6.2 Wilkinson Power divider

Module:6 Microwave Passive circuits

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:6 Microwave Passive circuits <u>7</u> hours

• T junction and resistive power divider, Wilkinson power divider, branch line coupler (equal & unequal), Rat Race Coupler, Filter design: Low pass filter (Butterworth and Chebyshev) - Richards transformation and stepped impedance methods.

•

Source of the contents: Pozar

Lossless T junction divider : Not matched at all ports
 No isolation between output ports

- Lossless T junction divider : Not matched at all ports
 No isolation between output ports
- Resistive divider: Matched at all ports
 Not lossless
 Isolation is not achieved

- Lossless T junction divider : Not matched at all ports
 No isolation between output ports
- Resistive divider: Matched at all ports
 Not lossless
 Isolation is not achieved
- Wilkinson power divider:
 - Lossy three port network
 - Lossless when output ports are matched
 - Reflected power from output ports is dissipated.

_

_

_

- Lossless T junction divider : Not matched at all ports
 No isolation between output ports
- Resistive divider: Matched at all ports
 Not lossless
 Isolation is not achieved
- Wilkinson power divider:
 - Lossy three port network
 - Lossless when output ports are matched
 - Reflected power from output ports is dissipated.
 - All ports matched
 - Isolation between output ports
 - Arbitrary power division is possible

• Wilkinson power divider: (Initially 3dB case – equal split)

Microstrip transmission line/stripline

 Z_0

 $\sqrt{2}Z_0$

6.4 Need for Wilkinson Power divider

• Wilkinson power divider: (Initially 3dB case – equal split)

Microstrip transmission line/stripline

•

Transmission line equivalent circuit:

6.4a Construction of Wilkinson Power divider

• (Initially 3dB case – equal split) Symmetric across the midplane Two source resistors of $2Z_0$ combine in parallel to give resistor value: $1Z_0$

Quarter wave lines have **normalized characteristic impedance Z**.

6.4a Construction of Wilkinson Power divider

• (Initially 3dB case – equal split) Symmetric across the midplane Two source resistors of $2Z_0$ combine in parallel to give resistor value: $1Z_0$ Quarter wave lines have normalized characteristic impedance Z.

Shunt resistor has normalized value of r.

6.4a Construction of Wilkinson Power divider

- (Initially 3dB case equal split) Symmetric across the midplane Two source resistors of $2Z_0$ combine in parallel to give resistor value: $1Z_0$ Quarter wave lines have normalized characteristic impedance Z.
- Shunt resistor has normalized value of r.

• For equal power divider, $Z = \sqrt{2}$ and r = 2.

6.4b Modes of operation in Wilkinson Power divider

Two separate modes of excitation for circuit

• Even mode: $V_{g2} = V_{g3} = 2V_0$

•

6.4b Modes of operation in Wilkinson Power divider

Two separate modes of excitation for circuit

• Even mode: $V_{g2} = V_{g3} = 2V_0$

• Odd mode: $V_{g2} = -V_{g3} = 2V_0$

•

6.4b Modes of operation in Wilkinson Power divider

Two separate modes of excitation for circuit

• Even mode: $V_{g2} = V_{g3} = 2V_0$

• Odd mode: $V_{g2} = -V_{g3} = 2V_0$

• Superposition: $V_{g2} = 4V_0$ $V_{g3} = 0$

• Even mode: $V_{g2} = V_{g3} = 2V_0$

• Port 2: $V_2^e = V_3^e$: Port 3

•

- Even mode: $V_{g2} = V_{g3} = 2V_0$
- Port 2: $V_2^e = V_3^e$: Port 3
- Voltage at port 1 is zero
 as voltage will be equal
 after λ₄ long transmission line.
- (No current in circuit)

Port 2

Port 3

6.4c Even mode in Wilkinson Power divider

Port

- Even mode: $V_{g2} = V_{g3} = 2V_0$
- Port 2: $V_2^e = V_3^e$: Port 3
- Voltage at port 1 is zero
 as voltage will be equal
 after λ₄ long transmission line.
- Hence, no current flows through resistor r and the short at port 1.
- Equivalent: Open circuit at these points

- Even mode: $V_{g2} = V_{g3} = 2V_0$
- Port 2: $V_2^e = V_3^e$: Port 3
- Voltage at port 1 is zero
 as voltage will be equal
 after λ₄ long transmission line.
- Hence, no current flows through resistor r and the short at port 1.
- Equivalent: Open circuit at these points
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ Quarter wave transformer $Z = \sqrt{Z_e * 2}$ Port 1

