门头沟区 2018 年初三年级综合练习(二)

数学试卷

2018.6

牛

- 1. 本试卷共 10 页, 共三道大题, 28 道小题, 满分 100 分, 考试时间 120 分钟;
- 2. 在试卷和答题卡的密封线内准确填写学校名称、班级和姓名:

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效;

4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答;

5. 考试结束,将本试卷、答题卡和草稿纸一并交回.

一、选择题(本题共16分,每小题2分)

下列各题均有四个选项,其中只有一个是符合题意的.

- 1. 在 2018 政府工作报告中, 总理多次提及大数据、人工智能等关键词, 经过数年的爆发式 发展, 我国人工智能在 2017 年迎来发展的"应用元年", 预计 2020 年中国人工智能核心 产业规模超 1500 亿元,将 150 000 000 000 用科学计数法表示应为
 - A. 1.5×10^2 B. 1.5×10^{10} C. 1.5×10^{11}
- D. 1.5×10^{12}
- 2. 如果代数式 $\frac{x-2}{x^2+1}$ 的结果是负数,则实数 x 的取值范围是
 - A. x > 2
- B. x < 2
- C. $x \neq -1$ D. $x < 2 \exists x \neq -1$

- 3. 下列各式计算正确的是
 - A. $a + 2a^3 = 3a^4$ B. $a^2 \cdot a^3 = a^6$ C. $a^6 \div a^2 = a^4$ D. $(a^2)^3 = a^8$

- 4. 边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO 的度数为
 - A. 24°

B. 48°

C. 60°

D. 72°

5. 右图所示的图形,是下面哪个正方体的展开图

6. 数轴上分别有 $A \setminus B \setminus C$ 三个点,对应的实数分别为 $a \setminus b \setminus c$ 且满足, |a| > |c|, $b \cdot c < 0$,

则原点的位置

- A. 点 A 的左侧
- B. 点A点B之间 C. 点B点C之间 D. 点C的右侧
- 7. 如图,已知点 A, B, C, D 是边长为 1 的正方形的顶点,连接任意两点均可得到一条线 段,以下的树状图是所有可能发生的结果,在连接两点所得的所有线段中任取一条线段,

- 8. 某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,下图记录 了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x代表 的是最快的选手全程的跑步时间,y代表的是这两位选手之间的距离,下列说不合理的是
 - A. 出发后最快的选手与最慢的选手相遇了两次:
 - B. 出发后最快的选手与最慢的选手第一次相遇比 第二次相遇的用时短;

- C. 最快的选手到达终点时,最慢的选手还有415米未跑;
- D. 跑的最慢的选手用时 4'46".

二、填空题(本题共16分,每小题2分)

- 9. 两个三角形相似,相似比是 $\frac{1}{2}$,如果小三角形的面积是 9,那么大三角形的面积是_____.
- 10. 写出一个不过原点,且v随x的增大而增大的函数
- 11. 如果 $3a^2 + 4a 1 = 0$,那么 $(2a + 1)^2 (a 2)(a + 2)$ 的结果是
- 12. 某生产商生产了一批节能灯, 共计 10000 个, 为了测试节能灯的使用寿命(使用寿命大于 等于 6000 小时为合格产品), 从中随机挑选了 100 个产品进行测试, 有 5 个不合格产品, 预计这批节能灯有 个不合格产品.

13. 如图, ⊙*O* 的直径 *CD* 垂直弦 *AB* 于点 *E*, 且 *CE*=2, *AB*=8,则 *OB* 的长为 .

- 14. 某校为学生购买名著《三国演义》100 套、《西游记》80 套,共用了 12000 元,《三国演义》每套比《西游记》每套多 16 元,求《三国演义》和《西游记》每套各多少元? 设西游记每套 x 元,可列方程为______.
- 15. 如图:已知 $Rt\Delta ABC$,对应的坐标如下,请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A与点E重合、点B与点D重合,写出一种变化的过程_____.

16. 以下是通过折叠正方形纸片得到等边三角形的步骤

取一张正方形的纸片进行折叠,具体操作过程如下:

第一步:如图,先把正方形 ABCD 对折,折痕为 MN;

第二步:点 E 在线段 MD 上,将 $\triangle ECD$ 沿 EC 翻折,

点 D 恰好落在 MN 上,记为点 P,连接 BP

可得△BCP 是等边三角形

问题: 在折叠过程中,可以得到 PB=PC;

依据是______.

