

PESQUISA OPERACIONAL

Centro Universitário Leonardo da Vinci

Rodovia BR 470, Km 71, nº 1.040 Bairro Benedito - CEP 89130-000 Indaial - Santa Catarina - 47 3281-9000

Copyright © UNIASSELVI 2017

Elaboração:

Prof. Paulo Afonso Lunardelli Prof. Roy Wilhelm Probst

Revisão, Diagramação e Produção: Centro Universitário Leonardo da Vinci - UNIASSELVI

PESQUISA OPERACIONAL

GABARITO DAS AUTOATIVIDADES DE PESQUISA OPERACIONAL

UNIDADE 1

TÓPICO 1

1 Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades por dia e a de proteínas é de 36 unidades por dia.

Uma pessoa tem disponível carne e ovos para se alimentar.

Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas, a um custo de 3 unidades monetárias por unidade.

Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas, a um custo de 2,5 unidades monetárias por unidade.

Qual o modelo matemático que descreve a quantidade diária de carne e ovos que deve ser consumida para suprir as necessidades de vitaminas e proteínas com o menor custo possível?

R.: Solução:

 x_1 = quantidade diária de carne a ser consumida x_2 = quantidade diária de ovos a ser consumida

Função objetivo:

Min C = $3x_1 + 2.5x_2$

Restrições:

- Quanto ao consumo de vitaminas:

 $4x_1 + 8x_2 \ge 32$

- Quanto ao consumo de proteínas:

 $6x_1 + 6x_2 \ge 36$

- Quanto a não negatividade das variáveis:

 $x_1, x_2 \ge 0$

Modelo:

Min C = $3x_1 + 2.5x_2$

Sujeito a

$$4x_1 + 8x_2 \ge 32$$

 $6x_1 + 6x_2 \ge 36$
 $x_1, x_2 \ge 0$

2 Uma indústria têxtil produz três tipos de produtos, cada um dos quais necessariamente precisa ser processado em uma máquina de costura reta, em uma máquina de costura overlock e embalado. Os tempos consumidos por cada unidade de produto em cada processo, a disponibilidade de tempo, os custos e a receita pela venda de cada unidade dos produtos seguem na tabela a seguir.

	Tempo de	processo (Consumo de	Receita	
Produto	Máquina reta	Máquina <i>overlock</i>	Embalagem	matéria-prima (kg)	unitária (RS)
Tipo I	15	10	5	1,5	50
Tipo II	10	12	8	0,8	65
Tipo III	5	4	3	0,6	30
Disponibilidade	4800	4000	3600	480	-

Deseja-se planejar a produção da próxima semana de forma que o lucro dessa indústria seja o máximo possível.

Assumindo com variáveis de decisão:

- x₄ = quantidade de unidades a produzir do produto tipo A
- x_2 = quantidade de unidades a produzir do produto tipo B
- x_3^- = quantidade de unidades a produzir do produto tipo C Responda:
- a) Escreva a função objetivo que representa o modelo.
- b) Escreva as restrições do problema quanto:
- (i) ao tempo de processo na máquina de costura reta;
- (ii) ao tempo de processo na máquina de costura overlock;
- (iii) ao tempo de processo de embalagem;
- (iv) a não negatividade;
- (v) ao consumo de matéria-prima.

R.: Solução:

x, = quantidade de unidades a produzir do produto tipo A

x₂ = quantidade de unidades a produzir do produto tipo B

 x_3 = quantidade de unidades a produzir do produto tipo C

a) Função objetivo:

 $Max L = 50x_1 + 65x_2 + 35x_3$

NEAD

- b) Restrições:
- (i) ao tempo de processo na máquina de costura reta:

$$15x_1 + 10x_2 + 5x_3 \le 4800$$

(ii) ao tempo de processo na máquina de costura overlock:

$$10x_1 + 12x_2 + 4x_3 \le 4000$$

(iii) ao tempo de processo de embalagem:

$$5x_1 + 8x_2 + 3x_3 \le 3600$$

(iv) a não negatividade:

$$X_1, X_2, X_3 \ge 0$$

(v) ao consumo de matéria-prima:

$$1.5x_1 + 0.8x_2 + 0.6x_3 \le 480$$

3 Modele, sem resolver, os seguintes PPLs:

a) Uma indústria produz porcas, parafusos e pregos, podendo usar dois métodos (distintos e não simultâneos) para produzi-los. O primeiro método produz 3000 porcas, 2000 parafusos e 2500 pregos por hora, enquanto que o segundo método produz 4000 parafusos e 4000 pregos por hora, mas nenhuma porca. A indústria trabalha 18 horas por dia e tem uma encomenda de 5000 parafusos, 5000 pregos e 5000 porcas. Ela deve empregar os dois métodos de modo a entregar sua encomenda o mais rápido possível, planejando o tempo de operação de cada método.

R.: Solução:

x₁ = tempo de operação com o método 1

x₂ = tempo de operação com o método 2

Função objetivo:

$$Min T = x_1 + x_2$$

Restrições:

- Quanto à demanda por porcas:
- $3000x_1 + 0x_2 \ge 5000$
- Quanto à demanda por parafusos:

 $2000x_1 + 4000x_2 \ge 5000$

- Quanto à demanda por pregos:

 $2500x_1 + 4000x_2 \ge 5000$

- Quanto a não negatividade das variáveis:

$$X_1, X_2 \ge 0$$

Modelo:

$$Min T = x_1 + x_2$$

PESQUISA OPERACIONAL

Sujeito a $3000x_1 + 0x_2 \ge 5000$ $2000x_1 + 4000x_2 \ge 5000$ $2500x_1 + 4000x_2 \ge 5000$ $x_1, x_2 \ge 0$

b) Segundo Wagner (1986, p. 47), o presidente Antônio Castor, da Companhia Ramos de Carvalho, quer utilizar do melhor modo possível os recursos de madeira de uma de suas regiões florestais. Dentro dessa região, há uma serraria e uma fábrica de compensados; assim, as toras podem ser convertidas em madeira beneficiada ou compensada.

Produzir uma mistura comercializável de 1 metro cúbico de produtos beneficiados requer 1 metro cúbico de pinho e 4 metros cúbicos de canela. Produzir 100 metros quadrados de madeira compensada requer 2 metros cúbicos de pinho e 4 metros cúbicos de canela. Essa região tem disponível 32 metros cúbicos de pinho e 72 metros cúbicos de canela.

Compromissos de venda exigem que sejam produzidos, durante o período do planejamento, pelo menos 5 metros cúbicos de madeira beneficiada e 1200 m² de madeira compensada. As contribuições ao lucro são \$ 45 por 1 metro cúbico de produtos beneficiados e \$ 60 por 100 m² de madeira compensada.

