Appunti di Algebra A.A. 2023/2024

1 Introduzione

1.1 Relazioni

Una **relazione** é un sottoinsieme del prodotto cartesiano di due o piú insiemi. Una relazione su A é un sottoinsieme di $A \times A$.

 a_1 é in relazione con a_2 e si scrive a_1Ra_2 .

Def. Una relazione é di equivalenza se rispetta le seguenti proprietá:

Riflessiva: $aRa \ \forall a \in A \ (\text{ogni elemento} \ \acute{\text{e}} \ \text{in relazione} \ \text{con se stesso})$

Simmetrica: $a_1Ra_2 \implies a_2Ra_1 \ \forall a_1, a_2 \in A$

Transitiva: $a_1Ra_2 \wedge a_2Ra_3 \implies a_1Ra_3$

1.2 Funzioni/Applicazioni

```
f: X \to Y
```

```
f iniettiva: \forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2

f suriettiva: \forall y \in Y, \exists x \in A : y = f(x)

f biettiva: \forall y \in Y, \exists ! x \in A : y = f(x)
```

1.3 Insiemi numerici

L'insieme dei numeri razionali $\mathbb Q$ introduce gli inversi del prodotto (es. $3 \to \frac{1}{3}$). L'insieme dei numeri reali $\mathbb R$ introduce limiti, radici e altri valori.

L'insieme dei numeri complessi \mathbb{C} introduce le radici di indice pari di numeri negativi tramite l'unitá immaginaria i e i suoi multipli. Un numero complesso é esprimibile in forma polare come a+ib, con $a,b\in R$.

1.4 Campi

 $(K,+,\cdot)$ é un campo se:

```
+, · sono associative (a+(b+c)=(a+b)+c), commutative (a+b=b+a) e distributive (a(b+c)=ab+ac)
```

esistono elementi **neutri** (0 per la somma (a+0=a), 1 per il prodotto $(a \cdot 1 = a)$) e **opposti** (-a per la somma (a-a=0), x^{-1} per il prodotto $(x \cdot x^{-1} = 1)$, che restituscono il valore neutro

Alcuni insiemi campi sono $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

1.4.1 Campi finiti

Dato un numero intero $n \geq 0$, definiamo su \mathbb{Z} la relazione di equivalenza

$$a \equiv b(n) \iff \exists k \in Z : a - b = k \cdot n$$

essa rispetta tutte e 3 le proprietá elencate sopra.

Definiamo $[b] = \{a \in Z : a \equiv b(n)\} \in Z_n = \{[0], [1], ..., [n-1]\}.$ Es. in $Z_2 = \{[0], [1]\}, [0]$ sono i numeri pari, [1] quelli dispari.

Definiamo su \mathbb{Z}_n le operazioni:

$$[a] + [b] = [a+b], [a] \cdot [b] = [a \cdot b]$$

Es. Possiamo scrivere, con la notazione dei campi finiti, il prodotto tra numeri interi:

Dato
$$Z_2$$
: $[0] \cdot [0] = [0], [0] \cdot [1] = [0 \cdot 1] = [0], [1] \cdot [1] = [1 \cdot 1] = [1].$

 Z_n é un campo \iff n é **primo**. Se n non é primo, non esisterá l'inverso di un fattore di n, ovvero non esisterá nessuna classe di elementi che se moltiplicata con la classe del fattore restituisca classe 1.

1.5 Spazi vettoriali

Uno **spazio vettoriale** definito su un campo K é un insieme V con due operazioni:

$$+: V \times V \to V \ (v_1, v_2) \to v_1 + v_2)$$

 $\cdot: K \times V \to V \ (a, v \to av)$

che verificano le seguenti proprietá: + é commutativa, associativa, con elem. neutri (vettore nullo) e opposti (-v), · é associativa, distribuitiva rispetto alla somma e con elemento neutro.

Per ogni campo K, K^n é uno spazio vettoriale su K. $K^n = \{(x_1, x_2, ..., x_n), x_i \in K, \forall i = 1, ..., n\}$ $v = (x_1, x_2, ..., x_n), u = (y_1, y_2, ..., y_n)$ $v + u = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $av = (ax_1, ax_2, ..., ax_n), a \in K$

1.6 Sottospazi vettoriali

Un sottoinsieme non vuoto (contenente almeno il vettore nullo) $U \subseteq V$ (spazio vettoriale su K) é un **sottospazio vettoriale** (SSV) di V se é **chiuso** rispetto alle sue operazioni, cioé:

- $\bullet \ \forall v_1, v_2 \in U \to v_1 + v_2 \in U$
- $\forall v_1 \in U, a \in K, a \cdot v_1 \in U$

Esempio: $V=R^2$ spazio vettoriale su R, $U=\{(x,y)\in R^2:y=2x\}$. É un SSV?

Se $v_1, v_2 \in U : v_1 = (x_1, y_1) \to y_1 = 2x_1, v_2 = (x_2, y_2) \to y_2 = 2x_2$ $v_1 + v_2 = (x_1 + x_2, 2x_1 + 2x_2) \to (x_1 + x_2, 2(x_1 + x_2)) \implies v_1 + v_2 \in U$. Inoltre, $\forall a \in R, a \cdot v_1 = a(x_1, 2ax_1) \implies a \cdot v_1 \in U$. Quindi, U é un SSV di V.

Graficamente, significa che la somma di qualsiasi coppia di vettori presenti sulla retta y=2x é un vettore sempre giacente su questa retta, cosí come il prodotto di qualsiasi vettore giacente sulla retta per un qualsiasi scalare é un vettore sempre giacente su questa retta.

