OGC-biomass

${\bf Environmental\ Comparisons}$

Kelly Murray Stoker, David Murray-Stoker

Contents

Load Data	2
USGS Discharge Data	3
Sampling Period Environmental Comparisons	5
Environmental Variable ANOVAs	5
Discharge	6
Carbon	
Precipitation	14
Water Temperature	16
Air Temperature	
Long-Term Environmental Comparisons	20
Data Management	20
Mann-Kendall Tests on Winter-Spring Trends	22
R Session Information	23

Load Data

USGS Discharge Data

We obtained average daily discharge (m³ s⁻¹) and water chemistry metrics from the United States Geological Survey (USGS, gage 02202500) to calculate the average discharge over a two-week period preceding each sampling date. Discharge data were downloaded using the waterData package. Water data were collected from the USGS water quality dataset, and air temperature and precipitation data were gathered from the National Weather Service Forecast Office in Louisville, GA.

```
## List of start dates
start.dates <- c("1981-12-02", "1982-01-09", "1982-02-15", "1982-03-09",
                 "1982-04-02", "1982-04-30", "1982-05-25", "1982-06-26",
                 "1982-07-23", "1982-08-19", "1982-09-15", "1982-10-15",
                 "1982-11-18", "1982-12-24", "1983-01-22", "1983-02-18",
                 "1983-03-25", "1983-04-23", "1983-05-20", "1983-06-17",
                 "1983-07-15", "1983-08-13", "1983-09-09", "1983-10-08",
                 "1983-11-04",
                 "2015-06-26", "2015-07-27", "2015-08-29", "2015-10-02",
                 "2015-11-06", "2015-12-03", "2016-01-21", "2016-02-24",
                 "2016-03-30", "2016-04-27", "2016-05-31", "2016-08-03",
                 "2016-09-05", "2016-10-05", "2016-11-02", "2016-11-30",
                 "2017-01-06", "2017-02-10", "2017-03-08", "2017-04-12",
                 "2017-05-03", "2017-05-29", "2017-07-05", "2017-08-08")
## List of end dates
end.dates <- c("1981-12-16", "1982-01-23", "1982-03-01", "1982-03-23",
               "1982-04-16", "1982-05-14", "1982-06-08", "1982-07-10",
               "1982-08-06", "1982-09-02", "1982-09-29", "1982-10-29",
               "1982-12-02", "1983-01-07", "1983-02-05", "1983-03-04",
               "1983-04-08", "1983-05-07", "1983-06-03", "1983-07-01",
               "1983-07-29", "1983-08-27", "1983-09-23", "1983-10-22",
               "1983-11-18",
               "2015-07-10", "2015-08-10", "2015-09-12", "2015-10-16",
               "2015-11-20", "2015-12-17", "2016-02-04", "2016-03-09",
               "2016-04-13", "2016-05-11", "2016-06-14", "2016-08-17",
               "2016-09-19", "2016-10-19", "2016-11-16", "2016-12-14",
               "2017-01-20", "2017-02-24", "2017-03-22", "2017-04-26",
               "2017-05-17", "2017-06-12", "2017-07-19", "2017-08-22")
## Bind start and end dates into a single dataframe
flow.dates <- as.data.frame(cbind(start.dates, end.dates))</pre>
## Add UID identifier to flow dates
flow.dates$UID <- environmental.data$UID</pre>
```

```
## Calculate two week mean & convert from ft3 to m3
mean.discharge <- sapply(discharge.data, mean)
metric.shift <- (mean.discharge / 35.315)

## Create mean discharge dataframe
metric.shift <- tibble(mean.discharge)
metric.shift$UID <- environmental.data$UID</pre>
```

Sampling Period Environmental Comparisons

Environmental Variable ANOVAs

ANOVAs were conducted for discharge, precipitation, water temperature, and air temperature to test the effects of period, season, and the interaction with Type II sums-of-squares. ANOVA assumptions were inspected graphically using check_model(). Effect sizes for the ANOVAs were calculated as η_P^2 using eta_squared(). Pairwise contrasts between influential factors were performed using emmeans(), with effect sizes for contrasts calculated as Cohen's d.

