報告書

1 今週の進捗

- テスト数 250 の実験結果の比較
- エンティティ数 (40,943) 分類の実験
- MLM を使用したモデルの検討

2 KG-BERT [1]

2.1 モデルの説明

Triple Label $y \in \{0, 1\}$

図 1: KG-BERT model [1]

表 1: データセット

Dataset	Entity	Relation	Train	Validation	Test
WN18RR	40,943	11	86,835	3,034	3,134

評価指標として Mean Rank (MR), Mean Reciprocal Rank (MRR), Hits@k を使用する. MR とは, 予測したエンティティのランクの平均を指す. MRR とは, 予測したエンティティのランクの逆数をスコアとしており, こうして得たスコアの平均をとったものを指す. Hits@k とは, 予測したエンティティを順位付けしたときに, 上位 k 個以内に正解が含まれている割合のことを指す.

表 2: パラメータ (WN18RR)

パラメータ	値 (default)
学習率	5e-5
epoch	5
dropout rate	0.1
batch size	32
eval batch size	128 (5000)
max seq length	32 (50)

$$MR = \frac{1}{|E|} \sum_{i=1}^{|E|} rank_i$$
 (1)

$$MRR = \frac{1}{|E|} \sum_{i=1}^{|E|} \frac{1}{rank_i}$$
 (2)

|E| はエンティティ数, $rank_i$ は予測したエンティティのランクを表している. MR は値が小さいとき,MMR,Hits@k はともに値が大きいとき推定精度が良いと判断される. 図 2 に KG-BERT の学習 loss の推移を示す.学習は進んでいることがわかる.

図 2: KG-BERT model の学習 loss の推移

2.2 テスト数 10, 100, 250, 500 の実験結果の比較

テストデータからランダムにテスト数 $\{10, 100, 250, 500\}$ だけトリプルを取ってきてテストする. 表 3 にそれぞれの結果を示す.

現在,テスト数 250 で実験を回しているが,途中でエラーが出たことにより時間がかかっている.そのため,表3におけるテスト数 250 の結果はテスト途中で,正確な結果ではない.また,テスト数を変化させただけで学習の方法は同じため,fine-tuning したモデルを保存して使用することで学習時間を短縮し,テスト時間のみで実験を回すことができるようにした.

	WN18RR					
テスト数	MR	MRR	Hits@1	Hits@3	Hits@10	実験時間
3,134 (文献値)	97	-	-	-	52.4	
3,134 (再現実験)	117.77	0.25	12.41	29.44	51.85	約 10 日
10	4.5	0.225	0.0	0.0	100.0	約4日
100	76.10	0.248	12.68	28.87	54.93	約6日
250	81.57				32.08	約1日(途中)
500						

表 3: テスト数ごとの実験結果

2.3 エンティティ数 (40,943) 分類

入力を head, relation もしくは, relation, tail として, tail 推定, head 推定, つまり, エンティティ (40,943) に分類する. 表 4 にエンティティ数 (40,943) 分類の tail 推定 (1, 2回目) と head 推定 (3回目) の結果を示す. 表 4 より, tail 推定において元の KG-BERT の結果より全体的によくない結果になったことがわかる. しかし, MRR に関しては他の指標と比べて大きい差はないように感じられる. head 推定において, 全体的に悪い結果となった. コードの見直しをしてみるが, 間違いがなければ tail 推定との違いを考える必要がある. また, tail, head 推定における実験時間は 約 10 時間程度であった.

		WN18RR					
推定	n □目	MR	MRR	Hits@1	Hits@3	Hits@10	
tail	1	8605.3	-	13.37	19.43	25.21	
	1 (Filtered)	8600.4	-	13.72	19.46	25.24	
	2	8682.4	0.173	13.18	19.08	25.37	
	2 (Filtered)	8677.6	0.176	13.62	19.14	25.37	
head	3	11823.6	0.0296	2.14	3.13	4.12	
	3 (Filtered)	11802.4	0.0299	2.17	3.16	4.15	

表 4: エンティティ数 (40,943) 分類の実験結果

2.4 MLM を使用したモデルの検討

現在, MLM について調べ, KG-BERT に適用できるかを検討している. まだ, MLM について深く理解しておらず、実装まで進んでいない.

KG-BERT では BertForSequenceClassification モデルを使用しており、この出力は triple が存在する (1)、存在しない (0) の 2 値分類である. このモデルを MLM の BertForMaskedLM に変更すると出力内容が変わり、 KG-BERT に適用することが難しいと考えている.

3 今後したいこと

- KG-BERT に MLM を適用して実装
- エンティティ数 (40,943) 分類の改良

参考文献

[1] Liang Yao, Chengsheng Mao, and Yuan Luo. KG-BERT: BERT for knowledge graph completion. CoRR, Vol. abs/1909.03193, , 2019.