# Automated Traffic Detection in Dhaka-ai 2020 Challenge

Dr. Shaikat Galib | H2O.ai | Cedar Park, TX, USA | 13 Dec. 2020

### Introduction

- Dhaka city has one of the worst traffic systems around the world, primarily due to limited road and lack of regulations.
- Automated vehicle detection can help improve traffic monitoring, regulation and public safety.
- Machine learning / deep learning methods are promising techniques for automatic detection of vehicles.
- In this competition, a traffic image dataset was collected and annotated with bounding boxes. The goal is to accurately detect different vehicles from images.
- In this work, different state-of-the-art object detection models were trained under controlled experimental conditions to find a suitable method for Dhaka traffic detection.

### Dataset

#### **Dataset stats:**

- Train Images: 3,003 (at different scale and resolution)
- Total classes: 21
- Total boxes: 24,368



Fig: Training class distribution

#### **Dataset challenges:**

- Small dataset
- Images taken from different cameras and poses
- Class imbalance observed
- Label noise, inconsistent annotation









Traffic at night



From bus

From side

Fig: Sample training images

## Methods

- The traffic detection pipeline is built on 2 stages: **Detection and Classification.**
- At detection stage, 7 YOLOv5x [1] models were trained for generating the detection bounding boxes. Weighted boxes fusion (WBF) [2] approach was used to ensemble the boxes. These models were trained on original train data and pseudo-label test data.
- At classification stage, 4 image classification models were trained on the bounding-box crops. EfficientNet-B4 and CSPResNet50 backbones were used with imagenet pretrained weights. These models were then applied to refine the predictions of detection models. The models were trained on original train data, pseudo-label data from both stage1 and stage2 test sets and external data collected by web scraping.
- Post-processing was a part of the algorithm to further refine the results. Detection area too small or too large was discarded. Moreover, multiple class detection for a same vehicle was kept, if it satisfies a certain threshold. Rare classes were dealt with by allowing more predictions from classification models.

## Experiments

#### **Expt. 1: Baseline solution**

- Baseline model was trained with a YOLOV5x architecture.
- COCO pretrained weight was used for transfer learning.
- ~2500 images were used for training and rest for validation.
- Folds were created by annotator name.

| Model                   | YOLOV5x   |
|-------------------------|-----------|
| Resolution              | 1024      |
| Epoch                   | 50        |
| Learning rate scheduler | One-cycle |
| Augment.                | Basic     |
| LB                      | 0.175     |



Fig. Training augmentations

#### Expt. 2: Fine-tune with strong augment (@1024)

• Finetune with strong augmentation helped improve the results. Best augmentation parameters were found using Genetic algorithm on COCO dataset.

| Augmentations                       | Pre-training (50 epoch) | Fine-tuning (50 epoch) |
|-------------------------------------|-------------------------|------------------------|
| image rotation (+/- deg)            | 0.0                     | 0.373                  |
| image translation (+/- fraction)    | 0.1                     | 0.245                  |
| image scale (+/- gain)              | 0.5                     | 0.898                  |
| image shear (+/- deg)               | 0.0                     | 0.602                  |
| image flip left-right (probability) | 0.5                     | 0.5                    |
| image mosaic (probability)          | 1.0                     | 1.0                    |
| image mixup (probability)           | 0.0                     | 0.243                  |
| LB                                  | 0.175                   | 0.185                  |

#### Expt. 3 & 4: Image resolution and Dataset size

 Higher resolution yielded better accuracy.  Increasing the size of dataset by pseudo-labeling improved generalization.

| Image Resolution | LB (full train) |  | Dataset size                  | LB (@1024) |
|------------------|-----------------|--|-------------------------------|------------|
| 800x800          | 0.2034          |  | Fold 1                        | 0.1826     |
| 1024x1024        | 0.2003          |  | Fold 2                        | 0.1759     |
| 1280x1280        | 0.2051          |  | Full train                    | 0.2003     |
| 1600x1600        | 0.2088          |  | Full + Pseudo-<br>label stg 1 | 0.2059     |

#### Expt. 5: Effect of Image pre-processing (@1024)

 CLAHE image contrast enhancement algo. was used to improve image quality.

 This pre-process did not improve single model results but contributed in improving the ensemble.

| Processing | LB (full tr.) |
|------------|---------------|
| None       | 0.2003        |
| CLAHE      | 0.1953        |



Fig. Training images using CLAHE preprocessing

#### Expt. 6: Effect of Classification models (@1024)







Fig. Crops from training dataset





| hod                  | I B   |
|----------------------|-------|
|                      |       |
| CSPResNet50 (x2)     | Class |
| EfficientNet-B4 (x2) |       |

| 777-808381 | wethod                     | LD     |  |
|------------|----------------------------|--------|--|
|            | Detection                  | 0.2003 |  |
| ıg         | Detection + Classification | 0.2215 |  |
|            |                            |        |  |

#### Expt. 7: Add external images

 About 1000 rare class images were collected by web scraping for training classification models.









Fig: Images from the internet

#### **Expt. 8: Post-processing**

- Filter by confidence: Discard detections that has confidence score < 0.1.
- Filter by area: Discard any detection that has area >200,000 or <200 pixels.
- Alter predictions by class-groups: Categorised the 21 classes into 3 categories: Rare, Medium and High. Allow more predictions from classification models for rare category than the other two.

## Results

- Leaderboard scores are on stage 2 test set.
- Runtime: 3.6 sec / image for running the full pipeline.

Detection models: weights: [1,1,1,1,2,2,2]



Fig. Schematic diagram of full pipeline and LB scores

Computation resources:

- 1 2080Ti and 1 TitanX GPU for most of the development.
- 4 P100 GPUs for training large models occasionally.

## Conclusions

- YOLOv5 object detection architecture was studied for dhaka traffic detection problem. Adding classification models with external data helped increasing the rare class vehicle detection and overall accuracy.
- EfficientDet architectures were also experimented with. However, they yielded relatively poor results.

## Reference

- [1] <a href="https://github.com/ultralytics/yolov5">https://github.com/ultralytics/yolov5</a>
- [2] <a href="https://github.com/ZFTurbo/Weighted-Boxes-Fusion">https://github.com/ZFTurbo/Weighted-Boxes-Fusion</a>