

Molecular Replacement: Rotation + Translation of the transform of a known structure

MAD is the dominant method for determining new crystal structures of proteins.

Change in Methods of Structure Determination

Argand Diagrams for Primary Phasing

Structure factor contribution from one atom:

= $f \exp(2\pi i (hx+ky+lz))$

= $f(\cos 2\pi(hx+ky+lz) + i \sin 2\pi(hx+ky+lz))$

= $f(\cos \alpha + i \sin \alpha)$

From all protein atoms

Atomic scattering (f) can be diminished by

- thermal vibration (B = temperature factor)
- partial occupancy (q = occupancy fraction) q f exp(-B $\sin^2\theta/\lambda^2$)

atoms

$$\mathbf{F}(\mathsf{hkl}) = \sum_{j=1}^{n} \mathsf{f}_{j} \; \mathsf{exp}(2\pi i (\mathsf{hx}_{j} + \mathsf{ky}_{j} + \mathsf{lz}_{j}))$$

Isomorphous Replacement

"Native" crystal

"Derivative" crystal

"Isomorphous" means that the ducks in the native crystal are <u>identical</u> to the ducks in the derivative crystal, except for the addition of the strongly scattering label, or "heavy atom".

Single Isomorphous Replacement (SIR)

$$|F_{PH}|^2 = |F_P|^2 + |F_H|^2 + 2|F_P| |F_H| \cos (\alpha_P - \alpha_H)$$

How much does a heavy atom change diffracted intensities?

Because phase shifts for individual atoms are uncorrelated:

$$\sqrt{\text{avg}(\left|F\right|^2)} = \text{rms}\left|F\right| = \sqrt{\sum f^2} = \sqrt{N} \text{ f, for like atoms}$$

rms|F_P| ≈ 400 Protein of MW 50,000:

1 Hg atom, q = 1: $qf_H = 80$

"signal" = $1/\sqrt{2}$ (80/400) ≈ 0.14

1 Hg atom, q = 0.5:

"signal" = $1/\sqrt{2}$ (40/400) ≈ 0.07

Estimates of Scattering Strength for Biological Macromolecules

Expressions for $< |F| > (rms |F| = \sqrt{n} x f)$ for n atoms with scattering factor f:

Protein	6.70 x (# atoms) ^{1/2}	(346 x # residues) ^{1/2}	$(3.14 \times MW)^{1/2}$
DNA	7.20 x (# atoms) ^{1/2}	(1128 x # residues) ^{1/2}	$(3.87 \text{ x MW})^{1/2}$
RNA	7.26 x (# atoms) ^{1/2}	(1183 x # residues) ^{1/2}	(3.89 x MW) ^{1/2}

Characteristics of an average residue in protein, DNA or RNA:

amino acid	8 non-H atoms of 6.7 e ⁻	MW 110
deoxyribonucleotide	21 non-H atoms of 7.2 e ⁻	MW 292
ribonucleotide	21 non-H atoms of 7.26 e ⁻	MW 305

Example of isomorphous signal (ΔF_{iso}): 7 derivatives of glycerate dehydrogenase

The Patterson function is used to find heavy atom positions in a derivative.

$$P(u,v,w) = 1/V \sum (|\mathbf{F}_{PH}(hkl)| - |\mathbf{F}_{P}(hkl)|)^2 \cos 2\pi (hu+kv+lw)$$

Where $(|\mathbf{F}_{PH}(hkl)| - |\mathbf{F}_{P}(hkl)|)$ approximates $|\mathbf{F}_{H}(hkl)|$.

The approximation is most accurate for reflections with large $| |\mathbf{F}_{PH}(hkl)| - |\mathbf{F}_{P}(hkl)| |$

large |F_H(hkl)|

On average: $\left\langle \left| \left| \, \mathbf{F}_{PH} \! \left(h k I \right) \, \right| - \left| \, \mathbf{F}_{P} \! \left(h k I \right) \, I \right| \right\rangle = \frac{1}{\sqrt{2}} \left\langle \left| \, \mathbf{F}_{H} \! \left(h k I \right) \, I \right\rangle$

"Most probable" and "best" phase estimates

"Most probable" is the phase with highest probability. "Best" is the phase at the centroid of the distribution.

Source: Blow, chapt. 7

"Anomalous scattering" is expressed in the scattering factor, f.

"Normal" scattering, f or f₀.

"Anomalous" scattering is complex:

$$f = f_0 + f' + i f''$$

f' = real component of anomalous scattering

f " = imaginary component of anomalous scattering

f' and f" are much smaller than f₀.

f ' and f " are due to inner-shell electronic effects, so their values don't "fall off" with resolution as does $f_{\rm o}$.

atoms

$$\mathbf{F}(hkl) = \sum_{j=1}^{n} (f_{0j} + f'_{j} + i f''_{j}) \exp(2\pi i (hx_{j} + ky_{j} + lz_{j}))$$

$$\mathbf{F"}(\mathsf{hkl}) = \Sigma \left(i \, \mathsf{f"}_{\mathsf{i}} \right) \exp(2\pi i (\mathsf{hx}_{\mathsf{i}} + \mathsf{ky}_{\mathsf{i}} + \mathsf{lz}_{\mathsf{i}}))$$

$$\mathbf{F'}(\mathsf{hkl}) = \sum_{i} f'_{i} \exp(2\pi i (\mathsf{hx}_{i} + \mathsf{ky}_{i} + \mathsf{lz}_{i}))$$

Anomalous Scattering Factors for Pt L_{III} edge

 \boldsymbol{f} " is proportional to the atomic absorption coefficient (μ_{a}) :

$$f''(E) = \frac{mc}{4\pi e^2 \hbar} E \mu_a(E)$$

f' is calculated from f by Kramers-Kronig transformation:

$$f'(E) = \frac{2\delta}{\pi} \sum_{j=0}^{\infty} \frac{E_j f_j''}{E^2 - E_j^2}$$

 $(\delta = \text{energy sampling increment})$

Positions of X-ray absorption edges

Periodic table form:

http://www.bmsc.washington.edu/scatter/AS_periodic (including calculation of theoretical f" and f' spectra)

Tabular form:

http://xdb.lbl.gov/Section1/Table_1-1.pdf

Edges of interest to biological crystallography:

Se - K 12.658 keV

Br - K 13.474 keV

Fe - K 7.112 keV

Zn - K 9.659 keV

Hg - L_{III} 12.284 keV

Pt - L_{III} 11.564 keV

Accessible at most beamlines: 7-15 keV

"Sweet" zone: 11-14 keV

Relationship of F(h,k,l) and F(-h,-k,-l) without anomalous scattering

Friedel pairs: reflections h,k,l and -h,-k,-l

Bijvoet pairs: any symmetry-equivalent reflections related by a mirror or inversion Example, in an orthorhombic space group, such as $P2_12_12_1$:

Any reflection in group A and any reflection in group B are Bijvoet mates. Each reflection in group A and the reflection on the same line in group B are Friedel mates.

Relationship of F(h,k,l) and F(-h,-k,-l) with anomalous scattering

$$f = f_0 + f' + i f''$$

$$\mathbf{F}(hkl) = \sum_{j=1}^{\# \text{ atoms}} (f_{0j} + f'_j + i f''_j) \exp(2\pi i (hx_j + ky_j + lz_j))$$

$$\mathbf{F''}(hkl) = \sum (i f''_j) \exp(2\pi i (hx_j + ky_j + lz_j))$$

$$\mathbf{F'}(hkl) = \sum f'_j \exp(2\pi i (hx_j + ky_j + lz_j))$$

How does anomalous scattering provide phase information?

$$\begin{split} |\mathsf{F^+_{PH}}|^2 &= |\mathsf{F_P}|^2 + |\mathsf{F_H}|^2 + |\mathsf{F_H}^*|^2 + \\ &+ 2|\mathsf{F_P}| \; |\mathsf{F_H}| \cos \left(\alpha_{\mathsf{P}^-}\alpha_{\mathsf{H}}\right) \\ &+ 2|\mathsf{F_P}| \; |\mathsf{F_H}^*| \; |\cos \left(\alpha_{\mathsf{P}^-}\alpha_{\mathsf{H}} + \omega\right) \\ &+ 2|\mathsf{F_H}| \; |\mathsf{F_H}^*| \; |\cos \left(\omega\right) \end{split}$$

$$\begin{split} |F_{PH}^-|^2 &= |F_P|^2 + |F_H|^2 + |F_H^-|^2 + \\ &+ 2|F_P| |F_H| \cos{(\alpha_P - \alpha_H)} \\ &- 2|F_P| |F_H^-| \cos{(\alpha_P - \alpha_H + \omega)} \\ &- 2|F_H| |F_H^-| \cos{(\omega)} \end{split}$$

$$|F^{+}_{PH}|^{2} - |F^{-}_{PH}|^{2} = 4|F_{P}| |F_{H}|^{2} |\cos(\alpha_{P} - \alpha_{H} + \omega) + 4|F_{H}| |F_{H}|^{2} |\cos(\omega)$$

$$\textbf{F"(hkl)} = \sum_{j=1}^{\# \text{atoms}} (i \text{ f "}_j) exp(2\pi i (hx_j + ky_j + lz_j))$$

Good news: $\omega = \pi/2$ if only one atomic type has detectable anomalous scattering.

$$|F_{PH}^{+}|^{2} - |F_{PH}^{-}|^{2} = 4|F_{P}| |F_{H}^{-}| \sin (\alpha_{P} - \alpha_{H})$$

Phase probability distributions for anomalous scattering with isomorphous replacement

Source: Matthews, 2001

Single-wavelength Anomalous Diffraction, a.k.a. SAD

$$\begin{split} |\mathsf{F^+_{PH}}|^2 &= |\mathsf{F_{PH}}|^2 + |\mathsf{F_H}|^2 + \\ &+ 2|\mathsf{F_{PH}}| \, |\mathsf{F_H}|^2 |\cos{(\alpha_{PH} - \alpha_H + \omega)} \end{split}$$

$$|F_{PH}^{-}|^2 = |F_{PH}|^2 + |F_{H}^{-}|^2 + 2|F_{PH}| |F_{H}^{-}| \cos (\alpha_{PH} - \alpha_{H} + \omega)$$

$$|F^{+}_{PH}|^{2} - |F^{-}_{PH}|^{2} = 4|F_{PH}| |F_{H}|^{2} |\cos(\alpha_{PH} - \alpha_{H} + \omega)$$

$$ω = π/2$$
 $|F_H| = f''/f_0 |F_H|$

$$|F_{PH}^+|^2 - |F_{PH}^-|^2 = 4|F_{PH}| |F_H^-| \sin (\alpha_{PH} - \alpha_H)$$

$$P(\alpha) = N exp \left\{ \frac{-\epsilon^2}{2E^2} \right\}$$

$$P(\alpha) = Nexp\left\{\frac{-\epsilon^2}{2E^2}\right\}$$

$$\epsilon = F^+ - F^- + 2\frac{f_A''}{{}^0f_A}F_A\sin(\alpha_T - \alpha_A)$$

Structure factor definitions for anomalous scattering (without isomorphous replacement)

°F_⊤ = Total normal scattering

°F_A = Normal scattering from anomalously scattering atoms

F_A" = Imaginary component of anomalous scattering

F_A' = Real component of anomalous scattering

Color code

Multiwavelength Anomalous Diffraction, a.k.a. MAD

from experiment wavelength dependent wavelength independent

Energy selection for a MAD experiment

Phasing signal in MAD

For like atoms:
$$\sqrt{avg(|F|^2)} = rms |F| = \sqrt{\sum f^2} = \sqrt{N} f$$

Anomalous signal:
$$\frac{\text{rms} \, | \, F^+ - F^- \, |}{\text{rms} \, | \, F_T \, |} = \sqrt{\frac{N}{2}} \, \frac{2 f_A''}{\text{rms} \, | \, F_T \, |} = \sqrt{2N} \, \frac{f_A''}{\text{rms} \, | \, F_T \, |}$$

Dispersive signal:
$$\frac{\text{rms} |F_{\lambda 1} - F_{\lambda 2}|}{\text{rms} |F_{T}|} = \sqrt{\frac{N}{2}} \frac{f'_{A}}{\text{rms} |F_{T}|}$$

Isomorphous signal:
$$\frac{\text{rms} |F_{PH} - F_{P}|}{\text{rms} |F_{P}|} = \sqrt{\frac{N}{2}} \frac{f_{H}}{\text{rms} |F_{P}|}$$

Phasing signal in MAD for example edges

Atom	f ₀ (e ⁻)	f' _{edge} (e ⁻)	f" _{peak} (e ⁻)	f' _{remote} (e ⁻)	Edge	Energy (keV)
Se	34	-10	6	-3	K	12.658
Br	35	-7	4	-3	K	13.446
Fe	26	-8	4	-3	K	7.115
Zn	30	-9	4	-3	K	9.666
Hg	80	-20	10	-8	L_{III}	12.283
Pt	78	-21	13	-8	L_{III}	11.565
Yb	70	-33	35	-7	L_{III}	8.947

The average protein has 1 Met per 60 residues (excluding Met1, which is usually disordered).

Patterson Function

 $P(u,v,w) = 1/V \sum |\mathbf{F}(hkl)|^2 \cos 2\pi (hu+kv+lw)$ Equivalent to a density map from intensities (I) with all phases = 0

Also equivalent to:

$$P(\mathbf{u}) = \int \rho(\mathbf{r}) \times \rho(\mathbf{r} + \mathbf{u}) \, d\mathbf{v} \qquad \mathbf{r} = \mathbf{x}, \mathbf{y}, \mathbf{z} \qquad \mathbf{u} = \mathbf{u}, \mathbf{v}, \mathbf{w}$$

This produces a map of all interatomic vectors in the structure. peaks at the end points of vectors from all atom i to atom j also atom j to atom i

Patterson cell is the same size & shape as the real unit cell. Has all symmetry in the real unit cell + inversion symmetry.

Reminder: electron density equation $\rho(x,y,z) = 1/V \Sigma | \mathbf{F}(hkl)| \exp(i\alpha(hkl) - 2\pi i (hx+ky+lz)) \\ = 1/V \Sigma | \mathbf{F}(hkl)| (\cos(\alpha-2\pi(hx+ky+lz)) + i \sin(\alpha-2\pi(hx+ky+lz)))$

Real unit cell (symmetry *P*1) contains 2 atoms ("1" and "2"), separated by vector **u**.

Patterson cell contains all interatomic vectors between atoms "1" and "2". Added symmetry: inversion center.

Harker vectors: special Patterson between symmetry-equivalent atoms

Example: space group P2

Equivalent positions:

For every heavy atom at x, y, zAnother is found at -x, y, -z

Vector between these two positions is called a "Harker vector":

$$u, v, w = (x - -x), (y - y), (z - -z) = 2x, 0, 2z$$

In space group P2, we examine the v = 0 section first.

Solving heavy-atom Pattersons for the heavy-atom positions usually starts with considering all possible Harker and "cross" vectors.

Patterson vectors between two heavy atoms in space group P2

	x ₁ , y ₁ , z ₁	-x ₁ , y ₁ , -z ₁	x ₂ , y ₂ , z ₂	-x ₂ , y ₂ , -z ₂
x ₁ , y ₁ , z ₁	0,0,0	-2x ₁ , 0, -2z ₁	x_2-x_1 , y_2-y_1 , z_2-z_1	-X ₁ -X ₂ , y ₂ -y ₁ , -Z ₁ -Z ₂
-x ₁ , y ₁ , -z ₁	2x ₁ , 0, 2z ₁	0,0,0	$x_1 + x_2$, $y_2 - y_1$, $z_1 + z_2$	x ₁ -x ₂ , y ₂ -y ₁ , z ₁ -z ₂
x ₂ , y ₂ , z ₂	x ₁ -x ₂ , y ₁ -y ₂ , z ₁ -z ₂	-x ₁ -x ₂ , y ₁ -y ₂ , -z ₁ -z ₂	0,0,0	-2x ₂ , 0, -2z ₂
-x ₂ , y ₂ , -z ₂	x ₁ +x ₂ , y ₁ -y ₂ , z ₁ +z ₂	x ₂ -x ₁ , y ₁ -y ₂ , z ₂ -z ₁	2x ₂ , 0, 2z ₂	0,0,0

Notice the relationships of these vectors:

Inversion symmetry: $2x_1$, 0, $2z_1$ vs. $-2x_1$, 0, $-2z_1$

 $\mathbf{X}_1\text{-}\mathbf{X}_2$, $\mathbf{y}_1\text{-}\mathbf{y}_2$, $\mathbf{Z}_1\text{-}\mathbf{Z}_2$ VS. $\mathbf{X}_2\text{-}\mathbf{X}_1$, $\mathbf{y}_2\text{-}\mathbf{y}_1$, $\mathbf{Z}_2\text{-}\mathbf{Z}_1$

Mirror symmetry: x_1+x_2 , y_1-y_2 , z_1+z_2 vs. x_1+x_2 , y_2-y_1 , z_1+z_2 Same v section: x_1-x_2 , y_1-y_2 , z_1-z_2 vs. x_1+x_2 , y_1-y_2 , z_1+z_2

Typical example of a reflection and two derivatives.

Note the "lack of closure" where the circles are closest to intersecting.

Source: Blow, chapt. 7

Three example reflections from a six-derivative MIR problem.

some agreement:

moderate phase indication

poor agreement:

no phase indication

Source: Blow, chapt. 7

strong phase indication