

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte

Campus de Natal

Lista de Cálculo 1: Derivada

Prof. Dr. Irineu Lopes Palhares Junior

Lista de exercícios

Natal

Setembro de 2022

Sumário

1	Retas tangentes e taxas de variação	2
2	Definição de derivada	5
3	Regras de derivação	5
4	Derivadas de funções trigonométricas, exponencial e logarítmica.	11
5	Regra da Cadeia	25
6	Diferenciação implícita	31
7	Taxas relacionadas	31
8	Respostas dos exercícios	31

1	Retas tangentes e taxas de variação	

Exercícios 7.2 ====

- 1. Seja $f(x) = x^2 + 1$. Calcule
 - a) f'(1)
 - b) f'(0)
 - c) f(x)
- 2. Seja f(x) = 2x. Pensando geometricamente, qual o valor que você espera para f(p)? Calcule f(p).
- 3. Seja f(x) = 3x + 2. Calcule
 - a) f'(2)
 - b) f'(0)
 - c) f'(x)
- 4. Calcule f'(p), pela definição, sendo dados

$$a) f(x) = x^2 + x e p = 1$$
 $b) f(x) = \sqrt{x} e p = 4$

$$b) f(x) = \sqrt{x} e p = 4$$

$$c) f(x) = 5x - 3 e p = -3$$

$$c) f(x) = 5x - 3 \text{ e } p = -3$$
 $d) f(x) = \frac{1}{x} \text{ e } p = 1$

$$e)f(x) = \sqrt{x} e p = 3$$

$$e) f(x) = \sqrt{x} e p = 3$$
 $f) f(x) = \frac{1}{x^2} e p = 2$

$$g) f(x) = 2x^3 - x^2 e p = 1$$
 $h) f(x) = \sqrt[3]{x} e p = 2$

$$h) f(x) = \sqrt[3]{x} e p = 2$$

Determine a equação da reta tangente em (p, f(p)) sendo dados 5.

$$a)f(x) = x^2 e p = 2$$

$$a) f(x) = x^2 e p = 2$$
 $b) f(x) = \frac{1}{x} e p = 2$

$$c) f(x) = \sqrt{x} e p = 9$$

$$c) f(x) = \sqrt{x} e p = 9$$
 $d) f(x) = x^{2} - x e p = 1$

6. Calcule f(x), pela definição.

$$a)f(x) = x^2 + x$$

$$b)f(x) = 3x - 1$$

$$c) f(x) = x^3$$

$$d)f(x) = \frac{1}{x}$$

$$e) f(x) = 5x$$

$$f(x) = 10$$

$$g)f(x) = \frac{x}{x+1}$$

$$h)f(x) = \frac{1}{x^2}$$

- 7. Dê exemplo (por meio de um gráfico) de uma função f, definida e derivável em \mathbb{R} , tal que f'(1) = 0.
- 8. Dê exemplo (por meio de um gráfico) de uma função f, definida e derivável em \mathbb{R} , tal que f'(x) > 0 para todo x.
- 9. Dê exemplo (por meio de um gráfico) de uma função f, definida e derivável em \mathbb{R} , tal que f'(0) < f'(1).
- 10. Dê exemplo (por meio de um gráfico) de uma função f, definida e contínua em \mathbb{R} , tal que f'(1) não exista.
- 11. Dê exemplo (por meio de um gráfico) de uma função f, definida e derivável em \mathbb{R} , tal que f'(x) > 0 para x < 1 e f'(x) < 0 para x > 1.
- 12. Dê exemplo (por meio de um gráfico) de uma função f, definida e derivável em \mathbb{R} , tal que f'(x) > 0 para x < 0, f'(x) < 0 para 0 < x < 2 e f'(x) > 0 para x > 2.
- 13. Dê exemplo (por meio de um gráfico) de uma função f, definida e derivável em \mathbb{R} , tal que f'(0) = 0 e f'(1) = 0.
- 14. Mostre que a função

$$g(x) = \begin{cases} 2x + 1 & \text{se } x < 1 \\ -x + 4 & \text{se } x \ge 1 \end{cases}$$

não é derivável em p = 1. Esboce o gráfico de g.

15. Seja
$$g(x) = \begin{cases} x^2 + 2 & \text{se } x < 1 \\ 2x + 1 & \text{se } x \ge 1 \end{cases}$$

- *a*) Mostre que g é derivável em p = 1 e calcule g'(1).
- *b*) Esboce o gráfico de *g*.

16. Seja
$$f(x) = \begin{cases} 2 & \text{se } x \ge 0 \\ x^2 + 2 & \text{se } x < 0 \end{cases}$$

- *a*) Esboce o gráfico de *f*.
- b) f é derivável em p = 0? Em caso afirmativo, calcule f (0).

- 2 Definição de derivada
- 3 Regras de derivação

gráfico de $f(x) = \sqrt[3]{x}$ no ponto (8, 2).

Exercícios 7.3 =====

- 1. Seja $f(x) = x^5$. Calcule
 - a) f'(x)
 - b) f(0)
 - c) f(2)
- 2. Calcule g'(x) sendo g dada por
 - a) $g(x) = x^6$
 - b) $g(x) = x^{100}$
 - $c) g(x) = \frac{1}{x}$
 - d) $g(x) = x^2$
 - $e) g(x) = \frac{1}{x^3}$
 - $f) g(x) = \frac{1}{x^7}$
 - g) g(x) = x
 - h) $g(x) = x^{-3}$
- 3. Determine a equação da reta tangente ao gráfico de $f(x) = \frac{1}{x}$ no ponto de abscissa 2. Esboce os gráficos de f e da reta tangente.
- 4. Determine a equação da reta tangente ao gráfico de $f(x) = \frac{1}{x^2}$ no ponto de abscissa 1. Esboce os gráficos de f e da reta tangente.
- 5. Seja $f(x) = \sqrt[5]{x}$. Calcule.
 - a) f'(x)
 - b) f(1)
 - c) f'(-32)
- 6. Calcule g'(x), sendo g dada por

Solução

i) Para n = 2 é verdadeira (D1).

ii) Seja $k \ge 2$. De

$$f_1 + f_2 + \dots + f_k + f_k + 1 = [f_1 + f_2 + \dots + f_k] + f_{k+1}$$

segue que se a afirmação for verdadeira para n=k também o será para n=k+1.

EXEMPLO 8. Calcule a derivada

$$a) f(x) = 3x^5 + \frac{1}{3}x^4 + x + 2.$$

$$b) g(x) = x^2 + \frac{1}{x^2} + \sqrt{x}.$$

Solução

$$a)f'(x) = \left\lceil 3x^5 + \frac{1}{3}x^4 + x + 2 \right\rceil' = (3x^5)' + \left(\frac{1}{3}x^4\right)' + (x)' + (2)' = 15x^4 + \frac{4}{3}x^3 + 1.$$

Assim,

$$f'(x) = 15x^4 + \frac{4}{3}x^3 + 1.$$

$$b) \ g'(x) = \left[x^2 + \frac{1}{x^2} + \sqrt{x} \right]' = (x^2)' + \left(\frac{1}{x^2} \right)' + (\sqrt{x})' = 2x - \frac{2}{x^3} + \frac{1}{2\sqrt{x}},$$

ou seja,

$$g'(x) = 2x - \frac{2}{x^3} + \frac{1}{2\sqrt{x}}.$$

Exercícios 7.7

1. Calcule f'(x).

a)
$$f(x) = 3x^2 + 5$$

b) $f(x) = x^3 + x^2 + 1$
c) $f(x) = 3x^3 - 2x^2 + 4$
d) $f(x) = 3x + \sqrt{x}$
e) $f(x) = 5 + 3x^{-2}$
f) $f(x) = 2\sqrt[3]{x}$
h) $f(x) = \frac{4}{x} + \frac{5}{x^2}$
i) $f(x) = \frac{2}{3}x^3 + \frac{1}{4}x^2$
j) $f(x) = \sqrt[3]{x} + \sqrt{x}$
h) $f(x) = 6x^3 + \sqrt[3]{x}$
m) $f(x) = 6x^3 + \sqrt[3]{x}$

- n) $f(x) = 5x^4 + bx^3 + cx^2 + k$, em que b, c e k são constantes.
- 2. Seja $g(x) = x^3 + \frac{1}{x^3}$. Determine a equação da reta tangente ao gráfico de g no ponto (1, q(1)).
- 3. Seja $f(x) = x^2 + \frac{1}{x^2}$.
 - Determine o ponto do gráfico de *f* em que a reta tangente, neste ponto, seja paralela ao eixo *x*.
 - *b*) Esboce o gráfico de *f*.
- Seja $f(x) = x^3 + 3x^2 + 1$.

 - Estude o sinal de f(x).

 Calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.
 - Utilizando as informações acima, faça um esboço do gráfico de f.
- Mesmo exercício que o anterior, considerando a função $f(x) = x^3 + x^2 5x$.
- Seja $f(x) = x^3 + 3x$.
 - Determine a equação da reta tangente ao gráfico de *f* no ponto de abscissa
 - Estude o sinal de f'(x).
 - Esboce o gráfico de *f*.
- Calcule F'(x) em que f(x) é igual a

$$a) \; \frac{x}{x^2 + 1}$$

c)
$$\frac{3x^2+3}{5x-3}$$

$$e) \, 5x + \frac{x}{x-1}$$

$$g) \; \frac{\sqrt[3]{x} + x}{\sqrt{x}}$$

$$b) \; \frac{x^2 - 1}{x + 1}$$

$$d) \ \frac{\sqrt{x}}{x+1}$$

$$f(x) \sqrt{x} + \frac{3}{x^3 + 2}$$

h)
$$\frac{x + \sqrt[4]{x}}{x^2 + 3}$$

8. Seja
$$g(x) = \frac{x}{x^2 + 1}$$
.

- Determine os pontos do gráfico de *g* em que as retas tangentes, nestes pontos, sejam paralelas ao eixo *x*.
- b) Estude o sinal de g'(x).
- c) Calcule $\lim_{x \to +\infty} g(x) \in \lim_{x \to -\infty} g(x)$.
- Utilizando as informações acima, faça um esboço do gráfico de *q*.
- Calcule f(x) em que f(x) é igual a

a)
$$3x^2 + 5 \cos x$$

$$c) x \operatorname{sen} x$$

$$e) \; \frac{x+1}{\operatorname{tg} \; x}$$

$$g) \frac{\sec x}{3x + 2}$$

i)
$$\sqrt{x} \sec x$$

$$n) x^2 + 3x tg x$$

$$p) \frac{x+1}{x \text{ sen } x}$$

$$r$$
) $(x^3 + \sqrt{x})$ cosec x

b)
$$\frac{\cos x}{x^2 + 1}$$

$$b) \frac{\cos x}{x^2 + 1}$$

$$d) x^2 \operatorname{tg} x$$

$$f) \frac{3}{\text{sen } x + \cos x}$$

$$h)\cos x + (x^2 + 1)\sin x$$

$$j$$
) 3 cos x + 5 sec x

$$m$$
) 4 sec $x + \cot x$

$$o) \frac{x^2 + 1}{\sec x}$$

$$q) \frac{x}{\text{cosec } x}$$

s)
$$\frac{x + \sin x}{x - \cos x}$$

10. Seja $f(x) = x^2 \operatorname{sen} x + \cos x$. Calcule:

- a) f'(x)
- b) f'(0)
- c) f(3a)
- d) $f'(x^2)$
- 11. Seja $f(x) = \text{sen } x + \cos x$, $0 \le x \le 2\pi$.
 - a) Estude o sinal de f(x).
 - *b*) Faça um esboço do gráfico de *f*.
- 12. Calcule f'(x).

$$a) f(x) = x^{2} e^{x}$$

$$b) f(x) = 3x + 5 \ln x$$

$$c) f(x) = e^{x} \cos x$$

$$d) f(x) = \frac{1 + e^{x}}{1 - e^{x}}$$

$$e) f(x) = x^{2} \ln x + 2e^{x}$$

$$f) f(x) = \frac{x + 1}{x \ln x}$$

$$g) f(x) = 4 + 5x^{2} \ln x$$

$$h) f(x) = \frac{e^{x}}{x^{2} + 1}$$

$$i) f(x) = \frac{\ln x}{x}$$

$$j) f(x) = \frac{e^{x}}{x + 1}$$

13. Sejam *f*, *g* e *h* funções deriváveis. Verifique que

$$[f(x) g(x) h(x)]' = f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x).$$

- 14. Calcule F'(x) sendo f(x) igual a
 - a) $x e^x \cos x b$
- $b) \quad x_2(\cos x)(1+\ln x)$
- c) $e^x \operatorname{sen} x \operatorname{cos} x$ d) $(1 + \sqrt{x}) e^x \operatorname{tg} x$

7.8. FUNÇÃO DERIVADA E DERIVADAS DE ORDEM SUPERIOR

Sejam f uma função e A o conjunto dos x para os quais f'(x) existe. A função $f':A \to \mathbb{R}$ dada por $x \mapsto f'(x)$, denomina-se função derivada ou, simplesmente, derivada

4	Derivadas	de	tunções	trigonométricas,	exponencial	e loga-
	rítmica.					

a)
$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h} = e^x$$
 pois, $\lim_{h \to 0} \frac{e^h - 1}{h} = 1$ (Exemplo 3-6.3).

b)
$$g'(x) = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim_{h \to 0} \frac{1}{h} \ln\left(1 + \frac{h}{x}\right)$$

$$\left(u = \frac{h}{x}\right)$$

$$= \lim_{u \to 0} \ln(1+u)^{\frac{1}{xu}} = \lim_{u \to 0} \frac{1}{x} \ln(1+u)^{\frac{1}{u}} = \frac{1}{x}$$

pois,
$$\lim_{u \to 0} (1+u)^{\frac{1}{u}} = e$$
 (Exemplo 2-6.3).
$$(e^{x})' = e^{x}$$

$$(\ln x)' = \frac{1}{x}, x > 0$$

$$(e^x)' = e^x$$
$$(\ln x)' = \frac{1}{x}, \ x > 0$$

Exercícios 7.4

- Determine a equação da reta tangente ao gráfico de $f(x) = e^x$ no ponto de abscissa 0.
- Determine a equação da reta tangente ao gráfico de $f(x) = \ln x$ no ponto de abscissa 1. Esboce os gráficos de *f* e da reta tangente.
- Seja $f(x) = a^x$, em que a > 0 e $a \ne 1$ é um real dado. Mostre que $f(x) = a^x \ln a$ a.
- Calcule f'(x).
 - a) $f(x) = 2^x$
 - b) $f(x) = 5^x$
 - c) $f(x) = \pi^x$
 - d) $f(x) = e^x$
- 5. Seja $g(x) = \log_a x$, em que a > 0 e $a \ne 1$ é constante. Mostre que $g'(x) = \frac{1}{x \ln a}.$

- 6. Calcule g'(x)
 - a) $g(x) = \log_3 x$
 - $b) \quad g(x) = \log_5 x$
 - c) $g(x) = \log_{\pi} x$
 - d) $g(x) = \ln x$

7.5. DERIVADAS DAS FUNÇÕES TRIGONOMÉTRICAS

Teorema. São válidas as fórmulas de derivação.

- $a) \operatorname{sen}' x = \cos x$.
- b) $\cos' x = -\sin x$.
- c) $tg'x = sec^2 x$.
- d) $\sec' x = \sec x \operatorname{tg} x$.
- e) cotg' $x = -\csc^2 x$.
- f) cosec' $x = -\csc x \cot x$.

Demonstração

- 1. Seja $f(x) = \operatorname{sen} x$. Calcule.
 - a) f(x)b) $f'\left(\frac{\pi}{4}\right)$
- 2. Determine a equação da reta tangente ao gráfico de f(x) = sen x no ponto de abscissa 0.
- 3. Seja $f(x) = \cos x$. Calcule.
 - a) f(x)
 - b) f(0)

$$c)f'\left(\frac{\pi}{3}\right)$$

$$d)f'\left(-\frac{\pi}{4}\right)$$

- 4. Calcule f'(x) sendo
 - a) $f(x) = \operatorname{tg} x$
 - b) $f(x) = \sec x$
- 5. Determine a equação da reta tangente ao gráfico de $f(x) = \operatorname{tg} x$ no ponto de abscissa 0.
- 6. Seja $f(x) = \cot x$. Calcule.
 - a) f'(x)b) $f'\left(\frac{\pi}{4}\right)$
- 7. Seja $g(x) = \csc x$. Calcule.
 - a) g'(x)b) $g'\left(\frac{\pi}{4}\right)$

7.6. DERIVABILIDADE E CONTINUIDADE

f é contínua em 1, mas não é derivável neste ponto; o gráfico de f apresenta um "bico" no ponto (1, f(1)).

EXEMPLO 3. Seja
$$f(x) = \begin{cases} x^2 & \text{se } x \le 1 \\ 2x - 1 & \text{se } x > 1 \end{cases}$$

- a) f é derivável em 1?
- b) f é contínua em 1?

Solução

$$a) \frac{f(x) - f(1)}{x - 1} = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{se } x < 1 \\ \\ 2 & \text{se } x > 1. \end{cases}$$

$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = 2.$$

Logo, f é derivável em 1 e f(1) = 2.

b) Como *f* é derivável em 1, segue que *f* é contínua em 1. ■

Exercícios 7.6 =

1. Seja
$$f(x) = \begin{cases} x + 1 & \text{se } x < 2 \\ 1 & \text{se } x \ge 2 \end{cases}$$

- *a*) *f* é contínua em 2? Por quê?
- b) f é derivável em 2? Por quê?

2. Seja
$$f(x) = \begin{cases} x^2 & \text{se } x \le 0 \\ -x^2 & \text{se } x > 0 \end{cases}$$

- *a*) *f* é derivável em 0? Justifique.
- *b*) *f* é contínua em 0? Justifique.

3. Seja
$$f(x) = \begin{cases} -x + 3 \text{ se } x < 3 \\ x - 3 \text{ se } x \ge 3 \end{cases}$$

- *a*) *f* é derivável em 3? Justifique.
- *b*) *f* é contínua em 3? Justifique.

7.7. REGRAS DE DERIVAÇÃO

Teorema 1. Sejam f e g deriváveis em p e seja k uma constante. Então as funções f + g, kf e $f \cdot g$ são deriváveis em p e têm-se

(D1)
$$(f + g)'(p) = f'(p) + g'(p)$$
.

(D2)
$$(kf)'(p) = kf'(p)$$
.

(D3)
$$(f \cdot g)'(p) = f'(p) g(p) + f(p) g'(p)$$
.

Demonstração

(D1)
$$(f+g)'(p) = \lim_{x \to p} \frac{[f(x) + g(x)] - [f(p) + g(p)]}{x - p}$$

= $\lim_{x \to p} \left[\frac{f(x) - f(p)}{x - p} + \frac{g(x) - g(p)}{x - p} \right]$

(Em palavras: a derivada de uma soma é igual à soma das derivadas das parcelas.)

