Corrigé des exercices sur les vecteurs

Septembre 2010

Soient un triangle \overrightarrow{ABC} et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **②** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \ \, \mathbf 0$ Démontrer que les droites (IC) et (BJ) sont parallèles.

Soient un triangle \overrightarrow{ABC} et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **2** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \ \, \ \,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

$$\overrightarrow{BJ} =$$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **②** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ensuremath{\mathfrak{Q}}$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

Soient un triangle \overrightarrow{ABC} et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **2** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA}$

Soient un triangle \overrightarrow{ABC} et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- \bigcirc Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- \bigcirc Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} =$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- \bigcirc Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$

Soient un triangle \overrightarrow{ABC} et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- \bigcirc Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
donc $\overrightarrow{IC} = \overrightarrow{IC} = \overrightarrow{AC}$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
donc $\overrightarrow{IC} = \frac{1}{3} \overrightarrow{BA}$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **2** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
donc $\overrightarrow{IC} = \frac{1}{3} \overrightarrow{BA} + \overrightarrow{AC}$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **②** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

 $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
 $\overrightarrow{IC} = \frac{1}{3} \overrightarrow{BA} + \overrightarrow{AC}$

On remarque que

 $3\overrightarrow{IC} =$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- \bullet Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- \odot Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

 $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
donc $\overrightarrow{IC} = \frac{1}{3} \overrightarrow{BA} + \overrightarrow{AC}$

On remarque que

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

 $3\overrightarrow{IC} = \overrightarrow{BA} + 3\overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \, \mathbf {\bigcirc}\,$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
donc $\overrightarrow{IC} = \frac{1}{3} \overrightarrow{BA} + \overrightarrow{AC}$

On remarque que

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- **Q** Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **Q** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- $\ \ \, \mathbf 0$ Démontrer que les droites (IC) et (BJ) sont parallèles.

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

$$donc$$

$$\overrightarrow{BJ} = \overrightarrow{BA} + 3 \overrightarrow{AC}$$

$$et$$

$$\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$$

$$\overrightarrow{IC} = \frac{1}{3} \overrightarrow{BA} + \overrightarrow{AC}$$
 On remarque que
$$3\overrightarrow{IC} = \overrightarrow{BA} + 3\overrightarrow{AC}$$

$$donc 3\overrightarrow{IC} = \overrightarrow{BJ}$$

Soient un triangle ABC et les points I et J tels que $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}$ et $\overrightarrow{AJ} = 3 \overrightarrow{AC}$

- Exprimer le vecteur \overrightarrow{BJ} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .
- **2** Exprimer le vecteur \overrightarrow{IC} en fonction des vecteurs \overrightarrow{BA} et \overrightarrow{AC} .

On a
$$\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ}$$

donc $\overrightarrow{BJ} = \overrightarrow{BA} + 3\overrightarrow{AC}$
et $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{AC}$
donc $\overrightarrow{IC} = \frac{1}{3}\overrightarrow{BA} + \overrightarrow{AC}$

On remarque que 3IC = BA + 3AC

donc $3\overrightarrow{IC} = \overrightarrow{BJ}$

Conclusion

les vecteurs \overrightarrow{IC} et \overrightarrow{BJ} étant colinéaires, les droites (IC) et (BJ) sont parallèles.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2 \overrightarrow{BC}$.

- Construire les points \underline{D} et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2 \overrightarrow{BC}$.

Soit ABC un triangle.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .
- \odot Démontrer que le point C est le milieu du segment [AD].

E

Ĺ

Soit ABC un triangle.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .
- \odot Démontrer que le point C est le milieu du segment [AD].

E

donc

$$\overrightarrow{AD} = 2 \ \overrightarrow{AC}$$

Soit ABC un triangle.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .
- \odot Démontrer que le point C est le milieu du segment [AD].

E

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{ED}$$

$$\overrightarrow{AD} = 2 \overrightarrow{AC}$$

Soit ABC un triangle.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2 \overrightarrow{BC}$.
- \odot Démontrer que le point C est le milieu du segment [AD].