R.: Solução:

 x_1 = quantidade de metros cúbicos de madeira beneficiada x_2 = quantidade de centenas de metros quadrados de madeira compensada

Função objetivo: Max L = $45x_1 + 60x_2$

Restrições:

- Quanto ao consumo de pinho:
- $1x_1 + 2x_2 \le 32$
- Quanto ao consumo de canela:
- $4x_1 + 4x_2 \le 72$
- Quanto à demanda por madeira beneficiada:
- $X_1 \ge 5$
- Quanto à demanda por madeira compensada:
- $X_2 \ge 12$
- Quanto a não negatividade das variáveis:

$$X_1, X_2 \ge 0$$

Modelo:

$$Max L = 45x_1 + 60x_2$$

NEAD

Sujeito a $1x_1 + 2x_2 \le 32$ $4x_1 + 4x_2 \le 72$ $x_1 \ge 5$ $x_2 \ge 12$ $x_1, x_2 \ge 0$

TÓPICO 2

1 Faça um plano cartesiano ortogonal e represente nele o Vetor Gradiente da função objetivo definida por Max $Z = 3x_1 + 5x_2$.

R.: Solução:

- 2 Em relação ao modelo referente à autoatividade 1 do tópico anterior:
- a) Faça o gráfico que representa o conjunto de restrições do modelo.

R.: Solução:

Modelo:

Min C = $3x_1 + 2.5x_2$

Sujeito à

 $4x_1 + 8x_2 \ge 32$

 $6x_1 + 6x_2 \ge 36$

 $X_1, X_2 \ge 0$

b) Encontre as coordenadas dos vértices da região de soluções compatíveis do modelo.

R.: Ponto A (0, 4)

Ponto B (4, 2)

Ponto C (6, 0)

Ponto D (0, 0)

c) Indique a direção do Vetor Gradiente no plano cartesiano.

R.:

d) Qual a solução ótima do problema?

R.: A solução ótima se encontra no Ponto B (4, 2), onde temos

 $3x_1 + 2.5x_2 = 3 \cdot 4 + 2.5 \cdot 2 = 12 + 5 = 17$

3 Resolva, graficamente, o modelo referente à autoatividade 3(b) do tópico anterior.

R.: Solução:

Modelo:

 $Max L = 45x_1 + 60x_2$

Sujeito a

 $1x_1 + 2x_2 \le 32$

 $4x_1 + 4x_2 \le 72$

 $X_1 \ge 5$

 $x_2 \ge 12$

 $x_1, x_2 \ge 0$

A solução ótima é encontrada no ponto A (5, 13), que é a intersecção das retas referentes às restrições $x_1 \ge 5$ e $4x_1 + 4x_2 \le 72$. O valor da função objetivo é dado por L = $45 \cdot 5 + 60 \cdot 13 = 1005$.

Assim, devem-se produzir 5 metros cúbicos de madeira beneficiada e 6000 metros quadrados de madeira compensada (pois $60 \cdot 100 \text{ m}^2 = 6000 \text{ m}^2$), gerando um lucro de \$ 1005,00.

TÓPICO 3

1 Modele e resolva o problema de PLI:

Uma fábrica de cristais procura planejar a produção de dois tipos de produtos de modo a maximizar seu lucro. Essa fábrica possui um forno para a fabricação de cristais que pode operar no máximo 16 horas por dia. Nesse forno são

produzidos dois produtos: um elefante de cristal, que precisa de 15 minutos de forno para ficar pronto, e uma borboleta de cristal, que precisa de 25 minutos para ficar pronta. Cada elefante é vendido por R\$ 12,00 e a borboleta é vendida por R\$ 15,00. Quanto de cada produto essa fábrica deve produzir num dia de trabalho?

R.: Solução:

 x_1 = quantidade de elefantes a ser produzida x_2 = quantidade de borboletas a ser produzida

Função objetivo:

 $Max^{2}L = 12x_{1} + 15x_{2}$

Restrições:

- Quanto ao tempo de forno:

 $15x_1 + 25x_2 \le 16 \cdot 60$, ou seja, $15x_1 + 25x_2 \le 960$

- Quanto a não negatividade das variáveis:

 $X_{1}, X_{2} \ge 0$

- Quanto ao tipo das variáveis:

x₁, x₂ inteiros

Modelo:

 $Max L = 12x_1 + 15x_2$

 $15x_1 + 25x_2 \le 960$ $x_1, x_2 \ge 0$ e inteiros

Como o modelo apresenta solução ótima inteira no ponto C (64, 0), temos $x_1 = 64$ e $x_2 = 0$, ou seja,

 $L = 12 \cdot 64 + 15 \cdot 0$

L = 768

0

2 Segundo Loesch e Hein (1999, p. 146), encontre a solução ótima dos problemas de PLI:

a)
$$MaxZ = 7x_1 + 5x_2$$

Sujeito a

$$-2x_1 + x_2 \le 2$$

$$10x_1 + 6x_2 \le 60$$

$$6x_1 + 10x_2 \le 60$$

$$X_1, X_2 \ge 0$$

$$x_1 e x_2$$
 inteiros.

R.: Solução:

P S Q U

S A O P E R A C I O N

Pelo Método Gráfico temos a solução ótima no ponto D (intersecção de $10x_1 + 6x_2 = 60$ e $6x_1 + 10x_2 = 60$) onde $x_1 = 3,75$ e $x_2 = 3,75$, que não são inteiros. Separamos PL_0 em PL_1 com a restrição $x_1 \le 3$ e PL_2 com a restrição $x_1 \ge 4$:

PL₁ Max $Z = 7x_1 + 5x_2$ Sujeito a $-2x_1 + x_2 \le 2$ $10x_1 + 6x_2 \le 60$ $6x_1 + 10x_2 \le 60$ $x_1 \le 5$ $x_1 \le 3$ $x_1, x_2 \ge 0$ e inteiros PL₂
Max $Z = 7x_1 + 5x_2$ Sujeito a $-2x_1 + x_2 \le 2$ $10x_1 + 6x_2 \le 60$ $6x_1 + 10x_2 \le 60$ $x_1 \le 5$ $x_1 \ge 4$ $x_4, x_2 \ge 0 \text{ e inteiros}$

Gráfico de PL₁

No gráfico a solução de PL₁ é o ponto G (intersecção de $x_1 = 3$ e $6x_1 + 10x_2 = 60$) onde $x_1 = 3$ e $x_2 = 4,2$, que resulta L = $7 \cdot 3 + 5 \cdot 4,2 = 42$. Mas x_2 não é inteiro.

Gráfico de PL₂

No gráfico a solução de PL_2 é o ponto D (intersecção de x_1 = 4 e $10x_1$ + $6x_2$ = 60) onde x_1 = 4 e x_2 = 3,6, que resulta L = 7 • 4 + 5 • 3,6 = 46. Mas x_2 não é inteiro.

