

Table of contents

- Overview
- Entities and Relations
- Entity Relationship Diagram
- Relational Schema
- Functional dependencies
- Decomposition (using Normalization)
- Implementation of Relational Algebra and SQL

Overview

- Biodiversity park is a place where all the different kinds of life can be found in one area. It is an enrichment to our society as each of the organisms work together in the ecosystem to sustain balance of nature.
- But nowadays, many of the helpless beings are on the verge of extinction due to lack of healthy environment to live in.
- Hence, we have come up with the concept of aiding the endangered species by providing them with proper habitats via a database system.

ENTITIES	ATTRIBUTES
Park	Park id, Park_name, Area_in_hectares, City, Estd_year
Fauna	Fauna id, Park id, Species_name, No_of_species, Food, Lifespan, Status
Flora	Flora id, Park id, Flora_name, No_of_species, Fertilizers, Plantation_year, Age
Employee	Employee id, Park id, Name, Designation, Monthly_salary, Hours_of_work, Year_of_joining, Mobile_no
Visitors	<u>Ticket no, Park_id</u> , Date, Name, Age, Gender, Ticket_price, Mobile_no
Expenses	Park id, Employee_salary, Food, Fertilizers, Maintenance
Income	<u>Park id</u> , Tickets_sold, Parking_fee, Cafeteria, Safari_fee, Fine
Fine_info	<u>Ticket no</u> ,Fine_reason,Fine_Cost,Date
Visitor_analysis	Park id, Season, No_of_visitors
Funds	Name, Amount, Date

RELATION- SHIP	ENTITIES INVOLVED	CARDINALITY
Fauna Maintenance	Fauna , Employee	Many to Many, Total on Fauna Side
Flora Maintenance	Flora, Employee	Many to Many, Total on Flora Side
Visitor Data Collection	Visitor_Analysis,Visitors	Many to One, Total on Visitors side
Flora in Park	Flora, Park	Many to Many
Fauna in Park	Fauna, Park	Many to Many
Park Profit	Expenses, Income	One to One
Expenditure per Park	Park, Expenses	One to One
Income Through Tickets	Visitors,Income	Many to One, Total on visitors side
Visitors_Fine	Fine_Info, Visitors	One to one
Donates	Funds,Income	Many to One, Total on Funds Side

Park	
Park_id(Primary)	Char(6)
Park_name	Varchar(45)
Area_in_hectares	Int
City	Varchar(45)
Estd_year	int

Employee	
Employee_id(Primary)	char(10)
Park_id(Primary)	char(6)
Name	varchar(45)
Designation	varchar(45)
Monthly_salary	numeric(5,0)
Hours_of_work	int
Year_of_joining	int
Mobile_no	numeric(10,0)

Fauna		
Fauna_id(Primary)	Char(5)	
Park_id(Primary)	Char(6)	
Species_name	Varchar(45)	
No_of_species	Int	
Lifespan	Varchar(45)	
Status	Varchar(20)	

Income		
Park_id(Primary)	Char(6)	
Tickets_sold	Numeric(7,0)	
Parking_fee	Numeric(6,0)	
Cafeteria	Numeric(6,0)	
Safari_fee	Numeric(6,0)	
Fine	Numeric(6,0)	

Flora_fertilizer		
Flora_id(Primary)	Char(5)	
Park_id(primary)	Char(6)	
Fertilizers(Primary)	Varchar(45)	

Flora	
Flora_id(Primary)	Char(5)
Park_id(Primary)	char(6)
Flora_name	Varchar(45)
No_of_species	Int
Plantation_year	Int
Age	Int

Visitors		
Ticket_no(Primary)	Varchar(25)	
Park_id(Foreign)	Char(6)	
Date	Char()	
Name	Varchar(45)	
Age	Int	
Gender	Char(6)	
Ticket_price	Numeric(4,0)	
Mobile_no	Numeric(10,0)	

Fauna_food	
Fauna_id(Primary)	Char(5)
Park_id(primary)	Char(6)
Food(Primary)	Varchar(45)

Expenses		
Employee_salary	numeric(6,0)	
Food	numeric(6,0)	
Fertilizers	numeric(6,0)	
Maintainence	numeric(6,0)	
Park_id(Primary)	char(6)	

