Modular Multitask Reinforcement Learning with Policy Sketches

Yoonho Lee

Department of Computer Science and Engineering Pohang University of Science and Technology

August 09, 2017

Modular Multitask Reinforcement Learning with Policy Sketches

- ▶ ICML 2017 Best Paper Honorable Mention
- Hierarchical Reinforcement Learning
- Proposes a looser form of task supervision for RL agents (compared to e.g. reward shaping)
- Proposed form of task supervision is decoupled from the environment
- Proposes a new way to use NNs for hierarchical RL
- Natural extensions to zero-shot and unlabelled RL

Hierarchical Reinforcement Learning

- ▶ Why is starcraft harder than go for RL?
- ▶ Why is starcraft not harder than go for humans?

Hierarchical Reinforcement Learning

- ▶ Decision ≠ Action. RL algorithms are designed with decisions in mind, but operate on actions.
- ▶ Real world decisions have hierarchical structure(e.g. cook dinner → cut potato → activate arm muscle)
- Effective knowledge reuse
- ► Effecient credit assignment
- ▶ Open question: How do we discover salient/reusable decisions?

Previous Work

- ► Learn multiple timestep policy along with confidence¹
- ► Learn controller network that sets desired direction of state change²
- Encode multiple sub-policies with an SNN³
- Actor-Critic algorithm for options⁴

¹Alexander Vezhnevets et al. "Strategic Attentive Writer for Learning Macro-Actions". In: NIPS (2016).

²Alexander Sasha Vezhnevets et al. "FeUdal Networks for Hierarchical Reinforcement Learning". In: (2017).

³Carlos Florensa, Yan Duan, and Pieter Abbeel. "Stochastic Neural Networks for Hierarchical Reinforcement Learning". In: *ICLR* 2017 (2017), pp. 1056–1064.

⁴Pierre-Luc Bacon, Jean Harb, and Doina Precup. "The Option-Critic Architecture". In: *AAAI* (2017).

Previous Work

► Previous hierarchical RL algorithms require reward engineering for high-dimensional environments

Proposed Approach

Proposed Approach

Sketches

Goal	Sketch				
Crafting environment					
make plank make stick make cloth make rope make bridge make bed* make axe* make shears get gold get gem	get wood use toolshed get wood use workbench get grass use factory get grass use toolshed get iron get wood use factory get wood use toolshed get grass use workbench get wood use workbench get iron use toolshed get wood use workbench get iron use workbench get iron get wood use workbench get iron use bridge get wood use workbench get iron use toolshed use	e axe			

Method

Method

Algorithm 1 TRAIN-STEP(Π , curriculum)

```
1: \mathcal{D} \leftarrow \emptyset
 2: while |\mathcal{D}| < D do
       // sample task \tau from curriculum (Section 3.3)
 4: \tau \sim \text{curriculum}(\cdot)
 5: // do rollout
 6: d = \{(s_i, a_i, (b_i = K_{\tau,i}), q_i, \tau), \ldots\} \sim \Pi_{\tau}
 7: \mathcal{D} \leftarrow \mathcal{D} \cup d
  8: // update parameters
 9: for b \in \mathcal{B}, \tau \in \mathcal{T} do
       d = \{(s_i, a_i, b', q_i, \tau') \in \mathcal{D} : b' = b, \tau' = \tau\}
10:
      // update subpolicy
11:
      \theta_b \leftarrow \theta_b + \frac{\alpha}{D} \sum_d \left( \nabla \log \pi_b(a_i|s_i) \right) \left( q_i - c_\tau(s_i) \right)
12:
13: // update critic
14: \eta_{\tau} \leftarrow \eta_{\tau} + \frac{\beta}{D} \sum_{d} \left( \nabla c_{\tau}(s_i) \right) \left( q_i - c_{\tau}(s_i) \right)
```

Method

Algorithm 2 TRAIN-LOOP()

```
1: // initialize subpolicies randomly
 2: \Pi = INIT()
 3: \ell_{\text{max}} \leftarrow 1
 4: loop
 5:
          r_{\min} \leftarrow -\infty
          // initialize \ell_{max}-step curriculum uniformly
       \mathcal{T}' = \{ \tau \in \mathcal{T} : |K_{\tau}| \le \ell_{\max} \}
           \operatorname{curriculum}(\cdot) = \operatorname{Unif}(\mathcal{T}')
 8:
           while r_{\min} < r_{\text{good}} do
 9:
10:
               // update parameters (Algorithm 1)
11:
               TRAIN-STEP(\Pi, curriculum)
               curriculum(\tau) \propto \mathbb{1}[\tau \in \mathcal{T}'](1 - \hat{\mathbb{E}}r_{\tau}) \quad \forall \tau \in \mathcal{T}
12:
13:
               r_{\min} \leftarrow \min_{\tau \in \mathcal{T}'} \mathbb{E} r_{\tau}
14: \ell_{\text{max}} \leftarrow \ell_{\text{max}} + 1
```

Experiments

Comparison to Baseline

Experiments

Ablation

Experiments

Accuracy

Model	Multitask	0-shot	Adaptation
Joint	.49	.01	_
Independent	.44	_	.01
Option-Critic	.47	_	.42
Modular (ours)	.89	.77	.76

Discussion Weaknesses

- Only works for tasks that are strictly composed
- ► To label, one needs to understand which tasks are "RL-able"
- ► Labels needed: Fundamentally limited to tasks understood by humans

Discussion

Implications

- Zero-shot and Adaptation experiments had similar performance, what does this imply?
- Weight sharing between policies?
- Curriculum instead of policy sketches?
- Common theme of cooperating networks for hierarchical RL: Manager-Worker⁵, Option-Policy⁶, Policy modules⁷

⁵Alexander Sasha Vezhnevets et al. "FeUdal Networks for Hierarchical Reinforcement Learning". In: (2017).

⁶Pierre-Luc Bacon, Jean Harb, and Doina Precup. "The Option-Critic Architecture". In: *AAAI* (2017).

⁷Jacob Andreas, Dan Klein, and Sergey Levine. "Modular Multitask Reinforcement Learning with Policy Sketches". In: *ICML* (2017). arXiv: 1611.01796.

References I

- Jacob Andreas, Dan Klein, and Sergey Levine. "Modular Multitask Reinforcement Learning with Policy Sketches". In: ICML (2017). arXiv: 1611.01796.
- [2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. "The Option-Critic Architecture". In: AAAI (2017).
- [3] Carlos Florensa, Yan Duan, and Pieter Abbeel. "Stochastic Neural Networks for Hierarchical Reinforcement Learning". In: ICLR 2017 (2017), pp. 1056–1064.
- [4] Alexander Vezhnevets et al. "Strategic Attentive Writer for Learning Macro-Actions". In: NIPS (2016).
- [5] Alexander Sasha Vezhnevets et al. "FeUdal Networks for Hierarchical Reinforcement Learning". In: (2017).

