Chapitre 12. Ensembles dénombrables

Plan du chapitre

1 Définition d'un ensemble dénombrable $\ldots \ldots 1$	page	2
2 Divers types d'ensembles dénombrables	page	3

1 Définition d'un ensemble dénombrable

DÉFINITION 1. Soit E un ensemble. E est **dénombrable** si et seulement si il existe une bijection de ℕ sur E.

⇒ Commentaire.

- ♦ Les éléments d'un ensemble dénombrable peuvent être « égrenés » les uns après les autres : le premier, le deuxième, le troisième ... Dit autrement, un ensemble dénombrable E peut être décrit comme l'ensemble des valeurs d'une suite : $E = \{x_n, n \in \mathbb{N}\}$.
- \diamond Si φ est une bijection de E sur \mathbb{N} , alors φ^{-1} est une bijection de \mathbb{N} sur E et si φ est une bijection de E sur \mathbb{N} . Donc, on a aussi : E est dénombrable si et seulement si il existe une bijection de E sur \mathbb{N} .

Exemple 1. Soit $\varphi: \mathbb{N} \to \mathbb{Z}$ est une bijection. $n \mapsto \begin{cases} \frac{n}{2} \sin n & \text{est pair} \\ -\frac{n+1}{2} \sin n & \text{est impair} \end{cases}$

En effet, ϕ est bien une application. Soit alors $\psi: \mathbb{Z} \to \mathbb{N}$. $n \mapsto \left\{ \begin{array}{ll} 2n \sin n \geqslant 0 \\ -(2n+1) \sin n < 0 \end{array} \right.$

 ψ est une application de \mathbb{N} dans \mathbb{Z} .

 $\mathrm{Soit}\ n\in\mathbb{N}.\ \psi(\phi(n))=\left\{\begin{array}{l} 2\phi(n)\ \mathrm{si}\ \phi(n)\geqslant 0\\ -(2\phi(n)+1)\ \mathrm{si}\ \phi(n)<0 \end{array}\right..\ \mathrm{De\ plus},\ \phi(n)\geqslant 0\Leftrightarrow n\ \mathrm{est\ pair\ et\ donc}$

$$\psi(\phi(n)) = \left\{ \begin{array}{l} 2 \times \frac{n}{2} \ \mathrm{si} \ n \ \mathrm{est \ pair} \\ -\left(2\left(-\frac{n+1}{2}\right) + 1\right) \ \mathrm{si} \ n \ \mathrm{est \ impair} \end{array} \right. = n.$$

De même, pour $n \in \mathbb{Z}$,

$$\phi(\psi(n)) = \left\{ \begin{array}{l} \frac{2n}{2} \sin n \geqslant 0 \\ -\frac{-(2n+1)+1}{2} \sin n < 0 \end{array} \right. = n.$$

Donc, $\psi \circ \varphi = Id_{\mathbb{N}}$ et $\varphi \circ \psi = Id_{\mathbb{Z}}$. On sait alors que φ est une bijection et que $\psi = \varphi^{-1}$. Puisqu'il existe une bijection de \mathbb{N} sur \mathbb{Z} ,

 \mathbb{Z} est dénombrable.

Exemple 2. Soit $\varphi: \mathbb{N} \to 2\mathbb{N}$. φ est une bijection de l'ensemble \mathbb{N} des entiers naturels sur l'ensemble $2\mathbb{N}$ des entiers pairs. Donc,

2N est dénombrable.

Théorème 1. Si E est un ensemble dénombrable et si F est un ensemble en bijection avec E, alors F est dénombrable.

DÉMONSTRATION. Soit f une bijection de E sur $\mathbb N$ et soit g une bijection de F sur E. Alors, $g \circ f$ est une bijection de F sur $\mathbb N$ et donc F est dénombrable.

2 Divers types d'ensembles dénombrables

On a vu précédemment que 2N est dénombrable. Plus généralement :

Théorème 2. Toute partie infinie de \mathbb{N} est dénombrable.

