Inférence statistique

Cours 5 : Tests d'Hypothèses Paramétriques

Michal W. Urdanivia*

*UGA, Faculté d'Économie, GAEL,

e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

15 septembre 2022

Plan

1. Introduction

2. Formulation Statistique

3. Paradigme de Neyman-Pearson

Plan

1. Introduction

2. Formulation Statistique

3. Paradigme de Neyman-Pearsor

1. Introduction

Heuristique

Idée clé : décider de rejeter ou d'accepter des hypothèses.

• Exemples :

- Après avoir lancé une pièce plusieurs fois, on veut décider(tester) à partir de ces résultats si la pièce peut être considérée comme équilibrée.
- Après avoir prélevé le sang d'un patients et mesuré la concentration d'anticorps dans l'échantillon on veut décider(tester) si le patient peut être considéré comme porteur d'un virus.
- Formellement ceci peut être écrit ainsi :
 - décider si p = 1/2 à partir d'un échantillon de n v.a. de Bernouilli i.i.d.;
 - décider si $c > c_0$ à partir d'un échantillon de n v.a. i.i.d. de loi normale $\mathcal{N}(c, \sigma^2)$.

Heuristique

• Exemple 1 : une pièce est lancée 80 fois, et le résultat est pile 54 fois. Peut-on conclure significativement que la pièce est déséquilibrée ?

-
$$n = 80, X_1, X_2, \dots, X_n \stackrel{i.i.d.}{\sim} \mathcal{B}er(p),$$

- $-\bar{X}_n = 54/80 = 0.68,$
- Si cela était vrai que p = 0.5, par le TCL et le théorème de Slutsky,

$$\sqrt{n} \frac{\bar{X}_n - 0.5}{\sqrt{\bar{X}_n}(1 - \bar{X}_n)} \approx \mathcal{N}(0, 1),$$

- $\sqrt{n} \frac{\bar{X}_n 0.5}{\sqrt{\bar{X}_n} (1 \bar{X}_n)} \approx 3.45,$
- conclusion : il paraît assez raisonnable de rejeter l'hypothèse "p = 0.5".

Heuristique

• Exemple 2 : une pièce est lancée 30 fois, et le résultat est pile 13 fois. Peut-on conclure significativement que la pièce est déséquilibrée ?

-
$$n = 80, X_1, X_2, \dots, X_n \stackrel{i.i.d.}{\sim} \mathcal{B}er(p),$$

- $-\bar{X}_n = 54/80 = 0.68,$
- Si cela était vrai que p = 0.5, par le TCL et le théorème de Slutsky,

$$\sqrt{n} \frac{\bar{X}_n - 0.5}{\sqrt{\bar{X}_n}(1 - \bar{X}_n)} \approx \mathcal{N}(0, 1),$$

$$- \sqrt{n} \frac{\bar{X}_n - 0.5}{\sqrt{\bar{X}_n} (1 - \bar{X}_n)} \approx -0.77,$$

- conclusion : il paraît impossible de rejeter l'hypothèse "p=0.5" de manière significative.

Plan

1. Introduction

2. Formulation Statistique

3. Paradigme de Neyman-Pearsor

2. Formulation Statistique

- Soit un échantillon de n v.a. i.i.d. X_1, X_2, \ldots, X_n et un modèle statistique $(\mathcal{E}, \mathcal{F}, (P_\theta)_{\theta \in \Theta})$.
- Soit Θ_0 et Θ_1 des sous-ensembles disjoints de Θ .
- Considérons deux hypothèses : $\begin{cases} H_0 & : \quad \theta \in \Theta_0 \\ H_1 & : \quad \theta \in \Theta_1 \end{cases}$
- H_0 est l'hypothèse nulle et H_1 est l'hypothèse alternative.
- Si nous pensons que le vrai paramètre θ est soit dans Θ_0 , soit dans Θ_1 , alors on pourrait tester H_0 vs. H_1 .
- On veut décider si oui ou non il faut rejeter H₀(on cherche de l'information dans les données à l'encontre de H₀).

- H_0 et H_1 ne sont pas symétriques. Par exemple si H_0 : "le patient est malade" $(c > c_0)$ vs. H_1 : "le patient est en bonne santé" $(c \le c_0)$.
- Un **test** est une statistique $\delta \in \{0, 1\}$ telle que :
 - Si $\delta = 0$, H_0 n'est pas rejetée;
 - Si $\delta = 1$, H_0 est rejetée.
- Dans l'exemple du lancer de pièce :
 - H_0 : "p = 1/2" vs. H_1 : " $p \neq 1/2$ ",
 - et $\delta=\mathbf{1}_{\left|\sqrt{n}\frac{\bar{\chi}_{n}-0.5}{\sqrt{\bar{\chi}_{n}}(1-\bar{\chi}_{n})}\right|>C}$ pour un seuil C>0.
 - Question : comment choisir C?