Visitor analysis		
Park_id(Primary)	char(6)	
Season(Primary)	varchar(45)	
No_of_visitors	int	

Fine_info	
Ticket_no(Primary)	varChar(20)
Fine_reason	Varchar(100)
Fine_cost	Int
Date	Char(5)

Funds	
Park_id(Primary)	char(6)
Name(Primary)	Varchar(35)
Amount(primary)	Numeric(6,0)
Date(Primary)	Char(5)

Relationship Set Schemas Many to many

Fauna_maintenance(Fauna, Employee)		
Fauna_id(primary)	Char(5)	
Park_id(primary)	Char(6)	
Employee_id(primary)	Char(10)	

Fauna_in_park(Fauna, Park)	
Park_id(primary)	Char(6)
Fauna_id(primary)	Char(5)

Flora_maintenance(Flora, Employee)	
Flora_id(primary)	Char(5)
Park_id(primary)	Char(6)
Employee_id(primary)	Char(10)

Flora_in_park(Flora, Park)	
Park_id(primary)	Char(6)
Flora_id(primary)	Char(5)

One to one

Park(Expenditure per Park) (Park, Expenses)

Park_id(primary)

Park_name

Area_in_hectares

City

Estd_year

Expenses(Park Profit)(Expenses, Income)

Employee_salary

Food

Fertilizers

Maintainence

Park_id(Primary)

Fine_info(Visitor s_Fine)(Fine_Inf o, Visitors)

Ticket_no(Primary)

Fine_reason

Fine_cost

Date

Many to one

Visitor analysis(Visitor Data Collection)(Visitor_Analysis,Visi tors)

Park_id(Primary)

Season(Primary)

No_of_visitors

Ticket_no

Visitors(Income Through Tickets)(Visitors,Income)

Ticket_no(Primary)

Park_id(Foreign)

Date

Name

Age

Gender

Ticket_price

Mobile_no

Funds(Donates) (Funds,Income

Park_id(Primary)

Name(Primary)

Amount(primary)

Date(Primary)

R1.Park(Park id, Park_name, Area_in_hectares, City, Estd_year)

Functional Dependencies:

Park_id -> Park_name, Area_in_hectares, City, Estd_year

Assumptions:

All attributes are atomic

Two park names can be same

There can be two parks in same City, ocupied in same area or Year established.

R2.Fauna(<u>Fauna id</u>, <u>Park id</u>, <u>Species_name</u>, <u>No_of_species</u>, <u>Lifespan</u>, <u>Status</u>)

Functional Dependencies:

Fauna_id, Park_id -> Species_name, No_of_species, Lifespan, Status Fauna_id -> Species_name, Lifespan, Status Species_name -> Lifespan, Status

Assumptions:

All attributes are atomic.

No two species have same name i.e, (species_name is unique)

Fauna_id implies Species_name but Species_name cant imply Fauna_id

Park

Park id

Park_name

Area_in_hectares

City

Estd_year

Fauna

Fauna id

Park id

Species_name

No_of_species

Lifespan

Status

R3.Flora(Flora id, Park id, Flora_name, No_of_species, Plantation_year, Age)

Functional Dependencies:

Flora_id,Park_id -> Flora_name,No_of_species,Plantation_year,Age Flora_id -> Flora_name

Assumptions:

All attributes are atomic.

Flora_id implies Species_name but Species_name cant imply Flora_id

R4.Employee(<u>Employee id</u>, <u>Park id</u>, Name, Designation, Monthly_salary, Hours_of_work, Year_of_joining, Mobile_no)

Functional Dependencies:

Employee_id,Park_id ->Name, Designation, Monthly_salary, Hours_of_works, Year_of_joining, Mobile_no.

Assumptions:

All attributes are atomic., Employee.Name is a simple attribute, Mobile_no is single valued attribute.

Two employees from different parks can have same employee_id.

Flora

Flora id
Park id
Flora_name
No_of_species
Plantation_year
Age()

Employee

Employee id
Park id

Name

Designation

Monthly_salary

Hours_of_work

Year_of_joining

Mobile_no

R5. Visitors (<u>Ticket no, Park_id</u>, Date, Name, Age, Gender, Ticket_price, Mobile_no)

Functional Dependencies:

Ticket_no. ->Park_id, Date, Name, Age, Gender, Ticket_price, Mobile_no.

