GWSW Ontologie in RDF

Algemene toelichting

Versie: 26 oktober 2017

Gegevenswoordenboek Stedelijk Water

Project-organisatie

- Projectteam
- Werkgroepen
 - Inspectie-/reinigingsprojecten
 - Uitwisseling/kwaliteitsbewaking
 - Hydraulische modellering
 - Maatregelelen
 - Meldingen
- Begeleidingscommissie, CCvD
- Extern advies en applicatieontwikkeling

Producten

- GWSW-Basis
- GWSW-RIB (uitwisselformaat RibX)
- GWSW-Hyd
- GWSW-MdsPlan/MdsProj (conformiteitsklassen)
- OroX (uitwisselprotocol)
- IMBOR-Riolering (IMSW)
- GWSW-Maatregelen

- Een ontologie voor processen en systemen Stedelijk Water
- Ontwikkeling sinds 2006 (GWB Riolering) en 2011 (GWSW)

GWSW: doel

- Eenduidige gegevensuitwisseling
 - Doorstroming in plaats van omzetting (1 keer opslaan, N keer toepassen)
 - Verbeterde afstemming processen (en normen) met systemen
- Applicatie-neutraal Gegevens "los van" van applicaties
 - Samenwerking in gegevensbeheer (uniforme kwaliteitsmeting)
 - Kansen voor ontwikkelaars
 - Openbaar = verbeterde kwaliteit?

Daarvoor nodig:

- Harmonisatie
- Standaardisatie

GWSW: doel bereikt?

Applicaties Stedelijk Water Beheer

- De beheersystemen sluiten aan (leveren GWSW-conforme datasets)
 - Uitwisseling via GWSW.ribx (opvolging SUF-RIB)
 - Uitwisseling conform GWSW-Hyd (opvolging SUF-HYD)

Gezamenlijk kaartbeeld (GWSW Geoserver)

- Samenwerkingsverband NAD: Delfland, Den Haag, Pijnacker, Delft ...
- Regio Hollands Noorderkwartier
- Diverse "zelfstandige" gemeentes (Zwolle, Barneveld, Leiden, ...)

Gezamenlijk gegevensbeheer (GWSW Nulmeting)

- Waterkring West: Brabantse Delta, Moerdijk, Woensdrecht ...
- Regio Peelen: Maasgouw ...
- Waterpanel Noord (Limburg): Gegevenshuis

GWSW: techniek

GWSW: praktijk

GWSW – Raadplegen

http://data.gwsw.nl

http://geodata.gwsw.nl

GWSW – Ontwikkelen

http://review.gwsw.nl/webprotege

GWSW: praktijk

GWSW – Toepassen

http://apps.gwsw.nl

GWSW: praktijk

GWSW - Geoserver

http://geodata.gwsw.nl

GWSW: techniek

GWSW: gereedschap

Back end: in Gellish (Excel)

- Modelleren, ondersteund door VBA
- Kwaliteitscontrole in VBA
- Filtering (modules, conformiteitsklassen)

Front end: in RDF

- RDF/RDFS/OWL 2
- Turtle

Raadplegen: van RDF naar HTML (c++)

Ontwikkelen: van RDF naar Protégé (turtle)

Toepassen: REST API op endpoint (java, python)

C++

SPARQL endpoint (GraphDB, sesame)

GWSW: uitgangspunten

Gebruik de ervaringen

- CIM Architects
- CROW: CHEOBS
- TNO (CMO)
- Semmtech (Gellish / Relatics)

Koester de rijke semantiek van Gellish

- Taxonomie op basis expliciete definities
- Decompositie op basis expliciete samenstellingen
- Cardinaliteit, UoM, MinMax, Administratie

GWSW: uitgangspunten

Class-central (versus Property-central)

- Analoog aan COINS: "geobjectiviceerde properties"
- Kenmerken zijn classes met eventueel eigen kenmerken

Maar:

• Indirect, complex

Hier helpt de OWL 2 semantiek Class expressions

```
:Put
rdfs:subClassOf
[
rdf:type owl:Restriction;
rdfs:label "hasAspect_Breedte put";
owl:maxQualifiedCardinality "1"^xsd:nonNegativeInteger;
owl:onProperty :hasAspect;
owl:onClass :BreedtePut
].
```


GWSW: properties

Hou het beperkt:

Model

Property	Туре
rdf:type	
rdfs:subClassOf	
rdfs:label	
skos:altLabel	
skos:hiddenLabel	
skos:notation	
skos:definition	
rdfs:isDefinedBy	
rdfs:comment	
hasUnit	owl:AnnotationProperty
hasDateStart	owl:AnnotationProperty
hasDateChange	owl:AnnotationProperty
hasAspect	owl:ObjectProperty
hasValue	owl:DatatypeProperty
haaDafaranaa	owl:FunctionalProperty owl:ObjectProperty
hasReference	owl:FunctionalProperty
hasInput	owl:ObjectProperty
hasOutput	owl:ObjectProperty
hasPart	owl:ObjectProperty
hasConnection	owl:ObjectProperty
	owl:SymmetricProperty
hasRepresentation	owl:ObjectProperty owl:FunctionalProperty
	own and the following the first open by

Property
rdf:type
rdfs:label
hasAspect
hasValue
hasReference
hasInput
hasOutput
hasPart
hasConnection
hasRepresentation

Dataset

En de restrictie-properties: owl:onProperty owl:hasValue owl:allValuesFrom owl:unionOf

...

GWSW: valideren

Reasoning en validatie:

- 1. hasReference binnen range van collecties (UNA)
- 2. Domain/range "hasPart".
 - Ruimte hasPart Ruimte of FysiekObject
 - FysiekObject hasPart Ruimte of FysiekObject
- 3. Intrinsiek aspect.
 - hasAspect BreedteLeiding => Individual = Leiding
- 4. Onderscheidend kenmerk.
 - hasAspect Uitvoering + hasReference Klein => Individual = KleinObject
- 5. Datatype has Value: decimal, string, integer, double, date, time, year.
- 6. Range numerieke waarden
- 7. Cardinaliteit, boven maximum (UNA)
 - ook "inverse"-cardinaliteit
- 8. Cardinaliteit, onder minimum of exact
 - wel gemodelleerd, controle beperkt (OWA)

Soms: Reasoning op basis Unique Name Assumption (UNA) Beperkt: Vanwege Open World Assumption (OWA)

GWSW: raakvlak met NEN3610?

Concentreren op de taxonomie

Determineren, soorten beschrijven met:

- Onderscheidende kenmerken (hasAspect, hasReference)
 - Doel (waarvoor), Toepassing (waarin), Functie (wat doet het), Uitvoering (hoe),
 Structuur (waaruit)
- Kwalificerende samenstelling (hasPart + cardinaliteit)
- Intrinsieke aspecten (hasAspect)

GWSW: raakvlak met NEN3610?

GWSW-schema bruikbaar... toch wel?

Gebruik de OWL 2 semantiek

Nadere info op: apps.gwsw.nl

