

大模型并行

颜航

目录

- 1 各类并行算法原理
- **2** FlashAttention
- 3 LLM的 "宇宙常数"

| 各类并行算法原理

各类并行算法

算法名称	主要思想	优点	缺点
数据并行 Data Parallel	将 模型并行 地 分散 到各个GPU上进 行运算,通过梯度同步保证各个GPU 上的模型仍然保持一致	使用非常简单,适用场景广泛,几 乎已经成了多卡训练必用	无法单独应对模型巨大的情况
张量并行 Tensor Parallel	将 矩阵运算 进行 拆分	可以将巨大模型拆小以适配单张 GPU	1. 对通信的要求较高 2. 需要对模型算子进行处理
流水线并行 Pipeline Parallel	将大模型 按层 进行 拆分	可以拆解巨大的模型,同时对模型 算子影响相对较小	计算可能存在空泡,导致硬件利用率 低
零冗余优化 Zero Redundancy Optimization	将模型在 数据并行维度 间进行 拆分	简单易用	Zero2、Zero3对通信的要求较高
序列并行 Sequence Parallel	在 输入序列维度 进行 拆分	可以应对超长上下文模型	长度不特别长的场景下效率不高

数据并行

单卡训练

数据并行

Data parallel training with 2 compute nodes

△ 注意

- 1. 每张卡上的数据是不同的
- 每张卡上的模型需要初始的时候
 是完全一样的
- 执行完梯度运算后,不能各自直接更新自己的模型,不然每张卡上的模型就不一致了

数据并行

在完成梯度求解之后,需要首先进行梯度同步,经过这个步骤,不同GPU上模型的梯度是一致,由于它们本身起点也是一致的,所以更新之后不同GPU上模型仍然是一致的。

注意

- 1. 后向过程可以和梯度同步有时间上的重叠,提高效率
- 2. 不同GPU如果混用,可能导致 更新结果不一致

模型并行

Model Parallelism

问题(

当模型特别大的时候,会出现一张卡甚至没办 法放下一个模型的情况,这时就需要将模型拆 分到多个GPU上。

拆分方案有 2 种:

- 1. 横向切分 (张量并行)
- 2. 竖向切分 (流水线平行)

张量并行

可以将矩阵乘法拆分成在两个设备上运行

假设B就是那个模型的权重,实际上就是 将模型的权重分散到两个设备上了

操作	定义	示例
All-reduce	对所有进程的数据执行一个归约操作(如求和、最 大值等),并将结果返回给所有进程	每个进程持有一个值。执行All-reduce操作(如求和)后,每个进程将获得所 有值的总和
All-gather	将所有进程的数据收集并分发给所有进程	每个进程拥有数据的一部分。执行All-gather后,每个进程将拥有包括所有进程 部分的完整数据集
Scatter	将一个进程的数据分散到所有其他进程	一个进程将其数据集分割成多部分,将每部分发送到不同进程
All-to-All	每个进程向所有其他进程发送数据,并同时从所有 其他进程接收数据	在All-to-all操作中,每个进程将其数据分割并发送到所有其他进程,并从其他 所有进程接收数据

张量并行——个示例

切分X或者A都是可以的

张量并行—实际应用

MLP运算

$$Y = XA \tag{1}$$

$$Y = GeLU(Y) \tag{2}$$

$$Y = YB \tag{3}$$

其中 $X \in R^{L \times h}$, $A \in R^{h \times 4h}$, $B \in R^{4h \times h}$

通过合理安排竖切和横切的位置,可以减少一次通信操作。

使用张量并行需要修改模型算子!!!同时张量并行需要比较频繁地进行通信,

对带宽要求较高,一般仅在同一个节点内部使用

在层与层之间进行切分

Timestep	0	1	2	3	4	5	6	7
GPU3				FWD	BWD			
GPU2			FWD			BWD		
GPU1		FWD					BWD	
GPU0	FWD							BWD

Timestep	0	1	2	3	4	5	6	7	8	9	10	11	12	13
GPU3				F1	F2	F3	F4	B4	В3	B2	B1			
GPU2			F1	F2	F3	F4			B4	В3	B2	B1		
GPU1		F1	F2	F3	F4					B4	В3	B2	B1	
GPU0	F1	F2	F3	F4							B4	В3	B2	B1

			F _{3,0}	F _{3,1}	F _{3,2}	F _{3,3}	Вз,з	B _{3,2}	B _{3,1}	Вз,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F _{1,0}	F1,1	F _{1,2}	F _{1,3}	(B _{1,3}	B _{1,2}	B _{1,1}	B _{1,0}		Update
F _{0,0}	F _{0,1}	F _{0,2}	F _{0,3}			В	ubble	1		B _{0,3}	B _{0,2}	B _{0,1}	B _{0,0}	Update

