Ramakrishna Mission Vivekananda Educational and Research Institute

PO Belur Math, Howrah, West Bengal 711 202 School of Mathematical Sciences Department of Computer Science

MSc Big Data Analytics : Batch 2022-24 DA109: Linear Algebra and Matrix Computation Instructor: Dr. Soumitra Samanta

TA: Rajdeep Mondal

Problem set: 2

Please try to solve all the problems ¹ alone. If you are stuck, I encourage you first consult with your batch mates and then TA. If you still need help then come to Instructor.

Notations:

• ·: scalar multiplication

• Tr(A): Trace of a matrix A

• $\mathcal{R}(\mathbf{A})$: row-space of a matrix \mathbf{A}

• $C(\mathbf{A})$: column-space of a matrix \mathbf{A}

• $\mathcal{N}(\mathbf{A})$: null-space of a matrix \mathbf{A}

• $\rho(\mathbf{A})$: Rank of a matrix \mathbf{A}

• *q-inverse*: Generalised inverse

• A^- : q-inverse of a matrix A

- 1. How many multiplications (of scalars) are needed to compute the product \mathbf{AB} , where \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times p$ matrix?
- 2. For each of the following matrices, find \mathbf{A}^k for all $k \geq 2$, where $\mathbf{A}^k = \mathbf{A}^{k-1} \times \mathbf{A}$:

a.
$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 2 & 5 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

c.
$$\begin{bmatrix} \alpha & 1 & 0 & \cdots & 0 & 0 \\ 0 & \alpha & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 1 \\ 0 & 0 & 0 & \cdots & 0 & \alpha \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$$
 where $\omega = e^{\frac{2\pi i}{3}}$

3. Determine all 2×2 real matrices **A** such that :

a.
$$A^2 = 0$$

b.
$$A^2 = I$$

4. Prove or disprove:

¹ All the problems have been selected by the TA from the Rao & Bhimasankaram book [1] in consultation with the Instructor.

- a. $\mathbf{A}\mathbf{x}\mathbf{y}^T\mathbf{u}\mathbf{v}^T\mathbf{B} = \mathbf{y}^T\mathbf{u} \cdot \mathbf{A}\mathbf{x}\mathbf{v}^T\mathbf{B}$ where \mathbf{x} , \mathbf{y} , \mathbf{u} and \mathbf{v} are column vectors.
- b. Given any non-null column vector \mathbf{x} , there exists a column vector \mathbf{y} such that $\mathbf{y}^T\mathbf{x} = 1$.
- c. If \mathbf{x} and \mathbf{y} are column vectors then all columns of $\mathbf{x}\mathbf{y}^T$ are scalar multiples of \mathbf{x} .
- 5. If **A** is a square matrix of order n such that $a_{ij} = 0$ whenever $i \geq j$, show that $\mathbf{A}^n = \mathbf{0}$.
- 6. Let **A** be a square matrix and $\mathbf{B} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$. Prove the following:
 - a. $\mathbf{x}^T \mathbf{B} \mathbf{x} = \mathbf{x}^T \mathbf{A} \mathbf{x}$ for all $\mathbf{x} \in n \times 1$.
 - b. If C is a symmetric matrix such that $\mathbf{x}^T \mathbf{C} \mathbf{x} = \mathbf{x}^T \mathbf{A} \mathbf{x}$ for all x, then $\mathbf{C} = \mathbf{B}$.
- 7. Let **A** be a real $n \times n$ matrix of rank r and $\mathbf{V} = \{\mathbf{X} \in \mathbf{M}_{n \times n}(\mathbf{R}) | \mathbf{A}\mathbf{X} = \mathbf{0}\}$ be a vector space. Then find the dimension of **V**.
- 8. If **A** is an $m \times n$ matrix and if $\mathbf{A}\mathbf{x_1} = \mathbf{0}, \mathbf{A}\mathbf{x_2} = \mathbf{0},, \mathbf{A}\mathbf{x_n} = \mathbf{0}$ for some basis $\{\mathbf{x_1}, \mathbf{x_2},, \mathbf{x_n}\}$ of $\mathbb{F}^{\mathbf{n}}$, show that $\mathbf{A} = \mathbf{0}$. Can you find any relation with linear transformation from $\mathbb{F}^{\mathbf{n}} \to \mathbb{F}^{\mathbf{m}}$?
- 9. If $\mathbf{y}^T \mathbf{A} \mathbf{x} = \mathbf{0}$ for all \mathbf{A} and if $\mathbf{x} \neq \mathbf{0}$, prove that $\mathbf{y} = \mathbf{0}$.
- 10. Let **A** be an $n \times n$ matrix. If $\mathbf{Tr}(\mathbf{AB}) = \mathbf{0}$ for all $n \times n$ matrices **B**, show that $\mathbf{A} = \mathbf{0}$.
- 11. Let A be a square matrix. Show that the columns of A^3 are linear combinations of the columns of A.
- 12. Find the following products:

a.
$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{Q} \\ \mathbf{R} & \mathbf{S} \end{bmatrix}$$

c.
$$\begin{bmatrix} \mathbf{P_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q_1} \end{bmatrix} \begin{bmatrix} \mathbf{P_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q_2} \end{bmatrix} \begin{bmatrix} \mathbf{P_3} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q_3} \end{bmatrix}$$

b.
$$\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix}$$
 G $\begin{bmatrix} \mathbf{P} & \mathbf{Q} \end{bmatrix}$

- 13. Consider the real matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 & 7 & 0 \\ 6 & 0 & 0 & 3 \\ 4 & 2 & 0 & 5 \\ 1 & 0 & 1 & 1 \end{bmatrix}$. Find the Row and Column space of \mathbf{A} . Also find the dimension of those spaces.
- 14. Prove that $\rho\left(\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{C} \end{bmatrix}\right) \geq \rho(\mathbf{A}) + \rho(\mathbf{C})$, ρ denotes the rank of a matrix. Show that strict inequality can occur. Deduce that the rank of an upper triangular matrix is not less than the number of non-zero diagonal elements.
- 15. If **A** is an $m \times n$ matrix with rank r, show that for every k such that $1 \le k \le r$, **A** has a $k \times k$ submatrix with rank k. Also show that a submatrix of **A** formed by k linearly independent rows and k linearly independent columns need not be invertible. What are the possible values for the rank of the submatrix obtained by deleting a row and a column.
- 16. Write down the conditions to get the *left* and *right inverse* of a matrix respectively. Find the *left or right inverse* of the matrices(which exists):

a.
$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 0 & 1 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 4 & 7 & 0 \\ 7 & 8 & 1 \\ 0 & 3 & 1 \end{bmatrix}$$

- 17. Show that a non-invertible matrix **A** cannot has both left and right inverse. Also show that A cannot has a unique left inverse.
- 18. Show that any convex combination of left inverses of a matrix also a left inverse.

