LAB T2. MISCIBILIDADE E SOLUBILIDADE

Objectivos:

1- Perceber os conceitos de miscibilidade e solubilidade

Relacionar as propriedades físicas com a estrutura eletrónica, geometria molecular e características dos grupos funcionais das moléculas

2- Fazer um estudo experimental das forças intermoleculares (FIM)

Identificar as diferentes forças intermoleculares (ligações de van der Waals, pontes de hidrogénio)

Solução

(soluto+solvente)

3- Analisar a **termodinâmica da dissolução** molecular

Prever a espontaneidade do processo de dissolução

Miscibilidade (líquido+ líquido)

Solubilidade

(sólido+líquido)

Forças intermoleculares

Forças van der Waals

Keesom

dipolo permanente - dipolo permanente

polar-polar

$$E_{k} = -\frac{2}{3} \frac{1}{r^{*}} \frac{\mu_{i}^{2} \mu_{i}^{2}}{kT}$$

Debye

dipolo permanente - dipolo induzido

polar-apolar

$$E_{b} = -\frac{\alpha_{1}\mu_{12}}{r^{4}}$$

London

dipolo instantâneo - dipolo induzido

todas moleculas

$$E_{L} = -\frac{3I_{1}I_{2}}{2(I_{1}+I_{2})}\frac{\alpha_{1}\alpha_{2}}{r^{4}}$$

r = distância intermolecular

μ = momento dipolar

T = temperatura

a = polarizabilidade

Depende da diferença de electronegatividades entre átomos da molécula

Depende do tamanho da núvem electrónica (nº electrões) da molécula

(capacidade de distorção da nuvem eletrónica)

Pontes de Hidrogénio (PH):

N-H...X O-H...X F-H...X (X = N, O, F)

Previsão de Miscibilidade (análise de interações intermoleculares)

Exemplo:

Polaridade: depende da diferença de eletronegatividade entre os átomos e da geometria molecular

	K	D	L	PH	
$n-C_6H_{14}/$ $n-C_6H_{14}$	N	N	S+++	N	
H ₂ O/ H ₂ O	S	S	S+	S	
<i>n</i> -C ₆ H ₁₄ / H ₂ O	N	\$	S++	N	
$\neq \qquad \neq \qquad = \qquad \neq$ Conclusão: forças diferentes \rightarrow imiscíveis					

Imiscível
$$\neq \neq = \neq$$
 (Forças \neq s)

Miscível $= = = = = (Forças = s)$

Parcialmente Miscível $= = = = \neq$

Apolares μ pequeno/nulo lig. entre átomos com mm electronegatividade Sem PH Solventes

Polares μ elevado lig. entre átomos com ≠s electronegatividades Com PH

Líquidos conhecidos

Líquidos "mistério" (X, Y, Z)

Quais os líquidos "mistério" (X, Y, Z)?

Registo das <u>observações experimentais</u>

	X	Y	Z	
Água (H ₂ O)				
Metanol (MeOH)				I Imiscível M Míscível
Tolueno (C ₆ H ₅ CH ₃)				PM Parcialmente Miscível

Previsões teóricas

Grupo 1: X/água, X/metanol, X/tolueno

Grupo 2: Y/água, Y/metanol, Y/tolueno

Grupos 3 e 4: Z/água, Z/metanol, Z/tolueno

Tabela de Miscibilidade

	K	D	L	PH
X/X				
água/água				
X/água				
Conclusão:				

Material e reagentes

Agitar vigorosamente cada um dos tubos

Registar observações

Quais os líquidos "mistério" (X, Y, Z)?

Registo das <u>observações experimentais</u>

	X	Y	Z
Água (H ₂ O)	I	M	PM
Metanol (MeOH)	PM/I	M	M
Tolueno (C ₆ H ₅ CH ₃)	M	PM/I	M

n-Hexano

Etilenoglicol

Éter dietílico

Miscibilidade para X: n-hexano (grupo 1)

	K	D	L	PH
$n-C_6H_{14}/n-C_6H_{14}$	N	N	S+++	N
H ₂ O/H ₂ O	S	S	S+	S
$n-C_6H_{14}/H_2O$	N	S	S++	N

Conclusão: forças semelhantes/diferentes? ≠≠=≠ líquidos miscíveis/imiscíveis/parcialmente miscíveis? I

	K	D	L	PH
$n-C_6H_{14}/n-C_6H_{14}$	N	N	S+++	N
MeOH/MeOH	S	S	S+	S
<i>n</i> -C ₆ H ₁₄ /MeOH	N	S	S++	N

Conclusão: forças semelhantes/diferentes? ≠ ≠=≠ líquidos miscíveis/imiscíveis/parcialmente miscíveis? I

	K	D	L	PH
$n-C_6H_{14}/n-C_6H_{14}$	N	N	S+++	N
Tolueno/Tolueno	N	N	S+++	N
<i>n</i> -C ₆ H ₁₄ /Tolueno	N	N	S+++	N

Conclusão: forças semelhantes/diferentes? ====

líquidos miscíveis/imiscíveis/parcialmente miscíveis? M

Miscibilidade para Y: etilenoglicol (grupo 2)

	K	D	L	PH
Et.glicol/Et.glicol	S	S	S+++	S
H ₂ O/H ₂ O	S	S	S+	S
Et.glicol/H ₂ O	S	S	S++	S

Conclusão: forças semelhantes/diferentes? ====

líquidos miscíveis/imiscíveis/parcialmente miscíveis? M

	K	D	L	PH
Et.glicol/Et.glicol	S	S	S+++	S
MeOH/MeOH	S	S	S+	S
Et.glicol/MeOH	S	S	S++	S

Conclusão: forças semelhantes/diferentes? ====

líquidos miscíveis/imiscíveis/parcialmente miscíveis? M

	K	D	L	PH
Et.glicol/Et.glicol	S	S	S+	S
Tolueno/Tolueno	N	N	S+++	N
Et.glicol/Tolueno	N	S	S++	N

Conclusão: forças semelhantes/diferentes? ≠≠=≠

líquidos miscíveis/imiscíveis/parcialmente miscíveis? I

Miscibilidade para Z: éter dietílico (grupos 3, 4)

	K	D	L	PH
Et ₂ O/Et ₂ O	S	S	S+++	N
H ₂ O/H ₂ O	S	S	S+	S
Et ₂ O/H ₂ O	S	S	S++	S

Conclusão: forças semelhantes/diferentes? ===≠

líquidos miscíveis/imiscíveis/parcialmente miscíveis? PM

Zona apolar volumosa

Polaridade intermédia

	K	D	L	PH
Et ₂ O/Et ₂ O	S	S	S+++	N
MeOH/MeOH	S	S	S+	S
Et ₂ O/MeOH	S	S	S++	S

Conclusão: forças semelhantes/diferentes? ===≠

líquidos miscíveis/imiscíveis/parcialmente miscíveis? PM

M: Polaridades intermédias

	K	D	L	PH
Et ₂ O/Et ₂ O	S	S	S+	N
Tolueno/Tolueno	N	N	S+++	N
Et ₂ O/Tolueno	N	S	S++	N

Conclusão: forças semelhantes/diferentes? ≠≠==

líquidos miscíveis/imiscíveis/parcialmente miscíveis? PM

M: Zona apolar volumosa

Solubilidade

(sólido+líquido)

Solutos

Compostos Moleculares

As moléculas mantêm a sua individualidade (identidade) química *Ex. sacarose, etilenoglicol*

Compostos Iónicos

Dissociam-se nos seus iões em solventes polares (H₂O); solvatação dos iões pelos dipolos elétricos do solvente Ex. NaCl, NH₄Cl, CaCl₂

Termodinâmica da dissolução (A+B)

No processo de dissolução:

- 1. Quebra de ligações A-A: consome E
- 2. Quebra de ligações B-B: consome E
- $\Delta H < 0$
- 3. Formação de ligações A-B: liberta E

Critério energético (entálpico)

FIM A-A, B-B < A-B

Libertação de energia em termos globais

∆H_{dissol.} < 0, exotérmico → **Favorece dissolução**

FIM A-A, B-B > A-B

Consumo de energia em termos globais

∆H_{dissol.} > 0, endotérmico → Não é favorável à dissolução

Critério entrópico

Entropia: grau de desordem

A entropia de dissolução é tipicamente positiva → Favorece dissolução

Critério absoluto (entálpico + entrópico)

Energia de Gibbs ($\Delta G < 0 \rightarrow Espontâneo$)

$$\Delta G_{dissol.} = \Delta H_{dissol.} - T\Delta S_{dissol.}$$

$$T\Delta S_{dissol.} > \Delta H_{dissol.} \rightarrow espontâneo$$

$$T\Delta S_{dissol.} < \Delta H_{dissol.} \rightarrow n\tilde{a}o-espontaneo$$

Testes de solubilidade

NH₄Cl

 $\Delta G_{dissol.} = \Delta H_{dissol.} - T\Delta S_{dissol.}$

CaCl₂

 $(T\Delta S_{dissol.} > \Delta H_{dissol})$ espontâneo

espontâneo