• **Région de rejet** d'un test δ :

$$\mathcal{R}_{\delta} = \{x \in \mathcal{E}^n : \delta(x) = 1\}.$$

 Érreur du(de) premier(ère) type(espèce) d'un test δ(rejeter H₀ quand cette hypothèse est vraie) :

$$\alpha_{\delta}: \Theta_0 \to \mathbb{R}$$
 $\theta \mapsto \mathsf{P}_{\theta}(\delta = 1).$

• Érreur du(de) deuxième type(espèce) d'un test δ (ne pas rejeter H_0 quand H_1 vraie) :

$$\beta_{\delta}: \Theta_1 \to \mathbb{R}$$
 $\theta \mapsto \mathsf{P}_{\theta}(\delta = 0).$

Puissance du test δ :

$$\pi_{\delta} = \inf_{\theta \in \Theta_1} (1 - \beta_{\delta}(\theta)).$$

• Le **niveau** d'un test δ est α si,

$$\alpha_{\delta}(\theta) \leq \alpha, \quad \forall \theta \in \Theta_0.$$

• Le **niveau asymptotique** d'un test δ est α si,

$$\lim_{n\to\infty}\alpha_{\delta}(\theta)\leq\alpha,\quad\forall\theta\in\Theta_{0}.$$

• Typiquement la forme d'un test est donnée par,

$$\delta = \mathbf{1}_{T_n > c}$$

pour une statistique T_n et un seuil $c \in \mathbb{R}$.

• T_n est alors appelée **statistique de test** et la région \mathcal{R}_{δ} est,

$$\mathcal{R}_{\delta} := \{T_n > c\}.$$

Un exemple

- $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathcal{B}er(p)$, pour $p \in (0, 1)$.
- Test :

$$H_0: "p = 1/2" \text{ vs.} H_1: "p \neq 1/2",$$

avec un niveau asymptotique $\alpha \in (0, 1)$.

• Statistique:

$$T_n = \left| \sqrt{n} \frac{\hat{p}_n - 0.5}{\sqrt{\hat{p}_n (1 - \hat{p}_n)}} \right|,$$

où \hat{p}_n est l'estimateur du MV.

• Si H₀ est vraie, alors par le TCL et le théorème de Slutsky,

$$P(T_n > q_{1-\alpha/2}) \underset{n\to\infty}{\longrightarrow} 0.05.$$

• Soit $\delta_{\alpha} = \mathbf{1}_{T_n > q_{1-\alpha/2}}$.

Un exemple

- Revenons cas du lancer de pièce et fixons $\alpha = 5\%$, d'où $q_{1-\alpha/2} = 1.96$, et alors :
 - Dans l'exemple 1, H_0 est rejeté au niveau asymptotique de 5% par le test $\delta_{5\%}$.
 - Dans l'exemple 2, H_0 n'est pas rejeté au niveau asymptotique de 5% par le test $\delta_{5\%}$
- **Question**: dans l'exemple 1, pour quel niveau α , le test δ_{α} ne rejetterait H_0 ? et dans l'exemple 2 pour quel niveau α le test δ_{α} rejetterait H_0 ?

P-value

• **<u>Définition</u>** : la p-value(asymptotique) d'un test δ_{α} est le plus petit niveau(asymptotique) α pour lequel δ_{α} conduit à rejeter H_0 . Elle est aléatoire car elle dépend de l'échantillon.

• Régle d'or :

- p-value $< \alpha \Leftrightarrow H_0$ est rejeté par δ_{α} pour le niveau(asymptotique) α .
- Plus la p-value est petite, et plus on est confiant dans le rejet de H_0 .
- Exemple 1 : p-value = $P(|Z| > 3.45) \ll 0.01$.
- Exemple 2 : p-value = $P(|Z| > 0.77) \approx 0.44$.

