• Б.С.Ишханов

Фотоядерные реакции и астрофизика

Photonuclear reactions and astrophysics

B. S. Ishkhanov*

Department of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia and Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia

V. N. Orlin, K. A. Stopani, and V. V. Varlamov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991 Russia (Dated: Compiled on February 28, 2013)

Photonuclear reactions play a prominent role in the nucleosynthesis processes in stars and in the Early Universe. Traditional and modern methods of studing photonuclear reactions are considered. Different factors which determine accuracy of photonuclear data are discussed. Cross sections of photonuclear reactions relevant to astrophysics are given.

Схематическая кривая распространенности химических элементов в Солнечной системе.

REVIEWS OF

Modern Physics

VOLUME 29, NUMBER 4

OCTOBER, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

"It is the stars, The stars above us, govern our conditions";
(King Lear, Act IV, Scene 3)

but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves,"
(Julius Caesar, Act I, Scene 2)

TABLE OF CONTENTS

		Page
I.	Introduction	. 548
	A. Element Abundances and Nuclear Structure	
	B. Four Theories of the Origin of the Elements C. General Features of Stellar Synthesis	
II.	Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales Associated with Them	
	A. Modes of Element Synthesis	
	B. Method of Assignment of Isotopes among Processes (i) to (viii)	
	C. Abundances and Synthesis Assignments Given in the Appendix	
	D. Time-Scales for Different Modes of Synthesis.	
III.	Hydrogen Burning, Helium Burning, the α Process, and Neutron Production	. 559
	A. Cross-Section Factor and Reaction Rates	. 559
	B. Pure Hydrogen Burning	. 562
	C. Pure Helium Burning	. 563
	D. α Process	
	E. Succession of Nuclear Fuels in an Evolving Star.	. 568
	F. Burning of Hydrogen and Helium with Mixtures of Other Elements; Stellar Neutron Sources	. 569
	e Process	
V.	s and r Processes: General Considerations	. 580
	A. "Shielded" and "Shielding" Isobars and the s, r, p Processes	. 580
	B. Neutron-Capture Cross Sections	
	C. General Dynamics of the s and r Processes	. 583
VI.	Details of the s Process.	. 583

^{*} Supported in part by the joint program of the Office of Naval Research and the U. S. Atomic Energy Commission.

Образование химических элементов

- 1. Горение водорода. Один из основных процессов, поддерживающих длительное выделение энергии в звездах. При горении водорода происходит слияние четырех ядер водорода с образованием ядра ⁴Не. Этот процесс происходит либо в рр-цепочке ядерных реакций, либо в циклических ядерных реакциях с участием С, N, O, Ne и др., играющих роль катализатора. Сюда же относятся процессы с участием протонов, в которых образуется некоторое количество легких элементов.
- 2. *Горение гелия*. После того, как в звезде накапливается гелий, под действием сил гравитации гелиевое ядро звезды сжимается, становится горячим и в нем начинается процесс горения гелия с образованием ядер 12 C, 16 O, 20 Ne.
- 3. *а-процесс*. Процесс последовательного добавления α -частиц к ядру 20 Ne с образованием ядер 24 Mg, 28 Si, 32 S, 36 Ar, 40 Ca. Он описывает повышенную распространенность атомных ядер типа N α , где α ядро 4 He, а N целое число.
- 4. *е-процесс*. Процесс, в котором в условиях термодинамического равновесия образуются атомные ядра, расположенные в районе железного максимума.
- 5. *s-процесс*. Образование ядер тяжелее железа в результате медленного последовательного захвата нейтронов. Скорость s-процесса сравнима со скоростью β -распада радиоактивных ядер, образующихся в результате захвата нейтронов. Длительность s-процесса от 10^2 до 10^5 лет. s-процесс отвечает за образование максимумов в распространенности атомных ядер с $A \sim 90$, 138 и 208.
- 6. r-nроuеcc. Образование ядер тяжелее железа в результате быстрого последовательного захвата нейтронов со скоростью, существенно превышающей скорость β -распада образующихся радиоактивных ядер. Характерное время r-процесса 0.01–100 с. В результате r-процесса в кривой распространенности элементов возникают максимумы при A = 80, 130 и 195.
- 7. *p-процесс*. Образование наиболее легких изотопов химических элементов. Он включает в себя реакции (p, γ) , (γ, n) .
- 8. *Х-процесс*. Процесс нуклеосинтеза, ответственный за образование изотопов ^{6,7}Li, ⁹Be, ^{10,11}B. Считается, что эти элементы образуются в реакциях расщепления ¹²C и ¹⁶O под действием космических лучей.

