Dimensionality Reduction: SVD & CUR

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Reducing Matrix Dimension

- Often, our data can be represented by an m-by-n matrix
- And this matrix can be closely approximated by the product of three matrices that share a small common dimension r

- Compress / reduce dimensionality:
 - 10⁶ rows; 10³ columns; no updates
 - Random access to any cell(s); small error: OK

$_{ m day}$	We	${ m Th}$	\mathbf{Fr}	$\mathbf{S}\mathbf{a}$	$\mathbf{S}\mathbf{u}$	New
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96	representation
ABC Inc.	1	1	1	0	0	[1 0]
DEF Ltd.	2	2	2	0	0	[2 0]
GHI Inc.	1	1	1	0	0	[1 0]
KLM Co.	5	5	5	0	0	[5 0]
${f Smith}$	0	0	0	2	2	[0 2]
${f Johnson}$	0	0	0	3	3	[0 3]
Thompson	0	0	0	1	1	[0 1]

Note: The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

There are hidden, or latent factors, latent dimensions that – to a close approximation – explain why the values are as they appear in the data matrix

The axes of these dimensions can be chosen by:

- The first dimension is the direction in which the points exhibit the greatest variance
- The second dimension is the direction, orthogonal to the first, in which points show the 2nd greatest variance
- And so on..., until you have enough dimensions that variance is really low

Rank is "Dimensionality"

- Q: What is rank of a matrix A?
- A: Number of linearly independent rows of A
- Cloud of points 3D space:

1 row per point: $\begin{vmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{vmatrix}$ C

- We can rewrite coordinates more efficiently!
 - Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
 - New basis vectors: [1 2 1] [-2 -3 1]
 - Then A has new coordinates: [1 0], B: [0 1], C: [1 -1]
 - Notice: We reduced the number of dimensions/coordinates!

 Goal of dimensionality reduction is to discover the axes of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of **error** as the points do not exactly lie on the line

SVD: Singular Value Decomposition

Reducing Matrix Dimension

Gives a decomposition of any matrix into a product of three matrices:

- There are strong constraints on the form of each of these matrices
 - Results in a unique decomposition
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the reconstruction error

SVD – Definition

$$\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i} \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^\mathsf{T}$$

$$\mathbf{A} \approx \mathbf{M} \mathbf{A} \approx \mathbf{M} \mathbf{V}^\mathsf{T}$$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U: Left singular vectors
 - $\underline{}$ m x r matrix (m documents, r concepts)
- Σ : Singular values
 - r x r diagonal matrix (strength of each 'concept')(r: rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts) Jure Leskovec, Stanford CS246: Mining Massive Datasets

SVD

$$\mathbf{A} pprox \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^{\mathsf{T}}$$

If we set $\sigma_2 = 0$, then the green columns may as well not exist.

 σ_i ... scalar u_i ... vector

v_i ... vector

SVD – Properties

It is **always** possible to decompose a real matrix \boldsymbol{A} into $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}$, where

- **U**, Σ, **V**: unique
- U, V: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- Σ: diagonal
 - Entries (singular values) are positive, and sorted in decreasing order $(\sigma_1 \ge \sigma_2 \ge ... \ge 0)$

Nice proof of uniqueness: http://www.mpi-inf.mpg.de/~bast/ir-seminar-ws04/lecture2.pdf

Consider a matrix. What does SVD do?

- $A = U \Sigma V^T$ - example: Users to Movies

■ A = U Σ V^T - example: Users to Movies

-0.02 0.12 -0.69 -0.69

-0.80 0.40

• $A = U \Sigma V^T$ - example:

U is "user-to-concept" factor matrix

X

• $A = U \Sigma V^T$ - example:

"strength" of the SciFi-concept

Movies, users and concepts:

- U: user-to-concept matrix
- V: movie-to-concept matrix
- Σ: its diagonal elements: 'strength' of each concept

