# High sparrow body length decreases survival

A demonstration of Rmarkdown using Herman Bumpus' data

Brad Duthie

Biological and Environmental Sciences, University of Stirling, Stirling, UK, FK9 4LA

### 5 Abstract

- <sup>6</sup> Writing documents in Rmarkdown using Rstudio can make scientific workflow more efficient, and here I
- 7 demonstrate how a scientific manuscript can be written using a classical data set first published by Herman
- 8 Bumpus. I integrate Bumpus' data with Rmarkdown to produce a sample manuscript, testing whether or
- 9 not sparrow body length decreases survival following a storm in southern New England. Using a t-test,
- 10 I show that surviving birds have lower body length than birds that do not survive. All analyses of data
- 11 are incorporated into the underlying Rmarkdown document, including figures and a table. References are
- 12 incorporated using BibTeX. The underlying code for this manuscript is publicly available on GitHub as part
- of the Stirling Coding Club organisation.

#### 14 Introduction

- 15 In the late 1800s, there was a particularly severe snowstorm in Providence, Rhode Island. At the time,
- 16 Herman Bumpus was a professor of comparative zoology at Brown University. Bumpus noticed that the
- 17 storm had a particularly negative effect on the local sparrow population (Passer domesticus) and decided to
- use the event to test Charle's Darwin's theory of natural selection (Darwin 1859). Bumpus collected 136

- sparrows; some of these sparrows survived the storm, while others perished. Bumpus (1898) published a
- paper and all of the data that he had collected. These data are now a classic data set in biology, and have
- been analysed multiple times (e.g., Johnston et al. 1972). Here I will use Bumpus' data to demonstrate how
- 22 to write a scientific manuscript in Rmarkdown.
- 23 The focus of this manuscript is therefore not on Bumpus' data or survival of sparrows per se, but the process
- of scientific writing using Rmarkdown. I have chosen the Bumpus data set because it provides a useful tool
- <sub>25</sub> for working through most key features of Rmarkdown that scientists might want to use when writing a
- 26 manuscript. The example question that I will address through this data set and R analysis in Rmarkdown is
- whether or not increasing sparrow body length is associated with decreased survival following a storm.

#### 28 Methods

- <sup>29</sup> Bumpus focused his study on the House Sparrow (*Passer domesticus*; see Figure 1), which has a very wide
- 30 global distribution. It is native to Europe and Asia, but not the Americas where Bumpus collected his
- original study (Bumpus 1898). In addition to measuring total length and survival for 136 sparrows, Bumpus
- measured sparrow sex, wingspan, and mass, and also the length of each sparrow's head, humerus, tibiotarsus,
- 33 skull, and sternum. While modern ornithologists believe that the total body length measurement that I will
- use today is subject to high observational error (Johnston et al. 1972), it will be more than sufficient for
- 35 demonstrating Rmarkdown.



Figure 1: Passer domesticus

- 36 I performed an independent two-sample student's t-test on sparrow total body length to test whether or not
- <sub>37</sub> sparrows that died in the 1898 storm were larger than sparrows that survived. I assume that both groups of

sparrows (dead and living) have equal variances, so the test statistic t is calculated as follows,

$$t = \frac{\bar{X}_1 - \bar{X}_2}{s_p \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

- In the above,  $\bar{X}_1$  and  $\bar{X}_2$  are the mean of the samples of sparrows that died and lived, respectively. Similarly,
- $n_1$  and  $n_2$  are the sample sizes of sparrows that died and lived, and  $s_p$  is the pooled sample mean, which is
- 41 calculated as follows,

$$s_p = \sqrt{\frac{s_{X_1}^2 + s_{X_2}^2}{2}}.$$

- In the above, the  $s_{X_1}^2$  and  $s_{X_2}^2$  are the sample standard deviations for sparrows that died and lived, respectively.
- 43 I conduceted the two sample t-test using the t.test function in R (R Core Team 2018).

#### 44 Results

- <sup>45</sup> Bumpus' data included 72 sparrows that lived and 64 sparrows that died. The mean total length of living
- 46 sparrows was 158.71 mm, and the mean total length of dead sparrows was 160.48 mm. The two sample t-test
- revealed a t-statistic of -2.99, which corresponds to a p-value of P = 0.00167.
- Figure 2 shows the difference between total length in sparrows that survived versus sparrows that died.
- <sup>49</sup> Overall, dead sparrows were 1.78 mm longer than living sparrows, and ranged between 152 and 163 mm.
- Living sparrows ranged between 153 and 160.25 mm (Figure 2).



