Part IIA: Introduction to parametric survival models and the survival likelihood

- ► The exponential model
 - Properties of the contant-hazard model
 - Maximum likelihood estimation of the hazard
 - ▶ Intro to exponential regression models and Poisson regression
- Survival likelihood under the general hazard model
 - Survival (Poisson) likelihood
 - Cumulative hazards
- Examples of survival models
 - Weibull
 - ► Log-logistic

The exponential model

- ▶ The exponential model is the simplest survival model
- lacktriangleright It is characterised by one parameter, a constant hazard λ
- An analogy to radioactive decay
 - Each nucleus has, irrespective of how long it has remained intact, a constant rate λ to decay
 - Starting with N nuclei at time t=0, the number of nuclei remaining at time t is $N \exp(-\lambda t)$
- ▶ In other words, the survival function of the exponential distribution is $S(t) = P(T > t) = \exp(-\lambda t)$, $t \ge 0$
- Although the exponential model may appear too simplistic in most applications, it is sometimes useful on its own right and quite often serves as a building block for more realistic models (e.g. models with piesewise constant hazards; see part IV)

Characteristics of the exponential distribution

- ▶ The survival function is $S(t) = \exp(-\lambda t)$, $t \ge 0$
- ▶ The density function is $f(t) = \lambda \exp(-\lambda t)$, $t \ge 0$
- ▶ The expected time until failure is $1/\lambda$
 - ▶ This is called scale (= 1/hazard) and sometimes used as the parameter of the exponential model
 - ▶ The dimension of hazard is "1/time" and that of scale "time"
- ► The hazard does not depend on the history of the individual, not even on how long the individual has survived so far
 - ▶ This is why the distribution is said to be memoryless
 - ▶ The expected remaining lifetime at any(!) time t is always the same, i.e. $1/\lambda$
- ▶ N.B. Terms *hazard*, *hazard rate* or even *rate* are often used interchangeably

Survival likelihood under the exponential model

- Next we construct the likelihood function for a constant hazard λ , based on a follow-up of a study cohort with the following observations
 - occurrence times (failures and censorings) t_i , i = 1, ..., N
 - ▶ failure (event) indicators d_i , i = 1, ..., N
- Assuming independent observations across different individuals, the likelihood function based on the above data is a product over individual contributions:

$$L(\lambda) = \prod_{i=1}^{N} L_i(\lambda) = \prod_{i=1}^{N} \lambda^{d_i} S(t_i) = \lambda^{\sum_{i=1}^{N} d_i} \times \prod_{i=1}^{N} \exp(-\lambda t_i)$$
$$= \lambda^{D} \exp(-\lambda \sum_{i=1}^{N} t_i) = \lambda^{D} \exp(-\lambda Y)$$

▶ $L(\lambda)$ is often called the Poisson likelihood (see page 14)

Maximum likelihood estimation

- ▶ Above, $Y = \sum_{i=1}^{N} t_i$ is the total person-time in the study cohort
 - It is the time spent 'at risk' for failure in the study cohort under observation.
- ▶ *D* is the total number of failures observed in the study cohort.
- A sufficient summary (statistics) of the data to estimate a constant hazard λ thus is
 - person-time $Y = \sum_{i=1}^{N} t_i$
 - the total number of failures $D = \sum_{i=1}^{N} d_i$
- ▶ The maximum likelihood estimate is easily found from the log likelihood log $L(\lambda) = D \log(\lambda) \lambda Y$:

$$\frac{d\log(L(\lambda))}{d\lambda} = \frac{D}{\lambda} - Y = 0 \implies \hat{\lambda} = D/Y$$

Standard error of the hazard

▶ Next, the standard error is derived for the log hazard $\beta = \log(\lambda)$

$$\beta = \log(\lambda) \Leftrightarrow \exp(\beta) = \lambda$$

▶ The log-likelihood of parameter β is

$$\log(L(\beta)) = D\beta - Y \exp(\beta)$$

The derivatives are

$$\frac{d}{d\beta^2}(\log(L)) = D - Y \exp(\beta)$$
$$\frac{d^2}{d\beta^2}(\log(L)) = -Y \exp(\beta)$$

► The standard error is found to be

$$S_eta = \sqrt{1/(Y \exp(\hat{eta}) = 1/\sqrt{Y \exp(\log(D/Y))}} = 1/\sqrt{D}$$

