Exercice 1.— Soient $f, g : \mathbb{R}^n \to \mathbb{C}$ deux fonctions et $p, q, r \in [1, +\infty]$ vérifiant

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$$
 et $f \in L^p(\mathbb{R}^n), g \in L^q(\mathbb{R}^n).$

- 1. Montrer que, si $r = +\infty$, alors $f \star g$ est bien définie, uniformément continue et bornée par $||f||_p ||g||_q$.
- 2. Montrer que, si $r = +\infty$ et si p > 1, alors $f \star g$ tend vers 0 à l'infini. Indication. On pourra commencer par considérer f et g dans $C_c(\mathbb{R}^d)$.
- 3. Montrer, dans tous les cas, que $f \star g$ est définie p.p., appartient à $L^r(\mathbb{R}^n)$ et vérifie

$$||f \star g||_r \le ||f||_p ||g||_q$$
 (inégalité de Young).

Exercice 2.— En utilisant la transformée de Fourier :

1. montrer que le produit de convolution n'admet pas d'élément unité $e \in L^1(\mathbb{R})$, i.e. :

$$\exists e \in L^1(\mathbb{R}), \quad \forall f \in L^1(\mathbb{R}), \qquad e \star f = f \star e = f.$$

2. déterminer toutes les fonctions $f \in L^1(\mathbb{R})$ telles que $f \star f = f$.

Exercice 3.— Soit $f \in L^1(\mathbb{R})$ une fonction à support compact, i.e. nulle presque partout en dehors d'un compact de \mathbb{R} .

- 1. Montrer que \hat{f} se prolonge en une fonction holomorphe sur \mathbb{C} .
- 2. Que peut-on en déduire si f et \hat{f} sont à support compact.

Exercice 4.— Pour tout a > 0, on définit $g_a : x \in \mathbb{R} \mapsto e^{-a|x|}$ et $h_a : x \in \mathbb{R} \mapsto \frac{a}{a^2 + x^2} \in \mathbb{R}$.

1. Expliciter \hat{g}_a et en déduire que $\hat{h}_a(t) = \pi e^{-a|t|}$ pour tout $t \in \mathbb{R}$.

On souhaite maintenant déterminer toutes les fonctions $f \in L^1(\mathbb{R})$ vérifiant

$$(\star)$$
 $\forall x \in \mathbb{R}, \quad \int_{\mathbb{R}} \frac{f(t)}{a^2 + (x - t)^2} dt = \frac{1}{b^2 + x^2}, \quad \text{où } a, b \in \mathbb{R}^{+*} \text{ sont fixés.}$

- 2. Écrire cette relation à l'aide d'un produit de convolution.
- 3. Montrer qu'il n'existe aucune solution de (\star) lorsque $0 < b \le a$.
- 4. Montrer que si 0 < a < b, il existe une unique solution de (\star) que l'on déterminera.

Exercice 5.— Le but de cet exercice est de montrer que la transformée de Fourier n'est pas une surjection de $L^1(\mathbb{R})$ sur $\{g \in \mathcal{C}(\mathbb{R}) \mid \lim_{x \to \pm \infty} g(x) = 0\}$.

- 1. Soit $f \in L^1(\mathbb{R})$ impaire. Montrer que, pour tout $\xi \in \mathbb{R}$, $\hat{f}(\xi) = -2i \int_0^{+\infty} f(x) \sin(x\xi) dx$.
- 2. On rappelle que $x \in \mathbb{R} \mapsto \frac{\sin x}{x} \in \mathbb{R}$ est intégrable sur \mathbb{R} au sens de Riemann. En déduire que la fonction $\varphi : x \in \mathbb{R} \mapsto \int_x^{+\infty} \frac{\sin t}{t} dt$, définie au sens de Riemann, est bornée.
- 3. Montrer que, pour toute fonction $f \in L^1(\mathbb{R})$ impaire et tout $R \geq 1$,

$$\int_1^R \frac{\hat{f}(\xi)}{\xi} d\xi = -2i \int_0^{+\infty} f(x) \left(\int_x^{Rx} \frac{\sin t}{t} dt \right) dx \quad \text{puis que} \quad \int_1^R \frac{\hat{f}(\xi)}{\xi} d\xi \underset{R \to +\infty}{\longrightarrow} -2i \int_0^{+\infty} f(x) \varphi(x) dx .$$

- 4. Soit $g: x \in \mathbb{R} \mapsto \frac{\arctan x}{\ln(e+x^2)}$. Supposons qu'il existe $f \in L^1(\mathbb{R})$ telle que $g = \hat{f}$.
 - (a) Montrer que f est (presque partout) impaire.
 - (b) Conclure, en aboutissant à une contradiction.

Exercice 6.— Considérons la fonction $f = \mathbf{1}_{[-1,1]}$.

- 1. Calculer sa transformée de Fourier.
- 2. Donner la valeur de l'intégrale $\int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2} dx$.
- 3. Calculer la convoluée $f \star f$ puis sa transformée de Fourier.
- 4. En déduire, pour tout $\xi \in \mathbb{R}$, la valeur de $\int_{-\infty}^{\infty} e^{ix\xi} \frac{\sin^2(x)}{x^2} dx$.

Exercice 7.— Considérons les fonctions

$$f: x \in \mathbb{R} \ \longmapsto \ \begin{cases} 0 & \text{si } x = 0 \\ \frac{\sin x}{|x|} & \text{si } x \neq 0 \end{cases} \quad \text{et} \quad \text{sinc}: x \in \mathbb{R} \ \longmapsto \ \begin{cases} 1 & \text{si } x = 0 \\ \frac{\sin x}{x} & \text{si } x \neq 0 \end{cases}.$$

1. Déterminer une constante a > 0 telle que :

$$\forall n \in \mathbb{N}^*, \int_{-\frac{\pi}{2} + n\pi}^{\frac{\pi}{2} + n\pi} \frac{|\sin x|}{|x|} dx \ge \frac{a}{n+1}$$

et en déduire que f et sinc n'appartiennent pas à $L^1(\mathbb{R})$.

- 2. Qu'en déduit-on sur les transformées de Fourier de ces fonctions ?
- 3. En utilisant l'exercice précédent, donner l'expression $\widehat{\text{sinc}} \in L^2(\mathbb{R})$. Pour tout $\varepsilon > 0$, on définit $f_{\varepsilon} : x \in \mathbb{R} \mapsto f(x)e^{-\varepsilon|x|} \in \mathbb{R}$.
- 4. Montrer que, pour tout $\varepsilon > 0$, la fonction f_{ε} appartient à $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ et converge vers f dans $L^2(\mathbb{R})$ lorsque $\varepsilon \to 0^+$.
- 5. Montrer que $\widehat{f}_{\varepsilon} \in \mathcal{C}^1(\mathbb{R})$ et vérifie

$$\forall \xi \in \mathbb{R} \,, \quad (\widehat{f}_{\varepsilon})'(\xi) = -2i \int_{\mathbb{R}^+} e^{-\varepsilon x} \sin(x) \cos(x\xi) \, dx = i \frac{\xi - 1}{\varepsilon^2 + (\xi - 1)^2} - i \frac{\xi + 1}{\varepsilon^2 + (\xi + 1)^2}.$$

6. En déduire l'expression de $\widehat{f}\in L^2(\mathbb{R}).$