Implementazione di una Rete Convoluzionale in CUDA

Michele Valsesia Nicholas Aspes

Anno accademico 2018/2019

Introduzione

Obiettivi

► Descrivere brevemente l'architettura ed il funzionamento di una *Rete Neurale*

Introduzione

Obiettivi

- ► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale
- ► Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto

Introduzione

Obiettivi

- ► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale
- Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto
- Valutare l'accuratezza e lo speed-up della rete rispetto ad una sua implementazione sequenziale

Significato Biologico

► Una *Rete Neurale* ha come scopo quello di modellare una rete neurale biologica

Significato Biologico

- ► Una *Rete Neurale* ha come scopo quello di modellare una rete neurale biologica
- ► Una rete neurale biologica si compone di unità cellulari di base: i neuroni

Significato Biologico

- ► Una *Rete Neurale* ha come scopo quello di modellare una rete neurale biologica
- ► Una rete neurale biologica si compone di unità cellulari di base: i neuroni
- ▶ I neuroni sono collegati tra loro per mezzo di specifiche giunture chiamate *sinapsi*

Neurone

Modello matematico di un neurone

Funzionamento Neurone

► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri
- ► I segnali pesati dalle differenti sinapsi vengono trasportati dai dendriti all'interno del neurone e sommati tra loro

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri
- ▶ I segnali pesati dalle differenti sinapsi vengono trasportati dai dendriti all'interno del neurone e sommati tra loro
- ► Se la somma supera una certa soglia, il neurone *spara* un segnale lungo l'assone

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone venga influenzato dagli altri
- ▶ I segnali pesati dalle differenti sinapsi vengono trasportati dai dendriti all'interno del neurone e sommati tra loro
- ► Se la somma supera una certa soglia, il neurone *spara* un segnale lungo l'assone
- ► La *frequenza di sparo* del neurone viene modellata con una funzione di attivazione *f*

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

► Sigmoide

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

- ► Sigmoide
- ► Tangente Iperbolica

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per calcolare l'output di un neurone. Riceve come input la somma pesata dei segnali in ingresso al neurone

- ► Sigmoide
- ► Tangente Iperbolica
- ► Softplus

Sigmoide

Definizione

La $Sigmoide\ \sigma: \mathbb{R} o [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

Sigmoide

Definizione

La Sigmoide $\sigma:\mathbb{R} \to [0,1]$ è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto

Sigmoide

Definizione

La Sigmoide $\sigma:\mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

- ► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ▶ Per elevati valori positivi di input la sigmoide restituisce 1: il neurone satura e spara con una frequenza di sparo pari a 1

Sigmoide

Definizione

La Sigmoide $\sigma:\mathbb{R} \to [0,1]$ è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

- ► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ► Per elevati valori positivi di input la sigmoide restituisce 1: il neurone satura e spara con una frequenza di sparo pari a 1
- ▶ La sua derivata è uguale a $\sigma'(x) = 1 \sigma(x)$

Sigmoide

Rappresentazione grafica Sigmoide

Tangente Iperbolica

Definizione

La Tangente Iperbolica $anh: \mathbb{R} \to [-1,1]$ è definita come $anh(x) = 2\sigma(2x) - 1$

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh: \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

► La tangente iperbolica è una sigmoide scalata

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh: \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

- ▶ La tangente iperbolica è una sigmoide scalata
- ► La sua derivata è uguale a $tanh'(x) = 1 tanh^2(x)$

Tangente Iperbolica

Rappresentazione grafica Tangente Iperbolica

Softplus

Definizione

La Softplus $s: \mathbb{R} \to [0, +\infty]$ è definita come $s(x) = \log(1 + e^x)$

Softplus

Definizione

La Softplus $s: \mathbb{R} \to [0, +\infty]$ è definita come $s(x) = \log(1 + e^x)$

► La softplus è un approssimazione della *Rectifier Linear Unit* (*ReLU*)

Softplus

Definizione

La Softplus $s: \mathbb{R} \to [0, +\infty]$ è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è un approssimazione della *Rectifier Linear Unit* (*ReLU*)
- Viene usata per sostituire la ReLU che presenta un punto di discontinuità in 0

Softplus

Definizione

La Softplus $s: \mathbb{R} \to [0, +\infty]$ è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è un approssimazione della *Rectifier Linear Unit* (*ReLU*)
- ▶ Viene usata per sostituire la ReLU che presenta un punto di discontinuità in 0
- ▶ La sua derivata è uguale a $s'(x) = \frac{1}{(1+e^{-x})}$

Softplus

Confronto grafico tra ReLU e Softplus

Rete Neurale

Definizione

Rete Neurale

Definizione

Una *Rete Neurale* è composta da un insieme di neuroni connessi tra loro in un grafo aciclico

▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli vengono posti uno di seguito all'altro in modo da formare una sequenza

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli vengono posti uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di *hidden*

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli vengono posti uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di hidden
- ► L'output dei neuroni di un livello diventano l'input dei neuroni del livello successivo

Rete Neurale

► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

Rete Neurale

- Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input
- ▶ Una rete a singolo livello non presenta livelli hidden

Rete Neurale

- ► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input
- ▶ Una rete a singolo livello non presenta livelli hidden
- ► Per determinare la grandezza di una rete ci si concentra sul numero di neuroni e sui relativi pesi ad essi associati

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni di due livelli adiacenti sono completamente connessi tra loro ed i neuroni che formano un livello non condividono nessuna connessione

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni di due livelli adiacenti sono completamente connessi tra loro ed i neuroni che formano un livello non condividono nessuna connessione

▶ I pesi associati ai neuroni di un livello sono salvati in matrici

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni di due livelli adiacenti sono completamente connessi tra loro ed i neuroni che formano un livello non condividono nessuna connessione

- ▶ I pesi associati ai neuroni di un livello sono salvati in matrici
- ► Le righe della matrice corrispondono ai neuroni del livello mentre le colonne ai pesi di ciascun neurone

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni di due livelli adiacenti sono completamente connessi tra loro ed i neuroni che formano un livello non condividono nessuna connessione

- ▶ I pesi associati ai neuroni di un livello sono salvati in matrici
- ► Le righe della matrice corrispondono ai neuroni del livello mentre le colonne ai pesi di ciascun neurone
- ► Le reti neurali sono organizzate con una struttura a livelli perché risulta più facile ed efficiente fare operazioni matriciali

Rete Neurale Convoluzionale

Una Rete Neurale Convoluzionale si differenzia da una più classica in quanto assume che l'input della rete sia un'immagine

Implementazione della Rete

Analisi dei Risultati