Navigating Stormy Waters: Crises, Selection and Productivity Dynamics Under Financial Frictions

Ufuk Akcigit
UChicago

Harun Alp

Ege Y. Ercan Stanford GSB

4th Warsaw Money-Macro-Finance Conference

The views expressed here are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

Motivation

- Firms grow by borrowing and investing in risky projects to enhance their productivity.
- Research Questions
 - How do financial conditions affect firm dynamics and productivity growth?
 - How do firm heterogeneities interact with financials?

What We Do

Introduction

0000

- Build a GE model of firm dynamics with
 - Endogenous productivity growth
 - Rich firm heterogeneity (types)
 - Crucial to match both size and age moments
 - Firms relying borrowing under financial frictions
 - default decision
 - endogenous interest rate
 - endogenous borrowing constraints

What We Do

Introduction

0000

- Build a GE model of firm dynamics with
 - Endogenous productivity growth
 - Rich firm heterogeneity (types)
 - Crucial to match both size and age moments
 - Firms relying borrowing under financial frictions
 - default decision
 - endogenous interest rate
 - endogenous borrowing constraints
- Calibrate the model with micro data on US firms.

What We Do

Introduction

0000

- Build a GE model of firm dynamics with
 - Endogenous productivity growth
 - Rich firm heterogeneity (types)
 - Crucial to match both size and age moments
 - Firms relying borrowing under financial frictions
 - default decision
 - endogenous interest rate
 - endogenous borrowing constraints
- Calibrate the model with micro data on US firms.
- Study productivity dynamics under a "crisis" shock.

Preview of Results

- Firm heterogeneity is important in evolution of crises.
 - Crises hit harder but recovery is faster under heterogeneity.
 - It determines the extend of reallocation through bankruptcy.
- Efficiency of the bankruptcy process is also critical in crises.
 - If the bankruptcy process did not result in reallocation, the economy would not bounce back from the crisis.
- Uniform stabilization policies can depress long-term recovery.

Literature Review

Financial Frictions and Firm Dynamics:

Jermann and Quadrini (2012), Cooley and Quadrini (2001),
 Miao (2005), Li et al. (2016)

Financial Frictions and Endogenous Growth:

 Malamud and Zucchi (2019), Laeven et al. (2020), Chatterjee and Eyignungor (2020), Geelen et al. (2020)

MODEL

Market Structure

Introduction

ullet The household consumes some final good, Y, aggregated with technology:

$$\ln(Y) = \int_{\mathcal{N}} \ln(y_j) dj,\tag{1}$$

Each intermediate good is produced by one firm.

$$y_j = q_j l_j,$$

where q_j is the productivity and l_j is the labor hired.

Market Structure

Introduction

ullet The household consumes some final good, Y, aggregated with technology:

$$\ln(Y) = \int_{\mathcal{N}} \ln(y_j) dj, \tag{1}$$

Each intermediate good is produced by one firm.

$$y_j = q_j l_j,$$

where q_j is the productivity and l_j is the labor hired.

- A firm is a collection of production lines (Klette and Kortum, 2004)
 - Investment to capture other product lines by improving their productivity.
 - Shrinks due to other firms' investment.

Snapshot of Competition I

Figure 1: Before

• Two incumbents with cutting edge technology in 8 products.

Snapshot of Competition II

- Both entrant and incumbent 2 innovate over incumbent 1.
- That is, incumbent 1 loses two product lines.
- New technologies in these lines are more productive.

Snapshot of Competition III

Figure 3: After (Solvent)

• After turnover, there are three incumbents.

Snapshot of Competition IV

- Sudden contraction can lead incumbent 1 to bankruptcy.
- Reallocation of bankrupt technologies will be important.

Incumbent Heterogeneity

Introduction

- 1) Size, $n \in \mathbb{N}$ (i.e., number of product lines)
 - Grows with firm innovation.
 - Shrinks with the market's innovation $\tau \geq 0$.

