11.1 If $v(t) = 160 \cos 50t \text{ V}$ and $i(t) = -33 \sin(50t - 30^\circ) \text{ A}$, calculate the instantaneous power and the average power.

11.17 Calculate the value of \mathbf{Z}_L in the circuit of Fig. 11.48 in order for \mathbf{Z}_L to receive maximum average power. What is the maximum average power received by \mathbf{Z}_L ?

Figure 11.48 For Prob. 11.17.

11.27 Calculate the rms value of the current waveform of Fig. 11.58.

Figure 11.58 For Prob. 11.27.

11.39 An ac motor with impedance $\mathbf{Z}_L = 4.2 + j3.6 \,\Omega$ is supplied by a 220-V, 60-Hz source. (a) Find pf, P, and Q. (b) Determine the capacitor required to be connected in parallel with the motor so that the power factor is corrected to unity.

- 11.42 A 110-V rms, 60-Hz source is applied to a load impedance Z. The apparent power entering the load is 120 VA at a power factor of 0.707 lagging.
 - (a) Calculate the complex power.
 - (b) Find the rms current supplied to the load.
 - (c) Determine Z.
 - (d) Assuming that $\mathbf{Z} = R + j\omega L$, find the values of R and L.

11.63 Find I_o in the circuit of Fig. 11.82.

Figure 11.82 For Prob. 11.63.

- 11.73 A 240-V rms 60-Hz supply serves a load that is 10 kW (resistive), 15 kVAR (capacitive), and 22 kVAR (inductive). Find:
 - (a) the apparent power
 - (b) the current drawn from the supply
 - (c) the kVAR rating and capacitance required to improve the power factor to 0.96 lagging
 - (d) the current drawn from the supply under the new power-factor conditions