MATH 5825: ADVANCED LINEAR ALGEBRA HOMEWORK 1

INSTRUCTOR: DR. THOMAS MADSEN

RABIN THAPA

Problem A. Recall that for each prime p and $n \in \mathbb{N}$ there is a unique (up to isomorphism) field of order p^n . Construct a field with 4 elements. Give the tables for addition and multiplication. That is, pick four elements and make it into a field. Solution:

A field with 4 elements, say $F = \{G = \{0, 1, \alpha, \beta\}, +, \cdot\}$ is a group with 4 elements under addition i.e (G, +) and a group with 3 elements under multiplication i.e $(G - \{0\}, \cdot)$. A group with four elements is isomorphic to either \mathbb{Z}_4 or K_4 . $(\mathbb{Z}_4, +)$ forms a group but $(\mathbb{Z}_4 - 0, \cdot)$ does not. So, in our example, $(G, +) \cong K_4$.

Now, let define multiplication to form the group $(G - \{0\}, \cdot)$. Since the order of the group (non-trivial) is 3, $|\alpha| = |\beta| = 3$. So, $\alpha \cdot \alpha = \beta$, $\beta \cdot \beta = \alpha$ and $\alpha \cdot \beta = \beta \cdot \alpha = 1$.

$$\begin{array}{c|cccc} \cdot & 1 & \alpha & \beta \\ \hline 1 & 1 & \alpha & \beta \\ \alpha & \alpha & \beta & 1 \\ \beta & \beta & 1 & \alpha \\ \end{array}$$

Problem B. Let F be a field. Let $(V, +, \cdot)$ be a vector space over F. Prove that $(-1) \cdot v = -v$ for all $v \in V$.

Proof:

Let $v \in V$. Consider the following:

$$\begin{aligned} v + (-1) \cdot v \\ &= (1 + (-1)) \cdot v \ [Distributive \ axiom] \\ &= 0 \cdot v = \vec{0} \ [Theorem \ 1.5i] \end{aligned}$$

. Since $v + (-1) \cdot v = \vec{0}, (-1) \cdot v$ is the multiplicative inverse of v (denoted by -v). Hence, $(-1) \cdot v = -v$.

1

Problem C. Let F be a field. Let V be a vector space over F. Prove that $0v = \vec{0}$ for all $v \in V$. Here 0 is the additive identity in F and $\vec{0}$ is the zero vector in V.

Since 0 is an additive identity in F, 0 + 0 = 0. This gives

$$(0+0)v = 0v$$
$$\Rightarrow 0v + 0v = 0v$$

Adding -(0v) on both sides gives

$$0v + 0v - (0v) = 0v - (0v)$$

$$\Rightarrow 0v + (0v - 0v) = (0v - 0v)$$

$$\Rightarrow 0v + \vec{0} = \vec{0}.$$
Hence, $0v = \vec{0}$.

Problem D. Let V be a vector space. Prove that -(-v) = v for all $v \in V$. *Proof:*

Let $v \in V$. By the existence of the additive inverse, $-v \in V$. Now, using the conclusion from Problem B i.e. $(-1) \cdot v = -v$ for all $v \in V$, we get

$$-(-v) = (-1) \cdot (-v) = (-1)((-1)(v))$$
$$= (-1)(-1) \cdot v \quad [Associative \ axiom]$$
$$= 1 \cdot v = v.$$

Hence, -(-v) = v for all $v \in V$.

Problem E. In details describe how the set of $n \times m$ matrices with entries from \mathbb{R} is a vector space over \mathbb{Q} .

Solution:

Let $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$, $C = [c_{ij}]_{m \times n}$ be $m \times n$ matrices with entries from \mathbb{R} . The following properties are inherited by matrices (with real entries) from the field \mathbb{R} .