Plan

1. Introduction

2. Formulation Statistique

3. Paradigme de Neyman-Pearson

3. Paradigme de Neyman-Pearson

Idée de Neyman-Pearson

- Pour une hypothèse donnée, parmi tous les tests de niveau(ou de niveau asymptotique) α , est-il possible de trouver celui qui a la puissance maximale?
- **Exemple**: le test trivial $\delta=0$ qui ne rejette jamais H_0 a un niveau parfait($\alpha=0$) mais une puissance médiocre($\pi_{\delta}=0$).
- La théorie de Neyman-Pearson offre des test qui sont(le plus) puissant pour un niveau donné.
- Nous allons seulement considérer certains cas.

Rappel sur la loi du χ^2

• **<u>Définition</u>**: pour un entier positif d, la loi du χ^2 à d degrés de liberté est la loi de la v.a.

$$Z_1^2 + Z_2^2 + \cdots + Z_d^2$$
, où $Z_1, Z_2, \ldots, Z_d \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$.

- Exemples :
 - Si $Z \sim \mathcal{N}_d(\mathbf{0}, \mathbf{I}_d)$, alors $||Z||_2^2 \sim \chi_d^2$.
 - Le théorème de Cochran énonce que pour $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, si S_n est la variance empirique, alors,

$$\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2.$$

$$-\chi_2^2 = \mathcal{E}xp(1/2).$$

Rappel sur la loi de Student

- **<u>Définition</u>**: pour un entier positif d, la loi de Student à d degrés de liberté (notée t_d) est la loi de la v.a. $\frac{U}{\sqrt{V/d}}$, où $U \sim \mathcal{N}(0,1)$, $V \sim \chi_d^2$, et $U \perp \!\!\! \perp V$.
- Exemple : le théorème de Cochran énonce que pour $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, si S_n est la variance empirique, alors,

$$\sqrt{n-1}\left(\frac{\bar{X}_n-\mu}{\sqrt{S}_n}\right)\sim t_{n-1}.$$

Test de Wald

- Soit un échantillon de v.a. i.i.d., $X1, X_2, ..., X_n$ avec le modèle statistique $(\mathbf{E}, \mathbf{F}, (P_\theta)_{\theta \in \Theta})$, où $\Theta \subseteq \mathbb{R}^d$ (pour $d \ge 1$), et soit $\theta_0 \in \Theta$ une valeur donnée de θ .
- Considérons les hypothèses suivantes :

$$\begin{cases}
H_0: & \theta = \theta_0, \\
H_1: & \theta \neq \theta_0.
\end{cases}$$

- Soit $\hat{\theta}^{MV}$ l'estimateur du MV, et supposons que les conditions techniques pour cet estimateur soient satisfaites.
- Si H₀ est vraie, alors,

$$\sqrt{n}I(\hat{\theta}^{MV})^{1/2}(\hat{\theta}^{MV}_n - \theta_0) \stackrel{d}{\to} \mathcal{N}_d(\mathbf{0}, \mathbf{I}_d), \quad \text{par rapport à } P_{\theta_0}.$$

Test de Wald

D'où,

$$\underbrace{n\left(\hat{\theta}_{n}^{MV}-\theta_{0}\right)^{\top}I(\hat{\theta}^{MV})\left(\hat{\theta}_{n}^{MV}-\theta_{0}\right)}_{T_{n}}\overset{d}{\to}\chi_{d}^{2},\quad\text{par rapport à }\mathsf{P}_{\theta_{0}}\,.$$

• Test de Wald de niveau asymptotique $\alpha \in (0, 1)$:

$$\delta = \mathbf{1}_{T_n > q_{1-\alpha}},$$

où $q_{1-\alpha}$ est le quantile $(1-\alpha)$ du χ_d^2 (voir tables).

• Remarque : le test de Wald est aussi valide si H_1 présente la forme " $\theta > \theta_0$ " ou " $\theta < \theta_0$ " où " $\theta = \theta_1$ ",

Test du rapport de vraisemblance

- Soit un échantillon de v.a. i.i.d., $X1, X_2, ..., X_n$ avec le modèle statistique $(\mathbf{E}, \mathbf{F}, (P_\theta)_{\theta \in \Theta})$, où $\Theta \subseteq \mathbb{R}^d$ (pour $d \ge 1$).
- On considère que l'hypothèse nulle présente la forme,

$$H_0: (\theta_{r+1}, \theta_{r+2}, \dots, \theta_d) = (\theta_{r+1}^0, \theta_{r+2}^0, \dots, \theta_d^0),$$

pour des valeurs données $\theta_{r+1}^0, \theta_{r+2}^0, \dots, \theta_d^0$.

