# Recurrent Neural Networks

ACTL3143 & ACTL5111 Deep Learning for Actuaries
Patrick Laub





#### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs







#### Tabular data vs time series data

#### Tabular data

We have a dataset  $\{ \boldsymbol{x}_i, y_i \}_{i=1}^n$ which we assume are i.i.d. observations.

| Brand | Mileage | # Claims | Date  | Humidity | Temp. |
|-------|---------|----------|-------|----------|-------|
| BMW   | 101 km  | 1        | Jan 1 | 60%      | 20 °C |
| Audi  | 432 km  | O        | Jan 2 | 65%      | 22 °C |
| Volvo | 3 km    | 5        | Jan 3 | 70%      | 21 °C |
| •     | •       | •        | •     | •        | •     |

The goal is to *predict* the y for some covariates x.

#### Time series data

Have a sequence  $\{ \boldsymbol{x}_t, y_t \}_{t=1}^T$  of observations taken at regular time intervals.

| Date  | Humidity | Temp. |
|-------|----------|-------|
| Jan 1 | 60%      | 20 °C |
| Jan 2 | 65%      | 22 °C |
| Jan 3 | 70%      | 21 °C |
| •     | :        | •     |

The task is to *forecast* future values based on the past.





## Attributes of time series data

- **Temporal ordering**: The order of the observations matters.
- **Trend**: The general direction of the data.
- **Noise**: Random fluctuations in the data.
- Seasonality: Patterns that repeat at regular intervals.

#### (i) Note

Question: What will be the temperature in Berlin tomorrow? What information would you use to make a prediction?





# Australian financial stocks

```
1 stocks = pd.read_csv("aus_fin_stocks.csv")
```

<sup>2</sup> stocks

|       | Date  | ANZ       | ASX200 | BOQ   | CBA    | NAB       | Q     |
|-------|-------|-----------|--------|-------|--------|-----------|-------|
| О     | 1981- | 1.588896  | NaN    | NaN   | NaN    | 1.791642  | Na    |
|       | O1-   |           |        |       |        |           |       |
|       | 02    |           |        |       |        |           |       |
| 1     | 1981- | 1.548452  | NaN    | NaN   | NaN    | 1.791642  | Na    |
|       | O1-   |           |        |       |        |           |       |
|       | 05    |           |        |       |        |           |       |
| 2     | 1981- | 1.600452  | NaN    | NaN   | NaN    | 1.791642  | Na    |
|       | O1-   |           |        |       |        |           |       |
|       | 06    |           |        |       |        |           |       |
| • • • | • • • | •••       | • • •  | • • • | • • •  | •••       | • • • |
| 10327 | 2021- | 28.600000 | 7430.4 | 8.97  | 106.86 | 29.450000 | 12    |





# Plot

1 stocks.plot()







## Data types and NA values

```
stocks.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10330 entries, 0 to 10329
Data columns (total 9 columns):
    Column Non-Null Count Dtype
            10330 non-null object
    Date
    ANZ
            10319 non-null float64
            7452 non-null float64
    ASX200
            8970 non-null float64
    BOQ
    CBA
            7624 non-null float64
            10316 non-null float64
    NAB
    QBE
            9441 non-null float64
    SUN
            8424 non-null float64
    WBC
            10323 non-null float64
dtypes: float64(8), object(1)
memory usage: 726.5+ KB
```

```
1 for col in stocks.columns:
2    print(f"{col}: {stocks[col].isna().

Date: 0
ANZ: 11
ASX200: 2878
BOQ: 1360
CBA: 2706
NAB: 14
QBE: 889
SUN: 1906
WBC: 7
```

```
1 asx200 = stocks.pop("ASX200")
```





## Set the index to the date

```
1 stocks["Date"] = pd.to_datetime(stocks["Date"])
2 stocks = stocks.set_index("Date") # or `stocks.set_index("Date", inplace=True)`
3 stocks
```

|       | ANZ      | BOQ | CBA | NAB      | QBE | SUN |         |
|-------|----------|-----|-----|----------|-----|-----|---------|
| Date  |          |     |     |          |     |     |         |
| 1981- | 1.588896 | NaN | NaN | 1.791642 | NaN | NaN | 2.1994  |
| O1-   |          |     |     |          |     |     |         |
| 02    |          |     |     |          |     |     |         |
| 1981- | 1.548452 | NaN | NaN | 1.791642 | NaN | NaN | 2.16339 |
| O1-   |          |     |     |          |     |     |         |
| 05    |          |     |     |          |     |     |         |
| 1981- | 1.600452 | NaN | NaN | 1.791642 | NaN | NaN | 2.1994  |
| 01-   |          |     |     |          |     |     |         |
| 06    |          |     |     |          |     |     |         |
|       |          |     |     |          |     |     |         |





# Plot II

```
stocks.plot()
2 plt.legend(loc="upper center", bbox_to_anchor=(0.5, -0.5), ncol=4);
```









# Can index using dates I

1 stocks.loc["2010-1-4":"2010-01-8"]

|                    | ANZ   | BOQ       | CBA       | NAB       | QBE   | SUN        |
|--------------------|-------|-----------|-----------|-----------|-------|------------|
| Date               |       |           |           |           |       |            |
| 2010-<br>01-<br>04 | 22.89 | 10.772147 | 54.573702 | 26.046571 | 25.21 | 8.142453   |
| 2010-              | 23.00 | 10.910369 | 55.399220 | 26.379283 | 25.34 | 8.264684   |
| 2010-<br>01-<br>06 | 22.66 | 10.855080 | 55.677708 | 25.865956 | 24.95 | 8.086039 2 |
| 2010-<br>01-07     | 22.12 | 10.523346 | 55.140624 | 25.656823 | 24.50 | 8.198867   |





# Can index using dates II

So to get 2019's December and all of 2020 for CBA:

1 stocks.loc["2019-12":"2020", ["CBA"]]

|            | CBA   |
|------------|-------|
| Date       |       |
| 2019-12-02 | 81.43 |
| 2019-12-03 | 79.34 |
| 2019-12-04 | 77.81 |
| •••        | •••   |
| 2020-12-29 | 84.01 |
| 2020-12-30 | 83.59 |
| 2020-12-31 | 82.11 |





## Can look at the first differences

```
1 stocks.diff().plot()
2 plt.legend(loc="upper center", bbox_to_anchor=(0.5, -0.5), ncol=4);
```







# Can look at the percentage changes

```
1 stocks.pct_change().plot()
2 plt.legend(loc="upper center", bbox_to_anchor=(0.5, -0.5), ncol=4);
```







## Focus on one stock

```
1 stock = stocks[["CBA"]]
2 stock
```

# Date 1981-01-02 NaN 1981-01-05 NaN 1981-01-06 NaN ... ... 2021-10-28 106.86

**CBA** 

104.68

105.71

10330 rows × 1 columns

2021-10-29

2021-11-01





#### Find first non-missing value

```
1 first_day = stock.dropna().index[0]
2 first_day
```

Timestamp('1991-09-12 00:00:00')

```
1 stock = stock.loc[first_day:]
```

1 stock.isna().sum()

CBA 8 dtype: int64





# Fill in the missing values

- missing\_day = stock[stock["CBA"].isna()].index[0]
- prev\_day = missing\_day pd.Timedelta(days=1)
- 3 after = missing\_day + pd.Timedelta(days=3)
- stock.loc[prev\_day:after]

- stock = stock.ffill()
- 2 stock.loc[prev\_day:after]

#### **CBA**

| Date       |          |
|------------|----------|
| 2000-03-07 | 24.56662 |
| 2000-03-08 | NaN      |
| 2000-03-09 | NaN      |
| 2000-03-10 | 22.87580 |

#### **CBA**

| Date       |          |
|------------|----------|
| 2000-03-07 | 24.56662 |
| 2000-03-08 | 24.56662 |
| 2000-03-09 | 24.56662 |
| 2000-03-10 | 22.87580 |

stock.isna().sum()

CBA

dtype: int64







#### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs





## Persistence forecast

The simplest model is to predict the next value to be the same as the current value.

```
1 stock.loc["2019":, "Persistence"] = stock.loc["2018"].iloc[-1].values[0]
2 stock.loc["2018-12":"2019"].plot()
3 plt.axvline("2019", color="black", linestyle="--")
```







#### Trend

We can extrapolate from recent trend:

```
past_date = stock.loc["2018"].index[-30]
past = stock.loc[past_date, "CBA"]
latest_date = stock.loc["2018", "CBA"].index[-1]
latest = stock.loc[latest_date, "CBA"]

trend = (latest - past) / (latest_date - past_date).days
print(trend)

tdays_since_cutoff = np.arange(1, len(stock.loc["2019":]) + 1)
stock.loc["2019":, "Trend"] = latest + trend * tdays_since_cutoff
```

0.07755555555555545





## Trend forecasts

```
1 stock.loc["2018-12":"2019"].plot()
2 plt.axvline("2019", color="black", linestyle="--")
3 plt.legend(ncol=3, loc="upper center", bbox_to_anchor=(0.5, 1.3))
```







#### Which is better?

If we look at the mean squared error (MSE) of the two models:

```
persistence_mse = mean_squared_error(stock.loc["2019", "CBA"], stock.loc["2019", "Persis
trend_mse = mean_squared_error(stock.loc["2019", "CBA"], stock.loc["2019", "Trend"])
persistence_mse, trend_mse
```

(39.54629367588932, 37.87104674064297)





# Use the history

```
1 cba_shifted = stock["CBA"].head().shift(1)
2 both = pd.concat([stock["CBA"].head(), cba_shifted], axis=1, keys=["Today", "Yesterday"]
3 both
```

|            | Today    | Yesterday |
|------------|----------|-----------|
| Date       |          |           |
| 1991-09-12 | 6.425116 | NaN       |
| 1991-09-13 | 6.365440 | 6.425116  |
| 1991-09-16 | 6.305764 | 6.365440  |
| 1991-09-17 | 6.285872 | 6.305764  |
| 1991-09-18 | 6.325656 | 6.285872  |

```
def lagged_timeseries(df, target, window=30):
    lagged = pd.DataFrame()
    for i in range(window, 0, -1):
        lagged[f"T-{i}"] = df[target].shift(i)
    lagged["T"] = df[target].values
    return lagged
```





# Lagged time series

```
1 df_lags = lagged_timeseries(stock, "CBA", 40)
2 df_lags
```

|                    | T-40   | T-39   | T-38   | T-37   | T-36   | T-35   | T-34   | Т-    |
|--------------------|--------|--------|--------|--------|--------|--------|--------|-------|
| Date               |        |        |        |        |        |        |        |       |
| 1991-<br>09-<br>12 | NaN    | NaN   |
| 1991-<br>09-13     | NaN    | NaN   |
| 1991-<br>09-<br>16 | NaN    | NaN   |
| •••                | •••    | •••    | •••    | •••    | •••    | • • •  | •••    | • • • |
| 2021-              | 101.37 | 101.84 | 102.16 | 102.14 | 102.92 | 100.55 | 101.09 | 101.  |





# Split into training and testing

```
1 # Split the data in time
  2 X train = df lags.loc[:"2018"]
  3 X_val = df_lags.loc["2019"]
  4 X test = df lags.loc["2020":]
  6 # Remove any with NAs and split into X and y
  7 X train = X train.dropna()
  8 X_val = X_val.dropna()
  9 X test = X test.dropna()
 10
 11 y_train = X_train.pop("T")
 12  y val = X val.pop("T")
 13 y_test = X_test.pop("T")
  1 X_train.shape, y_train.shape, X_val.shape, y_val.shape, X_test.shape, y_test.shape
((6872, 40), (6872,), (253, 40), (253,), (467, 40), (467,))
```





# Inspect the split data

1 X\_train

|                | T-40      | T-39      | T-38      | T-37      | T-36      |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Date           |           |           |           |           |           |
| 1991-<br>11-07 | 6.425116  | 6.365440  | 6.305764  | 6.285872  | 6.325656  |
| 1991-<br>11-08 | 6.365440  | 6.305764  | 6.285872  | 6.325656  | 6.385332  |
| 1991-<br>11-11 | 6.305764  | 6.285872  | 6.325656  | 6.385332  | 6.445008  |
| •••            | • • •     | • • •     | •••       | •••       | •••       |
| 2018-<br>12-27 | 68.160000 | 69.230000 | 68.940000 | 68.350000 | 67.980000 |
| 2018-          | 69.230000 | 68.940000 | 68.350000 | 67.980000 | 68.950000 |





# Plot the split







## Train on more recent data

```
1 X_train = X_train.loc["2012":]
2 y_train = y_train.loc["2012":]
```







# Rescale by eyeballing it

```
1 X_train = X_train / 100
2 X_val = X_val / 100
3 X_test = X_test / 100
4 y_train = y_train / 100
5 y_val = y_val / 100
6 y_test = y_test / 100
```







## Fit a linear model

```
1 lr = LinearRegression()
2 lr.fit(X_train, y_train);
```

#### Make a forecast for the validation data:

```
1 y_pred = lr.predict(X_val)
2 stock.loc[X_val.index, "Linear"] = y_pred
```







## Inverse-transform the forecasts

```
1 stock.loc[X_val.index, "Linear"] = 100 * y_pred
```







## Careful with the metrics

```
1 mean_squared_error(y_val, y_pred)
6.329105517812206e-05
1 mean_squared_error(100 * y_val, 100 * y_pred)
0.6329105517812207
1 100**2 * mean_squared_error(y_val, y_pred)
0.6329105517812206
1 linear_mse = 100**2 * mean_squared_error(y_val, y_pred)
2 persistence_mse, trend_mse, linear_mse
(39.54629367588932, 37.87104674064297, 0.6329105517812206)
```





#### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs



# Comparing apples to apples

The linear model is only producing *one-step-ahead* forecasts.

The other models are producing *multi-step-ahead* forecasts.

```
1 stock.loc["2019":, "Shifted"] = stock["CBA"].shift(1).loc["2019":]
```



```
1 shifted_mse = mean_squared_error(stock.loc["2019", "CBA"], stock.loc["2019", "Shifted"])
```

(39.54629367588932, 37.87104674064297, 0.6329105517812206, 0.6367221343873524)





<sup>2</sup> persistence\_mse, trend\_mse, linear\_mse, shifted\_mse

# Autoregressive forecasts

The linear model needs the last 90 days to make a forecast.

**Idea**: Make the first forecast, then use that to make the next forecast, and so on.

$$\hat{y}_t = eta_0 + eta_1 y_{t-1} + eta_2 y_{t-2} + \ldots + eta_n y_{t-n}$$
 $\hat{y}_{t+1} = eta_0 + eta_1 \hat{y}_t + eta_2 y_{t-1} + \ldots + eta_n y_{t-n+1}$ 
 $\hat{y}_{t+2} = eta_0 + eta_1 \hat{y}_{t+1} + eta_2 \hat{y}_t + \ldots + eta_n y_{t-n+2}$ 

•

$$\hat{y}_{t+k} = \beta_0 + \beta_1 \hat{y}_{t+k-1} + \beta_2 \hat{y}_{t+k-2} + \ldots + \beta_n \hat{y}_{t+k-n}$$





# Autoregressive forecasting function

```
def autoregressive_forecast(model, X_val, suppress=False):
       Generate a multi-step forecast using the given model.
       multi_step = pd.Series(index=X_val.index, name="Multi Step")
       # Initialize the input data for forecasting
       input data = X val.iloc[0].values.reshape(1, -1)
 8
 9
       for i in range(len(multi step)):
10
            # Ensure input data has the correct feature names
11
            input df = pd.DataFrame(input data, columns=X val.columns)
12
           if suppress:
13
                next_value = model.predict(input_df, verbose=0)
14
15
            else:
                next value = model.predict(input df)
16
17
18
           multi_step.iloc[i] = next_value
19
20
            # Append that prediction to the input for the next forecast
           if i + 1 < len(multi step):</pre>
21
                input_data = np.append(input_data[:, 1:], next_value).reshape(1, -1)
22
23
24
       return multi step
```





# Look at the autoregressive linear forecasts

```
1 lr_forecast = autoregressive_forecast(lr, X_val)
2 stock.loc[lr_forecast.index, "MS Linear"] = 100 * lr_forecast

1 stock.loc["2018-12":"2019"].drop(["Linear", "Shifted"], axis=1).plot()
2 plt.axvline("2019", color="black", linestyle="--")
3 plt.legend(loc="center left", bbox_to_anchor=(1, 0.5));
```







## Metrics

#### One-step-ahead forecasts:

```
1 linear_mse, shifted_mse
```

(0.6329105517812206, 0.6367221343873524)

#### Multi-step-ahead forecasts:

```
1 multi_step_linear_mse = 100**2 * mean_squared_error(y_val, lr_forecast)
2 persistence_mse, trend_mse, multi_step_linear_mse
```

(39.54629367588932, 37.87104674064297, 23.84700379112976)





# Prefer only short windows

```
stock.loc["2019":"2019-1"].drop(["Linear", "Shifted"], axis=1).plot();
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5));
```



"It's tough to make predictions, especially about the future."







### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs





## Simple feedforward neural network

#### Model: "sequential"

| Layer (type)    | Output Shape | Param # |
|-----------------|--------------|---------|
| dense (Dense)   | (32, 64)     | 2,624   |
| dense_1 (Dense) | (32, 1)      | 65      |

Total params: 2,691 (10.51 KB)
Trainable params: 2,689 (10.50 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 2 (8.00 B)





### Forecast and plot

```
1  y_pred = model.predict(X_val, verbose=0)
2  stock.loc[X_val.index, "FNN"] = 100 * y_pred

1  stock.loc["2018-12":"2019"].drop(["Persistence", "Trend", "MS Linear"], axis=1).plot()
2  plt.axvline("2019", color="black", linestyle="--")
3  plt.legend(loc="center left", bbox_to_anchor=(1, 0.5));
```







## Autoregressive forecasts

```
1  nn_forecast = autoregressive_forecast(model, X_val, True)
2  stock.loc[nn_forecast.index, "MS FNN"] = 100 * nn_forecast

1  stock.loc["2018-12":"2019"].drop(["Linear", "Shifted", "FNN"], axis=1).plot()
2  plt.axvline("2019", color="black", linestyle="--")
3  plt.legend(loc="center left", bbox_to_anchor=(1, 0.5));
```







### Metrics

### One-step-ahead forecasts:

```
1 nn_mse = 100**2 * mean_squared_error(y_val, y_pred)
2 linear_mse, shifted_mse, nn_mse
```

(0.6329105517812206, 0.6367221343873524, 1.0445119512080592)

### Multi-step-ahead forecasts:

```
1 multi_step_fnn_mse = 100**2 * mean_squared_error(y_val, nn_forecast)
2 persistence_mse, trend_mse, multi_step_linear_mse, multi_step_fnn_mse
```

(39.54629367588932, 37.87104674064297, 23.84700379112976, 10.15084682208212)





### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs





### Basic facts of RNNs

- A recurrent neural network is a type of neural network that is designed to process sequences of data (e.g. time series, sentences).
- A recurrent neural network is any network that contains a recurrent layer.
- A recurrent layer is a layer that processes data in a sequence.
- An RNN can have one or more recurrent layers.
- Weights are shared over time; this allows the model to be used on arbitrary-length sequences.





## Applications

- Forecasting: revenue forecast, weather forecast, predict disease rate from medical history, etc.
- Classification: given a time series of the activities of a visitor on a website, classify whether the visitor is a bot or a human.
- Event detection: given a continuous data stream, identify the occurrence of a specific event. Example: Detect utterances like "Hey Alexa" from an audio stream.
- Anomaly detection: given a continuous data stream, detect anything unusual happening. Example: Detect unusual activity on the corporate network.





## Origin of the name of RNNs

A recurrence relation is an equation that expresses each element of a sequence as a function of the preceding ones. More precisely, in the case where only the immediately preceding element is involved, a recurrence relation has the form

$$u_n=\psi(n,u_{n-1}) \quad ext{ for } \quad n>0.$$

**Example:** Factorial n! = n(n-1)! for n > 0 given 0! = 1.





## Diagram of an RNN cell

The RNN processes each data in the sequence one by one, while keeping memory of what came before.



Schematic of a recurrent neural network. E.g. SimpleRNN, LSTM, or GRU.





# A SimpleRNN cell



Diagram of a SimpleRNN cell.

All the outputs before the final one are often discarded.





### LSTM internals







### GRU internals



Diagram of a GRU cell.

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$





### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs





## SimpleRNN

#### Model: "sequential\_1"

| Layer (type)           | Output Shape | Param # |
|------------------------|--------------|---------|
| reshape (Reshape)      | (32, 40, 1)  | 0       |
| simple_rnn (SimpleRNN) | (32, 64)     | 4,224   |
| dense_2 (Dense)        | (32, 1)      | 65      |

```
Total params: 4,291 (16.76 KB)
Trainable params: 4,289 (16.75 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 2 (8.00 B)
```





### Forecast and plot

```
1 y_pred = model.predict(X_val.to_numpy(), verbose=0)
2 stock.loc[X_val.index, "SimpleRNN"] = 100 * y_pred
```







## Multi-step forecasts

```
1 rnn_forecast = autoregressive_forecast(model, X_val, True)
2 stock.loc[rnn_forecast.index, "MS RNN"] = 100 * rnn_forecast
```







### Metrics

### One-step-ahead forecasts:

```
1 rnn_mse = 100**2 * mean_squared_error(y_val, y_pred)
2 linear_mse, shifted_mse, nn_mse, rnn_mse

(0.6329105517812206, 0.6367221343873524, 1.0445119512080592, 0.644451203191208)
```

### Multi-step-ahead forecasts:

```
1 multi_step_rnn_mse = 100**2 * mean_squared_error(y_val, rnn_forecast)
2 persistence_mse, trend_mse, multi_step_linear_mse, multi_step_fnn_mse, multi_step_rnn_ms

(39.54629367588932,
37.87104674064297,
23.84700379112976,
10.15084682208212,
10.584407213912131)
```





### GRU

#### Model: "sequential\_2"

| Layer (type)        | Output Shape | Param # |
|---------------------|--------------|---------|
| reshape_1 (Reshape) | (32, 40, 1)  | 0       |
| gru (GRU)           | (32, 16)     | 912     |
| dense_3 (Dense)     | (32, 1)      | 17      |

Total params: 931 (3.64 KB)
Trainable params: 929 (3.63 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 2 (8.00 B)





## Forecast and plot

```
1 y_pred = model.predict(X_val, verbose=0)
2 stock.loc[X_val.index, "GRU"] = 100 * y_pred
```







## Multi-step forecasts

```
gru_forecast = autoregressive_forecast(model, X_val, True)
stock.loc[gru_forecast.index, "MS GRU"] = 100 * gru_forecast
```







### Metrics

### One-step-ahead forecasts:

```
1 gru_mse = 100**2 * mean_squared_error(y_val, y_pred)
2 linear_mse, shifted_mse, nn_mse, rnn_mse, gru_mse

(0.6329105517812206,
0.6367221343873524,
1.0445119512080592,
0.644451203191208,
0.6390273644339947)
```

### Multi-step-ahead forecasts:

```
1 multi_step_gru_mse = 100**2 * mean_squared_error(y_val, gru_forecast)
2 persistence_mse, trend_mse, multi_step_linear_mse, multi_step_fnn_mse, multi_step_rnn_ms

(39.54629367588932,
37.87104674064297,
23.84700379112976,
10.15084682208212,
10.584407213912131,
8.111645234476077)
```





### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs





### The rank of a time series

Say we had n observations of a time series  $x_1, x_2, \ldots, x_n$ .

This  $\mathbf{x} = (x_1, \dots, x_n)$  would have shape (n, ) & rank 1.

If instead we had a batch of b time series'

$$m{X} = egin{pmatrix} x_7 & x_8 & \dots & x_{7+n-1} \ x_2 & x_3 & \dots & x_{2+n-1} \ dots & dots & dots \ x_3 & x_4 & \dots & x_{3+n-1} \end{pmatrix} \,,$$

the batch X would have shape (b, n)  $\mathcal{E}$  rank 2.





### Multivariate time series

| t | $\boldsymbol{x}$ | y     |
|---|------------------|-------|
| 0 | $x_0$            | $y_0$ |
| 1 | $x_1$            | $y_1$ |
| 2 | $x_2$            | $y_2$ |
| 3 | $x_3$            | $y_3$ |

Say n observations of the m time series, would be a shape (n, m) matrix of rank 2. In Keras, a batch of b of these time series has shape (b, n, m) and has rank 3.

### (i) Note

Use  $x_t \in \mathbb{R}^{1 \times m}$  to denote the vector of all time series at time t. Here,  $x_t = (x_t, y_t)$ .







# SimpleRNN

Say each prediction is a vector of size d, so  $\mathbf{y}_t \in \mathbb{R}^{1 \times d}$ .

Then the main equation of a SimpleRNN, given  $y_0 = 0$ , is

$$oldsymbol{y}_t = \psi ig(oldsymbol{x}_t oldsymbol{W}_x + oldsymbol{y}_{t-1} oldsymbol{W}_y + oldsymbol{b}ig).$$

Here,

$$egin{aligned} oldsymbol{x}_t &\in \mathbb{R}^{1 imes m}, oldsymbol{W}_x \in \mathbb{R}^{m imes d}, \ oldsymbol{y}_{t-1} &\in \mathbb{R}^{1 imes d}, oldsymbol{W}_y \in \mathbb{R}^{d imes d}, ext{ and } oldsymbol{b} \in \mathbb{R}^d. \end{aligned}$$





# SimpleRNN (in batches)

Say we operate on batches of size b, then  $\boldsymbol{Y}_t \in \mathbb{R}^{b \times d}$ .

The main equation of a SimpleRNN, given  $Y_0 = 0$ , is

$$oldsymbol{Y}_t = \psi ig(oldsymbol{X}_t oldsymbol{W}_x + oldsymbol{Y}_{t-1} oldsymbol{W}_y + oldsymbol{b}ig).$$

Here,

$$egin{aligned} oldsymbol{X}_t &\in \mathbb{R}^{b imes m}, oldsymbol{W}_x \in \mathbb{R}^{m imes d}, \ oldsymbol{Y}_{t-1} &\in \mathbb{R}^{b imes d}, oldsymbol{W}_y \in \mathbb{R}^{d imes d}, ext{ and } oldsymbol{b} \in \mathbb{R}^d. \end{aligned}$$





## Simple Keras demo

```
1  num_obs = 4
2  num_time_steps = 3
3  num_time_series = 2

5  X = (
6     np.arange(num_obs * num_time_steps * num_time_series)
7     .astype(np.float32)
8     .reshape([num_obs, num_time_steps, num_time_series])
9  )
10
11  output_size = 1
12  y = np.array([0, 0, 1, 1])
```







## Keras' SimpleRNN

As usual, the SimpleRNN is just a layer in Keras.

```
from keras.layers import SimpleRNN

random.seed(1234)

model = Sequential([SimpleRNN(output_size, activation="sigmoid")])
model.compile(loss="binary_crossentropy", metrics=["accuracy"])

hist = model.fit(X, y, epochs=500, verbose=False)
model.evaluate(X, y, verbose=False)
```

[0.5405111312866211, 0.75]

The predicted probabilities on the training set are:





# SimpleRNN weights

```
1 model.get_weights()
[array([[ 0.13],
        [-0.06]], dtype=float32),
 array([[0.51]], dtype=float32),
 array([-0.5], dtype=float32)]
  1 def sigmoid(x):
         return 1 / (1 + np.exp(-x))
  5 W_x, W_y, b = model.get_weights()
  7 Y = np.zeros((num_obs, output_size), dtype=np.float32)
  8 for t in range(num_time_steps):
         X_t = X[:, t, :]
     z = X_t \otimes W_x + Y \otimes W_y + b
       Y = sigmoid(z)
 11
 12
 13 Y
array([[0.49],
       [0.61],
       [0.72],
       [0.81]], dtype=float32)
```





### **Lecture Outline**

- Time Series
- Baseline forecasts
- Multi-step forecasts
- Neural network forecasts
- Recurrent Neural Networks
- RNN Demo
- SimpleRNN maths
- More complex RNNs





### Input and output sequences



Categories of recurrent neural networks: sequence to sequence, sequence to vector, vector to sequence, encoder-decoder network.





## Input and output sequences

- Sequence to sequence: Useful for predicting time series such as using prices over the last N days to output the prices shifted one day into the future (i.e. from N-1 days ago to tomorrow.)
- Sequence to vector: ignore all outputs in the previous time steps except for the last one. Example: give a sentiment score to a sequence of words corresponding to a movie review.





### Input and output sequences

- Vector to sequence: feed the network the same input vector over and over at each time step and let it output a sequence. Example: given that the input is an image, find a caption for it. The image is treated as an input vector (pixels in an image do not follow a sequence). The caption is a sequence of textual description of the image. A dataset containing images and their descriptions is the input of the RNN.
- The Encoder-Decoder: The encoder is a sequence-to-vector network. The decoder is a vector-to-sequence network. Example: Feed the network a sequence in one language. Use the encoder to convert the sentence into a single vector representation. The decoder decodes this vector into the translation of the sentence in another language.





# Recurrent layers can be stacked.



*Deep RNN* unrolled through time.





# Package Versions

```
1 from watermark import watermark
2 print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch
```

Python implementation: CPython Python version : 3.11.9
IPython version : 8.25.0

keras : 3.3.3
matplotlib: 3.9.0
numpy : 1.26.4
pandas : 2.2.2
seaborn : 0.13.2
scipy : 1.11.0
torch : 2.3.1
tensorflow: 2.16.1
tf\_keras : 2.16.0





# Glossary

- GRU
- LSTM
- recurrent neural networks
- SimpleRNN



