

```
▼ Исходные данные
```

```
Коэф. запаса:
                   safety = 1.3
                                                                        turbine = "ТВД"
Горючее:
             Fuel = "Керосин"
Высота движения (м): H_{11} = 0
                                                                  32.30
Массовый расход перед Т (кг/с):
                                                                                                                 32.30
                                                                               if turbine = "ТВД"
Массовый расход утечек Т (кг/с):
                                                              106.96.10
                                                                                                                  0.11
                                          G<sub>cooling</sub>
Массовый расход на охл Т (кг/с):
                                                                              if turbine = "ТНД"
                       N_T = 10^6 \cdot 14.893 if turbine = "TBД" = 14.893 \cdot 10^6
Мощность Т (Вт):
                                      15.181 if turbine = "ТНД"
                                        P_{\Gamma}^* = 10^3 \cdot | 2731.8 \text{ if turbine} = "ТВД" = 2731.8 \cdot 10^3
Полное давление перед Т (Па):
                                                       927.5 if turbine = "ТНД"
                                         T^*_{\Gamma} = \begin{vmatrix} 1773 & \text{if turbine} = "ТВД" = 1773.0 \\ 1368.9 & \text{if turbine} = "ТНД" \end{vmatrix}
Полная температура перед Т (К):
                                \alpha_{\rm ox} = 2.267 if turbine = "ТВД" = 2.267
Коэф. избытка воздуха в Т:
                                           2.493 if turbine = "ТНД"
                                                                  P^*_{\text{cooling}} = 10^3 \cdot | 2845.6 \text{ if turbine} = "ТВД" = 2845.6 \cdot 10^3
Полное давление отбора охлаждающего воздуха (К):
                                                                                        319.4 if turbine = "ТНД"
                                                                                   806.9 if turbine = "ТВД" = 806.9
Полная температура отбора охлаждающего воздуха (К):
                                                                   T*cooling =
                                                                                    418.2 if turbine = "ТНД"
                                                          \sigma_{\text{cooling}} = 0.97
Коэф. сохранения полного давления охлаждения:
Подогрев охл. от КС [К]:
                               \Delta T_{\text{охл.подогрев}} = 40
Газовая постоянная (Дж/кг/К): R_{\Gamma a3}(\alpha_{ox}, Fuel) = 288.5
```

 $T_{\Pi, \text{ДО}\Pi} = 1373$

Допустимая температура Л (К):

Абс. скорость перед Т (м/с):

Абс. скорость после Т (м/с):

[1, c.15]

$$80 \le c_T \le 400 = 1$$

Лопаточный КПДТ: $\eta_{\Pi} = 88\%$

$$\eta_{\rm JI} = 88\%$$

$88\% \le \eta_{\rm JI} \le 95\% = 1$

Угол входа в Т: $\alpha_{\Gamma} = 90$. $^{\circ}$

$$\alpha_{\Gamma} = 90^{\circ}$$

Окр. скорость Л последней ступени на ср. диаметре Т (м/с):

$$\begin{pmatrix} c_{\Gamma} \\ c_{T} \end{pmatrix} = \begin{pmatrix} 100 \\ 180 \end{pmatrix} \text{ if turbine} = "ТВД" = \begin{bmatrix} 1 \\ 1 \\ 100.0 \\ 2 \\ 180.0 \end{bmatrix}$$

$$\begin{pmatrix} 180 \\ 260 \end{pmatrix} \text{ if turbine} = "ТНД"$$

$$u_{\rm T} = \begin{bmatrix} 520 & \text{if turbine} = "ТВД" = 520.0 \\ 260 & \text{if turbine} = "ТНД" \end{bmatrix}$$

$$z = ORIGIN...N_r$$

 $P^*_{\text{cooling}} = P^*_{\text{cooling}} \cdot \sigma_{\text{cooling}} = 2760.2 \cdot 10^3$ Полное давление отбора охлаждающего воздуха (К):

 $T^*_{\text{cooling}} = T^*_{\text{cooling}} + \Delta T_{\text{охл.подогрев}} = 846.9$ Полная температура отбора охлаждающего воздуха (К):

 $G_{\Gamma} = G_{\Gamma} - G_{leak} = 32.2$ Массовый расход перед Т (кг/с):

 $G_{T} = G_{\Gamma} + G_{cooling} = 35.4$ Массовый расход после Т (кг/с):

Удельная работа T (Дж/кг): $L^*_T = \frac{N_T}{\text{mean} \left(G_\Gamma, G_T\right)} = 440.4 \cdot 10^3$ $L^*_T \leq 550 \cdot 10^3 = 1$ Располагаемый теплоперепад в T (Дж/кг): $H_T = \frac{L^*_T + 0.5c_T^{-2}}{\eta_{_{I\!I}}} = 518.9 \cdot 10^3$

$$\begin{vmatrix} \text{iteration} \\ k_{\Gamma} \\ P_{\Gamma} \\ T_{\Gamma} \end{vmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_{\Gamma} = k_{a,\Pi} \left(\text{Cp}_{\Gamma a3} \left(\text{P*}_{\Gamma}, \text{T*}_{\Gamma}, \alpha_{\text{OX}}, \text{Fuel} \right), \text{R}_{\Gamma a3} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \right) \\ \text{while } 1 > 0 \end{vmatrix} = \begin{vmatrix} \frac{1}{1} & \frac{1.0}{2} & \frac{1.3}{3} & \frac{3}{2705198.4} \\ \text{while } 1 > 0 \end{vmatrix} \\ \begin{vmatrix} \text{Iteration} = \text{iteration} + 1 \\ \text{Cp}_{\Gamma} = \frac{k_{\Gamma}}{k_{\Gamma} - 1} \cdot \text{R}_{\Gamma a3} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \end{vmatrix} \\ T_{\Gamma} = T^*_{\Gamma} - \frac{c_{\Gamma}^2}{2 \cdot \text{Cp}_{\Gamma}} \\ k^*_{\Gamma} = k_{a,\Pi} \left(\text{Cp}_{\Gamma a3} \left(\text{P}_{\Gamma}, \text{T}_{\Gamma}, \alpha_{\text{OX}}, \text{Fuel} \right), \text{R}_{\Gamma a3} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \right) \\ \text{if } \left| \text{eps} \left(\text{"rel"}, k_{\Gamma}, k_{\Gamma} \right) \right| \leq \text{epsilon} \\ k_{\Gamma} = k'_{\Gamma} \\ \text{break} \\ k_{\Gamma} = k'_{\Gamma} \\ \text{(iteration } k_{\Gamma} \mid \text{P}_{\Gamma} \mid \text{T}_{\Gamma} \right)^{T} \end{vmatrix}$$

Количество итераций: iteration = 1

Показатель адиабаты перед Т: $\mathbf{k}_{\Gamma} = 1.283$

Статическое давление перед Т (Па): $P_{\Gamma} = 2705.2 \cdot 10^3$

Статическая температура перед T(K): $T_{\Gamma} = 1769.2$

Теплоем кость перед Т (Дж/кг/К): $Cp_{\Gamma} = Cp_{\Gamma a3}(P_{\Gamma}, T_{\Gamma}, \alpha_{oX}, Fuel) = 1309$

$$\begin{vmatrix} \text{iteration} \\ k_T \\ P_T \\ T_T \end{vmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_T = k_\Gamma \\ \text{while } 1 > 0 \\ \\ \text{iteration} = \text{iteration} + 1 \\ k_{Cp} = \text{mean}(k_\Gamma, k_T) \\ \\ Cp = \frac{k_{Cp}}{k_{Cp} - 1} \cdot R_{\text{ra3}}(\alpha_{\text{ox}}, \text{Fuel}) \\ \\ P_T = P^*_{\Gamma} \cdot \left(1 - \frac{H_T}{C_P \cdot T^*_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ \\ T_T = T^*_{\Gamma} - \frac{H_T \cdot \eta_{\Pi}}{C_P} \\ k^*_T = k_{a,\Pi} \left(C_{P_{\text{ra3}}}(P_T, T_T, \alpha_{\text{ox}}, \text{Fuel}), R_{\text{ra3}}(\alpha_{\text{ox}}, \text{Fuel})\right) \\ \text{if } |\exp(\text{"rel"}, k_T, k_T'_T)| \leq \text{epsilon} \\ |k_T = k^*_T| \\ \text{break} \\ k_T = k^*_T \\ \text{(iteration } k_T \cdot P_T \cdot T_T)^T \\ \end{vmatrix}$$

Количество итераций: iteration = 1

Показатель адиабаты после Т: $k_{\rm T} = 1.293$

Статическое давление после T (Па): $P_{T} = 866.5 \cdot 10^{3}$ $P_{T} \geq P_{ATM}(H_{U}) = 1$

Статическая температура после T (K): $T_T = 1424.1$

Теплоем кость после Т (Дж/кг/К): $Cp_T = Cp_{\Gamma a3}(P_T, T_T, \alpha_{oX}, Fuel) = 1271.6$

Ср. показатель адиабаты Т:
$$k = mean(k_T, k_T) = 1.288$$

Ср. теплоемкость Т (Дж/кг/К): Ср
$$= \frac{k}{k-1} \cdot R_{\Gamma a3} (\alpha_{ox}, \text{Fuel}) = 1289.8$$

Степень понижения давления:
$$\pi_{T} = \frac{P^{*}_{\Gamma}}{P_{T}} = 3.15$$

Удельный объём перед Т (м³/кг):
$$\begin{pmatrix} v_{\Gamma} \\ v_{T} \end{pmatrix} = R_{\Gamma a 3} \Big(\alpha_{OX}, \text{Fuel} \Big) \cdot \begin{pmatrix} \frac{T_{\Gamma}}{P_{\Gamma}} \\ \frac{T_{T}}{P_{T}} \end{pmatrix} = \frac{1}{1 \quad 0.189}$$
 (С. 11)

Площадь кольцевого сечения перед T (м²):
$$\begin{pmatrix} F_{\Gamma} \\ F_{T} \end{pmatrix} = \begin{pmatrix} \frac{G_{\Gamma} \cdot v_{\Gamma}}{c_{\Gamma}} \\ \frac{G_{\Gamma} \cdot v_{T}}{c_{T}} \end{pmatrix} = \begin{pmatrix} \frac{1}{1 & 60741} \\ \frac{1}{2 & 93341} \end{pmatrix} \cdot 10^{-6}$$

$$y_0 = 0.55$$

Коэф. использования скорости:

$$\mu_c = \text{mean}(0.7, 1) = 0.9$$

 $0.7 \le \mu_{\rm c} \le 1 = 1$

▼ Определение количества ступеней Т

Рекомендуемое количество ступеней: $Z_{recomend} = 1$

Количество ступеней: $Z = \begin{bmatrix} 1 & \text{if turbine} = \text{"ТВД"} = 1 \\ 4 & \text{if turbine} = \text{"ТНД"} \end{bmatrix}$

Дискретизация ступеней: i = 1..Z

Дискретизация сечений: $ii = 1...2 \cdot Z + 1$

Плотность материала
$$J(\kappa r/m^3)$$
:
$$\rho_blade_i = 7938 \quad \text{if material_blade}_i = "BKHA-1B"$$

$$8390 \quad \text{if material_blade}_i = "BKM7"$$

$$8760 \quad \text{if material_blade}_i = "KC-36"$$
 NaN otherwise

$$\rho_{\text{blade}}^{\text{T}} = \boxed{\begin{array}{c|c} 1 \\ 1 \\ 7938 \end{array}}$$

$$\sigma_blade_long^T = \boxed{\begin{array}{c|c} 1 \\ 1 \\ 205 \end{array}} \cdot 10^6$$

Коэф. формы: $k_n = 6.8$

Модуль Юнга I рода материала Π (Π a): $E_blade = 210 \cdot 10^9$

Коэф. Пуассона материала Π (): μ steel = 0.3

Мах частота вращения ротора на входе (об/мин):

$$\sqrt{\frac{\sigma_{\text{blade_long}Z}}{\text{safety} \cdot k_{\text{n}} \cdot F_{\Gamma}}} = 19539$$

Мах частота вращения ротора на выходе (об/мин):

$$n_{\text{max}} = \sqrt{\frac{\sigma_{\text{blade_long}Z}}{\text{safety} \cdot k_{\text{n}} \cdot F_{\text{T}}}} = 15762$$

Рекомендукмая ном. частота вращения (об/мин):

$$n = n_{\text{max}} \cdot 0.95 = 14974$$

$$_{\text{W}} = \begin{vmatrix} 15000 & \text{if turbine} = \text{"ТВД"} \\ 5300 & \text{if turbine} = \text{"ТНД"} \end{vmatrix} = 15000$$

Ном. частога вращения (рад/с):

$$\omega = \frac{2 \cdot \pi \cdot n}{60} = 1570.8$$

Ср. диаметр перед Т (м):
$$\begin{pmatrix} D_{\Gamma.cp} \\ D_{T.cp} \end{pmatrix} = \frac{2}{\omega} \cdot \begin{pmatrix} u_T \\ u_T \end{pmatrix} = \begin{bmatrix} 1 \\ 1 & 662.1 \\ 2 & 662.1 \end{bmatrix} \cdot 10^{-3}$$

Длина Л первой ступени Т (м):

Длина Л последней ступени Т (м):

	$\begin{pmatrix} F_{\Gamma} \end{pmatrix}$				
$\begin{pmatrix} 1_{\Gamma} \end{pmatrix}$ 1	$D_{\Gamma,cp}$			1	– 3
$\begin{vmatrix} 1 \end{vmatrix} = \frac{1}{\pi}$	\mathbf{F}_{-}	=	1	29.20	.10
(T)	T		2	44.88	
	$\left(\mathrm{D}_{\mathrm{T.cp}}\right)$				

Диаметр периферии после
$$T(M)$$
:
$$\begin{pmatrix} D_{T.Пер} \\ D_{T.Кор} \end{pmatrix} = \begin{pmatrix} D_{T.cp} + l_T \\ D_{T.cp} - l_T \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 707.0 \\ 2 \\ 617.2 \end{bmatrix} \cdot 10^{-3}$$

$$\frac{l_{\rm T}}{D_{\rm T.cp}} = \frac{1}{14}$$

$$N_{cT_i} = \frac{N_T}{Z}$$

Вид проточной части:

("const", "кор", "cp", "пер", "доля от предыдушего диаметра периферии")

Определение проточной части ОТ

Линейное распределение кольцевых площадей по сечениям:

$$\begin{array}{ll} F_{w} = & \text{ for } i \in 1...2Z + 1 \\ & F_{i} = \frac{F_{T} - F_{\Gamma}}{\text{st}(Z,3) - 1} \cdot i + \left(F_{\Gamma} - \frac{F_{T} - F_{\Gamma}}{\text{st}(Z,3) - 1}\right) \\ & \text{ for } i \in 1...Z \\ & \text{ for } a \in 2...3 \\ & F_{\text{st}(i,a)} = F_{\text{st}(i,a-1)} \quad \text{if } 3\Pi\Pi \Psi_{i,a-1} = \text{"const"} \\ & F \end{array}$$

$F^{T} =$		1	2	3	4	5	6	7	8	9	10^{-6}
	1	60741	60741	93341							

$$\begin{split} \overline{D} &= & \text{ for } i \in 2Z + 1 \\ \text{ for } r \in 1..N_r \\ D_{i,r} &= & D_{r,cop} \quad \text{if } r = 1 \\ D_{r,cop} \quad \text{if } r = av(N_r) \\ D_{T,nep} \quad \text{if } r = N_r \\ \text{ for } i \in Z ..1 \\ \text{ for } a \in 2 ..1 \\ \text{ for } r \in 1..N_r \\ D_{st(i,a+1),av(N_r)} &= \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} &= \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{ if } 3\Pi\Pi^{t}I_{i,a} &= \text{"kop"} \\ D_{st(i,a+1),1} &= \text{"kop"} \\ D_{st(i,a+1),1} &= \text{if } r = 1 \\ \frac{1}{2} \left[D_{st(i,a+1),1} + \sqrt{\left(D_{st(i,a+1),1}\right)^2 + \frac{4 \cdot F_{st(i,a)}}{\pi}} \right]} \quad \text{if } r = av(N_r) \\ \sqrt{\left(D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi} \right)} \quad \text{if } r = N_r \\ \text{ if } 3\Pi\Pi^{t}I_{i,a} &= \text{"cp"} \\ D_{st(i,a+1),av(N_r)} &= \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{ if } 3\Pi\Pi^{t}I_{i,a} &= \text{"rep"} \\ \sqrt{\left(D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \right)} \quad \text{if } r = N_r \\ \text{ if } 3\Pi\Pi^{t}I_{i,a} &= \text{"rep"} \\ \sqrt{\left(D_{st(i,a+1),N_r} \right)^2 - \frac{4 \cdot F_{st(i,a)}}{\pi}} \quad \text{if } r = 1 \\ \frac{1}{2} \left[\sqrt{\left(D_{st(i,a+1),N_r} \right)^2 - \frac{4 \cdot F_{st(i,a)}}{\pi}} \quad \text{if } r = 1 \\ \frac{1}{2} \left[\sqrt{\left(D_{st(i,a+1),N_r} \right)^2 - \frac{4 \cdot F_{st(i,a)}}{\pi}} \right]} \quad \text{if } r = av(N_r) \\ \end{pmatrix}$$

$$R = \frac{D}{2}$$

		1	2	3	4	5	6	7	8	9	
$R^{T} =$	1	325.0	325.0	308.6							$\cdot 10^{-3}$
10	2	339.2	339.2	331.0							10
	3	353.5	353.5	353.5							

$$\overline{d} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases}$$

$$\overline{d}_{st(i,a)} = \frac{D_{st(i,a),1}}{D_{st(i,a),N_r}}$$

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9
	1	0.9194	0.9194	0.8730						

$$\overline{d}^{T} \le 0.9 = \begin{array}{c|cccc} & 1 & 2 & 3 \\ \hline 1 & 0 & 0 & 1 \\ \end{array}$$

$$h = \begin{cases} \text{for } i \in 1..2Z + 1 \\ h_i = \frac{F_i}{\pi \cdot D_{i, av(N_r)}} \end{cases}$$

$$\begin{split} & \left[\frac{D}{\text{st}(i,\text{a+1}),N_r} \frac{D}{\text{in } 1-1} \right] \\ & \text{if } \left(3\Pi\Pi \textbf{Y}_{i,\text{a}} \neq \text{"const"} \right) \wedge \left(3\Pi\Pi \textbf{Y}_{i,\text{a}} \neq \text{"kop"} \right) \wedge \left(3\Pi\Pi \textbf{Y}_{i,\text{a}} \neq \text{"cp"} \right) \wedge \left(3\Pi\Pi \textbf{Y}_{i,\text{a}} \neq \text{"nep"} \right) \\ & \sqrt{\left(\frac{D}{\text{st}(i,\text{a+1}),N_r} \right)^2 - \frac{4 \cdot F_{\text{st}(i,\text{a})}}{\pi}} \text{ if } r = 1 \\ & \frac{1}{2} \cdot \left[\sqrt{\left(\frac{D}{\text{st}(i,\text{a+1}),N_r} \right)^2 - \frac{4 \cdot F_{\text{st}(i,\text{a})}}{\pi}} + \frac{D_{\text{st}(i,\text{a+1}),N_r}}{\text{str2num} \left(3\Pi\Pi \textbf{Y}_{i,\text{a}} \right)} \right]} \text{ if } r = \text{av} \left(N_r \right) \\ & \frac{D_{\text{st}(i,\text{a+1}),N_r}}{\text{str2num} \left(3\Pi\Pi \textbf{Y}_{i,\text{a}} \right)} \text{ if } r = N_r \end{split}$$

D

$$u = \begin{cases} \text{for } i \in 1...2 \cdot Z + 1 \\ \text{for } r \in 1...N_r \end{cases}$$
$$u_{i,r} = \frac{\pi \cdot D_{i,r} \cdot n}{60}$$
$$u$$

		1	2	3	4	5	6	7	8	9
$\mathbf{u}^{\mathrm{T}} =$	1	510.5	510.5	484.8						
	2	532.9	532.9	520.0						
	3	555.2	555.2	555.2						

$$\overline{d}_{1} = 0.9194$$
 $\overline{d}_{1} \le 0.9 =$

$\overline{\mathbf{d}}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9
	1	0.9194	0.9194	0.8730						

		1	2	3	4	5	6	7	8	9	
$D^{T} =$	1	650.0	650.0	617.2							$\cdot 10^{-3}$
	2	678.5	678.5	662.1							
	3	707.0	707.0	707.0							

Осевая ширина Л СА и РК [1, с.183]:

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1..Z \\ \begin{pmatrix} B_{CA}_i \\ B_{PK_i} \end{pmatrix} = \begin{pmatrix} \frac{D_{st(i,2),av(N_r)} - 0.25 \cdot h_{st(i,2)}}{16.4} \\ \frac{D_{st(i,3),av(N_r)}}{22} \end{vmatrix}$$

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix}$$

$$stack(B_{CA}^{T}, B_{PK}^{T}) = \begin{bmatrix} 1 & 1 \\ 1 & 40.9 \\ 2 & 30.1 \end{bmatrix} \cdot 10^{-3}$$

Радиальный зазор (м):

Осевой зазор (м):

(Лучше выбирать большее значение)

$$\begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...Z \\ \text{for } a \in 1...3 \\ \begin{vmatrix} \Delta_{r_{st(i,a)}} = 0.001 \cdot D_{st(i,a)}, N_r \\ \Delta_{a_i} = 0.25 \cdot B_{CA_i} \\ \begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix}$$

$$\Delta_{\mathbf{r}}^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0.707 & 0.707 & 0.707 \end{bmatrix} \cdot 10^{-3}$$

$$\Delta_a^T = \boxed{\begin{array}{c|c} 1 \\ \hline 1 & 10.234 \end{array}} \cdot 10^-$$

$$stack\left(\gamma_{\prod \text{V}}, \gamma_{\prod \text{V}}, \gamma_{\prod \text{V}}, \gamma_{\prod \text{V}}, \gamma_{\prod \text{V}}\right) = \begin{vmatrix} 1 & 2 \\ 1 & 0.00 & -28.56 \\ 2 & -0.00 & 28.56 \\ 3 & 0.00 & 0.00 \end{vmatrix} . \circ$$

$\gamma_{\prod q}^T \le 20 \cdot \circ =$	1	1	2	
$\gamma_{\Pi \Psi}^{T} \leq 25 \cdot \circ = 0$		1	2	
'11'1	1	1	0	

$\gamma_{\text{TIII}} = T > -12.$		1	2	
^ү ПЧкор > -12. –	1	1	0	
$\gamma_{\text{TIII}} > -15^{\circ} =$		1	2	
¹ ПЧкор > -13. –	1	1	0	

$$\begin{pmatrix} x_{\Pi \mathbf{q}} \\ y_{\Pi \mathbf{q} nep} \\ y_{\Pi \mathbf{q} nep} \\ y_{\Pi \mathbf{q} nep} \\ y_{\Pi \mathbf{q} nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi \mathbf{q}_c} = 0 \\ y_{\Pi \mathbf{q} nep_c} = y_{\Pi \mathbf{q} nep_c} - \Delta_{r_c} \\ y_{\Pi \mathbf{q} nep_c} = D_{st(c,1), nep} \\ y_{\Pi \mathbf{q} nep_c} = D_{st(c,1), nep} \\ y_{\Pi \mathbf{q} nep_c} = D_{st(c,1), 1} \\ \text{for } i \in 1 ... \mathbf{Z} \\ \begin{vmatrix} c = c + 1 \\ x_{\Pi \mathbf{q}_c} = x_{\Pi \mathbf{q}_{c-1}} + 0.5 \cdot \Delta_{\mathbf{a}_i} + B_{\mathbf{C}} \mathbf{A}_i + 0.5 \cdot \Delta_{\mathbf{a}_i} \\ y_{\Pi \mathbf{q} nep_c} \\ y_{\Pi \mathbf{q} nep_c} \end{vmatrix} = \begin{pmatrix} D_{st(i,2), N_r} \\ D_{st(i,2), 1} \end{pmatrix} \\ y_{J nep_c} = y_{\Pi \mathbf{q} nep_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi \mathbf{q}_c} = x_{\Pi \mathbf{q}_{c-1}} + 0.5 \cdot \Delta_{\mathbf{a}_i} + B_{\mathbf{p}} \mathbf{K}_i + 0.5 \cdot \Delta_{\mathbf{a}_i} \\ \begin{pmatrix} y_{\Pi \mathbf{q} nep_c} \\ y_{\Pi \mathbf{q} nep_c} \\ y_{\Pi \mathbf{q} nep_c} \end{pmatrix} = \begin{pmatrix} D_{st(i+1,1), N_r} \\ D_{st(i+1,1), 1} \\ D_{st(i+1,1), 1} \end{pmatrix} \\ y_{J nep_c} = y_{\Pi \mathbf{q} nep_c} - \Delta_{r_i} \\ \begin{pmatrix} x_{\Pi \mathbf{q}} \\ y_{\Pi \mathbf{q} nep_c} \\ y_{\Pi \mathbf{q} nep_c} \\ y_{\Pi \mathbf{q} nep_c} \end{pmatrix} = \begin{pmatrix} T_{st(i+1,1), N_r} \\ T_{st(i+1,1), N_r} \\ T_{st(i+1,1), 1} \end{pmatrix} \\ y_{J nep_c} = y_{J \mathbf{q} nep_c} - \Delta_{r_i} \\ \begin{pmatrix} x_{\Pi \mathbf{q}} \\ y_{\Pi \mathbf{q} nep_c} \\ y_{J \mathbf{q} nep_c} \end{pmatrix} = \begin{pmatrix} T_{st(i+1,1), N_r} \\ T$$

Length =
$$\sum_{i=1}^{Z} B_{CA_i} + \sum_{i=1}^{Z} \Delta_{a_i} + \sum_{i=1}^{Z} B_{PK_i} = 81.3 \cdot 10^{-3}$$

$$x = \min(x_{\Pi Y}), \min(x_{\Pi Y}) + \frac{\max(x_{\Pi Y}) - \min(x_{\Pi Y})}{N_{dis}} ... \max(x_{\Pi Y})$$

 $\begin{aligned} y_{\Pi \Pi nep}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi nep}, l\Big) & y_{\Pi \Pi cp}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi cp}, l\Big) & y_{\Pi \Pi kop}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi kop}, l\Big) \\ y_{\Pi nep}(l) &= interp\Big(cspline\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}\Big), x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}, l\Big) \end{aligned}$

Относ. толщины ЛРК и СА:

$$\overline{c}_{stator.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, w, r \end{bmatrix} \text{ if } T_{JI.JQOII} < T^*_{\Gamma}$$

$$\begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, w, r \end{bmatrix} \text{ otherwise}$$

$$\overline{c}_{rotor.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 17 \\ 13 \\ 11 \end{bmatrix}, \begin{bmatrix} 17 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 17 \\ 13 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{bmatrix}
for & i \in 1...Z \\
for & r \in 1...N_r
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor} \\
\overline{c}_{rotor} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\frac{1}{c_{\text{stator}}}^{T} = \begin{vmatrix}
 & 1 \\
1 & 15.00 \\
2 & 15.00 \\
3 & 15.00
\end{vmatrix} .\%$$

$$\frac{T}{c_{rotor}} = \begin{vmatrix}
 & 1 & \\
1 & 17.00 \\
2 & 13.00 \\
3 & 11.00
\end{vmatrix}$$

$$\frac{T}{r} = \begin{bmatrix}
 & 1 & \\
 & 1 & 6.000 \\
 & 2 & 6.000 \\
 & 3 & 6.000
\end{bmatrix}$$

$$\frac{T}{r_outlet_{stator}}^{T} = \begin{bmatrix} & 1 \\ 1 & 3.000 \\ 2 & 3.000 \\ \hline 3 & 3.000 \end{bmatrix} .\%$$

$$\frac{T}{r_inlet_{rotor}}^{T} = \begin{bmatrix}
 & 1 \\
 & 1 & 5.950 \\
 & 2 & 4.550 \\
 & 3 & 3.850
\end{bmatrix}$$
.%

$$\frac{T}{r_outlet_{rotor}}^{T} = \begin{bmatrix}
 & 1 \\
1 & 2.550 \\
2 & 1.950 \\
3 & 1.650
\end{bmatrix} .\%$$

