What to review for the final exam

Advanced Model Theory

May 16, 2022

Note that the exam will be <u>open book</u>. You are free to use the textbook and class notes, including electronic copies. You are free to use this document.

These topics might be on the exam:

- 1. Definable types, invariant types, heirs, coheirs.
- 2. Stable theories, the order property.
- 3. Indiscernible sequences.
- 4. Morley products, Morley sequences.
- 5. The fundamental order, bounds
- 6. Algebraic and definable closure. Almost A-definability.
- 7. Non-forking extensions, the forking calculus, independent sequences.

These topics **won't** be on the exam:

- 1. Ultrapowers, strong heirs
- 2. ACF.
- 3. Strongly minimal theories.
- 4. The dichotomy property.
- 5. Stability spectra, $\lambda_0(T)$, $\kappa_n(T)$, superstability.
- 6. Cantor-Bendixson rank, Morley rank, totally transcendental theories.
- 7. Ehrenfeucht-Mostowski models, uncountably categorical theories, Morley's theorem.
- 8. Elimination of imaginaries, multi-sorted logic
- 9. Material from the "Extra Notes" page on eLearning.

10. Material from the textbook that wasn't discussed in class.

These sections of the notes are relevant:

- 1. 02-24-notes.pdf: Sections 1-3 (but not 4-5).
- 2. 03-03-notes.pdf: Nothing.
- 3. 03-10-notes.pdf: All sections.
- 4. 03-17-notes.pdf: All sections.
- 5. 03-24-notes.pdf: Sections 1-4 (but not 5-6).
- 6. 03-31-notes.pdf: Sections 1-3 (but not 4-6).
- 7. 04-07-notes.pdf: Sections 1-2 (but not 3-7).
- 8. 04-21-28-notes.pdf: Sections 3-7, 10, 13 (but not 1-2, 8-9, 12, 14).
- 9. 05-05-07-notes.pdf: Nothing.
- 10. 05-12-notes.pdf: Nothing.

The rest of this document is an incomplete synopsis of the important theorems (but not definitions) from these sections. This hopefully gives a picture of which topics you should review.

1 Synopsis

- 1. If $p \in S_n(M)$ and $N \succeq M$, then there is at least one $q \in S_n(N)$ that is an heir of p.
- 2. An heir of an heir is an heir.
- 3. If $p \in S_n(M)$ is a definable type and $N \succeq M$, then there is a unique heir of p over N. The heir is another definable type $q \in S_n(N)$, and q has the same definition schema as p.
- 4. A type $p \in S_n(M)$ is definable iff it has a unique heir over every $N \succeq M$.
- 5. A definable type over M is the same thing as an M-definable type over M, and M-definable types over M correspond bijectively with M-definable types over the monster model \mathbb{M} .
- 6. A global type $p \in S_n(\mathbb{M})$ is A-definable iff it is definable and A-invariant.
- 7. A global definable type $p \in S_n(\mathbb{M})$ is A-definable for some small A.

- 8. If a global type $p \in S_n(\mathbb{M})$ is finitely satisfiable in a small set A, then p is A-invariant.
- 9. If $q \in S_n(N)$ extends $p \in S_n(M)$, then q is a coheir of p iff q is finitely satisfiable in M (this is the definition of "coheir").
- 10. If $p \in S_n(M)$ and M is a small model in M, then there is a global type $q \in S_n(M)$ extending p such that q is a coheir of p, and therefore q is M-invariant.
- 11. If $p \in S_n(M)$ and $N \succeq M$, then there is at least one $q \in S_n(N)$ that is a coheir of p.
- 12. Let λ be an infinite cardinal. The complete theory T is λ -stable iff the following equivalent conditions hold:
 - For any set A in a model of T with $|A| \leq \lambda$, we have $|S_1(A)| \leq \lambda$.
 - For any $n < \omega$, for any set A in a model of T with $|A| \le \lambda$, we have $|S_n(A)| \le \lambda$.

When $\lambda \geq |L|$, these are also equivalent to the following things:

- For any model $M \models T$ with $|M| \le \lambda$, we have $|S_1(M)| \le \lambda$.
- For any $n < \omega$, for any model $M \models T$ with $|M| \le \lambda$, we have $|S_n(M)| \le \lambda$.
- 13. The complete theory T is stable iff the following equivalent conditions hold:
 - No formula has the order property.
 - Every type over every model is definable.
 - T is λ -stable for at least one infinite cardinal λ .
- 14. In a stable theory, q is an heir of p if and only if q is a coheir of p.
- 15. In a stable theory, if $p \in S_n(M)$ and $N \succeq M$, then there is a unique (co)heir of p over M.
- 16. In a stable theory, if p_1, p_2, p_3 are types over models with $p_1 \subseteq p_2 \subseteq p_3$, then $p_3 \supseteq p_1 \iff (p_3 \supseteq p_2 \text{ and } p_2 \supseteq p_1)$ where \supseteq means "is the heir of."
- 17. In any theory, if p, q are global A-invariant types, then there is another global A-invariant type $p \otimes q$ characterized by the fact that for any small set B containing A, a tuple (\bar{c}, \bar{d}) realizes $(p \otimes q) \upharpoonright B$ if and only if \bar{c} realizes $p \upharpoonright B$ and \bar{d} realizes $q \upharpoonright B\bar{c}$.
- 18. In a stable theory, any two global invariant types p and q "commute" in the sense that

$$(\bar{c}, \bar{d}) \models p \otimes q \iff (\bar{d}, \bar{c}) \models q \otimes p.$$