Como L no PL_2 é maior que no PL_1 , separamos PL_2 em dois novos PL_3 . Temos então o PL_3 com a nova restrição $X_2 \le 3$ e o PL_4 com a nova restrição $X_2 \ge 4$. PL_3

 $\text{Max } Z = 7x_1 + 5x_2$

Sujeito a

 $-2x_1 + x_2 \le 2$

 $10x_1 + 6x_2 \le 60$ $6x_1 + 10x_2 \le 60$

 $X_1 \leq 5$

 $x_1 \le 3$

 $x_2 \le 3$ $x_1, x_2 \ge 0$ e inteiros PL₄
Max Z = $7x_1 + 5x_2$ Sujeito a $-2x_1 + x_2 \le 2$ $10x_1 + 6x_2 \le 60$ $6x_1 + 10x_2 \le 60$ $x_1 \le 5$ $x_1 \ge 4$ $x_2 \ge 4$ $x_1, x_2 \ge 0$ e inteiros

Gráfico de PL₃

No gráfico a solução de PL_3 é o ponto I (intersecção de x_1 = 4 e x_2 = 3) onde x_1 = 4 e x_2 = 3, que resulta L = 7 • 4 + 5 • 3 = 43. E L_{PL3} = 43 é o Limite Inferior e assim PL_1 (L = 42) é eliminado por ter solução menor que o limite inferior.

Gráfico de PL

No gráfico a solução de PL_4 é o ponto D (intersecção de $6x_1 + 10x_2 \le 60$ e $10x_1 + 6x_2 \le 60$) onde $x_1 = 3,75$ e $x_2 = 3,75$, que resulta L = $7 \cdot 3,75 + 5 \cdot 3,75 = 45$. Mas x_1 e x_2 não são inteiros, e temos novamente a situação encontrada em PL_2 , logo, PL_4 é eliminado.

Desse modo, PL_3 possui a solução ótima do modelo, onde $x_1 = 4$, $x_2 = 3$ e L = 43.

$$8x_1 + 3x_2 \ge 24$$

$$x_1 + 2x_2 \ge 8$$

$$x_{1}, x_{2} \ge 0$$

 $x_1 e x_2$ inteiros.

Resolvendo pelo método gráfico e usando o algoritmo de *Branch and Bound* encontramos o seguinte diagrama com os PLs formados:

E a solução ótima do PPLI é dada por $x_1 = 2$, $x_2 = 4$ e Z = 20.

UNIDADE 2

TÓPICO 1

1 Escreva o modelo dado no exemplo 1 da Unidade 1, sobre a indústria moveleira, na forma padrão.

R.: Solução:

Modelo	Forma Padrão
	$\begin{aligned} \text{maxL} &= 100 \text{x}_{\text{E}} + 80 \text{x}_{\text{M}} + 120 \text{x}_{\text{A}} + 20 \text{x}_{\text{P}} + 0 \text{x}_{\text{f1}} + 0 \text{x}_{\text{f2}} + 0 \text{x}_{\text{f3}} \\ \text{Sujeito a} \end{aligned}$
$0x_{E} + 2x_{M} + 2x_{A} + 3x_{P} \le 800$	$2x_{E} + 0x_{M} + 1x_{A} + 1x_{P} + x_{f2} = 600$
$2x_{E} + 1x_{M} + 2x_{A} + 0x_{P} \le 500$	$2x_E + 0x_M + 1x_A + 1x_P + x_{f2} = 600$
$2x_{E} + 1x_{M} + 2x_{A} + 0x_{P} \le 500$	$x_{E}, x_{M}, x_{A}, x_{P}, x_{f1}, x_{f2}, x_{f3} \ge 0$
$x_E, x_M, x_A, x_P \ge 0$ e inteiros	$\mathbf{X}_{\mathrm{E}}, \mathbf{X}_{\mathrm{M}}, \mathbf{X}_{\mathrm{A}}, \mathbf{X}_{\mathrm{P}}, \mathbf{X}_{\mathrm{f1}}, \mathbf{X}_{\mathrm{f2}}, \mathbf{X}_{\mathrm{f3}} \geq 0$ e inteiros

2 Escreva o modelo dado no exemplo 3 da Unidade 1, sobre a dieta alimentar, na forma padrão.

R.: Solução:

Modelo	Forma Padrão
min C = $2x_1 + 4x_2 + 1.5x_3 + 1x_4$	$\min C = 2x_1 + 4x_2 + 1.5x_3 + 1x_4 + 0x_{e1} + 0x_{e2} + 0x_{e3}$
Sujeito a	Sujeito a
$2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 11$	$2x_1 + 2x_2 + 10x_3 + 20x_4 - x_{e1} = 11$
$50x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$	$50x_1 + 20x_2 + 10x_3 + 30x_4 - x_{e2} = 70$
$80x_1 + 70x_2 + 10x_3 + 80x_4 \ge 250 \ x_1, x_2, x_3, x_4 \ge 0$	$80x_1 + 70x_2 + 10x_3 + 80x_4 - x_{e3} = 250$
	$x_1, x_2, x_3, x_4, x_{e1}, x_{e2}, x_{e3} \ge 0$

3 Resolva o modelo da indústria moveleira através do método simplex.

R.: Solução: $x_E = 200$, $x_M = 100$, $x_A = 0$ e $x_P = 200$, com L = 38000, ou seja, devem ser produzidas 200 escrivaninhas, 100 mesas, nenhum armário e 200 pratelerias, gerando um lucro máximo de R\$ 38.000,00.

4 Resolva o modelo da dieta alimentar através do método das duas fases.

R.: Solução: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$ e $x_4 = 3,125$, com C = 3,125, ou seja, devem ser consumidos apenas 3,125 kg de salada para que se tenha o menor custo possível, que é de, aproximadamente, R\$ 3,13.

5 Escreva o modelo dual do modelo da dieta alimentar.

R.: Solução:

Modelo Primal	Modelo Dual
min C = $2x_1 + 4x_2 + 1.5x_3 + 1x_4$	Max C = $11y_1 + 70y_2 + 250y_3$
Suieito a	Sujeito a
$2x_1 + 2x_2 + 10x_3 + 20x_4 \ge 1150x_1 + 20x_2 + 10x_3 + 30x_4 \ge 70$	$2y_1 + 50y_2 + 80y_3 \ge 2$
	$2y_1 + 20y_2 + 70y_3 \ge 4$ $10y_1 + 10y_2 + 10y_3 \ge 1,5$
$80x_1 + 70x_2 + 10x_3 + 80x_4 \ge 250 x_1, x_2, x_3, x_4 \ge 0$	$10y_1 + 10y_2 + 10y_3 \ge 1,5$ $20y_1 + 30y_2 + 80y_3 \ge 1$
	y ₁ ,y ₂ ,y ₃ ≥ 0

6 (BOLDRINI, 1980, p. 401, adaptado). Um aluno do curso de Engenharia quer resolver um grave problema usando o que aprendeu em Programação Linear. Atualmente, ele possui duas namoradas: Maria e Luiza. Ele sabe, por experiência, que:

Maria gosta de frequentar lugares mais caros, de modo que uma saída de três horas custará 24 reais. Já Luiza prefere um divertimento mais popular, de modo que uma saída de quatro horas custará 16 reais. Seu orçamento permite dispor de 96 reais mensais para a diversão.