Образование химических элементов в звездах

Возможные ядерные реакции в звездах

F 1				
Macca,	Возможные			
${M}_{\odot}$	ядерные реакции			
0.08	Нет			
0.3	Горение водорода			
	Горение водорода и			
0.7	гелия			
	Горение водорода,			
5.0	гелия, углерода			
	Все реакции синтеза с			
25.0	выделением энергии			

Основные источники ү-квантов в космической среде и звездах

Источниками γ -квантов в звездах и космической среде являются:

- аннигиляция частиц и античастиц, образовавшихся в результате Большого взрыва;
- тормозное и магнитотормозное излучение электронов, позитронов;
- обратное комптоновское рассеяние малоэнергичных фотонов на высокоэнергичных электронах;
- распад $\pi^0 \rightarrow \gamma + \gamma$;
- радиационные переходы возбужденных состояний атомных ядер;
- рассеяние реликтовых фотонов на атомных ядрах высокой энергии;
- ускорение электронов на турбулентностях межзвездной плазмы;
- γ -излучение сверхновых, активных ядер галактик.

Основные источники у-квантов

$$n = \left(\frac{1}{\hbar c}\right)^3 \frac{E^2}{\pi^2} \frac{1}{\left(e^{\frac{E}{kT}} - 1\right)}$$

Число фотонов в единице объема спектра равновесного излучения.

Широкий спектр диффузного внегалактического излучения от рентгеновского до гамма-диапазона по данным различных экспериментов. Кривые линии представляют теоретические оценки вкладов:

1 - сейфертовых галактик 1-го типа; 2 - Н-го типа; 3 - квазаров; 4 - сверхновых 1-го типа; 5 — блазаров для степенного спектра с показателем -1,7 при энергиях ниже 4 МэВ и -2,15 при более высоких энергиях. Утолщенная сплошная линия соответствует сумме всех вкладов.

Фотоядерные реакции

Схематическая зависимость сечений реакций от энергии ү-квантов

Δ(1232) резонанс в ядрах

Отношение полного сечения фотопоглощения к массовому числу А для средних и тяжелых ядер по данным работы [М. MacCormick *et al.*, Phys. Rev. C **55**, 1033 (1997)]. Сплошная кривая – усреднение по имеющимся данным.

Гигантский дипольный резонанс

Положение максимума ГДР $E \approx 78 A^{-1/3} \text{ M} \odot \text{B}$

Интегральное сечение ГДР $\sigma_{\rm int} = \int\limits_{\it GDR} \sigma(E) dE \approx 60 \frac{\it NZ}{\it A} \, {\rm M} {\rm 9B} \cdot {\rm M} {\rm 6}$

Расщепление максимума ГДР в деформированных ядрах

$$E_a = 78 \frac{r_0}{a} \text{ M} \cdot \text{B}, \ E_b = 78 \frac{r_0}{b} \text{ M} \cdot \text{B}$$

$$\Delta E = E_b - E_a = 78 A^{-1/3} \beta \text{ M} \cdot \text{B}$$

 (γ,xn) reaction cross sections in the energy range of the GDR.

Фотонейтронные сечения

 $R^{int} = \sigma_S^{int}/\sigma_L^{int}$, arb. units

Сечения фотонейтронных реакций Тормозные и квазимонохроматические эксперименты

Комбинированная модель фотоядерных реакций

Изоспиновое расщепление ГДР

$$\frac{C^2(T_>)}{C^2(T_<)} = \frac{1}{T_0} \left(\frac{1 - 1.5T_0 A^{-2/3}}{1 + 1.5A^{-2/3}} \right).$$

$$E(T_{>}) - E(T_{<}) = 60 \frac{T_0 + 1}{\Delta} \text{ M} \cdot \text{B}.$$

Оцененные сечения ¹¹⁸Sn(γ,n), ²⁰⁸Pb(γ,n)

Comparison between our evaluated ([16] dots) and experimental (Saclay|squares, Livermore|triangles, Utsunomiya [26]|stars) data for the 118 Sn(γ ,n) 117 Sn reaction cross section near threshold.

Comparison between our evaluated ([28] dots) and experimental (Saclay|squares, Livermore|triangles, Utsunomiya [27]|stars) data for the 208 Pb(γ ,n) 207 Pb reaction cross section near threshold.

Гамма-активационная методика

Схема эксперимента на пучке тормозных ү-квантов.

Гамма-активационная методика

Образование и распад радиоактивного изотопа 197 Hg в реакции 198 Hg(γ ,n) 197 Hg

Гамма-активационная методика

Первичный нуклеосинтез

1. Большой взрыв

2.
$$\gamma + p \rightarrow \Delta^+ \rightarrow n + \pi^+, \quad \gamma + n \rightarrow \Delta^0 \rightarrow p + \pi^-$$

- 3. Реликтовое излучение $n_{\gamma} / n_{N} = 10^{-9}$
- 4. $p + e^{-} \leftrightarrow n + v_{e}$ $p + \tilde{v}_{e} \leftrightarrow n + e^{+}$ $n \leftrightarrow p + e^{-} + \tilde{v}_{e}$

5. Распределение Гиббса

$$\frac{N_p}{N_n} = \frac{e^{-E_p/kT}}{e^{-E_n/kT}} = e^{-(m_p - m_n)c^2/kT} = e^{1,29 \text{ M} \cdot B/kT \text{ (M} \cdot B)} \approx 6.$$

 $T \approx 10^9$ K.

Первичный нуклеосинтез

Изменение выхода легчайших ядер и барионной плотности (штриховая линия) на этапе первичного нуклеосинтеза

Сечения фотоядерных реакций на изотопах 2 H, 3 H, 3 He E_{v} < 60 МэВ.

α-процесс в звездах

$$\rho = 10^3 \text{ г/см}^3$$
 $T = 2 \cdot 10^8 \text{ K}$

Фотоядерные реакции – источники нейтронов

е-процесс

Синтез химических элементов от гелия до германия

Ядерные реакции, приводящие к синтезу элементов от гелия до германия.

Образование ядер «железного» пика

Образование ядер «железного» пика. Изоспиновые эффекты

Сечения реакций (γ, p) , (γ, n) , $(\gamma, 2n)$ на изотопе ⁵⁶Fe.

Образование ядер «железного» пика

Интегральные сечения реакций (γ, p) , (γ, n) , $(\gamma, 2n)$ на изотопах Fe в зависимости от массового числа A.

s- и r-процессы в звёздах

Траектория s-процесса изотопов A=72-89

Экспериментальная зависимость $n\sigma$ от массового числа A для элементов Солнечной системы.

Р-нуклиды

Nucleus	Anders and Grevesse	Nucleus	Anders and Grevesse
⁷⁴ Se	0.55	¹³² B a	0.00453
⁷⁸ K r	0.153	¹³⁸ La	0.000409
⁸⁴ Sr	0.132	¹³⁶ Ce	0.00216
⁹² Mo	0.378	¹³⁸ Ce	0.00284
⁹⁴ Mo	0.236	¹⁴⁴ Sm	0.008
⁹⁶ Ru	0.103	¹⁵² G d	0.00066
⁹⁸ R u	0.035	¹⁵⁶ Dy	0.000221
¹⁰² P d	0.0142	158 D y	0.000378
106Cd	0.0201	¹⁶² Er	0.000351
¹⁰⁸ Cd	0.0143	¹⁶⁴ Er	0.00404
¹¹³ In	0.0079	¹⁶⁸ Yb	0.000322
¹¹² Sn	0.0372	¹⁷⁴ Hf	0.000249
¹¹⁴ Sn	0.0252	¹⁸⁰ Ta	2.48e-06
¹¹⁵ Sn	0.0129	180W	0.000173
¹²⁰ Te	0.0043	¹⁸⁴ Os	0.000122
¹²⁴ Xe	0.00571	¹⁹⁰ Pt	0.00017
¹²⁶ Xe	0.00509	¹⁹⁶ Hg	0.00048
¹³⁰ Ba	0.00476		