- 三、解答题(本题共 68 分, 第 17-24 题, 每小题 5 分, 第 25 题 6 分, 第 26、27 题 7 分, 第 28 题 8 分)解答应写出文字说明,演算步骤或证明过程.
- 17. 计算: $2^{-3} + |\sqrt{3} 2| + (3 \pi)^0 + 2\cos 30^\circ$.
- 18. 解不等式组: $\begin{cases} \frac{x}{2} 3 \leq 0, \\ 2x + 9 \leq 4(x+2). \end{cases}$
- 19. 己知: 如图,在 $Rt\triangle ABC$ 中, $\angle C=90$ °,点 D 在 CB 边上, $\angle DAB=\angle B$,点 E 在 AB 边上且满足 $\angle CAB=\angle BDE$.

求证: AE=BE.

- 20. 如图,在平面直角坐标系 xOy 中,一次函数 y=x 与反比例函数 $y=\frac{k}{x}$ $(k\neq 0)$ 的图象相交于点 M(2,2) .
 - (1) 求 k 的值;
 - (2) 点 P(0,a) 是 y 轴上一点,过点 P 且平行于 x 轴的直线分别与一次函数 y = x、反比例

函数 $y = \frac{k}{x}$ 的图象相交于点 $A(x_1,b)$ 、 $B(x_2,b)$,

当 $x_1 < x_2$ 时,画出示意图并直接写出a的取值范围.

21. 如图,以 BC 为底边的等腰 $\triangle ABC$,点 D, E, G 分别在 BC, AB, AC 上,且 EG //

BC, DE//AC, 延长 GE 至点 F, 使得 BF=BE.

- (1) 求证: 四边形 BDEF 为平行四边形;
- (2) 当 $\angle C$ =45°, BD=2时, 求D, F两点间的距离.

- 22. 已知: 关于 x 的一元二次方程 $ax^2 2(a-1)x + a 2 = 0$ (a > 0).
 - (1) 求证: 方程有两个不相等的实数根;
 - (2) 设方程的两个实数根分别为 x_1 , x_2 (其中 $x_1 > x_2$). 若 y 是关于 a 的函数,且 $y = ax_2 2x_1$, 求这个函数的表达式.

- 23. 如图,BC 为 $\odot O$ 的直径,CA 是 $\odot O$ 的切线,连接 AB 交 $\odot O$ 于点 D,连接 CD, $\angle BAC$ 的平分线交 BC 于点 E,交 CD 于点 F.
 - (1) 求证: CE=CF;
- (2) 若 $BD = \frac{4}{3}DC$,求 $\frac{DF}{CF}$ 的值.

24. 在"朗读者"节目的影响下,某中学在暑期开展了"好书伴我成长"读书话动,并要求读书要细读,最少要读完 2 本书,最多不建议超过 5 本。初一年级 5 个班,共 200 名学生,

李老师为了了解学生暑期在家的读书情况,给全班同学布置了一项调查作业**: 了解初一年级学生暑期读书情况**.

班中三位同学各自对初一年级读书情况进行了抽样调查,并将数据进行了整理,绘制的统计图表分别为表 1、表 2、表 3.

表 1: 在初一年级随机选择 5 名学生暑期读书情况的统计表

阅读书数量(本)	2	3	4	5
人数	2	1	1	1

表 2: 在初一年级"诵读班"班随机选取 20 名学生暑期读书情况的统计表

阅读书数量 (本)	2	3	4	5
人数	0	1	4	15

表 3: 在初一年级随机选取 20 名学生暑期读书情况的统计表

阅读书数量 (本)	2	3	4	5
人数	2	8	6	4

问题 1: 根据以上材料回答: 三名同学中,哪一位同学的样本选取更合理,并简要说明其他两位同学选取样本的不足之处;

老师又对合理样本中的所有学生进行了"阅读动机"的调研,并制作成了如下统计图. 问题 2: 通过统计图的信息你认为"阅读动机"

在"40%"的群体,暑期读几本书的可能性大, 并说出你的理由.

阅读动机调查

25. 如图, $\angle MAN = 55^{\circ}$,在射线 AN 上取一点 B,使 AB = 6cm,过点 B 作 $BC \perp AM$ 于点 C,点 D 是线段 AB 上的一个动点,E 是 BC 边上一点,且 $\angle CDE = 30^{\circ}$,设 AD = x cm,

BE=y cm,探究函数 y 随自变量 x 的变化而变化的规律.

- (1) 取指定点作图. 根据下面表格预填结果,先通过作图确定 AD=2cm 时,点 E 的位置,测量 BE 的长度。
- ①根据题意,在答题卡上补全图形;
- ②把表格补充完整:通过取点、画图、测量,得到了x与y的几组对应值,如下表:

<i>x</i> / cm	0	1	2	3	4	5	6
y/cm	2.9	3.4		3.3	2.6	1.6	0

(说明: 补全表格时相关数值保留一位小数)

③建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

- (2) 结合画出的函数图象,解决问题: 当AD = BE时,x的取值约为_____cm.
- 26. 在平面直角坐标系 xOy 中,有一抛物线其表达式为 $y = x^2 2mx + m^2$.
 - (1) 当该抛物线过原点时, 求m的值;

- (2) 坐标系内有一矩形 OABC, 其中 A(4,0) 、 B(4,2).
 - ①直接写出 C 点坐标;
 - ②如果抛物线 $y = x^2 2mx + m^2$ 与该矩形有 2 个交点, 求m 的取值范围.

