Chapter 4 Inner Product Spaces

Chapter 4.1 Length and Dot Product in \mathbb{R}^n

Vector Length and Unit Vectors

Definition (Length of a Vector in \mathbb{R}^n)

The **length**, or **norm**, of a vector $\mathbf{v} = (v_1, v_2, ..., v_n)$ in \mathbb{R}^n is given by

$$\|\mathbf{v}\| = \sqrt{(v_1^2 + v_2^2 + \dots + v_n^2)}$$

Remarks:

- 1. The length of a vector is a nonnegative number, that is, $\|\mathbf{v}\| \ge 0$.
- 2. $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = (0,0,...,0) = \mathbf{0}$.
- 3. The length of a vector is also referred to as the **magnitude** of the vector.
- 4. If $\|\mathbf{v}\| = 1$, then the vector \mathbf{v} is called a **unit vector**.

Examples:

- 1. Find the length of the vector $\mathbf{v} = (0, -2, 1, 4, -2)$ in \mathbb{R}^5 .
- 2. Find the length of the vector $\mathbf{v} = \left(\frac{2}{\sqrt{17}}, -\frac{2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$ in \mathbb{R}^3 .

Remarks:

- 1. Each vector in the standard basis of \mathbb{R}^n has length 1, and is called the **standard unit vector** in \mathbb{R}^n .
- 2. Two nonzero vectors in \mathbb{R}^n are **parallel** when one is a scalar multiple of the other.
 - If the scalar is greater than 0, then the vectors are on the same direction.
 - If the scalar is less than 0, then the vectors are on the opposite directions.

Theorem:

Let **v** be a vector in R^n and let c be any scalar. Then $||c\mathbf{v}|| = |c|||\mathbf{v}||$

where |c| is taken as the absolute value of c.

Theorem: (Unit vector in the direction of v)

If **v** is a nonzero vector in \mathbb{R}^n , then the vector

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

has length 1 and has the same direction as **v**. The vector **u** is called the **unit vector in the direction of v**.

Remark:

The process of finding a unit vector in the direction of the given vector is called **normalizing** the given vector.

Example:

Find a unit vector in the direction of $\mathbf{v} = (3, -1, 2)$.

Distance Between Two Vectors in \mathbb{R}^n

Definition

The distance between two vectors \mathbf{u} and \mathbf{v} in R^n is $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$

Remark:

The distance has the following properties:

- 1. $d(\mathbf{u}, \mathbf{v}) \ge 0$
- 2. $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$
- 3. $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$

Example: Find the distance between the following pairs of vectors in \mathbb{R}^n .

1.
$$\mathbf{u} = (-1, -4)$$
 and $\mathbf{v} = (2,3)$

2.
$$\mathbf{u} = (3, -1, 0, -3)$$
 and $\mathbf{v} = (4, 0, 1, 2)$

Dot Product and the Angle Between Two Vectors

Definition (Dot Product in Rⁿ)

The **dot product** of the vectors $\mathbf{u} = (u_1, u_2, ... u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_2)$ in R^n is the scalar quantity $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$.

Example:

Find the dot product of $\mathbf{u} = (1,2,0,-3)$ and $\mathbf{v} = (3,-2,4,2)$.

Theorem: (Properties of the Dot Product)

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} vectors in \mathbb{R}^n and \mathbf{c} be any scalar. Then the following properties are true.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \cdot \mathbf{v}) + (\mathbf{u} \cdot \mathbf{w})$$

3.
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

4.
$$\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$$

5.
$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
 and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Examples:

1. Let $\mathbf{u} = (2, -2)$, $\mathbf{v} = (5,8)$, and $\mathbf{w} = (-4,3)$. Solve for the following:

 $\mathbf{a}.\ \mathbf{u}\cdot\mathbf{v}$

b. $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

c. $\mathbf{u} \cdot 2\mathbf{v}$

d. $\|\mathbf{w}\|^2$

e. $\mathbf{u} \cdot (\mathbf{v} - 2\mathbf{w})$

2. Given two vectors \mathbf{u} and \mathbf{v} in R^n . If $\mathbf{u} \cdot \mathbf{u} = 39$, $\mathbf{u} \cdot \mathbf{v} = -3$, and $\mathbf{v} \cdot \mathbf{v} = 79$, evaluate $(\mathbf{u} + 2\mathbf{v}) \cdot (3\mathbf{u} + \mathbf{v})$.

Theorem: (Cauchy – Schwarz Inequality)

If **u** and **v** are vectors in \mathbb{R}^n , then

$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|$$

where $|\mathbf{u} \cdot \mathbf{v}|$ is the absolute value of the dot product of \mathbf{u} and \mathbf{v} .

Example:

Verify the Cauchy – Schwarz Inequality for $\mathbf{u} = (1, -1, 3)$ and $\mathbf{v} = (2, 0, -1)$.

Definition: (The Angle Between Two Vectors)

The **angle** θ between two nonzero vectors **u** and **v** in \mathbb{R}^n is given by

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

where $0 \le \theta \le \pi$.

Example:

Find the angle between the vectors $\mathbf{u} = (-4,0,2,-2)$ and $\mathbf{v} = (2,0,-1,1)$ in \mathbb{R}^4 .

Definition: (Orthogonal Vectors)

Two vectors \mathbf{u} and \mathbf{v} in R^n are **orthogonal** when $\mathbf{u} \cdot \mathbf{v} = 0$

Remark:

The vector **0** is orthogonal to every vector.

Examples:

1. Show that the following pairs of vectors are orthogonal.

a.
$$\mathbf{u} = (1,0,0)$$
 and $\mathbf{v} = (0,0,1)$

b.
$$\mathbf{u} = (3, 2, -1, 4)$$
 and $\mathbf{v} = (1, -1, 1, 0)$

2. Determine all vectors in \mathbb{R}^2 that are orthogonal to $\mathbf{u}=(4,2)$.

Theorem: (Triangle Inequality)

If \mathbf{u} and \mathbf{v} in R^n , then $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Theorem: (The Pythagorean Theorem)

If **u** and **v** in \mathbb{R}^n , then **u** and **v** are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Dot Product and Matrix Multiplication

Let $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ be vectors in \mathbb{R}^n . When \mathbf{u} and \mathbf{v} are written as $n \times 1$ vectors

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}.$$

then, the dot product can be represented as the matrix product of the transpose of \mathbf{u} multiplied by \mathbf{v} , that is,

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\mathrm{T}} \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 v_1 + u_2 v_2 + \cdots + u_n v_n \end{bmatrix}.$$

Example:

Find the dot product of the following pairs of vectors.

1.
$$\mathbf{u} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

2.
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$