Group work Submission 3

May 17, 2021

1 Group Work Submission 3: Simulate Asset Price Evolutions and Reprice Risky up-and-out Call Option

1.1 Team Members Name.

- Xin He (xinhe9701@gmail.com)
- Ali Kone (ali.kone18@rotman.utoronto.ca)
- David Akanji (david.o.akanji@gmail.com)

```
[1]: import numpy as np
  import pandas as pd
  from scipy import stats
  from scipy.stats import norm
  import scipy.optimize
  import math
  import warnings
  warnings.filterwarnings("ignore", category=RuntimeWarning)
  import matplotlib.pyplot as plt
  %matplotlib inline
```

2 Question 1

Initializing the Parameters

```
[2]: T = 1 # option maturity
L = 150 # up-and-out barrier
S0 = 100 # current share price
K = 100 # strike price, at-the-money
v_0 = 200 # counterparty firm current value
debt = 175 # counterparty's debt, due in one year
corr = .2 # correlation
recovery_rate = 0.25 # recovery rate
corr_matrix = np.array([[1, corr], [corr, 1]])
sample_size = 1000000
sigma_const = 0.30
gamma = 0.75
```

1.1 Calibrating LIBOR foward rate model using the Zero Coupon Bond We would start by initilizing the given zero coupon bond price, and then went on by creating a function that will

calculate the simulated bond prices from the Vasicek model.

```
[3]: t = np.linspace(0,1,13)

market_zcb_prices = np.array([1.0, 0.9938, 0.9876, 0.9815, 0.9754, 0.9694, 0.

$\to 9634, 0.9574, 0.9516, 0.9457, 0.9399, 0.9342, 0.9285])
```

Also we define the helper function A and D as well as function F which measures the differences between the calculated bond price from our model and the zero coupon prices of the actual market.

```
[4]: def A(t1, t2, alpha):
    return (1-np.exp(-alpha*(t2-t1)))/alpha

def D(t1, t2, alpha, b, sigma):
    val1 = (t2-t1-A(t1,t2,alpha))*(sigma**2/(2*alpha**2)-b)
    val2 = sigma**2*A(t1,t2,alpha)**2/(4*alpha)
    return val1-val2

def bond_price_fun(r,t,T, alpha, b, sigma):
    return np.exp(-A(t,T,alpha)*r+D(t,T,alpha,b,sigma))

def F(x):
    alpha = x[0]
    b = x[1]
    sigma = x[2]
    r0 = x[3]
    return sum(np.abs(bond_price_fun(r0,0,t,alpha,b,sigma)-market_zcb_prices))
```

```
[5]: bnds = ((0,1),(0,0.2),(0,0.2), (0.00,0.10))
  opt_val = scipy.optimize.fmin_slsqp(F, (0.3, 0.05, 0.03, 0.05), bounds=bnds)
  opt_alpha = opt_val[0]
  opt_b = opt_val[1]
  opt_sigma = opt_val[2]
  opt_r0 = opt_val[3]
```

```
Optimization terminated successfully (Exit mode 0)

Current function value: 0.00025649906704716674

Iterations: 10

Function evaluations: 64

Gradient evaluations: 10
```

We calculate also the optimal parameters of the model using a minimum value of F. This is done using the function fmin_slsqp from scipy library.

```
[6]: alpha_min, alpha_max = (0,1) b_min, b_max = (0,0.2)
```

```
sigma_min, sigma_max = (0,0.2)
r_min, r_max = (0.00, 0.10)

alpha_0 = 0.3
b_0 = 0.05
sigma_0 = 0.05
r_0 = 0.05

bnds = ((alpha_min, alpha_max),(b_min, b_max),(sigma_min, sigma_max), (r_min,u_r_max))
opt_val = scipy.optimize.fmin_slsqp(F, (alpha_0, b_0, sigma_0, r_0),u_r_bounds=bnds)
opt_alpha = opt_val[0]
opt_b = opt_val[1]
opt_sigma = opt_val[2]
opt_r0 = opt_val[3]
Optimization_terminated_successfully (Frit_mode_0)
```

Optimization terminated successfully (Exit mode 0)
Current function value: 0.0002460944580424673
Iterations: 12
Function evaluations: 86
Gradient evaluations: 12

```
[7]: print("Optimal Alpha: {:.3f}".format(opt_val[0]))
    print("Optimal B: {:.3f}".format(opt_val[1]))
    print("Optimal Sigma {:.3f}".format(opt_val[2]))
    print("Optimal RO: {:.3f}".format(opt_val[3]))
```

