Crop data analytics using image and non-image features

Team members : Asish Varanasi

Dheeraj Raghavendra

Purnachand Jaddu

Mentors : Dr. Avinash Sharma

Dr. P. Krishna Reddy

Motivation

- Agriculture plays a vital role in economy for developing countries like India.
- Rapid technological advancement but not much focus on agricultural domain.
- Several newly emerging problems in agriculture.
- In 2012, the NCRB of India reported 13,754 farmer suicides.
- Hence, a need for guidance to the farmers.
- Esagu is one such platform.

Key pain points

Recommendation of Diagnostics:

- Accuracy
- Timely advice
- Minimum required input
- Ease of communication
- Cost effectiveness
- Feedback system

Insights mining

Periodic behaviour of diseases with respect to:

- Season
- Crop
- Pesticides/Fertilizers
- Location
- Pests

Visualization

- Heatmaps showing the variation in the intensity of factors w.r.t:
 - **➤**Time
 - **≻**Location
- Plots like Bar charts, Pie diagrams etc.
- A dashboard for interactive visualization of the data.

Data

- Input data primarily contains non-image features.
- Weather details, soil conditions and farm report constitute the major part.
- Pre-processing involving data cleaning, integration and normalization.
- Finally, analyzation after data transformation.

Representation

PGM (Probabilistic Graphical Model)

Farms as vertices and edges indicating the dependency on various factors.

Graph signalling

A plot of the condition of each farm with respect to time/season.

Graph based on neighbourhood

Graph based on temperature

Graph based on rainfall

Graph based on crop species

Models

Graphical method

Taking into account all the dependencies in the graphs, we model the system.

Spectral analysis

Considering timely behaviour of the respective feature.

Topic modeling

Discovering the abstract symptoms using keywords.

Predicting the solution using Multi View Learning techniques.

- Specific MVL solution will depend on the data.
- If the dimension is large, then we have to use Canonical Correlation Analysis.
- If the entire data is labeled, we can use multiview supervised learning.
- If we have both labeled and unlabeled data, then we have to use multiview semi supervised learning.
- Several such procedures like active learning, ensemble learning etc.
- Finally, a feedback to improve the accuracy of the prediction algorithm.

Expected deliverables

- Data visualization.
- Data aggregation/pre-processing.
- Model implementation.
- Developing dashboard for interactive visualization of the data and prescriptive analytics service.
- Recommendation system.

Timeline

- One month from now-union of data and representative model.
- Two months from now-POC of representation.
- By the end of this semester model implementation.
- Next semester recommender system.

References

- http://insait.in/AIPA2012/articles/009.pdf
- http://www.saravananraj.net/wp-content/uploads/2014/12/45_AFITA_ICT-for
 - -Agricultural-extension_India.pdf
- http://insait.in/AIPA2012/articles/005.pdf

Thank you