Design Procedure

1. Specification

Write a specification for the circuit if one is not already available

2. Formulation

 Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification

3. Optimization

- Apply 2-level and multiple-level optimization
- Draw a logic diagram or provide a netlist for the resulting circuit using ANDs, ORs, and inverters

4. Technology Mapping

Map the logic diagram or netlist to the implementation technology selected

5. Verification

Verify the correctness of the final design

Design Example

1. Specification

- BCD to Excess-3 code converter
- Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits
- BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively
- Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011) added to each BCD code word
- Implementation:
 - multiple-level circuit
 - NAND gates (including inverters)

1. Formulation

Conversion of 4-bit codes can be most easily formulated by a truth table

- Variables
 - <u>BCD</u>:

A,B,C,D

- Variables
 - $-\frac{\text{Excess-3}}{\text{W,X,Y,Z}}$
- Don't Cares
 - BCD 1010 to 1111

Input BCD	Output Excess-3
ABCD	WXYZ
0 0 0 0	0 0 1 1
$0\ 0\ 0\ 1$	0 1 0 0
$0\ 0\ 1\ 0$	0 1 0 1
0011	0110
$0\ 1\ 0\ 0$	0111
0101	1000
0110	1001
0111	1010
$1\ 0\ 0\ 0$	1011
1001	$\begin{array}{c c} \hline 1 \ 0 \ 1 \ 1 \end{array}$

1. Optimization

a. 2-level usingK-maps

$$W = A + BC + BD$$

$$X = B'C + B'D + BC'D'$$

$$Y = CD + C'D'$$

$$Z = D'$$

Fig. 3-10 Maps for BCD-to-Excess-3 Code Converter

1. Optimization (continued)

a. Multiple-level using transformations

$$W = A + BC + BD$$

 $X = B'C + B'D + BC'D'$
 $Y = CD + C'D'$
 $Z = D'$
 $G = 7 + 10 + 6 + 0 = 23$

Perform extraction, finding factor:

$$T_1 = C + D$$
 $W = A + BT_1$
 $X = B'T_1 + BC'D'$
 $Y = CD + C'D'$
 $Z = D'$
 $G = 2 + 4 + 7 + 6 + 0 = 19$

1. Optimization (continued)

a. Multiple-level using transformations

$$T_1 = C + D$$

$$W = A + BT_1$$

$$X = B'T_1 + BC'D'$$

$$Y = CD + C'D'$$

$$Z = D'$$

$$G = 19$$

An additional extraction not shown in the text since it uses a <u>Boolean</u> transformation: $(C'D'=(C+D)'=T_1')$:

$$W = A + BT_1$$

$$X = B'T_1 + BT_1'$$

$$Y = CD + T_1'$$

$$Z = D'$$

$$G = 2 + 4 + 6 + 4 + 0 = 16$$

1. Technology Mapping

• Mapping with a library containing inverters and 2-input NAND, 2-input NOR, and 2-2 AOI gates

