

## **Introduction Lesson Assignment**

- 1 Determine if the following arguments are valid:
  - (a) Either John isn't stupid and he is lazy, or he's stupid. John is stupid therefore John isn't lazy.
  - (b) The butler and the cook are not both innocent.Either the butler is lying or the cook is innocent.The butler is either lying or guilty or both.
- 2 (Transitivity of divisibility) For all integers a, b and c, if  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .
- 3 Let  $x \in \mathbb{Z}$ . If  $2 | x^2 1$ , then  $4 | x^2 1$ .
- 4 Prove that for all real numbers a and b,
  - (i)  $a^2 \ge 0$
  - (ii)  $ab \le \frac{1}{2} (a^2 + b^2)$
  - (iii)  $ab \le \frac{1}{2} \left( c^2 a^2 + c^{-2} b^2 \right)$  for any non-zero real number c.
- A famous mathematical inequality is the Cauchy-Schwarz (CS) Inequality which is stated as follows: For all real values  $a_1, a_2, ..., a_n$  and  $b_1, b_2, ..., b_n$ ,

$$(a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2).$$

There are many proofs of the CS inequality. We will scaffold you through one of the proofs by guiding you through the intermediate steps.

- (i) By considering the identity  $(\alpha y \beta x)^2 \ge 0$ , show that for all  $\alpha, \beta \in \mathbb{R}$ ,  $x \in \mathbb{R}^+$  and  $y \in \mathbb{R}^+$ ,  $\frac{(\alpha + \beta)^2}{x + y} \le \frac{\alpha^2}{x} + \frac{\beta^2}{y}$ .
- (ii) By repeated application of the result in part (i), show that for all  $\alpha_i \in \mathbb{R}$ ,  $x_i \in \mathbb{R}^+$ ,  $\frac{(\alpha_1 + \alpha_2 + \ldots + \alpha_n)^2}{x_1 + x_2 + \ldots + x_n} \le \frac{{\alpha_1}^2}{x_1} + \frac{{\alpha_2}^2}{x_2} + \ldots + \frac{{\alpha_n}^2}{x_n}.$
- (iii) Hence prove the Cauchy-Schwarz inequality for all non-zero real numbers  $a_1, a_2, ..., a_n$  and  $b_1, b_2, ..., b_n$ , by expressing  $\alpha_i$  and  $x_i$  in part (ii), in terms of  $a_i$ 's and  $b_i$ 's. (What happens when some of  $a_i$ 's and  $b_i$ 's are zero?)

**Note:** Equality for the inequality is achieved if and only if  $a_i = kb_i$  for i = 1, 2, 3, ..., n for a fixed real constant k. Proof of this will be given in a subsequent chapter.

6 Independent research and self-study is critical to success in the H3 Maths course. Provide an alternative direct proof of the CS inequality.