Image-derived generative modeling of pseudo-macromolecular structures — towards the statistical assessment of Electron CryoTomography template matching

Kai Wen Wang¹, Xiangrui Zeng¹, Xiaodan Liang¹, Zhiguang Huo², Eric P. Xing¹, Min Xu¹

¹Carnegie Mellon University, ²University of Florida

INTRODUCTION

- Cellular Electron CryoTomography (CECT) is a 3D imaging technique for macromolecular complexes.
- Low signal-to-noise ratio and missing wedge makes analysis very difficult.
- A subtomogram is a cubic sub-volume of an image captured by CECT containing a macromolecular complex.
- Given subtomogram P and template T, template matching with Pearson correlation c(P,T) is often used to locate macromolecules in a CECT image, but is insufficient since c(P,T) only measures relative structural similarity.
- Our research introduces and validates a novel, Monte Carlo approach for statistically assessing template matching through hypothesis testing to calculate empirical p-values.

EXPERIMENTS AND RESULTS

- 3D-WGAN trained on 15 unique complexes * 600 rotations per complex for a total of 9000 3D gray-scale images.
- 376 real subtomograms containing ribosome with 70.21% success.
- 15 simulated subtomograms (for each unique complex) with 80% success.
- The blue histograms model the distribution of cross correlation scores of pseudo-complexes with the given subtomogram P.

Real Subtomograms

Simulated Subtomograms

• 3D-WGAN also learned manifold of macromolecules:

• 3D-WGAN could serve as relatively efficient smooth deformable registration, as opposed to existing methods like Large Deformation Diffeomorphic Metric Mapping, which is computationally expensive.

3-STEP HYPOTHESIS TESTING PROCEDURE

- 1. Train a 3D-WGAN to learn the structural distribution of macromolecules.
- 2. Determine macromolecule of interest C_{interest} as the known macromolecule with the largest correlation score with a subtomogram P.
- 3. Using pseudo-complexes sampled from 3D-WGAN and far away from C_{interest}, perform hypothesis test with null and alternative hypothesis:

 $H_0: P$ does not contain a macromolecule identical to $C_{Interest}$ $H_A: P$ contains a macromolecule identical to $C_{Interest}$

APPROACH

3D-WGAN Architecture:

Examples of pseudo-complexes generated using 3D-WGAN:

Sampling away from C_{interest}:

- 1. Determine latent representation of $C_{interest}$ as the distribution E
- 2. Define rejection region for Bayes Classifier:

$$\mathcal{R} = \{G(v) : v \in \mathbb{R}^{100} \text{ such that } \mathcal{N}(v) < \pi \cdot \mathcal{E}(v)\}$$

Where \mathcal{N} is the normal distribution, π is the prior. Only pseudo-complexes outside of \mathcal{K} is used for hypothesis test.

Calculate empirical p-value that approaches true p-value almost surely

$$p = \mathbb{E}_{H_0; C_0 \sim f_{structure}} \left[\mathbb{I}\{c(P, T(C_{Interest})) \leq c(P, T(C_0))\} | C_0 \notin \mathcal{R} \right]$$

= $\Pr(c(P, T(C_{Interest})) \leq c(P, T(C_0)) | C_0 \notin \mathcal{R})$

$$\widehat{p} = B^{-1} \sum_{b=1}^{B} \mathbb{I}[c(P, T(C_{Interest})) \leq c(P, T(C_0^{(b)}))] \xrightarrow{a.s.} p$$