컴퓨터구조 중간고사 (73점 만점) - 답

2018. 10. 24

1. (1) (1A)
$$4x10^8 + 3x10^8 + 2x10^8 = 9x10^8$$

(2) (1점)
$$\frac{3\times4+4\times3+6\times2}{4+3+2} = \frac{36}{9} = 4$$

(3) (1점)
$$\frac{(9\times10^8)\times4}{2\times10^9} = \frac{3.6\times10^9}{2\times10^9} = 1.8$$
 (초)

(4) (2점) CPU time_{new} =
$$\frac{(3\times4+4\times3+5\times2)\times10^8}{2\times10^9} = \frac{34}{20} = 1.7$$
 (초)

$$speedup = \frac{1.8}{1.7} = \frac{18}{17} = 1.059$$

- 2. (1) (2점) 덧셈 4번, 뺄셈 0번
 - (2) (3점) 덧셈 1번, 뺄셈 2번
- 3. (1) (5점)

Iteration	Step	Divisor	Remainder
0	Initial values	00100	00000 11010
	Shift Rem left		00001 10100
1	Rem=Rem-Div		11101
	Rem<0 \Rightarrow +Div, R0= $\frac{0}{}$		00001 10100
	Shift Rem left		00011 01000
2	Rem=Rem-Div		11111
	Rem<0 \Rightarrow +Div, R0=0		00011 01000
	Shift Rem left		00110 10000
3	Rem=Rem-Div		00010
	$Rem \ge 0 \Rightarrow R0 = 1$		00010 10001
4	Shift Rem left		00101 00010
	Rem=Rem-Div		00001
	$Rem \ge 0 \Rightarrow R0 = 1$		00001 00011
5	Shift Rem left		00010 00110
	Rem=Rem-Div		11110
	Rem<0 \Rightarrow +Div, R0= $\frac{0}{}$		00010 00110

(2) (5점)

Iteration	Step	Divisor	Remainder	
0	Initial values 00100 00000 1			
	Shift Rem left		00001 10100	
1	$Rem \! \ge \! 0 \Rightarrow Rem \! = \! Rem \! - \! Div$		11101	
	$Rem {<} 0 \Rightarrow R0 {=} 0$		11101 10100	
	Shift Rem left		11011 01000	
2	$Rem \mathord{<} 0 \Rightarrow Rem \mathord{=} Rem \mathord{+} Div$		11111	
	$Rem<0 \Rightarrow R0=0$		11111 01000	
	Shift Rem left		11110 10000	
3	$Rem \mathord{<} 0 \Rightarrow Rem \mathord{=} Rem \mathord{+} Div$		00010	
	$Rem \ge 0 \Rightarrow R0=1$		00010 10001	
	Shift Rem left		00101 00010	
4	$Rem \! \ge \! 0 \Rightarrow Rem \! = \! Rem \! - \! Div$		00001	
	$Rem \ge 0 \Rightarrow R0 = 1$		00001 00011	
	Shift Rem left		00010 00110	
5	$Rem \! \ge \! 0 \Rightarrow Rem \! = \! Rem \! - \! Div$		11110	
	$Rem<0 \Rightarrow R0=0$		11110 00110	
	$Rem \mathord{<} 0 \Rightarrow Rem \mathord{=} Rem \mathord{+} Div$		00010 00110	

4. (5점) $28.25 = 11100.01_{two} = 1.110001_{two} \times 2^4$

지수 = 4+127 = 131 = 1000 0011

=> 41E2 0000

5. (각 2점)

(1) 00C7 2824

0	6	7	5	0	36
000000	00110	00111	00101	00000	100100

(2) 2041 0003

8	2	1	3
001000	00010	00001	0000 0000 0000 0011

(3) 0011 8140

0	0	17	16	5	0
000000	00000	10001	10000	00101	000000

(4) AC02 0007

43	0	2	7
101011	00000	00010	0000 0000 0000 0111

※ Alignment restriction 검사는 runtime에 하는 것이지 assemble time에는 하지 않음. 이 문제에서는 \$0를 사용하므로 register 값을 알 수 있지만 예외적인 경우임. 일반적으로는 register 값을 알 수 없으므로 4의 배수인지 확인할 수 없음.

(5) 1023 0003

 4
 1
 3
 3

 000100
 00001
 00011
 00000 0000 0000 0001

 \times (216-204)/4 = 3

- (6) (0x03000000 0x03FA0200)/4는 너무 커서 16 bits로 나타낼 수 없어서 assemble error!
- (7) PC+4(0x00003004)와 CC(0x70006000)의 상위 4 bits가 다르다.
- (8) 0800 1800

4

000010	0000 0000 0000 0110 0000 0000 00

6. (각 2점)

- (1) add \$0,\$1,\$2 => 목적지 레지스터가 \$0이므로 아무 것도 변하지 않는다.
- (2) lw \$2,3(\$3) => effective address = 3x2 + 3 = 9 4의 배수가 아니므로 error!
- (3) lw \$1,2(\$5) => effective address = 5x2 + 2 = 12 M[12]=14=0x0E, M[13]=0x0F, M[14]=0x10, M[15]=0x11 \$1이 0x0E0F1011이 된다.
- (4) sw \$12,2(\$4) => effective address = 4x2 + 2 = 10 4의 배수가 아니므로 error!
- (5) sw \$2,2(\$7) => effective address = 7x2 + 16 = 10, \$2=0x0000 0004 M[16]=4, M[17]=0, M[18]=0, M[19]=0 이 된다.
- (6) PC 가 0xA800 0000이 되고, \$31=\$ra 가 0xA600 0054 가 된다.
- 7. (각 1점) (1) 0000 0034
- (2) 3

- (3) 5
- (4) 0

- (5) 0
- (6) $3x2+7 = D = 13_{ten}$ (7) 6
- (8) $0A = 10_{ten}$

- (9) $0D = 13_{ten}$
- $(10) 34+28_{ten} = 34+1C = 50 = 80_{ten}$
- (11) 0
- 8. (각 1점) (1) 0 (2) 1 (3) 1 (4) 0 (5) 1 (6) 1 (7) 0 (8) X (9) 0