

Author: Francesco Diotalevi

Company: Istituto Italiano di Tecnologia - EDL

History:	History:											
Revision	Date	Author	Description									
1.0	September 19 th 2016	Francesco Diotalevi	First Release (DRAFT)									
1.1	June 14 th 2017	Francesco Diotalevi	Modified the AXIstream module and added some debug ports. Added Reset_DMA_stream bit into CTRL_REG.									
2.0	November 15 th 2017	Francesco Diotalevi	Bug fixed for the HSSAER Channel Enable. Added AUX Threshold Error register and AUX Rx Counter registers. Some Fixes in HDL code.									
2.1	June 15 th 2018	Francesco Diotalevi	Enlarged to 24 the SSAER data transfer. Different header coding.									
2.2	July 31 st 2018	Francesco Diotalevi	Bug fixed for issue <u>#10</u>									

Contents

HPUCC	DRE SPECIFICANTIONS	1
GLOSS	SARY	3
HPUCO	DRE IMPLEMENTATION PARAMETERS	3
INTRO	DUCTION	4
1 HF	PUCORE BLOCK DIAGRAM	5
1.1	Understanding the HPUCore	7
2 HF	PUCORE INTERNAL REGISTERS	8
2.1	Control register (CTRL_REG)	10
2.2	LOOPBACK LR CONFIGURATION REGISTER (LPBK_LR_CNFG_REG)	11
2.3	RX DATA BUFFER REGISTER (RXDATA_REG)	12
2.4	RX TIME BUFFER REGISTER (RXTIME_REG)	13
2.5	TX DATA BUFFER REGISTER (TXDATA_REG)	15
2.6	DMA register (DMA_REG)	16
2.7	RAW Status Register (STAT_RAW_REG)	17
2.8	IRQ REGISTER (IRQ_REG)	19
2.9	Mask Register (MSK_REG)	20
2.10	WRAPPING TIMESTAMP REGISTER (WRAPTIMESTAMP_REG)	21
2.11	HSSAER STATus register (HSSAER_STAT_REG)	22
2.12	HSSAER RX Error register (HSSAER_RX_ERR_REG)	23
2.13	HSSAER RX MSK register (HSSAER_RX_MSK_REG)	24
2.14	RX CONTROL REGISTER (RX_CTRL_REG)	25
2.15	TX CONTROL REGISTER (TX_CTRL_REG)	26
2.16	RX PAER CONFIGURATION REGISTER (RX_PAER_CFNG_REG)	27
2.17	TX PAER CONFIGURATION REGISTER (TX_PAER_CFNG_REG)	28
2.18	IP CONFIGURATION REGISTER (IP_CFNG_REG)	29
2.19	FIFO THRESHOLD REGISTER (FIFO_THRSH_REG)	30
2.20	LOOPBACK AUX CONFIGURATION (LPBK_AUX_CNFG_REG)	31
2.21	Identification register (ID_REG)	32
2.22	AUXILIARY RX CONTROL REGISTER (AUX_RX_CTRL_REG)	33
2.23	HSSAER AUX RX ERROR REGISTER (HSSAER_AUX_RX_ERR_REG)	34
2.24	HSSAER AUX RX MSK REGISTER (HSSAER_AUX_RX_MSK_REG)	35
2.25	AUX ERROR COUNTER THRESHOLD REGISTER (HSSAER_AUX_RX_ERR_THR_REG)	36
2.26	AUX ERROR COUNTER CHO REGISTER (HSSAER_AUX_RX_ERR_CHO_REG)	37
2.27	AUX ERROR COUNTER CH1 REGISTER (HSSAER_AUX_RX_ERR_CH1_REG)	38
2.28	AUX ERROR COUNTER CH2 REGISTER (HSSAER_AUX_RX_ERR_CH2_REG)	39
2.29	AUX ERROR COUNTER CH3 REGISTER (HSSAER_AUX_RX_ERR_CH3_REG)	40
3 RE	EFERENCES	41
4 AP	PPENDIXES	42

Glossary

Acronym	Meaning
TBD	To Be Defined
TBT	To Be Tested

HPUCore implementation parameters

The generic parameters used in SynthTactAER design are shown in Table 1

Table 1 HPUCore implementation parameters in SynthTactAER design

Parameter name	Description	Value
C_PAER_DSIZE	Size of PAER address	24
C_RX_HAS_PAER	If true the RX PAER I/f is exposed	False
C_RX_HAS_HSSAER	If true the RX HSSAER I/f is exposed	True
C_RX_HAS_GTP	If true the RX GTP I/f is exposed	False
C_RX_HSSAER_N_CHAN	The number of RX HSSAER channels	3
C_TX_HAS_PAER	If true the TX PAER I/f is exposed	False
C_TX_HAS_HSSAER	If true the TX HSSAER I/f is exposed	False
C_TX_HAS_GTP	If true the TX GTP I/f is exposed	False
C_TX_HSSAER_N_CHAN	The number of TX HSSAER channels	2

Introduction

The Head Processor Unit Core (HPUCore) is an AXI peripheral used to managed different AER streaming and transfer the acquired data into memory through DMA interface or by reading registers with Host CPU.

It has an Axi4 lite bus I/f for writing/reading internal registers and delivers two AXI stream bus @ 32bit. Can be configured with up to 4 input AER channels and each channel can be PAER, SAER or GTP (TBT).

Figure 1 HPUCore block

The list of the ports and their description is shown in Table 2.

