ТЕРМОДИНАМИКА

Прв закон на термодинамика $\Delta U = Q + A$

Процес	Особини	Промена на внатрешната енергија	Примена топлина	Извршена работа
Изохорен	Константен волумен $V=const$	$\Delta U = nC_{\scriptscriptstyle MV} \Delta T$	$Q = nC_{MV}\Delta T$	0
Изотермен	Константна температура $T = const$	0	$Q = A$ $Q = nRT \ln \frac{V_2}{V_1}$	$A = nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{p_1}{p_2}$
Изобарен	Константен притисок $p = const$	$\Delta U = nC_{MV}\Delta T$	$Q = nC_{Mp}\Delta T$	$A = p\Delta V = nR\Delta T$
Адијабатски	Топлински изолиран процес $pV^k = const$ $TV^{k-1} = const$ $Tp^{\frac{1-k}{k}} = const$	$\Delta U = nC_{MV}\Delta T$	0	$A = -\Delta U = -nC_{MV}\Delta T$ $A = \frac{nRT_1}{k-1} \left[1 - \left(\frac{V_1}{V_2}\right)^{k-1} \right]$ $A = \frac{nRT_1}{k-1} \left[1 - \left(\frac{T_2}{T_1}\right) \right]$

$$C_{Mp} = \frac{j+2}{2}R$$

$$C_{MV} = \frac{j}{2}R$$

$$C_{Mp} - C_{MV} = R$$

j = 7

$$\frac{C_{Mp}}{C_{MV}} = k = \frac{j+2}{j}$$

за едноатомни молекули j=3

степен на корисно дејство на топлинска машина $\eta = 1 - \frac{Q_2}{Q_1}$

за двоатомни молекули j = 5

степен на корисно дејство на Карноова топлинска машина $\eta = 1 - rac{T_2}{T_1}$

за двоатомни молекули на високи температури

за повеќеатомни молекули j = 6