Inference

- Sampling and Estimation
- Hypothesis Testing

Sampling and Estimation

Data Types 数据类型

- Time-series data 时间序列
 - Observations taken over a period of time at specific and equally spaced time intervals
 - 一个主体、一个属性、**多个**时间
- Cross-sectional data 截面数据
 - Observations taken at a single point in time.
 - **多个主体**、一个属性、一个时间
- Longitudinal data 纵向数据 (时间+属性)
 - o Observations over time of **multiple** characteristics of the **same** entity
 - 一个主体、多个属性、多个时间
 - o Example: GDP, inflation for a country over 10 years
- Panel data 面板数据 (时间+主体/截面)
 - o Observations over time of the same characteristic for multiple entities
 - 多个主体、一个属性、多个时间
 - Couple (c+p): multiple cross-sectional -> panel

Sampling 采样

- Simple Random sampling: select a sample according to its probability
- Systematic sampling: select every n-th member from a population
- Stratified Random Sampling
 - o Divide a population into groups (stratum), and sampling from each group
 - The size of samples from each **stratum** is based on the size of stratum relative to the population
 - o Often used in **bond index**, group by duration, maturity, coupon rate

Sampling Distribution 采样分布

- Sampling distribution of the sample statistic
 - o The sampling distribution of **sample statistic** is done by repeating this n times
 - Take a sample
 - Compute the sample statistic (such as mean)
- Sampling Error 采样误差
 - o The difference between a sample statistic and its population parameter
 - Sampling error of the mean = sample mean population mean

Sampling Distribution of the mean

- Define
 - Original distribution (μ , σ^2)
 - o Repeat n times
 - New distribution $(\bar{X}, \frac{\sigma^2}{n})$

• Central Limit Theorem

- \circ As long as the number of samples is large $n \ge 30$, the sampling distribution approaches a **normal** distribution regardless of the **original** distribution
- Standard error of the sample mean 标准误差
 - o The **standard deviation** of the distribution of the sample means
 - Known population variance σ^2

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

 \circ Unknow population variance s^2

$$\mathbf{s}_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Estimator – Desirable properties

- Unbiased 无偏 (估计的平均值等干种群的参数)
 - o Expected value of the estimator is the population parameter
 - \circ $E(\bar{x}) = u$
- Efficient 有效(方差是估计中最小的)
 - An unbiased estimator is efficient if the variance of the sampling distribution is smaller than all other unbiased estimators of the parameter you are trying to estimate
- Consistent 一致 (精度随着数量而提升)
 - Accuracy of the estimation increase as the sample size increases
 - Standard error decreases as n increases

Estimation 估计

- Point estimation 点估计
 - o mean
- Confidence Interval estimation 区间估计
 - Mean and standard error

Student's t-distribution

- Properties
 - o Symmetric
 - o Degree of freedom df = n 1
 - o fat tail than normal distribution
 - Flatter but have thicker tails
 - o As n increase, it approaches a **standard** normal distribution
 - more peaked and having less fat tails
- Application
 - o **unknown** variance, **Small** sample n < 30 from population and a (approximately) **normal** distribution 未知方差,小样本、近似正态分布
 - o Unknown variance, large sample with any distribution 未知方差,大样本

Confidence Interval 置信区间

Confidence interval.

- \circ The range of values within which the actual value of parameter will lie, with a probability of $1-\alpha$
 - point estimate ± reliability factor × standard error
- Degree of Confidence 1α
- Level of Significance α
- Known variance and normal population, confidence interval
 - $\circ \quad \overline{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
 - $P(X < -Z_{\alpha/2}) = \frac{\alpha}{2}$ lower tail probability
 - $P(X > Z_{\alpha/2}) = \frac{\alpha}{2} \text{ upper tail probability}$
- Commonly used reliability factors
 - o 90% -> 1.645
 - o 95% -> 1.960
 - o 99% -> 2.575
- Interpretation
 - Probabilistic: 99% of the confidence intervals will, in the long run, include the population mean
 - o Practical: 99% confident that the population mean is within the range
- Unknown variance and normal population, confidence interval
 - \circ $\overline{x} \pm t_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ (t-distribution, df=n-1)
- Rules
 - Large Sample 大样本都可以用 z-statistic
 - Variance known -> Z-statistic
 - Variance unknow -> T-statistic or Z-statistic (but Z-statistic yield conservative range)
 - Small Sample and Normal Distribution 小样本正态分布
 - Variance known -> Z-statistic
 - Variance unknow -> T-statistic
 - Small Sample and Non-Normal Distribution 小样本非正态分布
 - No valid test statistic

