Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	Semester	V
Subject Code & Name	ICS1512 - Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch: 2023-2028	Due date: 29/7/25

Experiment 2: Loan Amount Prediction using Linear Regression

1 Aim:

Apply Linear Regression to predict the loan amount sanctioned to users using the dataset provided. Visualize and interpret the results to gain insights into the model performance.

2 Libraries used:

- Pandas
- Numpy
- Matplotlib
- Scikit-learn
- Seaborn

3 Objective:

To evaluate the performance of a Linear Regression model in predicting loan sanction amounts based on applicant and property features. Model evaluation is done using 5-fold cross-validation and standard metrics (MAE, MSE, RMSE, R²).

4 Mathematical Description:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

Where:

- $\hat{y} = \text{predicted loan amount}$
- $\beta_0 = intercept$
- β_i = coefficient of feature x_i

We evaluate using the following metrics:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{MSE}$$

$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y}_i)^2}$$

The objective is to minimize the cost function:

$$J(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

5 Code with Plot

```
# 1. LOAD THE DATASET
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

data = pd.read_csv('/content/drive/MyDrive/ml-lab/train.csv')
df = pd.DataFrame(data)
print(data.head())
```

OUTPUT:

```
Customer ID
                                                 Income (USD) Income Stability
                              Name Gender
                                            Age
0
      C-36995
                 Frederica Shealy
                                             56
                                                      1933.05
                                                                             Low
1
                                             32
      C-33999
                America Calderone
                                        М
                                                      4952.91
                                                                             Low
                                             65
                                                        988.19
                                                                            High
                    Rosetta Verne
3
                                             65
      C-26480
                       Zoe Chitty
                                                                            High
                                                           NaN
      C-23459
                     Afton Venema
                                             31
                                                      2614.77
                                                                             Low
                                                    Loan Amount Request (USD)
  Profession
                  Type of Employment
                                          Location
     Working
                         Sales staff
                                       Semi-Urban
                                                                       72809.58
     Working
                                       Semi-Urban
                                                                       46837.47
   Pensioner
                                       Semi-Urban
                                                                       45593.04
                                  NaN
   Pensioner
                                             Rural
                                                                       80057.92
     Working High skill tech staff
                                       Semi-Urban
                                                                     113858.89
```

```
Credit Score No. of Defaults Has Active Credit Card
                                                              Property ID
              809.44
                                                                       746
0
                                   0
              780.40
                                   0
                                                 Unpossessed
                                                                       608
                                   0
                                                                       546
              833.15
                                                 Unpossessed
              832.70
                                    1
                                                 Unpossessed
                                                                       890
              745.55
                                    1
                                                      Active
                                                                       715
   Property Age Property Type Property Location Co-Applicant \
0
        1933.05
                             4
                                            Rural
                             2
1
        4952.91
                                            Rural
2
         988.19
                             2
                                            Urban
                                                              0
                             2
                                                              1
3
            NaN
                                      Semi-Urban
4
        2614.77
                             4
                                      Semi-Urban
                                                              1
   Property Price Loan Sanction Amount (USD)
0
        119933.46
                                      54607.18
         54791.00
                                      37469.98
1
2
         72440.58
                                      36474.43
3
        121441.51
                                      56040.54
4
        208567.91
                                      74008.28
[5 rows x 24 columns]
```

Figure 1: Dataset loaded

```
# 2. PREPROCESS THE DATA
# HANDLING MISSING VALUES
df['Credit Score'] = df['Credit Score'].fillna(df['Credit Score'].mean())
df['Current Loan Expenses (USD)'] = df['Current Loan Expenses (USD)'].fillna(df['Current Loan In the standard of the standar
```

OUTPUT:

Figure 2: Missing values removed

```
# ENCODING CATEGORICAL VARIABLES
df = df.drop(['Customer ID', 'Name', 'Property ID'], axis=1)
df = pd.get_dummies(df, columns=['Gender', 'Profession', 'Location',
'Property Location'], drop_first=True)

# ordinal variables = map
df['Income Stability'] = df['Income Stability'].map({'Low': 0, 'High': 1})
df['Expense Type 1'] = df['Expense Type 1'].map({'N': 0, 'Y': 1})
df['Has Active Credit Card'] = df['Has Active Credit Card'].map({
'Unpossessed': 0, 'Inactive': 1, 'Active': 2})

# high cardinality categorical variable = frequency encoding
emp_freq = df['Type of Employment'].value_counts(normalize=True)
df['Type of Employment Encoded'] = df['Type of Employment'].map(emp_freq)
df.drop('Type of Employment', axis=1, inplace=True)
```

