CS534 Computer Vision Assignment-3

Camera Calibration and Augmented Reality

Table of Contents

TASK 1: Camera Calibration using 3D calibration object	1
1.1 Outputs	1
1.1.1 Drawing Image Points	2
1.1.2 Matrix P	2
1.1.3 Print Matrix P	2
1.1.4 Print Matrix M	3
1.1.5 Translational vector recovery	3
1.1.6 Print Matrix M'	3
1.1.7 Rotation Matrix Rx	4
1.1.8 Rotation angle Theta	4
1.1.9 Compute and Print Matrix K	
TASK 2: Camera Calibration using 2D calibration object	
2.1 Outputs	
2.1.1 Corner Extraction and Homography computation	5
2.1.2 Computing Intrinsic and Extrinsic parameters	6
2.1.3 Projected Grid corners, improving accuracy	7
2.1.4 Updated H, K matrices	9
2.1.5 Err_Reprojection	10
2.1.6 Can this be done automatically?	12
TASK 3 Augmented Reality 101	12
3.1 Outputs	12
Output: 3.1.1 Image Augmentation	12
Output: 3.1.2 Object Augmentation	13
References	13
Directions to execute the code	14

TASK 1: Camera Calibration using 3D calibration object

This involved camera calibration for a Robot vehicle.

1.1 Outputs

1.1.1 Drawing Image Points

Draw the image points, using small circles for each image point

1.1.2 Matrix P

Write a Matlab function that takes as argument the homogeneous coordinates of one cube corner and the homogeneous coordinates of its image, and returns 2 rows of the matrix P (slide 30 of the Camera Calibration pdf document). This matrix P will be used to compute the 12 elements of the projection matrix M such that $\lambda pi = MPi$

Code: get_P_matrix.m

1.1.3 Print Matrix P

Use this Matlab function to generate 2 rows of the matrix P for each cube corner and its image and obtain a matrix with 16 rows and 12 columns. Print matrix P.

Size(P)=16*12

P_matrix =	2×12																
2	2	2	1	0 2	0 2	0	0		-844								
0	0	0	0	2	2	2	1	-646	-646	-646	-323						
P_matrix =	2×12																
-2	2	2	1	0	0	0	0	356	-356	-356	-178						
0	0	0	0	-2	0 2	2	1	646	-646	-646	-323						
P_matrix =	2×12																
-2	2	-2	1	0	0	0	0	236	-236	236	-118						
0	0	0	0	-2	2				-966	966	-483						
P_matrix =	2×12																
2	2	-2	1	0	0	0	0	-964	-964	964	-482						
0	0	-2 0	0	0 2	2	-2			-966	966	-483						
P_matrix =	2×12																
2	-2	2	1	0	0	0	0	-876	876	-876	-438						
0	0	2 0	1 0	0 2	-2	2	1	-146	146	-146	-73						
P_matrix =	2×12																
-2	-2	2	1	0	0	0	0	324	324	-324	-162						
0		0	0	-2	-2	2			146								
P_matrix =	2×12																
-2	-2	-2	1	0	0	0	0	156	156	156	-78						
0	0	0	0	-2	0 -2	-2	1	234	234	234	-117						
P_matrix =	2×12																
	2		-2		-2		1		0		0	0	0	-1044	1044	1044	-522
	0		0		0		0		0 2		-2	-2	1	-234	234	234	-117

1.1.4 Print Matrix M

Now we need to solve the system Pm = 0. Find the singular value decomposition of matrix P using matlab svd function. The last column vector of V obtained by svd(P) should be the 12 elements in row order of the projection matrix that transformed the cube corner coordinates into their images. Print the matrix M.

