

Problem B. Some Sum of Subset

Time limit: 2 seconds

Memory limit: 1024 megabytes

You are given a sequence of positive integers $A = (A_1, A_2, ..., A_N)$ of length N. For k = 0, 1, ..., N, solve the following problem.

Find the number of subsets S of $\{1, 2, ..., N\}$ that satisfy the following condition, modulo 998244353.

• There exists a subset T of S such that |T| = |S| - k and $\sum_{i \in T} A_i \ge M$.

Constraints

- $1 \le N \le 3000$
- $1 \le M \le 3000$
- $1 \le A_i \le 3000$

Input

The input is given in the following format from standard input:

N M

 $A_1 A_2 \ldots A_N$

Output

Output N+1 lines. In the *i*-th line $(1 \le i \le N+1)$, output the answer for k=i-1.

Examples

standard input	standard output
4 7	6
3 1 5 2	4
	1
	0
	0
1 5	1
7	0
9 18	346
1 9 5 6 2 7 1 4 8	309
	230
	126
	46
	10
	1
	0
	0
	0

Note

For the first sample case:

As an example, let's explain the case when k = 1.

The 3rd Universal Cup Stage 11: Sumiyosi, October 5-6, 2024

• For $S = \{1, 3, 4\}$, if we let $T = \{3, 4\}$, then |T| = |S| - 1 and $\sum_{i \in T} A_i \ge 7$, so it satisfies the condition.

Other subsets satisfying the condition are $S = \{1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\},$ totaling 3 subsets. Therefore, when k = 1, the answer is 4.