

Today
- HW2 is done but not entered
- HW3 link didn't go live
- Perusell due Wed.

Edit Distance The minimum number of deletions, insertions, or substitutions of letters to transform between two strings. Uses? - Spell Checker - bioinformatics How to solve: Aligning/matching will help: A: ALGOR, I THM

VOLVOLORI THM

B: AL TRUISTIC HH H H H H H 1

Example:

ATCČGAT

TGCATAT delete last T **TGCATA** delete last A TGČAT insert A at the front **ATGCAT** substitute C for G in the third position **ATCČAT** insert a G before the last A

TGCATAT insert A at the front ATGCATAT delete T in the sixth position **ATGCAAT** substitute G for A in the fifth position **ATGCGAT** substitute C for G in the third position **ATCČGAT**

Alignment matrix:

(at most m+n columns)
Another way:
Write # of repitations:

$$\mathbf{v} = \begin{bmatrix} 0 & 1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 7 \\ A & T & - & G & T & T & A & T & - \\ & & & & & & & & & & & & \\ \mathbf{w} & = & A & T & C & G & T & - & A & - & C \\ 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 6 & 7 \end{bmatrix}$$

Don't be gready!
The temptation is to do this
as you go: ABCADA? ABADC edit distance? Idea: try matching, try both, pay costs that depend

Recursive formulation: If I align like this, can If you delete last (aligned) column, the rest will still be optimal for shorter substrings edit distance. Why?

Turning this into a matrix: Let EDIT (A[I.o.m], B[1.o.n]) be edit distance b/t A +B. When we choose how to align, 3 possibilities: - insertor: - deletion: - Substitution:

 $\begin{bmatrix} Edit(A[1..m-1],B[1..n]) + 1 \\ Edit(A[1..m],B[1..n-1]) + 1 \\ Edit(A[1..m-1],B[1..n-1]) + [A[m] \neq B[n]] \end{bmatrix}$

Turning this into a proper recursion!

Let EDIT(i,j) = edit distancebetween:

A[1..i]

B[1..j]

if j = 0if i = 0

$$Edit(i,j) = \begin{cases} i & \text{if } j = 0 \\ j & \text{if } i = 0 \end{cases}$$

$$Edit(i,j) = \begin{cases} Edit(i-1,j) + 1, \\ Edit(i,j-1) + 1, \\ Edit(i-1,j-1) + [A[i] \neq B[j]] \end{cases} \text{ otherwise}$$

Give me 2 strings:

$$Edit(i,j) = \begin{cases} i & \text{if } j = 0 \\ j & \text{if } i = 0 \end{cases}$$

$$Edit(i,j) = \begin{cases} Edit(i-1,j)+1, \\ Edit(i,j-1)+1, \\ Edit(i-1,j-1)+[A[i] \neq B[j]] \end{cases} \text{ otherwise}$$

Now, don't bother analyzing the recursion. (It's awful!) Instead, be smart: memorze! Table:

Algorithm:

```
\begin{split} & \underbrace{\text{EDITDISTANCE}(A[1..m], B[1..n]):}_{\text{for } j \leftarrow 1 \text{ to } n} \\ & \underbrace{Edit[0, j] \leftarrow j}_{\text{for } i \leftarrow 1 \text{ to } m} \\ & \underbrace{Edit[i, 0] \leftarrow i}_{\text{for } j \leftarrow 1 \text{ to } n} \\ & \underbrace{if A[i] = B[j]}_{\text{Edit}[i, j] \leftarrow \min \{Edit[i-1, j] + 1, Edit[i, j-1] + 1, Edit[i-1, j-1]\}}_{\text{else}} \\ & \underbrace{Edit[i, j] \leftarrow \min \{Edit[i-1, j] + 1, Edit[i, j-1] + 1, Edit[i-1, j-1] + 1\}}_{\text{return } Edit[m, n]} \end{split}
```

Runtine:

Example:

		Α	1	G	0	R	I	Т	Н	М
_										
	0 -	→1-	→2-	→3–	→4-	→5-	→ 6−	→7-	→8–	→9
A		0 –	→1-	→2-	→3-	→4-	→5-	→6-	→7-	→8
L	↓ 2	1	- 0	→1-	→2-	→3-	→4 –	→5-	→6-	→7
Т	3	2	1	1-	` →2-	→3-	` →4-	` →4- `	→5-	→6
R	↓ 4	↓ 3 -	↓ 2 	↓ ` 2 	2	2-	→3-	→4 <u>-</u>	` →5-	` →6
U	↓ 5 	↓ 4	3	3 ∧↑,	3 ^1 ∱ .	3 ^¥	3-	` →4-	` →5- `	` →6
I	6	5	4	√↓ ` 4 1 \	↓↓ ` 4 	√ `	3- 	` →4-	` →5- `	√
S	1	6	5	↓↓ ` 5	↓↓ ` 5	↓↓ 5	↓ ` 4	4	[*] 5	6
Т	8	↓ 7	6	, 6 6	`↓↓` 6	¥ٰد 6	5	4-	` →5- `	`∡ →6
I	↓ 9	8	↓ \ 7	√↓ ` 7 	√↓ ` 7 	√↓ 7	` 4≰	↓ ` 5 - `	5-	` →6
С	10	9	8	8 ^↑,	8 ^↑,	8 ⁄¹₹	→ 7	6	, 6 7 ↓	6

The memoization table for Edit(ALGORITHM, ALTRUISTIC)

Another: (DNA Frample)

$$\mathbf{v} = \begin{pmatrix} 0 & 1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 7 \\ \mathbf{A} & \mathsf{T} & - & \mathsf{G} & \mathsf{T} & \mathsf{T} & \mathsf{A} & \mathsf{T} & - \\ & & | & | & | & | & | & | & | \\ \mathbf{w} & = \begin{pmatrix} & \mathsf{A} & \mathsf{T} & \mathsf{C} & \mathsf{G} & \mathsf{T} & - & \mathsf{A} & - & \mathsf{C} \\ 0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 6 & 7 \end{pmatrix}$$

Next: Subset Sum Given a set X of positive integers and a target value t, is there a subsett of X' which sums to t? Recall our (exponential) backfracting. Formalize this: recursion!

[X[1..n] include X[i]:

[(X,t)=\) T(X[2..n], t-X[i] $T(\chi(2..n],t)$

Can we do DP? In this chapter:

$$SS(i,t) = \begin{cases} \text{True} & \text{if } t = 0\\ \text{False} & \text{if } t < 0 \text{ or } i > n\\ SS(i+1,t) \vee SS(i+1,t-X[i]) & \text{otherwise} \end{cases}$$

Dr:

$$SS(i,t) = \begin{cases} \text{True} & \text{if } t = 0\\ \text{False} & \text{if } i > n\\ SS(i+1,t) & \text{if } t < X[i]\\ SS(i+1,t) \lor SS(i+1,t-X[i]) & \text{otherwise} \end{cases}$$

How to memorze?