Изотоп 180**Та**

Образование р-нуклида ¹⁸⁰Та

Фотонейтронные реакции различной множественности на изотопе ¹⁸¹Та

Фоторасщепление 181**Т**а

Reaction	J_F^P	${\rm Yield}\ Y$										
rteaction	J_F	Experiment	C.M. [33]	TALYS [40]	[35]	[36]	[42]					
$^{181}\mathrm{Ta}(\gamma,\mathrm{n})^{180\mathrm{g.s.}}\mathrm{Ta}$	1+	1	1	0.93	1	1	1					
$^{181}\mathrm{Ta}(\gamma,\mathrm{n})^{180\mathrm{m}}\mathrm{Ta}$	9-		1	0.07	1							
$^{181}\mathrm{Ta}(\gamma,2\mathrm{n})^{179}\mathrm{Ta}$	$7/2^{-}$	0.34 ± 0.07	0.29	0.32	0.42	0.24	0.37					
$^{181}{\rm Ta}(\gamma,3{\rm n})^{178{\rm g.s.}}{\rm Ta}$	1+	$(1.8 \pm 0.4) \cdot 10^{-2}$	$2.4 \cdot 10^{-2}$	$2.7 \cdot 10^{-2}$		$2 \cdot 10^{-2}$						
$^{181}\mathrm{Ta}(\gamma,3\mathrm{n})^{178\mathrm{m}}\mathrm{Ta}$	7^-	$(5\pm1)\cdot10^{-3}$	2.4 10			2.10						
$^{181}\mathrm{Ta}(\gamma,4\mathrm{n})^{177}\mathrm{Ta}$	$7/2^{+}$	$(1.7 \pm 0.5) \cdot 10^{-2}$	$1.0\cdot 10^{-2}$	$1.1\cdot 10^{-2}$								
$^{181}{\rm Ta}(\gamma,5{\rm n})^{176}{\rm Ta}$	$(1)^{-}$	$(5 \pm 1) \cdot 10^{-3}$										
$^{181}{\rm Ta}(\gamma,6{\rm n})^{175}{\rm Ta}$	$7/2^{+}$	$(1.4 \pm 0.3) \cdot 10^{-3}$	$1.2\cdot 10^{-3}$	$1.3\cdot 10^{-3}$								
$^{181}\mathrm{Ta}(\gamma,7\mathrm{n})^{175}\mathrm{Ta}$	3+		$6 \cdot 10^{-5}$	$6 \cdot 10^{-5}$								
$^{181}{\rm Ta}(\gamma,p)^{180{\rm g.s.}}{\rm Hf}$	0+		$7 \cdot 10^{-3}$	$8 \cdot 10^{-4}$								
$^{181}{\rm Ta}(\gamma,p)^{180{ m m}}{\rm Hf}$	8-	$(5 \pm 1) \cdot ^{-4}$	7 · 10	$3 \cdot 10^{-5}$								
$^{181}\mathrm{Ta}(\gamma,\mathrm{pn})^{179\mathrm{g.s.}}\mathrm{Hf}$	$9/2^{+}$		$5 \cdot 10^{-3}$	$1 \cdot 10^{-3}$								
$^{181}\mathrm{Ta}(\gamma,\mathrm{pn})^{179\mathrm{m}}\mathrm{Hf}$	$25/2^{-}$	$(4 \pm 3) \cdot ^{-5}$	5.10	1 - 10								

