DBMS Internals Execution and Optimization

Query Execution Plans

SELECT buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
Q.city='seattle' AND
Q.phone > '5430000'

Query Plan:

- logical tree
- implementation choice at every node
- scheduling of operations.

Some operators are from relational algebra, and others (e.g., scan, group) are not.

The Leaves of the Plan: Scans

- Table scan: iterate through the records of the relation.
- Index scan: go to the index, from there get the records in the file (when would this be better?)
- Sorted scan: produce the relation in order. Implementation depends on relation size.

How do we combine Operations?

- The iterator model. Each operation is implemented by 3 functions:
 - Open: sets up the data structures and performs initializations
 - GetNext: returns the next tuple of the result.
 - Close: ends the operations. Cleans up the data structures.
- Enables pipelining!
- Contrast with data-driven materialize model.
- Sometimes it's the same (e.g., sorted scan).

Implementing Relational Operations

- We will consider how to implement:
 - <u>Selection</u> () Selects a subset of rows from relation.
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - **Join** ($\triangleright \triangleleft$) Allows us to combine two relations.
 - <u>Set-difference</u> Tuples in reln. 1, but not in reln. 2.
 - <u>Union</u> Tuples in reln. 1 and in reln. 2.
 - Aggregation (SUM, MIN, etc.) and GROUP BY

Schema for Examples

Purchase (*buyer*:string, *seller*: string, *product*: integer),

Person (<u>name:string</u>, city:string, phone: integer)

• Purchase:

Each tuple is 40 bytes long, 100 tuples per page, 1000 pages (i.e., 100,000 tuples, 4MB for the entire relation).

• Person:

Each tuple is 50 bytes long, 80 tuples per page, 500 pages (i.e, 40,000 tuples, 2MB for the entire relation).

Simple Selections

SELECT *
FROM Person R
WHERE R.phone < '543%'

Of the form

$$\sigma_{R.attr\,op\,value}\left(R\right)$$

- With no index, unsorted: Must essentially scan the whole relation; cost is M (#pages in R).
- With an index on selection attribute: Use index to find qualifying data entries, then retrieve corresponding data records. (Hash index useful only for equality selections.)
- Result size estimation:

(Size of R) * reduction factor.

More on this later.

Using an Index for Selections

- Cost depends on #qualifying tuples, and clustering.
 - Cost of finding qualifying data entries (typically small) plus cost of retrieving records.
 - In example, assuming uniform distribution of phones, about 54% of tuples qualify (250 pages, 20000 tuples). With a clustered index, cost is little more than 250 I/Os; if unclustered, up to 20000 I/Os!
- Important refinement for unclustered indexes:
 - 1. Find and sort the rid's of the qualifying data entries.
 - 2. Fetch rids in order. This ensures that each data page is looked at just once (though # of such pages likely to be higher than with clustering).

Two Approaches to General Selections

- <u>First approach</u>: Find the *most selective access path*, retrieve tuples using it, and apply any remaining terms that don't match the index:
 - Most selective access path: An index or file scan that we estimate will require the fewest page I/Os.
 - Consider city="seattle AND phone<"543%":</p>
 - A hash index on *city* can be used; then, *phone*<"543%" must be checked for each retrieved tuple.
 - Similarly, a b-tree index on *phone* could be used; city="seattle" must then be checked.

Intersection of Rids

Second approach

- Get sets of rids of data records using each matching index.
- Then *intersect* these sets of rids.
- Retrieve the records and apply any remaining terms.

Implementing Projection

R.name,
R.phone
FROM Person R

• Two parts:

- (1) remove unwanted attributes,
- (2) remove duplicates from the result.
- Refinements to duplicate removal:
 - If an index on a relation contains all wanted attributes, then we can do an *index-only* scan.
 - If the index contains a subset of the wanted attributes, you can remove duplicates *locally*.

Equality Joins With One Join Column

JOIN

SELECT *
FROM Person R, Purchase S
WHERE R.name=S.buyer

- $R \bowtie S$ is a common operation. The cross product is too large. Hence, performing $R \bowtie S$ and then a selection is too inefficient.
- Assume: M pages in R, p_R tuples per page, N pages in S, p_S tuples per page.
 - In our examples, R is Person and S is Purchase.
- *Cost metric*: # of I/Os. We will ignore output costs.

Discussion

• How would you implement join?

