

Lesson 05 - Gaussian Kernel

EQ: What is a Gaussian distribution and how do we apply it to images?

Do Now

Discuss with a partner:

- Have you ever heard of Gauss before?
- How did Homework 04 go? Any pain points?
- Do anything fun this weekend?

Carl Friedrich Gauss

- Famous German mathematician for contributions in probability, geometry, in number theory
- Cool proofs
 - Sum of numbers 1-100 in one step (<u>link</u>)

Gaussian Distribution

- Goes by many names
 - Bell curve
 - Normal distribution
 - Gaussian distribution
- Models probability of independent events over time
 - Plinko machine results
 - Sum of rolling two dice

Basic Gaussian formula

$$f(x) = e^{-x^2}$$

Extended Gaussian formula

$$f(x) = rac{1}{\sigma \sqrt{2\pi}} e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

Gaussian formula: Explained

(Thank you <u>3Blue1Brown!</u>)

Roll for confidence!

Why is a **Gaussian distribution** important?

Why Gaussian distribution?

- Symmetrical at the center
- Smooth falloff, values get smoothly smaller as you get to the edges
- Area under the curve = 1
- Great way for:
 - blurring without "blockiness" of block blur kernel
 - removing noise from an image
- Mr. Mina, if the Gaussian distribution is one-dimensional, how do I apply it to images where there are two-dimensions???

2D

2D Gaussian

2D Gaussian

• f(x, y) = height

Image

• f(col, row) = weight

REMEMBER: for images the x-coord is the column and the y-coord is the row

(Thank you again <u>3Blue1Brown!</u>)

2D Square Gaussian Formula

- μ is the center coordinate (only one since it's a square)
- d is the squared distance from the center (think Pythagorean Theorem)
- exp (num) is shorthand for e^num
- The first coefficient is a normalization factor
 - we can normalize way easier with numpy

$$d=(x-\mu)^2+(y-\mu)^2 \ G(x,y)=rac{1}{\sigma\sqrt{2\pi}}st\exp(-rac{1}{2\sigma^2}st d)$$

2D Square Gaussian Kernel

- Smooth falloff from the center
- A good sigma is usually size/5
- Bigger sigma = more blur
- Smaller sigma = less blur
 - We're widening the Gaussian and getting more values to average

Gaussian Kernel (size=15, sigma=3)

Fig. 2.1 Example of Gaussian linear filtering with different σ . Top row shows the profile of a 1D Gaussian kernel and bottom row the result obtained by the corresponding 2D Gaussian convolution filtering. Edges are lost with high values of σ because averaging is performed over a much larger area.

Credit: Fredo Durand @ MIT

Roll for confidence!

Block vs. Gaussian Blur

- Block kernel leaves rigid lines where the average wasn't taken
- Gaussian blur smoothes the image out

Noise removal with Gaussian

- Sometimes, images can be low-quality and have noise
 - <u>noise:</u> random variation of brightness or color in images produced by sensors and cameras
- Gaussian blur smoothes the image out and makes noise less noisy (which will be helpful for edge detection!)

Smoothed with Gaussian

Homework

O5_homework on Google Classroom (link)

Using Slides 11 and 12, create a function that creates 2D square Gaussian kernel with odd size. The function should take the size and sigma as parameters.