Faculté de Médecine d'Alger Département de Pharmacie

Les stress oxydant

Pr OTMANE

Plan

- Présentation et définition du stress oxydant
- Biologie du stress oxydant
- Interactions entre les nutriments et le stress oxydant: les carences et les excès
- Biologie clinique et stress oxydant

Radicaux libres et espèces réactives

- Radicaux libres: molécules très réactives qui présentent <u>un</u> (des) électron(s) non apparié(s) célibataire,
- O₂: biradical qui présente <u>deux</u> électrons <u>non appariés</u>, de spin parallèle (état triplet conservation de spin). O:O Cet état limite la réactivité en empêchant une réaction directe et en imposant une barrière énergétique.
- Espèces réactives (ER): radicalaires ou non; ce sont des molécules à très haute réactivité. ERO, ERN et ERCI correspondent à O, N et CI

Glossaire

Adduit

Fixation d'une molécule sur une des bases de l'ADN par une liaison covalente pouvant parfois former un pont intra-caténaire entre les deux chaînes de l'ADN.

Cytosol

Liquide contenu à l'intérieur des cellules.

Facteur de transcription

Protéine permettant la lecture d'un gène lorsqu'elle se fixe sur son promoteur.

Radical libre

Espèce chimique possédant un électron non apparié.

Régulon

Chez les bactéries, ensemble contigu de gènes codant pour des protéines et de gènes codant pour des protéines régulatrices.

Sites abasiques

Partie de l'ADN dépourvue d'une base purique ou pyrimidique et ayant perdu l'information génétique par rupture de la liaison entre une base et le désoxyribose.

Xénobiotique

Molécule étrangère, susceptible de pénétrer dans le corps humain.

Les principales espèces oxydantes

Reactive oxidant species

Radicals		Non-radicals	
Hydroxyl Alkoxyl Hydroperoxyl ^a Peroxyl Nitric oxide ^c Superoxide ^d	•OH L(R)O• HOO• L(R)OO• NO• O ₂	Peroxynitrite Hypochlorite Hydroperoxide ^b Singlet oxygen Hydrogen peroxide ^d	ONOOT OCI L(R)OOH 1 \Delta O_2 H_2O_2

"Longevity" of reactive species

Reactive S	pecies	Half-life

Hydrogen peroxide
Organic hydroperoxides ~ minutes
Hypohalous acids

Peroxyl radicals ~ seconds Nitric oxide

Peroxynitrite ~ milliseconds

Superoxide anion
Singlet oxygen ~ microsecond
Alcoxyl radicals

Hydroxyl radical ~ nanosecond

Définition du stress oxydant

Stress oxydant: état de déséquilibre entre la production d'espèces réactives et les défenses de l'organisme.

Un état de stress oxydant existe lorsqu'au moins une des trois conditions suivantes est présente:

- Excès des espèces réactives de O₂, N₂ ou Cl₂
- Défenses insuffisantes (endogènes et exogènes)
- Mécanismes de réparation insuffisants

Le stress oxydant n'est pas une maladie mais un mécanisme physiopathologique. Un excès d'espèces réactives mal maîtrisé favorisera une maladie ou un vieillissement accéléré.

Déséquilibre de la balance

Activer Window Accédez aux paramè activer Windows.

Causes et conséquences du stress oxydant

Que se passe t-il au sein de nos cellules?

- Toutes les cellules <u>aérobies</u> produisent en permanence des espèces réactives de l'oxygène qui sont neutralisées immédiatement par les antioxydants
 - Quelle sont ces espèces réactives ?
- → Quelle est l'origine de ces EROs ?

ESPECES NON RADICALAIRES

2 grandes voies de production des Espèces Réactives de l'Oxygène

Transfert d'électrons

$$O_2 + e^- \longrightarrow O_2^-$$

Scission homolytique des liaisons covalentes

$$A \rightarrow B \longrightarrow A + B$$

Lié au métabolisme cellulaire

Nécéssite de l'énergie

Activité pro-oxydante des métaux de transition

Le contrôle de l'activité rédox des métaux est vital. On estime qu'en dehors des processus pathologiques il y a moins d'un atome de fer libre par cellule.

Production directe de radicaux alkyls (graisses, huiles)

$$Fe^{3+}$$
 + RH \longrightarrow Fe^{2+} + R + H^+

Décomposition des hydroperoxydes en radicaux peroxyles ou alkoxyles.

$$Fe^{3+}$$
 + ROOH \longrightarrow Fe^{2+} + ROO·+ H^{+}
 Fe^{2+} + ROOH \longrightarrow Fe^{3+} + RO· + OH-

Le taux de peroxydation des lipides est maximal pour un rapport Fe (II):Fe(III) de 1:1.

Minotti, G. and Aust S.D. (1987) J. Biol. Chem. 262, 1098-1104.

