# Formale Grundlagen der Informatik I 4. Übungsblatt



Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Carsten Rösnick Sommersemester 2013 06. 05. 2013

### Gruppenübung

Aufgabe G7 (DEA Minimierung)

Betrachten Sie den folgenden DEA, den wir auf Minimalität prüfen wollen:



Formal ist der Automat  $\mathcal{A}$  durch das Fünftupel  $(\Sigma, Q, q_0, \delta, A)$  beschrieben. Weiter bezeichne  $\delta$  die *erweiterte Übergangsfunktion* (Skript, Definition 2.2.4):  $\hat{\delta}(q, \epsilon) := q$  und  $\hat{\delta}(q, wa) := \delta(\hat{\delta}(q, w), a)$  für alle  $a \in \Sigma$ ,  $w \in \Sigma^*$  und  $q \in Q$ .

- (a) Geben Sie die Zustände an, in denen sich der DEA Anach Ausführung der nachfolgenden Übergänge befindet:
  - i.  $\hat{\delta}(q_0, \epsilon)$ ;
  - ii.  $\hat{\delta}(q_0, a)$ ;
  - iii.  $\hat{\delta}(q_0, aa)$ ;
  - iv.  $\hat{\delta}(q_0, abbbaa)$ .
- (\*) Definiere durch  $\mathcal{L}_q(\mathcal{A}) := \{ w \in \Sigma^* \mid \hat{\delta}(q, w) \in A \}$  die Menge aller Worte  $w \in \Sigma^*$ , die akzeptiert würden, wäre q der Startzustand. (Auch: Die Menge aller w, die auf einem Pfad von q zu einem akzeptierenden Zustand akzeptiert werden.) Geben Sie die Menge  $\mathcal{L}_{q_3}(\mathcal{A})$  explizit an.
- (b) Gegeben ist die folgende unvollständige Tabelle für die Relation  $\nsim$  (Skript Seite 39, *Minimierung eines DFA*). (Ein  $\times$  an der Stelle p,q in der Tabelle bedeutet, dass  $p \nsim q$ .) Vervollständigen Sie die Tabelle und geben Sie ggf. ein Wort an, für das diese Unterscheidung notwendig ist, d. h. ein Wort w, das zu  $L_q$  gehört, aber nicht zu  $L_{q'}$  (oder umgekehrt).

| <b>%</b>              | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------------|---|---|---|---|---|---|---|---|
| 0                     |   |   | × | × | × |   |   | × |
| 1                     |   |   | × | × | × |   |   | × |
| 2                     | × | × |   | × |   | × | × | × |
| 1<br>2<br>3<br>4<br>5 | × | × | × |   | × | × | × | × |
| 4                     | × | × |   | × |   | × | × | × |
| 5                     |   |   | × | × | × |   | × | × |
| 6                     |   |   | × | × | × | × |   | × |
| 7                     | × | × | × | × | × | × | × |   |

1

### Lösung:

(a) i. 
$$\hat{\delta}(q_0, \epsilon) = q_0$$
;  
ii.  $\hat{\delta}(q_0, a) = q_1$ ;  
iii.  $\hat{\delta}(q_0, aa) = q_0$ ;  
iv.  $\hat{\delta}(q_0, abbbaa) = q_3$ .

Die Diagonale in der Tabelle bleibt frei, da ~ (siehe Skript S. 39) reflexiv ist.

# Aufgabe G8 ((Nicht-)Regularität von Sprachen)

(a) Sei L eine reguläre Sprache über einem Alphabet  $\Sigma$ . Formal geschrieben lautet das Pumping-Lemma wie folgt (vgl. Skript Lemma 2.5.2):

$$\exists n \in \mathbb{N} . \forall x \in L . \left( |x| \ge n \implies \exists u, v, w \in \Sigma^* . \left( x = uvw \land |uv| \le n \land |v| \ge 1 \land \forall m \in \mathbb{N} . (u v^m w \in L) \right) \right)$$

$$\tag{1}$$

Geben Sie die Negation von (1) an (d. h. die Aussage, dessen Korrektheit Sie beweisen müssen, wenn Sie mittels Pumping-Lemmas die *Nichtregularität* der Sprache *L* nachweisen wollen).

(b) Zeigen Sie sowohl mittels Myhill-Nerode als auch mittels Pumping-Lemmas, dass die Sprache

$$L = \{a^m b^n \mid m, n \in \mathbb{N}, m \ge n\}$$

nicht regulär ist.

