Seminor WC -917

donnie codomoir

prof of grup (

r = (A, B, R) relation

AXB honogeneous relation: r=(t, A, R) Egrivalence relation: (Lineury homogeneous) relation V= (A, A, R)

that satisfies the following properties -reflexinty: Y = A: X r x (c=) (*,*) = R)

- synaetry: Y +, y = A:

if x ry, then y rx -transitivity: Uxyz EA

if xry and yrz, then xrz Prope: If A is a set, then we have a bijection: Sequivalence relations of partition of } $r \mapsto A/r = 2^{n \cdot k_1 + s \cdot k_2}$ $r \mapsto A/r = 2^{n \cdot k_1 + s \cdot k_2}$ $r \mapsto A/r = 2^{n \cdot k_1 + s \cdot k_2}$

1. Let r, s, t, v be the homogeneous relations defined on the set $M = \{2, 3, 4, 5, 6\}$ by

$$x \, r \, y \Longleftrightarrow x < y$$

$$x \, s \, y \Longleftrightarrow x | y \Longleftrightarrow y : \not x$$

$$x \, t \, y \Longleftrightarrow g.c.d.(x,y) = 1$$

$$x \, v \, y \Longleftrightarrow x \equiv y \pmod{3}. \Longleftrightarrow \cancel{3} | (\not x - y) \Longleftrightarrow y$$
Write the graphs R, S, T, V of the given relations.

$$\frac{S_{1}!}{S_{1}!} : R = \left\{ (234)(2,4), (2,5), (2,4), (3,4), (3,5), (3,6), (4,5), (5,6), (4,5), (5,6), (4,5), (5,6), (5,$$

3. Give examples of relations having each one of the properties of reflexivity, transitivity and symmetry, but not the others.

$$\frac{Sol}{Sol}: (r), 7(S), 7(f): M = \{1, 2, 3\}$$

$$(rop l. \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$$

$$7(r), (S), 7(f): M = Sot of lines in the plane
$$M = \{1,2,3\} \quad l_1 \sim l_2 (=) \ l_1 \perp l_2 \qquad l_2$$

$$(rop l. \{(1,2), (2,1), (2,3), (3,2)\}$$$$

$$7 (r) , 7 (s) , (t) :$$
 $M = \mathbb{R}$
 $M = \{1,2\}$
 $\{(1,2)\}$

- **5.** Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.
 - (i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.
 - (ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.

$$\Delta_{N} = \{(1,1), (2,2), (3,3), (4,4)\}$$
(i) V_{1} refl., J_{1} conserving $\Delta_{M} \subseteq R_{1}$
 V_{2} representation al

 V_{1} to us; V_{2} V_{3}
 V_{4}
 V_{5}
 V_{1} refl.

 V_{1} refl.

 V_{1} refl.

 V_{2}
 V_{3}
 V_{4}
 V_{5}
 V

$$(1,2) \in \mathbb{R}_{2}, \int_{\Delta n} + (2,1) \notin \mathbb{R}_{2} \Rightarrow \mathbb{R}_{2} \text{ not}$$

$$Symmetric \Rightarrow \mathbb{R}_{2} \text{ not} + a_{n} \text{ cymiosher}$$

$$Ex: A = \{1, 2\}, \quad A \times A = \{(1,1), (1,2), (2,1)\}, (2,1)\}$$

$$P = \{\{(1,1), (2,1)\}, \{(1,2), (2,1)\}\}$$

$$r = (A, A, P), \quad P = A \times A$$

$$\Rightarrow A/r = \{A\}$$

$$P = \Delta_{A}$$

$$\Rightarrow A/r = \{A\}$$

$$\Rightarrow A/r = \{A\}$$

(i)

5. Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.

(i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.

(ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.

The is a partition, because
$$Y + CM = \{1, 1\}$$
 ACT,

So that $Y \in A$

$$R_{TT} = \{(1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$$

The is not a partition, be came $\{1, 1\} \cap \{1, 2\} \neq \emptyset$

8. Determine all equivalence relations and all partitions on the set $M = \{1, 2, 3\}$.

{\langle \langle \lang

=> 5 part: Hons => 5 equivalences