

DEPARTAMENTO DE MA A MATEMÁTICAS Ciencias D AVANZADAS

FORMULARIO DE MATEMÁTICAS AVANZADAS

TRANSFORMADA DE FOURIER

$$F(\omega) = \mathscr{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

f(t)	$F(\omega)$
$u(t)e^{-at}, a>0$	$\frac{1}{a+i\omega}$
k[u(t+a)-u(t-a)]	$\frac{2k}{\omega}\operatorname{sen}(a\omega)$
$e^{-a t }$, $a>0$	$\frac{2a}{a^2+\omega^2}$
e^{-at^2} , $a>0$	$\sqrt{\frac{\pi}{a}} e^{-\omega^2/4a}$
$\frac{1}{a^2+t^2}$	$\frac{\pi}{a} e^{-a \omega }$
$\delta(t)$	1
$t e^{-at^2}$, $a > 0$	$-\frac{i\omega}{2a}\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}$
$\frac{t}{a^2+t^2}$	$-\frac{\pi}{a}i\omega e^{-a\omega}$
$e^{-i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(\omega_0 t)$	$\pi \left[\delta (\omega + \omega_0) + \delta (\omega - \omega_0) \right]$
$sen(\omega_0 t)$	$\pi i \left[\delta \left(\omega + \omega_0 \right) - \delta \left(\omega - \omega_0 \right) \right]$
$\frac{1}{a+it}$	2πu(-ω)e ^{aω}

DEPARTAMENTO DE MATEMÁTICAS AVANZADAS

PROPIEDADES DE LA TRANSFORMADA DE FOURIER

$$F(\omega) = \mathscr{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

f(t)	$F(\omega)$
a f(t) + b g(t)	$aF(\omega) + bG(\omega)$
$f(t-t_0)$	$e^{-i\omega t_0}F(\omega)$
$e^{i\omega_0 t}f(t)$	$F(\omega - \omega_0)$
f(at)	$\frac{1}{ a } F\left(\frac{\omega}{a}\right)$
f(-t)	F(-ω)
F(t)	$2\pi f(-\omega)$
$f(t)\cos(\omega_0 t)$	$\frac{1}{2} \left[F(\omega + \omega_0) + F(\omega - \omega_0) \right]$
$f(t) \operatorname{sen}(\omega_0 t)$	$\frac{i}{2} \left[F(\omega + \omega_0) - F(\omega - \omega_0) \right]$
$f^{(n)}(t)$, $n \in \mathbb{N}$	$(i\omega)^n F(\omega)$
$t^n f(t)$, $n \in \mathbb{N}$	$i^n F^n(\omega)$
$\int_{-\infty}^{\tau} f(\tau) d\tau$	$\frac{1}{i\omega}F(\omega)$
(f*g)(t)	$F(\omega)G(\omega)$
f(t)g(t)	$\frac{1}{2\pi}(F*G)(\omega)$

DEPARTAMENTO DE MATEMÁTICAS AVANZADAS

FORMULARIO DE MATEMÁTICAS AVANZADAS

$$\operatorname{sen}(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$$

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots$$

$$\int t \operatorname{sen}(at) dt = \frac{\operatorname{sen}(at)}{a^2} - \frac{t \cos(at)}{a} + C$$

$$\int t^2 \operatorname{sen}(at) dt = \frac{2t}{a^2} \operatorname{sen}(at) + \left(\frac{2}{a^3} - \frac{t^2}{a}\right) \cos(at) + C$$

$$\int t \cos(at) dt = \frac{\cos(at)}{a^2} + \frac{t \sin(at)}{a} + C$$

$$\int t^2 \cos(at) dt = \frac{2t}{a^2} \cos(at) + \left(\frac{t^2}{a} - \frac{2}{a^3}\right) \sin(at) + C$$

$$\int e^{-t} \operatorname{sen}(at) dt = \frac{e^{-t} (a \operatorname{sen}(at) - \cos(at))}{a^2 + 1} + C$$

$$\int e^{-t}\cos(at)\,dt = \frac{e^{-t}\big(-\sin(at)-a\cos(at)\big)}{a^2+1} + C$$

$$\int e^{at} \operatorname{sen}(bt) dt = \frac{e^{at}}{a^2 + b^2} [a \operatorname{sen}(bt) - b \cos(bt)] + C$$

$$\int e^{at} \cos(bt) dt = \frac{e^{at}}{a^2 + b^2} \left[a \cos(bt) + b \sin(bt) \right] + C$$