Benchmarking a MOS-based Algorithm on the BBOB-2010 Noisy Function Testbed

Antonio LaTorre
Department of Computer
Systems Architecture and
Technology
Facultad de Informática
Universidad Politécnica de
Madrid, Spain
atorre@fi.upm.es

Santiago Muelas
Department of Computer
Systems Architecture and
Technology
Facultad de Informática
Universidad Politécnica de
Madrid, Spain
smuelas@fi.upm.es

José M. Peña
Department of Computer
Systems Architecture and
Technology
Facultad de Informática
Universidad Politécnica de
Madrid, Spain
jmpena@fi.upm.es

ABSTRACT

In this paper, a hybrid algorithm based on the Multiple Offspring Sampling framework is presented and benchmarked on the BBOB-2010 noisy testbed. MOS allows the seamless combination of multiple metaheuristics in a hybrid algorithm capable of dynamically adjusting the participation of each of the composing algorithms. The experimental results show a good performance on functions with moderate noise. However, on functions with severe noise the results deteriorate, which suggests that further research should be conducted to find more adequate control mechanisms for these types of functions.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking of algorithms, Black-box optimization, Continuous optimization, IPOP-CMA-ES, Differential Evolution, Multiple Offspring Sampling

1. INTRODUCTION

In this contribution, a hybrid algorithm constructed by means of the Multiple Offspring Sampling (MOS) framework [5] has been applied to the Black Box Optimization 2010 Noisy Function Testbed. This framework allows the combination of different evolutionary models following an HRH

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'10, July 7–11, 2010, Portland, Oregon, USA. Copyright 2010 ACM 978-1-4503-0073-5/10/07 ...\$10.00. taxonomy [8]) where the number of evaluations that each algorithm can carry out is dynamically adjusted according to their current performance. In this type of algorithms, two metaheuristics are executed in sequence, one after the other. For this paper, the IPOP-CMA-ES [1] and the DE algorithm [7] have been combined within this framework in a multistart strategy on 30 different functions. This algorithm is the same as the one presented in a complementary paper of the same proceedings [6].

(High-level Relay Hybrid) approach (according to Talbi's

2. ALGORITHM AND PARAMETERS

The algorithm and all parameters are described in the similar work on the Noiseless Testbed [6]. Due to the lack of time to do a proper parameter tuning on the noisy testbed, all the parameters values were kept the same as for the noiseless testbed.

3. RESULTS

Results from experiments according to [3] on the benchmark functions given in [2, 4] are presented in Figures 1, 2 and 3 and in Tables 1, 2 and 3.

The overall results in the noisy testbed are not as satisfactory as in the case of the noiseless one [6] in terms of achieved precision and scalability. The hybrid algorithm here presented is able to solve 30, 27, 25, 19, 16 and 10 functions out of 30 in 2, 3, 5, 10, 20 and 40 dimensions, respectively. It seems that the noise added to the functions makes the performance of the algorithm deteriorate as the number of dimensions increases. This effect is more pronounced in the case of those functions with severe noise than in those with a moderate noise.

Compared with the individual use of its composing algorithms, the DE seems not to be of much help in this type of functions. Fortunately, the regulatory mechanisms of the MOS framework are able to detect this behavior and minimize the participation of the DE technique. As a consequence of this, the overall behavior of the hybrid algorithm is quite similar to that exhibited by the CMA-ES when used individually, though it presents small variations for some groups of dimensions: in 2, 3 and 40 dimensions it seems to have a better performance, whereas IPOP-CMA-ES seems to be slightly better in the rest of the dimensions (5, 10 and 20).

