot \text{m}}} \simeq 2,25 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

5) Положение контура нефтеносности $r_{_{\rm H}} = 0,1 \cdot R_{_{\rm K}} = 500$ м

$$Q = \frac{2 \cdot \pi \cdot 4,93 \cdot 10^{-13} \text{m}^2 \cdot 16 \text{m} \cdot 3 \cdot 10^6 \text{\Pi a}}{1,2 \cdot 10^{-3} \text{\Pi a} \cdot \text{c} \cdot \ln 10 + 7 \cdot 10^{-3} \text{\Pi a} \cdot \text{c} \cdot \ln \frac{500 \text{m}}{0,124 \cdot \text{m}}} \simeq 2,44 \cdot 10^{-3} \frac{\text{m}^3}{\text{c}}.$$

Построим график зависимости дебита скважины от положения контура нефтеносности (рисунок 9), из которого видно, что дебит с течением времени при постоянной депрессии увеличивается.

Рисунок 9 – График зависимости дебита скважины от положения контура нефтеносности

Определить изменение распределения давления для контура нефтеносности $r_H = 0,1 \cdot R_K = 500$:

1) На расстоянии r = 0.5 м

$$p_{\rm H} = 13~{\rm M\Pi a} + \frac{7 {\rm M\Pi a} \cdot {\rm c} \cdot 3~{\rm M\Pi a}}{1,2 {\rm M\Pi a} \cdot {\rm c} \cdot {\rm ln}~10 + 6 {\rm M\Pi a} \cdot {\rm c} \cdot {\rm ln}~\frac{500~{\rm m}}{0,124 {\rm m}} \cdot {\rm ln}~\frac{0,5 {\rm m}}{0,124 {\rm m}} \simeq 13,48~{\rm M\Pi a}.$$

2) На расстоянии r = 5 м

$$p_{_{\rm H}} = 13 \; \text{M}\Pi a + \frac{7 \text{M}\Pi a \cdot c \cdot 3 \; \text{M}\Pi a}{1,2 \text{M}\Pi a \cdot c \cdot \ln 10 + 6 \text{M}\Pi a \cdot c \cdot \ln \frac{500 \; \text{M}}{0,124 \text{M}}} \cdot \ln \frac{5 \text{M}}{0,124 \text{M}} \simeq 14,28 \; \text{M}\Pi a.$$

3) На расстоянии r = 10 м

$$p_{_{\rm H}} = 13 \; \text{M}\Pi a + \frac{7 \text{M}\Pi a \cdot c \cdot 3 \; \text{M}\Pi a}{1,2 \text{M}\Pi a \cdot c \cdot \ln 10 + 6 \text{M}\Pi a \cdot c \cdot \ln \frac{500 \; \text{M}}{0,124 \text{M}}} \cdot \ln \frac{10 \text{M}}{0,124 \text{M}} \simeq 14,51 \; \text{M}\Pi a.$$

4) На расстоянии r = 50 м

$$p_{_{\rm H}} = 13~\text{M}\Pi a + \frac{7\text{M}\Pi a \cdot c \cdot 3~\text{M}\Pi a}{1,2\text{M}\Pi a \cdot c \cdot \ln 10 + 6\text{M}\Pi a \cdot c \cdot \ln \frac{500~\text{M}}{0.124\text{M}}} \cdot \ln \frac{50\text{M}}{0,124\text{M}} \simeq 15,07~\text{M}\Pi a.$$

5) Ha расстоянии r = 100 м

$$p_{_{\rm H}} = 13 \; \text{M}\Pi a + \frac{7 \text{M}\Pi a \cdot c \cdot 3 \; \text{M}\Pi a}{1,2 \text{M}\Pi a \cdot c \cdot \ln 10 + 6 \text{M}\Pi a \cdot c \cdot \ln \frac{500 \; \text{M}}{0,124 \text{M}}} \cdot \ln \frac{100 \text{M}}{0,124 \text{M}} \simeq 15,31 \; \text{M}\Pi a.$$

6) Ha расстоянии r = 500 м

$$p_{_{\rm H}} = 13 \; \text{M}\Pi a + \frac{7 \text{M}\Pi a \cdot c \cdot 3 \; \text{M}\Pi a}{1,2 \text{M}\Pi a \cdot c \cdot \ln 10 + 7 \text{M}\Pi a \cdot c \cdot \ln \frac{500 \; \text{M}}{0.124 \text{M}}} \cdot \ln \frac{500 \, \text{M}}{0,124 \text{M}} \simeq 15,86 \; \text{M}\Pi a.$$

