Ceci n'est pas d'intelligence

Logica en formele systemen

Lambda Calculus

Inleiding en basisbegrippen

Prof. dr. Marjon Blondeel Academiejaar 2024-2025

Inhoud lambda calculus

- Inleiding
- Basisbegrippen
- Rekenen met lambda expressies
- Fixpunten en recursie

Inleiding

Lambda calculus (λ -calculus) geïntroduceerd in de jaren 1930 als een system om het begrip functie abstract the bestuderen.

Ook om begrip berekenbaarheid te formaliseren: welke functies zijn al dan niet berekenbaar waarbij een functie berekenbaar is desda er een programma P bestaat dat de functie berekent: Als P stopt voor een input α dan is dat de correcte output en anders stopt P nooit.

Inleiding

Historisch gezien is het beslissen of twee λ -expressies equivalent zijn het eerste probleem waarvan werd aangetoond dat het onbeslisbaar is.

Het is onmogelijk om een programma te schrijven dat, gegeven twee willekeurige λ -expressies bepaalt of ze al dan niet equivalent zijn.

λ-calculus en programmeertalen

Formalisme werd ontwikkeld voor het bestaan van concrete programmeertalen, maar vormt de basis van functionele programmeertalen zoals Lisp en Scheme.

Voorbeelden van invloed:

- call by name: parameters worden pas geëvalueerd op moment dat ze gebruikt worden
- hogere orde functies: output functie mag functie zijn, parameter mag functie zijn

Functies bekeken op een andere manier

functie	1 argument
f(x) = 2 + x	$+_2(x) = x + 2$
f(x,y) = x + y	$+_{y}(x) = x + y$

$$+_{z}\left(+_{y}(x)\right) = (x+y) + z$$

Functies bekeken op een andere manier

$$+_2(x) = x + 2$$
 $+(2) = +_2$ $+(2)(x) = +_2(x) = x + 2$
 $+_y(x) = x + y$ $+(y) = +_y$ $+(y)(x) = +_y(x) = x + y$

Merk op: output van +(y) is een functie

Functies: λ-notatie

Voorbeeld: f(x) = 2 + x = +(2)(x)

$$\lambda x.((+)2)x$$

Vorm: *λ* <parameter>.<voorschrift>

Toepassing functie: (functie)argument

Functies: λ-notatie

Voorbeeld: f(x) = 2 + x

$$\lambda x.((+)2)x$$

- we hoeven geen naam te geven aan een functie
- functies hoeven maar 1 argument te hebben
 - meerdere parameters kunnen we simuleren (output mag terug een functie zijn)

Voorbeelden Scheme

```
(define (add-three number) (+ number 3))
```

```
(define (add-three-to-each lst) (map add-three lst))
```

```
(define (add-three-to-each lst)
(map (lambda (number) (+ number 3)) lst))
```


Inhoud lambda calculus

- Inleiding
- Basisbegrippen
- Rekenen met lambda expressies
- Fixpunten en recursie

Abstractie en applicatie

- 2 fundamentele bewerkingen in λ -calculus
- abstractie: aanmaken van een functievoorschrift
- applicatie: aanroepen van een functievoorschrift

Lambda expressies (syntax)

Zij V een verzameling variabelen. De verzameling van λ expressies Λ wordt alsvolgt gedefinieerd:

- 1. $V \subseteq \Lambda$
- 2. Als $M \in \Lambda$ en $N \in \Lambda$ dan is $(M)N \in \Lambda$. (application)
- 3. Als $x \in V$ en $M \in \Lambda$ dan is $\lambda x. M \in \Lambda$. (abstractie)
- 4. Niets anders zit in Λ .

Definitie

Lambda expressies: intuïtie

- 1. $V \subseteq \Lambda$: elke variabele is een λ -expressie
- 2. $(M)N \in \Lambda$ correspondeert met een functieaanroep: (functie)parameter
- 3. $\lambda x.M \in \Lambda$ correspondeert met een functievoorschrift: λ formeleparameter. functievoorschrift

 $(\lambda x. x)y$: pas functie $(\lambda x. x)$ toe op parameter y

 $(\lambda x. x)$: eerste x is formele parameter, tweede is voorschrift

Lambda expressies: opmerkingen

- geen constanten in de definitie
 - later tonen we dat we by gehele getallen dmv λ -expressies kunnen voorstellen
- We spreken van "functies" maar er bestaan geen functies in λ -calculus, enkel goed gevormde expressies waar wij een betekenis aan geven.

Lambda expressies: voorbeeld

Stel we hebben variabelen x, y, u, f. Dan zijn volgende expressies λ -expressies:

```
x
\lambda x. x
\lambda x. \lambda y. (y)x
(\lambda y. (x)y)\lambda x. (u)x
\lambda x. \lambda y. x
\lambda f. \lambda x. (f)x
\lambda f. \lambda x. (f)(f)x
```

Volgorde van functieapplicatie

Functieapplicatie gebeurt van rechts naar links

(P)(Q)x: eerst Q toepassen op x en dan P toepassen op het resultaat, in "gewone" notatie: P(Q(x))

((P)Q)x: eerst P toepassen op Q en dan de resulterende λ -expressie toepassen op x

Merk op: ((P)(Q))x is geen geldige λ -expressie

Currying: inleiding

Uit de definitie volgt dat een "functie" maar 1 parameter kan hebben. Hoe kunnen we functies met meerder variabelen dan voorstellen?

idee: $f: A \times B \rightarrow C$ vervangen door $g: A \rightarrow (B \rightarrow C)$ waarbij

$$g(a) = f_a \operatorname{en} f_a(b) = f(a, b)$$

voorbeeld: de plus functie definiëren we als $+(a) = +_a$ en

$$+_a(b) = a + b$$

Currying: mechanisme

Wat met n parameters? Techniek "currying" vernoemd naar Haskell B. Curry.

 $A_1 \times \cdots \times A_n \to B$ kunnen we herleiden naar $A_1 \to A_2 \times \cdots \times A_n \to B$

indien n > 2:

 $A_2 \times \cdots \times A_n \to B$ kunnen we herleiden naar $A_2 \to A_3 \times \cdots \times A_n \to B$

enz, uiteindelijk krijgen we

$$A_1 \rightarrow (A_2 \rightarrow \cdots (A_n \rightarrow B))$$

Currying: voorbeeld

Vier simpele functies met elk 1 argument

- $\bullet + (y) = +_y$
- $\bullet \quad +_{y}(x) = x + y$
- $\times(y) = \times_y$
- $\times_{\mathcal{V}}(x) = x \cdot y$

Combineren tot complexere functies

$$\times (3)(+(2)x) = \times_3(+(2)x) = \times_3(+_2(x)) = \times_3(x+2)$$

= $(x+2) \cdot 3$

Currying in Scheme

```
((lambda (x)
     (lambda (y)
           (+ \times y))) 3)
(lambda (y)
           (+3y))
```


Currying in Scheme

```
(((lambda (x)
     (lambda (y)
           (+ \times y))) 3)4)
((lambda (y)
           (+3y)))4)
```


Currying in React

```
...
import React, { useState } from 'react';
function MyComponent() {
 const [state, setState] = useState({ name: '', email: '', notes: '' });
  const handleChange = (fieldName) => (event) => {
   const { value } = event.target;
   setState((prevState) => ({
     ...prevState,
     [fieldName]: value,
   }));
  };
  return (
        type="text"
       placeholder="Enter your name"
        value={state.name}
        onChange={handleChange('name')}
        type="text"
       placeholder="Enter your email"
        value={state.email}
        onChange={handleChange('email')}
        placeholder="Enter your notes"
        value={state.notes}
        onChange={handleChange('notes')}
      <button>Submit</button>
    </div>
export default MyComponent;
```


Currying voor λ-expressies

Beschouw de volgende λ -expressie G $\lambda x. \lambda f. (f) x$

We kunnen dit zien als een functie G van 2 variabelen (in "gewone" notatie):

$$G(x,f) = f(x)$$

nadeel: leesbaarheid

Substitutie: waarom bestuderen?

Herschrijven van λ -expressies (toepassen van voorschrift op actuele parameter)

- $(\lambda x. x)y$ kunnen we herschrijven als y
- $(\lambda x.(x)x)y$ kunnen we herschrijven als (y)y
- $(\lambda x. \lambda y. x)y$?

vrije variabele die gebonden wordt!

Binding en bereik

Voor een λ -expressie λx . M zegt men dat

- λx een binding is van x in M
- het bereik van de binding M is: alle (nog niet gebonden) voorkomens van x in λx . M zijn gebonden

In een λ -expressie heten alle voorkomens van variabelen die niet gebonden zijn vrij

Vrije variabelen

De vrije variabelen van een λ -expressie zijn alsvolgt gedefinieerd:

- $\forall x \in V: VV(x) = \{x\}$
- $\forall M, N \in \Lambda: VV(M(N)) = VV(M) \cup VV(N)$
- $\forall x \in V, \forall M \in \Lambda: VV(\lambda x. M) = VV(M) \setminus \{x\}$

Notatie: VV(M) van vrije variabelen van M.

Definitie

Gesloten λ-expressie

Een λ -expressie zonder vrije variabelen heet gesloten of een combinator. De verzameling van combinatoren wordt genoteerd als Λ_0 .

