

A tree generating app for Bioinformatics

By: Sal Jahromi

FASTA FILES

This app uses FASTA files to generate phylogenetic trees.

FASTA = A file format used by bioinformaticians and biochemists, which contains nucleotide or amino acid sequences, along with the names of the hosts.

Phylogenetic Tree = A tree diagram which represents the evolutionary relationship of organism with each other and their common ancestors

>Cat
ACTCCGTCTCGAGCGCAAGCT
>Bird
ACTAAACCTTTCGGTGAGTCC
>Bat
ACTCGGGCCACTACTACTTTCAA

https://plato.stanford. edu/entries/phylogene tic-inference/

APP BUILT IN R-SHINY

- Why R?
 - R is a very powerful tool for data analysis.
 - lots of built-in libraries to read and analyze FASTA files with.
 - Excellent plots (trees, graphs, charts, etc.)

- R Shiny?
 - R Shiny is used to build UI apps based on R
 - Makes for a user-friendly interface

THE APP

Purpose: To depict the following coronavirus types in a phylogenetic tree, to better understand their evolutionary relationships.

- SARS CoV1 E2
- SARS CoV1 AS
- Pangolin coronavirus
- Bat coronavirus
- SARS-CoV-2 iso 1
- SARS CoV2 Wuhan-Hu
- Camel MERS-CoV
- MERS Betacoronavirus England 1
- MERS coronavirus

To accomplish this, the spike protein amino acid sequence of the virus types is collected within a FASTA file.

-Sequences were collected from the NCBI website.

Spike.fa

Amino acid sequence of the spike proteins of the coronavirus types in this study

☐ Bootstrap Tree

Generate Tree!

Output Results

Can simply drag and drop file or select it through browsing.

Inputs	
Sequence Type	
Amino Acid	
O Nucleotide (DNA)	
Drag and drop here	`
Browse No file selected	
	,
Input:	
MSA Method:	
ClustalW	
Clustalw	
Tree Reconstruction Method	
UPGMA	.▼.
Bootstrap Iterations	
500	
☐ Show File Sequences	
☐ Bootstrap Tree	
Generate Tree!	

bioNphylo

Output Results +

bioNphylo

Select desired settings

Select what we want to be shown. If nothing is selected, only a tree is shown

Click to generate the tree!

Output Results Nothing to show...

oioNphylo

A loading screen which updates, letting the user know what the program is doing

bioNphylo

Camel MERS-CoV

73 MERS coronavirus

100 MERS Betacoronavirus England 1

The file sequence is shown here.

There are 9 sequences (9 subjects) and the length of each sequence is under "width".

Phylogenetic tree given with bootstrap values

