

Deep Learning (for Computer Vision)

Arjun Jain

Babysitting the Learning Process

Step 1: Preprocess the data

Arjun: this will remain same?

(Assume X [NxD] is data matrix, each example in a row)

Step 2: Choose the architecture:

Say we start with single layer network:

output layer

10 output neurons, one per class

```
from keras.datasets import mnist
(x train, y train), (x test, y test) = mnist.load data()
print(x train.shape)
(60000, 28, 28)
print(y train.shape)
(60000,)
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(6, 6))
columns = 6
rows = 6
for i in range(1, columns*rows +1):
     img = x train[i]
    fig.add_subplot(rows, columns, i)
    plt.imshow(img, cmap='gray')
plt.show()
```


greatlearning arning for Life

```
def train and test loop(no iterations, lr, Lambda):
        graph = tf.Graph()
        with graph.as default():
            # Input data.
            tf train dataset = tf.constant(train dataset[:train subset, :])
            tf train labels = tf.constant(train labels[:train subset])
            tf test dataset = tf.constant(test dataset)
            tf train dataset = tf.cast(tf train dataset,dtype=tf.float32)
            tf test dataset = tf.cast(tf test dataset,dtype=tf.float32)
            tf train labels = tf.cast(tf train labels,dtype=tf.float32)
            # Variables
            # They are variables we want to update and optimize.
            weights = tf.Variable(tf.truncated normal([image size * image size, num labels]))
            biases = tf.Variable(tf.zeros([num labels]))
            # Training computation.
            logits = tf.matmul(tf train dataset, weights) + biases
            # Original loss function
           loss = tf.reduce mean(tf.nn.softmax cross entropy with logits(logits= logits, labels=tf train labels)
            # Loss function using L2 Regularization
            regularizer = tf.nn.12 loss(weights)
           loss = tf.reduce mean(loss + Lambda * regularizer)
            # Optimizer.
            optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)
            # Predictions for the training and test data.
            train prediction = tf.nn.softmax(logits)
            test prediction = tf.nn.softmax(tf.matmul(tf test dataset, weights) + biases)
        with tf.Session(graph=graph) as session:
            tf.initialize all variables().run()
            print('Initialized')
            for step in range(num steps):
                _, l, predictions = session.run([optimizer, loss, train_prediction])
                if (step % 100 == 0):
                    print('Loss at step {}: {}'.format(step, 1))
                    print('Training accuracy: {:.1f}'.format(accuracy(predictions, train labels[:train subset, :])))
           print('Test accuracy: {:.1f}'.format(accuracy(test prediction.eval(), test labels)))
```

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Double check that the loss is reasonable:

```
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
# Original loss function
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= logits, labels=tf_train_labels))
# Loss function using L2 Regularization
regularizer = tf.nn.12_loss(weights)
loss = tf.reduce_mean(loss + Lambda * regularizer)
```

```
## run it

lr = 0.00001
Lambda = 0.0
train_and_test_loop(1,lr,Lambda)

Initialized
Loss at step 0: 3822.80810547
Training accuracy: 8.0
Test accuracy: 7.6

Print Loss
```


Double check that the loss is reasonable:

```
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
# Original loss function
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= logits, labels=tf_train_labels))
# Loss function using L2 Regularization
regularizer = tf.nn.l2_loss(weights)
loss = tf.reduce_mean(loss + Lambda * regularizer)
```

```
## run it
lr = 0.00001
Lambda = 1e3
train_and_test_loop(1,lr,Lambda)

Initialized
Loss at step 0: 3058726.25
Training accuracy: 9.4
Test accuracy: 8.8
```

Crank it way up regularization

loss went up, good. (sanity check)

Tip: Make sure that you can overfit very small portion of the training data

```
## run it
lr = 0.0001
Lambda = 0
train_and_test_loop(100000,lr,Lambda)
```

The above code:

- take the first 20 examples from MNIST
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

```
train_subset = 20
tf_train_dataset = tf.constant(train_dataset[:train_subset, :])
tf_train_labels = tf.constant(train_labels[:train_subset])
print(tf_train_dataset.shape)

print(tf_train_labels.shape)

(20, 784)
(20, 10)
```


Tip: Make sure that you can overfit very small portion of the training data

Very small loss, train accuracy 100, nice!

