

2(1).	The spread of news is better to be modelled as an exponential that function
.1	than a linear function because news spread through 'word of mouth'. Hence
	will better model the task and give better predictions.

(b). The gradient descent update rule is updating the weight vector W,

and g is the gradient of E given w, dE

It is a good approach for this model because the exponential function has one unique global minima.

We want to get the expression de

 $\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \sum_{i=1}^{n} (y_i - f(x_i))^2$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial w_i} \left(y_i - f(x_i) \right)^2$$

 $= \sum_{i=1}^{n} 2(y_i' - f(x_i)) \frac{\partial}{\partial w_i} (y_i' - f(x_i))$

$$=2\sum_{i=1}^{n}(y_i-f(x_i))\left(\frac{\partial}{\partial w_i}y_i-\frac{\partial}{\partial w_i}f(x_i)\right)$$

= 2 \(\frac{5}{1=1}\) (\(\frac{9}{1} - e^{wx}\) (\(\weak\)

2(d).	$\frac{\partial E}{\partial t} = 2\left[\left(2 - e^{\frac{1}{2}}\right)\left(e^{\frac{1}{2}}\right) + \left(3.25 - e^{\frac{1}{2}}\right)\left(e^{\frac{1}{2}}\right) + \left(11 - e^{\frac{1}{2}}\right)\left(e^{\frac{1}{2}}\right)\right]$
sonoti !	=2(2-e)e+(3.25-e)e+(11-e)e]=44
9)	
1/3	$\frac{\partial E}{\partial w_1} = 2 \left[(2 - e^{0.5})(e^{0.5}) + (3.25 - e^{1})(e^{1}) + (11 - e^{2})(e^{2}) \right]$
.Ne too	the studient descent update rule is updated and soll 10)
	-4 -7.11 gr-w-w
	W = W - 79 = 1 - (0.001)(57.41)
	and a se the gradient of E given w PP.O =
	ws
2(e)	It Is a good approach for this model because the exponential fun
	has one unique alobal minima.
0/2	
	(1) We want to get the expression DE
	wa .
	*((x)+-18) 3 = = 30.
	1=1 Pag 9nd
2(1).	Gradient descent is computationally expensive method as we take
D	small steps downhill. This is a problem with large datasets.
11	A A
	いがけて、いるのは、サールンと
	to 12
	===== (4;-1(4)) (300) (300) =================================
	1 3の人は対すール、一世にも

3.(a). mean
$$\mu = \left[\binom{1}{0} + \binom{2}{0} + \binom{4}{0} + \binom{2}{2.5} + \binom{4}{2.5} + \binom{5}{2.5} \right] \times \frac{1}{6}$$

$$= \frac{1}{6} \binom{18}{7.5} = \binom{3}{1.25}$$
 May 4 Ama 2 again

For first iteration, calculate Euclidean distance from my and mz to each data point; alternatively, we can visually see from the plot above that we can assign the following points to clusters my and mz:

$$m_1 = [d, e, f]$$
 and $m_2 = [a, b, c]$

The new means of each centroids will be:

$$m_{1} = \frac{1}{3} \left[{2 \choose 2.5} + {4 \choose 2.5} + {5 \choose 2.5} \right] \qquad m_{2} = \frac{1}{3} \left[{1 \choose 0} + {2 \choose 0} + {4 \choose 0} \right]$$

$$m_2 = \frac{1}{3} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix} \right)$$

$$= \binom{11/3}{5/2} = \binom{7/3}{5}$$

Repeat for second iteration. Again, we get the following assignments:

$$m_1 = [d, e, f]$$
 and $m_2 = [a, b, c]$

The algorithm terminates since there are no centroid changes.

.. In cluster my, we have instances d, e, f In cluster m2, we have instances a, b, c

$$m_1 = \binom{11/3}{5/2} \qquad m_2 = \binom{7/3}{0}$$

4(a),	I would check for missing values and possible outlier as these
- 10 mm	will likely affect predictions.
0.5	I would compare ROC ourses for each of the vollecent values
(3	nathby with went asympto boo not been al
4(6).	To give an unbiased estimate of the performance of each method,
	I would set aside a part of training data to be my testing set
12/2	and learn the models without using any of the test set. I then will
	then calculate the testing error.
/	
Ca.	No. Having too many hidden units may give low training error but
21	high generalization error because of overfitting
12	
(d)	I think-k-nearest-neighbours would handle this better.
	k-NN gives non-linear decision boundary while log regression gives linear
0	boundanes.
(4	Another classifier could be a Naive Bayes classifier as it
	handles missing values well.