第八周习题课 微分中值定理,单调性,极值,洛必达法则

- 费马定理: f(x) 在 x_0 点取到极值, f(x) 在 x_0 点可微, 则 $f'(x_0) = 0$ 。
- 罗尔定理: f(x) 在 [a,b] 连续, 在 (a,b) 可微, f(a) = f(b), 则 $\exists \xi \in (a,b)$, 使 $f'(\xi) = 0$
- 拉格朗日定理: f(x) 在[a,b]连续,在(a,b)可微,则 $\exists \xi \in (a,b)$,使

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

● 柯西中值定理: f(x), g(x) 在[a,b]连续, 在(a,b)可微, 且 $g'(x) \neq 0$, 则 ∃ $\xi \in (a,b)$,

使
$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

- (达布定理)导数零点定理:设函数 y = f(x)在[a,b]上可导,并且 $f'_+(a)f'_-(b) < 0$ 。 则必 $\exists x_0 \in (a,b)$, 使得 $f'(x_0) = 0$ (在 x_0 处有水平切线)。
- 洛必达法则——求不定式的极限 如果
 - (1) $\lim f(x) = \lim g(x) = 0$ (或∞)
 - (2) 在极限点附近, f'(x), g'(x)都存在, 且 $g'(x) \neq 0$;
 - (3) $\lim \frac{f'(x)}{g'(x)}$ 存在或为无穷大,则 $\lim \frac{f(x)}{g(x)}$ 存在或为无穷大,且等于 $\lim \frac{f'(x)}{g'(x)}$ 。

一. 微分中值定理用于证明题

证明: (1) 存在性: 作辅助函数 F(x) = f(x) - x,

$$F(0) = f(0) > 0$$
$$F(1) = f(1) - 1 < 0$$

由连续函数的介值定理得,在(0,1)存在 ξ 使 $F(\xi)=0$,即 $f(\xi)=\xi$ 。

(2) 唯一性: 若存在两点 ξ_1, ξ_2 ,使 $f(\xi_1) = \xi_1$, $f(\xi_2) = \xi_2$,由 Lagrange 中值定理,存在 $\eta \in (\xi_1, \xi_2)$ (假设 $\xi_1 < \xi_2$),使

$$f'(\eta) = \frac{f(\xi_1) - f(\xi_2)}{\xi_1 - \xi_2} = 1$$
,

与条件 $f'(x) \neq 1$ 矛盾。

2. 设函数 f(x),g(x) 在[a,b]上连续,在(a,b)内具有二阶导数,且存在相等的最大值,

$$f(a) = g(a), f(b) = g(b),$$
 证明:存在 $\xi \in (a,b),$ 使得 $f''(\xi) = g''(\xi)$ 。

证明: $\diamondsuit F(x) = f(x) - g(x)$, 则

$$F(a) = 0$$
, $F(b) = 0$,

设 f(x),g(x) 在 (a,b) 内的最大值为 M 分别在 $\alpha \in (a,b),\beta \in (a,b)$ 取得。

当
$$\alpha = \beta$$
时,取 $\eta = \alpha = \beta \in (a,b)$,则有 $f(\eta) = g(\eta)$ 。

当 α ≠ β 时,则

$$F(\alpha) = f(\alpha) - g(\alpha) = M - g(\alpha) \ge 0$$

$$F(\beta) = f(\beta) - g(\beta) = g(\beta) - M \le 0$$

由介值定理,存在 $\eta \in (a,b)$ 使 $F(\eta) = 0$,即

$$f(\eta) = g(\eta)$$

由 Rolle 定理,

$$\exists \xi_1 \in (a, \eta), F'(\xi_1) = 0, \exists \xi_2 \in (\eta, b), F'(\xi_1) = 0$$

再由 Rolle 定理, $\exists \xi \in (\xi_1, \xi_2) \subset (a,b)$, $h''(\xi) = 0$, 即

$$f''(\xi) = g''(\xi)$$

3. 函数 f(x), g(x) 在 [a,b] 连续,在 (a,b) 二阶可导,且 $g''(x) \neq 0$,

$$f(a) = f(b) = g(a) = g(b) = 0$$
。 求证

(1) $g(x) \neq 0$, $\forall x \in (a,b)$;

(2)
$$\exists c \in (a,b)$$
,使得 $\frac{f(c)}{g(c)} = \frac{f''(c)}{g''(c)}$ 。

证明: (1) 用反证法, 若在(a,b)内存在 $c \in (a,b)$ 使得g(c) = 0,

则由 Rolle 定理, $\exists c_1 \in (a,c)$, $\exists c_2 \in (c,b)$, 使得 $g'(c_1) = g'(c_2) = 0$ 。

