Dosimetria

Dosimetria de Referência

Dalila Mendonça

1. Introdução

A finalidade da dosimetria é determinar a dose absoluta entregue. O principal instrumento utilizado para este fim são as câmaras de ionização e a dose absorvida é dada pela medida da ionização no meio que é convertida para a dose absorvida por meio de um fator de calibração fornecido por um laboratório de calibração credenciado.

O fator de calibração pode ser dado diretamente em termos da dose absorvida na água para feixes de MV ou em termos do Kerma no ar, para fótons kV e fontes de braquiterapia.

O padrão para a dose absorvida é definido pelo Laboratório Padrão Primário, que fornece o fator de calibração para o laboratório padrão secundário (laboratório credenciado) que é então responsável por fornecer o fator de calibração para o usuário final.

O padrão é que os laboratórios façam a calibração para uma qualidade de feixe do ⁶⁰Co, embora alguns laboratórios (o que não é o caso do Brasil) possuem outras qualidades disponíveis, sendo possível fornecer o fator de calibração para diferentes qualidades de feixe.

Para fatores de calibração determinados para qualidades de feixes diferente da qualidade que está sendo calibrada, é necessário aplicar um fator de correção para adequar o fator de calibração para a qualidade de interesse.

2. Definições

- □ Laboratório de Dosimetria Padrão Primário: Um laboratório nacional de padronização designado pelo governo com a finalidade de desenvolver, manter e melhorar os padrões primários em dosimetria de radiação. Exemplo:Physikalisch-Technische Bundesanstalt (PTB) Alemanha, National Institute of Standards and Technology (NIST) Estados Unidos.
- □ Laboratório de Dosimetria Padrão Secundário: Um laboratório de dosimetria designado pelas autoridades competentes para prestar serviços de calibração e que esteja equipado com pelo menos um padrão secundário que tenha sido calibrado por comparação com um padrão primário. A conexão entre os Laboratórios padrão secundário e os laboratórios padrão primário é intermediada pela IAEA, que é responsável pelo credenciamento dos laboratórios padrão secundário. Exemplo: No Brasil, o Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI), localizado no IRD-CNEN, é o laboratório padrão secundário responsável pela metrologia das radiações ionizantes e pela realização das calibrações primárias em dosimetria. O LNMRI é vinculado ao Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro) e é reconhecido pela IAEA.
- □ Instrumento Padrão Primário: Instrumento da mais alta qualidade metrológica que permite determinar a unidade de uma grandeza a partir de sua definição, cuja exatidão foi verificada por comparação com os padrões comparáveis de outras instituições do mesmo nível. Exemplo: Câmaras de ar-livre, calorímetros e Fricke (dosímetro químico).

- Instrumento Padrão Secundário: Um instrumento calibrado por comparação com um padrão primário. Exemplo: câmaras de ionização padrão-secundário pertencentes aos laboratórios padrão secundário, utilizadas para determinar os fatores de calibração das câmaras de ionização de referência do usuário através de inter-comparação.
- □ Instrumento de referência: Instrumento calibrado por um laboratório padrão e utilizado para a calibração do feixe do usuário. É o instrumento da mais alta qualidade metrológica disponível em uma determinada instituição, a partir do qual as medidas naquela instituição são derivadas. Exemplo: câmaras de ionização de referência e câmaras poço.
- □ Instrumento de campo: Instrumento calibrado via calibração cruzada com um instrumento de referência e normalmente utilizado em medidas rotineiras. Exemplo: Matriz de detectores utilizadas no QA diário; Câmaras pin-point e CC13 utilizadas na dosimetria de campos pequenos e câmaras de placas paralelas.

3. Formalismo do $N_{D,w}$

3.1 Formalismo

A dose absorvida na água em uma profundidade z_{ref} na água para um feixe de referência com qualidade Q_0 e na ausência da câmara é dado por:

$$D_{w,Q_0} = M_{Q_0} N_{D,w,Q_0}$$
 (Eq. 1)

onde:

- $\star \ D_{w,Q_0}$ é a dose absorvida na água na profundidade de referência;
- ★ M_{Q0} é a leitura do dosímetro sob as condições de referência utilizadas nos laboratórios credenciados;
- ★ N_{D,w,Q₀} é o fator de calibração do dosímetro em termos da dose absorvida na água fornecido pelo laboratório padrão.

As medidas deverão ser realizadas sob as mesmas condições de referência utilizadas durante a calibração, e aquelas que não são possíveis ser alcançadas, são chamadas de quantidades de influência, e precisam ser corrigidas por fatores de correção para adequar a leitura da câmara com o fator de calibração que será utilizado para determinar a dose absorvida na água.

Quando a câmara é utilizada para calibrar um feixe com uma qualidade diferente daquela que ele foi calibrado, é necessário corrigir a o fator de calibração para a qualidade do feixe no qual o dosímetro será utilizado. Este fator é chamado de Fator de Correção de Qualidade.

3.2 Fator de Correção para a Qualidade do Feixe

Quando um dosímetro é utilizado em uma qualidade de feixe Q diferente daquela utilizada para determinar o fator de calibração Q_0 , a dose absorvida na água é dada por:

$$D_{w,Q} = M_Q N_{D,w,Q_0} k_{Q,Q_0}$$
 (Eq. 2)

onde:

 \star $\mathbf{k}_{\mathbf{Q},\mathbf{Q}_0}$ é o fator que corrige os efeitos da diferença entre a qualidade do feixe de referência Q_0 e a qualidade do feixe sendo calibrado pelo usuário Q; e

★ M_Q é a leitura do dosímetro para a qualidade Q corrigida pelos valores de referência das quantidades de influência, como pressão, temperatura, polaridade, recombinação iônica e humidade;

O fator de calibração da qualidade k_{Q,Q_0} é definido como a razão do fator de calibração para a qualidade Q a ser calibrada pelo fator de calibração para a qualidade de referência, ou seja:

$$k_{Q,Q_0} = \frac{N_{D,w,Q}}{N_{D,w,Q_0}} = \frac{D_{w,Q}/M_Q}{D_{w,Q_0}/M_{Q_0}}$$
 (Eq. 3)

Quando o feixe de referência é o 60 Co, $k_{Q,Q_0} = k_Q$ para fins de simplificação. O ideal é que o fator de qualidade do feixe fosse medido para cada câmara, para cada qualidade de feixe utilizada pelo usuário. Porém seria necessário que o laboratório tivesse acesso às qualidades do feixe apropriada e portanto é restrito a apenas alguns laboratórios padrão primário.

Caso não houver dados experimentais disponíveis ou caso não seja possível medir diretamente o k_{Q,Q_0} , ele pode ser determinado teoricamente através da aplicação da teoria cavitária de Bragg-Gray, de modo que:

$$K_{Q,Q_0} = \frac{(s_{w,ar})_Q}{(s_{w,ar})_{Q_0}} \frac{(W_{ar})_Q}{(W_{ar})_{Q_0}} \frac{p_Q}{p_{Q_0}}$$
 (Eq. 4)

onde

- \star $s_{w,ar}$ é a razão entree poder de freamento de Spencer/Attix (restrito) da água e do ar para as qualidades Q e Q_0 ;
- \star W_{ar} é a energia média para formar um par de íons no ar para a qualidades Q e Q_0 ;
- * p considera todos os fatores de perturbação que consideram todos os desvios para as condições ideais da cavidade de Bragg-gray (parede, eletrodo, cavidade, etc...);

Esta é valida para todos tipos de feixes de alta energia. Em feixes terapeuticos de fótons e elétrons pode-se assumir que $(W_{ar})_Q = (W_{ar})_{Q_0}$ de modo que :

$$K_{Q,Q_0} \approx \frac{(s_{w,ar})_Q}{(s_{w,ar})_{Q_0}} \frac{p_Q}{p_{Q_0}}$$
 (Eq. 5)

Os únicos fatores que são específicos da câmara são os fatores de correção de perturbação. o TRS-398 fornece os valores do produto $(s_{w,ar})_{Q_0} \cdot p_{Q_0}$ para diversas câmaras cilíndricas em seu apendice B.

Em casos de feixes de baixa e média energia, a Eq. 4 não pode ser utilizada porque essas energias não se aplicam às condições da teoria de Bragg-Gray além da respostas das câmaras variarem de uma para a outra nessas energias; Portanto, nesse caso, o formalismo do TRS-398 é baseado exclusivamente nas medidas diretas do $N_{D,w,Q}$ ou do K_{Q,Q_0} .

