# **PANDAS**

# What is Pandas?

Pandas is a Python library used for working with data sets.

It has functions for analyzing, cleaning, exploring, and manipulating data.

The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

# Why Use Pandas?

Pandas allows us to analyze big data and make conclusions based on statistical theories.

Pandas can clean messy data sets, and make them readable and relevant.

Relevant data is very important in data science.

# What Can Pandas Do?

Pandas gives you answers about the data. Like:

Is there a correlation between two or more columns?

What is average value?

Max value?

Min value?

Pandas are also able to delete rows that are not relevant, or contains wrong values, like empty or NULL values. This is called cleaning the data.

# **DataFrames**

Data sets in Pandas are usually multi-dimensional tables, called DataFrames.

Series is like a column, a DataFrame is the whole table.

#### In [9]:

```
import pandas
mydataset = {
  'cars': ["BMW", "Volvo", "Ford"],
  'passings': [3, 7, 2]
myvar = pandas.DataFrame(mydataset)
print(myvar)
print()
print(myvar.loc[0])
    cars passings
    BMW
                 3
1
  Volvo
                 7
2
                 2
3
    Ford
cars
           BMW
passings
Name: 0, dtype: object
In [2]:
import pandas as pd
print(pd.__version__)
1.0.5
```

# What is a Series?

A Pandas Series is like a column in a table.

It is a one-dimensional array holding data of any type.

```
In [3]:
a = [1, 7, 2]
myvar = pd.Series(a)
print(myvar)

0    1
1    7
2    2
dtype: int64
```

# Labels

If nothing else is specified, the values are labeled with their index number. First value has index 0, second value has index 1 etc.

This label can be used to access a specified value.

```
In [4]:
a = [1, 7, 2]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
     1
Х
     7
У
     2
Z
dtype: int64
In [5]:
# Return the value of "y":
print(myvar["y"])
7
In [6]:
calories = {"day1": 420, "day2": 380, "day3": 390}
myvar = pd.Series(calories)
print(myvar)
day1
        420
        380
day2
day3
        390
dtype: int64
In [7]:
# Create a Series using only data from "day1" and "day2":
import pandas as pd
calories = {"day1": 420, "day2": 380, "day3": 390}
myvar = pd.Series(calories, index = ["day1", "day2"])
print(myvar)
day1
        420
day2
        380
dtype: int64
```

# **Load Files Into a DataFrame**

If your data sets are stored in a file, Pandas can load them into a DataFrame.

```
In [4]:
```

```
import pandas

mydataset = {
    'cars': ["BMW", "Volvo", "Ford", 'tesla', 'tata'],
    'passings': [3, 7, 2,4,5]
}

myvar = pandas.DataFrame(mydataset)
print(myvar)
myvar.to_csv('info.csv')
# myvar.to_csv('info.csv', index=False) index pahije nsla tr
```

```
cars passings
1 BMW 3
2 Volvo 7
3 Ford 2
4 tesla 4
5 tata 5
```

# In [5]:

myvar.head(2) #fakt starting che 2 row dakhvel

# Out[5]:

|   | cars  | passings |
|---|-------|----------|
| 0 | BMW   | 3        |
| 1 | Volvo | 7        |

#### In [6]:

myvar.tail(2) #fakt Last che 2 row dakhvel

#### Out[6]:

|   | cars  | passings |
|---|-------|----------|
| 3 | tesla | 4        |
| 4 | tata  | 5        |

```
In [7]:
```

```
myvar.describe()
```

# Out[7]:

```
        count
        5.000000

        mean
        4.200000

        std
        1.923538

        min
        2.000000

        25%
        3.000000

        50%
        4.000000

        75%
        5.000000

        max
        7.000000
```

#### In [6]:

```
#read csv file
import pandas as pd
file= pd.read_csv('student.csv')
print(file)
```

```
name rollno city
1 rushi 1 pune
2 keshav 2 pune
3 anuja 3 pune
4 shital 4 pune
```

