

TD1

Modèle (vraisemblance)

Nombre de sinistres par années $N_i|\lambda_i \sim \mathcal{P}(\lambda_i)$

Pourquoi Monte-Carlo?

Modèle bayésien hiérarchique

Inconvénients: tous les conducteurs ont la même loi a priori Sur-estimer le risque des bons conducteurs / sous-estimer le risque des mauvais conducteurs

On souhaite modéliser la fréquence des sinistres d'un ensemble de conducteurs:

On note $z_i = 1$ (bon) et $z_i = 0$ (mauvais)

a priori $\lambda_i \sim \mathrm{Gamma}(\alpha, \beta)$

issu de données historiques sur tous les clients

Or les conducteurs peuvent être bons ou mauvais:

On souhaite modéliser la fréquence des sinistres d'un ensemble de conducteurs:

TD1

Modèle (vraisemblance)

Nombre de sinistres par années $N_i|\lambda_i \sim \mathcal{P}(\lambda_i)$

a priori

$$\lambda_i \sim \text{Gamma}(\alpha, \beta)$$

issu de données historiques sur tous les clients

Or les conducteurs peuvent être bons ou mauvais:

Inconvénients: tous les conducteurs ont la même loi a priori

Sur-estimer le risque des bons conducteurs / sous-estimer le risque des mauvais conducteurs

On note
$$z_i = 1$$
 (bon) et $z_i = 0$ (mauvais)

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

On souhaite modéliser la fréquence des sinistres d'un ensemble de conducteurs:

TD1

Modèle (vraisemblance)

Nombre de sinistres par années $N_i|\lambda_i \sim \mathcal{P}(\lambda_i)$

a priori

$$\lambda_i \sim \text{Gamma}(\alpha, \beta)$$

issu de données historiques sur tous les clients

Or les conducteurs peuvent être bons ou mauvais:

Inconvénients: tous les conducteurs ont la même loi a priori

Sur-estimer le risque des bons conducteurs / sous-estimer le risque des mauvais conducteurs

On note
$$z_i = 1$$
 (bon) et $z_i = 0$ (mauvais)

Mais les z_i ne sont pas observées...

Comment peut-on adapter le modèle ?

