60016 OPERATIONS RESEARCH

Two Phase Simplex Algorithm

Last Lecture

- Degeneracy
 - Cycling
 - ► Bland's Rule

This Lecture

- Initial BFS
 - "All slack basis"
 - Artificial variables
- ► Two phase simplex algorithm
 - Systematically finding initial BFS's
 - Detecting infeasibility

Initial Basic Feasible Solution

- ► In STEP 0 the simplex algorithm requires an initial BFS and the corresponding basic representation.
- One can show that finding a feasible solution is in general as hard as finding an optimal solution!
- ⇒ How to construct an initial BFS?
 - In general, an initial BFS can be found using a variant of the simplex algorithm.
 - In some special cases, an initial BFS can be constructed "manually".

Problems with an "All Slack Basis"

minimise
$$z = c_1x_1 + c_2x_2 + \ldots + c_nx_n$$
 subject to:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$
 $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$

Problems with an "All Slack Basis"

minimise
$$\mathbf{z} = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$
 subject to:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2} = b_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + x_{n+m} = b_m$
 $x_1 \ge 0, \dots, x_n \ge 0, \quad x_{n+1} \ge 0, \dots, x_{n+m} \ge 0$

 \Rightarrow This is a basic representation for $I = \{n+1, \ldots, n+m\}$. The corresponding BS is feasible if $b_i \geq 0$, $i = 1, \ldots, m$.

Consider a system with

- equalities,
- ► "≥" inequalities and
- ► "≤" inequalities,

and assume that all variables and RHS's are nonnegative.

$$x_1 + x_2 + x_3 = 10$$

 $2x_1 - x_2 \ge 2$
 $x_1 - 2x_2 + x_3 \le 6$
 $x_i \ge 0 \ \forall i = 1, ..., 3$

Standardise the system by

- adding slack variables and
- subtracting surplus variables.

$$x_1 + x_2 + x_3 = 10$$
 $2x_1 - x_2 - x_4 = 2$
 $x_1 - 2x_2 + x_3 + x_5 = 6$
 $x_i \ge 0 \ \forall i = 1, ..., 5$

No basic feasible representation!
Only slack variables behave like basic variables!

Idea: Add new artificial variables to those constraints that were originally equalities and "\ge " inequalities.

$$x_1 + x_2 + x_3 + \xi_1 = 10$$
 $2x_1 - x_2 - x_4 + \xi_2 = 2$
 $x_1 - 2x_2 + x_3 + x_5 = 6$
 $x_i \ge 0 \ \forall i = 1, ..., 5, \ \xi_1 \ge 0, \ \xi_2 \ge 0.$

The artificial variables behave like basic variables.

⇒ We have found a basic feasible representation!

But this system is not equivalent to the original one!

Important Observation:

Any nonnegative FS $(x_1, \ldots, x_5, \xi_1, \xi_2)$ for

with $\xi_1 = \xi_2 = 0$ provides a nonnegative FS (x_1, \dots, x_5) for

To find such a solution, we solve the auxiliary LP:

minimise
$$\zeta = \xi_1 + \xi_2$$

subject to:

$$x_1 + x_2 + x_3 + \xi_1 = 10$$
 $2x_1 - x_2 - x_4 + \xi_2 = 2$
 $x_1 - 2x_2 + x_3 + x_5 = 6$
 $x_1 \ge 0, \dots, x_5 \ge 0, \ \xi_1 \ge 0, \ \xi_2 \ge 0$

The initial BFS for this LP is given by $\xi_1 = 10$, $\xi_2 = 2$, $x_5 = 6$ (basic variables) and $x_1 = \cdots = x_4 = 0$ (nonbasic variables).

- ► To solve the auxiliary LP with the simplex algorithm, we need a basic representation for the initial BFS.
- ► However, the objective function value $\zeta = \xi_1 + \xi_2$ is expressed in terms of the basic variables ξ_1 and ξ_2 .
- ▶ To express ζ as a function of the nonbasic variables, we add all equations with artificial variables to the objective.

Obj.
$$\zeta$$
 $-\xi_1 - \xi_2 = 0$
+ Eq. 1 $x_1 + x_2 + x_3 + \xi_1 = 10$
+ Eq. 2 $2x_1 - x_2 + x_3 - x_4 + \xi_2 = 2$
= $\zeta + 3x_1 + x_3 - x_4 = 12$

- The auxiliary LP is feasible and bounded by construction $(\zeta = \xi_1 + \xi_2 \ge 0 \text{ cannot drop indefinitely!}).$
- ⇒ The simplex algorithm must terminate in STEP 1 with an optimal BFS. There are two cases:
 - $\zeta = 0$ at optimality: this implies that $\xi_1 = \xi_2 = 0$, and the optimal BFS of the auxiliary LP provides a BFS for the original system.
 - ▶ $\zeta > 0$ at optimality: the auxiliary LP has no feasible solution with $\xi_1 = \xi_2 = 0 \Rightarrow$ the original system has no BFS \Rightarrow it is infeasible!