Discharge

```
discharge.anova <- lm(
   log(Mean_Discharge) ~ Period * Season, data = environmental.data
)</pre>
```

check_model(discharge.anova)

Table 1: ANOVA results for discharge by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	0.412	1	0.637	0.429
Season	20.681	3	10.657	0.000
Period:Season	4.478	3	2.308	0.091
Residuals	26.522	41	NA	NA

Table 2: Table of the effect sizes in the discharge ANOVA.

Term	Eta-squared	CI	CI Low	CI High
Period	0.015	0.95	0.000	1
Season	0.438	0.95	0.225	1
Period:Season	0.144	0.95	0.000	1

Table 3: Estimated marginal means by season in the discharge ANOVA.

Season	Estimate	SE	df	t	P-value
winter	4.177	0.243	41	17.223	0
spring	4.307	0.232	41	18.550	0
summer	3.027	0.215	41	14.082	0
fall	2.856	0.232	41	12.300	0

Table 4: Estimated marginal means by period and season in the discharge ANOVA.

Period	Season	Estimate	SE	df	t	P-value
1980	winter	4.051	0.328	41	12.338	0
2010	winter	4.327	0.360	41	12.030	0
1980	spring	4.818	0.328	41	14.674	0
2010	spring	3.795	0.328	41	11.559	0
1980	summer	3.247	0.304	41	10.682	0
2010	summer	2.807	0.304	41	9.233	0
1980	fall	2.587	0.328	41	7.880	0
2010	fall	3.124	0.328	41	9.516	0

Table 5: Pairwise contrasts by season in the discharge ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Season	winter - spring	0	-0.130	0.336	41	-0.388	0.700
Season	winter - summer	0	1.150	0.324	41	3.547	0.001
Season	winter - fall	0	1.321	0.336	41	3.934	0.000
Season	spring - summer	0	1.280	0.316	41	4.045	0.000
Season	spring - fall	0	1.451	0.328	41	4.419	0.000
Season	summer - fall	0	0.171	0.316	41	0.541	0.591

Table 6: Pairwise contrasts by period and season in the discharge ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Period*Season	Period1980 winter - Period2010 winter	0	-0.276	0.487	41	-0.567	0.574
Period*Season	Period1980 winter - Period1980 spring	0	-0.767	0.464	41	-1.652	0.106
Period*Season	Period1980 winter - Period2010 spring	0	0.256	0.464	41	0.551	0.585
Period*Season	Period1980 winter - Period1980 summer	0	0.804	0.447	41	1.797	0.080
Period*Season	Period1980 winter - Period2010 summer	0	1.244	0.447	41	2.781	0.008
Period*Season	Period1980 winter - Period1980 fall	0	1.464	0.464	41	3.153	0.003
Period*Season	Period1980 winter - Period2010 fall	0	0.927	0.464	41	1.996	0.053
Period*Season	Period2010 winter - $Period1980$ spring	0	-0.491	0.487	41	-1.008	0.319
Period*Season	Period2010 winter - Period2010 spring	0	0.532	0.487	41	1.092	0.281
Period*Season	Period2010 winter - Period1980 summer	0	1.080	0.471	41	2.293	0.027
Period*Season	Period2010 winter - Period2010 summer	0	1.520	0.471	41	3.228	0.002
Period*Season	Period2010 winter - Period1980 fall	0	1.740	0.487	41	3.573	0.001
Period*Season	Period2010 winter - Period2010 fall	0	1.203	0.487	41	2.469	0.018
Period*Season	Period1980 spring - Period2010 spring	0	1.023	0.464	41	2.203	0.033
Period*Season	Period1980 spring - $Period1980$ summer	0	1.571	0.447	41	3.511	0.001
Period*Season	Period1980 spring - Period2010 summer	0	2.011	0.447	41	4.495	0.000
Period*Season	Period1980 spring - Period1980 fall	0	2.231	0.464	41	4.805	0.000
Period*Season	Period1980 spring - Period2010 fall	0	1.694	0.464	41	3.648	0.001
Period*Season	Period2010 spring - Period1980 summer	0	0.548	0.447	41	1.225	0.228
Period*Season	$\mathrm{Period}2010~\mathrm{spring}$ - $\mathrm{Period}2010~\mathrm{summer}$	0	0.989	0.447	41	2.209	0.033
Period*Season	Period2010 spring - Period1980 fall	0	1.208	0.464	41	2.602	0.013
Period*Season	Period2010 spring - Period2010 fall	0	0.671	0.464	41	1.445	0.156
Period*Season	Period1980 summer - Period2010 summer	0	0.440	0.430	41	1.024	0.312
Period*Season	Period1980 summer - Period1980 fall	0	0.660	0.447	41	1.475	0.148
Period*Season	Period1980 summer - $Period2010$ fall	0	0.123	0.447	41	0.274	0.785
Period*Season	Period2010 summer - Period1980 fall	0	0.220	0.447	41	0.491	0.626
Period*Season	Period2010 summer - Period2010 fall	0	-0.318	0.447	41	-0.710	0.482
Period*Season	Period 1980 fall - Period 2010 fall	0	-0.537	0.464	41	-1.157	0.254

