INTEGRATED CIRCUITS

DATA SHEET

74LVC1G126Bus buffer/line driver; 3-state

Product specification Supersedes data of 2002 Oct 02 2004 Sep 21

Bus buffer/line driver; 3-state

74LVC1G126

FEATURES

- Wide supply voltage range from 1.65 V to 5.5 V
- · High noise immunity
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V).
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- · Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- · Multiple package options
- · ESD protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.

DESCRIPTION

The 74LVC1G126 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The input can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{off} . The I_{off} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74LVC1G126 provides one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (OE). A low level at pin OE causes the output to assume a high-impedance OFF-state.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_{r} = $t_{f} \le 2.5$ ns.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay input A to output Y	$V_{CC} = 1.8 \text{ V}; C_L = 30 \text{ pF}; R_L = 1 \text{ k}\Omega$	3.0	ns
		$V_{CC} = 2.5 \text{ V}; C_L = 30 \text{ pF}; R_L = 500 \Omega$	2.1	ns
		$V_{CC} = 2.7 \text{ V}; C_L = 50 \text{ pF}; R_L = 500 \Omega$	2.3	ns
		$V_{CC} = 3.3 \text{ V; } C_L = 50 \text{ pF; } R_L = 500 \Omega$	2.0	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 50 \text{ pF}; R_L = 500 \Omega$	1.7	ns
C _I	input capacitance		5	pF
C _{PD}	power dissipation capacitance	output enabled; notes 1 and 2	25	pF
		output disabled; notes 1 and 2	6	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

2. The condition is $V_I = GND$ to V_{CC} .

Bus buffer/line driver; 3-state

74LVC1G126

FUNCTION TABLE

See note 1.

INF	OUTPUT	
OE	Α	Y
Н	L	L
Н	Н	Н
L	X	Z

Note

1. H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

ORDERING INFORMATION

	PACKAGE							
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE	MARKING		
74LVC1G126GW	-40 °C to +125 °C	5	TSSOP5	plastic	SOT353	VN		
74LVC1G126GV	-40 °C to +125 °C	5	SC-74A	plastic	SOT753	V26		
74LVC1G126GM	–40 °C to +125 °C	6	XSON6	plastic	SOT886	VN		

PINNING

PIN TSSOP5; SC-74A	PIN XSON6	SYMBOL	DESCRIPTION
1	1	OE	output enable input
2	2	А	data input A
3	3	GND	ground (0 V)
4	4	Υ	data output Y
-	5	n.c.	not connected
5	6	V _{CC}	supply voltage

Bus buffer/line driver; 3-state

74LVC1G126

2004 Sep 21

4

Bus buffer/line driver; 3-state

74LVC1G126

2004 Sep 21

5

Bus buffer/line driver; 3-state

74LVC1G126

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	V _{CC} = 1.65 V to 5.5 V; enable mode	0	V _{CC}	V
		V _{CC} = 1.65 V to 5.5 V; disable mode	0	5.5	V
		V _{CC} = 0 V; Power-down mode	0	5.5	٧
T _{amb}	operating ambient temperature		-40	+125	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.65 V to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 V to 5.5 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	٧
I _{IK}	input diode current	V _I < 0 V	_	-50	mA
VI	input voltage	note 1	-0.5	+6.5	٧
I _{OK}	output diode current	$V_O > V_{CC}$ or $V_O < 0$ V	_	±50	mA
Vo	output voltage	enable mode; notes 1 and 2	-0.5	V _{CC} + 0.5	V
		disable mode; notes 1 and 2	-0.5	+6.5	V
		Power-down mode; notes 1 and 2	-0.5	+6.5	V
I _O	output source or sink current	$V_{O} = 0 \text{ V to } V_{CC}$	_	±50	mA
I _{CC} , I _{GND}	V _{CC} or GND current		_	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	_	250	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

