

KOLEJKA ADT

- Kolejka przechowuje dowolne obiekty
- Dodawanie i usuwanie jest wykonywane według zasady FIFO - first-in first-out
- Elementy dodawane są na końcu kolejki, a usuwane z przodu kolejki
- Główne operacje na kolejce:
 - enqueue(element): dodaje element na końcu kolejki
 - element dequeue(): usuwa i zwraca element z początku kolejki
- © 2004 Goodrich, Tamassia

- Dodatkowe operacje:
 - element front(): zwraca element na przodzie listy bez usuwania go
 - integer size(): zwraca ilość przechowywanych elementów
 - boolean isEmpty(): informuje czy w kolejce są przechowywane jakieś elementy

Wyjątki

 Próba wywołania dequeue lub front na pustej kolejce wyrzuca EmptyQueueException

ZASTOSOWANIA KOLEJEK Zastosowanie bezpośrednie Listy oczekujących, Dostęp do zasobów współdzielonych (np.:, drukarka), Multiprogramming Zastosowania pośrednie Pomocnicza struktura danych dla algorytmów Składowa innych struktur danych

KOLEJKA BAZUJĄCA NA POWIĘKSZANEJ TABLICY

- Wykonując operację enqueue, kiedy tablica jest pełna, zamiast wyrzucania wyjątku, możemy możemy zastąpić ją większą tablicą
- · Analogicznie do procedury, którą omawialiśmy w przypadku stosu
- ·Operacja enqueue ma średni czas działania:
 - O(n) w przypadku strategii inkrementalnej
 - •O(1) w przypadku strategii podwajającej

© 2004 Goodrich, Tamassi

KOLEJKI PRIORYTETOWE

KOLEJKA PRIORYTETOWE - ADT •Kolejka priorytetowa przechowuje • Dodatkowe metody: kolekcję wpisów ·min() · Każdy element jest parą zwraca, ale nie usuwa, element o (klucz, wartość) najmniejszym kluczu · Główne metody kolejki priorytetowej •size(), isEmpty() •insert(k, x) dodaje element o kluczu k i Zastosowania wartości x •removeMin() Aukcje usuwa i zwraca element o •Giełda papierów wartościowych najmniejszym kluczu

RELACJE UPORZĄDKOWANIA

- Klucze w kolejce
 priorytetowej mogą być
 dowolnymi obiektami, na
 których podstawie da się
 zdefiniować uporządkowanie
- Dwa różne wpisy w kolejce priorytetowej mogą posiadać ten sam klucz.
- Matematyczna koncepcja całkowitego uporządkowania ≤
 - •Właściwość refleksyjna: ×≤×
 - •Właściwość antysymetryczna: × ≤ y ∧ y ≤ x ⇒ x = y
 - •Właściwość tranzytywna: $x \le y \land y \le z \Rightarrow x \le z$

© 2004 Goodrich, Tamassia

KOMPARATOR

- Komparator porównuje dwa obiekty zgodnie z koncepcją całkowitego uporządkowania
- Uogólniona postać kolejki priorytetowej wykorzystuje komparator
 - •definicja sposobu porównywania obiektów
- •Komparator jest niezależny od przechowywanych kluczy
 - •takie same obiekty mogą zostać posortowane w różny sposób
 - •zależny od komparatora

ZASTOSOWANIE KOMPARATORA W C++

• Przykład:

- Klasa komparatora przeciąża operator "()" funkcją porównującą
- Przykład: Porównaj leksykograficznie dwa punkty na płaszczyźnie

```
class LexCompare{
public:
       int operator()(Point a, Point b){
   if (a.x < b.x) return -1
   else if (a.x > b.x) return 1
                 else if (a.y < b.y) return -1
else if (a.y > b.y) return 1
else return 0;
```

