

Getting Started

Objectives

- What is computer vision?
- Where are the computer vision apply to?
- What are the challenges of computer vision?
- The future of computer vision?

What is computer vision

Computer Vision is a field of computer science that enables the computer to understand just like a human.

What are objects in the image?

How many trees are there in the picture?

What color is the sky?

Did You Know That We Perceive 80% Of All Impressions Using Our Sight?

https://bettersightvisioncenter.com/did-you-know-that-we-perceive-80-of-all-impressions-using-our-sight/

Digital image processing Blocks world, line labeling Generalized cylinders Pictorial structures Stereo correspondence Intrinsic images Optical flow Structure from motion Image pyramids Scale-space processing

1970

1975

Shape from shading, texture, and focus Physically-based modeling Regularization Markov Random Fields Kalman filters 3D range data processing Projective invariants **Factorization** Physics-based vision Graph cuts

1980

1985

Particle filtering Energy-based segmentation Face recognition and detection Subspace methods Image-based modeling and rendering Texture synthesis and inpainting Computational photography

1990

1995

Feature-based recognition
MRF inference algorithms
Category recognition
Learning

2000

The related fields

The Vision: Human & Computer

The Human Vision

The Computer Vision

The goal of computer vision

Perceive the "story" behind the picture

3

You see

Computer see

How Does Computer Vision Work?

- Computer vision is a more high-level process of image processing- analysis of an image.
- The input is an image while the output is the interpretation of an image.
- Computer vision works by identifying different components in the image.

The computer vs human perception

- Computer likes human
 - Computers can be better at "easy" things
 - Humans are much better at "hard" things
- But huge progress has been made
 - Accelerating in the last 4 years due to deep learning
 - What is considered "hard" keeps changing

Application in Facial Recognition

Application in life

- Stroke Recognition
- Near Real-Time Coaching
- Sports TeamBehaviors Analysis
- Automated Media Coverage
- Ball Tracking
- Goal-Line Technology
- Event Detection in Sports
- Sports Activity Scoring
- Player Pose Tracking

Application in Robotics

Session 01 - Getting started

Application in Transportation

PASSING RED LIGHT

PASSING RED LIGHT

76-61
237.67

- Vehicle Classification
- Moving Violations Detection
- Traffic Flow Analysis
- Parking Occupancy Detection
- Automated License Plate Recognition
- Vehicle identification
- Traffic Sign Detection
- Road Condition Monitoring
- Driver AttentivenessDetection

Application in Retail and Manufacturing

Tired

- Customer Tracking
- People Counting
- Theft Detection
- Waiting Time **Analytics**
- Social Distance
- Productivity Analytics
- Quality Management

Application in Self-driving cars

Session 01 - Getting started

Application in Medical

Sample Patient 5 - Consolidations

Sample Patient 4 - Ground-Glass Opacities

- Cancer Detection
- Cell Classification
- Movement Analysis
- Mask Detection
- Tumor Detection
- Disease ProgressionScore

Application in Agriculture

- Crop Monitoring
- Flowering Detection
- Plantation monitoring
- Insect Detection
- Plant Disease Detection
- Automatic weeding
- UAV Farmland Monitoring
- Animal Monitoring

Challenges of Computer Vision

- Computer vision is a challenging field of computer science.
- Enabling a machine to be able to see, and process what it sees, like a human → difficult.
 - We are still learning exactly how human vision works
- Scene reconstruction- the creation of a 3D model
 - The inputting of 2D images or video, are also problematic.

Challenges of Computer Vision

- Recognition must become robust
 - Depend on object classification, identification, verification and detection
 - Depend on identify the key points or landmarks in a picture
 - Object segmentation, identifying the pixels in an image
- Once recognition is achieved CV systems must also correctly analyze the image.
- If applied to a video, this requires accurate motion analysis.
- This allows the system to estimate the velocity of objects in the video.

Relationship between images, geometry, and photometry

The future of computer vision

 Computer vision, as well as AI and machine learning concepts, are key to releasing complete, or Level 5, automation in selfdriving vehicles.

Summary

- What is computer vision?
- Where are the computer vision apply for?
- What are the Challenges of Computer Vision?
- The future of computer vision?