EE 599 Spring 2020 Homework1

Jianqi Zhang<jianqiz@usc.edu>, 1052509893 2020/03/05

1 Odd-even transposition sort[40 Points]

Odd-even transposition sort algorithm is a parallel sorting algorithm. It sorts n elements in n clocks (n is even), each of which requires n/2 compare-exchange operations. This algorithm alternates between two phases, called the odd and even phases. Let $< a_1; a_2; ...; a_n >$ be the sequence to be sorted. During the odd phase, elements with odd indices are compared with their right neighbors, and if they are out of sequence they are exchanged; thus, the pairs $(a_1; a_2); (a_3; a_4); ...; (a_{n-1}; a_n)$ are compare-exchanged (assuming n is even). Similarly, during the even phase, elements with even indices are compared with their right neighbors, and if they are out of sequence they are exchanged; thus, the pairs $(a_2; a_3); (a_4; a_5); ...; (a_{n-2}; a_{n-1})$ are compare-exchanged. After n phases of odd-even exchanges, the sequence is sorted. An example sorting instance is shown in Figure 1.

- Implementation: Using Xilinx Vivado Software (Use Zynq-7000 xc7z007 sclg225-2 FPGA)
- 1. Using Verilog, implement odd-even transposition circuit, which takes n, 8 bit inputs and sort them.
- 2. For a 16 elements write a test bench and verify the waveforms.
- 3. Elaborate the design and include all the schematics' screenshots of the modules in the report.
- 4. Synthesis the design and include the screenshots.
- 5. Generate Resource and timing estimations and include them in the report.
- 6. Redo part 3, 4, 5 for 32, 64, 128.

Schematics' screenshots are shown below:

a. OddCompareUnit is designed to compare two 8-bit number A and B, and output the maximum one and minimum one between them.

b. OddevenSort is the top module of the design. The main part of this module is an array of compare unit, which consist of 8 odd compare units and 7 even compare units.

The total schematic is shown in the Appendix.

For a 16 elements test bench, we give 16 8-bit numbers as input, and after 2*16 = 32 clocks, the module will output sorted results. The waveform is shown as followed:

We can see input_tb includes 16 8-bit numbers, after 16 clocks, output_tb gives the sorted number array.

Then, we give another sets of input.

The full synthesis schematic please see in the Appendix.

Resource Estimations:

| Tool Version : Vivado v. 2019. 2.1 (win64) Build 2729669 Thu Dec 5 04:49:17 MST 2019

| Date : Thu Mar 5 21:23:41 2020

| Host : DESKTOP-06TLU5M running 64-bit major release (build 9200)

| Command : report_utilization -file OddevenSort_utilization_synth.rpt -pb OddevenSort_utilization_synth.pb

| Design : OddevenSort | Device : 7z007sclg225-2 | Design State : Synthesized

Utilization Design Information

Table of Contents

- 1. Slice Logic
- 1.1 Summary of Registers by Type
- 2. Memory
- 3. DSP
- 4. IO and GT Specific
- 5. Clocking
- 6. Specific Feature
- 7. Primitives
- 8. Black Boxes
- 9. Instantiated Netlists
- 1. Slice Logic

Site Type	Used	Fixed	Available	Util%
Slice LUTs*	322	0	14400	2.24
LUT as Logic	322	0	14400	2.24
LUT as Memory	0	0	6000	0.00
Slice Registers	396	0	28800	1.38
Register as Flip Flop	396	0	28800	1.38
Register as Latch	0	0	28800	0.00
F7 Muxes	0	0	8800	0.00
F8 Muxes	0	0	4400	0.00

* Warning! The Final LUT count, after physical optimizations and full implementation,

1.1 Summary of Registers by Type

+			
Total	Clock Enable	Synchronous	Asynchronous
0		-	-
0	_	-	Set
0	_	-	Reset
0	_	Set	-
0	_	Reset	- 1
0	Yes	-	-
0	Yes	-	Set
266	Yes	-	Reset
0	Yes	Set	-
130	Yes	Reset	- 1

2. Memory

Site Type	Used		Fixed	A	wailable	+ 	Util%
Block RAM Tile RAMB36/FIFO* RAMB18	0	i	0	i	50	i	0.00 0.00

* Note: Each Block RAM Tile only has one FIFO logic available and therefore c

3. DSP				
Site Type	Used	Fixed	Available	Util%
DSPs	0	0	66	0.00

5. Clocking

Site Type	Used	Fixed	Available	Util%
BUFGCTRL	1	0	32	3.13
BUFIO	0	0	8	0.00
MMCME2_ADV	0	0	2	0.00
PLLE2_ADV	0	0	2	0.00
BUFMRCE	0	0	4	0.00
BUFHCE	0	0	48	0.00
BUFR	0	0	8	0.00

