Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism

Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das , Scott Mahlke

2019-07-18

Park Sang Soo

Introduction: Sparse matrix

• Weight pruning 방법들은 pruning 후에 평균 80% 정도의 weight가 없어 졌지만, 실제로 퍼포먼스는 떨어지는 경우가 많음

Introduction: Sparse matrix

- Pruning된 네트워크의 행렬 곱은 sparse하게 되기 때문에 남은 weight들은 sparse matrix format으로 저장
- Sparse weight matrix는 기존의 dense matrix가 가지고 있던 일정한 구조를 잃게 되며, 곱을 행할 때 sparse format을 디코드하기 위한 추가적인 연산이 필요

Introduction: SIMD

- 프로세서 내부에서는 벡터 연산을 위한 Single Instruction Multiple Data (SIMD) 연산기가 있음
- SIMD 연산기를 사용하여 딥러닝의 곱셈과 덧셈을 병렬화

Introduction: SIMD

- SIMD 연산기를 사용하여 여러개의 곱셈/덧셈을 병렬로 계산
- 알고리즘 특성으로 인하여 연산기를 다 사용하지 못하는 경우 발생

Introduction: SIMD

- 한번에 최대 4개의 곱셉/덧셈을 계산할 수 있는 SIMD 연산기
- 첫번째 경우 (3개 병렬 계산), 두번째, 마지막 경우 (2개 병렬)

Pruning technique

SIMD-Aware Pruning

- RMS를 사용하여 연산 능력과 동일한 개수의 aligned 그룹 생성
- Threshold보다 작은 그룹은 제거, Dropout을 사용하여 overfitting 방지 [Han]

Node Pruning (=Channel Pruning)

Figure 12: Mask layers. Node A-3 with $\alpha_3 = 0$ can be removed. The whole mask layer A' will be removed after pruning all redundant nodes.

- Weight를 Pruning하는 것이 아니라 Node를 Pruning
- 마스크를 사용하여 중요하지 않는 노드를 찾고, 그 출력을 막음
- FC에서는 한 뉴런, Conv에서는 피쳐맵을 하나의 노드로 간주 (Dense 구조 유지)

Node Pruning (=Channel Pruning)

$$lpha_i|_k = \begin{cases} 1, & T + \varepsilon \leqslant eta_i|_k \\ lpha_i|_{k-1}, & T \leqslant eta_i|_k < T + \varepsilon \\ 0, & eta_i|_k < T \end{cases}$$
 $R_{i,L1} = \lambda |eta_i| = \lambda \beta_i$

- 각 노드 마스크는 α (바이너리), β (0과 1사이의 실수 값) 두개의 파라미터
- □, □러는 레이어 □의 원래 출력, 마스크 □러에 의해 마스킹 된 출력
- $y'_i = \alpha_i * yi_{\square}$ 노드 제거 (α =0), Dropout을 사용하여 overfitting 방지 [Han]

Experimental Result: SIMD-Aware

Figure 13: Relative execution time for sparse matrix-vector multiplication (FC layers) on Intel Core i7-6700. The matrix size is 4096 x 4096 and the vector size is 4096. MKL-Dense/Sparse show the results of dense and sparse weight matrix with the Intel MKL library.

Figure 14: Relative execution time for sparse matrix-matrix multiplication (CONV layers) on Intel Core i7-6700. The weight matrix and input matrix have the size of 128 x 1200 and 1200 x 729, respectively.

- SIMD-Spare (SIMD-Aware), Simple-Sparse (CSR)
- Intel's BALS (Math Kernel Lib, MKL)

Experimental Result: All Pruning

Figure 18: Relative performance speedups of the original models, traditional pruning, optimized pruning and Scalpel on Intel Core i7-6700 CPU.

Figure 19: Relative model sizes of the original models, traditional pruning, optimized pruning and Scalpel for Intel Core i7-6700 CPU.

- Traditional (DeepCompression), Optimized (Channel Pruning)
- Scapel (SIMD-Aware + Node Pruning)

Experimental Result: Accuracy and Time

Networks	Num of Layers		Test	Error
Networks	CONV	FC	Dataset	Rate
LeNet-300-100	0	3	MNIST	1.50%
LeNet-5	2	2		0.68%
ConvNet	3	1	CIFAR-10	18.14%
NIN	9	0	CITAR-10	10.43%
AlexNet	5	3	ImageNet	19.73%
			Imagervet	(top-5)

Hardware	DNNs	Speedup	Relative Size
Micor- controller	LeNet-300-100	9.17x	6.93%
	LeNet-5	3.51x	6.72%
	ConvNet	1.38x	40.95%
CPU	LeNet-300-100	6.86x	7.08%
	LeNet-5	4.15x	5.20%
	ConvNet	1.58x	44.28%
	NIN	1.22x	81.16%
	AlexNet	2.20x	13.06%
GPU	LeNet-300-100	1.08x	66.83%
	LeNet-5	1.59x	11.67%
	ConvNet	1.14x	45.40%
	NIN	1.17x	81.16%
	AlexNet	1.35x	76.52%

- AlexNet in DeepCompression: Top5 (19.846%), 11% (9x) compressed
- LeNet-300-100/LeNet-5: Top1 (1.58/0.74%), 3.1% (32x) compressed_□

Experimental Result: Conclusion

Table 4: Percentage of nodes removed by node pruning in each layer. Output layers are not included.

DNNs	Percentage of Nodes Removed in Each Layer	
LeNet-	31% (fc1)- 32% (fc2)	
300-100	3170 (101)- 3270 (102)	
LeNet-5	50% (conv1)- 68% (conv2)- 65% (fc3)	
ConvNet	28% (conv1)- 25% (conv2)- 49% (conv3)	
NIN	28% (conv1)- 20% (cccp1)- 5% (cccp2)-	
	2% (conv2)- 14% (cccp3)- 8% (cccp4)-	
	22% (conv3)- 48% (cccp5)	
AlexNet	3% (conv1)- 20% (conv2)- 24% (conv3)-	
	18%(conv4)-0%(conv5)-17%(fc6)-23%(fc7)	

Zero Activation in DeepCompresison

78.83% (conv1)–30.80%(conv2)-71.05%(conv3) -62.79%(conv4)–43.78%(conv5)–43.92%(fc6)–48.19%(fc7)

- Compression과 Execution time에서 효과적이긴 하지만
- Fine-grain한 방법에 비해 Compression 효과가 미비함