▲ Относ. толщины и радиусы профилей

$$R_{L.ep} = \begin{pmatrix} 0.16 & \text{if turbine} = "ТВД" & 0.15 & 0.18 & 0.185 & 0.5 & 0.5 \\ 0.13 & \text{otherwise} \end{pmatrix}^T$$

▼ Поступенчатый расчет ОТ

<i>(</i> :, ,:	•• • •
(iteration _{CA}	
<u>k</u> .	R_{L}
H* _{cT}	H_{cT}
H _{stator}	H_{rotor}
сад	$w_{a\mu}$
P*	P
T*	<u>T</u>
<u>G</u>	V
ρ*	ρ
	α_{ox}
α	β
$\varepsilon_{ m stator}$	$\varepsilon_{ m rotor}$
θ_{CA}	$\theta_{ ext{PK}}$
g _{охл} са	g _{охл} РК
a* _c	a* _W
Тад	т _{ад}
Р* _W	-ад Т* _W
a _{3B}	a_{3B}
u	u
<u> </u>	c C
c _a	c _u
W	W
w _a	w _u
$\lambda_{\rm c}$	M_c
$\lambda_{ m W}$	M_{W}
$v_{ m stator}$	$v_{ m rotor}$

chordstator	chord _{rotor}	$ _{if i = 1} $
t оптCA	т _{оптРК}	
t _{stator}	t _{rotor}	$\alpha_{\text{oX}_{\text{st}(i,1)}} = \alpha_{\text{oX}}$
Z _{stator}	Z _{rotor}	$\begin{vmatrix} k_{st(i,1),r} = k_{\Gamma} \\ p_{*,(i,1),r} = p_{*} \end{vmatrix}$
$\overline{v}_{ m stator}$	$\overline{v}_{ m rotor}$	$P^*_{st(i,1),r} = P^*_{\Gamma}$ $P^*_{rt(i,1),r} = P^*_{rt(i,1),r}$
ξ _{TpCA}	ξтрРК	$P^*_{W_{St(i,1),r}} = 0$
ξкрСА	ξ _{кр} РК	$P_{st(i,1),r} = P_{\Gamma}$
ξ _{ReCA}	ξ _{RePK}	$T^*_{st(i,1),r} = T^*_{\Gamma}$
$\xi_{\lambda CA}$	$\xi_{\lambda PK}$	$T^*_{W_{\operatorname{st}(i,1),r}} = 0$
$\xi_{\Pi p C A}$	$\xi_{\Pi p P K}$	$T_{st(i,1),r} = T_{\Gamma}$
ξ_{BTCA}	ξ_{BTPK}	$v_{st(i,1),r} = \frac{R_{\Gamma a3}(\alpha_{oX_{st(i,1)}}, Fuel) \cdot T_{st(i,1),r}}{P_{st(i,1),r}}$
ξ _{тд} СА	ξ _{тдРК}	1 1 1
ξсмСА	ξсмРК	$G_{st(i,1)} = G_{\Gamma}$
$\xi_{\Delta r}$	$\xi_{ m BMX}$	$c_{st(i,1),r} = c_{\Gamma}$
ξ _{тр.в}	ξ _{тр.в}	$\alpha_{st(i,1),r} = \alpha_{\Gamma}$
L _{cT}	Lu _{CT}	$\begin{bmatrix} c_{\mathbf{u}_{st(i,1),r}} \\ c_{\mathbf{a}_{st(i,1),r}} \end{bmatrix} = c_{st(i,1),r} \cdot \begin{pmatrix} \cos(\alpha_{st(i,1),r}) \\ \sin(\alpha_{st(i,1),r}) \end{pmatrix}$
$\eta_{ ext{мощь}}$	$\eta_{ ext{non}}$	$\left[\left(c_{a_{st(i,1),r}} \right)^{-c_{st(i,1),r}} \left(\sin(\alpha_{st(i,1),r}) \right) \right]$
$\eta^*_{ m cT}$	η^*_{cT}	$\mathbf{w}_{\mathrm{st}(i,1),r} = 0$
η_{u1}	η_{u2}	$\left(\sqrt{k_{st(i,1),r} \cdot R_{\Gamma a3} \left(\alpha_{oX_{st(i,1)}}, Fuel \right) \cdot T_{st(i,1),r}} \right)$
ξCA	ξ _{PK}	$ \begin{array}{c c} & a_{3B} \\ \hline & 2 \cdot k_{st(i,1),r} \\ \hline & 7 \cdot k_{st(i,1),r} \end{array} $
Lu _{нагрузка}	Lu _{нагрузка}	
		$ \begin{pmatrix} a_{3B_{st(i,1),r}} \\ a^*c_{st(i,1),r} \\ a^*w_{st(i,1),r} \end{pmatrix} = \begin{pmatrix} \sqrt{k_{st(i,1),r} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel\right) \cdot T_{st(i,1),r}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel\right) \cdot T^*_{st(i,1),r}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel\right) \cdot T^*_{w_{st(i,1),r}}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel\right) \cdot T^*_{w_{st(i,1),r}}} \end{pmatrix} $
		$\begin{pmatrix} \lambda_{c_{st(i,1),r}} \\ \lambda_{w_{st(i,1),r}} \end{pmatrix} = \begin{pmatrix} \frac{c_{st(i,1),r}}{a^*c_{st(i,1),r}} \\ 0 \end{pmatrix}$ $\begin{pmatrix} M_{c_{st(i,1),r}} \\ M_{w_{st(i,1),r}} \end{pmatrix} = \frac{1}{a_{3B_{st(i,1),r}}} \begin{pmatrix} c_{st(i,1),r} \\ w_{st(i,1),r} \end{pmatrix}$
		$\begin{bmatrix} & st(1,1),r \end{pmatrix} & 0 & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $
		$\left \left \left \left \frac{M_{c}}{st(i,1),r} \right \right = \frac{1}{cst(i,1),r} \right $
		$iteration_{CT_i} = 0$
		while $1 > 0$ $ \text{iteration}_{CT_{i}} = \text{iteration}_{CT_{i}} + 1$
		$iteration_{CT_{i}} = iteration_{CT_{i}} + 1$

$$\begin{aligned} & \operatorname{trace} \left(\operatorname{concat} \left(" & \operatorname{iteration.cr} = " , \operatorname{num2str} \left(\operatorname{iteration}_{\operatorname{CT}_i} \right) \right) \right) \\ & H_{\operatorname{CT}_i} = N_{\operatorname{CT}_i} \cdot \left| \begin{array}{c} \frac{1}{G_{\operatorname{St}(i,1)} \cdot 0.9} & \operatorname{if} \left(\operatorname{iteration}_{\operatorname{CT}_i} = 1 \right) \\ & \frac{1}{\operatorname{mean} \left(G_{\operatorname{St}(i,2)} \cdot , G_{\operatorname{St}(i,3)} \right) \cdot \eta_{\operatorname{Monibs}_i}} & \operatorname{otherwise} \\ & R_{L_{i,r}} = R_{L.\operatorname{cp}_i} \\ & c_{\operatorname{all}_{\operatorname{St}(i,1),r}} = \sqrt{2 \cdot H_{\operatorname{CT}_i}} \\ & H_{\operatorname{Stator}_i} = H_{\operatorname{CT}_i} \cdot \left(1 - R_{L_{i,r}} \right) \\ & c_{\operatorname{all}_{\operatorname{St}(i,2),r}} = \sqrt{2 \cdot H_{\operatorname{Stator}_i}} \\ & \overline{v}_{\operatorname{Stator}_i} = 1 \\ & \operatorname{iteration}_{\operatorname{CA}_i} = 0 \\ & \operatorname{while} \ 1 > 0 \\ & \operatorname{iteration}_{\operatorname{CA}_i} = \operatorname{iteration}_{\operatorname{CA}_i} + 1 \\ & \operatorname{trace} \left(\operatorname{concat} \left(" & \operatorname{iteration.CA} - " , \operatorname{num2str} \left(\operatorname{iteration}_{\operatorname{CA}_i} \right) \right) \right) \\ & c_{\operatorname{St}(i,2),r} = \overline{v}_{\operatorname{Stator}_i} \cdot \overline{ca}_{\operatorname{Mst}(i,2),r} \\ & \theta_{\operatorname{CA}_i} = \theta_{\operatorname{TMY}} \sigma_{\operatorname{MHA}} \left(T^*_{\operatorname{St}(i,1)} , r, T^*_{\operatorname{cooling}} \cdot T_{\operatorname{II},\operatorname{Toni}} \right) \\ & g_{\operatorname{OX_ICA}_i} = \frac{0.035 \cdot \theta_{\operatorname{CA}_i}}{0 \cdot \operatorname{otherwise}} \cdot \frac{0.035 \cdot \theta_{\operatorname{CA}_i}}{1 - \theta_{\operatorname{CA}_i}} \geq 0 \\ & g_{\operatorname{OX_ICA}_i} = \frac{0}{0 \cdot \operatorname{otherwise}} \\ & G_{\operatorname{St}(i,2)} = G_{\operatorname{St}(i,1)} \cdot \left(1 + g_{\operatorname{OX_ICA}_i} \right) \\ & \alpha_{\operatorname{OX}_{\operatorname{St}(i,2)}} = \alpha_{\operatorname{OX}_{\operatorname{St}(i,1)}} + g_{\operatorname{OX_ICA}_i} \\ & \alpha_{\operatorname{OKCA}_i} = \operatorname{mean} \left(\alpha_{\operatorname{OX}_{\operatorname{St}(i,1)}} , r, \operatorname{ks_{\operatorname{St}(i,2)}} \right) \\ & k_{\operatorname{St}(i,2), r} = k_{\operatorname{St}(i,1), r} \\ & \text{while} \ 1 > 0 \\ & k_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{St}(i,1), r}, k_{\operatorname{St}(i,2), r} \right) \\ & H_{\operatorname{Stator}_i} \\ & \frac{k_{\operatorname{CA}_i}}{k_{\operatorname{CA}_i}} \cdot \frac{k_{\operatorname{CA}_i}}{k_{\operatorname{CA}_i}} \cdot \frac{k_{\operatorname{CA}_i}}{k_{\operatorname{CA}_i}} \right) , \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{St}(i,1), r}, r, k_{\operatorname{St}(i,2), r} \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{St}(i,1), r}, r, k_{\operatorname{St}(i,2), r} \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{St}(i,1), r}, r, k_{\operatorname{St}(i,2), r} \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{CA}_i}, f_{\operatorname{CA}_i} \right) \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{CA}_i}, f_{\operatorname{CA}_i} \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{CA}_i}, f_{\operatorname{CA}_i} \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{CA}_i}, f_{\operatorname{CA}_i} \right) \right) \\ & f_{\operatorname{CA}_i} = \operatorname{mean} \left(k_{\operatorname{CA}_i}, f_{\operatorname{CA}_i} \right) \right) \\ & f_{\operatorname{CA}_$$

$$\begin{aligned} & P_{\text{SG}(1,2),r} = P^{\text{S}_{\text{G}(1,1),r}} \left(\frac{\Gamma_{\text{Ta}_{\text{GI}(1,1),r}}^{-1}}{\Gamma^{\text{E}_{\text{GI}(1,1),r}}} \right)^{\frac{1}{\text{E}_{\text{CA}_{1}}} - 1} \\ & T_{\text{BG}(2,1,r),r} = P^{\text{E}_{\text{BG}(1,1),r}} \left(\frac{\Gamma_{\text{Ta}_{\text{GI}(1,1),r}}^{-1}}{\frac{k_{\text{CA}_{1}}}{k_{\text{CA}_{1}}} - 1} R_{\text{Ta},\text{Cep}} \left(\alpha_{\text{Na}_{\text{BG}(1,2)}},\text{Fuel} \right) \right) \\ & C_{P_{2}} = C_{P_{\text{TBS}}} \left[P_{\text{SG}(1,2),r}, T_{\text{AI}_{1,1},r}, \alpha_{\text{ON}_{\text{AI}_{1,2}},r}, \text{Fuel} \right) \\ & k^{-1} + k_{\text{AB}} \left(C_{\text{PA}_{1}}, P_{\text{EB}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}} \left(C_{\text{PA}_{1}}, P_{\text{EB}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}_{1}} \left(C_{\text{PA}_{1}}, P_{\text{EB}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}_{1,1}} \left(C_{\text{PA}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}_{1,1},2}, r = k^{-1} \\ & \text{Prea}_{\text{AB}_{\text{AB}_{1,1},2}, r} \\ & P^{\text{Ea}_{\text{AB}_{\text{AB}_{1,1},2}, r}} = P_{\text{EB}_{1,1,2}}, r^{-1} \frac{\Gamma_{\text{EB}_{1,1},2}}{\Gamma_{\text{EB}_{1,1},2}, r^{-1}} \frac{k_{\text{EB}_{1,1,2},r}, \alpha_{\text{PA}_{1,1,1},r}}{k_{\text{EB}_{1,1,2},r}, \alpha_{\text{PA}_{1,1,1},r}, \alpha_{\text{PA}_{1,1,1},r}, \alpha_{\text{PA}_{1,1,1},r}} \\ & P^{\text{E}_{\text{AB}_{\text{EB}_{1,1,2},r}, r}} = P_{\text{EB}_{1,1,2}, r}, r^{-1} \frac{\left(c_{\text{EB}_{1,1,2},r}, r^{-1} r_{\text{EB}_{1,1,2},r}, r^{-1} r_{\text{EB}_{1,1,2},r}, r^{-1} r_{\text{EB}_{1,1,2},r}, r^{-1} r_{\text{EB}_{1,1,2},r}, r^{-1}} \frac{\left(c_{\text{EB}_{1,1,2},r}, r^{-1} r_{\text{EB}_{1,1,2},r}, r^{-1}$$