- 19. Let **A** and **B** be two $n \times n$ matrices such that **AB** is diagonal with non-zero diagonal entries. If the diagonal entries of **AB** are all equal then show that **A** commutes with **B**.
- 20. Show that the rank of a symmetric matrix is the maximum order of a principal submatrix which is invertible.
- 21. Show that a permutation matrices is always invertible.
- 22. Find 2×2 singular matrices **A**, **B**, **C** and **D** such that $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$ is non-singular.
- 23. Show that $\mathbf{I}_{m \times m}$ is the only non-singular idempotent matrix of order m.
- 24. Let $\mathcal{N}(\mathbf{A} : \mathbf{B}) = \mathcal{C} \begin{bmatrix} \mathbf{C} \\ \mathbf{D} \end{bmatrix}$, where \mathbf{AC} is defined. Then show that $\mathcal{C}(\mathbf{A}) \cap \mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{AC}) = \mathcal{C}(\mathbf{BD})$.
- 25. Show that inverse of a non-singular skew-symmetric matrix is also skew-symmetric.
- 26. Let **A** and **B** be matrices of orders $m \times n$ and $n \times p$ respectively. Then show that : $\rho(\mathbf{AB}) \ge \rho(\mathbf{A}) + \rho(\mathbf{B}) n$
- 27. Prove the following:
 - a. Let **A** and **B** are two matrices with same number of rows. Then show that $C[\mathbf{A} : \mathbf{B}] = C(\mathbf{A}) + C(\mathbf{B})$. And if $\mathbf{A} = \mathbf{B}\mathbf{C}$ for some matrix **C** then show that $\rho(\mathbf{A} : \mathbf{B}) = \rho(\mathbf{A})$.
 - b. If **A** and **C** have the same number of columns then show that $\mathcal{R}(\begin{bmatrix} \mathbf{A} \\ \mathbf{C} \end{bmatrix}) = \mathcal{R}(\mathbf{A}) + \mathcal{R}(\mathbf{C})$ and $\mathcal{N}(\begin{bmatrix} \mathbf{A} \\ \mathbf{C} \end{bmatrix}) = \mathcal{N}(\mathbf{A}) \cap \mathcal{N}(\mathbf{C})$. If **C** = **EA** for some matrix **E** then show that $\rho(\begin{bmatrix} \mathbf{A} \\ \mathbf{C} \end{bmatrix}) = \rho(\mathbf{A})$.
- 28. For $n \times n$ matrices **A** and **B**, show that the rank of $\begin{bmatrix} \mathbf{A} & \mathbf{I} \\ \mathbf{I} & \mathbf{B} \end{bmatrix}$ is n iff $\mathbf{A} = \mathbf{B}^{-1}$.
- 29. Show that Null space of a matrix is not altered by premultiplying any non-singular matrix.
- 30. Show that if $\mathbf{A}^2 = \mathbf{A}^3$ and $\rho(\mathbf{A}) = \rho(\mathbf{A}^2)$ then $\mathbf{A} = \mathbf{A}^2$. Show also that the condition $\rho(\mathbf{A}) = \rho(\mathbf{A}^2)$ cannot be dropped even for a 2 × 2 matrix.
- 31. For each positive integer k, find a matrix **A** of order 2k and rank k such that $\mathbf{A}^2 = \mathbf{0}$.
- 32. Prove that $\rho(\mathbf{PAQ}) = \rho(\mathbf{A})$, iff $\rho(\mathbf{A}) = \rho(\mathbf{PA}) = \rho(\mathbf{AQ})$.
- 33. Prove that for any idempotent matrix \mathbf{A} , Rank $(\mathbf{A}) = \text{Tr}(\mathbf{A})$.
- 34. If (\mathbf{P}, \mathbf{Q}) is a rank factorization of \mathbf{A} then show that $\mathcal{C}(\mathbf{P}) = \mathcal{C}(\mathbf{A})$, $\mathcal{R}(\mathbf{Q}) = \mathcal{R}(\mathbf{A})$ and $\mathcal{N}(\mathbf{Q}) = \mathcal{N}(\mathbf{A})$.
- 35. Show that a matrix **A** is of rank 1 if and only if $\mathbf{A} = \mathbf{x}\mathbf{y}^T$ for some column vectors **x** and **y**.
- 36. If $\mathcal{C}(\mathbf{A}) \subseteq \mathcal{C}(\mathbf{B})$ and $\mathcal{R}(\mathbf{A}) \subseteq \mathcal{R}(\mathbf{D})$ then prove that $\mathbf{A} = \mathbf{BCD}$ for some matrix \mathbf{C} .
- 37. Using a rank-factorization of the middle matrix, deduce Frobenius inequality from Sylvester's inequality.
- 38. Let (\mathbf{P}, \mathbf{Q}) be a rank-factorization of \mathbf{A} . Then \mathbf{A} is projector iff $\mathbf{QP} = \mathbf{I}$.
- 39. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 1.5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & 4 \end{bmatrix}$.
 - a. Obtain rank-factorization of **A** and **B**. Hence show that $\rho(\mathbf{A}) = \rho(\mathbf{B}) = 1$ and $\rho(\mathbf{A} + \mathbf{B}) = \rho(\mathbf{A} + \mathbf{B})$
 - b. Find a matrix C with rank 1 such that A + B + C is non-singular.
 - c. Find $(\mathbf{A} + \mathbf{B} + \mathbf{C})^{-1}$ and verify that $\mathbf{A}(\mathbf{A} + \mathbf{B} + \mathbf{C})^{-1}\mathbf{A} = \mathbf{A}$ and $\mathbf{A}(\mathbf{A} + \mathbf{B} + \mathbf{C})^{-1}\mathbf{B} = \mathbf{0}$.

- 40. Determine all projectors of order 2×2 over \mathbb{R} .
- 41. If $\rho(\mathbf{A}) = \rho(\mathbf{A}^2)$ and $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{0}$, prove that $\rho(\mathbf{A} + \mathbf{B}) = \rho(\mathbf{A}) + \rho(\mathbf{B})$. Show that none of $\mathbf{A}\mathbf{B} = \mathbf{0}$ and $\mathbf{B}\mathbf{A} = \mathbf{0}$ can be dropped here.
- 42. Let **A** and **B** be projectors of the same order. Then show that $\mathbf{A} + \mathbf{B}$ is a projector iff $\mathcal{C}(\mathbf{A}) \subseteq \mathcal{N}(\mathbf{B})$ and $\mathcal{C}(\mathbf{B}) \subseteq \mathcal{N}(\mathbf{A})$.
- 43. Suppose the matrix **A** satisfies $\mathbf{A}^2 (a+1)\mathbf{A} + a\mathbf{I} = \mathbf{0}$. Show that **A** is invertible. Take $\mathbf{A} = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ and find the inverse of **A**.
- 44. Find the inverse of $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 1 & 3 \\ 1 & 1 & 1 & 2 & -1 \\ 0 & -1 & 2 & 1 & 3 \end{bmatrix}$ by using suitable partition.
- 45. Reduce the following square matrice to its Hermite canonical form (HCF) and hence determine the rank:

$$\begin{bmatrix} 2 & 4 & 3 & 1 \\ 1 & 2 & 5 & 0 \\ 3 & 6 & 0 & 5 \\ 4 & 8 & 1 & 2 \end{bmatrix}$$

