

N85-32419

MEASURING BULK RECOMBINATION RATES AND BOUNDARY RECOMBINATION VELOCITIES

UNIVERSITY OF PENNSYLVANIA

M. Wolf

Measurement of L (or τ) and s

- I. ALL METHODS MEASURE SOME OTHER QUANTITY, DEDUCE L (OR τ) AND S.
- II. IN MOST, THE MEASURED QUANTITY IS ALSO INFLUENCED BY OTHER PARAMETERS. THESE ARE SEPARATELY MEASURED, ASSUMED, OR NEGLECTED.
- III. ALL METHODS HAVE RANGES OF L, S, OR THE OTHER PARAMETERS, WHERE THE DEPENDENCE OF THE MEASURED QUANTITY ON L AND/OR S IS WEAK.
- IV. THERE ARE STEADY-STATE AND TIME-DEPENDENT MEASUREMENTS. SOME OF THE LATTER STILL DEPEND ON A TRANSPORT PROPERTY (L), NOT A TIME CONSTANT (τ).
- V. SOME METHODS FIND A CONDITION WHERE THE MATHEMATICAL RELATIONSHIPS BECOME SIMPLE, F.G. REAL AND IMAGINARY PARTS OF A NUMBER BECOME EQUAL.

PRECEDING PAGE BLANK NOT FILMED

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

MEASURED QUANTITY:

$M = M(L_{WANTED})$	u_{WANTED}	$A_1 \dots A_j$ VARIABLE DEVICE PARAMETERS	$B_1 \dots B_j$ VARIABLE EXTERNAL PARAMETERS	$C_1 \dots C_k$ CONSTANT DEVICE PARAMETERS	$D_1 \dots D_k$ CONSTANT EXTERNAL PARAMETERS
MAY BE COMPLEX NUMBER					
EXAMPLE: L_{FI}	$u_{FI} \pm 1$	THICKNESSES s_{Bj}, s_{Fj} L_{Bj}, L_{Fj}, u_{Fj} u_{Bj}	T S-INFLUEN- CING ENV'T EXCITATION: LIGHT: λ, f VOLTAGE: V_1, f TERMINAL IMPEDANCE: S.C., O.C., ETC.	ANY OF A_i NOT VARIED; R IN DEPL'N REGION	ANY OF B_j NOT VARIED

Basic Requirement for Determination of Both L and u

AT LEAST 2 INDEPENDENT MEASURED DATA (M_1, M_2) NEEDED,
WHICH ARE SENSITIVE TO u AND L IN THEIR RANGE OF INTEREST.
(ONE MEASUREMENT MAY BE SENSITIVE TO ONLY L OR u , IF THE OTHER
IS SENSITIVE TO BOTH.)

2 INDEPENDENT DATA ARE AVAILABLE FROM:

- COMPLEX NUMBERS (ONE OPTION)
- VARIATION OF A SUITABLE PARAMETER (EACH PARAMETER = ONE OPTION)

FINDING A SENSITIVE DATA PAIR SEEMS THE MORE LIKELY, THE MORE OPTIONS
FOR OBTAINING 2 DATA POINTS EXIST.

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

Type of Parameters Varied

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

Classification of Methods

TYPE	EXCITATION	M	VARIED EXTERNAL PARAMETERS	NUMBER OF OPTIONS
ASLBIC	LIMITABLE	REAL	λ	1
MODULATED LIGHT METHOD	LIMITABLE	COMPLEX	ω, λ	3
IMPEDANCE	DEVICE DEPENDENT	COMPLEX	ω	2
I_{sc}, V_{oc} PAIR	DEVICE DEPENDENT	COMPLEX	CIRCUIT IMPEDENCE	1
SCCD	DEVICE DEPENDENT	REAL	CIRCUIT IMPEDENCE	1

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

**Goal: Reduce the Number of Variable or Constant Parameters
(Requirements Listed in Order of Importance):**

1. ELIMINATE INFLUENCE OF UNMEASURABLE PARAMETERS.
2. FIND SENSITIVE RELATIONSHIP BETWEEN L_{WANTED} , U_{WANTED} , AND M.
3. METHOD SHOULD BE APPLICABLE TO FINISHED, OR IN-PROCESS PRODUCT.
4. FIND EASILY MEASURABLE QUANTITY M, AND EASILY, REPEATABLY VARIABLE PARAMETERS.
5. REDUCE NUMBER OF INFLUENCING PARAMETERS.
6. FIND SIMPLE RELATIONSHIP.

The Basic Carrier Diffusion Expression

AN EXAMPLE FOR M: (ASLBIC):

$$M = \frac{B}{B+Y} e^{-B} \left\{ 1 + \frac{1}{B-Y} \frac{(1+A)Ye^{-Y}}{0.03987Y} + \frac{(B+A')e^B}{A \sinh A} \right\}$$

(SIMPLEST FORM FOR SINGLE-LAYER FRONT REGION)

WITH THE BASIC VARIABLES:

$$Y = \frac{X_{LE}}{L}; \quad A = \frac{SL}{D}; \quad B = \alpha(\lambda, X, J, F)$$

VERY SIMILAR RELATIONSHIPS FOR OTHER METHODS.

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

HIGH-EFFICIENCY SILICON SOLAR CELL RESEARCH

Measurement Comparison Criterion

SENSITIVITY ANALYSIS DETERMINES THE ERRORS IN CONSEQUENCE OF INACCURACIES IN THE MEASURED DATA AND THE PARAMETERS.

EXAMPLE ASLBC:

$$M_1 = M(L, S, \lambda_1, A_2, \dots) \quad (1)$$

$$M_2 = M(L, S, \lambda_2, A_2, \dots) \quad (2)$$

IDEALLY, THESE EQUATIONS WOULD BE ANALYTICALLY INVERTABLE TO:

$$S = S(M_1, M_2, \lambda_1, \lambda_2, A_2, \dots, B_1, \dots) \quad (3)$$

$$L = L(M_1, M_2, \lambda_1, \lambda_2, A_2, \dots, B_1, \dots) \quad (4)$$

AND THEN PERMIT A SENSITIVITY ANALYSIS SUCH AS:

$$\Delta S = \left. \frac{\partial S}{\partial M_1} \right|_{M_2} \cdot \Delta M_1 + \left. \frac{\partial S}{\partial M_2} \right|_{M_1} \cdot \Delta M_2 \quad (5)$$

$$\Delta L = \left. \frac{\partial L}{\partial M_1} \right|_{M_2} \cdot \Delta M_1 + \left. \frac{\partial L}{\partial M_2} \right|_{M_1} \cdot \Delta M_2 \quad (6)$$

AS EQ. (1), (2) ARE TRANSCENDENTAL (3), (4) ARE NOT ANALYTICALLY EXPRESSABLE.

HOWEVER:

$$S = S(L, M, \lambda, A_2, \dots, B_1, \dots)$$

IS AVAILABLE, AND CONSEQUENTLY (6). FOR (5), NOTE

$$\left. \frac{\partial S}{\partial M_1} \right|_{M_1} \neq \left. \frac{1}{\frac{\partial S}{\partial M}} \right|_L$$

WHERE ANALYTICAL TREATMENT NOT POSSIBLE, LINEAR APPROXIMATIONS:

$$M_1 = M_0(S_F, L_F, A_1, \dots) + \left. \frac{\partial M}{\partial A_1} \right|_{S_F, L_F, \dots} \cdot \Delta A_1, 1$$

$$M_2 = M_0(S_F, L_F, A_1, \dots) + \left. \frac{\partial M}{\partial A_1} \right|_{S_F, L_F, \dots} \cdot \Delta A_1, 2$$

$$M_3 = M_1 + \left. \frac{\partial M}{\partial S_F} \right|_{L_F, A_1 + \Delta A_1, 1, \dots}$$

MAY YIELD SOME INFORMATION ON SENSITIVE RANGES.