- W celu wykorzystania komparatora należy zdefiniować obiekt tego typu i wywołać jego operator "()"
- Point p(2.3, 4.5); Point q(1.7, 7.3); LexCompare lexCompare; if (lexCompare(p,q) < 0) cout
 cot
 cot < mp jest mniejsze od q";

 else if (lexCompare(p,q) == 0)
 </pre> cout<< "p jest równe q"; else if (lexCompare(p,q) > 0) cout << "p jest większe od q";

SORTOWANIE Z ZASTOSOWANIEM KOLEJEK PRIORYTETOWYCH

- · Możemy wykorzystać kolejkę priorytetową do posortowania zbioru porównywalnych elementów
 - I. Pojedynczo umieść elementy w kolejce
 - 2. Usuń elementy z wykorzystaniem serii operacji removeMin
- · Złożoność obliczeniowa takiego sortowania jest zależna od implementacji kolejki priorytetowej

Algorytm Priority Queue Sort (S, P) Wejście: sekwencja S, kolejka priorytetowa P wykorzystująca metodę całkowitego uporządkowania

Output: posortowana sekwencja S z zastosowaniem metody całkowitego uporzadkowania

while !S.isEmpty() do $e \leftarrow S.removeFirst()$ P.insert (e, null) while !P.isEmpty() do $e \leftarrow P.removeMin().getKey()$

S.addLast(e)

KOLEJKA BAZUJĄCA NA LIŚCIE

nieposortowanej listy

- umieszczanie elementów zajmuje O(1)
 - ·możemy umieszczać elementy na początku i na końcu
- •removeMin i min zaimuia O(n)
 - •musimy przeskanować całą listę w celu odnalezienia najmniejszego klucza

•Implementacja z wykorzystaniem posortowanej

- Wydainość:
- umieszczanie elementów zajmuje O(n)
 - •musimy znaleźć miejsce gdzie możemy dodać nowy element
- •removeMin i min zaimuia O(1)
 - najmniejszy element znajduje się na początku

© 2004 Goodrich, Tamassia

ZŁOŻONOŚĆ **OBLICZENIOWA**

ZŁOŻONOŚĆ OBLICZENIOWA

© 2004 Goodrich, Tamassia

- Wiekszość algorytmów przekształca obiekty wejściowe w obiekty wyjściowe
- · Czas działania (złożoność obliczeniowa) algorytmu zazwyczaj wzrasta wraz z rozmiarem danych wejściowych
- Średni czas działania jest najczęściej trudny do określenia
- · koncentrujemy się na przypadku najgorszym
 - · łatwiejszy do analizy
 - · Istotny w aplikacjach takich jak gry, finanse i robotyka

SIEDEM WAŻNYCH FUNKCJI

- · Siedem funkcji często wykorzystywanych w analizie algorytmów:
 - Stała ≈ I
 - Logarytmiczna ≈ log n
 - Liniowa ≈ n
 - N-Log-N ≈ n log n
 - Kwadratowa ≈ n²
 - Sześcienna ≈ n³
 - Wykładnicza ≈ 2ⁿ
- Na wykresie log-log, nachylenie linii świadczy o wzroście funkcji

Napisz program implementujący algorytm Napisz program implementujący algorytm Przetestuj napisany program na danych o różnych rozmiarach Wykorzystaj metodę typu System.currentTimeMillis() do dokładnego oszacowania czasu działania algorytmu Zrób wykres dla otrzymanych wyników.

