سیستمهای عامل دکتر جوادی

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

دانشكده مهندسي كامپيوتر

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

تمرین سری پنجم

۲۱ دی ۱۴۰۲

سیستمهای عامل

تمرین سری پنج

رضا آدینه یور ۴۰۲۱۳۱۰۵۵

----- سوال اول

در یک سیستم صفحهبندی، Page table در حافظه اصلی قرار دارد.

- ۱. اگر مراجعه به حافظه ۵۰ نانو ثانیه زمان ببرد، چقدر طول میکشد که در قالب سیستم صفحه بندی به داده یا دستور مورد نظر خود دسترسی پیدا کنیم؟
- ۲. فرض کنید که TLB را نیز به سیستم اضافه میکنیم و پیدا کردن یک مدخل جدول صفحات در ۲ نانو ثانیه زمان میبرد.
 اگر ۷۵ درصد از مراجعات جدول صفحات در TLB نیز یافت شود، زمان موثر دسترسی چقدر خواهد بود؟

پاسخ

۱. زمانی که باید به داده یا دستور مورد نظر دسترسی پیدا کنیم، به توجه به مفهوم صفحه بندی، از فرمول زیر میتوان استفاده کرد:

زمان دسترسی = زمان مراجعه به حافظه + زمان پیدا کردن داده در حافظه

معمولاً زمان مراجعه به حافظه در مرتبه نانوثانیه است. زمان پیدا کردن داده در صفحه نیز بستگی به سازماندهی و سیاستهای صفحهبندی دارد.

۲. زمان موثر دسترسی از رابطه زیر محاسبه می شود: زمان موثر دسترسی = زمان مراجعه به TLB + زمان پیدا کردن
 داده در صفحه

در اینجا فرض کردیم که زمان مراجعه به TLB ۲ نانوثانیه است. مقدار زمان پیدا کردن داده در صفحه همانند قسمت الف است و به سیاستهای صفحهبندی و سازماندهی حافظه بستگی دارد.

صفحه ۱ از ۷

----- melb cea

به سوالات زیر پاسخ دهید:

- ۱. تعدادی برنامه داریم که به ۳۵۰ مگابایت حافظه برای اجرا نیاز دارند و از روش اختصاصی پیوسته استفاده کردهایم. اگر سیاست First Fit را به کار ببریم و همچنین بخواهیم که به طور ۷۹ درصد از حجم فرآیند ها در حافظه اصلی باشد، پیشنهاد می دهید که حافظه اصلی با چه ظرفیتی را تهیه کنیم؟ چرا؟
- ۲. فرض کنید فضای آدرس منطقی ۱۲۸ کیلوبایت، آدرس فیزیکی ۵۱۲ کیلوبایت و Page Size برابر با ۱۶ کیلو بایت باشد. موارد زیر را حساب کنید:
 - (آ) بیتهای لازم برای آدرس دهی منطقی
 - (ب) بیتهای لازم برای آدرس دهی فیزیکی
 - (ج) تعداد Page های آدرس منطقی
 - (د) تعداد فریمها در آدرس فیزیکی
 - (ه) اندازه Page Table

پاسخ

۱. حجم حافظه مورد نیاز = (حجم برنامهها ÷ درصد استفاده) ×۱۰۰۰
 حجم حافظه مورد نیاز = (۳۵۰ مگابایت ÷ ۷۹ درصد) × ۱۰۰۰ = ۴۴۳/۷ مگابایت

پس، برای استفاده از سیاست FitFirst و داشتن حداقل ۷۹ درصد حافظهای پر، میتوانیم حافظهای با ظرفیت حداقل ۴۴۳/۷ مگابایت تهیه کنیم.

