Exercise 16.13. Let $\phi: R \to S$ a ring homomorphism, define $\overline{\phi}: R[x] \to S[x]$ by $\overline{\phi}(a_n x^n + a_{n-1} x^{n-1} + \dots) = \phi(a_n) x^n + \phi(a_{n-1}) x^{n-1} + \dots$ Show that $\overline{\phi}$ is a ring homomorphism.

Exercise 16.14. If R and S are ring isomorphic, then R[x] and S[x] are ring isomorphic.

Exercise 16.16. Let f(x) and g(x) are cubic polynomials with integer coefficients such that f(a) = g(a) for four (distinct) integer values a. Prove that f(x) = g(x), Generalize.

Proof. Consider h(x) = f(x) - g(x), deg $h(x) \le 3$, therefore there are at most 3 zeros. However, we found that there are four values a such that f(a) - g(a) = 0, so $h(x) = 0 \to f(x) = g(x)$.

Moreover, we can show that any polynomials with degree n is determined by n+1 points.

Exercise 16.19 (Degree Rule). Let D be an integral domain and f(x) $g(x) \in D[x]$. Prove that $\deg(f(x)g(x)) = \deg f(x) + \deg g(x)$.

Proof. Let $n = \deg f(x)$ and $m = \deg g(x)$. Degree is determined by the leading term, while the leading term of f(x)g(x) is $f_nx^ng_mx^m = f_ng_mx^{n+m}$. f_ng_m will never be 0, since D is an integral domain.

Exercise 16.32. Give an example of a polynomial of $Z_5[x]$ of positive degree that has the property that f(a) = 1 for all $a \in Z_5$.

Proof. Try (x-4)(x-3)(x-2)(x-1)x+1, normalized x^5+4x+1 .

The Path: I was trying to find it directly, but I failed, cause I assume that its degree is lower than 5, which is an unappropriate assumption, because $x^5 = x$ is the key of this problem.

Moreover, consider $f(x) = x^p + (p-1)x + 1$ for some prime p, we have f(a) = 1 for all $a \in \mathbb{Z}_p$.

Exercise 16.43. Let F a field, f(x) and g(x) in F[x] and not both zero. If there is no polynomial of positive degree in F[x] that divides both f(x) and g(x), prove that there exist polynomials h(x) and k(x) in F[x] such that f(x)h(x) + g(x)k(x) = 1.

Proof. This problem can be solved by showing $1 \in \langle f(x), g(x) \rangle$. Consider the ideal $\langle f(x), g(x) \rangle$, we know it is principal ideal so that there is $h(x) \in F[x]$

such that $\langle h(x) \rangle = \langle f(x), g(x) \rangle$. We also know h(x) has the minimum degree in $\langle f(x), g(x) \rangle$ and there are s(x) $t(x) \in F[x]$ such that h(x)s(x) = f(x) and h(x)t(x) = g(x), therefore h(x) has to have degree 0. So $h(x) = h_0$ and $h_0h_0^{-1} \in \langle h(x) \rangle$ since $\langle h(x) \rangle$ is an ideal.

We know every element in $\langle f(x), g(x) \rangle$ has form f(x)h(x) + g(x)k(x) for some h(x) $k(x) \in F[x]$ and $1 \in \langle f(x), g(x) \rangle$.

Exercise 16.44. Let F a field, f(x) and g(x) in F[x] and not both zero. A polynomial $d(x) \in F[x]$ is said to be a greatest common divisor of f(x) and g(x) if d(x) divides both f(x) and g(x), and d(x) has maximum degree among all such polynomials. Prove that $\langle f(x), g(x) \rangle = \langle d(x) \rangle$, and there is a unique monic g(x).

Proof. Trivial. \Box

Exercise 16.57. For every prime p, show that $x^{p-1}-1 = (x-1)(x-2)\cdots(x-(p-2))(x-(p-1))$ in $Z_p[x]$.

Proof. It is easy to see that both side have degree p-1, and for any element $a \in \mathbb{Z}_p$, a is a zero of both side, therefore they are equal to each other (See Exercise 16.16).

Exercise 16.58 (Wilson's Theorem). For every integer n > 1, prove that $(n-1)! = n-1 \pmod{n}$ iff n is prime.

Proof.

- (\Rightarrow) Suppose n is not prime and does **NOT** have form p^2 where p is prime, then there is a pair of zero-divisor that makes the left hand side zero. So we suppose $n = p^2$, then the product of all element in $U(p^2) \cup \{p\}$ is n-1, then $p = (n-1)(\text{product of } U(p^2))^{-1} \in U(p^2)$.
- (\Leftarrow) By let x in Exercise 16.57 be 0, we know $-1 = (-1)^{n-1}(n-1)!$, recall that -1 = n-1 in Z_n (even n is not prime) and $a^{n-1} = 1$ in U(n), since |U(n)| = n-1. So n-1 = 1(n-1)!.

Exercise 16.66. Let R a commutative ring with unity, I is a prime ideal of R. Prove that I[x] is a prime ideal of R[x].

Proof. For any f(x) $g(x) \in R[x]$ where $f(x)g(x) \in I[x]$, we induction on $(\deg f(x), \deg g(x))$.

- Base (Left): If deg f(x) = 0, since each coefficients are in I, we know that either $f_0 \in I$ or $g(x) \in I[x]$. If f(x) = 0, then trivial.
- Base (Right): Ditto.
- Induction: Suppose deg f(x) = m and deg g(x) = n where m and n are positive. Consider the leading coefficient of f(x)g(x), it is produced by $f_m g_n$, therefore, one of them is in I. We may suppose $f_m \in I$, otherwise we just swap them. Then $f(x)g(x) = f_m g(x) + f'(x)g(x)$ (where f'(x) is f(x) without leading coefficient), we know $f_m g(x) \in I[x]$ since $f_m \in I$, then by induction hypothesis, we know either f'(x) or g(x) in I[x]. If $f'(x) \in I[x]$, so is $f(x) = f_m x^m + f'(x)$, otherwise, $g(x) \in I[x]$.

Note that we don't claim which one is in I[x] at the beginning, cause we don't have sufficient information.

Exercise 16.70. Let F a field and let $I = \{ f(x) \in F[x] \mid \forall a \in F, f(a) = 0 \}$. Prove that I is an ideal of F[x]. Prove that I is infinite when F is finite and $I = \{0\}$ when F is infinite. Find a monic polynomial g(x) such that $I = \langle g(x) \rangle$ when F is finite.

Proof. I is an ideal cause:

- Non-empty
- For any f(x) $g(x) \in I$, $a \in F$, f(a) + g(a) = 0.
- For any $f(x) \in I$, $g(x) \in F[x]$, $a \in F$, f(a)g(a) = 0

Suppose F is finite, then the polynomial $f(x) = (x - a_0)(x - a_1) \cdots$ where $a_i \in F$ is in I, and for any positive integer n, $f(x)x^n \in I$ with degree $\deg f(x) + n$, therefore I is infinite. If F is infinite, then there is no polynomial has infinite zeros except f(x) = 0.

If F is finite, the f(x) above is such monic polynomial.

Exercise 16.75. Suppose F is a field and there is a ring homomorphism from Z onto F. Show that F is isomorphic to Z_p for some prime p.

Proof. Why this exercise here...?

 $Z/\operatorname{Ker} \phi$ has to be a integral domain, therefore $\operatorname{Ker} \phi = \langle p \rangle$.