



FIG.



FIG. 3

41 Receive data  $(\gamma_i^B, \gamma_i^R, D_i^B, D_i^R, \varphi_i^B, \varphi_i^R, H_i^{\gamma})$ , optionally  $\mathbf{r}_i'$  and  $\mathbf{L}_{RB}$ 42 generate, for each time moment j, a vector  $\Delta \gamma_j$  of a plurality of range residuals of pseudo-range measurements made by the first and second navigation receivers in the form of:  $\Delta \gamma_i = (\gamma_i^R - \gamma_i^B) - (D_i^R - D_i^B)$ , the set of range residuals being denoted as  $\Delta \gamma_k$ , k=1,...,i43 generate, for each time moment j, a vector  $\Delta \varphi_j$  of a plurality of phase residuals of full phase measurements made by the first and second navigation receivers in the form of:  $\Delta \varphi_j = (\varphi_j^R - \varphi_j^B) - \Lambda^{-1} \cdot (D_j^R - D_j^B)$ , where  $\Lambda^{-1}$  is a diagonal matrix comprising the inverse wavelengths of the satellites, the set of phase residuals being denoted as  $\Delta \boldsymbol{\varphi}_k$ , k=1,...,i44 generate an LU-factorization of a matrix M or a matrix inverse of matrix M, the matrix M being a function of at least  $\Lambda^{-1}$  and  $H_k^{\gamma}$ , for index k of  $H_k^{\gamma}$  covering at least two of the time moments j45 generate a vector N of estimated floating ambiguities as a function of at least the

set of range residuals  $\Delta \gamma_k$ , the set of phase residuals  $\Delta \phi_k$ , and the LU-factorization of matrix **M** or the matrix inverse of matrix **M** 

40



Instruction Set #1 directs data processor 110 to receive the measured data from data portal 120.

Instruction Set #2 directs the data processor to generate, for each time moment j, a vector  $\Delta \gamma_j$  of a plurality of range residuals of pseudo-range measurements made by the first and second navigation receivers in the form of:  $\Delta \gamma_j = (\gamma_j^R - \gamma_j^B) - (D_j^R - D_j^B)$ , the set of range residuals being denoted as  $\Delta \gamma_k$ , k=1,...,j

Instruction Set #3 directs the data processor 110 to generate, for each time moment j, a vector  $\Delta \varphi_j$  of a plurality of phase residuals of full phase measurements made by the first and second navigation receivers in the form of:  $\Delta \varphi_j = (\varphi_j^R - \varphi_j^B) - \Lambda^{-1} \cdot (D_j^R - D_j^B)$ , where  $\Lambda^{-1}$  is a diagonal matrix comprising the inverse wavelengths of the satellites, the set of phase residuals being denoted as  $\Delta \varphi_k$ , k=1,...,j

Instruction Set #4 directs the data processor 110 to generate an LU-factorization of matrix M or a matrix inverse of matrix M, the matrix M being a function of at least  $\Lambda^{-1}$  and  $H_k^{\gamma}$ , for index k of  $H_k^{\gamma}$  covering at least two of the time moments j

Instruction Set #5 directs the data processor 110 to generate a vector  $\mathbf{N}$  of estimated floating ambiguities as a function of at least the set of range residuals  $\Delta \gamma_k$ , the set of phase residuals  $\Delta \varphi_k$ , and the LU-factorization of matrix  $\mathbf{M}$  or the matrix inverse of matrix  $\mathbf{M}$ 

## COMPUTER-READABLE MEDIUM



FIG. 7

Instruction Set #1 directs data processor 110 to receive the measured data from data portal 120.

Instruction Set #2 directs the data processor to generate, for each time moment j, a vector  $\Delta \gamma_j$  of a plurality of range residuals of pseudo-range measurements made by the first and second navigation receivers in the form of:  $\Delta \gamma_j = (\gamma_j^R - \gamma_i^B) - (D_j^R - D_j^B)$ , the set of range residuals being denoted as  $\Delta \gamma_k$ , k=1,...,j

Instruction Set #3 directs the data processor 110 to generate, for each time moment j, a vector  $\Delta \varphi_j$  of a plurality of phase residuals of full phase measurements made by the first and second navigation receivers in the form of:  $\Delta \varphi_j = (\varphi_j^R - \varphi_j^B) - \Lambda^{-1} \cdot (D_j^R - D_j^B)$ , where  $\Lambda^{-1}$  is a diagonal matrix comprising the inverse wavelengths of the satellites, the set of phase residuals being denoted as  $\Delta \varphi_k$ , k=1,...,j

Instruction Set #4 directs the data processor 110 to generate, for time moment j = 1, an LU-factorization of a matrix  $\mathbf{M}_1$  or a matrix inverse of matrix  $\mathbf{M}_1$ , the matrix  $\mathbf{M}_1$  being a function of at least  $\boldsymbol{\Lambda}^{-1}$  and  $\boldsymbol{H}_1^{\gamma}$ 

Instruction Set #5 directs the data processor 110 to generate, for time moment j = 1, a vector  $N_1$  as a function of at least  $\Delta \gamma_I$ ,  $\Delta \varphi_I$ , and the LU-factorization of matrix  $M_1$  or the matrix inverse of matrix  $M_1$ 

Instruction Set #6 directs the data processor 110 to generate, for one or more additional time moments  $j \neq 1$ , an LU-factorization of a matrix  $M_j$  or a matrix inverse of matrix  $M_j$ , the matrix  $M_j$  being a function of at least  $\Lambda^{-1}$  and  $H_i^{\gamma}$ 

Instruction Set #7 directs the data processor 110 to generate, for one or more additional time moments  $j \neq 1$ , a vector  $N_j$  as a function of at least  $\Delta \gamma_j$ ,  $\Delta \varphi_j$ , and the LU-factorization or matrix  $M_j$  or the matrix inverse of matrix  $M_j$ 

Instruction Set #8 directs the data processor 110 to report vector  $N_j$  as having estimates of the floating ambiguities, and to repeat Instruction Sets #6 and #7 if vector does not have sufficient (or desired) accuracy, or if it is desired to keep the process going even through sufficient accuracy has been reached.

## COMPUTER-READABLE MEDIUM