Age -> Ticket_price

Assumptions:

All attributes are atomic. Name is simple attribute. Mobile_no is single valued attribute. Ticket_no attribute includes date and park id so, no two park can have same Ticket_no.

In all parks ticket price is same and is based on Age.

R6.Expenses(Park id, Employee_salary, Food, Fertilizers, Maintenance)

Functional Dependencies:

Park_id -> Employee_salary, Food, Fertilizers, Maintenance

Assumptions:

All attributes are atomic.

Visitors

Ticket no

Park_id_

Date

Name

Age

Gender

Ticket_price

Mobile_no

Expenses

Park id

Employee_salary

Food

Fertilizers

Maintenance

R7. Income(Park id, Tickets_sold, Parking_fee, Cafeteria, Safari_fee, Fine)

Functional Dependencies:

Park_id -> Tickets_sold, Parking_fee, Cafeteria, Safari_fee, Fine

Assumptions:

All attributes are atomic.

R8. Fine_info(<u>Ticket no</u>,Fine_reason,Fine_Cost,Date)

Functional Dependencies:

Ticket_no->Fine_reason,Fine_Cost,Date

Assumptions:

All attributes are atomic.

Ticket_no attribute includes date and park id so, no two parks can have same Ticket_no. In different parks Fine_cost may be different for same Fine_reason

One Ticket_no (Visitor) can be fined atmost once

Income

Park_id

Tickets_sold

Parking_fee

Cafeteria

Safari_fee

Fine

Fine_info

Ticket no

Fine_reason

Fine_cost

Date

R9. Visitor_analysis(<u>Park_id</u>,<u>Season</u>,No_of_visitors)

Functional Dependencies:

Park_id,Season -> No_of_visitors

Assumptions:

All attributes are atomic.

Visitor analysis

Park_id

<u>Season</u>

No_of_visitors

R1.Park(Park id, Park_name, Area_in_hectares, City, Estd_year)

Primary key: Park_id

Functional Dependencies:

Park_id -> Park_name,Area_in_hectares,City,Estd_year

Normalisation:

Park entity is in 1NF as we assume all the attributes are atomic.

There is no partial dependencies, so it is in 2NF.

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X -> Y, X is the super key of the entity.

R2.Fauna(Fauna id, Park id, Species_name, No_of_species, Lifespan, Status)

Primary key: Fauna_id, Park_id

Functional Dependencies:

Fauna_id, Park_id -> Species_name, No_of_species, Lifespan, Status
Fauna_id -> Species_name, Lifespan, Status
Species_name -> Lifespan, Status

Normalisation:

Fauna entity is in **1NF** as we assume all the attributes are atomic.

There is partial dependencies, so it is **not in 2NF**.

So, after doing normalization to 2NF:

R2.1 Fauna_1(Fauna_id, park_id, No_of_species)

R2.2 Fauna_2(Fauna_id, Species_name, Lifespan, Status)

R2.1 Fauna 1(Fauna id, park id, No_of_species)

Functional Dependencies:

Fauna_id, Park_id -> No_of_species

There are no transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X ->Y, X is the super key of the entity.

R2.2 Fauna 2(Fauna id, Species name, Lifespan, Status)

Functional Dependencies:

Fauna_id -> Species_name, Lifespan, Status Species_name -> Lifespan, Status

In R2.2 there is transitive dependency as

Fauna_id -> Species_name

Species_name-> Lifespan,Status

Fauna_id-> Lifespan,Status

So, after doing normalization to 3NF: R2.2.1 Fauna_2_1(Fauna_id, Species_name)

R2.2.2 Fauna 2 2(Species name, Lifespan, Status)

There are no transitive dependencies also, so it in **3NF**.

These two tables are in **BCNF** also as for every functional dependency $X \rightarrow Y$, X is the super key of the entity.

R3. Flora (Flora id, Park id, Flora name, No_of_species, Plantation_year, Age)

Primary key: Flora_id, Park_id

Functional Dependencies:

Flora_id,Park_id -> Flora_name, No_of_species, Plantation_year, Age Flora_id -> Flora_name

Normalisation:

Fauna entity is in **1NF** as we assume all the attributes are atomic.

There is partial dependencies, so it is **not in 2NF**.

