ctions o	f Random Variables
Let X	be a continuous RV and Y=q(X) is a function of X, then Y itself is a RV. Thus, we should I
able to	find the CDF and PDF of Y.
Example	2: Let Y= Xª
a	. Find the CDF and PDF for some arbitary X
ы	. If X is a uniform RV in G1, 1] . find the CDF and PDF of Y.
a	. Note that y>0 since all outcomes of x are squared.
	FY(y) = P(x2 sy) = P(-19 x x s -19)
	Fx (-14) y > 0 Fy (y) = 0 otherwise
	- yyy - (o otherwise
	We can find the PDF by differentiating Fy with respect to y.
	fy(y) = dy (Fx(y)) = Fx(-y)) = 21 (fx(y) +fx(-y))
	TY(y) = dy (Px(4y) - [-x(-1y)] = 216 (+x(1g) ++x(-1y))
(b)	. Recall the CDF of a uniform RV
	0 x<0 x-0 Fx(x)={b-0 0≤x≤b
	Fx(x)={b-0
	Replacing the CDF in part (a)
	O 840
	$F_{Y(y)} = \begin{cases} \frac{1}{1 - (-1)} - \frac{1}{1 - (-1)} = 1 & 0 < y \le 1 \\ 1 & y > 1 \end{cases}$
	The PDF is fr(y) = fr(y) = lo otherwise
od of T	iransformations
we hav	e found the PDF of Y=g(x) by first finding its CDF and the taking its derivative. However, we
find t	the PDF directly if
•	gux) is differentiable
	The inverse function gi's well defined.
Consid	er a Strictly increasing function. (y=g(x) has a single solution)
	I the PDF of Y, we differentiate:
	$f_{Y(y)} = \frac{d}{dy} F_{x(x_i)} = \frac{dx_i}{dy} f_{x(x_i)} = \frac{f_{x(x_i)}}{g'(x_i)} \text{note } y = g(x_i) , \frac{dx_i}{dy} = \frac{1}{dx_i} = \frac{1}{g'(x_i)}$

Note: if any is strictly decreasing, then a'm will be negative, so we need to use la'm to ensure our prob. is positive

	Example	; Affine (lineor)	functio	ons					J			
,		Let Y=a				PDF of	Υ						,
		g(x)=y=0	xx+b·g	'(x)=Q	y -	<u>b</u>							
		fγιy) = <mark>ા</mark> ં											
,													,