Estimating IOs:

 Count # of disk blocks that must be read (or written) to execute query plan To estimate costs, we may have additional parameters:

B(R) = # of blocks containing R tuplesf(R) = max # of tuples of R per blockM = # memory blocks available

To estimate costs, we may have additional parameters:

```
T(R): # tuples in R
S(R): # of bytes in each R tuple
B(R) = # of blocks containing R tuples
```

f(R) = max # of tuples of R per block

M = # memory blocks available

HT(i) = # levels in index i
LB(i) = # of leaf blocks in index i

Clustering index

Index that allows tuples to be read in an order that corresponds to physical order

Notions of clustering

• Clustered file organization

R1 R2 S1 S2 R3 R4 S3 S4

Clustered relation

R1 R2 R3 R4 R5 R6 R7 R8

Clustering index

$$T(R1) = 10,000$$

 $T(R2) = 5,000$
 $S(R1) = S(R2) = 1/10$ block (per tuple)
Memory available = 101 blocks

$$T(R1) = 10,000$$

 $T(R2) = 5,000$
 $S(R1) = S(R2) = 1/10 \text{ block}$
Memory available = 101 blocks

→ Metric: # of IOs (ignoring writing of result)

Options

- Transformations: R1 \triangleright R2, R2 \triangleright R1
- Joint algorithms:
 - Iteration (nested loops)
 - Merge join
 - Join with index
 - Hash join

• Iteration join (conceptually) for each $r \in R1$ do for each $s \in R2$ do if r.C = s.C then output r,s pair

- Merge join (conceptually)
 - (1) if R1 and R2 not sorted, sort them
 - $(2) i \leftarrow 1; j \leftarrow 1;$

```
While (i \le T(R1)) \land (j \le T(R2)) do if R1\{i\}.C = R2\{j\}.C then outputTuples else if R1\{i\}.C > R2\{j\}.C then j \leftarrow j+1 else if R1\{i\}.C < R2\{j\}.C then i \leftarrow i+1
```

Procedure Output-Tuples

```
While (R1\{i\}.C = R2\{j\}.C) \land (i \le T(R1)) do
[jj \leftarrow j;
while (R1\{i\}.C = R2\{jj\}.C) \land (jj \le T(R2)) do
[output pair R1\{i\}, R2\{jj\};
jj \leftarrow jj+1]
i \leftarrow i+1]
```

Example

i	R1{i}.C	$R2\{j\}.C$	j
1	10	5	1
2	20	20	2
3	20	20	3
4	30	30	4
5	40	30	5
		50	6
		52	7

• Join with index (Conceptually)

For each $r \in R1$ do $[X \leftarrow index (R2, C, r.C)$ for each $s \in X$ do output r, s pair]

Assume R2.C index

Note: $X \leftarrow \text{index(rel, attr, value)}$ then X = set of rel tuples with attr = value

- Hash join (conceptual)
 - Hash function h, range $0 \rightarrow k$
 - Buckets for R1: G0, G1, ... Gk
 - Buckets for R2: H0, H1, ... Hk

- Hash join (conceptual)
 - Hash function h, range $0 \rightarrow k$
 - Buckets for R1: G0, G1, ... Gk
 - Buckets for R2: H0, H1, ... Hk

<u>Algorithm</u>

- (1) Hash R1 tuples into G buckets
- (2) Hash R2 tuples into H buckets
- (3) For i = 0 to k do match tuples in Gi, Hi buckets

Simple example hash: even/odd

R1	R2		Bu	ckets
2	5	Even	2 4 8	4 12 8 14
4	4		R1	R2
3	12	Odd:	3 5 9	5 3 13 11
5	3			
8	13			
9	8			
	11			
	14			

Factors that affect performance

(1) Tuples of relation stored physically together?

(2) Relations sorted by join attribute?

(3) Indexes exist?

Simple Nested Loops Join

For each tuple r in R do for each tuple s in S do if $r_i == s_i$ then add $\langle r, s \rangle$ to result

- For each tuple in the *outer* relation R, we scan the entire *inner* relation S.
 - Cost: $M + (p_R * M) * N = 1000 + 100*1000*500 I/Os: 140 hours!$
- Page-oriented Nested Loops join: For each *page* of R, get each *page* of S, and write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page.
 - Cost: M + M*N = 1000 + 1000*500 (1.4 hours)

M pages in R, p_R tuples per page, N pages in S, p_S tuples per page.