Figure 1: Expected Running Time (ERT, ullet) to reach $f_{\mathrm{opt}}+\Delta f$ and median number of f-evaluations from successful trials (+), for $\Delta f=10^{\{+1,0,-1,-2,-3,-5,-8\}}$ (the exponent is given in the legend of f_{101} and f_{130}) versus dimension in log-log presentation. For each function and dimension, $\mathrm{ERT}(\Delta f)$ equals to $\#\mathrm{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\mathrm{opt}}+\Delta f$ was surpassed. The $\#\mathrm{FEs}(\Delta f)$ are the total number (sum) of f-evaluations while $f_{\mathrm{opt}}+\Delta f$ was not surpassed in the trial, from all (successful and unsuccessful) trials, and f_{opt} is the optimal function value. Crosses (×) indicate the total number of f-evaluations, $\#\mathrm{FEs}(-\infty)$, divided by the number of trials. Numbers above ERT-symbols indicate the number of successful trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the single best results from BBOB-2009 for $\Delta f=10^{-8}$. Additional grid lines show linear and quadratic scaling.

A	f101 in 5-D, N=15, mFE=330	1 f ₁₀₁ in 20-D, N=15, mFE=9903	f102 in 5-D, N=15, mFE=3339	f ₁₀₂ in 20-D, N=15, mFE=9897
15 1.46 2.46 2.46 3.67 3.46 3.			Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
15 83 27 102 846 3.66 3				
15 1.662 1.463 1.663 1.563 1.564 1.664				
15 21-61 18-3 23-63				
15 3.1 ct 2 2.0 st 3.2 ct 3 3.1 ct 3 15 9.2 ct 8 8.6 st 9.2 ct 3 9.2 ct 3 15 9.2 ct 8 8.6 st 9.2 ct 3 17 10 st 1.0 s				
1				
A P ERT 10% 00% RT 10%				
10 16 5.4c 2.0c 14.02 8.4c 15 1.5c				
1		15 1.5e3 1.2e3 2.1e3 1.5e3	10 15 8.8 e2 7.2 e2 1.3 e3 8.8 e2	15 8.2e5 4.2e5 1.2e6 8.2e5
15 1.5 1.6 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.5 1.6 1.5				
15 2.5c2 2.1c2 2.8c3 2.5c4 3.0c3 15 5.0c3 7.8c4 3.3c3 3.0c3 1c-5 15 6.2c5 5.2c5 7.3c3 6.2c5 15 5.5c5 4.8c5 1.5c5 6.8c5 1.8c5 1				
10 15 500 50 N = 15 mFE = 120 20 20 20 20 20 20 20				
Δ # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ} 10 15 Note 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16 6.062 3.16				
10 15 8.062 6.062 6.062 7.662 15 2.644 2.645 2.644 2.645 2.644 2.645 2.644 2.645	Δf # ERT 10% 90% RT _{SUCC}	# ERT 10% 90% RTsucc	Δf # ERT 10% 90% RT _{SUCC}	
16	10 15 8.0 e2 6.6 e2 9.3 e2 8.0 e2	13 1.8e6 1.2e6 3.4e6 1.5e6	10 15 7.6e2 6.5e2 9.0e2 7.6e2	15 2.3e4 2.0e4 2.8e4 2.3e4
15 1.6 4.4 4.6 5.9 4.6 1.5				
10 - 15 10 - 17 e 5 28 5 0.96 1.76 13 1.86 1.26 3.46 1.56 1.				
15 1.8 1.5				
