(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-72434

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl. ⁶	觀別記号 庁内整理番号	FI .	技術表示箇所
C 0 7 D 207/325		C 0 7 D 207/325	' 1
A01N 43/36		A 0 1 N 43/36	A
43/50	and the second second	43/50	Α
43/56		43/56	В
43/653	+ 1 - 1 - 1	43/653	L
	審査請求	未請求 請求項の数6 OL	(全98頁) 最終頁に続く
(21)出願番号	特顧平8-282487	(71)出願人 000003986	
•		日産化学工業	株式会社
(22)出顧日	平成8年(1996)10月24日	東京都千代田	区神田錦町3丁目7番地1
		(72)発明者 河村 保夫	
(31)優先権主張番号	特顧平8-85414	千葉県船橋市	i坪井町722番地1日産化学工
(32) 優先日	平8 (1996) 4月8日	業株式会社中	央研究所内
(33)優先権主張国	日本 (JP)	(72)発明者 北 浩	
(31)優先権主張番号	特顧平8-164436	千葉県船橋市	河井町722番地1日産化学工
(32)優先日	平8 (1996) 6 月25日	業株式会社中	央研究所内
(33)優先権主張国	日本 (JP)	(72)発明者 中田 尚志	
	Tr.	千葉県船橋市	i坪井町722番地1日産化学工
	, b., ' !'	業株式会社中	央研究所内
•			
		•	最終頁に続く

(54) 【発明の名称】 2, 4-置換アニリン誘導体

(57)【要約】

【課題】

新規な農薬、特に除草剤を提供する。

【解決手段】 式:

【化1】

で表される2, 4 - 置換アニリン誘導体およびそれを含有する除草剤。式中、 R^1 はアルキル、ハロアルキルまたはアルコキシなどを表し、 R^2 は水素、アルキルまたはハロアルキルなどを表し、 R^3 はアルキル、シクロアルキルまたはアルケニルなどを表し、Xは酸素、硫黄、 NR^5 または単結合を表し、Qはアゾール類などを表す。

【特許請求の範囲】 【請求項1】 式 (1) : 【化1】

$$\begin{array}{c}
R^2 \\
R^1 \longrightarrow \begin{array}{c}
O \\
NCX - R^3
\end{array}$$
(1)

〔式中、 R^1 は $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ ハロアル キル基、 $C_1 \sim C_4$ アルコキシ基、 $C_1 \sim C_4$ ハロアルコキ シ基、 $C_1 \sim C_4$ アルキルチオ基、 $C_1 \sim C_3$ アルコキシC $_1$ ~ C_3 アルキル基、 C_1 ~ C_3 アルキルチオ C_1 ~ C_3 アル キル基、アセチル基またはハロゲン原子を表し、R²は 水素原子、 $C_1 \sim C_3$ アルキル基、 C_1 ハロアルキル基、 $C_1 \sim C_3$ アルコキシ基、 C_1 ハロアルコキシ基、ハロゲ ン原子、ニトロ基またはシアノ基を表し、Aは水素原 子、ホルミル基、($C_1 \sim C_4$ アルキル)カルボニル 基、($C_1 \sim C_4$ ハロアルキル)カルボニル基、(C_1 \sim C $_4$ アルコキシ)カルボニル基、(C $_2$ \sim C $_4$ ハロア ルコキシ)カルボニル基、($C_2 \sim C_4$ アルケニル)カ ルボニル基、($C_1 \sim C_4$ アルキルチオ)カルボニル 基、($C_3 \sim C_6$ シクロアルキル)カルボニル基、 (C $_3$ \sim C_6 シクロアルコキシ)カルボニル基、 C_1 \sim C_4 アルキルチオ基、 $C_1 \sim C_4$ アルキルスルフィニル基、 $C_1 \sim C_4$ アルキルスルホニル基、 $C_1 \sim C_4$ ハロアル キルチオ基、 $C_1 \sim C_4$ ハロアルキルスルフィニル基ま たは $C_1 \sim C_4$ ハロアルキルスルホニル基を表し、Xは 酸素原子、硫黄原子、NR 5 (R 5 は水素原子または C_1 \sim C $_3$ アルキル基を表す。)または単結合を表し、 R^3 は

 $C_1 \sim C_7 r$ ルキル基、 $C_3 \sim C_7$ シクロアルキル基、 $C_2 \sim C_6 r$ ルケニル基、 $C_5 \sim C_7$ シクロアルケニル基、 $C_1 \sim C_3 r$ ルコキシ $C_1 \sim C_4 r$ ルキル基、 $C_1 \sim C_3 r$ ルキル基、 $C_1 \sim C_4 r$ ルキル基、 $C_2 \sim C_6 r$ ロアルキル基、 $C_2 \sim C_6 r$ ロアルキール基、 $C_2 \sim C_6 r$ ロアルキニル基または

【化2】

(式中、Zは C_1 ~ C_4 アルキル基、ハロゲン原子、 C_1 ~ C_4 アルコキシ基、 C_1 ~ C_4 ハロアルキル基、 C_1 ~ C_4 ハロアルコキシ基、 C_1 ~ C_4 アルキルチオ基、 C_1 ~ C_4 アルキルスルフィニル基、 C_1 ~ C_4 アルキルスルホニル基、 C_1 ~ C_4 ハロアルキルチオ基、 C_1 ~ C_4 ハロアルキルスルホニル基、シアノ基、(C_1 ~ C_4 7ルコキシ)カルボニル基、カルボキシ基またはニトロ基を表し、mは0から5の整数を表し、mが2から5の整数を表す場合、Zは同一でも異なってもよい。)を表し、Qは【化3】

(式中、 R^6 、 R^7 はそれぞれ独立に水素原子または C_1 $\sim C_4$ アルキル基を表し、 Q^1 は 【化 4 】

【化5】

を表し、 R^4 は水素原子または $C_1 \sim C_4$ アルキル基を表し、 Y^1 は $C_1 \sim C_4$ ハロアルキル基、 $C_1 \sim C_2$ ハロアルコキシ基、ハロゲン原子、ニトロ基、シアノ基、($C_1 \sim C_4$ アルコキシ)カルボニル基またはカルボキシ基を表し、 Y^2 は水素原子、ハロゲン原子、 $C_1 \sim C_4$ アルキ

ル基、 $C_1 \sim C_4$ ハロアルキル基、 $C_1 \sim C_4$ アルコキシ 基、 $C_1 \sim C_2$ ハロアルコキシ基、 $C_1 \sim C_4$ アルキルチオ 基、 $C_1 \sim C_4$ アルキルスルフィニル基、 $C_1 \sim C_4$ アルキ ルスルホニル基、 $C_1 \sim C_4$ ハロアルキルチオ基、 $C_1 \sim$ C_4 ハロアルキルスルフィニル基、 $C_1 \sim C_4$ ハロアルキ ルスルホニル基、ニトロ基、シアノ基、($C_1 \sim C_4$ アルコキシ)カルボニル基またはカルボキシ基を表し、aは1または2を表し、aが2を表す場合、 Y^2 は同一でも異なってもよい。)を表す。〕で表される2、4 - 置換アニリン誘導体。

【請求項2】 R^1 が C_1 ~ C_4 アルキル基、 C_1 ~ C_4 アルコキシ基またはハロゲン原子を表し、 R^2 が水素原子を表す請求項1記載の2, 4 - 置換アニリン誘導体。

【請求項3】 Qが

【化7】

ーC-Q¹ /へ R⁶ R⁷

を表す請求項2記載の2,4-置換アニリン誘導体。

【請求項4】 QがQ²を表す請求項2記載の2, 4 ー 置換アニリン誘導体。

【請求項5】 請求項1記載の2,4-置換アニリン誘導体を含有する農薬。

【請求項6】 請求項1記載の2,4-置換アニリン誘導体を含有する除草剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は新規な2,4-置換アニリン誘導体および該化合物を有効成分として含有する農薬、特に除草剤に関するものである。

[0002]

【従来の技術および課題】オルソ位に直接ヘテロ環またはメチレンを経由してヘテロ環を有するアニリン誘導体で除草活性を有する化合物が、WO-9309099およびWO-9509846に記載されている。また殺虫活性を有する化合物が特開平2-91062に、抗菌活性を有する化合物がEur. J. Med. Chem. 23(4),311-317 (1988) に記載されている。

[0003]

【課題を解決するための手段】本発明は、式(1):

[0004]

【化8】

【0005】〔式中、 R^1 は C_1 ~ C_4 アルキル基、 C_1 ~ C_4 ハロアルキル基、 C_1 ~ C_4 アルコキシ基、 C_1 ~ C_4 ハロアルコキシ基、 C_1 ~ C_3 アルキル基、 C_1 ~ C_3 7ルキル基、 C_1 7ルロア

ルキル基、C₁~C₃アルコキシ基、C₁ハロアルコキシ₁ 基、ハロゲン原子、ニトロ基またはシアノ基を表し、A は水素原子、ホルミル基、(C₁ ~C₄ アルキル)カル ボニル基、 (C₁ ~C₄ ハロアルキル) カルボニル基、 (C₁ ~C₄ アルコキシ) カルボニル基、(C₂ ~C₄ ハロアルコキシ) カルボニル基、 (C2'~C4 アルケニ ル) カルボニル基、($C_1 \sim C_4$ アルキルチオ)カルボ ニル基、(C₃~C₆シクロアルキル)カルボニル基、 $(C_3 \sim C_6 シクロアルコキシ)$ カルボニル基、 $C_1 \sim$ C_4 アルキルチオ基、 $C_1 \sim C_4$ アルキルスルフィニル 基、C、~C4 アルキルスルホニル基、C1~C4 ハロ アルキルチオ基、C₁ ~C₄ハロアルキルスルフィニル 基またはC、~C。ハロアルキルスルホニル基を表し、 Xは酸素原子、硫黄原子、NR⁵(R⁵は水素原子または C,~C。アルキル基を表す。)または単結合を表し、R ³はC₁~C₇アルキル基、C₃~C₇シクロアルキル基、 C₂~C₆アルケニル基、C₅~C₇シクロアルケニル基、 C₁~C₃アルコキシC₁~C₄アルキル基、C₁~C₃アル キルチオC₁~C₄アルキル基、(C₃~C₇シクロアルキ ル) C₁~C₄アルキル基、C₁~C₄ハロアルキル基、C¹ 3~C7シクロハロアルキル基、C2~C6ハロアルケニル 基、C2~C6アルキニル基、C2~C6ハロアルキニル基 または

[0006]

【化9】

【0007】(式中、Zは C_1 ~ C_4 7ルキル基、ハロゲン原子、 C_1 ~ C_4 7ルコキシ基、 C_1 ~ C_4 7ルロアルキル基、 C_1 ~ C_4 7ルキルチオ基、 C_1 ~ C_4 7ルキルスルフィニル基、 C_1 ~ C_4 7ルキルスルホニル基、 C_1 ~ C_4 7ルキルスルホニル基、 C_1 ~ C_4 7ロアルキルスルフィニル基、 C_1 ~ C_4 7ロアルキルスルフィニル基、 C_1 ~ C_4 7ロアルキルスルカイニル基、シアノ基、 (C_1 ~ C_4 7ルコキシ)カルボニル基、カルボキシ基またはニトロ基を表し、mは 0から 5 の整数を表し、mが 2から 5 の整数を表す場合、2は同一でも異なってもよい。)を表し、Qは

【0008】 【化10】

ーC-Q¹ または Q²

【0009】(式中、 R^6 、 R^7 はそれぞれ独立に水素原子または $C_1 \sim C_4$ アルキル基を表し、 Q^1 は

[0010]

【化11】

【0014】を表し、 R^4 は水素原子または $C_1 \sim C_4$ アルキル基を表し、 Y^1 は $C_1 \sim C_4$ ハロアルキル基、 $C_1 \sim C_2$ ハロアルコキシ基、ハロゲン原子、ニトロ基、シアノ基、($C_1 \sim C_4$ アルコキシ)カルボニル基またはカル

ボキシ基を表し、 Y^2 は水素原子、ハロゲン原子、 $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ ハロアルキル基、 $C_1 \sim C_4$ アルコキシ基、 $C_1 \sim C_4$ アルキルチオ基、 $C_1 \sim C_4$ アルキルチオ基、 $C_1 \sim C_4$ アルキルスルフィニル基、 $C_1 \sim C_4$ アルキルスルフィニル基、 $C_1 \sim C_4$

 C_4 アルキルスルホニル基、 $C_1 \sim C_4$ ハロアルキルチオ基、 $C_1 \sim C_4$ ハロアルキルスルフィニル基、 $C_1 \sim C_4$ ハロアルキルスルホニル基、ニトロ基、シアノ基、($C_1 \sim C_4$ アルコキシ)カルボニル基またはカルボキシ基を表し、aは1または2を表し、aが2を表す場合、 Y^2 は同一でも異なってもよい。)を表す。〕で表される2、4一置換アニリン誘導体(以下本発明化合物と称する。)および当該化合物を含有する農薬、特に除草剤である。

[0015]

【発明の実施の形態】以下に、式 (1) の置換基をあげる。 R^1 としては、 $C_1 \sim C_4$ T N t N

【0016】 R^2 としては、水素原子、 $C_1 \sim C_3$ アルキル基、 C_1 ハロアルキル基、 $C_1 \sim C_3$ アルコキシ基、 C_1 ハロアルコキシ基、ハロゲン原子、ニトロ基およびシアノ基があげられ、好ましい R^2 としては水素原子があげられる。 R^3 としては、 $C_1 \sim C_7$ アルキル基、 $C_3 \sim C_7$ シクロアルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_5 \sim C_7$ シクロアルケニル基、 $C_1 \sim C_3$ アルコキシ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_3$ アルキルチオ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ ハロアルキル基、 $C_3 \sim C_7$ シクロアルケニル基、 $C_2 \sim C_6$ ハロアルケニル基、 $C_2 \sim C_6$ アルキニル基および

【0017】 【化14】

√ y (Z)_m

【0018】(式中、Zは $C_1\sim C_4$ アルキル基、ハロゲン原子、 $C_1\sim C_4$ アルコキシ基、 $C_1\sim C_4$ ハロアルキル基、 $C_1\sim C_4$ ハロアルキル基、 $C_1\sim C_4$ ハロアルコキシ基、 $C_1\sim C_4$ アルキルチオ基、 $C_1\sim C_4$ アルキルスルフィニル基、 $C_1\sim C_4$ アルキルスルホニル基、 $C_1\sim C_4$ ハロアルキルスルフィニル基、 $C_1\sim C_4$ ハロアルキルスルフィニル基、 $C_1\sim C_4$ ハロアルキルスルカニル基、シアノ基、 $(C_1\sim C_4$ アルコキシ)カルボニル基、カルボキシ基またはニトロ基を表し、mは0から5の整数を表し、mが2から5の整数を表す場合、Zは同一でも異なってもよい。)があげられ、好ましい R^3 としては、 $C_1\sim C_7$ アルキル基、 $C_3\sim C_7$ シクロアルキル基、 $C_2\sim C_6$ アルケニル基、 $C_1\sim C_3$ アルコキシ $C_1\sim C_4$ アルキル基、 $C_1\sim C_3$ アルキルチオ $C_1\sim C_4$ アルキル基、 $C_1\sim C_4$ アルキル基、 $C_1\sim C_3$ アルキルチオ $C_1\sim C_4$ アルキル基、 $C_1\sim C_4$

 C_4 アルキル基、 $(C_3 \sim C_7 \circ 2)$ クロアルキル) $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ ハロアルキル基、 $C_3 \sim C_7 \circ 2$ クロハロアルキル基、 $C_2 \sim C_6$ ハロアルケニル基、 $C_2 \sim C_6$ アルキニル基および

【0019】 【化15】

√(Z)_m

【0020】(式中、ZはC₁~C₄アルキル基、ハロゲ ン原子、 $C_1 \sim C_4$ アルコキシ基、 $C_1 \sim C_4$ ハロアルキル ·基、「C₁~C₄ハロアルコキシ基、C₁~C₄アルキルチオ 基、C₁~C₄アルキルスルフィニル基、C₁~C₄アルキ ルスルホニル基、 $C_1 \sim C_4$ ハロアルキルチオ基、 $C_1 \sim$ C_4 ハロアルキルスルフィニル基、 $C_1 \sim C_4$ ハロアルキ ルスルホニル基、シアノ基、 (C₁~C₄アルコキシ) カ ルボニル基、カルボキシ基またはニトロ基を表し、mは 0から5の整数を表し、mが2から5の整数を表す場 合、Zは同一でも異なってもよい。) があげられる。 【0021】Aとしては水素原子、ホルミル基、(C1 ~C4 アルキル) カルボニル基、(C1 ~C4 ハロアル キル)カルボニル基、($C_1 \sim C_4$ アルコキシ)カルボ ニル基、($C_2 \sim C_4$ ハロアルコキシ)カルボニル基、 (C₂ ~C₄ アルケニル) カルボニル基、(C₁ ~C₄ アルキルチオ)カルボニル基、(C3~C6シクロアル キル)カルボニル基、($C_3 \sim C_6$ シクロアルコキシ) カルボニル基、 $C_1 \sim C_4$ アルキルチオ基、 $C_1 \sim C_4$ アルキルスルフィニル基、C₁ ~C₄アルキルスルホニ ル基、 $C_1 \sim C_4$ ハロアルキルチオ基、 $C_1 \sim C_4$ ハロ アルキルスルフィニル基および $C_1 \sim C_4$ ハロアルキル スルホニル基があげられ、好ましいAとしては、水素原 子、ホルミル基、($C_1 \sim C_4$ アルキル)カルボニル基 $(C_1 \sim C_4$ ハロアルキル) カルボニル基、 $(C_1 \sim C$ $_4$ アルコキシ)カルボニル基、($C_2 \sim C_4$ ハロアルコ キシ)カルボニル基、($C_2 \sim C_4$ アルケニル)カルボ ニル基、(C₃~C₆シクロアルキル)カルボニル基お よび($C_3 \sim C_6$ シクロアルコキシ)カルボニル基があ げられる。

【0022】Qとしては

[0023]

【化16】

【0024】(式中、 R^6 および R^7 はそれぞれ独立に水素原子または C_1 ~ C_4 アルキル基を表し、 Q^1 は

[0025]

【化17】

【0029】を表し、 R^4 は水素原子または $C_1 \sim C_4$ アルキル基を表し、 Y^1 は $C_1 \sim C_4$ ハロアルキル基、 $C_1 \sim C_2$ ハロアルコキシ基、ハロゲン原子、ニトロ基、シアノ基、($C_1 \sim C_4$ アルコキシ)カルボニル基またはカル

