네트워크 보안

2023.07.25 하계 워크샵 4주차

한림대학교 정보과학대학 씨애랑

(HALLYM SECURITY TEAM SHIELD)

목차

- 대역폭 공격 ICMP Flooding
- · 대역폭 공격 DNS 반사 공격
- · 대역폭 공격 SSDP 반사 공격
- 보안 시각화
- 로그분석 틀

대역폭 공격 - ICMP FLOODING

■ ICMP Flooding 대한 이해

- □ ICMP (Internet Control Message Protocol)은 인터넷 환경에서 오류에 관한 처리를 지원하는 역할 수행
- □ 라우터 및 네트워크 장비에서 패킷을 전송할 대, 해당 패킷이 목적지 호스트까지 도달하지 못하거나 목적지 호스트가 정상적인 동작이 안되는 경우, 에러 메시지를 응답하여 오류 상황을 알려주는 역할 수행
 - 흔히 ping 명령어를 통한 패킷 전송 시 ICMP 프로토콜을 사용함
 - ICMP Flooding은 UDP 프로토콜 대신 ICMP 프로토콜을 사용한 다는 점을 제외하면 나머지 형태가 거의 같음.

Type	Code	Checksum
8bits	8bits	16bits
Identifier		Sequence number
16bits		16bits
Data		

Туре	Code	Message
0	0	Echo reply
3	0	Destination network unreachable
3	1	Destination host unreachable
3	2	Destination protocol unreachable
3	3	Destination port unreachable
3	4	Fragmentation required, and DF flag set
3	6	Destination network unknown
3	7	Destination host unknown
4	0	Source quench (congestion control)
8	0	Echo request (used to ping)

■ ICMP Flooding 대응 방안

- □ 충분한 네트워크 대역폭 확보
- □ 위조된 IP 차단
- □ 출발지 IP별 임계치 기반 차단
- □ Fragmentation 패킷 차단
- □ 서버 대역폭 및 가용량 확대
- □ Anycast를 이용한 대응
- □ Ingress 필터링과 Egress 필터링

□ 미사용 프로토콜 필터링

• ICMP는 헬스 체크의 목적으로만 사용하기 때문에 가능

□ 패킷 크기 기반 차단

• ICMP echo request는 64~80 바이트 정도지만, ICMP echo reply의 경우에는 약 300 바이트 전후의 큰 크기로 수신될 수 있으므로, 네트워크에 따라 적절한 임계치를 적용이 필요

대역폭 공격 - DNS 반사 공격

■ Reflection Attack

- □ 인터넷에서 UDP 서비스를 사용하는 서버들을 매개체(reflector/amplifier)로 이용하여 DDoS를 발생시키는 공격
 - 좀비 PC가 아닌 실제 인터넷상에서 정상 운영중인 UDP 서비스 서버들을 공격에 악용함

■ Reflection Attack

- □ 요청 패킷과 응답 패킷의 형상이 반사되는 형태를 보이며 증폭되는 형태를 보이기도 하기 때문에 증폭 공격(Amplification Attack)으로도 불림
 - 1. 공격자가 C&C를 이용하여 좀비 PC들에게 공격 명령 전송
 - 2. 수많은 좀비 PC들이 출발지 IP address를 공격 대상의 IP address로 위조하고,
 - 특정 매개체가 되는 서버들로 UDP 요청 패킷들을 전송함.
 - 3. 요청 패킷을 수신한 매개체 서버들이 공격 대상이 되는 위조된 IP address로 다량의 응답 패킷들을 전송함
- □ 대용량의 응답 패킷으로 인해 네트워크 대역폭 고갈
- □ 해당 공격의 피해자는 크게 볼 때 2곳
 - 매개체 서버, 공격 대상 서버
 - 공격 대상 서버는 수많은 매개체 서버들로부터 대용량의 응답 패킷들로 인해 대역폭 고갈과 정상 서비스 운영이 불가
 - 매개체 서버는 비정상적인 요청으로 인한 상당양의 응답 패킷 생성으로 인해 아웃바운드 트래픽 고갈과 함께 서버의 부하증가로 인한 피해 발생
 - 반사 공격에 대한 대응 방안은 공격 대상 입장과 매개체 입장 두 가지로 수립되어야 함.

