MATH 135: Introduction to the Theory of Sets

Jad Damaj

Fall 2022

Contents

1	Intr	coduction	1
•	1.1	August 25	_
		1.1.1 Introduction	
		1.1.2 Basics	
2	Λvi	oms and Operations	:
4	2.1	August 30	
	2.1	2.1.1 Zermelo Fraenkel Axioms of Set Theory	
3	Rela	ations and Functions	3
	3.1	September 1	
	3.1	3.1.1 Relations and Functions	
	3.2	September 6	
		3.2.1 Functions and Relations	
		3.2.2 Infinite Cartesion Products	
4	Nat	curals, Rationals, Reals	L.
	4.1	September 8	Ĺ
		4.1.1 Natural Numbers	
	4.2	September 13	
		4.2.1 Operations on the Natural Numbers	
		4.2.2 Integers	
		4.2.3 Rationals	
	4.3	September 15	
		4.3.1 Reals (Dedekind Cuts)	
5	Car	edinal Numbers and the Axiom of Choice	1
	5.1	September 15	1
		5.1.1 Cardinality	1
	5.2	September 20	ó
		5.2.1 Cardinality	ó
	5.3	September 22	j
		5.3.1 Cardinals	j
	5.4	September 27	7
		5.4.1 Schroder-Bernstein Theorem	
	5.5	September 29	3
		5.5.1 Zorn's Lemma	3
	5.6	October 4	

CONTENTS 135: Set Theory

		5.6.1 Axiom of Choice	19
	5.7	October 6	20
		5.7.1 Axiom of Choice	20
		5.7.2 Applications of Axiom of Choice	20
	5.8	October 11	20
		5.8.1 Countable Sets	
	5.9	October 13	
		5.9.1 Cardinal Arithmetic	
6	\mathbf{Ord}	derings and Ordinals	23
	6.1	October 25	23
		6.1.1 Orderings	23
	6.2	October 27	24
		6.2.1 Induction and Recursion	24
	6.3	November 1	25
		6.3.1 The Replacement Axiom	25
	6.4	November 3	
		6.4.1 Ordinals	
	6.5	November 8	
		6.5.1 Cumulative Hierarchy	
	6.6	November 10	
	0.0	6.6.1 Transfinite Recursion	
	6.7	November 15	
	0.1	6.7.1 Ordinals	
	6.8	November 17	
	0.0	6.8.1 Zorn's Lemma	
		U.O.I DOING DOMING CALLARY CAL	JU

Chapter 1

Introduction

1.1 August 25

1.1.1 Introduction

Foundations of Mathematics: language, axioms, formal proofs

- We focus on the axioms in set theory
- We use ZFC (Zermelo-Fraenkel + Choice)
- There is only one primitive notion : \in
- Within the ZFC universe, everything is a set

Course Outline:

- Basic axioms
- Operations, relations, functions
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- \bullet carindals
- AC
- ordinals

1.1.2 Basics

Principle of Extensionality: Two sets A, B are the same \leftrightarrow they have the same elements $\forall x (x \in A \leftrightarrow x \in B)$ **Example 1.1.1.** $2, 3, 5 = \{5, 2, 4\} = \{2, 5, 2, 3, 3, 2\}$

Definition 1.1.2. There is a set with no elements, denoted \varnothing

- $\emptyset \neq \{\emptyset\}$
- $A \subseteq B$: A is a subset of $B \leftrightarrow$ each element of A is in B (use \subseteq to denote proper subset)

1.1. AUGUST 25

- $\{2\} \subseteq \{2,3,5\}$ but $\{2\} \notin \{2,3,5\}$
- Power set opertaion: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$

We can define a hierarchy:

$$\begin{array}{l} V_0 = \varnothing, \ V_1 = \mathcal{P}(\varnothing) = \{\varnothing\}, \ V_2 = \mathcal{PP}(\varnothing) = \{\varnothing, \{\varnothing\}\} \\ V_3 = \mathcal{P}(V_2) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ V_4, \dots \\ V_\omega = \bigcup_{n \in \mathbb{N}} V_n, \ \mathcal{P}(V_\omega), \ \mathcal{PP}(V_\omega), \dots, V_{\omega + \omega}, \dots, V_{\omega + \omega + \cdots}, \dots, V_{\omega \times \omega}, \dots, V_{\omega^\omega} \end{array}$$

Chapter 2

Axioms and Operations

2.1 August 30

2.1.1 Zermelo Fraenkel Axioms of Set Theory

Setting: in ZFC all objects are sets

Language: contains vocabulary (ϵ), logical symbols (=, \land , $\lor \exists$, \forall , \neg), variables (x, y, A, B, etc.)

Axiom 2.1.1 (Extensionality Axiom). Two sets are the same if they have the same elements $\forall A, B(\forall x(x \in A \leftrightarrow x \in B) \rightarrow A = B)$

Axiom 2.1.2 (Empty Set Axiom). There is a set with no members, denoted $\varnothing \exists A \forall x (x \notin A)$

Axiom 2.1.3 (Pairing Axiom). For any sets u, v there is a est whose elements are u and v, denoted $\{u, v\}$ $\forall u, v \exists A \forall x (x \in A \leftrightarrow x = u \lor x = v)$

Axiom 2.1.4 (Union Axiom (Preliminary Form)). For any sets a, b there is a set whose elements are elements of a and elements of b, denoted $a \cup b$ $\forall a, b \exists A \forall x (x \in Ax \in u \lor x \in v)$

Axiom 2.1.5 (Powerset Axiom). Each set A, has a power set $\mathcal{P}(A)$. $\forall A \exists B \forall x (x \in B \iff x \subseteq A)$ where $x \subseteq A$ stands for $\forall y (y \in x \to y \in A)$

Axiom 2.1.6 (Union Axiom). For any set A, there is a set $\bigcup A$ whose members are members of the members of A.

 $\forall A \exists B \forall x (x \in B \leftrightarrow \exists y \in A (x \in y))$

Idea for the subset axiom: For any set A, there is a set B whose members are members of A satisfying some property.

2.1. AUGUST 30 135: Set Theory

eg. $B = \{x \in A \mid x \text{ satisfies property } P\} \subseteq A$

Example 2.1.7. $B = \{n \in \mathbb{N} \mid n \text{ cannot be described in less that 20 words}\}$

• let b be the smallest element in B, then b is the smallest element that cannot be described in 20 words.

• Paradox : need to use formal language to express property P.

Example 2.1.8. Let $B = \{x \mid x \notin x\}$

Question: $B \in B$? $B \in B \leftrightarrow B \notin B$: need to have property be contained in some larger set.

We can now restate the axiom more formally:

Axiom 2.1.9 (Subset Axiom (Scheme)). For each formula $\phi(x)$, there is an axiom: $\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \phi(x))$

Example 2.1.10. Suppose there is a set of all sets A. Consider $B = \{x \in A \mid x \notin x\}$. Then $B \in B \leftrightarrow B \notin B$, contradiction. So there can be no such set A.

The language of 1rst order logic for ZFC:

The following are formulas:

- $x = y, x \in y$ atomic formulas
- $(\varphi \wedge \psi), (\varphi \vee \psi), \neg \varphi$ where φ, ψ are formulas
- $\exists v\varphi, \forall x\varphi$

Example 2.1.11. $\varphi(v, w) := (\exists v (v \in x \land \neg v = w)) \to (\forall y (\neg y \in y))$ is a formula

Chapter 3

Relations and Functions

3.1 September 1

3.1.1 Relations and Functions

Ordered Pair: $\langle a, b \rangle = \langle c, d \rangle \leftrightarrow a = c, b = d$

```
Definition 3.1.1. \langle a, b \rangle = \{ \{a\}, \{a, b\} \}
```

```
Cartesian product of A and B, denoted A \times B = \{\langle x, y \rangle x \in A, y \in B\}
Using the subset axiom A \times B = \{z \in \mathcal{PP}(A \cup B) \mid \exists x \in A \exists y \in Bz = \langle x, y \rangle\}
Observation: \langle x, y \rangle \in \mathcal{PP}(C) for x, y \in C
\{x\}, \{x, y\} \in \mathcal{P}(C) so \{\{x\}, \{x, y\}\} \subseteq \mathcal{P}(C) so \{\{x\}, \{x, y\}\} \in \mathcal{PP}(C)
```

Definition 3.1.2. A binary relation is a set R whose elements are ordered pairs.

If $R \subset A \times B$ then R is a relation from $A \to B$.

```
Definition 3.1.3. Given a relation R, dom R = \{x \in \bigcup \bigcup R \mid \exists y \langle x, y \rangle \in R\}, range R = \{y \in \bigcup \bigcup R \mid \exists x \langle x, y \rangle \in R\}, field (R) = \text{dom}(R) \cup \text{range}(R)
```

```
Example 3.1.4. R = \{\langle a,b \rangle, \langle c,d \rangle, \langle e,f \rangle\} = \{\{\{a\}, \{a,b\}\}, \{\{c\}, \{c,d\}\}, \{\{e\}, \{e,f\}\}\}\} \cup R = \{\{a\}, \{a,b\}, \{c\}, \{c,d\}, \{e\}, \{e,f\}\}\} \cup R = \{a,b,c,d,e,f\}
```

n-ary relations: define *n*-tuple by $\langle a, b, c \rangle = \langle \langle a, b, \rangle, c \rangle$ etc.

```
Definition 3.1.5. A function is a relation F such that \forall x, y, z \ \langle x, y \rangle \in F and \langle x, z \rangle \in F \rightarrow y = z
```

 $\forall x \in \text{dom } (F) \text{ there is } y \text{ such that } \langle x,y \rangle \in F. \text{ If } A = \text{dom}(F), \ B \supseteq \text{range}(F) \text{ then } F \text{ is said to a funtion from } A \text{ to } B, \ f:A \to B$

We say that $f: A \to B$ is onto if B = range(F)

Definition 3.1.6. F is injective if $\forall x, y, z \langle x, z \rangle \in F \land \langle y, z \rangle inF \rightarrow x = y$.

