Quiz 8 Solutions

MATH 100 December 3, 2018

- (1) (Q) A relation R is defined on \mathbb{R} by ${}_x\mathrm{R}_y$ if $x-y\in\mathbb{Z}$. Prove that R is an equivalence relation and determine the equivalence classes $\left\lceil\frac{1}{2}\right\rceil$ and $\left\lceil\sqrt{2}\right\rceil$.
 - (A) To check that R is an equivalence relation:
 - * For R to be reflexive means we want ${}_xR_x$. It turns out this is trivially true as $x-x=0\in\mathbb{Z}$.
 - * For R to be symmetric means we want ${}_x\mathrm{R}_y$ to imply ${}_y\mathrm{R}_x$. By algebraic manipulation we have the following result x-y=-(y-x), which states that if $x-y\in\mathbb{Z}$, then so is $y-x\in\mathbb{Z}$.
 - * For R to be transitive means we want ${}_xR_y$ and ${}_yR_z$ to imply ${}_xR_z$. Observe that:

$$x - z = (x - y) + (y - z)$$

Since the right-hand side is the addition of two integers, it must be that $x-z \in \mathbb{Z}$.

Now to calculate the equivalence classes we want to take note of the fact that any $x \in \mathbb{R}$ can be decomposed as $x = x_0 + x_1$ where $x_0 \in \mathbb{Z}$ and $x_1 \in (0,1)$. With this in mind, we can reformulate what it means for two elements to be equivalent. Specifically:

$$x - y = (x_0 + x_1) - (y_0 + y_1) = (x_0 - y_0) + (x_1 - y_1)$$

where $x_0 - y_0 \in \mathbb{Z}$ and $x_1 - y_1 \in (0, 1)$. For $x - y \in \mathbb{Z}$ we want $x_1 - y_1 = 0$. This means that two real numbers are equivalent if they have the same non-integer components.

* For the case of $\left[\frac{1}{2}\right]$ we want all real numbers who take the form _.5 where the underscore can be filled with any integer:

$$\left[\frac{1}{2}\right] = \left\{x \in \mathbb{R} \mid x - \frac{1}{2} \in \mathbb{Z}\right\}$$

* For the case of $[\sqrt{2}]$ we need to first determine the decomposition. It turns out that $1 < \sqrt{2} < 2$, which provides the intuition for $\sqrt{2} = 1 + (\sqrt{2} - 1)$:

$$[\sqrt{2}] = \left\{ x \in \mathbb{R} \mid x - (\sqrt{2} - 1) \in \mathbb{Z} \right\}$$

- (2) (Q) A relation R is defined on $\mathbb{R} \times \mathbb{R}$ by $(x_1,y_1)R(x_2,y_2)$ if $x_1^2 + y_1^2 = x_2^2 + y_2^2$. Prove that R is an equivalence relation and describe the equivalence classes geometrically.
 - (A) To check that R is an equivalence relation:
 - * For R to be reflexive means we want (x,y)R(x,y). It turns out this is trivially true as $x^2 + y^2 = x^2 + y^2$ is a tautology.
 - * For R to be symmetric means we want $(x_1,y_1)R_{(x_2,y_2)}$ to imply $(x_2,y_2)R_{(x_1,y_1)}$. This is trivially true as writing $x_1^2+y_1^2=x_2^2+y_2^2$ is equivalent to $x_2^2+y_2^2=x_1^2+y_1^2$.
 - * For R to be reflexive means we want $(x_1,y_1)R(x_2,y_2)$ and $(x_2,y_2)R(x_3,y_3)$ to imply $(x_1,y_1)R(x_3,y_3)$. The given information provides the system of equations:

$$x_1^2 + y_1^2 = x_2^2 + y_2^2$$

 $x_2^2 + y_2^2 = x_3^2 + y_3^2$

It directly follows that $x_1^2 + y_1^2 = x_3^2 + y_3^2$.

Now to calculate the equivalence classes we need to think about what it means to say that $x_1^2 + y_1^2 = x_2^2 + y_2^2$. Recall that for any $p = (x, y) \in \mathbb{R}^2$ the Euclidean distance from the origin is calculated via $d^2(p) = x^2 + y^2$. Thus, for points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ we enforce $d^2(p_1) = d^2(p_2)$ which is equivalent to $d(p_1) = d(p_2)$. It follows that a single equivalence class consists of points in the plane who are the same radial distance away from the origin, i.e.:

$$\mathcal{S}_r = \{ p \in \mathbb{R}^2 \mid d(p) = r \}$$

represents all of the equivalence classes with $r \in [0, \infty)$. Drawing out a couple gives the picture:

