UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA/INFORMÁTICA CURSO SUPERIOR DE ENGENHARIA DE COMPUTAÇÃO

GEORGEA DANIELEWICZ GEOVANE VINÍCIUS FERREIRA

SISTEMA PARA RECONHECIMENTO DE PADRÕES EM SINAIS BIOMÉDICOS DE ELETROENCEFALOGRAFIA

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

2013

GEORGEA DANIELEWICZ GEOVANE VINÍCIUS FERREIRA

SISTEMA PARA RECONHECIMENTO DE PADRÕES EM SINAIS BIOMÉDICOS DE ELETROENCEFALOGRAFIA

Trabalho de Conclusão de Curso apresentado ao Departamento Acadêmico de Eletrônica/Informática como requisito parcial para obtenção do grau de Engenheiro no Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Miguel Antônio Sovier-

zoski

CURITIBA

AGRADECIMENTOS

Texto dos agradecimentos.

RESUMO

DANIELEWICZ, Georgea

e FERREIRA, Geovane Vinícius. Sistema para Reconhecimento de Padrões em Sinais Biomédicos de Eletroencefalografia. 19 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Segundo (PILLAI; SPERLING, 2006), a duração do exame de eletroencefalografia (EEG) realizado em ambulatórios ou clínicas varia entre 20 e 40 minutos e no caso de exames de monitoração este período pode estender-se de horas a dias. Além disso, de acordo com Sovierzoski (2009, p. 2) os exames de EEG são realizados em equipamentos eletrônicos sendo armazenados em formato digital e visualizados com o auxílio de um computador em telas com 10 segundos de sinal. Consequentemente, a rotina dos profissionais que analisam este tipo de exame é bastante desgastante. Em virtude disto, há necessidade de projetos que otimizem esta leitura e busca por padrões nos exames de sinais de EEG. O objetivo deste projeto é desenvolver um sistema para reconhecimento de padrões em sinais de EEG. A metodologia adotada é composta pelas etapas de projeto, desenvolvimento e testes. As etapas de desenvolvimento e testes deverão utilizar uma base de dados de exames de EEG, que será disponibilizada pelo Hospital, após autorização do Comitê de Ética da Instituição. A etapa de testes será realizada por um médico neurologista, que deverá avaliar os resultados obtidos pelo sistema e classificá-los como verdadeiro positivo, verdadeiro negativo, falso positivo ou falso negativo. Com base na avaliação do médico, serão calculadas as análises de sensibilidade e especificidade, permitindo a impressão de uma Curva ROC. O sistema desenvolvido será composto por dois módulos: o módulo de interface com o usuário e o módulo para reconhecimento de padrões. O primeiro é responsável pela visualização do sinal de EEG com 18 canais e opções de seleção de padrão para o reconhecimento, que podem ser espícula ou piscada palpebral. O módulo de reconhecimento de padrões aplica a operação de correlação matemática entre o padrão escolhido e o sinal de EEG, detectando eventos no sinal e exibindo graficamente na tela. Os resultados do projeto consistem, portanto, no próprio sistema e sua aplicação prática, que como resultado social facilitará a rotina dos médicos.

Palavras-chave: Palavra-chave 1, Palavra-chave 2, ...

ABSTRACT

DANIELEWICZ, Georgea

e FERREIRA, Geovane Vinícius. Title in English. 19 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Abstract text (maximum of 500 words).

Keywords: Keyword 1, Keyword 2, ...

LISTA DE FIGURAS

FIGURA 1 – EXEMPLO DE UMA FIGURA		13
----------------------------------	--	----

LISTA DE TABELAS

TABELA 1	_	EXEMPLO DE UMA TABELA	 14

LISTA DE SIGLAS

CPGEI Programa de Pós-graduação em Engenharia Elétrica e Informática Industrial

DAELN Departamento Acadêmico de Eletrônica

UTFPR Universidade Tecnológica Federal do Paraná

LISTA DE SÍMBOLOS

- λ comprimento de onda
- v velocidade
- f frequência

SUMÁRIO

1 INTRODUÇÃO	11
1.1 MOTIVAÇÃO E JUSTIFICATIVA	11
1.2 OBJETIVOS	
1.3 ESTRUTURA DO TRABALHO	12
2 FUNDAMENTAÇÃO TEÓRICA	
2.1 SINAL ELETROENCEFALOGRÁFICO	13
2.2 GERAÇÃO DO SINAL DE ELETROENCEFALOGRAFIA	13
2.3 EQUIPAMENTO DE ELETROENCEFALOGRAFIA	
2.4 RITMOS E PADRÕES DE SINAIS DE ELETROENCEFALOGRAFIA	14
2.5 ANÁLISE DE SINAIS DE ELETROENCEFALOGRAFIA	15
2.6 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES	15
2.6.1 Sensibilidade	
2.6.2 Especifidade	15
2.6.3 Curva ROC	15
2.7 OPERAÇÃO DE CORRELAÇÃO	15
2.8 CONSIDERAÇÕES DA FUNDAMENTAÇÃO TEÓRICA	15
3 DESENVOLVIMENTO	
3.1 DESENVOLVIMENTO DO SOFTWARE	16
3.1.1 Linguagens de Programação	
3.1.2 IDE Utilizada	
3.1.3 Bibliotecas	16
3.2 FORMATO EDF	16
3.3 CORRELAÇÃO	16
3.4 EXTRAÇÃO DE CARACTERÍSTICAS	
3.5 CONSIDERAÇÕES DO DESENVOLVIMENTO	16
4 RESULTADOS OBTIDOS	
4.1 METODOLOGIA DE TESTES	17
4.2 TESTES	17
4.3 CONSIDERAÇÕES DOS RESULTADOS OBTIDOS	17
5 CONSIDERAÇÕES FINAIS	18
REFERÊNCIAS	

1 INTRODUÇÃO

O presente documento é um exemplo de uso do estilo de formatação LATEX elaborado para atender às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR. O estilo de formatação abnt-UTFPR.cls tem por base o pacote abnTEX – cuja leitura da documentação (ABNTEX, 2009) é fortemente sugerida – e o estilo de formatação LATEX da UFPR.

Para melhor entendimento do uso do estilo de formatação abnt-UTFPR.cls, aconselhase que o potencial usuário analise os comandos existentes no arquivo TEX (modelo_*.tex) e os resultados obtidos no arquivo PDF (modelo_*.pdf) depois do processamento pelo software LATEX + BibTEX (LATEX, 2009; BIBTEX, 2009). Recomenda-se a consulta ao material de referência do software para a sua correta utilização (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

1.1 MOTIVAÇÃO E JUSTIFICATIVA

Uma das principais vantagens do uso do estilo de formatação abnt-UTFPR.cls para LATEX é a formatação *automática* dos elementos que compõem um documento acadêmico, tais como capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo, abstract, listas de figuras, tabelas, siglas e símbolos, sumário, capítulos, referências, etc. Outras grandes vantagens do uso do LATEX para formatação de documentos acadêmicos dizem respeito à facilidade de gerenciamento de referências cruzadas e bibliográficas, além da formatação – inclusive de equações matemáticas – correta e esteticamente perfeita.

1.2 OBJETIVOS

O objetivo geral deste projeto é desenvolver um sistema para visualização e reconhecimento de padrões em sinais biomédicos de eletroencefalografia (EEG). Para melhor definição do escopo, separamos nos seguintes objetivos específicos:

• Obter documentos acadêmicos automaticamente formatados com correção e perfeição

estética.

- Desonerar autores da tediosa tarefa de formatar documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.
- Desonerar orientadores e examinadores da tediosa tarefa de conferir a formatação de documentos acadêmicos, permitindo sua concentração no conteúdo do mesmo.

1.3 ESTRUTURA DO TRABALHO

Este documento é composto pelos seguintes capítulos... (explicar os capítulos)

2 FUNDAMENTAÇÃO TEÓRICA

A seguir ilustra-se a forma de incluir figuras, tabelas, equações, siglas e símbolos no documento, obtendo indexação automática em suas respectivas listas. A numeração sequencial de figuras, tabelas e equações ocorre de modo automático. Referências cruzadas são obtidas através dos comandos \label{} e \ref{}. Por exemplo, não é necessário saber que o número deste capítulo é 2 para colocar o seu número no texto. Isto facilita muito a inserção, remoção ou relocação de elementos numerados no texto (fato corriqueiro na escrita e correção de um documento acadêmico) sem a necessidade de renumerá-los todos.

2.1 SINAL ELETROENCEFALOGRÁFICO

Na figura 1 é apresentado um exemplo de gráfico flutuante. Esta figura aparece automaticamente na lista de figuras. Para uso avançado de gráficos no IATEX, recomenda-se a consulta de literatura especializada (GOOSSENS et al., 2007).

Figura 1: Exemplo de uma figura onde aparece uma imagem sem nenhum significado especial.

Fonte: (ABNTEX, 2009)

2.2 GERAÇÃO DO SINAL DE ELETROENCEFALOGRAFIA

Também é apresentado o exemplo da tabela 1, que aparece automaticamente na lista de tabelas. Informações sobre a construção de tabelas no LATEX podem ser encontradas na literatura

especializada (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

Tabela 1: Exemplo de uma tabela mostrando a correlação entre x e y.

X	у
1	2
3	4
5	6
7	8

Fonte: Autoria própria.

2.3 EQUIPAMENTO DE ELETROENCEFALOGRAFIA

A transformada de Laplace é dada na equação (1), enquanto a equação (2) apresenta a formulação da transformada discreta de Fourier bidimensional¹.

$$X(s) = \int_{t=-\infty}^{\infty} x(t) e^{-st} dt$$
 (1)

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \exp\left[-j2\pi \left(\frac{um}{M} + \frac{vn}{N}\right)\right]$$
 (2)

2.4 RITMOS E PADRÕES DE SINAIS DE ELETROENCEFALOGRAFIA

O pacote $abnT_EX$ permite ainda a definição de siglas e símbolos com indexação automática através dos comandos $sigla{}$ e $simbolo{}$. Por exemplo, o significado das siglas CPGEI, DAELN e UTFPR aparecem automaticamente na lista de siglas, bem como o significado dos símbolos λ , ν e f aparecem automaticamente na lista de símbolos. Mais detalhes sobre o uso destes e outros comandos do $abnT_EX$ são encontrados na sua documentação específica (ABNTEX, 2009).

¹Deve-se reparar na formatação esteticamente perfeita destas equações!

2.5 ANÁLISE DE SINAIS DE ELETROENCEFALOGRAFIA

2.6 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES

- 2.6.1 Sensibilidade
- 2.6.2 Especifidade
- 2.6.3 Curva ROC

Talvez não seja possível traçar a curva ROC. Para isso, sensibilidade e especificidade precisam variar.

2.7 OPERAÇÃO DE CORRELAÇÃO

Explicar sobre esta excelente operação matemática.

2.8 CONSIDERAÇÕES DA FUNDAMENTAÇÃO TEÓRICA

3 DESENVOLVIMENTO

3.1 DESENVOLVIMENTO DO SOFTWARE

3.1.1 Linguagens de Programação

O software foi desenvolvido na linguagem C.

3.1.2 IDE Utilizada

O ambiente de desenvolvimento utilizado foi o Visual Studio versão X.

Para a licença deste produto a equipe participou do DreamSpark.

3.1.3 Bibliotecas

Bibliotecas gráficas, biblioteca para abrir arquivo EDF.

- 3.2 FORMATO EDF
- 3.3 CORRELAÇÃO
- 3.4 EXTRAÇÃO DE CARACTERÍSTICAS
- 3.5 CONSIDERAÇÕES DO DESENVOLVIMENTO

4 RESULTADOS OBTIDOS

- 4.1 METODOLOGIA DE TESTES
- 4.2 TESTES
- 4.3 CONSIDERAÇÕES DOS RESULTADOS OBTIDOS

5 CONSIDERAÇÕES FINAIS

Espera-se que o uso do estilo de formatação LATEX adequado às Normas para Elaboração de Trabalhos Acadêmicos da UTFPR (abnt-UTFPR.cls) facilite a escrita de documentos no âmbito desta instituição e aumente a produtividade de seus autores. Para usuários iniciantes em LATEX, além da bibliografia especializada já citada, existe ainda uma série de recursos (CTAN, 2009) e fontes de informação (TEX-BR, 2009; WIKIBOOKS, 2009) disponíveis na Internet.

Recomenda-se o editor de textos Kile como ferramenta de composição de documentos em LATEX para usuários Linux. Para usuários Windows recomenda-se o editor TEXnicCenter (TEXNICCENTER, 2009). O LATEX normalmente já faz parte da maioria das distribuições Linux, mas no sistema operacional Windows é necessário instalar o software MiKTEX (MIKTEX, 2009).

Além disso, recomenda-se o uso de um gerenciador de referências como o JabRef (JA-BREF, 2009) ou Mendeley (MENDELEY, 2009) para a catalogação bibliográfica em um arquivo BibTeX, de forma a facilitar citações através do comando \cite{} e outros comandos correlatos do pacote abnTeX. A lista de referências deste documento foi gerada automaticamente pelo software LATeX + BibTeX a partir do arquivo reflatex.bib, que por sua vez foi composto com o gerenciador de referências JabRef.

O estilo de formatação LATEX da UTFPR e este exemplo de utilização foram elaborados por Diogo Rosa Kuiaski (diogo.kuiaski@gmail.com) e Hugo Vieira Neto (hvieir@utfpr.edu.br). Sugestões de melhorias são bem-vindas.

REFERÊNCIAS

ABNTEX. **Absurdas normas para T_EX**. 2009. Disponível em: http://sourceforge.net/apps/mediawiki/abntex/index.php. Acesso em: 8 de novembro de 2009.

BIBTEX. **BibT_EX.org**. 2009. Disponível em: http://www.bibtex.org. Acesso em: 8 de novembro de 2009.

BUERGER, D. J. LATEX for scientists and engineers. Singapura: McGraw-Hill, 1989.

CTAN. **The comprehensive T_EX archive network**. 2009. Disponível em: http://www.ctan.org. Acesso em: 8 de novembro de 2009.

GOOSSENS, M. et al. The LATEX graphics companion. 2. ed. Boston: Addison-Wesley, 2007.

JABREF. **JabRef reference manager**. 2009. Disponível em: http://jabref.sourceforge.net. Acesso em: 8 de novembro de 2009.

KOPKA, H.; DALY, P. W. Guide to LATEX. 4. ed. Boston: Addison-Wesley, 2003.

LAMPORT, L. LATEX: a document preparation system. Boston: Addison-Wesley, 1986.

LATEX. **The LATEX project**. 2009. Disponível em: http://www.latex-project.org. Acesso em: 8 de novembro de 2009.

MENDELEY. **Mendeley:** academic software for research papers. 2009. Disponível em: http://www.mendeley.com. Acesso em: 8 de novembro de 2009.

MIKTEX. **The MiKT**EX **project**. 2009. Disponível em: http://www.miktex.org. Acesso em: 8 de novembro de 2009.

MITTELBACH, F. et al. **The LATEX companion**. 2. ed. Boston: Addison-Wesley, 2004.

PILLAI, J.; SPERLING, M. R. Interictal EEG and the diagnosis of epilepsy. **Epilepsia**, 10, doi, v. 47, p. 14–22, 2006.

TEX-BR. **Comunidade T_EX-Br**. 2009. Disponível em: http://www.tex-br.org/index.php. Acesso em: 8 de novembro de 2009.

TEXNICCENTER. **T**EXnicCenter: the center of your LATEX universe. 2009. Disponível em: http://www.texniccenter.org. Acesso em: 8 de novembro de 2009.

WIKIBOOKS. LATEX. 2009. Disponível em: http://en.wikibooks.org/wiki/LaTeX. Acesso em: 8 de novembro de 2009.