APMA 1655 Notes: Chapter 8:

Data

- data: random samples from a given population distribution $f_{\theta}(x)$
- form of $f_{\theta}(x)$ is assumed to be known (parametric statistics)
- parametric statistics: branch of statistics that assumes that sample data from a population comes from a population that follows a probability distribution based on a fixed set of parameters
- θ is an unknown but fixed quantity
- Goal: want to use these random samples to form estimates and make inference of θ , where θ is called the target parameter or population parameter

Estimator

- Let $\{X_1, X_2, ..., X_n\}$ be iid samples from distribution $f_{\theta}(x)$
- iid means identically and independently distributed
- estimator $\hat{\theta}$ is a function of the iid samples: $\hat{\theta} = T(X_1, X_2, ..., X_n)$
- estimator is used as an estimate for θ
- n is the sample size
- using random variables to estimate fixed number
- for single target parameter there can be many different estimators
- there may not be a best estimator

Consistency

• a estimator $\hat{\theta}$ is said to be consistent if $\hat{\theta} \to \theta$ as samples size n goes to infinity

Bias

- estimator $\hat{\theta}$ is said to be unbiased if $E[\hat{\theta}]$; otherwise it is biased
- bias: difference $B(\hat{\theta}) = E[\hat{\theta}] \theta$

Mean Square Error (MSE)

- MSE of an estimate $\hat{\theta}$ is: $MSE[\hat{\theta}] = E(\hat{\theta} \theta)^2$
- decomposition of MSE: $MSE[\hat{\theta}] = B^2[\hat{\theta}] + Var[\hat{\theta}] = (\text{Bias})^2 + \text{Variance}$

Unbiased Estimators

- Let $\{X_1,...,X_n\}$ are iid samples from the population
- Let μ and σ^2 be the population mean and variance
- Unbiased estimator for Population mean: sample mean

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Unbiased estimator for population variance: sample variance

$$\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i - n\bar{X}^2)$$

- Unbiased estimators for Bernoulli Distributions:
 - Let $\{X_1, ..., X_n\}$ are iid samples from a Bernoulli distribution such that

$$P(X_i = 1) = p = 1 - P(X_i = 0)$$

- Unbiased estimator for p:

$$\hat{p} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- $\operatorname{Var}[\hat{p}] = p(1-p)/n$

Confidence Intervals

- Suppose the population distribution is $N(\mu, \sigma^2)$, where σ is known
- then a $(1-\alpha)$ confidence interval for μ is

$$[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

• $z_{\alpha/2}$ is determined by equation

$$\phi(-z_{\alpha/2}) = P(N(0,1) \ge z_{\alpha/2}) = \frac{\alpha}{2}$$

- 95% confidence interval:
 - 95% is called the confidence level or confidence coefficient; in general it is (1α) with $0 < \alpha < 1$
 - interval [L, R] such that L and R are both functions of samples $\{X_1, ..., X_n\}$ and $P(\mu \in [L, R]) = 95\%$
 - suppose $\{X_1, ..., X_n\}$ are iid samples from population distribution $N(\mu, \sigma^2)$; assume σ^2 is known, want to estimate μ
 - unbiased estimator: sample mean $\bar{X} = (X_1 + ... + X_n)/n$
 - $-\bar{X}$ is $N(\mu, \sigma^2/n)$; then the deviation $\bar{X} \mu$ is $N(0, \sigma^2/n)$
 - distribution of the error $\bar{X} \mu$:

$$P(|\bar{X} - \mu| \le b) = 95\%$$

Large-Sample Confidence Intervals

- Setup: Let $\{X_1, ..., X_n\}$ be iid samples from a population with mean μ , want to estimate μ ; population variance σ^2 is either known or unknown; sample size n is large
- Estimate: sample mean $\hat{\mu} = \bar{X}$; standard deviation $\sigma_{\hat{\mu}} = \sigma/\sqrt{n}$
- if σ is unknown, it can be approximated by sample standard deviation s:

$$s^{2} = \frac{1}{n-1} \sigma_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

when n is large

- normal approximation: distribution of \bar{X} is approximately $N(\mu, \sigma_{\hat{\mu}})$ by central limit theorem
- Theorem: Large Sample Confidence Interval
 - If population variance σ^2 is unknown, the $(1-\alpha)$ confidence interval for μ is approximately

$$[\bar{X}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{s}{\sqrt{n}}]$$

- if σ^2 is known, replace s by σ
- $Z = (\bar{X} \mu)/\sigma_{\hat{\mu}}$ is approximately N(0, 1)
- $-P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 \alpha$