3.3 K_{O,O_0} para Calibração Cruzada de feixes de elétrons

Para dosímetros que serão utilizados para dosimetria de feixe de elétrons, existem três possibilidades para sua calibração:

- 1. Para dosímetros utilizados em feixes de elétrons que foram calibrados na qualidade do feixe de 60 Co, o fator K_{Q,Q_0} é dado pela Eq. 4.
- 2. Determinar o fator de calibração da câmara diretamente no feixe de elétrons, o que é limitado devido à disponibilidade em oferecer essas calibrações. Caso possível, uma opção seria fornecer o K_{Q,Q_0} para as diferentes qualidades de feixes de elétrons utilizadas pelo usuário;

3. Realizar a calibração cruzada de uma câmara de placas paralelas em comparação com uma câmara de ionização cilíndrica calibrada em um feixe de elétrons de alta energia com qualidade *Qcross*.

O fator $K_{Q,Q_{cross}}$ determinado para a câmara de placas paralelas irá permitir o uso da câmara de para um feixe de elétrons com qualidade Q, porém a determinação do $K_{Q,Q_{cross}}$ não é trivial porque a qualidade de calibração cruzada Qcross não é única e, portanto, para cada tipo de câmara, será necessária uma tabela bidimensional de fatores $K_{Q,Q_{cross}}$.

Porém, é possível apresentar os dados necessários em uma única tabela, introduzindo uma qualidade arbitrária de feixe de elétrons (Q_{int}) que atua como uma qualidade intermediária entre a qualidade de calibração cruzada (Qcross) e a qualidade do usuário (Q). Q_{int} é apenas uma ferramenta para apresentação dos dados e nenhuma medida em Q_{int} precisa ser realizada.

O fator $K_{Q,Q_{cross}}$ é determinado como a razão entre os fatores $K_{Q,Q_{int}}$ e $K_{Q_{cross},Q_{int}}$, ou seja:

$$k_{Q,Q_{cross}} = \frac{K_{Q,Q_{int}}}{K_{Q_{cross},Q_{int}}}$$
 (Eq. 6)

O fator $(K_{Q_{cross},Q_{int}})^{-1}$ corrige o fator de calibração da câmara atual $N_{D,w,Q_{cross}}$ em um fator de calibração que se aplica a qualidade intermediária Q_{int} e o fator $K_{Q,Q_{int}}$ corrige o fator de calibração para a qualidade intermediária para o fator de calibração para a qualidade Q e então a Eq. 2 pode ser aplicada para determinar a dose na água.

Aplicando a Eq. 5 em $K_{Q_{cross},Q_{int}}$ e $K_{Q,Q_{int}}$, a razão entre os fatores de perturbação e entre os poderes de freamento para Q_{int} na Eq. 6 irão se cancelar e portanto, Q_{int} pode ser escolhida de forma arbitrária. O TRS-398 adota para Q_{int} a qualidade $R_{50} = 7.5 \ g \ cm^{-2}$, onde R_{50} é o índice de qualidade para feixe de elétrons. Os valores para $K_{Q_{cross},Q_{int}}$ e para $K_{Q,Q_{int}}$ com base nessa qualidade intermediária são podem ser encontrados na tabela 7.IV (Fig. 2) do TRS-398. Os valores de K_Q para feixes de elétrons para as câmaras de ionização calibradas em feixes de 60 Co são obtidos na tabela 7.III (Fig. 1).

TABLE 7.III. CALCULATED VALUES FOR $k_{\mathcal{Q}}$ FOR ELECTRON BEAMS, FOR VARIOUS CHAMBER TYPES CALIBRATED IN ⁶⁰Co GAMMA RADIATION, AS A FUNCTION OF BEAM QUALITY R_{50}

