Prova 2

César A. Galvão - 19/0011572

2022-08-12

Contents

Questão 1	3
Questão 2	5
Questão 3	6

Questão 1

Tratamento	Bloco 1	Bloco 2	Bloco3	Bloco 4
1	105.17	102.21	99.43	107.74
2	97.42	89.36	90.16	100.04
3	100.78	99.26	96.77	102.50
4	102.09	99.45	102.63	107.63

É utilizado o RCBD, randomized complete block design, representado por:

$$y_{ij} = \mu + \tau_i + \beta_j + e_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., n$$

em que μ é a média geral, τ_i é a média ou efeito dos grupos – cada químico sendo considerado um tratamento –, β_j é o bloco e e_{ij} é o desvio do elemento. Os grupos são indexados por i e os blocos indexados por j.

As hipóteses do teste são as seguintes:

$$\begin{cases} H_0: \tau_1=\ldots=\tau_a=0, & \text{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$

que equivale dizer

$$\begin{cases} H_0 : \mu_1 = \dots = \mu_a \\ H_1 : \exists \mu_i \neq \mu_j, \ i \neq j. \end{cases}$$

Mesmo que o interesse do estudo não seja sobre o efeito dos blocos, é interessante testá-los para avaliar se é necessário manter a estrutura de blocos e futuras replicações do experimento.

Apresenta-se inicialmente a tabela de ANOVA, na qual é possível observar níveis de significância suficientes para se considerar tanto o efeito de blocos quanto o efeito de tratamentos como significativos. Isso quer dizer que de fato a blocagem teve efeito sobre os resultados do experimento e que há pelo menos um tratamento que difere dos demais.

term	df	sumsq	meansq	statistic	p.value
blocos	3	141.1339	47.04465	12.19711	0.00160
tratamentos	3	219.8991	73.29972	19.00417	0.00031
Residuals	9	34.7133	3.85703	NA	NA

Procede-se portante para o teste diagnóstico da análise de variância. Especificamente, o teste para normalidade dos resíduos, conduzido utilizando o teste de Shapiro, apresenta p-valor de 0.62. Ou seja, não se rejeita a hipótese de normalidade dos dados. Além disso, o teste de Levene para homocedasticidade apresenta, para blocos e tratamentos, p-valores de 0.91 e 0.17 respectivamente, de modo que pode-se considerar a homocedasticidade da amostra em ambas as dimensões.

Ainda, realiza-se teste de aditividade, para o qual a hipótese nula é de que o experimento é completamente aditivo. Obtem-se p-valor 0.098, de modo que não se rejeita a aditividade considerando $\alpha=0.05$.

Apresenta-se os parâmetros estimados a seguir:

μ	σ^2
100.165	3.857

$ au_1$	$ au_2$	$ au_3$	$ au_4$
3.472	-5.92	-0.338	2.785

Por fim, realiza-se teste de Tukey para avaliar quais tratamentos diferem entre si. Considerando significância de 0.05, não haveria diferença apenas entre o tratamento 4 e os tratamentos 1 e 3.

	diff	lwr	upr	p adj
2-1	-9.39	-13.73	-5.06	0.00
3-1	-3.81	-8.15	0.53	0.09
4-1	-0.69	-5.02	3.65	0.96
3-2	5.58	1.25	9.92	0.01
4-2	8.70	4.37	13.04	0.00
4-3	3.12	-1.21	7.46	0.18

O erro tipo II deste modelo é calculado com o seguite parâmetro de não centralidade:

$$NCP = \phi^2 = n \cdot \frac{\sum_{i=1}^{4} \tau_i^2}{\sigma^2} \quad \tau_i = \{-2, 0, 0, 2\}$$

$$= 4 \cdot \frac{8}{3.857}$$
(2)

$$=4 \cdot \frac{8}{3.857} \tag{2}$$

$$= 8.296$$
 (3)

Considera-se ainda $(a-1)(b-1)=3\cdot 3=9$ graus de liberdade para o denominador e a-1=3 graus de liberdade para o numerador da estatística F.

Obtém-se uma probabilidade de erro tipo II de 0.525

Questão 2

Na simulação exposta, estão sendo comparadas as ocorrências de erro tipo II para os dois modelos, considerando ou não blocos, quando de fato não existe diferença entre blocos. Pela forma como a simulação é desenhada, entende-se que a blocagem não deve ser importante para a replicação do experimento (o vetor de efeitos de bloco é nulo) e, sendo utilizada no modelo, reduz-se os graus de liberdade do resíduo e consequentemente aumenta-se o QMRES, que é o denominador da estatística de teste. De fato, observa-se pelas probabilidades encontradas que o segundo modelo apresenta uma maior probabilidade de erro tipo II, conforme esperado.

Questão 3

O teste de Friedman considera a média dos ranks dentro de cada bloco, k tratamentos e n unidades dentro de cada tratamento. A estatística de teste é a Q seguinte, que segue uma distribuição $\chi^2_{(k-1)}$:

$$Q = \frac{12n}{k(k+1)} \sum_{j=1}^{k} \left(\bar{r}_{.j} - \frac{k+1}{2} \right)^2 \tag{4}$$

A seguir estão expostas duas tabelas: uma com a maior variabilidade possível dentro dos blocos mas uniforme entre blocos, outra sem variabilidade de rank dentro dos blocos, mas maior variabilidade entre blocos.

É possível observar que a tabela cujos valores apresentam estatística de teste igual a doze possui pvalor muito baixo e de fato avaliam os tratamentos como consistentemente posicionados de forma ranqueada entre os blocos. Em contrapartida, a tabela cujos valores apresentam estatística de teste igual a zero (aqui apresentado pelo teste implementado como NaN), apresentam o maior p-valor, o qual calculado manualmente corresponde a 1. De fato, faz sentido com a interpretação de que não há um posicionamento consistente dos rankings dos tratamentos entre os blocos.

Tratamento	Bloco 1	Bloco 2	Bloco3	Bloco 4
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4

statistic	p.value	parameter	method
12	0.0073832	3	Friedman rank sum test

Tratamento	Bloco 1	Bloco 2	Bloco3	Bloco 4
1	1	2	3	4
2	1	2	3	4
3	1	2	3	4
4	1	2	3	4

statistic	p.value	parameter	method
NaN	NaN	3	Friedman rank sum test