인공지능 학습 결과서

1. 기본 정보

- 프로젝트명: 가입 고객 이탈 예측 은행 고객 특성에 따른 이탈률 예측
- 작성자: SKN14-2Team
- 작성일: 2025.06.05
- 모델 목적/용도:은행 고객의 이탈률을 예측하여 고객 이탈을 방지하기 위한 마케팅 비용 등을 최소화 하고 고객을 유지하기 위한 척도로 활용
- 사용 데이터셋 : <u>Credit Card Customer Churn Prediction</u>
- 학습 대상(task): 고객 데이터 및 이탈여부(이진분류)

2. 데이터 요약

- 학습 데이터 크기:약 8,000 건
- 검증 데이터 크기:약 2000 건
- 데이터 전처리 내용 요약: 오버샘플링과 언더샘플링으로 성능 개선 시도
- 클래스 분포 (분류 문제일 경우): 잔류(0), 이탈(1)
- 클래스 샘플 수 비율 : 잔류 대 이탈 비율 4:1

3. 모델 구조 및 설정

- 사용 모델: (예: CNN, LSTM, BERT, XGBoost 등)
 - SGDClassifier
 - DecisionTree
 - o SVC
 - o MLP
 - TabNet
 - RandomForestClassifier
 - XGBoostClassifier
 - HistGradientBoostClassifier
 - LightBGM
 - CatBoost
- 프레임워크/라이브러리:(예: PyTorch, TensorFlow, scikit-learn 등)
 - PyTorch
 - o scikit-learn
 - o pandas
- 하이퍼파라미터 설정:데이터셋의 영향이 커서 하이퍼파라미터로 조정하는 정도로는 성능에 변화가 없거나 오히려 하락하는 모습을 보임.

4. 학습 환경

• **OS** / 플랫폼: Win11, IOS

• GPU / CPU 사양: 2.40GHz 4Core CPU

• RAM / Storage : 16GB

• 소프트웨어 버전: (Python, 라이브러리 등)

python : 3.12 black : 25.1.0 : 2.2.5 numpy pandas : 2.2.3 o torch : 2.7.0 o matplotlib : 3.10.3 seaborn : 0.13.2 streamlit : 1.45.1 jupyter : 1.1.1 xgboost : 3.0.2 lightgbm : 4.6.0 catboost : 1.2.8 o scikit-learn: 1.6.1 o pytorch-tabnet : 4.1.0

5. 성능 결과

- 모델 성능 지표: 잠재이탈확률이 높은 고객의 pool 을 예상하는 것이 주 목적이므로, 정확도, 재현률, F1-Score 를 기준으로 Top3 선정
 - LightGBMClassifier(F1 = 0.594)
 - CatBoostClassifier(Accuracy = 0.865, Precision = 0.775)
 - HistGBMClassifier(F1 = 0.588, 빠른 학습/추론)

\$	모델 💠	Accuracy ÷	Precision ÷	Recall ÷	F1-Score ÷	ROC AUC ÷	Log Loss ÷
Θ	KNN 분류기	0.768	0.225	0.057	0.090	0.510	2.886
1	로지스틱 회귀	0.812	0.619	0.192	0.293	0.778	0.422
2	결정트리 분류기	0.784	0.472	0.516	0.493	0.684	7.785
3	SGD 분류기	0.796	0.000	0.000	0.000	NaN	NaN
4	Ridge 분류기	0.811	0.738	0.111	0.192	NaN	NaN
5	랜덤포레스트 분류기	0.859	0.757	0.452	0.566	0.854	0.348
6	XGBoost 분류기	0.851	0.687	0.491	0.573	0.839	0.377
7	CatBoost 분류기	0.865	0.775	0.474	0.588	0.861	0.333
8	LightGBM 분류기	0.864	0.752	0.491	0.594	0.859	0.339
9	HistGBM 분류기	0.860	0.737	0.489	0.588	0.857	0.341

CatBoost Cla	ssification R	eport:								
	precision	recall	f1-score	support						
0	0.88	0.96	0.92	1593						
1	0.77	0.50	0.60	407						
accuracy			0.87	2000						
macro avg	0.83	0.73	0.76	2000						
weighted avg	0.86	0.87	0.86	2000						
LightGBM Classification Report:										
LightGBM Clas	sification R	eport:								
LightGBM Clas	sification R precision	•	f1-score	support						
LightGBM Clas		•	f1-score	support						
LightGBM Clas		•	f1-score 0.92	support 1593						
	precision	recall								
0	precision 0.88	recall	0.92	1593						
0	precision 0.88	recall	0.92	1593						
0	precision 0.88	recall	0.92 0.60	1593 407						

7. 주요 해석 및 분석

- 모델 성능 요약 해석:작은 데이터셋, 불균형비 4:1 등 성능향상에 제약
- 오류 사례 분석:실제 이탈률 예측에 사용되는 컬럼의 개수가 절반 이하
- 모델 한계 및 개선점: 상관관계가 높은 특성들을 추가하고, 데이터셋 크기를 키우되 불균형비가 너무 커지지 않도록 데이터를 증류할 방법 모색이 필요함