Trigonometry in Piec LIVE daily 3.0

Right angled Triangle

Trigonometry

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Observation

Observation

$$2) 650 = 6$$

$$Suco = \frac{h}{b}$$

 $\sin^2\theta + \cos^2\theta = 1$

 $\tan^2\theta + 1 = \sec^2\theta$

$$\frac{p^2 + b^2 = h^2}{\left(\frac{p}{b}\right)^2 + 1 = \left(\frac{h}{b}\right)^2}$$

$$\frac{f^2}{f^2} = \frac{h^2}{f^2} = \frac{h^2}{f^2}$$

$$\frac{f^2}{f^2} = \frac{h^2}{f^2} = \frac{h^2}{f^2}$$

$$\frac{f^2}{f^2} = \frac{h^2}{f^2} = \frac{h^2}{f^2}$$

Important Observations

Reciprocal Identities

$$\cot (\theta) = \frac{1}{\tan \theta}$$

$$2 \qquad \operatorname{cosec}(\theta) = \frac{1}{\sin \theta}$$

$$\sec (\theta) = \frac{1}{\cos \theta}$$

Important Observations

Quotient Identities

$$\tan (\theta) = \frac{\sin \theta}{\cos \theta}$$

$$\cot (\theta) = \frac{\cos \theta}{\sin \theta}$$

Sind =
$$\frac{1}{h}$$

Gro = $\frac{1}{h}$

Sind = $\frac{P}{h}$

Sind = $\frac{P}{h}$
 $\frac{1}{h}$
 $\frac{1}$

Tjee

Simplify:
$$\frac{\sin \theta}{1 + \cos \theta} = \frac{1 + \cos \theta}{\sin \theta}$$

A.
$$2 \csc \theta$$

B.
$$2 \sec \theta$$

C.
$$-2 \sec \theta$$

y jee

Simplify:
$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A}$$

C.
$$\cos^2 A - \sin^2 A$$

jee

The expression $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A}$ can be written as:

- sinA cos A + 1

- B. secA cosecA + 1
- **JEE M 2013**
- tanA + cotA D. secA + cosecA

y jee

(Jan A-1) (Jan A + Jan A + 1)

(Jan A-1) Jen A

Sec2 A + tom A tem A

Sect A + 1

SCLA 6864+1

Tjee

Find the value of $(5 \sin \theta - 3 \cos \theta)$ if $3\sin\theta + 5\cos\theta = 5$

$$\frac{(3\sin\theta + 5\cos\theta)^{2}(5)}{(5\sin\theta - 3\cos\theta)^{2}(m)^{2}} \rightarrow \frac{(3\sin\theta + 2\cos\theta)^{2}(m)^{2}}{(9\cos\theta + 2\cos\theta)^{2}(m)^{2}} \rightarrow \frac{(3\sin\theta + 2\cos\theta)^{2}(m)^{2}}{(3\cos\theta + 2\cos\theta)^{2}(m)^{2}} \rightarrow \frac{(3\sin\theta + 2\cos\theta)^{2}(m)^{2}}{(3\cos\theta + 2\cos\theta)^{2}(m)^{2}} \rightarrow \frac{(3\cos\theta + 2\cos\theta)^{2}(m)^{2}}{(3\cos\theta + 2\cos\theta)^{2}(m)^{2}} \rightarrow \frac{(3\cos\theta + 2\cos\theta)^{2}(m)^{2}}{(3\cos\theta + 2\cos\theta)^{2}} \rightarrow \frac{(3\cos\theta + 2\cos\theta)^{2}}{(3\cos\theta + 2\cos\theta)^{2}} \rightarrow \frac{(3\cos\theta +$$

yjee

$$9 + 25 = 25 + m^{2}$$
 $m^{2} = 9$
 $m = +3$

T jee

Simplify:
$$\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1}$$

$$\frac{\cos A}{1 - \sin A}$$

$$\frac{\cos A}{1 + \sin \Delta}$$

$$B. \quad \frac{1-\sin A}{\cos A}$$

$$\int_{-\infty}^{\infty} \frac{1 + \sin A}{\cos A}$$

jee

Let $f_k(x) = \frac{1}{L} (\sin^k x + \cos^k x)$ where $x \in R$ and $k \ge 1$. Then

