CHAPITRE III: Processus Unifié

Définition

- ❖ Le processus unifié (Unified Process) est une méthode générique de développement de logiciel développée par les concepteurs d'UML.
- ❖ C'est un patron de processus pouvant être adaptée à :
 - une large classe de systèmes logiciels,
 - différents domaines d'application et
 - différents niveaux de compétences.
- * Approche disciplinée pour des gros projets, elle permet d'affecter des tâches et des responsabilités (chef de projet, analystes, intégrateur, testeurs, etc.)

Processus

Un processus décrit qui fait quoi, comment et quand.

Le UP définit ainsi quatre éléments primaires de modélisation :

- Le **membre** est le **qui** : le chef de projet, l'analyste, le testeur, l'utilisateur, etc.
- L'activité est le comment : analyse des CU, conception de CU, etc.
- •L'artefact est le quoi : un document de l'architecture, un modèle des CU, un fichier exécutable, etc.
- •L'enchaînement d'activités est le quand : modélisation, implémentation, test, etc.

Définition

- * Le Processus unifié est :
 - Un processus piloté par les CU
 - Un processus centré sur l'architecture
 - Un processus itératif et incrémental
 - Piloté par les risques

Risque

- * Risque que le projet de construction du système soit un Échec
- Différentes natures de risques pour un projet besoins / technique / autres

Exemples

- le système construit n'est pas le bon
- architecture inadaptée,
- utilisation de technologies mal maîtrisées,
- personnel insuffisant, problèmes commerciaux ou financiers (risques non techniques)

Les caractéristiques

Itératif et incrémental

Le projet est **découpé** en itérations ou **étapes** de **courte** durée. A la fin de chaque itération une **partie** exécutable du **système** finale est **produite**, de façon **incrémentale**.

Centré sur l'architecture

Tout **système complexe** doit être **décomposé** en partie **modulaire** afin d'en **faciliter** la maintenance et l'évolution. Cette architecture doit être modéliser en UML.

Piloté par des cas d'utilisation

Le processus de développement est accès sur l'utilisateur. Le **CU illustre** ces **besoins** fonctionnel. Le digramme de CU décrit les fonctionnalités complètes du système.

Piloté par les risques

Les **risques majeurs** du projet doivent être **identifiés** au **plus tôt** mais surtout **levés** le plus rapidement.

Développement itératif

Avantages du développement itératif :

- les risques sont évalués au départ et non au cours du projet ;
- les premières itérations permettent d'avoir un feed-back des utilisateurs ;
- les tests et l'intégration se font de manière continue;
- les jalons permettent de fixer des objectifs ;

Cycle de vie du processus unifié

- L'objectif d'un processus unifié est de maîtriser la complexité des projets informatiques en diminuant les risques.
- PU est un ensemble de principes génériques adapté en fonctions des spécificités des projets.

L'architecture bidirectionnelle: PU gère le processus de développement par deux axes.

L'axe vertical : les principaux enchaînements d'activités.

Cette dimension rend compte l'aspect statique du processus qui s'exprime en termes d'activités, d'enchaînements, d'artefacts et de travailleurs.

L'axe horizontal : le temps et le déroulement du cycle de vie du processus.

Cette dimension rend compte de **l'aspect dynamique** du processus qui s'exprime en terme de **phases**, **d'itérations** et de **jalons**.

Activités

Les enchaînements d'activités

- Expression des besoins et CU
- Analyse
- Conception
- Implémentation
- Test

Activités et phases

Les activités (Capture des besoins)

- Expression des besoins dans les CU (exigences fonctionnelles).
- Spécification des CU en scénarios.
- Limites fonctionnelles du projet.
- Expression les besoins non fonctionnels (techniques) et
- La liste des exigences (utilisabilité, fiabilité, performances).
- Définit le modèle des CU qui représente le système vu de l'extérieur.

Les activités (Analyse)

- Recenser les besoins fonctionnels
- Définit le modèle d'analyse qui représente le système vu de l'intérieur.
 - Définit les **objets**.
 - Vue statique et dynamique sur le comportements.

Les activités (Conception)

• Effectuer la conception correspondant aux cas sélectionnés

Les activités (Réalisation)

- Développement incrémental.
- Intégrer dans un système exécutable les résultats produits par des programmeurs individuels ou des équipes.

Les activités (Test)

- Etapes (unitaire, d'intégration, système, acceptation).
- Types:
 - De configuration (différentes config matérielles et logicielles)
 - De fonctionnement (vérification des CU)
 - D'installation
 - D'intégrité (fiabilité, robustesse, résistance)
 - De charge (conditions opérationnelles plus lourdes = nb utilisateurs, transactions,...)
 - De stress (conditions anormales opérationnelles)

Les quatre phases du cycle de développement

Etude préliminaire: Décrire la vision du produit final

Élaboration: Détailler les fonctionnalités

Construction: Concevoir et implanter le produit

Transition: Transmettre une version du **produit** aux **utilisateurs**

Les Phases (Etude préliminaire)

Objectifs

- Comprendre le système à construire
- Spécifier les principaux CU et scénarios (les plus critiques)
- Définir une architecture candidate (déterminer au moins une solution possible:
 - Architecture (client-serveur, centralisée, distribuée, etc.)
 - -**Technologies utilisées** (éventuellement faire des tests d'implémentation pour estimer les risques liés à une technologie.
- Evaluer les coûts et planning
- Les principaux risques
- Décider du processus à appliquer et des outils à utiliser.

A la fin (Jalon 1: Objectifs définis):

- Les différents intervenants valident:
- Le coûts et le délais
- la liste des exigences
- Les risques initiaux sont identifiés et les stratégies de réduction pour chacun d'eux.

Les Phases (Elaboration)

Objectifs

- Détailler les cas d'utilisation (Diagramme de CU, diagrammes d'activité).
- Modélisation objet (Diagramme de classes au niveau conceptuel)
- (Diagrammes de séquence au niveau spécification)
- Création d'une l'architecture de référence
- Saisir l'essentiel des besoins
- Réduire les risques de moindre gravité

A la fin (Jalon 2 : Architecture définie)

- Créer l'architecture de référence
- Saisir l'essentiel des besoins
- Réduire les risques de moindre gravité

Les Phases (Construction)

Objectifs

- Minimiser les coûts de développement.
- Assurer une progression continue
- Développer de façon itérative un logiciel prêt à la transition vers les utilisateurs.
- Décrire les C.U. restants et les spécifications supplémentaires
- Terminer la conception
- Coder et exécuter les tests unitaires
- Effectuer les tests d'intégration et système

A la fin (Jalon 3 : Première livraison)

- Développer le système complet
- S'assurer que le produit peut être utilisé par les clients
- Evaluer si les dépenses réelles/prévisionnelles sont acceptables

Les Phases (Transition)

Objectifs

- Exécuter les **tests bêta** (test externe)
- S'assurer que l'on dispose d'un produit prêt à être livré à l'ensemble des utilisateurs
- Rédiger la procédure d'installation
- Former les utilisateurs
- Préparer le lancement
- Obtenir l'accord des intervenants

A la fin (Jalon 4 : livraison finale):

• Livrer le produit

Évaluation :

- Satisfaction des utilisateurs
- Bilan sur les ressources consommées