Изотопы Hg

ТI192 9.6 м	TI193 21.6 M	ТI1 <mark>94</mark> 33.0 м	TI195 1.16 ч	TI196 1.84 ч	TI197 2.84 ч	TI198 5.3 ч	TI199 7.42 ч	TI200 26.1 ч	TI201 3.0421 дн	TI202 12.31 дн	TI203 29.524	TI204 3.78 л	TI205 70.476	TI206 4.202 м
(2-)	1/2(+)	2-	1/2+	2-	1/2+	2-	1/2+	2-	1/2+	2-	1/2+	2-	1/2+	0-
m	m	m	m	m	m	m	m	m	m					m
Hg191 ^{49 м}	Hg192 4.85 ч	Hg193 3.80 ч	Hg194 ⁴⁴⁴ л	Hg195 10.53 ч	Hg196 0.15	Hg197 64.14 ч	Hg198 9.97	Hg199 16.87	Hg200 23.10	Hg201 13.18	Hg202 29.86	Hg203 46.594 дн	Hg204 6.87	Hg205 5.14 м
3/2(-)	0+	3/2(-)	0+	1/2-	0+	1/2-	0+	1/2-	0+	3/2-	0+	5/2 -	0+	1/2-
m		m		m		m		m						
Au190 42.8 м	Au191 3.18 ч	Au192 4.94 ч	Au193 17.65 ч	Au194 38.02 ч	Au195 186.098 дн	Au196 6.166 <mark>9 дн</mark>	Au197	Au198 2.69517 дн	Au199 3.139 дн	Au200 48.4 м	Au201 26.0 м	Au202 28.4 c	Au203 60 c	Au204 39.8 c
1-	3/2+	1-	3/2+	1-	3/2+	2-	3/2+	2-	3/2+	(1-)	3/2+	(1-)	3/2+	(2-)
m	m	m	m	m	m	m	m	m	m	m				
Pt189 10.87 ч	Pt190 0.014	Pt191 2.83 дн	Pt192 0.782	Pt193 50 л	Pt194 32.967	Pt195 33.832	Pt196 25.242	Pt197 19.8915 4	Pt198 7.163	Pt199 30.80 м	Pt200 12.6 ч	Pt201 2.5 M	Pt202 44 ч	Pt203
3/2-	6.5E11 л 0+	3/2-	0+	1/2-	0+	1/2-	0+	1/2-	0+	5/2-	0+	(5/2-)	0+	(1/2-)
				m		m		m		m			m	
Ir188 41.5 ч	Ir189 13.2 дн	Ir190 11.78 дн	Ir191 37.3	Ir1 <mark>92</mark> 73.82 ⁷ дн	Ir193 62.7	Ir194 19.28 ч	Ir195 2.5 ч	Ir196 52 c	Ir197 5.8 м	Ir198 8 c	Ir199 6 c			Ir202 11 c
1-	3/2+	4-	3/2+	4+	3/2+	1-	3/2+	(0-)	3/2+					(1-,2-)
		m	m	m	m	m	m	m	m					

Образование р-нуклида ¹⁹⁶Hg

Рассчитанные в комбинированной модели сечения реакций (ү,n), (ү,2n), (ү,p) на естественной смеси изотопов ртути.

Calculation[33]

 $E^{\max} = 29,1$ MeV

0.99

1.10

1.01

1

 $7 \ 10^{-4}$

8.4 10-4

 $1.1 \ 10^{-3}$

 $1.3 \ 10^{-3}$

7 10-4

5 10-5

0.7 10-4

 $1.0 \ 10^{-4}$

1.5 10-4

 10^{-9}

Фоторасщепление изотопов Hg											
Initial nucleus	Reaction	Final nucleus	Spin, p	arity J	р	Reaction yield					
		iracicas	Initial nucleus	n	Final ucleus	Experime	nt				
				G. s.	Isomeric state	$E^{\text{max}} = 19,5$ MeV	$E^{\text{max}} = 29,1$ MeV	E ^{max} = MeV			
²⁰⁴ Hg	(γ,n)	²⁰³ Hg	0+	5/2-		1.22 ± 0.24	1.16 ± 0.23	1.05			
²⁰⁰ Hg		¹⁹⁹ Hg	0+	1/2—				1.06			
		^{199m} Hg			13/2+	0.087 ± 0.018	0.085 ± 0.017				
¹⁹⁸ Hg		¹⁹⁷ Hg	0+	1/2—		1.26 ± 0.26	1.27 ± 0.29	1.02			
		^{197m} Hg			13/2+	0.10 ± 0.02	0.15 ± 0.03				
¹⁹⁶ Hg	(γ,n)	¹⁹⁵ Hg	0+	1/2-		0.90 ± 0.17	0.88 ± 0.20	1			

13/2 +

12-

(12-)

3/2+

1(-)

3/2 +

2-

2-

 0.10 ± 0.03

 $(2.3 \pm 0.6)10^{-4}$

 $(4.6 \pm 1)10^{-4}$

 $(3.9 \pm 0.8)10^{-4}$

 $< \overline{10^{-4}}$

 $< 4 \ 10^{-6}$

 $< 1 \ 10^{-6}$

 $< 2 \ 10^{-6}$

 0.12 ± 0.03

 $(1.4 \pm 0.7)10^{-3}$

 $(2.4 \pm 0.5)10^{-3}$

 $(2.8 \pm 0.6)10^{-3}$

 $(2.7 \pm 0.5)10^{-3}$

 $(6 \pm 2)10^{-5}$

 $< 10^{-5}$

 $< 10^{-5}$

^{195m}Hg

 $^{201}\mathrm{Au}$

 $^{200}\mathrm{Au}$

 $^{200\mathrm{m}}\mathrm{Au}$

¹⁹⁹Au

¹⁹⁸Au

 $^{198\mathrm{m}}\mathrm{Au}$

0+

0+

0+

1/2-

3/2-

 (γ, p)