- ۲. در ادامه هر مورد را بررسی میکنیم:
- $log_2(128KB) = 17 \; bit \; : ارس دهی منطقی آدرس دهی لازم برای آدرس دهی منطقی$
- $log_2(512KB) = 19 \ bit$:درس دهی فیزیکی: آدرس دهی لازم برای آدرس دهی فیزیکی:
- (ج) تعداد Page های آدرس منطقی: تعداد صفحات = آدرس منطقی \div اندازه صفحه = ۱۲ \div ۱۲۸ پیج
- (د) تعداد فریمها در آدرس فیزیکی: تعداد فریمها = آدرس فیزیکی ÷ اندازه صفحه = ۵۱۲ ÷ ۲۲ = ۳۲ فریم
- (۰) اندازه :TablePage اندازه PageTable = تعداد صفحات \div تعداد فریمها در هر جدول = Λ + Λ اندازه Λ Λ اندازه ۲۵ اندازه ۲۵ اندازه Λ Λ اندازه ۲۵ اندازه ۲۸ اندازه

صفحه ۲ از ۷

—— سوال سوم

یک سیستم که از MultiLavel Paging استفاده میکند را درنظر بگیرید. اندازه هر صفحه ۳۲ کبلو بایت است. حافظه با بایت آدرسدهی میشود و اندازه آدرس مجازی ۴۸ بیت است. اندازه ورودی Page Table هم ۴ بایت است. چند سطح از Page Table اتخاذ میشود؟

پاسخ

براى محاسبه تعداد سطوح TablePage در ،PagingMultiLevel مىتوانيم از اطلاعات زير استفاده كنيم:

- ۱. اندازه آدرس محازی: ۴۸ ست
 - ۲. اندازه صفحه:۳۲ کیلوبایت
- ۳. اندازه ورودی PageTable: ۴ بایت

حالا مى توانىم محاسبه كنيم:

- $log_2(size\ of\ virtual address) = log_2(2^{48}) = 48bit$.۱ تعداد بیتها برای آدرس مجازی: ۱۰.
 - $log_2(size\ of\ page) = log_2(2^{15}) = 15bit$:(Offset) تعداد بیتها برای آدرس صفحه. ۲
 - 48 15 = 33bit :Offset بیتها برای آدرس مجازی با توجه به 38bit
- $log_2(size\ of\ input\ page\ table) = log_2(2^4) = 4bit$:TablePage تعداد بیتها برای هر ورودی.۴
 - $rac{33}{4}=8.25$:TablePage تعداد سطوح.

اما چون تعداد سطوح باید صحیح باشد، ما به بالا گرد میکنیم. بنابراین، از ۹ سطح از TablePage استفاده می شود.

صفحه ۳ از ۷

---- سوال چهارم

یک سیستم تقاضا Page Pault واحد زمانی برای هر Page Fault و ۳۰۰ واحد زمانی برای جابهجایی یک Page Pault یک سیستم تقاضا Page Fault واحد زمانی میباشد. اگر احتمال رخداد Page Fault برابر با P باشد و همچنین اعتمال Page Fault بودن به شرط Page Fault نیز برابر با P باشد و میانگین زمان دسترسی برابر با P واحد زمانی، مقدار P بابید.

پاسخ

زمان میانگین دسترسی به حافظه = احتمال رخداد پیجفالت \times (زمان پیجفالت + احتمال پیج درتی \times زمان جابهجایی پیج درتی) + (۱ – احتمال رخداد پیجفالت) \times زمان دسترسی به حافظه اصلی

- ١. زمان ميانگين دسترسي به حافظه زمان ميانگين دسترسي به حافظه برابر با ٣ واحد زماني است.
 - ٢. احتمال رخداد احتمالFaultPage رخداد با PP با PP نشان داده شده است.
 - ۳. زمان Fault زمانFault برابر با ۱۰۰ واحد زمانی است.
 - ۴. احتمال Page احتمال PageDirty Dirty احتمال Page با PP نشان داده شده است.
 - ۵. زمان جابهجایی Page زمانکirty جابهجایی PageDirty برابر با ۳۰۰ واحد زمانی است.
 - ۶. زمان دسترسی به حافظه اصلیزمان دسترسی به حافظه اصلی برابر با ۱ واحد زمانی است.

با جایگذاری مقادیر بالا در فرمول داریم:

 $3 = P \times (100 + P \times 300) + (1 - P) \times 1$

با حل معادله بالا در یابتون بازه P به صورت زیر بدست می اید:

P: [-0.00990243 0.67323576]

صفحه ۴ از ۷

---- سوال پنجم

به سوالات زير پاسخ كامل دهيد.

