Introduction to Machine Learning feat. TensorFlow

Peter Goldsborough

July 11, 2016

Table of Catents

Table of Catents

Theory

Table of Catents

Theory

Practice

CS Student @ TUM

- CS Student @ TUM
- ► Google & Bloomberg Intern

- CS Student @ TUM
- ► Google & Bloomberg Intern
- ► I like cats

- CS Student @ TUM
- ► Google & Bloomberg Intern
- I like cats

Seminar Topic: Deep Learning With TensorFlow github.com/peter-can-write/tensorflow-paper

github.com/peter-can-talk/python-meetup-munich-2016

$\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

Computational Graphs

1. Operations

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors

 $\hat{y} = \tanh(\mathbf{x}^{\top}\mathbf{w} + b)$

- 1. Operations
- 2. Tensors
- 3. Variables

 $\hat{y} = session.run(tanh(\mathbf{x}^{\top}\mathbf{w} + b))$

- 1. Operations
- 2. Tensors
- 3. Variables
- 4. Sessions

Actors

client

Actors

1. Client

Actors

1. Client 2. Master

1. Client

- 2. Master 3. Workers

1. Client

- 2. Master 3. Workers 4. Devices

- 1. Client
- 2. Master
- 3. Workers 4. Devices

- 1. Client
- 2. Master
- 3. Workers 4. Devices

Symbol to Number Differentiation

Symbol to Number Differentiation

Symbol to Number Differentiation

Symbol to Symbol Differentiation

Visualization Tools

Visualization Tools

▶ Deep Neural Networks have the tendency of being . . . deep

Visualization Tools

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture

Visualization Tools

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

Visualization Tools

- Deep Neural Networks have the tendency of being . . . deep
- Easy to drown in the complexity of an architecture
- > 36,000 nodes for Google's *Inception* model

 $Source: \ http://googleresearch.blogspot.de/2016/03/train-your-own-image-classifier-with.html \\$

 $Source: \ http://googleresearch.blogspot.de/2016/03/train-your-own-image-classifier-with.html \\$

TensorBoard to the Rescue

► Smart email replies in Google *Inbox*

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html$

- ► Smart email replies in Google *Inbox*
- Emails mapped to "thought vectors"

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html (computer-respond-to-this-email) (computer$

- ► Smart email replies in Google *Inbox*
- Emails mapped to "thought vectors"
- LSTMs synthesize valid replies

 $Source: \ http://googleresearch.blogspot.de/2015/11/computer-respond-to-this-email.html (computer-respond-to-this-email) (computer$

► Google DeepMind now using TensorFlow

- Google DeepMind now using TensorFlow
- Already for AlphaGo

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,
 - Integration with Google Cloud Platform,

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,
 - ▶ Integration with Google Cloud Platform,
 - Support for TPUs,

- Google DeepMind now using TensorFlow
- Already for AlphaGo
- According to a DeepMind SWE reasons are:
 - Python,
 - Integration with Google Cloud Platform,
 - Support for TPUs,
 - Ability to run on many GPUs.

Walkthrough

References

Andrej Karpathy, *The unreasonable effectiveness of recurrent neural networks*, May 21 2015 (accessed Jul 10, 2016), http://karpathy.github.io/2015/05/21/rnn-effectiveness/.