# Lösung:

(a) Wir verwenden die Formeln

$$\neg \exists x \in X . \phi \iff \forall x \in X . \neg \phi$$

$$\neg \forall x \in X . \phi \iff \exists x \in X . \neg \phi$$

$$\neg (\phi \lor \psi) \iff \neg \phi \land \neg \psi$$

$$\neg (\phi \land \psi) \iff \neg \phi \lor \neg \psi$$

$$\phi \implies \psi \iff \neg \phi \lor \psi$$

$$\neg \neg \phi \iff \phi$$

Wir bekommen

$$\forall n \in \mathbb{N} . \exists x \in L . \Big( |x| \ge n \land \forall u, v, w \in \Sigma^* . \Big( \neg (x = uvw \land |uv| \le n \land |v| \ge 1 \Big) \lor \exists m \in \mathbb{N} . \Big( u \cdot v^m \cdot w \notin L \Big) \Big) \Big),$$
 was noch als

$$\forall n \in \mathbb{N} . \exists x \in L . \Big( |x| \ge n \land \forall u, v, w \in \Sigma^* . \Big( (x = uvw \land |uv| \le n \land |v| \ge 1) \implies \exists m \in \mathbb{N} . (u \cdot v^m \cdot w \notin L) \Big) \Big)$$
 umgeschrieben werden kann.

(b) • (Myhill-Nerode) Für Worte  $w, w' \in \Sigma^*$  haben wir nach Definition

$$w \sim_L w' \iff \forall x \in \Sigma^* . (wx \in L \iff w'x \in L).$$

Um zu zeigen, dass L nicht regulär ist, genügt es, unendlich viele nicht äquivalente Worte zu finden.

Wir zeigen, dass die Worte  $w_i := a^i$ ,  $i \in \mathbb{N}$ , paarweise nicht äquivalent sind. Nehmen wir  $i, j \in \mathbb{N}$ ,  $i \neq j$  (o. B. d. A. i < j). Ein Gebenbeispiel für  $a^i \sim_L a^j$  ist  $x = b^j$ , denn  $a^i b^j \notin L$ , aber  $a^j b^j \in L$ .

• (Pumping Lemma) Wir müssen die Aussage in (a) beweisen.

Nehmen wir beliebiges  $n \in \mathbb{N}$ . Wir müssen ein  $x \in L$  finden, für das die Aussage in großen Klammern gilt. Wir zeigen, dass  $x = a^n b^n$  funktioniert. Weil  $n =: m \ge n$ , haben wir  $x \in L$ . Auch  $|x| = 2n \ge n$ . Wir müssen noch den Allquantor beweisen.

Nehmen wir beliebige  $u, v, w \in \Sigma^*$ . Weil wir eine Implikation zeigen möchten, verwenden wir die linke Seite als Premisse. Sei also x = uvw eine beliebige Zerlegung von x mit  $|uv| \le n$  und  $|v| \ge 1$  an. Jetzt wollen wir noch den Existenzquantor beweisen, also sollen wir ein richtiges  $m \in \mathbb{N}$  finden.

Weil  $|uv| \le n$ , enthält v nur a. Wir sehen, dass m = 0 funktioniert, denn  $uv^0w = a^{n-|v|}b^n$  und dieses Wort ist nicht in L, denn  $|v| \ge 1$ .

### Aufgabe G9 (Grammatiken)

Gegeben sei die Grammatik  $G = (\Sigma, V, P, X_0)$  mit  $\Sigma := \{a, b\}, V := \{X_0, X_1, X_2, X_3\}$  und

$$\begin{array}{cccc} P\colon & X_0 & \to & aX_1 \mid bX_0 \\ & X_1 & \to & aX_0 \mid bX_2 \\ & X_2 & \to & aX_3 \mid bX_0 \\ & X_3 & \to & aX_0 \mid bX_3 \mid \varepsilon \end{array}$$

Welche der nachfolgenden Worte sind in der Grammatik G ableitbar?

Bonus: Ist die von der Grammatik *G* beschriebene Sprache regulär?

