<u>Базовая библиотека работы с крейтом LTR</u> Крейтовая система LTR

Руководство программиста

Авторы руководства:

Кодоркин А.В. Емельянов А.С.

ЗАО "Л-КАРД"

117105, г. Москва, Варшавское ш., д. 5, корп. 4, стр. 2

тел.: (095) 785-95-25 факс: (095) 785-95-14

Адреса в Интернет:

http://www.lcard.ru/
ftp://ftp.lcard.ru/pub

E-Mail:

Отдел продаж: sale@lcard.ru

Техническая поддержка: support@lcard.ru

Отдел кадров: job@lcard.ru
Общие вопросы: lcard@lcard.ru

Представители в регионах:

Украина: HOLIT Data Systems, http://www.holit.com.ua/, (044) 241-6754 Санкт-Петербург: Autex Spb Ltd., http://www.autex.spb.ru/, (812) 567-7202

Новосибирск: Сектор-Т, http://www.sector-t.ru/, (383-2) 396-592

Екатеринбург: Аск, *http://www.ask.ru/*, 71-4444 Казань: ООО 'Шатл', *shuttle@kai.ru*, (8432) 38-1600 Крейтовая система *LTR Copyright 2010*, ЗАО Л-Кард. Все права защищены.

История ревизий настоящего документа.

Ревизия	Дата	Примечания по внесенным изменениям
1.0.0	23.01.2006	Первая доступная для пользователя ревизия.
1.0.1	23.04.2006	Добавлено описание меток времени.
1.0.2	25.07.2006	Добавлена функция LTR_SetServerProcessPriority
1.0.3	02.04.2007	Отмечены особенности многопотоковой работы
1.0.4	23.04.2007	Добавлено более подробное описание предупреждения LTR_WARNING_MODULE_IN_USE, и изменены примеры
1.0.5	04.05.2008	Добавлено описание функции LTR_GetCrateRawData
1.0.6	04.09.2008	Добавлены примеры для функции LTR_GetCrateRawData
1.0.7	05.09.2008	Обновлено описание LTR_GetCrateRawData и флагов структуры TLTR.
1.0.8	03.09.2009	Проведена корректура текста, добавлено описание функции LTR_GetCrateInfo, дополнен список констант и структур, добавлено описание функций синхронизации и коммутации служебных сигналов крейт-контроллеров LTR-EU.
1.0.9	11.01.2010	Добавлены описания новых функций API — управление сервером и соединениями с IP-крейтами из прикладной программы. Добавлен параграф "соображения сетевой безопасности".
1.0.10	31.03.2010	Добавлено описание функции LTR_GetServerVersion

На CD-ROM, входящий в комплект поставки, всегда записывается последняя ревизия данного документа. Кроме того, последнюю ревизию Вы сможете найти в разделе *библиотека файлов* на нашем сайте.

L-Card оставляет за собой право обновлять документацию без уведомления пользователей об изменениях.

Оглавление

1. О чем этот документ	<i>7</i>
2. Общая идеология программного интерфейса для работы с крейтом LTR LTR	8
3. Ltrapi.dll - базовая библиотека для работы с крейтом LTR LTR	9
3.1. Использование ltrapi.dll	9
3.2. Общий подход к работе с интерфейсными функциями библиотеки ltrapi.dll	9
3.3. Простой пример	
3.4. Простой пример 2	
3.5. Соображения сетевой безопасности	
4. Описание функций, структур и констант библиотеки ltrapi.dll	
4.1. Константы	13
4.2. Структуры	15
4.2.1. Структура TLTR	
4.2.2. Структура TCRATE_INFO	
4.2.3. Структура TLTR_CONFIG	
4.2.4. Структура TIPCRATE_ENTRY	17
4.2.5. Метка времени	
4.3. Функции	
4.3.1. Основные функции	
4.3.1.1. Инициализация полей структуры	
4.3.1.2. Открытие соединения с модулем	
4.3.1.3. Разрыв соединения с модулем	
4.3.1.4. Состояние соединения с модулем	
4.3.1.5. Прием данных от модуля	
4.3.1.6. Передача данных модулю	
4.3.2. Функции информационного характера	
4.3.2.1. Список крейтов, подключенных к серверу	
4.3.2.2. Список модулей крейта	
4.3.2.3. Информация о типе и способе подключения крейта	
4.3.3. Функции синхронизации и коммутации служебных сигналов LTR-EU	
4.3.3.1. Управление коммутацией сигналов	
4.3.3.2. Генерация метки "СТАРТ"	24
4.3.3.3. Начало генерации меток "СЕКУНДА"	25
4.3.3.4. Прекращение генерации меток "СЕКУНДА"	
4.3.4. Функции вспомогательного характера	
4.3.4.1. Преобразование кода ошибки в текстовое сообщение	
4.3.4.2. Получение сырых данных на входе сервера (мгновенных значений)	
4.3.5. Функции управления LTR-сервером	
4.3.5.1. Общие замечания	
4.3.5.2. Чтение приоритета сервера	
4.3.5.3. Изменение приоритета сервера	
4.3.5.4. Получение списка ІР-крейтов	
4.3.5.5. Добавление IP-крейта	
4.3.5.6. Удаление IP-крейта	
4.3.5.7. Подключение ІР-крейта	
4.3.5.8. Отключение IP-крейта	
4.3.5.9. Подключение всех ІР-крейтов, имеющих признак "авто"	
4.3.5.10. Отключение всех IP-крейтов	
4.3.5.11. Изменение режимов подключения IP-крейта	
4.3.5.12. Чтение режима поиска ІР-крейтов в локальной сети	
4.3.5.13. Установка режима поиска ІР-крейтов в локальной сети	
4.3.5.14. Чтение уровня журнализации	33

4.3.5.15. Установка уровня журнализации	36
4.3.5.16. Перезапуск LTR-сервера	
4.3.5.17. Останов LTR-сервера	
4.3.5.18. Чтение номера версии LTR-сервера	

1. О чем этот документ.

Настоящий документ — руководство программиста. Здесь рассматривается общая идеология построения программного обеспечения для работы с крейтом **LTR** и достаточно подробно описывается интерфейс базовой dll-библиотеки *ltrapi.dll*.

В настоящем документе не рассматриваются какие-либо вопросы, касающиеся подключения сигналов, параметров и принципов функционирования аппаратной части. Эти вопросы затронуты в документе *Крейтовая система LTR. Руководство пользователя*. Кроме того, этот документ не содержит описаний библиотек для работы с конкретным типом модулей; эти описания вынесены в отдельные документы.

2. Общая идеология программного интерфейса для работы с крейтом LTR.

С точки зрения пользовательского программного обеспечения все *физические модули*, установленные в крейт, и сам крейт-контроллер представляются как независимые друг от друга *погические модули*. Это достигается использованием клиент-серверной идеологии. В качестве сервера выступает программа *ltrserver.exe*, в качестве клиента – пользовательское ПО.

Сервер обеспечивает прием (передачу) и буферизацию потока данных от крейта, анализ и разделение (смешивание) данных от разных *физических модулей*, а также обмен данными с подключенными клиентами. В результате того, что механизмы *приема-анализа-разделения* данных от крейта и *анализ-смешивание-передача* данных крейту практически полностью скрыты внутри сервера, клиент работает с каждым модулем как с отдельно стоящей единицей - *логическим модулем*.

Все взаимодействия клиента с сервером сводятся к вызовам функций, входящих в состав штатной библиотеки.

Штатная библиотека организованна в виде нескольких dll-библиотек, каждая из которых предоставляет набор логически связанных функций, реализующих взаимодействие с конкретным типом логических модулей.

<u>Примечание</u>: Далее везде в тексте под *модулем* подразумевается *логический модуль*, если иное не оговорено специально.

3. Ltrapi.dll - базовая библиотека для работы с крейтом LTR.

Библиотека *ltrapi.dll* предоставляет набор базовых функций для работы с модулями. В функциях библиотеки не делается каких-либо предположений о типе модуля. Таким образом, весь протокол обмена, характерный для заданного типа модуля, реализуется в библиотеке более высокого уровня, которая использует *ltrapi.dll* как базовую библиотеку для доступа к модулю.

ltrapi.dll написана с использованием языка программирования **Borland** C++ и поставляется вместе с исходными текстами.

