Two Dishes DAY2

SORTREEW

問題概要

問題文を読みましょう

制約:制限時間(SやT)の制約が全て同じ

取る順序を気にしなくてよくなる。つまり、カレーと丼を制限時間内に取った個数の組から答えが求まる。また、カレーを取った個数を固定すると丼を取った個数は一意に定まり、これは二分探索で求められる。丼を固定する場合もやる。O(NlogM+MlogN)

あまりに多い小課題

	N,M<=12	N,M<=2000	N,M<=200000	N,M<=1000000
P,Q=1	2	3	4	
P,Qは正			5	6
P,Qの制約なし			7	満点!

考察

空白の時間はなく、丼やカレーの中では手順が決まっているので、

ある手順で点数が取れるかどうかは

もう一種類の食べ物の手順がどこまで進んでいるかだけで決まる(これまでのとり方の順序は関係なく)

問題の変換

N\M	0	1	2	3
0	0	1	2	3
1	0	1	2	3
2	1	2	3	4
3	2	3	4	5
4	3	4	5	6

N*Mのグリッドがあり、 マス目の間に左や上から直線が伸びている。

めよ。

i-1行目とi行目の間の線を通るとP_i点、 i-1列目とi列目の間の線を通るとQ_i点、もらうことができる 左上から右下に行く時、得られる得点の最大値を求

各行と列ごとに、もう一方の食べ物を何回食べてもいいか(列や行を何回通ってもいいか)を二分探索や累積和を用いて計算することで、この表を作成することができる。

制約: N<=12,M<=12 とり方を全探索する O(2^(N+M))

制約: N<=2000, M<=2000 とり方を動的計画法で求める。 よくあるグリッド上のDP

制約: N<=2000, M<=2000

更新式は

DP[n][m]=max(DP[n-1][m]+f1(n,m),DP[n][m-1]+f2(n,m))
f1(n,m)=上からn,mに来た時、線を通るならP[n]、そうでないなら0
f2(n,m)=左からn,mに来た時、線を通るならQ[m]、そうでないなら0
O(NM)

ここまでは春合宿に来れる人なら取れるはず(取ってほしい)

小課題4,5,6

主な制約: P,Qは正(これがうれしい制約です) とり方を動的計画法で求めたいが、制約がや ばい。しかし動的計画法以外で解ける気もしな いので、テーブルを見てみる

小課題4,5,6

主な制約: P,Qは正(これがうれしい制約です)

特徴:DP[n][m]-DP[n][m-1]は行ごとに見るとあまり変化しない?(サンプル1) このテーブルでも復元はできる

(オレンジ色の線を通りながら、横線の得点とテーブルの数字を足し合わせる)

N\M	0	1	2	3
0	0	1	2	3
1	0	1	2	3
2	1	2	3	4
3	2	3	4	5
4	3	4	5	6

N\M	0	1	2	3
0		1	1	1
1		1	1	1
2		1	1	1
3		1	1	1
4		1	1	1

小課題4,5,6

テーブルの変化が少ないとうれしい 何がうれしいか?

→DP[n][]にDP[n-1][]のテーブルを使いまわして、 更新をサボることで高速化できることがある。

ここからテーブルの使い回しをすることにして、

より変化が少なく、元のDPテーブルに復元できるような新たなDPテーブルを考えていく

他のサンプルでも試す

特徴:DP[n][m]-DP[n][m-1]はあまり変化しない(右図)

N\M	0	1 (+2)	2 (+7)	3 (+19	4 (+4)	5 (+15)	6 (+14)	7 (+8)	N\M	0	1 (+2)	2 (+7)	3 (+19)	4 (+4)	5 (+15)	6 (+14)	7 (+8)
0	0	2	9	28	32	47	47	47	0	0	2	7	19	4	15	0	0
1(+16)	16	18	25	44	48	63	63	63	1(+16)	0	2	7	19	4	15	0	0
2(+10)	26	28	35	54	54	63	63	63	2(+10)	0	2	7	19	0	9	0	0
3(+1)	27	29	36	54	54	63	63	63	3(+1)	0	2	7	18	0	9	0	0
4(+16)	43	45	45	54	54	63	63	63	4(+16)	0	2	0	9	0	9	0	0
5(+10)	43	45	45	54	54	63	63	63	5(+10)	0	2	0	9	0	9	0	0

Q:こんなの気づけなくない?

A:はい

ただ、

DP[n][m]=max(DP[n-1][m]+f1(n,m),DP[n][m-1]+f2(n,m))

からDP[n][m]はmax内の2つの式いずれかと等しく、f1やf2はn,mそれぞれ固定すれば2種類しか値を取らないので、差分を取ると変化少ない気持ちにはなる(かもしれない)

他のサンプルでも試す

特徴2:

マスの左に線があるなら DP[n][m]-DP[n][m-1]=Q[m]

偶然か?

N\M	0	1 (+2)	2 (+7)	3 (+19)	4 (+4)	5 (+15)	6 (+14)	7 (+8)
0	0	2	7	19	4	15	0	0
1(+16)	0	2	7	19	4	15	0	0
2(+10)	0	2	7	19	0	9	0	0
3(+1)	0	2	7	18	0	9	0	0
4(+16)	0	2	0	9	0	9	0	0
5(+10)	0	2	0	9	0	9	0	0

他のサンプルでも試す

特徴2:

マスの左に線があるなら DP[n][m]-DP[n][m-1]=Q[m] 理由:横線はできるだけ左に いたほうが通りやすい

(短期的には点がもらえなく なるタイミングまで取るのを 先送りにしたほうがよい)

N\M	0	1 (+2)	2 (+7)	3 (+19)	4 (+4)	5 (+15)	6 (+14)	7 (+8)
0	0	2	7	19	4	15	0	0
1(+16)	0	2	7	19	4	15	0	0
2(+10)	0	2	7	19	0	9	0	0
3(+1)	0	2	7	18	0	9	0	0
4(+16)	0	2	0	9	0	9	0	0
5(+10)	0	2	0	9	0	9	0	0

つまり、DP[n][m]-DP[n][m-1]-Q[m]も変化が少なそう?

N\M	0	(+2)	(+7)	3 (+19	(+4)	5 (+15	6 (+14	7 (+8)	N \M	0	1 (+2)	(+7)	3 (+19)	4 (+4)	5 (+15)	6 (+14)	7 (+8)
)))										
0	0	2	7	19	4	15	0	0	0	0	0	0	0	0	0	0	0
1(+16)	0	2	7	19	4	15	0	0	1(+16)	0	0	0	0	0	0	0	0
2(+10)	0	2	7	19	0	9	0	0	2(+10)	0	0	0	0	-4	-6	0	0
3(+1)	0	2	7	18	0	9	0	0	3(+1)	0	0	0	-1	-4	-6	0	0
4(+16)	0	2	0	9	0	9	0	0	4(+16)	0	0	-7	-10	-4	-6	0	0
5(+10)	0	2	0	9	0	9	0	0	5(+10)	0	0	-7	-10	-4	-6	0	0

変化は少ないが、

0以上というよさそうな性質が崩れるので、

左に線がないマスには DP[n][m]-DP[n][m-1]を入れ てみる(これでも復元できる)

	N\M	0	1 (+2)	2 (+7)	3 (+19)	4 (+4)	5 (+15)	6 (+ 14)	7 (+8)
	0	0	0	0	0	0	0	0	0
	1(+16)	0	0	0	0	0	0	0	0
	2(+10)	0	0	0	0	0	9	0	0
)	3(+1)	0	0	0	18	0	9	0	0
	4(+16)	0	0	0	9	0	9	0	0
	5(+10)	0	2	0	9	0	9	0	0

変化は少ないが、

0以上というよさそうな性質が崩れるので、

左に線がないマスには DP[n][m]-DP[n][m-1]を入れ てみる(これでも復元できる)

	N\M	0	1 (+2)	2 (+7)	3 (+19)	4 (+4)	5 (+15)	6 (+ 14)	7 (+8)
	0	0	0	0	0	0	0	0	0
	1(+16)	0	0	0	0	0	0	0	0
	2(+10)	0	0	0	0	0	9	0	0
)	3(+1)	0	0	0	18	0	9	0	0
	4(+16)	0	0	0	9	0	9	0	0
	5(+10)	0	2	0	9	0	9	0	0

変化は少ないが、

0以上というよさそうな性質が崩れるので、

左に線がないマスには DP[n][m]-DP[n][m-1]を入れ てみる(これでも復元できる)

	N\M	0	1 (+2)	2 (+7)	3 (+19)	4 (+4)	5 (+15)	6 (+ 14)	7 (+8)
	0	0	0	0	0	0	0	0	0
	1(+16)	0	0	0	0	0	0	0	0
	2(+10)	0	0	0	0	0	9	0	0
)	3(+1)	0	0	0	18	0	9	0	0
	4(+16)	0	0	0	9	0	9	0	0
	5(+10)	0	2	0	9	0	9	0	0

テーブルの更新

さて、どうやって更新するか(これが難しい)

テーブルの更新

縦の更新と横の更新を独立に見たいので、極端な例を試してみる

(+10)

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)	N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	
0	0	2	6	12	20	30	42	0		0	0	0	0	
1(+1)	1	2	6	12	20	30	42	1(+1)		1	4	6	8	
2(+3)	4	4	6	12	20	30	42	2(+3)		0	2	6	8	
3(+5)	9	9	9	12	20	30	42	3(+5)		0	0	3	8	
4(+7)	16	16	16	16	20	30	42	4(+7)		0	0	0	4	
5(+9)	25	25	25	25	25	30	42	5(+9)		0	0	0	0	

極端な例

(おさらい)テーブルのn行m列の式Diff[n][m]は

左に線がある:

Diff[n][m]=

DP[n][m]-DP[n][m]-Q[m]=0

左に線がない:

Diff[n][m]=
DP[n][m]-DP[n][m]

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

縦の線が消えた時:

消えた線の右下のdiffに、 その線の点(Q[m])が加算 される

理由:差は埋まらず、単純にテーブルの式が変わるため

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

横の線が消えた時:

消えた線の右下を(n,m)とする

DP[n][m]-DP[n][m-1]>=P[n]

DP[n][m]は変わらないが、 DP[n][m-1]はk増えるので Diff[n][m]はk減少する。

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

横の線が消えた時 (おおざっぱに):

DP[n][m]-DP[n][m-1]<kのと

DP[n][m]は横から遷移するようになる。

さらに、DP[n][m]の値も余った分だけ増えて、右のほうに伝搬していく

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

横の線が消えた時

(くわしく):

消えた線の右下を(n,m)とする

DP[n][m]-DP[n][m-1]<P[n]のとき、

DP[n][m] =DP[n][m-1]+f(n,m)となる、

DP[n][m-1]はk増え、DP[n][m]もQ[m]-diff[n][m]増える

Diff[n][m]はOになる。

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

横の線が消えた時

(くわしく):

さらに左から遷移している DPの値が全て増えるので、 次に上から遷移しているマ スで今までの議論をQ[m]の 代わりにQ[m]-diff[n][m]を 用いて同様に行う。

	N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
	0		0	0	0	0	0	0
)	1(+1)		1	4	6	8	10	12
	2(+3)		0	2	6	8	10	12
	3(+5)		0	0	3	8	10	12
	4(+7)		0	0	0	4	10	12
	5(+9)		0	0	0	0	5	12

計算量は?

まず、値の加算は縦の線の 数ぶんだけ、つまりO(M)回 値の減算は伝搬があるが、 値算は伝搬がの(M) 値算なるとN-1箇所消えるので 算らずとN-1箇所消えるので 値の減少はO(N+M)回

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

計算量は?

減算する場所の管理は setなどを使うと全体で O(MlogM)くらいでできる

全体でO((N+M)log(N+M))²⁽⁺ とかで抑えられる³⁽⁺

N\M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

小課題4,5

伝搬を1回分しか処理できない(実装や考察不足など) \rightarrow P,Q=1の小課題だけ正解 diffを取らず、セグ木の区間加算等 \log を余分につける \rightarrow N,M<=200000だけ正解

小課題7 満点解法

P,Qに制約がない場合を考える

線が消えるときの、diffに対する操作がちゃんとできればいい

今の理解では操作が怪しくなるので、操作について考え直す

わかったこと(みなおし)

縦の線が消えた時 (Q[m]>0):

消えた線の右下のdiffに、 その線の点(Q[m])が加算される

理由:上からの遷移はどうしても縦の線を通るが、左からの遷移は縦の線を通らないため

N M	0	1 (+2)	2 (+4)	3 (+6)	4 (+8)	5 (+10)	6 (+12)
0		0	0	0	0	0	0
1(+1)		1	4	6	8	10	12
2(+3)		0	2	6	8	10	12
3(+5)		0	0	3	8	10	12
4(+7)		0	0	0	4	10	12
5(+9)		0	0	0	0	5	12

diffに対する操作対する影響は(得点が正なら)同じ 得点が負になる場合を考える

よく考えると、今まで減っていた部分がかわりに増えて、増えていた部分が減ることになることがわかる。

操作を考える(行)

i行目のP[i]>0の横線が消える:

線の右下にあるマスに減算(伝搬する)

i行目のP[i]<0の横線が消える:

線の右下にあるマスに加算

操作を考える(列) j列目のQ[j]>0の縦線が消える: 線の右下にあるマスに加算 j列目のQ[j]<0の縦線が消える: 線の右下にあるマスに減算(伝搬する)

非対称に見えた操作の原因は行か列かの違いではなく、正か負かの違いにあった。

(これはdiffの下限が0であることに起因している?)

以下のクエリを投げて処理していく

Add(x,v):diff[x]にvを加算

Decrease(x,v):

diff[x]<vのとき:diff[x]=0としてy>xかつdiff[y]となる最小のyに対し、Decrease(y,v-diff[x])をする

diff[x]>=vのとき:diff[x]にvを減算

操作を抽象的に考える(行)

i行目のP[i]>0の横線が消える:

Decrease(x,P[i])

i行目のP[i]<0の横線が消える:

Add(x,-P[i])

xは線の右下の座標

操作を抽象的に考える(列)

j列目のQ[j]>0の縦線が消える:

Add(x,Q[j])

j列目のQ[j]<0の縦線が消える:

Decrease(x,-Q[j])

xは線の右下の座標

これで全ての更新を処理することができ、線の情報からDP[n][m]-DP[n][m-1]のテーブルに復元して、更に左下を経由するルートを使ってDP[N][M]を復元できる。

計算量は加算と減算がそれぞれならしでO(N+M)回でできるので、O((N+M)log(N+M))で抑えられる

実装上の注意

マスに対する操作と線に対する操作があるので、気をつけないと添字に+1が大量発生し、困る

行ごとに加算と減算をそれぞれ分けてやること(加算を先にやらないとWA)

得点分布

15点 11人 10点 5人 0点 2人 3点 1人 54点 1人 65点 1人