Contents

0.1	Singula	ar value decomposition									1
	0.1.1	Properties									1
	0.1.2	Calculating the SVD									1

0.1 Singular value decomposition

The singular value decomposition of $m \times n$ matrix M is:

$$M=U\Sigma V^*$$

Where:

- U is a unitary matrix $(m \times m)$
- Σ is a diagonal matrix with non-negative real numbers $(m \times n)$
- V is a unitary matrix $(n \times n)$

 Σ is unique. U and V are not.

0.1.1 Properties

$$\begin{split} M^*M &= U \Sigma^2 U^* \\ (M^*M)^{-1} &= V \Sigma^{-2} V^* \end{split}$$

0.1.2 Calculating the SVD

The SVD is generally calculated iteratively.