Внимание: Функции библиотеки, строго говоря, не обеспечивают "потокобезопасную" (*thread-safe*) работу. Поэтому, во избежание недоразумений, в многопоточных приложениях пользователь должен сам организовывать, если необходимо, корректную синхронизацию вызовов интерфейсных функций в различных потоках (используя, например, критические секции, мьютексы и т.д.).

Но (!) рекомендуется создать для работы с каждым модулем отдельный поток. Например, пусть имеется 10 модулей LTR11, в таком случае целесообразно создать 10 потоков, в каждом открыть, инициалазировать модуль, запустить сбор данных, принять данные и закрыть соотвествующий модуль по окончании работы

3.1. Использование ltrapi.dll.

Для получения возможности вызова интерфейсных функций библиотеки *ltrapi.dll* из Вашего приложения необходимо следующее:

- создать проект в какой-либо из сред разработки;
- поместить в папку проекта или в папку, описанную в переменной окружения **PATH**, файл *ltrapi.dll*.
- добавить в проект информацию о способе вызова интерфейсных функций dll-библиотеки и используемых типах данных. В различных средах разработки последовательность действии и приложенные усилия могут несколько отличаться:

Borland C++/Borland C++ Builder:

подключить к проекту файлы LTR\LIB\BORLAND\ltrapi.lib, LTR\INCLUDE\ltrapi.h, LTR\INCLUDE\ltrapitypes.h и LTR\INCLUDE\ltrapidefine.h;

Microsoft Visual C++:

• подключить к проекту файлы *LTR\LIB\MSVC\ltrapi.lib*, *LTR\INCLUDE\ltrapi.h*, *LTR\INCLUDE\ltrapitypes.h* и *LTR\INCLUDE\ltrapidefine.h*;

Другие среды разработки:

- следует обратиться к соответствующей документации на средство разработки.
- создать и добавить в проект файл с исходным текстом будущей программы;
- после этого Вы можете писать свою программу, вызывая соответствующие интерфейсные функции dll-библиотеки.

3.2. Общий подход к работе с интерфейсными функциями библиотеки ltrapi.dll.

Для взаимодействия с каким-либо модулем необходимо выполнить следующие действия:

- создать экземпляр структуры *TLTR* и проинициализировать его, вызвав функцию *LTR Init()*
- выбрать модуль, с которым вы хотите работать задав серийный номер крейта и номер модуля (поля *csn* и *cc*)
- задать, при необходимости, сетевой адрес компьютера и TCP порт, на которые настроен LTR-сервер (поля *saddr* и *sport*)
- установить соединение с модулем, произведя вызов функции *LTR Open()*
- осуществлять обмен данными с модулем:
- отсылать/принимать данные модуля, производя вызов функций *LTR Send()/LTR Recv()*

- при использовании канала управления (*CC_CONTROL*) можно получить список крейтов, подключенных к LTR-серверу, произведя вызов функции *LTR GetCrates()*
- при использовании канала управления (*CC_CONTROL*) можно получить список модулей, подключенных к выбранному крейту, произведя вызов функции *LTR GetCrateModules()*
- разорвать соединение с модулем, произведя вызов функции *LTR Close()*

3.3. Простой пример.

```
// В данном примере осуществляется чтение списка установленных в крейт модулей
#include <stdio.h>
#include "ltr\\include\\ltrapi.h"
#include "ltr\\include\\ltrapidefine.h"
int main(void)
    {
   INT res;
   TLTR ltr;
   // инициализируем поля структуры значениями по умолчанию
   res = LTR Init(&ltr);
   if (res == LTR OK)
        // используем сетевой адрес и порт ltr-сервера по умолчанию
        // используем серийный номер крейта по умолчанию - первый найденный
        // задаем управляющий канал
       ltr.cc = CC_CONTROL;
        // устанавливаем соединение
        res = LTR Open(&ltr);
        if (res == LTR WARNING MODULE IN USE)
            {
            printf(">> Внимание ! Модуль уже открыт и кто - то с ним работает \n");
            res = LTR OK;
            }
        if (res == LTR OK)
            {
            WORD mid[MODULE MAX];
            // получаем список модулей крейта
            res = LTR GetCrateModules(&ltr, mid);
            if (res == LTR OK)
                {
                printf(">> список установленных модулей: \n");
                for (int i = 0; i < MODULE MAX; i++)
                    printf(">> slot%0.2d mid = %d\n", i + 1, mid[i] & 0xFF);
                }
            // разрываем соединение
            LTR Close(&ltr);
       }
    // выводим сообщение об ошибке
   if (res != LTR OK)
       printf(">> %s\n", LTR GetErrorString(res));
```

3.4. Простой пример 2.

Поскольку для работы с несколькими модулями одновременно рекомендуется использовать потоки, то небольшой пример на использование потоков :

```
#include "stdafx.h"
#include "ltr\\include\\ltrapi.h"
#include "ltr\\include\\ltrapidefine.h"
void ModuleOpenAndWork(void* Args)
     INT res = LTR OK;
     // используем сетевой адрес и порт ltr-сервера по умолчанию
     TLTR ltr = *(TLTR *)Args;
     // используем серийный номер крейта по умолчанию - первый найденный.
     // задаем управляющий канал
     ltr.cc = CC CONTROL;
     // устанавливаем соединение
     res = LTR Open(&ltr);
     if (res == LTR WARNING MODULE IN USE)
          printf(">>Warning: Module already opened elsewhere \n");
          res = LTR OK;
     int ThreadNumber = (int)ltr.internal;
     if (res == LTR OK)
           WORD mid[MODULE MAX];
           // получаем список модулей крейта
           res = LTR GetCrateModules(&ltr, mid);
           if (res == LTR OK)
                printf(">> NumberInstalled Modules for threadNumber %d :\n",
                      ThreadNumber);
                for (int i = 0; i < MODULE MAX; i++)</pre>
                      printf(">> slot%0.2d mid=%d >> threadNumber %d \n",
                           i + 1, mid[i] & 0xFF, ThreadNumber);
                }
           // разрываем соединение
           LTR Close(&ltr);
           }
     if (res != LTR OK)
           printf("Module Number %d, error %s\n",
                ThreadNumber, LTR GetErrorString(res));
     }
int tmain(int argc, TCHAR* argv[])
     const int NUM MODULE = 3;
     INT res;
     TLTR ltr[NUM MODULE];
     HANDLE ThreadHandle[NUM MODULE];
     // инициализируем поля структуры значениями по умолчанию
     for (int i = 0; i < NUM MODULE; i++)</pre>
           res = LTR Init(&ltr[i]);
```

3.5. Соображения сетевой безопасности.

В существующем ПО крейтовой системы LTR не имеется собственной системы разграничения доступа. Если необходимо использовать систему в сети с прямым подключением к интернету (на реальных IP-адресах), то настоятельно рекомендуется использовать соответственно настроенный межсетевой экран (firewall) или маршрутизатор. Это касается и связи между LTR-сервером и приложениями, и крейтов LTR-EU, подключаемых по TCP/IP.

Порты, используемые системой LTR:

Порт	Сервер	Клиент	Назначение
11110/tcp	LTR-EU (ip)	ltrserver	данные крейт-контроллера
11111/tcp*	ltrserver	приложение пользователя (ltrapi)	связь с приложением
11112/udp	LTR-EU (ip)	ltrserver	обнаружение крейтов в ЛВС
11113/tcp	LTR-EU (ip)	ltrserver	команды крейт-контроллера

 $^{^{(*)}}$ Программа ltrserver по умолчанию слушает свой серверный порт на всех интерфейсах (адрес привязки 0.0.0.0). При необходимости можно указать определенный адрес (например, 127.0.0.1) и другой порт, добавив параметры listen_addr и listen_port в файле конфигурации сервера (секция [LTR_SERVER_CONFIG]).

4. Описание функций, структур и констант библиотеки *ltrapi.dll*.

В настоящем разделе приведены достаточно подробные описания констант, структур и интерфейсных функций, входящих в состав библиотеки *ltrapi.dll*.

Примечание: Рекомендованную последовательность вызовов интерфейсных функций см. *Общий подход к работе с интерфейсными функциями dll-библиотеки*.