3.2. SEPTEMBER 6 135: Set Theory

Definition 3.1.7. For a set A, relations F, G

- (a) inverse $F^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \in F \}$
- (b) composition: $G \circ F = \{\langle x, z \rangle \mid \exists y \langle x, y \rangle \in F, \langle y, z \rangle \in G\}$
- (c) restriction: $F \upharpoonright_A \{\langle x, y \rangle \in F \mid x \in A\}$
- (d) image of A under F, $F[A] = \{y \mid \exists x \in A \langle x, y \rangle \in F\} = \operatorname{range}(F \upharpoonright_A)$

Example 3.1.8. If F is a function, F^{-1} may not be a function. F^{-1} is a function $\leftrightarrow F$ is one to one.

Example 3.1.9. $F^{-1} \circ F = \{\langle x, x \rangle \mid x \in \text{dom}(F)\}\$ if F is one to one More generally, $F^{-1} \circ F = \{\langle x, z \rangle \mid \exists y \in \text{range } F \langle x, y \rangle, \langle z, y \rangle \in F\}.$

3.2 September 6

3.2.1 Functions and Relations

Theorem 3.2.1. Let $F: A \to B$ with $A \neq \emptyset$

- (a) There is a function $G: B \to A$ such that $G \circ F = \mathrm{id}_A \leftrightarrow F$ is one to one.
- (b) There is a function $G: B \to A$ such that $F \circ F = \mathrm{id}_B \leftrightarrow F$ is onto.

Proof. (a) Suppose there is such a G. Take a_1, a_2 such that $F(a_1) = F(a_2)$, then $a_1 = G \circ F(a_1) = G \circ F(a_2) = a_2$

Conversely, suppose F is one to one. We want to define $G: B \to A$ given $b \in B$, let G(b)=the unique $a \in A$ such that F(a) = b if $b \in \operatorname{range}(F)$. If $b \notin \operatorname{range}(F)$, let $G(b) = a_0$ with $a_0 \in A$ arbitrary (exists since A nonempty)

(b) Suppose that $G: B \to A$, with $F \circ G = \mathrm{id}_B$ Want to show $\forall b \in B \exists a \, F(a) = b$ Take $a = G(b) \to F(a) = F(G(b)) = b$

Conversely, suppose F is onto. We want to define G, given $b \in B$ want to define G(b) such that F(G(b)) = b, equivalently, want $G(b) \in F^{-1}(\{b\})$. Since F is onto $F^{-1}(\{b\})$ is nonempty. Let G(b) be any element of $F^{-1}(b)$, equivalently $G \subseteq F^{-1}$ and $dom(G) = B = dom(F^{-1})$.

Example 3.2.2. Suppose $A = \mathbb{N}$, let $G = \{(b, a) \in B \times \mathbb{N} : a \text{ is least satisfying } f(a) = b\}$

• Don't have a method to specify such elements in gneral.

Axiom 3.2.3 (Axiom of Choice - Form I). For every relation R, there is a function $G \subseteq R$ with dom(G) = dom(R)

3.2.2 Infinite Cartesion Products

 $A \times B = \{ \langle x, y \rangle \in \mathcal{PP}(A \cup B) \, | \, x \in A \land y \in B \}$

3.2. SEPTEMBER 6 135: Set Theory

Definition 3.2.4. Let M be a function with domain I such that for every $i \in I$, H(i) is a set. Let

$$\underset{i \in I}{\times} H(i) - \{f: I \to \bigcup H(i) \, | \, f(i) \in H9 = (i)\}$$

Example 3.2.5. Let ω_g be $\{G \subseteq \mathbb{R} \mid 0 \neq G, G \cup \{0\} \text{ is closed under addition } \}$

 $\times_{G \in \omega_g} = \times_{G \in \omega_g} H(G)$ is a function such that for each $G \in \omega_g$, you get an element of G.

Observation: If one of the H(i) is \emptyset , then $\times_{i \in I} H(i) = \emptyset$

Axiom 3.2.6 (Axiom of Choice - Form II). If H is a function with domain I such that $H(i) \neq \emptyset \ \forall i \in I$, then $\times_{i \in I} H(i) \neq \emptyset$

 $(\text{ACI}) \to (\text{ACII}) \text{: We are given } H \text{ with } H(i) \neq \varnothing \text{ for all } i. \text{ Want } f: I \to H(i) \text{ with } f(i) \in H(i) \ \forall i \in I. \text{ Let } R = \{\langle i, h \rangle \in I \times \bigcup_{i \in I} H(i) \ | \ h \in H(i) \}. \ \operatorname{dom}(R) = I, \text{ since } H(i) \neq \varnothing \text{ there is } h \in H(i) \text{ so } \langle i, h \rangle \in R. \text{ BY ACI, there is } F \subseteq R \text{ with } \operatorname{dom}(F) = \operatorname{dom}(R) = I. \ \forall i, \langle i, f(i) \rangle \in R \text{ so } f(i) \in H(i)$

Chapter 4

Naturals, Rationals, Reals

4.1 September 8

4.1.1 Natural Numbers

Idea: each natural number is the set of all the previous numbers. $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}, \dots, n = \{0, 1, \dots, n-1\}, \dots$

Definition 4.1.1. The successor of a set a is defined as $a^+ = a \cup \{a\}$

Definition 4.1.2. A set I is inductive if $\emptyset \in I$ and $\forall a \in I, a^+ \in I$

Definition 4.1.3. a is a natural number if it belongs to all inductive sets, $\forall I(I \text{ inductive} \rightarrow a \in I)$

If I is any inductive set, let $\omega = \{a \in I \mid a \text{ belongs to all inductive sets}\}$ =the minimal inductive set. Observation: ω is inductive because \varnothing is in all inductive sets and if n belongs to all inductive sets then so does n^+

Axiom 4.1.4 (Ifinity Axiom). There is an inductive set.

Inductivion Principle: If $A \subseteq \omega$ is inductive set $A = \omega$

Example 4.1.5. Every natural number is 0 or the succesor of some natural number.

Let $A = \{n \in \omega \mid n = 0 \vee \exists m \in \omega \mid n = m^+\}$. A is inductive so $A = \omega$

Definition 4.1.6. A set A is transitive if one of the following equivalent conditions holds:

- if $x \in a \in A$, then $x \in A$
- $\bigcup A \subseteq A$
- if $a \in A$, then $a \subseteq A$
- $A \in \mathcal{P}(A)$

4.2. SEPTEMBER 13 135: Set Theory

Example 4.1.7. Transitive sets includ \emptyset , each natural number, ω, V_{ω}

Claim: $A = \{n \in \omega \mid n \text{ is transitive }\}$ is inductive (implies all nautrual numbers are transitiev)

- Base: $0 \in A$ since \emptyset is transitive
- Inductive Step: Suppose $n \in A$ transitive, want to show n^+ is transitive. Consider $x \in a \in n^+ = n \cup \{n\}$. If a = n, $x \in n \subseteq n^+$. If $a \in n$, $x \in a \in \text{so by transitivity } x \in n^+$ so $x \in n^+$

Theorem 4.1.8. If a is tansitive, then $| | a^+ = a$

```
Proof. (\supseteq) a = \bigcup \{a\} \subseteq \bigcup (a \cup \{a\} = \bigcup a^+) \ (a \in a^+ \text{ so } a \subseteq \bigcup a^+)
(\subseteq) Take x \in \bigcup a^+, then let b \in a^+ with x \in b. If b = a, x \in a. If b \in a, x \in b \in a so x \in a.
```

• If a, b transitive and $a^+ = b^+$ then $a = \bigcup a^+ = \bigcup b^+ = b$ so successor function is one to one on transitive sets, more specifically ω .

Fix a number $k \in \omega$. Consdier the following functions:

- $A_k : \omega \to \omega$ by $A_k(0) = 0$, $A_k(n^+) = A_k(n)^+$
- $M_k : \omega \to \omega$ by $M_k(0) = 0$, $M_k(n^+) = A_k(M_k(n))$

4.2 September 13

4.2.1 Operations on the Natural Numbers

Theorem 4.2.1. Let A be a set, $a \in A$ and $F : A \to A$. Then there is a unique function $h : \omega \to A$ such that:

- 1. h(0) = a
- 2. $h(n^+) = F(h(n))$ for all $n \in \omega$

Proof. Let $h = \{\langle n, b \rangle \in \omega \times A \mid \text{there is } g : n^+ \to A \text{ such that } g(0) = a, g(i^+) = F(g(i)) \land g(n) = b\}$ Claim 1: For all n there is a $g : \{0, \ldots, n\} \to A$ such that $g(0) = a, g(i^+) = F(g(i))$ Claim 2: Such a g is unique.

Proof of Claim 1. Let $I = \{n \in \omega \mid \text{ such a } g \text{ exists}\}$. Want to show that I is inductive.

- 1. $0 \in I$: let $g: \{0\} \to A$ be such that g(0) = a eg. $g = \{\langle 0, a \rangle\}$
- 2. Suppose $n \in I$, we know such a g exists for $n, g : \{0, ..., n\} \to A$. We want $\tilde{g} : \{0, ..., n, n^+\} \to A$. Let $\tilde{g} = g \cup \{\langle n^+, F(g(n)) \rangle\}$

Proof of Claim 2. Suppose $g, \tilde{g} : \{0, ..., n\} \to A$ such that $g(0) = a = \tilde{g}(0), \ g(i^+) = F(g(i)), \ \tilde{g}(i^+) = F(\tilde{g}(i^+)), i < n$. We want to show $g(i) = \tilde{g}(i) \ \forall i \leq n$. $g(0) = \tilde{g}(0), \ g(i^+) = F(g(i)) = F(\tilde{g}(i)) = \tilde{g}(i^+)$

4.3. SEPTEMBER 15 135: Set Theory

```
Can formally show this by induction using I = \{i \in \omega \mid i \in n^+ \land g(i) = \tilde{g}(i) \lor i \notin n^+\}
Claim 3: \forall n \in \omega, h(n^+) = F(H(n))
```

```
Definition 4.2.2. Given k \in \omega, define A_k : \omega \to \omega by A_k(0) = k, A_k(n^+) = (A_k(n))^+. Define n+k = A_k(n) Define M_k : \omega \to \omega by M_k(0) = 0, M_k(n^+) = A_k(M_k(n)), let n \times k = M_k(n). Let m < n if m \in n
```

Theorem 4.2.3. We can show the associativity of addition: $\forall a, b, v \in \omega((a+b)+c=a+(b+c))$, commutativity of addition: $\forall a, b \in \omega a + b = b + a$, etc.