- (A1) A + B = B + A
- (A2) A + (B + C) = (A + B) + C
- (A3) A + 0 = A where 0 is the $m \times n$ null matrix. (A4) For a matrix A, there exists its additive inverse -A such that A + (-A) = 0.
- (M1) For a scalar $a \in \mathbb{Q}$, a(B+C) = aB + aC.
- (M2) For every pair of scalars $a, b \in \mathbb{Q}$, (a+b)C = aC + bC.
- (M3) For every pair of scalars $a, b \in \mathbb{Q}$, (ab)C = a(bC).
- (M4) 1A = A

Hence, the set of $n \times m$ matrices with entries from \mathbb{R} is a vector space over \mathbb{Q} .

Problem F. Let V be the set of all degree 2 polynomials with coefficients from \mathbb{R} . Why isn't V a vector space over \mathbb{R} ? (with the obvious operations). How would you fix this so that V becomes a vector space?

Solution:

Let V be the set of all degree 2 polynomials with coefficients from \mathbb{R} . Consider two polynomials $p_1(x) = ax^2 + bx + c$ and $p_2(x) = -ax^2 + dx + e$.

Now, $(p_1 + p_2)(x) = (ax^2 + bx + c) + (-ax^2 + dx + e) = (b+d)x + (c+e)$ which is of degree 1. So, $(p_1 + p_2)(x) \notin V$. Hence, V is not a vector space over \mathbb{R} .

It could be fixed by redefining V as the set of all polynomials of degree 2 or less with coefficients from \mathbb{R} .

Problem H. Recall the definition of linear independence from class. Prove that this definition is equivalent to the one in the book.

Proof:

Let V be a vector space over F.

Definition from class: If set of vectors $\{v_1, v_2, ..., v_n\} \subseteq V$ is linearly independent, then $c_1v_1 + c_2v_2 + ... + c_nv_n = 0 \Rightarrow c_1 = c_2 = ... = c_n = 0$.

Definition from book: A finite sequence of vectors, $(v_1, v_2, ..., v_k)$ from a vector space V is linearly dependent if there are scalars $c_1, c_2, ..., c_k$, not all zero, such that $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$. The sequence of vector is linearly independent if it is not linearly dependent.

Let's take the definition of linear dependence from book and negate it which yields if the vectors $\{v_1, v_2, ..., v_n\}$ are linearly independent, then $c_1v_1 + c_2v_2 + ... + c_kv_k = 0 \Rightarrow c_1 = c_2 = ... = c_n = 0$.

Problem I. (This problem reviews concepts that you should already be familiar with.) Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 2 & -1 \\ 0 & 2 & -2 \end{pmatrix}.$$

(I1) Find the RREF of A.

Solution:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 2 & -1 \\ 0 & 2 & -2 \end{pmatrix} \xrightarrow{R_2 - R_1 \to R_2} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -3 \\ 0 & 2 & -2 \end{pmatrix} \xrightarrow{\frac{1}{3}R_2 \to R_2} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$
$$\xrightarrow{\frac{R_1 + R_2 \to R_1}{R_3 - R_2 \to R_3}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = RREF(A).$$

(I2) Find a basis for the null space of A.

Solution: The basis of null space of A is equal to the basis of null space of RREF(A). Consider the following:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This gives:

$$x_1 + x_3 = 0 \Rightarrow x_1 = -x_3.$$

 $x_2 - x_3 = 0 \Rightarrow x_2 = x_3.$

Let
$$x_3 = s$$
 (free variable) where $s \in \mathbb{R}$. Then, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -s \\ s \\ s \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

So, Basis for null space: $\left\{ \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\}$.

(I3) Find a basis for the column space of A.

Solution: The basis of column space of A is equal to the basis of column space of RREF(A).

Basis for column space: $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\2 \end{pmatrix} \right\}$.

(I4) Find a basis for the row space of A.

Answer: The non-zero rows of RREF(A) are linearly independent.

So, Basis for the row space of A: $\{(1 \ 0 \ 1), (0 \ 1 \ -1)\}$.

(I5) What is the rank of A?

Answer: There are two non-zero (i.e. linearly independent) rows in RREF(A). So, rank of A is 2.

(16) What is the nullity of A?

Answer: Nullity, or the dimension of the null space, of A is 1.