							Beam ou	ality R	(g cm-2)							
1.0	1.4	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	7.0	8.0	10.0	13.0	16.0	20.0
	\$2 V		(a)		20	X	30		36		16	8		S C		ÑA
0.953	0.943	0.932	0.925	0.919	0.913	0.908	0.904	0.900	0.896	0.893	0.886	0.881	0.871	0.859	0.849	0.837
-	-	0.921	0.920	0.919	0.918	0.917	0.916	0.915	0.913	0.912	0.908	0.905	0.898	0.887	0.877	0.866
0.958	0.948	0.937	0.930	0.923	0.918	0.913	0.908	0.904	0.901	0.897	0.891	0.885	0.875	0.863	0.853	0.841
0.971	0.961	0.950	0.942	0.936	0.931	0.926	0.921	0.917	0.913	0.910	0.903	0.897	0.887	0.875	0.865	0.853
0.952	0.942	0.931	0.924	0.918	0.912	0.908	0.903	0.899	0.895	0.892	0.886	0.880	0.870	0.858	0.848	0.836
-	-	0.925	0.920	0.916	0.913	0.910	0.907	0.904	0.901	0.899	0.894	0.889	0.881	0.870	0.860	0.849
0.965	0.955	0.944	0.937	0.931	0.925	0.920	0.916	0.912	0.908	0.904	0.898	0.892	0.882	0.870	0.860	0.848
-	2	0.40	2	-	2	0.916	0.914	0.912	0.911	0.909	0.906	0.904	0.899	0.891	0.884	0.874
-	2	-	-	-	-	0.914	0.913	0.913	0.913	0.912	0.911	0.910	0.908	0.903	0.897	0.888
1070	-	1.70	-		-	0.882	0.881	0.881	0.881	0.880	0.879	0.878	0.876	0.871	0.865	0.857
-	~	-	-	-	-	0.921	0.919	0.918	0.916	0.914	0.911	0.909	0.903	0.896	0.888	0.878
-	2	0.20	2	2	2	0.918	0.916	0.915	0.913	0.911	0.909	0.906	0.901	0.893	0.886	0.876
-	-	-	-	-	-	0.899	0.898	0.896	0.894	0.893	0.890	0.888	0.882	0.875	0.868	0.859
(-)	-	(-)	-	-	-	0.911	0.909	0.907	0.905	0.904	0.901	0.898	0.893	0.885	0.877	0.868
-	-	-	-	-	-	0.916	0.914	0.912	0.910	0.909	0.906	0.903	0.897	0.890	0.882	0.873
S42	2	-	-	A-2	4	0.920	0.918	0.916	0.915	0.913	0.910	0.907	0.902	0.894	0.887	0.877
-	_	-	2	-	2	0.911	0.909	0.907	0.906	0.904	0.901	0.898	0.893	0.885	0.878	0.868
						0.912	0.910	0.908	0.906	0.905	0.901	0.898	0.893	0.885	0.877	0.867
-	-	-	-	-	-	0.928	0.924	0.921	0.918	0.915	0.910	0.905	0.896	0.885	0.876	0.865
						0.000								0.000	0.876	0.865
	0.953 0.958 0.971 0.952 	0.953	0.953	0.953	0.953	0.953 0.943 0.932 0.925 0.919 0.913 -	1.0 1.4 2.0 2.5 3.0 3.5 4.0 0.953 0.943 0.932 0.925 0.919 0.913 0.908 - - 0.921 0.920 0.919 0.918 0.917 0.958 0.948 0.937 0.930 0.923 0.918 0.913 0.952 0.942 0.931 0.924 0.931 0.926 0.931 0.926 0.952 0.942 0.931 0.924 0.918 0.912 0.908 - - 0.925 0.920 0.916 0.913 0.910 0.965 0.955 0.944 0.937 0.931 0.925 0.920 - - - - - 0.916 0.913 0.910 - - - - - - 0.925 0.920 - - - - - - 0.916 0.912 - - -	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 0.953 0.943 0.932 0.925 0.919 0.913 0.908 0.904 0.958 0.948 0.937 0.930 0.923 0.918 0.917 0.916 0.971 0.961 0.950 0.942 0.936 0.931 0.926 0.921 0.952 0.942 0.931 0.924 0.931 0.926 0.903 0.952 0.942 0.931 0.912 0.908 0.903 - 0.925 0.924 0.931 0.912 0.908 0.903 - 0.925 0.924 0.931 0.912 0.908 0.903 - 0.955 0.944 0.937 0.931 0.925 0.920 0.916 - - - - - - 0.914 0.913 - - - - - 0.916 0.914	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.953 0.943 0.932 0.925 0.919 0.918 0.917 0.916 0.901 0.958 0.948 0.937 0.930 0.923 0.918 0.917 0.916 0.915 0.971 0.961 0.950 0.942 0.936 0.931 0.926 0.921 0.917 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.952 0.942 0.936 0.912 0.908 0.903 0.899 0.955 0.944 0.937 0.931 0.925 0.920 0.916 0.912 - - - - - 0.914 0.912 0.908 0.903 0.993 0.965 0.955 0.944 0.937 0.931 0.925 0.920 0.91	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.953 0.943 0.932 0.925 0.919 0.918 0.917 0.916 0.901 0.908 0.904 0.900 0.896 - - 0.921 0.920 0.919 0.918 0.917 0.916 0.915 0.913 0.908 0.904 0.901 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.913 0.926 0.921 0.917 0.918 0.912 0.908 0.903 0.899 0.895 0.895 0.924 0.937 0.931 0.925 0.920 0.916 0.912 0.918 0.912	0.953	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 0.953 0.943 0.932 0.925 0.919 0.918 0.917 0.916 0.915 0.913 0.928 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.948 0.913 0.920 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.904 0.901 0.913 0.912 0.908 0.904 0.901 0.913 0.912 0.908 0.903 0.904 0.901 0.897 0.891 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.907 0.904 0.901 0.896 0.886 - - 0.925 0.920 0.916 0.912 0.908 0.904 0.901 0.899 0.899 0.894 0.899 0.898 0.955 0.944 0.937 0	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 0.953 0.943 0.932 0.925 0.919 0.913 0.908 0.904 0.900 0.896 0.893 0.886 0.881 - - 0.921 0.920 0.919 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.905 0.958 0.948 0.937 0.930 0.923 0.918 0.913 0.908 0.904 0.901 0.897 0.891 0.885 0.971 0.961 0.950 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.913 0.910 0.917 0.913 0.910 0.907 0.904 0.901 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.890 0.899 0.895 0.894 0.898 0.892 0.880 0.880 0.8	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 10.0 0.953 0.943 0.932 0.925 0.919 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.886 0.881 0.871 - - 0.921 0.920 0.919 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.905 0.888 0.951 0.948 0.937 0.930 0.923 0.918 0.913 0.908 0.904 0.901 0.897 0.891 0.855 0.875 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.907 0.904 0.903 0.899 0.895 0.892 0.886 0.880 0.887 0.952 0.944 0.937 0.931 0.912 0.904 0.901 0.899 0.894 0.898 0.892 <td>1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 10.0 13.0 0.953 0.943 0.932 0.925 0.919 0.913 0.908 0.904 0.900 0.896 0.893 0.886 0.881 0.871 0.859 0.958 0.948 0.937 0.930 0.923 0.918 0.913 0.908 0.904 0.901 0.913 0.912 0.908 0.905 0.888 0.887 0.951 0.948 0.937 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.937 0.885 0.875 0.863 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.903 0.897 0.886 0.887 0.875 0.952 0.942 0.931 0.926 0.913 0.901 0.907 0.904 0.901 0.899 0.894 0</td> <td>1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 10.0 13.0 16.0 0.953 0.943 0.932 0.925 0.919 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.905 0.889 0.887 0.877 0.958 0.948 0.937 0.930 0.923 0.918 0.913 0.904 0.901 0.897 0.980 0.905 0.889 0.887 0.877 0.951 0.942 0.936 0.931 0.926 0.921 0.913 0.910 0.913 0.903 0.893 0.886 0.881 0.875 0.863 0.853 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.907 0.942 0.886 0.880 0.870 0.858 0.848 0.952 0.942 0.931 0.912 0.904 0.909 0.</td>	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 10.0 13.0 0.953 0.943 0.932 0.925 0.919 0.913 0.908 0.904 0.900 0.896 0.893 0.886 0.881 0.871 0.859 0.958 0.948 0.937 0.930 0.923 0.918 0.913 0.908 0.904 0.901 0.913 0.912 0.908 0.905 0.888 0.887 0.951 0.948 0.937 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.937 0.885 0.875 0.863 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.903 0.897 0.886 0.887 0.875 0.952 0.942 0.931 0.926 0.913 0.901 0.907 0.904 0.901 0.899 0.894 0	1.0 1.4 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 10.0 13.0 16.0 0.953 0.943 0.932 0.925 0.919 0.918 0.917 0.916 0.915 0.913 0.912 0.908 0.905 0.889 0.887 0.877 0.958 0.948 0.937 0.930 0.923 0.918 0.913 0.904 0.901 0.897 0.980 0.905 0.889 0.887 0.877 0.951 0.942 0.936 0.931 0.926 0.921 0.913 0.910 0.913 0.903 0.893 0.886 0.881 0.875 0.863 0.853 0.952 0.942 0.936 0.931 0.926 0.921 0.917 0.913 0.910 0.907 0.942 0.886 0.880 0.870 0.858 0.848 0.952 0.942 0.931 0.912 0.904 0.909 0.

Figura 1: Valores calculados para o K_Q para as câmaras de ionização calibradas em feixes de 60 Co

4. Implementação

4.1 Fator de Calibração

Dependendo do Laboratório credenciado, o fator de calibração pode fornecido de quatro formas diferentes:

Ionization chamber type a								Beam qu	ality R50	(g cm ⁻²)							
	1.0	1.4	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	7.0	8.0	10.0	13.0	16.0	20.0
Plane-parallel chambers																	
Attix RMI 449	1.078	1.068	1.055	1.047	1.040	1.034	1.028	1.023	1.019	1.014	1.010	1.003	0.997	0.986	0.972	0.961	0.948
Capintec PS-033	_	-	1.016	1.015	1.014	1.013	1.012	1.010	1.009	1.007	1.006	1.002	0.998	0.990	0.978	0.968	0.955
Exradin P11	1.078	1.068	1.055	1.047	1.040	1.034	1.028	1.023	1.019	1.014	1.010	1.003	0.997	0.986	0.972	0.961	0.948
Holt (Memorial)	1.078	1.068	1.055	1.047	1.040	1.034	1.028	1.023	1.019	1.014	1.010	1.003	0.997	0.986	0.972	0.961	0.948
NACP / Calcam	1.078	1.068	1.055	1.047	1.040	1.034	1.028	1.023	1.019	1.014	1.010	1.003	0.997	0.986	0.972	0.961	0.948
Markus	-	-	1.038	1.032	1.028	1.024	1.020	1.017	1.014	1.011	1.008	1.003	0.997	0.988	0.976	0.965	0.952
Roos	1.078	1.068	1.055	1.047	1.040	1.034	1.028	1.023	1.019	1.014	1.010	1.003	0.997	0.986	0.972	0.961	0.948
Cylindrical chambers																	
Capintec PR06C (Farmer)	-	-	-	-	-	-	1.012	1.010	1.008	1.006	1.005	1.001	0.999	0.993	0.984	0.976	0.966
Exradin A2 (Spokas)	2	120	2	-	2	-	1.003	1.003	1.002	1.002	1.002	1.001	0.999	0.996	0.991	0.984	0.975
Exradin T2 (Spokas)	-	-	3	-	-	-	1.003	1.003	1.002	1.002	1.002	1.001	0.999	0.996	0.991	0.984	0.975
Exradin A12 (Farmer)	-	-	-	-	= 1	-	1.012	1.010	1.008	1.006	1.005	1.002	0.998	0.993	0.984	0.976	0.965
NE 2571 (Guarded Farmer)	-	-	-	-	-	-	1.012	1.010	1.008	1.006	1.005	1.001	0.999	0.993	0.984	0.976	0.966
NE 2581 (Robust Farmer)	2	120	2	-	20	-	1.012	1.010	1.008	1.006	1.005	1.001	0.999	0.993	0.984	0.976	0.966
PTW 30001/30010 (Farmer)	-	-	-	-	-	-	1.013	1.010	1.008	1.007	1.005	1.002	0.998	0.992	0.984	0.976	0.965
PTW 30002/30011 (Farmer)	-	-	-	-	=	-	1.013	1.010	1.008	1.007	1.005	1.002	0.998	0.992	0.984	0.976	0.965
PTW 30004/30012 (Farmer)	-	-	-	-	-	-	1.013	1.010	1.008	1.007	1.005	1.002	0.998	0.992	0.984	0.976	0.965
PTW 30006/30013 Farmer	-	-	-	-	-	-	1.013	1.010	1.008	1.007	1.005	1.002	0.998	0.992	0.984	0.976	0.965
PTW 31002/31003 (flexible)	-	-	-	-	-	-	1.014	1.011	1.009	1.007	1.005	1.002	0.998	0.992	0.983	0.974	0.964
PTW 31006 PinPoint	-	-	-	-	-	-	1.023	1.019	1.015	1.012	1.009	1.003	0.997	0.988	0.976	0.965	0.953
PTW 31014 PinPoint	-	-	-	-	-	- "	1.023	1.019	1.015	1.012	1.009	1.003	0.997	0.988	0.976	0.965	0.953