So, after doing normalization to 2NF:

R3.1 Flora_1(Flora_id, Park_id, No_of_species, Plantation_year, Age)

R3.2 Flora 2(Flora id, Flora name)

R3.1 Flora_1(Flora_id, Park_id, No_of_species, Plantation_year, Age)

Functional Dependencies:

Flora_id,Park_id -> No_of_species, Plantation_year, Age

There are no transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X -> Y, X is the super key of the entity.

R3.2 Flora_2(Flora_id, Flora_name)

Functional Dependencies:

Flora_id-> Flora_name

There are no transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X -> Y, X is the super key of the entity.

R4.Employee(Employee id, Park id, Name, Designation, Monthly_salary, Hours_of_work, Year_of_joining, Mobile_no)

Primary key: Employee_id, Park_id

Functional Dependencies:

Employee_id,Park_id -> Name, Designation, Monthly_salary, Hours_of_works, Year_of_joining, Mobile_no.

Normalisation:

Employee entity is in **1NF** as we assume all the attributes are atomic.

There is no partial dependencies, so it is in 2NF.

There are no transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X -> Y, X is the super key of the entity.

R5. Visitors(<u>Ticket no</u>, <u>Park_id</u>, <u>Date</u>, <u>Name</u>, <u>Age</u>, <u>Gender</u>, <u>Ticket_price</u>, <u>Mobile_no</u>)

Primary key: Ticket_no

Functional Dependencies:

Ticket_no ->Park_id, Date, Name, Age, Gender, Ticket_price, Mobile_no Age -> Ticket_price

Normalisation:

Visitors entity is in **1NF** as we assume all the attributes are atomic.

There is no partial dependencies, so it is in 2NF.

There is a transitive dependency as so this is not in 3NF

Ticket_no-> Age

Age-> Ticket_price

Ticket_no->Ticket_price

So, after doing normalization to 3NF: R5.1 Visitors_1(<u>Ticket_no_Park_id</u>, Date, Name, Age, Gender, Mobile_no) R5.2 Visitors_2(<u>Age</u>, Ticket_price)

R5.1 Visitors_1(<u>Ticket no Park_id</u>, Date, Name, Age, Gender, Mobile_no) Functional Dependency:

Ticket_no->Park_id, Date, Name, Age, Gender, Mobile_no

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X ->Y, X is the super key of the entity

R5.2 Visitors_2(<u>Age</u>, Ticket_price)

Functional Dependency:

Age->Ticket_price

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X -> Y, X is the super key of the entity

R6.Expenses(Park id, Employee_salary, Food, Fertilizers, Maintenance)

Primary key: Park_id

Functional Dependencies:

Park_id -> Employee_salary, Food, Fertilizers, Maintenance

Normalisation:

Expenses entity is in **1NF** as we assume all the attributes are atomic.

There is no partial dependencies, so it is in 2NF.

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency X ->Y, X is the super key of the entity.

R7. Income(Park id, Tickets_sold, Parking_fee, Cafeteria, Safari_fee, Fine)

Primary key: Park_id

Functional Dependencies:

Park_id -> Tickets_sold, Parking_fee, Cafeteria, Safari_fee, Fine

Normalisation:

Income entity is in **1NF** as we assume all the attributes are atomic.

There is no partial dependencies, so it is in 2NF.

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency $X \rightarrow Y$, X is the super key of the entity.

R8. Fine_info(<u>Ticket no</u>, Fine_reason, Fine_Cost, Date)

Primary key: Ticket_no

Functional Dependencies:

Ticket_no->Fine_reason, Fine_Cost, Date

Normalisation:

Fine_info entity is in **1NF** as we assume all the attributes are atomic.

There are no partial dependencies, so it is in 2NF.

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency $X \rightarrow Y$, X is the super key of the entity.

R9. Visitor_analysis(Park id, Season, No_of_visitors)

Primary key: Park_id,Season

Functional Dependencies:

Park_id,Season -> No_of_visitors

Normalisation:

Visitors_analysis entity is in **1NF** as we assume all the attributes are atomic.

There is no partial dependencies, so it is in 2NF.

There are no Transitive dependencies also, so it in 3NF.

This table is in **BCNF** also as for every functional dependency $X \rightarrow Y$, X is the super key of the entity.

