Adventures in arithmetic

Paul Pollack

University of Illinois at Urbana-Champaign

April 11, 2011

PART I: AN ALGEBRAIC AFFAIR

Recall: A pair of prime numbers $\{p, p+2\}$ is called a *twin prime pair*.

Recall: A pair of prime numbers $\{p, p+2\}$ is called a *twin prime pair*.

Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, . . .

Recall: A pair of prime numbers $\{p, p+2\}$ is called a *twin prime pair*.

Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, . . .

Twin prime pairs: $\{3, 5\}$, $\{5, 7\}$, $\{11, 13\}$, $\{17, 19\}$, $\{29, 31\}$, $\{41, 43\}$, $\{59, 61\}$, $\{71, 73\}$, ...

Recall: A pair of prime numbers $\{p, p+2\}$ is called a *twin prime pair*.

Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, . . .

Twin prime pairs: {3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}, {59, 61}, {71, 73}, ...

Conjecture

There are infinitely many twin prime pairs. In other words, letting

$$\pi_2(x) := \#\{p \le x : p, p+2 \text{ both prime}\},\$$

we have $\pi_2(x) \to \infty$ as $x \to \infty$.

Polynomials

Let \mathbb{F}_q be a finite field. Call a pair of polynomials $f, f+1 \in \mathbb{F}_q[T]$ a twin prime pair if both f and f+1 are irreducible.

Example

For any \mathbb{F}_q , the polynomials T and T+1 are a twin prime pair. Over \mathbb{F}_{11} , take (say) $f:=T^5+T^4+T^3+3$.

Conjecture

If \mathbb{F}_q is a finite field and q > 2, then there are infinitely many twin prime pairs.

Polynomials

Let \mathbb{F}_q be a finite field. Call a pair of polynomials $f, f+1 \in \mathbb{F}_q[T]$ a twin prime pair if both f and f+1 are irreducible.

Example

For any \mathbb{F}_q , the polynomials T and T+1 are a twin prime pair. Over \mathbb{F}_{11} , take (say) $f:=T^5+T^4+T^3+3$.

Conjecture

If \mathbb{F}_q is a finite field and q > 2, then there are infinitely many twin prime pairs.

Theorem (C. Hall)

The conjecture holds for all q > 3.

Theorem (P.)

The conjecture holds.

Polynomials, ctd.

Theorem (Capelli)

Let F be a field. Consider the binomial $f(T) := T^n - \alpha$, where $\alpha \in F$. Then f is irreducible over F unless one of the following two cases occurs:

- α is an ℓ th power for some prime ℓ dividing n,
- 4 | n and $\alpha = -4\beta^4$ for some $\beta \in F$.

Remark

If either of these two cases occurs, then f is reducible. Notice that we have the identity

$$X^4 + 4Y^4 = (X^2 + 2Y^2)^2 - (2XY)^2$$
.

Theorem

The conjecture is true for $F = \mathbb{F}_7$.

Theorem

The conjecture is true for $F = \mathbb{F}_7$.

Proof.

Let $k \geq 0$, and consider the binomial $T^{3^k} - 2 \in \mathbb{F}_7[T]$. The only third powers in \mathbb{F}_7 are 0, 1, -1 (by explicit computation), and so 2 and 3 are not cubes. Also, $4 \nmid 3^k$. So

 $T^{3^k} - 2$ is irreducible.

Similarly,

 $T^{3^k} - 3$ is irreducible.

So for every k, we have a pair of irreducibles of degree 3^k that differ by 1.

Conjecture (Goldbach–Euler, Landau)

There are infinitely many primes that are one more than a perfect square; in other words, the polynomial $n^2 + 1$ represents infinitely many primes as n runs over the natural numbers.

Conjecture (Goldbach-Euler, Landau)

There are infinitely many primes that are one more than a perfect square; in other words, the polynomial $n^2 + 1$ represents infinitely many primes as n runs over the natural numbers.

Question: Are there infinitely many irreducible polynomials of the form $f^2 + 1$, where f is in $\mathbb{F}_q[T]$?

Conjecture (Goldbach–Euler, Landau)

There are infinitely many primes that are one more than a perfect square; in other words, the polynomial n^2+1 represents infinitely many primes as n runs over the natural numbers.

Question: Are there infinitely many irreducible polynomials of the form $f^2 + 1$, where f is in $\mathbb{F}_q[T]$?

Theorem (P.)

Suppose -1 is not a square in \mathbb{F}_q . Then there are infinitely many polynomials f for which $f^2 + 1$ is irreducible over \mathbb{F}_q .

Fix a square root i of -1 from the extension \mathbb{F}_{q^2} . We have

$$h(T)^2 + 1$$
 irreducible over $\mathbb{F}_q \iff h(T) - i$ irreducible over \mathbb{F}_{q^2} .

Try for h(T) a binomial – say $h(T) = T^{\ell^k} - \beta$, with ℓ a fixed prime. By Capelli, it suffices to find $\beta \in \mathbb{F}_q$ so that $\beta + i$ is a non- ℓ th power in \mathbb{F}_{q^2} .

Fix a square root i of -1 from the extension \mathbb{F}_{q^2} . We have

$$h(T)^2 + 1$$
 irreducible over $\mathbb{F}_q \iff h(T) - i$ irreducible over \mathbb{F}_{q^2} .

Try for h(T) a binomial – say $h(T) = T^{\ell^k} - \beta$, with ℓ a fixed prime. By Capelli, it suffices to find $\beta \in \mathbb{F}_q$ so that $\beta + i$ is a non- ℓ th power in \mathbb{F}_{q^2} .

New (old) ideas:

- Detect non-ℓth powers using characters!
- Use sharp bounds on character sums coming from Weil's Riemann Hypothesis for curves.

Choose any prime ℓ dividing q^2-1 , and let χ be an ℓ th power-residue character on \mathbb{F}_{q^2} . If there is no such β , then

$$\sum_{\beta\in\mathbb{F}_q}\chi(\beta+i)=q.$$

But Weil's Riemann Hypothesis gives a bound for this incomplete character sum of \sqrt{q} , a contradiction.

A more general conjecture

What about simultaneous prime values of higher degree polynomials (cf. Schinzel's Hypothesis H)?

Conjecture

Suppose f_1, \ldots, f_r are irreducible polynomials in $\mathbb{F}_q[T]$ and that there is no irreducible P in $\mathbb{F}_q[T]$ for which

$$P(T)$$
 always divides $f_1(h(T)) \cdots f_r(h(T))$.

Then $f_1(h(T)), \ldots, f_r(h(T))$ are simultaneously irreducible for infinitely many polynomials $h(T) \in \mathbb{F}_q[T]$.

A more general conjecture

What about simultaneous prime values of higher degree polynomials (cf. Schinzel's Hypothesis H)?

Conjecture

Suppose f_1, \ldots, f_r are irreducible polynomials in $\mathbb{F}_q[T]$ and that there is no irreducible P in $\mathbb{F}_q[T]$ for which

$$P(T)$$
 always divides $f_1(h(T)) \cdots f_r(h(T))$.

Then $f_1(h(T)), \ldots, f_r(h(T))$ are simultaneously irreducible for infinitely many polynomials $h(T) \in \mathbb{F}_q[T]$.

Our methods (Capelli + Weil) establish this when q is large vs.

$$D:=\sum_{i=1}^r \deg f_i.$$

Let's get quantitative

Our proof of the twin prime conjecture for \mathbb{F}_q gives very weak *quantitative results* on the number of twin primes.

Let's get quantitative

Our proof of the twin prime conjecture for \mathbb{F}_q gives very weak *quantitative results* on the number of twin primes.

What do we expect?

Let $\pi(x) := \#\{p \text{ prime } \leq x\}.$

Theorem (Prime number theorem)

As $x \to \infty$.

$$\pi(x) \sim \sum_{1 \le n \le x} \frac{1}{\log n}.$$

In other words, the counting function behaves as one would expect if a natural number > 1 is prime with "probability" $\frac{1}{\log n}$.

We might guess that

$$\pi_2(x) \approx \sum_{1 < n \le x} \frac{1}{(\log n)^2}.$$

This is a little naive, but probably close to right:

We might guess that

$$\pi_2(x) \approx \sum_{1 < n \le x} \frac{1}{(\log n)^2}.$$

This is a little naive, but probably close to right:

Conjecture (Twin prime conjecture, quantitative form)

$$\pi_2(x) \sim C \sum_{1 < n \le x} \frac{1}{(\log n)^2},$$

where

$$C = 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right).$$

Polynomials, revisited

Theorem (Gauss)

Over \mathbb{F}_q , the number $\pi(q;n)$ of monic irreducible polynomials of degree n is approximately q^n/n . In fact, $\pi(q;n) \sim q^n/n$, whenever $q^n \to \infty$.

There are q^n monic polynomials in total, so a degree n polynomial is irreducible with probability about 1/n.

Polynomials, revisited

Theorem (Gauss)

Over \mathbb{F}_q , the number $\pi(q;n)$ of monic irreducible polynomials of degree n is approximately q^n/n . In fact, $\pi(q;n) \sim q^n/n$, whenever $q^n \to \infty$.

There are q^n monic polynomials in total, so a degree n polynomial is irreducible with probability about 1/n.

Conjecture

Let $\pi_2(q; n)$ be the number of monic polynomials f of degree n over \mathbb{F}_q for which f and f+1 are both prime. Whenever $q^n \to \infty$,

$$\pi_2(q;n) \sim C(q)q^n/n^2$$

where C(q) is a normalizing factor.

Conjecture

Let $\pi_2(q; n)$ be the number of monic polynomials f of degree n over \mathbb{F}_q for which f and f+1 are both prime. Whenever $q^n \to \infty$,

$$\pi_2(q;n) \sim C(q)q^n/n^2$$
,

where C(q) is a normalizing factor.

We can prove the correct asymptotic for $\pi_2(q;n)$ whenever q is significantly larger than n and $\gcd(q,2n)=1$. In this case, $C(q)\sim 1$.

Bary-Soroker (2010) has relaxed the restriction gcd(q, 2n) = 1.

PART II: A COMBINATORIAL CONQUEST

A conjecture of Parkin and Shanks

Let p(n) be the number of partitions of n, where a partition of n is a way of writing n as a sum of natural numbers, where the order of the summands does not matter. For example, p(5) = 7, corresponding to

$$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 1+1+1+1+1.$$

A conjecture of Parkin and Shanks

Let p(n) be the number of partitions of n, where a partition of n is a way of writing n as a sum of natural numbers, where the order of the summands does not matter. For example, p(5) = 7, corresponding to

$$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 1+1+1+1+1.$$

We know quite a bit about the **asymptotic properties** of p(n). For example, Hardy and Ramanujan proved that

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{2n/3}} \quad (n \to \infty).$$

A conjecture of Parkin and Shanks

Let p(n) be the number of partitions of n, where a partition of n is a way of writing n as a sum of natural numbers, where the order of the summands does not matter. For example, p(5) = 7, corresponding to

$$5, \quad 4+1, \quad 3+2, \quad 3+1+1, \quad 2+1+1+1, \quad 2+2+1, \quad 1+1+1+1+1.$$

We know quite a bit about the **asymptotic properties** of p(n). For example, Hardy and Ramanujan proved that

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{2n/3}} \quad (n \to \infty).$$

Arithmetic properties of p(n) remain more mysterious, although we know much more than we used to.

Conjecture (Parkin-Shanks)

As $x \to \infty$, the values p(n) become uniformly distributed modulo 2. In other words,

$$\#\{n \le x : p(n) \text{ even}\} \sim \frac{1}{2}x \quad (x \to \infty).$$

Conjecture (Parkin–Shanks)

As $x \to \infty$, the values p(n) become uniformly distributed modulo 2. In other words,

$$\#\{n \leq x : p(n) \text{ even}\} \sim \frac{1}{2}x \quad (x \to \infty).$$

This conjecture has been attacked by several authors (Kolberg, Subbarao, Nicolas–Rusza–Sarkőzy, Ahlgren, Ono).

Theorem

For large x, we have

$$\#\{n \le x : p(n) \text{ even}\} \gg x^{1/2} (\log \log x)^{1/2}$$

and for every fixed K,

$$\#\{n \le x : p(n) \text{ odd}\} \gg x^{1/2} (\log \log x)^K / \log x.$$

Multiplicative partitions

Let f(n) be the number of factorizations of n, where a factorization of n is a way of writing n as a product of integers all larger than 1. We consider two factorizations the same if they differ only in the order of the factors. For example, f(12) = 4, corresponding to

 $2 \cdot 2 \cdot 3$, $2 \cdot 6$, $3 \cdot 4$, 12.

Multiplicative partitions

Let f(n) be the number of factorizations of n, where a factorization of n is a way of writing n as a product of integers all larger than 1. We consider two factorizations the same if they differ only in the order of the factors. For example, f(12) = 4, corresponding to

$$2 \cdot 2 \cdot 3$$
, $2 \cdot 6$, $3 \cdot 4$, 12.

Again we have good asymptotic results.

Theorem (Oppenheim, Szekeres-Turán)

As
$$x \to \infty$$
,

$$\frac{1}{x}\sum_{n\leq x}f(n)\sim\frac{e^{2\sqrt{\log x}}}{2\sqrt{\pi}(\log x)^{3/4}}.$$

Theorem (Canfield–Erdős–Pomerance)

Let

$$L(x) := x^{\log \log \log x / \log \log x}.$$

For each fixed $\epsilon > 0$, there are infinitely many n with

$$f(n) > n/L(n)^{1+\epsilon}$$
.

However, there are only finitely many n with

$$f(n) > n/L(n)$$
.

Conjecture

As $x \to \infty$, $\#\{n \le x : f(n) \text{ even}\} \sim \frac{1}{2}x$.

Conjecture

As $x \to \infty$, $\#\{n \le x : f(n) \text{ even}\} \sim \frac{1}{2}x$.

Up to 10^4 : 5401 odd values

Up to 10^5 : 55407 odd values,

Up to 10^6 : 563483 odd values.

Conjecture

As $x \to \infty$, $\#\{n \le x : f(n) \text{ even}\} \sim \frac{1}{2}x$.

Up to 10^4 : 5401 odd values

Up to 10^5 : 55407 odd values,

Up to 10^6 : 563483 odd values.

Theorem (Zaharescu-Zaki)

For each $\epsilon > 0$ and all large x, we have

$$\#\{n \le x : f(n) \text{ even}\} > \left(\frac{1}{2\pi^2} - \epsilon\right)x$$

and

$$\#\{n \leq x : f(n) \text{ odd}\} > \left(\frac{2}{\pi^2} - \epsilon\right)x.$$

Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which

$$f(n) \equiv a \pmod{m}$$

possesses an asymptotic density; that is,

$$\frac{1}{x}\#\{n\leq x: f(n)\equiv a\pmod{m}\}$$

tends to a limit as $x \to \infty$. Moreover, there is an algorithm for computing the density to arbitrary precision.

Theorem (P.)

Fix an arithmetic progression a mod m. Then the set of n for which

$$f(n) \equiv a \pmod{m}$$

possesses an asymptotic density; that is,

$$\frac{1}{x}\#\{n \le x : f(n) \equiv a \pmod{m}\}\$$

tends to a limit as $x \to \infty$. Moreover, there is an algorithm for computing the density to arbitrary precision.

Theorem (P.)

In the case when m = 2 and a = 1, this density is between 0.55 and 0.60. So the values f(n) are **not** uniformly distributed modulo 2.

Revisiting the theorem of Zaharescu and Zaki

Define the kth Bell number B_k as the number of set partitions of a k-element set. Alternatively, the B_k are described by the exponential generating function

$$e^{e^{x}-1}=\sum_{n=0}^{\infty}B_{n}\frac{x^{n}}{n!}.$$

Theorem (Touchard, Radoux, Lunnon-Pleasants-Stephens)

The Bell numbers B_k are purely periodic to every modulus. The length of the period modulo p always divides $\frac{p^p-1}{p-1}$.

Now suppose that n is squarefree. The set of such n has a density, which is given by the product

$$\prod_{p} \left(1 - \frac{1}{p^2}\right) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}.$$

For squarefree n with $k = \omega(n)$ prime factors,

$$f(n) = B_k$$
 (kth Bell number).

Now suppose that n is squarefree. The set of such n has a density, which is given by the product

$$\prod_{p} \left(1 - \frac{1}{p^2}\right) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}.$$

For squarefree n with $k = \omega(n)$ prime factors,

$$f(n) = B_k$$
 (kth Bell number).

The Bell numbers start off

$$B_0 = 1, \quad B_1 = 1, \quad B_2 = 2, \quad \dots$$

and are purely periodic modulo 2 with period $\frac{2^2-1}{2-1}=3$. Hence, we see that the parity of f is a function of k mod 3:

$$f(n) \equiv \begin{cases} 1 \pmod{2} & \text{if } k \equiv 0, 1 \pmod{3}, \\ 0 \pmod{2} & \text{if } k \equiv 2 \pmod{3}. \end{cases}$$

Lemma

The values $\omega(n)$ are uniformly distributed to every modulus M, as n ranges over the squarefree numbers. (In particular, for M=3.)

Proof.

It's enough to show that for each Mth root of unity $\zeta \neq 1$, the sum $\sum_{\substack{n \text{ squarefree} \\ \text{follows from known results on mean values of multiplicative}} \zeta^{\omega(n)}$ possesses cancelation (is o(x), as $x \to \infty$). This follows from known results on mean values of multiplicative functions.

Corollary

The density of squarefree numbers with f(n) odd is $\frac{2}{3}\frac{6}{\pi^2}=\frac{4}{\pi^2}$ and the density of squarefree numbers with f(n) even is $\frac{1}{3}\frac{6}{\pi^2}=\frac{2}{\pi^2}$.

The existence of the density

We want that $S := \{n : f(n) \equiv a \pmod{m}\}$ has a density. Say that a number N is squarefull if p^2 divides N whenever p divides N.

For each n, write n = AB, with A squarefull, B squarefree, and gcd(A, B) = 1. Here A is called the *squarefull part* of n. For each squarefull number A, put

$$S_A := \{n : f(n) \equiv a \pmod{m}, n \text{ has squarefull part } A\}.$$

Then $S = \bigcup_A S_A$.

The existence of the density

We want that $S := \{n : f(n) \equiv a \pmod{m}\}$ has a density. Say that a number N is squarefull if p^2 divides N whenever p divides N.

For each n, write n=AB, with A squarefull, B squarefree, and gcd(A,B)=1. Here A is called the *squarefull part* of n. For each squarefull number A, put

$$S_A := \{n : f(n) \equiv a \pmod{m}, n \text{ has squarefull part } A\}.$$

Then $S = \bigcup_A S_A$.

Suffices to show each $d(S_A)$ exists, and that $d(S) = \sum_A d(S_A)$.

The existence of the density

We want that $S := \{n : f(n) \equiv a \pmod{m}\}$ has a density. Say that a number N is squarefull if p^2 divides N whenever p divides N.

For each n, write n=AB, with A squarefull, B squarefree, and gcd(A,B)=1. Here A is called the *squarefull part* of n. For each squarefull number A, put

$$S_A := \{n : f(n) \equiv a \pmod{m}, n \text{ has squarefull part } A\}.$$

Then $S = \bigcup_A S_A$.

Suffices to show each $d(S_A)$ exists, and that $d(S) = \sum_A d(S_A)$. We will focus on showing each $d(S_A)$ exists.

For n with squarefull part A, write

$$n = Ap_1 \cdots p_k$$

for some distinct primes p_1, \ldots, p_k not dividing A.

For n with squarefull part A, write

$$n = Ap_1 \cdots p_k$$

for some distinct primes p_1, \ldots, p_k not dividing A.

We will show that with A fixed, f(n) modulo m is a periodic function of $\omega(n)$. By the $\omega(n)$ equidistribution lemma from before, the density of S_A exists.

For n with squarefull part A, write

$$n = Ap_1 \cdots p_k$$

for some distinct primes p_1, \ldots, p_k not dividing A.

We will show that with A fixed, f(n) modulo m is a periodic function of $\omega(n)$. By the $\omega(n)$ equidistribution lemma from before, the density of \mathcal{S}_A exists.

Lemma (P.)

$$f(Ap_1\cdots p_k)=\sum_{j=0}^k S(k,j)\sum_{d|A}f(d)\tau_j(A/d).$$

Here S(k,j) is the number of set partitions of a k-element set into j parts (Stirling number of the second kind), and

$$\tau_j(n) = \sum_{d_1 \cdots d_i = n} 1.$$

Lemma (P.)

Fix an arithmetic progression, say $A \pmod{Q}$. Then

$$\sum_{\substack{0 \le j \le k \\ (\text{mod } Q)}} S(k,j)$$

is purely periodic modulo m as a function of k, for any modulus m.

Without the restriction on j, the sum is exactly B_k , the kth Bell number, and the lemma reduces to the theorem on periodicity of Bell numbers mentioned before.

Bell numbers can be defined by

$$\sum_{n=0}^{\infty} B_n \frac{x^n}{n!} = e^{e^x - 1}.$$

To prove the lemma, we need periodicity to any integer modulus of the generalized Bell numbers $B_n(\omega)$, defined by

$$\sum_{n=0}^{\infty} B_n(\omega) \frac{x^n}{n!} = e^{\omega(e^x - 1)},$$

where ω is a Qth root of unity.

With A = 1, we have 1/3 of the time f(n) is even, and 2/3 of the time, f(n) is odd.

With A=1, we have 1/3 of the time f(n) is even, and 2/3 of the time, f(n) is odd. With $A=p^2$, one can check that $f(Ap_1\cdots p_k)$ mod 2 cycles as

and so f(n) is even 2/3 of the time and odd 1/3 of the time.

With A=1, we have 1/3 of the time f(n) is even, and 2/3 of the time, f(n) is odd. With $A=p^2$, one can check that $f(Ap_1 \cdots p_k)$ mod 2 cycles as

and so f(n) is even 2/3 of the time and odd 1/3 of the time. With $A = p^3$, the cycle is

So f(n) is even 1/3 of the time and odd 2/3 of the time.

With A=1, we have 1/3 of the time f(n) is even, and 2/3 of the time, f(n) is odd. With $A=p^2$, one can check that $f(Ap_1 \cdots p_k)$ mod 2 cycles as

and so f(n) is even 2/3 of the time and odd 1/3 of the time. With $A = p^3$, the cycle is

So f(n) is even 1/3 of the time and odd 2/3 of the time.

Collecting, we find the proportion of the time f(n) is odd is at least

$$\frac{2}{3}\frac{6}{\pi^2} + \frac{1}{3}\left(\frac{6}{\pi^2}\sum_{p}\frac{1}{p(p+1)}\right) + \frac{2}{3}\left(\frac{6}{\pi^2}\sum_{p}\frac{1}{p^2(p+1)}\right) = 0.52165...$$

Thank you!