Regression

Motivation

 \mathcal{H}^L is one of the most useful families of hypothesis classes.

Many models that are used in practice rely on linear predictors.

There exist many types of linear models, including:

- Perceptron(classification).
- Linear regression. $y \in \mathbb{R}$
- Logistic regression. output $probability p \in (0, 1)$ and $input y \in \{-1, +1\}$

Motivation

Let's define the class of affine functions $L=L_d$: input = x

$$H^{L_d} = \{h_{w,b} : \mathbf{w} \in \mathbb{R}^d \text{ and } \mathbf{b} \in \mathbb{R}\} \mid H^{L_d} \mid = \infty$$

Where:

$$h_{w,b}(x_i) = \langle w, x_i \rangle + b = \sum_{j=1}^d w_j x_i^j + b = y_i$$

To simplify the notation, we will integrate the bias as an extra coordinate into w:

$$x_i = \left(x_i^1, \dots, x_i^d\right) \in \mathbb{R}^d \longleftarrow x = (1, x_i) \in \mathbb{R}^{d+1}, w \longleftarrow (b, w) \in \mathbb{R}^{d+1}$$

$$h_w(x_i) = \sum_{j=0}^d w_j x_i^j \ avec \ x_i^0 = 1 \ and \ w_0 = b$$

Hence, the class of affine functions is called « homogenous affine functions »

$$H^{L_d} = L_d = \{h_w : w \in \mathbb{R}^{d+1}\} \rightarrow |L_d| = \infty$$

h(x)=y

Motivation

Therefore, we can generate different hypothesis classes H^L , defining different models, by using the composition of φ over L_d such that: $(\mathbf{h}_w \in L_d)$

$$\varphi: \mathbb{R} \to Y$$

Perceptron(classification):

$$\varphi_p(x) = sign(x) \text{ and } Y = \{-1, +1\}$$

$$H_p = sing(\varphi_p \circ L_d = \{\varphi_p \circ \mathbf{h}_{\mathbf{w}}(\mathbf{x}) : \mathbf{h}_{\mathbf{w}} \in L_d\})$$

Linear regression:

$$\varphi_{reg}(x) = Id(x) = x \text{ and } Y = \mathbb{R}$$

$$H_{reg} = \varphi_{reg} \circ L_d = \{ \varphi_p \circ \mathbf{h}_{\mathbf{w}}(\mathbf{x}) : \mathbf{h}_{\mathbf{w}} \in L_d \} = \{ \mathbf{h}_{\mathbf{w}}(\mathbf{x}) : \mathbf{h}_{\mathbf{w}} \in L_d \}$$

Logistic regression:

$$\varphi_{sig}(x) = \frac{1}{1 + e^{-x}} \text{ and } Y = \{-1, +1\}, \varphi_{sig}(h_w(x_j^i) = \sum_{i=0}^d w_i x_j^i) = \frac{1}{1 + e^{-\sum_{i=0}^d w_i x_i}}$$

$$H_{sig} = \varphi_{sig} \circ L_d(x) = \frac{1}{1 + e^{-\sum_{i=0}^d w_i x_i}}$$

Definition:

Linear regression is a type of model used for regression tasks by studying the relationship between some explanatory variables and some real valued outcome.

Here we have: $x = (1, x) \in X$

$$X \subset \mathbb{R}^{d+1}$$
 for some d

And

$$Y = \mathbb{R}$$

Objective:

Learn a linear predictor $h_w \in L_d$ that best approximate the relationship between our variables:

$$h_w: \mathbb{R}^{d+1} \longrightarrow \mathbb{R}$$

$$x \longrightarrow h_w(x) = w^t x = y$$

Example:

Predicting the weight of a baby as a function of his age and weight at birth.

Here, d = 1.

