TMA4250 Spatial Statistics

Project 1 - Random Fields and Gaussian Random Fields

Christian Moen, Jim Totland

2/3/2022

Problem 1

a)

The positive semi-definite (PSD) property of the correlation function can be stated as follows. $\forall m \in \mathbb{Z}_+, \forall a_1, \ldots, a_m \in \mathbb{R} \text{ and } \forall s_1, \ldots, s_m \in \mathcal{D}, \text{ we have}$

$$\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j \rho(\boldsymbol{s}_i, \boldsymbol{s}_j) \ge 0.$$

To explain why this requirement is necessary, we observe that (in this case) $\rho(s_i, s_j) = \sigma^{-2}c(s_i, s_j)$, where c is the covariance function. Consequently,

$$\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j \rho(\mathbf{s}_i, \mathbf{s}_j) = \sigma^{-2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j c(\mathbf{s}_i, \mathbf{s}_j)$$
$$= \sigma^{-2} \operatorname{Var} \left[\sum_{i=1}^{m} a_i X(\mathbf{s}_i) \right].$$

Since the variance must be non-negative, it is clear that the PSD property above must be satisfied. Below, the different correlation functions are illustrated. ingen grunn til to plots, fordi ulik varians gir samme korrelasjon?!

we plot the semi-variograms. to figurer her kanskje? litt unødvendig? spør om dette.

