Branch & Bound

Alberto Parravicini

Université libre de Bruxelles

June 1, 2017

A brief introduction...

Consider a generic optimization problem:

$$max\{c(x):x\in X\}$$

Often too hard to solve directly.

Branch & Bound finds the optimal solutions thanks to:

- → Branch: find the optimal solution by exploring smaller sub-problems.
- → **Bound**: use bounds on the objective function to implicitly enumerate all possible solutions.

Branching

Observation: if we partition the feasible region X into $X = X_1 \cup ... \cup X_k$ and let $z_i = max\{c(x) : x \in X_i\}$, then:

$${\color{red} \rightarrow} \ z = max_{1 \leq i \leq z_i}$$

Each subset X_i can be split even further, giving an enumeration tree.

We can't explore all possible branches though, they are too many!

Bounding

We can use *upper* and lower bounds to cut portions of the feasible region **X**.

Observation: given $X = X_1 \cup ... \cup X_k$, if \overline{z}_k is an *upper* bound for X_k then $max_k\overline{z}_k$ } is an *upper* bound for X. Also, if \underline{z}_k is a *lower* bound for X_k then $max_k\{\underline{z}_k\}$ is a *lower* bound for X.

Lower bounds are feasible solutions, while upper bounds can be found by solving a relaxation. In **ILP**, the linear relaxation will provide an upper bound $\mathbf{x}_{\mathbf{LP}}^*$.

Pruning criteria

When can we prune a node of the tree?

- ightarrow **Optimality**: if $\overline{z}_i = \underline{z}_i$ then we have an optimal solution of X_i .
- \rightarrow Infeasibility: if $X_i = \emptyset$.
- \rightarrow **Bounding**: if the **upper** bound \overline{z}_i is \leq than some other **lower** bound \underline{z}_j , or of the best feasible solution found so far.

In practice...

→ How are branches defined?

In **ILP**, pick a fractional variable $\mathbf{x_h}$ in $\mathbf{x_{LP}^*}$, and define 2 sub-problems:

```
\begin{aligned} & z_{ILP}^1 = max\{cx: x \in X, \mathbf{x_h} \leq \lfloor \mathbf{a_h} \rfloor\} \\ & z_{ILP}^2 = max\{cx: x \in X, \mathbf{x_h} \geq \lceil \mathbf{a_h} \rceil\} \end{aligned}
```

→ Which variable is chosen?

- The most fractional.
- **Strong Branching**: try all of them, keep the one with highest upper bound.
- Other (smallest sub-tour, etc...)

→ Which branch is chosen?

- **Depth First**, quickly find a feasible solution; easy to re-optimize.
- **Best Bound**, find the upper bounds of the children and choose the best (slow!).

Further optimizations

→ Generalized upper bounds

Used in constraints like $\sum_{i=1}^{n} x_i = 1$; fixing one $x_i = 1$ creates unbalanced tree; instead, use:

$$\begin{split} & \textbf{X}_1 = \textbf{x}: \textbf{x}_{\textbf{i}} = \textbf{0}, \textbf{i} = \textbf{0}, \dots, \textbf{r} \\ & \textbf{X}_2 = \textbf{x}: \textbf{x}_{\textbf{i}} = \textbf{0}, \textbf{i} = \textbf{r} + \textbf{1}, \dots, \textbf{n} \\ & \textbf{r} = \textbf{min} \{ \textbf{t}: \sum_{\textbf{i}=\textbf{1}}^{\textbf{t}} \textbf{x}_{\textbf{i}} > = \frac{\textbf{1}}{\textbf{2}} \} \end{split}$$

→ Constraints preprocessing

→ Branch & Cut

- Combine **Gomory cuts** with **Branch & Bound**.
- At each node, add cuts to the relaxation of the sub-problem.
- Branch only when adding more cuts stops being effective.
- Computational tradeoff, as cuts are valid only for a node and its children. Very effective in practice, however.

THANK YOU!