Problem J. Let W be a subspace of V (finite dimensional). Prove that $\dim(V/W) = \dim(V) - \dim(W)$.

Proof:

Let the basis of W, with dimension k, be $\{v_1, v_2, ..., v_k\}$. Let the dimension of V be n. The basis of W can be extended to form the basis of V. Let the basis of V be $\{v_1, v_2, ..., v_k, v_{k+1}, ..., v_n\}$. Since $V/W = \{v + W | v \in V\}$, we have a following claims.

Claim 1: $v_{k+1} + W, v_{k+2} + W, ..., v_n + W$ } spans V/W.

Let $v + W \in V/W$ where $v \in V \Rightarrow v \in Span\{v_1, v_2, ..., v_n\} \Rightarrow v = a_1v_1 + a_2v_2 + ... + a_nv_n$ where a_i 's are scalars for all i's.

Now, $v + W = a_1v_1 + a_2v_2 + ... + a_nv_n + W =$

$$\sum_{i=1}^{n} a_i v_i + W = \sum_{i=1}^{n} a_i (v_i + W)$$

. Here, $v_i \in W$ for $1 \le i \le k \Rightarrow v_i - 0 \in W \Rightarrow v_i + W = 0 + W$ for $1 \le i \le k$. So,

$$v + W = \sum_{i=1}^{k} a_i(v_i + W) + \sum_{i=k+1}^{n} a_i(v_i + W)$$

$$= \sum_{i=1}^{k} a_i(0+W) + \sum_{i=k+1}^{n} a_i(v_i+W)$$

$$= \sum_{i=1}^{k} (0+W) + \sum_{i=k+1}^{n} a_i(v_i+W)$$
$$= \sum_{i=k+1}^{n} a_i(v_i+W)$$

. Hence, Claim 1 is true.

Claim 2: $v_{k+1} + W, v_{k+2} + W, ..., v_n + W$ is linearly independent. Let, for scalars b_i 's for all i's,

$$\begin{split} b_{k+1}(v_{k+1}+W) + b_{k+2}(v_{k+2}+W) + \dots + b_n(v_n+W) &= 0 + W \\ b_{k+1}v_{k+1} + W + b_{k+2}v_{k+2} + W + \dots + b_nv_n + W &= 0 + W \\ &\Rightarrow (b_{k+1}v_{k+1} + b_{k+2}v_{k+2} + \dots + b_nv_n) + W &= 0 + W \\ &\Rightarrow (b_{k+1}v_{k+1} + b_{k+2}v_{k+2} + \dots + b_nv_n) - 0 \in W \\ &\Rightarrow (b_{k+1}v_{k+1} + b_{k+2}v_{k+2} + \dots + b_nv_n) \in W = Span\{v_1, v_2, \dots, v_k\} \\ &\Rightarrow b_{k+1}v_{k+1} + b_{k+2}v_{k+2} + \dots + b_nv_n = b_1v_1 + b_2v_2 + \dots + b_nv_n \\ &\Rightarrow b_1v_1 + b_2v_2 + \dots + b_nv_n - b_{k+1}v_{k+1} - b_{k+2}v_{k+2} - \dots - b_nv_n = 0 \end{split}$$

Since $\{v_1, v_2, ..., v_k, v_{k+1}, ..., v_n\}$ is basis of V,

$$1v_1 + b_2v_2 + \dots + b_nv_n - b_{k+1}v_{k+1} - b_{k+2}v_{k+2} - \dots - b_nv_n = 0 \Rightarrow b_i = 0 \text{ for } 1 \le i \le n.$$

This gives $b_{k+1} = b_{k+2} = \dots = b_n = 0$. So, Claim 2 is also true.

Since claim 1 and claim 2 are both true, $v_{k+1} + W, v_{k+2} + W, ..., v_n + W$ is indeed a basis of V/W which has dimension n - k. Hence, $\dim(V/W) = \dim(V) - \dim(W)$.

