Independence of k multiple H3 hash function

Tao Heng

March 28, 2017

1 The class of functions H3(from initial paper)

Each hash function in H_3 class is a linear transformation $B^T = Q_{r \times w} A^T$ that maps a w-bit binary string $A = a_1 a_2 \cdots a_w$ to an r-bit binary string $B = b_1 b_2 \cdots b_r$ as follows:

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_r \end{pmatrix} = \begin{pmatrix} q_{11} & q_{12} & \cdots & q_{1w} \\ q_{21} & q_{22} & \cdots & q_{2w} \\ \cdots & \cdots & \cdots & \cdots \\ q_{r1} & q_{r2} & \cdots & q_{rw} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{pmatrix}$$
(1)

where A and B are the input key (index) and its hash value, and the hash generation matrix $Q_{r\times w}$ is an $r\times w$ matrix defined over $GF(2)=\{0,1\}$ with each H_3 hash function uniquely corresponding to such a $Q_{r\times w}$. The hash function of $Q_{r\times w}$ can map the key ranged in $\{0,2^w-1\}$ to a hash value ranged in $\{0,2^r-1\}$.

The multiplication and addition in GF(2) is Boolean AND(\bullet) and XOR(\oplus), respectively. According to (1), each bit of B is calculated as follows:

$$b_i = (a_1 \bullet q_{i1}) \oplus (a_2 \bullet q_{i2}) \oplus \cdots \oplus (a_w \bullet q_{iw}) \ (i = 1, 2, \cdots, r)$$

We take two examples to illustrate the H_3 class hash function. In the first example, the hash generation matrix is

$$Q_{2\times8} = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \tag{3}$$

where w=8, r=2, and the hash function is used to map the input key (index) to its hash value: $\{0,\ldots,2^8-1=255\} \to \{0,\ldots,2^2-1=3\}$. Under this hash function, the hash value for index 69 can be calculated by Eq.(1), expressed as follows

 $h_1(69) = h_1(01000101)$

$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
(4)

where $\begin{pmatrix} 1 \\ 0 \end{pmatrix}^T = \begin{pmatrix} 1 & 0 \end{pmatrix} = 2 (decimal)$, so the hash value of 69 under the hash function h_1 is $h_1(69) = 2$.

2 How to construct k independent H_3 hash function

First hash function $Q^1_{r \times w}$ is random obtained[1]. we obtain boolean matrix $T_{w \times w}$ of row w and column w randomly, Second hash function is $Q^2_{r \times w} = Q^1_{r \times w} T_{w \times w}$, and so on, the kth hash function is $Q^k_{r \times w} = Q^1_{r \times w} T^k_{w \times w}$, $(T^k_{w \times w} = T^k_{w \times w}, T^k_{w \times w}, T^k_{w \times w})$. k independent hash function of SFBF is $\{Q^1_{r \times w}, Q^1_{r \times w}, T^2_{w \times w}, \dots, Q^1_{r \times w}, T^k_{w \times w}\}$

3 Proof of independent of the k H_3 hash function

3.1 Universal hashing

Let H be a finite collection of hash functions that map a given universe U of keys into the range $0, 1, \ldots, m-1$ Such a collection is said to be universal if for each pair of distinct keys $k, l \in U$, the number of hash functions $h \in H$ for which h(k) = h(l) is at most |H|/m. In other words, with a hash function randomly chosen from H, the chance of a collision between distinct keys k and l is no more than the chance 1/m of a collision if h(k) and h(l) were randomly and independently chosen from the set $0, 1, \ldots, m-1$.

3.2 Field (R, \oplus, \wedge) is a set R = 0, 1 is vector space

let (R, \oplus) , $R = \{0, 1\}$ is algebraic system, $R = \{0, 1\}$. (R, \oplus) is abel group. proof is below.

- closure: $\forall x_1, x_2 \in R, x_1 \oplus x_2 \in R$
- identity: $\exists e = 0, \forall x \in R, x \oplus e = x$
- inverse: inverse of element 0 is 1, inverse of element 1 is 0.
- associativity: $\exists x, y, z \in R, x \oplus (y \oplus z) = (x \oplus y) \oplus z$
- commutativity: $\exists x, y \in R, x \oplus y = y \oplus x$

 $(R, \Lambda), R = \{0, 1\}$ is monoid. proof is below.

- closure: $\forall x_1, x_2 \in R, x_1 \land x_2 \in R$
- identity: $\exists e = 0, \forall x \in R, x \land e = x$
- associativity: $\exists x, y, z \in R, x \land (y \land z) = (x \land y) \land z$

 (R, \oplus, \bigwedge) is ring. proof is below.

- (R, \oplus) is abel group
- $(R, \Lambda), R = \{0, 1\}$ is monoid

- $\forall x, y, z \in R, a \land (b \oplus c) = a \land ((\neg b \land c) \lor (b \land \neg c)) = (a \land b) \oplus (a \land c)$ (R, \oplus, \bigwedge) is field. proof is below.
- commutativity: $\exists x, y \in R, x \land y = y \land x$
- additative \oplus identitity 0 is not equal to multiplicative \bigwedge identity 1.

A vector space over a field (R, \oplus, \bigwedge) is a set R = 0, 1.

3.3 **Proof**

Firstly, Independence of $Q^1_{r \times w}$ and $Q^2_{r \times w}$ is equality to $(\exists x \in A, Q^1_{r \times w}(x) = Q^2_{r \times w}(x) \text{ is at most } \lceil n/|B| \rceil, \ B = 2^r)$, n is the number of insert elements.

As we all know, H_3 hash function is universal hash function. $Q_{r\times w}^2(x) =$

As we all know, H_3 hash function is universal hash function. $Q_{r \times w}(x) = Q_{r \times w}^1(T_{r \times w}^1(x)) = Q_{r \times w}^1(T_{r \times w}^1(x)) = Q_{r \times w}^1(T_{w \times w}^1(x)) = Q_{r \times w}^1(T_{w \times w}^1(x)), x \in M$. How much is most probably largest cardinality of set M so that $y = Q_{r \times w}^1(x) = Q_{r \times w}^1(T_{w \times w}^1(x))$. $T_{w \times w}^1$ is universal hash function, that is, $\exists t, t = T_{r \times w}^1(x)$ every value t of $T_{w \times w}^1$ is mapped by at most $\lceil n/2^w \rceil$. then $\exists y, y = Q_{r \times w}^1(x) = Q_{r \times w}^1(t), Q_{r \times w}^1$ is universal hash function, every value y of $Q_{r \times w}^1$ is at most $\lceil n/2^w \rceil \times \lceil n/2^r \rceil$.

$$\lceil n/2^w \rceil \times \lceil n/2^r \rceil \le \lceil n/2^r \rceil \tag{5}$$

in my paper, number of insert elements n is less than 2^w , because insert elements is represented through w-bit binary string. that is, $\lceil n/2^w \rceil = 1$.

et cetera, $Q_{r \times w}^i$ and $Q_{r \times w}^j$ $(i \neq j, 1 < i, j \leq k)$ is independent.

References

[1] M. Ramakrishna, E. Fu, and E. Bahcekapili, "A performance study of hashing functions for hardware applications," terminology, vol. 5, p. 8, 1994.