Q4: Print matrix M

```
M = get_M_matrix(P);
 M_matrix = 3×4
       0.1925
                0.0283
                          0.0786
                                   0.7346
       0.0000
                0.2044
                         0.0001
                                   0.6120
       0.0000
                0.0001
                          0.0003
                                   0.0024
disp(M)
    0.1925
             0.0283
                       0.0786
                                0.7346
    0.0000
             0.2044
                       0.0001
                                0.6120
    0.0000
             0.0001
                       0.0003
                                0.0024
```

1.1.5 Translational vector recovery

Now we need to recover the translation vector which is a null vector of M. Find the singular value decomposition of matrix $M = U\Sigma V T$. The 4 elements of the last column of V are the homogeneous coordinates of the position of the camera center of projection in the frame of reference of the cube (as in slide 36). Print the corresponding 3 Euclidean coordinates of the camera center in the frame of reference of the cube.

```
Q5: Translational vector recovery
39
           [m_U, m_Sigma, m_V_T] = svd(M);
          t = m V T(:, end);
40
           center = t(1: end - 1) / t(end)
41
            center = 3×1
                -0.0000
                -2.9912
                -8.2695
           disp(center)
42
              -0.0000
              -2.9912
              -8.2695
```

1.1.6 Print Matrix M'

onsider the 3x3 matrix M' composed of the rst 3 columns of matrix M. Rescale the elements of this matrix so that its element m33 becomes equal to 1. Print matrix M'. Now let the rotation matrices be as dened in slide 38 where the axes e1, e2, e3 are the x, y, z axes respectively. Therefore M' can be written as M0 = KRT z RT y RT

Q6: Print matrix M'

43 44

1.1.7 Rotation Matrix Rx

45

1.1.8 Rotation angle Theta

1.1.9 Compute and Print Matrix K

TASK 2: Camera Calibration using 2D calibration object

Executed separate code files for all the subfunctions

2.1 Outputs

2.1.1 Corner Extraction and Homography computation

Column 1	Column 1	Column 1
-1.0919	0.7037	-0.8559
-0.1477	-0.1758	0.0113
-0.0005	-0.0005	0.0000
Column 2	Column 2	Column 2
0.0345	-0.0492	0.2712
-0.9309	0.8856	-0.3995
0.0001	-0.0002	0.0008
Column 3	Column 3	Column 3
-71.6419	75.9062	-122.6998
-10.3829	59.9260	-57.9033
-0.5191	0.6658	-0.6893
	-0.1477 -0.0005 Column 2 0.0345 -0.9309 0.0001 Column 3 -71.6419 -10.3829	-0.1477 -0.0005 Column 2 0.0345 -0.9309 0.0001 Column 3 Column 3 -71.6419 -10.3829 -0.1758 -0.0005 Column 2 -0.0492 0.8856 -0.0002 Column 3 -75.9062 59.9260

2.1.2 Computing Intrinsic and Extrinsic parameters

	5 IIIUIIISIC all	d Extrinsic param	ICICI 2	V 0 = 220 265			
B_matrix =				v_0 = 230.365	4		
-0.0000	0.0000	0.0005					
0.0000	-0.0000	0.0004					
0.0005	0.0004	-1.0000					
- In-minds - 0.35							
lambda = -0.76	92			A matrix =			
				_			
				723.3788	0.6580	317.6932	
alpha =723.378	38			0	702.7882	230.3654	
				0		1.0000	
					· ·		
beta = 702.788	2						
gamma =0.658	0						
u_0 =317.6932							
a_c =51710552	· 						
image = imag	ges2.png			image = ima	ges9.png		
	_ -			J =			
R matrix =				R matrix =			
_							
0.9998	-0.0149	0.0027		-0.9241	-0.0119	-0.3818	
	0.9864				-0.9941		
	-0.1636				0.1078		
3.0001	3.1000	0.0000		-0.3011	0.1078	0.5103	
T matuin -							
T_matrix =				T_matrix =			
141 5011							
-141.5014				93.1975			
-101.3666				112.4254			
449.8412				-375.5904			
R_T_R_matrix	ζ =			R_T_R_matri	x =		
1.0000	0.0061	-0.0000		1.0000	-0.0031	0.0000	
0.0061	1.0000	0			1.0000		
	0	1.0000			-0.0000		
-0.0000	U	1.0000					
-0.0000	U	1.0000		0.0000	-0.0000	1.0000	

_						101102
image = imag	es12.png		image = ima	ges20.png		
R_matrix =			R_matrix =			
	0.0035			0.0071		
	0.9919 -0.1268			-0.7097 0.7044		
T_matrix =			T_matrix =			
-141.1402			111.9242			
-100.1742			120.8244			
501.5568			-580.1506			
R_T_R_matrix	=		R_T_R_matri	x =		
1.0000	0.0010	0.0000	1.0000	-0.0060	0.0000	
0.0010	1.0000	0.0000	-0.0060	1.0000	0.0000	
0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	
			1			