(D2)
$$(kf)'(p) = \lim_{x \to p} \frac{kf(x) - kf(p)}{x - p} = k \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = kf'(p),$$

 $(kf)'(p) = kf'(p).$

Solução

i) Para n = 2 é verdadeira (D1).

ii) Seja $k \ge 2$. De

$$f_1 + f_2 + \dots + f_k + f_k + 1 = [f_1 + f_2 + \dots + f_k] + f_{k+1}$$

segue que se a afirmação for verdadeira para n=k também o será para n=k+1.

EXEMPLO 8. Calcule a derivada

$$a) f(x) = 3x^5 + \frac{1}{3}x^4 + x + 2.$$

$$b) g(x) = x^2 + \frac{1}{x^2} + \sqrt{x}.$$

Solução

$$a)f'(x) = \left\lceil 3x^5 + \frac{1}{3}x^4 + x + 2 \right\rceil' = (3x^5)' + \left(\frac{1}{3}x^4\right)' + (x)' + (2)' = 15x^4 + \frac{4}{3}x^3 + 1.$$

Assim,

$$f'(x) = 15x^4 + \frac{4}{3}x^3 + 1.$$

$$b) \ g'(x) = \left[x^2 + \frac{1}{x^2} + \sqrt{x} \right]' = (x^2)' + \left(\frac{1}{x^2} \right)' + (\sqrt{x})' = 2x - \frac{2}{x^3} + \frac{1}{2\sqrt{x}},$$

ou seja,

$$g'(x) = 2x - \frac{2}{x^3} + \frac{1}{2\sqrt{x}}.$$

Exercícios 7.7

1. Calcule f'(x).

a)
$$f(x) = 3x^2 + 5$$

b) $f(x) = x^3 + x^2 + 1$
c) $f(x) = 3x^3 - 2x^2 + 4$
d) $f(x) = 3x + \sqrt{x}$
e) $f(x) = 5 + 3x^{-2}$
f) $f(x) = 2\sqrt[3]{x}$
h) $f(x) = \frac{4}{x} + \frac{5}{x^2}$
i) $f(x) = \frac{2}{3}x^3 + \frac{1}{4}x^2$
j) $f(x) = \sqrt[3]{x} + \sqrt{x}$
h) $f(x) = 6x^3 + \sqrt[3]{x}$
m) $f(x) = 6x^3 + \sqrt[3]{x}$

- n) $f(x) = 5x^4 + bx^3 + cx^2 + k$, em que b, c e k são constantes.
- 2. Seja $g(x) = x^3 + \frac{1}{x^3}$. Determine a equação da reta tangente ao gráfico de g no ponto (1, q(1)).
- 3. Seja $f(x) = x^2 + \frac{1}{x^2}$.
 - Determine o ponto do gráfico de *f* em que a reta tangente, neste ponto, seja paralela ao eixo *x*.
 - *b*) Esboce o gráfico de *f*.
- Seja $f(x) = x^3 + 3x^2 + 1$.

 - Estude o sinal de f(x).

 Calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.
 - Utilizando as informações acima, faça um esboço do gráfico de f.
- Mesmo exercício que o anterior, considerando a função $f(x) = x^3 + x^2 5x$.
- Seja $f(x) = x^3 + 3x$.
 - Determine a equação da reta tangente ao gráfico de *f* no ponto de abscissa
 - Estude o sinal de f'(x).
 - Esboce o gráfico de *f*.
- Calcule F'(x) em que f(x) é igual a

$$a) \; \frac{x}{x^2 + 1}$$

c)
$$\frac{3x^2+3}{5x-3}$$

$$e) \, 5x + \frac{x}{x-1}$$

$$g) \; \frac{\sqrt[3]{x} + x}{\sqrt{x}}$$

$$b) \; \frac{x^2 - 1}{x + 1}$$

$$d) \ \frac{\sqrt{x}}{x+1}$$

$$f(x) \sqrt{x} + \frac{3}{x^3 + 2}$$

h)
$$\frac{x + \sqrt[4]{x}}{x^2 + 3}$$

8. Seja
$$g(x) = \frac{x}{x^2 + 1}$$
.

- Determine os pontos do gráfico de *g* em que as retas tangentes, nestes pontos, sejam paralelas ao eixo *x*.
- b) Estude o sinal de g'(x).
- c) Calcule $\lim_{x \to +\infty} g(x) \in \lim_{x \to -\infty} g(x)$.
- Utilizando as informações acima, faça um esboço do gráfico de *q*.
- Calcule f(x) em que f(x) é igual a

a)
$$3x^2 + 5 \cos x$$

$$c) x \operatorname{sen} x$$

$$e) \; \frac{x+1}{\operatorname{tg} \; x}$$

$$g) \frac{\sec x}{3x + 2}$$

i)
$$\sqrt{x} \sec x$$

$$n) x^2 + 3x tg x$$

$$p) \frac{x+1}{x \text{ sen } x}$$

$$r$$
) $(x^3 + \sqrt{x})$ cosec x

b)
$$\frac{\cos x}{x^2 + 1}$$

$$b) \frac{\cos x}{x^2 + 1}$$

$$d) x^2 \operatorname{tg} x$$

$$f) \frac{3}{\text{sen } x + \cos x}$$

$$h)\cos x + (x^2 + 1)\sin x$$

$$j$$
) 3 cos x + 5 sec x

$$m$$
) 4 sec $x + \cot x$

$$o) \frac{x^2 + 1}{\sec x}$$

$$q) \frac{x}{\text{cosec } x}$$

s)
$$\frac{x + \sin x}{x - \cos x}$$

10. Seja $f(x) = x^2 \operatorname{sen} x + \cos x$. Calcule:

- a) f'(x)
- b) f'(0)
- c) f(3a)
- d) $f'(x^2)$
- 11. Seja $f(x) = \text{sen } x + \cos x, 0 \le x \le 2\pi$.
 - a) Estude o sinal de f(x).
- *b*) Faça um esboço do gráfico de *f*.
- 12. Calcule f(x).

$$a) f(x) = x^{2} e^{x}$$

$$b) f(x) = 3x + 5 \ln x$$

$$c) f(x) = e^{x} \cos x$$

$$d) f(x) = \frac{1 + e^{x}}{1 - e^{x}}$$

$$e) f(x) = x^{2} \ln x + 2e^{x}$$

$$f) f(x) = \frac{x + 1}{x \ln x}$$

$$g) f(x) = 4 + 5x^{2} \ln x$$

$$h) f(x) = \frac{e^{x}}{x^{2} + 1}$$

$$i) f(x) = \frac{\ln x}{x}$$

$$j) f(x) = \frac{e^{x}}{x + 1}$$

13. Sejam *f*, *g* e *h* funções deriváveis. Verifique que

$$[f(x) g(x) h(x)]' = f'(x) g(x) h(x) + f(x) g'(x) h(x) + f(x) g(x) h'(x).$$

- 14. Calcule F'(x) sendo f(x) igual a
 - a) $x e^x \cos x b$
- b) $x_2(\cos x)(1 + \ln x)$
- c) $e^x \operatorname{sen} x \operatorname{cos} x$ d) $(1 + \sqrt{x}) e^x \operatorname{tg} x$

7.8. FUNÇÃO DERIVADA E DERIVADAS DE ORDEM SUPERIOR

Sejam f uma função e A o conjunto dos x para os quais f'(x) existe. A função $f':A \to \mathbb{R}$ dada por $x \mapsto f'(x)$, denomina-se função derivada ou, simplesmente, derivada

Logo, f não é derivável em 1, isto é, f(1) não existe. Portanto

$$f'(x) = \begin{cases} 2x & \text{se } x < 1 \\ & & \text{;} \ D_{f'} = \mathbb{R} - \{1\}. \\ 0 & \text{se } x > 1 \end{cases}$$

Exercícios 7.8 =

Determine f', f'' e f'''.

$$a) f(x) = 4x^4 + 2x$$
 $b) f(x) = \frac{1}{x}$

$$b)f(x) = \frac{1}{x}$$

$$c) f(x) = 5x^2 - \frac{1}{x^3}$$
 $d) f(x) = 3x^3 - 6x + 1$

$$d)f(x) = 3x^3 - 6x + 1$$

$$e)f(x) = x \mid x \mid$$

$$f(x) = \begin{cases} x^2 + 3x & \text{se } x \le 1 \\ 5x - 1 & \text{se } x > 1 \end{cases}$$

Esboce os gráficos de f, f' e f''. 2.

$$a)f(x) = x^2 \mid x \mid$$

$$b) f(x) = \begin{cases} x^2 + 3x & \text{se } x \le 1 \\ 5x - 1 & \text{se } x > 1 \end{cases}$$

Determine a derivada de ordem *n*.

a)
$$f(x) = e^x$$

b)
$$f(x) = \sin x$$

c)
$$f(x) = \cos x$$

$$d)$$
 $f(x) = \ln x$

NOTAÇÕES PARA A DERIVADA 7.9.

