Contrôle continu 3 : lundi 13 avril 2015

Durée : 20 minutes. La calculatrice Université de Bordeaux est autorisée. Aucun document n'est autorisé. **Exercice 1** (3 points).

- 1. Énoncer le théorème concernant les extrema d'une fonction continue sur un segment [a;b] avec a < b.
- 2. Soient $f:]a; b[\to \mathbb{R}$ et $x_0 \in]a; b[$. Donner la définition de la dérivabilité de f à droite en x_0 .

Exercice 2 (5 points). Montrer que, pour tout $x > 0, x \ge \arctan(x) \ge \frac{x}{1+x^2}$.

Exercice 3 (2 points). Calculer, si elles existent, $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$ et $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$.

Correction du CC 3 du lundi 13 avril 2015

Exercice 1. 1) Une fonction continue sur un segment [a;b] est bornée et atteint ses bornes. C'est-à-dire, il existe $c_1, c_2 \in [a;b]$ tels que, pour tout $x \in [a;b], f(c_1) \leq f(x) \leq f(c_2)$.

2) La fonction f est dérivable à droite en x_0 si la limite $\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0}$ où $x > x_0$ doit être compris par $x \in]x_0; b[$.

Exercice 2: La fonction $f: t \mapsto \arctan(t)$ est dérivable sur \mathbb{R} et, pour $t \in \mathbb{R}$, $f'(t) = \frac{1}{1+t^2}$. Soit x > 0, alors f est dérivable sur [0; x] donc continue sur [0; x] et dérivable sur]0; x[. Alors, d'après le théorème des accroissements finis, il existe $c \in]0; x[$ tel que f(x) - f(0) = (x - 0)f'(c), i.e. $\arctan(x) = \frac{x}{1+c^2}$. Or

$$0 < c < x \Rightarrow 0 \le c^2 \le x^2 \text{ car } x \mapsto x^2 \text{ est croissante sur } \mathbb{R}^+$$

$$\Rightarrow 1 \ge \frac{1}{1+c^2} \ge \frac{1}{1+x^2} \text{ car } x \mapsto \frac{1}{x} \text{ est décroissante sur } \mathbb{R}^{+,*}$$

$$\Rightarrow x \ge \frac{x}{1+c^2} \ge \frac{x}{1+x^2} \text{ car } x \ge 0.$$

Donc, pour tout x > 0, $\frac{x}{1+x^2} \le \arctan(x) \le x$.

Exercice 3: On note $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ et $g(x) = x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$.

- 1) Soit $x \neq 0$, alors $|f(x)| = x^2 \left| \sin \left(\frac{1}{x} \right) \right| \leq x^2$, donc $\lim_{x \to 0} |f(x)| = 0$, i.e., $\lim_{x \to 0} f(x) = 0$.
- 2) Comme pour f, $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$, mais $\cos\left(\frac{1}{x}\right)$ n'a pas de limite en 0, donc g n'a pas de limite en 0.