Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 8

Problem Set 8

Name: Thomas Ren Collaborators: None

Problem 8-1.

We will solve this problem following the **SRT BOT** template.

•Subproblem

- –To make this problem runs in O(nm)-time, we need two parameters to recursively call on the length of the list of orders n and the number of oil barrels m.
- -Define a subproblem x(i, j): the maximum profits Ron can get giving the suffixes list L[i:] with j barrels of oil to sell.

Relation

-For the i_{th} barrels price pair (a_i, p_i) , we don't know whether Ron would take this order. Guess!

-Locally burte-force all possibilities, if $a_i < j$, then we can sold the oils with price p_i . Otherwise, we don't sell this order and recursively look for x(i+1,j).

 $x(i,j) = \max \begin{cases} p_i + x(i+1,j-a_i), & \text{if } a_i < j \\ x(i+1,j), & \text{always} \end{cases}$

•Topological Order

-The subproblem x(i, j) depends on strictly smaller j - i, so acyclic

•Base Case

- $-x(n,m) = -m \cdot s$, for Ron doesn't have any order, so he paid for all m barrels' storing fee
- -x(n,0) = 0, for Ron doesn't have any barrels left, so he cannot make any profit and doesn't need to pay the storing fee.

Original Problem

-x(0, m), when Ron has the full list of orders and all barrels of oil to sell.

•Time

-Number of subproblems: O(nm)

-Work per subproblem: O(1)

-Total running time: O(nm)

–Pseudopolynomial if m fits in a word-RAM.

Problem 8-2.

2

We will solve this problem following the **SRT BOT** template.

•Subproblem

- -Remember that when we solve the bowling problem in *Lecture 15*, we define a subproblem x(i, j) to represent the maximum value we can get in range i to j.
- -Here, we will add a new parameter to represent the vacuum in range i to j.
- -Suppose that the values of bowling form a list V, where $V[i] = v_i$ represents the i_{th} value of a bowling pin.
- -subproblem x(i, j, v): the maximum value player can get in L[i: j+1], and v represents whether this range is vacuum. If v=1, then all pins in range i to j have been knocked down, and v=0 otherwise.

-for
$$i, j \in \{1, 2, \dots, n\}, v \in \{0, 1\}$$

•Relation

- -In this part, our bidirectional subproblem is actually related similar to suffixes, but sometime we need the j parameter to locate the vacuum range.
- -for the i_{th} pin, if v = 0, we can knock it or not. Guess!
 - *Locally brute-force what to do with the i_{th} pin.
 - *don't knock down pin i, we go the subproblem x(i+1,j,v), assuming x(i,j,0)
 - *knock down pin i by itself, we go to $x(i+1, j, v) + v_i$
 - *knock down pin i with pin i+1, we go to $x(i+2,j,v)+v_i\cdot v_{i+1}$
 - *knock down pin i with pin k, assuming vacuum exists in range i+1 to k-1, then we go to $x(k+1,j,v)+x(i+1,k-1,1)+v_i\cdot v_k$

$$x(i,j,v) = max \begin{cases} x(i+1,j,v) \\ x(i+1,j,v) + v_i \\ x(i+2,j,v) + v_i \cdot v_{i+1} \\ max\{v_i \cdot v_k + x(i+1,k-1,1) + x(k+1,j,v), \quad k = i+2, \dots, j-1\} \end{cases}$$

Topological Order

-The dependency requires strictly smaller j - i, so **acyclic**.

Base Case

- -when j-i reduces to zero, there is no more pins to hit, so: x(i,i,v)=0
- -for $i \in \{0, 1, \dots, n-1\}, k \in \{0, 1\}$

Original Problem

- -when we have the whole list of pins to hit and don't need to vacuum the whole list.
- -x(0, n-1, 0)

Problem Set 8 3

•Time

–Number of subproblems: $O(n^2)$

–Work per subproblem: O(n)

-Total running time: $O(n^3)$

-Polynomial in all circumstances.

4 Problem Set 8

Problem 8-3.

We will solve this problem following the **SRT BOT** template.

