FMI, Info, Anul I

Logică matematică și computațională

Seminar 11

Notația 1. Fie \mathcal{L} un limbaj de ordinul I. Pentru orice variabile x, y cu $x \neq y$, orice \mathcal{L} structură \mathcal{A} , orice $e: V \to A$ și orice $a, b \in A$, avem că:

$$(e_{y \leftarrow b})_{x \leftarrow a} = (e_{x \leftarrow a})_{y \leftarrow b}.$$

În acest caz, notăm valoarea lor comună cu $e_{x \leftarrow a, y \leftarrow b}$. Aşadar,

$$e_{x \leftarrow a, y \leftarrow b} : V \to A, \quad e_{x \leftarrow a, y \leftarrow b}(v) = \begin{cases} e(v) & dac \ v \neq x \ si \ v \neq y \\ a & dac \ v = x \\ b & dac \ v = y. \end{cases}$$

(S11.1) Să se arate că pentru orice formule φ , ψ și orice variabile x, y cu $x \neq y$ avem,

- (i) $\neg \exists x \varphi \vDash \forall x \neg \varphi$;
- (ii) $\forall x(\varphi \wedge \psi) \vDash \forall x \varphi \wedge \forall x \psi$;
- (iii) $\exists y \forall x \varphi \vDash \forall x \exists y \varphi$;
- (iv) $\forall x(\varphi \to \psi) \vDash \forall x\varphi \to \forall x\psi$.

Demonstrație: Fie \mathcal{A} și $e: V \to A$.

- (i) Ştim că " $\exists x$ " este o prescurtare pentru " $\neg \forall x \neg$ ". $\mathcal{A} \vDash (\neg \exists x \varphi)[e] \iff \mathcal{A} \vDash (\neg \neg \forall x \neg \varphi)[e] \iff$ nu este adevărat că $\mathcal{A} \vDash (\neg \forall x \neg \varphi)[e]$ \iff nu este adevărat că nu este adevărat că $\mathcal{A} \vDash (\forall x \neg \varphi)[e] \iff \mathcal{A} \vDash (\forall x \neg \varphi)[e]$.
- (ii) $\mathcal{A} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}] \iff \text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ si } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \iff (\text{pentru orice } a \in A, \text{ avem } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}])$ si (pentru orice $a \in A$, avem $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$) $\iff \mathcal{A} \vDash (\forall x \varphi)[e] \text{ si } \mathcal{A} \vDash (\forall x \psi)[e] \iff \mathcal{A} \vDash (\forall x \varphi \land \forall x \psi)[e].$

(iii) Avem că $\mathcal{A} \vDash (\exists y \forall x \varphi)[e] \iff \text{există } b \in A \text{ a.î. pentru orice } a \in A \text{ avem } \mathcal{A} \vDash \varphi[(e_{y \leftarrow b})_{x \leftarrow a}], \text{ i.e., folosind ipoteza că } x \neq y, \mathcal{A} \vDash \varphi[e_{x \leftarrow a, y \leftarrow b}]$ (*).

Pe de altă parte, $\mathcal{A} \vDash (\forall x \exists y \varphi)[e] \iff$ pentru orice $c \in A$ există $d \in A$ a.î. $\mathcal{A} \vDash \varphi[(e_{x \leftarrow c})_{y \leftarrow d}]$, i.e., folosind ipoteza că $x \neq y$, $\mathcal{A} \vDash \varphi[e_{x \leftarrow c, y \leftarrow d}]$ (**).

Ştim (*) şi vrem să arătăm (**).

Fie $c \in A$. Vrem $d \in A$ a.î. $\mathcal{A} \models \varphi[e_{x \leftarrow c, y \leftarrow d}]$.

Luăm d să fie b-ul din (*). Atunci, pentru orice $a \in A$ avem $\mathcal{A} \models \varphi[e_{x \leftarrow a, y \leftarrow d}]$. În particular, luând a := c, obţinem $\mathcal{A} \models \varphi[e_{x \leftarrow c, y \leftarrow d}]$, ceea ce ne trebuia.

(iv) Presupunem că $\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e]$. Atunci, pentru orice $a \in A$, $\mathcal{A} \vDash (\varphi \to \psi)[e_{x \leftarrow a}]$, lucru pe care îl putem scrie şi $\varphi^{\mathcal{A}}(e_{x \leftarrow a}) \to \psi^{\mathcal{A}}(e_{x \leftarrow a}) = 1$ sau chiar $\varphi^{\mathcal{A}}(e_{x \leftarrow a}) \leq \psi^{\mathcal{A}}(e_{x \leftarrow a})$ (*).

Vrem să arătăm că $\mathcal{A} \vDash (\forall x\varphi \to \forall x\psi)[e]$, ceea ce este echivalent, din aceleași considerente, cu $(\forall x\varphi)^{\mathcal{A}}(e) \leq (\forall x\psi)^{\mathcal{A}}(e)$.

