Announcements

Announcements

- Final HW is out
- Exam 3 will be posted on Sunday
- Timeslot signup will be announced this week- keep an eye on your e-mail

The Theory of Computational Complexity

Search vs. Optimization

- Search problem: Find solution satisfying some requirement. User specifies requirement.

 - Find spanning tree with weight at most b

 - Find bipartite matching with flow greater than b

 - Etc.
- Optimization problem: Find best solution
 - Find minimum spanning tree
 - Find heaviest bipartite matching
 - Etc.
- Why are these basically equivalent?

Search vs. Optimization of algorithms!

- P (Polynomial): The class of all problems that can be solved in polynomial running time **
 - NP (Non-deterministic Polynomial Time): The class of search problems with solutions that can be verified in polynomial time.

A there exists an algorithm for which the worst-ease running time is a polynomial function of input size

Is P = NP?

- Whether P = NP is an open question!
- Most computer scientists think that P ≠ NP.
- But we don't have a proof...
- One of the most important open questions in computer science

verification: there is some problem and a black box algorithm that claims to solve it. We give the BB input and it produces output. Can we check whether the overput is correct in polynomial

Reductions

put KP -> longest path or

Problem A reduces to Problem B if you can convert every instance of Problem A to an instance of Problem B, and convert the solution to Problem B back to the original solution, in *polynomial time*.

Reductions

- Why are reductions useful?
 If we have an algorithm for Problem B, and can convert back and forth in polynomial time, then we can solve Problem A in polynomial time!
 - Example: Bipartite matching reduces to network flows

NP-Completeness

- f,h are
 polynomial-time
- Tricky use of reductions: If Problem A *does not* have a polynomial time solution, and it reduces to Problem B, then Problem B *also does not* have a polynomial time solution!
- A search problem is NP-complete if every other problem in NP reduces to it
- In other words: if you can solve an NP-complete problem quickly, you can solve anything in NP quickly!

Reduction Strategy

- 2. When reducing Problem A reduces to Problem B, show the following:
 - 1. Any instance of Problem A can be converted to an instance of Problem B in polynomial time (f cons in polynomial time)
 - 2. A solution to the converted instance can be converted back to a solution for Problem A in polynomial time
 - 3. If Algorithm B finds a solution to the converted instance, it corresponds to an actual solution to the Problem A instance
 - 4. If the Problem A instance has a solution, then Algorithm B is able to find a solution to the converted instance,

In-Class Exercise: Hamiltonian Cycles and Paths

- Hamiltonian Cycle: in an undirected graph, is there a cycle that passes through every node exactly once?
- Hamiltonian Path: Given vertices s and t, is there a path from s to t that passes through every node exactly once?
- Show how to reduce Hamiltonian Path to Hamiltonian Cycle. (i.e., if we have an algorithm for the Hamiltonian Cycle problem, can we use that to solve the Hamiltonian Path problem?)

In-Class Exercise: Hamiltonian Cycles and Paths

In-Class Exercise: Hamiltonian Cycles and

In-Class Exercise: Hamiltonian Cycles and

Paths

f: add node x, and edges (sx) (t,x) hisa remove x, (s,x), (t,x) from the HC output by black box, what's left will be a HP in G From s -> t 1. Show that froms in poly-time. All we do is add a rowliolumn, change 4 Os to 1 in adj. matrix. 2. Show that hours in poly lime, Obvious, 111 we do is renove 2 edges from HC. Obv. poly-time.

In-Class Exercise: Hamiltonian Cycles and Paths

In-Class Exercise: Hamiltonian Cycle and Traveling Salesman Problem

- Hamiltonian Cycle: Does the graph have a cycle that visits every node?
- Traveling Salesman Problem: Given a graph with integer weights on the edges, and a starting node s, and an integer budget b, is it possible to find a cycle beginning and ending at s such that the total weight of edges in the cycle is less than b?
- Reduce Hamiltonian Cycle to TSP

In-Class Exercise: Hamiltonian Cycle and Traveling Salesman Problem