Assume: M=1000; N=500; p_R =100; 100 blocks/sec could be read

Example 1(a) Iteration Join R1 R2

• Relations <u>not</u> contiguous

• Recall
$$\{ T(R1) = 10,000 \ T(R2) = 5,000 \ S(R1) = S(R2) = 1/10 \text{ block} \}$$

MEM=101 blocks

Example 1(a) Iteration Join R1 R2

• Relations <u>not</u> contiguous

• Recall
$$\{ T(R1) = 10,000 \ T(R2) = 5,000 \ S(R1) = S(R2) = 1/10 \text{ block} \}$$

MEM=101 blocks

Cost: for each R1 tuple: [Read tuple + Read R2] Total = 10,000 [1+5000]=50,010,000 IOs

• Can we do better?

Use our memory

- (1) Read 100 blocks of R1
- (2) Read all of R2 (using 1 block) + join
- (3) Repeat until done

Example 1(b) Iteration Join R1 R2

- Relations contiguous
- T(R1) = 10,000 T(R2) = 5,000
- S(R1) = S(R2) = 1/10 block Cost

For each R1 chunk:

Read chunk: 100 IOs

Read R2: <u>500 IOs</u>

Total = 10chunks $\times 600 = 6000$ IOs

Example 1(b) Iteration Join R2 R1

• Relations contiguous

Example 1(b) Iteration Join R2 | R1

• Relations contiguous

```
<u>Cost</u>
```

For each R2 chunk:

Read chunk: 100 IOs

Read R1: <u>1000</u> IOs

1,100

Total = 5 chunks x 1,100 = 5,500 IOs

Index Nested Loops Join

foreach tuple r in R do foreach tuple s in S where $r_i == s_j$ do add $\langle r, s \rangle$ to result

- If there is an index on the join column of one relation (say S), can make it the inner.
 - Cost: $M + ((M*p_R) * cost of finding matching S tuples)$
- For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding S tuples depends on clustering.
 - Clustered index: 1 I/O (typical), unclustered: up to 1 I/O per matching S tuple.

Examples of Index Nested Loops

- Hash-index on *name* of Person (as inner):
 - Scan Purchase: 1000 page I/Os, 100*1000 tuples.
 - For each Person tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Person tuple. Total: 1000+2.2*100000=221,000 I/Os. (36 minutes)
- Hash-index on *buyer* of Purchase (as inner):
 - Scan Person: 500 page I/Os, 80*500 tuples.
 - For each Person tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Purchase tuples.
 Assuming uniform distribution, 2.5 purchases per buyer (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on clustering.
 - Total: 500+40000*(1.2+1)(14 minutes, clustered) max 500+40000*(1.2+2.5)(24 minutes, unclustered)

Example 1(e) Index Join

- Assume R1.C index exists; 2 levels
- Assume R2 contiguous, unordered

• Assume R1.C index fits in memory

Cost: Reads: 500 IOs

for each R2 tuple:

- probe index free
- if match, read R1 tuple: 1 IO

Recall

- T(R1) = 10,000 T(R2) = 5,000
- S(R1) = S(R2) = 1/10 block

Selection cardinality

SC(R,A) = average # records that satisfy equality condition on R.A

$$SC(R,A) = \begin{cases} T(R) \\ V(R,A) \end{cases}$$

$$T(R) \\ T(R) \\ DOM(R,A)$$

What is expected # of matching tuples?

- (a) say R1.C is key, R2.C is foreign key then expect = 1
- (b) say V(R1,C) = 5000, T(R1) = 10,000with uniform assumption expect = 10,000/5,000 = 2

V(R, A): # distinct values in R for attribute A

What is expected # of matching tuples?

(c) Say DOM(R1, C)=1,000,000

$$T(R1) = 10,000$$

with alternate assumption
 $Expect = 10,000 = 1$
 $1,000,000 = 100$

Total cost with index join

(a) Total cost = 500+5000(1)1 = 5,500

(b) Total cost = 500+5000(2)1 = 10,500

(c) Total cost = 500+5000(1/100)1=550

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

Recall: Assume R1.C index exists; 2 levels

- Keep root + 99 leaf nodes in memory
- Expected cost of each probe is

$$E = (0)\underline{99} + (1)\underline{101} \approx 0.5$$

$$200 \quad 200$$

<u>Total cost</u> (including probes)

= 500+5000 [Probe + get records] = 500+5000 [0.5+2] uniform assumption = 500+12,500 = 13,000 (case b)

<u>Total cost</u> (including probes)

- = 500+5000 [Probe + get records]
- =500+5000 [0.5+2] uniform assumption
- = 500+12,500 = 13,000 (case b)

For case (c):

- $= 500+5000[0.5 \times 1 + (1/100) \times 1]$
- = 500+2500+50 = 3050 IOs

Sort-Merge Join $(R \bowtie_{i=j} S)$

- Sort R and S on the join column, then scan them to do a "merge" on the join column.
 - Advance scan of R until current R-tuple >= current S tuple, then advance scan of S until current S-tuple >= current R tuple; do this until current R tuple = current S tuple.
 - At this point, all R tuples with same value and all S tuples with same value <u>match</u>; output <r, s> for all pairs of such tuples.
 - Then resume scanning R and S.

