Numbers Equal to the Sum of Two Square Numbers

Laurent Théry INRIA Sophia Antipolis

Abstract

This note presents a formalisation of an elementary proof of the fact that a number n can be written as the sum of two square numbers if and only if each prime factor p of n that is equal to 3 modulo 4 has its exponent in the decomposition of n that is even.

1 Definitions and Notations

In order to present the proof of this theorem, we first need to introduce some predicates:

- **Divisibility**: n divides m, written n|m, if there exists a number q such that m = nq.
- **Primality**: p is prime, written prime(p), if p has exactly two positive divisors 1 and p.
- CoPrimality: p and q are co-prime, written coprime(p,q), if 1 is their unique common positive divisor.
- **Modulo**: p is equal to q modulo n, written $p \equiv q[n]$, if n divides p-q. and some functions:
 - **Factorial**: p! is defined as $\prod_{i=1}^{p} i$.
 - **Gcd**: the greatest common divisor of two numbers p and q is written $p \hat{q}$.

- Quotient: the integer quotient of the division of p by q is written p/q.
- **Remainder**: the remainder of the division of p by q is written p % q.

2 Basic Theorems

Theorem 2.1 (Gauss) if m|np and coprime(m,n) then m|p.

This theorem does not belong to our development, nevertheless we outline its proof. The key point of the proof is that divisibility is compatible with the substraction: if m|n and m|p then m|n-p. Now, we have the hypothesis m|np and we also have that m|mp. Remembering Euclid's algorithm and using the compatibility of the substraction we can derive that $m|(m \hat{\ } n)p$. As we have coprime(m,n), we get the expected result m|p.

Theorem 2.2 (Bezout) let m and n two integers, then there exist u and v such that $mu + nv = m \hat{\ } n$.

Once again the proof of this theorem follows Euclid's algorithm to compute the gcd of m and n.

3 Cancellation theorem

Theorem 3.1 (Cancellation) If $ab \equiv ac [m]$ and coprime(a, m) then $b \equiv c [m]$.

We have m|ab-ac. This means m|a(b-c). Applying Theorem 2.1, we get that m|b-c, i.e. $b \equiv c[m]$.

4 Fermat's Little theorem

Theorem 4.1 (Fermat) If prime(p) and coprime(a, p) then $a^{p-1} \equiv 1 [p]$.

First of all, because prime(p), we have coprime(p,(p-1)!). Using Theorem 3.1, it is sufficient to prove that $a^{p-1}(p-1)! \equiv (p-1)! [p]$. We have $a^{p-1}(p-1)! = (\prod_{i=1}^{p-1} a)(\prod_{i=1}^{p-1} i) = \prod_{i=1}^{p-1} (ia)$. Using the properties of the modulo, we get that $a^{p-1}(p-1)! \equiv \prod_{i=1}^{p-1} ((ia) * p) [p]$. Now using again Theorem 3.1, we know that $ia \equiv ja [p]$ implies that $i \equiv j [p]$. So we have $\prod_{i=1}^{p-1} ((ia) * p) = (p-1)!$ since the first product contains exactly p-1 distinct and non null numbers smaller than p.

5 Wilson's theorem

Theorem 5.1 (Coprime inverse) *If* prime(p) *and* coprime(p, n), *then* there exists m such that $mn \equiv 1$ [p] with $1 \le b \le p-1$ and coprime(p, m).

From Theorem 2.2, we know that there exist u and v such that up + vn = 1. This means that $vn \equiv 1$ [p]. It is then sufficient to take m = v % p.

Theorem 5.2 (Wilson) If prime(p) then $(p-1)! \equiv -1[p]$.

We first consider the case where p=2. In that case, we (p-1)!=1!=1 and $-1\equiv 1$ [2]. Now if p>2, we have $(p-1)!=(\prod_{i=2}^{p-2}i)(p-1)$. We are left with proving $\prod_{i=2}^{p-2}i\equiv 1$ [p]. By Theorem 5.1, we know that there exists j such that $1\leq j\leq p-1$ and $ij\equiv 1$ [p]. Note that $j\neq i$ otherwise i+1 would be a divisor of p. Furthermore since 1< i< p-1 we also need to have 1< j< p-1. This means that in the product $\prod_{i=2}^{p-2}i$ for each i there is also its inverse modulo p. So $\prod_{i=2}^{p-2}i\equiv 1$ [p].

Theorem 5.3 (Wilson converse) If $(p-1)! \equiv -1[p]$ and p > 1 then prime(p).