空泡率:
$$1 - \frac{2nm}{2n(m+n-1)} = 1 - \frac{m}{m+n-1}$$

其中m是microbatch的数量,n是流水线阶段的数量。可以看出来,增大m和减少n都可以减少空泡

PipeDream可以稍微减少一些为反向传播cache的激活状态,是目前默认的流水线并行方案 流水线并行对通信的要求相较张量并行低一些,**但当流水线特别长的时候,空泡会导致其效率降低**

零冗余优化 - 数值精度

背景知识: 浮点数表达方式

Float32表达精度高,范围大,但要占4个byte

目前大模型训练默认使用bfloat16

Bfloat16表示精度低,但数字表达范围和float32一样大

Float16的表示精度中,但数字表达范围较小

```
>>> a = torch.FloatTensor([1, 1, 10000])
>>> b = torch.FloatTensor([0.001, 0.01, 2])
>>>
>>> (a + b).tolist()
[1.0010000467300415, 1.0099999904632568, 10002.0]
>>>
>>> (a.bfloat16() + b.bfloat16()).tolist()
[1.0, 1.0078125, 9984.0]
>>> (a.half() + b.half()).tolist()
[1.0009765625, 1.009765625, 10000.0]
```


不同表达精度, 计算结果不一致

零冗余优化 - 显存占用分析

Adam优化器算法

$$\nu_t = \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t$$

$$s_t = \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2$$

$$\Delta\omega_t = -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t$$

$$\omega_{t+1} = \omega_t + \Delta\omega_t$$

 $\eta: Initial\ Learning\ rate$

 g_t : Gradient at time t along ω^j

 ν_t : Exponential Average of gradients along ω_j

 s_t : Exponential Average of squares of gradients along ω_j

 $\beta_1, \beta_2: Hyperparameters$

正常训练显存占用: 40 + 40 + 40 + 40 = 160

其中Θ是参数的个数;上述占用依次是一阶、二阶动量、 模型参数、梯度

U 混合精度训练显存占用: 40 + 40 + 40 + 20 + 20 = 160

其中Θ是参数的个数;上述占用依次是一阶、二阶动量、 复制的模型fp32参数、模型fp16参数、模型fp16梯度

Assume we use mixed precision training with Adam optimizer. Comparing the total memory usage with and with out ZeRO-1. ψ denotes model size (number of parameters), and N_d denotes DP degree. Then, without ZeRO-1 memory consumption is $(2+2+3*4)*\psi=16\psi$, with ZeRO-1 is $2\psi+2\psi+12\psi/N_d$.

- ZeRO Stage 1
- Partitions optimizer states across GPUs
- · Run Forward across the transformer blocks

实际上的Zero3是按照**每个Parameter都 拆分**的方式,而不是按照整Parameter拆分。

在计算当前层时,提前触发下一层的All-gather操作聚合参数,实现**计算和通信的overlap**。

在节点内进行切片, 前向gather更快

通信前将参数进行量化,减少通信量

零冗余优化

类型	主要思想	备注
Zero-1	将优化器的状态进行切分	没有任何坏处,直接冲
Zero-2	切分优化器状态和梯度	对通信稍微有点要求
Zero-3	切分优化器、梯度和参数	对通信要求很高
Zero++	划分出多个Zero共享组,并使用量化减少通信量	对通信的要求比Zero-3低

序列并行--序之长,一卡放不下

黑色的线 是随着模型大小增加,训练需要的显存和Flops曲线 蓝色的线 是7B模型随着Context Length增加,训练需要的显存和Flops曲线

序列并行--长序列的"摩尔定律"

摩尔定律

▶ 每隔18个月芯片的性能提高一倍

大模型语境长度?

▶ 每隔 ? 个月大模型的语境长度提高一倍

过去一年,大模型的语境长度约每个月提高一倍 截止目前,已经从2K飙升到10M,提高了约4个数量级

序列并行

token1' token2' token4' token6' token3' token5' token8' token9' token7' GPU3 GPU2 GPU1 token1 token2 token8 token9 token3 token4 token5 token6 token7 GPU1 **GPU3** GPU2

每张卡处理序列的一部分,在多头注意力的位置,head被均分到GPU上,但每个head都处理整个序列

缺点:并行的数量受限于head的数量

序列并行—另一个维度

假设以一个query的计算为例

w1 w2 w3 w4 w5 w6 w7 w8 w9

$$o_i = \sum_{n=1}^{9} \frac{e^{q_i k_n} v_n}{\sum_{j=1}^{9} e^{q_i k_j}}$$

切分成 多部分

w1 w2 w3

w4 w5 w6

合并执行
$$o_i = \frac{\sum_{m=1}^{M} o_i^m}{\sum_{m=1}^{M} s_i^m}$$

Ring Attention

$$v_1 \ v_2 \ v_3$$

$$v_4 \ v_5 \ v_6$$

$$v_7 \ v_8 \ v_9$$

$$o = 0 \quad o + = \sum_{i=1}^{3} e^{q_1 k_i} v_i \quad o + = \sum_{i=4}^{6} e^{q_4 k_i} v_i \quad o + = \sum_{i=7}^{9} e^{q_7 k_i} v_i$$

$$l = 0 \quad l + = \sum_{i=1}^{3} e^{q_1 k_i} \quad l + = \sum_{i=4}^{6} e^{q_4 k_i} \quad l + = \sum_{i=7}^{9} e^{q_7 k_i}$$

$$o += \sum_{i=4} e^{q_4}$$

$$\begin{bmatrix} 4 \\ 6 \\ 2q_i k_i \end{bmatrix}$$

$$o += \sum_{i=7}^{9} e^{q_{7}k_{i}}v$$

$$l += \sum_{i=4}^{6} e^{q_{i}}$$

$$l += \sum_{i=7}^{9} e^{q_{\gamma}k}$$

GPU1

GPU2

GPU3

实际训练会组合多种并行方式

| FlashAttention的原理

FlashAttention1的动机

Matmul

Dropout

Softmax

Mask

PyTorch

Matmul

Fused

Kernel

FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

名称含义

- Fast: 耗时更短
 - 五个算子合成一个
- Memory-efficient
 - 极大降低存储开销
 - 实现超长序列输入
- Exact:不同于传统方法,没有任何近似
- IO aware: 硬件角度加速(减少读写)

背景工作: 传统注意力加速研究

- 稀疏方法: SparseTranformer
- 低秩方法: Linformer、Performer ...

• 方法局限: 降低flops, 并不是去提升 "真正的速度"

Time (ms)

Tri Dao[†], Daniel Y. Fu[†], Stefano Ermon[†], Atri Rudra[‡], and Christopher Ré[†]

[†]Department of Computer Science, Stanford University [‡]Department of Computer Science and Engineering, University at Buffalo, SUNY {trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	9.5 days (1.0×)
GPT-2 small - Megatron-LM [77]	18.2	$4.7 \text{ days } (2.0 \times)$
GPT-2 small - FlashAttention	18.2	$2.7 \text{ days } (3.5 \times)$
GPT-2 medium - Huggingface [87]	14.2	21.0 days (1.0×)
GPT-2 medium - Megatron-LM [77]	14.3	11.5 days (1.8×)
GPT-2 medium - FLASHATTENTION	14.3	$6.9 \text{ days } (3.0 \times)$

Training time reported on 8×A100s GPUs

FlashAttention1的动机

背景知识: GPU存储结构

- · SRAM: 静态随机存储器
 - 存得少、算得快、类似高速缓存
- HBM: 高带宽存储器
 - 存得多、算得慢、类似内存

核心思想: 抓住主要矛盾

- 更多flops, 充分利用SRAM效率
- 更少IO,减少不必要的读写开销

实现思路: 经典方法的大胆组合

- 参考: on-line softmax
 - · 将softmax算子从分步计算变成迭代计算

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load Q, K by blocks from HBM, compute $S = QK^{T}$, write S to HBM.
- 2: Read S from HBM, compute P = softmax(S), write P to HBM.
- 3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
- 4: Return O.

Attention	Standard	FlashAttention
Gflops	66.6	75.2
HBM R/W (GB)	40.3	4.4
Runtims (ms)	41.7	7.3

• 方法:分块 tiling(前向+反向)、重计算 recomputation(仅反向,略)

FlashAttention1的方法

符号约定

Algorithm 1 FlashAttention

Require: Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}$, $\ell = (0)_N \in \mathbb{R}^N$, $m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide \mathbf{Q} into $T_r = \begin{bmatrix} \frac{N}{B_r} \end{bmatrix}$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \begin{bmatrix} \frac{N}{B_c} \end{bmatrix}$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- Load K_i , V_i from HBM to on-chip SRAM.
- for $1 \le i \le T_r$ do
- Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- On chip, compute $S_{ij} = Q_i K_i^T \in \mathbb{R}^{B_r \times B_c}$.

FlashAttention1的方法

分块加载

S

Algorithm 1 FLASHATTENTION

Require: Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}$, $\ell = (0)_N \in \mathbb{R}^N$, $m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.

