Clustering real data with two customers

Contents

1	hat you are doing?	
	1 entire data	
	2 how do they look	
	3 make one granularity	
	4 conditional list across categories of one granularity	
	5 conditional quantiles across categories of one granularity	
	6 how do their deciles look for different categories of cyclic granularity	
	7 10 iterations of each customer	
	8 conditional list across categories of one granularity	
	9 conditional quantiles across categories of one granularity	
	10 JS Pairwise distances between households	
2	ithout scaling leads to mix of two houses	
3	trying scaling	
	1 conditional list across categories of one granularity	
	2 conditional quantiles across categories of one granularity	
	3 JS Pairwise distances between households	

1 What you are doing?

Taking real customers from the smart meter data set and cluster them and see if their distributions are different

- just one cyclic granularity (hod)
- two cyclic granularities (hod and dow)

Compute quantiles of conditional distributions Conditional quantiles are obtained for each combination of categories.

1.1 entire data

```
## # A tibble: 60,925 x 3
##
      customer_id reading_datetime
                                      general_supply_kwh
##
      <chr>
                  <dttm>
                                                    <dbl>
   1 10006704
                  2012-06-01 10:00:00
                                                    0.24
   2 10006704
                  2012-06-01 10:30:00
                                                    0.245
   3 10006704
                  2012-06-01 11:00:00
                                                    0.206
##
   4 10006704
                  2012-06-01 11:30:00
                                                    0.217
   5 10006704
                  2012-06-01 12:00:00
                                                    0.214
                  2012-06-01 12:30:00
   6 10006704
                                                    0.23
   7 10006704
                  2012-06-01 13:00:00
                                                    0.898
  8 10006704
                  2012-06-01 13:30:00
                                                    0.197
## 9 10006704
                  2012-06-01 14:00:00
                                                    0.255
## 10 10006704
                  2012-06-01 14:30:00
                                                    0.199
```

1.2 how do they look

- 1.3 make one granularity
- 1.4 conditional list across categories of one granularity
- 1.5 conditional quantiles across categories of one granularity
- 1.6 how do their deciles look for different categories of cyclic granularity

1.7 10 iterations of each customer

1.7.1 Data preparation

- 1.7.2 make one granularity
- 1.8 conditional list across categories of one granularity
- 1.9 conditional quantiles across categories of one granularity
- 1.10 JS Pairwise distances between households

1.10.1 hc

Cluster Dendrogram

2 without scaling leads to mix of two houses

3 so trying scaling

- 3.0.1 make one granularity
- 3.1 conditional list across categories of one granularity
- 3.2 conditional quantiles across categories of one granularity
- 3.3 JS Pairwise distances between households
- 3.3.1 hc

Cluster Dendrogram

d stats::hclust (*, "complete")

JS Pairwise distances between datasets Distance between the data sets is computed as the sum of JS distances across different categories.

 $\it Hierarchical\ clustering\ with\ 4\ clusters\ Hierarchical\ clustering\ is\ performed\ using\ k=4\ and\ dendogram\ observed$

Clusters obtained visualized using MDS Each cluster represents data sets from a separate design