Table 7: Effect sizes for the pairwise contrasts by season in the discharge ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(winter - spring)	-0.162	0.418	41	-1.006	0.682
(winter - summer)	1.429	0.433	41	0.555	2.303
(winter - fall)	1.642	0.455	41	0.723	2.561
(spring - summer)	1.591	0.431	41	0.721	2.461
(spring - fall)	1.804	0.454	41	0.887	2.721
(summer - fall)	0.213	0.394	41	-0.583	1.009

Table 8: Effect sizes for the pairwise contrasts by period and season in the discharge ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Period1980 winter - Period2010 winter)	-0.343	0.607	41	-1.568	0.882
(Period1980 winter - Period1980 spring)	-0.954	0.587	41	-2.139	0.231
(Period1980 winter - Period2010 spring)	0.318	0.578	41	-0.850	1.486
(Period1980 winter - Period1980 summer)	1.000	0.567	41	-0.146	2.145
(Period1980 winter - Period2010 summer)	1.547	0.582	41	0.372	2.722
(Period1980 winter - Period1980 fall)	1.820	0.611	41	0.586	3.055
(Period1980 winter - Period2010 fall)	1.152	0.591	41	-0.042	2.346
(Period2010 winter - Period1980 spring)	-0.611	0.609	41	-1.841	0.620
(Period2010 winter - Period2010 spring)	0.661	0.610	41	-0.571	1.893
(Period2010 winter - Period1980 summer)	1.343	0.604	41	0.123	2.563
(Period2010 winter - Period2010 summer)	1.890	0.622	41	0.635	3.146
(Period2010 winter - Period1980 fall)	2.163	0.651	41	0.849	3.478
(Period2010 winter - Period2010 fall)	1.495	0.628	41	0.228	2.763
(Period1980 spring - Period2010 spring)	1.272	0.594	41	0.072	2.472
(Period1980 spring - Period1980 summer)	1.953	0.597	41	0.748	3.158
(Period1980 spring - Period2010 summer)	2.501	0.621	41	1.246	3.755
(Period1980 spring - Period1980 fall)	2.774	0.654	41	1.454	4.094
(Period1980 spring - Period2010 fall)	2.106	0.622	41	0.849	3.363
(Period2010 spring - Period1980 summer)	0.682	0.561	41	-0.452	1.815
$({\rm Period}2010~{\rm spring}~{\text{-}}~{\rm Period}2010~{\rm summer})$	1.229	0.573	41	0.073	2.386
(Period2010 spring - Period1980 fall)	1.502	0.601	41	0.289	2.715
(Period2010 spring - Period2010 fall)	0.834	0.585	41	-0.346	2.015
(Period1980 summer - Period2010 summer)	0.547	0.538	41	-0.539	1.634
(Period1980 summer - Period1980 fall)	0.821	0.564	41	-0.318	1.959
(Period1980 summer - Period2010 fall)	0.153	0.557	41	-0.971	1.277
(Period2010 summer - Period1980 fall)	0.273	0.557	41	-0.852	1.398
(Period2010 summer - Period2010 fall)	-0.395	0.558	41	-1.522	0.732
(Period1980 fall - Period2010 fall)	-0.668	0.582	41	-1.843	0.508