Flore Flor				
A				
10 1.12.03 2.0-00 2.7-03 1.42-03 13 9.4-05 1.7-04 2.1-05 0.0-05 10 1.12.03 2.0-00 2.7-03 1.42-05 0.2-05 10 1.12.03 2.0-00 2.7-03 1.42-05 0.2-05 10 1.12.03 2.0-00 2.7-03 1.42-05 10 1.12.03 3.0-03 4.8-04 1.7-04 9 2.4-06 5.3-05 5.3-06 1.0-06 10 1.12.03 3.0-03 4.8-04 1.7-04 9 2.4-05 5.0-05 5.3-06 1.0-06 10 1.12.03 3.0-05 3.0-04 1.7-04 9 2.4-05 5.0-05 5.3-06 1.0-06 10 1.12.03 3.0-05 3.0-04 1.1-05 10 1.12.03 3.0-05 3.0-04 3.0-05 3.0-04 1.1-05 10 1.12.03 3.0-05 3.0-04 3.0-05 3.0-04 3.0-05 3.0-04 3.0-05 3.0-04 10 1.12.03 3.0-05 3.0-04 3.0-05 3.0-04 3			Δf # ERT 10% 90% RT _{SUCC}	# ERT 10% 90% RTsucc
10	10 15 1.2e2 2.0e0 2.7e2 1.2e2	13 9.4e5 1.7e4 2.1e6 6.2e5	10 15 2.2 e2 2.0 e0 8.3 e2 2.2 e2	
15 1.7 red 3.0 a 4.8 red 1.7 red 9 2.4 ref 5.4 ref 5.4 ref 1.0 ref 1.6 ref 1.8 ref 1.9 ref 5.4 ref 5.4 ref 1.1 ref 1.8 ref 1.8 ref 1.9 ref 5.4 ref 1.8 ref 1.9 ref 5.4 ref 5.4 ref 1.1 ref 1.8 ref 1.8 ref 1.9 ref 5.4 ref 1.8 ref 1.8 ref 1.9 ref 5.4 ref 1.8 ref 1.9 ref 5.4 ref 1.8 ref 1.8 ref 1.9 ref 5.4 ref 1.8 ref				
16-5 15 2.7e4 4.0e3 8.8e4 2.7e4 9 2.4e6 5.4e5 5.4e6 1.0e6 1e-5 1 8.3e6 1.1e6 1.9e7 5.4e5 5.4e5 5.1e6 1.ee 1.ee 1.ee 0 8/ee-2 8/ee-2 2e-1 1.se6 5.4e5 5.1ee 1.ee 0 8/ee-2 8/ee-2 2e-1 1.ee 5.1ee				
Fig.			1e-8 0 89e-2 36e-4 22e-1 1 8e5	
A				f110 in 20-D N=15 mFE=2 06e6
1 15 6.7c1 2.0c0 1.3c2 6.7c1 15 2.1c3 2.0c3 2.2c3 2.1c3 1 15 1.2c5 5.2c3 2.3c3 2.1c3 1 15 1.2c5 5.2c3 2.3c3 2.0c3 1.2c5 1 15 1.1c3 8.9c2 1.4c3 1.1c3 15 4.9c3 4.7c5 5.2c3 4.9c3 1.1c3	Δf # ERT 10% 90% RT _{SUCC}		Δf # ERT 10% 90% RT _{SUCC}	# ERT 10% 90% RT _{SUCC}
1				
1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
1			1e-3 1 7.9e6 7.0e5 1.8e7 1.4e5	
A				f112 in 20-D. N=15, mFE=2.00e6
10 15 1.1e5 1.3e3 2.5e5 1.1e5	Δf # ERT 10% 90% RT _{SUCC}		Δf # ERT 10% 90% RT _{SUCC}	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 15 1.1e5 1.3e3 2.5e5 1.1e5	0 28e+1 57e+0 12e+2 1.1e6	10 15 7.8e2 6.4e2 9.5e2 7.8e2	15 5.0 e4 4.1 e4 6.2 e4 5.0 e4
10				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
1-8				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I	f112 in 20-D N=15 mFE=2 07e6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 15 3.4e3 1.1e2 1.9e3 3.4e3	12 1.4e6 4.2e5 2.8e6 8.4e5	10 15 4.6 e4 4.2 e2 2.1 e5 4.6 e4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f115 in 5-D, N=15, mFE=174750	f115 in 20-D, N=15, mFE=2.01e6	f116 in 5-D, N=15, mFE=525920	f116 in 