Applicant: Hagen Klauk et al.

Serial No.: 10/599,470 Filed: November 17, 2008 Docket No.: 1433.251.101/14187

Title: SENSOR HAVING ORGANIC FIELD EFFECT TRANSISTORS

IN THE CLAIMS

Please amend claims 24 and 27 as follows:

1-16. (Cancelled)

17. (Previously Presented) A force sensor comprising:

a substrate; and

an organic field effect transistor applied on the substrate, in which a mechanical force acting on the transistor causes a change in its source-drain voltage or its source-drain current which corresponds to the force and is detected as measurement quantity for the acting force.

- 18. (Previously Presented) The force sensor according to claim 17, comprising wherein the organic field effect transistor is a pentacene transistor having an active layer made of pentacene between its source electrode and its drain electrode.
- 19. (Previously Presented) The force sensor according to claim 17, comprising wherein the substrate is made of a material from a group consisting of glass, ceramic, plastic, a polymer film, metal film or paper.
- 20. (Previously Presented) The force sensor according to Claim 19, comprising wherein the substrate comprises a polymer film having a material from a group consisting of polyethylene napthalate, polyethylene terephthalate, polyimide, polycarbonate and/or polyethene ether ketones.
- 21. (Previously Presented) The force sensor according to claim 17, comprising wherein the detected measurement quantity is the drain-source voltage of the organic field effect transistor, a

2

Applicant: Hagen Klauk et al. Serial No.: 10/599,470

Filed: November 17, 2008 Docket No.: I433.251.101/14187

Title: SENSOR HAVING ORGANIC FIELD EFFECT TRANSISTORS

constant gate-source voltage and a constant drain current being present at the transistor at the measurement instant.

22. (Previously Presented) The force sensor according to one of claim 17, comprising wherein the detected measurement quantity is the drain current of the organic field effect transistor, a constant gate-source voltage and a constant drain-source voltage being present at the transistor at the measurement instant.

23. (Previously Presented) A pressure sensor comprising:

at least one force sensor comprising a substrate, and an organic field effect transistor applied on the substrate, in which a mechanical force acting on the transistor causes a change in its source-drain voltage or its source-drain current which corresponds to the force and is detected as measurement quantity for the acting force; and

where the substrate is configured as a deformable diaphragm and the measurement quantity corresponding to the bending state of the diaphragm.

24. (Currently Amended) A One-one- or two-dimensional position sensor for measuring the position of a mechanical force action along a line or within an area using a multiplicity of force sensors comprising:

one or more force sensors comprising a substrate, and an organic field effect transistor applied on the substrate, in which a mechanical force acting action on the transistor causes a change in its source-drain voltage or its source-drain current which corresponds to the force and is detected as measurement quantity for the acting force; and

*-where the force sensors are arranged at regular distances from one another in a form of a one- or two-dimensional matrix on a common substrate.

Applicant: Hagen Klauk et al. Serial No.: 10/599,470 Filed: November 17, 2008

Docket No.: I433.251.101/14187

Title: SENSOR HAVING ORGANIC FIELD EFFECT TRANSISTORS

25. (Previously Presented) The sensor according to Claim 24, comprising wherein a driving and measuring unit is connected to the drain or source terminals of all the field effect transistors for driving and detecting the position of the force action.

26. (Previously Presented) The sensor according to Claim 25, comprising:

where the organic field effect transistors are arranged in rows and columns; and

a driving and measuring unit is connected to the drain or source terminals of all the

columns for the purpose of driving and detecting the column position of the force action and a

row decoder is connected or can be connected to the gate terminals of the organic field effect

transistors for row-by-row selection and driving of the organic field effect transistors.

27. (Currently Amended) A fingerprint sensor comprising:

a multiplicity of force sensors according to claim <u>1-17</u> that are arranged on a common substrate at regular distances in the form of a two-dimensional matrix subdivided into rows and columns;

a driving and measuring unit connected to the drain or source terminals of the organic field effect transistors in all columns for the purpose of driving and detecting the column position of the force action; and

a row decoder connected to the gate terminals of the organic field effect transistors of all the rows for row-by-row selection and detection of the position of the force action in the row direction.

28. (Previously Presented) The fingerprint sensor according to Claim 27, comprising: at least one perspiration-resistant protective layer provided as protection against the ingress of water and organic contaminations above the active layer of the organic field effect transistors.

4

Applicant: Hagen Klauk et al.

Serial No.: 10/599,470 Filed: November 17, 2008

Docket No.: I433.251.101/14187

Title: SENSOR HAVING ORGANIC FIELD EFFECT TRANSISTORS

29. (Previously Presented) The fingerprint sensor according to claim 28, comprising wherein

the protective layer includes a perfluorinated material.

30. (Previously Presented) The fingerprint sensor according to claims 29, where the

perfluorinated material is perfluorohexadecane.

31. (Previously Presented) The fingerprint sensor according to Claim 28, comprising

wherein a first protective layer includes a hydrophobic material and a second protective layer

includes a hydrophilic polymer which acts as a diffusion barrier against lipophilic contaminants.

32. (Previously Presented) The fingerprint sensor according to Claim 31, comprising

wherein the first protective layer covers the second protective layer.

33. (Previously Presented) The fingerprint sensor according to Claim 31, comprising

wherein the second protective layer covers the first protective layer.

34. (Previously Presented) A force sensor comprising:

a substrate; and

means for providing an organic field effect transistor applied on the substrate, in which a

mechanical force acting on the transistor means causes a change in its source-drain voltage or its

source-drain current which corresponds to the force and is detected as measurement quantity for

the acting force.

35. (Previously Presented) The force sensor according to claim 34, comprising wherein the

organic field effect transistor means is a pentacene transistor having an active layer made of

pentacene between its source electrode and its drain electrode.

5

Applicant: Hagen Klauk et al. Serial No.: 10/599,470 Filed: November 17, 2008 Docket No.: I433.251.101/14187

Title: SENSOR HAVING ORGANIC FIELD EFFECT TRANSISTORS

36. (Previously Presented) The force sensor according to claim 34, comprising wherein the substrate is made of a material from a group consisting of glass, ceramic, plastic, a polymer film, metal film or paper.

37. (Previously Presented) The force sensor according to claim 34, comprising wherein the substrate comprises a polymer film having a material from a group consisting of polyethylene napthalate, polyethylene terephthalate, polyimide, polycarbonate and/or polyethene ether ketones.