Sizing of the EV powertrain

Dr. Gautham Ram, Delft University of Technology

Learning objectives

- What are the forces on a vehicle while driving?
 - Rolling resistance force
 - Aerodynamic drag force
 - Gradient force
- How to use the traction force to control the speed?
- How should the powertrain of the vehicle be sized?

Rolling resistance force

Rolling resistance force

$$F_{roll} = c_r mg$$

where

 c_r - coefficient of rolling resistance

m - mass of the vehicle [kg]

g - standard gravity [9.8 m/s²]

Rolling resistance force

$$F_{roll} = c_r mg \cos(\theta)$$

where

 c_r - coefficient of rolling resistance

m - mass of the vehicle [kg]

g - standard gravity [9.8 m/s²]

 θ - road gradient angle [rad or 0]

Rolling resistance force

$$F_{roll} = c_r mg \cos(\theta)$$

- Approx. independent of speed
- Opposing the driving direction
 - Coefficient c_r is around 0.01-0.02

Aerodynamic drag force

Aerodynamic drag force

$$F_{aero} = \frac{1}{2} c_d A_f \rho v^2$$

where

 c_d - coefficient of drag

 A_f - frontal area of vehicle [m²]

ho - density of air [~1.22 kg/m³]

Aerodynamic drag force

$$F_{aero} = \frac{1}{2} c_d A_f \rho v^2$$

Aerodynamic drag force

- Independent of vehicle weight
- Increases with square of speed
- Coefficient c_d is 0.25-0.35

Gradient force

Gradient force

 $F_{grad} = mg \sin(\theta)$

- θ is negative for downhill
- θ is positive for uphill
- Road gradient is expressed as $tan(\theta)$ and typically within ±10%

Net force on the vehicle

Net force on the vehicle

$$F_{tract} = c_r mg \cos(\theta) + \frac{1}{2} c_d A_f \rho v^2 + mg \sin(\theta) + ma$$

$$P_{tract} = F_{tract}v$$

where

Force-speed diagram

$$F_{tract} = ma + (F_{aero} + F_{roll} + F_{grad})$$

- Vehicle mass is 1.5t
- Frontal area is 2.5m²
- Acceleration is zero
- No road gradient

Force-speed diagram

$$F_{tract} = ma + (F_{aero} + F_{roll} + F_{grad})$$

Road inclination

- No road gradient
- 5% road gradient downhill
- 5% road gradient uphill

Force-speed diagram

$$F_{tract} = ma + (F_{aero} + F_{roll} + F_{grad})$$

Acceleration

- $a = 1 m/s^{2}$
- ma = 1500N

Power for auxiliaries

- Vehicle auxiliaries:
 - Heating, air conditioning
 - Lighting
 - Wiper
 - Window, seat adjustment
 - Lock system
 - •

$$P_{batt} = P_{tract} + P_{aux}$$

15

Sizing of the EV powertrain

Dr. Gautham Ram, Delft University of Technology

Тb