

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL ENGENHARIA DA COMPUTAÇÃO DISCIPLINA DE CIRCUITOS ELÉTRICOS I LISTA DE EXERCÍCIOS #8 – CAPACITOR PROF. CARLOS ELMANO

- * Fonte: Nilson, 10ª. Edição.
- 6.21 O pulso de corrente de formato retangular mostrado na Figura P6.21 é aplicado a um capacitor de 0,1 μF. A tensão inicial no capacitor é uma queda de 15 V na direção de referência da corrente. Deduza a expressão da tensão no capacitor para os intervalos descritos nos itens (a)–(d).
 - a) $0 \le t \le 10 \,\mu s$;
 - b) $10 \,\mu s \le t \le 20 \,\mu s$;
 - c) $20 \mu s \le t \le 40 \mu s$;
 - d) $40 \,\mu s \leq t < \infty$;

Figura P6.21

- 6.31 Os dois capacitores ligados em série na Figura P6.31 estão ligados aos terminais de uma caixa preta em t = 0. Sabe-se que a corrente resultante i(t) para t > 0 é $800e^{-25t} \mu A$.
 - a) Substitua os capacitores originais por um equivalente e determine $v_0(t)$ para $t \ge 0$.
 - b) Determine $v_1(t)$ para $t \ge 0$.
 - c) Determine $v_2(t)$ para $t \ge 0$.
 - d) Qual é a energia fornecida à caixa preta no intervalo de tempo $0 \le t < \infty$?
 - e) Qual era a energia inicialmente armazenada nos capacitores em série?
 - f) Qual é a energia final retida nos capacitores ideais?
 - g) Mostre que as soluções para v₁ e v₂ estão de acordo com a resposta obtida em (f).

Figura P6.31

6.32 Os quatro capacitores no circuito da Figura P6.32 estão ligados aos terminais de uma caixa preta em t = 0. Sabe-se que a corrente resultante i_b para t > 0 é

$$i_b = -5e^{-50t} \,\mathrm{mA}$$
.

Se $v_a(0) = -20 \text{ V}$, $v_c(0) = -30 \text{ V}$ e $v_d(0) = 250 \text{ V}$, determine o seguinte para $t \ge 0$: (a) $v_b(t)$, (b) $v_a(t)$, (c) $v_c(t)$, (d) $v_d(t)$, (e) $i_1(t)$ e (f) $i_2(t)$.

Figura P6.32

- 6.33 Para o circuito da Figura P6.32, calcule
 - a) a energia inicial armazenada nos capacitores;
 - b) a energia final armazenada nos capacitores;
 - c) a energia total fornecida à caixa preta;
 - d) a percentagem da energia inicial armazenada que é fornecida à caixa preta; e
 - e) o tempo, em milissegundos, necessário para fornecer 7,5 mJ à caixa preta.

GABARITO

6.21) a) $v(t)=-50x10^4t+15$;

b)
$$v(t)=10^6 t$$
;

c) $v(t)=1,6x10^6t-12$;

d) v(t)=52V;

6.31) a)Ceq=1,6 μ F; v_0 (t=0)=-20V e v_0 (t)=-20e^{-25t}

b)
$$v_1(t) = -16e^{-25t} + 21$$

c) $v_2(t) = -4e^{-25t} - 21$

d)320µJ

e)2.525 µJ

f) 2.205 μJ

g) $2.205 \,\mu J$ - ok

6.32) a) $v_b(t)=-200e^{-50t}$

b) $v_a(t)=20e^{-50t}-40$

c) $v_c(t)=80e^{-50t}-110$

d) $v_d(t)=100e^{-50t}+150$

e) $i_1(t) = -1x10^{-3}e^{-50t}$

f) $i_2(t) = -4x10^{-3}e^{-50t}$

6.33) a) 32,8mJ

b) 22,8mJ

c) 10mJ

d) 30,5%

e) 13,86ms