Table 2 HPUCore interface signals description

Comment	Port name	Width	Dir	Description
Interrupt	Interrupt	1	0	Level interrupt active high signal
	S_AXI_ACLK	1	I	AXI Clock, System clock line IT MUST BE THE SAME AS HSSAER_CIKLS_p
	S_AXI_ARESETN	1	I	AXI Reset active low line
	S_AXI_AWADDR	32	I	AXI Write address
	S_AXI_AWVALID	1	I	Write address valid
	S_AXI_WDATA	32	I	Write data
	S_AXI_WSTRB	4	I	Write strobes
nes	S_AXI_WVALID	1	I	Write valid
ill sing	S_AXI_BREADY	1	I	Response ready
AX14 Lite Bus lines	S_AXI_ARADDR	32	I	Read address
(14 L	S_AXI_ARVALID	1	I	Read address valid
(S	S_AXI_RREADY	1	I	Read ready
	S_AXI_ARREADY	1	0	Read address ready
	S_AXI_RDATA	32	0	Read data
	S_AXI_RRESP	2	0	Read response
	S_AXI_RVALID	1	0	Read valid
	S_AXI_WREADY	1	0	Write ready
	S_AXI_BRESP	2	0	Write response

Comment	Port name	Width	Dir	Description
	S_AXI_BVALID	1	0	Write response valid
	S_AXI_AWREADY	1	0	Write address ready
	LRx_PAER_Addr	18	I	Parallel AER address
RX Left	LRx_PAER_Req	1	I	Parallel AER request
Eye I/F	LRx_PAER_Ack	1	0	Parallel AER acknowledge
	LRx_HSSAER	4	I	4 channels High Speed Serial AER signal
	RRx_PAER_Addr	18	I	Parallel AER address
RX Right Eye	RRx_PAER_Req	1	I	Parallel AER request
I/F	RRx_PAER_Ack	1	0	Parallel AER acknowledge
	RRx_HSSAER	4	I	4 channels High Speed Serial AER signal
	AuxRx_PAER_Addr	18	I	Parallel AER address
RX	AuxRx_PAER_Req	1	I	Parallel AER request
Auxiliary I/F	AuxRx_PAER_Ack	1	0	Parallel AER acknowledge
	AuxRx_HSSAER	4	I	4 channels High Speed Serial AER signal
	S_AXIS_TREADY	1	0	Tready
Slave Axi	S_AXIS_TDATA	32	I	Data bus
stream I/f	S_AXIS_TLAST	1	I	Last signal
	S_AXIS_TVALID	1	I	Valid signal
	M_AXIS_TREADY	1	I	Tready
Master Axi	M_AXIS_TDATA	32	0	Data bus
stream I/f	M_AXIS_TLAST	1	0	Last signal
	M_AXIS_TVALID	1	0	Valid signal
	Tx_PAER_Addr	18	0	Parallel AER address
TX	AuxRx_PAER_Req	1	0	Parallel AER request
I/F	AuxRx_PAER_Ack	1	I	Parallel AER acknowledge
	AuxRx_HSSAER	3	0	3 channels High Speed Serial AER signal
	HSSAER_CIKLS_p, HSSAER_CIKLS_n	2	I	Differential 100MHz clock IT MUST BE THE SAME AS S_AXI_CLK
System	HSSAER_CIKHS_p, HSSAER_CIKHS_n	2	I	Differential 300MHz clock
signals	nSyncReset	1	I	Active low Synchronous reset
	DefLocFarLpbk	1	I	Default Far loopback value
	DefLocNearLpbk	1	I	Default Near loopback value

1 HPUCore Block Diagram

The HPUCore Block diagram is shown in Figure 2.

Figure 2 HPUCore architecture

1.1 Understanding the HPUCore

The HPUCore can have until 3 different AER generator connected to him. In the HPUCore implementation for SynthTactAER design the AER sources are configured as Serial AER lines. The Serial AER lines are LVDS signals and each source has 3 different channels. The 3 interfaces are:

- Left ATIS camera,
- Right ATIS camera and
- AUXiliary interface.

The HPUCore descrializes the data coming from its channels and fill a FIFO with data and associated time stamp.

Figure 3 Simplified block diagram of the HPUCore.

Table 3 Meaning of Timestamp and Data values.

TIMESTAMP (31 downto 0) when CTRLReg.15 is '0'

TIME ID (Reserved) 31 downto 24	Payload 23 downto 0
10000000	Time value

TIMESTAMP (31 downto 0) when CTRLReg.15 is '1'

Payload 31 downto 0
Time value

Note: One-unit difference into Time value means 80ns.

Acording to the AERsensorsMap.xlsx (svn version r12867) the data are packed as in the tables that follow:

DATA (31 downto 0) coming from Left/Right eyes channels

31	30 2	29	28	27	26	25	24	Payload 23 downto 0
0	Re	eser	vec	1	0	0	0	Data

DATA (31 downto 0) coming from Aux channel

31	30 29 28	3 27	26	25	24	Payload 23 downto 0
0	Reserve	ed	C data	opy a[21	of :19]	Data

The AXI stream I/f is connected to a DMA used to perform slave to memory transfers.

Reading from /dev/iit-hpu we obtain couples of 32bit wide data. The first data is a timestamp while the second one is the data associated to the timestamp.

The Table 3 shows the meaning of both timestamp and data values.

Then a typical acquired sequence is as in the table below:

Example of acquired sequence	Events Notes:
Example of acquired sequence	All events in the table come from Left Eye through SAER interface
T: 0x80FFFD1D> TD: 0x040132E5	The payload for TD event is 0x132E5
T: 0x80FFFD9E> TD: 0x040132E6	The payload for TD event is 0x132E6
T: 0x80FFFE1F> TD: 0x040132E7	The payload for TD event is 0x132E7
T: 0x80FFFEA0> TD: 0x040132E8	The payload for TD event is 0x132E8
T: 0x80FFFEB8> APS: 0x0405C600	This is a APS event because of the 18 th bit is high. The payload for APS event is 0x1C600
T: 0x80FFFF21> TD: 0x040132E9	The payload for TD event is 0x132E9
T: 0x80FFFFA2> TD: 0x040132EA	The payload for TD event is 0x132EA
T: 0x80000023> TD: 0x040132EB	Here the time stamp has wrapped incrementing the wrap value. The payload for TD event is 0x132EB

2 **HPUCore internal registers**

In this Section a detailed view of the registers internal to the HPUCore module is given.

