9.3 The Lebesgue Integral

February 12, 2016

9-20

a)

- 1. s une fonction simple non-négative
- 2. $y_1, \cdots, y_m \in (0, \infty)$ les valeurs non-nulles prisent par s
- 3. $a_1, \dots, a_n \in [0, \infty)$ et $A_1, \dots, A_n \subseteq \mathbb{R}$ des ensembles Lebesgue mesurables deux à deux disjoints tel que $s = \sum_{k=1}^n a_k \chi_{A_k}$

$$\diamond \sum_{k=1}^{n} a_k \lambda(A_k) = \sum_{j=1}^{m} y_j \lambda(s^{-1}(y_j))$$

Pour chaque a_k , soi $a_k=0$, soi $a_k>0$ et alors $a_k=y_i$ pour un certain $i\in\{1,\cdots,m\}$. On désigne par $\{a_{i_1},\cdots,a_{i_l}\}$ les a_{i_k} tel que $a_{i_k}=y_i$. On définit de même $B_i:=\bigcup_{j=1}^l A_{i_j}$.

Puisque les A_k sont deux à deux disjoints, on a $\lambda(B_i) = \sum_{j=1}^l A_{i_j}$. On peut donc réarranger

$$\begin{split} &\sum_{k=1}^{n} a_k \lambda(A_k) \\ &= \\ &\sum_{j=1}^{m} \sum_{i=1}^{l} a_{j_i} \lambda(A_{j_i}) \\ &= \\ &\sum_{j=1}^{m} y_j \sum_{i=1}^{l} \lambda(A_{j_i}) \\ &= \\ &\sum_{j=1}^{m} y_j \lambda(B_j) \end{split}$$

On doit donc montrer que $B_j = s^{-1}(y_j)$. On a

$$x \in B_{j}$$

$$\Leftrightarrow$$

$$x \in \bigcup_{i=1}^{l} A_{j_{i}}$$

$$\Leftrightarrow$$

$$s(x) = a_{j_{i}} = y_{j}$$

b)

1. s_1, s_2 des fonctions simples

$$\diamond \int_{\mathbb{R}} (s_1 + s_2) d\lambda = \int_{\mathbb{R}} s_1 d\lambda + \int_{\mathbb{R}} s_2 d\lambda$$

Si s_1, s_2 sont Lebesgue intégrales, on applique thm. 9.25.

Soit $s_1, s_2 \ge 0$ tq $\int_{\mathbb{R}} s_1 d\lambda = \infty$. On doit montrer que $\int_{\mathbb{R}} (s_1 + s_2) d\lambda = \infty$.

Premièrement, on a qu'il existe B_i tel que $\lambda(B_i) = \infty$ et $b_i \neq 0$.

On définit $A_j := (s_1 + s_2)^{-1}(y_j)$ pour des y_j non nulle et on a donc $\int_{\mathbb{R}} (s_1 + s_2) d\lambda = \sum_{j=1}^n y_j \lambda(A_j)$ par **ex. 9-20a**.

Soit $A_{j_1} \cdots A_{j_k}$ les ensembles tels que $B_i \cap A_{j_l} \neq \emptyset$.

Alors je dis qu'il existe $m \in \{1 \cdots k\}$ tel que $\lambda(A_m) = \infty$.

Car sinon, ces ensembles sont tous de mesure finie. Or $B_i \subseteq \bigcup_{l=1}^k A_{j_l}$.

Car soit $x \in B_i$. Alors $(s_1 + s_2)(x) = y_t$ pour un certain t. Mais alors $x \in A_t$ et donc $x \in \bigcup_{l=1}^k A_{j_l}$.

Donc $B_i \subseteq \bigcup_{l=1}^k A_{j=l}$ et donc $\lambda(B_i) = \infty \le \lambda(\bigcup_{l=1}^k A_{j_l}) \le \sum_{l=1}^k \lambda(A_{j_l})$ par thm. 8.6.

Si on permet les fonctions négatives, je crois que le théorème est faux. On pose $s_1 := -\chi_{\mathbb{R}}$ et $s_2 := \chi_{\mathbb{R}}$. Alors $s_1 + s_2 = 0$. On a donc $\int_{\mathbb{R}} (s_1 + s_2) d\lambda = 0$. Or $\int_{\mathbb{R}} s_1 d\lambda + \int_{\mathbb{R}} s_2 d\lambda = -\infty + \infty$, qui est une forme indeterminée.

9-21

- 1. $f:\mathbb{R}\to [0,\infty)$ bornée et Lebesgue mesurable
- 2. $\lambda(\lbrace x \in \mathbb{R} : f(x) > 0 \rbrace) < \infty$
- $\diamond~f$ est Lebesgue intégrable et

$$\int_{\mathbb{R}} f d\lambda = \inf \left\{ \int_{\mathbb{R}} s d\lambda : s \text{ est simple et } f \leq s \right\}$$

Puisque f est bornée, supposons M tel que $f(x) \leq M$ pour tout x.

On a de plus que $f(x) \leq M\chi_{\{f>0\}}$ pour tout x. Or, le membre de droit est une fonction simples et son intégral est donnée par $M\lambda(\{f>0\}) < \infty$.

Par thm. 9.23, on a $\int_{\mathbb{R}} f d\lambda \leq M\lambda(\{f>0\})$ et donc f Lebesgue intégrable.

Il est clair que $\int_{\mathbb{R}} f d\lambda \leq \inf\{\cdots\}$. On prouve donc qu'il ne peut pas être strictement plus grand.

On définit

$$h(x) := M\chi_{\{f>0\}} - f$$

Alors $h \le M$ et $\{h > 0\} = \{f > 0\}$. De plus, $h \le M\chi_{\{f > 0\}}$ et donc, par **thm. 9.23**, h est Lebesgue intégrable.

Par **def. 9.22**, on a que pour tout $\epsilon > 0$ il existe $s \le h$ tel que $\int_{\mathbb{R}} h - s d\lambda < \epsilon$. Or

$$\begin{aligned} h-s &= M\chi_{\{f>0\}} - f - s \\ &= \\ &(M\chi_{\{f>0\}} - s) - f \\ \Rightarrow \\ &\int_{\mathbb{R}} (M\chi_{\{f>0\}} - s) d\lambda - \int_{\mathbb{R}} f d\lambda < \epsilon \end{aligned}$$

Or $M\chi_{\{f>0\}}-s$ est une fonction escalier tel que $M\chi_{\{f>0\}}-s\geq f$ puisque $s\leq M\chi_{\{f>0\}}-f\Leftrightarrow M\chi_{\{f>0\}}-s\geq f.$

Donc, l'infimum considéré ne peut pas être plus grand que $\int_{\mathbb{R}} f d\lambda$, donc il est égal.

9-22

1. $f: \mathbb{R} \to [0, \infty]$ Lebesgue mesurable

 $\diamond f$ est Lebesgue intégrable ssi

$$S:=\sup\left\{\int_{\mathbb{R}}\min(f,n)\chi_{[-n,n]}d\lambda:n\in\mathbb{N}\right\}$$

est fini et alors S est l'intégrale de Lebesgue de f

On suppose f Lebesgue intégrable.

Alors pour tout n on a $0 \le \min(f, n)\chi_{[-n,n]} \le f$. Par le **thm. 9.23**, $\min(f, n)\chi_{[-n,n]}$ est Lebesgue intégrable.

Puisque f est Lébesgue intégrable, on a que pour tout $\epsilon > 0$ il existe un

 $0 \le s \le f$ une f.e. tq $\int_{\mathbb{R}} f - s d\lambda < \epsilon$. (def. 9.22)

De plus, par **def. 9.15**, on a qu'il existe un n tel que $s \leq n$.

On a donc que $\min(f,n)\chi_{[-n,n]}-s\leq f-s$ et donc $\int_{\mathbb{R}}\min(f,n)\chi_{[-n,n]}-sd\lambda\leq\int_{\mathbb{R}}f-sd\lambda.$

On a

$$\begin{split} &|\min(f,n)\chi_{[-n,n]} - s| \\ \leq \\ &|f - s|\chi_{[-n,n] \cap \{f \leq n\}} + |n - s|\chi_{[-n,n] \cap \{f > n\}} \\ = \\ &(f - s)\chi_{[-n,n] \cap \{f \leq n\}} + (n - s)\chi_{[-n,n] \cap \{f > n\}} \\ \leq \\ &(f - s)\chi_{[-n,n] \cap \{f \leq n\}} + (f - s)\chi_{[-n,n] \cap \{f > n\}} \\ = \\ &(f - s)\chi_{[-n,n]} \\ \leq \\ &f - s = |f - s| \end{split}$$

On déduit

$$\begin{aligned} &2\epsilon \geq \int_{\mathbb{R}} |f-s| + |s - \min(f,n)\chi_{[-n,n]}| d\lambda \\ \geq & \int_{\mathbb{R}} |f - \min(f,n)\chi_{[-n,n]}| d\lambda \\ = & \int_{\mathbb{R}} f - \min(f,n)\chi_{[-n,n]} d\lambda \end{aligned}$$

Donc, pour tout ϵ , il existe un n tel que $\int_{\mathbb{R}} f - \min(f, n) \chi_{[-n, n]} d\lambda < \epsilon$. Donc $\int_{\mathbb{R}} \min(f, n) \chi_{[-n, n]} d\lambda$ tend vers $\int_{\mathbb{R}} f d\lambda$ et donc $\int_{\mathbb{R}} f d\lambda = S$ (s.d.).

