Trabajo práctico N° 0

Cambios de unidades

FECHA DE FINALIZACIÓN: 24 DE MARZO

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: Recordar propiedades matemáticas y cambios de conversión de unidades. Repasar los temas vistos en la clase teórica.

Repaso de la ley de exponentes

Repute de la ley de expenences					
$x^n \cdot x^m = x^{n+m}$	$\frac{x^n}{x^m} = x^{n-m}$	$x^{-n} = \frac{1}{x^n}$			
$x^{0} = 1$	$(x^n)^m = x^{n \cdot m}$	$\sqrt[m]{x^n} = x^{\frac{n}{m}}$			

1)Resuelva los siguientes ejercicios con las Propiedades de potenciación.

$3^3 \cdot 3^4 \cdot 3$	$5^7:5^3$	$(5^3)^4$	$(5\cdot 2\cdot 3)^4$	$(3^4)^4$
$[(5^3)^4]^2$	$(8^2)^3$	$(9^3)^2$	$2^5 \cdot 2^4 \cdot 2$	$2^7:2^6$
$(2^2)^4$	$(4\cdot 2\cdot 3)^4$	$(2^5)^4$	$\left[\left(2^3\right)^4\right]^0$	$(27^2)^5$

2)Resuelva los siguientes ejercicios combinados.

$\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^3$	$\left(\frac{2}{3}\right)^{-2} \cdot \left(\frac{2}{3}\right)^3$	$\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^{-3}$	$\left(\frac{2}{3}\right)^{-2} \cdot \left(\frac{2}{3}\right)^{-3}$
$\left(\frac{2}{3}\right)^{-2} \cdot \left(\frac{3}{2}\right)^{-3}$	$\left(\frac{2}{3}\right)^2: \left(\frac{2}{3}\right)^3$	$\left(\frac{2}{3}\right)^{-2}:\left(\frac{2}{3}\right)^{3}$	$\left(\frac{2}{3}\right)^2: \left(\frac{2}{3}\right)^{-3}$
$\left(\frac{2}{3}\right)^{-2}: \left(\frac{2}{3}\right)^{-3}$	$\left(\frac{3}{2}\right)^{-2}: \left(\frac{2}{3}\right)^{-3}$	$\left[\left(\frac{2}{3} \right)^2 \right]^3$	$\left\{ \left[\left(\frac{2}{3} \right)^2 \right]^3 \right\}^{-4}$

3)Utilice la Tabla 1 con prefijos del Sistema Internacional (SI) para expresar la distancia de 300 Megámetros (Mm) en:

- Metros (m)
- Kilómetros(km)
- Milímetros (mm)
- Micrómetros (μm)
- Nanómetros (nm)

Tabla 1: Prefijos del Sistema Internacional

Prefijo	Símbolo	Equivalencia a la unidad
T	tera	$10^{12} = 1000^4$
G	giga	$10^9 = 1000^3$
M	mega	$10^6 = 1000^2$
K	kilo	$10^3 = 1000^1$
sin prefijo		$10^0 = 1000^0 = 1$
m	mili	$10^{-3} = 1000^{-1}$
μ	micro	$10^{-6} = 1000^{-2}$
n	nano	$10^{-9} = 1000^{-3}$

- 4) En elefante africano de sabana adulto pesa aproximadamente 12 274kg. Utilice la Tabla 1 con prefijos del Sistema Internacional (SI) para expresar su peso en:
- Megagramos (Mg)
- Gramos (g)
- Miligramos (mg)
- 5) Exprese el tiempo de un año (considerando que un año tiene 365 días) en:
- Horas
- Minutos
- Nanosegundos
- 6) Escriba un breve texto donde se describan las ventajas de los transistores por sobre los tubos de vacío.