SBML Model Report

Model name: "Kwang2003 - The influence of RKIP on the ERK signaling pathway"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Matthew Grant Roberts¹, Varun Kothamachu² and Emma Louise Fairbanks³ at June 20th 2017 at 12:07 a. m. and last time modified at October 26th 2017 at 3:22 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	11
events	0	constraints	0
reactions	11	function definitions	0
global parameters	11	unit definitions	1
rules	0	initial assignments	0

Model Notes

Kwang2003 - The influence of RKIP on the ERKsignaling pathway

¹EMBL-EBI, mroberts@ebi.ac.uk

 $^{^2}$ Babraham Institute, kothamav@babraham.ac.uk

 $^{^3}$ EMBL-EBI, efairbanks@ebi.ac.uk

This model is described in the article: Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway Kwang-Hyun Cho, Sung-Young Shin, Hyun-Woo Kim, Olaf Wolkenhauer, Brian McFerran and Walter Kolch Computational Methods in Systems Biology: First International Workshop, CMSB 2003 Rovereto, Italy, February 24??26, 2003 Proceedings

Abstract:

This paper investigates the influence of the Raf Kinase Inhibitor Pro- tein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signaling pathway through mathematical modeling and simulation. Using nonlinear ordi- nary differential equations to represent biochemical reactions in the pathway, we suggest a technique for parameter estimation, utilizing time series data of proteins involved in the signaling pathway. The mathematical model allows the simulation the sensitivity of the ERK pathway to variations of initial RKIP and ERK-PP (phosphorylated ERK) concentrations along with time. Throughout the simulation study, we can qualitatively validate the proposed mathematical model compared with experimental results.

This model is hosted on BioModels Database and identified by: BIOMD0000000647.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name substance

Definition µmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytoplasm	cytoplasm		3	1	litre	Ø	

3.1 Compartment cytoplasm

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

4 Species

This model contains eleven species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Raf1	Raf1	cytoplasm	$\mu \text{mol} \cdot l^{-1}$		
RKIP	RKIP	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
Raf1_RKIP	Raf1_RKIP	${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		
Raf1_RKIP_ERKPP	Raf1_RKIP_ERKPP	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
ERK	ERK	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
RKIPP	RKIPP	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
MEKPP	MEKPP	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
MEKPP_ERK	MEKPP_ERK	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
ERKPP	ERKPP	${ t cytoplasm}$	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
RP	RP	${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		\Box
RKIPP_RP	RKIPP_RP	${ t cytoplasm}$	$\mu mol \cdot l^{-1}$		\Box

5 Parameters

This model contains eleven global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.530	
k2	k2	0.007	$\overline{\mathscr{A}}$
k3	k3	0.625	$\overline{\mathscr{A}}$
k4	k4	0.002	$\overline{\mathscr{A}}$
k5	k5	0.032	$\overline{\mathscr{A}}$
k6	k6	0.800	$\overline{\mathbf{Z}}$
k7	k7	0.008	$\overline{\mathscr{A}}$
k8	k8	0.071	\square
k9	k9	0.920	$\overline{\mathscr{A}}$
k10	k10	0.001	$\overline{\mathscr{A}}$
k11	k11	0.870	

6 Reactions

This model contains eleven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	Raf1_RKIP- _complex- _formation	Raf1_RKIP complex formation	$Raf1 + RKIP \longrightarrow Raf1 _RKIP$	
2	Raf1_RKIP- _complex- _disassembly	Raf1_RKIP complex disassembly	$Raf1_RKIP \longrightarrow Raf1 + RKIP$	
3	Raf1_RKIP- _ERKPP_complex- _formation	Raf1_RKIP_ERKPP complex formation	$Raf1_RKIP + ERKPP \longrightarrow Raf1_RKIP_ERKPP$	
4	Raf1_RKIP- _ERKPP_complex- _disassembly- _ERK- _phosphorylation	Raf1_RKIP_ERKPP complex disassembly (ERK phosphorylation)	Raf1_RKIP_ERKPP → Raf1_RKIP+ERKPP	
5	Raf1_RKIP- _ERKPP_complex- _disassembly- RKIP- _phosphorylation	Raf1_RKIP_ERKPP complex disassembly (RKIP phosphorylation)	$Raf1_RKIP_ERKPP \longrightarrow Raf1 + ERK + RKIPP$	
6	MEKPP_ERKcomplexformation	MEKPP_ERK complex formation	$ERK + MEKPP \longrightarrow MEKPP_ERK$	

