4º LABORATÓRIO de CCI-22 / 2022 CTA - ITA - IEC

Prof Juliana

Objetivo: Implementação de métodos numéricos <u>iterativos</u> para resolução de sistemas lineares.

Entregar (através do Google Classroom):

- a) Códigos utilizados (não precisa compactar).
- b) Relatório (em pdf) para responder as questões abaixo, mostrando resultados e conclusões. Não colocar os códigos no relatório.
- c) Desconto de 1 ponto na nota por dia de atraso.

Importante:

- Considere um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ de ordem n>0, com matriz de coeficientes \mathbf{a} e termos independentes \mathbf{b} . Considere que $\mathbf{a} \in \mathbb{R}^{n \times n}$ e $\mathbf{b} \in \mathbb{R}^{n \times 1}$.
- Implementar as funções solicitadas em arquivos separados.
- Obedeça a assinatura das funções.
- Nessas implementações não será permitido o uso de funções ou operadores do Matlab (ou outra ferramenta utilizada) que realizam o trabalho pedido (ou boa parte dele). Por outro lado, uma vez terminadas as implementações, você pode conferi-las com os resultados fornecidos pelas funções existentes. Nessas comparações, tenha em conta que os resultados não precisam ser rigorosamente idênticos: pode haver uma pequena diferença devido a erros de arredondamento.

IMPLEMENTAÇÃO: Implemente as funções abaixo.

satisfaz = CriterioLinhas (A): verifica se a matriz A satisfaz o Critério das Linhas (condição suficiente para convergência do Método de Gauss-Jacobi) e retorna o resultado como a booleana satisfaz. Se satisfaz for true, o critério é satisfeito.

[x, dr] = GaussJacobi (A, b, x0, epsilon, maxIteracoes): resolve o sistema Ax = b através do Método de Gauss-Jacobi, usando x0 como chute inicial, epsilon como tolerância para critério de parada por erro relativo e maxIteracoes como limite máximo de iterações. O vetor coluna solução x é retornado. Também é retornado o vetor coluna dr, que contém os erros relativos de todas as iterações, de modo que dr (k) é o erro relativo calculado na iteração k. Obs: O número de iterações realizadas será justamente o tamanho do vetor dr.

[satisfaz, beta] = CriterioSassenfeld(A): verifica se a matriz A satisfaz o Critério de Sassenfeld (condição suficiente para convergência do Método de Gauss-Seidel) e retorna o resultado como a booleana satisfaz. Se satisfaz for true, o critério é satisfeito. Além disso, o beta (maior dentre todos β_i , $1 \le i \le n$) do Critério de Sassenfeld é retornado.

[x, dr] = GaussSeidel (A, b, x0, epsilon, maxIteracoes): resolve o sistema Ax = b através do Método de Gauss-Seidel, usando x0 como chute inicial, epsilon como tolerância para critério de parada por erro relativo e maxIteracoes como limite máximo de iterações. O vetor coluna solução x é retornado. Também é retornado o vetor coluna dr, que contém os erros relativos de todas as iterações, de modo que dr (k) é o erro relativo calculado na iteração k. Obs: O número de iterações realizadas será justamente o tamanho do vetor dr.

Considere a seguinte definição de erro relativo na iteração k:

$$d_r^{(k)} = \frac{\max_{1 \le i \le n} \left| x_i^{(k)} - x_i^{(k-1)} \right|}{\max_{1 \le i \le n} \left| x_i^{(k)} \right|}$$

TAREFA 1: ANÁLISE SOBRE CONVERGÊNCIA

- Faça uma única tabela (como a abaixo) para indicar seus resultados. Obs:
 - Os valores apresentados são apenas exemplos.
 - O Quando divergir, indicar o último x calculado.
 - o Quando convergir, indicar a quantidade de iterações realizadas.
 - o A tabela apresenta também o resultado da função Matlab A\b para você pode comparar. Obs: Aqui não precisa indicar a quantidade de iterações.
 - O Pode ser útil plotar o vetor de erros relativos de para ajudar a embasar suas conclusões. Só precisa fazer isso para os casos de interesse.
 - Não precisa comentar sobre cada sistema. Basta responder as perguntas colocadas a seguir.
- Utilize: x0 como vetor nulo, epsilon = 0.001 e maxIteracoes = 100.

	Sistema	Matlab A\b	Critério das Linhas	Critério Sassenfeld	Gauss-Jacobi	Gauss-Seidel
	1	$x = [1 \ 1 \ 1.3]^T$	Não satisfaz	Satisfaz beta = 0.9	Diverge $x^{(100)} = 1.0e + 36 * [-1.0564 - 1.4688 \ 2.0959]^T$	Converge $x^{(23)} = [1 \ 1 \ 1.3]^T$
	•••					
ĺ	7					

Obs: T significa transposta.

Sistema 1:

$$A = [1 \ 3 \ 1; \ 5 \ 2 \ 2; \ 0 \ 6 \ 8]$$

 $b = [-2; \ 3; \ -6]$

Sistema 2:

$$A = [5 \ 2 \ 2; \ 1 \ 3 \ 1; \ 0 \ 6 \ 8]$$
 %Permutação de linhas do sistema 1 $b = [3; \ -2; \ -6]$