We prove this by contradiction. Suppose that p is composite, i.e. p = qr with 1 < q < p and 1 < r < p. If $q \neq r$, then $p \mid \prod_{i=1}^{p-1} i$ so $(p-1)! \equiv 0 \ [p]$. If q = r, we have $p = q^2$. If p = 4, then (p-1)! = 6, so $(p-1)! \equiv 2 \ [4]$. If p > 4, we have that 2 < q so $2q < q^2 = p$. As we have 0 < q < 2q < p, we have $2q^2 \mid \prod_{i=1}^{p-1} i$. This means that $(p-1)! \equiv 0 \ [p]$.

6 Main theorems

Theorem 6.1 (square root of -1) If prime(p) and $\neg(p|b)$ and $p|(a^2+b^2)$, then there exists i such that $i^2 \equiv -1[p]$.

Since prime(p), we have coprime(p,b), so by Theorem 5.1, there exists u such that $ub \equiv 1$ [p]. Let's take i = au. To prove that $i^2 \equiv -1$ [p], it is enough to prove that $i^2b^2 \equiv -b^2$ [p] by Theorem 3.1 since $coprime(p,b^2)$. $i^2b^2 = (au)^2b^2 = a^2(ub)^2$. So $i^2b^2 \equiv a^2$ [p]. Since $a^2 \equiv -b^2$ [p] the conclusion follows.

Theorem 6.2 (square root of -1 corollary) If prime(p) and $p = a^2 + b^2$, then there exists i such that $i^2 \equiv -1[p]$.

We apply Theorem 6.1 since $p|(a^2+b^2)$ and prime(p) implies $\neg(p|b)$.

Theorem 6.3 (square root of -1 converse) If prime(p) and there exists i such that $i^2 \equiv -1$ [p], then there exist a and b such that $p = a^2 + b^2$.

Consider k the integer square root of p. We have $k^2 since <math>p$ is prime. The set $\{x+iy \mid 0 \le x \le k \text{ and } 0 \le y \le k\}$ contains $(k+1)^2$ elements. As $p < (k+1)^2$, there exists at least two distinct pairs (x_1, y_1) and (x_2, y_2) such that $x_1 + iy_1 \equiv x_2 + iy_2[p]$. We have $x_1 - x_2 \equiv i(y_2 - y_1)[p]$. Squaring both sides we get $(x_1 - x_2)^2 \equiv -(y_2 - y_1)^2[p]$ Let's take $a = |x_1 - x_2|$ and $b = |y_1 - y_2|$, so we have $a^2 + b^2 \equiv 0[p]$. But as we have $0 \le x_1 \le k$ and $0 \le x_2 \le k$, we deduce that $a^2 \le k^2 < p$. As the same holds for b we get $b^2 < p$. So $a^2 + b^2 < 2p$. Furthermore as the pairs are distinct, we have $0 < a^2 + b^2$. Altogether we get that the only way $a^2 + b^2 \equiv 0[p]$ can be true is that $p = a^2 + b^2$.

Theorem 6.4 (uniqueness) If prime(p) and then there exist a and b such that $p = a^2 + b^2$, then this pair is unique.

Suppose that $a^2 + b^2 = p = c^2 + d^2$. We have $(ad + bc)(ab - bd) = a^2d^2 - b^2c^2 = a^2d^2 + b^2d^2 - b^2d^2 + b^2c^2 = (a^2 + b^2)d^2 - (d^2 + c^2)b^2 = pd^2 - pb^2 = p(d^2 - b^2)$. This means that $(ad + bc)(ab - bd) \equiv 0$ [p]. Since p is prime, a consequence of Theorem 2.1 is that p|ab - bd or p|ad + bc. Since $0 < a^2 < p$, $0 < b^2 < p < c^2 < p$ and $0 < d^2 < p$, we have ab - bc = 0 or ad + bc = p.

If ab = bc, we have that a|bc but as coprime(a, b) (otherwise p would not be prime), by Theorem 2.1 we get that a|c. This means that there exists k such that c = ka. We have ad = bc = bka, so d = kb. So $p^2 = c^2 + d^2 = (ka)^2 + (kb)^2 = k^2(a^2 + b^2)$. This implies that k = 1, so c = a and d = b.

If ad + bc = p, we have $p^2 = (a^2 + b^2)(c^2 + d^2) = (ad + bc)^2 + (ac - bd)^2 = p^2 + (ac - bd)^2$. This means that ac = bd. Similarly to the first case, we get a = d and b = c.

Theorem 6.5 (square 2) If p = 2 then there exists i such that $i^2 \equiv -1$ [p],

Let's take i = 1. We have $i^2 = 1 = (2 - 1)$.

Theorem 6.6 (square 1 modulo 4) If prime(p) and $p \equiv 1$ [4] then there exists i such that $i^2 \equiv -1$ [p].

