Phase structure analysis of 2d CP(1) model with θ term by TRG and CFT

H. Aizawa, Kanazawa.U

Collaborator S.Takeda, Y.Yoshimura

2d CP(1) model

Toy model of 4d QCD

Common properties : Asymptotic freedom, confinement, θ terms, etc.

2d CP(1) model with θ terms

Action in continum

$$S = \int d^2x \left(\frac{1}{g^2} |D_{\mu}z(x)|^2 + \frac{i\theta}{2\pi} \varepsilon_{\mu\nu} \partial_{\mu} A_{\nu} \right)$$

constraint

complex scalar

$$z(x) = \begin{pmatrix} z_1(x) \\ z_2(x) \end{pmatrix} \in \mathbb{C}^2 \qquad |z(x)|^2 = 1$$

On the square lattice

$$S = -2 \underbrace{\beta \sum_{x,\mu} \left[z^{\dagger}(x) z(x + \hat{\mu}) U_{\mu}(x) + z^{\dagger}(x + \hat{\mu}) z(x) U_{\mu}^{-1}(x) \right] - i \underbrace{\frac{\theta}{2\pi} \sum_{x} q(x)}_{x}$$

$$Q(x)=\frac{1}{i}\ln U_p(x)$$

$$=\{A_1(x)+A_2(x+\hat{1})-A_1(x+\hat{2})-A_2(x)\}\mod 2\pi$$
 Nathan Seiberg

Phys. Rev. Lett. 53, 63

This model has sign problem

U(1) gauge field

Phase structure

Phase structure

Numerical result for CP(1)

Numerical result for CP(1) using TRG

Numerical result for CP(1) using TRG

Making two improvements

Initial tensor

Phase structure analysis method

Initial tensor

Partition function

$$Z = \int \prod_{x} dz(x) \int \prod_{x,\mu} dA_{\mu}(n) e^{-S[z,A_{\mu}]}$$

Tensor network rep.

$$Z = \sum_{\{i_x, j_x\}} \prod_{x}^{N} T^{(0)}_{i_x, j_x, i_{x-\hat{0}}, j_{x-\hat{1}}}$$

 $(N = L \times T)$

We need tensor that have finite index for numerical simulation

Initial tensor

Previous study

Using character expansion

$$e^{i\frac{\theta}{2\pi}q_p} = \sum_{k \in \mathbb{Z}} e^{ik(A_1 + A_2 - A_3 - A_4)} C_k(\theta)$$

truncate

$$C_k(\theta) \propto \frac{1}{k}$$

Converge slowly

New tensor

Using quadrature

Scalar field

Genz, Keister (1996)

Gauge field

Ryo Sakai et al.(2018)

Comparison of initial tensor

character expansion(previous study)

we investigate the error comparing the exact value on 2×2 lattice.

$$\delta f = \left| \frac{f_{tensor} - f_{exact}}{f_{exact}} \right|$$

Parameters

$$N_z = 224$$
, $N_A = 120$

$$\theta = \pi$$

New initial tensor is better

Phase structure analysis method

Previous study

susceptibility
$$\chi = -\frac{1}{V} \frac{\partial^2 log Z}{\partial \theta^2} \bigg|_{\theta = \pi}$$

fitting Z near $\theta = \pi$ is needed

It is difficult to determine the fitting range

K. Nakayama, L. Funcke, K. Jansen, Y. Kao, and S. Kuhn Phys. Rev. D 105,(2022)

In our study

We use central charge defined in 2d conformal field theory

Z.C. Gu and X.G. Wen Phys. Rev. B 80, 155131 –(2009)

2d Conformal field theory

Virasoro algebra
$$\left[L_n, L_m\right] = (n-m)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n+m,0}$$

Algebra of 2d conformal transformation

$$L_0|h\rangle = h|h\rangle$$
 $L_n|h\rangle = 0, n > 0$ $n, m \in \mathbb{Z}$

c:central charge

c and h Identify Universality

h:conformal weight

From the prediction of Haldane's conjecture, there should be a critical point with c=1

How to compute the transfer matrix by TRG

When an invariant tensor is obtained under the TRG, the transfer matrix corresponds to the CFT one.

Eigen value

$$\lambda_i = e^{2\pi(h_i + \bar{h_i}) + \frac{\pi c}{6}}$$

Central charge

$$c = \frac{6}{\pi} \log(\lambda_0)$$

Scaling dimension

$$x_i = h_i + \bar{h_i} = \frac{1}{2\pi} \log(\frac{\lambda_0}{\lambda_i})$$

Parameters

$$N_z = 226, \ N_A = 120, \ Dc = 128, \ \theta = \pi$$

bond-weight TRG, k = -1/2

D. Adachi, T. Okubo, and S. Todo, Phys. Rev. B 105, L060402(2022)

$$X = \frac{(\sum_{i} T_{ii})^2}{\sum_{ij} T_{ij} T_{ji}} = \frac{(\sum_{i} \exp[-E_i T])^2}{\sum_{i} \exp[-2E_i T]}$$

If
$$T \to \infty$$
, $E_0 = E_1$, $X = 2$

We find first-order transition up to $\beta = 0.5$

Parameters

$$N_z = 226, \ N_A = 120, \ Dc = 128, \ \theta = \pi$$

coarse-graining by bond-weight TRG, k = -1/2

Level spectroscopy

K Nomura and K Okamoto 1994 J. Phys. A: Math. Gen. 27 5773

$$x_s(L) = x_{s,c} + \alpha_s(L)(\beta - \beta_c) + \delta_s$$

$$x_t(L) = x_{t,c} + \alpha_t(L)(\beta - \beta_c) + \delta_t$$

$$x_s(L) = x_t(L), \quad \text{at} \quad \beta = \beta^*$$

Fitting result

$$x = b$$
 at 0.598 $xerr = berr$

$$\beta^* = \frac{\beta_{max} + \beta_{max}}{2}$$

$$\beta^* = \frac{\beta_{max} + \beta_{max}}{2}$$
 $\beta^* err = \frac{\beta_{max} - \beta_{max}}{2}$

Fitting result

fit
$$\beta^* = \beta_c - \frac{C}{L^2}$$
 $\frac{\chi^2}{N-2} = 1.7241329706647415$

The critical point is found at

$$\beta_c = 0.5952(2)$$

Summary

Two improvements

- Initial tensor
- New analysis using CFT: central charge and scaling dimensions

The critical point predicted by Haldane's conjecture is found