

Operating Systems & Computer Networks

Host-to-Network I

Content (2)

8. Networked Computer & Internet

9. Host-to-Network I

- 10. Host-to-Network II
- 11. Host-to-Network III
- 12. Internetworking
- 13. Transport Layer

Physical Layer

OSI

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data link
1	Physical

Physical Layer

Tasks of Physical Layer

- Responsible for turning a logical sequence of bits into a physical signal that can propagate through a medium
 - Many forms of physical signals
 - Signals are limited by their propagation in a physical medium
 - Limited bandwidth, attenuation, dispersion, and by noise
- Includes connectors, media types, voltages, ...
- No error correction!

Tasks of Physical Layer

- Bits can be combined into multi-valued symbols for transmission
 - Gives rise to the difference in data rate (bits per sec, bit/sec) and baud rate (symbols per sec)
- Two types
 - Baseband transmission
 - Broadband transmission

Basic Service of Physical Layer: Transport Bits

- Physical layer should enable transport of bits between two locations A and B
- Abstraction: Bit sequence (in order delivery)
 - But no guarantee on correct transmission of bits

Example: Transmit Bit Pattern for Character "b"

- Represent character "b" as a sequence of bits
- Use ASCII code → "b" = 98, as binary number 01100010
- Resulting current on the wire:

Note: Abstract *data* is represented by physical *signals* – changes of a physical quantity in time or space!

What Arrives at the Receiver?

Typical pattern at the receiver:

Physical effects:

- Attenuation
- Dispersion
- Refraction
- Phase shift
- Background noise

What is going on here and how should we convert the signal back to a "b"?

Electromagnetic Spectrum

Wires

Twisted pair

Coaxial

Optical fiber

Wireless Transmission

- Examples: 802.11 (WLAN), mobile phones, Bluetooth
- Examples: Television, deep space communication

Multiplexing

- Communication medium is scarce resource
- Optimize medium usage by multiplexing

Space Division Multiplexing (SDM)

Multiplexing

Time Division Multiplexing (TDM)

Multiplexing

Frequency Division Multiplexing (FDM)

- Multiplexing in general allows for a more efficient usage of a medium
 - Discretized resource can be managed, allocated, scheduled...

Typical Effects of Transmission

Limited bandwidth

Signal attenuation

Jitter, dispersion, ...

Interference

- Noise
 - Background noise
 - Thermal
- Echoes
 - E.g. at connections
- Crosstalk
 - E.g. interference across wires
- ELF
 - Extreme low frequency, e.g. 50/60 Hz AC
- Spikes
 - Short, high amplitude
- ...

Freie Universität Berlin

Example: Results of Interference

Freie Universität

When to Sample Received Signal?

- How does the receiver know when to check the received signal for its value?
 - One typical convention: In the middle of each symbol
 - But when does a symbol start?
 - The length of a symbol is usually known by convention via the symbol rate

- The receiver has to be synchronized with the sender at bit level
 - Link layer will have to deal with frame synchronization
 - There is also character synchronization omitted here

Freie Universität Berlin

Overly Simplistic Bit Synchronization

- One simple option, assume
 - ... that sender and receiver are synchronized at some point in time
 - ... that both have an internal clock that tics at every symbol step
- Usually, this does not work due to clock drift
 - Two different clocks never stay in perfect synchrony
- Errors, if synchronization is lost:

Options to Tell Receiver When to Sample Freie Universität

- Relying on clock synchronization does not work
- 1. Provide an explicit clock signal
 - Needs parallel transmission over some additional channel
 - Must be in synch with actual data, otherwise pointless
 - Useful only for short-range communication
- 2. Synchronize receiver at crucial points, e.g. start of character or block
 - Otherwise, let receiver clock run freely
 - Relies on short-term stability of clock generators (do not diverge too quickly)
- 3. Extract clock information from the received signal itself

Freie Universität Berlin

Extract Clock Information from Signal

- Put enough information into data signal itself so that receiver can know immediately when a bit starts/stops
- Would the simple 0/low, 1/high mapping of bit/symbol work?
- Receiver can use 0-1-0 transitions to detect length of a bit

- Fails depending on bit sequences, e.g. long runs of 1s/0s
 - Receiver can loose synchronization
- Not nice not to be able to transmit arbitrary data

Manchester Encoding

- Idea: At each bit, provide indication to receiver that this is where a bit starts/stops/has its middle
 - For a 0 bit, have symbol change in middle of bit from low to high
 - For a 1 bit, have the symbol change in middle of bit from high to low

- The signal is self-clocking since one transition per period is guaranteed
- Disadvantage: bit rate is as half as high as baud rate

Freie Universität Berlin

Baseband vs. Broadband Transmission

- Baseband transmission (all schemes described so far)
 - Put digital symbol sequences directly onto the wire
 - At different levels of current, voltage, ...
 - Problems:
 - Limited bandwidth reshapes signal at receiver
 - Attenuation and distortion depend on frequency
 - Baseband transmissions have many different frequencies because of their wide Fourier spectrum
 - Rectangular signal causes "infinite" spectrum
- Possible alternative: broadband transmission
 - Needed for wireless transmission (antennas) and frequency division multiplex