ボキシ基を表し、 Y^2 は水素原子、ハロゲン原子、 $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ ハロアルキル基、 $C_1 \sim C_4$ アルコキシ基、 $C_1 \sim C_4$ アルキルチオ基、 $C_1 \sim C_4$ アルキルスルフィニル基、 $C_1 \sim C_4$ アルキルスルフィニル基、 $C_1 \sim C_4$

 C_4 アルキルスルホニル基、 $C_1 \sim C_4$ ハロアルキルチオ基、 $C_1 \sim C_4$ ハロアルキルスルフィニル基、 $C_1 \sim C_4$ ハロアルキルスルホニル基、ニトロ基、シアノ基、 $(C_1 \sim C_4$ アルコキシ)カルボニル基またはカルボギシ基を表し、aは1または2を表し、aが2を表す場合、 Y^2 は同一でも異なってもよい。)があげられる。

【0030】次に具体的な置換基をあげる。R¹として は、メチル基、エチル基、nープロピル基、isoープ ロピル基、nーブチル基、isoーブチル基、secー ブチル基、tertーブチル基、トリフルオロメチル 基、クロロメチル基、2-クロロエチル基、2-ブロモ エチル基、2, 3-ジグロロプロピル基、3-クロロプ ロピル基、1,2-ジクロロー1-メチルエチル基、4 ークロロブチル基、メトギシ基、エトキシ基、n-プロ ポキシ基、isoープロポキシ基、n-ブトキシ基、i so-ブトキシ基、seic ーブルキシ基、tert-ブ トキシ基、ジフルオロメトキシ基、トリフルオロメトキ シ基、2,2,2ートリフルオロエトキシ基、2ークロ ロエトキシ基、2-ブロモエトキシ基、3-フルオロプ ロポキシ基、3ークロロプロポキシ基、4ークロロプト キシ基、メチルチオ基、エチルチオ基、nープロピルチ オ基、iso-プロピルチオ基、n-ブチルチオ基、i soーブチルチオ基、secーブチルチオ基、tert ープチルチオ基、メトキシメチル基、エトキシメチル 基、n-プロポキシメチル基、i's o-プロポキシメチ ル基、2-メトキシエチル基、2-エトキシエチル基、 2-n-プロポキシエチル基、2-iso-プロポキシ エチル基、1-メトキシエチル基、1-エトキシエチル 基、1-n-プロポキシエチル基、1-iso-プロポ キシエチル基、3-メトキシプロピル基、3-エトキシ プロピル基、メチルチオメチル基、エチルチオメチル 基、nープロピルチオメチル基、isoープロピルチオ メチル基、2-メチルチオエチル基、2-エチルチオエ チル基、2-n-プロピルチオエチル基、2-iso-プロピルチオエチル基、1-メチルチオエチル基、1-エチルチオエチル基、1-n-プロピルチオエチル基、 1-iso-プロピルチオエチル基、3-メチルチオプ ロピル基、3-エチルチオプロピル基、アセチル基、弗 素原子、塩素原子、臭素原子および沃素原子があげられ

【0031】R²としては、水素原子、メチル基、エチル基、n-プロピル基、iso-プロピル基、トリフルオロメチル基、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、弗素原子、塩素原子、臭素原子、沃素原子、ニトロ基およびシアノ基があげられる。

【0032】R³としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、is o-ブチル基、sec-ブチル基、tert-ブチル

基、n→ペンチル基、iso-ペンチル基、2-メチル ブチル基、secーペンチル基、tertーペンチル 基、1,2-ジメチルプロピル基、2,2-ジメチルプ ロピル基、1-エチルプロピル基、n-ヘキシル基、1 ーメチルペンチル基、2-メチルペンチル基、4-メチ ルペンチル基、1,1-ジメチルブチル基、1-エチル ブチル基、2-エチルブチル基、n-ヘプチル基、1-エチルペンチル基、1-n-プロピルブチル基、シクロ プロピル基、1-メチルシクロプロピル基、2-メチル シクロプロピル基、1,2-ジメチルシクロプロピル |基、、「2, 2ージメチルシクロプロピル基、2, 3ージメ チルシクロプロピル基、2,2,3,3-テトラメチル シクロプロピル基、シクロブチル基、2-メチルシクロ ブチル基、3-メチルシクロブチル基、シクロペンチル 基、2-メチルシクロペンチル基、3-メチルシクロペ ンチル基、シクロヘキシル基、1-メチルシクロヘキシ ル基、2-メチルシクロヘキシル基、シクロヘプチル 基、ビニル基、1-メチルビニル基、1-プロペニル 基、アリル基、1ーブテニル基、2ープテニル基、3ー ブテニル基、1-メチル-1-プロペニル基、1-メチ ルー2-プロペニル基、1-エチルビニル基、2-メチ ルー1-プロペニル基、2-メチルー2-プロペニル 基、1-ペンテニル基、2-ペンテニル基、3-ペンテ ニル基、4-ペンテニル基、1-メチル-1-ブテニル 基、1-メチル-3-ブテニル基、3-メチル-1-ブ テニル基、1,1-ジメチル-2-プロペニル基、1, 2-ジメチル-1-プロペニル基、1-ヘキセニル基、 2-ヘキセニル基、5-ヘキセニル基、1-メチル-1 ーペンテニル基、1,3-ジメチル-1-ブテニル基、 1-シクロペンテニル基、1-シクロヘキセニル基、3 -シクロヘキセニル基、メトキシメチル基、エトキシメ チル基、n-プロポキシメチル基、iso-プロポキシ メチル基、2-メトキシエチル基、2-エトキシエチル 基、2-n-プロポキシエチル基、2-iso-プロポ キシエチル基、1-メトキシエチル基、1-メトキシプ ロピル基、1-エトキシプロピル基、1-エトキシエチ ル基、2-メトキシ-1-メチルエチル基、2-エトキ シー1-メチルエチル基、1-メトキシメチルプロピル 基、1-エトキシメチルプロピル基、メチルチオメチル 基、エチルチオメチル基、n-プロピルチオメチル基、 iso-プロピルチオメチル基、2-メチルチオエチル 基、2-エチルチオエチル基、1-メチルチオプロピル 基、1-エチルチオプロピル基、2-n-プロピルチオ エチル基、2-iso-プロピルチオエチル基、1-メ チルチオエチル基、1-エチルチオエチル基、2-メチ ルチオ-1-メチルエチル基、2-エチルチオ-1-メ チルエチル基、1-メチルチオメチルプロピル基、1-エチルチオメチルプロピル基、シクロプロピルメチル 基、シクロブチルメチル基、シクロペンチルメチル基、 シクロヘキシルメチル基、シクロヘプチルメチル基、1

与用t

-シクロプロピルエチル基、2-シクロプロピルエチル 基、フルオロメチル基、クロロメチル基、ブロモメチル 基、ヨードメチル基、ジフルオロメチル基、ジクロロメ チル基、クロロフルオロメチル基、クロロジフルオロメ チル基、トリクロロメチル基、トリブロモメチル基、ト リフルオロメチル基、1-フルオロエチル基、2-フル オロエチル基、1-クロロエチル基、2-クロロエチル 基、1ーブロモエチル基、2ーブロモエチル基、1-ヨ ードエチル基、2-ヨードエチル基、2,2,2-トリ フルオロエチル基、2,2,2-トリクロロエチル基、 2, 2-ジクロロ-1-フルオロエチル基、1, 1, ' 2, 2-テトラフルオロエチル基、ペンタフルオロエチ ル基、1, 1-ジクロロエチル基、1, 2, 2, 2-テ トラフルオロエチル基、1,2-ジクロロエチル基、2 -クロロ-1, 1, 2, 2-テトラフルオロエチル基、 1, 2-ジブロモエチル基、ペンタクロロエチル基、1 -クロロ-1-メチルエチル基、1-ブロモ-1-メチ ルエチル基、1, 2-ジクロロ-1-メチルエチル基、 1-クロロー1, 2, 2, 2-テトラフルオロエチル 基、1-プロモー1,2,2,2-テトラフルオロエチ ル基、1,2-ジブロモー1-メチルエチル基、1-ク ロロプロピル基、1ーブロモプロピル基、ビス(トリフ ルオロメチル) メチル基、1,2-ジクロロプロピル 基、2、3-ジクロロプロピル基、1-クロロブチル 基、1-ブロモブチル基、ヘプタフルオロプロピル基、 1-クロロ-2-メチルプロピル基、1-ブロモ-2-メチルプロピル基、1,1-ビス(クロロメチル)エチ ル基、2-クロロー1、1-ジメチルエチル基、2、2 -ジクロロ-1, 1-ジメチルエチル基、ノナフルオロ ブチル基、2,3-ジクロロ-1-メチルプロピル基、 1-クロローシクロプロピル基、2-クロロシクロプロ ピル基、2,2-ジクロロシクロプロピル基、2,2-ジメチルシクロプロピル基、2,2-ジクロロー1-メ チルシクロプロピル基、2,2-ジクロロー3-メチル ーシクロプロピル基、2、2ージクロロー3、3ージメ チルシクロプロピル基、1-クロロシクロヘキシル基、 1-クロロビニル基、1-ブロモビニル基、2-クロロ ビニル基、2-ブロモビニル基、2, 2-ジブロモビニ ル基、1-ブロモメチルビニル基、2-クロロ-1-メ チルビニル基、2-ブロモ-1-メチルビニル基、1-クロロー1ープロペニル基、1ーブロモー1ープロペニ ル基、2-ブロモー1-プロペニル基、2、3、3、3 ーテトラクロロー1ープロペニル基、3ークロロー2ー メチルー1ープロペニル基、1, 2, 3, 3, 4, 4, 4-ヘプタフルオロ-1-ブテニル基、2-トリフルオ ロメチルー1-プロペニル基、1-トリフルオロメチル ビニル基、1-クロロメチルビニル基、1,2-ジクロ ロビニル基、2, 2-ジクロロビニル基、1, 2, 2-トリクロロビニル基、2-クロロ-1-プロペニル基、 3, 3, 3-トリフルオロー2-トリフルオロメチルー

1-プロペニル基、2,3-ジクロロ-2-プロペニル 基、エチニル基、1-プロピニル基、2-プロピエル 基、1-ブチニル基、2-クロロエチニル基、2-ブロ モエチニル基、2-ヨードエチニル基および

[0033] 【化20】

【0034】があげられ、2としては、メチル基、エチ ル基、nープロピル基、isoープロピル基、nーブチ ル基、isoーブチル基、sec‐ブチル基、tert ーブチル基、弗素原子、塩素原子、臭素原子、沃素原 子、メトキシ基、エトキシ基、n-プロポキシ基、is o-プロポキシ基、n-ブトキシ基、iso-ブトキシ 基、secーブトキシ基、tertーブトキシ基、トリ フルオロメチル基、ジフルオロメチル基、ペンタフルオ ロエチル基、2-クロロエチル基、3-クロロプロピル 基、クロロメチル基、ジフルオロメトキシ基、トリフル オロメトキシ基、2, 2, 2-トリフルオロエトキシ 基、クロロジフルオロメトキシ基、ブロモジフルオロメ「 トキシ基、2-クロロエトキシ基、3-クロロプロポキ シ基、メチルチオ基、エチルチオ基、n-プロピルチオ 基、isoープロピルチオ基、nーブチルチオ基、is oーブチルチオ基、sie cープチルチオ基、tertー ブチルチオ基、メチルスルフィニル基、エチルスルフィ ニル基、nープロピルスルフィニル基、isoープロピ ルスルフィニル基、nーブチルスルフィニル基、iso ーブチルスルフィニル基、sec ーブチルスルフィニル 基、tert‐ブチルスルフィニル基、メチルスルホニ ル基、エチルスルホニル基、n-プロピルスルホニル 基、isoープロピルスルホニル基、nーブチルスルホ ニル基、isoーブチルスルホニル基、secーブチル スルホニル基、tertーブチルスルホニル基、ジフル オロメチルチオ基、トリフルオロメチルチオ基、クロロ ジフルオロメチルチオ基、ブロモジフルオロメチルチオ 基、ジフルオロメチルスルフィニル基、トリフルオロメ チルスルフィニル基、クロロジフルオロメチルスルフィ ニル基、ブロモジフルオロメチルスルフィニル基、ジフ ルオロメチルスルホニル基、トリフルオロメチルスルホ ニル基、クロロジフルオロメチルスルホニル基、ブロモ ジフルオロメチルスルホニル基、ニトロ基、シアノ基、 カルボキシ基、メトキシカルボニル基、エトキシカルボ ニル基、n-プロポキシカルボニル基、iso-プロポ キシカルボニル基、n-ブトキシカルボニル基、iso ーブトキシカルボニル基、sec-ブトキシカルボニル 基およびtertーブトキシカルボニル基等があげられ

【0035】Aとしては水素原子、ホルミル基、アセチル基、プロピオニル基、nープロピルカルボニル基、i

so-プロピルカルボニル基、n-ブチルカルボニル 基、isoーブチルカルボニル基、secーブチルカル ボニル基、tertーブチルカルボニル基、フルオロア セチル基、クロロアセチル基、ブロモアセチル基、ヨー ドアセチル基、ジフルオロアセチル基、クロロフルオロ アセチル基、ジクロロアセチル基、ジブロモアセチル 基、トリフルオロアセチル基、クロロジフルオロアセチ ル基、ブロモジフルオロアセチル基、トリクロロアセチ ル基、トリブロモアセチル基、2-クロロプロピオニル 基、2-フルオロプロピオニル基、2-ブロモプロピオ ニル基、2-ヨードプロピオニル基、3-フルオロプロ ピオニル基、3-クロロプロピオニル基、3-ブロモプ ロピオニル基、3-ヨードプロピオニル基、2,3-ジ クロロプロピオニル基、2、3-ジブロモプロピオニル 基、2、3-ジフルオロプロピオニル基、2、2-ジク ロロプロピオニル基、2-フルオロ-3, 3-ジクロロ プロピオニル基、3、3、3-トリフルオロプロピオニ ル基、3,3,3ートリクロロプロピオニル基、2, 2. 3. 3-テトラフルオロプロピオニル基、2, 2, 3, 3-テトラフルオロ-3-クロロピロピオニル基、 ペンタフルオロプロピオニル基、ペンタクロロプロピオ ニル基、2,3,3-テトラフルオロプロピオニル 基、2-クロロー2、3、3、3-テトラフルオロプロ ピオニル基、2-ブロモー2、3、3、3-テトラフル オロプロピオニル基、2-フルオロ-2-メチルプロピ オニル基、2-クロロ-2-メチルプロピオニル基、2 -ブロモ-2-メチルプロピオニル基、2,3-ジクロ ロー2-メチルプロピオニル基、2,3-ジブロモー2 -メチルプロピオニル基、3,3,3-トリフルオロー 2-トリフルオロメチルプロピオニル基、2-メチルー 3, 3, 3-トリフルオロプロピオニル基、1-クロロ プロピルカルボニル基、1-フルオロプロピルカルボニ ル基、1-ブロモプロピルカルボニル基、2,3-ジク ロロプロピルカルボニル基、1,2-ジクロロプロピル カルボニル基、3-クロロー2-メチルプロピオニル 基、3-ブロモー2-メチルプロピオニル基、2-クロ ロメチルー3ークロロプロピオニル基、1,1,2, 2. 3. 3. 3ーヘプタフルオロプロピルカルボニル 基、1-クロロブチルカルボニル基、1-ブロモブチル カルボニル基、1-クロロー2-メチルプロピルカルボ ニル基、1-プロモー2-メチルプロピルカルボニル 基、2、2-ビス(クロロメチル)プロピオニル基、3 -クロロ-2, 2-ジメチルプロピオニル基、3,3-ジクロロー2, 2-ジメチルプロピオニル基、2, 3-ジクロロ-1-メチルプロピルカルボニル基、1,1, 2. 2. 3. 3. 4. 4. 4ーノナフルオロブチルカル ボニル基、メトキシカルボニル基、エトキシカルボニル 基、n-プロポキシカルボニル基、iso-プロポキシ カルボニル基、nープトキシカルボニル基、isoーブ トキシカルボニル基、sec-ブトキシカルボニル基、

tert-ブトキシカルボニル基、2-フルオロエトキ, 」 シカルボニル基、2-クロロエトキシカルボニル基、2 ープロモエトキシカルボニル基、2,2,2-トリフル オロエトキシカルボニル基、3-クロロプロポキシ基、 ビス (トリフルオロメチル) メトキシカルボニル基、4 -クロロブトキシカルボニル基、アクリロイル基、メタ クリロイル基、クロトノイル基、2-プロペニルカルボ ニル基、1-ブテニルカルボニル基、2-ブテニルカル ボニル基、3-ブテニルカルボニル基、1-メチル-1 ープロペニルカルボニル基、1-メチルー2-プロペニ ルカルボニル基、2-メチル-1-プロペエルカルボニ ル基、2ーメチルー2ープロペニルカルボニル基、2-エチルアクリロイル基、メチルチオカルボニル基、エチ ルチオカルボニル基、n-プロピルチオカルボニル基、 iso-プロピルチオカルボニル基、n-ブチルチオカ ルボニル基、isoーブチルチオカルボニル基、sec ーブチルチオカルボニル基、tert-ブチルチオカル ボニル基、シクロプロピルカルボニル基、1-メチルシ クロプロピルカルボニル基、2-メチルシクロプロピル カルボニル基、2,2-ジメチルシクロプロピルカルボ! ニル基、シクロブチルカルボニル基、シクロペンチルカ ルボニル基、シクロヘキシルカルボニル基、シクロプロ ピルオキシカルボニル基、1-メチルシクロプロピルオ キシカルボニル基、2-メチルシクロプロピルオキシカ ルボニル基、2,2-ジメチルシクロプロピルオキシカ ルボニル基、シクロプチルオキシカルボニル基、シクロ ペンチルオキシカルボニル基、シクロヘキシルオキシカ・ ルボニル基、メチルチオ基、エチルチオ基、n-プロピ ルチオ基、isoープロピルチオ基、nーブチルチオ 基、isoーブチルチオ基、secーブチルチオ基、t ertーブチルチオ基、トリクロロメチルチオ基、トリー フルオロメチルチオ基、クロロジフルオロメチルチオ 基、ジクロロフルオロメチルチオ基、ペンタフルオロエ チルチオ基、1,1,2,2,3,3,3-ヘプタフル オロプロピルチオ基、1, 1, 2, 2, 3, 3, 4, 4. 4-ノナフルオロブチルチオ基、メチルスルフィニ ル基、エチルスルフィニル基、n-プロピルスルフィニ ル基、isoープロピルスルフィニル基、nーブチルス ルフィニル基、isoーブチルスルフィニル基、sec ープチルスルフィニル基、tertープチルスルフィニ ル基、トリクロロメチルスルフィニル基、トリフルオロ メチルスルフィニル基、クロロジフルオロメチルスルフ ィニル基、ジクロロフルオロメチルスルフィニル基、ペ ンタフルオロエチルスルフィニル基、1,1,2,2, 3,3,3-ヘプタフルオロプロピルスルフィニル基、 1, 1, 2, 2, 3, 3, 4, 4, 4-ノナフルオロブ チルスルフィニル基、メチルスルホニル基、エチルスル ホニル基、n-プロピルスルホニル基、iso-プロピ ルスルホニル基、nープチルスルホニル基、isoーブ チルスルホニル基、sec-ブチルスルホニル基、te

r t - ブチルスルホニル基、トリクロロメチルスルホニ ル基、トリフルオロメチルスルホニル基、クロロジフル オロメチルスルホニル基、ジクロロフルオロメチルスル ホニル基、ペンタフルオロエチルスルホニル基、1, 1, 2, 2, 3, 3, 3-ヘプタフルオロプロピルスル ホニル基および1, 1, 2, 2, 3, 3, 4, 4, 4-ノナフルオロブチルスルホニル基等があげられる。

