## RS/Conference2019

San Francisco | March 4-8 | Moscone Center



**SESSION ID: CRYP-F02** 

## Secure Computation -Context Hiding Multi-Key Homomorphic Authenticators

#### Lucas Schabhüser

Research Assistant TU Darmstadt



### **Organization**

- Motivation
- Homomorphic Authenticators
- Input Privacy with respect to the Verifier
- Our Scheme
- Conclusion







**Alice** 



#RSAC



#RSAC

### **Motivation**











### **Motivation**





### **Homomorphic Authenticators - Intuition**





### **Homomorphic Authenticators**





### **Labeled programs**

- Messages are stored in datasets identified by an identifier  $\Delta$
- Typically, the dataset size is fixed by a value n
- Functions can only be evaluated over messages in the same dataset

|                  | $\Delta_1$ | $\Delta_2$                | $\Delta_3$             |  |
|------------------|------------|---------------------------|------------------------|--|
| $l_1$            | $m_1$      | $m_1^* \\ m_2^* \\ m_3^*$ | $m_1'$                 |  |
| $l_2$            | $m_2$      | $m_2^*$                   | $m_1' \\ m_2' \\ m_3'$ |  |
| $\overline{l_3}$ | $m_3$      | $m_{3}^{*}$               | $m_3'$                 |  |
|                  | • • •      | • • •                     | • • •                  |  |
|                  | • • •      | • • •                     | • • •                  |  |
|                  |            | • • •                     |                        |  |
| $l_n$            | $m_n$      | $m_n^*$                   | $m'_n$                 |  |



### **Homomorphic Authenticators**

Setup: security parameter  $\mapsto$  public parameters

 $\mathsf{KeyGen}: \quad \text{public parameters} \mapsto \ker \, \mathsf{triple} \, \left( \mathsf{sk}, \mathsf{ek}, \mathsf{vk} \right)$ 

Auth:  $\begin{pmatrix} \text{secret key sk, message } m, \\ \text{metadata } l = (\tau, \mathsf{ID}), \Delta) \end{pmatrix} \mapsto \text{authenticator } \sigma$ 

Ver:  $\left(\begin{array}{c} \text{verification key vk, program } \mathcal{P}_{\Delta}, \\ \text{message } m, \text{authenticator } \sigma \end{array}\right) \mapsto \text{accept/reject}$ 

### **Homomorphic Authenticators**





### **Multi- Key Homomorphic Authenticators**





# Input Privacy with Respect to the Verifier (external)





# Input Privacy with Respect to the Verifier (internal)





# Input Privacy with Respect to the Verifier (internal) - Intuition

#### Not always possible:

Example :  $ID_1 : m$ 

 $\mathsf{ID}_2:m'$ 

 $m^* = m + m'$ 

Example:  $ID_1 : m_1, ..., m_{365}$ 

 $\mathsf{ID}_2: m_1', \dots, m_{365}'$  $\mathsf{ID}_3: \hat{m}_1, \dots, \hat{m}_{365}$ 

$$m^* = m_1 + \ldots + m_{365} + m'_1 + \ldots + m'_{365} + \hat{m}_1 + \ldots + \hat{m}_{365}$$

ID<sub>2</sub> can learn 
$$m_1 + \ldots + m_{365} + \hat{m}_1 + \ldots + \hat{m}_{365}$$

but not about individual  $m_i, \hat{m}_i$ 



#### **Our Solution**

- A new multi-key linearly homomorphic signature scheme:
  - Supports linear functions
  - Unforgeable under DL, DDH and FDHI [CFN15] assumption
  - First multi-key homomorphic authenticator scheme to provide input privacy w.r.t. the verifier
    - both external and internal
    - even information theoretic input privacy



