and thus

$$||u - w|| \le d + \epsilon.$$

Since the above holds for every $\epsilon > 0$, we have ||u - w|| = d. Thus, $w \in X_n$ for all $n \ge 1$, which proves that $\bigcap_{n \ge 1} X_n = \{w\}$. Now any $z \in X$ such that ||u - z|| = d(u, X) = d also belongs to every X_n , and thus z = w, proving the uniqueness of w, which we denote as $p_X(u)$. See Figure 48.4.

Figure 48.4: Let X be the solid pink ellipsoid with $p_X(u) = w$ at its apex. Each X_n is the intersection of X and a solid sphere centered at u with radius d + 1/n. These intersections are the colored "caps" of Figure ii. The Cauchy sequence $(w_n)_{n\geq 1}$ is obtained by selecting a point in each colored X_n .

(2) Let $z \in X$. Since X is convex, $v = (1 - \lambda)p_X(u) + \lambda z \in X$ for every λ , $0 \le \lambda \le 1$. Then by the definition of u, we have

$$||u-v|| \ge ||u-p_X(u)||$$

for all λ , $0 \le \lambda \le 1$, and since

$$||u - v||^2 = ||u - p_X(u) - \lambda(z - p_X(u))||^2$$

= $||u - p_X(u)||^2 + \lambda^2 ||z - p_X(u)||^2 - 2\lambda \Re \langle u - p_X(u), z - p_X(u) \rangle$,

for all λ , $0 < \lambda \le 1$, we get

$$\Re \langle u - p_X(u), z - p_X(u) \rangle = \frac{1}{2\lambda} \left(\|u - p_X(u)\|^2 - \|u - v\|^2 \right) + \frac{\lambda}{2} \|z - p_X(u)\|^2.$$
 (†)

Since

$$||u - v|| \ge ||u - p_X(u)||,$$