Hands on advanced machine learning for information extraction from tweets tasks, data, and open source tools

Shubhanshu Mishra

Date: July 24, 2019

Time:: 9:00 am - 1:00 pm

Venue: UIUC EnterpriseWorks Room 130

Details: https://socialmediaie.github.io/tutorials/

Overview

- Introduction (15 mins)
- Applications of information extraction (15 mins)
- Responsible and compliant data use of tweets (15 mins)
- Break (15 mins)
- Hands on session (1 hr. 30 mins)
- Conclusion (15 mins)

Setup

- If UIUC student, go to https://cloud-dashboard.illinois.edu/
- Enable google apps
- Install dependencies.
- We will use Google Colab for online hands on.
- Links to install instructions and google collaboratory notebooks at: https://socialmediaie.github.io/tutorials/UIUC2019/

ILLINOIS

CLOUD DASHBOARD

You are logged in as Shubhanshu Mishra | Logout

Home

Service

Google Apps @ Illinois &

view accepted terms of service (accepted on 09/15/2016)

Office 365 §

U of I Box 🔗

Account Status

Enabled and cannot be edited

More Information

Cloud Dashboard

Where to Get Help

For questions or problems, please contact your Campus Help Desk Campus Help Desk

Information extraction

"Information Extraction refers to the automatic extraction of structured information such as entities, relationships between entities, and attributes describing entities from unstructured sources."

– (Sarawagi, 2008)

Information extraction tasks for text

- **Text classification**: sentiment prediction, sarcasm detection, and abusive content detection.
- **Sequence tagging**: named entity detection and classification, part of speech tagging, chunking, and super-sense tagging.

Text classification

Input

I know this tweet is late but I just want to say I absolutely fucking hated this season of

@GameOfThrones

what a waste of time.

Output

abusive

sentiment

uncertainity

Sequence tagging

Input

john <u>oliver</u> coined the term <u>donal drumph</u> as a joke on his show <u>#LastWeekTonight</u>

VP

VERB.COMMUNICATION

Predict

Output

ritter chunk NP

ritter_ccg NOUN.PERSON

tokens john	<u>oliver</u> <u>coined</u>	the term	<u>donal drumphas a joke</u>	<u>on his show</u>	<u>#LastWeekTonight</u>
ud_pos PROPN	PROPN VERB	DETNOUN	PROPN PROPN ADP DET NOUN	ADP PRON NOUN	X
ark_pos ^	^ \	D N	^	P D N	#
ptb_pos NNP	NNP VBD	DT NN	NNP NNP IN DT NN	IN PRP\$ NN	HT
multimodal_ner PER			PER		
broad_ner PER					
wnut17_ner PERSON					
ritter_ner PERSON					
yodie_ner PERSON					

NP

NOUN.COMMUNICATION

NOUN.COMMUNICATION

PP NP

NOUN.COMMUNICATION

Applications of information extraction

- Index documents by entities
- Entity mention clustering
- Visualizing temporal trends in data:

https://shubhanshu.com/social-comm-temporal-graph/

DocID	Entity	Entity type	WikiURL
1	Barack Obama	Person	URL1
2	Facebook	Organization	URL2
3	Katy Perry	Music Artist	URL3

Washington is a great place. I just visited **Washington**.

Washington was a great president. **Washington** made some good changes to constitution.

Responsible and compliant data use of tweets

- Always collect data via Twitter API
- Tweets are often shared via tweetID and the annotation.
- Never publicly share the full text or JSON of the tweet data.
- Some exceptions for academic usage. See: https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases.html
- When possible try to respect user privacy.
- When making inference from collected data be responsible. Think what if your data was collect, what all would you be OK with being inferred.

Publicly available Twitter data

- Many researchers make annotated Twitter data publicly available for academic research.
- Good place for benchmarking or evaluating your models.
- Many datasets available for text classification.
- Few for information extraction via sequence tagging (but still enough)
- Varied annotation practices and data scope:
- See here: https://socialmediaie.github.io/datasets.html

Hands on session

Links to install instructions and google colaboratory notebooks at: https://socialmediaie.github.io/tutorials/UIUC2019/

Tagging data

Part of speech tagging

Super sense tagging

data	split	labels	seque	nces	vocab	tokens
	train	40		551	3174	10652
	dev	37		118	1014	2242
Ritter	test	40		118	1011	2291
Johannsen2014	test	37		200	1 249	3064

	572 2 036	2326
	036	
dev 23 327 20	030	4823
Owoputi test 23 500 2	754	7152
dev 43 269 1	229	2998
TwitIE test 45 632 3	539 1	L2196
train 45 632 3	539 1	L2196
dev 38 71	695	1362
Ritter test 42 84	735	1627
dev 17 710 3	271 1	L1759
train 17 1639 5	632 2	<mark>2</mark> 4753
Tweetbankv2 test 17 1201 4	699 1	9095
train 17 4799 9	113 7	73826
DIMSUM2016 test 17 1000 4	010 1	L6500
Foster test 12 250 1	068	2841
lowlands test 12 1318 4	805 1	9794

Chunking

data	split	boundaries	labels	labels	sequences	vocab	tokens
	train	[I, B, O]	[ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP, CONJP]	9	551	3158	10584
	dev	[I, B, O]	[ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP]	8	118	994	2317
Ritter	test	[I, B, O]	[ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP]	8	119	988	2310

Named entity recognition

data	split	labels	sec	quences	vocab	tokens
	train	13		396	2554	7905
YODIE	test	13		397	2578	8032
	train	10		1900	<mark>7</mark> 695	36936
	dev	10		240	1731	4612
Ritter	test	1 0		254	1776	4921
	train	1 0		2394	<mark>9</mark> 068	46469
	test	1 0		3850	<mark>1601</mark> 2	<mark>6</mark> 1908
WNUT2016	dev	1 0		1000	5563	16261
	train	6		3394	128 40	<mark>6</mark> 2730
	dev	6		1009	3538	15733
WNUT2017	test	6		1287	5759	23394
	train	7		2588	<mark>9</mark> 731	5 1669
	dev	7		88	762	1647
NEEL2016	test	7		2663	<mark>9</mark> 894	4 7488
	train	3		10000	19663	172188
Finin	test	3		5369	130 <mark>2</mark> 7	<mark>97</mark> 525
Hege	test	3		1545	4552	20664
	train	3		5605	19523	<mark>90</mark> 060
	dev	3		933	5312	15169
BROAD	test	3		2802	117 72	4 5159
	train	4		4000	20221	<mark>6</mark> 4439
	dev	4		1000	<mark>6</mark> 832	16178
MultiModal	test	4		3257	17381	<mark>5</mark> 2822
	train	4		2815	<mark>8</mark> 514	<mark>5</mark> 1521
MSM2013	test	4		1450	5701	29089

Classification data

data	split	tokens	tweets	vocab
Airline	dev	20079	981	3273
	test	50777	2452	5630
	train	182040	8825	11697
Clarin	dev	80672	4934	15387
	test	205126	12334	31373
	train	732743	44399	84279
GOP	dev	16339	803	3610
	test	41226	2006	6541
	train	148358	7221	14342
Healthcare	dev	15797	724	3304
	test	16022	717	3471
	train	14923	690	3511
Obama	dev	3472	209	1118
	test	8816	522	2043
	train	31074	1877	4349
SemEval	dev	105108	4583	14468
	test	<mark>5282</mark> 34	<mark>2</mark> 3103	<mark>4</mark> 3812
	train	<mark>2</mark> 81468	12245	29673

data	split	tokens	tweets	vocab
Founta	dev	102534	4663	22529
	test	256569	11657	44540
	train	922028	41961	118349
WaseemSRW	dev	25588	1464	5907
	test	64893	3659	10646
	train	234550	13172	23042

Abusive content identification

data	split	tokens	tweets	vocab
Riloff	dev	2126	145	1002
	test	5576	362	1986
	train	19652	1301	5090
Swamy	dev	1597	73	738
	test	3909	183	1259
	train	140 26	655	2921

Sentiment classification

Uncertainty indicator classification

Twitter NER

Rank	1	2	3	4	5	6	7	8	9	10	TD	TDT _E
10-types	52.4	46.2	44.8	40.1	39.0	37.2	37.0	36.2	29.8	19.3	46.4	47.3
No-types	65.9	63.2	60.2	59.1	55.2	51.4	47.8	46.7	44.3	40.7	57.3	59.0
company	57.2	46.9	43.8	31.3	38.9	34.5	25.8	42.6	24.3	10.2	42.1	46.2
facility	42.4	31.6	36.1	36.5	20.3	30.4	37.0	40.5	26.3	26.1	37.5	34.8
geo-loc	72.6	68.4	63.3	61.1	61.1	57.0	64.7	60.9	47.4	37.0	70.1	71.0
movie	10.9	5.1	4.6	15.8	2.9	0.0	4.0	5.0	0.0	5.4	0.0	0.0
musicartist	9.5	8.5	7.0	17.4	5.7	37.2	1.8	0.0	2.8	0.0	7.6	5.8
other	31.7	27.1	29.2	26.3	21.1	22.5	16.2	13.0	22.6	8.4	31.7	32.4
person	59.0	51.8	52.8	48.8	52.0	42.6	40.5	52.3	34.1	20.6	51.3	52.2
product	20.1	11.5	18.3	3.8	10.0	7.3	5.7	15.4	6.3	0.8	10.0	9.3
sportsteam	52.4	34.2	38.5	18.5	34.6	15.9	9.1	19.7	11.0	0.0	31.3	32.0
tvshow	5.9	0.0	4.7	5.4	7.3	9.8	4.8	0.0	5.1	0.0	5.7	5.7
Rank	1	2	3	4	5	6	7	8	9	10	~2	~2

Multi-task-multi-dataset learning - tagging

Part of speech tagging

Data	Our best	SOTA	Diff %
DiMSUM2016	86.77	82.49	5%
Owoputi	91.76	88.89	3%
TwitlE	91.62	89.37	3%
Ritter	92.01	90	2%
Tweetbankv2	92.44	93.3	-1%
Foster	69.34	90.4	-23%
lowlands	68.1	89.37	-24%

Super sense tagging

Data	Our best	SOTA	Diff %
Ritter	59.16	57.14	3.5%
Johannsen2014	42.38	42.42	-0.1%

Named entity recognition

Data	Our best	SOTA	Diff %
BROAD	77.40	None	NA
YODIE	65.39	None	NA
Finin	56.42	32.43	74.0%
MSM2013	80.46	58.72	37.0%
Ritter	86.04	82.6	4.2%
MultiModal	73.39	70.69	3.8%
Hege	89.45	86.9	2.9%
WNUT2016	53.16	52.41	1.4%
WNUT2017	49.86	49.49	0.8%

Chunking

Data	Our best	SOTA	Diff %
Ritter	88.92	None	NA

Thanks

- TwitterNER: https://github.com/napsternxg/TwitterNER
- Social Communication Temporal Graph: https://shubhanshu.com/social-comm-temporal-graph/
- SocialMedialE for multi-task learning: https://socialmediaie.github.io/
 (Will be open sourced by August 2019)
- For queries please send a tweet at: <u>@TheShubhanshu</u>