Search via Parallel Lévy Walks on \mathbb{Z}^2

Francesco d'Amore

Joint work with Andrea Clementi, George Giakkoupis, and Emanuele Natale

Seminario di Logica e Informatica Teorica Dipartimento di Matematica e Fisica Università degli studi Roma Tre 4 June 2021

What are Lévy walks?

Lévy walk (informal):

A Lévy walk is a random walk whose step-length density distribution is proportional to a power-law, namely, for each $d \in \mathbb{R}$, $f(d) \sim 1/d^{\alpha}$, for some $\alpha > 1$

Note: the speed of the walk is constant

Movement models and foraging theory

Lévy walks are used to model **movement patterns** [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Austrialian desert ants

Movement models and foraging theory

Lévy walks are used to model **movement patterns** [Reynolds, Biology Open 2018]

Examples:

- T cells within the brain
- swarming bacteria
- midge swarms
- termite broods
- schools of fish
- Australian desert ants
- a variety of molluscs

Austrialian desert ants

Widely employed in the Foraging theory

Some fun: mussels Lévy walk video [de Jager et al., Science 2011]

Foraging theory

Setting: \bullet a density distribution ρ in \mathbb{R}^n describing food locations

• an uninformed walker searching for food

Foraging theory

Setting: \bullet a density distribution ρ in \mathbb{R}^n describing food locations

an uninformed walker searching for food

Foraging theory

Setting: • a density distribution ρ in \mathbb{R}^n describing food locations

an uninformed walker searching for food

Task: find a strategy which maximizes the expected food discovery rate

Lévy walk optimality

[Viswanathan et al., Nature 1999] takes into account two different settings:

- non-destructive foraging (the food regenerates once found)
- destructive foraging (the food does not regenerate once found)

Lévy walk optimality

[Viswanathan et al., Nature 1999] takes into account two different settings:

- non-destructive foraging (the food regenerates once found)
- destructive foraging (the food does not regenerate once found)

Result: in order to maximize the expected food discovery rate, the walker should perform

Lévy walk optimality

[Viswanathan et al., Nature 1999] takes into account two different settings:

- non-destructive foraging (the food regenerates once found)
- destructive foraging (the food does not regenerate once found)

Result: in order to maximize the expected food discovery rate, the walker should perform

- \bullet a Lévy walk with exponent $\alpha=2$, for non-destructive foraging
- a ballistic walk, for destructive foraging

Simulations by [Viswanathan et al., 1999]

Non-destructive foraging is more realistic

This has lead to an evolutionary hypothesis

Non-destructive foraging is more realistic

This has lead to an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks

Non-destructive foraging is more realistic

This has lead to an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks

These results shaped much of subsequent research

The performance of Lévy walks has been analyzed in a wide range of search problems

Vector**Stock**®

VectorStock.com/41914

Non-destructive foraging is more realistic

This has lead to an evolutionary hypothesis

The Lévy flight foraging hypothesis [Viswanathan et al., Physics of Life Reviews 2008]: since Lévy flights/walks optimize random searches, biological organisms must have therefore evolved to exploit Lévy flights/walks

These results shaped much of subsequent research

The performance of Lévy walks has been analyzed in a wide range of search problems

We focus on the ANTS problem

VectorStock® VectorStock.com/41914

The ANTS problem

Introduced by [Feinerman et al., PODC 2012]

- Setting: \bullet k (mutually) independent walkers (agents) start moving on \mathbb{Z}^2 from the origin
 - time is synchronous and marked by a global clock
 - ullet one special node $\mathcal{P} \in \mathbb{Z}^2$, the *target*, placed by an adversary at unknown (Manhattan) distance \(\ell \) from the origin

The ANTS problem

Introduced by [Feinerman et al., PODC 2012]

- Setting: \bullet k (mutually) independent walkers (agents) start moving on \mathbb{Z}^2 from the origin
 - time is synchronous and marked by a global clock
 - one special node $\mathcal{P} \in \mathbb{Z}^2$, the target, placed by an adversary at unknown (Manhattan) distance \(\ell \) from the origin

