CS6510 Applied Machine Learning

Course Introduction

5 Aug 2017

Vineeth N Balasubramanian

A few (not so, yet) recent quotes

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates, Chairman, Microsoft)
- "Machine learning is the next Internet" (Tony Tether, Director, DARPA)
- Machine learning is the hot new thing" (John Hennessy, President, Stanford)
- "Web rankings today are mostly a matter of machine learning" (Prabhakar Raghavan, ex-Dir. Research, Yahoo)
- "Machine learning is going to result in a real revolution" (Greg Papadopoulos, CTO, Sun)
- "Machine learning is today's discontinuity" (Jerry Yang, ex-CEO, Yahoo)

What is Machine Learning?

What is Machine Learning?

- Making predictions or decisions from data
- "Programming computers to optimize a performance criterion using example data or past experience" (Ethem Alpaydin, Machine Learning, 2010)
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Tom Mitchell, Machine Learning, 1997)
- "Learning general models from a data of particular examples"
- "Build a model that is *a good and useful approximation* to the data."

Today

Traditional Programming

Machine Learning

Source: Domingos

Related Terms

Machine Learning, Data Mining, Knowledge Discovery, Artificial Intelligence, Statistical Learning, Pattern Recognition, Computational Learning

When is Machine Learning Used?

- Human expertise does not exist
 - E.g. navigating on Mars
- Humans are unable to explain their expertise
 - E.g. speech recognition
- Solution changes in time
 - E.g. routing on a computer network
- Solution needs to be adapted to particular cases
 - E.g. user biometrics
- Data is cheap and abundant; knowledge is expensive and scarce

From: cheapsales@buystufffromme.com

To: ang@cs.stanford.edu

Subject: Buy now!

Deal of the week! Buy now!
Rolex w4tchs - \$100
Medicine (any kind) - \$50
Also low cost M0rgages
available.

Span

From: Alfred Ng

To: ang@cs.stanford.edu Subject: Christmas dates?

Hey Andrew,
Was talking to Mom about plans
for Xmas. When do you get off
work. Meet Dec 22?
Alf

Non-spam

CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG EI
GAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGAAGCGCAGTCGGGGGCACGGGGATG EI
TAAATTCTTCTGTTTAACACCTTTCAGACTTATGTGTATGAAGGAGTAGAAGCCAAA IE
AAACTAAAGAATTATTCTTTTACATTTCAGTTTTTCTTGATCATGAAAACGCCAACAAAA IE
AAAGCAGATCAGCTGTATAAACAGAAAATTATTCGTGGTTTCTGTCACTTGTGTGATGGT N
TTGCCCTCAGCATCACCATGAACGGAGAGGCCATCGCCTGAGGGCTGCCAGGCCA N

Software giant Microsoft saw its shares dip a few percentage points this morning after U.S. District Judge Thomas Penfield Jackson issued his "findings of fact" in the government's ongoing antitrust case against the Seattle wealth-creation machine...

News:

Words like Jackson and antitrust are more likely in the stories preceding the plunge.

```
P(shares) = 0.074
P(antitrust) = 0.009
P(judge) = 0.006
P(trading) = 0.032
P(against) = 0.025
P(Jackson) = 0.001
```

```
P (shares | MSFT\downarrow) = 0.071
P(antitrust | MSFT\downarrow) = 0.044
P(judge | MSFT\downarrow) = 0.039
P(trading \mid MSFT \downarrow) = 0.029
P(against | MSFT\downarrow) = 0.027
P(Jackson | MSFT\downarrow) = 0.025
```

```
P(MSFT\downarrow | Jackson) = P(Jackson | MSFT\downarrow) P(MSFT\downarrow) / P(Jackson)
```


More ML Applications

- Science (Astronomy, neuroscience, medical imaging, bio-informatics)
- Environment (energy, climate, weather, resources)
- Retail (Intelligent stock control, demographic store placement)
- Manufacturing (Intelligent control, automated monitoring, detection methods)
- Security (Intelligent smoke alarms, fraud detection)
- Marketing (promotions, ...)
- Management (Scheduling, timetabling)
- Finance (credit scoring, risk analysis...)
- Web data (information retrieval, information extraction, ...)