Initialized

Loss at step 0: 2720.238525390625

Training accuracy: 4.5

Loss at step 500: 538.8995971679688

Training accuracy: 53.8

Loss at step 1000: 325.3975524902344

Training accuracy: 69.3

Loss at step 1500: 250.5136260986328

Training accuracy: 74.8

Loss at step 2000: 207.04647827148438

Training accuracy: 77.8

Loss at step 2500: 176.4746551513672

Loss at step 97500: 6.917799328221008e-05

Training accuracy: 100.0

Loss at step 98000: 6.884850154165179e-05

Training accuracy: 100.0

Loss at step 98500: 6.852139631519094e-05

Training accuracy: 100.0

Loss at step 99000: 6.819446571171284e-05

Training accuracy: 100.0

Loss at step 99500: 6.7878958361689e-05

Training accuracy: 100.0

Test accuracy: 77.5


```
## run it
lr = 0.0001
Lambda = 0|
train_and_test_loop(100000,lr,Lambda)
```

Start with small regularization and find learning rate that makes the loss go down.

areatlearning

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

```
Initialized
Loss at step 0: 2947.041015625
Training accuracy: 10.8
Loss at step 500: 2931.934814453125
Training accuracy: 10.8
Loss at step 1000: 2917.039306640625
Training accuracy: 10.8
Loss at step 1500: 2902.32470703125
Training accuracy: 10.8
Loss at step 2000: 2887.824951171875
Training accuracy: 10.8
Loss at step 2500: 2873.548828125
Training accuracy: 10.7
Loss at step 3000: 2859.4697265625
Training accuracy: 10.7
Loss at step 3500: 2845.533935546875
Training accuracy: 10.7
Loss at step 4000: 2831.772705078125
Training accuracy: 10.8
```

Loss barely changing: Learning rate is probably too low

areatlearning r Life

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go dow

loss not going down: learning rate too low

```
Initialized
Loss at step 0: 2947.041015625
Training accuracy: 10.8
Loss at step 500: 2931.934814453125
Training accuracy: 10.8
Loss at step 1000: 2917.039306640625
Training accuracy: 10.8
Loss at step 1500: 2902.32470703125
Training accuracy: 10.8
Loss at step 2000: 2887.824951171875
Training accuracy: 10.8
Loss at step 2500: 2873.548828125
Training accuracy: 10.7
Loss at step 3000: 2859.4697265625
Training accuracy: 10.7
Loss at step 3500: 2845.533935546875
Training accuracy: 10.7
Loss at step 4000: 2831.772705078125
Training accuracy: 10.8
```

Loss barely changing: Learning rate is probably too low

---ing

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

loss not going down:

learning rate too low

Notice train/val accuracy goes to 10.8% though, what's up with that? (remember this is softmax)

```
1r = 1e-7
Lambda = 1e-7
train and test loop(10000,lr,Lambda)
Initialized
Loss at step 0: 2947.041015625
Training accuracy: 10.8
Loss at step 500: 2931.934814453125
Training accuracy: 10.8
Loss at step 1000: 2917.039306640625
Training accuracy: 10.8
Loss at step 1500: 2902.32470703125
Training accuracy: 10.8
Loss at step 2000: 2887.824951171875
Training accuracy: 10.8
Loss at step 2500: 2873.548828125
Training accuracy: 10.7
Loss at step 3000: 2859.4697265625
Training accuracy: 10.7
Loss at step 3500: 2845.533935546875
Training accuracy: 10.7
Loss at step 4000: 2831.772705078125
Training accuracy: 10.8
```

Loss barely changing: Learning rate is probably too low

In [*]:

run it

Start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

```
-- run it

lr = 1e6

lambda = 1e-7

train_and_test_loop(10000, lr, lambda)
```

Okay now lets try learning rate 1e6. What could possibly go wrong?

greatlearning Learning for Life

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low loss exploding: learning rate too high

```
In [*]:
        ## run it
        lr = 1e6
        Lambda = 1e-7
        train and test loop(10000,lr,Lambda)
        Initialized
        Loss at step 0: 2789.831298828125
        Training accuracy: 11.9
        Loss at step 500: 175791833088.0
        Training accuracy: 50.2
        Loss at step 1000: 147257933824.0
        Training accuracy: 39.8
        Loss at step 1500: 102461349888.0
        Training accuracy: 58.3
        Loss at step 2000: 141665763328.0
        Training accuracy: 47.0
        Loss at step 2500: 149215477760.0
        Training accuracy: 45.6
        Loss at step 3000: 169182396416.0
        Training accuracy: 43.2
        Loss at step 3500: 161494515712.0
        Training accuracy: 53.4
        Loss at step 4000: 141815939072.0
        Training accuracy: 61.4
        Loss at step 4500: 125380009984.0
        cost: Very high
```

always means high learning rate...

greatlearning r Life

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low loss exploding: learning rate too high

1e-3 is still too high. Cost explodes....

