# Lecture 3 Describing and Visualizing Distributions

## Review



Statisticians use to data to answer questions about populations



A population is the set of **ALL** observations of interest



Our data is usually a subset of observations from the population called a sample



The way in which we collect our data is called the sampling design

## Review

 A natural first step of statistical description is to look graphical summaries of the observations for our variables

 A distribution of a variable gives (a) the values that occur and (b) how often each value occurs

 A frequency table is a tabular descriptions of the distribution of a variable – it can be applied to either quantitative or qualitative variables



# Frequency Tables for Continuous Variables

- The number of possible values is usually very large
- Convert continuous values into discrete groups (sometimes called bins):

#### **Steps:**

- Divide the range of the variable into a set of non-overlapping intervals
- 2. Count the number of values that fall into each interval

# Example: Old Faithful Eruption Times



| Observation | Eruption | Waiting |
|-------------|----------|---------|
|             | Time     | Time    |
| 1           | 3.600    | 79      |
| 2           | 1.800    | 54      |
| 3           | 3.333    | 74      |
| 4           | 2.283    | 62      |
| 5           | 4.533    | 85      |
| 6           | 2.883    | 55      |
| 7           | 4.700    | 88      |
| 8           | 3.600    | 85      |
| 9           | 1.950    | 51      |
| 10          | 4.350    | 85      |
| 11          | 1.833    | 54      |
| :           | :        |         |
| •           | •        |         |
| 272         | 4.467    | 74      |

# Old Faithful Eruption Times: Frequency Table

| Waiting<br>Time<br>(Min) | Frequency       | Relative<br>Frequency | Cumulative<br>Relative<br>Frequency |
|--------------------------|-----------------|-----------------------|-------------------------------------|
| < 50                     | 21              | 0.077                 | 0.077                               |
| 50 - 60<br>60 - 70       | $\frac{56}{26}$ | $0.206 \\ 0.096$      | $0.283 \\ 0.379$                    |
| 70 - 80                  | 77              | 0.283                 | 0.662                               |
| 80 - 90                  | 80              | 0.294                 | 0.956                               |
| > 90                     | 12              | 0.044                 | 1                                   |

# Visualizing Distributions of Categorical Data



**Pie Charts** - a circle divided into 'slices' corresponding to each category. The size of a slice shows the proportion of observations in a category



**Bar graph** – displays a vertical bar for each category. The height of the bar shows the percentages of observations in the category



**Pareto Chart** - a bar chart with the categories ordered by decreasing frequency



# Visualizing Distributions: Quantitative Variables

 Dot plots – shows a dot for each observation placed above the value for that observation

#### Steps to construct a dot plot

- 1. Draw a horizontal line and mark the line with regular values of the variable
- 2. For each observation, place a dot above its value on the number line
  - Works best with quantitative discrete data
  - Doesn't work well if the variable is continuous and takes on many distinct values...
  - For continuous data, the values may need to be round to the nearest tenth or integer



# Example: MPG and Engine Cylinders



| Observation | MPG  | Cylinders | Model             |
|-------------|------|-----------|-------------------|
| 1           | 21.0 | 6         | Mazda RX4         |
| 2           | 21.0 | 6         | Mazda RX4 Wag     |
| 3           | 22.8 | 4         | Datsun 710        |
| 4           | 21.4 | 6         | Hornet 4 Drive    |
| 5           | 18.7 | 8         | Hornet Sportabout |
| 6           | 18.1 | 6         | Valiant           |
| <b>:</b>    | :    | <b>:</b>  | <b>:</b>          |
| 32          | 21.4 | 4         | Volvo 142E        |



# Visualizing Distributions: Quantitative Variables

**Stem and leaf plot** – like a dot plot, a stem and leaf diagram also displays individual observations.

**Stem** – all the digits in an observation except the last digit

**Leaf** – the last digit in an observation

Steps to construct a stem and leaf plot

- 1. Sort the data in order from smallest to largest.
- 2. Place the stems in a column in increasing order
- 3. Place a vertical line to the right of the stems
- 4. To the right of the vertical line, fill in the leaves that correspond with each stem in increasing order