T jee

$$F_4(x) - f_6(x)$$
 equals

$$\frac{1}{12}$$

$$\mathbf{c.} \ \frac{1}{6}$$

$$\begin{cases} \{x(x) = \frac{1}{K} (sin^{k}x + cos^{k}x) \} \\ \{y(x) - y(x) = \frac{1}{K} (sin^{k}x + cos^{k}x) - \frac{1}{K} (sin^{k}x + cos^{k}x) \} \\ \{y(x) - y(x) = \frac{1}{K} (sin^{k}x + cos^{k}x) \} \end{cases}$$

$$= \frac{1}{4} \left(\left(\frac{\sin^2 n + (\cos^2 n)^2 - 2 \sin^2 n (\cos^2 n)}{\sin^2 n + (\cos^2 n)^2 - 2 \sin^2 n (\cos^2 n)} \right)$$

$$=\frac{1}{4}\left(\frac{(\sin^2 n + \cos^2 n) - 2\sin^2 n\cos^2 n}{2}\right)$$

$$-\frac{1}{6}((\sin^{2}n+\cos^{2}n)^{2}-3\sin^{2}n\cos^{2}n(\sin^{2}n+\cos^{2}n))$$

$$= \frac{1}{4}\left(1-2\sin^2n\cos^2n\right)-\frac{1}{6}\left(1-3\sin^2n\cos^2n\right)$$

8 - (15)

If $\tan \theta + \sec \theta = 1.5$, find $\sin \theta$.

A.
$$\frac{12}{13}$$

B.
$$\frac{5}{13}$$

c.
$$\frac{3}{12}$$

$$=) \sec \theta - \tan \theta = \frac{2}{3}$$

If
$$\sin^2 x + \sin x = 1$$
 \Rightarrow $\sin x = 1 - \sin^2 x \rightarrow \sin x = \cos^2 x$

Then find the value of $\cos^{12}x + 3\cos^{10}x + 3\cos^{8}x + \cos^{6}x$

A.

B. 2

3

D. None of these

Gsn +3605n+3605n+605x

$$(65^2n)^6 + 3(65^2n)^5 + 3(65^2n)^7 + (65^2n)^3$$

 $(55^2n)^6 + 3(55^2n)^5 + 3(65^2n)^7 + (65^2n)^3$

jee

$$\frac{(\sin^2 x)^3 + 3(\sin^2 x)^3 (\sin^2 x)}{(\sin^2 x)^3 + 3(\sin^2 x)^3 (\sin^2 x)} + 3(\sin^2 x)^3 +$$

If
$$\sin^2\theta + \sin\theta = 1$$
, Then, find the value of $\tan^4\theta - \tan^2\theta$

- A. $2\sin\theta 1$
- C. $\sin \theta 1$

$$\sin^2\theta - \cos^2\theta$$

D. None of these

$$Sin\theta + Sin\theta = 1$$

$$Sin\theta = Los\theta$$

🔀 jee

Now1 Cos40 - Cos20

T-Ratios of Standard Angles

T-Ratios of standard angles:

1 450

T-Ratios of standard angles:

² 30° and 60°

T-Ratios of standard angles:

³ 0° and 90°

T-Ratios of standard angles: Summary

	0°	30°	45°	60°	90°
sin θ	0	$\frac{1}{2}$	$\sqrt{\frac{1}{\sqrt{2}}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\sqrt{\frac{1}{\sqrt{2}}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cosec θ	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec θ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cot θ	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Need for extending understanding of Trigonometry

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

Ashwin Prasanth 99.94

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

99.50

Devashish Tripathi

99.52

Tarun Gupta 99.50

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Yash Bhaskar 99.28 99.10

99.02

98.67

98.59

98.16 98.48

Step 1

Step 2

India's Biggest Free Scholarship Test for IIT-JEE Aspirants

- Free Registration.
- Scholarship for Top 150 rankers.
- 100% scholarship for Top 3 rankers

Win scholarship from a pool of 4Cr+
Terms and conditions ap

IIT-JEE Combat: Every Sunday | 11 AM

USE CODE - SAMEERLIVE

Thank you

#JEE Live Daily

unacademy

unacademy

unacademy

Download Now!