Binary Quadratic Forms

IKHAN CHOI

1. Equivalence

Definition 1.1. Two forms are called *equivalent* if they are in a same oribit with respect to $GL_2(\mathbb{Z})$ -action.

Definition 1.2. Two forms are called *properly equivalent* if they are in a same oribit with respect to $SL_2(\mathbb{Z})$ -action.

For representation problems, $GL_2(\mathbb{Z})$ -action is important. For the correspondence with the theory of qudratic fields, $SL_2(\mathbb{Z})$ is rather important. From now, all equivalence relations are by $SL_2(\mathbb{Z})$.

Example 1.1. Two forms (a, b, c) and (a, -b, c) are equivalent but not properly equivalent in general.

Lemma 1.2. For a form (a, b, c) and an integer n, we have

- (1) $(a, b, c) \sim (a, 2an + b, an^2 + bn + c)$
- (2) $(a,b,c) \sim (cn^2 + bn + a, 2cn + b, c)$
- (3) $(a, b, c) \sim (c, -b, a)$

2. Definite forms

Proposition 2.1. The $SL_2(\mathbb{Z})$ -action on the definite forms is not faithful, i.e. the kernel is given by a nontrivial group $\{\pm I\}$.

Proposition 2.2. The $PSL_2(\mathbb{Z})$ -action on the definite forms is faithful.

The faithfulness is not important though, so we choose $\Gamma = \mathrm{SL}_2(\mathbb{Z})$ as the modular group instead of $\mathrm{PSL}_2(\mathbb{Z})$.

Definition 2.1. A positive definite form (a, b, c) is reduced if it satisfies

- $(1) |b| \le a \le c,$
- (2) if |b| = a or a = c, then $b \ge 0$.

The term "reduced" means that it is considered as the unique representative of each orbit, under the action of $SL_2(\mathbb{Z})$.

2.1. Positive definite forms.

Proposition 2.3. The set of positive definite forms admits the $SL_2(\mathbb{Z})$ -action.

Proposition 2.4. The $SL_2(\mathbb{Z})$ -actions on positive definite forms and negative definite forms are isomorphic.

Last Update: July 26, 2019.

2 IKHAN CHOI

- 3. Indefinite forms
 - 4. Class group