International Rectifier

IRF7809AVPbF

- N-Channel Application-Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- Low Conduction Losses
- · Low Switching Losses
- Minimizes Parallel MOSFETs for high current applications
- 100% Tested for Rg
- Lead-Free

Description

This new device employs advanced HEXFET Power MOSFET technology to achieve an unprecedented balance of on-resistance and gate charge. The reduced conduction and switching losses make it ideal for high efficiency DC-DC converters that power the latest generation of microprocessors.

The IRF7809AV has been optimized for all parameters that are critical in synchronous buck converters including $R_{\text{DS(on)}},$ gate charge and Cdv/dt-induced turn-on immunity. The IRF7809AV offers particularl low $R_{\text{DS(on)}}$ and high Cdv/dt immunity for synchronous FET applications.

The package is designed for vapor phase, infra-red, convection, or wave soldering techniques. Power dissipation of greater than 2W is possible in a typical PCB mount application.

DEVICE CHARACTERISTICS ©

	IRF7809AV					
R _{DS(on)}	7.0 m Ω					
Q _G	41nC					
Q _{sw}	14nC					
Q _{oss}	30nC					

Absolute Maximum Ratings

Paramatan		0	IDEZ000A V	1124
Parameter		Symbol	IRF7809A V	Units
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V _{gs}	±12	
Continuous Drain or Source	T _A = 25°C	I _D	13.3	
Current ($V_{GS} \ge 4.5V$) $T_L = 90^{\circ}C$			14.6	A
Pulsed Drain Current①		I _{DM}	100	
Power Dissipation $T_A = 25^{\circ}C$		P _D	2.5	W
	T _L = 90°C		3.0	
Junction & Storage Temperate	ure Range	T_{J},T_{STG}	-55 to 150	°C
Continuous Source Current (E	Body Diode)	Is	2.5	Α
Pulsed Source Current①		I _{SM}	50	

Thermal Resistance

Parameter		Max.	Units
Maximum Junction-to-Ambient®	$R_{_{ heta\mathsf{JA}}}$	50	°C/W
Maximum Junction-to-Lead	$R_{_{\theta JL}}$	20	°C/W

IRF7809AVPbF

Electrical Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	30	_	-	V	$V_{GS} = 0V$, $I_D = 250\mu A$
Static Drain-Source on Resistance	R _{DS(on)}		7.0	9.0	m $Ω$	V _{GS} = 4.5V, I _D = 15A②
Gate Threshold Voltage	V _{GS(th)}	1.0			V	$V_{DS} = V_{GS}, I_{D} = 250\mu A$
Drain-Source Leakage	I _{DSS}			30		$V_{DS} = 24V, V_{GS} = 0$
Current				150	μΑ	$V_{DS} = 24V, V_{GS} = 0,$
						Tj = 100°C
Gate-Source Leakage Current*	I _{GSS}			±100	nA	$V_{GS} = \pm 12V$
Total Gate Chg Cont FET	Q_{G}		41	62		$V_{GS} = 5V, I_{D} = 15A, V_{DS} = 20V$
Total Gate Chg Sync FET	Q _G		36	54		V _{GS} = 5V, V _{DS} < 100mV
Pre-Vth Gate-Source Charge	Q _{GS1}		7.0			$V_{DS} = 20V, I_{D} = 15A$
Post-Vth Gate-Source Charge	Q _{GS2}		2.3		nC	
Gate to Drain Charge	Q _{GD}		12			I _D =15A, V _{DS} =16V
Switch Chg(Q _{gs2} + Q _{gd})	$Q_{_{\mathrm{sw}}}$		14	21		
Output Charge*	Q _{oss}		30	45		$V_{DS} = 16V, V_{GS} = 0$
Gate Resistance	$R_{\rm G}$		1.5	3.0	Ω	
Turn-on Delay Time	t _{d (on)}		14			$V_{DD} = 16V, I_{D} = 15A$
Rise Time	t _r		36		ns	$V_{GS} = 5V$
Turn-off Delay Time	t _{d (off)}		96			Clamped Inductive Load
Fall Time	t _f		10			
Input Capacitance	C _{iss}	-	3780	ı		
Output Capacitance	C _{oss}	_	1060	-	pF	$V_{DS} = 16V, V_{GS} = 0$
Reverse Transfer Capacitano		C _{rss}	_	130	_	

Source-Drain Rating & Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Diode Forward Voltage*	V _{SD}			1.3	٧	I _S = 15A②, V _{GS} = 0V
Reverse Recovery Charge ®	Q _{rr}		120		nC	di/dt ~ 700A/ μ s $V_{DS} = 16V$, $V_{GS} = 0V$, $I_{S} = 15A$
Reverse Recovery Charge (with Parallel Schottky) ®	Q _{rr(s)}		150		nC	di/dt = $700A/\mu s$ (with 10BQ040) $V_{DS} = 16V$, $V_{GS} = 0V$, $I_{S} = 15A$

- Notes:

 Repetitive rating; pulse width limited by max. junction temperature.
 Pulse width $\le 400 \ \mu s$; duty cycle $\le 2\%$.

 When mounted on 1 inch square copper board, t < 10 sec.
 Typ = measured Q_{oss} Typical values measured at $V_{gs} = 4.5V$, $I_F = 15A$.

International Rectifier

IRF7809AVPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF7809AVPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

500

Fig 13a&b. Basic Gate Charge Test Circuit and Waveform

Page 400 BOTTOM 15A BO

Fig 14a&b. Unclamped Inductive Test circuit and Waveforms

Fig 14c. Maximum Avalanche Energy Vs. Drain Current

6

International TOR Rectifier

IRF7809AVPbF

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

	DIM	INC	HES	MILLIMETERS		
		MIN	MAX	MIN	MAX	
	Α	.0532	.0688	1.35	1.75	
	A1	.0040	.0098	0.10	0.25	
	b	.013	.020	0.33	0.51	
	С	.0075	.0098	0.19	0.25	
	D	.1 89	.1968	4.80	5.00	
	Е	.1 497	.1497 .1574		4.00	
	е	.050 B/	ASIC .	1.27 BASIC		
	e 1	.025 B/	ASIC	0.635 BASIC		
	Н	.2284	.2440	5.80	6.20	
	K	.0099	.01 96	0.25	0.50	
	L	.016	.050	0.40	1.27	
	У	0°	8°	O°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF7809AVPbF

International Rectifier

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.08/05