7) Ha расстоянии r = 1000 м

$$\begin{split} p_{_{H}} &= 13 \text{ М}\Pi a + \frac{7\text{м}\Pi a \cdot c \cdot 3 \text{ M}\Pi a}{1,2\text{м}\Pi a \cdot c \cdot \ln 10 + 7\text{м}\Pi a \cdot c \cdot \ln \frac{500 \text{ m}}{0,124\text{m}}} \cdot \ln \frac{1000\text{m}}{0,124\text{m}} \simeq 15,90 \text{ M}\Pi a. \\ 8) \text{ На расстоянии } r &= 2000 \text{ m} \\ p_{_{H}} &= 13 \text{ M}\Pi a + \frac{7\text{m}\Pi a \cdot c \cdot 3 \text{ M}\Pi a}{1,2\text{m}\Pi a \cdot c \cdot \ln 10 + 7\text{m}\Pi a \cdot c \cdot \ln \frac{500 \text{ m}}{0,124\text{m}}} \cdot \ln \frac{2000\text{m}}{0,124\text{m}} \simeq 15,95 \text{ M}\Pi a. \\ 9) \text{ На расстоянии } r &= 5000 \text{ m} \\ p_{_{H}} &= 13 \text{ M}\Pi a + \frac{7\text{m}\Pi a \cdot c \cdot 3 \text{ M}\Pi a}{1,2\text{m}\Pi a \cdot c \cdot \ln 10 + 7\text{m}\Pi a \cdot c \cdot \ln \frac{500 \text{ m}}{0,124\text{m}}} \cdot \ln \frac{5000\text{m}}{0,124\text{m}} \simeq 16,00 \text{ M}\Pi a. \end{split}$$

9) На расстоянии
$$r = 10000$$
 м
$$p_{_{H}} = 13 \text{ М}\Pi a + \frac{7 \text{м}\Pi a \cdot c \cdot 3 \text{ M}\Pi a}{1,2 \text{м}\Pi a \cdot c \cdot \ln 10 + 7 \text{м}\Pi a \cdot c \cdot \ln \frac{500 \text{ м}}{0,124 \text{м}}} \cdot \ln \frac{10000 \text{м}}{0,124 \text{м}} \simeq 16,04 \text{ M}\Pi a.$$

В таблицу 1 занесены значения изменения давления в МПа для других положений контура нефтеносности.

Таблица 1 – Распределение давления

Текущее значение	Текущее положение			
радиус-вектора, м	контура нефтеносности, м			
	3750	2500	1250	500
0,5	13.40	13.42	13.44	13,48
5	14.07	14.11	14.17	14,28
10	14.27	14.31	14.39	14,51
50	14.74	14.79	14.90	15,07
100	15.94	15.00	15.12	15,31
500	15.40	15.48	15.63	15,86
1000	15.60	15.69	15.85	15,90
2000	15.80	15.90	15.94	15,95
5000	16.00	16.00	16.00	16,00
10000	16,03	16,04	16,04	16,04

Примечание: черным шрифтом указаны значения для нефти, голубым – для воды.

Построим кривые депрессии давления в призабойной зоне пласта (рисунок 10) как графики кусочно-заданных функций, то есть

Рисунок 10 – Кривые депрессии давления в призабойной зоне пласта для различных случаев расположения контура нефтеносности: для 1000 и 500 метров от оси скважины (графики A и Б соответственно)

Для анализа выражений (40) и (41) определим средневзвешенное по поровому пространству давление водоносной и нефтеносной областей соответственно. Для этого в первую часть равенства (27) поочерёдно подставим формулы для распределения давления (40) и (41) и получим

$$\widetilde{P}_{B} = \frac{1}{\pi h m \left(R_{\kappa}^{2} - r_{f}^{2}\right)_{0}^{h}} \int_{0}^{2\pi} dz \int_{0}^{2\pi} d\varphi \int_{r_{f}}^{R_{\kappa}} \left[P_{\kappa} - \frac{\mu_{B} \left(P_{\kappa} - P_{c}\right)}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \ln \frac{R_{\kappa}}{r} \right] mrdr, \tag{42}$$

$$\widetilde{P}_{H} = \frac{1}{\pi h m (r_{f}^{2} - r_{c}^{2})} \int_{0}^{h} dz \int_{0}^{2\pi} d\varphi \int_{r_{c}}^{r_{f}} \left[P_{c} + \frac{\mu_{H} (P_{\kappa} - P_{c})}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \ln \frac{r}{r_{c}} \right] mr dr.$$
(43)