- 반사 공격 특징 공격 대상 입장
 - □ 대부분 UDP 프로토콜로 구성됨
 - □ 공격 대상으로 전송되는 대규모 패킷들은 응답 패킷임
 - □ 출발지 포트는 특정 UDP 서비스에서 사용하는 포트 번호
 - □ ICMP destination unreachable 패킷이 수신 될 수 있음
 - 매개체로 사용한 UDP 서버가 동작하지 않거나 포트가 닫혔을 경우, ICMP로 응답함
 - □ 출발지 포트 정보를 통해 어떤 UDP 서비스 서버가 매개체로 사용된 것인지 알 수 있으며, 공격 유형이 정의됨
 - Ex. 출발지 포트 53 -> DNS 서버 매개체 -> DNS 반사공격
 - □ Src IP address는 UDP가 사용되는 서버의 IP address를 의미
 - Ex. Src port 53 -> DNS 매개체 -> 공격 출발지 IP로 DNS 질의 테스트 -> 정상 응답 확인 -> 실제 DNS서버로 인지

- 반사 공격 특징 매개체 입장
 - □ 운영중인 UDP 서비스로 많은 요청 패킷이 발생함
 - □ 출발지 IP address는 1~2개로 적음 (공격 대상의 IP address 로 위조된 IP address)
 - □ 목적지 포트는 매개체 서버에서 운영중인 UDP 서비스의 포트 번호

■ 반사 공격 종류

- □ DNS 반사 공격
- □ SSDP 반사 공격
- □ SNMP 반사 공격
- □ NTP 반사 공격
- □ 기타 반사 공격

- □ DNS는 응답의 크기가 512 bytes를 초과하면 TCP로 전환되는 특징이 있음
 - DNS 질의 명령어의 요청에 대한 응답 형태
 - ** TXT, ANY는 응답 값에 많은 문자열을 포함하고 있으므로 응답 크기가 큰 편에 포함됨

DNS 레코드	설명
А	도메인의 IP 주소(IPv4)를 의미
AAAA	도메인의 IP 주소(IPv6)를 의미
NS	도메인의 권한을 가진 네임 서버를 의미
CNAME	다른 도메인으로 위임하기 위한 별칭
TXT	형식이 지정되지 않은 임의의 텍스트 문자열의 응답
ANY	호스트가 보유한 전체 레코드의 응답을 의미

- □ DNS는 응답의 크기가 512 bytes를 초과하면 TCP로 전환되는 특징이 있음
 - DNS 질의 명령어의 요청에 대한 응답 형태

- □ DNS는 응답의 크기가 512 bytes를 초과하면 TCP로 전환되는 특징이 있음
 - DNS 질의 명령어의 요청에 대한 응답 형태 (DNS의 TCP 전환 시 패킷 흐름)

■ Reflection Attack – DNS

- □ DNS가 TCP로 전환될 때,
 - 위조된 IP 주소에서는 정상적인 3-way-handshake가 불가능하므로, 정상적인 DNS 질의와 응답이 발생 할 수 없음.

DNS가 TCP 전환 시, 위조된 IP 주소가 존재하는 IP 주소일 경우의 흐름

DNS가 TCP 전환 시, 위조된 IP 주소가 존재하지 않는 IP 주소일 경우의 흐름

■ Reflection Attack – DNS

- □ DNS가 TCP로 전환될 때,
 - 공격자 입장에서는 DNS 반사 공격을 유효하게 만들기 위해서는??
 - 응답 값의 크기를 최대한 크게 만들어야 함
 - 큰 응답값을 만들어 내기 위해서 DNS 레코드를 TXT 또는 ANY 형태로 질의 해야함
 - TCP 전환이 되지 않게 해야함(UDP인 상태를 유지)

512 바이트 이상 크기에도 TCP로 전환되지 않은 DNS 응답 값

■ Reflection Attack – DNS

□ 공격 구조

DNS 반사 공격의 구조

■ Reflection Attack – DNS

□ 1. 공격자는 C&C를 이용하여 좀비 PC로 명령 전달

- □ 2. 좀비 PC들은 출발지 IP 주소를 공격 대상 IP 주소 로 위조하여 다수의 캐싱 DNS에게 DNS 질의 수행
 - 큰 응답 값 생성을 위해 ANY 또는 TXT 레코드를 사용함