Figura 2: Valores calculados para o $K_{Q,Q_{int}}$ em função do $R_{50} = 7.5 \text{ g} \cdot \text{cm}^{-2}$

- Pode ser fornecido o N_{D,w,Q_0} para a qualidade de referência do 60 Co juntamente com o K_{Q,Q_0} caso o laboratório possua diferentes qualidades além da 60 , onde será possível fornecer o K_{Q,Q_0} específico para a câmara calibrada e para os feixes do usuário;
- Pode ser fornecido o $N_{D,w,Q}$ específico para cada qualidade do usuário caso o laboratório possua as qualidades requeridas na calibração do usuário;
- 3. Pode ser fornecido o N_{D,w,Q_0} para a qualidade de referência do 60 e o fator de calibração K_{Q,Q_0} pode ser determinado teoricamente para o tipo de câmara que será utilizada para outras qualidades de feixe; Este método ignora as variações de câmara para câmara em resposta com a energia de um determinado tipo de câmara, e os cálculos dependem das especificações da câmara fornecidas pelos fabricantes.
- 4. Pode ser fornecido o N_{D,w,Q_0} para a qualidade de referência do 60 e o fator de calibração K_{Q,Q_0} pode ser obtido por um valor genérico fornecido por laboratórios padrão, obtidos através de dados experimentais feitos com o mesmo modelo da câmara que será utilizada na dosimetria. Esta opção não leva em consideração possíveis variações de câmara para câmara dentro de um determinado tipo de câmara, além de ter apenas os valores para as principais câmara comercializadas.

4.2 Câmaras de Ionização

Câmaras Cilíndricas

► Feixes:

- ★ Feixes de Radioterapia de média energia acima de 80 kV e HVL de 2 mm de Alumínio;
- ★ ⁶⁰Co;
- ★ Fotons de Alta Energia;
- ★ Feixes de elétrons com energias acima de aproximadamente 10 MeV;
- ★ Feixes terapêuticos de prótons e ions pesados.
- ► Volume da cavidade: Entre 0.1 cm³ e 1.0 cm³;
- ▶ **Diâmetro interno:** \leq 7 mm;
- **Comprimento interno:** \leq 25 mm;

▶ Uso: a câmara deve ser alinhada de tal forma que a fluência de radiação seja aproximadamente uniforme ao longo da seção transversal da cavidade da câmara e, portanto o comprimento da cavidade define um limite do tamanho do campo mínimo no qual as medições podem ser feitas.

Câmaras de Placas Paralelas

► Feixes:

- ★ Feixes de elétrons de todas as energias;
- ★ Uso MANDATÓRIO para energias de elétrons abaixo de 10 MeV;
- ★ Dosimetria de referência de feixes de fótons de alta energia somente quando é fornecida uma calibração em termos da dose absorvida na água para a qualidade do feixe do usuário;
- * Feixes de prótons e íons pesados, principalmente para feixes com o SOBP estreito;
- ★ Pode ser utilizada para fótons de baixa energia, com certas diferenças em sua construção
- ▶ Ponto efetivo: É definido na superfície interna da janela de entrada da câmara, no seu centro.
- ► Raio da cavidade: ≤ 20 mm; (para reduzir a influência da não uniformidade radial do feixe)
- **Altura da cavidade:** ≤ 2 mm;
- ► Eletrodo Coletor: Deve estar cercado por um eletrôdo de guarda com largura maior que 1.5 vezes a altura da cavidade;
- ► Espessura da ;parede anterior: Deve ser de 0.1 g · cm⁻² ou 1 mm de PMMA;
- ▶ **obs:** é necessário que a cavidade de ar seja ventilada para que se equilibre rapidamente com a temperatura ambiente e a pressão do ar.

5. Qualidades de Feixe para Aplicação do TRS-398 e TG-51

As qualidades de feixes que são compatíveis para aplicação do protocolo TRS-398 são:

- □ Raios-x de baixa energia com potenciais geradores de até 100 kV e HVL de 3 mm Al (o limite inferior é determinado pela disponibilidade de padrões para dada energia);
- □ Raios X de média energia com potenciais geradores acima de 80 kV e HVL de 2 mm Al;
- □ Radiação gama ⁶⁰Co;
- \square Fótons de alta energia gerados por elétrons acelerados com energias no intervalo de 1 MeV a 50 MeV, com valores de $TPR_{20,10}$ entre 0.50 e 0.84;
- □ Elétrons no intervalo de energia 3 MeV a 50 MeV, com profundidade de "meio valor", R_{50} , entre 1 g cm^{-2} e 20 g cm^{-2} ;
- Prótons no intervalo de energia de 50 MeV a 250 MeV, com alcance prático, R_p , entre 0.25 g cm^{-2} e 25 g cm^{-2} ;
- □ Íons pesados com Z entre 2 (He) e 18 (Ar) tendo um alcance prático em água, R_p , de 2 g cm^{-2} a 30 g cm^{-2} (para íons de carbono isso corresponde a uma faixa de energia de 100 MeV/u a 450 MeV/u, onde u é a unidade de massa atômica).

Para o TG-51 podem ser aplicados as qualidades de fótons com energia nominal variando entre o ⁶⁰Co (média de 1.25 MeV) e 50 MV e para qualidades de elétrons com energia nominal variando entre 4 MeV e 50 MeV.

6. Dosimetria de Feixes de Fótons de Megavoltagem

Os principais protocolos utilizados para a determinação da dose absorvida na água são: AAPM TG-51 (Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams) e o IAEA TRS-398 (Absorbed Dose Determination in External Beam Radiotherapy).

Ambos protocolos utilizam uma câmara cilíndrica para determinar a dose absorvida na água para feixes de fótons MV. A leitura da carga deve ser corrigida pela temperatura, pressão, recombinação iônica e polaridade. Essas correções são feitas para considerar a pertubação no meio devido a presença da câmara. Ambos os protocolos utilizam um campo de referência 10 cm x 10 cm para realização das medidas..

No geral, os protocolos realizam as medidas em uma certa profundidade de referência e corrige a leitura pela PDP para obter a dose na profundidade de dose máxima. Isso é feito para que a leitura possa ser realizada em uma profundidade onde a PDP pode ser determinada com maior exatidão, pois qualquer desvio da posição da câmara em relação à profundidade exata onde ocorre a dose máxima pode levar a erros de calibração significantes. A ?? apresenta as condições de referência para determinação da qualidade do feixe através do protocolo TRS-398, e a Fig. 4 apresenta as condições de referência para determinação da dose absorvida na água para feixes de fótons do mesmo protocolo.

A geral para obter a dose absorvida na água a partir da leitura de carga de uma câmara de ionização medida com um eletrômetro é dada por:

$$D_w(z) = M N_{D,w} K_{pol} K_{ion} K_{T,P} K_{Q,Q_0}$$

onde:

- ★ $D_w(z)$: É a dose absorvida na água na profundidade Z;
- ★ M: é a leitura da câmara de ionização corrigida pela calibração do eletrômetro
- $\star N_{D,w}$: É o fator de calibração para a dose absorvida na água para a energia do 60 Co;
- ★ K_{pol}: É o fator de correção de polaridade; Este valor é geralmente menor que 1% da unidade. Ele deve se manter estável de ano em ano e qualquer desvio maior que 0.5% do valor médio da corrente deve ser investigado. Para novas câmaras, ele deve ser medido várias vezes para estabelecer consistência;
- ★ K_{ion} : É o fator de recombinação iônica. Este valor é normalmente menor que 1.01 e o TG-51 recomenda não utilizar a câmara cas este fator seja maior que 5%.
- * $K_{T,P}$: É o fator de correção para a densidade do ar, que corrige a leitura com respeito a temperatura e pressão.
- * K_{Q,Q_0} : É o fator de correção da qualidade do feixe, que corrige a leitura para o feixe avaliado versos o feixe do 60 Co para o qual o fator de calibração foi determinado. o K_{Q,Q_0} é específico para a energia do feixe que está sendo medida e da câmara de ionização que está sendo utilizada para realizar as medidas. Seus valores variam de 1 até aproximadamente 0.96 para feixes MV.

