Enhanced Nightshade-CNN

Algorithm Steps:

Input: Nightshade crop leaf Images with complex background.

Steps:

Phase I Partial Background Removal

Initialization:

1. Nightshade crop leaves such as tomato, potato, bell pepper, and eggplant leaves have been used from different agriculture sites [126-132].

Preprocessing:

- 1. For each instance of data
 - a. Use ImageDataGenerator for augmentation
 - b. **scikit-learn** for split the data in training, testing and validation.
 - c. Identification of background and leaf using watershed and graph cut
 - i. Background detection

```
If (more green index (ExG=2G-R-B) and an more red index (ExR=1.4R-G-B)) => soil background
```

```
If color == white (R>200,G>220, B>200) => background
```

If (color == highly detail) => texture background

If (hole == 100 pixel)=> neglect

- ii. Leaf detection
 - 1. Greyscale morphology
 - 2. Solidity measurement
 - 3. Edge making
- iii. Vein detection
- iv. Protrusion detection
- 2. Cut out leaf region by Graph cut and watershed.

Phase II Disease Identification

Hyperparameter Selection:

3. Define the model parameters like batch size, learning rate, epochs, padding, stride, no of layers, activation functions, filters etc.

Model Creation:

- 4. Configure the model based on the set parameter in step 4.
- 5. Apply the activation function to the configured model

Compilation:

6. Compile the model using Adam optimizer with 0.0001 learning rate.

Training:

7. Train the model

Validation:

8. Validate the model.

Testing:

- 9. Test the model for the unseen data and check the accuracy of the model.
- 10. Disease identification