Example 1(c) Merge Join

Both R1, R2 ordered by C; relations contiguous
 Memory

Example 1(c) Merge Join

Both R1, R2 ordered by C; relations contiguous
 Memory

Total cost: Read R1 cost + read R2 cost =
$$1000 + 500 = 1,500 IOs$$

Example 1(d) Merge Join

• R1, R2 not ordered, but contiguous

--> Need to sort R1, R2 first.... HOW?

One way to sort: Merge Sort

- (i) For each 100 blk chunk of R:
 - Read chunk
 - Sort in memory

(ii) Read all chunks + merge + write out

Cost: Sort

Each tuple is read, written, read, written

SO...

Sort cost R1: $4 \times 1,000 = 4,000$

Sort cost R2: $4 \times 500 = 2,000$

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost
=
$$6,000 + 1,500 = 7,500$$
 IOs

Example 1(d) Merge Join (continued)

R1,R2 contiguous, but unordered

Total cost = sort cost + join cost
=
$$6,000 + 1,500 = 7,500$$
 IOs

But: Iteration cost = 5,500 so merge joint does not pay off!

But say
$$R1 = 10,000 \text{ blocks}$$

 $R2 = 5,000 \text{ blocks}$

Contiguous, not ordered

Iterate:
$$5000 \times (100+10,000) = 50 \times 10,100$$

= 505,000 IOs

Merge join: 5(10,000+5,000) = 75,000 IOs

Merge Join (with sort) WINS!

How much memory do we need for merge sort?

E.g.: Say I have 10 memory blocks

In general:

Say k blocks in memory

x blocks for relation sort

chunks = (x/k) size of chunk = k

In general:

Say k blocks in memory

x blocks for relation sort

chunks = (x/k) size of chunk = k

chunks < buffers available for merge

In general:

Say k blocks in memory

x blocks for relation sort

chunks = (x/k) size of chunk = k

chunks < buffers available for merge

so...
$$(x/k) \le k$$

or $k^2 \ge x$ or $k \ge \sqrt{x}$

In our example

R1 is 1000 blocks, $k \ge 31.62$ R2 is 500 blocks, $k \ge 22.36$

Need at least 32 buffers

Can we improve on merge join?

Hint: do we really need the fully sorted files?

Cost of improved merge join:

C = Read R1 + write R1 into runs + read R2 + write R2 into runs + join = $2 \times 1000 + 2 \times 500 + 1500 = 4500$

--> Memory requirement?

So far

Hash-Join

 Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Example 1(f) Hash Join

- R1, R2 contiguous (un-ordered)
- → Use 100 buckets
- → Read R1, hash, + write buckets

- -> Same for R2
- -> Read one R1 bucket; build memory hash table
- -> Read corresponding R2 bucket + hash probe

Then repeat for all buckets

Cost:

"Bucketize:" Read R1 + write

Read R2 + write

Join: Read R1, R2

Total cost = $3 \times [1000+500] = 4500$

Cost:

"Bucketize:" Read R1 + write

Read R2 + write

Join: Read R1, R2

Total cost = $3 \times [1000+500] = 4500$

Note: this is an approximation since buckets will vary in size and we have to round up to blocks

Minimum memory requirements:

So...
$$(x/k) < k$$

 $k > \sqrt{x}$ need: k+1 total memory buffers

Trick: keep some buckets in memory

E.g., k'=33 R1 buckets = 31 blocks keep 2 in memory

called hybrid hash-join

Trick: keep some buckets in memory

E.g., k'=33 R1 buckets = 31 blocks keep 2 in memory

called hybrid hash-join

Next: Bucketize R2

- R2 buckets = 500/33 = 16 blocks
- Two of the R2 buckets joined immediately with G0,G1

Finally: Join remaining buckets

- for each bucket pair:
 - read one of the buckets into memory
 - join with second bucket

Cost

- Bucketize $R1 = 1000+31\times31=1961$
- To bucketize R2, only write 31 buckets: so, $cost = 500+31\times16=996$
- To compare join (2 buckets already done) read 31×31+31×16=1457

Total cost = 1961+996+1457 = 4414

How many buckets in memory?