OGRANICZENIE EKSPERYMENTÓW

- Niezbędne jest zaimplementowanie algorytmu, który może być trudny
- Wyniki złożoności obliczeniowej mogą nie być znaczące dla danych wejściowych, które nie były wykorzystywane w eksperymentach
- W celu porównania dwóch algorytmów należy korzystać z tego samego sprzętu i oprogramowania

© 2004 Goodrich, Tamassia

ANALIZA TEORETYCZNA

- Wykorzystuje formalną reprezentację algorytmu zamiast implementacji
- Charakteryzuje złożoność obliczeniową jako funkcję rozmiaru danych wejściowych, n
- · Bierze pod uwagę wszystkie możliwe dane wejściowe
- Pozwala nam na ocenę szybkości działania algorytmu niezależnie od sprzętu/oprogramowania

© 2004 Goodrich, Tamassia

DEFINICJA

- Złożoność obliczeniowa algorytmu A jest zdefiniowana przez:
 - t czas ilość operacji niezbędnych do rozwiązania dowolnej instancji I problemu o rozmiarze N(I) przez algorytm A => N(I) = n
 - $f_A(n) = max(t)$
- Nas interesuje jak wygląda funkcja FA, a nie jej wartości

© 2004 Goodrich, Tamas

METODY REPREZENTACJI ALGORYTMÓW Pseudo kod Graficznie Schematy blokowe początek lub koniec algorytmu decyzja proces, czynność, operacja, działanie procedura, funkcja wczytywanie/wprowadzanie danych łącznik

PSEUDO KOD

- · Uogólniony opis algorytmu
- Bardziej strukturalny niż opis w języku polskim
- Mniej szczegółowy od programu komputerowego
- Preferowana notacja do opisu algorytmów
- Ukrywa aspekty projektowania programu

P 2004 Goodrich Tamassia

Przykład: znajdź element max tablicy

Algorytm tabMax(T, n)

Wejście tab T zawierająca n integerów

Wyjście element maksymalny T

biezaceMax ← T[0]

for i ← 1 to n − 1 do

if T[i] > biezaceMax then

 $biezaceMax \leftarrow T[i]$ return biezaceMax

DETALE PSEUDOCODU

- · Kontrola działania
 - if ... then ... [else ...]
 - · while ... do ...
 - · repeat ... until ...
 - for ... do ...
 - Wcięcia zastępują nawiasy
- · Deklaracja metod
 - Algorytm metoda (arg [, arg...])

Wejście ...

Wyjście

- Wywołanie metody
 - zm.metoda (arg [, arg...])
- Zwracanie wartości

return wyrażenie

- · Wyrażenia
 - ← Przypisanie (tak jak = w C++/|avie)
 - = Testowanie równości (tak jak == w C++/Javie)
- n² Superskrypty i inne matematyczne formatowanie jest dozwolone

OPERACJE PODSTAWOWE

- Podstawowe obliczenia są wykonywane przez algorytm
- · Identyfikowane w pseudokodzie
- Niezależne od języka programowania
- Dokładna definicja nie jest istotna (później zobaczymy dlaczego)
- Z założenia pobierają stałą ilość pamięci oraz wykonywane są w ściśle określonym czasie

- Przykłady:
 - Wykonywanie wyrażeń
 - · Przypisanie wartości do zmiennej
 - · Indeksowanie tablicy
 - · Wywołanie metody
- Powrót z metody

ZLICZANIE OPERACJI PODSTAWOWYCH

 Badając pseudokod możemy określić maksymalną ilość operacji podstawowych wykonywanych przez algorytm w funkcji n - rozmiaru danych wejściowych

 $\begin{aligned} & \textbf{Algorytm } tabMax(T, n) & \text{il. operacji} \\ & biezacyMax \leftarrow T[0] & 2 \\ & \text{for } i \leftarrow 1 \text{ to } n - 1 \text{ do} & 2n \\ & \text{if } T[i] > biezacyMax \text{ then} & 2(n-1) \\ & biezacyMax \leftarrow T[i] & 2(n-1) \\ & \{ zwiększanie licznika i \} & 2(n-1) \\ & \text{return } biezacyMax & \\ & & \text{Suma} & 8n-3 \end{aligned}$

