Sensitivity Analysis of the Maximum Matching Problem

Yuichi Yoshida Samson Zhou

- Measure of how much a discrete algorithm changes when the input changes
- \clubsuit For a deterministic graph algorithm A on a graph G with n vertices, the average sensitivity is defined as

$$\mathop{\mathbb{E}}_{e \sim E(G)}[|A(G) \triangle A(G-e)|]$$

where \triangle is the symmetric difference

- Example: Greedy algorithm for maximum matching on graph with 6 nodes
- $|A(G)\triangle A(G-e)|=3$

- Measure of how much a discrete algorithm changes when the input changes
- \clubsuit For a randomized graph algorithm A on a graph G with n vertices, the average sensitivity is defined as

$$\mathop{\mathbb{E}}_{e \sim E(G)}[d_{EMD}(A(G), A(G-e))]$$

where d_{EMD} is the Earth Mover Distance

Introduced by Murai and Yoshida [MY19] for centrality

- Introduced by Murai and Yoshida [MY19] for centrality
- ❖ Varma and Yoshida [VY21] for graph algorithms that output edge/vertex sets

Problem	Output	Approximation Guarantee	Average Sensitivity
Minimum Spanning Forest	Edge set	$1 < \infty$	$rac{O(rac{n}{m})}{\Omega(rac{n}{m})}$
Global Minimum Cut	Vertex set	$egin{array}{ll} 2+\epsilon \ 1 \ <\infty \end{array}$	$n^{O(rac{1}{\epsilon OPT})} \ \Omega(n) \ \Omega\left(rac{n^{rac{1}{OPT}}}{OPT^2} ight)$
Minimum s-t Cut	Vertex set	additive $O(n^{2/3})$	$O\left(n^{2/3}\right)$
Maximum Matching	Edge set	$1/2$ $1-\epsilon$ 1	$rac{1}{\widetilde{O}\left(\left(rac{OPT}{\epsilon^3} ight)^{rac{1}{1+\Omega(\epsilon^2)}} ight)}{\Omega(n)}$
Minimum Vertex Cover	Vertex set	2	2
2-Coloring	Vertex set		$\Omega(n)$

- Introduced by Murai and Yoshida [MY19] for centrality
- ❖ Varma and Yoshida [VY21] for graph algorithms that output edge/vertex sets
- Peng and Yoshida [PY20] for spectral clustering

From Average Sensitivity to Worst-Case Sensitivity

- We introduce the definition of worst-case sensitivity
- \clubsuit For a randomized graph algorithm A on a graph G with n vertices, the average sensitivity is defined as

$$\mathop{\mathbb{E}}_{e \sim E(G)}[d_{EMD}(A(G), A(G-e))]$$

 \clubsuit For a randomized graph algorithm A on a graph G with n vertices, the worst-case sensitivity is defined as

$$\max_{e \sim E(G)} [d_{EMD}(A(G), A(G - e))]$$

Our Results (1)

- **Theorem:** $(1 + \epsilon)$ -approximation algorithm to the maximum matching problem with worst-case edge sensitivity $O_{\epsilon}(1)$.
- **Theorem:** Deterministic algorithm for maximal matching with worst-case sensitivity Δ^x , where $x = O(6^{\Delta} + \log^* n)$, for graphs with vertex degree bounded by Δ .

Our Results (1)

- **Theorem:** $(1 + \epsilon)$ -approximation algorithm to the maximum matching problem with worst-case edge sensitivity $O_{\epsilon}(1)$.
- **Theorem:** Deterministic algorithm for maximal matching with worst-case sensitivity Δ^x , where $x = O(6^{\Delta} + \log^* n)$, for graphs with vertex degree bounded by Δ .

Maximum Matching

 $(1+\epsilon)$ -approximation algorithm for maximum matching with average sensitivity $O\left(\left(\frac{OPT}{\epsilon^3}\right)^{1/(1+\Omega(\epsilon^2)}\right)$ [VY21]

***** What about worst-case sensitivity? Previous example shows greedy algorithm can have sensitivity $\Omega(n)$

Maximal Matching

- First idea: Randomized greedy for maximal matching
- The "expected" deleted/added edge appears halfway through the ordering of edges
- ❖ Intuition: Either most of the edges in the matching occur early in the ordering (dense graph) OR the deleted/added edge does not affect edges in the matching (sparse graph)

Randomized greedy for maximal matching

- \clubsuit Let $\pi(e)$ be the rank of e in a (fixed) random permutation
- $l_{\pi}(e) :=$ Neighbors of e with smaller rank than e
- e is in the maximal matching M iff no edges of $I_{\pi}(e)$ are in M
- \clubsuit Consider the set S of edges that must be modified to maintain the invariant if e is moved to the beginning of π
- Φ Unless $\pi(e) = \min \pi(S)$, then no edges need to be modified
- $\star \pi(e) = \min \pi(S)$ with probability $\frac{1}{|S|}$
- \Leftrightarrow Expected number of modified edges O(1)

Randomized greedy for maximal matching

- Let the rank of (fixed) permutation
- $Arr I_{\pi}(e) := Ne$
- •
- Consideration
 invariant

Similar idea used for maximal independent set in the dynamic distributed setting [CHK16]

- \star omess $\pi(e) =$
- $\star \pi(e) = \min \pi$ with lity
- Expected number of mo ed edges O()

intain the

odified

Step 1: Maximal Matching

- First idea: Randomized greedy for maximal matching with worst-case sensitivity O(1)
- ***** From maximal matching to $(1 + \epsilon)$ -approximation algorithm for maximum matching?
- ❖ Modify the layered graph in the multi-pass streaming algorithm of McGregor [M05]

Step 2: Layered Graph

 \clubsuit Creates a graph with $\ell+1$ layers to simultaneously sample a large number of augmenting paths of length ℓ

Step 2: Layered Graph

- \clubsuit Creates a graph with $\ell+1$ layers to simultaneously sample a large number of augmenting paths of length ℓ
- **Terminates** in roughly $\frac{1}{\epsilon}$ iterations to achieve $(1 + \epsilon)$ -approximation algorithm for maximum matching
- Samples roughly $K = \left(\frac{1}{\epsilon}\right)^{2^{O\left(\frac{1}{\epsilon}\right)}}$ augmenting paths
- **\Psi** Worst-case sensitivity $O(3^K) = O_{\epsilon}(1)$
- A Runtime: O((n+m)K)

Our Results (1)

- **Theorem:** $(1 + \epsilon)$ -approximation algorithm to the maximum matching problem with worst-case edge sensitivity $O_{\epsilon}(1)$.
- **Theorem:** Deterministic algorithm for maximal matching with worst-case sensitivity Δ^x , where $x = O(6^{\Delta} + \log^* n)$, for graphs with vertex degree bounded by Δ .

Deterministic Algorithm

- ❖ Ingredient #1: Deterministic local computation algorithm (LCA) by Cole and Vishkin for 6^{Δ} -coloring of a graph with degree Δ using $O(\Delta \log^* n)$ queries [CV86]
- ❖ Partitions the graph into forests and assigns each node a color based on the LSB that differs between the node ID and its parent ID
- Fact #1: Deterministic LCA only queries vertices within distance $O(\log^* n)$

Deterministic Algorithm

- ❖ Ingredient #2: Framework by Parnas and Ron [PR07] that simulates local distributed algorithms using deterministic LCA using $\Delta^{O(c)}$ probes
- \clubsuit Iterate through colors and add each edge to maximal matching M if no adjacent edge is already in M
- \clubsuit Fact #2: Framework only queries vertices within distance $O(6^{\Delta})$

Deterministic Algorithm

- Fact #1: Deterministic LCA only queries vertices within distance $O(\log^* n)$
- \clubsuit Fact #2: Framework only queries vertices within distance $O(6^{\Delta})$
- Sensitivity analysis: At most $O\left(\Delta^{6^{\Delta} + \log^* n}\right)$ queries in the LCA can be affected by a single deletion/addition

Our Results (1)

- **Theorem:** $(1 + \epsilon)$ -approximation algorithm to the maximum matching problem with worst-case edge sensitivity $O_{\epsilon}(1)$.
- **Theorem:** Deterministic algorithm for maximal matching with worst-case sensitivity Δ^x , where $x = O(6^{\Delta} + \log^* n)$, for graphs with vertex degree bounded by Δ .

Our Results (2)

- **Theorem:** Any deterministic constant-factor approximation algorithm for the maximum matching problem has worst-case edge sensitivity $\Omega(\log^* n)$.
- Theorem: For a graph with edge weights bounded by W = poly(n) and a trade-off parameter α , there exists an algorithm that outputs a 4α -approximation to the maximum weighted matching in $O(m\log_{\alpha}n)$ time. For $\alpha=2$, the algorithm has weighted sensitivity $O(W\log n)$ and normalized weighted sensitivity $O(\log n)$. For $\alpha>2$, the algorithm has weighted sensitivity O(W) and normalized weighted sensitivity O(W).

Future Directions

- Worst-case analysis of monotone submodular maximization by McMeel and Yoshida [MY20]
- Worst-case (normalized) weighted sensitivity for other graph problems?
- Constant factor approximation algorithm for maximum weighted matching with "low" worst-case sensitivity?
- \clubsuit Can we get $(1 + \epsilon)$ -approximation algorithm for maximum weighted matching with "low" worst-case (normalized) weighted sensitivity?

