Activity 8 - Practice Final

Due Jun 2 at 12pm **Time Limit** 30 Minutes

Points 20 Questions 15
Allowed Attempts 2

Available Jun 2 at 10am - Jun 2 at 12:59pm about 3 hours

This quiz was locked Jun 2 at 12:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	30 minutes	19 out of 20

(!) Answers will be shown after your last attempt

Score for this attempt: 19 out of 20

bmitted Jun 2 at 11:18am is attempt took 30 minutes.

Question 1 1 / 1 pts

An an approximation algorithm with an approximation ratio of 2 is always twice as fast as the original algorithm.

True

False	
Question 2	1 / 1 pts
The greedy method can be a good technique to use when desig	ning an approximation algorithm.
True	
○ False	
Question 3	0 / 1 pts
Approximation algorithms are used to solve NP-complete decisi	on problems.
True	

Incorrect

Question 5	1 / 1 pts
Select all of the following statements about the bin packing problem that are true?	
The decision version of the bin packing problem is in NP-complete	
The set-partition problem can reduce to the decision version of the bin packing problem.	
There exists a 1-approximation polynomial time algorithm for the bin packing problem.	
☐ The decision version of the bin packing problem is in P.	

You are using a polynomial time 2-approximation algorithm to find a tour t for the traveling salesman problem. Which of the following statements is true.

- The tour t is never optimal.
- The cost of tour t is at most twice the cost of the optimal tour.
- The cost of tour t is always 2 times the cost of the optimal tour.
- The ratio of the cost of the optimal tour divided by the cost of tour t is 2.
- All of the above

Question 7 1 / 1 pts

Given a weighted directed graph G = (V,E,w) and a shortest path P from s to t, if we doubled the weight of every edge to produce G'=(V,E,w'), then P is also a shortest path in G'.

Question 8 Every problem in P can be reduced to HAM-CYCLE, True Every problem in P is in NP, and every problem in NP can be reduced to any NP-complete problem. Circuit-SAT is NP-complete.

Question 9	1 / 1 pts
Every problem in P can be reduced to 3-SAT,	
True	

False

Question 10 1 / 1 pts

Is the following a property that holds for all non decreasing positive functions f and g? (True=Yes/False=No)

If $f(n) = O(n^2)$ and $g(n) = \Theta(n^2)$, then f(n) = O(g(n)).

True

False

Question 11 2 / 2 pts

Let G be a graph with n vertices and m edges. Assume that the graph is represented by an adjacency matrix. What is the tightest upper bound on the running time of DFS performed on G?

O(n^2)

O(m+n)

O(mn)

O(m)

O(n)

Question 12

2 / 2 pts

Solve the following recurrence by giving the tightest bound possible.

$$T(n)=2T(rac{n}{5})+\sqrt{n}$$

 $\Theta(n)$

 $\Theta\left(\sqrt{n}\right)$

 $igotimes\Theta\left(n^2
ight)$

 $\Theta(nlgn)$

 $igotimes\Theta\left(n^{5}
ight)$

▶

Testing(n) {

```
total = 0

if n = 1 return 2

else {

total = Testing(n/4) + Testing(n/4)

for i = 1 to n do

for k = 1 to n do

total = total + k

return total }
```

Write a recurrence for the running time T(n) of Testing(n)

$$T(n) = T(n/4) + n$$

$$T(n) = T(2n/4) + n^2$$

None of the above

Question 14

2 / 2 pts

Let $f(n) = n^3$

Let $g(n) = n^2 \log(n^3)$

What is the asymptotic relation between f(n) and g(n)? Check all that apply.

f(n) = Omega(g(n))

f(n) = Theta(g(n))

g(n) = Theta(f(n))

g(n) = O(f(n))

g(n) = Omega(f(n))

My friend said she discovered a new algorithm AVERR to calculate the average value of a list of n distinct integers. Which of the following statements about the algorithm must be false. The worst case running time is O(n^2) The best case running time is Omega(Ign) The worst case running time is Theta(In(n)) The average case running time is O(n)

Quiz Score: 19 out of 20