



Managing Selecting & Decision Making Planning & Project Management\* Risk **PDPC** Break-even Analysis Importance Urgency Matrix Daily Planning PERT/CPM Quality Function Deployment Cost Benefit Analysis RAID Log\* **FMEA** MOST RACI Matrix **Activity Networks** Delphi Method Payoff Matrix TPN Analysis Risk Analysis\* **SWOT Analysis** Stakeholder Analysis Pick Chart Decision Tree Voting Four Field Matrix Fault Tree Analysis **Project Charter** Improvement Roadmaps Force Field Analysis Portfolio Matrix Critical-to X Traffic Light Assessment PDCA Policy Deployment Gantt Charts Kano Decision Balance Sheet Paired Comparison Lean Measures OFF **DMAIC** Kaizen Events Control Planning **Prioritization Matrix Pugh Matrix** Cost of Quality\* Standard Work Document control A3 Thinking Process Yield Pareto Analysis Matrix Diagram **Project KPIs KPIs Best Practices Implementing Understanding** Capability Indices **Descriptive Statistics** Chi-Square Nonparametric Solutions\*\*\* TPM Automation Cause & Effect Gap Analysis\* **Probability Distributions** Hypothesis Mistake Proofing Health & Safety **ANOVA** DOE **Bottleneck Analysis Histograms** Multivariate Normal Distribution 5S Simulation Just in Time Multi-vari Studies Reliability MSA **Graphical Methods** Scatter Plots Quick Changeover Visual Management Correlation Regression **Understanding Run Charts** 5 Whys Root Cause Analysis Data Mining Product Family Matrix Flow Pull Performance\*\* Spaghetti\*\* Process Redesign **Control Charts** Fishbone Diagrams SIPOC\* Relations Mapping Benchmarking\*\*\* Waste Analysis\*\* Value Stream Mapping\*\* Data collection planner\* Sampling How-How Diagram\*\*\* Tree Diagram\* SCAMPER\*\*\* Attribute Analysis Value Analysis\*\* **Process Mapping Brainstorming** Check Sheets\*\* Interviews Flow Process Charts\*\* Time Value Map\*\* Affinity Diagrams Morphological Analysis Questionnaires **Focus Groups** Data Mind Mapping\* **Lateral Thinking** Flowcharting IDEF0 Service Blueprints Observations Collection **Group Creativity Designing & Analyzing Processes** Suggestion Systems Five Ws

A selection method used to **compare** and **select** the best solution from a set of alternative proposals



Helps determine which of the solutions are more valuable than the others

A form of **Prioritization Matrix** 



The alternative proposals are compared against a standard . .

The current solution that already exists

A **goal** or benchmark to be reached in the near future





It allows for example to compare multiple design concepts versus a baseline design using customer requirements (VOC) as the criteria for comparison



### **Benefits**

Does not require a great amount of quantitative data

Subjective opinions about one alternative versus an be made **more objective** 



### Uses

Often used when making **design** decisions during the product development cycle



#### **Other Uses**

Deciding which investment to take

Deciding which vendor to select

Deciding which improvement project to initiate



#### **Other Uses**

When **designing or redesigning processes** to achieve faster, more convenient and more efficient performance



Developing a **list of criteria** is the first step before evaluating the alternatives

| Criteria | Weight | Baseline | 1 | 2 |  |
|----------|--------|----------|---|---|--|
| 1        |        |          |   |   |  |
| 2        |        |          |   |   |  |
| 3        |        |          |   |   |  |
| 4        |        |          |   |   |  |
|          |        | Score    |   |   |  |
|          | Rank   |          |   |   |  |

For evaluating product designs, use VOC requirements as the criteria

For evaluating **improvement proposals**, use customer requirements (VOC) or organizational improvement goals



Each criteria item can be given a weight value to indicate its importance

These weights can be set by a group of experts or by the team

| Criteria | Weight | Baseline | 1 | 2 |  |  |
|----------|--------|----------|---|---|--|--|
| 1        | 1      |          |   |   |  |  |
| 2        | 3      |          |   |   |  |  |
| 3        | 1      |          |   |   |  |  |
| 4        | 5      |          |   |   |  |  |
|          | Score  |          |   |   |  |  |
|          | Rank   |          |   |   |  |  |

The more important the criteria, the higher the weight it can be given

### The baseline solution is always set to **Zero**

| Criteria | Weight | Baseline | 1 | 2 |
|----------|--------|----------|---|---|
| 1        | 1      | 0        |   |   |
| 2        | 3      | 0        |   |   |
| 3        | 1      | 0        |   |   |
| 4        | 5      | 0        |   |   |
|          |        | Score    |   |   |
|          |        | Rank     |   |   |

Indicate how the baseline solution is **compared with** each of the alternatives by placing a plus, minus, or zero

| Criteria | Weight | Baseline | 1 | 2 |  |  |
|----------|--------|----------|---|---|--|--|
| 1        | 1      | 0        | + | - |  |  |
| 2        | 3      | 0        | - | - |  |  |
| 3        | 1      | 0        | + | + |  |  |
| 4        | 5      | 0        | 0 | + |  |  |
|          | Score  |          |   |   |  |  |
|          | Rank   |          |   |   |  |  |

### **Scoring**

For each alternative, determine whether the alternative is better, same or worse than the baseline



The final scores can be obtained by adding up the weighted scores for each alternative

| Criteria | Weight | Baseline | 1 | 2 | 3 | 4 |
|----------|--------|----------|---|---|---|---|
| 1        | 1      | 0        | + | - | + | 0 |
| 2        | 3      | 0        | - | - | 0 | - |
| 3        | 1      | 0        | + | + | + | 0 |
| 4        | 5      | 0        | 0 | + | + | - |
|          |        | Score    |   |   |   |   |
|          |        | Rank     |   |   |   |   |

The **selection** of the best solution is then made based on the obtained scores

**Further solutions** can then be developed by mixing the positive aspects of a number of solutions





## **How to Construct and Use the Pugh Matrix**

Clearly explain the **purpose** for constructing the pugh matrix

Prepare the list of **alternative** proposals and Identify the relevant **criteria** 



### **How to Construct and Use the Pugh Matrix**

Draw a table, then place the criteria in the left hand column and the alternatives in the top row

Select the **baseline solution** or benchmark to be used as a standard for comparison



**How to Construct and Use the Pugh Matrix** 

Indicate how the baseline solution is compared with each of the alternatives by placing a plus, minus, or zero

**Notice the strongest solutions**, the one with the most pluses and the fewest minuses

**Look for opportunities** to combine the best aspects of different solutions



### **Example –** Concept Selection from Among Three Alternatives:

| Criteria         | Alternative 1 | Alternative 2 | Alternative 3 | Baseline | Weight |
|------------------|---------------|---------------|---------------|----------|--------|
| Safe             | _             | _             | 0             | 0        |        |
| Durable          | +             | 0             | _             | 0        |        |
| Weight           | _             | _             | +             | 0        |        |
| Easy to assemble | +             | 0             | _             | 0        |        |
| Reliable         | _             | _             | _             | 0        |        |
| Cost             | +             | 0             | +             | 0        |        |
| Net Score        | 0             | -3            | -1            |          |        |
| Rank             | 1             | 3             | 2             |          |        |
| Continue?        | Yes           | No            | No            |          |        |