D-Savior

L'hydroglisseur intelligent

Said Ait Faska

TS

N°SCEI: 10151

Contexte:

Plan de l'exposé:

- Contexte
- Problématique
- Cahier de charges
- Objectif № 1 : Mesure de la distance
- Objectif № 2 : Détection (Module OpenCV)
- ☐ Objectif No 3 : Asservissement
- Objectif № 4 :Réalisation du prototype
- Conclusion

Problématique:

■ Comment le système *détecte* et *suit* le nageur ?

Cahier de charges fonctionnel:

Figure 1 : Diagramme des exigences

Commander le

ventilateur

Fonctionnement du Système:

Figure 3 : Organigramme du système

Objectif 1: Mesure de la distance

Mesure de la distance avec capteur Ultrason HC-SR04

Caractéristiques:

Alimentation: 3,3 ou 5 Vcc

Consommation: 15 mA

Fréquence: 40 kHz

Portée: de 2 cm à 4 m

Déclenchement: impulsion TTL positive de 10µs

Signal écho: impulsion positive TTL proportionnelle à la distance.

Calcul: distance (cm) = impulsion (µs) / 58

Dimensions: 45 x 20 x 18 mm

Figure 5: Fonctionnement HC-SR04

Figure 4: Caractéristiques HC-SR04

Mesure de la distance avec capteur Ultrason HC-SR04

Expérience 1:

Figure 6: Montage module HC-SR04

Mesure de la distance avec capteur Ultrason HC-SR04

Résultats Obtenus :

distance réelle(cm)	distance mesurée
4	5
6	6,36
8	8,21
9	9,11
10	10,13
12	12,04
14	14,01
16	15,86
20	20,2
24	25,28
28	30,11
32	31,84
36	35,75
40	39,59
45	44,49
50	49,27
60	59,06
70	67,83
80	

Mesure de la distance avec capteur Infrarouge SHARP

1. Distance measuring range : 10 to 80 cm

2. Analog output type

3. Package size : 29.5×13×13.5 mm

4. Consumption current: Typ. 30 mA

5. Supply voltage: 4.5 to 5.5 V

Figure 7 : Caractéristiques capteur infrarouge

Figure 8 : Fonctionnement du capteur

Mesure de la distance avec capteur Infrarouge SHARP

Expérience 2 :

Figure 9 : Montage arduino SHARP

Mesure de la distance avec capteur Infrarouge SHARP

Résultats Obtenus :

distance mesurée (cm)	distance réelle (cm)
-	7 3
	5
	8
10	10
1:	12
14	14
17	7 16
19	18
20	20
24	25
29	30
45	40
62	2 50

Choix du Capteur

Capteur Ultrason HC-SR04 convient

Exigence Id=1.1 " Mesurer la distance " validé

Objectif 2: Detection du couleur

Comment détecter le couleur ?

Figure 10 : Fonctionnement du module *OpenCV*

Détection du couleur (OpenCv)

C-U OpenCV

■ Experience 3:

1 couleur

Détection du couleur (OpenCv)

C U OpenCV

Expérience 3 :

multi couleur

Exigence <u>Id=1.3.1</u> "Detection du couleur " validé

Objectif 3: Asservissement

On désire une vitesse de 1.3 m/s

figure 11:Constituants du système

! Equations de la MCC:

•
$$U(t) = E(t) + R * I(t) + L \frac{dI(t)}{dt}$$

•
$$E(t) = K_e * \Omega(t)$$

•
$$Cm(t) = K * I(t)$$

•
$$J\frac{d\Omega(t)}{dt} = Cm(t) - Cr(t)$$

❖ Hacheur 4Q:

$$V = U * (2\alpha - 1)$$

LAPLACE

$$U(p) = E(p) + R * I(p) + LpI(p)$$

$$E(p) = K_e * \Omega(p)$$

$$Cm(p) = K * I(p)$$

$$Ip\Omega(p) = Cm(p) - Cr(p)$$

> Schéma Matlab

Résultats Obtenus:

☐ Modélisation :

Correcteurs a implanter :- **proportionnel intégral** (PI) $\begin{cases} * rapidité du \ systeme \\ * erreur \ statique \ nulle \end{cases}$

1^{ere} boucle:

Posons:
$$3\tau_{BF} = \frac{3\tau}{10}$$
 (2)

$$\longrightarrow$$
 (1) et (2) $K_p = \frac{10}{K} / K = \frac{1}{R}$

AN:
$$K_p = 17,79 \Omega^{-1}$$

☐ Schéma bloc Matlab final:

Résultats Obtenus:

Objectif 4: Réalisation du prototype

Merci pour votre attention