Zadanie: WYP Wyprzedzanie

XXX OI, etap I. Plik źródłowy wyp.* Dostępna pamięć: 256 MB.

17.10-21.11.2022

Bajtazar jedzie nad morze swoim nowym sportowym autem. Jedzie autostradą i jak przystało na porządnego kierowcę, porusza się prawym pasem. Jednak przed nim prawym pasem autostrady jedzie też n ciężarówek, które będzie musiał wyprzedzić.

Ciężarówki numerujemy od 1 do n, poczynając od tej najbliższej auta Bajtazara; i-ta z nich porusza się z prędkością v_i , ma długość d_i oraz w chwili początkowej znajduje się x_i przed autem Bajtazara. Dla uproszczenia samochody traktujemy jak prostokąty bez brzegu, a za ich pozycję przyjmujemy przedni bok.

Jeśli z powodu różnicy prędkości przód i-tej ciężarówki zrówna się z tyłem ciężarówki ją poprzedzającej (tej o numerze i+1), to i-ta ciężarówka zwalnia do prędkości (i+1)-szej ciężarówki (czyli ciężarówki nie wyprzedzają się nawzajem).

Bajtazar jedzie z prędkością V, szybciej niż każda z ciężarówek ($V > v_i$ dla każdego i), a jego auto ma długość D. W momencie, gdy przód auta zrówna się z tyłem jakiejś ciężarówki, Bajtazar momentalnie wykonuje manewr zmiany pasa i kontynuuje jazdę lewym pasem. Gdy tylko będzie możliwa zmiana pasa na prawy, Bajtazar wykonuje ten manewr (nawet gdyby w tym samym momencie musiał znów zmienić pas na lewy).

Bajtazar zastanawia się, ile razy podczas wyprzedzania wszystkich ciężarówek wykona manewr zmiany pasa z prawego na lewy. Zakładamy, że w chwili obecnej autostradą nie jedzie żaden inny samochód.

Wejście

W pierwszym wierszu wejścia znajdują się cztery liczby całkowite n, D, W, M ($1 \le n \le 100\,000, 1 \le D \le 10^9, 1 \le W, M \le 1000$) oznaczające liczbę ciężarówek, długość auta Bajtazara i jego prędkość daną wzorem V = W/M.

W kolejnych n wierszach znajdują się opisy ciężarówek; i-ty z nich zawiera cztery liczby całkowite x_i , d_i , w_i , m_i ($1 \le x_i$, $d_i \le 10^9$, $1 \le w_i$, $m_i \le 1000$). Prędkość ciężarówki to $v_i = w_i/m_i$.

Pojazdy nie nachodzą na siebie, czyli $0 \le x_1 - d_1$ oraz $x_i \le x_{i+1} - d_{i+1}$ dla $1 \le i < n$.

Wszystkie długości i położenia wyrażone są w jednostkach odległości, a prędkości w jednostkach odległości na jednostkę czasu.

Wyjście

Twój program powinien wypisać na wyjście jeden wiersz zawierający liczbę całkowitą oznaczającą, ile razy Bajtazar wykona manewr zmiany pasa na lewy.

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

3 1 1 1

3 2 1 4

6 3 1 2

10 2 1 4

Wyjaśnienie przykładu: Auto Bajtazara porusza się z prędkością 1, a ciężarówki z prędkościami $\frac{1}{4}$, $\frac{1}{2}$ i $\frac{1}{4}$. W chwili $1\frac{1}{3}$ Bajtazar dojeżdża do pierwszej ciężarówki i zmienia pas na lewy, w chwili $5\frac{1}{3}$ z powrotem wraca na prawy pas. W chwili 6 drugi raz zmienia pas na lewy. W chwili 8 druga ciężarówka dojeżdża do trzeciej i zmniejsza prędkość do $\frac{1}{4}$. W chwili $14\frac{2}{3}$ Bajtazar powraca na prawy pas.

2

Testy "ocen":

10cen: Taki sam test jak przykładowy, tylko $x_3 = 9$; z tego powodu druga ciężarówka zmniejsza prędkość w chwili 4 i Bajtazar w chwili $5\frac{1}{3}$ zmienia pas na prawy i w tej samej chwili zmienia z powrotem na lewy.

20cen: n=100 oraz dla każdej ciężarówki i mamy: $x_i=(n+1)\cdot i$, $d_i=i$ oraz $v_i=1$. Bajtazar jedzie z prędkością 2, a jego samochód ma długość 50.

3ocen: n=200. Początkowo wszystkie pojazdy (razem z Bajtazarem) jadą "zderzak w zderzak". Bajtazar jedzie z prędkością 300, a kolejne ciężarówki z prędkościami $1, 2, \ldots, n$. Długość samochodu Bajtazara jest równa 1, a każda ciężarówka ma długość 2.

40cen: n=100 oraz dla każdej ciężarówki i mamy: $x_i=101 \cdot i$, $d_i=1$ oraz $v_i=n-i+1$. Samochód Bajtazara ma długość 1 i jedzie z prędkością 1000.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Dodatkowe ograniczenia	Liczba punktów
1	wszystkie v_i są równe	10
2	ciąg v_i jest niemalejący $(v_i \le v_{i+1})$	20
3	$n \le 1000$	35
4	brak dodatkowych ograniczeń	35