Let's take i = ((p-1)/2)!. Since p-1 is even, the division is exact. We have $(p-1)! = \prod_{j=1}^{p-1} j = (\prod_{j=1}^{(p-1)/2} j)(\prod_{j=(p-1)/2+1}^{p-1} j) = i \prod_{j=1}^{(p-1)/2} p - j$. We have $\prod_{j=1}^{(p-1)/2} p - j \equiv \prod_{i=1}^{(p-1)/2} -j [p]$. Furthermore $\prod_{j=1}^{(p-1)/2} -j = (-1)^{(p-1)/2}i = i$ since (p-1)/2 is even. So we have $(p-1)! \equiv i^2[p]$. By Theorem 5.2 we finally get $i^2 \equiv -1[p]$.

Theorem 6.7 (not square 3 modulo 4) If prime(p) and $p \equiv 3[4]$ then there is no i such that $i^2 \equiv -1[p]$.

We do the proof by contradiction. We suppose that there exists i such that $i^2 \equiv -1$ [p]. Theorem 6.3 gives us that there exist a and b such that $p = a^2 + b^2$. We do the proof by case analysis.

- If $a \equiv 0$ [2] and $b \equiv 0$ [2], we have $p \equiv 0$ [4].
- If $a \equiv 0$ [2] and $b \equiv 1$ [2], we have $p \equiv 1$ [4].
- If $a \equiv 1$ [2] and $b \equiv 0$ [2], we have $p \equiv 1$ [4].
- If $a \equiv 1$ [2] and $b \equiv 1$ [2], we have $p \equiv 2$ [4].

Each case contradicts $p \equiv 3 [4]$.

Theorem 6.8 (div 3 modulo 4) If prime(p) and $p \equiv 3$ [4] and $p|a^2 + b^2$ then p|a.

The proof is done by contradiction. Suppose that p|a, the Theorem 6.1 gives us there exists i such that $i^2 \equiv -1[p]$ but this contradicts Theorem 6.7.

Theorem 6.9 (div square 3 modulo 4) If prime(p) and $p \equiv 3[4]$ and $p|a^2 + b^2$ then $p^2|a^2 + b^2$.

Theorem 6.8 with $a^2 + b^2$ and $b^2 + a^2$ gives us that p|a and p|b. It follows that $p^2|a^2 + b^2$.

Theorem 6.10 (Comp Product) If there exist a and b such that $m = a^2 + b^2$ and there exist c and d such that $n = c^2 + d^2$, then there exist e and f such that $mn = e^2 + f^2$.

It is sufficient to take e = ad + bc and f = ac - bd.

Theorem 6.11 (Main theorem) If for all p, prime(p), p|n and $p \equiv 3$ [4], there exists α such that, $p^{2\alpha}|n$ and $\neg(p^{2\alpha+1}|n)$, then there exist a and b such that $n = a^2 + b^2$.

This proof is done by strong induction on n. The base case is the case where n is prime. If $n \equiv 3$ [4], Theorem 6.9 would give that $n^2|n$ which is impossible so we have either n=2 or $n \equiv 1$ [4]. In both case, Theorem 6.5 and Theorem 6.6 gives us an i, such $i^2 \equiv -1$ [p]. From Theorem 6.3 it follows that there exist a and b such that $n=a^2+b^2$.

For the inductive case, we consider p|n. If we have either p=2 or $p\equiv 1$ [4], as we did for the base case, it is easy to show that there exist a and b such that $p=a^2+b^2$. Using the inductive hypothesis, we also have that there exist c and d such that $p/n=c^2+d^2$. Theorem 6.10 lets us conclude. Now if we have $p\equiv 3$ [4], we know that there exists α such that $p^{2\alpha}|n$. As we have $p^{2\alpha}=(p^{\alpha})^2+0^2$ and applying the inductive hypothesis there exists a and b such that $n/p^{2\alpha}=a^2+b^2$, Theorem 6.10 lets us conclude.

Theorem 6.12 (Main theorem converse) If there exist a and b such that $n = a^2 + b^2$, then for all p, prime(p), p|n and $p \equiv 3$ [4], there exists α such that $p^{2\alpha}|n$ and $\neg(p^{2\alpha+1}|n)$.

The proof is done by strong induction on n. If n is prime and $n \equiv 3$ [4], Theorem 6.9 gives us that $n^2|n$ which is impossible.

For the inductive case, if prime(p), p|n and $p \equiv 3$ [4], Theorem 6.9 and Theorem 6.8 give that p|a, p|b and $p^2|a^2+b^2$. Applying the inductive hypothesis on $n/p^2 = (a/p)^2 + (b/p)^2$, we get β such that $p^{2\beta}|n/p^2$ and $\neg (p^{2\beta+1}|n/p^2)$. It is then sufficient to take $\alpha = \beta + 1$.