The HPUCore block has an Axi Light Slave interface [1] to interface the registers with the hosting processor.

AXI is part of ARM AMBA, a family of micro controller buses first introduced in 1996. The first version of AXI was first included in AMBA 3.0, released in 2003. AMBA 4.0, released in 2010, includes the second version of AXI, AXI4. There are three types of AXI4 interfaces:

- AXI4—for high-performance memory-mapped requirements.
- AX14-Lite—for simple, low-throughput memory-mapped communication (for example, to and from control and status registers).
- AXI4-Stream—for high-speed streaming data.

Xilinx introduced these interfaces in the ISE® Design Suite, release 12.3.

In the following the complete list of accessible HPUCore registers.

#	Offset	Mnemonic	Description	Туре	Reset Value
0	0x00	CTRL_REG	Control register	R/W	0x00000000
1	0x04	LPBK LR CNFG REG	Loopback LR Configuration register	R/W	0x00000000
2	80x0	RXData_REG	RX Data Buffer	R/O	0x00000000

Revision: 2.2

#	Offset	Mnemonic	Description	Туре	Reset Value
3	0x0C	RXTime_REG	RX Time Buffer	R/O	0x00000000
4	0x10	TXData_REG	TX Data Buffer	R/W	0x00000000
5	0x14	DMA_BREG	DMA Burst Register	R/W	0x00000000
6	0x18	STAT RAW REG	Status RAW register	R/O	0x00000000
7	0x1C	IRQ_REG	IRQ register	R/C	0x00000000
8	0x20	MSK_REG	Mask register for the IRQ_REG register	R/W	0x00000000
10	0x28	WRAPTimeStamp REG	Wrapping TimeStamp Register	R/C	0x00000000
13	0x34	HSSAER_STAT	HSSAER status register	R/O	0x00000000
14	0x38	HSSAER_RX_ERR	HSSAER RX Error register	R/O	0x00000000
15	0x3C	HSSAER_RX_MSK	HSSAER RX Mask register	R/W	0x00000000
16	0x40	RX_CTRL_REG	RX Control register	R/W	0x00000000
17	0x44	TX_CTRL_REG	TX Control register	R/W	0x00000000
18	0x48	RX_PAER_CNFG_REG	RX PAER configuration register	R/W	0x00000000
19	0x4C	TX_PAER_CFNG_REG	TX PAER Configuration register	R/W	0x00000000
20	0x50	IP CFNG REG	IP implemented configuration register	R/O	0x0000????
21	0x54	FIFO_THRS_REG	FIFO threshold value register	R/W	0x00000000
22	0x58	LPBK_AUX_CNFG_REG	Loopback AUX Configuration register	R/W	0x00000000
23	0x5C	ID_REG	ID Register	R/O	0x48505522
24	0x60	AUX_CTRL_REG	Auxiliary interface Control register	R/W	0x00000000
25	0x64	HSSAER_AUX_RX_ERR	HSSAER AUX RX Error register	R/O	0x00000000
26	0x68	HSSAER_AUX_RX_MSK	HSSAER AUX RX Mask register	R/W	0x00000000
27	06C	HSSAER AUX RX ERR THR REG	HSSAER AUX RX error threshold register	R/W	0x10101010
28	0x70	HSSAER_AUX_RX_ERR_CHO_REG	HSSAER AUX RX error counter register for Channel 0	R/C	0x00000000
29	0x74	HSSAER_AUX_RX_ERR_CH1_REG	HSSAER AUX RX error counter register for Channel 1	R/C	0x00000000
30	0x78	HSSAER AUX RX ERR CH2 REG	HSSAER AUX RX error counter register for Channel 2	R/C	0x00000000
31	0x7C	HSSAER_AUX_RX_ERR_CH3_REG	HSSAER AUX RX error counter register for Channel 3	R/C	0x00000000

2.1 Control register (CTRL_REG)

This register is used to control the behaviour of the HPUCore block.

CTRL_	_REG (I	HPUCor	e Base	+ 0x00)							Rese	t Value:	0x0000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LocFar RPAER Lpbk	LocFar PAERL pbk	LocFar RSAER Lpbk	LocFar LSAER Lpbk	LocFar AuxPA ERLpb k	LocFar AuxSA ERLpb k	Loc Near Lpbk	Remot e Lpbk	Rese rved							
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Full Time stam p	Rese	erved	Reset DMA stream		Rese	erved		AuxRxPa er FIFO FLush	RRxPaer FIFO FLush	LRxPaer FIFO FLush	Flush FIFO S	Rese rved	EN INT	EN DMA	DMA running
r/w			•					s/c	s/c	s/c	s/c		r/w	r/w	ro

- DMA running
 - o When '1' it shows that the DMA transfer is on going
 - When '0' it shows that no DMA transfer is active
- EN DMA is the DMA interface Enable
 - When '1' the DMA I/f is enabled
 - o When '0' the DMA I/f is disabled
- Enable Interrupt
 - o When '1' the Interrupt is enabled
 - o When '0' the Interrupt never rises up
- Flush FIFOS
 - o When set to '1' the FIFOS of the HPUCore are flushed. This bit is automatically cleared.
- LRxPAER Flush FIFOS
 - o When set to '1' the FIFOS of the Left PAER interface are flushed. This bit is automatically cleared.
- RRxPAER Flush FIFOS
 - o When set to '1' the FIFOS of the Right PAER interface are flushed. This bit is automatically cleared.
- AuxRxPAER Flush FIFOS
 - o When set to '1' the FIFOS of the AUX PAER interface are flushed. This bit is automatically cleared.
- Reset DMA stream
 - o By writing this bit to 1, the AXI stream master module is put in reset.
- Fulltimestamp
 - o When set to '1' the Timestamp is 32 bit wide, when set to '0' the time stamp is 24 bit wide and the higher part is equal to 0x80.