Broadband Transmission

- Idea: Get rid of wide spectrum needed for baseband transmission
- Use carrier (sine wave) for the symbols to be transmitted
 - Typically, sine wave has high frequency
 - But only a single frequency
- Pure sine waves have no information, so its shape has to be influenced according to symbols to be transmitted
 - Carrier has to be modulated by symbols (widening the spectrum)
- Three parameters that can be influenced:
 - Amplitude a
 - Frequency f $f(t) = a \sin(2\pi f t + \phi)$
 - Phase ϕ

Amplitude Modulation (AM)

Amplitude modulated sine wave f_A(t) is given as

$$f_A(t) = s(t)\sin(2\pi f t + \phi)$$

- Amplitude is given by the signal s(t) to be transmitted
- Special cases:
 - s(t) is an analog signal amplitude modulation
 - s(t) is a digital signal amplitude keying
 - s(t) only takes 0 and a as values on/off keying
- Examples:

Used in: LF, MF, and HF radio

Frequency Modulation (FM)

Frequency modulated sine wave f_F(t) is given by

$$f_{F}(t) = a \sin(2\pi s(t)t + \phi)$$

- Modulation/keying terminology like for AM
- Example:

Used in: VHF radio, TV, VHS, synthesizers

Note: s(t) has an additive constant in this example to avoid having frequency zero

Phase Modulation

Similarly, phase modulated carrier is given by

$$f_{P}(t) = a \sin(2\pi f t + s(t))$$

- Modulation/keying terminology again similar
- Example:

Binary data

Phasemodulated carrier

- s(t) is chosen such that there are phase changes when the binary data changes
 - Typical example for differential coding

Freie Universität Berlin

Use More Than 0 and 1 in Channel

- Who says we can only use 0 and 1 as possible levels for the transmitted signal?
- Suppose the transmitter can generate signals (current, voltage, ...) at four different levels, instead of just two
 - > To select one of four levels, two bits are required
- Terminology
 - Bits are 0 or 1, used in "higher" layers
 - Symbols (with multiple values) are transmitted over channel
 - > Symbol rate: Rate with which symbols are transmitted
 - Measured in baud
 - Data rate: Rate with which physical layer processes incoming data bits
 - Measured in bit/s

Freie Universität Berlin

Example: Bits and Symbols

- Use 4-level symbols to encode 2 bits:
 - Map
 00 → 0
 01 → 1
 10 → 2
 11 → 3

Symbol rate is only half the data rate as each symbol encodes two bits

Example: Bits and Symbols

- Today's systems:
 - Many bits per symbol
 - Often Phase Shift Keying/Amplitude Shift Keying combined
- Constellation diagram encodes amplitude and phase of symbols

Freie Universität Berlin

Data Rate with Multi-valued Symbols

- Using symbols with multiple values increases data rate
- Nyquist's formula:

maximum data rate [bit/s] =
$$2H \log_2(V)$$

V: number of symbol values

H: bandwidth in Hz

- Indicates that unlimited data rate can be achieved when enough symbol levels are used
- But: More and more symbol levels have to be spaced closer and closer together
 - Even small random noise would then result in one symbol being misinterpreted for another

Achievable Data Rate with Noise

- Achievable data rate is limited by noise
 - More precisely: by relationship of signal strength compared to noise, i.e., Signal-to-Noise Ratio (SNR, S/N)
- Shannon's formula:

maximum data rate [bit/s] =
$$H \log_2 (1 + S/N)$$

S: signal strength

N: noise level

H: bandwidth in Hz

- S/N commonly expressed in dB:
 - $S/N [dB] = 10 \times log_{10}(S/N)$
- This theorem formed the basis for information theory

Classical Modems for Analog Subscriber Lines: V.90/V.92

- Idea
 - Modulation/Demodulation of signals depending on data
 - Dynamically adaptation to medium characteristics
- Key parameters
 - Data rates up to 56 kbit/s downstream (provider to user)
 - Upstream 33.6 kbit/s (based on V.34)
 - V.92: 48 kbit/s upstream plus data compression (V.44)
- Technology
 - Digital infrastructure required, only last mile analog
 - Digital transmission from provider to last switch
 - PCM signals from switch to modem
 - Data rates depend much on line quality
 - Line probing required plus adaptation

V.90 Basic Architecture

Newer Modem Technologies

Cable modem

- Data transmission via broadband cable (TV)
- Infrastructure must be bi-directional
- Data rates in the Gbit/s range but always shared medium

Powerline communications

- Data transmission via power lines
- Couple high-frequency signals into standard power lines
- Data rates up to several Mbit/s but shared medium

xDSL modems

- Higher data rates using conventional phone lines
- Typical data rates up to 16 Mbit/s downstream, up to 1 Mbit/s upstream (ADSL)
- Not everywhere, rates depend on location, interference ...
- Special technologies for faster response ("FastPath")
- Up to 50/100/200 Mbit/s at certain places (VDSL)
- Symmetrical for companies/servers

Broadband Cable: Digital TV Plus Internet

xDSL

- xDSL: Different DSL (Digital Subscriber Line) technologies
- Goal: Use already existing phone lines (simple twisted pair, unshielded) for higher data rates
 - Works around last mile problem
 - Similar to ISDN: Replacement of analog phone system by a fully digital system (offering n 64 kbit/s channels)

Co-existence of classical analog (or digital ISDN) phone

system plus high data rates

frequency f [kHz]

Typical Downstream Data Rates

Content (2)

8. Networked Computer & Internet

9. Host-to-Network I

- 10. Host-to-Network II
- 11. Host-to-Network III
- 12. Internetworking
- 13. Transport Layer