Supposons alors $S < \int_{\mathbb{R}} f d\lambda$.

Alors il existe s tel que $S < \int_{\mathbb{R}} s d\lambda \le \int_{\mathbb{R}} f d\lambda$ (def. 9.22).

Or, il existe m tel que $s\chi_{[-m,m]} \leq \min(f,m)\chi_{[-m,m]}$ (**def. 9.15**). Donc $\int_{\mathbb{R}} s\chi_{[-n,n]} d\lambda \leq S < \int_{\mathbb{R}} f d\lambda$ et ce pour tout $n \geq m$.

Or, je dis qu'il existe n>m tel que $S<\int_{\mathbb{R}}s\chi_{[-n,n]}d\lambda\leq\int_{\mathbb{R}}fd\lambda.$

Car $\lim_{n\to\infty}\int_{\mathbb{R}} s\chi_{[-n,n]} d\lambda = \lim_{n\to\infty}\sum_{i=1}^k a_i\lambda(A_i\cap[-n,n]) = \sum_{i=1}^k a_i\lim_{n\to\infty}\lambda(A_i\cap[-n,n])$ (thm. 2.14).

Or $A_i \cap [-n, n] \subseteq A_i \cap [-n-1, n+1]$ pour tout n. Donc, par **thm. 9.12**, on

a
$$\lim_{n\to\infty} \lambda(A_i \cap [-n,n]) = \lambda(\bigcup_{n=1}^{\infty} A_i \cap [-n,n]) = \lambda(A_i \cap (\bigcup_{n=1}^{\infty} [-n,n])) = \lambda(A_i \cap \mathbb{R}) = \lambda(A_i).$$

Ainsi il existe un n>m tel que $S<\int_{\mathbb{R}}s\chi_{[-n,n]}d\lambda\leq\int_{\mathbb{R}}fd\lambda,$ ce qui est impossible.

Donc $\int_{\mathbb{R}} f d\lambda \leq S$. Or, puisque $\min(f,n)\chi_{[-n,n]} \leq f$ pour tout f, on $\int_{\mathbb{R}} \min(f,n)\chi_{[-n,n]} d\lambda \leq \int_{\mathbb{R}} f d\lambda$. En prenant le sup des deux côté, on a que $S \leq \int_{\mathbb{R}} f d\lambda$. Donc $S = \int_{\mathbb{R}} f d\lambda$.

9-23

- 1. $f: \mathbb{R} \to [0, \infty]$ Lebesgue intégrable
- $2. \ a > 0$
- 3. $A \subseteq \mathbb{R}$ Lebesgue mesurable
- 4. $f \chi_A \le 0$
- $\diamond \int_{\mathbb{R}} f a\chi_A d\lambda = \int_{\mathbb{R}} f a\lambda(A)$

On a que $a\chi_A$ est une fonction simple et son intégrale est donnée pas $a\lambda(A)$ (def. 9.21). Donc, par thm. 9.25, on peut conclure.

9-24

 \diamond Construire deux fonctions $f,g:\mathbb{R}\to\mathbb{R}$ tel que $(f+g)^+\neq f^++g^+$ et $(f+g)^-\neq f^-+g^-$

f := 1 et g := -1.

9 - 25

- 1. $a_1 \cdots a_n \in \mathbb{R}$
- 2. $A_1 \cdots A_n \subseteq \mathbb{R}$ pas nécessairement disjoints des ensembles Lebesgue mesurables
- 3. $f := \sum_{k=1}^{n} a_k \chi_{A_k}$

 $\diamond \int_{\mathbb{R}} f d\lambda = \sum_{k=1}^n a_k \lambda(A_k)$. Expliquez en quoi ce résultat diffère de ce qui fut démontré en 9-20a et pour quelles raisons il aurait été impossible de s'en servir pour prouver 9-20b.

Par thm. 9.25, on a immédiatement le résultat voulu.

TODO

9-26

- 1. $f, g: \mathbb{R} \to [-\infty, \infty]$ Lebesgue mesurables
- 2. f = g pp
- \diamond En se servant seulement du thm. 9.23, montrez que f est Lebesgue intégrables ssi g est Lebesgue intégrable et alors $\int_{\mathbb{R}} f d\lambda = \int_{\mathbb{R}} g d\lambda$

Supposons f Lebesgue intégrable. On a que $f^+ = g^+$ pp et $f^- = g^-$ pp.

