

UNIT 2 — NOVEMBER EXAM CHEMISTRY

Written test 2

ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks	Suggested times (minutes)
A	20	20	20	20
В	10	10	64	70
			Total 84	90

Section A

1. B	5. C	9. B	13. D	17. A
2. A	6. A	10. A	14. B	18. C
3. A	7. B	11. B	15. B	19. C
4. D	8. C	12 . A	16. C	20. D

Section B

Question 1.

a.
$$Mg^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Mg(OH)_2(s)$$

b.
$$Ca^{2+}(aq) + CO_3^{2-}(aq) \longrightarrow CaCO_3(s)$$

c.
$$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$$

$$\text{Cl}_2(g) + 2\text{H}_2\text{O}(l) \longrightarrow 2\text{HClO}(aq) + 2\text{e}^- + 2\text{H}^+(aq)$$

d.
$$2Cl_2(g) + 2H_2O(l) \longrightarrow 2HClO(aq) + 2Cl^-(aq) + 2H^+(aq)$$

e. $Cl_2(g)$

6 marks

Question 2.

- a. Covalent bonding, hydrogen bonding and dispersion forces
- **b.** These molecules do not show hydrogen bonding. As the molar mass increases, the strength of the dispersion forces between the molecules increases.
- **c.** Two possible representations:

e. Only water is volatile; sodium chloride remains as an ionic salt after evaporation

7 marks

Question 3.

- a. $Mg(OH)_2(aq) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + 2H_2O(1)$
- **b.** $\text{Li}_2\text{CO}_3(\text{aq}) + 2\text{HCl}(\text{aq}) \longrightarrow 2\text{LiCl}(\text{aq}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{l})$
- c. $SO_3^{2-}(aq) + H_2O(1) \longrightarrow HSO_3^{-}(aq) + OH^{-}(aq)$
- **d.** $HPO_4^{2-}(aq) + H_2O(1) \longrightarrow H_2PO_4^{-}(aq) + OH^{-}(aq)$ $HPO_4^{2-}(aq) + H_2O(1) \longrightarrow PO_4^{3-}(aq) + H_3O^{+}(aq)$
- e. $H_2PO_4^- + H_2O(1) \longrightarrow 2H_3O^+(aq) + PO_4^{3-}(aq)$

6 marks

Question 4.

a. $2 \text{ NaOH(aq)} + \text{CO}_2(g) \longrightarrow \text{Na}_2\text{CO}_3(aq) + \text{H}_2\text{O}(l)$

2 marks

$$n(\text{NaOH}) = 5.23 \times 10^{-3} \times 0.1 \text{ mol} \quad (n = cV)$$

 $= 5.23 \times 10^{-4} \text{ mol}$
 $n(\text{CO}_2) = \frac{1}{2}n(\text{NaOH})$
 $= \frac{1}{2} \times 5.23 \times 10^{-4} \text{ mol}$
 $m = \frac{1}{2} \times 5.23 \times 10^{-4} \text{ g} \quad (m = nMr)$
 $\%\text{CO}_2 = 2.62 \times 10^{-4} \times 100/0.500$
 $= 0.0523\%$

4 marks

c.
$$c = \frac{n}{V}$$

= $\frac{2.62}{500}$
= $5.23 \times 10^{-3} \text{ mol L}^{-1}$

1 mark

Question 5.

- **a.** $2O_3(g) \longrightarrow 3O_2(g)$
- **b.** $Fe_2O_3(s) + 2Al(s) \longrightarrow Al_2O_3(s) + 2Fe(s)$
- c. $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^ HNO_3(aq) + H^+(aq) + e^- \longrightarrow NO_2(g) + H_2O(aq)$

4 marks

Question 6.

- $\textbf{a.}\ N_2$
- **b.** O₂
- c. $2NO_2(g) + H_2O(1) \longrightarrow HNO_2(aq) + HNO_3(aq)$
- d. $2HNO_3(aq) + CaCO_3(s) \longrightarrow Ca(NO_3)_2(aq) + H_2O(l) + CO_2(g)$
- e. PV = nRT

$$124.8 \times 3.15 = n \times 8.31 \times 300$$

$$n = 0.158$$

$$M = \frac{10.10}{0.158} = 63.9$$

f. SO_2 ; $SO_2(g) + H_2O(1) \longrightarrow H_2SO_3(aq)$

8 marks

Question 7.

- **a.** $2C_8H_{18}(g) + 25O_2(g) \longrightarrow 16CO_2(g) + 18H_2O(g)$ $C_6H_{12}O_6(aq) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(l)$
- **b.** Thistle funnel, conical flask, stopper, gas tube, pneumatic trough, gas jar
- c. $2HCl(aq) + CaCO_3(s) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$
- d. Dry ice, fire extinguishers, preservative
- e. Photosynthesis: $6CO_2(g) + 6H_2O(1) \longrightarrow C_6H_{12}O_6(aq) + 6O_2(g)$

8 marks

Question 8.

a.
$$V_{SO_2} = V_{SO_3} = 2.50 \text{ L}$$

b.
$$SO_3(g) + H_2O(1) \longrightarrow H_2SO_4(aq)$$

$$n(\mathrm{H_2SO_4}) = (n\mathrm{SO_3})$$

$$n = \frac{2.5}{24.5} = 0.102$$

$$c = \frac{0.102}{0.025} = 4.08 \text{ mol } L^{-1}$$

$$[H^+] = 2 \times 4.08$$

$$= 8.16 \text{ mol } L^{-1}$$

$$pH = -log(8.16)$$

$$=-0.91$$

c.
$$[H^+] = \frac{10^{-14}}{[OH^-]}$$

$$[\mathrm{H^+}] = \frac{10^{-14}}{0.001 \; \mathrm{mol} \; \mathrm{L^{-1}}}$$

$$pH = -log(10^{-11})$$

$$pH = 11$$

7 marks

Question 9.

Question 10.

- a. Nitrogen
- b. Noble gases
- c. CO_2
- d. O_3

4 marks

End of Section B