Uma solução adaptativa baseada em aprendizado por reforço para contenção do tráfego de mensagens de controle em FANETs

Universidade Estadual de Campinas Instituto de Computação

Uma solução adaptativa baseada em aprendizado por reforço para contenção do tráfego de mensagens de controle em FANETs

Aluno: Orientador: Coorientadora: Elcio Pereira de Souza Junior Leandro Aparecido Villas Esther Luna Colombini

Agenda

- Motivação
- Objetivos
- Referencial Teórico
- Trabalhos Relacionados
- Modelo Proposto
- Simulação
- Resultados

Motivação

- Utilização de VANTs
- Cenário multi VANT FANETs
- Desafio → Comunicação
- Protocolos e mensagens de controle

Motivação

- Utilização de VANTs
- Cenário multi VANT FANETs
- Desafio → Comunicação
- Protocolos e mensagens de controle
 - Sobrecarga dos canais de comunicação
 - Aumento do consumo energético

Objetivo

Construção de uma solução adaptativa baseada em aprendizado por reforço que permita a otimização do tráfego de mensagens de controle em FANETs.

- Propor um modelo baseado em aprendizado por reforço para a otimização do envio de mensagens de controle;
- Construir um módulo de aprendizado que seja adaptável às diferentes categorias de protocolos de roteamento existentes;
- Construir um conhecimento global do estado da rede de modo a prolongar a efetividade do modelo proposto.

FANETS

Figura 1: MANET, VANET e FANET.¹

- Grau de mobilidade
- Padrão de mobilidade
- Densidade dos nós
- Mudanças topológicas

- Modelo de rádio propagação
- Consumo energético
- Poder computacional
- Localização

¹Ilker Bekmezci, Ozgur Koray Sahingoz e Samil Temel. "Flying Ad-Hoc Networks (FANETs): A survey". in Ad Hoc Networks 11.3 (2013), pp. 1254-1270. issn: 1570-8705. doi:https://doi.org/10.1016/j.adhoc. 2012.

Comunicação

Características:

- Topologia dinâmica
- Links intermitentes
- Segmentação da rede
- Baixos intervalos de conexão
- Baixa disponibilidade energética

Figura 2: Comunicação U2U (a) e híbrida (b).

Desafios:

- Mobilidade
- Recursos do sistema
- Broadcast Storming

Protocolos e Mensagens de Controle

- Protocolos estáticos
 - Tabelas fixas de roteamento
 - Não adaptável a cenários dinâmicos
- Protocolos proativos
 - Tabelas de roteamento atualizáveis
 - Maior custo computacional (cálculo de rotas ótimas) e consumo energético
- Protocolos reativos
 - Rotas sob demanda
 - Aumento do delay

Protocolos e Mensagens de Controle

- Protocolos híbridos
 - Combinação modelos proativos e reativos
 - o Problemas em maior comunicação entre zonas
- Protocolos geográficos
 - Não é necessário o armazenamento das tabelas de roteamento
 - Envio constante de mensagens de controle
- Protocolos hierárquicos
 - Múltiplos níveis
 - Maior complexidade na gestão das tabelas de roteamento

Trabalhos Relacionados

ABPP³

- Mobilidade como principal fator de ajuste
- alta velocidade = baixo intervalo
- baixa velocidade = alto intervalo

e: erro de previsão de posição

e': taxa de mudança de erro

b: intervalo de envio de mensagens

⁴X. Li and J. Huang, "ABPP: An Adaptive Beacon Scheme for Geographic Routing in FANET," 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Taipei, Taiwan, 2017, pp. 293-299, doi: 10.1109/PDCAT.2017.00055.

Trabalhos Relacionados ABPP³

- Melhora na sobrecarga do beacon
 e taxa de entrega de pacotes
- Aplicável a diferentes
 protocolos geográficos
- Limitações em altas velocidades
- Modelos de predição degrada em ambientes dinâmicos

e: erro de previsão de posição

e': taxa de mudança de erro

b: intervalo de envio de mensagens

⁴X. Li and J. Huang, "ABPP: An Adaptive Beacon Scheme for Geographic Routing in FANET," 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Taipei, Taiwan, 2017, pp. 293–299, doi: 10.1109/PDCAT.2017.00055.

Trabalhos Relacionados CAPONE²

- Novo paradigma de rede conhecido como SDN-FANET
- Organização hierárquica da rede
- Algoritmo para clusterização e previsão de posicionamento
- Confirmação de recepção

³Cumino P., Maciel K., Tavares T., Oliveira H., Rosário D., Cerqueira E., "Cluster-Based Control Plane Messages Management in Software-Defined Flying Ad-Hoc Network". in Sensors. 2020; 20(1):67. https://doi.org/10.3390/s20010067

Trabalhos Relacionados CAPONE²

- + Aumento da taxa de entrega de pacotes e redução do consumo energético e overhead
- Cenários densos: suscetível a sobrecarga do controlador

³Cumino P., Maciel K., Tavares T., Oliveira H., Rosário D., Cerqueira E., "Cluster-Based Control Plane Messages Management in Software-Defined Flying Ad-Hoc Network". in Sensors. 2020; 20(1):67. https://doi.org/10.3390/s20010067

Trabalhos Relacionados EE-Hello¹

- Algoritmo de intervalo de saudação adaptável
- Mecanismo de feedback de mensagem de saudação instantânea

²I. Mahmud and Y. Cho, "Adaptive Hello Interval in FANET Routing Protocols for Green UAVs," in IEEE Access, vol. 7, pp. 63004-63015, 2019, doi: 10.1109/ACCESS.2019.2917075.