E

On a
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{ED}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AB} + 2 \overrightarrow{BC}$$

$$donc$$
 $\overrightarrow{AD} = 2 \overrightarrow{AC}$

Soit ABC un triangle.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .

E

On a
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{ED}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AB} + 2 \overrightarrow{BC}$$

$$donc \qquad \overrightarrow{AD} = 2 \left(\overrightarrow{AB} + \overrightarrow{BC} \right)$$

$$donc$$
 $\overrightarrow{AD} = 2 \overrightarrow{AC}$

Soit ABC un triangle.

- Construire les points D et E tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2$ \overrightarrow{BC} .
- \odot Démontrer que le point C est le milieu du segment [AD].

E

On a
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{ED}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AB} + 2 \overrightarrow{BC}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AB} + 2 \overrightarrow{BC}$$

$$\overrightarrow{AD} = 2 \; (\overrightarrow{AB} + \overrightarrow{BC})$$

$$donc$$
 $\overrightarrow{AD} = 2 \overrightarrow{AC}$

Soient A,B,C et D quatre points tels que 3 $\overrightarrow{AD} = \overrightarrow{AB} + 2$ \overrightarrow{AC} . Montrer que les points B,C et D sont alignés.

Soient A,B,C et D quatre points tels que 3 $\overrightarrow{AD} = \overrightarrow{AB} + 2$ \overrightarrow{AC} . Montrer que les points B,C et D sont alignés.

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

finalement
$$\overrightarrow{BC} = \cdots \overrightarrow{BD}$$

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

$$\begin{array}{ccc} \textit{finalement} & & \overrightarrow{BC} = \cdots \overrightarrow{BD} \\ \textit{ou} & & \overrightarrow{CB} = \cdots \overrightarrow{CD} \\ \textit{ou encore} & & \overrightarrow{DB} = \cdots \overrightarrow{DC} \\ \end{array}$$

 $on\ en\ déduit\ que$ les vecteurs et sont colinéaires

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

$$\begin{array}{ccc} \textit{finalement} & & \overrightarrow{BC} = \cdots \overrightarrow{BD} \\ \textit{ou} & & \overrightarrow{CB} = \cdots \overrightarrow{CD} \\ \textit{ou encore} & & \overrightarrow{DB} = \cdots \overrightarrow{DC} \\ \end{array}$$

$$on\ en\ d\'eduit\ que$$
 les vecteurs et sont colinéaires $donc$ les droites et sont parallèles

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

finalement
$$\overrightarrow{BC} = \cdots \overrightarrow{BD}$$
ou $\overrightarrow{CB} = \cdots \overrightarrow{CD}$
ou encore $\overrightarrow{DB} = \cdots \overrightarrow{DC}$
on en déduit que les vecteurs

 $egin{array}{lll} on & en \ d\'eduit \ que & les \ vecteurs & et & sont \ colin\'eaires \ donc & les \ droites & et & sont \ parallèles \ or & elles \ passent \ toutes \ les \ deux \ par \ le \ point \ \end{array}$

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

On sait que
$$3 \overrightarrow{AD} = \overrightarrow{AB} + 2 \overrightarrow{AC}$$

$$egin{array}{lll} on & en \ d\'eduit \ que & les \ vecteurs & et & sont \ colin\'eaires \ donc & les \ droites & et & sont \ parallèles \ or & elles \ passent \ toutes \ les \ deux \ par \ le \ point \ \end{array}$$

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

On sait que
$$3 \overrightarrow{AD} = \overrightarrow{AB} + 2 \overrightarrow{AC}$$

$$donc \qquad 3 \overrightarrow{AD} = \overrightarrow{AD} + \overrightarrow{DB} + 2 (\overrightarrow{AD} + \overrightarrow{DC})$$

 $egin{array}{lll} on \ en \ d\'eduit \ que & les \ vecteurs & et & sont \ colin\'eaires \ donc & les \ droites & et & sont \ parallèles \ or & elles \ passent \ toutes \ les \ deux \ par \ le \ point \ \end{array}$