【0036】 Qとしては

[0037]

[0040]

【化21】

 ${\tt [0038]}$ があげられ、 ${\tt R^6}$ 、 ${\tt R^7}$ としてはそれぞれ独 立に水素原子、メチル基、エチル基、n-プロピル基、 isoープロピル基、nーブチル基、isoーブチル 基、secープチル基およびtertーブチル基があげ られ、Q¹としては、

[0039]

【化22】

【0043】があげられ、Y¹としては、トリフルオロメチル基、ジフルオロメチル基、クロロジフルオロメチル基、ヘプタフルオロプロピル基、トリフルオロメトキシ基、ジフルオロメトキシ

基、クロロジフルオロメトキシ基、2,2,2ートリフルオロエトキシ基、ペンタフルオロエトキシ基、弗素原子、塩素原子、臭素原子、沃素原子、ニトロ基、シアノ基、カルボキシ基、メトキシカルボニル基、エトキシカ

ルボニル基、nープロポキシカルボニル基、isoープ ロポキシカルボニル基、n-ブトキシカルボニル基、i soーブトキシカルボニル基、secーブトキシカルボ ニル基およびtertーブトキシカルボニル基があげら れ、Y²としては、水素原子、弗素原子、塩素原子、臭 素原子、沃素原子、メチル基、エチル基、nープロピル 基、isoープロピル基、nーブチル基、isoーブチ ル基、sec-ブチル基、tert~ブチル基、ジフル オロメチル基、トリフルオロメチル基、クロロメチル 基、ペンタフルオロエチル基、2-クロロエチル基、2 ーブロモエチル基、3-クロロプロピル基、2,3-ジ クロロプロピル基、メトキシ基、エトキシ基、nープロ ポキシ基、iqoープロポキシ基、nーブトキシ基、i soープトキシ基、secープトキシ基、tertーブ トキシ基、ジフルオロメトキシ基、トリフルオロメトキ シ基、2,2,2ートリワルオロエトキシ基、2-クロ ロエトキシ基、メチルデオ基、エチルチオ基、n-プロ ピルチオ基、iso-プロピルチオ基、n-ブチルチオ 基、isoーブチルチオ基、siecーブチルチオ基、t ertーブチルチオ基、メチルスルフィニル基、エチル スルフィニル基、n-プロピルスルフィニル基、iso -プロピルスルフィニル基、n-ブチルスルフィニル 基、isoーブチルスルフィニル基、secーブチルス ルフィニル基、tert-ブチルスルフィニル基、メチ ルスルホニル基、エチルスルホニル基、nープロピルス ルホニル基、isoープロピルスルホニル基、nーブチ ルスルホニル基、iso゚ーブチルスルホニル基、sec ーブチルスルホニル基、tertーブチルスルホニル 基、ジフルオロメチルチオ基、トリフルオロメチルチオ 基、クロロジフルオロメチルチオ基、ブロモジフルオロ メチルチオ基、ジフルオロメチルスルフィニル基、トリ フルオロメチルスルフィニル基、クロロジフルオロメチ ルスルフィニル基、ブロモジフルオロメチルスルフィニ ル基、ジフルオロメチルスルホニル基、トリフルオロメ チルスルホニル基、クロロジフルオロメチルスルホニル 基、ブロモジフルオロメチルスルホニル基、ニトロ基、 シアノ基、カルボキシ基、メトキシカルボニル基、エト キシカルボニル基、n-プロポキシカルボニル基、is o ープロポキシカルボニル基、n ーブトキシカルボニル 基、iso-ブトキシカルボニル基、sec-ブトキシ

【0044】Xとしては、酸素原子、硫黄原子、アミノ基、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基はび単結合があげられる。本発明化合物は、畑地、水田、非耕地用除草剤として、土壌処理、土壌混和処理、茎葉処理のいずれの処理方法においても使用できる。

|【0045】本発明化合物を含有する除草剤の対象雑草 としては、イヌホウズキ、チョウセンアサガオ、イチ ビ、アメリカキンゴジカ、アルバアサガオ、イヌビユ、 アオビユ、オナモミ、ブタクサ、ヒマワリ、ハキダメギ ク、セイヨウトゲアザミ、ノボロギク、ヒメジョン、イ ヌガラシ、ノハラガラシ、ナズナ、イヌタデ、ソバカズ ラ、スベリヒユ、シロザ、コアカザ、ホウキギ、ハコ べ、オオイヌノフグリ、ツユクサ、ホトケノザ、ヒメオ ドリコソウ、コニシキソウ、オオニシキソウ、ヤエムグ ラ、アカネ、スミレ、アメリカツノクサネム、エピスグ サ、コセンダングサ等の広葉雑草、野生ソルガム、オオ クサキビ、ジョンソングラス、イヌビユ、メヒシバ、カ ラスムギ、オヒシバ、エノコログサ、スズメノテッポウ 等のイネ科雑草、ハマスゲ等のカヤツリグサ科雑草、ヘ ラオモダカ、オモダカ、ウリカワ、タマガヤツリ、ミズ ガヤツリ、ホタルイ、クログワイ、アゼナ、コナギ、ヒ ルムシロ、キカングサ、タイヌビエ等の各種水田雑草が あげられる。

【0046】本発明化合物を含有する除草剤の対象作物としては、重要作物であるコムギ、オオムギ、トウモロコシ、ダイズ、イネ、ワタ、ビート、ソルガム等があげられる。また、本発明化合物を含有する除草剤は、落葉剤(defoliant)としても有用である。

【0047】本発明化合物は、例えば次に示す方法(スキーム1)によって合成することができる。(スキーム10Q、A、R¹、R²、R³およびXは前記と同様の意味を表し、Halはハロゲン原子を表す。)

[0048]

【化25】

【0049】スキーム1はアニリン誘導体(A)を出発原料として3種の合成ルートを示している。一つはアニリン誘導体(A)に酸、酸無水物、酸ハライドまたは酸エステルなど(B)を反応させ本発明化合物(1-a)を合成し、さらにカルボン酸、スルフェン酸、スルフィン酸またはスルホン酸もしくは、これら酸の酸ハロゲン化物や酸無水物を反応させ、本発明化合物(1)を合成する方法を表す。

【0050】もう一つは、アニリン誘導体(A)に酸エステル、酸、酸無水物、酸ハライドまたはジスルフィド類を反応させ化合物(C)を合成し、さらに酸、酸無水物、酸ハライドまたは酸エステルなど(B)を反応させ本発明化合物(1)を合成する方法を表す。最後の一つは、アニリン誘導体(A)に酸、酸無水物、酸ハライドなど(B')を反応させ本発明化合物(1)を直接一段階で合成する方法を表す。

【0051】本発明化合物を精製する必要が生じた場合

には、再結晶、カラムクロマトグラフィー等の任意の精製法によって分離、精製することができる。なお、本発明に包含される化合物の中で不斉炭素を有する場合には、光学活性な化合物(+)体および(-)体が含まれる。幾何異性体が存在する場合には、シス体およびトランス体が含まれる。

【0052】以下に本発明化合物の合成例を実施例として具体的に述べるが、本発明はこれらによって限定されるものではない。

[0053]

【実施例】

〔実施例1〕

1- (2-シクロプロパンカルボニルアミノ-5-メチルフェニルメチル) -5-メチル-3-トリフルオロメチルピラゾール(化合物No.C-4)の合成

[0054]

【化26】

【0055】1-(2-アミノ-5-メチルフェニルメチル)-5-メチルー3-トリフルオロメチルピラゾール0.52g(1.93mmol)のピリジン5ml溶液中に、氷冷下、シクロプロパンカルボニルクロライド0.2ml(2.20mmol)をゆっくりと滴下した。滴下終了後、その反応液を氷冷下で1時間攪拌した。反応が終了したことを確認した後、そのピリジン溶液を水中にゆっくりと加えた。析出してきた結晶を濾取し、水、次いでヘキサンで十分に洗浄したところ、目的とする1-(2-シクロプロパンカルボ

ニルアミノー5ーメチルフェニルメチル) -5ーメチル -3ートリフルオロメチルピラゾールが白色結晶として; 0.58g(収率=89%) 得られた。

【0056】〔実施例2〕

1-(2-シクロプロパンカルボニルアミノー5-メチルフェニル) -5-メチルー3-トリフルオロメチルピラゾール(化合物No. C-16) の合成

[0057]

【化27】

【0058】1-(2-アミノー5-メチル3フェニル) -5-メチルー3-トリフルオロメチルピラゾール0.33 g(1.29mmol)のピリジン4ml溶液中に、氷冷下、シクロプロパンカルボニルクロライド0.13ml(1.43mmol)をゆっくりと滴下した。滴下終了後、その反応液を氷冷下で1時間攪拌した。反応が終了したことを確認した後、そのピリジン溶液を水中にゆっくりと加えた。そして、酢酸エチルで抽出した後、その酢酸エチル層を順次、十分に、水、飽和炭酸水素ナトリウム水溶液、水、希塩酸、水そして飽和食塩水で洗浄した。酢酸エチル抽出液を無水硫酸ナトリウムで乾燥した後、減圧下で留去したところ、粘性液体が得られた。その粘性液体にヘキサンを加え結

晶化させ、**冬**5 結晶を充分にヘキサンで洗浄したところ、目的とする1-(2-シクロプロパンカルボニルアミノ-5-メチルフェニル)-5-メチル-3-トリフルオロピラゾールが白色結晶として0.3g (収率=72%) 得られた。

【0059】 [実施例3]

[0060]

【化28】

【0061】5-(2-アミノ-5-クロルフェニル) -1-メチル-3-トリフルオロメチルピラゾール0.15g(0.55mmol)およびピリジン0.06g(0.76mmol)のTHF2ml溶液中に、氷冷下、シクロプロパンカルボニルクロライド0.05ml(0.55mmol)を滴下した。滴下終了後、その反応液を室温で1.5時間攪拌した。反応が終了したことを確認した後、その反応液を水中に加えた。析出してきた結晶を濾取し、水、次いでヘキサンで十分に洗浄したところ、目的とする5-(5-クロル-2-シクロプロ

パンカルボニルアミノフェニル) -1-メチル-3-トリフルオロメチルピラゾールが結晶として0.18g (収率=96%) 得られた。

【0062】 [実施例4]

 $5-(5-\rho u)-2-\nu \rho u$ プロパンカルボニルアミノフェニル) -3-トリフルオロメチルイソオキサゾール (化合物No. C-27) の合成

[0063]

【化29】

【0064】5-(2-アミノ-5-クロルフェニル)-3-トリフルオロメチルイソオキサゾール<math>0.09g(0.34

mmol)およびピリジン0.04g(0.51mmol)のTHF2ml溶液中に、氷冷下、シクロプロパンカルボニルクロライド0.

04ml (0.34mmo1)を滴下した。滴下終了後、その反応液を室温で1時間攪拌した。反応が終了したことを確認した後、その反応液を水中に加えた。析出してきた結晶を濾取し、水、次いでヘキサンで十分に洗浄したところ、目的とする5-(5-クロルー2-シクロプロパンカルボニルアミノフェニル) 143ートリブルオロイソオキサソールが結晶として0.11g (収率=97%) が得られた。

【0066】1ー(2ーアミノー5ーメチルフェニルメチル)ー3ートリフルオロメチルピラゾール0.28g(1.09mmol)およびトリエチルアミン3.5m1のTHF5m1溶液中に、氷冷下、シクロプロパンカルボニルクロライド0.44m1(4.85mmol)を滴下した。滴下終了後、その反応液を室温で30分間撹拌そして3時間還流した。反応が終了したことを確認した後、その溶液を水中にゆっくりと加えた。そして、酢酸エチルで抽出した後、その酢酸エチル層を順次、十分に、希塩酸、水、飽和炭酸水素ナトリウム水溶液、水そして飽和食塩水で洗浄した。酢酸エチル抽出液を無水硫酸ナトリウムで乾燥した後、減圧留去したところ、粘性液体が得られた。この粘性液体を分取液体クロマトグラフィーで精製したところ、目的とする1ー〔2ーピス(シクロプロパンカルボニル)イミノー5ーメチルフェ

〔実施例5〕

 $1 \rightarrow (2-\forall X)$ (シクロプロパンカルボニル) イミノー $5-\forall F$ ルフュニルメチル] $-3-\mathsf{F}$ リフルオロメチルピラゾール(化合物No. D-1) の合成

【0065】 【化30】

ニルメチル] -3-トリフルオロメチルピラゾールが白色結晶として0.33g(収率=76%)得られた。

【0067】前記スキームあるいは実施例に準じて合成した本発明化合物を前記実施例で合成した化合物も含めて、構造式を表1-aと表1-bに、物性を表2-aと表2-bに示す。

【0068】 [表1-a] 【0069】

【化31】

【0070】

化合物No.	R¹	R ²	XR ³	Q		
(A=Hのサ	場合)			•		
C-1	Me	_	c-Pro	$3-CF_3-Q-5(R^4:Me)$		
C-2	Me	_	O-i-Pro	$3-CF_3-Q-5(R^4:Me)$		
C-3	Me	_	CF ₃	$3-CF_3-Q-5(R^4:Me)$		
C-4	Me	_	c-Pro	$CH_2(3-CF_3-5-Me-Q-2)$		
C-5	Me	_	c-Pro	CH ₂ (3-Me-5-CF ₃ -Q-2)		
C-6	Me		0-i-Pro	$CH_2(3-CF_3-5-Me-Q-2)$		
C-7	Me		Ph	$CH_2(3-CF_3-5-Me-Q-2)$		
C-8	Me	_	CF₃	$CH_2(3-CF_3-5-Me-Q-2)$		
C-9	Me	-	CH=CMe ₂	$CH_2(3-CF_3-5-Me-Q-2)$		
C-10	Me	_	i-Pro	CH ₂ (3-CF ₃ -5-Me-Q-2)		
C-11	Me -	4-NO ₂	i-Pro	$CH_2(3-CF_3-5-Me-Q-2)$		
C-12	Me	-	2, 4-F ₂ -Ph	$CH_2(3-CF_3-5-Me-Q-2)$		
C-13	Me	-	c-Pro	$CH_2(3, 5-(CF_3)_2-Q-2)$		
C-14	Me	_	i-Pro	$CH_2(3, 5-(CF_3)_2-Q-2)$		
C-15	Me	_	CF₃	$CH_2(3, 5-(CF_3)_2-Q-2)$		
C-16	Me	-	c-Pro	$3\text{-CF}_3\text{-}5\text{-Me-Q-}2$		
C-17	Me	_	i-Pro	$3\text{-}\mathrm{CF_3}\text{-}5\text{-}\mathrm{Me}\text{-}\mathrm{Q}\text{-}2$		
C-18	Me	_	CF ₃	$3-CF_3-5-Me-Q-2$		

C-19	Me	_	i-Pro	CH ₂ (3-CF ₃ -4-C1-5-Me-Q-2)
C-20	C1	_	c-Pro	3-CF ₃ -Q-5(R ⁴ :Me)
C-21	C1	_	-CH=CMe ₂	3-CF ₃ -Q-5(R ⁴ :Me)
C-22	C1	-	CF₃	3-CF ₃ -Q-5(R ⁴ :Me)

[0071]

【表2】

化合物No	. R ¹	R ²	XR ³	Q',
C-23	Cl	_	2, 4-F ₂ -Ph	3-CF ₃ -Q-5(R ⁴ :Me)
C-24	Me	_	c-Pro	CH ₂ (3, 5-Cl ₂ -4-CO ₂ Me-Q-2)
C-25	C1	- ,	c-Pro	5-CF ₃ -Q-3(R ⁴ : Me)
C-26	C1	-	c-Pro	5-CF ₃ -Q-15
C-27	C1		c-Pro	3-CF ₃ -Q-17
C~28	C1	-	CF ₃	5-CF ₃ -Q-15
C-29	C1	-	2, 4-F ₂ -Ph	5-CF ₃ -Q-15
C-30	C1	_	-CH=CMe ₂	5-CF ₃ -Q-15
C-31	Me	_	c-Pro	CH ₂ (3-CF ₃ -Q-2)
C-32	Me	_	i-Pro	CH ₂ (3-CF ₃ -Q-2)
C-33	C1	. —	c-Pro	CHMe (3-CF ₃ -5-Me-Q-2)
C-34	C1	-	2, 4-F ₂ -Ph	CHMe (3-CF ₃ -5-Me-Q-2)
C-35	Me	– ·	2, 4-F ₂ -Ph	$CH_2(3, 5-C1_2-4-C0_2Me-Q-2)$
C-36	Me	-	2, 4-F ₂ -Ph	3-CF ₃ -5-Me-Q-2
C-37	Cl	_	i-Pro	CHMe (3-CF ₃ -5-Me-Q-2)
C-38	C1	-	CF₃	CHMe (3-CF ₃ -5-Me-Q-2)
C-39	Me	-	C_2F_5	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-40	Me	-	Et	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-41	Me	_	2-Me-c-Pro	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-42	Me	_	i-Bu	CH ₂ (3-CF ₃ -5-Me+Q-2)
C-43	Me	_	CH ₂ -t-Bu	$CH_2(3-CF_3-5-Me-Q-2)$
C-44	Me	-	t~Bu	$CH_2(3-CF_3-5-Me-Q-2)$
C-45	Me	_	c-Bu	$CH_2 (3-CF_3-5-Me-Q-2)$

