

Modeling the Structure of the Visual Working Memory Resource Limits

Qingqing Yang¹, Mu Li¹ & Clayton E Curtis^{1, 2}

Background

- Visual working memory (WM): <u>limited</u> online sensory infomation¹.
- Debates on its structure of limit²:

Discrete-resource models

Limited slots (capacity)

Mixture Model

• Parietal cortex lesions impair WM precision³.

Question

What's the nature of WM resource limit?

- Hypo: no slot (capacity) limit

How interrupting parietal neural activity affects WM?

- Hypo: the resource overall, not its consistency

Method

Population Receptive Field Mapping

- Link visual field to cortical position that evokes the largest response
- Siemens Allegra 3T scanner.
- Parietal Cortex: IPS1 etc.

Method

Participants: 20 (10 males and females) subjects

Task: Memory guide saccade (MGS) task:

Target Delay Response Feedback ITI

Independent Variable:

- WM loads (target number, 1, 2, or 4)
- Transcranial magnetic stimulation (TMS) or not.

Dependent Variable: Error (° in angle)

TMS: 1 train of 7 20Hz pulses during the delay.

Test Slot Limit⁴

Lower BIC, nLL, better fitting:

- VP outperforms Mixture Model (aggregate)
- VP outperforms All-guessing Model (separate response on load 4)

Test Param Subject to Parietal Impairment⁵

 \bar{I} is more subject to parietal neual interruption than τ

Reference

¹Baddeley (2003). https://doi.org/10.1038/nrn1201 ²Ma et al. (2014). https://doi.org/10.1038/nn.3655 ³Mackey et al. (2016). https://doi.org/10.1152/jn.00380.2016 ⁴Yoo et al. (2018). https://doi.org/10.1038/s41598-018-34282-1 ⁵Adam et al. (2017). https://doi.org/10.1038/nrn1201