

《人工智能数学原理与算法》

第2章:机器学习基础

2.2 线性代数基础

冯福利 fengfl@ustc.edu.cn

02 矩阵及其属性

03 线性变换和矩阵乘法

04 逆矩阵

05 机器学习模型实例

目录

02 矩阵及其属性

03 线性变换和矩阵乘法

04 逆矩阵

05 机器学习模型实例

目录

范数 (Norm)

范数 (Norm)

L1-范数 =
$$|(a,b)|_1 = |a| + |b|$$

范数 (Norm)

L1-范数 =
$$|(a,b)|_1 = |a| + |b|$$

L2-范数 =
$$|(a,b)|_2 = \sqrt{a^2 + b^2}$$

范数例子

范数例子

范数例子

$$L1$$
-范数 = $|4| + |3| = 7$

L2-范数 =
$$\sqrt{4^2 + 3^2}$$
 = $\sqrt{25}$ = 5

$$\tan(\theta) = 3/4$$

$$\tan(\theta) = 3/4$$

$$\theta = \arctan(3/4) = 0.64$$

$$\tan(\theta) = 3/4$$

$$\theta$$
 = arctan(3/4) = 0.64 = 36.87°

$$u + v = (4 + 1,1 + 3) = (5,4)$$

$$u + v = (4 + 1,1 + 3) = (5,4)$$

向量相加

$$u + v = (4 + 1,1 + 3) = (5,4)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$|u - v|_1 = |5| + |-3| = 8$$

$$|u-v|_2 = \sqrt{5^2 + 3^2} = 5.83$$

L2-distance

$$|u - v|_1 = |5| + |-3| = 8$$

$$|u - v|_2 = \sqrt{5^2 + 3^2} = 5.83$$

L2-distance

$$|u - v|_1 = |5| + |-3| = 8$$

L1-distance

$$|u-v|_2 = \sqrt{5^2 + 3^2} = 5.83$$

$$|u - v|_1 = |5| + |-3| = 8$$

$$|u-v|_2 = \sqrt{5^2 + 3^2} = 5.83$$

L2-distance

$$u = (1,2)$$

$$u = (1,2)$$
$$\lambda = 3$$

$$u = (1,2)$$

$$\lambda = 3$$

$$\lambda u = (3.6)$$

$$u = (1,2)$$

$$\lambda = 3$$

$$\lambda u = (3.6)$$

$$u = (1,2)$$

$$u = (1,2)$$

$$\lambda = -2$$

$$u = (1,2)$$

$$\lambda = -2$$

$$\lambda u = (-2, -4)$$

$$u = (1,2)$$
 $\lambda = -2$
 $\lambda u = (-2, -4)$

线性操作如何简单表达?

数量

- 2个苹果
- 4个香蕉
- 1个樱桃

线性操作如何简单表达?

数量

2个苹果

4个香蕉

1个樱桃

价格

苹果: 3元一个

香蕉: 5元一个

樱桃: 2元一个

线性操作如何简单表达?

数量

2个苹果

4个香蕉

1个樱桃

价格

苹果: 3元一个

香蕉: 5元一个

樱桃: 2元一个

总价格

线性操作如何简单表达?

数量

2个苹果

4个香蕉

1个樱桃

2 3333 4 1 价格

苹果: 3元一个

香蕉: 5元一个

樱桃: 2元一个

总价格

线性操作如何简单表达?

数量

2个苹果

4个香蕉

1个樱桃

价格

苹果: 3元一个

香蕉: 5元一个

樱桃: 2元一个

总价格

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

向量
$$ec{a}=[a_1,a_2,\cdots,a_n]$$
和 $ec{b}=[b_1,b_2,\cdots,b_n]$ 的点积定义为: $ec{a}\cdotec{b}=\sum_{i=1}^na_ib_i=a_1b_1+a_2b_2+\cdots+a_nb_n$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$L2-norm=\sqrt{dot\ product(u,u)}$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$L2-norm=\sqrt{dot\ product(u,u)}$$

