COMPUTER SCIENCE & IT

DIGITAL LOGIC

Lecture No. 04

Combinational Circuit

Look ahead carry adder
H.S., F.S.

K-Map		
į.		

K-Map

Used for Entries:

- '0
- 1
- $\times \to don't$ care
- · Variable

What is don't care X'

$$\begin{cases}
y(A_1B,C) \\
X = \sum (5,7) \\
+ d \sum (0,2,4,6)
\end{cases}$$

$$X$$

$$X$$

$$X$$

$$ABC > 3$$

$$X$$

ABCD D

CD

Why gray code is used in case of K-map?

$$= \overline{A}C + AC$$

$$= C(\overline{A} + A)$$

$$= C$$

Question

$$f(A, B) = \Sigma(1, 3)$$
$$= B$$

Question

$$f(A,B) = \Sigma(0,3) + d\Sigma(1)$$

Question

$$f(A, B) = \Sigma(0, 1) + d\Sigma 2$$

$$\overline{A}$$

$$(\text{redundant})_{A}$$

2 Minute Summary

→ K-Map

Thank you

Soldiers!

