Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.2.3

по курсу общей физики на тему: «Определение момента инерции твердых тел с помощью трифилярного подвеса»

Работу выполнил: Никифоров Дмитрий (группа Б02-205)

Долгопрудный 31 октября 2022 г.

1 Аннотация

Цели работы: измерение момента инерции тел и сравнение результатов с расчетми по теоретиеским формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Оборудование: трифилярный подвес, весы, линейка, штангенциркуль, лазерный дальномер, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (стержень, полый цилиндр(с толстыми стенками), полуцилиндры и диск).

2 Экспериментальная установка

Для наших целей удобно использовать устройство, показанное на Pис. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположеных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебний. После того, как нижняя платформа P' оказывается повернутой на угол

Рис. 1: Трифилярный подвес¹

 φ относительно верхней платформы P, вощникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные колебания.

3 Теоретические сведения

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции твердого тела относительно неподвижной оси вращения вычисляется по формуле:

¹рисунок взят из учебного пособия "Лабораторный пркатикум по общей физике. Том 1. Механика."

$$I = \int r^2 dm$$

Здесь r — расстояние элемента массы тела dm от оси вращения. Интегрирование проводится по всей массе тела m.

Если пренебречь потерями энергии на трение о воздух и крепление нитей, то уравнение сохранения энергии при коебаниях можно записать следующим образом:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E \tag{1}$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней платформы O' при равновесии ($\varphi=0$), z — координата той же точки при некотором угле поворота φ . Превый член в левой части уравнения — кинетическач энергия вращения, второй член — потенциальная энергия в поле тяжести, E — полная энергия системы (платформы с телом).

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. ??. Координаты верхнего конца одной из нитей подвеса точки C в этой системе – (r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C'' равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^2 = L^2 - R^2 - r^2 + 2Rr\cos\phi \approx z_0^2 - 2Rr(1 - \cos\phi) \approx z_0^2 - Rr\phi^2$$

$$z = \sqrt{z_0^2 - Rr\phi^2} \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляя z в уравнение (1), получаем:

$$\frac{1}{2}I\dot{\varphi^2} + mg\frac{Rr}{2z_0}\varphi^2 = E$$

Дифференцируя по времени и сокращая на $\dot{\varphi}$, находим уравнение крутильных колебаний системы:

$$I\ddot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = 0$$

Производная по времени от E равна нулю, так как потерями на трение, как уже было сказано выше, пренебрегаем. Решение этого уравнения имеет вид:

$$\varphi = \varphi_0 sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right)$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период кртуильных полебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2 \tag{2}$$

где $k=\frac{gRr}{4\pi^2z_0}$ — величина, постоянная для данной установки.

4 Задание

4.1 Проверка установки

При выводе формул мы предполагали, что потери энергии, связанные с трением, малы, то есть мало затухание колебаний. Это значит, что теоретические вычисления будут верны, если выполняется условие:

$$\tau \gg T$$

Проверим данное условие. При отклонении на угол $\alpha \approx 30^\circ$ время, закоторое амплитуда уменьшится в 2 раза, $\tau \approx 240$ с, а $T \approx 3$ с. Соотношение выполняется – установка пригодна для проведение эксперимента.

4.2 Параметры установки и коэффицент k

Работа выполнялась на установке №7, ее параметры указаны в Таблице (1)

Z_0 , cm	σ_{Z_0} , cm	R, мм	σ_R , mm	r, mm	σ_r , mm	т, г	σ_m , г
206	1	115,4	0,5	30,5	0,3	993,5	0,5

Таблица 1: Парметры установки

где $\sigma_m, \, \sigma_R, \, \sigma_r, \, \sigma_L, \, \sigma_{z_0}$ — погрешности соответсвующих величин.

