

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BOARD OF PATENT APPEALS AND INTERFERENCES

Application No. : 10/711,101 Confirmation No.: 5100
Applicants : George Blanck
: Kimberly Palubin
: Aaron Osborne
Filed : 08/23/2004
Examiner : Tracy Ann Vivlemore

Docket No. : 1372.183.PRC
Customer No. : 21,901
For : OCT-1 as an Oncoprotein

Mail Stop Appeal Brief - Patents
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313

BRIEF OF APPELANT

Sir/Madam:

In furtherance of its appeal from the Final Rejection mailed December 13, 2006,
Applicant hereby submits its Appeal brief.

06/14/2007 BABRAHA1 00000031 10711101

01 FC:2402

250.00 0P

TABLE OF CONTENTS

HEADINGS	PAGE NO.
Real Party In Interest.....	3
Related Appeals and Interferences.....	4
Status of Claims.....	5
Status of Amendments.....	6
Summary of Claimed Subject Matter.....	7
Grounds of Rejection to be Reviewed on Appeal.....	8
Argument.....	9
Claims Appendix.....	16
Evidence Appendix.....	17
Related Proceedings Appendix.....	18
Conclusion.....	19

1. REAL PARTY IN INTEREST

The real party in interest is the University of South Florida, the assignee of record, which is a state university, organized under the laws of the State of Florida, as evidenced by the assignment set forth at Reel 015310, Frame 0262.

2. RELATED APPEALS AND INTERFERENCES

None

3. STATUS OF CLAIMS

Canceled claims: 1-3

Withdrawn Claims: 4-8

Rejected claims: 9-13

Claims under appeal: 9-13

4. STATUS OF AMENDMENTS

No amendments have been made subsequent to the final rejection by the Office.

5. SUMMARY OF CLAIMED SUBJECT MATTER

Citations to the specification are by page and line number. A concise explanation of the invention defined in the claims involved in this appeal is provided below. Claim 9 is the only independent claim on appeal.

Claim 9 recites a method for treating a tumor (Page 7, lines 1-3) in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of an Oct-1 inhibitor (Page 7, lines 1-3; page 12, line 22 – Page 13, line 6).

6. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

- I. Whether the Office erred in rejecting claims 9 through 13 under 35 U.S.C. 112, first paragraph as failing to comply with the written description requirement alleging the specification fails to describe any inhibitors of OCT-1 that treat tumors in a subject.
- II. Whether the Office erred in rejecting claims 9 through 13 under 35 U.S.C. 112, first paragraph as failing to comply with the enablement requirement based on the fact that the delivery of nucleic acid inhibitors is allegedly recognized in the art as unpredictable.

7. ARGUMENT

I. The Office erred in rejecting claims 9 through 13 under 35 U.S.C. 112, first paragraph as failing to comply with the written description requirement.

The written description requirement of 35 U.S.C. § 112 [¶1] is separate from the enablement requirement. Vas-Cath Inc. v. Mahurkar, 935 F.2d 1555, 1563, 19 USPQ2d 1111, 1116-17 (Fed. Cir. 1991). Adequate written description must be determined from the disclosure considered as a whole. Reiffin v. Microsoft Corp., 214 F.3d 1342, 1346, 54 USPQ2d 1915, 1917 (Fed. Cir. 2000). To fulfill the written description requirement, a patent specification must describe an invention in sufficient detail that one skilled in the art can clearly conclude that the inventor invented the subject matter claimed. Regents of the Univ. of Cal. v. Eli Lilly & Co., 119 F.3d 1559, 1566, 43 USPQ2d 1398, 1404 (Fed. Cir. 1997); Lockwood v. American Airlines, 107 F.3d 1565, 1572, 41 USPQ2d 1961, 1966 (Fed. Cir. 1997). The knowledge of one skilled in the art must be considered. Bilstad v. Wakalopoulos, 386 F.3d 1116, 1126, 72 USPQ2d 1785, 1792 (Fed. Cir. 2004).

Here, the claims require administering an Oct-1 inhibitor to a subject. According to the examiner, however:

While one might be able to identify inhibitors of Oct-1, the structure and function of Oct-1 will not lead the skilled artisan to envision compounds having the function recited by the claims, of treating a tumor *in vivo*. The claimed invention encompasses the use of inhibitors of Oct-1 of any type, including nucleic acids, antibodies and small molecules but the specification describes only a single antisense vector capable of inhibiting Oct-1 *in vitro*. Neither the specification nor the prior art describe any inhibitors of Oct-1 that treats tumors in a subject. (Office Action, December 13, 2006, Page 3 and 4).

The examiner does not dispute that the specification discloses an agent capable of inhibiting Oct-1, nor does the examiner dispute the existence of numerous other Oct-1 inhibitors. The examiner, however, argues that although “although some inhibitors of Oct-1 are known from the prior art” that “these known inhibitors are not described by the prior art as able to treat tumors in a subject.” (*Id.* at page 4).

The absence of a working example is not fatal to compliance with the written description requirement where, as here, the specification otherwise conveys to one skilled in the art that the applicant's possessed the claimed invention at the time of filing. See In re Wands, 858 F.2d 731, 736, 8 USPQ2d 1400, 1404 (Fed. Cir. 1988). (Whether a working example is present is a factor that may be considered in determining whether undue experimentation is required to practice the invention).

A specification may, within the meaning of 35 U.S.C. § 112, ¶ 1 contain a written description of a broadly claimed invention without describing all the species that claim encompasses. Utter v. Hiraga, 845 F.2d 993 (Fed.Cir.1988). Thus, the mere fact that the specification fails to describe the full genus of encompassed compounds that have the function of inhibiting OCT-1 does not mean that the application fails to meet the written description requirement. Genus claims are sufficiently enabled so long as one of ordinary skill in the art can "visualize or recognize the identity of the members of the genus" from reading the specification. Regents of the Univ. of Cal. v. Eli Lilly & Co., 119 F.3d 1559, 1568 (Fed.Cir.1997).

The examiner has not disputed the veracity of the results presented in the specification or explained why such a disclosure would not have conveyed to one skilled in the art that patentees were in possession of the claimed invention. If it is the examiner's position that undue experimentation would have been required to determine the appropriate procedures for administering an Oct-1 inhibitor *in vivo*, then the proper rejection is failure to provide an enabling disclosure; which is addressed below.

II. The Office erred in rejecting claims 9 through 13 under 35 U.S.C. 112, first paragraph as failing to comply with the enablement requirement.

Enablement is a legal determination of whether a patent enables one skilled in the art to make and use the claimed invention (Raytheon Co. v. Roper Corp., 724 F.2d 951, 960, 220 USPQ 592, 599 (Fed.Cir.1983)), and is not precluded even if some experimentation is necessary. All that is required is the amount of experimentation needed must not be unduly extensive. (Atlas Powder Co. v. E.I. Du Pont De Nemours & Co., 750 F.2d 1569, 1576, 224 USPQ 409, 413 (Fed.Cir.1984)). Furthermore, a patent need not teach, and preferably omits, what is well known in the art.

The examiner bears the initial burden of showing that a claimed method is not enabled. See In re Wright, 999 F.2d 1557, 1561-62, 27 USPQ2d 1510, 1513 (Fed. Cir. 1993) ("[T]he PTO bears an initial burden of setting forth a reasonable explanation as to why it believes that the scope of protection provided by that claim is not adequately enabled by the description of the invention provided in the specification of the application."). The invention that must be enabled to satisfy § 112 is the invention defined by the claims. See CFMT, Inc. v. Yieldup Int'l Corp., 349 F.3d 1333, 1338, 68 USPQ2d 1940, 1944 (Fed. Cir. 2003) ("Title 35 does not require that a patent disclosure enable one of ordinary skill in the art to make and use a perfected, commercially viable embodiment absent a claim limitation to that effect.").

The enablement of a genus under § 112, ¶ 1, can be established by showing the enablement of a representative number of species within the genus. (Regents of the Univ. of Cal. 119 F.3d 1559, 1568 (Fed.Cir.1997)). Applicants "are not required to disclose every species encompassed by their claims even in an unpredictable art." See In re Angstadt, 537 F.2d at 502-03, 190 USPQ at 218 (deciding that applicants "are not required to disclose every species encompassed by their claims even in an unpredictable art" and that the disclosure of forty working examples sufficiently described subject matter of claims directed to a generic process). Disclosures of working examples that sufficiently describe the subject matter of claims are sufficient to support claims directed to a generic process. (*Id.*). Moreover, naming representative compounds encompassed by generic claim language is clearly not required by §112 or any other provision of the statute. In re Robins, 429 F.2d 452, 456-57, 166 USPQ 552, 555 (Cust. & Pat.App.1970). However, mention of representative compounds may provide an implicit description upon which to base generic claim language, even where no explicit description of a generic invention is to be found in the specification. (*Id.*)

Moreover, the Patent and Trademark Office has promulgated Guidelines to be used by patent examiners in determining whether patent applications meet the written description requirement. According to the Guidelines, an application drawn to a genus meets the written description requirement if it either:

- (1) describes "a representative number of species by actual reduction to practice;" or
- (2) discloses "relevant, identifying characteristics, i.e. structure or other physical and/or chemical properties, by functional characteristics coupled with a known or disclosed correlation between function and structure, or by a combination of such identifying characteristics, sufficient to show the applicant was in

possession of the claimed genus." (Guidelines for Examination of Patent Applications Under the 35 U.S.C. § 112.1 "Written Description Requirement", 66 Fed.Reg. 1099, 1106 (Jan. 5, 2001) (hereinafter "Guidelines ")).

Here, Applicant has set forth precise detail about the structural and chemical properties of the Oct-1 mechanism. Inhibitors of Oct-1 are similarly detailed by their functional characteristics coupled with the known correlation between Oct-1 function and structure. The Examiner's Action itself points out that numerous inhibitors of Oct-1 are known. The very references cited by the Examiner show that Oct-1 inhibiting substances are sufficiently well known in the art such that one could routinely apply Applicant's techniques to inhibit Oct-1 without undue experimentation. Accordingly, the working example provided in the specification coupled with the knowledge of the prior art is sufficient to enable the claimed genus of compounds. Enablement does not require that the specification disclose that which is well known in the art. Hybritech Inc. v. Monoclonal Antibodies, Inc., 802 F.2d at 1384, 231 USPQ at 94.

It is well settled that all the disclosures in a reference must be evaluated and that a reference is not limited to the disclosure of specific working examples. In re Mills, 470 F.2d 649, 651, 176 USPQ 196, 198 (CCPA 1972). For example, the specification provides detailed disclosure regarding the construction of a vector comprising antisense Oct-1 cdna which can be used to inhibit Oct-1 expression. The specification continues to discuss screening assays which can be used for identifying such inhibitors. Such screening assays, once identified, can be routinely used by those of ordinary skill in the art to screen compounds for similar activity. The Office has advanced no specific reasoning as to why the compound screening assays outlined in the specification would be unsuccessful in identifying other similar agents, which can act as inhibitors of Oct-1 and therefore has not provided sufficient evidence to support a finding of lack of enablement of the claimed invention.

