Minimum Spanning Tree (MST)

Hengfeng Wei

hfwei@nju.edu.cn

June 19, 2018

1 / 29

Cut Property

$$G = (V, E, w)$$

Cut Property (Strong)

- lacktriangleq X is some part of an MST T of G
- ► Any $\operatorname{cut}(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$ Âŋ
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Cut Property (Strong)

- lacktriangleq X is some part of an MST T of G
- ► Any $\operatorname{cut}(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$ Âŋ
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is some part of an MST T' of G.

Cut Property (Strong)

- lacktriangleq X is some part of an MST T of G
- ► Any $\operatorname{cut}(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$ Âŋ
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is some part of an MST T' of G.

Correctness of Prim's and Kruskal's algorithms.

By Exchange Argument.

By Exchange Argument.

By Exchange Argument.

$$T + \{e\} - \{e'\}$$

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

Then e must be in **some** MST of G.

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

Then e must be in **some** MST of G.

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

Then e must be in **some** MST of G.

"a"
$$\rightarrow$$
 "the" \Longrightarrow "some" \rightarrow "any"

5 / 29

Converse of Cut Property (Weak)

$$e = (u,v) \in \exists \ \mathsf{MST} \ T \ \mathsf{of} \ G$$

_

 $e \text{ is a lightest edge across some cut } (S, V \setminus S)$

Converse of Cut Property (Weak)

$$e = (u, v) \in \exists \mathsf{MST}\ T \mathsf{\ of\ } G$$

e is a lightest edge across some cut $(S, V \setminus S)$

$$T' = \underbrace{T - \{e\}}_{\text{to find } (S, V \setminus S)} + \underbrace{\{e'\}}_{\exists ?}$$

6 / 29

Application of Cut Property [Problem: 10.15 (3)]

 $e \in G$ is a lightest edge $\implies e \in \exists$ MST of G

Application of Cut Property [Problem: 10.15(3)]

 $e \in G$ is a lightest edge $\implies e \in \exists$ MST of G

$$(S = \{u\}, V \setminus S)$$

Application of Cut Property [Problem: 10.15 (4)]

 $e \in G$ is the unique lightest edge $\Rightarrow e \in \forall$ MST

Application of Cut Property [Problem: 10.15 (4)]

$$e \in G$$
 is the unique lightest edge $\Rightarrow e \in \forall$ MST

$$e \notin T : T' = T + \{e\} - \{e'\} \implies w(T') < w(T)$$

Wrong divide-and-conquer algorithm for MST [Problem: 10.21]

$$(V_1, V_2) : ||V_1| - |V_2|| \le 1$$

 $T_1 + T_2 + \{e\} : e$ is a lightest edge across (V_1, V_2)

Wrong divide-and-conquer algorithm for MST [Problem: 10.21]

$$(V_1, V_2) : ||V_1| - |V_2|| \le 1$$

 $T_1 + T_2 + \{e\} : e$ is a lightest edge across (V_1, V_2)

9 / 29

Cycle Property

$$G = (V, E, w)$$

Cycle property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

Cycle property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{e \in T} + \{e'\}$$

Anti-Kruskal algorithm [Problem: 10.19(c)]

Reverse-delete algorithm (wiki)

$$O(m \log n (\log \log n)^3)$$

Anti-Kruskal algorithm [Problem: 10.19(c)]

Reverse-delete algorithm (wiki)

$$O(m \log n (\log \log n)^3)$$

Proof.

Invariant: If F is the set of edges remained at the end of the while loop, then there is some MST that are a subset of F.

Anti-Kruskal algorithm [Problem: 10.19(c)]

Reverse-delete algorithm (wiki)

$$O(m \log n (\log \log n)^3)$$

Proof.

Invariant: If F is the set of edges remained at the end of the while loop, then there is some MST that are a subset of F.

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem" — Kruskal, 1956.

Application of Cycle Property [Problem: 10.15 (1)]

$$G=(V,E), |E|>|V|-1$$
, e unique maximum-weighted edge

 $e \notin \mathsf{any} \; \mathsf{MST}$

Application of Cycle Property [Problem: 10.15 (1)]

$$G=(V,E), |E|>|V|-1$$
, e unique maximum-weighted edge

 $e \notin \mathsf{any} \; \mathsf{MST}$

Bridge

Application of Cycle Property [Problem: 10.15 (2)]

 $C\subseteq G, e\in C$, e is the unique maximum-weighted edge of G

 \Longrightarrow

 $e \notin \text{any MST of } G$

Application of Cycle Property [Problem: 10.15 (2)]

 $C\subseteq G, e\in C$, e is the unique maximum-weighted edge of G

 $e \notin \text{any MST of } G$

$$T' = T - \{e\} + \{e'\}$$

Application of Cycle Property [Problem: 10.15 (5)]

 $C\subseteq G, e\in C$, e is the unique lightest edge of $C\implies {}^?e\in \forall$ MST

Application of Cycle Property [Problem: 10.15 (5)]

 $C\subseteq G, e\in C$, e is the unique lightest edge of $C\implies {}^?e\in \forall$ MST

Distinct weights \implies unique MST.

Distinct weights \implies unique MST.

Distinct weights \implies unique MST.

$$\exists$$
 MSTs $T_1 \neq T_2$

Distinct weights \implies unique MST.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights \implies unique MST.

By contradiction.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights \implies unique MST.

By contradiction.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

$$e \in T_1 \setminus T_2$$
 (w.l.o.g)

$$e \in T_1 \setminus T_2$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$e \in T_1 \setminus T_2$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T' = T_2 + \{e\} - \{e'\} \implies w(T') < w(T_2)$$

◆ロト ◆問ト ◆意ト ◆意ト ・ 意 ・ 釣り○

Condition for Uniqueness of MST [Problem: 10.18 (2)]

Unique MST \implies Equal weights.

Condition for Uniqueness of MST [Problem: 10.18 (2)] Unique MST \implies Equal weights.

Unique MST \implies Minimum-weight edge across any cut is unique.

Unique MST \implies Minimum-weight edge across any cut is unique.

Unique MST \implies Minimum-weight edge across any cut is unique.

Theorem

Minimum-weight edge across any cut is unique \implies Unique MST.

Unique MST \implies Maximum-weight edge in any cycle is unique.

Unique MST \implies Maximum-weight edge in any cycle is unique.

Theorem (Conjecture)

Maximum-weight edge in any cycle is unique \implies Unique MST.

Theorem (Conjecture)

Maximum-weight edge in any cycle is unique ⇒ Unique MST.

To decide whether a graph has a unique MST.

To decide whether a graph has a unique MST.

Ties breaking in Prim's and Kruskal's algorithms

To decide whether a graph has a unique MST.

Ties breaking in Prim's and Kruskal's algorithms

Proof.

Cut property and Cycle property.

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST T' of G' .

$$O\Big((m+n)\log n\Big)$$
 (recompute on G')

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST T' of G' .

$$O\Big((m+n)\log n\Big)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST T' of G' .

$$O\Big((m+n)\log n\Big)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$O(n \log n)$$
 (recompute on $G'' = (V + \{v\}, T + E_v)$)

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST T' of G' .

$$O\Big((m+n)\log n\Big)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$O(n\log n)$$
 (recompute on $G''=(V+\{v\},T+E_v)$)
$$O(n)$$

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST T' of G' .

$$O\Big((m+n)\log n\Big)$$
 (recompute on G')

Theorem

There exists an MST of G' that includes no edges in $G \setminus T$.

$$O(n \log n)$$
 (recompute on $G'' = (V + \{v\}, T + E_v)$)

"On Finding and Updating Spanning Tress and Shortest Paths", 1975 "Algorithms for Updating Minimum Spanning Trees", 1978

Feedback Edge Set: [Problem: 10.8]

- 1. Maximum spanning tree
- 2. (Minimum) feedback edge set:
 - $\,\blacktriangleright\,$ a set of edges which, when removed from the graph, leave an acyclic graph G'
 - ▶ assuming G is connected $\Rightarrow G'$ is connected
 - ▶ feedback arc set: "cycle" ⇒ circular dependency
- ▶ G' is connected + acyclic $\Rightarrow G'$ is an ST
- ▶ FES \Leftrightarrow $G \setminus \text{Max-ST}$

Edge Weights

- ▶ [Problem: 10.15 (7)]: negative edges for Prim algorithm
- [Problem: 10.16]: $w'(e) = (w(e))^2$

MST with Specified Leaves: [Problem: 10.11]

- $ightharpoonup G=(V,E), U\subset V$
- lacktriangle finding an MST with U as leaves

MST with Specified Leaves: [Problem: 10.11]

- $ightharpoonup G = (V, E), U \subset V$
- ightharpoonup finding an MST with U as leaves

$$\mathsf{MST}\ T'\ \mathsf{of}\ G' = G \setminus U$$

MST with Specified Leaves: [Problem: 10.11]

- $ightharpoonup G = (V, E), U \subset V$
- ightharpoonup finding an MST with U as leaves

$$\mathsf{MST}\ T'\ \mathsf{of}\ G' = G\setminus U$$

Attach $\forall u \in U$ to T' (with lightest edge)

MST with Specified Edges: [Problem: 10.13]

$$G = (V, E), \quad S \subset E \text{ (no cycle in } S)$$

To find an MST with S as edges.

MST with Specified Edges: [Problem: 10.13]

$$G = (V, E), \quad S \subset E \text{ (no cycle in } S)$$

To find an MST with S as edges.

 $G \to G'$: contract each component of S to a vertex

MST vs. Shortest Paths [Problem: 10.15 (6)]

✗The shortest path between two nodes is necessarily part of some MST.

Sharing edges [Problem: 3.6.5]

- G = (V, E), w(e) > 0
- ▶ Given s: all sssp trees from s must share some edge with all (some) MSTs of G

√w > 0; Vertex s; shortest-path tree of s and some MST share a common edge [Problem: 10.9]

Solution

E': lightest edges leaving s

- ▶ any MST T of G: $T \cap E' \neq \emptyset$
- ▶ $E' \subset \forall$ sssp trees

