Namer Aniket Cupta

Entry No - 2019CS 10327

PROBLEM-1

My Entry No. - 2019 CS 10327

$$\Rightarrow N = 27$$

 $\Rightarrow B = \{1,3,9,27\}$

For a tuple $\langle B, \cdot, +, ', I+, I \rangle$ to form a boolean algebra, it must satisfy the following postulat properties.

*
$$a+a=a$$
 - idempotent
* $a+a=a$ - idempotent
* $a+b=b+a$ - Commutative
* $a+b=b+a$ - Commutative
* $a+(b+c)=(a+b)+c$ - Associative
* $a+(b+c)=(a+b)+(a-c)$ - Distributive
* $a+(b+c)=(a+b)+(a-c)$ - Distributive

- * Identity of 't' operation : x+ I+ = x
- * Identity of '.' operation ! x. (I.) = x
- * Inverve rule: a+a'= I+ and a·a'= I.

From my set B, • if we take a=3Then, $a' = \frac{N}{a} = (according to question)$ $\Rightarrow a' = \frac{27}{3} = 9$

Now, $a \cdot a' = g$ seatest common divisor of a and a' $\Rightarrow a \cdot a' = gcd(3,9)$ $\Rightarrow a \cdot a' = 3$

But this violates the inverse rule a.d=I. and thus, our tuple does not form a bothary Boolean Algebra. Note, one example is enough to prove that a given set, along with its operations, does not form a boolean algebra.