11. Multi-criteria Decision-Making Algorithms

PYTHON COURSE SIN YONG TENG

Multi-Criteria Decision-Making (MCDM) Algorithms Concept

Applications:

- 1. Choosing technology
- 2. Choosing process pathway
- 3. Choosing debottlenecking schedule
- Multi-objective optimization
- 5. Choosing stocks, location, items, etc.

Developing an action plan

Algorithmic Steps of MCDM

- 1. Define criteria that are important and to be compared
- 2. Obtain alternative solutions to be ranked or chosen between
- 3. Weights representing the relative importance of the criteria
- 4. Normalize the data carry out the decision-making algorithm

3

What we will do Normalization Weight Determination Method Algorithm Data Normalize Shannon Entropy TOPSIS Rank

Step 1: Load the file and normalize

ity	Product Qualit	Product Yield	Profit	Energy Consumption	Environmental Impact
	48.228	39.805	53042	106376.27	103310.01
	48.3	18.51	657998	24951.52	22640.76
	48.3	17.915	648282	22358.18	20103.3
	48.084	17.915	455246.1	11137.39	8974.44
	48.248	17.915	455246.1	10667.73	8514.9
	46.756	10.1	455246.1	5430	3420
	48.228	60.1	779539.2	107530	20113.29
	48.3	22.13	1122898	25380.34	20113.29
	48.3	21.265	1103099	22787	20113.29
	48.084	14.465	1058369	11331.38	8974.44
	48.248	13.93	996223.4	11331.38	8514.9
	47.576	12.84	1281286	11331.38	11451.96
	24.968	18.145	1761034	10871.93	17445.96
	24.968	18.4	1886242	10330.8	16836.57
	8.3	14.22	1532068	5430	11262.15

1. You are given a file called "technology.csv".

2. Prepare it as a ndarray.

Perform column min-max normalization. $x_{ij} = rac{y_{ij} - y_{ij}^{min}}{y_{ij}^{max} - y_{ij}^{min}}$

4. Save it as "data_norm.csv".

Step 2: Define the weights (Shannon Entropy)

1. Load the normalized data:

$$G = egin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \ y_{21} & y_{22} & \cdots & y_{2n} \ dots & dots & \ddots & dots \ y_{m1} & y_{m2} & \cdots & y_{mn} \ \end{bmatrix}$$

2. Calculate the entropy

$$H_j = -rac{1}{\ln m} \sum_{i=1}^m x_{ij} \ln(x_{ij})$$
 Here: $x_{ij} = rac{x_{ij}}{\sum_{j=1}^m x_{ij}}$

Here:
$$x_{ij} = \frac{x_{ij}}{\sum_{i=1}^{m} x_{ii}}$$

3. Calculate the weight

$$w_j = rac{1-H_j}{n-\sum_{j=1}^n H_j}$$

[0.26536135 0.38851388 0.08670789 0.21241096 0.04700592]

Step 3: TOPSIS

Technique for Order Preference by Similarity to Ideal Solution

1. Multiply the normalized data with the weights:

$$z_{ij} = x_{ij}w_j$$

2. Calculate the Euclidian distance between each data and best solution/worst solution

$S_i^+ = \sqrt{\sum_{j=1}^n \left(z_{ij} - \left(z_j^+\right)^2\right)^2}$		Environmental Impact	Energy Consumption		Product Yield	Product Quality
$S_i^- = \sqrt{\sum_{j=1}^n \left(z_{ij} - \overline{z_j} ight)^2}$	Best Possible	0	0	1	1	1
	Worst Possible	1	1	0	0	0

3. Calculate the closeness of each points, bigger C_i is better.

$$C_i=rac{S_i^-}{S_i^++S_i^-}$$

4. Rank each solutions based on C_i

$$Rank = argsort(C_i)$$

7

Challenge 1 : TOPSIS for Buying Best Engineering Machine

You are given 9 machines below.

Machine Speed	Machine Efficiency	Machine Quality	Machine Yield	Machine Energy Consumption
210	330	54.5	0.00111	150
212	632.5	46	0.00117	355
212	655	87.5	0.000515	305
206.5	1575	38	0.00026	483
206.5	360	111.5	0.00089	190
187.5	1825	80	0.00071	532.5
210	1930	21	0.00002055	771
593	4405	14.05	0.00135	1250
212.5	1655	120	0.00113	448.5

Each criteria has a weight of:

0.291	0.079	0.206	0.188	0.098

- 1. Find the best machine by ranking using TOPSIS with the given weight.
- 2. Find the best machine by ranking using TOPSIS with Shannon Entropy weight.

Pure Grey Relation Analysis Ranking

Material Strength	Material Toughness	
0.054	0.95	
0.066	0.31	
0.071	0.48	
0.092	1.05	
0.072	0.29	
0.058	0.45	
0.131	0.87	
0.119	1.15	
0.091	0.22	
0.143	0.61	
0.075	0.52	
0.104	1.02	
0.152	0.34	
0.12	0.41	
0.125	0.47	
0.112	1.23	

- 1. Min-Max Normalization
- 2. Calculate Difference from Ideal of Every Data

$$\Delta^+_{ij}=|x_{0j}-x_{ij}|$$

3. Calculate Grey Relational Coefficient (GRC)

$$\xi_{ij}^+ = rac{\Delta_{ij}^{+} + \varsigma \Delta_{ij}^{+}}{\Delta_{ij}^{+} + \varsigma \Delta_{ij}^{+}}$$

4. Calculate Grey Relational Grade (GRG)

$$\gamma_i^- = \frac{1}{n} \sum_{j=1}^n \xi_{ij}^-$$

- 5. Rank solution by GRG.
- 6. How does it compare to Shannon Entropy-TOPSIS?

9

Homework: Open-ended MCDM

You are required to find a real-life problem of your own. This can be a research problem.

Apply TOPSIS or any other MCDM algorithms on it to make better decision.