The bits from 31 to 24 are used in debug to test the connection. For further details, look at the RTL code.

2.2 Loopback LR Configuration register (LPBK_LR_CNFG_REG)

This register contains the configuration for Left and Right loopback.

LPBK_	_LR_CN	IFG_RE	G (HPU	Core B	ase + 0	x04)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Right RX chan 3 LPB cnfg Right RX chan 2 LPB cnfg Right RX chan 1 LPB cnfg													t RX cha	n 0 LPB	cnfg
	r/	W		•	r/		•	r/	W			r/	w'		
	17W 17W														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Left	RX char	1 3 LPB	cnfg	Left	RX chai	n 2 LPB	cnfg	Left	RX char	1 1 LPB	cnfg	Left	RX cha	n 0 LPB	cnfg
	r/	W			r/	w			r/	W			r/	'w	<u> </u>

The register is used in debug to test the connection. For further details, look at the RTL code.

2.3 RX Data Buffer register (RXDATA_REG)

This register contains the data (read from the INFIFO) coming from the selected by N_MuxAddr NMC. The format of the register is depicted into the figure below.

RXDA	TA_RE	G (HPU	Core Ba	se + 0	x08)							Rese	t Value:	0x0000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					F	Reserve	t							Data	
														r/o	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•					Da	ata	•					•	
							r	/n							

r/o

The meaning of this register is as explained in Table 3.

NOTE: The reading of this register must follow the reading of the RX Time Buffer register (RXTIME_REG).

2.4 RX Time Buffer register (RXTIME_REG)

This register contains the time stamp associated to the received data (see Loopback LR Configuration register (LPBK_LR_CNFG_REG)

This register contains the configuration for Left and Right loopback.

LPBK_	_LR_CN	IFG_RE	G (HPU	Core B	ase + 0	x04)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Right	t RX cha	n 3 LPB	cnfg	Righ	t RX cha	n 2 LPB	cnfg	Righ	t RX cha	n 1 LPB	cnfg	Righ	t RX cha	n 0 LPB	cnfg
	r/	W			r/	w			r/	W			r/	w'	<u>'</u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Left	RX char	1 3 LPB	cnfg	Left	RX char	n 2 LPB	cnfg	Left	RX char	า 1 LPB	cnfg	Left	RX cha	n 0 LPB	cnfg
	r/	W		t.	r/	w			r/	W			r/	'w	

The register is used in debug to test the connection. For further details, look at the RTL code.

RX Data Buffer register (RXDATA_REG)) from the INFIFO.

RXTIN	ME_REC	(HPU	Core Ba	se + 0	(OC)							Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1000	0000							Time	stamp			
							r	0							
4.5	4.4	4.0	10	4.4	10	0	0	7	,	_	4	0	0	4	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Time	stamp							

ro

The Time Stamp value read from this register is the Time Stamp that the HPUCore sticks to the Received data available into the RX Data Buffer register (RXDATA_REG).

2.5 TX Data Buffer register (TXDATA_REG)

This register is used to fill the OUTFIFO.

TXDA	TA_REC	G (HPU)	Core Ba	se + 0	x10)							Rese	t Value:	0x0000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TXE	Data							
							r	W							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TXI	Data							
					•	•	r	W	•			•	•	•	

When writing to this register, keep in mind that it is used by the internal hw as follows:

The register needs to be written twice to enable the correct behaviour.

The first data written into the register represents the time, elapsed which, the second data written into the register is delivered to the *loopback* module

2.6 DMA register (DMA_REG)

This register is used set the behaviour of the Axistream interface. It represents the number of data (32 bit size length) sent to the DMA interface.

NOTE: This register can be written only if CTRL_REG.ENDMA='0'.

r/w

The DM_test_mode set to '1' enables the DMA to write consecutive incremental values at high rates.

For example, if it is set to 8, the burst from/to the DMA I/f will be in terms of 8 data length.

2.7 RAW Status Register (STAT_RAW_REG)

When read, this register gives a snapshot of the status of warning or errors signals. It is a Read Only register.

STAT_	_RAW_	REG (H	PUCore	Base -	+ 0x18))						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						Glbl RX err_ of	Glbl RX err_t o	Glbl RX err_t x	Glbl RX err_k o
												ro	ro	ro	ro
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RXFIFO > THRS	AUX RX PAER FIFO FULL	RRX PAER FIFO FULL	LRX PAER FIFO FULL	Rese	erved	RX FIFO Not Empt y	RxBu fferR eady	Time Stam p Wra pped	Rese rved	TX Data Full	TX Data Almo st Full	TX Data Empt y	RX Data Full	RX Data Almo st Empt y	RX Data Empt y
	ro	ro	ro			ro	ro	ro		ro	ro	ro	ro	ro	ro

- RxDataEmpty
 - o When '0', the INFIFO is not empty
 - When '1' the INFIFO is empty
- RxDataAlmostEmpty
 - o When '1' the INFIFO has 1 or 0 data to be read.
 - When '0' the INFIFO has more or equal two data to be read.
- RxDataFull
 - o When '1' the INFIFO is full.
 - When '0' the INFIFO is not full.
- TxDataEmpty
 - When '0', the OUTFIFO is not empty
 - When '1' the OUTFIFO is empty
- TxDataAlmostFull
 - o When '1' the OUTFIFO has 2047 or 2048 data within himself.
 - When '0' the OUTFIFO has less than 2047 data within himself.
- TxDataFull
 - o When '1' the OUTFIFO is full.
 - o When '0' the OUTFIFO is not full.
- Bias Finished
 - When '1' the Bias signals have been latched
 - o When '0' no Bias signals have been latched
- Time stamp wrapped (this bit is high for one clock period only, when the counter wraps its value)
 - When '1' the counter inside the TimeStamp module has wrapped its value.
 - When '0' the counter inside the TimeStamp module has not yet wrapped its value
- RXBufferReady
 - o When '1' the Rx Fifo has at least DMA_REG value of data available
 - o When '0' the Rx Fifo has less than DMA_REG value of data available
- RXFifoNotEmpty
 - o When '1' the RX Fifo is not empty.
 - When '0' the RX Fifo is empty
- LRXPaerFifoFull
 - When '1' the Left RX Fifo is not empty.
 - When '0' the Left RX Fifo is empty
- RRXPaerFifoFull

