CSE 8833 HW Assignment #1 09/11/2023 Group #1 Omid Abdolazimi Adam Thomas Charles Albright Joseph Jabour Martin Duclos Robert Ward

Problem 1

In the figure below (**Figure 1**), $f_1(n)$ and $f_2(n)$ represent the running times of two algorithms for the same problem. The complexity of the two algorithms is represented by the asymptotic tight bounds $g_1(n)$ and $g_2(n)$ of these running times with respect to the input size n.

$$\Theta(g_1(n)) = \begin{cases} f_1(n) : \exists \text{ positive constants } c_1, c_2, n_{01} \text{ such that} \\ 0 \le c_1 g_1(n) \le f_1(n) \le c_2 g_1(n), n \ge n_{01} \end{cases}$$

$$\Theta(g_2(n)) = \begin{cases} f_2(n) : \exists \text{ positive constants } c_3, c_4, n_{02} \text{ such that} \\ 0 \le c_4 g_2(n) \le f_2(n) \le c_3 g_2(n), n \ge n_{02} \end{cases}$$

Discuss the behavior of these two algorithms for values of n ranging from 0 to ∞ .

Figure 1. Running time vs input size for two arbitrary algorithms f_1 and f_2

Answer:

Let algorithm A's running time be represented by the function $f_1(n)$ with input size n and algorithm B's running time be represented by the function $f_2(n)$ with input size n. It is given that $f_1(n) = \Theta(g_1(n))$ and $f_2(n) = \Theta(g_2(n))$, thus there exist c_1 , c_2 , n_{01} in N such that $0 \le c_1 g_1(n) \le c_2 g_1(n)$, $n \ge n_{01}$ and there exist c_3 , c_4 , n_{02} in N such that $0 \le c_4 g_2(n) \le f_2(n) \le c_3 g_2(n)$, $n \ge n_{02}$.

In the graph provided, in $[0, n_1)$, $f_1(n)$ starts at some time value $T(n) \succ 0$. Perhaps algorithm A begins with a large data ingest. Then, while in $[0, n_1)$, $f_1(n)$, and $f_2(n)$ are both increasing. So, the workload of both algorithm A and algorithm B are increasing. Also note that while in $[0, n_1]$

CSE 8833 HW Assignment #1 09/11/2023 Group #1 Omid Abdolazimi Adam Thomas Charles Albright Joseph Jabour Martin Duclos Robert Ward

1), $f_2(n) \succ c_3 g_2(n)$ and $f_1(n) \succ c_2 g_1(n)$. However, since $n_1 \le n_{02} \prec n_{01}$ and $n_1 \prec n_{02}$, that is not a problem for our asymptotic tight bounds.

To continue along the horizontal axis, for $[n, n_2)$, $f_1(n)$ is decreasing, implying algorithm A's workload is lessening. $f_2(n)$ is still increasing, implying algorithm B's workload is increasing. In $[n, n_2)$, $f_1(n)$ intersects with $c_2g_1(n)$ and $f_2(n) \succ c_3g_2(n)$, but again, as $n_2 \prec n_{01}$ and $n_2 \prec n_{01}$, this is not a problem for our asymptotic tight bounds.

Continuing, for $[n_2, n_3)$, $f_1(n)$ is dramatically decreasing, implying a decline in algorithm A's workload. $f_2(n)$ is increasing, then begins a decrease, and finally a sharp plummet, implying the start of a sharp drop in workload at n_3 for algorithm B. In $[n_2, n_3)$, $f_1(n)$ intersects with $c_1g_1(n)$ and $f_2(n) \succ c_3g_2(n)$, but as $n_3 \prec n_{01}$ and $n_3 \prec n_{02}$, this is not a problem for our asymptotic tight bounds.

For $[n_3, n_{02})$, $f_1(n)$ is increasing, implying algorithm *A*'s workload is increasing. $f_2(n)$ completes its sharp drop, then "levels out," so one could conclude algorithm *B* reaches a steady behavior. In $[n_3, n_{02})$, $f_1(n) \prec c_1 g_1(n)$ and $f_2(n)$ intersects with $c_3 g_2(n)$ once and $c_4 g_2(n)$ twice. In both cases, we are still at $n_1 \leq n_{02} \prec n_{01}$, so this is not a problem for our asymptotic tight bounds.