The hypothesis class for linear regression model:

In linear regression model, we have:

$$\varphi_{regL}(x) = Id(x) = x \Longrightarrow \varphi_{regL} \circ h_w(x) = Id(h_w(x)) = h_w(x)$$

The hypothesis class of linear regression predictors is simply the set of linear functions:

$$H_{regL} = \varphi \circ L_d = L_d = \{ \varphi_{regL} \circ \mathbf{h}_{\mathbf{w}} : \mathbf{h}_{\mathbf{w}} \in L_d \}$$

$$H_{reg} = \{h_w: x \mapsto \langle w, x \rangle : w \in \mathbb{R}^{d+1}\} \rightarrow |H_{reg}| \approx \infty$$

• $\varepsilon = 0.02$

• $Min f(x) = |x| \rightarrow |x| = \varepsilon = 0.02$

• $Min\ g(x) = x^2 \to x^2 = \varepsilon \to x = \sqrt{0.02} = 0.14$

The loss function for linear regression model:

It measures how much the model should be penalized for the discrepancy between $h_w(x)$ and y. One common way is to use the squared-loss function:

$$0 \approx d(h_w(x), y) = l(h_w, (x, y)) = (h_w(x) - y)^2$$

For this loss function, the empirical risk is called the Mean Squared Error:

$$L_S(h_w) = E_{empi} \left(l(h_w, (x, y)) \right) = \frac{1}{m} \sum_{i=1}^m (h_w(x_i) - y_i)^2$$

Notice:

There are a variety of other loss functions that one can use, for example, the absolute value loss function:

$$l(h_w, (x, y)) = |h_w(x) - y| \Longrightarrow \partial l(h_w, (x, y))$$
 is a set if $h_w(x) = y$

The learning algorithm for linear regression model:

The learning algorithm follows ERM_H learning rule.

Least squares:

Least squares is the algorithm that solves the ERM_H problem for the hypothesis class of linear regression predictors with respect to squared loss.

$$\underset{w}{\operatorname{argmin}} L_{S}(h_{w}) = \underset{w}{\operatorname{argmin}} \left(\frac{1}{m} \sum_{i=1}^{m} (\langle w, x_{i} \rangle - y_{i})^{2} \right)$$

To solve this problem, we calculate the gradient of the objective function and compare it to zero. That is, we need to solve:

$$\nabla L_S(h_w) = \frac{2}{m} \sum_{i=1}^m (\langle w, x_i \rangle - y_i) x_i = 0 \longrightarrow \nabla^2 L_S(h_w) = cte$$

We can rewrite the problem as the problem:

$$\nabla L_S(h_w) = \frac{2}{m} \sum_{i=1}^m (\langle w, x_i \rangle - y_i) x_i = 0 \Rightarrow \sum_{i=1}^m (\langle w, x_i \rangle x_i) - \sum_{i=1}^m y_i x_i = 0$$

$$\Leftrightarrow Aw = b \Longrightarrow \nabla^2 L_S(h_w) = A$$

Where:

$$A = \left(\sum_{i=1}^{m} x_i \cdot x_i^T\right)$$

And

$$b = \sum_{i=1}^{m} y_i x_i$$

Or in matrix form:

$$A^{T} = A = \begin{pmatrix} \vdots & & \vdots \\ x_{1} & \dots & x_{m} \\ \vdots & & \vdots \end{pmatrix} \begin{pmatrix} \vdots & & \vdots \\ x_{1} & \dots & x_{m} \\ \vdots & & \vdots \end{pmatrix}^{T} = square \ order \ matrix \ d \times d$$

And

$$b = \begin{pmatrix} \vdots & & \vdots \\ x_1 & \dots & x_m \\ \vdots & & \vdots \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

If *A* is invertible, then the solution to the ERM problem is:

$$w = A^{-1}b$$

•
$$x_1^T = (1,0,0), x_2^T = (1,1,0), x_3^T = (0,1,0), if x_3^T = (0,0,1)$$
 A is inver

•
$$A = (\sum_{i=1}^{3} x_i \cdot x_i^T) = x_1 \cdot x_1^T + x_2 \cdot x_2^T + x_3 \cdot x_3^T$$

$$\bullet = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} (1,0,0) + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} (1,1,0) + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} (0,1,0)$$

$$\bullet = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

If *A* is not invertible, we require a few standard tools from linear algebra.

A is not invertible when the training data do not cover the entire space of \mathbb{R}^d . Even if *A* is not invertible, we can always find a solution to the system:

$$Aw = b$$

because *b* is in the range of *A*.

Indeed, since *A* is symmetric, then we can write it using its eigenvalue decomposition as:

$$A = VDV^T$$

Where:

D is a diagonal matrix.

V is an orthonormal matrix (because $V^TV = I$ which is a $d \times d$ matrix).

Let's define D^+ to be the diagonal matrix such that:

$$\begin{cases} D_{i,i}^{+} = 0 & if \quad D_{i,i} = 0 \\ D_{i,i}^{+} = \frac{1}{D_{i,i}} & if \quad D_{i,i} \neq 0 \end{cases} \Rightarrow DD^{+} = I \setminus D_{i,i} = 0?$$

Now, define:

$$A^+ = VD^+V^T$$
 and $\widehat{w} = A^+b$

Let v_i denote the ith column of V. Then we have:

$$A\widehat{w} = AA^{+}b = VDV^{T}VD^{+}V^{T}b = VDD^{+}V^{T}b = VV^{T}b = \sum_{i:D_{i,i}\neq 0} v_{i}v_{i}^{T}b$$

This means that $A\widehat{w}$ is the projection of b on the space of vectors v_i for which $D_{i,i} \neq 0$.

Since the linear space of $(x_1, ..., x_m)$ is the same as the linear space of those v_i .

And, since b is in the linear space of x_i .

We obtain that:

$$A\widehat{w} = b$$

Then, \widehat{w} is a solution of Aw = b.

Linear Regression for polynomial regression tasks $x \in \mathbb{R}$

Some learning tasks call for nonlinear predictors, such as polynomial predictors. Let's consider a one dimensional (one feature) polynomial function of degree n: A_{α} $n=\alpha$

$$P_{w,n}(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n = P_w(Z) = w_0 * 1 + w_1 z_1 + w_2 z_2 + \dots + w_n z_n$$

With $Z = (1, z_1, \dots, z_n)$

Where $(w_0, ..., w_n)$ is a vector of coefficients of size n + 1.

Linear Regression for polynomial regression tasks

We will focus on the class of one dimensional, n-degree, polynomial regression hypotheses. Therefore, the class of polynomial hypotheses is:

$$H^n_{poly} = \left\{ P_{w,n=lpha} : X \longmapsto \mathbb{R} : n \in \mathbb{N}^* \text{ , } w \in \mathbb{R}^{n+1}
ight.
ight\} \Longrightarrow \left| H^n_{poly}
ight| = \infty$$

Where p is a one dimensional polynomial of degree n, parameterized by a vector of coefficients $(w_0, ..., w_n)$.

In that case, we have:

$$X \in \mathbb{R}$$
 and $Y \in \mathbb{R}$

One way to learn the class H_{poly}^n is by reduction to the problem of linear regression.

Linear Regression for polynomial regression tasks

To translate a polynomial regression problem to a linear regression problem, we define the mapping:

$$\psi_n: \mathbb{R} \to \mathbb{R}^{n+1}$$

Such that:

$$\psi_n(x) = (1, x, x^2, ..., x^n)$$

Then, we have that:

$$P_{w,n}(\psi_n(x)) = w_0 + w_1 x + w_2 x^2 + \dots + w_n x^n = \langle w, \psi_n(x) \rangle \Longrightarrow \nabla_w P_{w,n} = \psi_n(x)$$

Finally, we can find the optimal vector of coefficients w by using the Least Squares Algorithm.

Definition:

Logistic regression is a type of model used for classification tasks by studying the relationship between some explanatory variables and some binary outcome.

Here we have:

$$X \subset \mathbb{R}^d$$
 for some d and $Y = \{-1, +1\}$

Objective:

Learn a linear predictor that best approximate the relationship between our variables:

$$h_w: \mathbb{R}^d \longrightarrow [0,1]$$

We can interpret $h_w(x)$ as the probbability that the label of x is 1: $P(y|x) = P(y = 1 \lor y = -1|x) = P(y = 1|x) + P(y = -1|x) = 1$

$$h_w(x) = P(y = 1|x)=1-P(y = -1|x)$$

The hypothesis class for logistic regression model:

In logistic regression model, we have:

$$\varphi_{sig}(x) = \frac{1}{1 + e^{-x}}$$

The hypothesis class of logistic regression predictors is the composition of a sigmoid function over the set of linear functions:

$$H_{sig} = \varphi \circ L_d$$

$$H_{sig} = \{ \varphi_{sig}(\mathbf{h}_{\mathbf{w}}) \colon x \mapsto \varphi_{sig}(\langle w, x \rangle) = \frac{1}{1 + e^{-\langle w, x \rangle}} \colon w \in \mathbb{R}^{d+1} \}$$

$$|H_{sig}| = \infty$$

The name « sigmoid » means «S-shaped », referring to the plot of this function shown in the figure:

Logistic regression Vs Perceptron:

Whenever, $|\langle w, x \rangle|$ is large, the predictions of logistic regression hypothesis and perceptron hypothesis are similar.

However, whenever $|\langle w, x \rangle|$ is close to zero, we have that:

$$\varphi_{sig}(\langle w, x \rangle) \approx \frac{1}{2} \text{ and } \varphi_p(\langle w, x \rangle) = \text{sign}(\langle w, x \rangle)$$

The logistic regression hypothesis is not sure about the value of the label.

The perceptron hypothesis always outputs a deterministic prediction $\{-1, +1\}$, even if $|\langle w, x \rangle|$ is very close to zero.

$$h_{w}(x) = \varphi_{sig}(\langle w, x \rangle)$$

$$\downarrow 1$$

$$\downarrow (w, x)$$

$$\downarrow (w, x)$$

$$\downarrow 23$$

The loss function for logistic regression model:

It measures how bad it is to predict some $h_w(x) \in [0,1]$ given that the true label is $y = \{\pm 1\}$.

Clearly, we want that:

$$P(y|x) = \begin{cases} h_w(x) & \text{if } y = +1 \\ 1 - h_w(x) & \text{if } y = -1 \end{cases} \Rightarrow P(y|x) = P(y = 1|x) + P(y = -1|x) = 1$$

to be large.

We have:

$$P(y = 1|x) = h_w(x) = \frac{1}{1 + e^{-\langle w, x \rangle}}$$
 and $P(y = -1|x) = 1 - h_w(x) = \frac{1}{1 + e^{\langle w, x \rangle}}$

Generally:

$$P(y|x) = \frac{1}{1 + e^{-y\langle w, x \rangle}}$$

It is clear that the loss function will increase monotonically if the probability P(y|x) decreases.

This implies that, it will increse monotonically if $1 + e^{-y\langle w, x \rangle}$ increases.

Therefore, the loss function used in logistic regression penalizes h_w based on the log of $1 + e^{-y\langle w, x \rangle}$, that is:

$$l(h_w,(x,y)) = log(1 + e^{-y\langle w,x\rangle})$$

(recall that the log is a monotonic function).

Therefore, given a training set $S = (x_1, y_1), ..., (x_m, y_m)$, the ERM problem associated with logistic regression is:

$$\underset{w}{\operatorname{argmin}} L_{S}(h_{w}) = \underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \left(\frac{1}{m} \sum_{i=1}^{m} log(1 + e^{-y\langle w, x \rangle}) \right)$$

Notice:

It is clear that the loss function of the logistic regression is a convex function with respect to w.

So, the ERM_H problem for logisitic regression model can be solved using a gradient descent algorithm.