Credit Scoring

Ying Liu, Yong Shi

University of Chinese Academy of Sciences & People's Bank of China

Outline

- Motivation
- Process Flow
- Methods

Motivation

- Use a customer's history of loan, mortgage, credit cards to build a classification / prediction model
- Divide customers into two groups: "good" vs. "bad"
- Assign each customer a score of risk
- A technique for financial institutions to control financial risk, reduce payment delinquency

An Example Dataset

C_id	sex	age	income	Edu	# credit cards	Payment ratio per month	# loans	Payment ratio per month	 Good/ bad
12	0	34	50K	BS.	1	100%	1	100%	 1
14	1	29	60K	BS.	2	20%	1	50%	 1
135	1	46	100K	MS.	4	100%	2	100%	 0

- FICO score
 - **■** 350 − 850
 - The higher the score, the lower the risk
 - If reject customer < 670, 30% payment delinquency is circumvented

FICO score distribution

Delinquency rates by FICO score

Process Flow

Two-group Classification

- "bad" customer: consecutive payment delinquency in 3 three months in the performance window
- "good" customer: no payment delinquency in the performance window
- "grey": in between "bad" and "good"

Statistics

- 39 attributes in the raw data
- 1999724 customers, 4321357 accounts, 2.16 accounts per customer
- 52461470 records
- Outliers, missing values
- Data cleaning is required

Data Cleaning

- Principle: remove any account with outlier
- 902325 customers remained, 1233300 accounts remained
- 308053 "good", 33483 "bad"
- Fill in the missing values based on its risk tendency

. . .

- Original attributes may not has strong capability in risk prediction
- Derivative variables may be more capable
- Derived from the original attributes
- Integrate background knowledge, professional experience
 - Seven categories: delinquency in history, current delinquency, debt, credit history, new account, types of loan, others
 - 459 variables in total

- 1. payment delinquency in history
 - Number of accounts without delinquency in the observation window
 - Number of accounts with delinquency in the observation window
 - Total number of delinquency in the observation window
 - The date of the most recent delinquency

- 2. Current payment delinquency
 - Number of accounts without delinquency in the performance window
 - Number of accounts with delinquency in the performance window
 - Total number of delinquency in the performance window
 - Total balance in the accounts with delinquency
 - Total account limit in the accounts with delinquency

... ...

■ 3. Debt

- Average balance in credit cards
- Max balance in credit cards
- Current balance in credit cards
- Monthly credit card payment
- Monthly mortgage payment
- Average amount of utilization of credit cards
- Max amount of utilization of credit cards
- Proportion of outstanding loans
-

- 4. Credit history
 - Average length of accounts
 - Max length of accounts
 - Min length of accounts

- 5. New account
 - Number of credit score inquiries
 - Number of new accounts

- 6. Types of loan
 - Account types
 - Number of accounts that have been paid off
 - Number of accounts not paid off

- 7. Temporal data
 - Compress the monthly records, e.g. average for the last 12 months, average for the most recent 6 months, average for the most recent 3 months, ...

Feature Selection

T-test

 For each variable in normal distribution, test if the "good" samples and the "bad" samples are distinguishable

Non-parametric test

 For each variable in non-normal distribution, test if the "good" samples and the "bad" samples are distinguishable

log(odds)

- Partition the range of a variable into bins
- Calculate the rate of the "good" and "bad" for each bin
- Test if the log(odds) is almost the same, the variable is weak in distinguishing

Feature Selection

- Partition the remaining variables into 7 categories
- Compute the correlation coefficients among variables within each category
- Keep the variables with least correlation in each category

Sample Selection

- Stratified sampling
 - Use disproportional allocation
- Training dataset
 - 5000 "good" vs. 5000 "bad"

Classification Models

- Logistic regression
- SVM
- MCLP
- MCQP
- Neural Networks
- Decision tree

25 2022-11-15

- Simple Models (Freed and Glover 1981):
 - Minimize $\Sigma_i h_i \alpha_i$
 - Subject to

$$\mathbf{A}_i \mathbf{X} \leq b + \alpha_i, \mathbf{A}_i \in \mathsf{Bad},$$

$$\mathbf{A}_{i}\mathbf{X} \geq b - \alpha_{i}, \ \mathbf{A}_{i} \in \mathsf{Good},$$

where \mathbf{A}_i are given, \mathbf{X} and b are unrestricted, and $\alpha_i \geq 0$.

27 2022-11-15

```
F(x) = 6.8205*x112 - 0.6076*x474 - 7.0563*x155 + 0.7789*x492 - 1.2858*x498 + 0.0004*x366 + 0.3890*x505 - 1.3190*x305 - 0.0702*x611 + 0.3974*x312)*1000000
```

 $p = 1 / (1 + \exp(-(-0.02048780266712 + F(x)) * (-0.00000033965946))))$

Score Calculation

- Linear transformation
- Formula: score=log(odds)*factor + offset
- Score range: 300-850
- The odd at 600 is 1:1
- Odds doubles for every 15 points
 - Factor = 15/log(2)
 - Offset = 600

Evaluation

Score distribution of the population

Evaluation

Score range	Accumulative rate of "good"	Accumulative rate of "bad"	Odd (good/bad)
<=645	3. 67%	37. 54%	3. 3628
646-660	6. 90%	50.65%	8. 4802
661-675	13. 75%	62. 54%	19.8172
676-690	29. 50%	79. 03%	32. 8525
691-705	42.47%	86. 27%	61. 6741
706-720	75. 51%	95. 76%	119. 6866
>720	100.00%	100.00%	198. 9504

K-S Curve

■ K-S index = 0.522

K-S Curve

For example

 If we turn down the applications of customers with 682 or less, we will turn down 73% potential "bad" customers, while lose 20.8% "good" customers

Distribution of Odds

- Odd, # good/ # bad
- Odd increasing linearly with the score

ROC Curve

- Y axis: accumulative rate of "good"
- X axis: accumulative rate of "bad"
- The area under the diagonal denotes the prediction capability

- Give the top 5 factors that result in the score
- Help the bank clerks to explain to the customers
- Help customers to improve their qualifications

- Independent variable, $X = (x_1, x_2, \dots, x_n)$ respondent variable, $Y = \{0, 1\}$
- Score model $S = f(x_1, x_2, \dots, x_n)$
- Mean of every variable $\mu_1, \mu_2, \dots, \mu_n$
- Average score of the overall population

$$S_{\mu} = f(\mu_1, \mu_2, \cdots, \mu_n)$$

Average score on a given variable

$$S_1 = f(x_1, \mu_2, \cdots, \mu_n)$$

$$S_2 = f(\mu_1, x_2, \dots, \mu_n)$$

$$S_n = f(\mu_1, \mu_2, \dots, x_n)$$

Gap between Sμ and S_i

$$C_{1} = |S_{1} - S_{\mu}|$$

$$C_{2} = |S_{2} - S_{\mu}|$$

$$C_n = |S_n - S_\mu|$$

- Sort *C_i* in descending order
- Pick the top 5 factors which impact the score most

■ Use natural language to express the top *m* factors impacting the credit

Reason Code	Description	Variable ID
A	The number of loan	Xs
	accounts with no	
	delinquency in the	
	past 3 months	
В	The number of	Xt
	delinquency in debit	
	cards in the past 6	
	months	
• • •	•••	•••