No	Id	Name	Reaction Equation	SBO
7	MEKPP_ERKcomplexdisassemblyERK-	MEKPP_ERK complex disassembly (ERK unphosphorylated)	$MEKPP_ERK \longrightarrow ERK + MEKPP$	
8	_unphosphorylated MEKPP_ERK- _complex- _disassembly- _ERK- _phosphorylated	MEKPP_ERK complex disassembly (ERK phosphorylated)	$MEKPP_ERK \longrightarrow MEKPP + ERKPP$	
9	RKIPP_RPcomlex- formation	RKIPP_RP comlex formation	$RKIPP + RP \longrightarrow RKIPP_RP$	
10	RKIPP_RPcomplexdisassemblyphosphorylatedRKIP	RKIPP_RP complex disassembly (phosphorylated RKIP)	$RKIPP_RP \longrightarrow RP + RKIPP$	
11	RKIPP_RPcomplexdisassemblyunphosphorylated _RKIP	RKIPP_RP complex disassembly (unphosphorylated RKIP)	$RKIPP_RP \longrightarrow RP + RKIP$	

6.1 Reaction Raf1_RKIP_complex_formation

This is an irreversible reaction of two reactants forming one product.

Name Raf1_RKIP complex formation

Reaction equation

$$Raf1 + RKIP \longrightarrow Raf1_RKIP \tag{1}$$

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
Raf1 RKIP	Raf1 RKIP	

Product

Table 7: Properties of each product.

Id	Name	SBO
Raf1_RKIP	Raf1_RKIP	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{k1} \cdot [\text{Raf1}] \cdot [\text{RKIP}]$$
 (2)

6.2 Reaction Raf1_RKIP_complex_disassembly

This is an irreversible reaction of one reactant forming two products.

Name Raf1_RKIP complex disassembly

Reaction equation

$$Raf1_RKIP \longrightarrow Raf1 + RKIP$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Raf1_RKIP	Raf1_RKIP	

Products

Table 9: Properties of each product.

Id	Name	SBO
Raf1 RKIP	Raf1 RKIP	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cytoplasm}) \cdot \text{k2} \cdot [\text{Raf1}_{\text{-}}\text{RKIP}]$$
 (4)

6.3 Reaction Raf1_RKIP_ERKPP_complex_formation

This is an irreversible reaction of two reactants forming one product.

Name Raf1_RKIP_ERKPP complex formation

Reaction equation

$$Raf1_RKIP + ERKPP \longrightarrow Raf1_RKIP_ERKPP$$
 (5)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
Raf1_RKIP ERKPP	Raf1_RKIP ERKPP	

Product

Table 11: Properties of each product.

Id	Name	SBO
Raf1_RKIP_ERKPP	Raf1_RKIP_ERKPP	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{k3} \cdot \left[\text{Raf1_RKIP}\right] \cdot \left[\text{ERKPP}\right]$$
 (6)

6.4 Reaction Raf1_RKIP_ERKPP_complex_disassembly_ERK_phosphorylation

This is an irreversible reaction of one reactant forming two products.

Name Raf1_RKIP_ERKPP complex disassembly (ERK phosphorylation)

Reaction equation

$$Raf1_RKIP_ERKPP \longrightarrow Raf1_RKIP + ERKPP \tag{7}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Raf1_RKIP_ERKPP	Raf1_RKIP_ERKPP	

Products

Table 13: Properties of each product.

Id	Name	SBO
Raf1_RKIP ERKPP	Raf1_RKIP ERKPP	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{cytoplasm}) \cdot \text{k4} \cdot [\text{Raf1_RKIP_ERKPP}]$$
 (8)

6.5 Reaction Raf1_RKIP_ERKPP_complex_disassembly__RKIP_phosphorylation

This is an irreversible reaction of one reactant forming three products.

