Optics and Nanophotonics

Interfaces

- > Reflection & Refraction
- > Conservation principles
- Special angles
- > Intensity
- > Interface conditions
- > Fresnel equations
- Phase
- > Thin films

Matthew Arnold, UTS
Matthew.Arnold-1@uts.edu.au

Interfaces

- All optical devices have interfaces
- Energy is split between reflection and refracted beams
- Engineering Q: what angle, how much energy, (what phase)?

What angle?

Fermat's principle: ray traces path of least time

Wave/particle justification:

- all paths taken and interfere
- only shortest interferes constructively

Thought experiment:

Imagine you're at the beach...

want to reach something in water along beach.

You swim slower than you walk: fastest path?

Solution: (not straight-line!)
run further, swim shorter
"Refract" into water

Can be solved to give angles, but doesn't give flux division

Need conservation + EM

What angle? Phase-matching/conservation

- hoIncident flux is split between transmission & reflection (conservation of flux) 1=R+T
- ➤ Speed changes

- $c = v_r n_1 = v_i n_1 = v_t n_2$
- \triangleright Waves phase match (equal $e^{-i\omega t}$) @ all time
- ω same (conservation of energy)
- $\geqslant |k|$ changes

- $\omega_r = \omega_i = \omega_t$ $k_0 = k_r / n_1 = k_r / n_1 = k_r / n_2$
- \triangleright Waves phase match (equal e^{ikr}) @ interface
- **k same along interface** (conservation of p)

$$k_r \sin \theta_r = k_i \sin \theta_i = k_t \sin \theta_t$$

Law of reflection Refraction

$$\theta_r = \theta_i$$

(Snell/Descarte)
$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

To get fluxes we need electromagnetism

Total internal reflection

$$\theta_c = \sin^{-1}(n_2/n_1) \qquad \qquad n_2 \qquad n_1 \qquad \qquad n_2 \qquad R$$

If $n_1 < n_2$, refraction angle is undefined beyond critical angle ϑ_c

- •All energy goes into reflection (in absence of another interface)
- •Transmitted wave evanescent (travels along interface, decays away from it)

```
e.g. (into air) water n=1.3, \vartheta_c=... Si n=3.4, \vartheta_c=...
```

This has important consequences for devices

 Acceptance angle of fiber (indirect: α ≠θ_c & n core:clad more later)

Emission efficiency of LED
 n of semiconductors high → critical angle small → most photons trapped

previously

Electromagnetic wave roadmap

$$\nabla \bullet \mathbf{D} = \rho_{\mathit{free}}$$

$$\nabla \bullet \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Maxwell's equations

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\nabla^2 \mathbf{E} = \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

 $\nabla^{2}\mathbf{E} = \varepsilon \mu \frac{\partial^{2}\mathbf{E}}{\partial t^{2}}$ $\nabla^{2}\mathbf{H} = \varepsilon \mu \frac{\partial^{2}\mathbf{H}}{\partial t^{2}}$ Helmholtz (wave) equation

$$\nabla^2 \mathbf{H} = \varepsilon \mu \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

$$E = E_0 \exp[i\{kr - \omega t\}]$$

Sinusoidal waves

$$H = H_0 \exp[i\{kr - \omega t\}]$$

$$i$$
k.D = ρ_{free}

$$\mathbf{k.B} = 0$$

$$\mathbf{k} \times \mathbf{H} = \mathbf{J} - \omega \mathbf{D}$$

$$\mathbf{k} \times \mathbf{E} = \omega \mathbf{B}$$

Harmonic Maxwell

$$\mathbf{D} = \mathbf{\varepsilon} \mathbf{E}$$

Constitutive equations

$$B = \mu H$$

$$J = \sigma E$$

$$S_{av} = \text{Re}[\mathbf{E} \times \mathbf{H}^*]/2$$

Properties of time-harmonic EM wave in simple media

$$\mathbf{k} \perp \mathbf{E} \perp \mathbf{H}$$

$$n \equiv \frac{c}{v} = \sqrt{\frac{\varepsilon}{\varepsilon_0} \frac{\mu}{\mu_0}}$$

$$\eta \equiv \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = 1/(v\varepsilon)$$

$$v = \frac{\omega}{k}$$

Fresnel equation road-map Properties of time-harmonic EM wave in simple media

$$\mathbf{k} \perp \mathbf{E} \perp \mathbf{H}$$
 $n \equiv \frac{c}{v} = \sqrt{\frac{\varepsilon}{\varepsilon_0} \frac{\mu}{\mu_0}}$ $\eta \equiv \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = 1/(v\varepsilon)$ $v = \frac{\omega}{k}$ $S_{av} \propto \text{Re}[n]|E|^2$