⊠ See textbook for answer…

Another hash join trick:

- Only write into buckets<val,ptr> pairs
- When we get a match in join phase, must fetch tuples

- To illustrate cost computation, assume:
 - 100 <val,ptr> pairs/block
 - expected number of result tuples is 100

- To illustrate cost computation, assume:
 - 100 <val,ptr> pairs/block
 - expected number of result tuples is 100
- Build hash table for R2 in memory $5000 \text{ tuples} \rightarrow 5000/100 = 50 \text{ blocks}$
- Read R1 and match
- Read ~ 100 R2 tuples

- To illustrate cost computation, assume:
 - 100 <val,ptr> pairs/block
 - expected number of result tuples is 100
- Build hash table for R2 in memory $5000 \text{ tuples} \rightarrow 5000/100 = 50 \text{ blocks}$
- Read R1 and match
- Read ~ 100 R2 tuples

Total cost =	Read R2:	500
	Read R1:	1000
	Get tuples:	100
	-	1600

Cost of Hash-Join

- In partitioning phase, read+write both relations; 2(M+N). In matching phase, read both relations; M+N I/Os.
- In our running example, this is a total of 4500 I/Os. (45 seconds!)
- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory both have a cost of 3(M+N) I/Os. Hash Join superior on this count if relation sizes differ greatly. Also, Hash Join shown to be highly parallelizable.
 - Sort-Merge less sensitive to data skew; result is sorted.

So far:

	U)	
	_	3	
	C)	
		3	
	C	7)
:	Ē	5	
	C)	
	•	1	

Iterate	5500
Merge join	1500
Sort+merge joint	7500
R1.C index	$5500 \rightarrow 550$
R2.C index	
Build R.C index	
Build S.C index	
Hash join	4500+
with trick,R1 firs	t 4414
with trick,R2 firs	t
Hash join, pointers	1600

Summary

- Iteration ok for "small" relations (relative to memory size)
- For equi-join, where relations not sorted and no indexes exist, <u>hash join</u> usually best

- Sort + merge join good for non-equi-join (e.g., R1.C > R2.C)
- If relations already sorted, use merge join
- If index exists, it <u>could</u> be useful (depends on expected result size)

Query Optimization

Discussion

• How would you build a query optimizer?

Query Optimization

--> Generating and comparing plans

Generate
Pruning

Estimate Cost

Pick Min

Query Optimization Process (simplified a bit)

- Parse the SQL query into a logical tree:
 - identify distinct blocks (corresponding to nested sub-queries or views).
- Query rewrite phase:
 - apply algebraic transformations to yield a cheaper plan.
 - Merge blocks and move predicates between blocks.
- Optimize each block: join ordering.
- Complete the optimization: select scheduling (pipelining strategy).

Building Blocks

- Algebraic transformations (many and wacky).
- Statistical model: estimating costs and sizes.
- Finding the best join trees:
 - Bottom-up (dynamic programming): System-R
- Newer architectures:
 - Starburst: rewrite and then tree find
 - Volcano: all at once, top-down.

Key Lessons in Optimization

- There are many approaches and many details to consider in query optimization
 - Classic search/optimization problem!
 - Not completely solved yet!
- Main points to take away are:
 - Algebraic rules and their use in transformations of queries.
 - Deciding on join ordering: System-R style
 (Selinger style) optimization.
 - Estimating cost of plans and sizes of intermediate results.

Operations (revisited)

- Scan ([index], table, predicate):
 - Either index scan or table scan.
- Selection (filter)
- Projection (always need to go to the data?)
- Joins: nested loop (indexed), sort-merge, hash, outer join.
- Grouping and aggregation (usually the last).