$$|u|_2 = \sqrt{\langle u, u \rangle}$$

正交向量点积为0

6 2

$$\langle u, v \rangle = 0$$

$$\langle u, u \rangle = |u|^2$$

$$\langle u, u \rangle = |u|^2$$

$$\langle u, v \rangle = 0$$

$$\langle u, u \rangle = |u|^2$$

$$\langle u, v \rangle = 0$$

$$\begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ \end{bmatrix}$$

$$\begin{bmatrix} -4 \\ 1 \end{bmatrix} = \begin{bmatrix} -22 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -4 \\ 1 \end{bmatrix} = \begin{bmatrix} -22 \\ -22 \end{bmatrix}$$

$$\begin{array}{c|c} 6 & 2 & -1 \\ \hline 3 & = & 0 \end{array}$$

$$\begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ \end{bmatrix}$$

$$\langle u, v \rangle = 0$$

$$\langle u, v \rangle > 0$$

$$\langle u, v \rangle = 0$$

02 矩阵及其属性

03 线性变换和矩阵乘法

04 逆矩阵

05 神经网络与矩阵

目录

用点积表示线性方程组

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

$$a + b + c = 10$$

$$\begin{vmatrix}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & &$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

用点积表示线性方程组

用点积表示线性方程组

用点积表示线性方程组

用点积表示线性方程组

用点积表示线性方程组

用点积表示线性方程组

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

用点积表示线性方程组

线性方程组

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

矩阵和向量相乘

用点积表示线性方程组

线性方程组

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

矩阵和向量相乘

矩阵

数学上,一个m×n的矩阵(matrix)是一个有m行(row)n列(column)元素的矩形阵列。

行和列相同的元素称为矩阵主对角线上的元素,如a₁₁,a₂₂ ,a₃₃等。

$$\mathbf{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ a_{31} & a_{32} & \cdots & a_{3n} \ \cdots & \cdots & \cdots & \cdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

特殊矩阵

行数与列数相同的矩阵称为方块矩阵,简称方阵。

如果一个方阵只有主对角线上的元素不是0,其它都是0,那么称其为对角矩阵(diagonal matrix)。

$$egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{bmatrix}$$

主对角线元素全部为1的对角矩阵称为单位矩阵(identity matrix),一般用 I_n 表示。

$$egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

特殊矩阵

如果主对角线上方的元素都是0,那么称为下三角矩阵(lower triangular matrix)。

$$egin{bmatrix} l_{11} & 0 & 0 \ l_{21} & l_{22} & 0 \ l_{31} & l_{32} & l_{33} \end{bmatrix}$$

如果主对角线下方的元素都是0,那么称为上三角矩阵(upper triangular matrix)。

$$egin{bmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{bmatrix}$$

矩阵的基本运算

矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。加(减)法:

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$$

数乘:

$$2 \cdot egin{bmatrix} 1 & 8 & -3 \ 4 & -2 & 5 \end{bmatrix} = egin{bmatrix} 2 \cdot 1 & 2 \cdot 8 & 2 \cdot (-3) \ 2 \cdot 4 & 2 \cdot (-2) & 2 \cdot 5 \end{bmatrix} = egin{bmatrix} 2 & 16 & -6 \ 8 & -4 & 10 \end{bmatrix}$$

转置:

$$egin{bmatrix} 1 & 2 & 3 \ 0 & -6 & 7 \end{bmatrix}^T = egin{bmatrix} 1 & 0 \ 2 & -6 \ 3 & 7 \end{bmatrix}$$

02 矩阵及其属性

03 线性变换和矩阵乘法

04 逆矩阵

05 机器学习模型实例

目录

3.线性变换和矩阵乘法

矩阵是线性变换

3.线性变换和矩阵乘法

矩阵是线性变换

矩阵是线性变换 -3 a 162

矩阵是线性变换 -3 a 163

矩阵是线性变换 -3 a 164

多次线性变换

2	-1	3	1	=	5	0
0	2	1	2	_	2	4

矩阵乘法

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

1	0	0	0	0	а
0	1	0	0	0	b
0	0	1	0	0	С
0	0	0	1	0	d
0	0	0	0	1	е

1	0	0	0	0	а		а
0	1	0	0	0	b		b
0	0	1	0	0	С	=	С
0	0	0	1	0	d		d
0	0	0	0	1	е		е

01 向量及其属性

02 矩阵及其属性

03 线性变换和矩阵乘法

04 逆矩阵

05 机器学习模型实例

目录

4.逆矩阵 逆矩阵

逆矩阵

如果存在另一个方阵B,使得 $AB = I_n$ 成立,则方阵A称为可逆的。这时候可以证明也 $BA = I_n$ 成立,可将矩阵B称为A的逆矩阵。一个矩阵A的逆矩阵如果存在的话,就是唯一的,通常记作 A^{-1}

逆矩阵

如果存在另一个方阵B,使得 $AB = I_n$ 成立,则方阵A称为可逆的。这时候可以证明也 $BA = I_n$ 成立,可将矩阵B称为A的逆矩阵。一个矩阵A的逆矩阵如果存在的话,就是唯一的,通常记作 A^{-1}

详细计算方法可以参考Strang G. Introduction to linear algebra[M]. Wellesley-Cambridge Press, 2022.

