

Abstract

VQE(Variational Quantum Eigensolver)는 분자의 바닥 상태의 에너지를 계산하는 양자 컴퓨터 알고리즘으로 신약/배터리 개발 분야 등 신소재 개발분야에 효과적일 것이라 많은 기대를 받는 알고리즘이다. 하지만 현재의 양자 컴퓨터는 사용할 수 있는 큐비트의 수가 제한적 이어서, 산업에 사용되는 분자에 VQE를 적용하는 것은 한계가 있다. 본 연구에서는 이를 해결하기 위한 방안으로 FMO/VQE를 사용하였다.FMO(Fragment Molecular Orbital) 방식은 전체 시스템을 작은 조각으로 나누어 처리하는 방식이며, FMO/VQE는 VQE에 양자 화학의 방법중 하나인 FMO방식을 VQE에 적용한 방법이다[1](Hochel Lim et al.) 본 실험에서는 이차 전지의 양극재로 사용되는 LiCoO2 분자의 바닥 상태 에너지를 FMO/VQE를 사용하여 계산하였다. 이를 통해 기존의 VQE알고리즘에서 필요했던 큐비트의 개수를 24개에서 최대 14개로 줄일 수 있었다. 또한 그럼에도 불구하고 기존의 결과와 비슷한 정확도를 얻을 수 있었다. 본 연구결과는 개선된 VQE 알고리즘을 이용한다면, 배터리/신약개발분야에서 VQE 알고리즘을 적용할 수 있음을 보여준다.

Introduction

Figure 1. Label in 24pt Calibri.

Figure 2. Label in 24pt Calibri.

최근 배터리개발, 신약개발 등의 신소재 개발분야는 매우 빠르게 발전해나가고있다. 이러한 산업의 주된 목표는 새로운 분자를 찾아 그 분자의 특성을 파악하는것이다. 그리고 이런 분자의 특성은 시스템에 관한 슈뢰딩거 방정식을 풀어서 구할 수 있다. 현재 이러한 계산은 고전컴퓨터에 의존하고있다. 하지만, 고전컴퓨터는 분명 그 한계가 있다. 분자에 대한 문제를 해결하는것은 그 계산복잡도가 지수적으로 증가하며, 따라서 분자가 더욱 복잡해진다면, 고전컴퓨터만으로는 문제를 유의미한 시간내에 해결하는것이 힘들것이다. 하지만 슈뢰딩거 방정식은 결국 고유치 문제로, 이러한 문제는 양자컴퓨터를 이용하면 잘 해결할 수 있다고 알려져있다. 신소재 개발분야의 새로운 지평을 열기위해서는, 저 다양한 분자의 더 빠른 시뮬레이션이 필요하고, 이를 위해서는 새로운 패러다임이 필요하다. 이번 연구에서는 배터리 분야에 사용되는 리튬코발트산화물($LiCoO_2$)에 FMOVQE 알고리즘을 적용해 Ground-State 에너지를 계산하여, 신소재 개발분야에서의 양자컴퓨터 적용가능성을 보인다.

Method

Result

[x=1]	configuration	계산값(a.u.)	오차(a.u.)	오차(%)
monomer	0	-74.78751	0	0
	Li	-7.43241	0	0
	Со	-1381.35417	0.00455	0.0003
dimer	0 – Li (close)	-82.25731	0	0
	O-Li(far)	-82.22028	0	0
	Co-Li	-1388.72975	0.05198	0.00374
	O - O	-149.550971	0.00213	0.00142
	C = O	-1456.05019	0.03758	0.00258
	C-O	-1456.14717	-0.01968	-0.00135

Each monomer/dimer calculate with FMO/VQE

Conclusions

본 연구에서 제안하는 양자컴퓨팅 방식은 $LiCoO_2$ 분자에서 고전적인 시뮬레이터와 거의 유사한 정확도로 에너지 계산을 제공하였다. 이는 매우 주목할 만한 결과이다. 신약 합성, 신소재 발견 등에 필요한 더 복잡한 분자의 경우, 고전적인 컴퓨팅방식으로는 그 계산이 불가능하다. 그러나 본 연구에서 제안하는 방식인 VQE를 사용하면, 더 큰 분자에 대해서도 충분히 에너지를 계산할 수 있다. 본 연구의 결과는 신약 합성, 신소재 발견 등에서 새로운 패러다임을 열 것으로 기대할 수 있다.

Reference

[1] Peruzzo A., et al., A variational eigenvalue solver on a photonic quantum processor, Nature Communications 5, 4213 (2014). [2] Jules Tilly, et al. The Variational Quantum Eigensolver: A review of methods and best practices, Physic Reports 986, 1-128 (2022) [3] Magnetism and structure of Li_xCoO_2 and comparison to Na_xCoO_2 , J.T.Hertz et al., Department of Chemistry, Princeton

University, DOI: 10.1103/PhysRevB.77.075119 [4] Hocheol Lim, et al., Fragment molecular orbital-based variational quantum eigensolver for quantum chemistry in the age of

quantum computing, Scientific Reports 14, 2422 (2024) [5] Kazuo Kitaura, et al., Fragment molecular orbital method: an approximate computational method for large molecules, Chemical

Physics Letters 313, 701-706 (1999)

[6] Dmitri G. Fedorov, Kazuo Kitaura, Coupled-cluster theory based upon the fragment molecular-orbital method, The Journal of Chemical Physics 123, 134103 (2005)

[7] Stewart, Robert F. (1 January 1970). "Small Gaussian Expansions of Slater-Type Orbitals". The Journal of Chemical Physics. 52 (1):

431-438. doi:10.1063/1.1672702.

양자컴퓨터를 이용한 LiCoO₂ 화합물의 Ground-State Energy 계산

Yoonho Choi¹, Doha Kim¹, Doyeon Kim¹, Younghun kwon[†] ¹Department of Applied Physics, Hanyang University, Ansan, 15588, Republic of Korea

Abstract

VQE(Variational Quantum Eigensolver)는 분자의 바닥 상태의 에너지를 계산하는 양자 컴퓨터 알고리즘으로 신약/배터리 개발 분야 등 신소재 개발분야에 효과적일 것이라 많은 기대를 받는 알고리즘이다. 하지만 현재의 양자 컴퓨터는 사용할 수 있는 큐비트의 수가 제한적 이어서, 산업에 사용되는 분자에 VQE를 적용하는 것은 한계가 있다. 본 연구에서는 이를 해결하기 위한 방안으로 FMO/VQE를 사용하였다.FMO(Fragment Molecular Orbital) 방식은 전체 시스템을 작은 조각으로 나누어 처리하는 방식이며, FMO/VQE는 VQE에 양자 화학의 방법중 하나인 FMO방식을 VQE에 적용한 방법이다[1](Hochel Lim et al.) 본 실험에서는 이차 전지의 양극재로 사용되는 LiCoO2 분자의 바닥 상태 에너지를 FMO/VQE를 사용하여 계산하였다. 이를 통해 기존의 VQE알고리즘에서 필요했던 큐비트의 개수를 24개에서 최대 14개로 줄일 수 있었다. 또한 그럼에도 불구하고 기존의 결과와 비슷한 정확도를 얻을 수 있었다. 본 연구결과는 개선된 VQE 알고리즘을 이용한다면, 배터리/신약개발분야에서 VQE 알고리즘을 적용할 수 있음을 보여준다.

Introduction

 $\widehat{H}|\Psi\rangle = E|\Psi\rangle$

Figure 1. Label in 24pt Calibri.

Figure 2. Label in 24pt Calibri.

최근 배터리개발, 신약개발 등의 신소재 개발분야는 매우 빠르게 발전해나가고있다. 이러한 산업의 주된 목표는 새로운 분자를 찿아 그 분자의 특성을 파악하는것이다. 그리고 이런 분자의 특성은 시스템에 관한 슈뢰딩거 방정식을 풀어서 구할 수 있다. 현재 이러한 계산은 고전컴퓨터에 의존하고있다. 하지만, 고전컴퓨터는 분명 그 한계가 있다. 분자에 대한 문제를 해결하는것은 그 계산복잡도가 지수적으로 증가하며, 따라서 분자가 더욱 복잡해진다면, 고전컴퓨터만으로는 문제를 유의미한 시간내에 해결하는것이 힘들것이다. 하지만 슈뢰딩거 방정식은 결국 고유치 문제로, 이러한 문제는 양자컴퓨터를 이용하면 잘 해결할 수 있다고 알려져있다. 신소재 개발분야의 새로운 지평을 열기위해서는, 저 다양한 분자의 더 빠른 시뮬레이션이 필요하고, 이를 위해서는 새로운 패러다임이 필요하다. 이번 연구에서는 배터리 분야에 사용되는 리튬코발트산화물($LiCoO_2$)에 FMOVQE 알고리즘을 적용해 Ground-State 에너지를 계산하여, 신소재 개발분야에서의 양자컴퓨터 적용가능성을 보인다.

Method

Calculation Pipeline

Each monomer/dimer calculate with VQE

■ VQE(Variational Quantum Eigensolver)

Result

1. Dimer(Monomer) Calculation with VQE

2. Calculation Molecular Energy with FMO

$$E_{molecular} = \sum_{II} E_{dimer,IJ} - (n-2) \sum_{I} E_{monomer,I}$$

Oxidation number	FMO/VQE (a.u.)	Numpy Minimum Eigensolver (a. u.)	Accuracy (%)
1	-1538.16043	-1538.33411	99.989
0.94	-1538.10099	-1538.26750	99.989
0.78	-1538.04882	-1538.22281	99.989

Conclusions

본 연구에서 제안하는 양자컴퓨팅 방식은 $LiCoO_2$ 분자에서 고전적인 시뮬레이터와 거의 유사한 정확도로 에너지 계산을 제공하였다. 이는 매우 주목할 만한 결과이다. 신약 합성, 신소재 발견 등에 필요한 더 복잡한 분자의 경우, 고전적인 컴퓨팅방식으로는 그 계산이 불가능하다. 그러나 본 연구에서 제안하는 방식인 VQE를 사용하면, 더 큰 분자에 대해서도 충분히 에너지를 계산할 수 있다. 본 연구의 결과는 신약 합성, 신소재 발견 등에서 새로운 패러다임을 열 것으로 기대할 수 있다.

Reference

[1] Hocheol Lim, et al., Fragment molecular orbital-based variational quantum eigensolver for quantum chemistry in the age of

quantum computing, Scientific Reports 14, 2422 (2024)

[2] Peruzzo A., et al., A variational eigenvalue solver on a photonic quantum processor, Nature Communications 5, 4213 (2014). [3] Jules Tilly, et al. The Variational Quantum Eigensolver: A review of methods and best practices, Physic Reports 986, 1-128 (2022)

[4] Magnetism and structure of Li_xCoO_2 and comparison to Na_xCoO_2 , J.T.Hertz et al., Department of Chemistry, Princeton University, DOI: 10.1103/PhysRevB.77.075119

[5] Kazuo Kitaura, et al., Fragment molecular orbital method: an approximate computational method for large molecules, Chemical Physics Letters 313, 701-706 (1999) [6] Dmitri G. Fedorov, Kazuo Kitaura, Coupled-cluster theory based upon the fragment molecular-orbital method, The Journal of

Chemical Physics 123, 134103 (2005) [7] Stewart, Robert F. (1 January 1970). "Small Gaussian Expansions of Slater-Type Orbitals". The Journal of Chemical Physics. **52** (1): 431–438. doi:10.1063/1.1672702.

양자컴퓨터를 이용한 LiCoO₂ 화합물의 Ground-State Energy 계산

Yoonho Choi¹, Doha Kim¹, Doyeon Kim¹, Younghun kwon[†] ¹Department of Applied Physics, Hanyang University, Ansan, 15588, Republic of Korea

Abstract

VQE(Variational Quantum Eigensolver)는 분자의 바닥 상태의 에너지를 계산하는 양자 컴퓨터 알고리즘으로 신약/배터리 개발 분야 등 신소재 개발분야에 효과적일 것이라 많은 기대를 받는 알고리즘이다. 하지만 현재의 양자 컴퓨터는 사용할 수 있는 큐비트의 수가 제한적 이어서, 산업에 사용되는 분자에 VQE를 적용하는 것은 한계가 있다. 본 연구에서는 이를 해결하기 위한 방안으로 FMO/VQE를 사용하였다.FMO(Fragment Molecular Orbital) 방식은 전체 시스템을 작은 조각으로 나누어 처리하는 방식이며, FMO/VQE는 VQE에 양자 화학의 방법중 하나인 FMO방식을 VQE에 적용한 방법이다[1](Hochel Lim et al.) 본 실험에서는 이차 전지의 양극재로 사용되는 LiCoO2 분자의 바닥 상태 에너지를 FMO/VQE를 사용하여 계산하였다. 이를 통해 기존의 VQE알고리즘에서 필요했던 큐비트의 개수를 24개에서 최대 14개로 줄일 수 있었다. 또한 그럼에도 불구하고 기존의 결과와 비슷한 정확도를 얻을 수 있었다. 본 연구결과는 개선된 VQE 알고리즘을 이용한다면, 배터리/신약개발분야에서 VQE 알고리즘을 적용할 수 있음을 보여준다.

Introduction

$$\widehat{H}|\Psi\rangle = E|\Psi\rangle$$

최근 배터리개발, 신약개발 등의 신소재 개발분야는 매우 빠르게 발전해 나가고있다. 이러한 산업의 주 된 목표는 새로운 분자를 찿아 그 분자의 특성을 파악하는 것이다. 그 중 분자의 바닥상태 에너지는 많 은 현상들과 연관 있는 중요한 물리량이고, 이는 시스템에 관한 슈뢰딩거 방정식을 풀어서 구할 수 있 다. 현재 이러한 계산은 고전컴퓨터에 의존하고있다. 하지만, 고전컴퓨터는 분명 그 한계가 있다. 분자 에 대한 문제를 해결하는 것은 그 계산복잡도가 지수적으로 증가하며, 따라서 분자가 더욱 복잡해지면, 고전컴퓨터만으로는 문제를 유의미한 시간내에 해결하는 것이 불가능하다. 하지만 슈뢰딩거 방정식은 헤밀토니안 (\widehat{H}) 에 대응되는 행렬의 고유치문제 이고, 이러한 문제는 양자컴퓨터를 이용하면 잘 해결할 수 있다고 알려져 있다. 신소재 개발분야의 새로운 지평을 열기위해서는, 다양한 분자의 더 빠른 시뮬 레이션이 필요하고, 이를 위해서는 새로운 패러다임이 필요하다. 이번 연구에서는 배터리 분야에 사용 되는 리튬코발트산화물($LiCoO_2$)에 FMOVQE 알고리즘을 적용해 바닥상태 에너지를 계산하여, 신소재 개발분야에서의 양자컴퓨터 적용가능성을 보일 것 이다.

Method

Calculation Pipeline

■ VQE(Variational Quantum Eigensolver)

Result

1. Dimer(Monomer) Calculation with VQE

2. Calculation Molecular Energy with FMO

$$E_{molecular} = \sum_{II} E_{dimer,IJ} - (n-2) \sum_{I} E_{monomer,I}$$

	<u> </u>	-	
Oxidation number	FMO/VQE (a.u.)	Numpy Minimum Eigensolver (a. u.)	Accuracy (%)
1	-1538.16043	-1538.33411	99.989
0.94	-1538.10099	-1538.26750	99.989
0.78	-1538.04882	-1538.22281	99.989

Conclusions

본 연구에서 제안하는 양자컴퓨팅 방식은 $LiCoO_2$ 분자에서 고전적인 시뮬레이터와 99.99% 정도의 정확도로 에너지 계산을 제공하였다. 이는 매우 주목할 만한 결과이다. 신약 합성, 신소재 발견 등에 필요한 더 복잡한 분자의 경우, 고전적인 컴퓨팅방식으로는 그 계산이 불가능하다. VQE 알고리즘의 경우 이보다 더 많은 분자의 바닥상태 에너지를 계산 할 수 있지만, 하드웨어의 한계로 더 큰 분자의 계산은 힘들다.

그러나 본 연구에서 제안하는 방식인 VQE를 사용하면, 더 큰 분자에 대해서도 충분히 에너지를 계산할 수 있다. 본 연구의 결과는 신약 합성, 신소재 발견 등에서 새로운 패러다임을 열 것으로 기대할 수 있다.

Reference

[1] Hocheol Lim, et al., Fragment molecular orbital-based variational quantum eigensolver for quantum chemistry in the age of

quantum computing, Scientific Reports 14, 2422 (2024)

[2] Peruzzo A., et al., A variational eigenvalue solver on a photonic quantum processor, Nature Communications 5, 4213 (2014). [3] Jules Tilly, et al. The Variational Quantum Eigensolver: A review of methods and best practices, Physic Reports 986, 1-128 (2022)

[4] Magnetism and structure of Li_xCoO_2 and comparison to Na_xCoO_2 , J.T.Hertz et al., Department of Chemistry, Princeton

University, DOI: 10.1103/PhysRevB.77.075119 [5] Kazuo Kitaura, et al., Fragment molecular orbital method: an approximate computational method for large molecules, Chemical

Physics Letters 313, 701-706 (1999) [6] Dmitri G. Fedorov, Kazuo Kitaura, Coupled-cluster theory based upon the fragment molecular-orbital method, The Journal of

Chemical Physics 123, 134103 (2005)

[7] Stewart, Robert F. (1 January 1970). "Small Gaussian Expansions of Slater-Type Orbitals". The Journal of Chemical Physics. **52** (1): 431–438. doi:10.1063/1.1672702.