$$\frac{dy}{dt} = \frac{d}{dt}(t^3x) = \left[\frac{d}{dt}(t^3)\right]x + t^3\frac{dx}{dt}$$

ou seja,

$$\frac{dy}{dt} = 3t^2x + t^3 \frac{dx}{dt}.$$

b) Temos:

$$\frac{d^2y}{dt^2} = \frac{d}{dt} \left[3t^2x \right] + \frac{d}{dt} \left[t^3 \frac{dx}{dt} \right] = 6tx + 3t^2 \frac{dx}{dt} + 3t^2 \frac{dx}{dt} + t^3 \frac{d^2x}{dt^2},$$

ou seja,

$$\frac{d^2y}{dt^2} = 6tx + 6t^2 \frac{dx}{dt} + t^3 \frac{d^2x}{dt^2}.$$

Exercícios 7.9

1. Calcule a derivada.

a)
$$y = 5x^3 + 6x - 1$$

b)
$$s = \sqrt[5]{t} + \frac{3}{t}$$

$$c) x = \frac{t}{t+1}$$

$$d) y = t \cos t$$

$$e) y = \frac{u+1}{\ln u}$$

$$f(x) = t^3 e^t$$

$$g$$
) $s = e^t \operatorname{tg} t$

$$h) y = \frac{x^3 + 1}{\text{sen } x}$$

$$i) y = \sqrt[3]{u} \sec u$$

$$j) x = \frac{3}{t} + \frac{2}{t^2}$$

$$l) x = e^t \cos t$$

$$m) u = 5v^2 + \frac{3}{v^4}$$

$$n) V = \frac{4}{3} \pi r^3$$

o)
$$E = \frac{1}{2} v^2$$

p)
$$E = \frac{1}{2} mv^2$$
, m constante

q)
$$U = \frac{a}{x^{12}} - \frac{b}{x^6}$$
, $a \in b$ constantes

2. Seja
$$y = \frac{x^3}{x + \sqrt{x}}$$
. Calcule.

a)
$$\frac{dy}{dx}$$
 b) $\frac{dy}{dx} = 1$

- 3. Seja $y = t^2x$, em que x = x (t) é uma função derivável. Calcule $\frac{dy}{dt}\Big|_{t=1}$ supondo $\frac{dx}{dt}\Big|_{t=1} = 2$ e x=3 para t=1 (isto é, x (1) = 3).
- 4. Considere a função $y = xt^3$, na qual x = x(t) é uma função derivável. Calcule $\frac{dy}{dt}\Big|_{t=2}$ sabendo que $\frac{dx}{dt}\Big|_{t=2} = 3$ e que x(2) = 1 (isto é, x = 1 para t = 2).
- 5. Considere a função $y = \frac{t}{x+t}$, na qual t = t (x) é uma função derivável. Calcule $\frac{dy}{dx}\Big|_{x=1}$ sabendo que $\frac{dt}{dx}\Big|_{x=1}$ = 4 e que t = 2 para x = 1. (Observe que t está sendo olhado como função de x.)
- 6. Seja $y = \frac{1}{x^2}$. Verifique que $x \frac{dy}{dx} + 2y = 0$.
- 7. Seja $y = \frac{-2}{x^2 + k}$, k constante. Verifique que $\frac{dy}{dx} xy^2 = 0$.
- 8. Calcule a derivada segunda.

a)
$$y = x^3 + 2x - 3$$

b)
$$x = t \operatorname{sen} t$$

c) $y = x^{10} + \frac{1}{x^3}$

$$d$$
) $y = t \ln t$

$$e) \quad x = e^t \cos t$$
$$f) y = \frac{e^x}{x}$$

9. Seja
$$y = x^2 - 3x$$
. Verifique que $x \frac{d^2y}{dx^2} - \frac{dy}{dx} = 3$.

10. Seja
$$y = \frac{1}{x}$$
. Verifique que $x^2 \frac{d^3y}{dx^3} = 6 \frac{dy}{dx}$.

11. Seja
$$x = \cos t$$
. Verifique que $\frac{d^2x}{dt^2} + x = 0$.

12. Seja
$$y = e^x \cos x$$
. Verifique que $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.

13. Seja
$$y = te^t$$
. Verifique que $\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = 0$.

14. Suponha que y = y(r) seja derivável até a 2.ª ordem. Verifique que

$$\frac{d}{dr}\left[(r^2+r)\frac{dy}{dr}\right] = (2r+1)\frac{dy}{dr} + (r^2+r)\frac{d^2y}{dr^2}.$$

15. Seja $y = x^2$, em que x = x (t) é uma função derivável até a 2.ª ordem. Verifique que

$$\frac{d^2y}{dt^2} = 2\left(\frac{dx}{dt}\right)^2 + 2x\,\frac{d^2x}{dt^2}.$$

16. Suponha que x = x(t) seja derivável até a 2.ª ordem. Verifique que

a)
$$\frac{d}{dt} \left(t^2 \frac{dx}{dt} \right) = 2t \frac{dx}{dt} + t^2 \frac{d^2x}{dt^2}$$

b)
$$\frac{d}{dt} \left(x \frac{dx}{dt} \right) = \left(\frac{dx}{dt} \right)^2 + x \frac{d^2x}{dt^2}$$

7.10. REGRA DA CADEIA PARA DERIVAÇÃO DE FUNÇÃO COMPOSTA

Sejam y=f(x) e x=g(t) duas funções deriváveis, com Im $g\subset D_f$ Nosso objetivo, a seguir, é provar que a composta h(t)=f(g(t)) é derivável e que vale a regra da cadeia

$$h'(t) = f'(g(t)) g'(t), t \in D_g$$

Antes de passarmos à demonstração de ①, vejamos como fica a regra da cadeia na notação de Leibniz. Temos

$$\frac{dy}{dx} = f'(x) e \frac{dx}{dt} = g'(t).$$

Sendo a composta dada por y = f(g(t)), segue de ① que

5 Regra da Cadeia

ou seja,

$$\frac{d^2y}{dt^2} = 6x \left(\frac{dx}{dt}\right)^2 + 3x^2 \frac{d^2x}{dt^2}.$$

Exercícios 7.11 =

1. Determine a derivada.

a)
$$y = \sec 4x$$

c) $f(x) = e^{3x}$
d) $f(x) = \cos 8x$
f) $g(x) = \sec x$
g) $x = e^{\sec x}$
f) $g(x) = \ln (2t + 1)$
h) $f(x) = \cos e^x$
j) $y = \sqrt{3x + 1}$
l) $f(x) = \sqrt[3]{\frac{x - 1}{x + 1}}$
m) $y = e^{-5x}$
n) $y = \sec (\cos x)$
p) $y = \sec (\cos x)$
r) $f(x) = \cos (x^2 + 3)$
t) $y = \sec 3x$

- 2. Seja $f : \mathbb{R} \to \mathbb{R}$ derivável e seja $g(t) = f(t^2 + 1)$. Supondo f'(2) = 5, calcule g'(1).
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ derivável e seja g dada por $g(x) = f(e^{2x})$. Supondo f'(1) = 2, calcule g'(0).
- 4. Derive.

a)
$$y = xe^{3x}$$

c)
$$y = e^{-x} \sin x$$

$$e) f(x) = e^{-x^2} + \ln(2x + 1)$$

$$g) y = \frac{\cos 5x}{\sin 2x}$$

$$i) y = t^3 e^{-3t}$$

i)
$$y = t^3 e^{-3t}$$

$$l) y = (\sin 3x + \cos 2x)^3$$

$$n) y = \ln (x + \sqrt{x^2 + 1})$$

$$p) y = x \ln (2x + 1)$$

$$r$$
) $y = \ln(\sec x + \tan x)$

$$f(x) = \frac{\cos x}{\sin^2 x}$$

b)
$$y = e^x \cos 2x$$

$$d) y = e^{-2t} \operatorname{sen} 3 t$$

$$f) \ g(t) = \frac{e^t - e^{-t}}{e^t + e^{-t}}$$

$$h) f(x) = (e^{-x} + e^{x^2})^3$$

$$(j) g(x) = e^{x^2} \ln(1 + \sqrt{x})$$

$$m) \ y = \sqrt{e^x + e^{-x}}$$

$$o) \ y = \sqrt{x^2 + e^{\sqrt{x}}}$$

$$q$$
) $y = [ln (x^2 + 1)]^3$

$$s) y = \cos^3 x^3$$

u)
$$f(t) = \frac{te^{2t}}{\ln(3t+1)}$$

Calcule a derivada segunda. 5.

$$a) y = \text{sen } 5t$$

c)
$$x = \text{sen } \omega t$$
, ω constante

$$e) y = e^{-x^2}$$

$$g) y = \ln(x^2 + 1)$$

i)
$$y = e^{-x} - e^{-2x}$$

$$l) y = \frac{x}{x^2 + 1}$$

n)
$$y = \frac{\text{sen } 3x}{e^x}$$

$$p) y = \operatorname{sen} (\cos x)$$

$$r) y = xe^{\frac{1}{x}}$$

$$t) g(t) = \sqrt{t^2 + 3}$$

$$b) y = \cos 4t$$

$$d) y = e^{-3x}$$

f)
$$y = \frac{e^x}{x+1}$$

h) $y = \frac{x^2}{x-1}$

h)
$$y = \frac{x^2}{x - 1}$$

$$j) y = e^{-x} \cos 2x$$

m)
$$y = \frac{3x+1}{x^2+x}$$

o)
$$y = xe^{-2x}$$

$$q) \ f(x) = \frac{4x+5}{x^2-1}$$

s)
$$y = \frac{x^2}{x^2 + x + 1}$$

u)
$$y = x \sqrt[3]{x+2}$$

Seja $g : \mathbb{R} \to \mathbb{R}$ uma função diferenciável e seja f dada por $f(x) = x g(x^2)$. Verifique que

$$f'(x) = g(x^2) + 2x^2 g'(x^2).$$

- 7. Seja $g : \mathbb{R} \to \mathbb{R}$ uma função diferenciável e seja f dada por $f(x) = x \ g(x^2)$. Calcule f(1) supondo g(1) = 4 e g'(1) = 2.
- 8. Seja $g: \mathbb{R} \to \mathbb{R}$ diferenciável tal que g(1) = 2 e g'(1) = 3. Calcule f'(0), sendo f dada por $f(x) = e^x g(3x + 1)$.
- 9. Seja $f: \mathbb{R} \to \mathbb{R}$ derivável até a 2.ª ordem e seja g dada por $g(x) = f(e^{2x})$. Verifique que

$$g''(x) = 4e^{2x} [f'(e^{2x}) + e^{2x}f''(e^{2x})].$$

- 10. Seja $y = e^{2x}$. Verifique que $\frac{d^2y}{dx^2} 4y = 0$.
- 11. Seja $y = xe^{2x}$. Verifique que $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$.
- 12. Determine α de modo que $y = e^{\alpha x}$ verifique a equação $\frac{d^2y}{dx^2} 4y = 0$.
- 13. Determine α de modo que $y = e^{\alpha x}$ verifique a equação $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$.
- 14. Seja $y=e^{\alpha x}$, em que α é uma raiz da equação $\lambda^2+a\lambda+b=0$, com a e b constantes. Verifique que

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0.$$

- 15. Seja g uma função derivável. Verifique que
 - a) $[\operatorname{tg} g(x)]' = \sec^2 g(x) \cdot g'(x)$
- b) $[\sec g(x)]' = \sec g(x) \operatorname{tg} g(x) \cdot g'(x)$
- c) $[\cot g(x)]' = -\csc^2 g(x) \cdot g'(x)$
- *d*) [cosec g(x)]' = -cosec g(x) cotg $g(x) \cdot g'(x)$
- 16. Derive.
 - a) y = tg 3x
- b) $y = \sec 4x$
- c) $y = \cot x^2$
- d) $y = \sec(tg x)$

$$e$$
) $y = \sec x^3$

$$f) \quad y = e^{tg} x^2$$

$$g$$
) $y = \csc 2x$

h)
$$y = x^3 \operatorname{tg} 4x$$

i)
$$y = \ln(\sec 3x + \tan 3x)$$

$$j$$
) $y = e^{-x} \sec x^2$

1)
$$y = (x^2 + \cot x^2)^3$$

$$m) \quad y = x^2 \text{ tg } 2x$$

17. Seja $y = \cos \omega t$, ω constante. Verifique que

$$\frac{d^2y}{dt^2} + \omega^2 y = 0.$$

18. Seja $y = e^{-t} \cos 2t$. Verifique que

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 0.$$

19. Seja $y = \frac{x+1}{x-1}$. Verifique que

$$(1-x)\frac{d^2y}{dx^2} = 2\frac{dy}{dx}.$$

20. Seja y = f(x) derivável até a 2.ª ordem. Verifique que

$$\frac{d}{dx}\left(x^2 \frac{dy}{dx}\right) = 2x \frac{dy}{dx} + x^2 \frac{d^2y}{dx^2}.$$

21. Seja $y = \sqrt{x^2 + 1}$. Verifique que

$$\left(\frac{dy}{dx}\right)^2 + y \frac{d^2y}{dx^2} = 1.$$

22. Seja y = y(x) definida no intervalo aberto I e tal que, para todo x em I,

$$\frac{dy}{dx} = x^2 + y^2.$$

Verifique que, para todo x em I,

$$\frac{d^2y}{dx^2} = 2x + 2x^2y + 2y^3.$$

- 23. Seja y = f(x) uma função derivável num intervalo aberto I, com $1 \in I$. Suponha f(1) = 1 e que, para todo x em I, $f(x) = x + [f(x)]^3$.
 - *a*) Mostre que f''(x) existe para todo x em I.
 - *b*) Calcule *f*′′(1).
 - *c*) Determine a equação da reta tangente ao gráfico de *f* no ponto de abscissa 1.
- 24. Seja y = y(r) derivável até a 2.ª ordem. Verifique que

$$\frac{d}{dr}\left(y^2 \frac{dy}{dr}\right) = 2y\left(\frac{dy}{dr}\right)^2 + y^2 \frac{d^2y}{dr^2}.$$

25. Seja $y = \frac{1}{x^2 + 1}$, em que x = x (t) é uma função definida e derivável em \mathbb{R} . Verifique que, para todo t real,

$$\frac{dy}{dt} = -2xy^2 \frac{dx}{dt}$$
.

- 26. Seja $y = \frac{4}{x}$, em que x = x (t) é uma função derivável num intervalo aberto I. Suponha que, para todo t em I, x (t) $\neq 0$ e $\frac{dx}{dt} = \beta$, β constante. Verifique que $\frac{d^2y}{dt^2} = \frac{8\beta^2}{r^3}$.
- 27. Seja f uma função diferenciável e suponha que, para todo $x \in D_p$ $3x^2 + x$ sen f(x) = 2. Mostre que $f'(x) = -\frac{6x + \text{sen } f(x)}{x \cos f(x)}$, para todo $x \in D_p$ com $x \cos f(x) \neq 0$.
- 28. A função diferenciável y = f(x) é tal que, para todo $x \in D_p$, o ponto (x, f(x)) é solução da equação $xy^3 + 2xy^2 + x = 4$. Sabe-se que f(1) = 1. Calcule f'(1).
- 29. Seja f :]−r, r[$\rightarrow \mathbb{R}$ uma função derivável. Prove
 - *a*) Se *f* for uma função ímpar, então *f* será par.
 - *b*) Se *f* for função par, então *f* será ímpar.

- 6 Diferenciação implícita
- 7 Taxas relacionadas
- 8 Respostas dos exercícios

- *g*) −∞
- **6.3**
- 1. *a*) e^2
 - **b)** e
 - c) $e^{\frac{1}{2}}$
 - **d)** e^2
 - **e)** e
 - **f)** 1
 - **g)** e^2
 - **h)** e^2
- **2.** Sugestão: $a^h = e^h \ln a$
- **3.** *a*) 2
 - **b)** 0
 - **c)** ln 5
 - *d*) +∞

CAPÍTULO 7

- 7.2
- **1.** *a*) 2
 - **c)** 2x
- **2.** 2
- **3.** *a*) 3
 - **b)** 3
 - **c)** 3

- **4.** *a*) 3
 - **b)** $\frac{1}{4}$
 - **c)** 5
 - **d)** -1
 - **e)** $\frac{1}{2\sqrt{3}}$
 - $f) -\frac{1}{4}$
 - **g)** 4
 - h) $\frac{1}{3\sqrt[3]{4}}$
- 5. *a*) y = 4x 4
 - **b)** $y = -\frac{1}{4}x + 1$
 - *c*) x 6y + 9 = 0
 - **d)** y = x 1
- **6.** a) 2x + 1 b) 3 c) $3x^2$ d) $-\frac{1}{x^2}$ e) 5 f) 0 g) $\frac{1}{(x+1)^2}$ h) $-\frac{2}{x^3}$
- 14. $\frac{g(x) g(1)}{x 1} = \begin{cases} 2 \text{ se } x < 1 \\ -1 \text{ se } x > 1 \end{cases}$

$$\lim_{x \to 1^{+}} \frac{g(x) - g(1)}{x - 1} \neq \lim_{x \to 1^{-}} \frac{g(x) - g(1)}{x - 1}$$

15. *a*) 2

- **16. b)** 0
- **17. b)** Não

7.3

- 1. *a*) $5x^4$
 - **b)** 0
 - **c)** 80
- **2.** a) $6x^5$ b) $100x^{99}$ c) $-\frac{1}{x^2}$ d) 2x e) $-\frac{3}{x^4}$ f) $-\frac{7}{x^8}$
 - $g) 1 \quad h) -3x^{-4}$
- 3. $y = -\frac{1}{4}x + 1$
- 4. y = -2x + 3
- 5. a) $\frac{1}{5\sqrt[5]{x^4}}$ b) $\frac{1}{5}$ c) $\frac{1}{80}$
- 6. a) $\frac{1}{4\sqrt[4]{r^3}}$ b) $\frac{1}{6\sqrt[6]{r^5}}$ c) $\frac{1}{8\sqrt[8]{r^7}}$ d) $\frac{1}{9\sqrt[9]{r^8}}$

- 7. $y = \frac{1}{3}x + \frac{2}{3}$
- **9.** v = 4x 4

7.4

- **1.** y = x + 1
- **2.** y = x 1
- 4. *a*) $2^x \ln 2$
 - **b)** $5^x \ln 5$
 - c) $\pi^x \ln \pi$
 - **d**) e^x
- 6. a) $\frac{1}{r \ln 3}$ b) $\frac{1}{r \ln 5}$ c) $\frac{1}{r \ln \pi}$ d) $\frac{1}{r}$

7.5

- **1.** *a*) cos *x*
 - **b)** $\frac{\sqrt{2}}{2}$
- **2.** y = x
- **3.** *a*) −sen *x*
 - **b)** 0
 - c) $-\frac{\sqrt{3}}{2}$
 - d) $\frac{\sqrt{2}}{2}$
- **4. a)** sec² x
 - **b)** sec *x* tg *x*
- **5.** y = x
- **6. a)** $-\csc^2 x$
 - **b)** -2
- **7.** *a*) –cosec *x* cotg *x*
 - **b)** $-\sqrt{2}$

b)
$$3x^2 + 2x$$

c)
$$9x^2 - 4x$$

1. a)
$$6x$$
 b) $3x^2 + 2x$ c) $9x^2 - 4x$ d) $3 + \frac{1}{2\sqrt{x}}$

$$e) -6x^{-3}$$

$$f) \frac{2}{3\sqrt[3]{x^2}}$$

g)
$$3 - \frac{1}{r^2}$$

e)
$$-6x^{-3}$$
 f) $\frac{2}{3\sqrt[3]{x^2}}$ g) $3 - \frac{1}{x^2}$ h) $-\frac{4}{x^2} - \frac{10}{x^3}$

i)
$$2x^2 + \frac{1}{2}x$$

i)
$$2x^2 + \frac{1}{2}x$$
 j) $\frac{1}{3\sqrt[3]{x^2}} + \frac{1}{2\sqrt{x}}$ l) $2 - \frac{1}{x^2} - \frac{2}{x^3}$