Optimal Alpha: 0.274 Optimal B: 0.071 Optimal Sigma 0.045 Optimal RO: 0.075

Deriving the model bond price and plotting the market actual bond price

```
[8]: model_prices = bond_price_fun(opt_r0,0,t, opt_alpha, opt_b, opt_sigma)
    model_yield = -np.log(model_prices)/t

market = plt.plot(t,market_zcb_prices, label='Market Prices')
    model = plt.plot(t, model_prices, '.', label='Calibrated Prices')
    plt.show();
    #plt.legend();
```


From the plot above we can deduce there is a close fit from the plot

2.0.1 1.2. Simulating the LIBOR Rate Paths

0.9285

1

The first approach here is to initialize a parameter σ_j and then use the obtained parameter above to simulate the Vasicek bond prices

```
[9]: sigmaj = 0.2

vasi_bond = bond_price_fun(opt_r0, 0, t, alpha=opt_alpha, b=opt_b,

⇒sigma=opt_sigma)

print(f"The bond prices according to Vasicek Model is {vasi_bond}")

The bond prices according to Vasicek Model is [1. 0.9937799 0.98760628 0.98147965 0.97540042 0.96936895
```

0.96338548 0.95745024 0.95156334 0.94572488 0.93993486 0.93419326

We are initilizing the arrays that will store the simulation of Predictor Corrector and Monte Carlo method then running the Monte Carlo simulation for each timestamp

```
predcorr forward = np.ones([n_simulations, n_steps-1])*(vasi_bond[:
→-1]-vasi_bond[1:])/(delta*vasi_bond[1:])
predcorr_capfac = np.ones([n_simulations, n_steps])
mc_capfac = np.ones([n_simulations, n_steps])
for i in range(1, n_steps):
   Z = norm.rvs(size=[n_simulations,1])
   muhat = np.cumsum(delta[:, i:]*mc_forward[:, i:]*sigmaj**2/(1+delta[:, i:
→]*mc_forward[:,i:]), axis=1)
   mc forward[:,i:] = mc forward[:,i:]*np.exp((muhat-sigmaj**2/2)*delta[:,i:
→]+sigmaj*np.sqrt(delta[:,i:])*Z)
   mu_initial = np.cumsum(delta[:,i:]*predcorr_forward[:,i:]*sigmaj**2/

→(1+delta[:,i:]*predcorr_forward[:,i:]), axis=1)
   for_temp = predcorr_forward[:,i:]*np.exp((mu_initial-sigmaj**2/2)*delta[:,i:
 →]+sigmaj*np.sqrt(delta[:,i:])*Z)
   mu_term = np.cumsum(delta[:,i:]*for_temp*sigmaj**2/(1+delta[:,i:
→]*for_temp), axis=1)
   predcorr_forward[:,i:] = predcorr_forward[:,i:]*np.
 →exp((mu_initial+mu_term-sigmaj**2)*delta[:,i:]/2+sigmaj*np.sqrt(delta[:,i:
 →])*Z)
```

Calculating the the bond prices and capitalization factor from the Monte carlo simulation. Also plotting of bond prices and capitalization factor against Vasicek bond prices. for comparison

```
[11]: mc_capfac[:,1:] = np.cumprod(1 + delta * mc_forward, axis=1)
    predcorr_capfac[:,1:] = np.cumprod(1+ delta * predcorr_forward, axis=1)

mc_price = mc_capfac**(-1)
    predcorr_price = predcorr_capfac**(-1)

mc_final = np.mean(mc_price, axis=0)
    predcorr_final = np.mean(predcorr_price, axis=0)
```

```
[12]: plt.xlabel("Maturity")
   plt.ylabel("Bond Price")
   plt.plot(t,vasi_bond, label="Vasicek Bond Prices")

plt.plot(t, mc_final, 'o', label="Simple Monte Carlo Bond Prices")
   plt.plot(t, predcorr_final, 'x', label="Predictor-Corrector Bond Prices")
   plt.legend()
   plt.show();
```