Incumbent Heterogeneity

Introduction

- 1) Size, $n \in \mathbb{N}$ (i.e., number of product lines)
 - Grows with firm innovation.
 - Shrinks with the market's innovation $\tau \geq 0$.
- 2) Investment Efficiency Type, $k \in H, L$ (i.e, high/low type)
 - Determines the firm's investment productivity (growth potential) $\theta_k > 0$.

Incumbent Heterogeneity

- 1) Size, $n \in \mathbb{N}$ (i.e., number of product lines)
 - Grows with firm innovation.
 - Shrinks with the market's innovation $\tau > 0$.
- 2) Investment Efficiency Type, $k \in H, L$ (i.e., high/low type)
 - Determines the firm's investment productivity (growth potential) $\theta_k > 0$.
- 3) Debt $D \in \mathbb{R}$:
 - Financing with defaultable short-term debt instrument
 - Heterogenous endogenous debt limits and interest rate spreads.

Investments and Productivity

Investment Efficiency Type, $k \in H, L$ (i.e, high/low type)

- Determines the firm's innovation productivity, $\theta_k > 0$.
- $\alpha \in (0,1)$ portion of firms are born as high types.
- High types transition into low types with arrival $\phi_{H\to L} > 0$.

Crisis

Investments and Productivity

Investment Efficiency Type, $k \in H, L$ (i.e, high/low type)

- Determines the firm's innovation productivity, $\theta_k > 0$.
- $\alpha \in (0,1)$ portion of firms are born as high types.
- High types transition into low types with arrival $\phi_{H\to L} > 0$.

Investments Cost Function:

Introduction

• Productivity flow rate $xn \ge 0$ costs

$$C(x) = \frac{1}{\theta_k} x^{\eta} nY. \tag{2}$$

where $\eta > 1$ is the inverse innovation elasticity.

- Undirected search for better technology.
- W/ arrival rate xn > 0, firm discovers a better technology.

Firm Financials

1) Law of Motion for Debt:

$$\dot{D} = \varphi(p) - (1 - \tau_{tax}) \underbrace{\left[\pi n - c(x, \theta_k) - R(D, n, k)D\right]}_{\text{Before-Tax Net Income}}, \quad (3)$$

where

Introduction

$$R(D, n, k) = r + \underbrace{\delta(D, n, k)}_{\text{spread}} \tag{4}$$

coming from the bank's problem and p is payout.

Firm Financials

1) Law of Motion for Debt:

$$\dot{D} = \varphi(p) - (1 - \tau_{tax}) \underbrace{\left[\pi n - c(x, \theta_k) - R(D, n, k)D\right]}_{\text{Before-Tax Net Income}}, \quad (3)$$

where

$$R(D, n, k) = r + \underbrace{\delta(D, n, k)}_{\text{spread}} \tag{4}$$

coming from the bank's problem and p is payout.

2) Exit:

Introduction

 The firm can voluntarily shutdown and default on the outstanding debt

$$V(\cdot) = \max\{0, V_{\mathsf{Cont.}}(\cdot)\}. \tag{5}$$

Crisis

Firm Financials

1) Law of Motion for Debt:

$$\dot{D} = \varphi(p) - (1 - \tau_{tax}) \underbrace{\left[\pi n - c(x, \theta_k) - R(D, n, k)D\right]}_{\text{Before-Tax Net Income}}, \quad (3)$$

where

$$R(D, n, k) = r + \underbrace{\delta(D, n, k)}_{\text{spread}} \tag{4}$$

coming from the bank's problem and p is payout.

2) Exit:

 The firm can voluntarily shutdown and default on the outstanding debt

$$V(\cdot) = \max\{0, V_{\mathsf{Cont.}}(\cdot)\}. \tag{5}$$

- Firm exits when it loses all its product line (competition).
- At the rate $\varepsilon > 0$, the firm exits exogenously.

Bank's Problem

- Competitive banks offering firm-specific loan menus:
 - Endogenous firm-specific interest spreads, $\delta(D, n, k)$.
 - Endogenous firm-specific debt limits, $\bar{D}(n,k)$.