4.1. Константы

Константа	Значение	Описание	
Константы использу	емые лля заля	ания логического модуля (поле сс структуры <i>TLTR</i>)	
CC_CONTROL	0	Выбирает для связи управляющий канал сервера и крейт-контроллера.	
CC_MODULE1 CC MODULE16	116	Задает канал для связи с модулем, находящимся в слоте 116	
CC_USERDATA	18	Задает канал для работы с особым виртуальным модулем, соответствующим каналу пользовательских данных (при использовании модифицированного пользователем встроенного ПО крейтов LTR-EU)	
CC_RAW_DATA_FLAG	0x4000	Флаг, инициирующий сбор "сырых" данных с крейта, доступных с помощью функции LTR GetCrateRawData()	
CC_DEBUG_FLAG	0x8000	Флаг, используемый в отладочных целях.	
	Остальные константы, используемые при заполнении и анализе полей структуры <i>TLTR</i>		
SADDR_LOCAL	0x7F000001	Локальный сетевой адрес (127.0.0.1)	
FLAG_RBUF_OVF	1	Флаг переполнения буфера клиента	
FLAG_RFULL_DATA	2	Флаг получения полных данных крейта в функции LTR GetCrateRawData().	
FLAG_SIGNAL_TSTAMP	0x100	Флаг получения синхрометки.	
CSN_SERVER_CONTROL	"#SERVER_ CONTROL"	Фиктивный серийный номер, который можно использовать для <i>управления программой ltrserver</i> , даже если не подключен ни один крейт.	
Конст	анты, использ	вуемые для определения типа модуля	
MID_EMPTY	0	Модуль не установлен	
MID_LTR11	0x0B0B	LTR11	
MID_LTR22	0x1616	LTR22	
MID LTR27	0x1B1B	LTR27	
MID_LTR43	0x2B2B	LTR43	
MID_LTR51	0x3333	LTR51	
MID_LTR212	0xD4D4	LTR212	
MID		и т.д. для всех существующих модулей	
Конс	Константы, используемые в стркутуре TCRATE INFO		
CRATE_TYPE_ UNKNOWN	0	Неизвестный тип крейта (ошибка).	
CRATE_TYPE_LTR010	10	Тип подключенного крейта — LTR-U-8 или LTR-U-16.	
CRATE_TYPE_LTR021	21	Тип подключенного крейта — LTR-U-1.	

Константа	Значение	Описание
CRATE TYPE LTR030	30	Тип подключенного крейта — LTR-EU-8 или LTR-EU-16.
CRATE TYPE LTR031	31	Тип подключенного крейта — LTR-EU-2.
CRATE TYPE	00	Обнаружен только загрузчик. В нормальном режиме такое
BOOTLOADER	99	значение не возникает.
CRATE_IFACE_	0	H
UNKNOWN	0	Неизвестный тип подключения крейта (ошибка).
CRATE_IFACE_USB	1	Крейт подключен к LTR-серверу по USB.
CRATE_IFACE_TCPIP	2	Крейт подключен к LTR-серверу по TCP/IP.
Константы, испол	ьзуемые в стр	уктуре TIPCRATE_ENTRY (состояние IP-крейта)
CRATE_IP_STATUS_ OFFLINE	0	Соединение с крейтом не установлено.
CRATE_IP_STATUS_ CONNECTING	1	Крейт находится в процессе установления соединения.
CRATE_IP_STATUS_ ONLINE	2	Соединение с крейтом установлено.
CRATE_IP_STATUS_ ERROR	3	Некорректное состояние соединения (ошибка).
	Битовые	маски режимов IP-крейтов
CRATE_IP_FLAG_	0x00000001	
AUTOCONNECT	0x00000001	Автоматически подключать крейт при запуске сервера.
		Коды ошибок
LTR_OK	0	Выполнено без ошибок.
LTR_ERROR_	-1	Неизвестная ошибка.
UNKNOWN	1	TIONS SOUTHWAY OMNIONAL
LTR_ERROR_	-2	Ошибка входных параметров.
PARAMETRS		
LTR_ERROR_ MEMORY ALLOC	-3	Ошибка динамического выделения памяти.
LTR ERROR		
OPEN CHANNEL	-4	Ошибка открытия канала обмена с сервером.
LTR ERROR		
OPEN SOCKET	-5	Ошибка открытия ТСР сокета.
LTR ERROR	_	
CHANNEL CLOSED	-6	Ошибка. Канал обмена с сервером не создан.
LTR ERROR SEND	-7	Ошибка передачи данных.
LTR ERROR RECV	-8	Ошибка приема данных.
LTR ERROR EXECUTE	-9	Ошибка при выполнения команды крейт-контроллером.
		Предупреждение: канал с сервером для этого модуля уже
		создан (то есть модуль уже открыт), может быть выдано
LTR_WARNING_	10	как ответ на функцию $LTR_Open()$.
MODULE_IN_USE	-10	При этом предупреждении канал с сервером создается, с
		модулем можно работать дальше, и обязательно
		завершить сессию функцией LTR Close().
LTR_ERROR_NOT_	-11	Ошибка: вызванная функция может работать только с
CTRL CHANNEL	-11	каналом СС_CONTROL, а открыт другой канал.
Остальные константы	_	
CRATE_MAX	16	Максимальное количество крейтов, которое может
		обслужить один LTR-сервер
MODULE_MAX	16	Максимальное количество слотов в одном крейте.

Кроме того, имеется набор констант-перечислений (enum) для управления крейт-контроллерами LTR-EU в части синхронизации (т.е. стартовых и секундных меток) и конфигурации специальных внутренних сигналов процессора Blackfin.

Программирование внутренних сигналов Blackfin в данном руководстве не рассматривается. Оно может потребоваться только при модификации пользователем встроенного ПО (прошивки) крейтконтроллера.

Константа	Значение	Описание	
enum en LTR UserIoCfg			
Настройки внут	Настройки внутренних сигналов на выводах процессора крейт-контроллера		
LTR_USERIO_DEFAULT	0	Значение в нормальном режиме работы.	
LTR_USERIO_DIGOUT	0	(спец.) Сигнал – выход Blackfin.	
LTR_USERIO_DIGIN1	1	(спец.) Сигнал – вход Blackfin и соединен с DIGIN1.	
LTR_USERIO_DIGIN2	2	(спец.) Сигнал – вход Blackfin и соединен с DIGIN2.	
		num en_LTR_DigOutCfg	
	ойки комм	утации выходов DIGOUT1 и DIGOUT2	
LTR_DIGOUT_DEFAULT LTR_DIGOUT_CONST0	0	На выходе постоянный уровень логического "0".	
LTR_DIGOUT_CONST1	1	На выходе постоянный уровень логической "1".	
LTR_DIGOUT_USERIO0	2	(спец.) Выход подключен к зарезервированной линии 0.	
LTR_DIGOUT_USERIO1	3	(спец.) Выход подключен к зарезервированной линии 1.	
LTR_DIGOUT_DIGIN1	4	Выход подключен ко входу DIGIN1.	
LTR_DIGOUT_DIGIN2	5	Выход подключен ко входу DIGIN2.	
LTR_DIGOUT_START	6	На выход подаются метки "СТАРТ".	
LTR_DIGOUT_SECOND	7	На выход подаются метки "СЕКУНДА".	
		num en_LTR_MarkMode	
	и режимов	генерации меток "СТАРТ" и "СЕКУНДА"	
LTR_MARK_OFF	0	Метка отключена	
LTR_MARK_EXT_ DIGIN1 RISE	1	Внешняя генерация: метка фиксируется по фронту сигнала DIGIN1	
LTR_MARK_EXT_ DIGIN1 FALL	2	Внешняя генерация: метка фиксируется по спаду сигнала DIGIN1	
LTR_MARK_EXT_ DIGIN2 RISE	3	Внешняя генерация: метка фиксируется по фронту сигнала DIGIN2	
LTR_MARK_EXT_ DIGIN2_FALL	4	Внешняя генерация: метка фиксируется по спаду сигнала DIGIN2	
LTR_MARK_INTERNAL	5	Внутренняя генерация: метка формируется крейт-контроллером.	

