Numerische Mathematik Hausaufgaben

von Rico Kölling 192316 und Svaran Singh Chandla 193922

Hausaufgabe 4.1

A) Seien $\epsilon_{y1},\epsilon_{y2},\epsilon_p,\epsilon_w$ die jeweiligen relativen Fehler. Die Konditionszahlen für y_2 sind $rac{p}{p/2-w} \cdot rac{1}{2} = rac{1}{1-2w/p} ext{ und } rac{w}{p/2-w} \cdot (-1) = rac{1}{1-p/2w}. ext{ Demnach } \delta_{y_2} = rac{1}{1-2w/p} \delta_p + rac{1}{1-p/2w} \epsilon_w + o(|\epsilon_p| + |\epsilon_w|) ext{ für }$ $(\epsilon_p,\epsilon_W) o (0,0)$. Für y_1 sind die Konditionszahlen $rac{p}{p/2+w}\cdotrac{1}{2}=rac{1}{1+2w/p}$ und $rac{w}{p/2+w}\cdot (+1)=rac{1}{1+p/2w}$. also $\epsilon_{y_1}=rac{1}{1+2w/p}\epsilon_p+rac{1}{1+p/2w}\epsilon_w+o(|\epsilon_p|+|\epsilon_w|)$ für $(\epsilon_p,\epsilon_w) o (0,0).$

Wegen $|q| \ll p^2/4 = u$ ist v pprox u und somit $w pprox \sqrt{u} = \frac{|p|}{2}.$ Wegen p < 0 betragen die Konditionszahlen für y_2 etwa 1/2, also $\epsilon_{y_2} pprox rac{1}{2}\epsilon_p + rac{1}{2}\epsilon_w$. Für y_1 sind die Nenner der Konditionszahlen fast 0 → Fehlerverstärkung.

B) Wie in der vorigen Teilaufgabe gesehen, führt der Rechenweg $y_1 = p/2 + w$ zu einem relativen Fehler für y_1 , der unter den genannten Voraussetzung viel größer als ϵ_{y_2} ist. Mit $y_1=q/y_2$ erhält man jedoch $\epsilon_{y_1}=\epsilon_q-\epsilon_{y_2}+o(|\epsilon_p|+|\epsilon_w|)pprox \epsilon_p-rac{1}{2}\epsilon_p-rac{1}{2}\epsilon_w$. Dieser Rechenweg ist günstiger als der andere, es sei denn, $|\epsilon_q|\gg |\epsilon_p|$.

Wenn q und p als Gleitkommazahlen gegeben sind, gilt $|\epsilon_q| \approx |\epsilon_p|$, also sit realistischerweise nicht $|\epsilon_q|\gg |\epsilon_p|.$

C) $p^2 = 16$, also u = 4; v = 4 - *0.01 = 3.99; $w = Rd_4(\sqrt{3.99}) = 1.997$. Somit $y_2 = -4/2 - 1.997 = -3.997$. Erster Rechenweg: $y_1 = -4/2 + 1.997 = -0.003$. Zweiter Rechenweg: $y_1=0.01/^*(-3.997)=-0.002502$. Genauere Lösung: $y_1\approx -0.00250156$ und $y_2\approx -3.9974984$. Der zweite Rechenweg ist also deutlich genauer als der erste.

Wenn ϵ_q und ϵ_p nicht einfach Rundungsfehler sind, könnte $\epsilon_q\gg\epsilon_p$ sein. Sei etwa $\overline{p}=0.02$, Also $\epsilon_q=1$. Dann erhalten wir v=3.98, w=1.995 und $y_2=-3.995$. Im ersten Rechenweg erhalten wir $y_1=-0.005$, im zweiten $y_1=-0.005006$. Der zweite Rechenweg wird also für $\epsilon_q\gg\epsilon_p$ auch in der praktischen Rechnung ungünstig

Hausaufgabe 4.2

$$f(x) = 2^x - 4x - 1$$

f ist stetig, f(4) = -1, f(4.5) > 3.62 > 0. Nach dem Zwischenwertsatz hat f in [4, 4.5] mindestens eine Nullstelle.

 $f'(x) = ln(2) \cdot 2^x - 4$ ist streng monoton wachsend auf \mathbb{R} . Wegen $f'(4) = 16 \cdot ln(2) - 4 > 7.09 > 0$ ist f'(x) > 0, $\forall x \in [4, 4.5]$. Daher ist f streng monoton wachsend auf [4, 4.5] und hat dort höchstens eine Nullstelle.

$$a_0 := 4, b_0 := 4.5$$

- $egin{aligned} ullet & M:=rac{a_0+b_0}{2}=4.25, f(M)>1.02
 ightharpoonup a_1:=a_0, b_1:=M \ ullet & M:=rac{a_1+b_1}{2}=4.125, f(M)<-0.05
 ightharpoonup a_2:=M, b_2:=b_1 \end{aligned}$

- $ullet \ M:=rac{a_2+b_2}{2}=4.1875, f(M)>0.47 \leadsto a_3:=a_2,b_3:=M$
- $\frac{b_3-a_3}{2}=0.03125<0.04$, also löst $\overline{x}:=rac{a_3+b_3}{2}=4.15625$ die Aufgabe

 $x^*pprox 4.131388$, daher $|\overline{x}-x^*|<0.0249$

Hausaufgabe 4.3

Für stetig differenzierbare Funktionen $f:[a,b]\to\mathbb{R}$ lässt sich also eine Lipschitz- Konstante mit einer Kurvendiskussion von |f'| berechnen. Ist $f\in\xi(I,\mathbb{R})$, aber $\sup x\in I$ $\Big|f'(\xi)\Big|=\infty$, dann ist f nicht lipschitzsch. Mittelwertsatz: $\forall x\neq y\in[a,b]$: $\exists \xi$ zwischen x,y mit $\frac{|f(y)-f(x)|}{|y-x|}=f'(\xi)$, also $\frac{|f(y)-f(x)|}{|y-x|}=\Big|f'(\xi)\Big|\leq L$, also $\Big|f(y)-f(x)\Big|\leq L\cdot\Big|y-x\Big|$

Hausaufgabe 4.4

A) siehe Main.py

B)

a := 1.61801916

b := 1.61801917

Für die Funktion

$$f(x) = 223200658x^3 - 1083557822x^2 + 1753426039x - 945804881$$

 $f'(x) = 669601974x^2 - 2167115644x + 1753426039$

In das Newton-Verfahren eingesetzt wäre dies

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 $\Rightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

 $\mathsf{mit}\; x_0 = a$

$$x_1=1.61801916-rac{f(1.61801916)}{f'(1.61801916)}=1.61801916-rac{-1.708110511232\cdot 10^{-12}}{0.0009390686664544}=1.61801916$$
 mit $x_0=b$

$$x_2 = 1.61801917 - \frac{f(1.61801917)}{f'(1.61801917)} = 1.61801917 - \frac{-5.217050063846}{-0.0016408342569114} = 1.61830...$$
 $\Rightarrow x_3 = 1.618015...$

Somit ist zu sagen, wenn man mit dem Newton verfahren versucht die Nullstelle genau zu approximieren, bleibt nur eine mögliche Über, a.

 \sim Es gibt nur eine Nullstelle und diese ist a.

siehe second.py