Figure 2: Box plot of the total lengths of live and dead sparrows following a snowstorm in Providence, RI, as originally collected by Hermon Bumpus. The central horizontal line shows median values. Boxes and whiskers show inter-quartile ranges and extreme values, respectively.

#### 51 Discussion

- 52 I have analysed data collected by Herman Bumpus (Bumpus 1898) on the relationship between sparrow
- <sup>53</sup> (Passer domesticus) total length and surival following an unusually severe storm. I found that sparrows that
- died in the storm were longer than sparrows that survived, which suggests that higher sparrow body length
- between any decreased survival. Of course, it is not possible to definitively conclude a causal relationship between any
- 56 aspect of body size and sparrow survival, and even the available data collected by Bumpus would permit a
- more thoughtful analysis than that conducted in this study (see Appendix Table 1).
- $_{58}$  Overall, this document demonstrates how high quality, professional looking documents can be written using
- 59 Rmarkdown. The underlying code for this manuscript is publicly available, along with accompanying notes
- to understand how it was written. By using Rmarkdown to write manuscripts, authors can more easily use
- 61 version control (e.g., git) throughout the writing process. The ability to easily integrate citations though
- 62 BibTeX, LaTeX tools, and dynamic R code can also make writing much more efficient and more enjoyable.
- <sup>63</sup> Further, obtaining the benefits of using Rmarkdown does not need to come with the cost of isolating colleagues
- 64 who prefer to work with Word or LaTeX because Rmarkdown can easily be converted to these formats (in
- the case of Word, with the push of a button). By learning all of the tools used in this manuscript, readers
- 66 should have all of the necessary knowledge to get started writing and collaborating in Rmarkdown.

#### 67 References

- <sup>68</sup> Bumpus, H. C. 1898. Eleventh lecture. The elimination of the unfit as illustrated by the introduced sparrow,
- 69 Passer domesticus. (A fourth contribution to the study of variation.). Biological Lectures: Woods Hole
- 70 Marine Biological Laboratory 209–225.
- Darwin, C. 1859. The Origin of Species. Penguin, New York.
- <sub>72</sub> Johnston, R. F., D. M. Niles, and S. A. Rohwer. 1972. Hermon Bumpus and natural selection in the House

- 73 Sparrow Passer domesticus. Evolution 26:20–31.
- <sup>74</sup> R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical
- 75 Computing, Vienna, Austria.

## Appendix Table 1

- An example table is shown below, which includes all of the variables collected by Bumpus (1898) for the first
- <sup>78</sup> 10 measured sparrows. The full data set can be found online in GitHub.

Table 1: First ten rows of the original data set collected by Hermon Bumpus

| sex  | surv  | totlen | wingext | wgt  | head | humer | femur | tibio | skull | stern |
|------|-------|--------|---------|------|------|-------|-------|-------|-------|-------|
| male | alive | 154    | 241     | 24.5 | 31.2 | 0.687 | 0.668 | 1.022 | 0.587 | 0.830 |
| male | alive | 160    | 252     | 26.9 | 30.8 | 0.736 | 0.709 | 1.180 | 0.602 | 0.841 |
| male | alive | 155    | 243     | 26.9 | 30.6 | 0.733 | 0.704 | 1.151 | 0.602 | 0.846 |
| male | alive | 154    | 245     | 24.3 | 31.7 | 0.741 | 0.688 | 1.146 | 0.584 | 0.839 |
| male | alive | 156    | 247     | 24.1 | 31.5 | 0.715 | 0.706 | 1.129 | 0.575 | 0.821 |
| male | alive | 161    | 253     | 26.5 | 31.8 | 0.780 | 0.743 | 1.144 | 0.607 | 0.893 |
| male | alive | 157    | 251     | 24.6 | 31.1 | 0.741 | 0.736 | 1.153 | 0.610 | 0.862 |
| male | alive | 159    | 247     | 24.2 | 31.4 | 0.728 | 0.718 | 1.126 | 0.609 | 0.793 |
| male | alive | 158    | 247     | 23.6 | 29.8 | 0.703 | 0.673 | 1.079 | 0.602 | 0.820 |
| male | alive | 158    | 252     | 26.2 | 32.0 | 0.749 | 0.739 | 1.153 | 0.614 | 0.857 |