STAT0041: Stochastic Calculus

Homework 2 - Martingales

Lecturer: Weichen Zhao Fall 2024

1. 设 τ 和 σ 为(\mathscr{F}_n)停时,证明: $\tau \vee \sigma := \max(\tau, \sigma)$ 和 $\tau + \sigma$ 为 (\mathscr{F}_n)停时。

- 2. 设 τ 和 σ 为(\mathscr{F}_n)停时,证明:
- (1) τ 是 \mathscr{F}_{τ} 可测的;
- (2) 若 $\tau \leq \sigma$, 那么 $\mathscr{F}_{\tau} \subset \mathscr{F}_{\sigma}$.
- 3. 设 ξ_n 为可积独立随机变量序列, 证明: 如果 $\mathbb{E}\xi_n=0$, 则 $\eta_n:=\sum_{i=1}^n\xi_i$ 为 $\mathscr{F}_n=\sigma(\xi_1,\cdots,\xi_n)$ -鞅。
- 4. 设 ξ_n 为独立同分布随机变量序列, 其分布密度为f, g是另一个分布密度。定义 $\eta_n:=\prod_{i=1}^n\frac{g(\xi_i)}{f(\xi_i)}$,证明: η_n 为 $\mathscr{F}_n=\sigma(\xi_1,\cdots,\xi_n)$ -鞅。
- 5. (Kolmogorov不等式) 设 ξ_n 为独立同分布随机变量序列,满足 $\mathbb{E}|\xi_n|=0$. 定义 $\eta_n:=\sum_{i=1}^n \xi_i$, 记 $\mathbb{E}\xi_n^2:=\sigma_n^2$, 证明:对任意 $\epsilon>0$,有

$$P(\max_{1 \le n \le N} |\eta_n| \ge \epsilon) \le \frac{1}{\epsilon^2} \sum_{n=1}^N \sigma_n^2.$$

Hint: 利用第3题结论,对下鞅 η_n^2 用Doob不等式。