1)
$$2 - \frac{1}{x^2} - \frac{2}{x^3}$$

$$m) 18x^2 + \frac{1}{3\sqrt[3]{x^2}}$$

m)
$$18x^2 + \frac{1}{3\sqrt[3]{x^2}}$$
 n) $20x^3 + 3bx^2 + 2cx$

2.
$$y = 2x$$

3.
$$a) \left(\frac{\sqrt[3]{4}}{2}, \frac{3\sqrt[3]{2}}{2} \right)$$

b)

4. $a) f'(x) > 0 \text{ em }]-\infty, -2[\text{ e em }]0, +\infty[; f'(x) < 0 \text{ em }]-2, 0[$

$$b) + \infty e - \infty$$

c)

- 5. $a) f'(x) > 0 \text{ em } \left[-\infty, -\frac{5}{3} \right] \text{ e em } \left[1, +\infty \right[f'(x) < 0 \text{ em } \left[-\frac{5}{3}, 1 \right] \right]$
 - $b) + \infty e \infty$

c)

6. *a*) y = 3x

 $b) f'(x) > 0 \text{ em } \mathbb{R}$

c)

- 7. a) $\frac{1-x^2}{(x^2+1)^2}$ b) $\frac{x^2+2x+1}{(x+1)^2}$ c) $\frac{15x^2-18x-15}{(5x-3)^2}$
- d) $\frac{1-x}{2\sqrt{x}(x+1)^2}$ e) $5-\frac{1}{(x-1)^2}$ f) $\frac{1}{2\sqrt{x}}-\frac{9x^2}{(x^3+2)^2}$

 - g) $\frac{3x \sqrt[3]{x}}{6x\sqrt{x}}$ h) $\frac{4\sqrt[4]{x^3}(3 x^2) 7x^2 + 3}{4\sqrt[4]{x^3}(x^2 + 3)^2}$
- 8. a) $\left(-1, -\frac{1}{2}\right)$ e $\left(1, \frac{1}{2}\right)$
- b) g'(x) > 0 em]-1, 1[g'(x) < 0 em]- ∞ , -1[e em $]1, +\infty[$

c)0

9. a)
$$6x - 5 \sin x$$
 b) $-\frac{(x^2 + 1) \sin x + 2x \cos x}{(x^2 + 1)^2}$ c) $\sin x + x \cos x$

d)
$$x [2 \operatorname{tg} x + x \sec^2 x]$$
 e) $\frac{\operatorname{tg} x - (x+1) \sec^2 x}{\operatorname{tg}^2 x}$ f) $\frac{-3 (\cos x - \sin x)}{(\sin x + \cos x)^2}$

g)
$$\frac{\sec x [3x \tan x + 2 \tan x - 3]}{(3x + 2)^2}$$
 h) $\sin x [2x - 1] + \cos x [x^2 + 1]$

$$i) \frac{\sec x \left[1 + 2x \operatorname{tg} x\right]}{2\sqrt{x}} \quad j) - 3 \sin x + 5 \sec x \operatorname{tg} x \quad l) \cot x - x \operatorname{cosec}^2 x$$

m)
$$4 \sec x \operatorname{tg} x - \operatorname{cosec}^2 x$$
 n) $2x + 3 \operatorname{tg} x + 3x \sec^2 x$ o) $\frac{2x - (x^2 + 1) \operatorname{tg} x}{\sec x}$

$$p) - \frac{x(x+1)\cos x + \sin x}{x^2 \sin^2 x} \qquad \qquad q) \frac{1 + x \cot x}{\csc x}$$

r) cosec
$$x \left[3x^2 + \frac{1}{2\sqrt{x}} - (x^3 + \sqrt{x})\cot x \right]$$
 s) $\frac{(x-1)\cos x - (x+1)\sin x - 1}{(x-\cos x)^2}$

10. a)
$$(2x - 1) \sin x + x^2 \cos x$$

- **b)** 0
- c) $(6a 1) sen (3a) + 9a^2 cos (3a)$

12. a)
$$x e^x [2 + x]$$
 b) $3 + \frac{5}{x}$ c) $e^x [\cos x - \sin x]$ d) $\frac{2e^x}{[1 - e^x]^2}$

e)
$$2x \ln x + x + 2e^x$$
 f) $\frac{-x - \ln x - 1}{[x \ln x]^2}$ g) $5x [1 + 2 \ln x]$

h)
$$\frac{e^x[x-1]^2}{(x^2+1)^2}$$
 i) $\frac{1-\ln x}{x^2}$ j) $\frac{xe^x}{(x+1)^2}$

14. a)
$$e^x [\cos x + x \cos x - x \sin x]$$
 b) $x [(1 + \ln x) (2 \cos x - x \sin x) +$

b)
$$x [(1 + \ln x) (2 \cos x - x \sin x) + \cos x]$$

d)
$$e^x \left[\frac{\operatorname{tg} x}{2\sqrt{x}} + (1 + \sqrt{x}) \left(\operatorname{tg} x + \sec^2 x \right) \right]$$

1.
$$a) f'(x) = 16x^3 + 2, f''(x) = 48x^2 e f'''(x) = 96x$$

$$(b)f'(x) = -\frac{1}{x^2}, \ f''(x) = \frac{2}{x^3} \ e \ f'''(x) = -\frac{6}{x^4}$$

$$c)f'(x) = 10 x + \frac{3}{x^4}, f''(x) = 10 - \frac{12}{x^5} e f'''(x) = 60x^{-6}$$

d)
$$f'(x) = 9x^2 - 6$$
, $f''(x) = 18x$ e $f'''(x) = 18$

$$e) f(x) = \begin{cases} x^2 & \text{se } x \ge 0 \\ -x^2 & \text{se } x < 0 \end{cases}, \ f'(x) = \begin{cases} 2x & \text{se } x \ge 0 \\ -2x & \text{se } x < 0 \end{cases}, f''(x) = \begin{cases} 2 & \text{se } x > 0 \\ -2 & \text{se } x < 0 \end{cases} e$$

$$f'''(x) = 0 \text{ para } x \ne 0$$

2.
$$a)f(x) = \begin{cases} x^3 & \text{se } x \ge 0 \\ -x^3 & \text{se } x < 0 \end{cases}, f'(x) = \begin{cases} 3x^2 & \text{se } x \ge 0 \\ -3x^2 & \text{se } x < 0 \end{cases} e f''(x) = \begin{cases} 6x & \text{se } x \ge 0 \\ -6x & \text{se } x < 0 \end{cases}$$

$$b)f'(x) = \begin{cases} 2x + 3 \text{ se } x \le 1\\ 5 & \text{se } x > 1 \end{cases} \text{ e } f''(x) = \begin{cases} 2 \text{ se } x < 1\\ 0 \text{ se } x > 1 \end{cases}$$

3.
$$a) f^{(n)}(x) = e^x$$
 $b) f^{(n)}(x) = \begin{cases} (-1)^{\frac{n-1}{2}} \cos x & \text{se } n \text{ for impar} \\ \frac{n}{(-1)^{\frac{n}{2}}} & \text{sen } x \text{ se } n \text{ for par} \end{cases}$

$$c) f^{(n)}(x) = \begin{cases} (-1)^{\frac{n+1}{2}} & \text{sen } x \text{ se } n \text{ for impar} \\ (-1)^{\frac{n}{2}} & \cos x \text{ se } n \text{ for par} \end{cases}$$

$$d) f^{(n)}(x) = (-1)^{n+1} (n-1)! x^{-n}$$

1. a)
$$\frac{dy}{dx} = 15x^2 + 6$$
 b) $\frac{ds}{dt} = \frac{1}{5\sqrt[5]{t^4}} - \frac{3}{t^2}$ c) $\frac{dx}{dt} = \frac{1}{(t+1)^2}$

d)
$$\frac{dy}{dt} = \cos t - t \sin t$$
 e) $\frac{dy}{du} = \frac{u \ln u - u - 1}{u (\ln u)^2}$ f) $\frac{dx}{dt} = t^2 e^t (3 + t)$

$$g) \frac{ds}{dt} = e^t \left[\operatorname{tg} t + \sec^2 t \right]$$

$$h) \frac{dy}{dx} = \frac{3x^2 \sin x - (x^3 + 1)\cos x}{\sin^2 x}$$

i)
$$\frac{dy}{du} = \frac{\sec u \left[1 + 3u \operatorname{tg} u\right]}{3\sqrt[3]{u^2}}$$
 j) $\frac{dx}{dt} = -\frac{3}{t^2} - \frac{4}{t^3}$

$$l) \frac{dx}{dt} = e^t \left[\cos t - \sin t\right] \quad m) \frac{du}{dv} = 10v - \frac{12}{v^5} \quad n) \frac{dV}{dr} = 4\pi r^2$$

$$o) \frac{dE}{dv} = v \qquad p) \frac{dE}{dv} = mv \qquad q) \frac{du}{dx} = -\frac{12a}{x^{13}} + \frac{6b}{x^7}$$

2. a)
$$\frac{x^3 (4\sqrt{x} + 5)}{2\sqrt{x} (x + \sqrt{x})^2}$$
 b) $\frac{9}{8}$

4. 36

5.
$$\frac{dy}{dx} = \frac{\frac{dt}{dx}(x+t) - t\left(1 + \frac{dt}{dx}\right)}{(x+t)^2}; \frac{dy}{dx}\Big|_{x=1} = \frac{2}{9}$$

8. *a*) 6*x*

c)
$$90x^8 + \frac{12}{x^5}$$

d)
$$\frac{1}{t}$$

e)
$$-2e^t \operatorname{sen} t$$

f)
$$\frac{e^x (x^2 - 2x + 2)}{x^3}$$

- **1.** *a*) $4 \cos 4x$
 - **b)** -5 sen 5x
 - **c)** $3e^{3x}$
 - **d)** -8 sen 8x
 - **e)** $3t^2 \cos t^3$
 - $f) \frac{2}{2t+1}$
 - **q)** $e^{\text{sen }t} \cos t$
 - **h)** $-e^x \operatorname{sen} e^x$
 - *i*) $3 (\sin x + \cos x)^2 (\cos x \sin x)$
 - $j) \frac{3}{2\sqrt{3x+1}}$
 - I) $\frac{2}{3(x+1)^2} \sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}$ m) $-5e^{-5x}$ n) $\frac{2t+3}{t^2+3t+9}$ o) $e^{tg x} \sec^2 x$
- $(p) \sin x \cos (\cos x)$ $(q) 8t (t^2 + 3)^3$ $(r) 2x \sin (x^2 + 3)$
- s) $\frac{1+e^x}{2\sqrt{x+e^x}}$ t) $3 \sec^2 3x$ u) $3 \sec 3x \tan 3x$

- **2.** 10
- **3.** 4

4. a)
$$e^{3x} (1 + 3x)$$
 b) $e^x (\cos 2x - 2 \sin 2x)$ c) $e^{-x} (\cos x - \sin x)$

d)
$$e^{-2t} (3\cos 3t - 2\sin 3t)$$
 e) $-2xe^{-x^2} + \frac{2}{2x+1}$ f) $\frac{4}{(e^t + e^{-t})^2}$

$$g) - \frac{5 \sin 5x \sin 2x + 2 \cos 5x \cos 2x}{\sin^2 2x} \ h) 3 (e^{-x} + e^{x^2})^2 (-e^{-x} + 2xe^{x^2})$$

i)
$$3t^2e^{-3t}(1-t)$$
 j) $e^{x^2}\left[2x\ln(1+\sqrt{x})+\frac{1}{2(\sqrt{x}+x)}\right]$

I) 3 (sen 3x + cos 2x)² (3 cos 3x - 2 sen 2x) m)
$$\frac{e^x - e^{-x}}{2\sqrt{e^x + e^{-x}}}$$

n)
$$\frac{1}{\sqrt{x^2+1}}$$
 o) $\frac{4x\sqrt{x}+e^{\sqrt{x}}}{4\sqrt{x^3+x}e^{\sqrt{x}}}$ p) $\ln(2x+1)+\frac{2x}{2x+1}$

q)
$$\frac{6x \left[\ln (x^2 + 1)\right]^2}{x^2 + 1}$$
 r) $\sec x$ s) $-9x^2 \cos^2 x^3 \sin x^3$

$$t) - \frac{\sin^2 x + 2\cos^2 x}{\sin^3 x} \qquad u) e^{2t} \frac{(1+2t)\ln(3t+1) - \frac{3t}{3t+1}}{[\ln(3t+1)]^2}$$

5. a)
$$-25 \operatorname{sen} 5t$$
 b) $-16 \cos 4t$ c) $-w^2 \operatorname{sen} wt$ d) $9e^{-3x}$

e)
$$2e^{-x^2}(2x^2-1)$$
 f) $\frac{e^x(x^2+1)}{(x+1)^3}$ g) $\frac{2(1-x^2)}{(x^2+1)^2}$ h) $\frac{2}{(x-1)^3}$

i)
$$e^{-x} - 4e^{-2x}$$
 j) $e^{-x} (4 \sec 2x - 3 \cos 2x)$ l) $\frac{2x(x^2 - 3)}{(x^2 + 1)^3}$

m)
$$\frac{2(3x^3 + 3x^2 + 3x + 1)}{(x^2 + x)^3}$$
 n) $\frac{-2[4 \sin 3x + 3 \cos 3x]}{e^x}$
o) $4e^{-2x}(x - 1)$ p) $-\cos x \cos(\cos x) - \sin^2 x \sin(\cos x)$

o)
$$4e^{-2x}(x-1)$$
 p) $-\cos x \cos(\cos x) - \sin^2 x \sin(\cos x)$

$$q) \; \frac{8x^3 + 30x^2 + 24x + 10}{(x^2 - 1)^3} \qquad r) \; \frac{e^{1/x}}{x^3} \qquad s) \; \frac{2 \; (-x^3 - 3x^2 + 1)}{(x^2 + x + 1)^2}$$

t)
$$\frac{3}{(t^2+3)\sqrt{t^2+3}}$$
 u) $\frac{4x+12}{9\sqrt[3]{(x+2)^5}}$

- **7.** 8
- **8.** 11
- **12.** ±2
- **13.** 1 ou 2
- **16.** *a*) $3 \sec^2 3x$
 - **b)** 4 sec 4x tg 4x
 - *c*) $-2x \csc^2 x^2$
 - **d)** $\sec^2 x \sec (\operatorname{tg} x) \operatorname{tg} (\operatorname{tg} x)$
 - **e)** $3x^2 \sec x^3 \tan x^3$
 - **f)** $2x \sec^2 x^2 e^{tg} x^2$
 - **q)** -2 cosec 2x cotg 2x
 - **h)** x^2 [3 tg $4x + 4x \sec^2 4x$]
 - *i*) 3 sec 3*x*
 - i) $-e^{-x} \sec x^2 [1 2x \tan x^2]$
 - 1) $6x(x^2 + \cot x^2)^2 (1 \csc^2 x^2)$
 - **m**) $2x [tg 2x + x sec^2 2x]$
- **23. b)** 7
 - *c*) y = 2x 1

28.
$$-\frac{4}{7}$$

1. a)
$$5^x \ln 5 + \frac{1}{x \ln 3}$$

b)
$$2x 2^{x^2} \ln 2 + 2 \cdot 3^{2x} \ln 3$$

c)
$$2 \cdot 3^{2x+1} \ln 3 + \frac{2x}{(x^2+1) \ln 2}$$
 d) $(2x+1)^x \left[\ln(2x+1) + \frac{2x}{2x+1} \right]$

d)
$$(2x+1)^x \left[\ln(2x+1) + \frac{2x}{2x+1} \right]$$

e)
$$x^{\sin 3x} \left[3\cos 3x \ln x + \frac{\sin 3x}{x} \right]$$

f)
$$(3 + \cos x)^x \left[\ln (3 + \cos x) - \frac{x \sin x}{3 + \cos x} \right]$$

$$g) x^{x} [(1 + \ln x) \sin x + \cos x]$$

g)
$$x^x [(1 + \ln x) \sin x + \cos x]$$
 h) $x^{x^2 + 1} \left[2x \ln x + \frac{x^2 + 1}{x} \right]$

$$i$$
) $-(1+i)^{-t} \ln(1+i)$

$$j$$
) $(10^x + 10^{-x}) \ln 10$

I)
$$(2 + \sin x)^{\cos 3x} \left[-3 \sin 3x \ln (2 + \sin x) + \frac{\cos x \cos 3x}{2 + \sin x} \right]$$

$$m) \frac{x^x (1 + \ln x)}{1 + x^x}$$

n)
$$\left(1+\frac{1}{x}\right)^x \left[\ln\left(1+\frac{1}{x}\right)-\frac{1}{1+x}\right]$$

o)
$$x^{x^x} x^x \left[(1 + \ln x) \ln x + \frac{1}{x} \right]$$
 p) $\pi x^{\pi - 1} + \pi^x \ln \pi$

$$p) \pi x^{\pi - 1} + \pi^x \ln \pi$$

q)
$$(1+x)e^{-x} \left[-e^{-x} \ln (1+x) + \frac{e^{-x}}{1+x} \right]$$

3. a)
$$(x + 2)^x \ln(x + 2) + x(x + 2)^{x-1}$$

b)
$$2x(1+e^x)^{x^2} \ln(1+e^x) + x^2(1+e^x)^{x^2-1} e^x$$

c)
$$(4 + \sin 3x)^x \ln (4 + \sin 3x) + x (4 + \sin 3x)^{x-1} (3 \cos 3x)$$

d)
$$2x(x+3)^{x^2} \ln(x+3) + x^2(x+3)^{x^2-1}$$

e)
$$2x (3 + \pi)^{x^2} \ln (3 + \pi)$$
 f) $2\pi x (x^2 + 1)^{\pi - 1}$

2.
$$y = \frac{-1 + \sqrt{-4x^2 + 4x + 1}}{2x}$$
 3. $\frac{3}{4}$

4. a)
$$\frac{dy}{dx} = \frac{x}{y}$$
 b) $\frac{dy}{dx} = -\frac{2xy - 1}{3y^2 + x^2}$ c) $\frac{dy}{dx} = -\frac{y^2}{2xy + 2}$

d)
$$\frac{dy}{dx} = \frac{1}{1+5y^4}$$
 e) $\frac{dy}{dx} = -\frac{x}{4y}$ f) $\frac{dy}{dx} = \frac{1-y}{x+3y^2}$

g)
$$\frac{dy}{dx} = -\frac{x}{y+1}$$
 h) $\frac{dy}{dx} = -\frac{2xy^3 + y}{3x^2y^2 + x}$ i) $\frac{dy}{dx} = -\frac{y + e^y}{xe^y + x}$

j)
$$\frac{dy}{dx} = -\frac{2x}{x^2 + y^2 + 2y}$$
 l) $\frac{dy}{dx} = \frac{y}{5 - \sin y - x}$ m) $\frac{dy}{dx} = \frac{1}{2 + \cos y}$