4.2.2 Integers

```
Let \sim be the following equivalence relation on \omega \times \omega by \langle a,b \rangle \sim \langle c,d \rangle \leftrightarrow a+d=b+c

Define \mathbb{Z} = \omega \times \omega / \sim. 0_{\mathbb{Z}} = [\langle 0,0 \rangle], \ 1_{\mathbb{Z}} = [\langle 1,0 \rangle]

Let [\langle a,b \rangle] +_{\mathbb{Z}} [\langle c,d \rangle] = [\langle a+c,b+d \rangle]. One needs to show this is well defined eg. if \langle a,b \rangle \sim \langle a',b' \rangle, \langle c,d \rangle \sim \langle c',d' \rangle

then \langle a+c,b+d \rangle \sim \langle a'+c',b'+d' \rangle /

Let [\langle a,b \rangle] \times_{\mathbb{Z}} [\langle c,d \rangle] = [\langle ac+bd,ad+bc \rangle]

Let E:\omega \to \mathbb{Z} by E(n) = [\langle n,0 \rangle]
```

4.2.3 Rationals

```
Let \sim be the following equivalence relation on \mathbb{Z} \times \mathbb{Z} \setminus \{0\}. \langle a,b \rangle \sim \langle c,d \rangle \iff a \times_{\mathbb{Z}} d = b \times_{\mathbb{Z}} c
Define \mathbb{Q} = \mathbb{Z} \times \mathbb{Z} \setminus \{0\} / \sim. 0_{\mathbb{Q}} = [\langle 0,1 \rangle], 1_{\mathbb{Q}} = [\langle 1,1,\rangle]
Let [\langle a,b \rangle] \times_{\mathbb{Q}} [\langle c,d \rangle] = [\langle a \times c,b \times d \rangle]
Let [\langle a,b \rangle] +_{\mathbb{Q}} [\langle c,d \rangle] = [\langle ad+bc,bd \rangle]
E: \mathbb{Z} \to \mathbb{Q} by E(z) = [\langle z,1 \rangle]
```

4.3 September 15

4.3.1 Reals (Dedekind Cuts)

Definition 4.3.1. A dedekind cut is a subset $D \subseteq \mathbb{Q}$ such that

- $\emptyset \neq D \neq \mathbb{Q}$
- D is closed downwards, if $d \in D$, $c < d \rightarrow c \in D$
- D has no greatest element.

```
Let \mathbb{R} = \{D \in \mathcal{P}(\mathbb{Q}) \mid D \text{ is a dedekind cut } \}

\sqrt{2} = \{q \in \mathbb{Q} \mid q \times_{\mathbb{Q}} q < 2\}, \ e = \{q \in \mathbb{Q} \mid exn \in \omega \ q <_{\mathbb{Q}} (1 + \frac{1}{N})^N \} \text{ For } r \in \mathbb{R}, \ -r = \{q \in \mathbb{Q} \mid -q \in r\} \setminus \{-\sup(r)\} \}

For r_1, r_2 \in \mathbb{R}, \ r_1 \leq_{\mathbb{R}} r_2 \iff r_1 \subseteq r_2

r_1 \times r_2 = \{q \in \mathbb{Q} \mid \exists q \leq 0 \in r \exists b \leq 0 \in r_2 \ q, \ a \times_{\mathbb{Q}} b \text{ if } r_1, r_2 > 0, \dots
```

Theorem 4.3.2. $(\mathbb{R}, 0, 1, +, \times, \leq)$ is an ordered field.

 $E: \mathbb{Q} \to \mathbb{R}$ is a field embedding.

Chapter 5

Cardinal Numbers and the Axiom of Choice

5.1 September 15

5.1.1 Cardinality

Definition 5.1.1. A is equinumerous to B (written $A \approx B$) if there is a bijection $f: A \to B$

Theorem 5.1.2. For every A, B, C

- $A \approx A$
- If $A \approx B$, $B \approx B$
- If $A \approx B$, $B \approx C$ then $A \approx C$

Lemma 5.1.3. $\mathbb{Z} \approx \omega$

Proof. For
$$z \in Z$$
, $f(z) = \begin{cases} -2z & z \leq 0 \\ 2z + 1 & z > 0 \end{cases}$

Lemma 5.1.4. $\mathbb{Q} \approx \omega$

Proof.
$$f: \omega \to \mathbb{Z} \times \mathbb{Z}^+, \mathbb{Q} = \mathbb{Z} \times \mathbb{Z}^+/\sim f': \omega \to \mathbb{Q}, f'(n) = \text{least } i \in \omega \ g(i) \notin \{f(1), \dots, f(n-1)\}$$

Lemma 5.1.5. $\mathbb{R} \approx (0,1)_{\mathbb{R}}$

5.2. SEPTEMBER 20 135: Set Theory

5.2 September 20

5.2.1 Cardinality

Lemma 5.2.1. 1. $\mathbb{N} \not\approx \mathbb{R}$

2. For any set $A, A \not\approx \mathcal{P}(A)$

Proof. 1. Let $f: \omega \to \mathbb{R}$, claim f is not onto. Want $r \notin \operatorname{ran}(f)$, $\forall n \in \omega r \neq f(n)$. Choose A_0 such that $f(0) \notin A_0$. Given A_n such that $f(0), \ldots, f(n) \notin A_n$. Divide A_n by 2, take half that does not contain f(n+1) to be A_{n+1} , then $A_0 \supset A_1 \supset A_2 \supset \cdots$, $\bigcap_{n \in \omega} A_n \neq \emptyset$ and for each $n, f(n) \notin A_n$ so $f(n) \notin \bigcap A_n$

2. let $f:A\to A$. Claim f is not onto. Let $B=\{b\in A\mid b\notin f(b)\}$. Claim $B\notin \mathrm{range}(f)$. Suppose for contradiction that B=f(b) for $b\in A, b\in B \leftrightarrow b\notin f(b) \iff b\notin B$, contradiction.

Definition 5.2.2. A set A is finite if $\exists n \in omega(A \approx n)$ eg. $\exists n \, exf : n \rightarrow A$ bijection. $A = \{f(0), f(1), \dots, f(n-1)\}$

Lemma 5.2.3 (Pigeonhole Principle). No finite set is equinumerous to a finite subset of itself.

Lemma 5.2.4. If B is a proper subset of $n \in \omega$ ther is m < n such that $B \approx m$

Proof. Use induction on n. Let $A = \{n \in \omega \mid \forall B \in n \exists m \in n \ B \approx n\}$. Claim A is inductive. $0 \in A$ trivial, $1 \in A$. $B \subsetneq \{\emptyset\} \to B = \emptyset \to B \approx 0$. Suppose $n \in A$, want to show $n^+ \in A$. Take $B \subsetneq n^+ = n \cup \{n\}$. If $n \in B$, $B \cap n \subseteq n$ so $\exists m < n \ B \cap n \approx m$ so $B \approx m^+ < n^+$. If $n \notin B$, either $B \cap n = n$ so $B \approx n < n^+$ of $B \cap n \subsetneq n$ so $\exists m < n \ B = B \cap n \approx m$.

Proof (Pigeonhole Principle). Take $n, B \subseteq n, B \approx n$. Then $B \approx m$ for some m < n so $m \approx n$. Let $A = \{n \mid Am < n \ m \not\approx n\}$. Claim A is inductive. $0 \in A$, suppose $n \in A$, want to show $n^+ \in A$. Idea: turn a bijection for $n^+ \approx m^+$ so a bijection $n \approx m/$

Corollary 5.2.5. • No finite set is equinumerous to a proper subset

- ω is not finite $(\omega \approx \omega \setminus \{0\} \text{ by } n \mapsto n+1)$
- Every finite set is equinumerous to a unique natural number. We call that number the cardinality of A, card(A)
- A subset of a finite subset is finite

Definition 5.2.6. A set κ is said to be a cardinal if

5.3. SEPTEMBER 22 135: Set Theory

- κ is transitive (if $x \in a, a \in \kappa \to x \in \kappa$)
- \in is a linear order on κ ($\forall x, y \ x \in y \text{ or } y \in x \text{ or } x = y$)
- $\forall x \in \kappa \ x \not\approx \kappa$

Theorem 5.2.7. For every set A, there is a unique cardinal κ such that $A \approx \kappa$. We call this κ card(A)

Example 5.2.8. • $n = \{0 \in 1 \in 2 \in \cdots \in n-1\}$ is a cardinal

- $\omega = \{0 \in 1 \in 2 \in \cdot\}$ is a cardinal
- $\omega^+ = \{0, 1, 2, \ldots\} \cup \{\omega\} \approx \omega$ is not a carinal

Notation: $\omega - \aleph_0$, card(\mathbb{R}) = 2^{\aleph_0} , smallest cardinal greater than $\aleph_0 = \aleph_1$

5.3 September 22

5.3.1 Cardinals

Definition 5.3.1. Given carindals κ and λ let

- $\kappa + \lambda = \operatorname{card}(K \cup L)$ where K and L are disjoint sets of carindality κ and λ
- $\kappa \cdot \lambda = \operatorname{card}(K \times L)$ where K and L are sets of carindality κ and λ
- $\kappa^{\lambda} = \{f \text{ function } L \to K\} = \operatorname{card}(^L K) \text{ were } K \text{ and } L \text{ are sets of carindality } \kappa \text{ and } \lambda$

Notation: ${}^{A}B = \{f : f \text{ is a function } A \to B\}$

Theorem 5.3.2. Let κ, λ, μ be carindals

• $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$

Proof. Let K, L, M be disjoint sets of size κ, λ, μ . $K \cup (L \cup M) = (K \cup L) \cup M$

- $\kappa + \lambda = \lambda + \kappa$
- $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$

Proof. $(K \times L) \times M \to K \times (L \times M)$ by $\langle \langle k, l \rangle, m \rangle \to \langle k, \langle l, m \rangle \rangle$

- $\kappa \cdot \lambda = \lambda \cdot \kappa$
- $\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$

