2024 Hong Kong, Guangzhou and Taipei Joint Workshop on Artificial Intelligence, Communications and Information Theory

Source Coding Theorems with Semantic Computing-Oriented Criterion

Tingting Zhu and Xiao Ma
School of Computer Science and Engineering, Sun Yat-sen University

• Motivation

Based on the semantic communications system model, a new data compression problem arises: what is the theoretical limit of the source coding when the goal of communication is to compute semantic functions rather than reconstructing source symbols?

• System Model

- Observable source: X
- Unobservable semantics: $S = \theta(X)$
- JSCC Decoder: \widehat{X}
- Semantic Decoder: $\hat{S} = \theta(\hat{X})$
- Distortion: $d(S, \hat{S}) = d(\theta(X), \theta(\hat{X}))$
- Goal: $\min d(\theta(X), \theta(\widehat{X}))$

Semantic representation of source symbol one-to-many relationship between semantics and the observed sources

• Discrete Source

> Definition 1 (Semantic entropy):

$$H(\theta_i(X)) = -\sum_{i} p(\theta_i(x_j)) \log_2 p(\theta_i(x_j)), 1 \le i \le |\mathcal{S}|, 1 \le j \le |\mathcal{X}|$$

Theorem 1 (Lossless Source Coding Theorem with Semantic Computing-Oriented Criterion):

Given the observable source X and its semantic feature function $S_i = \theta_i(X)$, $1 \le i \le |S|$, for each semantics S_i , all rates above the semantic entropy are achievable, and all rates below the semantic entropy are not; that is, for $R_i \ge H(\theta_i(X)) + \varepsilon$, $\varepsilon > 0$, there exists a sequence of codes C such that $R_C \ge R_i$ and $\lim_{k \to \infty} \Pr\{\theta_i(\widehat{X}^k) \ne \theta_i(X^k)\} = 0$. Conversely, for $R_C < R_i$, the error probability is bounded away from 0.

- \succ Corollary 1: $H(\theta_i(X)) \le H(X)$, $1 \le i \le |S|$
- ightharpoonup Corollary 2: $H(S_1, ..., S_M) \le H(S_1) + ... + H(S_M) \le MH(X)$
- \triangleright Corollary 3: H(S) < H(S) + H(X|S) = H(X)

Table 1 PMF and Entropy of discrete source X

rable i i iiii ana Entropy of alsorete source A								
X	1	2	3	4	5	6		
p(x)	1/6	1/6	1/6	1/6	1/6	1/6		
H(X)			2.	59				

Table 2 Semantic feature function, semantic space and its probability distribution

$\theta_i(X)$	Semantic Space \mathcal{S}_i	Semantics s	p(s)	$H(S) = H(\theta_i(X))$	
$\theta_1(X)$	c = (0.1)	0	1/2	1	
$= X \mod 2$	$\mathcal{S}_1 = \{0, 1\}$	1	1/2	'	
		0	1/6		
$\theta_2(X)$	$S_2 = \{0, 1, 2, 3\}$	1	1/3	1.92	
$= X \mod 4$		2	1/3	1.92	
		3	1/6		

Table 3 Joint distribution of *X* and *S*

S	X = 1	X = 2	X = 3	X = 4	X = 5	X=6
S = 0	0	1/6	0	1/6	0	1/6
S = 1	1/6	0	1/6	0	1/6	0

• Continuous Source

> Definition 2 (Semantic rate distortion function):

$$R_{\theta_i}(D_{\theta_i}) = \min_{p(\hat{s}_i|s_i):\sum_{s_i,\hat{s}_i} p(s_i)p(\hat{s}_i|s_i)d(s_i,\hat{s}_i) \leq D_{\theta_i}} I(S_i; \hat{S}_i), 1 \leq i \leq |\mathcal{S}|$$

Theorem 2 (Lossy Source Coding Theorem with Semantic Computing-Oriented Criterion):

For each semantics S_i , $1 \le i \le |\mathcal{S}|$, given $\varepsilon > 0$, if $R_{\theta_i} \ge R_{\theta_i}(D_{\theta_i}^*) + \varepsilon$, there exists a sequence of codes \mathcal{C} , such that the code rate $R_{\mathcal{C}} \ge R_{\theta_i}$ and the average semantic distortion is bounded by $D_{\theta_i} \le D_{\theta_i}^* + \varepsilon$. Conversely, for $R_{\mathcal{C}} < R_{\theta_i}$, then for any \mathcal{C} , the average semantic distortion $D_{\theta_i} > D_{\theta_i}^*$.

- > Corollary 4: $R_{\theta_i}(D_{\theta_i}) \leq I(S_i; \widehat{S}_i) \leq I(X; \widehat{X}) = R(D)$
- > MSE of the semantic function

> MSE of the semantic function

$$\theta_2(x) = \exp(x)$$

> Full paper is available: (in Chinese)