Using target to generate features

Simple example

- Categorical feature
 - some city
- Binary classification

d v	feature	feature_label	feature_mean	target
0	Moscow	1	0.4	0
1	Moscow	1	0.4	1
2	Moscow	1	0.4	1
3	Moscow	1	0.4	0
4	Moscow	1	0.4	0
5	Tver	2	0.8	1
6	Tver	2	0.8	1
7	Tver	2	0.8	1
8	Tver	2	0.8	0
9	Klin	0	0.0	0
10	Klin	0	0.0	0
11	Tver	2	0.8	1

Why does it work?

- Label encoding gives random order. No correlation with target
- 2. Mean encoding helps to separate zeros from ones

Why does it work?

Reaching a better loss with shorter trees

What will you learn?

- ✓ Construct encodings
- ✓ Correctly validate them
- ✓ Extend them

Indicators of usefulness

Ways to use target variable

Goods - number of ones in a group, Bads - number of zeros

•
$$Likelihood = \frac{Goods}{Goods + Bads} = mean(target)$$

• Weight of Evidence =
$$\ln \left(\frac{Goods}{Bads} \right) * 100$$

•
$$Count = Goods = sum(target)$$

•
$$Diff = Goods - Bads$$

Springleaf example

```
In [4]:
    means = X_tr.groupby(col).target.mean()
    train_new[col+'_mean_target'] = train_new[col].map(means)
    val_new[col+'_mean_target'] = val_new[col].map(means)
    means
```

```
Out[4]: VAR_1277
0.0 0.358965
1.0 0.219249
2.0 0.193671
3.0 0.191143
4.0 0.191080
5.0 0.185694
```

Springleaf example

```
dtrain = xgb.DMatrix(train_new, label=y_tr)
dvalid = xgb.DMatrix(val_new, label=y_val)

evallist = [(dtrain, 'train'),(dvalid, 'eval')]
evals_result3 = {}
model = xgb.train( xgb_par, dtrain,3000,evals=evallist,
verbose_eval=30,evals_result=evals_result3,early_stopping_rounds=50)
```


Overfit

Train

Validation

	feature	feature_label	feature_mean	target
8	Tver	2	0	0
9	Klin	0	0	0

	feature	feature_label	feature_mean	target
10	Klin	0	1	1
11	Tver	2	1	1

Regularization

- 1. CV loop inside training data;
- 2. Smoothing;
- 3. Adding random noise;
- 4. Sorting and calculating expanding mean.

 $2. \ \, \frac{mean(target)*nrows+globalmean*alpha}{nrows+alpha}$

- Robust and intuitive
- Usually decent results with 4-5 folds across different datasets
- Need to be careful with extreme situations like LOO

KFold scheme


```
y_tr = df_tr['target'].values #target variable
skf = StratifiedKFold(y_tr,5, shuffle=True,random_state=123)

for tr_ind, val_ind in skf:
    X_tr, X_val = df_tr.iloc[tr_ind], df_tr.iloc[val_ind]
    for col in cols: #iterate though the columns we want to encode
        means = X_val[col].map(X_tr.groupby(col).target.mean())
        X_val[col+'_mean_target'] = means
    train_new.iloc[val_ind] = X_val

prior = df_tr['target'].mean() #global mean
train_new.fillna(prior,inplace=True) #fill NANs with global mean
```

- Perfect feature for LOO scheme
- Target variable leakage is still present even for KFold scheme

Leave-one-out

	feature	feature_mean	target
0	Moscow	0.50	0
1	Moscow	0.25	1
2	Moscow	0.25	1
3	Moscow	0.50	0
4	Moscow	0.50	0

Regularization. Smoothing

- Alpha controls the amount of regularization
- Only works together with some other regularization method

$$\frac{mean(target)*nrows+globalmean*alpha}{nrows+alpha}$$

Regularization. Noise

- Noise degrades the quality of encoding
- How much noise should we add?
- Usually used together with LOO

Regularization. Expanding mean

- Least amount of leakage
- No hyper parameters
- Irregular encoding quality
- Built in in CatBoost

```
cumsum = df_tr.groupby(col)['target'].cumsum() - df_tr['target']
cumcnt = df_tr.groupby(col).cumcount()
train_new[col+'_mean_target'] = cumsum/cumcnt
```

Regularization. Conclusion

- There are a lot ways to regularize mean encodings
- Unending battle with target variable leakage
- CV loop or Expanding mean for practical tasks