Park	
Park_id(Primary)	char(6)
Park_name	Varchar(45)
Area_in_hectares	Int
City	Varchar(45)
Estd_year	Int

Flora_2	
Flora_id(Primary)	Char(5)
Flora_name	Varchar(45)

Flora_1	
Flora_id(Primary)	Char(5)
Park_id(Primary)	Char(6)
No_of_species	Int
Plantation_year	Int
Age	Int

Fauna_1	
Fauna_id(Primary)	Char(5)
Park_id(Primary)	Char(6)
No_of_species	Int

Fauna_2_1	
Fauna_id(Primary)	Char(5)
Species_name	Varchar(45)

Fauna_2_2	
Species_name	Varchar(45)
Lifespan	Varchar(45)
Status	Varchar(20)

Employee		
Employee_id(Primary)	char(10)	
Park_id(Primary)	char(6)	
Name	varchar(45)	
Designation	varchar(45)	
Monthly_salary	numeric(5,0)	
Hours_of_work	int	
Year_of_joining	int	
Mobile_no.	numeric(10,0)	

Visitors_2	
Age	Varchar(5)
Ticket_price	Int

Visitors_1	
Ticket_no(Primary)	Varchar(25)
Park_id(Foreign)	Char(6)
Date	Char(5)
Name	Varchar(45)
Age	Int
Gender	Char(6)
Mobile_no	Numeric(10,0)

Expenses		
Employee_salary	numeric(6,0)	
Food	numeric(6,0)	
Fertilizers	numeric(6,0)	
Maintainence	numeric(6,0)	
Park_id(Primary)	char(6)	

Fine_info		
Ticket_no(Primary)	varChar(20)	
Fine_reason	Varchar(100)	
Fine_cost	Int	
Date	Char(5)	

Income	
Park_id(Primary)	Char(6)
Tickets_sold	Numeric(7,0)
Parking_fee	Numeric(6,0)
Cafeteria	Numeric(6,0)
Safari_fee	Numeric(6,0)
Fine	Numeric(6,0)

Visitor_analysis	
Park_id(Primary)	char(6)
Season(Primary)	varchar(45)
No_of_visitors	int

Flora_fertilizer		
Flora_id(Primary)	Char(5)	
Park_id(primary)	Char(6)	
Fertilizers(Primary)	Varchar(45)	

Funds	
Park_id(primary)	char(6)
Name(primary)	Varchar(35)
Amount(primary)	Numeric(6, 0)
Date(primary)	Char(5)

Fauna_food	
Fauna_id(Primary)	Char(5)
Park_id(primary)	Char(6)
Food(Primary)	Varchar(45)

Park

Park_id	Park_name	Area_in_hectares	City	Estd_year
UD-102	Udaan biodiversity park	200	Pune	2012
VA-103	Vanaparvam biodiversity park	111	Kozhikode	2010
YA-101	Yamuna biodiversity park	9770	Delhi	2015

Fauna_2_1

Fauna_id	Species_name
EL-03	Elephant
LI-01	Lion
MO-05	Monkey
PE-04	Peacock
TI-02	Tiger

Fauna_1

Fauna_id	Park_id	No_of_species
EL-03	UD-102	8
EL-03	YA-101	9
LI-01	UD-102	3
LI-01	VA-103	4
LI-01	YA-101	5
MO-05	UD-102	12
MO-05	VA-103	18
MO-05	YA-101	15
PE-04	UD-102	7
PE-04	VA-103	5
TI-02	VA-103	6
TI-02	YA-101	3

Fauna_food

Fauna_id	Food
EL-03	bark
EL-03	grasses
LI-01	birds
LI-01	turtles
MO-05	banana
MO-05	bird egg
PE-04	berries
PE-04	insects
TI-02	deer
TI-02	goat

Fauna_2_2

Species_name	Lifespan	Status
Elephant	60-70	endangered
Lion	15-20	vulnerable
Monkey	20-25	least concern
Peacock	10-25	least concern
Tiger	8-10	endangered