20-D, N=15, mFE=2.08e6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 15 3.4e2 1.8e2 6.8e2 3.4e2	15 3.2e3 2.7e3 4.8e3 3.2e3	10 15 4.8e4 2.6e3 1.2e5 4.8e4	10 2.6e6 1.3e6 5.3e6 1.6e6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 176 1 246 2 236 1 1.460		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f117 in 5-D, N=15, mFE=580716	f117 in 20-D, N=15, mFE=2.04e6	f118 in 5-D, N=15, mFE=10625	f118 in 20-D, N=15, mFE=173902
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δf # ERT 10% 90% RT _{succ}		Δf # ERT 10% 90% RT _{succ}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 22e+2 11e+2 10e+3 5.6e5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1e-8 15 8.9e3 7.3e3 1.0e4 8.9e3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f119 in 5-D, N=15, mFE=430531		f120 in 5-D, N=15, mFE=558152	f120 in 20-D, N=15, mFE=2.08e6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δf f 119 in 5-D, N=15, mFE=430531 $\#$ ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	$\Delta f = \begin{bmatrix} f_{120} \text{ in 5-D}, \text{ N=15}, \text{ mFE=558152} \\ \# \text{ ERT } 10\% & 90\% & \text{RT}_{\text{succ}} \end{bmatrix}$	# ERT 10% 90% RT _{succ}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{SUCC} 15 2.6e4 4.8e3 6.3e4 2.6e4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ} 9 1.6 e6 8.4 e3 4.2 e6 2.6 e5
$1e-5 \mid 15 \mid 1.2e5 \mid 7.3e3 \mid 4.1e5 \mid 1.2e5 \mid 8 \mid 3.7e6 \mid 1.8e6 \mid 6.2e6 \mid 1.9e6 \mid 1.9e6 \mid 1.9e6 \mid 1.9e7 \mid 2.5e5 \mid .$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{SUCC} 15 2.6e4 4.8e3 6.3e4 2.6e4 15 6.5e5 2.1e4 1.3e6 6.5e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ} 9 1.6 e6 8.4 e3 4.2 e6 2.6 e5
$1\mathrm{e}-8 15 1.3\mathrm{e}5 4.3\mathrm{e}4 4.2\mathrm{e}5 1.3\mathrm{e}5 3 1.0\mathrm{e}7 2.0\mathrm{e}6 2.1\mathrm{e}7 2.0\mathrm{e}6 1\mathrm{e}-8 0 48\mathrm{e}-2 11\mathrm{e}-6 12\mathrm{e}-1 2.0\mathrm{e}5 .$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{SUCC} 15 2.6e4 4.8e3 6.3e4 2.6e4 15 6.5e5 2.1e4 1.3e6 6.5e5 15 1.0e6 1.6e5 1.5e6 1.0e6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ} 9 1.6 e6 8.4 e3 4.2 e6 2.6 e5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{SUCC} 15 2.6e4 4.8e3 6.3e4 2.6e4 15 6.5e5 2.1e4 1.3e6 6.5e5 15 1.0e6 1.6e5 1.5e6 1.0e6 11 2.4e6 1.3e6 4.0e6 1.6e6 8 3.7e6 1.8e6 6.2e6 1.9e6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# ERT 10% 90% RT _{succ} 9 1.6 e6 8.4 e3 4.2 e6 2.6 e5