После выполнения интегрирования по z и φ получаем

$$\widetilde{P}_{B} = \frac{2}{R_{\kappa}^{2} - r_{f}^{2}} \left[P_{\kappa} \int_{r_{f}}^{R_{\kappa}} r dr - \frac{\mu_{B} (P_{\kappa} - P_{c})}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \int_{r_{f}}^{R_{\kappa}} \ln \frac{R_{\kappa}}{r} r dr \right],$$
(44)

$$\widetilde{P}_{H} = \frac{2}{r_{f}^{2} - r_{c}^{2}} \left[P_{c} \int_{r_{c}}^{r_{f}} r dr + \frac{\mu_{H} (P_{\kappa} - P_{c})}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \int_{r_{c}}^{r_{f}} \ln \frac{r}{r_{c}} r dr \right].$$
(45)

Первые интегралы в квадратных скобках выражений (44) и (45) легко вычисляются, а вторые интегрируются по частям. После ряда упрощений получаем

$$\tilde{P}_{B} = P_{\kappa} - \frac{\mu_{B} (P_{\kappa} - P_{c})}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \left\{ \frac{1}{2} - \frac{r_{f}^{2}}{R_{\kappa}^{2} - r_{f}^{2}} \ln \frac{R_{\kappa}}{r_{f}} \right\}, \tag{46}$$

$$\tilde{P}_{H} = P_{c} - \frac{\mu_{H} (P_{\kappa} - P_{c})}{\mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}}} \left\{ \frac{1}{2} - \frac{r_{f}^{2}}{r_{f}^{2} - r_{c}^{2}} \ln \frac{r_{f}}{r_{c}} \right\}. \quad (47)$$

По полученным формулам (46) и (47) построим графики (рисунки 11, 12). Для построения графиков зададимся диапазоном значений r_f равным (R_k ; $0.95R_k \dots 0.05R_k$)

Рисунок 11 – График зависимости средневзвешенного по объему порового пространства давления водоносной области от положения контура нефтеносности

Рисунок 12 – График зависимости средневзвешенного по объему порового пространства давления нефтеносной области от положения контура нефтеносности

Из рисунков 11 и 12 можно сделать вывод, что по мере стягивания контура нефтеносности средневзвешенное давление водоносной и нефтеносной областей уменьшается.

Время вытеснения T всей нефти водой найдем из соотношения между скоростью фильтрации и средней скоростью движения:

$$\frac{Q}{S} = -m\frac{dr_f}{dt},$$

где m — коэффициент пористости;

S — площадь фильтрации, $S=2\pi r_f h$.

После разделения переменных с учётом (39) получим

$$dt = -\frac{m}{k(P_{\kappa} - P_{c})} \left\{ \mu_{B} \ln \frac{R_{\kappa}}{r_{f}} + \mu_{H} \ln \frac{r_{f}}{r_{c}} \right\} r_{f} dr_{f}.$$

Проинтегрируем уравнение (48) в пределах от r_c до R_κ :

$$T = \frac{m}{k(P_{\kappa} - P_{c})} \left\{ \mu_{B} \int_{r_{c}}^{R_{\kappa}} \ln \frac{R_{\kappa}}{r_{f}} r_{f} dr_{f} + \mu_{H} \int_{r_{c}}^{R_{\kappa}} \ln \frac{r_{f}}{r_{c}} r_{f} dr_{f} \right\}.$$
(49)