Sampling Mean Test Statistic

Sample Size & Distribution	Variance	Large Sample
Large	Known	Z-statistic
Large	Unknown	T-statistic or Z-statistic*
Small & Normal	Known	Z-statistic
Small & Normal	Unknown	T-statistic
Small & Non-Normal		×

Can use Z-statistic, but use t-statistic yields more conservative range

Sampling Mean Test Statistic

		Sample (N>30?)	
Distribution	Variance	Small Sample	Large Sample
Normal	Known	Z-statistic	Z-statistic
Normal	Unknown	T-statistic	T-statistic or Z-statistic*
Non-normal	Known	×	Z-statistic

Non-normal	Unknown	×	T-statistic or Z-statistic*

Can use Z-statistic, but use t-statistic yields more conservative range

Sampling Bias

• Limitation of "Large is better"

- May select observations from another population
- High cost

• Data-mining Bias

- o Find untrue pattern
- Many different variables are tested, most of which are unreported, until significant ones were found
- o Lack of **economic theory** that is consistent with the results
- o Overcome: Use out-of-sample data

• Sample Selection Bias

o Some data is systematically **excluded** from the analysis, lack of availability

• Survivorship Bias

- Biased upward
- o Solution: funds started at the same time and no dropout

• Look-Ahead Bias

o Use sample data that was not available on the test data

• Time-period Bias

 The time period is too short (wont' appear in the future) or too long (relationship may have changed)

Hypothesis Testing

Hypothesis Testing Procedure

- Define **hypothesis**
- Choose test statistic
- Specific level of significance
- State the decision rule (i.e., reject area)
- Collect data and compute sample statistic
- Make a **decision**

Hypothesis Pair

- A statement about the value of a **population** parameter
- Null Hypothesis H₀ 原假设
 - o The hypothesis we want to reject, always contains the equal sign
- Alternative Hypothesis H_a 备择假设
 - The hypothesis we want to "accept"

Hypothesis Side

- Two-sided 双边 (等式)
 - Test for equality
 - $\circ \quad \mathbf{H_0: \mu = \mu_0} \ and \ \mathbf{H_a: \mu \neq \mu_0}$
- One-sided 单边(不等式)
 - Test for inequality
 - o One critical value
 - \circ $H_0: \mu \leq \mu_0$ and $H_a: \mu > \mu_0$
 - \circ $H_0: \mu \geq \mu_0$ and $H_a: \mu < \mu_0$

Decision Rule - Reject Area 拒绝域

- Two-sided
 - \circ H_0 : $\mu = \mu_0$ and H_a : $\mu \neq \mu_0$
 - Two critical values: $\pm Z_{\alpha/2}$
 - Reject rule: $|\mathbf{test} \ \mathbf{statistic}| > \pm \mathbf{Z}_{\alpha/2}$
- Upper Tail
 - \circ $H_0: \mu \leq \mu_0 \text{ and } H_a: \mu > \mu_0$
 - \circ One critical value: Z_{α}
 - o Reject rule: **test statistic** $> Z_{\alpha}$
- Lower Tail
 - \circ $H_0: \mu \geq \mu_0$ and $H_a: \mu < \mu_0$
 - One critical value: $-Z_{\alpha}$
 - Reject rule: **test statistic** $< -Z_{\alpha}$

Type I and Type II Errors 一类和二类错误

- Type I error 拒绝真原假设
 - o Reject the null hypothesis when it is actually true
 - \circ P(type I error) = α
- Type II error 接受假原假设

- o Fail to reject the null hypothesis when it is actually false
- \circ P(type II error) = β
- Power of a test 功效(拒绝了假原假设)
 - o The probability of reject a false null hypothesis
 - Power= 1β
- Relation
 - o **inverse** relation between Type I error and Type II error (most of the time)
 - o **inverse** relation between Type II error and test power
- How to increase power of test?
 - o Fix sample size: increase test power also increase Type I error
 - o Fix significance level: increase **sample** size to
 - Decease both type I and type II errors
 - increase test power

	True Condition		
Decision	H ₀ is true	H ₀ is false	
Do not reject H ₀	Correct decision	Incorrect decision Type II error	
Reject H ₀	Incorrect decision Type I error Significance level, α, = P(Type I error)	Correct decision Power of the test = 1 - P(Type II error)	

Test Statistic - Mean

- Test statistic
 - $\circ \quad test \ statistic = \frac{sample \ statistic hypothesized \ value}{standard \ error \ of \ sample \ statistic}$
- Reject Region: |test statistic| > critical vlaue
- Accept Region: $-critical\ value\ \le\ test\ statistic\ <\ critical\ vlaue$
- Confidence Interval 置信区间
 - o sample statistic − critical value × standard error ≤ hypothesized value ≤ sample statistic + critical value × standard error