$$\left\{ \begin{array}{l} \left\{ \begin{array}{l} \left\{ ^{c_{1}} c_{1} c_{1} c_{2} \cdot c_{2} c_{1} (z_{2}) \cdot r \\ c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right\} = c_{3} (i,2) \cdot r \cdot \left\{ \begin{array}{l} c_{3} c_{1} c_{2} c_{3} c_{1} c_{2} c_{3} c_{1} \\ c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right\} = c_{3} (i,2) \cdot r \cdot \left\{ \begin{array}{l} c_{3} c_{1} c_{2} c_{3} c_{1} c_{2} c_{3} c_{1} \\ c_{3} c_{1} c_{2} c_{3} c_{3} c_{3} c_{3} c_{3} c_{3} \\ \end{array} \right\} \\ \left\{ \begin{array}{l} w_{3} c_{1} (z_{2}) \cdot r \\ w_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right\} = \left\{ \begin{array}{l} c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{3} c_{3} (z_{2}) \cdot r \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \left(\begin{array}{l} w_{3} c_{1} (z_{2}) \cdot r \\ w_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \left(\begin{array}{l} w_{3} c_{1} (z_{2}) \cdot r \\ w_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ = \left\{ \begin{array}{l} \left(\begin{array}{l} c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{3} c_{3} (z_{2}) \cdot r \\ \end{array} \right) \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \left(\begin{array}{l} c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{3} c_{3} c_{3} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c$$

$$\begin{vmatrix} \operatorname{cril} \left(\frac{\operatorname{common}_{\operatorname{cont}}(x_{1}, x_{1}, x_{1}, x_{2}, x_{1}, x_{1}, x_{2})}{\operatorname{ContCa}_{\operatorname{cont}}(x_{1}, x_{2}, x_{2}, x_{2}, x_{2}, x_{2})} + \operatorname{1 otherwise} \\ \\ \operatorname{for } r = 1. N_{\Gamma} \\ \operatorname{Istanor}_{i, t} = \frac{\pi \cdot \operatorname{mean} \left(\operatorname{D}_{\operatorname{st}(i, 1), t}, \operatorname{D}_{\operatorname{st}(i, 2), t} \right)}{\mathcal{L}_{\operatorname{stator}_{i, t}}} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Specime}^{\left(\operatorname{cont}(i, 1), t, \operatorname{Spec}_{i, 2}, x_{2}, x_{2} \right)} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Specime}^{\left(\operatorname{cont}(i, 1), t, \operatorname{Spec}_{i, 2}, x_{2}, x_{2} \right)} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Specime}^{\left(\operatorname{cont}(i, 2), t, \operatorname{ContCa}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Spec}_{\operatorname{contCantContC}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor$$

$$\begin{split} &\theta_{PK_{i}} = \theta_{PTIYOHHA} \Big(T^{*}w_{st(i,2),r}, T^{*}cooling, T_{JI,JOH} \Big) \\ &g_{OXIPK_{i}} = \begin{cases} &0.035 \cdot \theta_{PK_{i}} \\ &1 - \theta_{PK_{i}} \end{cases} & \text{if} & \frac{0.035 \cdot \theta_{PK_{i}}}{1 - \theta_{PK_{i}}} \geq 0 \\ &0 & \text{otherwise} \end{cases} \\ &G_{st(i,3)} = G_{st(i,2)} \cdot \Big(1 + g_{OXIPK_{i}} \Big) \\ &\alpha_{OX_{st(i,3)}} = \alpha_{OX_{st(i,2)}} + g_{OXJPK_{i}} \\ &k_{st(i,3),r} = k_{st(i,2),r} \\ &k_{st(i,3),r} = k_{st(i,2),r} \cdot k_{st(i,3),r} \Big) \\ &T_{a\eta_{st(i,3),r}} = T_{st(i,2),r} \cdot \frac{T_{a\eta_{st(i,3),r}}}{k_{PK_{i}} - 1} \cdot R_{ras,cp} \Big(\alpha_{OX_{st(i,2)}}, \alpha_{OX_{st(i,3)}}, rucl \Big) \\ &T_{st(i,3),r} = P_{st(i,2),r} \cdot \frac{T_{a\eta_{st(i,3),r}}}{T_{st(i,2),r}} \Big) \\ &T_{st(i,3),r} = T_{st(i,2),r} - \frac{\left(w_{st(i,3),r}\right)^{2} - \left(w_{st(i,2),r}\right)^{2} - \left(u_{st(i,3),r}\right)^{2} + \left(u_{st(i,2),r}\right)^{2}}{2 \cdot \frac{k_{PK_{i}}}{k_{PK_{i}} - 1}} \\ &Cp_{3} = Cp_{ras} \Big(P_{st(i,3),r}, T_{st(i,3),r}, \alpha_{OX_{st(i,3)}}, Fuel \Big) \\ &k' = k_{aq} \Big(Cp_{3}, R_{ras} \Big(\alpha_{OX_{st(i,3)}}, Fuel \Big) \Big) \\ &k' = k_{aq} \Big(Cp_{3}, R_{ras} \Big(\alpha_{OX_{st(i,3)}}, Fuel \Big) \Big) \\ &k' = k_{st(i,3),r} = k' \\ &break \\ &k_{st(i,3),r} = \frac{R_{ras} \Big(\alpha_{OX_{st(i,3)}}, Fuel \Big) \cdot T_{st(i,3),r}}{P_{st(i,3),r}} \\ &\rho_{st(i,3),r} = asin \Big(\frac{G_{st(i,3),r}, Fus(i,3),r}{W_{st(i,3),r}, Fis(i,3),r} \Big) \\ &c_{u} \\$$

$$\begin{cases} c_{3d(1,3),\tau} = \sqrt{\left(c_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = \sqrt{\left(w_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2 - \left(c_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = \sqrt{\left(w_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2 - \left(c_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = T_{3d(1,3),\tau} + \frac{1}{2 \cdot C_{Pras}\left(P_{3d(1,3),\tau}, T_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = \frac{1}{2 \cdot C_{3d(1,3),\tau}} \\ c_{3d(1,3),\tau} = \frac{1$$

$$\begin{vmatrix} \sum_{s(i_1,i_2),\tau} \\ \sum_{s'(i_1,i_2),\tau} \\ \\ M_{sd(i_1,i_2),\tau} \\ M_{sd(i_2,i_2),\tau} \end{vmatrix} = \frac{1}{a_{mail_1,3},\tau} \begin{pmatrix} c_{u(i_1,3),\tau} \\ c_{u(i_1,3),\tau} \\ \\ c_{uval_1,3} \\ \\ c_{uval_2,3} \\ \\ c_{uval_2,3}$$

$$\left[H^*_{cT_{\hat{i}}} = Cp_{\Gamma a3.cp} \left(P_{st(i,1),r}, P_{st(i,3),r}, T_{st(i,1),r}, T_{st(i,3),r}, \alpha_{oX_{st(i,1)}}, \alpha_{oX_{st(i,3)}}, Fuel \right) \cdot T^*_{st(i,1),r} \cdot \left[1 - \left(\pi^*_{cT_{\hat{i}}} \right)^{\frac{1}{k_{cp}}} \right] \right]$$

$$\left[\eta^*_{cT_{\hat{i}}} = \frac{L_{cT_{\hat{i}}}}{H^*_{cT_{\hat{i}}}} \right]$$

for $i \in 1...Z$

for $j \in 1...3$

$$\begin{vmatrix} \rho *_{st(i,j),r} = \frac{P *_{st(i,j),r}}{R_{\Gamma a3} \left(\alpha_{ox_{st(i,j)}}, Fuel\right) \cdot T *_{st(i,j),r}} \\ \rho_{st(i,j),r} = \left(v_{st(i,j),r}\right)^{-1} \\ \left(\varepsilon_{stator_{i,av}\left(N_{r}\right)}\right) = \begin{pmatrix} \alpha_{st(i,2),av\left(N_{r}\right)} - \alpha_{st(i,1),av\left(N_{r}\right)} \\ \beta_{st(i,3),av\left(N_{r}\right)} - \beta_{st(i,2),av\left(N_{r}\right)} \end{pmatrix}$$

(iteration_{CA} iteration_{PK})

$$H_{\text{cT}}$$
 H_{cT}

11stator 11rotor

P* P

T* T

G v

0*

 α_{ox} α_{ox}

α β

 $\varepsilon_{
m stator}$ $\varepsilon_{
m rotor}$

 θ_{CA} θ_{PK}

 $g_{\text{охл}CA}$ $g_{\text{охл}PK}$

 a^*_{c} a^*_{w}

 $T_{a \perp}$ $T_{a \perp}$

 P_{W}^{*} T_{W}^{*}

 a_{3B} a_{3B}

u

c c

c_a c

1	I	
	W	W
	w _a	w_{u}
	$\lambda_{\rm c}$	M_{c}
	$\lambda_{ m W}$	M_{W}
	v _{stator}	$v_{ m rotor}$
	chord _{stator}	chordrotor
	-t _{oπτCA}	т oптРК
	t _{stator}	trotor
	$\frac{Z_{\mathrm{stator}}}{v_{\mathrm{stator}}}$	Z _{rotor}
	$\overline{v}_{ m stator}$	$\overline{v}_{ m rotor}$
	ξ _{TpCA}	ξ_{TpPK}
	ξ _{τp} CA ξ _{κp} CA	ξ_{kpPK}
	ξ _{ReCA}	ξ _{RePK}
	ξ _{ReCA} ξ _{λCA} ξ _{πpCA} ξ _{BTCA} ξ _{τдCA}	$\xi_{\lambda PK}$
	ξπρСΑ	$\xi_{\Pi p P K}$
	ξ_{BTCA}	ξ_{BTPK}
	ξ _{тд} СА	$\xi_{TДPK}$
	ξ _{cm} CA	ξ_{CMPK}
	$\xi_{\Delta r}$	$\xi_{ m BMX}$
	ξ _{тр.в}	$\xi_{\mathrm{Tp.B}}$
	L _{ct}	Lu_{CT}
	η _{мощь}	$\eta_{\Pi\Pi\Pi}$
	$\eta^*_{ m cT}$	$\eta^*_{ m cT}$
	$\eta_{\mathrm{u}1}$	η_{u2}
	ξ _{CA}	$\xi_{ m PK}$
	Lu _{нагрузка}	

▼ Параметры турбинь

$$\eta_{\Pi O \Pi}^{\quad T} = \boxed{ \begin{array}{c|c} 1 \\ 1 \\ 86.35 \end{array}} \cdot \%$$

$$\operatorname{stack}\!\left(\eta_{u1}^{T},\eta_{u2}^{T}\right) = \begin{array}{|c|c|c|c|}\hline & 1 \\ \hline 1 & 85.54 \\ \hline 2 & 86.83 \\ \hline \end{array} \cdot \%$$

$$\eta_{\text{MOIЦb}}^{T} = \boxed{\begin{array}{c|c} 1 \\ 1 \\ 83.53 \end{array}} \cdot \%$$

$$\eta_{\text{MOIII}_{i}} \leq \eta_{u1_{i}} \leq \eta^{*}_{cT_{i}} \leq \eta_{\text{JO}\Pi_{i}} = 0$$

Теплоперепад по параметрам торможения (Дж/кг):
$$\begin{pmatrix} H^*_T \\ H_T \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^Z & H^*_{cT_i} \\ \vdots & \vdots & \vdots \\ \sum_{i=1}^Z & H_{cT_i} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 516.1 \\ 2 & 536.7 \end{bmatrix} \cdot 10^3$$

Мощность T (Вт):
$$\sum_{i=1}^{Z} N_{cT_{i}} = 14.89 \cdot 10^{6}$$
 eps ("rel", N_{T} , $\sum_{i=1}^{Z} N_{cT_{i}}$) = 0.000 · %

Удельная поступенчатая работ а Т [Дж/кг]:
$$L_T = \sum_{i=1}^{Z} \frac{N_{cT_i}}{\text{mean}\big(G_{st(i,2)}, G_{st(i,3)}\big)} = 448.6 \cdot 10^3$$

$$k_{T.cp} = k_{ad} \left(Cp_{\Gamma a3.cp} \left(P_{st(1,1),av(N_r)}, P_{st(Z,3),av(N_r)}, T_{st(1,1),av(N_r)}, T_{st(Z,3),av(N_r)}, \alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right), P_{ras.cp} \left(\alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right) \right) = 1.289$$

Адиабатный КПДТ:
$$\eta^*_T = \frac{L_T}{H^*_T} = 86.92 \cdot \%$$

Политропический КПД Т:
$$\eta^*_{T,\Pi} = \eta^*_{n} ($$
"расширение", $\eta^*_{T}, \pi^*_{T}, k_{T,cp}) = 85.37 \cdot \%$

$$\text{Мощностной КПДТ:} \qquad \eta_{\text{Тмощь}} = \frac{\displaystyle\sum_{i=1}^{Z} \frac{N_{\text{CT}_{i}}}{\text{mean}\big(G_{\text{st}(i,2)},G_{\text{st}(i,3)}\big)}}{H_{\text{T}}} = 83.58 \cdot \%$$

$$Lu_{\text{нагрузка}}^{T} = \boxed{\begin{array}{c} 1\\ 1\\ 1\end{array}}$$

$H_{om}^{T} =$		1	1.10^3
CT	1	536.7	

$$\operatorname{stack}\left(\mathbf{H}_{\operatorname{stator}}^{\operatorname{T}}, \mathbf{H}_{\operatorname{rotor}}^{\operatorname{T}}\right) = \begin{bmatrix} & 1 \\ 1 & 450.9 \\ 2 & 87.0 \end{bmatrix} \cdot 10^{3}$$

$$submatrix \left(R_L^T, av(N_r), av(N_r), 1, Z \right) = \boxed{ 1 \\ 1 \quad 0.2 }$$