+ Conservation

$$k_0 = k_r / n_1 = k_i / n_1 = k_t / n_2$$

$$k_r \sin \theta_r = k_i \sin \theta_i = k_t \sin \theta_t$$

Fresnel's equations

$$r_{\perp} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$r_{\parallel} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$t_{\perp} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$t_{\parallel} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$R = r^2 \qquad \& \qquad T = \frac{n_t \cos \theta_t}{n_t \cos \theta_i} t^2$$

+ Interface conditions

$$\Delta E_{=} = 0$$

$$\Delta H_{=} = J_{s}$$

$$\Delta D_{\perp} = \rho_{s}$$

$$\Delta B_{\perp} = 0$$

Fresnel's equations

- > Give the ratio of the electric field magnitudes at the interface
- > Electric field ratios can be *complex* numbers
- Note: the apparent sign depends on the derivation
- > Fresnel's equations must be interpreted with reference to derivation diagram
- r & t are **not** magnetic field ratios need extra impedance factors
- Intensities are unambiguously defined

Fresnel's equations

$$r_{\perp} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$t_{\perp} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$r_{\parallel} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$t_{\parallel} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$R = r^2 \qquad \& \qquad T = \frac{n_t \cos \theta_t}{n_i \cos \theta_i} t^2$$

Two "polarizations"
direction of E wrt
"Plane of Incidence" (Polnc)

"s" all E perpendicular to Poinc

Poinc contains all rays = page

"p" all H perpendicular to Polnc (so E is *in* Polnc)

http://en.wikipedia.org/wiki/Fresnel equations

Fresnel Equations for intensity

Transform from E → power

$$S_{av} \equiv \text{Re}[\mathbf{E} \times \mathbf{H}^*]/2 \propto \text{Re}[n]|E|^2$$

- |E|²
- Factor of *n*
- Factor of $cos(\theta)$ [flux projection to normal]

$$R = r^2 \qquad \& \qquad T = \frac{n_t \cos \theta_t}{n_i \cos \theta_i} t^2$$

R: same medium, factors cancel

Some implications of Fresnel equations

- Interfaces are polarizing (more next week)
- (usually) small reflection at normal
- (always) large reflection at glancing (see TIR)
- Minimum "p" reflection at Brewster's angle $\theta_B = \tan^{-1}(n_2/n_1)$
- Phase changes (later)

Water: n=1.3, $\vartheta_B=...$

Si: n=3.4, $\vartheta_B=...$

Ta @ 633nm: n=1.7 + 2.1i?

Applications of Fresnel's equations

- Interference filters
- Polarizers
- Photonic engineering (solar cells, LED)
- Measuring refractive index (fitting) → electronic structure

• ...

Fresnel equation summary Properties of time-harmonic EM wave in simple media

$$\mathbf{k} \perp \mathbf{E} \perp \mathbf{H}$$
 $n \equiv \frac{c}{v} = \sqrt{\frac{\varepsilon}{\varepsilon_0} \frac{\mu}{\mu_0}}$ $\eta \equiv \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = 1/(v\varepsilon)$ $v = \frac{\omega}{k}$ $S_{av} \propto \text{Re}[n] |E|^2$

Wave-vector solution

$$k_0 = k_r / n_1 = k_i / n_1 = k_t / n_2$$

$$k_r \sin \theta_r = k_i \sin \theta_i = k_t \sin \theta_t$$

Fresnel's equations

$$r_{\perp} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

$$r_{\parallel} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$t_{\perp} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_i}$$

$$t_{\parallel} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$R = r^2 \qquad \& \qquad T = \frac{n_t \cos \theta_t}{n_t \cos \theta_i} t^2$$

Boundary conditions

$$\Delta E_{=} = 0$$

$$\Delta H_{=} = J_{s}$$

$$\Delta D_{\perp} = \rho_{s}$$

$$\Delta B_{\perp} = 0$$

Polarization (more next week)

