CSC 411 Lecture 08: Generative Models for Classification

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

Today

- Classification Bayes classifier
- Estimate input probability densities from data
- Naive Bayes

CSC411 Lec7 2 / 21

Classification

ullet Given inputs old x and classes y we can do classification in several ways. How?

CSC411 Lec7 3 / 21

Discriminative Classifiers

- **Discriminative** classifiers try to either:
 - ▶ learn mappings directly from the space of inputs \mathcal{X} to class labels $\{0,1,2,\ldots,K\}$

CSC411 Lec7 4 / 21

Discriminative Classifiers

- **Discriminative** classifiers try to either:
 - or try to learn $p(y|\mathbf{x})$ directly

CSC411 Lec7 5 / 21

Generative Classifiers

How about this approach: build a model of "what data for a class looks like"

- **Generative** classifiers try to model $p(\mathbf{x}, y)$. If we know p(y) we can easily compute $p(\mathbf{x}|y)$.
- Classification via Bayes rule (thus also called Bayes classifiers)

CSC411 Lec7 6 / 21

Generative vs Discriminative

Two approaches to classification:

- Discriminative classifiers estimate parameters of decision boundary/class separator directly from labeled examples. Tries to solve: How do I separate the classes?
 - learn $p(y|\mathbf{x})$ directly (logistic regression models)
 - ▶ learn mappings from inputs to classes (least-squares, decision trees)
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier). Tries to solve: What does each class "look" like?
 - ▶ Build a model of $p(\mathbf{x}|y)$
 - ► Apply Bayes Rule

CSC411 Lec7 7 / 21

Bayes Classifier

- Aim to classify text into spam/not-spam (yes C=1; no C=0)
- Use bag-of-words features, get binary vector x for each patient
- Given features $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$ we want to compute class probabilities using Bayes Rule:

$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C)p(C)}{p(\mathbf{x})}$$

More formally

$$posterior = \frac{Class\ likelihood \times prior}{Evidence}$$

• How can we compute p(x) for the two class case? (Do we need to?)

$$p(\mathbf{x}) = p(\mathbf{x}|C = 0)p(C = 0) + p(\mathbf{x}|C = 1)p(C = 1)$$

• To compute $p(C|\mathbf{x})$ we need: $p(\mathbf{x}|C)$ and p(C)

CSC411 Lec7 8 / 21

Classification: Simple Example

- Let's start with a simple (but slightly redundant) example.
- Imagine that we have some biased coins and we observe a single outcome from one of these coins.
- We have $P(x|C) = Ber(\theta_C) = \theta_C^x \cdot (1 \theta_C)^{1-x}$
- Notice that we have different parameters for each c oin
- How can I fit the distribution to my data?
- Simple approach maximum likelihood

CSC411 Lec7 9 / 21

MLE for Bernoulli

Assumption: data points are independent and identically distributed (i.i.d)

$$p(\mathcal{D}_C|C) = \prod_{n=1}^{N} p(x^{(n)}|C) = \prod_{n=1}^{N} \theta_C^{x^{(n)}} \cdot (1 - \theta_C)^{1 - x^{(n)}} = \theta_C^{N_C} \cdot (1 - \theta_C)^{N - N_C}$$

- We define $N_C = \sum_{i=1}^{N} x^{(n)}$ the number of ones (heads) seen.
- N and N_C are called sufficient statistics hold all the information we need to compute $P(\mathcal{D}_C|C)$
- We can minimize the negative log-likelihood (NLL)

$$\ell_{log-loss} = -\log(p(x^{(1)}, \cdots, x^{(N)} | C)) = -N_C \log(\theta_C) - (N - N_C) \log(1 - \theta_C)$$
$$\frac{\partial \ell_{log-loss}}{\partial \theta_C} = -\frac{N_C}{\theta_C} + \frac{N - N_C}{1 - \theta_C} = 0 \Rightarrow \theta_C = \frac{N_C}{N}$$

CSC411 Lec7 10 / 21

Beta-Binomial

- MLE solution $\theta_C = \frac{N_C}{N}$. What if $N_C = 0$?
- Example: Some rare word unseen in a training corpus.
- In that case P(x|C) = 0 no matter what other information we have!
- Solution: A prior over θ .
- Simple (conjugate) prior: Beta distribution
 - $Beta(\theta|a,b) \propto \theta^{a-1}(1-\theta)^{b-1}$

CSC411 Lec7 11 / 21

Beta Distribution

• Examples of $Beta(\theta|a,b) \propto \theta^{a-1}(1-\theta)^{b-1}$:

Beta-Binomial

- Likelihood $p(\mathcal{D}_C|\theta_C) = \theta_C^{N_C} \cdot (1 \theta_C)^{N N_C}$
- Prior $P(\theta_C) = Beta(\theta_C|a,b) \propto \theta_C^{a-1} (1-\theta_C)^{b-1}$

$$p(\theta_C|\mathcal{D}_C) = \frac{p(\mathcal{D}_C|\theta_C)P(\theta_C)}{p(\mathcal{D}_C)} \propto \theta_C^{N_C} \cdot (1 - \theta_C)^{N - N_C} \theta_C^{a - 1} (1 - \theta_C)^{b - 1}$$
$$= \theta_C^{N_C + a - 1} \cdot (1 - \theta_C)^{N - N_C + b - 1}$$

- We have $P(\theta_C | \mathcal{D}_C) = Beta(N_C + a, N N_C + b)$
- MAP estimation $\theta_{C,map} = \frac{N_C + a 1}{N + a + b 2}$ (show!)