© 2004 Goodrich, Tamassia

OKREŚLANIE ZŁOŻONOŚCI OBLICZENIOWEJ - CZASU DZIAŁANIA ALGORYTMU

- Algorytm tabMax wykonuje 8n 3 operacji podstawowych w najgorszym przypadku. Zdefiniujmy:
 - a = Czas wykonania najszybszej operacji podstawowej
 - b = Czas wykonania najwolniejszej operacji podstawowej
- Niech **T(n)** będzie najgorszym czasem tabMax.Wtedy

$$a (8n - 3) \le T(n) \le b(8n - 3)$$

 $\bullet\,$ Zatem, czas T(n) jest ograniczony przez dwie funkcje liniowe

WSPÓŁCZYNNIK WZROSTU ZŁOŻONOŚCI OBLICZENIOWEJ

- Zmiana środowiska sprzętowego/oprogramowania
 - Ma stały wpływ na T(n), ale
 - nie ma wpływu na współczynnik wzrostu T(n)
- Liniowy wzrost czasu działania T(n) jest istotną właściwością algorytmu tabMax

© 2004 Goodrich, Tamassia

SKŁADOWA STAŁA

- Asymptotyczny współczynnik wzrostu nie zależy od:
 - składowych stałych lub
 - wyrażeń niższego rzędu
- Przyłady
 - 10²n + 10⁵ jest funkcją liniową
 - 10⁵n² + 10⁸n jest funkcją kwadratową

Mając daną funkcję **f(n)** i **g(n)** mówimy, że **f(n)** należy do **O(g(n))** jeśli istnieją stałe nieujemne **c** i **n**₀ takie, że **f(n)** ≤ **cg(n)** dla **n** ≥ **n**₀ • Przykład: 2n + 10 jest w **O(n)**• 2n + 10 ≤ cn • (c - 2) n ≥ 10

PRZYKŁAD DUŻEGO O

- Przykład: funkcja n² nie należy do O(n)
 - $n^2 \le cn$

• $n \ge 10/(c - 2)$

Weźmy c = 3 i n₀ = 10

- n ≤ c
- Powyższa nierówność nie może zostać spełniona ponieważ c musi być stałe

© 2004 Goodrich, Tamassia

WIĘCEJ PRZYKŁADÓW

- 7n-2
- $3n^3 + 20n^2 + 5$
- •3 log n + 5

© 2004 Goodrich, Tamassia

WIĘCEJ PRZYKŁADÓW

• 7n-2

7n-2 jest w O(n) potrzebujemy c > 0 i $n_0 \ge 1$ takie, że 7n-2 \le c•n dla $n \ge n_0$ spełnione dla c = 7 i $n_0 = 1$

- $3n^3 + 20n^2 + 5$
- •3 log n + 5

WIĘCEJ PRZYKŁADÓW

• 7n-2

7n-2 jest w O(n) potrzebujemy c>0 i $n_0\ge 1$ takie, że 7n-2 $\le c \circ n$ dla $n\ge n_0$ spełnione dla c=7 i $n_0=1$

• $3n^3 + 20n^2 + 5$

 $3n^3+20n^2+5$ jest w $O(n^3)$ potrzebujemy c>0 i $n_0\geq 1$ takie, że $3n^3+20n^2+5\leq c\bullet n^3$ dla $n\geq n_0$ spełnione dla c=4 i $n_0=21$

•3 log n + 5

© 2004 Goodrich, Tamassia

WIĘCEJ PRZYKŁADÓW

• 7n-2

7n-2 jest w O(n) potrzebujemy c>0 i $n_0\ge 1$ takie, że 7n-2 $\le c \circ n$ dla $n\ge n_0$ spełnione dla c=7 i $n_0=1$

• $3n^3 + 20n^2 + 5$

 $3n^3+20n^2+5$ jest w $O(n^3)$ potrzebujemy c>0 i $n_0\ge 1$ takie, że $3n^3+20n^2+5\le c\bullet n^3$ dla $n\ge n_0$ spełnione dla c=4 i $n_0=21$