4.2. Структуры

4.2.1. Структура TLTR

Структура TLTR — основная структура, содержащая всю необходимую информацию о конфигурации и состоянии канала связи с выбранным модулем. Эта структура используется во всех библиотечных функциях обмена с модулем.

Определение структуры находится в файле ltrapi.h и представлено ниже:

```
typedef struct {

DWORD saddr;

WORD sport;

BYTE csn[16];

// сетевой адрес сервера

// сетевой порт сервера

// серийный номер крейта
```

```
WORD cc; // номер модуля крейта

DWORD flags; // флаги состояния связи с модулем

DWORD tmark; // последняя принятая метка времени

LPVOID internal; // указатель на канал связи с модулем

} TLTR; //
```

Перед началом работы с модулем необходимо создать экземпляр данной структуры и проинициализировать поля значениями по умолчанию, вызвав функцию $LTR_Init()$.

Назва-	Значение по	
ние поля	умолчанию	Назначение и допустимые значения поля
saddr	SADDR_LOCAL	Позволяет задать сетевой адрес LTR-сервера. Сетевой адрес LTR-сервера – это упакованный в 32-х битное hostendian беззнаковое целое IP-адрес компьютера, на котором запущен LTR-сервер. Пример: Если ір-адрес компьютера "a.b.c.d", то поле saddr должно принять значение (a<<24) (b<<16) (c<<8) (d<<0). Примечание: Если LTR-сервер запущен на том же компьютере, что и пользовательская программа, то в качестве сетевого адреса удобно использовать локальный сетевой адрес 127.0.0.1 (SADDR_LOCAL).
sport	11111	Позволяет задать сетевой порт LTR-сервера. Сетевой порт LTR-сервера – это 16-битное беззнаковое целое (hostendian), указывающее TCP порт, на который настроен LTR-сервер.
csn	{0}	Позволяет задать серийный номер LTR-крейта. Серийный номер крейта — это строка длиной до SERIAL_NUMBER_SIZE (16) символов. Если дина серийного номера меньше, то строка должна заканчиваться нулем. Примечание 1: Если при вызове функции LTR_Open() в качестве серийного номера указать пустую строку, то будет произведена попытка установить соединение с первым найденным LTR-крейтом. В случае успеха на выходе данное поле будет содержать серийный номер крейта, с которым установлено соединение. Примечание 2: В версиях LTR-сервера начиная с 1.5.2.1 можно установить специальное соединение "без крейта" для управления работой LTR-сервера (в т.ч. если к системе не подключен ни один крейт). Для этого в поле сsп следует записать константу CSN_SERVER_CONTROL, а поле сс должно иметь значение СС_CONTROL.
CC	CC_CONTROL	Позволяет задать номер модуля LTR-крейта. Номер модуля – это 16-ти битовое беззнаковое целое, однозначно идентифицирующее <i>погический модуль</i> выбранного LTR-крейта. Допустимые значения: <i>CC_CONTROL</i> , <i>CC_MODULE1</i> , <i>CC_MODULE2</i> ,, <i>CC_MODULE16</i> , <i>CC_USERDATA</i>
flags	0	Содержит флаги состояния канала связи с модулем. FLAG_RBUF_OVF — флаг переполнения буфера в LTR-сервере. Сигнализирует о том что пользовательское(клиентское) приложение не успевает забирать данные принимаемые от модуля. Флаг обновляется при вызове функции LTR_Recv(). FLAG_RFULL_DATA — служебный флаг, используется в функции LTR_GetCrateRawData();
tmark	0	Содержит последнюю принятую от LTR-сервера метку времени.
internal	NULL	Содержит указатель на канал связи с модулем.

4.2.2. Cmpykmypa TCRATE INFO

Структура TCRATE_INFO заполняется функцией *LTR_GetCrateInfo()* при передаче ей указателя на структуру *TLTR* с открытым каналом CC_CONTROL. Эта структура содержит информацию о модели и способе подключения крейта.

Определение структуры находится в файле ltrapitypes.h и представлено ниже:

```
typedef struct {

BYTE CrateType; // Тип крейта (одна из констант CRATE_TYPE_...)

BYTE CrateInterface; // Тип подключения крейта (одна из констант CRATE_IFACE_...)

} TCRATE INFO;
```

4.2.3. Структура TLTR_CONFIG

Данная структура используется только для крейтов LTR-EU с процессором Blackfin и предназначена для коммутации цифровых входов и выходов разъема синхронизации крейта "SYNC".

Определение структуры находится в файле ltrapi.h и представлено ниже:

Элементы массива userio[] задают коммутацию специальных сигналов процессора Blackfin и при нормальной работе *должны быть равны LTR USERIO DEFAULT*.

Элементы массива digout[0], digout[1] задают коммутацию линий разъема "SYNC" DIGOUT1 и DIGOUT2 соответственно.

Hенулевое значение поля digout_en paspeшaeт работу линий DIGOUT1 и DIGOUT2 как активных выходов (одновременно включаются или выключаются оба выхода). Если digout_en = 0, то обе линии DIGOUT переходят в высокоимпедансное состояние.

4.2.4. Структура TIPCRATE_ENTRY

Массив стркутур TIPCRATE_ENTRY заполняется функцией *LTR_GetListOfIPCrates()* при передаче ей указателя на структуру *TLTR* с открытым каналом CC_CONTROL. Эта структура содержит информацию об адресе, режиме подключения и состоянии крейта, подключение к которому осуществляется по TCP/IP.

Определение структуры находится в файле ltrapitypes.h и представлено ниже:

```
typedef struct {

DWORD ip_addr; // IP адрес (host-endian, 0x01020304 = 1.2.3.4)

DWORD flags; // флаги режимов (сумма констант CRATE_IP_FLAG_...)

CHAR serial_number[16]; // серийный номер (если крейт подключен)

BYTE is_dynamic; // 0 = крейт задан пользователем, 1 = найден автоматически

BYTE status; // состояние (одна из констант CRATE_IP_STATUS_...)

} TIPCRATE_ENTRY;
```

4.2.5. Метка времени.

Метка времени представляет собой 32-х разрядное беззнаковое целое, служащее для синхронизации данных, собранных различными модулями. (см. также $LTR_Recv()$)

Биты Описание О

015	Счетчик секундных меток, инкрементируемый LTR-сервером каждый раз при приеме от модуля LTR41, LTR42, LTR43 или от крейт-контроллера слова, содержащего метку "СЕКУНДА".
1631	Счетчик стартовых меток, инкрементируемый LTR-сервером каждый раз при приеме от модуля LTR41, LTR42, LTR43 или от крейт-контроллера слова, содержащего метку "СТАРТ".

4.3. Функции

Все интерфейсные функции библиотеки *ltrapi.dll*, кроме функции *LTR_GetErrorString()*, в качестве первого параметра принимают указатель на экземпляр структуры *TLTR*.

Также все интерфейсные функции имеют один и тот же тип возвращаемого значения — INT. Возвращаемое значение сообщает о результате выполнения функции. Отрицательные значения сигнализируют о возникновении *ошибки*. Значение 0 (LTR_OK) соответствует успешному завершению функции (исключение составляют функции $LTR_Recv()$ и $LTR_Send()$). Положительные значения определены только для функций $LTR_Recv()$ и $LTR_Send()$ и определяют количество принятых или переданных данных.

4.3.1. Основные функции

Функции этой подгруппы применимы ко всем типам модулей.

4.3.1.1. Инициализация полей структуры

Φορмат: INT LTR_Init(TLTR *ltr)

Назначение: Инициализирует поля структуры значениями по умолчанию.

Эту функцию необходимо вызвать однократно для каждого созданного экземпляра структуры TLTR, прежде чем будут вызваны остальные функции библиотеки.

Передаваемые параметры:

• ltr - yказатель на экземпляр структуры TLTR.

Возвращаемое значение:

4.3.1.2. Открытие соединения с модулем

Φορмат: INT LTR Open (TLTR *ltr)

Назначение: Открывает соединение с модулем.

Эту функцию необходимо вызвать перед началом обмена данными с модулем. Выбор модуля осуществляется полями структуры *TLTR*. Если переданный экземпляр структуры указывает на открытое соединение с модулем, то это соединение будет автоматически разорвано и будет произведена попытка вновь установить соединение с заданным модулем.

