# Visualisation HW LD NA morethan10samplespops

# Femke Batsleer

#### 17-2-2022

```
library("dplyr")
library("tidyr")
library("tidyverse")
library("purrr")
library("adegenet") #v2.0.0 install.packages("adegenet", version = "2.0.0")
library("poppr")
library("genepop")
library("genepop")
library("graph4lg")
library("pegas")
library("hierfstat")
library("PopGenReport") #v2.2.1 has to be installed
library("stringr")
library("devtools")
library("devtools")
library("pkgload")
```

### For populations that had at least 10 samples

General, the philosophy of Waples (2015) Journal of Heredity: Testing for Hardy-Weinberg proportions: have we lost the plot?

#### Null alleles

Was calculated (in other script 'Calculations HW LD NA.R') with null all function from PopGenReport

First, looking at how many times freq of null alleles = 0 falls outside of confidence interval. Tables give number that they did not deviate (so the lower, the more it deviates). Second, looking at how many times abs(freq) > 0.2

First eight:  $20\ 16\ 57\ 35\ 227\ 138\ 419\ 266\ 20\ 16\ 57\ 266\ 299\ 138\ 35\ 337\ 20\ 16\ 57\ 35\ 227\ 138\ 419\ 266\ 20\ 16\ 57\ 266\ 299\ 35\ 138\ 337$ 

```
Not good: 20, 16, 57, 35, 138 (266)
```

 $35\ 57\ 419\ 307\ 138\ 35\ 57\ 419\ 307\ 138\ 266\ 35\ 57\ 419\ 307\ 138\ 35\ 57\ 419\ 307\ 138\ 266$ 

Not good: 35 57 419 307 138 (266)

