Soluții laborator IA

1. Se dau următoarele date ce reprezintă prețul și tipul bateriei pentru 3 tipuri de telefoane: Samsung, iPhone și Nokia.

Preț	Tip baterie	Tip telefon
1000	Lithium	Nokia
1424	Trust	Nokia
2003	Trust	Nokia
2432	Trust	Nokia
3210	Trust	Nokia
1426	Lithium	Samsung
2243	Trust	Samsung
1876	Lithium	Samsung
3780	Trust	Samsung
1299	Trust	iPhone
1367	Lithium	iPhone
4200	Lithium	iPhone
4467	Lithium	iPhone

Folosind metoda Naive Bayes preziceți tipul unui telefon al cărui preț este 3200 lei și care are baterie de tipul Lithium. Pentru a discretiza valorile prețului folosiți intervalele: $(-\infty, 1500)$, [1500, 3000), $[3000, \infty)$.

SOLUȚIE:

$$P(c \mid X) = P(c) \prod_{i=1}^n P(x_i \mid c)$$
,
unde X = $\{x_1, x_2, ..., x_n\}$ cu $x_1, ..., x_n$ atribute independente

Prin discretizarea prețului datele devin:

Preț	Tip baterie	Tip telefon
0	Lithium	Nokia
0	Trust	Nokia
1	Trust	Nokia
1	Trust	Nokia
2	Trust	Nokia
0	Lithium	Samsung
1	Trust	Samsung
1	Lithium	Samsung
2	Trust	Samsung
0	Trust	iPhone
0	Lithium	iPhone
2	Lithium	iPhone
2	Lithium	iPhone

Pasul 1: calculăm probabilitățile claselor

$$P(c = Nokia) = \frac{5}{13}$$

$$P(c = Samsung) = \frac{4}{13}$$

$$P(c = iPhone) = \frac{4}{13}$$

Pasul 2: calculăm probabilitățile condiționate

c = Nokia

$$P(pre \neq 0 \mid c = Nokia) = \frac{2}{5}$$

$$P(pre \neq 1 \mid c = Nokia) = \frac{2}{5}$$

$$P(pre \neq 2 \mid c = Nokia) = \frac{1}{5}$$

$$P(baterie = Lithium \mid c = Nokia) = \frac{1}{5}$$

 $P(baterie = Trust \mid c = Nokia) = \frac{4}{5}$

• c = Samsung

$$P(pre \neq 0 \mid c = Samsung) = \frac{1}{4}$$

$$P(pre \neq 1 \mid c = Samsung) = \frac{2}{4}$$

$$P(pre \neq 2 \mid c = Samsung) = \frac{1}{4}$$

$$P(baterie = Lithium \mid c = Samsung) = \frac{1}{2}$$

$$P(baterie = Trust \mid c = Samsung) = \frac{1}{2}$$

• c = iPhone

$$\begin{split} &P(\textit{pre} \rlap{\sc t} = 0 \ | \ c = iPhone) = \frac{2}{4} \\ &P(\textit{pre} \rlap{\sc t} = 1 \ | \ c = iPhone) = 0 \\ &P(\textit{pre} \rlap{\sc t} = 2 \ | \ c = iPhone) = \frac{2}{4} \end{split}$$

$$P(baterie = Lithium \mid c = iPhone) = \frac{3}{4}$$

 $P(baterie = Trust \mid c = iPhone) = \frac{1}{4}$

Predicția:

Calculăm probabilitatea fiecărei clase, știind că bateria este de tip Lithium, iar prețul este 3200 lei: (baterie = Lithium, preț = 3200) $\equiv (baterie = Lithium, preț = 2)$

$$P(c = Nokia \mid preț = 2, baterie = Lithium) =$$

$$= P(c = Nokia) * P(preț = 2 \mid c = Nokia) * P(baterie = Lithium \mid c = Nokia) =$$

$$= \frac{5}{13} * \frac{1}{5} * \frac{1}{5} =$$

$$= 0.0153$$

$$P(c = Samsung \mid pre \not = 2, baterie = Lithium) =$$

$$= P(c = Samsung) * P(pre \not = 2 \mid c = Samsung) * P(baterie = Lithium \mid c = Samsung) =$$

$$= \frac{4}{13} * \frac{1}{4} * \frac{1}{2} =$$

$$= 0.0384$$

$$P(c=iPhone \mid pre \nmid = 2, baterie = Lithium) =$$

$$= P(c=iPhone) * P(pre \nmid = 2 \mid c=iPhone) * P(baterie = Lithium \mid c=iPhone) =$$

$$= \frac{4}{13} * \frac{2}{4} * \frac{3}{4} =$$

$$= \mathbf{0.1153}$$

Vom prezice că telefonul este iPhone, deoarece această clasă are probabilitatea cea mai mare.

