E 24010.0 – aa 24/2

Data:	Nome e Cognome:	□MAR □MER □GIO Data:	(10)
-------	-----------------	----------------------	------

Polarizzazione del transistor BJT e amplificatore a emettitore comune

Scopi dell'esercitazione sono esplorare i regimi di funzionamento del transistor npn (modello 2N1711 o equivalente) e realizzare un amplificatore in tensione montando il transistor, opportunamente polarizzato, in configurazione a emettitore comune. Per la polarizzazione della giunzione BE si usa una singola resistenza R_P realizzata con un potenziometro di valore nominale $R_V = 0.47$ Mohm: il valore di R_P dipende quindi dalla rotazione dell'alberino del potenziometro. Ricordate che, come indicato in figura, tra elettrodo centrale del potenziometro e boccola corrispondente è interposta una resistenza r = 0.47 kohm (nominali) la cui presenza è praticamente irrilevante per gli scopi dell'esercitazione. Inoltre notate che nella basetta del transistor sono predisposte due distinte resistenze di collettore $R_C(R_C = 1.0 \text{ kohm e } R_C = 2.2 \text{ kohm nominali})$ selezionabili collegando opportunamente le rispettive boccole: <u>fate attenzione ai collegamenti</u>!

Come generatore di d.d.p., denominata V_{cc} , usate l'alimentatore regolabile che avete sul banco: si consiglia $V_{cc} \sim 4-6 \text{ V}$.

1. Prima di montare il circuito misurate le resistenze R_C (tutte e due) e anche R_B (ingegnatevi per farlo al meglio). Inoltre misurate V_{cc} (a circuito aperto).

$R_C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$R_C \;\; ig[\;\;\; ig]$ 2.2 kohm nominale	R_B []	$V_{cc}\ igl[$ a circuito aperto

2. Montate il circuito di figura in cui le correnti di base, I_B, e di collettore, I_C, sono misurate con i multimetri a disposizione e le d.d.p. V_{BE} e V_{CE} con i due canali del l'oscilloscopio (misure rispetto allo zero!). Ruotando l'alberino del potenziometro, verificate <u>rapidamente</u> il comportamento di I_B in funzione di V_{BE} descrivendolo nei commenti (basta una figurina fatta a mano, ma chiara). <u>Commentate anche (in modo quantitativo) su quanto la misura fatta al CH1 dell'oscilloscopio sia rappresentativa di V_{BE}. Si raccomanda di non superare il valore di I_B ~ 80 μΑ!</u>

Commenti sull'andamento I_B vs V_{BE} e sull'accordo fra d.d.p. letta da CH1 osc. e V_{BE} (pensateci!):
Page 1 of 4

Eseguite diverse misure di V_{BE} , I_B , V_{CE} , I_C per diverse regolazioni dell'alberino del potenziometro, esplorando il range approssimato $I_B \sim 5-80 \, \mu A$. Sono sufficienti 3-4 misure per $R_C=1.0$ kohm e un paio per $R_C=2.2$ (kohm. Quando sensato (cioè per il solo regime attivo – vedi dopo per la sua individuazione), calcolate il guadagno in corrente continua $\beta_F = I_C/I_B$. Lo scopo di queste misure è quello di individuare i diversi regimi di funzionamento del transistor (attivo, prossimo a saturazione, prossimo a interdizione). Disegnate sul grafico delle curve di collettore che trovate nell'ultima pagina le rette di carico per le due scelte di R_C e segnate i punti di lavoro individuati allo scopo di individuare i regimi di funzionamento. Notate che le curve di collettore sono "generiche", non riportano l'indicazione di I_B , che dovete mettere voi, e possono essere non accurate, non essendo specifiche per il componente che state usando. Indicate nel grafico i regimi corrispondenti ai vari punti di lavoro. Nota tecnica: per ottenere valori di I_B particolarmente bassi potrebbe essere necessario montare un'ulteriore registenza in serie al potenziometro.

	$\overline{}$	
์ 1	\cap	1
ͺϫ	U	J
\	_	•

uı	un'ulteriore resistenza in serie al potenziometro.					
#	R_{C} (nom.)	V_{BE} []	I_B []	V_{CE} []	I_C []	$eta_{ m F}$
1						
2						
3						
4						
5						
6						
7						
8						

4. Da qui in avanti scegliete una corrente I_B , e quindi una regolazione del potenziometro, tale da garantire sicuramente l'operazione in regime attivo. Aggiungete al circuito i componenti necessari all'invio di un piccolo segnale alternato v_{in} all'ingresso, secondo lo schema riportato qui sotto (si consiglia di selezionare $f \sim kHz$, o poco superiore). L'insieme partitore/condensatore di disaccoppiamento è preassemblato in un telaietto: fate attenzione a collegare le boccole in modo opportuno! L'ampiezza della forma d'onda (sinusoidale) prodotta dal generatore va aggiustata in modo da avere v_{in} "sufficientemente" piccolo da evitare distorsioni nel segnale in uscita. Potete usare il solito filtro passa-basso (condensatore) montato su TEE-BNC per ridurre il rumore ad alta frequenza nella visualizzazione di v_{in} all'oscilloscopio.