FlashAttention1的方法

Algorithm 1 FLASHATTENTION

Require: Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}$, $\ell = (0)_N \in \mathbb{R}^N$, $m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left[\frac{N}{B_r}\right]$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left[\frac{N}{B_c}\right]$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each,

softmax分解

5: for $1 \le j \le T_c$ do

for $1 \le i \le T_r$ do

Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.

Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.

softmax分解(迭代分解)

$$O_{i} = \frac{e^{Q_{i}K_{1}^{T}} \cdot V_{1}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} =$$

On chip, compute $\tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} =$

On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\hat{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.

Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i - m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_i)$ to HBM.

online softmax
$$O_1 = \frac{e^{Q_i K_1^T} \cdot V_1}{\sum_{s=1}^1 e^{Q_i K_s^T}} \quad O_j = O_{j-1} \cdot \frac{\sum_{s=1}^{j-1} e^{Q_i K_s^T}}{\sum_{s=1}^j e^{Q_i K_s^T}} + \frac{e^{Q_i K_j^T} \cdot V_j}{\sum_{s=1}^j e^{Q_i K_s^T}}$$

$$O_j = O_{j-1}$$

$$\cdot \frac{\sum_{s=1}^{J-1} e^{Q_i K_s^T}}{\sum_{s=1}^{J} e^{Q_i K_s^T}} +$$

5: for $1 \le j \le T_c$ do

end for end for

10:

for $1 \le i \le T_r$ do

 $\operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.

Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.

On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$.

Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.

Load \mathbf{Q}_i , \mathbf{O}_i , ℓ_i , m_i from HBM to on-chip SRAM.

$$+ \frac{e^{Q_i K_j^T} \cdot V_j}{\sum_{s=1}^j e^{Q_i K_s^T}}$$

把softmax变成一个可 以迭代完成的过程

把softmax+线性组合 变成一个独立的算子

softmax分解(公式简化)

Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM. end for end for 16: Return O.

$$O_{i} = \frac{e^{Q_{i}K_{1}^{T}} \cdot V_{1}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} = \frac{e^{Q_{i}K_{1}^{T}} \cdot V_{1}}{\sum_{s=1}^{1} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{1} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{j}^{T}} \cdot V_{j}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{j} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{j}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{j}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{j}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{$$

$$\sum_{s=1}^{1} e^{Q_i K_s^T} \sum_{s=1}^{N} e^{Q_i K_s^T}$$

10:

12:

$$\frac{\sum_{S=1}^{N} e^{Q_i K_S}}{\sum_{S=1}^{N} e^{Q_i K_S}} + \dots + \frac{e^{Q_i K_S}}{\sum_{S=1}^{N} e^{Q_i K_S}}$$

5: for $1 \le j \le T_c$ do

for $1 \le i \le T_r$ do

 $\operatorname{rowsum}(\tilde{\mathbf{P}}_{i,i}) \in \mathbb{R}^{B_r}$.

$$+\frac{e^{Q_i K_j^T} \cdot V_j}{\sum_{s=1}^j e^{Q_i K_s^T}}$$

Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.

On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.

Load \mathbf{Q}_i , \mathbf{O}_i , ℓ_i , m_i from HBM to on-chip SRAM.

$$\frac{V_j}{K_s^T} \cdot \frac{\sum_{s=1}^J e^{Q_i K_s^T}}{\sum_{s=1}^N e^{Q_i K_s^T}}$$

On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\hat{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.

Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i - m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_i)$ to HBM.

$$\frac{s}{\sum_{s=1}^{T}\epsilon} + \cdots + \frac{e^{Q_i N_N}}{\sum_{s=1}^{N}\epsilon}$$

$$\sum_{S=1}^{N} e^{Q_i K_S^T}$$

$$\sum_{S=1}^{N} e^{Q_i K_S^T}$$

记录每行

到目前的

On chip, compute $\tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} =$

m

online softmax

$$O_1 = 1 \cdot V_1 \quad O_j = l_{i1} = e^{Q_i K_1^T}$$

$$O_{1} = 1 \cdot V_{1}$$
 $O_{j} = O_{j-1} \cdot \frac{l_{ij-1}}{l_{ij}} + \frac{e^{Q_{i}K_{j}^{T}} \cdot V_{j}}{l_{ij}}$

$$l_{ij} = l_{ij-1} + e^{Q_{i}K_{j}^{T}}$$

$$l_{ij} = l_{ij-1} + e^{Q_i K_j^T}$$

$$l_{ij} = l_{ij-1} + e^{Q_i K_j}$$

$$l_{ij} = \sum_{s=1}^{j} e^{Q_i K_s^s}$$

softmax分解(公式简化)

