Ηλεκτρονικά Ισχύος

4η Άσκηση

Ζαφειράκης Κωνσταντίνος 2019030035 Δούνης Λουκάς 2018030127 Σταυρόπουλος Αλέξανδρος Ανδρέας 2019030109

Διδάσχων: Φώτιος Κανέλλος

Υπεύθυνος εργαστηρίου: Δήμητρα Κυριακού

ΗΜΜΥ Πολυτεχνείο Κρήτης Εαρινό εξάμηνο 2022-2023

Πίναχας Περιεχομένων

1	Περιγραφή Λειτουργίας Αντιστροφέων	1
	1.1 Μονοφασικός Αντιστροφέας	
	1.1.1 Μονοφασικός Αντιστροφέας Γέφυρας Τετραγωνικού Παλμού	
	1.1.2 Μονοφασικός Αντιστροφέας Γέφυρας με μονοπολική PWM	
	1.2 Τριφασικός Αντιστροφέας	
	1.2.1 Τριφασικός Αντιστροφέας Γέφυρας Τετραγωνικού Παλμού	
	1.2.2 Τριφασικός Αντιστροφέας Γέφυρας με μονοπολική PWM	
2	Μονοφασικός Αντιστροφέας Γέφυρας Τετραγωνικού Παλμού	3
	2.1 Κυματομορφές Κυκλώματος	3
	2.2 Συντελεστής Ισχύος	
	Συντελεστής Ισχύος	
3	Μονοφασικός Αντιστροφέας Γέφυρας με μονοπολική PWM	4
	3.1 Κυματομορφές Κυκλώματος	
	3.2 Συντελεστής Ισχύος	
	3.3 Αρμονικές Τάσης Εξόδου	
4	Τριφασικός Αντιστροφέας Γέφυρας Εξαπαλμικής Λειτουργίας	8
	4.1 Κυματομορφές Κυκλώματος	
	4.2 Συντελεστής Ισχύος	

1 Περιγραφή Λειτουργίας Αντιστροφέων

1.1 Μονοφασικός Αντιστροφέας

Ο μονοφασικός Αντιστροφέας αποτελεί μία συσκευή η οποία μετατρέπει DC τάση και ρεύμα σε AC. Το κύκλωμα κατασκευάζεται από τέσσερεις ελεγγόμενους διακόπτες και τέσσερεις διόδους συνδεδεμένες ως εξής:

1.1.1 Μονοφασικός Αντιστροφέας Γέφυρας Τετραγωνικού Παλμού

1.1.2 Μονοφασικός Αντιστροφέας Γέφυρας με μονοπολική PWM

Για την παραγωγή της AC τάσης και AC ρεύματος εξόδου, σε αυτή την περίπτωση, δημιουργούνται τετραγωνικοί παλμοί διαφορετικού εύρους μέσω των οποίων, ανάλογα με το εύρος τους, ελέγχεται το πλάτος της τάσης εξόδου.

Στην παραπάνω διάταξη τα transistor ενεργοποιούνται με συγχεχριμένο σειρά ώστε οι παλμοί ελέγχου να κατασχευάζουν την επιθυμητή τάση εξόδου εξόδου, ενώ οι δίοδοι χρησιμοποιούνται για την ροή ρεύματος προς αντίθετη φορά από αυτή των ενεργοποιημένων transistor, λόγω της εναλλασσόμενης μορφής του ρεύματος.

Για την παραγωγή των παλμών ελέγχου, κατασκευάζεται το επιθυμητό ημιτονοειδές σήμα εξόδου καθώς και ένας τριγωνικός παλμός (Φέρον) πλάτους V_{dc} , συχνότητας ίση με την διακοπτική $(m_f \cdot f)$. Συγκρίνοντας το φέρον με το θετικό ημίτονο εξόδου προκύπτουν οι παλμοί ελέγχου των transistor Q_1 , Q_4 ενώ συγκρίνοντάς το με το αρνητικό προκύπτουν οι παλμοί ελέγχου των transistor Q_2 , Q_3 , όπως αυτοί φαίνονται στον πίνακα που ακολουθεί:

Condition	Q_1	Q_2	Q_3	Q_4
$\overline{V_{ref} > V_{carrier}}$	ON	-	-	OFF
$V_{ref} < V_{carrier}$	OFF	-	-	ON
$-V_{ref} > V_{carrier}$	-	OFF	ON	-
$-V_{ref} < V_{carrier}$	_	ON	OFF	-