19. If p is an A-invariant global type, a Morley sequence of p over A is a sequence $\bar{a}_1, \bar{a}_2, \bar{a}_3, \ldots$ where

$$\bar{a}_i \models p \upharpoonright (A\bar{a}_1\bar{a}_2\cdots\bar{a}_{i-1}).$$

So roughly speaking, a Morley sequence is a realization of $(p \otimes p \otimes p \otimes \cdots) \upharpoonright A$. A Morley sequence of p over A is always A-indiscernible.

- 20. Any subsequence of an A-indiscerible sequence is A-indiscernible.
- 21. Given an A-indiscernible sequence $(\bar{a}_i : i \in I)$ and an extension (J, \leq) of the linear order (I, \leq) , we can extend the sequence to an A-indiscernible sequence $(\bar{a}_i : i \in J)$ by choosing \bar{a}_i appropriately for $i \in J \setminus I$.
- 22. If $(\bar{a}_i : i \in I)$ and $(\bar{b}_i : i \in J)$ are two A-indiscernible sequences with the same EM type over A, and $f : I \to J$ is an isomorphism of linear orders, then there is a partial elementary map sending \bar{a}_i to $\bar{b}_{f(i)}$. For example, if f is an automorphism of (I, \leq) , then there is a partial elementary map sending \bar{a}_i to $\bar{a}_{f(i)}$.
- 23. If $(\bar{a}_i : i \in I_0)$ is an infinite sequence, and A is a small set of parameters, and I is a small linear order, then there is an A-indiscernible sequence $(\bar{b}_i : i \in I)$ extracted from the original sequence, in the sense that $\operatorname{tp}^{EM}(\bar{a}/A) \subseteq \operatorname{tp}^{EM}(\bar{b}/A)$. So, if $\varphi(\bar{x}_1, \dots, \bar{x}_n)$ was some L(A)-formula such that

$$\mathbb{M} \models \varphi(\bar{a}_{i_1}, \dots, \bar{a}_{i_n})$$

for every increasing sequence $i_1 < \cdots < i_n$ in I_0 , then the analogous thing will hold for the new sequence.

- 24. In a stable theory, any A-indiscerible sequence is totally A-indiscernible. Therefore, any permutation of an A-indiscernible sequence is A-indiscernible.
- 25. Assuming A is small, $b \in \operatorname{dcl}(A)$ iff b is fixed by every automorphism $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$.
- 26. dcl(-) is a closure operation, meaning that

$$A \subseteq \operatorname{dcl}(A)$$

$$A \subseteq B \implies \operatorname{dcl}(A) \subseteq \operatorname{dcl}(B)$$

$$\operatorname{dcl}(\operatorname{dcl}(A)) = \operatorname{dcl}(A).$$

A set A is definably closed if A = dcl(A). The definable closure of A is the smallest definably closed set containing A.

- 27. Assuming A is small, $b \in \operatorname{acl}(A)$ iff $\{\sigma(b) : \sigma \in \operatorname{Aut}(\mathbb{M}/A)\}$ is finite. That set is also the set of realizations of $\operatorname{tp}(b/A)$.
- 28. acl(-) is a closure operation, meaning that

$$A \subseteq \operatorname{acl}(A)$$

$$A \subseteq B \implies \operatorname{acl}(A) \subseteq \operatorname{acl}(B)$$

$$\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A).$$

A set A is algebraically closed if $A = \operatorname{acl}(A)$. The algebraic closure of A is the smallest algebraically closed set containing A.

- 29. Models are algebraically closed. Moreover, acl(A) is the intersection of the models containing A. (A is supposed to be small, and a "model" is an elementary substructure of the monster.)
- 30. A definable set D is "almost A-definable" if the following equivalent conditions hold:
 - $\{\sigma(D): \sigma \in \operatorname{Aut}(\mathbb{M}/A)\}\$ is finite. (A is supposed to be small, by the way.)
 - $\{\sigma(D) : \sigma \in \operatorname{Aut}(\mathbb{M}/A)\}\$ is small.
 - D is M-definable for every model M containing A. (Here, "model" means "elementary substructure of the monster" as always.)
 - D is $\operatorname{acl}^{\operatorname{eq}}(A)$ -definable, where $\operatorname{acl}^{\operatorname{eq}}(-)$ is algebraic closure in $\mathbb{M}^{\operatorname{eq}}$.
- 31. A definable type is "almost A-definable" if it's $\operatorname{acl}^{\operatorname{eq}}(A)$ -definable, or equivalently, all the sets

$$\{\bar{b} \in \mathbb{M} : \varphi(\bar{x}; \bar{b}) \in p(\bar{x})\}$$

are almost A-definable. Another equivalent condition here is that $\{\sigma(p) : \sigma \in \operatorname{Aut}(\mathbb{M}/A)\}$ is small.