In our simulation, we used Predictor Corrector approach, $e^{r_{t_i}(t_{i+1}-t_i)} = 1 + L(t_i, t_{i+1})(t_{i+1}-t_i)$ in order to calculate the continuous compounded interest rates

```
[13]: r_sim = np.log(1 + predcorr_forward*delta)
```

Calculting the annualized interest rate

[16]: r sim annualized

```
[16]:
                                          2
                     0
                                                     3
                                                               4
                                                                          5
                                                                                    6
                               1
              0.006781
                                                                              0.006891
      0
                         0.006875
                                   0.006681
                                              0.006280
                                                         0.006179
                                                                   0.007163
      1
              0.006781
                         0.006546
                                   0.006754
                                              0.007460
                                                         0.008101
                                                                   0.007581
                                                                              0.007584
                         0.006794
                                   0.006389
                                              0.006633
                                                                   0.007484
      2
              0.006781
                                                         0.007340
                                                                              0.006885
      3
              0.006781
                         0.006728
                                   0.006711
                                              0.006551
                                                         0.006046
                                                                   0.006165
                                                                              0.006153
      4
                         0.006847
                                              0.006898
              0.006781
                                   0.007130
                                                         0.007730
                                                                   0.008023
                                                                              0.008183
      999995
              0.006781
                         0.006607
                                   0.006838
                                              0.007196
                                                         0.007282
                                                                   0.007142
                                                                              0.006825
              0.006781
                                              0.006609
                                                                   0.005966
      999996
                         0.006436
                                   0.006506
                                                         0.006299
                                                                              0.006101
      999997
              0.006781
                         0.006549
                                   0.005866
                                              0.005693
                                                         0.005435
                                                                   0.005137
                                                                              0.004957
      999998
              0.006781
                         0.006673
                                   0.007380
                                              0.007348
                                                         0.007176
                                                                   0.007727
                                                                              0.007866
              0.006781
                         0.005968
                                              0.006028
                                                                   0.006764
      999999
                                   0.006126
                                                         0.006654
                                                                              0.006944
```

```
7
                              9
                                       10
                                                11
0
       0.007080 \quad 0.007634 \quad 0.007413 \quad 0.006554 \quad 0.007138
1
       0.008525 0.008051 0.008545
                                 0.007788 0.007547
2
       3
       0.006308 0.006208 0.006027 0.005546 0.005290
       0.007827 0.007827 0.007756 0.008060 0.007775
999995 0.006438 0.006315 0.005767 0.005854 0.005761
999996 0.006268 0.005841 0.005636 0.005955 0.006530
999997 0.005392 0.005624 0.005681 0.005328 0.005300
999998 0.008094 0.008160 0.007296 0.007751 0.007667
999999 0.006668 0.006955 0.006979 0.006716 0.006604
```

[1000000 rows x 12 columns]

2.0.2 1.3. Generating a Stock and Firm Values

Computing the correlated path using the Cholesky decomposition

```
[17]: def next_share_price(prev_price, r, dT, sigma_const, gamma, sample_size, Z,__
       →varying vol = True):
          sigma= sigma_const*(prev_price)**(gamma-1) if varying_vol else_
       ⇒sigma const*(S0)**(gamma-1)
          return prev_price*np.exp(np.cumsum((r-(sigma**2)/2)*(dT)+(sigma)*(np.
       \hookrightarrowsqrt(dT))*Z,1))
      def generate share and firm price(SO, v O, r sim, sigma const, gamma, corr, T, L
       →sample_size, timesteps = 12):
          corr_matrix = np.array([[1, corr], [corr, 1]])
          norm_matrix = stats.norm.rvs(size = np.array([sample_size, 2, timesteps]))
          corr norm matrix = np.matmul(np.linalg.cholesky(corr matrix), norm matrix)
          share_price_path = pd.DataFrame(next_share_price(S0, r_sim, 1/timesteps,_

→sigma_const, gamma, sample_size, Z=corr_norm_matrix[:,0,]))
          share_price_path = share_price_path.transpose()
          first_row = pd.DataFrame([S0]*sample_size)
          first_row = first_row.transpose()
          share price path = pd.concat([first row, share price path])
          share_price_path = share_price_path.reset_index(drop=True)
          firm_price_path = pd.DataFrame(next_share_price(v_0, r_sim, 1/timesteps,_
       →sigma_const, gamma, sample_size, Z=corr_norm_matrix[:,1,]))
          firm_price_path = firm_price_path.transpose()
```

```
first_row = pd.DataFrame([v_0]*sample_size)
   first_row = first_row.transpose()
   firm_price_path = pd.concat([first_row, firm_price_path])
   firm_price_path = firm_price_path.reset_index(drop=True)
   return [share_price_path,firm_price_path]
share_prices, firm_prices = generate_share_and_firm_price(S0, v_0,__
 →r_sim_annualized, sigma_const, gamma, corr, T, sample_size, timesteps = 12)
```