Carbon

```
carbon.anova <- lm(
   Carbon ~ Period * Season, data = environmental.data
   )</pre>
```

check_model(carbon.anova)

Table 9: ANOVA results for carbon by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	0.688	1	0.071	0.792
Season	57.693	3	1.979	0.133
Period:Season	104.826	3	3.596	0.022
Residuals	369.229	38	NA	NA

Table 10: Table of the effect sizes in the carbon ANOVA.

Term	Eta-squared	CI	CI Low	CI High
Period	0.002	0.95	0.000	1
Season	0.135	0.95	0.000	1
Period:Season	0.221	0.95	0.022	1

Table 11: Estimated marginal means by season in the carbon ANOVA.

Season	Estimate	SE	df	t	P-value
winter	10.645	0.94	38	11.327	0
spring	9.575	0.90	38	10.641	0
summer	7.717	0.90	38	8.576	0
fall	8.418	0.94	38	8.957	0

Table 12: Estimated marginal means by period and season in the carbon ANOVA.

Period	Season	Estimate	SE	df	t	P-value
1980	winter	10.383	1.273	38	8.159	0
2010	winter	10.960	1.394	38	7.862	0
1980	spring	11.217	1.273	38	8.814	0
2010	spring	7.933	1.273	38	6.234	0
1980	summer	8.260	1.394	38	5.925	0
2010	summer	7.329	1.178	38	6.220	0
1980	fall	5.660	1.394	38	4.060	0
2010	fall	10.717	1.273	38	8.421	0

Table 13: Pairwise contrasts by season in the carbon ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Season	winter - spring	0	1.070	1.301	38	0.823	0.416
Season	winter - summer	0	2.929	1.301	38	2.251	0.030
Season	winter - fall	0	2.227	1.329	38	1.676	0.102
Season	spring - summer	0	1.858	1.273	38	1.460	0.152
Season	spring - fall	0	1.157	1.301	38	0.889	0.380
Season	summer - fall	0	-0.702	1.301	38	-0.539	0.593

