1 Courbes de Bézier

1.1 Triangle de Pascal

$$\begin{matrix} 1 \\ 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ 1 & 5 & 10 & 10 & 5 & 1 \end{matrix}$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

$$\binom{n}{k} = C_k^n = \frac{n!}{k!(n-k)!}$$

1.2 Polynômes de Bernstein

$$B_i^m(t) = \binom{m}{i} t^i (1-t)^{m-i}$$

	_	i = 1	i = 2	i = 3
0	$B_0^0(t) = 1$			
1	$B_0^1(t) = 1 - t$	$B_1^1(t) = t$		
2	$B_0^2(t) = (1-t)^2$	$B_1^2(t) = 2t(1-t)$	$B_2^2(t) = t^2$	
3	$B_0^3(t) = (1-t)^3$	$B_1^{\frac{1}{2}}(t) = 2t(1-t)$ $B_1^{3}(t) = 3t(1-t)^{2}$	$B_2^3(t) = 3t^2(1-t)$	$B_3^3(t)=t^3$