More Recent ML Applications

- AlphaGo!
- Automating Employee Access Control
- Identifying whales in ocean based on audio recordings
- Predict wait times for patients in emergency rooms
- Extract heart failure diagnosis criteria from free-text physician notes
- Predicting hospital readmissions
- Is (s)he a pyschopath?

When are ML algorithms not needed?

When the relationships between all system variables (input, output, and hidden) is completely understood!

This is NOT the case for almost any real system!

Overview of ML

- Supervised learning
 - Predict an output y when given an input x
 - For categorical y : classification.
 - For real-valued y : regression.
- Unsupervised learning
 - Create an internal representation of the input, e.g. clustering, dimensionality
 - This is important in machine learning as getting labels is often difficult and expensive
- Other settings of ML
 - Reinforcement learning (learning from "rewards")
 - Semi-supervised learning (combines supervised + unsupervised)
 - Active learning, Transfer learning, Structured prediction

Classification (Supervised Learning)

Classification (Supervised Learning)

Regression (Supervised Learning)

Clustering (Unsupervised Learning)

Dimensionality Reduction (Unsupervised Learning)

Large sample size is required for high-dimensional data

Query accuracy and efficiency degrade rapidly as the dimension

increases

Strategies

- Feature reduction
- Feature selection
- Manifold learning
- Kernel learning

Other Settings: Ranking (Supervised Learning)

Given a query and a set of web pages, rank them according to relevance

- Other applications
 - User preference, e.g. Netflix
 "My List" -- movie queue
 ranking
 - Flight search (search in general)
 - ...

6.867 is an introductory course on **machine learning** which gives an overview of many concepts, techniques, and algorithms in **machine learning**, beginning with ...

Other Settings: Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
 - E.g. Game playing
 - E.g. Robot in a maze
- Multiple agents, partial observability, ...
- Example (Simple Demo):
 - https://www.youtube.com/watch?v=DCjbk4m1G6l

ML Problems

Supervised Learning Unsupervised Learning Discrete classification or clustering categorization Continuous dimensionality regression reduction

ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

Training and Testing ML Models

Training and Testing ML Models

Training is the process of making the system able to learn.

No free lunch rule:

- Training set and testing set may not come from the same distribution
- Need to make some assumptions or bias

Types of Models

- Inductive vs Transductive Learning
- Online vs Offline Learning
- Generative vs Discriminative Models
- Parametric vs Non-Parametric Models

ML Datasets

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- Statlib: http://lib.stat.cmu.edu/
- Kaggle
- Many more...

ML Resources

- MOOCs
 - Coursera, EdX, Udacity
- Conferences/Journals
 - JMLR, Machine Learning, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, Annals of Statistics
 - ICML, NIPS, KDD, IJCAI, AAAI, ICDM

Mathematical Basis

- Functions, Logarithms and Exponentials
- Vectors, Dot Products, Orthogonality
- Matrices, Matrix Operations, Linear Transformations, Eigendecomposition
- Calculus, Differentiation, Integration
- Probability and Statistics
- Functional Analysis, Hilbert Spaces

Course Details

Available at: https://goo.gl/q6dNoP

Topics not to be covered (likely)

- Deep Learning (not in its "depth", at least)
- Bayesian Networks (not in depth)
- Reinforcement Learning
- Learning Theory

Programming

- Python
- Libraries
 - Numpy, Scipy numerical/scientific computing, linear algebra
 - Matplotlib for plotting
 - Scikitlearn for machine learning

Foundational Reading/Follow-up

Math

- Part 1 of Deep Learning book: http://www.deeplearningbook.org/
- Essence of linear algebra: http://youtu.be/kjBOesZCoqc
- Essence of calculus: https://goo.gl/Hnk1jA
- Programming
 - Learn Python
 - https://try.jupyter.org/
 - https://docs.python.org/3/tutorial/
 - Video Tutorials: https://www.youtube.com/watch?v=cpPG0bKHYKc
 - Play with Numpy