Dimensionality Reduction with SVD

Movie 1 rating

- Instead of using two coordinates (x, y) to describe point locations, let's use only one coordinate
- Point's position is its location along vector $oldsymbol{v_1}$

• $A = U \Sigma V^T$ - example:

- V: "movie-to-concept" matrix
- U: "user-to-concept" matrix

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix}$$

variance ('spread') on the v₁ axis

1	1	1	0	0
3	3	3	0	0
4	4	4	0	0
5	5	5	0	0
0	2	0	4	4
0	0	0	5	5
0	1	0	2	2

$A = U \Sigma V^{T}$ - example:

 U Σ: Gives the coordinates of the points in the projection axis

1	1	1	0	0
3	3	3	0	0
4	4	4	0	0
5	5	5	0	0
0	2	0	4	4
0	0	0	5	5
0	1	0	2	2

Projection of users on the "Sci-Fi" axis $U\Sigma$:

1.61	0.19	-0.01
5.08	0.66	-0.03
6.82	0.85	-0.05
8.43	1.04	-0.06
1.86	-5.60	0.84
0.86	-6.93	-0.87
0.86	-2.75	0.41

More details

Q: How is dim. reduction done?

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix}$$

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.13 & 0.02 \\ 0.41 & 0.07 \\ 0.55 & 0.09 \\ 0.68 & 0.11 \\ 0.15 & -0.59 \\ 0.07 & -0.73 \\ 0.07 & -0.29 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5$$

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate

the approximation

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

0.92	0.95	0.92	0.01	0.01
2.91	3.01	2.91	-0.01	-0.01
3.90	4.04	3.90	0.01	0.01
4.82	5.00	4.82	0.03	0.03
0.70	0.53	0.70	4.11	4.11
-0.69	1.34	-0.69	4.78	4.78
0.32	0.23	0.32	2.01	2.01

Reconstructed data matrix B

Reconstruction Error is quantified by the Frobenius norm:

$$\|\mathbf{M}\|_{\mathrm{F}} = \sqrt{\Sigma_{ij} \ \mathbf{M}_{ij}}^2$$

$$\|\mathbf{A} - \mathbf{B}\|_{F} = \sqrt{\Sigma_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}}$$
is "small"

SVD – Best Low Rank Approx.

- Fact: SVD gives 'best' axis to project on:
 - 'best' = minimizing the sum of reconstruction errors

B is best approximation of **A**:

9/26/19

Jure Leskovec, Stanford CS246: Mining Massive Datasets

SVD – Conclusions so far

- SVD: $A = U \Sigma V^T$: unique
 - U: user-to-concept factors
 - V: movie-to-concept factors
 - ullet Σ : strength of each concept
- Q: So what's a good value for r?
- Let the energy of a set of singular values be the sum of their squares.
- Pick r so the retained singular values have at least 90% of the total energy.
- Back to our example:
 - With singular values 12.4, 9.5, and 1.3, total energy = 245.7
 - If we drop 1.3, whose square is only 1.7, we are left with energy 244, or over 99% of the total

How to Compute SVD

Finding Eigenpairs

- How do we actually compute SVD?
- First we need a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix
 - lacksquare M is symmetric if $m_{ij} = m_{ji}$ for all i and j
- Method:
 - Start with any "guess eigenvector" x₀
 - Construct $x_{k+1} = \frac{Mx_k}{||Mx_k||}$ for k = 0, 1, ...
 - | | ... | | denotes the Frobenius norm
 - Stop when consecutive x_k show little change

Example: Iterative Eigenvector

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{\mathbf{M}\mathbf{x}_0}{||\mathbf{M}\mathbf{x}_0||} = \begin{bmatrix} 3\\5 \end{bmatrix} / \sqrt{34} = \begin{bmatrix} 0.51\\0.86 \end{bmatrix} = \mathbf{x}_1$$

$$\frac{\mathbf{M}\mathbf{x}_1}{||\mathbf{M}\mathbf{x}_1||} = \begin{bmatrix} 2.23 \\ 3.60 \end{bmatrix} / \sqrt{17.9}3 = \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} = \mathbf{x}_2$$

.