- 27. 如图,在正方形 ABCD 中,连接 BD,点 E 为 CB 边的延长线上一点,点 F 是线段 AE 的中点,过点 F 作 AE 的垂线交 BD 于点 M, 连接 ME、MC.
 - (1) 根据题意补全图形,猜想∠MEC 与∠MCE 的数量关系并证明;
 - (2) 连接 FB, 判断 FB、FM 之间的数量关系并证明.

28. 在平面直角坐标系 xOy 中的某圆上,有弦 MN,取 MN 的中点 P,我们规定:点 P 到某点(直线)的距离叫做"弦中距",用符号" d_+ "表示.

以W(-3,0)为圆心,半径为2的圆上.

- (1) 已知弦 MN 长度为 2.
- ①如图 1: 当 MN//x 轴时,直接写出到原点 O 的 d_+ 的长度;
- ②如果 MN 在圆上运动时,在图 2 中画出示意图,并直接写出到点 O 的 d_+ 的取值范围.
- (2) 已知点 M(-5,0),点 N 为 $\odot W$ 上的一动点,有直线 y=x-2,求到直线 y=x-2 的 d_+

门头沟区 2018 年初三年级综合练习(二)

数学答案及评分参考

初三一模 数学试卷 第9页 (共10页)

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8	
答案	C	В	С	A	D	С	D	D	

二、填空题(本题共16分,每小题2分)

题号	9	10	11	12	13	14			
答案	36	答案不唯一	6	500	5	100(x+16) + 80x = 12000			
题号	15								
答案	答案不唯一(例: 先将△ABC以点 B 为旋转中心顺时针旋转 90, 再将得到的图形 向右平移 2 个单位向下平移 2 个单位即可)								
题号	16								
答案	线段垂直平分线上的点到线段两端的距离相等								

三、解答题(本题共 68 分, 第 17 题-24 题, 每小题 5 分, 第 25 题 6 分, 第 26 题 7 分, 第 27 题 7 分, 第 28 题 8 分)解答应写出文字说明、演算步骤或证明过程

17. (本小题满分5分)

18. (本小题满分5分)

19.解 (本小题满分5分)

 \therefore ∠C=90°, \therefore ∠CAB+∠B=90°, ········1 \Rightarrow

 $\therefore \angle CAB = \angle BDE$

A E B

20. (本小题满分 5 分)

(1)
$$: y = \frac{k}{x}$$
 ($k \neq 0$) 相交于点 $M(2,2)$.

(2) 示意图正确 分

$$a < -2$$
 或 $0 < a < 2$ ·······5 分

- 21. (1) 证明: ∵△*ABC* 是等腰三角形, ∴∠*ABC*=∠*C*,
 - :EG//BC, DE//AC,
 - ∴ $\angle AEG = \angle ABC = \angle C$, 四边形 *CDEG* 是平行四边形,
 - ∴ ∠DEG=∠C,1 分
 - $\therefore BE=BF$, $\therefore \angle BFE=\angle BEF=\angle AEG=\angle ABC$,
 - $\therefore \angle F = \angle DEG, \quad \therefore BF // DE,$

 - (2) 解: ::∠C=45°, ::∠ABC=∠BFE=∠BEF=45°,
 - $\therefore \triangle BDE$ 、 $\triangle BEF$ 是等腰直角三角形,

$$\therefore BF = BE = \frac{\sqrt{2}}{2} BD = \sqrt{2} , \dots$$

作 $FM \perp BD$ 于 M,连接 DF,如图所示: 则 $\triangle BFM$ 是等腰直角三角形,

在 Rt
$$\triangle DFM$$
 中,由勾股定理得: $DF = \sqrt{1^2 + 3^2} = \sqrt{10}$

即
$$D$$
, F 两点间的距离为 $\sqrt{10}$ 5 分

22 (本小题满分5分)

解: (1) 证明: $ax^2 - 2(a-1)x + a - 2 = 0(a > 0)$ 是关于 x 的一元二次方程,

 $Q \Delta = [-2(a-1)]^2 - 4a(a-2) = 4 > 0$

(2) 解:由求根公式,得 $x = \frac{2(a-1)\pm 2}{2a}$.