BV	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	ξ_1	ξ_2	RHS
$\overline{\zeta}$	3		1	-1				12
ξ_1	1	1	1			1		10
ξ_2	2	-1		-1			1	2
<i>X</i> 5	1	-2	1		1			6

BV	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	ξ_1	ξ_2	RHS
$\overline{\zeta}$	3		1	-1				12
ξ_1	1	1	1			1		10
ξ_2	2	-1		-1			1	2
<i>X</i> 5	$\overline{1}$	-2	1		1			6
$\overline{\zeta}$		3 23 2	1	$\frac{1}{2}$			$-\frac{3}{2}$	9
ξ_1		$\frac{3}{2}$	1	$\frac{\overline{1}}{2}$		1	$-\frac{1}{2}$	9
x_1	1	$-\frac{1}{2}$		$-\frac{1}{2}$			$\frac{1}{2}$	1
<i>X</i> 5		$-\frac{3}{2}$	1	$\frac{1}{2}$	1		$-\frac{1}{2}$	5

BV	X_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	ξ_1	ξ_2	RHS
$\overline{\zeta}$		$\frac{3}{2}$	1	$\frac{1}{2}$			$-\frac{3}{2}$	9
ξ_1		$\frac{3}{2}$	1	$\frac{1}{2}$		1	$-\frac{1}{2}$	9
x_1	1	$-\frac{1}{2}$		$-\frac{1}{2}$			$\frac{1}{2}$	1
<i>X</i> 5		$-\frac{3}{2}$	1	$\frac{\overline{1}}{2}$	1		$-\frac{1}{2}$	5

Solve the auxiliary LP with the simplex algorithm.

BV	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	ξ_1	ξ_2	RHS
ζ		<u>3</u>	1	$\frac{1}{2}$			$-\frac{3}{2}$	9
ξ_1		$\frac{3}{2}$	1	$\frac{1}{2}$		1	$-\frac{1}{2}$	9
x_1	1	$-\frac{1}{2}$		$-\frac{1}{2}$			$\frac{1}{2}$	1
<i>X</i> ₅		$-\frac{3}{2}$	1	$\frac{1}{2}$	1		$-\frac{1}{2}$	5
ζ						-1	-1	0
<i>x</i> ₂		1	$\frac{2}{3}$	$\frac{1}{3}$		<u>2</u> 3	$-\frac{1}{3}$	6
x_1	1		$\frac{1}{3}$	$-\frac{1}{3}$		$\frac{1}{3}$	$\frac{1}{3}$	4
<i>X</i> 5			2	1	1	1	-1	14

We have now found an optimal solution:

 $I = \{2, 1, 5\}$ defines a BFS for the original system!

Solve the auxiliary LP with the simplex algorithm.

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	ξ_1	ξ_2	RHS
$\overline{\zeta}$						-1	-1	0
<i>x</i> ₂		1	$\frac{2}{3}$	$\frac{1}{3}$		$\frac{2}{3}$	$-\frac{1}{3}$	6
x_1	1		$\frac{2}{3}$ $\frac{1}{3}$	$-\frac{1}{3}$		$\frac{2}{3}$ $\frac{1}{3}$	_ 31 3	4
<i>X</i> 5			2	ĭ	1	ĭ	-1	14
<i>x</i> ₂		1	$\frac{2}{3}$	$\frac{1}{3}$				6
x_1	1		$\frac{2}{3}$ $\frac{1}{3}$	$-\frac{1}{3}$				4
<i>X</i> 5			2	1	1			14

... and we can readily obtain the initial basis for phase-2!

Two Phase Simplex: Phase 1

- **Step 1:** Modify the constraints so that all RHS's are nonnegative (constraints with negative RHS $\times -1$).
- **Step 2:** Identify now all equality and ≥ constraints. In Step 4 we will add artificial variables to these constraints.
- **Step 3:** Standardise inequalities: for \leq constraints, add slacks; for \geq constraints, subtract excesses.
- **Step 4:** Add now artificial variables ξ_i to all \geq or equality constraints identified in Step 2.
- **Step 5:** Let ζ be the sum of all artificial variables and derive the basic representation for ζ .
- **Step 6:** Find minimum value of ζ using the simplex algorithm.

