Feuille d'exercices 3

Exercice 1. Etudier la convergence simple, normale, et uniforme des séries de fonctions $(\sum_{n\geq 0} u_n)$ de terme général défini par :

1.
$$u_n(x) = e^{-nx}, x \in \mathbb{R}_+.$$

2.
$$u_n(x) = x^n, x \in [0, 1].$$

3.
$$u_n(x) = \frac{1}{2^n} \sin(3^n x), x \in \mathbb{R}.$$

4.
$$u_n(x) = \frac{1}{1 + (n-x)^2}, x \in \mathbb{R}.$$

Exercice 2. Mêmes questions pour les séries de terme général défini par :

1.
$$u_n(x) = n^x, x \in \mathbb{R}$$
.

2.
$$u_n(x) = (-1)^n n^x, x \in \mathbb{R}$$
.

3.
$$u_n(x) = e^{-n(x^2+1)}, x \in \mathbb{R}$$
.

4.
$$u_n(x) = \frac{1}{n} \arctan(\frac{x}{n}), x \in \mathbb{R}$$

Exercice 3. Mêmes questions pour les séries de terme général défini par :

1.
$$u_n(x) = ne^{-nx}, x \in \mathbb{R}_+^*$$
.

2.
$$u_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in [0, \frac{1}{n}], \\ 0 & \text{si } x \in [\frac{1}{n}, 1]. \end{cases}$$

3.
$$u_n(x) = e^{-nx} \sin x, x \in \mathbb{R}_+$$

4.
$$u_n(x) = \frac{\sin(nx)}{1 + n^2x^2}, x \in \mathbb{R}.$$

Exercice 4. On considère la suite $(u_n)_{n\geq 1}$ de fonctions $u_n: \mathbb{R}_+ \to \mathbb{R}$ définies par

$$u_n(x) = \frac{1}{n+xn^2} \quad (n \ge 1, x \in \mathbb{R}).$$

- 1. Déterminer le domaine de convergence simple $D \subset \mathbb{R}$ de la série de fonctions $(\sum_{n\geq 1} u_n)$.
- 2. Étudier la convergence normale de la série de fonctions $(\sum_{n\geq 1} u_n)$ sur D, puis sur $[a, +\infty[$ pour tout réel a>0.
- 3. La série de fonctions $\left(\sum_{n\geq 1}u_n\right)$ converge-t-elle uniformément sur D ?
- 4. La fonction $f = \sum_{n=1}^{+\infty} u_n$ est-elle dérivable sur \mathbb{R}_+^* ?
- 5. Montrer que f est intégrable sur [1,2] et exprimer $\int_1^2 f(t) dt$ comme la somme d'une série numérique.

Exercice 5. Etudier la série de fonctions de terme général u_n défini pour $n \ge 1$ par :

$$u_n(x) = \frac{1}{n^3 + n^4 x^2}, \quad x \in \mathbb{R}.$$

La somme est-elle continue sur \mathbb{R} ? dérivable sur \mathbb{R} ?

Exercice 6. Mêmes questions pour la série de terme général v_n défini pour $n \ge 1$ par :

$$v_n(x) = \frac{1}{n^2 + n^4 r^2}, \quad x \in \mathbb{R}.$$

Exercice 7. Montrer que la série de fonctions de terme général u_n défini pour $n \ge 1$ par

$$u_n(x) = \frac{(-1)^n}{2\sqrt{n} + \cos x}, \quad x \in \mathbb{R},$$

converge uniformément sur \mathbb{R} . Étudier la convergence normale.

Exercice 8. On se propose de montrer que la série de terme général v_n défini pour $n \ge 1$ par :

$$v_n(x) = \frac{\cos(nx)}{\sqrt{n+x}}, \quad x \in \mathbb{R},$$

converge uniformément sur l'intervalle $I = [\alpha, 2\pi - \alpha]$, où $0 < \alpha < \pi$.

On se donne $x \in \mathbb{R}$ et $n, p, q \in \mathbb{N}^*$, avec $n \geq p$. On note $S_{p,n}(x) = \sum_{k=n}^n \cos(kx)$.

- 1. Montrer en utilisant $\cos a = \frac{1}{2}(e^{ia} + e^{-ia})$ que si $x \neq 2k\pi$, alors $|S_{p,n}(x)| \leq \frac{1}{|\sin(x/2)|}$.
- 2. Vérifier que $\sum_{n=p}^{p+q} v_n(x) = \sum_{n=p}^{p+q-1} S_{p,n}(x) \left[\frac{1}{\sqrt{n+x}} \frac{1}{\sqrt{n+1+x}} \right] + \frac{S_{p,p+q}(x)}{\sqrt{p+q+x}}$
- 3. En déduire que pour tout $x \in I$, $\left| \sum_{n=p}^{p+q} v_n(x) \right| \leq \frac{1}{\sqrt{p+x}} \frac{1}{|\sin(\frac{x}{2})|}$. En déduire le résultat.