- Even mode: $V_{g2} = V_{g3} = 2V_0$ Port 2: $V_2^e = V_3^e$: Port 3
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ $[Z_{in}^e = Z\frac{2+jZ\tan\frac{\beta\lambda}{4}}{Z+j2\tan\frac{\beta\lambda}{4}}$ with $\frac{\beta\lambda}{4} = \frac{\pi}{2}]$

Quarter wave transformer $Z = \sqrt{Z_e * 2}$

- Even mode: $V_{g2} = V_{g3} = 2V_0$ Port 2: $V_2^e = V_3^e$: Port 3
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ $[Z_{in}^e = Z\frac{2+jZ\tan\frac{\beta\lambda}{4}}{Z+j2\tan\frac{\beta\lambda}{4}}]$ with $\frac{\beta\lambda}{4} = \frac{\pi}{2}$]
 Like quarter wave transformer, $Z_{in}^e = \sqrt{2}$, port 2 will be matched for even mode excitation $Z_{in}^e = 2/2=1$ (1 is impedance at port 2)

- Even mode: $V_{g2} = V_{g3} = 2V_0$ Port 2: $V_2^e = V_3^e$: Port 3
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ $[Z_{in}^e = Z\frac{2+jZ\tan\frac{\beta\lambda}{4}}{Z+j2\tan\frac{\beta\lambda}{4}}$ with $\frac{\beta\lambda}{4} = \frac{\pi}{2}]$
- Like quarter wave transformer, If $Z = \sqrt{2}$, port 2 will be matched for even mode excitation $Z_{in}^e = 2/2 = 1$ (1 is impedance at port 2)

If
$$\underline{x} = \mathbf{0}$$
 at port 1, and $\underline{x} = -\lambda/4$ at port 2, $V(x) = V^+ \left(e^{-j\beta x} + \Gamma e^{j\beta x}\right)$ (Phase shift due to shift in reference plane)

- Even mode: $V_{g2} = V_{g3} = 2V_0$ Port 2: $V_2^e = V_3^e$: Port 3
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ $[Z_{in}^e = Z\frac{2+jZ\tan\frac{\beta\lambda}{4}}{Z+j2\tan\frac{\beta\lambda}{4}}$ with $\frac{\beta\lambda}{4} = \frac{\pi}{2}]$
- Like quarter wave transformer, $If Z = \sqrt{2}$, port 2 will be matched for even mode excitation $Z_{in}^e = 2/2 = 1$ (1 is impedance at port 2)

If x = 0 at port 1, and $x = -\lambda/4$ at port 2, $V(x) = V^{+} \left(e^{-j\beta x} + \Gamma e^{j\beta x} \right)$ $V_{2}^{e} = V \left(-\frac{\lambda}{4} \right) = V^{+} \left[0 + j + \Gamma(0 - j) \right]$ $= jV^{+} (1 - \Gamma) = V_{0}$ $= jV^{+} (1 - \Gamma) = V_{0}$ Port 1 $= \int_{0.c.}^{2} V^{+} \left(v^{-} \right) \left(v^{-$

- Even mode: $V_{g2} = V_{g3} = 2V_0$ Port 2: $V_2^e = V_3^e$: Port 3
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ $[Z_{in}^e = Z\frac{2+jZ\tan\frac{\beta\lambda}{4}}{Z+j2\tan\frac{\beta\lambda}{4}}$ with $\frac{\beta\lambda}{4} = \frac{\pi}{2}]$
- Like quarter wave transformer, $If Z = \sqrt{2}$, port 2 will be matched for even mode excitation $Z_{in}^e = 2/2 = 1$ (1 is impedance at port 2)

If
$$x = 0$$
 at port 1, and $x = -\lambda/4$ at port 2, $V(x) = V^{+} \left(e^{-j\beta x} + \Gamma e^{j\beta x} \right)$ Z_{e} from port 2 Z_{e} from

- Even mode: $V_{g2} = V_{g3} = 2V_0$ Port 2: $V_2^e = V_3^e$: Port 3
- Impedance Z_e from port 2: $Z_{in}^e = Z^2/2$ $[Z_{in}^e = Z\frac{2+jZ\tan\frac{\beta\lambda}{4}}{Z+j2\tan\frac{\beta\lambda}{2}}$ with $\frac{\beta\lambda}{4} = \frac{\pi}{2}]$
- If $Z = \sqrt{2}$, port 2 will be matched for even mode excitation $Z_{in}^e = 2/2=1$ (1 is impedance at port 2) Z_e from port 2

$$V_2^e = jV^+(1-\Gamma) = V_0$$

$$V_1^e = V(0) = jV^+(1+\Gamma) = jV_0\left(\frac{\Gamma+1}{\Gamma-1}\right)$$

Reflection coefficient at port 1 \(\frac{1}{2} \)

Reflection coefficient at port 1
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

Note:
$$\Gamma = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$$

• Odd mode: $V_{g2} = -V_{g3} = 2V_0$

• Port 2: $V_2^0 = -V_3^0$: Port 3

• Odd mode: $V_{g2} = -V_{g3} = 2V_0$

• Port 2: $V_2^0 = -V_3^0$: Port 3

- Odd mode: $V_{g2} = -V_{g3} = 2V_0$
- Port 2: $V_2^0 = -V_3^0$: Port 3
- Voltage at port 1 is Opposite
 as voltage will be opposite
 afterλ/4 long transmission line.
- Hence, Center is zero at center of resistor r and the short at port 1.
- Equivalent: Short to ground circuit at these points

Port 2

Port 3

6.4d Odd mode in Wilkinson Power divider

- Odd mode: $V_{g2} = -V_{g3} = 2V_0$
- Port 2: $V_2^0 = -V_3^0$: Port 3
- Voltage at port 1 is Opposite as voltage will be opposite after $\lambda/4$ long transmission line. \downarrow
- Hence, Center is zero at center of resistor r and the short at port 1.
- Equivalent: Short to ground circuit at these points
- Impedance Z_0 from port 2:

 $Z_{in}^0 = r/2$ parallel to $\frac{\lambda}{4}$ transmission line shorted at end

(Open tx line at port 2)

- Odd mode: $V_{g2} = -V_{g3} = 2V_0$
- Port 2: $V_2^0 = -V_3^0$: Port 3
- Voltage at port 1 is Opposite as voltage will be opposite afterλ/4 long transmission line.
- Hence, Center is zero at center \bar{o} f resistor r and the short at port 1.
- Equivalent: Short to ground circuit at these points
- Impedance $Z_{o_{\lambda}}$ from port 2: $Z_{in}^{0}=r/2$ parallel to $\frac{\lambda}{4}$ transmission line shorted at end (Open tx line at port 2)
- $Z_{in} = \frac{1}{2} (\sqrt{2})^2 = 1$

•
$$S_{11} = 0$$

$$Z_{in} = 1$$
 at port 1

•
$$S_{22} = S_{33} = 0$$

as $Z_{in}^e = 1 = Z_{in}^o$)

• $S_{22} = S_{33} = 0$ (port 2 and port 3 matched for even and odd modes

- $S_{11} = 0$ $Z_{in} = 1$ at port 1
- $S_{22} = S_{33} = 0$ (port 2 and port 3 matched for even and odd modes)
- $S_{12}=S_{21}=\frac{V_1^e+V_1^o}{V_2^e+V_2^o}=-j/\sqrt{2}$ (symmetry due to reciprocity all matched ports)

•
$$S_{11} = 0$$
 $Z_{in} = 1$ at port 1

•
$$S_{22} = S_{33} = 0$$
 (port 2 and port 3 matched for even and odd modes)

•
$$S_{12}=S_{21}=\frac{V_1^e+V_1^o}{V_2^e+V_2^o}=-j/\sqrt{2}$$
 (symmetry due to reciprocity – all matched ports)

•
$$S_{13} = S_{31} = -j/\sqrt{2}$$

(symmetry of ports 2 and 3)

• $S_{23} = S_{32} = 0$

(due to short or open at bisection)

• Divider driven at port 1: Outputs are matched:

No power is dissipated in resistor.

Divider is lossless when outputs are matched.

- Divider driven at port 1: Outputs are matched: No power is dissipated in resistor.
 Divider is lossless when outputs are matched.
- Reflected power from ports 2 or 3 is dissipated in resistor
- $S_{23} = S_{32} = 0$: Ports 2 and 3 are isolated

For splitting the power equally at Ports 2 and 3 in the ratio of 1:1, using Wilkinson power divider when characteristic impedance is 70 ohms, Design the Wilkinson power divider network.

• Find the values as shown in the figure: with the given characteristic impedance $Z_0=70$

$$Z_0$$
 Z_0
 Z_0
 Z_0
 Z_0
 Z_0
 Z_0

• The S matrix :
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} = \begin{bmatrix} 0 & -j/\sqrt{2} & -j/\sqrt{2} \\ -j/\sqrt{2} & 0 & 0 \\ -j/\sqrt{2} & 0 & 0 \end{bmatrix}$$