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

On sait que
$$3 \overrightarrow{AD} = \overrightarrow{AB} + 2 \overrightarrow{AC}$$

$$donc \qquad 3 \overrightarrow{AD} = \overrightarrow{AD} + \overrightarrow{DB} + 2 (\overrightarrow{AD} + \overrightarrow{DC})$$

$$donc \qquad 3 \overrightarrow{AD} = 3 \overrightarrow{AD} + \overrightarrow{DB} + 2 \overrightarrow{DC}$$

 $egin{array}{lll} on & en & d\'eduit & que & les vecteurs & et & sont colinéaires \\ donc & les & droites & et & sont parallèles \\ or & elles & passent toutes les & deux par le point \\ \end{array}$

donc, les points B, C et D sont alignés.

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

On sait que
$$3 \overrightarrow{AD} = \overrightarrow{AB} + 2 \overrightarrow{AC}$$

$$donc \qquad 3 \overrightarrow{AD} = \overrightarrow{AD} + \overrightarrow{DB} + 2 (\overrightarrow{AD} + \overrightarrow{DC})$$

$$donc \qquad 3 \overrightarrow{AD} = 3 \overrightarrow{AD} + \overrightarrow{DB} + 2 \overrightarrow{DC}$$

$$finalement \qquad -2 \overrightarrow{DC} = \overrightarrow{DB}$$

donc, les points B, C et D sont alignés.

Soient A,B,C et D quatre points tels que $3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC}$. Montrer que les points B,C et D sont alignés.

On sait que
$$3 \overrightarrow{AD} = \overrightarrow{AB} + 2 \overrightarrow{AC}$$

$$donc \qquad 3 \overrightarrow{AD} = \overrightarrow{AD} + \overrightarrow{DB} + 2 (\overrightarrow{AD} + \overrightarrow{DC})$$

$$donc \qquad 3 \overrightarrow{AD} = 3 \overrightarrow{AD} + \overrightarrow{DB} + 2 \overrightarrow{DC}$$

$$finalement \qquad -2 \overrightarrow{DC} = \overrightarrow{DB}$$

on en déduit que donc or les vecteurs \overrightarrow{DB} et \overrightarrow{DC} sont colinéaires les droites (DB) et (DC) sont parallèles elles passent toutes les deux par le point D

donc, les points B, C et D sont alignés.

Soient A, B et C trois points non alignés.

 $\ensuremath{ \bullet}$ Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\overrightarrow{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

 \odot Démontrer que les droites (DE) et (CA) sont parallèles.

Soient A, B et C trois points non alignés.

- $\ \, \bullet \,$ Construire les points D et E tels que :
 - $\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$
 - $\overrightarrow{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$
- \odot Démontrer que les droites (DE) et (CA) sont parallèles.

 C_{\bullet}

 A_{\bullet}

В

Soient A, B et C trois points non alignés.

 $oldsymbol{Q}$ Construire les points D et E tels que :

$$\mathbf{O} \overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\mathbf{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

 $oldsymbol{\circ}$ Démontrer que les droites (DE) et (CA) sont parallèles.

 \dot{B}

Soient A, B et C trois points non alignés.

lacksquare Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\mathbf{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

 \dot{B}

Soient A, B et C trois points non alignés.

lacktriangle Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

 \odot Démontrer que les droites (DE) et (CA) sont parallèles.

Soient A, B et C trois points non alignés.

 $\ensuremath{ \bullet}$ Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

 \odot Démontrer que les droites (DE) et (CA) sont parallèles.

Soient A, B et C trois points non alignés.

 \odot Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\mathbf{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

 $oldsymbol{\circ}$ Démontrer que les droites (DE) et (CA) sont parallèles.

Soient A, B et C trois points non alignés.

 $\ \, \bullet \,$ Construire les points D et E tels que :

$$\mathbf{Q} \ \overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\overrightarrow{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

 \odot Démontrer que les droites (DE) et (CA) sont parallèles.