Activation de l'oxygène moléculaire puis production de singulet.

$$Fe^{2+} + O_2 \longrightarrow Fe^{3+} + O_2^{-} \longrightarrow {}^{1}O_2$$

Le cycle d'Haber-Weiss: un concept périmé

1) Fe3+ +
$$\bullet$$
O2- \rightarrow Fe2+ + O2

2) Fe2+ + H2O2
$$\rightarrow$$
 Fe3+ + OH- + •OH

Réaction de Fenton

Réaction nette du cycle:

Production des ROS

Mitochondrie: notre centrale « nucléaire » fuit...

Environ 1000/cellule Multiples copies d'un minigénome

Dépend aussi du génome externe Chaîne respiratoire

Production d'énergie

Production d'ERO

Lésions mt ADN >> ADN nucléaire

La NADPH Oxydase (Nox-2) des phagocytes rôle majeur dans l'inflammation et dans l'immunité innée

La NO Synthase inductible des phagocytes rôle majeur dans l'inflammation

Les radiations ionisantes

Activer Windc Accédez aux parar activer Windows.

Sources endogènes d'espèces réactives

Endogenous sources of ROS and RNS

Systèmes de défense anti oxydante

• Enzymatiques

• Non enzymatiques (les protéines)

Protéines enzymatiques

- ✓ Les thiols-disulfures oxydoréductases et transférases
- Système thiorédoxine (thiorédoxine/thiorédoxine réductase/NADPH)
- Peroxirédoxines (thiorédoxine peroxydases)
- Système glutarédoxine (glutarédoxine/ glutarédoxine réductase/GSH)
- √ Héme oxygénase

Protéines non enzymatiques

- ✓ Sequestrants des minéraux
- du fer: Transferrine, ferritine, lactoferrine
- du cuivre: céruloplasmine, albumine
- métallothionéines: Zn+, Cu+,Cd+, Hg2+

Activer Window Accédez aux param activer Windows.

Enzymes de défense antioxydante

Enzymes clées (Housekeeping enzymes)

Superoxyde dismutases Catalase Glutathion peroxydases

Transformation par voie enzymatique oxygène anion superoxyde superoxy de dismutas e CuZn superoxyde dismutas e H_2O_2 peroxyde d'hydrogene ghitathion peroxydase catalase thioredoxine peroxydase thioredoxine réductase Zn Lipides oxydés ADN oxydés Protéines oxydées

Définition d'un antioxydant

 N'importe quelle substance qui, lorsqu'elle est présente à une concentration faible par rapport à un substrat oxydable, retarde de façon significative ou empêche l'oxydation du dit substrat.

Halliwell & Gutteridge (1999)

Action des antioxydants: terminaison

$$R \cdot + AH \longrightarrow RH + AG$$

$$RO \cdot + AH \longrightarrow ROH + A \cdot$$

$$ROO \cdot + AH \longrightarrow ROOH + A \cdot$$

$$R \cdot + A \cdot \longrightarrow RA$$

Antioxydants

Endogènes

- glutathion (↑ synthèse par la N-acétyl cystéine)
- acide urique : 102, LOO°
- bilirubine : ¹O₂ LOO°
- acide lipoïque : 'OH, LOO', HOCL, ONOOH
- coenzyme Q₁₀ :LOO°

Apportés par l'alimentation

- vitamines E et C
- caroténoïdes
- polyphénols, flavonoïdes

Activer Windov Accédez aux paramactiver Windows.

Les défenses contre le stress oxydant

- ENZYMATIQUES
- Superoxyde dismutase
- Catalase
- Glutathion peroxydase
- Glutathion réductase
- Autres enzymes de phase 2
 - Glutathion S transférase
 - Thiorédoxine réductase
 - Hème oxygénase 1

Les enzymes de phase 2 sont inductibles

- NON-ENZYMATIQUES
- Protéines
 - Albumine
 - Céruloplasmine,...
- Hydrosolubles
 - Vitamine C
 - Glutathion
 - Acide urique
- Liposolubles
 - α-tocophérol
 - γ-tocophérol
 - Coenzyme Q10
 - Caroténoïdes
 - Polyphénols-flavonoïdes

Interdépendance des systèmes antioxydants I

C and E as Co-Antioxidants

Interdépendance des systèmes antioxydants II

Interdépendance des systèmes antioxydants III

Les caroténoïdes et xanthophylles

Mécanisme antioxydant des caroténoïdes: cas de l'oxygène singulet

$${}^{1}\text{O}_{2} + {}^{1}\beta\text{-CAROTENE}$$
 $\xrightarrow{}$ ${}^{3}\text{O}_{2} + {}^{3}\beta\text{-CAROTENE}$

3
 β -CAROTENE 1 β -CAROTENE Conversion non-radiative

Vue globale du stress oxydant

STRESS OXYDANT

Figure 4 - Lésions de l'ADN formées par attaque radicalaire du patrimoine génétique des cellules.