- 46. If **H** is a matrix in HCF, show that the non-null columns of **I H** form a basis for $\mathcal{N}(\mathbf{H})$.
- 47. Prove or disprove: if $\mathbf{H_1}$ and $\mathbf{H_2}$ are $n \times n$ matrices in HCF, $\mathbf{H_1H_2}$ is in HCF.
- 48. If a system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of linear equations over IR has two different solutions \mathbf{u} and \mathbf{v} , show that there exist infinitely many solutions.
- 49. Let **A** be an $m \times n$ matrix. Are the following statements true?
 - a. $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} if m < n.
- b. $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at most one solution if m > n.

50. Let
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -3 & -1 & 1 & 0 \\ 2 & 0 & 2 & 1 \end{bmatrix}$$
 and $\mathbf{U} = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$. Find the solution of $\mathbf{L}\mathbf{y} = \mathbf{c}$ and using it find the solution of $\mathbf{A}\mathbf{x} = \mathbf{c}$ where $\mathbf{A} = \mathbf{L}\mathbf{U}$.

- 51. Show that $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for all \mathbf{b} iff \mathbf{A} is of full row rank.
- 52. Obtain a system $\mathbf{A}\mathbf{x} = \mathbf{b}$ for which $\begin{bmatrix} 1 + \alpha + 3\beta \\ 2 + 3\alpha \\ 1 + 8\beta \\ \alpha + 5\beta \end{bmatrix}$ is a general solution, where α and β are arbitrary scalars.
- 53. Let **A** be a real $m \times n$ matrix. Show that $\mathbf{A^T A x} = \mathbf{A^T b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^m$. Show also that if $\mathbf{A x} = \mathbf{b}$ is consistent, then the solution sets of the two systems are the same.
- 54. Consider the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ in \mathbb{R}^2 . Let **A** be the 2×2 matrix with (a_i, b_i) as the i^{th} row, i = 1, 2. Let **B** be the 2×3 matrix with (a_i, b_i, c_i) as the i^{th} row, i = 1, 2. Show the following:
 - a. The lines are identical iff $\rho(\mathbf{B}) = 1$.
 - b. The lines are parallel but not identical iff $\rho(\mathbf{A}) = 1$ and $\rho(\mathbf{B}) = 2$.
 - c. The lines intersect but are not identical iff $\rho(\mathbf{A}) = 2$.
- 55. Show that $\mathbf{c^T} \in \mathcal{R}(\mathbf{A})$ iff $\mathbf{c^T}\mathbf{u} = \mathbf{0}$ for all $\mathbf{u} \in \mathcal{N}(\mathbf{A})$.

- 56. If G_1 and G_2 are two g-inverses of A, show that $\alpha G_1 + (1 \alpha)G_2$ is a g-inverse of A for all $\alpha \in \mathbb{F}$
- 57. Show that $\rho(\mathbf{A}) = tr(\mathbf{G}\mathbf{A})$ if **G** is a g-inverse of **A**.
- 58. Let **A** be an $m \times n$ matrix. Show that an $n \times m$ matrix **G** is a g-inverse of **A** iff $\rho(\mathbf{I} \mathbf{G}\mathbf{A}) = n \rho(\mathbf{A})$.
- 59. If $\mathbf{R}(\mathbf{A}) \subseteq \mathbf{R}(\mathbf{X})$, show that $\rho(\mathbf{X}) = \rho(\mathbf{X}\mathbf{A}^{-}\mathbf{A}) + \rho(\mathbf{X}(\mathbf{I} \mathbf{A}^{-}\mathbf{A})) = \rho(\mathbf{A}) + \rho(\mathbf{X}(\mathbf{I} \mathbf{A}^{-}\mathbf{A}))$.
- 60. Find when the system:

$$x + y + z = 1$$

$$\alpha x + \beta y + \gamma z = \epsilon$$

$$\alpha^3 x + \beta^3 y + \gamma^3 z = \epsilon^3$$

is consistent and find a general solution whenever it is consistent.

References

[1] A. Ramachandra Rao and P Bhimasankaram. *Linear Algebra*. Hindustan Book Agency, 2nd edition, 2000.