Homework 3

Exercise 1

Construct orthogonal polynomials of degrees 0, 1 and 2 on the interval (0,1) with the weight function $w(x) = -\ln x$.

Exercise 2

Let the polynomials

$$\phi_j, \quad j=0,1,\ldots,$$

form an orthogonal system on the interval (-1,1) with respect to the weight function w(x) = 1.

Show that the polynomials

$$\phi_j((2x-a-b)/(b-a)), \quad j=0,1,\ldots,$$

represent an orthogonal system for the interval (a, b) and the same weight function.

Exercise 3

Suppose that the polynomials ϕ_j , $j=0,1,\ldots$, form an orthogonal system on the interval (0,1) with respect to the weight function $w(x)=x^{\alpha}$, $\alpha>0$.

 \rightleftharpoons Find, in terms of ϕ_j , a system of orthogonal polynomials for the interval (0,b) and the same weight function.

Exercise 4

1. Show that, for $0 \le k \le n$,

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^k \left(1 - x^2\right)^n = \left(1 - x^2\right)^{n-k} q_k(x),$$

where q_k is a polynomial of degree k.

- **2.** Deduce that all the derivatives of the function $(1-x^2)^n$ of order less than n vanish at $x=\pm 1$.
- **3.** Define $\varphi_j(x) = (d/dx)^j (1-x^2)^j$, and show by repeated integration by parts that

$$\int_{-1}^{1} \varphi_k(x)\varphi_j(x) dx = 0, \quad 0 \le k < j.$$

Exercise 5

1. Show, that, for $0 \le k \le j$,

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^k x^j \mathrm{e}^{-x} = x^{j-k} q_k(x) \mathrm{e}^{-x}$$

where $q_k(x)$ is a polynomial of degree k.

2. The function φ_j is defined for $j \geq 0$ by

$$\varphi_j(x) = e^x \frac{\mathrm{d}^j}{\mathrm{d}x^j} (x^j e^{-x}).$$

- \Rightarrow Show that, for each $j \geq 0$, φ_j is a polynomial of degree j, and that these polynomials form an orthogonal system on the interval $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$.
- **3.** Write down the polynomials with j = 0, 1, 2 and 3.
- **4.** Suppose that φ_j , $j = 0, 1, \ldots$, form a system of orthogonal polynomials with weight function w(x) on the interval (a, b).
- **5.** Show that, for some value of the constant C_j , $\varphi_{j+1}(x) C_j x \varphi_j(x)$ is a polynomial of degree j, and hence that

$$\varphi_{j+1}(x) - C_j x \varphi_j(x) = \sum_{k=0}^j \alpha_{jk} \varphi_k(x), \quad \alpha_{jk} \in \mathbb{R}.$$

Use the orthogonality properties to show that $\alpha_{jk} = 0$ for k < j - 1, and deduce that the polynomials satisfy a recurrence relation of the form

$$\varphi_{j+1}(x) - (C_j x + D_j) \varphi_j(x) + E_j \varphi_{j-1}(x) = 0, \quad j \ge 1.$$

Exercise 6

In the notation of the previous Exercise suppose that the normalisation of the polynomials is so chosen that for each j the coefficient of x^j in $\varphi_j(x)$ is positive. Show that $C_j > 0$ for all j. By considering

$$\int_{a}^{b} w(x)\varphi_{j}(x) \left[\varphi_{j}(x) - C_{j-1}x\varphi_{j-1}(x)\right] dx$$

⇒ Show that

$$\int_{a}^{b} w(x)x\varphi_{j-1}(x)\varphi_{j}(x)\mathrm{d}x > 0,$$

and deduce that $E_j > 0$ for all j. Hence show that for all positive values of j the zeros of φ_j and φ_{j-1} interlace.

Exercise 7

- 1. Using the weight function w on the interval (a, b) to find the best polynomial approximation p_n of degree n in the 2-norm to the function x^{n+1} .
- 2. Show that

$$||x^{n+1} - p_n||_2^2 = \int_a^b w(x)\varphi_{n+1}^2 \, dx / \left[c_{n+1}^{n+1}\right]^2,$$

where c_{n+1}^{n+1} is the coefficient of x^{n+1} in $\varphi_{n+1}(x)$.

3. Write down the best polynomial approximation of degree 2 to the function x^3 in the 2-norm with $w(x) \equiv 1$ on the interval (-1,1), and evaluate the 2-norm of the error.

Exercise 8

Suppose that the weight w is an even function on the interval (-a, a), and that a system of orthogonal polynomials $\varphi_j, j = 0, \ldots, n$, on the interval (-a, a) is constructed by the Gram-Schmidt process.

1. Show that, if j is even, then φ_j is an even function, and that, if j is odd, then φ_j is an odd function. Now suppose that the best polynomial approximation of degree n in the 2-norm to the function f on the interval (-a,a) is expressed in the form

$$p_n(x) = \gamma_0 \varphi_0(x) + \dots + \gamma_n \varphi_n(x).$$

2. Show that if f is an even function, then all the odd coefficients γ_{2j-1} are zero, and that if f is an odd function, then all the even coefficients γ_{2j} are zero.

Exercise 9

The function H(x) is defined by H(x) = 1 if x > 0, and H(-x) = -H(x). Construct the best polynomial approximations of degrees 0,1 and 2 in the 2-norm to this function over the interval (-1,1) with weight function $w(x) \equiv 1$. (It may not appear very useful to consider a polynomial approximation to a discontinuous function, but representations of such functions by Fourier series will be useful. Note that the function H belongs to $L_w^2(-1,1)$.)

Solutions.

1. On note $w(x) = -\ln(x)$

$$||p||_w^2 = (p,p)_w = \int_0^1 p^2(x)w(x) dx$$

Observer que:

$$-\int_0^1 x^k \ln(x) \ dx = \frac{1}{(k+1)^2}$$

On cherche p_0, p_1 et p_2 ,

$$p_{0} = 1 \implies \|p_{0}\|_{w}^{2} = 1$$

$$p_{1} = x - \frac{(x, p_{0})_{w}}{\|p_{0}\|_{w}^{2}} p_{0} = x - \frac{1}{4} \implies \|p_{1}\|_{w}^{2} = \frac{7}{144}$$

$$p_{2} = x^{2} - \frac{(x^{2}, p_{1})_{w}}{\|p_{1}\|_{w}^{2}} p_{1} - \frac{(x^{2}, p_{0})_{w}}{\|p_{0}\|_{w}^{2}} p_{0} = x^{2} - \frac{5}{7}x + \frac{17}{258}$$

2. Il suffit de vérifier que :

$$I_{ij} = \int_a^b \phi_i \left(\frac{2x - a - b}{b - a} \right) \phi_j \left(\frac{2x - a - b}{b - a} \right) dx = 0, \quad \text{si } i \neq j$$

On effectue le changement de variable :

$$t = \frac{2x - a - b}{b - a} \implies dt = \frac{2}{b - a} dx$$

alors,

$$I_{ij} = \frac{b-a}{2} \int_{-1}^{1} \phi_i(t)\phi_j(t)dt = 0$$

3. Nous avons

$$\int_0^1 \varphi_i(x)\varphi_j(x)x^{\alpha} dx = 0, \quad \text{si } i \neq j$$

On effectue le changement de variable

$$x = \frac{t}{b} \implies x^{\alpha} dx = \frac{t^{\alpha}}{b^{\alpha+1}} dt$$

alors,

$$\frac{1}{b^{\alpha+1}} \int_0^b \varphi_i(t) \varphi_j(t) t^{\alpha} dt = 0, \quad \text{si } i \neq j$$

donc si $\{\varphi_j, j=1,\ldots\}$ est un système orthogonal sur (0,1) alors, $\{\phi_j(x)\}$ avec

$$\phi_j(x) = \varphi_j(\frac{x}{b}), \quad j = 1, \dots$$

est un système orthogonal sur (0, b).

4. 1) Par récurrence, supposons

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^k \left(1 - x^2\right)^n = \left(1 - x^2\right)^{n-k} q_k(x),$$

alors,

$$\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{k+1} \left(1 - x^2\right)^n = \frac{d}{dx} \left[\left(1 - x^2\right)^{n-k} q_k(x) \right]$$

$$= -2(n-k)x(1-x^2)^{n-k-1}q_k(x) + \left(1 - x^2\right)^{n-k} q'_k(x)$$

$$= (1-x^2)^{n-k-1} \left(-2(n-k)xq_k(x) + (1-x^2)q'_k(x)\right)$$

$$= (1-x^2)^{n-k-1}q_{k+1}(x)$$

$$= (1-x^2)^{n-(k+1)}q_{k+1}(x)$$

- 2) Donc si k < n la dérivée de $(1 x^2)^n$ s'annule en ± 1 .
- 3) Par définition:

$$\int_{-1}^{1} \varphi_k(x) \varphi_j(x) \ dx = \int_{-1}^{1} D^k (1 - x^2)^k D^j (1 - x^2)^j \ dx$$
$$= (-1)^k \int_{-1}^{1} \underbrace{D^{2k} (1 - x^2)^k}_{=Cte} D^{j-k-1} (1 - x^2)^j \ dx$$
$$= 0$$