Proof. $K \times (L \cup M) \approx (K \times L) \cup (K \times M)$

• $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$

5.4. SEPTEMBER 27 135: Set Theory

• $\kappa^{\lambda \cdot \mu} = (\kappa^{\lambda})^{\mu}$

Proof. $F: {}^{L\times M}K \to {}^{M}{}^{L}K, \ f: {}^{L\times M}K, \ F(g) = \text{the function that maps } m \text{ to } g_m: L \to K \text{ where } g_m(l) = g(l,m)$ $F^{-1}(h)$ with $h: M \to ({}^{L}K)$ is g such that g(l,m) = h(m)(l)

Definition 5.3.3. A is dominated by B (written $A \leq B$) if there is a one to one function from $A \to B$

 $A \le B \iff \operatorname{card}(A) \leqslant \operatorname{card}(B)$

Example 5.3.4. • $A \subseteq B \iff A \leq B$

• $\mathbb{N} \approx \mathbb{N} \approx \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$

Example 5.3.5. $\mathbb{R} \approx (0,1)_{\mathbb{R}} \leq {}^{\omega}2 \leq \mathbb{R}$

- $(0,1)_{\mathbb{R}} \leq {}^{\omega}2$. Given r, let $f_r: \omega \to \{0,1\}$ be $f_r(n) = n$ th digit of binary representation of r avoiding representations that end in all 1s.
- $^{\omega}2 \leq \mathbb{R}, f: \omega \to 2 \mapsto \sum_{i \in \omega} f(i) \cdot 10^{-1}$

Observation: ${}^2\omega \approx \mathcal{P}(\omega) \operatorname{card}({}^2\omega) = 2^{\aleph_0}$

5.4 September 27

5.4.1 Schroder-Bernstein Theorem

Example 5.4.1. Show that $\mathbb{R} \cup \{*\}$ and \mathbb{R} are equinumerous.

We define f by f(*) = 0, $f(r) = \begin{cases} r+1 & r \in \mathbb{N} \\ r & r \in \mathbb{R} \setminus \mathbb{N} \end{cases}$

Lemma 5.4.2. If A is finite, then $\omega \leq A$

Proof. $A \neq 0$ so $\exists a_0 \in A$. Let $f(0) = a_0$, $A \setminus \{a_0\} \neq \emptyset$ since $A \not\approx 1$ so $a_1 \in A \setminus \{a_1\}$ Let $f(1) = a_1$. We want $G : \{\text{finite subsets of } A\} \to A \text{ such that } G(F) \in A \setminus F$. Let $R = \{\langle F, a \rangle | F \text{ finite } a \in A \setminus F\}$ Observation: dom(R) = all finite subsets of A. Since A is not finite $A \setminus F \neq \emptyset$ for all finite sets, $F \subseteq A$. Use AC to get a function $G \subseteq R$ such that dom (G) = dom(R). Define $f : \omega \to A$ by recursion. $f(0) = a_0$, $f(n) = G(\{f(0), \ldots, f(n-1)\}) \in A \setminus \{f(0), \ldots, f(n-1)\}$.

Corollary 5.4.3. A set A is infinite \leftrightarrow A is equinumerous to some proper subset of itself.

If A is infinite, there is 1 to 1 $f: \omega \to A$. We define a bijection $h: A \to A\{f(0)\}$ by $h(a) = \begin{cases} a & a \notin \text{dom}(f) \\ f(n+1) & a = f(n) \end{cases}$

Theorem 5.4.4 (SChroder Bernstein Theorem). If $A \leq B$, $B \leq A$, then $A \approx B$

5.5. SEPTEMBER 29 135: Set Theory

Proof. Let $f:A\to B$ 1 to 1, $g:A\to B$ 1 to 1. We want $h:A\to B$ bijection. Let $C_0=A\backslash \mathrm{ran}(g)$, let $D_0=f[\![C_0]\!],\ C_1[\![D_0]\!].\ C_0\cap C_1=\varnothing$ because $C_0=A\backslash \mathrm{ran}g$ and $C_1\subseteq \mathrm{ran}(g)$. We recursivley define $C+n+1=g[\![D_n]\!],\ D_{n+1}=[\![C_{n+1}]\!].$ We see that C_n disjoint, D_n disjoint. Define $h(a)=\begin{cases}g(a)&a\in\bigcup_{n\in\omega}C_n\\g^{-1}&a\in A\backslash\bigcup_{n\in\omega}C_n\end{cases}$. $f\to\bigcup_{n\in\omega}$ is a bijection $\bigcup C_n\to\bigcup D_n.\ g\to\bigcup_{n\in\omega}D_n$ is a bijection $B\backslash\bigcup_{n\in\omega}D_n\to A\backslash A\backslash\bigcup_{n\in\omega}C_n$

• Follows that $\mathbb{R} \approx \mathcal{P}(\omega)$

5.5 September 29

5.5.1 Zorn's Lemma

Theorem 5.5.1. For every A, B either $A \leq B$ or $B \leq A$.

Zorn's Lemma: Let \mathcal{A} be a collection of sets such that for every chain $\mathcal{C} \subseteq \mathcal{A}$, $\bigcup \mathcal{C} \in \mathcal{A}$. Then \mathcal{A} has a maximal element.

Definition 5.5.2. C is a chain if for every $C, D \in C$ either $C \subseteq D$ or $D \subseteq C$ $B \in A$ is maximal if ther is no $C \in A$ with $B \subsetneq C$

We prove the following theorem to get some practice with Zorn's Lemma

Theorem 5.5.3. Every vector space has a basis.

Proof. Let V be a vector space over a field k. $B \subseteq V$ is linearly independent if for every $v_1, \ldots, v_n \in B$, distinct, k_1, \ldots, k_n such that $\sum k_i v_i = 0$, $k_1 = k_2 = \cdots = 0$. B is a basis if B is linearly independent and $\langle B \rangle = V$ where $\langle B \rangle = \{\sum_{i=1}^n k_i v_i \mid v_1, \ldots, v_n \in B, k_1, \ldots, k_n \in k\}$ Let $\mathcal{A} = \{B \subseteq V \mid B \text{ is linearly independent}\}$. W need to showt that if $\mathcal{C} \subseteq \mathcal{A}$ is a chain then $\bigcup \mathcal{C} \in \mathcal{A}$. Consider a chain \mathcal{C} consisting of linearly independent sets. To prove that $\bigcup \mathcal{C}$ is linearly independent assume we have $v_1, \ldots, v_n \in \bigcup \mathcal{C}, k_1, \ldots, k_n \in k$ with $\sum_{i=1}^n v_i k_i = 0$. For each v_i , there is $C_i \in \mathcal{C}$ with $v_i \in C_i$. One C_i contains all the others, say C_{i_0} . $v_1, \ldots, v_n \in C_{i_0}$. C_{i_0} is linearly independent so all $k_i = 0$. Now we apply Zorns Lemma to get a maximal element $B \in \mathcal{A}$. B is a maximal linearly independent set in V. $\langle B \rangle = V$ since if there is some $v \in V \setminus \langle B \rangle$ then $B \cup \{v\}$ is linearly independent, contradicting the maximality of B.

Lemma 5.5.4. Let \mathcal{C} be a collection of functions. Then

- (i) $\bigcup \mathcal{C}$ is a function
- (ii) dom ($\bigcup \mathcal{C}$) = $\bigcup \{ \text{dom } f : f \in \mathcal{C} \}$
- (iii) ran ($\bigcup \mathcal{C}$) = $\bigcup \{ \operatorname{ran} f : f \in \mathcal{C} \}$
- (iv) if all functions in \mathcal{C} are 1 to 1, then $\bigcup \mathcal{C}$ is one to one.

5.6. OCTOBER 4 135: Set Theory

Proof. (ii): dom $(\bigcup \mathcal{C}) = \{a \mid \exists b \langle a, b \rangle \in \bigcup \mathcal{C}\} = \{a \mid \exists b \exists f \in \mathcal{C} \langle a, b \rangle \in f\} = \{a \mid \exists f (\exists b \langle a, b \rangle \in f)\} = \{a \mid \exists f \in \mathcal{C} \mid a \in \text{dom } f\} = \bigcup \{\text{dom } f : f \in \mathcal{C}\}$

(i): $\bigcup \mathcal{C}$ is a relation. Want to show it is a function. Suppose $\langle a,b\rangle \in \bigcup \mathcal{C}$ and $\langle a,c\rangle \in \bigcup \mathcal{C}$. $\exists f \in \mathcal{C}$, $\langle a,b\rangle \in f$, $\exists g \in \mathcal{C} \ \langle a,c\rangle \in g$. Since \mathcal{C} a chain, either $f \subseteq g$ or $g \subseteq f$. If $f \subseteq g$, $\langle a,b\rangle, \langle a,c\rangle \in g$, a function, b=c.

(iv): $\bigcup \mathcal{C}$ is a function. Want to show it is one to one. Suppose $\langle a,b \rangle \in \bigcup \mathcal{C}$ and $\langle c,b \rangle \in \bigcup \mathcal{C}$. $\exists f \in \mathcal{C}$, $\langle a,b \rangle \in f$, $\exists g \in \mathcal{C} \ \langle c,b \rangle \in g$. Since \mathcal{C} a chain, either $f \subseteq g$ or $g \subseteq f$. If $f \subseteq g$, $\langle a,b \rangle$, $\langle c,b \rangle \in g$, a one to one, a = c.

5.6 October 4

5.6.1 Axiom of Choice

Theorem 5.6.1. For all set C and D, we have $C \leq D$ or $D \leq C$

Proof. Let $\mathcal{A} = \{f \subseteq C \times D \mid f \text{ is a one to one function } \}$. If $\mathcal{C} \subseteq A$ is a chain $\bigcup \mathcal{C}$ is a function with dom $(\bigcup \mathcal{C}) = \bigcup \{\text{dom } f : f \in \mathcal{C}\} \subseteq C, \text{ ran } (\bigcup \mathcal{C}) = \bigcup \{\text{ran } f : f \in \mathcal{C}\} \subseteq D \text{ so } \bigcup \mathcal{C} \in \mathcal{A}.$ By Zorn's lemma, \mathcal{A} has a maximal element, call it F, a one to one function with dom $F \subseteq C$, ran $F \subseteq D$. Claim dom F = C or ran F = D. If not there is $c \in C \setminus \text{dom } F$ and $d \in D \setminus \text{ran } F$. Let $G = F \cup \{\langle c, d \rangle\}$. We see that G is a one to one function, $G \subseteq C \times D$ so $G \in \mathcal{A}, F \subsetneq G$, contradicting the maximality of F. If dom F = C, we have $F : C \to D$ and $C \leq D$. If dom F = D, we have $F : D \to C$ and $D \leq C$

Theorem 5.6.2. The following are equivalent:

- 1. For any relation R, there is a function $F \subseteq R$ and dom F = dom R
- 2. If H is a function, I = dom H, $\forall i \in I \ H(i) \neq \emptyset$, then $X_{i \in I} \ H(i) \neq \emptyset$
- 3. For every set A ther eis a function $F: \mathcal{P}(A) \setminus \{\emptyset\} \to A$ such that $\forall B \subseteq A, F(B) \in B$
- 4. For every set \mathcal{A} of nonempty disjoint sets, there is a set C such that $\forall A \in \mathcal{A}$, $\operatorname{ord}(C \cap A) = 1$
- 5. Cardinal comparibility: For any sets $C, D, C \leq D$ or $D \leq C$
- 6. Zorn's Lemma

Proof. $1 \to 2$) Let H be a function such that $\forall i \in I, H(i) \neq \emptyset$. Let $R = \{\langle i, h \rangle \in I \times \bigcup H(i) \mid i \in I, h \in H(I)\}$. By (1) there is a function $F \subseteq R$ with dom F = dom R = I. $\forall i \in I, \langle i, F(i) \rangle \in F \subseteq R \to F(i) \in H(i)$ so $F \in X_{i \in I}H(i)$

 $2 \to 4$) We have a collection $\mathcal A$ of disjoint nonempty subsets. We want to define H such that H(A) is nonempty for $A \in \mathcal A$. Let $I = \mathcal A$, for $A \in I, H(A) = A$. Then $X_{A \in I} H(A) = X_{A \in \mathcal A} A$, by (2) there is $f \in X_{A \in \mathcal A} A$. We claim that $C = \operatorname{ran} f$ is as wanted. For all $A \in \mathcal A$, $f(A) \in A$ and if $A' \neq A$, $F(A') \in A'$ disjoint from A so $\operatorname{ran} (f) \cap A = \{f(A)\}$

 $6 \to 1$) Let R be a relation. Let $\mathcal{A} = \{ f \subseteq R \mid f \text{ is a function } \}$. $\mathcal{A} \neq \emptyset$ since $\emptyset \in \mathcal{A}$. If $\mathcal{C} \subseteq \mathcal{A}$ is chain, $\bigcup \mathcal{C}$ is a function, $\bigcup \mathcal{C} \subseteq R$ so $\bigcup \mathcal{C} \in \mathcal{A}$. By (6) there is a maximal $F \in \mathcal{A}$, $F \subseteq R$ is a function.

5.7. OCTOBER 6 135: Set Theory

Claim dom F = dom R. If not, then there is $d \in \text{dom } R \setminus \text{dom } F$. Let r be such that $\langle d, r \rangle \in R$. Then $F \cup \{\langle d, r \rangle\} \in \mathcal{A}$, $F \subsetneq F \cup \{\langle d, r \rangle\}$, contradicting maximality.

5.7 October 6

5.7.1 Axiom of Choice

Proof (Pf (cont)). $4 \to 3$) We have a set A. We want $f : \mathcal{P}(A) \setminus \{\emptyset\} \to A$, $F(B) \in B$. $B^* = \{\langle B, b \rangle : b \in B\} \approx B$. $B \neq C \to B^* \cap C^* = \emptyset$. Let $A = \{B^* : B \subseteq A, B \neq \emptyset\}$. By (4) there is a set C such that $\forall B^* \in \mathcal{A}, |C \cap B^*| = 1$.

 $3 \to 1$) Let R be a relation. For $a \in \text{dom } R$, we want to pick an element in $R_a = \{b \in \text{ran } R \mid \langle a, b \rangle \in R\}$. let A = ran R. By (3) there is $f : \mathcal{P}(A) \setminus \{\emptyset\} \to A$, $f(B) \in B$ for all $B \subseteq A$. $F = \{\langle a, F(R_a) \rangle \mid a \in \text{dom } R\}$

5.7.2 Applications of Axiom of Choice

Want to define a measure on \mathbb{R} with the following properties.

- 1. m([0,1]) = 1
- 2. m(A + r) = m(A)
- 3. $m(\bigcup_{i \in \omega} A_i) = \sum_{i \in \omega} m(A_i)$

Theorem 5.7.1. There is no $m: \mathcal{P}(\mathbb{R}) \to (\mathbb{R}^{<0} \cup \infty)$ satisfying the above conditions.

Proof. For $r, s \in [0, 1]$, let $r \sim s$ if $r - s \in \mathbb{Q}$. Let $[r] = \{s \in [0, 1) | r - s \in \mathbb{Q}\}$ Let $\mathcal{A} = \{[r] : r \in [0, 1)\}$. \mathcal{A} is a family of disjoint sets so by AC there is a set C such that $|C \cap [r]| = 1$ for each $[r] \in \mathcal{A}$. Assume $C \subseteq [0, 1)$.

Consdier C + q for $q \in \mathbb{Q}$

- disjoint since if $p \neq q \in \mathbb{Q}$, $(C+p) \cap (C+q) = \emptyset$
- $\bigcup_{q \in \mathbb{N}} (C+q) = \mathbb{R}$
- $\bigcup_{q \in \mathbb{Q} \cap [0,1)} (C+q) \subseteq [0,2)$

 $m(\mathbb{R}) = m(\bigcup_{q \in \mathbb{Q}} (C+q)) = \sum_{q \in \mathbb{Q}} (c+q) = \sum_{q \in \mathbb{Q}} m(C), \text{ so } m(c) > 0 \text{ since } m(\mathbb{R}) > 1. \text{ Also, } 2 = m([0,2]) \geqslant m(\bigcup_{q \in \mathbb{Q} \cap [0,1)} (C+q)) = \sum_{q \in \mathbb{Q} \cap [0,1)} m(c+q) = \sum_{q \in \mathbb{Q} \cap [0,1)} m(C) = \infty, \text{ a contradiction.}$

5.8 October 11

5.8.1 Countable Sets

Definition 5.8.1. A set is countable if $A \leq \omega \leftrightarrow$ either $A = \emptyset$ or there is an onto function $f : \omega \to A$, ie. $A = \{f(0), f(1), f(2), \cdots\}$

Observation: $\omega \times \omega \approx \omega \sqcup \omega \approx \omega$

5.9. OCTOBER 13 135: Set Theory

Theorem 5.8.2. let \mathcal{A} be a countable collection of countable sets. Then $\bigcup \mathcal{A}$ is countable.

Observation: If A is countable $A^{<\omega}=A^1\cup A^2\cup A^3\cup\cdots$ is countable

• $r \in \mathbb{R}$ is algebraic if it sis the root of a polynomial in $\mathbb{Z}[X]$ $\{r \in \mathbb{R} : \text{algebraic }\}$ is countable.

Theorem 5.8.3. For every infinite cardinal κ , $\kappa + \kappa = \kappa$

Proof. Let K have size κ . Let $\mathcal{A} = \{ f \in \mathcal{P}(\kappa \sqcup \kappa) \times \kappa \mid f \text{ is a function and there is } A \subseteq \kappa, \text{ dom } (f) = A \sqcup A, \text{ dom } (f) = A, f \text{ is one to one } \}$. To check the conditions for Zorn's Lemma, take a chain $\mathcal{C} \subseteq \mathcal{A}$. By the lemma, $\bigcup \mathcal{C}$ is a one to tone function, dom $(\bigcup \mathcal{C}) = \bigcup \{\text{dom } f : f \in \mathcal{C}\} = \bigcup \{\text{ran } f \sqcup \text{ran } f : f \in \mathcal{C}\} = \bigcup \{\text{ran } f \sqcup \text{ran } f : f \in \mathcal{C}\} = \text{ran } (\bigcup \mathcal{C}) \sqcup \text{ran } (\bigcup \mathcal{C}) \text{ so } \bigcup \mathcal{C} \in \mathcal{A}$. By Zorn's lemma, there is a maximal $F \in \mathcal{A}$. For this F there is $A \subseteq \kappa$, dom $(F) - A \sqcup A$, ran (F) = A.

- If $\kappa \backslash A$ is finite, $\operatorname{card}(\kappa) = \operatorname{card}(A)$ and $F : A \sqcup A$ is a bijection, using a bijection $\kappa \to A$, we can build a bijection $\kappa \sqcup \kappa \to \kappa$.
- If $\kappa \backslash A$ is infinite, let $D \subseteq \kappa \backslash A$ be a countable set, let $h: D \sqcup D \to D$ be a bijection. Let $G: (A \cup D) \sqcup (A \cup D) \to A \cup D$, $G \upharpoonright_{A \sqcup A} = F$, $G \upharpoonright_{D \sqcup D} = h$. $F \subsetneq G$ contradiciting that F was maximal.

5.9 October 13

5.9.1 Cardinal Arithmetic

Theorem 5.9.1. $\kappa \cdot \kappa = \kappa$ for all infinite cardinals κ

Proof. Let $\mathcal{A} = \{f \in \mathcal{P}((\kappa \times \kappa) \times \kappa) \mid f \text{ is a function dom } (f) = \operatorname{ran} f \times \operatorname{ran} f, \text{ one to one} \}$. If $A = \operatorname{ran} f, f$ is a bijection $A \times A \to A$. We need to show \mathcal{A} satisfies the conditions to apply Zorn's Lemma. Let $\mathcal{C} \subseteq \mathcal{A}$ be a chain, we want to show $\bigcup \mathcal{C} \in \mathcal{A}$. By the lemma, $\bigcup \mathcal{C}$ is a function, dom $(\bigcup \mathcal{C}) = \bigcup \{\operatorname{dom} f : f \in \mathcal{C}\}$, $\operatorname{ran} (\bigcup \mathcal{C}) = \bigcup \{\operatorname{ran} f : f \in \mathcal{C}\}$. By Zorn's Lemma, there is a maixmal $F \in \mathcal{A}$. Let $A = \operatorname{ran}(F), F : A \times A \to A$ bijection. Note that A must be infinite or else $A \times A \not\approx A$.

If $A \approx \kappa$, then $\kappa \times \kappa \approx A \times A \xrightarrow{F} A \approx \kappa$ so $\kappa \times \kappa \approx \kappa$, as wanted.

Corollary 5.9.2. If κ and λ are infinite cardinals, $\kappa + \lambda = \kappa \times \lambda = \max(\kappa, \lambda)$

5.9. OCTOBER 13

Proof. If $\kappa = \max(\kappa, \lambda)$, $\kappa \leqslant \kappa + \lambda \leqslant \kappa + \kappa = \kappa$, $\kappa \leqslant \kappa \times \lambda \leqslant \kappa \times \kappa = \kappa$.

• $\operatorname{card}\{f:\mathbb{R}\to\mathbb{R}\}=2^{2^{\aleph_0}},\,\operatorname{card}\{f:\mathbb{R}\to\mathbb{R}:f\text{ cont }\}=2^{\aleph_0}\text{ since if }f,g:\mathbb{R}\to\mathbb{R}\text{ continuous, then }f=g\leftrightarrow f\upharpoonright_{\mathbb{Q}}=g\upharpoonright_{\mathbb{Q}}\text{ so }\leqslant^{\mathbb{Q}}\mathbb{R}=2^{\aleph_0}\text{ and }2^{\aleph_0}\leqslant\text{ since have a constant function for each real number.}$

Theorem 5.9.3. For κ infinite and λ such that $2 \leq \lambda \leq 2^{\kappa}$, $\lambda^{\kappa} = 2^{\kappa}$

Proof. $2^{\kappa} \leqslant \lambda^{\kappa} \leqslant (2^{\kappa})^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa}$

Continuum Hypothesis (CH): Every uncountble subset of \mathbb{R} is equinumerous to \mathbb{R} .

Thm(Godel): CH can't be refuted in ZFC

Thm(Cohen): CH can't be proved in ZFC

Generalized Continuum Hypothesis (GCH): For every infinite cardinal κ , there is no λ with $\kappa < \lambda < 2^{\kappa}$

Chapter 6

Orderings and Ordinals

6.1 October 25

6.1.1 Orderings

Definition 6.1.1. A partial ordering is a pair p = (D, <) where $\le D \times D$ and satisfies transitivity and irreflexivity. ie $\forall a, b, c \in D$ $a < b \land b < c \rightarrow c < a$ and $\forall a \nmid a$

Example 6.1.2. • $(\mathcal{P}(C), \subset)$

- $(\mathbb{N}, |)$ a|b if a divides b and $a \neq b$
- $(\mathbb{R},<)$
- (\mathbb{N}, \lhd) where $m \lhd n \leftrightarrow \begin{cases} m \text{ even } n \text{ odd} \\ m, n \text{ odd } m <_{\mathbb{N}} N \\ m, n \text{ even } m <_{\mathbb{N}} n \end{cases}$ $(0 \lhd 2 \lhd 3 \lhd \cdots) \lhd (1 \lhd 3 \lhd \cdots)$

Definition 6.1.3. A well ordering is a linear ordering $\langle A, < \rangle$ such that every nonempty set has a leasat element.

Example 6.1.4. • $(\mathbb{N}, <)$ well ordering

• $(\mathbb{N} \times \mathbb{N}, <_{\text{lex}})$ $(a, b) <_{\text{lex}} (c, d) \leftrightarrow a < c \text{ or } a = c \text{ and } b < d \text{ is well ordered.}$

Proof. Take $B \subseteq \mathbb{N} \times \mathbb{N}$ nonempty. Want to show B has $<_{\text{lex}}$ least element. Take $B_0 = \{a \mid \exists b \langle a, b \rangle \in B\} \subseteq \mathbb{N}$. Let $a_0 = \text{least}$ in B_0 . Let $B_1 = \{b \mid \langle a_0, b \rangle \in B\}$. Let b_0 be least in B_1 . $\langle a, b \rangle <_{\text{lex}}$ least in B.

- $(\mathbb{Z}, <)$ not well ordering
- $(\mathbb{N}, <) + (\mathbb{Z}, <)$ has least element but is not a well ordering since \mathbb{Z} has no least element.
- $[0,1] \cap \mathbb{Q}$ not well ordering since $\{1/n : n \in \mathbb{N}\}$ has no least element.
- $A = \{a, b, \dots, z\}$, consider $(A^{<}, <_{lex})$. Not a well ordering

6.2. OCTOBER 27 135: Set Theory

Example 6.1.5. $\mathbb{N}[x]$ the set of polynomials with coeffecients in \mathbb{N} , $p(x) \triangleleft q(x)$ if $\lim_{x\to\infty} p(x) - q(x) > 0$ is a well ordering

Lemma 6.1.6. Let (A, \leq) be a linear ordering. The following are equivalent.

- 1. Every nonempty subset has a least element
- 2. There is no infinite decreasing sequence ie. no $a_0 > a_1 > a_2 > \cdots \in A$

Proof. $1 \to 2$) If (2) is false, and there is a sequence $a_0 > a_1 > a_2 > \cdots \in A \{a_0, a_1, a_2, \cdots\}$ has no least element so (1) is false.

 $2 \to 1$) If (1) is false, there is nonempty $B \subseteq A$ wit on least element. Let $b_0 \in B$ since b_0 is not here least element, have $b_1 \in B$ with $b_1 < b_0$, $b_2 \in B$ with $b_2 < b_1 < b_0$, \cdots end up with $b_0 > b_1 > b_2 > \cdots$

6.2 October 27

6.2.1 Induction and Recursion

Notation: For $t \in A$, seg $t = \{s \in A \mid s < t\}$

Theorem 6.2.1 (Transfinite Induction Principle). Let (A,<) be a well ordering. Let $B\subseteq A$. If $\forall t\in a[\forall s< t(s\in B)\to t\in B]$ then B=A.

Proof. Take $B \subseteq A$, suppose $\forall t \in a[\text{seg } t \subseteq B \to t \in B]$. We want to show B = A. If not $A \setminus B$ is nonempty so it has a least element b. Since b is least in $A \setminus B$, $\forall s < b \le B$ so $b \in B$, a contradiction.

Example 6.2.2. If $A = \omega \times \omega$, $<_{\text{lex}}$. Want to define $F : \omega \times \omega \to \mathbb{R}$, $F(n,m) = \sup\{F(a,b) + 2^{-b} : (a,b) < (n,m)\}$. We get F(0,0) = 0, F(0,1) = 1, $F(0,2) = \frac{3}{2}$, $F(0,3) = \frac{7}{4}$, ..., F(1,0) = 2, F(1,1) = 3, ..., F(2,0) = 4, ...

Theorem 6.2.3 (Transfinite Recursion Principle). Let (A, <) be a well ordering. Given ${}^{< A}B \to B$ there is a unique function $F: A \to B$ such that $\forall t \in A F(t) = G(F \upharpoonright_{\text{seg } t})$

• We define ${}^{< A}B = \{f \mid f \text{ is a function, dom } (f) = \text{seg } t \text{ for some } t \in A, \text{ ran } f \subseteq B\}$

Let $A = \omega + \omega$, $0, 1, 2 \cdots, \omega, \omega + 1, \omega + 2, \cdots$ $V_0 = \varnothing, \cdots, V_{n+1} = \mathcal{P}(V_n), \cdots, \bigcup_{n \in \omega} V_n = V_{\omega}, \dots, V_{\omega+n+1} = \mathcal{P}(V_{\omega+n}), \text{ ie } V_{\alpha} = \bigcup \{\mathcal{P}(V_{\beta}) : \beta < \alpha\}.$

Axiom 6.2.4 (Replacement Axiom). For each first order formula $\varphi(x,y)$ if $\varphi(x,y)$ is function like on a set A then there is a set B such that $\forall y(y \in B \leftrightarrow \exists x \in A\varphi(x,y))$

Definition 6.2.5. $\varphi(x,y)$ is function like on A if $\forall x \in A \exists ! y \varphi(x,y)$

6.3. NOVEMBER 1 135: Set Theory

6.3 November 1

6.3.1 The Replacement Axiom

- Every well ordering has a least element, every element $t \ni a$ has a successor $s(t) \in A$, s(t) least element $\triangleright t$
- Some element have a predecessor (calles succesor element) and some don't (limit elements)

Definition 6.3.1. A formula $\varphi(x,y)$ is function like if $\forall x \exists ! y \ vp(x,y)$, function like on A if $\forall x \in A \exists ! y \ \varphi(x,y)$

Example 6.3.2. If $\varphi(x,y)$ is $y = \mathcal{P}(x)$ ie. $(\forall z(z \in y \leftrightarrow z \subseteq x))$ or $y = \operatorname{ran}(x)$ ie. $\forall z(z \in y \leftrightarrow \exists w \langle w, z \rangle \in x)$

Axiom 6.3.3. For any formula $\varphi(x,y)$ we have an axiom $\forall A$ if φ is function like on A, $\exists B$ such that $\forall x \in a \exists y \in B \varphi(x,y)$

Let $\gamma(x,y)$ be the function y=f(x). For a well ordering (A, \triangleleft) define a function E with domain A by transfinite recursion, $\forall t \in A E(t) = \mathrm{ran} \ (E \upharpoonright_{\mathrm{seg} \ t})$

Consider this function over the polynomials in $\mathbb{N}[x]$:

- seg $(0) = \emptyset$ so $E \upharpoonright_{\text{seg } t} \emptyset$ ie. E(0) = 0
- seg (1) = $\{0\}$, $E \upharpoonright_{\text{seg } 1} = \{\langle 0, \varnothing \rangle\}$ so $E(1) = \{\varnothing\}$
- seg $(2) = \{0, 1\}, E \upharpoonright_{\text{seg } 2} = \{\langle 0, \varnothing \rangle, \langle 1, \{\varnothing \} \rangle\} \text{ so } E(2) = \{\varnothing, \{\varnothing \}\}$
- Continuing we get $0_{\mathbb{N}}, 1_{\mathbb{N}}, 2_{\mathbb{N}}, E(x) = \omega, E(x+1) = \omega^+, E(x+2) = \omega^{++}, \cdots, E(2x) = \omega + \omega$

We call ran (E) the ε -image of (A, \triangleleft)

Theorem 6.3.4. Let (A, \lhd) be a well ordering, let $\alpha = \operatorname{ran}(E)$. Let $\in_{\alpha} = \{\langle a, b \rangle \in \alpha \times \alpha \mid a \in b\}$, then E is an isomorphism $(A, \lhd) \to (\alpha, \in_{\alpha})$, ie it is a bijection and $a \lhd b \leftrightarrow E(a) \in_{\alpha} E(b)$. Given well orderings (A, \lhd_A) and (B, \lhd_B) with ε images α and β , $(A, \lhd_A) \cong (B, \lhd_B) \leftrightarrow \alpha = \beta$

6.4 November 3

6.4.1 Ordinals

Theorem 6.4.1. For $s, t \in A$, $s \triangleleft t \leftrightarrow E(s) \in E(t)$

Theorem 6.4.2. • $\forall t \in A, E(t) \notin E(t)$

- \bullet E is one to one
- α is transitive.