Task: find the target as fast as possible

A lower bound on the hitting time

[Feinerman et al., PODC 2012] shows the following:

Lemma: for any $k \ge 1$, and for any search algorithm \mathcal{A} , the hitting time to find \mathcal{P} is $\Omega\left(\ell^2/k + \ell\right)$ both with constant probability and in expectation

Proof:

A lower bound on the hitting time

[Feinerman et al., PODC 2012] shows the following:

Lemma: for any $k \ge 1$, and for any search algorithm \mathcal{A} , the hitting time to find \mathcal{P} is $\Omega\left(\ell^2/k + \ell\right)$ both with constant probability and in expectation

Proof:

- $|B_{\ell}((0,0))| = \ell^2$
- set $t = \ell^2/(4k)$
- ullet within time 2t, at most $2kt=\ell^2/2$ nodes covered
- the adversary locates the target in the other half of the ball
- ullet probability at least 1/2 the treasure is not found within time $2t+\ell$
- ullet H= first hitting time for the treasure, then

$$\mathbb{E}\left[\mathsf{H}\right] \geq 2t \cdot \frac{1}{2} + \ell = \ell^2/(4k) + \ell.$$

area covered by the $\stackrel{'}{k}$ agents

[Feinerman et Korman, DC 2017] proposes many solutions to the problem

Many considered settings, in which

- agents exchange information at the source node
- ullet agents receive some advice on the number of agents k
- there is no communication and no advice

[Feinerman et Korman, DC 2017] proposes many solutions to the problem

Many considered settings, in which

- agents exchange information at the source node
- ullet agents receive some advice on the number of agents k
- there is no communication and no advice

We focus on the case **no advice**, **no communication**

[Feinerman et Korman, DC 2017] proposes many solutions to the problem

Many considered settings, in which

- agents exchange information at the source node
- ullet agents receive some advice on the number of agents k
- there is no communication and no advice

We focus on the case no advice, no communication

Their best algorithm in this case achieves expected hitting time

$$\mathcal{O}\left(\left(\ell^2/k+\ell\right)\log^{1+\epsilon}\ell\right)$$
,

for any fixed constant $\epsilon > 0$

Uniform algorithm proposed in [Feinerman et Korman, DC 2017]

```
(idea)

i fix a subset of k_i agents to be moved

ii fix a ball of some radius \ell_i

iii agents go to random nodes in the ball

iv agents perform a spiral search of length d_i around the chosen nodes

v agents return to the source node

vi increase k_i, \ell_i, d_i and repeat (i)-(v)
```

However, the above algorithm is not that natural

Uniform algorithm proposed in [Feinerman et Korman, DC 2017] $\begin{tabular}{l} (idea) \\ i fix a subset of k_i agents to be moved \\ ii fix a ball of some radius ℓ_i \\ iii agents go to random nodes in the ball \\ iv agents perform a spiral search of length d_i around the chosen nodes v agents return to the source node <math display="block"> \begin{tabular}{l} (idea) \\ (idea) \\ (idea) \\ (iii) (idea) \\ (iii)$

However, the above algorithm is not that natural

vi increase k_i , ℓ_i , d_i and repeat (i)-(v)

[Feinerman et Korman, DC 2017] proposes a more natural algorithm, the Harmonic search algorithm (HSA)

The Harmonic search algorithm

HSA worsens performance, but increases probability: the hitting time is

$$\mathcal{O}\left(\ell^{2+\delta}/k+\ell\right)$$

with probability $1 - \epsilon$ for any fixed constants $0 < \delta$, $\epsilon < 1$

11 - 1

The Harmonic search algorithm

HSA worsens performance, but increases probability: the hitting time is

$$\mathcal{O}\left(\ell^{2+\delta}/k+\ell\right)$$

with probability $1 - \epsilon$ for any fixed constants $0 < \delta$, $\epsilon < 1$

HSA: each agent

a) samples a jump-length d with a power-law distribution with exponent $\alpha=1+\delta$ (small)

