Расчет спектра электрона в сферически симметричных потенциалах

Е.Г. Орлова, 3 курс департамент Прикладной математики НИУ ВШЭ Научный руководитель: Р.Ш. Ихсанов, доцент департамент Электронной инженерии НИУ ВШЭ

22 мая 2017 г.

Постановка задачи

- Найти решение стационарного уравнения Шредингера для сферически симметричных потенциалов (потенциальная энергия частицы зависит только от расстояния между частицей и центром).
- Найти спектр решить задачу на собственные значения вида:

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + \left[V + \frac{\hbar^2}{2m}\frac{I(I+1)}{r^2}\right]\right)u = Eu.$$

Задача редко имеет аналитическое решение.

Численные методы

Для решения задачи на собственные значения применен метод конечных разностей.

• Использовалась разностная аппроксимация второго порядка:

$$u_n'' = \frac{u_{n+1} - 2u_n + u_{n-1}}{h^2};$$

$$\begin{bmatrix} u_1'' \\ u_2'' \\ u_3'' \\ \vdots \\ u_n'' \end{bmatrix} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & -2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_n \end{bmatrix}.$$

Граничные условия

Волновая функция обычно экспоненциально затухает, поэтому с вычислительной точки зрения можно считать, что u(r)=0 при $r\geq L$ для некоторого большого L.

Мы получаем задачу на собственные значения с граничными условиями u(0) = 0 (так какu(r) = rR(r)) и u(L) = 0.

Численные методы

Экстраполяция Ричардсона:

$$E_N - E = C(2h)^2,$$

$$E_{2N} - E = Ch^2,$$

$$E=\frac{4E_N-E_{2N}}{3}.$$

Также использовался метод Ньютона.

Тестирование численного решения на известные аналитические результаты

Для потенциальной ямы конечной глубины

$$V(r) = \begin{cases} -V_0, & \text{if } r < R \\ 0, & \text{if } r > R \end{cases}$$

решение при I = 0 задается следующей формулой:

$$\tan(\sqrt{2}a\sqrt{V_0-E})=-\sqrt{\frac{V_0}{E}-1}.$$

Результаты для потенциальной ямы конечной глубины

(a)
$$tan(\sqrt{2}a\sqrt{V_0-E}) = -\sqrt{\frac{V_0}{E}-1}$$

(b) Значения спектра (а. е.)

Рис. 1: Потенциальная яма конечной глубины

Гармонический осциллятор

Потенциал для гармонического осциллятора задается

$$V(r) = \frac{1}{2}m\omega^2 r^2.$$

Аналитическое решение для спектра известно:

$$E_{nl} = \hbar\omega(2n + l + \frac{3}{2}), \quad n = 0, 1, 2, ...$$

Результаты для гармонического осциллятора

n	Численное	Аналитическое	n	Численное	Аналитическое
0	0.5196 <mark>08</mark>	0.519615	0	0.866016	0.866025
1	1.212398	1.212436	1	1.5588 <mark>07</mark>	1.558846
2	1.905 <mark>165</mark>	1.905256	2	2.25157 <mark>4</mark>	2.251666
3	2.5979 <mark>07</mark>	2.598076	3	2.944 <mark>318</mark>	2.944486
4	3.290 <mark>626</mark>	3.290897	4	3.637037	3.637307
5	3.983 <mark>320</mark>	3.983717	5	4.3297 <mark>32</mark>	4.330127

Таблица 3: Возможные значения энергии для гармонического осциллятора

Таблица 2: *I* = 1

Таблица 1: I = 0

Иллюстрация для осциллятора

Рис. 2: Гармонический осциллятор

Атом водорода

Потенциал в атомных единицах задается

$$V(r)=-\frac{1}{r}.$$

Аналитическое решение для спектра известно:

$$E_n = -\frac{1}{2n^2}, \quad n = 0, 1, 2, \dots$$

Результаты для атома водорода

Рис. 3: Спектр атома водорода в а. е.

Результаты для атома водорода

n	Численное	Аналитическое
1	-0.4999 <mark>11</mark>	-0.500000
2	-0.12499 <mark>4</mark>	-0.125000
3	-0.05555 <mark>4</mark>	-0.055556
4	-0.031250	-0.031250
5	-0.020000	-0.020000

Таблица 4: Результаты для кулоновского потенциала в а. е.

Анализ сходимости метода

Рис. 4: Сходимость метода для кулоновского потенциала

Результаты

- Разработаны и реализованы численные методы для расчета спектра электрона в сферически симметричных потенциалах.
- Численные методы протестированы на известные аналитические решения или результаты других численных методов.

Перспективы

- Реализованные программы будут использованы в образовательном процессе магистерской программы "Материалы. Приборы. Нанотехнологии."
- Планируется публикация в журнал "Journal of chemical education".
- Планируется продолжение темы в рамках НУГ "Математическое моделирование квантовых приборов и материалов" (Л.Н. Щур, М.Ю. Каган, Е.А. Буровский, Р.Ш. Ихсанов) в случае поддержки проекта.

Спасибо за внимание!