По полученным данным вычислим постоянную для конструкции №3:

$$k = \frac{gRr}{4\pi^2 z_0} \approx 4,24395 \cdot 10^{-4} \frac{M^2}{c^2}$$

Погрешность же k будет равна:

$$\sigma_k = k \cdot \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2} \approx 0.05 \cdot 10^{-4} \frac{M^2}{c^2}$$

4.3 Момент инерции платформы

Определить момент инерции платформы можно по формуле (2). Для этого нам необходимо определить период колебаний ненагруженной платформы. Измеряем преиод, получаем:

T, c	N	Tcp, c	A_0	A_k
134,452	30	4,482	35	25

Тогда, средний период колебания платформы будет: $T_{\rm cp} \approx 4{,}482$, с Давайте здесь же и определим погрешность времени:

$$\sigma_T^{\text{сист}} = 0.001, \text{ c} \quad \sigma_N = 0.5$$
$$\sigma_{T_{\text{cp}}} = T_{\text{cp}} \sqrt{\varepsilon_T^2 + \varepsilon_N^2} = \approx 0.075, \text{ c}$$

Значит $T_{\rm cp} = (4,482 \pm 0,075)\,{\rm c}.$ Теперь мы можем определить момент инерции платформы:

$$I_{\text{п.п}} = kmT^2 \approx 8{,}469, \text{ kg} \cdot \text{m}^2 \cdot 10^{-3}$$

Найдем погрешность найденного нами момента инерции платформы:

$$\varepsilon_I = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_T}{T}\right)^2} \approx 0.035$$

$$\sigma_{I_{\Pi\Pi}} = \varepsilon_I \cdot I_{\Pi\Pi} \approx 0.295, \text{ kg} \cdot \text{m}^2 \cdot 10^{-3}$$

Получаем, что с помощью данной конструкции мы можем определять момент инерции тела с погрешностью 3,5%, и $I_{\rm пл}=(8,5\pm0,3)$, кг · м² · 10^{-3}

4.4 Определение моментов инерции различных тел. Аддитивность моментов инерции

Измерим периоды колебаний платформы с различными телами таким же образом, как и для ненагруженной платформы. Данные полученный в результате измерений представлены в таблице ниже:

Для подтверждения аддитивности необходимо показать, что выполняются условия:

$$I_{\Pi\Pi+\Pi} = I_{\Pi\Pi} + I_{\Pi} \tag{3}$$

$$I_{\text{пл+пол.ц.}} = I_{\text{пл}} + I_{\text{пол.ц.}}$$
 (4)

$$I_{\text{пл+д+пол.ц.}} = I_{\text{пл}} + I_{\text{д}} + I_{\text{пол.ц.}}$$

$$(3) + (4) + (5) \Rightarrow I_{\text{пл+д+пол.ц.}} = I_{\text{д + пл}} + I_{\text{пол.ц. + пл}} - I_{\text{пл}}$$

Подставим в правую часть последней формулы данные из таблицы (2) и сравним с экспериментально полученной левой частью:

1	стержень	т, г	σ_m , Γ	Т, с	N	Tcp, c	A_0	A_k
I, кг*м2	0,01115	1039,40	0,05	115,030	32	3,595	25	20
2	полуцилиндры	т, г	σ_m , Γ	Т, с	N	Tcp, c	A_0	A_k
$I, \kappa \Gamma^* M \hat{2}$	0,01003	1442,20	0,05	93,448	30	3,115	25	20
3	полый циллиндр	т, г	σ_m , Γ	Т, с	N	Tcp, c	A_0	A_k
$I, \kappa \Gamma^* M \hat{2}$	0,01348	777,20	0,05	127,043	30	4,235	30	25
4	диск	т, г	σ_m , Γ	Т, с	N	Tcp, c	A_0	A_k
$I, \kappa \Gamma^* M \hat{2}$	0,01068	584,40	0,05	119,797	30	3,993	35	30

Таблица 2: Моменты инерции платформы с различными телами

$I_{ m m J}$ $+$ $I_{ m IOЛ.II.}$ $+$ $I_{ m IIЛ}$ $ I_{ m III}$	$I_{\text{пл+д+пол.ц.}}$	т, г	dm, г	Т, с	N	Tcp, c	A0	Ak
0,01569	0,01573	1361,60	0,05	158,793	40	3,969825	30	25

Из таблицы видно, что $I_{\text{д}+\text{пл}}+I_{\text{пол.ц.}+\text{пл}}-I_{\text{пл}}$ и $I_{\text{пл+д+пол.ц.}}$ хорошо сходятся, то есть условие аддитивности выполняется.

