Demystify Mamba in Vision: A Linear Attention Perspective

Dongchen Han Ziyi Wang Zhuofan Xia Yizeng Han Yifan Pu Chunjiang Ge Jun Song Shiji Song Bo Zheng Gao Huang

Background

Transformers has a Quadratic Complexity $O(N^2d)$ with respect to sequence length.

High Resolution Images

Videos

Mamba: a Powerful Selective State Space Model

Mamba

- ✓ High expressive capability
- ✓ Linear complexity $O(Nd^2)$
- ✓ Global modeling

A *promising* method to deal with *high-resolution* images!

... to million-length **sequences**. As a general **sequence model** backbone, **Mamba** achieves state-... On language **modeling**, our **Mamba**-3B **model** outperforms Transformers of the same
☆ Save 切 Cited by 339 Related articles All 4 versions ≫

Star 10.2k

∜ Fork 798

Motivation

Mamba

- ✓ Linear complexity O(N)
- ✓ Global modeling
- ✓ High expressive capability

Linear Attention

- ✓ Linear complexity O(N)
- ✓ Global modeling
- × Inferior performance

$$oldsymbol{y}_i = \sum_{j=1}^N rac{oldsymbol{Q}_i oldsymbol{K}_j^ op}{\sum_{j=1}^N oldsymbol{Q}_i oldsymbol{K}_j^ op} oldsymbol{V}_j = rac{oldsymbol{Q}_i igg(\sum_{j=1}^N oldsymbol{K}_j^ op oldsymbol{V}_jigg)}{oldsymbol{Q}_i igg(\sum_{j=1}^N oldsymbol{K}_j^ opigg)}$$

- 1. Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv:2312.00752, 2023.
- 2. Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International Conference on Machine Learning. PMLR, 2020: 5156-5165.

Linear Attention

Linear Attention $O = QK^TV$

Carefully designed kernels are introduced as the approximation of the original similarity function:

$$Q = \phi(x\mathbf{W}_Q), K = \phi(x\mathbf{W}_K), V = x\mathbf{W}_V$$

$$oldsymbol{y}_i = \sum_{j=1}^N rac{oldsymbol{Q}_i oldsymbol{K}_j^ op}{\sum_{j=1}^N oldsymbol{Q}_i oldsymbol{K}_j^ op} oldsymbol{V}_j = rac{oldsymbol{Q}_i igg(\sum_{j=1}^N oldsymbol{K}_j^ op oldsymbol{V}_jigg)}{oldsymbol{Q}_i igg(\sum_{j=1}^N oldsymbol{K}_j^ opigg)}$$

- × Inferior performance
- ✓ Linear complexity $O(Nd^2)$

^{1.} Katharopoulos A, Vyas A, Pappas N, et al. Transformers are rnns: Fast autoregressive transformers with linear attention[C]//International Conference on Machine Learning. PMLR, 2020: 5156-5165.

Recurrent Linear Attention

Non-causal linear attention (common linear attention):

$$oldsymbol{y}_i = \sum_{j=1}^N rac{oldsymbol{Q}_i oldsymbol{K}_j^ op}{\sum_{j=1}^N oldsymbol{Q}_i oldsymbol{K}_j^ op} oldsymbol{V}_j = rac{oldsymbol{Q}_i igg(\sum_{j=1}^N oldsymbol{K}_j^ op oldsymbol{V}_jigg)}{oldsymbol{Q}_i igg(\sum_{j=1}^N oldsymbol{K}_j^ opigg)}$$

Causal linear attention:

$$egin{aligned} oldsymbol{y}_i &= rac{oldsymbol{Q}_i \left(\sum_{j=1}^i oldsymbol{K}_j^ op oldsymbol{V}_j
ight)}{oldsymbol{Q}_i \left(\sum_{j=1}^i oldsymbol{K}_j^ op
ight)} riangleq rac{oldsymbol{Q}_i oldsymbol{S}_i}{oldsymbol{Q}_i oldsymbol{Z}_i}, \quad oldsymbol{S}_i &= \sum_{j=1}^i oldsymbol{K}_j^ op oldsymbol{V}_j, \quad oldsymbol{Z}_i &= \sum_{j=1}^i oldsymbol{K}_j^ op oldsymbol{V}_j \end{aligned}$$