6. Specific Feature

i	Used		Fixed		Available	 -	Util%
1	0	ı	0	I	4	I	0.00
I	0	ı	0	I	1	I	0.00
	0		0		1	I	0.00
I	0		0	I	1	I	0.00
I	0		0	I	1	I	0.00
I	0	l	0	I	2	I	0.00
	0		0		1	I	0.00
I	0		0		1	I	0.00
		0 0 0 0 0 0		0 0 0 1 0 0 0 0 0 0	0 0 1 0 0 1 0 0 1 0 0	0 0 4 0 0 1 1 0 0 1 1 1 1	0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 1

Timing Estimation:

◆ Design Timing Summary

up		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.547 ns	Worst Hold Slack (WHS):	0.136 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	532	Total Number of Endpoints:	532	Total Number of Endpoints:	397

Now redo for 32 inputs.

The full synthesis schematic please see in the Appendix.

Resource Estimation:

Timing Estimation:

Power Estimation:

Now redo for 64 inputs.

The full synthesis schematic please see in the Appendix.

Resource Estimation:

4. IO and GT Specific

Site Type	Use	d	Fixed	Available	Util%
Bonded IOB	102	6	0	54	1900.00
Bonded IPADs	1	0	0	2	0.00
Bonded IOPADs	1	0	0	130	0.00
PHY_CONTROL	1	0	0	2	0.00
PHASER_REF	1	0	0	2	0.00
OUT_FIFO	1	0	0	8	0.00
IN_FIFO	1	0	0	8	0.00
IDELAYCTRL	1	0	0	2	0.00
IBUFDS	1	0	0	54	0.00
PHASER_OUT/PHASER_OUT_PHY	1	0	0	8	0.00
PHASER_IN/PHASER_IN_PHY	1 0	0	0	8	0.00
IDELAYE2/IDELAYE2_FINEDELAY	1	0	0	100	0.00
ILOGIC	1	0	0	54	0.00
OLOGIC	1	0	0	54	0.00

5. Clocking

7. Primitives

Site Type	Used	Fixed	Available	Util%
BUFGCTRL	1	0	32	3.13
BUFIO	0	0	8	0.00
MMCME2_ADV	0	0	2	0.00
PLLE2_ADV	0	0	2	0.00
BUFMRCE	0	0	4	0.00
BUFHCE	0	0	48	0.00
BUFR	0	0	8	0.00

6. Specific Feature

+				
Site Type	Used	Fixed	Available	Util%
BSCANE2	0	0	4	0.00
CAPTUREE2	0	0	1	0.00
DNA_PORT	0	0	1	0.00
EFUSE_USR	0	0	1	0.00
FRAME_ECCE2	0	0	1	0.00
ICAPE2	0	0	2	0.00
STARTUPE2	0	0	1	0.00
XADC	0	0	1	0.00

| Ref Name | Used | Functional Category | Flop & Latch | FDCE 1034 LUT3 884 LUT LUT6 LUT FDRE 522 Flop & Latch | IBUF 514 IO | OBUF IO | 512 260 LUT LUT4 | 131 | LUT5 LUT CarryLogic | CARRY4 63 | LUT2 3 | LUT LUT1 1 | LUT | BUFG 1 1 | Clock |

Timing Estimation:

◆ Design Timing Summary

tup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.040 ns	Worst Hold Slack (WHS):	0.131 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	2076	Total Number of Endpoints:	2076	Total Number of Endpoints:	1557

Now redo for 128 inputs.

The full synthesis schematic please see in the Appendix.

Ref Name	Used	Functional Category
FDCE	2058	Flop & Latch
LUT3	1780	LUT
LUT6	1538	LUT
FDRE	1044	Flop & Latch
IBUF	1026	10
OBUF	1024	10
LUT4	526	LUT
LUT5	259	LUT
CARRY4	127	CarryLogic
LUT2	3	LUT
LUT1	1	LUT
BUFG	1	Clock

7. Primitives

Timing Estimation:

Design Timing Summary Setup Hold **Pulse Width** 0.131 ns Worst Pulse Width Slack (WPWS): 4 500 ns Worst Negative Slack (WNS): 6.040 ns Worst Hold Slack (WHS): Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Total Number of Endpoints: 4134 Total Number of Endpoints: 4134 Total Number of Endpoints: 3103 All user specified timing constraints are met.