- Commutative and Associative Laws
 - -RUS = SUR, RU(SUT) = (RUS)UT
 - $-R \cap S = S \cap R$, $R \cap (S \cap T) = (R \cap S) \cap T$
 - $-R\bowtie S = S\bowtie R, R\bowtie (S\bowtie T) = (R\bowtie S)\bowtie T$
- Distributive Laws
 - $-R\bowtie(SUT) = (R\bowtie S)U(R\bowtie T)$

Laws involving selection:

$$-\sigma_{CANDC'}(R) = \sigma_{C}(\sigma_{C'}(R)) = \sigma_{C}(R) \cap \sigma_{C'}(R)$$

$$-\sigma_{C OR C'}(R) = \sigma_{C}(R) U \sigma_{C'}(R)$$

$$-\sigma_{C}(R\bowtie S) = \sigma_{C}(R)\bowtie S$$

• When C involves only attributes of R

$$-\sigma_{C}(R-S) = \sigma_{C}(R) - S$$

$$-\sigma_{C}(R U S) = \sigma_{C}(R) U \sigma_{C}(S)$$

$$-\sigma_{C}(R \cap S) = \sigma_{C}(R) \cap S$$

• Example: R(A, B, C, D), S(E, F, G)

$$- \sigma_{F=3}(R \bowtie_{D=E} S) =$$

$$- \sigma_{A=5 \text{ AND } G=9} (R \underset{D=E}{\triangleright} S) = ?$$

- Laws involving projections
 - $\Pi_{M}(R \bowtie S) = \Pi_{N}(\Pi_{P}(R) \bowtie \Pi_{Q}(S))$
 - Where N, P, Q are appropriate subsets of attributes of M
 - $\Pi_{M}(\Pi_{N}(R)) = \Pi_{M,N}(R)$
- Example R(A,B,C,D), S(E, F, G)
 - $\prod_{A,B,G} (R \bowtie_{D=E} S) = \prod_{?} (\prod_{?} (R) \bowtie_{D=E} \prod_{?} (S))$

Query Rewrites: Sub-queries

```
SELECT Emp.Name
FROM Emp
WHERE Emp. Age < 30
       AND Emp.Dept# IN
        (SELECT Dept.Dept#
         FROM Dept
         WHERE Dept.Loc = "Seattle"
          AND
                 Emp.Emp#=Dept.Mgr)
```

The Un-Nested Query

SELECT Emp.Name

FROM Emp, Dept

WHERE Emp.Age < 30

AND Emp.Dept#=Dept.Dept#

AND Dept.Loc = "Seattle"

AND Emp.Emp#=Dept.Mgr

```
Select distinct x.name, x.maker

From product x

Where x.color= "blue"

AND x.price >= ALL (Select y.price

From product y

Where x.maker = y.maker

AND y.color="blue")
```

Let's compute the complement first:

```
Select distinct x.name, x.maker

From product x

Where x.color= "blue"

AND x.price < SOME (Select y.price

From product y

Where x.maker = y.maker

AND y.color="blue")
```

This one becomes a SFW query:

```
Select distinct x.name, x.maker

From product x, product y

Where x.color="blue" AND x.maker = y.maker

AND y.color="blue" AND x.price < y.price
```

This returns exactly the products we DON'T want, so...

```
(Select x.name, x.maker
From product x
Where x.color = "blue")
EXCEPT
(Select x.name, x.maker
From product x, product y
Where x.color= "blue" AND x.maker = y.maker
 AND y.color="blue" AND x.price < y.price)
```

Semi-Joins, Magic Sets

- You can't always un-nest sub-queries (it's tricky).
- But you can often use a semi-join to reduce the computation cost of the inner query.
- A magic set is a superset of the possible bindings in the result of the sub-query.
- Also called "sideways information passing".
- Great idea; reinvented every few years on a regular basis.

Semijoin

- $R \ltimes S = \prod_{A1,...,An} (R \bowtie S)$
- Where $A_1, ..., A_n$ are the attributes in R
- Example:
 - Employee ➤ Departments

Rewrites: Magic Sets

```
Create View DepAvgSal AS

(Select E.did, Avg(E.sal) as avgsal

From Emp E

Group By E.did)
```

Select E.eid, E.sal

From Emp E, Dept D, DepAvgSal V

Where E.did=D.did AND D.did=V.did

And E.age < 30 and D.budget > 100k

And E.sal > V.avgsal

Rewrites: SIPs

```
Select E.eid, E.sal
From Emp E, Dept D, DepAvgSal V
Where E.did=D.did AND D.did=V.did
 And E.age < 30 and D.budget > 100k
 And E.sal > V.avgsal
 DepAvgsal needs to be evaluated only for departments
  where V.did IN
 Select E.did
 From Emp E, Dept D
 Where E.did=D.did
   And E.age < 30 and D.budget > 100K
```

Supporting Views

1. Create View PartialResult as

(Select E.eid, E.sal, E.did

From Emp E, Dept D

Where E.did=D.did

And E.age < 30 and D.budget > 100K)

- Create View Filter AS
 - Select DISTINCT P.did FROM PartialResult P.
- 2. Create View LimitedAvgSal as

(Select F.did Avg(E.Sal) as avgSal

From Emp E, Filter F

Where E.did=F.did

Group By F.did)

And Finally...

