Lesson 5 Coding

5-1: Optimal Codes

Jan Reimann

Math 574, Topics in Logic Penn State, Spring 2014

Codes

We have seen that the Kolmogorov complexity of a string σ can be seen as the length of an optimal code for σ .

Now we want to see if an analogue interpretation holds for (probabilistic) entropy.

Setting: X is an A-valued random variable. We want to assign code words to each outcome of X, so that the expected code length is minimal.

DEF: A (source) code for X is a mapping $c:A\to D^{<\mathbb{N}}$, where D is a finite alphabet.

We identify D with its cardinality.

The expected length L(c) of a code for X with distribution P is given as

$$L(c) = \sum_{\alpha \in A} P(\alpha)|c(\alpha)|.$$

Examples

$$L(c) = \sum_{i} P(a_i) |C(a_i)|$$

$$A = \{0, 1, 2, 3\}$$

$$C_{1}: O \longrightarrow O$$

$$1 \longrightarrow O$$

$$2 \longrightarrow 1 O$$

$$3 \longrightarrow 1 I$$

$$L(c_i) = 2$$

$$P(a) = \frac{1}{2}$$
 $P(a) = \frac{1}{8}$
 $P(a) = \frac{1}{8}$

$$C_2: O \mapsto O$$

$$A \mapsto O$$

$$L(c_{2}) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 3 + \frac{1}{8} \cdot 3$$

$$= 1.75$$

$$H(X) = 1.75$$
3

Prefix Codes

A code *c* is non-singular if it is one-one.

suffices for an unambiguous description of a single value of X

We want to encode a data stream produced by *X*, i.e. *A*-strings (sequences).

Extension of
$$c: c^*(a_1 \ldots a_n) = c(a_1) \cap c(a_2) \cap \ldots \cap c(a_n)$$
.

A code is uniquely decodable if its extension is non-singular.

One way to ensure this: code words for c are prefix-free.

Kraft Inequality

Which code lengths are possible for prefix codes?

THM: Let $W \subseteq D^{<\mathbb{N}}$ be prefix-free (possibly infinite). Then

$$\sum_{\sigma \in W} D^{-|\sigma|} \leqslant 1$$

Conversely, given any sequence I_0, I_1, I_2, \ldots of non-negative integers satisfying

$$\sum_{i} D^{-l_i} \leqslant 1,$$

Then there exists a prefix-free set $\{\sigma_0, \sigma_1, \dots\} \subseteq D^{<\mathbb{N}}$ of code words such that $|\sigma_i| = I_i$.

Proving the Kraft Inequality

Proof: \Rightarrow

- ▶ Let λ be the measure on $D^{\mathbb{N}}$ induced by $\lambda[\sigma] = D^{-|\sigma|}$.
- ► Identifying strings with cylinders, a prefix-free set corresponds to a disjoint collection of open sets.
- By countable additivity and monotonicity of measures,

$$\sum_{\sigma \in W} \mathfrak{Z}^{-|\sigma|} = \lambda \left(\bigcup_{\sigma} [\sigma] \right) \leqslant \lambda(D^{\mathbb{N}}) = 1.$$

Proving the Kraft Inequality

Assume lo = l1 = l2 = Proof: ← 2 6, 6, .6, 6, 15:1 = l; 11 Free MEASWE ": 1- (2-16-1 + ... + 2 =1-(2-10+...+2-ln)

Optimal Codes

The Kraft Inequality puts some restraints on the nature of a prefix code.

Subject to this restraint, what is the minimum expected length of a code for *X* (*A*-valued)?

Suppose $A = \{1, \dots, m\}$. Let $p_i = P(X = i)$. We want to find code lengths $I_1, \dots I_m$.

We have to minimize

$$L=\sum p_i l_i$$

over all integers $I_1, \ldots I_m$ satisfying

$$\sum D^{-l_i} \leqslant 1.$$

Let us allow the l_i to be arbitrary non-negative reals, and assume the constraint holds with equality:

$$\sum D^{-l_i} = 1.$$

We can then use Lagrange multipliers: Find critical points of partial derivatives of

$$\Lambda = \sum p_i l_i + \lambda \left(\sum D^{-l_i} - 1 \right).$$

We have

$$\frac{\partial \wedge}{\partial I_i} = p_i - \lambda D^{-I_i} \ln D.$$

Put $\frac{\partial \wedge}{\partial I_i} = 0$, and we obtain

$$D^{-l_i} = \frac{p_i}{\lambda \ln D}.$$

Optimal Codes Via Calculus

Plug $D^{-l_i} = \frac{p_i}{\lambda \ln D}$ back in the constraint $\sum D^{-l_i} = 1$:

$$\sum p_i = \lambda \ln D$$
, hence $\lambda = 1/\ln D$.

This in turn implies

$$D^{-l_i} = \frac{p_i}{\lambda \ln D} = p_i,$$

and thus

$$I_i^* = -\log_D p_i.$$

The expected code length is then

$$L^* = \sum p_i I_i^* = -\sum p_i \log_D(p_i) = H_D(X).$$

Optimality of Entropy Codes

We verify directly that the previous bound is indeed a global minimum: no integer-length prefix code has expected length less than entropy.

THM: Let *L* be the expected length of a *D*-ary prefix code of a random variable *X*. Then

$$L \geqslant H_D(X)$$
,

where equality holds iff $D^{-l_i} = p_i$.

Optimality of Entropy Codes

Proof:

$$L - H_D(X) = \sum_{i} p_i I_i + \sum_{i} p_i \log_D(p_i)$$

$$= -\sum_{i} p_i \log_D D^{-l_i} + \sum_{i} p_i \log_D(p_i).$$

Put
$$c = \sum D^{-l_i}$$
 and $r_i = D^{-l_i}/c$. Then
$$L - H_D(X) = \sum p_i \log_D(p_i) - \sum p_i \log_D \frac{D^{-l_i}}{c}$$

$$= \sum p_i \log_D \frac{p_i}{r_i} - \log_D c$$

$$= \frac{1}{\log D} D(\vec{p} \parallel \vec{r}) + \log_D (1/c) \geqslant 0$$