

CLAIM AMENDMENTS

1 1. (currently amended) A junction system for joining a
2 filiform element to a connection element, characterized in that it
3 has a tubular element fitted on an end section of said filiform
4 element and substantially having an eye for hooking said connection
5 element, the filiform element consisting of a single composite
6 round bar mating with the tubular element along a continuous side
7 contacting surface.

1 2. (currently amended) The junction system according to
2 the preceding claim 1, characterized in that said tubular element
3 and said eye are made in a single piece.

1 3. (currently amended) The junction system according to
2 the preceding claim 2, characterized in that said tubular element
3 and said eye are made separately.

1 4. (currently amended) The junction system according to
2 the preceding claim 3, characterized in that said tubular element
3 has a curved section defining said eye, and at least a first
4 substantially straight section distal from the head of said end
5 section of said filiform element.

1 5. (currently amended) The junction system according to
2 ~~one or more of the preceding claims~~ claim 1, characterized in that
3 means for bonding said tubular element to said filiform element are
4 present, in such a manner as to efficiently transfer the tensile
5 stress force from said filiform element to said tubular element.

1 6. (currently amended) The junction system according to
2 ~~one or more of the preceding claims~~ claim 5, characterized in that
3 said means for bonding said tubular element to said filiform
4 element comprise an adhesive or a chemical bond between said
5 tubular element and said filiform element.

1 7. (currently amended) The junction system according to
2 ~~one or more of the preceding claims~~ claim 4, characterized in that
3 said first straight section of said tubular element has a
4 predetermined length such that the tensile stress force is at least
5 partially or completely transferred from said filiform element to
6 said tubular element in correspondence with said first straight
7 section of said tubular element.

1 8. (currently amended) The junction system according to
2 ~~one or more of the preceding claims~~ claim 4, characterized in that
3 said tubular element has a second substantially straight section
4 proximal to the head of said end section of said filiform element.

9. (canceled)

1 10. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that [[the]] a matrix of said filiform element of composite
4 material is thermoplastic.

11. (canceled)

1 12. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that said tubular element is steel.

13 - 14. (canceled)

1 15. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that said filiform element has a protective coating against
4 ultraviolet rays and/or against attacks of chemical nature and/or
5 against damage of mechanical origin.

1 16. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that said filiform element and/or said protective coating have a
4 predetermined coloration for identifying the diameter of said
5 filiform element and/or for visually indicating said filiform
6 element.

1 17. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that said filiform element or said protective coating have length
4 markers for facilitating [[the]] measurement of said filiform
5 element during the making of the junction system.

1 18. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that it has means of locking said eye's closing.

1 19. (currently amended) The junction system according
2 to one or more of the preceding claims claim 18, characterized in
3 that said locking means are formed by a ring applied around the
4 neck of said eye.

1 20. (currently amended) The junction system according
2 to one or more of the preceding claims claim 1, characterized in
3 that said tubular element has flared end edges.

1 21. (currently amended) The junction system according
2 to claim 1, characterized in that it has removable connection means
3 between said tubular element and said eye.

1 22. (currently amended) The junction system according
2 to claim 21, characterized in that said connection means comprise a
3 threaded stem which extends from said eye and screws into a first
4 end of said tubular element.

1 23. (currently amended) The junction system according
2 to any one claim 21 and 22, characterized in that it has an
3 antiunthreading element adapted to prevent the unthreading of said
4 filiform element from a second end of said tubular element.

1 24. (currently amended) The junction system according
2 to any one claim from 21-23. claim 23 characterized in that said
3 anti-unthreading element consists of a pin inserted axially in
4 correspondence with the end of said filiform element positioned in
5 said tubular element, and having maximum cross section greater than
6 the internal clearance of said tubular element.

1 25. (currently amended) The junction system according
2 to any one claim from 21-24 claim 23, characterized in that said
3 pin is conical or frustoconical.

1 26. (currently amended) The junction system according
2 to any one claim from 21-24 claim 23, characterized in that said
3 filiform element is of composite thermoplastic material, directly
4 or indirectly heatable to a softening temperature adapted to permit
5 the penetration of said anti-unthreading element.

1 27. (currently amended) The junction system according
2 to any one claim 1 [[or 2]], characterized in that it presents
3 means of screw connection between the outer side surface of said
4 end section of said filiform element and the inner side surface of
5 said tubular element.

28 - 29. (canceled)

1 30. (currently amended) A procedure for achieving a
2 system of junction of joining a filiform element to a connection
3 element, characterized in that a tubular element is fitted on an
4 end section of said filiform element, said tubular element shaped
5 such that it defines an eye adapted to hook said connection
6 element, the filiform element being a composite round bar heated
7 simultaneously with the tubular element to a predetermined
8 temperature at which both become malleable in order to be shaped to
9 define the eye.

31. (canceled)

1 32. (currently amended) The procedure for achieving a
2 system of junction of a filiform element to a connection element
3 according to any one preceding claim, characterized in that it
4 joins said filiform element to said tubular element in order to
5 transfer the tensile stress load from one to the other.

1 33. (currently amended) A kit for achieving a system of
2 junction of a filiform element to a connection element,
3 characterized in that it comprises one said filiform element,
4 resistant to tensile stress, of thermoplastic composite material,
5 one tubular element to fit on an end section of said filiform
6 element, and a device for folding said tubular element having means
7 of heating adapted to simultaneously heat said filiform element and
8 said tubular element to a predetermined temperature in which said
9 filiform element and said tubular element become malleable, in
10 order to be shaped such to substantially define a hooking eye to
11 said connection element.

1 34. (currently amended) A method for reducing the
2 aerodynamic resistance of a filiform element subject to a fluid
3 flux of variable direction, characterized in that attached along at
4 least one section of said filiform element is at least one element
5 with highly aerodynamic wing profile, supported and freely rotating
6 around said filiform element such that it orients itself in the
7 flux direction which impacts it.

1 35. (currently amended) A device for reducing the
2 aerodynamic resistance of a filiform element subject to a fluid
3 flux of variable direction, which is characterized in that it
4 comprises at least one highly aerodynamic wing element attached
5 along at least one section of said filiform element and supported
6 and freely rotating around said filiform element such that it
7 orients itself in the flux direction which impacts it.

1 36. (currently amended) The device according to the
2 preceding claim 35, characterized in that it is in the form of a
3 wing-shaped foil, having elastically-pliable opposing edges for the
4 snap-lock introduction of said filiform element inside said element
5 with aerodynamic profile.

1 37. (currently amended) The device according to any one
2 claim 35 [[or 36]], characterized in that it is formed in plastic
3 extrusion.

1 38. (currently amended) The device according to any one
2 claim from 35-37 claim 36, characterized in that said foil has at
3 least a first extension projecting from the inner surface in order
4 to join said foil to a precise point on the longitudinal length of
5 said filiform element.

1 39. (currently amended) The device according to any one
2 ~~claim from 35-38~~ claim 36, characterized in that said foil has a
3 plurality of extensions projecting from its inner surface in order
4 to join said foil to a precise point on the longitudinal length of
5 said filiform element having substantially smaller diameter than
6 that of the maximum chord of the curved part of said foil.

40. (canceled)