Table 1: Shown are, for functions f_{101} - f_{120} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left subplots) or versus Δf (right subplots). The thick red line represents the best achieved results. Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of $D, 10\,D, 100\,D\dots$ function evaluations (from right to left cycling black-cyan-magenta). The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs for target value 10^{-8} of all algorithms benchmarked during BBOB-2009.

f ₁₂₁ in 5-D, N=15, mFE=22717	f121 in 20-D, N=15, mFE=282998	f122 in 5-D, N=15, mFE=554519	f122 in 20-D, N=15, mFE=2.08e6	
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	
10 15 3.0e1 1.0e0 1.0e2 3.0e1	15 1.6e3 8.5e2 1.9e3 1.6e3	10 15 1.9e1 2.0e0 5.1e1 1.9e1	15 3.4e3 3.5e2 8.8e3 3.4e3	
1 15 5.5e2 3.3e2 7.2e2 5.5e2	15 2.6e3 2.4e3 2.8e3 2.6e3	1 12 1.9e5 8.4e2 6.0e5 5.2e4	6 4.4e6 1.0e6 9.6e6 1.3e6	
1e-1 15 1.1e3 7.7e2 1.3e3 1.1e3	15 5.3e3 5.0e3 5.7e3 5.3e3	1e-1 8 6.0e5 5.2e4 1.7e6 1.1e5	3 1.0e7 1.9e6 2.2e7 1.8e6	
1e-3 15 3.6e3 3.0e3 4.3e3 3.6e3	15 2.4 e4 2.1 e4 2.7 e4 2.4 e4	1e-3 7 7.9e5 5.6e4 1.9e6 1.6e5	0 $14e-1$ $24e-3$ $37e-1$ $2.0e6$	
1e-5 15 8.9e3 6.8e3 1.0e4 8.9e3	15 7.6 e4 5.2 e4 1.7 e5 7.6 e4	1e-5 7 8.3e5 1.1e5 1.9e6 2.0e5		
$1e-8 \mid 15 \mid 1.7e4 \mid 1.4e4 \mid 2.0e4 \mid 1.7e4$	15 1.6e5 1.2e5 2.8e5 1.6e5	1e-8 6 1.1e6 2.5e5 2.5e6 2.8e5		
f123 in 5-D, N=15, mFE=555518	f123 in 20-D, N=15, mFE=2.08e6	f124 in 5-D, N=15, mFE=606117	f124 in 20-D, N=15, mFE=2.07e6	
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	
10 15 1.9e1 2.0e0 2.9e1 1.9e1	15 7.5e4 1.5e3 4.0e5 7.5e4	10 15 1.6e1 2.0e0 3.6e1 1.6e1	15 8.3 e2 3.8 e2 1.3 e3 8.3 e2	
1 5 1.1e6 6.4e3 2.8e6 4.2e4	0 68e-1 53e-1 90e-1 5.0e5	1 15 1.2e3 7.3e2 1.8e3 1.2e3	15 4.9e3 2.9e3 6.0e3 4.9e3	
1e-1 1 7.8e6 6.1e5 1.9e7 5.9e4		1e-1 15 1.5e4 2.1e3 6.2e4 1.5e4	15 1.9e4 8.4e3 1.8e4 1.9e4	
1e-3 0 18e-1 20e-2 26e-1 5.0e4		1e-3 15 5.0e4 7.2e3 1.3e5 5.0e4	15 2.7e5 1.2e5 5.8e5 2.7e5	
1e-5		1e-5 14 1.5e5 5.0e4 2.4e5 1.1e5	15 6.2e5 3.5e5 9.1e5 6.2e5	
1e-8		1e-8 14 1.9e5 6.3e4 2.5e5 1.4e5	10 1.8e6 4.0e5 4.6e6 7.3e5	