It follows that E is an isomorphism $(A, \triangleleft) \to (\alpha, \in_{\alpha})$

6.4. NOVEMBER 3 135: Set Theory

Theorem 6.4.3. Given well orderings (A, \lhd_A) and (B, \lhd_B) with ε images α and β , $(A, \lhd_A) \cong (B, \lhd_B) \leftrightarrow \alpha = \beta$.

Proof. \leftarrow) If $\alpha = \beta$ then $(A, \lhd_A) \cong (\alpha, \in_\alpha) = (\beta, \in_\beta) \cong (B, \lhd_B)$ \rightarrow) Suppose $f: A \rightarrow B$ is an isomorphism. $E_A: A \rightarrow \alpha, E_B: B \rightarrow \beta$. Claim $\forall t \in A, E_A(t) = E_B(f(t))$. Use transfinite induction. Let $T = \{t \in A \mid E_A(t) = E_B(f(t))\}$, want to show T = A. It is enough to prove that $\forall t \in A (\text{seg } t \subseteq T \rightarrow t \in T)$. $E_A(t) = \{E_A(s): s \in A, s \lhd t\} = \{E_B(f(s)): s \in A, s \lhd t\} = \{E_B(s): s \in B s \lhd_B f(t)\} = E_B(f(t))$.

Definition 6.4.4. α is an ordinal it is the ε image of some well ordering.

Theorem 6.4.5. If α is transitive, well ordered by ϵ , then α is the ϵ image of some well ordering.

Proof. If α is transitive, (α, \in_{α}) is a well ordering, then we claim α is the ϵ -image of itself, ie. the map $E: \alpha \to \alpha$ is the identity. Use transfinite induction to show that $\forall t \in \alpha \ E(t) = t$. $E(t) = \{E(s) \mid s \in \alpha, s \in seg t\} = \{E(s) : s \in t\} = \{s \mid s \in t\} = t$

Theorem 6.4.6. Given well orderings (A, \triangleleft_A) and (B, \triangleleft_B) either

- $(A, \lhd_A) \cong (B, \lhd_B)$
- $\exists a \in A \ (\text{seg } a, \lhd_A) \cong (B, \lhd_B)$
- $\exists b \in B \ (A, \lhd_A) \cong (\text{seg } b, \lhd_B)$

Proof. Define $f:A\to B$, $f(a)=\min(B\backslash \operatorname{ran}\ (f\upharpoonright_{\operatorname{seg}\ a}))=\min\{b\in B\mid \forall s\vartriangleleft_A\ a,f(s)\neq b\}$. f is order preserving and one to one. If $B\backslash \operatorname{ran}\ (f)$ is nonempty, then it has minimal element b and f is an isomorphism from (A,\vartriangleleft_A) to $(\operatorname{seg}\ b,\vartriangleleft_B)$. If $B\backslash \operatorname{ran}\ (f)$ is empty, dom f=A, then $A\cong B$. If f is not longer defined for some $a\in A$, then it is defined on $\operatorname{seg}\ a$ so $(\operatorname{seg}\ a,\vartriangleleft_A)\cong (B,\vartriangleleft_B)$

Theorem 6.4.7. For any ordinals α, β, γ

- Every member of α is an ordinal If $\alpha = \operatorname{ran} E_A$, $a \in \alpha$ then a = E(t) for some $t \in A$ so $a = \operatorname{ran} (E \upharpoonright_{\operatorname{seg} t})$ so a is the \in image of $\operatorname{seg} t$
- $\alpha \in \beta \in \gamma \rightarrow \alpha \in \gamma$
- $\alpha \notin \alpha$
- Exactly one of the following holds: $\alpha \in \beta$ or $\alpha = \beta$ or $\beta \in \alpha$
- Every nonempty set of ordinals has a \in least element

6.5. NOVEMBER 8 135: Set Theory

Proof. If S is a nonepty set of ordinals take $\alpha \in S$, $S \cap \alpha \subseteq \alpha$ has a least element if nonempty. If it has a least element, then such an element is the least element of S. If it is empty, then α is the least element of S.

Theorem 6.4.8 (Burali-Forti Paradox). There is not set that contains all ordinals.

Observation:

- \varnothing is an ordinal, $n \in \omega$ and ω are ordinals.
- If α is an ordinal so is $\alpha^+ = \alpha \cup \{\alpha\}$
- If S is a set of ordinals, then $\bigcup S$ is an ordinal.

6.5 November 8

6.5.1 Cumulative Hierarchy

Want to formalize hierarchy by defining $V_{\alpha} = \bigcup \{ \mathcal{P}(V_{\beta}) : \beta \in \alpha \}$. Want to define this using transfinite recusion but can't do this directly. Need approximate this function since cant have a domain ORD. For $\delta \in \text{ORD}$, $F_{\delta}(\alpha) = \bigcup \{ \mathcal{P}(F_{\delta}(\beta)) : \beta \in \alpha \}$.

Theorem 6.5.1. For any ordinal δ there exists an F_{δ}

Proof. Transfinite recursion on $(\delta, \epsilon_{\delta})$ with $y = \bigcup \{P(z) : z \in \operatorname{ran}(x)\}$. To check that this gives our desired function we see $F(\alpha) = \bigcup \{P(z) : z \in \operatorname{ran}(F \upharpoonright_{\operatorname{seg}\alpha})\} = \bigcup \{P(F(\beta)) : \beta \in \alpha\}$. Given δ_1, δ_2 with $\delta_1 \in \delta_2$ we claim that $F_{\delta_1}(\alpha) = F_{\delta_2}(\alpha)$ for $\alpha \in \delta_1$. Follows form the uniqueness of transfinite recusion since $F_{\delta_2} \upharpoonright_{\delta_1}$ satisfies the recursive conditions so must have $F_{\delta_2} \upharpoonright_{\delta_1} = F_{\delta_1}$

Definition 6.5.2. $V_{\alpha} = F_{\delta}(\alpha)$ for any $\delta > \alpha$

Observation

- (i) $V_{\alpha} = \bigcup \{ \mathcal{P}(V_{\beta}) : \beta \in \alpha \}$
- (ii) V_{α} is a transitive set.

Proof. By induction: $V_{\alpha} = \bigcup \{ \mathcal{P}(V_{\beta}) : \beta \in \alpha \}$. $x \in y \in V_{\alpha}$ so $y \in \mathcal{P}(V_{i}n\beta)$ for some $\beta \in \alpha$, $y \subseteq V_{\beta}$ so $x \in V_{\beta}$ so $x \in V_{\beta}$ so $x \in \mathcal{P}(V_{\beta})$ and so $x \in V_{\alpha}$

(iii) $\alpha \in \beta \to V_{\alpha} \subseteq V_{\beta}$

Proof. $V_{\beta} = \bigcup \{ \mathcal{P}(V_{\gamma}) : \gamma \in \beta \}, \ V_{\alpha} = \bigcup \{ \mathcal{P}(V_{\gamma}) : \gamma \in \alpha \}$

6.5. NOVEMBER 8 135: Set Theory

Theorem 6.5.3. (a) $V_0 = \emptyset$

- (b) $V_{\alpha}^{+} = \mathcal{P}(V_{\alpha})$ for all α
- (c) If λ is a limit ordinal, then $V_{\lambda} = \bigcup_{\beta \in \lambda} V_{\beta}$

Proof. (ii) $V_{\alpha^+} = \bigcup \{ \mathcal{P}(V_\beta) : \beta \in \alpha^+ \} = \bigcup \{ \mathcal{P}(V_\beta) : \beta \in \alpha \} \cup \mathcal{P}(V_\alpha) = V_\alpha \cup \mathcal{P}(V_\alpha) = \mathcal{P}(V_\alpha) = V_\alpha \cup \mathcal{P}(V_\alpha)$

(iii) if $x \in V_{\lambda} = \bigcup \{ \mathcal{P}(V_{\beta}) : \beta \in \lambda \}$, then $x \in \mathcal{P}(V_{\beta})$ for some $\beta \in \lambda$ so $x \in V_{\beta^{+}}$ and $\beta^{+} \in \lambda$ so $x \in \bigcup_{\beta \in \lambda} V_{\beta}$. If $x \in \bigcup_{x \in \lambda} V_{\beta}$, then $x \in V_{\beta}$ for $\beta \in \lambda$ so $x \subseteq V_{\beta}$ so $x \in \mathcal{P}(V_{\beta})$ so $x \in V_{|lambda}$

Definition 6.5.4. A set S is grounded if there is some α such that $S \subseteq V_{\alpha}$. If S is grounded, rank(S) is the least α such that $S \subseteq V_{\alpha}$

Observation:

(i) If A is grounded, then so are all $a \in A$ and $rank(a) \in rank(A)$

Proof. $A \subseteq V_{\alpha} = \bigcup \{ \mathcal{P}(V_{\beta}) : \beta \in \alpha \}, \ a \in A \to a \in \mathcal{P}(V_{\beta}) \text{ for } \beta \in \alpha \text{ so } a \subseteq V_{\beta} \text{ for } \beta \in \alpha \}$

(ii) rank(A) = the least ordinal greater than <math>rank(a) for $a \in A$

Proof. Consider A and consider $\bigcup \{ \operatorname{rank}(a)^+ : a \in A \} = \alpha$. $\alpha \leq \operatorname{rank}(A)$ since $\operatorname{rank}(A)$ is an upper bound for $\{ \operatorname{rank}(a)^+ : a \in A \}$. Further, $\operatorname{rank}(A) \leq \alpha$ since for $a \in A$, $a \subseteq V_{\operatorname{rank}(a)}$ so $a \in V_{\operatorname{rank}(a)^+}$ and so $a \in V_{\alpha}$ and $A \subseteq V_{\alpha}$

Theorem 6.5.5. The following are equivalent

- (i) (Regularity) For any nonempty set A, there is some $m \in A$ such that $A \cap m = \emptyset$
- (ii) There does not exist a function f with domain ω such that $f(n^+) \in f(n)$ for all n.
- (iii) Every set is grounded.