DÉMONSTRATION. Soit A une partie infinie de \mathbb{N} . Construisons une bijection strictement croissante de \mathbb{N} sur A.

- A est en particulier une partie non vide de \mathbb{N} . Donc, A admet un plus petit élément que l'on note $\varphi(0)$. Puisque A est infinie, $A \setminus [0, \varphi(0)]$ est encore infinie et en particulier n'est pas vide. Donc, $A \setminus [0, \varphi(0)]$ admet donc un plus petit élément que l'on note $\varphi(1)$. Par construction, $\varphi(1) > \varphi(0)$. De plus, $A \cap [\varphi(0), \varphi(1)] = {\varphi(1)}$.
- Soit $n \geqslant 1$. Supposons avoir construit $\phi(0), \ldots, \phi(n)$ tels que $\phi(0) < \ldots < \phi(n)$ et pour $k \in [\![1,n]\!], A \cap [\![\phi(k-1), \phi(k)]\!] = \{\phi(k)\}.$

Puisque A est infinie, $A \setminus \llbracket 0, \varphi(n) \rrbracket$ est encore infinie et en particulier, $A \setminus \llbracket 0, \varphi(n) \rrbracket$ est une partie non vide de \mathbb{N} . $A \setminus \llbracket 0, \varphi(n) \rrbracket$ admet un plus petit élément que l'on note $\varphi(n+1)$. Par construction, $\varphi(n+1) > \varphi(n)$ et $A \cap \llbracket \varphi(n), \varphi(n+1) \rrbracket = \{\varphi(n+1)\}$.

On vient de construire par récurrence une application φ de \mathbb{N} dans A, strictement croissante et donc injective.

Soit alors $y \in A$. Si $y \in [0, \phi(0)]$, alors $y \in [0, \phi(0)] \cap A = \{\phi(0)\}$ et donc $y = \phi(0) \in \phi(\mathbb{N})$.

Sinon, puisque la suite $(\phi(n))_{n \in \mathbb{N}}$ est une suite strictement croissante d'entiers naturels, il existe $k \in \mathbb{N}^*$ tel que $\phi(k-1) < y \leqslant \phi(k)$. On en déduit que $y \in A \cap [\phi(k-1), \phi(k)] = \{\phi(k)\}$ et donc que $y = \phi(k) \in \phi(\mathbb{N})$.

On a montré que $\phi(\mathbb{N}) = A$ et donc que ϕ est surjective. Finalement, ϕ est une bijection de \mathbb{N} sur A ou encore A est dénombrable.

Une conséquence du théorème 1 est :

Théorème 3. Un ensemble non vide est fini ou dénombrable si et seulement si il est en bijection avec une partie non vide de \mathbb{N} .

DÉMONSTRATION. Soit E un ensemble non vide fini ou dénombrable. Si E est fini, on sait qu'il existe $n \in \mathbb{N}^*$ tel que E soit en bijection avec [1,n] (n est alors le cardinal de E). Si E est infini dénombrable, E est en bijection avec \mathbb{N} . Dans tous les cas, E est en bijection avec une partie non vide de \mathbb{N} .

Réciproquement, soit E est un ensemble non vide tel qu'il existe une bijection f de E sur une certaine partie non vide A de \mathbb{N} . Si A est finie, il existe $\mathfrak{n} \in \mathbb{N}^*$ et g bijection de A sur $[1, \mathfrak{n}]$ (où \mathfrak{n} est le cardinal de A). Mais alors, $\mathfrak{g} \circ \mathfrak{f}$ est une bijection de E sur $[1, \mathfrak{n}]$ et donc E est fini (de cardinal \mathfrak{n}).

Si A est infinie, d'après le théorème 1, A est dénombrable et donc il existe une bijection g de A sur \mathbb{N} . Dans ce cas, $g \circ f$ est une bijection de E sur \mathbb{N} et donc E est dénombrable.