Soient A, B et C trois points non alignés.

- $\ensuremath{ \bullet}$ Construire les points D et E tels que :
 - $\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$
 - $\overrightarrow{O} \overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$
- \odot Démontrer que les droites (DE) et (CA) sont parallèles.

$$\overrightarrow{DE} = \cdots \overrightarrow{CA}$$

Soient A, B et C trois points non alignés.

 $\ensuremath{ \bullet}$ Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\mathbf{O} \vec{CE} = -2 \vec{AC} + \frac{1}{2} \vec{AB}$$

finalement
$$\overrightarrow{DE} = \cdots \overrightarrow{CA}$$

on en déduit que les vecteurs \overrightarrow{DE} et \overrightarrow{CA} sont colinéaires

Soient A, B et C trois points non alignés.

 $\ensuremath{ \bullet}$ Construire les points D et E tels que :

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\mathbf{O} \vec{CE} = -2 \vec{AC} + \frac{1}{2} \vec{AB}$$

$$\overrightarrow{DE} = \cdots \overrightarrow{CA}$$

les vecteurs \overrightarrow{DE} et \overrightarrow{CA} sont colinéaires
les droites (DE) et (CA) sont parallèles

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\bullet \ \overrightarrow{CE} = -2 \ \overrightarrow{AC} + \frac{1}{2} \ \overrightarrow{AB}$$

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\bullet \ \overrightarrow{CE} = -2 \ \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

On a:
$$\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE}$$

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

On a:
$$\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE}$$
$$donc \qquad \overrightarrow{DE} = -\frac{5}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{CB} + \overrightarrow{AC} - 2\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{AD} = \frac{5}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB}$$

$$\bullet \ \overrightarrow{CE} = -2 \ \overrightarrow{AC} + \frac{1}{2} \ \overrightarrow{AB}$$

On a:
$$\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE}$$

$$\overrightarrow{DE} = -\frac{5}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{CB} + \overrightarrow{AC} - 2\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\bullet \ \overrightarrow{CE} = -2 \ \overrightarrow{AC} + \frac{1}{2} \ \overrightarrow{AB}$$

$$\begin{array}{ll} On \ a \ : & \overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE} \\ \\ donc & \overrightarrow{DE} = -\frac{5}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{CB} + \overrightarrow{AC} - 2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{AB} \end{array}$$

$$\overrightarrow{AD} = \frac{5}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB}$$

$$\overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

$$\begin{array}{ll} On \ a \ : & \overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE} \\ \\ donc & \overrightarrow{DE} = -\frac{5}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{CB} + \overrightarrow{AC} - 2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{AB} \end{array}$$

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\overrightarrow{CE} = -2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB}$$

$$\begin{array}{ll} On \ a \ : & \overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE} \\ \\ donc & \overrightarrow{DE} = -\frac{5}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{CB} + \overrightarrow{AC} - 2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC}) \end{array}$$

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\bullet \ \overrightarrow{CE} = -2 \ \overrightarrow{AC} + \frac{1}{2} \ \overrightarrow{AB}$$

$$\begin{array}{ll} On \ a \ : & \overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE} \\ \\ donc & \overrightarrow{DE} = -\frac{5}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{CB} + \overrightarrow{AC} - 2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC}) \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AC} \\ \\ \end{array}$$

$$\overrightarrow{AD} = \frac{5}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB}$$

$$\bullet \ \overrightarrow{CE} = -2 \ \overrightarrow{AC} + \frac{1}{2} \ \overrightarrow{AB}$$

$$\begin{array}{ll} On \ a : & \overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE} \\ \\ donc & \overrightarrow{DE} = -\frac{5}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{CB} + \overrightarrow{AC} - 2 \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{AB} \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC}) \\ \\ donc & \overrightarrow{DE} = -\frac{7}{2} \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AC} \\ \\ donc & \overrightarrow{DE} = 3 \overrightarrow{CA} \\ \end{array}$$