OUTPUT:

Data	columns (total 28 columns):		
#	Column	Non-Null Count	Dtype
0	Age	24960 non-null	int64
1	Income (USD)	24960 non-null	float64
2	Income Stability	24960 non-null	int64
3	Loan Amount Request (USD)	24960 non-null	float64
4	Current Loan Expenses (USD)	24960 non-null	float64
5	Expense Type 1	24960 non-null	int64
6	Expense Type 2	24960 non-null	int64
7	Dependents	24960 non-null	float64
8	Credit Score	24960 non-null	float64
9	No. of Defaults	24960 non-null	int64

Figure 3: Categorical variables encoded

```
# 3. EDA
sns.histplot(df['Loan Amount Request (USD)'], kde=True)
sns.boxplot(x='Gender_M', y='Loan Sanction Amount (USD)', data=df)

num_cols = df.select_dtypes(include=['float64']).columns
df[num_cols].hist(figsize=(15, 12), bins=30)
plt.tight_layout()

plt.figure(figsize=(15, 10))
sns.heatmap(df[num_cols].corr(), annot=True, fmt=".2f", cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
```


Figure 4: Loan Amount Request Distribution

Figure 5: Gender boxplot

Figure 6: Histogram

Figure 7: Correlation Heatmap

```
# 4. FEATURE ENGINEERING
scaler = StandardScaler()
num_cols = df.select_dtypes(include=['int64', 'float64']).columns # picking only numerical co
df[num_cols] = scaler.fit_transform(df[num_cols])
# INTERACTION FEATURE
df['Affordability'] = np.log1p(df['Income (USD)'] / (df['Property Price'] + 1e-6))
df = df.dropna()
# 5. LINEAR REGRESSION - 5 FOLD CROSS VALIDATION
X = df.drop(columns=["Loan Sanction Amount (USD)"]) # everything except target
y = df["Loan Sanction Amount (USD)"] # target variable
kf = KFold(n_splits=5, shuffle=True, random_state=42)
model = LinearRegression()
for fold, (train_index, val_index) in enumerate(kf.split(X), start=1):
    X_train, X_val = X.iloc[train_index], X.iloc[val_index]
    y_train, y_val = y.iloc[train_index], y.iloc[val_index]
   model.fit(X_train, y_train)
   y_pred = model.predict(X_val)
   mae = mean_absolute_error(y_val, y_pred)
   mse = mean_squared_error(y_val, y_pred)
   rmse = np.sqrt(mse)
   r2 = r2_score(y_val, y_pred)
   print(f"Fold {fold} - MAE: {mae:.2f}, MSE: {mse:.2f}, RMSE: {rmse:.2f}, R2: {r2:.4f}")
print("\nAverage MAE:", avg_mae)
print("Average MSE:", avg_mse)
print("Average RMSE:", avg_rmse)
print("Average R2:", avg_r2)
            Fold 1 - MAE: 0.43, MSE: 0.40, RMSE: 0.64, R2: 0.6323
            Fold 2 - MAE: 0.43, MSE: 0.40, RMSE: 0.63, R2: 0.6287
            Fold 3 - MAE: 0.46, MSE: 0.44, RMSE: 0.67, R2: 0.6208
            Fold 4 - MAE: 0.43, MSE: 0.39, RMSE: 0.62, R2: 0.6581
            Fold 5 - MAE: 0.44, MSE: 0.44, RMSE: 0.66, R2: 0.5926
            Average MAE: 0.4408715112721679
            Average MSE: 0.4145599607920346
            Average RMSE: 0.6436476622798699
            Average R2: 0.6264977748113167
```

Figure 8: Evaluation metrics

Figure 9: Actual vs Predicted

```
coeff_df = pd.DataFrame({
    'Feature': X_train.columns,
    'Coefficient': model.coef_
})

coeff_df = coeff_df.sort_values(by='Coefficient', key=abs, ascending=False)
sns.barplot(data=coeff_df, x='Coefficient', y='Feature')
plt.title("Feature Importance (Linear Coefficients)")
plt.grid(True)
plt.show()
```


Figure 10: Feature Importance

```
residuals = all_actuals - all_predictions
plt.scatter(all_predictions, residuals, alpha=0.6)
plt.xlabel("Predicted Loan Sanction Amount (USD)")
plt.ylabel("Residuals")
plt.title("Cross-Validation: Residual Plot")
plt.grid(True)
plt.show()
```


