Fábio Campos Castro Meneghetti Orientadora: Sueli Irene Rodrigues Costa

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

9 de março de 2020

Sumário

- Reticulados
- ② O parâmetro de suavização
- Criptografia
- 4 Simulações

Reticulados: Introdução

Definição 1.1

Seja $\beta = \{b_1, \dots, b_k\}$ um conjunto de vetores linearmente independentes em \mathbb{R}^n . O *reticulado* com base β é o conjunto de todas as combinações lineares inteiras de β :

$$\Lambda(\beta) = \langle \beta \rangle_{\mathbb{Z}} = \{ \alpha_1 b_1 + \dots + \alpha_k b_k \mid \alpha_1, \dots, \alpha_k \in \mathbb{Z} \}.$$

Dizemos que k é a dimensão ou posto do reticulado. Se k=n, dizemos que o reticulado tem posto completo.

Teorema 1.2

 $\Lambda \subset \mathbb{R}^n$ é reticulado sse Λ é subgrupo aditivo discreto de \mathbb{R}^n .

Reticulados: Introdução

Definição 1.1

Seja $\beta = \{b_1, \dots, b_k\}$ um conjunto de vetores linearmente independentes em \mathbb{R}^n . O *reticulado* com base β é o conjunto de todas as combinações lineares inteiras de β :

$$\Lambda(\beta) = \langle \beta \rangle_{\mathbb{Z}} = \{ \alpha_1 b_1 + \dots + \alpha_k b_k \mid \alpha_1, \dots, \alpha_k \in \mathbb{Z} \}.$$

Dizemos que k é a dimensão ou posto do reticulado. Se k=n, dizemos que o reticulado tem posto completo.

Teorema 1.2

 $\Lambda \subset \mathbb{R}^n$ é reticulado sse Λ é subgrupo aditivo discreto de \mathbb{R}^n .

Exemplo 1.3

Ilustramos aqui dois exemplos de reticulados de posto completo em \mathbb{R}^2 .

(a)
$$\Lambda = \langle (1,1), (3/2,0) \rangle_{\mathbb{Z}} \subset \mathbb{R}^2$$
.

(b)
$$\Lambda = \langle (0,1), (1,0) \rangle_{\mathbb{Z}} = \mathbb{Z}^2$$
.

メロトメ劇トメミトメミト ヨーダ

Dado um reticulado Λ e uma base $\beta = \{b_1, \dots, b_k\}$ deste reticulado, definimos a *matriz geradora* de Λ como

$$B = \left[b_1 \cdots b_k\right].$$

- Uma matriz de Gram é uma matriz simétrica $G = B^{\top}B$, onde B é matriz geradora de Λ .
- O determinante de Λ é dada por $\det \Lambda \coloneqq \det G$, para qualquer matriz de Gram G. Um reticulado com determinante 1 é dito *unimodular*.
- O volume de Λ é $V(\Lambda) := \sqrt{\det \Lambda}$, e corresponde ao volume de um paralelotopo definido por uma base do reticulado.

Definição 1.4

Dado um reticulado Λ e uma base $\beta=\{b_1,\ldots,b_k\}$ deste reticulado, definimos a *matriz geradora* de Λ como

$$B = \left[b_1 \cdots b_k\right].$$

- Uma matriz de Gram é uma matriz simétrica $G = B^{\top}B$, onde B é matriz geradora de Λ .
- O determinante de Λ é dada por $\det \Lambda \coloneqq \det G$, para qualquer matriz de Gram G. Um reticulado com determinante 1 é dito *unimodular*.
- O volume de Λ é $V(\Lambda) := \sqrt{\det \Lambda}$, e corresponde ao volume de um paralelotopo definido por uma base do reticulado.

Dado um reticulado Λ e uma base $\beta = \{b_1, \dots, b_k\}$ deste reticulado, definimos a *matriz geradora* de Λ como

$$B = \left[b_1 \cdots b_k\right].$$

- Uma matriz de Gram é uma matriz simétrica $G = B^{\top}B$, onde B é matriz geradora de Λ .
- O determinante de Λ é dada por $\det \Lambda \coloneqq \det G$, para qualquer matriz de Gram G. Um reticulado com determinante 1 é dito *unimodular*.
- O volume de Λ é $V(\Lambda) := \sqrt{\det \Lambda}$, e corresponde ao volume de um paralelotopo definido por uma base do reticulado.

Definição 1.4

Dado um reticulado Λ e uma base $\beta=\{b_1,\ldots,b_k\}$ deste reticulado, definimos a *matriz geradora* de Λ como

$$B = \left[b_1 \cdots b_k\right].$$

- Uma matriz de Gram é uma matriz simétrica $G = B^{\top}B$, onde B é matriz geradora de Λ .
- O determinante de Λ é dada por $\det \Lambda \coloneqq \det G$, para qualquer matriz de Gram G. Um reticulado com determinante 1 é dito *unimodular*.
- O volume de Λ é $V(\Lambda) := \sqrt{\det \Lambda}$, e corresponde ao volume de um paralelotopo definido por uma base do reticulado.