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\ \, \textbf{ }$ Soit N le symétrique de M par rapport à I. Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}.$

On a
$$\overrightarrow{MA} + \overrightarrow{MB} = (\overrightarrow{MI} + \overrightarrow{IA}) + (\overrightarrow{MI} + \overrightarrow{IB})$$

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

On a
$$\overrightarrow{MA} + \overrightarrow{MB} = (\overrightarrow{MI} + \overrightarrow{IA}) + (\overrightarrow{MI} + \overrightarrow{IB})$$

or $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
car I est le milieu de[AB]

- **③** Soit N le symétrique de M par rapport à I. Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MN}$.

On a
$$\overrightarrow{MA} + \overrightarrow{MB} = (\overrightarrow{MI} + \overrightarrow{IA}) + (\overrightarrow{MI} + \overrightarrow{IB})$$

or $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
car I est le milieu de[AB]
donc $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$

Soient A et B deux points distincts et I le milieu du segment [AB]. Soit M un point quelconque.

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

 M_{ullet}

N est le symétrique de M par rapport à I

Soient A et B deux points distincts et I le milieu du segment [AB]. Soit M un point quelconque.

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

N est le symétrique de M par rapport à I donc I est le milieu de [MN]

Soient A et B deux points distincts et I le milieu du segment [AB]. Soit M un point quelconque.

- Montrer que $\overrightarrow{MA} + \overrightarrow{MB} = 2 \overrightarrow{MI}$.
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} Soit N le symétrique de M par rapport à I. \\ Montrer que $\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MN}$. \\ \end{tabular}$

N est le symétrique de M par rapport à I $\label{eq:model} \mbox{donc } I \mbox{ est le milieu de } [MN]$

donc
$$\overrightarrow{MN} = 2 \overrightarrow{MI}$$

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- $\ \, \ \, \ \, \ \, \ \, \ \, \ \,$ Montrer que les points $E,\,C$ et F sont alignés.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- $\ensuremath{\mathfrak{Q}}$ Montrer que les points $E,\,C$ et F sont alignés.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- $\ \, \ \, \ \, \ \, \ \, \ \, \ \,$ Montrer que les points $E,\,C$ et F sont alignés.

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- $oldsymbol{\circ}$ Montrer que les points $E,\,C$ et F sont alignés.

finalement, les points E, F et C sont alignés.

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

donc

$$\overrightarrow{EF} = \overrightarrow{EC}$$

finalement, les points E, F et C sont alignés.

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

 $On \ a$

$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$
 or d'après l'énoncé
$$2 \ \overrightarrow{BE} = \overrightarrow{AB}$$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$
or d'après l'énoncé
$$2\overrightarrow{BE} = \overrightarrow{AB}$$
donc
$$2\overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$

or d'après l'énoncé $2\overrightarrow{BE} = \overrightarrow{AB}$
donc $2\overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$
d'où $3\overrightarrow{BE} = \overrightarrow{AE}$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$

$$2 \overrightarrow{BE} = \overrightarrow{AB}$$

$$2 \overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$$

$$3 \overrightarrow{BE} = \overrightarrow{AE}$$

$$\overrightarrow{EF} =$$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$

or d'après l'énoncé $2\overrightarrow{BE} = \overrightarrow{AB}$
donc $2\overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$
d'où $3\overrightarrow{BE} = \overrightarrow{AE}$
en remplacant $\overrightarrow{EF} = 3\overrightarrow{EB}$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$

or d'après l'énoncé $2\overrightarrow{BE} = \overrightarrow{AB}$
donc $2\overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$
d'où $3\overrightarrow{BE} = \overrightarrow{AE}$
en remplacant $\overrightarrow{EF} = 3\overrightarrow{EB} + 3\overrightarrow{AD}$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