Передаваемые параметры:

• ltr - yказатель на экземпляр структуры TLTR.

Примечания:

Если функция вернула предупреждение LTR_WARNING_MODULE_IN_USE, то это значит, что к данному модулю уже имеются подключения. При этом канал обмена данными создается успешно, с ним можно работать, либо считать данную ситуацию ошибкой, на усмотрение программиста. В последнем случае, тем не менее, необходимо закрыть канал функцией LTR Close().

Возвращаемое значение:

• Код ошибки.

4.3.1.3. Разрыв соединения с модулем

Формат: INT LTR Close(TLTR *ltr)

Назначение: Прекращает соединение с модулем.

Эту функцию необходимо вызвать после окончания обмена данными с модулем для корректного завершения соединения и освобождения ресурсов системы, выделенных при открытии соединения.

Передаваемые параметры:

• ltr - yказатель на экземпляр структуры TLTR.

Возвращаемое значение:

• Код ошибки.

4.3.1.4. Состояние соединения с модулем

Формат: INT LTR_IsOpened(TLTR *ltr)

Назначение: Определяет состояние соединения с модулем.

Функция позволяет определить текущее состояние соединения с модулем. Если ltr соответствует открытому дескриптору, то возвращается LTR OK.

Передаваемые параметры:

• ltr - yказатель на экземпляр структуры TLTR.

Возвращаемое значение:

4.3.1.5. Прием данных от модуля

ΦορΜαΤ: INT LTR_Recv(TLTR *ltr, DWORD *data, DWORD *tmark, DWORD size, DWORD timeout)

Назначение: Производит прием данных от модуля.

Функция осуществляет прием данных от модуля. Формат принятых данных зависит от типа модуля и в этом документе не рассматривается.

Передаваемые параметры:

- ltr указатель на экземпляр структуры TLTR.
- data указатель на массив типа DWORD[size], в который будут помещены принятые от модуля данные.
- tmark указатель на массив типа DWORD[size], в который будут помещены метки времени, соответствующие принятым данным. Таким образом, каждому элементу массива data[i] соответствует элемент массива tmark[i], содержащий метку времени. Если необходимости во временных метках нет, в качестве параметра tmark можно передать значение NULL.
- size количество двойных слов (DWORD), которое следует принять от модуля.
- timeout интервал времени в миллисекундах, в течение которого следует ожидать приема запрошенного количества двойных слов. Если в течение указанного интервала времени данные от модуля получены не будут, то произойдет выход из функции.

Возвращаемое значение:

• Отрицательные значения следует интерпретировать как коды ошибок. Неотрицательные значения следует обрабатывать как количество реально принятых от модуля двойных слов за отведенный интервал времени.

4.3.1.6. Передача данных модулю

Формат: INT LTR_Send(TLTR *ltr, DWORD *data, DWORD size,

DWORD timeout)

Назначение: Производит передачу данных модулю.

Функция осуществляет передачу данных модулю. Формат передаваемых данных зависит от типа модуля и в этом документе не рассматривается.

Передаваемые параметры:

- ltr указатель на экземпляр структуры <math>TLTR.
- data указатель на массив типа DWORD[size], содержащий данные, предназначенные для передачи модулю.
- size количество двойных слов (DWORD), которое следует передать модулю.
- timeout интервал времени в миллисекундах, в течение которого следует ожидать завершения передачи запрошенного количества двойных слов. Если в течение указанного интервала времени данные модулю переданы не будут, то произойдет выход из функции.

Возвращаемое значение:

• Отрицательные значения следует интерпретировать как коды ошибок. Неотрицательные значения следует обрабатывать как количество реально переданных модулю двойных слов за отведенный интервал времени.

4.3.2. Функции информационного характера

Функции этой подгруппы применимы только для управляющего канала, т.е. для структуры TLTR с открытым каналом CC CONTROL.

4.3.2.1. Список крейтов, подключенных к серверу

Φορмат: INT LTR GetCrates (TLTR *ltr, BYTE *csn)

Назначение: Получает список крейтов, подключенных к LTR-серверу.

Функция возвращает список крейтов, подключенных к серверу. Распознавание крейтов сервером происходит только по их серийным номерам, поэтому возвращаемый функцией список представляет собой список серийных номеров подключенных крейтов.

Передаваемые параметры:

- ltr yказатель на экземпляр структуры TLTR.
- csn указатель на массив типа BYTE[CRATE_MAX][SERIAL_NUMBER_SIZE], который будет заполнен серийными номерами подключенных к серверу крейтов.

Возвращаемое значение:

4.3.2.2. Список модулей крейта

Φορματ: INT LTR GetCrateModules(TLTR *ltr, WORD *mid)

Назначение: Получает список модулей крейта.

Функция возвращает список установленных в крейт модулей. Каждый модуль имеет двухбайтовый *идентификатор*, однозначно определяющий его тип.

Передаваемые параметры:

- ltr yказатель на экземпляр структуры TLTR.
- mid указатель на массив типа WORD[MODULE_MAX], который будет заполнен *идентификаторами* установленных в крейт модулей.

Возвращаемое значение:

• Код ошибки

4.3.2.3. Информация о типе и способе подключения крейта

Φορмατ: INT LTR GetCrateInfo(TLTR *ltr, TCRATE INFO *CrateInfo)

Назначение: Получает информацию о типе крейта, с которым установлено соединение, и способе его подключения к LTR-серверу.

Функция запрашивает тип крейта и способ подключения и заполняет структуру *CrateInfo.

Передаваемые параметры:

- ltr yказатель на экземпляр структуры TLTR.
- CrateInfo указатель на экземпляр структуры *TCRATE_INFO*, который при успешном выходе из функции будет заполнен соответствующими *значениями*.

Возвращаемое значение:

4.3.3. Функции синхронизации и коммутации служебных сигналов LTR-EU

Данная подгруппа объединяет функции, позволяющие задействовать расширенные возможности крейт-контроллеров серий LTR-EU (с процессором Blackfin) в части генерации меток "СТАРТ" и "СЕКУНДА" и управлять коммутацией входов и выходов разъема синхронизации "SYNC", а также специальных внутренних сигналов процессора Blackfin, которые могут потребоваться при использовании модифицированных пользователем версий встроенного ПО крейт-контроллера.

Функции этой подгруппы применимы только для управляющего канала, т.е. для структуры TLTR с открытым каналом CC CONTROL.

Для крейтов серий LTR-U эти функции не поддерживаются, и вызывать их не следует. При необходимости узнать тип крейта можно с помощью функции *LTR GetCrateInfo()*.

Примечание: средства генерации меток "СТАРТ" и "СЕКУНДА" также присутствуют в модулях LTR-41, LTR-42, LTR-43. Во избежание дублирования меток и искажения привязки к реальному времени при задействовании средств синхронизации крейт-контроллера недопустимо одновременно включать аналогичные функции модулей. Это особенно важно учитывать при модернизации существующего программного обеспечения.

4.3.3.1. Управление коммутацией сигналов

Формат: INT LTR_Config(TLTR *ltr, const TLTR_CONFIG *conf)

Назначение: Устанавливает конфигурацию синхросигналов и внутренних линий процессора в соответствии с полями структуры *conf.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*, соответствующей открытому каналу CC_CONTROL крейта LTR-EU.
- conf указатель на экземпляр структуры *TLTR CONFIG*.

Примечания:

Эту функцию необходимо вызвать перед началом работы с остальными функциями данной группы, чтобы задать необходимое состояние крейт-контроллера, в т.ч. если используется только внутренняя синхронизация.

Подробное описание назначения полей структуры приведено в 4.2.3.

Возвращаемое значение:

4.3.3.2. Генерация метки "СТАРТ"

Φορματ: INT LTR MakeStartMark(TLTR *ltr, enum en LTR MarkMode mode)

Назначение: Управляет генерацией меток "СТАРТ" по внутреннему или внешнему событию...

Передаваемые параметры:

- ltr указатель на экземпляр структуры TLTR, соответствующей открытому каналу CC CONTROL крейта LTR-EU.
- mode одно из значений *enum en LTR MarkMode*, определяющее режим работы.

