2023 Digital IC Design Homework 5

	T		021811 1101110 0111 0	
NAME	黄彥承			
Student ID	N261	01185		
Simulation Result				
Functional simulation		Completed	Gate-level	G 1 . 1
			simulation	Completed
# **********	*****	***********	‡ ************************************	************
<pre># ** Simulation Start</pre>			# ** Simulation Start	
		Evaluati	on Results	1
test1.png		25.32	test2.png	24.82
test3.png		29.12	test4.png	20.95
test5.png		21.94	test6.png	25.21

The proposed work is implemented using a finite state machine (FSM) that is divided into four states. The state diagram is described below:

Description of your design

STORE: Stores data_in's value to the corresponding RGB memory.

DEMOSAIC: Gets values from RGB memory and demosaicing current pixel depends on surrounding pixel.

STORE_DE: Stores the DEMOSAIC state's result to the corresponding pixel.

FINISH: Finish by setting the "done" signal to 0.

Scoring = average PSNR of the six test images

* PSNR of all interpolation results should meet at least the baseline.