

Corona-Warn-App

Behind the scenes: Invisible, yet important

Thomas Klingbeil, SAP SE December 30, 2020

PUBLIC

Agenda

- Introduction to the app and its architecture
- Communication with the backend
- Risk calculation

Introduction:

Corona-Warn-App? What's that?

Architecture Overview

Communication with the backend What happens if someone is listening?

Data flow for test result retrieval using QR codes

What could be found out by observing the network traffic

Assumption: The content of the messages is secure, only connections and size of transfer are observable

- (2) The person has been tested
- (5) The person has been tested and still has not received the test result yet
- (9) The person has been tested positive
- (14) The person has been tested positive and is in the process of sharing keys
- + Keys could be related to an origin address

How to prevent extraction of information through observation

- Apps simulate backend traffic by sending "fake" or "dummy" requests
 - Either triggered by a real event or randomly
 - Apply padding to requests
- Special header field informs backend to react accordingly
 - Do not interact with underlying database
 - Delay response according to real behaviour
 - Apply padding, so size does not give away content of response
- No extra cost for mobile data → zero rating

How to prevent extraction of information through metadata

- When uploading keys, the HTTP(S) request from the mobile phone carries metadata
 - Source IP address
 - User agent (Operating System, possibly also OS version)
- Before the request reaches the backend server, the metadata is removed
 - only the content is forwarded to the backend service

Risk calculation

How the risk is being calculated

- Information about encounters (calculated at device receiving the RPI), provided in 30 minute exposure windows
 - number of scan instances (=duration of the encounter)
 - signal attenuation (minimum/average per scan instance)
 - reported TX power RX = attenuation
 - low attenuation → close
 - higher attenuation → farther away
- Information provided within the uploaded keys
 - Transmission Risk Level (= infectiousness)

Transmission Risk Level - based on symptom status

Transmission Risk Level - based on symptom status

Deriving the Transmission Risk Level from
Days since Onset of Symptoms (onset day **not** known)

—> technically "days since submission"
Value range (EFGS): 1986 to 2000

Deriving the Transmission Risk Level from Days since Onset of Symptoms (no information) —> technically "days since submission" Value range (EFGS): 3986 to 4000

Last updated: 16.12.2020, 14:40

Last updated: 14.12.2020, 10:00

High or low risk for those windows? Red or Green?

- Pre-Filtering
 - At least 10 minutes <73dB? Yes.
- At least TRL III? Yes.

- Calculation:
- 18 minutes at low attenuation → 18.0 minutes
- 9 minutes at medium attenuation → 4.5 minutes
- TRL VII \rightarrow (=7/5) \rightarrow x1.4
- (18.0+4.5) x 1.4 = 31.5 minutes \rightarrow red!

- Pre-Filtering
 - At least 10 minutes <73dB? No.
 → Dropped

- Pre-Filtering
 - At least 10 minutes <73dB? Yes.
 - At least TRL III? Yes.

- Calculation:
 - 6 minutes at low attenuation → 6.0 minutes
 - 0 minutes at medium attenuation → 0.0 minutes
- TRL VIII \rightarrow (=8/5) \rightarrow x1.6
- $(6.0+0.0) \times 1.6 = 9.6 \text{ minutes } \rightarrow \text{green}.$

Thank you!

Learn more at

www.coronawarn.app

https://github.com/corona-warn-app