For the rest of this section, assume the theory is stable.

- 32. There's a partial order called the "fundamental order for n-types". To any n-type over a model $p \in S_n(M)$ we can associate a class [p] in the fundamental order for n-types. If q is an extension of p (and both types are over models), then $[q] \leq [p]$, and equality holds iff q is a (co)heir of p.
- 33. We can also associate to any type over any set $p \in S_n(A)$ an element of the fundamental order $\mathrm{bd}(p)$ called the "bound" of p. When A is a model, $\mathrm{bd}(p)$ is just the class [p] in the fundamental order. When q is an extension of p, then $\mathrm{bd}(q) \leq \mathrm{bd}(p)$, with equivalence iff q is a non-forking extension of p.
- 34. When q, p are types over models, q is a non-forking extension of p iff q is a (co)heir of p.
- 35. If $p \in S_n(A)$ and $B \supseteq A$, then there is at least one non-forking extension of p over B.
- 36. If p_1, p_2, p_3 are types over sets and $p_1 \subseteq p_2 \subseteq p_3$, then p_3 is a non-forking extension of p_1 iff p_3 is a non-forking extension of p_2 and p_2 is a non-forking extension of p_1 .
- 37. If $p \in S_n(A)$ and q is a global type extending p, then q is a non-forking extension of p iff q is almost A-definable.
- 38. If $p \in S_n(A)$, then the global non-forking extensions of A correspond bijectively to the extensions of p to a type over $\operatorname{acl}^{eq}(A)$. Any two global non-forking extensions of A are connected by an automorphism over A.

- 39. An $L(\mathbb{M})$ -formula $\varphi(\bar{x})$ forks over A if $\varphi(\bar{x})$ is not contained in any almost A-definable type.
- 40. If $q \in S_n(B)$ extends $p \in S_n(A)$, then q is a <u>forking</u> extension of p if and only if some formula $\varphi(\bar{x})$ in $q(\bar{x})$ forks over A.
- 41. If $q \in S_n(B)$ extends $p \in S_n(A)$, then q is a non-forking extension of p if and only if some global type extending q is almost A-definable.
- 42. $\bar{a} \downarrow_C \bar{b}$ means that $\operatorname{tp}(\bar{a}/C\bar{b})$ is a non-forking extension of $\operatorname{tp}(\bar{a}/C)$.
- 43. The relation \downarrow is symmetric: $\bar{a} \downarrow_C \bar{b} \iff \bar{b} \downarrow_C \bar{a}$.
- 44. If $\sigma \in \operatorname{Aut}(\mathbb{M})$, then $\bar{a} \downarrow_C \bar{b} \iff \sigma(\bar{a}) \downarrow_{\sigma(C)} \sigma(\bar{b})$, since the definition of \downarrow respects automorphisms.
- 45. $\bar{a} \downarrow_C \bar{b}$ is equivalent to $\bar{a} \downarrow_{\operatorname{acl^{eq}}(C)} \bar{b}$ is equivalent to $\operatorname{acl^{eq}}(\bar{a}C) \downarrow_{\operatorname{acl^{eq}}(C)} \operatorname{acl^{eq}}(\bar{b}C)$.
- 46. A sequence $(\bar{a}_i : i \in I)$ is independent over C if

$$\bar{a}_i \underset{C}{\bigcup} \{\bar{a}_j : j < i\}$$

for each $i \in I$.

47. A sequence $(\bar{a}_i : i \in I)$ is independent over C if

$$\bar{a}_i \underset{C}{\bigcup} \{\bar{a}_j : j \neq i\}$$

for each $i \in I$.

- 48. A type $p \in S_n(A)$ is stationary if p has a unique non-forking extension over any $B \supseteq A$.
- 49. $p \in S_n(A)$ is stationary iff p has a unique non-forking extension over the monster model.
- 50. $p \in S_n(A)$ is stationary iff p has a unique extension to $\operatorname{acl}^{eq}(A)$.
- 51. If $p \in S_n(A)$ and $q \in S_n(\operatorname{acl}^{eq}(A))$ is some extension, then q is always a non-forking extension of p.
- 52. $p \in S_n(A)$ is stationary iff p has an A-definable global extension. In that case, that A-definable global extension is the unique non-forking global extension.
- 53. Any type over a model is stationary. Any type over $\operatorname{acl}^{\operatorname{eq}}(A)$ is stationary.
- 54. Suppose $\operatorname{tp}(\bar{a}/C)$, $\operatorname{tp}(b/C)$ are stationary. Let p,q be the global C-invariant extensions of these two types. Then $\bar{a} \downarrow_C \bar{b}$ if and only if (\bar{a},\bar{b}) realize $p \otimes q \upharpoonright C$.