再由 Rolle 定理可知, $\exists c_0 \in (c_1, c_2)$,使得 $g''(c_0) = 0$ 。此与题设矛盾。

(2) 记F(x) = f(x)g'(x) - f'(x)g(x), 则函数F(x)在[a,b]连续,在(a,b)可导,

且F(a) = F(b) = 0,由Rolle 定理, $\exists c \in (a,b)$,使得F'(c) = 0,

也即 F'(c) = f(c)g''(c) - f''(c)g(c) = 0, 由此导出结论(2)。证毕。

- **4.** 已知函数 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0) = 0, f(1) = 1。证明:
- (I) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$;
- (II) 存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.

【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.

证明: (I) 令F(x) = f(x) - 1 + x,则F(x)在[0,1]上连续,且F(0) = -1,F(1) = 1,于是由介值定理知,存在存在 $\xi \in (0,1)$,使得 $F(\xi) = 0$,即 $f(\xi) = 1 - \xi$.

(II) 在[0, ξ]和[ξ ,1]上对 f(x)分别应用拉格朗日中值定理,知存在两个不同的点

$$\eta \in (0,\xi), \zeta \in (\xi,1)$$
 , 使得 $f'(\eta) = \frac{f(\xi) - f(0)}{\xi - 0}$, $f'(\zeta) = \frac{f(1) - f(\xi)}{1 - \xi}$

于是
$$f'(\eta)f'(\zeta) = \frac{f(\xi)}{\xi} \cdot \frac{1 - f(\xi)}{1 - \xi} = \frac{1 - \xi}{\xi} \cdot \frac{\xi}{1 - \xi} = 1.$$

5. $f(x)[0,+\infty)$ 内可导,且在 $0 \le f(x) \le \ln \frac{2x+1}{x+\sqrt{1+x^2}}$, $\forall x \in [0,+\infty)$ 。证明:

$$\exists \xi \in (0, +\infty), \quad f'(\xi) = \frac{2}{2\xi + 1} - \frac{1}{\sqrt{1 + \xi^2}}$$

证明: 因为 $0 \le f(x) \le \ln \frac{2x+1}{x+\sqrt{1+x^2}}$, $\forall x \in [0,+\infty)$, 而

$$\lim_{x \to +\infty} \ln \frac{2x+1}{x+\sqrt{1+x^2}} = 0, \quad \ln \frac{2x+1}{x+\sqrt{1+x^2}} \bigg|_{x=0} = 0,$$

所以 $\lim_{x\to +\infty} f(x) = 0$, f(0) = 0。

记
$$F(x) = f(x) - \ln \frac{2x+1}{x+\sqrt{1+x^2}}$$
,则 $\lim_{x\to +\infty} F(x) = 0$, $F(0) = 0$,由广义Rolle 定理,

$$\exists \xi \in (0,+\infty), \quad F'(\xi) = 0, \quad \mathbb{P} f'(\xi) = \frac{2}{2\xi+1} - \frac{1}{\sqrt{1+\xi^2}} \ .$$

二. 零点问题

6. 对任意正整数n,证明方程 $e^x - x^n = 0$ 至多有三个不同的零点。

证明:显然方程 $e^x - x^n = 0$ 和方程 $e^{-x}x^n - 1 = 0$ 有相同的零点。考虑函数

 $f(x) := e^{-x} x^n - 1$ 。 易见 $f'(x) = e^{-x} x^{n-1} (\mathbf{n} - \mathbf{x})$ 有且仅有两个不同的零点(实根)。由 Rolle 定理可知, f(x) 至多有三个不同的零点。从而方程 $e^x - x^n = 0$ 至多有三个不同的实零点。结论得证。

注:在利用中值定理估计函数零点的个数时,如何构造辅助函数是非常重要的事情。对于本题而言,首先想到的辅助函数自然是 $\mathbf{g}(x) \coloneqq e^x - x^n$ 。但是估计导数 $\mathbf{g}'(x) = e^x - nx^{n-1}$ 的零点个数,并不比估计函数 $\mathbf{g}(x)$ 本身的零点个数来得更容易。 因此当我们对某个辅助函数作估计遇到困难时,应该考虑选取其他辅助函数。选取不同的辅助函数,估计的难度一般说来是不同的。本题提供了一个很好的例子。

三. 单调性与不等式问题

解:
$$f(x) = \ln y = \frac{\ln x}{x}$$
, $f'(x) = \frac{1 - \ln x}{x^2}$,

$$x \in (0,e), f'(x) > 0; x \in (e,+\infty), f'(x) < 0.$$

- 8. 设 $f:[0,1] \to [0,1]$ 为连续函数, f(0) = 0, f(1) = 1, f(f(x)) = x。证明:
- (I) f(x) 是单调函数;
- (II) f(x) = x.

证明: (1) 反证法:

假设 f(x) 不是单调函数,则存在 $x_1, x_2 \in [0,1], x_1 < x_2, f(x_2) < f(x_1) \le 1 = f(1)$ 。

因为 $f:[0,1] \rightarrow [0,1]$ 为连续函数,存在 $x_3 \in [x_2,1]$ 使得 $f(x_3) = f(x_1)$,而 $x_1 = f(f(x_1)) = f(f(x_3)) = x_3$,矛盾。

(2) $\forall x \in [0,1], x, f(x) \in [0,1]$.

如果
$$x \ge f(x)$$
, 由 f 的单调性, $f(x) \ge f(f(x)) = x$, $f(x) = x$; 如果 $x \le f(x)$, 由 f 的单调性, $f(x) \le f(f(x)) = x$, $f(x) = x$ 。 故 $f(x) = x$ 。

9.
$$\forall x > 0$$
, 证明不等式 $\frac{x}{x^2 + 2x + 2} < \arctan(x+1) - \frac{\pi}{4} < \frac{x}{2}$.

$$f'(x) = (2x+2)\arctan(x+1) - \frac{\pi}{4}(2x+2)$$
$$= (2x+2)[\arctan(x+1) - \frac{\pi}{4}] > 0$$

于是当x > 0时 f(x) > 0,即原左侧不等式成立。

$$\Rightarrow \varphi(x) = \arctan(x+1) - \frac{\pi}{4} - \frac{x}{2}, \quad \varphi(0) = 0$$

$$\varphi'(x) = \frac{1}{1 + (x+1)^2} - \frac{1}{2} < 0, \implies \varphi(x) < 0$$

即原右侧不等式成立。

10. 证明: 当
$$x \in (0,1)$$
时, $(1+x)\ln^2(1+x) < x^2$

证明:
$$f(x) = (1+x)\ln^2(1+x) - x^2$$

$$f'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$$

$$f''(x) = \frac{2[\ln(1+x) - x]}{1+x}$$

显然 $\ln(1+x)-x<0$, $x\in(0,1)$, 因此 f''(x)<0, $x\in(0,1)$, f'(x) 为单调降函数。

因为f'(0) = 0, f'(x) < 0, $x \in (0,1)$, f(x)为单调降函数。

因为f(0) = 0,所以 $f(x) < 0, x \in (0,1)$,即当 $x \in (0,1)$ 时, $(1+x)\ln^2(1+x) < x^2$ 。

四. 洛必达法则

11. 求极限
$$\lim_{x\to 0} \frac{1}{x^3} \left[\left(\frac{2 + \cos x}{3} \right)^x - 1 \right].$$

解:
$$\lim_{x \to 0} \frac{1}{x^3} \left[\left(\frac{2 + \cos x}{3} \right)^x - 1 \right] = \lim_{x \to 0} \frac{e^{x \ln \left(\frac{2 + \cos x}{3} \right)} - 1}{x^3} = \lim_{x \to 0} \frac{\ln \left(\frac{2 + \cos x}{3} \right)}{x^2}$$
$$= \lim_{x \to 0} \frac{\ln \left(2 + \cos x \right) - \ln 3}{x^2} = \lim_{x \to 0} \frac{\frac{1}{2 + \cos x} \cdot \left(-\sin x \right)}{2x}$$
$$= -\frac{1}{2} \lim_{x \to 0} \frac{1}{2 + \cos x} \cdot \frac{\sin x}{x} = -\frac{1}{6}$$

12. 求极限
$$\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x}\right)$$
。

解: (方法 1)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1) \ln x}$$

$$= \lim_{x \to 1} \frac{\ln x}{\ln x + \frac{x - 1}{x}} = \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2} .$$

(方法 2)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - x + 1}{(x-1)\ln(1+x-1)}$$

$$= \lim_{x \to 1} \frac{x \ln x - x + 1}{(x - 1)^2} = \lim_{x \to 1} \frac{\ln x}{2(x - 1)} = \lim_{x \to 1} \frac{x - 1}{2(x - 1)} = \frac{1}{2} \circ$$