La liaison covalente

C1 - Chapitre 3

I. La liaison covalente dans la théorie de Lewis

1. Définition

Une liaison covalente entre deux atomes A et B résulte de la mise en commun par les deux atomes d'un doublet d'électrons.

2. Règle de Lewis

Lors de la formation de liaison covalentes dans une molécule, chaque atome tend à acquérir la structure du gaz noble le plus proche c'est-à-dire s'entourer de quatre doublets, exception faite de l'hydrogène qui ne s'entourera que d'un seul doublet.

3. Charge formelle

Dans une structure de Lewis, la charge formelle d'un atome (q_F) correspond à la $-\overline{Q}^{\oplus}$ différence entre le nombre d'électrons de valence (N_v) de l'atome et le nombre d'électrons distribués (N_{attr}) à l'atome dans la structure.

$$q_F = N_v - N_{attr}$$

4. Formules limites

Dans certain cas, une molécule peut correspondre à plusieurs structures différentes. On écrit alors une formule limites :

$$\{\mathsf{struct}_1 \leftrightarrow \mathsf{struct}_2 \leftrightarrow \cdots\}$$

5. Infractions à la règle de l'octet

Nom	Lewis	Conditions & précisions
Acides de Lewis	<u> В</u> —	Pas assez d'électrons de valence.
Hypervalence	- - P\	Si n ≥ 3, un atome peut former plus de 4 liaisons s'il est lié à des atomes plus électronégatifs que lui. Si n = 3 ou 4, il peut former 6 liaisons, si n ≥ 5, il peut en former 7.
Radicaux	IŇ=	Si le nombre d'électrons de valence est impair.

Les meilleures structures sont celles qui respectent la règle de l'octet, à condition ne pas faire apparaître trop de charges formelles. Un atome de la 2ème période ne peut s'entourer de plus de 4 doublets.

II. Caractéristique de la liaison de valence

1. Définitions

- Longueur de liaison d(A-B): distance entre les 2 atomes A et B dans la position d'énergie la plus stable.
- Energie de liaison D(A-B): énergie qu'il faut fournir à 1 mole de liaisons A-B dans l'état le plus stable pour séparer les deux atomes A et B.

Liaison	C-C		C=C		C≡C
Ordre	1	2			3
Distance	d(C-C)	>	d(C=C)	>	d(C≡C)
Energie	D(C-C)	<	D(C=C)	<	D(C≡C)

La liaison covalente

C1 – Chapitre 3

2. Moment dipolaire

Si $\chi(A) < \chi(B)$, le doublet est plus attiré par l'atome le plus électronégatif. La liaison est polarisée. Il y a un moment dipolaire $\overline{\mu(A-B)}$ de B vers A.

$$\begin{array}{c} \chi(\mathsf{A}) < \chi(\mathsf{B}) \\ +\delta & -\delta \\ \hline \mathsf{A} \stackrel{\cdot}{\to} \mathsf{B} \\ \vec{\mu}(\mathsf{A}\text{-B}) \end{array} \qquad \begin{array}{c} q = q_A = -q_B > 0 \\ \hline \delta e = q \\ \hline \mu(\mathsf{A} - \mathsf{B}) = q \cdot d(\mathsf{A} - \mathsf{B}) \\ \% \text{ ionicit\'e} = 100 \ \delta \\ \end{array}$$

Une liaison (polaire ou pas) est polarisable.

III. La liaison covalente dans la théorie des orbitales moléculaires

1. Orbitales moléculaires liantes et antiliantes

 σ^l : OM liante \rightarrow stabilise l'édifice $\Delta E^l < 0$ σ^* : OM antiliante \rightarrow déstabilise l'édifice $\Delta E^* > 0$ $|\Delta E^*| > |\Delta E^l|$

2. Configuration électronique

On réparti les électrons sur les O.M. en respectant les règles suivantes (comme pour les O.A.) :

- Les électrons utilisent les O.M. par ordre d'énergie croissante
- 2 électrons au plus par O.M. avec des spins antiparallèles (Pauli)

Pas ≄ mais ↔

v2

• En cas d'égalité d'énergie entre 2 O.M. les électrons utilisent le maximum d'O.M. Pas ↓ ← mais ← ↑

3. Indice de liaison (ordre de liaison)

$$i.l. = \frac{1}{2} (N^l - N^*)$$

$$i.l. \nearrow d \searrow D \nearrow$$

4. Recouvrements

Sous-couche s	→ Recouvrement axial	5	→liant → non-liant	⊕	$ \Delta E(\sigma^*) > \Delta E(\sigma^l) $
Sous-couche p	→ Recouvrement axial (Axe z)		→liant → antiliant	∞ ∞	$\left \Delta E(\pi^*) \right > \left \Delta E(\pi^l) \right $
	→ Recouvrement latéral (Axe x ou y)	20	→liant → antiliant	88 88	$\begin{aligned} \Delta E(\pi^*) &< \Delta E(\sigma^*) \\ \Delta E(\pi^l) &< \Delta E(\sigma^l) \end{aligned}$

IV. Diagramme énergétique des O.M. de O2, F2, B2, C2, N2

V. Molécule diatomiques hétéronucléaires

$$\chi(X) < \chi(Y) \Rightarrow E_{O.A.}(X) > E_{O.A.}(Y)$$