IE1204 Digital Design

L1: Course Overview. Introduction to Digital Technology. Binary Numbers

Masoumeh (Azin) Ebrahimi KTH/ICT mebr@kth.se

IE1204 Digital Design

Course Group-Responsible

William Sandqvist, University Teacher School of Information and Communication Technology (ICT) william@kth.se

Course Group-Lectures

Masoumeh (Azin) Ebrahimi, Senior Researcher School of Information and Communication Technology (ICT) http://people.kth.se/~mebr, mebr@kth.se

My research area:

- Fault-Tolerant and Reliable Many-Core Systems
- eHealth IoT Applications
- Machine Learning and Data Analytics in Wearable Devices

Course Group- Exercises

- Muhammad Shakir, mshakir@kth.se
 - His research is about design and high temperature characterization of a Central Processing Unit (CPU) in Silicon Carbide (SiC) for Venus Landers applications.

- First exercise session is on 30/9 10-12 in sal 210.

Studying at university ...

- Is very different than in high school!
- That the tempo is much higher at KTH than in a high school!
- Means that you take responsibility for your studies!
- An engineering degree provides excellent opportunities for a well-paid, fun and stimulating job, but first you have to get there!

Contact with KTH-Personal

- The lecturer is available during the break and for some time after the lecture
 - Take advantage of this time
- Email
 - KTH staff is flooded by too many emails
 - If necessary, send a plain and clear message to the right person
 - Use your KTH mail address!
 - Put "IE1204: ..." in the subject of your message

kommunikationsteknik

This course...

Course aims

- To teach the <u>theoretical foundations</u> for the analysis and synthesis of combinational and sequential digital circuits
- Through <u>practical problem solving</u>, provide an understanding of various design phases
 - to enable the students <u>designing</u> simple combinational and sequential digital systems

There is a course book...

 Brown/Vranesic, Fundamentals of Digital Logic with VHDL Design (3rd edition), Mc-Graw-Hill, 2009. (abbreviated as BV at webpage)

Read it!

Course book

- From 2014-2016
 - More materials are available on course website https://www.kth.se/social/course/IE1204/
 - Lecture slides from previous years are on this website
- From 2017,
 - The couese will be maintained in Canvas
 https://www.kth.se/social/course/IE1204/page/folj-kursen-pa-canvas/
 - Lecture slides will be updated in Canvas

This lecture

• BV pp. 2-4, 8-12, 17-20

Course aims (cont.)

To teach the students a design methodology

 To confirm that this methodology enables the design of simple digital systems

Course aims (cont.)

- Introduce students to <u>English textbooks</u>
 - All good literature on the subject is in English
 - English is the <u>working language</u> in all major Swedish international companies
 - Speaking English (reasonably) fluent is a prerequisite for a successful career as a civil engineer
- Therefore, we have chosen an English course book!

Examination and structure

- Examination
 - LABA, 3.0 hp
 - Grade: G/U
 - TENA, 4.5 hp
 - Grade A-E/F
- Lectures 28 h (14 x 2h)
- Exercises 16 h (8 x 2h)
- Labs 12 h (3 x 4h)

Lab-times in Canvas

- Located in <u>room 305</u>
- Each student is randomly given a lab time in Canvas. At these times you are guaranteed your place.
- If the time is inappropriate then send an email to William Sandqvist (william@kth.se) to rebook.
 - NOTE! We do not make late rebooking during the lab weeks, so inform well in advance before the lab.
 - After the lab has begun we know how many students have come - there may be some vacancies. (We can not guarantee this)

Knowledge control

- Labs start sharp at the given time
- To get a lab you must first make a mandatory knowledge control (Web-based)
- You will find your "number" in Canvas
- The same "number" is then used for knowledge control for all three labs

Knowledge control

- Note that knowledge control and preparation for labs are very time consuming
- You are therefore advised to start working on these as soon as possible!
- Right after each lecture find the relevant questions and try to answer them...

Final exam

- Look at the schedule...
 - https://www.kth.se/social/course/IE1204/calendar/
- Registration is required
 - No later than two weeks before the exam!

Course content overview

- Specification of the digital functions and systems
- Digital building blocks
- Digital Arithmetic
- Synchronous circuits and state machines
- Asynchronous circuits and state machines
- Larger digital systems: processors and computers
- We will not go through VHDL to any great extent it is a complete course by itself

Why is digital technology important?