- b) (ballistic diffusion) moves to a destination at distance d chosen u.a.r.
- c) (normal diffusion) starts a spiral search for $d^{\delta+2}$ steps
- d) returns in the origin and repeats

11 - 2

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(iii) we show how the Lévy walks can be employed to give a natural, almost-optimal solution to the ANTS problem (no advice, no communication)

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(iii) we show how the Lévy walks can be employed to give an almost-optimal solution to the ANTS problem

Defining the discrete Lévy walk

Two choices to make:

- define the jump-length distribution
- define a notion of approximating a line-segment

Jump length distribution

- d = 0 with probability 1/2
- $d \ge 1$ with probability c_{α}/d^{α}

Approximation of a line-segment

Discrete Lévy walk

Let $\alpha > 1$ be a real constant

Lévy walk: the agent

- a) chooses a distance $d\in\mathbb{N}$ as follows: d=0 w.p. 1/2, and $d\geq 1$ w.p. c_{α}/d^{α}
- b) chooses a destination u.a.r. among those at distance d
- c) walks along an approximating path for d steps, one edge at a time, crossing d nodes
- d) repeats the procedure

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(iii) we show how the Lévy walks can be employed to give an almost-optimal solution to the ANTS problem

Known facts about the continuous Lévy walk

- $1 < \alpha \le 2$ ballistic diffusion (fig.s A and B)
- $2 < \alpha < 3$ super diffusion (fig. C)
- $3 \le \alpha$ normal diffusion (fig. D)

Other known facts

Expected jump-length

- $1 < \alpha \le 2$: $\int_1^\infty x^{-\alpha+1} dx = \infty$
- $2 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

Jump-length second moment

- $1 < \alpha \le 3$: $\int_1^\infty x^{-\alpha+2} dx = \infty$
- $3 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

Other known facts

Expected jump-length

- $1 < \alpha \le 2$: $\int_1^\infty x^{-\alpha+1} dx = \infty$
- $2 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

Jump-length second moment

- $1 < \alpha \le 3$: $\int_1^\infty x^{-\alpha+2} dx = \infty$
- $3 < \alpha$: $\int_{1}^{\infty} x^{-\alpha+1} dx = \Theta(1)$

The secret lies in the range $2 < \alpha < 3...$

Three ranges for k and ℓ

Recall: ℓ target distance, k number of agents

Three different possible settings:

1. close target: $\ell \leq k/\mathsf{polylog}(k)$

2. far target: $k/\operatorname{polylog}(k) \leq \ell \leq \exp\left(k^{\Theta(1)}\right)$

3. very far target: $\exp\left(k^{\Theta(1)}\right) \leq \ell$

Close target: $\ell \le k/\mathsf{polylog}\left(k\right)$

Best strategy = ballistic walks: any α in (1,2]

Close target: $\ell \le k/\text{polylog}(k)$

Best strategy = ballistic walks: any α in (1,2]

With high probability in ℓ , the hitting time is

$$\mathcal{O}\left(\ell\mathsf{polylog}\left(\ell\right)\right)$$

Close target:
$$\ell \leq k/\text{polylog}(k)$$

Best strategy = ballistic walks: any α in (1,2]

With high probability in ℓ , the hitting time is

$$\mathcal{O}\left(\ell\mathsf{polylog}\left(\ell\right)\right)$$

Recall: an event E depending on a parameter ℓ holds with high probability in ℓ if $\mathbb{P}(E) \geq 1 - \ell^{-\Theta(1)}$

Vey far target: $\exp\left(k^{\Theta(1)}\right) \leq \ell$

More problematic interval...

Vey far target:
$$\exp(k^{\Theta(1)}) \le \ell$$

More problematic interval...

Best strategy = diffusive walks: any α in $[3, +\infty)$ (brownian-like behavior)

With probability 1, the walks will eventually find the target

Vey far target:
$$\exp(k^{\Theta(1)}) \le \ell$$

More problematic interval...

Best strategy = diffusive walks: any α in $[3, +\infty)$ (brownian-like behavior)

With probability 1, the walks will eventually find the target

If $\alpha=3-\epsilon$, with high probability the target is not found 21 - 3

Far target: $k/\operatorname{polylog}(k) \le \ell \le \exp\left(k^{\Theta(1)}\right)$

Best strategy: ... it depends!

