EPI10 - Análise de Sobrevivência

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Faculdade de Medicina Programa de Pós-Graduação em Epidemiologia

Porto Alegre, 2022

Estimação: o método da máxima verossimilhança (em poucas palavras)

Estimação: o método da máxima verossimilhança (em poucas palavras)

O método da máxima verossimilhança trata o problema de estimação da seguinte forma:

Com base nos resultados observados em uma amostra, x₁, x₂,..., x_n, qual é a distribuição (modelo probabilístico), entre todas aquelas definidas pelos possíveis valores de seus parâmetros, com maior verossimilhança de ter gerado a amostra?

Estimação: o método da máxima verossimilhança (em poucas palavras)

Método da máxima verossimilhança

Exemplo. Qual dos dois modelos abaixo tem maior verossimilhança de ter gerado a amostra?

Formalizando, dada uma amostra de observações independentes, x_1, x_2, \ldots, x_n , e com mesma distribuição, parametrizada pelo parâmetro genérico θ , $f(x_i; \theta)$, a função de verossimilhança é definida como:

$$L(\theta) = \prod_{i=1}^n f(x_i; \theta).$$

A estimativa de máxima verossimilhança (EMV) do parâmetro θ , $\widehat{\theta}$ é o valor de θ que maximiza $L(\theta)$. Ou seja,

$$\widehat{\theta} = \arg \max_{\theta} L(\theta).$$

Visualmente, temos

Quando *n* aumenta

Comentários

- Avaliar o ponto que maximiza $L(\theta)$ é equivalente a avaliar o ponto que maximiza $\ell(\theta) = \log L(\theta)$.
- ightharpoonup heta pode ser um vetor de parâmetros.
- Em geral, a obtenção do ponto de máximo da função de verossimilhança se dá por meio de métodos numéricos.

Principais propriedades dos estimadores de máxima verossimilhança

- Distribuição assintoticamente normal.
 - Ou seja, para grandes amostras, $\widehat{\theta} \stackrel{a}{\sim} N(\theta, \sigma_{\widehat{\theta}}^2)$.
- Propriedade da invariância.
 - Se $\widehat{\theta}$ é EMV para θ , então $e^{\widehat{\theta}}$ é EMV para $e^{\widehat{\theta}}$, por exemplo.
- A partir da normalidade assintótica, podemos
 - Construir intervalos de confiança;
 - Realizar testes de hipoóteses (Wald, Score, Razão de verossimilhanças).

Função de verossimilhança em dados de sobrevivência

▶ Dada uma amostra de observações independentes, $(t_1, \delta_1), (t_2, \delta_2), \dots, (t_n, \delta_n)$, e assumindo que o **mecanismo de censura é não-informativo**¹, a função de verossimilhança é dada por

$$egin{aligned} L(heta) &= \prod_{i=1}^n \left[f(t_i; heta)
ight]^{\delta_i} imes \left[S(t_i; heta)
ight]^{1-\delta_i} \ &= \prod_{i=1}^n \left[\lambda(t_i; heta)
ight]^{\delta_i} S(t_i; heta). \end{aligned}$$

¹A censura não é informativa, no caso em que, quando esta ocorre não dá nenhuma informação sobre o evento em estudo e as informações provenientes dos pacientes perdidos no seguimento são ignoradas. Essa hipótese de a censura ser independente do evento é uma hipótese forte que raramente é verificada. Por exemplo, no HIV, os pacientes que perdem o acompanhamento são geralmente os casos mais graves. A violação desta suposição acarreta em vieses.

Modelo de Cox

Modelo de Cox

Modelos de regressão em sobrevivência

Duas classes de modelos de regressão se destacam em análise de sobrevivência:

- ► Modelos de tempos de vida acelerados ou modelos paramétricos.
- Modelos de riscos (taxas de falha) proporcionais ou modelo semiparamétrico de Cox.

