Universidade de Brasília

Engenharia de Reatores Químicos - IQD0048

Avaliação HW_2 – Turma T01 – 2023/1 – 19/12/2023 – Prof. Alexandre Umpierre

Instruções Gerais:

Esta avaliação **deve ser realizada individualmente ou em duplas**. Não serão consideradas avaliações realizadas por grupos maiores.

A avaliação deve ser entregue **impreterivelmente até às 23h59 de 20/12/2023**. Respostas enviadas posteriormente serão desconsideradas.

A avaliação deve ser elaborada **rigorosamente de acordo com os** *templates* **e com as instruções** disponibilizados na página da disciplina. Desvios do *tempate* e das regras implicarão em descontos na nota final, de acordo com cada caso.

O documento com as respostas deve ser entregue **anexo em formato .pdf** por um dos autores, de seu email institucional para aumpierre@unb.br, exclusivamente, intitulado

"ERO T01 20232 HW2 20231219 matriculasonumeros.pdf".

Não serão aceitos links de repositórios em nuvem.

Indícios de cópia implicarão na anulação das questões em tela de todos os envolvidos.

O documento de resposta está limitado a 10 páginas (incluindo o cabeçalho do tempalate).

A correção levará em consideração a adequação e consistência das respostas com relação ao conteúdo abordado.

- 1) Um reator de tanque agitado deve ser posto em operação. Inicialmente, ele se encontra vazio. A operação deve ser realizada em duas etapas. Na primeira etapa, a saída do tanque deve ser mantida fechada, enquanto o volume de operação de 2,5 L é preenchido com uma corrente de 9,1 L/h com 1,2 mol/L do reatante. Na segunda etapa, a saída do tanque é aberta mantendo a alimentação. A constante cinética da taxa de consumo é 0,13 min⁻¹. Determine o tempo necessário para que o reator atinja 99 % da conversão esperada para o estado estacionário. (2,5 pontos)
- 2) Um reator de tanque agitado com 40 L deve ser usado para conduzir a reação

$$A + B \rightarrow P$$
 $\Delta H = -420 \text{ kJ/mol}$

A alimentação é uma corrente de 64 L/h com 0,61 mol/L de *A*, 0,49 mol/L de *B* e 2,5 mol/L de um inerte *Q*, a 31 °C. As capacidades térmicas de *A*, *B*, *P* e *Q* são, respectivamente, 28 J/mol/°C, 35 J/mol/°C, 39 J/mol/°C e 70 J/mol/°C. Calor é removido do reator por uma camisa de resfriamento de 180 cm² a -5 °C com coeficiente de troca térmica global estimado em 980 W/m²/°C. A taxa de consumo de *A* é dada por

$$-r_A = kc_A^{1,5}c_B^{1,2}$$
,

em que k é a constante cinética, dada por

$$\frac{k}{\frac{\text{mol}^{-1.6}}{\text{L}^{-1.6}\text{min}}} = A \exp{-\frac{E}{RT}},$$

em que $A = 40 \times 10^6 \, (\text{mol/L})^{-1.7} \text{min}^{-1}$, $E = 560 \, \text{atm L/mol}$ é a energia de ativação, R é a constante universal dos gases e T é a temperatura. Apresente uma avaliação crítica quanto à conversão do reator. (2,5 pontos)

3) Um tanque agitado de 150 L é usado para conduzir a reação $A+2B\to P$. A taxa de consumo de A é dada por

$$-r_A = kc_A^{1,2}c_B^{1,1}$$
,

em que c_A e c_B são as concentrações de A e de B, e $k = 11 \text{ (mol/L)}^{-1,3}\text{min}^{-1}$ é a constante cinética. O reator é alimentado com uma corrente de 7,2 L/min com 0,045 mol/L de A e 0,095 mol/L de B. Em um ensaio, certa quantidade de um traçador foi introduzida ao reator na forma de um pulso. A Tabela 1 apresenta a concentração do traçador à saída do tanque. Estime a concentração de A à saída do tanque usando os modelos de mistura máxima e de volume de troca. (2,5 pontos)

4) Um reator tubular é usado para conduzir a reação $2A + B \rightarrow P$. A taxa de consumo de A é dada por

$$-r_A = kc_A^{1,2}c_B^{1,5}$$
,

em que c_A e c_B são as concentrações de A e de B, respectivamente, e $k = 0.86 \, (\text{mol/L})^{-1.7} \text{min}^{-1}$ é a constante cinética. A alimentação é uma corrente de $0.82 \, \text{L/min}$ com $1.1 \, \text{mol/L}$ de A e $0.52 \, \text{mol/L}$ de B. Um ensaio com traçador foi realizado introduzindo-se $68 \, \text{mg}$ de traçador ao reator, de uma vez. Em um ensaio, certa quantidade de um traçador foi introduzida ao reator na forma de um pulso. A Tabela 2 apresenta a concentração do traçador à saída do reator. Estime a concentração de A à saída do tanque usando os modelos de mistura mínima e de tanques em série. $(2.5 \, \text{pontos})$

Tabela 1. Concentração c de traçador à saída do tanque em função do tempo t decorrido de ensaio para a Questão 3.

ensuro para a Questao 3:	
t (min)	c (mg/L)
0	666,81
16,6	216,51
24,8	127,27
33,1	76,84
41,4	48,3
49,7	31,69
57,9	21,91
66,2	15,87
74,5	12,06
82,8	9,14
91,0	7,31
99,3	6,08
107,6	5,10
115,9	3,99
124,1	3,49
132,4	2,89
140,7	2,64
149,0	2,06
157,2	1,79
165,5	1,53

Tabela 2, Concentração *c* de traçador à saída do tanque em função do tempo *t* decorrido de ensaio para a Questão 4.

t (min)	c (mg/L)
0	0,03
1,48	1,82
2,97	4,84
4,45	6,99
5,93	7,76
7,42	7,38
8,90	6,56
10,39	5,30
11,87	4,19
13,35	3,16
14,84	2,30
16,32	1,70
17,80	1,16
19,29	0,83
20,77	0,56
22,26	0,44
23,74	0,23
25,22	0,18
26,71	0,09
28,19	0,08
29,67	0,05