Proof. i \rightarrow ii) Suppose (ii) is false, then look at ran (f) = A. For any $a \in A$, a = f(n) for some n but $f(n^+) \in f(n)$ so $A \cap a \neq \emptyset$

ii \rightarrow iii) Suppose there is some non grouned set a_0 , a_0 must have some non grounded element a_1 , similarly, there is $a_2 \in a_1$ non grounded, \cdots

Note: to make this more formal, need to use the transitive closure, and use choice

iii \to i) For nonempty A, A is grounded. Consider $\{\operatorname{rank}(a) : a \in A\}$, a nonempty set of ordinals so it has some least element α . Pick $m \in A$ with $\operatorname{rank}(m) = \alpha$, then $A \cap m = \emptyset$ since any elements of m must have strictly smaller rank.

6.6. NOVEMBER 10 135: Set Theory

6.6 November 10

6.6.1 Transfinite Recursion

Theorem 6.6.1 (Transfinite Recursion). Let (A, \lhd) be a well ordering and $\gamma(x, y)$ a function like formula, then there is a function F with domain A such that $\forall t \in A \gamma(F \upharpoonright_{\text{seg } t} F(t))$. Moreover F is unique.

Proof. Let $B = \{t \in A : \exists \text{ a function } f \text{ with dom } (f) = \text{seg } t, \forall s \lhd t, \gamma(f \upharpoonright_{\text{seg } s}, f(s))\}$. Want to show B = A. Pick $t \in A$. We show that if $\text{seg } t \subseteq B$, $t \in B$ Lemma: For $r \bowtie r' \in A$ if f_r has dom $f_r = \text{seg } r$ and $f_{r'}$ has dom $f_{r'}$ then $f_r = f_{r'} \upharpoonright_{\text{seg } r}$

Proof. Let $I = \{s \in \text{seg } r \mid f_r(s) = f_{r'}(s)\}$. Want to show I = seg r by transfinite induction. Take $s \in \text{seg } r$, if we have that $\forall s' \lhd s$ $f_r(s') = f_{r'}(s')$, then $f_r \upharpoonright_{\text{seg } s} = f_{r'} \upharpoonright_{\text{seg } s}$. $f_r(s)$ is the unique w such that $\gamma(f_r \upharpoonright_{\text{seg } s}, w)$ and similarly for $f_{r'}(s)$ so it follows that $f_r(s) = f_{r'}(s)$ and so I = seg r

Case 1: $t = \operatorname{succ}(t')$ and $t' \in B$. Let $f_t = f_{t'} \cup \{\langle t', w \rangle\}$ where w is the unique w satisfying $\gamma(f_{t'}, \omega)$ Case 2: t is a limit. Let $f_t = \bigcup_{r \lhd t} \{f_r \mid r \in segt\}$ (set by replacement). Well defined since by IH since $\forall r \in seg t, \exists ! f$ satisfying conditions.

6.7 November 15

6.7.1 Ordinals

Let ω_1 be the set of all countable ordinals. Why is this a set?

Consider $W = \{(A, R) \in (\omega + 1) \times \mathcal{P}(\omega \times \omega) \mid (A, R) \text{ is a well ordering } \}$, a set by subset axiom. For each $R \in W$ there is a unique cardinal α , $(A, R) \cong (\alpha, \epsilon_{\alpha})$, namely the ϵ image of (A, R). If α is a countable ordinal, (say infinite), there is a bijection $f : \omega \to \alpha$. Define $R = \{\langle a, b \rangle \mid f(a) \in_{\alpha} f(b) \}$, we get the ϵ image of (ω, R) is α .

- If $\alpha \in \beta \in \omega_1$, α is an ordinal, countable because $\alpha \subseteq \beta$ so $\alpha \in \omega_1$
- If $\alpha, \beta \in \omega_1$, since α, β are ordinals $\alpha \in \beta$ or $\beta \in \alpha$ or $\alpha = \beta$ so ϵ is a linear ordering.

It follows that ω_1 is an ordinal and $\omega_1 \notin \omega_1$ so ω_1 is not countable. For any ordinal γ , either $\gamma \in \omega_1$ so γ is countable or $\omega_1 \in \gamma$, $\omega_1 \subseteq \gamma$ so γ is uncountable so ω_1 is the least uncountable ordinal.

Theorem 6.7.1 (Hartog's Lemma). For any set A there is an ordinal α such that $\alpha \leq A$

Proof. Consider $\alpha = \{\beta \mid \beta \text{ carindal}, \beta \leq A\}$. this is a set because the set of ϵ images of $W = \{(B, R) \in \mathcal{P}(A) \times \mathcal{P}(A \times A) \mid (B, R) \text{ is a well ordering}\}$ is a set by replacement

- α is an ordinal since if $\beta \in \alpha$, β is an ordinal, if $\gamma \in \beta \in \alpha$, γ is an ordinal, $\gamma \subseteq \beta \leq A$ so α is transitive, \in_{α} is a linear order to α is an ordinal
- $\alpha \notin \alpha \to \alpha \leq A$

6.8. NOVEMBER 17 135: Set Theory

Lemma 6.7.2. If S is a transitive set of ordinals, then S is an ordinal.

Given A, let A^+ be the least ordinal α , $\alpha \nleq A$. $\gamma(x,y) \equiv y$ is the least ordinal such that $y \nleq x$. γ is function like

Theorem 6.7.3. If $\gamma(x,y)$ is a function like function, there is another function like $\theta(x,y)$ on the ordinals such that $\forall \alpha$ if $F = \{(\beta, \gamma) : \beta \in \alpha, \theta(\beta, \gamma)\}$ then the unique z such that $\theta(\alpha, z)$ satisfies $\gamma(F, z)$

Example 6.7.4. alephs, $\aleph_0 = \omega$, $\aleph_1 = \aleph_0^+, \cdots, \aleph_{\alpha+1} = \aleph_\alpha^+, \aleph_\lambda = \bigcup_{\alpha < \lambda} \aleph_\alpha$ if λ limit

6.8 November 17

6.8.1 Zorn's Lemma

Theorem 6.8.1. The following are equivalent

- 1. For every relation R, there is a function $F \subseteq R$, dom $F \subseteq \text{dom } R$
- 3. For every set A, there is a function $F: \mathcal{P}(A) \setminus \{\emptyset\} \to A$. $\forall B \subseteq A, F(B) \in B$
- 5. For any sets C, D either $C \leq D$ or $D \leq C$
- 6. Zorn's Lemma
- 7. For every set A there is a relation \triangleleft on A such that (A, \triangleleft) is well ordered.

Proof. CC \rightarrow WO) Take a set A, Use Hartog's Lemma to get $\alpha \nleq A$. By CC, $A \leq \alpha$ so there is a one to one function $f: A \rightarrow \alpha$. Define \lhd on A by $a \lhd b \leftrightarrow f(a) \in f(b)$. Then $(A, \lhd) \cong (f[A], \in)$.

WO \rightarrow 3) Take A, by WO, there is a well ordering \triangleleft on A. Define $F : \mathcal{P}(A) \setminus \{\emptyset\} \rightarrow A$ by $F = \{\langle B, b \rangle \in (\mathcal{P}(A) \setminus \{\emptyset\}) \times A : b \text{ is the } \triangleleft\text{-least element of } B\}$

 $1 \to 6$) Consider such an \mathcal{A} . Suppose that \mathcal{A} has no maximal element. For any set $A \in \mathcal{A}$, let F(A) be a set in \mathcal{A} , $A \subsetneq F(A)$. The definition of F using (1) is given by $R = \{\langle A, B \rangle \in \mathcal{A} \times \mathcal{A} : A \subsetneq B \}$ since \mathcal{A} has no maximal element, dom $(R) = \mathcal{A}$. Use (1) to get a function $F \subseteq R$, dom $(F) = \mathcal{A}$, $\forall A \in \mathcal{A}$ $F(A) \supsetneq A$. Now, use Hartog's theorem to get an ordinal $\alpha \not \preceq \mathcal{A}$. We define a function $h : \alpha \to \mathcal{A}$ by transfinite recursion. For $\beta \in \mathcal{A}$, define $H(\beta)$ using $H \upharpoonright_{\text{seg }\beta}$. We split into 3 cases:

- $\beta = 0$. $H(0) = A_0$ (since $A \neq \emptyset$)
- $\beta = \gamma^+, H(\beta) = F(H(\gamma))$
- β limit, $H(\beta) = \bigcup_{\gamma \in \beta} H(\gamma) \in \mathcal{A}$ because $\{H(\gamma) : \gamma \in \beta\}$ is a chain.

Now, $\forall \gamma \in \beta \in \alpha$, $H(\gamma) \subseteq H(\beta)$ so H is a one to one function, contradicting $\alpha \not \leq A$.

Theorem 6.8.2. For every set A, there is a unique cardinal κ such that $\kappa \approx A$

Observation: If κ_1 and κ_2 are cardinals and $\kappa_1 \approx \kappa_2$, then $\kappa_1 = \kappa_2$

6.8. NOVEMBER 17 135: Set Theory

Proof. BY WO, there is a well ordering \lhd on A. Let α be the \in image of (A, \lhd) . α is an ordinal, $\alpha \cong A$. Let κ be the least ordinal $\cong A$.

Let γ be a formula such that \exists ordinal α , $\gamma(\alpha)$. Claim: there is a least ordinal satisfying γ . Let $G = \{\beta \in \alpha^+ : \gamma(\beta)\}, \ \alpha \in G, \ G \subseteq \alpha^+ \text{ so } G \text{ has a least element.}$