[18]: share prices.head() [18]: 0 1 2 3 4 5 \ 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 101.222293 98.308881 102.142481 103.415313 98.353934 98.941445 99.305163 106.524409 103.699119 2 98.214245 94.618722 100.577035 3 98.371558 99.034430 107.728380 103.525896 97.550015 102.964222 98.771258 95.686788 105.365429 102.566632 92.589683 104.449129 6 7 8 10 11 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 0 1 99.328350 96.650859 101.548003 97.125148 98.360400 97.751549 2 103.432336 96.039834 105.424254 97.282575 93.646083 98.383091 3 103.363607 94.702834 98.993564 103.010607 95.880349 97.530614 4 102.678331 98.150212 99.928006 95.407638 93.996984 101.515753

999985

999986 \

0	100.000000	100.000000	100.000000	•••	100.000000	100.000000	
1	98.804050	96.929176	99.087147	•••	98.949082	98.421317	
2	103.431273	97.745380	99.972856		97.570385	97.222639	
3	102.428379	96.497785	98.678546		95.801477	93.337204	
4	99.623479	94.409980	100.392322		94.190670	97.071488	

14

12

13

	999987	999988	999989	999990	999991	999992	\
0	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	
1	103.109629	97.789595	101.025721	98.385859	101.427013	100.347988	
2	102.500993	96.081954	103.351242	95.155861	97.404166	99.137873	
3	104.626343	90.652937	104.483719	97.250243	94.896772	98.765549	
4	103.594356	88.571172	104.396178	101.804122	92.459064	95.306170	

	999993	999994	999995	999996	999997	999998
0	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
1	98.103969	97.764627	95.765991	100.239518	96.346069	101.571910
2	100.202853	91.513084	95.986846	100.019841	98.302447	98.105776
3	99.555394	85.258175	97.366499	106.223550	99.528618	103.089578
4	100.900286	84.897353	93.985182	109.381099	105.988331	98.162561

999999

- 0 100.000000
- 1 99.055524
- 2 103.434628
- 3 105.760711
- 4 111.005666

[5 rows x 1000000 columns]

```
[19]: firm_prices.head()
```

[19]:	0	1	2	3	4	5	\
0	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	
1	200.482827	204.823328	207.073623	205.180220	201.921571	200.636476	
2	202.966262	199.796309	203.606607	210.916836	203.809283	207.135489	
3	210.673702	200.716658	196.627781	213.424769	203.830334	199.677920	
4	211.298155	207.349125	198.502736	213.816088	200.384332	196.147860	
	6	7	8	9	10	11	\
0	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	
1	193.990904	193.014105	194.765118	194.027143	198.060605	194.189874	
2	195.643606	190.290819	196.160095	189.967348	191.869983	198.423594	
3	192.409256	196.304576	189.729836	189.657431	194.532721	193.755602	
4	194.102222	190.740520	189.549389	187.921010	194.165163	198.484222	
	12	13	14	9999			
0	200.000000	200.000000	200.000000	200.0000			
1	198.951503	194.930119	202.641183	195.7712			
2	201.453161	197.395137	200.808503	201.7917		05	
3	201.964574	201.304373	202.973721	198.7826			
4	196.026776	202.054601	197.232516	195.3505	11 197.2423	40	
	999987	999988	999989	999990	999991	999992	\
0	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	
1	196.584961	202.368451	196.996237	203.405326	196.650640	198.594573	
2	200.217668	193.140512	198.786109	204.849529	201.654828	194.346793	
3	196.750070	186.981132	198.893264	208.142660	198.945500	190.180904	
4	194.470386	189.379068	206.675189	201.660772	203.254389	191.832671	
	999993	999994	999995	999996	999997	999998	\
0	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	
1	202.356294	203.845284	190.102657	204.738296	193.749484	199.331173	
2	211.783536	197.698889	184.070466	206.184251	198.677502	199.312892	
3	209.919046	188.198520	187.561582	210.922463	198.051778	205.445991	
4	208.697762	188.042405	184.041132	210.244401	202.165875	209.785763	

