Matemáticas/ Ingeniería Informática-Matemáticas

TEORÍA DE GALOIS

Hoja 3. Extensiones Galois

- **1.** Sean $f(x) = (x^2 3)(x^3 + 1) \in \mathbb{Q}[x]$ y $g(x) = (x^2 2x 2)(x^2 + 1) \in \mathbb{Q}[x]$. Demuestra que $\mathbb{Q}(\sqrt{3}, i)$ es cuerpo de descomposición de f y g sobre \mathbb{Q} .
- **2.** Demuestra que $\mathbb{Q}(\sqrt{2},i)$ es un cuerpo de descomposición de $x^2 2\sqrt{2}x + 3$ sobre $\mathbb{Q}(\sqrt{2})$.
- 3. Construye cuerpos de descomposición sobre \mathbb{Q} de los polinomios $x^3 1$, $x^4 + 5x^2 + 5$ y $x^6 8$ y calcula el grado de la extensión correspondiente.
- **4.** Demuestra que $K = \mathbb{F}_2[y]/(y^3 + y + 1)$ es el cuerpo de descomposición de $x^3 + x + 1$ y $x^3 + x^2 + 1$ sobre \mathbb{F}_2 .
- **5.** Decide si las siguientes extensiones son normales: $\mathbb{Q}(\sqrt{5}i)/\mathbb{Q}$, $\mathbb{Q}(\sqrt[4]{5})/\mathbb{Q}$,
- **6.** Demuestra que $\mathbb{Q}(\sqrt[3]{2})$ no es una extensión normal de \mathbb{Q} . Encuentra una extensión normal de \mathbb{Q} que contenga a $\mathbb{Q}(\sqrt[3]{2})$ como un subcuerpo.
- 7. Demuestra que $\mathbb{Q}(\xi)$, donde $\xi = e^{\frac{2\pi i}{5}}$, es una extensión normal de \mathbb{Q} .
- 8. Demuestra que toda extensión de grado 2 es normal.
- **9.** Encuentra la menor extensión normal de \mathbb{Q} que contiene a $\sqrt{2} + \sqrt[3]{2}$.
- 10. Decide razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- a) Supongamos que $f \in K[x]$ se descompone en K[x], supongamos que $p \in K[x]$ no es constante y que $p \mid f$. Entonces p se descompone en K[x].
- b) Supongamos que $K \subseteq L \subseteq E$ son extensiones de cuerpos. Sea $f \in K[x]$ no constante. Si E es cuerpo de descomposición de f sobre K, entonces E es cuerpo de descomposición de f sobre L.
- c) Si $E = K(a_1, ..., a_n)$ y σ es un K-automorfismo de E tal que $\sigma(a_i) = a_i$ para todo i, entonces $\sigma = 1_E$.
- d) Si E/L y L/K son normales, entonces E/K es normal. Sugerencia: considera $E = \mathbb{Q}(\sqrt[4]{2})$ y $L = \mathbb{Q}(\sqrt{2})$.
- e) Sea $K \subset L \subset M$ una cadena de extensiones de cuerpos tal que las extensiones $K \subset L$ y $L \subset M$ son finitas, normales y separables. Si todo automorfismo de L que fije K se puede extender a un automorfismo de M, entonces M es normal sobre K.
- 11. Sea $F = \mathbb{F}_2[x]/(x^2 + x + 1)$. Demuestra que F/\mathbb{F}_2 es separable.
- **12.** Demuestra que $\mathbb{F}_2(x)/\mathbb{F}_2(x^2)$ no es separable.
- 13. Cuántas raíces distintas tiene $x^{12} + 2x^6 + 1 \in \mathbb{F}_3[x]$ en su cuerpo de descomposición?
- **14.** Indica cuáles de los siguientes polinomios son separables sobre \mathbb{Q} , \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 : x^3+1 , x^2+x+1 , $x^4+x^3+x^2+x+1$.
- **15.** Sea $P(x) = x^q x \in \mathbb{F}_p[x]$ con $q = p^n$.
 - a) Demuestra que cualquier polinomio irreducible en $\mathbb{F}_n[x]$ de grado n divide a P(x).
 - b) Demuestra que todos los factores irreducibles de $x^q x \in \mathbb{F}_p[x]$ con $q = p^n$, son de grado menor o

igual que n.

- c) Decide de manera razonada si el grado de cada divisor irreducible de P(x) debe dividir a n.
- 16. Responde, de manera razonada, a las siguientes preguntas:
- a) Si en $\mathbb{F}_2[x]$ consideramos $f(x) = x^3 + x + 1$, entonces ¿es f irreducible? Demuestra que $F = \mathbb{F}_2[x]/(f)$ es un cuerpo finito y enumera sus elementos. Halla el inverso en F del elemento $x^2 + x + 1 + (f)$. Comprueba que el grupo multiplicativo de F es cíclico.
- b) Halla un generador del grupo multiplicativo del cuerpo $K = \mathbb{F}_3[x]/(x^2+1)$ y expresa todo elemento de K^* como potencia de dicho generador.
 - c) Construye cuerpos finitos con 8, 9, 25 y 27 elementos.
- 17. Demuestra que el grupo multiplicativo $\mathbb{F}_{p^n}^*$ es cíclico.
- 18. Sea E/K una extensión de grado 2. Si la característica de K no es 2, prueba que existe un $u \in E$ de modo que E = K(u) y $u^2 \in K$. Muestra que la hipótesis sobre la característica es necesaria. Sugerencia: para la segunda parte, considera el cuerpo de 4 elementos.
- **19.** Supongamos que K es un cuerpo de característica p y sea $a \in K$. Demuestra que el polinomio $p(x) = x^p x a$ o bien se descompone en factores lineales en K[x] o bien es irreducible.
- **20.** Demuestra que los polinomios de Artin-Schreier $x^p x + a$ donde p no divide a $a \in \mathbb{Z}$ son irreducibles. Sugerencia: usa reducción de coeficientes módulo p, considera un cuerpo de descomposión sobre \mathbb{F}_p y aplica el pequeño teorema de Fermat para obtener todas las raíces.