Our daily life is affected by digital technology

- Computers are everywhere and in all kinds of products
 - Did you know that there are about 40 to 100 microprocessors in a new car?

Development of electronics

Technological progress allows more and more functionality to be integrated on a single chip

Development of electronics

Intel 4004 (1971)

Intel Xeon 5400 (2008)

3.0 GHz 820 millions of transistors

108 KHz 2,300 transistors

If we had a corresponding development of cars, we would now be able to drive from San Francisco to New York in about 13 seconds (Intel).

Advances in technology

https://en.wikipedia.org/wiki/Transistor_count

Processor	Transistor count	Year	Designer	Process	Area
Intel 4004	2,300	1971	Intel	10,000 nm	12 mm ²
Motorola 68020	190,000	1984	Motorola	2,000 nm	85 mm ²
Pentium	>3 Million	1993	Intel	800 nm	294 mm ²
Pentium II Klamath	>7 Million	1997	Intel	350 nm	195 mm²
Itanium 2 McKinley	>200 Million	2002	Intel	180 nm	421 mm ²
AMD K8	>100 Million	2003	AMD	130 nm	193 mm²
Cell	>200 Million	2006	Sony/IBM/Toshiba	90 nm	221 mm²
POWER6	>700 Million	2007	IBM	65 nm	341 mm ²
Six-core Opteron 2400	>900 Million	2009	AMD	45 nm	346 mm ²
8core POWER7	>2 Billion	2012	IBM	32 nm	567 mm ²
Apple A10 (mobile SoC)	>3 Billion	2016	Apple	16 nm	125 mm ²
24-core AMD EPYC	>19 Billion	2017	AMD	14 nm	195 mm ²

Examples of digital systems (2022)

10x10x10 Chips containing a total of ~6350 Brain Processing Units (BPUs) & ~100 TB DRAM memory

Digital technology has created the basis for this development

- Simple mathematical model
 - Just 1s and 0s as values
 - Boolean algebra (George Boole 1815-1864, English)
 - Efficient implementation of the mathematical model
- Transistor-based integrated circuits
 - Progress in semiconductor technology
 - Effective design methods and tools

kommunikationsteknik

Why digital?

Analog & digital signals

Most of the signal processing today is done digitally

Analog vs. digital

 Instead of an analog signal that can assume continuous values, a digital signal only assumes discrete values

More bits and higher sampling increase signal quality

 If you have enough bits and sufficiently high sampling frequency, a digital signal can efficiently mimic the analog signal

Quantization and digitalization

Quantization Levels

Digital signal sequence

Digital technology is very insensitive to noise

- Not only one voltage value is interpreted as 1 or 0, but an interval of voltage values
- A deviation of a few mV can be very distracting in analog technology, but makes no difference in digital technology

Why binary?

- CMOS transistors are
 - Cheap (made from ordinary sand)
 - Reliable
 - Efficient

It is easy to make a transistor work as a switch

Transistor - switch with no moving parts

Schematic diagram of the SiGe transistor (KTH)

Mathematical model - Boolean algebra: axioms

- In Boolean algebra, there is only 1 (True) and 0 (false) as values
- The following operations are defined: AND, OR, NOT
- The following axiom defines the Boolean algebra

Axiom					
(1a) $0 \cdot 0 = 0$	(1b) $1 + 1 = 1$				
(2a) $1 \cdot 1 = 1$	(2b) $0 + 0 = 0$				
(3a) $0 \cdot 1 = 1 \cdot 0 = 0$	(3b) $1+0=0+1=1$				
(4a) If $x = 0$, then $\overline{x} = 1$	(4b) If $x = 1$, then $\overline{x} = 0$				

The technical background

Boolean algebra was used as a tool to calculate how the networks could be simplified.

Making contact,

Breaking contact, "not"

$$T = a$$
 $T = \overline{a}$

• for serial connection, the "and" -function

$$T = a \cdot b$$

+ for parallell connection the "or"-function

"1"
$$b$$
 $T = a + b$

Gates instead of switches

The switches were replaced by "gates" made of electronic components

With these three basic gate types: OR AND NOT can all logical functions be performed.

• More soon in the course ...

See-of-Gates

With a single type of gate (e.g. NAND), you can do anything with a "sea of gates".

Have we can handle millions of transistors in a design?

A processor contains many gates ...

- Very inefficient to describe it by drawing a network of gates
- We need other methods to describe a system!

Digital hardware in a computer

Figure 1.5. A digital hardware system (Part a).

Figure 1.5. A digital hardware system (Part b).

