

Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики Кафедра системного анализа

Суперкомпьютерное моделирование и технологии

Задание 2

Студент 615 группы А. Н. Ашабоков

Содержание

1	Постановка задачи	4				
2	Аналитическое решение					
3	Описание численного алгоритма	4				
4 Результаты запуска программы						
	4.1 Bluegene	5				
	4.2 Polus	6				
5	Библиография	8				

1 Постановка задачи

Необходимо предоставить аналитическое решение и программную реализацию алгоритма численного решения задачи вычисления слудющего интеграла:

$$I = \int \int_{G} \int \frac{dxdydz}{(1+x+y+z)^{3}},\tag{1}$$

где область G ограничена поверхностями x + y + z = 1, x = 0, y = 0, z = 0.

Также необходимо исследовать масштабируемость полученной программной реализации.

2 Аналитическое решение

$$\int_{1}^{0} \int_{0}^{1-x} \int_{0}^{1-x-1-x-y} (1+x+y+z)^{-3} dz dy dx = \int_{0}^{1} \int_{0}^{1-x} \left[\frac{1}{2} (1+x+y+z)^{-2} - \frac{1}{8} \right] dy dx =$$

$$= \int_{0}^{1} \left[\frac{1}{2} (1+x)^{-1} - \frac{1}{4} \right] - \frac{1}{16} = \int_{0}^{1} \left(\frac{1}{2} (1+x)^{-1} - \frac{1}{4} \right) dx - \frac{1}{16} =$$

$$= \frac{1}{2} \int_{0}^{1} (1+x)^{-1} dx - \frac{5}{16} = \frac{1}{2} \log(2) - \frac{5}{16}. \quad (2)$$

Таким образом, получаем аналитическое решение: $\frac{1}{2}\log{(2)} - \frac{5}{16}$.

3 Описание численного алгоритма

Данная задача решается численно с использованием метода Монте-Карло:

1. Задаем функцию F(x, y, z) следующего вида:

$$F(x,y,z) = \begin{cases} f(x,y,z) & (x,y,z) \in G, \\ 0 & (x,y,z) \notin G. \end{cases}$$
(3)

2. Далее преобразуем исходный интеграл:

$$I = \int \int \int \int f(x, y, z) dx dy dz = \int \int \int \int F(x, y, z) dx dy dz.$$
 (4)

где G' — прямоугольник: $a_1 \le x \le b_1, a_2 \le b_2, a_3 \le b_3$.

3. После этого семплируем случайные точки из G' и на них считаем значение функции F.

4. Окончательный результат получается из соотношения:

$$I' \approx |G'| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i). \tag{5}$$

5. Процесс продолжается до тех пор, пока значение ошибки не будет меньше некоторого наперед заданного значения ε : $|I-I'|<\varepsilon$.

4 Результаты запуска программы

4.1 Bluegene

Точность ε	Число МРІ-процессов	Время работы (с)	Ускорение	Ошибка
$1.0 \cdot 10^{-4}$	2	0.0152145408	1	0.0000664537
$1.0 \cdot 10^{-4}$	4	0.0145364892	1.05	0.0000894448
$1.0 \cdot 10^{-4}$	16	0.0003104247	49.01	0.0000379321
$1.0 \cdot 10^{-4}$	64	0.0001935188	78.62	0.0000136576
$2.0 \cdot 10^{-5}$	2	0.0076551648	1	0.0000090474
$2.0 \cdot 10^{-5}$	4	0.0175335271	0.44	0.0000065640
$2.0 \cdot 10^{-5}$	16	0.0007019118	10.91	0.0000196344
$2.0 \cdot 10^{-5}$	64	0.0001932365	39.62	0.0000136576
$8.0 \cdot 10^{-6}$	2	0.0104568517	1	0.0000056839
$8.0 \cdot 10^{-6}$	4	0.0175511012	0.59	0.0000065640
$8.0 \cdot 10^{-6}$	16	0.0007172153	14.58	0.0000024089
$8.0 \cdot 10^{-6}$	64	0.0002022035	51.71	0.0000021677

Рис. 1. Графики времени выполнения программы и ошибки на суперкомпьютере Bluegene P в зависимости от количества процессов.

4.2 Polus

Точность ε	Число МРІ-процессов	Время работы (с)	Ускорение	Ошибка
$1.0 \cdot 10^{-4}$	2	0.0152145408	1	0.0000664537
$1.0 \cdot 10^{-4}$	4	0.0345364892	0.44	0.0000894448
$1.0 \cdot 10^{-4}$	16	0.0077306512	1.97	0.0000158393
$1.0 \cdot 10^{-4}$	64	-	-	-
$2.0 \cdot 10^{-5}$	2	0.0076551648	1	0.0000035639
$2.0 \cdot 10^{-5}$	4	0.0032367209	2.37	0.0000025931
$2.0 \cdot 10^{-5}$	16	0.0012922971	5.92	0.0000021561
$2.0 \cdot 10^{-5}$	64	-	-	-
$8.0 \cdot 10^{-6}$	2	0.0355211364	1	0.0000007309
$8.0 \cdot 10^{-6}$	4	0.0183235371	1.94	0.0000005321
$8.0 \cdot 10^{-6}$	16	0.0127631197	2.78	0.0000006193
$8.0 \cdot 10^{-6}$	64	-	-	-

Рис. 2. Графики времени выполнения программы и ошибки на суперкомпьютере Polus в зависимости от количества процессов.

5 Библиография

Список литературы

[1] А.Б. Куржанский, П.А. Точилин К задаче синтеза управлений при неопределенности по данным финитных наблюдателей // журнал Обыкновенные дифференциальные уравнения, том 47, номер 11, 2011г, сс.1599-1607