EXERCISES FOR CHAPTER II

- II.1. Elastic rod, open and covered pipe. Compute the transversal proper oscillations of a cylindrical rod of length l, which is clamped at x = 0 and oscillates freely at x = l, and compare them to the proper oscillations of an open and a covered pipe.
- II.2. Second form of Green's theorem. Develop the analogue to Green's theorem, see v.II. equation (3.16), for the general elliptic differential expression L(u),
 - a) where L(u) is brought to the normal form,
 - b) in the general case.
- c) Investigate the conditions under which the boundary value problem becomes unique for a self-adjoint differential expression L.

We may restrict ourselves to the case of two independent variables, for which Green's theorem is

$$\int u \, \Delta v \, d\sigma + \int (\operatorname{grad} u, \operatorname{grad} v) \, d\sigma = \int u \, \frac{\partial v}{\partial n} \, ds \, .$$

II.3. One-dimensional potential theory. Determine the one-dimensional Green's function from the conditions

a)
$$\frac{d^2G}{dx^2} = 0$$
 for
$$\begin{cases} 0 \le x < \xi, \\ \xi < x \le l, \end{cases}$$

b)
$$G = 0$$
 for $x = 0$ and $x = l$,

c)
$$\frac{dG_{+}}{dx} - \frac{dG_{-}}{dx} = 1$$
 and G continuous for $x = \xi$,

and apply it to the (obviously trivial) solution of the boundary value problem:

$$\frac{d^2u}{dx^2} = 0, \quad u \text{ continuous for } 0 \le x \le l \begin{cases} u = u_0 & \text{for } x = 0, \\ u = u, & \text{for } x = l. \end{cases}$$

Condition c) means "yield 1" of the source of G which is situated at $x = \xi$; G_+ is the branch $x > \xi$, G_- the branch $x < \xi$ of G.

II.4. Application of Green's method which was developed for heat conduction to the so-called laminar plate flow of an incompressible viscous fluid. We assume the flow to be planar and rectilinear throughout; this means that it is to be independent of the third coordinate z and directed in the direction of the y-axis. The velocity \mathbf{v} then has the single component $\mathbf{v}_{\mathbf{v}} = \mathbf{v}$, which, due to our assumption of incompressibility, is

independent not only of z, but also of y, so that the quadratic convection terms (\mathbf{v} grad) \mathbf{v} vanish. The Navier-Stokes equation for v is then according to v.II, equation (16.1)

(1)
$$\frac{\partial v}{\partial t} - k \frac{\partial^2 v}{\partial x^2} = -\frac{1}{\varrho} \frac{\partial p}{\partial y};$$

where k is the kinematic viscosity; the right side is *independent* of x due to the corresponding equation for the vanishing x-component of velocity, hence it is a function of t only, say a(t).

The flow is to be bounded at x = 0 by a fixed plate, which is at rest up to the time t = 0 and thereafter is in motion with the velocity $v_0(t)$. Due to the adhesion of the fluid to the plate we have for x = 0:

(2)
$$v = \begin{cases} 0 \dots t \leq 0, \\ v_0(t) \dots t > 0. \end{cases}$$

For the linear Couette flow (see v.II, Fig. 19b) we would have to add further boundary conditions on a plane that is at rest at a finite distance from x = 0. However, for the sake of simplicity, we shall consider this plate situated at infinity. The limiting case obtained in this manner is known in fluid dynamics as *plate flow*. For this flow we have, in addition to (2), the condition for $x = \infty$:

(3)
$$v = 0$$
 and $p = p_0$ (independent of y).

From this it follows that a(t) = 0, so that (1) goes over into the equation of heat conduction.

We are thus led to a boundary value problem, which is a specialization of the problem illustrated by Fig. 13 only in that we now have $x_1 = \infty$ and $x_0 = 0$, and is a simplification of that problem because in the initial state in which the plate and hence the fluid are at rest, we have:

$$(4) v = 0 for t = 0 and all x > 0.$$

The solution is obtained as in (12.18), if the principal solution V is replaced by a suitable Green's function. Discuss the resulting velocity profile v(x) for increasing values of t.

EXERCISES FOR CHAPTER III

III.1. Linear conductor with external heat conduction according to Fourier. Let the initial temperature for x > 0 be u(x,0) = f(x). How must this function be continued for x < 0 so that the condition is