1703.07326 - One-Shot Imitation Learning

- Yunqiu Xu
- Other reference:
 - https://zhuanlan.zhihu.com/p/27935902
 - https://blog.openai.com/robots-that-learn/
 - https://github.com/DanielTakeshi/Paper_Notes/blob/master/reinforcement_learning/One-Shot_Imitation_Learning.md

1. Introduction

• Challenges of imitation learning

- o careful feature engineering
- o large number of samples
- Our goal: learn from very few demonstrations of some tasks, then generalize to new situations of these tasks without task-specific engineering
- Our method:
 - o Train a policy on a large set of tasks
 - o Input:
 - current state
 - one demonstration that solves a different instance for the same task
 - Output: current controls
 - Use soft-attention for generalization

One-shot policy. A single policy trained to solve many tasks.

(left) Task-specific policy. This policy is trained to stack blocks into two towers, each of height 3. (right) A separate task-specific policy. This policy is trained to stack blocks into three towers, each of height 2.

2. Related Work

- Main lines of imitation learning:
 - o Behavioral cloning: performs supervised learning from observations to actions
 - Inverse reinforcement learning: reward function is estimated that explains the demonstrations as (near) optimal behavior
 - \circ These 2 methods consider each skill separately o learn one skill can not accelerate the learning to imitate another skill
- One-shot and few-shot learning:
 - Many of the afore-mentioned approaches are a form of meta-learning

- \circ Learn the algorithm itself \rightarrow learning to learn
- Another related work is 1703.01703 Third-Person Imitation Learning, but not good enough: learning uses one demonstration on whatever new task is being considered
- Our method relies on "soft attention" and sequence-to-sequence model
 - o an attention model over the demonstration
 - an attention model over the current observation

3. One Shot Imitation Learning

- ullet $t\in T$: a task in the distribution of tasks
- $d \in D(t)$
 - $\circ \ D(t)$ is the distribution of demonstrations of task t
 - \circ d is a demonstration in D(t)
 - $\circ d = [(o_1,a_1),(o_2,a_2),\ldots,(o_T,a_T)]$: a demonstration is a sequence of observations and actions
 - \circ We assume T is given o for each $t \in T$ we can get demonstrations from D(t)
- $\pi_{\theta}(a|o,d)$: policy
- $R_t(d)$: evaluation function
- ullet Objective: maximize the expected performance of the policy, where the expectation is taken over tasks $t\in T$, and demonstrations $d\in D(t)$
- An example: block stacking

An example of the initial state, where blocks are randomly placed on the table.

Trajectory of stacking 4 towers of height 2 each, where block A is on top of block B, block C is on top of block D, block E is on top of block F, and block G is on top of block H. This task is identified as ab cd ef gh.

Trajectory of stacking 1 block tower of height 4, where block G is on top of block H, block H is on top of block I, and block I is on top of block J. This task is identified as ghij.

Figure 3. The tasks are to control a Fetch robotic arm to stack blocks into various layouts. Entire episode takes up to several thousand time-steps. We define a *stage* as a single operation of stacking one block on top of another. The first task shown above has 4 stages, whereas the second task has 3.

4. Architecture

- Particle reaching: 3 candidates
 - o Plain LSTM
 - LSTM with attention
 - Final state with attention
- Block stacking: 3 modules
 - Open Demonstration network:
 - Input: the entire demonstration
 - Output: some embedding
 - This demonstration can be long, so they need to subsample for timestep

- Context network:
 - Inpput: embedding from demonstration, and current state,
 - Output: context embedding
 - lacktriangledown the demonstration embedding is going to be fixed, so the input at time t is the concatenated vector (d,x_t)

- Manipulation network:
 - Input: embedding from context network
 - Output: the action to be taken

5. Experiments

• Particle Reaching

• Block stacking: Figure 9 - Figure 13