Flora_1

Flora_id	Park_id	No_of_species	Plantation_year	Age
BA-01	UD-102	25	2014	8
BA-01	VA-103	30	2012	10
BA-01	YA-101	35	2016	6
EU-03	UD-102	20	2013	9
EU-03	YA-101	30	2018	4
LI-05	UD-102	10	2014	8
LI-05	VA-103	22	2012	10
LO-02	UD-102	14	2017	5
LO-02	VA-103	17	2014	8
LO-02	YA-101	25	2012	10
RU-04	VA-103	12	2020	2
RU-04	YA-101	18	2019	3

Flora_fertilizers

Flora_id	Fertilizers
BA-01	Cattle manure
BA-01	Mushroom compost
EU-03	High potassium
EU-03	Low nitrogen
LI-05	NPK 10-30-20
LI-05	NPK 15-9-12
LO-02	NPK 18-18-21
LO-02	NPK 4-8-4
RU-04	NPK 10-10-10
RU-04	Rotted cow manure

Flora_2

Flora_id	Flora_name
BA-01	Bamboo
EU-03	Eucalyptus
LI-05	Lily
LO-02	Lotus
RU-04	Rudraksha

Fine_info

Ticket_no.	Fine_reason	Fine_cost	Date
UD-102-12/08-1	feeding food to animals	2000	10/11
UD-102-19/07-1000	wrong parking	1000	19/07
VA-103-30/07-956	throwing plastic bottles in the park	500	30/07
YA-101-10/11-83	feeding food to animals	2000	10/11

Visitors_1

, 1010010 <u>-</u> 1						
Ticket_no.	Park_id	Date	Name	Age	Gender	Mobile_no.
UD-102-10/11-1	UD-102	10/11	Swapna	21	female	9184750253
UD-102-10/11-2	UD-102	10/11	Rishi	9	male	9184750253
UD-102-19/07-1000	UD-102	19/07	Karan	45	male	9372804567
VA-103-18/02-8	VA-103	18/02	Madhav	24	male	8283374925
VA-103-21/06-67	VA-103	21/06	Riya	5	female	6194638583
VA-103-30/07-956	VA-103	30/07	Rithwik	36	male	9930027856
YA-101-06/02-603	YA-101	06/02	Pranav	19	male	9736659927
YA-101-08/04-909	YA-101	08/04	Hanu	20	male	6933758926
YA-101-10/11-83	YA-101	10/11	Divya	51	female	9983374460
YA-101-19/04-9	YA-101	19/04	Manas	8	male	8376629887

Visitors_2

Age	Ticket_price
<=10	100
>10	200

Expenses

F	Park_id	Employee_salary	Food	Fertilizers	Maintenance
U	D-102	52000	300000	70000	150000
٧	A-103	49000	200000	30000	100000
Y	A-101	95000	400000	100000	500000

Income

Park_id	Tickets_sold	Parking_fee	Cafeteria	Safari_fee	Fine
UD-102	600000	50000	70000	300000	30000
VA-103	400000	25000	45000	100000	10000
YA-101	1000000	80000	150000	475000	45000

Employee

Employee_id	Park_id	Name	Designation	Monthly_salary	Hours_of_work	Year_of_joining	Mobile_no
UD-102-M1	UD-102	Aarav	manager	25000	7	2015	8173562982
UD-102-S1	UD-102	Shiva	security	12000	10	2014	7193740360
UD-102-W1	UD-102	Harshith	worker	15000	8	2012	6193740631
VA-103-M3	VA-103	Suriya	manager	24000	7	2012	9281763942
VA-103-S3	VA-103	Charan	security	11000	10	2010	8162736471
VA-103-W3	VA-103	Arjun	worker	14000	8	2010	9183746509
YA-101-D2	YA-101	Swathi	doctor	40000	5	2022	9927746638
YA-101-M2	YA-101	Deekshit	manager	26000	7	2020	8244164779
YA-101-S2	YA-101	Shiva	security	13000	10	2015	9937746620
YA-101-W2	YA-101	Ram	worker	16000	8	2016	8176635429

Funds

Name	Amount	Date	Park_id
Aishwarya Rai Bachchan	700000	29/10	UD-102
Animal aid	75000	24/07	VA-103
Blue cross	225000	12/02	YA-101
Ghazal Alagh	200000	05/04	VA-103
Posh foundation	125000	17/06	YA-101
Ramesh Babu	5000	12/11	UD-102
Sita Rajput	7050	27/02	YA-101
Sita Rajput	10250	27/03	YA-101
Sonu Sood	500000	12/11	VA-103
Vishal K Reddy	100000	10/01	UD-102

