Assignment 2

MACS 30000

Li Liu

Due Wednesday, Oct. 17 at 11:30 AM

1. Imputing age and gender

(a) Propose a strategy for imputing age (age) and gender (female) variables into the BestIncome.txt data by using information from the SurveyIncome.txt data. Describe your proposed method, including equations.

We want to replace the missing values for age and gender in BestIncome with substituted values. As BestIncome and SurveyIncome have common variables of totinc (sum of lab_inc and cap_inc in BestIncome) and weight, we could predict the missing values using the regression models trained by SurveyIncome data.

Linear regression for age:

$$Age_i = \alpha_0 + \alpha_1 totinc_i + \alpha_2 wgt_i + \epsilon_i$$

where:

 α_0 is the intercept of the linear line on the y-axis

 α_1 and α_2 represent the marginal effect on age when variables change 1 unit

 ϵ_i is an error term (deviations of observations from the linear)

Logistic regression for dichotomous variable gender:

$$log(rac{p(X)}{1-P(X)}) = eta_0 + eta_1 totinc_i + eta_2 wgt_i + \epsilon_i$$

where X=(totinc, wgt) are two predictors. The left-hand side is called the log-odds.

(b)Using your proposed method from part (a), impute the variables age (age) and gender (female) into the BestIncome.txt data.

```
In [1]: # Import packages
   import numpy as np
   import pandas as pd
   import statsmodels.api as sm
   import matplotlib.pyplot as plt
   plt.style.use('seaborn')
   import warnings
   warnings.filterwarnings("ignore")
```

C:\Anaconda\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning:
The pandas.core.datetools module is deprecated and will be removed in a futur
e version. Please use the pandas.tseries module instead.
from pandas.core import datetools

Out[2]:

	lab_inc	cap_inc	hgt	wgt
0	52655.605507	9279.509829	64.568138	152.920634
1	70586.979225	9451.016902	65.727648	159.534414
2	53738.008339	8078.132315	66.268796	152.502405
3	55128.180903	12692.670403	62.910559	149.218189
4	44482.794867	9812.975746	68.678295	152.726358

Out[3]:

	tot_inc	wgt	age	female
0	63642.513655	134.998269	46.610021	1.0
1	49177.380692	134.392957	48.791349	1.0
2	67833.339128	126.482992	48.429894	1.0
3	62962.266217	128.038121	41.543926	1.0
4	58716.952597	126.211980	41.201245	1.0

Impute age in BestIncome using the models constructed from SurveyIncome

```
In [32]: #OLS Regression for predicting 'age' using 'tot_inc' and 'wgt' uisng SurveyInc
    ome
    X, y = sm.add_constant(Surv[['wgt','tot_inc']], prepend=False), Surv['age']
    m= sm.OLS(y, X).fit()
    print(m.summary())
```

OLS Regression Results

=======	=======	========	=====		=======		
= Dep. Varia 1	ble:		age	R-squ	ared:		0.00
Model:			OLS	Adj.	R-squared:		-0.00
Method:		Least Squ	ares	F-sta	tistic:		0.632
Date: 1		Wed, 17 Oct	2018	Prob	(F-statisti	:):	0.53
Time:		09:5	8:44	Log-L	ikelihood:		-3199.
No. Observa	ations:		1000	AIC:			640
Df Residua:	ls:		997	BIC:			641
Df Model:			2				
Covariance	Type:	nonro	bust				
	======		=====		=======		
= 5]	coe-	f std err		t	P> t	[0.025	0.97
wgt 3	-0.006	7 0.010	-6	0.686	0.493	-0.026	0.01
tot_inc	2.52e-0	5 2.26e-05	1	1.114	0.266	-1.92e-05	6.96e-0
const 4	44.209	7 1.490	29	9.666	0.000	41.285	47.13
=======================================	=======	========	=====	=====	========	-=======	=======
Omnibus: 1		2	.460	Durbi	n-Watson:		1.92
Prob(Omnib	us):	0	.292	Jarqu	e-Bera (JB)	:	2.32
Skew: 3		-0	.109	Prob(JB):		0.31
Kurtosis: 5		3	.092	Cond.	No.		5.20e+0
-	======		=====		=======		
_							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.2e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [5]: # Apply the model to impute 'age' in BestIncome
    #tot_inc = F(K,L) = YK + YL = capital income + labor income='lab_inc'+'cap_in
    c'
    Best['tot_inc']=Best['lab_inc']+Best['cap_inc']
    Best['const'] = 1
    Best['age'] = m.predict(Best[['wgt', 'tot_inc', 'const']])
```

Impute gender in BestIncome using the models constructed from SurveyIncome

Optimization terminated successfully.

Current function value: 0.036050

Iterations 11

Logit Regression Results

______ female No. Observations: Dep. Variable: 100 Df Residuals: Model: Logit 99 Method: Df Model: MLE Wed, 17 Oct 2018 Date: Pseudo R-squ.: 0.948 Time: 09:58:50 Log-Likelihood: -36.05 converged: True LL-Null: -693.1 LLR p-value: 4.232e-28 6 P>|z| coef std err Z [0.025 0.97 5] -0.4460 0.062 -7.219 0.000 -0.567 -0.32 wgt 4.25e-05 tot inc -0.0002 -3.660 0.000 -0.000 -7.22e-0 76.7929 7.266 const 10.569 0.000 56.078 97.50

Possibly complete quasi-separation: A fraction 0.55 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