Поочередно рассмотрим интегралы уравнения (49):

$$\int_{r_{c}}^{R_{\kappa}} \ln \frac{R_{\kappa}}{r_{f}} r_{f} dr_{f} = \begin{cases} U = \ln \frac{R_{\kappa}}{r_{f}}, & dU = -\frac{1}{r_{f}} dr_{f} \\ dV = r_{f} dr_{f}, & V = \frac{r_{f}^{2}}{2} \end{cases} = -\frac{r_{c}^{2}}{2} \ln \frac{R_{\kappa}}{r_{c}} + \frac{R_{\kappa}^{2} - r_{c}^{2}}{4}$$
(50)

$$\int_{r_c}^{R_{\kappa}} \ln \frac{r_f}{r_c} r_f dr_f = \begin{cases} U = \ln \frac{r_f}{r_c}, & dU = \frac{1}{r_f} dr_f \\ dV = r_f dr_f, & V = \frac{r_f^2}{2} \end{cases} = \frac{R_{\kappa}^2}{2} \ln \frac{R_{\kappa}}{r_c} - \frac{R_{\kappa}^2 - r_c^2}{4} \tag{51}$$

Из выражений (49), (50) и (51) получим окончательную формулу для определения времени вытеснения всей нефти водой от контура питания до ствола скважины:

$$T = \frac{m}{4k(P_{\kappa} - P_{c})} \left\{ 2\ln \frac{R_{\kappa}}{r_{c}} \left(\mu_{H} R_{\kappa}^{2} - \mu_{B} r_{c}^{2} \right) + \left(\mu_{B} - \mu_{H} \right) \left(R_{\kappa}^{2} - r_{c}^{2} \right) \right\}$$
 (52)
$$T = 1.084 \cdot 10^{11} \text{c}.$$

Для определения положения фронта водонасыщенности в различные моменты времени проинтегрируем уравнение (48) в пределах от r до R_{κ} . После преобразований получим

$$t(r) = \frac{m}{4k(P_{\kappa} - P_{c})} \left\{ 2\left(\mu_{H}R_{\kappa}^{2} \ln \frac{R_{\kappa}}{r_{c}} - \mu_{B}r_{c}^{2} \ln \frac{R_{\kappa}}{r}\right) + \left(\mu_{B} - \mu_{H}\right)\left(R_{\kappa}^{2} - r_{c}^{2}\right) - 2\mu_{H}r^{2} \ln \frac{r}{r_{c}} \right\}$$
(53)

В соответствии с полученной формулой (53) построим график функции, обратной t(r) (рисунок 13).

Рисунок 13 – График зависимости положения контура нефтеносности от времени

1.11 Расчет положения фронта водонасыщенности

Фронтальную насыщенность можно определять графически, используя графики функции Леверетта, либо аналитически, если известны функции относительных фазовых проницаемостей пористой среды для воды и нефти соответственно. Воспользуемся аналитическим методом, задав относительные фазовые проницаемости для воды $k_{\rm B}$ и нефти $k_{\rm H}$ в наиболее простом виде:

$$k_{\scriptscriptstyle R}(\sigma) = \sigma^2 \,, \tag{54}$$

$$k_H(\sigma) = (1 - \sigma)^2, \tag{55}$$

где σ – коэффициент водонасыщенности.

Этим фазовым проницаемостям (54) и (55) отвечает следующая функция Леверетта $f(\sigma)$:

$$f(\sigma) = \frac{k_B(\sigma)}{k_B(\sigma) + \mu_0 k_H(\sigma)} = \frac{\sigma^2}{\sigma^2 + \mu_0 (I - \sigma)^2},$$
 (56)

где $\mu_0 = \frac{\mu_B}{\mu_H}$ — относительный коэффициент вязкости.

Производная функции Леверетта, исходя из выражения (56), будет определяться по формуле:

$$\frac{df(\sigma)}{d\sigma} = \frac{2\mu_0 \sigma (1-\sigma)}{\left[\sigma^2 + \mu_0 (1-\sigma)^2\right]^2}.$$
 (57)

Формула для определения фронтальной насыщенности σ_ϕ имеет вид:

$$\left(\sigma_{\phi} - \sigma_{\theta}\right) \frac{df\left(\sigma_{\phi}\right)}{d\sigma_{\phi}} = f\left(\sigma_{\phi}\right) - f\left(\sigma_{\theta}\right), \tag{58}$$

где $\sigma_{\scriptscriptstyle{0}}$ – коэффициент начальной водонасыщенности.

Численное решение уравнения (58) с учётом (56), (57) и того, что начальная водонасыщенность по условию составляет *0,12*, позволяет получить значение фронтальной насыщенности, которая составила *0,32* (рисунок 14).