Modelo de regressão de Cox

O modelo de riscos proporcionais, também chamado de modelo de Cox $(\text{Cox}, 1972)^2$

- abriu uma nova fase na modelagem de dados clínicos;
- é o mais utilizado na análise de dados de sobrevivência;
- permite incorporar facilmente covariáveis dependentes do tempo, que ocorrem com frequência em estudos clínicos e epidemiológicos.

²Cox, D.R. (1972), Regression Models and Life-Tables. *Journal of the Royal Statistical Society: Series B (Methodological)*, 34: 187-202.

Modelo de regressão de Cox

Assume-se, nesse modelo, que os tempos t_i , i = 1, ..., n, são independentes e que a taxa de falha (risco) tem a seguinte forma:

$$\lambda(t) = \lambda_0(t) \exp{\{\beta_1 x_1 + \ldots + \beta_p x_p\}}.$$

- O componente não-paramétrico, $\lambda_0(t)$, não é especificado e é uma função não-negativa do tempo.
 - Ele é usualmente chamado de função de taxa de falha basal.
- ▶ O componente paramétrico $\exp\{x'\beta\} = \exp\{\beta_1x_1 + \ldots + \beta_px_p\}$ é o nosso interesse, em especial no vetor de parâmetros β , e $x' = (x_1, x_2, \ldots, x_p)$ é um vetor de covariáveis observadas (como, por exemplo, sexo, idade, grupo de tratamento ou espoxição, etc.).

- O modelo é conhecido por ter taxas de falha (riscos) proporcionais.
 Este fato é conveniente na sua interpretação.
- Ou seja, a razão das taxas de falha de dois indivíduos diferentes, i e j, é

$$\frac{\lambda_i(t)}{\lambda_i(t)} = \frac{\lambda_0(t) \exp\{\mathbf{x}_i'\beta\}}{\lambda_0(t) \exp\{\mathbf{x}_i'\beta\}} = \exp\{\mathbf{x}_i'\beta - \mathbf{x}_i'\beta\},$$

que não depende do tempo t.

- Assim, se um indivíduo no início do estudo tem um risco de óbito igual a duas vezes o risco de um segundo indivíduo, então esta razão de riscos será a mesma para todo o período de acompanhamento.
- Note que o modelo assume que as funções de taxa de falha de indivíduos distintos difere apenas com respeito às covariáveis destes indivíduos.

Ainda considerando a propriedade de riscos proporcionais, suponha um estudo controlado que consiste na comparação dos tempos de falha de dois grupos em que os pacientes são selecionados aleatoriamente para receber o tratamento padrão (grupo controle, x=0) ou o novo tratamento (x=1), tem-se:

$$\frac{\lambda_1(t)}{\lambda_0(t)} = K,$$

em que K é uma razão de taxas de falha, constante para todo tempo t de acompanhamento do estudo.

► Se $K = \exp{\{\beta x\}}$, temos o modelo de Cox para um única covariável dicotômica:

$$\lambda(t) = \lambda_0(t) \exp{\{\beta x\}},$$

ou seja,

$$\lambda(t) = \begin{cases} \lambda_1(t) = \lambda_0(t) \exp{\{\beta x\}}, & \text{se } x = 1, \\ \lambda_0(t), & \text{se } x = 0. \end{cases}$$

Suponha $\beta>0$. Graficamente, temos que o novo tratamento acelera a taxa de falha dos pacientes.

Taxa de falha cosntante

Taxa de falha crescente Taxa de falha crescente (escala log)

Taxa de falha decrescente (escala log)

Desta série de exemplos da proporcionalidade dos riscos do modelo de Cox, reforça-se que o foco deste modelo não está na forma que $\lambda_0(t)$ assume, mas sim no efeito (multiplicativo) que a(s) covariável(eis) tem em $\lambda_0(t)$.

▶ Por fim, apresentamos um exemplo gráfico em que a proporcionalidade dos riscos não se verifica.

