Syllabus

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science

Department of Mathematics, Statistics, and Computer Science Marquette University

Syllabus Spring 2018

Course: MSCS 6020 Simulation

Time: TuTh 3:30-4:45 Cudahy Hall 120

Instructor: Daniel B. Rowe, Ph.D.

Course Description From The University Bulletin

MSCS 6020. Simulation. 3 cr. hrs.

Elements of statistical simulation and modeling with applications. Generation of random variables, Monte Carlo method, Markov chains, birth-and-death processes, queues, variance reduction, Markov chain Monte Carlo (MCMC) methods and applications, bootstrapping, validation and analysis of simulated data. Prereq: MSCS 6010 and programming competency in a high-level language.

We will be using Matlab as our programming language.

Office Hours: TuTh 2:30-3:30 pm

Office: Cudahy Hall 313

E-mail: daniel.rowe@marquette.edu

Text: Ross, Sheldon. (2012).

Simulation, Fifth edition, Academic Press.

ISBN: 0124159710

Grading: A midterm (in class and take-home) on March 8, (bi)weekly homework & class participation, and a final exam (in class and take-home) on May 10, 8:00 am – 10:00 am. Homework & Participation (30%), Mid-Term (30%), Final (40%).

Chapter 2: Elements of Probability

Sample Space and Events, Axioms of Probability, Random Variables, Expectation, Discrete RVs, Continuous RVs,

Conditional Expectation and Variance Covered by prerequisite.

Chapter 3: Random Numbers

Number Generation, Random Numbers to Evaluate Integrals

Chapter 4: Generating Discrete RVs

Inverse Transform, Poisson RV, Binomial RV, Acceptance-Rejection, Composition Approach, Alias Method, Random Vectors

Chapter 5: Generating Continuous RVs

Inverse Transform, Rejection Polar Method for Normal RVs, Poisson Processes, Nonhomogeneous Poisson Processes, 2D Poisson Process.

Chapter 6: Multivariate Normal and Copulas

Multivariate Normal, Generating Multivariate Normal RVs, Copulas, Generating Variables from Copula Models

Chapter 7: Discrete Event Simulation

Discrete Events, Queueing Systems, Inventory Model, Insurance Risk Model, Repair Problem, Stock Option

Chapter 8: Analysis of Simulated Data

Sample Mean and Variance, Interval Estimates of Mean, Bootstrapping for Mean Square Error

Chapter 9: Variance Reduction Techniques

Antithetic Variables, Control Variates, Variance Reduction by Conditioning, Stratified Sampling, Importance Sampling, Common Random Numbers, Exotic Option

Chapter 10: Additional Variance Reduction Techniques

Conditional Bernoulli Sampling, Normalized Importance Sampling, Latin Hyper Cube Sampling

Chapter 11: Statistical Validation Techniques

Goodness of Fit Tests, Two Sample Problem, Validating Assumptions of a Nonhomogeneous Poisson Process

Chapter 12: Markov Chain Monte Carlo Methods

Markov Chains, Hastings-Metropolis Algorithm, Gibbs Sampler, Markov Chains and Queueing Loss, Simulated Annealing, Sampling Importance Resampling

Numerical Flavor

All slides are a summary of the material and do not contain all detail. Book and other sources are the ultimate authority.

Deviations form the text may occur.

Familiarize yourself with Matlab

Chapter 2: Elements of Probability Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science

Homework 1:

Chapter 2: #7, 13, 29, 31, 36, 37.

Numerical Integration

Daniel B. Rowe, Ph.D.

Professor
Department of Mathematics,
Statistics, and Computer Science

Area under curve between *a* and *b*.

Integration - Numerical Approach

Integration - Numerical Approach

Numerical Integration can be applied to find Expectations E[g(x)]

$$A = \int g(x)f(x) \ dx$$

Approximated as

$$A = \sum_{i=1}^{n} g(x_i^*) f(x_i^*) \Delta x$$

Homework:

$$f(x) = x^3, x \in \mathbb{R}$$

- 1) Differentiate analytically and evaluate at a=-1 and b=1.
- 2) Differentiate by hand numerically with $\Delta x=0.5$.
- 3) Write a Matlab program for 2) then let $\Delta x = 1/100$.
- 4) Integrate analytically and evaluate from a=-1 to b=1.
- 5) Integrate by hand numerically using n=4.

$$\Delta x = 0.5$$
 $(x_1^*, x_2^*, x_3^*, x_4^*) = (-0.75, -0.25, 0.25, 0.75)$

6) Write a Matlab program for 5) then let n=100.

Chapter 3: Random Numbers

Daniel B. Rowe, Ph.D.

