Chapitre 3

Anneaux, corps, algèbres, idéaux

1. Anneaux, corps, algèbres

- 1.1. Anneau
 - a) Définition
 - b) Exemple
 - c) Groupe des inversibles d'un anneau
 - d) Produit d'anneaux
 - e) Relation de divisibilité dans un anneau A.
 - f) Sous-anneau: définition, caractérisation
 - g) Morphisme d'anneaux
- 1.2. <u>Anneau intègre</u>
- 1.3. Corps
 - a) Définition
 - b) Sous-corps: définition, caractérisation
- 1.4. Algèbre
 - a) Définition, exemples
 - b) Sous-algèbre: définition, caractérisation
- 2. L'anneau $\mathbb{Z}/n\mathbb{Z}$
 - 2.1. Rappels sur les congruences
 - 2.2. Structure d'anneau de $\mathbb{Z}/n\mathbb{Z}$
 - 2.3. Théorème chinois

Théorème chinois : Isomorphisme entre $\mathbb{Z}/(mn)\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

Corollaire en terme de congruences : démonstration à l'aide du théorème

- 2.4. Eléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$
 - a) Le théorème fondamental : démonstration
 - b) Cas où $p \in \mathbb{P}$: théorème CNS pour que $\mathbb{Z}/p\mathbb{Z}$ soit un corps démonstration
 - c) Fonction indicatrice d'Euler:
 - Définition et interprétation
 - Propriété 1 : $\forall (m,n) \in \mathbb{N}^{*2}$: $[m \land n=1] \Rightarrow \varphi() = \varphi(m) \times \varphi(n)$

- Propriété 2 : $\forall p \in \mathbb{P}, \ \forall \alpha \in \mathbb{N} : \varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$
- Expression de φ n démonstration
- d) Théorème d'Euler : démonstration
- e) Petit théorème de Fermat : démonstration

3. <u>Idéaux</u>

- 3.1. Définition et exemple
- 3.2. Propriété : le noyau d'un morphisme d'anneaux est un idéal démonstration
- 3.3. <u>Divisibilité et idéaux</u>
- 3.4. <u>Intersection et somme d'idéaux</u> démonstration
- 3.5. Conséquence 1 : arithmétique dans \mathbb{Z}
 - a) Idéaux de \mathbb{Z}
 - b) Définition du PPCM par $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$
 - c) Définition du PGCD par $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$
 - d) Conséquence : théorème de Bezout, théorème de Gauss (réviser)
 - e) Savoir faire: un (au moins) algorithme de recherche des coefficients de Bezout
- 3.6. Conséquence 2 : arithmétique dans K[X]
 - a) Idéaux de K[X]: démonstration
 - b) Définition du P.G.C.D. de deux polynômes par (A) + (B) = (D)
 - c) Conséquence : théorème de Bezout, théorème de Gauss (réviser)
 - d) Polynômes irréductibles de K[X]
 - Définition, caractérisation de la non irréductibilité : polynôme scindé
 - Théorème de décomposition en polynômes irréductibles (rappel)
 - Polynômes irréductibles de $\mathbb{C} X$, théorème de D'Alembert (rappel)
 - Polynômes irréductibles de $\mathbb{R} X$ (rappel)