CSC411 Lec7 13 / 21

Beta-Binomial *

- Can we do better then the using the MAP estimator? A more Bayesian approach.
- We have $P(\theta_C|\mathcal{D}_C) = Beta(N_c + a, N N_C + b)$, what is $P(x = 1|\mathcal{D}_C)$?

$$P(x = 1|\mathcal{D}_C) = \int_0^1 P(x = 1|\theta_C)P(\theta_C|\mathcal{D}_C)$$
$$= \int_0^1 \theta_C P(\theta_C|\mathcal{D}_C) = \mathbb{E}[\theta_C|\mathcal{D}_C]$$

- Beta(a,b) has a closed form mean $\frac{a}{a+b}$ (a bit of work to show) so $\theta_C = P(x=1|\mathcal{D}_C) = \frac{N_C+a}{N_C+a+b}$
- Equivalent to pseudo-counts, adding *a* fictitious positive examples and *b* negative ones.

CSC411 Lec7 14 / 21

Moving beyond coins

- In the real world we tend to have a vector of observations $\mathbf{x} = [x_1, ..., x_d]$.
- Modelling $p(\mathbf{x}, y)$ in this case is much more complex.

$$p(x_1, \dots, x_d, y) = p(x_1|x_2, \dots, x_d, y) \dots p(x_{d-1}|x_d, y)p(x_d, y)$$

- We need to make some assumptions!
- The Naive-Bayes Model is born from a particularly strong assumption.

CSC411 Lec7 15 / 21

Naive-Bayes for Bernoulli variables

• Make the (naive) assumption - dimensions $\mathbf{x} = [x_1, ..., x_d]$ are independent given the class y.

$$P(\mathbf{x}|y=C,\theta_C) = \prod_{j=1}^d p(x_j|y=C,\theta_{jC}) = \prod_{j=1}^d \theta_{jC}^{x_j} (1-\theta_{jC})^{(1-x_j)} =$$

$$\exp\left(\sum_{j=1}^{d} x_j \log(\theta_{jC}/(1-\theta_{jC})) + \sum_{j=1}^{d} \log(1-\theta_{jC})\right) = \exp(\mathbf{w}_C^T \mathbf{x} + w_{0C})$$

• Define $w_{Cj} = \log(\theta_{jC}/(1-\theta_{jC}))$, $w_{0C} = \sum_{j=1}^d \log(1-\theta_{jC})$

CSC411 Lec7 16 / 21

Naive-Bayes for Bernoulli variables

• How do we classify?

$$P(y = C|\mathbf{x}) \propto P(y = C)P(\mathbf{x}|y = C) = \exp(\mathbf{w}_C^T\mathbf{x} + b_C)$$

- $w_{Cj} = \log(\theta_{jC}/(1-\theta_{jC})), b_C = w_{0C} + \log(P(y=C))$
- Linear classifier! Model is similar to logistic regression, but different optimization.
 - ▶ No gradients just need to count! Really fast to train.
 - Doesn't take into account correlation between features.

CSC411 Lec7 17 / 21

Example: 20newsgroups

Table: Top word per topic

Topic	Naive Bayes	Logistic regression
'alt.atheism',	don	enlightening
'comp.graphics',	thanks	needed
'comp.os.ms-windows.misc',	windows	windows
'comp.sys.ibm.pc.hardware',	thanks	disappointing
'comp.sys.mac.hardware',	mac	mac
'comp.windows.x',	window	xtvaappinitialize
'misc.forsale',	sale	semd
'rec.autos',	car	car
'rec.motorcycles',	bike	bike
'rec.sport.baseball',	year	950k
'rec.sport.hockey',	team	hockey
'sci.crypt',	key	encryption
'sci.electronics',	use	cci
'sci.med',	don	melittin
'sci.space',	space	launch
'soc.religion.christian',	god	satan
'talk.politics.guns',	people	gun
'talk.politics.mideast',	people	kidding
'talk.politics.misc',	people	paranoia
'talk.religion.misc'	people	compuserve

CSC411 Lec7 18 / 27

Beyond Bernoulli

- We focused on binary features, x_i , but Naive bayes is more general.
- Discrete features multinomial.
- Continuous features Gaussian (or any other).
- No problem to mix (unlike logistic regression)!

CSC411 Lec7 19 / 21

NB recap

- Learning parameters:
 - ▶ Estimate P(y = C), e.g. $P(y = C) = \frac{\# class C}{\# data \ points}$
 - ▶ For each class C and feature x_i estimate the distribution $p(x_i|y=C)$
- At test time:
 - For each class compute $S_C = \log(P(Y = C)) + \sum_{i=1}^d \log(p(x_i|y = C))$
 - ▶ Classify according to max_CS_C
- Probabilities: $P(y = C | \mathbf{x}) = \frac{\exp(S_C)}{\sum_{i=1}^{L} \exp(S_i)}$

CSC411 Lec7 20 / 21

NB recap

- Pros:
 - Really fast to train (single pass through data!).
 - Fast to test.
 - Less over-fitting, sometimes better then logistic on small data sets
 - Easy to add/remove classes
 - Can handle partial data.
- Cons:
 - ▶ When naive i.i.d assumption doesn't hold (almost always) can perform much worse.

CSC411 Lec7 21 / 21