

DMA: Proof Techniques

Laura Mančinska Institut for Matematiske Fag

KBR: "Construction of proofs is an art and must be learned in part from observation and

experience."

Proving an implication

- Proving an implication
 - by a direct proof
 - by proving the contrapositive

- Proving an implication
 - by a direct proof
 - by proving the contrapositive
- Proving a biconditional statement

- Proving an implication
 - by a direct proof
 - by proving the contrapositive
- Proving a biconditional statement
- Proof by contradiction

Proving an implication $p \Rightarrow q$

Proving an implication: Direct proof

Task: Prove that $p \Rightarrow q$.

Proving an implication: Direct proof

Task: Prove that $p \Rightarrow q$.

Proof template

Assume p holds.

Proving an implication: Direct proof

Task: Prove that $p \Rightarrow q$.

Proof template

- Assume p holds.
- Use relevant definitions and previously proven statements to argue that q must hold.

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Proof. Assume that x and y are odd integers.

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Proof. Assume that x and y are odd integers.

So we can write them as x = 2n + 1 and y = 2m + 1 for some $n, m \in \mathbb{Z}$.

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Proof. Assume that x and y are odd integers.

So we can write them as x=2n+1 and y=2m+1 for some $n,m\in\mathbb{Z}.$

Then x + y

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Proof. Assume that x and y are odd integers.

So we can write them as x = 2n + 1 and y = 2m + 1 for some $n, m \in \mathbb{Z}$.

Then x + y = (2n + 1) + (2m + 1) = 2(n + m + 1).

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Proof. Assume that x and y are odd integers.

So we can write them as x = 2n + 1 and y = 2m + 1 for some $n, m \in \mathbb{Z}$.

Then
$$x + y = (2n + 1) + (2m + 1) = 2(n + m + 1)$$
.
Hence, $x + y$ is even.

Task: Prove that $p \Rightarrow q$.

Task: Prove that $p \Rightarrow q$.

Recall:
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

Task: Prove that $p \Rightarrow q$.

Recall:
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

Proof template

• Write: "We prove the contrapositive:" and then state the contrapositive.

Task: Prove that $p \Rightarrow q$.

Recall:
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

Proof template

- Write: "We prove the contrapositive:" and then state the contrapositive.
- Prove the contrapositive, (~q) ⇒ (~p), by a direct proof:

Task: Prove that $p \Rightarrow q$.

Recall:
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

Proof template

- Write: "We prove the contrapositive:" and then state the contrapositive.
- Prove the contrapositive, $(\sim q) \Rightarrow (\sim p)$, by a direct proof:
 - Assume ~q holds.
 - Use relevant definitions and previously proven statements to argue that ~p must hold.

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$

Contrapositive:

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$ Contrapositive: $(n \mid a \text{ or } n \mid b) \Rightarrow n \mid (ab)$

Task: Let $\alpha, b, n \in \mathbb{Z}$. Prove that if $n \nmid (\alpha b)$, then $n \nmid \alpha$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$ Contrapositive: $(n \mid a \text{ or } n \mid b) \Rightarrow n \mid (ab)$

Proof. We prove the contrapositive: If $n \mid a$ or $n \mid b$, then $n \mid (ab)$.

Task: Let $\alpha, b, n \in \mathbb{Z}$. Prove that if $n \nmid (\alpha b)$, then $n \nmid \alpha$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$ Contrapositive: $(n \mid a \text{ or } n \mid b) \Rightarrow n \mid (ab)$

Proof. We prove the contrapositive: If $n \mid a$ or $n \mid b$, then $n \mid (ab)$.

Assume that $n \mid a$ or $n \mid b$.

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$ Contrapositive: $(n \mid a \text{ or } n \mid b) \Rightarrow n \mid (ab)$

Proof. We prove the contrapositive: If $n \mid a$ or $n \mid b$, then $n \mid (ab)$.

Assume that $n \mid a$ or $n \mid b$. Let us analyze the cases when $n \mid a$ and when $n \mid b$ separately.

Task: Let $a, b, n \in \mathbb{Z}$. Prove that if $n \nmid (ab)$, then $n \nmid a$ and $n \nmid b$.

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

Implication: $n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)$ Contrapositive: $(n \mid a \text{ or } n \mid b) \Rightarrow n \mid (ab)$

Proof. We prove the contrapositive: If $n \mid a$ or $n \mid b$, then $n \mid (ab)$.

