UNIVERSITY OF NEW SOUTH WALES. SCHOOL OF MATHEMATICS AND STATISTICS MATH5645

TOPICS IN ANALYTIC NUMBER THEORY

4. THE RIEMANN ZETA FUNCTION:

- **a.** Show that for $\Re(s) > 1$, $\sum_{r=1}^{\infty} \frac{(\tau(n))^2}{n^s} = \frac{\zeta^4(s)}{\zeta(2s)}$.
- **b.** Recall the definition of $\omega(n)$ from question 2 of Sheet 2. Show that for $\Re(s) > 1$, $\sum_{s=1}^{\infty} \frac{2^{\omega(n)}}{n^s} = \frac{\zeta^2(s)}{\zeta(2s)}$.

 $\mathbf{2}$

a. Use the comparison test for series to prove that for s > 1, (s real),

$$\frac{1}{s-1} \le \zeta(s) \le 1 + \frac{1}{s-1}.$$

- **b.** Deduce that $\lim_{s \to 1^+} (s-1)\zeta(s) = 1$.
- **c.** Further show that $\frac{\log \zeta(s)}{\log(\frac{1}{s})} \to 1$ as $s \to 1^+$.
- **3** Prove that the integral $\int_0^\infty x^{s-1}e^{-x}\,dx$, which defines the Gamma function, converges for Re(s) > 0.
- 4 Prove that **a.** $\Gamma(s+1) = s\Gamma(s)$ **b.** $\Gamma(n+1) = n!$ **c.** $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- Show that $\frac{1}{e^t-1}-\frac{1}{t}$ can be written as $-\frac{1}{2}+\sum_{n=1}^{\infty}a_nt^n$ with $a_{2n}=0$.
- Prove that $\Gamma(s)$ has simple poles only for $s=0,-1,-2,\ldots$ and show that the residue at the pole s=-k is $\frac{(-1)^k}{k!}$, where k is a non-negative integer.

Evaluate

- **a.** $\zeta(0)$,
- **b.** $\zeta(-1)$, **c.** $\zeta(-2)$, **d.** $\zeta(-3)$

and show that $\zeta(-2n) = 0$ for $n = 1, 2, 3, \cdots$

Given the well-known infinite product $\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$, use logarithmic differentiation to show that

$$\cot x = \frac{1}{x} - 2\sum_{n=1}^{\infty} \frac{x}{n^2 \pi^2 - x^2}.$$

- *9 Prove that $\int_0^\infty \frac{u^s}{u^2 + 1} du = \frac{\pi}{2} \sec\left(\frac{s\pi}{2}\right)$ for -1 < s < 1.
- 10 a. Prove that if p is prime and s > 2,

$$1 + \frac{\phi(p)}{p^s} + \frac{\phi(p^2)}{p^{2s}} + \dots = \frac{1 - p^{-s}}{1 - p^{1-s}}.$$

b. Deduce that for s > 2, $\sum_{n=1}^{\infty} \frac{\phi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}$.

*11

Suppose $\Re(s) > 1$.

a. Use the Euler product to show that $\log \zeta(s) = -\lim_{k \to \infty} \sum_{n=2}^k [\pi(n) - \pi(n-1)] \log(1 - \frac{1}{n^s})$.

b. Deduce that $\log \zeta(s) = s \int_2^\infty \frac{\pi(x)}{x(x^s - 1)} dx$.

12 You may assume the (well-known) result $\int_0^\infty \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin(p\pi)}$, for 0 , from Complex Analysis.

a. Show that $\Gamma(m) = 2 \int_0^\infty x^{2m-1} e^{-x^2} dx$.

b. Use the formula in (a) to show that for 0 < m < 1,

$$\Gamma(m)\Gamma(1-m) = 2\int_0^{\frac{\pi}{2}} \tan^{1-2m}\theta \ d\theta.$$

(Hint: Express the product as the limit of a double integral over a quarter circle in the first quadrant.)

c. By putting $x = \tan^2 \theta$ and p = 1 - m, deduce that

$$\Gamma(m)\Gamma(1-m) = \frac{\pi}{\sin(m\pi)}.$$

13 You may assume that $2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2})=\sqrt{\pi}\Gamma(2z)$ (this is the Legendre duplication formula).

a. Put $z = \frac{1-s}{2}$ to obtain

$$\Gamma(1-s)\sin\frac{\pi s}{2} = \frac{2^{-s}\pi^{\frac{1}{2}}\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}.$$

b. Use the Functional Equation for $\zeta(s)$ to show that

$$\pi^{\frac{-s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-\frac{(1-s)}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

c. Now let $\Phi(s)$ denote the left hand side of the formula in (b) above.

Show that $\Phi(s) = \Phi(1-s)$ and that Φ has simple poles at s=0 and s=1.

d. Define $\xi(s) = \frac{1}{2}s(s-1)\Phi(s)$. Explain why $\xi(s)$ is an entire function, with functional equation $\xi(s) = \xi(1-s)$.

*14 Let ξ be the function defined in the previous question.

a. Explain why $\xi(s)$ satisfies the equation $\overline{\xi(s)} = \xi(\overline{s})$.

b. Prove that $\xi(s)$ is real on the lines t=0 and $\sigma=\frac{1}{2}$ and that $\xi(0)=\xi(1)=\frac{1}{2}$.

c. Prove that the zeros of $\xi(s)$ (if any exist) are all situated in the strip $0 < \sigma < 1$ and lie symmetrically about the lines t = 0 and $\sigma = \frac{1}{2}$.

15 Let $f(s) = \frac{1}{\zeta(s)}$, for $s \neq 1$ and define f(1) = 0.

a. Explain why f is holomorphic and show that the power series for f(s) about s=1 is

$$f(s) = (s-1) - \gamma(s-1)^2 + \dots$$

where γ is Euler's constant.

b. Write down the values of f'(1) and f''(1).

*16 Let
$$M(x) = \sum_{n \le x} \mu(n)$$
.

a. Use the result $\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$ for $\sigma > 1$, to deduce that

$$\frac{1}{\zeta(s)} = s \int_1^\infty M(x) x^{-s-1} \, dx.$$

- **b.** Assume that $M(x) = O(x^{\frac{1}{2} + \epsilon})$, for any $\epsilon > 0$ is true and deduce that the integral on the left converges for $\sigma > \frac{1}{2} + \epsilon$.
- **c.** Conclude that $M(x) = O(x^{\frac{1}{2} + \epsilon})$, for any $\epsilon > 0$ implies the Riemann Hypothesis. (Note that the converse is also true.)
- 17 Show the function $f(t) = \frac{t}{e^t 1} + \frac{t}{2}$ is even, thereby confirming that $B_{2n+1} = 0$. Use the formula relating Bernoulli numbers and the zeta function to show that the non-zero Bernoulli numbers alternate in sign.
- 18 a. Starting from the functional equation for $\zeta(s)$, show that

$$\zeta(s) = \frac{(2\pi)^s}{2} \frac{\zeta(1-s)}{2\Gamma(s)\cos(\pi s/2)}.$$

b. Deduce that for $n \geq 1$,

$$\zeta(1-2n) = -\frac{B_{2n}}{2n}.$$

- **c.** Find the value of $\zeta(-3), \zeta(-5), \zeta(-7)$.
- 19 Use the Bernoulli numbers to find a formula for $\sum_{x=1}^{k-1} x^4$ and $\sum_{x=1}^{k-1} x^5$.
- **20** Prove that $\sum_{\substack{m=1 \ (m,n)=1}}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^2 n^2} = \frac{\zeta^2(2)}{\zeta(4)} = \frac{5}{2}$.