Sistema 3:

$$A = [1 \ 3 \ 4; \ 1 \ -3 \ 1; \ 1 \ 1 \ 5]$$

 $b = [8; \ -9; \ 1]$

Sistema 4:

$$A = [1 \ 2 \ -2; \ 1 \ 1 \ 1; \ 2 \ 2 \ 1]$$

 $b = [3; \ 0; \ 1]$

Sistema 5:

$$A = [2 \ 1 \ 1; \ 1 \ 2 \ 1; \ 1 \ 1 \ 2]$$

 $b = [4; \ 4; \ 4]$

Sistema 6:

$$A = [5 -1 1; 2 4 -1; -1 1 3]$$

 $b = [10; 11; 3]$

Sistema 7:

$$A = [5 \ 1 \ 1; \ 3 \ 4 \ 1; \ 3 \ 3 \ 6]$$

 $b = [5; \ 6; \ 0]$

- Considere as afirmações abaixo. Elas são verdadeiras! Você só precisa explicá-las usando exemplos da tabela.
 - a) O Critério das Linhas é uma condição suficiente, mas não necessária, para convergência do Método Gauss-Jacobi.
 - b) O Critério de Sassenfeld é uma condição suficiente, mas não necessária, para convergência do Método Gauss-Seidel.
 - c) Em geral, o Método Gauss-Seidel converge com uma menor quantidade de iterações que o Método Gauss-Jacobi.
 - d) Se um sistema satisfaz o Critério das Linhas, então também satisfará o Critério de Sassenfeld. A volta não é verdadeira.
 - e) Às vezes basta fazer uma permutação no sistema (trocar linhas e/ou colunas) para satisfazer o(s) critérios(s) de convergência.

TAREFA 2: ANÁLISE SOBRE TEMPO DE EXECUÇÃO

- Investigue os tempos gastos (usando tic e toc) para resolver sistemas lineares (com diferentes tipos de matrizes) usando diferentes métodos.
 - O Para os métodos iterativos, você pode usar: x0 como vetor nulo, epsilon = 10*eps e maxIteracoes = 1000. Assim daremos mais tempo para eles trabalharem!
 - O Para computar o tempo de execução, pegue a média de algumas execuções (por exemplo, umas cinco). Mas descarte as medidas iniciais (pois vimos no Lab1 que elas são inesperadas!). Ex: rode 10 vezes, mas pegue a média das últimas 5 vezes. A cada rodada, use o mesmo sistema (a seguir teremos mais detalhes).
 - Para cada caso abaixo, há um sistema de exemplo. Você pode usá-lo. Se precisar alterar algo, sem problemas! Se quiser cancerizar, pode estudar outros sistemas maiores!
- Para cada caso abaixo, preencha a tabela abaixo e depois faça a sua análise comparativa.
 - Nas colunas 'Resíduo' e 'Qtde iterações', indique o valor da última rodada.
 Ex: das 10 vezes que você rodou, pegue os valores da última vez.

Método	Resíduo*	Tempo (ms)	Qtde iterações**
Gauss com Pivoteamento	=		-
(Lab3-questão1)			
Solução com Decomposição LU	-		-
(Lab3-questão2)			
Gauss-Jacobi			
Gauss-Seidel			

^{*} Resíduo é o valor do último dr. No nosso caso, só faz sentido para os métodos iterativos.

^{**} Qtde iterações, na verdade, é o tamanho do vetor dr. No nosso caso, só faz sentido para os métodos iterativos.

a) Matriz bem condicionada grande

```
A = rand(100) + 100 * eye(100);

b = rand(100,1);
```

%Matrizes próximas da identidade são, em geral, bem condicionadas.
%Rode o comando cond(A,Inf) para se certificar que a matriz A é bem
condicionada

%No nosso exemplo, multiplicar a diagonal principal por um fator grande (no caso, 100), pode ajudar a satisfazer o critério de convergência dos métodos iterativos.

<u>Curiosidade</u>: Para matrizes bem condicionadas, a literatura indica que os métodos iterativos são melhores!

De acordo com os seus dados, verifique que a afirmação acima é verdadeira. Comente também sobre coisas estranhas que você encontrar. Ex: Um método com menos iterações que o outro, mas com tempo maior. Explique porque isso ocorre.

b) Matriz mal condicionada

```
A = hilb(8);
b = rand(8,1);
%Hilbert é um caso clássico de matriz mal condicionada!
%Rode o comando cond(A,Inf) para se certificar que a matriz A é mal condicionada
```

<u>Curiosidade</u>: Para matrizes mal condicionadas, a literatura indica que os métodos diretos (como Eliminação de Gauss) são melhores.

De acordo com os seus dados, verifique que a afirmação acima é verdadeira. Explique porque os iterativos são ruins nesse caso.

c) Matriz esparsa grande

```
A = sprandn(1000,1000,.01)+100*eye(1000);

b = rand(1000,1);
```

% A função sprandn ajuda a gerar matrizes esparsas (com muitos zeros).

Rode o comando cond(A,Inf) para se certificar que a matriz A é BEM condicionada

%No nosso exemplo, multiplicar a diagonal principal pelo fator 100 foi para ajudar a satisfazer o critério de convergência dos métodos iterativos. Caso precise ajustar esse valor para garantir convergência, fique à vontade!

<u>Curiosidade</u>: Para matrizes esparsas com dimensão grande, a literatura indica que os métodos iterativos são melhores, pois utilizam a matriz inicial (sem alterar sua estrutura), o que reduz erros de arredondamento e tempo de processamento.

De acordo com os seus dados, verifique que a afirmação acima é verdadeira. Explique porque os diretos são ruins nesse caso.

Avaliação da dupla

Aluno(a)	Atividade realizadas	Percentual merecido da nota	
Fulano	Fez Q1 e revisou Q2	30%	
Beltrano	Revisou Q1, fez Q2 e Q3	100%	

Atenção: Dividir bem as tarefas da dupla. Não vale ter uma pessoa que só escreve relatório, ou que só testa/revisa. Todos devem 'pôr a mão na massa'!

Bom trabalho!