CS311: Data Communication

TRANSMISSON OF DIGITAL SIGNAL - II

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Outline of the Lecture

- Introduction
- Scrambling Coding schemes
- Basic concepts of block coding
- Block coding steps
- Conversion of analog data to digital signal
- Two basic approaches:
 - 1. Pulse coding modulation
 - 2.Delta modulation
 - Limitations of PCM and DM
 - Comparisons of the two approaches

Transmission of digital signal

On completion, the students will able to:

- Explain scrambling Coding schemes
- Explain the need for block coding
- Explain the operation of block coding
- Explain the coding techniques used for conversion of analog data to digital signal
- Distinguish between the coding techniques: PCM and DM
- Compare the advantages and limitations of PCM and DM

Summary of the coding techniques

B8ZS

Bipolar with 8-zero substitution

- The limitation of bipolar AMI is overcome in B8ZS, which is used in North America
- A sequence of eight zero's is replaced by the following encoding
- A sequence of eight 0's is replaced by 000+-0+-, if the previous pulse was positive
- A sequence of eight 0's is replaced by 000-+0+-, if the previous pulse was negative

B8ZS

HBD3

> High density Bipolar-3 Zeros

- Another alternative, which is used in Europe and Japan is HBD3.
- It replaces a sequence of 4 zeros by a code as per the rule given in the above table

HDB:	3 substitution ru	le
Polarity of the Preceding pulse	Number of bipolar pulses (ones) since last substitution	
	odd	even
	000 —	+00+
+	000+	-00-

HBD3

B8ZS and HBD3

Characteristics B8ZS and HBD3

- Three levels
- No DC component
- Good synchronization
- Most of the energy is concentrated around a frequency equal to half the data rate
- Well suited for high data-rate transmission over long distances

BANDWIDTH COMPARISION

Block Coding

- Block coding was introduced to improve the performance of the line coding
- Introduces redundancy to achieve synchronization
- Also allows error detection to some extent

Block Coding

Example: 4B/5B encoding

- The 5-bit code has no more than one leading zero and no more than two trailing zeros
- More than three consecutive 0's do not occur
- Normally line coding with NRZ-I

Data Sequence	Encoded Sequence	Data Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (start delimiter)	11000
0100	01010	K (start delimiter)	10001
0101	01011	T (end delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

-8B/10B

- 8-bit data blocks are substituted by 10-bit code
- Provides more error detection capability
- Leads to increase in bandwidth
- Bandwidth can be reduced by using suitable line coding, 8B/6T
- Example:8B/6T 3F -0+-0+

- Analog data such as voice, videos and music are to be converted into digital signal for communication through transmission media.
- Two basic approaches
 - -Pulse Code Modulation (PCM)
 - -Delta Modulation (DM)

Pulse Code Modulation

- Sampling -> PAM
- Quantization
- Line coding

Example:- Input signal-voice-Bandwidth 4 kHz

- Sampling Frequency- at least twice the highest frequency in the input signal (Nyquist Theorem)
- Sampling 8 kHz
- 8-bit ADC is used for conversion to digial data of 64 Kbps

Quantization Error

- Because of quantization, error is introduced
- Quantization error depends on step size
- Use of uniform step size leads to poorer S/N ratio for small amplitudes signals
- With the constraint of a fixed number of levels, the situation can be improved using variable step size
- Companding: Use of non-linear encoding during quantization

 The steps are close together at low signal amplitude and further apart at high signal amplitude and this improves the S/N ratio

COMPRESSOR-EXPANDER

Limitations of PCM

- The PCM signal has high bandwidth
- To send voice signal a data rate of 56/64 Kbps is required
- To overcome this problem a techniques known as Differential PCM (DPCM) can be used
- It is based on the observation that voice signal changes slowly
- So difference between two consecutive sample values, instead of the sample values, may be sent

DPCM

- DPCM: The difference between the sample values, rather than the sample values, is encoded
- It can be achieved in a number of ways
 - -Analog
 - -Mixture of analog and digital
 - -Digital

Delta Modulation

- DM: It is a special case of DPCM
- If the difference between analog input and the feedback signal is positive, then encoded output is 1, otherwise 0
- Only one bit is sent at a time

26

Delta Modulation Advantages

- Simplicity of implementation
- Each samples is represented by a single binary digit, which makes it more efficient than the PCM technique
- Two important parameters :
 - -The size of the step
 - -The sampling rate

- Fixed step size leads to overloading
- Overloading occurs not only due to higher voltage but due to its slope
- Slope-overloaded
- This problem can be overcome using adaptive delta modulation
- The steps sizes are small, when the signal changes are small and sizes are large, when the signal changes are large

PCM Versus DM

- PCM: For the voice signal with 256 quantization levels the data rate is 64 Kbps
- This requires a channel having bandwidth of 32KHz
- More complex hardware
- DM: To obtain comparable quality, a sampling rate of 100 KHz is required
- If compromise in quality and intelligibility is allowed, DM requires lesser bandwidth
- Simpler hardware

Applications of Encoding Techniques

- Manchester Encoding is used in Ethernet LAN
- Differential Manchester is used in Token Ring LAN
- 4B/5B-NRZI encoding is used in FDDI LAN
- PCM is used in public Switched Telephone Network(PSTN)

Thanks!