•Subproblem

- -This problem may sound like an optimization problem, for we need to find out the **minimum of the maximum** individual sum. However, we only know how to solve a **decision problem involving partition**.
- -So, we will solve a *decision problem* using dynamic programming, then apply this solved decision problem to solve an optimization problem.
- $-x(i, s_1, s_2, s_3)$: for suffixes i of list A[i:], return **True** if suffixes can be partitioned into four subsets, with $s_j = \sum_{a_k \in A_j} a_k | j \in \{1, 2, 3\}$, and **False** otherwise.
- -Note that we only need s_1, s_2, s_3 to represent our partitions sum, cause the last partition's sum can be easily computed as $s_4 = m s_1 s_2 s_3$.

Relation

-Since the i_{th} integer a_i can be put in any partition, $x(i, s_1, s_2, s_3)$ will be True if a_i can be put in any of the four partitions:

 $x(i, s_1, s_2, s_3) = OR \left\{ \begin{array}{l} x(i+1, s_1 - a_i, s_2, s_3), \\ x(i+1, s_1, s_2 - a_i, s_3), \\ x(i+1, s_1, s_2, s_3 - a_i), \\ x(i+1, s_1, s_2, s_3) \end{array} \right\}$

Topological Order

-The dependency requires strictly larger i, so **acyclic**.

Base Case

- -Since i is always incrementing, the first parameter has to be n.
- -x(n,0,0,0) is True. Since we can always put zero number to zero sums.
- $-x(n, s_1, s_2, s_3)$ is False. Since we we cannot split zero to positive numbers.
- -for $s_1, s_2, s_3 \in (0, m]$

Original Problem

- -If $x(0, s_1, s_2, s_3)$ is True, then we can try to find the minimum of the maximum of $s_1, s_2, s_3, m s_1 s_2 s_3$
- -Assume $y(s_1, s_2, s_3) = max\{s_1, s_2, s_3, m s_1 s_2 s_3\}$ if $x(0, s_1, s_2, s_3)$ is True.
- -for $s_1, s_2, s_3 \in (0, m]$
- -The original problem is $min\{y(s_1, s_2, s_3)\}$, for $s_1, s_2, s_3 \in (0, m]$.

•Time

- –Number of subproblems: $O(nm^3)$
- -Work per subproblem: O(1)

Problem Set 8 5

- -Work to solve the original problem using the decision subproblem: $O(m^3)$
- -Total running time: $O(nm^3 + m^3) = O(nm^3)$
- **–Pseudopolynomial** if m fits in a word-RAM model.

Problem 8-4. For those uncorrupted logs, we need to store those in a data structure that can be efficient to look up.

So, we can build a **Hash Table** H to achieve the lower bound:

- 1.Build an empty hash table.
- 2.Enumerate through the word w in a log.
- 3. If w is already in H, then increment the mapping number f(w), and set to 1 otherwise.
- 4. The number of words is $O(m^3n)$, to insert each word, takes O(1)-time. Sums up to $O(m^3n)$ -time.

Then, we can solve the maximized **Restoration** by **dynamic programming**. We will solve this problem following the **SRT BOT** template.

Subproblem

-x(i): the maximized **Restoration** for suffixes $l_i[i]$ while keep the parent pointers.

•Relation

- $-x(i) = \max\{f(l_j[i:k]) + x(k) | k \in \{i+1, \cdots, |l_j|\}\}\$
- $-f(l_j[i:k])$ returns the number of times word $l_j[i:k]$ appears, and zero if word $l_j[i:k]$ doesn't exist in H.

Topological Order

-Dependency relies on strictly larger i, so acyclic.

•Base Case

$$-x(|l_j|) = 0$$

-for $j \in \{0, 1, \dots, n-1\}$

Original Problem

-x(0) and return the restoration R_j using parent pointers.

•Time

- -Number of subproblems: O(m)
- –Work per subproblem: $O(m^2)$
 - (O(m) for searching the maximum value, O(m) for a single lookup in hash table when, worst case, word $l_j[i:k]$ is not in H.)
- -Total running time per log: $O(m^3)$
- -For n corrupted logs, takes $O(m^3n)$ -tim