

Aprendizado de Máquina e Deep Learning

Árvore de Decisão

Prof. Dr. Thiago Meirelles Ventura

Exercício 2

- Jogue Akinator: https://pt.akinator.com
- Ao acertar um personagem, anote:
 - Quantas perguntas foram feitas
 - Quantas vezes o seu personagem já foi jogado

Discussão

- Como isso funciona?
- O que acontece quando ele erra?
- Por quê foram feitas aquelas primeiras perguntas?

Árvore de decisão

- Algoritmo de aprendizado de máquina
 - Utilizado principalmente para classificação
 - Há variações para ser utilizado com problemas de regressão
- Utiliza dos atributos disponíveis para tomar a decisão de classificação
- Deixa claro como a decisão de classificação foi tomada

Pessoa		Comprimento	Peso	Idade	Classe:
		do Cabelo			Sexo
	Homer	0	250	36	M
	Marge	10	150	34	F
	Bart	2	90	10	M
	Lisa	6	78	8	F
	Maggie	4	20	1	F
	Abe	1	170	70	M
	Selma	8	160	41	F
	Otto	10	180	38	M
	Krusty	6	200	45	M
P	Comic	8	290	38	?

- Nessa base temos 4 características
 e a classe de cada personagem
- Características: nome do personagem, comprimento do cabelo, peso e idade
- Classe: masculino ou feminino

Pessoa		Comprimento	Peso	Idade	Classe:
		do Cabelo			Sexo
	Homer	0	250	36	M
	Marge	10	150	34	F
	Bart	2	90	10	M
	Lisa	6	78	8	F
	Maggie	4	20	1	F
	Abe	1	170	70	M
	Selma	8	160	41	F
	Otto	10	180	38	M
	Krusty	6	200	45	M
E	Comic	8	290	38	?

• Análise das características, separando os dados de acordo com cada

atributo existente

• Análise das características, separando os dados de acordo com cada

atributo existente

• Análise das características, separando os dados de acordo com cada

atributo existente

- Considerando a classe, nenhum atributo conseguiu separar corretamente os registros
- Pelo menos isso não foi possível individualmente
- Mas e se usarmos mais de um atributo?

Funcionamento

- O método de árvore de decisão realiza classificações executando uma sequência de testes
- A cada nó interno da árvore corresponde a um teste do valor de uma das características da base de treinamento
- As ramificações a partir do nó são identificadas com os possíveis valores do teste
- Cada nó folha (nó final) especifica o valor a ser retornado se aquela folha for alcançada
 - Representa a classe do exemplo que está sendo verificado

Exercício 3

 Avalia como o personagem Comic será classificado de acordo com a árvore de decisão montada

• E uma personagem que tivesse um peso de 90, cabelo de comprimento 5 e idade 27?

Pessoa	Comprimento do Cabelo	Peso	Idade	Classe: Sexo
Comic	8	290	38	?

- Como podemos montar uma árvore de decisão?
- Quais atributos devemos utilizar?
- Qual deve ser o primeiro atributo analisado? E o segundo?

- Existem vários algoritmos para montar uma árvore de decisão
- O ID3 é um bom algoritmo para aprender o funcionamento geral

Algoritmo ID3

- A árvore de decisão é construída de forma recursiva
- No início, todos os exemplos de treinamento estão na raiz
- Depois, é escolhido a característica que melhor divide os exemplos
- Para a característica escolhida, é criado um nó filho para cada valor possível da característica
- O processo é realizado novamente para cada nó que contenha diferentes exemplos

- Para esse algoritmo funcionar as características devem ser categóricas
 - os valores contínuos devem ser discretizados
- É necessário ter alguma forma para avaliar as características, para decidir qual a melhor a ser utilizada para dividir os exemplos
 - Para isso é usado o ganho de informação

- Para cada nó a ser avaliado na árvore é calculado o ganho de informação de cada característica
- A característica selecionada é a que apresentar o maior ganho de informação
- Para calcular o ganho de informação é necessário calcular a entropia

Entropia

- A entropia serve para medir o grau de pureza de um conjunto
- É dada por:

entropia(nó) =
$$-\sum_{i=1}^{c} p(i/n\acute{o}) \cdot \log_2[p(i/n\acute{o})]$$

- c é o número de classes
- p(i/nó) é a fração dos exemplos pertencentes à classe i no respectivo nó

Ganho de informação

Ganho de informação é dada por:

ganho = entropia(pai) -
$$\sum_{j=1}^{n} \left[\frac{N(v_j)}{N} \text{entropia}(v_j) \right]$$

- *n* é número de características
- N é o número de exemplo no nó pai
- $N(v_i)$ é o número de exemplos associados ao nó filho v_i

Escolha dos nós até os nós folhas

- Os cálculos devem ser refeitos para cada novo nó da árvore
- Esses passos se repetem até que se encontre um critério de parada
 - Todos os exemplos para um dado nó pertencem à mesma classe
 - Não existe atributos remanescentes para particionamento (a classe majoritária é escolhida para classificar a folha)

