An Efficient Algorithm for Partial Order Production

Jean Cardinal *ULB/CS*

Samuel Fiorini ULB/Math

Gwenaël Joret *ULB/CS*

Raphaël Jungers UCL/INMA

lan Munro Waterloo/CS

Sorting by Comparisons

Input: a set T of size n, totally ordered by \leq

Goal: place the elements of T in a vector v in such a way that

$$v[1] \leqslant_{\mathcal{T}} v[2] \leqslant_{\mathcal{T}} \cdots \leqslant_{\mathcal{T}} v[n]$$

after asking a min number of questions of the form "is $t \leqslant_{\mathcal{T}} t'$?"

Sorting by Comparisons

Input: a set T of size n, totally ordered by \leq

Goal: place the elements of T in a vector v in such a way that

$$v[1] \leqslant_{\mathcal{T}} v[2] \leqslant_{\mathcal{T}} \cdots \leqslant_{\mathcal{T}} v[n]$$

after asking a min number of questions of the form "is $t \leqslant_{\mathcal{T}} t'$?"

Partial Order Production ("Partial Sorting")

Input: a set T of size n, totally ordered by \leq_T a partial order \leq_P on the set of positions [n]

Goal: place the elements of T in a vector v in such a way that

$$v[i] \leqslant_T v[j]$$
 whenever $i \leqslant_P j$

after asking a min number of questions of the form "is $t \leqslant_{\mathcal{T}} t'$?"

Particular Cases (1/2)

Heap Construction

Particular Cases (2/2)

Multiple Selection

Find the elements of rank r_1, r_2, \ldots, r_k

Particular Cases (2/2)

Multiple Selection

Find the elements of rank r_1, r_2, \ldots, r_k

Target poset $P := ([n], \leq_P)$ is a weak order

Particular Cases (2/2)

Multiple Selection

Find the elements of rank r_1, r_2, \ldots, r_k

Target poset $P := ([n], \leq_P)$ is a weak order

 \exists near-optimal algorithm (Kaligosi, Mehlhorn, Munro and Sanders, 05)

Worst Case Lower Bounds

Well known fact. For Sorting by Comparisons:

worst case #comparisons $\geq \lg n!$

worst case #comparisons
$$\geq \underbrace{\lg n! - \lg e(P)}_{=: LB}$$

worst case #comparisons
$$\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$$

worst case #comparisons
$$\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$$

worst case #comparisons
$$\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$$

worst case #comparisons
$$\geq \underbrace{\lg n! - \lg e(P)}_{=:LB}$$

where e(P) := # linear extensions of P

 $|\mathsf{leaf}\;\mathsf{set}| \leq e(P) \Longrightarrow \#\mathsf{comparisons} \geq \lg \frac{n!}{e(P)} = LB$

1976 Schönage defined POP problem

1976 Schönage defined POP problem

1981 Aigner studied POP problem

1976 Schönage defined POP problem

1981 Aigner studied POP problem

1985 Two surveys: Bollobás & Hell, and Saks Saks conjectured that \exists algorithm for POP problem s.t. worst case #comparisons = O(LB) + O(n)

1976 Schönage defined POP problem

1981 Aigner studied POP problem

1985 Two surveys: Bollobás & Hell, and Saks Saks conjectured that \exists algorithm for POP problem s.t. worst case #comparisons = O(LB) + O(n)

1989 Yao solved Saks' conjecture, stated open problems

Our Result

There exists an algorithm for the POP problem with

- preprocessing time $O(n^3)$
- worst case #comparisons = LB + o(LB) + O(n)

Improvements over Yao's algorithm:

- overall complexity is polynomial
- smaller number of comparisons

A Simple Plan

- 1. Extend the target poset P to a weak order W
- 2. Solve the problem for W using Multiple Selection algorithm

Key Tool: the Entropy of a Graph

The entropy of G = (V, E) equals:

$$H(G) := \min_{x \in STAB(G)} -\frac{1}{n} \sum_{v \in V} \lg x_v$$

where STAB(G) :=stable set polytope of G

Key Tool: the Entropy of a Graph

The entropy of G = (V, E) equals:

$$H(G) := \min_{x \in STAB(G)} -\frac{1}{n} \sum_{v \in V} \lg x_v$$

where STAB(G) := stable set polytope of G

- ▶ Introduced in information theory by J. Körner (73)
- Graph invariant with lots of applications (mostly in TCS)
 - lower bounds for perfect hashing
 - lower bounds for monotone Boolean functions
 - sorting under partial information (Kahn and Kim 95)

Exercise 1. Prove the following:

Lemma. (Kahn and Kim 95)

$$\underbrace{-n \, H(G)}_{=\lg \, Vol(Box)} \leq \lg \, Vol(STAB(G)) \leq \underbrace{n \, \lg \, n - \lg \, n! - n \, H(G)}_{=\lg \, Vol(Simplex)}$$

Exercise 1. Prove the following:

Lemma. (Kahn and Kim 95)

$$\underbrace{-n \, H(G)}_{=\lg \, Vol(Box)} \leq \lg \, Vol(STAB(G)) \leq \underbrace{n \, \lg \, n - \lg \, n! - n \, H(G)}_{=\lg \, Vol(Simplex)}$$

Exercise 1. Prove the following:

Lemma. (Kahn and Kim 95)

$$\underbrace{-n \, H(G)}_{=\lg \, Vol(Box)} \leq \lg \, Vol(STAB(G)) \leq \underbrace{n \lg n - \lg n! - n \, H(G)}_{=\lg \, Vol(Simplex)}$$

Exercise 2. Prove the min-max relation, for *G* perfect:

$$H(G) + H(\overline{G}) = \lg n$$

Comparability Graphs and Entropy

G(P) :=comparability graph of target poset P

$$H(P) := H(G(P))$$

Lemma. (Stanley 86)
$$\operatorname{Vol}\left(STAB(G(P))\right) = \frac{e(P)}{n!}$$

Corollary.
$$n H(P) - n \lg e \le LB \le n H(P)$$

Entropy of a Poset

A more intuitive definition!? (The magic of extended formulations.)

$$\{(y_{v^-},y_{v^+})\}_{v\in V}$$
 is consistent with P if

- ▶ $\forall v \in V$: (y_{v^-}, y_{v^+}) open interval $\subseteq (0, 1)$
- $ightharpoonup v \leqslant_P w \Longrightarrow y_{v^+} \le y_{w^-}$

$$H(P) := \min \left\{ -\frac{1}{n} \sum_{v \in V} \lg x_v \mid \exists \{ (y_{v^-}, y_{v^+}) \}_{v \in V} \text{ consistent with } P \\ \text{s.t. } x_v = y_{v^+} - y_{v^-} \quad \forall v \in V \right\}$$

$$H(P) = \frac{1}{n} \times$$
 "information" in P

Working out the Extended Formulation

Exercise 3. Check that

$$\begin{cases} x_{v} = y_{v^{+}} - y_{v^{-}} & \forall v \in V \\ y_{v^{+}} \leq y_{w^{-}} & \forall v \leqslant_{P} w \\ y_{v^{\pm}} \geq 0 & \forall v \in V \\ y_{v^{\pm}} \leq 1 & \forall v \in V \end{cases}$$

is an extended formulation of STAB(G(P)), that is, we get STAB(G(P)) when we eliminate the $y_{v^{\pm}}$ variables.

Weak Order Extensions → Colorings

Observation.

Every weak order extension W of P gives a coloring of G(P)

Want: "good" coloring of G(P)

$$W ext{ extends } P \Longrightarrow H(W) \geq H(P)$$

Weak Order Extensions → Colorings

Observation.

Every weak order extension W of P gives a coloring of G(P)

$$\Downarrow$$

Want: "good" coloring of G(P)

$$W$$
 extends $P \Longrightarrow H(W) \ge H(P)$

Intuition.

H(W) should be as small as possible

Entropy of distribution of class sizes should be as small as possible

Weak Order Extensions \rightarrow Colorings

Observation.

Every weak order extension W of P gives a coloring of G(P)

$$\Downarrow$$

Want: "good" coloring of G(P)

$$W$$
 extends $P \Longrightarrow H(W) \ge H(P)$

Intuition.

H(W) should be as small as possible

Entropy of distribution of class sizes should be as small as possible

Exercise 4. For W a weak order with classes of sizes s_1, \ldots, s_k :

$$H(W) = H\left(\frac{s_1}{n}, \dots, \frac{s_k}{n}\right) = -\sum_{i=1}^k \frac{s_i}{n} \lg \frac{s_i}{n}$$

Greedy Colorings and Greedy Points

For G = perfect graph

Iteratively remove a maximum stable set from G

 \rightsquigarrow sequence S_1, S_2, \dots, S_k of stable sets

- Gives greedy coloring (k colors, ith color class = S_i)
- Also gives greedy point:

$$ilde{x} := \sum_{i=1}^k \frac{|S_i|}{n} \cdot \chi^{S_i} \in STAB(G)$$

Theorem. Let G be a perfect graph on n vertices and denote by \tilde{g} the entropy of an arbitrary greedy point $\tilde{x} \in STAB(G)$. Then

$$ilde{g} \leq rac{1}{1-\delta} \left(H(G) + \lg rac{1}{\delta}
ight)$$

for all $\delta > 0$, and in particular (optimizing on δ)

$$\tilde{g} \leq H(G) + \lg H(G) + O(1)$$

Proof idea. Define

$$z_{v} := rac{\delta}{n^{\delta}} \left(rac{1}{ ilde{x}_{v}}
ight)^{1-\delta}$$

check $z \in STAB(\overline{G})$. Now

$$H(G) = \lg n - H(\overline{G}) \ge \lg n - \left(-\frac{1}{n} \sum_{v \in V} \lg z_v\right)$$

Colorings → Weak Order Extensions

Colorings \rightarrow Weak Order Extensions

Colorings → Weak Order Extensions

Colorings → Weak Order Extensions

Weak order extensions of $P \to \text{colorings of } G(P)$ \leftarrow

 \Longrightarrow need to "uncross" our greedy colorings

Main Steps of our Algorithm

1.
$$P \stackrel{greedy+DP}{\hookrightarrow} I$$

- 2. $I \stackrel{greedy}{\hookrightarrow} W$
- 3. Use Multiple Selection algorithm of Kaligosi et al. on W

Theorem. The algorithm above solves the POP problem, in $O(n^3)$ time, after performing at most

$$LB + o(LB) + O(n)$$

comparisons

Sorting under partial information (without the ellipsoid algorithm)

Jean Cardinal *ULB*

Samuel Fiorini *ULB*

Gwenaël Joret *ULB*

Raphaël Jungers *UCL/MIT*

lan Munro Waterloo

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Objective function: #queries

OR

?

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order ≤
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_j$?"

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order ≤
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Input:

- ▶ a set $V = \{v_1, ..., v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Input:

- ▶ a set $V = \{v_1, \dots, v_n\}$, totally ordered by an unknown linear order \leq
- ▶ a poset $P = (V, \leq_P)$ compatible with (V, \leq)

Goal: Discover \leq by making queries "is $v_i \leq v_i$?"

Lower bound on #queries

$$e(P) := \# \text{linear extensions of } P$$

Every algorithm can be forced to a #queries that is at least

$$\lg e(P)$$

 \Rightarrow Interested in algorithms that perform close to $\lg e(P)$

• Known results

	#queries	complexity
Fredman 1976	$\lg e(P) + 2n$	super-polynomial
Kahn & Saks 1984	$O(\lg e(P))$	super-polynomial
Kahn & Kim 1992	$O(\lg e(P))$	polynomial (ellipsoid alg.)

• Known results

	#queries	complexity
Fredman 1976	$\lg e(P) + 2n$	super-polynomial
Kahn & Saks 1984	$O(\lg e(P))$	super-polynomial
Kahn & Kim 1992	$O(\lg e(P))$	polynomial (ellipsoid alg.)

• Our contribution: two ellipsoid-free algorithms

	#queries		complexity
Algorithm 1	$(1+\varepsilon)$ lg $e(P)+O_{\varepsilon}(n)$	$\forall \varepsilon > 0$	$O(n^{2.5})$
Algorithm 2	$O(\lg e(P))$		$O(n^{2.5})$

Bad news and a cure

Computing e(P) is #P-complete

Brightwell & Winkler 1991

Bad news and a cure

Computing e(P) is #P-complete

Brightwell & Winkler 1991

As Kahn & Kim 1992, use the entropy $H(\bar{P})$

Why?

Kahn & Kim 1992

 $ightharpoonup H(\bar{P})$ can be "computed" in poly-time using the ellipsoid algorithm

"additive" and "multiplicative"

$$nH(\bar{P}) \leq \lg e(P) + n \lg e$$

K&K 1992

"additive" and "multiplicative"

$$nH(ar{P}) \leq \lg e(P) + n \lg e$$
 K&K 1992
$$\lg e(P) \leq nH(ar{P}) \leq c \cdot \lg e(P)$$
 K&K 1992 where $c=1+7 \lg e \simeq 11.1$

"additive" and "multiplicative"

$$nH(ar{P}) \leq \lg e(P) + n \lg e$$
 K&K 1992
$$\lg e(P) \leq nH(ar{P}) \leq c \cdot \lg e(P)$$
 K&K 1992 where $c=1+7 \lg e \simeq 11.1$

Rmk: Lower bound tight, but not upper bound

K&K conjectured

$$nH(\overline{P}) \le (1 + \lg e) \cdot \lg e(P)$$
 $(1 + \lg e \simeq 2.44)$

"additive" and "multiplicative"

$$nH(ar{P}) \leq \lg e(P) + n \lg e$$
 K&K 1992
$$\lg e(P) \leq nH(ar{P}) \leq c \cdot \lg e(P)$$
 K&K 1992 where $c=1+7 \lg e \simeq 11.1$

Rmk: Lower bound tight, but not upper bound

K&K conjectured

$$nH(\bar{P}) \le (1 + \lg e) \cdot \lg e(P)$$
 $(1 + \lg e \simeq 2.44)$

▶ We prove

$$nH(\bar{P}) \leq 2 \cdot \lg e(P)$$

(tight)

Exercise 1. Prove that

$$nH(\bar{P}) \leq 4 \cdot \lg e(P)$$

Hint: induct on n, then on e(P). For n=2, the result is trivial. Assume $n\geq 3$. For e(P)=1, the result is trivial (P is a chain). Now consider an optimal set of intervals for P, and let $a\in V$ be such that the length of the interval for a (i.e., x_a) is maximum. If a is comparable to every $b\in V-a$ then $\lg e(P)=\lg e(P-a)$ and $nH(\bar{P})=(n-1)H(\bar{P}-a)$. Otherwise let $b\in V-a$ be such that the interval for b contains the midpoint of the interval for a. Then find a new poset P' on V with $\lg e(P)-\lg e(P')\geq 1$ and $nH(\bar{P})-nH(\bar{P'})\leq 4$, by carefully modifying the intervals for a and b.

K&K's algorithm

Key lemma:

 \exists incomparable pair a, b s.t.

$$\max \left\{ nH(\bar{\underline{P}}(a < b)), nH(\bar{\underline{P}}(a > b)) \right\} \leq nH(\bar{\underline{P}}) - c,$$

where $c \simeq 0.2$

Algorithm:

- 1. Repeat:
 - 1.1 Compute H(P) and optimal solution x^*
 - 1.2 Find good incomparable pair a, b using x^*
 - 1.3 Compare a and b
 - 1.4 Update P

$$\#$$
steps = $O(nH(\overline{P})) = O(\lg e(P))$

Algorithms

	#queries		complexity
Algorithm 1	$(1+\varepsilon)$ lg $e(P) + O_{\varepsilon}(n)$	$\forall \varepsilon > 0$	$O(n^{2.5})$
Algorithm 2	$O(\lg e(P))$		$O(n^{2.5})$

Algorithm 1: greedy + merge sort

Algorithm 2: greedy + "cautious" merge sort

Greedy

Greedy chain decomposition of $P \rightarrow U := C_1 \cup \cdots \cup C_k$

$$H(\overline{U}) = \lg n - H(U) = \sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}$$

Greedy

Greedy chain decomposition of $P \rightarrow U := C_1 \cup \cdots \cup C_k$

$$H(\overline{U}) = \lg n - H(U) = \sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}$$

From perfectness of incomparability graph of *P*:

$$H(\overline{\club U}) \leq (1+arepsilon) H(\overline{\club P}) + O_{arepsilon}(1) \qquad orall arepsilon > 0$$

Algorithm 1

- 1. Compute greedy chain decomposition of P
- 2. Iteratively merge two smallest chains

Algorithm 1

- 1. Compute greedy chain decomposition of P
- 2. Iteratively merge two smallest chains

Algorithm 1

- 1. Compute greedy chain decomposition of P
- 2. Iteratively merge two smallest chains

- 1. Compute greedy chain decomposition of P
- 2. Iteratively merge two smallest chains

- 1. Compute greedy chain decomposition of P
- 2. Iteratively merge two smallest chains

Huffman trees: average root-to-leaf distance in tree at most

$$\left(\sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}\right) + 1 = H(\overline{U}) + 1$$

Huffman trees: average root-to-leaf distance in tree at most

$$\left(\sum_{i=1}^{k} -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}\right) + 1 = H(\overline{U}) + 1$$

Huffman trees: average root-to-leaf distance in tree at most

$$\left(\sum_{i=1}^k -\frac{|C_i|}{n} \lg \frac{|C_i|}{n}\right) + 1 = H(\overline{\boldsymbol{U}}) + 1$$

 $\Rightarrow \ldots \Rightarrow$ at most $(H(\bar{U})+1)n$ comparisons

#comparisons in step 2 at most

#comparisons in step 2 at most

$$(1+arepsilon)\lg e(P-A)+O_{arepsilon}(|P-A|)$$

#comparisons in step 2 at most

$$(1+\varepsilon)\lg e(P-A)+O_{\varepsilon}(|P-A|)$$

[Interlude] An easy lemma (take all intervals of length $x_v = \frac{1}{|A|}$):

$$H(\bar{P}) \ge -\lg \frac{|A|}{n}$$

$$\Rightarrow |A| \ge 2^{-H(\bar{P})} n$$

$$\Rightarrow |P - A| \le n \left(1 - 2^{-H(\bar{P})}\right) \le \ln 2 \cdot nH(\bar{P}) \quad (\text{using } 1 - 2^{-x} \le \ln 2 \cdot x)$$

#comparisons in step 2 at most

$$\begin{split} & (1+\varepsilon) \lg e(P-A) + O_{\varepsilon}(|P-A|) \\ & \leq (1+\varepsilon) \lg e(P-A) + O_{\varepsilon} \left(\ln 2 \cdot nH(\bar{P})\right) \\ & \leq (1+\varepsilon) \lg e(P) + O_{\varepsilon} \left(\lg e(P)\right) \end{split} \qquad \text{K\&K's multiplicative bd} \\ & = O_{\varepsilon} \left(\lg e(P)\right) \end{split}$$

#comparisons in step 2 at most

$$\begin{split} &(1+\varepsilon)\lg e(P-A) + O_{\varepsilon}(|P-A|)\\ &\leq (1+\varepsilon)\lg e(P-A) + O_{\varepsilon}\left(\ln 2\cdot nH(\bar{P})\right)\\ &\leq (1+\varepsilon)\lg e(P) + O_{\varepsilon}\left(\lg e(P)\right) & \text{K\&K's multiplicative bd}\\ &= O_{\varepsilon}\left(\lg e(P)\right) \end{split}$$

⇒ enough to solve MUPI = Merging under Partial Information!

Merging under Partial Information

In that special case, the incomparability graph of P is bipartite

Körner and Marton 1988: optimal solution for entropy has "block structure"

Merging under Partial Information

bipartite incomparability graphs $\implies x^*$ defining $H(\bar{P})$ has an even nicer structure

- \triangleright A_i interval of A_i , B_i interval of B_i , same ordering
- $x_v^* = (|A_i| + |B_i|)/n|A_i|$ whenever $v \in A_i$

Can compute $H(\overline{P})$ and x^* in time $O(n^2 \log^2 n)$

Solving MUPI - general ideas

Compute entropy and x^*

Apply Hwang-Ling merging algorithm on each component $A_i \cup B_i$ with $|A_i| \ge |B_i|$, in a certain order

Update x^* locally after each merging (details omitted)

Overall #comparisons is $\leq 3nH(\bar{P})$

Thank You!