Из Таблицы (2) и формул (3), (4) мы можем найти момент инерции полого цилиндра, диска, стержня и полуцилиндров:

$$\begin{split} I_{\text{пол.ц.}} &= I_{\text{пл+пол.ц.}} - I_{\text{пл}} = (5.0 \pm 0.8) \,,\, \text{kg} \cdot \text{m}^2 \cdot 10^{-3},\, \varepsilon_{I_{\text{пол.ц.}}} = 16\% \\ I_{\text{д}} &= I_{\text{пл+д}} - I_{\text{пл}} = (2.2 \pm 0.7) \,,\, \text{kg} \cdot \text{m}^2 \cdot 10^{-3},\, \varepsilon_{I_{\text{д}}} = 32\% \\ I_{\text{ct}} &= I_{\text{пл+ct}} - I_{\text{пл}} = (2.7 \pm 0.7) \,,\, \text{kg} \cdot \text{m}^2 \cdot 10^{-3},\, \varepsilon_{I_{\text{ct}}} = 26\% \\ I_{\text{полуц}} &= I_{\text{пл+полуц}} - I_{\text{пл}} = (1.6 \pm 0.7) \,,\, \text{kg} \cdot \text{m}^2 \cdot 10^{-3},\, \varepsilon_{I_{\text{полуц}}} = 44\%. \end{split}$$

Теперь сравним полученные нами моменты инерциии для тел, и их теоретические значения. Для цилиндра (двух полуцилиндров) момент инерции вычисляется так же как и для диска: $I_{\text{полуц}} = \frac{m_{\text{ц}}R_{\text{ц}}^2}{2} = I_{\text{д}}$. Для стержня: $I_{\text{ст}} = \frac{ml^2}{12}$. Для полого цилиндра же: $I_{\text{пол.ц.}} = \frac{m_{\text{пол.ц.}}(R_{\text{внеш}}^2 + R_{\text{внутр}}^2)}{2}$.

В следующей таблице представленный геометричиские характеристики всех тел и их моменты инерций рассчитанные по формулам сверху:

1	стержень	1, см	σ_l , cm	а, см	σ_a , cm		
I, кг*м2	0,00250	17,0	0,1	2,710	0,005		
2	полуцилиндры	R, см	σ_R , cm	а, см	σ_a , cm		
$I, \kappa \Gamma^* M \hat{2}$	0,00147	5	0,005	2,7	0,005		
3	полый циллиндр	D, см	σ_D , cm	а, см	σ_d , cm	Н, см	σ_H , cm
I, кг*м2	0,00478	15,9	0,01	0,435	0,005	5,650	0,005
4	диск	D, см	σ_D , cm	а, см	σ_a , cm	h, см	σ_h
$I, \kappa \Gamma^* M \hat{2}$	0,00212	17,03	0,01	0,350	0,005	2,6	0,005

4.5 Зависимость момента инерции системы тел от их расположения. График зависимости $I(h^2)$

Определим зависимость момента инерции системы двух тел от их взаимного расположения. Для этого располагая грузы, как показано на рис.2, получим зависимость от расстояния. Затем Используя формулу 2, определим зависимость $I(h^2)$.

Полученные результаты измерений занесем в таблицу снизу соответсвенно. Основывываясь на результатах таблицы (3), построим график зависимости $I(h^2)$ (Рис. 2).

Рис. 2. Расположение тел на платформе

парал	сдвиг	T, c	N	Tcp, c	h, см	dh, см	h^2 , M^2	I, κΓ*м ²
1	2h = 4 деления	95,043	30	3,168	2	0,008	0,0004	0,01038
2	2h = 8 делений	112,405	35	3,212	4	0,016	0,0016	0,01066
3	2h = 12 делений	99,983	30	3,333	6	0,024	0,0036	0,01148
4	2h = 16 делений	123,285	35	3,522	8	0,032	0,0064	0,01283
5	$2\mathrm{h}=20$ делений	111,021	30	3,701	10	0,04	0,01	0,01416
6	2h = 24 деления	140,084	36	3,891	12	0,048	0,0144	0,01565
7	2h = 28 делений	123,652	30	4,122	14	0,056	0,0196	0,01756
перп	0 делений	93,448	30	3,115	0	0	9,703	0,01003
1	2h = 4 деления	97,379	30	3,246	2	0,008	0,0004	0,01089
2	2h = 8 делений	101,884	30	3,396	4	0,016	0,0016	0,01192
3	2h = 12 делений	107,324	30	3,577	6	0,024	0,0036	0,01323
4	2h = 16 делений	112,717	30	3,757	8	0,032	0,0064	0,01459
5	$2\mathrm{h}=20$ делений	121,002	30	4,033	10	0,04	0,01	0,01682
6	2h = 24 деления	112,58	26	4,330	12	0,048	0,0144	0,01938