Example: leukaemia remission

► Time of remission in the treatment group of leukaemia patients (* = censored):

$$6^*, 6, 6, 6, 7, 9^*, 10^*, 10, 11^*, 13, 16, 17^*, 19^*, 20^*, 22, 23, 25^*, 32^*, 32^*, 34^*, 35^* \ (\text{weeks})$$

- ▶ The sufficient data summary is (D=9, Y=359) from which the point estimate of the rate is $\hat{\lambda} = D/Y = 9/359 = 0.025$ (per week)
- ▶ 90% CI based on the normal approximation of the log likelihood for parameter $\beta (= \log \lambda)$ and its standard error $S_{\beta} = 1/\sqrt{D}$:

$$\log(\hat{\lambda}) \pm 1.645/\sqrt{D}$$

▶ This leads to the following 90% confidence interval for λ :

$$\exp\left(\log(\lambda) \pm 1.645/\sqrt{D}\right) = 0.025 \overset{\times}{\div} \exp(1.645/\sqrt{9}) = [0.015, 0.043]$$

About parameter transformations

- ► There is often need to transform parameters estimates (including confidence intervals) between different one-to-one parameterisations of the model
- Above we calculated the confidence interval of the constant rate for logarithm, before transforming it back to the "absolute" scale
- N.B. Most statistical programmes tend to output logarithms of parameters
- ► Another example, should we be interested in the scale parameter (scale = 1/rate):
 - ► The hazard rate is 0.025 (per week), with a 90% confidence interval [0.015,0.043]
 - The point estimate of the scale parameter is 1/0.025 = 40 (weeks) and the 90% confidence interval is [1/0.043,1/0.015] = [23.3,66.7]

Exponential regression

- ▶ The hazard can be allowed to depend on explanatory variables (covariates) Z_1, \ldots, Z_k
- ▶ The hazard is then specified as follows:

$$\lambda(t; Z_1, \dots, Z_k) = \lambda(Z_1, \dots, Z_k) = \lambda_0 \exp(Z_1 \beta_1 + \dots + Z_k \beta_k)$$

- ▶ The baseline hazard λ_0 is constant over time, pertaining to those with baseline values of the explanatory variables
- ► For any set of explanatory variables, the hazard remains a constant but a different from the baseline
- We return to regression models in general in Part 2A of the lectures

Poisson likelihood

- It was already mentioned that the survival likelihood is often called Poisson likelihood
- ► This is based on the notion that considering the observed number of failures, D, as the observation when a fixed total of Y time units of person-time (unit-time) has accrued in the study cohort, the distribution of D is proportional to the Poisson distribution with expectation \(\lambda Y\):

$$P(D=d;\lambda) = \lambda^{D} \exp(-\lambda Y) \propto \frac{(\lambda Y)^{D}}{D!} \exp(-\lambda Y)$$

It follows that exponential regression models can be fitted as Poisson regression because the expected counts of events in individuals with explanatory variables Z_1, \ldots, Z_k is $\lambda(Z_1, \ldots, Z_k) Y(Z_1, \ldots, Y_k)$, where $Y(Z_1, \ldots, Y_k)$ is the person-time (unit-time) accrued in those individuals (see part IV)

Hazard revisited

Recall that, in general, the hazard function is defined as the rate of change of the conditional failure probability:

$$\lambda(t) = \lim_{h \to 0} \frac{P(T \in [t, t + h[|T \ge t)])}{h}$$

Assuming that h is short, the conditional failure probability over the time interval [t, t + h[, given survival until t, is

$$\pi_t = \mathsf{P}(T \in [t, t + h[|T \ge t) \simeq \lambda(t)h)$$

In the exponential model, the hazard (rate) is constant: $\lambda(t) = \lambda$ for all times t

Survival function and density function

- A survival model (i.e. distribution) can be defined terms of three alternative and equivalent ways: the hazard function $\lambda(t)$, the survival function S(t) or the density function f(t)
- ▶ It was shown in Part I lectures that the following identities hold between the three functions:

$$S(t) = \exp(-\int_0^t \lambda(u)du)$$

$$f(t) = -\frac{dS(t)}{dt} = \lambda(t)S(t)$$

In particular, knowing any one function, the two other functions can be calculated