Transformed query:

Select P.eid, P.sal

From PartialResult P, LimitedAvgSal V

Where P.did=V.did

And P.sal > V.avgsal

Rewrites: Group By and Join

• Schema:

- Product (pid, unitprice,...)
- Sales(tid, date, store, **pid**, units)

• Trees:

groupBy(pid)
Sum(units)

Join

Products
Filter(...)

Rewrites: Operation Introduction

- Schema: (pid determines cid)
 - Category (pid, cid, details)
 - Sales(tid, date, store, pid, amount)

Join groupBy(pid) Sum(amount) Category Scan(Sales) Filter (...) Filter(store IN

 $\{CA,WA\}$

groupBy(cid)

Sum(amount)

Schema for Some Examples

Sailors (*sid*: integer, *sname*: string, *rating*: integer, *age*: real) Reserves (*sid*: integer, *bid*: integer, *day*: dates, *rname*: string)

• Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

• Sailors:

Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Query Rewriting: Predicate Pushdown

The earlier we process selections, less tuples we need to manipulate higher up in the tree.

Query Rewrites: Predicate Pushdown (through grouping)

Select bid, Max(age)
From Reserves R, Sailors S
Where R.sid=S.sid
GroupBy bid
Having Max(age) > 40

Select bid, Max(age)
From Reserves R, Sailors S
Where R.sid=S.sid and
S.age > 40
GroupBy bid

- For each boat, find the maximal age of sailors who've reserved it.
- •Advantage: the size of the join will be smaller.
- Requires transformation rules specific to the grouping/aggregation operators.
- Will it work if we replace Max by Min?

Query Rewrite: Predicate Movearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

Select sid, date

From V1, V2

Where V1.rating = V2.rating and

V1.age = V2.age

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS

Select sid, rating, age, date

From Sailors S, Reserves R

Where R.sid=S.sid

Query Rewrite: Predicate Movearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move predicates up the tree.

Select sid, date
From V1, V2
Where V1.rating = V2.rating and
V1.age = V2.age, age < 20

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid

Query Rewrite: Predicate Movearound

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move predicates up the tree.

Select sid, date
From V1, V2
Where V1.rating = V2.rating and
V1.age = V2.age, and age < 20

Then, move them down.

Create View V1 AS
Select rating, Min(age)
From Sailors S
Where S.age < 20
Group By rating

Create View V2 AS
Select sid, rating, age, date
From Sailors S, Reserves R
Where R.sid=S.sid, and
S.age < 20.

Query Rewrite Summary

- The optimizer can use any *semantically correct* rule to transform one query to another.
- Rules try to:
 - move constraints between blocks (because each will be optimized separately)
 - Unnest blocks
- Especially important in decision support applications where queries are very complex.
- In a few minutes of thought, you'll come up with your own rewrite. Some query, somewhere, will benefit from it.
- Theorems?

Cost Estimation

- For each plan considered, must estimate cost:
 - Must estimate *cost* of each operation in plan tree.
 - Depends on input cardinalities.
 - Must estimate size of result for each operation in tree!
 - Use information about the input relations.
 - For selections and joins, assume independence of predicates.
- We'll discuss the System R cost estimation approach.
 - Very inexact, but works ok in practice.
 - More sophisticated techniques known now.

Statistics and Catalogs

- Need information about the relations and indexes involved. *Catalogs* typically contain at least:
 - # tuples (NTuples) and # pages (NPages) for each relation.
 - # distinct key values (NKeys) and NPages for each index.
 - Index height, low/high key values (Low/High) for each tree index.
- Catalogs updated periodically.
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.
- More detailed information (e.g., histograms of the values in some field) are sometimes stored.

Size Estimation and Reduction Factors

SELECT attribute list

FROM relation list

WHERE term₁ AND ... AND term_k

- Consider a query block:
- Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause.
- Reduction factor (RF) associated with each term reflects the impact of the term in reducing result size. Result cardinality = Max # tuples
 * product of all RF's.
 - Implicit assumption that terms are independent!
 - Term col=value has RF 1/NKeys(I), given index I on col
 - Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
 - Term *col>value* has RF (*High(I)-value*)/(*High(I)-Low(I)*)

- Key to obtaining good cost and size estimates.
- Come in several flavors:
 - Equi-depth
 - Equi-width
- Which is better?
- Compressed histograms: special treatment of frequent values.