#### In [7]:

```
file['rollno'][1]=12 #to change data in file
```

```
<ipython-input-7-cd732f05db09>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

```
file['rollno'][1]=12
```

#### In [8]:

```
print(file)
    name rollno city
1
   rushi
          1 pune
2
 keshav
            12 pune
3
  anuja
             3 pune
4 shital
             4 pune
In [10]:
file.index=[10,11,12,13]
                          #change index
print(file)
     name rollno city
    rushi 1 pune
10
11 keshav
             12 pune
12
             3 pune
  anuja
13 shital
             4 pune
```

# pandas data structure

--series

--dataframe

# Series:

Pandas Series is a one-dimensional labelled array capable of holding data of any type (integer, string, float, python objects, etc.). The axis labels are collectively called indexes. Pandas Series is nothing but a column in an excel sheet. Labels need not be unique but must be a hashable type. The object supports both integer and label-based indexing and provides a host of methods for performing operations involving the index.



# **DataFrame**

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns. Pandas DataFrame consists of three principal components, the data, rows, and columns.



#### In [8]:

```
import numpy as np
import pandas as pd
newdf = pd.DataFrame(np.random.rand(334,5), index=np.arange(334))
newdf
```

# Out[8]:

|     | 0        | 1        | 2        | 3        | 4        |
|-----|----------|----------|----------|----------|----------|
| 0   | 0.475100 | 0.173122 | 0.261321 | 0.283373 | 0.710600 |
| 1   | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 |
| 2   | 0.401107 | 0.409255 | 0.629785 | 0.416491 | 0.632631 |
| 3   | 0.579149 | 0.065175 | 0.862828 | 0.453117 | 0.251587 |
| 4   | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 |
|     |          |          |          |          |          |
| 329 | 0.283477 | 0.349884 | 0.562985 | 0.588773 | 0.890677 |
| 330 | 0.798235 | 0.205785 | 0.410589 | 0.716287 | 0.429332 |
| 331 | 0.610896 | 0.282866 | 0.908540 | 0.695854 | 0.008176 |
| 332 | 0.544440 | 0.414596 | 0.121202 | 0.983670 | 0.750115 |
| 333 | 0.117343 | 0.038432 | 0.223937 | 0.645885 | 0.837589 |

334 rows × 5 columns

# In [9]:

newdf.head()

# Out[9]:

|   | 0        | 1        | 2        | 3        | 4        |
|---|----------|----------|----------|----------|----------|
| 0 | 0.475100 | 0.173122 | 0.261321 | 0.283373 | 0.710600 |
| 1 | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 |
| 2 | 0.401107 | 0.409255 | 0.629785 | 0.416491 | 0.632631 |
| 3 | 0.579149 | 0.065175 | 0.862828 | 0.453117 | 0.251587 |
| 4 | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 |

# In [12]:

newdf.index

# Out[12]:

```
In [13]:
newdf.columns
Out[13]:
RangeIndex(start=0, stop=5, step=1)
In [14]:
newdf.to_numpy()
Out[14]:
array([[0.47510047, 0.17312217, 0.26132107, 0.28337312, 0.71059975],
       [0.07408361, 0.89589573, 0.35600446, 0.67079358, 0.36715359],
       [0.4011072, 0.4092549, 0.62978493, 0.41649125, 0.6326309],
       [0.61089631, 0.28286613, 0.90854008, 0.69585439, 0.00817552],
       [0.5444398, 0.41459605, 0.12120208, 0.98367007, 0.75011469],
       [0.11734308, 0.03843185, 0.22393732, 0.64588467, 0.83758889]])
In [15]:
newdf.T
          #row column madhe ani column row madhe convert hotil
Out[15]:
         0
                  1
                           2
                                   3
                                                     5
                                                                               8
 0 0.475100 0.074084 0.401107 0.579149 0.139493 0.133298 0.768989 0.708546 0.808793 0
 1 0.173122 0.895896 0.409255 0.065175 0.700041 0.901605 0.133485 0.111715 0.713773 0
 2 0.261321 0.356004 0.629785 0.862828 0.446373 0.901748 0.657082 0.036265 0.008844 0
 3 0.283373 0.670794 0.416491 0.453117 0.229521 0.895150 0.528441 0.528502 0.736985 0
 4 0.710600 0.367154 0.632631 0.251587 0.774194 0.077758 0.024994 0.577201
                                                                         0.809680 0
5 rows × 334 columns
```

4

# In [16]:

newdf.sort\_index(axis=0, ascending=False) #reverse sort

# Out[16]:

|     | 0        | 1        | 2        | 3        | 4        |
|-----|----------|----------|----------|----------|----------|
| 333 | 0.117343 | 0.038432 | 0.223937 | 0.645885 | 0.837589 |
| 332 | 0.544440 | 0.414596 | 0.121202 | 0.983670 | 0.750115 |
| 331 | 0.610896 | 0.282866 | 0.908540 | 0.695854 | 0.008176 |
| 330 | 0.798235 | 0.205785 | 0.410589 | 0.716287 | 0.429332 |
| 329 | 0.283477 | 0.349884 | 0.562985 | 0.588773 | 0.890677 |
|     |          | <u> </u> |          |          |          |
| 4   | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 |
| 3   | 0.579149 | 0.065175 | 0.862828 | 0.453117 | 0.251587 |
| 2   | 0.401107 | 0.409255 | 0.629785 | 0.416491 | 0.632631 |
| 1   | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 |
| 0   | 0.475100 | 0.173122 | 0.261321 | 0.283373 | 0.710600 |

334 rows × 5 columns

#### In [17]:

newdf[0]

### Out[17]:

```
0 0.475100
1 0.074084
2 0.401107
3 0.579149
4 0.139493
...
329 0.283477
330 0.798235
331 0.610896
```

332 0.544440 333 0.117343

Name: 0, Length: 334, dtype: float64

# In [18]:

type(newdf[0])

# Out[18]:

pandas.core.series.Series

# In [20]:

newdf2=newdf # create view of newdf
newdf2

# Out[20]:

|     | 0        | 1        | 2        | 3        | 4        |
|-----|----------|----------|----------|----------|----------|
| 0   | 0.475100 | 0.173122 | 0.261321 | 0.283373 | 0.710600 |
| 1   | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 |
| 2   | 0.401107 | 0.409255 | 0.629785 | 0.416491 | 0.632631 |
| 3   | 0.579149 | 0.065175 | 0.862828 | 0.453117 | 0.251587 |
| 4   | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 |
|     | <b>-</b> |          |          |          |          |
| 329 | 0.283477 | 0.349884 | 0.562985 | 0.588773 | 0.890677 |
| 330 | 0.798235 | 0.205785 | 0.410589 | 0.716287 | 0.429332 |
| 331 | 0.610896 | 0.282866 | 0.908540 | 0.695854 | 0.008176 |
| 332 | 0.544440 | 0.414596 | 0.121202 | 0.983670 | 0.750115 |
| 333 | 0.117343 | 0.038432 | 0.223937 | 0.645885 | 0.837589 |

334 rows × 5 columns

#### In [24]:

newdf3=newdf.copy() #create copy of newdf
newdf3

# Out[24]:

|     | Α        | В        | С        | D        | Е        |
|-----|----------|----------|----------|----------|----------|
| 0   | 0.475100 | 0.173122 | 0.261321 | 0.283373 | 0.710600 |
| 1   | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 |
| 2   | 0.401107 | 0.409255 | 0.629785 | 0.416491 | 0.632631 |
| 3   | 0.579149 | 0.065175 | 0.862828 | 0.453117 | 0.251587 |
| 4   | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 |
|     |          |          |          |          |          |
| 329 | 0.283477 | 0.349884 | 0.562985 | 0.588773 | 0.890677 |
| 330 | 0.798235 | 0.205785 | 0.410589 | 0.716287 | 0.429332 |
| 331 | 0.610896 | 0.282866 | 0.908540 | 0.695854 | 0.008176 |
| 332 | 0.544440 | 0.414596 | 0.121202 | 0.983670 | 0.750115 |
| 333 | 0.117343 | 0.038432 | 0.223937 | 0.645885 | 0.837589 |

334 rows × 5 columns

#### In [23]:

newdf.columns=list("ABCDE") #Label column name

# In [25]:

newdf.loc[0,'A']=123

# In [26]:

print(newdf.head())

```
A B C D E
0 123.000000 0.173122 0.261321 0.283373 0.710600
1 0.074084 0.895896 0.356004 0.670794 0.367154
2 0.401107 0.409255 0.629785 0.416491 0.632631
3 0.579149 0.065175 0.862828 0.453117 0.251587
4 0.139493 0.700041 0.446373 0.229521 0.774194
```

#### In [28]:

```
newdf.loc[0,0]=12223 #ek aankhi column add hoil
print(newdf.head())
                              C
                                       D
                                                 Ε
                                                          0
  123.000000 0.173122 0.261321 0.283373 0.710600 12223.0
0
1
    0.074084 0.895896 0.356004 0.670794
                                          0.367154
                                                        NaN
2
    0.401107 0.409255 0.629785 0.416491 0.632631
                                                        NaN
3
    0.579149 0.065175 0.862828 0.453117 0.251587
                                                        NaN
4
    0.139493 0.700041 0.446373 0.229521 0.774194
                                                        NaN
```

#### In [31]:

newdf.drop(0 , axis=1) #add zalela column delete karnyasathi. row jr delete karaycha asla

### Out[31]:

|     | Α          | В        | С        | D        | E        |
|-----|------------|----------|----------|----------|----------|
| 0   | 123.000000 | 0.173122 | 0.261321 | 0.283373 | 0.710600 |
| 1   | 0.074084   | 0.895896 | 0.356004 | 0.670794 | 0.367154 |
| 2   | 0.401107   | 0.409255 | 0.629785 | 0.416491 | 0.632631 |
| 3   | 0.579149   | 0.065175 | 0.862828 | 0.453117 | 0.251587 |
| 4   | 0.139493   | 0.700041 | 0.446373 | 0.229521 | 0.774194 |
|     |            |          |          |          |          |
| 329 | 0.283477   | 0.349884 | 0.562985 | 0.588773 | 0.890677 |
| 330 | 0.798235   | 0.205785 | 0.410589 | 0.716287 | 0.429332 |
| 331 | 0.610896   | 0.282866 | 0.908540 | 0.695854 | 0.008176 |
| 332 | 0.544440   | 0.414596 | 0.121202 | 0.983670 | 0.750115 |
| 333 | 0.117343   | 0.038432 | 0.223937 | 0.645885 | 0.837589 |

334 rows × 5 columns

#### In [32]:

newdf.loc[[1,2], ["C", "D"]] #fakt specific row ani column pahije aslyas

#### Out[32]:

C D

2 0.629785 0.416491

**<sup>1</sup>** 0.356004 0.670794

