Atelier Maintenance Industrielle

Eolienne Didactisée DMS

Documents ressources

Ref: SAP10

SOMMAIRE

Sor	mmaire	2
1 -	Présentation Générale	3
С	Contexte industriel	3
D	Description du système pédagogique	4
2 -	Mise en service	6
Т	Terminal de dialogues	6
Ν	Mode Manuel	7
Ν	Mode Automatique	7
3 -	Schémas électriques et pneumatiques	8
D	Descriptifs des folios	8
4 -	Programme API	g
Ν	Modèle d'automate	g
С	Configuration	g
С	Connexion d'un PC	g
Α	Affectation entrées / sorties	10
Р	Programmes	12
5 -	Plans mécaniques	17
6 -	Maintenance - entretien	18
Н	Historique des travaux	18
Ν	Maintenance de 1° niveau	19
7 -	Documents constructeurs	20
Ir	Inventaire des documents disponibles	20
Р	Partie Opérative	20
Р	Partie Commande	20

PRESENTATION GENERALE

Contexte industriel

L'énergie éolienne aujourd'hui

Les éoliennes à axe horizontal nécessitent un système d'orientation au vent mais leur conception est simple et leur rendement élevé. Elles peuvent être bi ou tripales à rotation rapide et servent exclusivement à la production d'électricité, ce sont des aérogénérateurs.

Ces aérogénérateurs sont reliés au réseau (EDF, ...) ou autonomes ; ils peuvent être placés seuls ou en batteries (fermes éoliennes) et avoir des dimensions diverses afin de pouvoir alimenter en électricité aussi bien le particulier que la ville entière.

Fonctionnement général d'une éolienne :

Quand le vent se lève, l'automate de commande, grâce à la girouette située à l'arrière de la nacelle, commande aux moteurs d'orientation de placer l'éolienne face au vent. Les pales sont mises en mouvement par la seule force du vent. Elles entraînent l'arbre principal lent, le multiplicateur, l'arbre rapide et la génératrice.

Lorsque la vitesse du vent est suffisante (15 km.h⁻¹ détectée par l'anémomètre), l'éolienne peut être couplée au réseau électrique. Le rotor tourne alors à sa vitesse nominale (environ 30 tours par minute) et la génératrice à 1500 tours par minute. La vitesse de rotation reste constante tout au long de la période de production. La génératrice délivre alors un courant alternatif à la tension triphasé de 690 V dont l'intensité varie en fonction de la vitesse du vent. Ainsi lorsque la vitesse du vent croit, la portance s'exerçant sur les pales du rotor augmente et la puissance délivrée par la génératrice augmente. Quand la vitesse du vent atteint 50 km.h⁻¹, l'éolienne fournit sa puissance nominale. Cette puissance est alors maintenue constante par la réduction progressive de la portance des pales. L'unité hydraulique régule cette dernière en modifiant l'angle du calage des pales qui pivotent. Lorsque la vitesse du vent dépasse 90 km.h⁻¹, les pales sont mises en drapeau (parallèles à la direction du vent) et leur portance devient quasiment nulle. L'éolienne ne produit plus d'électricité. Tant que la vitesse du vent reste supérieure à 90 km.h⁻¹, le rotor tourne en roue libre (quelques tours par minute) et la génératrice est déconnectée du réseau. Dès que la vitesse du vent diminue, l'éolienne se remet en production.

Exploitation de l'énergie produite :

Toutes les opérations sont entièrement automatiques et gérées par ordinateur. En cas d'arrêt d'urgence, un frein à disque placé sur l'arbre rapide permet de mettre l'éolienne en sécurité. Au pied de chaque éolienne, un transformateur convertit la tension de 690 Volts en 20.000 Volts, tension du réseau national sur lequel toute l'électricité produite est déversée.

Description du système pédagogique

Généralités:

L'équipement a été développé en considérant les principes de base régissant une éolienne de production classique. Il comprend :

- o Un mât,
- Une nacelle orientable supportant :
 - Une hélice tripale,
 - Un ensemble : multiplicateur frein génératrice asynchrone,
 - Un motoréducteur monté sur l'arbre lent permettant une simulation d'entrainement du vent,
 - Un ensemble générateur de vent variable instrumenté des capteurs anémomètre et girouette,
- Une armoire de contrôle commande regroupant les différents circuits électriques de la Partie Commande interconnectée à la Partie Opérative.

Plan d'ensemble

1 : Mât

2 : Nacelle orientable

3 : Hélice tripale

4 : Motoréducteur simulant le vent

5: Multiplicateur

6 : Anémomètre

7 : Girouette

8 : Génératrice (moteur asynchrone)

9 : Armoire électrique

Caractéristiques principales :

• Encombrement:

- Partie Opérative : Ø x H = 2500 x 2400 mm

- Armoire électrique : L x P x H = 1000 x 760 x 1820 mm

• Masse :

Partie Opérative : 110 kg
Armoire électrique : 100 kg
Niveau sonore inférieur à 70 dB

Puissance installée: 3 kW sous 3x400V+N+T 50Hz

MATERIEL CONFORME AUX NORMES CE

(Tête de série contrôlée par un organisme agrée : BUREAU VERITAS)

2 - MISE EN SERVICE

Terminal de dialogues

LEGT La Croix Rouge – La Salle

Mode Manuel

Mode Automatique

3 - SCHEMAS ELECTRIQUES ET PNEUMATIQUES

Descriptifs des folios

Folio	Description
01	Page de Garde
02	Schéma de puissance 1
03	Schéma de puissance 2
04	Schéma de puissance 3
05	Schéma de commande 1
06	Schéma de commande 2
07	Schéma de commande REGEN
08	Schéma Variateur Pales
09	Schéma des variateurs nacelle éolienne et girouette
10	Connectique boitier
11	Carte Variateur Ventilateur anémomètre + Carte Codeur éolienne
12	Configuration automate M340 (Listes de cartes)
13	Entrées Automate (Cartes 1 et 2)
14	Entrées Automate (Carte 3)
15	Entrées Analogiques Automate (Carte 5)
16	Sorties Analogiques Automate (Carte 6)
17	Variateur Regen (Carte 7)
18	Schéma bornier

4 - PROGRAMME API

Modèle d'automate

- Automate programmable de la gamme M340 de Schneider (BMX CPS2000)
- Connexion à un PC (par cordon USB) connecté sur la prise TER (IP: 192.168.1.30) à modifier: 172.90.93.61

Configuration

Automate programmable BMX CPS2000 de Schneider avec 1 CPU P34 1000 et 1 carte de communication Ethernet.

- I2 : carte de 16 entrées TOR (DDI 1602)
- I3 / Q3 : carte de 8 entrées/8 sorties TOR (DDM 16025)
- Q4 : carte de 16 sorties TOR (DRA 1605)
- IW5 : carte de 8 entrées analogiques (AMI 0810)
- QW6: carte de 8 sorties analogiques (AMO 0410)

Ecran Magelis connecté en Ethernet par câble réseau RJ45 (IP : non renseigné)

Connexion d'un PC

Connecter le cordon USB avec Le PC (USB) et l'automate (Micro-USB)

Ouvrir l'application Unity Pro M

Connecter l'automate à application :

Connecter

Transférer le programme de l'automate au pc :

- Onglet « Automate »
 - o Puis « Transférer projet depuis automate »

Affectation entrées / sorties

Liste des Entrées TOR

Mnémonique	Entrée	Désignation	N° Fil
Pos_Nac_B1	%10.2.0	Position Nacelle B1	200
Pos_Nac_B2	%I0.2.1	Position Nacelle B2	201
Pos_Nac_B3	%10.2.2	Position Nacelle B3	202
Pos_Nac_B4	%10.2.3	Position Nacelle B4	203
Pos_Nac_B5	%10.2.4	Position Nacelle B5	204
Pos_Nac_B6	%10.2.5	Position Nacelle B6	205
Pos_Nac_B7	%10.2.6	Position Nacelle B7	206
Pos_Nac_B8	%10.2.7	Position Nacelle B8	207
Pos_Nac_B9	%10.2.8	Position Nacelle B9	208
Pos_Nac_B10	%10.2.9	Position Nacelle B10	209
Pos_Nac_B11	%I0.2.10	Position Nacelle B11	210
Pos_Nac_B12	%I0.2.11	Position Nacelle B12	211
Pos_Nac_B13	%I0.2.12	Position Nacelle B13	212
Pos_Nac_B14	%I0.2.13	Position Nacelle B14	213
Pos_Nac_B15	%I0.2.14	Position Nacelle B15	214
Pos_Nac_B16	%I0.2.15	Position Nacelle B16	215
ARU	%10.3.0	BP Arrêt d'urgence	216
KMG	%10.3.1	Contacteur General KMG	217
INEol	%10.3.2	Nacelle éolienne Position Initiale	218
Alarm_Nac_Eol	%10.3.3	Alarme nacelle éolienne	219
Alarm_Nac_Gir	%10.3.4	Alarme nacelle Girouette	220
Variat_Rot_pal_OK	%10.3.5	Variateur rotation pale OK	223
Codeur_Nac_Gir_A	%10.3.6	Codeur Nacelle Gir A	222
Codeur_Nac_Gir_B	%10.3.7	Codeur Nacelle Gir B	224

Liste des Entrées Analogiques

Mnémonique	Entrée	Désignation	N° Fil
Mesure_Gir	%IW0.5.0	Mesure Analogique Orientation vent	550/551
Mesure Ane	%IW0.5.2	Mesure Analogique Vitesse Vent	552/553

Liste des Sorties

Mnémonique	Sorties	Désignation	N° Fil
% Q 2.0	KM6	Génératrice en mode Démarreur Progressif	51
Valid_Variat_Nac_Eol	%Q0.3.17	Validation Moto Variateur Nacelle Eolienne	301
Sens_Rotat_Nac_Eol	%Q0.3.18	Sens Rotation Moto Variateur Nacelle Eolienne	302
RAZ_Variat_Nac_Eol	%Q0.3.19	RAZ Moto Variateur Nacelle Eolienne	303
Valid_Nac_Gir	%Q0.3.20	Validation Moto Variateur Nacelle Girouette	307
Sens_Rot_Nac_Gir	%Q0.3.21	Sens Rotation Moto Variateur Nacelle Girouette	308
RAZ_Variat_Nac_Gir	%Q0.3.22	RAZ Moto Variateur Nacelle Girouette	309
Valid_Codeur_Eolienne	%Q0.3.23	Validation Codeur Eolienne	59
Frein_Arbre_Rapide_KM1	%Q0.4.0	Frein Arbre Rapide	41
Ventilateur_anemo_KM2	%Q0.4.1	Ventilateur Anémomètre	43
Entrainement_Pales_KM3	%Q0.4.2	Entrainement Pales	45
Ventilateur_Girouette_KM4	%Q0.4.3	Ventilateur Girouette	47
Valid_Variat_Rot_Pale	%Q0.4.4	Validation Variateur Rotation Pales	222
Valid_variat_REGEN	%Q0.4.5	Validation des variateurs du mode REGEN	642
Charge_conden_1	%Q0.4.6	Charge Condensateurs 1	55
Charge_condens_2	%Q0.4.7	Charge Condensateurs 2	56
Charge_condens_3	%Q0.4.8	Charge Condensateurs 3	57
Charge_condens_4	%Q0.4.9	Charge Condensateurs 4	58
Gene_REGEN_KM5	%Q0.4.10	Génératrice en mode Régénération	53
Dema_Prog_KM6	%Q0.4.11	Génératrice en mode Démarreur Progressif	51

Liste des Sorties Analogiques

Mnémonique	Entrée	Désignation	N° Fil
Cons_sortie_Variat_Nac_Eolienne	%QW0.6.0	Consigne Moto Variateur Nacelle Eolienne	500/501
Cons_sortie_Variat_Nac_Gir	%QW0.6.1	Consigne Moto Variateur Nacelle Girouette	502/503
Cons_sortie_Variat_Ventil_Anemo	%QW0.6.2	Consigne Variateur Ventilateur Anémomètre	504/505
Cons_sortie_Variat_Rot_Pales	%QW0.6.3	Consigne Variateur Rotation Pâles	506/507

Programmes

Grafcet de conduite : Gestion du mode auto / Manu

INIT

Pales_Eoliennes

Nacelle_Eolienne

Nacelle_Girouette

Mesures

codeur_Eol

Generatrice

5 - PLANS MECANIQUES

N°	Description	Version	
	Description	Papier	Num
PL01			
PL02			
PL03			
PL04			

6 - MAINTENANCE - ENTRETIEN

Historique des travaux

Date	Description	Intervenants		
Date	Description	Prof	Classe	
28/02/2023	Mise à jour du dossier technique	ВВ	2 TS MS	
Mai 2023	Remplacement accouplement éolienne	PhD	2 TS MS	

Maintenance de 1° niveau

7 - DOCUMENTS CONSTRUCTEURS

<u>Inventaire des documents disponibles</u>

N°	Docarintian	Version	sion
IN	Description	Papier	Num
DC01			
DC02			
DC03			
DC04			

DOCUMENTATIONS COMMERCIALES ET TECHNIQUES POUR LA SELECTION DES COMPOSANTS ET CONSTITUANTS

Partie Opérative

Motoréducteur Brushless
Hélice tripale
Motoréducteur à couple conique
Réducteur à sortie coaxiale
Frein
(ORIENTAL MOTOR)
(DUC HELICES)
(SEW USOCOME)
(SEW USOCOME)
(MAYR)

• Génératrice (LEROY SOMER)

Accouplement RADEX (KTR)Accouplement ROTEX (KTR)

Ventilateur tangentiel MDSVentilateur tangentiel MF

Anémomètre et Girouette (THIES CLIMA)

• Codeur absolu (IVO)

Codeur incrémental (BEI-IDEACOD)
Détecteur inductif (TELEMECANIQUE)

Partie Commande

Variateur motoréducteur
Variateur REGEN
Alimentation
Démarreurs progressif
Automate
Terminal de dialogue
(SEW USOCOME)
(LEROY SOMER)
(TELEMECANIQUE)
(SCHNEIDER)

Automate (SCHNEIDER)
Terminal de dialogue (SCHNEIDER)
Module TSX ETS (SCHNEIDER)

Wattmètre (GOSSEN METRAWATT)