Far target:
$$k/\operatorname{polylog}(k) \le \ell \le \exp\left(k^{\Theta(1)}\right)$$

Best strategy: ... it depends!

Fix $\alpha^* = 3 - \log k / \log \ell$: super-diffusive range

Far target:
$$k/\operatorname{polylog}(k) \le \ell \le \exp\left(k^{\Theta(1)}\right)$$

Best strategy: ... it depends!

Fix $\alpha^* = 3 - \log k / \log \ell$: super-diffusive range

The followings hold w.h.p. in ℓ

• if $\alpha = \alpha^* + \mathcal{O}(\log \log \ell / \log \ell)$, the hitting time is

$$\mathcal{O}\left(\left(\ell^2/k+\ell\right)\operatorname{polylog}\left(\ell\right)\right)$$

• if $\alpha = \alpha^* + \epsilon$, the hitting time is

$$\Omega\left(\left(\ell^2/k+\ell\right)\ell^c\right),\,$$

for some constant c > 0

22 - 3

• if $\alpha = \alpha^* - \epsilon$ the hitting time is *infinite*

How can we find α^* ?

Our contributions

(i) we give the first definition of Lévy walk in the discrete setting in \mathbb{Z}^2 , which is natural and time-homogeneus

(ii) to the best of our knowledge, we give the first analysis of the hitting time distribution of k parallel walks

(iii) we show how the Lévy walks can be employed to give an almost-optimal solution to the ANTS problem

How can we find α^* ?

How can we find α^* ?

We don't have to!

Algorithm: each agent u samples u.a.r. a real number $\alpha_u \in (2,3)$. Then, it performs a discrete Lévy walk with exponent α_u

How can we find α^* ?

We don't have to!

Algorithm: each agent u samples u.a.r. a real number $\alpha_u \in (2,3)$. Then, it performs a discrete Lévy walk with exponent α_u

If $\ell \leq \exp\left(k^{\Theta(1)}\right)$, the hitting time is $\mathcal{O}\left(\left(\ell^2/k + \ell\right) \operatorname{polylog}\left(\ell\right)\right)$ w.h.p.

The idea behind the algorithm

Fix some $\epsilon = \mathcal{O}(\log \log \ell / \log \ell)$

We use: $\ell < \exp\left(k^{\Theta(1)}\right)$ ($\iff k \ge \operatorname{polylog}\left(\ell\right)$) + Chernoff bound \Longrightarrow at least $\Theta\left(\epsilon k\right)$ agents choose an exponent in the range $(\alpha^{\star} - \epsilon, \alpha^{\star} + \epsilon)$ w.h.p.

 $\Theta\left(\epsilon k\right)$ agents are sufficient to ensure high probability to find the target fast enough

Accepted at [PODC 2021]. Join work with Andrea Clementi, George Giakkoupis and Emanuele Natale.

Accepted at [PODC 2021]. Join work with Andrea Clementi, George Giakkoupis and Emanuele Natale.

In this work, we

- provide a definition of a discrete version of the Lévy walk
- analyze the hitting time of k parallel Lévy walks
- show that for any choices of k and ℓ from a wide range, Lévy walks are an almost-optimal search strategy for the ANTS problem

Accepted at [PODC 2021]. Join work with Andrea Clementi, George Giakkoupis and Emanuele Natale.

In this work, we

- provide a definition of a discrete version of the Lévy walk
- analyze the hitting time of k parallel Lévy walks
- show that for any choices of k and ℓ from a wide range, Lévy walks are an almost-optimal search strategy for the ANTS problem
 - very natural and time-homogeneus random process
 - improves the HSA (just polylog factor worse than optimum, not polynomial)
 - does not improve their optimal solution

Accepted at [PODC 2021]. Join work with Andrea Clementi, George Giakkoupis and Emanuele Natale.

