Colle 1 - Clotilde BAYNAUD

MPSI2 Année 2021-2022

21 septembre 2021

Question de cours . Montrer qu'un nombre complexe est de module 1 si et seulement si il s'écrit sous la forme $\cos(\theta) + i\sin(\theta)$ où $\theta \in \mathbb{R}$.

Exercice 1. Soient $a, b \in]0, \pi[$. Écrire sous forme exponentielle le nombre complexe $z = \frac{1 + e^{ia}}{1 + e^{ib}}$.

Exercice 2. Résoudre l'équation

$$(z-1)^5 = (z+1)^5.$$

Exercice 3. Résoudre l'équation

$$4iz^3 + 2(1+3i)z^2 - (5+4i)z + 3(1-7i) = 0,$$

sachant qu'elle admet une racine réelle.

Exercice 4. On munit le plan d'un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

1. Déterminer l'ensemble des points M dont l'affixe z vérifie la relation

$$\arg\left(\frac{z}{1+i}\right) = \frac{\pi}{2} \quad [2\pi].$$

2. Déterminer l'ensemble des points M dont l'affixe z vérifie la relation

$$|(1+i)z - 2i| = 2.$$

Exercice 5. Soient $n \geqslant 1$ et $\omega = e^{\frac{2i\pi}{n}}$.

- 1. Calculer le produit des racines n-ièmes de l'unité.
- 2. Soit $p \ge 0$. Calculer

$$\sum_{k=0}^{n-1} \omega^{kp}.$$

3. En déduire que

$$\sum_{k=0}^{n-1} (1 + \omega^k)^n = 2n.$$

1