Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Дисциплина: Информационные системы и базы данных **Лабораторная работа 2**

Вариант 284261

Выполнил:

Кривоносов Егор Дмитриевич

Группа: Р33111

Преподаватель:

Николаев Владимир Вячеславович

2021 г.

Санкт-Петербург

Задание

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

- опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
- приведите отношения в 3NF (как минимум). Постройте схему на основеNF (как минимум). Постройте схему на основе полученных отношений;
- опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF (как минимум). Постройте схему на основеNF;
- преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF;
- какие денормализации будут полезны для вашей схемы? Приведите подробное описание;

Схема

Минимальное множество функциональных зависимостей

- Стая
 - ид → название
- Питекантроп
 - о ид → прозвище
 - \circ ид \rightarrow пол
 - \circ ид \to стая_ид

- Действие
 - \circ ид \rightarrow название
 - \circ ид \rightarrow описание_ид
 - \circ ид \rightarrow локация ид
 - \circ ид \rightarrow начало
 - \circ ид \rightarrow конец
- Действие_описание
 - \circ ид \rightarrow описание
- Локация
 - \circ ид \rightarrow название
- Коммуникация_стаи
 - действие_ид → инициатор_ид
 - о действие_ид → адресат_ид

1 нормальная форма

Условие:

• Отношение, на пересечении каждой строки и столбца - одно значение.

У полученной модели все значения атрибутов всех сущностей имеют не больше одного значения (на пересечении строк и столбцов), а значит, модель находится в первой нормальной форме.

2 нормальная форма

Условие:

- Отношение в 1НФ
- Атрибуты, не входящие в первичный ключ, в полной функциональной зависимости от первичного ключа отношения.

Полная функциональная зависимость: поле A2 находится в полной функциональной зависимости от составного поля A1, если A1 → A2 (A2 функционально зависит от A1), но не зависит от подмножеств поля A1. (все неключевые атрибуты должны зависеть от первичного ключа; если первичный ключ составной, то мы не можем исключить один из атрибутов, иначе мы теряем функциональную зависимость)

Доказательство

Детерминантом всех функциональных зависимостей является один атрибут (первичный ключ является простым). Значит модель автоматически находится в 2нф.

3 нормальная форма

Условие:

- 1ΗΦ
- 2HΦ
- Не имеет атрибутов, которые не входят в первичный ключ и не находятся в транзитивной функциональной зависимости от первичного ключа.

Полученная модель находится в первой и во второй нормальной форме, а также не содержит транзитивных функциональных зависимостей от первичного ключа, а значит, находится в третьей нормальной форме.

Транзитивность: A1 \rightarrow A2 и A2 \rightarrow A3 , то A1 \rightarrow A3 (A3 транзитивно зависит от A1).

Доказательство

В множестве зависимостей нет транзитивных функциональных зависимостей, а следовательно модель находится в ЗНФ. (То есть ни одно неключевое поле не зависит функционально от любого другого неключевого поля)

Нормальная форма Бойса-Кодда

Условие:

- 1НФ, 2НФ, 3НФ
- Каждый детерминант отношения потенциальный ключ

Полученная модель находится в первой, во второй и третьей нормальной форме, кроме того, детерминантами всех функциональных зависимостей являются потенциальные ключи. Все детерминанты отношений являются первичными ключами, а следовательно условие выполняется.

Доказательство

Так как в множестве отношений нет составных первичных ключей (являются простым) и таблицы находятся в ЗНФ, то автоматически они находятся и в НФБК.

Денормализация

В данной схеме нет необходимости в денормализации так, как сущности связаны простыми отношениями. Денормализация только усложнит поддержку целостности и увеличит избыточность, не дав при этом желаемого прироста в производительности.

Вывод

С помощью нормализации мы проверили нашу модель и убедились, что данные хранятся эффективно. Благодаря этому мы можем быть уверены, что данные не избыточны и целостны.