$G^{T} =$		1	2	3	4	5	6	7	8	9
	1	32.193	33.050	33.350						

$$\operatorname{stack}\!\left(\boldsymbol{\theta}_{CA}^{T},\boldsymbol{\theta}_{PK}^{T}\right) = \begin{bmatrix} & 1 \\ 1 & 0.432 \\ 2 & 0.206 \end{bmatrix}$$

stack
$$\left(g_{\text{OXJICA}}^{\text{T}}, g_{\text{OXJIPK}}^{\text{T}}\right) = \begin{bmatrix} 1 & 1 \\ 1 & 26.61 \\ 2 & 9.09 \end{bmatrix} \cdot 10^{-3}$$

$$G_{OXJICA_{i}} = g_{OXJICA_{i}} \cdot G_{st(i,1)}$$

$$G_{\text{OXJPK}_{\hat{i}}} = g_{\text{OXJPK}_{\hat{i}}} \cdot G_{\text{st}(\hat{i},2)}$$

$$\operatorname{stack}\left(G_{\text{OX}\Pi\text{CA}}^{T},G_{\text{OX}\Pi\text{PK}}^{T}\right) = \begin{bmatrix} & 1\\ 1 & 0.9\\ 2 & 0.3 \end{bmatrix}$$

$$G_{cooling} = 3.2$$

$$\sum_{i=1}^{Z} G_{\text{OX} \pi \text{CA}_i} + \sum_{i=1}^{Z} G_{\text{OX} \pi \text{CA}_i} \leq G_{\text{cooling}} = 1$$

$$stack \left(iteration_{CA}^{T}, iteration_{PK}^{T} \right) = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

submatrix
$$\left(P^{*T}, av(N_r), av(N_r), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2731.8 & 2413.7 & 870.5 \end{bmatrix} \cdot 10^3$$

$$\operatorname{submatrix}\left(v^{T},\operatorname{av}\left(N_{r}\right),\operatorname{av}\left(N_{r}\right),1,2Z+1\right) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 \\\hline 1 & 0.189 & 0.410 & 0.487 \\\hline \end{array}$$

submatrix
$$\left(\rho^{*^{T}}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \boxed{\begin{array}{c|cccc} 1 & 2 & 3 \\ \hline 1 & 5.341 & 4.756 & 2.164 \end{array}}$$

$$\begin{aligned} & \text{submatrix} \bigg(a_{3B}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 809.2 \end{array} }_{734.6} \underbrace{ \begin{array}{c} 3 \\ 718.7 \end{array}}_{734.6} \end{aligned} \\ & \text{submatrix} \bigg(a^*_{c}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 758.2 \end{array} }_{756.5} \underbrace{ \begin{array}{c} 3 \\ 756.5 \end{array} }_{756.5} \underbrace{ \begin{array}{c} 3 \\ 673.8 \end{array}}_{756.5} \end{aligned} \\ & \text{submatrix} \bigg(a^*_{w}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0.0 \end{array} }_{1} \underbrace{ \begin{array}{c} 2 \\ 3 \\ 1 \\ 10.00 \end{array} }_{802.5} \underbrace{ \begin{array}{c} 3 \\ 174.1 \end{array} }_{174.1} \end{aligned} \\ & \text{submatrix} \bigg(c_{u}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0.0 \end{array} }_{1} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 100.0 \end{array} }_{864.2} \underbrace{ \begin{array}{c} 3 \\ -2.7 \end{array} }_{174.1} \end{aligned} \\ & \text{submatrix} \bigg(c_{u}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0.0 \end{array} }_{1} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 100.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 174.0 \end{array} }_{174.0} \end{aligned} \\ & \text{submatrix} \bigg(w_{u}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0.0 \end{array} }_{239.5} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{331.3} \underbrace{ \begin{array}{c} 3 \\ 517.3 \end{array} }_{517.3} \end{aligned} \\ & \text{submatrix} \bigg(w_{u}^{-T}, av \Big(N_r \big), av \Big(N_r \big), 1, 2Z+1 \bigg) = \underbrace{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \end{array} }_{223.3} \underbrace{ \begin{array}{c} 3 \\ 1 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1 \\ 0.0 \underbrace{ \begin{array}{c}$$

		1	2	3
$u^T =$	1	510.5	510.5	484.8
•	2	532.9	532.9	520.0
	3	555.2	555.2	555.2

 $\begin{aligned} & \text{submatrix} \Big(\lambda_{\text{c}}, 1, 2Z + 1, \text{av} \Big(N_{\text{r}} \Big), \text{av} \Big(N_{\text{r}} \Big) \Big)^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 0.1319 & 1.1799 & 0.2583 & & & & & & & \\ & 1 & 0.1319 & 1.1799 & 0.2583 & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

. (T T)		1	
$\operatorname{stack}(v_{\operatorname{stator}}^{1}, v_{\operatorname{rotor}}^{1}) =$	1	37.03	•
· ·	2	67.08	

$$submatrix\left(M_{W}, 1, 2Z + 1, av\left(N_{r}\right), av\left(N_{r}\right)\right)^{T} \leq 1 = \boxed{\begin{array}{c|c} 1 & 2 & 3 \\ \hline 1 & 1 & 1 & 1 \end{array}}$$

$$t_{\text{stator}}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 56.7 \\ 2 & 59.2 \\ 3 & 61.7 \end{bmatrix} \cdot 10^{-3}$$

$$t_{\text{rotor}}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 22.4 \\ 2 & 23.7 \\ 3 & 25.0 \end{bmatrix} \cdot 10^{-3}$$

$$submatrix \left(chord_{stator}^{T}, av(N_r), av(N_r), 1, Z \right) = \boxed{\begin{array}{c} 1 \\ 1 \\ \hline 1 \\ \hline \end{array}} \cdot 10^{-3}$$

$$submatrix \left(chord_{rotor}^{T}, av(N_r), av(N_r), 1, Z \right) = \boxed{\frac{1}{1 \quad 32.7}} \cdot 10^{-3}$$

$$\operatorname{stack}\left(\mathbf{Z}_{\operatorname{stator}}^{\operatorname{T}}, \mathbf{Z}_{\operatorname{rotor}}^{\operatorname{T}}\right) = \begin{bmatrix} & 1 \\ & 1 & 36 \\ & 2 & 89 \end{bmatrix}$$

$$stack\left(\overline{t}_{O\Pi TCA}^{T}, \overline{t}_{O\Pi TPK}^{T}\right) = \begin{bmatrix} 1\\ 1\\ 0.872\\ 2\\ 0.724 \end{bmatrix}$$

$$\frac{t_{stator_{i, av\left(N_{r}\right)}}}{chord_{stator_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{stator_{i, av\left(N_{r}\right)}}}{chord_{stator_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} \le 1 = \frac{t_{rotor_{i, av\left(N_{r}\right)}}}{chord_{rotor_{i, av\left(N_{r}\right)}}} = 0.7 \le \frac{t_{rotor_{i, av\left(N_{r}\right)$$

. (- T - T)		1	
$\operatorname{stack}(v_{\operatorname{stator}}, v_{\operatorname{rotor}}) =$	1	0.9458	
	2	0.9657	

$$stack\left(\xi_{TpCA}^{T},\xi_{TpPK}^{T}\right) = \begin{bmatrix} & 1\\ & 1\\ & 1.398\\ 2 & 2.620 \end{bmatrix}.\%$$

$$stack \left(\xi_{KpCA}^{T}, \xi_{KpPK}^{T} \right) = \begin{bmatrix} 1 \\ 1 \\ 2.753 \\ 2 \\ 1.689 \end{bmatrix} \cdot \%$$

$$stack \left(\xi_{ReCA}^{T}, \xi_{RePK}^{T} \right) = \begin{bmatrix} 1 \\ 1 \\ -0.135 \\ 2 \\ 0.085 \end{bmatrix}$$
 .%

$$stack\left(\xi_{\lambda CA}^{T}, \xi_{\lambda PK}^{T}\right) = \begin{bmatrix} 1\\ 1\\ 2.434\\ 2 & 0.024 \end{bmatrix} \cdot \%$$

$$\operatorname{stack}\left(\xi_{\operatorname{BTCA}}^{\operatorname{T}}, \xi_{\operatorname{BTPK}}^{\operatorname{T}}\right) = \begin{array}{|c|c|c|c|}\hline 1 & 1.453 \\ \hline 1 & 1.453 \\ \hline 2 & 0.881 \\ \hline \end{array}$$

$$stack\left(\xi_{TДCA}^{T},\xi_{TДPK}^{T}\right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & \\\hline 1 & 1.856 \\\hline 2 & 1.200 \\\hline \end{array}$$

$$stack\left(\xi_{cMCA}^{T}, \xi_{cMPK}^{T}\right) = \begin{bmatrix} 1\\ 1\\ 0.784\\ 2\\ 0.248 \end{bmatrix} \cdot \%$$

$$\operatorname{stack}\left(\xi_{CA}^{T},\xi_{PK}^{T}\right) = \begin{array}{|c|c|c|c|}\hline & 1 & \\ \hline 1 & 8.748 \\ \hline 2 & 2.008 \\ \hline \end{array}.\%$$

$$\xi_{B b I X}^{\quad T} = \boxed{ \quad \quad 1 \quad \quad } \cdot \%$$

$$\xi_{\Delta r}^{T} = \boxed{\begin{array}{c|c} 1 \\ 1 & 2.476 \end{array}} \cdot \%$$

$$\xi_{Tp.B}^{\quad T} = \boxed{ \begin{array}{c|c} 1 \\ \hline 1 & 0.831 \end{array}} \cdot \%$$

Вывод-результатов поступенчатого расчета-по-ср. сечению-ОТ в EXCEL:

▼ Выбор закона профилирования Л по высоте

$$\mathbf{m} = \begin{pmatrix} \boxed{\overline{v}_{stator_1} \cdot \cos(\alpha_{st(1,2),av(N_r)})^2} & \text{if } Z = 1 \\ -0.5 & \text{otherwise} \end{pmatrix}$$

$$0$$

$$0.25$$

$$1$$

$$1$$

$$\begin{pmatrix} \text{"}\alpha.2 = \text{const"} \\ \text{"}\Gamma = \text{const"} \\ \text{"}m = \text{const"} \\ \text{"}R = \text{const"} \end{pmatrix} = \begin{pmatrix} \cos\left(\alpha_{\text{st(i,2),av(N_r)}}\right)^2 \cdot \overline{\upsilon}_{\text{stator}_i} \\ 1 \cdot \overline{\upsilon}_{\text{stator}_i} \\ 0.2 \\ -1 \cdot \overline{\upsilon}_{\text{stator}_i} \end{pmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	2	3	4	5	6
	1	0.8866	-0.2500	0.0000	0.2500	1.0000	1.0000

▲ Выбор закона профилирования Л по высоте

$$\begin{vmatrix} \mathbf{r}_{i} & \mathbf{m}_{i} & - \mathbf{v}_{stator_{i}}^{-v_{stator_{i}}} \\ \mathbf{c}_{a_{st(i,\,a),\,av}(N_{r})} \\ \mathbf{c}_{a_{st(i,\,a),\,av}(N_{r})} \end{vmatrix} + \frac{\left(1 - \frac{\overline{v}_{stator_{i}}}{R_{st(i,\,a),\,av}(N_{r})}\right)^{2}}{tan\left(\alpha_{st(i,\,2),\,av(N_{r})}\right)^{2}} \quad \text{if } a = 2$$

$$\begin{vmatrix} \mathbf{c}_{a_{st(i,\,a),\,av(N_{r})}} \\ \mathbf{c}_{a_{st(i,\,a),\,av(N_{r})}} \end{vmatrix}^{2} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right)^{2} \left[1 - \left(\frac{R_{st(i,\,a),\,r}}{R_{st(i,\,a),\,av(N_{r})}}\right)^{2}\right] - 2 \cdot \mathbf{c}_{\mathbf{u}_{st(i,\,a),\,av(N_{r})}} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right)^{2} \left[1 - \left(\frac{R_{st(i,\,a),\,r}}{R_{st(i,\,a),\,av(N_{r})}}\right)^{2}\right] - 2 \cdot \mathbf{c}_{\mathbf{u}_{st(i,\,a),\,av(N_{r})}} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right) \cdot \left(\mathbf{u}_{st(i,\,a,\,av(N_{r}))}\right)^{2} \cdot \left(\mathbf{u}_{st(i,\,a-1),\,av(N_{r})}\right) + \mathbf{c}_{\mathbf{u}_{st(i,\,a),\,av(N_{r})}} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a-1),\,av(N_{r})}\right) \cdot \left(\mathbf{u}_{st(i,\,a-1),\,av(N_{r})}\right)^{2} \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right)^{2} \cdot \left(\mathbf{u}_{st(i,\,a),\,a$$

for $i \in 1...2 \cdot Z + 1$

for $r \in 1..N_r$

$$\begin{vmatrix} c_{u_{i,r}} \\ c_{a_{i,r}} \end{vmatrix} = c_{i,av(N_r)} \cdot \begin{pmatrix} \cos(\alpha_{i,av(N_r)}) \\ \sin(\alpha_{i,av(N_r)}) \end{pmatrix} \text{ if } (i = 1)$$

$$P^*_{i,r} = P^*_{i,av(N_r)}$$

$$T^*_{i,r} = T^*_{i,av(N_r)}$$

$$\rho^*_{i,r} = \frac{P^*_{i,r}}{R_{ras}(\alpha_{ox_i}, Fuel) \cdot T^*_{i,r}}$$

$$\begin{vmatrix} k_{i,\,r} = k_{aa} \left(Cp_{Bo3,Jyx} \left(P^*_{i,\,r}, T^*_{i,\,r} \right), R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \right) \\ a^*_{c_{i,\,r}} = \sqrt{\frac{2 \cdot k_{i,\,r}}{k_{i,\,r} + 1}} \cdot R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \cdot T^*_{i,\,r} \\ \alpha_{i,\,r} = \operatorname{triangle} \left(c_{a_{i,\,r}}, c_{u_{i,\,r}} \right) \\ c_{i,\,r} = \frac{c_{a_{i,\,r}}}{\sin(\alpha_{i,\,r})} \\ \lambda_{c_{i,\,r}} = \frac{c_{i,\,r}}{a^*_{c_{i,\,r}}} \\ \begin{pmatrix} T_{i,\,r} \\ P_{i,\,r} \end{pmatrix} = \begin{pmatrix} T^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \left(^{"}T^{"}, \lambda_{c_{i,\,r}}, k_{i,\,r} \right) \\ P^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \left(^{"}P^{"}, \lambda_{c_{i,\,r}}, k_{i,\,r} \right) \end{pmatrix} \\ a_{3B_{i,\,r}} = \sqrt{k_{i,\,r}} \cdot R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \cdot T_{i,\,r} \\ M_{c_{i,\,r}} = \frac{c_{i,\,r}}{a_{3B_{i,\,r}}} \\ \beta_{i,\,r} = \operatorname{triangle} \left(c_{a_{i,\,r}}, u_{i,\,r} - c_{u_{i,\,r}} \right) \\ w_{i,\,r} = \frac{c_{a_{i,\,r}}}{\sin(\beta_{i,\,r})} \\ \begin{pmatrix} w_{u_{i,\,r}} \\ w_{a_{i,\,r}} \end{pmatrix} = w_{i,\,r} \cdot \begin{pmatrix} \cos(\beta_{i,\,r}) \\ \sin(\beta_{i,\,r}) \end{pmatrix} \\ T^*_{w_{i,\,r}} = T^*_{i,\,r} - \frac{\left(c_{i,\,r} \right)^2 - \left(w_{i,\,r} \right)^2}{2 \cdot \frac{k_{i,\,r}}{k_{i,\,r} - 1}} \cdot R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \cdot T^*_{w_{i,\,r}} \\ \lambda_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ \lambda_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ M_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ for \ i \in 1 ... Z \\ for \ r \in 1 ... N_r \\ \end{cases}$$