Table 14: Pairwise contrasts by period and season in the carbon ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Period*Season	Period1980 winter - Period2010 winter	0	-0.577	1.888	38	-0.306	0.762
Period*Season	Period1980 winter - Period1980 spring	0	-0.833	1.800	38	-0.463	0.646
Period*Season	Period1980 winter - Period2010 spring	0	2.450	1.800	38	1.361	0.181
Period*Season	Period1980 winter - Period1980 summer	0	2.123	1.888	38	1.125	0.268
Period*Season	Period 1980 winter - Period 2010 summer	0	3.055	1.734	38	1.761	0.086
Period*Season	Period1980 winter - Period1980 fall	0	4.723	1.888	38	2.502	0.017
Period*Season	Period1980 winter - Period2010 fall	0	-0.333	1.800	38	-0.185	0.854
Period*Season	Period2010 winter - Period1980 spring	0	-0.257	1.888	38	-0.136	0.893
Period*Season	Period2010 winter - Period2010 spring	0	3.027	1.888	38	1.604	0.117
Period*Season	$\operatorname{Period}2010$ winter - $\operatorname{Period}1980$ summer	0	2.700	1.971	38	1.370	0.179
Period*Season	Period2010 winter - Period2010 summer	0	3.631	1.825	38	1.990	0.054
Period*Season	Period2010 winter - Period1980 fall	0	5.300	1.971	38	2.688	0.011
Period*Season	Period2010 winter - Period2010 fall	0	0.243	1.888	38	0.129	0.898
Period*Season	Period1980 spring - Period2010 spring	0	3.283	1.800	38	1.824	0.076
Period*Season	Period1980 spring - Period1980 summer	0	2.957	1.888	38	1.566	0.126
Period*Season	Period1980 spring - Period2010 summer	0	3.888	1.734	38	2.242	0.031
Period*Season	Period1980 spring - Period1980 fall	0	5.557	1.888	38	2.944	0.006
Period*Season	Period1980 spring - Period2010 fall	0	0.500	1.800	38	0.278	0.783
Period*Season	Period2010 spring - Period1980 summer	0	-0.327	1.888	38	-0.173	0.864
Period*Season	${\rm Period}2010~{\rm spring}$ - ${\rm Period}2010~{\rm summer}$	0	0.605	1.734	38	0.349	0.729
Period*Season	Period2010 spring - Period1980 fall	0	2.273	1.888	38	1.204	0.236
Period*Season	Period2010 spring - Period2010 fall	0	-2.783	1.800	38	-1.547	0.130
Period*Season	Period1980 summer - Period2010 summer	0	0.931	1.825	38	0.510	0.613
Period*Season	Period1980 summer - Period1980 fall	0	2.600	1.971	38	1.319	0.195
Period*Season	${\it Period}1980$ summer - ${\it Period}2010$ fall	0	-2.457	1.888	38	-1.302	0.201
Period*Season	Period2010 summer - $Period1980$ fall	0	1.669	1.825	38	0.914	0.366
Period*Season	Period2010 summer - $Period2010$ fall	0	-3.388	1.734	38	-1.954	0.058
Period*Season	Period 1980 fall - Period 2010 fall	0	-5.057	1.888	38	-2.679	0.011

Table 15: Effect sizes for the pairwise contrasts by season in the carbon ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(winter - spring)	0.343	0.419	38	-0.505	1.192
(winter - summer)	0.940	0.431	38	0.067	1.812
(winter - fall)	0.715	0.434	38	-0.164	1.594
(spring - summer)	0.596	0.414	38	-0.242	1.434
(spring - fall)	0.371	0.420	38	-0.478	1.221
(summer - fall)	-0.225	0.418	38	-1.072	0.622

