Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программная инженерия»

Лабораторная работа №3

«Технологии обработки данных в системе KNIME Analytics Platform»

ДИСЦИПЛИНА: «Интеллектуальные информационные системы анализа данных»

Выполнил: студент гр. ИУК4-21М	_ (_	Сафронов Н.С.			
Проверил:	(подпись)	_ (_	Белов Ю.С. (Ф.И.О.)		
Дата сдачи (защиты):					
Результаты сдачи (защиты):	я оценка:				

Цель работы: формирование практических навыков работы в программе KNIME.

Задание:

- 1. Используя набор данных согласно варианту, реализовать модель машинного обучения в соответствии с примером 2, визуализировать полученные результаты.
 - 2. Подготовить отчёт.

Вариант 7

Water Quality

Результат выполнения работы

Рисунок 1 – Архитектура решения

Рисунок 2 – Загруженный файл

#	RowID	ph Number (double)	~	Hardness Number (double)	~	Solids Number (double)	~	Chloramines Number (double)	~	Sulfate Number (double)	~	Conductivity Number (double)	~	Organic_carbon	Trihalomethanes	Turbidity Number (double)		otability umber (double)	∨ ∇
1	ph 1	1		0.076		-0.082		-0.032		0.014		0.017		0.04	0.003	-0.036	-0	.003	
_ 2	Hardne (0.076		1		-0.047		-0.03		-0.093		-0.024		0.004	-0.013	-0.014	-0	.014	
_ 3	Solids -	0.082		-0.047		1		-0.07		-0.15		0.014		0.01	-0.009	0.02	0.	034	
_ 4	Chlorar -	0.032		-0.03		-0.07		1		0.024		-0.02		-0.013	0.017	0.002	0.	024	
_ 5	Sulfate (0.014		-0.093		-0.15		0.024		1		-0.014		0.027	-0.026	-0.01	-0	.02	
6	Conduc (0.017		-0.024		0.014		-0.02		-0.014		1		0.021	0.001	0.006	-0	.008	
_ 7	Organic (0.04		0.004		0.01		-0.013		0.027		0.021		1	-0.013	-0.027	-0	.03	
8	Trihalo (0.003		-0.013		-0.009		0.017		-0.026		0.001		-0.013	1	-0.021	0.	007	
<u> </u>	Turbidi -	0.036		-0.014		0.02		0.002		-0.01		0.006		-0.027	-0.021	1	0.	002	
10	Potabil -	0.003		-0.014		0.034		0.024		-0.02		-0.008		-0.03	0.007	0.002	- 1		

Рисунок 3 – Матрица корреляции

Рисунок 4 – Точечный график зависимости жёсткости воды от её рН

Рисунок 5 – Результат работы предиктора

Выводы: в ходе выполнения работы были сформированы практические навыки работы в программе KNIME.