In this work, we

- provide a definition of a discrete version of the Lévy walk
- analyze the hitting time of k parallel Lévy walks
- show that for any choices of k and ℓ from a wide range, Lévy walks are an almost-optimal search strategy for the ANTS problem
 - very natural and time-homogeneus random process
 - improves the HSA (just polylog factor worse than optimum, not polynomial)
 - does not improve their optimal solution
- ullet argue the non (universal) optimality of exponent lpha=2

We analyze the hitting time of a single Lévy flight (Markov chain on \mathbb{Z}^2 !)

We analyze the hitting time of a single Lévy flight (Markov chain on \mathbb{Z}^2 !)

We derive bounds for a single Lévy walk through a coupling argument

We analyze the hitting time of a single Lévy flight (Markov chain on \mathbb{Z}^2 !)

We derive bounds for a single Lévy walk through a coupling argument

We exploit independence to get results for the k walks

We analyze the hitting time of a single Lévy flight (Markov chain on \mathbb{Z}^2 !)

We derive bounds for a single Lévy walk through a coupling argument

We exploit independence to get results for the k walks

Remark: Here, we DON'T show why other values for α are worse than α^* . We just show how to find α^* 28 - 4

Analyzing a single Lévy flight

Let \bullet $Z_u(t) = \text{random variable of number of visits in } u \text{ until time } t$

- \mathcal{E}_t = the event first t jumps have length $\leq (t \log t)^{\frac{1}{\alpha-1}}$
- $a_t = \mathbb{E}\left[Z_{(0,0)}\left(t\right) \mid \mathcal{E}_t\right]$
- $p(t) = \mathbb{P}\left(Z_{\mathcal{P}}(t) > 0 | \mathcal{E}_t\right)$

Analyzing a single Lévy flight

Let \bullet $Z_{u}\left(t\right)=$ random variable of number of visits in u until time t

- \mathcal{E}_t = the event first t jumps have length $\leq (t \log t)^{\frac{1}{\alpha-1}}$
- $a_t = \mathbb{E}\left[Z_{(0,0)}\left(t\right) \mid \mathcal{E}_t\right]$
- $p(t) = \mathbb{P}\left(Z_{\mathcal{P}}(t) > 0 | \mathcal{E}_t\right)$

Lemma: $p(t) = \mathbb{P}\left(Z_{\mathcal{P}}\left(t\right) > 0 \mid \mathcal{E}_{t}\right) \geq \mathbb{E}\left[Z_{\mathcal{P}}\left(t\right) \mid \mathcal{E}_{t}\right]/a_{t}$

Comes from two facts

(i)
$$\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)|Z_{\mathcal{P}}\left(t\right)>0,\mathcal{E}_{t}\right]\leq a_{t}$$

(ii)
$$\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)|Z_{\mathcal{P}}\left(t\right)>0,\mathcal{E}_{t}\right]\cdot\mathbb{P}\left(Z_{\mathcal{P}}\left(t\right)>0|\mathcal{E}_{t}\right)=\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)|\mathcal{E}_{t}\right]$$

Analyzing a single Lévy flight

Let \bullet $Z_{u}\left(t\right)=$ random variable of number of visits in u until time t

- \mathcal{E}_t = the event first t jumps have length $\leq (t \log t)^{\frac{1}{\alpha-1}}$
- $a_t = \mathbb{E}\left[Z_{(0,0)}\left(t\right) \mid \mathcal{E}_t\right]$
- $p(t) = \mathbb{P}\left(Z_{\mathcal{P}}(t) > 0 | \mathcal{E}_t\right)$

Lemma: $p(t) = \mathbb{P}\left(Z_{\mathcal{P}}\left(t\right) > 0 \mid \mathcal{E}_{t}\right) \geq \mathbb{E}\left[Z_{\mathcal{P}}\left(t\right) \mid \mathcal{E}_{t}\right]/a_{t}$

Comes from two facts

- (i) $\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)|Z_{\mathcal{P}}\left(t\right)>0,\mathcal{E}_{t}\right]\leq a_{t}$
- (ii) $\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)|Z_{\mathcal{P}}\left(t\right)>0,\mathcal{E}_{t}\right]\cdot\mathbb{P}\left(Z_{\mathcal{P}}\left(t\right)>0|\mathcal{E}_{t}\right)=\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)|\mathcal{E}_{t}\right]$

