Data Profiling

Data Profiling is the process of examining the data available from an existing information source (e.g. a database or a file) and collecting statistics or informative summaries about that data.

The goals of data profiling are:

- Get **insights** about the data;
- Assess data quality;
- Identify data problems;
- Recognize opportunities.

Analysis can be classified into two categories:

- Univariate analysis of a single variable;
- Multivariate analysis of multiple variables.

We usually consider four **perspectives** of analysis:

- Granularity the level of detail of the data and precision;
 - e.g. if the data was collected daily, or hourly, per city or per country;
- **Distribution** the distribution of the data;
 - e.g. normal, uniform, skewed, etc;
- Sparsity analysis of the coverage of the data;
 - e.g. how many missing values;
- Dimensionality the number of variables.

False predictor is a variable that is highly correlated with the target variable, but it is not available at the time of prediction.

Removing false predictors from the model is important to avoid **overfitting**, and improve hte model performance.

Granularity

Granularity is the level of detail of the data.

- The finer the granularity, the more detailed the data;
- Data at a finer granularity can be **aggregated** to a coarser granularity; **Aggregation** are made through:
 - Discretization and composition for numeric data;
 - Concept hierarchies for symbolic data taxonomies.

Distribution

Distribution is the distribution of the data.

- Understand data centrality and dispersion;
- Identify missing values and outliers;
- Central Tendency mean, median, mode;
- Histogram a graphical representation of the distribution of the data;
- Discrete Distributions:
 - **Uniform** all values are equally likely;
 - **Bernoulli** binary variable;
 - Binomial number of successes in a sequence of n independent experiments;
 - Poisson number of events occurring in a fixed interval of time or space;
 - Hypergeometric number of successes in a sequence of n draws without replacement from a finite population of size N that contains exactly K objects with that feature;

• Continuous Distributions:

- **Normal** the most common distribution;
- Exponential the time between events in a Poisson process;
- Log-Normal the logarithm of the variable is normally distributed;
- Chi-Square the sum of squares of k independent standard normal random variables.
- Outliers values that are far from the rest of the data;

- X is outlier if X < μ n σ or X > μ + n σ , where:
 - * μ mean;
 - * σ standard deviation (square root of the variance);
 - * n number of standard deviations.
- Measuring Dispersion:
 - Variance the average of the squared differences from the mean;

*
$$var(D) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2;$$

- Standard Deviation - the square root of the variance;

*
$$std(D) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2};$$

 Interquartile Range - the difference between the third and first quartiles;

*
$$IQR = Q3 - Q1$$
;

- 5-Number Summary the minimum, first quartile, median, third quartile and maximum;
- Boxplot a graphical representation of the 5-number summary.
- Skewed distribution when the mean is not equal to the median.

Sparsity

Sparsity is the percentage of missing values.

- Only **present** values are considered in the analysis;
- Scatter Plot a graphical representation of the data allow the identification of subspaces of the data domain;
 - Allow the identification of dispersion and outliers;
 - Allow the identification of **correlation** between variables;
- **Heat Maps** graphical representation of matrices, which each cell is colored according to its value;
 - Always symmetric, since the correlation between X and Y is the same as the correlation between Y and X;
 - The diagonal is always 1, since the correlation between X and X is always 1;

Dimensionality

Dimensionality is the number of variables.

- Extrinsic Dimensionality the number of variables in the data dim(D) = d:
- Intrinsic Dimensionality the number of variables that are relevant to the analysis k (k < d);
- n « d the number of records is much smaller than the dimensionality data tends to be highly sparse;
- Curse of Dimensionality the number of records required to cover the data domain increases exponentially with the dimensionality;
- Hughes Phenomenon the accuracy of the model decreases with the dimensionality.

Similarity Measures

Similarity measures concern with quantifying how alike two records are. They show higher values for more similar records.

• Euclidean Distance - the most common distance measure. It is the square root of the sum of the squared differences between the values of the attributes;

$$-d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- Manhattan Distance the sum of the absolute differences between the values of the attributes. Also known as block distance or Minkowski distance;
 - The generalization of the Euclidean distance uses the axes of the space to define the distance;
 - Interesting for categorical non-ordinal variables;
 - $d(x,y) = \sum_{i=1}^{n} |x_i y_i|;$
- Chebyshev Distance the maximum absolute difference between the values of the attributes;
 - **Do not weight** the attributes differently;
 - $-d(x,y) = \max_{i=1}^{n} |x_i y_i|;$

- Cosine Distance/Similarity the cosine of the angle between the two vectors;
 - Adequate when the **magnitude of the vectors is not important**;
 - Bounded measure always between -1 and 1;

$$- sim(x,y) = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}};$$

• Contingency Table - a table that shows the joint frequency distribution of two binary variables;

	y	$\neg y$
x	α	ϵ_1
$\neg x$	ϵ_0	β

- $sim(x,y) = \frac{\alpha}{\alpha + \epsilon_0 + \epsilon_1}$
- $d(x,y) = \frac{\epsilon_0 + \epsilon_1}{\alpha + \epsilon_0 + \epsilon_1}$
- **Jaccard Similarity** the ratio between the size of the intersection and the size of the union of two sets;
 - More useful in presence of asymmetric (unbalanced) variables.
 - $sim(x,y) = \frac{|x \cap y|}{|x \cup y|};$

Dummy variables are used to represent the presence or absence of a categorical variable.