5.
$$y = -\frac{1}{2}x + 1$$

$$6. \quad \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$

b)
$$y-1=-\frac{3}{7}(x-1)$$

11.
$$y = \frac{1}{5}(x+3)$$

$$1. \quad a) \, dy = 3x^2 \, dx$$

$$b) dy = (2x - 2) dx$$

$$c) dy = \frac{1}{(x+1)^2} dx$$

d)
$$dy = \frac{1}{3\sqrt[3]{x^2}} dx$$

2. a)
$$dA = 2l \ dl$$

3. *a*)
$$dV = 4\pi r^2 dr$$

- **4. a)** dy = (2x + 3) dx
 - **b)** $(dx)^2$

- **1.** *a*) 2 2*t*
 - **b)** -2
 - *c*) v(t) > 0 em [0, 1[$v(t) < 0 \text{ em }]1, +\infty[$
 - d

- a) $\frac{1}{2}$ 2.
 - **b)** 0
- **3. a)** v(t) > 0 em]0, 2[$v(t) < 0 \text{ em }]2, +\infty[$
 - **b)** *a* (*t*) > 0 em [0, 1[$a(t) < 0 \text{ em }]1, +\infty[$
 - c) $-\infty$
 - d

7. *a*) f'(t) > 0 em $]-\infty$, -2[e em]0, $+\infty[$ f'(t) < 0 em]-2, 0[

b)
$$f''(t) < 0$$
 em $]-\infty, -1[$ $f''(t) > 0$ em $]-1, +\infty[$

c)
$$+\infty$$
 e $-\infty$

d)

8.
$$a) f'(t) > 0 \text{ em }]-2, 2[$$

d

$$f'(t) < 0 \text{ em }]-\infty, -2[\text{ e em }]2, +\infty[$$

$$(b) f''(t) > 0 \text{ em }]-\sqrt{12}, 0[$$

e em $]\sqrt{12}, +\infty[$

$$f''(t) < 0 \text{ em }]-\infty, -\sqrt{12} [$$
 e em]0, $\sqrt{12} [$

9. *a*)
$$v_0 e^{-kt}$$

f)

$$c) - v_0 k e^{-kt}$$

 $e) \frac{v_0}{k}$

10. c)

- 11. Ponto de abscissa $x = \frac{5}{6}$ 12. $\frac{-100}{(101)^2}$

15. (-2, 1)

16. $-\frac{6}{\sqrt{55}}$

17. $-\frac{3}{2}$ (cm/s)

- 18. $\frac{0.9}{100-}$ (m/s)
- 19. $\frac{dx}{dt} = 1 \cos \theta e \frac{dy}{dt} = \sin \theta$

1. *a*)
$$y = -3x e y = \frac{1}{3}x$$

b)
$$y = \frac{1}{12}x + \frac{4}{3} ey = -12x + 98$$

c)
$$y = -2x + 3 e y = \frac{1}{2}x + \frac{1}{2}$$
 d) $y = 2 e x = 1$

$$d) y = 2 e x = 1$$

$$2. \quad y = \frac{1}{2}x - \frac{1}{16}$$

3.
$$y = 6x - 2$$
 ou $y = 6x + 2$

4.
$$y = 2x - \frac{25}{4}$$

5.
$$y = \frac{1}{3}x - \frac{2}{27}$$
 ou $y = \frac{1}{3}x + \frac{2}{27}$

b)
$$y = -\frac{1}{2}x + \frac{3}{2}$$

7.
$$y = -3x$$
 ou $y = -4x$

8.
$$(0, 12), (-2, -12) \in \left(\frac{1}{2}, \frac{253}{16}\right)$$

9. Pontos de abscissas
$$\frac{1}{2}$$
 e $-\frac{2}{3}$ 10. $y = 3x + 2$

10.
$$y = 3x + 2$$

11.
$$y = -\frac{1}{3}x + \frac{4}{3}$$

12. (a, b) tal que $b < a^2$

14. -1

15.
$$y = -x + \frac{1}{4}$$
 ou $y = x + \frac{1}{4}$.

1.
$$a) = \frac{1}{9}$$
 $b) 1$ $c) = \pi$ $d) 0$ $e) 0$ $f) = \frac{3\sqrt{2}}{4}$ $g) 0$ $h) = \frac{\sqrt{2}}{8}$ $i) 1$

2. a)
$$\frac{1}{4\sqrt{x}\sqrt{1+\sqrt{x}}}$$
 b) $\frac{3}{\sqrt{1+9x^2}}$ c) $5^{x^2}[1+2x^2\ln 5]$

d)
$$(2 + \sin x)^x \left[\ln (2 + \sin x) + \frac{x \cos x}{2 + \sin x} \right]$$

e) sec x f)
$$e^{t^2} [2t \operatorname{sen} 3t + 3 \cos 3t]$$
 g) $\ln \frac{t^2 - 1}{t^2 + 1} + \frac{4t^2}{t^4 - 1}$

h)
$$\frac{3x^2 + 4x - 1}{2(x+1)\sqrt{x+1}}$$
 i) $\frac{3t^2 - t^4}{(t^2+1)^3}$ j) $\frac{3x(4+x^2)\sec^2 3x + (4-x^2)\tan 3x}{(x^2+4)^2}$

l)
$$\sec x$$
 m) $\frac{e^{\sec \sqrt{x}} \left[\sqrt{x} \sec \sqrt{x} \operatorname{tg} \sqrt{x} - 2\right]}{2x^2}$ n) $e^{x^x} x^x (1 + \ln x)$

o)
$$tg^3 x$$
 p) $\frac{1-x}{x^2 \sqrt{1-x^2}}$ q) $-\frac{(2-\sqrt[3]{x})^{\frac{1}{2}}}{\sqrt[3]{x}}$ r) $\frac{12 \ln 2}{(2^{3t}+2^{-3t})^2}$

s)
$$-\frac{1}{2\sqrt{x}\cos\sqrt{x}}$$
 t) $-6e^{-3x}\cos 3x$ u) $-5\cot 3x$

$$3. \quad a) = \frac{y \cos xy}{3y^2 + x \cos xy}$$

b)
$$\frac{1-y}{x+e^y}$$

$$c) \frac{1 + y^x \ln y}{2y - xy^{x-1}}$$

d)
$$\frac{y \sin x - \cos y}{\cos x - x \sin y}$$

4.
$$y-5=-\frac{5}{38}(x-1)$$
 e $y-5=\frac{38}{5}(x-1)$

5.
$$x + y = 2$$
 ou $x + y = -2$

6.
$$x + 4y = 9$$
 ou $-x + 4y = 9$

8.
$$x + y = -1$$

9.
$$0.5 \text{ m}^2/\text{s}$$

10.
$$\frac{0,064 \, \pi}{3} \, \text{m}^3/\text{s}$$

11.
$$\frac{0,3-0,4rh}{r^2}$$

13.
$$-\frac{0.1}{3}$$
 cm/s

17.
$$a = \frac{1}{3}$$

21. *a*)
$$2x^2 + 2$$

b)
$$4x^3 + 4x$$

b)
$$-x^2$$

c)
$$\frac{2 \ln (x^2 + 1)}{1 + [\ln (x^2 + 1)]^2}$$

d)
$$2e^{x^2}e^{(e^{x^2})^2}$$

25. a)
$$\frac{d^2x}{dt^2} = -9x$$

$$b) - \frac{9}{2}$$

27. a)
$$h''(t) = -9 \cos 3t f'(\cos 3t) + 9 \sin^2 3t f''(\cos 3t)$$

28. a)
$$y^2 + 2t^2 y^3$$

29. *a*)
$$\cos y + (x + \sin y) (\cos 2y - x \sin y)$$

- 34. $P(x) = P(1) + P'(1)(x-1) + \frac{P''(1)}{2}(x-1)^2 + \frac{P'''(1)}{3!}(x-1)^3$, ou seja, $P(x) = 6 + 5(x-1) + 3(x-1)^2 + (x-1)^3$
- **39.** a) $\frac{101}{98}$ b) $\frac{1}{18}$ c) $-\frac{8}{17}$ d) $\frac{1}{2}$
- **41.** a) 1 b) $-\frac{1}{3}$ c) $-\infty$ d) $+\infty$ e) $\frac{1}{4}$ f) $\frac{6\pi}{7}$

CAPÍTULO 8

- 1. $a) \frac{\pi}{2}$ $b) \frac{\pi}{6}$ $c) \frac{\pi}{3}$ $d) \frac{\pi}{4}$ $e) -\frac{\pi}{4}$ $f) \frac{\pi}{3}$ $g) -\frac{\pi}{6}$ $h) -\frac{\pi}{2}$ $i) -\frac{\pi}{3}$ $j) -\frac{\pi}{3}$ $l) \frac{\pi}{6}$ $m) -\frac{\pi}{6}$
- 3. a) $\frac{\sqrt{3}}{2}$ b) $\frac{1}{2}$ c) $\frac{1}{2}$ d) $\sqrt{2}$ e) x f) x g) $\frac{\pi}{3}$ h) 0
 - $i) -\frac{\pi}{3}$ $j) \bar{x}$
- 7. $a) g(x) = \sqrt[3]{x}$ b)
- 8. $g(x) = \frac{1}{x}$
- 9. $g(x) = \frac{x+1}{x-1}$

