Measures of Dispersion

- Measures of dispersion are descriptive statistics that describe how dissimilar a set of scores are to each other i.e. measurement of degree of variability/spread.
 - The more similar the scores are to each other, the lower the measure of dispersion will be
 - The less similar the scores are to each other, the higher the measure of dispersion will be
 - In general, high dispersion means less reliability on control value leads to more risk.

Which of the distributions of scores has the larger dispersion?

- The upper distribution has more dispersion because the scores are more spread out
 - That is, they are less similar to each other

Measures of Dispersion

- Range (R)
- Quartile Deviation (QD)
- Mean Absolute Deviation (MAD)
- Standard Deviation (σ)

Range

- The *range* is defined as the difference between the largest score in the set of data and the smallest score in the set of data, X_{max} X_{min}
- What is the range of the following data:
 4 8 1 6 6 2 9 3 6 9
- The largest score (X_L) is 9; the smallest score (X_S) is 1; the range is $X_L X_S = 9 1 = 8$

Quartile deviation

- The *quartile deviation* is defined as the difference of the first and third quartiles divided by two.
 - The first quartile is the 25th percentile
 - The third quartile is the 75th percentile
- Quartile deviation = $(Q_3 Q_1) / 2$
- Coefficient of quartile deviation (using average size of quartile) = (Q₃ Q₁) / (Q₃ + Q₁)

Quartile deviation Example

- What is the quartile deviation for the data to the right?
- 25 % of the scores are below 5
 - 5 is the first quartile
- 25 % of the scores are above 25
 - 25 is the third quartile
- Q.D. = $(Q_3 Q_1) / 2 = (25 5) / 2 = 10$

2	
4	$\leftarrow 5 = 25^{\text{th}} \% \text{tile}$
6	$\leftarrow 3 = 23 \% \text{ mile}$
8	
10	
12	
14	
20	$\leftarrow 25 = 75^{\text{th}} \% \text{tile}$
30	$\leftarrow 23 = 73$ % the
60	

Mean/average deviation

M.D. or M.A.D. =

$$\frac{\sum |x_i - \overline{x}|}{\sum f_i}$$
 or $\frac{\sum f_i |x_i - \overline{x}|}{\sum f_i}$

• Coefficient Of M.D. = $\frac{M.D.}{\overline{x}}$

Class	Midpoint x	Frequency f	f.x	x - mean	f x - mean
7 – 18	12.5	6	75	29.28	175.68
19 – 30	24.5	10	245	17.28	172.8
31 – 42	36.5	13	474.5	5.28	68.64
43 – 54	48.5	8	388	6.72	53.76
55 – 66	60.5	5	302.5	18.72	93.6
67 - 78	72.5	6	435	30.72	184.32
79 – 90	84.5	2	169	42.72	85.44
	SUM =	50	2089		834.24
		Mean =	41.78	MAD =	16.6848

Variance & Standard Deviation

 Variance is defined as the average of the square deviations:

$$\sigma^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n} or = \frac{\sum f_{i} (x_{i} - \overline{x})^{2}}{\sum f_{i}}$$

• Standard deviation, S.D. (σ) =

$$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}} or = \sqrt{\frac{\sum f_i (x_i - \overline{x})^2}{\sum f_i}}$$

Standard Deviation & Coeff. Of Variation

- Standard deviation = $\sqrt{\text{variance}}$
- Variance = standard deviation²

$$\sigma = \sqrt{\frac{\sum_{i} x_{i}^{2}}{n} - \overline{x}^{2}} \text{ or } = \sqrt{\frac{\sum_{i} f_{i} x_{i}^{2}}{\sum_{i} f_{i}} - \overline{x}^{2}}$$

Coefficient of variation

$$c.v. = \frac{\sigma}{\overline{x}}$$

Class	Midpoint, x	Frequency, f	f.x	f.x^2
7 – 18	12.5	6	75	937.5
19 – 30	24.5	10	245	6002.5
31 – 42	36.5	13	474.5	17319.25
43 – 54	48.5	8	388	18818
55 – 66	60.5	5	302.5	18301.25
67 – 78	72.5	6	435	31537.5
79 – 90	84.5	2	169	14280.5
	SUM =	50	2089	107196.5

Std. Dev. = 19.959

Skewness

- Measurement of degree of asymmetry.
- +vely skewed : A.M. > Median > Mode
- -vely skewed : A.M. < Median < Mode
- Karl Pearson's coefficient of skewness

$$\frac{A.M.-Mode}{\sigma} or = \frac{3(A.M.-Median)}{\sigma}$$

- This value of skewness lies between -3 to +3
- For asymmetric curve, empirical relationship:
- A.M.- Mode = 3 (A.M. Median)

