Modelando Conocimiento a través de Ontologías

Contenido

- Lenguajes Ontológicos: Porqué?
- Ontologías: definición
- Nivel intensivo y extensional de un lenguaje ontológico
- Elementos de un lenguaje ontológico.
- Clasificación de lenguajes ontológicos
- Ontologías frente a otros formalismos

Lenguajes Ontológicos: Porqué?

Ontologías

Lógica Descriptiva provee las bases formales para los lenguajes ontológicos

Definición: Ontología

es un esquema de representación que describe una **conceptualización formal** de un domino de interés.

La especificación de una ontología usualmente comprende dos niveles distintos:

Nivel Intensional: especifica un conjunto de elementos conceptuales y axiomas/restricciones que describen la estructural conceptual del dominio.

Nivel Extensional: especifica un conjunto de instancias de los elementos conceptuales descritos a nivel intensional.

Aspectos estáticos vs. dinámicos

Los aspectos del dominio de interés que pueden ser modelados por un lenguaje de ontología se pueden clasificar en:

- Aspectos estáticos
 - Están relacionados con la estructuración del dominio de interés.
 - Soportados por virtualmente todos los lenguajes.
- Aspectos dinámicos
 - Están relacionados sobre cómo los elementos del dominio evolucionan en el tiempo.
 - Soportados únicamente por algunos lenguajes

Antes de profundizar en los aspectos dinámicos, necesitamos una buena comprensión de los estáticos.

En este curso nos concentraremos en los aspectos estáticos

Nivel intensional de un lenguaje ontológico

Un lenguaje ontológico para expresar el nivel intensional incluye:

- Conceptos
- Propiedades de conceptos
- Relaciones entre conceptos y sus propiedades
- Axiomas
- Consultas

Ontologías son típicamente representados como diagramas

- · Redes Semánticas,
- Esquema Entidad-Relación,
- Diagramas de Clases UML.

Conceptos

Definición: Concepto

Es un elemento de una ontología que denota una colección de instancias (e.j., el conjunto de "empleados").

Distinguimos entre

Definición intensional:

Especificación de nombre, propiedades, relaciones, . . .

Definición extensional:

Especificación de las instancias

Conceptos son además llamadas clases, tipos de entidades, frames.

Propiedades

Definición.: Propiedad

Es un elemento de una ontología que califica otro elemento (e.j., un concepto o una relación).

Definición propiedad (intensional y extensional):

- Nombre
 - Tipo: podría ser
 - atómico (integer, real, string, enumerated, . . .), or
 e.j., color-ojos → { cafe, verde, azul}
 - estructurado (fecha, conjunto, lista, . . .)
 e.j., fecha → día/mes/año
 - La definición puede además especificar un valor por omisión.

Propiedades son además llamadas atributos, características, slots, propiedades de datos.

Relaciones

Definición: Relación

Es un elemento de una ontología que expresa una asociación entre conceptos.

Distinguimos entre:

Definición intensional:

Especificación de los conceptos involucrados e.j., trabajaPara es definido en Profesor y Universidad

Definición extensional:

Especificación de las instancias de la relación, llamada hechos e.j., trabajaPara (mauricio, UCuenca)

Relaciones son además llamadas asociaciones, tipos de relaciones, roles, propiedades de objecto.

Axiomas

Definición: Axioma

Es una fórmula lógica que expresa a nivel intensional una condición que debe ser cumplida por los elementos a nivel extensional.

Diferentes clases de axiomas/condiciones:

- relaciones de subclase, e.g., Profesor ⊂ Persona
- equivalencias, e.j., Persona ≡ Hombre ∪ Mujer
- **4**

Axiomas son llamadas además afirmaciones (assertions). Una clase especial de axiomas son definiciones.

Nivel extensional de una lenguaje ontológico

A nivel extensional tenemos individuos y hechos:

- Una instancia representa un individuo (u objecto) en la extensión de un concepto.
 - e.j., mauricio es una instancia de Profesor
- Un hecho representa una relación que se sostiene entre instancias. e.j., trabajaPara (mauricio, Ucuenca)

Comparación con otros formalismos

 Lenguajes ontológicos vs. Lenguajes de representación conocimientos:

Ontologías son esquemas de representación conocimiento.

Ontología vs. Lógica:

Logica es la herramienta para asignar semántica a los lenguajes ontológicos.

Clasificación de lenguajes ontológicos

- Basados en Notaciones Gráficas
 - Redes semánticas
 - Grafos Conceptuales
 - Diagrama de Clases UML
 - Diagrama Entidad-Relación
 - RDF
- Basados en Lógica
 - Reglas (e.j., RuleML, LP/Prolog, F-Logic)
 - Lógica de Primer Orden (e.j., KIF)
 - Lógica no-clásicas (e.j., probabilistica)
 - Lógica Descriptiva (e.j., SHOIQ, DLR, DL-Lite, RDFs, OWL,...)

Modelando el dominio de interés

Nuestro objetivo es obtener una descripción de los datos de interés en términos semánticos..

Se puede proceder como sigue:

- Representar el dominio de interés como un esquema conceptual, similar a los utilizados en el momento del diseño para diseñar una base de datos.
- Formalizar el esquema conceptual como una teoría lógica, es decir, la ontología.
- Usar la teoría lógica resultante para razonar y responder preguntas.

Modelos conceptuales vs. lógica

En esta curso usaremos

- Como diagrama de modelado conceptual: Grafos RDF.
- Como lógica: RDFs, OWL (Lógicas Descriptivas) para formalmente capturar la semántica y razonamiento.

Preguntas?