Name Raf1_RKIP_ERKPP complex disassembly (RKIP phosphorylation)

Reaction equation

$$Raf1_RKIP_ERKPP \longrightarrow Raf1 + ERK + RKIPP$$
 (9)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Raf1_RKIP_ERKPP	Raf1_RKIP_ERKPP	

Products

Table 15: Properties of each product.

Id	Name	SBO
Raf1	Raf1	
ERK	ERK	
RKIPP	RKIPP	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{cytoplasm}) \cdot \text{k5} \cdot [\text{Raf1_RKIP_ERKPP}]$$
 (10)

6.6 Reaction MEKPP_ERK_complex_formation

This is an irreversible reaction of two reactants forming one product.

Name MEKPP_ERK complex formation

Reaction equation

$$ERK + MEKPP \longrightarrow MEKPP_ERK \tag{11}$$

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
ERK	ERK	
MEKPP	MEKPP	

Product

Table 17: Properties of each product.

Id	Name	SBO
MEKPP_ERK	MEKPP_ERK	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cytoplasm}) \cdot \text{k6} \cdot [\text{ERK}] \cdot [\text{MEKPP}]$$
 (12)

6.7 Reaction MEKPP_ERK_complex_disassembly_ERK_unphosphorylated

This is an irreversible reaction of one reactant forming two products.

Name MEKPP_ERK complex disassembly (ERK unphosphorylated)

Reaction equation

$$MEKPP_ERK \longrightarrow ERK + MEKPP \tag{13}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
MEKPP_ERK	MEKPP_ERK	

Products

Table 19: Properties of each product.

Id	Name	SBO
ERK	ERK	
MEKPP	MEKPP	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cytoplasm}) \cdot \text{k7} \cdot [\text{MEKPP_ERK}]$$
 (14)

6.8 Reaction MEKPP_ERK_complex_disassembly_ERK_phosphorylated

This is an irreversible reaction of one reactant forming two products.

Name MEKPP_ERK complex disassembly (ERK phosphorylated)

Reaction equation

$$MEKPP_ERK \longrightarrow MEKPP + ERKPP \tag{15}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
MEKPP_ERK	MEKPP_ERK	

Products

Table 21: Properties of each product.

Id	Name	SBO
MEKPP ERKPP	MEKPP ERKPP	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{cytoplasm}) \cdot \text{k8} \cdot [\text{MEKPP_ERK}]$$
 (16)

6.9 Reaction RKIPP_RP_comlex_formation

This is an irreversible reaction of two reactants forming one product.

Name RKIPP_RP comlex formation

Reaction equation

$$RKIPP + RP \longrightarrow RKIPP_RP \tag{17}$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
RKIPP	RKIPP	
RP	RP	

Product

Table 23: Properties of each product.

Id	Name	SBO
RKIPP_RP	RKIPP_RP	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{cytoplasm}) \cdot \text{k9} \cdot [\text{RKIPP}] \cdot [\text{RP}]$$
 (18)

6.10 Reaction RKIPP_RP_complex_disassembly_phosphorylated_RKIP

This is an irreversible reaction of one reactant forming two products.

Name RKIPP_RP complex disassembly (phosphorylated RKIP)

Reaction equation

$$RKIPP_RP \longrightarrow RP + RKIPP \tag{19}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
RKIPP_RP	RKIPP_RP	

Products

Table 25: Properties of each product.

Id	Name	SBO
RP	RP	
RKIPP	RKIPP	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{k10} \cdot [\text{RKIPP_RP}]$$
 (20)

6.11 Reaction RKIPP_RP_complex_disassembly_unphosphorylated_RKIP

This is an irreversible reaction of one reactant forming two products.

Name RKIPP_RP complex disassembly (unphosphorylated RKIP)

Reaction equation

$$RKIPP_RP \longrightarrow RP + RKIP \tag{21}$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
RKIPP_RP	RKIPP_RP	

Products

Table 27: Properties of each product.

Id	Name	SBO
RP	RP	
RKIP	RKIP	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{cytoplasm}) \cdot \text{k11} \cdot [\text{RKIPP_RP}]$$
 (22)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species Raf1

Name Raf1

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Raf1_RKIP_complex_formation and as a product in Raf1_RKIP_complex_disassembly, Raf1_RKIP_ERKPP_complex_disassembly__RKIP_phosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Raf1} = |v_2| + |v_5| - |v_1| \tag{23}$$

7.2 Species RKIP

Name RKIP

Initial concentration $2.5 \, \mu \text{mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Raf1_RKIP_complex_formation and as a product in Raf1_RKIP_complex_disassembly, RKIPP_RP_complex_disassembly_unphosphorylated_RKIP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RKIP} = |v_2| + |v_{11}| - |v_1| \tag{24}$$

7.3 Species Raf1_RKIP

Name Raf1_RKIP

Initial concentration $0 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in Raf1_RKIP_complex_disassembly, Raf1_RKIP_ERKPP_complex_formation and as a product in Raf1_RKIP_complex_formation, Raf1_RKIP_ERKPP_complex_disassembly_ERK_phosphorylation).

$$\frac{d}{dt} Raf1 RKIP = |v_1| + |v_4| - |v_2| - |v_3|$$
 (25)

7.4 Species Raf1_RKIP_ERKPP

Name Raf1_RKIP_ERKPP

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Raf1_RKIP_ERKPP_complex_disassembly_ERK_phosphorylation, Raf1_RKIP_ERKPP_complex_disassembly_RKIP_phosphorylation and as a product in Raf1_RKIP_ERKPP_complex_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Raf1}_{-}\mathrm{RKIP}_{-}\mathrm{ERKPP} = |v_3| - |v_4| - |v_5| \tag{26}$$

7.5 Species ERK

Name ERK

Initial concentration $0 \, \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MEKPP_ERK_complex_formation and as a product in Raf1_RKIP_ERKPP_complex_disassembly__RKIP_phosphorylation, MEKPP-_ERK_complex_disassembly_ERK_unphosphorylated).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ERK} = |v_5| + |v_7| - |v_6| \tag{27}$$

7.6 Species RKIPP

Name RKIPP

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in RKIPP_RP_comlex_formation and as a product in Raf1_RKIP_ERKPP_complex_disassembly__RKIP_phosphorylation, RKIPP-_RP_complex_disassembly__phosphorylated_RKIP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RKIPP} = |v_5| + |v_{10}| - |v_9| \tag{28}$$

7.7 Species MEKPP

Name MEKPP

Initial concentration $2.5 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MEKPP_ERK_complex_formation and as a product in MEKPP_ERK_complex_disassembly_ERK_unphosphorylated, MEKPP_ERK_complex_disassembly_ERK_phosphorylated).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MEKPP} = |v_7| + |v_8| - |v_6| \tag{29}$$

7.8 Species MEKPP_ERK

Name MEKPP_ERK

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in MEKPP_ERK_complex_disassembly_ERK_unphosphorylated, MEKPP_ERK_complex_disassembly_ERK_phosphorylated and as a product in MEKPP_ERK_complex_formation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{MEKPP_ERK} = |v_6| - |v_7| - |v_8| \tag{30}$$

7.9 Species ERKPP

Name ERKPP

Initial concentration 2.5 µmol·l⁻¹

This species takes part in three reactions (as a reactant in Raf1_RKIP_ERKPP_complex_formation and as a product in Raf1_RKIP_ERKPP_complex_disassembly_ERK_phosphorylation, MEKPP_ERK_complex_disassembly_ERK_phosphorylated).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ERKPP} = |v_4| + |v_8| - |v_3| \tag{31}$$

7.10 Species RP

Name RP

Initial concentration $3 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in RKIPP_RP_comlex_formation and as a product in RKIPP_RP_complex_disassembly_phosphorylated_RKIP, RKIPP_RP_complex_disassembly_unphosphorylated_RKIP).

$$\frac{d}{dt}RP = v_{10} + v_{11} - v_{9} \tag{32}$$

7.11 Species RKIPP_RP

Name RKIPP_RP

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in RKIPP_RP_complex_disassembly_-phosphorylated_RKIP, RKIPP_RP_complex_disassembly_unphosphorylated_RKIP and as a product in RKIPP_RP_comlex_formation).

$$\frac{d}{dt}RKIPP_RP = |v_9| - |v_{10}| - |v_{11}|$$
(33)

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany