Parametrized Surfaces

Vector Calculus (MATH-243)
Instructor: Dr. Naila Amir

16

Vector Calculus

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

• Chapter: 16

• Section: 16.6

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr., Joel Hass, Christopher Heil, Maurice D. Weir.

• Chapter: 16

• Section: 16.5

Parametric Surfaces

In much the same way that we describe a space curve by a vector function $\mathbf{r}(t)$ of a single parameter t, we can describe a surface by a vector function $\mathbf{r}(u,v)$ of two parameters u and v. We suppose that:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k},\tag{1}$$

is a vector-valued function defined on a region D in the uv —plane.

So, x, y, and z, the component functions of \mathbf{r} , are functions of the two variables u and v with domain D. The set of all points (x, y, z) in \mathbb{R}^3 such that:

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v),$$
 (2)

and (u, v) varies throughout D, is called a **parametric surface** S and Equations (2) are called **parametric equations** of S.

Parametric Surfaces: Families of Curves

If a parametric surface S is given by a vector function $\mathbf{r}(u,v)$, then there are two useful families of curves that lie on S, one family with u constant and the other with v constant. These families correspond to **vertical** and **horizontal lines** in the uv —plane. If we keep u constant by putting $u=u_0$, then $\mathbf{r}(u_0,v)$ becomes a vector function of the single parameter v and defines a curve C_1 lying on S. Similarly, if we keep v constant by putting $v=v_0$, we get a curve $v=v_0$ 0 that lies on $v=v_0$ 1. We call these curves **grid curves**. For instance, in previous example, the grid curves obtained by letting $v=v_0$ 1 be constant are horizontal lines whereas the grid curves with $v=v_0$ 2 constant are circles.

Parametric Surfaces

Note:

• In general, a surface given as the **graph of a function** of x and y, that is, with an equation of the form z = f(x, y), can always be regarded as a parametric surface by taking x and y as parameters and writing the parametric equations as:

$$x = x$$
, $y = y$, $z = f(x, y)$.

Parametric representations (also called parametrizations) of surfaces are not unique.
 The next example shows two ways to parametrize a cone.

Tangent Planes

We now find the tangent plane to a parametric surface S traced out by a vector function:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k},$$

at a point P_0 with position vector $\mathbf{r}(u_0, v_0)$.

If we keep u constant by putting $u = u_0$, then $\mathbf{r}(u_0, v)$ becomes a vector function of the single parameter v and defines a grid curve C_1 lying on S. The tangent vector to C_1 at P_0 is obtained by taking the partial derivative of \mathbf{r} with respect to v and is given as:

$$\mathbf{r}_{v}(u_{0},v_{0}) = \frac{\partial x(u_{0},v_{0})}{\partial v}\mathbf{i} + \frac{\partial y(u_{0},v_{0})}{\partial v}\mathbf{j} + \frac{\partial z(u_{0},v_{0})}{\partial v}\mathbf{k}.$$

Similarly, if we keep v constant by putting $v = v_0$, we get a grid curve C_2 given by $\mathbf{r}(u, v_0)$ that lies on S, and its tangent vector at P_0 is:

$$\mathbf{r}_{u}(u_{0},v_{0}) = \frac{\partial x(u_{0},v_{0})}{\partial u}\mathbf{i} + \frac{\partial y(u_{0},v_{0})}{\partial u}\mathbf{j} + \frac{\partial z(u_{0},v_{0})}{\partial u}\mathbf{k}.$$

Tangent Planes

- If $\mathbf{r}_u \times \mathbf{r}_v$ is not $\mathbf{0}$, then the surface S is called **smooth** (it has no "corners").
- For a smooth surface, the **tangent plane** is the plane that contains the tangent vectors \mathbf{r}_u and \mathbf{r}_v , and the vector $\mathbf{r}_u \times \mathbf{r}_v$ is a **normal vector** to the tangent plane.

Unit Normal Vector

For a smooth surface S, the **unit normal vector** to the tangent plane is:

$$\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|}.$$

If the surface S is the graph of an equation z = f(x, y) and if we let:

$$g(x, y, z) = z - f(x, y),$$

then S is also the graph of the equation g(x,y,z) = 0. Since the gradient of g(x,y,z) is a normal vector to the graph of g(x,y,z) = 0 at the point (x,y,z), a **unit normal vector** can be obtained as follows:

$$\mathbf{n} = \frac{\nabla g(x, y, z)}{|\nabla g(x, y, z)|} = \frac{\langle g_x, g_y, g_z \rangle}{|\langle g_x, g_y, g_z \rangle|} = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{1 + [f_x]^2 + [f_y]^2}}$$

Find the tangent plane to the surface with parametric equations:

$$x = u^2$$
, $y = v^2$, $z = u + 2v$,

at the point (1, 1, 3).

Solution:

We first compute the tangent vectors:

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k} = 2u\mathbf{i} + \mathbf{k}.$$

$$\mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k} = 2v\mathbf{j} + 2\mathbf{k}.$$

Thus, a normal vector to the tangent plane is given as:

$$\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2u & 0 & 1 \\ 0 & 2v & 2 \end{vmatrix} = \langle -2v, -4u, 4uv \rangle$$

Solution:

Notice that the point (1,1,3) corresponds to the parameter values u=1 and v=1, so the normal vector at this point is given as:

$$\mathbf{n} = \langle -2, -4, 4 \rangle$$
.

Therefore, an equation of the tangent plane at (1, 1, 3) is:

$$-2(x-1)-4(y-1)+4(z-3)=0$$

or

$$x + 2y - 2z + 3 = 0.$$

The figure shows the self-intersecting surface and its tangent plane at (1, 1, 3).

Surface Area

Now we define the surface area of a general parametric surface. Suppose a smooth parametric surface S is given by equation:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}; \quad (u,v) \in D,$$

and S is covered just once as (u, v) ranges throughout the parameter domain D. Then, the surface area of S is given as:

Surface Area =
$$A(S) = \iint_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

where,

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$
 and $\mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$.

Find the surface area of a sphere of radius a.

Solution:

The parametric representation of sphere of radius a is:

$$x = a \sin \varphi \cos \theta$$
, $y = a \sin \varphi \sin \theta$, $z = a \cos \varphi$,

where the parameter domain is:

$$D = \{(\varphi, \theta) | 0 \le \varphi \le \pi, 0 \le \theta \le 2\pi \}.$$

For the present case:

$$\mathbf{r}(\varphi,\theta) = \langle a \sin \varphi \cos \theta, a \sin \varphi \sin \theta, a \cos \varphi \rangle.$$

We first compute the tangent vectors:

$$\mathbf{r}_{\varphi} = \langle a \cos \varphi \cos \theta , a \cos \varphi \sin \theta , -a \sin \varphi \rangle.$$

and

$$\mathbf{r}_{\theta} = \langle -a \sin \varphi \sin \theta , a \sin \varphi \cos \theta , 0 \rangle.$$

Solution:

We then compute the cross product of the tangent vectors ${f r}_{\!arphi}$ and ${f r}_{\!artheta}$ as:

$$\mathbf{n} = \mathbf{r}_{\varphi} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a\cos\varphi\cos\theta & a\cos\varphi\sin\theta & -a\sin\varphi \\ -a\sin\varphi\sin\theta & a\sin\varphi\cos\theta & 0 \end{vmatrix}$$

 $= \langle a^2 \sin^2 \varphi \cos \theta , a^2 \sin^2 \varphi \sin \theta , a^2 \sin \varphi \cos \varphi \rangle.$

Thus,

$$\left|\mathbf{r}_{\varphi}\times\mathbf{r}_{\theta}\right|=a^{2}\sin\varphi$$
 .

since $\sin \varphi \ge 0$ for $0 \le \varphi \le \pi$. Hence, the area of the sphere is:

$$A(S) = \iint_{D} |\mathbf{r}_{\varphi} \times \mathbf{r}_{\theta}| dA = \int_{0}^{2\pi} \int_{0}^{\pi} a^{2} \sin \varphi \, d\varphi d\theta = 4\pi a^{2}.$$

Surface Area of the Graph of a Function

Now, consider the special case of a surface S with equation z = f(x, y), where (x, y) lies in D and f has continuous partial derivatives. Here, we take x and y as parameters. The parametric equations are:

$$x = x$$
, $y = y$, $z = f(x,y)$.

Thus,

$$\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + f(x,y)\mathbf{k}, \qquad \mathbf{r}_x = \mathbf{i} + f_x\mathbf{k}, \qquad \mathbf{r}_v = \mathbf{j} + f_y\mathbf{k},$$

and

$$\mathbf{r}_{x} \times \mathbf{r}_{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & f_{x} \\ 0 & 1 & f_{y} \end{vmatrix} = \langle -f_{x}, -f_{y}, 1 \rangle.$$

Thus, we have:

$$|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{1 + [f_x]^2 + [f_y]^2} = \sqrt{1 + [z_x]^2 + [z_y]^2}.$$

Then, the surface area formula can be rewritten as:

$$A(S) = \iint_{D} |\mathbf{r}_{x} \times \mathbf{r}_{y}| dA = \iint_{D} \sqrt{1 + [z_{x}]^{2} + [z_{y}]^{2}} dA.$$

Surface Area of the Graph of a Function

Similarly, if we consider the surface S with equation y = h(x, z), we have:

$$A(S) = \iint_{D} |\mathbf{r}_{x} \times \mathbf{r}_{z}| dA = \iint_{D} \sqrt{1 + [h_{x}]^{2} + [h_{z}]^{2}} dA = \iint_{D} \sqrt{1 + [y_{x}]^{2} + [y_{z}]^{2}} dA.$$

and if we consider the surface S with equation x = k(y, z), we have:

$$A(S) = \iint_{D} |\mathbf{r}_{y} \times \mathbf{r}_{z}| dA = \iint_{D} \sqrt{1 + [k_{y}]^{2} + [k_{z}]^{2}} dA = \iint_{D} \sqrt{1 + [x_{y}]^{2} + [x_{z}]^{2}} dA.$$

Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

Solution:

The plane intersects the paraboloid in the circle $x^2 + y^2 = 9$, z = 9. Therefore, the given surface lies above the disk D with center the origin and radius 3. Hence, the surface area is:

$$A(S) = \iint_{D} \sqrt{1 + [z_{x}]^{2} + [z_{y}]^{2}} dA$$

$$= \iint_{D} \sqrt{1 + [2x]^{2} + [2y]^{2}} dA$$

$$= \iint_{D} \sqrt{1 + 4(x^{2} + y^{2})} dA.$$

Using polar coordinates, we obtain:

$$A(S) = \int_{0}^{2\pi} \int_{0}^{3} \sqrt{1 + 4r^2} \, r dr d\theta = \frac{(37\sqrt{37} - 1)\pi}{6}.$$

Practice Questions

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

Chapter: 16

Exercise-16.6: Q – 1 to 26, Q – 33 to 47, Q – 56 to 57.

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr., Joel Hass, Christopher Heil, Maurice D. Weir.

Chapter: 16

Exercise-16.5: Q - 1 to 30, Q - 33 to 56.

Surface Integrals

Vector Calculus (MATH-243)
Instructor: Dr. Naila Amir

Surface Integral of Scalar Field

$$\iint_S f(x,y,z) dS = \iint_{D(u,v)} f[x(u,v),y(u,v),z(u,v)]. \left| rac{\partial r}{\partial u} imes rac{\partial r}{\partial v}
ight| du dv$$

Surface Integral of Vector Field

• If the surface "S" oriented is outward, then the surface integral of the vector field is given as:

$$\iint_S F(x,y,z).\,dS = \iint_S F(x,y,z).\,ndS = \iint_{D(u,v)} F[x(u,v),y(u,v),z(u,v))].\left[rac{\partial r}{\partial u} imesrac{\partial r}{\partial v}
ight]dudv.$$

• If the surface "S" oriented is inward, then the surface integral of the vector field is given as:

$$\iint_S F(x,y,z).\,dS = \iint_S F(x,y,z).\,ndS = \iint_{D(u,v)} F[x(u,v),y(u,v),z(u,v))].\left[\frac{\partial r}{\partial v}\times \frac{\partial r}{\partial u}\right]dudv$$
 Where dS = ndS is known as the vector element of the surface.

16

Vector Calculus

Book: Calculus Early Transcendentals (6th Edition) By James Stewart.

• Chapter: 16

• Section: 16.7

Book: Thomas' Calculus Early Transcendentals (14th Edition) By George B. Thomas, Jr., Joel Hass, Christopher Heil, Maurice D. Weir.

• Chapter: 16

• Section: 16.6

Surface Integrals for Scalar Fields

- The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length.
- Suppose f is a function of three variables whose domain includes a surface S.
- We will define the surface integral of f over S such that the value of the surface integral is equal to the surface area of S in the case where f(x, y, z) = 1.
- If *S* is a smooth surface defined parametrically as:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}; \quad (u,v) \in D,$$

and f(x, y, z) is a continuous function defined on S, then the **integral of f over S** is:

$$\iint_{S} f(x, y, z)dS = \iint_{D} f(\mathbf{r}(u, v))|\mathbf{r}_{u} \times \mathbf{r}_{v}|dA.$$

• When using this formula, remember that $f(\mathbf{r}(u,v))$ is evaluated by writing x=x(u,v), y=y(u,v), z=z(u,v) in the formula for f(x,y,z). Moreover, observe that:

$$\iint\limits_{S} 1dS = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA = A(S).$$

Compute the surface integral

$$\iint\limits_{S} x^2 dS,$$

where *S* is the unit sphere $x^2 + y^2 + z^2 = 1$.

Solution:

We use the parametric representation for the unit sphere:

$$x = \sin \varphi \cos \theta$$
, $y = \sin \varphi \sin \theta$, $z = \cos \varphi$,

where, $D = \{(\varphi, \theta) | 0 \le \varphi \le \pi, 0 \le \theta \le 2\pi \}$. That is,

$$\mathbf{r}(\varphi,\theta) = \langle \sin \varphi \cos \theta \,, \sin \varphi \sin \theta \,, \cos \varphi \rangle.$$

For the present case: $|{f r}_{arphi} imes{f r}_{ heta}|=\sinarphi$. Therefore, the surface integral can be calculated as:

$$\iint_{S} x^{2} dS = \iint_{D} (\sin \varphi \cos \theta)^{2} |\mathbf{r}_{\varphi} \times \mathbf{r}_{\theta}| dA = \int_{0}^{2\pi} \int_{0}^{\pi} (\sin \varphi \cos \theta)^{2} \sin \varphi \, d\varphi d\theta = \frac{4\pi}{3}.$$

Graphs of a Function

Any surface S with equation z = g(x, y) can be regarded as a parametric surface with parametric equations:

$$x = x$$
, $y = y$, $z = g(x, y)$.

So, we have:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{1 + [z_{x}]^{2} + [z_{y}]^{2}} dA.$$

Similar formulas apply when it is more convenient to project S onto the yz —plane or xy —plane.

Evaluate

$$\iint_{S} y dS,$$

where S is the surface $z = x + y^2$, $0 \le x \le 1$, $0 \le y \le 2$.

Solution:

For the present case we have: x = x, y = y, $z = x + y^2$. Thus,

$$\iint_{S} y dS = \iint_{D} y \sqrt{1 + [z_{x}]^{2} + [z_{y}]^{2}} dA = \int_{0}^{1} \int_{0}^{2} y \sqrt{1 + [1]^{2} + [2y]^{2}} dy dx = \frac{13\sqrt{2}}{3}.$$