Course Description

Description

- The course gives the students a strong mathematical base to be able to tackle other computer problems.
- The course provides techniques that are commonly used in the general area of computer science. It builds a foundation for other courses that need special mathematical backgrounds.

Aims

The aims of the course are:

- To provide students with a mathematical base that is to be used to solve computer science problems.
- To improve the problem solving skills of students.

Course content

Functions

- Polynomials (linear, quadratic) rational, composite functions
- Transcendental functions: logarithmic and exponential functions;
- > The trigonometrical functions and their inverses
- > the hyperbolic functions and their inverses

Limits

- Informal definition of limits of functions and continuity;
- > one sided limits
- removable discontinuity
- > Techniques and theorems of evaluating limits
- > Formal definition of limits
- application to definition and properties of continuous functions
- Use of the definition in proofs and problem of limits and continuity

Course content

Differentiation

- > Definition of a derivative, continuity and differentiability
- > Rules and theorems of determining derivatives
- > Inverse functions: their derivatives and graphs
- ➤ Differentials: applications to approximation. Rolle's theorem, Mean Value Theorem, L'Ohopital's Rule
- Anti-derivatives: Techniques and theorems for determining antiderivatives
- Integration: Define Integral, Riemann sums, the definite integral and area,
- The fundamental theorem of calculus: application to evaluation of definite integrals (by substitution)
- Functions defined by integration: f(t) dt as an anti derivative of f(x), mean value theorem for integrals

Reading material

Main Reference book:

1. Calculus 1 by Paul Dawkins.

Other resources:

2. Calculus and Analytic Geometry(9th Edition) by George B. Thomas, Ross L. Finney Addison Wesley.

Assessment Method

- The assessment will be divided into two parts:
 - 3 Tests which will account for 40% of the final mark.
 - Final Examination will be out of 60% which adds upto the 100%.

NOTE:

- Overall Pass mark is 50%
- Several exercises/assignments will be given at the end of each chapter for practice purposes.

Calculus

- Branch in mathematics which focuses on limits, functions, derivatives, integrals and infinite series.
- Constitutes of two major branches:
 - ➤ Differential calculus
 - > Integral calculus
- These two are related by the fundamental theorem of calculus.
- It specifies the relationship between the two central operations of calculus that is differentiation and integration.

Functions

• What is a function?

An equation will be a function if for any x in the domain of the equation will yield exactly one value of y.

Example 1 Determine if each of the following are functions.

(i)
$$y = x^2 + 1$$

(ii)
$$y^2 = x + 1$$

Solution

• (i) This is a function. Given an x, there is only one way to square it and then add 1 to the result. So, no matter what value of x you put into the equation, there is only one possible value of y.

Solution

- (ii) This isn't a function since the exponent is onto the y.
- •Let x=3 and plug this into the equation $y^2=3+1=4$
- two possible values of y i.e y = 2 or y = -2.
- •Therefore this isn't a function since there are two possible values of *y* that we get from a single *x*.

Solution

- Note that this only needs to be the case for a single value of x to make an equation not be a function.
- For instance we could have used x=-1 and in this case we would get a single y (y=0).
- However, because of what happens at x=3 this equation will not be a function.

Function Notation

Given the following function

$$y = 2x^2 - 5x + 3$$

 Using function notation we can write this as any of the following.

$$y(x)=2x^{2}-5x+3$$
$$g(x)=2x^{2}-5x+3$$
$$f(x)=2x^{2}-5x+3$$

Function Notation

- Function notation gives us a nice compact way of representing function values.
- f(-3) will represent the value of the function at x=-3.

