Determinante de Vandermonde

46. El determinante de Vandermonde* de 3 × 3 está dado por

$$D_3 = \begin{vmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{vmatrix}$$

Demuestre que $D_3 = (a_2 - a_1) (a_3 - a_1) (a_3 - a_2)$.

47. $D_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ a_1 & a_2 & a_3 & a_4 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 \end{bmatrix}$ es el determinante de Vandermonde de 4 × 4. Demuestre que

$$D_4 = (a_2 - a_1)(a_3 - a_1)(a_4 - a_1)(a_3 - a_2)(a_4 - a_2)(a_4 - a_3).$$

**48. a) Defina el determinante de Vandermonde de $n \times n$, D_n .

b) Demuestre que $D_n = \prod_{\substack{i=1\\j>i}}^{n-1} (a_j - a_i)$, donde \prod representa la palabra "producto". Observe que el producto en el problema 47 se puede escribir $D_4 = \prod_{\substack{i=1\\j>i}}^3 (a_j - a_i)$.

49. Sea
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 y $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$.

- a) Escriba el producto AB.
- b) Calcule det A, det B y det AB.
- c) Demuestre que det $AB = (\det A)(\det B)$.

Matriz nilpotente

50. La matriz A de $n \times n$ se llama **nilpotente** si $A^k = 0$, la matriz cero, para algún entero $k \ge 1$. Demuestre que las siguientes matrices son nilpotentes al encontrar la k más pequeña tal que $A^k = 0$.

a)
$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$

51. Demuestre que si A es nilpotente, entonces det A = 0.

Matriz idempotente

- **52.** La matriz A se llama **idempotente** si $A^2 = A$. ¿Cuáles son los valores posibles para det A si A es idempotente?
- 53. Sea P una matriz permutación. Demuestre que det $P = \pm 1$. [Sugerencia: Por la definición en la página 146, $P = P_n P_{n+1} \dots P_2 P_1$, donde cada P_i es una matriz permutación elemental. Utilice la propiedad (3.2.4) para demostrar que det $P_i = -1$ y después calcule det P usando el teorema 3.2.1.]
- **54.** Sea P una matriz permutación. Demuestre que P^{T} también es una matriz permutación y que det $P = \det P^{\mathsf{T}}$. [Sugerencia: Si P_i es una matriz permutación elemental, demuestre que $P^{\mathsf{T}}_i = P_i$.]

^{*} A.T. Vandermonde (1735-1796) fue un matemático francés que hizo aportes en los fundamentos de la teoría de los determinantes.