I. kolo kategorie Z8

Z8-I-1

Korespondenční matematická soutěž probíhá ve třech kolech, jejichž náročnost se stupňuje. Do druhého kola postupují jen ti řešitelé, kteří byli úspěšní v prvním kole, do třetího kola postupují jen úspěšní řešitelé druhého kola. Vítězem je každý, kdo je úspěšným řešitelem posledního, tedy třetího kola. V posledním ročníku této soutěže bylo přesně 14% řešitelů úspěšných v prvním kole, přesně 25% řešitelů druhého kola postoupilo do třetího kola a přesně 8% řešitelů třetího kola zvítězilo.

Jaký je nejmenší počet soutěžících, kteří se mohli zúčastnit prvního kola? Kolik by v takovém případě bylo vítězů? (M. Petrová)

Nápad. Všechny mezivýsledky musejí být přirozená čísla.

Možné řešení. Počet všech řešitelů prvního kola si označíme x. Počet úspěšných řešitelů prvního kola (a tedy počet všech řešitelů druhého kola) je 14% z x, tedy 0.14x. Počet úspěšných řešitelů druhého kola (a tedy počet všech řešitelů třetího kola) je 25% z 0.14x, tj. $0.25 \cdot 0.14x = 0.035x$. Počet úspěšných řešitelů třetího kola (a tedy i počet vítězů) je 8% z 0.035x, tj. $0.08 \cdot 0.035x = 0.0028x$.

Protože všechny výpočty jsou přesné (bez zaokrouhlování), musejí být čísla x, 0.14x, 0.035x a 0.0028x přirozená. Začneme u posledního z nich:

$$0.0028x = \frac{28}{10\,000} \, x = \frac{7}{2\,500} \, x,$$

číslo x tedy musí být násobek čísla 2500. Protože hledáme nejmenší řešení, budeme postupně zkoušet násobky 2500, a to tak dlouho, než všechna zmiňovaná čísla budou přirozená:

x	$0,\!14x$	0,035x	0,0028x	závěr
2500	350	87,5	7	nevyhovuje
5 000	700	175	14	vyhovuje

Nejmenší počet soutěžících, kteří se mohli zúčastnit prvního kola, je 5 000. Vítězů by v takovém případě bylo 14.

Jiné řešení. Počet všech řešitelů prvního kola označíme x. Počet úspěšných řešitelů prvního kola (a tedy počet všech řešitelů druhého kola) je 14% z x, tedy

$$\frac{14}{100} x = \frac{7}{50} x.$$

Počet úspěšných řešitelů druhého kola (a tedy počet všech řešitelů třetího kola) je $25\,\%$ z předchozího počtu, tj.

$$\frac{25}{100} \cdot \frac{7}{50} \, x = \frac{7}{200} \, x.$$

Počet úspěšných řešitelů třetího kola (a tedy i počet vítězů) je 8 % z předchozího počtu, tj.

$$\frac{8}{100} \cdot \frac{7}{200} \, x = \frac{7}{2500} \, x.$$

Všechny výše uvedené výrazy musejí být přirozená čísla, číslo x tedy musí být společným násobkem čísel 50, 200 a 2 500. Protože nás zajímá nejmenší možný počet soutěžících v prvním kole soutěže, hledáme nejmenší společný násobek uvedených čísel, což je 5 000.

Nejmenší počet soutěžících v prvním kole je tedy 5 000 a počet vítězů by v tomto případě byl

$$\frac{7}{2500} \cdot 5000 = 14.$$

Z8-I-2

Je dán rovnoramenný trojúhelník ABC se základnou AB dlouhou $10\,\mathrm{cm}$ a rameny dlouhými $20\,\mathrm{cm}$. Bod S je střed základny AB. Rozdělte trojúhelník ABC čtyřmi přímkami procházejícími bodem S na pět částí se stejným obsahem. Zjistěte, jak dlouhé úsečky vytnou tyto přímky na ramenech trojúhelníku ABC. ($E.\ Trojáková$)

Nápad. Uvedená konstrukce je osově souměrná.

Možné řešení. Trojúhelník ABC je souměrný podle osy CS, proto i dělicí přímky musejí být osově souměrné podle stejné osy. Odpovídající části pak budou tvořit dvě dvojice osově souměrných trojúhelníků a jeden (osově souměrný) čtyřúhelník s vrcholem C. Označme průsečíky dvou dělicích přímek s jedním ramenem X a Y, viz obrázek.

Podle zadání mají být obsahy trojúhelníků ASX a XSY a dvojnásobek obsahu trojúhelníku YSC stejné. Tyto tři trojúhelníky však mají stejnou výšku ze společného vrcholu S, takže obsahy budou v uvedeném poměru právě tehdy, když pro protilehlé strany

platí

$$|AX| = |XY| = 2|YC|.$$

Současně víme, že

$$|AC| = |AX| + |XY| + |YC| = 20 \text{ cm}.$$

Z uvedeného plyne, že $5|YC|=20\,\mathrm{cm}$, tj. $|YC|=4\,\mathrm{cm}$ a $|AX|=|XY|=8\,\mathrm{cm}$. Dělicí přímky vytínají na ramenech trojúhelníku úsečky dlouhé 4 a 8 cm.

Z8-I-3

Hledáme pětimístné číslo s následujícími vlastnostmi: je to palindrom (tj. čte se pozpátku stejně jako zepředu), je dělitelné dvanácti a ve svém zápisu obsahuje číslici 2 bezprostředně za číslicí 4. Určete všechna možná čísla, která vyhovují zadaným podmínkám. (M. Mach)

Nápad. Určete, jak mohou být umístěny číslice 2 a 4; pro každý případ zvlášť pak diskutujte zbylé podmínky.

Možné řešení. Pětimístné palindromy, v nichž se číslice 2 objevuje bezprostředně za číslicí 4, jsou právě následující:

Pro tyto případy stačí nyní diskutovat dělitelnost dvanácti. Číslo je dělitelné dvanácti právě tehdy, když je dělitelné třemi a zároveň čtyřmi, tj. právě tehdy, když jeho ciferný součet je dělitelný třemi a zároveň poslední dvojčíslí je dělitelné čtyřmi.

Číslo 24 je dělitelné čtyřmi, proto jsou palindromy typu 42*24 vždy dělitelné čtyřmi, a proto se zajímáme pouze o dělitelnost třemi. Známé číslice mají ciferný součet 12, který dělitelný třemi je, proto hvězdička uprostřed musí zastupovat násobek tří — 0, 3, 6 nebo 9.

Palindromy typu *424* jsou dělitelné čtyřmi, právě když poslední číslice je 0, 4 nebo 8. Protože jde o palindrom, stejná číslice bude i na začátku, proto varianta s nulou nevyhovuje. Po doplnění čtyřek je ciferný součet 18, po doplnění osmiček 26. Tudíž dělitelný třemi je pouze palindrom 44244.

Palindromy typu *242* jsou dělitelné čtyřmi, právě když poslední číslice je 0, 4 nebo 8. Stejně jako v předchozím případě vylučujeme 0 a určíme ciferné součty: pro čtyřky je to 16, pro osmičky 24. Dělitelný třemi je pouze palindrom 82428.

Protože číslo 42 není dělitelné čtyřmi, palindromy typu 24*42 nemohou být dělitelné čtyřmi, tedy ani dvanácti. Zadaným podmínkám vyhovují právě následují čísla:

42024, 42324, 42624, 42924, 44244, 82428.

Z8-I-4

Na střed hrnčířského kruhu jsme položili krychli, která měla na každé své stěně napsáno jedno přirozené číslo. Těsně předtím, než jsme kruh roztočili, jsme ze svého stanoviště viděli tři stěny krychle a tedy pouze tři čísla. Jejich součet byl 42. Po otočení hrnčířského kruhu o 90° jsme ze stejného místa pozorovali tři stěny s čísly dávajícími součet 34 a po otočení o dalších 90° jsme stále z téhož místa viděli tři čísla o součtu 53.

- 1. Určete součet tří čísel, která z našeho místa uvidíme, až se kruh otočí ještě o dalších 90° .
- 2. Krychle po celou dobu ležela na stěně s číslem 6. Určete maximální možný součet všech šesti čísel na krychli.

 $(L. \check{S}im\mathring{u}nek)$

Nápad. Zaměřte se na vztah mezi čísly vzájemně rovnoběžných bočních stěn.

Možné řešení. Čísla, která vidíme před roztočením kruhu, označme a, b, c, přičemž c je číslo na horní stěně. Po otočení o 90° ztratíme z našeho pohledu stěnu s číslem a a objeví se stěna s ní rovnoběžná. Podle zadání se součet viditelných čísel změní ze 42 na 34, tedy zmenší se o 8. Nově se objevivší číslo je proto o 8 menší než a, tj. a-8.

Obdobně uvažujeme o další otočce o 90° . Při ní ztratíme z pohledu stěnu s číslem b a součet viditelných čísel se změní ze 34 na 53, tedy zvětší se o 19. Na zbývající boční stěně se proto objeví číslo b+19.

Ještě po dalším otočení o 90° tak vidíme stěny s čísly b+19, a, c. Ze zadání víme, že a+b+c=42, tudíž a+b+19+c=42+19=61. Součet 61 je řešením prvního úkolu.

Nyní řešíme druhý úkol. Před roztočením kruhu vidíme tři stěny se součtem 42, po otočení o 180° vidíme jiné dvě boční stěny a stále stejnou horní stěnu s číslem c, tentokrát jde o součet 53. Tedy součet čísel na těchto pěti stěnách je roven 42+53-c. Na krychli je podle zadání zespodu napsané číslo 6, součet všech jejích čísel je tudíž roven 6+42+53-c, tj. 101-c. Máme-li určit největší možnou hodnotu tohoto výrazu, dosadíme za c nejmenší přípustnou hodnotu 1. A pak vidíme, že součet čísel na krychli mohl být nejvýše 100.

Jiné řešení druhého úkolu. Z výše uvedeného řešení použijeme obrázek s jeho popisem. Součet všech čísel na krychli je

$$a + b + (a - 8) + (b + 19) + c + 6 = 2a + 2b + c + 17.$$

Přitom platí, že všechny neznámé jsou přirozená čísla a $a \ge 9$, aby i hodnota a-8 byla přirozené číslo. Poslední podmínkou je a+b+c=42. Abychom při daném součtu a+b+c získali co největší hodnotu výrazu 2a+2b+c+17, musíme za c zvolit co nejmenší přípustnou hodnotu, tj. 1, protože ostatní neznámé jsou ve výrazu zastoupeny ve svých násobcích. Součet a+b pak nabývá hodnoty 41 a součet všech šesti čísel na krychli tak může být nejvýše

$$2a + 2b + c + 17 = 2 \cdot 41 + 1 + 17 = 100.$$

Z8-I-5

Pankrác, Servác a Bonifác jsou bratři, kteří mají P, S a B let. Víme, že P, S a B jsou přirozená čísla menší než 16, pro něž platí:

$$P = \frac{5}{2}(B - S),$$

$$S = 2(B - P),$$

$$B = 8(S - P).$$

Určete stáří všech tří bratrů.

(L. Hozová)

Nápad. Bonifácův věk lze určit velmi snadno.

Možné řešení. Ze třetí rovnice plyne, že B je přirozené číslo menší než 16 právě tehdy, když S - P = 1, neboli S = P + 1; potom nutně B = 8. Dosadíme tyto poznatky do druhé rovnice a určíme P:

$$P + 1 = 2(8 - P),$$

 $P + 1 = 16 - 2P,$
 $3P = 15,$
 $P = 5.$

Odtud S = 5 + 1 = 6 a snadno ověříme, že trojice B = 8, P = 5 a S = 6 vyhovuje také rovnici první: $5 = \frac{5}{2}(8 - 6)$. Pankrác má tedy 5, Servác 6 a Bonifác 8 let.

Poznámka. S rovnicemi ze zadání lze manipulovat různým způsobem, nicméně bez omezení P, S, B < 16 by úloha neměla řešení určeno jednoznačně — najdete nějaké další?

Jiné řešení. Ze zadání plyne, že P, S a B jsou kladná čísla, právě když B > S > P > 0. Stejně jako u předchozího řešení určíme, že ze třetí rovnice plyne B = 8 a P = S - 1. Navíc z druhé rovnice je patrné, že S je sudé číslo. Celkem tedy vidíme, že řešením úlohy může být jedině některá z následujících trojic čísel:

B	S	P
8	6	5
8	4	3
8	2	1

Dosazením do první a druhé rovnice zjistíme, že jediným řešením je trojice $B=8,\,S=6$ a P=5.

Z8-I-6

Janka si narýsovala obdélník s obvodem $22\,\mathrm{cm}$ a délkami stran vyjádřenými v centimetrech celými čísly. Potom obdélník rozdělila beze zbytku na tři obdélníky, z nichž jeden měl rozměry $2\,\mathrm{cm}\times 6\,\mathrm{cm}$. Součet obvodů všech tří obdélníků byl o $18\,\mathrm{cm}$ větší než obvod původního obdélníku. Jaké rozměry mohl mít původní obdélník? Najděte všechna řešení. (M. Dillingerová)

Nápad. Určete, jak mohla Janka obdélník rozdělit; pro jednotlivé možnosti pak vyjádřete zadaný rozdíl obvodů pomocí délek dělicích čar.

Možné řešení. Všechny veličiny v textu jsou vyjádřeny v centimetrech, jednotky dále uvádět nebudeme. Délky stran Jančina obdélníku označíme x a y, podle zadání jsou to přirozená čísla.

Nejprve zjistíme, jak mohla Janka svůj obdélník rozdělit. Typově máme pouze následující dvě možnosti (pozor, obrázky jsou schematické, tj. rozhodně nepředpokládáme, že x > y):

Obvod původního obdélníku je 2(x+y)=22, tedy x+y=11. Součet obvodů tří nových obdélníků je vždy větší než obvod původní, a to právě o dvojnásobek součtu délek dělicích úseček, které jsou v obrázku vyznačeny čárkovaně. Tento rozdíl má být roven 18.

I. Obě dělicí úsečky mají stejnou délku, totiž y. Musí tedy platit 4y=18, odtud y=4,5. To ovšem není možné, protože 4,5 není celé číslo. Tímto způsobem tudíž Janka obdélník nerozdělila.

II. Dvě dělicí úsečky, které leží v jedné přímce, mají součet délek y. Délku třetí dělicí úsečky označíme z. Potom musí platit 2y+2z=18, tedy y+z=9. To spolu s podmínkou x+y=11 znamená, že rozměr x je o 2 větší než rozměr z. Tento poznatek si zaznamenáme do obrázku:

Nyní prověříme, který z nových obdélníků může mít rozměry 2×6 a jak může být umístěn — celkem máme tyto tři možnosti:

Pomocí dříve odvozených vztahů mezi $x,\,y$ a z vyjádříme rozměry obdélníků v jednotlivých případech:

- a) Je-li y = 6, pak x = 5 a z = 3.
- b) Je-li z = 6, pak x = 8 a y = 3.
- c) Je-li z = 2, pak x = 4 a y = 7.

Jančin obdélník mohl mít rozměry 5×6 , 8×3 nebo 4×7 .

Poznámka. Při stejném značení jako výše z požadavku, aby Jančin obdélník obsahoval obdélník 2×6 , plyne, že $x, y \ge 2$. Protože x a y jsou přirozená čísla a x + y = 11, rozměry Jančina obdélníku by mohly být 2×9 , 3×8 , 4×7 nebo 5×6 .

Nyní lze postupně probírat tyto čtyři případy, tzn. umístit obdélník 2×6 , diskutovat možná dodatečná dělení a kontrolovat požadavek o obvodech. Takto rychle zjistíme, že jediné možnosti, jak mohla Janka svůj obdélník rozdělit, jsou právě výše uvedené možnosti a), b), c).