Methods of modulating gene expression, both in vitro and in vivo, were well known prior to Applicant's filing date. For example, U.S. Patent Nos. 5,776,502¹ and 6,136,779² teach a method of modulating, in vivo, the expression of a gene of interest, transcriptionally, which

¹ U.S. Patent No. 5,776,502 to *Foulkes et al.*, Filed June. 2, 1995

² U.S. Patent No. 6,136,779 to *Foulkes et al.*, Filed Jan. 6, 1997

encodes a protein where the expression of which is associated with a defined physiological or pathological effect.

Moreover, methods to identify the necessary characteristics, including affinity, of expression modulators, such as those used in the invention were known in the art at the time the application was filed. Furthermore, the Office has not produced any evidence that undue experimentation would be required by those skilled in the art to practice this invention. Rather, the Office has cited *per se* rules, which have been previously and expressly condemned by the courts, relying on generalized articles. With regard to the paragraph cited by the Office, *Opalinska* expressly states that “*as a general rule*, oligonucleotides are taken up primarily through a combination of adsorptive and fluid-phase endocytosis.”³ Whether the specification for a challenged claim meets the enablement requirement is a question of fact to be assessed on a case-by-case basis. *Vas-Cath Inc. v. Mahurkar*, 935 F.2d 1555, 1561, 1563 (Fed.Cir.1991); Eli Lilly, 119 F.3d at 1566. The specification of the application and the references highlighted by the Office show that the modulation of Oct-1 was known in the art. Here the Office has not provided any analysis specific to the claims to show that one skilled in the art would not be able to practice this invention, as is its burden.

The specification also shows that the 5637 cell line correlates to the breadth of the claims. The issue of "correlation" is dependent on the state of the prior art, and the art of record is such that this particular model is recognized as correlating to tumor growth. For example, The ATCC CULTURES™ cell line list,⁴ attached hereto, lists tumor cell lines from a variety of species. Cell lines that are known to be from metastatic sites, including the 5637⁵ line used as a prophetic example, are listed. See also *Muthing*, wherein the 5637 cell line was selected as representing malignant cells of epithelial morphology. (*Preferential Binding Of The Anticancer Drug Viscumin (Recombinant Mistletoe Lectin) To Terminally α2-6-Sialylated Neolacto-Series Gangliosides*; *Muthing et al.*, *Glycobiology*, Vol. 12, no. 8, pp 485-497, 2002).

Applicant's specification clearly shows the requisite correlation of the prophetic example to the claimed activity since the 5637 cell line possess “increased Oct-1 binding activity” and that “Oct-1 is hypophosphorylated in 5637 cells, which subsequently increases its

³ *Opalinska et al.* *Nature Reviews Drug Discovery*, 2002, vol. 1, p.503-514, page 511, col. 2.

⁴ <http://www.atcc.org/documents/pdf/CellCatalog/TumorLines.pdf>

⁵ *Id.*, Page 142

DNA binding activity" and have a "high level of active Oct-1 as compared to non-cancerous cells." (Paragraph 31).

As such, the prophetic example should be accepted as correlating since the Office has not offered any evidence that this model does not correlate to *in vivo* activity. Even with such evidence, the Office must weigh the evidence for and against correlation to show whether one skilled in the art would accept the model as reasonably correlating to the condition. In re Brana, 51 F.3d 1560, 1566, 34 USPQ2d 1436, 1441 (Fed. Cir. 1995) (reversing the PTO decision based on finding that *in vitro* data did not support *in vivo* applications).

The Office has not met the initial burden to give relevant reasons for the lack of enablement. Similarly the Office has not given case-specific reasons for a conclusion of lack of correlation of an *in vitro* example. Applicant is not required to establish a rigorous or an invariable exact correlation. (Cross v. Iizuka, 753 F.2d 1040, 1050, 224 USPQ 739, 747 (Fed. Cir. 1985)). Based upon the relevant evidence as a whole, there is a reasonable correlation between the disclosed *in vitro* utility and an *in vivo* activity, and therefore a rigorous correlation is not necessary here; therefore, *in vivo* activity is reasonable based upon the probative evidence.

Lastly, the claims are directed to a "method of treating a tumor in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of an Oct-1 inhibitor." (claim 9). Thus, while it is fair to say that the claims encompass a method that achieves a clinically effective therapeutic response, they do not require it; the rejection being based on the mode and the concentration. Cf. In re Cortright, 165 F.3d 1353, 49 USPQ2d 1464 (Fed. Cir. 1999) (claims to a method of "treating scalp baldness" could be enabled even if the method did not produce a full head of hair). Moreover, a claim may encompass inoperative embodiments and still meet the enablement requirement of 35 U.S.C. § 112, first paragraph. See Atlas Powder Co. v. E.I. Du Pont De Nemours & Co., 750 F.2d 1569, 1576, 224 USPQ 409, 413 (Fed. Cir. 1984), In re Angstadt, 537 F.2d 498, 504, 190 USPQ 214, 218 (CCPA 1976), In re Cook, 439 F.2d 730, 732, 169 USPQ 298, 300 (CCPA 1971). And the stage at which an invention in this field become useful is well before it is ready to be administered to humans." In re Brana, 51 F.3d 1560, 1568, 34 USPQ2d 1436, 1442 (Fed. Cir. 1995). (While the Brana court referred to "usefulness", the rejection on appeal was for nonenablement. See *id.* at 1564, 34 USPQ2d at 1439.)

Here the examiner does not contend that the term “therapeutically effective amount,” which is the only limitation which indicates a clinically therapeutic response, is not enabled. The potential problems identified by the examiner may indeed complicate the use of nucleic acid inhibitors in a subject, but such problems need not be overcome in order to administer to said subject an Oct-1 inhibitor - all that is required by the claims. Thus, the examiner has not adequately explained why practicing the claimed method would have required undue experimentation.

8. CLAIMS APPENDIX

Serial No: 10/711,101
Filed: 23 August 2004
Title: Oct-1 as an Oncoprotein

REJECTED CLAIMS

9. A method for treating a tumor in a subject in need thereof, comprising administering to said subject a therapeutically effective amount of an Oct-1 inhibitor.
10. The method of claim 9 wherein an Oct-1 inhibitor inhibits Oct-1 binding activity.
11. The method of claim 9 wherein an Oct-1 inhibitor inhibits Oct-1 mRNA function.
12. The method of claim 9 wherein the Oct-1 inhibitor is a vector containing an Oct-1 antisense sequence.
13. The method of claim 9 wherein the Oct-1 inhibitor is an RNA inhibitor molecule.

9. EVIDENCE APPENDIX

1. *Opalinksy et al.* Nature Reviews Drug Discovery, 2002, vol. 1, p.503-514
2. U.S. Patent No. 5,776,502 to *Foulkes et al.*, Filed June. 2, 1995
3. U.S. Patent No. 6,136,779 to *Foulkes et al.*, Filed Jan. 6, 1997

10. RELATED PROCEEDINGS APPENDIX

None

CONCLUSION

Applicant respectfully submits that the rejections of claim 9-13 under 35 U.S.C. §112, first paragraph are improper and should be withdrawn. Fairness to Applicant requires reversal of the final rejection; therefore, such reversal is solicited.

Very respectfully,

SMITH & HOPEN, P.A.

By:

USPTO Reg. No. 57,422
Dated: June 13, 2007

Thomas E. Toner
180 Pine Avenue North
Oldsmar, FL 34677
(813) 925-8505
Attorneys for Appellant

CERTIFICATE OF MAILING UNDER 37 C.F.R. § 1.10

I HEREBY CERTIFY that this Appeal Brief is being deposited with the United States Postal Service as "Express Mail Post Office to Addressee Mailing Label No. EV896393612US, addressed to: Mail Stop Appeal Brief - Patents, Commissioner for Patents, P.O. Box 1450 Alexandria, VA 22313-1450 on. June 13, 2007.

Deborah Preza

NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS

Joanna B. Opalinska* and Alan M. Gewirtz†

The sequencing of the human genome and the elucidation of many molecular pathways that are important in disease have provided unprecedented opportunities for the development of new therapeutics. The types of molecule in development are increasingly varied, and include antisense oligonucleotides and ribozymes. Antisense technology and catalytic nucleic-acid enzymes are important tools for blocking the expression of abnormal genes. One FDA-approved antisense drug is already in the clinic for the treatment of cytomegalovirus retinitis, and other nucleic-acid therapies are undergoing clinical trials. This article reviews different strategies for modulating gene expression, and discusses the successes and problems that are associated with this type of therapy.

EXOGENOUS NUCLEIC ACIDS

In this context, synthetic oligonucleotides of varying chemistry (typically 16–25 nucleotides), which are introduced into cells by various means, or simply (although inefficiently) by concentration-driven endocytosis.

ANTISENSE

Reverse complement of any DNA or RNA sequence.

With their promise of high specificity and low toxicity, many believe that gene-targeted therapies will lead to a revolution in cancer therapeutics¹. Numerous gene-therapy strategies are under development, some of which use nucleic-acid-based molecules to inhibit gene expression at either the transcriptional or post-transcriptional level². This strategy clearly has other potential applications, including in cardiovascular^{3,4}, inflammatory^{5,6} and infectious diseases^{7–10}, as well as organ transplantation¹¹.

Although conceptually elegant, the prospect of using nucleic-acid molecules for treating human malignancies and other diseases remains tantalizing, but uncertain¹². The main cause of this uncertainty is the apparent randomness with which these materials modulate the expression of their intended targets. It is a widely held view that molecule delivery, and selection of which messenger RNA sequence to physically target, are core stumbling blocks that hold up progress in the field. In this review, we recapitulate the development of nucleic-acid drugs for modulating gene expression, discuss newer strategies for solving the problems alluded to above, and detail attempts at using these molecules therapeutically. In so doing, we hope to both educate the reader who is unfamiliar with this literature, and convince those who are sceptical that this remains a viable approach to 'on demand' manipulation of gene expression.

Modulating gene expression

The notion that gene expression could be modified through the use of EXOGENOUS NUCLEIC ACIDS derives from studies by Paterson *et al.*¹³, who first used single-stranded DNA to inhibit translation of a complementary RNA in a cell-free system in 1977. The following year, Zamecnik and Stephenson¹⁴ showed that a short (13-mer) DNA oligodeoxynucleotide that was ANTISENSE to the Rous sarcoma virus could inhibit viral replication in culture. On the basis of this work, Zamecnik and Stephenson are widely credited for having first suggested the therapeutic utility of antisense nucleic acids. In the mid 1980s, the existence of naturally occurring antisense RNAs and their role in regulating gene expression was shown^{15,16}. These observations were particularly important, because they lent credibility to the belief that 'antisense' was more than just a laboratory phenomenon, and encouraged belief in the hypothesis that reverse-complementary antisense nucleic acids could be used in living cells to manipulate gene expression. These seminal papers, and the thousands that have followed, have stimulated the development of technologies that use nucleic acids to manipulate gene expression. As will be discussed below, virtually all of the available methods rely on some type of nucleotide-sequence recognition for targeting

* Department of Hematology, Pommeranian Academy of Medicine, Ul Rybacka 1, 71-252 Szczecin, Poland.

† Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, Pennsylvania 19104, USA.

Correspondence to A.M.G.
e-mail: gewirtz@mail.med.upenn.edu
doi:10.1038/nrd837

Figure 1 | Triple-helix formation at the nucleotide level. Shows the formation of Watson-Crick (red) and Hoogsteen bonds (black) between duplex pairs and the third strand (the arrow points to a single base of the third strand). Blue, guanine residue (purine); pink, cytosine residue (pyrimidine).

TRIPLE-HELIX-FORMING OLIGODEOXYNUCLEOTIDE (TFO). A synthetic, single-stranded oligodeoxynucleotide, which, through Hoogsteen-bond formation, hybridizes to purine/pyrimidine-rich sequences in double-stranded DNA. Formation of stable triple helices can prevent the unwinding that is necessary for transcription of the targeted region or block the binding of transcription-factor complexes.

MAJOR GROOVE AND MINOR GROOVE

Channels formed by the twisting of two complementary DNA strands around each other to form a double helix. The major groove is ~ 22 Å wide and the minor groove is ~ 12 Å wide.

HOOGSTEEN BOND
Triple-helix-forming oligonucleotides hybridize with purine bases that comprise polypurine/polypyrimidine tracts in the DNA. The hydrogen bonds that are formed under these conditions are referred to as Hoogsteen bonds after the individual who first described them. They can form in parallel or antiparallel (reverse-Hoogsteen) orientations.

NUCLEOSOME
A packing unit for DNA within the cell nucleus, which gives the chromatin a 'beads-on-a-string' structure. The 'beads' consist of complexes of nuclear proteins (histones) and DNA, and the 'string' consists of DNA only. A histone octamer forms a core around which the double-stranded DNA helix is wound twice.

LEXITROPSIN
A molecule that extragenetically reads the base sequence of double-stranded DNA.

RNAZyme
RNA molecule that contains one of a variety of catalytic motifs that cleave RNA to which it hybridizes.

DNAzyme
A DNA molecule that contains a catalytic motif that cleaves RNA to which it hybridizes.

diffuse into the nucleus, where they can contact dsDNA in the minor groove, thereby impeding transcription by preventing unwinding of the duplex, or by preventing the binding of transcription-factor complexes to the gene promoter. DNA accessibility, and maintaining the appropriate 'register' of the polyamides for the desired sequence recognition, are problems with this method that remain to be solved²⁷.

A larger body of work has focused on destabilizing mRNA. This approach, although less favourable than anti-gene strategies from a stoichiometric point of view, is nonetheless attractive, because mRNA, unlike the DNA of a given gene, is — theoretically — accessible to attack while being transcribed, transported from the nucleus or translated. Two nucleic-acid-based strategies have emerged for blocking translation. One strategy uses oligoribonucleotides. Similar to the strategy of the DNA decoys, the RNA decoys are designed to provide alternate, competing binding sites for proteins that act as translational activators or mRNA-stabilizing elements^{28,29}. By attracting away the desired protein, the decoy can prevent translation, or induce instability and, ultimately, destruction of the mRNA. Recent studies on human α -globin mRNA are of interest in this regard. Stability determinants for this mRNA species have been defined in sufficient detail so that it can be used as a model system for testing the hypothesis that altering mRNA stability with decoys will be a useful form of therapy^{29–31}.

The other strategy for destabilizing mRNA is the more widely applied antisense strategy, which uses **ribozymes**, **DNazymes**, antisense RNA or antisense DNA (ODN). The antisense approach to modulating gene expression has been the subject of numerous authoritative reviews, and will not be discussed in great detail here^{2,32,33}. Simply stated, delivering a reverse-complementary — that is, 'antisense' — nucleic acid into a cell in which the gene of interest is expressed should lead to hybridization between the antisense sequence and the mRNA of the targeted gene. Stable mRNA–antisense duplexes can interfere with the splicing of heteronuclear RNA into mature mRNA^{34,35}, block translation of completed message^{36,37} and — depending on the chemical composition of the antisense molecule — lead to the destruction of the mRNA by binding of endogenous nucleases, such as RNaseH^{38,39}, or by intrinsic enzymatic activity engineered into the sequence, as is the case with ribozymes^{40,41} and DNazymes^{42,43} (FIG. 2).

Nucleic acids with catalytic activity

Ribozymes and DNazymes bind to substrate RNA through Watson–Crick base pairing, which offers sequence-specific cleavage of transcripts. At least six classes of ribozyme have been described. Two ribozymes, the 'hammerhead' ribozyme and the 'hairpin' ribozyme, have been extensively studied owing to their small size and rapid kinetics^{44,45}. The catalytic motif is surrounded by flanking sequence that is responsible for 'guiding' the ribozyme to its mRNA target and giving stability to the structure. With the hammerhead ribozyme, cleavage is dependent on divalent cations, such as magnesium, and can occur after any NUH

Figure 2 | Strategies for inhibiting translation. Diagrammatic representations of **a** | a hammerhead ribozyme (DNAzymes have similar RNA-cleaving capabilities, but the catalytic motif is composed of DNA nucleotides, hence the name); **b** | an antisense oligodeoxynucleotide; and **c** | antisense RNA. Note that targeting specificity is conveyed in each case by Watson-Crick base pairing between complementary sequences. From REF. 2 © (1998) American Society of Hematology, used by permission. mRNA, messenger RNA.

triplet within the target RNA sequence, for which 'N' represents any nucleotide, 'U' represents uracil and 'H' represents adenine, cytosine or uracil^{46,47}. If ribozymes are to work effectively as 'enzymes,' they must not only bind substrate RNA but also dissociate from the cleavage product to act on further substrates. Dissociation from the cleavage product might, in fact, be an important rate-limiting step that controls their usefulness^{48,49}. Consideration of reaction kinetics indicates that ribozymes might have a theoretical advantage over RNase-H-dependent antisense oligonucleotides, but to the best of our knowledge, this has not been shown consistently *in vivo*. Ribozymes can be expressed from a vector that offers the advantage of continued production of these molecules intracellularly^{50,51}, a property that — at least until recently — was not possible with antisense DNA⁵². However, it is well known that stable transduction of primary cells *in vivo* has substantial technical problems, which will not be discussed further. Progress has been made recently in synthesizing stable forms of these molecules, so that they might be delivered directly to cells both *in vitro* and *in vivo*⁵³.

DNAzymes have evolved from the seminal work of Breaker and Joyce⁵⁴, who first showed that DNA, as well as RNA molecules, could act enzymatically and cleave a nucleic-acid substrate. Similar to ribozymes, DNAzymes have a catalytic domain that is flanked by two substrate-recognition domains. After binding to their RNA substrate, DNAzymes can cleave sequences that contain purine-pyrimidine junctions. DNAzymes have some theoretical advantages over ribozymes. DNA is more stable than RNA, it is easier to synthesize, and the turnover rates for some of the DNAzymes are reported to be higher than some ribozymes⁴². Nevertheless, constant improvements in both DNAzyme⁵⁵ and ribozyme chemistry make this a 'moving target' in terms of which chemistry is better⁵⁶. Although experience with DNAzymes as potential therapeutic agents is limited⁴³, these molecules might prove worthy in the clinical setting.

RNA Interference

A newly developing approach for targeting mRNA is called post-transcriptional gene silencing, or RNA interference (RNAi)^{57–58} (FIG. 3). RNAi is the process by which dsRNA targets mRNA for destruction in a sequence-dependent manner. The mechanism of RNAi initially involves processing of long (~500–1,000 nucleotides) dsRNA into 21–25 base-pair (bp) 'trigger' fragments⁵⁹ by a member of the RNase-III family of nucleases called DICER^{60–62}. When incorporated into a larger, multicomponent nuclease complex named RISC (RNA-induced silencing complex), the processed trigger strands form a 'guide sequence' that targets the RISC to the desired mRNA sequence and promotes its destruction⁶¹. RNAi has been used successfully for gene silencing in various experimental systems, including petunias, tobacco plants, *neurospora*, *Caenorhabditis elegans*, insects, planaria, hydra and zebrafish. The use of long dsRNA to silence expression in mammalian cells has been tried, largely without success⁶³. More recent reports using short interfering RNA (siRNA; see below) seem to be more promising⁶⁴. It has been suggested that mature, as opposed to embryonic, mammalian cells recognize these long dsRNA sequences as invading pathogens. This triggers a complex host-defence reaction that effectively shuts down all protein synthesis in the cell through an interferon-inducible serine/threonine-kinase enzyme called protein kinase R (PKR). PKR phosphorylates the α -subunit of eukaryotic initiation factor-2 (EIF-2 α), which globally inhibits mRNA translation. The long dsRNA also activates 2',5'-oligoadenylate synthetase, which in turn activates RNase L. RNase L indiscriminately cleaves mRNA. Cell death is the understandable result of these processes. Recently, a number of reports have suggested that siRNA strands — RNA double strands of ~21–22 nucleotides in length — do not trigger this host-defence response, and therefore might be able to silence expression in mammalian somatic cells if appropriately modified to contain 3'-hydroxy and 5'-phosphate groups^{65–68}. The universality of this approach, and the types of gene that can be modified using this strategy in mammalian cells, remain unknown at this time.

Figure 3 | Hypothetical RNAi mechanism. **a** | In the 'initiation' stage of RNA interference (RNAi), a small amount of trigger double-stranded (ds)RNA is processed into short interfering (si)RNA by an enzyme called DICER (light blue arrow), which is used as an RdRP primer. **b** | The RdRP reaction converts target messenger RNAs into new dsRNAs (next generation of trigger dsRNAs), which are then processed into new siRNAs, establishing a self-sustaining cycle of RNAi 'maintenance' (green arrows). **c** | Replication of 'trigger' or newly synthesized dsRNA by RdRP would amplify the potency of RNAi by further increasing the amount of siRNA, as both sense and antisense strands of trigger dsRNA and siRNA could then be used. However, the *in vivo* significance of this pathway (dark grey arrows) has not yet been established. It also remains unclear if the 'amplification' steps take place in mammalian cells. RdRP, RNA-dependent RNA polymerase; helicase, unwinding enzyme. Redrawn from REF. 57 © (2001), with permission from Elsevier Science.

Altering RNA splicing

Finally, the strategy of manipulating gene expression by altering RNA processing, as opposed to mRNA destruction, is also worth mentioning, as significant progress seems to have been made in this area. Kole and colleagues developed this approach using a model system based on human thalassaemia^{69,70}. Thalassaeias are highly prevalent human blood disorders that are characterized by faulty haemoglobin production and concomitant red-cell destruction that results in anaemia. The genetic mutations that are responsible for these diseases are well characterized, and often involve aberrant splicing. Kole's group showed that treatment of mammalian cells that were stably expressing a human β -globin gene with antisense oligonucleotides that were targeted at the aberrant splice sites blocked the abnormal splicing, thereby allowing the normal splice site to be used. Correction of splicing was oligo-dose dependent and, importantly, led to accumulation of normal human β -globin mRNA and polypeptide in cells⁶⁹. More recently, correction has been accomplished in blood cells derived from thalassaemic patients⁷¹. This result would clearly have important clinical consequences if such treatment could be made effective at the level of the haematopoietic stem cell. These same workers suggest that this approach might also be useful in the treatment of cancer⁷².

Increasing oligonucleotide stability

Initial work with antisense DNA was carried out with unmodified, natural molecules. It soon became clear, however, that native DNA was subject to relatively rapid degradation, primarily through the action of 3' exonucleases, but also as a result of endonuclease attack. Molecules destined for the clinic, and those used for experimental purposes, are now routinely modified to enhance their stability, as well as the strength of their hybridization with RNA (see REFS 73,74 for further details). Oligonucleotide drugs need to meet certain physical requirements to make them useful. First, they must be able to cross cell membranes and then hybridize with their intended target. The ability of an ODN to form a stable hybrid is a function of its binding affinity and sequence specificity. Binding affinity is a function of the number of hydrogen bonds that are formed between the ODN and the sequence to which it is targeted. This is measured objectively by determining the temperature at which 50% of the double-stranded material is dissociated into single strands, which is known as the melting temperature, or T_m . mRNA-associated proteins and tertiary structure also govern the ability of an ODN to hybridize with its target by physically blocking access to the region that is being targeted by the ODN. Finally, it is also clear that ODNs should exert little in the way of non-sequence-related toxicity⁷⁵, and should remain stable in the extracellular and intracellular milieu in which they are situated. Meeting all these requirements in any one molecule has turned out to be a demanding task. Satisfying one criterion is often accomplished at the expense of another. It is also worth noting that the more complex the molecule, the more expensive is its synthesis. In an age of increasing cost consciousness, this too becomes an important design consideration.

First-generation antisense molecules were designed to make the internucleotide linkages — the backbone on which the nucleosides are hung — more resistant to nuclease attack. This was accomplished primarily by replacing one of the non-bridging oxygen atoms in the phosphate group with either a sulphur or a methyl group. The former modification, which is called a phosphorothioate oligodeoxynucleotide, proved highly successful, because these molecules are relatively nuclease resistant, they are charged and therefore water soluble, and they activate RNase H. All of these properties are desirable, and virtually all of the clinical trials done so far have been carried out with this chemistry, although trials using so-called 'second-generation molecules' (mixed backbone/chimeric oligonucleotides) will shortly begin. Second-generation molecules were developed to overcome the disadvantageous properties of the phosphorothioates. A primary strategy that was used was to remove the phosphorothioate linkages to the greatest extent possible. This was often done by flanking a phosphorothioate core with nuclease-resistant nucleosides — often with 2'-O sugar modifications — that rendered the molecules more RNA like, and therefore gave tighter binding to the target.

Many chemical modifications to the phosphodiester linkage have been made. Two of the more interesting modifications that are now under development are peptide nucleic acids (PNAs)⁷⁶ and MORPHOLINO OLIGODEOXYNUCLEOTIDES (PMOs)⁷⁶. These compounds are essentially nuclease resistant. PNAs represent a more radical approach to the nuclease-resistance problem, as the phosphodiester linkage is completely replaced with a polyamide (peptide) backbone. They both form extremely tight bonds with their RNA targets and probably exert their effects by blocking translation, as neither molecule effectively activates RNase H. Whether it is necessary to preserve the ability of these molecules to activate RNase H is controversial⁷⁷, but many workers in the field still believe that molecules with this capability are likely to be more effective, at least in the clinical setting. As these molecules do not move freely across cell membranes, they must be injected or transfected into cells. Finally, PNAs are also sensitive to local ionic concentration and do not hybridize as well under physiological conditions.

Nucleic-acid drugs in the clinic

Diseases that are characterized by overexpression or inappropriate expression of specific genes, or genes that are expressed by invading microorganisms, are candidates for gene-silencing therapies. For this reason, the earliest clinical trials with these agents have been against human immunodeficiency virus (HIV)^{77–79} and patients with cancer⁸⁰. Malignant diseases, in particular, are attractive candidates for this therapeutic approach, if for no other reason than that conventional cancer therapies are highly toxic. As antisense strategies are directed against genes that are aberrantly expressed in diseased cells, it might reasonably be expected that this approach will engender fewer and less serious side effects, as normal cells should not be affected. There were concerns that this might not be the case when preclinical studies on primates with phosphorothioate compounds resulted in the death of some animals. However, investigation of these occurrences showed that they took place after rapid bolus intravenous infusions at concentrations exceeding 5–10 $\mu\text{g ml}^{-1}$, and that they were probably due to complement activation and vascular collapse⁸¹.

MORPHOLINO OLIGODEOXYNUCLEOTIDE (PMO). The base is attached to a morpholino instead of a ribofuranosyl ring, and the backbone is composed of a phosphorodiamide linkage.

Box 1 | First approved nucleic-acid drug

Vitravene (sodium fomivirsen), an antiviral drug that was developed by ISIS Pharmaceuticals and is marketed by CIBAVision, was approved by European and US regulatory authorities in July 1999 and August 1998, respectively. Vitravene is used to treat an inflammatory viral infection of the eye (retinitis) that is caused by the cytomegalovirus (CMV). CMV often infects immunocompromised patients, and patients with uncontrolled AIDS are particularly at risk. One or both eyes can be affected, and it is not unusual for patients to suffer severe visual impairment or blindness as a result of untreated infections. Treatment of CMV retinitis is problematic, in particular for patients who cannot take, do not respond or become resistant to standard antiviral treatments for CMV infections, such as ganciclovir, foscarnet and cidofovir^{145,146}. Vitravene is an antisense phosphorothioate 21-mer oligonucleotide has a sequence that is complementary to messenger RNA that is transcribed from the main immediate-early transcriptional unit of CMV^{145,146}.

This experience was therefore a useful reminder that, in addition to side effects resulting from the suppression of the targeted gene, side effects related to the chemical backbone of the oligonucleotide should also be anticipated. In the case of phosphorothioates, this problem was easily addressed by infusing material continuously, or slowly, and at lower doses. In actual use in the clinic, phosphorothioates have proved to be remarkably well tolerated (BOX 1). Abnormalities related to the backbone include transient fever, fatigue, nausea and vomiting, mild to moderate thrombocytopenia and transient prolongation of partial thromboplastin time (PTT; 1.25–1.75 \times), which is fortunately unassociated with any signs of overt clinical bleeding^{82–85}. At present, several clinical studies have been carried out using a number of different oligonucleotides. Below, we review some of the more recent clinical studies that have been carried out on patients with malignant, inflammatory, cardiac and infectious diseases (summarized in TABLE 1).

Targeting apoptosis In oncology

BCL2: cancer treatment. Targeting B-cell lymphoma protein 2 (BCL2) is a promising example of triggering apoptosis in tumour cells. BCL2 is an important regulator of programmed cell death, and its overexpression has been implicated in the pathogenesis of some lymphomas⁸⁶. Resistance to chemotherapy, at least *in vitro*, might also be related to BCL2 overexpression^{87,88}. Laboratory studies have shown convincingly that exposing cells to an oligonucleotide targeted to BCL2 will specifically decrease the amount of targeted mRNA and protein (six–eightfold reduction). For all of these reasons, there is a great deal of interest in targeting BCL2 for therapeutic purposes⁸⁹. Several clinical trials with a BCL2-targeted antisense molecule have been reported, both alone^{83,90} and with supplementary chemotherapy^{84,91,92}. Studies with the oligonucleotide alone have not shown consistent, strong antitumour responses. The addition of chemotherapy might be helpful in this regard. An issue with several of these studies is lack of correlation of tumour responses with significant effects on BCL2 protein expression. The mechanism of action of the compound is not entirely clear.

Transcription-factor targeting in oncology

c-MYB: bone-marrow purging. The normal homologue of the avian myeloblastosis virus oncogene (*v-myb*) is a proto-oncogene called c-MYB. c-MYB encodes a protein (MYB), which is a regulator of cell-cycle transition and cellular maturation, primarily in haematopoietic cells, but in other cell types as well. A recently published study was designed to test the hypothesis that an effectively delivered, appropriately targeted ODN might provide a proof of concept about the ability to target a specific mRNA and thereby kill tumour cells selectively⁹³. To test this hypothesis, an ODN targeted to the c-MYB proto-oncogene was used to purge marrow autografts that were administered to patients with allograft-ineligible chronic myelogenous leukaemia (CML). CD34⁺ marrow cells were purged

with ODN for either 24 ($n = 19$) or 72 ($n = 5$) hours (FIG. 4). Post-purging, c-MYB mRNA levels declined substantially in ~50% of patients. Analysis of *BCR-ABL* (breakpoint cluster region–Abelson murine leukaemia viral oncogene homologue) expression in a surrogate stem-cell assay indicated that purging had been accomplished at a primitive cell level in >50% of patients. Cytogenetics were evaluated at day 100 in surviving patients who did not require administration of unpurged ‘rescue’ marrow for engraftment ($n = 14$).

(All purging protocols require storage of untreated marrow as a ‘back-up’, in case the purged material does not engraft.) Whereas all patients were ~100% Ph⁺ (Philadelphia chromosome positive) pre-transplant, two patients had complete cytogenetic remissions, three patients had <33% Ph⁺ metaphases and eight remained 100% Ph⁺. The marrow of one patient yielded no metaphases, but fluorescence *in situ* hybridization (FISH) evaluation ~18 months post-transplant revealed that ~45% of cells were *BCR-ABL*⁺, indicating that six

Table 1 | Summary of recently published clinical trials with nucleic-acid drugs

Target	Type of study	No. of patients	Diagnosis	Dose range	Treatment duration	Administration	Remissions	Refs
ICAM-1	Multicentre; placebo controlled; double blind	75	Crohn's disease	0.5 mg	2 days–4 weeks	SC	Not significant	106
	Placebo controlled; double blind	20	Crohn's disease	0.5–2 mg kg ⁻¹	26 days	2 hours IV infusion	47% steroid-free remissions	6
PKC- α	Phase I	36	Advanced cancer	0.15–6 mg kg ⁻¹ d ⁻¹	3 days per week for 3 weeks every 4 weeks	2 hours IV infusion	2 CR	82
	Phase I	21	Advanced cancer	0.5–3 mg kg ⁻¹ d ⁻¹	21 days every 4 weeks	Continuous IV infusion	3 responses	85
BCL2	Phase I	21	Relapsed NHL	4.6–195.8 mg m ⁻² d ⁻¹	14 days	Continuous SC infusion	1 CR, 2 minor responses	83
BCL2 combined with dacarbazine	Phase I/II	14	Advanced malignant melanoma	0.6–6.5 mg kg d ⁻¹	14 days every 4 weeks	Continuous IV infusion	1 CR, 2 PR, 3 minor responses	91
BCL2 combined with mitoxantrone	Phase I/II	26	Metastatic prostate cancer	0.6–5 mg kg ⁻¹ d ⁻¹	14 days every 28 days	Continuous IV infusion	2 decreases in PSA	84
Fomivirsen CMV	Multicentre; randomized; prospective	29	CMV retinitis in AIDS patients	165 μ g	Once per week	Intravitreously	Time to progression 71 versus 13 days	147
h-RAS	Phase I	23	Advanced cancer	0.5–10 mg kg ⁻¹ d ⁻¹	14 days every 3 weeks	Continuous IV infusion	4 stable	96
c-RAF kinase	Phase I	34	Advanced cancer	1–5 mg kg ⁻¹ d ⁻¹	21 days every 4 weeks	Continuous IV infusion	2 stable diseases	119
	Multicentre Phase II	22	SCLC and NSCLC	2 mg kg ⁻¹ d ⁻¹	21 days every 4 weeks	Continuous IV infusion	No responses	148
c-MYC	Phase I	22	Advanced cancer	6–30 mg kg ⁻¹ d ⁻¹	Weekly	24 hours IV infusion	No responses	99
	Multicentre; placebo controlled	78	After PTCA	1–24 mg d ⁻¹	Single dose	intracoronary	No responses	108
IGF1R	Placebo controlled	85	After coronary-stent implantation	10 mg d ⁻¹	Single dose	Intracoronary	No responses	109
	Pilot study	12	Malignant astrocytoma	2 mg 10 ⁻⁷ cells	6 hours	Ex vivo	2 CR, 6 PR	118

AS, antisense; BCL2, B-cell lymphoma protein 2; CMV, cytomegalovirus; CR, complete remission; ICAM-1, intercellular adhesion molecule-1; IGF1R, insulin-like-growth-factor-1 receptor; IV, intravenous; c-MYC, myelocytomatosis viral oncogene homologue; NHL, non-Hodgkin's lymphoma; NSCLC, non-small-cell lung cancer; PKC- α ; protein kinase C- α ; PR, partial remission; PSA, prostate-specific antigen; PTCA, percutaneous transluminal coronary angioplasty; SC, subcutaneous; SCLC, small-cell lung cancer.

Figure 4 | Effect of c-MYB-targeted ODNs on c-MYB mRNA expression in marrow cells. Ethidium-bromide-stained agarose gel containing c-MYB, BCR-ABL and β -actin messenger RNA reverse transcriptase (RT)-PCR products derived from: CD34⁺ bone-marrow cells of a representative patient before anti-c-MYB oligodeoxynucleotide purging (Lane 1); unfractionated bone-marrow cells before purging (Lane 2); CD34⁺ cells post-purging (Lane 3); and the patient's primitive 'stem cells' post purging (Lane 4). A control RT-PCR reaction that contains only water is shown in Lane 5. Lanes containing molecular-weight markers are indicated by the symbol ψ . Lane 3 (orange arrows) reveals that c-MYB mRNA is undetectable post purging, whereas some residual BCR-ABL expression (molecular marker of the malignant cells) persists. Efficiency of the process on primitive haematopoietic cells is shown in lane 4 (white arrows). Here, stem cells, cultured for ten days post-purge, show normal MYB expression, whereas BCR-ABL expression is undetectable. These data indicate that, in this patient's marrow sample, normal cells survived the purge but malignant, BCR-ABL-expressing cells did not. Control cells that were treated in an identical manner but not exposed to the anti-c-MYB oligodeoxynucleotide continue to express BCR-ABL (not shown), which indicates that the results are due to oligodeoxynucleotide exposure and are not a cell-culture artefact. b/p, before purging; p/p, post purging.

out of fourteen patients had originally obtained a 'major' cytogenetic response. Conclusions about clinical efficacy of ODN marrow purging could not be drawn from this small pilot study. Nevertheless, these results led the authors to speculate that enhanced delivery of ODN, targeted to crucial proteins with short half-lives, might lead to the development of more effective nucleic-acid drugs and enhanced clinical utility of these compounds in the future.

Oncogenic signal-transduction pathways

Protein kinase C- α . Protein kinase C (PKC) comprises a family of biochemically and functionally distinct phospholipid-dependent, cytoplasmic serine/threonine kinases. These proteins have a crucial role in transducing the signals that regulate cell proliferation and differentiation. PKC is overexpressed in several tumours, and antisense inhibitors of these enzymes have shown some antitumour activity *in vitro*^{5,82,94} and

in animal models⁹⁵. Results of two studies that used the identical 20-mer phosphorothioate ODN against PKC α have been published^{82,85}. The ODN was well tolerated, but antitumour effects were modest at best. Correlations with levels of PKC α expression were not provided.

RAS pathway

h-RAS oligonucleotide. h-RAS is a powerful regulator of several interconnected receptor-signalling pathways. The gene is constitutively active, and promotes proliferation and malignant transformation in many human tumours. Cunningham *et al.* reported results from a study that was carried out on 23 patients with various malignancies⁹⁶. As in other studies with phosphorothioate oligonucleotides, only mild toxicities were observed. No complete or partial responses were achieved. Four patients had stabilized disease for 6–10 cycles of treatment.

c-RAF kinase. RAF proteins are crucial effectors in the RAS signal-transduction pathway. Constitutive activation of the RAS pathway is thought to contribute to malignant transformation in many cell types, which makes elements of this signalling pathway attractive targets for inhibition. Effectiveness of an antisense oligonucleotide against *c-RAF* has been shown both *in vitro*⁹⁷ and in an *in vivo* tumour-xenograft model⁹⁸. On the basis of this work, three clinical trials were initiated^{99,119,148}. A total of 78 patients were treated. No major tumour responses were documented, but some patients had stabilization of their disease.

Ribozymes

Ribozymes have been the subject of several authoritative reviews^{11,100}. Although there is a comprehensive literature that describes the use of these molecules to target a wide variety of mRNA species in various cell-free, cell-intact and animal-model systems (see REFS 41,111), there is little recently published material on the use of these materials in clinical trials. The earliest clinical use of ribozymes was in patients with HIV^{77,78,101,102}. As is true of antisense oligodeoxynucleotides, the approach was found to be safe when ribozymes were expressed in cells that were then delivered back to patients, but clinical efficacy was found wanting. At present, several Phase I/II clinical trials with exogenously delivered synthetic ribozymes are in early-phase clinical evaluation for patients with breast cancer, colon cancer and hepatitis. Results of these clinical investigations are anxiously awaited.

Studies in non-malignant diseases

Inflammatory diseases. Antisense oligonucleotides have been explored as anti-inflammatory agents. An example is the targeting of intracellular adhesion molecule-1 (ICAM-1) in Crohn's disease. In response to inflammatory stimuli, many cells upregulate the expression of *ICAM1*, which has an important role in the transport and activation of leukocytes. It has been shown *in vitro* and *in vivo* that administration of antisense oligonucleotides against *ICAM1* causes a decrease in receptor expression, which in turn ameliorates inflammatory reactions¹⁰³⁻¹⁰⁵. Two clinical trials with this compound in patients with Crohn's disease have been reported^{106,107}. In the double-blind study reported by Yacyshyn *et al.*¹⁰⁶, 20 patients were randomized to receive a saline placebo or anti-*ICAM1* antisense oligonucleotide. The treatment was well tolerated, and after 6 months, disease remission was reported in 47% of patients in the antisense group compared with 20% of patients in the placebo group. Furthermore, corticosteroid usage was significantly lower ($p = 0.0001$) in the antisense-treated patients. These results engendered a great deal of excitement, but the enthusiasm was subsequently dampened by the follow-on study that was carried out with this compound in a larger group of patients with this disease ($n = 75$)¹⁰⁷. In this placebo-controlled study, no statistically significant differences in steroid use between the treatment or placebo groups was observed, although 'positive trends' were seen in the patients who were treated with the

antisense oligonucleotide. As with other studies, toxicity was mild and consisted primarily of pain at the injection site, fever and headache.

The anti-*ICAM1* oligonucleotide has also been evaluated in patients with psoriasis. The drug was initially administered by intravenous infusion to these individuals, but examination of their skin indicated that delivery to its various layers was poor. For this reason, a topical formulation was developed. Although preclinical data about uptake of this formulation into the skin and downregulation of expression of the target were encouraging¹⁰⁷, the ensuing clinical trial showed only modest, short-term effects in these patients (see the ISIS Pharmaceuticals web site online). The ultimate usefulness of this compound remains to be determined.

Cardiovascular disease. RESTENOSIS of coronary vessels after *trans-catheter* re-vascularization procedures remains a serious clinical problem. Manipulation of coronary vessels invariably leads to endothelial-cell injury, which is often accompanied by thrombosis, smooth-muscle-cell activation and subsequent vascular remodelling. The myelocytomatosis viral oncogene homologue (c-MYC) has been identified as an important mediator in this process through its effects on regulating the growth of vascular cells in atherosclerotic lesions. Accordingly, it has been postulated that c-MYC might make an attractive target for preventing post-angioplasty complications, and at least two clinical trials using a 15-mer phosphorothioate-modified antisense ODN against c-MYC have been reported^{108,109}. Both studies showed safety of intracoronary application of the drug, but no objective clinical responses.

Oligonucleotides as immunological adjuvants

Over the past several years, it has become increasingly appreciated that several types of immune cell have pattern-recognition receptors that can distinguish prokaryotic DNA from vertebrate DNA¹¹⁰. This is apparently accomplished by the ability of these receptors to recognize unmethylated CpG dinucleotides in certain base contexts (CpG motifs)¹¹¹. Bacterial DNA, or more germane to this discussion, synthetic oligodeoxynucleotides that contain these unmethylated CpG motifs, can activate immune responses that have evolved to protect the host against infections. Responses of this type are similar to T-helper type 1 (T_H1)-cell responses, and lead to activation of natural killer (NK) cells, dendritic cells, macrophages and B cells¹¹². CpG DNA-induced immune activation has been shown to protect certain hosts against infection, either alone, or in combination with vaccines. It is reasonable to suppose, then, that CpG-containing oligonucleotides might prove to be effective adjuvants for the immunotherapy of cancer, and for boosting immune responses to antigens that are less efficient in this regard, but to which one would like to immunize a host¹¹³.

The most recent application of this principle was reported in abstract form at the December 2001 meeting of the American Society of Hematology, where preliminary results from a clinical trial in which the

RESTENOSIS
A reduction in luminal size
after an inter-arterial coronary
intervention.

Table 2 | Current and planned clinical trials with antisense oligonucleotides and ribozymes

Product	Diseases	Company
Anti-c-MYC (AS)	Cardiovascular restenosis, Phase II	AVI Biopharma
EPI 2010 (AS against adenosine A ₁ receptor)	Asthma, Phase II	EpiGenesis Pharmaceuticals
GenaSense (AS against BCL2)	Haematological malignancies Solid tumours, Phase III	Genta
GTI 2040 (AS against ribonucleotide reductase)	Solid tumours, Phase I and II	Lorus Therapeutics
HGT (AS against HIV)	HIV, Phase II	Enzo Biochem
CpG molecules	Solid tumors Infectious diseases, Phase I/II	Coley Pharmaceutical Group
Angiozyme (Ribozyme against VEGFR1)	Breast and colon cancer, Phase II	Ribozyme Pharmaceuticals
Heptazyme (Ribozyme against HCV)	HCV, Phase I	
Herzyme (Ribozyme against HER2)	Breast and ovarian cancer, Phase I	
ISIS 3521 (PKC- α) ISIS 5132 (c-RAF) ISIS 2503 (h-RAS) G 3139 (BCL2) GEM 231 (PKA)	NSCLC, NHL, Phase III Solid tumours, Phase II NSCLC, Phase II NHL, Phase II/III PKA, Phase II	ISIS Pharmaceuticals

AS, antisense; BCL2, B-cell lymphoma protein 2; CpG, unmethylated CpG dinucleotides; HCV, hepatitis C virus; HER2, tyrosine-kinase growth-factor receptor, also called c-ERBB2; HIV, human immunodeficiency virus; c-MYC, myelocytomatosis viral oncogene homologue; NHL, Non-Hodgkin's lymphoma; NSCLC, non-small-cell lung cancer; PKA, protein kinase A; PKC- α , protein kinase C- α ; VEGFR1, vascular-endothelial-growth-factor receptor 1.

safety and efficacy of a CpG adjuvant was investigated in 16 patients with non-Hodgkin's lymphoma were reported¹¹⁴. Analysis of the data accrued at the time of submission indicated that the oligonucleotide increased the number and activity of NK cells in treated patients, and 2 out of 16 treated patients achieved partial remission. The study is continuing, and a follow-on trial of the CpG oligonucleotide in combination with rituximab is being planned.

Problems in need of solution

Nucleic-acid-mediated gene silencing has been used with great success in the laboratory^{107,115-117}, and this strategy has also generated some encouraging results in the clinic^{9,93,96,118,119}. Nevertheless, it is widely appreciated that the ability of nucleic-acid molecules to modify gene expression *in vivo* is quite variable, and therefore wanting in terms of reliability^{120,121}. Several issues have been implicated as a root cause of this problem, including molecule delivery to targeted cells and specific compartments within cells, and identification of sequence that is accessible to hybridization in the genomic DNA or RNA². Intuitively, DNA accessibility is limited by compaction of nuclear material and transcription activity of the gene target. Formal approaches for solving this problem have not been widely discussed. In mRNA, sequence accessibility is dictated by internal base pairing and the proteins that associate with the RNA in a living cell. Attempts to accurately predict the *in vivo* structure of RNA have been fraught with difficulty¹²². Accordingly, mRNA targeting is largely a random process, which accounts for the many experiments in which the addition of an antisense nucleic acid yields no effect on

expression. Several approaches to this problem have been tried, including trial-and-error 'walks' down the mRNA¹²³, computer-assisted modelling of RNA structure¹²⁴, hybridization of RNA to random oligonucleotides arrayed on glass slides^{125,126} and variations on the theme of using random oligonucleotide libraries to identify RNase H cleavable sites, in the absence or presence of crude cellular extracts^{127,128}. Recent work from this laboratory indicates that self-quenching reporter molecules might be useful for solving *in vivo* RNA structure¹²⁹, but the reliability and usefulness of this approach remain to be proven.

Another problem in this field is the limited ability to deliver nucleic acids into cells and have them reach their target¹²⁰. Without this ability, it is clear that even an appropriately targeted sequence is not likely to be efficient. As a general rule, oligonucleotides are taken up primarily through a combination of adsorptive and fluid-phase endocytosis^{130,131}. After internalization, confocal and electron microscopy studies have indicated that the bulk of the oligonucleotides enter the endosome-lysosome compartment, in which most of the material becomes either trapped or degraded. Biological inactivity is the predictable consequence of these events. Nevertheless, oligonucleotides can escape from the vesicles intact, enter the cytoplasm and then diffuse into the nucleus, where they presumably acquire their mRNA, or in the case of decoys, protein target^{131,132-134}. Delivery technologies continue to improve, so it is likely that present methods, and/or other evolving technologies, will be used successfully to deliver optimized nucleic acids to their cellular targets^{135,136}. Indeed, it is our hypothesis that development of

effectively targeted and efficiently delivered nucleic-acid molecules will lead to important advances in the diagnosis and treatment of human malignancies⁹³, and other diseases for which this class of molecule has been proposed to be effective.

In addition to delivering and targeting oligonucleotides to the mRNA, we believe that other considerations might improve the efficacy of this strategy. In this regard, we suggest that the abundance and half-life of the target mRNA should also be considered when selecting a gene target. The *c-MYB* mRNA that we have chosen to target, as well as its encoded protein, has an estimated half-life of ~30–50 minutes^{137,138}. By contrast, *BCL2*, for example, has a half-life that has been estimated at ~14 hours¹³⁹, and *RAF* and *RAS* have half-lives that are estimated to be >24 hours^{140,141}. Attempts to eliminate these proteins from cells using oligonucleotides might therefore prove more difficult. Whether these considerations will apply to extremely long lived or endogenously expressed antisense vectors, remains to be seen. As the efficiency of these molecules for perturbing gene expression improves, an important consideration in target selection will be the relative selection in the target versus non-targeted tissue. The ability to target genetic polymorphisms, or cells affected by loss of heterozygosity, might be an effective solution to this problem¹⁴². Finally, another approach for improving the effectiveness of nucleic-acid drugs as anticancer agents that is under intense investigation is to combine them with more traditional therapeutic modalities. Although this might well prove useful, we strongly believe that it remains important to continue to

explore strategies that are designed to promote more reliable and efficient gene silencing with oligonucleotides alone. As discussed above, a prime motivating force for developing these drugs is the hope for non-toxic therapies. Adding back chemotherapy, although perhaps useful in the short term, is in the end counterproductive to this specific goal, unless it can be used at significantly reduced dosages. So far, this has not been the case.

Conclusions

The concept of inhibiting gene expression with antisense nucleic acids developed from studies that were initiated almost a quarter of a century ago^{13,14}. Despite the fact that the mechanism by which these molecules modulate gene expression is not always certain^{12,128,143}, clinical development of antisense compounds has proceeded to the point at which several nucleic-acid drugs have entered Phase I/II, and in a few cases, Phase III trials. Others are about to begin, or are in the late planning stages (TABLE 2). The original motivation for developing these molecules remains strong. The recent development of leukaemia cells that are resistant to the small-molecule inhibitor Gleevec provides another incentive. Although a cell might be able to evolve mutated proteins that evade a small-molecule protein inhibitor, this cannot happen if the mRNA that encodes that protein is no longer made. Accordingly, although only one antisense drug has received FDA approval so far¹⁴⁴, all of the investigators who have laboured long and hard in this field hope that the time to celebrate significant achievements in the clinic will shortly be forthcoming.

1. Vile, R. G., Russell, S. J. & Lemoine, N. R. Cancer gene therapy: hard lessons and new courses. *Gene Ther.* **7**, 2–8 (2000).
2. Gewirtz, A. M., Sokol, D. L. & Ratajczak, M. Z. Nucleic acid therapeutics: state of the art and future prospects. *Blood* **92**, 712–736 (1998).
3. Mann, M. J. *et al.* Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. *Lancet* **354**, 1493–1498 (1999).
4. Ehsan, A., Mann, M. J., Dell'Acqua, G. & Dzau, V. J. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. *J. Thorac. Cardiovasc. Surg.* **121**, 714–722 (2001).
5. Dean, N. M., McKay, R., Condon, T. P. & Bennett, C. F. Inhibition of protein kinase C- α expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. *J. Biol. Chem.* **269**, 16416–16424 (1994).
6. Yacyshyn, B. R. *et al.* A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease. *Gastroenterology* **114**, 1133–1142 (1998).
7. Macpherson, J. L., Ely, J. A., Sun, L. O. & Symonds, G. P. Ribozymes in gene therapy of HIV-1. *Front. Biosci.* **4**, D497–D505 (1999).
8. Welch, P. J., Ye, S. & Barber, J. R. Ribozyme gene therapy for hepatitis C virus infection. *Clin. Diagn. Virol.* **10**, 163–171 (1998).
9. Zu Pufitz, J., Yu, Q., Burke, J. M. & Wands, J. R. Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. *J. Virol.* **73**, 5381–5387 (1999).
10. Compegnò, D. *et al.* Antisense oligonucleotides containing modified bases inhibit *in vitro* translation of *Leishmania amazonensis* mRNAs by invading the mini-exon hairpin. *J. Biol. Chem.* **274**, 8191–8198 (1999).
11. Katz, S. M. *et al.* Effect of ICAM-1/LFA-1 blockade on pancreatic islet allograft survival, function, and early cytokine production. *Transplant. Proc.* **29**, 748–749 (1997).
12. Gewirtz, A. M. Oligonucleotide therapeutics: a step forward. *J. Clin. Oncol.* **18**, 1809–1811 (2000).
13. Paterson, B. M., Roberts, B. E. & Kuff, E. L. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. *Proc. Natl. Acad. Sci. USA* **74**, 4370–4374 (1977).
14. Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. *Proc. Natl. Acad. Sci. USA* **75**, 285–288 (1978). A classic reference that first suggested the possibility of using 'antisense' DNA for therapeutic purposes.
15. Simons, R. W. & Kleckner, N. Translational control of IS10 transposition. *Cell* **34**, 683–691 (1983).
16. Mizuno, T., Chou, M. Y. & Inouye, M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (microRNA). *Proc. Natl. Acad. Sci. USA* **81**, 1966–1970 (1984).
17. Melton, D. W. Gene targeting in the mouse. *Bioessays* **16**, 633–638 (1994).
18. Stasak, A. Getting down to the core of homologous recombination. *Science* **272**, 828–829 (1996).
19. Helene, C. Control of oncogene expression by antisense nucleic acids. *Eur. J. Cancer* **30A**, 1721–1726 (1994).
20. Kneuer, M. P. & Glazer, P. M. Triplex forming oligonucleotides: sequence-specific tools for gene targeting. *Hum. Mol. Genet.* **10**, 2243–2251 (2001).
21. Luo, Z., Macris, M. A., Faruqi, A. F. & Glazer, P. M. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. *Proc. Natl. Acad. Sci. USA* **97**, 9003–9008 (2000). An important study that shows the use of triplex-forming oligonucleotides to affect target-gene modification at frequencies > 50-fold higher than are usually reported.
22. Gamper, H. B. *et al.* The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. *Nucleic Acids Res.* **28**, 4332–4339 (2000).
23. Sharma, H. W., Perez, J. R., Higgins-Sochska, K., Hsiao, R. & Narayanan, R. Transcription factor decoy approach to decipher the role of NF- κ B in oncogenesis. *Anticancer Res.* **16**, 61–69 (1996).
24. Kelekop, C. L., Baird, E. E., Devan, P. B. & Rees, D. C. Structural basis for G+C recognition in the DNA minor groove. *Nature Struct. Biol.* **5**, 104–109 (1998).
25. Kelekop, C. L. *et al.* A structural basis for recognition of A+T and T+A base pairs in the minor groove of B-DNA. *Science* **282**, 111–115 (1998).
26. Kelekop, C. L. *et al.* Structural effects of DNA sequence on T+A recognition by hydroxypyrimidine/pyrimidine pairs in the minor groove. *J. Mol. Biol.* **295**, 557–567 (2000).
27. Urbach, A. R. & Devan, P. B. Toward rules for 1:1 polyamide:DNA recognition. *Proc. Natl. Acad. Sci. USA* **98**, 4343–4348 (2001). This paper discusses issues related to the development of polyamides for inhibiting transcription.
28. Beelman, C. A. & Parker, R. Degradation of mRNA in eukaryotes. *Cell* **81**, 179–183 (1995).
29. Liehaber, S. A. mRNA stability and the control of gene expression. *Nucleic Acids Symp. Ser.* **36**, 29–32 (1997).
30. Weiss, I. M. & Liehaber, S. A. Erythroid cell-specific mRNA stability elements in the α -globin 3' nontranslated region. *Mol. Cell. Biol.* **15**, 2457–2465 (1995).
31. Chkheidze, A. N. *et al.* Assembly of the α -globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3' untranslatable region determinant and poly(C) binding protein α CP. *Mol. Cell. Biol.* **19**, 4572–4581 (1999).
32. Scanlon, K. J. *et al.* Oligonucleotide-mediated modulation of mammalian gene expression. *FASEB J.* **9**, 1288–1295 (1995).
33. Stein, C. A. How to design an antisense oligodeoxy-nucleotide experiment: a consensus approach. *Antisense Nucleic Acid Drug Dev.* **8**, 129–132 (1998).
34. Kole, R. & Sazani, P. Antisense effects in the cell nucleus: modification of splicing. *Curr. Opin. Mol. Ther.* **3**, 229–234 (2001).

35. Dominski, Z. & Kole, R. Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing. *Mol. Cell. Biol.* **14**, 7445–7454 (1994).

36. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. *Antisense Nucleic Acid Drug Dev.* **7**, 187–195 (1997).

37. Iversen, P. L. Phosphorodiamide morpholino oligomers: favorable properties for sequence-specific gene inactivation. *Curr. Opin. Mol. Ther.* **3**, 235–238 (2001).

38. Zamaratski, E., Pradeepkumar, P. I. & Chattopadhyaya, J. A critical survey of the structure–function of the antisense oligo(RNA heteroduplex as substrate for RNase H. *J. Biochem. Biophys. Methods* **48**, 189–208 (2001).

39. Crooke, S. T. Molecular mechanisms of antisense drugs: RNase H. *Antisense Nucleic Acid Drug Dev.* **8**, 133–134 (1998).

40. Castanotto, D., Scher, M. & Rossi, J. J. Intracellular expression and function of antisense catalytic RNAs. *Methods Enzymol.* **313**, 401–420 (2000).

41. Rossi, J. J. Ribozymes: genomics and therapeutics. *Chem. Biol.* **6**, R33–R37 (1999).

42. Senter, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. *Proc. Natl. Acad. Sci. USA* **84**, 4262–4266 (1997).

43. Wu, Y. *et al.* Inhibition of BCR-ABL oncogene expression by novel deoxyribozymes (DNAzymes). *Hum. Gene Ther.* **10**, 2847–2857 (1999).

44. Earnshaw, D. J. & Gait, M. J. Progress toward the structure and therapeutic use of the hairpin ribozyme. *Antisense Nucleic Acid Drug Dev.* **7**, 403–411 (1997).

45. Hampel, A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. *Prog. Nucleic Acid Res. Mol. Biol.* **58**, 1–39 (1998).

46. Dahn, S. C. & Uhlenbeck, O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. *Biochemistry* **30**, 9464–9469 (1991).

47. Eckstein, F. The hammerhead ribozyme. *Biochem. Soc. Trans.* **24**, 601–604 (1996).

48. Hegg, L. A. & Fedor, M. J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. *Biochemistry* **34**, 15813–15828 (1995).

49. Hertel, K. J., Herschlag, D. & Uhlenbeck, O. C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. *Biochemistry* **33**, 3374–3385 (1994). A physical-chemical study of hammerhead-ribozyme binding and cleavage on a RNA target.

50. Irie, A. *et al.* Anti-oncogene ribozymes for cancer gene therapy. *Adv. Pharmacol.* **40**, 207–257 (1997).

51. Irie, A. *et al.* Therapeutic efficacy of an adenovirus-mediated anti-H-Ras ribozyme in experimental bladder cancer. *Antisense Nucleic Acid Drug Dev.* **9**, 341–349 (1999).

52. Datto, H. J. & Glazer, P. M. Intracellular generation of single-stranded DNA for chromosomal tripleplex formation and induced recombination. *Nucleic Acids Res.* **29**, 5140–5147 (2001).

53. Usman, N. & Blatt, L. M. Nucleic-acid-resistant synthetic ribozymes: developing a new class of therapeutics. *J. Clin. Invest.* **106**, 1197–1202 (2000).

54. Brecker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. *Chem. Biol.* **1**, 223–229 (1994). The authors' hypothesis that DNA could have the same catalytic activity as RNA was shown in this interesting work, which used a novel *in vitro* selection method to identify a metal-dependent DNA enzyme.

55. Feldman, A. R. & Sen, D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. *J. Mol. Biol.* **313**, 283–294 (2001).

56. Sioud, M. Nucleic acid enzymes as a novel generation of anti-gene agents. *Curr. Mol. Med.* **1**, 575–588 (2001).

57. Nishikura, K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. *Cell* **107**, 415–418 (2001).

58. Tuschl, T. Expanding small RNA interference. *Nature Biotechnol.* **20**, 446–448 (2002).

59. Elsharif, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. *Genes Dev.* **15**, 188–200 (2001).

60. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bicistronic ribonuclease in the initiation step of RNA interference. *Nature* **409**, 363–366 (2001).

61. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. *Science* **293**, 1146–1150 (2001).

62. Keating, R. F. *et al.* Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in *C. elegans*. *Genes Dev.* **15**, 2654–2659 (2001).

63. Yang, S., Tutton, S., Pierce, E. & Yoon, K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. *Mol. Cell. Biol.* **21**, 7807–7816 (2001).

64. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. *Proc. Natl. Acad. Sci. USA* **99**, 1443–1448 (2002). An important study that supports the possibility that RNAi might be achieved in mammalian cells.

65. Bernstein, E., Denli, A. M. & Hannon, G. J. The rest is silence. *RNA* **7**, 1509–1521 (2001).

66. Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in *Drosophila* embryos. *Curr. Biol.* **10**, 1191–1200 (2000).

67. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell* **101**, 25–33 (2000). An important observation, which shows that mediators of RNAi are short, 21–23-nt fragments that are cleaved from longer dsRNAs.

68. Elsharif, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in *Drosophila melanogaster* embryo lysate. *EMBO J.* **20**, 6877–6888 (2001).

69. Sierakowska, H., Semba, M. J., Agrawal, S. & Kole, R. Repair of thalassemic human β -globin mRNA in mammalian cells by antisense oligonucleotides. *Proc. Natl. Acad. Sci. USA* **93**, 12840–12844 (1996). The use of antisense DNA to regulate mRNA splicing as opposed to its more usual use as an RNA blocker or destroyer.

70. Sierakowska, H., Agrawal, S. & Kole, R. Antisense oligonucleotides as modulators of pre-mRNA splicing. *Methods Mol. Biol.* **133**, 223–233 (2000).

71. Lacerda, G. *et al.* Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. *Proc. Natl. Acad. Sci. USA* **97**, 9591–9596 (2000).

72. Mercante, D. R., Bortner, C. D., Cidlow, J. A. & Kole, R. Modification of alternative splicing of *Bcl-x* pre-mRNA in prostate and breast cancer cells: analysis of apoptosis and cell death. *J. Biol. Chem.* **276**, 16411–16417 (2001).

73. Agrawal, S. & Zhao, Q. Mixed backbone oligonucleotides: improvement in oligonucleotide-induced toxicity *in vivo*. *Antisense Nucleic Acid Drug Dev.* **8**, 135–139 (1998).

74. Crooke, S. T. Molecular mechanisms of action of antisense drugs. *Biochim. Biophys. Acta* **1489**, 31–44 (1999).

75. Stein, C. A. Is irrelevant cleavage the price of antisense efficacy? *Pharmacol. Ther.* **85**, 231–236 (2000).

76. Nielsen, P. E. RNA analogues with nonphosphodiester backbones. *Annu. Rev. Biophys. Biomol. Struct.* **24**, 167–183 (1995).

77. Wong-Staal, F., Poiesz, E. M. & Looney, D. J. A controlled Phase I clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. *Hum. Gene Ther.* **9**, 2407–2425 (1998).

78. Arnaudo, R. G. *et al.* A Phase I trial of autologous CD34⁺ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. *Hum. Gene Ther.* **10**, 2255–2270 (1999).

79. Serani, D. *et al.* Pharmacokinetics and tolerability of intravenous trecovirsen (GEM 91), an antisense phosphorothioate oligonucleotide, in HIV positive subjects. *J. Clin. Pharmacol.* **39**, 47–54 (1999).

80. Bishop, M. R. *et al.* Phase I trial of an antisense oligonucleotide OL1/p53 in hematologic malignancies. *J. Clin. Oncol.* **14**, 1320–1326 (1996).

81. Gabruth, W. M., Hobson, W. C., Gicas, P. C., Schechter, P. J. & Agrawal, S. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. *Antisense Res. Dev.* **4**, 201–206 (1994).

82. Nermuth, J. *et al.* Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C- α , in patients with advanced cancer. *J. Clin. Oncol.* **17**, 3586–3595 (1999).

83. Waters, J. S. *et al.* Phase I clinical and pharmacokinetic study of *BCL2* antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. *J. Clin. Oncol.* **18**, 1812–1823 (2000).

84. Chi, K. N. *et al.* A Phase I dose-finding study of combined treatment with an antisense *Bcl-2* oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. *Clin. Cancer Res.* **7**, 3920–3927 (2001).

85. Yuen, A. R. *et al.* Phase I study of an antisense oligonucleotide to protein kinase C- α (ISIS 3521/CGP 64129A) in patients with cancer. *Clin. Cancer Res.* **5**, 3357–3363 (1999).

86. Yang, E. & Korsmeyer, S. J. Molecular thanatopsis: a discourse on the *BCL2* family and cell death. *Blood* **88**, 386–401 (1996).

87. Reed, J. C. *Bcl2* family proteins: regulators of chemoresistance in cancer. *Toxicol. Lett.* **82–83**, 155–158 (1995).

88. Gazitt, Y. *et al.* *Bcl-2* overexpression is associated with resistance to paclitaxel, but not gemcitabine, in multiple myeloma cells. *Int. J. Oncol.* **13**, 839–848 (1998).

89. Reed, J. C. *et al.* Antisense-mediated inhibition of *BCL2* protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. *Cancer Res.* **50**, 6565–6570 (1990).

90. Webb, A. *et al.* *BCL-2* antisense therapy in patients with non-Hodgkin lymphoma. *Lancet* **349**, 1137–1141 (1997).

91. Jansen, B. *et al.* Chemosensitisation of malignant melanoma by *BCL2* antisense therapy. *Lancet* **356**, 1728–1733 (2000).

92. Tolcher, A. W. Preliminary phase I results of G3139 (*Bcl2* antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. *Semin. Oncol.* **28**, 67–70 (2001).

93. Luger, S. M. *et al.* Oligodeoxynucleotide-mediated inhibition of *c-myb* gene expression in autografted bone marrow: a pilot study. *Blood* **99**, 1150–1158 (2002). The clinical use of antisense DNA with good activity against its mRNA target and pharmacodynamic correlates.

94. Dean, N. M. *et al.* Antisense oligonucleotides as inhibitors of signal transduction: development from research tools to therapeutic agents. *Biochem. Soc. Trans.* **24**, 623–629 (1996).

95. Dean, N. *et al.* Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C- α expression. *Cancer Res.* **56**, 3499–3507 (1996).

96. Cunningham, C. C. *et al.* A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. *Cancer* **82**, 1265–1271 (2001).

97. Brennwald, U. *et al.* Raf-1 is a necessary component of the mitogenic response of the human megakaryoblastic leukemia cell line MO7 to human stem cell factor, granulocyte-macrophage colony-stimulating factor, interleukin 3, and interleukin 9. *Cell Growth Differ.* **5**, 367–372 (1994).

98. Monia, B. P., Johnston, J. F., Geiger, T., Müller, M. & Fabbro, D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. *Nature Med.* **2**, 668–675 (1996). A useful mouse xenograft model for examining the usefulness of an oligodeoxynucleotide.

99. Rudin, C. M. *et al.* Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-maf-1, administered by 24-hour weekly infusion to patients with advanced cancer. *Clin. Cancer Res.* **7**, 1214–1220 (2001).

100. Eckstein, F. Exogenous application of ribozymes for inhibiting gene expression. *Ciba Found. Symp.* **209**, 207–212 (1997).

101. Looney, D. & Yu, M. Clinical aspects of ribozymes as therapeutics in gene therapy. *Methods Mol. Biol.* **74**, 469–486 (1997).

102. Brower, V. *et al.* All clear for HIV-targeting ribozyme in Phase II. *Nature Biotechnol.* **16**, 123 (1998).

103. Bennett, C. F., Condon, T. P., Grimm, S., Chan, H. & Chiang, M. Y. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. *J. Immunol.* **152**, 3530–3540 (1994).

104. Nestle, F. O., Mitra, R. S., Bennett, C. F., Chan, H. & Nickoloff, B. J. Cationic lipid is not required for uptake and selective inhibitory activity of ICAM-1 phosphorothioate antisense oligonucleotides in keratinocytes. *J. Invest. Dermatol.* **103**, 569–575 (1994).

105. Mielke, M. E., Bennett, C. F., Miller, B. E. & Welch, D. R. Enhanced metastatic ability of TNF- α -treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. *Exp. Cell Res.* **214**, 231–241 (1994).

106. Schreiber, S. *et al.* Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn's disease. *Gastroenterology* **120**, 1339–1346 (2001).

107. Wright, C. J. *et al.* Reversal of epidermal hyperproliferation in psoriasis by insulin-like growth factor I receptor antisense oligonucleotides. *Nature Biotechnol.* **18**, 521–526 (2000).

108. Roque, F. *et al.* Safety of intracoronary administration of *c-myc* antisense oligomers after percutaneous transluminal coronary angioplasty (PTCA). *Antisense Nucleic Acid Drug Dev.* **11**, 99–106 (2001).

109. Kutryk, M. J. *et al.* Local intracoronary administration of antisense oligonucleotide against *c-myc* for the prevention of in-stent restenosis: results of the randomized investigation by the Thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. *J. Am. Coll. Cardiol.* **39**, 281–287 (2002).

110. Krieg, A. M. *et al.* CpG motifs in bacterial DNA trigger direct B-cell activation. *Nature* **374**, 546–549 (1995).

A seminal report on the ability of vertebrate immune cells to recognize unmethylated CpG dinucleotide motifs present in prokaryotes. These findings contribute to the hypothesis that synthetic ODN-containing CpG motifs might function as effective immunological adjuvants.

111. Krug, A. *et al.* Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. *Eur. J. Immunol.* **31**, 3026–3037 (2001).

112. Brzozowski, C. L., Weeratna, R., Krieg, A. M., Siegrist, C. A. & Davis, H. L. CpG DNA can induce strong T_h1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. *Proc. Natl. Acad. Sci. USA* **95**, 15553–15558 (1998).

113. Krieg, A. M., Yi, A. K., Schorr, J. & Davis, H. L. The role of CpG dinucleotides in DNA vaccines. *Trends Microbiol.* **6**, 23–27 (1998).

114. Jähnichen, B. *et al.* CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens. *J. Leukoc. Biol.* **69**, 81–88 (2001).

115. Metha, N., Louache, F., Vanherken, W. & Wending, F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit *in vitro* megakaryocytopoiesis. *Blood* **82**, 1395–1401 (1993).

116. Good, L., Awasthi, S. K., Dryselius, R., Larsson, O. & Nielsen, P. E. Bactericidal antisense effects of peptide-PNA conjugates. *Nature Biotechnol.* **19**, 360–364 (2001).

117. Meshorer, E. *et al.* Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. *Science* **295**, 508–512 (2002).

118. Andrews, D. W. *et al.* Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. *J. Clin. Oncol.* **19**, 2189–2200 (2001).

119. Cunningham, C. C. *et al.* A Phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. *Clin. Cancer Res.* **6**, 1626–1631 (2000).

120. Gewirtz, A. M., Stein, C. A. & Glazer, P. M. Facilitating oligonucleotide delivery: helping antisense deliver on its promise. *Proc. Natl. Acad. Sci. USA* **93**, 3161–3163 (1996).

121. Lebedeva, I. & Stein, C. A. Antisense oligonucleotides: promise and reality. *Annu. Rev. Pharmacol. Toxicol.* **41**, 403–419 (2001).

122. Baskerville, S. & Ellington, A. D. RNA structure. Describing the elephant. *Curr. Biol.* **5**, 120–123 (1995).

123. Monia, B. P. *et al.* Sequence-specific antitumor activity of a phosphorothioate oligodeoxynucleotide targeted to human c-Raf kinase supports an antisense mechanism of action *in vivo*. *Proc. Natl. Acad. Sci. USA* **93**, 15481–15484 (1996).

124. Szekiel, G., Homann, M. & Ritter, K. Computer-aided search for effective antisense RNA target sequences of the human immunodeficiency virus type 1. *Antisense Res. Dev.* **3**, 45–52 (1993).

125. Miller, N., Mir, K. U. & Southern, E. M. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. *Nature Biotechnol.* **15**, 537–541 (1997).

126. Sohail, M. & Southern, E. M. Selecting optimal antisense reagents. *Adv. Drug Deliv. Rev.* **44**, 23–34 (2000).

127. Ho, S. P. *et al.* Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. *Nature Biotechnol.* **16**, 59–63 (1998).

128. Scherr, M., Rossi, J. J., Szczekiel, G. & Patzel, V. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. *Nucleic Acids Res.* **28**, 2455–2461 (2000).

An interesting strategy for mapping hybridization-accessible sites in mRNA.

129. Sokol, D. L., Zhang, X., Lu, P. & Gewirtz, A. M. Real time detection of RNA: RNA hybridization in living cells. *Proc. Natl. Acad. Sci. USA* **95**, 11539–11543 (1998).

A new strategy for visualizing mRNA expression and hybridization-accessible sites in living cells.

130. Yakubov, L. A. *et al.* Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? *Proc. Natl. Acad. Sci. USA* **88**, 6454–6458 (1989).

131. Bellinger, C. *et al.* Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. *J. Clin. Invest.* **95**, 1814–1823 (1995).

A study that examines the mechanism of oligodeoxynucleotide uptake.

132. Laktonov, P. *et al.* Uptake of oligonucleotides by c-mpl specifically inhibit *in vitro* megakaryocytopoiesis. *Nucleosides Nucleotides* **18**, 1697–1699 (1999).

133. Mechi, N., Leonetti, J. P., Clarenç, J. P., Degols, G. & Lebleu, B. Nuclear location of synthetic oligonucleotides microinjected somatic cells: its implication in an antisense strategy. *Nucleic Acids Symp. Ser.* **147**–150 (1991).

134. Clarenç, J. P., Lebleu, B. & Leonetti, J. P. Characterization of the nuclear binding sites of oligodeoxynucleotides and their analogs. *J. Biol. Chem.* **268**, 5600–5604 (1993).

135. Júfano, R. L., Alahan, S., Yoo, H., Kole, R. & Cho, M. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. *Pharm. Res.* **16**, 494–502 (1999).

A useful review of oligonucleotide uptake and distribution in cells and whole animals.

136. Delong, R. K. *et al.* Novel cationic amphiphiles as delivery agents for antisense oligonucleotides. *Nucleic Acids Res.* **27**, 3334–3341 (1999).

137. Baer, M. R., Augustinos, P. & Kinniburgh, A. J. Defective c-myc and c-myc RNA turnover in acute myeloid leukemia cells. *Blood* **78**, 1319–1326 (1992).

138. Bies, J., Nazarov, V. & Wolff, L. Alteration of proteolytic processing of c-Myc as a consequence of its truncation in murine myeloid leukemia. *Leukemia* **13**, S116–S117 (1999).

139. Kieda, S., Miyashita, T., Tanaka, S. & Reed, J. C. Investigations of antisense oligonucleotides targeted against Bcl-2 RNAs. *Antisense Res. Dev.* **3**, 157–169 (1993).

140. Mandyan, S. *et al.* Molecular and cellular characterization of baboon c-Raf as a target for antiproliferative effects of antisense oligonucleotides. *Antisense Nucleic Acid Drug Dev.* **7**, 539–548 (1997).

141. Haklai, R. *et al.* Dislodgment and accelerated degradation of Ras. *Biochemistry* **37**, 1306–1314 (1998).

142. Basilion, J. P. *et al.* Selective killing of cancer cells based on loss of heterozygosity and normal variation in the human genome: a new paradigm for anticancer drug therapy. *Mol. Pharmacol.* **56**, 359–369 (1999).

143. Stein, C. A. Does antisense exist? *Nature Med.* **1**, 1119–1121 (1995).

144. De Smet, M. D., Maenken, C. J. & van den Horn, G. J. Fomivirsen – a phosphorothioate oligonucleotide for the treatment of CMV retinitis. *Ocul. Immunol. Inflamm.* **7**, 189–198 (1999).

145. Mulamba, B. G., Hu, A., Azad, R. F., Anderson, K. P. & Coen, D. M. Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen. *Antimicrob. Agents Chemother.* **42**, 971–973 (1998).

146. Anderson, K. P., Fox, M. C., Brown-Driver, V., Martin, M. J. & Azad, R. F. Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA. *Antimicrob. Agents Chemother.* **40**, 2004–2011 (1996).

147. The Vitavene Study Group. A randomized controlled clinical trial of intravitreous Fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. *Am. J. Ophthalmol.* **133**, 467–474 (2002).

148. Couder, B. *et al.* Phase II with ISIS 5132 in patients with small-cell (SCLC) and non-small-cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) early clinical studies group report. *Eur. J. Cancer* **37**, 2194–2198 (2001).

Acknowledgements

This work is supported by a grant from the National Institutes of Health. A.M.G. is a Distinguished Clinical Scientist of the Doris Duke Charitable Foundation. The editorial assistance of E. R. Blen and M. Goodrum is gratefully acknowledged.

Online links

DATABASES

The following terms in this article are linked online to:

Cancer.gov: http://www.cancer.gov/cancer_information/
 breast cancer | chronic myelogenous leukaemia | colon cancer | non-Hodgkin's lymphoma | NSCLC | ovarian cancer
 LocusLink: <http://www.ncbi.nlm.nih.gov/LocusLink/>
 ABL | adenosine A1 receptor | BCL2 | BCR | CD34 | DICER | α -globin | β -globin | haemoglobin | HER2 | ICAM-1 | IGF1R | c-MYB | c-MYC | 2',5'-oligodiphosphate synthetase | PKA | PKC | PKC α | PKR | c-RAF | ribonuclease reductase | RNase H | RNase L | VEGFR1
 Medscape DrugInfo: <http://promis.medscape.com/drugdb/search.asp>
 cidofovir | foscarnet | ganciclovir | Gleevec | rituximab | Vitavene OMIM: <http://www.ncbi.nlm.nih.gov/Omim/>
 Crohn's disease | psoriasis

FURTHER INFORMATION

Encyclopedia of Life Sciences: <http://www.els.net/>
 antisense nucleic acids in biotechnology
 American Society of Hematology: <http://www.hematology.org/>
 FDA: <http://www.fda.gov/default.htm>
 Access to this interactive links box is free online.