THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH2010C/D Advanced Calculus I 2022-2023

Midterm Examination

• Total points: 100 points

• Time allowed: 90 min

• Answer all questions.

• Please provide justifications for your answers unless specified.

1. (a) Let $\gamma(t) = (\cos^3 t, \sin^3 t)$, for $t \in [0, \pi/2]$, be a curve in \mathbb{R}^2 . Find the length of the curve γ .

(b) Let **a** be a nonzero vector in \mathbb{R}^3 and let α , β and γ be the angles between **a** and **i**, between **a** and **j** and between **a** and **k** respectively. Show that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

(14 points)

2. Let $S := \{(x,y) \in \mathbb{R}^2 : -1 < x + y \le 1\}$ be a subset in \mathbb{R}^2 . Draw the following sets without justification.

- (a) The set of interior points Int(S).
- (b) The set of boundary points ∂S .
- (c) The set of exterior points Ext(S).

(6 points)

3. For each of the following statements, state whether it is true or false and explain your answers.

- (a) For any $\mathbf{v} \in \mathbb{R}^3$, $k \in \mathbb{R}$, $||k\mathbf{v}|| = k||\mathbf{v}||$.
- (b) For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$, $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$.
- (c) There exists a C^2 function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $\frac{\partial f}{\partial x} = x y$ and $\frac{\partial f}{\partial y} = x + y$.
- (d) If two straight lines in \mathbb{R}^3 do not intersect, then they must be parallel.

(8 points)

4. Find each of the following limits or explain why the limit does not exist.

(a)
$$\lim_{(x,y)\to(1,1)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$$

(12 points)

5. Let $f(x,y) = e^{\sin(2x+y)}$.

- (a) Find the linearization of f at (0,0).
- (b) Approximate f(-0.1, 0.1) using the linearization in (a).

(8 points)

- 6. Let $f(x,y) = \frac{2xy}{x^2 + y^2}$.
 - (a) Show that

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = C$$

for some constant C, and also find the value of C.

(b) Draw the level set of the function f(x,y) corresponding to the value 1.

(12 points)

- 7. Let $\Pi: 2x + y + 3z = 4$ be a plane and let P = (8, 0, 10) be a point in \mathbb{R}^3 .
 - (a) Let L be the straight line orthogonal to Π which passes through P and let Q be the intersection point of L and Π . Find a parametric equation of L and the coordinates of Q.
 - (b) Let R = (7,0,6) be a point in \mathbb{R}^3 . Find the projection of R on L.
 - (c) Suppose that \overrightarrow{RQ} is a light ray that strikes the mirror Π . Find a parametric equation of the straight line that contains the reflected ray.

(Hint: The incident ray, the reflected ray and L are lying on the same plane. The angle of incidence equals the angle of reflection.)

(20 points)

8. Let

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0); \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for both the cases (x,y)=(0,0) and $(x,y)\neq (0,0)$.
- (b) Is f differentiable at (0,0)? Prove your assertion.
- (c) Evaluate $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.

(20 points)