- □ 3. 만약 캐싱 DNS에서 사전에 캐싱이 되어 있지 않은 도메인이라면, 캐싱 DNS는 Auth DNS에게 질의를 하여 캐싱을 수행함
 - 이때, 공격자는 큰 응답 값을 만들어내기 위해 별도의 Auth DNS 서버를 구축하여 의도적인 큰 응답 값을 제작하거나, 인터넷상의 DNS에서 응답 값이 큰 도메인을 찾아서 반사 공격에 활용하기도 함

■ Reflection Attack - DNS

□ 4. 질의 명령에 +bufsize와 +ignore 옵션이 사용되었기 때문에, 패킷 크기가 크더라도 UDP로 유지되며, 응답 패킷은 공격 대상에게 대역폭 공격으로 적용됨

- □ 패킷 분석
 - DNS 반사 공격은 네트워크 대역폭을 가득 채우는 것이 목적 이기 때문에, **공격 대상의 서비스 종류에 상관없이 공격에** 사용된 출발지 IP주소 (매개체 서버, 캐싱 DNS 서버들, Reflector)는 인터넷에서 실제 DNS를 서비스 중인 리졸빙 (DNS 쿼리에 대한 답변)이 허용된 캐싱 DNS 서버일 뿐 악성 코드에 감염된 좀비 PC는 아님

- □ 패킷 분석
 - 이전 슬라이드의 DNS 반사 공격 트래픽은 프로토콜이 UDP, 출발지 포트가 53인 것으로 보아 DNS 응답 패킷임
 - ANY 레코드를 사용하여 3,306 바이트라는 응답 크기가 큰 것을 확인할 수 있음
 - DNS 반사 공격의 경우, 공격 툴로 패킷을 생성하여 전송이 가능하지만 주로 인터넷상에서
 - 서비스 중인 캐싱 DNS 서버들로부터 전달된 응답 트래픽이므로 공격이 발생한 출발지 IP 주소로
 - DNS 질의를 하면 정상적인 DNS 응답이 수신되는 것도 확인할 수 있음.

- □ 대응 방법
 - 공격 대상에서의 관점
 - 매개체에서의 관점(캐싱 DNS 관점)

- □ 대응 방법 : 공격 대상에서의 관점
 - 미사용 프로토콜 차단
 - 운영중인 네트워크 내에서 UDP를 이용한 서비스가 존재하지 않을 경우,
 - 상단 라우터 또는 차단 장비에서 UDP를 우선 전면 차단
 - 그 후, "resolv.conf"에 등록된 DNS 서버의 IP주소 또는 내부망 IP 주소 대역과
 - 같은 특정 신뢰할 수 있는 IP주소들만 허용하는 것으로 대응 가능
 - 웹서비스만 운영 중인 네트워크로 DNS 반사 공격이 발생한다면 해당 정책을 수립할 수 있음.

- □ 대응 방법: 공격 대상에서의 관점
 - Auth DNS가 공격 대상일 경우, 수신하는 응답 패킷 차단
 - DNS를 운영중인 네트워크 환경일 경우, Auth DNS는 외부로 부터 DNS 요청 질의를 받아 응답 값을 전달하는 역할을 수행
 - Auth DNS 자신이 응답 값을 수신하는 경우는 "resolv.conf"에 등록된 DNS 서버와 통신을 수행할 때임
 - Auth DNS는 "resolv.conf"에 설정된 IP주소 이외에 DNS 응답 패킷을 수신하는 경우가 없기 때문에, 신뢰할 수 있는 IP 주소 ("resolv.conf"에 설정된 DNS IP 주소 또는 내부 IP 주소 대역) 를 제외한 모든 DNS 응답 패킷을 차단, 또는 임계치 기반 차 단 기능을 이용하여 비정상 응답 패킷을 차단함
- □ 대응 방법: 매개체에서의 관점(캐싱 DNS 관점)
 - DNS 반사 공격 시 매개체의 관점에서는 대량의 요청 패킷을 수신하게 되므로, DNS Query Flooding과 거의 흡사한 형태의 패킷을 수신하게 됨
 - 또한, ANY 또는 TXT 등 응답 값이 큰 레코드를 이용한 요청 질의가 발생한다는 점이 일반적인 Query Flooding과 다름
 - ANY, TXT 등의 레코드는 거의 사용되지 않기 때문에, 운영상 사용하지 않을 경우 원천 차단하거나 임계치 초과 시 차단하도록 설정 가능
 - 임계치 초과의 경우, 분당 10회 또는 20회 등 해당 네트워크에서의 정상상태에 대한 통계치가 필요함
 - Iptables 옵션으로 위의 정책들을 적용 가능

대역폭 공격 - SSDP 반사 공격

■ Reflection Attack - SSDP

- □ SSDP 반사 공격은 IoT 기기를 매개체로 사용하는 반사 공격이며, UPnP 기능을 사용함
 - PnP는 특정 하드웨어를 PC에 추가할 때 운영체제가 이를 자동으로 인식하여 설치를 도와주는 기능
 - UPnP는 네트워크에 특정 기기를 추가할 때 네트워크 상에서 추가된 기기를 자동으로 인식하게 도와주는 기능

UPnP 프로토콜 구조

- □ SSDP는 UDP에 속해 있지만 HTTPU/MU라는 프로토콜 내부에 포함되어 있음
 - HTTPU, HTTPMU는 UDP/IP 기반에서 HTTP를 기본 프로토콜로 하여 유니캐스트, 멀티캐스트를 지원하는 프로토콜
 - SSDP는 UDP임에도 불구하고 헤더 구조상에 HTTP 프로토콜이 사용되는 특이한 구조로 구성됨

UPnP 프로토콜 구조

- □ SSDP는 네트워크상에서 서비스나 정보를 찾기 위한 프로토콜
 - 특정 기기(Root Device)가 네트워크에 추가되었을 경우, 이 장치에 대한 정보를 네트워크 기기(Control Point)에 알리고 자동으로 네트워크에 추가되는 것을 도와주는 역할을 수행
 - DDoS 공격 관점에서 SSDP 프로토콜의 가장 중요한 정보는 UDP 프로토콜과 1900번 포트를 사용하는 부분임
 - SSDP는 HTTPU (UDP 기반의 HTTP) 사용
 - 모든 데이터는 text로 통신
 - 사용 프로토콜은 UDP, 포트는 1900번
 - IPv4에서 멀티캐스트 주소는 239.255.255.250, IPv6에서는 ff0x::c
 - SSDP로 통신하기 위한 기기들은 해당 IP 주소를 통해 광고 및 연결을 수행
 - UPnP 기기(또는 IoT 기기)가 네트워크 탐색을 할 때 사용

■ Reflection Attack - SSDP

□ SSDP는 네트워크상에서 서비스나 정보를 찾기 위한 프로토콜

■ Reflection Attack - SSDP

- □ 1. (or 4) Advertise Alive
 - NOTIFY * HTTP/1.1
 - 특정 UPnP 기기(무선라우터, CCTV, 홈캠, 냉장고, 프린터 등)와 같은 Root device 가
 - 네트워크 그룹에 연결되거나 연결 종료 정보를 알리기 위한 목적으로 사용됨
 - 멀티캐스트 주소인 239.255.255.250 또는 ff0x::c를 이용해 자신의 존재를 네트워크 그룹에 광고함

■ Reflection Attack - SSDP

- □ 2. Search 요청
 - M-SEARCH * HTTP/1.1
 - 특정 Control Point (핸드폰 등 조종 주체)가 자신이 연결할 UPnP 기기(홈캠, 보일러, 냉장고, 프린터 등)를 검색할 때 M-SERACH 메소드를 사용함
 - 멀티캐스트 주소 239.255.255.250 또는 ff0x::c를 이용하여 자신이 특정 기기를 찾고 있음을 네트워크 그룹에게 알림

■ Reflection Attack - SSDP

- □ 3. Search 응답
 - HTTP/1.1 200 OK
 - Control Point로부터 전송된 M-SEARCH 요청에 특정 UPnP 기기가 응답할 때 HTTP/1.1 200 OK를 사용
 - 응답 값에서 LOCATION 헤더에 해당 UPnP 기기의 세부 정보가 기록된 xml 파일 의 URL 정보가 포함되어 있음

- Reflection Attack SSDP
 - □ SSDP 반사 공격의 구조

■ Reflection Attack – SSDP

- □ 공격 흐름
 - 공격자는 C&C를 이용하여 좀비 PC에게 명령 전달
 - 좀비 PC들은 출발지 IP를 공격 대상의 IP로 위조하여 수많은 UPnP 기기들(매개체)로
 - M-SEARCH를 이용한 요청 값을 전 송함
 - M-SEARCH를 수신한 UPnP 기기들은 응답 값을 공격 대상 (위조된 출발지 IP)에게 전송하여
 - 네트워크 대역폭을 고갈시 키며, 이때 사용되는 출발지 포트 번호는 1900번으로 고정
 - ** UPnP 기기들은 대부분 사설 IP로 특정 네트워크 내에서만 사용되는 것이 일반적임.
 - => 반사 공격의 매개체로 사용되는 이유는??

- Reflection Attack SSDP
 - □ SSDP 반사 공격 패킷 분석

■ Reflection Attack - SSDP

- □ SSDP 반사 공격 특징
 - UDP를 사용
 - 출발지 포트는 1900번
 - 출발지 IP주소들은 실제 UPnP 기기들
 - 피해자가 수신한 응답 패킷은 UDP임에도 HTTP/1.1 200 OK 라는 값이 사용됨
 - SSDP가 HTTPU에 속하기 때문
 - Location 헤더에 실제 UPnP 기기의 세부정보를 보여주는 링크가 포함됨

■ Reflection Attack – SSDP

- □ SSDP 반사 공격 대응방안
 - 공격 대상 관점
 - 자신이 운영하는 네트워크 또는 사내 네트워크에 UPnP 기기들이 사용되지 않는 네트워크라면 출발지 포트가 1900번인 UDP 패킷(SSDP 응답 값)을 차단하여 대응이 가능함
 - 또한, UDP이면서 'HTTP/1.1 200 OK' 문자열이 포함된 패킷의 경우, signature로 등록하여 해당 문자열이 포함된 패킷들을 차단하는 방법으로 대응
 - 공인 IP 사용 환경일 경우, 신뢰할 수 있는 기기의 IP 주소와 IP 주소 대역을 예외 처리해야 함.
 - 매개체 관점
 - 공인 IP 주소로 설정되어 사용하는 기기들의 경우, 사설 IP 주소로 변경하여 사용
 - 공인 IP 주소를 꼭 사용해야 하는 경우, 신뢰할 수 있는 IP 주소만 접속 가능하도록 ACL (Access Control List) 설정하여 접근 제어를 수행
 - UPnP 기능을 사용하지 않는 기기들의 경우,
 - 기기들의 설정 화 면을 제공하지 않게끔 비활성화 하여 매개체로 사용되는 것을 방지

■ ETRI VisNet and VisMon

■ 데이터 시각화

□ 직관적이고 그래픽적으로 형태가 명확하며, 그래프 형태별로 의미를 가짐으로써 정확한 정보를 전달

■ 시각화 전략

- □ 사용자
- □ 통계 그래프 기법
- □ 기술적 고려사항
- □ 보안 이벤트 시각화

■ 시각화 전략

- □ 사용자
 - 시각화를 프로그래밍 및 작성하는 사람은 사용자 그룹이나 개인 사용자를 위해서 그래프를 작성해야 함
 - 보여주기 식이 아닌, 실제 이용자를 대상으로 작성

