MÄLARDALEN UNIVERSITY

School of Education, Culture and Communication Department of Applied Mathematics

Examiner: Lars-Göran Larsson

EXAMINATION IN MATHEMATICS

MAA151 Single Variable Calculus, TEN2
Date: 2015-08-17 Write time: 3 hours

Aid: Writing materials

This examination is intended for the examination part TEN2. The examination consists of five RANDOMLY ORDERED problems each of which is worth at maximum 4 points. The PASS-marks 3, 4 and 5 require a minimum of 9, 13 and 17 points respectively. The minimum points for the ECTS-marks E, D, C, B and A are 9, 10, 13, 16 and 20 respectively. If the obtained sum of points is denoted S_2 , and that obtained at examination TEN1 S_1 , the mark for a completed course is according to the following:

Solutions are supposed to include rigorous justifications and clear answers. All sheets of solutions must be sorted in the order the problems are given in.

- 1. Find the length of the curve $y = \ln(x + \sqrt{x^2 1}), \sqrt{17} \le x \le \sqrt{37}$.
- **2.** Sketch the graph of the function f, defined by

$$f(x) = \frac{x^2}{2(x+2)},$$

by utilizing the guidance given by asymptotes and stationary points.

3. Find an equation for the tangent line τ to the curve

$$\gamma: 8xy - x^2y^3 = 12$$

at the point P:(2,1).

- **4.** Is the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sin(1/n)}$ convergent or divergent? Explain!
- **5.** Evaluate the integral

$$\int_{4}^{12} \frac{x+3}{x\sqrt{x-3}} \, dx \,,$$

and write the result in as simple form as possible.

Om du föredrar frågorna skrivna på svenska, var god vänd på bladet.

MÄLARDALENS HÖGSKOLA

Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik

Examinator: Lars-Göran Larsson

TENTAMEN I MATEMATIK

MAA151 Envariabelkalkyl, TEN2 Datum: 2015-08-17 Skrivtid: 3 timmar

Hjälpmedel: Skrivdon

Denna tentamen är avsedd för examinationsmomentet TEN2. Provet består av fem stycken om varannat SLUMPMÄSSIGT ORDNADE uppgifter som vardera kan ge maximalt 4 poäng. För GODKÄND-betygen 3, 4 och 5 krävs erhållna poängsummor om minst 9, 13 respektive 17 poäng. Om den erhållna poängen benämns S_2 , och den vid tentamen TEN1 erhållna S_1 , bestäms graden av sammanfattningsbetyg på en slutförd kurs enligt följande:

$$S_1 \ge 11, \ S_2 \ge 9$$
 och $S_1 + 2S_2 \le 41 \to 3$
 $S_1 \ge 11, \ S_2 \ge 9$ och $42 \le S_1 + 2S_2 \le 53 \to 4$
 $54 \le S_1 + 2S_2 \to 5$

Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i.

- Bestäm längden av kurvan $y = \ln(x + \sqrt{x^2 1}), \ \sqrt{17} \le x \le \sqrt{37}$. 1.
- 2. Skissa grafen till funktionen f, definierad enligt

$$f(x) = \frac{x^2}{2(x+2)},$$

genom att använda den vägledning som fås från asymptoter och stationära punkter.

3. Bestäm en ekvation för tangenten τ till kurvan

$$\gamma: 8xy - x^2y^3 = 12$$

i punkten P:(2,1).

- 4. Är serien $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sin(1/n)}$ konvergent eller divergent? Förklara!
- 5. Beräkna integralen

$$\int_{4}^{12} \frac{x+3}{x\sqrt{x-3}} \, dx \,,$$

och skriv resultatet på en så enkel form som möjligt.

If you prefer the questions written in English, please turn the page.

Examination TEN2 - 2015-08-17

Maximum points for subparts of the problems in the final examination

1. 2 l.u.

- **1p**: Correctly, in terms of f'(x), formulated an integral whose value is the length of the curve
- **1p**: Correctly differentiated f and correctly rewrited the expression for f'(x) into $(x^2-1)^{-1/2}$
- **1p**: Correctly rewrited the integrand into $x(x^2-1)^{-1/2}$ in preparing for finding the antiderivative
- **1p**: Correctly determined the antiderivative of the integrand and correctly determined the value of the integral

2. The graph has the asymptotes x = -2 and $y = \frac{1}{2}x - 1$, a local maximum at (-4, -4) and a local minimum at (0, 0)

- **1p**: Correctly determined the equations for the vertical and the non-vertical asymptotes of the graph
- (-4, -4) and a local minimum at (0,0) 1p: Correctly found the local extreme points of the graph
 - **1p**: Correctly sketched the left part of the graph, i.e. the part to the left of the vertical asymptote
 - **1p**: Correctly sketched the right part of the graph, i.e. the part to the right of the vertical asymptote

3. $\tau: x + y = 3$

- **2p**: Correctly differentiated implicitly the equation with respect to x, all with the purpose of finding the slope at the point P
- **1p**: Correctly determined the slope $dy/dx|_P$ at the point P
- **1p**: Correctly found an equation for the tangent line τ

4. The series is divergent

- **1p**: Correctly, as a starting point, analysed the absolute value of the terms of the series by e.g. correctly expanding $\sin(1/n)$ in a Maclaurin series
- **1p**: Correctly found that the absolute value of the terms of the series has the limit 1 as $n \to \infty$
- **2p**: Correctly concluded that the series diverges since the *necessary* condition $\lim_{n\to\infty} a_n = 0$ for convergence of a series $\sum a_n$ is not satisfied

5. $4 + \frac{\pi}{\sqrt{3}}$

- **1p**: Correctly made a substitution e.g. $\sqrt{x-3} = u$, and correctly worked it out
- **1p**: Correctly worked out the polynomial division and prepared for finding the antiderivative of the integrand
- **1p**: Correctly determined the antiderivative of the integrand
- **1p**: Correctly evaluated the limits of the integral