CLASS TEST ML ADVANCED DATED- 28/10/2023

1. Which algorithm does Gradient Boosting use as its base learner?

- a) Decision Trees
- b) Support Vector Machines
- c) K-Nearest Neighbors
- 2. CATBoost is known for handling:
 - a) Categorical Features
 - b) Continuous Features
 - c) Both a and b
- 3. Apriori algorithm is used for:
- a) Association Rule Mining
- b) Regression Analysis
- c) Image Recognition
- 4. RFM model is commonly used in:
 - a) Customer Segmentation
 - b) Text Classification
 - c) Time Series Analysis
- 5. In XGBoost, what does the term "boosting" refer to?
 - a) Increasing model bias
 - b) Combining weak learners to create a strong learner
 - c) Reducing model complexity
- 6. ADABoost assigns:
 - a) Equal weights to all data points
 - b) Higher weights to misclassified data points
 - c) Higher weights to correctly classified data points
- 7. What is the key difference between Gradient Boosting and ADABoost?
 - a) The choice of weak learners
 - b) The way weights are assigned to data points
 - c) The number of iterations
- 8. CATBoost is particularly useful when dealing with:
 - a) Numerical features
 - b) Categorical features
 - c) Binary features
- 9. LightGBM is known for its:
 - a) Leaf-wise tree growth
 - b) Level-wise tree growth
 - c) Balanced tree growth
- 10. KNN is a:
 - a) Supervised learning algorithm
 - b) Unsupervised learning algorithm

- c) Reinforcement learning algorithm
- 11. What is the main advantage of using Support Vector Machines (SVM)?
 - a) Effective in high-dimensional spaces
 - b) Handles non-linear relationships well
 - c) Both a and b
- 12. RFM model stands for:
 - a) Recency, Frequency, Monetary
 - b) Regression, Feature selection, Modeling
 - c) Random Forest Metrics
- 13. In XGBoost, what is the purpose of the learning rate parameter?
 - a) Controls the step size in gradient descent
 - b) Determines the number of boosting rounds
 - c) Adjusts the weights of misclassified instances
- 14. CATBoost automatically handles:
 - a) Missing values
 - b) Outliers
 - c) Both a and b
- 15. LightGBM is efficient in terms of:
 - a) Memory usage
 - b) Computation speed
 - c) Both a and b
- 16. Support Vector Machines aim to find the hyperplane that:
 - a) Maximizes the margin between classes
 - b) Minimizes the margin between classes
 - c) Is perpendicular to the feature space
- 17. In SVR, what is the role of the epsilon parameter?
 - a) Controls the width of the margin
 - b) Controls the trade-off between smoothness and accuracy
 - c) Determines the number of support vectors
- 18. ADABoost assigns higher weights to:
 - a) Misclassified data points
 - b) Correctly classified data points
 - c) Outliers
- 19. LightGBM is designed for:
 - a) High-dimensional data
 - b) Low-dimensional data
 - c) One-dimensional data
- 20. KNN is sensitive to:
 - a) Feature scaling
 - b) Outliers
 - c) Missing values

- 21. In SVM, the kernel function is used to:
 - a) Project data into a higher-dimensional space
 - b) Reduce the dimensionality of the data
 - c) Normalize the data
- 22. LightGBM uses a histogram-based learning approach, which is efficient for:
 - a) Small datasets
 - b) Large datasets
 - c) Balanced datasets
- 23. KNN is a non-parametric algorithm, meaning:
 - a) It makes assumptions about the underlying data distribution
 - b) It does not make assumptions about the underlying data distribution
 - c) It relies on a fixed set of parameters
- 24. Apriori algorithm is used to discover:
 - a) Hidden patterns in data
 - b) Optimal hyperparameters
 - c) Feature importance
- 25. In XGBoost, what is the significance of the subsample parameter?
 - a) The fraction of samples used for fitting the individual base learners
 - b) The number of features to consider when making a split
 - c) The minimum loss reduction required to make a further partition on a leaf node