Fator de Calibração

- □ TRS-398
- □ TG-51:

Fator de Correção De Polaridade

□ TRS-398

$$K_{pol} = \frac{|M_{+}| + |M_{-}|}{2M}$$

onde,

- \star M_{+} é a leitura do eletrômetro com a polaridade positiva;
- \star M_{-} é a leitura do eletrômetro com a polaridade negativa;
- ★ M é a leitura do eletrômetro na polaridade usada na rotina (positiva ou negativa);

□ TG-51

$$K_{pol} = \left| \frac{M_{raw}^+ - M_{raw}^-}{2M_{raw}} \right|$$

onde,

- ★ M_{raw}^+ é a leitura quando cargas positivas são coletadas;
- $\star~M_{raw}^-$ é a leitura quando cargas negativas são coletadas;
- \star M_{raw} é a leitura
- □ Obs: O valor do K_{pol} poderá variar acima ou abaixo de 1, dependendo da polaridade definida como padrão para as medidas mas não deve exceder uma diferença de ± 1%. Se a câmara for utilizada para calibração da mesma qualidade de feixe, não será necessário um fator de correção de polarização. Este efeito é pequeno e varia com a energia de modo que se o K_{pol} for conhecido para a qualidade de referência utilizada na calibração $(K_{pol})_{Q_0}$ então K_{pol} deverá ser dado pela razão $(K_{pol})_Q/(K_{pol})_{Q_0}$ caso os valores de K_{pol} excedam 0.3% para feixes acima de 6MV ou feixes de K_{pol} 0.

Fator de Recombinação Iônica

□ TRS-398:

Para feixes pulsados:

$$K_{ion} - 1 = \frac{M_1/M_2 - 1}{V_1/V_2 - 1}$$

ou

$$K_{ion} = a_0 + a_1 \frac{M_1}{M_2} + a_2 \left(\frac{M_1}{M_2}\right)^2$$

Para o Cobalto-60, onde existe radiação contínua

$$K_{ion} - 1 = \frac{(V_1/V_2)^2 - 1}{(V_1/V_2)^2 - (M_1/M_2)^2}$$

onde,

- ★ V_1 e V_2 São diferentes tensões de polarização;
- \star M_1 é a leitura da carga medida com a tensão de polarização V_1 ;
- ★ M_2 é a leitura da carga medida com a tensão de polarização V_2 ;

- \star a_0 , a_1 e a_2 são coeficientes (constantes) fornecidas no documento para feixes pulsados.
- ★ Obs: Este método assume uma dependencia linear entre 1/M e 1/V o que pode não ocorrer com câmaras de placas paralelas no intervalo de voltagem utilizado no método de duas voltagens.

□ TG-51:

Para radiação pulsada:

$$K_{ion} = \frac{1 - V_H/V_L}{M_{row}^H/M_{row}^L - V_H/V_L}$$

Para radiação contínua:

$$K_{ion} = \frac{1 - (V_H/V_L)^2}{M_{raw}^H/M_{raw}^L - (V_H/V_L)^2}$$

onde,

- \star V_H é a voltagem de polarização normal (sempre a maior);
- ★ V_L é a voltagem 2 vezes menor que a voltagem normal;
- ★ M_{raw}^H é a leitura para a voltagem V_H ;
- $\star M_{raw}^L$ é a leitura para a voltagem V_L ;
- □ Obs: A recombinação iônica depende principalmente da dose por pulso e; portanto esse fator será diferente para feixes FFF. É necessário que o fator de correção seja menor que 1.05, caso contrário outra câmara deverá ser utilizada.

Fator de Correção de Temperatura e Pressão

□ TRS-398:

$$K_{T,P} = \frac{273.2 + T}{273.2 + T_0} \times \frac{P_0}{P}$$

$$K_{T,P} = \frac{273.2 + T}{273.2 + 20^{\circ}C} \times \frac{101.3 \ kPa}{P}$$

onde,

- ★ T_0 é a temperatura de referência estabelecida como 20°C;
- \star T é a temperatura da água no momento da medida dada em °C.
- ⋆ P₀ é a pressão de referência definida como 101.3 kPa;
- ★ P é a pressão atmosférica no momento da medida, dada em kPa;

□ TG-51:

$$K_{T,P} = \frac{273.2 + T}{273.2 + T_0} \times \frac{P_0}{P}$$

$$K_{T,P} = \frac{273.2 + T}{273.2 + 22.0^{\circ}C} \times \frac{101.3 \text{ kPa}}{P}$$

onde.

★ T_0 é a temperatura de referência estabelecida como 22°C;

- \star T é a temperatura da água no momento da medida dada em °C.
- ★ P_0 é a pressão de referência definida como 101.3 kPa;
- ★ P é a pressão atmosférica no momento da medida, dada em kPa;
- □ Obs: Não são necessárias correções de umidade se o fator de calibração foi referido a uma umidade relativa do ar de 50% e é usado em uma umidade relativa do ar variando entre 20% e 80%.

Fator de Qualidade do Feixe

□ TRS-398: é fornecida uma tabela de valores para várias câmaras de ionização em uma faixa de energias de feixe. A qualidade do feixe é especificada pela relação entre a TPR a 20 cm de profundidade e a TPR a 10 cm de profundidade para o tamanho do campo de referência, ou seja, TPR_{20,10}. Os valores da TPR podem ser medidos diretamente ou calculados a partir de medidas da PDP utilizando a equação empírica:

$$TPR_{20,10} = 1.2661 * (PDP(20)/PDP(10)) - 0.0595$$

Recomenda-se o uso de um valor medido em vez de um valor genérico obtido pela equação acima.

□ TG-51: é fornecido uma tabela de valores para várias câmaras de ionização em uma faixa de energias de feixe. A qualidade do feixe é especificada pela PDP a 10 cm de profundidade, SSD de 100 cm com contaminação eletrônica removida ou PDD(10)x para energias ≥ 10 MV. Para medir a PDP da componente de fóton, uma folha de chumbo fina (1 mm) é colocada a 50 cm da fonte para eliminar a contaminação do feixe com elétrons em energias de 10 MV ou mais. Esta folha de chumbo é usada apenas para medida da PDP e deve ser removida para a medida do output.

Ponto de Referência da Câmara de Ionização

- □ TRS-398: O ponto de referência da câmara, definido no centro da câmara cilíndrica é colocado na profundidade de referência;
- □ TG-51: O ponto de referência da câmara, definido no centro da câmara cilíndrica é colocado na profundidade de referência;

Fator de Correção do Eletrômetro

Será necessário um fator de correção para o eletrômetro (K_{elec}) sempre que a câmara for calibrada separadamente do eletrômetro; Deste modo, o laboratório deverá fornecer separadamente um fator de correção para o eletrômetro além do $N_{D,w}$.

Alguns Laboratórios de calibração estão se direcionando para oferecer calibrações para outras qualidades de feixe além da do 60 Co. Isto tem uma vantagem de que o K_{Q,Q_0} determinado será para a câmara específica que está sendo utilizada na medida e não para um valor de K_{Q,Q_0} genérico dado para o modelo da câmara. Para isto, pode-se adotar duas estratégias diferentes:

- 1. O laboratório de calibração determinar o $N_{D,w}$ para a câmara juntamente com uma série de valores de K_{Q,Q_0} em toda a gama de qualidades de feixe, incluindo os feixes de elétrons. Isto tem a vantagem de que, como não se espera que a dependência energética da câmara mude, as calibrações da câmara exigirão apenas a determinação do $N_{D,w}$ na qualidade de referência Q_0 .
- 2. O laboratório determinar vários valores de $N_{D,w}$, eliminando a necessidade de utilizar o K_{Q,Q_0} ;

$PR_{20,10}$)	
nfluence quantity	Reference value or reference characteristics
Phantom material	water
Chamber type	cylindrical or plane-parallel
Measurement depths	20 g cm ⁻² and 10 g cm ⁻²
Reference point of chamber	for cylindrical chambers, on the central axis at the centre of the cavity volume. For plane-parallel chambers, on the inner surface of the window at its centre
Position of reference point of chamber	for cylindrical and plane-parallel chambers, at the measurement depths
SCD	100 cm
Field size at SCD	10 cm x 10 cm ^a

Figura 3: Condições de Referência para a Determinação da Qualidade do Feixe de fótons através do TPR20,10