```
In [7]: # Apply the model to impute 'female' in BestIncome
#Define threshold of female=1 when p>=0.5, female=0 when p<0.5
Best['female'] = m2.predict(Best[['wgt','tot_inc', 'const']])
Best['female'][Best['female']>0.5]=1
Best['female'][Best['female']<0.5]=0</pre>
```

In [8]: Best.head()

Out[8]:

	lab_inc	cap_inc	hgt	wgt	tot_inc	const	age	1
0	52655.605507	9279.509829	64.568138	152.920634	61935.115336	1	44.742614	(
1	70586.979225	9451.016902	65.727648	159.534414	80037.996127	1	45.154387	(
2	53738.008339	8078.132315	66.268796	152.502405	61816.140654	1	44.742427	(
3	55128.180903	12692.670403	62.910559	149.218189	67820.851305	1	44.915836	(
4	44482.794867	9812.975746	68.678295	152.726358	54295.770612	1	44.551391	,

(c) Report the descriptive statistics for my new imputed variables

```
In [9]:
         Best['age'].describe()[['mean', 'std', 'min', 'max', 'count']]
Out[9]: mean
                      44.890828
         std
                       0.219150
                      43.976495
         min
                      45.703819
         max
         count
                   10000.000000
         Name: age, dtype: float64
         Best['female'].describe()[['mean', 'std', 'min', 'max', 'count']]
In [10]:
Out[10]: mean
                       0.454600
                       0.497959
         std
                       0.000000
         min
                       1.000000
         max
                   10000.000000
         count
         Name: female, dtype: float64
```

(d) Report the correlation matrix for the now six variables—labor income (lab inc, capital income cap inc, height (hgt), weight (wgt) age (age), and gender (female) —in the BestIncome.txt data.

```
In [11]:
         # Correlation matrix
         def corr_plot(df):
             names = df.columns
             N = len(names)
             correlations = df.corr()
             fig = plt.figure()
             ax = fig.add_subplot(111)
             cax = ax.matshow(correlations, vmin=-1, vmax=1)
             fig.colorbar(cax)
             ticks = np.arange(0,N,1)
             ax.set xticks(ticks)
             ax.set yticks(ticks)
             ax.set_xticklabels(names)
             ax.set yticklabels(names)
             plt.show()
         corr_plot((Best[['lab_inc', 'cap_inc', 'hgt', 'wgt', 'age', 'female']]))
         corr=Best[['lab_inc', 'cap_inc', 'hgt', 'wgt', 'age', 'female']].corr()
         print(corr)
```



```
lab_inc
                   cap_inc
                                 hgt
                                           wgt
                                                     age
                                                            female
lab_inc
        1.000000
                  0.005325 0.002790 0.004507
                                               0.924053 -0.215469
        0.005325
                  1.000000 0.021572
                                      0.006299
                                               0.234159 -0.062569
cap_inc
hgt
        0.002790
                  0.021572
                           1.000000
                                      0.172103 -0.045083 -0.127416
                  0.006299
                            0.172103
                                      1.000000 -0.300288 -0.763821
wgt
        0.004507
age
        0.924053
                  0.234159 -0.045083 -0.300288 1.000000
                                                          0.020059
female -0.215469 -0.062569 -0.127416 -0.763821 0.020059
                                                          1.000000
```

2. Stationarity and data drift

(a) Estimate by OLS and report coefficients

Out[12]:

	grad_year	gre_qnt	salary_p4
0	2001.0	739.737072	67400.475185
1	2001.0	721.811673	67600.584142
2	2001.0	736.277908	58704.880589
3	2001.0	770.498485	64707.290345
4	2001.0	735.002861	51737.324165