$$\begin{array}{ll} On \ a & \overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF} \\ or \ d'après \ l'énoncé & 2 \ \overrightarrow{BE} = \overrightarrow{AB} \\ donc & 2 \ \overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB} \\ d'où & 3 \ \overrightarrow{BE} = \overrightarrow{AE} \\ en \ remplaçant & \overrightarrow{EF} = 3 \ \overrightarrow{EB} + 3 \ \overrightarrow{AD} \\ or \ d'après \ l'énoncé & \overrightarrow{AD} = \overrightarrow{BC} \end{array}$$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$
 or d'après l'énoncé
$$2 \ \overrightarrow{BE} = \overrightarrow{AB}$$

$$donc 2 \overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$$

d'où
$$3\overrightarrow{BE} = \overrightarrow{AE}$$

en remplaçant
$$\overrightarrow{EF} = 3 \ \overrightarrow{EB} + 3 \ \overrightarrow{AD}$$

or d'après l'énoncé
$$\overrightarrow{AD} = \overrightarrow{BC}$$

$$\overrightarrow{EF} = 3 \ \overrightarrow{EB} + 3 \ \overrightarrow{BC}$$

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

On a
$$\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$$
 or d'après l'énoncé
$$2 \ \overrightarrow{BE} = \overrightarrow{AB}$$

$$donc 2 \overrightarrow{BE} = \overrightarrow{AE} + \overrightarrow{EB}$$

$$d$$
'où $3\overrightarrow{BE} = \overrightarrow{AE}$

en remplaçant
$$\overrightarrow{EF} = 3 \overrightarrow{EB} + 3 \overrightarrow{AD}$$

or d'après l'énoncé
$$\overrightarrow{AD} = \overrightarrow{BC}$$

$$\overrightarrow{EF} = 3 \overrightarrow{EB} + 3 \overrightarrow{BC}$$

$$donc$$
 $\overrightarrow{EF} = 3 \overrightarrow{EC}$

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

on en déduit que

les vecteurs \overrightarrow{EF} et \overrightarrow{EC} sont colinéaires

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

on en déduit que donc

les vecteurs \overrightarrow{EF} et \overrightarrow{EC} sont colinéaires les droites (EF) et (EC) sont parallèles

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

on en déduit que donc or les vecteurs \overrightarrow{EF} et \overrightarrow{EC} sont colinéaires les droites (EF) et (EC) sont parallèles elles passent toutes les deux par le point E

Soit ABCD un parallèlogramme.

- Construire les points E et F tels que $\overrightarrow{BE} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AF} = 3 \overrightarrow{AD}$.
- \odot Montrer que les points E, C et F sont alignés.

on en déduit que donc or les vecteurs \overrightarrow{EF} et \overrightarrow{EC} sont colinéaires les droites (EF) et (EC) sont parallèles elles passent toutes les deux par le point E

donc, les points $E,\,F$ et C sont alignés.

- $oldsymbol{\circ}$ Montrer que les points $P,\,Q$ et R sont alignés.

- $\ \, \ \, \ \, \ \, \ \, \ \,$ Montrer que les points $P,\,Q$ et R sont alignés.

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- $oldsymbol{Q}$ Montrer que les points $P,\,Q$ et R sont alignés.

- $\ \, \ \, \ \, \ \, \ \, \ \,$ Montrer que les points $P,\,Q$ et R sont alignés.

Soit un triangle ABC et P le milieu du segment [AB].

- $oldsymbol{2}$ Montrer que les points $P,\,Q$ et R sont alignés.

d'une part

$$\overrightarrow{RP} = \overrightarrow{RA} + \overrightarrow{AP}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- $oldsymbol{2}$ Montrer que les points $P,\,Q$ et R sont alignés.

d'une part

$$\overrightarrow{RP} = \overrightarrow{RA} + \overrightarrow{AP}$$

donc

$$\overrightarrow{RP} = \frac{1}{5}\overrightarrow{CA}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- $oldsymbol{@}$ Montrer que les points P, Q et R sont alignés.

d'une part

$$\overrightarrow{RP} = \overrightarrow{RA} + \overrightarrow{AP}$$

donc

$$\overrightarrow{RP} = \frac{1}{5}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}$$