 $\left| \left(\Delta c_a - c_a \right) \right|$

$$\begin{bmatrix} \begin{bmatrix} \mathbf{c}^{*}\mathbf{st}(i,1),\mathbf{r} \\ \Delta \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{c}^{*}\mathbf{st}(i,2),\mathbf{r} & \mathbf{c}\mathbf{st}(i,1),\mathbf{r} \\ \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} \end{bmatrix} \\ \mathbf{R}_{\mathbf{L}_{\mathbf{i},\mathbf{r}}} = 1 - \frac{\mathbf{c}_{\mathbf{u}_{\mathbf{st}}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{u}_{\mathbf{st}}(i,3),\mathbf{r}}}{\mathbf{u}_{\mathbf{st}(i,2),\mathbf{r}} + \mathbf{u}_{\mathbf{st}(i,3),\mathbf{r}}} \\ \boldsymbol{\varepsilon}_{\mathbf{stator}_{\mathbf{i},\mathbf{r}}} = \begin{bmatrix} \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{st}}(i,1),\mathbf{r} & \text{if } \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} \geq \frac{\pi}{2} \\ \mathbf{c}_{\mathbf{st}(i,1),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{otherwise} \end{bmatrix} \\ \boldsymbol{\varepsilon}_{\mathbf{rotor}_{\mathbf{i},\mathbf{r}}} = \begin{bmatrix} \mathbf{c}_{\mathbf{st}(i,3),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{if } \mathbf{c}_{\mathbf{st}(i,3),\mathbf{r}} \geq \frac{\pi}{2} \\ \mathbf{c}_{\mathbf{st}(i,1),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{otherwise} \end{bmatrix} \\ \begin{bmatrix} \mathbf{P}^{*} & \mathbf{T}^{*} & \mathbf{T} & \mathbf{\rho}^{*} & \mathbf{k} & \mathbf{a}^{*}_{\mathbf{c}} & \mathbf{a}_{3\mathbf{B}} & \mathbf{c} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{a}} & \mathbf{\Delta} \mathbf{c}_{\mathbf{a}} & \mathbf{c} & \mathbf{c}_{\mathbf{u}} \\ \mathbf{p} & \mathbf{T}^{*}_{\mathbf{w}} & \mathbf{T} & \mathbf{\rho} & \mathbf{R}_{\mathbf{L}} & \mathbf{a}^{*}_{\mathbf{w}} & \mathbf{a}_{3\mathbf{B}} & \mathbf{w} & \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{\mathbf{d}} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{u}} \end{bmatrix}^{\mathsf{T}} \\ \mathbf{c}_{\mathbf{u},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} \\ \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} \end{bmatrix}$$

▲ Расчет Л по высоте

▼ Результаты расчета Л по высоте

T*T		1	2	3	
$P^{*T} =$	1	2731.8	2413.7	870.5	.10
_	2	2731.8	2413.7	870.5	10
	3	2731.8	2413.7	870.5	

		1	2	3	4	5	6	7	8	9
$T^{*T} =$	1	1773.0	1759.0	1394.2						
-	2	1773.0	1759.0	1394.2						
	3	1773.0	1759.0	1394.2						

		1	2	3	4	5	6	7	8	9
T* T =	1	1878.6	1493.1	1491.4						
1 W -	2	1888.0	1500.7	1508.0						
	3	1897.9	1508.9	1525.6						

$$\rho^{*T} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ 1 & 5.341 & 4.756 & 2.164 \\ 2 & 5.341 & 4.756 & 2.164 \\ 3 & 5.341 & 4.756 & 2.164 \\\hline \end{array}$$

$$k^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 1.305 & 1.305 & 1.316 \\ 2 & 1.305 & 1.305 & 1.316 \\ 3 & 1.305 & 1.305 & 1.316 \end{bmatrix}$$

		1	
$R_{\tau}^{T} =$	1	0.0998	
T'L	2	0.1767	
	3	0.2440	

		1	2	3	
$\mathbf{P}^{\mathrm{T}} =$	1	2705.2	939.2	847.2	.10
_	2	2705.2	1014.0	838.1	10
	3	2705.2	1084.4	831.3	

		1	2	3	4	5	6	7	8	9
$T^{T} =$	1	1768.9	1410.5	1385.1						
-	2	1768.9	1436.0	1381.6						
	3	1768.9	1458.8	1378.9						

		1	2	3
$o^{T} =$	1	5.301	2.308	2.120
Р —	2	5.301	2.448	2.103
	3	5.301	2.577	2.090

		1
$R_{\rm I}^{T} \ge 0.05 =$	1	1
TL = 0.00	2	1
	3	1

$$a^*c^T = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ \hline 1 & 761.0 & 758.1 & 676.1 \\ \hline 2 & 761.0 & 758.1 & 676.1 \\ \hline 3 & 761.0 & 758.1 & 676.1 \\ \hline \end{array}$$

$$u^{T} = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3\\\hline 1 & 510.5 & 510.5 & 484.8\\\hline 2 & 532.9 & 532.9 & 520.0\\\hline 3 & 555.2 & 555.2 & 555.2\\\hline \end{array}$$

$$c^T = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ \hline 1 & 100.0 & 927.2 & 147.3 \\ \hline 2 & 100.0 & 892.5 & 174.1 \\ \hline 3 & 100.0 & 860.6 & 191.8 \\ \hline \end{array}$$

$$c_{u}^{T} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ \hline 1 & 0.0 & 897.7 & 1.8 \\ \hline 2 & 0.0 & 864.2 & -2.7 \\ \hline 3 & 0.0 & 833.2 & -6.4 \\ \hline \end{array}$$

$$c_{a}^{T} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\\hline 1 & 100.0 & 231.9 & 147.3 \\\hline 2 & 100.0 & 223.3 & 174.0 \\\hline 3 & 100.0 & 215.3 & 191.7 \\\hline \end{array}$$

$$\Delta c_a^T = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 \\ \hline 1 & 131.9 & -84.7 \\ \hline 2 & 123.3 & -49.3 \\ \hline 3 & 115.3 & -23.6 \\ \hline \end{array}$$

		1	2	3
$a_{W}^{*T} =$	1	783.4	698.4	699.3
	2	785.3	700.2	703.2
	3	787.4	702.1	707.3

$$\mathbf{a_{3B}}^{T} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ \hline 1 & 816.1 & 728.8 & 725.3 \\ \hline 2 & 816.1 & 735.4 & 724.4 \\ \hline 3 & 816.1 & 741.2 & 723.7 \\ \hline \end{array}$$

		1	2	3
$\mathbf{w}^{\mathrm{T}} =$	1	520.2	451.4	504.9
vv –	2	542.2	399.5	550.9
	3	564.2	351.6	593.4

		1	2	3	4	5	6	7	8	9
$\mathbf{w}_{\mathbf{u}}^{T} =$	1	510.5	-387.2	483.0						
·· u	2	532.9	-331.3	522.7						
	3	555.2	-278.0	561.6						

		1	2	3
$\mathbf{w}_{0}^{T} =$	1	100.0	231.9	147.3
'' a	2	100.0	223.3	174.0
	3	100.0	215.3	191.7

		1	2	3	
$\alpha^{T} =$	1	90.00	14.49	89.31	. 0
	2	90.00	14.49	90.87	
	3	90.00	14.49	91.90	

		1	2	3	
$80^{\circ} \leq \alpha^{T} =$	1	1	0	1	
	2	1	0	1	
	3	1	0	1	

[1, c.78]

Угол поворота потока:

$$\varepsilon_{\text{stator}}^{\text{T}} = \begin{vmatrix}
 & 1 \\
 & 1 & 75.51 \\
 & 2 & 75.51 \\
 & 3 & 75.51
\end{vmatrix}$$

		1	2	3	4	5	6	7	8	9	
$\beta^{T} =$	1	11.08	149.08	16.96							. '
Ρ	2	10.63	146.02	18.42							
	3	10.21	142.24	18.85							

$$\varepsilon_{\text{rotor}}^{\text{T}} = \begin{array}{c|c}
 & 1 \\
\hline
1 & 132.12 \\
\hline
2 & 127.61 \\
\hline
3 & 123.40
\end{array}$$

$$\lambda_{c}^{T} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ 1 & 0.131 & 1.223 & 0.218 \\ \hline 2 & 0.131 & 1.177 & 0.257 \\ \hline 3 & 0.131 & 1.135 & 0.284 \\\hline \end{array}$$

$$\mathbf{M_c}^T = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 \\ \hline 1 & 0.123 & 1.272 & 0.203 \\ \hline 2 & 0.123 & 1.214 & 0.240 \\ \hline 3 & 0.123 & 1.161 & 0.265 \\ \hline \end{array}$$

		1	2	3
$\lambda_{-} = T$	1	0.664	0.646	0.722
W -	2	0.690	0.571	0.783
	3	0.717	0.501	0.839

		1	2	3
$M_{xx}^T =$	1	0.637	0.619	0.696
W -	2	0.664	0.543	0.760
	3	0.691	0.474	0.820

D. SAROO, perynatarce pecuera nagamentpos notoce no secone il:

Рассматриваемая ступень:
$$j = \begin{cases} j = Z \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) \geq 0 \right) \wedge \left(-\left|c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r})\right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left|c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r})\right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left(-\left|w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r})\right| \leq v \leq 0 \right) \wedge \left(j \neq 1 \right) \\ & -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left|w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r})\right| \right) \wedge \left(j \neq 1 \right) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} & \text{if } \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right) \wedge \left(j \neq 1 \right) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2} \right) \cdot 10^2 = 1000.0$$

$$v = -max(c, w, u), -max(c, w, u) + \frac{max(c, w, u)}{3000} ... max(c, w, u)$$

 $r = av(N_r)$

■ Построение треугольников скоростей в 3х сечениях

Парусность:
$$\begin{pmatrix} sail_{stator} \\ sail_{rotor} \end{pmatrix} = \begin{pmatrix} 1 \\ 0.8 \end{pmatrix}$$

▼ Расчет хорд Л по парусности

Длины хорд РК и СА (м):

$$chord_{stator}^{T} = \begin{vmatrix} 1 & 1 \\ 1 & 68.0 \\ 2 & 68.0 \\ 3 & 68.0 \end{vmatrix} \cdot 10^{-3}$$

$$\bar{x}_{f} = 0.45$$

▼ Расчет параметров решетки

$$\begin{bmatrix} s_{tator} & r_{totor} \\ r_{inlet} \\ s_{tator} & r_{inlet} \\ r_{outlet} \\ s_{tator} & r_{outlet} \\ r_{outlet$$

$$\begin{pmatrix} \upsilon_{\text{установки}}(\alpha_{\text{st(i,1),r}},\alpha_{\text{st(i,2),r}}) \\ \upsilon_{\text{установки}}(\beta_{\text{st(i,2),r}},\beta_{\text{st(i,3),r}}) \end{pmatrix}$$

 $\frac{\pi}{2}$ добавляется в виду поворота рисунка на 90 град

Относительные радиусы профилей ():

$$\frac{T}{\text{r_inlet}_{\text{stator}}} = \begin{vmatrix}
 & 1 & \\
 & 1 & 6.000 \\
 & 2 & 6.000 \\
 & 3 & 6.000
\end{vmatrix} .\%$$

$$\frac{1}{r_{outlet_{stator}}} = \begin{bmatrix}
 & 1 \\
1 & 3.000 \\
2 & 3.000 \\
3 & 3.000
\end{bmatrix} . \%$$

$$\frac{T}{r_inlet_{rotor}} = \begin{bmatrix}
 & 1 \\
1 & 5.950 \\
2 & 4.550 \\
3 & 3.850
\end{bmatrix} .\%$$

$$\frac{T}{r_{outlet}} = \begin{vmatrix}
 & 1 & \\
 & 1 & 2.550 \\
 & 2 & 1.950 \\
 & 3 & 1.650
\end{vmatrix}$$

Относительная толщина профиля ():

$$\overline{c}_{stator}^{T} = \begin{bmatrix}
 & 1 \\
1 & 15.00 \\
2 & 15.00 \\
3 & 15.00
\end{bmatrix}$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 17.00\\ 2 & 13.00\\ \hline 3 & 11.00 \end{bmatrix} \cdot \%$$