Problem K. Consider the subspace $W = span\{x^2 + x^3, 1 + x^4\}$ of $V = \mathbb{R}_4[x]$. Find a basis for V/W.

Solution:

 $1 + x^4$ cannot be expressed as a scalar multiple of $x^2 + x^3$ which implies they are linearly independent. So, $\{x^2 + x^3, 1 + x^4\}$ is the basis of W. The basis of W can be extended to form the basis of $V = \mathbb{R}_4[x]$.

Claim: $\{1, x, x^2, x^2 + x^3, 1 + x^4\}$ is the basis of $V = \mathbb{R}_4[x]$. This is because $a \cdot 1 + b \cdot x + c \cdot x^2 + d \cdot (x^2 + x^3) + e \cdot (1 + x^4) = 0 \Rightarrow (a + e) + bx + (c + d)x^2 + dx^3 + ex^4 = 0 \Rightarrow a = b = c = d = e = 0$. So, the set is linearly independent and the claim is true.

Now, alluding to Problem J, the basis for V/W is $\{1 + W, x + W, x^2 + W\}$.

Section 1.2

11. Find all vector $v \in \mathbb{C}^2$ such that $(1+i)v + \binom{2-i}{1+2i} = \binom{6+i}{3+6i}$.

Solution:

$$(1+i)v + \binom{2-i}{1+2i} = \binom{6+i}{3+6i}$$

$$(1+i)v = \binom{6+i}{3+6i} - \binom{2-i}{1+2i}$$

$$(1+i)v = \binom{4+2i}{2-4i}$$

$$(1-i)(1+i)v = (1-i)\binom{4+2i}{2-4i}$$

$$2v = \binom{4+2i}{2-4i}$$
So, $v = \frac{1}{2} \binom{6-2i}{-2-6i} = \binom{3-i}{-1-3i}$.

12. Find all vectors \mathbb{F}_5^2 such that $2v + \binom{3}{4} = \binom{1}{3}$.

Solution:

Let
$$v = \begin{pmatrix} a \\ b \end{pmatrix}$$
 where $a, b \in \mathbb{F}_5$.

Now,
$$2 \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 2a \\ 2b \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$
.

This gives

$$2a = -2 = 8 \mod 5 \Rightarrow a = 4 \mod 5 \ [\because \gcd(5, 2) = 1].$$

$$2b=-1=4\mod 5\Rightarrow b=2\mod 5\ [\because \gcd(5,2)=1].$$

Since $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ is a solution, $v = \begin{pmatrix} 4+5s \\ 2+5t \end{pmatrix}$ where $s,t \in \mathbb{Z}$.

Section 1.3

4. Let V be a vector space. Prove the following cancellation property: for vectors v, x, y, if v + x = v + y, then x = y.

Proof:

Let $v \in V$ and V be a vector space. By the existence of additive inverse, there exists $-v \in V$ such that $v + (-v) = \vec{0}$. Adding (-v) to each side of v + x = v + y gives

$$(v + x) + (-v) = (v + y) + (-v)$$

 $x + (v + (-v)) = y + (v + (-v))$
 $x + \vec{0} = y + \vec{0}$
 $x = y$

.

11. Define $V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} | a, b \in \mathbb{R}^+ \right\}$. Define "addition" on V by $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 \\ b_1 b_2 \end{pmatrix}$. Further define "scalar multiplication" for $c \in \mathbb{R}$ by $c \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a^c \\ b^c \end{pmatrix}$. Prove that V is a vector space over \mathbb{R} where $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the zero vector and $- \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{1}{a} \\ \frac{1}{b} \end{pmatrix}$.