f125 in 5-D, N=15, mFE=552901	f125 in 20-D, N=15, mFE=2.05e6	f126 in 5-D, N=15, mFE=554060	f126 in 20-D, N=15, mFE=2.08e6	
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	
10 15 1.2e0 1.0e0 2.0e0 1.2e0	15 1.1e0 1.0e0 2.0e0 1.1e0	10 15 1.2e0 1.0e0 2.0e0 1.2e0	15 1.1e0 1.0e0 2.0e0 1.1e0	
1 15 3.4e1 1.2e1 7.7e1 3.4e1	15 1.5e3 1.5e3 1.5e3 1.5e3	1 15 3.4e1 1.2e1 7.2e1 3.4e1	15 1.5e3 1.5e3 1.5e3 1.5e3	
1e-1 15 8.1e2 4.2e2 1.4e3 8.1e2	4 6.8e6 1.3e6 1.5e7 1.2e6	1e-1 15 5.7 e2 4.1 e2 7.3 e2 5.7 e2	0 39e-2 32e-2 43e-2 5.6e4	
1e-3 2 3.9e6 2.8e5 8.8e6 2.7e5	0 18e-2 65e-3 23e-2 1.8e6	1e-3 0 23e-3 13e-3 40e-3 2.2e4		
1e-5 2 3.9e6 2.9e5 8.5e6 2.8e5		1e-5		
1e-8 2 3.9e6 2.9e5 9.1e6 2.8e5		1e-8		
f127 in 5-D, N=15, mFE=536028		f128 in 5-D, N=15, mFE=553761	f128 in 20-D, N=15, mFE=2.08e6	
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	
10 15 1.2e0 1.0e0 2.0e0 1.2e0	15 1.1e0 1.0e0 2.0e0 1.1e0	10 15 1.9e2 2.3e1 3.9e2 1.9e2	2 1.3e7 9.1e4 3.1e7 6.6e4	
1 15 3.5e1 1.2e1 8.1e1 3.5e1	15 1.5e3 1.5e3 1.5e3 1.5e3	1 11 2.4e5 3.0e2 7.1e5 4.4e4	0 $50e+0$ $99e-1$ $66e+0$ $4.0e5$	
1e-1 15 6.6e2 4.3e2 1.3e3 6.6e2	14 2.2e5 2.3e4 2.3e5 8.0e4	1e-1 6 8.4e5 2.0e3 2.2e6 1.7e4		
1e-3 4 1.6e6 1.8e4 3.7e6 1.6e5	0 44e-3 17e-3 86e-3 7.1e5	1e-3 6 8.5e5 2.3e3 2.2e6 2.4e4		
1e-5 1 7.6e6 8.4e5 1.7e7 3.3e5		1e-5 6 8.6e5 2.8e3 2.2e6 2.9e4		
1e-8 1 7.6e6 8.5e5 1.8e7 3.3e5		1e-8 6 8.6e5 3.3e3 2.2e6 3.3e4		
f129 in 5-D, N=15, mFE=553898	f129 in 20-D, N=15, mFE=2.08e6	f130 in 5-D, N=15, mFE=558853	f130 in 20-D, N=15, mFE=2.01e6	
Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	
10 15 2.5e2 2.3e1 6.0e2 2.5e2	0 $59e+0$ $42e+0$ $67e+0$ 1.3 e5	10 15 1.3e2 2.3e1 2.5e2 1.3e2	12 5.0e5 2.0e3 2.0e6 2.6e3	
1 7 7.3e5 3.3e3 1.9e6 9.8e4		1 13 2.4e5 5.6e2 5.6e5 1.5e5	4 5.5e6 2.5e3 1.4e7 3.8e3	
1e-1 3 2.5e6 2.2e5 5.7e6 3.1e5		1e-1 8 6.7e5 7.0e2 1.6e6 1.9e5	2 1.3e7 4.5e3 3.0e7 3.8e3	
1e-3 2 3.8e6 2.3e5 9.1e6 2.2e5		1e-3 6 9.9e5 1.4e3 2.4e6 1.7e5	2 1.3e7 7.5e3 3.2e7 6.6e3	
1e-5 2 3.8e6 2.3e5 9.1e6 2.2e5		1e-5 6 9.9 e5 2.7 e3 2.3 e6 1.7 e5	2 1.3e7 1.1e4 3.2e7 9.6e3	
1e-8 2 3.8e6 2.4e5 8.5e6 2.3e5		1e-8 6 9.9e5 3.7e3 2.4e6 1.8e5	2 1.3e7 1.7e4 3.2e7 1.5e4	

