Pierwszy raport z symulacji Monte Carlo

Jan Kozłowski

19-12-2024

Wprowadzenie

Celem tego projektu jest opisanie i zbadanie różnych generatorów liczb pseudolosowych, oraz testów, które będą sprawdzać "jakość" tych generatorów. Raport zaczniemy od napisiania algorytmów 4 generatorów, GLCG, RC4, Marsa-LFIB4 oraz Ziff98, następnie opisanie 4 testów: Kołmogorowa-Smirnowa, χ^2 , testu pokerowego i dyskretnego testu transformaty Fouriera(Discrete Fourier Transform (Spectral) Test)

Generatory

GLCG

Pierwszym generatorem jest $\mathrm{GLCG}(M,\{a_i\}_{i=1}^k)$, który przyjmuje trzy parametry: liczbę M, ciąg współczynników $\{a_i\}_{i=1}^k$, oraz wartość początkową, która w tym przypadku jest ciągiem k elementowym: $\{x_i\}_{i=0}^{k-1}$, kolejne wyrazy obliczamy rekurencyjnie:

$$x_n = \sum_{i=1}^k a_i x_{n-i} \mod M,$$

W przykładach będziemy używać parametrów $M=2^{10},\,k=3,\,\{a_i\}_{i=1}^k=(3,7,68)$ oraz $\{x_i\}_{i=1}^k=(1,2,5)$

Generator Fibonacciego

Patrząc na wzór rekurencyjny generatora GLCG możemy zauważyć, że jego wadą będzie duża korelacja pomiędzy kolejnymi zmiennymi. Jendym z możliwości poprawy tej własności jest zwiększenie rekurencji tzn. zamiast olbiczać n-ty wyraz za pomocią wyrazów $n-1, n-2, \ldots, n-i$ będziemy używać wyrazów $n-q_1, n-q_2, \ldots, n-q_i$, gdzie liczby q_j są "duże". Dodatkowo, jako że ostatnim dziłaniem rekurencji jest wzięcie reszty dzielenia przez M, to działanie, jakie wykonujemy pomiędzy x_j nie musi być dodawanie, więc nasza rekurencja będzie miałą wtedy postać:

$$x_n = x_{n-q_1} \diamond x_{n-q_2} \diamond \dots x_{n-q_k} \mod M,$$

gdzie \(\phi \) jest pewnym działaniem w liczbach całkowitych.

RC(32)

Testy

Test Kołmogorowa-Smirnowa

Test Kołmogorowa-Smirnowa używamy do porównywania dystrybuant. Zacznijmy od postawienia hioptezy H_0 : nasze liczby pochodzą z rozkładu o dystrybuancie F vs. H_1 : nasze liczby nie pochodzą z tego rozkłady. Na początku mając ciąg liczb X_1, X_2, \ldots, X_n liczymy dystrybuantę empiryczną:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_n \le x).$$

Zakłądając prawdziwośc H_0 wiemy, że \hat{F}_n dąży z n do F, dodatkowo można policzyć, że statystyka

$$\hat{D}_n = \sqrt{2} \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|,$$

ma w granicy znany rozkład

\$\$\$\$

Testy Chi-kwadrat

Test pokerowy

Dyskretny test transformaty Fouriera

Second level testing

Histogtamy p_wartosci dla róznych testów i róznych generatorów

	GLCG	RC(32)	Marsagli	Ziff
KS	0	0.5341462	0.0351735	0.8831714
Chi	0	0.0015094	0.4943917	0.0428083
Poker	0	0.0000000	0.0000000	0.0000000
Fourier	0	0.0000000	0.0000000	0.0000000

Project 2

Histogtamy p_wartosci dla róznych liczb

dla n = 1000

Pi	е	sqrt2
0	0	0

Histogtamy p_wartosci dla róznych liczb dla n = 5000

Pi	e	sqrt2
0.7399183	0.689019	0.6215056