Polynomial Functions

Definitions

- Polynomial function in one variable of degree n
 - A function with one variable raised to whole number powers (the largest being n) and with real coefficients.
 - The standard form is $f(x) = a_n x^n + a_{n-1} x^{n-1} + ...$ + $a_2 x^2 + a_1 x + a_0$, $a_n \ne 0$
- Constant function
 - A polynomial function in one variable of degree
 0.
 - Polynomial form: $f(x)=a_0$
 - Standard form: f(x) = c

Polynomial Functions

- Linear function
 - A polynomial function in one variable of degree
 1.
 - Polynomial form: $f(x) = a_1x + a_0$
 - Standard form: f(x) = ax + b
- Quadratic function
 - A polynomial function in one variable of degree
 2.
 - Polynomial form: $f(x) = a_2x^2 + a_1x + a_0$
 - Standard form : $f(x) = ax^2 + bx + c$
 - Vertex form : $f(x) = a(x-h)^2 + k$

Quadratic Functions

- Parabola
 - The graph of a quadratic function
- Axis of symmetry (for a parabola)
 - The line of symmetry through the center of the parabola
- Vertex
 - The intersection of the axis of symmetry and the parabola. It will be the minimum point on the graph if a>0 and the maximum point on the graph if a<0.

Quadratic Functions

 The standard form of a parabola's equation is generally expressed:

$$f(x) = ax^2 + bx + c$$

- The role of 'a'
 - If a> 0, the parabola opens upwards
 - if a < 0, it opens downwards.
- \triangleright The axis of symmetry is the line x = -b/2a

Quadratic Functions

Axis of Symmetry from Standard Form

Domain of a function

- Domain: set of all values that can be plugged into a function and have the function exist and have a real number for a value.
- So, for the domain we need to avoid division by zero, square roots of negative numbers, logarithms of zero and negative numbers.

Range of a function

 Range: set of all possible values that a function can take.

Example 2 Find the domain and range of each of the following functions.

(a)
$$f(x) = 5x-3$$

(b)
$$g(t) = \sqrt{4-7}t$$

(c)
$$h(x) = -2x^2 + 12x + 5$$

(d)
$$f(z) = |z-6|-3$$

(e)
$$g(x) = 8$$

- Solution
- (a) f(x) = 5x-3
- We know that this is a line and that it's not a horizontal line (because the slope is 5 and not zero...).
- Which implies that this function can take on any value and so the range is all real numbers.

Range: $(-\infty,\infty)$

- This is more generally a polynomial and we know that we can plug any value into a polynomial.
- Therefore the domain is all real numbers.

Domain: $-\infty < x < \infty$ or $(-\infty,\infty)$

- **(b)** $g(t) = \sqrt{4 7t}$
- This is a square root and we know that square roots are always positive or zero and because we can have the square root of zero in this case,
- $g(4/7) = \sqrt{4} 7(4/7) = \sqrt{0} = 0$
- Therefore the range will be,

Range: $[0,\infty)$

For the domain require that,

$$4 \geq 7t$$

$$4/7 \ge t \longrightarrow t \le 4/7$$

Therefore the domain is then,

Domain: $t \le 4/7$ or $(-\infty, 4/7]$

(c)
$$h(x) = -2x^2 + 12x + 5$$

 Here we have a quadratic which is a polynomial and so we again know that the domain is all real numbers.

Domain: $-\infty < x < \infty$ or $(-\infty,\infty)$

• Since the coefficient of x^2 is negative therefore the parabola will open downwards implying that the vertex will be the highest point on the graph.

$$x = -b/2a = -\frac{12}{2(-2)} = 3$$
 $y = -2(3)^2 + 12(3) + 5 = 23$

→ The vertex coordinates are (3,23) and this is the highest point on the graph therefore the range will be

Review questions

 Find the domain of each of the following functions.

(a)
$$f(x) = \frac{x-4}{x^2-2x-15}$$

(b)
$$g(t) = \sqrt{6 + t - t^2}$$

(c)
$$h(x) = \frac{x}{\sqrt{x^2 - 9}}$$

- Given two functions f(x) and g(x), then
 - $(f \circ g)(x) = f(g(x))$ forms a composite function of f of g.
- Note that the order is very important.