Théorème 4. \mathbb{N}^2 est dénombrable.

Démonstration. Soit $\phi: \mathbb{N}^2 \to \mathbb{N}^*$. ϕ est une application de \mathbb{N}^2 dans \mathbb{N}^* . $(\mathfrak{m},\mathfrak{p}) \mapsto 2^{\mathfrak{m}}(2\mathfrak{p}+1)$

Soit $(\mathfrak{m},\mathfrak{p})\in\mathbb{N}^2$. $\varphi(\mathfrak{m},\mathfrak{p})=1\Leftrightarrow 2^{\mathfrak{m}}(2\mathfrak{p}+1)=1\Leftrightarrow 2^{\mathfrak{m}}=2\mathfrak{p}+1=1\Leftrightarrow \mathfrak{m}=\mathfrak{p}=0\Leftrightarrow (\mathfrak{m},\mathfrak{p})=(0,0).$ Donc, l'élément 1 de \mathbb{N}^* a un et seul antécédent par φ à savoir (0,0).

Sinon, pour $n \ge 2$ donné, le théorème fondamental de l'arithmétique montre qu'il existe un et un seul couple (m,p) d'entiers naturels tel que $n = 2^m(2p+1)$ (n est de manière unique le produit d'une puissance de 2 et d'un nombre impair) et que ce couple (m,p) n'est pas le couple (0,0). En résumé,

$$\forall n \in \mathbb{N}^*, \exists !(m,p) \in \mathbb{N}^2 / \varphi(m,p) = n.$$

 φ est donc une bijection de \mathbb{N}^2 sur \mathbb{N}^* . Puisque \mathbb{N}^* est une partie infinie de \mathbb{N} , \mathbb{N}^* est dénombrable d'après le théorème 2 et finalement \mathbb{N}^2 est dénombrable d'après le théorème 1.

 \Rightarrow Commentaire. On peut citer une autre bijection de \mathbb{N}^2 sur \mathbb{N} (voir exercices maths sup, planche n^o 4, exercice n^o 13):

$$\forall (x,y)\in \mathbb{N}^2, \ f(x,y)=\frac{(x+y)(x+y+1)}{2}+y.$$

	0	1	2	3	4	5	
0	(θ,θ)	(9,1)	(0,2)	$(9,3)^{1}$	0 (0,4)	(0,5)	
0	(1,0)	(1,1)	(1,2)	$^{1}(1,3)$	(1,4)	(1,5)	
0 5	$(z,0)^{8}$	(2,1)	² (2,2)	(2,3)	(2,4)	(2,5)	
0 9	(3,0) ¹	³ (3,1)	(3,2)	(3,3)	(3,4)	(3,5)	
0	(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	
0	(5,0)	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	

Théorème 5. Un produit cartésien (fini) d'ensembles dénombrables est dénombrable.

DÉMONSTRATION.

 \bullet Commençons par vérifier le résultat pour un produit de deux ensembles dénombrables. Soient E_1 et E_2 deux ensembles dénombrables.

Il existe une bijection f_1 de E_1 sur \mathbb{N} et une bijection f_2 de E_2 sur \mathbb{N} .

Soit $\phi: E_1 \times E_2 \to \mathbb{N}^2$. Pour tout $(n,m) \in \mathbb{N}^2$, il existe un et un seul $(a,b) \in E_1 \times E_2$ tel que $(f_1(a),f_2(b)) = (n,m)$. $(a,b) \mapsto (f_1(a),f_2(b))$

Ceci montre que ϕ est une bijection de $E_1 \times E_2$ sur \mathbb{N}^2 . Puisque \mathbb{N}^2 est dénombrable d'après le théorème 4, $E_1 \times E_2$ est dénombrable d'après le théorème 1.

