Avances en la simulación para optimización del blindaje en ν IOLETA

Pablo Bellino

Física Experimental de Reactores, CNEA

29 de julio de 2020

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

νVIOLETA 2 of

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

Objetivo

Validar una línea de cálculo para luego poder realizar la optimización del blindaje que se utilizará en el experimento ν IOLETA.

Modelo

- Será necesario simular partículas con un amplio rango de energías (1eV-1GeV)
- Una opción es trabajar con distintos programas para distintos rangos
- Para validar los modelos y programas se pueden comparar entre ellos (en los rangos donde solapan el rango de trabajo) y también comparar con datos experimentales
- En esta charla se mostrarán los avances realizados para validar el modelado de un experimento con skippers-CCD con los programas MCNP y PHITS
- Se comienza trabajando en el rango de energías más cómodo (keV-MeV) donde los programas suelen funcionar muy bien

¿Qué puede simular PHITS y MCNP6?

Tanto PHITS como MCNP simulan fotones y electrones hasta 1keV (simulación actual). Con MCNP6 se puede bajar hasta 1eV (fotones) y 10eV (fotones).

Experimento realizado

- Detector de silicio (9cm x 3cm x 675 μ m)
- Dos bloques de cobre rodeando detector como blindaje (12" x 8" x 2")
- Dewar de acero inoxidable (ϕ =10", e=0.7cm)

Experimento realizado

- Blindaje de plomo (3cm)
- Fuente de fisiones espontáneas de $^{252}{\rm Cf}$ (1.2 $\mu{\rm Ci}$) debajo del plomo(no visible en la imagen)
- Plomo como blindaje de los gammas producidos por la fuente

Simulación del experimento

Comparación PHITS/MCNP

Magnitud: flujo de neutrones en el plomo

Comparación PHITS/MCNP

Magnitud: flujo de fotones en el plomo

Resultados: flujo de neutrones

Resultados: flujo de fotones

Resultados: energía depositada en Si

uVIOLETA 11 de 18

Resultados: comparación con el experimento

E₁ (keV)

12 de 18

Fotones emitidos por la fuente de ²⁵²Cf

- Por cada fisión espontánea se emiten: $\bar{\nu}_n = 3.7$ y $\bar{\nu}_p = 8.3$
- Espectro de fisión (Watt) para neutrones ($\bar{E} \approx 2 MeV$)
- Se asume una fuente sin quemado.

Algunas preguntas:

- ¿Cuánto influyen estos fotones en el detector?
- Por otro lado, los neutrones generan fotones al interactuar con el resto de los materiales.
- ¿Qué contribución de fotones es más importante?

uVIOLETA 13 de 18

Algunas respuestas

- Se hicieron dos simulaciones (con MCNP), con y sin los fotones de la fuente.
- Se obtuvo la energía depositada en Si por fotones

uVIOLETA 14 de 18

Pasos a seguir

- Agregar la contribución del fondo (altas energías)
- Incorporar bibliotecas para modelar interacciones a bajas energías
- Realizar una simulación más detallada en MCNP
- Agregar fuente de fotones en PHITS
- Optimizar la paralelización en MCNP

uVIOLETA 15 de 18

Próximamente....

uVIOLETA 16 de 18

Próximamente....

uVIOLETA 17 de 18

¡Muchas gracias! ¿Preguntas?