For $[n_{02}, n_{01})$, $f_1(n)$ is increasing, implying algorithm A has an increasing workload. $f_2(n)$ is barely increasing, implying a slightly increasing workload. In $[n_{02}, n_{01})$, $f_1(n) \prec c_1 g_1(n)$, so we still have not satisfied its asymptotic bounds, but that is ok because we are at $n_1 \ge n_{01}$. However, we now have that $0 \le c_4 g_2(n) \le f_2(n) \le c_3 g_2(n)$, for all $n_1 \ge n_{02}$. So the value of $f_2(n)$ always lies between $c_4 g_2(n)$ and $c_3 g_2(n)$, inclusive, at and to the right of n_{02} . $c_3 g_2(n)$ provides an upper bound for $f_2(n)$ and $c_4 g_2(n)$ provides a lower bound for $f_2(n)$. Algorithm $g_1(n)$ follows the same growth rate as other algorithms represented by functions in $\Theta(g_2(n))$.

Finally, in $[n_{01}, n)$, $f_1(n)$ increases and $f_2(n)$ slightly increases, implying both algorithms A and B have workloads that increase. In $[n_0, 1)$, we now have that that $0 \le c_1 g_1(n) \le f_1(n) \le c_2 g_1(n)$, for all $n \ge n_{01}$. So the value of $f_1(n)$ always lies between $c_1 g_1(n)$ and $c_2 g_1(n)$, inclusive, at and to the right of n_{01} . $c_2 g_1(n)$ provides an upper bound for $f_1(n)$ and $c_1 g_1(n)$ provides a lower bound for $f_1(n)$. Algorithm A follows the same growth rate as other algorithms represented by functions in $\Theta(g_1(n))$.

Overall, algorithm B [related to $f_2(n)$] outperforms algorithm A [corresponding to $f_1(n)$] for all n except $[n_2, n_3]$.

CSE 8833 HW Assignment #1 09/11/2023 Group #1 Omid Abdolazimi Adam Thomas Charles Albright Joseph Jabour Martin Duclos Robert Ward

Problem 2

Evaluate the following statements for correctness. Answer each of them with 'true' (**T**) or 'false (**F**):

Answer:

a)
$$n^3 = \Omega(n^2)$$

True

Proof:

Show there exist c, n_0 in N such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

$$n^3 \ge cn^2$$

Pick c = 1, $n_0 = 1$. $n^3 \ge n^2$ for all $n \ge 1$.

b)
$$n + \log n = O(n)$$

True

Proof:

Show there exist c, n_0 in N such that $f(n) \le cg(n)$ for all $n \ge n_0$.

$$0 \le n + \log n \le cn$$

 $\rightarrow \log n \le cn - n$

$$\log n \leq n(c-1)$$

 $\bullet \qquad n \le 10^{n(c-1)}$

Pick c = 2, $n_0 = 1 \cdot n \le 10^n$ for all $n \ge 1$.

c)
$$n + n \log n = O(n)$$

False

Proof:

Show there exist c, n_0 in N such that $f(n) \le cg(n)$ for all $n \ge n_0$.

$$0 \le n + n \log n \le cn$$

 \rightarrow $n \log n \le cn - n$

$$n \log n \le n(c-1)$$

 \rightarrow $\log n \le c - 1$

d)
$$n^2 \log n = \theta(n)$$

False

Proof:

Show there exist c_1 , c_2 , and n_0 in N such that $c_1g_1(n) \le f(n) \le c_2g_2(n)$ for all $n \ge n_0$.

$$c_1 n^2 \le n^2 \log n \le c_2 n^2$$

 \rightarrow $c_1 \leq \log n \leq c_2$

e)
$$n! = O(2^n)$$

False

Proof:

Show there exist c, n_0 in N such that $f(n) \le cg(n)$ for all $n \ge n_0$.

$$0 \le n! \le c 2^n$$

$$n \times (n-1) \times (n-2) \times ... \times (2) \times (1) \le c \times 2 \times 2 \times ... \times 2 \times 2$$

n numbers on left, n numbers on right.

Note: n > 2, (n-1) > 2,... until 2.