Topología Algebraica

Ejercicios para Entregar - Prácticas 4 y 5

Guido Arnone

Sobre los Ejercicios

Elegí el ejercicio (4) de la práctica 4 y los ejercicios (1) y (5) de la práctica 5.

Observación. Si notamos $I: \mathsf{Top} \to \mathsf{hTop}$ al funtor que es la identidad en objetos y envía cada función continua a su clase de homotopía, para cada espacio topológico X tenemos un funtor al componer con $\mathsf{hTop}(X,-)$,

Concretamente, éste envía cada espacio Y a [X,Y] y cada función continua $f:Y\to Z$ a

$$[f]_*:[h]\in [X,Y]\mapsto [fh]\in [X,Z].$$

En particular, si f es una equivalencia homotópica entonces If es un isomorfismo y por lo tanto así lo es $[f]_*$.

Por comodidad, en el resultado siguiente notamos $X^{(-1)} = \emptyset$ para cada CW-complejo X.

Demostración. Tomemos una n-celda e de $X^{(n)}$ que no sea una celda de A, y sea $\xi: \mathbb{D}^n \to e$ su correspondiente función de adjunción. Notemos que la función $f\xi: \mathbb{D}^n \to Z$ siempre representa a una clase de equivalencia de $\pi_n(Z,Y,f\xi(s))$, donde $s\in \partial \mathbb{D}^n$, pues si $n\geq 1$ entonces

$$f\xi(\partial\mathbb{D}^n)\subset f(X^{(n-1)})\subset Y.$$

Al ser $\pi_n(Z,Y,f\xi(s))=0$, existe una homotopía $H:\mathbb{D}^n\times I\to Z$ entre $f\xi$ y g relativa a $\partial\mathbb{D}^n$ con im $H_1\subset Y$. Puesto que la homotopía H es relativa al borde del disco, pasa al cociente por las identificaciones que hace ξ . Existe entonces $\tilde{H}:e\times I\to Z$ tal que

$$\mathbb{D}^{n} \times I \xrightarrow{H} Z$$

$$\xi \times 1 \downarrow \qquad \tilde{H}$$

$$e \times I$$

conmuta. En particular esto dice que

im
$$\tilde{H}_1 = \tilde{H}_1(e) = \tilde{H}_1\xi(\mathbb{D}^n) = H_1(\mathbb{D}^n) \subset Y$$

y $f\xi=H_0=\tilde{H}_0\xi$. Como ξ es sobreyectiva de aquí vemos que $\tilde{H}_0=f$, y como \tilde{H} es relativa a \dot{e} (ya que H es relativa a $\partial \mathbb{D}^n$) sabemos que $\tilde{H}_t|_{\dot{e}}=f|_{\dot{e}}$ para todo $t\in I$.

Esto nos dice que para cada n-celda e^n_β de $X^{(n)}$ que no es una celda de A, existe una homotopía $H^n_\beta:e^n_\beta\times I\to Z$ relativa a e^n_β que satisface

- $\bullet \ (\mathsf{H}^{\mathsf{n}}_{\beta})_{0} = \mathsf{f}|_{e^{\mathsf{n}}_{\beta}},$
- $\operatorname{im}(H_{\beta}^n)_1 \subset Y$,
- $(H^n_\beta)_t|_{\dot{e}^n_\beta} = f|_{\dot{e}^n_\beta}$ para todo $t \in I$.

En virtud de que dos n-celdas distintas se intersecan a lo sumo en sus bordes y allí cada homotopía H^n_β coincide con f, por el lema de pegado está bien definida la función continua

$$H: X^{(\mathfrak{n})} \cup A \times I \to Z$$

que cumple $H|_{X^{(n-1)}\cup A\times I}\equiv f|_{X^{(n-1)}\cup A}\ y\ H|_{e^n_\beta}\equiv H^n_\beta$ en cada n-celda e^n_β que no es una celda de A. Además, por construcción es $H_0=f|_{X^{(n)}\cup A}$ e im $H_1\subset Y$.

Finalmente como la inclusión del subcomplejo $X^{(n)} \cup A \hookrightarrow X$ es una cofibración, existe una homotopía $\tilde{H}: X \times I \to Z$ que coincide con H en $X^{(n)} \cup A$ y satisface $\tilde{H}_0 = f$.

En particular es $\tilde{H}_1(X^{(\mathfrak{n})} \cup A) = im \, H_1 \subset Y \, y$

$$\tilde{H}|_{X^{(\mathfrak{n}-1)}\cup A\times I}\equiv H|_{X^{(\mathfrak{n}-1)}\cup A\times I}\equiv f|_{X^{(\mathfrak{n}-1)}\cup A}\text{,}$$

así que basta tomar $g := \tilde{H}_1$.

A partir del resultado anterior probamos a continuación el *lema crucial*, pues será necesario para resolver el ejercicio (4).

Lema 2. Sea (X,A) un CW-par y (Z,Y) un par topológico con $\pi_n(Z,Y)=0$ para todo $n\geq 1$ para el cual existen celdas de $X^{(n)}$ que no pertenecen a A. Si $f:(X,A)\to (Z,Y)$ es una función continua de pares, entonces existe otra función $g:X\to Z$ continua y homotópica a f relativa a f que satisface $g(X)\subset Y$.

Demostración. Utilizando el Lema 1 inductivamente, tenemos una sucesión de homotopías

$$\{H^k: X \times I \to Z\}_{k>0}$$

tales que

- $H_0^0 = f$,
- $H_1^k = H_0^{k+1}$,
- H^k es relativa a $X^{(k-1)} \cup A$, y
- $H_1^k(X^{(k)} \cup A) \subset Y$.

En el k-ésimo paso, de haber k-celdas que no pertenezcan a A tomamos la homotopía que nos garantiza el Lema 1 para la función H_1^{k-1} , y en caso contrario tomamos la homotopía constante.

Como cada homotopía Hⁱ es relativa a A, inductivamente vemos que

$$H_t^i(\alpha) = H_0^i(\alpha) = H_1^{i-1}(\alpha) = H_t^{i-1}(\alpha) = \dots = H_t^0(\alpha) = H_0^0(\alpha) = f(\alpha)$$

para todo $a \in A$, $i \ge 0$ y $t \in I$.

Del mismo modo, para cada $x \in X$ existe $n \ge 1$ tal que $x \in X^{(n)}$ y como H^k es relativa a $X^{(n)}$ si k > n, es

$$H^n_t(x) = H^k_t(x) \in Y$$

para todo k > n y $t \in I$.

Esto último nos permite definir $g: X \to Z$ poniendo $g|_{X^{(n)}} \equiv H_1^n|_{X^{(n)}}$ para cada $n \ge 0$. Por construcción g resulta continua (pues lo es en cada esqueleto de X) y satisface tanto $g(X) \subset Y$ como $g|_A = f|_A$. Veamos ahora que g es homotópica a f relativa a f.

Fijemos una sucesión $(t_n)_{n\geq 0}\subset \mathbb{R}$ tal que $t_0=0$ y $t_n\to 1$ de forma estrictamente creciente, y notemos $c_i:[t_i,t_{i+1}]\to I$ a la función lineal que vale 0 en t_i y 1 en t_{i+1} .

Como $H_1^i=H_0^{i+1}$ para todo $i\geq 0$, por el lema de pegado podemos definir una función continua

$$H: X \times [0,1) \rightarrow Z$$

que satisface $H|_{X\times[t_i,t_{i+1}]}\equiv H^i\circ c_i$ para cada $i\geq 0$. Así, es $H_0=f$ y $H_t|_A=f|_A$ para todo $t\in [0,1)$. Afirmamos que

$$\tilde{H}: X \times I \longrightarrow Z$$

$$(x,t) \mapsto \begin{cases} H(x,t) & \text{si } t \in [0,1) \\ g(x) & \text{si } t = 1 \end{cases}$$

es una homotopía entre f y g relativa a A. Por las observaciones anteriores sólo resta ver que ésta es continua, y es suficiente probarlo en cada cerrado $X^{(n)} \times I$.

Efectivamente, en $X^{(n)} \times [0,t_{n+1}]$ la función $\tilde{\mathbb{H}}$ es continua pues coincide con \mathbb{H} , y en $[t_{n+1},1]$ es constante, pues cuando m>n sabemos que $\mathbb{H}^m|_{X^{(n)}}\equiv \mathbb{H}^n|_{X^{(n)}}$. Por lo tanto $\tilde{\mathbb{H}}$ es continua en $X^{(n)}\times I$ para cada $n\in\mathbb{N}_0$, lo que concluye la demostración.

Ejercicio 4. Probar que una equivalencia débil $f: Y \to Z$ induce biyecciones $[X, Y] \to [X, Z]$ para todo CW-complejo X.

Demostración. En primer lugar, notemos que f se factoriza a través de M_f,

donde la inclusión i es una cofibración y j es una equivalencia homotópica. Esto a su vez da un diagrama en Set,

con $[j]_*$ biyectiva. Por lo tanto $[f]_*$ es biyectiva sí y solo si $[i]_*$ lo es. Usando una vez más que j es equivalencia homotópica vemos también que f es una equivalencia débil si y sólo si lo es i. Esto nos dice que sin pérdida de generalidad podemos probar el ejercicio para un subespacio Y de un espacio topológico Z e $i: Y \to Z$ la inclusión.

Como por hipótesis i induce isomorfismos en los grupos de homotopía, de la suceción exacta larga de pares

$$\cdots \to \pi_n(Y,y) \xrightarrow{i_*} \pi_n(Z,y) \to \pi_n(Z,Y,y) \to \ldots$$

vemos que debe ser $\pi_n(Z, Y, y) = 0$ para todo $n \in N$ e $y \in Y$.

Por lo tanto, si $g: X \to Z$ es una función continua, es una función de pares de (X, \emptyset) a (Z, Y). Por el Lema 2, sabemos entonces que existe $h: X \to Z$ continua tal que $h \simeq g$ y $h(X) \subset Y$. En consecuencia, correstringiendo h a Y vemos que

$$[i]_* ([h|^Y]) = [ih|^Y] = [h] = [g],$$

lo que prueba la sobreyectividad de i_{*}.

Ahora veamos la inyectividad. Sean h_0 , $h_1: X \to Y$ funciones continuas tales que $ih_0 \simeq ih_1$, y veamos que h_0 y h_1 son homotópicas. Por hipótesis sabemos que existe una homotopía H entre ih_0 e ih_1 . Más aún, ésta puede ser vista como una función de pares de $(X \times I, X \times \partial I)$ a (Z, Y), pues tanto ih_0 como ih_1 tienen imagen en Y.

Una vez más, por el Lema 2 existe una función continua $K:(X\times I,X\times \partial I)\to (Z,Y)$ y una homotopía $\Gamma:K\simeq H$ relativa a $X\times \partial I$ tal que $K(X\times I)\subset Y$. En particular H y K coinciden en $X\times \partial I$, así que si $S\in \{0,1\}$ entonces

$$h_s(x) = H(x,s) = K(x,s)$$

para todo $x \in X$. Por lo tanto la correstricción $K|^Y : X \times I \to Y$ de K es una función continua que satisface $K_s = h_s$, y consecuentemente h_0 y h_1 son homotópicas.

Lema 3. Sea $n \in \mathbb{N}$ y $f : \mathbb{S}^{2n} \to \mathbb{S}^{2n}$ una función continua. Si f no tiene puntos fijos, entonces deg f = -1.

Demostración. Notemos que como la homología de S²ⁿ es trivial excepto en grado 0 y 2n, es

$$\begin{split} \lambda(f) &= \sum_{q \geq 0} (-1)^q \cdot tr(H_n f) = tr(H_0 f) + (-1)^{2n} \, tr(H_{2n} f) \\ &= 1 + (-1)^{2n} \, deg \, f = 1 + deg \, f. \end{split}$$

Como f no tiene puntos fijos debe ser $\lambda(f) = 0$, lo que nos dice que deg f = -1.

Ejercicio 1. Probar que \mathbb{Z}_2 es el único grupo no trivial que puede actuar libremente en una esfera de dimensión par.

Demostración. Sea $n \in \mathbb{N}$ y G un grupo no trivial que actúa libremente en \mathbb{S}^{2n} . Esto es equivalente a que, para cada $s \in G$ distinto de la unidad, la función

$$m_s:\mathbb{S}^{2n}\to\mathbb{S}^{2n}$$

$$x\longmapsto s\cdot x$$

no tenga puntos fijos. Por el Lema 3 sabemos entonces que deg $m_s=-1$ para todo $s\neq 1$. Si ahora tomamos $g,h\in G\setminus\{1\}$ tenemos que

$$\deg \mathfrak{m}_{gh^{-1}} = \deg \mathfrak{m}_g \circ \mathfrak{m}_{h^{-1}} = \deg \mathfrak{m}_g \cdot \deg \mathfrak{m}_{h^{-1}} = (-1)^2 = 1,$$

asi que el contrarrecíproco del Lema 3 dice que $\mathfrak{m}_{gh^{-1}}$ tiene puntos fijos: como la acción es libre, debe ser $\mathfrak{gh}^{-1}=1$. Es decir, debe ser $\mathfrak{g}=h$.

Dado que G no es trivial, existe algún elemento $g \in G \setminus \{1\}$. El argumento anterior nos dice que

$$G = \{1, g\}$$

así que necesariamente $G \simeq \mathbb{Z}_2$.

Observación. Sabemos además que efectivamente $\mathbb{Z}_2 = \langle \sigma \mid \sigma^2 \rangle$ actúa en \mathbb{S}^{2n} de forma libre, por ejemplo vía $\sigma \cdot \mathfrak{p} := -\mathfrak{p}$.

Lema 4. Sea G un grupo. Si $x \in \mathbb{Z}[G]$ es no nulo y G-invariante, entonces G es finito y existe $k \in \mathbb{Z}$ tal que $x = k \cdot \sum_{g \in G} g$.

Demostración. Al $x \in \mathbb{Z}[G]$ ser no nulo, existen finitos elementos $g_1, \ldots, g_n \in G$ y enteros a_1, \ldots, a_n con $a_1 \neq 0$ tales que

$$x = a_1 g_1 + \cdots + a_n g_n$$
.

Como para cada $g \in G$ es

$$a_1g_1 + \dots + a_ng_n = x = gg_1^{-1}x = a_1g + a_2gg_1^{-1}g_2 + \dots + a_ngg_1^{-1}g_n,$$
 (1)

por la unicidad de la escritura en combinaciones formales necesariamente $g \in \{g_1, \dots, g_n\}$. Esto prueba que $G = \{g_1, \dots, g_n\}$ y en particular G resulta finito.

Ahora, si para cada $i \in [n]$ ponemos $g = g_i$ en la igualdad (1), se tiene que

$$a_1g_1+\cdots+a_ng_n=a_1g_1+\cdots+a_ng_1g_1^{-1}g_n.$$

Una vez más, por la unicidad de la escritura existe $k:=\mathfrak{a}_1\in\mathbb{Z}$ tal que $k=\mathfrak{a}_1=\cdots=\mathfrak{a}_n$ y consecuentemente

$$x = \alpha_1 g_1 + \dots \alpha_n g_n = k g_1 + \dots k g_n = k \cdot \sum_{g \in G} g.$$

Ejercicio 5. Probar que cd(G) = 0 si y sólo si G es el grupo trivial.

Demostración. Si G es trivial un $\mathbb{Z}[G]$ -módulo es simplemente un \mathbb{Z} módulo, y entonces

$$0 \to \mathbb{Z} \xrightarrow{id} \mathbb{Z} \to 0$$

es una resolución libre (en particular, proyectiva) de \mathbb{Z} como $\mathbb{Z}[G]$ -módulo trivial que tiene longitud cero.

Recíprocamente, supongamos que existe una resolución proyectiva

$$0 \to P_0 \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

de $\mathbb Z$ como $\mathbb Z[G]$ -módulo trivial. En particular $\mathbb Z$ resulta un $\mathbb Z[G]$ -módulo proyectivo y por lo tanto, el epimorfismo

$$r: \sum_{g \in G} k_g \cdot g \in \mathbb{Z}[G] \mapsto \sum_{g \in G} k_g \in \mathbb{Z}$$

tiene una sección $s: \mathbb{Z} \to \mathbb{Z}[G]$. Como la acción de G en \mathbb{Z} es trivial, es

$$g \cdot s(1) = s(g \cdot 1) = s(1)$$

para cada $g \in G$, y además $s(1) \neq 0$ pues al ser sección s es inyectiva. Esto dice que s(1) es no nulo y G-invariante, así que por el Lema 4 existe $k \in \mathbb{Z}$ tal que $s(1) = k \cdot \sum_{g \in G} g$.

Aplicando r se obtiene

$$1 = rs(1) = r\left(k \cdot \sum_{g \in G} g\right) = k \cdot \sum_{g \in G} 1 = k|G|,$$

lo que a su vez implica |G| = k = 1, y por lo tanto G es el grupo trivial.