

What are the least desirable attributes in a male partner?

Speed Dating Experiment

- Columbia Business School.
- Experimental speed dating events from 2002-2004.
- 8378 dates.
- 4 minute dates with every other participant of the opposite sex.
- Participants were asked if they would like to see their date again (decision) and to rate their date on 6 attributes (0 to 10):
 - 1. Attractiveness
 - 2. Sincerity
 - 3. Intelligence
 - 4. Fun
 - 5. Ambition
 - 6. Shared Interests.

DATASET

- Key Challenge: Dropping columns to make it more manageable. I decided to reduce it from 195 to less than 15 columns.
- Missing values and holes in the data.
 If a column has many missing values,
 I decided to drop it so it doesn't bias the result.
- The column names were hard to read (amb7_2).

 I decided to rename some of them to something more readable to make analyzing the data simpler.

How the speed dating rounds worked

- 1) There are two groups.
- 2) One group is women and the other is men.
- 3) The point of it all is to match every woman with every man for a short period of time so that by the end, every one has gotten a chance to quickly know each other.

The assumption here: it is possible to learn a lot about a person in a short period of time.

PARTICIPANTS

Total: 551

	MALE	FEMALE
Participants	277 (50,3%)	274 (49.7%)
Avg. dates	15.1	15.2
Match rate	20.2%	20.9%
Partner wanted a date	39.7%	48.6%

Number of unique participants

```
In [60]: f = data_df.loc[data_df.gender == 0]
    m = data_df.loc[data_df.gender == 1]
    print('The total number of dates is: {}'.format(len(data_df)))
    print('The total number of unique participants is: {}'.format(len(data_df['iid'].unique())))
    print('The number of female participants is: {}'.format(len(f['iid'].unique())))

The total number of dates is: 8378
    The total number of unique participants is: 551
    The number of female participants is: 274
    The number of male participants is: 277
```

Number of match per gender

```
In [65]: data_m = data_df[data_df['gender']==1].groupby('iid').sum()
         match m = data m['match']
         g = plt.figure(figsize=(5,5))
         g = plt.hist(match m, range(15))
         g = plt.xlabel('Male Matches', fontsize=14)
         # Number of dates males
         dates male = data df[data df.gender == 1].groupby('iid').apply(len)
         # The of matches males
         matches m = data df[data df.match == 1]
         matches_male = matches_m[matches_m.gender == 1].groupby('iid').apply(len)
         #Male match percentage
          mmp = (matches male / dates male).mean() * 100.0
         print('The avg. dates per male is: %s' %(dates_male.mean()))
         print('The match percentage for males is : %s' % (mmp))
                                                                                                                  80
         # Date? decision of partner == 1
         partner_yes_M = data_df[data_df.dec_o == 1]
         partner_syes M = partner_yes M[partner_yes M.gender == 1].groupby('iid').apply(len)
         pyp_M = ((partner syes M/dates male).mean())*100
                                                                                                                  60
         print('Female partner said yes %s percent of the times' % (pyp M))
```

The avg. dates per male is: 15.1407942238

The match percentage for males is: 20.2888324872

Female partner said yes 39.7366771615 percent of the times


```
In [66]: data f = data df[data df['gender']==0].groupby('iid').sum()
         match f = data f['match']
         g = plt.figure(figsize=(5,5))
         g = plt.hist(match_f, range(15))
         g = plt.xlabel('Female Matches', fontsize=14)
         # Number of dates Females
         dates female = data_df[data_df.gender == 0].groupby('iid').apply(len)
         # The of matches Females
         matches = data_df[data_df.match == 1]
         matches female = matches[matches.gender == 0].groupby('iid').apply(len)
         #Female match percentage
         fmp = (matches_female / dates_female).mean() * 100.0
         print('The avg. dates per female is: %s' %(dates_female.mean()))
         print('The match percentage for females is : %s' % (fmp))
         # Date? decision of partner == 1
         partner yes F = data df[data df.dec o == 1]
         partner_syes_F = partner_yes_F[partner_yes_F.gender == 0].groupby('iid').apply(len)
                                                                                                            70
         pyp_F = ((partner syes_F/dates female).mean())*100
         print('Male partner said yes %s percent of the times' % (pyp_F))
```

The avg. dates per female is: 15.2700729927
The match percentage for females is: 20.9103753144
Male partner said yes 48.6359814379 percent of the times

Participant's age distribution

```
data_unique = data_df.groupby('iid').mean()
data_unique.age.plot(kind='hist', bins=6)
print("participant's age distribution")
```

participant's age distribution

data_unique_f = data_df[data_df['gender']==0].groupby('iid').mean()
data_unique_f.age.plot(kind='hist', bins=6)
print("Females age distribution")

Females age distribution

data_unique_m = data_df[data_df['gender']==1].groupby('iid').mean()
data_unique_m.age.plot(kind='hist', bins=6)
print("Males age distribution")

Males age distribution

Participant's activities (Interest)

Getting Dummies

Columns to keep

```
cols_to_keep = ['dec_o', 'age' ,'attr_o', 'sinc_o', 'intel_o', 'fun_o', 'amb_o', 'shar_o']
data_b = data_df[cols_to_keep].join(dummy_gender.ix[:, 'gender':])
data_b.describe()
```

	dec_o	age	attr_o	sinc_o	intel_o	fun_o	amb_o	shar_o	gender_0	gender_1
count	8378.000000	8283.000000	8166.000000	8091.000000	8072.000000	8018.000000	7656.000000	7302.000000	8378.000000	8378.000000
mean	0.419551	26.358928	6.190411	7.175256	7.369301	6.400599	6.778409	5.474870	0.499403	0.500597
std	0.493515	3.566763	1.950305	1.740575	1.550501	1.954078	1.794080	2.156163	0.500029	0.500029
min	0.000000	18.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	24.000000	5.000000	6.000000	6.000000	5.000000	6.000000	4.000000	0.000000	0.000000
50%	0.000000	26.000000	6.000000	7.000000	7.000000	7.000000	7.000000	6.000000	0.000000	1.000000
75%	1.000000	28.000000	8.000000	8.000000	8.000000	8.000000	8.000000	7.000000	1.000000	1.000000
max	1.000000	55.000000	10.500000	10.000000	10.000000	11.000000	10.000000	10.000000	1.000000	1.000000

```
# intercept
data_b['intercept'] = 1.0
data_b.head()
```

	dec_o	age	attr_o	sinc_o	intel_o	fun_o	amb_o	shar_o	gender_0	gender_1	intercept
0	0	21.0	6.0	8.0	8.0	8.0	8.0	6.0	1.0	0.0	1.0
1	0	21.0	7.0	8.0	10.0	7.0	7.0	5.0	1.0	0.0	1.0
2	1	21.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	0.0	1.0
3	1	21.0	7.0	8.0	9.0	8.0	9.0	8.0	1.0	0.0	1.0
4	1	21.0	8.0	7.0	9.0	6.0	9.0	7.0	1.0	0.0	1.0

Droping data points with missing data

len(data_c)

6959

data_c.isnull().d	ount()
decision	6959
age	6959
attractive	6959
sincere	6959
intelligent	6959
fun	6959
ambitious	6959
shared interests	6959
gender_0	6959
gender_1	6959
intercept	6959
dtype: int64	

General Dataset descriptive measure

data_c.describe()

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	gender_0	gender_1	inte
count	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959
mean	0.429947	26.318437	6.183561	7.162954	7.361690	6.395315	6.759089	5.460052	0.506538	0.493462	1.0
std	0.495104	3.564386	1.949638	1.745162	1.559914	1.959143	1.797901	2.149901	0.499993	0.499993	0.0
min	0.000000	18.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.0
25%	0.000000	24.000000	5.000000	6.000000	6.000000	5.000000	6.000000	4.000000	0.000000	0.000000	1.0
50%	0.000000	26.000000	6.000000	7.000000	7.000000	7.000000	7.000000	6.000000	1.000000	0.000000	1.0
75%	1.000000	28.000000	8.000000	8.000000	8.000000	8.000000	8.000000	7.000000	1.000000	1.000000	1.0
max	1.000000	55.000000	10.000000	10.000000	10.000000	11.000000	10.000000	10.000000	1.000000	1.000000	1.0

data_c = data_c.replace(11, 10)
data_c.describe()

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	gender_0	gender_1	inte
count	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959.000000	6959
mean	0.429947	26.318437	6.183561	7.162954	7.361690	6.395172	6.759089	5.460052	0.506538	0.493462	1.0
std	0.495104	3.564386	1.949638	1.745162	1.559914	1.958842	1.797901	2.149901	0.499993	0.499993	0.0
min	0.000000	18.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.0
25%	0.000000	24.000000	5.000000	6.000000	6.000000	5.000000	6.000000	4.000000	0.000000	0.000000	1.0
50%	0.000000	26.000000	6.000000	7.000000	7.000000	7.000000	7.000000	6.000000	1.000000	0.000000	1.0
75%	1.000000	28.000000	8.000000	8.000000	8.000000	8.000000	8.000000	7.000000	1.000000	1.000000	1.0
max	1.000000	55.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	1.000000	1.000000	1.0

CORRELATION

DATASET

data_c.corr()

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	gender_0	gender_1	intercept
decision	1.000000	-0.046645	0.487717	0.207160	0.214155	0.411843	0.184109	0.400070	0.117529	-0.117529	NaN
age	-0.046645	1.000000	-0.047709	0.004041	0.033008/	-0.035223	0.019968	0.005233	-0.071570	0.071570	NaN
attractive	0.487717	-0.047709	1.000000	0.406055	0.388974	0.590472	0.359268	0.490608	0.129130	-0.129130	NaN
sincere	0.207160	0.004041	0.406055	1.000000	0.667933	0.507764	0.464358	0.398944	0.041191	-0.041191	NaN
intelligent	0.214155	0.033008	0.388974	0.667933	1.000000	0.500992	0.629279	0.401784	-0.057852	0.057852	NaN
fun	0.411843	-0.035223	0.590472	0.507764	0.500992	1.000000	0.493640	0.617335	0.058479	-0.058479	NaN
ambitious	0.184109	0.019968	0.359268	0.464358	0.629279	0.493640	1.000000	0.434890	-0.098770	0.098770	NaN
shared interests	0.400070	0.005233	0.490608	0.398944	0.401784	0.617335	0.434890	1.000000	0.029991	-0.029991	NaN
gender_0	0.117529	-0.071570	0.129130	0.041191	-0.057852	0.058479	-0.098770	0.029991	1.000000	-1.000000	NaN
gender_1	-0.117529	0.071570	-0.129130	-0.041191	0.057852	-0.058479	0.098770	-0.029991	-1.000000	1.000000	NaN
intercept	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

MULTICOLLINEARITY ??

Dataset (Female only)

```
subF = data_c[(data_c['gender_0']== 1)]
del subF['gender_1']
subF.head()
```

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	gender_0	intercept
0	0	21.0	6.0	8.0	8.0	8.0	8.0	6.0	1.0	1.0
1	0	21.0	7.0	8.0	10.0	7.0	7.0	5.0	1.0	1.0
2	1	21.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0
3	1	21.0	7.0	8.0	9.0	8.0	9.0	8.0	1.0	1.0
4	1	21.0	8.0	7.0	9.0	6.0	9.0	7.0	1.0	1.0

Analysis

data_fem.corr()

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	intercept
decision	1.000000	0.041354	0.519460	0.185635	0.209391	0.402063	0.211431	0.386069	NaN
age	-0.041354	1.000000	-0.057430	0.025408	0.041816	-0.046985	0.004968	0.011518	NaN
attractive	0.519460	-0.057430	1.000000	0.395661	0.413555	0.567985	0.416321	0.462070	NaN
sincere	0.185635	0.025408	0.395661	1.000000	0.666376	0.506795	0.447917	0.384916	NaN
intelligent	0.209391	0.041816	0.413555	0.666376	1.000000	0.531545	0.603450	0.408500	NaN
fun	0.402063	-0.046985	0.567985	0.506795	0.531545	1.000000	0.533609	0.589523	NaN
ambitious	0.211431	0.004968	0.416321	0.447917	0.603450	0.533609	1.000000	0.474901	NaN
shared interest	s 0.386069	0.011518	0.462070	0.384916	0.408500	0.589523	0.474901	1.000000	NaN
intercept	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

shared interests

intercept

<pre>print result F.summary()</pre>	Logit Regression Results									
print resure_r.summary()							==			
	Dep. Variable:		decision	No. Observat			25			
	Model:		Logit	Df Residuals	5:	35	17			
	Method:		MLE	Df Model:			7			
	Date:	Mon, 08	Aug 2016	Pseudo R-squ		0.27	65			
	Time:		11:18:26	Log-Likeliho	od:	-1766	.9			
	converged:		True	LL-Null:		-2442	2			
				LLR p-value:		1.764e-2	87			
		coef	std err	Z	P> z	[95.0% Con	f. Int.]			
	age	-0.0047	0.011	-0.412	0.681	-0.027	0.018			
	attractive	0.6912	0.033	20.675	0.000	0.626	0.757			
NALUTICOLLING A DITVILL	<pre>sincere</pre>	-0.1585	0.037	-4.274	0.000	-0.231	-0.086			
MULTICOLLINEARITY!!!	intelligent	-0.0356	0.043	-0.826	0.409	-0.120	0.049			
	fun	0.2593	0.035	7.502	0.000	0.192	0.327			
	<pre>ambitious</pre>	-0.1574	0.034	-4.604	0.000	-0.224	-0.090			

0.2671

-5.1709

0.026

0.398

10.141

-12.981

0.000

0.000

0.215

-5.952

0.319

-4.390

Dataset (Male only)

```
subM = data_c[(data_c['gender_1']== 1)]
del subM['gender_0']
subM.tail()
```

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	gender_1	intercept
8373	1	25.0	10.0	5.0	3.0	2.0	6.0	5.0	1.0	1.0
8374	0	25.0	6.0	3.0	7.0	3.0	7.0	2.0	1.0	1.0
8375	0	25.0	2.0	1.0	2.0	2.0	2.0	1.0	1.0	1.0
8376	1	25.0	5.0	7.0	5.0	5.0	3.0	6.0	1.0	1.0
8377	1	25.0	8.0	8.0	7.0	7.0	7.0	7.0	1.0	1.0

data_male.corr()

	decision	age	attractive	sincere	intelligent	fun	ambitious	shared interests	intercept
decision	1.000000	-0 035481	0.442750	0.222257	0.236811	0.416736	0.185408	0.413774	NaN
age	-0.035481	1.000000	-0.020365	-0.010423	0.016054	-0.015896	0.021258	0.003138	NaN
attractive	0.442750	-0.020365	1.000000	0.412003	0.388979	0.606590	0.342481	0.517172	NaN
sincere	0.222257	-0.010423	0.412003	1.000000	0.677393	0.506644	0.490845	0.410211	NaN
intelligent	0.236811	0.016054	0.388979	0.677393	1.000000	0.484569	0.649149	0.400695	NaN
fun	0.416736	-0.015896	0.606590	0.506644	0.484569	1.000000	0.476577	0.641272	NaN
ambitious	0.185408	0.021258	0.342481	0.490845	0.649149	0.476577	1.000000	0.408830	NaN
shared interests	0.413774	0.003138	0.517172	0.410211	0.400695	0.641272	0.408830	1.000000	NaN
intercept	NaN	nN NaN		NaN	NaN	NaN	NaN	NaN	NaN

```
# covariates
train cols = data male.columns[1:]
print train cols
Index([u'age', u'attractive', u'sincere', u'intelligent', u'fun', u'ambitious',
     u'shared interests', u'intercept'],
     dtype='object')
# Fit the model
logit_male = sm.Logit(data_male['decision'], data_male[train cols])
result M = logit male.fit()
Optimization terminated successfully.
       Current function value: 0.501609
       Iterations 6
                                                                       Logit Regression Results
print result_M.summary()
                                             Dep. Variable:
                                                                         decision No. Observations:
                                                                                                                    3434
                                                                           Logit Df Residuals:
                                             Model:
                                                                                                                    3426
                                                                             MLE Df Model:
                                             Method:
                                                                 Mon, 08 Aug 2016 Pseudo R-squ.:
                                                                                                                 0.2394
                                             Date:
                                                                        17:15:37 Log-Likelihood:
                                             Time:
                                                                                                                -1722.5
                                             converged:
                                                                            True LL-Null:
                                                                                                                -2264.7
                                                                                   LLR p-value:
                                                                                                              7.367e-230
                                             ______
                                                                           std err
                                                                                                            [95.0% Conf. Int.]
                                                                                                 P>|z|
                                                                   coef
                                                                                      -1.784
                                                                -0.0223
                                                                                                 0.074
                                                                             0.013
                                                                                                              -0.047
                                                                                                                        0.002
                                             age
                                             attractive
                                                                                      13.748
                                                                 0.4045
                                                                                                 0.000
                                                                                                               0.347
                                                                                                                      0.462
                                                                             0.029
                                                                -0.0943 0.035
                                             sincere
                                                                                      -2.686
                                                                                                 0.007
                                                                                                              -0.163
                                                                                                                      -0.025
          MULTICOLLINEARITY!!!
                                                                                                                      0.218
                                             intelligent
                                                                                                               0.042
                                                                 0.1300
                                                                             0.045
                                                                                      2.894
                                                                                                 0.004
                                             fun
                                                                 0.2697
                                                                             0.034
                                                                                       8.026
                                                                                                 0.000
                                                                                                               0.204
                                                                                                                      0.336
                                             ambitious
                                                                                      -4.795
                                                                -0.1654
                                                                            0.034
                                                                                                  0.000
                                                                                                              -0.233
                                                                                                                      -0.098
                                             shared interests
                                                                 0.2794
                                                                             0.027
                                                                                      10.415
                                                                                                  0.000
                                                                                                               0.227
                                                                                                                        0.332
```

-4.9712

intercept

0.425

-11.699

0.000

-5.804

-4.138

NEXT STEP

- **Determinate new** "Categories of features"
- **Create a new** variables with the mean of the variables in that group
- or just keep one of the variables.