```
In [34]:
```

```
newdf.loc[:, ["C", "D"]] #sarv row sathi
```

# Out[34]:

|     | С        | D        |
|-----|----------|----------|
| 0   | 0.261321 | 0.283373 |
| 1   | 0.356004 | 0.670794 |
| 2   | 0.629785 | 0.416491 |
| 3   | 0.862828 | 0.453117 |
| 4   | 0.446373 | 0.229521 |
|     |          | <b>-</b> |
| 329 | 0.562985 | 0.588773 |
| 330 | 0.410589 | 0.716287 |
| 331 | 0.908540 | 0.695854 |
| 332 | 0.121202 | 0.983670 |
| 333 | 0.223937 | 0.645885 |
|     |          |          |

334 rows × 2 columns

# In [35]:

newdf.loc[[1,2], :] #sarv column sathi

# Out[35]:

|   | Α        | В        | С        | D        | E        | 0   |
|---|----------|----------|----------|----------|----------|-----|
| 1 | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 | NaN |
| 2 | 0.401107 | 0.409255 | 0.629785 | 0.416491 | 0.632631 | NaN |

# In [36]:

newdf.loc[(newdf['A']<0.3)] #column A madhe jya jya row madhe 0.3 peksha kami value ahe t</pre>

# Out[36]:

|     | Α        | В        | С        | D        | E        | 0   |
|-----|----------|----------|----------|----------|----------|-----|
| 1   | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 | NaN |
| 4   | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 | NaN |
| 5   | 0.133298 | 0.901605 | 0.901748 | 0.895150 | 0.077758 | NaN |
| 14  | 0.075409 | 0.000197 | 0.514362 | 0.140561 | 0.811226 | NaN |
| 19  | 0.178522 | 0.421768 | 0.977016 | 0.097444 | 0.892860 | NaN |
|     |          |          |          |          |          |     |
| 318 | 0.015291 | 0.875448 | 0.185450 | 0.527804 | 0.704151 | NaN |
| 319 | 0.206724 | 0.145403 | 0.580917 | 0.082577 | 0.922378 | NaN |
| 327 | 0.275266 | 0.823185 | 0.728597 | 0.592526 | 0.550500 | NaN |
| 329 | 0.283477 | 0.349884 | 0.562985 | 0.588773 | 0.890677 | NaN |
| 333 | 0.117343 | 0.038432 | 0.223937 | 0.645885 | 0.837589 | NaN |

90 rows × 6 columns

# In [37]:

newdf.loc[(newdf['A']<0.3) & (newdf['C']>0.1)] #column A madhe jya jya row madhe 0.3 peks

# Out[37]:

|     | Α        | В        | С        | D        | E        | 0   |
|-----|----------|----------|----------|----------|----------|-----|
| 1   | 0.074084 | 0.895896 | 0.356004 | 0.670794 | 0.367154 | NaN |
| 4   | 0.139493 | 0.700041 | 0.446373 | 0.229521 | 0.774194 | NaN |
| 5   | 0.133298 | 0.901605 | 0.901748 | 0.895150 | 0.077758 | NaN |
| 14  | 0.075409 | 0.000197 | 0.514362 | 0.140561 | 0.811226 | NaN |
| 19  | 0.178522 | 0.421768 | 0.977016 | 0.097444 | 0.892860 | NaN |
|     |          |          |          |          |          |     |
| 318 | 0.015291 | 0.875448 | 0.185450 | 0.527804 | 0.704151 | NaN |
| 319 | 0.206724 | 0.145403 | 0.580917 | 0.082577 | 0.922378 | NaN |
| 327 | 0.275266 | 0.823185 | 0.728597 | 0.592526 | 0.550500 | NaN |
| 329 | 0.283477 | 0.349884 | 0.562985 | 0.588773 | 0.890677 | NaN |
| 333 | 0.117343 | 0.038432 | 0.223937 | 0.645885 | 0.837589 | NaN |

85 rows × 6 columns

```
In [44]:
```

```
newdf.drop(['A','B'], axis=1, inplace=True)
KeyError
                                           Traceback (most recent call last)
<ipython-input-44-b61296a29257> in <module>
----> 1 newdf.drop(['A','B'], axis=1, inplace=True)
~\anaconda3\lib\site-packages\pandas\core\frame.py in drop(self, labels, axi
s, index, columns, level, inplace, errors)
   3988
                        weight 1.0
   3989
-> 3990
                return super().drop(
   3991
                    labels=labels,
   3992
                    axis=axis,
~\anaconda3\lib\site-packages\pandas\core\generic.py in drop(self, labels, a
xis, index, columns, level, inplace, errors)
                for axis, labels in axes.items():
   3934
   3935
                    if labels is not None:
-> 3936
                        obj = obj._drop_axis(labels, axis, level=level, erro
rs=errors)
   3937
   3938
                if inplace:
~\anaconda3\lib\site-packages\pandas\core\generic.py in _drop_axis(self, lab
els, axis, level, errors)
   3968
                        new_axis = axis.drop(labels, level=level, errors=err
ors)
   3969
                    else:
                        new_axis = axis.drop(labels, errors=errors)
-> 3970
   3971
                    result = self.reindex(**{axis_name: new_axis})
   3972
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in drop(self, labe
ls, errors)
   5016
                if mask.any():
   5017
                    if errors != "ignore":
                        raise KeyError(f"{labels[mask]} not found in axis")
-> 5018
   5019
                    indexer = indexer[~mask]
                return self.delete(indexer)
   5020
KeyError: "['A' 'B'] not found in axis"
```

# In [39]:

newdf #note:aapn jr inplace true nhi kel tr to fakt sadyapurta change hoil manje fakt copy # ex.aapn 0 coulun drop kela hota but to tri pn show krtoy krn aapn tevha inplace true nvte



# Out[39]:

| С        | D                                                                                | E                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.261321 | 0.283373                                                                         | 0.710600                                                                                                                                                          | 12223.0                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.356004 | 0.670794                                                                         | 0.367154                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.629785 | 0.416491                                                                         | 0.632631                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.862828 | 0.453117                                                                         | 0.251587                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.446373 | 0.229521                                                                         | 0.774194                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.562985 | 0.588773                                                                         | 0.890677                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.410589 | 0.716287                                                                         | 0.429332                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.908540 | 0.695854                                                                         | 0.008176                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.121202 | 0.983670                                                                         | 0.750115                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.223937 | 0.645885                                                                         | 0.837589                                                                                                                                                          | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | 0.261321 0.356004 0.629785 0.862828 0.446373 0.562985 0.410589 0.908540 0.121202 | 0.261321 0.283373 0.356004 0.670794 0.629785 0.416491 0.862828 0.453117 0.446373 0.229521 0.562985 0.588773 0.410589 0.716287 0.908540 0.695854 0.121202 0.983670 | 0.261321       0.283373       0.710600         0.356004       0.670794       0.367154         0.629785       0.416491       0.632631         0.862828       0.453117       0.251587         0.446373       0.229521       0.774194              0.562985       0.588773       0.890677         0.410589       0.716287       0.429332         0.908540       0.695854       0.008176         0.121202       0.983670       0.750115 |

334 rows × 4 columns

# In [40]:

newdf

# Out[40]:

|    | С                      | D                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0.261321               | 0.283373                                                                                                                                                                                                     | 0.710600                                                                                                                                                                                                                                                                                                                                                                 | 12223.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1  | 0.356004               | 0.670794                                                                                                                                                                                                     | 0.367154                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2  | 0.629785               | 0.416491                                                                                                                                                                                                     | 0.632631                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3  | 0.862828               | 0.453117                                                                                                                                                                                                     | 0.251587                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4  | 0.446373               | 0.229521                                                                                                                                                                                                     | 0.774194                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29 | 0.562985               | 0.588773                                                                                                                                                                                                     | 0.890677                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30 | 0.410589               | 0.716287                                                                                                                                                                                                     | 0.429332                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31 | 0.908540               | 0.695854                                                                                                                                                                                                     | 0.008176                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 32 | 0.121202               | 0.983670                                                                                                                                                                                                     | 0.750115                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33 | 0.223937               | 0.645885                                                                                                                                                                                                     | 0.837589                                                                                                                                                                                                                                                                                                                                                                 | NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | 1 2 3 4 29 330 331 332 | <ul> <li>0 0.261321</li> <li>1 0.356004</li> <li>2 0.629785</li> <li>3 0.862828</li> <li>4 0.446373</li> <li></li> <li>29 0.562985</li> <li>30 0.410589</li> <li>31 0.908540</li> <li>32 0.121202</li> </ul> | 0       0.261321       0.283373         1       0.356004       0.670794         2       0.629785       0.416491         3       0.862828       0.453117         4       0.446373       0.229521              29       0.562985       0.588773         30       0.410589       0.716287         31       0.908540       0.695854         32       0.121202       0.983670 | 0       0.261321       0.283373       0.710600         1       0.356004       0.670794       0.367154         2       0.629785       0.416491       0.632631         3       0.862828       0.453117       0.251587         4       0.446373       0.229521       0.774194               29       0.562985       0.588773       0.890677         30       0.410589       0.716287       0.429332         31       0.908540       0.695854       0.008176         32       0.121202       0.983670       0.750115 |

334 rows × 4 columns

```
In [45]:
```

```
#row delete kelya nantr index reset karnyasthi
newdf.reset_index(drop=True, inplace=True)
```

# In [46]:

```
newdf.head()
```

# Out[46]:

|   |   | С        | D        | E        | 0       |
|---|---|----------|----------|----------|---------|
| _ | 0 | 0.261321 | 0.283373 | 0.710600 | 12223.0 |
|   | 1 | 0.356004 | 0.670794 | 0.367154 | NaN     |
|   | 2 | 0.629785 | 0.416491 | 0.632631 | NaN     |
|   | 3 | 0.862828 | 0.453117 | 0.251587 | NaN     |
|   | 4 | 0.446373 | 0.229521 | 0.774194 | NaN     |

# In [56]:

```
df=pd.DataFrame({
   'cars': ["BMW", "Volvo", "Ford",'tata','tata'],
   'passings': [3, 7, 2,3,'NaT']
})
df
```

# Out[56]:

|   | cars  | passings |
|---|-------|----------|
| 0 | BMW   | 3        |
| 1 | Volvo | 7        |
| 2 | Ford  | 2        |
| 3 | tata  | 3        |
| 4 | tata  | NaT      |

# In [66]:

df.dropna()

# Out[66]:

|   | cars  | passings |
|---|-------|----------|
| 0 | BMW   | 3        |
| 1 | Volvo | 7        |
| 2 | Ford  | 2        |
| 3 | tata  | 3        |
| 4 | tata  | NaT      |

```
In [64]:
df.drop_duplicates(subset=['cars'])
Out[64]:
    cars passings
 0 BMW
               3
 1 Volvo
               7
 2 Ford
    tata
In [67]:
df.drop_duplicates(subset=['cars'], keep=False)
Out[67]:
    cars passings
 0 BMW
 1 Volvo
               7
               2
 2 Ford
In [70]:
df.drop_duplicates(subset=['cars'], keep='last')
Out[70]:
    cars passings
 0 BMW
 1 Volvo
```

Ford

tata

NaT

```
In [77]:
df.drop_duplicates(subset=['cars'], keep='first', inplace=True)
Out[77]:
         passings
    cars
0 BMW
1 Volvo
               7
 2
    Ford
               2
 3
               3
    tata
In [76]:
df.shape
                      #return size of dataframe
Out[76]:
(4, 2)
In [78]:
df.info()
             #return all information about your dataframe
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4 entries, 0 to 3
Data columns (total 2 columns):
             Non-Null Count Dtype
    Column
 1
     cars
               4 non-null
                                object
     passings 4 non-null
                                object
dtypes: object(2)
memory usage: 96.0+ bytes
In [83]:
data=pd.read_excel('pandas.xlsx', sheet_name=0)
data
Out[83]:
    name salary
0
     rushi
            50k
 1
    sagar
           100k
2 keshav
            50k
            40k
 3
    dipak
In [92]:
data.loc[0, 'name']='shital'
```

```
In [93]:
data
Out[93]:
    name salary
 0
     shital
             50k
 1
            100k
     sagar
 2 keshav
             50k
     dipak
             40k
In [95]:
data.to_excel('pandas.xlsx')
In [ ]:
```