

Claims

1. An apparatus for determining likelihood values of input data bits from a plurality of code symbols and a plurality of pilot symbols, comprising:
2 a memory element; and
4 a processor configured to execute a set of instructions stored in the memory element, the set of instructions for:
6 determining a gain vector relating the plurality of code symbols and the plurality of pilot symbols in accordance with channel characteristics; and
8 using the gain vector to determine likelihood values of a designated code symbol, wherein the input data bits are carried by the designated code symbol.

- 10 2. The apparatus of Claim 1, wherein using the gain vector to determine likelihood values of a designated code symbol comprises:
4 defining the likelihood values of the designated code symbol as a log likelihood ratio Λ_k in accordance with the following equation:

$$\Lambda_k = \log \frac{\max_{\theta, \{d_{\pi(j)}, j \in J - \{k\}\}} p_{\bar{\theta}}(\{x_j, y_j : j \in J, j \in J'\} | d_{\pi(k)} = +1, \{d_{\pi(j)} : j \in J - \{k\}\})}{\max_{\theta, \{d_{\pi(j)}, j \in J - \{k\}\}} p_{\bar{\theta}}(\{x_j, y_j : j \in J, j \in J'\} | d_{\pi(k)} = -1, \{d_{\pi(j)} : j \in J - \{k\}\})},$$

- 8 wherein $\bar{\theta}$ is the gain vector, $p_{\bar{\theta}}(\cdot | \cdot)$ is the conditional probability; $d_{\pi(k)}$ is the designated code symbol, x_j represents the plurality of code symbols, y_j represents the plurality of pilot symbols, and the indices J and J' are defined by:
10 $J \subseteq \{j : k - \underline{M} \leq j \leq k + \overline{M}\}$ and
12 $J' \subseteq \{j' : k - \underline{N} \leq j' \leq k + \overline{N}\}$,
where the terms \underline{M} , \overline{M} , \underline{N} , and \overline{N} are window boundary values.

3. The apparatus of Claim 2, wherein the window boundary values
2 \underline{M} , \overline{M} , \underline{N} , and \overline{N} are equal.

40050399.041502

4. The apparatus of Claim 2, wherein the window boundary value \underline{M} equals
2 the window boundary value \overline{M} and the window boundary value \underline{N} equals the
window boundary value \overline{N} .
5. The apparatus of Claim 2, wherein the plurality of code symbols x_i and
2 the plurality of code symbols y_j each comprise L components.
6. The apparatus of Claim 5, further comprising a RAKE "finger" assigned to
2 each of the L components.
7. The apparatus of Claim 5, wherein the L components represent L
2 multipath signals received on a single antenna.
8. The apparatus of Claim 5, wherein the L components represent L
2 multipath signals received on two or more antennas.
9. The apparatus of Claim 5, wherein the L components represent L
2 multipath signals received from two or more transmissions.
10. The apparatus of Claim 5, wherein the L components represent L
2 multipath signals received from two or more carriers.
11. The apparatus of Claim 1, wherein determining the gain vector relating
2 the plurality of code symbols and the plurality of pilot symbols in accordance
with channel characteristics comprises:
4 evaluating a gain vector equation defined by:
6
$$\hat{\theta} = \frac{y + (1/N)(\sigma_p^2 / \sigma_i^2) [\sum_{j \in J - \{k\}} g(x_j, \hat{\theta}) + d_{\pi(k)} x_k]}{1 + (M/N)(\sigma_p^2 / \sigma_i^2)},$$

8 wherein σ_p^2 / σ_i^2 is a pilot-to-traffic ratio, $g(\cdot, \cdot)$ is a predetermined function, $d_{\pi(k)}$
is the designated code symbol, x_j represents the plurality of code symbols, the
index J is defined over the range $J \subseteq \{j : k - \underline{M} \leq j \leq k + \overline{M}\}$, M is the number of

2015030600011502

code symbols in the plurality of code symbols, and N is the number of pilot
10 symbols in the plurality of code symbols.