Cada saída com Maria consome 500 calorias, mas com Luiza, mais alegre e extrovertida, gasta o dobro. Seus afazeres escolares lhe dão liberdade de, no máximo, 18 horas e 4000 calorias de sua energia para atividades sociais. Ele gosta das duas com a mesma intensidade.

Tomando por base as conclusões acima, ele quer planejar sua vida social de modo a obter o número máximo de saídas. Formule o modelo e resolva-o pelo método simplex. Após conseguir o resultado, comunique-o à classe para que este aluno (que prefere que seu nome não seja revelado, por motivos óbvios) possa conferir com a solução ótima obtida por ele.

NEAD

R.: Solução:

Seja:

S o número de saídas de modo que M é o número de saídas com Maria e L é o número de saídas com Luiza.

Max S = 1M + 1L

Sujeito a

500M + 1000L ≤ 4000 restrição quanto à energia

24M + 16L ≤ 96 restrição quanto ao orçamento

3M + 4L ≤ 18 restrição quanto ao tempo

M, L ≥ 0 e inteiros restrição a não negatividade

R.: M = 2, L = 3 e S = 5, ou seja, esse aluno deve sair duas vezes com Maria e 3 vezes com Luiza, saindo no máximo 5 vezes, a fim de respeitar os limites impostos por sua vida acadêmica.

TÓPICO 2

1 Resolva todos os exercícios do Tópico 1 da Unidade 1 através do Solver.

R.: Solução:

Autoatividade 1

Modelo:

Min C = $3x_1 + 2.5x_2$

Sujeito a

 $4x_1 + 8x_2 \ge 32$

 $6x_1 + 6x_2 \ge 36$

 $X_1, X_2 \ge 0$

Planilha do Solver:

Nome da variável	Carne	Ovo			
Valor da variável	0	5,999406			
Função Objetivo	3	2,5		max L =	14,9985
Restrições	Coeficientes		Produtos	Sinal	b
Vitaminas	4	8	47,99525	>=	32
Proteínas	6	6	35,99644	>=	36

R.: $x_1 = 0$, $x_2 = 6$ e C = 15, ou seja, deve consumir apenas 6 ovos por dia para suprir suas necessidades.

Autoatividade 2 Modelo: Max L = $50x_1 + 65x_2 + 35x_3$ Sujeito a $15x_1 + 10x_2 + 5x_3 \le 4800$ $10x_1 + 12x_2 + 4x_3 \le 4000$ $5x_1 + 8x_2 + 3x_3 \le 3600$ $1.5x_1 + 0.8x_2 + 0.6x_3 \le 480$ $X_1, X_2, X_3 \ge 0$

Planilha do Solver:

Nome da variável	1	II	III			
Valor da variável	0	322,8571429	31,42857143			
Função Objetivo	50	65	35		max L =	22085,7
Restrições	Coeficientes			Produtos	Sinal	b
Reta	15	10	50	4800	<=	4800
Overlock	10	12	4	4000	<=	4000
Embalagem	5	8	3	2677,143	<=	3600
Matéria-Prima	1,5	0,8	0,6	277,1429	<=	480

R.: $x_1 = 0$, $x_2 = 322,86$, $x_3 = 31,43$ e L = 22085,7, ou seja, deve produzir 322,86 unidades do produto tipo I e 31,43 unidades do produto do tipo II, gerando um lucro de R\$ 22.085,70.

Autoatividade 3a:

Modelo:

 $Min T = X_1 + X_2$

Sujeito à

 $3000x_1 + 0x_2 \ge 5000$

 $2000x_1 + 4000x_2 \ge 5000$

 $2500x_1 + 4000x_2 \ge 5000$

 $x_1, x_2 \ge 0$

Planilha do Solver:

Nome da variável	X1	X2			
Valor da variável	1,666667	0,416667			
Função Objetivo	1	1		Min T	2,08333
Restrições	Coeficiente	es	Produtos	Sinal	b
porcas	3000	3000 0		>=	5000
parafusos	2000 4000		5000	>=	5000
pregos	2500	4000	5833,333	>=	5000

R.: x_1 = 1,66666, x_2 = 0,41666 e L = 2,08333, ou seja, deve operar por 1,66666 horas (1 hora e 40 minutos) no método 1 e 0,41666 horas (25 minutos) no método 2, para que o tempo mínimo para a entrega da encomenda seja de 2,08333 horas (2 horas e 5 minutos).

Autoatividade 3b:

Modelo:

 $Max L = 45x_1 + 60x_2$

Sujeito à

 $1x_1 + 2x_2 \le 32$

 $4x_1 + 4x_2 \le 72$

 $X_1 \ge 5$

 $x_{2} \ge 12$

 $x_{1}, x_{2} \ge 0$

Planilha do Solver:

Nome da variável	X1	X2			
Valor da variável	5	13			
Função Objetivo	45	60		max L =	1005
Restrições	Coefic	Coeficientes		Sinal	b
Pinho	1	2	31	<=	32
Canela	4	4	72	<=	72
Demanda B	1	0	5	>=	5
Demanda C	0	1	13	>=	12

R.: x1 = 5, x2 = 13 e L = 1005, ou seja, a companhia deve beneficiar 5 metros cúbicos de madeira e compensar 13 centenas de metros quadrados de madeira para gerar um lucro de \$ 1.005,00.

2 Resolva os exercícios 3 e 6 do Tópico 1 da Unidade 2 através do Solver.

Solução:

Autoatividade 3:

Modelo:

$$maxL = 100x_{E} + 80x_{M} + 120x_{A} + 20x_{P}$$

Sujeito a

$$0x_{E} + 2x_{M} + 2x_{A} + 3x_{P} \le 800$$

$$2x_{p} + 0x_{M} + 1x_{A} + 1x_{p} \le 600$$

$$2x_{E} + 1x_{M} + 2x_{A} + 0x_{B} \le 500$$

$$x_{E}, x_{M}, x_{A}, x_{P} \ge 0$$
 e inteiros

Planilha do Solver:

Nome da variável	Xe	Xm	Xa	Хр			
Valor da variável	200	100	0	200			
Função Objetivo	100	80	120	50		max L =	38000
Restrições	Coefi	Coeficientes				Sinal	b
Tábuas	0	2	2	3	800	<=	800
Pranchas	2	0	1	1	600	<=	600
Painéis	2	1	2	0	500	<=	500

R.: $x_E = 200$, $x_M = 100$, $x_A = 0$ e $x_P = 200$, com L = 38000, ou seja, devem ser produzidas 200 escrivaninhas, 100 mesas, nenhum armário e 200 prateleiras, gerando um lucro máximo de R\$ 38.000,00.

