Aggios: Scalable Aggregator-Based Voting

ZKProof 2024

Pablo, grant reference (16326754).

Doron Zarchy

APSIA, University of Luxembourg

Challenges with Current Voting Systems

- We vote primarily to elect representatives who often become disconnected from the people's needs once they are in office. "Vote for the man who promises least; he'll be the least disappointing." – Bernard Baruch
- Long terms and infrequent elections can lead to politicians prioritizing their own agendas or special interests over the public good
- Lack of accountability: Elected officials may not feel the need to respond to their constituents' concerns regularly
- "Politics is the art of looking for trouble, finding it everywhere, diagnosing it incorrectly, and applying the wrong remedies." – Groucho Marx

High-Frequency Elections

High-frequency voting: involves holding referendums or elections more frequently than in typical electoral systems.

Benefits of High-Frequency Elections

- Increased Public Engagement: Regular voting opportunities keep the public actively involved in the democratic process.
- Enhanced Accountability: Frequent elections ensure politicians remain responsive to their constituents' needs and preferences.
- Empowerment: Voters feel more empowered as their voices are heard more regularly, strengthening the democratic process.
- Increase Happiness: Empirical scientists, e.g. Bruno S. Frey among many, show that direct democracy, contribute to stability and happiness.

Examples: Switzerland conducts frequent referendums on a wide range of issues, with almost 600 national votes since 1848, fostering continuous public involvement

Challenges to High-Frequency Voting

- **High Manpower Requirements:** Traditional offline voting requires significant manpower for setup, monitoring, and counting votes, which can be resource-intensive.
- Electronic Voting Challenges: Electronic systems demand high bandwidth and substantial time for secure and accurate vote verification.
- Cost Implications: Both offline and electronic voting systems incur substantial costs due to their regular occurrence.
- Logistical Challenges: Managing frequent elections can be complex, requiring efficient systems to handle logistics without delays.
- Security Concerns: Ensuring the integrity and security of frequent elections is critical to maintaining public trust.

The Need for Advanced Solutions:

Modern electoral systems must scale effectively to accommodate multiple events without losing performance on security and accuracy.

Aggregation Based Voting

Enhancing Scalability with Aggios

Aggios:

- Aggios is a proxy voting scheme that is based on aggregator
- Utilizes new accumulator scheme to manage scalability issues in high-frequency voting.

Benefits of Aggios:

- Reduced Costs and Complexity: save communication.
- Quick Processing: Accelerates vote counting and results dissemination.
- Intgrity and Confidentiality: Each vote is secure and private.

Aggios: A new paradigm in voting

- Aggios Voting System components:
 - **Voters**: Individuals who participate in the election process by submitting their votes through a secure interface.
 - Aggregators: Collect and tally votes. They use accumulator to ensure that the aggregation process is secure and verifiable.
 - A ZK proof for the subset membership argument, ensuring that votes are valid
 - Validators: Independent parties responsible for integrity of the vote tally.
 Verify the MSA provided by the aggregators.

Proving Subset Membership

- Accumulator for ZK-subset membership
 - Merkle Tree. zk-SNARK (Groth16, Plonk) uses Hashing (expensive operation).
 Large constants involved in arithmetizing hash functions
 - RSA accumulator. Verification is linear
- Lookup Table based accumulators (Caulk, Caulk+, etc.)
 - Short proving time
 - Constant size proof and verification time
 - ZK-for multiset (and not subset)

Accumulator based on Lookup Tables

• Lookup argument argument: given a collection of values $c_i \in C$ (called "table") and a collection of values $a_i \in A$, a lookup argument shows that all elements of A occur in C

Define
$$Z_{I_j}(X) = \prod_{i \in I_j} (x - i)$$

•
$$C(X) - C_I(X) = 0 \mod Z_I(X)$$

$$\vec{c} = (30, 20, 50, 40, 10),$$

$$I = 1,2,3,4,5,6$$

$$I_1 = \{1,3,4\}$$

$$\overrightarrow{c_{I_1}} = (30, 50, 40)$$

$$\begin{pmatrix}
10
\end{pmatrix}$$

Accumulator based on Lookup Tables

• Lookup argument argument: given a collection of values $c_i \in C$ (called "table") and a collection of values $a_i \in \overline{A}$, a lookup argument shows that all elements of A occur in C

Define
$$Z_{I_j}(X) = \prod_{i \in I_i} (x - i)$$

- $C(X) C_I(X) = 0 \mod Z_I(X)$
- $A(X) := C_I(U(X))$ $\vec{c} = (30,20,50,40,10)$ $I = \{1,3,4\}$

$$\overrightarrow{c_I} = (30,50,40), \overrightarrow{A_I} = (30,50,40,30)$$

Voting Security goals

- Voter's Integrity.
 - does not delegates more than one vote to
 - 1. the same aggregator
 - 2. different aggregators
- Aggregator Integrity:
 - only registered voters are allowed to vote
 - correctly aggregates the votes
 - security against non-cooperative voter
- Privacy of the delegated votes:
 - Third parties should not be able to link the elements in \overrightarrow{C} to the elements in \overrightarrow{A}

Proposed Scheme: Multi-Subset Membership Argument (MSMA)

- Setup: SRS, invertible functions f_1,\ldots,f_k for $f_i:\mathbb{Z}_p\to\mathbb{Z}_p$
- Witness: Lookup table $C = (c_1, \dots, c_n)$
- Public input: A public commitment [C] to C
- Prover outputs:
 - 1. k commitments $[A_1], \ldots, [A_k]$ to polynomials $A_1(X), \ldots, A_k(X)$ and their "sizes" T_1, \ldots, T_k (tally) such that $\sum_{j \in [k]} T_j = n$
 - 2. A Proof Π that for any $c \in C$, there is $a = \Phi(c)$ s.t. $a \in \bigcup_{j \in [k]}$ and Φ is one-to-one

MSMA - One Subset

Define
$$Z_{I_j}(X) = \prod_{i \in I_j} (x - i)$$

•
$$C(X) - C_{I_j}(X) = 0 \mod Z_{I_j}(X)$$

 $\vec{c} = (30,20,50,40,10),$

$$I = 1,2,3,4,5,6$$
 $I_1 = \{1,3,4\}$
 $\overrightarrow{c}_{I_1} = (30,0,50,40,0)$

$$\overrightarrow{c}$$
 $\overrightarrow{c_{I_1}}$

MSMA - adding permutations

• $C(X) - C_{I_j}(X) = 0 \mod Z_{I_j}(X)$

$$\Phi(c_1) = a_2, \Phi(c_3) = a_1, \Phi(c_4) = a_3$$

- Choose random mapping $\Pi:[n] \to [|A_j|]$

• Define
$$A_j(X_i) := F_j(C_{I_i}(\Pi(X_i)))$$

MSMA

Variant of Grand-Product Argument (Sonic, Plonk)

• Replace $A_j(X) := f_j(C_{I_i}(U(X)))$ with grand product argument:

•
$$h_j(X) = A_j(X) + S_{ID}(X)\beta_j + \gamma_j$$

•
$$g_j(X) = f_j(C_{I_i}(X)) + S_{ID}(\Pi(X))\beta_j + \gamma_j$$

•
$$h_j(X)z_j(X) - g_j(X)z_j(X+1) = 0 \mod Z_{V_j}(X)$$

 \overrightarrow{C}

$$I = \{I_1 = \{1,3,4\}, I_2 = \{2,5\}\}$$

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

2.
$$\forall j \in [k], C(X) - C_{I_j}(X) = 0 \mod Z_{I_j}(X)$$

$$\overrightarrow{c_{I_1}} = (30,0,50,40,0)$$

$$\overrightarrow{c_{I_2}} = (0,20,0,0,10)$$

$$I_{j_1} \cap I_{j_2} = \emptyset$$

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

2. $\forall j \in [k], C(X) - C_{I_j}(X) = 0 \mod Z_{I_j}(X)$
 $\vec{c} = (30,20,50,40,10)$
 $I = \{I_1 = \{1,3\}, I_2 = \{2,4,5\}, I_3 = \{1,2,3,4,5\}\}$
 $\vec{c}_{I_1} = (30,0,50,40,0)$ $\vec{c}_{I_2} = (0,20,0,0,10)$ $\vec{c}_{I_3} = (30,20,50,40,10)$
 $I_1 \cap I_3 \neq \emptyset$

The set $\{\overrightarrow{c_{I_j}}\}_{j\in[k]}$ covers \overrightarrow{c}

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

2.
$$\forall j \in [k], C(X) - C_{I_j}(X) = 0 \mod Z_{I_j}(X)$$

$$I = \{I_1, I_2\}$$

$$I_1 \cap I_2 \neq \emptyset$$

- Choose a secret partition of [n], $I_1, \ldots I_k$
- publish KZG commitments $[C_{I_1}], ..., [C_{I_k}]$ and $[A_1], ..., [A_k]$ s.t.,
 - Prove that C and $\bigcup_{j \in [k]} C_{I_i}$ agree on all element in [n]:

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

- 2. $\forall j \in [k], C(X) C_{I_i}(X) = 0 \mod Z_{I_i}(X)$
- 3. Permutation argument

•
$$h_j(X) = A_j(X) + S_{ID}(X)\beta_j + \gamma_j$$

•
$$g_j(X) = f_i(C_{I_j}(X)) + S_{ID}(U(X))\beta_j + \gamma_j$$

•
$$h_j(X)z_j(X) - g_j(X)z_j(X+1) = 0 \mod Z_{V_j}(X)$$

- Choose a secret partition of [n], $I_1, \ldots I_k$
- publish KZG commitments $[C_{I_1}], ..., [C_{I_k}]$ and $[A_1], ..., [A_k]$ s.t.,
 - Prove that C and $\bigcup_{j \in [k]} C_{I_j}$ agree on all element in [n]:

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

- 2. $\forall j \in [k], C(X) C_{I_i}(X) = 0 \mod Z_{I_i}(X)$
- 3. Permutation argument

•
$$h_j(X) = A_j(X) + S_{ID}(X)\beta_j + \gamma_j$$

•
$$g_j(X) = f_i(C_{I_j}(X)) + S_{ID}(U(X))\beta_j + \gamma_j$$

•
$$h_j(X)z_j(X) - g_j(X)z_j(X+1) = 0 \mod Z_{V_j}(X)$$

- Choose a secret partition of [n], $I_1, \ldots I_k$
- publish KZG commitments $[C_{I_1}], ..., [C_{I_k}]$ and $[A_1], ..., [A_k]$ s.t.,
 - Prove that C and $\bigcup_{j \in [k]} C_{I_i}$ agree on all element in [n]:

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

- 2. $\forall j \in [k], C(X) C_{I_i}(X) = 0 \mod Z_{I_i}(X)$
- 3. Permutation argument

•
$$h_j(X) = A_j(X) + S_{ID}(X)\beta_j + \gamma_j$$

•
$$g_j(X) = f_i(C_{I_i}(X)) + S_{ID}(U(X))\beta_j + \gamma_j$$

•
$$h_j(X)z_j(X) - g_j(X)z_j(X+1) = 0 \mod Z_{V_j}(X)$$

Verifier checks:
$$\sum_{j \in [k]} T_j = n$$

If the intersection is not empty then $\sum_{j \in [k]} T_j > n$

One to One Correspondence

Show that $\Phi(c_i) \neq \Phi(c_j)$

• If there are $j \neq j'$ such that $c \in C_{I_j}, c \in C_{I_{j'}}$ then $\sum_{j \in [k]} T_j > n$

Check: 3+3>5

- Choose a secret partition of [n], $I_1, \ldots I_k$
- publish KZG commitments $[C_{I_1}], \ldots, [C_{I_k}]$ and $[A_1], \ldots, [A_k]$ s.t.,
 - Prove that C and $\bigcup_{j \in [k]} C_{I_j}$ agree on all element in [n]:

1.
$$C(X) - \sum_{j \in k} C_{I_j}(X) = 0 \mod Z_I(X)$$

- 2. $\forall j \in [k], C(X) C_{I_i}(X) = 0 \mod Z_{I_i}(X)$
- 3. Permutation argument

•
$$h_j(X) = A_j(X) + S_{ID}(X)\beta_j + \gamma_j$$

•
$$g_j(X) = f_i(C_{I_i}(X)) + S_{ID}(U(X))\beta_j + \gamma_j$$

•
$$h_j(X)z_j(X) - g_j(X)z_j(X+1) = 0 \mod Z_{V_j}(X)$$

• Verifier checks:
$$\sum_{j \in [k]} T_j = n$$

Checks: 3+2=5

- Prover:
 - Choose a secret partition of [n], $I_1, \ldots I_k$
 - publish KZG commitments $\{[C_{I_j}]\}_{j \in [k]}, \{[A_{I_j}]\}_{j \in [k]},$ and proofs $\{[W_{I_j}]\}_{j \in [k]}, [W_{I}]$
- Verifier:

•
$$\forall j \in [k], e(([C] - [C_{I_j}]) + \alpha^j[x^n - 1], [1]) = e([Z_j], [W_j])$$

•
$$e(([C] - \sum_{j \in k} [C_{I_j}]) + \alpha^{j+1}[x^n - 1], [1]) = e([Z_I], [W_I])$$

MSMA

- If there are two element c_1, c_2 such that $\Phi(c_1) = \Phi(c_2) = a$
 - c_1, c_2 cannot be from the same (permutation)
 - => $c_1 \in C_{I_1}, c_2 \in C_{I_2}$

Checks: 3+2=5

MSMA

- If there are two element c_1, c_2 such that $\Phi(c_1) = \Phi(c_2) = a$
 - c_1, c_2 cannot be from the same (permutation)

• =>
$$c_1 \in C_{I_1}, c_2 \in C_{I_2}$$

For every $c_i \in C$, $c_i \in \bigcup_{j \in [k]} C_{I_j}$

$$\sum_{j \in [k]} |a_j| = \sum_{j \in [k]} |T_j| > k$$

- Choose a secret partition of [n], $I_1, \ldots I_k$
- publish KZG commitments $[C_{I_1}], ..., [C_{I_k}]$ and $[A_1], ..., [A_k], T_1, ..., T_k$ s.t.,
 - $C(X) \sum_{j \in k} C_{I_j}(X) = 0 \bmod Z_I(X) \text{ (Lagrangian of } I_j\text{'s are over large basis)}$
 - Permutation argument

•
$$f_j(X) = A_j(X) + S_{ID}(X)\beta_j + \gamma_j$$

•
$$g_j(X) = C_{I_i}(X)^{t_j} + S_{ID}(U(X))\beta_j + \gamma_j$$

•
$$f_j(X)z_j(X) - g_j(X)z_j(X+1) = 0 \mod Z_{T_j}(X)$$

• Verifier checks: $\sum_{j \in [k]} T_j = n$

• =>
$$\forall j_1 \neq j_2, I_{j_1} \cap I_{j_2} = \emptyset$$

•
$$\forall c_1 \neq c_2 \in C, \Phi(c_1) \neq \Phi(c_2)$$

One to one correspondence!

Overview of the Voting Scheme

Protocol Phases

- Setup Phase.
 - Establish SRS and PKI
- Registration.
 - Voters register their voting keys with their chosen aggregator. This phase includes:
 - Sharing of secret voting keys between voters and aggregators.
 - Use of aggregatable signatures to prevent a voter from registering with multiple aggregators and to simplify the validation process.
- Voting.
 - Voters delegate their vote over a private channel
 - Aggregators submit the local tally with multi-shuffle argument of knowledge.

Operational Highlights:

- If voters change their aggregator, they generate new voting keys, enhancing security and flexibility.
- All interactions and transactions are cryptographically signed to ensure non-repudiation and integrity.

Voting Protocol

Setup and Registration

Setup: $\Sigma_1(PKV_1),\ldots,\Sigma_n(PKV_n)$, KZG.SRS Publicly compute polynomial commitment C(X) from PKV_1,\ldots,PKV_n

Voting Protocol

Voting and Aggregating

Setup: $\Sigma_1(PKV_1),\ldots,\Sigma_n(PKV_n)$, KZG.SRS Publicly compute polynomial commitment C(X) from PKV_1,\ldots,PKV_n

Performance

- Proof time O(k) (independent in number of gates)
 - (8k+2) G₁
 - 1 G₂ for [W]
 - Verifier time: 4k pairings + 2

Protocol	Proof size	Proof time	Verification time	Trusted setup	Succinct	Post- quantum
Groth16	$2 \mathbb{G}_1, 1 \mathbb{G}_2$	$3n + m - \ell \mathbb{G}_1 \ exp, \ n \ \mathbb{G}_2 \ exp$	$3 P, \ell G_1 \exp$	T, per- circuit	1	×
Plonk	7 G₁,7 F	$11(n + a) G_1 exp, 54(n + a) log(n + a) F$	$2P, 18 G_1$ exp	T, U, Up	/	×
Plonk (fast prover)	9 G₁,7 F	$9(n + a) G_1 exp, 54(n + a) log(n + a) F$	$2P, 16 G_1$ exp	T,U,Up	1	×

The number of wires is denoted by m. KoE stands for Knowledge of Exponent. P denotes pairing computation and ℓ is the number of public input. T stands for Trusted, U for Universal and Up for Updatable.