

本科实验报告

喇叭天线的幅射特性测量及 CST 仿真

课程名称: 电磁场与电磁波

姓 名: 姚桂涛

学院: 信息与电子工程学院

专业: 信息工程

学 号: 3190105597

指导老师: 王子立

2021年6月24日

浙江大学实验报告

专业:信息工程姓名:姚桂涛学号:3190105597日期:2021 年 6 月 24 日地点:东 4-221

矩形波导馈电的角锥喇叭天线 CST 仿真

一、 实验目的

- (1) 了解并掌握波导喇叭天线的常用参数指标和分析方法.
- (2) 了解熟悉 CST 软件的基本使用方法, 学会运用其进行建模、仿真。

二、 实验任务

用 CST 软件对特定的巨型波导喇叭天线进行建模、仿真,分析其辐射特性,并与喇叭天线辐射特性测量实验进行比较。

三、 实验过程与结果

1. 模型建立

1.1 建立工程

图 1

图 2

1.2 参数设置

Parameter List										
$\ensuremath{\mathbb{V}}$ Name	Expression	Value	Description	Туре						
a	= 22.86	22.86		None	~					
t	= 1	1		None	~					
b	= 10.16	10.16		None	~					
Lambda	= 29.1	29.1		None	~					
DH	= 80	80		None	~					
DE	= 38	38		None	~					
L	= 80	80		None	~					

图 3

1.3 创建矩形

图 4

图 5

1.4 建立喇叭模型

建立喇叭口径面

图 6

图 7

图 8

设置喇叭口径面的空间位置

图 9

图 10

创建喇叭侧壁

图 11

图 12

掏空

图 13

图 14

2. 仿真分析

2.1 仿真条件设置 仿真频率

图 15

仿真边界条件

图 16

图 17

端口设置

图 18

设置监视器

图 19

图 20

图 21

2.2 模式分析

图 22

图 23

由于仿真最高频率为 12.4GHz, 所以在这种结构的喇叭天线中只传输 1 种模式的波,设置的吸收的模式数只要大于 1 就可以了。

2.3 仿真设置

图 24

3. 仿真结果

3.1 S₁₁ 曲线

图 25

3.2 驻波曲线

图 26

3.3 方向图

图 27

图 28

3.4 增益图

图 29

图 30

3.5 E-field, H-field, surface current 图

图 31 e-field

图 32 h-field

图 33 surface current

4. 分析结论

从仿真结果来看,该矩形波导馈电的角锥喇叭天线的主瓣方向为 $\varphi=0^\circ$, $\theta=0^\circ$, 主瓣宽度为 37.4°,主瓣的最大增益为 15dB,最大增益的仿真值与理论估计值相近。同时,该天线输入端口的反射系数在工作频段内均在 20dB 以下,能够较好的工作。

四、 实验收获与体会

喇叭天线的幅射特性测量

一、 实验目的

揭示喇叭天线的幅射特性。 覆盖的基本概念:

- 天线辐射方向图
- 波東宽度
- 天线的极化特性
- 电磁波在空间传播中与距离的关系

二、实验过程与结果

1. 电磁波在空间传播中与距离的关系测量

表 1 天线距离与接收功率关系

距离 R(m)	实验测量值 (dB)	相对归一化功率 (dB)
1.0	-40.0	0.0
1.1	-41.8	-1.8
1.2	-43.6	-3.6
1.3	-45.3	-5.3
1.4	-46.8	-6.8

2. 极化测量

2.1 天线极化测量

表 2 发射喇叭天线极化特性

发射喇叭天线角度	实验测量值 (dB)	相对归一化功率 (dB)
0°	-40.0	0.0
10°	-47.0	-7.0
20°	-55.6	-15.6
30°	-61.6	-21.6
40°	-63.6	-23.6
50°	-68.4	-28.4
60°	-71.0	-31.0
70°	-76.0	-36.0
80°	-80.0	-40.0
90°	-80.0	-40.0

2.2 极化栅网特性测量

表 3 极化栅网极化特性

极化栅网角度	实验测量值 (dB)	相对归一化功率 (dB)
0°	-40.0	0.0
90°	-69.3	-29.3
45°	-44.5	-4.5

3. 喇叭天线辐射方向图测量

表 4 天线水平方向图测量数据

天线水平方向转角(°)	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90
实验测量值 (dB)	∞	∞	-80.0	-73.8	-74.0	-66.8	-57.8	-49.8	-43.0	-40.0	-44.2	-52.6	-61.0	-63.4	-66.8	-70.5	-77.5	-80.0	∞
相对归一化功率	∞	∞	-40.0	-33.8	-34.0	-26.8	-17.8	-9.8	-3.0	0.0	-4.2	-12.6	-21.0	-23.4	-26.8	-30.5	-37.5	-40.0	∞

表 5 天线垂直方向测量数据

天线垂直方向转角 (°)	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50	60
实验测量值 (dB)	-68.6	-66.2	-65.5	-65.2	-58.6	-51.5	-50.0	-51.5	-57.2	-65.0	-66.0	-66.2	-69.0
相对归一化功率 (dB)	-18.6	-16.2	-15.5	-15.2	-8.6	-1.5	0.0	-1.5	-7.2	-15.0	-16.0	-16.2	-19.0

三、 思考题

四、实验收获与体会