QUANTIFIERS, METHODS OF PROOF

COMPUTER SCIENCE MENTORS 70

Independent review

1 Quantifiers

1.1 Questions

1. Let P(x, y) denote some proposition involving x and y. For each statement below, either prove that the statement is correct or provide a counterexample if it is false.

a.
$$\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$$
.

b.
$$\exists x \exists y P(x,y) \implies \exists y \exists x P(x,y)$$
.

c.
$$\forall x \exists y P(x,y) \implies \exists y \forall x P(x,y)$$
.

d.
$$\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$$
.

2 Contrapositive and Contradiction

2.1 Questions

- 1. Write the contrapositive of the following statements and, if applicable, the statement in mathematical notation. (Using quantifiers, etc.)
 - a If a quadrilateral is not a rectangle, then it does not have two pairs of parallel sides. (Skip mathematical notation for this problem, just write the contrapositive)

b For all natural numbers a where a^2 is even, a is even.

c Negate this statement: For all integers x, there exists an integer y such that $x^2+y=16$.

GROUP	THTORING	HANDOUT 0: (DITANTIFIERS	METHODS	OF PROOF
GROUI		TIMINDOUT U.	JUANTIFIERS	, MILTITODS	OF I KOOF

Page 3

2. Prove or disprove: If $P \implies Q$ and $R \implies \neg Q$, then $P \implies \neg R$.

Proof by Cases

3.1 Questions

1. For any integer x, x^2 has remainder 1 or 0 when divided by 3.

4 Induction

4.1 Questions

1. What are the three steps of induction?

2. Prove that $\sum_{i=0}^{n} i * i! = (n+1)! - 1$ for $n \ge 1$ where $n \in N$.

3.5	-	. •
More	リヤコ	CtICO

Use any method of proof to answer the following questions.

1. Let x be a positive real number. Prove that if x is irrational (i.e., not a rational number), then \sqrt{x} is also irrational.

2. McDonalds sells chicken McNuggets only in 6, 9, and 20 piece packages. This means that you cannot purchase exactly 8 pieces, but can purchase 15. The Chicken McNugget Theorem states that the largest number of pieces you cannot purchase is 43. Formally state the Chicken McNugget Theorem using quantifiers.