Maxwell's equations Rules governing EM fields in space and time

Differential form

$$\nabla \cdot \mathbf{D} = \rho_{free}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

 ∇ . "divergence"

$$\nabla \times$$
 "rotation", "curl"

E electric field **H** magnetic field **D** electric flux **B** magnetic flux J electric current density ρ electric charge t time

Integral form

$$\oint \mathbf{D} \cdot d\mathbf{A} = \int \rho_{free} dV$$

$$\phi \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int \mathbf{B} \cdot d\mathbf{A}$$

$$\oint \mathbf{D} \cdot d\mathbf{A} = \int \rho_{free} dV$$

$$\oint \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int \mathbf{B} \cdot d\mathbf{A}$$

$$\oint \mathbf{H} \cdot d\mathbf{l} = \int \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{A}$$

/ distance along path A area of surface V volume in volume

Interface conditions

https://en.wikipedia.org/wiki/Interface conditions for electromagnetic fields

$$\begin{split} \oint \boldsymbol{E} \cdot d\boldsymbol{l} &= -\frac{\partial}{\partial t} \int \boldsymbol{B} \cdot d\boldsymbol{A} \\ \oint \boldsymbol{H} \cdot d\boldsymbol{l} &= \int \left(\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \right) \cdot d\boldsymbol{A} \\ \oint \boldsymbol{D} \cdot d\boldsymbol{A} &= \int \rho_{free} dV \\ \oint \boldsymbol{B} \cdot d\boldsymbol{A} &= 0 \end{split} \qquad \qquad \begin{aligned} \Delta E_{=} &= 0 \\ \Delta H_{=} &= J_{s} \\ \Delta D_{\perp} &= \rho_{s} \end{aligned} \qquad \qquad \text{Usually ignore surface sources}$$

Tangential component of E (and H) continuous across interface

Use this to formulate transfer of fields across interface

Tangential component continuity

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int \mathbf{B} \cdot d\mathbf{A}$$

$$\oint \boldsymbol{H} \cdot d\boldsymbol{l} = \int \left(\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \right) \cdot d\boldsymbol{A}$$

- 1. Make a loop around interface
- 2. Collapse loop perpendicular to interface
- 3. A \rightarrow 0 (so rhs \rightarrow 0 except for surface current), $L_a \rightarrow 0$, $L_b \rightarrow 0$
- 4. Final line integral has only tangential fields e.g. $E_{2t} L_2 E_{1t} L_1 = 0$
- 5. Notice $L_1 = -L_2$ so that factor disappears

$$\Delta E_{=} = 0$$

$$\Delta H_{=} = J_{s}$$

Normal component continuity

$$\oint \mathbf{D} \cdot d\mathbf{A} = \int \rho_{free} dV$$

$$\oint \mathbf{B} \cdot d\mathbf{A} = 0$$

- 1. Make a cylinder across interface
- 2. Collapse cylinder perpendicular to interface
- 3. $V \rightarrow 0$ (so rhs $\rightarrow 0$ except for surface charge), $A_a \rightarrow 0$, $A_b \rightarrow 0$
- 4. Final surface integral only has normal components e.g. $D_{1n} A_1 D_{2n} A_2 = 0$
- 5. Notice $A_1 = -A_2$, so that factor disappears

$$\Delta D_{\perp} = \rho_s$$

$$\Delta B_{\perp} = 0$$

Consequences of the interface conditions

Typically in optics (e.g. no external sources)

What happens (at low ω) at a dielectric : metal interface?

Perfect electric conductor (PEC) approximation

- "E=0 inside PEC (otherwise induced current would be infinite)"
- "Interface condition implies no tangential E"
- "E outside must be normal to the surface"

PEC approximation useful for determining metal waveguide modes (later) Don't need it for Fresnel's equations

EM field interface examples

The next two pages show EM component fields in red & blue:

- ❖ Why are the other components not shown?
- ❖ Which are the tangential/normal components?
- ❖ Which components are continuous across the interface?
- ❖ Why do the magnetic fields behave differently than the electric fields?
- ❖ Why does the wave on the left look different than the wave on the right?
- *How does the angle of the transmitted wave compare to incidence?

