ALA BLATTNR. **ABGABEDATUM**

Jonathan Siems, 6533519, Gruppe 12 Jan-Thomas Riemenschneider, 6524390, Gruppe 12 Tronje Krabbe, 6435002, Gruppe 9

15. Juni 2014

1. a)

$$\begin{split} T_7(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} \\ T_8(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{8!} \\ T_9(x) &= T_8(x) \\ T_{10}(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{8!} - \frac{x^{10}}{10!} \\ T_{11}(x) &= T_{10}(x) \\ T_{12}(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} \\ T_{13}(x) &= T_{12}(x) \end{split}$$

$$T_9(1) \approx 0,5403025$$

$$T_{11}(1) \approx 0,5403023$$

$$T_{13}(1) \approx 0,5403023$$

$$f(\mathbf{x})$$

$$T_0(x) = 1$$

$$T_1(x) = 1 + \frac{x}{2}$$

$$T_2(x) = 1 + \frac{x}{2} - \frac{x^2}{8}$$

$$T_3(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16}$$

$$T_4(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128}$$

$g(\mathbf{x})$ $T_0(x) = 1$ $T_1(x) = 1 - \frac{x}{3}$ $T_2(x) = 1 - \frac{x}{3} + \frac{2x^2}{9}$ $T_3(x) = 1 - \frac{x}{3} + \frac{2x^2}{9} - \frac{14x^3}{81}$ $T_4(x) = 1 - \frac{x}{3} + \frac{2x^2}{9} - \frac{14x^3}{81} + \frac{35x^4}{243}$

c) Am einfachsten ist es, einfach alle Taylorpolynome bis T_5 zu errechnen, da diese Arbeite sowieso getan werden muss.

$$T_0(x) = 0$$

$$T_1(x) = x$$

$$T_2(x) = x + x^2$$

$$T_3(x) = x + x^2 + \frac{1}{3}x^3$$

$$T_4(x) = x + x^2 + \frac{1}{3}x^3$$

$$T_5(x) = x + x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5$$
Probe:
$$T_5(1) = \frac{69}{30} = 2, 3$$

$$f(1) = 2, 287355...$$

Das Ergebnis kommt also hin.

$$\lim_{x \to 1} \left(\frac{x^3 - 3x^2 + x + 2}{x^2 - 5x + 6} \right) = \frac{1}{2}$$

(ii)

$$\lim_{x \to 2} \left(\frac{x^3 - 3x^2 + x + 2}{x^2 - 5x + 6} \right)$$

$$\stackrel{*}{=} \lim_{x \to 2} \left(\frac{3x^2 - 6x + 1}{2x - 5} \right)$$

$$= -1$$

* An dieser Stelle wurden die Regeln von de l'Hospital verwendet.

(iii)

$$\begin{aligned} &\lim_{x\to 0} (1+3x)^{\frac{1}{2x}}\\ =&\lim_{x\to 0} \left(e^{\frac{1}{2x}\cdot \ln(1+3x)}\right)\\ =&e^{\lim_{x\to 0} \left(\frac{1}{2x}\cdot \ln(1+3x)\right)} \end{aligned}$$

Wir errechnen zunächst nur die Potenz:

$$\lim_{x \to 0} \left(\frac{\ln(1+3x)}{2x} \right)$$

$$\stackrel{*}{=} \lim_{x \to 0} \left(\frac{\frac{3}{3x+1}}{2} \right)$$

$$= \frac{3}{2}$$

Wir setzen dieses Zwischenergebnis ein und erhalten das Endergebnis: $\Rightarrow e^{\frac{3}{2}}$

* An dieser Stelle wurden die Regeln von de l'Hospital verwendet.

(iv)

$$\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{\sin(x)} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin(x) - e^x + 1}{e^x \sin(x) - \sin(x)} \right)$$

$$\stackrel{*}{=} \lim_{x \to 0} \left(\frac{\cos(x) - e^x}{e^x \sin(x) + (e^x - 1)\cos(x)} \right)$$

$$\stackrel{*}{=} \lim_{x \to 0} \left(\frac{-e^x - \sin(x)}{\sin(x) + 2e^x \cos(x)} \right)$$

$$= -\frac{1}{2}$$

- * An dieser Stelle wurden die Regeln von de l'Hospital verwendet.
- **3.** a)
 - b)
 - c) Im Folgenden bilden wir die ersten drei Ableitungen von $\sqrt[5]{x+1}$ und berechnen die Funktionswerte für x=0, die anschliessend in die Formel für Taylorpolynome eingesetzt werden:

$$f(x) = \sqrt[5]{x+1}$$

$$f(0) = 1$$

$$f'(x) = \frac{1}{5}(x+1)^{-\frac{4}{5}}$$

$$f'(0) = \frac{1}{5}$$

$$f''(x) = -\frac{4}{25}(x+1)^{-\frac{9}{5}}$$

$$f''(0) = -\frac{4}{25}$$

$$f'''(x) = \frac{36}{125}(x+1)^{-\frac{14}{5}}$$

$$f'''(0) = \frac{36}{125}$$

Einsetzen in

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} :$$

$$T_0(x) = 1$$

$$T_1(x) = 1 + \frac{1}{5}x$$

$$T_2(x) = 1 + \frac{1}{5}x - \frac{2}{25}x^2$$

$$T_3(x) = 1 + \frac{1}{5}x - \frac{2}{25}x^2 + \frac{6}{125}x^3$$

- **4. TODO**
- 5. TODO
- 6. TODO