Significance

- Statistical significance
- Economic significance
 - Transaction cost
 - o Tax
 - Long period, more samples, add additional risk

P-Value

- The probability of observing a test statistic larger than the critical value assuming the null hypothesis is true
- P Value = $P(|test\ stastic| > critical\ value\ | H_0\ is\ true)$
- It is the probability of the critical value
- It is the smallest significance level for which the null hypothesis to be rejected

Level of Significance	Two-Tailed Test	One-Tailed Test
0.10 = 10%	±1.65	+1.28 or -1.28
0.05 = 5%	±1.96	+1.65 or -1.65
0.01 = 1%	±2.58	+2.33 or –2.33

Test Statistic

- Z -statistic
 - $\circ \quad \text{Z Test } = \frac{\mu \mu_0}{\sigma / \sqrt{n}}$
 - Condition
 - Large sample size (unknown variance t-statistic is better)
 - Small sample size, Normal distribution, Known Variance
- T-Statistic

$$T \text{ test } = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}, \text{df} = n - 1$$

- o Condition
 - Large sample size and unknown variance
 - Small sample size, Normal distribution, Unknown Variance

T-test (Difference in Means)

- **Assumption**
 - Unknown Variance
 - Independent and normally distributed
- **Equal Variance Pooled T-test**
 - o Assume variance is the same

$$\begin{array}{ll} \circ & \text{H}_0\colon \mu_1 - \mu_2 = 0 \\ \circ & \text{T test} = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \\ \circ & \text{s}_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \text{ is the pooled variance} \end{array}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
 is the pooled variance

- Degree of freedom: $n_1 + n_2 2$
- Unequal Variance

$$\begin{array}{ccc} \circ & H_0 \colon \mu_1 - \mu_2 = 0 \\ \circ & T \ test = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \end{array}$$

 $\qquad \text{Degree of freedom: } \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 \, / \, \left(\frac{(s_1^2/n_1)^2}{n_1} + \frac{(s_2^2/n_2)^2}{n_2}\right)^{1/2}$

Paired T-test (mean of difference)

- Assumption
 - o Dependent and normally distributed
- Paired difference
 - \circ $H_0: \mu_d = 0$
 - $\hspace{1cm} \circ \hspace{1cm} \text{Use the difference } d_i = X_i Y_i \text{, convert to } \text{one population test}$
 - Mean of difference $\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$
 - O Sample variance of difference $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i \bar{d})^2$

 - \circ Degree of freedom n-1

Chi-Square Test

- Normally distributed
- Test variance
- H_0 : $\sigma^2 = \sigma_0^2$
- $\chi^2_{n-1} = (n-1)\frac{s^2}{\sigma_0^2}$, s is the sample variance
- Degree of freedom n-1

F-test

- Independent and normally distributed two populations
- $H_0: \sigma_1^2 = \sigma_2^2$
- $F = \frac{s_1^2}{s_2^2}$
- Degree of freedom $(n_1 1, n_2 1)$
- Trick
 - o Fact: Lower critical value = 1 / upper critical value
 - o Always put the **larger** variance in the numerator, so we only need to test the upper tail, and get the conclusion for the lower tail 测试方便
 - \circ For two-sided test, still need to use $\frac{\alpha}{2}$ in the upper tail 还是双边测试的

Parametric and Non-parametric

- Parametric test
 - Assume population distribution: Most rely on normal distribution or a large sample size to use the central limit theorem
- Non-parametric test
 - o No assumption about the population distribution
 - Situations
 - Distribution assumption is not met. Such as a small sample size and non-normal distribution
 - data are ranks rather than values
 - hypothesis does not involve population parameters, such as testing whether a variable is normally distributed.

o Run test

- A series of changes are random
- o Spearman rank correlation test
 - Data is not normally distributed

Parameter	#Population	Condition	Test
		Known Variance	Z-Test
		 Large sample 	
Mean	One	 Small Sample and Normal 	
Mean One	Unknown Variance	T-test	
		 Large Sample 	
		 Small Sample and Normal 	
Mean Two		Independent and Normal	Pooled T-test
		Equal Unknown Variance	
	Two	Independent and Normal	Independent
		Unequal Unknown Variance	T-test
		Dependent (use the difference)	Paired T-test
Variance	Two	Independent and Normal	Chi-Square
			Test
Variance	Two	Independent and Normal	F-test