Additional Notes on Snowflake Graphs

July 8, 2015

1 Radial tree with constant branching number M

Let ℓ_i be the length of edges in generation i, let b_i be the branching number of generation i and let $R = R(\vec{m}, \vec{\ell}, k)$ be the reflection on the root of the radial tree.

Question: When is R = 0? Hypothesis: If and only if $\vec{\ell} = (\ell, \ell, ...)$.

Furthermore, we hypothesize that the RQG with $\vec{\ell} = (\ell, \beta \ell)$ has root reflection equal to that of the RQG with $\vec{\ell} = (\ell, \ell)$ and $L = -c \frac{d^2}{dx^2}$, where c > 0 is a parameter depending on β .

Test the hypothesis for N=3, with $1 < b_i < 10$, and ℓ_1 and ℓ_2 as free parameters; we can normalize so that $\ell_1=1$. This gives us a finite number of functions in one variable, ℓ_2 , for which the hypothesis is easy to verify.