Tabel 1.3 Tabel Denormalisasi Filter Pasif

Filter	Rangkaian filter	Nilai Komponen	Keterangan
LPF	王王。	$C_{Nn} = \frac{C'_n}{2\pi f_c R_L}$ $L_{Nn} = \frac{R_L L'_n}{2\pi f_c}$	C _{Nn} = nilai Denormalisasi C ke-n
нрғ		$L_{Nn} = \frac{R_L L'_n}{2\pi f_c}$ $C_{Nn} = \frac{C'_n}{2\pi f_c R_L}$	C'n = nilai C ternormalisasi ke-n
BPF	Parallel	$L_{Nn} = \frac{R_k B}{2\pi f_o^2 L'_n}$	R _L = nilai resistansi normalisasi
	豆	$C_{Nn} = \frac{C'_n}{2\pi R_L B}$	f_c = frekuensi cut-off
	Seri ————————————————————————————————————	$L_{Nn} = \frac{R_L L'_n}{2\pi B}$ $C_{Nn} = \frac{B}{2\pi f_O^2 C'_n R_L}$	f_o = frekuensi tengah $(\sqrt{f_{cx} \cdot f_{c4}})$
BSF	Paralel E	$L_{Nn} = \frac{R_{L}B}{2\pi f_{o}^{2}L'_{n}}$ $C_{Nn} = \frac{C'_{n}}{2\pi R_{L}B}$	B = bandwith 3-dB
	Seri	$L_{Nn} = \frac{R_{L}L'_{n}}{2\pi B}$ $C_{Nn} = \frac{B}{2\pi f_{O}^{2}C'_{n}R_{L}}$	

Tabel 1.2 Tabel Transformasi Filter Pasif

Filter	Transformasi LPF Ternormalisasi	Keterangan
HPF denormalisa si	_mm_ → _mm_	$L_{HPF} = \frac{1}{C_{LPF}}$ $C_{HPF} = \frac{1}{L_{LPF}}$
BPF denormalisa si	$C_{1} = C_{2} \Rightarrow C_{1} = C_{2} = C_{2}$ $C_{1} = C_{2} \Rightarrow C_{1} = C_{2} = C_{3}$	Komponen seri pada LPF diubah menjadi LBPF(=LLPF) diseri dengan CBPF(=LLPF) Komponen paralel pada LPF diubah menjadi LBPF(=CLPF) diparalel dengan CBPF(=CLPF)
BSF denormalisa si	$c_{1} = c_{1} = c_{1} = c_{1} = c_{1} = c_{2}$ $c_{1} = c_{1} = c_{2} = c_{3}$	Komponen seri pada LPF diubah menjadi LBSF(=LLPF) diparalel dengan CBSF(=LLPF) Komponen paralel pada LPF diubah menjadi LBSF(=CLPF) diseri dengan CBSF(=CLPF)

ote: Untuk filter LPF tidak mengalami proses transformasi, khusus untuk LPF bisa langsung e tahap berikutnya (denormalisasi).

Tabel 1.1 Tabel Normalisasi Filter Pasif

Filter Spesifikasi Awal	LPF Ternormalisasi	Filter Ratio
	-	$\frac{fs}{fc}$
w wc	2	$\frac{fc}{fs}$
ash such aso occa outa	-	$\frac{BW_s}{BW_c} = \frac{f_{SA} - f_{SB}}{f_{CA} - f_{CB}}$
mep msp mo mes mes		$\frac{BW_c}{BW_s} = \frac{f_{CA} - f_{CB}}{f_{SA} - f_{SB}}$