2.1.3 Projected Grid corners, improving accuracy

I) Projected Grid Corners

Rishika Bhanushali rb1182

2)Harris corners

3) Grid Points:

2.1.4 Updated H, K matrices

-0.9699 0.0873 -53.6111 -0.0176 -0.8914 -43.0744 -0.0000 0.0002 -0.6022	images9.png, H is -1.1014 0.0357 -70.6884 -0.1500 -0.9475 -9.3528 -0.0005 0.0001 -0.5191
agesl2.png, H is	images20.png, H is
ages12.png, H is -0.7133 0.0517 -74.6938	0.8520 -0.2672 119.5679
ages12.png, H is -0.7133	

```
image : images2.png
                                     image : images9.png
R =
                                     R =
   -0.9998 0.0142 -0.0043
                                        -0.9243 -0.0094 -0.3815
   -0.0180 -0.9864
                    0.1640
                                        -0.0261 -0.9952 0.0933
   -0.0014 0.1640
                    0.9864
                                        -0.3807 0.0970 0.9197
T =
                                     T =
  147.8365
                                       99.1289
  102.9665
                                       114.2336
 -446.8938
                                      -373.3122
                                     image : images20.png
image : images12.png
                                     R =
R =
                                        0.9999 0.0035 0.0044
  -0.9153 -0.0063 0.4028
                                       -0.0097 0.7141 0.7000
   0.0546 -0.9916 0.1158
                                        0.0034 -0.7000 0.7141
   0.3991 0.1292 0.9079
                                     T =
T =
                                      -120.2781
 148.3980
                                      -124.0846
 101.9572
                                       574.6801
 -496.2113
                                       721.3977 -0.6624 327.5222
                                             0 707.9265 234.6418
                                                          1.0000
                                                      0
                        K matrix =
                          721.3977
                                   -0.6624 327.5222
                                 0 707.9265 234.6418
                                         0
                                             1.0000
```

2.1.5 Err_Reprojection

(initial average is before imporvement)

(the last average is after improvement)

```
image : images2.png
Sum err reprojection: new corner -- approximate corner is=
 155.9689
Average err reprojection:new corner -- approximate corner is=
Sum err_reprojection:new corner-- correct corner is=
Average err reprojection: new corner-- correct corner is=
image : images9.png
Sum err reprojection:new corner -- approximate corner is=
  156.8206
Average err reprojection:new corner-- approximate corner is=
    1.9603
Sum err reprojection:new corner-- correct corner is=
  149.1836
Average err reprojection:new corner-- correct corner is=
    1.8648
image : images12.png
image : images12.png
Sum err reprojection: new corner -- approximate corner is=
  184.9190
Average err reprojection:new corner -- approximate corner is=
    2.3115
Sum err reprojection: new corner-- correct corner is=
 166.4552
Average err reprojection: new corner -- correct corner is=
    2.0807
```

```
image : images20.png
Sum err_reprojection:new corner-- approximate corner is=
    90.2832

Average err_reprojection:new corner-- approximate corner is=
    1.1285

Sum err_reprojection:new corner-- correct corner is=
    135.8244

Average err_reprojection:new corner-- correct corner is=
    1.6978
```

2.1.6 Can this be done automatically?

This can be done automatically using Harris corner detector. a corner can be interpreted as the junction of two edges, where an edge is a sudden change in image brightness. In our case, the points we are interested in are dark so out of the many points reported by harris detector, the number of points reduce. Now, we also know the approximate distance between the points, hence detection of the four cornens becomes even easier.

TASK 3 Augmented Reality 101

3.1 Outputs

Output: 3.1.1 Image Augmentation

My RUID is 204003359 → So, I used 9.jpg as my clipart image

Rishika Bhanushali rb1182

Output: 3.1.2 Object Augmentation

References

- 1) https://github.com/sumitd-archives/Augmented_Reality
- 2) [Computer Vision: Algorithms and Applications] by Richard Szeliski

3) Calibration by Viewing a Plane from Unknown Orientations - Zhang, ICCV99

Directions to execute the code

Execute the below files to run the code.

The folder Structure of the training and testing images is as follows:

Assignment 3