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(ssn, name, salary, phone)

• Maintain a histogram on salary:

Salary:	020k	20k40k	40k60k	60k80k	80k100k	> 100k
Tuples	200	800	5000	12000	6500	500

• T(Employee) = 25000, but now we know the distribution

Ranks(rankName, salary)

• Estimate the size of Employee \bowtie_{Salary} Ranks

Employee	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	200	800	5000	12000	6500	500

Ranks	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	8	20	40	80	100	2

- Assume:
 - V(Employee, Salary) = 200
 - V(Ranks, Salary) = 250
- Then T(Employee \bowtie_{Salary} Ranks) = $= \sum_{i=1,6} T_i T_i' / 250$ = (200x8 + 800x20 + 5000x40 + 12000x80 + 6500x100 + 500x2)/250=

Query Execution Plans

SELECT buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
Q.city='seattle' AND
Q.phone > '5430000'

Query Plan:

- logical tree
- implementation choice at every node
- scheduling of operations.

Some operators are from relational algebra, and others (e.g., scan, group) are not.

We've Seen So Far

- Transformation rules
- The cost module:
 - Given a candidate plan: what is its expected cost and size of the result?

Now: putting it all together.

Plans for Single-Relation Queries (Prep for Join ordering)

- Task: create a query execution plan for a single Select-project-group-by block.
- Key idea: consider each possible *access path* to the relevant tuples of the relation. Choose the cheapest one.
- The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are *pipelined* into the aggregate computation).

Example

SELECT S.sid FROM Sailors S WHERE S.rating=8

- If we have an Index on *rating*:
 - (1/NKeys(I)) * NTuples(S) = (1/10) * 40000 tuples retrieved.
 - Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(S)) = (1/10) * (50+500)
 pages are retrieved (= 55).
 - Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000) pages are retrieved.
- If we have an index on *sid*:
 - Would have to retrieve all tuples/pages. With a clustered index, the cost is 50+500.
- Doing a file scan: we retrieve all file pages (500).

Determining Join Ordering

- R1 × R2 × × Rn
- Join tree:

• A join tree represents a plan. An optimizer needs to inspect many (all?) join trees

Types of Join Trees

• Left deep:

Types of Join Trees

• Bushy:

Types of Join Trees

• Right deep:

Problem

- Given: a query $R1 \bowtie R2 \bowtie ... \bowtie Rn$
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

- Idea: for each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:

```
- Step 1: for {R1}, {R2}, ..., {Rn}
```

- Step 2: for $\{R1,R2\}$, $\{R1,R3\}$, ..., $\{Rn-1,Rn\}$
- ...
- Step n: for $\{R1, ..., Rn\}$
- A subset of {R1, ..., Rn} is also called a *subquery*

- For each subquery $Q \subseteq \{R1, ..., Rn\}$ compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

- Step 1: For each {Ri} do:
 - $Size(\{Ri\}) = B(Ri)$
 - $Plan(\{Ri\}) = Ri$
 - $\text{Cost}(\{\text{Ri}\}) = (\text{cost of scanning Ri})$

- Step i: For each $Q \subseteq \{R1, ..., Rn\}$ of cardinality i do:
 - Compute Size(Q) (later...)
 - For every pair of subqueries Q', Q"
 s.t. Q = Q'⋈Q"
 compute cost(Plan(Q') ⋈ Plan(Q"))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan

• Return Plan({R1, ..., Rn})

- Summary: computes optimal plans for subqueries:
 - Step 1: {R1}, {R2}, ..., {Rn}
 - Step 2: {R1, R2}, {R1, R3}, ..., {Rn-1, Rn}
 - **–** ...
 - Step n: {R1, ..., Rn}
- We used naïve size/cost estimations
- In practice:
 - more realistic size/cost estimations (next)
 - heuristics for Reducing the Search Space
 - Restrict to left linear trees
 - Restrict to trees "without cartesian product"
 - need more than just one plan for each subquery:
 - "interesting orders"

Query Optimization Summary

- Create initial (naïve) query execution plan.
- Apply transformation rules:
 - Try to un-nest blocks
 - Move predicates and grouping operators.
- Consider each block at a time:
 - Determine join order
 - Push selections, projections if possible.