Dacă $(\forall x\varphi)^{\mathcal{A}}(e) = 0$, suntem OK. Presupunem, aşadar, că $(\forall x\varphi)^{\mathcal{A}}(e) = 1$, i.e. pentru orice $b \in A$, $\varphi^{\mathcal{A}}(e_{x\leftarrow b}) = 1$ (**).

Ne rămâne de arătat că $(\forall x\psi)^{\mathcal{A}}(e) = 1$, i.e. că pentru orice $c \in A$, $\psi^{\mathcal{A}}(e_{x\leftarrow c}) = 1$. Fie $c \in A$. Din (*), avem că $\varphi^{\mathcal{A}}(e_{x\leftarrow c}) \leq \psi^{\mathcal{A}}(e_{x\leftarrow c})$, iar din (**), că $\varphi^{\mathcal{A}}(e_{x\leftarrow c}) = 1$. Deci $\psi^{\mathcal{A}}(e_{x\leftarrow c}) = 1$, ceea ce ne trebuia.

(S11.2) Fie x, y variabile cu $x \neq y$. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , şi de formule φ , ψ ale lui \mathcal{L} astfel încât:

- (i) $\forall x(\varphi \lor \psi) \not\vDash \forall x\varphi \lor \forall x\psi;$
- (ii) $\exists x \varphi \land \exists x \psi \not\vDash \exists x (\varphi \land \psi);$
- (iii) $\forall x \exists y \varphi \not\vDash \exists y \forall x \varphi$.

Demonstrație: Considerăm $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ și $e: V \to \mathbb{N}$ o evaluare arbitrară (să zicem, punem e(v) := 7 pentru orice $v \in V$).

(i) Fie $\dot{2}:=\dot{S}\dot{S}\dot{0},\,\varphi:=\dot{x}\dot{<}\dot{2}$ și $\psi:=\neg(\dot{x}\dot{<}\dot{2}).$ Atunci

$$\mathcal{N} \vDash \forall x (\varphi \lor \psi)[e].$$

Pe de altă parte,

2

- (a) $\mathcal{N} \vDash (\forall x \varphi)[e] \iff$ pentru orice $n \in \mathbb{N}$ avem $\mathcal{N} \vDash \varphi[e_{x \leftarrow n}] \iff$ pentru orice $n \in \mathbb{N}$, avem n < 2, ceea ce nu este adevărat (luând n := 3, de exemplu). Deci, $\mathcal{N} \nvDash (\forall x \varphi)[e]$.
- (b) $\mathcal{N} \vDash (\forall x \psi)[e] \iff$ pentru orice $n \in \mathbb{N}$ avem $\mathcal{N} \vDash \psi[e_{x \leftarrow n}] \iff$ pentru orice $n \in \mathbb{N}$, avem $n \geq 2$, ceea ce nu este adevărat (luând n := 1, de exemplu). Deci, $\mathcal{N} \nvDash (\forall x \psi)[e]$.

Prin urmare,

$$\mathcal{N} \not\models (\forall x \varphi \lor \forall x \psi)[e].$$

- (ii) Fie $\dot{2} := \dot{S}\dot{S}\dot{0}$, $\varphi := x\dot{\hat{Z}}$ și $\psi := \neg(x\dot{\hat{Z}})$. Avem:
 - (a) $\mathcal{N} \vDash (\exists x \varphi)[e] \iff \text{există } n \in \mathbb{N} \text{ a.i. } \mathcal{N} \vDash \varphi[e_{x \leftarrow n}] \iff \text{există } n \in \mathbb{N} \text{ a.i. } n < 2,$ ceea ce este adevărat (luând n := 1, de exemplu). Deci, $\mathcal{N} \vDash (\exists x \varphi)[e]$.
 - (b) $\mathcal{N} \vDash (\exists x \psi)[e] \iff \text{există } n \in \mathbb{N} \text{ a.î. } \mathcal{N} \vDash \psi[e_{x \leftarrow n}] \iff \text{există } n \in \mathbb{N} \text{ a.î.}$ $n \geq 2$, ceea ce este adevărat (luând n := 3, de exemplu). Deci, $\mathcal{N} \vDash (\exists x \psi)[e]$. Prin urmare,

$$\mathcal{N} \vDash (\exists x \varphi \wedge \exists x \psi)[e].$$

Pe de altă parte, $\mathcal{N} \models \exists x (\varphi \land \psi)[e] \iff \text{există } n \in \mathbb{N} \text{ a.î. } \mathcal{N} \models (\varphi \land \psi)[e_{x \leftarrow n}] \iff \text{există } n \in \mathbb{N} \text{ a.î. } n < 2 \text{ și } n \geq 2, \text{ ceea ce este fals. Prin urmare,}$

$$\mathcal{N} \not\models \exists x (\varphi \land \psi)[e].$$

(iii) Fie $\varphi := x \dot{<} y$. Atunci

$$\mathcal{N} \vDash (\forall x \exists y \varphi)[e] \iff \text{pentru orice } n \in \mathbb{N}, \text{ avem } \mathcal{N} \vDash (\exists y \varphi)[e_{x \leftarrow n}] \iff \text{pentru orice } n \in \mathbb{N} \text{ există } m \in \mathbb{N} \text{ a.î. } \mathcal{N} \vDash \varphi[e_{x \leftarrow n, y \leftarrow m}] \iff \text{pentru orice } n \in \mathbb{N} \text{ există } m \in \mathbb{N} \text{ a.î. } n < m,$$

ceea ce este adevărat – se ia, de pildă, m := n + 1. Aşadar,

$$\mathcal{N} \vDash (\forall x \exists y \varphi)[e].$$

Pe de altă parte,

ceea ce este fals. Aşadar,

$$\mathcal{N} \not\vDash (\exists y \forall x \varphi)[e].$$

(S11.3) Să se arate că pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

$$\forall x(\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \forall x\psi \tag{1}$$

$$\exists x(\varphi \lor \psi) \quad \exists x \psi \tag{2}$$

$$\varphi \mid \exists x \varphi$$
 (3)

$$\forall x(\varphi \to \psi) \quad \exists \quad \varphi \to \forall x\psi$$
 (4)

$$\exists x(\psi \to \varphi) \quad \exists \quad \forall x\psi \to \varphi.$$
 (5)

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$.

Demonstrăm (1):

$$\mathcal{A} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}]$$

 \iff pentru orice $a \in A$, $A \vDash \varphi[e_{x \leftarrow a}]$ şi $A \vDash \psi[e_{x \leftarrow a}]$

 \iff pentru orice $a \in A$, $A \vDash \varphi[e]$ şi $A \vDash \psi[e_{x \leftarrow a}]$ (aplicând P. 3.27)

 $\iff A \vDash \varphi[e]$ și pentru orice $a \in A, A \vDash \psi[e_{x \leftarrow a}]$

 $\iff \mathcal{A} \vDash \varphi[e] \text{ si } \mathcal{A} \vDash \forall x \psi[e] \iff \mathcal{A} \vDash (\varphi \land \forall x \psi)[e].$

Demonstrăm (2):

$$\mathcal{A} \vDash (\exists x (\varphi \lor \psi))[e] \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}]$$

 \iff există $a \in A$ a.î. $\mathcal{A} \models \varphi[e_{x \leftarrow a}]$ sau $\mathcal{A} \models \psi[e_{x \leftarrow a}]$

 \iff există $a \in A$ a.î. $\mathcal{A} \models \varphi[e]$ sau $\mathcal{A} \models \psi[e_{x \leftarrow a}]$ (aplicând P. 3.27)

 $\iff \quad \mathcal{A} \vDash \varphi[e] \text{ sau există } a \in A \text{ a.î. } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]$

 $\iff \mathcal{A} \vDash \varphi[e] \text{ sau } \mathcal{A} \vDash \exists x \psi[e]$

 $\iff \mathcal{A} \vDash (\varphi \lor \exists x \psi)[e].$

Demonstrăm (3):

$$\mathcal{A} \vDash (\exists x \varphi)[e] \iff \text{există } a \in A \text{ a.i. } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$$

 \iff există $a \in A$ a.î. $\mathcal{A} \models \varphi[e]$ (aplicând P. 3.27)

 $\iff \mathcal{A} \models \varphi[e].$

Demonstrăm (4):

$$\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \to \psi)[e_{x \leftarrow a}]$$

 \iff pentru orice $a \in A$, $\mathcal{A} \not\vDash \varphi[e_{x \leftarrow a}]$ sau $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$

 \iff pentru orice $a \in A, \ \mathcal{A} \not\vDash \varphi[e]$ sau $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$ (aplicând P. 3.27)

 \Leftrightarrow $\mathcal{A} \not\models \varphi[e]$ sau pentru orice $a \in A$, $\mathcal{A} \models \psi[e_{x \leftarrow a}]$

 \iff $\mathcal{A} \not\models \varphi[e] \text{ sau } \mathcal{A} \vDash \forall x \psi[e]$

 $\iff \mathcal{A} \vDash (\varphi \to \forall x \psi)[e].$

Demonstrăm (5):

```
 \mathcal{A} \vDash (\exists x(\psi \to \varphi))[e] \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash (\psi \to \varphi)[e_{x \leftarrow a}]   \iff \text{există } a \in A \text{ a.î. } \left( \mathcal{A} \not\vDash \psi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \right)   \iff \text{există } a \in A \text{ a.î. } \left( \mathcal{A} \not\vDash \psi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e] \right) \text{ (aplicând P. 3.27)}   \iff \text{(există } a \in A \text{ a.î. } \mathcal{A} \not\vDash \psi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e]   \iff \mathcal{A} \not\vDash \forall x \psi[e] \text{ sau } \mathcal{A} \vDash \varphi[e]   \iff \mathcal{A} \vDash (\forall x \psi \to \varphi)[e].
```

5