Bus buffer/line driver; 3-state

74LVC1G126

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	PARAMETER	TEST CONDI	TIONS	NAIN!	TVD (1)	MAX.	UNIT
SYMBOL		OTHER	V _{CC} (V)	MIN.	TYP. ⁽¹⁾		
T _{amb} = -40) °C to +85 °C				•	•	
V _{IH}	HIGH-level input		1.65 to 1.95	$0.65 \times V_{CC}$	_	_	V
	voltage		2.3 to 2.7	1.7	_	_	V
			2.7 to 3.6	2.0	_	_	V
			4.5 to 5.5	$0.7 \times V_{CC}$	_	_	V
V _{IL}	LOW-level input voltage		1.65 to 1.95	_	_	$0.35 \times V_{CC}$	V
			2.3 to 2.7	_	_	0.7	V
			2.7 to 3.6	_	_	0.8	V
			4.5 to 5.5	_	_	$0.3 \times V_{CC}$	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_O = 100 \mu A$	1.65 to 5.5	_	_	0.1	V
		$I_O = 4 \text{ mA}$	1.65	_	_	0.45	V
		$I_O = 8 \text{ mA}$	2.3	_	_	0.3	V
		$I_O = 12 \text{ mA}$	2.7	_	_	0.4	V
		$I_O = 24 \text{ mA}$	3.0	_	_	0.55	V
		$I_O = 32 \text{ mA}$	4.5	_	_	0.55	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_O = -100 \mu A$	1.65 to 5.5	V _{CC} – 0.1	_	_	V
		$I_O = -4 \text{ mA}$	1.65	1.2	_	_	V
		$I_O = -8 \text{ mA}$	2.3	1.9	_	_	V
		$I_O = -12 \text{ mA}$	2.7	2.2	_	_	V
		$I_O = -24 \text{ mA}$	3.0	2.3	_	_	V
		$I_O = -32 \text{ mA}$	4.5	3.8	_	_	V
l _{Ll}	input leakage current	$V_I = 5.5 \text{ V or GND}$	5.5	_	±0.1	±5	μΑ
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 5.5 \text{ V or GND}$	5.5	_	±0.1	±10	μΑ
l _{off}	power OFF leakage current	V_I or $V_O = 5.5 \text{ V}$	0	_	±0.1	±10	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	5.5	_	0.1	10	μΑ
Δl _{CC}	additional quiescent supply current per pin	$V_I = V_{CC} - 0.6 \text{ V};$ $I_O = 0 \text{ A}$	2.3 to 5.5	-	5	500	μΑ

Bus buffer/line driver; 3-state

74LVC1G126

SYMBOL	PARAMETER	TEST COND	TIONS		TYP. (1)	MAX.	UNIT
		OTHER	V _{CC} (V)	MIN.			
T _{amb} = -40) °C to +125 °C		1	!	•	'	!
V _{IH}	HIGH-level input		1.65 to 1.95	0.65 × V _{CC}	_	_	V
	voltage		2.3 to 2.7	1.7	_	_	V
			2.7 to 3.6	2.0	_	_	٧
			4.5 to 5.5	$0.7 \times V_{CC}$	_	_	V
V _{IL}	LOW-level input voltage		1.65 to 1.95	_	_	$0.35 \times V_{CC}$	٧
			2.3 to 2.7	_	_	0.7	V
			2.7 to 3.6	_	_	0.8	٧
			4.5 to 5.5	_	_	$0.3 \times V_{CC}$	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	I _O = 100 μA	1.65 to 5.5	_	_	0.1	V
		$I_O = 4 \text{ mA}$	1.65	_	_	0.70	V
		$I_O = 8 \text{ mA}$	2.3	_	_	0.45	V
		I _O = 12 mA	2.7	_	_	0.60	V
		I _O = 24 mA	3.0	_	_	0.80	V
		I _O = 32 mA	4.5	_	_	0.80	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	$I_{O} = -100 \mu\text{A}$	1.65 to 5.5	V _{CC} – 0.1	_	_	V
		$I_O = -4 \text{ mA}$	1.65	0.95	_	_	V
		$I_O = -8 \text{ mA}$	2.3	1.7	_	_	V
		$I_{O} = -12 \text{ mA}$	2.7	1.9	_	_	V
		$I_{O} = -24 \text{ mA}$	3.0	2.0	_	_	V
		$I_{O} = -32 \text{ mA}$	4.5	3.4	_	_	V
ILI	input leakage current	V _I = 5.5 V or GND	5.5	_	_	±100	μΑ
I _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND}$	5.5	_	_	±200	μΑ
l _{off}	power OFF leakage current	V_1 or $V_0 = 5.5 \text{ V}$	0	_	_	±200	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	5.5	_	_	200	μΑ
ΔI_{CC}	additional quiescent supply current per pin	$V_I = V_{CC} - 0.6 \text{ V};$ $I_O = 0 \text{ A}$	2.3 to 5.5	_	_	5000	μΑ

Note

1. All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

Bus buffer/line driver; 3-state

74LVC1G126

AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.0$ ns.