 $\bullet \mbox{ Soit } k \geqslant 2. \mbox{ Supposons qu'un produit cartésien de k ensembles dénombrables soit dénombrable. Soient $E_1, \ldots, E_{k+1}, k+1$ ensembles dénombrables. Alors <math display="block">\prod_{i=1}^{k+1} E_i = \left(\prod_{i=1}^k E_i\right) \times E_{k+1} \mbox{ est dénombrable par hypothèse de récurrence et d'après le cas $k=2$.}$

On a montré par récurrence qu'un produit cartésien (fini) d'ensembles dénombrables est dénombrable.

L'exemple 1 du paragraphe 1) permet d'énoncer

Théorème 6. \mathbb{Z} est dénombrable.

et en cumulant les résultats des théorèmes 4, 5 et 6, on peut énoncer

Théorème 7. $\forall k \in \mathbb{N}^*, \mathbb{N}^k$ est dénombrable et $\forall k \in \mathbb{N}^*, \mathbb{Z}^k$ est dénombrable.

Théorème 8. Une réunion dénombrable d'ensembles dénombrables est dénombrable.

surjective de $I \times \mathbb{N}$ sur E. D'autre part, I est dénombrable et donc $I \times \mathbb{N}$ est dénombrable d'après le théorème 5. Il existe donc une bijection ψ de \mathbb{N} sur $I \times \mathbb{N}$. L'application $g = \psi \circ \varphi$ est une surjection de \mathbb{N} sur E.

Montrons alors qu'à partir de l'application g, on peut construire une application bijective de E sur une partie infinie de N.

Soit $y \in E$. $g^{-1}(y) = \{n \in \mathbb{N}/\ g(n) = y\}$ est une partie non vide de \mathbb{N} . Donc, $g^{-1}(y)$ admet un plus petit élément que l'on note n_y . Considérons $f \colon E \to \mathbb{N}$. f est une application de E dans \mathbb{N} . Soient alors y et y' deux éléments de E. Si $n_y = n_{y'}$, alors $y \mapsto n_y$

 $y = g(n_y) = g(n_{y'}) = y'$. Donc, f est une application injective de E dans \mathbb{N} ou encore f induit une bijection de E sur A = f(E) qui est une partie de \mathbb{N} . On en déduit que E est fini ou dénombrable. Comme E contient au moins un ensemble dénombrable, E est infini et finalement E est dénombrable.

En adaptant un peu la démonstration précédente, on obtient le théorème suivant que nous admettrons :

Théorème 9. Une réunion finie ou dénombrable d'ensembles finis ou dénombrables est un ensemble fini ou dénombrable.

On en déduit en particulier que

Théorème 10. \mathbb{Q} est dénombrable.

 $\mathbf{D\acute{e}monstration.} \quad \text{Pour } n \in \mathbb{N}^*, \text{ posons } E_n = \Big\{\frac{\alpha}{b}, \ (\alpha,b) \in \mathbb{Z} \times \mathbb{N}^*, \ |\alpha| \leqslant n, \ b \leqslant n \Big\}. \text{ On a } \mathbb{Q} = \bigcup_{n \in \mathbb{N}^*} E_n \text{ et chaque } E_n \text{ est finity } \mathbb{C}_n = \mathbb{C}_n$

(de cardinal inférieur ou égal à n(2n+1)). Donc, $\mathbb Q$ est fini ou dénombrable d'après le théorème précédent puis $\mathbb Q$ est dénombrable car $\mathbb Q$ est infini.

Plus généralement,

Théorème 11. $\forall k \in \mathbb{N}^*, \mathbb{Q}^k$ est dénombrable.

Le théorème 9 fournit aussi une application aux suites sommables de nombres complexes. Si $(u_i)_{i \in I}$ est une famille de nombres complexes indexée par un ensemble non vide I, le **support** de la famille $(u_i)_{i \in I}$ est l'ensemble des indices $i \in I$ tels que $u_i \neq 0$. On a alors

Théorème 12. Le support d'une famille sommable de nombres complexes est fini ou dénombrable.

