Численное моделирование морской поверхности

Понур К.А.¹, Караев В.Ю.², Рябкова М.С.²

² Институт Прикладной Физики Российской Академии Наук

¹ Нижегородский Государственный Университет им. М.Ю. Лобачевского

Введение

Для изучения и мониторинга состояния морской поверхности активно используются радиолокаторы. Благодаря орбитальным скаттерометрам измеряется поле приводного ветра в Мировом океане, радиовысотомеры измеряют высоту значительного волнения и средний уровень морской поверхности. Для обнаружения разливов нефти и нефтепродуктов активно используются радиолокаторы с синтезированной апертурой.

Современные достижения в радиолокационном зондировании базируются на результатах исследования рассеяния электромагнитных волн морской поверхностью. Тем не менее, остается ряд нерешенных вопросов по моделям рассеяния. Также, существующие радиолокационные системы не всегда позволяют получить необходимую информацию о состоянии приповерхностного слоя океана, что обуславливает необходимость совершенствования измерительной аппаратуры.

На этапе поиска оптимальной схемы измерения необходимо оценить вклад в спектральные и энергетические характеристики отраженного сигнала параметров волнения, течений, поверхностных пленок. Численное моделирование является мощным инструментом, позволяющим решать эти задачи.

Моделирование

Рассмотрим задачу моделирования морской поверхности по заданному спектру волнения. Спектр двумерного волнения представим в виде функции с разделяющимися переменными (см. рис. 1):

$$S(\vec{k}) = S(k)\Phi_k(\phi), \ k = \sqrt{k_x^2 + k_y^2}, \ \phi = \operatorname{arctg} \frac{k_x}{k_y}, \quad \int_{-\pi}^{\pi} \Phi_k(\phi) \, \mathrm{d}\phi = 1.$$

Поверхность представим как сумму гармоник с детерменированными амплитудами и случайными фазами O_{Ha} сводится к следующей системе: $b_i \sum_{i=1}^N b_i = \sum_{i=1}^N b_i^2 = 0$

$$\zeta(\vec{r},t) = \sum_{n=1}^{N} \sum_{m=1}^{M} A_n(k_n) \cdot \Phi_{k_n m}(\phi_m) \cos\left(\omega_n t + \vec{k}_n \vec{r} + \psi_{nm}\right),$$

Амплитуда, которая является мощностью на интервале Δk_n , вычисляется по спектру моделируемой поверхности

$$A_n(k_n) = \sqrt{\int_{(\Delta k_n)} 2S(k) dk}$$

– азимутальное распределение, вычисляемое следующим образом:

$$\Phi_{nm}(k_n, \phi_m) = \sqrt{\Phi(k_n, \phi_m)\Delta\phi},$$

$\Delta \phi$ – шаг по углу

Рис.: (a) Спектр высот S(k) при фиксированном значении $\tilde{x}=20170$ и меняющейся скорости ветра (b) Спектр высот S(k) при фиксированном значении скорости ветра $U_{10}=10\frac{\mathrm{M}}{\mathrm{c}}$ и меняющемся разгоне (c,d) Угловое распределение $\Phi_k(\phi)$ в полярных координатах для разных значений соотношений $\frac{k}{k_m}$, где k_m - координата пика спектра S(k) при фиксированной скорости ветра

Модель заостренной волны (Choppy wave model)

Модель заключается в нелинейном преобразовании координат

$$x = x_0 - \sum_{j} \frac{\vec{k}_j}{\left|\vec{k}_j\right|} \cdot \vec{x}_0 \sin\left(\vec{k}_j \vec{r}_0 - \omega_j t + \phi_j\right)$$

$$y = y_0 - \sum_{j} \frac{\vec{k}_j}{\left|\vec{k}_j\right|} \cdot \vec{y}_0 \sin\left(\vec{k}_j \vec{r}_0 - \omega_j t + \phi_j\right)$$

$$z = \sum_{j=1} a_j \cos\left(k_j \cdot \vec{r}_0 - \omega_j + \phi_j\right)$$

Или человеческим языком:

$$\{\vec{r}, h(\vec{r}, t)\} \rightarrow \left\{\vec{r} + \vec{D}(\vec{r}, t), h(\vec{r}, t)\right\},$$

где $\vec{r}=(x,y)$ – горизонтальная координата, $D(\vec{r},t)$ – Riesz Transform Характеристическая функция такого процесса

 $\theta(u) = \left(1 - iu\sigma_1^2 + u^2\Sigma_1\right) \exp\left\{-\frac{1}{2}u^2\sigma_0^2\right\}$

Рис.: Эволюция (a) «линейной» и (b) «нелинейной» систем, $\Delta t = 0.1$ с

Метод «отбеливания» спектра

Предположим, что гармонические составляющие при больших ρ складываются «некогерентным» образом. То есть мощность шума определяется как

$$\sigma_{\text{IIIYM}}^2 = \sum_{i=1}^N \frac{b_i^2}{2}$$

В области малых ho гармоники суммируются «когерентно» и соответствующая мощность равна

$$\widetilde{M}^2(0) = \left(\sum_{i=1}^N b_i\right)^2$$

Введем функцию, характеризующую относительную мощность шумов

$$Q = \frac{\sigma_{\text{IIIYM}}^2}{\widetilde{M}^2(0)} \tag{1}$$

Минимизируем величину (1), решая систему уравнений

$$\frac{\partial Q}{\partial b_i} = \frac{b_i}{\left(\sum_{i=1}^N b_i\right)^2} - \frac{\sum_{i=1}^N b_i^2}{\left(\sum_{i=1}^N b_i\right)^3}, \quad i = 1 \dots N.$$

Частным результатом решения является $b_1 = b_2^{i-1} = \ldots = b_N$.

Для высот:
$$b_i = b_1 = \frac{M(0)}{N} = \frac{1}{N} \int\limits_0^\infty S(k) \,\mathrm{d}k$$
 Для наклонов: $b_i^\theta = b_1^\theta = \frac{M^\theta(0)}{N} = \frac{1}{N} \int\limits_0^\infty k^2 S(k) \,\mathrm{d}k$

Потребуем сопряжения в нуле всех производных функций $M(\rho)$ и $M(\rho)$. Для функции корреляции стационарной случайной функции $M(\rho)$ справедливо

$$M_{\rho}' = \frac{\partial^2 M(\rho)}{\partial \rho^2} = \int_{0}^{\infty} k^2 S(k) \cos(k\rho) \, \mathrm{d}k$$

А значит можно переписать наше требование в виде

$$\sum_{i=1}^{N} b_i k_i^{2p} = \int_{0}^{\infty} k^{2p} S(k) \, dk, p = 1, 2, \dots, N.$$

Решать такую систему довольно сложно, поэтому потребуем выполнение более простого равенства

$$\sum_{i=1}^{N} b_i k_i^2 = \int_{0}^{\infty} k^2 S(k) \, \mathrm{d}k$$

Решением будем считать суперпозицию решения системы уравнений (2) для высот и наклонов

Рис.: Расположении узлов по методу «отбеливания» спектра для наклонов и высот соответственно. $U=10\frac{M}{c},~N=25$

Рис.: Корреляционные функции высот (a) и уклонов (b) при различных расположениях узлов. $U=10\frac{M}{c},\ N=256$

Заключение

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren no sea takimata sanctus est Lorem ipsum dolor sit amet.

Литература

- 🗈 С.М. Рытов, Введение в статистическую радиофизику // Изд. 2-е, перераб. и доп. Москва : Наука, 1976. Ч. 1. Случайные процессы §§14-18, 38-42
- В.Ю.Караев, М.Б. Каневский, Г.Н. Баландина, Численное моделирование поверхностного волнения и дистанционное зондирование // Препринт
- №552 ИПФ РАН, 2002, С.1-10. 🖺 В.Л. Вебер, О моделировании случайного профиля морской поверхности // Изв. вузов. Радиофизика. 2017. Т. 60, № 4. С. 346.
- В.Ю.Караев, Г.Н. Баландина Модифицированный спектр волнения и дистанционное зондирование // Исследование Земли из космоса, 2000, N5,
- М.С. Лонге-Хиггинс Статистический анализ случайной движущейся поверхности // в кн.: Ветровые волны, М.: Иностранная наука, 1962, C.112-230