# Causal Inference

a summary

## Contents

| 1 | General | 3 | 3 | Longitudinal Data | 5 |
|---|---------|---|---|-------------------|---|
| 2 | Models  | 4 |   |                   |   |

### 1 General

Causal Roadmap (Petersen and van der Laan, 2014) systematic approach linking causality to statistical procedures

- 1. Specifying Knowledge. structural causal model (unifying counterfactual language, structural equations, & causal graphs): a set of possible data-generating processes, expresses background knowledge and its limits
- 2. Linking Data. specifying measured variables and sampling specifics (latter can be incorporated into the model)
- 3. Specifying Target. define hypothetical experiment: decide
  - 1. variables to intervene on: one (point treatment), multiple (longitudinal, censoring/missing, (in)direct effects)
  - 2. intervention scheme: static, dynamic, stochastic
  - counterfactual summary of interest: absolute or relative, marginal structural models, interaction, effect modification
  - 4. population of interest: whole, subset, different population
- **4. Assessing Identifiability.** are knowledge and data sufficient to derive estimand and if not, what else is needed?
- 5. Select Estimand. current best answer: knowledge-based assumptions + which minimal convenience-based assumptions (transparency) gets as close as possible
- **6. Estimate.** choose estimator by statistical properties, nothing causal here
- **7. Interpret.** hierarchy: statistical, counterfactual, feasible intervention, randomized trial

Notation chapter 1.1

average causal effect chapter 1.2 and 1.3 and 1.4 and 1.5

randomized experiments (target trial) 2.1 and 2.2; 3.6

 ${\bf Standardization} \quad {\rm plug-in} \ ({\rm or} \ {\rm parametric} \ {\rm if} \ {\rm so}) \ {\rm g-formula}$ 

$$\mathrm{E}\left[Y|A=a\right] = \int \mathrm{E}\left[Y|L=l, A=a\right] dF_L\left[l\right]$$

weighted average of stratum-specific risks; unknowns can be estimated non-parametrically or modeled

no need to estimate  $f_L[l]$  as empirical distribution can be used: estimate outcome model  $\rightarrow$  predict counterfactuals  $\rightarrow$  average the results ( $\rightarrow$  CI by bootstrapping)

for discrete  $\boldsymbol{L} \to [Y|A=a] = \sum_l \to [Y|L=l,A=a] \Pr\left[L=l\right]$ 

**IP** Weighting adjust for (surrogate) confounders L

$$\mathrm{E}\left[Y|A=a\right]=\mathrm{E}\left[\frac{I(A=a)Y}{f\left[A|L\right]}\right];W^{A}=\frac{1}{f\left[A|L\right]};SW^{A}=\frac{f(A)}{f\left[A|L\right]}$$

unknowns can be estimated non-parametrically or modeled  ${\bf pseudo-population:}$  everyone is treated & untreated  $(L\not\to A)$ 

**FRCISTG** (fully randomized causally interpreted structured graph): probability tree for  $L \to A \to Y$ , can be used to calculate/visualize simulation of values for A

for discrete  $A, L \ f[a|l] = \Pr[A = a, L = l]$ estimators: Horvitz-Thompson; Hajek (modified version) stabilized weights  $SW^A$  should have an average of 1 (check!)  $\rightarrow$  pseudo-population same size  $\rightarrow$  CI width  $\downarrow$ 

Standardization and IP Weighting are equivalent,

 $\boldsymbol{\mathit{but}}$  if modeled, different "no misspecification" assumptions:

standardization: outcome model IP weighting: treatment model

doubly robust estimators: reduce model misspecification bias,

consistent if either model is correct; e. g.: 1. fit outcome regression with variable  $R = \begin{cases} +W^A & \text{if } A{=}1\\ -W^A & \text{if } A{=}0 \end{cases}$ 

identifiability conditions most of 3

positivity: p. 155, p. 162

additional conditions: chapter 13.5

exchangeability: p 172f

positivity:  $f_L(l) \neq 0 \Rightarrow f_{A|L}(a|l) > 0 \ \forall a, l$ 

consistency: if A = a, then  $Y^a = Y$  for each individual

effect modification chapter 4

interaction chapter 5

**causal diagrams** chapter 6, include swigs from 7.5 and that one technical point

more on SWIGS p 242ff

confounding chapter 7

selection bias chapter 8

measurement bias chapter 9

random variabilty chapter 10

#### 2 Models

Modeling data are a sample from the target population

e. g. E[Y|A = a]estimand: quantity of interest, e. g.  $\widehat{E}[Y|A=a]$ estimator: function to use, estimate: apply function to data,

model: a priori restriction of joint distribution/dose-response curve; assumption: no model misspecification (usually wrong) **non-parametric estimator:** no restriction (saturated model) = Fisher consistent estimator (entire population data  $\rightarrow$  true value) parsimonious model: few parameters estimate many quantities bias-variance trade-off:

wiggliness  $\uparrow \rightarrow$  misspecification bias  $\downarrow$ , CI width  $\uparrow$ 

Marginal Structural Models association is causation in the IP weighted pseudo-population

associational model  $E[Y|A] = \text{causal model } E[Y^a]$ step 1: estimate/model f[A|L] (and f[A])  $\rightarrow$  get  $(S)W^A$ step~2: estimate regression parameters for pseudo-population effect modification variables V can be included (e.g.  $\beta_0 + \beta_1 a + \beta_2 V a + \beta_3 V$ ; technically not marginal anymore),  $SW^A(V) = \frac{f[A|V]}{f[A|L]}$  more efficient than  $SW^A$ 

**Censoring** measuring joint effect of A and C

$$E[Y^{a,c=0}]$$
 is of interest

standardization  $E[Y|A=a] = \int E[Y|L=l, A=a, C=0] dF_L[l]$ 

IP weights 
$$W^{A,C} = W^A \times W^C$$
 (uses  $n$ ) or 
$$SW^{A,C} = SW^A \times SW^C \quad \text{(uses } n^{c=0})$$

g-estimation can only adjust for confounding, not selection bias → use IP weights

G-Methods generalized treatment contrasts: adjust for (surrogate) confounders L

- standardization
- IP weighting
- g-estimation: not needed unless longitudinal

G-Estimation (additive) structural nested models

logit Pr 
$$\left[A = 1 | H(\psi^{\dagger}), L\right] = \alpha_0 + \alpha_1 H(\psi^{\dagger}) + \alpha_2 L$$
  
 $H(\psi^{\dagger}) = Y - \psi_{\dagger} A$ 

find  $\psi^{\dagger}$  which renders  $\alpha_1 = 0$ ; 95 %-CI: all  $\psi^{\dagger}$  for which p > 0.05closed-form solution for linear models

derivation:  $H(\psi^{\dagger}) = Y^{a=0}$ 

logit Pr 
$$[A = 1|Y^{a=0}, L] = \alpha_0 + \alpha_1 Y^{a=0} + \alpha_2 L$$

 $Y^{a=0}$  unknown, but because of exchangeability  $\alpha_1$  should be zero

$$Y^{a=0} = Y^a - \psi_1 a$$

equivalent to  $Y^{a=0} = Y^{a=1} - \psi_1$ , but using no counterfactuals structural nested mean model

additive: 
$$E[Y^a - Y^{a=0}|A = a, L] = \beta_1 a (+\beta_2 a L)$$

$$\begin{array}{ll} \text{multiplicative:} & \log \left( \frac{\operatorname{E}\left[Y^a \middle| A=a,L\right]}{\operatorname{E}\left[Y^{a=0}\middle| A=a,L\right]} \right) &= \beta_1 a \left( +\beta_2 a L \right) \\ \text{multiplicative is preferred if } Y \text{ always positive, but does not} \end{array}$$

extend to longitudinal case

semi-parametric: agnostic about  $\beta_0$  and effect of  $L \to \text{robust} \uparrow$ no time-varying: no nesting; model equals marginal structural models with missing  $\beta_0,\beta_3$  (unspecified "no treatment") sensitivity analysis: unmeasured confounding  $(\alpha_1 \neq 0)$  can be examined: do procedure for different values of  $\alpha_1 \to \text{plot } \alpha_1 \text{ vs.}$  $\psi^{\dagger} \rightarrow \text{how sensitive is estimate to unmeasured confounding?}$ **effect modification:** add V in both g-estimation equations doubly robust estimators exist

Outcome regression chapter 15

instrumental variable estimation chapter 16

causal survival analysis chapter 17

Variable Selection can induce bias if L includes:

(decendant of) collider: selection bias under the null noncollider effect of A: selection bias under the alternative mediator: overadiustment for mediators temporal ordering is not enough to conclude anything

bias amplification: e.g. by adjusting for an instrument Z (can also reduce bias)

Machine Learning L is high-dimensional

use lasso or ML for IP weighting/standardization

but: ML does not guarantee elimination of confounding and has largely unknown statistical properties

 $\rightarrow$  doubly robust estimator: consistent if bias  $<\frac{1}{\sqrt{n}}$ sample splitting: train estimators on training sample, use resulting estimators for doubly robust method on estimation sample (CIs on estimation sample are valid, but n halved) cross-fitting: do again the other way round, average the two estimates, get CI via bootstrapping

problems: unclear choice of algorithm, is bias small enough?

