Newton's Divided Difference Polynomial Method of Interpolation

Major: All Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Newton's Divided Difference Method of Interpolation

http://numericalmethods.eng.usf.edu

What is Interpolation?

Given (x_0,y_0) , (x_1,y_1) , (x_n,y_n) , find the value of 'y' at a value of 'x' that is not given.

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

- Evaluate
- Differentiate, and
- Integrate.

Newton's Divided Difference Method

<u>Linear interpolation</u>: Given $(x_0, y_0), (x_1, y_1)$, pass a linear interpolant through the data

$$f_1(x) = b_0 + b_1(x - x_0)$$

where

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Newton Divided Difference method for linear interpolation.

interpolation.

Table. Velocity as a function of time

<i>t</i> (s)	v(t) (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		

Figure. Velocity vs. time data for the rocket example

Linear Interpolation

$$v(t) = b_0 + b_1(t - t_0)$$

$$t_0 = 15$$
, $v(t_0) = 362.78$

$$t_1 = 20, v(t_1) = 517.35$$

$$b_0 = v(t_0) = 362.78$$

$$b_1 = \frac{v(t_1) - v(t_0)}{t_1 - t_0} = 30.914$$

Linear Interpolation (contd)

Quadratic Interpolation

Given (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) , fit a quadratic interpolant through the data.

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Newton Divided Difference method for quadratic

interpolation.

Table. Velocity as a function of time

v(t) (m/s)		
0		
227.04		
362.78		
517.35		
602.97		
901.67		

Figure. Velocity vs. time data for the rocket example

Quadratic Interpolation (contd)

$$t_0 = 10, v(t_0) = 227.04$$

$$t_1 = 15$$
, $v(t_1) = 362.78$

$$t_2 = 20, v(t_2) = 517.35$$

Quadratic Interpolation (contd)

$$b_0 = v(t_0)$$

$$= 227.04$$

$$b_1 = \frac{v(t_1) - v(t_0)}{t_1 - t_0} = \frac{362.78 - 227.04}{15 - 10}$$

$$= 27.148$$

$$b_2 = \frac{\frac{v(t_2) - v(t_1)}{t_2 - t_1} - \frac{v(t_1) - v(t_0)}{t_1 - t_0}}{t_2 - t_0} = \frac{\frac{517.35 - 362.78}{20 - 15} - \frac{362.78 - 227.04}{15 - 10}}{20 - 10}$$

$$= \frac{\frac{30.914 - 27.148}{10}}{10}$$

$$= 0.37660$$

Quadratic Interpolation (contd)

$$v(t) = b_0 + b_1(t - t_0) + b_2(t - t_0)(t - t_1)$$

$$= 227.04 + 27.148(t - 10) + 0.37660(t - 10)(t - 15), \quad 10 \le t \le 20$$
At $t = 16$,
$$v(16) = 227.04 + 27.148(16 - 10) + 0.37660(16 - 10)(16 - 15) = 392.19 \text{ m/s}$$

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first order and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.19 - 393.69}{392.19} \right| \times 100$$

$$= 0.38502 \%$$

General Form

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

where

$$b_0 = f[x_0] = f(x_0)$$

$$b_1 = f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

Rewriting

$$f_2(x) = f[x_0] + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1)$$

General Form

Given
$$(n+1)$$
 data points, $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$ as
$$f_n(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

where

$$b_{0} = f[x_{0}]$$

$$b_{1} = f[x_{1}, x_{0}]$$

$$b_{2} = f[x_{2}, x_{1}, x_{0}]$$

$$\vdots$$

$$b_{n-1} = f[x_{n-1}, x_{n-2},, x_{0}]$$

$$b_{n} = f[x_{n}, x_{n-1},, x_{0}]$$

General form

The third order polynomial, given (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) , is

$$f_3(x) = f[x_0] + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1)$$
$$+ f[x_3, x_2, x_1, x_0](x - x_0)(x - x_1)(x - x_2)$$

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Newton Divided Difference method for cubic

interpolation.

Table. Velocity as a function of time

<i>t</i> (s)	v(t) (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		

Figure. Velocity vs. time data for the rocket example

The velocity profile is chosen as

$$v(t) = b_0 + b_1(t - t_0) + b_2(t - t_0)(t - t_1) + b_3(t - t_0)(t - t_1)(t - t_2)$$

we need to choose four data points that are closest to t = 16

$$t_0 = 10, \quad v(t_0) = 227.04$$
 $t_1 = 15, \quad v(t_1) = 362.78$
 $t_2 = 20, \quad v(t_2) = 517.35$
 $t_3 = 22.5, \quad v(t_3) = 602.97$

The values of the constants are found as:

$$b_0 = 227.04$$
; $b_1 = 27.148$; $b_2 = 0.37660$; $b_3 = 5.4347 \times 10^{-3}$

$$b_0 = 227.04$$
; $b_1 = 27.148$; $b_2 = 0.37660$; $b_3 = 5.4347 \times 10^{-3}$

Hence

$$v(t) = b_0 + b_1(t - t_0) + b_2(t - t_0)(t - t_1) + b_3(t - t_0)(t - t_1)(t - t_2)$$

$$= 227.04 + 27.148(t - 10) + 0.37660(t - 10)(t - 15)$$

$$+ 5.4347 * 10^{-3}(t - 10)(t - 15)(t - 20)$$

At t = 16,

$$v(16) = 227.04 + 27.148(16 - 10) + 0.37660(16 - 10)(16 - 15) + 5.4347 * 10^{-3} (16 - 10)(16 - 15)(16 - 20)$$

= 392.06 m/s

The absolute relative approximate error $|\epsilon_a|$ obtained is

$$\left| \in_{a} \right| = \left| \frac{392.06 - 392.19}{392.06} \right| \times 100$$

Comparison Table

Order of	1	2	3
Polynomial			
v(t=16)	393.69	392.19	392.06
m/s			
Absolute Relative		0.38502 %	0.033427 %
Approximate Error			

Distance from Velocity Profile

Find the distance covered by the rocket from t=11s to t=16s?

$$v(t) = 227.04 + 27.148(t - 10) + 0.37660(t - 10)(t - 15) + 5.4347 * 10-3 (t - 10)(t - 15)(t - 20)$$
$$10 \le t \le 22.5$$
$$= -4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3}$$
$$10 \le t \le 22.5$$

So

$$s(16) - s(11) = \int_{11}^{16} v(t)dt$$

$$= \int_{11}^{16} (-4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3})dt$$

$$= \left[-4.2541t + 21.265\frac{t^{2}}{2} + 0.13204\frac{t^{3}}{3} + 0.0054347\frac{t^{4}}{4} \right]_{11}^{16}$$

Acceleration from Velocity Profile

Find the acceleration of the rocket at t=16s given that

$$v(t) = -4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3}$$

$$a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}\left(-4.2541 + 21.265t + 0.13204t^{2} + 0.0054347t^{3}\right)$$

$$= 21.265 + 0.26408t + 0.016304t^{2}$$

$$a(16) = 21.265 + 0.26408(16) + 0.016304(16)^{2}$$

$$= 29.664 \, m/s^{2}$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

THE END

http://numericalmethods.eng.usf.edu