•3 log n + 5

3 log n + 5 jest w O(log n) potrzebujemy c>0 i $n_0\ge 1$ takie, że 3 log n + 5 $\le c \circ \log n$ dla $n\ge n_0$ spełniony dla c=8 i $n_0=2$

© 2004 Goodrich, Tamassia

DUŻE O I WSPÓŁCZYNNIK WZROSTU

- Notacja duże O daje nam górne ograniczenie współczynnika wzrostu funkcji.
- Określenie "f(n) jest w O(g(n))" oznacza, że współczynnik wzrostu funkcji f(n) jest nie większy niż współczynnik wzrostu funkcji g(n)
- Możemy wykorzystać notację duże O do porównywania (stopniowania) funkcji względem ich współczynnika wzrostu

f(n) jest w $O(g(n))$	g(n) jest w $O(f(n))$	
Tak	Nie	g(n) rośnie szybciej
Nie	Tak	f(n) rośnie szybciej
Tak	Tak	ten sam wzrost

© 2004 Goodrich, Tamassia

DUŻE O I WSPÓŁCZYNNIK WZROSTU

- Notacja duże O daje nam górne ograniczenie współczynnika wzrostu funkcji.
- Określenie "f(n) jest w O(g(n))" oznacza, że współczynnik wzrostu funkcji f(n) jest nie większy niż współczynnik wzrostu funkcji g(n)
- Możemy wykorzystać notację duże O do porównywania (stopniowania) funkcji względem ich współczynnika wzrostu

f(n) jest w $O(g(n))$	g(n) jest w $O(f(n))$	
Tak	Nie \blacksquare	g(n) rośnie szybciej
Nie	Tak	f(n) rośnie szybciej
Tak	Tak	ten sam wzrost

© 2004 Goodrich, Tamassia

DUŻE O I WSPÓŁCZYNNIK WZROSTU

- Notacja duże O daje nam górne ograniczenie współczynnika wzrostu funkcji.
- Określenie "f(n) jest w O(g(n))" oznacza, że współczynnik wzrostu funkcji f(n) jest nie większy niż współczynnik wzrostu funkcji g(n)
- Możemy wykorzystać notację duże O do porównywania (stopniowania) funkcji względem ich współczynnika wzrostu

f(n) jest w $O(g(n))$	g(n) jest w $O(f(n))$	
Tak	Nie -	g(n) rośnie szybciej
Nie	Tak -	f(n) rośnie szybciej
Tak	Tak	ten sam wzrost

© 2004 Goodrich, Tamassia

DUŻE O I WSPÓŁCZYNNIK WZROSTU

- Notacja duże O daje nam górne ograniczenie współczynnika wzrostu funkcji.
- Określenie "f(n) jest w O(g(n))" oznacza, że współczynnik wzrostu funkcji f(n) jest nie większy niż współczynnik wzrostu funkcji g(n)
- Możemy wykorzystać notację duże O do porównywania (stopniowania) funkcji względem ich współczynnika wzrostu

f(n) jest w $O(g(n))$	g(n) jest w $O(f(n))$	
Tak	Nie 💻	g(n) rośnie szybciej
Nie	Tak 🖷	f(n) rośnie szybciej
Tak	Tak 💻	ten sam wzrost

ZASADY NOTACJI DUŻE O

• Jeśli f(n) jest wielomianem stopnia d, np.:

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n^1 + c_0 n^0$$
, to $f(n)$ jest w $O(n^d)$, np.:

- I. Pomiń wyrażenia niskiego stopnia
- 2. Pomiń stałe
- Wykorzystaj najmniejszą możliwą klasę funkcji
 - Powiemy "2n jest w O(n)" zamiast "2n jest w O(2n)"
- Wykorzystaj najprostsze wyrażenie tej klasy
 - Powiemy "3n + 5 jest w O(n)" zamiast "3n + 5 jest w O(3n)"