Lösung: Die Grammatik beschreibt den folgenden DEA:



Weil die von der Grammatik *G* beschriebene Sprache von einem DEA erkannt ist, ist sie regulär. Das erste Wort ist in *G* nicht ableitbar, das zweite und dritte doch:

#### Hausübung

# Aufgabe H8 (NEA zu DEA)

(5 Punkte)

Betrachten Sie den NEA A:

$$\mathscr{A}: \longrightarrow 0$$

- (a) Konstruieren Sie mittels Potenzmengenkonstruktion (Skript, Abschnitt 2.2.3) einen DEA  $\mathcal{B}$ , der die gleiche Sprache wie  $\mathcal{A}$  erkennt (d. h.  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$ ).
- (b) Konstruieren Sie aus  $\mathcal{B}$  einen *minimalen* DEA  $\mathcal{C}$ , der die gleiche Sprache erkennt. Geben Sie dazu (wie in **Aufgabe G7**) die Relationen  $\nsim_i$  in tabellarischer Form an.

#### Lösung:

$$\hat{A} = \left\{ \{0\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\} \right\}$$

| $\delta$      | а             | b   |
|---------------|---------------|-----|
| {0}           | {1}           | Ø   |
| {1}           | $\{0, 2\}$    | {2} |
| Ø             | Ø             | Ø   |
| $\{0, 2\}$    | $\{0, 1\}$    | Ø   |
| {2}           | {0}           | Ø   |
| $\{0, 1\}$    | $\{0, 1, 2\}$ | {2} |
| $\{0, 1, 2\}$ | $\{0, 1, 2\}$ | {2} |

(b)  $\boxed{3\ P}$  Wir bestimmen die Relationen  $\nsim_i$  (× gehöre dabei zu  $\nsim_0$  und  $\times_i$  zu  $\nsim_i$  für  $i\geq 1$ ).

| <b>≁</b> 0    | {0}        | {1}        | Ø          | $\{0, 2\}$ | {2}        | $\{0, 1\}$ | $\{0, 1, 2\}$ |
|---------------|------------|------------|------------|------------|------------|------------|---------------|
| {0}           |            | ×          | ×          | $\times_1$ | ×          | $\times_1$ | $\times_1$    |
| {1}           |            |            |            | ×          | $\times_2$ | ×          | ×             |
| Ø             | ×          | $\times_1$ |            | ×          | $\times_1$ | ×          | ×             |
| $\{0, 2\}$    | $\times_1$ | ×          | ×          |            | ×          | $\times_2$ | $\times_2$    |
| {2}           | ×          | $\times_2$ | $\times_1$ | ×          |            | ×          | ×             |
| $\{0, 1\}$    | $\times_1$ | ×          | ×          | $\times_2$ | ×          |            |               |
| $\{0, 1, 2\}$ | $\times_1$ | ×          | ×          | $\times_2$ | ×          |            |               |

Da  $\nsim_3 = \nsim_2$ , ist die Relation  $\nsim$  durch die Letzte Tabelle gegeben. Das heißt, dass wir die Zustände  $\{1,0\}$  und  $\{0,1,2\}$  identifizieren können (wir nennen den neuen Zustand X). Deshalb sieht der DEA minimaler Länge wie folgt aus:



### Aufgabe H9 (Regularität von Sprachen)

(5 Punkte)

Sei  $\Sigma$  ein Alphabet und L eine nicht-leere reguläre  $\Sigma$ -Sprache. Beweisen oder widerlegen Sie die Regularität jeder nachfolgenden Sprache.

- (a)  $L_1 := \{ u \in \Sigma^* \mid \exists v \in \Sigma^* . u \cdot v \in L \}$
- (b)  $L_2 := \{ w \in L \mid \exists u \in \Sigma^* \setminus L . \exists v \in \Sigma^+ . u \cdot v = w \}$
- (c)  $L_3 := \{x^p y \mid y \in L, \text{ Primzahl } p \in \mathbb{N}\},$  wo  $x \notin \Sigma$  ein festes Element ist (und so  $L_3$  eine Sprache über das Alphabet  $\Sigma \cup \{x\}$  ist).

### Lösung:

(a) 1,5 P. Die Sprache  $L_1$  setzt sich aus allen Präfixen von Wörtern  $w \in L$  zusammen. Ist  $\mathscr{A} = (\Sigma, Q, q_0, \delta, A)$  ein L akzeptierender DEA, so ist  $\mathscr{A}_1 = (\Sigma, Q, q_0, \delta, A_1)$  mit  $A_1 := \{q \in A \mid \exists w \in \Sigma^* . \hat{\delta}(q, w) \in A\}$  ein DEA für  $L_1$ .