12. The apparatus of Claim 11, wherein evaluating the gain vector equation
2 is performed iteratively with an initial condition $\hat{\theta}_0 = \mathbf{y} - \frac{1}{N} \sum_{j \in J'} y_j$, and with an
iteration formula:

$$4 \quad \hat{\theta}_n = \frac{\mathbf{y} + (1/N)(\sigma_p^2 / \sigma_t^2) [\sum_{j \in J - \{k\}} g(x_j, \hat{\theta}_{n-1}) + d_{\pi(k)} x_k]}{1 + (M/N)(\sigma_p^2 / \sigma_t^2)}$$

where y_j represents the plurality of pilot symbols and $J' \subseteq \{j : k - N \leq j \leq k + N\}$.

13. The apparatus of Claim 11, wherein using the gain vector to determine
2 likelihood values of the designated code symbols comprises:

defining the likelihood values of the designated code symbol as a log
4 likelihood ratio Λ_k in accordance with the following equation:

$$\Lambda_k = f_k(\hat{\theta}_-, -1) - f_k(\hat{\theta}_+, +1),$$

6 wherein

$$f_k(\bar{\theta}, d) = \frac{1}{\sigma_t^2} \left\{ \frac{(M/N)(\sigma_p^2 / \sigma_t^2) + 1}{(2/N)(\sigma_p^2 / \sigma_t^2)} \|\bar{\theta}\|^2 - \frac{N}{(\sigma_p^2 / \sigma_t^2)} \operatorname{Re}\{\bar{\theta}^H y\} - d \operatorname{Re}\{\bar{\theta}^H x_k\} - \sum_{j \in J - \{k\}} |\operatorname{Re}\{\bar{\theta}^H x_j\}| \right\},$$

and σ_p^2 / σ_t^2 is a pilot-to-traffic ratio.

14. The apparatus of Claim 1, wherein determining the gain vector relating
2 the plurality of code symbols and the plurality of pilot symbols in accordance
with channel characteristics comprises:

4 evaluating a gain vector equation defined by:

$$\hat{\theta} = \frac{\mathbf{y} + (1/N)(\sigma_p^2 / \sigma_t^2) \sum_{j \in J} g(x_j, \hat{\theta})}{1 + (M/N)(\sigma_p^2 / \sigma_t^2)}$$

6 wherein σ_p^2 / σ_t^2 is a pilot-to-traffic ratio, $g(\cdot, \cdot)$ is a predetermined function, x_j
represents the plurality of code symbols, the index J is defined by the

8 relationship $J \subseteq \{j : k - M \leq j \leq k + M\}$, M is the number of code symbols in the
plurality of code symbols, and N is the number of pilot symbols in the plurality of
10 code symbols.

15. The apparatus of Claim 14, wherein evaluating the gain vector equation

2 is performed iteratively with an initial condition $\hat{\theta}_0 = \mathbf{y} - \frac{1}{N} \sum_{j \in I^c} y_j$, using an

iteration formula:

$$\hat{\theta}_n = \frac{y + (1/N)(\sigma_p^2 / \sigma_i^2) \sum_{j \in J} g(x_j, \hat{\theta}_{n-1})}{1 + (M/N)(\sigma_p^2 / \sigma_i^2)}$$

where v_p represents the plurality of pilot symbols and $J' \subseteq \{j' : k - N \leq j' \leq k + \bar{N}\}$.

16 The apparatus of Claim 14, wherein using the gain vector to determine

2 likelihood values of the designated code symbols comprises:

defining the likelihood values of the designated code symbol as a log

4 likelihood ratio Λ_L in accordance with the following equation:

$$\Lambda_k = \frac{2}{\sigma^2} \operatorname{Re}\{\hat{\theta}^H x_k\},$$

⁶ wherein the superscript H represents the Hermitian transpose of the gain vector.

¹⁷ An apparatus for determining a log likelihood ratio of a designated code

2 symbol by using a plurality of code symbols and a plurality of pilot symbols transmitted over diversity channels, comprising:

4 a memory element; and

a processor configured to execute a set of instructions stored in the memory element, the set of instructions for:

receiving a frame of N' code symbols.