Measure of Skew

• *Skew* is a measure of symmetry in the distribution of scores

Class	Midpoint, x	Frequency, f	Cumulative frequency	
7 – 18	12.5	6	6	
19 – 30	24.5	10	16	
31 – 42	36.5	13	29	
43 – 54	48.5	8	37	
55 – 66	60.5	5	42	
67 – 78	72.5	6	48	
79 – 90	84.5	2	50	
	SUM =	50		

Median Class: 30.5 – 42.5

Md = 30.5 + (25-16)*12/13 = 38.806

Skewness = 3(41.8 - 38.806)/19.959 = 0.45

Concept of Moment

 For representation of all statistical properties of a data set, rth moment of about mean

$$\mu_r = \frac{\sum (x_i - \overline{x})^r}{n}$$

 1^{st} moment $\mu_1 = 0$

1st moment about origin = \bar{x} \rightarrow Mean

2nd moment =
$$\mu_2 = \frac{\sum (x_i - \bar{x})^2}{n}$$
 \rightarrow Variance

3rd moment =
$$\mu_3 = \frac{\sum (x_i - \bar{x})^3}{n}$$
 \rightarrow Degree of skewness $\mu_3 = 0$

for symmetric curve

4th moment =
$$\mu_4 = \frac{\sum (x_i - \bar{x})^4}{n}$$
 \rightarrow Kurtosis

Kurtosis

- Kurtosis measures whether the scores are spread out more or less than they would be in a normal (Gaussian) distribution
- Kurtosis = $\mu_4 / (\mu_2)^2$

Leptokurtic (> 3)

Platykurtic (<3)

Xi	μ1	μ2	μ3	μ4	30	-11.96	143.0416	-1710.78	20460.8993
50	8.04	64.6416	519.7185	4178.53645	80	38.04	1447.042	55045.46	2093929.39
40	-1.96	3.8416	-7.52954	14.7578906	56	14.04	197.1216	2767.587	38856.9252
41	-0.96	0.9216	-0.88474	0.84934656	29	-12.96	167.9616	-2176.78	28211.0991
17	-24.96	623.0016	-15550.1	388130.994	33	-8.96	80.2816	-719.323	6445.1353
11	-30.96	958.5216	-29675.8	918763.658	46	4.04	16.3216	65.93926	266.394627
7	-34.96	1222.202	-42728.2	1493776.75	31	-10.96	120.1216	-1316.53	14429.1988
22	-19.96	398.4016	-7952.1	158723.835	39	-2.96	8.7616	-25.9343	76.7656346
44	2.04	4.1616	8.489664	17.3189146	20	-21.96	482.2416	-10590	232556.961
28	-13.96	194.8816	-2720.55	37978.838	18	-23.96	574.0816	-13755	329569.683
21	-20.96	439.3216	-9208.18	193003.468	29	-12.96	167.9616	-2176.78	28211.0991
19	-22.96	527.1616	-12103.6	277899.353	34	-7.96	63.3616	-504.358	4014.69235
23	-18.96	359.4816	-6815.77	129227.021	59	17.04	290.3616	4947.762	84309.8588
37	-4.96	24.6016	-122.024	605.238723	73	31.04	963.4816	29906.47	928296.794
51	9.04	81.7216	738.7633	6678.41991	77	35.04	1227.802	43022.17	1507496.77
54	12.04	144.9616	1745.338	21013.8655	36	-5.96	35.5216	-211.709	1261.78407
42	0.04	0.0016	6.4E-05	2.56E-06	39	-2.96	8.7616	-25.9343	76.7656346
86	44.04	1939.522	85416.53	3761744.04	30	-11.96	143.0416	-1710.78	20460.8993
41	-0.96	0.9216	-0.88474	0.84934656	62	20.04	401.6016	8048.096	161283.845
78	36.04	1298.882	46811.69	1687093.41	54	12.04	144.9616	1745.338	21013.8655
56	14.04	197.1216	2767.587	38856.9252	67	25.04	627.0016	15700.12	393131.006
72	30.04	902.4016	27108.14	814328.648	39	-2.96	8.7616	-25.9343	76.7656346
56	14.04	197.1216	2767.587	38856.9252	31	-10.96	120.1216	-1316.53	14429.1988
17	-24.96	623.0016	-15550.1	388130.994	53	11.04	121.8816	1345.573	14855.1244
7	-34.96	1222.202	-42728.2	1493776.75	44	2.04	4.1616	8.489664	17.3189146
69	27.04	731.1616	19770.61	534597.285		0.0	394.5	2576.5	366622.7

μ1	μ2	μ3	μ4
0	394.5	2576.5	366622.7

Kurtosis =
$$\mu_4 / (\mu_2)^2$$

= 366622.7 / (394.5 × 394.5)
= 2.36

The peakedness of the distribution is slightly below the normal distribution curve (< 3)