DIS 10

1 ER Diagrams

We want to store sports teams and their players in our database. Draw an ER diagram corresponding to data given below:

- Every Team in our database will have a unique team_name and a stadium where they play their games.
- Each Coach has a name.
- Each Player will have a unique player_id, a name and an average score.
- Our database will contain who Plays_For which team and also the "position" that the player plays in. We also need to store who Captains a team, and who Coaches a team.
- Every Team needs players, and needs exactly one captain.
- Each Player can be on at most one team, but may currently be a free agent and not on any team.
- Each team needs coaches and may have many.
- A Coach is uniquely identified by which team they coach.

CS 186, Fall 2020, DIS 10

2 Functional Dependencies

- 1. Consider a set of functional dependencies $F = \{X \rightarrow Y, Y \rightarrow Z\}$. For each of the following symbols or expressions, indicate whether it is (a) an attribute, (b) a set of attributes, (c), a set of sets of attributes, (d) a functional dependency, (e) a set of functional dependencies, or (f) none of the above.
 - (a) X (b) a set of attributes
 - (b) XY (b) a set of attributes
 - (c) X -> Y (d) a functional dependency
 - (d) F (e) a set of functional dependencies
 - (e) F+ (e) a set of functional dependencies
 - (f) X+ (b) a set of attributes
 - (g) Armstrong's reflexivity axiom (f) an axiom
- 2. Consider a relation R(x, y, z) and the list of functional dependencies $X \rightarrow Y$, $XY \rightarrow YZ$, and $Y \rightarrow X$ where $X = \{x\}$, $Y = \{y\}$, and $Z = \{z\}$. For each of the following relations, indicate which functional dependencies it might satisfy.

х	У	z
1	2	0
1	2	1
1 2	2 2 3 3	0 1 0 0
2	3	0
x	У	Z
1	y 2 3 3	z
1 2	3	0
2	3	0
х	У	Z
1 2	y 3	1 0
2	3	0
x	У	z
1	y 3	1

- 1. None
- 2. XY -> YZ
- 3. X -> Y, XY -> YZ
- 4. $X \rightarrow Y$, $XY \rightarrow YZ$, $Y \rightarrow X$
- 3. Consider the set $F = \{A \rightarrow B, AB \rightarrow AC, BC \rightarrow BD, DA \rightarrow C\}$ of functional dependencies. Compute the following attribute closures.
 - (a) A+ ABCD
 - (b) B+, C+, D+ B, C, D; B, C, and D do not appear alone on the left of any functional dependency, so nothing is in their attribute closures besides themselves.
 - (c) AB+, AC+, AD+ ABCD; A+ = ABCD, so AX = ABCD for any X.
 - (d) BC+ BCD

- (e) BD+BD
- (f) CD+CD
- (g) BCD+ BCD
- 4. Consider again the set F of functional dependencies from Question 3. Indicate whether the following sets of attributes are candidate keys, superkeys (but not candidate keys), or neither.
 - (a) A candidate key because A+ is the minimal number of keys to cover all symbols in F
 - (b) B, C, D neither because neither of them cover all symbols in F
 - (c) AB, AC, AD superkeys because A is a candidate key, so any more symbols added to A is not the minimal set of symbols to cover all symbols in F and thus, a superkey
 - (d) BC neither
 - (e) BD neither
 - (f) CD neither
 - (g) BCD neither

3 Normal Forms

1. Decompose R = ABCDEFG into BCNF, given the functional dependency set: $F = AB \rightarrow CD$, $C \rightarrow EF$, $G \rightarrow A$, $G \rightarrow F$, $CE \rightarrow F$.

AB→CD => decompose ABCDEFG into ABCDEF, ABG

 $C \rightarrow EF = > decompose ABCDEF into ABCD, CEF$

 $G \rightarrow A => decompose ABG into AG, BG$

Final relations: ABCD, CEF, AG, BG.