Out[29]: iter: 3000, accuracy: 13% Loss: nan

=> Rough range for learning rate we should be cross-validating is somewhere [1e-3 ... 1e-7]

Hyperparameter Optimization

Cross-validation Strategy

Do **coarse** -> **fine** cross-validation in stages

First stage: only a few epochs to get rough idea of what params work

Second stage: longer running time, finer search

... (repeat as necessary)

Tip for detecting explosions in the solver: If the cost is ever > 3 * original cost, break out early

greatlearning

Learning for Life

For example: run coarse search for 2000 iterations

```
In [*]: import math
        for i in range(1,100):
            lr = math.pow(10, np.random.uniform(-7.0, -3.0))
            Lambda = math.pow(10, np.random.uniform(-5,5))
            best acc = train and test loop(2000, lr, Lambda)
            print("Try {}/{} Best val accuracy: {}, lr: {}, Lambda: {}\n".format(i, 100, best acc, lr, Lambda))
        Try 1/100 Best val accuracy: 66.27, lr: 5.531150836907919e-05, Lambda: 0.0006478249956731675
                                                                                                           note it's best to optimize
        Try 2/100 Best val accuracy: 12.73, lr: 4.251692668247112e-07, Lambda: 0.0001841192310560464
                                                                                                           in log space!
        Try 3/100 Best val accuracy: 15.51, lr: 0.0007719701966206582, Lambda: 1131.7733448763438
        Try 4/100 Best val accuracy: 33.43, lr: 1.0601119140629175e-05, Lambda: 0.00020118004362275232
                                                                                                               nice
        Try 5/100 Best val accuracy: 78.65, lr: 0.00021657871041910485, Lambda: 5.513146508193506
        Try 6/100 Best val accuracy: 15.11, lr: 4.010246952402139e-06, Lambda: 7.223431540581708e-05
        Try 7/100 Best val accuracy: 12.92, lr: 1.5941265490509437e-06, Lambda: 0.07303345671033763
        Try 8/100 Best val accuracy: 9.82, lr: 4.275465039058684e-05, Lambda: 30996.335786164895
        Try 9/100 Best val accuracy: 8.62, lr: 1.3149674932203763e-07, Lambda: 0.0006327196882522297
        Try 10/100 Best val accuracy: 10.66, lr: 5.034624026089686e-07, Lambda: 1.0511011782956448
        Try 11/100 Best val accuracy: 9.8, lr: 0.00011217505415998534, Lambda: 45154.64994211267
        Try 12/100 Best val accuracy: 9.8, 1r: 0.0006070229598245868, Lambda: 7165.444545998027
        Try 13/100 Best val accuracy: 50.55, lr: 2.0834833520853556e-05, Lambda: 7.277345954108924
        Try 14/100 Best val accuracy: 9.74, lr: 0.0001253131724867973, Lambda: 13557.016063816893
        Try 15/100 Best val accuracy: 10.48, lr: 3.169391909114394e-07, Lambda: 0.019504801963701995
             Proprietary content (C)Great Learning All Rights Reserved Unauthorized use or distribution prohibited
```


Now run finer search...

```
import math
for i in range(1,100):
    lr = math.pow(10, np.random.uniform(-7.0, -3.0))
   Lambda = math.pow(10, np.random.uniform(-5,5))
    best acc = train and test loop(2000, lr, Lambda)
    print("Try {}/{} Best val accuracy: {}, lr: {}, Lambda: {}\n".format(i, 100, best acc, lr, Lambda))
import math
for i in range(1,100):
   lr = math.pow(10, np.random.uniform(-6.0, -4.0))
   Lambda = math.pow(10, np.random.uniform(-3,1))
   best acc = train and test loop(2000, lr, Lambda)
   print("Try {}/{} Best val accuracy: {}, lr: {}, Lambda: {}\n".format(i, 100, best acc, lr, Lambda))
Try 1/100 Best val accuracy: 19.46, lr: 5.417270002123785e-06, Lambda: 3.451835448987154
Try 2/100 Best val accuracy: 25.99, lr: 6.501495775369341e-06, Lambda: 0.002069915669820317
Try 3/100 Best val accuracy: 28.83, lr: 9.733200731691926e-06, Lambda: 0.0010868181177409722
Try 4/100 Best val accuracy: 46.14, lr: 1.9776169441074813e-05, Lambda: 3.270957369966795
Try 5/100 Best val accuracy: 21.39, lr: 5.961062639977423e-06, Lambda: 0.1529955422819221
Try 6/100 Best val accuracy: 18.88, lr: 6.628154271108286e-06, Lambda: 0.012851871729300968
Try 7/100 Best val accuracy: 71.17, lr: 9.336138820699605e-05, Lambda: 2.162547220278807
Try 8/100 Best val accuracy: 54.48, lr: 2.8884720344700566e-05, Lambda: 0.09526284705480523
Try 9/100 Best val accuracy: 56.18, 1r: 3.0369445932033802e-05, Lambda: 2.80437535834822
```

