Pollard's - Rho Method for factoris zation (Monte-Carlo Method)

Let n be a composite positive odd integers. Let p be its prime divisor. choose a fairly simple bolynomial of degree at least 2 with integer coefficients such as quadratic polynomial.

$$f(x) = x^2 + a, \quad a \neq 0, -2$$

-> Start with initial Value To

A random sequence X1, X2, X3.3.

is generated using the relation $x_{k+1} = f(x_k)$ (modn),

$$K = 0, 1, 2, - -$$

I a nontrivial divisor d'of n (d < n) such that I integers xj and xk that lie in the Same Congruence class modulo d but belong to different modulo class modulo n; le,

 $x = xi \pmod d$

but $x_k \neq x_i \pmod{n}$

=> gcd(xx-xj,n) is a nontouvial divisor of

Exc:
$$n = 91$$
, $x_0 = 1$
 $f(x) = x^2 + 1$
 $x_1 = 2$
 $x_2 = 5$
 $x_3 = 26$

gcd
$$(x_1 - x_0, 9) = (1, 91) = 1$$

gcd $(x_2 - x_1, 91) = (3191) = 1$
gcd $(x_3 - x_2, 91) = (21, 91) = 7$
 \Rightarrow y is Composite.

Note: As k increases, the task of Computing gcd (xk-xj,n)

for each j<k becomes very

time Consuming. Reduce the

number of steps by taking k=2j.

Exc!
$$n = 2189$$

 $f(x) = x^2 + 1$
 $x_0 = 1$
 $x_1 = 2$
 $x_2 = 5$
 $x_3 = 26$
 $x_4 = 677$
 $x_5 = 829$
 \vdots
 $gcd(x_2 - x_0, 2189) = (4, 2189) = 1$
 $gcd(x_3 - x_1, 2189) = (25, 2189) = 1$
 $gcd(x_4 - x_2, 2189) = (672, 2189) = 1$
 $gcd(x_5 - x_3, 2189) = (803, 2189) = 1$