[0072]

【表3】

化合物No. ————	R¹	R ²	X R ³	Q
C-46	Me	_	CCl3	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-47	Me	_	2-Me-Ph	$CH_2(3-CF_3-5-Me-Q-2)$
C-48	Me	-	3-Me-Ph	$CH_2 (3-CF_3-5-Me-Q-2)$
C-49	Me	_	4-Me-Ph	$CH_2(3-CF_3-5-Me-Q-2)$
C-50	Me	_	2 - C1-Ph	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-51	Me	_	3 - C1-Ph	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-52	Me	~~	4-C1-Ph	$CH_2(3-CF_3-5-Me-Q-2)$
C-53	Me	-	-CH=CHCl(cis)	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-54	Me	-	c-Pro	3-CF ₃ -Q-2
C-55	Me	_	i-Pro	3-CF ₃ -Q-2
C-56	Me	_	CF ₃	3-CF ₃ -Q-2
C-57	OMe	_	c-Pro	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-58	OMe	-	i-Pro	CH_2 (3- CF_3 -5- Me -Q-2)

C-59	OMe	_	CF₃	$CH_2(3-CF_3-5-Me-Q-2)$
C-60	C1	-	c-Pro	$CH_2(3-CF_3-5-Me-Q-2)$
C-61	Cl	-	i-Pro	$CH_2(3-CF_3-5-Me-Q-2)$
C-62	C1	-	CF ₃	$CH_2(3-CF_3-5-Me-Q-2)$
C-63	Me	-	√CF ₃	4-CF ₃ -Q-6
C-64	Me	_	c-Pro	4-CF ₃ -Q-6
C-65	Me	-	i-Pro	4-CF ₃ -Q-6
C-66	Me	-	2, 4-F ₂ -Ph	4-CF ₃ -Q-6
C-67	Me	-	1-Me-c-Pro	$CH_2(3-CF_3-5-Me-Q-2)$
C-68	Me	_	CF ₂ Cl	$CH_2(3-CF_3-5-Me-Q-2)$

[0073]

害	4	1

化合物No.	R¹	R ²	XR ³	Q
C-69	Me	_	-CMe=CH ₂	CH ₂ (3-CF ₃ -5-Me-Q-2)
C-70	Me	_	CHC1 ₂	$CH_2(3-CF_3-5-Me-Q-2)$
C-71	Me	_	CBr ₃	$CH_2(3-CF_3-5-Me-Q-2)$
C-72	Me .	. —	CF ₃	CH ₂ (3-CF ₃ -Q-2)
C-73	Me	_	CCl ₃	CH ₂ (3-CF ₃ -Q-2)
C-74	Me	_	2, 4-Cl ₂ -Ph	$CH_2(3-CF_3-5-Me-Q-2)$
C-75	Me	_	c-Pro	$3\text{-CF}_3\text{-}5\text{-OMe-Q-}2$
C-76	Me	_	i-Pro	3-CF ₃ -5-OMe-Q-2
C-77	Me		2-Me-c-Pro	3-CF ₃ -Q-2
C-78	Me		t-Bu	3-CF ₃ -Q-2
C-79	Me	_	CCl ₃	3-CF ₃ -Q-2
C-80	Me	_	-CH=CMe ₂	3-CF ₃ -Q-2
C-81	Me	_	CHF ₂	$CH_2(3-CF_3-5-Me-Q-2)$
C-82	Me	_	2, 2, 3, 3-Me ₄ -c-Pro	$CH_2(3-CF_3-5-Me-Q-2)$
C-83	Me	-	CF ₃	3-CF ₃ -5-OMe-Q-2
C-84	OMe	-	c-Pro	CH ₂ (3-CF ₃ -Q-2)
C-85	OMe	_	i-Pro	CH ₂ (3-CF ₃ -Q-2)
C-86	OMe	_	CF ₃	$CH_2(3-CF_3-Q-2)$
C-87	C1	_	c-Pro	CH ₂ (3-CF ₃ -Q-2)
C-88	C1	_	CF ₃	CH ₂ (3-CF ₃ -Q-2)
C-89	Me	_	CF ₂ Cl	CH ₂ (3-CF ₃ -Q-2)
C-90	Me	_	C_2F_5	CH ₂ (3-CF ₃ -Q-2)
C-91	Ме	_	2-Me-c-Pro	CH ₂ (3-CF ₃ -Q-2)

[0074]

【表5】

•	化合物No.	R¹	R²	X R ³	Q
	C-92	Me		t-Bu	_CH ₂ (3-CF ₃ -Q-2)
	C-93	C1	_	c-Pro ·	3-CF ₃ -Q-2
	C-94	Cl	-	i-Pro	3-CF ₃ -Q-2
	C-95	C1	_	CF ₃	3-CF ₃ -Q-2
	C-96	C1	_	0-i-Pro	3-CF ₃ -Q-2
	C-97	Me	-	1-Me-c-Pro	$CH_2(3-CF_3-Q-2)$
	C-98	Me	_	Pro	CH ₂ (3-CF ₃ -Q-2)

	C-99	Me	-	CMe=CH ₂	CH ₂ (3-CF ₃ -Q-2)
<i>t</i>	C-100	Me	_	t-Pen	CH ₂ (3-CF ₃ -Q-2)
1	C-101	Me	_	CMe ₂ CH ₂ C1	CH ₂ (3-CF ₃ -Q-2)
1	C-102	1 Me	_	CClMeCH ₂ Cl	CH ₂ (3-CF ₃ -Q-2)
1	C-103	Me	_	2-F-Ph	$CH_2(3-CF_3-Q-2)$
F 1 - 1	C-104	Me	_ ′	2, 4-F ₂ -Ph	CH ₂ (3-CF ₃ -Q-2)
j. l'	/¢C+105	Me	_	0Et	CH ₂ (3-CF ₃ -Q-2)
	· C-106	Me	<u> </u>	CH₂CF₃	CH_2 (3- CF_3 -5- Me -Q-2)
() () () () () () () ()	C-107	Me	<u> </u>	CC1=CC1 ₂	CH_2 (3- CF_3 -5- Me -Q-2)
	C-108	Me	_		$c-Pro$ $CH_2(3-CF_3-Q-2)$
ı I	C-109	Me	_	2-CF ₃ -Ph	$CH_{2} (3-CF_{3}-Q-2)$
	C-110	Me	_	0-t-Bu	CH ₂ (3-CF ₃ -Q-2)
1	C-111	'Me	_	NMe ₂	CH ₂ (3-CF ₃ -Q-2)
	C-112	∶'Me	_	NHMe	CH ₂ (3-CF ₃ -Q-2)
	C-113	Me	_	CHC1Me	
1	C-114	Me	_	CCF ₃ =CH ₂	CH ₂ (3-CF ₃ -5-Me-Q-2)
' , _ ·	+ 1 - 1				CH ₂ (3-CF ₃ -5-Me-Q-2)
[0075]	, 1' ·	ı		Ţ.	表 6 】
· Y	上合物No.	R ¹	R ²	XR ³	Q
i	T to the	• • •	·		
. 1	C-115	Me ·	_	CMe ₂ CHCl ₂	$CH_2(3-CF_3-5-Me-Q-2)$
1 1	C-116	Me	_	$CMe(CH_2C1)_2$	CH ₂ (3-CF ₃ -5-Me-Q-2)
	C-117	Me	_	$CF_2CF_2CF_3$	CH ₂ (3-CF ₃ -Q-2)
	C-118	Me	_	ОМе	CH ₂ (3-CF ₃ -Q-2)
	C-119	Me	_	0-i-Pro	CH ₂ (3-CF ₃ -Q-2)
	C-120	OMe	_	CF ₂ Cl	CH ₂ (3-CF ₃ -Q-2)
•	C-121	Me	_	CF ₂ Cl	3-CF ₃ -Q-2
	C-122	Me	_	s-Bu	$CH_2(3-CF_3-5-Me-Q-2)$
	C-123	Me	_	CHMeOMe	$CH_2(3-CF_3-5-Me-Q-2)$
	C-124	OMe	_	c-Pro	3-CF ₃ -Q-2
	C-125	OMe	_	i-Pro	3-CF ₃ -Q-2
•		OMe	_	-CH=CMe ₂	3-CF ₃ -Q-2
		OMe	_	CF ₃	3-CF ₃ -Q-2
		OMe	-	CCl ₃	3-CF ₃ -Q-2
		OMe	-	CBr₃	3-CF ₃ -Q-2
		Me		-CC1=CH ₂	${ m CH_2}$ (3- ${ m CF_3}$ -5- ${ m Me}$ -Q-2)
		Me		-CH=CHC1 (E)	CH ₂ (3-CF ₃ -5-Me-Q-2)
		Me	-	CHFC1	$CH_2(3-CF_3-5-Me-Q-2)$
		Me	_	Me	CH ₂ (3-CF ₃ -Q-2)
		Me	-	Et	CH ₂ (3-CF ₃ -Q-2)
		Me	_	Bu	CH ₂ (3-CF ₃ -Q-2)
		l e	_	Pen	CH ₂ (3-CF ₃ -Q-2)
	C-137)	de	<u>-</u> 	CH ₂ CF ₃	CH ₂ (3-CF ₃ -Q-2)
[0076]	·			【表	7]
1 Ľ 1	合物No.]	R ¹	R ²	XR ³	Q
C	⊱138 M	le -	_	NEt ₂	CH ₂ (3-CF ₃ -Q-2)

C-139	Me	-	NMePh	CH ₂ (3-CF ₃ -Q-2)
C-140	Me		CF ₂ CF ₂ Cl	$CH_2(3-CF_3-Q-2)$
C-141	Me	_	CF ₂ CF ₂ H	CH ₂ (3-CF ₃ -Q-2)
C-142	Me	-	CMe(CF ₃) ₂	$CH_2(3-CF_3-Q-2)$
C-143	Me	_ ,	c-Pro	$CH_2(3-C_2F_5-Q-2)$
C-144	Me	_	i-Pro	$CH_2(3-C_2F_5-Q-2)$
C-145	Me	_	CF ₃	$CH_2(3-C_2F_5-Q-2)$
C-146	Me	_	CF ₂ Cl	$CH_2(3-C_2F_5-Q-2)$
C-147	OMe	_	2-Me-c-Pro	CH ₂ (3-CF ₃ -Q-2)
C-148	OMe	_	t-Bu	CH ₂ (3-CF ₃ -Q-2)
C-149	OMe	<u> </u>	2, 4-F ₂ -Ph	CH ₂ (3-CF ₃ -Q-2)
C-150	OMe	_	CCl ₃	CH ₂ (3-CF ₃ -Q-2)
C-151	OMe	_	C_2F_5	CH ₂ (3-CF ₃ -Q-2)
C-152	OMe	_	OEt	CH ₂ (3-CF ₃ -Q-2)
C-153	OMe	_	CH ₂ CF ₃	$CH_2(3-CF_3-Q-2)$
C-154	OMe	-	1-Me-c-Pro	CH ₂ (3-CF ₃ -Q-2)
C-155	OMe	_ '	CMe=CH ₂	$CH_2(3-CF_3-Q-2)$
C-156	C1		t-Bu	$CH_2(3-CF_3-Q-2)$
C-157	C1 .		CCl ₃	CH ₂ (3-CF ₃ -Q-2)
C-158	Cl	_	CF ₂ C1	CH ₂ (3-CF ₃ -Q-2)
C-159	Cl	<u> </u>	2-Me-c-Pro	$CH_2(3-CF_3-Q-2)$
C-160	Cl	_	1-Me-c-Pro	CH ₂ (3-CF ₃ -Q-2)

[0077]

【表8】

化合物No.	R¹	R ²	X R ³	Q	,
C-161	C 1	_	CMe=CH ₂	CH ₂ (3-CF ₃ -Q-2)	, ` ,
C-162	C1	_	2, 4-F ₂ -Ph	CH ₂ (3-CF ₃ -Q-2)	
C-163	C1	_	OEt	CH ₂ (3-CF ₃ -Q-2)	ı
C-164	Me	_	OCH ₂ CCl ₃	CH ₂ (3-CF ₃ -Q-2)	
C-165	C1	_	CH ₂ CF ₃	CH ₂ (3-CF ₃ -Q-2)	
C-166	C1	_	CF ₂ CF ₃	CH ₂ (3-CF ₃ -Q-2)	
C-167	Ме	_	CH=CHCF3 (E)	CH ₂ (3-CF ₃ -Q-2)	
C-168	Me	_	CF ₂ Br	CH ₂ (3-CF ₃ -Q-2)	

【0078】〔表1-b〕 【0079】

【表9】

	化合物No	. R¹	R²	X R ³	Α	Q	
(A≠Hの場合)							
	D-1	Me	_	c-Pro	-CO-c-Pro	$CH_2(3-CF_3-Q-2)$	
	D-2	Me	-	c-Pro	-CO-i-Pro	$CH_2(3-CF_3-Q-2)$	
	D-3	Me	_	c-Pro	-CO-Me	$CH_2(3-CF_3-Q-2)$	
	D-4	Me	_	Et	-CO-c-Pro	CH ₂ (3-CF ₃ -Q-2)	
	D-5	Me	_	Pro	-CO-c-Pro	CH ₂ (3-CF ₃ -Q-2)	
	D-6	Me	_	i-Pro	-CO-i-Pro	$CH_2(3-CF_3-Q-2)$	
	D-7	Me	_	c-Pro	-CO-c-Pro	3-CF ₃ -Q-2	
	D-8	Me	-	Ph	-CO-c-Pro	$CH_2(3-CF_3-Q-2)$	

```
D-9
              Me
                                c-Pro
                                            -CO-c-Pro
                                                         CH<sub>2</sub> (3-CF<sub>3</sub>-5-Me-Q-2)
   D-10
              Ме
                                2∸Me-Ph
                                           -CO-c-Pro CH<sub>2</sub> (3-CF<sub>3</sub>-Q-2)
   D-11
              Me'
                                3-Me-Ph -CO-c-pro
                                                            CH_2(3-CF_3-Q-2)
   D-12
              Мe
                                4-Me-Ph, -CO-c-Pro
                                                            CH<sub>2</sub> (3-CF<sub>3</sub>-Q-2)
   D-13
              Ме
                                2-C1-Ph -C0-c-Pro
                                                           CH_2(3-CF_3-Q-2)
   D-14
             <sup>1</sup>Me
                                3-C1-Ph
                                           -CO-c-Pro
                                                           CH<sub>2</sub> (3-CF<sub>3</sub>-Q-2)
D+15
                                4-C1-Ph; -C0-c-Pro
                                                           'CH<sub>2</sub> (3-CF<sub>3</sub>-Q-2)
 . D-16
             Me
                                c~Pro
                                            -C0-Bu
                                                            CH2 (3-CF3-Q-2)
  D-17
             Мe
                                c-Pro
                                           -CO-t-Bu
                                                           {
m CH_2} \, (3 - {
m CF_3} - {
m Q-2})
  D-18
             Мe
                                c-Pro
                                            -CO<sub>2</sub>Me
                                                           CH_{2}(3-CF_{3}-Q-2)
  D-19
            'Me
                                c-Pro
                                            -COPen
                                                           CH_2(3-CF_3-Q-2)
  D-20
            Me
                                c-Pro -CO-2-Me-c-Pro CH_2 (3-CF_3-Q-2)
                                                【表10】
化合物No. | R 1
                     R2
                               XR3
                                               Α
                                                                  Q
  D-21
            Me
                               c-Pro -CO-1-Me-c-Pro CH_2(3-CF_3-Q-2)
  D-'22
            Мe
                               NMe<sub>2</sub>
                                                          CH_2(3-CF_3-Q-2)
                                           -CO-c-Pro
 D-23,
            Ме
                               4\text{-OMe-Ph} -CO^{+}c-Pro
                                                          CH_2(3-CF_3-Q-2)
 D-24
          Me.
                               4-N0<sub>2</sub>-Ph -C0-c-Pro
                                                          CH_2(3-CF_3-Q-2)
 D-25
           , C1
                               c-Pro
                                          -CO-c-Pro.
                                                          CH<sub>2</sub> (3-CF<sub>3</sub>-Q-2)
 D-26
            MeO
                               c-Pro
                                          -CO-c-Pro
                                                          CH_2(3-CF_3-Q-2)
 D-27
            Мe
                              4-CF_3-Ph -CO-c-Pro
                                                          CH_2(3-CF_3-Q-2)
 D-28
            Мe
                              4-CN-Ph -CO-c-Pro
                                                          {
m CH_2}(3-{
m CF_3}-{
m Q-2})
 D-29
           Me
                              4-F-Ph
                                          -CO-c-Pro
                                                          CH_2(3-CF_3-Q-2)
```

【0081】 [表2-a] [0082]

C-16

C-17

C-18

[0080]

【表11】

融点

融点

融点

137~138℃

86~ 88°C

77- 78℃

化合物 No. 物理的性質 C-1 融点 117-119℃ C-2 融点 133-136℃ C-3 融点 139-141℃ C-4 融点 142-143℃ C-5 融点 130-131℃ C-6 融点 106-108℃ C-7 融点 164-166℃ C-8 融点 125-128℃ C-9 融点 113-115℃ C-10 融点 119-121℃ C-11 融点 158-160℃ C-12 点蛹 134-135℃ C-13 融点 192-193℃ C-14 193-194℃ 融点 C-15 融点 147-148℃