Two Phase Simplex: Phase 2

- Case 1: $\zeta^* > 0$
 - \Rightarrow The original LP is infeasible.
- Case 2: $\zeta^* = 0$ and all ξ_i are nonbasic at optimality.
 - ⇒ Remove all artificial columns from the optimal Phase 1 tableau.
 - \Rightarrow Derive the basic representation for z (original objective) w.r.t. optimal index set of Phase 1.
 - ⇒ Solve the original LP with the simplex algorithm (Phase 2). The final basis of Phase 1 is the initial basis of Phase 2. The optimal solution to Phase 2 is the optimal solution to the original LP.

Two Phase Simplex: Phase 2

Case 3: $\zeta^* = 0$ and at least one ξ_i is basic at optimality.

- \Rightarrow As $\zeta^* = 0$ we conclude that all $\xi_i = 0$, thus some basic variables are zero.
- ⇒ We have found a degenerate BFS for the original problem and a basic representation for the auxiliary problem.
- \Rightarrow As the BFS is degenerate, we can pivot on a $y_{pq} \neq 0$ corresponding to an artificial ξ_p and an original variable x_q while keeping $\zeta^* = 0$!
- \Rightarrow All ξ_i variables can thus be removed from the basis obtaining a feasible BFS for the original LP.

min
$$z = 2x_1 + 3x_2$$

subject to
$$\frac{1}{2}x_1 + \frac{1}{4}x_2 \le 4$$

$$x_1 + 3x_2 \ge 20$$

$$x_1 + x_2 = 10$$

and

 $x_1, x_2 \ge 0$

Steps 1–4 of Phase 1 transform the equality constraints to:

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + x_3 = 4
x_1 + 3x_2 - x_4 + \xi_2 = 20
x_1 + x_2 + \xi_3 = 10$$

Initial BFS for Phase 1:

Basic variables: $x_3 = 4, \ \xi_2 = 20, \ \xi_3 = 10$

Nonbasic variables: $x_1 = x_2 = x_4 = 0$

In Step 5 of Phase 1 define $\zeta = \xi_2 + \xi_3$ and derive the basic representation for ζ w.r.t. the basic variables x_3 , ξ_2 and ξ_3 .

$$\Rightarrow \zeta = \xi_1 + \xi_2 = 30 - 2x_1 - 4x_2 + x_4$$

In Step 6 of Phase 1 we solve the auxiliary LP.

minimize
$$\zeta = 30 - 2x_1 - 4x_2 + x_4$$

subject to:

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + x_3 = 4$$
 $x_1 + 3x_2 - x_4 + \xi_2 = 20$
 $x_1 + x_2 + \xi_3 = 10$

$$x_1, x_2, x_3, x_4, \xi_2, \xi_3 \ge 0.$$

BV	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	ξ_2	ξ_3	RHS	ratio
$\overline{\zeta}$	2	4		-1			30	
<i>X</i> 3	$\frac{1}{2}$	$\frac{1}{4}$	1				4	16
ξ_2	$\bar{1}$	3		-1	1		20	$\frac{20}{3}$
ξ3	1	1				1	10	10

BV	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	ξ_2	ξ_3	RHS	ratio
$\overline{\zeta}$	2	4		-1			30	
<i>X</i> 3	$\frac{1}{2}$	$\frac{1}{4}$	1				4	16
<i>X</i> 3 ξ2 ξ3	1	3		-1	1		20	$\frac{16}{\frac{20}{3}}$
ξ_3	1	1				1	10	10
ζ	$\frac{2}{3}$			$\frac{1}{3}$	$-\frac{4}{3}$		10 37 30 30 30 30 30 30	
<i>X</i> 3	2 3 ₅ 21 32 3		1	$\frac{1}{12}$	$-rac{1}{12}$		$\frac{7}{3}$	28 5 20
<i>X</i> ₃ <i>X</i> ₂ ξ ₃	$\frac{1}{3}$	1		$-\frac{1}{3}$	$\frac{1}{3}$		$\frac{20}{3}$	20
ξ3	$\frac{2}{3}$			$\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{10}{3}$	5

BV	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	ξ_2	ξ_3	RHS	ratio
$\overline{\zeta}$	<u>2</u> 3			$\frac{1}{3}$	$-\frac{4}{3}$		$\frac{10}{3}$	
<i>X</i> 3	$\frac{5}{12}$		1	$\frac{1}{12}$	$-\frac{1}{12}$		$\frac{7}{3}$	28 5
x_2	$\frac{1}{3}$	1		$-\frac{1}{3}$	$\frac{1}{3}$		$\frac{20}{3}$	20
_ξ3	$\frac{2}{3}$			$\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{10}{3}$	5