Recap for Fresnel's equations

What we know so far:

✓ Properties of time-harmonic EM wave in simple media

$$\mathbf{k} \perp \mathbf{E} \perp \mathbf{H}$$
 $n \equiv \frac{c}{v} = \sqrt{\frac{\varepsilon}{\varepsilon_0} \frac{\mu}{\mu_0}}$ $\eta \equiv \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = 1/(v\varepsilon)$ $v = \frac{\omega}{k}$ $S_{av} \propto \text{Re}[n] |E|^2$

✓ Conservation

$$k_0 = k_r / n_1 = k_i / n_1 = k_t / n_2$$

$$k_r \sin \theta_r = k_i \sin \theta_i = k_t \sin \theta_t$$

✓ Continuity of fields

$$\Delta E_{=} = 0$$

$$\Delta H_{=} = J_{s}$$

$$\Delta D_{\perp} = \rho_{s}$$

$$\Delta B_{\perp} = 0$$

+ Two polarizations "s" & "p"

+ Geometry → Fresnel's equations

Fresnel Equations for E

e.g. "s" polarization

We will need $E \rightarrow H$ Use impedance = E/HAssuming non-mag $H = En/\eta_0$ η_0 is common factor, will cancel

- ➤ Draw on unspecified field H (use k | | S ~ E x H & RHR)
- ➤ Drop complex exponentials they're matched already by conservation
- ➤ Note total tangential E fields are continuous:
- ➤ Write down total tangential E on each side:
- ➤ Divide all by incident field:
- \triangleright Replace with r=E_r/E_i etc. Eq (1):
- ➤ Note total tangential H fields are continuous:
- ➤ Projecting total tangential H on each side, -left, +right...
- \triangleright Also noting $\theta_r = \theta_i$
- ➤ Convert H->E using field ratio:
- \triangleright Divide by incident and use r=E_r/E_i etc. Eq (2):
- ➤ Solve simultaneous equation for Eqs (1) & (2):

$$r_{\perp} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} \qquad t_{\perp} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

Phase: important for thin film devices

Does negative coefficient actually = negative phase? Need to check diagram

"s" polarization

All E same direction -ve coefficient is -ve phase

"p" polarization

Less obvious

H consistent so E "consistent"

(rotate all so k aligned to see)

-ve coefficient is -ve phase

Our sign convention means —ve coefficient = -ve phase Not true for other Fresnel equations

Phase near Brewster angle

Phase near critical angle

(Aside: t is greater than one. How is this possible?)

r phase reversed compared to external reflection

Beyond ϑ_c the coeffs are complex Phase lies between 0 & π

Summary

- Fresnel's equations give angles, power & phase at interfaces
- Come from wave & EM specific properties
- Total internal reflection beyond critical angle $\theta_c = \sin^{-1}(n_2/n_1)$
- Minimum R, maximum pol @ Brewster angle $\theta_B = \tan^{-1}(n_2/n_1)$
- Useful for (e.g.) measuring refractive index
- FE = k conservation + EH continuity+ impedance + geometry

Thin films

- Important practical application of optics
- Additional interfaces create reflection backwards & forwards
- Full modelling needs both Fresnel & interference
- Possible to write down answer for single film
- Film stacks need matrices use software (e.g. OpenFilters)

Important examples:

Quarter wave (anti-reflection)

Quarter wave high-low stack (mirror)

Multibeam interference model

Add up all beams...

$$t = t_{cf} e^{ikd} [1 + r_{fsf} e^{ikd} r_{fcf} e^{ikd} (1 + r_{fsf} e^{ikd} r_{fcf} e^{ikd} (1 + ...] t_{fs}]$$

$$= t_{cf} t_{fs} e^{ikd} \sum_{b=0}^{\infty} [r_{fsf} r_{fcf} e^{i2kd}]^{b}$$

$$= \frac{t_{cf} t_{fs} e^{ikd}}{1 - r_{fsf} r_{fcf} e^{i2kd}}$$

$$r = r_{cfc} + t_{cf} e^{ikd} r_{fsf} e^{ikd} [1 + r_{fcf} e^{ikd} r_{fsf} e^{ikd} (1 + ...] t_{fc}]$$

$$= r_{cfc} + t_{cf} t_{fc} e^{i2kd} r_{fsf} \sum_{b=0}^{\infty} [r_{fcf} r_{fsf} e^{i2kd}]^{b}$$

$$= r_{cfc} + \frac{t_{cf} t_{fc} e^{i2kd} r_{fsf}}{1 - r_{cc} r_{cc} e^{i2kd}}$$

Problem: even more complicated for more than two interfaces!

