

Module 2: What is a "Chemical Species"? Introduction to Chemical Nomenclature

Fundamentals of Chemistry Open Course

Learning Objectives | Module 2

- 1. State and apply the laws of chemical combination.
- 2. State and apply the tenets of the modern atomic theory.
- 3. Visualize the subatomic particles that constitute the atom using a simple planetary model; count subatomic particles using atomic number (*Z*) and mass number (*M*).
- 4. Represent an atom or ion using an atomic symbol.
- 5. Represent the number ratios of atoms in a compound using a chemical formula.
- 6. Visualize and distinguish between submicroscopic models of molecular and ionic compounds.
- 7. Use the periodic table to efficiently find information about a chemical element.
- 8. Recognize key collections of elements on the periodic table.
- 9. Determine the name of a binary ionic compound from the chemical formula and *vice versa*.
- 10. Determine the name of a simple molecular compound from the chemical formula and *vice versa*.

Motivations for Chemical Nomenclature

- **Chemical nomenclature** refers to a system for assigning names to chemical substances.
- A robust nomenclature system enables the "conversion" of a chemical formula into a name and vice versa.

- Nomenclature reflects the way we think about chemical structure. The rules and conventions of nomenclature systems are not exactly arbitrary...
- For example, many chemical names are structured to list metallic components first and nonmetallic components second. This convention allows us to infer the distribution of charge in the structure:

"metal(lic) nonmetal(lic)"

Simple Ionic and Molecular Compounds

- Here, we will cover naming conventions for simple ionic and molecular compounds.
- Binary ionic compounds consist of one type of cation and one type of anion.
 - The ions may be monatomic or polyatomic; the cation is listed first and the anion second.
 - Examples: NaCl, Ca(OH)₂, NH₄Cl, Pd(NO₃)₂
- Binary molecular (covalent) compounds consist of two nonmetallic elements.
 - The "more metallic" element, further down and to the left on the periodic table, is generally listed first.
 - Examples: NO₂, CS₂, P₄O₁₀, NF₃
- For both classes of compounds, the elements may not be present in a 1:1 number ratio.

Naming Binary Ionic Compounds

• **Polyatomic ions** contain more than one type of atom; bonds *within* a polyatomic ion are covalent and the net charge may be positive (lack of electrons) or negative (excess of electrons).

Name	Formula	Name	Formula
acetate	C ₂ H ₃ O ₂ -	hypochlorite	ClO-
ammonium	NH ₄ ⁺	chlorite	ClO ₂ -
carbonate	CO ₃ ²⁻	chlorate	ClO ₃ -
cyanide	CN-	perchlorate	ClO ₄ -
hydrogen carbonate	HCO ₃ -	chromate	CrO ₄ ²⁻
hydrogen phosphate	HPO ₄ ²⁻	dichromate	Cr ₂ O ₇ ²⁻
hydrogen sulfate	HSO ₄ -	permanganate	MnO ₄ -
hydroxide	OH-		
nitrite nitrate	$NO_2^- \mid NO_3^-$		
peroxide	O ₂ ²⁻		
phosphite phosphate	PO ₃ ³⁻ PO ₄ ³⁻		
sulfite sulfate	SO ₃ ²⁻ SO ₄ ²⁻		

Naming Binary Ionic Compounds

- Because ionic compounds are electrically neutral and ion names include information about charge, prefixes are *omitted* in names of binary ionic compounds.
- · Ions with variable charge require a Roman numeral in parentheses after the name of the ion.

Figure. (a) A general scheme for naming binary ionic compounds and (b, c) two examples.

Naming Binary Molecular Compounds

Molecular (covalent) compounds are composed of two or more nonmetals;
 binary covalent compounds contain only two elements.

1. List the first nonmetal with a prefix indicating the number of atoms of that type in the molecule.

2. After a space, list the second nonmetal with a similar prefix, replacing the ending

of the element name with -ide.

Prefix per Molecule mono di tri 3 tetra 5 penta hexa 6 hepta 8 octa 9 nona deca 10

Number of Atoms

Figure. (a) A general scheme for naming binary covalent compounds and (b) an example.

Practice Problems

Example. Determine the names of each of the following compounds.

A. $Mg(ClO_4)_2$

B. FeBr₃

 $C.SO_2$

 $D.N_2O_5$

Practice Problems

Example. Determine chemical formula for each of the following compounds.

A. Calcium cyanide

B. Ruthenium(IV) oxide

C. Silicon dioxide

D. Diphosphorus trisulfide

Lingering Questions

• How do we name compounds with more complex structures? What kinds of naming conventions are needed?