Maladies avec présence de marqueurs de stress oxydant (liste abrégée)

- Sickle cell disease
- ALS
- Systemic lupus erythematosus
- Asthma
- Systemic sclerosis (scleroderma)
- Atherosclerosis
- Diabetes mellitus
- Preeclampsia
- ARDS
- Alcoholic liver disease
- COPD
- Asbestosis
- HIV-positive patients
- Acute and chronic alcoholic liver disease
- Retinopathy of prematurity
- Rheumatoid arthritis
- Myocardial inflammation
- Osteoarthritis
- Preeclampsia

- Chronic kidney disease
- Friedreich ataxia
- Crohn disease
- Renal cell carcinoma
- Cystic fibrosis
- Spherocytosis
- Huntington disease
- AD
- Hyperhomocysteinemia
- Ischemia/Reperfusion injury
- Interstitial lung disease
- Pancreatitis
- Primary biliary cirrhosis
- Psoriatic arthritis
- Lung cancer
- Pulmonary hypertension
- Lung injury
- Multiple sclerosis
- Inflammation...

Etude Su.Vi.Max: prévention primaire micronutritionelle du cancer

12741 participations complètes

Etude prospective randomisée en double insu, contrôlée

7.5 années de suivi

Zinc, Sélénium, Vit. E, Vit. C et B carotène associés à doses nutritionnelles.

Incidence de cancers, hommes

Galan P et al British Journal of Nutrition 2005, 94, 125–132 Hercberg et al, Arch Int Med 2004, 164:2335

La carcinogenèse

ERO, stress oxydant et carcinogenèse

- Il existe un niveau physiologique d'ERO
- Altérations des molécules
 - ADN (génotoxicité)
 Bases oxydées, site abasique, adduits
 - Protéines (épigénétique) Régulation génome, déchets
 - Lipides
 Propagation des réactions, adduits
- Altération des signaux
 - Intracellulaires
 - Intercellulaires Connexines
- Système de réparation de l'ADN

Initiation→ Promotion→ Progression

Stress oxydant et vieillissement

OXIDATIVE STRESS AND SENESCENCE: observed age-related changes and putative mechanisms

L'alimentation et le mode de vie influencent fortement le stress oxydant

Une alimentation déséquilibrée

La sédentarité/effort violent

Le tabac

...sont les problèmes les plus courants

Conséquences biologiques du stress oxydant

L'analyse médicale pour évaluer le stress oxydant et corriger le mode de vie

L'analyse de laboratoire joue un rôle clé dans cette démarche :

- Les déséquilibres sont objectifs et quantifiables
- La démarche médicale se base sur des faits concrets qui favorisent la prise de conscience. L'approche est personnalisée.
- Les recommandations reposent sur des données individuelles
- au lieu de conseils généraux.
- Les effets de l'intervention sont contrôlables. Les résultats
- d'analyses objectivent les résultats et renforcent la motivation.

Applications des tests de laboratoire

- Vérifier si le statut en oligo-éléments et vitamines est adéquat.
- **Suivre** les effets d'une prescription (compliance, absorption, adéquation) ou d'un conseil alimentaire.
- Evaluer les défenses et réponses contre le stress oxydant

Dégâts
 LDL oxydées, bases oxydées

Réponses
 Glutathion peroxydase 2GSH + H2O2 → GS–SG + 2H2O

Superoxyde dismutase (Cu,Zn) O2− + 2H+ → H2O2

Antioxydants
 Caroténoïdes, vitamine E et C, Zn, Se, GSH/GSSG

Pro-inflammatoire Profil des acides gras

- Détecter la prise inavouée ou par inadvertance de suppléments.
 - Alpha-tocophérol: ↑ de l' α-tocophérol, ↓ du γ-tocophérol, ↑↑ du rapport α/γ .
 - Concentration de β-carotène; profil des caroténoïdes
 - Concentration ou excrétion d'oligoéléments (Zn, Se, ...)

Paramètres biologiques

Espèces réactives Dégâts

Défenses

O2°-

8-iso-PGF 2α

Eléments traces

°OH

4-HNE

Enzymes

ROO°

MDA

8-OH 2-déoxy DG

Antioxydants

NO°

ADMA

AGEP

GSH/GSSG

Vit C

Instable

Instable ou stable

Très complexe

Très instable

Complexe

Moins complexe

Conclusion

- ➤ Le stress oxydant est un concept complexe et en pleine évolution.
- ➤ Il s'agit d'un mécanisme et non d'une maladie.
- ➤ En pratique les mécanismes inflammatoires sevrent souvent d'évènement déclenchant.
- On peut mesurer le stress du moins ses conséquences
- On peut mesurer les défenses antioxydantes,
- ➤ Il est possible d'agir par voie pharmacologique et/ou nutritionnelle.