MAT – 450: Advanced Linear Algebra Solution 2

Thomas R. Cameron

Other Problems

Problem 1. Let V be a vector space of dimension n, and let $T: V \to V$ be linear. Suppose that W is a subspace of V with ordered basis $\gamma = \{x_1, \ldots, x_k\}$.

Theorem 1. If W is T-invariant, then the ordered basis

$$\beta = \{x_1, \dots, x_k, x_{k+1}, \dots, x_n\}$$

for V satisfies
$$[T]_{\beta} = \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{bmatrix}$$
, where $B_{11} = [T_W]_{\gamma}$.

Proof. Note that $[T]_{\beta} = [a_{ij}]$ is a $n \times n$ matrix such that

$$T(x_j) = \sum_{i=1}^{n} a_{ij} x_i, \quad j = 1, \dots, n.$$

Since W is T-invariant, it follows that $a_{ij} = 0$ for all i > k and j = 1, ..., k. Thus,

$$[T]_{\beta} = \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{bmatrix},$$

where B_{11} is a $k \times k$ matrix. For $j = 1, \ldots, k$ let

$$T_W(x_j) = \sum_{i=1}^k \hat{a}_{ij} x_i.$$

Then, since $T_W(x) = T(x)$ for all $x \in W$, we have

$$\sum_{i=1}^{k} \hat{a}_{ij} x_i = \sum_{i=1}^{k} a_{ij} x_i.$$

Furthermore, since the the x_i 's are linearly independent, it follows that $\hat{a}_{ij} = a_{ij}$ for i, j = 1, ..., k. Therefore, $[T_W]_{\gamma} = B_{11}$.

Theorem 2. If the ordered basis γ satisfies

$$span(x_1,\ldots,x_j)$$

being T-invariant for j = 1, ..., k, then $[T_W]_{\gamma}$ is a $k \times k$ upper triangular matrix.

Proof. Suppose that γ satisfies $span(x_1, \ldots, x_j)$ being T-invariant for $j = 1, \ldots, k$. Then, it is clear that $W = span(x_1, \ldots, x_k)$ is T-invariant and it follows that T_W is linear. Therefore, $[T_W]_{\gamma} = [a_{ij}]$ is a $k \times k$ matrix, where

$$T(x_j) = \sum_{i=1}^{k} a_{ij} x_i, \quad j = 1, \dots, k.$$

Since $T(x_j) \in span(x_1, ..., x_j)$, it follows that $a_{ij} = 0$ for all i > j. Therefore, $[T_W]_{\gamma}$ is upper-triangular.

Problem 2. Let l^2 denote the sequence space of all real or complex value sequences $x = (x_1, x_2, \ldots)$ such that

$$\left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}} < \infty.$$

Further define $T: l^2 \to l^2$ by $T(x) = (0, x_1, x_2, ...)$ and $U: l^2 \to l^2$ by $U(x) = (x_2, x_3, ...)$.

Theorem 3. T is linear, one-to-one, but not onto.

Proof. Let $x, y \in l^2$ and $\alpha \in \mathbb{F}$, where \mathbb{F} is the real or complex numbers. Then

$$T(x + \alpha y) = (0, x_1 + \alpha y_1, x_2 + \alpha y_2, \dots)$$

= $(0, x_1, x_2, \dots) + \alpha(0, y_1, y_2, \dots)$
= $T(x) + \alpha T(y)$.

It is clear from the above equations that T is linear. Furthermore, if T(x) = T(y), then it is clear that x = y. Thus, T is one-to-one. However, T cannot map to any sequences whose first component is not zero, so T is not onto. \square

Theorem 4. *U* is linear, onto, but not one-to-one.

Proof. Let $x, y \in l^2$ and $\alpha \in \mathbb{F}$, where \mathbb{F} is the real or complex numbers. Then

$$U(x + \alpha y) = (x_2 + \alpha y_2, x_3 + \alpha y_3, \dots)$$

= $(x_2, x_3, \dots) + \alpha(y_2, y_3, \dots)$
= $U(x) + \alpha U(y)$.

It is clear from the above equations that U is linear. Furthermore, for any $y=(y_1,y_2,\ldots)$ define $x=(0,y_1,y_2,\ldots)$. Then, U(x)=y and it follows that U is onto. However, since we could replace the first entry of x with any nonzero element, it follows that U is not one-to-one.

Theorem 5. T is isometric, but U is not.

Proof. To show that T is isometric, note that

$$d(T(x), T(y)) = \left(\sum_{i=1}^{\infty} |T(x)_i - T(y)_i|^2\right)^{\frac{1}{2}}$$

$$= \left(\sum_{i=2}^{\infty} |x_{i-1} - y_{i-1}|^2\right)^{\frac{1}{2}}$$

$$= \left(\sum_{i=1}^{\infty} |x_i - y_i|^2\right)^{\frac{1}{2}}$$

$$= d(x, y).$$

Since T preserves distances it is isometric.

Conversely, let $x=(1,0,\ldots)$ and $y=(2,0,\ldots)$. Then d(x,y)=1 and d(U(x),U(y))=0. Therefore, U is not isometric.

Problem 3. Let $P_n(\mathbb{F})$ denote the set of all polynomials over \mathbb{F} of degree n or less, and let \mathbb{F}^{n+1} denote the set of all (n+1)-tuples made up of elements from \mathbb{F} .

Theorem 6. $P_n(\mathbb{F} \text{ is isomorphic to } \mathbb{F}^{n+1} \text{ for all } n \in \mathbb{N}.$

Proof. Define $\phi: P_n(\mathbb{F}) \to \mathbb{F}^{n+1}$ by

$$\phi(p) = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix},$$

where $p(\lambda) = a_0 + a_1\lambda + \cdots + a_n\lambda^n$. It is easy to show that ϕ is linear and bijective and therefore an isomorphism.

References

[1] S.H. Friedberg, A.H. Insel, and L.E. Spence. *Linear Algebra*. Pearson Education, Upper Saddle River, NJ, 4th edition, 2003.