Bank's Problem

- Competitive banks offering firm-specific loan menus:
 - Endogenous firm-specific interest spreads, $\delta(D, n, k)$.
 - Endogenous firm-specific debt limits, D(n, k).
- Firms in default are resold through a bankruptcy process:
 - Firms have value due to their leading technology.
 - Banks resell them at a discount.
 - Bankruptcy process is resolved after some delay (ψ) .
 - No investment during the process.

Bank's Problem

- Competitive banks offering firm-specific loan menus:
 - Endogenous firm-specific interest spreads, $\delta(D, n, k)$.
 - Endogenous firm-specific debt limits, $\bar{D}(n,k)$.
- Firms in default are resold through a bankruptcy process:
 - Firms have value due to their leading technology.
 - Banks resell them at a discount.
 - Bankruptcy process is resolved after some delay (ψ) .
 - No investment during the process.
 - Source of reallocation
 - New firm has a lower debt.
 - New firm may have a higher growth potential (θ_k) .

Incumbent's Value Function

Introduction

$$\begin{split} rV(D,n,k) &= \max \bigg\{ 0, \max_{x,p} \bigg\{ pnY \\ &+ \frac{\partial V}{\partial D}(D,n,k) \dot{D}(x,p;D,n,k) \\ &+ xn \left[V(D,n+1,k) - V(D,n,k) \right] \\ &+ \tau n \left[V(D,n-1,k) - V(D,n,k) \right] \\ &+ 1_{k=H} \phi_{H \to L} \left[V(D,n,L) - V(D,n,H) \right] \\ &- \varepsilon V(D,n,k) \\ &+ \partial_t [V(D,n,k)] \bigg\} \bigg\}, \end{split}$$
 s.t.

$$\bar{D}(n,k) \ge D.$$

Introduction

CALIBRATION

Set-Up

Introduction

- We calibrate the model to the US.
- 12 internally calibrated parameters with 17 moments calculated with "Federal Reserve Y-14" data and one moment calculated with Compustat.

Loss Function

$$\sum_{i=1}^{12} \frac{w(i)|\operatorname{model}(i) - \operatorname{data}(i)|}{\frac{1}{2}|\operatorname{model}(i)| + \frac{1}{2}|\operatorname{data}(i)|},$$
(6)

where w(i) is the *i*th moment's weight.

Data

Introduction

- Supervisory FR Y-14 dataset (2013-2019)
 - Financial information for US firms
 - Not only public firms but also a large number of small and mid-sized private businesses.
 - More than 600,000 firm year observations, around 190,000 unique firms.
 - Represent almost 80 percent of the US aggregate output (public firms account only around 40 percent).
- Compustat.
 - Payout information for large firms.

Calibration 000•00

Fit

Table 1: Moments

#	Moment	Data	Model
1	Payout Mean (+, Very Large)	0.081	0.061
2	Interest Spread (Small Size-Low Leverage)	0.014	0.012
3	Interest Spread (Small Size-High Leverage)		0.023
4	Interest Spread (Large Size-Low Leverage)	0.013	0.012
5	Interest Spread (Large Size-High Leverage)	0.015	0.018
6	Default Rate (Small Size-Low Leverage)	0.026	0.047
7	Default Rate (Small Size-High Leverage)	0.049	0.061
8	Default Rate (Large Size-Low Leverage)	0.018	0.007
9	Default Rate (Large Size-High Leverage)	0.030	0.049
10	Leverage (Small Size-Low Leverage)	0.090	0.130
11	Leverage (Small Size-High Leverage)	1.540	1.502
12	Leverage (Large Size-Low Leverage)	0.097	0.161
13	Leverage (Large Size-High Leverage)	0.997	0.945
14	Growth (Small Size-Low Leverage)	0.050	0.048
15	Growth (Small Size-High Leverage)	0.148	0.116
16	Growth (Large Size-Low Leverage)	-0.000	-0.001
17	Growth (Large Size-High Leverage)	0.019	0.009
18	Aggregate Growth	0.022	0.022

^{*}Large/Small firms are divided w.r.t. the median size.