$$\therefore x = 1 \stackrel{?}{\boxtimes} x = 1 - \frac{2}{a}.$$

$$Q a > 0$$
, $x_1 > x_2$,

$$\therefore x_1 = 1, \quad x_2 = 1 - \frac{2}{a}.$$

分

$$\therefore y = ax_2 - 2x_1 = a - 4$$
.5

分

23. (本小题满分5分)

- (1) 证明:
- ∵BC 为直径,∴∠BDC=∠ADC=90°

- ::AC 是⊙O 的切线, $:: \angle ACB=90^{\circ}$
- ∴∠2+∠5=90°
- *∵AE* 平分∠*BAC*, ∴∠1=∠2

(2) 由(1) 可知∠1=∠2, ∠3=∠5

- ∴ ∠3=∠5
- : ∠3=∠4 : .∠4=∠5

$$\therefore BD = \frac{4}{3}DC, \ \angle BDC = 90^{\circ} \ \therefore \tan \angle ABC = \frac{3}{4}$$

 $\therefore \angle B + \angle BAC = 90^{\circ}$, $\angle ACD + \angle BAC = 90^{\circ}$

$$\therefore \angle ACD = \angle B, \quad \therefore \tan \angle ACD = \frac{3}{4} \dots 4$$

$$\therefore \sin \angle ACD = \frac{AD}{AC} = \frac{3}{5}$$

$$\therefore \frac{DF}{CF} = \frac{AD}{AC} = \frac{3}{5}$$

24. (1) 问题 1

(2) 读 4 本的可能性更大,

用其他"阅读动机"数据所占的比例和阅读数量的可能性去说明。

25. (本小题满分6分)

②3.5 -----2分

③坐标系正确 ……3分

描点正确 ……4 分

连线正确5 分

(3) 3.2 ………6分

26. (本小题满分 7 分)

(1) 解: 因为 $y = x^2 - 2mx + m^2$ 的图象过原点

$$\therefore 0 = 0^2 + 2m \cdot 0 + m^2,$$

解得
$$m = 0$$
 ···················· 2 分

(2)
$$\bigcirc C(0,2)$$

②解: 由于
$$y = x^2 - 2mx + m^2 = (x - m)^2$$

所以该函数图像为开口向上, 顶点在 x 轴上

当对称轴右侧过点C(0,2),时图象与矩形有1个交点

 $2 = (0 - m)^2$,解得 $m = \sqrt{2}$ (舍去)或 $m = -\sqrt{2}$

当图象过原点时,图象与矩形有2个交点

由
$$(1)$$
可得 $m=0$

同理: 当图象过点
$$A(4,0)$$
 时解得 $m=4$

.....6 分

当图象对称轴左侧部分过B(4,2)是,解得 $m=4+\sqrt{2}$

所以,当 $4 \le m < 4 + \sqrt{2}$

综上所述,当 $-\sqrt{2}$ <m \leq 0或4 \leq m<4+ $\sqrt{2}$ 时,图象与矩形有 2 个交点··········7 分

27. (本小题满分 7 分)

 $\angle MEC = \angle MCE$ 2 %

证明: 连接 AM

- ∵点F是AE的中点, FM ⊥AE
- $\therefore MA = ME$
- ::点 A、点 C 是关于正方形 ABCD 对角线 BD 所在直线的对称点 B

- $\therefore ME = MC$
- ∴ ∠MEC = ∠MCE ·······4 分

- :点 M 在正方形对角线上,可得△MAD≌△MCD
- $\therefore \angle MAD = \angle MCD$
- $\therefore \angle MEC = \angle MCE$
- $\therefore \angle MEC + \angle MAD = \angle DCM + \angle MCE = 90^{\circ}$
- ∵ *AD*// *CE*
- $\therefore \angle DAE + \angle CEA = 180^{\circ}$
- $\therefore \angle MAE + \angle MEA = 90^{\circ}$
- $\therefore \angle AME = 90^{\circ}$
- ∴ △EMA 是等腰直角三角形 ························6 分

$$\therefore FB = \frac{1}{2}AE$$

28. (本小题满分8分)

解: (1)①. 2√3 ···········2 分

②示意图正确 ------3分

(2) 由于 PW 是 ① W 的弦心距

所以 PW ⊥ MN

所以点 N 在运动过程中,点 P 在以 MW 为直径的圆上 · · · · · · · · · · 5 分

由图可知直线与点 P 的运动轨迹形成的圆相切时,且

弦中距 d_+ 过圆心时,距离最大·············6分

- ∵ y=x-2 的图象与 x 轴夹角是 45°
- ∴由图可得 DE = 6

在等腰直角三角形 DFM 中

可得 $DE = 3\sqrt{2}$, 所以 $PL = 3\sqrt{2} + 1$

即: d_+ 的最大值为 $PL = 3\sqrt{2} + 1$

