Comparativo entre Abordagem de Busca Aleatória e Simulated Annealing para resolução de SAT3

1st Marlon Henry Schweigert

Departamento de Computação Centro de Ciências Tecnológicas - UDESC Joinville, Brasil marlon.henry@magrathealabs.com 2nd Rafael Stubs Parpinelli

Departamento de Computação

Centro de Ciências Tecnológicas - UDESC

Joinville, Brasil

rafael.parpinelli@udesc.br

Resumo—Este meta-artigo descreve o funcionamento computacional dos algoritmos Simulated Annealing e Busca aleatória para resolução do problema SAT3.

Index Terms—SAT3, inteligência artificial, modelagem matemática, simulated annealing, random shearch

I. INTRODUÇÃO

O problema SAT3 é complexo para resolver de forma ótima, pertecendo a categoria de problemas NP-Completos. Por este motivo, torna-se interessante o uso de abordagens de inteligência computacional para busca de de pontos ótimos.

A fim de solucionar este problema, foi proposto uma comparação do algoritmo Simulated Annealing e o algoritmo de Busca Aleatória, comparando convergência e resultados obtidos sobre os Datasets.

II. BUSCA ALEATÓRIA

O algoritmo de busca aleatória tem o objetivo de gerar novas soluções de forma aleatória, a fim de ter armazenado a melhor solução obtida.

Ele funciona sobre os seguintes passos:

- 1) $S := nova \ solucao()$
- 2) P := pontuacao(S)
- 3) Repita N vezes:
 - a) $Sn := nova_solucao()$
 - b) Pn := pontuacao(Sn)
 - c) Se Pn > P:
 - i) S := Sn
 - ii) P := Pn
- 4) Retorne S, P

Este algoritmo torna-se interessante caso o campo de busca seja pequeno, entretanto em problemas com o campo de busca grande, ele torna-se ineficiente e inconsistente. Por este motivo, torna-se interessante buscar métodos de que beneficiem a convergência do sistema.

III. SIMULATED ANNEALING

Este algoritmo toma como inspiração a forja de metais, quando mais quente o material, mais maleável ele é. A mesma ideia é levada para a solução. Quanto maior a temperatura, maior a maleabilidade de aceitação de respostas. Com este mesmo esquema, aplica-se o conceito de energia, a qual é

validado na analogia como o quão próximo do objetivo se está

Ele funciona seguindo os seguintes passos:

- 1) $S := nova_solucao()$
- 2) P := pontuacao(S)
- 3) Repita N vezes, atualizando i:
 - a) t := temperatura(i)
 - b) $Sn := perturbar_solucao(S)$
 - c) Pn := pontuacao(Sn)
 - d) Se $pode_t rocar(Pn, P, t)$
 - i) S := Sn
 - ii) P := Pn
- 4) Retorne S, P

onde $temperatura(i) := (i/N)^4$ e $pode_trocar(Pn,P,t) :=$ se Pn > P- > Pn, senão P-Pn <= P*t.

Dessa forma, ele permite retroceder e obter soluções piores quando a temperatura está alta, porém, não permite esta troca se a temperatura está baixa. Outra diferença significativa ao algoritmo de busca aleatória é a modificação da solução atual e avaliação se a modificação é boa o suficiente para ser válida. Dessa forma, temos uma busca local com baixas temperaturas e uma busca global com altas temperaturas.

Utilizando estes dois algoritmos, foi elaborado um ambiente de testes para comparar os dois algoritmos.

IV. ANÁLISE

A análise consiste em executar ambos os algoritmos utilizando a mesma solução inicial e comparar o resultado obtido e a sua convergência sobre a solução de 3 datasets de problemas SAT3.

As dimensões dos datasets são:

- 1) 20 variáveis e 91 sentenças.
- 2) 100 variáveis e 430 sentenças.
- 3) 250 variáveis e 1065 sentenças.

É visível para o Simulated Annealing a sua função de temperatura, na Figura 1.

No pior caso, para o Dataset 3, pode-se visualizar os resultados na Tabela I, onde percebe-se a ineficiência do sistema de buscas aleatório, comparado ao SAS. O SAS ficou muito

Figura 1. Função de temperatura em relação ao tempo (250 mil interações)

O próprio autor.

Tabela I SAS vs RS: Número de sentenças satisfeitas no SAT3 com 250 Variáveis.

SAS	RS
1064	978
1065	979
1064	980
1063	981
1065	981
1064	978
1065	978
1064	981
1064	980
1063	980

próximo do ótimo, tendo uma média de 1064.5 sentenças satisfeitas, contra uma média de 979.5 do algoritmo RS.

Utilizando dados de 10 execuções, pode-se obter os seguintes dados de média e mediana, explícitos na Figura 2 e na Figura 3.

Figura 2. Boxplot da busca SAS com 1065 sentenças.

O próprio autor.

Entretanto, o resultado final obtido não é o único fator a ser observado. Pode-se levar em consideração a convergência do sistema. Além disso, pode-se analisar a figura do gráfico de convergência. Analisar a convergência garante que o sistema tende a ter este resultado, independente dos fatores aleatórios que podem ocorrer neste percurso.

Figura 3. Boxplot da busca RS com 1065 sentenças.

O próprio autor.

A convergência do algoritmo SAS pode ser visualizada na Figura 4, e ao comparar com o gráfico de convergência da busca aleatória (visível na 5), percebe-se a tendência de chegar próximo ao ótimo do algoritmo SAS, entretando não obtem-se o mesmo resultado quando comparado ao gráfico de convergência da busca aleatória, a qual tende em buscar um objeto próximo a média.

Figura 4. Média da convergência em 10 execuções para o algoritmo SAS.

O próprio autor.

Figura 5. Média da convergência em 10 execuções para o algoritmo RS.

O próprio autor.

V. CONCLUSÃO

Percebe-se a clara diferença entre o uso de uma abordagem aleatória, onde não se tem controle da convergência, comparado a uma abordagem que tende a sua convergência.

Utilizando o algoritmo SAS, obteve um resultado preciso, muito próximo do ótimo, a qual demonstra um algoritmo simples e poderoso de busca em uma área pré-definida.