Autoatividade 6:

Modelo:

Max S = 1M + 1L

Sujeito à

500M + 1000L ≤ 4000

24M + 16L ≤ 96

3M + 4L ≤ 18

M, $L \ge 0$ e inteiros

restrição quanto à energia restrição quanto ao orçamento restrição quanto ao tempo restrição a não negatividade

Planilha do Solver:

Nome da variável	М	L			
Valor da variável	2	3			
Função Objetivo	1	1		max S =	5
Restrições	Coefic	ientes	Produtos	Sinal	b
Energia	500	1000	4000	<=	4000
Orçamento	24	16	96	<=	96
Tempo	3	4	18	<=	18

R.: M = 2, L = 3 e S = 5, ou seja, esse aluno deve sair duas vezes com Maria e 3 vezes com Luiza, saindo no máximo 5 vezes, a fim de respeitar os limites impostos por sua vida acadêmica.

3 Resolva o exercício 1, sobre a fábrica de cristais, do Tópico 3 da Unidade 1, através do Solver, e faça a análise de pós-otimalidade gerando o relatório de sensibilidade.

Modelo:

Max L = $12x_1 + 15x_2$ $15x_1 + 25x_2 \le 960$ $x_1, x_2 \ge 0$ e inteiros

Planilha do Solver:

Nome da variável	x1	x2			
Valor da variável	64	0			
Função Objetivo	12	15		max L =	768
Restrições	Coeficientes		Produtos	Sinal	b
Tempo	15	25	960	<=	960

R.: $x_1 = 64$, $x_2 = 0$ e L = 768, ou seja, deve produzir 64 elefantes e nenhuma borboleta para conseguir o lucro máximo de R\$ 768,00.

Relatório de Sensibilidade (análise de pós-otimalidade):

Células ajustáveis **Permissível** Final Reduzido Objetivo Permissível Célula Nome Valor Custo Coeficiente Acréscimo Decréscimo \$B\$2 Valor da variável x1 64 0 12 1E+30 3 1E+30 \$C\$2 Valor da variável x2 0 -5 15 5 Restrições Final Sombra Restrição Permissível **Permissível** Célula Valor Preço Lateral R.H. Acréscimo Decréscimo Nome \$D\$5 Tempo Produtos 960 8,0 960 1E+30 960

UNIASSELVI

NEAD

UNIDADE 3

TÓPICO 1

1 Dadas as distâncias (em km) indicadas no quadro a seguir, determine o caminho ótimo para um representante comercial que queira visitar essas cidades, partindo da cidade A e voltando para ela.

Α	В	С	D	Е	
60					В
91	78				С
49	50	43			D
41	93	35	81		E
44	68	57	86	70	F

R.: Solução:

Montar uma tabela com os possíveis caminhos e somar as distâncias entre as cidades:

CAMINHO	DISTÂNCIA
ABCDEA	60 + 78 + 43 + 81 + 41 = 303
ABCEDA	60 + 78 + 35 + 81 + 49 = 303
ABDCEA	60 + 50 + 43 + 35 + 41 = 229
ABDECA	60 + 50 + 81 + 35 + 91 = 317
ABECDA	60 + 93 + 35 + 43 + 49 = 280
ABEDCA	60 + 93 + 81 + 43 + 91 = 368
ACBDEA	91 + 78 + 50 + 81 + 41 = 341
ACBEDA	91 + 78 + 93 + 81 + 49 = 392
ACDBEA	91 + 43 + 50 + 93 + 41 = 318
ACDEBA	91 + 43 + 81 + 93 + 60 = 368
ACEBDA	91 + 35 + 93 + 50 + 49 = 318
ACEDBA	91 + 35 + 81 + 50 + 60 = 317
ADBCEA	49 + 50 + 78 + 35 + 41 = 253
ADBECA	49 + 50 + 93 + 35 + 91 = 318
ADCBEA	49 + 43 + 78 + 93 + 41 = 304
ADCEBA	49 + 43 + 35 + 93 + 60 = 280
ADEBCA	49 + 81 + 93 + 78 + 91 = 392
ADECBA	49 + 81 + 35 + 78 + 60 = 303
AEBCDA	41 + 93 + 78 + 43 + 49 = 304
AEBDCA	41 + 93 + 50 + 43 + 91 = 318
AECBDA	41 + 35 + 78 + 50 + 49 = 253
AECDBA	41 + 35 + 43 + 50 + 60 = 229
AEDBCA	41 + 81 + 50 + 78 + 91 = 341
AEDCBA	41 + 81 + 43 + 78 + 60 = 303

Verificar que a menor distância (229 km) é dada pelos caminhos ABDCEA e AECDBA, que são simétricos.

2 A rede a seguir representa a tubulação de gás de uma empresa, de modo que cada nó representa uma estação de trabalho e cada arco, os tubos com suas capacidades (em litros de gás). Determine o fluxo máximo de gás que percorre essa rede do ponto A ao ponto H.

R.: Solução: Imaginar um tubo ligando H até A e nomear os fluxos na tubulação da seguinte forma:

Tubulação	Fluxo	Capacidade
		· ·
HA	X_0	?
AB	X ₁	28
AC	X ₂	20
AD	X_3	46,5
BE	X ₄	24
BF	X ₅	36
СВ	X ₆	11,5
CD	X ₇	22,5
CF	X ₈	18
CG	X ₉	27,5
DG	X ₁₀	19,5
EF	X ₁₁	10
EH	X ₁₂	49
FH	X ₁₃	17,5
GF	X ₁₄	14
GH	X ₁₅	28

GABARITO DAS AUTOATIVIDADES

Definir a função objetivo como Max $F = x_0$, onde queremos maximizar o fluxo de gás do nó H ao nó A.