Exercice 9. Pour x > 0, on pose

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{x(x+1)\dots(x+n)}.$$

- 1. Montrer que la somme ci-dessus définit une application continue $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$.
- 2. Exprimer f(x+1) en fonction de f(x) pour tout x>0.
- 3. Étudier la dérivabilité de f sur \mathbb{R}_+^* .
- 4. Montrer que la fonction f est monotone, et donner un équivalent de f(x) lorsque $x \to 0$, ainsi que lorsque $x \to +\infty$.
- 5. Tracer le graphe de f.

Exercice 10. On considère la suite $(u_n)_{n\in\mathbb{N}}$ de fonctions $u_n:[0,1]\to\mathbb{R}$ définies par $u_0(x)=1$ et, si $n\geq 1$,

$$u_n(x) = \begin{cases} \frac{(-1)^n}{n!} (x \ln(x))^n & \text{si } x \in]0,1], \\ 0 & \text{si } x = 0. \end{cases}$$

- 1. Pour tout $n \in \mathbb{N}$, vérifier que u_n est continue sur [0,1].
- 2. En intégrant par parties, calculer $\int_0^1 u_n(x) dx$ pour tout $n \in \mathbb{N}$.
- 3. Montrer que la série de fonctions $(\sum_{n\in\mathbb{N}} u_n)$ converge normalement sur [0,1], et calculer sa somme.
- 4. En déduire que

$$\int_0^1 \frac{1}{x^x} \, \mathrm{d}x \, = \, \sum_{n=1}^\infty \frac{1}{n^n} \, .$$

Exercice 11. On souhaite étudier la somme S de la série de fonctions de terme général v_n défini pour $n \ge 1$ par :

$$v_n(:x\mapsto)x) = \frac{1}{n^2 + n^4 x^2}, \quad x \in \mathbb{R}.$$

- 1. Montrer que $(\sum_{n\geq 1} v_n)$ converge simplement sur \mathbb{R} . Sa somme S est donc une fonction de \mathbb{R} dans \mathbb{R} .
- 2. Montrer que S est paire, et (strictement) décroissante sur \mathbb{R}_+ .
- 3. Montrer que S est continue sur \mathbb{R} , et qu'elle tend vers 0 en $+\infty$.
- 4. Étudier la convergence normale de $\left(\sum_{n\geq 1} v'_n\right)$: montrer qu'elle n'a pas lieu sur \mathbb{R} , mais par contre sur $\mathbb{R}\setminus[-a,a]$, pour tout a>0. En déduire que S est dérivable sur \mathbb{R}_+^* .
- 5. Pour étudier la dérivabilité de S en 0, on forme le taux d'accroissement $\tau_h S(0) = \frac{1}{h}(S(h) S(0))$, tout d'abord pour h > 0. Écrire ce taux d'accroissement sous la forme $h \sum_{n=1}^{+\infty} w_h(n)$, puis comparer les sommes partielles de la série $(\sum_{n\geq 1} w_h(n))$ avec des intégrales (de la fonction $w_h: t \mapsto (1+h^2t^2)^{-1}$). En déduire que $\tau_h S(0)$ tend vers $-\pi/2$ lorsque h tend vers 0^+ .
- 6. Donner l'allure du graphe de S.
- 7. La fonction S est-elle dérivable en 0?

Exercice 12. Escalier du diable ou de Cantor

On définit la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions de [0,1] dans \mathbb{R} par récurrence : $f_0(x)=x$ pour tout

$$x \in [0,1] \text{ et, pour } n \ge 0, f_{n+1}(x) = \begin{cases} \frac{1}{2} f_n(3x) & \text{si } x \in [0,\frac{1}{3}], \\ \frac{1}{2} & \text{si } x \in [\frac{1}{3},\frac{2}{3}], \\ \frac{1}{2} + \frac{1}{2} f_n(3x - 2) & \text{si } x \in [\frac{2}{3},1]. \end{cases}$$

- 1. Tracer sur un même graphique les graphes de f_0, f_1, f_2 .
- 2. Montrer que chaque f_n est continue et croissante.
- 3. On considère la série de fonctions de terme général $u_n = f_n f_{n-1}$ (n > 0). Montrer que $(\sum u_n)$ converge normalement.
- 4. En déduire que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction f continue et croissante.

Exercice 13. Soient $a \in]0,1[$ et b > 0. Pour tout $n \in \mathbb{N}$, on définit la fonction u_n de \mathbb{R} dans \mathbb{R} par

$$u_n(x) = a^n \sin(b^n x)$$
 pour tout $x \in \mathbb{R}$.

- 1. Montrer que la série $(\sum_{n\in\mathbb{N}} u_n)$ converge normalement. On note f sa somme.
- 2. Montrer que f est continue sur \mathbb{R} .
- 3. Montrer que si ab < 1, f est de classe C^1 .
- 4. Montrer que pour tout $x \in \mathbb{R}$, $f(x) = af(bx) + \sin(x)$.
- 5. On suppose que ab = 1 et que b est un entier ≥ 2 . Montrer que f n'est dérivable en aucun point de la forme

$$x = 2kb^n\pi, \ (k,n) \in \mathbb{Z}^2.$$

On commencera par le cas x=0 et on montrera que f est 2π -périodique. Que dire de cette famille de points (considérer par exemple le cas b=10)?