Figure 11: Residual Plot

6 Results Table:

Description	Student's Result
Dataset Size (after preprocessing)	24960 samples, 28 features
Train/Test Split Ratio	80:20
Feature(s) Used for Prediction	All numeric and encoded categorical features
Model Used	Linear Regression
Reference to CV Results Table	Table 1
Cross-Validation Used? (Yes/No)	Yes
If Yes, Number of Folds (K)	5
Mean Absolute Error (MAE) on Test Set	0.44087
Mean Squared Error (MSE) on Test Set	0.41455
Root Mean Squared Error (RMSE) on Test Set	0.64364
R2 Score on Test Set	0.62649
Most Influential Feature(s)	Loan Amount Request (USD), Credit Score, Co-Applicant, Income(USD)
Observations from Residual Plot	Shows distinct non-random patterns and heteroscedasticity, indicating potential underfitting. Linear model may be too simple for the underlying data
Interpretation of Predicted vs Actual Plot	While the model captures the general trend of loan sanction amounts, it struggles with accurate predictions for higher values
Any Overfitting or Underfitting Observed?	Underfitting observed
If Yes, Brief Justification (e.g., training vs test error, residual patterns)	Consistent underprediction and limited variance in predicted values across actual ranges. Overly simplified predictions

Table 1: Summary of Results for Loan Amount Prediction

Cross-Validation Results Table:

Fold	MAE	MSE	RMSE	\mathbb{R}^2 Score
Fold 1	0.43	0.40	0.64	0.6323
Fold 2	0.43	0.40	0.63	0.6287
Fold 3	0.46	0.44	0.67	0.6208
Fold 4	0.43	0.39	0.62	0.6581
Fold 5	0.44	0.44	0.66	0.5926
Average	0.4409	0.4146	0.6436	0.6265

Table 2: Cross-Validation Results (K = 5)

7 Best Practices:

- Used 5-Fold Cross-Validation to ensure robust model evaluation and minimize bias from data splits.
- Reported multiple evaluation metrics (MAE, MSE, RMSE, and \mathbb{R}^2) to provide a comprehensive assessment of model performance.
- Observed consistent performance across folds, indicating reasonable generalization and model stability.
- No signs of overfitting, as metrics remain relatively stable with no extreme deviations in any fold.
- Rounded metric values for readability in the table, while preserving precision in the backend calculations.

8 Learning Outcomes

- Understood the implementation of 5-Fold Cross-Validation for evaluating model reliability.
- Gained experience interpreting regression metrics such as MAE, MSE, RMSE, and R^2 .
- Identified the importance of consistency across folds to assess model stability.
- Learned to spot signs of overfitting or underfitting through performance trends.
- Developed a stronger grasp of model evaluation strategies used in real-world ML workflows.

GitHub Repository:

https://github.com/vidarshanaa15/ml-expt-2

SVM - RBF Kernel

```
svr_model = SVR(kernel='rbf', C=1, gamma='scale')
mae_list, mse_list, rmse_list, r2_list, all_actuals, all_predictions = [], [], [],
    [], [], []
for fold, (train_index, val_index) in enumerate(kf.split(X), start=1):
    X_train, X_val = X.iloc[train_index], X.iloc[val_index]
    y_train, y_val = y.iloc[train_index], y.iloc[val_index]
    svr_model.fit(X_train, y_train)
    y_pred = svr_model.predict(X_val)
    all_actuals.extend(y_val)
    all_predictions.extend(y_pred)
    mae = mean_absolute_error(y_val, y_pred)
    mse = mean_squared_error(y_val, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_val, y_pred)
   mae_list.append(mae)
   mse_list.append(mse)
    rmse_list.append(rmse)
    r2_list.append(r2)
    print(f"Fold {fold} - MAE: {mae:.2f}, MSE: {mse:.2f},
    RMSE: {rmse:.2f}, R2: {r2:.4f}")
avg_mae = np.mean(mae_list)
avg_mse = np.mean(mse_list)
avg_rmse = np.mean(rmse_list)
avg_r2 = np.mean(r2_list)
```

```
Fold 1 - MAE: 0.27, MSE: 0.33, RMSE: 0.58, R2: 0.6972
Fold 2 - MAE: 0.28, MSE: 0.34, RMSE: 0.58, R2: 0.6838
Fold 3 - MAE: 0.29, MSE: 0.40, RMSE: 0.63, R2: 0.6613
Fold 4 - MAE: 0.27, MSE: 0.33, RMSE: 0.57, R2: 0.7100
Fold 5 - MAE: 0.28, MSE: 0.36, RMSE: 0.60, R2: 0.6614

Average MAE: 0.2792041672493944
Average MSE: 0.3523604250365377
Average RMSE: 0.5932495497698603
Average R2: 0.6827659665932362
```