Influence quantity	Reference value or reference characteristics
Phantom material	water
Chamber type	cylindrical
Measurement depth z_{ref}	for $TPR_{20,10} < 0.7$, 10 g cm ⁻² (or 5 g cm ⁻²) ^a
	for $TPR_{20,10} \ge 0.7$, 10 g cm ⁻²
Reference point of chamber	on the central axis at the centre of the cavity volume
Position of reference point of chamber	at the measurement depth z_{ref}
SSD/SCD	100 cm ^b
Field size	10 cm x 10 cm ^c
energies is recommended. The constancy with de	lations [77], the use of a single reference depth $z_{ref} = 10 \text{ g cm}^{-2}$ for all photon beam pth of $N_{D,w}$ reported by the BIPM [30] validates this option. However, some users may d for 60 Co beams, i.e. $z_{ref} = 5 \text{ g cm}^{-2}$; this option is therefore allowed in this Code of
If the reference dose has to be determined for an is	socentric set up, the SAD of the accelerator shall be used even if this is not 100 cm.
^b If the reference dose has to be determined for an is	tom for a SSD type set-up, whereas for a SAD type set-up it is defined at the plane of

Figura 4: Condições de referência para a determinação da dose absorvida na água para feixes de fótons

6.1 Feixes de MV Não-Padrão

São os feixes vindos da Tomoterapia, GammaKnife, CyberKnife onde não é possível definir um campo de referência 10 cm x 10 cm ou não é possível estabelecer a SSD de referência utilizadas nos protocolos. O TG-21 é utilizado nos casos em que não é possível utilizar um phantom de água, como o GammaKnife, onde a determinação da dose é feita no ar. Outro protocolo utilizado no GammaKnife é o TG-178 "Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance" onde é aplicado o protocolo ALF para dosimetria nesses equipamentos. Além disto o detector aplicado deve ser definido adequadamente de modo que que seja pequeno o suficiente para que a diferença percentual no gradiente de dose que atravessa o volume do detector seja muito pequena. Fatores de correção devem ser aplicados em feixes cujo gradiente de dose é inerente do feixe, como em feixes FFF. Maquinas que utilizam MRI devem estabelecer um fator de correção para leitura da câmara que dependerá da intensidade do campo magnético aplicado.

7. Feixes de Elétrons

Para a dosimetria de feixes de elétrons, são feitas as seguintes recomendações:

- □ TRS-398: É necessário o uso de câmaras de ionização de placas paralelas para todas as energias de elétrons embora uma câmara cilíndrica possa ser utilizadas em feixes com $R_{50} \ge 4$ cm na água (E_0 10 MeV).
- □ TG-51: é necessário a utilização de câmaras de placas paralelas para feixes de elétrons com energia ≤ 6 MeV e é recomendado seu uso para energias menores que 10 MeV.

A qualidade do feixe de elétrons é definida como sendo a profundidade da curva de isodose de 50%. Caso uma câmara cilíndrica seja utilizada para determinar a PDP do feixe de elétrons, a curva deve ser deslocada para cima $0.5 \cdot r_{cav}$ (descer o centro da câmara $0.5 \times r_{cav}$ a curva de ionização resultante deve ser convertida na curva de PDP através da razão dos poderes de freamento. Para converter a curva de ionização em PDP na profundidade da isodose de 50% utiliza-se as seguintes relações:

$$R_{50} = (1.028 \times I_{50}) - 0.06 \text{ cm}$$
 para $I_{50} \le 10 \text{ cm}$ na agua

$$R_{50} = (1.059 \times I_{50}) - 0.37 \text{ cm}$$
 para $I_{50} > 10 \text{ cm na agua}$

Também é possível derivar o R_{50} mais diretamente utilizando medidas através de um diodo, que não requer um shift na isodose e nem correções para o poder de freamento.

A profundidade de referência para todos os protocolos referidos, determinam que a profundidade de referência é dada por:

$$d_{ref} = (0.6 \cdot R_{50}) - 0.1(cm)$$

A dose na profundidade de dose máxima (d_{max}) é então determinada utilizando a PDP medida para o feixe. De acordo com o TRA-398 é preferível utilizar um phantom de água, porém para feixes com $R_{50} < 4$ cm pode-se utilizar um phantom de plástico. Nestes casos é necessário utilizar um fator de escala para corrigir o posicionamento da câmara. A Fig. 5, Fig. 6 e Fig. 7 mostram as condições de referência para a determinação do R_{50} , dose absorvida na água e fator de escala, respectivamente, para feixes de elétrons calibrados de acordo com o protocolo TRS-398.

7.1 Calibração Cruzada

Se for utilizada uma câmara de placas paralelas sem um fator de calibração fornecido por um laboratório padrão primário, deverá ser realizada a calibração cruzada desta câmara com uma câmara cilíndrica calibrada em um laboratório padrão.

Para este fim, é necessário utilizar a maior energia de elétrons disponível, preferencialmente que o $R_{50} \ge 7 \ g \cdot cm^{-2}$ (Equivalente a $E_0 > 16 \ MeV$). O fator de calibração em termos da dose absorvida de água para a câmara sob calibração, na qualidade de calibração cruzada Q_{cross} , é dado por:

$$N_{D,w,Q_{cross}}^{x} = \frac{M_{Q_{cross}}^{ref}}{M_{Q_{cross}}^{x}} \cdot N_{D,w,Q_{0}}^{ref} \cdot k_{Q_{cross},Q_{0}}^{ref}$$

onde:

- $\star N_{D,w,Q_{cross}}^{x}$: é o fator de calibração cruzada para a câmara de placas paralelas sendo calibrada;
- $\star M_{Q_{cross}}^{ref}$: é a leitura obtida com a câmara de referência posicionada em z_{ref} e corrigida pelos fatores de influência;
- * $M_{Q_{cross}}^{x}$: é a leitura com a câmara de placas paralelas sendo calibrada posicionada em z_{ref} e corrigida pelos fatores de influência;

- * N_{D,w,Q_0}^{ref} : é o fator de calibração dado em termos da dose absorvida na água para a câmara de referência; e
- \star k_{Q_{cross},Q_0}^{ref} : é o fator de correção para a qualidade do feixe para o qual a câmara de referência está sendo utilizada, dado por

$$k_{Q_{cross},Q_0}^{ref} = \frac{k_{Q_{cross},Q_{int}}^{ref}}{k_{Q_0,Q_{int}}^{ref}}$$

A câmara pode então ser utilizada para determinação da dose absorvida na água para uma qualidade Q através da equação:

$$D_{w,Q} = M_Q^x \cdot N_{D,w,Q_{cross}}^x \cdot k_{Q,Q_{cross}}^x$$
$$k_{Q,Q_{cross}}^x = \frac{k_{Q,Q_{int}}^x}{k_{Q_{cross},Q_{int}}^x}$$

onde

TABLE 7.1 REFERENCE CON	IDITIONS FOR THE DETERMINATION OF ELECTRON BEAM QUALITY (R_{50})
Influence quantity	Reference value or reference characteristics
Phantom material	for $R_{50} \ge 4$ g cm ⁻² , water. For $R_{50} \le 4$ g cm ⁻² , water or plastic
Chamber type	for $R_{50} \ge 4$ g cm ⁻² , plane-parallel or cylindrical. For $R_{50} < 4$ g cm ⁻² , plane parallel
Deference point of shamber	for plane parallel chambers, on the inner surface of the window at its centre

Chamber type for $K_{50} \ge 4$ g cm⁻², plane-parallel or cylindrical. For $R_{50} < 4$ g cm⁻², plane parallel

Reference point of chamber for plane-parallel chambers, on the inner surface of the window at its centre. For cylindrical chambers, on the central axis at the centre of the cavity volume for plane-parallel chambers, at the point of interest. For cylindrical chambers, 0.5 r_{cyl} deeper than the point of interest

SSD 100 cm Field size at phantom surface for $R_{50} \le 7$ g cm⁻², at least 10 cm x 10 cm.

Field size at phantom surface for $R_{50} \le 7$ g cm⁻², at least 10 cm x 10 cm. For $R_{50} \ge 7$ g cm⁻², at least 20 cm x 20 cm a

a A field size smaller than 20 cm x 20 cm may be used provided that R_{50} does not change by more than around 0.1 g cm⁻² from the value measured for a 20 cm x 20 cm field.

