Урок N°5

Словари и нечёткий поиск

(основано на слайдах Андрея Калинина, Hinrich Schütze, Christina Lioma)

Содержание занятия

- 1. Словарь
- 2. Запросы с мета-символами
- 3. Проверка правописания
- 4. Soundex
- 5. Исправление запросов

Словарь

Обратный индекс

Словарь как массив

- Для каждого термина нужно сохранить:
 - количество документов (частотность)
 - указатель на координаты
 - ...
- На время допустим, что можно представить эту информацию в виде структуры фиксированной длины.
- Тогда можно использовать массив для хранения словаря.

Словарь как массив

Термин	Частотность	Координатный блок
а	656256	\rightarrow
aachen	65	\rightarrow
zulu	221	\rightarrow

4 байта

Как искать термин запроса q_i в этом массиве? То есть: какую структуру данных можно использовать, чтобы найти строку, в котрой находится

4 байта

 q_i ?

объём: 20 байт

Структуры данных поиска терминов

- Два основных класса: хеши и деревья.
- Некоторые ИСП используют хеши, некоторые деревья.
- Основные вопросы выбора:
 - Количество терминов фиксировано, или растёт?
 - Какие относительные частоты доступа к разным ключам?
 - Сколько разных ключей имеется?

Хеши

- Каждый термин хешируется в целое число.
- Боремся с коллизиями.
- Во время запроса: хешируем термин запроса, разрешаем коллиции, находим нужную строку в массиве.
- Плюсы:
 - Поиск в хеш-таблице быстрее, чем поиск в дереве.
 - Время поиска константа.

Хеши

• Минусы

- Нельзя найти небольшие различия (resume и résumé)
- Нельзя искать по префиксу (все термины, начинающиеся с
- automat)
- Для растущего словаря придётся время от времени всё рехешировать.
- Теоретически, можно сделать «морфологическую» хеш-функцию.

Деревья

- Деревья позволяют искать термины с общим префиксом.
- Простейшее дерево бинарное.
- Поиск медленее хешей, O(log M), где M размер словаря.
- O(log M) соблюдается для сбалансированных деревьев.
- Так же можно использовать В-деревья.

Бинарное дерево

В-дерево

Запросы с мета-символами

Запросы с мета-символами

- mon*: найти все документы, содержащие термин, начинающийся с mon
- Просто для В-дерева: найти все термины t, находящиеся в диапазоне mon ≤ t < moo
- *mon: найти все термины, заканчивающиеся на mon
 - Создаём дополнительное дерево, для терминов, записанных задом наперёд.
 - Теперь по этому дереву получаем термины t в диапазоне nom ≤ t
 < non
- Результат: множество терминов, подходящих под маску.
- Теперь нужно найти документы, содержащие любой из этих терминов.

Как обработать * внутри термина

- Например: m*nchen
- Можно поискать m* и *nchen в В-деревьях и пересечь два полученных множества.
- Довольно расточительно.
- Альтернатива: индекс перестановок
- Основная идея: «переворачивать» каждый запрос с маской таким образом, чтобы * оказалась в конце.
- Хранить каждый переворот каждого термина в словаре, в том же Вдереве.

Индекс перестановок

• Для термина hello: добавим hello\$, ello\$h, llo\$he, lo\$hel, и o\$hell в Вдерево, где \$ — специальный символ.

Отображение перестановок в термины

:

Индекс перестановок

- Итак, для hello храним: hello\$, ello\$h, llo\$he, lo\$hel и o\$hell
- Тогда запросы
 - X, ищем X\$
 - X*, ищем X*\$
 - *X, ищем X\$*
 - *X*, ищем X*
 - X*Y, ищем Y\$X*
 - Например: для hel*o ищем o\$hel*
 - Как обработать запрос X*Y*Z?

Поиск в индексе перестановок

- Прокрутить запрос так, чтобы * была справа.
- Искать как обычно.
- Однако: такой индекс как минимум учетверяет размер словаря (для английского языка, для русского увеличит в 7-8 раз).

Индексы k-грамм

- Занимает меньше места, чем индекс перестановок.
- Индексируем все символьные k-граммы (последовательности из k символов) термина.
- 2-граммы часто называют биграммами.
- Напримр: из April is the cruelest month получим следующие биграммы: \$a ap pr ri il I\$ \$i is s\$ \$t th he e\$ \$c cr ru ue el le es st t\$ \$m mo on nt h\$
- \$ специальный символ, обозначающий границу слова.
- Добавляем в новый индекс не термины, а биграммы.

3-граммный обратный индекс

k-граммные индексы

- Теперь у нас два разных вида обратных индексов.
- Есть индекс терминов-документов.
- И есть индекс k-грамм, чтобы находить термины по запросам, состоящим из k-грамм.

Выполнение запроса с метасимволами для биграмм

- Запрос mon* можно обработать так:
 - \$m and mo and on
- Так получим все термины с префиксом mon...
- ... но и много «ложных срабатываний», таких как moon.
- Их нужно отфильтровать, напрямую сравнивая термины с запросом.
- Оставшиеся термины нужно искать в индексе терминов-документов.
- k-граммный индекс и индекс перестановок
 - k-граммный индекс занимает меньше места.
 - Индекс перестановок не требует пост-фильтрации.

Упражнение

Почему у больших веб-поисков нет поддержки запросов с масками?

Упражнение

Почему у больших веб-поисков нет поддержки запросов с масками?

- Много слов.
- Увеличивается количество обрабатываемых терминов.
- Люди будут вводить меньше символов в словах.

Введение в информационный поиск | Маннинг Кристофер Д., Шютце | Хайнрих

Рекомендуемая литература

Для саморазвития (опционально)
<u>Чтобы не набирать двумя</u>
<u>пальчиками</u>

Спасибо за внимание!

Антон Кухтичев