- o When '1' the Right RX Fifo is not empty.
- When '0' the Right RX Fifo is empty
- AuxRXPaerFifoFull
 - o When '1' the Aux RX Fifo is not empty.
 - When '0' the Aux RX Fifo is empty
- RXfifo>Threshold
 - When '1' the Infifo has more elements with respect the value written into Fifo Threshold register (FIFO_THRSH_REG).
 - When '0' the Infifo has lesse elements with respect the value written into Fifo Threshold register (FIFO_THRSH_REG.
- Glbl Rx err ko
 - Global Rx err ko. (see [3] for further details)

It's an logic *or* between any unmasked errors detected on Left eye, Right eye and the number of errors in Aux interface overcoming the Aux Error counter threshold register (HSSAER_AUX_RX_ERR_THR_REG).

- Glbl Rx err rx
 - o Global Rx err rx. (see [3] for further details)

It's an logic *or* between any unmasked errors detected on Left eye, Right eye and the number of errors in Aux interface overcoming the Aux Error counter threshold register (HSSAER_AUX_RX_ERR_THR_REG).

· Glbl Rx err to

Global Rx err to. (see [3] for further details)

It's an logic *or* between any unmasked errors detected on Left eye, Right eye and the number of errors in Aux interface overcoming the Aux Error counter threshold register (HSSAER_AUX_RX_ERR_THR_REG).

· Glbl Rx err of

o Global Rx err of. (see [3] for further details)

It's an logic *or* between any unmasked errors detected on Left eye, Right eye and the number of errors in Aux interface overcoming the Aux Error counter threshold register (HSSAER_AUX_RX_ERR_THR_REG).

2.8 IRQ Register (IRQ_REG)

When read, this register gives the status of the collected warning or errors signals. It is a Read/Set register, i.e., to clear the warning/error bit the user has to write '1' on the corresponding bit position.

IRQ_I	REG (H	PUCore	Base +	0x1C)	ı							Rese	t Value:	0x0000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						Glbl RX err_ of	Glbl RX err_t o	Glbl RX err_r x	Glbl RX err_k o
												r/c	r/c	r/c	r/c
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RXFIFO > THRS	AUX RX PAER FIFO FULL	RRX PAER FIFO FULL	LRX PAER FIFO FULL	Rese	erved	RX FIFO Not Empt y	RxBu fferR eady	Time Stam p Wra pped	Rese rved	TX Data Full	TX Data Almo st Full	TX Data Empt y	RX Data Full	RX Data Almo st Empt y	RX Data Empt Y
r/c	r/c	r/c	r/c			r/c	r/c	r/c		r/c	r/c	r/c	r/c	r/c	r/c

The meaning of the masked contributors of this register is the same of the RAW Status Register (STAT_RAW_REG).

2.9 Mask Register (MSK_REG)

This is the Mask register used to mask the contributors for the interrupt signal.

MSK_	REG (H	IPUCore	Base -	+ 0x20))							Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						Glbl RX err_ of	Glbl RX err_t o	Glbl RX err_t x	Glbl RX err_k o
												r/w	r/w	r/w	r/w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RXFIFO > THRS	AUX RX PAER FIFO FULL	RRX PAER FIFO FULL	LRX PAER FIFO FULL	Rese	rved	RX FIFO Not Empt y	RxBu fferR eady	Time Stam p Wra pped	Rese rved	TX Data Full	TX Data Almo st Full	TX Data Empt y	RX Data Full	RX Data Almo st Empt y	RX Data Empt y
r/w	r/w	r/w	r/w			r/w	r/w	r/w		r/w	r/w	r/w	r/w	r/w	r/w

The meaning of the masked contributors of this register is the same of the RAW Status Register (STAT_RAW_REG).

2.10 Wrapping TimeStamp Register (WRAPTimeStamp_REG)

This register is used to read how many times the internal 32bit counter of the TimeStamp module has wrapped its value. In case the user writes any value in this register, it will be cleared and also the internal 32bit counter of the TimeStamp module will be cleared.

WRAP	TIMES	TAMP_	REG (N	IEUELA	B Base	+ 0x28	3)					Rese	et Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Wrappir	ng times							
	r/c														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Wrappir	ng times							

r/c

2.11 HSSAER STATus register (HSSAER_STAT_REG)

This is the HSSAER Status register.

HSSAE	ER_STA	T_REG	(HPUC	ore Bas	se + 0x	34)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved		Chan3 Aux run	Chan2 Aux run	Chan1 Aux run	Chan0 Aux run		Rese	erved		Chan3 TX run	Chan2 TX run	Chan1 TX run	Chan0 TX run
				ro	ro	ro	ro					ro	ro	ro	Ro
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	rved		Chan3 R RX run	Chan2 R RX run	Chan1 R RX run	Chan0 R RX run		Rese	erved		Chan3 L RX run	Chan2 L RX run	Chan1 L RX run	Chan0 L RX run
				ro	ro	ro	ro					ro	ro	ro	ro

The user can read the status of the 4 channels of Left Rx Eye, Right Rx Eye, Aux Rx or Tx channel.

2.12 HSSAER RX Error register (HSSAER_RX_ERR_REG)

This is the HSSAER Rx error register.

