COL-215P ASSIGNMENT-2

BY KURISETI RAVI SRI TEJA-2019CS10369 ALLADI AJAY-2019CS10323

Contents

1	Imp	mplementation and Work Done					
2	Det	ails of Circuit	2				
	2.1	Seven-Segment Display Image	2				
	2.2	Truth-Table	3				
	2.3	Combinational Logic Used	3				
	2.4	Waveform Obtained	4				
	2.5	Images of Display	5				
	2.0	2.5.1 0	5				
		2.5.2 1	6				
		2.5.3 2	6				
		2.5.4 3	7				
			7				
			•				
		$2.5.6$ $5 \dots $	8				
		2.5.7 6	8				
		2.5.8 7	9				
		2.5.9 8	9				
		$2.5.10 9 \dots $	10				
		2.5.11 A	10				
		2.5.12 b	11				
		2.5.13 C	11				
		2.5.14 D	12				
		2.5.15 E	12				
		2.5.16 F	13				
	2.6	Utilization Report	13				

1 Implementation and Work Done

We implemented a seven segment display that displays all the numbers from 0 to 15 in hexadecimal form(0,1,2,3,4,5,6,7,8,9,A,b,C,d,E,F) using the four bit input provided through switches. For this we made a combinational logic using logical **AND,NOT,OR** gates that convert the 4-bit input logic to 7-bit out logic and the seven bit output is passed to the cathode of the seven segment display. When an anode is made 0,the lights corresponding to 0 on cathode glow giving the corresponding displays. We performed the simulation using a test-bench code and after testing it, we performed the synthesis and tested the produced bit code on the Artix FPGA Board.

2 Details of Circuit

We used 4-bit input vector,7-bit out vector and a 4-bit anode vector in which only **one of the four bits** will be **0** and **other three bits** will be **1**(because only one display).

2.1 Seven-Segment Display Image

2.2 Truth-Table

W is the MSB and Z is the LSB.

\mathbf{W}	X	Y	\mathbf{Z}	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	0	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	0	0
1	0	1	0	0	0	0	1	0	0	0
1	0	1	1	1	1	0	0	0	0	0
1	1	0	0	0	1	1	0	0	0	1
1	1	0	1	1	0	0	0	0	1	0
1	1	1	0	0	1	1	0	0	0	0
1	1	1	1	0	1	1	1	0	0	0

2.3 Combinational Logic Used

1.
$$A = (WX'Y' + W'XZ + WZ' + W'Y + XY + X'Z')'$$

2.
$$B=(W'Y'Z'+W'YZ+WY'Z+X'Y'+X'Z')'$$

3.
$$C=(W'Y'+W'Z+Y'Z+W'X+WX')'$$

4.
$$D=(W'X'Z'+X'YZ+XY'Z+XYZ'+WY')'$$

- 5. E=(X'Z'+YZ'+WY+WX)'
- 6. F=(W'XY'+Y'Z'+XZ'+WX'+WY)'
- 7. G = (W'XY' + X'Y + YZ' + WX' + WZ)'

2.4 Waveform Obtained

2.5 Images of Display

2.5.1 0

2.5.2 1

2.5.3 2

2.5.4 3

2.5.5 4

2.5.6 5

2.5.7 6

2.5.8 7

2.5.9 8

2.5.10 9

2.5.11 A

2.5.12 b

2.5.13 C

2.5.14 D

2.5.15 E

2.5.16 F

2.6 Utilization Report

Site Type	Used	Utility %
LUT as Logic	4	0.02%
LUT as Memory	0	0%
Register as Flip Flop	0	0%
DSP	0	0%
BRAM	0	0%