#### Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

KATEDRA AUTOMATYKI I INŻYNIERII BIOMEDYCZNEJ



#### PRACA INŻYNIERSKA

MICHAŁ MĄKA

#### SYSTEM POMIARÓW WARUNKÓW ŚRODOWISKOWYCH I METEOROLOGICZNYCH

PROMOTOR:

dr inż. Marek Stencel

| OŚWIADCZENIE AUTORA PRACY                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH NIŻ WYMIENIONE W PRACY. |
|                                                                                                                                                                                                       |
| PODPIS                                                                                                                                                                                                |

# AGH University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

DEPARTMENT OF AUTOMATICS AND BIOENGINEERING



#### **ENGINEERING THESIS**

MICHAŁ MĄKA

## MEASURMENT SYSTEM OF ENVIRONMENTAL AND WEATHER CONDITIONS

SUPERVISOR:

Marek Stencel Sc.D

#### Spis treści

| W                      | stęp                  |                                       | 6  |  |
|------------------------|-----------------------|---------------------------------------|----|--|
| 1.                     | Mag                   | gistrale szeregowe                    | 7  |  |
|                        | 1.1.                  | Magistrala I <sup>2</sup> C           | 7  |  |
|                        | 1.2.                  | Magistrala One-Wire                   | 7  |  |
| 2.                     | Prog                  | Programowanie mikrokontrolerów ARM    |    |  |
|                        | 2.1.                  | Używanie bibliotek Linux'a            | 8  |  |
|                        | 2.2.                  | Kompilator                            | 8  |  |
| 3.                     | Mik                   | rokomputer BeagleBone Black           | 9  |  |
| 4.                     | Czuj                  | jnik ciśnienia atmosferycznego BMP085 | 10 |  |
| 5.                     | Czuj                  | jnik wilgotności DHT-22               | 11 |  |
| 6.                     | Syste                 | em pomiarów                           | 12 |  |
| 7. Tworzenie aplikacji |                       |                                       |    |  |
| 8.                     | Konfiguracja narzędzi |                                       |    |  |
|                        | 8.1.                  | Serwer HTTP                           | 14 |  |
|                        | 8.2.                  | Baza danych MySQL                     | 14 |  |
| 9.                     | Prez                  | zentacja wyników                      | 15 |  |
|                        | 9.1.                  | Interfejs użytkownika                 | 15 |  |
|                        | 9.2.                  | Dostosowywanie danych                 | 15 |  |
| 10                     | . Pods                | sumowanie                             | 16 |  |
| Bi                     | bliog                 | grafia                                | 17 |  |
| Z                      | ałącz                 | zniki                                 | 18 |  |
| Α.                     | Kod                   | programu                              | 18 |  |

## Wstęp

#### 1. Magistrale szeregowe

#### 1.1. Magistrala I<sup>2</sup>C

Nazwa jest to akronimem od Inter-Intergrated Circuit. Standard został opracowany w latach osiemdziesiątych przez firmę Philips.

Jest ona bardzo często wykorzystywana w układach mikroprocesorowych, w sterownikach wyświetlaczy LCD, można ją stosować do sterowania pamięci RAM, EPROM, układami I/O.

Zaletami magistrali  $I^2C$  są niewątpliwie takie właściwośći jak: odporność na zakłócenia zewnętrzne, dodtakowe układu podłączone do niej mogą być dodawane lub wyłączone bez ingerencji w pozostały układ połączeń wcześniej stworzonych, połączenie na magistrali składają się tylko z dwóch przewodów, przez co ich ogólna liczba jest minimalizowana, wykrywanie błędów jest proste i łatwe do analizy, na magistrali może znajdować się wiele urządzeń typu master, umożliwiając kontrolę gotowych układów przez zewnętrzny komputer.

Magistrala  $I^2C$  posiada dwie dwukierunkowe linie: dane są przesyłane przez Serial Data (SDA), natomiast sygnał zegara na Serial Clock (SCL).

#### 1.2. Magistrala One-Wire

#### 2. Programowanie mikrokontrolerów ARM

- 2.1. Używanie bibliotek Linux'a
- 2.2. Kompilator

#### 3. Mikrokomputer BeagleBone Black

Projekt inżynierski został zrealizowany, w głównej części, na mikrokomputerze BeagleBone Black. Został on stworzony specjalnie z myślą o programistach OpenSource oraz tych, dla których liczy się niskie zużycie energii. Jest to oparta na procesorze AM335x ARM Cortex-A8, taktowany częstotliwością 1 GHz, płytka developerska, która została wyposażona w 512 MB pamięci RAM, 2 GB pamięci FLASH, akcelerator grafiki 3D. Posiada szereg różnych interfejsów, takich jak: HDMI, USB, Ethernet, czytnik kart microSD. BeagleBone można zasilać na dwa sposoby, pierwszy - poprzez kabel USB podłączony do USB (5V) albo przy użyciu zewnętrznego zasilacza, również 5V. Dla użytkownika zostały również wyprowadzone 96 pinów typu wejśćie/wyjście.

Na mikrokomputerze można zainstalować i ze swobodą korzystać z najpopolarniejszych dystrybucji Linuxa, np. Ubuntu, Debian, Fedora, Arch. Istnieje również możliwość uruchomienia na BeagleBone systemu Android.

| 4. | Czujnik | ciśnienia | atmosferycznego | <b>BMP085</b> |
|----|---------|-----------|-----------------|---------------|
|    | J       |           | • •             |               |

## 5. Czujnik wilgotności DHT-22

## 6. System pomiarów

## 7. Tworzenie aplikacji

## 8. Konfiguracja narzędzi

- 8.1. Serwer HTTP
- 8.2. Baza danych MySQL

## 9. Prezentacja wyników

- 9.1. Interfejs użytkownika
- 9.2. Dostosowywanie danych

#### 10. Podsumowanie

## Bibliografia

## A. Kod programu