2.2 Propositional Equivalence (=)

Tautology, Contradiction and Contingency

Definition: A compound proposition that is always true no matter what the truth values of the propositions that occur in it is called a **tautology**. A compound proposition that is always false is called a **contradiction**. A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.

Example: Show that $p \lor \neg q$ is a tautology and $p \land \neg q$ is a contradiction.

Solution:

р	¬р	$\mathbf{p} \lor \neg \mathbf{p}$	$\mathbf{p} \wedge \neg \mathbf{p}$
T	F	T	F
T	F	T	F
F	T	T	F
F	T	T	F

Example: Show that $\mathbf{p} \rightarrow (\mathbf{p} \vee \mathbf{q})$ is a tautology.

Solution:

p	q	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \rightarrow (\mathbf{p} \vee \mathbf{q})$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

p	q	$\mathbf{p} \wedge \mathbf{q}$	p∨q	$(p \land q) \rightarrow (p \lor q)$
T	T	T	T	T
T	F	F	T	T
F	T	F	T	T
F	F	F	F	T

Example: Show that 1) $(\mathbf{p} \vee \mathbf{q}) \vee (\neg \mathbf{p})$ is a tautology.

2) $(\mathbf{p} \wedge \mathbf{q}) \wedge (\neg \mathbf{p})$ is a contradiction

Solution:

p	\mathbf{q}	$\neg \mathbf{p}$	$\mathbf{p} \vee \mathbf{q}$	$\mathbf{p} \wedge \mathbf{q}$	$(\mathbf{p}\vee\mathbf{q})\vee(\neg\mathbf{p})$	$(\mathbf{p} \wedge \mathbf{q}) \wedge (\neg \mathbf{p})$
T	T	F	T	T	T	F
T	F	F	T	F	T	F
F	T	T	T	F	T	F
F	F	T	F	F	T	F

Example: Show that $(\mathbf{p} \wedge \mathbf{q}) \rightarrow (\mathbf{p} \rightarrow \mathbf{q})$ is a tautology

Solution:

р	q	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \rightarrow \mathbf{q}$	$(\mathbf{p} \wedge \mathbf{q}) \to (\mathbf{p} \rightarrow \mathbf{q})$
T	T	F	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

Definition: When two compound statements have the same truth values in all possible cases are called **logically equivalent**.

The notation p = q denotes that p and q are logically equivalent.

De Morgan's laws:

- 1) Show that $\neg (p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
 - (or) Show that $\neg (p \lor q) \equiv \neg p \land \neg q$
- 2) Show that $\neg (p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.
 - (or) Show that $\neg (p \land q) \equiv \neg p \lor \neg q$

Solution:

1)

p	q	$\neg p$	$\neg \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$\neg (p \lor q)$	$\neg p \land \neg q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T

2)

p	q	¬р	$\neg \mathbf{q}$	p ^ q	$\neg (p \land q)$	$\neg p \lor \neg q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

Example: Show that $\neg p \lor q$ and $p \to q$ are logically equivalent.

(or) Show that
$$\neg p \lor q \equiv p \rightarrow q$$

Solution:

p	q	¬р	$\neg p \lor q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Example: Show that $\mathbf{p} \rightarrow \mathbf{q}$ and $\neg \mathbf{q} \rightarrow \neg \mathbf{p}$ are logically equivalent.

(or) Show that
$$\mathbf{p} \rightarrow \mathbf{q} \equiv \neg \mathbf{q} \rightarrow \neg \mathbf{p}$$

Solution:

p	q	$\neg \mathbf{p}$	$\neg \mathbf{q}$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	Т	Т

Example: Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.

(or) Show that
$$\neg p \leftrightarrow q \equiv p \leftrightarrow \neg q$$

Solution:

p	q	$\neg p$	$\neg \mathbf{q}$	$\neg p \leftrightarrow q$	$p \leftrightarrow \neg q$
T	T	F	F	F	F
T	F	F	T	T	T
F	T	T	F	T	T
F	F	T	T	F	F

Logical Equivalances					
Equivalance	Name				
$p \wedge T \equiv p$	Identity laws				
$p \vee F \equiv p$					
$p \vee T \equiv T$	Domination laws				
$p \wedge F \equiv F$					
$p \lor p \equiv p$	Idempotent laws				
$p \wedge p \equiv p$					
$\neg (\neg p) \equiv p$	Double negation law				
$p \vee q \equiv q \vee p$	Commutative laws				
$p \wedge q \equiv q \wedge p$					
$(p \lor q) \lor r \equiv (p \lor q) \lor r$	Associative laws				
$(p \land q) \land r \equiv p \land (q \land r)$					
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws				
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$					
$\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws				
$\neg (p \land q) \equiv \neg p \lor \neg q$					
$p \lor (p \land q) \equiv p$	Absorption laws				
$p \land (p \lor q) \equiv p$					
$p \vee \neg p \equiv T$	Negation laws				
$p \land \neg p \equiv F$					

Exercises

- 1. Show that $\neg (\neg p)$ and p are logically equivalent.
- 2. Use a truth table to verify the first De Morgan law

$$\neg (p \land q) \equiv \neg p \lor \neg q.$$

- 3. Show that $p \rightarrow (p \lor q)$ conditional statements is a tautology by using truth table.
- 4. Show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent.
- 5. Show that $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are logically equivalent.