Or, par **thm. 9.23**, on a que |f| est Lebesgue intégrable et $f^+ \leq |f|$. Par le même théorème, f^+ est intégrable. On résone analoguement pour f^- .

On a donc, par conséquence du **thm. 9.23**, que $\int_{\mathbb{R}} f^+ d\lambda = \int_{\mathbb{R}} g^+ d\lambda$ et $\int_{\mathbb{R}} f^- d\lambda$. Ceci montre que g est Lebesgue intégrable par **def. 9.22**. Par la même définition, on déduit $\int_{\mathbb{R}} f d\lambda = \int_{\mathbb{R}} f^+ d\lambda - \int_{\mathbb{R}} f^- d\lambda = \int_{\mathbb{R}} g^+ d\lambda - \int_{\mathbb{R}} g^- d\lambda = \int_{\mathbb{R}} g d\lambda$.

9-27

- 1. $f: \mathbb{R} \to [-\infty, \infty]$ Lebesgue intégrable
- $\diamond \{x \in \mathbb{R} : f(x) = \infty\}$ est de mesure nulle

Car supposons le contraire. Alors |f| est Lebesgue intégrable par **thm. 9.23** et de plus $|f|\chi_{\{f=\infty\}} \leq |f|$. Donc le membre de gauche de cette inéquation est intégrable par **thm. 9.23** et $\int_{\mathbb{R}} |f|\chi_{\{f=\infty\}} d\lambda \leq \int_{\mathbb{R}} |f| d\lambda$. Or $\int_{\mathbb{R}} |f|\chi_{\{f=\infty\}} d\lambda = \infty$.

En effet, la fonction $s_n:=n\chi_{\{f=\infty\}}$ est une suite de fonctions simples tel que $0 \le s_n \le |f|\chi_{\{f=\infty\}}$ pour tout n. Or $\int_{\mathbb{R}} n\chi_{\{f=\infty\}} d\lambda = n\lambda(\{f=\infty\}) \to \infty$.

9-28

1. $f, g: \mathbb{R} \to [-\infty, \infty]$ des fonctions Lebesgues intégrables

a)

 $\diamond \max(f,g)$ est Lebesgue intégrable

On a que $\max(f,g) = f\chi_{\{f\geq g\}} + g\chi_{\{f< g\}}$. On a que $0 \leq f^+\chi_{\{f\geq g\}} \leq f^+$ et $0 \leq f^-\chi_{\{f\geq g\}} \leq f^-$ et donc par **thm. 9.23** on a deux fonctions intégrables. Donc, par **def. 9.22**, $f\chi_{\{f\geq g\}}$ est intégrable. De même pour $g\chi_{\{f< g\}}$.

Par thm. 9.25, la fonction $\max(f,g)$ est intégrable.

0.1 b)

 $\diamond \min(f,g)$ est Lebesgue intégrable

Même chose qu'en a).

 $\mathbf{c})$

 $\diamond~f-g$ est Lebesgue intégrable et $\int_{\mathbb{R}}f-gd\lambda=\int_{\mathbb{R}}fd\lambda-\int_{\mathbb{R}}gd\lambda$

Par **thm. 9.25**, -g est intégrable et donc f+(-g) l'est également. De plus, on a $\int_{\mathbb{R}} f + (-g) d\lambda = \int_{\mathbb{R}} f d\lambda + \int_{\mathbb{R}} (-g) d\lambda$. On ré-applique **thm. 9.25** pour avoir le résultat voulu.

9-29

1. C^Q l'ensemble de Cantor.

$\diamond \; \chi_{C^Q}$ est Lebesgue intégrable

On a qu'il s'agit d'une fonction simple et, de plus, par **ex. 9-6**, l'ensemble de Cantor est Lebesgue mesurable. Donc l'intégrale est égal à $\lambda(C^Q)$ par **def. 9.21-22**. Or, le Camtor est définie sur un interval fermé [a,b] (**def. 7.22**). Donc la fonction est Lebesgue intégrable et l'intégrale est finie (**thm. 9.23**).

9-30

$\diamond \; \chi_{\mathbb{Q} \cap [0,1]}$ est Lebesgue intégrable

Premièrement, $\mathbb{Q} \cap [0,1]$ est mesurable car [0,1] est mesurable par **prop. 9.13** et \mathbb{Q} est mesurable car dénombrable et donc de mesure nulle (**prop. 8.3**, **prop. 9.7**). Donc l'intersection est Lebesgue mesurable par **lem. 9.8**.

On a que $\chi_{\mathbb{Q}\cap[0,1]} \leq \chi_{[0,1]}$ qui est Lebesgue intégrable. On applique **thm.** 9.23.