Примечания:

Эта функция должна использоваться одним из двух следующих способов в зависимости от того, внешние ли используются метки "СТАРТ" или внутренние.

Для внутренней однократной генерации метки необходимо вызвать функцию с параметром mode = LTR_MARK_INTERNAL в тот момент, когда требуется метка. Непосредственно после получения команды крейт-контроллер сформирует одну метку "СТАРТ", отправит ее LTR-серверу и, если задана трансляция меток на выходы разъема "SYNC", сформирует соответствующий импульс.

Для внешней генерации меток необходимо предварительно вызвать функцию с параметром mode = LTR_MARK_EXT_DIGINx_RISE или LTR_MARK_EXT_DIGINx_FALL (x = 1 или 2), тем самым разрешается генерация меток "CTAPT" по фронту или спаду соответствующего сигнала на входе разъема "SYNC". Отключить внешнюю генерацию меток можно вызовом этой же функции с параметром mode = LTR_MARK_OFF.

Возвращаемое значение:

4.3.3.3. Начало генерации меток "СЕКУНДА"

Φορματ: INT LTR StartSecondMark(TLTR *ltr, enum en LTR MarkMode mode)

Назначение: Запускает генерацию меток "СЕКУНДА" по внутреннему или внешнему событию.

Передаваемые параметры:

- ltr указатель на экземпляр структуры TLTR, соответствующей открытому каналу CC CONTROL крейта LTR-EU.
- mode одно из значений *enum en LTR MarkMode*, определяющее режим работы.

Примечания:

Для *внутренней* генерации меток необходимо вызвать функцию с параметром mode = LTR_MARK_INTERNAL. После получения команды крейт-контроллер начинает формировать метки "СЕКУНДА" с периодичностью 1 с, отправляя их LTR-серверу и, если задана трансляция меток на выходы разъема "SYNC", формируя соответствующие импульсы.

Для внешней генерации меток необходимо вызвать функцию с параметром mode = LTR_MARK_EXT_DIGINx_RISE или LTR_MARK_EXT_DIGINx_FALL (x = 1 или 2), тем самым разрешается генерация меток "СЕКУНДА" по фронту или спаду соответствующего сигнала на входе разъема "SYNC".

Значение mode = LTR_MARK_OFF останавливает генерацию секундных меток и имеет тот же смысл, что и вызов функции $LTR_StopSecondMark()$.

Возвращаемое значение:

• Код ошибки

4.3.3.4. Прекращение генерации меток "СЕКУНДА"

Формат: INT LTR StopSecondMark(TLTR *ltr)

Назначение: Останавливает генерацию меток "СЕКУНДА" по внутреннему или внешнему событию.

Передаваемые параметры:

• ltr — указатель на экземпляр структуры TLTR, соответствующей открытому каналу $CC_CONTROL$ крейта LTR-EU.

Примечания:

Вызов этой функции отменяет действие любых предшествовавших вызовов функции *LTR_StartSecondMark()* и запрещает генерацию крейт-контроллером секундных меток (внешних или внутренних).

Возвращаемое значение:

4.3.4. Функции вспомогательного характера

4.3.4.1. Преобразование кода ошибки в текстовое сообщение

Формат: LPCSTR LTR GetErrorString(INT error)

Назначение: Получает сообщение об ошибке в текстовом виде по числовому коду.

Функция возвращает строку, содержащую сообщение об ошибке, соответствующее переданному в функцию коду ошибки.

Передаваемые параметры:

• error – код ошибки.

Возвращаемое значение:

• указатель на строковую константу, содержащую сообщение об ошибке.

4.3.4.2. Получение сырых данных на входе сервера (мгновенных значений)

ΦορΜαΤ: INT LTR_GetCrateRawData(TLTR *ltr, DWORD *data, DWORD *tmark, DWORD size, DWORD timeout)

Назначение: Осуществляет прием данных напрямую от крейта, без обработки сервером.

Функция осуществляет прием последних поступивших данных непосредственно от крейта, без обработки сервером. При этом перемешаны данные от модулей и временные метки.

Может использоваться для получения мгновенных значений.

Размер запрашиваемых данных (size) – не более 1024*1024 значений.

Варианты использования функции:

- 1. Получение последних мгновенных данных из крейта: size > 0, в ltr->flags отсутствует флаг FLAG_RFULL_DATA.. При этом переполнение внутренних буферов крейта не сигнализируется флагом FLAG_RBUF_OVF.
- 2. Получение размера сырых данных, накопившихся в сервере: size = 0, FLAG_RFULL_DATA не имеет значения. В таком случае возвращаемое функцией значение указывает размер накопленных данных. Однако на практике для получения данных рекомендуется использовать цикл с таймаутом.
- 3. Получение полных данных из крейта: size > 0, в ltr->flags присутствует флаг FLAG_RFULL_DATA.

Передаваемые параметры:

- ltr указатель на экземпляр структуры TLTR с открытым каналом CC CONTROL.
- data указатель на массив типа DWORD[size], в который будут помещены принятые от крейта данные.
- tmark указатель на массив типа DWORD[size], в который будут помещены метки времени, соответствующие принятым данным. Таким образом, каждому элементу массива data[i] соответствует элемент массива tmark[i], содержащий метку времени. Если необходимости во временных метках нет, в качестве параметра tmark можно передать значение NULL.
- size количество двойных слов (DWORD), которое следует принять от крейта.
- timeout интервал времени в миллисекундах, в течение которого следует ожидать приема запрошенного количества двойных слов. Если в течение указанного интервала времени данные от крейта получены не будут, то произойдет выход из функции.

Возвращаемое значение:

- Код ошибки
- При (size = 0) размер накопленных данных.

Пример получения последних мгновенных данных: int i, nslot; INT res, data size; TLTR module; TLTR11 hltr11; DWORD data[NumRawData]; double VoltsData[NumRawData]; LTR Init(&module); module.cc = CC CONTROL; LTR Open (&module); LTR11 Init(&hltr11); nslot = 10; //номер слота модуля LTR11 res = LTR11 Open(&hltr11, SADDR DEFAULT, SPORT DEFAULT, "", nslot); if (res == LTR OK) printf("LTR11 Open OK\n"); res = LTR11 GetConfig(&hltr11); if (res == LTR OK) printf("LTR11 getconfig OK\n"); hltr11.InpMode = LTR11 INPMODE INT; hltr11.LChQnt = 16;for(i = 0; i < 16; i++)</pre> hltr11.LChTbl[i] = (BYTE)i; } hltr11.ADCMode = LTR11 ADCMODE ACQ; hltr11.ADCRate.divider = 36; hltr11.ADCRate.prescaler = 8; res = LTR11 SetADC(&hltr11); if (res == LTR OK) printf("LTR11 setadc OK\n"); LTR11 Start(&hltr11); } } while (!kbhit()) { // принимаем и отображаем LTR GetCrateRawData(&module, data, NULL, NumRawData, 1000); data size = NumRawData; res = LTR11 ProcessData(&hltr11, data, VoltsData, &data size, TRUE, TRUE); **if** (res==0) printf(" res=%00004d %10.4f %10.4f%10.4f\n", res, VoltsData[0], VoltsData[1], VoltsData[2]); LTR11 Stop(&hltr11); LTR11 Close (&hltr11); LTR Close (&module);

4.3.5. Функции управления LTR-сервером

4.3.5.1. Общие замечания

Функции этой подгруппы позволяют программно управлять работой программы ltrserver аналогично (и параллельно) командам, доступным через графический интерфейс (в т.ч. конфигурировать, подключать, отключать крейты по TCP/IP, перезапускать LTR-сервер и т.д.).

Все функции этой подгруппы применимы только для управляющего канала, т.е. для структуры TLTR с открытым каналом $CC_CONTROL$.

Соединение без крейта: Если в системе еще нет ни одного подключенного крейта, то установить соединение с "первым найденным" крейтом (с пустым полем сsn структуры *TLTR*) не удастся. Чтобы соединиться с управляющим каналом LTR-сервера в режиме "без крейта", следует использовать специальный фиктивный серийный номер CSN SERVER CONTROL. Например:

```
LTR_Init(&ltr);
strncpy(ltr.csn, CSN_SERVER_CONTROL, sizeof(ltr.csn));
ltr.cc = CC_CONTROL;
ltr_result = LTR_Open(&ltr);
```

Однако этот режим не является обязательным. Функции управления сервером доступны и для обычного соединения ("с крейтом"), единственное непременное условие — номер канала должен быть $CC\ CONTROL$.

4.3.5.2. Чтение приоритета сервера

```
Φορματ: INT LTR GetServerProcessPriority(TLTR *ltr, DWORD *Priority)
```

Назначение: Получает информацию о текущем приоритете процесса LTR-сервера в системе.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- Priority указатель на переменную, принимающую считанное значение. Значение *Priority соответствует Win32 API :

```
IDLE_PRIORITY_CLASS, BELOW_NORMAL_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS, ABOVE_NORMAL_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, REALTIME_PRIORITY_CLASS.
```

Возвращаемое значение:

• Код ошибки

4.3.5.3. Изменение приоритета сервера

```
Φορματ: INT LTR SetServerProcessPriority(TLTR *ltr, DWORD Priority)
```

Назначение: Устанавливает новый приоритет процесса LTR-сервера в системе. Повышение приоритета полезно при постоянной загрузке компьютера посторонними программами, когда может возникнуть переполнение буфера крейта из-за того, что сервер не успел считать информацию. Особенно это критично для одноместного крейта LTR-21.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- Priority приоритет согласно Win32 API :

```
IDLE_PRIORITY_CLASS, BELOW_NORMAL_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS, ABOVE_NORMAL_PRIORITY_CLASS,
HIGH PRIORITY CLASS, REALTIME PRIORITY CLASS.
```

Pекомендуется использовать значения: для повышенного приоритета HIGH_PRIORITY_CLASS, для нормального — NORMAL PRIORITY CLASS.

Возвращаемое значение:

4.3.5.4. Получение списка ІР-крейтов

ΦορΜαΤ: INT LTR_GetListOfIPCrates(TLTR *ltr, DWORD max_entries, DWORD ip net, DWORD ip mask, DWORD *entries found, DWORD

*entries returned, TIPCRATE ENTRY *info array)

Назначение: Получает выборку из списка известных LTR-серверу IP-адресов крейтов (как активных, т.е. подключенных в настоящий момент, так и неактивных).

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- max_entries максимальное количество информационных записей, которое может принять массив info array.
- ip_net, ip_mask адрес и маска IP-сети (host endian), задающие фильтр для отбора записей. Учитываются только IP-адреса крейтов, попадающие в указанную сеть. Например: ip_net = 0xC0A80100 (соответствует "192.168.1.0"), ip_mask = 0xFFFFFF00 (соответствует "255.255.255.0") поиск только крейтов с IP-адресами 192.168.1.х.
- entries_found указатель на переменную, принимающую количество найденных крейтов (всего), удовлетворяющих заданной сетевой маске. Это значение может быть больше, чем max_entries.
- entries_returned указатель на переменную, принимающую на выходе количество записей в массиве info array. В норме это значение равно min(max entries, entries found).
- info_array указатель на массив структур *TIPCRATE_ENTRY* (длиной не менее max_entries), в который будут помещены IP-адреса и флаги состояния найденных крейтов. Допустимо сочетание info_array = NULL, max_entries = 0.

Примечания:

Данная функция может использоваться в различных целях: для проверки наличия и определения состояния крейта по его IP-адресу (ip_net paвно IP-адресу, ip_mask = 0xFFFFFFFF), для получения списка всех известных крейтов (ip_net = ip_mask = 0) и т.д.

Возвращаемое значение:

4.3.5.5. Добавление ІР-крейта

Φορмат: INT LTR_AddIPCrate(TLTR *ltr, DWORD ip_addr, DWORD flags, BOOL permanent)

Назначение: Добавляет IP-крейт в список крейтов, известных серверу (список отображается в интерфейсе программы ltrserver). Для того, чтобы установить соединение с крейтом, он должен быть сначала внесен в этот список.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- ip addr IP-адрес добавляемого крейта (host endian, 0x01020304 = "1.2.3.4").
- flags флаги режимов крейта (сумма констант *CRATE IP FLAG* ...).
- permanent если TRUE, то адрес сохраняется в файле конфигурации LTR-сервера.

Примечания:

Если крейт с указанным адресом уже есть в списке, команда завершается с ошибкой. Для проверки наличия крейта можно использовать функцию *LTR GetListOfIPCrates()*.

Возвращаемое значение:

• Код ошибки

4.3.5.6. Удаление IP-крейта

Φορмατ: INT LTR_DeleteIPCrate(TLTR *ltr, DWORD ip_addr, BOOL permanent)

Назначение: Удаляет крейт из списка известных серверу. С крейтом не должно быть установлено соединение.

Передаваемые параметры:

- ltr указатель на экземпляр структуры*TLTR*.
- ip_addr IP-адрес удаляемого крейта (host endian, 0x01020304 = "1.2.3.4").
- permanent если TRUE, то адрес удаляется также из файла конфигурации LTR-сервера.

Примечания:

Удалить можно как "статический" адрес (заданный пользователем или добавленный программно), так и адрес крейта, найденного сервером автоматически в локальной сети (если с ним не установлено соединение). В последнем случае следует учитывать, что при включенном автоматическом поиске, если крейт присутствует в сети, он будет повторно обнаружен сервером и добавлен в список снова.

Если крейт в данный момент занят (подключен), либо адреса нет в списке, то команда завершается с ошибкой. Для проверки наличия крейта в списке и его состояния можно использовать функцию *LTR GetListOfIPCrates()*.

Возвращаемое значение:

4.3.5.7. Подключение IP-крейта

Формат: INT LTR ConnectIPCrate(TLTR *ltr, DWORD ip addr)

Назначение: Инициирует установление соединения с крейтом по ТСР/ІР.

Передаваемые параметры:

- ltr указатель на экземпляр структуры*TLTR*.
- ip addr IP-адрес крейта (host endian, 0x01020304 = "1.2.3.4").

Примечания:

Адрес крейта должен присутствовать в списке IP-крейтов, известных LTR-серверу, т.е. должен быть заранее быть внесен в этот список (любым способом – через файл конфигурации, через графический интерфейс, функцией *LTR_AddIPCrate()* или автоматически обнаружен в локальной сети).

Если крейт уже подключен или уже находится в процессе установления соединения, то возвращается LTR OK.

Успешное завершение этой функции означает лишь, что **отправлена команда** на установление соединения с крейтом. Процедура подключения занимает некоторое время. Результат операции следует проверить позже с помощью функций *LTR_GetCrates()* или *LTR_GetListOfIPCrates()*. Например, можно организовать циклический опрос сервера с тайм-аутом.

Возвращаемое значение:

• Код ошибки

4.3.5.8. Отключение IP-крейта

Φορмат: INT LTR DisconnectIPCrate(TLTR *ltr, DWORD ip addr)

Назначение: Прекращает соединение с крейтом по ТСР/ІР.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- ip_addr IP-адрес крейта (host endian, 0x01020304 = "1.2.3.4").

Примечания:

Адрес крейта должен присутствовать в списке IP-крейтов, известных LTR-серверу.

Если крейт не был подключен, то возвращается LTR_OK.

Успешное завершение этой функции означает лишь, что **отправлена команда** на прекращение соединения с крейтом. Процедура отключения занимает некоторое время. Результат операции, если требуется, можно проверить позже с помощью функций *LTR_GetCrates()* или *LTR_GetListOfIPCrates()*. Например, можно организовать циклический опрос сервера с таймаутом.

Возвращаемое значение:

4.3.5.9. Подключение всех IP-крейтов, имеющих признак "авто"

Φορмат: INT LTR ConnectAllAutoIPCrates (TLTR *ltr)

Назначение: Инициирует установление соединения по TCP/IP со всеми известными крейтами, у которых установлен флаг автоматического подключения при запуске сервера (CRATE IP FLAG AUTOCONNECT)

Передаваемые параметры:

• ltr - указатель на экземпляр структуры*TLTR*.

Примечания:

Крейты, с которыми уже установлено соединение, остаются подключенными.

Для крейтов, находящихся в процессе установления соединения, производится сброс попытки подключения, и процесс подключения начинается заново.