We now look for $\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)\mid\mathcal{E}_{t}\right]$ and $a_{t}...$

Partition of the space

We partition \mathbb{Z}^2 in three areas in the following way

Partition of the space

We partition \mathbb{Z}^2 in three areas in the following way

- $A_1 = Q(\ell) = \{(x, y) \in \mathbb{Z}^2 : \max(|x|, |y|) \le \ell\}$
- $\bullet \ A_2 = B_{\ell \mathsf{polylog}(\ell)} \left((0,0) \right) \setminus A_1$
- $\bullet \ A_3 = \mathbb{Z}^2 \setminus (A_1 \cup A_2)$

$$30 - 2$$

Denote by $Z_{S}\left(t\right)$ the total number of visits in the set S until time t

Denote by $Z_{S}\left(t\right)$ the total number of visits in the set S until time t

Since the total number of visits until time t is, clearly, t, we get that

a)
$$\mathbb{E}\left[Z_{A_1}\left(t\right)\mid\mathcal{E}_t\right]+\mathbb{E}\left[Z_{A_2}\left(t\right)\mid\mathcal{E}_t\right]+\mathbb{E}\left[Z_{A_3}\left(t\right)\mid\mathcal{E}_t\right]=t$$

Denote by $Z_{S}\left(t\right)$ the total number of visits in the set S until time t

Since the total number of visits until time t is, clearly, t, we get that

a)
$$\mathbb{E}\left[Z_{A_1}\left(t\right)\mid\mathcal{E}_t\right] + \mathbb{E}\left[Z_{A_2}\left(t\right)\mid\mathcal{E}_t\right] + \mathbb{E}\left[Z_{A_3}\left(t\right)\mid\mathcal{E}_t\right] = t$$

For some $t = \Theta(\ell^{\alpha-1})$, we prove that:

- b) $\mathbb{E}\left[Z_{A_1}\left(t\right)\mid\mathcal{E}_t\right]\leq \frac{3}{4}t$
- c) $\mathbb{E}\left[Z_{A_2}\left(t\right)\mid\mathcal{E}_t\right] \leq \mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)\mid\mathcal{E}_t\right] \cdot \Theta\left(\ell^2 \mathsf{polylog}\left(\ell\right)\right)$
- d) $\mathbb{E}\left[Z_{A_3}\left(t\right)\mid\mathcal{E}_t\right]=\mathcal{O}\left(t/\log t\right)$

Denote by $Z_{S}\left(t\right)$ the total number of visits in the set S until time t

Since the total number of visits until time t is, clearly, t, we get that

a)
$$\mathbb{E}\left[Z_{A_1}\left(t\right)\mid\mathcal{E}_t\right] + \mathbb{E}\left[Z_{A_2}\left(t\right)\mid\mathcal{E}_t\right] + \mathbb{E}\left[Z_{A_3}\left(t\right)\mid\mathcal{E}_t\right] = t$$

For some $t = \Theta(\ell^{\alpha-1})$, we prove that:

- b) $\mathbb{E}\left[Z_{A_1}\left(t\right)\mid\mathcal{E}_t\right]\leq \frac{3}{4}t$
- c) $\mathbb{E}\left[Z_{A_2}\left(t\right)\mid\mathcal{E}_t\right] \leq \mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)\mid\mathcal{E}_t\right] \cdot \Theta\left(\ell^2 \mathsf{polylog}\left(\ell\right)\right)$
- d) $\mathbb{E}\left[Z_{A_3}\left(t\right) \mid \mathcal{E}_t\right] = \mathcal{O}\left(t/\log t\right)$

