OPTIMIZING MANUFACTURING SUPPLY CHAIN

Purdue Student Labs

AGENDA

Objective

Data & Methodology

Modeling

Results

Conclusion & Future Scope

OBJECTIVE

STAKEHOLDER INTRODUCTION

Introduction

- Leading name in the welding industry for the last 129 years
- Offers a diverse range of **Welding Products** including Welding Machines, Consumables, Cutting Equipment, Automation Systems, and Accessories.

Manufacturing & Supply Chain

- Extensive product variety: 1,304 finished goods.
- Global raw material procurement from over 800 suppliers.
- Emphasizes strong, long-term supplier relationships.

Production Approach

- Utilizes a Pull Mechanism to align production closely with demand.
- Adheres to Lean Manufacturing principles to optimize efficiency and minimize waste.

US-based welding equipment manufacturer

BUSINESS PROBLEM

Impact of Inaccurate Demand Forecasting on Supply Chain

Inaccurate demand forecasting amid market uncertainties severely impacts a complex supply chain:

- 1. Impact on Firm: Inaccurate forecasts lead to stockouts, impacting production efficiency, customer satisfaction, and financial health of manufacturing firms.
- 2. Impact on Suppliers: Inaccurate forecasts lead to inventory surplus, tying up financial resources, causing financial strain and potentially damaging long-term business relationships within the industry.

PROBLEM STATEMENT

Key Challenges

- Traditional Forecasting
 Techniques:
 Reliance on historical averages for predicting demand of materials with erratic demand patterns and minimal correlation.
- Overestimation of Inventory:
 While actual quantity ordered aligns closer to standard, max forecasts are double the standard forecasts, causing supplier discontent due to surplus.

Project Scope

- Develop advanced machine learning and time-series predictive models to address complexities of strategic products
- Improved forecasting algorithm to reduce the variation between Standard and Max forecasts of the final product
- Service parts and new products are excluded

Key Deliverables

- Forecasting framework to provide monthly forecasts including Jupyter notebooks and output files
- Tableau report of the forecasts at at material – month level
- Knowledge transfer document with requirements and steps to replicate the analysis and produce results

PROJECT OVERVIEW

Developed and implemented an advanced machine learning solution to accurately forecast the volatile demand for materials in the welding industry, overcoming the limitations of traditional forecasting methods.

Methodology

Data Understanding

- Entity Relationship Diagrams
- Data Dictionaries

Data Preprocessing

- Outlier & Missing Value Treatment
- Master Dataset
 Creation
- Data Transformation and Product Segmentation

Renorting & Incights

- Tableau Dashboard
- Recommendations Report

Modeling

Dynamic Selection box

Key Metrics: Use lowest WMAPE to select the best model for each material

$$WMAPE = \frac{1}{\sum_{i=1}^{n} A_i} \sum_{i=1}^{n} |A_i - F_i|$$

- A_i as the actual quantity for month \dot{i}
- + P_i as the predicted quantity for month \underline{i}
- n is the total number of months consider

Model Outputs

Standard Forecast and Standard deviation

Calculating Model Improvement Factor (MIF) Abs[Avg. WMAPE_{Current} - Avg. WMAPE_{New}]

Avg. WMAPE_{Current}

Calculating Maximum Forecast

 $Max \{Std.\ Forecast + 1.65*Std.\ Deviation* (1-MIF), 2*\ Std.\ Forecast \}$

Steps to calculate Max. Forecast

- Calculate MIF,
 which capture
 improvement
 factor of the new
 model over
 current model
- 2. Apply MIF to the 90% Confidence Interval (CI) estimate of Std. forecast

Final Output Standard Forecast and Max. Forecast (90% CI)

Results

$$WMAPE = \frac{1}{\sum_{i=1}^{n} A_i} \sum_{i=1}^{n} |A_i - F_i|$$

Weighted MAPE has been used to compare the accuracy of forecasts before and after the framework was implemented

This indicates an improvement of 17 percentage points at an overall level

DATA & METHODOLOGY

SOLUTION APPROACH

Five-Step Data Analytics Lifecycle

Mitchell E. Daniels, Jr. School of Business

DATASET INFORMATION

Key Columns

Vital columns for Forecast:

- Order Request Date
- Material ID
- Quantity Ordered

Additional tables for expansion to raw material level:

- Product Hierarchy
- Component Parts
- Supplier's Delivery Performance

Key data variables:

Purchase ID, Product ID, Quantity Ordered, Order Request Date, Order Delivery Date and In-House Production Time

Total No. of Rows & Columns

358K Rows & 19 Columns

Materials Rows & Relevant Columns

148K Rows

Time Period
(Requisition date)
06/04/2014 - 12/22/2023

Time Period (Delivery date)

01/15/2014 - 04/18/2024

Total Quantity Requested 350+

Total No. of Distinct
Materials
1304

PRODUCT SEGMENTATION

1304 finished products have been segmented into 4 categories to account for variability in demand.

This segmentation strategy is crucial for developing customized time-series and ML models considering mixed nature of products' demand

Segment description for Variance

High Variance = Coefficient of Variation > 1
 Low Variance = Coefficient of Variation <= 1
 Coefficient of Variation is degree of variation in data defined as ratio of std deviation to average

Segment description for volume

High Volume = Top 20% materials by qty soldLow Volume = Bottom 80% materials by qty sold

Increasing volume (Qty sold)

MODELING

DATA MODELING

Forecast Improvement & Max Reduction

Machine Learning Approach for Low Volume

Deploy classic ML models such as ARIMA and Prophet to make forecasts

Deep Learning Approach for High Volume

Forecasting model to predict demand for days with demand > 0 MIF is a measure of the improvement in new standard forecasts when compared to the existing standard forecasts

Dynamic Selection box: Use lowest WMAPE to select the best model for each material

Mitchell E. Daniels, Jr.

School of Business

$$WMAPE = \frac{1}{\sum_{i=1}^{n} A_i} \sum_{i=1}^{n} |A_i - F_i|$$

Derive monthly forecast and standard deviation values for each material

Calculate Model **Improvement Factor**

Calculate Max. Forecast

$$MIF = \frac{Abs \left[(CM - NM) \right]}{CM}$$
 Max

The model computes the standard forecast at a 90% confidence interval and uses the MIF to calculate the adjusted final maximum forecast

VALIDATION METRICS

Measuring forecast improvement metrics.

- MIF: used to gauge the improvement in standard forecasts
- Max Factor: values for the new and existing values to gauge the improvement in max forecasts
- Max Factor equals Max Forecast / Standard Forecast
- The objective is to reduce it when compared to Old Max Factor of 2

RESULTS

RESULT COMPARISON

The comparison shows significant improvement in all categories, with the most notable changes being a drastic increase from 4.3% to 44.4% in the 'High Variance – Low Volume' and from 14.4% to 42.9% in the 'Low Variance – High Volume' segments for materials within the WMAPE 0-30% range.

VS

New results High Variance High Variance - Low Volume - High Volume **50**% 44.4% Increasing variance (CoV) **Materials with Materials with WMAPE 0-30% WMAPE 0-30% Low Variance Low Variance** - Low Volume - High Volume **60**% 42.9% **Materials with Materials with WMAPE 0-30% WMAPE 0-30%** Top 20% 0 Bottom 80%

Increasing volume (Qty sold)

PURDUE Mitchell E. Daniels, Jr. School of Business

KEY HIGHLIGHTS, CONCLUSION & FUTURE SCOPE

KEY HIGHLIGHTS AND CONCLUSION

01

Inclusion of
Classification in the
model set up helped
increase
improvement in
MAPE by 10%

02

Weighted MAPE
improvement in all
segments with at
least 17%
improvement across
all segments

03

Best fit model
approach enables
dynamic forecasting,
thus allowing multiple
models to fit for each
material

04

MIF helped reduce
the Max factor
significantly, with
maximum materials
having a max factor
between 1-1.5

Classification Approach

WMAPE Improvement

Best Fit Model

MIF Factor

FUTURE SCOPE

Additional Data Sources to be Used

Stock Out Data

Historical order data can be enriched by adding information about lost sales and stock outs

Product Supersession

Addition of product life stage to the data as qualitative information will further enable accurate forecasting methodology

Longer Timeframe

The analysis was limited to data starting 2021. Extend the training dataset to improved identification of troughs and crests

Supplier Data

Information about supplier lead times will help paint the entire picture and tie back the forecasts for improved planning of purchases

THANK YOU!

MEET THE TEAM!

Akanksha Singh

Data science consultant with four years of analytical experience in retail, sports and home improvement industry

Chaitanya Krishna Burri

IT Project Manager with 9 years of experience in Telecom, Banking and Financial Services sectors

Priya Sharma

Business Analyst with three years of experience in banking sector

Sathwik Kanukuntla

Data-driven Consultant with three years of experience in manufacturing and IT sectors

Samarth Bansal

Software Developer with 3 years of experience in Technology services

MAX FACTOR

Distribution of Max Factor shows a significant improvement as majority of materials have a max factor between 1-1.5

Entity Relationship Diagram

Models Applicability Check

Model group	Model Types	Use Case Description	Key Considerations					
Traditional Statistical Time Series	ARIMA/SARIMAHolt-WintersSTL Decomposition	 ARIMA/SARIMA for time-dependent patterns in 'Qty Requested' Holt-Winters for trends and seasonal effects STL for analyzing seasonal components 	 Best for clear trends or seasonal STL for analysis, not forecasting Limited use of complex categoric variables 					
Advanced and Flexible Forecasting	 Prophet Machine Learning (RF, GB) Deep Learning (RNN, LSTM) 	 Prophet for daily patterns and irregular trends Machine Learning for variable interactions Deep Learning for large datasets with sequential dependencies 	 Extensive data preprocessing Computationally intensive Ideal for nuanced demand patterns 					
Multivariate Time Series	Vector Autoregression (VAR)	• Ideal for interrelated variables over time	 Assumes interdependence among variables Requires consideration of variable relationships 					
Purch.Re(▼ Material ▼ Delive ▼ 35688872 K3562-2 0 35669309 K3562-2 0	Qty Requeste Req.Date Deliv.dt Jetup MM/ MRP C MR 2.000 12/13/2023 04/18/2024 0.00 0 870 ZW 4.000 12/11/2023 04/16/2024 0.00 0 870 ZW	P Ty PRD Til O To	Evaluate the performance (MAPE) and find the best horizon					

								1	L.	
			Qty							In House
Purch.Re(▼	Material ⊸ ▼	Deliv€▼	Requeste 🔻	Req.Date ▼	Deliv.dt ↓↓	Setup ▼	MM/ ▼	MRP C ▼	MRP Ty ▼	PRD Tir ▼
35688872	K3562-2	0	2.000	12/13/2023	04/18/2024	0.00	0	870	ZW	10
35669309	K3562-2	0	4.000	12/11/2023	04/16/2024	0.00	0	870	ZW	10
35621330	K3562-2	0	1.000	12/05/2023	04/10/2024	0.00	0	870	ZW	10
35610567	K3562-2	0	9.000	12/04/2023	04/09/2024	0.00	0	870	ZW	10
35590946	K3562-2	0	10.000	12/01/2023	04/08/2024	0.00	0	870	ZW	10
35726700	K1500-2	0	1.000	12/18/2023	04/08/2024	0.00	0	875	ZW	8
35642386	K4630-2	0	1.000	12/07/2023	04/05/2024	0.00	0	875	ZW	15
35642450	K4352-1	0	9.000	12/07/2023	04/05/2024	0.00	0	875	ZW	15
35707964	K940-25	0	10.000	12/15/2023	04/05/2024	0.00	0	875	ZW	9
35707890	K163-1	0	6.000	12/15/2023	04/04/2024	0.00	0	875	ZW	8

Forecasting Iterations

Training period	Testing period
1st Jan- 2018 - 31st Dec 2022	1st Jan 2023- 31st Dec 2023
1st Jan- 2019 – 31st March 2023	1st April 2023 – 31st Dec 2024
1st Jan- 2020 – 31st March 2023	1st April 2023 – 31st Dec 2024

Data Transformation	Testing period
Scaling	Models trained with scaled features can more accurately capture the relationships between features and the target variable
Logarithmic transformation	Log transformation can help reduce right or left skewness, making the distribution more symmetric and closer to normal

Models tried	Reason
Prophet Grid Search	To perform hyperparameter tuning in order to enhance the model
AutoARIMA	To fit different values for p,d,q – according to the trend and seasonality in data
XGBoost Regressor	To avoid overfitting and sequentially learn from errors to provide better predictions
LSTM	LSTMs can learn and remember information over long sequences and are highly effective for tasks where the context or information from earlier in the sequence is vital for making predictions or decisions later on.
SARIMA - Seasonal ARIMA	To capture the seasonality present in the data

IT Infrastructure Overview

Software and Python Package Requirements

1 The following software are required to refresh the statistical demand forecast model:

2 For the first model run, the following python packages from open-source repository are required:

python

- Execute Stat. Forecasting algorithms
- Create inputs for Tableau Dashboards

Tableau

- Create visual summary of forecast outputs
- Facilitate internal demand review discussions

Notepad ++

- Perform QCs for intermediate outputs
- Create formulae updates for python notebooks

Package Name

pandas

matplotlib

scipy

prophet

• • •

fpp2

TTR

dplyr

MLmetrics

Package Name

numpy

scikit-learn

plotly

seaborn

• • •

reshape

reshape2

MASS

tidyr

Update in the approach

Last This Week

Use lowest weighted MAPE to select best model Use lowest weighted MAPE to select best model L. Var - L. Vol L. Var - H. Vol L. Var - L. Vol L. Var - H. Vol Automated model selection Automated model selection Automated model selection Automated model selection ARIMA ARIMA Holt Winter Holt Winter Wavenet Wavenet Prophet CNN Classifier Prophet + CNN CNN Classifier + Wavenet

Why Classifier?

There were no order requests for most of the days

- 1	Req.Date	K11/U	K1297	K1365-23	K1386-3	K1387-3	K1500-1	K1500-3	K1500-4	K1504-1	K1524-3	K1546-1	K1551-2	K162-1	K1622-1	K1622-3	K1690-1	K1/UZ-1	K1/26-5	K1/28-6	K1/3/-1	K1/45-1	K1/59-/0	K1/59-95	K1//U-1	K1/80-3	K1803-1	K1803-2	
- 1	1/1/21	96	5	0 0)	0 0	0	(0	0	C)	0	0	0	0	0 0	0	0	0	0	0	0	0) (0	0	į
- 1	1/2/21)	0 0)	0 0	0	20	0	0	C)	0	0	0	0	0 (0	0	0	0	0	0	0) () (0	į
- 1	1/4/21	12	2 2	24 0)	0 0	30	(0	0	0)	0	0	0	0	0 (0	2) (0	0	0	0) (0	į
- 1	1/5/21	96	5 4	18 0)	0 0	0	(0	0	C)	0	0	0	0	0 (0	1) (0	0	0	0) 1	1 0	20	į
- 1	1/6/21	108	3 2	24 0)	1 0	0	(0	0	0)	0	0	0	0	0 (0	9) (10	0	0	5) (0	į
	1/7/21	0	3	86 0)	0 1	1 0	(0	0	0)	0	0 2	1	0	0 (0	2) (0	17	0	0) 3	3 0	0	į
	1/8/21	96	5	0 0		0 0	0	(10	0	0) ()	0	0	0	0	0 (0	1) (0	0	0	0) () (20	i
ا ہ	1/9/21	()	0 0)	0 0	0	(0	0	0) ()	0	0	0	0	0 (0	1) (0	0	0	0) () (0	į
۱د	1/11/21	() 2	24 0)	0 0	30	(0	0	0) ()	0 :	0	0	0	0 (0	3) (0	0	0	0) 3	3 0	0	į
- 1	1/12/21	96	5 3	36 0)	0 0	0	(0	0	0) ()	0	0	0	0	0 6	6	4) (0	0	0	0) () (0	į
eı	1/13/21	96	5 1	12 0)	0 0	0	(10	0	0) ()	0	0	0	0	0 (0	2) (0	0	0	0) () (0	į
	1/14/21	96	5 1	12 0)	0 0	0	(0	0	0) ()	0 :	0	0	0	0 (0	2) (0	15	0	0) () (0	į
- 1	1/15/21	96	5	0 0)	0 0	0	(0	0	0) ()	0	0	0 2	0	0 (0	2) (0	0	0	5	1		0	1
- 1	1/16/21	()	0 0)	0 0	0	(0	0	0) ()	0	0	0	0	0 (0	0) (40	0	0	32) (0	į
- 1	1/18/21	96	5	0 0)	0 0	0	(0	0	6)	0	0 2	1 (0	0 (0	5) (20	0	0	0) 1		0	1
- 1	1/19/21	96	5 7	72 6	5	0 0	30	(10	0	0) ()	0	0	0 (0	0 6	6	2) (30	0	0	37) (0	į
- 1	1/20/21	96	5 1	12 0)	0 0	0	(0	0	0) ()	0	0	0	0	0 (0	4) (0	0	0	0) () (0	į
Ы	1/21/21	96	5 1	12 0)	0 0	0	(0	24	C) ()	0	0	0 (0	0 (0	7) (0	0	0	0) () (20	į
	1/22/21	12	2	0 0)	0 0	0	(0	0	0) ()	0	0 2	4	0	0 (0	1) (0	0	0	0) 5	5 0	0	į
												1																	4

Since the model is struggling to capture extreme crests and troughs, let's make it easy to at least identify troughs beforehand

"Classifier + Predictor" Model

Training and Validation Data Preparation for model

Use CNN classifier to identify the days which may have no orders and make them 0

Apply CNN/Wavenet forecast model to the rest entries which may have order presence

Compile both zero order days from classification and non-zero order days from prediction to build final forecast table

