Introducción a la Informática Teórica Tarea #2

"Ordinarius Lingua quod Non Ordinarius Lingua"

Hernán Vargas Leighton 201073009-3

4 de abril 2014

Respuestas

- 1. Sea el lenguaje $\mathscr{P} = \{w \in \Sigma^* : w^R = w\}$ con $\Sigma = \{0,1\}$ demostraremos por contradicción mediante el método del bombeo que \mathscr{P} no es regular:
 - *a*) El lema del bombeo nos dice que: Para toda palabra w de un lenguaje infinito \mathcal{L} con $|w| \ge N \ge 1$, N constante del lema, se cumple con que existe una concatenación $\alpha\beta\gamma = w: |\alpha\beta| \le N \land |\beta| \ge 1$ que cumple con $\alpha\beta^k\gamma \in \mathcal{L} \forall k \ge 0$. Es decir:

$$\forall w \in \mathcal{L} \exists N : |w| \ge N \ge 1 \Rightarrow (\exists \alpha \beta \gamma = w \in \mathcal{L} : |\alpha \beta| \le N \land |\beta| \ge 1) \land (\alpha \beta^k \gamma \in \mathcal{L} \forall k \ge 0)$$

Como sabemos que $\neg p \Rightarrow \neg q$ entonces podemos decir que un lenguaje no será regular si:

$$\exists w \in \mathcal{L} \exists N : |w| \ge N \ge 1 \Rightarrow (\forall \alpha \beta \gamma = w \in \mathcal{L} : |\alpha \beta| \le N \land |\beta| \ge 1) \land (\exists k \ge 0 : \alpha \beta^k \gamma \notin \mathcal{L})$$

- b) Supongamos P regular, entonces cumple con el lema de bombeo.
 - Digamos $N \in \mathbb{N}_0$ constante del lema.
 - Digamos $w = 0^N 10^N \in \mathcal{P}$, vemos que cumple con: $|w| = N + 1 + N = 2N + 1 \ge N$
 - Digamos $\alpha = 0^{N-t} \land \beta = 0^t \land \gamma = 10^N$ con $t \ge 1$ será toda partición que cumple con $|\alpha\beta| = N t + t = N \le N \land |\beta| = t \ge 1$
 - Notamos que con k = 0 tenemos que $0^{n-t}0^010^N \notin \mathcal{L}$ ya que $t \ge 1$ por lo tanto la expresión tiene más ceros a la derecha que a la izquierda, no es palíndromo y por ello contradice el lema del bombeo.
 - Concluimos que \mathcal{P} no es regular.
- 2. Tenemos $\mathcal{L} = \{w \in \Sigma^* : |w| = n^2\}$ con $\Sigma = \{a, b, c\}$. Digamos \mathcal{L} regular, entonces cumple con el lema de bombeo.
 - Digamos $N \in \mathbb{N}_0$ constante del lema.
 - Digamos $w = a^{n^2} \in \mathcal{L}$, vemos que cumple con: $|w| = N^2 \ge N$
 - Digamos $\alpha = a^x \land \beta = a^y \land \gamma = a^z \text{ con } x + y + z = N^2 \text{ ser\'a toda partici\'on que cumple con } |\alpha\beta| = x + y \le N \land |\beta| = y \ge 1$
 - En general $|\alpha \beta^k \gamma| = N^2 + (k-1)y$, $\forall k \ge 0$. Con k = 2 tenemos que $|\alpha \beta^2 \gamma| = N^2 + y$. Como $y \le N$ (ya que $x + y \le N$) tenemos que: $N^2 + y \le N^2 + N$
 - Llamemos s la siguiente palabra representable por el lenguaje. Si $s \in \mathcal{L} \Rightarrow |s| = (N+1)^2$ pues es la palabra "sucesora" a w. Entonces $|\alpha \beta^2 \gamma| \ge |s|$ pero $N^2 + y \le N^2 + N \le N^2 + 2N + 1 = (N+1)^2$ lo cual es una contradicción.
 - Se concluye que \mathcal{L} no es regular.
- 3. Tenemos $\mathcal{L} = \{a^{pq} : p, q \in \mathbb{P}\}$ con \mathbb{P} en conjunto de los números primos. Digamos \mathcal{L} regular, entonces cumple con el lema de bombeo.
 - Digamos $N \in \mathbb{N}_0$ constante del lema.

- Digamos $w = a^{2N} \in \mathcal{L}$, vemos que cumple con: $|w| = 2N \ge N$, además $2 \in \mathbb{P} \Rightarrow N \in \mathbb{P}$.
- Digamos $\alpha = a^{N-t} \land \beta = a^t \land \gamma = a^N$ será toda partición que cumple con $|\alpha\beta| = N t + t = N \le N \land |\beta| = t \ge 1$.
- En general $|\alpha \beta^k \gamma| = N t + kt + N = 2N + t(k-1)$ que debe cumplir con ser la multiplicación de dos primos.
- Sabemos $2N + t(k-1) = 2(N + \frac{k-1}{2}t) \Rightarrow N + \frac{k-1}{2}t = \frac{pq}{2}$. Como 2 es primo asumimos que p = 2 ya que los divisores de pq son $d \in (1, p, q)$. Entonces: $N + \frac{k-1}{2}t \in \mathbb{P} \forall k \geq 0$.
- Por el lema sabemos que $N, t, k \in \mathbb{N}_0 \land N, t \ge 1 \land k \ge 0$ entonces podemos elegir convenientemente un k: $(N + \frac{k-1}{2}t) \notin \mathbb{P}$ lo cual es una contradicción.
- Se concluye que $\mathcal L$ no es regular.
- 4. El lema de bombeo establece que **existe** una partición $\alpha\beta\gamma$ que puede ser bombeada, en este caso el alumno solo elige una partición no adecuada. Para probar que el lenguaje $\mathcal L$ no es regular se debe probar que **ninguna** partición puede ser bombeada y no, solamente, que existe una que no puede (como hizo el alumno).
- 5. Sabemos $\mathcal{L} \subseteq \Sigma^*$ además $u, v \in \Sigma^*$ con SUFIJO $(\mathcal{L}) = \{v : uv \in \Sigma^*\}$
 - Definamos el homomorfismo H(w), $\forall w = uv \in \Sigma^*$ como:
 - $H(u) = \epsilon$ (prefijo)
 - H(v) = v (sufijo)
 - Digamos $w = uv \in \Sigma^*$ cualquiera, tenemos que: $H(w) = H(u) \cdot H(v) = \epsilon \cdot v = v = \text{SUFIJO}(w)$
 - Si v es regular entonces $\epsilon \cdot v$ es regular, por lo tanto SUFIJO($\mathcal L$) es regular si $\mathcal L$ es regular.