

Technische Grundlagen der Informatik WS 2023/24

Einführung und Informationen

Dr. Solveig Schüßler

Solveig Schüßler

solveig.schuessler@et.hs-fulda.de

Tel.: 0661 9640 5851

Sprechzeit

montags 10:00 – 11:00 Uhr Raum 30.220 Anmeldung per Email erbeten

und nach Vereinbarung

- 2 eigenständige Teile der Lehrveranstaltung:
 - 1. Elektrotechnik ET geplant dienstags 9:50Uhr
 - 2. Nachrichtentechnik NT geplant donnerstags 9:50Uhr
- Veranstaltungsform: seminaristischer Unterricht
 - = eine Art Vorlesung mit begleitender Übung
- Unterlagen und Informationen: im Moodle-Kurs
 - Kurzskripte und Übungen zu Beginn des Semesters
 - Vorlesungsunterlagen / Folien immer im Vorfeld der Veranstaltungen
 - Lösungen, Mitschriebe nach der Veranstaltung
 - Nachrichten, Studierenden-Forum, Altklausuren, ...

Alle Unterlagen finden Sie im elearning/moodle des FB Al

https://elearning.hs-fulda.de/ai/course/view.php?id=499

- Klausur am Ende des Semesters 5ETCS
- Dauer: 90min, zwei Aufgabenteile: ET und NT
- max. 100 Punkte, je Teil 50 Punkte erreichbar
- freie Zeiteinteilung, kein Bestehenszwang für Einzelteile
- Klausur bestanden mit 50Pkt. = 4.0
- Erlaubte Hilfsmittel:
 - (eigene) <u>schriftliche</u> Unterlagen in Papierform, z.B. Skript,
 Mitschriebe, Formelsammlung, bei Bedarf auch Bücher ...
 - nicht programmierbarer Taschenrechner
 - Eigenes Papier
- Alte Klausuren und Lösungen im Moodle-Kurs

- Grundbegriffe der Elektrotechnik, Stromkreisgesetze, Wechselspannung/-strom
- Elektrisches Feld (Kondensator) und Magnetisches Feld und Spule
 - Einführung in Halbleiter, Dioden, (Transistoren)

- Grundlagen der Informationstechnik und Informationstheorie
- Signale im Zeit- und Frequenzbereich
- Nachrichtenübertragung (Übertragungsfunktion,-qualität, -medien)

Größen, Einheiten, Gleichungen

und das SI-Einheitensystem

Eine **Physikalische Größe**, ist eine quantitativ bestimmbare Eigenschaft eines physikalischen Objektes, Vorgangs oder Zustands

Länge: Beschreibung einer Strecke/ Entfernung

(elektr.) Stromstärke: wieviel elektrische Ladung sich in einer repräsentativen Zeit durch einen definierten Querschnitt bewegt

Geschwindigkeit: wie schnell und in welcher Richtung ein Körper in Laufe der Zeit seinen Ort verändert

Um physikalische Größen vergleichen oder angeben zu können, müssen Sie quantiativ angebbar sein!

Merke: Jede physikalische Größe wird als Produkt aus Zahlenwert und (Maß)Einheit dargestellt!

Physikalische Größe = Zahlenwert · Einheit *
$$G = \{G\} \cdot [G]^*$$

Länge s in Meter: s = 1 m $\{s\} = 1$ [s] = m

Masse m in Kilogramm: $m = 22 \text{ kg } \{m\} = 22 \text{ } [m] = \text{kg}$

* das " · " wird nicht geschrieben

(Maß)Einheit: Vergleichswert für die Angabe einer physikalischen Größe

Länge in Meter, Seemeilen, ...

elektr. Stromstärke in Ampere

Geschwindigkeit in Meter pro Sekunde, Kilometer pro Stunde

→ Es können beliebig viele Maßeinheiten definiert werden!

Größen, Einheiten, Gleichungen

Fachbereich Elektrotechnik und Informationstechnik

2019 grundlegende Revision:
 Definition über physikalische Konstanten (Naturkonstanten)
 (somit ist keine SI-Einheit mehr von veränderlichen Größen oder Objekten abhängig)

Konstante		exakter Wert		seit
Δv _{Cs}	Strahlung des Caesium-Atoms*	9 192 631 770	Hz	1967
С	Lichtgeschwindigkeit	299 792 458	m/s	1983
h	Plancksches Wirkungsquantum	6.626 070 15 · 10 ⁻³⁴	J·s	2019
е	Elementarladung	1.602 176 634 · 10 ⁻¹⁹	С	2019
k _B	Boltzmann-Konstante	1.380 649 · 10 ⁻²³	J/K	2019
NA	Avogadro-Konstante	6.022 140 76 · 10 ²³	mol ⁻¹	2019
Kcd	Photometrisches Strahlungsäquivalent**	683	lm/W	1979

