IP Address in Networking Classless Inter Domain Routing (CIDR)

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

November 8, 2020

Classless Addressing

- Classless Addressing is an improved IP Addressing system.
- It makes the allocation of IP Addresses more efficient.
- It replaces the older classful addressing system based on classes.
- It is also known as Classless Inter Domain Routing (CIDR).
- CIDR Block
 - When a user asks for specific number of IP Addresses,
 - CIDR dynamically assigns a block of IP Addresses based on certain rules.
 - This block contains the required number of IP Addresses as demanded by the user.
 - This block of IP Addresses is called as a CIDR block.

Rules For Creating CIDR Block

- A CIDR block is created based on the following 3 rules-
 - Rule 01
 - All the IP Addresses in the CIDR block must be contiguous.
 - Rule-02:
 - The size of the block must be presentable as power of 2.
 - Size of the block is the total number of IP Addresses contained in the block.
 - Size of any CIDR block will always be in the form $2^1, 2^2, 2^3, 2^4, 2^5$ and so on.
 - Rule-03:
 - First IP Address of the block must be divisible by the size of the block.

3 / 18

Rules For Creating CIDR Block

- If any binary pattern consisting of (m + n) bits is divided by 2^n , then-Remainder is least significant n bits Quotient is most significant m bits
- So, any binary pattern is divisible by 2^n , if and only if its least significant n bits are 0.

Example

- Consider a binary pattern- 01100100.0000001.00000010.01000000 (represented as 100.1.2.64)
- It is divisible by 2⁵ since its least significant 5 bits are zero.
- It is divisible by 2⁶ since its least significant 6 bits are zero.
- It is not divisible by 2⁷ since its least significant 7 bits are not zero.

CIDR Notation

- CIDR IP Addresses look like- a.b.c.d / n
 - They end with a slash followed by a number called as IP network prefix.
 - IP network prefix tells the number of bits used for the identification of network.
 - Remaining bits are used for the identification of hosts in the network

Example-

- An example of CIDR IP Address is- 182.0.1.2 / 28
- 28 bits are used for the identification of network.
- Remaining 4 bits are used for the identification of hosts in the network.

Problems on CIDR

Q Given the CIDR representation 20.10.30.35 / 27. Find the range of IP Addresses in the CIDR block.

Solution

- Given CIDR representation is 20.10.30.35 / 27.
 - 27 bits are used for the identification of network.
 - Remaining 5 bits are used for the identification of hosts in the network.
- Given CIDR IP Address may be represented as-00010100.00001010.00011110.00100011 / 27
 - First IP Address = 00010100.00001010.00011110.00100000 = 20.10.30.32
 - Last IP Address = 00010100.00001010.00011110.00111111 = 20.10.30.63
- Thus, Range of IP Addresses = [20.10.30.32, 20.10.30.63]

- Q Consider a block of IP Addresses ranging from 100.1.2.32 to 100.1.2.47.
 - Is it a CIDR block?
 - If yes, give the CIDR representation.

Solution

- For any given block to be a CIDR block, 3 rules must be satisfied-
 - According to Rule-01, all the IP Addresses must be contiguous.
 - Clearly, all the given IP Addresses are contiguous.
 - So, Rule-01 is satisfied.
 - According to Rule-02, size of the block must be presentable as 2^n .
 - Number of IP Addresses in the given block = 47 32 + 1 = 16.
 - Size of the block = 16 which can be represented as 2^4 .
 - So, Rule-02 is satisfied.
 - According to Rule-03, first IP Address must be divisible by size of the block.
 - So, 100.1.2.32 must be divisible by 2⁴.
 - 100.1.2.32 = 100.1.2.00100000 is divisible by 2⁴ since its 4 least significant bits are zero.
 - So, Rule-03 is satisfied.

CIDR Representation

• CIDR Representation = 100.1.2.32 / 28

Exercise

- Q Consider a block of IP Addresses ranging from 150.10.20.64 to 150.10.20.127.
 - Is it a CIDR block?
 - If yes, give the CIDR representation.
- Q Given the CIDR representation 100.1.2.35 / 20. Find the range of IP Addresses in the CIDR block.

Subnetting in Networking

In networking

- The process of dividing a single network into multiple sub networks is called as subnetting.
- The sub networks so created are called as subnets.

Example

Big Single Network

Division of network into 4 subnets

Advantages

- It improves the security.
- The maintenance and administration of subnets is easy.

Subnet ID

- Each subnet has its unique network address known as its Subnet ID.
- The subnet ID is created by borrowing some bits from the Host ID part of the IP Address.
- The number of bits borrowed depends on the number of subnets created.
- Types of Subnetting

Types of Subnetting

- Fixed length subnetting also called as classful subnetting divides the network into subnets where-
 - All the subnets are of same size.
 - All the subnets have equal number of hosts.
 - All the subnets have same subnet mask.
- Variable length subnetting also called as classless subnetting divides the network into subnets where-
 - All the subnets are not of same size.
 - All the subnets do not have equal number of hosts.
 - All the subnets do not have same subnet mask.

Example-01

Consider-

- We have a big single network having IP Address 200.1.2.0.
- We want to do subnetting and divide this network into 2 subnets.

Solution

- Clearly, the given network belongs to class C.
- For creating two subnets and to represent their subnet IDs, we require 1 bit.
 - We borrow one bit from the Host ID part.
 - After borrowing one bit, Host ID part remains with only 7 bits.

Borrowed bit for subnet ID

- If borrowed bit = 0, then it represents the first subnet.
- If borrowed bit = 1, then it represents the second subnet.
- IP Address of the two subnets are-
 - \bullet 200.1.2.00000000 = 200.1.2.0
 - \bullet 200.1.2.10000000 = 200.1.2.128

- For 1st Subnet
 - IP Address of the subnet = 200.1.2.0
 - Total number of IP Addresses $= 2^7 = 128$
 - ullet Total number of hosts that can be configured = 128 $\ 2=126$
 - Range of IP Addresses = [200.1.2.00000000, 200.1.2.01111111] = [200.1.2.0, 200.1.2.127]
 - Direct Broadcast Address = 200.1.2.01111111 = 200.1.2.127
 - Limited Broadcast Address = 255.255.255.255

- For 2nd Subnet.
 - IP Address of the subnet = 200.1.2.128
 - Total number of IP Addresses $= 2^7 = 128$
 - Total number of hosts that can be configured = 128 2 = 126
 - Range of IP Addresses = [200.1.2.10000000, 200.1.2.11111111] = [200.1.2.128, 200.1.2.255]
 - Direct Broadcast Address = 200.1.2.11111111 = 200.1.2.255
 - Limited Broadcast Address = 255.255.255.255

Excersie

- Q Consider-
 - We have a big single network having IP Address 200.1.2.0.
 - We want to do subnetting and divide this network into 4 subnets.
- Q Consider-
 - We have a big single network having IP Address 200.1.2.0.
 - We want to do subnetting and divide this network into 3 subnets.
- Hint:
 - Here, the subnetting will be performed in two steps-
 - Dividing the given network into 2 subnets
 - Dividing one of the subnets further into 2 subnets

- Step-01: Dividing Given Network into 2 Subnets-
 - Dividing One Subnet into 2 Subnets
 - We perform the subnetting of one of the subnets further into 2 subnets.
 - Consider we want to do subnetting of the 2nd subnet having IP Address 200.1.2.128.

- Step-02: Dividing One Subnet into 2 Subnets-
- For creating two subnets and to represent their subnet IDs, we require 1 bit.
 - We borrow one more bit from the Host ID part.
 - After borrowing one bit, Host ID part remains with only 6 bits

- IP Address of the two subnets are-
 - \bullet 200.1.2.10000000 = 200.1.2.128
 - \bullet 200.1.2.11000000 = 200.1.2.192
- Finally, the given single network is divided into 3 subnets having IP Address-
 - 200.1.2.0
 - 200.1.2.128
 - 200.1.2.192

Thank You