HSSA	ER_RX_	_ERR_R	EG (HF	UCore	Base +	0x38)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Chan3 R RX err_of	Chan3 R RX err_to	Chan3 R RX err_rx	Chan3 R RX err_ko	Chan2 R RX err_of	Chan2 R RX err_to	Chan2 R RX err_rx	Chan2 R RX err_ko	Chan1 R RX err_of	Chan1 R RX err_to	Chan1 R RX err_rx	Chan1 R RX err_ko	Chan0 R RX err_of	Chan0 R RX err_to	Chan0 R RX err_rx	Chan0 R RX err_ko
ro															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Chan3 L RX err_of	Chan3 L RX err_to	Chan3 L RX err_rx	Chan3 L RX err_ko	Chan2 L RX err_of	Chan2 L RX err_to	Chan2 L RX err_rx	Chan2 L RX err_ko	Chan1 L RX err_of	Chan1 L RX err_to	Chan1 L RX err_rx	Chan1 L RX err_ko	Chan0 L RX err_of	Chan0 L RX err_to	Chan0 L RX err_rx	Chan0 L RX err_ko
ro															

The user can read the error contributors for Left and Right 4 channels. See [3].

2.13 HSSAER RX MSK register (HSSAER_RX_MSK_REG)

This is the HSSAER Rx mask register.

HSSAI	ER_RX_	_MSK_F	REG (HI	PUCore	Base +	0x3C)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Chan3 R RX err_of	Chan3 R RX err_to	Chan3 R RX err_rx	Chan3 R RX err_ko	Chan2 R RX err_of	Chan2 R RX err_to	Chan2 R RX err_rx	Chan2 R RX err_ko	Chan1 R RX err_of	Chan1 R RX err_to	Chan1 R RX err_rx	Chan1 R RX err_ko	Chan0 R RX err_of	Chan0 R RX err_to	Chan0 R RX err_rx	Chan0 R RX err_ko
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Chan3 L RX err_of	Chan3 L RX err_to	Chan3 L RX err_rx	Chan3 L RX err_ko	Chan2 L RX err_of	Chan2 L RX err_to	Chan2 L RX err_rx	Chan2 L RX err_ko	Chan1 L RX err_of	Chan1 L RX err_to	Chan1 L RX err_rx	Chan1 L RX err_ko	Chan0 L RX err_of	Chan0 L RX err_to	Chan0 L RX err_rx	Chan0 L RX err_ko
r\A/	r\n/	r\n/	r\n/	r\//	r\//	r\n/	r\//	r\//	r\A/	r\A/	r\n/	r\n/	r\A/	r\n/	r\n/

The user can mask (writing 0) or not (writing 1) the corresponding contributors of error register. See [3].

2.14 RX Control register (RX_CTRL_REG)

This is the HSSAER Left and Right Rx control register.

RX_C1	TRL_RE	G (HPU	JCore B	ase + 0)x40)							Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Daga	m ro al		RRX	HSSAEF	R Chann	el En		,) m			RRX	RRX	RRX HSSAE
	Rese	rvea		Channel 3	Channel 2	Channel 1	Channel 0		'	Reserved			GTP En	PAER En	R En
					r	W							rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LRX HSSAER Channel En											LRX	LRX	LRX HSSAE		
Reserved Channel Chan												GTP En	PAER En	R En	
					r	<u> </u>							r\A/	r\A/	
					I.	W							rw	rw	rw

- LRX HSSAER Enable
 - o When '0', the Left HSSAER interface is not enabled
 - o When '1', the Left HSSAER interface is enabled
- LRX PAER Enable
 - o When '0', the Left PAER interface is not enabled
 - o When '1', the Left PAER interface is enabled
- LRX GTP Enable
 - \circ $\;$ When '0', the Left GTP interface is not enabled
 - o When '1', the Left GTP interface is enabled
- LRX HSSAER Channel Enable
 - Write 1 in the corresponding channel to enable it
- RRX HSSAER Enable
 - o When '0', the Right HSSAER interface is not enabled
 - When '1', the Right HSSAER interface is enabled
- RRX PAER Enable
 - o When '0', the Right PAER interface is not enabled
 - o When '1', the Right PAER interface is enabled
- RRX GTP Enable
 - o When '0', the Right GTP interface is not enabled
 - o When '1', the Right GTP interface is enabled
- RRX HSSAER Channel Enable
 - o Write 1 in the corresponding channel to enable it

2.15 TX Control register (TX_CTRL_REG)

This is the HSSAER Tx control register.

TX_C1	TRL_RE	G (HPU	Core B	ase + C	x44)							Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
					r	W							rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_			TX	HSSAER	Channe	l En						TX	TX	TX HSSAE
	Rese	rved		Channel 3	Channel 2	Channel 1	Channel 0		ŀ	Reserved	d		GTP En	PAER En	R En
					r	W							rw	rw	rw

- TX HSSAER Enable
 - o When '0', the Left HSSAER interface is not enabled
 - o When '1', the Left HSSAER interface is enabled
- TX PAER Enable
 - o When '0', the Left PAER interface is not enabled
 - When '1', the Left PAER interface is enabled
- TX GTP Enable
 - o When '0', the Left GTP interface is not enabled
 - o When '1', the Left GTP interface is enabled
- TX HSSAER Channel Enable
 - o Write 1 in the corresponding channel to enable it

2.16 RX PAER Configuration register (RX_PAER_CFNG_REG)

This is the RX PAER configuration register.

RX_P	AER_CF	NG_RE	G (HPL	JCore B	Base + 0	0x48)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		RXPA	ER Ack	release	Delay					RX	PAER Ack	Set De	elay		
			r	W							rv	V			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RXPA	ER Data	Sample	Delay				Reserved	d	RXPAER ignore Fifo Full	Rese	erved	RXPAE R Ack Active Lvl	RXPAE R Req Active LvI
			r	w							rw			rw	rw

- RXPAER Req Active level
 - o When '0', the Request signal is active low
 - o When '1', the Request signal is active high
- RXPAER Ack Active level
 - o When '0', the Acknowledge signal is active low
 - When '1', the Acknowledge signal is active high
- RX PAER ignore FIfo Full
 - When '0', the Fifo Full stops the acknowledge signal
 - o When '1', the Fifo Full doesn't stop the acknowledge signal by acknowledging the request
- RXPAER Data Sample Delay
 - o This is the number of system clock used to sample the PAER address.
- RXPAER Ack Set Delay
 - o This is the number of system clock used to set the ACK signal after that the request becomes active
- RXPAER Ack Release Delay
 - o This is the number of system clock used to release the ACK signal after that the request becomes active

2.17 TX PAER Configuration register (TX_PAER_CFNG_REG)

This is the TX PAER configuration register.