Generalizations and extensions

- Using target variable in different tasks. Regression, multiclass
- Domains with many-to-many relations
- Timeseries
- Encoding interactions and numerical features

Regression and multiclass

- More statistics for regression tasks. Percentiles, std, distribution bins.
- Introducing new information for one vs all classifiers in multiclass tasks

Many-to-many relations

- Cross product of entities
- Statistics from vectors

LONG REPRESENTATION

User_id	APPS	Target	User_id	APP_id	Target
10	APP1; APP2; APP3	0	10	APP1	0
11	APP4; APP1	1	10	APP2	0
12	APP2	1	10	APP3	0
100	APP3; APP9	0	11	APP4	1
			11	APP1	1

Time series

- Time structure allows us to make a lot of complicated features.
- Rolling statistics of target variable

Day	User	Spend	Amount	Prev_user	Prev_spend_avg
1	101	FOOD	2.0	0.0	0.0
1	101	GAS	4.0	0.0	0.0
1	102	FOOD	3.0	0.0	0.0
2	101	GAS	4.0	6.0	4.0
2	101	TV	8.0	6.0	0.0
2	102	FOOD	2.0	3.0	2.5

Interactions and numerical features

- Analyzing fitted model
- Binning numeric and selecting interactions

Amazon.com

Amazon.com - Employee Access Challenge Competition

Name cat_boost1.csv	Submitted a few seconds ago	Wait time 0 seconds	Execution time 0 seconds	Scor 0.9158
Complete				
Jump to your position on the	e leaderboard 🕶			
Your most recent submission	on			
Your most recent submission				
	Submitted just now	Wait time 0 seconds	Execution time 0 seconds	Score 0.87209

Correct validation reminder

- Local experiments:
 - Estimate encodings on X_tr
 - Map them to X_tr and X_val
 - Regularize on X_tr
 - Validate model on X_tr/ X_val split
- Submission:
 - Estimate encodings on whole Train data
 - Map them to Train and Test
 - Regularize on Train
 - Fit on Train

End

- Main advantages:
 - Compact transformation of categorical variables
 - Powerful basis for feature engineering
- Disadvantages:
 - Need careful validation, there a lot of ways to overfit
 - Significant improvements only on specific datasets

Regularization

- 1. CV loop inside training data;
- 2. Smoothing;
- 3. Adding random noise;
- 4. Sorting and calculating expanding mean.

$$2. \ \, \frac{mean(target)*nrows+globalmean*alpha}{nrows+alpha}$$

- Robust and intuitive
- Usually decent results with 4-5 folds across different datasets
- Need to be careful with extreme situations like LOO

KFold scheme


```
y_tr = df_tr['target'].values #target variable
skf = StratifiedKFold(y_tr,5, shuffle=True,random_state=123)

for tr_ind, val_ind in skf:
    X_tr, X_val = df_tr.iloc[tr_ind], df_tr.iloc[val_ind]
    for col in cols: #iterate though the columns we want to encode
        means = X_val[col].map(X_tr.groupby(col).target.mean())
        X_val[col+'_mean_target'] = means
    train_new.iloc[val_ind] = X_val

prior = df_tr['target'].mean() #global mean
train_new.fillna(prior,inplace=True) #fill NANs with global mean
```

- Perfect feature for LOO scheme
- Target variable leakage is still present even for KFold scheme

Leave-one-out

	feature	feature_mean	target
0	Moscow	0.50	0
1	Moscow	0.25	1
2	Moscow	0.25	1
3	Moscow	0.50	0
4	Moscow	0.50	0

Regularization. Smoothing

- Alpha controls the amount of regularization
- Only works together with some other regularization method

$$\frac{mean(target)*nrows+globalmean*alpha}{nrows+alpha}$$

Regularization. Noise

- Noise degrades the quality of encoding
- How much noise should we add?
- Usually used together with LOO

Regularization. Expanding mean

- Least amount of leakage
- No hyper parameters
- Irregular encoding quality
- Built in in CatBoost

```
cumsum = df_tr.groupby(col)['target'].cumsum() - df_tr['target']
cumcnt = df_tr.groupby(col).cumcount()
train_new[col+'_mean_target'] = cumsum/cumcnt
```

Regularization. Conclusion

- There are a lot ways to regularize mean encodings
- Unending battle with target variable leakage
- CV loop or Expanding mean for practical tasks