Visitor_analysis

Park_id	Season	No_of_visitors
UD-102	Autumn	16000
UD-102	Monsoon	12000
UD-102	Spring	18000
UD-102	Summer	20000
UD-102	Winter	15000
VA-103	Autumn	9000
VA-103	Monsoon	7000
VA-103	Spring	5000
VA-103	Summer	11000
VA-103	Winter	6000
YA-101	Autumn	18000
YA-101	Monsoon	19000
YA-101	Spring	21000
YA-101	Summer	24000
YA-101	Winter	16000

Find flora_id, Park_id, Plantation_year from park where plantation_year >2013 and park_id = UD-102

1 π Flora_id,Park_id,Plantation_year (σPlantation_year > 2013 ∧ Park_id = 'UD-102' (Flora_1))

Flora_1.Flora_id	Flora_1.Park_id	Flora_1.Plantation_year
'BA-01'	'UD-102'	2014
'LI-05'	'UD-102'	2014
'LO-02'	'UD-102'	2017

Find no. of visitors who visited in season summer in Udaan biodiversity park

1 π No_of_visitors (σ Season = 'Summer' ∧ Park_name = 'Udaan biodiversity
park' (Park ⋈ Visitor_Analysis))

Visitor_Analysis.No_of_visitors

Find species name where status is endangered

```
1 \pi Species_name (\sigma Status = 'endangered' (Fauna_2_2))
```


Find fauna_id, park_id and no of species where no of species is greater than 8

 1π Fauna_id,Park_id,No_of_species (σ No_of_species > 8 (Fauna_1))

Fauna_1.Fauna_id	Fauna_1.Park_id	Fauna_1.No_of_species
'EL-03'	'YA-101'	9
'MO-05'	'UD-102'	12
'MO-05'	'VA-103'	18
'MO-05'	'YA-101'	15

Find name of donor and park_name where donation amount is greater than 78000

1 π Name, Park_name (σ Amount > 78000 (Funds⋈Park))

Funds.Name	Park.Park_name	
'Aishwarya Rai Bachan'	'Udaan biodiversity park'	
'Blue cross'	'Yamuna biodiversity park'	
'Ghazal Alagh'	'Vanaparvam biodiversity par	
'Posh foundation'	'Yamuna biodiversity park'	
'Sonu Sood'	'Vanaparvam biodiversity park'	
'Vishal K Reddy'	'Udaan biodiversity park'	

Find number of visitors with age less than or equal to "20".

```
1 • SELECT count(Name)
2 FROM visitors 1
```

3 where Age<=20;</p>

	count(Name)
•	5

Find the employee with fifth highest salary

```
select Employee_id,Name,Monthly_salary
from employee as e1

where 4=(select count(distinct Monthly_salary)
from employee as e2
where e2.Monthly_salary > e1.Monthly_salary);
```

	Employee_id	Name	Monthly_salary
•	YA-101-W2	Ram	16000

Find the maximum number of visitors per season

```
1 • select max(No_of_visitors),season
2  from Visitor_analysis
3  group by season;
```

	max(No_of_visitors)	season
•	18000	Autumn
	19000	Monsoon
	21000	Spring
	24000	Summer
	16000	Winter

Find fauna whose food starts with b and no of species is less than 10

```
1 • Select Fauna_id,Food,Park_id
2 from Fauna_1 natural join Fauna_food
3 Where Food like "b%" and No_of_species<10;</pre>
```

	Fauna_id	Food	Park_id
•	EL-03	bark	UD-102
	EL-03	bark	YA-101
	LI-01	birds	UD-102
	LI-01	birds	VA-103
	LI-01	birds	YA-101
	PE-04	berries	UD-102
	PE-04	berries	VA-103

Increase income earned by safari fee by 10% for park whose park_id starts with Y

```
update income
set Safari_fee= Safari_fee*1.1
where Park_id like 'Y%';
select *
from income;
```

		Park_id	Tickets_sold	Parking_fee	Cafeteria	Safari_fee	Fine
	•	UD-102	600000	50000	70000	300000	30000
		VA-103	400000	25000	45000	100000	10000
1		YA-101	1000000	80000	150000	574750	45000