■ 시각화 전략

□ 사용자

사용자	시각화 요구사항
관리	전체 네트워크 또는 전반적인 사항에 대한 요약을 해주는 시각화가 필요
운영	실시간 우선 순위 경보, 기록 데이터, 이벤트 상관 관계, 관리 부분에 지원을 할 수 있도록 개 별적인 보안 시각화가 필요
개발	개별 또는 그룹 장비, 어플리케이션, 프로토콜, 일반적인 성능에 관한 시각화가 필요 해당 시각화에는 단기 및 장기 로그, 에러 로그 및 에러 시나리오, 네트워크 모델 등이 포함
고객	세부적인 사항 보다 일반적인 사항으로 응답 시간, 네트워크 가용성, 애플리케이션 가용성, 평균 복구 시간 등의 다른 관리/운영/개발쪽에서의 확인 내용보다 일반화된 시각화가 필요

■ 시각화 전략

□ 통계 그래프 기법

Fig. 1 - Rescaled attack graphs.

■ 시각화 전략

□ 통계 그래프 기법

Fig. 5 - Screenshot of the PCAV application running on backbone traffic.

■ 기술적 고려사항

- □ 확장성 (Scalability)
 - 그래프 작성 시, 시각화 프로그램의 경우 많은 양의 트래픽 또는 로그들을 전반적으로 표현
 - 데이터의 크기 및 양에 관련됨
 - 그래프를 단순하게 할 경우, 의사결정을 할 때 적용하기 어려울 수 있음
 - 예) 초당 패킷의 수(PPS)만 시각화한 그래프에서 포트 스캐닝 인지 아닌지 확인하는 것은 제한적임
 - 보안 시각화 설계 시 고려할 사항
 - 확인하고자 하는 문제를 표현해줄 수 있는 적절한 차트
 - 차트에서 현재 표현하는 Feature의 추가
 - 차트의 복잡성을 증가시키지 않음 (너무 많은 정보는 의사 결정을 내리기 어렵게 만듦)
 - 시각화 차트/그래프에서 색상 또는 모양 적용

■ 공격 특징

■ 공격관련 4개의 중요 변수

- □ Source 및 Destination IP 주소
 - 공격자 호스트와 피해자 호스트를 확인할 수 있음
- □ 목적지 포트번호
 - 공격 대상의 서비스를 식별하고 포트 스캐닝 공격을 검증
- □ 패킷의 평균 크기
 - 대부분의 웜은 일정한 페이로드로 전파되며, 웜의 평균 패킷 크기는 고정된 길이로 지정할 수 있음
- □ TCP 헤더의 플래그 및 IP 헤더의 프로토콜 필드
 - 다른 Feature로 사용할 수 있음

■ 시각화를 통한 장점

- □ 많은 양의 정보를 종합적으로 해석할 수 있음
- □ 시각화된 결과를 인식하는데 있어 전문화된 인력이 요구되지 않음
- □ 빠르게 상황을 인식할 수 있음

Signature

- □ IDS → signature (패턴 DB와의 비교)
 - 상황별 고유한 signature가 나와야 오탐을 줄일 수 있음
- □ Visual signature (시각적 패턴)
 - 상황별 고유한 도형(시각적 패턴)이 나와야 오탐을 줄이고 상황인식을 정확히 할 수 있음

■ Signature 정교화 작업

□ DDoS와 대규모 이벤트로 인한 대량 웹 접속의 구분 을 더 정교하게 해야 할 때, size 축을 하나 더 두어서 해결

: Web Request

■ Signature 정교화 작업

- □ 정보(factor) 에는 도형 모양, 두께 등이 포함
 - 축 같은 정보 보다 (nominal 한 추가정보) 색상이나 두께를 더 직관적으로 인식

If average_traffic_size > 1kbytes

- → web event

If average_traffic_size < 40 bytes

- → DDoS

로그분석 툴

■ HIDS에 필요한 정보

- □ 네트워크 데이터 (네트워크 관련 로그, 패킷 모니터링) + 시스템 로그 데이터
- □ 리눅스의 주요 로그 디렉토리 위치

■ utmp(x) 로그

- utmp 데몬: utmp(x) 파일에 로그 남기는 프로그램
- □ 리눅스의 가장 기본적인 로깅을 제공하는 데몬(/etc/lib/utmpd) 현재 시스템에 로그인한 사용자의 상태 출력
- utmp 데몬에 저장된 로그를 출력하는 명령: w, who, users, whodo, finger 등
- □ w 명령 : 현재 시스템에 로그인된 사용자 계정과 로그인 셸 종류,로그인 시간, 실행 중인 프로세스의 종류