Simplified Design Process

CAD tools

- CAD tools are capable of handling the complexity (in term of the total number of transistors)
- They help us to <u>design highly efficient integrated</u> <u>circuits</u> for a broad spectrum of applications
 - Computers
 - Telecommunications (switches, routers, mobile)
 - Transport industry (aerospace, automotive)
 - The entertainment industry

— ...

CAD tools (cont.)

- A CAD tool is <u>a program that helps an</u> <u>engineer to design (e.g. an integrated</u> <u>circuit)</u>
- CAD tools can <u>be fully automated or</u> <u>interactive</u>
- CAD tools are based on <u>algorithms that</u> define the order of steps to be applied

CAD tools (cont.)

- CAD tools are not only used for <u>synthesis</u> of circuits, but also for the <u>analysis</u> of circuits
 - E.g. to simulate a circuit description in order to analyze its time delays, how much power it consumes, etc.

Hardware description language (HDL)

- Hardware Description Languages (HDLs) is a programming language that makes it possible to <u>describe the hardware</u> features in a natural way
- In contrast with normal programming languages, like C, where a code is executed sequentially, HDL languages <u>execute a code in</u> <u>parallel</u>
- HDL descriptions <u>can be used as an input to a</u> <u>"synthesizer"</u>, a type of compiler which <u>produces</u> <u>"executable code" for hardware</u>

But now we take it from the beginning ...

Binary numbers

- Digital technology uses only two numerical symbols: 0 and 1
 - Easy to implement each value corresponds to a voltage level, e.g.
 - 0 volts correspond to 0
 - 3 volts correspond to 1

How can we represent ordinary decimal numbers?

Decimal number system

- Decimal number system has 10 different numeric symbols: 0-9
- A decimal number is represented with a sequence of numeric symbols
 - The <u>position in the sequence gives the digit</u> weight which is multiplied by a power of 10 (base in the decimal system is 10)

$$(653)_{10} = 6 \cdot 10^2 + 5 \cdot 10^1 + 3 \cdot 10^0$$

Decimal number system

Representation of an integer in decimal

$$N_{10} = x_{m-1} \cdot 10^{m-1} + x_{m-2} \cdot 10^{m-2} + \dots + x_1 \cdot 10^1 + x_0 \cdot 10^0$$

$$(653)_{10} = 6 \cdot 10^2 + 5 \cdot 10^1 + 3 \cdot 10^0$$

Representation of a number with "comma"

$$N_{10} = x_{m-1} \cdot 10^{m-1} + x_{m-2} \cdot 10^{m-2} + \dots + x_1 \cdot 10^1 + x_0 \cdot 10^0 + x_{-1} \cdot 10^{-1} + x_{-2} \cdot 10^{-2} + \dots$$

$$(6.53)_{10} = 6.10^{0} + 5.10^{-1} + 3.10^{-2}$$

Binary system

 The binary system works in the same way as the decimal system, but uses base 2 (symbols 0-1) instead of 10 (symbols 0-9)

$$N_{2} = x_{m-1} \cdot 2^{m-1} + x_{m-2} \cdot 2^{m-2} + \dots + x_{1} \cdot 2^{1} + x_{0} \cdot 2^{0} + x_{-1} \cdot 2^{-1} + x_{-2} \cdot 2^{-2} + \dots$$

$$2^{2} 2^{1} 2^{0}$$

$$(110)_{2} = 1 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} = (6)_{10}$$

$$2^{1} 2^{0} 2^{-1} 2^{-2}$$

$$(11.01)_{2} = 1 \cdot 2^{1} + 1 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = (3.25)_{10}$$

Binary system

2	10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7

2	10
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15
10000	16

Binary to Decimal

$$(1011010)_2 = (?)_{10}$$

$$(1011010)_2 = 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = (90)_{10}$$

Octal number system

 The octal number system uses base 8 and numerical symbols 0-7

$$N_8 = x_{m-1} \cdot 8^{m-1} + x_{m-2} \cdot 8^{m-2} + \dots + x_1 \cdot 8^1 + x_0 \cdot 8^0 + x_{-1} \cdot 8^{-1} + x_{-2} \cdot 8^{-2} + \dots$$

$$(65.3)_8 = 6 \cdot 8^1 + 5 \cdot 8^0 + 3 \cdot 8^{-1} = (53.375)_{10}$$

Octal number system

2	8	10
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7

2	8	10
1000	10	8
1001	11	9
1010	12	10
1011	13	11
1100	14	12
1101	15	13
1110	16	14
1111	17	15
10000	20	16