• Duas matrizes $B_1, B_2 \in \mathbb{R}^{n \times k}$ geram o mesmo reticulado sse

$$B_1 = B_2 U$$

para alguma U unimodular, isto é,

$$U \in \mathrm{GL}_n(\mathbb{Z}) = \left\{ M \in \mathbb{Z}^{k \times k} \mid \det M = \pm 1 \right\}.$$

• Dizemos que dois reticulados Λ_1, Λ_2 são equivalentes se existem $\lambda \in \mathbb{R}$ e O ortogonal $(O^\top O = I)$ tais que

$$\lambda O \Lambda_1 = \Lambda_2.$$

• Duas matrizes $B_1, B_2 \in \mathbb{R}^{n imes k}$ geram o mesmo reticulado sse

$$B_1 = B_2 U$$

para alguma U unimodular, isto é,

$$U \in \mathrm{GL}_n(\mathbb{Z}) = \left\{ M \in \mathbb{Z}^{k \times k} \mid \det M = \pm 1 \right\}.$$

• Dizemos que dois reticulados Λ_1, Λ_2 são *equivalentes* se existem $\lambda \in \mathbb{R}$ e O ortogonal $(O^\top O = I)$ tais que

$$\lambda O \Lambda_1 = \Lambda_2.$$

Distância mínima:

$$\lambda(\Lambda) \coloneqq \min_{\substack{x,y \in \Lambda \\ x \neq y}} \|x - y\| = \min_{v \in \Lambda \setminus \{0\}} \|v\|.$$

Mínimos sucessivos

$$\lambda_i(\Lambda) \coloneqq \inf \left\{ \max_{v \in \mathcal{B}} \lVert v \rVert \ \middle| \ \mathcal{B} \text{ \'e conjunto L. I., } |\mathcal{B}| = i \right\}.$$

Distância mínima:

$$\lambda(\Lambda) \coloneqq \min_{\substack{x,y \in \Lambda \\ x \neq y}} \|x - y\| = \min_{v \in \Lambda \setminus \{0\}} \|v\|.$$

Mínimos sucessivos:

$$\lambda_i(\Lambda) \coloneqq \inf \left\{ \max_{v \in \mathcal{B}} \lVert v \rVert \ \middle| \ \mathcal{B} \ ext{\'e conjunto L. I., } |\mathcal{B}| = i
ight\}.$$

• O empacotamento do reticulado é feito colocando uma bola de raio $\lambda/2$ em cada ponto do reticulado.

Figura: Empacotamento dos reticulados dos Exemplo 1.3.

• A proporção do espaço que é preenchida por esse empacotamento é dada pela densidade $\Delta(\Lambda) \coloneqq \frac{\operatorname{Vol} B_{\lambda/2}(0)}{V(\Lambda)} \in [0,1].$

Empacotamento

• O empacotamento do reticulado é feito colocando uma bola de raio $\lambda/2$ em cada ponto do reticulado.

Figura: Empacotamento dos reticulados dos Exemplo 1.3.

• A proporção do espaço que é preenchida por esse empacotamento é dada pela densidade $\Delta(\Lambda) := \frac{\operatorname{Vol} B_{\lambda/2}(0)}{V(\Lambda)} \in [0,1].$

Ladrilhamentos

- O volume de um reticulado também pode ser obtido através de conjuntos que ladrilham o espaço, isto é, conjuntos $A \subset \mathbb{R}^n$ mensuráveis, que satisfazem:
 - **1** se $v, w \in \Lambda$, $v \neq w$, então $(v + A) \cap (w + A)$ tem volume zero,

Teorema 1.5

Se dois conjuntos mensuráveis ladrilham o plano por $\Lambda,$ então eles têm o mesmo volume.

 Os dois principais ladrilhos são a região de Voronói e o paralelotopo fundamental.

Ladrilhamentos

- O volume de um reticulado também pode ser obtido através de conjuntos que ladrilham o espaço, isto é, conjuntos $A \subset \mathbb{R}^n$ mensuráveis, que satisfazem:
 - **1** se $v, w \in \Lambda$, $v \neq w$, então $(v + A) \cap (w + A)$ tem volume zero,

Teorema 1.5

Se dois conjuntos mensuráveis ladrilham o plano por Λ , então eles têm o mesmo volume.

 Os dois principais ladrilhos são a região de Voronói e o paralelotopo fundamental.

- O volume de um reticulado também pode ser obtido através de conjuntos que ladrilham o espaço, isto é, conjuntos $A \subset \mathbb{R}^n$ mensuráveis, que satisfazem:
 - **1** se $v, w \in \Lambda$, $v \neq w$, então $(v + A) \cap (w + A)$ tem volume zero,

Teorema 1.5

Se dois conjuntos mensuráveis ladrilham o plano por Λ , então eles têm o mesmo volume.

 Os dois principais ladrilhos são a região de Voronói e o paralelotopo fundamental.

Região de Voronói

É dada por

$$\mathcal{V}(\Lambda) = \left\{ x \in \mathbb{R}^n \mid ||x|| \le ||x - w||, \ \forall w \in \Lambda \setminus \{0\} \right\}.$$

Figura: Regiões de Voronoi dos reticulados do Exemplo 1.3.

Paralelotopo fundamental

Dada uma base β , o paralelotopo fundamental associado é dado por

$$P(\beta) = \{\alpha_1 b_1 + \dots + \alpha_k b_k \mid \alpha_1, \dots, \alpha_k \in [0, 1]\}.$$

Figura: Paralelotopo fundamental dos reticulados do Exemplo 1.3.

• O raio de cobertura de Λ é dado por

$$\mu(\Lambda) = \inf \left\{ r > 0 \mid \bigcup_{v \in \Lambda} B_r(v) = \mathbb{R}^n \right\}.$$

Figura: Cobertura dos reticulados do Exemplo 1.3.

• A densidade de cobertura de Λ é dada por $\Theta(\Lambda) := \frac{\operatorname{Vol} B_{\mu}(0)}{V(\Lambda)} \geq 1$.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

• O raio de cobertura de Λ é dado por

$$\mu(\Lambda) = \inf \left\{ r > 0 \mid \bigcup_{v \in \Lambda} B_r(v) = \mathbb{R}^n \right\}.$$

Figura: Cobertura dos reticulados do Exemplo 1.3.

• A densidade de cobertura de Λ é dada por $\Theta(\Lambda) \coloneqq \frac{\operatorname{Vol} B_{\mu}(0)}{V(\Lambda)} \ge 1$.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

$$\Lambda^* := \left\{ x \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z}, \ \forall \, y \in \Lambda \right\}.$$

- Se B é matriz geradora de Λ , então $(B^{-1})^{\top}$ é matriz geradora de Λ^* .
- Se rotacionamos um reticulado por um ângulo θ , o reticulado dual é igualmente rotacionado por θ .
- Se multiplicarmos um reticulado por uma constante k>0, o reticulado dual é multiplicado por $\frac{1}{k}$.

$$\Lambda^* := \left\{ x \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z}, \ \forall \, y \in \Lambda \right\}.$$

- Se B é matriz geradora de Λ , então $(B^{-1})^{\top}$ é matriz geradora de Λ^* .
- Se rotacionamos um reticulado por um ângulo θ , o reticulado dual é igualmente rotacionado por θ .
- Se multiplicarmos um reticulado por uma constante k>0, o reticulado dual é multiplicado por $\frac{1}{k}$.

$$\Lambda^* := \{ x \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z}, \ \forall \, y \in \Lambda \} \,.$$

- Se B é matriz geradora de Λ , então $\left(B^{-1}\right)^{ op}$ é matriz geradora de Λ^* .
- Se rotacionamos um reticulado por um ângulo θ , o reticulado dual é igualmente rotacionado por θ .
- Se multiplicarmos um reticulado por uma constante k > 0, o reticulado dual é multiplicado por $\frac{1}{k}$.

$$\Lambda^* := \left\{ x \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z}, \ \forall \, y \in \Lambda \right\}.$$

- Se B é matriz geradora de Λ , então $(B^{-1})^{\top}$ é matriz geradora de Λ^* .
- Se rotacionamos um reticulado por um ângulo θ , o reticulado dual é igualmente rotacionado por θ .
- Se multiplicarmos um reticulado por uma constante k>0, o reticulado dual é multiplicado por $\frac{1}{k}$.

BCC e FCC

Figura: Conjuntos geradores dos reticulados BCC e FCC.

Entre os reticulados de dimensão 3, o BCC é o que tem melhor densidade de cobertura ($\Theta=1.4635$), enquanto o FCC é o que tem melhor densidade de empacotamento ($\Delta\approx0.7405$).

Seja $\mathbb{H}\coloneqq \{\tau\in\mathbb{C}\;\big|\;\Im(\tau)>0\}$ o hiperplano superior complexo. Para $\tau\in\mathbb{H}$, denotamos $q=q(\tau)=e^{2\pi i\tau}$.

Definição 1.6

A função teta de um reticulado $\Lambda\subset\mathbb{R}^n$ é a função $\vartheta_\Lambda\colon\mathbb{H}\to\mathbb{C}$ dada por [1]

$$\vartheta_{\Lambda}(\tau) = \sum_{v \in \Lambda} q^{\frac{1}{2}\langle v, v \rangle} = \sum_{v \in \Lambda} e^{\pi i \tau \langle v, v \rangle}.$$

$$\vartheta_{\Lambda^*}(\tau) = V(\Lambda) \left(\frac{i}{\tau}\right)^{n/2} \vartheta_{\Lambda} \left(-\frac{1}{\tau}\right).$$

Exemplo 1.7

0000000000000000

$$\vartheta_{\mathbb{Z}^2}(\tau) = 1 + 4q + 4q^2 + 8q^5 + 4q^8 + \dots$$

$$\vartheta_{FCC}(\tau) = 1 + 12q^2 + 6q^4 + 24q^6 + 12q^8 + \dots$$

$$\vartheta_{BCC}(\tau) = 1 + 8q^3 + 6q^4 + 12q^8 + 24q^{11} + \dots$$

$$\vartheta_{\Lambda^*}(\tau) = V(\Lambda) \left(\frac{i}{\tau}\right)^{n/2} \vartheta_{\Lambda} \left(-\frac{1}{\tau}\right).$$

Exemplo 1.7

0000000000000000

$$\vartheta_{\mathbb{Z}^2}(\tau) = 1 + 4q + 4q^2 + 8q^5 + 4q^8 + \dots$$

$$\vartheta_{FCC}(\tau) = 1 + 12q^2 + 6q^4 + 24q^6 + 12q^8 + \dots$$

$$\vartheta_{BCC}(\tau) = 1 + 8q^3 + 6q^4 + 12q^8 + 24q^{11} + \dots$$

- 2 O parâmetro de suavização
- Criptografia
- 4 Simulações

Função gaussiana

Definição 2.1

A função gaussiana com fator s>0 é a função $\rho_s:\mathbb{R}^n\to\mathbb{R}$ dada por

$$\rho_s(v) = \exp\left(-\pi ||v||^2/s^2\right).$$

Definição 2.1

A função gaussiana com fator s>0 é a função $\rho_s:\mathbb{R}^n\to\mathbb{R}$ dada por

$$\rho_s(v) = \exp\left(-\pi ||v||^2/s^2\right).$$

- Observamos que $\int_{\mathbb{R}^n} \rho_s(x) dx = s^n$.
- A gaussiana clássica é obtida fazendo $s=\sqrt{2\pi}\sigma$ e normalizando.

Massa gaussiana

Definição 2.2

Sejam $\Lambda \subset \mathbb{R}^n$ de posto completo, e $c \in \mathbb{R}^n$. Definimos a massa gaussiana por

$$\rho_s(\Lambda + c) := \sum_{v \in (\Lambda + c)} \rho_s(v) = \sum_{v \in \Lambda} e^{-\pi \|v + c\|^2/s^2}.$$

- Note que para calcular todas as massas gaussianas de um reticulado, basta tomarmos c em uma região fundamental do reticulado, como a região de Voronoi.
- Como detalhamos na dissertação, a massa gaussiana como função de s>0 é contínua, diferenciável, crescente e injetiva.

Definição 2.2

Sejam $\Lambda \subset \mathbb{R}^n$ de posto completo, e $c \in \mathbb{R}^n$. Definimos a massa gaussiana por

$$\rho_s(\Lambda + c) := \sum_{v \in (\Lambda + c)} \rho_s(v) = \sum_{v \in \Lambda} e^{-\pi \|v + c\|^2/s^2}.$$

- Note que para calcular todas as massas gaussianas de um reticulado, basta tomarmos c em uma região fundamental do reticulado, como a região de Voronoi.
- Como detalhamos na dissertação, a massa gaussiana como função de s>0 é contínua, diferenciável, crescente e injetiva.

Definição 2.2

Sejam $\Lambda \subset \mathbb{R}^n$ de posto completo, e $c \in \mathbb{R}^n$. Definimos a massa gaussiana por

$$\rho_s(\Lambda + c) := \sum_{v \in (\Lambda + c)} \rho_s(v) = \sum_{v \in \Lambda} e^{-\pi ||v + c||^2/s^2}.$$

- Note que para calcular todas as massas gaussianas de um reticulado, basta tomarmos c em uma região fundamental do reticulado, como a região de Voronoi.
- Como detalhamos na dissertação, a massa gaussiana como função de s>0 é contínua, diferenciável, crescente e injetiva.

4 D > 4 B > 4 E > 4 E > 9 Q P

A massa Gaussiana de Λ pode ser escrita em termos da função teta:

$$\rho_s(\Lambda) = \vartheta_{\Lambda} \left(\frac{1}{s^2} i \right).$$

- $\rho_s(\Lambda \setminus \{0\}) \xrightarrow{s \to +\infty} +\infty$.
- $\rho_s(\Lambda \setminus \{0\}) \xrightarrow{s \to 0^+} 0$.

A massa Gaussiana de Λ pode ser escrita em termos da função teta:

$$\rho_s(\Lambda) = \vartheta_{\Lambda} \left(\frac{1}{s^2} i \right).$$

- $\rho_s(\Lambda \setminus \{0\}) \xrightarrow{s \to +\infty} +\infty$. $\rho_s(\Lambda \setminus \{0\}) \xrightarrow{s \to 0^+} 0$.

O parâmetro de suavização

Definição 2.3

Sejam Λ reticulado de posto completo e $\varepsilon>0$. O parâmetro de suavização $\eta_{\varepsilon}(\Lambda)$ é o menor s>0 tal que

$$\rho_{1/s}(\Lambda^* \setminus \{0\}) \le \varepsilon.$$

Neste trabalho, observamos e demonstramos a seguinte propriedade:

Proposição 2.4

O parâmetro de suavização é invariante por rotação, e satisfaz

$$\eta_{\varepsilon}(k\Lambda) = k\eta_{\varepsilon}(\Lambda).$$

O parâmetro de suavização

Definição 2.3

Sejam Λ reticulado de posto completo e $\varepsilon > 0$. O parâmetro de suavização $\eta_{\varepsilon}(\Lambda)$ é o menor s>0 tal que

$$\rho_{1/s}(\Lambda^* \setminus \{0\}) \le \varepsilon.$$

Neste trabalho, observamos e demonstramos a seguinte propriedade:

Proposição 2.4

O parâmetro de suavização é invariante por rotação, e satisfaz

$$\eta_{\varepsilon}(k\Lambda) = k\eta_{\varepsilon}(\Lambda).$$

Dois exemplos de limitantes superiores para on parâmetro de suavização são mostradas em [2]:

$$ullet \ \eta_{2^{-n}}(\Lambda) \leq rac{\sqrt{n}}{\lambda(\Lambda^*)}$$
 ,

•
$$\eta_{\varepsilon}(\Lambda) \leq \lambda_n \sqrt{\frac{\ln\left(2n\left(1+\frac{1}{\varepsilon}\right)\right)}{\pi}}$$
.

Definimos uma distribuição \mathcal{P}_s^{Λ} sobre a região de Voronói \mathcal{V} por:

$$\mathcal{P}_s^{\Lambda}(x) = \frac{1}{s^n} \rho_s(\Lambda + x) = \frac{1}{s^n} \sum_{v \in \Lambda} \rho_s(x + v)$$

$$V(\Lambda) \cdot \mathcal{P}_s^{\Lambda}(x) \in [1 - \varepsilon, 1 + \varepsilon]$$

Definimos uma distribuição \mathcal{P}_s^{Λ} sobre a região de Voronói \mathcal{V} por:

$$\mathcal{P}_s^{\Lambda}(x) = \frac{1}{s^n} \rho_s(\Lambda + x) = \frac{1}{s^n} \sum_{v \in \Lambda} \rho_s(x + v)$$

Teorema 2.5 ([5])

Sejam Λ reticulado, $\varepsilon > 0$, $s \geq \eta_{\varepsilon}(\Lambda)$. Então

$$V(\Lambda) \cdot \mathcal{P}_s^{\Lambda}(x) \in [1 - \varepsilon, 1 + \varepsilon],$$

para todo $x \in \mathcal{V}$.

Figura: Representação de \mathcal{P}_s^{Λ} para $\Lambda = \mathbb{Z}$, com s = 1.

Ideia da demonstração

Para f que satisfaz certas condições (ρ_s satisfaz) temos

$$\sum_{x \in \Lambda} f(x) = \frac{1}{V(\Lambda)} \sum_{y \in \Lambda^*} \hat{f}(y),$$

onde \hat{f} é a transformada de Fourier de f.

- $\bullet \hat{\rho}_s = s^n \rho_{1/s}.$
- se g(x) = f(x+c), então $\hat{g}(x) = e^{2\pi i \langle x,c \rangle} \hat{f}(x)$.

Ideia da demonstração

Para f que satisfaz certas condições (ρ_s satisfaz) temos

$$\sum_{x \in \Lambda} f(x) = \frac{1}{V(\Lambda)} \sum_{y \in \Lambda^*} \hat{f}(y),$$

onde \hat{f} é a transformada de Fourier de f.

- $\hat{\rho}_s = s^n \rho_{1/s}$.
- se g(x) = f(x+c), então $\hat{g}(x) = e^{2\pi i \langle x,c \rangle} \hat{f}(x)$.

Ideia da demonstração

Para f que satisfaz certas condições (ρ_s satisfaz) temos

$$\sum_{x \in \Lambda} f(x) = \frac{1}{V(\Lambda)} \sum_{y \in \Lambda^*} \hat{f}(y),$$

onde \hat{f} é a transformada de Fourier de f.

- $\hat{\rho}_s = s^n \rho_{1/s}$.
- se g(x) = f(x+c), então $\hat{g}(x) = e^{2\pi i \langle x,c \rangle} \hat{f}(x)$.

$$\mathcal{P}_{s}^{\Lambda}(x) = \frac{1}{s^{n}} \sum_{v \in \Lambda} \rho_{s}(x+v)$$

$$= \frac{1}{s^{n}V(\Lambda)} \sum_{w \in \Lambda^{*}} \hat{\rho}_{s}(x+w)$$

$$= \frac{\mathscr{S}^{\varkappa}}{\mathscr{S}^{\varkappa}V(\Lambda)} \sum_{w \in \Lambda^{*}} \left(e^{2\pi i \langle x, w \rangle} \rho_{1/s}(w)\right).$$

Note que como $s \geq \eta_{\varepsilon}(\Lambda)$, e $\|e^{2\pi i \langle x,w \rangle}\| = 1$, temos que

$$\left| \sum_{w \in \Lambda^* \setminus \{0\}} e^{2\pi i \langle x, w \rangle} \rho_{1/s}(w) \right| \leq \varepsilon \implies V(\Lambda) \mathcal{P}_s^{\Lambda} \in [1 - \varepsilon, 1 + \varepsilon] \,. \qquad \Box$$

Reticulados

- O parâmetro de suavização
- 3 Criptografia
- 4 Simulações

Problemas difíceis em reticulados

Problema (SVP aproximado (SVP $_{\gamma}$))

Dado Λ um reticulado com base β , encontrar $v\in \Lambda$, $v\neq 0$, tal que $\|v\|\leq \gamma\,\lambda$.

Problema (CVP aproximado (CVP $_{\gamma}$))

Dados Λ um reticulado com base β e $w \in \mathbb{R}^n$, encontrar $v \in \Lambda$, $v \neq w$, ta que $\|w - v\| \leq \gamma \|w - x\|$ para todo $x \in \Lambda$, $x \neq w$.

Problema (SIVP $_{\gamma}$)

Dados uma base β para Λ e $\gamma>1$, encontrar um conjunto $\{v_1,\ldots,v_k\}\subset \Lambda$ linearmente independente, tal que $\max_{1\leq i\leq n}\|v_i\|\leq \gamma\lambda_k$.

Problemas difíceis em reticulados

Problema (SVP aproximado (SVP $_{\gamma}$))

Dado Λ um reticulado com base β , encontrar $v\in \Lambda$, $v\neq 0$, tal que $\|v\|\leq \gamma\,\lambda$.

Problema (CVP aproximado (CVP $_{\gamma}$))

Dados Λ um reticulado com base β e $w \in \mathbb{R}^n$, encontrar $v \in \Lambda$, $v \neq w$, tal que $\|w-v\| \leq \gamma \|w-x\|$ para todo $x \in \Lambda$, $x \neq w$.

Problema (SIVP $_{\gamma}$)

Dados uma base β para Λ e $\gamma>1$, encontrar um conjunto $\{v_1,\ldots,v_k\}\subset \Lambda$ linearmente independente, tal que $\max_{1\leq i\leq n}\|v_i\|\leq \gamma\lambda_k$.

Problema (SVP aproximado (SVP $_{\gamma}$))

Dado Λ um reticulado com base β , encontrar $v \in \Lambda$, $v \neq 0$, tal que $\|v\| \leq \gamma \lambda$.

Problema (CVP aproximado (CVP $_{\gamma}$))

Dados Λ um reticulado com base β e $w \in \mathbb{R}^n$, encontrar $v \in \Lambda$, $v \neq w$, tal que $\|w - v\| \leq \gamma \|w - x\|$ para todo $x \in \Lambda$, $x \neq w$.

Problema (SIVP $_{\gamma}$)

Dados uma base β para Λ e $\gamma>1$, encontrar um conjunto $\{v_1,\ldots,v_k\}\subset \Lambda$ linearmente independente, tal que $\max_{1\leq i\leq n}\|v_i\|\leq \gamma\lambda_k$.

4 D > 4 D > 4 E > 4 E > 9 Q P

Dado um conjunto discreto $A \subset \mathbb{R}^n$, a distribuição de probabilidade gaussiana discreta $D_{A,s}:A\to\mathbb{R}_{>0}$ é a normalização da função ρ_s sobre A:

$$D_{A,s}(x) = \frac{\rho_s(x)}{\rho_s(A)}.$$

• Seja φ função que associa a cada reticulado $\Lambda \subset \mathbb{R}^n$ um número real

Gaussianas discretas

Dado um conjunto discreto $A \subset \mathbb{R}^n$, a distribuição de probabilidade gaussiana discreta $D_{A,s}:A\to\mathbb{R}_{>0}$ é a normalização da função ρ_s sobre A:

$$D_{A,s}(x) = \frac{\rho_s(x)}{\rho_s(A)}.$$

• Seja φ função que associa a cada reticulado $\Lambda \subset \mathbb{R}^n$ um número real $\varphi(\Lambda) > 0.$

Gaussianas discretas

• Dado um conjunto discreto $A \subset \mathbb{R}^n$, a distribuição de probabilidade gaussiana discreta $D_{A,s}:A\to\mathbb{R}_{>0}$ é a normalização da função ρ_s sobre A:

$$D_{A,s}(x) = \frac{\rho_s(x)}{\rho_s(A)}.$$

ullet Seja arphi função que associa a cada reticulado $\Lambda\subset\mathbb{R}^n$ um número real $\varphi(\Lambda) > 0.$

Problema (DGS_ω)

Dado um reticulado $\Lambda \subset \mathbb{R}^n$ e um número $r > \varphi(\Lambda)$, exibir uma amostra de $D_{\Lambda,r}$.

- Em geral o problema DGS é utilizado sobre um número polinomial de amostras em n (dimensão do reticulado).
- Se $r \geq \sqrt{2n} \cdot \eta_{\varepsilon}(\Lambda)$ então com alta probabilidade são amostrados vetores de norma $\leq \sqrt{n}r$.
- Assim, em uma gaussiana de fator r maior que $\sqrt{2n} \cdot \eta_{\varepsilon}(\Lambda)$, a dificuldade de DGS está relacionada a amostrar vetores curtos do reticulado (SVP).

- Em geral o problema DGS é utilizado sobre um número polinomial de amostras em n (dimensão do reticulado).
- Se $r \geq \sqrt{2n} \cdot \eta_{\varepsilon}(\Lambda)$ então com alta probabilidade são amostrados vetores de norma $\leq \sqrt{n}r$.
- Assim, em uma gaussiana de fator r maior que $\sqrt{2n\cdot\eta_{\varepsilon}(\Lambda)}$, a dificuldade de DGS está relacionada a amostrar vetores curtos do reticulado (SVP).

- Em geral o problema DGS é utilizado sobre um número polinomial de amostras em n (dimensão do reticulado).
- Se $r \geq \sqrt{2n} \cdot \eta_{\varepsilon}(\Lambda)$ então com alta probabilidade são amostrados vetores de norma $\leq \sqrt{n}r$.
- Assim, em uma gaussiana de fator r maior que $\sqrt{2n}\cdot\eta_{\varepsilon}(\Lambda)$, a dificuldade de DGS está relacionada a amostrar vetores curtos do reticulado (SVP).

LWE

- Seja χ uma distribuição de probabilidade sobre \mathbb{Z}_q (geralmente uma gaussiana discreta).
- Uma amostra da distribuição LWE sobre $\mathbb{Z}_q^n \times \mathbb{Z}_q$ (denotada $A_{s,\chi}$) é um par (a,b) onde
 - a é escolhido uniformemente em \mathbb{Z}_q^n ,
 - $b = \langle a, s \rangle + \varepsilon \pmod{q}$ para ε escolhido por χ .

Problema (LWE $_{n,q,\chi,m}$)

Dadas m amostras independentes $(a_i,b_i)\in\mathbb{Z}_q^n imes\mathbb{Z}_q$, escolhidas por $A_{s,\chi}$ para um $s\in\mathbb{Z}_q^n$ uniformemente aleatório, encontrar s. [3]

LWE

- Seja χ uma distribuição de probabilidade sobre \mathbb{Z}_q (geralmente uma gaussiana discreta).
- Uma amostra da distribuição LWE sobre $\mathbb{Z}_q^n \times \mathbb{Z}_q$ (denotada $A_{s,\chi}$) é um par (a,b) onde
 - a é escolhido uniformemente em \mathbb{Z}_q^n ,
 - $b = \langle a, s \rangle + \varepsilon \pmod{q}$ para ε escolhido por χ .

Problema (LWE $_{n,q,\chi,m}$)

Dadas m amostras independentes $(a_i,b_i)\in\mathbb{Z}_q^n\times\mathbb{Z}_q$, escolhidas por $A_{s,\chi}$ para um $s\in\mathbb{Z}_q^n$ uniformemente aleatório, encontrar s. [3]

LWE

- Seja χ uma distribuição de probabilidade sobre \mathbb{Z}_q (geralmente uma gaussiana discreta).
- Uma amostra da distribuição LWE sobre $\mathbb{Z}_q^n \times \mathbb{Z}_q$ (denotada $A_{s,\chi}$) é um par (a,b) onde
 - a é escolhido uniformemente em \mathbb{Z}_q^n ,
 - $b = \langle a, s \rangle + \varepsilon \pmod{q}$ para ε escolhido por χ .

Problema (LWE $_{n,q,\chi,m}$)

Dadas m amostras independentes $(a_i,b_i)\in\mathbb{Z}_q^n\times\mathbb{Z}_q$, escolhidas por $A_{s,\chi}$ para um $s\in\mathbb{Z}_q^n$ uniformemente aleatório, encontrar s. [3]

Dificuldade de LWE

- Sejam $p(n) \in \mathbb{Z}$ e $\alpha(n) \in (0,1)$ tais que $\alpha(n)p(n) > 2\sqrt{n}$.
- Se existir um algoritmo eficiente W que resolve LWE $_{n,q,\bar{\Psi}_{\alpha},m}$ polinomialmente em m, então existe um algoritmo quântico eficiente que resolve DGS $_{\sqrt{2n}\cdot\eta_{\varepsilon}(\Lambda)/\alpha}$.

Problema do parâmetro de suavização

Problema (γ -GapSPP $_{\varepsilon}$ [4])

Sejam $\gamma > 1$, $\varepsilon > 0$. Cada instância de γ -GapSPP $_{\varepsilon}$ é uma base β de um reticulado n-dimensional $\Lambda \subset \mathbb{R}^n$.

- As instâncias SIM são as bases β com $\eta_{\varepsilon}(\Lambda) \leq 1$.
- As instâncias NÃO são as bases β com $\eta_{\varepsilon}(\Lambda) \geq \gamma$.
- A dificuldade vem através da prova que o problema é SZK e AM, que são classes de complexidade de problemas difíceis.

Problema do parâmetro de suavização

Problema (γ -GapSPP $_{\varepsilon}$ [4])

Sejam $\gamma > 1$, $\varepsilon > 0$. Cada instância de γ -GapSPP $_{\varepsilon}$ é uma base β de um reticulado n-dimensional $\Lambda \subset \mathbb{R}^n$.

- As instâncias SIM são as bases β com $\eta_{\varepsilon}(\Lambda) \leq 1$.
- As instâncias NÃO são as bases β com $\eta_{\varepsilon}(\Lambda) \geq \gamma$.
- A dificuldade vem através da prova que o problema é SZK e AM, que são classes de complexidade de problemas difíceis.

Reticulados

- O parâmetro de suavização
- Criptografia
- 4 Simulações

Simulações computacionais

- Fizemos simulações computacionais na linguagem Julia para calcular o parâmetro de suavização nas dimensões 2 e 3.
- Sempre normalizamos o reticulado com $\lambda=1$ para fazer as comparações.

a) Reticulado $\Lambda_{\alpha}=\left\langle (1,0),(\alpha,1)\right\rangle_{\mathbb{Z}}$ para $\alpha\in\mathbb{R}.$ Neste caso, $\lambda=1$ e $\Delta=\pi/4.$

b) Reticulado $\Lambda_{\theta} = \langle (1,0), (\cos \theta, \sin \theta) \rangle_{\mathbb{Z}}$ para $\theta \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$. Neste caso, $\lambda = 1$ e $\Delta = \frac{\pi}{4 \sin \theta}$.

Dimensão 2

Figura: Parâmetro de suavização dos reticulados \mathbb{Z}^2 e hexagonal.

Dimensão 3

Figura: Parâmetro de suavização dos reticulados BCC, FCC e \mathbb{Z}^3 .

Exemplos onde as curvas de η_{ε} se intersectam

Λ	$\Lambda_1 = \left\langle (1,0), (1/2,1) \right\rangle$	$\Lambda_2 = \left\langle (1,0), \left(\cos\left(\frac{\pi}{2.05}\right), \sin\left(\frac{\pi}{2.05}\right)\right) \right\rangle$
$\eta_{1/5}$	0.9727123208582191	0.9835658418363413
η_6	0.37796447311646797	0.3778257690216619

Tabela: Tabela de parâmetros de suavização de reticulados. Note que para $\varepsilon \leq 1/5$, Λ_1 é tem um valor menor, enquanto para $\varepsilon \geq 6$, o valor menor é o de Λ_2 .

Aproximação da distribuição uniforme

Figura: Gráfico de $\mathcal{P}_s^{\mathbb{Z}}(x)$ em função de x, para valores crescentes de s.

- Procurar se é interessante estender a definição do parâmetro de suavização para gaussianas não-redondas (trocando $\langle v,v\rangle$ por $v^{\top}Bv$ para B simétrica positivo-definida).
- Analisar melhor a relação entre o parâmetro de suavização com outros parâmetros de reticulados, como densidades de empacotamento e de cobertura, razão de Hadamard, arredondamento, entre outros.
- Estudar mais profundamente o parâmetro de suavização generalizado, para noções diferentes de distância, e possivelmente de divergência.

- W. Ebeling. Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2012. ISBN: 9783658003593. DOI: 10.1007/978-3-658-00360-9.
- D. Micciancio e O. Regev. "Worst-Case to Average-Case Reductions Based on Gaussian Measures". Em: *SIAM Journal on Computing* 37.1 (2007), pp. 267–302. DOI: 10.1137/S0097539705447360.
- C. Peikert. A Decade of Lattice Cryptography. Fev. de 2016. URL: https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf.

Bibliografia II

C. Peikert, K. Chung, D. Dadush e F. Liu. "On the Lattice Smoothing Parameter Problem". Em: 2013 IEEE Conference on Computational Complexity. Jun. de 2013, pp. 230–241. DOI: 10.1109/CCC.2013.31.

O. Regev. "On Lattices, Learning with Errors, Random Linear Codes, and Cryptography". Em: *Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing*. STOC '05. ACM, 2005, pp. 84–93. ISBN: 1-58113-960-8. DOI: 10.1145/1060590.1060603.