Tecnológico de Costa Rica

Escuela de Ingeniería en Electrónica

(Electronics Engineering School)

Programa de Maestría en Ingeniería en Electrónica

(Master Scientiae Degree Program in Electronics Engineering)

Curso: MP-6160 Diseño de Alto Nivel de Sistemas Electrónicos

(Curse: MP-6160 High-Level Design of Electronics Systems)

Especificación Proyecto 1

(Project 1 Specification)

Profesor:

(Professor)

Ing. Roberto Molina Robles

Fecha: Mayo 19, 2018 (Date: May 19th, 2018)

Proyecto 1: Modelado de Sistemas Digitales en SystemC
Preparado por:
Ing. Roberto Molina Robles, M.Sc.
Curso:
MP-6160 Diseño de Alto Nivel de Sistemas Electrónicos
II Cuatrimestre 2018
Escuela de Ingeniería en Electrónica Tecnológico de Costa Rica.
Fecha de inicio: 19 de Mayo, 2018
Fecha de conclusión: 9 de Junio, 2018

1. Introducción

La finalidad de este proyecto es introducir al estudiante al diseño de aplicaciones digitales, utilizando lenguajes para la descripción de hardware a nivel ESL, como por ejemplo SystemC. De esta forma, el estudiante comenzará a familiarizarse con la implementación de diseños digitales en alto nivel, utilizando las herramientas y el flujo de diseño que este conlleva.

Para este proyecto, los estudiantes trabajaran en los grupos asignados.

2. Descripción del proyecto

A continuación, se presenta una lista de ejercicios que cada grupo deberá resolver durante este periodo. La implementación del código se realizará en SystemC, y con cada uno de los diseños, se debe mostrar una simulación en la que se visualice cada una de las funcionalidades.

- 1) Implementar una ALU con las siguientes características:
 - Entradas y salida de 16 bits.
 - Operaciones Aritméticas: Suma, Resta, Multiplicación, División.

- Operaciones Lógicas: OR, AND, XOR, Shift Right, Shift Left, Negate.
- Señal de salida de "Overflow" y de "Carry".
- 2) Implementar un contador de 12 bits con las siguientes características:
 - Up/Down.
 - Reset negado.
 - Enable.
- 3) Implementar la siguiente máquina de estados:

- 4) Implementar una memoria RAM asíncrona de escritura y lectura con las siguientes características:
 - 16 bits de direcciones (parametrizable).
 - 32 bits de datos (parametrizable).
 - Un solo puerto.
- 5) Implementar un sumador en punto flotante con 8 bits de entradas y de salida.

Herramientas de simulación recomendadas:

- EDAPlayground.
- Modelsim.
- Eclipse.
- Xilinx EDA tools (Vivado).