

DISTRIBUTION STAMP LEVEL INVENTORY FTD - ID (Rs)T-0279-79 DOCUMENT IDENTIFICATION DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited DISTRIBUTION STATEMENT ACCESSION FOR NTIS GRAAI DTIC TAIL UNANNOUNCED JUSTIFICATION BY DISTRIBUTION AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP	PH	IOTOGRAPH THIS SHEET
DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited DISTRIBUTION STATEMENT ACCESSION FOR NTIS GRAAI DIKC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED		D-ID(RS)T-0279-79
ACCESSION FOR NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED	Q I	Approved for public release; Distribution Unlimited
D D C UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL D D C D C D C D C D C D C D C D C D C		DISTRIBUTION STATEMENT
A	NTIS GRAAI DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES	FEB 19 1980 DEGIT D
DISTRIBUTION STAMP	A	DATE ACCESSIONED
1 1	DISTRIBUTION STAMP	
DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2		

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

FOREIGN TECHNOLOGY DIVISION

CALCULATION OF A MULTILAYER DIALECTRIC WAVE GUIDE

bу

G. D. Rozhkov, A. S. Belanov, V. F. Vzyatyshev

Approved for public release; distribution unlimited.

79 08 20 176

EDITED TRANSLATION

FTD-ID(RS)T-0279-79

9 March 1979

MICROFICHE NR: 34D - 79- C-000357

CALCULATION OF A MULTILAYER DIALECTRIC WAVE GUIDE

By: G. D. Rozhkov, A. S. Belanov,

V. F. Vzyatyshev

English pages: 14

Trudy Moskovskogo Energeticheskogo

Instituta, Issue 100, 1972, pp. 102-114.

Country of origin: USSR

Translated by: LINGUISTIC SYSTEMS, INC.

F33657-78-D-0618

S. Bruno

Requester: Naval Surface Weapons Center Approved for public release; distribution

unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT HECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

0. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

ынск	Italie	Transliteration	Block	Italie	Transliterati
A G	A a	A, a	P p	Pp	К, г
; 6	B 8	B, b	C c	Cc	3, 8
· 4	B •	V , v	ĪΤ	T m	T, t
t - t	Γ .	Ŭ• €"	Уу	<i>y</i> y	U , u
~ 4	Дд	D_{\bullet} d	ф ф	Φ φ	F , r
t e	E .	Ye, ye; E, e*	\ \	X x	Kh, kh
жж	Жж	Ih, th	Цц	Цч	Ts, ts
, i i	3 ,	11, 11	Ч ч	4 4	ch, el.
11 41	H u	1, 1	س لئا	Шш	Sh, sh
F" +1	A a	Υ, γ	ान प्त	Щщ	Sheh, shen
ti n	KK	K, k	li ti	ъ	**
24 A	ЛА	L, 1	Н ы	M M	У , У
kv .	ММ	N, m	L L	Ь	1
Н н	H N	N, 11	ر ۱.	9 ,	Ε, ο
J n	0 0	U, U	ы ю	10 no	Yu, yu
Пл	Пп	Г, р	Hн	Як	Ya, ya

^{*}ye initially, after vowels, and after b, b; elsewhere. When written as \ddot{e} in Russian, transliterate as $y\ddot{e}$ or \ddot{e} .

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	Figure
3 in	sin	sh	sinh	are sh	sim"
000	ರಂಕ	ch	cosh	are ch	ecoh ^T
tor;	tan	th	tanh	are th	tana7:
etg	cot	eth	eoth	are oth	eeth ^T
ธออ	sec	seh	sech	are seh	seehT:
cosec	ese	esch	esch	are each	oron 1

Russian	English		
rot	eurl		
1g	log		

Section 4. DIELECTRIC WAVE GUIDES: CALCULATION OF A MULTI-LAYER WAVE GUIDE

G. D. Rozhkov, A. S. Belanov, V. F. Vzyatyshev
ON THE APPLICATION OF DIELECTRIC WAVE GUIDES IN A SUBMILLIMETER WAVE RANGE

At this time there are several factors which prevent the widespread application of dialectric wave guides (DV) in a submillimeter wave range. The basic factors appear to be attenuation and the necessity of reducing the lateral dimensions of the DV in order to maintain a single wave regime.

Attenuation in DV, although slower than in hollow metallic wave guides, is increased with a shortened wave length. With current materials with a loss angle on the order of $2 \cdot 10^{-4}$ for single wave wave guides, it reaches 6 + 10 db/m, somewhere on the border between the ranges of millimeter and submillimeter waves.

In connection with this, for the application of DV in a submillimeter wave range, it is necessary, primarily, to achieve a substantial reduction of attenuation in them. One of the possible ways
of solving this problem involves the use of DV made from special
materials. In fact, owing to the peculiarity of the propagation
mechanism in DV (62), the basic cause of attenuation appears to be
in heat losses in the material of the wave guide, so that the attenuation is proportional to the loss angle of the material.

*) They exist in the form of DV with a significant slowing down, which can be subjected to bends and twists.

Is it possible to lower the loss angle of materials in the millimeter and submillimeter wave ranges? Specialists on the electrical properties of dielectrics think that such possibilities do undoubtedly exist (63). As far back as 1964 a pelvethylene was derived with $\frac{1}{2}\delta = 2.7 \cdot 10^{-5}$ at a frequency of 55.2 Gigal cycles per second (64). If such a loss angle was maintained up to a frequency of 300 Gigal cycles per second, then DV from this material would have attenuation of around 1 db/m for a wave length of 1 millimeter.

Recently a report was published concerning work being done by several English firms aimed at finding special materials for DV, having significantly smaller losses in the submillimeter wave range, than in well known materials. In (65) is a discussion of the first achievements in this direction.

Nevertheless, even if materials were obtained with small losses, difficulties remain which are connected with the small dimensions of the cross section. It will be difficult to implement such DV with the fulfillment of necessary allowances. Besides this, with the small dimensions of the DV the junction of the wave guide outlets of the separate nodes is hindered during the assembly of devices made from them.

Specific difficulties are caused by the fact that the approach to the DV, for example, for the purpose of fastening, of each of the external subjects disturbs the inner electromagnetic field and causes

additional losses and emission. In the millimeter range datisfactory solutions have been found to the problem of fastening with the
help of elements made from foamy materials, and also with the help
of metallic elements. In the submillimeter range elements made from
foamy materials can become impracticable because of commensurability
of the dimensions of their paner and wave length, and in metallic
the
elements fastenings excessively increases the obmic losses.

As long as the same DV, especially when made from polymer materials, have little hardness, it becomes extremely difficult to ensure the mechanical rigidity of the devices in the DV, and also to ensure the stability of the relative location of the DV in the sections of the distributed connection.

It is known (66) that in order to maintain a single wave regime, one should not exceed a certain critical value for higher wave modes of the so called reduced size $\tilde{d} = d\sqrt{\mathcal{E}_i - \tilde{\xi}_i}/\lambda$ in DV. (1)

From (1) it follows that it is possible to increase the physical dimensions of DV, d, if the dielectric constant of the material of the DV, \mathcal{E}_{i} , is reduced. Unfortunately, the minimal value of \mathcal{E}_{i} of known uniform hard dielectrics is close to 2. The use then of percusameterials like foamy polystyrene is difficult because of the necessity of deriving the pares by the diameter, of a significantly lower wave length, and also because of insufficient rigidity of the latter.

Nevertheless there is another possibility of raising the lateral dimensions of the DV. It involves the increase of the dielectric constant of the environment of \mathcal{E}_{2} in (i). In practice this corresponds to the transition to a multilayer DV.

Multilayer DV

The simplest example of such a DV is a bar made from material with \mathcal{E}_{i} , in a massive uniform casing made from material with \mathcal{E}_{2} . If such DV are made, for example, from polyethylene ($\mathcal{E}_{i}=2.28$) in a teflon casing ($\mathcal{E}_{2}=2.08$), the lateral dimensions of the polyethylene bar might be increased approximately 3 times in comparison with the case of its disposition in air ($\mathcal{E}_{2}=1$).

with the use of the multilayer DV it is easy to also solve the problem of fastening, as long as the field in the casing is quickly dampened during removal from the bar. The problem of the junction is also alleviated. Nevertheless if the casing surrounds the bar of the DV on all sides, access to the inner field of the DV is hampered, and also the control of the parameters of the devices with the distributed connection.

One must not forget, that together with the useful effect the increase in the lateral dimensions of the guide bar and area of
the field - of the DV the guiding properties deteriorate in the casing. They can be characterized by the value of slowing down 2 with

respect to the environment, which can not be more than the value $3_{2N} = \sqrt{E/E_2}$ -/, and in a single wave regime, as a rule, does not exceed the value $3_{20} \approx 3_{2N}/2$. For example, in the variant of the polyethylene-teflon DV discussed above $3 \leq 3_{20} \approx 2\%$.

The poor guiding properties of the multilayer DV are revealed in the fact that emission in the bent sections will occur even with extremely large radii of the curvature. The most significant might appear to be the fact that the total (for emission and heat) angle attenuation in the bent section with radius $R \alpha_{ge} = \alpha_i + \alpha_T R_j(2)$ as was shown in (66), can not be less than certain minimal value α_{ge} attainable with an optimal bend radius α_{ge} . We shall make an appraisal of these values.

For the angle attenuation owing to the emission in db/rad from (66, 67) we have $\alpha_i = 55R^* \tilde{\beta}_a \exp{(-11.8R^* \tilde{\beta}_a^{2/2})}$, (3) where $\tilde{\beta}$ is the slowing down of the wave with repect to the medium $R^* = R/\lambda_a$ is the relative radius of the bend in wave lengths in the surrounding medium $\lambda_a = \lambda/\sqrt{\epsilon_a}$.

For heat loss (in db/unit of length) from (66) it is possible to record $\alpha_T = \frac{27.29}{\lambda_2} \left[\sqrt{\frac{\epsilon_1}{\epsilon_2}} \, tg \, \delta, \, k, \, + \, tg \, \delta_2 \, k_2 \right],$ (4) where δ_1 and δ_2 are the angle losses in media ϵ , and ϵ , is and ϵ , are the structural attenuation factors. In our case $\sqrt{\epsilon_1/\epsilon_2} \approx 1$, with this $k_1 + k_2 \approx 1$ irrespective of the form of the profile and dimensions of the wave guide. If we still put $\delta_1 = \delta_2 = \delta$, then the correlation (4) will take the form $\alpha_T \approx \frac{27.29}{\lambda_2} \, tg \, \delta$. (5)

By substituting (3) and (5) in (2) and differentiating according to R, for R'opt we derive $R_{opt}^* = 0.0848 \stackrel{7}{\nearrow}_{2}^{-\frac{7}{2}}$, (6) where y is the root of the equation $(y-1)e^{-y} = 0.4973^{-1} + 98$. (7)

In the graphs of Figure 1 4the variables of the values of R_{opt}^{*} (Figure a) and C_{domin} (Figure b) from the value $\frac{1}{2}$. It is apparent from the graphs that with current materials ($\frac{1}{2}\delta = 2 \cdot 10^{-4}$) the minimal losses in the bend all ready with $\frac{1}{2} \leq 0.02$ becomes inadmissibly large (more than $\frac{1}{2}db/90^{\circ}$). The optimal radius of the bend is around $\frac{1}{2}20\lambda_{a}$ and the acceptable value, obviously, is only in the short wave section of the submillimeter range (with $\frac{1}{2} = 0.3$) millimeters and $\frac{1}{2} = 2.08$, $\frac{1}{2} = 45$ millimeters).

Figure 1

Losses in the bend can be substantially reduced with the reduction of $tg\delta$. Thus, with $tg\delta = 5 \cdot 10^{-7}$ even the value $3_2 = 2.5 \cdot 10^{-3}$ is

fully acceptable, which corresponds to $\frac{\mathcal{E}_{1/2}}{\mathcal{E}_{2}} \approx 1.01$ and will allow us to increase the lateral dimensions approximately 10 times in comparison with DV in air. Nevertheless, the required bend radii $(R_{2}^{*} \approx 8 \cdot 10^{3})$, obviously, are inadmissible in all the submillimeter range of waves (even with $\lambda = 0.1$ millimeters and $\lambda = 2.08$, $\lambda =$

Thus, by using the simplest variant of a multilayer DV in a situation where it must be subjected to bends, it is possible to realize a substantial (by one order of magnitude) gain in the lateral dimensions only in the optical and near infrared wave ranges, even then on the condition that the loss angle of the materials will not be higher than $10^{-5} + 10^{-7}$

The transition to multilayer DV with a nonuniform casing will open up the additional possibility of controlling their parameters. By changing the size of the separate areas of the casing and the parameters of their materials, it is possible to change the properties of the DV within broad limits and to obtain such a coupling of them, which is impossible in DV with a uniform casing. We shall call such a multilayer DV with a nonuniform casing "composited."

"Composited" DV

A composited DV is this bar made from material with $\mathcal{E}_1 > \mathcal{E}_2 > \mathcal{E}_3$ bounded on several sides with material with \mathcal{E}_2 , and on the remain-

ing - with a medium with \mathcal{E}_3 , for example, with air. Several examples of such DV are satisfactorily described by the models, shown in cross section in Figure 2.

Figure 2

As it will be shown below, examples of the bar of such DV during maintenance of a single wave regime might be taken almost as large as examples of a bar in a uniform casing with \mathcal{E}_2 . On the other hand, with $\mathcal{E}_i = 1$ such a DV has free access to the internal field. But a more attractive feature is the peculiarity of the behavior of the composited DV in the bent sections. Emission from the bend of such a DV must depend on the direction of the bend. One can expect that the emission from such a bend, during which the free side of the bar is external, is determined by the value of the slowing down \mathcal{F}_3 with respect to the medium with \mathcal{E}_3 . Then the overall dimensions of such a bend can be significantly smaller than in DV in a uniform casing with \mathcal{E}_3 .

Unfortunately, rigorous calculation of the characterisitics of composited DV is exceptionally tedious. Because of the presence of additional boundaries of partition, this calculation must be significantly more complex than the calculation of a rectangular DV with a uniform casing. A relatively simple model, which adequately

describes such a DV with 6>>q, is the so called nonsymmetric plane DV, representing a layer of dielectric with \mathcal{E}_{i} with a thickness of 2 a, the medium of on side of which has a dielectric constant of \mathcal{E}_{\bullet} and from the other - £2.

Operations (68) and (69) are devoted to an analysis of a nonsymmetric plane DV. We have carried out a numerical solution of the characterisite equation, and have calculated the wave numbers, the propagation constant, the effective size of the field along both sides from the plate and the structural attenuation factor due to losses in the material of the plate and adjacent media from the waves H_1 , H_2 , H_3 , and E_1 , E_2 , E_3 and the following parameter correlations: $\mathcal{E}_{1} = 1.5$; $\mathcal{E}_{3} = 1$; $\mathcal{E}_{4} = 1$; 1.01; $\mathcal{E}_{7} = 2.28$; $\mathcal{E}_{8} = 1$; $\mathcal{E}_{4} = 1$; 1.05; 1.3; and 2.08; $\mathcal{E}_{1} = 3.9$; $\mathcal{E}_{3} = 1$; $\mathcal{E}_{2} = 1$; 1.05 and 2.08 in the wide range of values presented for the thickness of the plate.

Not being able to present in this work all the results, we shall only carry out the dispersion characterisities for the case of \mathcal{E}_{i} = 2.28 (polyethylene); $\xi_z = 1$; $\xi_z = 2.08$ (teflon). They are noted by the sign on the graphs in Figures 3 and 4. The upper curves correspond to E, wave in Figure a and H, wave in Figure b, and the lower ones - accordingly to waves E_{2} and H_{3} . The value U in the graphs is the moderating ratio of the wave with respect to the medium with \mathcal{E}_3 - connected with the value discussed earlier $\frac{3}{2}$ in the correlation $U = \frac{\mathcal{E}}{\mathcal{V}_{\bullet} \sqrt{\mathcal{E}_{\bullet}}} = (1 + \frac{7}{3}) \sqrt{\mathcal{E}_{\bullet}}$. (9)

Figure 3

Figure 4

inequalities $\sqrt{\mathcal{E}_2} \leq \mathcal{U} \leq \sqrt{\mathcal{E}_1}$, (10)

during which the execution of the left equality from (10) corresponds to the critical frequency, while the right - to the infinitely high frequencies. The physical meaning of the left inequality from (10) complies to the fact that the field of the wave in a medium with \mathcal{E}_{z} exponentially decreases during removal from the guide bar with \mathcal{E}_{z} ; during its nonperformance the field in the medium with \mathcal{E}_{z} will have the form of plane waves, propagated at a certain angle to the axis Z and carrying away energy from the guide bar.

The Relative Dimensions and Ranges of a Nonsymmetric Plane DV

Analysis of the critical conditions for the next highest type of wave has shown that the thickness of the plate with parameters, characteristic for the curves in Figures 3 and 4, can be taken 3.5 to 3.6 times larger than the thickness of the plate in air ($\mathcal{E}_{l} = 2.28$; $\mathcal{E}_{2} = 1$). It is interesting to note that in the case of a uniform environment ($\mathcal{E}_{l} = 2.28$; $\mathcal{E}_{2} = \mathcal{E}_{5} = 2.08$) it is possible to increase the thickness of the plate only 2.5 times (30% less).

It is also interesting to compare the range properties of the DV under consideration. Considering that the minimal wave length of the range λ_{min} corresponds to the critical conditions of the next highest type of waves and assuming that in the maximal wave length range the slowing down $\frac{3}{2}$ must be equal to a certain minimal value $\frac{3}{2}$ min for the overlap coefficient of the range D = $\frac{\lambda_{max}}{\lambda_{min}}$ we have

$$\mathcal{D} = \frac{d'\kappa_0}{d' \left[\tilde{\beta}_2 - \tilde{\beta}_2 \min \right]}.$$
 (11)

Assuming in the case under consideration $\frac{7}{2}_{amin} = 0.02$, for the nonsymmetric DV we have $D_{H_1} = 1.67$ and $D_{E_2} = 1.58$, whereas for the symmetrical variant $D_{H_2} = 1.56$ and $D_{E_3} = 1.49$ (9 + 11% less).

Thus, the plane nonsymmetric DV exceeds the symmetrical variant both in the allowable lateral dimensions and in the width of the operational range.

Possibilities of an Approximate Calculation

For the calculation of models closer to a real situation in picture 2 it is possible to use an approximate approach, first described by V. Shlesser in (70) and extensively used by Ye. Markatili in (73). It is also thoroughly described in the summary (72). This approach is based on assumptions that the fields in the regions $|x| \leqslant \alpha$; $|y| \leqslant \beta$ can be described as a single trigonometric function inside the bar and as a single exponential function outside the bar, and it is possible that we will not at all be intersted in the fields in the regions $|x| > \alpha$; $|y| > \beta$. In (71) it is demonstrated that such an approach will give satisfactory results for small ξ_{β} particularly in the region far from the critical frequency.

The characterisitic equation derived by the method described

can be represented in the form $U^2 = U_H^2 - \left(\frac{\beta}{4\pi\beta}\right)^2$, (12) where β is the immeasurable inner wave number (66) of the plane DV with a thickness 2β made from material with ξ , in the case of model 2; U_H is the moderating ratio (with respect to the medium with ξ) of the plane nonsymmetric DV considered above.

The results of calculating the slowing down according to equation (12) for DV with various ratios of b/a are presented in Figures 2 and 4.

The designations of such types of waves are assumed, as in (72) to be the following: the literal symbol (E) indicates the field (in this case, electrical) according to which the direction of polarization is evaluated; the upper letter index (x or y) indicates the axis of the coordinates, in the direction of which, basically, the indicated field is polarized; the lower numerical indices indicate the number of variations of the field in the directions of the respective coordinate axes.

One should expect that the precision of these results will increase with an increase in U. The values of $U \leftarrow \sqrt{\mathcal{E}_2}$ (the broken line segments of the curves) contradict the physical considerations, as long as the waves, going with the slowing down $U \leftarrow \mathcal{E}_2$ must radiate.

Estimations of the width of the operating range according to criterion (11) indicate that it decreases with a decrease in b/a.

With b/a=2 the decrease is small and amounts to 2+7%. With $b/a\approx 0.5$ model 2 is significantly more advantageous from the point of view of range properties.

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGAN	IZATION	MICROFICHE	ORGAN	IZATION	MICROFICHE
A205	DMATC	1	E053	AF/INAKA	1
A 210	DMAAC	2	E017	AF/RDXTR-W	1
B344	DIA/RDS-3C	9	E403	AFSC/INA	1
C043	USAMIIA	1	E404	AEDC	1
C509	BALLISTIC RES LABS	1	E408	AFWL	1
C510		1	E410	ADTC	1
	LAB/FIO	•			
C513		1		FTD	_
C535	AVIATION SYS COMD	1		CCN	1
C591	FSTC	5		ASD/FTD/NII	s 3
C619	MIA REDSTONE	1		NIA/PHS	1
D008	NISC	1		NIIS	2
H300	USAICE (USAREUR)	1			
P005		1			
P050	CIA/CRS/ADD/SD	1			
NAVOR	DSTA (50L)	1			
NASA/	· · · · · · · · · · · · · · · · · · ·	1			
AFIT/		ī			
	ode L-389	j			
-	213/TDI.	2			