 $\begin{aligned} \mathbf{D\acute{e}monstration} \,. & \quad \mathrm{Soit} \,\, (u_i)_{i \in I} \,\, \mathrm{une} \,\, \mathrm{famille} \,\, \mathrm{sommable} \,\, \mathrm{de} \,\, \mathrm{nombres} \,\, \mathrm{complexes}. \,\, \mathrm{Posons} \,\, I_0 = \{i \in I/\,\, |u_i| > 1\} \,\, \mathrm{puis} \,\, \mathrm{pour} \,\, n \in \mathbb{N}^*, \\ I_n = \left\{i \in I/\,\, \frac{1}{n+1} < |u_i| \leqslant \frac{1}{n}\right\}. \,\, \mathrm{Posons} \,\, \mathrm{enfin} \,\, J = \{i \in I/\,\, u_i = 0\}. \,\, I \,\, \mathrm{est} \,\, \mathrm{la} \,\, \mathrm{r\acute{e}union} \,\, \mathrm{disjointe} \,\, \mathrm{des} \,\, I_n, \,\, n \in \mathbb{N}, \,\, \mathrm{et} \,\, \mathrm{de} \,\, J, \,\, \mathrm{et} \,\, \mathrm{le} \,\, \mathrm{support} \,\, S \,\, \mathrm{de} \,\, \mathrm{la} \,\, \mathrm{famille} \,\, (u_i)_{i \in I}. \,\, \mathrm{Puisque} \,\, \mathrm{la} \,\, \mathrm{famille} \,\, (u_i)_{i \in I} \,\, \mathrm{est} \,\, \mathrm{sommable}, \,\, \mathrm{le} \,\, \mathrm{th\acute{e}or\acute{e}me} \,\, \mathrm{de} \,\, \mathrm{sommation} \,\, \mathrm{par} \,\, \mathrm{paquets} \,\, \mathrm{permet} \,\, \mathrm{d} \,\, \mathrm{\acute{e}crire} \,\, \mathrm{de} \,\, \mathrm{le} \,\, \mathrm{le}$

$$\sum_{i\in I}|u_i|=\sum_{i\in J}|u_i|+\sum_{n=0}^{+\infty}\left(\sum_{i\in I_n}|u_i|\right)=\sum_{n=0}^{+\infty}\left(\sum_{i\in I_n}|u_i|\right).$$

En particulier, pour tout $n \in \mathbb{N}$,

$$\sum_{i \in I} |u_i| \geqslant \sum_{i \in I_n} |u_i| \geqslant \frac{1}{n} \sum_{i \in I_n} 1 = \frac{\operatorname{card}\left(I_n\right)}{n}.$$

 $\mathrm{Ainsi}, \ \mathrm{pour} \ \mathrm{tout} \ \mathfrak{n} \in \mathbb{N}, \ \mathrm{card} \left(I_{\mathfrak{n}} \right) \leqslant \mathfrak{n} \sum_{i \in I} |u_i| < + \infty.$

Finalement, $S = \bigcup_{n \in \mathbb{N}} I_n$ est une réunion dénombrable d'ensembles finis et donc S est fini ou dénombrable.

Citons enfin un premier exemple très important d'ensemble non dénombrable :

Théorème 13. \mathbb{R} n'est pas dénombrable.