Figura 5: Condições de referência para determinação do R50 de acordo com o TRS-398

Influence quantity	Reference value or reference characteristic
Phantom material	for $R_{50} \ge 4$ g cm ⁻² , water. For $R_{50} < 4$ g cm ⁻² , water or plastic
Chamber type	for $R_{50} \ge 4$ g cm ⁻² , plane-parallel or cylindrical. For $R_{50} < 4$ g cm ⁻² , plane parallel
Measurement depth z_{ref}	$0.6 R_{50} - 0.1 \text{ g cm}^{-2}$
Reference point of chamber	for plane-parallel chambers, on the inner surface of the window at its centre. For cylindrical chambers, on the central axis at the centre of the cavity volume
Position of reference point of chamber	for plane-parallel chambers, at z_{ref} . For cylindrical chambers, 0.5 r_{cyl} deeper than z_{ref}
SSD	100 cm
Field size at phantom surface	10 cm x 10 cm or that used for normalization of output factors, whichever is larger

Figura 6: Condições de referência para a determinação da dose absorvida na água para feixes de elétrons.

TABLE 7.VI. VALUES FOR THE DEPTH-SCALING FACTOR $c_{\it pl}$, THE FLUENCE-SCALING
FACTOR h_{2l} AND THE NOMINAL DENSITY ρ_{2l} FOR CERTAIN PLASTICS

Plastic phantom	C_{pl}	h_{pl}	$\rho_{pl}(g cm^{-3})$
Solid water (WT1)	0.949	1.011	1.020
Solid water (RMI-457)	0.949	1.008 a	1.030
Plastic water	0.982	0.998 ^b	1.013
Virtual water	0.946	_ c	1.030
PMMA	0.941	1.009	1.190
Clear polystyrene	0.922	1.026	1.060
White polystyrene d	0.922	1.019	1.060
A-150	0.948	- c	1.127

^a Average of the values given in Ref. [95] below 10 MeV.

Figura 7: Fator de escala para determinação da profundidade de referência para diferentes materiais

8. Dosimetria em Feixes KV

O TG-61, "AAPM Protocol for 40-300 kV X-ray Beam Dosimetry in Radiotherapy and Radiobiology" e o IAEA TRS-398 descrevem a metodologia usada para medir a dose absorvida para feixes de fótons kV.

O TG-61 é baseado se baseia na calibração do kerma no ar de uma câmara de ionização. Este protocolo pode ser aplicado em uma faixa kV variando de 40 kV a 300 kV. Podem ser utilizadas câmaras de placas paralelas ou câmaras cilíndricas para feixes > 70 kV, com o ponto efetivo de medida definido como o centro da cavidade de ar. Uma câmara de placas paralelas com uma janela de entrada fina deve ser usada para feixes com energia < 70 kV. Placas plásticas finas podem ser necessárias para remover a contaminação de elétrons e fornecer acúmulo adequado. Para feixes com energia < 100 kV, a medida deve ser feita no ar e deve ser utilizado um fator de retroespalhamento para contabilizar o espalhamento no phantom. No TG-61 é fornecida uma tabela de valores de retroespalhamento com base na SSD e na qualidade do feixe. A qualidade do feixe é baseada na camada semi-redutora (HVL) em Al ou Cu. Feixes com energias superiores a 100 kV devem ser medidos na água a uma profundidade de referência de 2 cm. Devem ser feitas correções para recombinação iônica, polaridade, calibração do eletrômetro e densidade do ar. Além disso, são feitas correções para o efeito final do temporizador e o efeito da haste da câmara.

As seções 8 e 9 DO TRS-398 descrevem a metodologia para calibração de feixes de kV de baixa energia e de média energia. A seção 8 diz respeito à dosimetria de referência e relativa em feixes de raios X de baixa energia classificados como os feixes com HVL de até 3 mm de alumínio e potenciais geradores de até 100 kV. A seção 9 dis respeito à dosimetria relativa e de referência de feixes de raios X de média energia classificadas como os feixes com HVL superiores a 2 mm de alumínio e potenciais geradores superiores a 80 kV.

Para feixes kV de baixa energia, recomenda-se uma câmara de placas paralelas. Se a câmara for usada com raios X de 50 kV ou acima, geralmente será necessário adicionar folhas de material semelhante à janela da câmara para garantir o buildup total. As espessuras necessárias podem ser vistas na Fig. 8.

O ponto de referência é a superfície externa da câmara de placas paralelas ou a superfície externa das placas de plástico, se forem usadas para garantir o buildup adequado. Como o ponto de referência está na superfície externa da câmara (ou placas) e deve estar nivelado com a superfície do phantom, os phantoms de plástico são recomendados devido à dificuldade de se fazer isso em um phantom de água. A HVL em alumínio é usada como o índice de qualidade do feixe, embora haja discussão de que isso não é totalmente preciso e introduz até cerca de 1,5% de incerteza.

^b Average of the values given in Ref. [64] below 10 MeV.

c Data not available.

d Also referred to as high-impact polystyrene.

kV	Polyethyl	ene	PMMA b	Mylar		
	mg cm ⁻²	μm	mg cm ⁻²	μm	mg cm ⁻²	μm
50	4.0	45	4.4	40	4.6	35
60	5.5	60	6.1	50	6.4	45
70	7.2	80	8.0	65	8.3	60
80	9.1	100	10.0	85	10.5	75
90	11.1	120	12.2	105	12.9	90
100	13.4	140	14.7	125	15.4	110

Figura 8: Espessura total de material para fornecer o completo buildup

Para feixes kV de média energia deve ser utilizada uma câmara cilíndrica com volume entre 0.1 cc e 1.0 cc. O ponto de referência é localizado no centro do volume e deve ser colocado a 2 cm de profundidade na água. Os fatores de correção da qualidade do feixe para feixes kV no TRS-398 usam uma metodologia de dose absorvida para água. Como a dose absorvida nas calibrações em água não é fornecida pelos laboratórios padrões, o fator de calibração geralmente é calculado a partir de um fator de calibração do kerma no ar (descrito no Apêndice A.2 da IAEA TRS-398). A Fig. 9 apresenta as condições de referência pra determinação da dose em feixes de fótons de baixo kV e a Fig. 10 apresenta as condições de referência pra determinação da dose em feixes de fótons de médio kV.

Tanto o AAPM TG-61 quanto o IAEA TRS-398 recomendam que a calibração seja obtida combinando kV e HVL do feixe clínico, se possível. Se não for possível, devem ser obtidos vários pontos de calibração e o fator de calibração clínica é então determinado por interpolação.

Influence quantity	Reference value or reference characteristics
Phantom material	water-equivalent plastic or PMMA
Chamber type	plane-parallel for low-energy x-rays
Measurement depth z_{ref}	phantom surface
Reference point of the chamber	at the centre of outside surface of chamber window or additional build-up foil if used ^a
SSD	usual treatment distance as determined by the reference applicator ^b
Field size	3 cm x 3 cm, or 3 cm diameter, or as determined by the reference applicator ^b
	3 cm x 3 cm, or 3 cm diameter, or as determined by

Figura 9: Condições de referência para determinação da dose absorvida para feixes de baixo kV

Dosimetria de Fontes de Braquiterapia

As fontes de braquiterapia são geralmente calibradas usando uma câmara de poço com cavidade de ar. O TG-43, "Dosimetry of Intersticial Brachytherapy Sources" e seus updates posteriores descrevem um método geral para calcular a dose absorvida em qualquer ponto a partir de um valor de força kerma no ar, S_k , dada em unidades de $\mu Gy \cdot m^2 \cdot h^{-1}$, que recebe o símbolo U. A câmara do poço é calibrada em termos dessa força de

b Polymethyl Methacrylate, also known as acrylic. Trade names are Lucite, Plexiglas or Perspex.

Influence quantity	Reference value or reference characteristics
Phantom material	water
Chamber type	cylindrical
Measurement depth z_{ref}^{a}	2 g cm ⁻²
Reference point of chamber	on the central axis at the centre of the cavity volume
Position of reference point of chamber	at the measurement depth $z_{\it ref}$
SSD	usual treatment distance ^b
Field size	10 cm x 10 cm, or as determined by a reference applicator ^c

Figura 10: Condições de referência para determinação da dose absorvida para feixes de médio kV

^e When the x-ray machine has an adjustable rectangular collimator, a 10 cm x 10 cm field should be set. Otherwise, if the field is defined by

kerma no ar, obtendo um fator de calibração, fornecido por um laboratório credenciado, para converter a leitura atual da câmara do poço em força kerma no ar (também chamada de intensidade kerma no ar).

fixed applicators, a reference applicator of comparable size should be chosen.