$$O_{i} = \frac{e^{Q_{i}K_{1}^{T}} \cdot V_{1}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} = \frac{e^{Q_{i}K_{1}^{T}} \cdot V_{1}}{\sum_{s=1}^{1} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{1} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}} \cdot V_{N}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{N}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} \cdot \frac{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^{T}}} + \dots + \frac{e^{Q_{i}K_{s}^{T}}}{\sum_{s=1}^{N} e^{Q_{i}K_{s}^$$

$$\frac{V_N}{K_S^T} = \frac{e^{Q_i K_1^T} \cdot V_1}{\sum_{s=1}^1 e^{Q_i K_s^T}} \cdot$$

$$\frac{\sum_{s=1}^{1} e^{Q_i K_s^T}}{\sum_{s=1}^{N} e^{Q_i K_s^T}} + \frac{\sum_{s=1}^{1} e^{Q_i K_s^T}}{\sum_{s=1}^{N} e^{Q_i K_s^T}} + \frac{\sum_{s=1}^{N} e^{Q_i K_s^T}}{\sum_{s=1}^{N} e^{Q_i K_s^T}}$$

10:

5: for $1 \le j \le T_c$ do

end for end for 16: Return O.

for $1 \le i \le T_r$ do

 $\operatorname{rowsum}(\tilde{\mathbf{P}}_{i,i}) \in \mathbb{R}^{B_r}$.

$$\frac{e^{\frac{t_s}{\zeta_s^T}}}{\sum_{s=1}^{T}} + \cdots + \frac{e^{\frac{t_s}{\zeta_s^T}}}{\sum_{s=1}^{T}}$$

$$\cdot + \frac{e^{Q_i K_j^T} \cdot V_j}{\sum_{s=1}^j e^{Q_i K_s^T}} \cdot$$

Load $\mathbf{K}_i, \mathbf{V}_i$ from HBM to on-chip SRAM.

On chip, compute $S_{ij} = Q_i K_i^T \in \mathbb{R}^{B_r \times B_c}$.

Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.

Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.

$$\frac{\sum_{s=0}^{N} \sum_{s=1}^{N}}{\sum_{s=1}^{N}}$$

$$\frac{\sum_{s=1}^{N} e^{Q_i K_s^T}}{\sum_{s=1}^{N} e^{Q_i K_s^T}} + \cdots +$$

On chip, compute $\tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} =$

On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$. Write $\mathbf{O}_i \leftarrow \text{diag}(\ell_i^{\text{new}})^{-1}(\text{diag}(\ell_i)e^{m_i - m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.

$$\frac{T}{S} + \cdots + \frac{T}{\sum_{s=1}^{N}}$$

$$\frac{\sum_{s=1}^{N} e^{Q_i K_s^T}}{\sum_{s=1}^{N} e^{Q_i K_s^T}} \cdot \frac{\sum_{s=1}^{N} e^{Q_i K_s^T}}{\sum_{s=1}^{N} e^{Q_i K_s^T}}$$

m

$$Q = Q_i$$

$$O_1 = V_1 m_{i1} = S_{i1} l_{i1} = e^{S_{i1} - m_{i1}}$$

$$O_{i} = O_{i}^{\text{old}} \cdot \frac{l_{i}^{\text{old}}}{l_{i}} \cdot \frac{e^{m_{i}^{\text{old}}}}{e^{m_{i}}} + \frac{e^{S_{i} - m_{i}} \cdot V_{j}}{l_{i}}$$

$$m_{i} = \max(m_{i}^{\text{old}}, S_{i})$$

$$l_i = l_i^{\text{old}} \cdot e^{m_i^{\text{old}} - m_i} + e^{S_i - m_i}$$

$$d_{ij} = \sum_{S=1}^{j} e^{S_{iS} - m_{ij}} \quad m_{ij} = \max_{1 \le S \le j} Q_i K_S^T$$

$$S_{ij} = Q_i K_j^T$$

5: for $1 \le j \le T_c$ do

5: for $1 \le j \le T_c$ do

算法总结: 分块加载、迭代softmax; 复杂度: $O(Nd \cdot Nd/M) = O(N^2d^2/M)$

• 复杂度计算:内循环中Q和O的加载是主导因素,加载量 = Q和O的大小 * K和V的块数

Algorithm 1 FlashAttention **Require:** Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M. 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d \right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_{N} \in \mathbb{R}^{N}, m = (-\infty)_{N} \in \mathbb{R}^{N}$ in HBM. 3: Divide **Q** into $T_r = \begin{bmatrix} \frac{N}{B_c} \end{bmatrix}$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \begin{bmatrix} \frac{N}{B_c} \end{bmatrix}$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each. 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each. 5: for $1 \le j \le T_c$ do Load K_i , V_i from HBM to on-chip SRAM. for $1 \le i \le T_r$ do Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM. On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$. On chip, compute $\tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} =$ 10: $\operatorname{rowsum}(\tilde{\mathbf{P}}_{i,i}) \in \mathbb{R}^{B_r}$. On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$. 11: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i-m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij}-m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM. 12: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM. end for 15: end for 16: Return O.