Table 16: Effect sizes for the pairwise contrasts by period and season in the carbon ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Period1980 winter - Period2010 winter)	-0.185	0.606	38	-1.412	1.042
(Period1980 winter - Period1980 spring)	-0.267	0.578	38	-1.438	0.903
(Period1980 winter - Period2010 spring)	0.786	0.584	38	-0.397	1.969
(Period1980 winter - Period1980 summer)	0.681	0.611	38	-0.555	1.917
(Period1980 winter - Period2010 summer)	0.980	0.568	38	-0.169	2.129
(Period1980 winter - Period1980 fall)	1.515	0.630	38	0.240	2.791
(Period1980 winter - Period2010 fall)	-0.107	0.577	38	-1.276	1.062
(Period2010 winter - Period1980 spring)	-0.082	0.606	38	-1.308	1.144
(Period2010 winter - Period2010 spring)	0.971	0.616	38	-0.275	2.217
$(Period 2010\ winter\ -\ Period 1980\ summer)$	0.866	0.640	38	-0.430	2.162
(Period2010 winter - Period2010 summer)	1.165	0.601	38	-0.051	2.381
(Period2010 winter - Period1980 fall)	1.700	0.662	38	0.360	3.040
(Period2010 winter - Period2010 fall)	0.078	0.606	38	-1.148	1.304
(Period1980 spring - Period2010 spring)	1.053	0.590	38	-0.141	2.247
(Period1980 spring - Period1980 summer)	0.949	0.615	38	-0.297	2.194
(Period1980 spring - Period2010 summer)	1.247	0.574	38	0.084	2.410
(Period1980 spring - Period1980 fall)	1.783	0.639	38	0.489	3.076
(Period1980 spring - Period2010 fall)	0.160	0.578	38	-1.009	1.330
(Period2010 spring - Period1980 summer)	-0.105	0.606	38	-1.331	1.121
$({\rm Period}2010~{\rm spring}~{\text{-}}~{\rm Period}2010~{\rm summer})$	0.194	0.557	38	-0.933	1.321
(Period2010 spring - Period1980 fall)	0.729	0.611	38	-0.508	1.967
(Period2010 spring - Period2010 fall)	-0.893	0.586	38	-2.080	0.294
(Period1980 summer - Period2010 summer)	0.299	0.587	38	-0.889	1.486
(Period1980 summer - Period1980 fall)	0.834	0.640	38	-0.461	2.129
(Period1980 summer - Period2010 fall)	-0.788	0.612	38	-2.028	0.451
(Period2010 summer - Period1980 fall)	0.535	0.589	38	-0.657	1.727
(Period2010 summer - Period2010 fall)	-1.087	0.570	38	-2.241	0.067
(Period1980 fall - Period2010 fall)	-1.622	0.633	38	-2.905	-0.340

Precipitation

```
precipitation.anova <- lm(
    Precipitation ~ Period * Season, data = environmental.data
    )</pre>
```

check_model(precipitation.anova)

Table 17: ANOVA results for precipitation by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	6.246	1	0.217	0.644
Season	278.938	3	3.226	0.032
Period:Season	46.817	3	0.541	0.657
Residuals	1181.706	41	NA	NA

Table 18: Table of the effect sizes in the precipitation ANOVA.

Term	Eta-squared	CI	CI Low	CI High
Period	0.005	0.95	0.00	1
Season	0.191	0.95	0.01	1
Period:Season	0.038	0.95	0.00	1

Table 19: Estimated marginal means by season in the precipitation ANOVA.

Season	Estimate	SE	df	t	P-value
winter	14.176	1.619	41	8.757	0
spring	8.187	1.550	41	5.283	0
summer	10.278	1.435	41	7.163	0
fall	8.073	1.550	41	5.209	0

Table 20: Pairwise contrasts by season in the precipitation ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Season	winter - spring	0	5.988	2.241	41	2.672	0.011
Season	winter - summer	0	3.898	2.163	41	1.802	0.079
Season	winter - fall	0	6.103	2.241	41	2.723	0.009
Season	spring - summer	0	-2.091	2.112	41	-0.990	0.328
Season	spring - fall	0	0.114	2.192	41	0.052	0.959
Season	summer - fall	0	2.205	2.112	41	1.044	0.303

Table 21: Effect sizes for the pairwise contrasts by season in the precipitation ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(winter - spring)	1.115	0.435	41	0.236	1.994
(winter - summer)	0.726	0.411	41	-0.104	1.556
(winter - fall)	1.137	0.436	41	0.256	2.017
(spring - summer)	-0.389	0.396	41	-1.189	0.410
(spring - fall)	0.021	0.408	41	-0.803	0.846
(summer - fall)	0.411	0.396	41	-0.389	1.210

Water Temperature

```
water.temperature.anova <- lm(
   Water_Temperature ~ Period * Season, data = environmental.data
)</pre>
```

check_model(water.temperature.anova)

Table 22: ANOVA results for water temperature by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	29.524	1	2.392	0.130
Season	1495.705	3	40.402	0.000
Period:Season	67.991	3	1.837	0.156
Residuals	505.953	41	NA	NA

Table 23: Table of the effect sizes in the water temperature ANOVA.