2 Dense Matrix-Matrix Multiplication [60 Points]

2.1 Scalable Multiply and adder tree

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, the matrix product C = AB (denoted without multiplication signs or dots) is defined to be the $m \times p$ matrix such that,

$$c_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \dots + a_{i,n}b_{n,j} = \sum_{k=1}^{n} a_{i,k}b_{k,j};$$

where for i = 1, ..., m and j = 1, ..., p

Consider two matrices A and B, each having the size of $n \times n$ where $n = 2^r$.

Figure 3 shows an example design of Multiply and Adder Tree. The adder tree consists of a Multiplication Step following Adder Steps. Given the size of matrices is $n \times n$, there are n multipliers in the first stage. Assume that matrix A saved in row order, and matrix B saved in column order in the memory. In the beginning, the first row of A and the first column of B loaded and multiplied together. Then in each Adder Step, partial sums are added together until it produces the final result corresponding to an element in the output matrix. Adder steps consist of 2 element adders as shown in Figure 2. Notice that Multiply and adder tree is a pipeline process. Notice that in each step, after corresponding rows and columns of A and B going through the pipe, it produces one element of the output matrix.

2.1.1 Design Problems

Consider simple Multiply and Adder Tree design with n element multiplication,

1. How many Multiply units needed for the entire design?

 η

2. Consider an adder stage r, how many adder modules needed for that stage (Assume multiplication stage as stage 0)?

$$2^{\log n - r}$$

3. If all the inputs to the design represented using k bits, how many bits are needed to represent the final result of the Multiply and Adder Tree?

$$2k - 1 + \log n$$

4. How may Adder modules need for the entire multiply and adder tree design?

$$n-1$$

5. How many clock cycles need to produce the first output element in the adder tree?

$$\log n + 1$$

6. How many clock cycles need to multiply two $n \times n$ matrices?

$$n^2 + \log n$$

2.1.2 Implementation

- 1. Write a testbench which provides two 4X4 matrices to the design and takes output final 4X4 resultant matrix.
- 2. Simulate the design using the simulator and include the waveform in the report (Clearly indicate the locations where final outputs produced)
- 3. Elaborate the design and include all the schematics' screenshots of the modules (MulandAddTree, adder, and multiply) in the report.
- 4. Synthesis the design and include the screenshots like part 3.
- 5. Generate Resource and timing estimations and include them in the report.

- 6. Generate power estimation reports and include them in the report.
- 7. How many of parallel *MulandAddTrees* can be implemented in this FPGA (Provide resource utilization reports with parallel *MulandAddTres*)?
- 8. Redo part 4,5,6 for 8x8, 16x16 and 32x32 matrices.

Schematics' screenshots are shown below:

MultiplyUnit is designed to get the product of two 8-bit number A and B.

And according to the number of elements of matrix, combine all of the multiply units into **MultiplyStage**

As for **Adder**, it computes the sum of two 16-bit numbers A and B.

And n-1 **Adders** make up the **AdderStage** module.

The Top Module, which is MulandAddTree consist of MultiplyStage and AdderStage.

// matrix1:
// 1 2 3 4

// 2 3 4 5

// 3 4 5 6

// 4 5 6 7

// matrix2:

// 1 0 0 0

// 0 1 0 0

// 0 0 1 0 // 0 0 0 1

Result:

1 2 3 4

2 3 4 5 3 4 5 6

4 5 6 7

// matrix3:

// 1 2 3 4

// 2 3 4 5

Result:

30 40 50 60

40 54 68 82

The synthesis schematic please see in the Appendix.

Resource Estimation for 4x4 size:

Now redo for 8x8 size.

The full synthesis schematic please see in the Appendix.

Resource Estimation:

									1.1 Summ	ary of Register	s by Type	
Site Type	i	Used	1	ixed	Available	1	Util9	• 	Total	Clock Enable	Synchronous	Asynchronous
Slice LUTs*	i	601	i	0	14400	i	4.17	l	0		-	
LUT as Logic	Ī	601	1	0	14400	Ī	4.17	l .	0	1 _	-	Set
LUT as Memory	Ī	0	I	0	6000	Ī	0.00	I	0	1 _	-	Reset
Slice Registers	ı	240	ı	0	28800	Ī	0.83	1	0	1 _	Set	-
Register as Flip Flop	ī	240	ı	0	28800	Ī	0.83	1	0	1 _	Reset	-
Register as Latch	i	0	i.	0	28800	i	0.00	i	0	Yes	-	-
F7 Muxes	ï	0	•	0					0	Yes	-	Set
	÷		•		•	1			240	Yes	-	Reset
F8 Muxes	ı	0	1	0	4400	1	0.00	1	0	Yes	Set	-
	+		+		+	+		+	0	Yes	Reset	-

Memory	
	. 3 DSP

ite Type Used Fixed Available Util%								
k RAM Tile 0 0 50 0.00			Util%	Available	ed	F	Used	e
MB36/FIF0* 0 0 50 0.00 Site Type Used Fixed	Site Type	Sit						
MB18 0 0 100 0.00	DSPs	1 .	0.00	100	0	<u> </u>	0	!

