- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
  - Formato de Datagrama
  - Direccionamiento IPv4
  - O ICMP
  - IPv6

- 4.5 Algoritmo de ruteo
  - Estado de enlace
  - Vector de Distancias
  - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Ruteo Broadcasty multicast

## Capa de red en Internet

Funciones de la capa de red de host y router :



- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
  - Formato de Datagrama
  - Direccionamiento IPv4
  - O ICMP
  - IPv6

- 4.5 Algoritmo de ruteo
  - Estado de enlace
  - Vector de Distancias
  - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Ruteo Broadcasty multicast

## Formato del datagrama IP

Número de versión Protocolo IP Largo encabezado (bytes) "tipo" de dato

max número de tramos restantes (decrementado en cada router)

A qué protocolo superior corresponden los datos

- <u>¿Cuánta ineficiencia</u> <u>con TCP?</u>
- 20 bytes de TCP
- 20 bytes de IP
- = 40 bytes + encabezado capa aplicación



# Fragmentación y re-ensamble IP

#### <u>Ejemplo</u>

- 4000 byte datagram
- $\square$  MTU = 1500 bytes

1480 bytes en campo de datos

offset = 1480/8



Un datagrama grande es transformado en varios datagramas más pequeños



| largo |            | fragflag   |      |  |
|-------|------------|------------|------|--|
| =1500 | <u>=</u> x | <u>=</u> 1 | =185 |  |
|       |            |            |      |  |

| largo | ID | fragflag | offset |  |
|-------|----|----------|--------|--|
| =1040 | =x | =0       | =370   |  |

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
  - Formato de Datagrama
  - Direccionamiento IPv4
  - O ICMP
  - IPv6

- 4.5 Algoritmo de ruteo
  - Estado de enlace
  - Vector de Distancias
  - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Ruteo Broadcasty multicast

### Direccionamiento IP: introducción

- Dirección IP: identificador de 32-bit por host o *interfaz* en router
- interfaz: conexión entre host o router y enlace físico
  - router típicamente tiene múltiples interfaces
  - host puede tener múltiples interfaces
  - Direcciones IP están asociadas a cada interfaz





### RED ELO

(http://www.elo.utfsm.cl/~rce/images/stories/rce/diagrama\_red\_ elo\_todo.png)

#### Diagrama de conexiones lógicas en Elo.



## **Direccionamiento IP: CIDR**

### CIDR: Classless InterDomain Routing

- Porción de dirección de la subred se hace de tamaño arbitrario
- Formato de dirección: a.b.c.d/x, donde x es el # de bits de la dirección de subred



11001000 00010111 00010000 00000000

200.23.16.0/23 bits 01234 prefix suffix Class A 1 0 Class B prefix suffix Situación 1 1 0 original Class C prefix suffix (con clases): 1 1 1 0 Class D multicast address 1 1 1 1 Class E reserved for future use

### Direcciones IP: ¿Cómo obtener una?

Q: ¿Cómo un *host* obtiene su dirección IP?

- Configurada por el administrador en un archivo
  - Windows: control-panel->network->configuration->tcp/ip->properties
  - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: el host obtiene la dirección dinámicamente desde un servidor
  - "plug-and-play" (más adelante)

### Direcciones IP: ¿Cómo obtener una?

Q: ¿Cómo la red obtiene la dirección de subred parte de la dirección IP?

A: Obteniendo una porción del espacio de direcciones del proveedor ISP.

| ISP's block                                        | 11001000 | 00010111     | <u>0001</u> 0000 | 00000000 | 200.23.16.0/20                                     |
|----------------------------------------------------|----------|--------------|------------------|----------|----------------------------------------------------|
| Organization 0<br>Organization 1<br>Organization 2 | 11001000 | 00010111     | <u>0001001</u> 0 | 0000000  | 200.23.16.0/23<br>200.23.18.0/23<br>200.23.20.0/23 |
| <br>Organization 7                                 | 11001000 | <br>00010111 | <u>0001111</u> 0 |          | <br>200.23.30.0/23                                 |

### Direccionamiento IP: la última palabra...

Q: ¿Cómo un ISP obtiene un bloque de direcciones?

A: ICANN: Internet Corporation for Assigned Names and Numbers

- Asigna direcciones
- Administra DNS
- o asigna nombre de dominio, resuelve disputas

### NAT: Network Address Translation

- Motivación: la idea es usar sólo una dirección IP para ser vistos desde el mundo exterior:
  - No necesitamos asignación de un rango del ISP: sólo una dirección es usada por todos los dispositivos (computadores)
  - Podemos cambiar la dirección de dispositivos en red local sin notificar al mundo exterior
  - Podemos cambiar ISP sin cambiar direcciones de dispositivos en red local
  - Dispositivos dentro de la red no son explícitamente direccionables o visibles desde afuera (una ventaja de seguradad).