Рисунок 14 – График функции Леверетта $Y(\sigma_{\varphi})$ и вспомогательной функции $X(\sigma_{\varphi})$, полученной из уравнения касательной к $Y(\sigma_{\varphi})$

Следует отметить, что с ростом коэффициента относительной вязкости μ_0 происходит рост фронтальной насыщенности, а, следовательно, и эффективности вытеснения, так как доля воды в суммарном потоке уменьшается, поэтому на практике часто применяют пены и загустители, повышающие вязкость воды [10, с.63-64].

ПЛАСТА

2.1 Расчет упругого запаса нефти в пласте

Под упругим запасом жидкости в пласте понимается количество жидкости, которое можно извлечь из пласта при снижении давления в нем за счёт объёмной упругости пласта и насыщающих его жидкостей. Величина упругого запаса жидкости ΔV_3 при снижении давления во всех точках пласта на величину ΔP складывается из приращения объёма жидкости ввиду её расширения ΔV_{∞} и сокращения объёма порового пространства ΔV_n за счёт расширения материала пласта:

$$\Delta V_{3} = \Delta V_{3c} + \Delta V_{n}. \tag{59}$$

Все эти факторы способствует вытеснению жидкости из пласта в скважину.

Приращение объёма жидкости ΔV_{∞} складывается из приращения объёмов нефти и воды соответственно, то есть

$$\Delta V_{W} = \Delta V_H + \Delta V_R, \tag{60}$$

которые, в свою очередь, определяются по формулам:

$$\Delta V_H = \beta_H V_H \Delta P, \tag{61}$$

$$\Delta V_{B} = \beta_{B} V_{B} \Delta P, \qquad (62)$$

где β_{H} , β_{B} — коэффициенты объёмной упругости нефти и воды соответственно, характеризующие их податливость к изменению объёма, $\frac{1}{\Pi a}$

 V_{H} , V_{B} — объёмы нефти и воды соответственно, насыщающие некоторый элемент пласта V_{n} при начальном давлении, M^{3} .

Учитывая, что начальный объем жидкости V_{∞} , насыщающей пласт объёмом V_{n} , равен начальному объёму пор пласта V_{nop} , имеем:

$$V_{\text{HC}} = V_{\text{nop}} = mV_n, \tag{63}$$

где m — коэффициент пористости [5, c.64-65].

Для дальнейших рассуждений введём понятие коэффициента водонасыщенности σ_0 , который определяется как отношение общего объёма воды в поровом пространстве к объёму пор пласта [11, c.18]:

$$\sigma_0 = \frac{V_B}{V_{nop}} \,. \tag{64}$$

На основании формул (63) и (64) выразим объёмы нефти и воды через объём пласта:

$$V_H = (1 - \sigma_0) m V_n, \tag{65}$$

$$V_{B} = \sigma_{0} m V_{n} \,. \tag{66}$$

Окончательно, формула для подсчёта ΔV_{∞} может быть записана в следующем виде:

$$\Delta V_{xc} = \{ (I - \sigma_0) \beta_H + \sigma_0 \beta_B \} m V_n \Delta P. \tag{67}$$

Сокращение объёма порового пространства определяется по формуле

$$\Delta V_n = \beta_c V_n \Delta P, \qquad (68)$$

где β_c – коэффициент сжимаемости пористой среды [5, с.64].

Из формул (59), (67) и (68) получим конечную формулу для расчёта упругого запаса жидкости в пласте:

$$\Delta V_{2} = \beta^{*} V_{n} \Delta P, \qquad (69)$$

где β^* – коэффициент упругоёмкости пласта:

$$\beta^* = m\{(1 - \sigma_0)\beta_H + \sigma_0\beta_B\} + \beta_c. \tag{70}$$

По формуле (70) рассчитаем коэффициент упругоёмкости пласта:

$$\beta^* = 0.18 \left\{ (1 - 0.12) \cdot 1.04 \cdot 10^{-9} \frac{1}{\Pi a} + 0.12 \cdot 4.6 \cdot 10^{-10} \frac{1}{\Pi a} \right\} + 0.72 \cdot 10^{-10} \frac{1}{\Pi a} = 2.47 \cdot 10^{-10} \frac{1}{\Pi a}$$