	!	C-19	融点 135-139℃
		C-20	融点 139-142℃
•		C-21	融点 139-141℃
			1 1 1 1 1 1 1
[0083]			【表12】
	j,t	- West	
		化合物 No.	物理的性質
		1, 1,	
		C-22	融点,151-153℃
		'.C-23 '''	融点, 135-137℃
	, ,	C-24	融点 214-215℃
	1	C-25	融点 159-162℃
	, t	C-26	融点 122-123℃
		C-27 ' ,	融点 184-186℃
	+	C-28	融点 98-100℃
		· , C-29 · , ·	融点 133-135℃
	,	C-30,	融点 98-100℃
		C-31	融点 144-148℃
		C-32	融点 127-128℃
		C-33;	融点 143-145℃
		C-34	* 粘稠液体
		1	1. 93 (d, 3H, J=7Hz), 2. 28 (s, 3H), 5. 59 (t, 1H, J=7Hz),
		(CDCl ₃)	6. 32 (s, 1H), 6. 75-7: 45 (m, 4H), 7. 70-8. 19 (m, 2H),
	•	C-35	9.50(m,1H) 融点 170-171℃
		.₩C-36 [°]	100-101℃
		SDC-36 C-37	100-101 C 粘稠液体
			1. 27 (d, 6H; J=6. 8Hz), 1. 93 (d, 3H, J=7Hz), 2. 40-2. 90
		(CDC1 ₃)	(m, 1H), 5.50(t, 1H, J=7Hz), 6.34(s, 1H), 7.09-7.36
		, ,, (00013)	(m, 2H), 7. 83–8. 11 (m, 1H), 9. 70 (br s, 1H)
		1 '	\m, 211/, 1. 00 0. 11\m, 111/, 0. 10\(01 0, 111/
[0084]		• • •	【表13】
			· · · · · · · · · · · · · · · · · · ·
		化合物 No.	物理的性質
		C-38	
			1. 93 (d, 3H, J=7Hz), 2. 44 (s, 3H), 5. 46 (t, 1H, J=7Hz),
		(CDCl ₃)	7. 26-7. 60 (m, 2H), 7. 90-8. 14 (m, 1H), 11. 75 (br s, 1H)
		C-39	粘稠液体
			2. 34(s, 3H), 2. 45(s, 3H), 5. 13(s, 2H), 6. 29(s, 1H),
		(CDC1 ₃)	7. 10-7. 30 (m, 2H), 7. 75-8. 00 (m, 1H), 11. 38 (br s, 1H)
		C-40	融点 115-117℃
		C-41	融点 138-139℃
		C-42	融点 99-100℃
		C-43	融点 138-139℃
		C-44	融点 133-135℃
		C-45	融点 117-120℃
		C-46	融点 114-115℃
		C-47	融点 132-133℃
		0.40	耳h上 145 14690

C-48

融点 145-146℃

	C-49	融点 185-186℃
	C-50	融点 134-137℃
	C-51	融点 147-150℃
	C-52	融点 191-194℃
	C-53	融点 121-124℃
	C-54	融点 110-111℃
	C-55	融点 101-102℃
	C-56	融点 131~132℃
[0085]		【表14】
	化合物 No.	物理的性質
	C-57	融点 125-128℃
	C-58	融点 125-128℃ 融点 129-130℃
	C-59	融点 117-118℃
	C-60	融点 138-139℃
	C-61	融点 125-126℃
	C-62	融点 118-119℃
	C-63	融点 171-172℃,
	C-64	融点 260-261℃
	C-65	融点 239-240℃
	C-66	融点 205-206℃
	C-67	
	C-68	FL + 405 4050-
	C-69	•
	C-70	
	C-71	
	C-72	
	C-73	
	C-74	
	C-75	·
	C-76	
	C-77	融点 91-96℃
	C-78	融点 113-114℃
	C-79	融点 64-65℃ 融点 116-117℃
[0086]		【表15】
	101 70 10.	物理的性質
	C-80	融点 95~ 96℃
	C-81	融点 140-143℃
	C-82	融点 150-153℃
	C-83	融点 97-99℃
	C-84	融点 166-167℃
	C-85	融点 122-123℃
	C-86	融点 139-140℃
	C-87	融点 143-144℃
	C-88	粘稠液体

```
<sup>1</sup>H-NMR \delta (ppm): 5.25(s, 2H), 6.37-6.63(m, 1H), 7.10-8.00(m, 4H),
            (CDC1<sub>3</sub>)
                       11.21 (br s, 1H)
                                                 144-145℃
                                            融点
                                            融点 110-111℃
                                            融点
                                                  148-149℃
                                             融点
                                                 132-133℃
                                            融点 109-111℃
                                            点蛹
                                                   79- 81℃
                                            融点 ,107-109℃
 C-95
                                            点蛹
                                                   69- 72℃
 'C-96
                                            融点
                                                  170-171℃
                                            融点
                                                  104-105℃
 C-98
 C-99
                                            融点
                                                  155-156℃
                                                  159-160℃
  C-100
                                            融点
                                      【表16】
化合物 No.
                                              物理的性質
                                            融点
 C-101
                                                  123-124℃
                                                    93-94℃
  C-102
                                            融点
                                            融点 126-127℃
  C-103
  C-104
                                             融点
                                                  120-121℃
  C-105
                                            融点
                                                  112-113℃
C-106
                                            点癌
                                                  150-152℃
»/C-107
                                            融点
                                                  130-132℃
C-108
                                            融点 111-112℃
                                                  136-137℃
  C-109
                                            点癌
C-110
                                                    89- 90℃
                                            融点
                                                  167-168℃
  C-111
                                            融点
  C-112
                                                  173-174℃
                                            融点
 C-113
                                            点蛹
                                                    99-101℃
 C-114
                                            融点
                                                    95- 96℃
  C-115
                                            粘稠液体
      <sup>1</sup>H-NMR \delta (ppm): 1.60(s,6H), 2.27(s,3H), 2.40(s,3H), 5.06(s,2H),
                       6. 21 (s, 1H), 6. 29 (s, 1H), 6. 90-7. 29 (m, 2H),
            (CDCl<sub>3</sub>)
                       7.46-7.74(m, 1H), 9.26(br s, 1H)
  C-116
                                            粘稠液体
      <sup>1</sup>H-NMR \delta (ppm): 1.59(s, 3H), 2.28(s, 3H), 2.42(s, 3H), 3.96(s, 4H),
            (CDC1<sub>3</sub>)
                       5. 14(s, 2H), 6. 24(s, 1H), 6. 88-7. 35(m, 2H),
                       7.41-7.85(m, 1H), 9.88(br s, 1H)
                                      【表17】
化合物 No.
                                              物理的性質
                                             粘稠液体
  C-117
      ^{1}\text{H-NMR} \delta (ppm): 2.30(s, 3H), 5.12(s, 2H), 6.34-6.48(m, 1H),
                       6.97-7.25 (m, 2H), 7.42-7.80 (m, 2H), 11.20 (br s, 1H)
            (CDC1_3)
```

[0087]

[0088]

C-118

融点 104-105℃

	C 110		
	C-119	融点	129-130℃
	C-120	融点	106-107℃
	C-121	融点	110-111℃
	C-122	融点	108-110℃
	C-123	融点	88- 91℃
	C-124	融点	136-138℃
	C-125	融点	95− '96°C
	C-126	融点	113-115℃
	C-127	融点	134-137°C
	C-128	融点	124-126℃
	C-129	融点	110-112℃
	C-130	融点	110-112℃ 131-132℃
	C-131	点蛹	-
	C-132		149-151℃
	C-133	融点	107-109℃
	C-134	点点	133-134℃
	C-135	点癌	118-119¦℃
	C-136	融点	98- 99℃
•	C-137	融点	94- 95℃
	C-13 <i>1</i>	融点	158∸159℃

[0089]

[0090]

【表18】

The state of the s	
融点 124-1259	
32 (3H, s), 5, 14 (2H s)	
	1
	'
	2
~	
融点 108-111℃	
	融点 90- 91℃ 融点 90- 91℃ 融点 175-177℃ 融点 103-105℃ 融点 117-119℃ 融点 109-111℃ 融点 86- 88℃ 融点 140-142℃ 融点 134-136℃ 融点 176-178℃ 融点 150-152℃ 融点 137-140℃

		化合物 No.			物理	里的性質		
() 1	-	C-158			融点	107-110℃	1	
		C-156 C-159			融点	148-150℃		
•		C-160		,	融点	139-141℃	· t'	
		C-161			融点	137-139℃		
		C-162			融点	144-146°Ç		
		C-163			融点	106-108℃		
•		C-164			融点	112−113°C		
	•	C-165		1	融点	140−143℃		
		C-166		. 4	融点	80− 82°C	, '	
· '		C-167			融点	172-174℃	,	
		C-168			融点	119−121℃		
[0091]	表 2 -	- b)			【表20】	,	1 ,	
. ·	_	化合物 No.			物理	里的性質	,	
	-	D-1			融点	122−123℃	,	
		D-2		*	融点	127-128℃	,	
		D-3			融点	70- 71℃		
4		D-4			融点	110−111℃		
		D-5			融点	83- 84℃	. '.	
•		D-6			融点	71− 72°C	<i>.</i> *	
		D-7			融点	88− 89°C		
		D-8			粘稠液			
		¹H-N	MR δ (ppm)		5H, m), 2.34(3H, s)		• • •	
			(CDCl ₃)	6.53(1H, d,	J=2. 2Hz), 6. 98-7.		•	
		D-9			融点	138-140℃	ı	
		D-10			融点	129-131℃		
		D-11			融点	133-134℃		
		D-12				119-120℃		
		D-13	.m. c ()		粘稠剂			
		-H-N			5H, m), 2.35(3H, s)			
		D 14	(CDC1 ₃)	6. 55 (1H, a,	J=2.3Hz), 7.01-7. **			
		D-14	(m) 2 (Th	.0 50-1 69/	粘稠剂 5H, m), 2. 36(3H, s)			
		H-IN	мк о (ррш) (CDCl ₃)		J=2. 5Hz), 7. 03-7.			
[0093]	-	【表21】						
	_	化合物 No. 物理的性質						
	-	D-15 粘稠液体						
		¹H-N	MR δ(ppm)	δ (ppm):0.50-1.53(5H, m),2.34(3H, s),5.26(2H, s),				
			(CDCl ₃) 6.52(1H, d, J=2.3Hz), 7.00-7.89(8H, m)					
		D-16			粘稠剂			
		¹H-N			12H, m), 2.37 (3H, s			
			(CDCl ₃)	2. 56-2. 89 (2H, m), 5.17(2H, s	s),		

```
6. 52(1H, d, J=2.3Hz), 6. 93-7.50(4H, m)
                                                     粘稠液体
        ^{1}H-NMR \delta (ppm):0.49-1.30(5H,m),1.^{1}8(9H,s),2.28(3H,s),
               (CDC1_3)
                           5. 25(2H, s), 6. 54(1H, d, J=2.4Hz)
                          6.91-7.60(4H, m)
                                                     融点 93-94℃
                                                    粘稠液体
        ^{1}\text{H-NMR}^{^{1}} ^{1} ^{1} ^{1} (ppm): 0.62-1.88(14H, m), 2.36(3H, s),
              (CDC1<sub>3</sub>)
                          2.58-2.90(2H, m), 5.47(2H, s),
                          6. 52 (1H, d, J=2. 2Hz), 6. 93-7. 49 (4H, m)
   D - 20
                                                    粘稠液体
      <sup>1</sup>H-NMR δ (ppm): 0.48-2.20(12H, m), 2.35(3H, s), 5.19(2H, s),
              (CDC1<sub>2</sub>)
                         6. 52 (1H, d, J=2. 3Hz), 6. 98-7. 51 (4H, m)
  D-21' ' '
                                                   - 融点 131~132℃
                                             【表22】
化合物 No.
                                                      物理的性質
  D-22
                                                - 粘稠液体
    ^{11}H-NMR \delta (ppm):0.51-1.49(5H, m), 2.31(3H, s), 3.06(6H, s),
                         5. 47 (2H, s), 6. 52 (1H, d, J=2. 5Hz),
                         6. 98-7. 27 (3H, m), 7. 55+7. 71 (1H, m)
 D-23
                                                   粘稠液体
      <sup>1</sup>H-NMR \delta (ppm): 0.53-1.72(5H, m), 2.26(3H, s), 3.75(3H, s),
             (CDC1<sub>3</sub>)
                        5. 22 (2H, s), 6. 45 (1H, d, J=2. 3Hz),
                         6.63-7.12(5H, m), 7.31-7.84(3H, m)
 D-24
                                                   粘稠液体
      ^{1}\text{H-NMR}~\delta (ppm):0.51-1.40(5H, m),2.37(3H, s),5.26(2H, s),
             (CDCl<sub>3</sub>)
                        6.48(1H, d, J=2.7Hz), 6.97-7.53(4H, m),
                        7. 76-8. 32 (4H, m)
 D-25
                                                   融点 134-136℃
 D-26
                                                   融点 111-113℃
 D-27
                                                  粘稠液体
      ^{1}\text{H-NMR} \delta (ppm):0.51-1.38(5H, m), 2.33(3H, s), 5.28(2H, s),
                        6.51 (1H, d, J=2.5Hz), 7.04-8.09 (8H, m)
D-28
     ^{1}\text{H-NMR} \delta (ppm): 0.54-1.38(5H, m), 2.38(3H, s), 5.27(2H, s),
            (CDCl<sub>3</sub>)
                       6.53(1H, d, J=2.0Hz), 7.00-8.08(8H, m)
D-29
                                                  融点 107-108℃
```

【0095】但し、表1-a、表1-b中、Meはメチル基、Etはエチル基、Proはノルマルプロピル基、i-Proはイソプロピル基、c-Proはシクロプロピル基、Buはノルマルブチル基、i-Buはイソブチル基、s-Buはセカンダリーブチル基、t-Buはターシャリーブチル基、c-Buはシクロブチル基、Penはノルマルペンチル基、t-Penはターシャリーペンチル基、Phはフェニル基を表し、Q-2、Q-3、Q-5、Q-6、Q-15およびQ-17は下記を表

[0094]

す。 【0096】 【化32】

【0097】前記スキームあるいは実施例1~4に準じ て合成される本発明化合物の例を、前記実施例化合物も 含めて表3および表4に示すが、本発明はこれらによっ て限定されるものではない。尚、表3および表4中の略 号は、それぞれ以下の意味を表す。

Me:メチル基、Et:エチル基、Pro: ノルマルプ ロピル基、i-Pro:イソプロピル基、Bu:ノルマ ルブチル基、i-Bu:イソブチル基、s-Bu-セカ ンダリーブチル基、t-Bu:ターシャリーブチル基、 Pen:ノルマルペンチル基、i-Pen:イソペンチ ル基、s-Pen:セタンダリーペンチル基、t-Pe n:ターシャリーペンチル基、Hex:ノルマルヘキシ ル基、Hep:ノルマルヘプチル基、c-Pr^lo:シク ロプロピル基、c-Bu:シクロブチル基、c-Pe n:シクロペンチル基、c-Hex:シクロヘキシル 基、c-Hep:シクロヘプチル基、c-Pente: シクロペンテニル基、c-Hexe:シクロヘキセニル 基、all:アリル基を表す。

【0098】〔表3〕 [0099]

[0100]

[0101]

[0102]

[0103]

-34-

[0104]

[0105]

[0106]

-37-

[0107]

-38-

[0108]

[0109]

[0110]

[0111]

-42-

[0112]

[0113]

-44-

[0114]

[0115]

-46-

[0116]

$$\begin{array}{c} R^{2} \\ A \\ A \\ CH-Q^{1} \\ R^{6} \\ CH-Q^{1} \\ CH-Q^{1}$$

[0117]

[0118]

-49-

[0119]

-50-

[0120]

[0121]

-52-

[0122]

$$\begin{array}{c} R^{1} & \stackrel{\longrightarrow}{\downarrow} & \stackrel$$

[0123]

[0124]

[0 1 2 5] 但し、AはH、CHO、MeCO、EtCO、ProCO、i -ProCO、BuCO、i-BuCO、s-BuCO、t-BuCO、CF $_3$ CO、CF $_2$ C1 CO、CC1 $_3$ CO、CHC1 $_2$ CO、C $_2$ F $_5$ CO、CF $_3$ CH、MeCHC1CO、C HF $_2$ CF $_2$ CO、CF $_2$ C1CF $_2$ CO、EtCHC1CO、i-ProCHBrCO、CO $_2$ M e、CO $_2$ Et、CO $_2$ Pro、CO $_2$ i-Pro、CO $_2$ Bu、CO $_2$ t-Bu、CO $_2$ CH $_2$ CF $_3$ 、CO $_2$ CH(CF $_3$) $_2$ 、CO $_2$ (CH $_2$) $_4$ C1、CH $_2$ =CHCO、CH $_2$ =CMeC O、MeCH=CHCO(EorZ)、Me $_2$ C=CHCO、C(0)SMe、C(0)SEt、C (0)SBu、c-ProCO、1-Me-c-ProCO、2-Me-c-ProCO、c-BuC O、c-PenCO、c-HexCO、CO $_2$ c-Pro、CO $_2$ c-Pen、CO $_2$ c-He

x、MeS、EtS、BuS、MeSO、EtSO、BuSO、MeSO2、EtSO2、ProSO2、BuSO2、CCl3S、CF3S、CF2ClS、C2F5S、CF3 (C F2)3S、CCl3SO、CF3SO、CF2ClSO、C2F5SO、CF3 (CF2)3SO、CCl3 SO2、CF3SO2、CF2ClSO2、C2F5SO2またはCF3 (CF2)3SO2を示し、XはO、S、NH、MeN、EtN、ProNまたはiso-ProNを示す。

【0126】 【表23】

R¹	R ²	R ⁶	Q^1
Me	Н	Н	3-C1-Q-2
Me	Н	Н	3, 5-Cl ₂ -Q-2
Me	Н	Н	3-C1-5-Me-Q-2
Me	Н	Н	3, 4-Cl ₂ -Q-2
Me	Н	Н	3, 5-Cl ₂ -Q-2
Me	Н	Н	3, 5-Cl ₂ -4-CO ₂ Me-Q-2
Me	Н	Н	3-Br-Q-2
Me	Н	Н	4-C1-Q-2
Me	Н	Н	3-Me-4-C1-Q-2
Me	Н	Н	3-i-Pro-5-C1-Q-2

