第三节

任意项级数的审敛法

- 一、主要内容
- 一、典型例题
- 三、同步练习
- 四、同步练习解答

一、主要内容

1. 定义 交错级数:

$$u_1 - u_2 + u_3 - \dots + (-1)^{n-1} u_n + \dots (u_n > 0)$$

2.定理 (交错级数审敛法) 若交错级数满足:

1)
$$u_n \ge u_{n+1} \ (n=1,2,\cdots);$$

$$\lim_{n\to\infty}u_n=0,$$

则 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛,且其和 $S \leq u_1$,

其余项满足 $|r_n| \leq u_{n+1}$.

称满足条件 1), 2)的级数 为莱布尼茨 交错级数

注 1° 莱布尼茨定理中的条件(1)可换成:

$$u_{n+1} \le u_n \quad (n \ge N)$$

$$2^{\circ} \{u_n\}$$
不单调 $\Rightarrow \sum_{n=1}^{\infty} (-1)^{n-1} u_n \ (u_n > 0)$ 发散;

反例: 对于
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2 + (-1)^n}{2^n}$$
,

$$u_n = \frac{2 + (-1)^n}{2^n} > 0$$

虽然 $\{u_n\}$ 不单调,事实上,

$$u_{2k-1} = \frac{1}{2^{2k-1}} = \frac{2}{2^{2k}} < u_{2k} = \frac{3}{2^{2k}}, \qquad u_n = \frac{2 + (-1)^n}{2^n}$$

$$u_{2k} = \frac{3}{2^{2k}} > u_{2k+1} = \frac{1}{2^{2k+1}}$$

但
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2 + (-1)^n}{2^n} = \sum_{n=1}^{\infty} [(-\frac{1}{2})^{n-1} - \frac{1}{2^n}]$$
 收敛

3° {u_n}单调增加

$$\Rightarrow \sum_{n=1}^{\infty} (-1)^{n-1} u_n \ (u_n > 0) \not \leq \mathring{\mathbb{R}}; \quad (\because \lim_{n \to \infty} u_n \neq 0)$$

4° 用莱布尼茨判别法判断交错级数

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n \quad (u_n > 0)$$

是否收敛时,要考察 $\{u_n\}$ 是否单调减少,通常有以下三种方法:

(1) 比值法:
$$\frac{u_{n+1}?}{u_n} \le 1 \quad (n \ge N)$$

(2) 差值法:
$$u_{n+1} - u_n \le 0$$
 $(n \ge N)$

(3) 函数法: 由 u_n 找一个可导函数f(x),

使 $f(n) = u_n$,再考察 f'(x) < 0?

3. 定义

$$(1) \sum_{n=1}^{\infty} u_n$$
 绝对收敛: 若 $\sum_{n=1}^{\infty} |u_n|$ 收敛;

(2)
$$\sum_{n=1}^{\infty} u_n$$
 条件收敛: 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 但 $\sum_{n=1}^{\infty} |u_n|$ 发散.

4. 定理(绝对收敛与收敛的关系)

若级数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛,则该级数必收敛.

但特殊地,有

定理 设任意项级数 $\sum_{n=1}^{\infty}$ u_n 满足

$$\lim_{n\to\infty} \frac{|u_{n+1}|}{|u_n|} = \rho > 1 \quad (\text{x $\lim_{n\to\infty} \sqrt[n]{|u_n|} = \rho > 1$})$$

则级数 $\sum_{n=1}^{\infty} |u_n|$ 发散,且 $\sum_{n=1}^{\infty} |u_n|$ 发散.

二、典型例题

例1 级数 $\sum_{n=1}^{\infty} \frac{\sin n!}{n^2}$ 条件收敛、绝对收敛还是发散?

$$|\mathbf{m}| : |u_n| = \left| \frac{\sin n!}{n^2} \right| \le \frac{1}{n^2}, \ \ \widetilde{m} \sum_{n=1}^{\infty} \frac{1}{n^2}$$
收敛,

即
$$\sum_{n=1}^{\infty} \frac{\sin n!}{n^2}$$
 绝对收敛.