Figura 11: Câmara Poço

A câmara do poço pode ser aberta para o ar ou pressurizada para aumentar o sinal da câmara. Caso seja utilizado uma câmara de poço pressurizada, é importante realizar medidas de constância da pressão interna para garantir que não houve vazamento na câmara

A resposta da câmara poço depende da posição da fonte dentro da cavidade formada pelo poço. Um suporte de fonte (holder) é usado para posicionar de forma reprodutiva a fonte no centro do cavidade. O holder varia para fontes LDR e HDR e deve ser enviado junto com a câmara de poço para calibração para que as condições exatas possam ser repetidas nab rotina clínica.

Para sementes de baixa taxa de dose (LDR), a fonte é simplesmente colocada no suporte, que é projetado para posicionar a semente na área de resposta uniforme. Porém, se possível, é ideal que exista uma indicação visual de que a semente está na posição

correta para garantir a reprodutibilidade das medidas.

Para sistemas de afterloader remoto utilizados em braquiterapia de alta taxa de dose (HDR), a fonte geralmente é escalonada (realizada leituras) ao longo do comprimento da cavidade da câmara poço, inserindo um cateter fino conectado à unidade HDR no suporte para encontrar a posição de leitura máxima, também chamado de ponto ideal ("sweet spot"). Esta posição deve ser consistente de medição para medição, mas o processo de escalonamento garante que a leitura correta seja obtida.

Para fontes de baixa energia como ¹²⁵I ou ¹⁰³Pd, a calibração deve ser obtida para o modelo específico de semente utilizada clinicamente. Isso se deve ao fato de que o espectro de energia é muito afetado pela construção da semente. Para fontes de energia mais altas, como ¹⁹²Ir, um valor genérico pode ser usado.

O protocolo de IPEM para fontes de 192 Ir utiliza a taxa de referência de kerma no ar (RAKR), dada em $Gy \cdot s^{-1}$ a 1 m. É então fornecido um coeficiente de conversão para força kerma no ar para que os resultados possam ser comparados com o formalismo do TG-43.

Ao calibrar uma fonte de ¹⁹²Ir, a câmara do poço deve estar a 1 m de qualquer parede ou material espalhador

e deve ser colocada em um carrinho de plástico. A câmara do poço deve ser deixada na sala por tempo suficiente para permitir o equilíbrio térmico, que pode ser de até 7 horas para uma diferença de temperatura de 4 řC usando uma câmara do poço Standard Imaging HDR 1000 Plus. Devem ser aplicadas correções de densidade do ar, recombinação iônica e eletrômetro.

Outro documento utilizado é o TG-56, "Code of Practice for Brachytherapy Physics". Ambos documentos recomendam a utilização de um sistema terciário para confirmar a constância do sistema secundário utilizado na calibração, podendo ser outra câmara poço ou uma câmara do tipo farmer colocada em um "jig" (gabarito, suporte fixo...) a 10 cm de distância da fonte.

Quanto à calibração de sementes esterilizadas para implantes intersticiais, o TG-56 recomenda que pelo menos 10% do lote ou 10 fontes, o que for maior, devem ser analisadas pelo físico local para sementes soltas. Para fontes ociosas, a recomendação é de 5% ou 5 sementes, o que for menor. Para atender a esse requisito, fontes extras do mesmo lote podem ser solicitadas para fins de calibração, o que aumentará o custo. Alternativamente, as sementes de calibração podem ser encomendadas não estéreis e então testadas no local e re-esterilizadas.

Ao calibrar uma fonte de braquiterapia, é feita uma comparação com o certificado de calibração emitido pelo fabricante da fonte. O TG-56 recomenda que os valores devem estar acordados dentro de 3%. Desvios entre 3% e 5% devem ser investigados de modo que um sistema de dosimetria terciário ajudará nesta investigação. Diferenças superiores a 5% devem ser informadas ao fabricante. Se a fonte fizer parte de um lote a ser usado na implantação de sementes, a média do lote deve estar de acordo com a calibração do fabricante em 3% e todas as fontes devem estar dentro de 5% da média.

10. Dosimetria em Feixes de Prótons

O TRS-398 descreve a determinação da dose absorvida em feixes de prótons. As câmaras de placas paralelas podem ser usadas para todas as energias de feixe, mas as câmaras cilíndricas podem ser usadas apenas para qualidades de feixe na profundidade de referência $R_{res} > 0.5$ g cm^{-2} . As câmaras cilíndricas são preferíveis quando apropriado.

 R_{res} é o intervalo residual e é definido como a distância do centro do pico de Bragg espalhado (SOBP) até os 10% da profundidade distal. R_{res} é usado como o índice de qualidade do feixe no protocolo e é determinado a partir de medidas de dose na profundidade feitas com uma câmara de placas paralelas. A ionização na profundidade é convertida em dose na profundidade aplicando razões do poder de freamento. Portanto, deve ser aplicado os fatores de correção K_{ion} e K_{pol} na curva de ionização caso esses fatores variem com a profundidade.

O ponto de referência para a medida da dose absorvida é definido no centro do SOBP. Um dos fatores que afeta a precisão da posição do ponto de referência é a ondulação no SOBP, que deve ser $<\pm 3\%$. O protocolo possui tabelas para os valores de k_{Q,Q_0} que são todos valores calculados com Q_0 igual a 60 Co. Correções de densidade do ar, recombinação iônica e polaridade são usadas ao calcular a dose absorvida. Para campos pequenos, com tamanho menor que duas vezes o diâmetro da cavidade de ar da câmara de placas paralelas, um dosímetro mais adequado, como um diodo ou microcâmara, deve ser utilizado. Este detector deve ser calibrado por comparação com a câmara de placas paralelas em um tamanho de campo maior.

11. Incertezas Dosimétricas

A Fig. 12 e a Fig. 13 apresentam os erros associados a dosimetria de referência em feixes de teleterapia e à calibração da força kerma ar, respectivamente.

Para feixes de teleterapia, há uma incerteza geral de \pm 1.5% enquanto que a incerteza propagada na determinação da força kerma ar é de \pm 2.6%.

Parameter	Uncertainty	Resulting % Erro
SSD	±1 mm	±0.02
Depth	±1 mm	±0.03
Field size	±1 mm	±0.03
Temperature	±1 degree	±0.18
Pressure	±1 mm Hg	±0.09
Electrometer reading	Meter reproducibility, stability, linearity, and leakage	±0.29
Beam quality correction factor	Measurement reproducibility, different methodologies for measurement	±0.5
lon recombination correction factor	Measurement reproducibility, different methodologies for measurement	±0.06
Polarity correction factor	Measurement reproducibility, different methodologies for measurement	±0.2
Calibration factor	Measurement reproducibility	±1.0
Overall uncertainty		±1.5

Figura 12: Impacto das incertezas relacionadas a dosimetria de referência de feixes externos de radioterapia

Measurement Description	Quantity (units)	Relative Propagated Uncertainty (%)
NIST WAFAC calibration	S _{K,NIST}	±0.8
ADCL well chamber calibration	S _{K,NIST} /I _{ADCL} (U/A)	±0.9
ADCL calibration of source from manufacturer	S _{K,ADCL} (U)	±1.1
ADCL calibration of clinic well chamber	S _{K,ADCL} /I _{clinic} (U/A)	±1.2
Clinic measured source air kerma strength	S _{K,clinic} (U)	±1.3
Expanded uncertainty	S _{K,clinic} (U)	±2.6

Figura 13: Estimativas de incertezas na calibração da força kerma no ar.

Referências

- [1] Peter R Almond, Peter J Biggs, Bert M Coursey, William F Hanson, M Saiful Huq, Ravinder Nath, and David WO Rogers. Aapm's tg-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. *Medical physics*, 26(9):1847–1870, 1999.
- [2] Frank Herbert Attix. *Introduction to radiological physics and radiation dosimetry*. John Wiley & Sons, 2008.
- [3] Sonja Dieterich, Eric Ford, Daniel Pavord, and Jing Zeng. *Practical Radiation Oncology Physics E-Book:* A Companion to Gunderson & Tepper's Clinical Radiation Oncology. Elsevier Health Sciences, 2015.
- [4] Glenn F Knoll. Radiation detection and measurement. John Wiley & Sons, 2010.
- [5] Stephen V Musolino. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; technical reports series no. 398, 2001.