Samuel Lambert

1

$$A \subseteq B \Leftrightarrow A \cup B = B$$

 \Longrightarrow

supposons $A \subseteq B$

soit $x \in A$, comme $A \subseteq B$ $x \in B$ donc $A \cup B = B$

 \iff

supposons $A \cup B = B$ alors

$$A \cup B = B \implies \nexists x \in A, x \notin B \implies A \subseteq B$$

2

- 1. soit $m\in\mathbb{N}$, $m^2+m=m(m+1)$ donc :
- si m est pair alors m(m+1) peut s'écrire $2(\frac{m}{2}(m+1))$ avec $\frac{m}{2}, m+1 \in \mathbb{N}$ donc $m(m+1)=m^2+m$ peut s'écrire 2k avec $k \in \mathbb{N}$ et est donc pair
- si m est impair alors m(m+1) peut s'écrire $m\left(\frac{(m+1)}{2}\times 2\right)=\frac{m(m+1)}{2}\times 2$ or $\frac{m+1}{2}\in\mathbb{N}$ car m est impair donc m+1 est pair donc $\frac{m(m+1)}{2}\in\mathbb{N}$ aussi donc $m(m+1)=m^2+m$ peut s'écrire 2k avec $k\in\mathbb{N}$ et est donc pair
- 2. si n^2-1 n'est pas un multiple de 8 alors on a $n^2-1=8k+m$ avec $k\in\mathbb{N}$ et $m\in[1,7]$

$$n^{2} - 1 = 8k + m$$

$$\implies n^{2}k - k = 8k^{2} + mk$$

$$\implies n^{2}k = 8k^{2} + k + mk$$

$$\implies n = \sqrt{\frac{8k^{2} + k + mk}{k}}$$

$$\implies n = \sqrt{8k + m + 1}$$

$$\implies n = 2\sqrt{2k + \frac{m}{4} + \frac{1}{4}}$$

$$\implies n = 2\sqrt{\frac{8k + m + 1}{4}}$$

$$\implies n = 2\sqrt{\frac{8k + m + 1}{4}}$$

objectif : $n=x^2+x$ avec $x\in\mathbb{N}$

3

soit $m \in \mathbb{Z}$ et $n = m^2$

alors

$$n=m^2 \ 2n=2m^2 \ 2n=\sqrt{2}\sqrt{2}m^2$$

 $\sqrt{2}$ est irrationnel donc $\sqrt{2}\sqrt{2}m^2$ n'est pas un entier