Contents

1	вво	дные определения	1
	1.1	Отображения / Функции	1
		1.1.1 Основные определения	1
		1.1.2 Сюръекция, инъекция, биекция	2
		1.1.3 Эндоморфизмы и автоморфизмы	2
		1.1.4 Слои отображений	2
	1.2	Бинарные операции	3
	1.3	Гомоморфизмы и изоморфизмы	3
	1.4	Бинарные отношения	3
_			
2	Алі	гебраические структуры	4
2	А лі 2.1	гебраические структуры Основные аксиомы	4
2			
2	2.1	Основные аксиомы	4
2	2.1 2.2	Основные аксиомы	4
2	2.1 2.2 2.3	Основные аксиомы Простейшие свойства групп Подгруппы	4 4 5
2	2.1 2.2 2.3 2.4	Основные аксиомы Простейшие свойства групп Подгруппы Кольца	4 4 5 5
2	2.1 2.2 2.3 2.4 2.5	Основные аксиомы Простейшие свойства групп Подгруппы Кольца Подкольца	4 4 5 5 6

Использованная литература и не только: Э. Б. Винберг. Курс алгебры. А. Л. Городенцев алгебра про бинарные отношения https://www.csd.uwo.ca/~mmorenom/cs2214_moreno/notes/9-handout.pdf https://economics.hse.ru/data/2019/09/16/1541173496/%D0%A1%D0%B5%D0%BC%D0%B8%D0%BD%D0%B0%D1%80%202%20-%20%D0%B1%D0%B8%D0%BD%D0%B0%D1%80%D0%BD%D1%8B%D0%B5%20%D0%BE%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D1%8F%20(%D0%BD%D0%B0%20%D1%81%D0%B0%D0%B9%D1%82).pdf лекция по алгебры HMУ: https://www.youtube.com/watch?v=T45ZtSk3d38

1 вводные определения

Определение 1.1 Алгебра изучает алгебраические структуры. Алгебраической структурой мы будем называть множество М вместе с набором операций.

1.1 Отображения / Функции

1.1.1 Основные определения

Определение 1.2 Отображение $f: \mathbb{X} \to \mathbb{Y}$. Существует правило, сопоставляющее каждой точке $x \in \mathbb{X}$ однозначно определяемую точку $y = f(x) \in \mathbb{Y}$, называемую образом точки x при отображении f.

 $\operatorname{Hom}(\mathbb{X},\mathbb{Y})$ — множество всех отображений из множества \mathbb{X} в \mathbb{Y} .

Определение 1.3 Множество всех точек $x \in \mathbb{X}$, образ которых равен данной точке $y \in \mathbb{Y}$, называется полным прообразом точки y (или слоем отображения f над y):

$$f^{-1}(y) := \{ x \in \mathbb{X} \mid f(x) = y \}$$

Определение 1.4 Множество точек $y \in \mathbb{Y}$ с непустым прообразом называется образом отображения $\mathbb{X} \xrightarrow{f} \mathbb{Y}$:

$$\operatorname{im} f := \{ y \in \mathbb{Y} \mid f^{-1}(y) \neq \varnothing \} = \{ y \in \mathbb{Y} \mid \exists x \in \mathbb{X} : f(x) = y \}$$

Определение 1.5 Равенство отображений:

$$f = g \iff \forall x \in \mathbb{X}(f(x) = g(x))$$

Утверждение 1.6 если множество $\mathbb X$ состоит из n элементов, в множество $\mathbb Y$ из $m \mid \operatorname{Hom}(\mathbb X,\mathbb Y) \mid m^n$

- 1. $W_m(n)$ количество всех n буквенных слов, которые можно записать при помощи алфавита из m-букв.
- 2. Выпишем все эти слова на m страницах, и на каждой i странице разместим слова на букву соответствующие i. Слов на каждой странице окажется $W_m(n)$
- 3. $W_m(n) = m * W_m(n-1) = m^2 * W(n-2) = \dots = m^{n-1} * W(1) = m^n$

1.1.2 Сюръекция, инъекция, биекция

Определение 1.7 Отображение $f: \mathbb{X} \to \mathbb{Y}$ называется сюръекцией (наложением), если $\operatorname{im} f = \mathbb{Y}$. Обозначение: $\mathbb{X} \to \mathbb{Y}$.

Определение 1.8 Отображение $f: \mathbb{X} \to \mathbb{Y}$ называется интекцией (вложением), если $f(x_1) \neq f(x_2)$ при $x_1 \neq x_2$. Обозначение: $\mathbb{X} \hookrightarrow \mathbb{Y}$.

Определение 1.9 Отображение $f: \mathbb{X} \to \mathbb{Y}$ называется биекцией, если оно одновременно сюръективно и инъективно. Обозначение: $\mathbb{X} \xrightarrow{\sim} \mathbb{Y}$.

1.1.3 Эндоморфизмы и автоморфизмы

Определение 1.10 Эндоморфизм — отображение множества в себя: $\mathbb{X} \to \mathbb{X}$. Множество эндоморфизмов обозначается $\operatorname{End}(\mathbb{X}) = \operatorname{Hom}(\mathbb{X}, \mathbb{X})$.

Определение 1.11 Aвтоморфизм — биективный эндоморфизм: $\mathbb{X} \xrightarrow{\sim} \mathbb{X}$. Mножество автоморфизмов обозначается $\mathrm{Aut}(\mathbb{X})$.

Определение 1.12 Тождественный автоморфизм $\mathrm{Id}_{\mathbb{X}}:\mathbb{X}\to\mathbb{X}$ определяется условием:

$$\forall x \in \mathbb{X} \ \mathrm{Id}_{\mathbb{X}}(x) = x$$

Утверждение 1.13 У п-мерного множества имеется ровно n! автоморфизмов.

Определена биекция $\mathbb{X} \xrightarrow{f} \mathbb{X}$ записанная n-буквенными словами в n-буквенном алфавите, содержащем каждую букву ровно один раз.

- 1. Пусть общее их общее количество это V(n). Выпишем их по алфавиту n страницах, разместив на i страницах соответствующие буквы. Тогда на каждой странице окажется V(n) слов..
- 2. V(n) = n * V(n-1) = n * (n-1) * V(n-2) = ...n * (n-1)(n-2) * ...2 * 1 = n!

1.1.4 Слои отображений

Определение 1.14 Задание отображения $f: \mathbb{X} \to \mathbb{Y}$ равносильно разбиению \mathbb{X} в дизъюнктивное объединение непустых подмножеств $f^{-1}(y)$, занумерованных точками $y \in \operatorname{im}(f)$:

$$\mathbb{X} = \bigsqcup_{y \in \operatorname{im}(f)} f^{-1}(y)$$

1.2 Бинарные операции

Определение 1.15 Бинарной операцией на множестве М называется отображение:

$$*: \mathbb{M} \times \mathbb{M} \to \mathbb{M}$$

Результат применения операции κ паре (a,b) обозначается a*b.

Пара $(\mathbb{S},*)$ называется алгеброй.

- Аддитивная форма записи: операция обозначается знаком +.
- Мультипликативная форма записи: операция обозначается знаком · или *.

Определение 1.16 Множество с заданной на нём бинарной операцией называется группоидом.

Примеры группоидов:

- 1. $(\mathbb{N}, +), (\mathbb{Z}, +)$
- 2. Множество векторов на плоскости с операцией сложения.
- 3. Множество отображений ${\rm Map}(M,M)$ с операцией композиции.

1.3 Гомоморфизмы и изоморфизмы

Определение 1.17 Пусть даны две алгебраические структуры: (\mathbb{M}, \circ) и $(\mathbb{N}, *)$. Отображение $f: \mathbb{M} \to \mathbb{N}$ называется гомоморфизмом, если:

$$\forall a, b \in \mathbb{M}(f(a \circ b) = f(a) * f(b))$$

Определение 1.18 Гомоморфизм f называется изоморфизмом, если он биективен. Обозначение: $(\mathbb{M}, \circ) \simeq (\mathbb{N}, *)$.

Пример изоморфизма:

$$a \mapsto 2^a, \quad (\mathbb{Q}, +) \simeq (\mathbb{R}^+, \cdot)$$

Утверждение 1.19 Свойства изоморфных алгебр:

- 1. Образ нейтрального элемента нейтральный элемент.
- 2. Образ симметричного элемента симметричный элементу образу.
- 3. Образ полугруппы полугруппа.
- 4. Образ группы группа.
- 5. Сохраняется коммутативность.

 $\#{+}{\rm begin}_{\rm example}$

1.4 Бинарные отношения

Пусть задано бинарное отношение Φ на множестве \mathbb{A} . Краткая запись: $(x,y) \in \Phi \equiv x \Phi y$.

Определение 1.20 *Отношение* Φ *называется:*

- 1. Рефлексивным, если $\forall x \in \mathbb{A}(x\Phi x)$.
- 2. Симметричным, если $\forall x, y \in \mathbb{A}(x\Phi y \implies y\Phi x)$.
- 3. Транзитивным, если $\forall x, y, z \in \mathbb{A}(x\Phi y \wedge y\Phi z \implies x\Phi z)$.
- 4. Отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.
- 5. Иррефлексивным, если $\forall x \in \mathbb{A} \neg (x\Phi x)$.
- 6. Антисимметричным, если $\forall x, y \in \mathbb{A}(x\Phi y \land y\Phi x \implies x = y)$.
- 7. Отношением порядка, если оно рефлексивно, антисимметрично и транзитивно.
- 8. Линейным порядком, если оно является отношением порядка и связно: $\forall x, y \in \mathbb{A}(x \neq y \implies x \Phi y \lor y \Phi x)$.

2 Алгебраические структуры

2.1 Основные аксиомы

Рассмотрим множество \mathbb{R} с двумя бинарными операциями: сложением (+) и умножением (·).

- 1. $\forall a, b, c \in \mathbb{R}(a + (b + c) = (a + b) + c)$.
- 2. $\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R} (a+0=0+a=a)$.
- 3. $\forall a \in \mathbb{R} \exists ! (-a) \in \mathbb{R} (a + (-a) = (-a) + a = 0).$
- 4. $\forall a, b \in \mathbb{R}(a+b=b+a)$.
- 5. $\forall a, b, c \in \mathbb{R}(a(bc) = (ab)c)$.
- 6. $\exists 1 \in \mathbb{R} (1 \neq 0) \ \forall a \in \mathbb{R} (a \cdot 1 = 1 \cdot a = a).$
- 7. $\forall a \in \mathbb{R} (a \neq 0) \exists ! a^{-1} \in \mathbb{R} (aa^{-1} = a^{-1}a = 1).$
- 8. $\forall a, b \in \mathbb{R}(ab = ba)$.
- 9. $\forall a, b, c \in \mathbb{R}(a(b+c) = ab + ac)$.
- 10. $\forall a, b \in \mathbb{G} \ \exists ! c \in \mathbb{G}(c = a * b).$

Определение 2.1 При условии соблюдении 10 аксиомы:

- Аддитивная полугруппа: множество с операцией, удовлетворяющей аксиоме 1.
- Аддитивная группа: множество с операцией, удовлетворяющей аксиомам 1-3.
- Абелева группа: группа, удовлетворяющая аксиоме 4.
- Кольцо: множество с двумя операциями, удовлетворяющее аксиомам 1-3, 5, 9.
- Поле: коммутативное ассоциативное кольцо с единицей, удовлетворяющее аксиомам 1-9.

2.2 Простейшие свойства групп

Утверждение 2.2 Если в группоиде S существует нейтральный элемент (θ) — он единственный.

допустим, есть два нейтральных элемента θ и λ : $\theta = \theta * \lambda \wedge \lambda = \lambda * \theta \implies \lambda = \theta$

Утверждение 2.3 Если в полугруппе S существует для элемента а существует симметричный/противот — он единственный.

Допустим, для а есть два противоположных элемента a' $_1$ и a' $_2$, в таком случае: $a*a'_1=e \wedge a*a'_2=e \implies a*a'_1=a*a'_2 \implies a'_1=a'_2$

Для любых a, b уравнение x * a = b имеет единственное решение, равное b * a'(где a' - обратный элемент a), называющееся в аддитивной группе вычитанием и в мультипликативной делением.

$$(a+x=b) \iff ((x+a)+(-a)=b+(-a)) \iff$$
$$\iff (x+(a+(-a))=b+(-a)) \iff (x+0=b+(-a)) \iff (x=b+(-a)).$$

Выражение b + (-a) обычно записывается как b - a.

Утверждение 2.4 B мультипликативной форме записи понятие натуральной степени элемента можно вести в полугруппе, понятие целой степени — в группе.

Для нулевой степени нужен нейтральный элемент, а для отрицательной — обратный, для натуральной степени достаточно ассоциативности.

2.3 Подгруппы

//это минимальное определение подгруппы

Определение 2.5 Подмножество $\mathbb{H} \subset \mathbb{G}$ называется подгруппой, если:

- 1. $\mathbb{H} \neq \emptyset$.
- 2. $\forall x, y \in \mathbb{H}(xy^{-1} \in \mathbb{H})$.

Определение 2.6 Пусть \mathbb{G} — мультипликативная группа, a — её фиксированный элемент. Если любой элемент $g \in \mathbb{G}$ записывается в виде $g = a^n$ для некоторого $n \in \mathbb{Z}$, то $\mathbb{G} = \langle a \rangle$ — циклическая группа с образующим a (или циклическая группа порождённая a) аналогично циклическая группа определяется в аддитивном случае: $\langle a \rangle = \{na|n \in \mathbb{Z}\}$

2.4 Кольца

Утверждение 2.7 *В кольце К справедливо:* $\forall a \in K (a \cdot 0 = 0 \cdot a = 0).$

Утверждение **2.8** $\forall a, b \in K(a(-b) = (-a)b = -ab)$.

Утверждение 2.9 1. $\forall a, b, c \in K(a(b-c) = ab - ac)$.

Определение 2.10 • Кольцо называется коммутативным, если умножение коммутативно.

- Кольцо называется ассоциативным, если умножение ассоциативно.
- Область целостности коммутативное кольцо с единицей без делителей нуля.

Элементы кольца, обладающие свойством $a \neq 0$ $b \neq 0$ ab = 0 делить нуля. Коммутативное кольцо с еденицией без делителей нуля называется областью целостности.

$$\mathbb{K} = \{C_0, C_1, C_2, C_3\}$$

если 1=0 то a=a1=a0=0 то есть кольцо состоит только из одного нуля, значит, если кольцо состоит из нескольких элементов то $1\neq 0$

2.5 Подкольца

Определение 2.11 Подмножество $K' \subset K$ называется подкольцом, если:

- 1. $\forall a, b \in K'(a + b \in K')$.
- 2. $\forall a, b \in K'(a b \in K')$.
- 3. $\forall a, b \in K'(ab \in K')$.

2.6 Поля

Определение 2.12 Полем называется коммутативное ассоциативное кольцо с единицей, в котором всякий ненулевой элемент обратим.

Кольцо из одного нуля не является полем.

Утверждение 2.13 *В поле нет делителей нуля.*

2.7 Подполя

Определение 2.14 Подмножество $P' \subset P$ называется подполем, если:

- 1. $\forall a, b \in P'(a+b \in P')$.
- 2. $\forall a, b \in P'(ab \in P')$.
- 3. $\forall a, b \in P'(b \neq 0) \left(\frac{a}{b} \in P'\right)$.

3 Комплексные числа

Определение 3.1 Поле комплексных чисел:

$$\mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$$

с операциями:

- Сложение: (a,b) + (c,d) = (a+c,b+d).
- Умножение: $(a,b) \cdot (c,d) = (ac bd, ad + bc)$.

Теорема 3.2 Поле \mathbb{C} содержит подполе, изоморфное полю действительных чисел.

Рассмотрим $R_1 = \{(a,0) \mid a \in \mathbb{R}\} \subset \mathbb{C}$. Можно показать, что R_1 является подполем и изоморфно \mathbb{R} .

Определение 3.3 Алгебраическая форма комплексного числа:

$$\alpha = a + bi, \quad a, b \in \mathbb{R}$$

$$i\partial e \ i = (0,1), \ i^2 = -1.$$

Определение 3.4 Комплексно сопряжённое число:

$$\overline{\alpha}=a-bi$$

Определение 3.5 Тригонометрическая форма комплексного числа:

$$\alpha = r(\cos \phi + i \sin \phi), \quad r = |\alpha| = \sqrt{a^2 + b^2}, \quad \phi = \arg \alpha$$