Term	Eta-squared	CI	CI Low	CI High
Period	0.055	0.95	0.000	1
Season	0.747	0.95	0.625	1
Period:Season	0.118	0.95	0.000	1

Table 24: Estimated marginal means by season in the water temperature ANOVA.

Season	Estimate	SE	df	t	P-value
winter	11.200	1.059	41	10.574	0
spring	18.858	1.014	41	18.596	0
summer	26.807	0.939	41	28.553	0
fall	19.750	1.014	41	19.476	0

Table 25: Pairwise contrasts by season in the water temperature ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Season	winter - spring	0	-7.658	1.466	41	-5.223	0.000
Season	winter - summer	0	-15.607	1.415	41	-11.027	0.000
Season	winter - fall	0	-8.550	1.466	41	-5.831	0.000
Season	spring - summer	0	-7.949	1.382	41	-5.752	0.000
Season	spring - fall	0	-0.892	1.434	41	-0.622	0.538
Season	summer - fall	0	7.057	1.382	41	5.107	0.000

Table 26: Effect sizes for the pairwise contrasts by season in the water temperature ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(winter - spring)	-2.180	0.482	41	-3.153	-1.207
(winter - summer)	-4.443	0.635	41	-5.725	-3.161
(winter - fall)	-2.434	0.496	41	-3.437	-1.431
(spring - summer)	-2.263	0.466	41	-3.204	-1.322
(spring - fall)	-0.254	0.409	41	-1.080	0.573
(summer - fall)	2.009	0.452	41	1.097	2.921

Air Temperature

```
air.temperature.anova <- lm(
   Air_Temperature ~ Period * Season, data = environmental.data
)</pre>
```

check_model(air.temperature.anova)

Table 27: ANOVA results for air temperature by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	5.835	1	0.610	0.439
Season	1628.691	3	56.783	0.000
Period:Season	11.049	3	0.385	0.764
Residuals	391.994	41	NA	NA

Table 28: Table of the effect sizes in the air temperature ANOVA.

Term	Eta-squared	CI	CI Low	CI High
Period	0.015	0.95	0.00	1
Season	0.806	0.95	0.71	1
Period:Season	0.027	0.95	0.00	1

Table 29: Estimated marginal means by season in the air temperature ANOVA.

Season	Estimate	SE	df	t	P-value
winter	10.338	0.932	41	11.089	0
spring	17.944	0.893	41	20.104	0
summer	26.540	0.826	41	32.115	0
fall	18.505	0.893	41	20.731	0

Table 30: Pairwise contrasts by season in the air temperature ANOVA.

Term	Contrast	Null Value	Estimate	SE	df	t	P-value
Season	winter - spring	0	-7.606	1.291	41	-5.893	0.00
Season	winter - summer	0	-16.201	1.246	41	-13.004	0.00
Season	winter - fall	0	-8.166	1.291	41	-6.327	0.00
Season	spring - summer	0	-8.595	1.216	41	-7.066	0.00
Season	spring - fall	0	-0.560	1.262	41	-0.444	0.66
Season	summer - fall	0	8.035	1.216	41	6.606	0.00

Table 31: Effect sizes for the pairwise contrasts by season in the air temperature ANOVA.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(winter - spring)	-2.460	0.498	41	-3.466	-1.454
(winter - summer)	-5.240	0.705	41	-6.664	-3.816
(winter - fall)	-2.641	0.509	41	-3.669	-1.613
(spring - summer)	-2.780	0.499	41	-3.788	-1.772
(spring - fall)	-0.181	0.409	41	-1.007	0.644
(summer - fall)	2.599	0.487	41	1.615	3.582