```
In [13]: # Run regression model
    X, y = sm.add_constant(Data['gre_qnt'], prepend=False), Data['salary_p4']
    reg= sm.OLS(y, X).fit()
    print(reg.summary())
```

OLS Regression Results

=====		=======	=======	=====		=======	=======
Dep.	Variable:	S	alary_p4	R-squ	uared:		0.26
Mode]	l:		OLS	Adj.	R-squared:		0.26
2							
Metho 3	od:	Least	Squares	F-sta	atistic:		356.
Date:	:	Wed, 17 (Oct 2018	Prob	(F-statistic):	3.43e-6
8 Time:	:	(99:44:59	Log-I	_ikelihood:		-1067
3.	•			-06	-11000.		2007
	Observations:		1000	AIC:			2.135e+0
Df Re	esiduals:		998	BIC:			2.136e+0
4 Df Mo	odel:		1				
	- C- C		_				
Covar	riance Type:	ne	onrobust				
=====	-=======	=======		=====	:=======	=======	=======
=		oof std.	ann	+	P> t	[0 025	0.07
5]	C	Jei stu				_	
gre_c	ηnt -25.76	532 1.	365 -18	.875	0.000	-28.442	-23.08
_	8.954e-	+04 878.	764 101	.895	0.000	8.78e+04	9.13e+0
=====		=======	=======	=====	-=======	=======	=======
Omnib	ous:		9.118	Durbi	in-Watson:		1.42
•	(Omnibus):		0.010	Jarqı	ue-Bera (JB):		9.10
0 Skew:	:		0.230	Prob((JB):		0.010
6							
Kurto	osis:		3.077	Cond	No.		1.71e+0
3 =====	.========	========	========	=====	.========	========	:=======
=	·		_				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.71e+03. This might indicate that there a re strong multicollinearity or other numerical problems.

http://localhost:8888/nbconvert/html/persp-analysis_A18/Assignments/A2/Solution.ipynb?download=false

The estimated regression model is:

$$\widehat{salary - p4_i} = 8.954 * 10^4 - 25.7632 * \widehat{gre_(qnt_i)}$$

where β_0 =8.954e+04 and β_1 =-25.7632

The standard errors are 878.764 for β_0 and 1.365 for β_1 .

(b) Create a scatterplot of GRE score and graduation year.

The scoring scale for GRE quantitative part was changed to a 130-170 scale from the 200-800 scale in 2011. As a result, the values of scores since 2011 are much smaller than the ones before. This is a system drift (change in the system itself). If we don't recognize this issue, we'll probably overestimate the marginal effect of gre_qnt on predicting salary_p4. The hypothesis that the estimated coefficient β_1 is zero will likely not be accepted using this raw data.

One solution is to normalize the gre_qntusing z-score with each year. The standard scores are not affected by different scales.

$$z_{i,j} = rac{gre_qnt_{i,j} - \mu_j}{\sigma_j}$$

where i means different observations within j-th year.

In [29]: Data['gre_qnt']=Data.groupby('grad_year').transform(lambda x: (x-x.mean())/x.s
td())['gre_qnt']

In [23]: #Scatter plot with z-score of 'gre_qnt`
Data.plot(x='grad_year', y='gre_qnt', kind='scatter')
plt.show()

(c) Create a scatterplot of income and graduation year

Across different years, the means of income seem to be growing. Thus the salary_p4 is not stationary. We need to de-trend this variable for the analysis. This could be done by calculating the average growth rate in salaries across all 13 years and dividing each salary by (1 + avg growth rate) ** (grad year - 2001).

```
In [30]: #Calculate the mean salary each year
    avg_inc_by_year = Data['salary_p4'].groupby(Data['grad_year']).mean().values

#Calculate the average growth rate in salaries across all 13 years
    avg_growth_rate = ((avg_inc_by_year[1:] - avg_inc_by_year[:-1]) / avg_inc_by_y
    ear[:-1]).mean()
    #avg_growth_rate=0.0308

#Divide each salary by (1 + avg_growth_rate) ** (grad_year - 2001)
    Data['rate']=(1 + avg_growth_rate) ** (Data['grad_year']-2001)
    Data['salary_p4_new']=Data['salary_p4']/Data['rate']
```

```
In [31]: Data.plot(x='grad_year', y='salary_p4_new', kind='scatter')
plt.show()
```


(d) Re-estimate coefficients with updated variables.

