C2 Data Link Layer

1. DLL Flow Control (4 main functions)

1.1 Framing (not examinable)

- Encapsulate each network layer datagram within a link layer frame before transmission over the link
 - o Byte (Character) Oriented
 - Information framed into fixed 8-bit (1 byte) basic unit with some used for signalling (protocol control)
 - Frame format: [start bit, data bits, parity check bit, stop bit]

- Bit Oriented (HDLC)
 - Flag used to frame bits sent
 - Header / Trailer (tail) used to describe content of a frame (which may be used for control)

1.2 Link Access

- MAC protocol specifying rules by which a frame is transmitted into the link
 - o Objective is to determine who gets to transmit at when on a link
 - Topology (physical arrangement of stations)
 - Point-to-Point: pairs of hosts are directly connected
 - Broadcast: all stations share a single channel (only one packet needs to be sent out)
 - hosts / stations / machines are used interchangeably
 - Duplexity
 - Half-Duplex: only one party transmit at a time
 - Full-Duplex: simultaneous transmission and reception allowed

1. Half-Duplex

The following figure shows a half-duplex link. In a half-duplex environment, the receiving (Rx) line is monitored. If a frame is present on the Rx link, no frames are sent until the Rx line is clear. If a frame is received on the Rx line while a frame is being sent on the transmitting (Tx) line, a collision occurs. Collisions cause the collision error counter to be incremented – and the sending frame to be retransmitted – after a random back-off delay.

2. Full-Duplex

The following figure shows a full-duplex link. In full-duplex operation, the Rx line is not monitored, and the Tx line is always considered available. Collisions do not occur in full-duplex mode because the Rx and Tx lines are completely independent.

1.3 Flow Control

- Control of data flow to ensure sender does not overwhelm the receiver with data (i.e. buffers at receiver do not get overflowed)
 - No frame error (assumption for this chapter)

Throughput (Link Utilisation)

Stop-and-Wait

1. A packs binary information into frame and sends to B

2. A waits for ACK (acknowledgement) from B

o ACK1 will be sent after receiving frame 0, to indicate receiver is ready for frame 1

3. B sends ACK after receiving frame

4. A receives B's ACK and repeats 1

Throughput

 $\circ~$ Assume that input is saturated, no error, and ignore T_{ack}, T_{proc}

 $\circ \ T_{prop} =$ time taken for one bit to travel from sender to receiver (Distance/Speed)

 $\circ \ T_{frame} =$ time taken for signal to transmit given frame length (Length/Rate)

 $\circ~T_{cycle} = T_{frame} + 2T_{prop}$ (propagation delay for Frame and [ACK])

• Then $U = \frac{T_{frame}}{T_{frame} + 2T_{prop}} = \frac{1}{1 + 2a}$

U is ratio

 $\circ \ \ {
m Where} \ a = rac{T_{prop}}{T_{frame}}$ (normalised propagation delay)

Disadvantages

- Lost frame / ACK ⇒ longer waiting time expected
 - use TIMEOUT control in sender to fix
- If normalised propagation delay is long, sender must wait long time before next transmission can be performed
 - Link Utilisation is low
 - use Buffers at sender / receiver (sliding window)

Sliding Window

- · Allows multiple frames to be in transit
- ullet Both Sender and Receiver have buffer of size N
 - \circ Sender can send up to N frames without needing $\overline{\mathtt{ACK}}$ from Receiver
 - Each ACK is numbered to correspond to an expected frame
- Sequence number is bounded by field size (k bits)
 - \circ frames are numbered modulo 2^k
 - \circ sequence number in range $[0,2^k-1]$

Sender

- Maintains a window which contains the frame numbers that can be transmitted
- o Window shrinks from left side (lower bound / trailing edge) as frames are sent
- Window expands from right side (upper bound / leading edge) as ACKs are received