Σύμφωνα με τα παραπάνω δεδομένα προκύπτει η τιμή της τάσης στο κόμβο a και στον κόμβο b, εφόσον τα ενεργά transistor δρουν ως βραχυκύκλωμα. Μέσω των τάσεων V_a και V_b η τάση εξόδου στο φορτίο:

$$V_{out} = V_a - V_b \tag{1}$$

Τέλος, για την καλύτερη ανάλυση του συστήματος ορίζεται ο δείκτης διαμόρφωσης πλάτους (m_a) και ο δείκτης διαμόρφωσης συχνότητας (m_f) . Ο m_a ορίζεται ως το πηλίκο μεταξύ του πλάτους του σήματος αναφοράς και του πλάτους του φέροντος και σύμφωνα με την θεωρία, για τιμές μικρότερες της μονάδας επηρεάζει το πλάτης της βασικής αρμονικής ως εξής:

$$V_1 = m_a \cdot V_{dc} \tag{2}$$

Αντίστοιχα, ο m_f ορίζεται ως το πηλίκο μεταξύ της συχνότητας του σήματος αναφοράς και της συχνότητας του φέροντος και σύμφωνα με την θεωρία, αυξάνοντας τον οι αρμονικές του σήματος μετατοπίζονται σε μεγαλύτερες συχνότητες.

1.2 Τριφασικός Αντιστροφέας

Ο Τριφασικός Αντιστροφέας αποτελεί μία παραλλαγή του μονοφασικού, ο οποίος και πάλι μετατρέπει DC τάση και ρεύμα σε τριφασικό AC. Το κύκλωμα κατασκευάζεται από έξι ελεγχόμενους διακόπτες και έξι διόδους συνδεδεμένες ως εξής:

1.2.1 Τριφασικός Αντιστροφέας Γέφυρας Τετραγωνικού Παλμού

1.2.2 Τριφασικός Αντιστροφέας Γέφυρας με μονοπολική PWM

Σε αντίθεση με τον μονοφασικό, εφόσον υπάρχουν τρεις φάσεις, κατασκευάζονται τρία ημίτονα αναφοράς τα οποία συγκρίνονται με τον ίδιο τριγωνικό παλμό και ανάλογα ανάλογα το αποτέλεσμα της σύγκρισης, κατασκευάζονται οι παλμοί ελέγχου των transistor σύμφωνα με τον πίνακα που ακολουθεί:

Condition	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6
$V_{a_sin} > shark_tooth$	ON	-	-	-	-	-
$V_{a_sin} < shark_tooth$	-	-	-	ON	-	-
$V_{b_sin} > shark_tooth$	-	-	ON	-	-	-
$V_{b_sin} < shark_tooth$	-	-	-	-	-	ON
$V_{c_sin} > shark_tooth$	-	-	-	-	ON	-
$V_{c_sin} < shark_tooth$	_	ON	_	-	_	-

2 Μονοφασικός Αντιστροφέας Γέφυρας Τετραγωνικού Παλμού

2.1 Κυματομορφές Κυκλώματος

2.2 Συντελεστής Ισχύος

(a) subcaption 1

(b) subcaption 1

Figure 1: Caption 1

$$a \le \tan^{-1}\left(\frac{\omega L}{R}\right) \tag{3}$$

3 Μονοφασικός Αντιστροφέας Γέφυρας με μονοπολική PWM

Μοντελοποιήθηκε ένας μονοφασικός αντιστροφέας γέφυρας με μονοπολική PWM τάσης εισόδου 100V και συχνότητα 50Hz στο οποίο εφαρμόζεται το ίδιο RL φορτίο ($R=10\Omega,\,L=0.025$ H). Για την καλύτερη κατανόηση του, προσομοιώθηκε η λειτουργία του για $m_a=0.9$ και $m_f=40$ και $m_f=200$ και καταγράφηκαν οι ακόλουθες κυματομορφές.

