Sistemas Numéricos

Sistema Binário

O sistema binário é o mais elementar pois possui apenas dois símbolos.

Na sequência binária, cada digito é chamado de BIT (Binary Digit).

Na Figura 4 tem-se um número binário com seu BIT mais significativo (MSB) e o bit menos significativo (LSB) sendo enfatizados.

Figura 4: MSB e LSB

Visando facilitar a leitura, os bits são agrupados conforme mostra a Tabela 2, estes grupos recebem nomes específicos. A principal finalidade de agrupar os bits está em facilitar o controle dos digitos.

4 bits	Nibble
8 bits	Byte
16 bits	Word

Tabela dos Números Inteiros

A Tabela 3 mostra os números decimais de 0 até 16 e seus respectivos valores em binário, octal e haxadecimal.

Decimal (10)	Binário (2)	Octal (8)	Hexadecimal (16)
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

Conversão de um número decimal inteiro para um base B

Exemplo 1: Converter 2468₁₀ para a base 16 (hexa). Solução:

Exemplo 2: Converter 217_{10} para a base 8 (octal). Solução:

Exemplo 3: Converter 45_{10} para a base 2 (binário). Solução:

Base B para decimal.

$$101101_2 = 1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0 = 45_{10}$$

Conversão de um número octal ou hexadecimal para a base binária

Exemplo 1: 2357₈ para binário.

Solução:

$$2_8 \longrightarrow 010_2$$

$$3_8 \longrightarrow 011_2$$

$$5_8 \longrightarrow 101_2$$

$$7_8 \longrightarrow 111_2$$

$$2357_8 = 010$$
 011 101 111₂ $2357_8 = 0100111101111_2$

Exemplo 2: $4A05_{16}$ para binário.

Solução:

$$4_{16} \longrightarrow 0100_2$$

$$A_{16} \longrightarrow 1010_2$$

$$0_{16} \longrightarrow 0000_2$$

$$5_{16} \longrightarrow 0101_2$$

$$4A05_{16} = 0100 \quad 1010 \quad 0000 \quad 0101_2$$

 $4A05_{16} = 0100101000000101_2$

Conversão de um número octal em hexa e hexa em octal

Exemplo 1: 127₈ para hexadecimal.

Solução:

$127_8 = 00$	1 010	$111_2 =$		
$127_8 = 0$	0101	$0111_2 = 57_{16}$		
$127_8 = 0010101111_2 = 57_{16}$				

Exemplo 2: 32₈ para hexadecimal.

Solução:

$$32_8 = 011 \quad 010_2 =$$
 $32_8 = 01 \quad 1010_2 = 1A_{16}$
 $32_8 = 011010_2 = 1A_{16}$

Exemplo 3: $C3_{16}$ para octal.

Solução:

$$C3_{16} = 1100 \quad 0011_2 =$$
 $C3_{16} = 11 \quad 000 \quad 011_2 = 303_8$
 $C3_{16} = 11000011_2 = 303_8$

Exemplo 4: 23₁₆ para octal.

Solução:

$$23_{16} = 0010 \quad 0011_2 =$$
 $23_{16} = 00 \quad 100 \quad 011_2 = 43_8$
 $23_{16} = 00100011_2 = 43_8$

2) Converter os seguintes números para a base 2:

- a) 10₁₀
- b) 64₁₀
- c) 121₁₀
- d) 512₁₀
- e) 497₁₀
- f) 8541₁₀
- g) 255₁₆

n. h) DEB₁₆

- i) 9A₁₆
- j) 9C7₁₆

1) Converter os seguintes números para a base 10:

- a) 11111000011110₂
- b) 111101001₂
- c) 1111000010₂
- d) 10001000001000₂
- e) 12C₁₆
- f) FFF₁₆
- g) 121₁₆
- h) 34F₁₆
- i) 1111101000₂
- j) 5CB6₁₆

3) Converter os seguintes números para as bases indicadas:

- a) 10₁₀ -> hexadecimal
- b) 64₁₀ -> octal
- c) 1010011011₂ -> decimal
- d) 512₁₀ -> hexadecimal
- e) 101101110₂ -> hexadecimal
- f) $1D5_{16}$ -> decimal
- g) 10000101_2 -> hexadecimal

Frações Binárias

Conversão de frações decimais para base B

Regra da multiplicação refletida:

- 1. Multiplicar o número decimal pela base B;
- A parte inteira do resultado é utilizada como digito da base B;
- A parte inteira é descartada;
- 4. Retornar ao passo 1 caso a parte fracionária seja diferente de 0 (zero).

Conversão de frações decimais para base B

Exemplo 1: 0,375₁₀ para binário. Solução:

$$0,375 \times 2 = 0,75 \longrightarrow 0$$

$$0,75 \times 2 = 1,50 \longrightarrow 1$$

Descarta parte inteira

$$0,50 \times 2 = 1,00 \longrightarrow 1$$

Termina o processo quando a parte fracionária chega até 0 (zero).

$$0,375_{10} = 0,011_2$$

 $0,011_2 =$

Fazer:

a)0,2₁0 → binário

$$0, 2_{10} = 0,00110011..._2$$

b)3,25₁0 → binário

$$3,25_{10} = 11,01_2$$

Operações com binários

$$\begin{array}{r}
1 & 1 \\
56719 \\
+ 31863 \\
\hline
88582
\end{array}$$

```
0 + 0 = 0
          0 + 1 = 1
          1 + 1 = 0
                    com transporte de 1
          1+1+1=1 com transporte de 1
 11
    1101
+ 1101
  11010
```


 $+ \begin{array}{c} 11101101 \\ 10010110 \end{array}$

Subtração de Binários

Subtração de Binários

```
1 0 - 0 = 0
2 1 - 1 = 0
3 1 - 0 = 1
4 0 - 1 = 1 empresta 1
```


Subtração de Binários

Multiplicação de Binários

```
1001
  X1001
  11001
  0000
 0000
1001
1010001
```

Multiplicação de Binários

Multiplicação de Binários


```
Divisão de Binários
000011
           101
 101
           111
 0111
   101
   0101
    101
```

Divisão de Binários

Exercícios

a)
$$10101_2 + 10111_2$$

b)
$$111, 101_2 + 11, 001_2$$

c)
$$10100_2 - 1011_2$$

d)
$$1101$$
, $1_2 - 110_2$

f)
$$1100100_2 / 1010_2$$

- a)101100₂
- b) $1010, 110_2$
- c) 1 0 0 1₂
- $d)1111,1_2$
- e)10010011₂
- f) 1010₂

g) 1 1 0 0 1 / 1 0 1 0

h) 100111 / 1101

g) 10,1

h) 11