سیر مطالعاتی من برای ارائه پایان نامه کارشناسی ارشد

محسن مهرانی - استاد راهنما: دکتر سامان مقیمی عراقی

١ مطالعه مقاله شماره [١]:

در این مقاله مدلی را مشاهده کردیم که به کمک مدل KM یک شبکه نورونی کامل را توصیف کرده است. این شبکه شامل نورونهای مهاری است که روشن شدن هر کدوم از آنها باعث مهار شدن نورونهای همسایه می شود. معادله تحول اختلاف پتانسیل هر کدام از نورونها با محیط بیرونش از رابطه زیر داده می شود g: g ضریب اتصال هر جفت نورون، S: G ما تریس اتصال S: G تعزیم میان زدن تیزه و تحریک آن، S: G یک پتانسیل تحریکی و خارجی):

$$\ddot{v}_i = a_i - v_i - gN \sum_{n|t_n < t} S_{i,l(n)} \delta(t - t_n - t_d) \tag{1}$$

پارامتر نظم سیستم را به کمک میدان (E) تعریف کرده است اما پارامتر نظم را انحراف از معیار آن در طول زمان معرفی کرده است.

$$\ddot{E} + 2\alpha \dot{E} + \alpha^2 E = 2\alpha N \sum_{n|tn < t} \delta(t - t_n - t_d)$$
 (Y)

$$\sigma^2 = \langle E^2 \rangle_t - \langle E \rangle_t^2 \tag{(Y)}$$

در طول زمان میدان E و σ را رصد کرده است و دیده است که میدان خاموش و روشن می شود و انحراف از معیار آن مقدار خوبی مثبت است چنان که این خاموش و روشنها را با معنا نشان می دهد. حال ادعای این مقاله است که این خاموش و روشن شدنها الگویی آشوبناک دارند و ادعا کرده است که به اندازه متناهی سامانه نیز وابسته نیست.

١.١ سوالات

۱. مدل Kuramoto به قرار زیر است. چطور معادله ۱ به آن تبدیل می شود. دلتای یاد شده در معادله ۱ دلتای دیراک است؟ یا دلتایی که بیشینه آن عدد یک است؟

$$\frac{d\theta_i}{dt} = \omega_i + \sum_{j=1}^{N} a_{ij} \sin(\theta_j - \theta_i), \qquad i = 1 \dots N$$
 (*)

t_n .۲ چیست

- ۳. اگر قرار باشد جمعی که در رابطه ۱ نوشته ایم روی تمام زمانهای از ازل تا t باشد پس آیا هر نورون حافظه ای از کل رخدادهای گذشته دارد؟ حتی از لحظاتی که قبل از تیزه زدن ها وجو د دارند؟
 - ۴. میدان E به چه معناست؟ چطور تعریف کردیم؟ آیا مشخصهای از کل سیستم است؟ پاسخ استاد:
- قرار نیست کوراموتو به این تبدیل بشود. ممکنه یه شباهتهای کلی (به این معنی که مثلا دور میزنند) باشه ولی کلا دو تا معادلهی متفاوتند. در ضمن تابع دلتای دیراک است.
- ۲. کمیتهای t_n زمانهایی است که تیزهای در سیستم زده می شود. [*می گویم: پس احتمالا معادله دیفرانسیلی ما دائم در حال به روز کردن سمت راست خودش است. هر وقت نورونی تیزه زد آن را در جمله سمت راست ذخیره می کنیم. پس احتمالا تقارن زمانی نداریم مگر پس مدتی طولانی که تاثیر شرایط اولیه بسیار کوچک دیده شود.]
- ۳. داستان اینه که هر نورونی که تیزه بزنه، اطرافیانش رو تحت تاثیر قرار میده. پس وضعیت نورون به تمام تیزههای زمانهای قبل وابسته است.
- ۴. هر وقت در هر جای دستگاه، تیزهای زده بشه، کمیت E کمی بالا می ره و بعد افت پیدا می کنه. حالا اگر تند و تند جاهای مختلف تیزه زده بشه، این کمیت کم و بیش مقداری غیر صفر پیدا می کنه. [این کمیت را خودمون تعریف کرده ایم که بر حسب پارامترهای سیستم متحول می شود. مانند یک آشکار ساز که به سامانه متصل می شود تا اندازه گیری خود را با یک عقربه نشان دهد.] اما اگر این تیزه زدنها همگام باشه، یعنی همه با هم یه زمانی بزنند و بعد یه مدتی خاموش باشند، این کمیت، اول کلی زیاد می شه و بعد یه مدتی کم می مونه و در نتیجه انحراف معیارش زیاد می شه.

۲.۱ شبیه سازی مدل پیاده شده در مقاله

یکی از مشکلات شبیه سازی معادلات دیفرانسیلی حضور تابع دلتای دیراک است. این تابع در نقطه صفر خود دارای مقداری بینهایت است. برای برطرف کردن این معذل چه باید کرد؟ نکته در این جا نهفته است که چون ما برای حل عددی معادله دیفرانسیلی خود از زمان پیوسته استفاده نمی کنیم و از گامهایی با طول مثبت Δt استفاده می کنیم این مشکل به صورت زیر مدیریت

مىشود.

$$\begin{split} v_i(t+\Delta t) &= v_i(t) + \int_t^{t+\Delta t} \dot{v}_i dt \\ &= v_i(t) + \int_t^{t+\Delta t} \left[a_i - v_i - gN \sum_{n|t_n < t} S_{i,l(n)} \delta(t-t_n-t_d) \right] dt \quad (\mathbf{\mathcal{F}}) \\ &\approx v_i(t) + \left[a_i - v_i(t) \right] \Delta t - gN \sum_{n|t_n < t} S_{i,l(n)} \int_t^{t+\Delta t} \delta(t-t_n-t_d) dt \quad (\mathbf{\mathcal{F}}) \end{split}$$

حالا تابع پله کاملا برای ما آشنا و قابل مدلسازی است. دقت شود که تابع پله یاد شده فقط در محدوده $t, t + \Delta t$ زندگی می کند و پس از آن اعتبار ندارد. معادله ۸ می گوید که باید برای تحول پتانسیل نورون iام بررسی کنیم که آیا نورونی در همسایگی آن تیزه زده است یا نه. اگر چنان باشد یک واحد به جمع تیزه زدگان اضافه کنیم.

مراجع

[1] Luccioli, Stefano and Politi, Antonio. Irregular collective behavior of heterogeneous neural networks. *Phys. Rev. Lett.*, 105:158104, Oct 2010. 1