Receiving a frame of N code symbols,

8 dividing the frame of code symbols into MN groups of code
symbols, wherein the i^{th} group contains symbols with indices $iK + 1, \dots,$
10 $(i+1)K;$

setting a counter for i , ranging from 0 to $(i+1)K - 1N'/K-1$;

12 setting a plurality of indices as follows:

$$J = \{iK+1-\underline{M}, \dots, (i+1)K+\overline{M}\},$$

14 $J' = \{iK+1-\underline{N}, \dots, (i+1)K+\overline{N}\},$

$$N = \underline{N} + \overline{N} + K,$$

16 $M = \underline{M} + \overline{M} + K;$

setting an initial gain vector condition defining $\hat{\theta}_0 = \mathbf{y} = \frac{1}{N} \sum_{j \in J'} y_j;$

18 iterating a gain vector equation for a predetermined number of iterations, the gain vector equation defined by:

20
$$\hat{\theta}_n = \frac{\mathbf{y} + (1/N)(\sigma_p^2 / \sigma_i^2) \sum_{j \in J} g(\mathbf{x}_j, \hat{\theta}_{n-1})}{1 + (M/N)(\sigma_p^2 / \sigma_i^2)},$$

wherein σ_p^2 / σ_i^2 is a pilot-to-traffic ratio;

22 setting the last value of $\hat{\theta}_n$ as $\hat{\theta}$;

computing a value $\Lambda_k = \frac{2}{\sigma_i^2} \operatorname{Re}\{\hat{\theta}^H \mathbf{x}_k\}$ for each $k = iK+1, \dots, (i+1)K$;

24 and

incrementing i and repeating the above steps so that a plurality of values $\{\Lambda_1, \dots, \Lambda_N\}$ is obtained.

18. A method for determining likelihood values of input data bits from a plurality of code symbols and a plurality of pilot symbols, comprising:
 2 determining a gain vector relating the plurality of code symbols and the plurality of pilot symbols in accordance with channel characteristics; and
 4 using the gain vector to determine likelihood values of a designated code symbol, wherein the input data bits are carried by the designated code symbol.

19. A method for determining a log likelihood ratio of a designated code symbol by using a plurality of code symbols and a plurality of pilot symbols transmitted over diversity channels, comprising:
 2 receiving a frame of N' code symbols;
 4 dividing the frame of code symbols into N'/K groups of code symbols,
 6 wherein the i^{th} group contains symbols with indices $iK+1, \dots, (i+1)K$;
 8 setting a counter for i , ranging from 0 to $(i+1)K-1$;

8 setting a plurality of indices as follows:

$$J = \{iK+1-\underline{M}, \dots, (i+1)K+\overline{M}\},$$

$$J' = \{iK+1-\underline{N}, \dots, (i+1)K+\overline{N}\},$$

$$N = \underline{N} + \overline{N} + K,$$

$$M = \underline{M} + \overline{M} + K;$$

setting an initial gain vector condition defining $\hat{\theta}_0 = \mathbf{y} = \frac{1}{N} \sum_{j \in J'} y_j$;

14 iterating a gain vector equation for a predetermined number of iterations,
the gain vector equation defined by:

$$\hat{\theta}_n = \frac{y + (1/N)(\sigma_p^2 / \sigma_i^2) \sum_{j \in J} g(x_j, \hat{\theta}_{n-1})}{1 + (M/N)(\sigma_p^2 / \sigma_i^2)},$$

wherein σ_p^2 / σ_i^2 is a pilot-to-traffic ratio;

18 setting the last value of $\hat{\theta}_n$ as $\hat{\theta}$;

computing a value $\Lambda_k = \frac{2}{\sigma_i^2} \operatorname{Re}\{\hat{\theta}^H x_k\}$ for each $k = iK+1, \dots, (i+1)K$; and

20 incrementing i and repeating the above steps so that a plurality of values $\{\Lambda_1, \dots, \Lambda_N\}$ is obtained.

20. An apparatus for determining likelihood values of input data bits from a plurality of code symbols and a plurality of pilot symbols, comprising:

means for pre-processing the plurality of code symbols and the plurality of pilot symbols into a slowly time varying model;

means for determining a gain vector relating the plurality of code symbols and the plurality of pilot symbols to the slowly time varying model; and

means for using the gain vector to determine likelihood values of a designated code symbol, wherein the input data bits are carried by the designated code symbol.