999999

```
0 200.000000
```

[5 rows x 1000000 columns]

2.0.3 Ploting the Stock price and the firm value path simulated for 100 simulations

```
[20]: share_prices.iloc[:,0:100].plot(title='Share price over 12 months',⊔

→legend=False);
```


[21]: firm_prices.iloc[:,0:100].plot(title='Firm price over 12 months', legend=False);

^{1 203.008684}

^{2 211.040974}

^{3 205.442922}

^{4 204.425512}

6

8

10

12

3 Question 2

160

3.0.1 1 - Year discount factor

0

2

4

```
[22]: def discount_factor(r):
    return 1/np.cumprod(1 + r,1)[:,-1]

[23]: one_year_disc_fac = discount_factor(r_sim)

print(f"The one year discount factor is {one_year_disc_fac}")
```

The one year discount factor is $[0.92697732\ 0.91975216\ 0.92548555\ ...\ 0.93969089\ 0.9208753\ 0.92992473]$

3.0.2 Defining Payoff and pricing function for up-and-out call option

```
[24]: def payoff(S_t, K, L):
    stopped_S = S_t.iloc[-1].where((S_t < L).all(), 0)
    return np.maximum(stopped_S - K, 0).to_numpy()</pre>
```

```
payoffs = payoff(share_prices, K, L)
   option_prices = discount_factor(r)*payoffs
   cva = 0
   # Factor the CVA adjustment in the option prices
   if cva_adjust:
       firm_prices = generate_share_and_firm_price(S0, v_0, annualized_rate,
                                                    sigma_const, gamma, corr, T,
                                                    sample_size, timesteps =__
→12) [1]
       term_firm_vals = firm_prices.iloc[-1].to_numpy()
       cva_estimates = discount_factor(r)*(1-recovery_rate)*(term_firm_vals <__
→debt)*payoffs
       option_prices -= cva_estimates
       cva += cva_estimates.mean()
   option_price_est = option_prices.mean()
   option_std_est = option_prices.std()/np.sqrt(len(payoffs))
   return option_price_est, option_std_est,cva
```

3.0.3 Estimating the default-free value of the option

Default-free option price 3.850
Default-free option price standard deviation 0.006

3.0.4 Estimating the value of option with counterparty credit risk

```
option_cva_adjusted_prices, option_cva_adjusted_std, cva_estimate =

→option_price(S0, K, L, r_sim, cva_adjust=True)

print("CVA-adjusted option price {:.3f}".format(option_cva_adjusted_prices))

print("CVA-adjusted option price standard deviation {:.3f}".

→format(option_cva_adjusted_std))

print("Credit value adjustment {:.3f}".format(cva_estimate))
```

CVA-adjusted option price 3.726 CVA-adjusted option price standard deviation 0.006 Credit value adjustment 0.125

3.1 Question 3

The credit risk of the long party in the option would increase the value of the option through the decrease of the Bilateral CVA

3.2 Question 4: Impact of an increase of interest rates of 25 bps on the option prices

We assume that the interest rate is increased by 25 bps during each time step

The Default-free option price after a monthly rate increase of $25~\mathrm{bps}$ is: $3.737~\mathrm{Default}$ -free option price standard deviation after a monthly rate increase of $25~\mathrm{bps}$ is: $0.006~\mathrm{cm}$

```
[30]: option_cva_adjusted_prices, option_cva_adjusted_std, cva_estimate =

→ option_price(S0, K, L, r_sim, cva_adjust=True)

print("CVA-adjusted option price after a monthly rate increase of 25 bps is: {:.

→3f}".format(option_cva_adjusted_prices))

print("CVA-adjusted option price standard deviation after a monthly rate

→ increase of 25 bps is: {:.3f}".format(option_cva_adjusted_std))

print("Credit value adjustment after a monthly rate increase of 25 bps is: {:.

→3f}".format(cva_estimate))
```

CVA-adjusted option price after a monthly rate increase of 25 bps is: 3.626 CVA-adjusted option price standard deviation after a monthly rate increase of 25 bps is: 0.005 Credit value adjustment after a monthly rate increase of 25 bps is: 0.112

[]: