

DYNAMIC ADAPTATION IN STREAM PROCESSING SYSTEMS

Paris - France 8 January 2023

Daniel WLADDIMIRO

Directeur de thèse : Pierre SENS

Co-encadrants: Luciana ARANTES et Nicolas HIDALGO

LIP6 - Sorbonne Université, CNRS

- 1 Introduction
- 2 Existing Adaptive SPS
- 3 Our Adaptive SPS
- 4 Experiments
- 5 CONCLUSION

1/70 D. Wladdimiro

Introduction

Web 2.0

- High data volumes
- Dynamic behaviour of the data flow

D. Wladdimiro 2/70

- Real-time processing of large data streams
 - Low-latency processing

Applications

- Stock exchange prediction
- Network security monitoring
- Collecting information in natural disasters

D. Wladdimiro 3/70

Stream processing systems (SPS)

Logical architecture

- The DAG defines the processing logic of the SPS
- A vertex represents a processing operator
- Unidirectional edges represent the data flow

D. Wladdimiro 4/70

Stream processing systems (SPS)

Physical architecture

- The DAG must be mapped to a physical environment
- Distributed platform : Cluster or Cloud

D. Wladdimiro 5/70

Input rate can present traffic spikes or peaks

Input rate can present traffic spikes or peaks

Situation

Overloaded operators and increased end-to-end latency

1 000000000

Existing SPS Frameworks:

- Apache Storm [Toshniwal et al. 2014]
- Apache Flink [Carbone et al. 2015]

D. Wladdimiro 7/70

Replication: Operators can be parallelised

8/70

Replication: Operators can be parallelised

Situation

Overprovisioning or underprovisioning of replicas

D. Wladdimiro 8/70

Problem

 Majority SPSs do not dynamically adapt the number of replicas according to input rate

D. Wladdimiro 9/70

Problem

 Majority SPSs do not dynamically adapt the number of replicas according to input rate

Solution

Automatically increase/decrease the number of replicas of critical operators

D. Wladdimiro 9/70

Existing Adaptive SPS

Adaptive SPS can modify the number of replicas

There are two approaches:

- Reactive approach
- Predictive approach

10/70

- Statistics via a monitor
- Operator state analysis using thresholds

Metrics:

- CPU [Gulisano et al. 2012]
- Latency [Madsen, Zhou, and Su 2016; Satzger et al. 2011; Heinze et al. 2014]
- Throughput [Kahveci and Gedik 2020; Russo et al. 2021; Gedik et al. 2014]

D. Wladdimiro 12/70

Metrics:

- CPU [Gulisano et al. 2012]
- Latency [Madsen, Zhou, and Su 2016; Satzger et al. 2011; Heinze et al. 2014]
- Throughput [Kahveci and Gedik 2020; Russo et al. 2021; Gedik et al. 2014]

Limitation

Most solutions consider a single metric

D. Wladdimiro 12/70

Predictive approach

- Based on prediction to determine the SPS reconfiguration
- Apply a predictor model

D. Wladdimiro 13/70

Predictor models:

- Reinforcement learning [Cardellini et al. 2018]
- Time series [Kombi et al. 2019]
- Fuzzy logic [Mencagli, Torquati, and Danelutto 2018]
- ANN [Lombardi et al. 2018]

Predictor models:

- Reinforcement learning [Cardellini et al. 2018]
- Time series [Kombi et al. 2019]
- Fuzzy logic [Mencagli, Torquati, and Danelutto 2018]
- ANN [Lombardi et al. 2018]

Limitation

Predictive models are specific to an input rate or scenario

Our Adaptiv<u>e SPS</u>

Our Proposal

An adaptive SPS based on **MAPE model** whose aim is to **adapt the number of replicas** of the operators according to the peaks in the data stream.

Our Proposal

An adaptive SPS based on **MAPE model** whose aim is to **adapt the number of replicas** of the operators according to the peaks in the data stream.

Our Adaptive SPS Our Proposal

An adaptive SPS based on **MAPE model** whose aim is to **adapt the number of replicas** of the operators according to the peaks in the data stream.

Our Proposal

An adaptive SPS based on **MAPE model** whose aim is to **adapt the number of replicas** of the operators according to the peaks in the data stream.

SCIENCES SORBONNE UNIVERSITÉ

Our Proposal

An adaptive SPS based on **MAPE model** whose aim is to **adapt the number of replicas** of the operators according to the peaks in the data stream.

Present two approaches:

- **Reactive approach** (RA-SPS): on-the-fly analysis of operator load
- **Predictive approach** (PA-SPS): predicting the number of replicas required

An extension of Apache Storm

Limitation

Downtime in each reconfiguration

Pool of pre-allocate replicas for each operator.

Our Adaptive SPS: Pool of replicas

Pool of pre-allocate replicas for each operator.

D. Wladdimiro 19/70

SCIENCES SORBONNE UNIVERSITÉ

Storm limitation

Shuffle grouping (Round-robin) among the active replicas of an operator

Active replica

Inactive replica

Limitation

Load balancing among active replicas

D. Wladdimiro Active replica 20/70

Stream grouping for distributing the load among the active replicas of an operator

Active replica

Our Adaptive SPS Reactive approach (RA-SPS)

Proposal

Analyse the **operator state** to modify the number of active replicas of the operators in the DAG

Reactive approach : RA-SPS

State metric δ is a multi-metric based in :

- Utilization (U) : Operator load
- Execution time (E) : Degradation execution time
- Queue (Q) : Impact of queue size

Each metric is discrete and calculated according to the time interval t

Utilisation metric

Percentage of time that the operator O_i is processing during t

$$U_i(t) = \frac{\mu_i(t) \times et_i(t)}{r_i(t) \times td}$$

Utilisation metric

$$U_i(t) = \frac{\mu_i(t) \times et_i(t)}{r_i(t) \times td}$$

$$\mu_1(t) = 10 \text{ events}$$
 $\mu_2(t) = 5 \text{ events}$ $\mu_3(t) = 2 \text{ events}$ $U_1(t) = 1$ $U_2(t) = 0.5$ $U_3(t) = 0.2$

$$et_i(t) = 200 \text{ ms}$$
; $r_i(t) = 2 \text{ ms}$; $td = 1000 \text{ ms}$; $i \in [1, 2, 3]$

Reactive approach: RA-SPS

Execution time metric

Execution time degradation of the operator O_i during t

$$E_i(t) = 1 - \frac{et_i}{et_i(t)}$$

 et_i average execution time of one event by operator O_i according to the benchmark

Execution time metric

$$E_i(t) = 1 - rac{ ext{et}_i}{ ext{et}_i(t)}$$

$$et_i = 100 \ ms$$
; $i \in [1, 2, 3]$

Queue metric

Impact of the queue size of the operator O_i according to the processing during t

$$Q_i(t) = 1 - \frac{\mu_i(t)}{q_i(t)}$$

Reactive approach: RA-SPS

Queue metric

$$Q_i(t) = 1 - \frac{\mu_i(t)}{q_i(t)}$$

$$q_1(t) = 5 \ events$$

$$Q_1(t) = 0$$

$$Q_2(t) = 0.5$$

$$Q_3(t) = 100 \ events$$

$$Q_3(t) = 0.9$$

$$\mu_i(t) = 10$$
 events; $i \in [1, 2, 3]$

D. Wladdimiro

State metric $\delta_i(t)$ is determined by the three metrics and their respective weights

$$\delta_i(t) = U_i(t) \times \omega_U + Q_i(t) \times \omega_Q + E_i(t) \times \omega_E$$

Analysis of the operator state

$$\delta_i(t) < \delta_I$$
 underloaded $\delta_I \le \delta_i(t) \le \delta_u$ stable $\delta_i(t) > \delta_I$ overloaded

Analyse if the current state is equal to the precedent state

 t_1

Analyse if the current state is equal to the precedent state

$$t_2$$
: State $(\delta_i(t_2))$ = State $(\delta_i(t_1))$?

Analyse if the current state is equal to the precedent state

$$t_3$$
: State $(\delta_i(t_3))$ = State $(\delta_i(t_2))$?

Analyse if the current state is equal to the precedent state

 t_4 : State $(\delta_i(t_4))$ = State $(\delta_i(t_3))$? Is the machine overloaded ? **Activate** k replicas of the operator O_i

Analyse if the current state is equal to the precedent state

$$t_5$$
: State($\delta_i(t_5)$) = State($\delta_i(t_4)$) ?

Analyse if the current state is equal to the precedent state

 t_6 : State $(\delta_i(t_6))$ = State $(\delta_i(t_5))$? **Deactivate** k replicas of the operator O_i

Our Adaptive SPS Predictive approach (PA-SPS)

Proposal

Estimate the number of active replicas for operator according to the predicted input rate

D. Wladdimiro

Predictor model is based in :

- number of events received
- dependency among operators
- number of queued events

 $----\lambda_G(t)$: number of events sent by input data during t

 $----\lambda_G(t)$: number of events sent by input data during t

 $\lambda_i^r(t)$: number of events received by O_i during t

- $\lambda_G(t)$: number of events sent by input data during t
- $\lambda_i^r(t)$: number of events received by O_i during t

37/70

$$---\lambda_G(t)$$

 $heta_i(t)$: percentage of events processed of $\lambda_G(t)$ during t

$$---\lambda_2^r(t)$$

 $\lambda_3^r(t)$

$$\lambda_i^r(t) = \lambda_G(t) imes heta_i(t)$$

D. Wladdimiro 40/70

$$---\lambda_G(t)$$

$$---\lambda_2^r(t)$$

$$\widehat{\lambda_i^r}(t+1) = \widehat{\lambda_G}(t+1) imes heta_i(t)$$

 $---\lambda_3^r(t)$

D. Wladdimiro 41/70

Predictive Approach: PA-SPS

Predictive model is used to predict the number of events sent by the input data during the next time interval

Predictive models applied:

- Basic
- Linear regression
- Fast Fourier Transform
- Artificial Neural Network
- Random Forest

$$---\lambda_G(t)$$
 $----\widehat{\lambda_G}(t+1)$

$$\lambda_2^r(t) \quad \cdots \quad \widehat{\lambda_2^r}(t+1)$$
 $\lambda_3^r(t) \quad \cdots \quad \widehat{\lambda_3^r}(t+1)$

$$--- \lambda_2^r(t) \quad --- \quad \widehat{\lambda_2^r}(t+1)$$

 $---\mu_2(t)$: number of events processed by O_i during t

D. Wladdimiro 44/70

$$--- \lambda_2^r(t)$$
 ---- $\widehat{\lambda_2^r}(t+1)$

Predictive Approach: PA-SPS

$$---\mu_2(t)$$

 $q_2(t)$: queue of events received and not processed by O_i at the end of t

D. Wladdimiro 45/70

$$--- \lambda_2^r(t) \quad --- \quad \widehat{\lambda_2^r}(t+1)$$

$$---\mu_2(t)$$

 $q_2(t)$

$$\widehat{\lambda_i^q}(t+1) = |q_i(t)|$$

D. Wladdimiro 46/70

D. Wladdimiro 47/70

$$--- \lambda_2^r(t)$$
 ---- $\widehat{\lambda_2^r}(t+1)$

$$---\mu_2(t)$$

 $q_2(t)$

$$\widehat{\lambda_i^q}(t+1) = |q_i(t)| + \sum_{p \in pred(O_i)} \widehat{\lambda_p^q}(t+1) imes heta_p(t)$$

D. Wladdimiro 48/70

Predictive Approach: PA-SPS

$$-- \mu_2(t)$$
 \cdots $\widehat{\lambda_2^q}(t+1)$

 $\lambda_2^r(t) \quad \overline{\lambda_2^r}(t+1)$

 $---q_2(t)$

D. Wladdimiro 49/70

$$---\lambda_2^r(t)$$
 ---- $\widehat{\lambda_2^r}(t+1)$

$$\mu_2(t) \quad \cdots \quad \widehat{\lambda_2^q}(t+1) \qquad \widehat{\lambda_i}(t+1) = \widehat{\lambda_i^r}(t+1) + \widehat{\lambda_i^q}(t+1)$$

$$--- q_2(t) \quad ---- \widehat{\lambda_2}(t+1)$$

D. Wladdimiro 50/70

Prediction of number of active replicas

$$r_i(t+1) = \frac{\widehat{\lambda}_i(t+1) \times et_i}{td}$$

D. Wladdimiro 51/70

Planning algorithm

$$r_i(t+1) = \frac{\widehat{\lambda_i}(t+1) \times et_i}{td}$$

td = 1000 ms

D. Wladdimiro 52/70

EXPERIMENTS

A traffic model from real Twitter data related to COVID pandemic

D. Wladdimiro 53/70

Environment: Application

Twitter linear app to classify tweets

D. Wladdimiro 54/70

Environment: Infrastructure

Google Cloud Platform as infrastructure for the deployment

D. Wladdimiro 55/70

Evaluation metrics

Saved nodes [Lombardi et al. 2018]

 Proportion of resources saved with respect to a statically over-provisioned configuration

Throughput degradation [Lombardi et al. 2018]

■ Difference between the input rate and the output rate

Latency

Average time taken by an event between the moment it enters and leaves the SPS

Difference in the number of processed events

■ Difference between the total number of processed events and the total number of received events

D. Wladdimiro 56/70

Performance Results Reactive approach (RA-SPS)

D. Wladdimiro 56/70

- Q queues a lot of events
- U overprovides active replicas
- \bullet δ is more stable

D. Wladdimiro 57/70

Performance Results: Reactive approach (RA-SPS)

Metric	Saved	Throughput	Diff. Proc.	Latency
Metric	Nodes	Degradation	Events	(ms)
δ	0.3996	0.1092	0.8907	39687.51
U	-0.8934	0.2597	0.7402	23441.39
Q	0.4975	0.6830	0.3169	28799.60

- \blacksquare δ process more events that U and Q
- \bullet does not consider dependency, so there is cascading problem

D. Wladdimiro 58/70

D. Wladdimiro 58/70

Performance Results: Predictive approach (PA-SPS)

Pred.	Saved	Throughput	Diff. Proc.	Latency
Model	Resources	Degradation	Events	(ms)
ANN	0.475	0.070	1.000	355.490
FFT	0.519	0.189	1.000	1023.380
LR	0.533	0.195	1.000	663.030
RF	0.538	0.227	0.996	583.921
Basic	0.560	0.325	1.000	1295.490

- ANN has a low latency and is more stable, but use more resource
- Trade-off: Resource vs Performance

D. Wladdimiro 59/70

Comparison between PA-SPS and DABS

- PA-SPS :
 - Uses ANN as a predictor model
- DABS :
 - An extension of Storm
 - Uses a predictor model based on regressions

D. Wladdimiro 60/70

Performance Results : Predictive approach (PA-SPS)

- DABS restarts many times the application
- PA-SPS is more stable

D. Wladdimiro 61/70

Performance Results: Predictive approach (PA-SPS)

Adaptive	Saved	Throughput	Diff. Processed	Latency
SPS	Resources	Degradation	Events	(ms)
PA-SPS	0.475	0.071	1.000	355.490
DABS	0.3962	0.2849	0.8283	1391.28

■ DABS has a less efficient adaptation in contrast to PA-SPS

D. Wladdimiro 62/70

Conclusion

Adaptive SPS extending Storm

- Pool of replicas
- Load-aware grouping

Two approaches:

- Reactive (RA-SPS) : Use of a multi-metric
- **Predictive (PA-SPS)**: Estimate number of active replicas using different predictive models

D. Wladdimiro 63/70

Dynamic adaptation of parameters

■ RA-SPS uses different parameters, which can be adjusted by ΑI

Hybrid adaptive SPS

Use the reactive and predictive model for SPS adaptation

Physical and logical adaptation

Consider also the modification of virtual machines

D. Wladdimiro 64/70

Merci beaucoup!

D. Wladdimiro 65/70

- [Wladdimiro et al. 2021] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas Hidalgo. "A Multi-Metric Adaptive Stream Processing System." In: NCA. IEEE, 2021.
- [Wladdimiro et al. 2022a] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas Hidalgo. "A predictive approach for dynamic replication of operators in distributed stream processing systems" In: SBAC. IEEE, 2022.
- [Wladdimiro et al. 2023a] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas Hidalgo. "PA-SPS: A Predictive Adaptive Approach for an Elastic Stream Processing System" In: JPDC. 2023. [Minor Revision]
- [Wladdimiro et al. 2022b] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas Hidalgo. "A predictive model for Stream Processing System that dynamically calibrates the number of operator replicas." In: ComPAS. Amiens, France, 2022.
- [Wladdimiro et al. 2023b] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas Hidalgo. "PRESPS: a PREdictive model to determine the number of replicas of the operators in Stream Processing Systems" In: ComPAS. Annecy, France, 2023.

D. Wladdimiro 66/70

References I

- Carbone, Paris et al. (2015). "Apache Flink™: Stream and Batch Processing in a Single Engine". In: *IEEE Data Eng. Bull.* 38.4, pp. 28–38.
- Cardellini, Valeria et al. (2018). "Decentralized self-adaptation for elastic Data Stream Processing". In: Future Gener. Comput. Syst. 87, pp. 171–185.
- Gedik, Bugra et al. (2014). "Elastic Scaling for Data Stream Processing". In: IEEE Trans. Parallel Distrib. Syst. 25.6, pp. 1447–1463.
- Gulisano, Vincenzo et al. (2012). "StreamCloud: An Elastic and Scalable Data Streaming System". In: *IEEE Trans. Parallel Distributed Syst.* 23.12, pp. 2351–2365.
- Heinze, Thomas et al. (2014). "Latency-aware elastic scaling for distributed data stream processing systems". In: *DEBS*. ACM, pp. 13–22.
 - Kahveci, Basri and Bugra Gedik (2020). "Joker: Elastic stream processing with organic adaptation". In: *J. Parallel Distributed Comput.* 137, pp. 205–223.

D. Wladdimiro 67/70

References II

- Kombi, Roland Kotto et al. (2019). "DABS-Storm: A Data-Aware Approach for Elastic Stream Processing". In: *Trans. Large Scale Data Knowl. Centered Syst.* 40, pp. 58–93.
- Lombardi, Federico et al. (2018). "Elastic Symbiotic Scaling of Operators and Resources in Stream Processing Systems". In: *IEEE Trans. Parallel Distrib. Syst.* 29.3, pp. 572–585.
- Madsen, Kasper Grud Skat, Yongluan Zhou, and Li Su (2016). "Enorm: efficient window-based computation in large-scale distributed stream processing systems". In: *DEBS*. ACM, pp. 37–48.
- Mencagli, Gabriele, Massimo Torquati, and Marco Danelutto (2018). "Elastic-PPQ: A two-level autonomic system for spatial preference query processing over dynamic data streams". In: Future Gener. Comput. Syst. 79, pp. 862–877.
- Russo, Gabriele Russo et al. (2021). "MEAD: Model-Based Vertical Auto-Scaling for Data Stream Processing". In: *CCGRID*. IEEE, pp. 314–323.

D. Wladdimiro 68/70

References III

Satzger, Benjamin et al. (2011). "Esc: Towards an Elastic Stream Computing Platform for the Cloud". In: *IEEE CLOUD*. IEEE Computer Society, pp. 348–355.

Toshniwal, Ankit et al. (2014). "Storm@ Twitter". In: *Proceedings of the 2014 ACM SIGMOD international conference on Management of data.* ACM, pp. 147–156.

Wladdimiro, Daniel et al. (2021). "A Multi-Metric Adaptive Stream Processing System". In: *NCA*. IEEE, pp. 1–8.

— (2022a). "A predictive approach for dynamic replication of operators in distributed stream processing systems". In: SBAC-PAD. IEEE.

— (2022b). "A predictive model for Stream Processing System that dynamically calibrates the number of operator replicas". In: ComPAS, pp. 1–8.

— (2023a). "PA-SPS: A Predictive Adaptive Approach for an Elastic Stream Processing System". In: *J. Parallel Distributed Comput.*

D. Wladdimiro 69/70

References IV

Wladdimiro, Daniel et al. (2023b). "PRESPS: a PREdictive model to determine the number of replicas of the operators in Stream Processing Systems". In: *ComPAS*, pp. 1–9.

D. Wladdimiro 70/70