• **Example 3** Given $f(x)=3x^2-x+10$ and g(x)=1-20x find each of the following.

```
(a) (f \circ g)(5)
```

(b)
$$(f \circ g)(x)$$

(c)
$$(g \circ f)(x)$$

(d)
$$(g \circ g)(x)$$

- Solution
- (a) $(f \circ g)(5)$
- In this case we've got a number 5 in the place of x which implies that we insert 5 wherever there is x in the function g(x).
- $(f \circ g)(5) = f(g(5))$ = f(-99) = 29512

```
• (d) (g \circ g)(x)

(g \circ g)(x) = g(g(x))

= g(1-20x)

= 1-20(1-20x)

= 400x-19
```

• **Example 4** Given f(x) = 3x - 2 and g(x) = 1/3x + 2/3 find each of the following.

```
(a) (fog)(x)(b) (gof)(x)
```

Solution

(a)
$$(f \circ g)(x) = f(g(x))$$

= $f(1/3x + 2/3)$
= $3(1/3x + 2/3) - 2$
= $x + 2 - 2 = x$

(b)
$$(g \circ f)(x) = g (f (x))$$

= $g (3x-2)$
= $1/3 (3x-2)+2/3$
= $x-2/3+2/3=x$

 In this case the two compositions where the same i.e

(f o g)(x)=(g o f)(x)=x Which implies that there is a relationship between the two functions.

- **Definition:** Given two one-to-one functions f(x) and g(x),
 - if $(f \circ g)(x) = x$ AND $(g \circ f)(x) = x$ then we say that f(x) and g(x) are **inverses** of each other.
- A function is called **one-to-one** if no two values of x produce the same y. i.e $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

• More specifically we will say that g(x) is the **inverse** of f(x) and denote it by

$$g(x) = f^{-1}(x)$$

Likewise f (x) is the inverse of g(x) and denote it by

$$f(x) = g^{-1}(x)$$

• Note that $f^{-1}(x) \neq \frac{1}{f(x)}$

• From the previous example of two functions f(x)=3x-2 and

$$g(x)=1/3x+2/3$$
, we saw that
 $(f \circ g)(x)=(g \circ f)(x)=x$

Considering the following evaluations.

a)
$$f(-1)=3(-1)-2=-5$$
, $g(-5)=-5/3+2/3=-1$

b)
$$g(-1)=-1/3+2/3=1/3$$
, $f(1/3)=3(1/3)-2=-1$

- From the two evaluations it implies that the two functions are inverses of each other.
- From a) $f^{-1}(x)=g(x)=1/3x+2/3$
- From **b**) $g^{-1}(x) = f(x) = 3x-2$

Finding the Inverse of a function

- Given the function f(x) we want to find the inverse function, $f^{-1}(x)$.
- 1. First, replace f(x) with y.
- 2. Replace every x with a y and replace every y with an x.
- 3. Solve the equation from Step 2 for y.
- 4. Replace y with $f^{-1}(x)$.
- 5. Verify by checking that $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$ are both true.

• **Example 1** Given f(x) = 3x-2 find $f^{-1}(x)$.

Solution

We'll first replace f(x) with y.

$$y = 3x - 2$$

Replace all x's with y and all y's with x.

$$x = 3y - 2$$

Finding the Inverse of a function

solve for y.

$$x+2=3y$$

 $y=x/3+2/3$

• Finally replace y with $f^1(x)$.

$$f^{-1}(x)=x/3+2/3$$

Lastly we verify that

$$(f \circ f^{-1})(x) = x \text{ and } (f^{-1} \circ f)(x) = x$$

$$(f \circ f^{-1})(x) = f(x/3+2/3)$$

=3[x/3+2/3]-2
=x
 $(f^{-1} \circ f)(x) = f^{-1}(3x-2)$
=[3x-2]/3+2/3
= x

Therefore

$$f^{-1}(x)=x/3+2/3$$

- We can see that the graph of the inverse is a reflection of the actual function about the line y = x.
- This will always be the case with the graphs of a function and its inverse.

• **Example 2** Given $g(x) = \sqrt{x-3}$, find $g^{-1}(x)$.

• **Example 3** Given $h(x) = \frac{x+4}{2x-5}$, find $h^{-1}(x)$.