Успешное завершение этой функции означает лишь, что **отправлена команда** на установление соединения с крейтами (их, в частности, может быть 0 штук). Процедура подключения занимает некоторое время. Результат операции следует проверить позже с помощью функций $LTR_GetCrates()$ или $LTR_GetListOfIPCrates()$. Например, можно организовать циклический опрос сервера с тайм-аутом.

Возвращаемое значение:

• Код ошибки

4.3.5.10.Отключение всех ІР-крейтов

Φορмат: INT LTR_DisconnectAllIPCrates(TLTR *ltr)

Назначение: Прекращает соединение со всеми известными крейтами, подключенными по ТСР/ІР.

Передаваемые параметры:

• ltr – указатель на экземпляр структуры *TLTR*.

Примечания:

Отключаются все подключенные по TCP/IP крейты (заданные пользователем, найденные автоматически, имеющие флаг автоматического подключения при запуске сервера и не имеющие его, и т.д.). Для крейтов, находящихся в процессе установления соединения, производится сброс попытки подключения.

Успешное завершение этой функции означает лишь, что **отправлена команда** на прекращение соединения с крейтами. Процедура отключения занимает некоторое время. Результат операции, если требуется, можно проверить позже с помощью функций *LTR_GetCrates()* или *LTR_GetListOfIPCrates()*. Например, можно организовать циклический опрос сервера с таймаутом.

Возвращаемое значение:

4.3.5.11. Изменение режимов подключения IP-крейта

Φορмατ: INT LTR_SetIPCrateFlags(TLTR *ltr, DWORD ip_addr, DWORD new flags, BOOL permanent)

Назначение: Устанавливает новое значение флагов, опеределяющих режимы подключения крейта по TCP/IP.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- ip addr IP-адрес крейта (host endian, 0x01020304 = "1.2.3.4").
- new flags флаги режимов крейта (сумма констант *CRATE IP FLAG* ...).
- permanent если TRUE, то адрес с новыми флагами сохраняется в файле конфигурации LTRсервера.

Примечания:

Адрес крейта должен присутствовать в списке IP-крейтов, известных LTR-серверу.

На момент написания данной редакции определен только один флаг CRATE_IP_FLAG_AUTOCONNECT, наличие (ненулевое состояние) которого означает, что с крейтом должно автоматически устанавливаться соединение при запуске (перезапуске) сервера.

Возвращаемое значение:

• Код ошибки

4.3.5.12. Чтение режима поиска ІР-крейтов в локальной сети

Φορмατ: INT LTR_GetIPCrateDiscoveryMode(TLTR *ltr, BOOL *enabled, BOOL *autoconnect)

Назначение: Получает информацию о текущем состоянии механизма автоматического обнаружения крейтов в локальной сети.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- enabled указатель на переменную, принимающую флаг разрешения автоматического обнаружения крейтов в локальной сети.
- autoconnect указатель на переменную, принимающую флаг автоматического подключения обнаруженных крейтов.

Примечания:

Подробное описание приведено в примечании к функции LTR SetIPCrateDiscoveryMode().

Возвращаемое значение:

4.3.5.13. Установка режима поиска ІР-крейтов в локальной сети

Φορмατ: INT LTR_SetIPCrateDiscoveryMode(TLTR *ltr, BOOL enabled, BOOL autoconnect, BOOL permanent)

Назначение: Изменяет состояние механизма автоматического обнаружения крейтов в локальной сети.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- enabled флаг разрешения автоматического обнаружения крейтов в локальной сети.
- autoconnect флаг автоматического подключения обнаруженных крейтов.
- permanent если TRUE, то изменения сохраняются в файле конфигурации LTR-сервера.

Примечания:

Автоматическое обнаружение IP-крейтов в локальной сети осуществляется посредством периодической широковещательной посылки по протоколу UDP при наличии соответствующей функции во встроенном ПО крейт-контроллера. Поиск может работать только в пределах локального сегмента сети (проходит через коммутаторы, но не через маршрутизаторы).

Если enabled = FALSE, то автоматическое обнаружение крейтов отключено.

Если enabled = TRUE, autoconnect = FALSE, то обнаруженные крейты, IP-адресов которых не было в списке известных крейтов, добавляются в него с установленным в "0" флагом CRATE IP FLAG AUTOCONNECT.

Если enabled = TRUE, autoconnect = TRUE, то обнаруженные крейты, IP-адресов которых не было в списке известных крейтов, добавляются в него с установленным в "1" флагом CRATE_IP_FLAG_AUTOCONNECT, после чего немедленно инициируется установление соединения.

Возвращаемое значение:

• Код ошибки

4.3.5.14. Чтение уровня журнализации

Φορματ: INT LTR GetLogLevel(TLTR *ltr, INT *level)

Назначение: Получает информацию о текущем уровне журнализации работы LTR-сервера.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- level указатель на переменную, принимающую значение уровня журнализации.

Примечания:

Список уровней журнализации приведен в описании функции LTR SetLogLevel().

Возвращаемое значение:

4.3.5.15. Установка уровня журнализации

Φορματ: INT LTR SetLogLevel (TLTR *ltr, INT level, BOOL permanent)

Назначение: Устанавливает уровень журнализации работы LTR-сервера.

Передаваемые параметры:

- ltr указатель на экземпляр структуры*TLTR*.
- level новый уровень журнализации:
 - ◆ 0 Критические (запуск, останов, фатальные ошибки);
 - ◆ 1 Ошибки;
 - ◆ 2 Предупреждения;
 - 3 Информационные сообщения;
 - ◆ 4 Подробные информационные сообщения;
 - ◆ 5 Отладочные сообщения (минимум);
 - ◆ 6 Отладочные сообщения (средний уровень);
 - 7 Отладочные сообщения (максимум).

В журнал записываются события с уровнем важности, численно меньшим (т.е. важнее) или равным текущему установленному уровню журнализации.

• permanent – если TRUE, то изменения сохраняются в файле конфигурации LTR-сервера.

Возвращаемое значение:

• Код ошибки

4.3.5.16. Перезапуск LTR-сервера

Формат: INT LTR ServerRestart(TLTR *ltr)

Назначение: Инициирует полный сброс и повторную инициализацию программы ltrserver.

Передаваемые параметры:

• ltr – указатель на экземпляр структуры *TLTR*.

Примечания:

Функция аналогична соответствующей команде, доступной через графический интерфейс программы. По этой команде LTR-сервер останавливает все свои операции, разрывает все соединения с крейтами и клиентскими приложениями (в том числе с приложением, вызвавшим эту функцию), перечитывает с диска файл конфигурации и запускается заново.

После успешного выполнения данной функции связь с сервером теряется, поэтому после ее вызова соединение следует закрыть, вызвав функцию LTR Close().

Соединение с сервером после перезапуска осуществляется обычным образом (как новое). Перед этим рекомендуется выдержать паузу не менее 1 с.

Возвращаемое значение:

4.3.5.17.Останов LTR-сервера

Φορмат: INT LTR ServerShutdown (TLTR *ltr)

Назначение: Завершает процесс ltrserver.

Передаваемые параметры:

• ltr – указатель на экземпляр структуры *TLTR*.

Примечания:

Функция аналогична закрытию приложения ltrserver штатными средствами (LTR-сервер посылает себе системное сообщение WM CLOSE).

После успешного выполнения данной функции связь с сервером теряется, поэтому после ее вызова соединение следует закрыть, вызвав функцию LTR Close().

Возвращаемое значение:

• Код ошибки

4.3.5.18. Чтение номера версии LTR-сервера

Φορмат: INT LTR_GetServerVersion(TLTR *ltr, DWORD *version)

Назначение: Возвращает номер версии программы ltrserver.

Передаваемые параметры:

- ltr указатель на экземпляр структуры *TLTR*.
- version- указатель на переменную, принимающую номер версии.

Примечания:

Номер версии представляет собой беззнаковое 32-битное целое число, каждый байт которого соответствует одной части номера версии, отделяемой в текстовой записи точкой, причем старший байт соответствует главному номеру. Например, 0x01050202 соответствует версии 1.5.2.2.

Функция доступна в ltrserver версии 1.5.2.2 и выше.

Возвращаемое значение: