

On Lorentz Invariance, Spin-Charge Separation And SU(2) Yang-Mills Theory

Antti J. Niemi^{1, 2, 3, *} and Sergey Slizovskiy^{1, †}

¹*Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala, Sweden*

²*Laboratoire de Mathématiques et Physique Théorique CNRS UMR 6083,*

Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours, France

³*Chern Institute of Mathematics, Tianjin 300071, P.R. China*

(Dated: February 13, 2009)

Previously it has been shown that in spin-charge separated SU(2) Yang-Mills theory Lorentz invariance can become broken by a one-cocycle that appears in the Lorentz boosts. Here we study in detail the structure of this one-cocycle. In particular we show that its non-triviality relates to the presence of a (Dirac) magnetic monopole bundle. We also explicitly present the finite version of the cocycle.

PACS numbers:

Recently the properties of four dimensional SU(2) Yang-Mills theory have been investigated using spin-charge separated variables [1], [2] that might describe the confining strong coupling regime of the theory [3]. For example, it was shown that even though these variables reveal the presence of two massless Goldstone modes, this apparent contradiction with the existence of a mass gap becomes resolved since these Goldstone modes break Lorentz invariance by a one-cocycle [1]: The ground state must be Lorentz invariant, thus the one-cocycle is to be removed. This demand fixes the ground state uniquely and deletes all massless states from the spectrum [1].

In [1] only the infinitesimal form of the one-cocycle was presented. Here we display its finite form. We also verify that the one-cocycle is indeed non-trivial, by relating it to the nontriviality of the Dirac magnetic monopole bundle. For definiteness we develop our arguments in the four dimensional space \mathbb{R}^4 with Euclidean signature. The extension from $SO(4)$ to $SO(3, 1)$ is straightforward.

Locally, in the Maximal Abelian Gauge the spin-charge separation amounts to the following decomposition of the off-diagonal components A_μ^\pm of the gauge field A_μ^a [1], [3].

$$A_\mu^+ = A_\mu^1 + iA_\mu^2 = \psi_1 e_\mu + \psi_2 e_\mu^* \quad (1)$$

where the spin field e_μ

$$e_\mu = \frac{1}{\sqrt{2}}(e_\mu^1 + ie_\mu^2)$$

is normalized according to

$$\begin{aligned} e_\mu e_\mu &= 0 \\ e_\mu e_\mu^* &= 1 \end{aligned} \quad (2)$$

This can be viewed as a Clebsch-Gordan type decomposition of A_μ^\pm , when interpreted as a tensor product of the complex spin-variable e_μ that remain intact under SU(2) gauge transformations and the charge variables $\psi_{1,2}$ that are Lorentz scalars but transform under SU(2); see [1] for details.

The decomposition introduces an internal $U_I(1) \times \mathbb{Z}_2$ symmetry that is not visible to A_μ^a . The $U_I(1)$ action is

$$U_I(1) : \begin{aligned} e_\mu &\rightarrow e^{-i\lambda} e_\mu \\ \psi_1 &\rightarrow e^{i\lambda} \psi_1 \\ \psi_2 &\rightarrow e^{-i\lambda} \psi_2 \end{aligned} \quad (3)$$

This is a local frame rotation, in particular it preserves the orientation in e_μ . The \mathbb{Z}_2 action exchanges ψ_1 and ψ_2 ,

$$\mathbb{Z}_2 : \begin{aligned} e_\mu &\rightarrow e_\mu^* \\ \psi_1 &\rightarrow \psi_2 \\ \psi_2 &\rightarrow \psi_1 \end{aligned} \quad (4)$$

This changes the orientation on the two-plane spanned by e_μ . (The realization of \mathbb{Z}_2 is unique only up to phase factor.)

In the Yang-Mills action the complex scalar fields $\psi_{1,2}$ becomes combined into the three component unit vector [1]

$$\mathbf{t} = \frac{1}{\rho^2} (\psi_1^* \ \psi_2^*) \vec{\sigma} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \frac{1}{\rho^2} \begin{pmatrix} \psi_1^* \psi_2 + \psi_2^* \psi_1 \\ i(\psi_1 \psi_2^* - \psi_2 \psi_1^*) \\ \psi_1^* \psi_1 - \psi_2^* \psi_2 \end{pmatrix} = \begin{pmatrix} \cos \phi \sin \theta \\ \sin \phi \sin \theta \\ \cos \theta \end{pmatrix} \quad (5)$$

We have here parameterized

$$\begin{aligned} \psi_1 &= \rho e^{i\zeta} \cos \frac{\theta}{2} e^{-i\phi/2} \\ \psi_2 &= \rho e^{i\zeta} \sin \frac{\theta}{2} e^{i\phi/2} \end{aligned} \quad (6)$$

The internal $U_I(1)$ transformation sends

$$t_\pm = \frac{1}{2}(t_1 \pm it_2) \rightarrow e^{\mp 2i\lambda} t_\pm \quad (7)$$

but t_3 remains intact. The \mathbb{Z}_2 action is a rotation that sends $(t_1, t_2, t_3) \rightarrow (t_1, -t_2, -t_3)$. In terms of the angular variables in (5) this corresponds to $(\phi, \theta) \rightarrow (2\pi - \phi, \pi - \theta)$. Thus we may opt to eliminate the \mathbb{Z}_2 degeneracy by a restriction to the upper hemisphere $\theta \in [0, \frac{\pi}{2})$.

The off-diagonal components (1) determine the embedding of a two dimensional plane in \mathbb{R}^4 . The space of two dimensional linear subspaces of \mathbb{R}^4 is the real Grassmannian manifold $Gr(4, 2)$ [4], it can be described by the anti-symmetric tensor [1], [5], [6]

$$P_{\mu\nu} = \frac{i}{2}(A_\mu^+ A_\nu^- - A_\nu^+ A_\mu^-) = A_\mu^1 A_\nu^2 - A_\nu^1 A_\mu^2 \quad (8)$$

that obeys the Plücker equation

$$P_{12}P_{34} - P_{13}P_{24} + P_{23}P_{14} = 0 \quad (9)$$

Conversely, *any* real antisymmetric matrix $P_{\mu\nu}$ that satisfies (9) can be represented in the functional form (8) in terms of some two vectors A_μ^1 and A_μ^2 . The Plücker equation describes the embedding of $Gr(4, 2)$ in the five dimensional projective space \mathbb{RP}^5 as a degree four hypersurface [4], a homogeneous space

$$Gr(4, 2) \simeq \frac{SO(4)}{SO(2) \times SO(2)} \simeq \mathbb{S}^2 \times \mathbb{S}^2 \quad (10)$$

When we substitute (1) we get

$$P_{\mu\nu} = \frac{i}{2}(|\psi_1|^2 - |\psi_2|^2) \cdot (e_\mu e_\nu^* - e_\nu e_\mu^*) = \frac{i}{2} \cdot \rho^2 \cdot t_3 \cdot (e_\mu e_\nu^* - e_\nu e_\mu^*) = \rho^2 \cdot t_3 H_{\mu\nu} \quad (11)$$

This is clearly invariant under (3) and (4). In particular, we conclude that the vector field e_μ determines a $U_I(1)$ principal bundle over $Gr(4, 2)$.

We employ $H_{\mu\nu}$ to explicitly resolve for the $U_I(1)$ structure as follows [1]. We first introduce the electric and magnetic components of (11),

$$\begin{aligned} E_i &= \frac{i}{2}(e_0 e_i^* - e_i e_0^*) \\ B_i &= \frac{i}{2}\epsilon_{ijk} e_j^* e_k \end{aligned} \quad (12)$$

They are subject to

$$\begin{aligned} \vec{E} \cdot \vec{B} &= 0 \\ \vec{E} \cdot \vec{E} + \vec{B} \cdot \vec{B} &= \frac{1}{4} \end{aligned} \quad (13)$$

We then define the selfdual and anti-self-dual combinations

$$\vec{s}_\pm = 2(\vec{B} \pm \vec{E}) \quad (14)$$

This gives us two independent unit vectors that parametrize the two-spheres \mathbb{S}_\pm^2 of our Grassmannian $Gr(4, 2) \simeq \mathbb{S}_+^2 \times \mathbb{S}_-^2$, respectively. In these variables

$$e_\mu = \frac{1}{2}e^{i\eta} \cdot \left(\sqrt{1 - \vec{s}_+ \cdot \vec{s}_-}, \frac{\vec{s}_+ \times \vec{s}_- + i(\vec{s}_- - \vec{s}_+)}{\sqrt{1 - \vec{s}_+ \cdot \vec{s}_-}} \right) = e^{i\eta} \cdot \left(\sqrt{2\vec{E} \cdot \vec{E}}, \frac{2\vec{E} \times \vec{B} - i\vec{E}}{\sqrt{2\vec{E} \cdot \vec{E}}} \right) \equiv e^{i\eta} \hat{e}_\mu \quad (15)$$

Here the phase factor η describes locally a section of the $U_I(1)$ bundle determined by e_μ over the Grassmannian (10). The $U_I(1)$ transformation sends $\eta \rightarrow \eta - \lambda$.

We note that since any two components of e_μ can vanish simultaneously, at least three coordinate patches for the base are needed in order to define the bundle. With local trivialization determined by $\eta_\alpha = \text{Arg}(e_\alpha)$ these patches can be chosen to be $\mathcal{U}_\alpha = \{|e_\alpha| > \epsilon\}$ for $\alpha = 0, 1, 2$ with some (infinitesimal) $\epsilon > 0$. On the overlaps $\mathcal{U}_\alpha \cap \mathcal{U}_\beta$ the transition functions are then

$$f_{\alpha\beta} = \exp\left\{i \cdot \text{Arg}\frac{e_\beta}{e_\alpha}\right\}$$

with e_α resp. e_β a component of vector e_μ that is nonvanishing in the overlap of \mathcal{U}_α and \mathcal{U}_β .

We now proceed to show by explicit computation the nontriviality of the $U_I(1)$ bundle. This implies that the phase factor η in (15) can not be globally removed. We do this by relating our $U_I(1)$ bundle to the Dirac monopole bundle (Hopf fibration) $\mathbb{S}^3 \sim \mathbb{S}^2 \times \mathbb{S}^1$. We start by introducing the $U_I(1)$ connection

$$\Gamma = ie_\mu^\star de_\mu = i\hat{e}_\mu^\star d\hat{e}_\mu + d\eta = \hat{\Gamma} + d\eta \quad (16)$$

We locally parametrize the vectors \vec{s}_\pm by

$$\vec{s}_\pm = \begin{pmatrix} \cos\phi_\pm & \sin\theta_\pm \\ \sin\phi_\pm & \sin\theta_\pm \\ \cos\theta_\pm \end{pmatrix} \quad (17)$$

We substitute this in (15), (16). This gives us a (somewhat complicated) expression of $\hat{\Gamma}$ in terms of the angular variables (17). When we compute the ensuing curvature two-form the result is

$$F = d\hat{\Gamma} \equiv d\Gamma = \sin\theta_+ d\theta_+ \wedge d\phi_+ + \sin\theta_- d\theta_- \wedge d\phi_- \quad (18)$$

Consequently the connection Γ in (16) is gauge equivalent to a connection of the form

$$\Gamma \sim -\cos\theta_+ d\phi_+ - \cos\theta_- d\phi_- + d\eta \quad (19)$$

When we restrict to one of the two-spheres \mathbb{S}_\pm in $Gr(4, 2)$ by fixing some point (pt) in the other, we obtain the two submanifolds $\mathbb{S}_+^2 \times pt$ and $pt \times \mathbb{S}_-^2$ and arrive at the functional form of the Dirac monopole connection in each of them. Thus the $U_I(1)$ bundle is non-trivial and admits no global sections, in particular the section η can only be defined locally.

We now proceed to consider the linear action of Euclidean (Lorentz) boosts. For this we rotate e_μ to a generic spatial direction ε_i ($i = 1, 2, 3$). In the case of an infinitesimal $\varepsilon = \sqrt{\vec{\varepsilon} \cdot \vec{\varepsilon}}$ the four-vector e_μ ($\mu = 0, i$) transforms under the ensuing boost Λ_ε as follows,

$$\begin{aligned} \Lambda_\varepsilon e_0 &= -\varepsilon_i e_i \\ \Lambda_\varepsilon e_i &= -\varepsilon_i e_0. \end{aligned} \quad (20)$$

For a finite ε the boost is obtained by exponentiation,

$$\begin{aligned} e^{\Lambda_\varepsilon}(e_i) &= e_i + \frac{1}{\varepsilon^2} \cdot \varepsilon_i (\vec{e} \cdot \vec{\varepsilon} \cos(\varepsilon) + \varepsilon e_0 \sin(\varepsilon) - \vec{e} \cdot \vec{\varepsilon}) \\ e^{\Lambda_\varepsilon}(e_0) &= e_0 \cos(\varepsilon) - \frac{1}{\varepsilon} \vec{e} \cdot \vec{\varepsilon} \sin(\varepsilon) \equiv e_\mu \hat{\varepsilon}_\mu \end{aligned} \quad (21)$$

where

$$0 \leq \varepsilon \equiv \sqrt{\vec{\varepsilon} \cdot \vec{\varepsilon}} < 2\pi \quad (\text{mod } 2\pi)$$

and

$$\hat{\varepsilon}_\mu = \left(\cos(\varepsilon), -\sin(\varepsilon) \frac{\vec{\varepsilon}}{\varepsilon} \right)$$

We now identify a different, *projective* representation of $SO(4)$ on the Grassmannian: On the base manifold the ensuing $SO(4)$ boost acts on the electric and magnetic vectors \vec{E} and \vec{B} so that the result is the familiar

$$\begin{aligned} \Lambda_\varepsilon \vec{E} &\equiv \delta_\varepsilon \vec{E} = \vec{B} \times \vec{\varepsilon} \\ \Lambda_\varepsilon \vec{B} &\equiv \delta_\varepsilon \vec{B} = \vec{E} \times \vec{\varepsilon}. \end{aligned} \quad (22)$$

For finite boost we get

$$e^{\delta_\varepsilon}(\vec{E}) = \frac{\vec{\varepsilon}(\vec{\varepsilon} \cdot \vec{E})(1 - \cos \varepsilon) + [\vec{B} \times \vec{\varepsilon}] \varepsilon \sin \varepsilon + \vec{E} \varepsilon^2 \cos \varepsilon}{\varepsilon^2} \quad (23)$$

and the same holds for the finite boost of \vec{B} , but with \vec{E} and \vec{B} interchanged.

We assert that the difference between (20) and (22), resp. (21) and (23), is a one-cocycle, due to the projective nature of the second representation of $SO(4)$ on $Gr(4, 2)$. For this we recall the definition of a one-cocycle: If ξ denotes a local coordinate system on $Gr(4, 2)$ and if a section of the $U_I(1)$ bundle which is locally specified by $e^{i\eta}$ is denoted by Ψ , then we have for a projective representation

$$\Lambda(g)\Psi(\xi) = \mathcal{C}(\xi, g)\Psi(\xi^g) \quad (24)$$

with $g \in SO(4)$. The factor $\mathcal{C}(\xi, g)$ is a one-cocycle that determines the lifting of the projective representation to the linear representation. For a boost with the group element $g \in SO(4)$ which is parameterized by (finite) $\vec{\varepsilon}$ on the base manifold with \vec{E} and \vec{B} , (24) becomes

$$e^{\Lambda_\varepsilon}\Psi(\vec{E}, \vec{B}) = \mathcal{C}(\vec{E}, \vec{B}, \vec{\varepsilon})\Psi\left(e^{\delta_\varepsilon}(\vec{E}), e^{\delta_\varepsilon}(\vec{B})\right) \quad (25)$$

We compute the one-cocycle in (25) on a chart \mathcal{U}_0 with local trivialization $\eta = Arg(e_0)$. With $C(\xi, g) = \exp\{i\Theta(\xi, g)\}$ we look at the transformation of a local section $\exp\{\eta\}$ under the boost g . Under an infinitesimal boost the phase of e_0 changes as follows [1],

$$\Lambda_\varepsilon\eta = \Theta(\varepsilon) = \frac{\vec{E} \cdot \vec{\varepsilon}}{2\vec{E}^2} = \frac{(\vec{s}_+ - \vec{s}_-) \cdot \vec{\varepsilon}}{1 - \vec{s}_+ \cdot \vec{s}_-} \quad (26)$$

For a finite boost we find by exponentiation

$$\Theta(\vec{\varepsilon}) = Arg(\hat{e}_\mu \hat{\varepsilon}_\mu) \quad (27)$$

which reduces to (26) for infinitesimal ε . For general $g \in SO(4)$ we get in the chart \mathcal{U}_0

$$\Theta(\xi, g) = Arg\left(\frac{e_0^g}{e_0}\right) \quad (28)$$

Finally, since all one-dimensional representations are necessarily Abelian we conclude that Θ satisfies the one-cocycle condition

$$\Lambda_{\varepsilon_1}\Theta(\vec{E}, \vec{B}; \vec{\varepsilon}_2) - \Lambda_{\varepsilon_2}\Theta(\vec{E}, \vec{B}; \vec{\varepsilon}_1) = 0$$

with its nontriviality following from the nontriviality of the Dirac monopole bundles.

In conclusion, we have established the nontriviality of the infinitesimal one-cocycle found in [1] by relating it to the Dirac monopole bundle. We have also reported its finite version. The presence of the one-cocycle establishes that in spin-charge separated Yang-Mills theory Lorentz boosts have two inequivalent representations, one acting linearly on the Grassmannian $Gr(2, 4)$ and the other projectively. The physical consequences of this observation remain to be clarified; in [1] a relation to Yang-Mills mass gap has been proposed.

Acknowledgements: We thank Ludvig Faddeev for discussions and comments. S.S. also thanks David Marsh for discussions. Our work has partially been supported by a VR Grant 2006-3376. The work by S.S. has also been partially supported by the Dmitri Zimin 'Dynasty' foundation, RSGSS-1124.2003.2; RFFI project grant 06-02-16786, by a STINT Institutional Grant IG2004-2 025. A.J.N. acknowledges the hospitality of CERN during the completion of this work.

* Electronic address: Antti.Niemi@physics.uu.se

† Electronic address: Sergey.Sлизовский@fysast.uu.se

- [1] L. D. Faddeev and A. J. Niemi, Nucl. Phys. **B776**, 38 (2007)
- [2] L.D. Faddeev and A. J. Niemi, Phys. Lett. **B525**, 195 (2002)
- [3] A. J. Niemi and N. R. Walet, Phys. Rev. **D72**, 054007 (2005)
- [4] W. V. D. Hodge and D. Pedoe, *Methods of Algebraic Geometry, Volume I* (Cambridge University Press, Cambridge, 1968)
- [5] D. Marsh, J. Phys. **A40**, 9919 (2007)
- [6] S. Slizovskiy, J. Phys. **A41**, 065402 (2008)