Me	Н	Н	3-t-Bu-5-C1-Q-2
Me	Н	Н	3-CN-Q-2
Me	Н	Н	3-CN-5-C1-Q-2
Me	Н	Н	3-CN-5-Me-Q-2
Me	Н	Н.	3-CN-4-C1-Q-2
Me	Н	Н	4-CN-Q-2
Me	Н	Н	3-C1-4-NO ₂ -Q-2
Me	Н	Н	3-CCl ₃ -Q-2
Me	Н	Н	3-CC1 ₃ -5-C1-Q-2
Me	Н	Н ''	3-CC1 ₃ -5-Me-Q-2
Me	Н	. н н	3-CCl ₃ -5-Et-Q-2
Me	Н .	Н	3-CF ₂ C1-Q-2
Me	Н	Н	3-CF ₂ C1-5-C1-Q-2
			【表24】
. R1	R²	R ⁶	Q^1
Me	Н	Н	3-CF ₂ C1-5-Me-Q-2
Me	H	Н	3-CF ₂ C1-5-Et-Q-2
Me	Н	'Η	3-CF ₂ C1-5-F-Q-2
Me	Н	Н	3-CF ₃ -Q-2
Me	Н	Н	3-CF ₃ -5-C1-Q-2
Me	Н	Н	3-CF ₃ -5-Me-Q-2
Me	Н	Н	3-CF ₃ -5-Et-Q-2
Me	Н	Н .	3-CF ₃ -5-F-Q-2
Me	Н	Н	3-CF ₃ -4-C1-Q-2
Me	Н	Н	3-CF ₃ -4-C1-5-Me-Q-2
Me	Н	Н	3-CF ₃ -4-NO ₂ -Q-2
Me	Н	Н	3-CF ₃ -4-Me-Q-2
Me	Н	Н	3-CF ₃ -5-0Me-Q-2
Me	Н	Н	3-CF ₃ -4, 5-Me ₂ -Q-2
Me	Н	Н	3-CF ₃ -4-CO ₂ Me-5-C1-Q-2
Me	Н	Н	3-CF ₃ -5-Br-Q-2
Me	Н	Н	3-CF ₃ -4-Br-Q-2
Me	Н	Н	3, 5-(CF ₃) ₂ -Q-2
Me	Н	Н	3-C ₂ F ₅ -Q-2
Me	Н	Н	3-C ₂ F ₅ -5-C1-Q-2
Me	Н	Н	$3-C_2F_5-5-Me-Q-2$
Me	Н	Н	$3-C_2F_5-5-Et-Q-2$
Me	Н	Н	3-C ₂ F ₅ -5-F-Q-2
			【表 2 5 】
R¹	R²	R ⁶	Q^1
Me	Н	Н	3-C ₂ F ₅ -4-C1-5-Me-Q-2
Me	Н	Н	3-C ₂ F ₅ -4-Cl-Q-2

[0127]

[0128]

-57-

Н

Н

Мe

Me

Н

Н

 $3\text{-}\mathrm{CF_3CH_2}\text{-}\mathrm{Q}\text{-}2$

3-CF₃CH₂-5-C1-Q-2

Me	Н	Н	3-CF ₃ CH ₂ -5-Me-Q-2
Me	, Н	Н	3-CF ₃ CH ₂ -5-Et-Q-2
Me '	Н	Н	3-CF ₃ CH ₂ -4-C1-5-Me-Q-2
Me '	Н	Н	3-0CF ₃ -Q-2
Me	Н	, <mark>'н</mark> ',	3-0CF ₃ -5-C1-Q-2
Me	ı, H	Н '	3-OCF ₃ -5-Me-Q-2
Me	· H	Н	3-0CF ₃ -5-Et-Q-2
Me !:	i H	Н	3-OCF ₃ -4-C1-5-Me-Q-2
Me	· H	H	3-0CHF ₂ -Q-2
Me	H	Н	3-0CHF ₂ -5-C1-Q-2
Me i'i'	Н	Н	3-OCHF ₂ -5-Me-Q-2
Me	Н	Н	3-OCHF ₂ -4-C1-5-Me-Q-2
Me	H	Н	3-C ₃ F ₇ -Q-2
Me present	Н	Н	3-C ₃ F ₇ -5-C1-Q-2
Me '	Н	Н	3-C ₃ F ₇ -5-Me-Q-2
Me,	Н	Н	3-Me-4-NO ₂ -Q-2
ni Me r ≐ i′ .	Н	Н	3, 5-Me ₂ -4-NO ₂ -Q-2
Me , i	H	Н	3-i-Pro-4-NO ₂ -Q-2
Me	Н	Н	3-i-Pro-4-C1-Q-2

[0129]

【表	2	6	1

R	R ²	R ⁶	Q ¹
Me	Н	Н	3-t-Bu-4-NO ₂ -Q-2
Me '	Н	H	3-t-Bu-4-C1-Q-2
Me ' '	3-C1	H	3-CF ₃ -Q-2
' Me	3-C1	Н	3-CF ₃ -5-Me-Q-2
Me	3-Me	Н	3-CF ₃ -Q-2
Me	3-Me	Н	3-CF ₃ -5-Me-Q-2
Me	$3-N0_{2}$	Н	3-CF ₃ -Q-2
Me	3-NO ₂	H	3-CF ₃ -5-Me-Q-2
Me	3-0Me	Н	3-CF ₃ -Q-2
Me	3-0Me	Н	3-CF ₃ -5-Me-Q-2
Me	4-N0 ₂	H	3-CF ₃ -Q-2
Me	4-N0 ₂	Н	3-CF ₃ -5-Me-Q-2
Cl	Н	Н	3-CF ₃ -Q-2
Cl	Н	Н	3-CF ₃ -5-C1-Q-2
Cl	Н	Н	3-CF ₃ -5-Me-Q-2
Et	Н	Н	3-CF ₃ -Q-2
Et	Н	Н	3-CF ₃ -5-C1-Q-2
Et	Н	Н	3-CF ₃ -5-Me-Q-2
OMe	Н	Н	3-CF ₃ -Q-2
OMe	Н	Н	3-CF ₃ -5-C1-Q-2
OMe	Н	Н	3-CF ₃ -5-Me-Q-2
SMe	Н	Н	3-CF ₃ -Q-2
SMe	Н	Н	3-CF ₃ -5-C1-Q-2

[0130]

【表27】

	R¹	R ²	R ⁶	Q ¹
	SMe	Н	н .	3-CF ₃ -5-Me-Q-2
	Me	Н	H	5-CF ₃ -Q-3 (R ⁴ :H)
	Me	Н	H	5-CF ₃ -Q-3(R ⁴ :Me)
	Me	Н	Н	5-CF ₃ -4-C1-Q-3 (R ⁴ :Me)
	Me	Н	Н	5-CF ₃ -4-Me-Q-3(R ⁴ :Me)
	Cl	Н	Н .	5-CF ₃ -Q-3(R ⁴ :Me)
	Me	Н	H +	$3-CF_3-5-Me-Q-4(R^4:Me)$
	Me	Н	H	3-CF ₃ -5-Me-Q-4(R ⁴ :H)'
	Me	н .	H 1 1	3-Me-5-CF ₃ -Q-4(R ⁴ :Me)
	Me	н `	Н	3-CF ₃ -Q-5 (R ⁴ :H)
	Me	Н	Н ,	3-CF ₃ -Q-5 (R ⁴ : Me)
	Cl	Н	Н .	3-CF ₃ -Q-5(R ⁴ :Me)
	Me	Н	Н	5-CF ₃ -Q-15
	Me	Н	Н	5-CF ₃ -4-Me-Q-15
	C1	H '	H	5-CF ₃ -Q-15
,	Me	H	Н	3-CF ₃ -5-Me-Q-16
	Me	H _.	H ,	3-Me-5-CF ₃ -Q-16
	Me	Н	H .	3-CF ₃ -Q-17
	Me	H	Ή '	3-CF ₃ -4-Me-Q-17
	C1	Н	H	3-CF ₃ -Q-17
	C1	H	Me	3-CF ₃ -5-Me-Q-2
	Me	Н	Н	3-C1-Q-1
	Me	Н	Н	3-CF ₃ -Q-1

[0131]

【表28】

			1	
R ¹	R²	R ⁶	Q^1	
Me	Н	Н	3-NO ₂ -Q-1	
Me	Н	Н	4-CF ₃ -Q-6	
Me	Н	H	2-Me-4-CF ₃ -Q-6	
Me	Н	H	2-C1-4-CF ₃ -Q-6	
Me	Н	H	$4-CF_3-Q-7(R^4:H)$	
Me	Н	Н	4-CF ₃ -Q-7(R ⁴ :Me)	
Me	Н	Н	5-CF ₃ -Q-7(R ⁴ :Me)	
Me	Н	Н	2-CF ₃ -Q-8 (R ⁴ :H)	
Me	Н	Н	2-CF ₃ -Q-8(R ⁴ :Me)	
Me	Н	Н	2-CF ₃ -5-Me-Q-8(R ⁴ :H)	
Me	Н	Н	2-CF ₃ -5-Me-Q-8(R ⁴ :Me)	
Me	Н	Н	2-CF ₃ -5-C1-Q-8(R ⁴ :H)	
Me	Н	Н	2-CF ₃ -5-C1-Q-8(R ⁴ :Me)	
Me	Н	Н	2-CF ₃ -Q-9 (R ⁴ :H)	
Me	Н	Н	2-CF ₃ -Q-9(R ⁴ :Me)	
Me	Н	Н	2-CF ₃ -4-Me-Q-9(R ⁴ :H)	
Me	Н	Н	2-CF ₃ -4-Me-Q-9(R ⁴ :Me)	
Me	Н	Н	2-CF ₃ -Q-10	
Me	Н	Н	2-CF ₃ -5-SMe-Q-10	
Me	Н	Н	2-CF ₃ -5-S0 ₂ Me-Q-10	
			J 2	

	Me	Н	Н	2, 5-Cl ₂ -Q-10		
	Me	' Н	H .	5-CF ₃ -Q-11 (R ⁴ :H)		
	Me	, H	Н	5-CF ₃ -Q 11 (R ⁴ :Me)		,
. •	1	,		3 4 11 (11 1110)		
[0132]			1 . 1	【表29】		
î +	-	1		1.1		
, 1	R ¹	R ²	R ⁶		,	
1	h 114-	[,	'	5 01 0 11 (74 11)		
'+1	, Me	H	Н	5-C1-Q-11 (R ⁴ :H)		' 1
	Me	Н	Н	5-C1-Q-11 (R4:Me)		
+	Me	Н '	' Н	3-CF ₃ -Q-12	1	
· k	Me	H- '	Н	3-CF ₃ -4-Me-Q-12		
!	'Me,; Me ı,';'	H	H	3-CF ₃ -4-C1-Q-12		1
		'H'	Н	5-CF ₃ -Q-13 (R ⁴ :H)		
	Me	' H	Н	5-CF ₃ -Q ₇ 13 (R ⁴ :Me)		F
	'Me	H	Н	3-CF ₃ -Q-14(R ⁴ :Me)		
	Me' '	••	Н	4-CF ₃ -Q-18		
	Me	. Н	Н	5-CF ₃ -Q-18		
	Me	Н	Н	2-CF ₃ -Q-19		
	Me ,	, H 'm	H	2-CF ₃ -5-Me-Q-19		• •
	Me	• Н	н	2-CF ₃ -Q-20		1
,	Me	H	Н ,	2-CF ₃ -4-Me-Q-20		•
	, Me	H	H	5-CF ₃ -Q-21	•	•
	Me ,	Н	H	5-C1-Q-21		
r ₁	Me.	Н	H	4-CF ₃ -Q-22		
	Me	H	Н	4-C1-Q-22		
•	Me Me	Н	Н	2-CF ₃ -Q-23		
i	Me	Н .	Н	2-C ₂ F ₅ -Q-23		
1	Me	H	Н	5-CF ₃ -Q-24		
•	′ Me ++.	Н .	Н	3-CF ₃ -Q-25		
	Me _,	H	Н	3-CF ₃ -Q-26	k	·
[0133]	,		_	【表30】	•	·
	R ¹	R ²	R ⁶	Q ¹		
	Me	Н	Н	4-CF ₃ -Q-27		
	Me	Н	Н	4-CF ₃ -5-C1-Q-27		
	Me	Н	Н	5-CF ₃ -Q-27		
	Me	Н	Н	2-CF ₃ -Q-28		
	Me	Н	H	2-CF ₃ -5-C1-Q-28		
	Me	Н	Н	$2\text{-CF}_3\text{-}4\text{-Me-Q-}29$		
	Me	Н	Н	2-CF ₃ -Q-29		
	Me	Н	Н	5-CF ₃ -Q-30		
•	Me	Н	Н	5-C1-Q-30		
	Me	Н	Н	5-C ₂ F ₅ -Q-30		
	Me	. Н	Н	4-CF ₃ -Q-31		
	Me	Н	Н	2-CF ₃ -Q-32		
	t-Bu	Н	Н	3-CF ₃ -Q-2		
	CF ₃	Н	Н	3-CF ₃ -Q-12		
		•				

ı		OBu OCHF ₂ SBu MepCH ₂ EtOCH ₂ MeSCH ₂ MeCO F	H H H H H H H H H	H H H H H H	4-CF ₃ -Q-18 3-CN-Q-2 3-CF ₃ -Q-2 2-CF ₃ -Q-19 5-CF ₃ -Q-24 4-CF ₃ -Q-27 4-CF ₃ -Q-31 3-CF ₃ -Q-2 3-CF ₃ -Q-2	•
[0134]	, j				【表31】	
	1	R. 1	R ²	R ⁶	Q.1	
		. , F	F	Н	3-C ₂ F ₅ -Q-2)
	+	Br' i		Н	3-CHF ₂ -Q-2	
	'	NO ₂	. H	Н	3-CF ₃ -Q-2	
		CN	Н	, Н	4-C1-Q-2	
		Me	3-Pro	H .	3-CF ₃ -Q-2	
		Me	3-CF ₃	Н	3-CF ₃ -Q-2	•
		Me	4-0-i-Pro		3-CF ₃ -Q-2	
	1	Me	4-0CF ₃	Н '	3-CF ₃ -Q-2	
		Me	3-Br	Н	3-CF ₃ -Q-2	
		. Me	3-CN	Н	3-CF ₃ -Q-2	
	1	Me	Н	Et	3-CF ₃ -Q-2	
		a∳o. Me¹′	Н	i-Pro	3-CF ₃ -Q-2	
	•	Me	Н .	Bu	3-CF ₃ -Q-2	
		CN	Н	Н	3-CF ₃ -Q-2	
		CN,	H .	Н	3-C ₂ F ₅ -Q-2	
		CN	H	Н	3-C1-Q-2	
		CN	Н	Н	3-CN-Q-2	
		CN	Н	Н	3-Br-Q-2	
	1	CN	Н	Н	3-0CF ₃ -Q-2	
		CN	Н	Н	$3-CF_3(CF_2)_2-Q-2$	
		CN	Н	Н	3-CF ₃ (CF ₂) ₃ -Q-2	
		CN	Н	Н	3-0CH ₂ CF ₃ -Q-2	
		CN	. Н	Н	3-CF ₃ -5-CH ₃ -Q-2	
[0135]					【表 3 2】	
		R ¹	R²	R ⁶	Q ¹	
		CN	Н	Н	3-i-Pr-5-C1-Q-2	
		Me	Н	Н	3-CN-5-CH ₃ -Q-2	
		Me	Н	Н	3-CN-5-C1-Q-2	
		Me	Н	Н	3-CN-Q-2	
		Me	Н	Н	3-CF ₃ (CF ₂) ₂ -Q-2	
		Me	Н	Н	3-CF ₃ -4-CO ₂ Bu-Q-2	
		Me	Н	Н	$3, 5 - (C_2F_5)_2 - Q - 2$	
		Me	H	Н	$3-CF_3(CF_2)_2-4-C1-Q-2$	

Me	Н	Н	3-CF ₃ -5-0Bu-Q-2
Me	Н.	Н	4-C1-5-OCH ₂ CF ₃ -Q-2
Me	Н	Н	2-CF ₃ -5-SBu-Q-10
Me	Н	Н	2-CF ₃ -5-SO ₂ Bu-Q-10
Me	Н	Н	2-CF ₃ -5-SOMe-Q-10
Me	Н	Н	2-CF ₃ -5-S0Bu-Q-10
Me	Н	Н	3-CF ₃ -4-SCF ₃ -Q-2
Me	Н	Ĥ	3-CF ₃ -4-S0CF ₃ -Q-2
Me.	Н	H	3-CF ₃ -4-SO ₂ CF ₃ -Q-2
Me	Н	Н	3-CF ₃ -4-S(CF ₂) ₃ CF ₃ -Q-2
Me	Н	Н	3-CF ₃ -4-S0(CF ₂) ₃ CF ₃ -Q-2
Me	H	Н	3-CF ₃ -4-SO ₂ (CF ₂) ₃ CF ₃ -Q-2
Me	Н	Н	$3\text{CF}_34\text{CO}_2\text{HQ-}2$

【0136】〔表4〕 【0137】 【化59】

[0138]

[0139]

$$\begin{array}{c} R^{1} \stackrel{\longrightarrow}{\longrightarrow} P^{2} \stackrel{\longrightarrow$$

[0140]

-64-

[0141]

-65-

[0142].