۱. زمان دسترسی موثر را برای رشته ارجاعات زیر برای هر یک از الگوریتم های بهینه و FIFO و LRU را بدست آورید.
 (تعداد فریمها ۴، سربار خطای صفحه ۵میلی ثانیه و زمان دسترسی به ۵۰۰ RAM نانوثانیه است)

0, 3, 1, 4, 0, 5, 2, 1, 4, 5, 4, 5, 0

۲. با فرض موجود بودن r فریم در حافظه اصلی و r صفحه r برای رشته مراجعات زیر، تعداد خطاهای صفحه را برای الگوریتم LRU مشخص کنید.

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ..., 1, 2, 3, 4, 5, ..., n

پاسخ

- ۱. برای محاسبه زمان دسترسی موثر به حافظه برای هر الگوریتم، از فرمول زیر استفاده می شود:
 زمان دسترسی موثر = تعداد صفحات ارجاعی به حافظه × زمان دسترسی به رم + تعداد خطاهای صفحه × سربار خطای صفحه
- (آ) الگوریتم Optimal: در الگوریتم Optimal: تعداد خطاهای صفحه مساوی با تعداد ارجاعات به صفحات منهای تعداد صفحات موجود در حافظه است. برای رشته داده شده: تعداد خطاهای صفحه = تعداد ارجاعات تعداد صفحات مختلف 7=6-6
- (ج) الگوریتم LRU: در الگوریتم LRU، صفحه یکه مدت زمان استفاده آن کمترین بوده، از حافظه حذف می شود. می شود. تعداد خطاهای صفحه = تعداد ارجاعات + تعداد صفحات موجود در حافظه × (سربار خطای صفحه ۱) $13+4\times(5-1)=33$
 - ۲. برای محاسبه تعداد خطاهای صفحه در الگوریتم میتوان از فرمول زیر استفاده کرد.

n - r + 1

n - r + 1 = n - 1 در اینجا داریم:

صفحه ۵ از ۷

در تمرین قبلی با مفهوم فایل سیستمها در لینوکس آشنا شدیم. برای بررسی فایل سیستم proc میتوانید از توضیحات موجود در دستور man استفاده کنید:

\$ man proc

در دایرکتوری هر پردازه در فایلسیستم Proc یک فایل بهنام maps وجود دارد که اطلاعات مربوط به memory map هر پردازه را در آن نگه میدارد.

امتیازی: با استفاده از man proc یکی از این فایلها را مثلا

proc/1/maps

را بررسی کنید و هر یک از ستونهای آن را توضیح دهید که چه چیزی را نمایش میدهد.

دكتر جوادي صفحه ۶ از ۷

پاسخ

با دستور زیر فایل maps یکی از PID های دلخواهمان را باز میکنیم:

\$ sudo vim /proc/1/maps

خروجی فایل به صورت زیر است:

ساختار هر خط به صورت زیر است:

- ۱. آ**درس شروع ـ آدرس پایان**: نمایانگر محدوده آدرس حافظه است که این ناحیه در آن قرار دارد. آدرس شروع نشاندهنده ابتدای ناحیه و آدرس پایان نشاندهنده انتهای آن است.
- ۲. **دسترسیها:** نشاندهنده میزان دسترسیها به حافظه است. به عنوان مثال، r-x نشاندهنده دسترسی خواندن و اجرا (ولی نه نوشتن) به حافظه است.
- ۳. آفست: نشان دهنده offset نسبت به نقطه شروع فایل (اگر موجود باشد) یا offset نسبت به ابتدای ناحیه حافظه است.
 - ۴. دسته حافظه: نشان دهنده نوع حافظه استفاده شده، مثل ،heap stack و ... است.
 - ۵. حقوق: نشاندهنده حقوق دسترسى به فايل يا ناحيه حافظه است.
- 9. دستگاه minumum: در صورتی که ناحیه حافظه minumum باشد، این ستون نشاندهنده minor number دستگاه ستی است که minumum به آن متصل شده است.
 - ۷. شماره minumum:
- ۸. فایلی که متعلق به حافظه است: اگر ناحیه حافظه به یک فایل متصل باشد، این ستون نشاندهنده مسیر فایل است.

صفحه ۷ از ۷