(A sketch of a) matrix model

- Transfer of continuous field components (tangential E & H)
- Relate to each other: $-H_==\gamma E_==(n\cos\theta/\eta_0)E_=$ "s" $E_==\gamma H_==(\eta_0\cos\theta/n)H_=$ "p" different γ
- Observe the effect of propagation within a layer $e^{ik_{\perp}d}=e^{i\phi}$ (actually use reverse travel direction for numerical stability)
- Thin film matrix $\begin{bmatrix} E' \\ H' \end{bmatrix} = M \begin{bmatrix} E \\ H \end{bmatrix}$ $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} \cos \phi & -(i/\gamma)\sin \phi \\ -(i\gamma)\sin \phi & \cos \phi \end{bmatrix}$
- Thin film stack (\rightarrow C 1 2 ... S) $M = M_1 M_2 ...$
- Solve fields in cover (1+r) & substrate (t)

$$r = \frac{\gamma_c m_{11} + \gamma_c \gamma_s m_{12} - m_{21} - \gamma_s m_{22}}{\gamma_c m_{11} + \gamma_c \gamma_s m_{12} + m_{21} + \gamma_s m_{22}} \qquad t = \frac{2\gamma_c}{\gamma_c m_{11} + \gamma_c \gamma_s m_{12} + m_{21} + \gamma_s m_{22}}$$

$$R = |r|^2 \qquad T = \text{Re}[\gamma_s / \gamma_c] |t|^2$$

Hecht Ch 9

Antireflection (AR) coatings

- Reflection reduces efficiency of transmissive components
- Best AR coating has graded index (GRIN)
 - e.g. from air n=1 to glass n=1.5
 - Challenge: normal materials restricted to n>1.3
 - Research & natural solution: nanostructure
 - Commercial solution: approximate with solid layers ($\lambda/4$ MgF₂, BBAR)

Quarter-wave AR

Single quarter-wave optical thickness

e.g. for λ_0 =550nm & MgF₂ (n=1.38), d= λ_0 /(4n)=...

- Round-trip adds 180° phase = destructive interference
 - Works well near design λ (and ϑ), poorly elsewhere
- Ideally $n_f^2 = n_c n_s$

e.g. air-to-glass, ideal n_f =...

No solid materials are suitable for glass, usually use MgF₂. e.g. air-to-silicon (n_c =3.4), ideal n_f =...

- Single layer does not perform well
 - Use multiple layers
 - Can get broadband AR (but terrible outside band, poor tilt tolerance)

 n_{S}

Dielectric mirrors

- Metals simple reflectors, BUT
 - Reflection < 100%
 - Absorption (heating, damage, inefficiency)
 - Not always practical to use (bio-organisms, poisons fab processes)

e.g. Al @ 633nm, $n+i\kappa=1.4+7.6i$, normal $R=[(n-1)^2+\kappa^2]/[(n+1)^2+\kappa^2]=...$

where has the rest of the energy gone?

Dielectric mirrors

- Minimal heating (no A)
- Beam splitting: R & T (no A)
- Spectral filtering (interference)

High-low stack

- (N=4)
- Alternating $\lambda/4$ layers of high-low index
- Bragg diffraction (type of photonic crystal)
- Field decays rapidly with depth (waves in the reflection band are effectively evanescent)
- More layers (N) = better R, sharper edges

$$R_{\text{max}} = \left[\frac{1 - n_H^2 (n_H / n_L)^{2N} / n_C n_S}{1 + n_H^2 (n_H / n_L)^{2N} / n_C n_S} \right]^2$$

• Better contrast (n_H/n_L) = as above + bigger band

$$\Delta \lambda / \lambda = (4/\pi) \sin^{-1}[(n_H - n_L)/(n_H + n_L)]$$

e.g. Bandwidth of silicon (3.48) & silica (1.53) @ $1.55\mu m = ...$