Recurrent linear attention form:

$$S_i = S_{i-1} + K_i^{\top} V_i, \ Z_i = Z_{i-1} + K_i^{\top}, \ y_i = Q_i S_i / Q_i Z_i.$$

$$Z_i = Z_{i-1} + K_i$$

Selective State Space Model (Scalar Input)

$$h_i = \overline{A}_i h_{i-1} + \overline{B}_i x_i,$$

 $y_i = C_i h_i + D x_i,$

$$x_i \in \mathbb{R}, \ \overline{\boldsymbol{A}}_i \in \mathbb{R}^{d \times d}, \ \overline{\boldsymbol{B}}_i, \boldsymbol{h}_{i-1}, \boldsymbol{h}_i \in \mathbb{R}^{d \times 1},$$

 $y_i \in \mathbb{R}, \ \boldsymbol{C}_i \in \mathbb{R}^{1 \times d}, \ D \in \mathbb{R}.$

$$h_i = \widetilde{A}_i \odot h_{i-1} + B_i(\Delta_i \odot x_i),$$

 $y_i = C_i h_i + D \odot x_i,$

$$x_i, \Delta_i \in \mathbb{R}, \ \widetilde{\boldsymbol{A}}_i, \boldsymbol{B}_i, \boldsymbol{h}_{i-1}, \boldsymbol{h}_i \in \mathbb{R}^{d \times 1},$$

 $y_i \in \mathbb{R}, \ \boldsymbol{C}_i \in \mathbb{R}^{1 \times d}, \ D \in \mathbb{R}.$

$$\frac{\mathbf{h}_{i}}{\mathbf{h}_{i}} = \frac{\mathbf{\overline{A}}_{i}}{\mathbf{A}_{i}} \cdot \mathbf{h}_{i-1} + \frac{\mathbf{\overline{B}}_{i}}{\mathbf{B}_{i}} \cdot \mathbf{x}_{i}$$

$$\mathbf{y}_{i} = \mathbf{C}_{i} \cdot \mathbf{h}_{i} + \mathbf{D} \mathbf{x}_{i}$$

$$y_i = C_i + D \odot x_i$$

$$oxed{oxed{(1)}} oxed{oxed{A}}_i oldsymbol{h}_{i-1} \!=\! \widetilde{oldsymbol{A}}_i \!\odot\! oldsymbol{h}_{i-1}$$

$$(3) Dx_i = D \odot x_i$$

Selective State Space Model (Vector Input)

$$egin{aligned} m{h}_i &= \widetilde{m{A}}_i \odot m{h}_{i-1} + m{B}_i (m{\Delta}_i \odot m{x}_i), & m{x}_i, m{\Delta}_i \in \mathbb{R}^{1 imes C}, \ \widetilde{m{A}}_i, m{h}_{i-1}, m{h}_i \in \mathbb{R}^{d imes C}, \ m{B}_i \in \mathbb{R}^{d imes 1} \ m{y}_i &= m{C}_i m{h}_i + m{D} \odot m{x}_i, & m{y}_i \in \mathbb{R}^{1 imes C}, \ m{C}_i \in \mathbb{R}^{1 imes C}, \ m{D} \in \mathbb{R}^{1 imes C}, \end{aligned}$$

Selective SSM in Mamba

$$egin{aligned} m{h}_i &= \widetilde{m{A}}_i \odot m{h}_{i-1} + m{B}_i (m{\Delta}_i \odot m{x}_i), \ m{y}_i &= m{C}_i m{h}_i \ / \ 1 + m{D} \odot m{x}_i. \end{aligned}$$

$$egin{array}{c|c} egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{arra$$