```
In [27]: # Code to re-estimate, output of new coefficients
    X, y = sm.add_constant(Data['gre_qnt'], prepend=False),Data['salary_p4_new']
    reg2= sm.OLS(y,X).fit()
    print(reg2.summary())
```

OLS Regression Results

=							
Dep. Variable: 0	S	alary_p4	_new	R-squa	red:		0.00
Model:			OLS	Adi. R	-squared:		-0.00
1			0_0	,j v	oqua. cu.		0.00
Method:	L	east Squ	iares	F-stat	istic:		0.439
5 Date:	Wed,	17 Oct	2018	Prob (F-statistic):	0.50
8							
Time: 1.		09:4	5:35	Log-Li	kelihood:		-1029
No. Observations:			1000	AIC:			2.059e+0
4 Df Residuals:			998	BIC:			2.060e+0
4							
Df Model:			1				
Covariance Type:		nonro	bust				
Covariance Type:	======			======	========	========	=======
=======================================		======	:=====:				
=======================================	coef	====== std err	-====	t	P> t	[0.025	0.97
=======================================	coef	====== std err	-====	t	P> t	[0.025	0.97
======================================	coef	====== std err		t 	P> t	[0.025	0.97
======================================	coef 5097	====== std err 227.193	-0	t 	P> t 0.508	[0.025 	0.97 295.22
======================================	coef 6097 e+04	====== std err 227.193 225.711	 -0 272	t .663 .117	P> t 0.508 0.000	[0.025 -596.440 6.1e+04	0.97 295.22 6.19e+0
======================================	coef 6097 e+04	====== std err 227.193 225.711 =======	 -0 272	t .663 .117	P> t 0.508 0.000	[0.025 -596.440 6.1e+04	0.97 295.22 6.19e+0
======================================	coef 6097 e+04	====== std err 227.193 225.711 ======	 -0 272	t .663 .117 ======	P> t 0.508 0.000 	[0.025 -596.440 6.1e+04	0.97 295.22 6.19e+0
======================================	coef 6097 e+04	======= std err 227.193 225.711 =======	-0 272 -=====: 0.776	t .663 .117 ===== Durbin Jarque	P> t 0.508 0.000 ====== -Watson: -Bera (JB):	[0.025 -596.440 6.1e+04	0.97 295.22 6.19e+0 ======== 2.02
======================================	coef 6097 e+04	======= std err 227.193 225.711 =======	-0 272 -=====: 0.776	t .663 .117 ======	P> t 0.508 0.000 ====== -Watson: -Bera (JB):	[0.025 -596.440 6.1e+04	0.97 295.22 6.19e+0 ======== 2.02

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The estimated coefficients are β_0 is 6.142e+04 and β_1 is -150.6097. The standard error is 225.711 for β_0 and 227.193 for β_1 .

The new β_0 is a bit smaller to the previous one. But the new β_1 is much smaller. Also we notice that the estimate of old β_1 is statistically significant, while the new β_1 is not. If we ignore the stationarity and data drift problems, we might falsely reject the null hypothesis that higher intelligence is not associated with higher income. Now we cannot reject the null hypothesis. We might want to conclude that higher intelligence is not associated with higher income.

```
In [21]: Data.plot(x='gre_qnt', y='salary_p4_new', kind='scatter')
    x1=np.linspace(-4,4)
    y1=-150.6097*x1+6.142e+04
    plt.plot(x1,y1,'-r')
    plt.show()
```


3. Assessment of Kossinets and Watts.

The question proposed and answered by the Kossinets & Watts (2009) paper is: What could explain the mechanism of homophily generation in a dynamic social network?

Kossinets & Watts (2009) merged three databases to cover "interaction, affiliation, and attribute-type longitudinal data" of 30396 individuals. These personnels are students, professors, and staff affiliated with one large American university, who were active school email users in that academic year (Kossinets & Watts, 2009, p. 410).

The three parts of the database are the past records of email exchanges in one year, individual's characteristics, and course registration (Kossinets & Watts, 2009, p. 410).

Kossinets & Watts (2009) choose the following variables for the network modeling: "personal characteristics, organizational affiliations, course-related variables, and e-mail-related variables".

After the data cleaning, the authors obtained "7,156,162 messages exchanged by 30,396 stable e-mail users during the 270 days period" (Kossinets & Watts, 2009, p. 410). Appendix A of the paper provides a description and definition of these variables.

One potential problem about the dataset is that they exclusively select the email accounts linked with the central server. Kossinets & Watts (2009) address the problem that department-specified email accounts such as "xyz@department.university.edu" are hard to match with the individuals, thus they provide no value for the analysis. Another fact is that many people might choose to use their own email account such as "@gmail.com" for communciations with others for better functionalities. Although these records are much harder to obtain, excluding them from the analysis might make the analysis of small social network incomplete and biased.

Matching the email-logs and characteristics of the senders and receivers to construct "social relationship" is a challenge task. Cortes et al. (2003) argue that E-mail exchanges comprise discontinuous "spike trains" which don't reflect the reality. It probably couldn't track the exact timing of the tie formation. To address this issue, Kossinets & Watts (2009, p. 413) introduced the "sliding window filter" model to approximate short-time network from "discrete dyadic interactions".

Reference:

Cortes, C., Daryl, D., & Chris, V. (2003). Computational Methods for Dynamic Graphs. Journal of Computational and Graphical Statistics, 12(950–70).

Kossinets, G., & Watts, D. (2009). Origins of Homophily in an Evolving Social Network. American Journal of Sociology, 115(2), 405-450. doi:10.1086/599247