Math 334 HW 4

Rohan Mukherjee

November 2, 2022

1 1	,

First note that every ball centered about x is of the form $B(x,\varepsilon)$ where $\varepsilon > 0$. Suppose that $(x_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R}^n that converges to $x \in \mathbb{R}^n$. Then given any $\varepsilon > 0$, there is some N > 0 such that for all n > N, $||x_n - x|| < \varepsilon \iff x_n \in B(x,\varepsilon)$. Clearly there are infinitely many n > N, so there are also infinitely many $x_n \in B(x,\varepsilon)$.

=

Suppose that every ball centered at x contains infinitely many elements of the sequence and that $(x_n)_{n=1}^{\infty}$ does not converge to x. Then there is some $\varepsilon > 0$ such that for all N > 0 there is some n > N such that $||x_n - x|| \ge \varepsilon$.

Then given any $\varepsilon > 0$, we have that

- 2. Because $(x_n)_{n=1}^{\infty} \to x$ for some $x \in \mathbb{R}$, we know that for all $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that if n > N, we have that $|x_n x| < \varepsilon$. Now let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ so that if n > N, $|x_n x| < \varepsilon/2$. We see that because m(n) > n > N, $|x_{m(n)} x| < \varepsilon/2$, therefore $|x_{m(n)} x_n| = |x_{m(n)} x + x x_n| \le |x_{m(n)} x| + |x_n x| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. This proves that $x_{m(n)} x_n \to 0$.
- 3. Suppose that there was no such c. Then f(x) gets arbitrarily small, that is for every $n \in \mathbb{N}$, there is some $0 \le x_n \le 1$ such that $f(x_n) < 1/n$. Then $(x_n)_{n=1}^{\infty}$ is a bounded sequence, because every point is contained in [0,1]. Then it contains a convergent subsequence, $(x_{n_k}) \to x$, and because [0,1] is compact, $x \in [0,1]$. We see that $f(x_{n_k}) \to 0$, because given $\varepsilon > 0$, choose $N > 1/\varepsilon$. Then for all k > N, $n_k \ge k > N$, therefore $|x_n x| < 1/n_k < 1/N < \varepsilon$. But f(x) is continuous, so $f(x_{n_k}) \to f(x)$, so therefore f(x) = 0, a contradiction. So some c must exist.
- 4. Let f(x) = 4 for all $x \in \mathbb{R}$, and let $(x_n)_{n=1}^{\infty} = 4$ for all $n \in \mathbb{N}$. We see that $f(x_n) = 4$ for every x_n . Then $y_n = \sum_{k=1}^n f(x_k) = \sum_{k=1}^n 4 = 4n$. Given any M > 0, choose N > M/4. Then for all n > N, $y_n \geqslant y_N = 4N > M$. So y_n diverges, which means that we have disproven this statement.