Trabalhos Relacionados EE-Hello¹

- + 25% de redução do consumo energético
- Restrição do espaço aéreo
- Inserção de dados offline

²I. Mahmud and Y. Cho, "Adaptive Hello Interval in FANET Routing Protocols for Green UAVs," in IEEE Access, vol. 7, pp. 63004-63015, 2019, doi: 10.1109/ACCESS.2019.2917075.

Eventos de Interesse

Figura 3: Evento de interesse, segmentação e conexão total dos nós.

Aprendizado por Reforço

Equação de Bellman

Maximum predicted reward, given new state and all possible actions

$$Q(s, a)_{\text{New Q-Value}} = Q(s, a)_{\text{Current Q-Value}} + \alpha \underbrace{\left[R(s, a) + \gamma \operatorname{max} Q'(s', a') - Q(s, a)_{\text{Current Q-Value}}\right]}_{\text{Learning rate}}$$

Valor futuro ótimo estimado dado o par estado - ação

$$Q^*: State \times Action \rightarrow \mathbb{R}$$

Discount rate

- No entanto, não sabemos tudo sobre o mundo, por isso não temos acesso a Q*
 - Uma vez que as redes neurais são aproximadores de função, podemos então criar uma e treiná-la para se assemelhar 0*

Deep Q Network

 $Q^*: State \times Action \rightarrow \mathbb{R}$

- Algoritmo livre de modelo (que se baseia apenas em experiências)
- A rede neural mapeia os estados de entrada para pares (ação, valor Q)

Input States

Deep Q Network

 $Q^*: State \times Action \rightarrow \mathbb{R}$

- Epsilon-Greedy Exploration, o agente escolhe uma ação aleatória com probabilidade épsilon e explora a ação mais conhecida com probabilidade 1épsilon
- Espaço de ações discreto

Input States

Estado ou Entrada

Entrada ou Estado:

- Position
 [t-1,t]
- Range
- Energy_[t-1,t]
- Vizinhança_[t-1,t]

- Time_[t-1,t]
- Tx_[t-9,t]
- Rx_[t-9,t]
- Actions_[t-9,t]

Reforço

 $reward = \left[\left(\left| Rx_t - Rx_{t-1} \right|^{hello} - \left| Tx_t - Tx_{t-1} \right|^{hello} \right) \times \left(\sum_{i=1}^t \frac{Rx_i^{hello} + Tx_i^{hello}}{Rx_i^{control} + Tx_i^{control}} \right) - \left(energy_{t-1} - energy_t \right) * 10 \right]$

Variação de mensagens recebidas e enviadas do tipo hello

Razão entre mensagens do tipo hello e as demais

energia residual

Intervalo de Comunicação

Saída ou Ações:

- Intervalo de comunicação (intervalo específico ao tipo de mensagem);
- Mensagens do tipo Hello.

Visão Geral

- ____
 - O agente é treinado em ambiente simulado;
 - 0 treinamento é individual;
 - Estima-se que o comportamento individual de múltiplos agentes forneça uma otimização global da rede.

Simulação Cenário

- Wifi: taxa 2 Mb/s em modo ad hoc
- Aplicação: 4 pacotes de 64 bytes por segundo
- Os dados do aplicativo são iniciados em um tempo aleatório entre 30 e 31 segundos e continuam até o final da simulação

NS3: Simulador Open-Source, baseado em eventos discretos, destinado a pesquisa e uso educacional de sistemas de internet

Área:	1000 x 1000 x 600 m	
Número de VANTs:	10	
Velocidade:	[5,20] m/s	
Transmissão:	150 m	
Mobilidade:	Gauss Markov Mobility Model	
Número de VANTs:	10	
Source/Destination:	3	
Protocolo Phy/Mac:	Wifi 802.11b	

Simulação Treinamento

- Timesteps: intervalo de tempo específico;
- Episódio: um conjunto finito de timesteps;
- Cada timestep está definido em 1s e cada episódio possui de 300 a 500 timesteps (tempo de simulação)

Stable Baseline: Conjunto de implementações de aprendizado por reforço destinado a pesquisadores e entusiastas da área.

Política:	MlpPolicy
Taxa de aprendizado:	0,001
Batch	64
Frequência de treinamento:	4
Epsilon:	[0.05, 1]
Fração de exploração:	0.1

Avaliação

- Função de recompensa empregando o total das mensagens de controle;
- Desempenho médio dos agentes em um ambiente durante 300 timesteps.

Avaliação

Avaliação

- Mudança para função de recompensa mais específica;
- Revisão do par estado e ação;
- Alteração do modelo de treinamento.

	Random	Evaluate
Total sent packets	165277	165034
Total Received Packets	77593	80474
Total Lost Packets	87684	84560
Packet Loss ratio	53%	51%
Packet delivery ratio	46%	48%
Average Throughput	20.5689Kbps	19.8483Kbps
End to End Delay	1.5858e+12ns	1.36862e+12ns
End to End Jitter delay	1.12497e+11ns	1.1059e+11ns

Avaliação

Convergência dos agentes;

Próximos passos:

- Correção de bugs no processo de treinamento;
- Inserção da métrica de energia.

Agradecimentos

Prof. Leandro A. Villas
Prof^a. Esther L. Colombini

Computer Networks
Laboratory

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Laboratório de Robótica e Sistemas Cognitivos

Instituto de Computação e a Unicamp

Obrigado!

