Assignment 13-Probability and Random Variable

Annu-EE21RESCH01010

Download latex code from here-

https://github.com/annu100/AI5002-Probabilityand-Random-variables/tree/main.tex/ ASSIGNMENT 13

I. Gate-24 Solution

A binary symmetric channel (BSC) has a transition probability of $\frac{1}{8}$. If the binary transmit symbol X is such that $Pr(X = 0) = \frac{9}{10}$, then the probability of error for an optimum receiver will be-

II. SOLUTIONS

let crossover probability=p

q

Figure 1: Channel transition diagram

 $x_0=0, x_1=1, y_0=0, y_1=1$ for binary channel Let x_0 and x_1 are two binary transmitted symbols. y_0 and y_1 are received symbols. transition probability= $Pr(y_1|x_0)=Pr(y_0|x_1)$ Given

$$Pr(x_0) = \frac{9}{10}$$

$$Pr(x_1) = 1 - \frac{9}{10} = \frac{1}{10}$$

$$Pr(y_1|x_0) = p = \frac{1}{8}$$

$$Pr(y_0|x_1) = p = \frac{1}{8}$$

data-

$$Pr(y_0|x_0) = 1 - p = 1 - \frac{1}{8} = \frac{9}{10}$$

 $Pr(y_1|x_1) = 1 - p = 1 - \frac{1}{8} = \frac{9}{10}$
Calculating probability values for MAP critera -

$$Pr(y_0|x_0) \times Pr(x_0) = \frac{7}{8} \times \frac{9}{10}$$
 (1)
= $\frac{63}{80}$ (2)

1

$$Pr(y_0|x_1) \times Pr(x_1) = \frac{1}{8} \times \frac{1}{10}$$
 (3)
= $\frac{1}{80}$ (4)

$$Pr(y_1|x_0) \times Pr(x_0) = \frac{1}{8} \times \frac{9}{10}$$
 (5)
= $\frac{9}{80}$ (6)

$$Pr(y_1|x_1) \times Pr(x_1) = \frac{7}{8} \times \frac{1}{10}$$
 (7)
= $\frac{7}{80}$ (8)

Now according to M.A.P criteria at reciever -

$$Pr(y_0|x_0) \times Pr(x_0) > Pr(y_0|x_1) \times Pr(x_1)$$
 (9)

So,when a symbol is recieved is recieved as y_0 , the decision can be made in favour of x_0 in an optimum way.

$$Pr(y_0|x_0) \times Pr(x_0) > Pr(y_0|x_1) \times Pr(x_1)$$
 (10)

So, when a symbol is recieved is recieved as y_0 , the decision can be made in favour of x_0 in an optimum way.

As

$$Pr(y_0|x_0) \times Pr(x_0) > Pr(y_0|x_1) \times Pr(x_1)$$
 (11)

$$= (1 - p) \times \frac{9}{10} > p \times \frac{1}{10}$$
 (12)

So, when a symbol is recieved is recieved as y_0 , the decision can be made in favour of x_0 in an optimum way.

$$Pr(y_1|x_0) \times Pr(x_0) > Pr(y_1|x_1) \times Pr(x_1)$$
 (13)
= $p \times \frac{9}{10} > (1-p) \times \frac{1}{10}$ (14)

So,when a symbol is recieved is recieved as y_1 , the decision can be made in favour of x_0 in an optimum way.

So, for the given BSC channel ,with optimum reciver ,both the recieved symbols will be decoded as x_0 . Hence, the probability of error is equal to probability of transmitting x_1 .

so,
$$Pr(error) = Pr(x_1) = \frac{1}{10}$$