U é un SSV di $V \iff \forall u_1, u_2 \in U, \forall a_1, a_2 \in K$. Dimostrazione:

- \Rightarrow : se U é un SSV di V e u_1, u_2 in $U \implies a_1u_1, a_2u_2 \in U \implies a_1u_1 + a_2u_2$
- \Leftarrow : se $a_1u_1+a_2u_2\in U \forall a_1,a_2\in K$, in particolare: prendendo $a_1=1,a_2=1,u_1+u_2\in U$, prendendo a_1 qualsiasi e $a_2=0,a_1u_1\in U$

1.7 Combinazione lineare

Dati $v_1, v_2, \ldots, v_n \in V$, diciamo che $v \in V$ é una **combinazione lineare** di v_1, v_2, \ldots, v_n se $\exists a_1, a_2, \ldots, a_n \in K : v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$, quindi se v é esprimibile come la somma di tutti i vettori di V moltiplicati per un corrispettivo scalare.

Per quanto osservato sopra, U é un SSV \iff contiene tutte le combinazioni lineari di tutti i suoi elementi. Non esiste una combinazione lineare u degli elementi di U che non sia $\in U$.

Esempio: $V = R^2$, $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (3,-2)$. $v_3 = 3v_1 - 2v_2$ quindi v_3 é combinazione lineare di v_1, v_2 . Altro esempio: $u_1 = (2,0)$, $u_2 = (-1,0)$, $u_3 = (3,-2)$. u in questo caso non é combinazione lineare di u_1, u_2 perché non é possibile ottenere la seconda coordinata -2 essendo 0 in entrambi.

1.8 Span

Un SSV U di V é **generato** da $\{v_1, \ldots, v_n\}$ se ogni elemento $u \in U$ é combinazione lineare di v_1, \ldots, v_n , cioé se $\forall u \ inU, \exists a_1, \ldots, a_n \in K : u = a_1v_1 + \cdots + a_nv_n$. U é lo **span** di $\{v_1, \ldots, v_n\}$ ed é scritto $U = \langle v_1, \ldots, v_n \rangle$. Si noti che

l'insieme contiene infiniti elementi, siccome infinite sono le combinazioni lineari ottenibili $(a_1, \ldots, a_n \in R)$.

```
Esempio: V = R^4 = \{(x, y, z, w), x, y, z, w \in R\}, v_1 = (2, 0, 0, 0), v_2 = (0, 1, -1, 0). Il sottospazio generato da v_1, v_2 é \langle v_1, v_2 \rangle = \{a_1v_1 + a_2v_2, a_1, a_2 \in R\} = (2a_1, 0, 0, 0) + (0, a_2, -a_2, 0) = (2a_1, a_2, -a_2, 0) = \{(x, y, z, w) \in R^4 : y + z = 0, w = 0\}. Altro esempio: V = R[x], \langle x^2, x, 1 \rangle = \{ax^2 + bx + c, a, b, c \in R\} = \{ \text{ tutti i polinomi di grado } \leq 2 \} (con a = 0 il grado \leq 2).
```

1.9 Indipendenza lineare

Un insieme di vettori $\{v_1, \ldots, v_2\}$ é linearmente indipendente se nessun vettore é la combinazione lineare degli altri vettori dell'insieme, ovvero se l'unica combinazione lineare di v_1, \ldots, v_n che restituisce il vettore nullo é quella con tutti i coefficienti $a_1, \ldots, a_n \in K = 0$. Questo perché se un vettore é combinazione lineare di un insieme di vettori (es. $v_3 = 2v_1 + 4v_2$), basta dare i giusti coefficienti $(a_1 = 2, a_2 = 4, a_3 = -1)$ per fare in modo che si annullino e mettere i coefficienti degli altri vettori a 0.

Un insieme di vettori é **linearmente dipendente** se non é linearmente indipendente. Non é peró detto che ogni vettore apparentenente a un insieme linearmente dipendente sia combinazione lineare di altri (es. $v_1 = (1,0), v_2 =$ $(2,0), v_3 = (0,1) \rightarrow v_2 = 2v1$ ma v_3 non é combinazione lineare di v_1, v_2), é sufficiente che una coppia di vettori sia ricavabile l'una dall'altra per rendere tutto l'insieme linearmente dipendente.

1.9.1 Equivalenza definizioni di indipendenza lineare

- 1. Nessun vettore tra v_1, \ldots, v_n é combinazione lineare degli altri
- 2. Se $a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = 0, \dots, a_n = 0$

Se la 1 é falsa, $\exists v_i$ (supponiamo per semplicitá sia v_1) che é combinazione lineare degli altri, quindi $v_1 = a_2v_2 + \cdots + a_nv_n \iff v_1 - a_2v_2 - \cdots - a_nv_n = 0 \implies$ la 2 é anch'essa falsa perché i coefficienti non sono per forza tutti 0 (sicuramente $a_1 = 1$).

Se la 2 é falsa significa che $\exists a_1, \ldots, a_n$ con almeno un $a_i \neq 0$: $a_1v_1 + \cdots + a_nv_n = 0$, allora $v_i = \frac{a_1}{a_i}v_1 + \cdots + \frac{a_n}{a_i}v_n \implies$ la 1 é anch'essa falsa siccome v_i é combinazione lineare degli altri.

1.10 Base

Sia V uno spazio vettoriale su K, $\{v_1, \ldots, v_n\}$ é una **base** di V se $\{v_1, \ldots, v_n\}$ é **indipendente** e **genera V**.

Ad esempio, per $V = \mathbb{R}^2, \{(1,0), (0,1)\}$ é indipendente e genera \mathbb{R}^2 , quindi é

una base, mentre $\{(1,0),(0,1),(1,1)\}$ genera R^2 ma é lineramente dipendente, quindi non é una base.