Estimação no modelo de Cox

- ightharpoonup O modelo de regressão de Cox é caracterizado pelos coeficientes eta's, que medem os efeitos das covariáveis sobre a função de taxa de falha.
- Um método de estimação é necessário para se fazer inferências no modelo.
- ▶ O método de máxima verossimilhança não é adequado devido a presença do componente não-paramétrico $\lambda_0(t)$.

$$L(\beta) = \prod_{i=1}^{n} \left[\lambda_0(t_i) \exp\{x_i'\beta\}\right]^{\delta_i} \left[S_0(t_i)\right]^{\exp\{x_i'\beta\}}.$$

Função de verossimilhança parcial

- Cox (1975)³ propôs então uma solução alternativa: verossimilhança parcial.
- Este método consiste em condicionar a construção da função de verossimilhança ao conhecimento da história passada de falhas e censuras.
- ▶ Desta forma, elimina-se o componente não-paramétrico da função de verossimilhança.

 $^{^3\}mathsf{Cox},\,\mathsf{D.}\,\mathsf{R.},\,\mathsf{Partial}$ likelihood, $\mathit{Biometrika},\,\mathsf{Volume}$ 62, Issue 2, August 1975, Pages 269–276.

Função de verossimilhança parcial

- A função de verossimilhança parcial é utilizada para fazer inferência no modelo de Cox.
- A verossimilhança parcial é formada pelo produto de todos os indivíduos da amostra:

$$L(\beta) = \prod_{i=1}^k \frac{\exp\{x_i'\beta\}}{\sum_{j \in R(t_i)} \exp\{x_j'\beta\}} = \prod_{i=1}^n \left(\frac{\exp\{x_i'\beta\}}{\sum_{j \in R(t_i)} \exp\{x_j'\beta\}}\right)^{\delta_i},$$

em que $R(t_i)$ é o conjunto dos índices das observações sob risco no tempo t_i , e δ_i é indicadora de falha ou censura.

▶ Os valores de β que maximizam $L(\beta)$ são as estimativas de máxima verossimilhança parcial, $\hat{\beta}$, de β .

Função de verossimilhança parcial

- A função de verossimilhança parcial proposta por Cox assume que os tempos de ocorrência de evento são distintos (ausência de tempos empatados).
- Para o caso de tempos de falha empatados, uma aproximação da função de verossimilhança deve ser usada.
- Entre as diversas propostas na literatura, as aproximações propostas por Breslow (1972)⁴ e Efron (1977)⁵ são as que mais comumente são encontradas nas implementações dos softwares de análise de sobrevivência.

⁴Breslow, N. (1972), Discussion on Professor Cox's Paper. *Journal of the Royal Statistical Society: Series B (Methodological)*, 34: 202-220.

⁵Bradley Efron (1977) The Efficiency of Cox's Likelihood Function for Censored Data, *Journal of the American Statistical Association*, 72:359, 557-565.

Inferência no modelo de Cox

- Assim como os EMV, os estimadores de máxima verossimilhança parcial, em amostras grandes, tem distribuição aproximadamente normal.
- Isto nos permite construir intervalos de confiança $100 \times (1 \alpha)\%$ para β_r (o efeito da r-ésima covariável)

$$\hat{\beta}_r \pm z_{1-\alpha/2} \widehat{ep}(\widehat{\beta}_r),$$

em que $z_{1-\alpha/2}$ é quantil correspondente na distribuição normal padrão, e $\widehat{ep}(\widehat{\beta}_r)$ é a estimativa do erro padrão de $\widehat{\beta}_r$.

Inferência no modelo de Cox

► Também podemos construir um teste de hipóteste para avaliar $H_0: \beta_r = 0$. O teste de Wald é bastante utilizado

$$z = \frac{\widehat{\beta}_r}{\widehat{ep}(\widehat{\beta}_r)} \stackrel{a}{\sim} N(0,1).$$

O teste da razão de verossimilhanças geralmente é usado para comparação de modelos.

Interpretação dos coeficientes estimados

- O efeito das covariáveis é de acelerar ou desacelerar a função de risco.
- A propriedade de taxas proporcionais é extremamente útil na interpretação dos coeficientes estimados.
- ▶ A razão das taxas de falha de dois indivíduos i e j que têm os mesmos valores para as covariáveis com exceção da l-ésima, tem-se

$$\frac{\lambda_i(t)}{\lambda_j(t)} = \exp\{\beta_l(x_{il} - x_{jl})\},\,$$

que é interpretado como a razão de taxas de falha (hazard ratio, HR; ou ainda "razão de riscos").

Interpretação dos coeficientes estimados

- Por exemplo, suponha que x_i seja uma covariável dicotômica indicando pacientes hipertensos.
 - A taxa de óbito entre os hipertensos é exp(β_I) vezes a taxa daqueles com pressão normal, mantida fixas as outras covariáveis.
- Uma interpretação similar é obtida para covariáveis contínuas.
 - ▶ Se, por exemplo, o efeito de idade (em anos) é $e^{\beta} = 1,05$ para este termo, tem-se com o aumento de 1 ano na idade, que a taxa de óbito aumenta em 5%.

Interpretação dos coeficientes estimados

- Estimativa pontual para $HR = \exp{\{\beta_l\}}$ pode ser obtida utilizando-se a **propriedade de invariância** do estimador de máxima verossimilhança parcial.
- Para obtenção da estimativa intervalar, é necessário obter uma estimativa do erro padrão de $\exp\{\hat{\beta}_l\}$.
 - Isto pode ser feito utilizando-se o método delta.
- Retornando ao exemplo dos pacientes hipertensos e com pressão normal:
 - O valor 1 pertencendo ao intervalo estimado, indica não haver evidências de que os riscos dos pacientes hipertensos e com pressão normal apresentem diferenças significativas.

Exemplo

Exemplo

Estudo sobre câncer de laringe

Neste exemplo, os dados considerados referem-se a um estudo realizado com 90 pacientes do sexo masculino diagnosticados no período de 1970 a 1978 com câncer de laringe e que foram acompanhados até 01/01/1983.

Para cada paciente, foram registrados, no diagnóstico:

- a idade (em anos);
- o estágio da doença (ordenados por grau de severidade da doença): I. tumor primário;
 - II. envolvimento de nódulos:
 - III. metástases:
 - IV. combinações dos 3 estágios anteriores.
- tempos de óbito ou censura (em meses).

```
## id tempos cens idade estagio
## 1 1 0.6 1 77 1
## 2 2 1.3 1 53 1
## 3 3 2.4 1 45 1
## 4 4 3.2 1 58 1
## 5 5 3.3 1 76 1
## 6 6 3.5 1 43 1
```

```
str(df.laringe)
## 'data.frame':
                   90 obs. of 5 variables:
   $ id
             : int 1 2 3 4 5 6 7 8 9 10 ...
    $ tempos : num 0.6 1.3 2.4 3.2 3.3 3.5 3.5 4 4 4.3 ...
   $ cens : int 1 1 1 1 1 1 1 1 1 1 ...
##
## $ idade : int 77 53 45 58 76 43 60 52 63 86 ...
   $ estagio: int 1 1 1 1 1 1 1 1 1 ...
summary(df.laringe)
##
         id
                                                         idade
                       tempos
                                                                        estagio
                                         cens
    Min.
           : 1.00
                   Min.
                          : 0.100
                                    Min.
                                           :0.0000
                                                     Min.
                                                            :41.00
                                                                     Min.
                                                                            :1.000
    1st Qu.:23.25
                   1st Qu.: 2.000
                                    1st Qu.:0.0000
                                                     1st Qu.:57.00
                                                                     1st Qu.:1.000
   Median :45.50
                   Median: 4.000
                                    Median :1.0000
                                                     Median :65.00
                                                                     Median :2.000
   Mean
        :45.50
                   Mean : 4.198
                                    Mean
                                           :0.5556
                                                     Mean :64.61
                                                                     Mean
                                                                            :2.222
##
   3rd Qu.:67.75
##
                   3rd Qu.: 6.200
                                    3rd Qu.:1.0000
                                                     3rd Qu.:72.00
                                                                     3rd Qu.:3.000
##
   Max.
           :90.00
                   Max.
                           :10.700
                                    Max.
                                           :1.0000
                                                     Max.
                                                            :86.00
                                                                     Max.
                                                                            :4.000
```

```
df.laringe$estagio <- factor(x = df.laringe$estagio,
                            levels = 1:4.
                            labels = c("I", "II", "III", "IV"))
str(df.laringe)
## 'data frame': 90 obs. of 5 variables:
   $ id : int 1 2 3 4 5 6 7 8 9 10 ...
##
##
   $ tempos : num 0.6 1.3 2.4 3.2 3.3 3.5 3.5 4 4 4.3 ...
   $ cens : int 1 1 1 1 1 1 1 1 1 ...
##
##
   $ idade : int 77 53 45 58 76 43 60 52 63 86 ...
   $ estagio: Factor w/ 4 levels "I","II","III",..: 1 1 1 1 1 1 1 1 1 1 ...
##
summary(df.laringe)
```

```
##
         id
                                                     idade
                      tempos
                                                                estagio
                                      cens
   Min.
        : 1.00
                                                        :41.00
                                                                T :33
##
                  Min.
                         : 0.100
                                  Min.
                                        :0.0000
                                                 Min.
##
   1st Qu.:23.25 1st Qu.: 2.000
                                  1st Qu.:0.0000
                                                 1st Qu.:57.00
                                                                II:17
   Median :45.50
                 Median : 4.000
                                  Median :1.0000
                                                 Median :65.00
                                                                TTT:27
##
   Mean :45.50 Mean : 4.198
                                  Mean : 0.5556
                                                 Mean :64.61
                                                                TV:13
##
##
   3rd Qu.:67.75 3rd Qu.: 6.200
                                  3rd Qu.:1.0000
                                                 3rd Qu.:72.00
                         :10.700
                                                        :86.00
##
   Max.
          :90.00
                  Max.
                                  Max.
                                        :1.0000
                                                 Max.
```

```
plot(ekm, conf.int = FALSE,
     mark.time = TRUE,
     col = c("#1B9E77", "#D95F02",
             "#7570B3", "#E7298A"),
    lwd = 2, xlab = "Tempo (meses)",
     ylab = "Sobrevivência estimada")
abline(h = seq(0, 1, by = 0.2),
       v = seq(0, 16, by = 4),
       col = "lightgrey", lty = 3)
legend("topright",
       c("I", "II", "III", "IV"),
       col = c("#1B9E77", "#D95F02",
             "#7570B3", "#E7298A"),
       lwd = 2, bty = "n")
```



```
survdiff(Surv(time = tempos, event = cens) ~ estagio,
             data = df.laringe)
## Call:
## survdiff(formula = Surv(time = tempos, event = cens) ~ estagio,
      data = df.laringe)
##
##
##
             N Observed Expected (0-E)^2/E (0-E)^2/V
## estagio=I 33
                    15
                          22.57
                                  2.537 4.741
               7 10.01 0.906 1.152
## estagio=II 17
## estagio=III 27 17 14.08 0.603 0.856
## estagio=IV 13 11 3.34 17.590 19.827
##
##
   Chisq= 22.8 on 3 degrees of freedom, p= 5e-05
```

```
mod1 <- coxph(Surv(time = tempos, event = cens) ~ estagio,</pre>
            data = df.laringe, method = "breslow")
summary(mod1)
## Call:
## coxph(formula = Surv(time = tempos, event = cens) ~ estagio,
      data = df.laringe. method = "breslow")
##
##
##
   n= 90, number of events= 50
##
             coef exp(coef) se(coef) z Pr(>|z|)
##
## estagioII 0.06576 1.06797 0.45844 0.143 0.8859
## estagioIV 1.72284 5.60040 0.41966 4.105 4.04e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
           exp(coef) exp(-coef) lower .95 upper .95
## estagioII 1.068 0.9364 0.4348 2.623
## estagioIII 1.844 0.5422 0.9193 3.700
## estagioIV 5.600 0.1786 2.4604 12.748
```

```
##
## Concordance= 0.668 (se = 0.037)
## Likelihood ratio test= 16.26 on 3 df, p=0.001
## Wald test = 18.95 on 3 df, p=3e-04
## Score (logrank) test = 22.46 on 3 df, p=5e-05
```

```
mod2 <- coxph(Surv(time = tempos, event = cens) ~ idade,
              data = df.laringe, method = "breslow")
summary(mod2)
## Call:
## coxph(formula = Surv(time = tempos, event = cens) ~ idade, data = df.laringe
      method = "breslow")
##
##
    n= 90. number of events= 50
##
##
##
           coef exp(coef) se(coef) z Pr(>|z|)
## idade 0.02318    1.02345    0.01447    1.602    0.109
##
        exp(coef) exp(-coef) lower .95 upper .95
##
## idade
            1.023
                     0.9771 0.9948
                                          1.053
##
## Concordance= 0.555 (se = 0.046)
## Likelihood ratio test= 2.61 on 1 df. p=0.1
## Wald test = 2.57 on 1 df, p=0.1
## Score (logrank) test = 2.58 on 1 df, p=0.1
```

```
mod3 <- coxph(Surv(time = tempos, event = cens) ~ estagio + idade,</pre>
             data = df.laringe, method = "breslow")
summary(mod3)
## Call:
## coxph(formula = Surv(time = tempos, event = cens) ~ estagio +
      idade, data = df.laringe, method = "breslow")
##
##
##
    n= 90. number of events= 50
##
              coef exp(coef) se(coef) z Pr(>|z|)
##
## estagioII 0.13856 1.14862 0.46231 0.300 0.764
## estagioIII 0.63835 1.89335 0.35608 1.793 0.073 .
## estagioIV 1.69306 5.43607 0.42221 4.010 6.07e-05 ***
## idade 0.01890 1.01908 0.01425 1.326 0.185
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
            exp(coef) exp(-coef) lower .95 upper .95
## estagioII 1.149 0.8706 0.4642 2.842
## estagioIII 1.893 0.5282 0.9422 3.805
```

```
## estagioIV 5.436 0.1840 2.3763 12.436

## idade 1.019 0.9813 0.9910 1.048

##

## Concordance= 0.682 (se = 0.039 )

## Likelihood ratio test= 18.07 on 4 df, p=0.001

## Wald test = 20.82 on 4 df, p=3e-04

## Score (logrank) test = 24.33 on 4 df, p=7e-05
```

Para casa

- 1. Leia o capítulo 5 do livro Análise de sobrevivência aplicada⁶.
- Leia os capítulo 6 do livro Análise de sobrevivência: teoria e aplicações em saúde⁷.

⁶Colosimo, E. A. e Giolo, S. R. **Análise de sobrevivência aplicada**, Blucher, 2006.

⁷Carvalho, M. S., Andreozzi, V. L., Codeço, C. T., Campos, D. P., Barbosa, M. T. S. e Shimakura, E. S. **Análise de sobrevivência: teoria e aplicações em saúde**, 2ª ed. Editora Fiocruz, 2011.

Próxima aula

- Estimação de funções relacionadas a $\lambda_0(t)$.
- ► Adequação do modelo de Cox.
 - Análise de resíduos.

Por hoje é só!

Bons estudos!

