Table of Contents

1. Introduction	1
1.1 Why a new Parking System	2
1.2 What is IoT	3
1.3 Challenges faced in a Smart Parking System	4
1.4 Features of a IoT Based Parking System	6
1.5 The Problem	7
1.6 Scope of the Problem	
1.7 Summary	8
2. Background & Literature Survey	8
2.1 Performance Metrics	8
2.2 State-of-the-art Parking Management Solutions	g
2.3 Challenges	10
2.4 Related Work	10
2.4.1 Parking Guidance Information System	10
2.4.2 Transit Based Information System	12
2.4.3 Smart Payment System	13
2.4.4 E-Parking	14
2.4.5 Automated Parking	15
2.5 Summary	16
3. Proposed Architecture and Solution	17
3.1 System Overview	17
3.2 System Architecture	18
3.2.1 Cloud Based Database	18
3.2.2 Local Unit	19
3.2.3 Software Client	19
3.3 Network Architecture	20
3.3.1 Parking Network	20
3.3.2 Selection Based on Cost	22
3.4 Working Algorithm	23
3.5 Mathematical Model	25
3.6 Summary	26
4. Simulation of the ProposedSystem	27
4.1 Introduction	27
4.2 Simulation Setup	27
4.3 ARENA Simulation Tool	31
4.3.1 What is Arena Software	31

	4.3.2 Working with Arena	31
	4.3.3 The Arena Modelling Environment	32
	4.3.4 Entities in Arena	33
	4.3.5 Modules in Arena	33
	4.4 Simulation Scenarios	42
	4.4.1 Animation Based Model	42
	4.4.2 Entity Based Model	43
	4.4.3 Working Method	44
	4.5 Simulation Results	45
	4.6 Summary	46
5.	Implementation of the System using IoT	47
	5.1 Hardware Requirements and Specifications	47
	5.1.1 Infra-Red Sensors	47
	5.1.2 Arduino Micro-controller	54
	5.1.3 Servo Motors	59
	5.1.4 Bread Board	62
	5.1.5 ESP8266 Wi-Fi Module	65
	5.2 System Setup and Working	67
	5.2.1 Setup	67
	5.2.2 Working	68
	5.3 Summary	69
6.	Conclusion and FutureWork	70