Относительный шаг решетки ():

$$\left(\frac{t_{stator}}{chord_{stator}}\right)^{T} = \begin{vmatrix} 1\\ 1 & 0.8345\\ 2 & 0.8711\\ 3 & 0.9076 \end{vmatrix}$$

$$\left(\frac{t_{rotor}}{chord_{rotor}}\right)^{T} = \begin{vmatrix} 1 & 1 \\ 1 & 0.5829 \\ 2 & 0.6918 \\ \hline 3 & 0.7941 \end{vmatrix}$$

Относительная густота решетки ():

$$\left(\frac{\text{chord}_{\text{rotor}}}{t_{\text{rotor}}}\right)^{\text{T}} = \begin{bmatrix} & 1\\ 1 & 1.716\\ 2 & 1.445\\ \hline 3 & 1.259 \end{bmatrix}$$

Длина хорды профиля [м]:

$$chord_{stator}^{T} = \begin{bmatrix} 1 \\ 1 \\ 68.0 \\ 2 \\ 68.0 \\ 3 \\ 68.0 \end{bmatrix} \cdot 10^{-3}$$

$$chord_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 38.4\\ 2 & 34.2\\ \hline 3 & 31.4 \end{bmatrix} \cdot 10^{-3}$$

Радиусы профилей:

$$r_{inlet_{rotor}}^{T} = \begin{bmatrix} & 1 \\ 1 & 2.28 \\ 2 & 1.56 \\ \hline 3 & 1.21 \end{bmatrix} \cdot 10^{-3}$$

$$r_outlet_{stator}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 2.04 \\ 2 & 2.04 \\ 3 & 2.04 \end{bmatrix} \cdot 10^{-3}$$

$$r_outlet_{rotor}^{T} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0.67 \\ 3 \\ 0.52 \end{bmatrix} \cdot 10^{-3}$$

Толщина профиля [м]:

$$c_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 \\ 1 & 10.20 \\ 2 & 10.20 \\ 3 & 10.20 \end{bmatrix} \cdot 10^{-3}$$

$$c_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 6.52\\ 2 & 4.45\\ \hline 3 & 3.46 \end{bmatrix} \cdot 10^{-3}$$

Шаг решетки [м]:

$$t_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1\\1&56.7\\2&59.2\\3&61.7 \end{bmatrix} \cdot 10^{-3}$$

$$t_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 22.4\\ 2 & 23.7\\ \hline 3 & 25.0 \end{bmatrix} \cdot 10^{-3}$$

Угол поворота потока:	$\varepsilon_{\text{stator}}^{\text{T}} = \begin{bmatrix} & & 1 & \\ & 1 & 75.51 \\ & 2 & 75.51 \\ \hline & 3 & 75.51 \end{bmatrix} \cdot \circ$	$\varepsilon_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & & 1 & \\ & 1 & 132.12 \\ & 2 & 127.61 \\ & 3 & 123.40 \end{bmatrix} . \circ$
Угол установки профиля:	$v_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 117.3 \\ \hline 3 \\ 117.3 \end{bmatrix} . \circ$	$v_{rotor}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 112.0 \\ 2 & 114.0 \\ 3 & 115.4 \end{bmatrix} \cdot \circ$
Угол изгиба профиля:	$\pi - \varepsilon_{stator}^{T} = \begin{bmatrix} & 1 & \\ 1 & 104.5 \\ \hline 2 & 104.5 \\ \hline 3 & 104.5 \end{bmatrix} \cdot \circ$	$\pi - \varepsilon_{\text{rotor}}^{\text{T}} = \begin{bmatrix} 1 \\ 1 \\ 47.9 \\ 2 \\ 52.4 \\ 3 \\ 56.6 \end{bmatrix}$

.0

▼ Подключение симметричного профиля

$$\begin{pmatrix} X_{U} & Y_{U} \\ X_{L} & Y_{L} \end{pmatrix} = NACA(0, 0, 100\%, 1)$$

Относ. координаты профиля РК и СА:

$$\begin{split} \text{AIRFOIL}_0\Big(x, \text{line}\,\overline{,f}\,, \overline{x}_f, \overline{c}\,\Big) &= & \text{if } 0 \leq x \leq 1 \\ & & \text{linterp}\big(X_U, Y_U, x\big) \text{ if line} = "+" \\ & \frac{\text{linterp}\big(X_U, Y_U, x\big) + \text{linterp}\big(X_L, Y_L, x\big)}{2} \text{ if line} = "0" \\ & & \text{linterp}\big(X_L, Y_L, x\big) \text{ if line} = "-" \\ & & \text{NaN otherwise} \end{split}$$

$$\begin{split} \text{AIRFOIL}(x,\text{line},\overline{c}^-,\theta) &= \begin{vmatrix} \text{linterp}\big(X_U,y/b_{cp.\Pi}\big(X_U,\theta\big) + Y_U\cdot\overline{c}^-,x\big) & \text{if line} = "+" \\ \frac{\text{linterp}\big(X_U,y/b_{cp.\Pi}\big(X_U,\theta\big) + Y_U\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "0" \\ \frac{\text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "-" \\ \text{NaN otherwise} & \end{aligned}$$

▶ Результат расчета абсолютных геометрических характеристик сечений Л

▼ Результат расчета абсолютных геометрических характеристик сечений Л

$$1_lower_{stator}^{T} = \begin{bmatrix} & 1 \\ 1 & 70.64 \\ 2 & 70.64 \\ \hline 3 & 70.64 \end{bmatrix} \cdot 10^{-3}$$

$$\operatorname{area}_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & \\ 1 & 473.87 \\ 2 & 473.87 \\ \hline 3 & 473.87 \end{bmatrix} \cdot 10^{-6}$$

$$Sx_{stator}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 4232.2 \\ 2 & 4232.2 \\ 3 & 4232.2 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{stator}^{T} = \begin{bmatrix} & 1\\ 1 & 13563.5\\ \hline 2 & 13563.5\\ \hline 3 & 13563.5 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1\\1&28.62\\2&28.62\\3&28.62 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1\\ 1 & 8.93\\ 2 & 8.93\\ \hline 3 & 8.93 \end{bmatrix} \cdot 10^{-3}$$

$$1_upper_{rotor}^{T} = \begin{bmatrix} & & 1 \\ 1 & 52.01 \\ 2 & 44.78 \\ \hline 3 & 40.21 \end{bmatrix} \cdot 10^{-3}$$

$$1_lower_{rotor}^{T} = \begin{bmatrix} & & 1 & \\ & 1 & 44.26 \\ 2 & 39.55 \\ \hline 3 & 36.21 \end{bmatrix} \cdot 10^{-3}$$

$$area_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 171.14\\ 2 & 103.96\\ \hline 3 & 74.28 \end{bmatrix} \cdot 10^{-6}$$

$$Sx_{rotor}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 1711.6 \\ 2 & 883.3 \\ 3 & 554.2 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{rotor}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 2765.3 \\ 2 & 1497.1 \\ 3 & 983.0 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{\text{rotor}}^{\text{T}} = \begin{array}{|c|c|c|c|}\hline 1 & 16.16 \\ \hline 2 & 14.40 \\ \hline 3 & 13.23 \\ \hline \end{array} \cdot 10^{-3}$$

$$y0_{rotor}^{T} = \begin{bmatrix} 1 & 1\\ 1 & 10.00\\ 2 & 8.50\\ 3 & 7.46 \end{bmatrix} \cdot 10^{-3}$$

$$Jx_{stator}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 44264 \\ 2 & 44264 \\ \hline 3 & 44264 \end{bmatrix} \cdot 10^{-12}$$

$$Jy_{\text{stator}}^{\text{T}} = \begin{vmatrix} 1 \\ 1 & 508717 \\ 2 & 508717 \\ \hline 3 & 508717 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{array}{|c|c|c|}\hline 1 & 1 \\\hline 1 & 128548 \\\hline 2 & 128548 \\\hline 3 & 128548 \\\hline \end{array} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{vmatrix} 1 & 1 \\ 1 & 6465 \\ 2 & 6465 \\ \hline 3 & 6465 \end{vmatrix} \cdot 10^{-12}$$

$$Jy0_{\text{stator}}^{\text{T}} = \begin{array}{|c|c|c|c|c|}\hline & 1 & \\ \hline 1 & 120489 \\ \hline 2 & 120489 \\ \hline 3 & 120489 \\ \hline \end{array} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1\\ 1 & 7409\\ 2 & 7409\\ \hline 3 & 7409 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{\text{major}_{\text{stator}}}^{\text{T}} = \begin{vmatrix}
 & 1 \\
 & 1 & 3.70 \\
 & 2 & 3.70 \\
 & 3 & 3.70
\end{vmatrix}$$

$$Jx_{rotor}^{T} = \begin{bmatrix} 1\\1\\1\\2\\8184\\3\\4505 \end{bmatrix} \cdot 10^{-12}$$

$$Jy_{rotor}^{T} = \begin{bmatrix} 1\\1\\58548\\2\\28251\\3&17045 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{rotor}^{T} = \begin{bmatrix} 1 \\ 1 & 29122 \\ 2 & 13406 \\ \hline 3 & 7736 \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{rotor}^{T} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 6691 \\ 3 \\ 4037 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{rotor}^{T} = \begin{bmatrix} 1 \\ 1 & 1466 \\ 2 & 686 \\ \hline 3 & 402 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{\text{major}_{\text{rotor}}}^{\text{T}} = \begin{vmatrix}
 & 1 \\
 & 1 & 6.75 \\
 & 2 & 6.43 \\
 & 3 & 6.18
\end{vmatrix}$$
.

$$Ju_{stator}^{T} = \begin{bmatrix} & 1 \\ 1 & 5986 \\ 2 & 5986 \\ \hline 3 & 5986 \end{bmatrix} \cdot 10^{-12}$$

$$Jv_{\text{stator}}^{\text{T}} = \begin{array}{|c|c|c|c|}\hline & 1 & \\ \hline 1 & 120968.8 \\ \hline 2 & 120968.8 \\ \hline 3 & 120968.8 \\ \hline \end{array} \cdot 10^{-12}$$

$$Juv_{stator}^{T} = \begin{vmatrix} & 1 \\ 1 & -0 \\ 2 & -0 \\ \hline 3 & -0 \end{vmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{array}{|c|c|c|c|c|}\hline & 1 & \\ 1 & 126955 \\ \hline 2 & 126955 \\ \hline 3 & 126955 \\ \hline \end{array} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 3146.4 \\ \hline 2 & 3146.4 \\ \hline 3 & 3146.4 \\ \hline \end{array} \cdot 10^{-9}$$

$$Ju_{rotor}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 1482 \\ 2 & 602 \\ 3 & 326 \end{bmatrix} \cdot 10^{-12}$$

$$Jv_{rotor}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 14041 \\ 2 & 6769 \\ \hline 3 & 4081 \end{bmatrix} \cdot 10^{-12}$$

$$Juv_{rotor}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 15522\\ 2 & 7371\\ 3 & 4407 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{rotor}^{T} = \begin{bmatrix} 1\\1&637.2\\2&342.1\\3&224.1 \end{bmatrix} \cdot 10^{-9}$$

stiffness_{rotor}^T =
$$\begin{vmatrix} 1 & 1 \\ 1 & 1676.5 \\ 2 & 473.1 \\ 3 & 204.3 \end{vmatrix} \cdot 10^{-12}$$

		1	
$CPx_{stator}^{T} =$	1	23.790	$\cdot 10^{-3}$
Stator	2	23.790	10
	3	23.790	

$$CPx_{rotor}^{T} = \begin{bmatrix} & 1 & \\ 1 & 13.430 \\ \hline 2 & 11.969 \\ \hline 3 & 10.999 \end{bmatrix} \cdot 10^{-3}$$

$$CPy_{stator}^{T} = \begin{bmatrix} & 1 & \\ 1 & 0.0000 \\ \hline 2 & 0.0000 \\ \hline 3 & 0.0000 \end{bmatrix} \cdot 10^{-3}$$

$$CPy_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & 0.0000\\ \hline 2 & 0.0000\\ \hline 3 & 0.0000 \end{bmatrix} \cdot 10^{-3}$$

Результат расчета абсолютных геометрических характеристик сечений Л

Вывод результатов расчета геометрических хар-к сечений Л

▼ Профилирование решеток

Абс. координаты профиля:

▲ Профилирование решеток

Рассматриваемая ступень: j = j = Z

$$j_w = \begin{cases} j = Z \end{cases}$$
 = 1
$$j = \begin{cases} \text{"Такой ступени не существует!"} & \text{if } (j < 1) \lor (j > Z) \end{cases}$$

$$j = \begin{cases} j = Z \end{cases}$$

▼ Построение профилей Л РК и НА

NaN otherwise

$$\begin{aligned} \text{AXLE0(type}, \mathbf{x}, \mathbf{i}, \mathbf{r}) &= \frac{y0_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}}{\text{chord}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}}{\text{chord}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}}\right) & \text{if type} = \text{"rotor"} \\ \frac{y0_{stator_{\hat{\mathbf{i}}, \mathbf{r}}}}{\text{chord}_{stator_{\hat{\mathbf{i}}, \mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{stator_{\hat{\mathbf{i}}, \mathbf{r}}}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{stator_{\hat{\mathbf{i}}, \mathbf{r}}}}{\text{chord}_{stator_{\hat{\mathbf{i}}, \mathbf{r}}}}\right) & \text{if type} = \text{"stator"} \\ \text{NaN otherwise} \end{aligned}$$

$$\text{AXLE90(type}, \mathbf{x}, \mathbf{i}, \mathbf{r}) &= \frac{y0_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}}{\text{chord}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}} + \frac{\pi}{2}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}}{\text{chord}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}}\right) & \text{if (type} = \text{"rotor"}) \land \left|\alpha_{-}\text{major}_{rotor_{\hat{\mathbf{i}}, \mathbf{r}}}\right| \geq 1.^{\circ} \\ y0_{stator} &= \sqrt{(\mathbf{x}0_{stator}, \mathbf{r})} & \sqrt{(\mathbf$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