^{**}High/Low leverage firms are divided w.r.t. the median leverage, defined as debt to sales ratio.

^{***}Very Large firms are the top 10% by size.

Parameters

Table 2: External Calibration

7	#	Parameter	Description	Value
	П	ρ	Discount Rate	0.02
2	2	θ	Inverse Intertemp. Elas. of Subs.	2.00
	3	η	Inverse Innovation Elasticity	2.00
	F	τ_{tax}	Tax Rate	0.35
Ŀ	5	ψ	Default Resolution Rate	0.46

Table 3: Internal Calibration

#	Parameter	Description	Value
1	κ	Payout Penalty Scale	3.605
2	χ	Fixed Cost	0.246
3	μ_0	Fixed Recovery	2.735
4	ξ	Buyer's Leverage	0.247
5	ν_0	Banking Costs	0.012
6	θ_H	H-Type Innovation Productivity	0.387
7	θ_L	L-Type Innovation Productivity	0.032
8	θ_E	Entrant Innovation Productivity	0.015
9	λ	Innovation Step Size	1.287
10	α	Share of H-Types in Entry	0.500
11	$\phi_{H \to L}$	Transition Rate into L-Type	0.267
12	ε	Death Shock	0.002

Investment by Firm Size and Leverage

- Healthy heterogeneity in investments across size, type, and leverage.
- With debt accumulation, investments start falling again (debt overhang).

Introduction

CRISIS

Crisis

- Unanticipated Shock: A zero probability event that occurs unexpectedly, but once it occurs, transition evolves deterministically.
- **Duration and Magnitude:** 33% decrease in gross profit margin for one year.
- What we study:
 - Effects of Bankruptcy on Reallocation
 - Effects of Firm Heterogeneity
 - Effects of Stabilization Policies

Productivity Loss

Figure 6: Deviation from Original Path

- Decline in productivity growth attributable to:
 - Mass bankruptcies.
 - Difficulty in expending resources on investments during crises.
 - Diminished value of expanding to new products.

Survival and Leverage

0.115

0.110

0.100

0.100

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Years (Since Transition Began)

Small Firms Large Firms

Figure 8: Leverage

- Small firms are driven into bankruptcy in large volumes.
- In the wake of bankruptcies, surviving small firms are less levered due to rising interest rates and decreasing debt limits.

Incumbent Investments

Figure 9: Incumbent Investment

Figure 10: By Type

- L Reduction in small firm's investments cause the initial dip.
- L Composition Effect: Small low types are acquired by new high-type entrepreneurs on average. Recovery is fueled by small firms.
- R Within small firms, high-type firms bolster growth.

Bankruptcies and Rebound

Figure 11: Growth Decomposition

1.2 Contribution to Growth (% Points) 1.0 0.8 0.6 0.4 0.2 Ŕ 10 Years (Since Transition Began)

Figure 12: Selection

- Low-types tend to go bankrupt more.
- R Recovery is driven by high-types born out of bankruptcies.

Concentration

Introduction

Figure 13: Top 50%

• Default of small firms lead to greater market concentration.

Bankruptcy Reallocation I

Figure 14: Productivity and Reallocation

- W/out active reallocation, productivity is permanently slashed.
- Speed of resolution can have profound effects during crises.

Stabilization Policies I

Figure 16: Productivity and Interest Rate Spreads

- Stabilization can couch the economy in the short-run.
- But, it may rob the economy of its robust recovery.

Stabilization Policies II

Introduction

Figure 18: Selection and Interest Rate Spreads

 Over stabilization kills positive selection by preventing the bankruptcy of weaker (low-type) firms.

Conclusion

- Heterogeneity of the economy is important during crises.
- Efficiency of the bankruptcy process is also critical.
- Debt can cause mass bankruptcies.
- Stabilization policies can depress long-term recoveries.
- Stabilization is more important when the bankruptcy process is ineffective.