

Spark Streaming

Reading and querying continuous data streams

Structured Streaming

- Data frames as streams
- Sources of streams
- Managing streams
- Querying streams

What is a data stream?

A data stream is an infinite sequence of events or observations:

- Data is usually associated with a timestamp
- The observation/event is represented either as raw data (text), tuples (SQL) or as complex objects (JSON)
- Data stream generators:
 - Sensors (Internet Of Things -IoT-)
 - Social networks (Twitter, LinkedIn, Facebook, etc.)
 - News channels (Feeds)
 - Any temporary measure (prices, indices, etc.)
 - https://www.pubnub.com/demos/real-time-data-streaming/?show=demo

What is data streaming?

They are the techniques to efficiently process data incrementally:

- Real-time processing:
 - buffer the streamed data
 - process buffered data (the result is also data stream)
 - get rid of buffered data
- It requires event-based programming (e.g., Nodejs)
- It requires window operations (time-based buffers)
 - Tumbling and sliding windows
 - Distribution & join of windows
- Real-time vs batch processing

Data streams in Data Science

The data science hypotheses about data streams are associated with:

- Monitoring and Prevention (alarms, anti-fraud, cyber-attacks, etc.)
- Agents and decision making (purchases/sales, marketing, etc.)
 - Related to Reinforcement Learning processes
- Concept drift:
 - data changes and makes the analytical models obsolete
 - it triggers the re-training or tuning of current models
- Causal associations between data streams and external complex events
 - Breakdowns, Accidents, Breakages, Lack of stock, etc.
 - Reputation, Risk, Fraud, Trends, etc.

Event hubs

Combining streams

Data Streaming in Spark

Spark Streaming

Old API vs. Structured Streaming

```
OLD WAY: Discrete Data Streams (DStream).
This is deprecated.
from pyspark.streaming import StreamingContext
sc = SparkContext(...)
ssc = StreamingContext(sc, 30) #seconds
sourceRDD = ssc.textFileStream(data dir)
## transformations on sourceRDD
sourceRDD.foreachRDD(process)
ssc.start()
ssc.awaitTermination()
```

CURRENT WAY: Structured Data Streaming

```
dfs = spark.readStream\
          .schema(schema) \
          .option("header", True) \
          .format("csv") \
          .load("./stream dir")
## transformations
res df = dfs.select("*")
query = (res df.writeStream \
            .format("memory") \
            .queryName("selectTable") \
            .outputMode("complete") \
            .start() \
            .awaitTermination() )
```

Structured data processing with Spark

Intermission:

Basics of Spark Streaming

- Spark Streaming uses micro-batch processing
 - Buffers are RDDs (deprecated) or Data Frames
 - Micro-batches are triggered by events
- Key concepts:
 - Unbounded tables
 - Triggers
 - Watermarking

Minibatch-based processing

Unbounded tables

Structured Streaming Model treat data streams as unbounded tables

Triggers

- Define how often streaming computations are performed and results are produced.
- Controls the latency and throughput of the streaming application..
- Balances resource utilization and result timeliness.
 - Shorter intervals reduce latency but may increase resource usage.
 - Choose triggers based on application requirements.
- Types of Triggers:
 - Fixed Interval Micro-Batch: Executes the query at regular intervals (e.g., every 1 second)
 - .trigger(ProcessingTime("1 second"))
 - One-Time (Batch) Trigger: Processes all available data once and then stops.
 - .trigger(Once())
 - Continuous Processing (Experimental): Processes data continuously with low latency.
 Example:
 - .trigger(Continuous("10 seconds"))

Triggers

Programming Model for Structured Streaming

Watermarking

- In real-world streams, data can arrive late due to network delays or out-of-order events.
- Watermarking defines how to handle late-arriving data by setting a threshold of how long to wait for late data.
- It helps manage state and ensures timely results.
- Use timestamps from the data itself (event time) instead of processing time.
- The watermark is the maximum allowed lateness
 - withWatermark("eventTime", "10 minutes")
- Aggregations retain state only for data within the watermark threshold.
- Late data beyond the watermark is discarded or handled separately.

Questions?