■ utmp(x) 로그

□ who 명령 : 접속한 시스템의 IP 확인

■ wtmp(x) 로그

- □ wtmp 데몬: wtmp(x) 파일에 로그 남김, /usr/include/utmp.h 파일 구조체 사용
- □ utmp 데몬과 비슷한 역할, 사용자들의 로그인, 로그아웃, 시스 템 재부팅 정보 수록
- □ last 명령 이용 확인

last 명령 실행하여 시스템에 로그인한 사용자의 최근 목록 확인

■ su 로그

- □ su(switch user)는 권한 변경에 대한 로그
- □ 출력 형식: [날짜][시간][+(성공) or -(실패)] [터미널 종류][권한 변경 전 계정 변경 후 계정]
- □ su 로그에 대한 설정 파일 : /etc/default/su

cat /var/adm/sulog

```
Terminal
                                                                          File Edit View Terminal Help
root@solaris:/#
root@solaris:/# cat /var/adm/sulog
SU 05/06 20:59 + ??? root-ocm
SU 05/06 21:27 - pts/l wishfree-root
SU 05/06 21:27 - pts/l wishfree-root
SU 05/06 21:28 + pts/l wishfree-root
SU 05/06 22:28 + pts/l wishfree-wish
SU 05/06 22:29 + pts/l wishfree-root
SU 05/06 22:34 + pts/l wishfree-wish
SU 05/06 22:34 - pts/l wishfree-wish
```


■ pacct 로그

- □ 시스템에 로그인한 모든 사용자가 수행한 프로그램에 대한 정보 저장하는 로그
- □ acctcom 명령 실행을 통해 확인 가능

□ root 계정으로 vi 에디터 실행한 기록 출력하는 명령

■ pacct 로그

□ lastcomm 명령 : 실행된 날짜 출력

lastcomm

```
Terminal
    Edit View Terminal Help
root@solaris:/# lastcomm
                                   0.00 secs Tue May
acctcom
            root
                    pts/l
                                                      8 20:34
acctcom
            root
                    pts/l
                                   0.00 secs Tue May
                                                      8 20:34
                                   0.00 secs Tue May
                                                      8 20:34
acctcom
            root
                    pts/l
                                   0.00 secs Tue May 8 20:34
lvim
            root
                    pts/1
                    pts/l
                                   0.00 secs Tue May
                                                      8 20:34
vim
            root
acctcom
            root
                    pts/l
                                   0.00 secs Tue May
                                                      8 20:32
lmail
            test
                    pts/2
                                   0.00 secs Tue May 8 20:32
cat
                    pts/2
                                   0.00 secs Tue May 8 20:32
            test
quota
            test
                    pts/2
                                   0.00 secs Tue May 8 20:32
sshd
         SF root
                                   0.02 secs Tue May 8 19:38
sshd
         SF test
                                   0.11 secs Tue May 8 19:38
bash
         S test
                                   0.00 secs Tue May 8 19:38
bash
          F test
                     pts/2
                                   0.00 secs Tue May
                                                      8 20:32
acctcom
            root
                     pts/l
                                   0.00 secs Tue May 8 20:32
accton
         S root
                     pts/l
                                   0.00 secs Tue May 8 20:31
root@solaris:/#
```


Syslog

- □ 시스템의 로그 정보를 대부분 수집하여 로깅
- □ 해당 로그의 종류와 로깅 수준은 /etc/syslog.conf 파일에서 확인

■ authlog/loginlog

- □ loginlog는 실패한 로그인 시도에 대한 로깅 수행
- □ loginlog 파일에 실패한 로그인 기록이 저장되도록 설정
- □ 이 설정은 /etc/default/login 파일에 저장, 시스템 재부팅할 때 적용