2. Se dă următoarea mulțime de antrenare:

$$X = \begin{bmatrix} 5 & 3 & 7 & 8 \\ 8 & 4 & 9 & 11 \\ 9 & 4 & 10 & 8 \\ 6 & 2 & 4 & 9 \\ 7 & 6 & 10 & 9 \\ 7 & 6 & 12 & 11 \end{bmatrix}$$

și etichetele corespunzătoare:

$$y = \begin{bmatrix} 1 & 2 & 2 & 1 & 2 & 2 \end{bmatrix}$$

Clasificați exemplul de test [8,7,6,5] cu metoda celor mai apropiați vecini folosind distanțele L1, L2 și numărul de vecini $k \in \{1,3\}$

SOLUŢIE:

$$L_1(X,Y) = \sum_{i=1}^n |X_i - Y_i|$$
$$L_2(X,Y) = \sqrt{\sum_{i=1}^n (X_i - Y_i)^2}$$

Notăm exemplele din setul de antrenare cu v_i , i $\in [1,6]$ și calculăm distanțele de la exemplul de test la fiecare dintre acestea:

 $Dv_i = distanța de la exemplul de test la exemplul de antrenare <math>v_i$

• Folosind distanța L_1 :

$$Dv_1 = |8 - 5| + |7 - 3| + |6 - 7| + |5 - 8| = 3 + 4 + 1 + 3 = 11$$

$$Dv_2 = 0 + 3 + 3 + 6 = 12$$

$$Dv_3 = 1 + 3 + 4 + 3 = 11$$

$$Dv_4 = 2 + 5 + 2 + 4 = 13$$

$$Dv_5 = 1 + 1 + 4 + 4 = 10$$

$$Dv_6 = 1 + 1 + 6 + 6 = 14$$

Pentru k = 1 cel mai apropiat vecin este v_5 , aflat la distanța 10, cu eticheta corespunzătoare 2.

Pentru k = 3 cei mai apropiați vecini sunt $\{v_5, v_3, v_1\}$, aflați la distanțele $\{10, 11, 11\}$, cu etichetele corespunzătoare $\{2, 2, 1\}$. Eticheta majoritară este 2.

• Folosind distanța L_2 :

$$Dv_1 = (8-5)^2 + (7-3)^2 + (6-7)^2 + (5-8)^2 = 9 + 16 + 1 + 9 = 35$$

$$Dv_2 = 0 + 9 + 9 + 36 = 54$$

$$Dv_3 = 1 + 9 + 16 + 9 = 35$$

$$Dv_4 = 4 + 25 + 4 + 16 = 49$$

$$Dv_5 = 1 + 1 + 16 + 16 = 34$$

$$Dv_6 = 1 + 1 + 36 + 36 = 74$$

Pentru k=1 cel mai apropiat vecin este v_5 , aflat la distanța 34, cu eticheta corespunzătoare 2.

Pentru k=3 cei mai apropiați vecini sunt $\{v_5, v_3, v_1\}$, aflați la distanțele $\{34, 35, 35\}$, cu etichetele corespunzătoare $\{2, 2, 1\}$. Eticheta majoritară este 2.

3. Se dau următoarele 5 filme, numărul de spectatori care le-au vizionat și notele de pe IMDB corespunzătoare:

Film	Nr. spectatori	Notă IMDB
Captain Marvel	5000	6
John Wick III	6500	7.5
The Pursuit of Happyness	7500	8
Shazam	8500	9
Bohemian Rhapsody	9000	9.5

- (a) Estimați nota de pe IMDB a filmelor "Avengers End Game" și "Finding Dory" folosind metoda celor mai apropiați vecini cu distanța L_1 și numărul de vecini $k \in \{1,3\}$, știind ca la acesta au participat 7649, respectiv 6215 spectatori.
- (b) Știind că modelul a prezis etichetele $\{8.16, 7.16\}$, iar etichetele corecte sunt $\{8.5, 7\}$, calculați MAE și MSE .

SOLUTIE:

$$MAE = \frac{\sum_{i=1}^{n} |\hat{y}_{i} - y_{i}|}{n}$$

$$MSE = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{n}$$

(a) Notăm exemplele din setul de antrenare cu v_i , $i \in [1, 5]$ și calculăm distanțele de la fiecare exemplu de test la fiecare dintre acestea:

5

 Dv_i = distanța de la un exemplu de test la exemplul de antrenare v_i

• Pentru filmul "Avengers - End Game"

$$Dv_1 = |7649 - 5000| = 2649$$

$$Dv_2 = |7649 - 6500| = 1149$$

$$Dv_3 = |7649 - 7500| = 149$$

$$Dv_4 = |7649 - 8500| = 851$$

$$Dv_5 = |7649 - 9000| = 1351$$

Pentru k=1 cel mai apropiat vecin este v_3 , aflat la distanța 149, cu nota corespunzătoare 8. Așadar, nota prezisă va fi 8.

Pentru k=3 cei mai apropiați vecini sunt $\{v_3,v_4,v_2\}$, aflați la distanțele $\{149,851,1149\}$, cu notele corespunzătoare $\{8,9,7.5\}$. Nota prezisă va fi media lor: $\frac{8+9+7.5}{3}=8.16$.

• Pentru filmul "Finding Dory"

$$Dv_1 = |6215 - 5000| = 1215$$

$$Dv_2 = |6215 - 6500| = 285$$

$$Dv_3 = |6215 - 7500| = 1285$$

$$Dv_4 = |6215 - 8500| = 2285$$

$$Dv_5 = |6215 - 9000| = 2785$$

Pentru k=1 cel mai apropiat vecin este v_2 , aflat la distanța 285, cu nota corespunzătoare 7.5. Așadar, nota prezisă va fi 7.5.

Pentru k=3 cei mai apropiați vecini sunt $\{v_2,v_1,v_3\}$, aflați la distanțele $\{285,1215,1285\}$, cu notele corespunzătoare $\{7.5,6,8\}$. Nota prezisă va fi media lor: $\frac{7.5+6+8}{3}=7.16$.

(b)
$$\hat{y} = \{8.16, 7.16\}$$

 $y = \{8.5, 7\}$

$$MAE = \frac{|8.16 - 8.5| + |7.16 - 7|}{2} = \frac{0.34 + 0.16}{2} = 0.25$$

$$MSE = \frac{(8.16 - 8.5)^2 + (7.16 - 7)^2}{2} = \frac{0.11 + 0.02}{2} = 0.06$$

4. Pentru valorile de mai jos al lui \hat{y} și y, calculați matricea de confuzie. Pe baza matricei de confuzie calculația acuratețea, precizia și recall-ul.

$$\hat{y} = \begin{bmatrix} 1 & 2 & 1 & 3 & 1 & 1 & 2 & 1 & 3 & 3 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 1 & 2 & 3 & 2 & 1 & 2 & 3 & 2 & 3 \end{bmatrix}$$

SOLUTIE:

In matricea de confuzie M avem:

M(i,j) = numărul de exemple din clasa i care au fost clasificate ca fiind în clasa j

$$M = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

 $Acurate te = \frac{2+1+2}{10} = 0.5$

Precizie clasa c:

$$c = 1 \Rightarrow \frac{2}{2+2+1} = 0.4$$

$$c = 2 \Rightarrow \frac{1}{1+1+0} = 0.5$$

$$c = 1 \Rightarrow \frac{2}{2+2+1} = 0.4$$
 $c = 2 \Rightarrow \frac{1}{1+1+0} = 0.5$ $c = 3 \Rightarrow \frac{2}{0+1+2} = 0.66$

Recall clasa c:

$$c = 1 \Rightarrow \frac{2}{2+1+0} = 0.66$$

$$c = 2 \Rightarrow \frac{1}{2+1+1} = 0.25$$

$$c = 1 \Rightarrow \frac{2}{2+1+0} = 0.66$$
 $c = 2 \Rightarrow \frac{1}{2+1+1} = 0.25$ $c = 3 \Rightarrow \frac{2}{1+0+2} = 0.66$

- 5. Se dă următoarea mulțime de puncte de antrenare cu etichetele corespunzătoare: $\{[(3,4),0],[(3,5),0],[(3,7),0],[(4,5),0],[(4,6),0],[(7,3),1],[(8,2),1],[(8,4),1],[(9,2),1],[(9,3),1]\}$
 - (a) Alegeti dreapta de separare optimă dintre următoarele 3:

$$w = (w_0, w_1, w_2) \Rightarrow w_0 + w_1 x_1 + w_2 x_2 = 0$$

- (i) w = (1.2, 0.8, -1)
- (ii) w = (-1.5, 1, -1)
- (iii) w = (-3, 1, -1)
- (b) Preziceti eticheta punctelor (10, 1) si (2, 6) pe baza dreptei alese la (a).