TX_PA	AER_CF	NG_RE	G (HPL	JCore B	ase + 0	x4C)						Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														TXPAE R	TXPAE R
						Rese	erved							Ack Active	Req Active
														Lvl	Lvl

- TXPAER Req Active level
 - o When '0', the Request signal is active low
 - o When '1', the Request signal is active high
- TXPAER Ack Active level
 - o When '0', the Acknowledge signal is active low
 - o When '1', the Acknowledge signal is active high

Reset Value: 0x0000????

2.18 IP Configuration register (IP_CFNG_REG)

IP_CFNG_REG (HPUCore Base + 0x50)

This is the HPUCore configuration register. It shows how the HPUCore has been implemented in terms of features.

Rese	rved	TX HS #chan		Reserv ed	HAS TX GTP	Has TX PAER	Has TX HSSAE R	Rese	erved	RX HS #chan		Reserv ed	HAS RX GTP	Has RX PAER	Has RX HSSAE R
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Rese	rved							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

- Has RX HSSAER
 - o When '0', the IP doesn't have the RX HSSAER I/f
 - o When '0', the IP has the RX HSSAER I/f
- Has RX PAER
 - When '0', the IP doesn't have the RX PAER I/f
 - o When '0', the IP has the RX PAER I/f
- Has RX GTP
 - When '0', the IP doesn't have the RX GTP I/f
 - o When '0', the IP has the RX GTP I/f
- RX HSSAER #channels -1
 - This shows the number of channels of RX HSSAER I/f. For instance, if it is 2'b10, it means that the RX HSSAER interface has 3 channels
- Has TX HSSAER
 - When '0', the IP doesn't have the TX HSSAER I/f
 - o When '0', the IP has the TX HSSAER I/f
- Has TX PAER
 - When '0', the IP doesn't have the TX PAER I/f
 - o When '0', the IP has the TX PAER I/f
- Has TX GTP
 - When '0', the IP doesn't have the TX GTP I/f
 - When '0', the IP has the TX GTP I/f
- RX HSSAER #channels -1
 - This shows the number of channels of RX HSSAER I/f. For instance, if it is 2'b10, it means that the RX HSSAER interface has 3 channels

2.19 Fifo Threshold register (FIFO_THRSH_REG)

This register contains the number of elements of the INFIFO after which the "RXFIFO > THRS" of the IRQ Register (IRQ_REG) bit goes high.

FIFO_	_THRSH	I_REG ((HPUCo	re Base	+ 0x5	4)						Rese	t Value:	0x0000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	1.4	13	12	11	10	0	0	7	4	E	4	2	2	1	0
15	14	13	12	11	10	9	δ	/	0	5	4	3		1	U
									Thre	eshold va	alue				

r/w

2.20 LoopBack AUX Configuration (LPBK_AUX_CNFG_REG)

This register contains the configuration for the AUX interface loopback.

LPBK_	_AUX_C	NFG_R	REG (HF	Rese	t Value:	0x000	00000								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AUX	RX chai	n 3 LPB	cnfg	AUX	RX cha	n 2 LPB	cnfg	AUX	RX cha	n 1 LPB	cnfg	AUX	RX cha	n 0 LPB	cnfg
	r/	'w			r/	'w			r/	w			r/	' \\\	

The register is used in debug to test the connection. For further details, look at the RTL code.

2.21 Identification register (ID_REG)

This register contains the ID of the NeuElab.

ID_RE	EG (HPI	JCore E	Base + 0	0x5C)								Re	eset Valu	ie: 485 0	05522
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ŀ	+							F)			
			r/	′ o							r/	o'			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			l	J					Ma	jor			Mii	nor	
<u> </u>			r	n				1	r	/n	U		r	n	

Minor =2;

Major = 2;

2.22 AUXiliary RX Control register (AUX_RX_CTRL_REG)

This is the Auxiliary Rx control register.

AUX_	RX_CTF	RL_REG	(HPUC	ore Ba	se + 0x	(60)						Reset	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
					r	W									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Daga	m ro al		AUX	HSSAEF	R Chann	el En		-	Danam (a.			AUX	AUX	AUX HSSAE
	Rese	erved		Channel 3	Channel 2	Channel 1	Channel 0		ŀ	Reserved	1		GTP En	PAER En	R En
	_	_	-		r	W		_	_	_	-		rw	rw	rw

- **AUX HSSAER Enable**
 - When '0', the AUX HSSAER interface is not enabledWhen '1', the AUX HSSAER interface is enabled
- AUX PAER Enable
 - o When '0', the AUX PAER interface is not enabled
 - o When '1', the AUX PAER interface is enabled
- **AUX GTP Enable**
 - o When '0', the AUX GTP interface is not enabled
 - o When '1', the AUX GTP interface is enabled
- **AUX HSSAER Channel Enable**
 - o Write 1 in the corresponding channel to enable it

2.23 HSSAER AUX RX Error register (HSSAER_AUX_RX_ERR_REG)

This is the HSSAER Rx error register.

HSSAI	ER_AUX	K_RX_E	RR_RE	G (HPU	Core B	ase + C)x64)					Rese	t Value:	0x000	00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Chan3 AUX	Chan3 AUX	Chan3 AUX	Chan3 AUX	Chan2 AUX	Chan2 AUX	Chan2 AUX	Chan2 AUX	Chan1 AUX	Chan1 AUX	Chan1 AUX	Chan1 AUX	Chan0 AUX	Chan0 AUX	Chan0 AUX	Chan0 AUX
RX															
err_of	err_to	err_rx	err_ko												
ro															

The user can read the error contributors for the 4 channels of the AUX interface. See [3].