Department of Mathematics, Statistics, and Computer Science

3.1 Pseudorandom Number Generation "Random" (0,1) numbers

Multiplicative Congruential Method

- (1) Start with seed x_0
- (2) Compute $x_n = ax_{n-1} \mod m$, n = 0, 1, 2, ... where a and m are given positive integers

$$x_n = \text{remainder}(ax_{n-1} / m) \sim U(0,1)$$

choose $m = 2^{31}$ -1 and $a=7^5$ for 32 bit machines

3.1 Pseudorandom Number Generation "Random" (0,1) numbers

Mixed Congruential Method

- (1) Start with seed x_0
- (2) Compute $x_n = (ax_{n-1} + c)$ modulo m, n = 0, 1, 2, ... where a, c, and m are given positive integers

$$x_n = \text{remainder}((ax_{n-1} + c) / m) \sim U(0,1)$$

choose m = to be the computer's word length

Let g(x) be a function and suppose we want

$$\theta = \int_0^1 g(x) dx$$

If U is uniformly distributed over (0,1), then

$$\theta = E(g(U))$$

Think of
$$f(u) = \begin{cases} 1 & \text{if } 0 \le u \le 1 \\ 0 & \text{otherwise} \end{cases}$$
 and $\theta = \int_0^1 g(u) f(u) du$

If we generate $U_1,...,U_k$ independent uniforms then $g(U_1),...,g(U_k)$ will be IID with mean θ .

$$\sum_{i=1}^{k} \frac{g(U_i)}{k} \to E[g(U)] = \theta \quad \text{as } k \to \infty$$

$$\theta = \int_0^1 g(u) f(u) du$$

If we want $\theta = \int_a^b g(x)dx$, then we can transform x to y as y = (x - a)/(b - a), with dy = dx/(b - a)

$$\theta = \int_{a}^{b} g(x)dx \qquad dx = (b-a)dy$$
$$x = a + y[b-a]$$

$$\theta = \int_0^1 g(a + [b - a]y)(b - a)dy$$

$$\theta = \int_0^1 h(y)dy$$

$$h(y) = g(a + [b - a]y)(b - a)$$

Integrate $\theta = \int_0^1 2x \, dx$ using U(0,1) random numbers.

Analytically, we'd get $\theta = \int_0^1 2x \, dx = 2 \frac{x^2}{2} \Big|_0^1 = 1$.

Or we can generate uniform numbers u_1, \ldots, u_n and

Calculate
$$\theta \approx \frac{1}{n} \sum_{i=1}^{n} (2u_i)$$
.

Matlab Code:

rng('default')

n=10^6;

u=rand(n,1);

theta=sum(2*u)/n

Matlab Output:

theta = 1.0006

If we want $\theta = \int_0^\infty g(x)dx$, then we can transform x to y as y = 1/(x+1), with $dy = -dx/(x+1)^2 = -y^2 dx$

$$\theta = \int_0^\infty g(x)dx \qquad dx = -dy / y^2 \qquad \text{limits} \qquad x = 0 \to y = 1$$
$$x = 1 / y - 1 \qquad x = 1 \to y = 0$$

$$\theta = \int_0^1 g(1/y - 1) dy / y^2$$

$$\theta = \int_0^1 h(y) dy$$

$$h(y) = g(1/y - 1) / y^2$$

If we want $\theta = \int_0^\infty g(x)dx$, then we can transform x to y as y = 1/(x+1), with $dy = -dx/(x+1)^2 = -y^2 dx$

$$\theta = \int_0^\infty g(x)dx \qquad dx = -dy / y^2 \qquad \text{limits} \qquad x = 0 \to y = 1$$
$$x = 1 / y - 1 \qquad x = 1 \to y = 0$$

$$\theta = \int_0^1 g(1/y - 1) dy / y^2$$

$$\theta = \int_0^1 h(y) dy$$

$$h(y) = g(1/y - 1) / y^2$$

Most useful in evaluating multiple integrals.

$$\theta = \int_0^1 \int_0^1 ... \int_0^1 g(x_1, ..., x_n) dx_1 ... dx_n$$

The key is to use $\theta = E[g(U_1,...,U_n)]$, where $U_1,...,U_n$ are independent U(0,1)'s. If we generate $U_1^1,...,U_n^1$ then $\theta = E[g(U_1,...,U_n)] \approx \sum_{i=1}^k \frac{g(U_1^i,...,U_n^i)}{k}$. $U_1^2,...,U_n^2$ \vdots $U_1^k,...,U_n^k$

Homework 2:

Chapter 3: # 1*, 3, 7, 9, 11.

*Repeat generating 10⁴ of these.

Compute mean, variance, and make a histogram.

Repeat using Matlab's rand() command.

Compare results from to Matlab's rand().