Université de Rennes 1-Année 2020/2021 L3--PSIN/PRB-Feuille de TD 11

Exercice 1. On lance un dé à 6 faces 4 fois de suite, de manière indépendante.

- (i) Décrire un espace probabilisé modélisant cette expérience aléatoire.
- (ii) Quelle est la probabilité que deux nombres distincts apparaissent, chacun deux fois, lors de ces 4 lancers?

Exercice 2. On dispose de 2 urnes U_1 et U_2 contenant 100 boules en tout. L'urne U_1 contient 40 boules dont 8 sont blanches et 32 noires; l'urne U_2 contient 60 boules dont 6 sont blanches et 54 noires. On choisit au hasard une urne et on en tire une boule. Soient A_i l'évènement "l'urne choisie est U_i " pour i = 1, 2 et A l'événement "la boule est blanche".

- (i) Calculer $\mathbf{P}(A|A_1)$, $\mathbf{P}(A|A_2)$ et $\mathbf{P}(A)$.
- (ii) On constate qu'on a tiré une boule blanche. Qu'elle est la probabilité qu'elle provient de l'urne U_2 .
- **Exercice 3.** On considère une urne contenant 5 boules, dont 3 sont blanches et 2 noires. On tire de l'urne successivement deux boules **sans remise**. Soient X_1 (respectivement X_2) la v.a.r égale à 1 si la 1e (respectivement la 2e) boule est blanche et 0 sinon.
- (i) Déterminer la loi conjointe de (X_1, X_2) ainsi que la loi de X_1 et la loi de X_2 et présenter le résultat sous forme de tableau.
- (ii) Calculer $\mathbb{E}(X_1X_2)$ et la covariance $\text{Cov}(X_1, X_2)$.
- **Exercice 4.** On considère un lot d'ampoules électriques. On suppose que la durée de vie de chaque ampoule est une v.a.r T telle qu'il existe $\lambda > 0$ avec $\mathbf{P}(T > t) = e^{-\lambda t}$ pour tout $t \ge 0$.
- (i) Déterminer la loi de T et la reconnaître. Déterminer la durée de vie moyenne $\mathbb{E}(T)$ et l'écart-type $\sigma(T)$.

On branche simultanément 2 ampoules issues du même lot et de durées de vie indépendantes T_1 et T_2 .

- (ii) Soit U l'instant où au moins une des ampoules cesse de fonctionner. Déterminer la fonction de répartition de U; en déduire la loi de U.
- (iii) Soit V l'instant où toutes les deux ampoules cessent de fonctionner. Déterminer la fonction de répartition de V.

Exercice 5. Pour a > 0, soit X une variable aléatoire continue de densité f, donnée par $f(x) = axe^{-\frac{x^2}{2}}\mathbf{1}_{[0,+\infty[}(x)$ pour $x \in \mathbf{R}$.

- (i) Déterminer a.
- (ii) Soit $Y = X^2$. Déterminer la loi de Y et la reconnaître.
- (iii) Calculer $\mathbb{E}(X)$ et Var(X).

Exercice 6. Soit $f: \mathbf{R}^2 \to \mathbf{R}^+$ définie par

$$f(x,y) = \begin{cases} e^{-y} & \text{si } 0 \le x \le y\\ 0 & \text{sinon} \end{cases}$$

(i) Vérifier que $\int_{\mathbf{R}^2} f(x,y) dx dy = 1$.

Soit (X, Y) un couple de v.a.r de densité f.

- (ii) Déterminer les densités f_X et f_Y de X et Y.
- (iii) X et Y sont elles indépendantes?
- (iv) Déterminer l'espérance conditionnelle $\mathbb{E}(Y|X=x)$ pour $x \geq 0$.
- (v) Déterminer l'espérance conditionnelle $\mathbb{E}(Y|X)$.

Exercice 7. On désire évaluer le nombre N de kangourous vivant sur une île. Pour cela, on commence par capturer 800 kangourous que l'on marque et relâche juste après. Après un certain temps, on capture de nouveau 1000 kangourous parmi lesquels on trouve que 250 sont marqués. En déduire un intervalle de confiance pour N au seuil de risque de $\alpha = 5\%$.