#### conclusion: leave out 20 16 57 35 138 266 (419 307)

```
###function to make interpretable tables for null allele output####
null.all_tables <- function(output_test, group_var, group_name, observed=FALSE){</pre>
 group var <- enquo(group var)</pre>
 #add a sign symbol to indicate deviations and calcualte absolute value of observed
 null.all_df <- output_test %>% drop_na() %>%
   mutate(sign_dev = sign(sign(percentile2.5th) + sign(percentile97.5th))) %>%
   mutate(absobserved = abs(observed))
 if(observed==FALSE){#do test with significance levels for null alleles
   #calculate number of tests per locus/pop (some are NA, as alleles are sometimes fixed
   testspergroup <- null.all_df %% group_by(!!group_var) %>% summarise(n_tests=n())
   #calculate frequency of deviations and non-deviations
   tests_alldevs <- null.all_df %>% group_by(!!group_var, sign_dev) %>%
     summarise(freq=n())
   #ratio of non-deviations per group
   Nulltest_ratio <- tests_alldevs %>% filter(sign_dev==0) %>%
     left_join(testspergroup, by=group_name) %>%
     mutate(ratio_nodev = freq/n_tests)
 else{#do test with observed; count the observed ones which have 0.2<abs(observed)
   testspergroup <- null.all_df %>% filter(absobserved<0.2) %>%
     group by(!!group var) %>% summarise(n obs01 = n())
   tests_alldevs <- null.all_df %% group_by(!!group_var) %>% summarise(n_tests=n())
   Nulltest_ratio <- tests_alldevs %>% left_join(testspergroup, by=group_name) %>%
     mutate(ratio_nodev = n_obs01/n_tests)
 }
 return(Nulltest_ratio)
}
###Looking at values where freq=0 of null alleles falls outside of confidence interval####
#Population level
Nulltest_pop.pop <- null.all_tables(NA_pop, group_var=pop, group_name="pop") %>%
   arrange(ratio nodev) %>%
   rmarkdown::paged table()
## `summarise()` has grouped output by 'pop'. You can override using the `.groups`
## argument.
Nulltest_popyear.pop <- null.all_tables(NA_popyear, group_var=pop, group_name="pop") %%
   arrange(ratio_nodev) %>%
   rmarkdown::paged_table()
## `summarise()` has grouped output by 'pop'. You can override using the `.groups`
## argument.
Nulltest_pop.locus <- null.all_tables(NA_pop, group_var=locus, group_name="locus") %%
   arrange(ratio nodev) %>%
   rmarkdown::paged_table()
## `summarise()` has grouped output by 'locus'. You can override using the
## `.groups` argument.
```

```
Nulltest_pop.locus
Nulltest_popyear.locus <- null.all_tables(NA_popyear, group_var=locus,</pre>
                                        group_name="locus") %>%
 arrange(ratio_nodev) %>%
 rmarkdown::paged table()
## `summarise()` has grouped output by 'locus'. You can override using the
## `.groups` argument.
Nulltest popyear.locus
#leave out populations with lowest ratio_nodev (<0.6), so populations that already
#act strange (not in HW-equilibrium probably) are left out
weird_pops <- Nulltest_pop.pop %>% filter(ratio_nodev < 0.6)%>%
   select(pop) %>% as.vector()
(Nulltest_pop_sel.locus <- null.all_tables(filter(NA_pop, !pop %in% weird_pops$pop),
                                        group_var=locus, group_name="locus") %>%
   arrange(ratio_nodev) %>%
   rmarkdown::paged_table())
## `summarise()` has grouped output by 'locus'. You can override using the
## `.groups` argument.
weird_popyear <- Nulltest_popyear.pop %>% filter(ratio_nodev < 0.6)%>%
   select(pop) %>% as.vector()
(Nulltest_popyear_sel.locus <- null.all_tables(filter(NA_popyear,</pre>
                                                    !pop %in% weird_popyear$pop),
                                             group_var=locus, group_name="locus") %>%
   arrange(ratio_nodev) %>%
   rmarkdown::paged_table())
## `summarise()` has grouped output by 'locus'. You can override using the
## `.groups` argument.
###Looking at how many times freq null alleles > 0.2 ####
Nulltest_pop.pop <- null.all_tables(NA_pop, group_var=pop, group_name="pop",</pre>
                                  observed=TRUE) %>%
   arrange(ratio_nodev) %>%
   rmarkdown::paged_table()
Nulltest_popyear.pop <- null.all_tables(NA_popyear, group_var=pop, group_name="pop",
                                     observed=TRUE) %>%
   arrange(ratio_nodev) %>%
   rmarkdown::paged_table()
(Nulltest_pop.locus <- null.all_tables(NA_pop, group_var=locus, group_name="locus",
                                     observed=TRUE) %>%
   arrange(ratio nodev) %>%
   rmarkdown::paged_table())
(Nulltest_popyear.locus <- null.all_tables(NA_popyear, group_var=locus, group_name="locus",
                                         observed=TRUE) %>%
   arrange(ratio nodev) %>%
   rmarkdown::paged_table())
```

```
#leave out populations with lowest ratio_nodev (<0.6)</pre>
weird_pops <- Nulltest_pop.pop %>% filter(ratio_nodev < 0.6)%>%
    select(pop) %>% as.vector()
(Nulltest_pop_sel.locus <- null.all_tables(filter(NA_pop, !pop %in% weird_pops$pop),
                                           group_var=locus, group_name="locus",
                                           observed=TRUE) %>%
    arrange(ratio_nodev) %>%
    rmarkdown::paged table())
weird_popyear <- Nulltest_popyear.pop %>% filter(ratio_nodev < 0.6)%>%
    select(pop) %>% as.vector()
(Nulltest_popyear_sel.locus <- null.all_tables(filter(NA_popyear, !pop %in%
                                                         weird_popyear$pop),
                                           group_var=locus, group_name="locus",
                                           observed=TRUE) %>%
    arrange(ratio_nodev) %>%
    rmarkdown::paged table())
Linkage disequilibrium
Was calculated with poppr (in other script 'Calculations HW LD NA.R')
In general, not very high deviations. To leave out: 111 (403-110, 12-138, 337-153)
##Population level
LD_pop <- read.csv("Outputs/Output LD population morethan10samp level.csv", sep=",")
##pop##
LD.all pop df perpop <- LD pop %>% separate(pairloci, into=c("Locus1", "Locus2")) %>%
  filter(p.Ia<0.05) %>% group_by(pop) %>%
  summarise(n_sign=n()) %>% arrange(desc(n_sign)) #Leave out Wetteren?
LD.all_pop_df_perpop
## # A tibble: 39 x 2
##
      pop
                       n_sign
##
      <chr>
                        <int>
                           68
## 1 Wetteren
## 2 Kalmthout1
                           38
## 3 Keiheuvel
                           34
## 4 Lagland
                           31
## 5 Oosthoekduinen
                           28
## 6 Simliduinen
                           26
## 7 Kopberg
                           25
## 8 Kortenhoeff-NL
                           25
## 9 DuinbossenDeHaan
                           24
## 10 Bredene
## # ... with 29 more rows
LD.all pop df <- LD pop %>% separate(pairloci, into=c("Locus1", "Locus2")) %>%
  filter(p.Ia<0.05) %>% group_by(Locus1, Locus2) %>%
  summarise(n_sign=n())
## `summarise()` has grouped output by 'Locus1'. You can override using the
```

## `.groups` argument.

```
LD.all_pop_df_nowett <- LD_pop %>% separate(pairloci, into=c("Locus1", "Locus2")) %>% filter(p.Ia<0.05) %>% filter(pop != "Wetteren") %>% group_by(Locus1, Locus2) %>% summarise(n_sign=n())
```

## `summarise()` has grouped output by 'Locus1'. You can override using the
## `.groups` argument.

```
(LD.all_pop_df_problems_nowett <- LD.all_pop_df_nowett %>% filter(n_sign>4) %>%
    #outside of CI for probability of having >2 times a significant test for 38/39
    #populations
rmarkdown::paged_table())
```



```
(LD.all_pop_df_problems <- LD.all_pop_df %>% filter(n_sign>4) %>%
    #outside of CI for probability of having >2 times a significant test for
#38 populations
rmarkdown::paged_table())
```

(LD.all\_pop\_plot <- ggplot(LD.all\_pop\_df\_problems, aes(x=Locus1, y=Locus2, fill=n\_sign)) + geom\_tile() +

```
scale_fill_distiller(palette = "YlOrRd", trans="reverse") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)))
```



```
#Population-year level

LD_popyear <- read.csv("Outputs/Output LD popyear morethan10samp level.csv", sep=",")

##pop##

(LD.all_popyear_df_perpop <- LD_popyear %>% separate(pairloci, into=c("Locus1", "Locus2")) %>%
    filter(p.Ia<0.05) %>% group_by(pop) %>%
    summarise(n_sign=n()) %>% arrange(desc(n_sign))) #Leave out Wetteren?
```

```
## # A tibble: 41 x 2
##
      pop
                                n_sign
##
      <chr>
                                 <int>
##
  1 Keiheuvel2020
                                    41
   2 Kalmthout12020
                                    35
##
    3 Wetteren2020
                                    32
##
   4 Kopberg2020
                                    29
##
##
  5 Oosthoekduinen2018
                                    27
##
    6 Kortenhoeff-NL2020
                                    26
##
    7 DuinbossenDeHaan2020
                                    25
                                    22
   8 Geel-Bel2018
##
  9 Vloethemveld-Zuid2020
                                    22
## 10 Westhoek vissersdorp2018
                                    21
## # ... with 31 more rows
```



#### Hardy-Weinberg

Calculated with pegas (in other script 'Calculations HW LD NA.R')

Large deviations: 111, 35, 419, 57, (9) small deviations: 12, 138, 144, 307, 375, 403, 487

```
HW_pop <- read.csv("Outputs/Output HW population morethan10samp level.csv", sep=",")
HW_popyear <- read.csv("Outputs/Output HW popyear morethan10samp level.csv", sep=",")
#Add probability intervals to the plots</pre>
```

```
#get two-sides prob-interval of 0.025<P<97.5 out of binomial distribution
#with excel: =BINOM.DIST(1(-...);18; 0.05;TRUE): 17-35 significant tests are expected

##pop##
#histogram per locus of tests
(hist_locus_HW_pop <- ggplot(HW_pop, aes(x=Pr.exact))+
    geom_histogram(bins=10)+
    geom_hline(yintercept = 4, linetype="dashed")+ #for 39 pops or tests per locus (#number)
    facet_wrap(~ locus))</pre>
```



```
#histogram per pop of tests
(hist_pop_HW_pop <- ggplot(HW_pop, aes(x=Pr.exact))+
  geom_histogram(bins=10)+
  geom_hline(yintercept = 3, linetype="dashed")+ #for 28 loci or test per pop
  facet_wrap(~ pop))</pre>
```



```
##popyear##
#histogram per locus of tests
(hist_locus_HW_popyear <- ggplot(HW_popyear, aes(x=Pr.exact))+
  geom_histogram(bins=10)+
  geom_hline(yintercept = 4, linetype="dashed")+ #for 41 pops or tests per locus (#number)
  facet_wrap(~ locus))</pre>
```



```
#histogram per pop of tests
(hist_pop_HW_popyear <- ggplot(HW_popyear, aes(x=Pr.exact))+
  geom_histogram(bins=10)+
  geom_hline(yintercept = 3, linetype="dashed")+ #for 28 loci or test per pop
  facet_wrap(~ pop))</pre>
```



## Conclusion

I will leave out: 35 57 419 (HW, NA) 111 (HW LD) 20 16 (NA) 138 (HW NA LD), these had large deviations and/or were recurring in the different tests.