### Our Solution - Comparison with State of the Art

|             | Functions           | Privacy | Signature<br>Size  | Verification           | Security |
|-------------|---------------------|---------|--------------------|------------------------|----------|
| [ABBF10]    | Linear              | ×       | O(#ID <b>)</b>     | O(#Inputs)             | Pairings |
| [FMNP16]    | Boolean<br>Circuits | ×       | O(#ID)             | O(#ID)                 | Lattices |
| [LTWC18]    | Depends             | Depends | Depends<br>≥O(#ID) | Depends<br>≥O(#Inputs) | SNARKs   |
| This scheme | Linear              | ✓       | O(#ID)             | O(#ID)                 | Pairings |



### **Our Solution - Efficiency**

- Succinctness:
  - Authenticators size independent of number of inputs
  - Authenticators of size O(#ID)

- Efficient Verification
  - After a function-dependent preprocessing
    - Verification time independent of number of inputs
    - Verification in time O(#ID)



### **Our Solution – Signature Size**

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_t$$

$$\mathsf{Auth}(\mathsf{sk}, \Delta, l_i, m_i) \mapsto \sigma_i$$

(regular signature: 1,  $\mathbb{G}_2$ : 2,  $\mathbb{G}_1$ : 3)

$$\mathsf{Eval}(\mathsf{ek}, \mathcal{P}_\Delta, \sigma_1, \dots, \sigma_n) \mapsto \sigma^*$$

Eval(ek,  $\mathcal{P}_{\Delta}, \sigma_1, \dots, \sigma_n$ )  $\mapsto \sigma^*$  (regular signature: #ID,  $\mathbb{G}_2$ : #ID+1,

$$\mathbb{G}_1$$
:  $2\#\mathsf{ID}+1$ )



### **Our Solution – High Level Intuition**

$$\mathcal{P} = \text{Aggregation: } m^* = m_1 + \ldots + m_{365} + m'_1 + \ldots + m'_{365} + \hat{m}_1 + \ldots + \hat{m}_{365}$$

 $\sigma^*$ : 3 regular signatures and 3  $\mathbb{G}_2$  elements

2  $\mathbb{G}_1$  elements associated to  $\mathsf{ID}_1$ 

 $2 \mathbb{G}_1$  elements associated to  $\mathsf{ID}_2$ 

 $2 \mathbb{G}_1$  elements associated to  $\mathsf{ID}_3$ 

$$m_1 + \ldots + m_{365}$$
  
metadata  
 $r_{\mathsf{ID}_1}, s_{\mathsf{ID}_1}$ 

$$m'_1 + \ldots + m'_{365}$$
  
metadata  
 $r_{\mathsf{ID}_2}, s_{\mathsf{ID}_2}$ 

$$\hat{m}_1 + \ldots + \hat{m}_{365}$$
  
metadata  
 $r_{|D_3}, s_{|D_3}$ 

Global  $\mathbb{G}_1$  element

$$r_{\mathsf{ID}_1} + r_{\mathsf{ID}_2} + r_{\mathsf{ID}_3}$$

Global  $\mathbb{G}_2$  element

$$s_{\mathsf{ID}_1} + s_{\mathsf{ID}_2} + s_{\mathsf{ID}_3}$$

### **Summary**

Introduced new notion of input privacy in the multi-key setting

New scheme

- First multi-key homomorphic authenticator scheme to achieve any type of input privacy w.r.t. the verifier
- Input privacy even in an information theoretic sense
- Amortized efficiency + succinctness



### **Open Problems**

- Achieving a stronger form of succinctness
  - Size independent of **both** number of inputs and number of identities
- Achieving a stronger form of efficient verification
  - Verification time independent of **both** number of inputs and number of identities

Multi-key homomorphic authenticators with input privacy beyond the linear case



### "Secure Outsourcing in Practice"

- Be aware!
  - Threat of maliciously computed results
- Homomorphic Authenticators can help
  - (https://github.com/imdea-software/homomorphic-authentication-library)



### **Conclusion**

Thank you for your attention!

Questions?