· FlashAttention2的动机

- **算法不足**: 0实际上是不需要加载再写入的; softmax的归一化系数是可以一步除的
- 以Q为外循环,O只需要一次输出;GPU针对矩阵乘有加速,其他运算吞吐量显著更高

```
Algorithm 1 FlashAttention
Require: Matrices Q, K, V \in \mathbb{R}^{N \times d} in HBM, on-chip SRAM of size M.
  1: Set block sizes B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left( \left\lceil \frac{M}{4d} \right\rceil, d \right).
  2: Initialize \mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_{N} \in \mathbb{R}^{N}, m = (-\infty)_{N} \in \mathbb{R}^{N} in HBM.
  3: Divide Q into T_r = \begin{bmatrix} \frac{N}{B_r} \end{bmatrix} blocks \mathbf{Q}_1, \dots, \mathbf{Q}_{T_r} of size B_r \times d each, and divide \mathbf{K}, \mathbf{V} in to T_c = \begin{bmatrix} \frac{N}{B_c} \end{bmatrix} blocks
       \mathbf{K}_1, \dots, \mathbf{K}_{T_c} and \mathbf{V}_1, \dots, \mathbf{V}_{T_c}, of size B_c \times d each.
  4: Divide \mathbf{O} into T_r blocks \mathbf{O}_i, \ldots, \mathbf{O}_{T_r} of size B_r \times d each, divide \ell into T_r blocks \ell_i, \ldots, \ell_{T_r} of size B_r each,
       divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
  5: for 1 \le j \le T_c do
           Load K_i, V_i from HBM to on-chip SRAM.
           for 1 \le i \le T_r do
               Load \mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i from HBM to on-chip SRAM.
               On chip, compute \mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}.
                On chip, compute \tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}, \tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} - \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c} (pointwise), \tilde{\ell}_{ij} =
10:
                \operatorname{rowsum}(\tilde{\mathbf{P}}_{i,i}) \in \mathbb{R}^{B_r}.
               On chip, compute m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}, \ell_i^{\text{new}} = e^{m_i - m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} - m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}.
11:
                Write \mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i-m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij}-m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j) to HBM.
12:
                Write \ell_i \leftarrow \ell_i^{\text{new}}, m_i \leftarrow m_i^{\text{new}} to HBM.
           end for
15: end for
16: Return O.
```


5: for $1 \le j \le T_c$ do

Algorithm 1 FlashAttention-2 forward pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, block sizes B_c , B_r .

- 1: Divide **Q** into $T_r = \begin{bmatrix} \frac{N}{B_r} \end{bmatrix}$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 2: Divide the output $\mathbf{O} \in \mathbb{R}^{N \times d}$ into T_r blocks $\mathbf{O}_i, \ldots,$ into T_r blocks L_i, \ldots, L_{T_r} of size B_r each.
- 3: for $1 \le i \le T_r$ do
- Load \mathbf{Q}_i from HBM to on-chip SRAM.
- On chip, initialize $\mathbf{O}_{i}^{(0)} = (0)_{B_r \times d} \in \mathbb{R}^{B_r \times d}, \ell_{i}^{(0)} = (0)_{B_r} \in \mathbb{R}^{B_r}, m_{i}^{(0)} = (-\infty)_{B_r} \in \mathbb{R}^{B_r}.$
- for $1 \le j \le T_c$ do
- Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM. 7:
- On chip, compute $\mathbf{S}_{i}^{(j)} = \mathbf{Q}_{i} \mathbf{K}_{i}^{T} \in \mathbb{R}^{B_{r} \times B_{c}}$.
- On chip, compute $m_i^{(j)} = \max(m_i^{(j-1)}, \operatorname{rowmax}(\mathbf{S}_i^{(j)})) \in \mathbb{R}^{B_r}, \ \tilde{\mathbf{P}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} m_i^{(j)}) \in \mathbb{R}^{B_r \times B_c}$ 9: (pointwise), $\ell_i^{(j)} = e^{m_i^{j-1} - m_i^{(j)}} \ell_i^{(j-1)} + \text{rowsum}(\tilde{\mathbf{P}}_i^{(j)}) \in \mathbb{R}^{B_r}$.
- On chip, compute $\mathbf{O}_{i}^{(j)} = \text{diag}(e^{m_{i}^{(j-1)} m_{i}^{(j)}})^{-1}\mathbf{O}_{i}^{(j-1)} + \tilde{\mathbf{P}}_{i}^{(j)}\mathbf{V}_{j}$. 10:
- end for 11:
- On chip, compute $\mathbf{O}_i = \operatorname{diag}(\ell_i^{(T_c)})^{-1} \mathbf{O}_i^{(T_c)}$. 12:
- On chip, compute $L_i = m_i^{(T_c)} + \log(\ell_i^{(T_c)})$. 13:
- Write \mathbf{O}_i to HBM as the *i*-th block of \mathbf{O} . 14:
- Write L_i to HBM as the *i*-th block of L.
- 16: end for
- 17: Return the output $\mathbf{0}$ and the logsum exp L.

