HW-2

Chi Zhang

09/27/2015

$\mathbf{Q}\mathbf{1}$

If I insist that V_{T0} can never be reached as terminal B is grounded, the whole question becomes a deadlock. Thus I can only assume that the minimum value of V_{Th} is V_{T0} . Thus

$$V_{Th} = \frac{1}{2} (V_{T,max} + V_{T0})$$

$$= V_{T0} + \frac{1}{2} \gamma (\sqrt{|(-2)\phi_F + V_{OH,max}|} - \sqrt{|2\phi_F|})$$
(1)

a

As $V_{GS} = V_{DD} - V_{OH}$ and only when $V_{OH} \leq V_{DD} - V_{Th}$ could guarentee the transistor is turned on. And the maximum value is the output voltage before t = 0.

$$V_{OH,max} = V_{DD} - V_{Th}$$

$$= V_{DD} - V_{T0} - \frac{1}{2}\gamma(\sqrt{|(-2)\phi_F + V_{OH,max}|} - \sqrt{|2\phi_F|})$$

$$=$$
(2)

$\mathbf{Q2}$

In this question, it is evidently $V_{sg} = V_X - V_{in}$. Thus $V_{sd} = V_X = V_{DD} - IR_1$. When $V_X = V_x - V_{in} + V_T$, $V_{in} = -0.4(V)$, and obviously $V_{in} \ge 0(V)$, so the transistor is always in saturation mode. Thus,

$$V_X = V_{DD} - IR_1$$

$$= V_{DD} + \frac{1}{2} R_1 \kappa \frac{W}{L} (V_X - V_{in} + V_T)^2 (1 + \lambda V_X)$$

$$= (3)$$

 \mathbf{a}

b

$$\frac{W}{L} = 2 \times \frac{V_X - V_{DD}}{R_1 \kappa (V_X - V_{in} + V_T)^2 (1 + \lambda V_X)}$$
= 6.48