Combine (a) with (b), (c), and (d) to get

$$\mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)\mid\mathcal{E}_{t}\right] = \frac{\Omega\left(1/\left(\ell^{3-\alpha}\operatorname{polylog}\left(\ell\right)\right)\right)}{\Omega\left(1/\left(\ell^{3-\alpha}\operatorname{polylog}\left(\ell\right)\right)\right)}$$

b)
$$\mathbb{E}\left[Z_{A_1}\left(t\right)\mid\mathcal{E}_t\right]\leq \frac{3}{4}t$$

c)
$$\mathbb{E}\left[Z_{A_2}\left(t\right)\mid\mathcal{E}_t\right] \leq \mathbb{E}\left[Z_{\mathcal{P}}\left(t\right)\mid\mathcal{E}_t\right]\cdot\Theta\left(\ell^2\mathsf{polylog}\left(\ell\right)\right)$$

d)
$$\mathbb{E}\left[Z_{A_3}\left(t\right) \mid \mathcal{E}_t\right] = \mathcal{O}\left(t/\log t\right)$$

c) comes from a monotonicity property

Getting p(t)

Reminder: $p(t) = \mathbb{P}(Z_{\mathcal{P}}(t) > 0 \mid \mathcal{E}_t) \ge \mathbb{E}[Z_{\mathcal{P}}(t) \mid \mathcal{E}_t]/a_t$

Getting p(t)

Reminder: $p(t) = \mathbb{P}(Z_{\mathcal{P}}(t) > 0 \mid \mathcal{E}_t) \ge \mathbb{E}[Z_{\mathcal{P}}(t) \mid \mathcal{E}_t]/a_t$

We prove that $a_t = \mathbb{E}\left[Z_{(0,0)}\left(t\right)\middle|\mathcal{E}_t\right]$ is constant w.r.t. t

Getting p(t)

Reminder:
$$p(t) = \mathbb{P}\left(Z_{\mathcal{P}}(t) > 0 \mid \mathcal{E}_{t}\right) \geq \mathbb{E}\left[Z_{\mathcal{P}}(t) \mid \mathcal{E}_{t}\right]/a_{t}$$

We prove that $a_t = \mathbb{E}\left[Z_{(0,0)}\left(t\right)\middle|\mathcal{E}_t\right]$ is constant w.r.t. t

Lemma: for $t = \Theta(\ell^{\alpha-1})$, it holds that

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\mathrm{polylog}\left(\ell\right)\right)\right)$$

Note: the coupling result gives us the same asymptotic bound for the Lévy walk

The parallel search

We exploit independence!

The parallel search

We exploit independence!

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\mathrm{polylog}\left(\ell\right)\right)\right)$$

For
$$t = \mathcal{O}\left(\ell^{\alpha-1}\right)$$
, set $k = \log \ell \cdot (p(t))^{-1}$

The parallel search

We exploit independence!

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\mathrm{polylog}\left(\ell\right)\right)\right)$$

For
$$t = \mathcal{O}\left(\ell^{\alpha-1}\right)$$
, set $k = \log \ell \cdot (p(t))^{-1}$

The probability that at least one walker finds the treasure within time t is

$$1 - [1 - p(t)]^{\frac{\log \ell}{p(t)}} \sim 1 - e^{\log \ell} = 1 - \frac{1}{\ell}$$

k walkers find the target within time $t = \Theta\left(\ell^{\alpha-1}\right)$, w.h.p.

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\operatorname{polylog}\left(\ell\right)\right)\right)$$

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\operatorname{polylog}\left(\ell\right)\right)\right)$$

Find α such that $k = \log \ell / p(t)$

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\mathrm{polylog}\left(\ell\right)\right)\right)$$

Find α such that $k = \log \ell / p(t)$

$$\alpha = 3 - \log k / \log \ell + \mathcal{O}(\log \log \ell / \log \ell)$$

$$p(t) = \Omega\left(1/\left(\ell^{3-\alpha}\operatorname{polylog}\left(\ell\right)\right)\right)$$

Find α such that $k = \log \ell / p(t)$

$$\alpha = 3 - \log k / \log \ell + \mathcal{O}(\log \log \ell / \log \ell)$$

$$\implies \alpha^* = 3 - \log k / \log \ell$$

Questions?

THANK YOU FOR YOUR ATTENTION

