Análisis Visual de Problemas de Granularidad y Ambiguedad en el Agrupamiento de Intensiones con LLMs

DATASET CLINGISO

Cecilia Vilca Alvites

Confessio

En la actualidad organizar grandes volúmenes de texto no etiquetado representa un desafío clave en el procesamiento de lenguaje natural. El agrupamiento de intenciones de usuario, común en asistentes virtuales, se ve afectado por la alta granularidad y ambigüedad semántica de las consultas. Aunque los LLMs han mejorado la representación contextual del texto, sus procesos de clustering siguen siendo poco interpretables. Esta falta de claridad, sumada a la escasez de herramientas visuales interactivas, dificulta el análisis y diagnóstico de errores. Ante ello, se justifica el desarrollo de enfoques visuales que permitan explorar y comprender mejor agrupamientos generados.

Problema

El agrupamiento de textos en lenguaje natural, específicamente las intenciones de usuario, representa un desafío significativo en el ámbito del procesamiento de lenguaje no supervisado. Este desafío se fundamenta en dos propiedades de los conjuntos de datos de intenciones:

Alta Granularidad:

- Muchas intenciones son específicas y semánticamente cercanas.
- Representaciones por LLMs no siempre discriminan intenciones similares.
- Resultado: solapamiento de intenciones en el espacio de embeddings.

Ambigüedad Semántica:

- Frases iguales o similares etiquetadas con intenciones distintas.
- El significado depende fuertemente del contexto.

Esta dificultad se acentúa en contextos no supervisados, donde la ausencia de etiquetas limita la detección de errores. La escasez de herramientas visuales e interactivas dificulta el análisis, haciendo fundamental contar con recursos que faciliten la identificación de intenciones mezcladas y frases ambiguas.

Objetivos

- Usar LLMs para encontrar temas importantes en los textos y así mejorar la forma en que se representan antes de agruparlos.
- Identificar textos inusuales dentro de los grupos, usando tanto el análisis de intenciones como la visualización.
- Implementar métricas internas para evaluar la calidad de los clústeres, considerando coherencia semántica y separación.
- Diseñar e implementar una interfaz visual que permita explorar los grupos de textos creados, cambiar cuántos grupos queremos ver y mejorar los resultados de manera interactiva.

Metodologies Detos

TABLE I ATRIBUTOS PRINCIPALES DEL DATASET CLINC150 Y SU SIGNIFICADO

Atributo	Descripción	Tipo de Dato	Rango / Valores Posibles
text	Representa la consulta original del usuario en	String	Cadenas de texto que varían en longitud desde
	lenguaje natural. Es la entrada textual que el		2 hasta 136 caracteres. Ejemplos incluyen "what
	sistema debe procesar para inferir la intención.		is my account balance" o "can you please tell
			me how much money I have left in my primary
			checking account after deducting all pending
			transactions?".
intent	Es la etiqueta de la intención subyacente asoci-	String	150 categorías de intención distintas y
	ada a la consulta de texto. Sirve como la verdad		finamente granularizadas. Incluye intenciones
	fundamental (ground truth) para la clasificación.		como pay_bill, transfer, balance,
			greeting, goodbye, translate,
			money_transfer, y la categoría
			out_of_scope (OOS).
text_length	Atributo derivado que representa la longitud de	Entero	Valores entre 2 y 136 caracteres. La mayoría
	la consulta de texto en número de caracteres.		de las consultas se agrupan alrededor de los 39
	Se utiliza para análisis exploratorio.		caracteres, con una mediana de 37.
split	Indica a qué subconjunto pertenece la instancia,	String	train (entrenamiento), val (validación),
	utilizado para la división estándar del dataset		test (prueba).
	para entrenamiento, validación y prueba de mod-		
1 11'	elos.	37	77 - 1 - 204 - F
embeddings	Atributo derivado, no original del dataset,	Vector	Vector de 384 dimensiones. Cada valor en el
	pero crucial para este proyecto. Son las		vector es un número flotante.
	representaciones numéricas densas de cada		
	consulta de texto, generadas por un Large		
	Language Model (LLM) (específicamente,		
tene v tene :	all-MiniLM-L6-v2). Atributos derivados de la reducción de dimen-	Flotante	Valores que varían cegún la distribución en al es
tsne_x, tsne_y	sionalidad de los <i>embeddings</i> . Representan las	Protaine	Valores que varían según la distribución en el es- pacio 2D, generalmente en un rango de números
	coordenadas 2D de cada consulta en un espacio		reales.
	visual, obtenidas mediante t-SNE, facilitando su		reares.
	visualización e interpretación.		
	visualización e interpretación.		

Metodologies Pipeline

Dashboard Interactivo de Análisis de Intenciones Exploración Visual de Problemas de Granularidad y Ambigüedad en Agrupamientos de Intenciones (Caso CLINC150) Colorear puntos por: Número de Clusters (KMeans): 30 ● Intención Real ○ ID de Cluster (KMeans) Visualización de Intenciones y Clusters Análisis de Granularidad y Ambigüedad Métricas de Calidad de Clustering ¿Qué mide cada métrica de clustering? • Silhouette Score: Evalúa qué tan bien se agrupan los puntos dentro de un mismo cluster comparado con otros. Varía entre -1 y 1; mientras más cercano a 1, mejor. Davies-Bouldin Index: Relaciona la dispersión intra-cluster con la separación entre clusters. Mientras más bajo, mejor (mínimo ideal es 0). Calinski-Harabasz Index: Cuantifica la separación entre grupos comparando varianzas entre e intra-clusters. Mientras más alto, mejor. Resultados de las métricas: Silhouette Score: 0.353 Davies-Bouldin Index: 0.815 Calinski-Harabasz Index: 19086.432

Referencies

- [1] R. Peng, Y. Dong, G. Li, D. Tian, and G. Shan, "TextLens: Large language models-powered visual analytics enhancing text clustering," *Journal of Intelligent & Fuzzy Systems*, DOI: 10.1007/s12650-025-01043-y, Feb. 2025.
- [2] A. Petukhova, J. Carvalho, and N. Fachada, "Text Clustering with Large Language Model Embeddings," *International Journal of Cognitive Computing in Engineering*, vol. 6, pp. 100–108, Dec. 2025.
- [3] N. Arias, P. Singh, and A. B. Imbert, "Visual Analytics for Fine-grained Text Classification Models and Datasets," *arXiv* preprint arXiv:2405.02980, 2024.
- [4] L. K. Miller and C. P. Alexander, "Human-interpretable clustering of short text using large language models," *Royal Society Open Science*, vol. 12, no. 2, pp. 241088, 2025.
- [5] S. Hamada, "Processing of Semantic Ambiguity Based on Words Ontology," *Journal of Computer Science*, vol. 16, no. 1, pp. 1–9, 2020.

Mahas Grades

Por ver esta presentación