Let $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$, $\begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$, $\begin{pmatrix} a_3 \\ b_3 \end{pmatrix} \in V$ where $a_i, b_i, c_i \in \mathbb{R}^+$ for i = 1, 2, 3.

$$(A1) \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 \\ b_1 b_2 \end{pmatrix} = \begin{pmatrix} a_2 a_1 \\ b_2 b_1 \end{pmatrix} = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$$

$$(A2) \left(\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \right) + \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 a_2 \\ b_1 b_2 \end{pmatrix} + \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 a_2 a_3 \\ b_1 b_2 b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 a_3 \\ b_2 b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 a_3 \\ b_2 b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 a_3 \\ b_2 b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 a_3 \\ b_2 b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_3 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_3 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_3 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_2 \end{pmatrix} + \begin{pmatrix} a_1 \\$$

(A3) There exists
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \in V$$
 such that $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot a_1 \\ 1 \cdot b_1 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$

(A4) For every
$$\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \in V$$
, there exists $-\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{a_1} \\ \frac{1}{b_1} \end{pmatrix}$ such that $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} -\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a_1 \cdot (1/a_1) \\ b_1 \cdot (1/b_1) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

(M1) For a scalar
$$c$$
, c $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} (a_1 a_2)^c \\ (b_1 b_2)^c \end{pmatrix} = \begin{pmatrix} (a_1)^c \\ (b_1)^c \end{pmatrix} + \begin{pmatrix} (a_2)^c \\ (b_2)^c \end{pmatrix} = c \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + c \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$.

(M2) For every pair of scalars
$$c, d$$
, $(c+d) \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} a_1^{(c+d)} \\ b_1^{(c+d)} \end{pmatrix} = \begin{pmatrix} a_1^c a_1^d \\ b_1^c b_1^d \end{pmatrix} = \begin{pmatrix} a_1^c \\ b_1^c \end{pmatrix} + \begin{pmatrix} a_1^d \\ b_1^d \end{pmatrix} = c \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + d \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$

(M3) For every pair of scalars
$$c, d$$
, $(cd) \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} a_1{}^{cd} \\ b_1{}^{cd} \end{pmatrix} = \begin{pmatrix} a_1{}^{d^c} \\ b_1{}^{d^c} \end{pmatrix} = c \begin{pmatrix} a_1{}^d \\ b_1{}^d \end{pmatrix} = c \begin{pmatrix} d \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \end{pmatrix}$.

$$(\mathbf{M4})\ 1 \cdot \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} a_1{}^1 \\ b_1{}^1 \end{pmatrix} = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$$

Hence, V is a vector space over \mathbb{R} .

Section 1.4

3. Set
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - 2y + 4z = 0 \right\}$$
. Prove that W is a subspace in \mathbb{R}^3 .

Let
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
, $\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \in W$. So, $3x_1 - 2y_1 + 4z_1 = 0$ and $3x_2 - 2y_2 + 4z_2 = 0$.

Now,
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} \in W \text{ since } \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} \in \mathbb{R}^3 \text{ and }$$

$$3(x_1+x_2)s - 2(y_1+y_2) + 4(z_1+z_2) = (3x_1-2y_1+4z_1) + (3x_2-2y_2+4z_2) = 0 + 0 = 0.$$
 And for a scalar c , $c \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} cx_1 \\ cy_1 \\ cz_1 \end{pmatrix} \in W$ because $\begin{pmatrix} cx_1 \\ cy_1 \\ cz_1 \end{pmatrix} \in \mathbb{R}^3$ and $3(cx_1) - 2(cy_1) + 4(cz_1) = c(3x_1-2y_1+4z_1) = c \cdot 0 = 0.$

Hence, by subspace test, W is a subspace in \mathbb{R}^3 .

13. Let X, Y, Z be subspaces of vector space V and assume that $Y \subset X$. Prove that $X \cap (Y + Z) = Y + (X \cap Z)$. This is known as the *modular law* of subspaces. *Proof:*

We try to show $X \cap (Y + Z) \subseteq Y + (X \cap Z)$ and $X \cap (Y + Z) \supseteq Y + (X \cap Z)$. Let $w \in X \cap (Y + Z) \Rightarrow w \in X \land (w \in Y \lor w \in Z)$ [Distributive law].

$$\Rightarrow (w \in X \land w \in Y) \lor (w \in X \land w \in Z)$$
$$\Rightarrow w \in Y \lor (w \in X \land w \in Z) \ [\because Y \subset X]$$
$$\Rightarrow w \in Y + (X \cap Z).$$

