Das technische Handbuch

Colour-GENIE

TCSE

ISBN: 3-88965-002-3

Alle Rechte vorbehalten, insbesondere auch diejenigen aus der spezifischen Gestaltung, Anordnung und Einteilung des angebotenen Stoffes. Der auszugsweise oder teilweise Nachdruck sowie fotomechanische Wiedergabe oder Über-

tragung auf Datenträger zur Weiterverarbeitung ist untersagt und wird als Verstoß gegen das Urheberrechtsgesetz und als Verstoß gegen das Gesetz gegen den unlauteren Wettbewerb gerichtlich verfolgt. Für etwaige technische Fehler, sowie für die Richtigkeit aller in diesem Buch gemachten Angaben, übernehmen der Herausgeber und Autor

keine Haftung.

Dieses technische Handbuch beinhaltet folgende Themen:

Zum ersten soll es dem Programmierer Kenntnisse vermitteln, die es gestatten, die Leistungsfähigkeit der hochintegrierten Bausteine über die Möglichkeiten des BASIC hinaus auszunutzen.

Zum zweiten bietet es eine Beschreibung der Schnittstellen und deren Ansteuerung, die beim Anschluß von Peripherie hilfreich ist.

Drittens erfolgt eine Erklärung des Speicheraufbaus und eine Liste der BASIC Befehle und ihre Tokens.

Am Ende finden Sie eine Sammlung der Colour Genie Schalt- und Bestückungspläne.

Es sei ausdrücklich darauf hingewiesen, daß es sich bei diesem technischen Handbuch nicht um ein Servicehandbuch handelt. Auch soll der Leser nicht aufgefordert werden, technische Veränderungen am Gerät vorzunehmen.

Unsachgemäße Eingriffe in die Hardware des Rechners ziehen oft fatale Schäden am Gerät nach sich, die nicht mehr im Rahmen der Garantieleistung beseitigt werden können. Außerdem müssen wir uns vorbehalten, bei der Reparatur modifizierter Geräte die vom Kunden vorgenommenen Änderungen gegen Berechnung rückgängig zu machen.

Voraussetzung zum Verständnis dieses Buches sind allg. Kenntnisse der Informatik und der Programmierung in BASIC. Wenn Sie
also jetzt gerade erst Ihr Colour Genie ausgepackt haben und
noch nicht die Grundlagen der Datenverarbeitung und Programmierung beherrschen, sollten Sie, bevor Sie in diesem Buch weiterlesen, zumindest erst das dem Rechner beigefügte Handbuch
"COLOUR BASIC leicht gelernt" durcharbeiten.

Inhaltsverzeichnis

Kap.	Thema	Seite
	Vorwort	1
	Inhaltsverzeichnis	1 3 5 7 9
1	Blockdiagramm	5
2 3 4	Netzteil	7
3	Speicherbelegung	9
4	Der CRTC	13
	Die CRTC-Register	16
	Standardeinstellungen	20
5	Der PSG	21
	Die PSG-Register	22
6	Die Z80-CPU	25
	Der Z80-CPU-Befehlssatz	29
	Anhang A	33
	Liste der BASIC-Befehle und ihrer Tokens	
	Angang B	35
	Der Parallelport	
	Anhang C	37
	Die serielle Schnittstelle	
	Anhang D	39
	Das Cassetteninterface	
	Kontaktbelegungen	41
	Stücklisten	43
	Schaltpläne	49
	Litaraturhinwaja	01

1. Blockdiagramm

Das Blockdiagramm des gesamten Systems ist in Bild 1 dargestellt.

Es beinhaltet als Zentraleinheit den Mikroprozessor 280.

Der RAM-Bereich ist in einen dynamischen von 16 K- bzw. 32 Kund einen statischen von 2 K-Byte Speicherlänge aufgeteilt. BASIC-Interpreter und Character-Generator liegen in 16 K- bzw. 2 K-Byte ROM.

Bei der Tastatur handelt es sich um eine 8 x 8 Matrix. Sie ist in den Speicher gelegt und jede Taste belegt dort ein Bit.

Das Videointerface, der sogenannte CRTC, sorgt über Color-Encoder und PAL-Karte für die Ausgabe des Bildes auf einen anschließbaren Monitor. In einem Modulator wird das Bildsignal zur Darstellung auf einem handelsüblichen Farbfernsehgerät entsprechend aufbereitet.

Über einen programmierbaren Ton-Generator, PSG genannt, erfolgt die Ein- und Ausgabe an Joy-Sticks, Drucker und weitere periphere Geräte mit paralleler Schnittstelle. Durch den PSG erzeugte Töne werden entweder direkt als NF-Signal an der Audio-Buchse oder über den Modulator an ein angeschlossenes Farbfernsehgerät ausgegeben.

Durch das Kassetten-Interface ist die Möglichkeit gegeben, einen Rekorder als Programmspeicher zu verwenden. Die Ein- und Ausgabe von Daten und Programmen erfolgt mit einer Übertragungsrate von 1200 Baud.

Die Ansteuerung der seriellen Schnittstelle muß einschließlich Serien/Parallelumwandlung per Software erfolgen. Ein entsprechendes Treiberprogramm ist in der Betriebssoftware nicht enthalten.

Über einen BUS-Stecker ist es möglich, einen Floppy-Disk-Controller und eine ROM-Einschubkassette, auch Cartridge genannt, anzuschließen. Der Floppy-Controller ist die Voraussetzung zum Anschluß eines Disketten-Laufwerks. Mit Hilfe der Cartridge können Programme, die in EPROMS abgelegt sind, per Autostart oder auch softwaremäßig aufgerufen werden.

Im folgenden wird auf die wichtigsten Teile des Blockdiagramms in Bild 1 noch näher eingegangen werden.

2. Das Netzteil

Der Netztansformator des Gerätes gibt an die Netzteilplatine Wechselspannungen von 9V und 26V ab. Um einen Transformatorbrand bei Wicklungskurzschlüssen zu verhindern, befindet sich in ihm eine Sicherung, die im Notfall durchbrennt. Sollte es einmal dazu kommen, so muß der Trafo ausgetauscht werden, da eine Reparatur der eingebauten Brandsicherung nicht möglich ist. Eine weitere Überlastsicherung ist durch die kurzschlußfesten Spannungsregler gegeben.

Die Schaltung des Colour-Genie-Netzteils gibt an die Hauptplatine die Spannungen +5V, +12V und -12V ab. Über den Leistungstransistor MJ2955 (Q1), werden mit Hilfe des integrierten Spannungsreglers 7805 (Z1) konstant +5V abgegeben. Die Stromaufnahme der Schaltung ist für den alleinigen Einsatz des 7805 zu hoch. Sollte es einmal vorkommen, daß sich die Befestigung des MJ2955 etwas gelöst hat, so ist gleichzeitig sein Kollektor nicht angeschlossen. Der gesamte Strom fließt dann über den 7805. Dieser erhitzt sich nun so stark, daß seine integrierte Thermoschutzschaltung anspricht und seine Zerstörung durch Überhitzung verhindert. Meßbar ist dieser Defekt an der Spannung zwischen dem mittleren Anschluß des 7805 (Masse) und dem Kollektor (Gehäuse) des MJ2955. Die Gleichspannungsmessung muß dort einen Wert von ca. 5V ergeben. Bei einer oben beschriebenen Störung liegt sie etwa bei 8-10 V. Gleichzeitig erhitzt sich der 7805 sehr stark und der Leistungstransistor bleibt kalt.

3. Speicherbelegung

Das Colour-Genie verfügt über einen Speicherbereich von maximal 64 K-Byte. Er setzt sich aus ROM- und RAM-Bereichen und einer Tastatur mit einer 8 x 8 Matrix zusammen.

Der BASIC-Interpreter ist in einem 16 K umfassenden ROM-Bereich abgelegt. Hardwaremäßig handelt es sich dabei um vier EPROMs vom Typ 2532 mit je 4 K-Byte.

Die meisten ROM-CALLs stimmen mit denen des GENIE I und II überein. Abweichend sind jedoch z.B. die Kassetten I/O CALLs mit

Read Byte = CALL 01EDH, SEARCH for LEADER = CALL 024CH Write Byte = CALL 021FH, WRITE LEADER = CALL 023FH

Im Gegensatz zum GENIE I und II gibt es keine CALLs um den Motor des Recorders ein- oder auszuschalten.

Es würde an dieser Stelle zu weit führen auf den ROM-Inhalt noch näher einzugehen. Weitere Informationen darüber sind einem ROM-Listing zu entnehmen.

Die ersten 16 K RAM sind in Kommunikationsbereich, Bildschirmspeicher für den Textmodus, Bildschirmspeicher für die hochauflösende Grafik und freien Benutzerspeicher aufgegliedert. Weitere 16k Benutzer-RAM sind durch Einbau des Erweiterungsmoduls EG2011 verfügbar. Als RAM verwendet das Colour Genie 8 bzw. 16 Bausteine der Sorte 4116 mit je 16 K-Bit RAM. Es ist zu beachten, daß nach Einbau des EG2011 die PEEK- und POKE-Adressen oberhalb von dezimal 32767 mit einem negativen Vorzeichen versehen werden müssen.

Die höchste dezimale Adresse bei einem Gerät in der Grundausführung ist 32767. Nach Einbau des EG2011 wird der freie Benutzer-Speicher um den dezimalen Bereich -32768 bis -16385 erhöht.

Da alle Zeichenketten-Variablen immer automatisch an das Ende des RAM-Bereiches unter die SHAPE TABLE gelegt werden, kann es passieren, daß Programme, die durch PEEK und POKE auf Strings in diesem Bereich zugreifen, nach Einbau des EG2011 nicht mehr fehlerfrei laufen. Auch Zahlenvariablen können in diesem Bereich liegen, wenn ein BASIC-Programm entsprechend groß ist, da sie direkt über ihm gespeichert werden.

Beim "Sound Editor" aus dem Benutzer-Handbuch "COLOUR BASIC -leicht gelernt" tritt nach Einbau des EG2011 aus diesem Grunde ein Fehler in der Zeile 500 auf. Man muß nun entweder das Programm entsprechend umschreiben oder aber, der Einfachheit halber, vor dem Einladen eines solchen Programms bei der Abfrage MEM SIZE nach Einschalten des Gerätes den obersten Speicherbereich auf 32767 festlegen. In diesem Falle ist natürlich für BASIC-Programme der freie Speicherplatz im EG2011 nicht mehr erreichbar.

Mit Hilfe einer ROM-Einschubkassette, auch Cartridge genannt, wurde die Möglichkeit geschaffen, Festprogramme von maximal 12 K-Byte Länge, die in drei EPROMs des Typs 2532 abgelegt sind, aufzurufen oder auch nach Einschalten automatisch starten zu lassen. Als Beispiel für den Einsatz sei hier das Diskettenbetriebssystem genannt. Der Betrieb eines Diskettenlaufwerkes am Colour Genie ist ohne das in einer Cartridge bereitgestellte DOS nicht möglich.

Der Speicher für die programmierbaren Zeichen liegt von F400H bis F7FFH. Er ist ebenfalls statisch und besteht aus 2 Bauteilen des Typs 2114 (Z30 und Z31).

Jedes gesetzte Bit in einem Byte entspricht dort einem Punkt in einer Zeile des jeweiligen Zeichens. Es können bis zu 128 Zeichen programmiert werden und es ist möglich mit diesem Prinzip eine Grafikauflösung von 320 mal 192 Punkte zu erreichen, da alle Zeichen aus einer 8 x 8 Matrix bestehen. Ein Zeichen enthält also 64 einzeln programmierbare Punkte.

Schaltet man den Computer ein, so werden alle definierbaren Zeichen als Leerzeichen ausgegeben.

Beim Colour-Genie ist die 8 x 8 Matrix der Tastatur in den Speicher gelegt, d.h. jede Taste belegt dort ein Bit im Bereich von F800H bis FBFFH.

Die Tastaturmatrix spiegelt sich in diesem Bereich viermal mit den Adressen F801H, F901H, FA01 und FB01 beginnend. Die Funktion der Tasten kann mit dem Befehl "PEEK" abgefragt werden.

	BITNR.	0	1	2	3	4	5	6	7
ADRESSE	F801	@	Α	В	С	D	E	F	G
(HEX)	F802	н	ı	J	к	L	М	N	0
	F804	Р	a	R	S	Т	U	٧	w
	F808	X	Υ	Z		F1	F2	F3	F4
	F810	0	1	2	3	4	5	6	7
	F820	8	9	:	;	,	-		/
	F840	RET.	CLR	BRK	†	♦	+	-	· —
	F880	SHIFT	M.S.		RPT	CTRL			

Der ROM-Bereich von FC00H bis FFFFH ist für die Adressierung weiterer externer Geräte vorgesehen. Insbesondere erfolgt dort die Adressierung der Disketten-Laufwerke.

4. Der CRTC

CRTC ist die Abkürzung für Cathode Ray Tube Controller. Darunter hat man ein hochintegriertes Bauteil zu verstehen, das sämtliche Bildschirmausgaben des Colour-Genies organisiert. Dabei ist die Ausgabeform des Bildes auf dem Monitor oder einem Fernsehgerät in großem Maße frei programmierbar. Es ist z.B. möglich den Cursor in seiner Darstellung und in seiner Blinkfrequenz zu verändern und das gesamte Bild in horizontaler und vertikaler Richtung zu verschieben. Eine Änderung der Anzahl der angezeigten Zeilen und deren Länge (Zeichen pro Zeile) ist programmierbar. Die Vertikal- und Horizontalsynchronisation des Bildes ist über den CRTC leicht verstellbar. Ferner erkennt er die Position eines angeschlossenen Lichtgriffels auf dem Bildschirm.

System Block Diagramm

Anschlußbelegung

Horizontal Sync (HSYNC)

HSYNC ist ein aktives "High" Signal, das die Horizontalsynchronisation des Datensichtgerätes liefert.

Vertical Sync (VSYNC)

VSYNC ist ein aktives "High" Signal, das die Vertikalsynchronisation des Datensichtgerätes liefert.

Display Timing (DISPTMG)

DISPTMG ist aktiv "High" und definiert die Anzeigeperiode im horizontalen und vertikalen Raster. Es dient zur Unterdrückung des Videosignals außerhalb des dargestellten Bildes (Ränder).

Refresh Memory Address (MAO - MAl3)

MAO - MAl3 sind Bildspeicher-Adress-Leitungen, mittels derer der CRTC die Speicherstelle des darzustellenden Zeichens adressiert.

Raster Address (RAO - RA4)

Es handelt sich dabei um Adress-Signale, die dazu notwendig sind, die Rasterzeile eines Zeichens im Zeichen-Generator zu selektieren.

Cursor Display (CUDISP)

Dieses aktive "High" Videosignal erzeugt den Cursor auf dem Bildschirm. Während DISPTMG "Low" ist, wird CUDISP unterdrückt.

Light Pen Strobe (LPSTB)

LPSTB ist ein aktiv "High" Eingangssignal, das durch Strobe Impulse, die vom Lichtgriffel erzeugt werden, entsteht. Wenn dieses Signal aktiviert ist, werden MAO - MAI3 im 14-Bit Lichtgriffel-Register abgespeichert.

Vertical Total Adjust Register (R5)

Dieses Register dient dem Feinabgleich der Bildfrequenz durch Hinzufügen einzelner (bis 31) Elektronenstrahlzeilen zum durch RO, R4 und R9 festgelegten Raster.

Vertical Displayed Register (R6)

Dieses Register wird dazu benötigt, um die Anzahl der angezeigten Zeilen auf dem Bildschirm programmieren zu können.

Vertical Sync Position Register (R7)

Durch Programmierung dieses Registers wird die vertikale Synchronisationsposition definiert. Dadurch wird es möglich, das Bild vertikal zu versetzen. Wenn der Wert des Registers erhöht wird, verschiebt sich das Bild nach oben. Bei seiner Verringerung verschiebt es sich dementsprechend nach unten.

Interlace and Skew Register (R8)

Interlace bedeutet soviel wie Zeilensprungverfahren. Die Interlacefunktion ist bedeutsam, wenn Schrift oder Zeichen eines Computers in ein normales Fernsehbild eingeblendet werden sollen. Beim Colour Genie ist dies jedoch nicht möglich. Die Skew Funktion dient dazu, das DISPTMG- und CUR-Signal zu verzögern. Bei der Verzögerung handelt es sich um die Anzahl der Taktzyklen, die zwischen der Adressierung der das Zeichen enthaltenden Speicherzelle durch den CRTC und dem Erscheinen des Zeichens auf dem Bildschirm ablaufen.

Dabei wird die

- 1. Verzögerung durch eine Zwischenspeicherung in Z8 und die
- 2. Verzögerung durch das Schieberegister Z28 hervorgerufen. Da beim Colour Genie also eine Verzögerung von 2 Zeichentakten nötig ist, liegt die einzige Anwendung darin, durch Setzen jeweils beider Verzögerungsbits beim DISPTMG den Bildschirm völlig abzuschalten.

Das gleiche gilt für das Abschalten des Cursors.

DISPTMG und CUR Verzögerungsbits:

D1/C1	DO/CO	DISPTMG/CUR
0	0	keine Verzögerung
0	1	eine Taktverzögerung
1	0	zwei Taktverzögerungen
1	1	keine Anzeige

Maximum Raster Address Register (R9)

Der Inhalt dieses Registers bestimmt die Anzahl der Elektronenstrahlzeilen pro Textzeile. Da diese auch durch die Hardware festgelegt ist, sind Änderungen sinnlos.

Originalausschnitt aus dem Datenblatt des HD46505:

■ REGISTER DESCRIPTION

Table 1 Internal Registers Assignment

cs	RS				ess ter		Register	Register Name	Program Unit	READ	WRITE				Data B	it		
		4	3	2	1	0	#	J				7	6	5	4	3	2	1
1	x	×	×	×	×	×				-	_							
0	0	×	×	×	×	×	AR	Address Register	-	×	0							
0	1	0	0	0	0	0	RO	Horizontal Total *	Character	×	0							
0	1	0	0	0	0	1	R1	Horizontal Displayed	Character	×	0							
0	1	0	0	0	1	0	R2	Horizontal Sync* Position	Character	×	0							
0	1	0	0	0	1	1	R3	Sync Width	Vertical-Raster, Horizontal- Character	×	0	wv3	wv2	wv1	wv0	wh3	wh2	wh1
0	1	0	0	1	0	0	R4	Vertical Total *	Line	×	0							
0	t	0	0	1	0	1	R5	Vertical Total Adjust	Raster	×	0							
0	1	0	0	1	1	0	R6	Vertical Displayed	Line	×	0							
0	t	0	0	1	1	1	R7	Vertical Sync * Position	Line	×	0							
0	1	0	1	0	0	0	R8	Interlace & Skew	<u> </u>	×	0	C1	CO	Dī	D0			٧
0	1	0	1	0	0	1	R9	Meximum Raster Address	Raster	×	0							
0	1	0	1	0	1	0	R10	Cursor Start Raster	Raster	×	0		В	Р				
0	1	0	1	0	1	1	R11	Cursor End Rester	Raster	×	0							
0	1	0	1	1	0	0	R12	Start Address(H)	-	0	0							
0	1	0	1	1	0	1	R13	Start Address(L)		0	0							
0	1	o	1	1	1	0	R14	Cursor(H)		٥	0							
0	1	0	1	1	1	1	R15	Cursor (L)	-	٥	0							
0	1	1	0	0	0	0	R16	Light Pen(H)	-	0	×							
0	1	1	0	0	0	1	R17	Light Pen(L)	_	0	×							

[NOTE] 1. The Registers marked ↑: (Written Value) = (Specified Value) - 1
2. Written Value of R9 is mentioned below.
1) Non-interlace Mode | (Written Value Nr) = (Specified Value) - 1

Interlace Sync Mode | (Written Value Nr) = (Specified Value) - 2

Interlace Sync & Video Mode
(Written Value Nr) = (Specified Value) - 2

CO and C1 specify skew of CUDISP output signal.
D0 and D1 specify skew of DISPTMG output signal.
When S is "1", V specifies video mode. S specifies the Interlace Sync Mode.

B specifies the cursor blink. P specifies the cursor blink period.

wo~ww3 specify the pulse width of Vertical Sync Signal.
wh0~wh3 specify the pulse width of Horizontal Sync Signal.

R0 is ordinally programmed to be odd number in interlace mode.

C; Yes, X; No

5. Der PSG

PSG ist die Abkürzung für "Programmable Sound Generator". Es handelt sich bei diesem hochintegrierten Bauteil um einen AY-3-8910, der mit 8- und 16-Bit Prozessoren zusammengeschaltet werden kann. Im Colour Genie übernimmt er die gesamte Tonausgabe. Der Ton wird über den Lautsprecher des Fernsehers oder aber auch am Audio-Ausgang des Colour Genies als NF-Signal (anschließbar an alle üblichen Verstärkeranlagen) ausgegeben.

Durch seine Flexibilität ist er zur Erzeugung von Musik, Geräusch Effekten, Alarmsignalgeber und FSK-Modulator einsetzbar. Über den AY-3-8910 erhält der Mikroprozessor zwei parallele bidirektionale 8-Bit Ports, deren Aus-bzw. Eingänge TTL-kompatibel sind. Eine Tonausgabe erfolgt über die drei analogen Ausgänge des PSG, die mit Frequenz, Hüllkurve und Rauschen belegt werden können.

System Diagramm:

Erhalten die Register 8,9 und 10 als Inhalt den Wert 16, so wird eine Modulation des Signals mit der Hüllkurve erreicht. Die Hüllkurve kann 8 verschiedene Formen annehmen, die durch den Inhalt des Registers 13 bestimmt werden.

Die Anschlußbelegung des AY-3-8910:

6. Die Z80-CPU:

Das Colour Genie enthält einen Mikroprozessor vom Typ Z80. Bei der Z80-CPU handelt es sich um einen 1 Chip-Mikroprozessor in n-Kanal-Silicon-Gate-Technologie. Sein Befehlssatz umfaßt 158 Befehle, darunter auch sämtliche 78 Instruktionen des 8080. Er beinhaltet 17 interne Register und ermöglicht 3 schnelle Interrupt-Behandlungsarten, sowie einen zusätzlichen, nichtmaskierbaren Interrupt. Da alle Anschlüsse TTL-kompatibel sind, ist ein direkter Anschluß von dynamischen oder statischen Standardspeicherchips ohne zusätzlichen Bauteileaufwand möglich. Der Prozessor enthält eine eingebaute dynamische Refresh-Hardware, die jedoch beim Colour Genie keine Verwendung findet. Die Z80-CPU benötigt nur eine einzige 5V-Versorungsspannung.

Das folgende Blockdiagramm zeigt den internen Aufbau.

Z80-CPU-Blockschaltbild:

Input/Output Request (IORQ)

Wird dieser Tri-State-Ausgang aktiv, so hat das die Bedeutung, daß an den niederwertigen 8 Bits vom Adressbus eine Adresse zur I/O-Portauswahl ansteht. Das Signal wird auch dann erzeugt, wenn eine Interruptanforderung akzeptiert wurde. In diesem Fall kann dann der zugehörige Interrupt-Vektor auf den Datenbus gelegt werden.

Memory Read (RD)

Ein RD-Signal an dem Tri-State Ausgang bedeutet, daß die CPU Daten vom Speicher oder von einem I/O-Port lesen wird. Der angesprochene Speicher oder I/O-Baustein interpretiert das Signal als Aufforderung, Daten auf den Datenbus zu legen.

Memory Write (WR)

Das WR-Signal erscheint an einem Tri-State Ausgang und zeigt an, daß die CPU Daten für den Speicher oder einen I/O-Baustein bereithält.

Refresh (RFSH)

Wenn die niederwertigen 7 Bit des Adressbus eine Refreshadresse für dynamische Speicher führen, und das laufende MREQ-Signal zur Einleitung eines Refresh-Zyklus für alle angeschlossenen dynamischen Speicher benutzt werden soll, so wird das Signal RFSH aktiv.

Halt state (HALT)

Ein Signal am HALT-Ausgang bedeutet, daß die CPU einen (Software-)HALT-Befehl ausgeführt hat und zur weiteren Bearbeitung des Programms auf ein Interrupt-Signal wartet. Dabei kann es sich um einen nicht-maskierbaren Interrupt oder aber auch um einen freigegebenen maskierbaren Interrupt handeln. Im Halt-Zustand führt die CPU zur Sicherstellung des Refresh-Vorganges Leerbefehle (NOPs) aus.

Wait (WAIT)

Ein Low-Signal am WAIT-Eingang zeigt der CPU, daß die angespro-Speicher- oder I/O-Bausteine noch nicht zur Datenübertragung bereit sind. Die CPU führt Wait-Zyklen aus, solange der Eingang aktiviert wird. Ein Refresh-Zyklus findet in dieser Zeit nicht statt.

Der Z80-CPU-Befehlssatz:

Im folgenden wird lediglich ein Überblick über den 280-Befehlssatz gegeben. Genauere Einzelheiten über die Programmierung des 280 sind der Fachliteratur zu entnehmen. Zu unterscheiden sind folgende Befehlsgruppen:

- * 8 Bit-Ladebefehle
- * 16 Bit~Ladebefehle
- * Austauschbefehle
- * Blocktransfers im Speicher
- * Blocksuchbefehle
- * 8 Bit arithmetische und logische Befehle
- * 16 Bit arithmetische Befehle
- * Allgemeine Akkumulator- und Statusanweisungen
- * Akku-Rotieren und -Schieben
- * Bit Setzen, Rücksetzen und Testen
- * Ein/Ausgabe
- * Sprünge
- * Unterprogrammaufrufe
- * Restarts
- * Rücksprünge
- * Sonstige Befehle

Der Z80-Befehlssatz, alphabetisch sortiert:

Mnem	onisch	Operation
ADC	A,s	Addiere den Akku und den festgelegten Operanden mit Übertrag (Carry)
ADC	HL,ss	Addiere HL und das Registerpaar ss mit Übertrag (Carry)
ADD	A, (HL)	Addiere den Akku mit der indirekt adressierten Speicherstelle (HL)
ADD	A,(IX+d)	Addiere den Akku mit der indiziert adressierten Speicherstelle (IX+d)
ADD	A,(IY+d)	Addiere den Akku mit der indiziert adressierten Speicherstelle (IY+d)
ADD	A,n	Addiere den Akku mit den unmittelbaren Daten n
ADD	A,r	Addiere den Akku mit dem Register r
ADD	HL,ss	Addiere HL und das Registerpaar ss
ADD	IX,pp	Addiere IX und das Registerpaar pp
ADD	IY,rr	Addiere IY und das Registerpaar rr
AND	s	Akku und Operand s werden durch die logische
		Funktion "UND" verknüpft
BIT	b,(HL)	Teste Bit b der indirekt adressierten Speicher- zelle (HL)
BIT	b,(IX+d)	Teste Bit b der indiziert adressierten Speicher- zelle (IX+d)
BIT	b,(IY+d)	Teste Bit b der indiziert adressierten Speicher- zelle (IY+d)
BIT	b,r	Teste Bit b des Registers r
	cc,nn	Bedingter Unterprogrammaufruf
CALL	-	Aufruf eines Unterprogramms an der Adresse nn
CCF		Komplementiere Übertragsflag
CP	s	Vergleiche den Operanden s mit dem Akku
CPD		Vergleiche und dekrementiere
CPDR		Blockvergleich und Dekrementieren

Mn	emonisch	Operation
LD	r,r'	Lade das Register r aus dem Register r'
LD	-	Lade die indirekt adressierte Speicherzelle (BC)
		aus dem Akku
LD	(DE),A	Lade die indirekt adressierte Speicherzelle (DE)
T D	/ TTT)	aus dem Akku
ĽD	(HL),n	Lade die unmittelbaren Daten n in die indirekt adressierte Speicherzelle (HL)
LD	(HL),r	Lade die indirekt adressierte Speicherzelle (HL)
	\ / L	aus dem Register r
LD	r,(IX+d)	Lade das Register r indirekt aus der indiziert
	_	adressierten Speicherzelle (IX+d)
LD	r,(IY+d)	Lade das Register r indirekt aus der indiziert
LD	a (btVI)	adressierten Speicherzelle (IY+d) Lade die indiziert adressierte Speicherzelle
טם	(IXTU),II	(IX+d) mit den unmittelbaren Daten n
LD	(IY+d),n	Lade die indiziert adressierte Speicherzelle
		(IY+d) mit den unmittelbaren Daten n
LD	(IX+d),r	Lade die indiziert adressierte Speicherzelle
		(IX+d) aus dem Register r
LD	(IY+d),r	Lade die indiziert adressierte Speicherzelle
LD	A,(nn)	(IY+d) aus dem Register r Lade den Akku aus der Speicherstelle (nn)
LD	(nn),A	Lade die direkt adressierte Speicherstelle (nn)
	(1111) / 11	aus dem Akku
LD	(nn),dd	Lade die durch nn und nn+l adressierten Spei-
		cherstellen aus dem Registerpaar dd
LD	(nn),HL	Lade die durch nn und nn+l adressierten
LD	() TV	Speicherstellen aus dem Register HL Lade die durch nn und nn+l adressierten
טם	(nn),IX	Speicherstellen aus dem Register IX
ĻD	(nn),IY	Lade die durch nn und nn+1 adressierten
	•	Speicherstellen aus dem Register IY
LD	A, (BC)	Lade den Akku aus der durch das Registerpaar
		BC indirekt adressierten Speicherstelle
LD	A,(DE)	Lade den Akku aus der durch das Registerpaar
LD	A,I	DE indirekt adressierten Speicherstelle Lade den Akku aus dem Interruptvektor-Register I
שט	7 A	Tade des Internuntuekter Desister I aus dem Akku

	•				_
LD	I,A	Lade das	Interrupt	tvektor-Reg	ister I aus dem Akku
LD	A,R	Lade den	Akku aus	dem Memory	-Refresh-Register R
LD	HL,(nn)	Lade das und nn+l	Register	HL aus den	Speicherzellen nn
ГD	IX,nn	Lade das Daten nn	Register	IX mit den	unmittelbaren
LD	IX,(nn)	Lade das und nn+1	Register	IX aus den	Speicherzellen nn
LD	IY,nn	Lade das Daten nn	Register	IY mit den	unmittelbaren
LD	IY,(nn)	Lade das und nn+l	Register	IY aus den	Speicherzellen nn

- Lade das Memory-Refresh-Register aus dem Akku LD R,A Lade das Register r indirekt aus der LD r,(HL) Speicherstelle (HL) ĻĎ SP,HL Lade den Stapelzeiger aus HL
- LDSP,IX Lade den Stapelzeiger aus dem Register IX LD SP, IY Lade den Stapelzeiger aus dem Register IY LDD Blockladen mit Dekrementieren Wiederholtes Blockladen mit Dekrementieren LDDR

Liste der Basic-Befehle und ihrer Tokens

Microsoft-Basic speichert Befehlsworte nicht Buchstabe für Buchstabe, sondern platzsparend als Codezahlen (sogen. Tokens). Diese unterscheiden sich von normalen Schriftzeichen durch das gesetzte Bit 7, also einen Wert über 127 (128-255).

Beim Abschluß der Eingabe einer Zeile durch <ENTER> "übersetzt" der Computer die hier benutzten Befehle in diese Tokens; bei der Ausgabe per LIST findet eine "Rückübersetzung" in die entsprechenden Befehlsworte statt.

Die gleichen Codes werden beim Colour-Genie auch für Graphikzeichen verwendet. Mithin erscheinen sie in einem Listing als solche, wenn sie innerhalb eines Strings (" ") stehen, jedoch als Befehle, wenn sie sich im Programmtext außerhalb von Anführungsstrichen befinden.

Da auf diese Weise nur ein Befehlssatz von maximal 128 unterschiedlichen Statements kodiert werden kann, wird für die speziellen Befehle des Colour-Genies (z. B.: COLOUR, PLOT, SOUND) auf Doppeltokens zurückgegriffen, d.h., diese werden durch zwei Zahlen dargestellt, deren erste immer den Wert 255 hat.

Die Statements ELSE und ' ("Kurzform" von REM) werden ebenfalls durch mehrere Zeichen dargestellt:

ELSE = 58 149 Hierbei ist 58 der Doppelpunkt, den der BASIC-Interpreter zur Befehlstrennung braucht, der aber hier nicht mit eingegeben werden muß und der auch nicht im Listing erscheint.

' = 58 147 251 Für den Doppelpunkt gilt das oben gesagte; 'kann also für Remarks am Zeilenende ohne vorhergehenden Doppelpunkt eingegeben werden (nicht aber REM). 147 ist das Token für REM und 251 dasjenige für ', welches beim LISTen auch dafür sorgt, daß Doppelpunkt und REM nicht erscheinen.

Der Parallelport

Der Parallelport ist über die Register 14 und 15 des PSG zugänglich, wobei die Bits 6 und 7 des Registers 7 die Datenrichtung bestimmen (Input oder Output).

Wenn z.B. Port A als Ausgang und Port B als Eingang benutzt werden soll, so ist Bit 6 zu setzen und Bit 7 zurückzusetzen. Dazu kann der Befehl SOUND 7,127 benutzt werden, der allerdings gleichzeitig jegliche Tonausgabe abschaltet.

Danach kann ausgegeben werden mit SOUND 14,DA und eingelesen werden mit DB = SOUND (15). Bei den älteren ROM's ist zum Einlesen die Befehlsfolge OUT 248,15 : DB = INP (249).

Da der PSG das Auslesen aller Registerinhalte gestattet - mit DR = SOUND (R) bzw. OUT 248,R : DR = INP (249) - kann eine Beeinflussung der Bits 0 - 5 des Registers 7 beim Rück-/Setzen der Bits 6 und 7 verhindert werden, indem man zuerst den Registerinhalt liest und ihn dann per AND und OR entsprechend verändert wieder zurückschreibt. Im gewählten Beispiel:

SOUND 7, (SOUND (7) OR 64 AND 127) bzw.
OUT 248,7: OUT 249, (INP (249) OR 64 AND 127)

Diese Eigenschaft gewährleistet ebenfalls, daß von Register 14 und 15 immer die an den Ports anliegenden Daten gelesen werden: Ist ein Port als Ausgang programmiert, so werden die Ausgangsdaten auch eingelesen, ist er als Eingang programmiert, so werden die Ausgangsdaten nur intern im PSG gespeichert – also nicht ausgegeben – und die Eingangsdaten gelesen.

Für die Druckerausgabe bei LPRINT oder LLIST werden die Ports A und B folgendermaßen verwendet:

Leitung		Signal	1/0	norm. Status
A0 - A7	=	Daten	(OUTPUT)	_
в0	=	STROBE	(OUTPUT)	LOW-Impuls
B4	=	ERROR*	(INPUT)	HIGH
B5	=	SELECT	(INPUT)	HIGH
В6	=	PAPER END	(INPUT)	LOW
в7	=	BUSY	(INPUT)	LOW

Im einfachsten Fall können die Datenleitungen des Druckers direkt mit Port A verbunden werden. Die Statusleitungen sollten
über Vorwiderstände von 1 Kiloohm mit Port B verbunden werden,
da dieser zur Ausgabe jedes STROBE-Impulses als OUTPUT geschaltet wird, was ohne diese Widerstände zu Kurzschlüssen führen
würde.

Da die meisten Drucker mit der BUSY-Leitung auskommen, können B4 und B5 offen gelassen (= HIGH) und B6 über einen Widerstand mit Masse verbunden werden (= LOW).

Anhang C

Die serielle Schnittstelle

Die RS-232-Schnittstelle ist im Colour-Genie nur insofern hardwaremäßig realisiert, daß Pegelwandler für einen Ausgang und zwei Eingänge eingebaut sind, die über die Bits 1 und 2 des Ports 255 angesprochen werden.

Da hier über verschiedenen Bits auch andere Funktionen gesteuert werden (LGR - FGR, CHAR, BGRD, Cassettenfunktionen), existiert eine Speicherstelle im RAM (17180 dez. / 431C hex), die den momentanen Output-Status beinhaltet. Dieser wird bei jeder der genannten Funktionen dazu benutzt, die Beeinflussung der nicht beteiligten Bits zu vermeiden.

Hier kann auch der Ruhezustand des TXD-Ausganges eingestellt werden:

```
MARK (-) = POKE 17180, PEEK (17180) OR 2
SPACE (+) = POKE 17180, PEEK (17180) AND 253
```

Bei den neuen ROMs läßt sich dasselbe erreichen mit:

SET 1,17180 bzw. RESET 1,17180

Das Einlesen des Modem-Status (CD) oder des Status der RXD-Leitung kann über

CD = INP (255) AND 4 bzw.RX = INP (255) AND 2

erfolgen.

Serielle Software

Da im Colour-Genie kein UART eingebaut ist, müssen die Serien-Parallel-Wandlung, die Start/Stopbit-Erzeugung sowie das Timing (Baud-Rate) per Maschinensoftware vorgenommen werden.

Auch hierbei ist der Inhalt der Speicherstelle 431C hex zur Verknüpfung mit dem auszugebenden Datum heranzuziehen, um während des Sendens eine Umschaltung anderer Funktionen zu vermeiden.

Das Cassetteninterface

Zur Aufzeichnung von Programmen und Daten auf Band wird beim Colour-Genie das Biphase-M-Verfahren benutzt. Hierbei werden sowohl Takt- als auch Datenbits in Form von Flußwechseln (Änderungen der Magnetisierungsrichtung) auf Band aufgezeichnet. Folgt auf einen (Takt-) Flußwechsel innerhalb einer gewissen Zeit ein weiterer, so ist das dazugehörige Datenbit = 1, folgt keiner, so ist es 0. Der nächste Flußwechsel ist dann wieder ein Taktbit.

Beim Laden dient ein rückgekoppelter Operationverstärker als Flankendetektor. Aufgrund seiner Beschaltung verbleibt er in dem Zustand, in den er durch die letzte Flanke des Eingangssignales "gekippt" wurde und reagiert dann nur noch auf Flanken in der anderen Richtung, wie sie der Aufzeichnung entsprechend folgen müssen. Hierdurch wird ein vom Computer verwertbares Rechtecksignal erzeugt, dessen weitere Decodierung dann per Software erfolgt. Zwei antiparallel geschaltete Dioden im Eingang des Interfaces "blenden" Störungen mit kleinen Pegeln aus.

Aus den obigen Ausführungen ist leicht zu ersehen, daß der zeitliche Bezug der Flußwechsel zueinander die Information trägt; das Verfahren ist also nicht auf bestimmte Pegel oder Pegelkonstanz und auch nicht auf eine hohe Steilheit der Flanken (entsprechend einer hohen oberen Grenzfrequenz des Rekorders) angewiesen. Ebensowenig ist der Über-Alles-Frequenzgang ausschlaggebend. Wichtig ist allein, daß die Phasenbeziehungen des Signals über Band erhalten bleiben.

Dazu muß die Tonkopfeinstellung des verwendeten Rekorders möglichst optimal sein, bzw. die des wiedergebenden Rekorders mit der des aufnehmenden übereinstimmen.

Eine Justage des Tonkopfes hilft meist, jegliche Ladeprobleme zu beseitigen. Hierbei kann einfach nach Gehör auf beste Höhenwiedergabe abgeglichen werden (das menschliche Gehör reagiert praktisch nicht auf Phasenverschiebungen).

Bei neueren Colour-Genies ist eine Pegelanzeige eingebaut, die im optimalen Bereich (Mittelstellung des Zeigers) einen Pegel von etwa 3 V Spitze-Spitze anzeigt.

Kontaktbelegungen:

Parallelport:

Expansion-Port:

Tastatur:

Stückliste Hauptplatine:

Symbol	IC	Symbol	IC
Z1	74LS02	Z 56	74LS139
Z2	74LS04	257	CRTC HD46505
Z 3	74LS86	258	74LS157
Z 4	74LS32	Z 59	74L\$157
25	74LS74	Z60	PSG AY-3-8910
Z 6	74LS00	Z61	LM747
27	74LS32	Z6 2	LM747
Z8	74LS374	Z63	74LS74
29	74LS00	Z64	74LS27
Z10	74LS74	z 65	74LS161
Z11	74LS08	266	74LS04
Z12	4116	200	, 12001
Z13	4116		
Z14	4116	Symbol	Transistor
215	4116	D YMDOI	TIANSISCOL
Z16	74LS374	Ql	9012
217	74LS173		9013
Z17 Z18		Q2	
	74LS273	Q3	9013
Z19	74LS157	Q4	9013
Z20	4116		
Z21	4116		
Z22	4116	Symbol	Zener Diode
223	4116		
Z24	74LS368	Z1	5,6V
Z25	74LS174	Z 2	6V
Z26	74LS 245	Z3	6V
Z27	2716	Z 4	6V
Z28	74LS166		
Z29	74LS367		
Z30	2114	Symbol	Diode
Z31	2114		
Z32	74LS08	D1	1N60
Z33	74LS368	D2	1n60
Z34	74LS368	D3	1N60
Z35	74LS245	D 4	ln60
Z36	74LS367	D 5	ln60
Z37	74LS166	D6	1N60
Z38	74LS166	D 7	ln60
Z39	2114	D8	1N60
Z40	74LS138	D9	1N60
Z41	74LS20	D10	ln4148
Z42	74LS157	D11	1N4148
Z43	74LS157	D12	ln60
Z44	74LS00	D13	ln60
Z 45	ROM1	D14	1N60
Z46	ROM2	D15	1N60
Z47	Z80CPU	D16	lN4148
Z48	74LS08	D17	1N4148
Z49	74LS157	D18	1N60
250	74LS157	D19	1N60
Z51	74LS10		
Z52	74LS367		
253	74LS32		
Z54	74LS132		
Z55	74LS139		

Symbol	Kondensator	Symbol	Kondensator
C62	0,lu	C67	0,lu
C63	0,lu	C68	150p
C64	0,lu	C69	ln
C65	0,lu	C70	33u
C66	0,lu	C71	lu
		C72	lu

Stückliste BASIC-Interpreter Karte:

Symbol	IC	Symbol	Kondensator
21	2532 (ROM1)	C1	0,lu
22	2532 (ROM2)	C2	0,lu
23	2532 (ROM3)	C3	0,lu
24	2532 (ROM4)	C4	0,lu
25	74LS139	C5	0,lu

Stückliste Color Encoder:

Symbol	IC	Symbol	Widerstand
z 1	74LS74	Rl	
Z 2	74LS86	R2	2K7
Z 3	74LS125	R3	3K3
24	74LS125	R4	2K7
Z 5	74LS02	R5	2K
		R6	2K
		R7	2K
Symbol	Transistor	R8	2K
•		R9	3K3
Q1	9018	R10	1K8
Q2	9018	R11	56K
Q3	9018	R12	3K3
-		R13	47
		R14	10K
Symbol	Diode	R15	10K
Dl	1ss99		
D2	1N60	Symbol	Kondensator
D3	1ss99	_	
		C1	0,lu
		C2	0,lu
Symbol	Induktivität	C3	50p
-		C4	0,lu
Ll	10uH	C5	20p
L2	10uH	C6	2,7n
		C 7	0,lu
		C8	0,1u
		C9	0,1u

Stückliste EG2012 (Druckerinterface):

Symbol	IC	Symbol	Widerstand
Z1 Z2 Z3	74LS367 74LS02 74LS123	R1 R2 R3 R4 R5	3K9 3K9 3K9 20K 100K
Symbol	Kondensator		
C1 C2 C3 C4	22n 220p 0,lu 0,lu		

Stückliste ROM-Einschubkassette:

Symbol	IC	Symbol	Kondensator
Z1 Z2 Z3 Z4 Z5	2532 2532 2532 74LS367 74LS367	C1 C2 C3	0,lu 0,lu 0,lu

Stückliste Netzteil:

Symbol	IC	Symbol	Widerstand
Z1 Z2 Z3	7805 7812 7912	Rl	4,7
		Symbol	Kondensator
Symbol	Transistor	C1 C2	0,1u 0,1u
Q1	MJ 2955	C3 C4	0,lu 10000u
Symbol	Gleichrichter	C5 C6 C7	220u 47u 0,1u
Gl	4A/50V	C8	0,1u
G2	1A/50V	C9	0,1u
		C10	22000u
		C11	47u
		C12	0,1u
		C13 C14	22000u
		C14	47u

KEYBOARD CIRCUIT

PAL COLOR ENCODER

0

η η γ >

0000

PRINTER INTERFACE

TO PARALLEL PORT

CARTRIDGE

RAM ADAPTOR

KEY PAD AND JOYSTICK INTERFACE

Nähere technische Einzelheiten über die Bauteile des Colour Genies, sowie auch die genaue Beschreibung der Z80 Programmierung sind der Fachliteratur zu entnehmen.

Literaturhinweise:

Programmierung des 280 v. Rodney Zaks SYBEX-Verlag GmbH., Düsseldorf

The TTL Data Book for Design Engineers v. TEXAS INSTRUMENTS

Datenblätter des CRTC HD46505S v. HITACHI

Datenblätter des PSG AY-3-8910 v. GENERAL INSTRUMENT

Datenblätter der Z80-CPU v. MOSTEK

Datenblätter der Z80-CPU v. Zilog

COLOUR BASIC - leicht gelernt v. Trommeschläger Computer GmbH

Stichwortregister

Address Bus	24,26	Grafik Modus 20
Address Register	16	Grafikauflösung 11
Analog Channel A,B,C	24	
Autostart	10	Halt State 27
		Horiz. Displayed Register 16
Bandaufzeichnung	39	Horiz. Sync 15
BASIC-Befehle	33	Horiz. Sync Pos. Register 16
BASIC-ROM	9	Horiz. Total Register 16
BASIC-ROM-Karte	42	Hüllkurve 22,23
Blockdiagramm	5,6	
BUS Acknowledge	28	Input/Output 24
BUS Control	24	Input/Output Request 27
BUS Direction	24	1 ' 1
BUS Request	28	Interrupt Request 28
BUS Stecker	5	
		Keyboard Circuit 61
	,10,73	Keyboard Buffer 49
	,39,57	Keypad/Joystick Interf. 77,79
Character Clock	14	Kontaktbelegungen 41,42
Character RAM	53	
Character ROM	53	Laden 39
Chip Select	14	Lautstärke 22
Clock	24,28	Level Meter 57
Color RAM	53	Lichtgriffel 42
Color Encoder	42	Light Pen Register 18
CPU and Decoding Circuit	49	Light Pen Strobe 15
CRTC	13,55	Literaturhinweise 81
CRTC Anschlußbelegung	13,33	proceduration of
CRTC Blockdiagramm	13	Machine Cycle One 26
CRTC Datenblatt	19	-
		Mainboard 59
CRTC Programmierung	20	Max. Raster Address Reg. 17
CRTC Signale	14,15	Mem Size 9
CRTC Standardeinstellung	20	Memory Map 12
CRTC Register	16	Memory Read 27
Cursor Anzeigemodus	18	Memory Request 26
Cursor Display	15	Memory Write 27
Cursor End Raster Registe		Microsoft-BASIC 33
Cursor Register	18	Mikroprozessor 25
Cursor Start Raster Regis	ter 18	
		Netzsicherung 7
Datenaufzeichnung	39	Netzteil 7,69
Datenausgabe	35	Netzteilstörung 7
	,24,26	Non-maskable-Interrupt 28
Dateneingabe	35	
Datenleitungen	35	PAL-Color-Encoder 63,65
Diskettenlaufwerk	9	Parallel Port 35,41
Display Timing	15	Pegelanzeige 39
Drucker	35	Periodendauer 22
Druckeranschluß	35	Power On Reset 49
Didoxeidischida		Printer Interface 71
EG2011	75	
Enable	14	PSG 21,57
Expansion Port	41	PSG Anschlußbelegung 23
73	7.0	PSG Blockdiagramm 21
Farbtabelle	10	PSG Programmierung 22
Festprogramme	9	PSG Register
Fluswechsel	39	

Quarz		51	Stückliste EG2012	47
			Stückliste Mainboard 43	,44,45
RAM .	5,9,	55		46
RAM Adaptor		79	Stückliste Netzteil	47
Raster Address		15	Sync Width Register	16
Rauschen		22	System RAM	55
Read/Write		14	System Timing Circuit	51
Refresh		27	_	
Refresh Memory Address		15	Tastatur	5,41
Register Select		14	Tastaturmatrix	11
Rekorder		42	Text Modus	20
Reset 14,	,24,	28	Tokens	33
ROM Adaptor		67	Tokens doppelt	34
ROM Calls		9	Tokens einfache	34
RS-232		37	Ton-Generator	5 39
RS-232 Programmierung		37	Tonkopfeinstellung	39
RXD-Leitung		37	Transformator	7
			TXD-Leitung	37
Schaltpläne	49	ff		
Schnittstellen			Vert. Displayed Register	
Schwingungsdauer		22	Vert. Sync	15
Serial Interface		57	Vert. Sync Pos. Register	17
Serielle Software		37	Vert. Total Adjust Reg.	17
Serieller Port		42	Vert. Total Register	16
Sound		57	Video Interface 5	,53,55
Spannungen		7		
Spannungsregler		7	Wait	27
Speichererweiterung		9		
Stringvariablen		9	Z80-CPU	25,49
Stückliste BASIC-ROM-Card		45	Z80-CPU Anschlußbelegung	26
Stückliste Cartridge		47	Z80-CPU Befehlssatz	29
Stückliste Color Encoder		45	Z80-CPU Blockdiagramm	25
Stückliste EG2011		46	Zeichenfarbe	10