Ciągły nadzór nad parametrami środowiskowymi pomieszczenia

Canary Is Azores Is.

Stężenia PM10 w krajach Europy w 2014 r. Źródło: Air Quality in Europe – 2015 report. Europejska Agencja Środowiska, 2015.

Cel projektu

Zapewnienie odbiorcy projektu możliwości nadzoru nad:

- temperaturą
- wilgotnością
- ciśnieniem
- pyłami zawieszonymi

Opis projektu

Projekt składa się z dwóch układów łączących się ze sobą w jednej sieci Wi-Fi. Czujniki podłączone do mikrokontrolerów zapewniają regularny pomiar wymaganych parametrów środowiskowych. Dane te prezentowane są graficznie (jako wykresy) na lokalnie udostępnionej stronie internetowej.

Wykorzystane elementy

Urządzenie wewnętrzne:

- Raspberry Pi 4B+
- Czujnik BME280 Sparkfun

Łączny koszt elementów: ~750 zł.

Urządzenie zewnętrzne:

- Raspberry Pi 3A+
- Czujnik BME280 Sparkfun
- Czujnik SDS011 Nova Fitness

Wykorzystane technologie

W trakcie projektowania wykorzystano technologie takie jak:

- języki: Python, HTML, CSS
- framework Flask
- moduł plotly
- implementacje Eclipse MQTT dla języka Python paho.mqtt
- moduł pandas

Etapy przygotowania prototypu

- 1. Analiza teorii oraz przygotowanie założeń projektu.
- 2. Analiza dostępnych na rynku czujników.
- 3. Przygotowanie schematu oraz podłączenie czujników do mikrokontrolerów.
- 4. Testowanie działania czujników oraz analiza możliwości ich oprogramowywania.
- 5. Przygotowanie oprogramowania oraz pierwsze testy działania funkcji.
- 6. Uruchomienie pierwszej pełnej wersji projektu.
- 7. Testowanie działania projektu, usuwanie błędów oraz refaktoryzacja kodu.

Zalety i wady rozwiązania

Zalety:

- Projekt pozwala na porównanie parametrów środowiskowych zarówno wewnątrz i na zewnątrz pomieszczenia.
- Pomiar temperatury wewnątrz pomieszczenia jest niezależnie prezentowany na stronie internetowej (w razie uszkodzenia drugiego urządzenia).
- Projekt pozwala na rozwijanie i implementacje kolejnych elementów.
- Projekt nie wymaga bazy danych.

Wady:

- Po ponownym uruchomieniu urządzeń wykresy na stronie internetowej będą poprawne dopiero po upływie kilku - kilkunastu godzin.
- W trakcie braku dostępu do sieci prezentowane są tylko wyniki jednego z urządzeń.

Działanie projektu

Efektem uruchomienia programów wykonanych w ramach projektu jest udostępnienie strony internetowej prezentującej pomiary w formie tabeli. Strona pozwala na przejście do podstron zawierających wykresy za pomocą przycisków.

Aktualne pomiary w pokoju:					
Temperatura [°C]		Wilgotność [%]		Ciśnienie [hPa]	
18.1		57.1		962.2	
Aktualne pomiary na zewnątrz:					
Temperatura [°C]	Wilgotność [%]	Ciśnienie [hPa]	PM 2.5 [μg/m3]	PM 10 [µg/m3]	
18.5	56.1	998.1	62.6	108.9	

Działanie projektu

Wykres temperatury na zewnątrz

Działanie projektu

Wykres pm2.5

Proponowane możliwości rozwoju projektu

- Implementacja szybszej aktualizacji wykresów (Nie wymagającej kilkunastu godzin na ich poprawną prezentację).
- Implementacja rozwiązania, które w razie rozłączenia i ponownego połączenia z siecią ponownie prześle pomiary zebrane w tym czasie z urządzenia zewnętrznego.

Dziękuję za uwagę!