2.24 HSSAER AUX RX MSK register (HSSAER_AUX_RX_MSK_REG)

This is the HSSAER AUX Rx mask register.

HSSA	HSSAER_AUX_RX_MSK_REG (HPUCore Base + 0x68)													Reset Value: 0x00000		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				I.	I.	I.	I.		I.		I.					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Chan3 AUX	Chan3 AUX	Chan3 AUX	Chan3 AUX	Chan2 AUX	Chan2 AUX	Chan2 AUX	Chan2 AUX	Chan1 AUX	Chan1 AUX	Chan1 AUX	Chan1 AUX	Chan0 AUX	Chan0 AUX	Chan0 AUX	Chan0 AUX	
RX err_of	RX err_to	RX err_rx	RX err_ko	RX err_of	RX err_to	RX err_rx	RX err_ko	RX err_of	RX err_to	RX err_rx	RX err_ko	RX err_of	RX err_to	RX err_rx	RX err_ko	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

The user can mask (writing 0) or not (writing 1) the corresponding contributors of error register. See [3].

2.25 Aux Error counter threshold register (HSSAER_AUX_RX_ERR_THR_REG)

This is register is used for setting the threshold of the AUX Rx counter error.

As soon as the number of the corresponding error overcome the threshold here set, the interrupt related will be raised if opportunely masked.

HSSA	ER_AU	X_RX_E	RR_TH	R_REG	(HPUC	ore Ba	(6C) Reset Value: 0x10101010								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Nur	nber of A	AUX of 6	error		Number of AUX to error								
			r/	W				r/w							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Nur	nber of A	AUX rx e	error				Num	nber of A	UX ko e	errors			
							r/w								

r/w r/w

- Number of AUX ko errors
 - o The number of ko errors which, if overcome, can raise an interrupt
- Number of AUX rx errors
 - o The number of rx errors which, if overcome, can raise an interrupt
- Number of AUX to errors
 - o The number of to errors which, if overcome, can raise an interrupt
- Number of AUX of errors
 - o The number of of errors which, if overcome, can raise an interrupt

2.26 Aux Error counter CH0 register (HSSAER_AUX_RX_ERR_CH0_REG)

This is register is used to read the number of errors occurred in HSSAER AUX channel 0 lines.

Reading this register we also clear it.

HSSAI	ER_AU	K_RX_E	RR_CH	0_REG	(HPUC	ore Bas	(70) Reset Value: 0x0000000								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Nun	nber of (CH0 of e	error		Number of CH0 to error								
			r/	'c							r,	/c			
15	14	13	12	11	10	9	7	6	5	4	3	2	1	0	
Number of CH0 rx error										Num	ber of C	H0 ko e	rrors		

r/c r/c

- Number of CH0 ko errors
 - o The number of ko errors
- Number of CH0 rx errors
 - o The number of rx errors
- Number of CH0 to errors
 - o The number of to errors
- Number of CH0 of errors
 - o The number of of errors

2.27 Aux Error counter CH1 register (HSSAER_AUX_RX_ERR_CH1_REG)

This is register is used to read the number of errors occurred in HSSAER AUX channel 1 lines.

Reading this register we also clear it.

HSSA	ER_AU	C_RX_E	RR_CH	1_REG	(HPUC	ore Bas	Reset Value: 0x00000000									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		Nun	nber of (CH1 of e	error		Number of CH1 to error									
			r/	'c				r/c								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Number of CH1 rx error									Num	ber of C	H1 ko e	errors			

r/c r/c

- Number of CH1 ko errors
 - o The number of ko errors
- Number of CH1 rx errors
 - o The number of rx errors
- Number of CH1 to errors
 - o The number of to errors
- Number of CH1 of errors
 - o The number of of errors

r/c

2.28 Aux Error counter CH2 register (HSSAER_AUX_RX_ERR_CH2_REG)

This is register is used to read the number of errors occurred in HSSAER AUX channel 2 lines.

Reading this register we also clear it.

HSSA	ER_AU	K_RX_E	RR_CH	2_REG	(HPUC	ore Bas	(78) Reset Value: 0x00000000								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Nun	nber of (CH2 of e	error		Number of CH2 to error								
			r/	′c							r,	′c			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Number of CH2 rx error									Num	ber of C	H2 ko e	rrors		

r/c

- Number of CH2 ko errors
 - o The number of ko errors
- Number of CH2 rx errors
 - o The number of rx errors
- Number of CH2 to errors
 - o The number of to errors
- Number of CH2 of errors
 - o The number of of errors

2.29 Aux Error counter CH3 register (HSSAER_AUX_RX_ERR_CH3_REG)

This is register is used to read the number of errors occurred in HSSAER AUX channel 3 lines.

Reading this register we also clear it.

HSSAI	HSSAER_AUX_RX_ERR_CH3_REG (HPUCore Base + 0x7C) Reset Value: 0x000000														00000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Nun	nber of (CH3 of e	error		Number of CH3 to error								
			r/	'C							r,	/c			
15	14	13	12	11	10	9	7	6	5	4	3	2	1	0	
	Number of CH3 rx error									Num	nber of C	H3 ko e	errors		

r/c r/c

- Number of CH3 ko errors
 - o The number of ko errors
- Number of CH3 rx errors
 - o The number of rx errors
- Number of CH3 to errors
 - o The number of to errors
- Number of CH3 of errors
 - o The number of of errors

3 References

- [1] ARM AMBA AXI protocol v2.0
- [2] "Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications", Texas Instruments, Application Report SBAA094 June 2003.
- [3] "Asynchronous DC-Free Serial Protocol for Event-Based AER Systems", P. Motto Ros, M. Crepaldi, C. Bartolozzi and D. Demarchi, 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)

4 Appendixes