Google Reactor Calibration Model

Jin Liu

March 9, 2017

This note is to describe the parameters and formula Google IPB Reactor Calibration Model.

The proposed equivalent circuit model is described in Figure 1.

Figure 1: Circuit Model

The governing equations are:

$$\frac{dT_a(t)}{dt} = \frac{P_{in} - k_{as}(T_a - T_s) - k_{ab}(T_a - T_b)}{c_a}$$
 (1)

$$\frac{dT_b(t)}{dt} = \frac{P_{in} - k_{ab}(T_a - T_s) - k_{bs}(T_b - T_s)}{c_b}$$
 (2)

The parameters in the equations are:

$$k_{as} = (k_{as0} + k_{as1}T_a + k_{as2}T_a^2) (3)$$

$$k_{ab} = (k_{ab0} + k_{ab1}T_a + k_{ab2}T_a^2) (4)$$

$$k_{bs} = (k_{bs0} + k_{bs1}T_b + k_{bs2}T_b^2) (5)$$

$$c_a = (c_{a0} + c_{a1}T_a + c_{a2}T_a^2) (6)$$

$$c_b = (c_{b0} + c_{b1}T_b + c_{b2}T_b^2) (7)$$

$$P_{in}(t) = (a_{10} + a_{11}T_a + a_{12}T_a^2)P_{heaterpower} + (a_{20} + a_{21}T_a + a_{22}T_a^2)P_{core-Q}$$
(8)

in $DC P_{core-Q}$ is P_{DC}

 T_a is the core temperature

 T_b is the inner block temperature

 T_s is the outer block temperature

$$P_{out}(t) = k_{as}[T_a(t) - T_s(t)] + k_{bs}[T_b(t) - T_s(t)]$$
(9)

$$P_{stored}(t) = c_a \frac{dT_a(t)}{dt} + c_b \frac{dT_b(t)}{dt}$$
(10)

The Energy COP defined as

$$COP_{energy}(t) = \frac{\int_0^t \left[P_{out}(t) + P_{stored}(t) \right] dt}{\int_0^t P_{in}(t) dt}$$
(11)

The Power COP defined as

$$COP_{power}(t) = \frac{P_{out}(t) + P_{stored}(t)}{P_{in}(t)}$$
(12)

The Google Team has done four calibration models, the table 1. lists all the parameters in the calibration models.

Table 1: Parameters in Google Model

Parameters	ipb1-30b-he	ipb1-30b-h2	sri-ipb2-27b-h2	sri-ipb2-33b-he
ca0	10.58	52.91	17.19	20.59
ca1	0.4303	0.2200	-0.6768	0.0857
ca2	-0.0009	-0.0003	0.0086	0.0000
cb0	601.10	579.90	883.48	675.09
cb1	0.4669	0.3826	-2.7510	0.1209
cb2	0.0000	0.0000	0.0000	0.0000
kas0	0.0292	0.0266	0.0001	0.0017
kas1	-0.0001	0.0000	0.0002	0.0000
kas2	0.0000	0.0000	0.0000	0.0000
kab0	0.6535	0.6192	0.8300	0.5686
kab1	-0.0005	0.0008	-0.0024	0.0008
kab2	0.0000	0.0000	0.0000	0.0000
kbs0	0.0330	0.0368	0.0753	0.0637
kbs1	0.0002	0.0001	-0.0003	0.0001
kbs2	0.0000	0.0000	0.0000	0.0000
a10	1.0000	1.0000	1.0000	1.0000
a11	0.0000	0.0000	0.0000	0.0000
a12	0.0000	0.0000	0.0000	0.0000
a20	0.3676	0.3598	0.4250	0.0505
a21	0.0010	0.0007	-0.0009	0.0031
a22	0.0000	0.0000	0.0000	0.0000