Math, Science, and Engineering Handbook

```
Daniel Kelley <daniel.kelley@gmp.san-jose.ca.us>
```

February 28, 2022

1 Math

1.1 Integrals

```
\int x^n \, dx = \frac{x^{n+1}}{n+1}
1
        \int \frac{dx}{x} = \ln x\int e^x dx = e^x
2
        \int \cos(x) \, dx = \sin(x)
        \int \sin(x) \, dx = -\cos(x)
        \int \sec^2(x) \, dx = \tan(x)
6
        \int \csc^2(x) \, dx = -\cot(x)
        \int \sec(x) \cdot \tan(x) \, dx = \sec(x)
        \int \csc(x) \cdot \cot(x) \, dx = -\csc(x)
       \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}(\frac{x}{a})
\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a})
\int \tan(x) dx = -\ln(\cos(x))
        \int \cot(x) \, dx = \ln(\sin(x))
        \int \sec(x) \, dx = \ln(\sec(x) + \tan(x))
14
        \int \csc(x) dx = -\ln(\csc(x) + \cot(x))
```

1.2 Formulas

Quadratic Approximation $f(u+x) = f(u) + f'(u) \cdot x + f''(u) \cdot x^2/2$ $FTC2 \qquad \qquad d/dx \int_0^x f(t)dt = f(x)$ $FTC2 \text{ Chain Rule} \qquad d/dx \int_0^{g(x)} f(t)dt = g'(x) \cdot f(g(x))$ Weighted Average $\int_a^b f(x)w(x)dx/\int_a^b w(x)dx$

1.3 L'Hôpital's Rule

 $\lim_{x \to a} f(x)/g(x) = \lim_{x \to a} f'(x)/g'(x)$ 0/0Straight up Straight up ∞/∞ $0 \cdot \infty$ Rewrite as quotient 0_0 Rewrite as $e^{ln(f)}$ Rewrite as $e^{ln(f)}$ ∞^0 Rewrite as $e^{ln(f)}$ 1∞ Good luck $\infty - \infty$ Otherwise Forget it.

1.4 Parametric Vector Calculus

Position $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} \qquad \int \vec{v}(t)dt$ Velocity $d\vec{r}(t)/dt \qquad \qquad \vec{v}(t) = x'(t)\hat{i} + y'(t)\hat{j} \qquad \int \vec{a}(t)dt \qquad \frac{ds}{dt}\vec{T}$ Acceleration $d\vec{v}(t)/dt \qquad \qquad d^2\vec{r}(t)/dt^2 \qquad \vec{v}(t) = x''(t)\hat{i} + y''(t)\hat{j}$ Arc Length $\frac{ds}{dt} = \sqrt{x'(t)\hat{i} + y'(t)\hat{j}}$ Unit Tangent $\vec{T} = \vec{v}/|\vec{v}|$

1.5 Partial Differentiation

Tangent Plane to $f(x_0, y_0)$ $z - z_0 = (\frac{\partial f}{\partial x})_{x_0}(x - x_0) + (\frac{\partial f}{\partial y})_{y_0}(y - y_0)$ Approximation $f(x, y) = z_0 + \frac{\partial f}{\partial x}(x - x_0) + \frac{\partial f}{\partial y}(y - y_0)$

1.6 Least Square Line

 $\left(\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i\right) = \begin{pmatrix} a \\ b \end{pmatrix} \text{ for } y = ax + b \text{ given } n \text{ points } (x_i, y_i)$

1.7 Second Derivative Test

Given f(x, y) critical points (x_c, y_c) where $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ $A = \frac{\partial f^2}{\partial^2 x} @(x_c, y_c)$ $B = \frac{\partial f^2}{\partial x \partial y} @(x_c, y_c)$ $C = \frac{\partial f^2}{\partial^2 y} @(x_c, y_c)$

$AC - B^2 > 0$, $A > 0$ or $C > 0$	Minimum point
$AC - B^2 > 0$, $A < 0$ or $C < 0$	Maximum point
$AC - B^2 < 0$	Saddle point
$AC - B^2 = 0$	Need higher order terms to conclude