例2 判定交错级数 $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+10}$ 的敛散性.

$$\mu_n = \frac{\sqrt{n}}{n+10}, \quad \nu_n = (-1)^n u_n$$

1°绝对收敛性

而
$$\sum_{n=1}^{\infty} \frac{1}{n+10}$$
 发散, $\sum_{n=1}^{\infty} |v_n|$ 发散

2°条件收敛性

分析 需判定
$$u_n = \frac{\sqrt{n}}{n+10}$$
 递减、趋于零

$$u_n = \frac{\sqrt{n}}{n+10} \stackrel{r}{=} f(n), \quad f(x) = \frac{\sqrt{x}}{x+10} \quad (x>0)$$

$$f'(x) = \frac{\frac{1}{2\sqrt{x}} \cdot (x+10) - \sqrt{x}}{(x+10)^2} = \frac{10-x}{2\sqrt{x}(x+10)^2}$$

$$< 0 \quad (x > 10)$$

 \therefore 当x > 10时,f(x)单调减少,

故当
$$n > 10$$
时, $f(n+1) < f(n)$

$$\mathbb{P} \quad u_{n+1} < u_n \quad (n > 10)$$

$$3 : \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{\sqrt{n}}{n+10} = \lim_{n \to \infty} \frac{1}{\sqrt{n} + \frac{10}{\sqrt{n}}} = 0$$

: 由菜尼布茨判别法知
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+10}$$
 收敛.

综合1°, 2° 可知:
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+10}$$
 条件收敛.

三、同步练习

1. 判定下列的敛散性:

1)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}} = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \dots + (-1)^{n-1} \frac{1}{\sqrt{n}} + \dots$$

2)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!} + \dots$$

3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2^n} = \frac{1}{2} - \frac{2}{2^2} + \dots + (-1)^{n-1} \frac{n}{2^n} + \dots$$

2. 证明
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$$
 绝对收敛.

3. 证明
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$$
 绝对收敛.

4. 读
$$u_n \neq 0 (n = 1, 2, 3, \cdots)$$
, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$, 则
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$$
 ().

- (A) 发散; (B) 绝对收敛;
- (C)条件收敛; (D) 收敛性根据条件不能确定.

四、同步练习解答

1. 判定下列的敛散性:

1)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}} = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \dots + (-1)^{n-1} \frac{1}{\sqrt{n}} + \dots$$
 收敛

2)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!} + \dots$$
 收敛

3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2^n} = \frac{1}{2} - \frac{2}{2^2} + \dots + (-1)^{n-1} \frac{n}{2^n} + \dots$$
 \text{\text{\$\sum}\$ \text{\text{\$\sigma}\$}}

问题 上述级数的绝对值级数 > |vn| 是否收敛?

1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 发散; 2) $\sum_{n=1}^{\infty} \frac{1}{n!}$ 收敛; 3) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 收敛.

2. 证明 $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$ 绝对收敛.

证 (1) 因
$$\left|\frac{\sin n\alpha}{n^4}\right| \leq \frac{1}{n^4}$$
,而 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ 收敛,

故
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$$
 收敛,

因此
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$$
 绝对收敛.

3. 证明 $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$ 绝对收敛.

因
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{\frac{e^{n+1}}{e^n}}{\frac{e^n}{e^n}} = \lim_{n \to \infty} \frac{1}{e} \left(\frac{n+1}{n}\right)^2$$
$$= \frac{1}{e} < 1$$

故
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$$
 收敛,因此 $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$ 绝对收敛.

4. 读
$$u_n \neq 0 (n=1,2,3,\cdots)$$
, 且 $\lim_{n\to\infty} \frac{n}{u_n} = 1$, 则
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right) \quad (C)$$
.

(C)条件收敛; (D)收敛性根据条件不能确定.

分析 由
$$\lim_{n\to\infty}\frac{n}{u_n}=1$$
, 知 $\frac{1}{u_n}\sim\frac{1}{n}$, 选 (B) 错;

$$\mathcal{R} S_n = -\left(\frac{1}{u_1} + \frac{1}{u_2}\right) + \left(\frac{1}{u_2} + \frac{1}{u_3}\right) - \left(\frac{1}{u_3} + \frac{1}{u_4}\right) + \left(\frac{1}{u_4} + \frac{1}{u_5}\right) \\
+ \dots + \left(-1\right)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right) = -\frac{1}{u_1} + \left(-1\right)^{n+1} \frac{1}{u_{n+1}}$$