-66-

[0143]

[0144]

$$\begin{array}{c} R^{2} \\ R^{1} \\ R^{2} \\$$

[01,45]

$$R^1 \stackrel{4}{\swarrow}_6$$
 $R^1 \stackrel{4}{\swarrow}_6$

$$\begin{array}{c} R^{2} \\ A \downarrow \\ A \downarrow$$

[0146]

$$\begin{array}{c} R^{2} \\ R^{1} \\ R^{2} \\$$

[0147]

[0148]

-79-

[0149]

$$\begin{array}{c} R^{2} \\ R^{1} \\ R^{2} \\ R^{3} \\ R^{4} \\ R^{2} \\ R^{3} \\ R^{4} \\ R^{2} \\ R^{3} \\ R^{4} \\ R^{2} \\ R^{4} \\ R^{4} \\ R^{2} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{4} \\ R^{5} \\$$

[0150]

-74-

[0151]

-75-

[0152]

-76-

[0153]

[0154]

[0155]

$$\begin{array}{c} R^{2} \\ R^{1} \\ \downarrow \\ 6 \\ Q^{2} \\ A \\ \end{array} \begin{array}{c} Q^{2} \\ \\ \end{array} \begin{array}{c} Q^{2} \\ \end{array} \begin{array}{c} Q^{2} \\ \end{array} \begin{array}{c} Q^{2} \\ \end{array} \begin{array}{c} Q^{2} \\ \end{array} \begin{array}{c}$$

[0156]

[0157]

[0158]

-82-

[0159]

-83-

$$\begin{array}{c} R^{1} \\ R^{1} \\ R^{2} \\ R^{1} \\ R^{2} \\$$

[0160]

$$\begin{array}{c}
R^{1} \\
R^{2} \\
R^{3} \\
R^{2} \\
R^{1} \\
R^{2} \\
R^{2}$$

$$R^{1} - \underbrace{ \begin{bmatrix} R^{2} \\ -1 \\ -1 \end{bmatrix}^{0}_{-1} - NC - CH_{2}S - i - Pro}_{Q^{2} A}$$

$$R^{1} \xrightarrow{\begin{array}{c} 4 \\ 4 \\ 6 \end{array}} \begin{array}{c} R^{2} \\ NC \cdot (CH_{2})_{4}C \equiv CCI \\ A \end{array}$$

$$\mathbf{R}^{1} = \mathbf{P}^{2} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{E} \mathbf{C} \mathbf{B} \mathbf{U}$$

[0162]

【化84】

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{3} \\ R^{1} \\ R^{2} \\$$

[0163] 但し、AはH、CHO、Me CO、E t CO、ProCO、i-ProCO、Bu CO、i-Bu CO、s-Bu CO、t-Bu CO、CF3 CO、CF2 Cl CO、CCl3 CO、CHCl2 CO、C2 F5 CO、CF3 CH2 CO、Me CHCl CO、CHF2 CF2 CO、CF2 Cl CF2 CO、Me CHCl CO、CHF2 CF2 CO、CF2 Cl CF2 CO、E t CHCl CO、i-ProCHBr CO、CO2 Me、CO2 Et、CO2 Pro、CO2 i-Pro、CO2 Bu、CO2 t-Bu、CO2 CH2 CF3、CO2 CH (CF3)2、CO2 (CH2)4 Cl、CH2 = CHCO、CH2 = CMe CO、Me CH=CHCO (E or C)、Me2 C=CHCO、C (O) SMe、C (O) SEt、C (O) SBu、c-ProCO、1-Me-c-ProCO、2-Me-c-ProCO、c-Bu

CO、 c-PenCO、 c-HexCO、 CO_2 c-P ro、 CO_2 c-Pen、 CO_2 c-Hex、 MeS、 EtS、 BuS、 MeSO、 EtSO、 BuSO、 $MeSO_2$ 、 $EtSO_2$, $ProSO_2$, $BuSO_2$, CCI_3 S, CF_3 S, CF_2 CIS, C_2 F_5 S, CF_3 $(CF_2)_3$ S, CCI_3 SO, CF_3 SO, CF_2 CISO, C_2 F_5 SO, CCI_3 SO0, CCI_3 SO_2 0, CCI_3 0, CI1, CI2, CIISO2, CIISO3, CIIISO4, CIIISO5, CIIISO5, CIIISO6, CIIISO7, CIIISO8, CIIISO9, CI

【0164】【表33】

_

Me	Н	3-Br-Q-2		
Me	н	4-C1-Q-2		
Me	Н	3-Me-4-C1-Q-2		,
Me	Н	3-i-Pro-5-C1-Q-2	1	1
Me ·	Н	3-t-Bu-5-C1-Q-2		
Me	Н	3-CN-Q-2		· ('
Me	Н	3-CN-5-C1-Q-2		
Me	Н	3-CN-5-Me-Q-2	1	
Me	Н	3-CN-4-C1-Q-2	i i	
Me	Н	4-CN-Q-2		
Me	Н	3-C1-4-N0 ₂ -Q-2	1.1	
Me	Н	3-CCl ₃ -Q-2		.'
Me	Н	3-CC1 ₃ -5-C1-Q-2		
Me	Н	3-CCl ₃ -5-Me-Q-2	, , ,	
Me	Н	3-CCl ₃ -5-Et-Q-2		
Me	Н	3-CF ₂ C1-Q-2		'
Ме	. Н	3-CF ₂ C1-5-C1-Q-2	'	1
 .		【表34】	1	.*
R ¹	R ²	Q^2	lj	•
Me	Н	3-CF ₂ C1-5-Me-Q-2		.
Me	Н	3-CF ₂ C1-5-Et-Q-2	,	
Me	Н	3-CF ₂ C1-5-F-Q-2	t	. 4
Me	Н	3-CF ₃ -Q-2	i	
Me	Н	3-CF ₃ -5-C1-Q-2		
Me	Н	3-CF ₃ -5-Me-Q-2		
Me	Н	3-CF ₃ -5-Et-Q-2		
Me	Н	3-CF ₃ -5-F-Q-2		
Me	Н	3-CF ₃ -4-C1-Q-2		ŧ
Me	Н	3-CF ₃ -4-C1-5-Me-Q-2	,	
Me	Н	3-CF ₃ -4-NO ₂ -Q-2	1	
Me	Н	3-CF ₃ -4-Me-Q-2		
Me	Н	3-CF ₃ -5-OMe-Q-2		
Me	Н	3-CF ₃ -4, 5-Me ₂ -Q-2		
Me	Н	3-CF ₃ -4-CO ₂ Me-5-C1-Q-	-2	
Me	Н	3-CF ₃ -5-Br-Q-2		
Me	Н	3-CF ₃ -4-Br-Q-2		
Me	Н	3, 5-(CF ₃) ₂ -Q-2		
Me	Н	3-C ₂ F ₅ -Q-2		
Me	Н	3-C ₂ F ₅ -5-C1-Q-2		
Ma	Н	3-C ₂ F ₅ -5-Me-Q-2		
Me				
ме Ме	H	$3-C_2F_5-5-Et-Q-2$		
	H H	3-C ₂ F ₅ -5-Et-Q-2 3-C ₂ F ₅ -5-F-Q-2		

[0165]

[0166]

 R^1

R²

Q²

Me	Н	$3-C_2F_5-4-C1-5-Me-Q-2$
Me	Н	3-C ₂ F ₅ -4-Cl-Q-2
Me	Н	3-CF ₃ CH ₂ -Q-2
Me	Н	3-CF ₃ CH ₂ -5-C1-Q-2
Me	Н	3-CF ₃ CH ₂ -5-Me-Q-2
Me	Н	3 -CF $_3$ CH $_2$ -5-Et-Q-2
Me	Н	3-CF ₃ CH ₂ -4-Cl-5-Me-Q-2
Me	Н	3-OCF ₃ -Q-2
Me	Н	3-OCF ₃ -5-C1-Q-2
Me	Н	3-OCF ₃ -5-Me-Q-2
Me	Н	3-OCF ₃ -5-Et-Q-2
Me	Н	3-OCF ₃ -4-C1-5-Me-Q-2
Me	Н	3-OCHF ₂ -Q-2
Me	Н	3-OCHF ₂ -5-C1-Q-2
Me	Н	$3-OCHF_2-5-Me-Q-2$
Me	Н	3-OCHF ₂ -4-C1-5-Me-Q-2
Me	Н	3-C ₃ F ₇ -Q-2
Me	Н	3-C ₃ F ₇ -5-C1-Q-2
Me	Н.	3-C ₃ F ₇ -5-Me-Q-2
Me	Н	3-Me-4-NO ₂ -Q-2
Me	Н	3, 5-Me ₂ -4-N0 ₂ -Q-2
Me	Н	3-i-Pro-4-NO ₂ -Q-2
Me	Н	3-i-Pro-4-C1-Q-2

[0167]

【表36】

R¹	R²	Q ²
Me	Н	3-t-Bu-4-NO ₂ -Q-2
Me	Н	3-t-Bu-4-Cl-Q-2
Me	3-C1	3-CF ₃ -Q-2
Me	3-C1	3-CF ₃ -5-Me-Q-2
Me	3-Me	3-CF ₃ -Q-2
Me	3-Me	3-CF ₃ -5-Me-Q-2
Me	3-NO ₂	3-CF ₃ -Q-2
Me	3-N0 ₂	3-CF ₃ -5-Me-Q-2
Me	3-0Me	3-CF ₃ -Q-2
Me	3-0Me	3-CF ₃ -5-Me-Q-2
Me	4-NO ₂	3-CF ₃ -Q-2
Me	4-N0 ₂	3-CF ₃ -5-Me-Q-2
Cl	Н	3-CF ₃ -Q-2
Cl	Н	3-CF ₃ -5-C1-Q-2
Cl	Н	3-CF ₃ -5-Me-Q-2
Et	Н	3-CF ₃ -Q-2
Et	Н	3-CF ₃ -5-C1-Q-2
Et	Н	$3-CF_3-5-Me-Q-2$
OMe	Н	3-CF ₃ -Q-2
OMe	Н	3-CF ₃ -5-C1-Q-2
OMe	Н	$3-CF_3-5-Me-Q-2$
SMe	Н	3-CF ₃ -Q-2

[0168]

!' 	【表 3 7 】
R ¹ R ²	$\mathbf{Q^2}$
SMe H	3-CF ₃ -5-Me-Q-2
Me H	5-CF ₃ -Q-3 (R ⁴ :H)
Me H	5-CF ₃ -Q-3 (R ⁴ :Me)
Me, H	$5-CF_3-4-C1-Q-3(R^4:Me)$
Me H	5-CF ₃ -4-Me-Q-3(R ⁴ :Me)
C1 H	5-CF ₃ -Q-3'(R ⁴ :Me)
Me H	$3-CF_3-5-Me-Q-4(R^4:Me)$
Me H H	$3-CF_3-5-Me-Q_1^4(R^4:H)$
Me H	$3-Me-5-CF_3-Q-4(R^4:Me)$
Me, H	3-CF ₃ -Q-5 (R ⁴ :H)
' iMe i 'i' H	3-CF ₃ -Q-5(R ⁴ :Me)
C1 H	3-CF ₃ -Q-5(R ⁴ :Me)
Me H	5-CF ₃ -Q-15
Me H	5-CF ₃ -4-Me-Q-15
$\mathbf{Cl}_{\mathbf{i}',\mathbf{j}'}$ \mathbf{i}' $\mathbf{H}_{\mathbf{i}',\mathbf{j}'}$	5-CF ₃ -Q-15
Me H	3-CF ₃ -5-Me-Q-16
Me H	3-Me-5-CF ₃ -Q-16
Me , H	3-CF ₃ -Q-17
Me H	3-CF ₃ -4-Me-Q-17
C1 H	3-CF ₃ -Q-17

【0169】但し、表3及び表4中のQ-1~Q-32 は下記を表す。

【0170】 【化85】

[0171]

【0172】本発明化合物を除草剤と30で施用するに見32 たっては、一般には適当な担体、例えばクレー、タル ク、ベントナイト、珪藻土、ホワイトカーボン等の固体 担体あるいは水、アルコール類(イソプロパノール、ブ タノール、ベンジルアルコール、フリフリルアルコール 等)、芳香族炭化水素類(トルエン、キシレン等)、エ ーテル類(アニソール類)、ケトン類(シクロヘキサノ ン、イソホロン類)、エステル類(酢酸ブチル類)、酸 アミド類(N-メチルピロリドン等)またはハロゲン化 炭化水素類(クロルベンゼン等)などの液体担体と混用 して適用することができ、所望により界面活性剤、乳化 剤、分散剤、浸透剤、展着剤、増粘剤、凍結防止剤、固 結防止剤、安定剤などを添加し、液剤、乳剤、水和剤、 ドライフロアブル剤、フロアブル剤、粉剤、粒剤等任意 の剤型にて実用に供することができる。

【0173】また、本発明化合物は必要に応じて製剤ま たは散布時に他種の除草剤、各種殺虫剤、殺菌剤、植物 生長調節剤、共力剤などと混合施用しても良い。特に、 他の雑草剤と混合施用することにより、施用薬量の減少 による低コスト化、混合薬剤の相乗作用による殺草スペ クトラムの拡大や、より高い殺草効果が期待できる。こ の際、同時に複数の公知除草剤との組み合わせも可能で

ある。本発明化合物と混合使用する除草剤の種類として は、例えば、ファーム・ケミカルズ・ハンドブック(Far m Chemicals Handbook)、1995年版に記載されている 化合物などがある。

【0174】本発明化合物の除草剤としての施用薬量は 適用場面、施用時期、施用方法、栽培作物等により差異 はあるが一般には有効成分量としてヘクタール(ha)当た り0.0001~10kg程度、好ましくは0.001~5kg程度が適当 である。次に具体的に本発明化合物を用いる場合の製剤 の配合例を示す。但し本発明の配合例は、これらのみに 限定されるものではない。なお、以下の配合例において 「部」は重量部を意味する。

【0175】〔水和初〕

【UI/5】【水和剂】	
発明化合物	5~80部
固体担体	10~85部
界面活性剤	1~10部
その他	1~ 5部
その他として、例えば固結	i 防止剤などがあげられる。
【0176】 [乳剤]	
本発明化合物	1~30部
液体担体	55~95部
界面活性剤	4~15部

[フロアブル剤]	·
	~70部
	~65部
1 1.	~12部
	~30部
その他として、例えば凍結防止剤、増料	
る。	1A1 47 10-100 10 10 10 10 10 10 10 10 10 10 10 10
	アブル剤) !]
本発明化合物 200	~90部
· ·	~60部
4	√20部
[粒剤]	, 2046
本発明化合物 0.01	~10部
固体担体 90~99	
	· 55的 ~ 5部
[配合例1] 水和剤	- Одр
	50部
本発明化合物 No. C-55 ジークライト PF	43部 '
(カオリン系クレー:ジークライト工業	
	2部
ソルボール 5050 (アニオン性界面活性剤:東邦化学工業	
ルノックス 10000	'3部'
(アニオン性界面活性剤:東邦化学工業	
カープレックス #80 (固結防止剤)	2部
(ホワイトカーボン:塩野義製薬 (株)	
以上を均一に混合粉砕して水和剤とする	
【0178】 [配合例2] 乳剤	•
本発明化合物 No. C-46	3部 」
キシレン	76部
イソホロン	15部
ホルポール 3005X	6部
(非イオン性界面活性剤とアニオン性界	• •
合物:東邦化学工業(株)商品名)	min m/// C *> 120
以上を均一に混合して乳剤とする。	
【0179】 [配合例3] フロアブル剤	ı
本発明化合物 No. C-4	, 35部
アグリゾール S-711	8部
(非イオン性界面活性剤:花王(株)商	
ルノックス 1000C	0. 5部
(アニオン性界面活性剤:東邦化学工業	
1%ロドポール水	20部
(増粘剤:ローン・プーラン社商品名)	20,7,5
エチレングリコール(凍結防止剤)	8部
	28. 5部
以上を均一に混合して、フロアブル剤と	
[0180]	•
〔配合例4〕粒状水和剤(ドイラフロア	ブル剤)
本発明化合物 No. C-31	75部
イソバン No. 1	10部

(アニオン性界面活性剤:クラレイソプレンケミカル

(株) 商品名)

バゴレックス N

5部

'(アニオン性界面活性剤:山陽国策パルプ (株) 商品 名)

カープレックス #80

10部

(ホワイトカーボン:塩野義製薬(株)商品名) 以上を均一に混合微粉砕してドライフロアブル剤とする。

【0181】[配合例5] 粒剤

本発明化合物 No. C-20

0.1部

ベゾトナイト

55.0部

タルク

44.9部

以上を均一に混合粉砕した後、少量の水を加えて撹拌混合捏和し、押出式造粒機で造粒し、乾燥して粉剤にする。

【0182】使用に際しては上記水和剤、乳剤、フロアブル剤、粒状水和剤は水で50~1000倍に希釈して、有効成分が1~10,000ppm、もしくは有効成分が1~クタール(ha)当たり0.0001~10kgになるように散布する。次に、本発明化合物の除草剤としての有用性を以下の試験例において具体的に説明する。

【0183】 [試験例1] 土壌処理による除草剤効果試験

縦21cm、横13cm、深さ7cmのプラスチック製箱に殺菌した洪積土壌を入れ、ノビエ(A)、エノコログサ(B)、イチビ(C)、アオビユ(D)、アサガオ(E)、トウモロコシ(a)、ダイズ(b)およびワタ(c)の種子をそれぞれスポット状に播種し、約1.5cm覆土した後、本発明化合物の有効成分量が所定の割合になるように土壌表面へ小型スプレーで均一に散布した。散布の際の薬液は、前記配合例等に準じて適宜調整された水和剤を水で希釈して用いた。薬液散布3週間後に作物および雑草に対する除草効果を下記の判定基準に従い調査した。抑制の程度は肉眼による観察調査から求めた。結果を表5に示す。

【0184】5: 完全枯死あるいは90%以上の抑制

4:70%~90%の抑制

3: 40%~70%の抑制

2: 20%~40%の抑制

1: 5%~20%の抑制

0: 5%未満の抑制

【0185】〔試験例2〕茎葉処理による除草効果試験縦21cm、横13cm、深さ7cmのプラスチック製箱に殺菌した洪積土壌を入れ、ノビエ(A)、エノコログサ(B)、イチビ(C)、アオビユ(D)、アサガオ(E)およびオナモミ(F)の種子をそれぞれスポット状に播種し、約1.5cm覆土した。各植物が2~3葉期に達したとき、本発明化合物の有効成分量が所定の割合になるように茎葉部へ小型スプレーで均一に散布した。散布の際の薬液は、前記配合例等に準じて適宜調整された水和剤を水で希釈して用いた。薬液散布3週間後に雑草に対する除草効果を試験例1の

判定基準に従い調査した。結果を表6に示す。

【0186】〔試験例3〕 湛水条件による除草効果試験 1/10000アールのワグネルポット中に沖積土壌を入れた後、水を入れて混和し、水深4cmの湛水条件にした。ノビエ(A)、ホタルイ(G)、コナギ(H)およびキカシグサ(I)の種子を上記のポットに播種した後、2.5葉期のイネ苗(d)を移植した。播種1日後に、本発明化合物の有効成分量が所定の割合になるように、水面へメスピペットで滴下処理した。滴下の際の薬液は、前記配合例等に準じて適宜調整した水和剤を希釈して用いた。ポットを25~30℃の温室内に置いて植物を育成し、薬液滴下後3週間目にイネおよび雑草に対する除草効果を試験例1の判定基準に従い調査した。結果を表7に示す。

【0187】 【表38】〔表5〕

No.	薬量 kg/ha	A	В	С	D	E	а	b	ċ	
C-1	0. 63	5	5	5	5	5	5	0	0	
C-2	2. 5	5	5	0	2	4	2	0	0	
C-3	2. 5	5	5	0	0	1	0	0	0	
C-4	0. 63	5	5	5	5	5	4	0	0	
C-5	2. 5	5	5	5	5	5	2	0	0	
C-8	0. 63	5	5	4	5	5	2	0	4	
C-9	2. 5	5	5	0	5	4	0	0	0	
C-10	2. 5	5	5	5	5	5	2	0	0	
C-12	2. 5	5	5	5	5	4	0	0	0	
C-16	0. 63	5	5	5	5	2	0	0	0	
C-17	0. 63	5	5	5	4	4	0	0	0	
C-20	2. 5	5	5	5	5	5	2	0	0	
C-31	0. 63	5	5	5	5	5	1	2	0	
C-32	0. 63	5	5	5	5	5	0	0	0	
C-39	0. 63	5	5	5	5	5	0	0	0	
C-44	0. 63	5	5	4	4	4	0	0	0	
C-46	0. 63	5	5	2	5	4	0	0	0	
C-54	0. 63	5	5	5	5	0	2	0	0	
C-55	0. 63	5	5	5	5	1	1	0	0	
C-57	2. 5	5	5	5	5	5	3	1	0	
C-58	0. 63	5	5	0	5	4	0	0	0	
C-59	2. 5	5	5	5	5	5	3	0	0	

