由一对特性及参数完全相同的NPN和

PNP采用共集电极接法,上下拼接而成

1、双电源互补对称功放(OCL功放)

特点:两个电路工作在乙类状态。

(1) 静态分析 $\longrightarrow V_B = V_E = 0$ 两个管子的发射结都没有正偏

 $I_B=0$, $I_C=0$ → 没有静态损耗 → η 最大

只有加入交流信号后,直流电源才供能

- (2) 动态分析 共集电极接法 $\longrightarrow u_0 \approx u_i$
 - ① 正半周期 $\rightarrow V_B > V_E \rightarrow NPN$ 工作PNP截止 $\rightarrow + V_{CC}$ 提供能量给 u_o
 - ② 负半周期 $\rightarrow V_B < V_E \rightarrow NPN截止PNP工作 \rightarrow -V_{CC}$ 提供能量给 u_o

工作原理:利用NPN和PNP的交替工作来实现输出波形的不失真

+V_{cc}保证NPN的V_c最高 -V_{cc}保证PNP的V_c最低

由一对特性及参数完全相同的NPN和

PNP采用共集电极接法,上下拼接而成

1、双电源互补对称功放(OCL功放)

(1) 计算给定条件下的 P_0 、 P_V 、 η 、 P_{T1}

输出功率
$$P_{o} = U_{o}I_{o} = \frac{U_{o}^{2}}{R_{L}} = \frac{(U_{om}/\sqrt{2})^{2}}{R_{L}} = \frac{U_{om}^{2}}{2R_{L}}$$
问题: $U_{om} = ?$ 交流量的有效值
题型① 已知 $u_{i} = ?$ $u_{o} \approx u_{i}$ $U_{om} = U_{im} = \sqrt{2}U_{i}$

题型① 已知
$$u_i$$
=? $u_o \approx u_i$ $U_{om} = U_{im} = \sqrt{2}U$

题型② 已知 U_{CES} ,求最大不失真时的 $U_{\text{om}} = V_{CC} - U_{\text{CES}}$

电源功率
$$P_{V} = 2P_{V1} = 2(V_{CC} \times \frac{1}{2\pi} \int_{0}^{\pi} I_{om} \sin \omega t \ d\omega t) = \frac{2V_{CC}I_{om}}{\pi} = \frac{2V_{CC}U_{om}}{\pi R_{L}}$$

转換效率
$$\eta = \frac{P_o}{P_V} = \frac{\pi}{4} \frac{U_{om}}{V_{CC}}$$
 单管管耗 $P_{T1} = \frac{P_V - P_o}{2}$

:: 电压同相跟随

$$\begin{array}{c|c}
 & +V_{CC} \\
 & NPN \\
 & T_1 \downarrow U_{CES}
\end{array}$$

$$\begin{array}{c|c}
 & PNP \\
 & T_2 & R_L \downarrow \downarrow u_0
\end{array}$$

$$\int \omega t \ d\omega t = \frac{2V_{CC}I_{om}}{\pi} = \frac{2V_{CC}U_{om}}{\pi R_L}$$

由一对特性及参数完全相同的NPN和

PNP采用共集电极接法,上下拼接而成

- 1、双电源互补对称功放(OCL功放)
- (1) 计算给定条件下的 P_0 、 P_V 、 η 、 P_{T1}
- (2) 计算理想情况下的 $P_{\rm om}$ 、 $P_{\rm Vm}$ 、 $\eta_{\rm m}$

$$P_{om} = \frac{V_{CC}^2}{2R_I}$$

$$P_{Vm} = \frac{2V_{CC}^2}{\pi R_I}$$

$$\eta_m = \frac{\pi}{\Delta} \approx 78.5\%$$

$$P_o = \frac{U_{om}^2}{2R_I}$$

$$P_o = \frac{U_{om}^2}{2R_L} \qquad P_V = \frac{2V_{CC}U_{om}}{\pi R_L}$$

注意:理想情况下的管耗 \neq 最大管耗 当 $U_{om}=?$ 时, P_{T1} 达到最大?

$$P_{T1} = \frac{P_V - P_O}{2} = \frac{V_{CC}U_{om}}{\pi R_L} - \frac{U_{om}^2}{4R_L} \qquad \frac{dP_{T1}}{dU_{om}} = \frac{V_{CC}}{\pi R_L} - \frac{U_{om}}{2R_L} \qquad \diamondsuit \frac{dP_{T1}}{dU_{om}} = 0$$

当
$$U_{\text{om}} = \frac{2V_{CC}}{\pi} \approx 0.636V_{CC}$$
时 P_{T1} 最大 $P_{T1m} = \frac{V_{CC}^2}{\pi^2 R_L} = \frac{2V_{CC}^2}{\pi^2 2R_L} = \frac{2}{\pi^2} P_{om} \approx 0.2P_{om}$

$$\frac{dP_{T1}}{dU_{om}} = \frac{V_{CC}}{\pi R_L} - \frac{U_{om}}{2R_L} \qquad \Rightarrow \frac{dQ_{om}}{dQ_{om}}$$

$$P_{T1m} = \frac{V_{CC}^2}{\pi^2 R_I} = \frac{2V_{CC}^2}{\pi^2 2R_I} = \frac{2}{\pi^2} P_{ob}$$

$$\diamondsuit \frac{dP_{T1}}{dU_{om}} = 0$$

由一对特性及参数完全相同的NPN和

PNP采用共集电极接法, 上下拼接而成

1、双电源互补对称功放(OCL功放)

(3) 如何选管?→给出T的安全工作区 P104

T正常工作: 发射结正偏,集电结反偏

- ① 集电极最大允许电流 $I_{CM} \ge I_{LM} = \frac{V_{CC}}{R_L} u_i$
- ② 集电结反向击穿电压 $U_{(BR)CEO} \ge 2V_{CC}$
 - : 两个管不会同时截止而是交替工作
 - :理想情况下工作的三极管的 U_{CES} 可忽略
 - :每个管子截止时需承担 $2V_{CC}$ 的反向电压
- ③ 集电结最大允许损耗功率 $P_{\text{CM}} \ge$ 最大管耗 $P_{\text{TM1}} \approx 0.2P_{\text{om}}$

: 输入功放的是大电压

: 在最严重情况也不超 过三极管的极限参数

例题: 已知
$$T_1$$
的 U_{CES} =2 V , R_L =8 Ω 单管 U_{CES} 一般 $\leq 1V$ 复合管的 U_{CES} >1 V

$$L=8\Omega$$
 年音 U_{CES} 汉二 复合管的 $U_{CES}>1$

(1) 求最大不失真的
$$U_{\rm om}$$
、 $P_{\rm O}$ 、 $P_{\rm V}$ 、 η 、 $P_{\rm T1}$

(2) 求理想情况下的
$$U_{\mathrm{om}}$$
、 P_{om} 、 P_{Vm} 、 η_m

(3) 如何选管?
$$P_{T1} = \frac{P_V - P_O}{2} = 3.47W \quad u_i - \frac{1}{2}$$
 解答讨程:

(1)
$$U_{\text{om}} = V_{\text{CC}} - U_{\text{CES}} = 16V$$
 $P_O = \frac{U_{om}^2}{2R_L} = 16W$

$$\pi = 3.14 \ P_V = \frac{2V_{CC}U_{om}}{\pi R_L} = 22.93W \ \eta = \frac{P_O}{P_V} = 69.8\% = \frac{\pi}{4} \frac{U_{om}}{V_{CC}}^{(-18V)}$$

(2)
$$U_{\text{om}} = V_{\text{CC}} = 18V$$
 $P_{om} = \frac{V_{CC}^2}{2R_L} = 20.25W$ $P_{Vm} = \frac{2V_{CC}^2}{\pi R_L} = 25.80W$ $\eta_m = \frac{\pi}{4} \approx 78.5\%$

(3)
$$P_{CM} \ge 0.2 P_{om} = 4.05 W$$
 $I_{CM} \ge \frac{V_{CC}}{R_I} = 2.25 A$ $U_{(BR)CEO} \ge 2 V_{CC} = 36 V$

思考: 乙类OCL功放的不足? 静态时 $V_B=V_E=0$

::三极管存在死区电压 ← 失真原因

 $: u_i > 0.7V$, T_1 (NPN)才开始工作

 $V_{B1}=0$

B1和B2之

注意:甲乙类功放仅保证静态时 T_1 、 T_2 微导通,静态损耗不大,因此计算时仍然采用乙类计算公式。

静态时,通过 D_1 、 D_2 微导通,保证 T_1 、 T_2 微导通,克服交越失真

 T_1 和 T_2 间的基极电位差设置成可调,克服交越失真效果更好

保证两管集电结反偏

① $+V_{CC}$ 保证NPN的 V_{C} 最高 1、双电源互补对称功放(OCL功放) // $-V_{CC}$ 保证PNP的 V_{C} 最低

特点:需要两个直流电源共同作用 2 交替提供能量给输出端

思考:如何减少电源个数? → 利用大电容代替另一个电源

2、单电源互补对称功放(OTL功放)

OTL功放的工作原理 利用电容的储能性质代替负电源工作

(1) 静态分析 \longrightarrow 利用对称性或调节的方式保证 $V_B = V_E = \frac{V_{CC}}{2}$

NPN: $V_C = +V_{CC} > V_B$ PNP: $V_C = 0 < V_B \longrightarrow$ 两管集电结反偏上下电路处于乙类状态 $\longleftarrow I_B = 0$, $I_C = 0 \longleftarrow$ 发射结没有正偏 \longleftarrow

- (2) 动态分析 结论2: OTL功放可以等效成 $\pm V_{cc}/_2$ 的OCL功放
- ① 正半周期 $\rightarrow V_B > V_E \rightarrow NPN$ 工作PNP截止 $+V_{CC}$ 只提供 $\frac{V_{CC}}{2}$ 的能量给 u_o $u_i \uparrow (V)$ 剩下 $\frac{V_{CC}}{2}$ 的能量储存在电容 C_o
- ② 负半周期→V_B<V_E
 NPN截止PNP工作

由电容 C_0 提供 $\frac{V_{cc}}{2}$ 能量给 u_o

结论1: OTL功放的工作原理与OCL相同

OTL功放

- (1) 计算给定条件下的 U_{om} 、 P_{O} 、 P_{V} 、 η
- 功放 (2) 计算理想情况下的 U_{om} 、 P_{Om} 、 P_{Vm} 、 η_{m} 一有公式的
- 计算 (3) 单管的 P_{CM} 、 I_{CM} 、 $U_{(\text{BR})\text{CEO}}$ 如何选择? $\bigvee_{\text{CC}} \rightarrow \frac{V_{\text{CC}}}{2}$

把OCL所

技巧: 令 V_{CC} '= $\frac{V_{CC}}{2}$ →把OCL所有公式中的 V_{CC} 改成 V_{CC} '

(1) 计算给定条件下的 U_{om} 、 P_{O} 、 P_{V} 、 η

$$u_i = 10 \sin \omega t$$

题型① 已知 u_i =? 共集电极接法 \longrightarrow $u_o \approx u_i$ $U_{om} = U_{im} = \sqrt{2}U_i$

$$U_{\text{om}} = U_{i\text{m}} = \sqrt{2}U_i$$

题型② 已知 U_{CES} ,求最大不失真时的 $U_{\text{om}} = V_{\text{CC}}$ U_{CES}

$$P_{O} = \frac{U_{om}^{2}}{2R_{L}}$$
 $P_{V} = \frac{2V_{CC}^{2}U_{om}}{\pi R_{L}}$ $\eta = \frac{P_{O}}{P_{V}} = \frac{\pi U_{om}}{4V_{CC}^{2}}$

(2) 理想情况: 忽略 U_{CES} , 当 $U_{om} = V_{\text{CC}}$ '时

$$P_{Om} = \frac{V_{CC}'^2}{2R_L} \qquad P_{Vm} = \frac{2V_{CC}'^2}{\pi R_L} \qquad \eta_m = \frac{\pi}{4} \approx 78.5 \% \quad u_i + \frac{1}{4}$$

(3)
$$P_{CM} \ge 0.2P_{om}$$
 $U_{(BR)CEO} \ge 2V_{CC}$ ' $I_{CM} \ge V_{CC}$ '

例题: 己知
$$U_i$$
=1 V , R_L =3.5 Ω

- (1) 求 U_{om} 、 P_{O} 、 P_{V} 、 η
- (2) 求理想的 P_{om} 、 P_{Vm} 、 η_m
- (3) 如何选管?

$$\Leftrightarrow V_{\rm CC}' = \frac{V_{\rm CC}}{2} = 3V$$

(1)
$$U_{\text{om}} = U_{im} = \sqrt{2}V$$

$$P_O = \frac{U_{om}^2}{2R} = 0.286W$$
 $P_V = \frac{2V_{CC}'U_{om}}{\pi R_V} = 0.77W$

$$\eta = \frac{P_O}{P_V} = 37\% = \frac{\pi}{4} \frac{U_{om}}{V_{cc}}$$

(2)
$$U_{\text{om}} = V_{\text{CC}}' = 3V$$
 $P_{om} = \frac{V_{CC}'^2}{2R_*} = 1.29W$

$$P_{Vm} = \frac{2V_{CC}^{2}}{\pi R} = 1.64W$$
 $\eta_{m} = \frac{\pi}{4} \approx 78.5 \%$

(3)
$$I_{CM} \ge \frac{V_{CC}'}{R_L} = 0.86A$$

$$U_{(BR)CEO} \ge 2V_{CC}' = 6V$$

$$P_{CM} \ge 0.2 P_{om} = 0.258W$$

特点:利用一对特性及参数完全相同的NPN和PNP型三极管,

采用共集电极接法,上下拼接而成。 $P_o = U_o I_o$ $i_e = (1+\beta)i_b$

问题1: 难以实现NPN和PNP完全对称 问题2: 单管的 β 值不够大

五、复合管准互补对称功率放大电路 P194-195

复合管:利用两个三极管组合成一个等效三极管

结论: 等效三极管的类型由复合管的第一级决定 $\beta \approx \beta_1 \beta_2$

$$\beta \approx \beta_1 \beta_2$$

第一级采用不同类型的小功率管,第二级采用相同的大功率管

P198 6-5 某学生设计的OTL功放电路:

(1) 为实现输出最大幅值正负对称,

静态时A点的电位应为多大? $V_A = \frac{V_{CC}}{2}^D$

复合管的第二级用相同的管保证对称性

(2) 若 U_{CE3} 和 U_{CE5} 的最小值约为3V,求最大不失真时的 P_{O} 、 P_{V} 、 η ?

OTL功放
$$\longrightarrow$$
 令 $V_{CC}' = \frac{V_{CC}}{2} = 10V$

$$U_{om} = V_{CC}$$
' $-U_{CES} = 7V$

$$P_{O} = \frac{U_{om}^{2}}{2R_{L}} = \frac{49}{16} \approx 3.06W \quad P_{V} = \frac{2V_{CC}'U_{om}}{\pi R_{L}} = \frac{35}{2\pi} \approx 5.57W \quad \eta = \frac{P_{O}}{P_{V}} = \frac{\pi U_{om}}{4V_{CC}'} = \frac{7\pi}{40} \approx 54.95\%$$

提示: T2、T3构成了复合管,可等效成一个NPN管;

 T_4 、 T_5 构成了复合管,可等效成一个PNP管。

 T_1 采用共发射极接法,目的在于放大 u_i

P198 6-5 某学生设计的OTL功放电路:

(1) 为实现输出最大幅值正负对称,

静态时A点的电位应为多大? $V_A = \frac{V_{CC}}{2}$ D

复合管的第二级用相同的管保证对称性

(2) 若 U_{CE3} 和 U_{CE5} 的最小值约为3V, 求最大不失真时的 $P_{\rm O}$ 、 $P_{\rm V}$ 、 η ?

OTL功放
$$\rightarrow \diamondsuit V_{CC}' = \frac{V_{CC}}{2} = 10V$$

$$U_{om} = V_{CC}$$
'- $U_{CES} = 7V$

$$P_{O} = \frac{U_{om}^{2}}{2R_{L}} = \frac{49}{16} \approx 3.06W \quad P_{V} = \frac{2V_{CC}'U_{om}}{\pi R_{L}} = \frac{35}{2\pi} \approx 5.57W \quad \eta = \frac{P_{O}}{P_{V}} = \frac{\pi U_{om}}{4V_{CC}'} = \frac{7\pi}{40} \approx 54.95\%$$

(3) T_3 和 T_5 的 P_{CM} 、 I_{CM} 、 $U_{(BR)CEO}$ 如何选? $P_{CM} \ge 1.25W$

$$I_{CM} \ge \frac{V_{CC}'}{R_{c}} = 1.25A$$
 $U_{(BR)CEO} \ge 2V_{CC}' = 20V$ $P_{CM} \ge 0.2P_{om} \ne 0.2P_{o}$

(4) D和R_p的作用? →克服交越失真 $P_{Om} = \frac{(V_{CC}')^2}{2R_r} = 6.25$ W

$$P_{Om} = \frac{(V_{CC}')^2}{2R_L} = 6.25$$
W

作业1 P198 6-3、6-2

- 6-3 电路如右图所示
- (1) 已知 $u_i = 10 \sin \omega t$, 求此时的 P_0 、 P_V 、 η 、 P_{T1}
- (2) 求理想情况下的 P_{om} 、 P_{Vm} 、 η_m
- (3) T_1 、 T_2 的 P_{CM} 、 I_{CM} 、 $U_{(BR)CEO}$ 如何选择?

作业2:实验七预习

请针对右图电路回答以下问题:

1、该电路的名称是()功率放大电路。

A、乙类 OCL

B、甲乙类 OCL

C、乙类 OTL

D、甲乙类 OTL

2、该电路通常作为多级放大电路的()。

A、输入级 B、中间级 C、输出级

3、从图标箭头可判断 T₁ 和 T₂ 分别是()和(

类型的三极管:它们均采取()接法。

A、共发射极 B、共基极 C、共集电极

- 4、该电路的工作原理是什么?
- 5、当 S1 打开时,若已知二极管的管压降 $U_D=0.8V$,请估算 T1 管的 $V_C=(?)V$, $V_B=(?)V$,

$$V_{\rm E}$$
= (?) V; T2 管的 $V_{\rm E}$ = (?) V, $V_{\rm B}$ = (?) V, $V_{\rm C}$ = (?) V.

- 6、当 S1 闭合后,若已知 U_{im} =6V,请估算以下物理量的值:(要求先写公式后带入数据计算)
- 1) 求此时的输出功率 $P_{\rm O}$ 、电源功率 $P_{\rm V}$ 、转换效率 η
- 2) 求理想情况下的 P_{om} 、 P_{Vm} 、 η_m
- 3) T_1 、 T_2 的 P_{CM} 、 I_{CM} 、 $U_{(BR)CEO}$ 如何选择?