Try 10/100 Best val accuracy: 17.49, lr: 3.4704138264445587e-06, Lambda: 0.002028326954946799

adjust range

71% - relatively good for a 1-layer neural net and only 2000 iterations

Try 11/100 Best val accuracy: 13.01, lr: 1.3029539640800816e-06, Lambda: 0.09323405990107717
Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Now run finer search...

```
import math
for i in range(1,100):
    lr = math.pow(10, np.random.uniform(-7.0, -3.0))
   Lambda = math.pow(10, np.random.uniform(-5,5))
    best acc = train and test loop(2000, lr, Lambda)
    print("Try {}/{} Best val accuracy: {}, lr: {}, Lambda: {}\n".format(i, 100, best acc, lr, Lambda))
import math
for i in range(1,100):
   lr = math.pow(10, np.random.uniform(-6.0, -4.0))
   Lambda = math.pow(10, np.random.uniform(-3,1))
   best acc = train and test loop(2000, lr, Lambda)
   print("Try {}/{} Best val accuracy: {}, lr: {}, Lambda: {}\n".format(i, 100, best acc, lr, Lambda))
Try 1/100 Best val accuracy: 19.46, lr: 5.417270002123785e-06, Lambda: 3.451835448987154
Try 2/100 Best val accuracy: 25.99, lr: 6.501495775369341e-06, Lambda: 0.002069915669820317
Try 3/100 Best val accuracy: 28.83, lr: 9.733200731691926e-06, Lambda: 0.0010868181177409722
Try 4/100 Best val accuracy: 46.14, lr: 1.9776169441074813e-05, Lambda: 3.270957369966795
Try 5/100 Best val accuracy: 21.39, lr: 5.961062639977423e-06, Lambda: 0.1529955422819221
Try 6/100 Best val accuracy: 18.88, lr: 6.628154271108286e-06, Lambda: 0.012851871729300968
Try 7/100 Best val accuracy: 71.17, lr: 9.336138820699605e-05, Lambda: 2.162547220278807
Try 8/100 Best val accuracy: 54.48, lr: 2.8884720344700566e-05, Lambda: 0.09526284705480523
Try 9/100 Best val accuracy: 56.18, 1r: 3.0369445932033802e-05, Lambda: 2.80437535834822
```

Try 10/100 Best val accuracy: 17.49, lr: 3.4704138264445587e-06, Lambda: 0.002028326954946799

adjust range

71% - relatively good for a 1-layer neural net and only 2000 iterations

Make sure the best ones are not on the boundary

Try 11/100 Best val accuracy: 13.01, lr: 1.3029539640800816e-06, Lambda: 0.09323405990107717

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Random Search vs. Grid Search

Hyperparameters to play with

- network architecture
- learning rate, its multiplier schedule
- regularization (L2/Dropout strength)

neural networks practitioner music = loss function ——

greatlearning Learning for Life

Karpathy's crossvalidation "command center"

My cross-validation "command center"

My cross-validation "command center"

My cross-validation "command center"

Monitor and visualize the loss curve

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization
strength?

no gap => increase model capacity?

greatlearning

Track the ratio of weight updates / weight magnitudes:

```
# weight vector W and its gradient vector dW
w_scale = np.linalg.norm(W.ravel())
update = -learning_rate*dW # simple SGD update
update_scale = np.linalg.norm(update.ravel())
W += update # the actual update
print update_scale / w_scale # want ~1e-3
```

ratio between the values and updates: ~ 0.0001 / 0.88 = 0.0001 (about okay) want this to be somewhere around 0.0001 or so

Visualize Activations

Visualize features (feature maps need to be uncorrelated) and have high variance.

Good training: hidden units are sparse across samples and across features.

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Visualize (initial) Convolution Layer Weights

Visualize features (feature maps need to be uncorrelated) and have high variance.

Good training: learned filters exhibit structure and are uncorrelated.

Visualize Linear(Fully Connected)Weights

- Visualization of Linear layer weights for some networks
- It has a banded structure repeated 28 times (Why?!) Hint: Images are 28x28
- Thus, looking at the weights we get some intuition

Thank you!