Single-head Linear Attention

$$egin{aligned} oldsymbol{S}_i &= oldsymbol{1} \odot oldsymbol{S}_{i-1} + oldsymbol{K}_i^ op (oldsymbol{1} \odot oldsymbol{V}_i), \ oldsymbol{y}_i &= oldsymbol{Q}_i S_i \ / \ oldsymbol{Q}_i oldsymbol{Z}_i + oldsymbol{0} \odot oldsymbol{x}_i. \end{aligned}$$

$$y_i$$
 = z_i

Four differences: (1) Δ_i : input gate

$$= \begin{array}{c} \widetilde{A}_i \\ h_i \\ \hline h_{i-1} \\ \end{array} + \begin{array}{c} \underbrace{\begin{pmatrix} 1 \\ \Delta_i \\ \hline x_i \\ \end{array}}$$

$$egin{array}{c|c} egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{arra$$

Four differences:

- $(1) \Delta_i$: input gate
- (2) \tilde{A}_i : forget gate

$$egin{array}{c|c} egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{array}{c|c} \egin{arra$$

Four differences:

(1) Δ_i : input gate (2) \tilde{A}_i : forget gate

(3) $D \odot x_i$: shortcut

Four differences:

- (1) Δ_i : input gate
- (2) \tilde{A}_i : forget gate
- (3) $D \odot x_i$: shortcut (4) $Q_i Z_i$: attention normalization

(5) Multi-head design:

- Selective SSM resembles single-head attention
- Linear attention commonly employ multi-head design

(6) Different macro design:

Linear Attention Transformer

Mamba

Mamba can be viewed as linear attention Transformer with six special designs:

- (1) input gate
- (2) forget gate
- (3) shortcut
- (4) no attention normalization
- (5) single-head design
- (6) modified block structure

Empirical Study

	#Params	FLOPs	Throughput	Top-1
Baseline	28M	4.5G	1152	77.6
(1) + Input Gate	29M	4.5G	1069	77.8
(2) + Forget Gate	29M	4.8G	743	78.4
(3) + Shortcut	28M	4.5G	1066	77.8
(4) — Normalization	28M	4.5G	1215	72.4
(5) — Multi-head Design	24M	3.9G	1540	73.5
(6) + Block Design	31M	4.8G	1010	80.9

The **forget gate** and **block design** tend to be the core contributors!

Empirical Study

- The **forget gate** needs *recurrent calculation*, which is not ideal for vision models.
- Proper **positional encoding** can function as the forget gate in vision tasks,

while preserving *parallelizable computation*.

	#Params	FLOPs	Th	roughp	put	Top-1
Baseline	28M	4.5G		1152		77.6
+ Forget Gate	29M	4.8G		743		78.4
+ APE [8]	30M	4.5G		1132		80.0
+ LePE [7]	28M	4.5G		1074		81.6
+ CPE [4]	28M	4.5G		1099		81.7
+ RoPE [33]	28M	4.5G		1113		80.0

Empirical Study

Based on these findings, we propose a

Mamba-Inspired Linear Attention (MILA) model

by incorporating the merits of Mamba's two key designs into linear attention.

Empirical Study: ImageNet Classification

Method	Type	#Params	FLOPs	Top-1	
ConvNeXt-T [33]	CNN	29M	4.5G	82.1	
MambaOut-T [51]	CNN	27M	4.5G	82.7	
Swin-T [32]	Transformer	29M	4.5G	81.3	
PVTv2-B2 [44]	Transformer	25M	4.0G	82.0	
Focal-T [50]	Transformer	29M	4.9G	82.2	
MViTv2-T [28]	Transformer	24M	4.7G	82.3	
CSwin-T [9]	Transformer	23M	4.3G	82.7	
DiNAT-T [19]	Transformer	28M	4.3G	82.7	
NAT-T [20]	Transformer	28M	4.3G	83.2	
PlainMamba-L1 [49]	Mamba	7M	3.0G	77.9	
Vim-S [57]	Mamba	26M	5.1G	80.3	
LocalVim-S [25]	Mamba	28M	4.8G	81.2	
PlainMamba-L2 [49]	Mamba	25M	8.1G	81.6	
Mamba2D-S [27]	Mamba	24M	_	81.7	
EfficientVMamba-B [38]	Mamba	33M	4.0G	81.8	
VMamba-T [31]	Mamba	31M	4.9G	82.5	
LocalVMamba-T [25]	Mamba	26M	5.7G	82.7	
MILA-T	MILA	25M	4.2G	83.5	

Method	Type	#Params	FLOPs	Top-1
ConvNeXt-S [33]	CNN	50M	8.7G	83.1
MambaOut-S [51]	CNN	48M	9.0G	84.1
PVTv2-B3 [44]	Transformer	45M	7.9G	83.2
CSwin-S [9]	Transformer	35M	6.9G	83.6
Focal-S [50]	Transformer	51M	9.4 G	83.6
MViTv2-S [28]	Transformer	35M	7.0G	83.6
VMamba-S [31]	Mamba	50M	8.7G	83.6
LocalVMamba-S [25]	Mamba	50M	11.4 G	83.7
MILA-S	MILA	43M	7.3G	84.4
ConvNeXt-B [33]	CNN	89M	15.4G	83.8
MambaOut-B [51]	CNN	85M	15.8G	84.2
PVTv2-B5 [44]	Transformer	82M	11.8 G	83.8
Focal-B [50]	Transformer	90M	16.4G	84.0
CSwin-B	Transformer	78M	15.0G	84.2
NAT-B [20]	Transformer	90M	13.7G	84.3
PlainMamba-L3 [49]	Mamba	50M	14.4G	82.3
Mamba2D-B [27]	Mamba	94M	_	83.0
VMamba-B [31]	Mamba	89M	15.4G	83.9
MILA-B	MILA	96M	16.2G	85.3

Empirical Study: Efficiency

Empirical Study: Object Detection

(b) Mask R-CNN 3x on COCO									
Method	Type	#Params	FLOPs	AP^b	AP_{50}^b	AP_{75}^b	AP^m	AP_{50}^m	AP^m_{75}
ConvNeXt-T [33]	CNN	48M	262G	46.2	67.9	50.8	41.7	65.0	44.9
Swin-T [32]	Transformer	48M	267G	46.0	68.1	50.3	41.6	65.1	44.9
PVTv2-B2 [44]	Transformer	45M	309G	47.8	69.7	52.6	43.1	66.8	46.7
FocalNet-T [50]	Transformer	49M	268G	48.0	69.7	53.0	42.9	66.5	46.1
Vmamba-T [31]	Mamba	50M	270G	48.9	70.6	53.6	43.7	67.7	46.8
LocalVMamba-T [25]	Mamba	45M	291G	48.7	70.1	53.0	43.4	67.0	46.4
MILA-T	MILA	44M	255G	48.8	71.0	53.6	43.8	68.0	46.8
ConvNeXt-S [33]	CNN	70M	348G	47.9	70.0	52.7	42.9	66.9	46.2
Swin-S [32]	Transformer	69M	354G	48.2	69.8	52.8	43.2	67.0	46.1
PVTv2-B3 [44]	Transformer	65M	397G	48.4	69.8	53.3	43.2	66.9	46.7
FocalNet-S [50]	Transformer	72M	365G	49.3	70.7	54.2	43.8	67.9	47.4
CSWin-S [9]	Transformer	54M	342G	50.0	71.3	54.7	44.5	68.4	47.7
Vmamba-S [31]	Mamba	70M	384G	49.9	70.9	54.7	44.2	68.2	47.7
LocalVMamba-S [25]	Mamba	69M	414G	49.9	70.5	54.4	44.1	67.8	47.4
MILA-S	MILA	63M	319G	50.5	71.8	55.2	44.9	69.1	48.2

Take-away Messages

- ✓ We reveal the *surprisingly close relationship* between the powerful Mamba and subpar linear attention Transformer
- ✓ We identify that the *forget gate* and *block design* are the core factors behind Mamba's success
- ✓ We propose *Mamba-Inspire Linear Attention (MILA)* model, enjoying *high performance* while maintaining *parallel computation* and *fast inference speed*.

Thank you!

Contact: hdc23@mails.tsinghua.edu.cn