Algebraische Geometrie II, SoSe 2016 Institut für Algebraische Geometrie Leibniz Universität Hannover

Prof. Dr. Klaus Hulek Benjamin Wieneck

ÜBUNGSBLATT 4

Aufgabe 1. Man bestimme den Divisor der rationalen Funktion z_0/z_1 auf der Fläche

$$X := V(z_0 z_1 - z_2 z_3) \subset \mathbb{P}^3$$

von Übungsblatt 2, Aufgabe 4.

Aufgabe 2. Sei $a \in \mathbb{C}$ und $X := V(x^2 + y^2 - 1) \subset \mathbb{C}^2$. Man bestimme den Pullback des Divisors $D_a := [a]$ bezüglich der Abbildung $f : X \to \mathbb{C}$, f(x,y) := x.

Aufgabe 3. Sei C eine glatte projektive Kurve und $D \in Div(C)$ ein effektiver Divisor auf C. Man zeige folgendes.

- (i) dim $\Gamma(C, \mathcal{L}(D)) \le 1 + \deg(D)$,
- (ii) Ist C nicht rational und $D \neq 0$ effektiv, dann gilt dim $\Gamma(C, \mathcal{L}(D)) \leq \deg(D)$. Bemerkung: Für $\mathcal{L}(D)$ ist auch die Notation $\mathcal{O}_C(D)$ üblich.

 $\bf Aufgabe~4.$ Sei Ceine glatte projektive Kurve. Man zeige, dass folgende Aussagen äquivalent sind.

- (i) Die Kurve C is rational, d.h. C ist birational zum \mathbb{P}^1 .
- (ii) Es ist $Cl(C) \cong \mathbb{Z}$.
- (iii) Es gibt zwei verschiedene Punkte auf auf C, welche als Divisoren linear äquivalent sind.