Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программная инженерия»

Лабораторная работа №2

«Рекуррентные нейронные сети. Улучшенные методы рекуррентных нейронных сетей»

ДИСЦИПЛИНА: «Методы глубокого обучения»

Выполнил: студент гр. ИУК4-21М			Сафронов Н.С.		
	(подпись)		(Ф.И.О.)		
Проверил:		(Белов Ю.С.		
	(подпись)		(Ф.И.О.)		
Дата сдачи (защиты):					
_					
Результаты сдачи (защиты):					
- Балльная оценка:					
- Оценка:					

Цель работы: получение практических навыков построения глубоких рекуррентных нейронных сетей.

Задачи:

- 1. Реализовать модель глубокой рекуррентной нейронной сети, используя набор данных, согласно варианту.
 - 2. Вывести График точности на этапах обучения.
 - 3. Вывести График изменения по набору данных.
- 4. Вывести График потерь на этапах обучения и проверки простой полносвязной сети в задаче.

Вариант 2

Динамика продаж в супермаркете. Ссылка для скачивания: https://drive.google.com/file/d/1T3C0WsA9p6MPyuKG7naFrSPxtQroD6dj /view? usp=drive link

Результаты выполнения работы

```
Рекурентная нейронная сеть

| Image: Record of the content of th
```

Рисунок 1 – Архитектура созданной нейронной сети

Рисунок 2 – График потерь

Рисунок 3 – Средняя абсолютная ошибка

Зависимость видимости товара от количества продаж 12000 10000 Количество продаж 8000 6000 4000 2000 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Рисунок 4 – Зависимость видимости товара от количества его продаж

Видимость

```
model_dense = Sequential([
    Dense(128, input_shape=(X_train.shape[],)),
    Dense(32),
    Dense(1)
])

model_dense.compile(optimizer='adam', loss='mse', metrics=['mae'])
history_rnn = model_rnn.fit(X_train, y_train, epochs=25, validation_data=(X_val, y_val), verbose=1)

② 9.2s

Python
```

Рисунок 5 — Архитектура полносвязной сети для сравнения с ней

Рисунок 6 – Сравнение предсказаний с реальными данными

Вывод: в ходе выполнения работы были получены практические навыки построения глубоких рекуррентных нейронных сетей с применением глубокого обучения.