Receiver

- o Maintains a window which determines the available buffer (?) size
- Window shrinks from left side as frames are received
- Window expands from right side as ACK's are sent

Window Size and Sequence Number size

- \circ For N=3 with k=1 bit sequence number, when sender sends 0,1,0 to receiver, receiver does not know whether the second 0 is a new frame or retransmitted frame of the first 0. Receiver sends $\widehat{\text{ACK}}$ for received frame 1, sender does not know whether receiver wants a retransmission of first 0 or second 0
 - $\blacksquare \ \, \text{Need to follow the rule } N \leq 2^k$

Features (not examined)

- Receiver can acknowledge received frames without allowing further transmission by sending RNR (Receive Not Ready) instead of ACK, and send ACK to resume transmission
- ACK can be piggybacked on data frames in the reverse direction (dk what it means, waiting for lecture)

Performance

- depends upon (error free operation)
 - Parameter a (normalised propagation delay)
 - lacksquare Window Size N
- \circ Assume T_{ack} and T_{proc} are negligible
- Frame Transmission time = 1

- o 2 cases:
 - 1. $N \geq 2a+1$ can transmit continuously without exhausting window
 - Link Utilisation = 1.0
 - 2. N < 2a+1 window exhausted at t=N , station cannot send additional frames until t=2a+1
 - Link Utilisation = $\frac{N}{1+2a}$

1.4 Reliable Delivery

• moving each network-layer datagram across the link without error

2. Error Control

- · Useful for detecting and correcting errors that occur in frame transmission
- Frame Error
 - Lost Frame: receiver does not receive a frame / header corrupted (leads to unrecognisable frame)
 - o Damaged Frame: receiver receives a frame, but some of the bits are in error

2.1 Error Detection

Parity Check

- A single bit is appended to the original message (7 + 1 bits) to attempt to satisfy a pre-determined parity scheme agreed by both R and S
 - Even parity: total number of 1s is even
 - Odd parity: total number of 1s is odd
 - Both parities include the parity bit, can only detect odd numbers of error

Cyclic Redundancy Check (not examinable)

- Multiple parity bits are appended to the original message
 - 1. Sender prepares to send message (M bits), appends k bits (CRC to the message)
 - 2. Receiver receives packet from Sender (M+k bits), passes it through CRC function
 - 3. CRC function will give a remainder, 0 indicates no error

2.2 Error Correction Techniques

Forward Error Correction (FEC) (not examinable)

Sends more redundant bits in message

Automatic Repeat Request (ARQ)

Retransmission after timeout

- Sender expects ACK from Receiver, if ACK not received within a predetermined time duration,
 Sender retransmits the frame
- Retransmission when requested
 - Receiver replies a negative ACK to inform Sender about an error, Sender then retransmits the corrupted frames accordingly

Stop-and-Wait ARQ

- Sender transmits a single frame and waits for ACK
- Receiver sends an ACK if frame received correctly, otherwise, discard and do nothing or send a negative ACK (NAK)
- o If Sender:
 - receives ACK: transmit next frame
 - receives NAK: retransmit same frame
 - nothing received: retransmit same frame
 - receives wrong ACK (due to damage etc): transmitter timeouts and retransmit same frame,
 receiver ends up with duplicate frames, need to discard one
- Performance

The time that the link

Throughput (U)
(Link Utilization) =
$$\frac{\text{Trame}}{\text{The total time}} = \frac{T_{frame}}{T_{cycle}}$$

$$U_{SaW}^{ARQ} = \frac{1}{1+2a} \Pr\{\text{no error}\} + 0 \cdot \Pr\{\text{frame error}\}$$

$$= \frac{1}{1+2a} (1-P) + 0 \cdot P$$

$$= \frac{1-P}{1+2a}$$
P: Frame loss probability

a: normalized prop. delay

Sliding Window - Go-back-N ARQ

- Sender transmit frames sequentially based on sliding window
- Receiver expects F_1 from Sender, but receives a non- F_1 (erroneous) frame and sends NAK_1 to Sender (all received frames will be discarded until F_1 arrives)

