

Pós-Graduação em Engenharia de Software

Marta Fuzioka

Gerente de TI e Projetos
PMP, ITIL, CSTE
FATEC, FAAP, IBTA, FMU

Stefanini, IBM, ATOS, TAM e ABRIL

Expectativas

Entender o que é a Engenharia de Software e como Aplicá-la no Desenvolvimento de Software

Objetivo da Disciplina: Processo de Software

Conhecer os Modelos de Software e onde aplicá-los no Desenvolvimento de Software

Disciplina Processo de Software 24h 04.11 a 09.12

Segundas-feiras

Conteúdo da Disciplina

- ✓ História
- ✓ Conceitos da Engenharia de Software
- ✓ Processo de Software
- ✓ Modelos de Processo
- ✓ Introdução Métodos Ageis
- ✓ Introdução Scrum
- ✓ Introdução UP
- ✓ Introdução RUP

Bibliografia

Software Engineering (9° Ed.) - Ian Sommerville

Software Engineering: A Practitioner's Approach (7° Ed.) –

Roger Pressman

Engenharia de Software na Prática - Hélio Engholm Jr.

MCCONNELL, S. Rapid Development, Microsoft Press, 1996.

HUMPHREY, WATTS. S. Introduction to the Team Software **Process**, Addison Wesley, 2000.

FERNANDES, A; ABREU, V. **Implantando a Governança de TI**, 2ª edição, Brasport, 2008.

PHILIPPE KRUCHTEN. *The Rational Unified Process: An Introduction*, 3^a edição. Addison-Wesley, 2004

Bibliografia

Referências Web

Site do SEI - Software Engineering Institute em:

http://www.sei.cmu.edu/cmmi

Site da IBM University - http://www.ibm.com/br/university

BARCLAY BROWN. Top five RUP implementation process

killers. IBM Rational Edge. Acesso em Maio/2008.

(http://www.ibm.com/developerworks/rational/library/1797.html

REMI-ARMAND COLLARIS, EEF DEKKER, JOS WARMER.

Tailoring RUP made easy: Introducing the Responsibility Matrix and the Artifact Flow. IBM Rational Edge. Acesso em Maio/2008.

(http://www.ibm.com/developerworks/rational/library/sep06/collaris_dekker_warmer/)

http://www.vqv.com.br/es/ES_JE01d_Pressman.pdf

Avaliação

Participação: 2 pts

Prova 1: 4 pts

Prova 2: 4 pts

Questions

Agenda Aula-1

Processo de Software

- > História
- Conceitos da Engenharia de Software
- ✓ Processo de Software
- ✓ Modelos de Processo
- ✓ Introdução Métodos Ageis
- ✓ Introdução Scrum
- ✓ Introdução UP
- ✓ Introdução RUP

História Quando tudo começou?

História

Década de 60: Crise do Software

A "crise do software" foi um termo usado para descrever as dificuldades enfrentadas no desenvolvimento de software no fim da década de 60. A complexidade dos problemas, a ausência de técnicas bem estabelecidas e a crescente demanda por novas aplicações começavam a se tornar um problema sério. Em 1968, ocorreu a Conferência da OTAN sobre Engenharia de Software (NATO Software Engineering Conference) em Garmisch, Alemanha. O principal objetivo dessa reunião era estabelecer práticas mais maduras para o processo de desenvolvimento, por essa razão o encontro considerado hoje como o nascimento da disciplina de Engenharia de Software.

- ✓ Projetos estourando o orçamento;
- ✓ Projetos estourando o prazo;
- ✓ Software de baixa qualidade;
- ✓ Software muitas vezes não atingiam os requisitos;
- ✓ Projetos ingerenciáveis;
- √ Códigos difíceis de manter

- ✓ Programação estruturada;
- ✓ Linguagem como Fortran começam a surgir;
- ✓ Estruturas de controle;
- ✓ Projeto estruturado Em módulos

- ✓ Análise Estruturada;
- ✓ MER e DER;
- ✓ Diagrama de fluxo de dados;
- ✓ Diagrama de contexto;
- ✓ Dicionário de dados

Análise Estruturada

DFD

DFD Exemplo

- ✓ Orientação a Objetos;
- ✓ Análise de projetos OO;
- √ C++ / Java;
- ✓ UML;
- ✓ Processo Unificado

Anos 2000 e dias de hoje

- ✓ Métodos Ágeis;
- ✓ SOA (Service-Oriented Architecture;
- ✓ TDD (Test Driven Development);
- ✓ DMLs (Data Manipulation Language;
- ✓ Cloud Computing

Anos 2000

Qual o Problema?