Assume that $n \mid a$ or $n \mid b$. Let us analyze the cases when $n \mid a$ and when $n \mid b$ separately.

(finish on the board)

 $p \Leftrightarrow q$

Task: Prove that $p \Leftrightarrow q$.

Task: Prove that $p \Leftrightarrow q$.

Recall:
$$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Task: Prove that $p \Leftrightarrow q$.

Recall:
$$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Proof template

Write: "We prove p implies q and vice versa".

Task: Prove that $p \Leftrightarrow q$.

Recall: $(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$

Proof template

- Write: "We prove p implies q and vice versa".
- Write: "First we show $p \Rightarrow q$ ": prove the implication.

Proving a biconditional

Task: Prove that $p \Leftrightarrow q$.

Recall: $(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$

- Write: "We prove p implies q and vice versa".
- Write: "First we show $p \Rightarrow q$ ": prove the implication.
- Write: "Now we show $q \Rightarrow p$ ": prove the implication.

Proving a biconditional

Task: Prove that $p \Leftrightarrow q$.

Recall:
$$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Proof template

- Write: "We prove p implies q and vice versa".
- Write: "First we show $p \Rightarrow q$ ": prove the implication.
- Write: "Now we show $q \Rightarrow p$ ": prove the implication.

Note: A different proof technique can be used for each implication.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Assume that α is even.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Assume that α is even. Then $\alpha = 2k$ for some $k \in \mathbb{Z}$.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Assume that α is even. Then $\alpha=2k$ for some $k\in\mathbb{Z}.$

Hence, $\alpha^2 = (2k)^2 = 4k^2 = 2(2k^2)$

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Assume that α is even. Then $\alpha=2k$ for some $k\in\mathbb{Z}$. Hence, $\alpha^2=(2k)^2=4k^2=2(2k^2)$ which shows that α^2 is even.

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Assume that α is even. Then $\alpha=2k$ for some $k\in\mathbb{Z}$. Hence, $\alpha^2=(2k)^2=4k^2=2(2k^2)$ which shows that α^2 is even

(other direction on the board)

Task: Prove that q holds.

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow (p \land (\sim p)))$$
 (check!)

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow \underbrace{(p \land (\sim p))}_{\text{absurdity}})$$
 (check!)

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow \underbrace{(p \land (\sim p))}_{\text{absurdity}})$$
 (check!)

Proof template

Write: "We use proof by contradiction."

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow \underbrace{(p \land (\sim p))}_{\text{absurdity}})$$
 (check!)

- Write: "We use proof by contradiction."
- Assume ~q holds.

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow \underbrace{(p \land (\sim p))}_{\text{absurdity}})$$
 (check!)

- Write: "We use proof by contradiction."
- Assume ~q holds.
- Deduce something known to be false (a contradiction).

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow \underbrace{(p \land (\sim p))}_{\text{absurdity}})$$
 (check!)

- Write: "We use proof by contradiction."
- Assume ~q holds.
- Deduce something known to be false (a contradiction).
- Write: "We have reached a contradiction. Hence, q holds."

Task: Prove that $\sqrt{2}$ is an irrational number.

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

• $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

- $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.
- We say that $x \in \mathbb{R}$ is rational if we can express it as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Otherwise, we say that x is irrational.

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

- $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.
- We say that $x \in \mathbb{R}$ is rational if we can express it as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Otherwise, we say that x is irrational.

Proof. We use proof by contradiction.

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

- $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.
- We say that $x \in \mathbb{R}$ is rational if we can express it as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Otherwise, we say that x is irrational.

Proof. We use proof by contradiction. Assume that $\sqrt{2}$ is rational.

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

- $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.
- We say that $x \in \mathbb{R}$ is rational if we can express it as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Otherwise, we say that x is irrational.

Proof. We use proof by contradiction.

Assume that $\sqrt{2}$ is rational. So by definition, this means that $\sqrt{2}=\frac{\alpha}{b}$ for some $\alpha,b\in\mathbb{Z}^+.$

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

- $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.
- We say that $x \in \mathbb{R}$ is rational if we can express it as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Otherwise, we say that x is irrational.

Proof. We use proof by contradiction.

Assume that $\sqrt{2}$ is rational. So by definition, this means that $\sqrt{2}=\frac{\alpha}{b}$ for some $\alpha,b\in\mathbb{Z}^+.$

(finish on the board)