Survival models

- ▶ There are a large number of possible models for survival times
- In addition the exponential (constant and piece-wise constant hazard) models, some of the more commonly used ones include
 - Weibull distribution
 - Log-logistic distribution
 - Log-normal distribution
 - Gamma distribution
 - ▶ And more distributions: see e.g. Kalbfleisch and Prentice
- ► These distributions and others aim to add more flexibility in how the hazard may vary over time

Weibull model

- ► The Weibull model is a more flexible family of survival distributions than the exponential model
- ▶ With one more parameter, it can account for hazard rates that either increase or decrease over time
 - Such models are required if, for example, the failure rate increases as the individual/unit grows older
- ▶ The model has two parameters. We use the following parameterisation for the hazard $\lambda(t)$ in terms of parameters α (rate) and p (shape):

$$\lambda(t) = p\alpha^p t^{p-1}, \ t > 0$$

- ▶ If p > 1(< 1), the hazard increases (decreases) over time. If p = 1, we have the standard exponential model
- Warning: there are many alternative ways to parameterise the Weibull distribution. Always check which parameterisation is being used.

The survival function under the Weibull model

- ▶ The survival function is now $S(t) = \exp(-(\alpha t)^p)$ and the cumulative hazard $\Lambda(t) = (\alpha t)^p$
- ▶ The mean and the median of the Weibull distribution are $\Gamma(1+1/p)/\lambda$ and $(\ln 2)^{1/p}/\lambda$
- In the figures below, $\alpha = 1$ and the shape parameter is given three alternative values: p = 0.5, 1.0, 2.0

Checking the Weibull assumption

► Taking the log-log transformation of the survival function under the Weibull model we obtain

$$\log(-\log(S(t))) = p\log(\alpha) + p\log(t)$$

- ▶ In other words, the log-log transformed survival function is linear over logarithmic time under the Weibull model
 - ▶ Remember also that $-\log S(t)$ is the cumulative hazard
- This can be used to data exploration and/or model checking, based on the Kaplan-Meier estimate of the survival function

Log-logistic model

- ightharpoonup The model has two parameters, rate lpha and shape k
- ▶ The hazard function with shape k and rate α is defined as

$$f(t) = \frac{k\alpha(\alpha t)^{(k-1)}}{\left[1 + (\alpha t)^k\right]^2}$$

- ► The survival function is simple (next page)
- ▶ The mean is $(k/\alpha)\pi/\sin(\pi/k)$ (if k>1)
- ▶ The median is $1/\alpha$

The survival function in the log-logistic model

► The survival function is now $S(t) = 1/[1 + (\alpha t)^k]$ and the cumulative hazard $\Lambda(t) = \log[1 + (\alpha t)^k]$

Survival likelihood: the general case

- In what follows we take that $\lambda(t)$ is the parameter of the survival distribution
- Later, the explicit dependence of $\lambda(t)$ on explanatory variables will be made explicit (see, however, also p. 13 for the exponential model)
- ▶ Survival data are presented as (t_i, d_i) , i = 1, ..., N
- ▶ The likelihood function for $\lambda(t)$ is again a product over individual contributions:

$$L(\lambda(t)) = \prod_{i=1}^{N} L_i(\lambda(t)) = \prod_{i=1}^{N} \lambda(t_i)^{d_i} S(t_i)$$

$$= \prod_{i=1}^{N} \left[\lambda(t_i)^{d_i} \exp(-\int_0^{t_i} \lambda(u) du) \right]$$

$$= \prod_{i=1}^{N} \left[\lambda(t_i)^{d_i} \right] \times \exp(-\int_0^{\infty} \lambda(u) Y(u) du)$$

where $Y(u) = \sum_{i=1}^{N} \mathbf{1}(t_i \geq u)$ is the size of the risk set at time u

More on censoring

- Censoring: individuals leave the study cohort still facing the risk of the event of interest
- ▶ Above we assumed that right censoring was *uninformative*:
 - the censored individuals are statistically alike with those remaining in the study
 - in particular, the reason of leaving the study is independent of the event of interest
- If censoring is informative, the analysis may lead to biased estimates
 - For example, if those that remain in the study are healthier, estimates of survival may be biased upwards
 - It is sometimes very difficult to know whether censoring could be informative if the censoring mechanism is not under the control of the investigator
- ▶ N.B. When the study is predefined to end at a certain time, censoring can safely be taken to be uninformative