$O_i = O_i^{\text{old}} \cdot e^{m_i^{\text{old}} - m_i} + e^{S_i - m_i} \cdot V_i$

$$m_i = \max(m_i^{\text{old}}, \text{rowmax}(S_i))$$

$$l_i = l_i^{\text{old}} \cdot e^{m_i^{\text{old}} - m_i} + \text{rowsum}(e^{S_i - m_i})$$

$$O_i^{\text{final}} = \text{diag}(l_i)^{-1} \cdot O_i$$

方法对比

- 改动一: 内外循环的顺序调整
- 改动二: softmax归一化的滞后
- 改动三: logexpsum用于梯度回传

减少非矩阵乘运算

Algorithm 1 FlashAttention

减少了O的相关读写

不同Q安排不同线程

Require: Matrices $Q, K, V \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

1: Set block sizes $B_c = \begin{bmatrix} \frac{M}{4d} \end{bmatrix}, B_r = \min(\begin{bmatrix} \frac{M}{4d} \end{bmatrix}, d)$.

 $\lceil \frac{N}{B_c} \rceil$ blocks

gsumexp L

- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left| \frac{N}{B_r} \right|$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left| \frac{N}{B_c} \right|$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide \mathbf{O} into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- Load $\mathbf{K}_i, \mathbf{V}_i$ from HBM to on-chip SRAM.
- for $1 \le i \le T_r$ do
 - Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$. 9:
- On chip, compute $\tilde{m}_{ij} = \text{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} =$ 10: $\operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$. 11:
- Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\hat{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ii}\mathbf{V}_i)$ to HBM. 12:
- Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM. 13:
- end for
- 15: end for
- 16: Return O.

49

Algorithm 1 FlashAttention-2 forward pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, block sizes B_c , B_r .

- 1: Divide \mathbf{Q} into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each. 2: Divide the output $\mathbf{O} \in \mathbb{R}^{N \times d}$ into T_r blocks \mathbf{O}_i, \dots ,
- into T_r blocks L_i, \ldots, L_{T_r} of size B_r each.
- 3: for $1 \le i \le T_r$ do
- Load \mathbf{Q}_i from HBM to on-chip SRAM.
- On chip, initialize $\mathbf{O}_{i}^{(0)} = (0)_{B_r \times d} \in \mathbb{R}^{B_r \times d}, \ell_{i}^{(0)} = (0)_{B_r} \in \mathbb{R}^{B_r}, m_{i}^{(0)} = (-\infty)_{B_r} \in \mathbb{R}^{B_r}.$
- for $1 \le j \le T_c$ do
- Load $\mathbf{K}_i, \mathbf{V}_i$ from HBM to on-chip SRAM.
- On chip, compute $\mathbf{S}_{i}^{(j)} = \mathbf{Q}_{i} \mathbf{K}_{i}^{T} \in \mathbb{R}^{B_{r} \times B_{c}}$.
- On chip, compute $m_i^{(j)} = \max(m_i^{(j-1)}, \operatorname{rowmax}(\mathbf{S}_i^{(j)})) \in \mathbb{R}^{B_r}, \ \tilde{\mathbf{P}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} m_i^{(j)}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\ell_i^{(j)} = e^{m_i^{j-1} - m_i^{(j)}} \ell_i^{(j-1)} + \text{rowsum}(\tilde{\mathbf{P}}_i^{(j)}) \in \mathbb{R}^{B_r}$.
- On chip, compute $\mathbf{O}_i^{(j)} = \mathrm{diag}(e^{m_i^{(j-1)} m_i^{(j)}})^{-1} \mathbf{O}_i^{(j-1)} + \tilde{\mathbf{P}}_i^{(j)} \mathbf{V}_i$. 10:
- end for 11:
- On chip, compute $\mathbf{O}_i = \operatorname{diag}(\ell_i^{(T_c)})^{-1} \mathbf{O}_i^{(T_c)}$.
- On chip, compute $L_i = m_i^{(T_c)} + \log(\ell_i^{(T_c)})$.
- Write \mathbf{O}_i to HBM as the *i*-th block of \mathbf{O} 14:
- Write L_i to HBM as the *i*-th block of L.
- 16: end for
- 17: Return the output $\mathbf{0}$ and the logsum exp L.