3.1 Κυματομορφές Κυκλώματος

Τάση και Ρεύμα εξόδου

Σύμφωνα με τα παραπάνω figures, τόσο η τάση όσο και το ρεύμα εξόδου έχουν την αναμενόμενη μορφή εφόσον το σήμα της τάσης αποτελείται από διακριτούς παλμούς και το ρεύμα εξόδου παρουσιάζει ημιτονοειδή μορφή. Αυξάνοντας τον m_f παρατηρείται ανάλογη αύξηση του αριθμού των παλμών τάσης. Η συμπεριφορά αυτή ήταν αναμενόμενη καθώς όπως προαναφέρθηκε στην υποενότητα 1.1.2, αυξάνοντας τον m_f αυξάνεται ανάλογα η συχνότητα του τριγωνικού παλμού και σε συνδυασμό με την σταθερή συχνότητα του επιθυμητού ημιτόνου. Έτσι, εφόσον οι παλμοί προκύπτουν μέσω σύγκρισης των δύο σημάτων οι παλμοί αυξάνονται.

Ρεύμα εξόδου

Όσον αφορά το ρεύμα εξόδου παρουσιάζει την αναμενόμενη ημιτονοειδή μορφή. Αυξάνοντας το m_f παρατηρείται μείωση των διαχυμάνσεων η οποία συνεπάγεται με μείωση των αρμονικών στο σήμα.

Η μείωση αυτή οφείλεται εν μέρη στο γεγονός πως το φορτίο είναι ωμιχοεπαγωγικό και όπως είναι γνωστό, η σύνθετη αντίσταση του ισούται με $R+j\omega L$, οπότε αυξάνοντας τον m_f , αυξάνοντας δηλαδή την συχνότητα του φέροντος, αυξάνεται και η σύνθετη αντίσταση του φορτίου, μειώνοντας έτσι την επίδραση των ανώτερων αρμονικών. Ο δεύτερος λόγος μείωσης των αρμονικών είναι πως αυξάνοντας τον m_f οι αρμονικές του σήματος εμφανίζονται σε μεγαλύτερες συχνότητες με αποτέλεσμα να έχουν μικρότερη επιρροή στο σήμα.

Τάση Διακοπτικών Στοιχείων

Μέσω της τάσης των transistor, παρατηρείται πως άγουν σε ζεύγη (1-2) και (3-4) όπως ήταν αναμενόμενο καθώς και πως αποτελείται από παλμούς διαφορετικού εύρους. Αυξάνοντας τον (m_f) παρατηρείται και πάλι πενταπλασιασμός των παλμών. Ακόμα, σε σχέση με τον **Αντιστροφέα Quasi**, οι παλμοί έχουν τό ίδιο πλάτος. Όσον αφορά τις τάσεις των διόδων, ομοίως με τον μονοφασικό μετατροπέα τετραγωνικού παλμού, είναι ίση με (m_f) 0 καθώς οι δίοδοι άγουν μόνο στις περιπτώσεις όπου η τάση εξόδου είναι ίση με (m_f) 0.

Ρεύμα Διακοπτικών Στοιχείων

Παρατηρώντας τις χυματομορφές ρεύματος των transistor είναι χαι πάλι εμφανές πως άγουν σε ζεύγη ανάλογα την φάση λειτουργίας. Επίσης, ομοίως με την τάση, για πενταπλασιασμό του m_f πενταπλασιάζονται οι παλμοί. Ωστόσο, σε αντίθεση με την τάση των διόδων, το ρεύμα δεν είναι μηδενιχό αλλά παρουσιάζει όμοια μορφή με το ρεύμα των transistor. Βασιχή διαφορά μεταξύ των δύο σημάτων είναι πως όταν ρέει ρεύμα μέσω transistor, το ρεύμα της διόδου είναι μηδέν χαι αντίστροφα ενώ χαι πάλι για αύξηση του m_f , αυξάνεται το πλήθος των παλμών.

Ρεύμα Εισόδου

Εφαρμόζοντας νόμο ρευμάτων του Kirchhoff, προχύπτει η εξής σχέση για το ρεύμα εισόδου I_{in} :

$$I_{in} - I_{Q_1} + I_{D_1} - I_{Q_3} + I_{D_3} = 0 \Rightarrow I_{in} = I_{Q_1} - I_{D_1} + I_{Q_3} - I_{D_3}$$
 (4)

Σύμφωνα με τις παραπάνω γραφικές, παρατηρείται πως το το ρεύμα εισόδου παρουσιάζει εναλλασσόμενη μορφή καθώς παίρνει και θετικές, αρνητικές τιμές και μηδενικές τιμές. Επιπλέον, και εδώ παρατηρείται πως με τον πενταπλασιασμό του m_f , πενταπλασιάζεται και ο αριθμός των παλμών.

Ισχύς Εισόδου - Εξόδου

Για τον υπολογισμό της ισχύς απαιτείται γνώση του ρεύματος. Όσον αφορά την έξοδο του χυχλώματος, το ρεύμα είναι γνωστό ωστόσο όσον αφορά την είσοδο, το ρεύμα είναι απαραίτητο να βρεθεί.οπότε εφόσον η ισχύς υπολογίζεται ως το γινόμενο μεταξύ τάσης και ρεύματος, οι ισχύς προχύπτουν ως εξής:

$$P_{in} = V_{in} \cdot I_{in} = V_{dc} \cdot I_{in}$$
$$P_{in} = V_{out} \cdot I_{out}$$

Παρατηρώντας τις χυματομορφές ισχύς εισόδου εξόδου για τις δύο περιπτώσεις, είναι εμφανές και πάλι πως αυξάνοντας τον m_f το πλήθος των παλμών αυξάνεται. Αχόμα, συγχρίνοντας την ισχύ εισόδου με την ισχύ εξόδου χάθε περίπτωσης παρατηρείται πως είναι αχριβώς ίδιες, χάτι το οποίο οφείλεται στην παραδοχή πως οι δίοδοι χαι τα transistor θεωρούνται ιδανιχά χαι στην Αρχή Δ ιατήρησης της Ενέργειας.

3.2 Συντελεστής Ισχύος

Σύμφωνα με την θεωρία ο υπολογισμός του συντελεστή ισχύος υπολογίζεται ως εξής:

$$PF = \frac{P}{S} = \frac{I_{out,rms}^2 \cdot R}{I_{out,rms} \cdot V_{out,rms}} = \frac{I_{out,rms} \cdot R}{V_{out,rms}} \text{ όπου } \begin{cases} I_{out,rms} = \sqrt{\frac{1}{T} \int^T I_{out}^2(t) dt} \\ V_{out,rms} = \sqrt{\frac{1}{T} \int^T V_{out}^2(t) dt} \end{cases}$$

Αντικαθιστώντας, προκύπτουν τιμές με πολύ μικρή διαφορά (0.6614 και 0.6617 αντίστοιχα για τις δύο περιπτώσεις) η οποία μπορεί να θεωρηθεί αμελητέα.

3.3 Αρμονικές Τάσης Εξόδου

Είναι γνωστό από την θεωρία πως η αρμονικές πέραν της βασικής εμφανίζονται σε συχνότητες με:

$$f_n = f_s(n \cdot m_f \pm 1) \tag{5}$$

οπότε οι πρώτες αρμονικές (n=1) αναμένεται να εμφανίζονται αρμονικές στις εξής συχνότητες:

$$\begin{array}{c|cccc} & 2 \cdot m_f \pm 1 & 2 \cdot m_f \pm 3 \\ \hline m_f = 40 & 3950 \; \mathrm{Hz} & 3850 \; \mathrm{Hz} \\ 4050 \; \mathrm{Hz} & 4150 \; \mathrm{Hz} \\ \hline m_f = 200 & 19950 \; \mathrm{Hz} & 19850 \; \mathrm{Hz} \\ 20050 \; \mathrm{Hz} & 20150 \; \mathrm{Hz} \end{array}$$

Εφαρμόζοντας μετασχηματισμό Fourier στη σήμα της τάσης εξόδου, προχύπτουν οι αχόλουθες χυματομορφές:

Παρατηρώντας τις δύο χυματομορφές είναι εμφανές πως οι θεωρητικές τιμές εμφάνισης αρμονικών που εμφανίζονται στο πίναχα συμφωνούν τα αποτελέσματα της προσομοίωσης. Όπως ήταν αναμενόμενο, για πενταπλασιασμό του m_f , οι αρμονικές πέραν της βασικής εμφανίζονται σε πενταπλάσιες συχνότητες μειώνοντας έτσι την επίδρασης του στο σήμα εξόδου. Η ιδιότητα αυτή συναρτήσει του ωμικοεπαγωγικού φορτίου το οποίο δρα ως low-pass φίλτρο έχουν ως αποτέλεσμα το σήμα ρεύματος να προσεγγίζει αρχετά αυτό του ημιτόνου, όπως είναι εμφανές παρατηρώντας την αντίστοιχη χυματομορφή.

- 4 Τριφασικός Αντιστροφέας Γέφυρας Εξαπαλμικής Λειτουργίας
- 4.1 Κυματομορφές Κυκλώματος
- 4.2 Συντελεστής Ισχύος