С учётом того, что объём пласта

$$V_{n} = \pi (R_{\nu}^{2} - r_{c}^{2})h, \qquad (71)$$

упругий запас жидкости определим по формуле (69) следующим образом:

$$\Delta V_3 = 2,47 \cdot 10^{-10} \frac{1}{\Pi a} \cdot 3,14 \cdot (5^2 \cdot 10^6 \text{m}^2 - 0,124^2 \text{m}^2) \cdot 16 \text{m}$$
$$\cdot (16 \cdot 10^6 \Pi a - 13 \cdot 10^6 \Pi a) = 9,29 \cdot 10^5 \text{m}^3$$

Из расчёта видно, что наряду с малостью коэффициентов объемной упругой деформации жидкости и пласта, упругий запас жидкости в пласте оказался весьма существенным. Этот факт объясняется большими объёмами пласта.

Объём нефти, который можно отобрать из пласта за счёт упругого расширения жидкости и породы, также рассчитаем по формуле (69), но с поправкой на коэффициент водонасыщенности:

$$V'_{\rm H} = (1 - \sigma_0) \Delta V_3 = (1 - 0.12) \cdot 9.29 \cdot 10^5 \,\mathrm{m}^3 = 1.99 \cdot 10^8 \,\mathrm{m}^3.$$

Полный запас нефти определим по формуле (65) с учётом (71):

$$V_H = (1 - 0.12) \cdot 0.18 \cdot 3.14 \cdot (5^2 \cdot 10^6 \text{m}^2 - 0.124^2 \text{m}^2) \cdot 16 \text{m} = 1.99 \cdot 10^8 \text{m}^3.$$

2.2 Расчет изменения дебита после пуска скважины в эксплуатацию

Для определения изменения дебита скважины после пуска её в эксплуатацию воспользуемся приближенным методом последовательной смены стационарных состояний, согласно которому в каждый момент времени вся область движения жидкости условно разделяется на две области: возмущенную и невозмущенную. В возмущенной области, начинающейся от стенки скважины, давление распределяется так, как будто бы движение жидкости в ней установившееся. Внешняя граница этой области служит в данный момент контуром питания и определяется в соответствии с приведенным радиусом влияния l(t). В невозмущенной области пласта давление постоянно и соответствует начальному давлению [5, с.73].

Итак, дебит в соответствии с формулой Дюпюи (23) с течением времени t при плоскорадиальном притоке упругой жидкости κ скважине будет изменяться по следующей зависимости:

$$Q(t) = \frac{2\pi k h(P_{\kappa} - P_c)}{\mu \ln \frac{l(t)}{r_c}},$$
(72)

где $l(t) = 2\sqrt{\chi t}$;

 χ – коэффициент пьезопроводности, характеризующий перераспределения пластового давления в условиях упругого режима, $\frac{M^2}{}$.

Коэффициент пьезопроводности определяется по следующей формуле:

$$\chi = \frac{k}{\mu \beta^*} \,. \tag{73}$$

По формуле (73) рассчитаем коэффициент пьезопроводности:
$$\chi = \frac{_{4,93\cdot 10^{-13}\text{м}^2}}{_{7\cdot 10^{-3}\text{Пa}\cdot c\cdot 2,47\cdot 10^{-10}\frac{1}{\Pi a}}} = 0,286\frac{^{\text{м}^2}}{^{\text{c}}}.$$

Для наглядности построим график изменения дебита скважины с течением времени с учётом гидродинамического несовершенства (рисунок 15).

Рисунок 15 – График изменения дебита гидродинамически несовершенной скважины с течением времени при плоскорадиальном притоке упругой жидкости

2.3 Расчет давления на забое после остановки скважины

Если скважина была пущена в эксплуатацию с постоянным дебитом и через промежуток времени T была остановлена, то давление в любой точке пласта можно определить в соответствии с методом суперпозиции. Предположим, что к моменту времени t после остановки понижение давления в какой-либо точке пласта, вызванное пуском непрерывно работающей скважины, будет равно

$$\Delta P_{I} = \frac{Q\mu}{4\pi kh} \left\{ -Ei \left(-\frac{r^{2}}{4\chi(t+T)} \right) \right\},\tag{74}$$

где Еі – интегральная показательная функция.