5. Misurate le ampiezze, o ampiezze picco-picco, v_{in} e v_{out} e determinate il <u>guadagno in tensione</u> G_v per piccoli segnali oscillanti. L'operazione deve essere compiuta per le due scelte di R_C e usando ampiezze v_{in} sufficientemente <u>piccole</u> da evitare che siano apprezzabili (a occhio!) <u>distorsioni</u> nella forma del segnale. Se ci riuscite, stimate anche la massima ampiezza $v_{in,MAX}$ per cui le distorsioni sono non apprezzabili (può essere utile, <u>solo</u> per questa stima, impiegare un'onda triangolare, che potrebbe rendere più agevole la visualizzazione delle distorsioni). Ricordate di indicare le incertezze su tutte le misure e tutti i valori determinati (a parte $v_{in,MAX}$, dove non ha senso). Fate anche una <u>rapida</u> indagine di cosa succede a frequenze alte, verificando in particolare se si riesce a individuare una frequenza al di sopra della quale G_V diminuisce sensibilmente.

					L_24010.0 -	aa 24/23
Nome e Co	gnome:			□mar [Data:	_mer □Gio	10')
Valore/i di lavoro: $I_{B}=% {\displaystyle\int\limits_{B}^{\infty }} \left($		[]			
R_{C} (nominale)	<i>v_{in}</i> []	v _{out} []	$G_v = v_{out}$	$_{t}/v_{in}$	v _{in,MAX} []
1.0 kohm						
2.2 kohm						

6. Scrivete nel riquadro la relazione che conduce al valore atteso $G_{v,att}$ e commentate sulla congruenza tra misure e aspettative. Per la stima (senza errore!) delle aspettative, potete porre $\beta_f = \beta_F$, oppure (bonus track) eseguire una rapida "misura" di β_f definendolo come $\beta_f = \Delta I_C/\Delta I_B$, dove ΔI_B è una "piccola" variazione di corrente di base (per esempio qualche μA) e ΔI_C la corrispondente variazione della corrente di collettore. Nel caso, spiegate tutto per bene nei commenti. Inoltre è molto probabile che, per ampiezze del segnale in ingresso che inducono saturazione, il segnale in uscita abbia una forma "caratteristica" e chiaramente "asimmetrica". Se la osservate, riportatene un disegnino cercate di motivare l'origine di questa forma caratteristica. (Si intende che dovete usare forme d'onda sinusoidali).

Commenti:	Espressione di $G_{v,att}$

7. Introducete ora una resistenza R_E tra emettitore e linea di massa, o terra, come indicato nello schema: si consiglia R_E nel range nominale 68 ohm – 0.68 kohm. Occhio: dovete solo modificare il circuito, non costruirlo ex-novo! Ripetete le stesse misure del punto precedente e riportatele in tabella assieme al valore misurato di R_E : si consiglia, ma non è tassativo, di mantenere lo stesso valore di I_B di prima ed eventualmente variare (aumentare) v_{in} . Dovreste infatti osservare che l'amplificatore con resistenza di emettitore è maggiormente "immune" da distorsione evidente. Potete limitarvi a impiegare solo $R_C = 1.0$ kohm nominali; piuttosto, potete provare un paio di valori di R_E .

$R_E \left[egin{array}{c} & & & \ & \ & \ & \ & \ & \ & \ & \ & $	I_B	I_C	$\beta_{\rm F} = I_{\rm C}/I_{\rm B}$	v _{in}	v _{out}	$G_v = v_{out} / v_{in}$
						Page 3 of 4

3.	Senza modificare altro, aggiungete un condensatore C_E (si consiglia $C_E = 0.47-4.7 \mu\text{F}$ nominali) in <u>parallelo</u> a R_E . Questo circuito <u>deve</u> presentare un guadagno $G_V(f)$ dipendente dalla frequenza f del segnale in ingresso e
	Questo circuito deve presentare un guadagno $G_V(f)$ dipendente dalla frequenza f del segnale in ingresso e
	l'obiettivo delle misure è quello di costruire una tabella del guadagno in funzione della frequenza e quindi un
	grafico. Sarebbe opportuno che il grafico venisse realizzato nel corso dell'esercitazione, mentre per
	l'"interpretazione" (ed eventuale best-fit) potete pensarci a casa. Occhio: questo guadagno deve essere
	determinato sperimentalmente mantenendosi nel range che permette di eseguire misure "confortevoli" (che so, tra
	una decina di Hz e qualche decina di kHz). Quindi appena montato il circuito verificate rapidamente che esso si
	comporti come atteso all'interno di questo range di frequenze (e anche che non ci sia eccessiva distorsione nel
	segnale in uscita, qualsiasi sia la frequenza). Altrimenti provate con altri valori di C_E ed eventualmente R_E .

egnare in uscha, quaisiasi sia ia frequenza). Attrimenti provate con attri valori di C_E ed eventualmente K_E .				
j.	f_{j} []	v _{inj} []	v _{outj} []	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

8. Riportate nei commenti i valori di R_E e C_E che avete impiegato e, soprattutto, una spiegazione di cosa succede aggiungendo R_E e con il parallelo $R_E/\!/C_E$. Se siete in grado di farlo (prima o poi lo sarete di sicuro!), scrivete l'espressione del guadagno $G_{V,att}$ per l'amplificatore con R_E e confrontate le aspettative con i risultati sperimentali. Cercate anche di scrivere un'espressione per il guadagno $G_{V,att}(f)$ atteso per il circuito che comprende il parallelo $R_E/\!/C_E$, o, almeno, date una spiegazione approssimativa e qualitativa del comportamento osservato in funzione della frequenza.

Commenti:

Page 4 of 4