 Vamos utilizar como exemplo nossa base dos Simpsons

Pessoa		Comprimento	Peso	Idade	Classe:
		do Cabelo			Sexo
	Homer	0	250	36	M
	Marge	10	150	34	F
	Bart	2	90	10	M
	Lisa	6	78	8	F
	Maggie	4	20	1	F
	Abe	1	170	70	M
	Selma	8	160	41	F
	Otto	10	180	38	M
	Krusty	6	200	45	M

- Calcular o ganho de informação das características existentes
- Avaliar qual delas seria a melhor para ser escolhida como a raiz da árvore
- Análise das classes
 - 5 exemplos da classe Masculino
 - 4 exemplos da classe Feminino
 - Total de 9 exemplos

Entropia do nó pai

entropia
$$(n\acute{o}) = -\sum_{i=1}^{c} p(i/n\acute{o}) \cdot \log_2[p(i/n\acute{o})]$$

Entropia =
$$-5/9 \cdot \log_2(5/9) - 4/9 \cdot \log_2(4/9) = 0.99$$

Agora podemos calcular a entropia de cada característica

Cabelo

- Por ser valores contínuos, é necessário uma definição de intervalos
 - cabelo curto: <= 5
 - cabelo longo: > 5
- Para cabelos curtos temos 3 masculinos e 1 feminino
- Para cabelos longos temos 2 masculinos e 3 femininos

entropia
$$(n\acute{o}) = -\sum_{i=1}^{c} p(i/n\acute{o}) \cdot \log_2[p(i/n\acute{o})]$$

entropia(cabelo curto) = -3/4 . log2(3/4) - 1/4 . log2(1/4) = 0.81 entropia(cabelo longo) = -2/5 . log2(2/5) - 3/5 . log2(3/5) = 0.97

Cabelo

• Entropia do nó pai e de cada valor de cabelo

• Agora é possível calcular o ganho de informação da característica "cabelo"

ganho = entropia(pai) -
$$\sum_{j=1}^{n} \left[\frac{N(v_j)}{N} \text{entropia}(v_j) \right]$$

Peso

- O mesmo procedimento pode ser feito para avaliar a característica de peso
- Intervalos e exemplos na base de treinamento
 - <= 160: 1 masculino e 4 femininos
 - > 160: 4 masculino e 0 feminino

entropia(
$$<=160$$
) = $-1/5$. $log2(1/5)$ - $4/5$. $log2(4/5)$ = $0,72$ entropia(>160) = $-4/4$. $log2(4/4)$ - $0/4$. $log2(0/4)$ = 0 ganho(peso) = $0,99$ - $5/9$ * $0,72$ - $4/9$ * 0 = $0,59$

- Idade
 - O mesmo procedimento pode ser feito para avaliar a característica de idade
 - Intervalos e exemplos na base de treinamento
 - <= 40: 3 masculino e 3 femininos
 - > 40: 2 masculino e 1 feminino

entropia(
$$<=40$$
) = -3/6 . log2(3/6) - 3/6 . log2(3/6) = 1
entropia(>40) = -2/3 . log2(2/3) - 1/3 . log2(1/3) = 0,92
ganho(idade) = 0,99 - 6/9 * 1 - 3/9 * 0,92 = 0,02

• Temos:

```
ganho(cabelo) = 0,09
ganho(peso) = 0,59
ganho(idade) = 0,02
```

- Qual atributo deve ser selecionado para compor o primeiro nó da árvore de decisão?
 - O atributo de **peso**

- Escolhendo o atributo peso seriam criados dois nós filhos
 - Exemplos com peso <= 160
 - Exemplos com pesos > 160
- Para cada um desses nós seria feito o mesmo procedimento para selecionar a característica a ser utilizada como próximo atributo
 - mas desta vez considerando apenas os exemplos que já foram filtrados pelos nós anteriores

Exercício 4

 Quais exemplos seriam considerados para cada partição (menor igual a 160 e maior que 160)?

Pessoa	Comprimento	Peso	Idade	Classe:
1 00000	do Cabelo			Sexo
Home	er 0	250	36	M
Marg	e 10	150	34	F
Bar	rt 2	90	10	M
Lis	a 6	78	8	F
Maggi	e 4	20	1	F
(a) Ab	e 1	170	70	M
Selm	a 8	160	41	F
Ott	o 10	180	38	M
Krust	y 6	200	45	M

Exercício 5

 Mostre como definir os nós restantes da árvore de decisão

Pessoa		Comprimento	Peso	Idade	Classe:
		do Cabelo			Sexo
В	omer	0	250	36	M
© N	large	10	150	34	F
	Bart	2	90	10	M
	Lisa	6	78	8	F
Ma	aggie	4	20	1	F
	Abe	1	170	70	M
\bigcirc S	elma	8	160	41	F
	Otto	10	180	38	M
	rusty	6	200	45	M

