

本课重点内容

- 1. 边界条件简化的进一步探讨
- 2. 梁(实体)理论计算和仿真结果的对比

边界条件的简化结果

误差or错误?

无辜的背锅侠

- 1. 真实和理论之间的差距(无法克服);
- 2. 网格精度不够(可以不断作为理由);
- 3. 软件不行;
- 4. 电脑硬件不行;
- 5. 有限元分析算不准,趋势感觉下就好。

变形量计算以目前的电脑硬件水平,基本都是能够算出接近测试结果的解,多数原因在于工程师在建立数学模型的时候产生了错误,而非误差!

等效的简化方式

实物接触的结果载荷分布在四个角上

Results	Results		
☐ X Axis	-2.3464e-005 N		
☐ Y Axis	1.0593e-005 N		
☐ Z Axis	445.52 N		
☐ Total	445.52 N		

结构理论验证

横梁全长1m,物体长度0.2m,放置在横梁中间,横梁两端全约束,横梁材料和物体材料的弹性模量为2.1E11Pa,横梁材料密度为7800kg/m3,物体材料密度为5100kg/m3(物体自重2N),在不考虑梁自重的情况下,考察横梁中点挠度。

梁截面尺寸 I=b*h^3/12=2.08E-10 EI=43.75

仿真计算结果

实体接触(课后思考题) 0.206mm

> 点载荷简化 0.213mm

模型力学简化

理论计算结果

更形协调方程
$$\theta_A = \theta_{AMA} + \theta_{AMB} + \theta_{AF} + \theta_{AF} = 0$$

$$\frac{M_A L}{3EI} + \frac{M_B L}{6EI} - \frac{F_i \cdot 0.4 \times 0.6 \cdot (1 + 0.6)}{6EI} - \frac{F_2 \times 0.4 \times 0.6 \cdot (1 + 0.4)}{6EI} - \frac{F_2 \times 0.4 \times 0.6 \cdot (1 + 0.4)}{6EI} = 0$$
由对称 $M_A = M_B = F_1 = F_2 = IN$ $L = Im$

$$M_A = M_B = 0.24 N \cdot m$$

序号	梁上荷载及弯矩图	挠曲线方程	转角和挠度
6	M _A	$w = \frac{M_A x}{6ER} (l-x) (2l-x)$	$\theta_A = \frac{M_A l}{3EI}$
	2	6EII(6-X)(26-X)	$\theta_{s} = \frac{-\frac{GEI}{6EI}}{\frac{GEI}{10EI}}$
	M _B	M _R x . 2 . 2	$\theta_A = \frac{M_B l}{6EI}$ $M_B l$
7		$w = \frac{M_B x}{6EII} (l^2 - x^2)$	$\theta_B = \frac{M_B l}{3EI}$ $w_C = \frac{M_B l}{16EI}$

问题与思考

这个模型所衍生出来的大量工程性问题大家可以进一步思考:

- 1. 当前的理论计算结果并没有加载重力边界条件,如果要用实体接触的方式仿真验证理论结果,如何加载才能确保梁忽略重力而物体产生自重?
- 2. 重力什么时候添加,什么时候不用添加?
- 3. 施加重力进行理论推导并和仿真结果做对比;
- 4. 目前我们是通过理论计算和结果进行对比,如果通过实验检测梁的变形情况,并和仿真结果做对比,我们应该使用哪种载荷工况?为什么?
 - a.实体接触加重力 b.实体接触不加重力 c.点载荷加重力 d.点载荷不加重力