Таблица 3: Зависимость момента инерции системы от расстояния

Рис. 2: Графики зависимости $I(h^2)$

По левому графику понятно, что $I=kh^2+b$. Тогда b- момент инерции платформы + полуцилиндров $(I_{\Pi\Pi}+_{\Pi \Pi\Pi})$, т.е. $b=I_{\Pi\Pi}+\frac{m_{\Pi\Pi}R^2}{2}$.

По теореме Гюйгенса-Штейнера должно выполняться:

$$(I - I_{\text{пл}} =) I'_{\text{пил}} = m_{\text{цил}} h^2 + I_{\text{цил}} \Leftrightarrow I = m_{\text{цил}} h^2 + I_{\text{цил}} + I_{\text{пл}}$$

,т.е. для подтверждения формулы Гюйгенса-Штейнера необходимо показать, что:

$$k=m_{\text{цил}}$$
 и $b=I_{\text{цил}}+I_{\text{пл}}$

Для вычисления коэффициентов k и b (левого графика) воспользуемся методом наименьших квадратов:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx 1,534, \frac{\text{K}\Gamma \cdot \text{M}^2}{\text{M}^2},$$

$$b = \langle y \rangle - k \langle x \rangle \approx 0.01016$$
, кг · м²,

где $x = h^2, y = I$.

Случайные погрешности вычисления k и b можно найти по следующим формулам:

$$\sigma_k^{\text{случ}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \approx 0.026, \, \frac{\text{K}\Gamma \cdot \text{M}^2}{\text{M}^2},$$

$$\sigma_b^{\text{случ}} = \sigma_k^{\text{случ}} \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \approx 0,00004, \, \text{кг} \cdot \text{м}^2.$$

Систематическая погрешность вычисления коэффициентов определяется следующим соотношением:

$$\sigma_b^{\text{сист}} = b\sqrt{(\varepsilon_I)^2 + (\varepsilon_{h^2})^2} \approx b \cdot \varepsilon_I \approx 0,00036, \text{ кг} \cdot \text{м}^2.$$

Тогда полную погрешность вычисления коэффициентов подсчитываем по следующей формуле:

$$\sigma_b = \sqrt{(\sigma_b^{\text{случ}})^2 + (\sigma_b^{\text{сист}})^2} \approx 0,00036, \text{ кг} \cdot \text{м}^2.$$

Таким образом $k=(1,534\pm0,026)$ кг неплохо $(3,5\sigma_k)$ совпадает с $m_{\text{цил}}=1442$ г и $b=(10,16\pm0,36)$ кг · м² хорошо (σ_b) совпадает с $I_{\text{пл}}$ + цил =10,03 кг · м² Значит теорема Гюйгенса-Штейнера выполняется.

5 Вывод

С помощью трифилярного подвеса можно определять момент инерции тел, момент инерции которых больше момента инерции самой платформы, с достаточно большой точностью. В проведенном эксперименте моменты инерции тел были определены с ε_I от 15% до 40%. Такая погрешность обусловлена несовершенством датчика фиксирующего колебания и человеческим фактором.

Мы экспериментально доказали аддитивность моментов инерции с помощью различных тел.

Полученная зависимость $I(h^2)$ аппроксимируется линейой зависимостью, что подвтерждает формулу Гюйгенса-Штейнера ($I = I_c + Mh^2$, где I – момент инерции тела, I_c –момент инерции тела относительно центра, M – масса тела, а h – расстояние между двумя осями, в нашем случае – между осью вращения и половинками диска).