1.8 Differential Chain Rule

$$f(x(t),y(t),z(t)); \frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}$$

2 Science

2.1 Units

Quantity	MKS	Name	Abbrev.
Angle		radian	rad
Solid Angle		steradian	sr
Area	m^2		
Volume	m^3		
Frequency	s^{-1}	Hertz	Hz
Velocity	$m \cdot s^{-1}$		
Acceleration	$m \cdot s^{-2}$		
Angular Velocity	$rad \cdot s^{-1}$		
Angular Acceleration	$rad \cdot s^{-2}$		
Density	$kg \cdot m^{-3}$		
Momentum	$kg \cdot m \cdot s^{-1}$		
Angular Momentum	$kg \cdot m^2 \cdot s^{-1}$		
Force	$kg \cdot m \cdot s^{-2}$	Newton	N
Work, Energy	$kg \cdot m^2 \cdot s^{-2}$	Joule	J
Power	$kg \cdot m^2 \cdot s^{-3}$	Watt	W
Torque	$kg \cdot m^2 \cdot s^{-2}$		
Pressure	$kg \cdot m^{-1} \cdot s^{-2}$	Pascal	Ра

2.2 Lab Reports

Abstract

Objective

Method

Data

Analysis

Conclusion

Bibliography

2.3 Laws

Newton's 1st Law $\sum \mathbf{F} = 0 \Leftrightarrow \dot{\mathbf{v}}$ Newton's 2nd Law $\mathbf{F} = m\mathbf{a} = \dot{\mathbf{p}}$ Newton's 3rd Law $\mathbf{F}_a = -\mathbf{F}_a$

Gravity $\mathbf{F} = m\mathbf{g}; \mathbf{g} = 9.81 \text{ m/s}$

Hooke's Law $F_x = -k\Delta x$; k = spring constant

Force $N = kg \cdot m \cdot s^{-2}$ Energy $J = N \cdot m$ Power $W = J \cdot s^{-1}$ Momentum $\mathbf{p} = m \cdot \mathbf{v}$

Kinetic Energy $K = \frac{1}{2}m\mathbf{v}^2 = \frac{\mathbf{p}^2}{2m}$

Momentum is conserved Energy is conserved

2.4 Mechanics Problem Workflow

Draw a good picture.

Decorate with forces with a free body diagram for each body.

Choose a suitable coordinate system.

Decompose forces on each body.

Determine acceleration for each body.

Determine 1d equations of motion for each body, including necessary constraints.

Reconstruct multidimensional motion vectors.

Algebraically determine kinematics as needed.

3 Engineering

3.1 DC Ohm's Law

$$I = \frac{E}{R} = \frac{P}{E} = \sqrt{\frac{P}{R}}$$

$$R = \frac{E}{I} = \frac{E^2}{P} = \frac{P}{I^2}$$

$$E = IR = \frac{P}{I} = \sqrt{PR}$$

$$P = EI = I^2R = \frac{E^2}{R}$$

3.2 AC Ohm's Law

$$I = \frac{E}{Z} = \frac{P}{E\cos(\theta)} = \sqrt{\frac{P}{Z\cos(\theta)}}$$

$$Z = \frac{E}{I} = \frac{E^2\cos(\theta)}{P} = \frac{P}{I^2\cos(\theta)}$$

$$E = IZ = \frac{P}{I\cos(\theta)} = \sqrt{\frac{PZ}{\cos(\theta)}}$$

$$P = EI\cos(\theta) = I^2Z\cos(\theta) = \frac{E^2\cos(\theta)}{Z}$$

Bibliography

- [1] Robert G. Brown, *Introductory Physics I*. http://web-home.phy.duke.edu/ rgb/Class/intro-physics-1/intro-physics-1.pdf
- [2] Allied Radio Corporation, *Allied's Electronics Data Handbook*. https://archive.org/details/AlliedsElectronicsDataHandbook