**Vorsicht:** Es können wirklich nur Zustände, für die ein "Pfad" zu einem akzeptierenden Zustand existiert, in  $A_1$  aufgenommen werden. Wähle zur Veranschauung einen Graphen mit Senken.

#### **Korrektheit:**

- $L_1 \subseteq \mathcal{L}\left(\mathcal{A}_1\right)$ : Sei  $u \in L_1$ . Nach Definition existiert somit ein  $v \in \Sigma^*$  mit  $w := u \cdot v \in L$ . Das Wort w wird somit von  $\mathcal{A}$  akzeptiert, es gibt also (da wir über DEAs reden) einen eindeutigen Akzeptanzpfad von  $q_0$  zu einem Zustand in A:  $\hat{\delta}(q_u, v) \in A$  mit  $q_u := \hat{\delta}(q_0, u)$ . Nach Definition ist damit  $q_u$  in  $A_1$  enthalten, womit  $u \in \mathcal{L}\left(\mathcal{A}_1\right)$  folgt.
- $\mathcal{L}\left(\mathcal{A}_1\right)\subseteq L_1$ : Ist  $u\in\mathcal{L}\left(\mathcal{A}_1\right)$  so ist  $q_u:=\hat{\delta}(q_0,u)$  in  $A_1$ . Das heißt aber, u lässt sich durch mindestens ein  $v\in\Sigma^*$  zu einem Wort in L verlängern (d. h.  $w:=u\cdot v\in L$ ), wonach u per Definition in  $L_1$  enthalten ist.
- (b) 1,5 P. Hier können wir die Abschlusseigenschaften regulärer Sprachen ausnutzen:  $L_2 = L \cap \overline{L} \cdot \Sigma^+$ .
- (c) 2 P Die Sprache ist nicht regulär, was wir mittels Pumping-Lemmas beweisen. Wichtig: Aus  $x \notin \Sigma$  kann gefolgert und ausgenutzt werden, dass  $x^p y$  nur genau dann in  $L_3$  enthalten ist, wenn sowohl p prim ist, als auch  $y \in L$ .

Sei  $n \in \mathbb{N}$  und wähle (ohne Einschränkung)  $p \ge n$  prim. Weiter wählen wir das Wort  $z = x^p y$  für irgendein  $y \in L$  (solch ein y existiert, denn L ist nach Vorausetzung nicht leer). Damit ist die Voraussetzung  $|z| \ge n$  erfüllt. Sei nun  $z = u \cdot v \cdot w$  irgendeine Zerlegung von z mit  $|u \cdot v| \le n$  und  $|v| \ge 1$ . Da  $p \ge n$  ist z somit von der Form  $z = x^i x^j x^{p-i-j} y$  für  $i \in \mathbb{N}$ ,  $j \in \mathbb{N} \setminus \{0\}$ . Pumpe z wie folgt auf und nutze aus, dass sich Primzahlen nicht "weiter in Primzahlen zerlegen" lassen:  $u \cdot v^{p+1} w = x^{i+(p+1)j+(p-i-j)} y = x^{(j+1)p} y \notin L_3$ .

#### **Minitest**

#### Aufgabe M10

Sei  $L \subseteq \Sigma^*$  eine beliebige Sprache. Bestimmen Sie die korrekten Implikationen:

| L ist regulär | $\begin{array}{c} \square \Longrightarrow \\ \square \longleftarrow \end{array}$ | L ist endlich                                                                                                              |
|---------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|               | $\overset{\square}{=} \Longleftrightarrow$                                       | L wird von einem DFA akzeptiert                                                                                            |
|               | $\overset{\square}{=} \rightleftharpoons$                                        | L wird von einem NFA akzeptiert                                                                                            |
|               | $\stackrel{\square}{=} \rightleftharpoons$                                       | $L$ enthält eine reguläre Sprache, d.h. es gibt eine reguläre Sprache $L_1\subseteq \Sigma^*$ mit $L_1\subseteq L$         |
|               | $\begin{array}{c} \square \Longrightarrow \\ \square \longleftarrow \end{array}$ | $L$ ist Teilmenge einer regulären Sprache, d.h. es gibt eine reguläre Sprache $L_2\subseteq \Sigma^*$ mit $L\subseteq L_2$ |

| Lösung  |
|---------|
|         |
|         |
| TO20115 |

| L ist regulär | L ist endlich |
|---------------|---------------|
|               |               |

*Begründung:* Besteht L nur aus den endlich vielen Elementen  $w_1, \ldots, w_n$ , dann kann L durch den regulären Ausdruck  $w_1 + w_2 + \cdots + w_n$  beschrieben werden. Umgekehrt ist  $\Sigma^*$  regulär, aber nicht endlich.