BV	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	ξ_2	ξ_3	RHS	ratio
$\overline{\zeta}$	2 3 5			<u>1</u> 3	$-\frac{4}{3}$		$\frac{10}{3}$	
<i>X</i> 3	$\frac{5}{12}$		1	$\frac{1}{12}$	$-\frac{1}{12}$		$\frac{7}{3}$	$\frac{28}{5}$ 20
<i>x</i> ₂	$\frac{1}{3}$	1		$-\frac{1}{3}$	$\frac{1}{3}$		$\frac{20}{3}$	20
ξ_3	$\left \frac{2}{3} \right $			$\frac{1}{3}$	$-\frac{1}{3}$	1	10 3	5
ζ					-1	-1	0	
<i>X</i> 3			1	$-\frac{1}{8}$	$\frac{1}{8}$	$-\frac{5}{8}$	$\frac{1}{4}$ 5	
<i>x</i> ₂		1		$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	5	
X ₁	1			$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{2}{3}$	5	

 $\zeta^* = 0 \Rightarrow \mathsf{Phase} \ 1 \ \mathsf{concluded}.$

BFS found in Phase 1:

Basic variables: $x_3 = \frac{1}{4}, x_2 = 5, x_1 = 5$

Nonbasic variable: $x_4 = \xi_2 = \xi_3 = 0$

There are no artificial variables in the basis \Rightarrow Case 2

We can drop the columns of all artificial variables:

 ξ_2 and ξ_3 are no longer needed!

In Phase 2 we first derive the basic representation of $z = 2x_1 + 3x_2$ w.r.t. the basic variables x_1 , x_2 and x_3 .

Use Rows 2 and 3 of the optimal Phase 1 tableau to eliminate x_1 and x_2 from Row 0 of Phase 2 (objective z).

Row 0:
$$z$$
 - $2x_1$ - $3x_2$ = 0
+3 × (Row 2): $3x_2$ - $\frac{3}{2}x_4$ = 15
+2 × (Row 3): $2x_1$ + x_4 = 10
= : z - $\frac{1}{2}x_4$ = 25

$$\Rightarrow z = 2x_1 + 3x_2 = 25 + \frac{1}{2}x_4$$

We now begin Phase 2 with following basic representation:

The corresponding BFS is optimal!

IN THIS CASE: Phase 2 requires no further pivots. IN GENERAL: Continue with the simplex algorithm.

Increase b_2 from 20 to 36 \Rightarrow LP becomes infeasible.

minimise
$$z = 2x_1 + 3x_2$$

subject to:

and

$$x_1, x_2 \ge 0$$

After Steps 1-5 we find the auxiliary LP:

minimise
$$\zeta = \xi_2 + \xi_3$$

subject to:

$$\frac{1}{2}x_1 + \frac{1}{4}x_2 + x_3 = 4$$
 $x_1 + 3x_2 - x_4 + \xi_2 = 36$
 $x_1 + x_2 + \xi_3 = 10$

$$x_1, x_2, x_3, x_4, \xi_2, \xi_3 \geq 0$$

Initial BFS for Phase 1:

Basic variables: $x_3 = 4, \ \xi_2 = 36, \ \xi_3 = 10$

Nonbasic variables: $x_1 = x_2 = x_4 = 0$

Find the basic representation of ζ w.r.t. this basis.

$$\Rightarrow \zeta = \xi_1 + \xi_2 = 46 - 2x_1 - 4x_2 + x_4$$

BV	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	ξ_2	ξ_3	RHS	ratio
$\overline{\zeta}$	2	4		$\overline{-1}$			46	
<i>X</i> 3	$\frac{1}{2}$	$\frac{1}{4}$	1				4	16
ξ_2	$\bar{1}$	3		-1	1		36	12
ξ_3	1	1				1	10	10

Solve the auxiliary LP with the simplex algorithm.

BV	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	ξ_2	ξ_3	RHS	ratio
$\overline{\zeta}$	2	4		$\overline{-1}$			46	
<i>X</i> 3	$\frac{1}{2}$	$\frac{1}{4}$	1				4	16
ξ_2	$\bar{1}$	3		-1	1		36	12
ξ_3	1	1				1	10	10
$\overline{\zeta}$	-2			-1		-4	6	
<i>X</i> 3	$\frac{1}{4}$		1			$-\frac{1}{4}$	$\frac{3}{2}$	
ξ_2	$-\dot{2}$			-1	1	$-\dot{3}$	6	
_ <i>x</i> ₂	1	1				1	10	

In Row 0 of Tableau 2 no variable has a positive coefficient.

 \Rightarrow Optimal Phase 1 tableau with $\zeta^* = 6 > 0 \Rightarrow$ no FS.