Домашняя работа по дискретной математике 15

Егерев Артем, БПМИ-167

Теорема 1. В бесконечном множестве можем выделить счетное подмножество.

Теорема 2. Конечное или счетное объединение счетных мнжеств счетно.

Теорема 3. Если множество A счетно и $B \subseteq A$, то B конечно или счетно.

Теорема 4. Любое подмножество счетного - конечно или счетно.

Теорема 5. Объединение счетного и конечного - счетно. $\mathbb{N} \cup n \sim \mathbb{N}$

Задача 1. *Решение.* Верно. Обозначим за C - счетное подмножетво в $A \setminus B$ (Теорема 1)

$$A = (A \setminus B) \cup (A \cap B) = (A \setminus B \setminus C) \cup C \cup (A \cap B) \sim$$

Первый случай - А ∩ В - конечно:

$$\sim (A \setminus B \setminus C) \cup \mathbb{N} \cup n \sim (A \setminus B \setminus C) \cup \mathbb{N} \sim (A \setminus B \setminus C) \cup C = A \setminus B$$

По теореме 5.

Второй случай - $A \cap B$ - счетно (Теорема 4) . Очень похоже:

$$\sim (A \setminus B \setminus C) \cup \mathbb{N} \cup \mathbb{N} \sim (A \setminus B \setminus C) \cup \mathbb{N} \sim (A \setminus B \setminus C) \cup C = A \setminus B$$

По теореме 2.

Задача 2. *Решение.* Неверно. Возьмем $A=B=\mathbb{N}$ - натуральные числа $\Rightarrow A \triangle B = \varnothing \nsim A$

Задача 3. *Решение.* Верно. Это частный случай задачи 1, когда $A \cap B$ - конечно.

Задача 4. *Решение*. Между любыми двумя различными действительными числами существует рациональное.

Пробежав по всем интервалом, выберем произвольно по одному рациональному числу из каждого.

Множество рациональных - счетно \Rightarrow его подмножество (получившиеся числа) - счетно или конечно.

Задача 5. Решение. Шаг: есть бесконечное множество В.

Выделим в нем счетное подмножество А:

Работая с нумерацией в счетном A, разделим все на четные (Множество A_1) и нечетные элементы (Множество A_2) .

$$A_1 \cap A_2 = \varnothing \Rightarrow \forall A_3 \subseteq A_2, A_1 \cap A_3 = \varnothing$$

 A_2 - счетно, а значит бесконечно. A_1 не будет пересекаться ни с какими подмоножествами A_2 . Отсюда, мы бесконечное множество разбили на $B\setminus A$, бесконечное A_2 и счетное A_1 , которое не будет пересекаться с дальнейшими подмножествами в $B\setminus A_1$ \Rightarrow за один шаг можем всегда увеличивать количество непересекающихся счетных подмножеств на один \Rightarrow их количество бесконечно.

Задача 6. Решение. Для задания переодической функции достаточно знать f(0), f(1), ... f(t-1) при фиксированном t.

f(i) можем выбрать любое из $\mathbb{Z} \Rightarrow$ количество таких функций \mathbb{Z}^t - счетно, так как \mathbb{Z} счетно (Теорема 2)

 $t\subseteq\mathbb{N}\Rightarrow$ количетсво периодических функций есть счетное объединение счетных множеств, а оно счетно (Теорема 2)

Задача 7. *Решение.* Рассмотрим следующую функцию для произвольной конечной последовательности натуральных чисел:

$$f(S) = \begin{cases} 1: \varnothing, \text{если } S = \varnothing \\ 2: S, \text{если длина } S = 1 \\ 3: Для остальных - в качестве первого элемента берем первый элемент S, каждый последующий это (разность - 1) между предыдущем и текущем в возрастающей последовательсти H (сместили на 1 для того, чтобы мы могли работать с нулями)$$

Пример: $f(1\ 0\ 2\ 3)=1\ (1+(0+1))\ (2+(2+1))\ (5+(3+1))=1\ 2\ 5\ 9$ Заметим, что f и f^{-1} будут функциональны и инъективны, а значит f - биекция.