Soit,

$$\hat{\theta}_n = \arg\max_{\theta \in \Theta} \ell_n(\theta), \quad \text{(estimateur du MV)},$$

et,

$$\hat{\theta}_n^c = \arg\max_{\theta \in \Theta_n} \ell_n(\theta),$$
 (estimateur du MV contraint).

Test du rapport de vraisemblance

Statistique de test :

$$T_n = 2\left(\ell_n(\hat{\theta}_n) - \ell_n(\hat{\theta}_n^c)\right).$$

• Théorème : supposons que H_0 soit vraie et que les conditions techniques de l'estimateur du MV soient satisfaites. Alors,

$$T_n \stackrel{d}{\to} \chi^2_{d-r}$$
, par rapport à P_θ .

• Test du rapport de vraisemblance de niveau asymptotique $\alpha \in (0,1)$:

$$\delta = \mathbf{1}_{T_n > q_{1-\alpha}},$$

où $q_{1-\alpha}$ est le quantile $(1-\alpha)$ du χ^2_{d-r} (voir tables).

Tests d'hypothèses implicites

- Soit X_1, X_2, \ldots, X_n des v.a. i.i.d., et soit $\theta \in \mathbb{R}^d$ un paramètre associé à la loi de X (une v.a. "générique"). Cela peut être par exemple, un moment, un paramètre du modèle statistique, etc.
- Soit $g : \mathbb{R}^d \to \mathbb{R}^k$ une application continûment dérivable (avec k < d).
- Considérons les hypothèses suivantes :

$$H_0: g(\theta) = 0$$

 $H_1: g(\theta) \neq 0$.

• Par exemple : $g(\theta) = (\theta_1, \theta_2)$ (ici k = 2), ou $g(\theta) = \theta_1 - \theta_2$ (ici k = 1), ...

Tests d'hypothèses implicites

• Supposons qu'on dispose d'un estimateur asymptotiquement normal $\hat{\theta}_n$:

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\rightarrow} \mathcal{N}_d(\mathbf{0}, \Sigma(\theta))$$
.

Méthode Delta :

$$\sqrt{n}(g(\hat{\theta}_n)-g(\theta)) \stackrel{d}{\to} \mathcal{N}_k(\mathbf{0},\Gamma(\theta)),$$

où
$$\Gamma(\theta) = \nabla g(\theta)^{\mathsf{T}} \Sigma(\theta) \nabla g(\theta) \in \mathbb{R}^{k \times k}$$
.

• Supposons que $\Sigma(\theta)$ soit inversible, et $\nabla g(\theta)$ de rang k, de sorte que $\Gamma(\theta)$ soit aussi inversible et que,

$$\sqrt{n}\Gamma(\theta)^{-1/2}\left(g(\hat{\theta}_n)-g(\theta)\right)\stackrel{d}{\to} \mathcal{N}_k(\mathbf{0},\mathbf{I}_k).$$

Tests d'hypothèses implicites

• Par le théorème de Slutsky si $\Gamma(\theta)$ est continue en θ ,

$$\sqrt{n}\Gamma(\hat{\theta}_n)^{-1/2}\left(g(\hat{\theta}_n)-g(\theta)\right)\stackrel{d}{\to}\mathcal{N}_k(\mathbf{0},\mathbf{I}_k).$$

• En conséquence, si H_0 est vraie, i.e., $g(\theta) = 0$,

$$\underbrace{ng(\hat{\theta}_n)^{\top}\Gamma^{-1}(\hat{\theta}_n)g(\hat{\theta}_n)}_{T_n} \stackrel{d}{\to} \chi_k^2.$$

• Test de niveau asymptotique $\alpha \in (0, 1)$:

$$\delta = \mathbf{1}_{T_n > q_{1-\alpha}},$$

où $q_{1-\alpha}$ est le quantile $(1-\alpha)$ du χ_k^2 (voir tables).

• Soit $\mathcal{E} = \{a_1, a_2, \dots, a_k\}$ un ensemble dénombrable et $(\mathsf{P}_{\mathsf{p}})_{\mathsf{p} \in \Delta_k}$ la famille de toutes les lois de probabilité sur \mathcal{E} :

$$\Delta_k = \{ \mathbf{p} = (p_1, p_2, \dots, p_k) \in (0, 1)^K : \sum_{j=1}^k p_j = 1 \}.$$

• Pour $\mathbf{p} \in \Delta_k$ et $X \sim P_{\mathbf{p}}$,

$$P_{\mathbf{p}}(X=a_j)=p_j, \quad j=1,2,\ldots,k.$$

- Soit $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} P_{\mathbf{p}}$, pour un $\mathbf{p} \in \Delta_k$ inconnu, $\mathbf{p}^0 \in \Delta^K$ donné.
- On souhaite tester : " H_0 : $\mathbf{p} = \mathbf{p}^0$ " vs., " H_1 : $\mathbf{p} \neq \mathbf{p}^0$ " au niveau asymptotique $\alpha \in (0,1)$.
- Exemple : si $\mathbf{p}^0 = (1/k, 1/k, \dots, 1 : k)$, on teste si $P_{\mathbf{p}}$ est la loi uniforme sur \mathcal{E} .