## Example: MPG



| Observation | MPG  | Cylinders | Model             |
|-------------|------|-----------|-------------------|
| 1           | 21.0 | 6         | Mazda RX4         |
| 2           | 21.0 | 6         | Mazda RX4 Wag     |
| 3           | 22.8 | 4         | Datsun 710        |
| 4           | 21.4 | 6         | Hornet 4 Drive    |
| 5           | 18.7 | 8         | Hornet Sportabout |
| 6           | 18.1 | 6         | Valiant           |
| :           | ÷.   | ÷.        | ÷                 |
| 32          | 21.4 | 4         | Volvo 142E        |

| Stems | Leaves    |
|-------|-----------|
| 10    | 4,4       |
| 11    |           |
| 12    |           |
| 13    | 3         |
| 14    | 3,7       |
| 15    | 0,2,2,5,8 |
| 16    | 4         |
| 17    | 3,8       |
| 18    | 1,7       |
| 19    | 2,2,7     |
| 20    |           |
| 21    | 0,0,4,4,5 |
| 22    | 8,8       |
| 23    |           |
| 24    | 4         |
| 25    |           |
| 26    | 0         |
| 27    | 3         |
| 28    |           |
| 29    |           |
| 30    | 4,4       |
| 31    |           |
| 32    | 4         |
|       | 1_        |

33

| Stems | Leaves        |
|-------|---------------|
| 10    | 4,4           |
| 12    | 3             |
| 14    | 3,7,0,2,2,5,8 |
| 16    | 4,3,8         |
| 18    | 1,7,2,2,7     |
| 20    | 0,0,4,4,5     |
| 22    | 8,8           |
| 24    | 4             |
| 26    | 0,3           |
| 28    |               |
| 30    | 4,4           |
| 32    | 4,9           |
|       |               |
|       |               |

# Try it out: Stem and leaf plot

Data = 4.2, 3.8, 4.6, 3.2, 2.7, 8.2, 9.1, 0.2, 1.2, 6.2

# Visualizing Distributions: Quantitative Variables

**Stem and leaf plots** and **dot plots** are unwieldy for large n

**Histogram** – uses bars to portray the frequencies or relative frequencies of the possible outcomes for a quantitative variable

#### Steps to construct a histogram

- 1. Divide the range of the data into intervals of equal width
- 2. Compute the frequency of each interval (i.e construct the frequency table)
- 3. Label the x-axis with the values or endpoints of each interval.
- 4. Draw a bar over each value or interval with height equal to its frequency or relative frequency

# Try it out: Histogram

Consider the following n=20 observations of a continuous variable





## How to choose the number of Bins?

- How to choose the best number of bins is not a straightforward question and there is a lot of literature on the subject
- We can construct our histogram using a specific binwidth w or under a set number of bins k

• 
$$w = \frac{\max x - \min x}{k}$$
 or  $k = \frac{\max x - \min x}{w}$ 

or 
$$k = \frac{\max x}{n}$$

- Square root method:  $k = \text{round}(\sqrt{n})$  (A fairly safe and basic rule of thumb)
- Sturges Rule<sup>[1]</sup>:  $k = \text{round}(\log_2 n) + 1$  (not great for n < 30)
- Rices Rule<sup>[2]</sup>:  $k = 2\sqrt[3]{n}$

## Some tips

- If too few intervals are used, then the graph will be too crude
- If too many intervals are used, graph will contain many short bars and gaps.
   Usually between 5 - 15 intervals are enough.
- Most plotting software will automatically choose the number of bins.
- <u>ALWAYS</u> plot the histogram to get an idea about the shape of the distribution of a quantitative variable
- Is the number of observations is small (say n < 50) then it's a good idea to supplement a histogram with a dot plot or stem plot</li>

#### **Histogram of Eruption Waiting Times**







### Example: Old Faithful Eruption Times

| Waiting<br>Time<br>(Min)              | Frequency            | Relative<br>Frequency            | Cumulative<br>Relative<br>Frequency |
|---------------------------------------|----------------------|----------------------------------|-------------------------------------|
| < 50<br>50 - 60<br>60 - 70<br>70 - 80 | 21<br>56<br>26<br>77 | 0.077<br>0.206<br>0.096<br>0.283 | 0.077<br>0.283<br>0.379<br>0.662    |
| 80 - 90<br>> 90                       | 80<br>12             | $0.294 \\ 0.044$                 | 0.956 $1$                           |

#### **Histogram of Eruption Waiting Times**



