PRINCIPLES OF ANALYSIS SOLUTIONS TO ROSS §2

PAUL L. BAILEY

Proposition 1. Let p be a prime integer. Then \sqrt{p} is irrational.

Proof 1. Suppose that \sqrt{p} is rational. Then there exist integers $a,b \in \mathbb{Z}$ with $\gcd(a,b)=1$ (that is, a and b have no common factors other than 1) such that $\sqrt{p}=\frac{a}{b}$. Then $p=\frac{a^2}{b^2}$, so $b^2p=a^2$. Then p divides a^2 ; since p is prime, we have p divides a. Thus a=kp for some $k \in \mathbb{Z}$. From this, $b^2p=k^2p^2$, so $b^2=k^2p$; thus p divides b^2 , so p divides b. This contradicts our choice of a and b.

Proof 2. Suppose that \sqrt{p} is rational. Then there exist integers $a,b \in \mathbb{Z}$ with $\gcd(a,b)=1$ such that $\sqrt{p}=\frac{a}{b}$. We may assume that a and b are positive. Then $\frac{a}{b}$ is a root of the polynomial x^2-p . By the rational roots theorem, b divides 1 and a divides p. Then b=1 and either a=p or a=1. But if a=p, we have $p^2-p=0$, so p=1 or p=0; and if a=1, we have 1-p=0, so p=1. In either case, p is not prime, producing a contradiction.

Exercise 1 (2.1). Show that $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, $\sqrt{24}$, and $\sqrt{31}$ are not rational numbers.

Proof. Our generalization above handles all of the cases p=3,5,7,31, so it remains to show that $\sqrt{24}$ is not rational.

Suppose that $\sqrt{24}$ is rational. Then $\sqrt{24} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $\gcd(a,b)=1$ and a,b>0. Then $\frac{a}{b}$ is a root of the polynomial $x^2-24=0$. So b divides 1, and $a^2=24$. Also a divides 24, so $a \in \{1,2,4,6,8,12,24\}$. But none of these squared is equal to 24.

Exercise 2 (2.4). Show that $(5-\sqrt{3})^{1/3}$ does not represent a rational number.

Proof. Suppose by way of contradiction that $\alpha = (5 - \sqrt{3})^{1/3} \in \mathbb{Q}$. If we cube a rational number, the result is rational; thus $\alpha^3 = 5 - \sqrt{3} \in \mathbb{Q}$. If we subtract 5 from a rational number, the result is rational; thus $\alpha^3 - 5 = -\sqrt{3} \in \mathbb{Q}$. If we multiply a rational number of -1, the result is rational; thus $5 - \alpha^3 = \sqrt{3} \in \mathbb{Q}$. This contradicts exercise 1.

Date: September 2, 2004.

Exercise 3 (2.5). Show that $\alpha = [3 + \sqrt{2}]^{2/3}$ is does not represent a rational number.

Proof. We "unwind" α to find a polynomial of which it is a root. Cubing both sides gives

$$\alpha^3 = [3 + \sqrt{2}]^2 = 9 + 6\sqrt{2} + 2 = 6\sqrt{2} + 11.$$

Thus $a^3 - 11 = 6\sqrt{2}$, so $\alpha^6 - 22\alpha^3 + 121 = 72$. Then α is a root of

$$f(x) = x^6 - 22x^3 + 49.$$

Suppose that α is rational and write $\alpha = \frac{a}{b}$, where $\gcd(a,b) = 1$. By the Rational Roots Theorem, b divides 1 and a divides 49. Thus b = 1, so a is a root of f(x); also $a \in \{1,7,49\}$. But none of these are roots, as can be seen by plugging in.

Exercise 4 (2.6). Discuss why $4-7b^2$ must be rational if b is rational.

Discussion. The rational numbers are closed under the operations of addition and multiplication. That is, if $a,b\in\mathbb{Q}$, then $a+b\in\mathbb{Q}$ and $ab\in\mathbb{Q}$. Since $b\in\mathbb{Q}$, we have $b^2\in\mathbb{Q}$. Since $-7\in\mathbb{Q}$, we have $-7b^2\in\mathbb{Q}$. Since $4\in\mathbb{Q}$, we have $4+(-7b^2)=4-7b^2\in\mathbb{Q}$.

Department of Mathematics & CSci, Southern Arkansas University $E\text{-}mail\ address: plbailey@saumag.edu}$