A Crise do Software ainda não acabou!

- ✓ Projetos estourando o orçamento;
- ✓ Projetos estourando o prazo;
- ✓ Software de baixa qualidade;
- ✓ Software muitas vezes não atingiam os requisitos;
- ✓ Projetos ingerenciáveis;
- √ Códigos difíceis de manter

Ainda Hoje

Como o cliente explicou

Como o lider de projeto entendeu

Como o analista planejou

Como o programador codificou

O que os beta testers receberam

Como o consultor de negocios descreveu

Valor que o cliente pagou

Como o projeto foi documentado

O que a assistencia tecnica instalou

Como foi suportado

Quando foi entregue

O que o cliente realmente necessitava

Discussão

Profissionais de TI
Infraestrutura / Tecnologia
Clientes e Usuários
Conhecimento
Processos
Produto

Profissionais de TI

- ✓ Baixa Qualificação
- ✓ Pouca Experiência
- ✓ Dificuldade de Entender Problemas
- ✓ Dificuldade de Gerar Soluções

Infraestrutura / Tecnologia

- √ Falta de Computadores
- √ Falta de Softwares
- √ Falta de Infraestrutura
- ✓ Tecnologia Obsoleta

Clientes e Usuários

- ✓ Não sabem o que querem
- ✓ Não sabem o que precisam
- ✓ Não sabem pedir
- ✓ Mudam sempre de idéia

Conhecimento

- ✓ Não entendimento do Negócio
- ✓ Não entendimento de Práticas de mercado

Processos

- ✓ Muito rígidos
- ✓ Muito complicados
- ✓ Muito demorados
- ✓ Muito trabalhosos
- ✓ Muito custosos

Produto

- ✓ Tem muitos defeitos;
- ✓ Não fazem o que foi pedido;
- √ São inadequados, são limitados;
- ✓ Não são documentados;
- ✓ São dificeis de usar;
- ✓ Não são confiáveis ou seguros;
- ✓ São complexos.

Resumindo

- √ Carência de profissionais especializados;
- ✓ Alto índice de não-atendimento aos requisitos;
- ✓ Aumento da Complexidade das Tecnologias;
- ✓ Baixa produtividade das equipes retrabalho;
- ✓ Carência de ambientes estruturados para desenvolvimento e execução dos testes;
- ✓ Cobertura de testes insuficientes em relação a funcionalidade e adequação aos requisitos;
- ✓ Instabilidade no ambiente de produção, gerada pela implementação de novos sistemas ou versões;
- ✓ Exigências do mercado por novas soluções e funcionalidades;

Os desafios da Engenharia de Software

- √ "Legado" manutenção e atualização dos softwares
- ✓ "Heterogeneidade" desenvolver técnicas para construir softwares confiáveis / flexíveis - diferentes tipos de equipamentos e sistemas;
- ✓ "Delivery" redução do tempo no desenvolvimento e implantação do software - qualidade.

Qualidade Riscos Custo Produtividade de Software

Qualidade

ISO9001-00

 O grau no qual um sistema, componente ou processo atende aos requisitos especificados e as necessidades do cliente.

Fonte: Costa Neto e Raspi (2007)

Riscos

É um evento ou uma condição incerta que, se ocorrer, tem um efeito em pelo menos um objetivo do projeto.

PMBOK, PMI.org

Custo

Custos são medidas monetárias dos sacrifícios financeiros com os quais uma organização, uma pessoa ou um governo, têm de arcar a fim de atingir seus objetivos.

Produtividade de Software

Produzir mais e melhor com menos recursos, menos tempo e menos dinheiro

Questions

http://www.cs.tau.ac.il/~nachumd/horror.html

SOFTWARE HORROR STORIES

My Home Page Comp. Risks Verification Course Submit a Story!

O que é Engenharia de Software?

Engenharia de Software

Tem a ver com produzir software com a Qualidade desejada (Requisitos), com redução de Riscos (Testes), com emprego de alta produtividade (Processos) com os menores custos possiveis (Melhores práticas de Desenvolvimento).

Engenharia de Software

É o mesmo que

Engenharia de Sistemas

Segundo Dicionário Aurélio, define-se algumas diferenças:

Informática	Ciência que visa ao tratamento da informação através do uso de equipamentos e procedimentos da área de processamento de dados.
Ciência	Conjunto organizado de conhecimentos relativos a um determinado objeto, especialmente os obtidos mediante a observação, a experiência dos fatos e um método próprio.
Processamento de dados	Tratamento dos dados por meio de máquinas, com o fim de obter resultados da informação representada pelos dados.
Engenharia	Arte de aplicar conhecimentos científicos e empíricos e certas habilitações específicas à criação de estruturas, dispositivos e processos que se utilizam para converter recursos naturais em formas adequadas ao atendimento das necessidades humanas.

Definição de **Engenharia**, segundo Dicionário Aurélio:

Ciência, técnica e arte da construção de obras de grande porte, mediante a aplicação de princípios matemáticos e das ciências físicas

O que é Software?

Sem Software

Com Software

Software, segundo Roger S Pressman:

Software é o produto que os engenheiros de software projetam e constroem. Abrangem programas que executam em computadores de qualquer tamanho e arquitetura, documentos que incluem formas impressas e virtuais e dados que combinam números e textos, mas também incluem representações de informação em figuras, em vídeo e em aúdio.

Portanto Engenharia de Software é a Ciência, técnica e arte da construção de um Produto de Software

É a disciplina que integra processos, métodos e ferramentas para o desenvolvimento de software.

Produto de Software

Na Visão do Engenheiro de Software: É um conjunto de Programas, documentos e dados que compoem um software de computador

Na Visão do Usuário: é a informação resultante, que de algum modo torna melhor o mundo do usuários.

Tipos de Software

- ✓ Software de Sistemas
- ✓ Software Comercial
- ✓ Software Cientifico e de Engenharia
- ✓ Software Embarcado
- ✓ Software para Computadores Pessoais
- ✓ Software para Tablets e SmartPhones
- ✓ Software para WEB
- ✓ Software para Inteligência Artificial

Tipos de Software

Software de Sistemas:

- √ compiladores,
- ✓ editores,
- ✓ utilitários para gestão e controle de arquivos,
- √ sistemas operacionais;

Tipos de Software

Software Comercial:

✓ Contas a Pagar, Folha de Pagamento, Contabilidade, ERPs

Tipos de Software

Software Científico e de Engenharia (focado no processo de números):

✓ Pesquisas Cientificas: Astronomia, Biologia, Petroleo

Mecatrônica

Tipos de Software

Software Embarcado

- ✓ São usados para controlar sistemas de diferentes tipos: máquinas domésticas, fábricas, carros, jogos etc.
- ✓ O software é embutido no hardware do sistema interagindo com ele.
- ✓ O software que executa em um computador e controla outras máquinas é um sistema embarcado de tempo real.

Tipos de Software

Software para Computadores Pessoais

✓ Planilhas, Processadores de texto

Tipos de Software

Software para Tablets e SmartPhones

Tipos de Software

Software para WEB

✓ HTML, Java, .NET etc

Tipos de Software

Software para Inteligência Artificial Focado no reconhecimento de padrões (imagens e voz)

✓ Jogos

Engenharia de Software: camadas

Com foco na Qualidade, aplicam-se Processos, usando Métodos diversos, sendo suportados por Ferramentas

Questions

Pós-Graduação Engenharia de Software

Obrigada

Marta Fuzioka

mrtfuzioka@uol.com.br