VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD-500051 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Name of the Course: INTERNET OF THINGS

ASSIGNMENT -2

Name of the Faculty: **S Vinay Kumar** Date of Submission: **01-04-24**

Class: **B.E. 3/4** Time: **11.40 AM** -**12.40 PM**

Section: **A** Sem: **VI**

Academic Year: 2023-24

Set-I (1602-21-733-005,012,013,020,026,029,032,036,037,063)

			BTL	Ma _l	pped
Q.No	Description of the Question	Ma	(1/2	С	РО
		rks	/3/4	0	
			/5/6)		
	Build an intruder alert system using a Raspberry pi 3.Intruder				
	alert system should use be inside the room and if any obstacle is				
	detected by the PIR sensor, it must glow the bulb. It should also				
	simultaneously take the photo of the intruder. Whenever the light				
	glows, an SMS notification is to be sent to the owner of the	the		2,	
	house.				1,2,
1	Intruder alert system should use the following function:	5	3	3	3
	· The Smart home security system should be installed inside the)	
	room if any obstacle is detected by the pir sensor, the bulb				
	glows.				
	· It also simultaneously clicks the photo of the intruder.				
	· Whenever the light glows, an alert email is send to				
	the owner of the house along with the photo as an attachment.				

SET-II (1602-21-733-001 to 004, 006,007,008)

			BTL	Maj	pped
Q.No	Description of the Question	Ma	(1/2	С	РО
	Description of the Question	rks	/3/4	O	
			/5/6)		
	Develop an application to control the LEDs,				
	Task a: a Python program should read the switch status and turn				
	on or off the LED blinking. In addition to time and loop				
	functionality, use callbacks to detect switch activity.				
	Task b: When a second switch is pressed it must control the				
	blinking rate, i.e., it must toggle between a fast (1 second) and				
	slow (4 seconds) blinking rate.			_	
1	Task c: Connect a PIR sensor to Raspberry Pi. Perform	5	3	2,	1,2,
	measurements to determine the range of the sensor, i.e., start			3	3
	with a small distance (e.g., a few cms) and see if the motion				
	sensor responds. Repeat these for increasing distances until the				
	sensor stops responding. Report the measured distance.				
	Task D: Develop a garbage monitoring system that captures the				
	amount of garbage and send a notification to the user when it				
	reaches the threshold.				

SET-III (1602-20-733-009 to 011, 014 to 017)

			BTL	Мар	ped
Q.No	Description of the Question	Ma	(1/2	С	РО
	Description of the Question	rks	/3/4	0	
			/5/6)		
	Develop an application by using the Humidity/Temperature Sensor				
1	to monitor the humidity and temperature.	_	3	2,	1,2,
1	a. Report these sensed data to Mosquitto platform every minute.	3)	3	3
	b. Show the monitored data using the Mosquitto IoT platform.				

When the leaves of a second to a 20 decree Celebration TDM			1
c. When the temperature goes above 30 degrees Celsius, the IBM			l
Watson IoT should send an action to the board to turn the Red			
color on the LED.			
d. When the temperature goes below 25 degrees, the Red color			
should be turned to green.			
e. When the temperature reaches 20 degrees or less, the Blue			
color on the LED should be turned on.			
f. When the temperature goes above 50 degrees, all LEDs must			
show red color.			

SET-IV (1602-21-733-018,019,021 to 025)

			BTL	Мар	ped
Q.No	Description of the Question	Ма	(1/2	С	РО
	2 compact of the Question	rks	/3/4	0	
			/5/6)		
	Write a client-server based application using Bluetooth, read data		2		
1	from 2 sensors based on the data read apply conditions to initiate	5		2,	1,2,
1	an action on other device. Test the client and server programs on	3	3	3	3
	two RPis simultaneously.				

SET-V (1602-21-733-027 to 028, 030,031, 033 to 035)

Q.N	Description of the Question	Ma rks	BTL (1/2		ppe d
0.			/3/ 4	С О	РО
			/5/6)		
	Build a complete IoT system that does something meaningful				
	using at least 2 RPis, 2 sensor devices (not used in lab so far), 1				
1	output device, and the MQTT broker. Connect sensors to one RPi	5	3	2,	1,2,
1	and output devices to another RPi. Monitor the sensor data	5)	3	3
	subscribed to a MQTT topic and generate output using the output				
	device attached to second RPi.				

SET-VI (1602-21-733-038 to 044)

			BTL	Мар	ped
Q.No	Description of the Question	Ма	(1/2	С	РО
	geomption of the Queens.	rks	/3/4	0	
			/5/6)		
	Develop an application to post sensor's data to Firebase realtime				
	database.Write a python script (or HTML / Javascript or Android)		3	2,	1,2,
1	which retrieves these posted data from Firebase and presents it	5		3	3
	to the user in an android app.)	

SET-VII (1602-21-733-046 to 049 051, 052 to 054)

			BTL	Maj	pped
Q.No	Description of the Question	Ma	(1/2	С	РО
	Description of the Question	rks	/3/4	0	
			/5/6)		
	Go through the first few pages of AT32Uc3C's specification				
	document				
	Does it accept analog inputs? If yes, how many simultaneous			2	1 2
1	analog inputs it can support? What is the maximum supported	2	3	2,	1,2,
	sampling rate of analog input? What is done to minimize errors))
	due to digitization?				
	What is (i) I2C bus and (ii) CAN bus?				
2	Develop a prototype to develop a pollution monitoring system				1,2,
	that captures different gases in the air and generates an alarm.	3	3	2	3

SET-VIII (1602-21-733-055 to 061)

			BTL	Мар	ped
Q.No	Description of the Question	Ma rks	(1/2 /3/4	С О	РО
			/5/6)		
	Develop a prototype to generate data related to temperature,		2		
1	humidity and rain in a particular area and publish the data to a	5		2,	1,2,
1	cloud server. Send a notification to the user in a android mobile	5	3	3	3
	the temperature data every 15 min and the prediction of rain.				

SET-IX (1602-21-733-062, 064 to 067, 135, 136)

Q.No			BTL	Maj	pped
	Description of the Question	Ma rks	(1/2 /3/4 /5/6)	С О	РО
1	Pick one IoT startup incubated in SIDBI Innovation & Incubation Center of IIT Kanpur. Describe (i) The problem they are addressing and (ii) Their solution.	2	3	2	1
2	Develop a prototype to develop a smart alarm clock that generates alarm based on the sunrise timings, plays music automatically and switches on the light of a room.	3	3	2	1,2,

SET-X (1602-21-733-301 to 307)

			BTL	Maj	ped
Q.No	Description of the Question	Ma	(1/2	С	РО
	Description of the Question	rks	/3/4	Ο	
			/5/6)		
	Name any two companies, other than automakers, which make				
1	IoT solutions for automobile. How does their solution differ from	2	4	2,	1,2,
1	the inbuilt solution in automobile? Who is their customer -	2		3	3
	Automakers or End users?				
2	How is Yulu Bike making use of IoT technologies for delivering	2	4	2	1,2,
	great experience to their users?	3	4	3	3
		I			1