 \circ Sender receives NAK_1 and go back to transmitting F_1

- As S sends 8 frames over to R, S's window size becomes 0 (Left side)
- As R sends ACKs, R's window size increases (Right side)
- However, ACK0 gets lost in transmission, resulting in timeout, causing S to send frame 0 again
- lacktriangledown R does not know if ACK_0 has been received by S, and proceeds as if nothing happened
- lacktriangle Reason why maximum window size allowed is 2^k-1

- S sends 7 frames, shrinking S's window size to 0
- R receives 7 frames, sends ACK requesting for frame 7, which gets lost in transmission.
- R doesn't receive ACK 7, resents frames 0 to 6 again
- S receives frame 0, sends NAK_7 to R to signal wrong frame received
- R corrects window and sends frame 7
 - Performance (with assumptions)

- $lacksquare T_{ack}$ and T_{proc} are negligible
- frames are never completely lost
- ACKs and NAKs are never in error
- each frame is acknowledged immediately
- S always has frames to send

$$U_{GBN}^{ARQ} = \begin{cases} \frac{1-P}{1+2aP} & N \geq 2a+1 \\ \frac{N(1-P)}{(1-P+NP)(1+2a)} & N < 2a+1 \end{cases}$$
 The equations in this slide are not examinable.

Sliding Window - Selective Reject ARQ

- Only rejected frames and timed out frames are retransmitted
- $\circ~$ R informs S of rejected frame n by sending NAK_n
- Frames received by R after rejected frame gets buffered until R receives valid copy of rejected frame, after which, frames are put in proper order and passed to higher layer
- Minimises retransmission but R requires more complex buffer management

- R sends 4 frames (0,1,2,3) to S, S sends ACK_4 which gets lost in transmission (buffer S now 4,5,6,7)
- R assumes time out and resends same 4 frames
- S receives unexpected frame (0), resends ACK_4

- lacktriangle max window size for this error correction is 2^{k-1}
- Performance

P: Frame loss probability a: normalized prop. Delay

Since frame loss prob for each tx is independent, in 1+2a cycle, we expect N transmissions, each with prob P of failure due to errors.

$$U = \frac{N\overline{F}}{1+2a}, N < 2a+1$$
 where $\Pr\{F = n\} = \begin{cases} P, n = 0 \\ 1-P, n = 1 \end{cases}$ and $\overline{F} = 1-P$. Hence $U_{Selective\ reject} = \frac{N(1-P)}{1+2a}$

Examinable:

$$U_{SR}^{ARQ} = \begin{cases} 1 - P & N \ge 2a + 1 \\ \frac{N(1 - P)}{1 + 2a} & N < 2a + 1 \\ \end{cases}$$
 Setting $P = 0$ reduces the above to that of Sliding Window.

Window.

· Which ARQ variant to use depends on the flow control method used

3. Important formulas

Stop-and-Wait ARQ

$$U_{Stop-and-Wait} = \frac{1-P}{1+2a}$$

Go-back-N ARQ
$$U_{Go-back-N} = \begin{cases} N \ge 2a+1 \\ \hline (1-P+NP)(1+2a) \end{cases} N < 2a+1$$

Sliding Window (no errors)

$$U_{\textit{Sliding Window}} = \begin{cases} 1 & N \ge 2a + 1 \\ \frac{N}{1 + 2a} & N < 2a + 1 \end{cases}$$

P: frame error probability

a: normalized propagation delay

N: window size

U: Channel Utilization (between 0 and 1)

(X is not examinable)

Selective Reject ARQ

$$U_{Selective\ reject} = \begin{cases} 1 - P & N \ge 2a + 1 \\ \frac{N(1 - P)}{1 + 2a} & N < 2a + 1 \end{cases}$$