MATH 307: Individual Homework 15

Shaochen (Henry) ZHONG, sxz517@case.edu

Due and submitted on 03/31/2021 Spring 2021, Dr. Guo

Problem 1

Textbook page 80, problem 1.

W.T.S.
$$||Ax|| \le ||A|| \, ||x||$$

Since
$$\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

There must be $\frac{\|Ax\|}{\|x\|} \leq \|A\|$
 $\implies \|Ax\| \leq \|A\| \|x\|$

W.T.S. $||AB|| \le ||A|| \, ||B||$

$$||AB|| = \sup_{x \neq 0} \frac{||(AB)x||}{||x||} = \sup_{||x||=1} ||A(Bx)||$$

$$\leq \sup_{||x||=1} ||A|| ||B(x)||$$

$$\leq \sup_{||x||=1} ||A|| ||B||$$

$$||x|| = ||A|| ||B||$$

$$||AB|| \leq ||A|| ||B||$$

Problem 2

Textbook page 80, problem 2.

 ∞ **norm** As $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$, we will take the maximum row sum of the matrix, which is |-20| + |20| + |2| + |-2| + |0| = 44.

1-norm Similar to the ∞ norm above, as $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$, we will take the maximum column sum of the matrix, which is |4| + |-1| + |5| + |20| = 30.

Frobenius norm As $||A||_F = \sqrt{\sum_{i=j}^{m} \sum_{j=1}^{n} |a_{ij}|^2}$, we will take the square of each entries, add them together, and square root it. For simplicity I will omit the copying, the result should be $\sqrt{1279}$.

Problem 3

Textbook page 80, problem 3.

W.T.S.
$$||PA||_2 = ||A||_2$$

Known that for an orthogonal matrix A, there must be $A^TA = I$; and also known $||A|| = \sqrt{A^TA}$. Note

$$\begin{aligned} \|QA\| &= \sqrt{(QA)^T QA} = \sqrt{A^T Q^T QA} \\ &= \sqrt{A^T IA} = \sqrt{A^T A} \\ &= \|A\| \end{aligned}$$

Since this relationship is not restricted to any p-norm, we may have $\|QA\|_2 = \|A\|_2$.

W.T.S.
$$||AQ||_2 = ||A||_2$$

Known that $||Qx||_2 = \sqrt{\langle Qx, Qx \rangle} = \sqrt{\langle x, Q^TQx} = \sqrt{\langle x, x \rangle} = ||x||_2$, we have:

$$||AQ||_2 = \sup_{||x||_2=1} ||AQx||_2 = \sup_{||Qx||_2=1} ||A(Qx)||_2$$

= $\sup_{||y||_2=1} ||Ay||_2 = ||A||_2$

Problem 4

Textbook page 80, problem 4.

 $\max(A) = \max\{a_{ij}\}\$ is not a norm as it does not support non-negetivity $\max(A) > 0$ when $A \neq 0$. Take a matrix with all negative entries, say $A = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$. We have $\max(A) = -1 < 0$, non-negetivity is violated and therefore not a norm.

 $\max(|AB|) = \max\{|a_{ij}|\}$ is also not a norm as it does not support submultiplicative $\max(AB) \le \max(A)\max(B)$. Take $A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, we have:

$$\max(|AB|) = \max\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}) = \max\begin{pmatrix} \begin{bmatrix} |2| & |2| \\ |2| & |2| \end{bmatrix}) = 2$$
$$\max(|A|) \max(|B|) = \max\begin{pmatrix} \begin{bmatrix} |1| & |1| \\ |1| & |1| \end{bmatrix}) \max\begin{pmatrix} \begin{bmatrix} |1| & |1| \\ |1| & |1| \end{bmatrix} \end{pmatrix} = 1$$
$$\implies \max(AB) > \max(A) \max(B)$$

As submultiplicative is violated, it is also not a norm.