1. Diseñar y simular un circuito eléctrico básico con una fuente de tensión, resistencia y un LED.

I = V/R

 $I = 9V / 370\Omega = 0.02A$

2. Diseñar y simular un circuito eléctrico básico con conexión serie, paralelo y

mixta. Analizar corrientes y tensiones.

Resistencia en serie.

Datos

fuente:12v R1:220 Ω R2:270 Ω

Re=R1+R2 --> Re= 220 Ω +270 Ω --> Re=470 Ω

$$I = V/R$$
 --> 12/470 --> 0.025

Proyecto Integrador I

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Resistencia en paralelo.

Datos

fuente:12v

R1:220 Ω

R2:220 Ω

R3:220 Ω

 $Re=R1+R2+R3/--> Re=1/(1/220\Omega)+(1/220\Omega)+(1/220\Omega)--> Re=73.333\Omega$

 $I = V/R \longrightarrow 12/73.333 \longrightarrow 0.A16$

Proyecto Integrador I

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Resistencia en paralelo.

Datos

fuente:12v

R1:220 Ω

R2:220 Ω

R3:1 kΩ

 $Re=R1 + 1/(R1/R2+1/R3)/--> Re= 220\Omega + 1/(1/220\Omega) + (1/1000\Omega) --> R= 180.32\Omega$

I = V/R --> 12/73.333 --> 0.016A

Proyecto Integrador I

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Resistencia en Mixto.

Datos

fuente:12v

R1:220 Ω

R2:220 Ω

R3:1 kΩ

 $R2,3 = 180.32\Omega$

Re =400.32 Ω

 $\text{Re=R1} + 1/(1/\text{R2} + 1/\text{R3})/ --> \quad \text{Re=} \ 220\Omega + 1/(1/220\Omega) + (1/1000\Omega) \ --> \quad 220\ \Omega + 180.32\Omega \ --> 400.32\ \Omega$

 $I = V/R --> 12v/400.32 \Omega --> 0.026A$

3. Diseñar y simular un circuito eléctrico con un capacitor y analizar el

comportamiento de la corriente y la tensión en el capacitor.

En el momento T^0 la carga [Q] será igual a cero. Si no estaba cargado ($T=-\infty$). Y como Q=0 la caída de voltaje en el capacitor es igual a cero.

 $\triangle V = Q (carga) / C (capacitancia) = 0$

 $Vbat - \Delta V(Capacitor) - \Delta V(Resistencia) = 0$

 $\forall bat - 0 - \triangle \forall (resistencia) = 0$

 $\forall bat = \triangle V(resistencia)$

 $\forall bat = I.R$

1 = Vbat / R = 0.02A

4. Diseñar y simular un circuito eléctrico con un inductor y analizar el

comportamiento de la corriente y la tensión en el inductor.

Los inductores, a diferencia de las resistencias, no se oponen al flujo de la corriente en sí, sino a los cambios en la corriente

$$\frac{dI}{dt} > 0$$
 o bien $\frac{dI}{dt} < 0$

CC: Los inductores estabilizan la corriente.

CA: Los inductores filtran las variaciones de corriente.

5. Diseñar y simular un circuito eléctrico con un transformador y analizar el

comportamiento de la corriente y la tensión en el transformador.

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Reductor:

Ls(impedancia secundario) = (Voltaje del secundario/Voltaje del primario) * Lp (impedancia del primario)

 $Ls = (Vs/Vp2)^{4} 2 * Lp = (24V/219V)^{4} 2 * 1H = 0.01209H$

6. Diseñar y simular un circuito eléctrico complejo que involucre fuentes de tensión y corriente, resistencias, capacitores e inductores, y analizar su comportamiento.

Reductor:

Ls(impedancia secundario) = (Voltaje del secundario/Voltaje del primario) * Lp (impedancia del primario)

$$Ls = (Vs/Vp2)^{4} 2 * Lp = (24V/219V)^{4} 2 * 1H = 0.01209H$$