SRN					

PES University, Bangalore

UE19CS205

(Established under Karnataka Act No. 16 of 2013)

SAMPLE PAPER FOR

IN SEMESTER ASSESSMENT (ISA-1)- B.TECH III SEMESTER October, 2020

Automata Formal Languages & Logic

Time: 2 Hrs Answer All Questions Max Marks: 60

3.	a)	Construct a regular expression for the following languages	4
		i) L = $\{w \mid w \in \{a, b\}^* \text{ and } w \text{ has exactly one pair of consecutive a's} \}$	
		ii) L = {anbm n, m are two integers such that (n+m) is even}, Σ = {a, b}	
	b)	Obtain Regular Expression for the following automata using state elimination technique. The removal of the states should be in ascending order of their names (s.t. 1,2,3,4)	6
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4.	а	State and prove the pumping lemma for the regular languages.	5
	b	Prove that family of regular languages are closed under union and concatenation operations	5
5.	а	Obtain a CFG for the language L={ $a^n b^m c^k$: n,m,k>=0 and m=n+k}	4
	b	Construct a PDA for the language L={ a ⁿ b ^m c ^k : n,m,k>=0 and n=m+k}	6
6.	а	Check whether the following grammar G is ambiguous or not. If it is ambiguous then obtain an unambiguous grammar which accepts the same language. S-> AB aaB $A \rightarrow aA \mid a$ $B \rightarrow b$	4
	b	Convert the following grammar into Chomsky Normal Form $S \to a \mid aA \mid B$. $A \to aBB \mid \lambda$ $B \to Aa \mid b$	6

Acknowledgement: The sample paper is prepared by Dr. Pooja Agarwal and Dr. Karthik S.