SVM - Polynomial Kernel

```
svr_model = SVR(kernel='poly', C=1, gamma='scale')
mae_list, mse_list, rmse_list, r2_list, all_actuals, all_predictions = [], [], [],
[], [], []
for fold, (train_index, val_index) in enumerate(kf.split(X), start=1):
   X_train, X_val = X.iloc[train_index], X.iloc[val_index]
   y_train, y_val = y.iloc[train_index], y.iloc[val_index]
   svr_model.fit(X_train, y_train)
   y_pred = svr_model.predict(X_val)
   all_actuals.extend(y_val)
   all_predictions.extend(y_pred)
   mae = mean_absolute_error(y_val, y_pred)
   mse = mean_squared_error(y_val, y_pred)
   rmse = np.sqrt(mse)
   r2 = r2_score(y_val, y_pred)
   mae_list.append(mae)
   mse_list.append(mse)
   rmse_list.append(rmse)
   r2_list.append(r2)
   print(f"Fold {fold} - MAE: {mae:.2f}, MSE: {mse:.2f},
   RMSE: {rmse:.2f}, R2: {r2:.4f}")
avg_mae = np.mean(mae_list)
avg_mse = np.mean(mse_list)
avg_rmse = np.mean(rmse_list)
avg_r2 = np.mean(r2_list)
     Fold 1 - MAE: 0.27, MSE: 0.32, RMSE: 0.57, R2: 0.7042
    Fold 2 - MAE: 0.28, MSE: 0.34, RMSE: 0.58, R2: 0.6846
    Fold 3 - MAE: 0.29, MSE: 0.40, RMSE: 0.64, R2: 0.6539
    Fold 4 - MAE: 0.27, MSE: 0.33, RMSE: 0.57, R2: 0.7104
    Fold 5 - MAE: 0.28, MSE: 0.40, RMSE: 0.63, R2: 0.6284
    Average MAE: 0.27705706957024673
```

Average MSE: 0.3594049392965216 Average RMSE: 0.5988100524759893 Average R2: 0.6763082507955247

SVM - Linear Kernel

```
svr_model = SVR(kernel='linear', C=1, gamma='scale')
mae_list, mse_list, rmse_list, r2_list, all_actuals, all_predictions = [], [], [],
[], [], []
for fold, (train_index, val_index) in enumerate(kf.split(X), start=1):
   X_train, X_val = X.iloc[train_index], X.iloc[val_index]
   y_train, y_val = y.iloc[train_index], y.iloc[val_index]
   svr_model.fit(X_train, y_train)
   y_pred = svr_model.predict(X_val)
   all_actuals.extend(y_val)
   all_predictions.extend(y_pred)
   mae = mean_absolute_error(y_val, y_pred)
   mse = mean_squared_error(y_val, y_pred)
   rmse = np.sqrt(mse)
   r2 = r2_score(y_val, y_pred)
   mae_list.append(mae)
   mse_list.append(mse)
   rmse_list.append(rmse)
   r2_list.append(r2)
   print(f"Fold {fold} - MAE: {mae:.2f}, MSE: {mse:.2f},
   RMSE: {rmse:.2f}, R2: {r2:.4f}")
avg_mae = np.mean(mae_list)
avg_mse = np.mean(mse_list)
avg_rmse = np.mean(rmse_list)
avg_r2 = np.mean(r2_list)
    Fold 1 - MAE: 0.36, MSE: 0.49, RMSE: 0.70, R2: 0.5573
    Fold 2 - MAE: 0.37, MSE: 0.49, RMSE: 0.70, R2: 0.5459
    Fold 3 - MAE: 0.39, MSE: 0.54, RMSE: 0.73, R2: 0.5410
    Fold 4 - MAE: 0.36, MSE: 0.46, RMSE: 0.68, R2: 0.5962
    Fold 5 - MAE: 0.37, MSE: 0.54, RMSE: 0.73, R2: 0.4990
    Average MAE: 0.3710137545229718
    Average MSE: 0.5016619897257582
```

Average RMSE: 0.7079508461081613 Average R2: 0.5478971290211467