SOLUTIE:

(a) (i)
$$w = (1.2, 0.8, -1)$$

$$0.8x_1 - x_2 + 1.2 = 0$$

Fixăm $x_1 = 0$. Înlocuind în ecuația anterioară obținem $x_2 = 1.2$

Pentru $x_1 = 5 \Rightarrow x_2 = 5.2$

Având punctele (0, 1.2) și (5, 5.2) putem determina dreapta de separare.

(ii)
$$w = (-1.5, 1, -1)$$

$$x_1 - x_2 - 1.5 = 0$$

Pentru
$$x_1 = 1.5 \Rightarrow x_2 = 0$$

Pentru
$$x_1 = 3 \Rightarrow x_2 = 1.5$$

Având punctele (1.5, 0) și (3, 1.5) putem determina dreapta de separare.

(iii)
$$w = (-3, 1, -1)$$

 $x_1 - x_2 - 3 = 0$
Pentru $x_1 = 3 \Rightarrow x_2 = 0$

Pentru $x_1 = 6 \Rightarrow x_2 = 3$

Având punctele (3, 0) și (6, 3) putem determina dreapta de separare. Dreptele de separare sunt:

Cea care maximizează marginea dintre exemplele de antrenare este cea de la (ii).

(b) Avem ecuația suprafeței de decizie: $x_1 - x_2 - 1.5 = 0$

Pentru punctul (10, 1): $10 - 1 - 1.5 = 7.5 > 0 \Rightarrow 1$

Pentru punctul (2, 6): $2-6-1.5 = -5.5 < 0 \Rightarrow 0$

6. Având următoarea mulțime de antrenare $\{[(-6), 1], [(-1), -1], [(3), -1], [(5), 1]\}$, folosiți funcția kernel $k(x) = (x, x^2)$ pentru a scufunda datele în 2D. Desenați punctele în noul spațiu și găsiți ecuația unei drepte de separare.

SOLUTIE:

Datele 1D nu sunt liniar separabile.

Le scufundăm într-un spațiu 2D folosind funcția $k(x) = (x, x^2)$

$$(-6) \Rightarrow (-6, (-6)^2) = (-6, 36)$$

$$(-1) \Rightarrow (-1, (-1)^2) = (-1, 1)$$

$$(-3) \Rightarrow (3,3^2) = (3,9)$$

$$(5) \Rightarrow (5, 5^2) = (5, 25)$$

Astfel ele devin liniar separabile:

Observăm că punctele (-4, 0) și (0, 10) determină o dreaptă care separă aceste exemple. Determinăm ecuația acesteia:

$$y = mx + n$$

$$m = \frac{\text{schimbare-pe-y}}{\text{schimbare-pe-x}} = \frac{10-0}{0-(-4)} = 2.5$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$

$$y - 0 = 2.5(x + 4)$$

$$y = 2.5x + 10$$

Ecuația dreptei determinate de punctele (-4, 0) și (0, 10) este: -2.5x + y - 10 = 0

7. Aplicați modelul Bag of Words pe exemplele de test din următorul set de date:

```
train_data = [
```

"Orice copil are o jucărie preferată",

"Acel copil își dorea o jucărie de pluș și o jucărie roșie",

"Mașina de jucărie era a unui copil cu geacă roșie"

```
test_data = [
```

"Acel copil cu geacă roșie ascultă muzică în mașina roșie",

"I-am cumpărat acelui copil o mașină de jucărie" |

SOLUTIE:

Pasul 1: definirea vocabularului prin atribuirea unui id fiecărui cuvânt din setul de antrenare:

```
vocabular = \{ "orice": 0, "copil": 1, "are": 2, "o": 3, "jucărie": 4, "preferată": 5, "acel": 6, "își": 7, "dorea": 8, "de": 9, "pluș": 10, "și": 11, "roșie": 12, "mașina": 13, "era": 14, "a": 15, "unui": 16, "cu": 17, "geacă": 18 \}
```

Pasul 2: reprezentarea datelor: fiecare exemplu va fi reprezentat de un vector de dimensiune egală cu lungimea vocabularului, definit astfel:

 $\mathrm{vector}[\mathrm{i}] = \mathrm{nr.}$ de apariții al cuvântului cu id-ul i

"Acel copil cu geacă roșie ascultă muzică":

$$[0,\,1,\,0,\,0,\,0,\,0,\,1,\,0,\,0,\,0,\,0,\,0,\,2,\,1,\,0,\,0,\,0,\,1,\,1]$$

"I-am cumpărat acelui copil o mașină de jucărie":

$$[0,\,1,\,0,\,1,\,1,\,0,\,0,\,0,\,0,\,1,\,0,\,0,\,1,\,0,\,0,\,0,\,0]$$

8. Executați un pas al algoritmului Widrow-Hoff pentru rezolvarea problemei AND, considerând exemplul [1, 1] și rata de învățare 0.1.

$$X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

SOLUȚIE:

Algoritmul Widrow-Hoff.

```
1. X = \{x_0, x_1, ..., x_{T-1}\}, \ X \in \mathbb{R}^{TxN} — datele de intrare, Y = \{y_0, y_1, ..., y_{T-1}\} — etichetele 2. W = \{w_0, w_1, ..., w_{N-1}\} = 0; b = 0 // initializeaza ponderile cu un vector de 0 — uri 3. pentru e = 0: E - 1 executa: // pentru fiecare epoca a. amesteca datele de antrenare b. pentru t = 0: T - 1 executa: // pentru fiecare exemplu x_t din X i. y_{hat} = x_t \cdot W + b // calculeaza predictia ii. loss = \frac{(y_{hat} - y_t)^2}{2} // calculeaza eroarea pentru exemplul x_t iii. W = W - \eta(y_{hat} - y_t)x_t' // actualizeaza ponderile folosind \frac{\partial loss}{\partial W} iv. b = b - \eta(y_{hat} - y_t) // actualizeaza bias — ul folosind \frac{\partial loss}{\partial b}
```

$$loss = \frac{(\hat{y} - y)^2}{2}$$
$$\frac{\partial loss}{\partial W} = (\hat{y} - y)x$$
$$\frac{\partial loss}{\partial b} = (\hat{y} - y)$$

Ponderile initiale si bias-ul sunt egale cu 0:

$$W = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad b = 0$$

$$\hat{y} = \begin{bmatrix} 1 & 1 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 0 = 0$$

$$\frac{\partial loss}{\partial W} = (0 - 1) * \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$W = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - 0.1 * \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$$

$$\frac{\partial loss}{\partial b} = 0 - 1 = -1$$

$$b = 0 - 0.1 * (-1) = 0.1$$

9. Având o rețea neuronală cu 2 straturi (unul ascuns și unul de ieșire) vrem să rezolvăm problema XOR. Pe primul strat avem 3 perceptroni și pe al doilea 1 perceptron, funcțiile de activare sunt ReLU pentru stratul ascuns și sigmoid pentru stratul de ieșire. Pornind de la următoarele valori pentru W_1 , W_2 , b_1 , b_2 faceți un pas forward și unul backward, folosind rata de învățare 0.1.

$$X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$W_1 = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} \qquad b_1 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$W_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad b_2 = \begin{bmatrix} 0 \end{bmatrix}$$

SOLUTIE:

Pasul 1: FORWARD

$$\hat{y} = SIGMOID(RELU(XW_1 + b_1)W_2 + b_2)$$

$$z_1 = XW_1 + b_1$$

$$z_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$

$$a_1 = RELU(z_1)$$

$$a_1 = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$

$$z_2 = a_1 W_2 + b_2$$

$$z_2 = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \\ 3 & 0 & 3 \end{bmatrix} * \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + [0] = \begin{bmatrix} 0 \\ 3 \\ 3 \\ 6 \end{bmatrix}$$

$$a_2 = SIGMOID(z_2)$$

$$a_2 = \begin{bmatrix} 0.5\\ 0.95\\ 0.95\\ 0.99 \end{bmatrix}$$

Pasul 2: BACKWARD

$$\frac{\partial loss}{\partial W_2} = \frac{\partial loss}{\partial z_2} * \frac{\partial z_2}{\partial W_2}$$

$$\frac{\partial loss}{\partial z_2} = \frac{\partial loss}{\partial a_2} * \frac{\partial a_2}{\partial z_2}$$

$$loss = -ylog(a_2) - (1 - y)log(1 - a_2)$$

$$\frac{\partial loss}{\partial a_2} = -\frac{y}{a_2} + \frac{1-y}{1-a_2} = \frac{a_2 - y}{a_2(1-a_2)}$$

$$\frac{\partial a_2}{\partial z_2} = \frac{\partial SIGMOID(z_2)}{\partial z_2} = SIGMOID(z_2)(1 - SIGMOID(z_2) = a_2(1 - a_2)$$

$$\frac{\partial loss}{\partial z_2} = \frac{a_2 - y}{a_2(1 - a_2)} a_2(1 - a_2) = a_2 - y = \begin{bmatrix} 0.5 \\ 0.95 \\ 0.95 \\ 0.99 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -0.05 \\ -0.05 \\ 0.99 \end{bmatrix}$$

$$\frac{\partial z_2}{\partial W_2} = \frac{\partial a_1 W_2 + b_2}{\partial W_2} = a_1^T$$

OBS. Update-ul se face cu media gradienților.

$$\frac{\partial loss}{\partial W_2} = \frac{1}{4} * a_1^T * \frac{\partial loss}{\partial z_2} = \frac{1}{4} * \begin{bmatrix} 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} * \begin{bmatrix} 0.5 \\ -0.05 \\ -0.05 \\ 0.99 \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0 \\ 0.7 \end{bmatrix}$$

$$\frac{\partial loss}{\partial b_2} = \frac{\partial loss}{\partial z_2} * \frac{\partial z_2}{\partial b_2}$$

$$\frac{\partial z_2}{\partial b_2} = \frac{\partial (a_1 W_2 + b_2)}{\partial b_2} = 1$$

$$\frac{\partial loss}{\partial b_2} = \begin{bmatrix} 0.5 \\ -0.05 \\ -0.05 \\ 0.99 \end{bmatrix} \Rightarrow \frac{1}{4}(0.5 - 0.05 - 0.05 + 0.99) = 0.34$$

$$\frac{\partial loss}{\partial W_1} = \frac{\partial loss}{\partial z_1} * \frac{\partial z_1}{\partial W_1}$$

$$\frac{\partial loss}{\partial z_1} = \frac{\partial loss}{\partial a_1} * \frac{\partial a_1}{\partial z_1}$$

$$\frac{\partial loss}{\partial a_1} = \frac{\partial loss}{\partial z_2} * \frac{\partial z_2}{\partial a_1}$$

$$\frac{\partial z_2}{\partial a_1} = \frac{\partial a_1 W_2 + b_2}{\partial a_1} = w_2^T$$

$$\frac{\partial loss}{\partial a_1} = \begin{bmatrix} 0.5 \\ -0.05 \\ -0.05 \\ 0.99 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0.5 \\ -0.05 & 0 & -0.05 \\ -0.05 & 0 & -0.05 \\ 0.99 & 0 & 0.99 \end{bmatrix}$$

$$\frac{\partial a_1}{\partial z_1} = \frac{\partial RELU(z_1)}{\partial z_1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial loss}{\partial z_1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 0.5 & 0 & 0.5 \\ -0.05 & 0 & -0.05 \\ -0.05 & 0 & -0.05 \\ 0.99 & 0 & 0.99 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -0.05 & 0 & -0.05 \\ -0.05 & 0 & -0.05 \\ 0.99 & 0 & 0.99 \end{bmatrix}$$

$$\frac{\partial z_1}{\partial W_1} = \frac{\partial XW_1 + b_1}{\partial W_1} = X^T$$

$$\frac{\partial loss}{\partial W_1} = \frac{1}{4} * X^T * \frac{\partial loss}{\partial z_1} = \frac{1}{4} * \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 0 & 0 \\ -0.05 & 0 & -0.05 \\ -0.05 & 0 & -0.05 \\ 0.99 & 0 & 0.99 \end{bmatrix} = \begin{bmatrix} 0.23 & 0 & 0.23 \\ 0.23 & 0 & 0.23 \end{bmatrix}$$

$$\frac{\partial loss}{\partial b_1} = \frac{\partial loss}{\partial z_1} * \frac{\partial z_1}{\partial b_1}$$

$$\frac{\partial z_1}{\partial b_1} = \frac{\partial (XW_1 + b_1)}{\partial b_1} = 1$$

$$\frac{\partial loss}{\partial b_1} = \begin{bmatrix} 0 & 0 & 0 \\ -0.05 & 0 & -0.05 \\ -0.05 & 0 & -0.05 \\ 0.99 & 0 & 0.99 \end{bmatrix} \Rightarrow \frac{1}{4} \left[0 - 0.05 - 0.05 + 0.99 & 0 & 0 - 0.05 - 0.05 + 0.99 \right] = \begin{bmatrix} 0.22 & 0 & 0.22 \end{bmatrix}$$