DÉMONSTRATION. Contentons nous de montrer que l'intervalle [0,1[n'est pas dénombrable. Supposons le contraire par l'absurde. On peut donc trouver une bijection $n \mapsto x_n$ de \mathbb{N} dans [0,1[et en particulier [0,1[est l'ensemble des valeurs d'une certaine suite $(x_n)_{n \in \mathbb{N}}$:

$$[0,1[=\{x_n,\ n\in\mathbb{N}\}.$$

On sait que chaque réel x_n de [0,1[admet un développement décimal propre de la forme $x_n=0,d_{n,1}d_{n,2}d_{n,3}\dots$ où les $d_{n,k},\ k\in\mathbb{N}^*$, sont les décimales de x_n et donc des éléments de [0,9] et les $d_{n,k},\ k\in\mathbb{N}^*$, ne sont pas toutes égales à 9 à partir d'un certain rang. On va maintenant construire un réel de [0,1[qui ne peut être l'un des x_n selon le principe de la diagonale de Cantor :

On considère $x=0,c_1c_2c_3...$ où c_1,c_2,c_3 sont des chiffres éléments de [0,8] tels que $c_1\neq d_{0,1},c_2\neq d_{1,2},c_3\neq d_{2,3}...$ Puisque $\forall n\in\mathbb{N}^*,c_n\neq d_{n-1,n}$, on en déduit que $\forall n\in\mathbb{N},x\neq x_n$ par unicité d'un développement décimal propre. L'hypothèse de dénombrabilité faite sur [0,1[est donc absurde et on a montré que [0,1[n'est pas dénombrable et finalement que \mathbb{R} n'est pas dénombrable.

⇒ Commentaire . \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} sont des ensembles infinis. Il existe une bijection de \mathbb{N} sur \mathbb{Z} ou \mathbb{Q} mais il n'existe pas de bijection de \mathbb{N} sur \mathbb{R} (il existe néanmoins une injection de \mathbb{N} sur \mathbb{R} à savoir $\mathfrak{n} \mapsto \mathfrak{n}$). Dit autrement, « l'infini de \mathbb{R} est strictement plus grand que l'infini de \mathbb{N} , \mathbb{Z} ou \mathbb{Q} ». Les mathématiciens ont décidé de noter \aleph_0 (aleph 0 où aleph est la première lettre de l'alphabet hébreu) le cardinal de \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \aleph_1 le cardinal de \mathbb{R} . On a donc

$$\aleph_0 < \aleph_1$$
.

CANTOR a mis en évidence le fait que chaque fois que l'on se donne un ensemble E (fini ou pas), on peut en construire un autre de cardinal strictement plus grand : si E est un ensemble alors $card(E) < card(\mathcal{P}(E))$ (on a bien sûr $card(E) \leq card(\mathcal{P}(E))$ car on dispose d'une injection de E dans $\mathcal{P}(E)$ à savoir l'injection $x \mapsto \{x\}$). La démonstration du fait qu'il n'existe pas de bijection de E sur $\mathcal{P}(E)$ ressemble à un tour de magie où l'on doit découvrir le truc et pourtant il n'y a aucun truc :

Soit f une application de E vers $\mathscr{P}(E)$. Soit $A = \{x \in E \mid x \notin f(x)\}$. Montrons que A est un élément de $\mathscr{P}(E)$ qui n'a pas d'antécédent par f. Dans le cas contraire, il existe $x_0 \in E$ tel que $f(x_0) = A$. Mais où est $x_0 ?$ Si $x_0 \in A = \{x \in E \mid x \notin f(x)\}$, alors $x_0 \notin f(x_0) = A$ ce qui est une contradiction et si $x_0 \notin A = \{x \in E \mid x \notin f(x)\}$, alors $x_0 \in f(x_0) = A$ ce qui est une contradiction. Donc, x_0 n'existe pas ou encore A est un élément de $\mathscr{P}(E)$ qui n'a pas d'antécédent dans E par f.

On a montré qu'une application de E vers $\mathscr{P}(E)$ n'est jamais surjective. Notons que dans le cas où E est fini de cardinal n, ce qui précède montre (de manière assez sophistiquée) que $n < 2^n$. Ainsi, par exemple, $\mathscr{P}(\mathbb{R})$ est un ensemble infini de cardinal strictement plus grand que \aleph_1 le cardinal de \mathbb{R} , cardinal que les mathématiciens ont appelé \aleph_2 et ainsi de suite.

$$\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 \dots$$