

Dischi SSD (Solid State Drive)

"Solid": circuiti integrati (memorie flash di tipo NAND)

Floating gate:

- non attivo non interferisce con il control gate; rappresenta bit a 1
- se attivato tramite alto
 voltaggio, intrappola elettroni
 che rimangono anche in
 assenza di alimentazione;
 rappresenta bit a 0

Organizzata in array da 16 o 32 transistor collegati in serie:

- la bit line va a 0 solo se tutti i transistor delle corrispondenti linee della parola sono a 1 (attivati)
- letture e scritture coinvolgono l'intera parola

Dischi SSD: vantaggi

- Operazioni di I/O ad alte prestazioni al secondo (IOPS): aumenta notevolmente le prestazioni dei sottosistemi di I/O
- Durata: meno suscettibile a urti e vibrazioni
- Maggiore durata: gli SSD non sono soggetti a usura meccanica
- Consumo energetico inferiore: gli SSD consumano molta meno energia rispetto agli HDD di dimensioni comparabili
- Funzionalità più silenziose e più fredde: meno spazio richiesto, costi energetici inferiori e più ecologici
- Tempi di accesso e tassi di latenza inferiori: oltre 10 volte più veloci dei dischi rotanti in un HDD

Dischi SSD: vantaggi

	NAND Flash Drives	Seagate Laptop Internal HDD
File copy/write speed	200–550 Mbps	50–120 Mbps
Power draw/battery life	Less power draw, averages 2–3 watts, resulting in 30+ minute battery boost	More power draw, averages 6–7 watts and therefore uses more battery
Storage capacity	Typically not larger than 512 GB for notebook size drives; 1 TB max for desktops	Typically around 500 GB and 2 TB max for notebook size drives; 4 TB max for desktops
Cost	Approx. \$0.50 per GB for a 1-TB drive	Approx. \$0.15 per GB for a 4-TB drive

HDD godono di un vantaggio in termini di costo per bit e di capacità, ma queste differenze si stanno via via riducendo

Dischi SSD: organizzazione

Sistema Host:

- per accedere ai dati sul disco, il s.o. richiama il software del file system, che a sua volta, richiama il software del driver di I/O, che fornisce l'accesso host al particolare prodotto SSD
- il componente di interfaccia si riferisce all'interfaccia fisica ed elettrica tra il processore host e l'SSD

SSD:

- *Controller*: fornisce l'interfacciamento a livello di dispositivo SSD e l'esecuzione del firmware
- *Indirizzamento*: logica che esegue la funzione di selezione tra i componenti della memoria flash
- *Buffer/cache dati*: RAM ad alta velocità per compensare velocità e aumentare il *throughput* dei dati
- Correzione degli errori: logica per il rilevamento e la correzione degli errori
- Componenti della memoria flash: singoli chip flash NAND

Dischi SSD: funzionamento

I dischi SSD hanno due problemi:

- performance che decadono con l'uso
 - ☐ file memorizzati in pagine di 4KB, tipicamente non in pagine contigue
 - □ grandezza del blocco della memoria flash: 512 KB (128 pagine)
 - scrittura in una pagina:
 - 1. l'intero blocco che contiene la pagina deve essere letto dalla memoria flash e inserito in un buffer RAM, dove la pagina è aggiornata
 - prima che il blocco possa essere riscritto nella memoria flash, è necessario cancellare l'intero blocco della memoria flash
 - 3. l'intero blocco dal buffer viene riscritto nella memoria flash
 - □ con l'uso i file si *frammentano* (pagine memorizzate su blocchi diversi) e le prestazioni decadono
 - □ soluzioni: over-provisioning, cancellazione pagine inattive, comando TRIM
- numero limitato di scritture: intorno a 100.000 scritture
 - soluzioni: cache front-ending, distribuzione scritture, gestione blocchi esauriti, RAID, stima lunghezza vita blocchi