Допустим, что в том же месте, где расположена эксплуатационная скважина, в момент остановки начала работать нагнетательная скважина с тем же дебитом, повышение давления в результате пуска которой к моменту времени t в какой-либо точке пласта будет определяться по формуле

$$\Delta P_2 = \frac{Q\mu}{4\pi kh} \left\{ -Ei \left(-\frac{r^2}{4\chi t} \right) \right\}. \tag{75}$$

Результирующее понижение давления ΔP будет определяться как разность (74) и (75):

$$\Delta P = \frac{Q\mu}{4\pi kh} \left\{ -Ei\left(-\frac{r^2}{4\chi(t+T)}\right) + Ei\left(-\frac{r^2}{4\chi t}\right) \right\} [4, c.41]. \tag{76}$$

При этом давление на забое скважины после её остановки будет определяться на основании формулы (76):

$$P_{c}(t) = P_{\kappa} + \frac{Q\mu}{4\pi kh} \left\{ Ei \left(-\frac{r_{c}^{2}}{4\chi(t+T)} \right) - Ei \left(-\frac{r_{c}^{2}}{4\chi t} \right) \right\}. \tag{77}$$

Для численного анализа формулы (77) воспользуемся разложением интегральной показательной функции в ряд:

$$Ei(x) = \gamma + \ln(-x) + \sum_{n=1}^{\infty} \frac{x^k}{n!n}, \quad x < 0,$$
 (78)

где у – постоянная Эйлера-Маскерони.

Таким образом, с учётом (78) формула (77) может быть записана в следующем виде:

$$P_{c}(t) = P_{\kappa} + \frac{Q\mu}{4\pi kh} \left\{ \ln \frac{t}{t+T} + \sum_{n=1}^{\infty} \frac{(-1)^{n} r_{c}^{2n}}{2^{2n} \chi^{n} n! n} \left[\frac{1}{(t+T)^{n}} - \frac{1}{t^{n}} \right] \right\}.$$
 (79)

При малых аргументах интегральной показательной функции рядом в формуле (79) можно пренебречь:

$$P_c(t) = P_{\kappa} + \frac{Q\mu}{4\pi kh} \ln \frac{t}{t+T}.$$
 (80)

По формуле (80) рассчитаем давление на забое скважины в разные моменты времени после её остановки, до которой она работала продолжительное время (200 суток) с постоянным забойным давлением:

$$P_c(1 \cdot 3600c) = 16 \cdot 10^6 \Pi a + \frac{2,01 \cdot 10^{-3} \frac{M^3}{c} \cdot 7 \cdot 10^{-3} \Pi a \cdot c}{4 \cdot 3,14 \cdot 4,93 \cdot 10^{-13} M^2 \cdot 16 M} \ln \frac{1 \cdot 3600}{1 \cdot 3600 + 200 \cdot 86400}$$
$$= 14,80 M \Pi a$$

$$P_c(5 \cdot 3600c) = 16 \cdot 10^6 \Pi a + \frac{2,01 \cdot 10^{-3} \frac{M^3}{c} \cdot 7 \cdot 10^{-3} \Pi a \cdot c}{4 \cdot 3,14 \cdot 4,93 \cdot 10^{-13} M^2 \cdot 16 M} \ln \frac{5 \cdot 3600}{5 \cdot 3600 + 200 \cdot 86400}$$
$$= 15,03 M \Pi a$$

$$P_c(20 \cdot 3600c) = 16 \cdot 10^6 \Pi a + \frac{2,01 \cdot 10^{-3} \frac{M^3}{c} \cdot 7 \cdot 10^{-3} \Pi a \cdot c}{4 \cdot 3,14 \cdot 4,93 \cdot 10^{-13} M^2 \cdot 16 M} \ln \frac{20 \cdot 3600}{20 \cdot 3600 + 200 \cdot 86400}$$

$$= 15,22 \text{ M}\Pi a$$

$$\begin{split} P_c(100\cdot 3600\mathrm{c}) &= 16\cdot 10^6 \Pi \mathrm{a} + \frac{2,01\cdot 10^{-3} \frac{\mathrm{M}^3}{\mathrm{c}}\cdot 7\cdot 10^{-3} \Pi \mathrm{a}\cdot \mathrm{c}}{4\cdot 3,14\cdot 4,93\cdot 10^{-13} \mathrm{m}^2\cdot 16\mathrm{m}} \ln \frac{100\cdot 3600}{100\cdot 3600 + 200\cdot 86400} \\ &= 15,45 \ \mathrm{M}\Pi \mathrm{a} \end{split}$$

