Lógica de Predicados 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

O mapa de Karnaugh é um método de simplificação de expressões lógicas na forma de mintermos.

São figuras geométricas que criam uma região (célula) para cada linha de uma tabela-verdade.

- Representação Gráfica: temos as seguintes representações gráficas (mapas), de acordo com o número de variáveis das expressões:
 - 1. Duas variáveis => 2ⁿ = 2² = 4 células

- Representação Gráfica: temos as seguintes representações gráficas (mapas), de acordo com o número de variáveis das expressões:
 - 1. Duas variáveis => 2ⁿ = 2² = 4 células

- Representação Gráfica (cont)
 - 1. Três variáveis => 2ⁿ = 2³ = 8 células

Obs.: Na representação do mapa, apenas uma variável deve ter seu valor alterado de uma célula para outra

- Representação Gráfica (cont)
 - 1. Três variáveis => 2ⁿ = 2³ = 8 células

seu valor alterado de uma célula para outra

- Representação Gráfica (cont)
 - 1. Quatro variáveis => 2ⁿ = 2⁴ = 16 células

	A'B' 00	A'B 01	AB 11	AB' 10
00 C'D'				
C'D 01				
CD 11				
CD' 10				

- Representação Gráfica (cont)
 - 1. Quatro variáveis => 2ⁿ = 2⁴ = 16 células

	A'B' 00	A'B 01	AB 11	AB' 10
C'D' 00	lin 0	lin 4	lin 12	lin 8
C'D 01	lin 1	lin 5	lin 13	lin 9
CD 11	lin 3	lin 7	lin 15	lin 11
CD' 10	lin 2	lin 6	lin 14	lin 10

seu valor alterado de uma célula para outra

В

 $\mathbf{0}$

C

D

Lógica de Predicados

Obs.: Na representação do mapa, apenas uma variável deve ter

Profa. Daniela Scherer de 15 1 1 1

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando <u>o valor "1"</u> nas células correspondentes aos mintermos/linhas da tabela-verdade da função.

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo:
 - Representar a expressão AB' + A'B + A'B'

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo:
 - Representar a expressão AB' + A'B + A'B'

•
$$2^n = 2^2 = 4$$
 células

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo:
 - Representar a expressão AB' + A'B + A'B'
 - 2ⁿ = 2² = 4 células

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo:

Representar a expressão AB' + A'B + A'B'

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo 1:
 - Representar a expressão AB' + A'B + A'B'

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo 2:
 - Representar a expressão ABC + AB'C' + A'BC

- Representando as funções no mapa de Karnaugh:
 - construir o mapa de acordo com o n° de variáveis;
 - preencher o mapa colocando o valor "1" nas células correspondentes aos mintermos/linhas da tabela-verdade da função.
 - Exemplo 2:
 - Representar a expressão ABC + AB'C' + A'BC

	A'B' 00	A'B 01	AB 11	AB' 10
0 C'				1
C 1		1	1	

Como simplificar?

- Como simplificar?
 - PASSO 1: Agrupamos os "1" <u>adjacentes</u> formando grupos com o maior número possível de "1's" de forma retangular. Quanto maior o grupo, mais simplificada ficará a expressão. Os grupos devem ter tamanho igual a uma potência de 2 (1, 2, 4, 8... componentes);

- Como simplificar?
 - PASSO 1: Agrupamos os "1" <u>adjacentes</u> formando grupos com o maior número possível de "1's" de forma retangular. Quanto maior o grupo, mais simplificada forá a expressão. Os grupos devem ter tamanho igual a uma se ência de 2 (1, 2, 4, 8... componentes);

Duas células que diferem em apenas uma variável são ditas <u>adjacentes</u>. Num mapa de Karnaugh podemos ter células adjacentes sem que tenham lados comuns

Adjacência – exemplos:

- Como simplificar?
 - PASSO 1: Agrupamos os "1" adjacentes formando grupos com o maior número possível de "1's" de forma retangular. Quanto maior o grupo, mais simplificada ficará a expressão. Os grupos devem ter tamanho igual a uma potência de 2 (1, 2, 4, 8... componentes)
 - Nenhum "1" pode ficar fora dos grupos formados. Se necessário, agrupá-lo sozinho;

- Como simplificar?
 - PASSO 1: Agrupamos os "1" adjacentes formando grupos com o maior número possível de "1's" de forma retangular. Quanto maior o grupo, mais simplificada ficará a expressão. Os grupos devem ter tamanho igual a uma potênica de 2 (1, 2, 4, 8... componentes)
 - Nenhum "1" pode ficar fora dos grupos formados. Se necessário, agrupá-lo sozinho;
 - Se necessário, um "1" poderá ser agrupado mais de uma vez, ou seja, ele poderá participar de mais de um grupo;

- Como simplificar?
 - PASSO 2: para cada grupo será criado um termo onde os componentes serão as variáveis que não tiverem seu valor alterado para todos os elementos do grupo:
 - O QUE PERMANECE NA EXPRESSÃO SIMPLIFICADA? A variável que se mantém constante (se repete/não muda) em cada grupo;
 - O QUE SERÁ ELIMINADO? A variável que não se mantém constante (não se repete/muda) é eliminada.

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC
 - representamos a função no mapa $\rightarrow 2^n = 2^3 = 8$ células

	A'B' 00	A'B 01	AB 11	AB' 10
C' 0				1
C 1		1	1	

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC
 - representamos a função no mapa $\rightarrow 2^n = 2^3 = 8$ células

	A'B' 00	A'B 01	AB 11	AB' 10
C'		-		1
C 1		1	1	

agrupamos os 1's adjacentes

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC
 - representamos a função no mapa $\rightarrow 2^n = 2^3 = 8$ células

agrupamos os 1's adjacentes

agrupado sozinho, pois não existe algum termo adjacente para montar um grupo

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC
 - representamos a função no mapa $\rightarrow 2^n = 2^3 = 8$ células

- agrupamos os 1's adjacentes
- extraímos a expressão simplificada:

- PASSO 2: para cada grupo será criado um termo onde os componentes serão as variáveis que não tiverem seu valor alterado para todos os elementos do grupo:
 - O QUE PERMANECE NA EXPRESSÃO SIMPLIFICADA? A variável que se mantém constante (se repete) em cada grupo;
 - O QUE SERÁ ELIMINADO? A variável que não se mantém constante (não se repete) é eliminada.

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC

- extraímos a expressão simplificada:
- •GRUPO AZUL:
- •analisando a variável A no grupo azul → em um elemento do grupo seu valor é 0 e no outro elemento do grupo seu valor é 1, portanto será <u>eliminada</u>

EXPRESSÃO SIMPLIFICADA F(A,B,C) =

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC

- extraímos a expressão simplificada:
- •GRUPO AZUL:
- •analisando a variável B no grupo azul → aparece nos dois elementos com o mesmo valor (1), portanto a variável B permanece

EXPRESSÃO SIMPLIFICADA **F(A,B,C) = B**

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC

- extraímos a expressão simplificada:
- •GRUPO AZUL:
- •analisando a variável C no grupo azul → aparece nos dois elementos com o valor 1, portanto a variável C permanece na expressão simplificada

EXPRESSÃO SIMPLIFICADA **F(A,B,C) = BC**

- Exemplos:
 - Simplificando a expressão ABC + AB'C' + A'BC

- extraímos a expressão simplificada:
- •GRUPO **VERMELHO**:
- •analisando as variáveis A, B e C no grupo vermelho → como o grupo possui apenas um elemento, o termo é copiado para a expressão, pois não pode ser simplificado

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'
 - representar a função no mapa → 2ⁿ = 2² = 4 células

В'	1	1
В	1	

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'
 - representar a função no mapa → 2ⁿ = 2² = 4 células

criar os grupos

Se necessário, um "1" poderá ser agrupado mais de uma vez, ou seja, ele poderá participar de mais de um grupo;

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'
 - representar a função no mapa → 2ⁿ = 2² = 4 células

- criar os grupos
- extrair a função simplificada
- •GRUPO VERMELHO:
- •analisando a variável A no grupo vermelho → aparece nos dois elementos do grupo com o mesmo valor (0), portanto, permanece na expressão

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'
 - representar a função no mapa → 2ⁿ = 2² = 4 células

- criar os grupos
- extrair a função simplificada
- •GRUPO VERMELHO:
- •analisando a variável B no grupo vermelho → aparece com valor
 0 no primeiro elemento e com valor 1 no segundo elemento,
 portanto, é eliminada da expressão.

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'
 - representar a função no mapa → 2ⁿ = 2² = 4 células

- criar os grupos
- extrair a função simplificada
- •GRUPO AZUL:
- •analisando a variável A no grupo AZUL → aparece com valor 0 no primeiro elemento e com valor 1 no segundo elemento, portanto, é eliminada da expressão.

- Exemplos:
 - Simplificando a expressão AB' +A'B + A'B'
 - representar a função no mapa → 2ⁿ = 2² = 4 células

- criar os grupos
- extrair a função simplificada
- •GRUPO AZUL:
- •analisando a variável B no grupo AZUL → aparece com valor 0 nos dois elementos do grupo, portanto, permanece na função simplificada

A' + B'

- Exemplos:
 - Simplificando a expressão A'B'CD' + A'B'CD + AB'C'D' + AB'CD'

- Exemplos:
 - Simplificando a expressão A'B'CD' + A'B'CD + AB'C'D' + AB'CD'
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células

	A'B' 00	A'B 01	AB 11	AB' 10
C'D' 00				1
C'D 01				
CD 11	1			
CD' 10	1			1

- Exemplos:
 - Simplificando a expressão A'B'CD' + A'B'CD + AB'C'D' + AB'CD'
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células
 - criar os grupos

- Exemplos:
 - Simplificando a expressão A'B'CD' + A'B'CD + AB'C'D' + AB'CD'
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células
 - criar os grupos
 - extrair expressão

GRUPO VERMELHO:

A, B e C não se alteram, portanto permanecem na função. D aparece com valor 1 no primeiro e valor 0 no segundo elemento portanto não participa da função simplificada

A'B'C

- Exemplos:
 - Simplificando a expressão A'B'CD' + A'B'CD + AB'C'D' + AB'CD'
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células
 - criar os grupos
 - extrair expressão

GRUPO AZUL:

A, B e D não se alteram, portanto permanecem na função. C aparece com valor 0 no primeiro e valor 1 no segundo elemento portanto não participa da função simplificada

A'B'C + AB'D'

- Exemplos:
 - Simplificando a expressão A'B'CD' + A'B'CD + AB'C'D' + AB'CD'
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células
 - criar os grupos
 - extrair expressão

A'B'C + AB'D'

- Exemplos:
 - Simplificando a expressão A'BC'D + ABC'D + ABCD + A'BCD
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células
 - criar os grupos
 - extrair expressão

- **Exemplos:**
 - Simplificando a expressão A'BC'D + ABC'D + ABCD + A'BCD
 - representar a função no mapa → 2ⁿ = 2⁴ = 16 células
 - criar os grupos
 - extrair expressão

Note que:

Referências

2. GERSTING, J.L. Fundamentos Matemáticos para Ciência da Computação. 5a edição. Rio de Janeiro: LTC.2003.