【0188】 【表39】

No.	薬量 kg/ha	A	В	С	D	E	a	b	С	
C-60	0. 63	5	5	0	5	5	2	0	0	
C-62	2. 5	5	5	2	5	5	1	0	0	
C-68	0.63	5	5	5	5	5	1	0	2	
C-72	0.63	5	5	5	5	2	2	0	1	

C-77	0.63		5	5	5	5	3	0	10	0	
C-79	2.5		5	5	5	5	5	0	10	0	ł
C-80	2.5		5	5	5	5	5	2	0	0	
C-84	0.63		5	5	5	5	2	٥į	3	2	
C-85	0.63		5	5	5	5	3	O,	3	0	
C-86	0.63		5,	5	5	5	4	, 3	1	5	
C-87	0.63		5	5	5	5	5	1	3	5	
C-88	2.5	i	5	5	5	5	3	3	0	3	
C-89	0.63		. 5	5	5	5	5	3	0	4	
C-90	0.63		5	5	5	5	5	1	0	0	ı
C-91	0.63		5	5	5	5	15	3	.3	4	
C-92	0.63		5	5	5	5	5	2	3	0	
C-93	0.63		5	5	5	5	5	3	0	0	
C-94	0.63	1	5	5	5	5	2	0	0	0	
C-97	0.63		5	5	5	5	,5	3	3	0	
C-98	0.63		, 5	5	0	5	2	3	0	0	
C-99	0.63		5	5	5	0 '	Ò	3	0	0	
C-100	2.5		5	5	5	5	4	3	0	0	
C-101	2.5		5	5	5	5	5	2	0	0	
			<u> </u>								

【0189】 【表40】

No.	薬量 kg/ha	A	В	С	D	E ',	a	b	c .
C-103	2. 5	5	5	0	0	o ^J	2	0	0
C-104	2. 5	5	5	5	5	5	0	o	0
C-105	0.63	5	5	5	5	¹ 5	2	,0	0
C-106	0.63	5	' 4	5	5	5 -	2	0	0
C-108	2. 5	5	5	1	1	1	0	0	0
C-110	2.5	5	5	5	51	1	.0	Ö	0 .
C-111	2.5	5	5	5	5	5	3	4	0
C-113	2.5	5	5	5	5	4	0	0	0
C-118	2.5	5	5	5	5	5	3	3	4
C-119	0.63	5	5	5	5	4	0	0	0
C-120	0.63	5	5	5	5	5	2	0	0
C-122	2.5	5	5	5	0	5	1	0	0
C-123	2.5	5	5	2	5	1	3	0	0
C-124	0.63	5	5	5	5	5	3	0	0
C-125	0.63	5	5	4	5	4	2	0	0
C-126	2.5	5	5	5	5	5	1	0	0
C-135	2.5	4	5	5	5	0	2	0	0
C-137	0.63	5	5	5	5	5	3	0	0
C-140	0.63	5	5	5	5	5	0	0	0
C-141	0.63	5	5	5	5	5	3	0	0
C-143	0.63	5	5	5	5	5	2	0	0
C-144	0.63	5	5	5	5	5	3	2	0
C-145	0.63	5	5	5	5	1	0	0	0

[0190]

【表41】

No.	薬量 kg/ha	A	ВС	¹D	E	a	b	c	. 1
C-146	2. 5	, 5 [†]	5' 5'	, 5	5	2	0	5	f
C-147	0.63	6	5 5	5	5	3	3	2	,
C-148	2. 5	5	5 5	5	,5 ∔	3	3	4	
C-150	2.5	1,5 (5 5	5	5	1	0	1	1
C-151	2. 5	5	5 5 5 5	5	5 ,	3.	0	1	
C-152	2. 5	· 5".	5 5	5	4	3	2	0	
C-153	0. 63	່,5	5 ,5	· 5	5	2	2	2	
C-154	2. 5	5 ;	5 5	5	5	3	3	0	
C-155	2. 5	5	5 5	, 5	5 ,	3	.3	3	
C-157	2. 5	5	5 5	۱5	5,	0	'0	0	
C-158	0.63	. 5 +	5, 5	5	5	3	0	2	
C-159	0. 63	5,	5, 5		., 5 'ı	3	2	0	
C-160	2. 5	5,	5 5	5	5	3	2	0	
C-161	2.5	5	5 [!] 5,	5	2	2	0	0	,
C-163	2. 5	· 5	5 5	5	5	3	0	0	
C-165	0.63	5	5, ,5	5	5	3	3	0	٠,
C-166	2.5	5	5 5			. 2	0	0	
C-168	0.63	5 5	5 5	5,	5	0	0	2	1
D-1	0. 63	່ 5 '	5 ,5	5	5	3	4	5	
D-2	0. 63	5 ,	5 5	2	4	0	2	0	
D-3	0.63	5	5 5	5	4	2	3	0	
D-4	0. 63	5%	.5 [†] 5	5	5	3	4	2	
D-5	0.63	5	5 . 5	5	5	3	. 3	3	

【0191】 【表42】

No.	薬量 kg/ha	A	В	С	D	E	a	b	С
D-6	2. 5	5	5	5	5	5	3	3	3
D-7	2. 5	5	5	5	5	5	3	3	0
D-8	0. 63	5	5	5	5	5	3	0	0
D-9	2. 5	5	5	5	5	.5	2	0	0
D-10	2. 5	5	5	5	5	5	0	0	0
D-11	0. 63	5	5	5	5	5	3	0	1
D-12	0.63	5	5	5	5	5	3	4	4
D-13	2. 5	5	5	5	5	5	0	0	0
D-14	0. 63	5	5	5	5	5	4	3	0
D-15	2. 5	5	5	5	5	5	3	3	0
D-16	0. 63	5	5	5	5	5	3	5	3
D-17	0. 63	5	5	5	5	5	3	0	0
D-18	0. 63	5	5	5	5	5	3	4	0
D-19	0. 63	5	5	5	5	5	4	4	3
D-20	0. 63	5	5	5	5	5	3	3	0
D-21	0. 63	5	5	5	5	5	3	3	0

【0192】 【表43】 (表6)

	1							. 1
No.1	薬量 kg/ha	A	В	С	D	E	F	
. - 4	2,5	5	5	5	3	5	4	
· C-5	2. 5	5	5	5	4	5	2	
C-8 C-10 C-31	2, 5	5	4	5	5	4	5	
C-10	. 2. 5 _j	5	5	5	2	5	4	
C-31	0. 63	5	5	4	2	5	4	
C-32	0. 63	5	5	4	3	5	3	
C-54	2:5	5	5	5	5	5	5	
C-55	2. 5	· 5	5	4	2	5	1	
C-57	2. 5	5	5	4	4	5	4	
C-58	2.,5	5	5	5	4	4	0	
C-59	₁ 2. 5	5	5	5	5	5	4	
C-60	2.5	5	5	2	5	5	4	
C-61	2. 5	5	5	5	5	5	5	
, C-68	0.63.	5	5	5	5	5	5	
C-72	0.63	5	5 ,	· 4	2	4	0	•
C-77	2. 5	5	5	4	4	4	2	
C-80	2. 5	5	5	4	2	4	,2	
C-84	2. 5	5	5	5	5	5	5	,
C-85	2.5	5	5	5	5	5	4	
C-86	2.5	5	5	5	5	5	2	
C-87	2. 5	5	5	5	5	5	5	٠
C-88	2. 5	5	5	5	4	4	0	
	1							

【0193】 【表44】

	1							
No.	薬量 kg/ha	A	В	C.	D	Е	F	1
C-89	2. 5	5	5	5	4	5	4	
C-90	2. 5	5	5	4	4	5	4	
C-91	2. 5	5	5	4	4	5	4	
C-92	2. 5	5	5	5	2	5	3	
C-93	0. 63	5	5	4	4	4	4	
C-97	2. 5	4	4	4	4	5	4	
C-98	2. 5	5	5	4	5	-	-	
C-105	2. 5	5	5	4	2	5	0	
C-119	2. 5	5	5	4	4	5	4	
C-120	0. 63	5	5	5	4	4	2	
C-122	2. 5	5	5	5	3	5	0	
C-124	2. 5	5	5	5	5	5	1	
C-125	2. 5	5	5	4	4	4	1	
C-137	2. 5	4	5	5	5	5	5	
C-141	2. 5	5	5	5	5	5	0	
C-143	2. 5	5	5	4	2	4	4	
C-147	2. 5	5	5	5	4	5	4	

C-158	2. 5		5	5	5	5	4	4	
C-159	2. 5		5	5	5	4	5	4	,
D-1	2. _i 5		5	5	4	4	.5	5	•
	2. 5		5	5	5	3	3	4	
D-111	2. 5	i i	5	5	5	3	5	5	
D-12	2. 5	1	5	5	5	4	5	5	

【0194】 【表45】

No.	薬量 kg/ha	A	В	С	D	E	F	, .
F 1								 -
D-14	2. 5	5	5	4	4	5	5	1
D-15	2. 5	5	5	5	4	5	5	
D-16	2. 5	5	5	4	4	4	4	
D-19	0. 63	5	5	4	4	4	4	
D-21	2. 5	5	5	4	4	4	4	
						_	_	

【0195】 【表46】 (表7)

No.	薬量 kg/ha	A	G	Н	I	d	
C-1	0. 25	5	5	5	5	0	
C-2	1. 0	5	5	5	5	0	
C-3	1. 0	5	4	5	5	0	
C-4	0. 25	5	5	5	5	0	
C-5	1. 0	5	5	5	5	0	
C-6	1. 0	5	5	5	5	0	
C-7	1. 0	5	5	5	5	0	
C-8	0. 25	5	5	5	5	0	
C-9	1. 0	5	5	5	5	0	
C-10	0. 25	5	5	5	5	0	
C-12	1. 0	5	5	5	5	0	
C-16	0. 25	5	5	5	5	0	
C-20	1. 0	5	5	5	5	0	
C-26	0. 25	5	5	5	5	0	
C-31	0. 25	5	5	5	5	1	
C-32	0. 25	5	5	5	5	0	
C-39	0. 25	. 5	5	5	5	0	
C-41	0. 25	5	5	5	5	0	
C-42	0. 25	5	5	5	5	0	
C-44	0. 25	5	5	5	5	0	
C-45	0. 25	5	5	5	5	0	
C-46	0. 25	5	5	5	5	1	

【0196】 【表47】

No. 薬量 kg/ha A G H I d

C-47	1.0		5	5	5	5	0.	
C-49	1.0		5	2	5	5	Ö	
C-50	1.0	i	5	4	5	5	0	
C-54	1.0	•	5	5	5	5	0	•
C-55	1. 0	•	5	5	5	5	10 ,	
C-56	1.0	1	5	5	5	5	Ó	1
C-57	1.0	I	₁ 5	5	5	5	2	
C-58	1.0 e		5	5	5	5	0.7	
C-59	1.0		5	5	5	5	0 ,	
C-60	1.0	1 '	5	5	5	5	0	
C-61	1.0		5	5	5	5	0	
C-62	¹ 1. 0		5	5	5	5	0	
C-67	0. 25	1	5	' 5	5	5	0	
C-68	0. 25		5	5	5	5	,0	
C-69	0. 25	1	5	5	5	5	0	
C-72	0. 25		5	5	5	5,	0	
C-73	0. 25		5	5	5	5	0	
C-74	0. 25	1.	5	4	5	5	0	
C-77	1.0	i i j	5	5	5 ·	5	0	
C-79	1. 0	'	5	5	5 .	5	0,	
C~80	1.0		5	5	5	5	0	
C-84	1.0		5	5	5	5	0	
C~85	1. 0		5	5	5	5	0	

【0197】 【表48】

No.	薬量 kg/ha	A	¹ G	Н	, I	d
C-86	1. 0	5	5	5	5,	0
C-87	0. 25	5	5	5	5	0
C-88	0. 25	[,] 5	5	5	5	0
C-89	0. 25	5	5	5	5	0
C-90	0. 25	5	5	5	5	0
C-91	0. 25	5	5	5	5	0
C-92	0. 25	5	5	5	5	0
C-93	0. 25	5	5	5	5	0
C-94	0. 25	5	5	5	5	0
C-96	0. 25	5	5	5	5	0
C-97	0. 25	5	5	5	5	0
C-98	0. 25	5	5	5	5	0
C-99	0. 25	5	5	5	5	0
C-100	0. 25	5	5	5	5	0
C-101	0. 25	5	5	5	5	0
C-102	0. 25	5	5	5	5	0
C-103	0. 25	5	5	5	5	0
C-104	0. 25	5	5	5	5	0
C-105	0. 25	5	5	5	5	0
C-106	0. 25	5	5	5	5	0

C-108	0. 25		5	5	5	5	0	
C-110	1		5	5	5	5	. 0	
C-111	'1'	•	5	5	5	5	0	
(O 1	98]			·				
【表 4	9 1							

No	薬量 kg/ha	A	G	Н	I	d	
C-113	0. 25	5	5	5	5	0	
C-115	' 1 '	5	5	5	5	0	
C-116	['] 1	5	4	5	5	0	
C-117	· 1	5	5	5	5	0	
C-118	0. 25	5	5	5	5	0	
C-119	0. 25	5	5	5	5	. 0	
C-120	0. 25	5	5	5	5	0	
C-121	0. 25	5	5	5	5	0	
C-122	0. 25	5	5	5	5	0	
C-123	· 1	5	5	5	5	0	
C-124	0. 25	5	5	5	5	0	
C-125	0. 25	5	5	5	5	0	
C-126	' 1	5	5	5	5	0	
C-127	1	5	5	5	5	0	
C-128	0. 25	5	5	5	5	0	
C-132	1	3	5	5	5	0	
C-134	1	5	5	5	5	0	
C-135	1	5	5	5	5	0	
C-137	0. 25	5	5	5	5	0	
C-139	1	5	5	5	5	0	
C-140	0. 25	5	5	5	5	0	
C-141	0. 25	5	5	5	5	0	
C-143	0. 25	5	5	5	5	0	

【0199】 【表50】

No.	薬量 kg/ha	A	G	Н	I	d	
C-144	0. 25	5	5	5	5	0	
C-145	0. 25	5	5	5	5	0	
C-146	0. 25	5	5	5	5	0	
C-147	0. 25	5	5	5	5	0	
C-148	1	5	5	5	5	0	
C-149	1	5	5	5	5	0	
C-150	0. 25	5	5	5	5	0	

C-151	0. 25		5	5	5	5	0.
C-152	, 1		5	5	5	5	0
C-153	1		5	5	5	5	'0
C-154	- 1		5	5	5	5	0
C-155	1		5	5	5	5	10
C-156	0. 25		5'	5	5	5	0
C-157	0. 25	1	,5	5	5	5	0
C-158	i 0. 25 ₁i		₁ 5	5	5	5	0 /
C-159	0. 25		5	5	5	5	0 4
C-160	0. 25	. '	5	5	5	5	0
C-161	0.25 .		5	5	5	5,	0
C-162	+ 1		5	4	5	5	0
C-163	0. 25	,	5	5	5	5	0
C-164	1		5	4	5	5	0
C-165	0. 25		5	5	5	5	0
C-166	0. 25	1	5	5	5	5,	0

【0200】 【表51】

No.	薬量 kg/ha	A	G.	Н	I	ď	
C-167	1	5	5	5	5	0	
C-168	0. 25	, 5	5	5	,5	0رٰ	
D-1	0. 25	5	5	5	5	O _l	7
D-2	0. 25	5	5	5	5	0	ı
D-3	0 . 25	5	5	5	5	10	; ·
D-4	0. 25	5	5	5	5	0	
D-5	0. 25	5	5	5	5	0.	
D-6	0. 25	5	5	5	5,	0	
D-7	0. 25	5	5`	5	5	0	
D-8	0. 25	۰ 5	5	5	5	0	
D-9	1	5	5	5	5	0	
D-11	0. 25	5	5	5	5	0	
D-12	0. 25	5	5	5	5	0	
D-13	1	5	5	5	5	0	
D-14	0. 25	5	5	5	5	0,	
D-15	0. 25	5	5	5	5	0	
D-16	0. 25	5	5	5	5	0	
D-17	0. 25	5	5	5	5	0	
D-18	0. 25	5	5	5	5	0	
D-19	0. 25	5	5	5	5	0	
D-20	0. 25	5	5	5	5	0	
D-21	0. 25	5	5	5	5	0	

 $f_{j-\frac{1}{2}-1}$

(51) Int. Cl.	6	識別記号	庁内整理番号	\mathbf{F}				技術表示箇所
A01N	43/76			AOIN	43//76			24///
	43/78		t		43/78		. В	1
	43/80	1 0 1		The pro-	43/80		101	
	را ان	102		4.1			102	
	43/824	. A.€		C 0 7 D	207/33			
	43/836	11 11 11 11 11			207/34		i	1 2
C 0 7 D	207/33				231/12		В	
	207/34	at the		' '	ŢĹ.	T.	C	
	231/12	1		- i' - i · · · · · · ·	233/64	1	102	
	+				233/68			
	233/64	1.102		, ,	249/02			•
	233/68	1 1			249/08			
	249/02	1.		٠,	261/08			
	249/08	r Transfer			263/32			
	261/08	1 p ()			271/06			1
	263/32				271/10			
	271/06	i i i		', ,	275/02			
	271/10	riff ("Total			277/22		•	11
	275/02	1,		1	285/08			
	277/22			A:0 1 N	43/82		101	
	285/08			•			104	
	285/12			C 0, 7 D	285/12		Α	
	7.1				•			
(72)発明者	沢田 寛司			(72)発明者	縄巻	勤		
		市坪井町722番地	l 日産化学工		埼玉県	具南埼玉郡田	白岡町大字白	3岡1470日産化
		中央研究所内					上物科学研究	
	玉田 佳丈	v I		(72)発明者	石川	公広		
		市坪井町722番地]	日産化学工		埼玉県	東南埼玉郡白	自岡町大字白	3岡1470日産化
	業株式会社	中央研究所内					E物科学研究	
	,	•		(72)発明者				•
					埼玉県	南埼玉郡白	岡町大字白	3岡1470日産化
							E物科学研究	

1000

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)