OVMDOL	DADAMETER	TEST CON	TEST CONDITIONS		T\/D	BA A V	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40	°C to +85 °C					1	
t _{PHL} /t _{PLH}	propagation delay A to Y	see Figs 6 and 8	1.65 to 1.95	1.0	3.0	8.0	ns
			2.3 to 2.7	0.5	2.1	5.5	ns
			2.7	0.5	2.3	5.5	ns
			3.0 to 3.6	0.5	2.0	4.5	ns
			4.5 to 5.5	0.5	1.7	4.0	ns
t _{PZH} /t _{PZL}	3-state output enable time	see Figs 7 and 8	1.65 to 1.95	1.0	3.2	9.4	ns
	input OE to Y		2.3 to 2.7	0.5	2.2	6.6	ns
			2.7	0.5	2.4	6.6	ns
			3.0 to 3.6	0.5	2.1	5.3	ns
			4.5 to 5.5	0.5	1.6	5.0	ns
t _{PHZ} /t _{PLZ}	3-state output disable time	see Figs 7 and 8	1.65 to 1.95	1.0	4.3	9.2	ns
input OE to Y	input OE to Y		2.3 to 2.7	0.5	2.7	5.5	ns
			2.7	0.5	3.4	5.5	ns
			3.0 to 3.6	0.5	3.0	5.5	ns
			4.5 to 5.5	0.5	2.2	4.2	ns
T _{amb} = -40	°C to +125 °C		•	1	•	1	
t _{PHL} /t _{PLH}	propagation delay A to Y	see Figs 6 and 8	1.65 to 1.95	1.0	_	10.5	ns
			2.3 to 2.7	0.5	-	7	ns
			2.7	0.5	_	7	ns
			3.0 to 3.6	0.5	1-	6	ns
			4.5 to 5.5	0.5	-	5.5	ns
t _{PZH} /t _{PZL}	3-state output enable time	see Figs 7 and 8	1.65 to 1.95	1.0	_	12	ns
	input OE to Y		2.3 to 2.7	0.5	_	8.5	ns
			2.7	0.5	-	8.5	ns
			3.0 to 3.6	0.5	_	7	ns
			4.5 to 5.5	0.5	_	6.5	ns
t _{PHZ} /t _{PLZ}	3-state output disable time	see Figs 7 and 8	1.65 to 1.95	1.0	1-	12	ns
	input OE to Y		2.3 to 2.7	0.5	_	7	ns
			2.7	0.5	_	7	ns
			3.0 to 3.6	0.5	-	7	ns
			4.5 to 5.5	0.5	-	5.5	ns

Bus buffer/line driver; 3-state

74LVC1G126

AC WAVEFORMS

V	V	INF	UT	
V _{CC}	V _M	VI	$t_r = t_f$	
1.65 V to 1.95 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.3 V to 2.7 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.7 V	1.5 V	2.7 V	≤ 2.5 ns	
3.0 V to 3.6 V	1.5 V	2.7 V	≤ 2.5 ns	
4.5 V to 5.5 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.5 ns	

 $\rm V_{OL}$ and $\rm V_{OH}$ are typical output voltage drop that occur with the output load.

Fig.6 Input A to output Y propagation delay times.

Bus buffer/line driver; 3-state

74LVC1G126

V	V	INPUT		
V _{CC}	V _M	VI	$t_r = t_f$	
1.65 V to 1.95 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.3 V to 2.7 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.7 V	1.5 V	2.7 V	≤ 2.5 ns	
3.0 V to 3.6 V	1.5 V	2.7 V	≤ 2.5 ns	
4.5 V to 5.5 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.5 ns	

 $V_X = V_{OL} + 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V};$

 $V_X = V_{OL} + 0.15 \; V$ at $V_{CC} < 2.7 \; V;$

 $V_Y = V_{OH} - 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V};$

 V_{Y} = $V_{OH} - 0.15 \; V$ at $V_{CC} < 2.7 \; V.$

 $\rm V_{OL}$ and $\rm V_{OH}$ are typical output voltage drop that occur with the output load.

Fig.7 3-state enable and disable times.

Bus buffer/line driver; 3-state

74LVC1G126

V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		C B		V _{EXT}		
V _{CC}	V _I	CL	R_L	t _{PLH} /t _{PHL}	t _{PZH} /t _{PHZ}	t _{PZL} /t _{PLZ}	
1.65 V to 1.95 V	V _{CC}	30 pF	1 kΩ	open	GND	$2 \times V_{CC}$	
2.3 V to 2.7 V	V _{CC}	30 pF	500 Ω	open	GND	$2 \times V_{CC}$	
2.7 V	2.7 V	50 pF	500 Ω	open	GND	6 V	
3.0 V to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	6 V	
4.5 V to 5.5 V	V _{CC}	50 pF	500 Ω	open	GND	$2 \times V_{CC}$	

Definitions for test circuits:

R_L = Load resistor.

 C_L = Load capacitance including jig and probe capacitance.

 $R_{T}\!=\!Termination$ resistance should be equal to the output impedance Z_{o} of the pulse generator.

Fig.8 Load circuitry for switching times.

Bus buffer/line driver; 3-state

74LVC1G126

PACKAGE OUTLINES

Plastic surface mounted package; 5 leads

SOT353

VERSION IEC JEDEC EIAJ PROJECTION	OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
SOT353 SC-88A 97-02-28	VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
55 55.1	SOT353			SC-88A			97-02-28

Bus buffer/line driver; 3-state

74LVC1G126

Plastic surface mounted package; 5 leads

SOT753

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT753			SC-74A			02-04-16

Bus buffer/line driver; 3-state

74LVC1G126

04-07-15

04-07-22

JEITA

2004 Sep 21 15

MO-252

SOT886

Bus buffer/line driver; 3-state

74LVC1G126

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R20/05/pp17

Date of release: 2004 Sep 21

Document order number: 9397 750 13759

Let's make things better.

Philips Semiconductors