### NAT: Network Address Translation

#### Implementación: ruteador NAT debe:

- Datagramas salientes: remplazar (IP fuente, # puerto) de cada datagrama saliente por (IP NAT, nuevo # puerto)
  - . . . Clientes y servidores remotos responderán usando (IP NAT, nuevo # puerto) como dirección destino.
- recordar (en tabla de traducción NAT) cada par de traducción (IP fuente, # puerto) a (IP NAT, nuevo # puerto)
- Datagramas entrantes: remplazar (IP NAT, nuevo # puerto) en campo destino de cada datagrama entrante por correspondiente (IP fuente, # puerto) almacenado en tabla NAT

### NAT: Network Address Translation

- Campo de número de puerto es de 16 bits:
  - ~60,000 conexiones simultáneas con una única dirección dentro de la LAN!
- NAT es controversial:
  - o routers deberían procesar sólo hasta capa 3
  - Viola argumento extremo-a-extremo
    - Posiblemente los NAT deben ser tomados en cuenta por los diseñadores de aplicaciones, eg, aplicaciones P2P
  - En lugar de usar NAT, la carencia de direcciones debería ser resuelta por IPv6

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
  - Formato de Datagrama
  - Direccionamiento IPv4
  - **O ICMP**
  - IPv6

- 4.5 Algoritmo de ruteo
  - Estado de enlace
  - Vector de Distancias
  - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Ruteo Broadcasty multicast

### ICMP: Internet Control Message Protocol

| Usado por hosts & routers para comunicar información de a nivel de la red | 0      | 0 | description<br>echo reply (ping)              |
|---------------------------------------------------------------------------|--------|---|-----------------------------------------------|
| <ul> <li>Reporte de errores: host</li> </ul>                              | 3<br>3 | 0 | dest heat upreachable                         |
| inalcanzable, o red, o                                                    | •      | 1 | dest host unreachable                         |
| puerto, o protocolo                                                       | 3      | 2 | dest protocol unreachable                     |
| •                                                                         | 3      | 3 | dest port unreachable                         |
| <ul><li>eco request/reply (usado</li></ul>                                | 3      | 6 | dest network unknown                          |
| por ping)                                                                 | 3      | 7 | dest host unknown                             |
| Funcionalidad de Capa de red "sobre" IP:                                  | 4      | 0 | source quench (congestion control - not used) |
| <ul> <li>ICMP son llevados por</li> </ul>                                 | 8      | 0 | echo request (ping)                           |
| datagramas IP                                                             | 9      | 0 | route advertisement                           |
| Mensajes ICMP: tipo y código de                                           | 10     | 0 | router discovery                              |
|                                                                           | 11     | 0 | TTL expired                                   |
| error, más primeros 8 bytes del<br>datagrama que causó el error           | 12     | 0 | bad IP header                                 |

## Traceroute e ICMP

- La fuente envía una serie de segmentos UDP al destino
  - Primero usa TTL =1
  - Luego usa TTL=2, etc.
  - Número de puerto no probablemente usado
- Cuando el n-ésimo datagrama llega a n-ésimo router:
  - Router descarta el datagrama, y
  - Envía a la fuente un mensaje ICMP "TTL expirado" (tipo 11, código 0)
  - Mensaje incluye nombre del router y dirección IP

- Cuando mensaje ICMP llega, la fuente calcula el RTT
- Traceroute hace esto 3 veces

#### Criterio de parada

- Segmento UDP eventualmente llega al host destino
- Host destino retorna paquete ICMP "puerto inalcanzable" (tipo 3, código 3)
- Cuando la fuente recibe este ICMP, para.

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
  - Formato de Datagrama
  - Direccionamiento IPv4
  - O ICMP
  - IPv6

- 4.5 Algoritmo de ruteo
  - Estado de enlace
  - Vector de Distancias
  - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Ruteo Broadcasty multicast

## <u>IPv6</u>

- Motivación Inicial: espacio de direcciones de 32-bit pronto serán completamente asignadas.
- Motivación adicional:
  - Formato de encabezado ayuda a acelerar el procesamiento y re-envío
  - Encabezado cambia para facilitar QoS

#### Formato de datagrama IPv6:

- Encabezado de largo fijo de 40 bytes
- Fragmentación no es permitida

# Encabezado IPv6

- Prioridad: identifica prioridad entre datagramas en flujo
- Flow Label: identifica datagramas del mismo "flujo." (concepto de "flujo" no está bien definido).

Next header: identifica protocolo de capa superior de los datos



## Otros cambios de IPv4 a v6

- Checksum: eliminada enteramente para reducir tiempo de procesamiento en cada router
- Options: permitidas, pero fuera del encabezado, indicado por campo "Next Header"
- □ ICMPv6: nueva versión de ICMP
  - Tipos de mensajes adicionales, e.g. "Paquete muy grande" (usado en el descubrimiento de MTU: unidad máxima de transmisión)
  - Funciones para administrar grupos multicast

## Transición de IPv4 a IPv6

- No todos los routers pueden ser actualizados (upgraded) simultáneamente
  - No es posible definir un día para cambio "día de bajada de bandera"
  - ¿Cómo operará la red con routers IPv4 e IPv6 mezclados?
- Tunneling: IPv6 es llevado como carga en datagramas IPv4 entre routers IPv4

# **Tunneling**

tunnel Vista lógica: IPv6 IPv6 IPv6 IPv6 Vista física: IPv6 IPv6 IPv6 IPv4 IPv4 IPv6 Flow: X Src:B Src:B Flow: X Src: A Src: A Dest: E Dest: E Dest: F Dest: F Flow: X Flow: X Src: A Src: A Dest: F Dest: F data data data data E-a-F: A-a-B: B-a-C: B-a-C: IPv6 IPv6 IPv6 dentro IPv6 dentro de IPv4 de IPv4

4-24

Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
  - Formato de Datagrama
  - Direccionamiento IPv4
  - O ICMP
  - IPv6

- 4.5 Algoritmos de ruteo
  - Estado de enlace
  - Vector de Distancias
  - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
  - RIP
  - OSPF
  - BGP
- 4.7 Ruteo Broadcast y multicast