

DIRECCIÓN GENERAL DE EDUCACIÓN TECNOLÓGICA INDUSTRIAL

Centro de Bachillerato Tecnológico industrial y de servicios No. 168

"Francisco I. Madero" Carrera: Mecatrónica

Reporte de la Actividad 3. Contador de 0 a F

NOMBRE: Orlando Contreras Reyes

NL: 7

Título: Contador de 0 a F

- a) El enunciado del problema. Escríbelo de forma digital
 Diseñar un circuito o diagrama electrónico junto con su programa para un Contador de 0 a F usando un Display. En este caso NO hay croquis.
- b) El croquis (No se usó). Dibújalo de forma digital
- c) La tabla de verdad (si es que se usó). Realízala de forma digital.

				PORTC							Valor	Display	
				.7	.6	.5	.4	.3	.2	.1	.0	Hex	
D	С	В	Α		g	f	е	d	С	b	а		
0	0	0	0	0	0	1	1	1	1	1	1	3F	0
0	0	0	1	0	0	0	0	0	1	1	0	06	1
0	0	1	0	0	1	0	1	1	0	1	1	5B	2
0	0	1	1	0	1	0	0	1	1	1	1	4F	3
0	1	0	0	0	1	1	0	0	1	1	0	66	4
0	1	0	1	0	1	1	0	1	1	0	1	6D	5
0	1	1	0	0	1	1	1	1	1	0	1	7D	6
0	1	1	1	0	0	0	0	0	1	1	1	07	7
1	0	0	0	0	1	1	1	1	1	1	1	7F	8
1	0	0	1	0	1	1	0	0	1	1	1	67	9
1	0	1	0	0	1	1	1	0	1	1	1	77	Α
1	0	1	1	0	1	1	1	1	1	0	0	7C	В
1	1	0	0	0	0	1	1	1	0	0	1	39	С
1	1	0	1	0	1	0	1	1	1	1	0	5E	D
1	1	1	0	0	1	1	1	1	0	0	1	79	E
1	1	1	1	0	1	1	1	0	0	0	1	71	F

- d) El diagrama electrónico. Realízalo a mano
- e) El diagrama de flujo (con sus respectivas etiquetas en color rojo). Realízalo a mano.

f) El listado del programa. Realízalo a mano.

g) Descripción del DF (Diagrama de Flujo). Realízalo a mano.

- 1.-Primero se inicia el programa y el primer movimiento es declarar las variables que en este caso serán Tiempo 1, tiempo 2 y tiempo 3 (T1,T2 y T3) y las almacenamos en los valores 21H,22H,23H además de que llamamos a la subrutina configurar puntos que básicamente pondrá todo el puerto C en 0's (Outputs)
- 2.-Moveremos el primer valor (3FH) de nuestra tabla de verdad al WREG para después llevarlo al puerto C (recordemos que el puerto WREG va a ser el intermediario entre cada acción
- 3.-Llamamos a la subrutina Delay_3S que prácticamente nos hará esperar 3 siguientes
- 4.-Moveremos el segundo valor (06H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 5.-Llamamos a la subrutina Delay_3S
- 6.-Moveremos el siguiente valor (5BH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 7.-Llamamos a la subrutina Delay_3S
- 8.-Moveremos el siguiente valor (4FH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 9.-Llamamos a la subrutina Delay 3S
- 10.-Moveremos el siguiente valor (66H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 11.-Llamamos a la subrutina Delay_3S
- 12.-Moveremos el siguiente valor (6DH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 11.-Llamamos a la subrutina Delay_3S
- 12.-Moveremos el siguiente valor (7DH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 13.-Moveremos el siguiente valor (07H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 14.-Llamamos a la subrutina Delay_3S
- 15.-Moveremos el siguiente valor (7FH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 16.-Llamamos a la subrutina Delay 3S
- 17.-Moveremos el siguiente valor (67H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 18.-Llamamos a la subrutina Delay 3S
- 19.-Moveremos el siguiente valor (77H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 20.-Llamamos a la subrutina Delay 3S
- 21.-Moveremos el siguiente valor (7CH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 22.-Llamamos a la subrutina Delay_3S
- 23.-Moveremos el siguiente valor (39H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 24.-Llamamos a la subrutina Delay_3S
- 25.-Moveremos el siguiente valor (5EH) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 26.-Llamamos a la subrutina Delay 3S
- 27.-Moveremos el siguiente valor (79H) de nuestra tabla de verdad al puerto WREG y después al PORTC
- 28.-Llamamos a la subrutina Delay_3S
- 29.-Moveremos el siguiente valor (71H) de nuestra tabla de verdad al puerto WREG y después al PORTC

h)	Observaciones (si es que hubo). Realízalo a mano.						