				Site Type	Used	Fixed	Available	Util%	l
				Bonded IOB	146	0	54	270.37	i
				Bonded IPADs	0	1 0	1 2	0.00	ı
				Bonded IOPADs	0	0	130	0.00	ı
				PHY_CONTROL	0	0	1 2	0.00	ı
				PHASER_REF	0	0	2	0.00	ı
				OUT_FIFO	1 0	0	8	0.00	ı
				IN_FIFO	0	0	8	0.00	ı
_				IDELAYCTEL	0	0	2	0.00	ı
_				IBUFDS	0	0	54	0.00	ı
d	Fixed	Available	Util%	PHASER_OUT/PHASER_OUT_PHY	0	0	8	0.00	ı
				PHASER_IN/PHASER_IN_PHY	0	0	8	0.00	ı
				IDELAYE2/IDELAYE2_FINEDELAY	1 0	0	100	0.00	ı
0	0	66	0.00	ILOGIC	0	0	54	0.00	ı
				OLOGIC	0	1 0	54	0.00	ı
									ı

7. Primitives

5. Clocking					6. Specific F	eature						
										Ref Name	Used	Functional Category
Site Type	Used	Fixed	Available	Util%	Site Type	Used	Fixed	Available	Util%	LUT2 + FDCE	304	LUT
BUFGCTRL	1	0	32	3.13	BSCANE2 CAPTUREE2	0 0	0 0		0.00	Larma	208	LUT LUT
BUFIO MMCME2 ADV	0 0			0.00 0.00	DNA_PORT	0	0	1	0.00	CARRY4	132	CarryLogic
PLLE2_ADV	0		2	0.00	FRAME_ECCE2	0		1	0.00	LUTS	48	LUT LUT
BUFMRCE BUFHCE	0 0			0.00 0.00	ICAPE2 STARTUPE2	0	0 0	•	0.00	OBUF	1 16	I IUI
BUFR	0	0	8	0.00	XADC	0	0	1	0.00		1 1	Clock

Timing Estimation:

5. Clocking

Power Estimation:

Now redo for 16x16 size.

The full synthesis schematic please see in the Appendix.

Resource Estimation:

Total	Clock Enable	Synchronous	Asynchronous
0	_	-	
0		- 1	Set Set
0		-	Reset
0		S*t	
0		Reset	
0	Tes	- 1	
0	Tes	- 1	l Se
496	Tes	-	Rese
0	Yes	Set	
0	Tes	Reset	

Site Type	llsed	Fixed	Available	l II+i1
Block RAM Tile	0	0	50	0.0
RAMB36/FIF0*	0	0	50	0.0
RAMB18	1 0	I 0	100	0.0

3. DSP

Site Type	Used	Fixed	Available	Util%
DSPs			66	•

4. IO and GT Specific

L				
Site Type	Used	Fixed	Available	Util%
Bonded IOB	274	0	54	507.41
Bonded IPADs	0	0	2	0.00
Bonded IOPADs	0	0	130	0.00
PHY_CONTROL	0	0	2	0.00
PHASER_REF	0	0	2	0.00
OUT_FIFO	0	0	8	0.00
IN_FIFO	0	0	8	0.00
IDELAYCTRL	0	0	2	0.00
IBUFDS	0	0	54	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	8	0.00
PHASER_IN/PHASER_IN_PHY	0	0	8	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	100	0.00
ILOGIC	0	0	54	0.00
OLOGIC	0	0	54	0.00

5. Clocking

Site Type	Used	F	ixed	1	Available	Util%
BUFGCTRL	1	ï	0	Ī	32	3.13
BUFIO	0	I	0	I	8	0.00
MMCME2_ADV	0	ı	0	I	2	0.00
PLLE2_ADV	0	I	0	I	2	0.00
BUFMRCE	0	L	0	Ī	4	0.00
BUFHCE	0	l	0	Ī	48	0.00
BUFR	0	I	0	I	8	0.00

7. Primitives

6. Specific Feature

Site Type	Used	Fixed	Available	Util%
BSCANE2	0	0	4	0.00
CAPTUREE2	0	0	1	0.00
DNA_PORT	0	0	1	0.00
EFUSE_USR	0	0	1	0.00
FRAME_ECCE2	0	0	1	0.00
ICAPE2	0	0	2	0.00
STARTUPE2	0	0	1	0.00
XADC	0	0	1	0.00

Ref Name	Used	Functional Category
LUT2	624	LUT
FDCE	496	Flop & Latch
LUT6	416	LUT
LUT4	400	LUT
CARRY4	268	CarryLogic
IBUF	258	I0
LUT5	96	LUT
LUT3	96	LUT
OBUF	16	IO
LUT1	1	LUT
BUFG	1	Clock

Timing Estimation:

◆ Design Timing Summary

Worst Pulse Width Slack (WPWS): 4.500 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns Number of Failing Endpoints: 0

497

Total Number of Endpoints:

Pulse Width

Now redo for 32x32 size.

The full synthesis schematic please see in the Appendix.

Resource Estimation:

					1.1 Sur	mmary of Register	s by Type	
Site Type	Used	Fixed	Available	Util%	Total	l Clock Enable	Synchronous	Asynchronou
Slice LUTs*	2449	0	14400	17.01	10	1 _	-	l
LUT as Logic	2449	0	14400	17.01	0	1 -	1 -	l S
LUT as Memory	0	0	6000	0.00	10	1 _	-	Res
Slice Registers	1008	1 0	l 28800	3.50	10	1 -	Set	
Register as Flip Flop				3.50	10	-	Reset	
Register as Latch	1 0			0.00	0	Yes		!
					10	Yes		l s
F7 Muxes	0	0	8800	0.00	1008	Yes	-	Res
78 Muxes	0	0	4400	0.00	10	Yes	Set	I
			-	-	1.0	Yes	Reset	I .

Jsed	Fixed	Available	Util%	1 Site Town	I II J	l =:1		l maile
0	0	50	0.00	Site Type	Used	Fixed	Available	Util%
			0.00	I nep-				I 0.00
0	0	100	0.00	loss			. 66	. 0.00
	0	0 0	0 0 50	0 0 50 0.00	Site Type	Site Type Used	Site Type Used Fixed 0 0 50 0.00	Site Type Used Fixed Available

4. IO and GT Specific

Site Type	t	Jsed	Fixed	Available	I	Util%	I						
Bonded IOB	i	530	0	54	1 :	981.48	·	5.	Clocking				
Bonded IPADs	Ĺ	0	0	2	Ĺ	0.00		-					
Bonded IOPADs	1	0	1 0	130	ı	0.00	1						
PHY_CONTROL	I	0	0	2	Ī	0.00		+					
PHASER_REF		0	0	2	I	0.00		ī	Site Type	Used	Fixed	Available	
OUT_FIFO		0	0	8	ı	0.00		÷					
IN_FIFO		0	0	8	ı	0.00		i	BUFGCTRL	1 1	I 0	32	
IDELAYCTRL		0	0	2	ı	0.00			BUFIO	1 0			
IBUFDS		0	0	54	I	0.00	1						
PHASER_OUT/PHASER_OUT_PHY	1	0	0	8	ı	0.00	1 3		MMCME2_ADV	0			
PHASER IN/PHASER IN PHY	ī.	0	1 0	8	ī	0.00	ı i		PLLE2_ADV	0	0	2	
IDELAYE2/IDELAYE2 FINEDELAY	i.	0	I 0	100	i	0.00			BUFMRCE	0	0	4	
ILOGIC	i.	0		54	i.	0.00	i		BUFHCE	0	0	48	
OLOGIC	Ĺ	0	I o	54	Ĺ	0.00		T	BUFR	0	0	8	

7. Primitives

						Ref Name	11	Used	Functional Category
					++	LUT2	1:	1264	LUI
Site Type	Used	l F	ixed	Available	Util%	FDCE	1:	1008	Flop & Latch
		-			++	LUT6	1	832	LUT
BSCANE2	I 0	ı	0	4	0.00	LUT4	1	800	LUT
CAPTUREE2	0	i .	0	1	0.00	CARRY4		540	CarryLogic
DNA_PORT	0	i	0	1	0.00	IBUF	1	514	10
EFUSE_USR	0	Ĺ	0	1	0.00	LUT5		192	LUT
FRAME_ECCE2	0	ı	0	1	0.00	LUT3	1	192	LUT
ICAPE2	0	ĺ	0	2	0.00	OBUF		16	10
STARTUPE2	0	Ĺ	0	1	0.00	LUT1		1	LUT
XADC	l 0	ı	0	1 1	0.00	BUFG		1	Clock

Timing Estimation:

