Model Selection Criteria

Four ways to estimate test performance using an approximation

Full model has p predictors

RSS is the residual sum of squares for model with d predictors

 $\hat{\sigma}^2 = \text{RSS}_p/(n-p-1)$ is an estimate of the error variance for full model

1. Mallow's C_p criterion:

For a given model with d (out of the p available) predictors

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

we are penalizing models of higher dimensionality (larger d, greater penalty) \implies choose the model which has **minimum** C_p

Model Selection Criteria

Four ways to estimate test performance using an approximation

Full model has p predictors

RSS is the residual sum of squares for model with d predictors

$$\hat{\sigma}^2 = \text{RSS}_p/(n-p-1)$$
 is an estimate of the error variance for full model

2. Akaike Information Criterion (AIC)

For linear models: equivalent to Mallow's C_p (proportional to)

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

we are penalizing models of higher dimensionality (larger d, greater penalty) \implies choose the model which has **minimum** AIC