## From dummy to TeXnician

The bases of TikZ

Anton Lioznov

Skoltech

ISP 2019, lesson 3



#### What we will know?

Introduction: on approaches to TikZ

"General usage"

"Graphs"

"Arrangment"



#### Acknowledgments

We acknowledge

Dmitry Barashev for useful comments, that was included in the presentation

Alexander Kulikov for useful comments, that was included in the presentation



#### Agreements

Footnotes

- Only in the "out-class" version
- For second reading
- Containe advanced usage of the command
- Containe references to read more
  - to the exact chapter
  - (often) with the href to exact page
- Containe some comments





### Addition information - "magic"

- ► To have the full picture
- Not to analyze or to puzzle out in class



#### What we have learned today?

Introduction: on approaches to TikZ

"General usage" Coordinates

"Graphs"

Common graphs
Trees

"Arrangment"



#### What we will know?

Introduction: on approaches to TikZ

"General usage"

"Graphs"

'Arrangment"



#### What is TikZ?

"TikZ ist kein Zeichenprogramm"
which translates to "TikZ is not a drawing program"
TikZ defines a number of TEX commands that produce graphics:
produced by \tikz \fill[orange] (1ex,1ex) circle (1ex);



#### Pros and Cons

### Pros and Cons



#### Cons

- it is most likely that you don't need TikZ
- write visual-based thinks like graphics is really annoying in a not-WYSiWYG way



#### Pros

- + it is most likely that you need some TikZ elements
- + some graphics (graphs for example) are so good structured, that it is OK to program them
- + TikZ has perfect integration with LaTEX (and beamer):
  - You can use all LaTeXcommands inside TikZ, creating beautiful pictures with math
  - You can pose elements using TikZ
  - You can show just part of the picture in beamer Overlays
- + You don't need to have an external file
- + TikZ is using in CV and lots of other templates. It is good to be able to read the code



#### How to setup TikZ picture?

```
\usepackage{tikz}
and then
\begin{tikzpicture} <code> \end{tikzpicture} or, for
short inline graphics, \tikz.
```



#### What we will know?

Introduction: on approaches to TikZ

"General usage"

"Graphs"

"Arrangment"



#### Path

Path is the main TikZ essence.

```
\label{localization} $$ \begin{array}{lll} \begin\{tikzpicture\} \\ \path (0,0) & -- (1,1) & -- (0, 1); \\ \end\{tikzpicture\} \\ \mbox{``(0,0)'', '`(0,1)''} is the simplest coordinate assignment. The (x, y) coordinate in units (typically 1cm) \\ \mbox{The } \path is not draw anything by itself! \\ \end{tikzpicture}
```



#### Draw

```
\usepackage{tikz}
\begin{tikzpicture}
\path[draw] (0,0) -- (1,1) -- (0, 1);
\end{tikzpicture}

\usepackage{tikz}
\begin{tikzpicture}
\draw (0,0) -- (1,1) -- (0, 1);
\end{tikzpicture}

Use \draw or \path[draw] to draw
```





#### Fill



#### **Options**

#### Let us add some color!



#### **Options**

#### Draw another line





#### Other figures

```
\usepackage{tikz}
\begin{tikzpicture}
\draw (0,0) circle [radius=1cm];
\draw (0,0) rectangle (0.5, 0.6);
\end{tikzpicture}
```





#### Nodes

Hello, TEX

\node or \path[node]. Without optional arguments a node has no border



#### Vertical and horizontal

```
\usepackage{tikz}
\begin{tikzpicture}[ultra thick]
\draw (0,0) -- (1,1) -| cycle;
\end{tikzpicture}
```



Use - for "first horizontal, than vertical". Use - for "first vertical, than horizontal"



#### Curves

```
\usepackage{tikz}
 \begin{tikzpicture}
 \draw [<->,thick, cyan] (0,0) to [out
     =90.in=180] (1.1)
 to [out=0,in=180] (2.5,0) to [out
     =-90.in=-451 (3.1):
 \draw (1, 1) circle(0.02cm);
 \draw (2.5, 0) circle(0.02cm);
 \end{tikzpicture}
to [out=.., in=..] the angle on which curve flows out and the angle on which curve flows
in.
 \usepackage{tikz}
 \begin{tikzpicture}
 \forall draw (1,0) ... controls +(30:1cm) and
      +(60:1cm) .. (3,-1):
 \draw[gray, ->] (1,0) -- +(30:1cm);
 \frac{\text{draw}[gray, <-]}{(3,-1)} -- + (60:1cm);
 \end{tikzpicture}
```



.. controls <coord> and <coord> ...

#### What we will know?

"General usage" Coordinates



#### "standart"

x,y

```
x, y:

begin{tikzpicture}

draw[help lines] (0,0) grid (3,2);

fill (1cm,1.5cm) circle (2pt);

fill (2cm,-5mm+2pt) circle (2pt);

end{tikzpicture}

(<x-coord>, <y-coord>)
```





#### "standart"

x,y,z

```
x, y, z:

begin{tikzpicture}[->]
\draw (0,0) -- (1,0);
\draw (0,0) -- (0,1,0);
\draw (0,0) -- (0,0,1);
\end{tikzpicture}

(<x-coord>, <y-coord>, <z-coord>)
```





#### "standart"

 $\theta$ ,r

```
polar:
    \begin{tikzpicture}
    \draw (0cm,0cm) -- (30:1cm) -- (60:1
        cm) -- (90:1cm)
    -- (120:1cm) -- (150:1cm) -- (180:1cm
        );
    \end{tikzpicture}

(<\textsquare - Coord>:<\textsquare r - Coord>)
```





```
"++" and "+=+" cordinates
```

- "++" use relative coordinate and set this new coordinate as "current"
- "+" use relative coordinate and DOESN't set this new coordinate as "current"



#### "Node"-based

```
\path (3,-1) node(b) [circle,draw,
    fill] {A circle}
(2,2) node(c) [rectangle,rotate=20,
    draw,fill] {A rectangle}
(5,2) node(d) [rectangle,rotate=-30,
    draw,fill] {Another rectangle};
\draw[thick] (b) -- (c) -- (d.west);
\draw[thick,red,->] (c) |- (b);
\draw[thick,blue,<->] (b) .. controls
    +(right:2cm) and +(down:1cm) ..
    (d);
\end{tikzpicture}
```



- 1. label node | (<label>)
- 2. refer to the node as (node cs:name=<label>)



#### Coordinate calculation



```
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\draw (1,0) -- (3,2);
\foreach \i in {0,0.2,0.5,0.9,1}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}
```



- 1. \usetikzlibrary{calc}
- 2. syntax: \$<coord1>!fraction!<coord2>\$
- 3. in this slide you can also see \foreach!



#### Coordinate intersection



```
\usepackage{tikz}
\usetikzlibrary{intersections}
\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) ...
    controls (8,-1) and (-8,1) ...
    (2.1):
\draw [name path=curve 2] (-1,-2) ...
    controls (-1,8) and (1,-8) ...
    (1.2):
\fill [name intersections={of=curve 1
     and curve 2, name=i, total=\t}]
[red, opacity=0.5, every node/.style
    ={above left, black, opacity=1}]
\foreach \s in \{1, ..., \t\}\{(i-\s)
    circle (2pt) node {\footnotesize\
    s}}:
\end{tikzpicture}
```



#### What we will know?

Introduction: on approaches to TikZ

"General usage"

"Graphs"

"Arrangment"



#### What we will know?

"Graphs"
Common graphs
Trees



#### Graph example 1



```
\usepackage{tikz}
\usetikzlibrary{positioning}
\begin{tikzpicture}[place/.style={circle,draw=
     blue!50,fill=blue!20,thick,
inner sep=Opt, minimum size=6mm},
transition/.style={rectangle.draw=black!50.fill=
     black!20,thick,
inner sep=Opt.minimum size=4mm}]
\node[place] (waiting) {}:
\node[place] (critical) [below=of waiting] {}:
\node[place] (semaphore) [below=of critical] {};
\node[transition] (leave critical) [right=of
     criticall ():
\node[transition] (enter critical) [left=of
     criticall {}:
\draw [->] (enter critical) to (critical):
\draw [->] (waiting) to [out=180.in=90] (enter
     critical):
\end{tikzpicture}
```



You can write below=of <label> to have a relative coordinate



#### Chain example





#### What we will know?

"Graphs"
Common graphs
Trees



#### Tree



We use \node and child.

sibling distance option provides a horizontal distance between
nodes



#### What we will know?

Introduction: on approaches to TikZ

"General usage"

"Graphs"

"Arrangment"



#### Introduction



TikZ is often used not as "independent picture", but as a part of the presentation or document.

Examples: This arrow was used to show you, where the "magic page" indicator is located

```
\smash{\begin{tikzpicture}
\draw[white] (0,0) -- (0, 0.6);
\draw[->,ultra thick] (0,0.3) --(3,1.8);
\end{tikzpicture}}
```



#### the "in class task"



#### This was produced by

```
\tikz[baseline]\node[anchor=base,draw=red,rounded corners,inner xsep=1ex,inner
ysep =0.75ex, bottom color=red!20, top color=red!10]{In class task};
```





## LATEX is only for use in academic area



# ATEX is contain use in NR inic area



#### "Common belief"



# ETEX is CONGr use in NR mic area

#### was produce by

```
\begin{tikzpicture}
\node[align=center] (0,0) {
\huge \LaTeX\ is only for use\\ \huge in academic area
};
\uncover<2,3>{\node[rotate=30, bottom color=red!50, top color=red!50] (0,0) {\Huge \WRONG}};
\end{tikzpicture}
```

#### references I

color from the footnotes corresponds to references' color.

- =: https://tex.stackexchange.com/questions
- https://en.wikibooks.org/wiki/LaTeX
- ▶ **6**: https://www.overleaf.com/learn/latex
- ► TikZ: TikZ manual (1161 pages :))



#### Distribution

- the pdf-version of the presentation and all printed materials can be distributed under license Creative Commons Attribution-ShareAlike 4.0 https://creativecommons.org/licenses/by-sa/4.0/
- ► The source code of the presentation is available on https://github.com/Lavton/latexLectures and can be distributed under the MIT license https://en.wikipedia.org/wiki/MIT\_License#License\_terms

