Double Q-Learning SOTA2 - Group C

Anton Kesy, Étienne Muser, Katharina Schindler, Lukas Fehrenbacher, Nico Ruschmann

Offenburg University of Applied Sciences

WS 2024/2025

Problem with Q-Learning

- Verwendung desselben Netzwerks für Policy estimation und Action Selection führt zu Überschätzung des Wertes einer Aktion
- Obere Schranke der Überschätzung ist abhängig von der Anzahl der Aktionen

Double Q-Learning: Hauptfunktion

• **Ziel**: Reduktion der Überschätzung von Q-Werten, die bei standardmäßigem Q-Learning auftreten.

Ansatz:

- **1** Trennung von Aktionsauswahl und Bewertung:
 - Primäres Netzwerk (θ): Auswahl der Aktion $arg \max$.
 - Sekundäres Netzwerk theta': Bewertung des Werts der ausgewählten Aktion.
- ② Aktualisierung des Zielwerts (Target): $Y_{t}^{\text{DoubleQ}} = R_{t+1} + \gamma Q(S_{t+1}, \arg\max_{a} Q(S_{t+1}, a; \theta), \theta')$

Effekte:

- Verringerung von Verzerrungen durch Überschätzung.
- Stabileres und genaueres Lernen.
- Besonders nützlich bei verrauschten oder ungenauen Wertschätzungen, z. B. in Deep Reinforcement Learning.
- Kernidee: Separate Netzwerke zur Entkopplung von Aktionsermittlung und -bewertung.

Double DQN (DDQN)

• Ziel: Reduzierung der Überschätzung von Aktionswerten im Vergleich zu DQN

Ansatz

- Aktionsauswahl: Das Online-Netzwerk wählt die Aktion mit dem höchsten Q-Wert im nächsten Zustand aus, um die beste Aktion zu bestimmen.
- Aktionsbewertung: Das Target-Netzwerk bewertet den Wert der zuvor ausgewählten besten Aktion im nächsten Zustand.
- Zielwertberechnung: Der Zielwert wird durch Addition des sofortigen Rewards und des vom Target-Netzwerk bewerteten Werts der nächsten Aktion berechnet.
- Online-Netzwerk Update: Die Gewichte des Online-Netzwerks werden angepasst, um die Differenz zwischen der aktuellen Schätzung und dem Zielwert zu reduzieren
- Periodisches Target-Netzwerk Update: Die Gewichte des Target-Netzwerks werden periodisch mit den Gewichten des Online-Netzwerks aktualisiert

Zusammenfassend verwendet DDQN das Online-Netzwerk für die Aktionsauswahl und das Target-Netzwerk zur Aktionsbewertung, um die Überschätzung von Aktionswerten zu reduzieren, was zu einem stabileren Lernprozess führt

Explain DDQ Implementation (1/2)

- Two Networks:
 - Q-online: Predicts best actions
 - Q-target: Stabilizes training by estimating future rewards (frozen during training)
- Experience Replay:
 - stores and samples past experiences to break correlation
- TD Estimate:
 - (Q_{online}(s, a)): Current Q-value for the chosen action
- TD Target:
 - ($\mathsf{TD}\{\mathsf{target}\} = r + Q\{\mathsf{target}\}(\mathsf{s'}, \mathsf{a'})$): Combines reward and future Q-value
- Loss and Update:
 - Loss = (| TD{estimate} TD{target} |)
 - Update Q-online with backpropagation

Explain DDQ Implementation (1/2)

- Q-target Sync:
 - Periodically copy weights from Q-online to Q-target
- Learning:
 - Train Q-online every few steps, sync Q-target periodically
- Save Progress:
 - Save the network's state regularly

Code Example

```
mario rl tutorial - Learn
  • share feature generator across Q-Online and Q-Target
def build cnn(self, c, output dim):
    return nn.Sequential(
        nn.Conv2d(in channels=c, out channels=32, kernel size=8, stride=4),
        nn.ReLU().
        nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
        nn.ReLU().
        nn.Conv2d(in channels=64, out channels=64, kernel size=3, stride=1),
        nn.ReLU().
        nn.Flatten().
        nn.Linear(3136, 512),
        nn.ReLU().
        nn.Linear(512, output_dim),
```

TD Estimate & TD Target

```
def td estimate(self. state. action):
    current Q = self.net(state, model="online")[
       np.arange(0, self.batch size), action
    ] # Q online(s,a)
    return current Q
def td_target(self, reward, next_state, done):
    next_state_Q = self.net(next_state, model="online")
    best action = torch.argmax(next state Q, axis=1)
    next Q = self.net(next state, model="target")[
       np.arange(0, self.batch size), best action
    return (reward + (1 - done.float()) * self.gamma * next_Q).float()
```

Demo

- mario_rl_tutorial.html
- working fork