Assumindo o sinal negativo para o fluxo que chega a um nó e o sinal positivo para o fluxo que sai do nó temos as restrições quanto ao fluxo:

Nó	Restrição associada
Α	$-x_0 + x_1 + x_2 + x_3 = 0$
В	$- x_1 - x_6 + x_4 + x_5 = 0$
С	$- x_2 + x_6 + x_7 + x_8 + x_9 = 0$
D	$- x_3 - x_7 + x_{10} = 0$
Е	$- x_4 + x_{11} + x_{12} = 0$
F	$- x_5 - x_8 - x_{11} + x_{13} = 0$
G	$- x_9 - x_{10} + x_{14} - x_{15} = 0$
Н	$x_0 - x_{12} - x_{13} - x_{15} = 0$

Assim, o modelo do problema é dado por: $\max F = x_0$ Sujeito a

$$-x_{0} + x_{1} + x_{2} + x_{3} = 0$$

$$-x_{1} - x_{6} + x_{4} + x_{5} = 0$$

$$-x_{2} + x_{6} + x_{7} + x_{8} + x_{9} = 0$$

$$-x_{3} - x_{7} + x_{10} = 0$$

$$-x_{4} + x_{11} + x_{12} = 0$$

$$-x_{5} - x_{8} - x_{11} + x_{13} = 0$$

$$-x_{9} - x_{10} + x_{14} - x_{15} = 0$$

$$x_{0} - x_{12} - x_{13} - x_{15} = 0$$

$$x_{1} \le 28$$

$$x_{2} \le 20$$

$$x_{3} \le 46,5$$

$$x_{4} \le 24$$

$$x_{5} \le 36$$

$$x_{6} \le 11,5$$

$$x_{7} \le 22,5$$

 $x_8 \le 18$ $x_9 \le 27,5$ $x_{10} \le 19,5$ $x_{11} \le 10$ $x_{12} \le 49$ $x_{13} \le 17,5$ $x_{14} \le 14$ $x_{15} \le 28$ $x_i \ge 0, i = 0, 1, ..., 15$

Que pode ser resolvido através do Solver:

Nome da																			
variável	x0	x1	x2	х3	x4	х5	х6	х7	x8	x9	x10	x11	x12	x13	x14	x15			
Valor da variável	48,5	24	20	4,5	24	0	0	0	17,5	2,5	4,5	0	24	17,5	14	7	Max F	48,5	
Função Objetivo	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Restrições	Coefi	cient	es														Produtos	Sinal	b
Nó A	-1	1	1	1													0	=	0
Nó B		-1			1	1	-1										0	=	0
Nó C			-1				1	1	1	1							0	=	0
Nó D				-1				-1			1						0	=	0
Nó E					-1							1	1				0	=	0
Nó F						-1			-1			-1		1			0	=	0
Nó G										-1	-1				1	-1	0	=	0
Nó H	1												-1	-1		-1	0	=	0
Capacidade x1		1															24	<=	28
Capacidade x2			1														20	<=	20
Capacidade x3				1													4,5	<=	46,5
Capacidade x4					1												24	<=	24
Capacidade x5						1											0	<=	36
Capacidade x6							1										0	<=	11,5
Capacidade x7								1									0	<=	22,5
Capacidade x8									1								17,5	<=	18
Capacidade x9										1							2,5	<=	27,5
Capacidade x10											1						4,5	<=	19,5
Capacidade x11												1					0	<=	10
Capacidade x12													1				24	<=	49
Capacidade x13														1			17,5	<=	17,5
Capacidade x14															1		14	<=	14
Capacidade x15																1	7	<=	28

E o fluxo máximo comportado pela rede é de 48,5 litros de gás.

3 Usando o gráfico da questão anterior, determine o caminho mais curto entre os pontos A e H, utilizando os valores dos arcos como distâncias.

R.: Solução:

Distâncias Mínimas						
Nó	Nó Ant.	Distância				
Α	-	0				
С	А	20				
В	А	28				
F	С	38				
D	С	42,5				
G	С	47,5				
Е	В	52				
Н	F	55,5				

Auxiliar					
Nó	Nó Ant.	Distância			
В	А	28			
С	Α	20			
D	Α	46,5			
В	С	31,5			
D	С	42,5			
F	С	38			
G	С	47,5			
Е	В	52			
F	В	64			
Н	F	55,5			
G	D	62			
F	G	61,5			
Н	G	75,5			
F	Е	62			
Н	Е	101			

O caminho mais curto é dado por ACFH, com 55,5.

TÓPICO 2

1 Um latoeiro recebeu um automóvel usado para reformá-lo. Neste, devem ser feitos os serviços de latoaria, pintura e também a reforma do motor. As durações e as dependências entre as atividades são dadas no quadro a seguir:

Atividade	Descrição	Atividade Antecedente	Duração (em dias)
Α	Latoaria	-	6
В	Pintura	A	8
С	Reforma do motor	-	9

Pede-se o tempo total que o latoeiro necessitará para concluir a reforma.

R.: Solução:

Representando através de um grafo e analisando o caminho crítico dentre os possíveis caminhos, temos:

Caminho	Duração		
Início-A-B-Fim	14 dias		
Início-C-Fim	9 dias		

Percebe-se que o tempo mínimo para a execução da reforma é de 14 dias.

2 (LOESCH; HEIN, 1999, p. 212). Uma empresa deve realizar o projeto determinado pelas atividades dadas no quadro a seguir.

Atividade	Atividade Antecedente	Duração (em dias)
Α	-	5
В	-	7
С	-	10
D	A	12
E	BeC	4
F	В	8
G	DeE	11
Н	BeC	13
I	F	10

Diante dessa situação:

- a) Represente as atividades dadas numa rede de atividades, obedecendo às dependências entre as atividades.
- b) Determine o caminho crítico do projeto.
- c) Determine as datas de início e término, mais cedo e mais tarde de cada atividade.

- d) Represente o projeto usando um esboço do Diagrama de Gantt.
- e) Qual o menor tempo necessário para realizar o projeto, nessas condições.

R.: Solução:

a)

b) O caminho crítico é dado por Início-A-D-G-Fim, com duração de 28 dias.

c)

Atividade	Duração (D)	IMC	TMC	IMT	TMT	Folga (F)
Α	5	0	5	0	5	0
В	7	0	7	8	15	8
С	10	0	10	5	15	5
D	12	5	17	5	17	0
Е	4	10	14	24	28	14
F	8	7	15	10	18	3
G	11	17	28	17	28	0
Н	13	10	23	15	28	5
I	10	15	25	18	28	3

d) Representação através do Diagrama de Gantt:

Em amarelo: Datas mais cedo. Em preto: Datas mais tarde.

- e) De acordo com o caminho crítico, 28 dias.
- 3 Considere o mesmo projeto da questão 2, agora com tempos de duração mais provável, mais otimista e mais pessimista de cada uma das atividades dadas no quadro a seguir.

Atividada	Duração I	Prevista	Parâmetros		
Atividade	Otimista	Mais Provável	Pessimista	Média	Variância
Α	4	5	6		
В	5	6,5	11		
С	7	9	17		
D	7	11,5	19		
E	3	4	5		
F	5	7	15		
G	2	12	16		
Н	3	14	19		
I	8	9,5	14		

- a) Complete as colunas do quadro, calculando o tempo médio e a variância de cada atividade.
- b) Calcule o tempo médio e a variância do projeto todo.

ESQUISA OPERACIONA.

UNIASSELVI NEAD

- c) Qual a probabilidade de terminar esse projeto em até 20 dias?
- d) Qual a probabilidade de terminar esse projeto em até 30 dias?

R.: Solução:

a)

Atividade	Duração	Prevista	Parâmetros			
Alividade	Otimista	Mais Provável	Pessimista	Média	Variância	
Α	4	5	6	5	0,111111111	
В	5	6,5	11	7	1	
С	7	9	17	10	2,777777778	
D	7	11,5	19	12	4	
Е	3	4	5	4	0,111111111	
F	5	7	15	8	2,777777778	
G	2	12	16	11	5,44444444	
Н	3	14	19	13	7,111111111	
I	8	9,5	14	10	1	

- b) Usando as médias do caminho crítico ADG, temos 5+12+11=28 e a variância do caminho crítico 0,1111+4+5,4444=9,5555. Assim, o projeto todo possui média $\mu=28$ e variância $\delta^2=9,5555$.
- c) A probabilidade de terminar o projeto em 20 dias é dada por

$$k_{\alpha} = \frac{d - \mu \left(T_{\text{Pr} \, \alpha} \right)}{\sigma \left(T_{\text{Pr} \, \alpha} \right)} = \frac{20 - 28}{3,0912} = \frac{-8}{3,0912} \cong -2,588$$

E assim

 $P(T_{Prq} \le 20) = P(Z \le -2,588) = P(Z > 2,588) = 0,0048$, ou seja, temos 0,48% de probabilidade de terminar o projeto em 20 dias.

d) A probabilidade de terminar o projeto em 30 dias é dada por

$$k_{\alpha} = \frac{d - \mu \left(T_{\text{Proj}}\right)}{\sigma \left(T_{\text{Proj}}\right)} = \frac{30 - 28}{3,0912} = \frac{2}{3,0912} \cong 0,647$$

E assim

 $P(T_{\text{Proj}} \le 30) = P(Z \le 0.647) = 1 - P(Z > 0.647) = 1 - 0.2578 = 0.7422$, ou seja, temos 74,22% de probabilidade de terminar o projeto em 30 dias.

TÓPICO 3

- 1 Usando o exemplo de simulação da máquina de perfumes, simule qual seria o lucro médio obtido se a máquina fosse ajustada:
- a) Com a média 80 ml e desvio padrão 15 ml.
- b) Com a média 140 ml e desvio padrão 15 ml.

R.: Solução:

Gerando números aleatórios no Microsoft Excel temos a tabela a seguir:

	Α	В	С	D	Е
1	Média 80	Média 140		Lucro (80)	Lucro (140)
2	75,4965	137,683		-75,00	-3,84
3	60,8348	126,166		-75,00	1,92
4	83,6639	144,923		23,17	-7,46
5	99,1471	173,978		15,43	-21,99
6	97,9753	122,525		16,01	3,74
7	105,997	141,772		12,00	-5,89
8	47,2462	159,207		-75,00	-14,60
9	76,4873	123,629		-75,00	3,19
10	96,4253	139,943		16,79	-4,97
999	87,246	118,889		21,38	5,56
1000	88,6297	126,827		20,69	1,59
1001	85,0152	148,406		22,49	-9,20
1002		Lucro Méd	io:	-27,81	-4,85

Perceba que ocultamos parte da tabela (da linha 11 à linha 998) por questão de espaço. E como os números foram gerados aleatoriamente, se você repetir os procedimentos, seus valores poderão ser diferentes dos valores calculados aqui, mas os resultados devem ser os mesmos esperados.

Analisando os lucros médios obtidos a partir dessa simulação temos as sequintes conclusões:

Se a máquina for regulada com média de 80 ml por frasco, teremos um lucro médio esperado de -27,81 reais, ou seja, um prejuízo de R\$ 27,81.

Se a máquina for regulada com média de 140 ml por frasco, teremos um lucro médio esperado de -4,85 reais, ou seja, um prejuízo de R\$ 4,85.

2 Uma loja de autopeças deseja estabelecer uma política de reposição de estoque de um produto vendido por ela, ou seja, a partir de quantas unidades ela deve fazer um pedido de reposição ao fornecedor. O objetivo dessa loja é maximizar o lucro com as vendas desse produto. Como o fornecedor necessita de 3 a 5 dias para a reposição, segundo a distribuição de probabilidades discreta dada por

Dias de espera (k)	Probabilidade P(k)
3	0,2
4	0,5
5	0,3

A reposição por parte do fornecedor é feita em lotes de 1000 peças e tem um custo de R\$ 100. Cada peça vendida dá um lucro de R\$ 1,50 para a loja. Cada peça tem um custo de manutenção para a loja de R\$ 0,10.

A procura pela peça na loja obedece a uma distribuição de Poisson, com média de 120 peças vendidas por dia. Na falta de peças, o cliente compra suas peças em outra loja e com isso o negócio não é feito.

Simule o lucro líquido obtido com a venda dessas peças, ou seja, descontando os custos de manutenção e reposição das peças. Verifique qual quantidade deve ser mantida em estoque para que a loja tenha maior ganho com a venda.

R.: Solução:

Através do Microsoft Excel:

Nas tabelas a seguir as colunas indicam:

Na célula D1 colocamos o número mínimo de peças no estoque para a solicitação de reposição.

Na célula K1 calculamos o lucro médio obtido na simulação.

Nas células M4 até N7 temos a tabela de distribuição discreta para o prazo de reposição das peças.

Coluna A: DIA: a contagem dos dias a partir do dia 0.

 1^{a} linha: A5 = 0

2ª linha: = A5+1 (arrastar até o final)

Coluna B: ESTOQUE: indica a quantidade de peças em estoque.

1^a Linha: B5 = 0 indica estoque inicial de 0 unidades.

2ª linha: = B5+E5-G5, indica que a quantidade de peças será igual à soma do estoque no dia anterior com as peças entregues no dia anterior, descontando as peças vendidas no dia anterior.

Coluna C: PEDIR?:

1ª linha: = SE(C5<\$E\$1;"Sim";"Não"), indica que, se a quantidade em estoque for menor que o mínimo exigido em D1, deve-se solicitar reposição, caso contrário, não.

2ª linha: = SE(OU(C5="Sim";D5<>0);"Não";SE(B6<\$D\$1;"Sim";"Não")), indica que, se ontem foi solicitada reposição ou estamos dentro do prazo de entrega, então não se deve pedir. Caso não tenha sido solicitado ou não estejamos para receber peças, então verificar se o estoque é menor que a quantidade mínima exigida. Caso positivo, solicitar reposição, caso contrário, não (arrastar até o final).

Coluna D: PRAZO:

1ª linha: = SE(C5="SIM";K5;0), indica que se deve solicitar reposição, então é necessário estimar o prazo de entrega das peças (baseado na distribuição discreta da coluna K), caso contrário, não.

