Natural Language Processing & Word Embeddings

10/10 points (100%)

Quiz, 10 questions

✓ Congra	atulations! You passed!	Next Item
~	1 / 1 points	
Then t	ose you learn a word embedding for a vocabulary of 1000 the embedding vectors should be 10000 dimensional, so Il range of variation and meaning in those words.	
	True	
0	False	
Corr	rect	
✓	1 / 1 points	
2. What i	is t-SNE?	
	A linear transformation that allows us to solve analogie vectors	s on word
0	A non-linear dimensionality reduction technique	
Corr	rect	
	A supervised learning algorithm for learning word emb	eddings
	An open-source sequence modeling library	

Natural Language Processing & Word Embeddings

10/10 points (100%)

Quiz, 10 questions

points

3.

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)			
I'm feeling wonderful today!	1			
I'm bummed my cat is ill.	0			
Really enjoying this!	1			

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

Correct

False

1/1 points

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

 $e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$

Correct

	$\mid e_{boy} -$	e_{airl}	\approx	e_{sister}	_	$e_{brother}$

Natural Language Processing & Word Embeddings

10/10 points (100%)

Quiz, 10 questions

$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$

Correct

Un-selected is correct

Un-selected is correct

1/1 points

5.

Let E be an embedding matrix, and let e_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*e_{1234}$ in Python?

0

It is computationally wasteful.

Correct

- igcap The correct formula is $E^Tst e_{1234}.$
- This doesn't handle unknown words (<UNK>).
- None of the above: Calling the Python snippet as described above is fine.

1/1 points

6.

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction Natural Language Processing by Word funded in Section of word embeddings.

Quiz, 10 questions	1 இதித் திச ாசி இன் பெறு இந்த நில் செரியில் இதிய பெறிய இரை a useful s eto/ of word embeddings.				
Quiz, 10 questions	True				
	Correct				
	False				
	1/1 points				
	7. In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and t chosen from the training set? Pick the best answer.				
	igcap c is a sequence of several words immediately before $t.$				
	igcap c is the sequence of all the words in the sentence before t .				
	igcap c is the one word that comes immediately before $t.$				
	igcup c and t are chosen to be nearby words.				
	Correct				
	1/1 points				
	8.				

Suppose you have a 10000 word vocabulary, and are learning 500dimensional word embeddings. The word2vec model uses the following

Natural Language Processing & Word Embeddings

10/10 points (100%)

Quiz, 10 questions

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. Correct $heta_t$ and e_c are both 10000 dimensional vectors. **Un-selected is correct** $heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent. Correct After training, we should expect $heta_t$ to be very close to e_c when tand c are the same word. **Un-selected** is correct

points

Suppose you have a 10000 word vocabulary, and are learning 500dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

 θ_i and e_i should be initialized to 0 at the beginning of training.

Un-selected is correct

Natural Language Processing & Word Embeddings

10/10 points (100%)

Quiz, 10 questions

 X_{ij} is the number of times word i appears in the context of word j.

Correct

lacksquare The weighting function f(.) must satisfy f(0)=0 .

Correct

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

1/1 points

10

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

 $m_1 >> m_2$

Correct

 $\bigcirc m_1 ext{ << } m_2$