로그분석

■ 시스템별 로그 상세 경로

로그 파일	리눅스(레드햇)	솔라리스	HP-UX (10.x 이상)	IBM-AIX
utmp, wtmp	/var/run(utmp)	/var/adm	/var/adm	/var/adm
	/var/log(wtmp)			
utmpx, wtmpx	존재하지 않음	/var/adm	존재하지 않음	존재하지 않음
btmp	/var/log	존재하지 않음	/var/adm	존재하지 않음
syslog	존재하지 않음	/var/log	/var/adm/syslog/syslog.log	/var/adm
secure	/var/log	존재하지 않음	존재하지 않음	존재하지 않음
sulog	존재하지 않음	/var/adm	/var/adm	/var/adm
pacct	/var/log	/var/adm	/var/adm	/var/adm
authlog	존재하지 않음	/var/log	존재하지 않음	존재하지 않음
messages	/var/log	/var/adm	/var/adm	/var/adm
loginlog	존재하지 않음	/var/adm	존재하지 않음	존재하지 않음
lastlog	/var/log	/var/adm	/var/adm	/etc/security
access_log	/var/log/httpd	/var/log/httpd	/usr/local/etc/httpd/logs	/usr/local/etc/httpd/logs
error_log	/var/log/httpd	/var/log/httpd	/usr/local/etc/httpd/logs	/usr/local/etc/httpd/logs
shutdownlog	존재하지 않음	존재하지 않음	/etc/shutdownlog	존재하지 않음
failedlogin	존재하지 않음	존재하지 않음	존재하지 않음	/etc/security

로그분석

■ 그 외 사용 가능한 속성

- □ CPU 사용량 / 비율 / 시간
- □ 메모리 사용량 / 비율 / 시간
- □ 네트워크 사용량 / 비율 / 시간
- □ 디스크 사용량 / 비율 / 시간
- □ 프로세스별 사용 시간 및 빈도
- □ ...

로그 분석 – 보안 시각화

■ Wtmp를 보안시각화로 적용할 경우

- □ wtmp (UNIX / Linux log) && pacct (모든 명령어 기록; lastcomm)
 - who, when, where, how (FTP, ...) 얼마동안 세션을 맺었다.
 - → where (회사 내부 : 파란색 / 회사 외부로부터 : 빨간색)
 - → when (업무 시간 이외: 빨간색 / 업무시간 내: 파란색)
 - R, F, I, M (요약테이블)
 - R (최근 로그인 시간)
 - F (로그인 빈도)
 - I (로그인 인터벌)
 - M (로그인 횟수)
 - ex)
 - 1시간 동안 로그인을 100번 vs. 3달 동안 로그인을 100번
 - 한번 로그인 하고, 다음 로그인까지 평균 16시간 간격이 있는 사람 vs. 한번 로그인과 다음 로그인 사이 평균 3분 간격이 있는 사람

로그 분석 - 패킷

- 네트워크 환경에서의 대용량 패킷 분석
 - □ 전체적인 프로토콜 분포
 - □ 트래픽을 많이 발생시킨 IP 관련 통계
 - □ HTTP와 같은 요청 및 응답에 대한 통계
- 대용량 패킷을 분석하는데 있어서 일정 통계 값을 통한 빠른 상황 인지가 가능함
 - □ 하지만, 보다 빠른 의사 결정을 위해서는 그래프 형태로써 시각적으로 인지하기 쉽게 표현하는 것이 필요함

■ 시스템 이벤트 로그

- □ Window 시스템에서 시스템로그가 이벤트 형식으로 관리됨
 - 이벤트 로그 : 응용프로그램 로그, 보안 로그, 시스템 로그, 디렉토리 서비스 로그, 파일 복제 서비스 로그, DNS 서버 로그 등 (기본적으로 응용프로그램, 보안, 시스템 로그 이벤트를 기록)

이벤트 ID – Type1	이벤트 ID – Type2	내용
624	4720	사용자 계정 생성
625		사용자 계정 유형 변경
627	4723	암호 변경 시도
628	4724	사용자 계정 암호 설정
630	4726	삭제된 사용자 계정
680	4776	로그인 성공 정보
681	4777	로그인 실패 정보
528	4624	성공적인 로그인
529	4625	잘못된 암호를 이용한 로그인 시도

■ DARPA Dataset

□ Attack-Free 상태의 Dataset

THANK YOU