Comment déterminer à la main les primitives d'une fonction ?

- Il suffit de déterminer une primitive de cette fonction.
- Pour déterminer une primitive F d'une fonction f, on utilise les tableaux de résultats et les règles concernant f+g et kf donnés page 239.

Exemple 1. Déterminer les primitives de f définie sur \mathbb{R} par $f(x) = 2x^3 + 4x - 3e^x$.

• L'écriture de f(x) fait intervenir uniquement la somme et le produit par un nombre de fonctions données dans les tableaux page 241.

Fonctions	X 3	X	e ^x
Primitives	X4	$\frac{\chi^2}{2}$	e ^x

· On lit dans les tableaux :

• En multipliar on obtient :	nt par l	es nom	ibres c	onvenable
Fonctions	2x ³	4x	- 3e ^x	
Primitives	$2\frac{x^4}{4}$	$4\frac{x^2}{2}$	- 3e ^x	

• Par addition, on obtient donc une primitive F de f:
$$F(x) = \frac{x^4}{2} + 2x^2 - 3e^x$$
; donc les primitives de f sont les fonctions G définies sur \mathbb{R} par $G(x) = \frac{x^4}{2} + 2x^2 - 3e^x + C$.

Exemple 2. Déterminer les primitives de f définie sur \mathbb{R} par $f(x) = 5e^{3x}$.

- On pense à écrire f(x) sous la forme $f(x) = ke^{u(x)} \times u'(x)$ avec k réel. On pose u(x) = 3x d'où u'(x) = 3.
- $e^{u(x)} \times u'(x) = e^{3x} \times 3$; on écrit alors $f(x) = 5 \times \frac{1}{3} \times e^{3x} \times 3$.
- Ainsi $f(x) = \frac{5}{3} e^{u(x)} \times u'(x)$ d'où une primitive F de $f: F(x) = \frac{5}{3} e^{u(x)} = \frac{5}{3} e^{3x}$.
- Primitives de f : les fonctions G définies sur \mathbb{R} par $G(x) = \frac{5}{3}e^{3x} + C$.

Exemple 3. Déterminer les primitives de f définie sur $[0; +\infty[$ par $f(x)=\frac{3}{2x+1}$.

- On pense à écrire f(x) sous la forme $f(x) = k \frac{u'(x)}{u(x)}$ avec k réel.
- On pose u(x) = 2x + 1 d'où u'(x) = 2.
- $\frac{u'(x)}{u(x)} = \frac{2}{2x+1}$; on écrit alors $f(x) = 3 \times \frac{1}{2} \times \frac{2}{2x+1}$.
- Ainsi, $f(x) = \frac{3}{2} \times \frac{u'(x)}{u(x)}$; sur $[0; +\infty[$ on a u(x) > 0;
- d'où une primitive F de f: $F(x) = \frac{3}{2} \ln (u(x)) = \frac{3}{2} \ln (2x + 1)$.
- Primitives de f: les fonctions G définies sur $[0; +\infty[$ par $G(x)=\frac{3}{2}$ In (2x+1)+C.