^{*} Hyperfeinstrukturübergang des Grundzustands des Caesium-133-Atoms

^{**} für monochromatische Strahlung der Frequenz 540 THz (grünes Licht)

Größen, Einheiten, Gleichungen

Fachbereich Elektrotechnik und Informationstechnik

 SI-Basiseinheiten (werden weiter beibehalten und mit Hilfe der 7 festgelegten Naturkonstanten definiert)

Basisgröße	Formelzeichen	Basiseinheit	Einheitenzeichen
Länge	1	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s
Stromstärke	I	Ampere	A
thermodynamische Temperatur	Т	Kelvin	K
Stoffmenge	n	Mol	mol
Lichtstärke	I_{v}	Candela	cd

Diese Einheiten werden hauptsächlich in dieser Lehrveranstaltung verwendet.

Größen, Einheiten, Gleichungen

Fachbereich Elektrotechnik und Informationstechnik

Alle übrigen Größen und Einheiten können von den Basiseinheiten (und damit den Naturkonstanten) abgeleitet werden → abgeleitete Einheiten

- Die Ableitung der Größen spiegelt den physikalischen Zusammenhang zwischen den Größen wider
- Abgeleitete Einheiten haben zum Teil eigene Namen und Einheitenzeichen oder verwenden die bereits definierten (SI-)Einheitenzeichen

Größen, Einheiten, Gleichungen

Fachbereich Elektrotechnik und Informationstechnik

Gebräuchliche Vorsätze und ihre Bezeichnungen im SI-Einheitensystem

Kurzzeichen	Name	Potenz
G	Giga	10 ⁹
М	Mega	10 ⁶
k	Kilo	10 ³
d	Dezi	10^{-1}
С	Centi	10^{-2}
m	Milli	10^{-3}
μ	Mikro	10^{-6}
n	Nano	10^{-9}
р	Pico	10^{-12}

Diese Vorsätze brauchen wir immer wieder!
Bitte möglichst auswendig lernen oder immer griffbereit haben.

Aufgabe 1:

Wandeln Sie die folgenden Angaben in Dezimalzahlen ohne Potenz und in eine sinnvolle Potenz, die ein Vielfaches von drei ist.

a)
$$0.002 \cdot 10^{-4}$$

b)
$$2.4 \cdot 10^5$$

c)
$$0.2 \cdot 10^4 \cdot 3 \cdot 10^{-2}$$

d)
$$2.3 \cdot 10^5 + 2.7 \cdot 10^6$$

Aufgabe 1.2

Gegeben Sie die folgenden Werte zunächst in Exponentialdarstellung und dann ohne Zehnerpotenz durch Verwendung eines Präfixes!

a) 0,0056 g

b) 0,00473 dm²

c) 0,00329 mm

<mark>d)</mark> 0,000056 μm

Aufgabe 1.3

Geben Sie die folgenden Messwerte in den gefragten Einheiten an!

- a) $100 \text{ cm}^2 \text{ in m}^2$
- **b)** 50 km/h in m/s
- c) $100 \text{ cm}^3 \text{ in m}^3$

- d) 15,6 mm in nm
- e) 0,1 t in g
- f) 5,25 min in s und h

- g) $1.2 A/mm^2$ in kA/cm^2 und in A/m^2
- h) 2,5 kWh in Ws

Aufgabe 1.4

Bestimmen Sie die Lösungen der folgenden Gleichungen in der angegebenen Einheit!

- a) $200 \text{ cm}^2 + 200 \text{ mm}^2 \text{ in } \text{mm}^2$
- <mark>b)</mark> 40 mg + 30 μg in mg
- c) $10 \text{ m}^3 + 300 \text{ cm}^3 \text{ in L}$

- d) $10 \text{ m}^2 \cdot 10 \text{ cm in m}^3$
- e) $5 \mu \text{m} \cdot 6 \text{ mm} \cdot 21 \text{ cm}$ in cm³
- f) $4 \text{ mm}^2 / 2^3 \text{ cm}^3 \text{ in mm}^x$

Aufgabe 1.5 Formeln umstellen

a)
$$Z = \sqrt{R^2 + \frac{1}{(2 \cdot \pi \cdot f \cdot C)^2}}$$
 umstellen nach C

b)
$$V_2 = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{R_3}{R_4}}$$
 umstellen nach R_4