01 向量及其属性

02 矩阵及其属性

03 线性变换和矩阵乘法

04 逆矩阵

05 机器学习模型实例

目录

用矩阵重写西瓜分类模型

用矩阵重写西瓜分类模型

色	泽(x ₁)	根蒂 (x ₂)	敲声 (x ₃)	好瓜 (y)
0	(青绿)	0 (蜷缩)	0 (浊响)	0 (是)
1	(乌黑)	0 (蜷缩)	0 (浊响)	0 (是)
0	(青绿)	1 (硬挺)	1 (清脆)	1 (否)
1	(乌黑)	2 (稍蜷)	2 (沉闷)	1 (否)

用矩阵重写西瓜分类模型

色泽 (x ₁)	根蒂 (x ₂)	敲声 (x ₃)	好瓜 (y)	
0 (青绿)	0 (蜷缩)	0 (浊响)	0 (是)	样本
1 (乌黑)	0 (蜷缩)	0 (浊响)	0 (是)	
0 (青绿)	1 (硬挺)	1 (清脆)	1 (否)	
1 (乌黑)	2 (稍蜷)	2 (沉闷)	1 (否)	

用矩阵重写西瓜分类模型

用矩阵重写西瓜分类模型

用矩阵重写西瓜分类模型

数据

$$y = ax_1 + bx_2 + cx_3 + d$$

用矩阵重写西瓜分类模型

数据

用矩阵重写西瓜分类模型

数据矩阵

x ₁	X ₂	X ₃	у
0	0	0	0
1	0	0	0
0	1	1	1
1	2	2	1

用矩阵重写西瓜分类模型

扩展数据矩阵

x ₁	X ₂	X ₃	bias	у
0	0	0	1	0
1	0	0	1	0
0	1	1	1	1
1	2	2	1	1

用矩阵重写西瓜分类模型

扩展数据矩阵

x ₁	X ₂	X ₃	bias	у
0	0	0	1	0
1	0	0	1	0
0	1	1	1	1
1	2	2	1	1

$$y = ax_1 + bx_2 + cx_3 + d$$

用矩阵重写西瓜分类模型

扩展数据矩阵

x ₁	X ₂	X ₃	bias	у
0	0	0	1	0
1	0	0	1	0
0	1	1	1	1
1	2	2	1	1

模型

$$y = ax_1 + bx_2 + cx_3 + d$$

$$y = x_1 x_2 x_3 1$$

a

b

С

d

用矩阵重写西瓜分类模型

扩展数据矩阵

x ₁	X ₂	X ₃	bias	у
0	0	0	1	0
1	0	0	1	0
0	1	1	1	1
1	2	2	1	1

$$y = ax_1 + bx_2 + cx_3 + d$$

用矩阵重写西瓜分类模型

扩展数据矩阵

X ₁	X ₂	X ₃	bias	у
0	0	0	1	0
1	0	0	1	0
0	1	1	1	1
1	2	2	1	1

$$y = ax_1 + bx_2 + cx_3 + d$$

用矩阵重写西瓜分类模型

扩展数据矩阵

X ₁	X ₂	X ₃	bias	у
0	0	0	1	0
1	0	0	1	0
0	1	1	1	1
1	2	2	1	1

$$y = ax_1 + bx_2 + cx_3 + d$$

$$y = xw^T$$

延伸阅读 (非必需)

- ➤ 吴恩达《机器学习数学基础(线性代数/微积分)》:
 https://www.coursera.org/specializations/mathematics-for-machine-learning-and-data-science
- ➤ 线性代数的本质 (Essense of Linear Algebra) 系列 https://www.bilibili.com/video/BV1Ys411k7yQ

谢谢!

Slides are inspired by DeepLearning.Al