Octal to Decimal

$$(567)_8 = (?)_{10}$$

$$(567)_8 = 5 \cdot 8^2 + 6 \cdot 8^1 + 7 \cdot 8^0 = (375)_{10}$$

Binary to Octal

$$(1011010)_2 = (?)_8$$

$$(1011010)_2 = (1 \ 011 \ 010) = (132)_8$$

Hexadecimal number system

 The hexadecimal number system uses base 16 and numerical symbols 0-9 and letters A to F

$$N_{16} = x_{m-1} \cdot 16^{m-1} + x_{m-2} \cdot 16^{m-2} + \dots + x_1 \cdot 16^1 + x_0 \cdot 16^0 + x_{-1} \cdot 16^{-1} + x_{-2} \cdot 16^{-2} + \dots$$

$$(AE.8)_{16} = 10.16^{1} + 14.16^{0} + 8.16^{-1} = (174.5)_{10}$$

Hexadecimal number system

2	8	10	16
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7

2	8	10	16
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F
10000	20	16	10

Hexadecimal to Decimal

$$(1AE)_{16} = (?)_{10}$$

$$(1AE)_{16} = 1 \cdot 16^2 + 10 \cdot 16^1 + 14 \cdot 16^0 = (430)_{10}$$

Binary to Hexadecimal

$$(1011010)_2 = (?)_{16}$$

$$(1011010)_2 = (101\ 1010) = (5A)_{16}$$

Number systems with base b

 A general formulation can be obtained for the base b

$$N_b = x_{m-1} \cdot b^{m-1} + x_{m-2} \cdot b^{m-2} + \dots + x_1 \cdot b^1 + x_0 \cdot b^0 + x_{-1} \cdot b^{-1} + x_{-2} \cdot b^{-2} + \dots$$

Integers in different number systems

2	8	10	16
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7

2	8	10	16
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F
10000	20	16	10

Conversion between decimal and binary numbers

- Conversion from binary to decimal is trivial
- Conversion from decimal to binary can done by repeatedly dividing by 2
 - The remainder gives us the numerical value
 - The numbers are in reverse order Least Significant Bit (LSB) comes first

Q	uotient Rema	ainder		
=	26*2+1	\Rightarrow	$x_0 = 1 \text{ (LSB)}$	1
=	13*2+0	\Rightarrow	$x_1 = 0$	01
=	6*2+1	\Rightarrow	$x_2 = 1$	1 01
=	3*2+0	\Rightarrow	$x_3 = 0$	0101
=	1*2+1	\Rightarrow	$x_4 = 1$	1 0101
=	0*2+1	\Rightarrow	$x_5 = 1 \text{ (MSB)}$	1 10101
	= = = = =	= 26*2+1 $= 13*2+0$ $= 6*2+1$ $= 3*2+0$ $= 1*2+1$	$= 13*2+0 \Rightarrow$ $= 6*2+1 \Rightarrow$ $= 3*2+0 \Rightarrow$ $= 1*2+1 \Rightarrow$	$= 26*2+1 \Rightarrow x_0 = 1 \text{(LSB)}$ $= 13*2+0 \Rightarrow x_1 = 0$ $= 6*2+1 \Rightarrow x_2 = 1$ $= 3*2+0 \Rightarrow x_3 = 0$

$$(35)_{10} = (?)_2$$

$$35 \div 2 = 17 * 2 + 1 \implies x_0 = 1 \text{(LSB)}$$
 $17 \div 2 = 8 * 2 + 1 \implies x_1 = 1$
 $8 \div 2 = 4 * 2 + 0 \implies x_2 = 0$
 $4 \div 2 = 2 * 2 + 0 \implies x_3 = 0$
 $2 \div 2 = 1 * 2 + 0 \implies x_4 = 0$
 $1 \div 2 = 0 * 2 + 1 \implies x_5 = 1 \text{(MSB)}$

$$(35)_{10} = (100011)_2$$

Summary

Design Methodology

- Digital Technology
- CAD tools
 - Necessary to manage the complexity of large designs
- Hardware description language (HDL)
 - It takes too long to construct a gate-level circuit "by hand"
 - By describing a circuit at a higher level, we increase the productivity level (gates/hour) of a designer.

Summary

- There are many different number systems
- Digital technology uses the binary number system
- It is possible to convert numbers between different number systems