Table 2: Shown are, for functions f_{121} - f_{130} and for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Table 3: ERT loss ratio (see Figure 3) compared to the respective best result from BBOB-2009 for budgets given in the first column. The last row $\mathrm{RL_{US}}/\mathrm{D}$ gives the number of function evaluations in unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile, 75%-ile and 90%-ile value (smaller values are better).

`	$f_{101}-f_{130}$ in 5-D, maxFE/D=121223							
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%		
2	1.1	1.3	1.9	2.8	5.6	8.1		
10	1.2	2.1	3.2	5.0	6.6	29		
100	1.1	3.6	5.6	7.8	12	2.7e2		
1e3	2.3	2.9	7.3	25	40	2.7e3		
1e4	0.75	2.4	2.9	29	93	2.4e2		
1e5	1.6	2.2	2.9	17	72	2.5e2		
RL_{US}/D	1e5	1e5	1e5	1e5	1e5	1e5		
f_{101} - f_{130} in 20-D, maxFE/D=104808								
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%		
2	0.73	1.0	2.4	34	40	40		
10	1.0	3.0	18	1.4e2	2.0e2	2.0e2		
100	1.0	4.6	7.2	18	34	2.0e3		
1e3	0.45	2.6	5.6	24	1.1e2	2.0e4		
1e4	1.8	3.2	9.2	66	2.8e2	2.0e5		
1e5	1.8	2.6	4.4	28	1.6e2	1.0e6		
1e6	1.8	2.6	4.3	27	2.7e2	1.0e7		
$\mathrm{RL}_{\mathrm{US}}/\mathrm{D}$	1e5	1e5	1e5	1e5	1e5	1e5		

4. CONCLUSIONS

In this paper a hybrid algorithm combining Differential Evolution and IPOP-CMA-ES has been benchmarked on the BBOB-2010 noisy testbed. The experimental results show a good performance on functions with a moderate noise. On the other hand, functions with severe noise seem to be harder to solve with this algorithm. A more thorough study on the control mechanisms, specially those related to the detection of the stagnation and the restart of the search process, should be conducted on these functions. The selection of the parameter values was done based on the similar work of the noiseless testbed. Therefore, the proposed algorithm should also benefit of a proper parameter tuning process. Finally, the combination of additional techniques could be of great help in order to improve current results.

5. ACKNOWLEDGMENTS

This work was supported by the Madrid Regional Education Ministry and the European Social Fund and financed by the Spanish Ministry of Science TIN2007-67148. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Centro de Supercomputación y Visualización de Madrid (CeSViMa) and the Spanish Supercomputing Network.

6. REFERENCES

[1] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In *Proceedings*

Figure 3: ERT loss ratio versus given budget FEvals. The target value $f_{\rm t}$ for ERT (see Figure 1) is the smallest (best) recorded function value such that ERT($f_{\rm t}$) \leq FEvals for the presented algorithm. Shown is FEvals divided by the respective best ERT($f_{\rm t}$) from BBOB-2009 for functions $f_{101}-f_{130}$ in 5-D and 20-D. Each ERT is multiplied by $\exp({\rm CrE})$ correcting for the parameter crafting effort. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in this function subset.

- of the IEEE Congress on Evolutionary Computation, CEC 2005, pages 1769–1776. IEEE Press, 2005.
- [2] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter Black-Box Optimization Benchmarking 2010: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2010.
- [3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter Black-Box Optimization Benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.
- [4] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter Black-Box Optimization Benchmarking

- 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009. Updated February 2010.
- [5] A. LaTorre. A Framework for Hybrid Dynamic Evolutionary Algorithms: Multiple Offspring Sampling (MOS). PhD thesis, Universidad Politécnica de Madrid, November 2009.
- [6] A. LaTorre, S. Muelas, and J. Peña. Benchmarking a MOS-based algorithm on the BBOB-2010 noiseless function testbed. In Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference. ACM, 2010.
- [7] R. Storn and K. Price. Differential evolution A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, 1995.
- [8] E.-G. Talbi. A taxonomy of hybrid metaheuristics. *Journal of Heuristics*, 8(5):541–564, September 2002.