Long-Term Environmental Comparisons

Data Management

We obtained historical USGS discharge data from December 1969 to November 2018 to determine average daily discharge for the winter-spring season of each year. Water data collected from 1974 until 2018 were also obtained from the USGS water quality dataset. Precipitation and air temperature data from 1970 until 2018 were obtained from the National Weather Service Forecast Office in Louisville, GA. We then filtered the long-term environmental data to only include the winter-spring season group (winter months = December, January, and February; spring months = March, April, and May), which are important for the flood pulse into the Ogeechee River. Mean values were then aggregated by year to generate a mean winter-spring value per year for use in time series analyses. Trends in the the time series were analyzed with Mann-Kendall tests using MannKendall().

```
## Read in long-term environmental data
long.term.environmental.data <- read_csv(
    "data/OGC_long_term_environmental_data.csv",
    show_col_types = FALSE
    )

## Subset data by season groups
winter.spring.data <- long.term.environmental.data %>%
    filter(Season_Group == "WinterSpring")
```

```
## Aggregate mean values by year for the winter-spring data
## Winter-spring discharge
winter.spring.discharge <- aggregate(</pre>
    Mean_Discharge ~ Year,
    data = winter.spring.data,
    FUN = mean
    )
## Winter-spring precipitation
winter.spring.precipitation <- aggregate(</pre>
    Precipitation ~ Year,
    data = winter.spring.data,
    FUN = mean
    ) %>%
    na.omit()
## Winter-spring water temperature
winter.spring.water.temperature <- aggregate(</pre>
    Water_Temperature ~ Year,
    data = winter.spring.data,
    FUN = mean
    ) %>%
    na.omit()
## Winter-spring air temperature
winter.spring.air.temperature <- aggregate(</pre>
    Air Temperature ~ Year,
   data = winter.spring.data,
```

FUN = mean
) %>%
na.omit()

Mann-Kendall Tests on Winter-Spring Trends

We assessed temporal trends in discharge, precipitation, water temperature, and air temperature using Mann-Kendall tests for the winter-spring season group (i.e., flood-prone seasons). We calculated monthly averages for each variable, and then assessed a shift in the time series using MannKendall().

```
MannKendall(winter.spring.discharge$Mean_Discharge)
# tau = -0.248, P = 0.012

MannKendall(winter.spring.precipitation$Precipitation)
# tau = -0.087, P = 0.384

MannKendall(winter.spring.air.temperature$Air_Temperature)
# tau = -0.11, P = 0.270

MannKendall(winter.spring.water.temperature$Water_Temperature)
# tau = 0.442, P < 0.001</pre>
```

R Session Information

Table 32: Packages for data management and analyses.

Package	Loaded Version	Date
bayestestR	0.12.1.1	2022-07-04
broom	1.0.0	2022 - 07 - 01
car	3.1-0	2022 - 06 - 15
carData	3.0-5	2022-01-06
correlation	0.8.2	2022-08-09
datawizard	0.5.1	2022-08-17
dplyr	1.0.9	2022-04-28
easystats	0.5.1	2022 - 07 - 18
effectsize	0.7.0.5	2022-08-10
emmeans	1.8.0	2022-08-05
forcats	0.5.2	2022-08-19
ggplot2	3.3.6	2022-05-03
insight	0.18.2	2022-08-10
kableExtra	1.3.4	2021-02-20
Kendall	2.2.1	2022-03-20
knitr	1.39	2022-04-26
modelbased	0.8.5	2022-08-18
parameters	0.18.2	2022-08-10
performance	0.9.2	2022-08-10
purrr	0.3.4	2020 - 04 - 17
readr	2.1.2	2022-01-30
report	0.5.1.2	2022-07-08
see	0.7.2	2022-08-10
stringr	1.4.0	2019-02-10
tibble	3.1.8	2022-07-22
tidyr	1.2.0	2022-02-01
tidyverse	1.3.2	2022-07-18
waterData	1.0.8	2017-04-28