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- $oldsymbol{\circ}$ Montrer que les points P, Q et R sont alignés.

et d'autre part
$$\overrightarrow{RQ} = \overrightarrow{RC} + \overrightarrow{CQ}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- \bigcirc Montrer que les points P, Q et R sont alignés.

et d'autre part
$$\overrightarrow{RQ} = \overrightarrow{RC} + \overrightarrow{CQ}$$

donc

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- \bigcirc Montrer que les points P, Q et R sont alignés.

et d'autre part
$$\overrightarrow{RQ} = \overrightarrow{RC} + \overrightarrow{CQ}$$

donc

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{CB}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- \odot Montrer que les points P, Q et R sont alignés.

et d'autre part

$$\overrightarrow{RQ} = \overrightarrow{RC} + \overrightarrow{CQ}$$

$$donc$$

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{CB}$$

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}(\overrightarrow{CA} + \overrightarrow{AB})$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- $oldsymbol{2}$ Montrer que les points $P,\,Q$ et R sont alignés.

et d'autre part

$$\overrightarrow{RQ} = \overrightarrow{RC} + \overrightarrow{CQ}$$

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{CB}$$

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}(\overrightarrow{CA} + \overrightarrow{AB})$$

$$\overrightarrow{RQ} = (\frac{4}{3} - \frac{4}{5})\overrightarrow{CA} + \frac{4}{3}\overrightarrow{AB}$$

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- ullet Montrer que les points P, Q et R sont alignés.

$$\overrightarrow{RQ} = \overrightarrow{RC} + \overrightarrow{CQ}$$

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{CB}$$

$$\overrightarrow{RQ} = -\frac{4}{5}\overrightarrow{CA} + \frac{4}{3}(\overrightarrow{CA} + \overrightarrow{AB})$$

$$\overrightarrow{RQ} = (\frac{4}{3} - \frac{4}{5}) \overrightarrow{CA} + \frac{4}{3} \overrightarrow{AB}$$

$$\overrightarrow{RQ} = \frac{8}{15}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{AB}$$

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- \odot Montrer que les points P, Q et R sont alignés.

finalement, on a montré
$$\overrightarrow{RP} = \frac{1}{5}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- \bigcirc Montrer que les points P, Q et R sont alignés.

finalement, on a montré

$$\overrightarrow{RP} = \frac{1}{5}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{RQ} = \frac{8}{15}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{AB}$$

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- \odot Montrer que les points P, Q et R sont alignés.

finalement, on a montré

$$\overrightarrow{RP} = \frac{1}{5}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{RQ} = \frac{8}{15}\overrightarrow{CA} + \frac{4}{3}\overrightarrow{AB}$$

$$\overrightarrow{RQ} = \frac{8}{3} \overrightarrow{RP}$$

Soit un triangle ABC et P le milieu du segment [AB].

- $oldsymbol{Q}$ Montrer que les points $P,\,Q$ et R sont alignés.

on en déduit que

les vecteurs \overrightarrow{RQ} et \overrightarrow{RP} sont colinéaires

Soit un triangle ABC et P le milieu du segment [AB].

- $oldsymbol{Q}$ Montrer que les points $P,\,Q$ et R sont alignés.

 $on\ en\ d\'eduit\ que\\ donc$

les vecteurs \overrightarrow{RQ} et \overrightarrow{RP} sont colinéaires les droites (RQ) et (RP) sont parallèles

Soit un triangle ABC et P le milieu du segment [AB].

- $oldsymbol{Q}$ Montrer que les points $P,\,Q$ et R sont alignés.

on en déduit que donc or les vecteurs \overrightarrow{RQ} et \overrightarrow{RP} sont colinéaires les droites (RQ) et (RP) sont parallèles elles passent toutes les deux par le point R

Soit un triangle ABC et P le milieu du segment [AB].

- Construire Q et R tels que $\overrightarrow{BQ} = -\frac{1}{3} \overrightarrow{BC}$ et $\overrightarrow{CR} = \frac{4}{5} \overrightarrow{CA}$.
- $\ \, \ \, \ \, \ \, \ \, \ \,$ Montrer que les points $P,\,Q$ et R sont alignés.

 $on\ en\ d\'eduit\ que\ donc$ or

les vecteurs \overrightarrow{RQ} et \overrightarrow{RP} sont colinéaires les droites (RQ) et (RP) sont parallèles elles passent toutes les deux par le point R

donc, les points $R,\,P$ et Q sont alignés.

Soient A,B et C trois points distincts.

- $oldsymbol{\circ}$ Montrer que D est le milieu du segment [AE].

Soient A,B et C trois points distincts.

- $\ \, \ \, \ \, \ \,$ Montrer que D est le milieu du segment [AE].

 C_{ullet}

 A_{\bullet}

 B^{\bullet}

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB} + 2 \overrightarrow{AC}$.
- $\ \, \ \, \ \, \ \,$ Montrer que D est le milieu du segment [AE].

 A_{\bullet}

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB} + 2 \overrightarrow{AC}$.
- $\ \, \ \, \ \, \ \, \ \, \ \,$ Montrer que D est le milieu du segment [AE].

 C_{\bullet}

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB} + 2 \overrightarrow{AC}$.
- $\ \, \ \, \ \, \ \,$ Montrer que D est le milieu du segment [AE].

 C_{ullet}

Soient A,B et C trois points distincts.

- \odot Montrer que D est le milieu du segment [AE].

 C_{\bullet}

 B^{\bullet}

finalement, le point D est le milieu de [AE].

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB} + 2 \overrightarrow{AC}$.
- \odot Montrer que D est le milieu du segment [AE].

 C_{\bullet}

 B^{\bullet}

donc

$$2 \overrightarrow{AD} = \overrightarrow{AE}$$

Soient A,B et C trois points distincts.

- $\ \, \ \, \ \,$ Montrer que D est le milieu du segment [AE].

 C_{\bullet}

On a

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$

 B^{\bullet}

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB} + 2\overrightarrow{AC}$.
- \odot Montrer que D est le milieu du segment [AE].

 C_{\bullet}

 $On \ a$

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$

$$donc$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \frac{3}{4} \overrightarrow{AB}$$

 B^{\bullet}

 B^{\bullet}

Soient A,B et C trois points distincts.

- \odot Montrer que D est le milieu du segment [AE].

$$C.$$

$$On \ a$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{AB}$$

$$donc$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \frac{3}{4} \overrightarrow{AB}$$

$$donc$$

$$2 \overrightarrow{AD} = 2 \overrightarrow{AC} + \frac{3}{2} \overrightarrow{AB}$$

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB} + 2 \overrightarrow{AC}$.
- ullet Montrer que D est le milieu du segment [AE].

$$C.$$

$$On \ a \qquad \overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \frac{3}{4} \overrightarrow{AB}$$

$$donc \qquad 2 \overrightarrow{AD} = 2 \overrightarrow{AC} + \frac{3}{2} \overrightarrow{AB}$$

$$donc \qquad 2 \overrightarrow{AD} = 2 \overrightarrow{AC} + \frac{3}{2} \overrightarrow{AB}$$

$$donc \qquad 2 \overrightarrow{AD} = \overrightarrow{AE}$$

Soient A,B et C trois points distincts.

- Construire D et E tels que $\overrightarrow{CD} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AE} = \frac{3}{2} \overrightarrow{AB} + 2 \overrightarrow{AC}$.
- \odot Montrer que D est le milieu du segment [AE].

$$C.$$

$$On \ a \qquad \overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \frac{3}{4}\overrightarrow{AB}$$

$$donc \qquad 2\overrightarrow{AD} = 2\overrightarrow{AC} + \frac{3}{2}\overrightarrow{AB}$$

$$donc \qquad 2\overrightarrow{AD} = \overrightarrow{AE}$$

finalement, le point D est le milieu de [AE].