Definitie

Vrije/gebonden variabelen: voorbeelden

- $VV(\lambda w. v) = \{v\}$
- $VV(\lambda v.v) = \emptyset$
- $VV(\lambda v.w) = \{w\}$
- $VV((\lambda v. v)v) = \{v\}$

Vrije/gebonden variabelen: voorbeelden

$$\lambda x.(x)y$$

- vrij: y
- gebonden: x $(\lambda x. x)\lambda y. (y)x$
- vrij: laatste x
- gebonden: eerste x en y

Merk op: een variabele kan vrij en gebonden voorkomen in een λ-expressie

Substitutie: intuïtief

Intuitief willen we een functieaanroep uitwerken. Bijvoorbeeld in

$$(\lambda x. M)P$$

willen we elke formele parameter x die hoort bij de binding λx vervangen door de actuele parameter P.

Notatie: [P/x]M alle voorkomens van x in M vervangen door P Let op! We willen niet dat vrije variabelen in P gebonden worden.

Substitutie: definitie

Beschouw λ -expressies P en M en $x \in V$. De substitutie [P/x]M van P voor x in M wordt alsvolgt gedefinieerd:

$$(S1) [P/x]x = P$$

(S2)
$$[P/x]y = y$$
 als $y \in V \setminus \{x\}$

(S3)
$$[P/x](F)Q = ([P/x]F)[P/x]Q$$

(S4)
$$[P/x]\lambda x.M = \lambda x.M$$

(S5)
$$[P/x]\lambda y. M = \lambda y. [P/x]M$$
 als $y \neq x$ en $y \notin VV(P)$

(S6)
$$[P/x]\lambda y.M = \lambda z.[P/x][z/y]M$$
 als $y \neq x$ en $z \notin VV(P)$ en $y \in VV(P)$

Definitie

Substitutie: definitie intuïtief (1/4)

$$(S1) [P/x]x = P$$

triviaal: in x moeten we x vervangen door P

(S2)
$$[P/x]y = y$$
 als $y \in V \setminus \{x\}$

triviaal: in y moeten we x vervangen door P, maar er is helemaal geen x ($y \neq x$)

Substitutie: definitie intuïtief (2/4)

(S3)
$$[P/x](F)Q = ([P/x]F)[P/x]Q$$

applicatie: we voeren de substitutie door op beide delen

(S4)
$$[P/x]\lambda x. M = \lambda x. M$$

we moeten alle x vervangen door P, maar alle x zijn gebonden door de λx , we doen dus niets

Substitutie: definitie intuïtief (3/4)

(S5) $[P/x]\lambda y$. $M = \lambda y$. [P/x]M als $y \neq x$ en $y \notin VV(P)$ indien y niet vrij voorkomt in P, laten we de λy staan voeren we de substitutie door in M

wat als y wel vrij voorkomt in P? dan zou het kunnen dat een oorspronkelijke vrije y opeens gebonden zou worden door de λy die vooraan komt, bv

 $[\lambda u.(y)u/x]\lambda y.(x)y$

Substitutie: definitie intuïtief (4/4)

(S6) $[P/x]\lambda y$. $M = \lambda z$. [P/x][z/y]M als $y \neq x$ en $z \notin VV(P)$ en $y \in VV(P)$

we herschrijven λy . M naar λz . M waarbij we alle y in M vervangen door z, d.i. [z/y]M, uiteraard kiezen we $z \notin VV(P)$, vervolgens kunnen we (S5) toepassen

Substitutie: voorbeelden (1/2)

- $[u/x]\lambda u. x =_{(S_6)} \lambda z. [u/x][z/u]x =_{(S_2)} \lambda z. [u/x]x =_{(S_1)} \lambda z. u$
- $[u/x]\lambda u. u =_{(S_6)} \lambda z. [u/x][z/u]u =_{(S_1)} \lambda z. [u/x]z =_{(S_2)} \lambda z. z$
- $[u/x]\lambda y. x =_{(S5)} \lambda y. [u/x]x =_{(S1)} \lambda y. u$
- $[u/x]\lambda y. u =_{(S5)} \lambda y. [u/x]u =_{(S2)} \lambda y. u$

Substitutie: voorbeelden (2/2)

```
[\lambda u.(y)u/x]\lambda y.(x)y
=_{(S_6)} \lambda z. [\lambda u. (y)u/x][z/y](x)y
=_{(S_3)} \lambda z. [\lambda u.(y)u/x]([z/y]x)[z/y]y
=_{(S2)} \lambda z. [\lambda u. (y)u/x](x)[z/y]y
=_{(S1)} \lambda z. [\lambda u.(y)u/x](x)z
=_{(S3)} \lambda z. ([\lambda u.(y)u/x]x)[\lambda u.(y)u/x]z
=_{(S_1)} \lambda z.(\lambda u.(y)u)[\lambda u.(y)u/x]z
=_{(S2)} \lambda z. (\lambda u. (y)u)z
```

