Lecture 11: The Valuation and Pricing of Information

I.Economic Foundations of Value of Information

		Coin s	state ω	
		1/2 tail	1/2 head	Prior belief $q(\omega)$
		lali	Head	1
action	0	2t	0	
	1	0	2t	
	1	$u(a,\omega)$		1

Without information, decision maker (DM) gets $\max_a \left[\mathbb{E}_{\omega \sim q} u(a,\omega)\right] = t$ With my (full) information, DM gets $\mathbb{E}_{\omega \sim q}[\max_a u(a,\omega)] = 2t$ Value of (full) info = $\mathbb{E}_{\omega \sim q}[\max_a u(a,\omega)] - \max_a \left[\mathbb{E}_{\omega \sim q} u(a,\omega)\right]$

Noisy information revelation

Realistically, can think of 0 as noisy prediction of state ω (e.g., stock trend, purchase prob)

Question: What is the value of this noisy signal 0?

- Without knowing this signal, DM takes action 1
- With this signal 0, DM takes action 0(assuming ε very small)
- However, true distribution is the posterior p regardless

Value of knowing
$$0 = \mathbb{E}_{\omega \sim p}[u(0, \omega)] - \mathbb{E}_{\omega \sim p}u(1, \omega)$$

Definition(**FK'19**):Consider an arbitrary desicion making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\Omega)$, the value of this signal is defined as

$$D^{u}(p;q) = \mathbb{E}_{\omega \sim n}[u(a^{*}(p),\omega)] - \mathbb{E}_{\omega \sim n}u(a^{*}(q),\omega)$$

Example 1:

- $a \in A = \Delta(\Omega) \to \text{action}$ is to pick a distribution over states
- $u(a,\omega) = \log a_{\omega}$
- Which action $a \in \Delta(\Omega)$ maximizes expected utility $\mathbb{E}_{\omega \sim p}[u(a,\omega)]$?

$$a^*(p) = p$$

$$D^u(p;q) = \sum_{\omega} p_{\omega} \log \frac{p_{\omega}}{q_{\omega}} \qquad \text{KL-divergence}$$

Example 2:

- $a \in A = \Delta(A) \rightarrow \text{action}$ is to pick a distribution over states
- $u(a,\omega) = -\|a e_{\omega}\|^2$

$$a^*(p) = p$$

$$D^u(p;q) = \|p-q\|^2$$
 Squared distance

Some obvious properties

- Non-negativity: $D^u(p;q) \ge 0$
- Null information has no value: $D^{u}(q;q)=0$
- Order-invariant: if DM receives signal σ_1, σ_2 , the order of receiving them does not affect final expected total value

In this case, we say D(p;q) is a valid measure for value of information

Theorem 1(FK'19): Consider any D(p;q) function. There exists a decision problem $u(a,\omega)$ such that

$$D^u(p;q) = \mathbb{E}_{\omega \sim p}[u(a^*(p),\omega)] - \mathbb{E}_{\omega \sim p}u(a^*(q),\omega)$$

if and only if D(p;q) satisfies

- Non-negativity: $D^u(p;q) \geq 0$
- Null information has no value: $D^u(q;q) = 0$
- Order-invariant: if DM receives signal σ_1, σ_2 , the order of receiving them does not affect final expected total value

Theorem 2(FK'19):

- 1. For any concave function H, its Bregman divergence is a valid measure for value of information.
- 2. Conversely, for any valid measure D(p;q) for value of information,

$$H(q) = \sum_{\omega} q^{\omega} D(e_{\omega}, q)$$

is a concave function whosw Bregman divergence is D(p;q)

Why useful?

• Many functions - even natural ones like l_2 distance $\|p-q\|$ - are not valid measures

- In fact, any metric is not valid, since metric cannot be a Bregman divergence
- There are efficient ways to tell whether a D(p,q) is valid

II.Optimal Pricing of Information

III.Summary and Open Problems