So, $X \cap (Y + Z) \subseteq Y + (X \cap Z)$. Now, let $w \in Y + (X \cap Z) \Rightarrow w \in Y \lor (w \in X \land w \in Z)$ [Distributive law]

$$\Rightarrow (w \in Y \lor w \in X) \land (w \in X \lor w \in Z)$$
$$\Rightarrow w \in X \land (w \in X \lor w \in Z) \ [\because Y \subset X]$$
$$\Rightarrow w \in X \cap (Y + Z).$$

So,
$$X \cap (Y + Z) \supseteq Y + (X \cap Z)$$
. Hence $X \cap (Y + Z) = Y + (X \cap Z)$

Section 1.5

1. Let X,Y be sequences or subsets of a vector space V. Assume $X\subset Span(Y)$ and $Y\subset Span(X)$. Prove that Span(X)=Span(Y).

Proof:

Since
$$X \subset Span(Y), Span(X) \subset Span(Span(Y)) = Span(Y)$$
 [By Corollary 1.1i] Again, $Y \subset Span(X) \Rightarrow Span(Y) \subset Span(Span(X)) = Span(X)$ [By Corollary 1.1i]

So,
$$Span(X) \subset Span(Y)$$
 and $Span(X) \supset Span(Y) \Rightarrow Span(X) = Span(Y)$.

6. Let u, v be non-zero vectors. Prove that (u, v) is linearly dependent if and only if the vectors are scalar multiples of one another. *Proof:* (\Rightarrow) Let the non-zero vectors u, v be linearly dependent. Then, by definition of linear dependence, there exists scalars c_1, c_2 (both non-zero) such that

$$c_1 u + c_2 v = 0 \Rightarrow u = \frac{-c_2}{c_1} v = cv$$

where c is a scalar.

 (\Leftarrow) Let a non-zero vector u be a scalar (non-zero) multiple of another non-zero vector v i.e.

$$u = cv \Rightarrow u - cv = 0 \Rightarrow 1u + (-c)v = 0.$$

So, the non-trivial linear combination of u and v results to 0 which means the vector are linearly dependent.

Section 1.8

1. a) Verify that $F = (1 + x, 1 + x^2, 1 + 2x - 2x^2)$ is a basis of $F_{(2)}[x]$. *Proof:*

Claim 1: $\{1+x, 1+x^2, 1+2x-2x^2\}$ is linearly independent.

Let $a(1+x) + b(1+x^2) + c(1+2x-2x^2) = 0 \Rightarrow (a+b+c) + (a+2c)x + (b-2c)x^2 = 0$. for some scalars a, b, c.

This gives a+b+c=0, a+2c=0, $b-2c=0 \Rightarrow a=b=c=0$. So, claim 1 is true.

Claim 2: $\{1+x, 1+x^2, 1+2x-2x^2\}$ spans $F_{(2)}[x]$.

We know the standard basis for $F_{(2)}[x]$ is $\{1, x, x^2\}$. Each element in the basis can be obtained by the linear combination of $\{1 + x, 1 + x^2, 1 + 2x - 2x^2\}$ in the following way:

$$-2(1+x) + 2(1+x^2) + 1(1+2x-2x^2) = 1,$$

$$3(1+x) - 2(1+x^2) - 1(1+2x-2x^2) = x,$$

$$2(1+x) - 1(1+x^2) - 1(1+2x-2x^2) = x^2.$$

So, $\{1+x, 1+x^2, 1+2x-2x^2\}$ spans $F_{(2)}[x]$. Hence is the basis of $F_{(2)}[x]$.

b) Compute the coordinate vectors $[1]_F, [x]_F, [x^2]_F$.

From a, we get

$$[1]_F = \begin{pmatrix} -2\\2\\1 \end{pmatrix},$$
$$[x]_F = \begin{pmatrix} 3\\-2\\-1 \end{pmatrix},$$
$$[1]_F = \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}.$$