Vraisemblance du modèle :

$$\mathcal{L}_n(X_1, X_2, \dots, X_n, \mathbf{p}) = p_1^{N_1} p_2^{N_2} \dots p_k^{N_k},$$

où
$$N_j = \#\{i = 1, 2, ..., n : X_i = a_j\}.$$

Soit p l'estimateur du MV :

$$\hat{p} = \frac{N_j}{n}, \quad j = 1, 2, ..., k.$$

• Remarque : $\hat{\mathbf{p}}$ maximise $\mathcal{L}_n(X_1, X_2, \dots, X_n, \mathbf{p})$ sous la contrainte,

$$\sum_{j=1}^k p_j = 1.$$

• Si H_0 est vraie, alors $\sqrt{n}(\hat{\mathbf{p}} - \mathbf{p}^0)$ est asymptotiquement normale, et le résultat suivant est établi,

• Théorème :

$$\underbrace{n\sum_{j=1}^{k}\frac{(\hat{p}_{j}-p_{j}^{0})^{2}}{p_{j}^{0}}}_{T_{n}}\overset{d}{\rightarrow}\chi_{k-1}^{2}.$$

- Test du χ^2 de niveau asymptotique $\alpha: \delta_{\alpha} = \mathbf{1}_{T_n > q_{1-\alpha}}$, où $q_{1-\alpha}$ est quantile d'ordre $1-\alpha$ du χ^2_{k-1} .
- La p-value asymptotique de ce test est : p -value = $P(Z > T_n | T_n)$, où $Z \sim \chi^2_{k-1}$ et $Z \perp \!\!\! \perp T_n$.

Cas Gaussien: test de Student

- Soit $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$ pour $\mu \in \mathbb{R}$, $\sigma^2 > 0$, et soit aussi un $\mu_0 \in \mathbb{R}$ donné.
- On veut tester :

$$H_0$$
: " $\mu = \mu_0$ " vs." H_1 : $\mu \neq \mu_0$,

au niveau asymptotique $\alpha \in (0, 1)$.

- 1er cas : σ^2 est connu.
 - Soit $T_n = \sqrt{n} \left(\frac{\bar{X}_n \mu_0}{\sigma} \right)$.
 - Alors $T_n \sim \mathcal{N}(0, 1)$ et,

$$\delta_{\alpha} = \mathbf{1}_{|T_n| > q_{1-\alpha/2}}$$

est un test au niveau(non asymptotique) α .

Cas Gaussien: test de Student

- 2ème cas : σ^2 est inconnu.
 - Soit $\tilde{T}_n = \sqrt{n-1} \left(\frac{\bar{X}_n \mu_0}{\sqrt{S_n}} \right)$, où S_n est la variance empirique.
 - Théorème de Cochran:
 - $\bar{X}_n \perp \!\!\! \perp S_n$;
 - $\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2.$
 - Et par conséquent, $\tilde{T}_n \sim t_{n-1}$: loi de Student à n-1 degrés de liberté.

Cas Gaussien: test de Student

- Test de Student de niveau(non asymptotique) $\alpha \in (0, 1)$:

$$\delta_{lpha}=\mathbf{1}_{\left| ilde{\mathcal{T}}_{n}\right|>q_{1-lpha/2}},$$

où $q_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ de t_{n-1} .

- Si H_1 est " $\mu > \mu_0$ ", le test de Student de niveau $\alpha \in (0,1)$ est :

$$\delta_lpha' = \mathbf{1}_{ ilde{T}_n > q_{1-lpha}},$$

où $q_{1-\alpha}$ est le quantile d'ordre $1-\alpha$ de t_{n-1} .

- Avantage du test de Student :
 - Non asymptotique.
 - Peut être réalisé sur des échantillons petits.
- Inconvénients du test de Student : suppose que l'échantillon est gaussien.