集合論 (第7回)

7. 同値関係と同値類

今回は集合の同値関係について紹介する.同値関係が与えられると、集合は同値類と呼ばれるグループに分割できる.このような集合のグループ分けは様々な数学で重要になる.

参考文献

- 「集合と位相」(内田伏一 著) の p.32-p.34.
- 「集合 · 位相入門」(松坂和夫 著) の p.52-p.56.

定義 7-1 (2 項関係)

集合 A を考える. 直積集合 $A\times A$ の各元 (a,b) に対して、満たすか満たさないかが判定できる規則 R を A 上の 2 **項関係**という. 元 (a,b) が R を満たすとき、a R b で表し、そうでないとき、a R b で表す.

- 2項関係の例を挙げる.
 - (1) ℝ上の2項関係 Rを

$$a R b \iff a \ge b \pmod{1}$$

で定義する. $2 \ge 1$ より 2R1 であり、一方、 $1 \ge 2$ は成立しないので 1R2.

(2) ℤ上の 2 項関係 R を

$$a R b \iff a - b$$
が 5 の倍数

で定義する.1-6は5の倍数より1R6であり,3-2は5の倍数ではないので $3\cancel{R}2$.

定義 7-2 (同値関係)

集合 A 上の 2 項関係 \sim が次の 3 条件を満たすとき, **同値関係**という.

- (i) $a \sim a$ (反射律).
- (ii) $a \sim b$ ならば $b \sim a$ (対称律).
- (iii) $a \sim b, b \sim c$ ならば $a \sim c$ (推移律).

ℝ上の2項関係~を

 $a \sim b \iff a = b$

で定義すると、明らかに定義 7-2 の (i)-(iii) を満たすので、 \sim は同値関係である。一方、(eq1) の $\mathbb R$ 上の 2 項関係 R を考えると、2 R 1 だが、1 R 2 である。よって、R は対称律が成立しないので、同値関係ではない。

例題 7-1

自然数 n をとる. \mathbb{Z} 上の 2 項関係 \sim を

 $a \sim b \iff a - b$ が n の倍数

で定義するとき、~が同値関係であることを示せ.

 $** a \sim b$ は「 $a \geq b$ をnで割った余りが等しい」とも言い換えられる.

(証明)

- (i) 反射律. $x \in \mathbb{Z}$ とする. x x = 0 は n の倍数より $x \sim x$.
- (iii) 対称律. $x,y\in\mathbb{Z}$ とし、 $x\sim y$ と仮定する. このとき、x-y=nk $(k\in\mathbb{Z})$ と表せる. y-x=n(-k) より $y\sim x$.
- (iii) 推移律. $x, y, z \in \mathbb{Z}$ とし, $x \sim y$, $y \sim z$ と仮定する. このとき, x y = nk, y z = nl $(k, l \in \mathbb{Z})$ と表せる. x z = n(k + l) より $x \sim z$.

問題 7-1

(1) ℝ上の2項関係~を

$$a \sim b \iff a - b \in \mathbb{Z}$$

で定義するとき、~が同値関係であることを示せ.

(2) 写像 $f: X \to Y$ に対して, X 上の 2 項関係 \sim を

$$a \sim b \iff f(a) = f(b)$$

で定義するとき、~が同値関係であることを示せ.

定義 7-3 (同値類)

集合 X 上の同値関係 \sim を考える. $a \in X$ に対して、

$$C(a) = \{ x \in X \mid a \sim x \}$$

を a の**同値類**という.

集合 $X=\{-1,0,1\}$ と写像 $f:X\to\mathbb{R}$ $(x\to x^2)$ を考える. X 上の同値関係 \sim を

$$a \sim b \iff f(a) = f(b)$$

で定義する.このとき、各元の同値類はそれぞれ次のようになる.

$$C(-1) = \{x \in X \mid -1 \sim x\} = \{x \in X \mid f(-1) = f(x)\} = \{-1, 1\},\$$

$$C(0) = \{x \in X \mid 0 \sim x\} = \{x \in X \mid f(0) = f(x)\} = \{0\},\$$

$$C(1) = \{x \in X \mid 1 \sim x\} = \{x \in X \mid f(1) = f(x)\} = \{-1, 1\}.$$

問題 7-2

(1) 集合 $X = \{(a,b) \in \mathbb{Z}^2 \mid 0 \le a \le 2, \ 0 \le b \le 2\}$ に対して、同値関係 \sim を

$$(a,b) \sim (c,d) \iff ab = cd$$

で定める. このとき, C((0,0)) と C((2,1)) をそれぞれ計算せよ.

(2) ℝ2 の同値関係 ~ を

$$(a,b) \sim (c,d) \iff a^2 + b^2 = c^2 + d^2$$

で定める. 実数 r > 0 に対して, C((r,0)) はどのような集合か?

定理 7-1

集合 X 上の同値関係 \sim を考える. $a,b \in X$ に対して, 次が成り立つ.

- (1) $a \in C(a)$.
- (2) $a \sim b \iff C(a) = C(b)$.
- (3) $C(a) \neq C(b) \iff C(a) \cap C(b) = \phi$.

 $% C(a_1), C(a_2), ..., C(a_n)$ が相異なる同値類全体とすると、上の(1), (3)より

$$X = C(a_1) \cup C(a_2) \cup \cdots \cup C(a_n), \quad C(a_i) \cap C(a_j) = \phi \ (i \neq j)$$

となる. つまり、同値関係 \sim は集合 X の分割を与える.

(証明)

(2) ⇒ を示す. $x \in C(a)$ とすると、 $a \sim x$ となる. また $a \sim b$ より $b \sim a$ であるから、 $b \sim x$. 従って $x \in C(b)$. これより $C(a) \subseteq C(b)$. 逆の包含も同様である. 次に \Leftarrow を示す. (1) より $b \in C(b) = C(a)$. 従って $a \sim b$.

 $(3) \Leftarrow$ を示す。 $a \in C(a)$ であり、また $C(a) \cap C(b) = \phi$ より $a \notin C(b)$. よって $C(a) \neq C(b)$. 次に ⇒ を示す。 $C(a) \cap C(b) \neq \phi$ と仮定する。 $x \in C(a) \cap C(b)$ を取ると、 $a \sim x$ かつ $b \sim x$. これより $a \sim b$ となる。(2) より C(a) = C(b) となり矛盾。従って $C(a) \cap C(b) = \phi$.

例題 7-1 の同値関係を考える. $x\in\mathbb{Z}$ に対して, x を n で割った余りを r とする. このとき, $x\sim r$ より, C(x)=C(r). つまり, \sim の各同値類は C(0), C(1), ..., C(n-1) のいずれかと一致する. また整数 r $(0\leq r\leq n-1)$ に対して,

$$C(r) = \{x \in \mathbb{Z} \mid x \sim r\} = \{x \in \mathbb{Z} \mid x \in n \text{ で割った余りは } r\}.$$

よって、この同値関係は \mathbb{Z} をnで割った余りで分割している.

問題 7-3 \mathbb{R}^2 の同値関係 \sim を

$$(x_1, y_1) \sim (x_2, y_2) \iff y_1 - x_1 = y_2 - x_2$$

で定義する. このとき、 \mathbb{R}^2 に対して \sim はどのような分割を与えるか?