Finding the Principal Eigenvalue

- Once you have the principal eigenvector x, you find its eigenvalue λ by $\lambda = x^T M x$.
 - In proof: We know $x\lambda = Mx$ if λ is the eigenvalue; multiply both sides by x^T on the left.
 - Since $\mathbf{x}^T\mathbf{x} = 1$ we have $\lambda = \mathbf{x}^TM\mathbf{x}$
- **Example:** If we take $\mathbf{x}^T = [0.53, 0.85]$, then

$$\lambda = [0.53 \, 0.85] \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} = 4.25$$

Finding More Eigenpairs

• Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and x:

$$M^*$$
: = $M - \lambda x x^T$

Recursively find the principal eigenpair for M^* ,
 eliminate the effect of that pair, and so on

Example:

$$M* = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} -4.25 \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} [0.53 \ 0.85] = \begin{bmatrix} -0.19 \ 0.09 \\ 0.09 \ 0.07 \end{bmatrix}$$

How to Compute the SVD

- Start by supposing $A = U \Sigma V^T$
- $A^T = (U\Sigma V^T)^T = (V^T)^T \Sigma^T U^T = V\Sigma U^T$
 - Why? (1) Rule for transpose of a product; (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity functions
- $A^TA = V \Sigma U^T U \Sigma V^T = V \Sigma^2 V^T$
 - Why? U is orthonormal, so U^TU is an identity matrix
 - Also note that Σ^2 is a diagonal matrix whose *i*-th element is the square of the *i*-th element of Σ
- $A^TAV = V\Sigma^2V^TV = V\Sigma^2$
 - Why? V is also orthonormal

Computing the SVD –(2)

- Starting with $(A^TA)V = V\Sigma^2$
 - Note that therefore the i-th column of V is an eigenvector of A^TA , and its eigenvalue is the i-th element of Σ^2
- Thus, we can find V and Σ by finding the eigenpairs for A^TA
 - Once we have the eigenvalues in Σ^2 , we can find the singular values by taking the square root of these eigenvalues
- Symmetric argument, AA^T gives us U

SVD – Complexity

- To compute the full SVD using specialized methods:
 - O(nm²) or O(n²m) (whichever is less)
- But:
 - Less work, if we just want singular values
 - or if we want the first k singular vectors
 - or if the matrix is sparse
- Implemented in linear algebra packages like
 - LINPACK, Matlab, SPlus, Mathematica ...

Example of SVD

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space:

Inner product with each 'concept' vector **v**_i

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space: Inner product with each

'concept' vector **v**i

Compactly, we have:

$$q_{concept} = q V$$

E.g.:

SciFi-concept
$$= \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$

How would the user d that rated ('Alien', 'Serenity') be handled?

$$d_{concept} = d V$$

E.g.:

SciFi-concept
$$= \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$

Observation: User d that rated ('Alien', 'Serenity') will be similar to user q that rated ('Matrix'), although d and q have zero ratings in common!

$$\mathbf{d} = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{SciFi-concept}} \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Similarity}} \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$
Zero ratings in common

SVD: Drawbacks

- Optimal low-rank approximation in terms of Frobenius norm
- Interpretability problem:
 - A singular vector specifies a linear combination of all input columns or rows
- Lack of sparsity:
 - Singular vectors are dense!

CUR Decomposition

Sparsity

- It is common for the matrix A that we wish to decompose to be very sparse
- But *U* and *V* from a SVD decomposition will not be sparse
- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of A

CUR Decomposition

Frobenius norm:
$$\|X\|_F = \sqrt{\Sigma_{ij} \ X_{ij}^{}^2}$$

- Goal: Express A as a product of matrices C, U, R Make $\|A C \cdot U \cdot R\|_F$ small
- "Constraints" on C and R:

CUR Decomposition

Frobenius norm:
$$\|X\|_F = \sqrt{\Sigma_{ij} \ X_{ij}^{}^2}$$

- Goal: Express A as a product of matrices C, U, RMake $||A - C \cdot U \cdot R||_F$ small
- "Constraints" on C and R:

Computing U

- Let W be the "intersection" of sampled
 - columns C and rows R
- Def: W⁺ is the pseudoinverse
 - Let SVD of $W = XZY^T$
 - Then: $W^+ = Y Z^+ X^T$
 - Z⁺: reciprocals of non-zero singular values: Z⁺_{ii} =1/Z_{ii}

Why the intersection? These are high magnitude numbers Why pseudoinverse works?

$$W = XZY^{T}$$
 then $W^{-1} = (Y^{T})^{-1}Z^{-1}X^{-1}$

Due to orthonormality:
$$X^{-1} = X^T$$
, $Y^{-1} = Y^T$

Since Z is diagonal
$$Z^{-1} = 1/Z_{ii}$$

Thus, if W is nonsingular, pseudoinverse is the true inverse

Which Rows and Columns?

- To decrease the expected error between A and its decomposition, we must pick rows and columns in a nonuniform manner
- The importance of a row or column of A is the square of its Frobenius norm
 - That is, the sum of the squares of its elements.
- When picking rows and columns, the probabilities must be proportional to importance
- Example: [3,4,5] has importance 50, and [3,0,1] has importance 10, so pick the first 5 times as often as the second

CUR: Row Sampling Algorithm

Sampling columns (similarly for rows):

Input: matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample size c

Output: $\mathbf{C}_d \in \mathbb{R}^{m \times c}$

- 1. for x = 1 : n [column distribution]
- 2. $P(x) = \sum_{i} \mathbf{A}(i, x)^{2} / \sum_{i,j} \mathbf{A}(i, j)^{2}$
- 3. for i = 1 : c [sample columns]
- 4. Pick $j \in 1 : n$ based on distribution P(x)
- 5. Compute $\mathbf{C}_d(:,i) = \mathbf{A}(:,j)/\sqrt{cP(j)}$

Note this is a randomized algorithm, same column can be sampled more than once

Intuition

- Rough and imprecise intuition behind CUR
 - CUR is more likely to pick points away from the origin
 - Assuming smooth data with no outliers these are the directions of maximum variation
- Example: Assume we have 2 clouds at an angle
 - SVD dimensions are orthogonal and thus will be in the middle of the two clouds
 - CUR will find the two clouds (but will be redundant)

CUR: Provably good approx. to SVD

For example:

- Select $c = O\left(\frac{k \log k}{c^2}\right)$ columns of A using ColumnSelect algorithm (slide 56)
- Select $r = O\left(\frac{k \log k}{c^2}\right)$ rows of A using RowSelect algorithm (slide 56)

• Set
$$U = W^+_{CLIP orror}$$
 SVD erro

• Set
$$U = W^+_{\text{CUR error}}$$
 SVD error
• Then: $||A - CUR||_F \le (2 + \varepsilon) ||A - A_K||_F$

with probability 98%

In practice:

Pick 4k cols/rows for a "rank-k" approximation

CUR: Pros & Cons

Easy interpretation

Since the basis vectors are actual columns and rows

+ Sparse basis

Since the basis vectors are actual columns and rows

Duplicate columns and rows

 Columns of large norms will be sampled many times

SVD vs. CUR

SVD:
$$A = U \sum V^T$$
Huge but sparse Big and dense

SVD vs. CUR: Simple Experiment

DBLP bibliographic data

- Author-to-conference big sparse matrix
- A_{ij}: Number of papers published by author *i* at conference *j*
- 428K authors (rows), 3659 conferences (columns)
 - Very sparse

Want to reduce dimensionality

- How much time does it take?
- What is the reconstruction error?
- How much space do we need?

Results: DBLP- big sparse matrix

Accuracy:

1 – relative sum squared errors

Space ratio:

#output matrix entries / #input matrix entries

CPU time

Sun, Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM '07.