L ist regulär  $\boxtimes \Longrightarrow L$  wird von einem DFA akzeptiert

Begründung: Satz von Kleene (Satz 2.3.1 im Skript).

L ist regulär  $\stackrel{\boxtimes}{\sim}$  L wird von einem NFA akzeptiert

Begründung: Satz von Kleene (Satz 2.3.1 im Skript).

 $L \text{ ist regul\"ar} \qquad \overset{\boxtimes}{\Box} \iff \qquad L \text{ enth\"alt eine regul\"are Sprache, d.h. es gibt eine regul\"are Sprache} \\ L \text{ ist regul\"are Sprache} \qquad L \text{ enth\"alt eine regul\"are Sprache, d.h. es gibt eine regul\"are Sprache} \\ L \text{ ist regul\"are Sprache, d.h. es gibt eine regullare Sprache L_1 \subseteq \times \text{ en entholise} \text{ en entholise} \text{ entholise} \text{$ 

Begründung: Hinrichtung ist klar mit  $L=L_1$ . Rückrichtung: Jede Sprache L enthält die reguläre Sprache  $\emptyset$ , aber nicht jede Sprache ist regulär.

L ist regulär  $\square \Longrightarrow L$  ist Teilmenge einer regulären Sprache, d.h. es gibt eine reguläre Sprache  $L_2 \subseteq \Sigma^*$  mit  $L \subseteq L_2$ 

Begründung: Hinrichtung ist klar mit  $L = L_2$ . Rückrichtung: Jede Sprache L ist in der regulären Sprache  $\Sigma^*$  enthalten, aber nicht jede Sprache ist regulär.

# Aufgabe M11

Kennzeichen Sie diejenige der folgenden Sprachen, die regulär sind.

- ☐ L(aaaaa a\* bbbbb b\*)
- $\square \{(ab)^n \mid n \in \mathbb{N}, n \ge 5\}$
- $\Box \{a^n b^n \mid n \in \mathbb{N}, n \ge 5\}$
- $\Box \{a^m b^n \mid m, n \in \mathbb{N}, m, n \ge 5\}$

# Lösung:

 $\boxtimes$  L(aaaaa a\* bbbbb b\*)

Begründung: Sprachen, die durch reguläre Ausdrücke entstehen, sind stets regulär (Satz von Kleene).

 $\boxtimes \{(ab)^n \mid n \in \mathbb{N}, n \geq 5\}$ 

Begründung: Die Sprache ist identisch zu  $L(abababababab(ab)^*)$ .

 $\Box \{a^n b^n \mid n \in \mathbb{N}, n \ge 5\}$ 

Begründung: Pumping-Lemma.

 $\boxtimes \{a^m b^n \mid m, n \in \mathbb{N}, m, n \geq 5\}$ 

Begründung: Die Sprache ist identisch zu L(aaaaa  $a^*$  bbbbb  $b^*$ ) (m und n können unabhängig voneinander gewählt werden).

#### Aufgabe M12

Sei L die Sprache, beschrieben durch die Grammatik  $G=(\Sigma,V,P,X_0)$  mit  $\Sigma=\{a,b\},\ V=\{X_0\}$  und  $P:\ X_0\to aX_0b\mid \varepsilon$ . Für welche Wortpaare w,w' gilt  $w\sim_L w'$ ?

- $\Box$  a, b
- $\Box$  aabb, aabb

|             | abab, baba                                                                 |
|-------------|----------------------------------------------------------------------------|
|             | ab, ba                                                                     |
|             | aab, aabb                                                                  |
| Lösı        | ing:                                                                       |
|             | a, b<br>Begründung: $ab \in L$ , aber $bb \notin L$ .                      |
|             | aabb, $aabbBegründung: \sim_L ist reflexiv.$                               |
| $\boxtimes$ | abab, baba Begründung: abab w, baba $w \notin L$ für alle $w \in \Sigma^*$ |
|             | ab, $baBegründung: ab \in L, aber ba \notin L.$                            |
|             | aab, aabb  Regrindung: $aab \notin I$ aber $aabb \in I$                    |