2ª linha: = SE(D5<>0;D5-1;SE(C6="Sim";K6;0)), indica que, se o prazo no dia anterior for diferente de 0, significa que estamos para receber peças, então se deve diminuir um dia na espera. Caso contrário, ou seja, se há necessidade de fazer nova solicitação, é necessário estimar o novo prazo de entrega na coluna K. Se não houver necessidade, então o prazo é 0 dias (arrastar até o final).

Coluna E: ENTREGA: = SE(D5=1;1000;0), a partir da solicitação de reposição, verifica-se o prazo para a entrega das peças. Se o prazo de entrega é de um dia, recebem-se as peças ao final do dia (arrastar até o final).

Coluna F: C ENTR: = SE(E5=0;0;100), indica o custo da reposição de peças, ou seja, se não houver reposição, o custo é R\$ 0, caso contrário, o custo é de R\$ 100.00.

Coluna G: V EFET: = SE(B5>L5;L5;0), indica a quantidade de peças efetivamente vendidas no dia, baseada na distribuição aleatória dada pela coluna L. Se a quantidade em estoque for maior que a quantidade dada na coluna, então se vende a quantidade dada em L, caso contrário, vende-se o que há no estoque (arrastar até o final).

Coluna H: RECEITA: = G5*1,5, indica o valor recebido pelas vendas efetuadas (arrastar até o final).

Coluna I: C TOTAL: = B5*0,1+F5, indica o custo total no dia, ou seja, o custo de reposição, se houver, mais o custo de R\$ 0,10 de manutenção por peça em estoque (arrastar até o final).

Coluna J: LUCRO: H5–I5, indica o lucro = receita – custo total (arrastar até o final).

Coluna K: Coluna de números gerados aleatoriamente pelo Excel através da

C P E R A C I C N A

Ferramenta Análise de Dados. Selecionar:

Número de variáveis: 1

Número de números aleatórios: 1000

Distribuição: Discreta

Parâmetros: \$M\$5:\$N\$7 (intervalo da tabela com a distribuição de

probabilidades discreta dada pela autoatividade).

Intervalo de Saída: \$K\$5

Coluna L: Coluna de números gerados aleatoriamente pelo Excel através da

Ferramenta Análise de Dados. Selecionar:

Número de variáveis: 1

Número de números aleatórios: 1000

Distribuição: Poisson Parâmetros: 120

Intervalo de Saída: \$K\$5

Com as fórmulas inseridas corretamente na planilha, pode-se variar o número mínimo de peças no estoque (célula D1) como se queira e observar o lucro médio obtido (célula K1). Observa-se que o maior lucro se encontra quando a quantidade mínima é estipulada em torno de 500 a 550 peças em estoque. O valor impreciso deve-se ao fato de estarmos trabalhando com simulações e com números aleatórios, ocasionando divergências entre os valores encontrados.

Abaixo segue simulação com mínimo de 100 unidades em estoque.

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
Rep	Reposição se abaixo de		100	unidades				Lucro Médio:		75,126				
2														
3											Números Aleatórios			
4	Dia	Estoque	Pedir?	Prazo	Entrega	C Entr	V Efet	Receita	C Total	Lucro	Prazo Est	V Est	Dias de espera	Prob
5	0	0	Sim	4	0	0	0	0	0	0	4	109	3	0,2
6	1	0	Não	3	0	0	0	0	0	0	3	135	4	0,5
7	2	0	Não	2	0	0	0	0	0	0	4	104	5	0,3
8	3	0	Não	1	1000	100	0	0	100	-100	5	123		
9	4	1000	Não	0	0	0	125	187,5	100	87,5	5	125		
10	5	875	Não	0	0	0	121	181,5	87,5	94	5	121		
11	6	754	Não	0	0	0	126	189	75,4	113,6	3	126		
12	7	628	Não	0	0	0	100	150	62,8	87,2	4	100		
13	8	528	Não	0	0	0	123	184,5	52,8	131,7	5	123		
14	9	405	Não	0	0	0	91	136,5	40,5	96	3	91		
15	10	314	Não	0	0	0	119	178,5	31,4	147,1	4	119		
16	11	195	Não	0	0	0	133	199,5	19,5	180	3	133		
17	12	62	Sim	3	0	0	62	93	6,2	86,8	3	109		
18	13	0	Não	2	0	0	0	0	0	0	3	112		
19	14	0	Não	1	1000	100	0	0	100	-100	4	106		
20	15	1000	Não	0	0	0	110	165	100	65	3	110		
21	16	890	Não	0	0	0	116	174	89	85	4	116		
22	17	774	Não	0	0	0	124	186	77,4	108,6	4	124		
23	18	650	Não	0	0	0	130	195	65	130	4	130		
24	19	520	Não	0	0	0	133	199,5	52	147,5	4	133		
25	20	387	Não	0	0	0	117	175,5	38,7	136,8	4	117		

GABARITO DAS AUTOATIVIDADES

UNIASSELVI NEAD

E simulação com mínimo de 100 unidades em estoque:

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	Reposição se abaixo de		100	unidades				Lucro Médio:		75,126				
2		,												
3											N ú m e r o Aleatórios			
4	Dia	Estoque	Pedir?	Prazo	Entrega	C Entr	V Efet	Receita	C Total	Lucro	Prazo Est	V Est	Dias de espera	Prob
5	0	0	Sim	4	0	0	0	0	0	0	4	102	3	0,2
6	1	0	Não	3	0	0	0	0	0	0	5	129	4	0,5
7	2	0	Não	2	0	0	0	0	0	0	4	124	5	0,3
8	3	0	Não	1	1000	100	0	0	100	-100	3	122		
9	4	1000	Não	0	0	0	101	151,5	100	51,5	4	101		
10	5	899	Não	0	0	0	121	181,5	89,9	91,6	4	121		
11	6	778	Não	0	0	0	131	196,5	77,8	118,7	3	131		
12	7	647	Não	0	0	0	120	180	64,7	115,3	4	120		
13	8	527	Sim	3	0	0	110	165	52,7	112,3	3	110		
14	9	417	Não	2	0	0	120	180	41,7	138,3	4	120		
15	10	297	Não	1	1000	100	122	183	129,7	53,3	5	122		
16	11	1175	Não	0	0	0	120	180	117,5	62,5	4	120		
17	12	1055	Não	0	0	0	113	169,5	105,5	64	5	113		
18	13	942	Não	0	0	0	135	202,5	94,2	108,3	5	135		
19	14	807	Não	0	0	0	118	177	80,7	96,3	3	118		
20	15	689	Não	0	0	0	133	199,5	68,9	130,6	5	133		
21	16	556	Não	0	0	0	108	162	55,6	106,4	3	108		
22	17	448	Sim	4	0	0	139	208,5	44,8	163,7	4	139		
23	18	309	Não	3	0	0	111	166,5	30,9	135,6	5	111		
24	19	198	Não	2	0	0	107	160,5	19,8	140,7	4	107		
25	20	91	Não	1	1000	100	0	0	109 1	-109 1	3	111		