#### 3 Longitudinal Data

Time-Varying Treatments compare 2 treatments treatment history up to k:  $\bar{A}_k = (A_0, A_1, ..., A_k)$ shorthand: always treated  $\bar{A} = \bar{1}$ , never treated  $\bar{A} = (\bar{0})$ **static strategy:**  $g = [g_0(\bar{a}_{-1}), ..., g_K(\bar{a}_{K-1})]$ dynamic strategy:  $g = [g_0(\bar{l}_0), ..., g_K(\bar{l}_K)]$ stochastic strategy: non-deterministic q optimal strategy is where  $E[Y^g]$  is maximized (if high is good)

Sequential Identifiability sequential versions of exchangability:  $Y^g \perp \!\!\!\perp A_k | \bar{A}_{k-1} \ \forall g, k = 0, 1, ..., K$  $conditional\ exchangeability:$ 

$$\begin{split} \left(Y^g, L_{k+1}^g\right) & \perp \!\!\! \perp A_k | \bar{A}_{k-1} \!\!\! = \!\!\! g\left(\bar{L}_k\right), \bar{L}^k \; \forall g, k = 0, 1, ..., K \\ \textbf{positivity:} \; f_{\bar{A}_{k-1}, \bar{L}_k}(\bar{a}_{k-1}, \bar{l}_k) \neq 0 \; \Rightarrow \\ f_{A_k | \bar{A}_{k-1}, \bar{L}_k}(a_k | \bar{a}_{k-1}, \bar{l}_k) > 0 \; \forall \left(\bar{a}_{k-1}, \bar{l}_k\right) \end{split}$$

consistency:

$$\begin{split} Y^{\bar{a}} &= Y^{\bar{a}^*} &\text{ if } \bar{a} = \bar{a}^*; & Y^{\bar{a}} &= Y &\text{ if } \bar{A} = \bar{a}; \\ \bar{L}_k^{\bar{a}} &= \bar{L}_k^{\bar{a}^*} &\text{ if } \bar{a}_{k-1} = \bar{a}_{k-1}^*; & \bar{L}_k^{\bar{a}} &= \bar{L}_k &\text{ if } \bar{A}_{k-1} = \bar{a}_{k-1} \end{split}$$

generalized backdoor criterion (static strategy): all backdoors into  $A_k$  (except through future treatments) are blocked  $\forall k$ static sequential exchangeability for  $Y^{\bar{a}}$ 

$$Y^{\bar{a}} \perp \!\!\!\perp A_k | \bar{A}_{k-1}, \bar{L}_k \quad \text{for } k = 0, 1, ..., K$$

use SWIGs to visually check d-separation time-varying confounding  $E[Y^{\bar{a}}|L_0] \neq E[Y|A=\bar{a},L_0]$ 

**Treatment-Confounder Feedback**  $A_0 \rightarrow L_1 \rightarrow A_1$ : an unmeasured U influencing  $L_1$  and Y turns  $L_1$  into a collider; traditional adjustment (e.g. stratification) biased: use g-methods g-null test sequential exchangeability & sharp null true ⇒  $Y^g = Y \forall g \Rightarrow Y \perp \!\!\!\perp A_0 | L_0 \& Y \perp \!\!\!\perp A_1 | A_0, L_0, L_1$ ; therefore: if last two independences don't hold, one assumption is violated **g-null theorem:**  $E[Y^g] = E[Y]$ , if the two independences hold (⇒ sharp null: only if strong faithfulness (no effect cancelling))

**Standardization** over all possible  $\bar{l}$ -histories simulates joint distribution of counterfactuals  $(Y^{\bar{a}}, \bar{L}^{\bar{a}})$  for  $\bar{a}$ 

$$\text{discrete: } \mathbf{E}\left[Y^{\bar{a}}\right] = \sum_{\bar{l}} \mathbf{E}\left[Y|\bar{A} = \bar{a}, \bar{L} = \bar{l}\right] \prod_{k=0}^{K} f\left(l_{k}|\bar{a}_{k-1}, \bar{l}_{k-1}\right)$$

continuous: 
$$\int f(y|\bar{a},\bar{l}) \prod_{k=0}^{K} dF \left(l_{k}|\bar{a}_{k-1},\bar{l}_{k-1}\right)$$

for stochastic strategies multiply with  $\prod_{k=0}^{K} f^{int}\left(a_k | \bar{a}_{k-1}, \bar{l}_k\right)$ g-null paradox

IP Weighting

$$W^{\bar{A}} = \prod_{k=0}^K \frac{1}{f\left(A_k|\bar{A}_{k-1},\bar{L}_k\right)}$$

$$SW^{\bar{A}} = \prod_{k=0}^{K} \frac{f(A_k | \bar{A}_{k-1})}{f(A_k | \bar{A}_{k-1}, \bar{L}_k)}$$

Doubly Robust Estimator reduce misspecification bias

- 1. IP weights at each time m:  $W^{\bar{A}_m}=\prod_{k=0}^m \frac{1}{f(A_k|\bar{A}_{k-1},\bar{L}_k)}$
- 2. fit outcome regression with variable  $R = \begin{cases} +W^A & \text{if } A=1 \\ -W^A & \text{if } A=0 \end{cases}$ 3. calculate standardized mean outcome

valid, if treatment or outcome model correct, or treatment correct until k and outcome otherwise (k+1 robustness)

g-estimation chapter 21.4

censoring chapter 21.5

target trial chapter 22 (does that even really fit in here, maybe push to 3rd paragraph in without models)

### References

If no citation is given, the source is (?)

Petersen, M. L. and van der Laan, M. J. (2014). Causal models and learning from data: integrating causal modeling and statistical estimation. Epidemiology~(Cambridge,~Mass.),~25(3):418-426.

