Lista de Implementação 04 Cálculo Numérico

Dhiego Loiola de Araújo 27 de novembro de 2019

Informações Preliminares

- Os exercícios abaixo deverão ser entregues através da plataforma NEAD.
- Devem ser entregues em dupla.
- Apenas um dos integrantes da dupla deve fazer o upload da pasta.
- Os arquivos deverão ser enviados em uma pasta .zip contendo o seguinte:
 - 1. As respostas através das tabelas, gráficos e análises em um único arquivo no formato pdf.
 - 2. Deverá conter a identificação completa dos participantes no arquivo acima.
 - 3. Os arquivos contendo os algoritmos que foram utilizados na elaboração das respostas, podem ser em Python ou C.
- O nome da pasta deverá ser: nome1_sobrenome1_nome2_sobrenome2.zip
- Data limite para o envio: 27 de novembro de 2019.

2

1 Ajuste de Curvas

(Baseado em [BURDEN], p. 565) Considere os conjunto de dados a seguir:

	1,0					
y_i	1,84	1,96	2,21	2,45	2,94	3, 18

- 1. Crie um algoritmo que faça a aproximação por Mínimos Quadrados utilizando as funções polinomiais do tipo $g_k(x) = x^k$.
- 2. Determine os polinômios de graus 1, 2 e 3 que aproximam os dados da tabela através dos Mínimos Quadrados.
- 3. Calcule o erro E para cada um dos polinômios acima.
- 4. Faça o gráfico dos dados e dos polinômios.

2 Integração Numérica

Considere as integrais abaixo

$$\bullet \int_0^1 e^{\cos(\pi x)} dx$$

$$\bullet \int_0^1 \sin(\pi x^2) \ dx$$

$$\bullet \int_0^1 \frac{1}{1+x^5} \ dx$$

$$\bullet \int_0^1 \cos\left(e^{\cos(\pi x)}\right) dx$$

- 1. Crie dois algoritmos que calculem aproximações das integrais acima utilizando o método dos Trapézios e o Método de Simpson.
- 2. Através dos algoritmos acima, crie uma tabela que aproxime o valor das integrais através de integração repetida dos Trapézios e de Simpson para n pontos conforme a tabela abaixo para cada uma das integrais acima.

n	Trapézios	Simpson
11		
101		
1001		
$10^4 + 1$		
$10^5 + 1$		
$10^6 + 1$		

3 Distribuição Normal de Probabilidades

Em Probabilidade e Estatística, a Distribuição Normal de Probabilidades $N(\mu, \sigma)$ é uma das mais utilizadas para modelar problemas de cunho probabilístico. No caso da distribuição normal padrão N(0,1), a função densidade de probabilidades é dada por

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$
 (1)

Como esta função não possui uma primitiva que possa ser escrita como uma função elementar, o cálculo das probabilidades utiliza uma tabela, visto que

$$P(0 \le X \le z) = \int_0^z \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \tag{2}$$

onde X tem distribuição N(0,1) e $z \ge 0$.

- 1. Utilizando um dos métodos de integração repetida (Trapézios ou Simpson), crie um algoritmo que calcule o valor da integral acima para $z \in [0, 3.9]$ com precisão de 5 casas decimais exatas.
- 2. Crie uma tabela com os valores de z e os valores calculados no item anterior, de 0 até 3.9 com distância h = 0.1, ou seja, 40 pontos.