A Dielectric Sphere in an external field:

First note:

1-cos 20

$$\frac{\varphi}{\text{ext}} = -\frac{F}{\sigma} \frac{r \cos \theta}{\sigma} - \frac{1}{2} \frac{F'(r^2 \cos^2 \theta - 1 r^2 \sin^2 \theta)}{2}$$

$$= -E_{r\cos\theta} - 1E'_{r^{2}} \left(\frac{3\cos^{2}\theta}{2} - 1 \right)$$

Then we write:

$$\frac{\varphi = \sum (Ar^{\ell} + B_{\ell}) P_{\ell}(\cos \theta)}{r^{\ell+1}}$$

and
$$C = -E$$

$$\frac{C_2 = -1E'}{2}$$
 all other $C_0 = 0$

Sphere Trying a solution with 1=1 and 1=2: $\Psi_{in} = A_i \cap P(\cos\theta) + A_i \cap P(\cos\theta)$ $\Psi = C_1 P_1(\cos\theta) + D_1 P_1(\cos\theta)$ + C2 12 P2 (cos6) + D2 P3 (cos6) So then Boundary conditions Ein = Ein = Ein E' -12 Pin - 1 2 Point = E out Then this gives that: $A, \alpha = C, \alpha + D,$ $A_2a^2 = C_2a^2 + D_2$ Similarly then the boundary conditions on D - E - 24 m = - 24 mt

(3) Sphere
So then in the P, components:
$(3) - \varepsilon A_{1} = -C_{1} - (-z)D_{1}$
o.3
and in the P components:
$(4) -2A_{2}a = -2C_{2}a - (-3)D_{2}$
21/2 2
So counting equations and unknowns we have
Eqs (1), (2), (3), (4) for A, D, and A, D,
Looking at the set for A, D, we have then
$A_1 a = C_1 a + D_1$
92
$-\varepsilon A = -C + 2D$
-lemporarily setting a=1, we solve for D;
$\mathcal{E}A_{i} = C_{i}\mathcal{E} + \mathcal{E}D$
-EA = -C + 2D
Then
$O = (\varepsilon - 1) C_1 + (\varepsilon + z) D$
$\frac{1}{D_1 = -(\xi - 1)/(\xi + 2)} C_1$

(4) Sphere
Thus similarly for the l=2 case we have then: A = C + D 2
<u> </u>
and so $-2A = -2C + 3D$
2 E A = 2 EC ₂ + 2E D ₂
$0 = 2(\varepsilon - 1) C_1 + (3 + 2\varepsilon) D_2$
$\frac{-2(\varepsilon-1)C_1=D_2}{3+2\varepsilon}$
Then solving for A,
$A_1 = C_1 + D_1$
$A = \left(-\left(\varepsilon_{-1}\right) + 1\right)^{C_{1}}$
$A_{1} = 3 C_{1}$ $E+2$
and Az we have
$A_2 = C_2 + D_2$
$= C_{2} \left(\frac{1 - 2(\varepsilon - 1)}{3 + 2\varepsilon} \right) = \frac{5}{3 + 2\varepsilon} C_{2} = A_{2}$

$$Q_{1n} = -3 \quad E \cdot r \cos \theta - \left(\frac{5}{3+2\epsilon}\right) \frac{1}{2} \frac{E'}{r^2} P(\cos \theta)$$

$$\frac{2}{5+2} \left(\frac{5}{3+2\epsilon}\right) \frac{1}{2} e^{-r^2} P(\cos \theta)$$

Then

$$\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1}$$

Then we find for part 5):

=
$$+ p \cdot n$$
 $\vec{p} = (\varepsilon - 1) \vec{E}_{n}$

$$= +(\varepsilon-1)\left(-\frac{3}{2}+\frac{1}{2}\right)$$

1 Solenoid

Problem - Forces of a filled solenoid

a) $H(t) = H_0 e^{-i\omega t}$ $H_{out} = 0$ \leftarrow notation $H_0(t) = H_0 e^{-i\omega t}$

b) Then H=B-M M= (M-1) H + nx (M-M) = Kmat

c) Then computing the force per area:

Tab = -E^aE^b + S^ab E^2/2 + 1(-B^aB^b + S^abB^2/2)

we care about TPP

(2) Solenoid

$$\frac{E_{\phi} = +i\omega \mu H_{\phi}(t) p}{2c} \quad \text{for } p < a$$

Vx SH (2) 1 2, E

(9) Solenoid Using the fact that for H_(p): $(\nabla x H)_{\beta} = -\partial H_{z(t)} = -i\omega E_{\beta}(t)$ So $-\partial H_z^{(2)}(t,p) = -i\omega E_z(t,p)$ $\frac{H^{(2)}}{z} + H^{(2)}_{z}(\rho) = \int d\rho \left(-i\omega\right) \left(\frac{+i\omega}{2c} \frac{a^{2}}{\rho}\right) \mu H_{c}(t)$ $H_{2}^{(2)}(p) = \frac{\omega^{2} \alpha^{2}}{2} \mu H_{0}(t) \ln \frac{p_{max}}{2}$ Setting p=a we have H(2) (0t) = W2a2 MH (t) In pmax/a Then the continuity follows $n \times (H^{(0)} + H^{(2)} - (H^{(d)} + H^{(2)})) = \frac{1}{K_{mat}} / c$ But the Zeroth order fields already satisfy the B.C. $n \times (H_{(0)}^{(0)} - H_{(0)}^{(0)}) = \frac{1}{K} \frac{1}{M} \frac{1}{M}$

So we need

ŃΧ	(H)	- H(s)) = 0

i.e. that H(2) is continuous across the interface

g) To find the correction to the force we need to compute the discontinuity in the electromagnetic stress.

$$\frac{F}{A} = -(T^{PP} - T^{PP})$$

The electric field is continuous so it does not lead to a correction to the force.

$$\frac{T^{PP} = -H^{P}H^{P} + S^{PP}H^{2}}{2}$$

Using that $H(t) = H_c(t) + 8H$

$$ST^{PP} = \int (ZH_{(t)}SH(t)) \leftarrow So ST^{PP} Vanishes outside H_{(t)} = 0 outside$$

So the discontinuity in the stress is

$$\frac{8F}{A} = -\left(\frac{TPP}{OUt} - TPP}\right) = + H_0(t) \cdot 8H(t)$$

Inserting	the	result	from	part	/f)	we	have
0							

$$\frac{SF}{A} = \frac{\omega^2 a^2}{c^2} \left(\frac{1}{2} \mu H_0(t) \right) \ln \rho \max / \alpha$$

And the time average force is

$$\left| \frac{F}{A} \right| = \frac{1}{4} \mu H_0^2 \left(\frac{1}{1} + \frac{\omega^2 \alpha^2 \ln \rho_{\text{max}}}{c^2} \ln \rho_{\text{max}} \right)$$

Transmission

$$(1) \quad -\nabla x E = 1 2 \vec{B}$$

$$-\nabla \times (\nabla \times E) = 12, (\nabla \times B)$$

$$-\left[\nabla (\nabla E) - \nabla^2 E\right] = \sum_{E} \partial_{i}^{2} E$$

$$\nabla^2 E = \frac{mE}{c^2} \partial_t^2 E$$

(2)
$$-k^2 + \mu \varepsilon \omega^2 = 0$$
 or $\omega = ck$ $n = \sqrt{n\varepsilon}$.

They Substituting:

2 Transmission
Using
w = ck The
We have $ \frac{1}{2} = \frac{1}{2} = \frac{1}{2} $ where $\frac{1}{2} = \frac{1}{2}$
b)
Then:
$E_{G} = (E_{I} e^{ikz} + E_{R} e^{-ikz}) \hat{x}$ $H_{G} = I (E_{I} e^{ikz} - E_{R} e^{-ikz}) \hat{y} \leftarrow part a$
$E_{2} = E_{1} e^{ikz} \hat{x}$ $H_{3} = \int_{2}^{2} E_{2} e^{ikz} \hat{y} \qquad \text{parta}$
Z Z Z

(3) Transmission

Then H, is continuous and E, is

$$\frac{1(E_{I}-E_{R})=1E_{T}}{2}$$

Solving .

$$E_1 - E_R = Z_1 E_1$$
 Z_2

$$\frac{2E_{\pm}}{(1+2/2)}=E_{\mp}$$

$$\frac{C}{Z}, \frac{Z}{Z} = \frac{Z}{Z}, \frac{Z}{Z} = \frac{Z}{Z}, \frac{Z}{Z} = \frac{Z}{Z}$$

$$\frac{C}{Z}, \frac{Z}{Z} = \frac{Z}{Z}, \frac{Z}{Z} = \frac{Z}{Z}, \frac{Z}{Z} = \frac{Z}{Z}$$

$$\frac{C}{Z}, \frac{Z}{Z} = \frac{Z}{Z}, \frac{Z}{Z} = \frac{Z}{Z}, \frac{Z}{Z} = \frac{Z}{Z}$$

@ Transmission

c) For the slab we have the analogous forms:

$$E_{G} = (E_{\underline{I}} e^{ik^{2}} + E_{\underline{R}} e^{-ik^{2}}) \hat{\chi}$$

$$E_{\underline{G}} = (E_{\underline{I}} e^{ik^{2}} + E_{\underline{R}} e^{-ik^{2}}) \hat{\chi} \leftarrow k = nk = wave \# \text{ in medium}$$

$$E_{\underline{G}} = (E_{\underline{I}} e^{ik^{2}} + E_{\underline{R}} e^{-ik^{2}}) \hat{\chi} \leftarrow \text{extra phase for convenience}$$

$$H_{\underline{G}} = (E_{\underline{I}} e^{ik^{2}} - E_{\underline{R}} e^{-ik^{2}}) \hat{\chi} \leftarrow \text{use part (a)} \quad \text{with } Z = 1$$

$$H_{\underline{G}} = 1(E_{\underline{I}} e^{ik^{2}} - E_{\underline{R}} e^{-ik^{2}}) \hat{\chi}$$

$$Z = \frac{1}{2} (E_{\underline{I}} e^{ik^{2}} - E_{\underline{R}} e^{-ik^{2}}) \hat{\chi}$$

$$Continuity \quad \text{of } E \text{ and } H \text{ at } z = 0 \text{ gives}$$

$$(1) \quad E_{\underline{I}} + E_{\underline{R}} = E_{\underline{I}} + E_{\underline{R}}$$

$$(2) \quad E_{\underline{I}} - E_{\underline{R}} = \frac{1}{2} (\widehat{E}_{\underline{I}} - \widehat{E}_{\underline{R}})$$

$$And \quad \text{at } z = d$$

$$(3) \quad e^{ikd} (E_{\underline{I}} + E_{\underline{R}} e^{-2ikd}) = E_{\underline{I}} e^{ikd}$$

$$(4) \quad e^{ikd} (E_{\underline{I}} - E_{\underline{R}} e^{-2ikd}) = E_{\underline{I}} e^{ikd}$$

$$E_{\underline{I}} = E_{\underline{I}} (E_{\underline{I}} - E_{\underline{R}} e^{-2ikd}) = E_{\underline{I}} e^{ikd}$$

$$E_{\underline{I}} = E_{\underline{I}} (E_{\underline{I}} - E_{\underline{R}} e^{-2ikd}) = E_{\underline{I}} e^{ikd}$$

$$E_{\underline{I}} = E_{\underline{I}} (E_{\underline{I}} - E_{\underline{I}} e^{-2ikd}) = E_{\underline{I}} e^{ikd}$$

$$E_{\underline{I}} = E_{\underline{I}} (E_{\underline{I}} - E_{\underline{I}} e^{-2ikd}) = E_{\underline{I}} e^{ikd}$$

$$E_{\underline{I}} = E_{\underline{I}} e^{-2ikd} = E_{\underline{I}} e^{-2ikd}$$

$$E_{\underline{I}} = E_{\underline{I}} e^{-2ikd} = E_{\underline{I}} e^{-2ikd}$$

6 Transmission
Now consider a wave packet
· · · · · · · · · · · · · · · · · · ·
$\Delta x \Delta k = 1/2 \Delta x$
After passing into the dielectric. $k \rightarrow k = nk$. So the width of the wave packet $0k \rightarrow 0\tilde{k} = n0k$,
So the width of the wave packet OK -> Ak = nok,
changes. (OF)
· When there is a finite, width the different
fourier coefficients will not add coherently when
Ak d ~1. At this point the response will be
maximum (Fd = nT) for some parts of the
Wowe packet but a minimum ((£+0k)d=(n+1)TT)
for others and the intereference structure will
wash out:
$ \sqrt{K}d = \sqrt{K}(\widetilde{K}d) = \sqrt{K}(\widetilde{K}d) \sim 1 = \widetilde{K}d $
F ZUXK
~ V20
Thus akd ~ 1 kd ~ 1 for
20
Rd about 20 ~ 6TT. So we expect to
See about six fringes before the interference
Struture washes out.

7 Transmission
So we expect the following picture:
asymptotic value O.1 - Kd
where the asymptotic value is given by the
non-oscillating part of Eq. A (see pg. 5)
T -> 4Z 2
$(1+Z)^2$
The asymptotic value is given by the product
of transmission amplitudes squared:
$T_{p} = t_{1}t_{2} ^{2} = 42 ^{2} \simeq (42)^{2} \simeq 0.6$ $(1+2)^{2} = (22)^{2} \simeq 0.6$
where from (b):
J Trom Chy :
t, = vacuum to dielectric = 27/(1+2)
amplitude
$t_2 = dielectric to = 2$ Vacuum amplitud (1+Z)