$$\begin{split} P_c(500\cdot 3600\mathrm{c}) &= 16\cdot 10^6 \Pi \mathrm{a} + \frac{2,01\cdot 10^{-3} \frac{\mathrm{M}^3}{\mathrm{c}}\cdot 7\cdot 10^{-3} \Pi \mathrm{a}\cdot \mathrm{c}}{4\cdot 3,14\cdot 4,93\cdot 10^{-13} \mathrm{m}^2\cdot 16 \mathrm{m}} \ln \frac{500\cdot 3600}{500\cdot 3600 + 200\cdot 86400} \\ &= 15,67 \ \mathrm{M}\Pi \mathrm{a} \end{split}$$

Результаты расчётов представим в графической форме (рисунок 16).

Рисунок 16 – График зависимости давления на забое остановленной гидродинамически несовершенной скважины от времени

ЗАКЛЮЧЕНИЕ

Подземная гидромеханика является очень важным и перспективным направлением нефтегазовой промышленности. Подземная науки гидромеханика это наука, которая изучает движение жидкостей, газов и их смесей пористых И трещиноватых горных породах. Изучение фильтрационных потоков очень актуально в наши дни. Оно служит теоретической основой разработки нефтяных, газовых и газоконденсатных месторождений. Так как движение этих потоков в глубинных условиях характеризуется рядом специфических особенностей, отличающих его от движения по трубам или открытым руслам, то их знание является необходимым для успешной разработки нефтяных и газовых месторождений.

В ходе данной курсовой работы успешно были выполнены все поставленные перед нами задачи. По полученным данным можно судить об изменении основных параметров скважин, разрабатывающих одну и ту же залежь, и о степени взаимного влиянии этих скважин. На основе расчетных значений и графиков, построенных по этим расчетам, нами были сделаны важные выводы касательно изменения некоторых параметров по мере разработки залежи работающей скважиной.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Мордвинов А.А. Моделирование гидродинамического несовершенства скважин / А.А. Мордвинов и др. // Сборник научных трудов: материалы научно-технической конференции, Ухта, 2001 г. . Ухта: УГТУ, 2002. С. 10-14.
- 2. Куштанова Г.Г. Волновые и импульсные методы исследования пластов и скважин: учебно-методическое пособие / Г.Г. Куштанова. Казань: издательство Казанского федерального университета, 2010. 59 с.
- 3. Басниев К.С. Подземная гидромеханика: учебник для вузов / К.С. Басниев, И.Н. Кочина, В.М. Максимов. М.: Недра, 1993. 416 с.: ил.
- 4. Михневич А.В. Подземная гидромеханика: практикум к занятиям по одноимённому курсу для студентов специальности Т. 20.02.03 / А.В. Михневич, Б.П. Минеев. Гомель: ГГТУ имени П.О. Сухого, 2004. 59 с.
- 5. Ольховская В.А. Подземная гидромеханика / В.А. Ольховская. Самара: Самарский государственный технический университет, 2004. 148 с.
- 6. Басниев К.С. Нефтегазовая гидромеханика: учебное пособие для вузов / К.С. Басниев, Н.М. Дмитриев, Г.Д. Розенберг. М.-Ижевск: Институт компьютерных исследований, 2005. 544 с.
- 7. Муфазалов Р.Ш. Скин-фактор и его значение для оценки состояния околоскважинного пространства продуктивного пласта / Р.Ш. Муфазалов // Разведка. №9. С. 18-36.
- 8. Рочев А.Н. Исследование стационарной фильтрации на экспериментальной установке: методическое указания к выполнению лабораторной работы / А.Н. Рочев, О.М. Корохонько. Ухта: УГТУ, 2007. 27 с.: ил.
- 9. Борхович С.Ю. Подземная гидромеханика: учебно-методическое пособие / С.Ю. Борхович. Ижевск: Удмуртский государственный университет, 2005. 59 с.
- 10. Куштанова Г.Г. Подземная гидромеханика: учебно-методическое пособие для магистрантов физического факультета по направлению «Радиофизические методы по областям применения» / Г.Г. Куштанова, М.Н. Овчинников. Казань: издательство Казанского федерального университета, 2010.—67 с.
- 11. Итенберг С.С. Геофизические исследования в скважинах / С.С. Итенберг, Т.Д. Дахкильгов. М.: Недра, 1982. 351 с.