

5: Autonomous Object Picking Robot

Bi-Weekly Update 3

Christoffer Cox James Dickson Kathy Vo

Sponsor: Swarnabha Roy

TA:Niloofar Borzooei

Executive Summary

Problem statement:

- With millions of packages processed daily through warehouses, the need for safe and efficient sorting methods is of the utmost importance.
- Workplace injury rates are increasing as the demand grows.

The autonomous object picking robot offers:

- The ability to navigate through indoor environments with no human control
- The ability to differentiate between objects depending on the color
- The ability to grasp and transport designated objects to a given location

Project/Subsystem Overview

Project Timeline

Finalize initial subsystem code (completed 1/20)

Integrate
Kinect camera
with the Jetson
Nano
(completed
2/3)

Autonomously move robot and arm using real world detection (to complete by 3/4)

Fully make the robot independent and combine all parts together (to complete by 3/17)

Test system and refine any bugs or issues (to complete by 4/14)

Final Demo and report (to complete by 4/26)

Object Navigation and Object Avoidance

Accomplishments since last update 15 hrs of effort	Ongoing progress/problems and plans until the next presentation				
 Along with Chris, uploaded and got the machine learning algorithm functional on the Jetson Nano Completed first steps for GPIO integration. 	 Ongoing integration with obstacle detection system. By next review, obstacle detection and navigation system are expected to be integrated. 				

Object Navigation and Avoidance

James Dickson

Object detection and Grasping

Chris Cox

Accomplishments since last update 15 hrs of effort	Ongoing progress/problems and plans until the next presentation				
 Fixed issue where Kinect camera would not open on Jetson Nano Collaborated with Object navigation subsystem to create a program that extracts block information from object detection code 	Apply new program to microcontroller to allow robot and robotic arm to autonomously move				

Object detection and Grasping

Chris Cox

Arm Manipulation

Kathy Vo

Accomplishments since last update 10 hrs of effort	Ongoing progress/problems and plans until the next presentation				
Tested robotic arm and all motors are functioning and at least 180 degrees.	 Ongoing testing with sending commands from an arduino to the arm's microcontroller Test sending commands from Jetson nano to the arm's microcontroller 				

Validation Plan

Paragraph # Test Name		Success Criteria	Methodology	Status	Responsible Eng
3.2.1.1	Object Recognition Time Detect objects of various colors in a reasonable timeframe		Run multiple tests and see the average time it takes to detect an object	Tested	Chris
3.2.1.2	Object Detection Success Rate	Have a 95% success rate of object detection	After a series of multiple tests, calculate how ic often the robot detected an object	Tested	Chris
3.2.1.3	Battery Life	Expected runtime of 2.7 hours with the 36Ah batteries	Allow the robot to run for a certain amount of time then measure the amount of voltage left in the battery	Tested	James
3.2.1.4	Network Requests	Active wifi connection the robot and smartphone	The robot will connecto to the wifi and move	Untested	All
3.2.2.1	Navigation Speed	speed of at least 1.5 meters per second	Use a timer to measure the speed	Tested	James
3.2.2.2	Object Pickup Precision	pick up objects with 90% success rate and error margin of 2 centimeters	Measuring the distance, after a series of tests	Untested	Chris, Kathy
3.2.2.3	place objects within a 5 centimeter radius Object Placement Accuracy of the designated location		Measuring the distance, after a series of tests	Untested	Chris, Kathy
3.2.3.1.1	Power Consumption	max peak power shall not exceed 432 Watts	Measure the current and voltage of the battery after fully charged	Tested	All
3.2.3.1.2	Input Voltage Level	input voltage level shall be no more than +24V	User multimeter to ensure proper input voltage	Tested	All
3.2.3.1.6	Raw Video Output	create a virtual environment of the robot	Use Gazebo for simulating virtual environment	Tested	James, Kathy

Execution Plan

Tasks	01/20/25	01/27/25	02/03/25	02/10/25	2/17/25	2/24/25	03/03/25	03/17/25	3/24/25	03/31/25
Status Update	1									
Status Update	2									
Status Update	3									
Navigation/Obje	ct detection Integrati	ion								
Jetson Nano ope	ens Obj Detect									
Jetson Nano con	ntrols Arm									
Object Grasping	J/Arm Integration									
Status Update	4									
Design Blitz										
Part Phyiscal Int	tegration									
Status Update	5									
System Validation	on									
Final Design Pr	resentaton									
Final System D	emo									
Project Showca	ase									
Final Report										