 (γ, p)

 (γ, p)

 (γ, p)

 $(\gamma, n + p)^{196}$ Au

²⁰²Hg

²⁰¹Hg

²⁰⁰Hg

¹⁹⁹Hg

¹⁹⁸Hg

Изотопы Cd и Pd

In103 65 c	In104 1.80 м	In105 5.07 м	In106 6.2 м	In107 32.4 м	In108 58.0 м	In109 4.167 ч	In110 4.9 ч	In111 2.8047 дн	In1 <mark>12</mark> 14.9 <mark>7 м</mark>	In113 4.29	In114 71.9 c	In115 95.71	In116 14.10 c	In117 43.2 м	In118 5.0 c
(9/2+)	(6+)	9/2+	7+	9/2+	7+	9/2+	7+	9/2+	1+	9/2+	1+	4.41E14 л 9/2+	1+	9/2+	1+
m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m
Cd102 5.5 M	Cd103 7.3 M	Сd104 57.7 м	Cd105 55.5 M	Cd106 1.25 2ε	Сd107 6.50 ч	Cd108 0.89 28	Cd109 461.4 дн	Cd110 12.49	Cd111 12.80	Cd112 24.13	Cd113	Cd114 28.73	Cd115 53.46 ч	Cd116 7.49	Cd117 2.49 ч
0+	5/2+	0+	5/2+	0+25	5/2+	0+22	5/2+	0+	1/2+	0+	7.7E15 л 1/2+	0+	1/2+	3.1E19 π 2β- 0+	1/2+
Ag101 11.1 M	Ag102 12.9 м	Ag103 65.7 м	Ад104 69.2 м	Ag105 41.29 дн	Ад106 23.96 м	Ag107 51.839	т Ag108 2.37 м	Ag109 48.161	Ag110 24.6 c	Ag111 7.45 дн	т Ag112 3.130 ч	Ag113 5.37 ч	m Ag114 4.6 c	Ag115 20.0 м	т Ag116 2.68 м
9/2+	5+	7/2+	5+	1/2-	1+	1/2-	1+	1/2-	1+	1/2-	2(-)	1/2-	1+	1/2-	(2)-
m	m	m	m	m	m	m	m	m	m	m	1	m		m	m
Pd100 3.63 дн	Pd101 8.47 ч	Pd102 1.02	Pd103 16.991 дн	Pd104 11.14	Pd105 22.33	Pd106 27.33	Pd107 6.5E6 л	Pd108 26.46	Pd109 13.7012 ч	Pd110 11.72	Pd111 23.4 m	Pd112 21.03 ч	Pd113 93 c	Pd114 2.42 m	Pd115 25 c
0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	5/2+	0+	(5/2+)	0+	(5/2+)
							m		m		m		m		m

Изотопы Cd

Интегральные сечения реакций (γ, p) , (γ, n) , $(\gamma, 2n)$ на изотопах Cd^A в зависимости от массового числа A.

Изотопы Pd

Интегральные сечения реакций (γ, p) , (γ, n) , $(\gamma, 2n)$ на изотопах Pd в зависимости от массового числа A.

Особенности ядерных реакций в звездах

- 1. Звездная плазма
- 2. Особенности β -распада

$$e^-$$
-3axbat $p+e^- \rightarrow n+\nu_e$, e^+ -3axbat $n+e^+ \rightarrow p+\tilde{\nu}_e$

3. Изменение свойства атомных ядер в среде $\rho > \rho_{\text{ядерн}}$

β-распад ⁹⁹Tc — ⁹⁹Ru

5/2+	181,1		
1/2—	142,7		
7/2+	140,5	7/2+	340,9
		3/2+	322,0
9/2+ 99Tc	0	3/2+	89,6
10		5/2+	0
	$Q_{\beta} = 293,2$ кэВ	99	Ru

Период полураспада 99 Тс из основного состояния, измеренный в лабораторных условиях, составляет $T_{1/2}=2,1\cdot 10^5$ лет. При температуре $T>3\cdot 10^8$ К в результате β -распада из возбужденного состояния 99 Тс на возбужденное состояние 99 Ru период полураспада $T_{1/2}$ становится меньше 10 лет.

Благодарю за внимание