Thermal Physics Cheat Sheet

Thermodynamics

Basics1-3

Temperature & Boltzmann Factor⁴

Maxwell-Boltzmann Distribution⁵

Pressure & Ideal Gas Law⁶

Molecular Flux & Effusion⁷

Mean Free Path & Collisions⁸

 $\mathbf{Energy}^{_{11}}$

Adiabatic Processes¹²

Heat Engine 2nd Law¹³

 $Entropy^{14}$

Thermodynamic Potentials¹⁶

Internal energy, U

$$dU=TdS-pdV$$

Enthalpy, H

$$H \equiv U + PV = \{(3)\} = H(S, p)$$

$$dH = \{(1)\} = TdS - pdV + pdV + VdP = TdS + Vdp \quad (3)$$

$$\Delta H = \begin{cases} exothermic & \Delta H < 0 \\ endothermic & \Delta H > 0 \end{cases}$$

Helmholtz function, F

$$F \equiv U - TS = \{(6)\} = F(T, V)$$

$$dF = \{(1)\} = TdS - pdV - TdS - SdT = -SdT - pdV \quad (6)$$

Gibbs function, G

$$G \equiv H - TS = \{(8)\} = G(T, p)$$

$$dG = \{(3)\} = TdS + VdP - TdS - SdT = -SdT + VdP$$
 (8)

Maxwell Relations¹⁶

(1)

Derivation of generalized maxwell

$$df\left(x,y\right) = \left(\frac{\partial f\left(x,y\right)}{\partial x}\right)_{y} dx + \left(\frac{\partial f\left(x,y\right)}{\partial y}\right)_{x} dx$$

Work Generalization¹⁷

(2) 3rd Law¹⁸

Classical Statistical Mechanics

Equipartition¹⁹

Partition Function²⁰

Statistical Mechanics on Ideal Gases²¹

Chemical Potential²²

Quantum statistics

Bose-Einstein Distribution²⁹

Bose Gases³⁰

Fermi-Dirac Distribution²⁹

Fermi Gases³⁰

Phonons^{23,34}

Real $Gases^{26.1,26.4}$

Phase Transisions^{28.1-3}

(9) Copyright © 2013 Jim Holmström

http://www.cheatsheet.jim.pm?subject=thermalphysics