$O_i = O_i^{\text{old}} \cdot e^{m_i^{\text{old}} - m_i} + e^{S_i - m_i} \cdot V_j$

$$m_i = \max(m_i^{\text{old}}, \text{rowmax}(S_i))$$

$$l_i = l_i^{\text{old}} \cdot e^{m_i^{\text{old}} - m_i} + \text{rowsum}(e^{S_i - m_i})$$

$$O_i^{\text{final}} = \text{diag}(l_i)^{-1} \cdot O_i$$

方法对比

- 改动一: 内外循环的顺序调整
- 改动二: softmax归一化的滞后
- 改动三: logexpsum用于梯度回传

 $\left[\frac{N}{B_c}\right]$ blocks

gsumexp L

减少了O的相关读写

不同Q安排不同线程

(c) With causal mask, head dimension 64

(b) Without causal mask, head dimension 128

(d) With causal mask, head dimension 128

避免padding

FlashDecoding

计算q和kv cache

FlashDecoding

这个过程可以并行计算

| "LLM" 宇宙常数

- 1. 一个Transformer模型的参数量是多少?
- 2. 一个Transformer模型的**计算**量是多少?
- 3. 训练需要多大的**显存**?
- 4. 训练需要多大的硬盘空间?
- 5. 什么是Nvlink、Infini-band?
- 6. 如何估算大模型的训练速度?
- 7. 训练一个7B的模型需要多长时间?
- 8. 训练一个7B模型需要多少钱?

• • • • • • • •

这些问题都是在大模型训练过程中会经常遇到的问题,我们需要速算方法来估计它们

训练需要多大的显存?

$$l*(12h^2+13h)+2Vh$$

其中l是层数, h是隐藏层维度, V是词表大小

怎么算的?

一个Transformer模型的计算量是多少?

$$l*(24bsh^2 + 4bs^2h) + 2bshV$$
 FLOPs

其中l是层数,h是隐藏层维度,V是词表大小,s是序列长度,b是批大小。

以上是前向运算的估计,如果还需要考虑反向传播的话,还需要加上2倍。

想想为啥是2倍?

如果序列长度不是特别长(比如说32k),可以将前向和反向传播的算力约等为 6PD

特别长的上下文, 算力会约为

$$\left(8 + \frac{4s}{3h}\right)PD$$

训练需要多大的显存?

20*P* **G**

$$\underbrace{2+4}_{\text{weights}} + \underbrace{2+4}_{\text{gradients}} + \underbrace{4+4}_{\text{Adam states}} = 20 \text{ bytes.}$$

此外还有中间的activation,不过这个可以尽量通过重计算避免掉很大一部分

训练需要多大的硬盘空间?

每个checkpoint需要14P G或12P G

什么是Nvlink、Infini-band?

NVLINK GENERATIONS

Evolution In-step with GPUs

如何估算大模型的训练速度、时间、成本?

显卡型号	FLOPS
V100	125 T
A100	312 T
H100	990 T
B200	2250 T

根据我们之前对模型计算量的估计, 计算量约 等于 6PD

那么就可以通过这个计算量和每张卡可以输出的 算力进行一个计算,一般来说,GPU算力利用率 约50%左右。

估计一下LLaMA 7B需要的时间

$$\frac{7 \times 10^9 \times 2 \times 10^{12} \times 6}{312 \times 0.5 \times 10^{12} \times 3600} = 140562 \text{ GPU} * \text{Hour}$$

		Time (GPU hours)	Power Consumption (W)	Carbon Emitted (tCO ₂ eq)
Llama 2	7B	184320	400	31.22
	13B	368640	400	62.44
	34B	1038336	350	153.90
	70B	1720320	400	291.42
Total		3311616		539.00

有了GPU*Hour,所需要的时间就根据投入卡的数量决定时间了。

那对应的成本呢?目前市场上A100每小时租金大约为10元左右,因此一个7B LLaMA的成本就是184万左右。

假设1.8T 的GPT4呢? > 2亿

感谢观看

https://www.shlab.org.cn

Shanghai Artificial Intelligence Laboratory