$rac{r}{m} = av(N_r)$

■ Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j = Z$$
 = $j = Z$ = $j = Z$ | $j = Z$ | "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ | j otherwise

$$b_{\text{Line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л на треугольниках скоростей

 $r = av(N_r)$

▲ Построение плоских решеток профилей Л на треугольниках скоростей

$$j =$$
 $j = Z$ $= 1$ $j =$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{dis}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{rotor} = 1 ... Z_{rotor_{j}}$$

$$\mathbf{i}_{stator} = 1 ... Z_{stator_{j}}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} ... 2 \cdot \pi$$

$$\Pi_{PK}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{rotor_{j}}} & \text{if } D_{st(j,1),1} < r < D_{st(j,1),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$

$$\Pi_{\text{HA}}(r,j) = \begin{cases}
\frac{2 \cdot \pi}{Z_{\text{stator}_{j}}} & \text{if } D_{\text{st}(j,2),1} < r < D_{\text{st}(j,2),N_{r}} \\
NaN & \text{otherwise}
\end{cases}$$


```
\nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{\rm M3\Gamma,rotor}
                                                             \nu 0_{
m yr.n.stator}
                                                                                                                                                                                                                                                                                                                                                                           ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for r \in av(N_r)

u^0угл.stator_bondage 
u^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for mode \in 1...6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}\tilde{0}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)} \Big) \Big( h_{\text{st}(\hat{1},\,2)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)} \Big) \Big( h_{\text{st}(\hat{1},\,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}\delta} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{yrn.stator}_{i,\,\text{mode}}} = \nu 0_{\text{yrn}} \left( \text{mode}\,, 0\,, \text{mean} \left( h_{\text{st}(i,\,1)}\,, h_{\text{st}(i,\,2)} \right), \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade})\,, \rho\_\text{blade}_i\,, \text{stiffness}_{\text{stator}_{i,\,r}}\,, \text{Jp}_{\text{stator}_{i,\,r}} \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{y_{\Gamma JI}.rotor_{\hat{1}},\,mode} = \nu 0_{y_{\Gamma JI}} \left(mode,0,mean\left(h_{st(\hat{1},2)},h_{st(\hat{1},3)}\right),Jung(2,\mu\_steel,E\_blade),\rho\_blade_{\hat{1}},stiffness_{rotor_{\hat{1},r}},Jp_{rotor_{\hat{1},r}}\right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{YFJI.stator\_bondage}_{i, \, mode}} = \nu 0_{\text{YFJI}} \left( \text{mode} , 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{YFJI.rotor\_bondage}_{\hat{1}, \, mode}} = \nu 0_{\text{YFJ}} \left( \text{mode} \,, 1 \,, \text{mean} \left( h_{st(\hat{1}, 2)} \,, h_{st(\hat{1}, 3)} \right) \,, \\ \text{Jung}(2 \,, \mu\_\text{steel} \,, E\_\text{blade}) \,, \rho\_\text{blade}_{\hat{1}} \,, \\ \text{stiffness}_{rotor_{\hat{1}, \, r}} \,, \\ \text{Jp}_{rotor_{\hat{1}, \, r}} \,, \\ \text{Jp}_{rotor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \nu 0_{y_{\Gamma JI}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \nu_0^0угл.stator bondage \nu_0^0угл.rotor bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

$$\operatorname{stack} \left(\nu 0_{\operatorname{M3\Gamma.stator}}, \nu 0_{\operatorname{M3\Gamma.rotor}}\right)^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 12595 & 5145 & & & & & \\ 2 & 78937 & 32248 & & & & & \\ 3 & 221049 & 90305 & & & & & \\ 4 & 433492 & 177095 & & & & & \\ 5 & 716300 & 292630 & & & & & \\ 6 & 1069752 & 437026 & & & & & & \\ \end{bmatrix}$$

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

$$\operatorname{stack} \left(\nu 0_{\text{угл.stator}}, \nu 0_{\text{угл.rotor}}\right)^{\text{T}} = \begin{bmatrix} & 1 & 2 \\ 1 & 8364 & 5507 \\ 2 & 25091 & 16521 \\ 3 & 41819 & 27535 \\ 4 & 58546 & 38548 \\ 5 & 75274 & 49562 \\ 6 & 92001 & 60576 \end{bmatrix}$$

$$\mathrm{stack} \Big(\nu 0_{\mathrm{YLT.stator_bondage}}, \nu 0_{\mathrm{YLT.rotor_bondage}}\Big)^{\mathrm{T}} = \begin{bmatrix} & 1 & 2 \\ 1 & 16727 & 11014 \\ 2 & 33455 & 22028 \\ 3 & 50182 & 33041 \\ 4 & 66910 & 44055 \\ 5 & 83637 & 55069 \\ 6 & 100365 & 66083 \\ \end{bmatrix}$$

(D.:: Вывод результатов расчета собственнох частот колебаний 71-

Pасчетный узел: type = "turbine"

Объем бандажной полки (м 3): $V_{6\pi} =$

Радиус положения ЦМ бандажной полки (м): $R_{\delta\Pi} = 0$

▶ Расчет Л на прочность —

$$\text{neutral_line(type, x, i, r)} = \begin{vmatrix} y0_{rotor_{i, r}} \\ \frac{y0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}} + \tan\left(\left(\alpha_{major_{rotor_{i, r}}} + \phi_{neutral_{rotor}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}}\right) \text{ if type} = "rotor"$$

$$\frac{y0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}} + \tan\left(\left(\alpha_{major_{stator_{i, r}}} + \phi_{neutral_{stator}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}}\right) \text{ if type} = "stator"$$

$$\frac{y0_{rotor_{i, r}}}{\text{chord}_{stator_{i, r}}} + \frac{-1}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{ma$$

$$\begin{aligned} & \text{epure(type,x,i,r)} = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{rotor_{i,r}} + \varphi_\text{neutral}_{rotor}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{stator_{i,r}} + \varphi_\text{neutral}_{stator}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if type = "stator"} \end{aligned}$$

■Определение координат точек профиля Л, наиболее удаленных от НП

Наиболее удаленные точки от НЛ (мм):

$$u_{rotor}^{T} = \begin{bmatrix} & 1\\ 1 & -0.218\\ \hline 2 & 0.395\\ \hline 3 & -5.994 \end{bmatrix} \cdot 10^{-3}$$

$$u_{-l_{rotor}}^{T} = \begin{bmatrix} & 1 & \\ 1 & 21.030 \\ \hline 2 & 18.832 \\ \hline 3 & -8.994 \end{bmatrix} \cdot 10^{-3}$$

$$u_{-}u_{stator}^{T} = \begin{array}{|c|c|c|c|c|}\hline & 1 & & \\ \hline 1 & -7.064 & \\ \hline 2 & 8.165 & \\ \hline 3 & 8.161 & \\ \hline \end{array} \cdot 10^{-3}$$

$$u_{l_{stator}}^{T} = \begin{bmatrix} & 1 & \\ 1 & -11.363 \\ 2 & -25.857 \\ \hline 3 & -25.850 \end{bmatrix} \cdot 10^{-3}$$

$$v_{-}u_{rotor}^{T} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 4.047 \\ \hline 3 \\ 13.959 \end{bmatrix} \cdot 10^{-3}$$

$$v_{-1}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & -11.789 \\ 2 & -10.076 \\ \hline 3 & -17.325 \end{bmatrix} \cdot 10^{-3}$$

$$v_{u_{stator}}^{T} = \begin{bmatrix} & 1\\ 1 & 29.140\\ \hline 2 & 8.190\\ \hline 3 & 8.194 \end{bmatrix} \cdot 10^{-3}$$

$$v_{l_{stator}}^{T} = \begin{bmatrix} 1 \\ 1 \\ -38.695 \\ 2 \\ -14.465 \\ 3 \\ -14.477 \end{bmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

$$\sigma_{p_{rotor}}^{T} = \begin{array}{|c|c|}\hline & 1 \\\hline 1 & -18.45 \\\hline 2 & -8.87 \\\hline 3 & 0.00 \\\hline \end{array} \cdot 10^{6}$$

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 40.41 \\ 2 & 21.85 \\ \hline 3 & 0.00 \end{bmatrix} \cdot 10^{6}$$

		1	
$\sigma_{\text{ntor}}^{\text{T}} \le 70 \cdot 10^6 =$	1	1	
rotor - / o ro	2	1	
	3	1	

$$\sigma_{p_{stator}}^{T} = \begin{bmatrix} 1 \\ 1 \\ 0.00 \\ 2 \\ 3.47 \\ 3 \end{bmatrix} \cdot 10^{6}$$

		1
$\sigma p_{\text{ototor}} \leq 70 \cdot 10^6 =$	1	1
$\sigma_p_{\text{stator}} \leq /0.10 =$	2	1
	3	1

$$\sigma_{\text{nstator}}^{\text{T}} = \begin{bmatrix} 1 & 1 \\ 1 & 0.00 \\ 2 & -7.07 \\ \hline 3 & -28.26 \end{bmatrix} \cdot 10^{6}$$

		1
$\sigma = 0.410^6 = 0.001$	1	1
$\sigma_{\text{nstator}} \leq /0.10 =$	2	1
	3	1

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } r \in 1...N_r \end{cases}$$

$$\begin{pmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{rotor}(i,R_{st(i,2),r}) + \max\left(\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i,R_{st(i,2),r})^2}$$

$$\begin{pmatrix} \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}}\right)\right)^2 + \tau_{stator}(i,R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}}\right)\right)^2 + \tau_{stator_{i,r}}(i,R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}},\sigma_{rotor_{i,r}}\right)\right)^2 + \tau_{stator_{i,r}}(i,R_{st(i,2),r})^2} \\ \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator.}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor.}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator.}, i, i, 1, N_r$$

$$\sigma_{\text{rotor}}^{\text{T}} = \begin{vmatrix} & 1 \\ 1 & 161.59 \\ 2 & 101.72 \\ \hline 3 & 0.00 \end{vmatrix} \cdot 10$$

$$\sigma_{\text{stator}}^{\text{T}} = \begin{vmatrix} 1 & 1 \\ 1 & 0.00 \\ 2 & 5.61 \\ 3 & 16.44 \end{vmatrix} \cdot 10^{6}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} for \ i \in 1...Z \\ for \ r \in 1...N_r \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ i,r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{rotor}} & if \ \sigma_{rotor} \\ \infty & otherwise \end{vmatrix}$$

$$safety_{stator} \\ i,r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{stator}} & if \ \sigma_{stator} \\ \infty & otherwise \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$$contact$$

$$contact$$

$safety_{stator}^{T} = $		1	
	1	000000000000000000000000000000000000000	
	2	36.53	
		3	12.47

		1	
$safety_{rotor}^{T} \ge safety =$	1	0	
rotor = surety	2	1	
	3	1	

		1	
$safety_{stator}^{T} \ge safety =$	1	1	
salety stator – salety	2	1	
	3	1	

Рассматриваемая ступень:
$$j=1$$
 if type = "compressor" = 1 Z if type = "turbine" $j=1$ "Такой ступени не существует!" if $(j<1)\vee(j>Z)$ j otherwise

$$b_{\text{Line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 325.0 & 339.2 & 353.5 \\ 2 & 325.0 & 339.2 & 353.5 \\ 3 & 308.6 & 331.0 & 353.5 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = min(Rj), min(Rj) + \frac{max(Rj) - min(Rj)}{100} ... max(Rj)$$

$$z_{rotor} = \begin{vmatrix} mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) \text{ if type = "compressor"} \\ mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) \text{ if type = "turbine"} \\ 100 \end{aligned}$$

$$z_{stator} = \begin{bmatrix} mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) & \text{if type} = "compressor" \\ mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) & \text{if type} = "turbine" \\ \end{bmatrix}$$

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "stator" \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0.40 & 4.05 \\ 2 & 18.83 & -10.08 \\ 3 & 8.16 & 8.19 \\ 4 & -25.86 & -14.47 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j}, r} & \sigma_{-}p_{stator_{j}, r} \\ \sigma_{-}n_{rotor_{j}, r} & \sigma_{-}n_{stator_{j}, r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -8.9 & 3.5 \\ 2 & 21.9 & -7.1 \end{pmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 36.526 \\ 2 \\ 2.015 \end{bmatrix}$$

$$\begin{pmatrix} v_{-}p \\ v_{-}n \end{pmatrix} = \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ 1 \\ 2 \\ -14.465 \end{pmatrix} \cdot 10^{-3} \quad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

 $\begin{pmatrix} u_{-}u_{rotor_{j,r}} & v_{-}u_{rotor_{j,r}} \\ u_{-}l_{rotor_{j,r}} & v_{-}l_{rotor_{j,r}} \\ u_{-}u_{stator_{j,r}} & v_{-}u_{stator_{j,r}} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j,r}} & v_{-}u_{rotor_{j,r}} \\ 1 & 2 & 3 \\ 3 & 4 & 4 \end{pmatrix}$ -5.99 13.96 -8.99 -17.32 8.19 -25.85 -14.48 $u_l = l_{stator_{j,r}} v_l = l_{stator_{j,r}}$

Изгибные напряжения (Па):

 $\begin{pmatrix} \sigma_{-}p_{rotor_{j},r} & \sigma_{-}p_{stator_{j},r} \\ \sigma_{-}n_{rotor_{j},r} & \sigma_{-}n_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 0.0 & 13.9 \\ 2 & 0.0 & -28.3 \end{bmatrix} \cdot 10^{6}$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \text{blade} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.22 & 5.32 \\ 2 & 21.03 & -11.79 \\ 3 & -7.06 & 29.14 \\ 4 & -11.36 & -38.70 \end{pmatrix}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j}, r} & \sigma_{-}p_{stator_{j}, r} \\ \sigma_{-}n_{rotor_{j}, r} & \sigma_{-}n_{stator_{j}, r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -18.4 & 0.0 \\ 2 & 40.4 & 0.0 \end{bmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0.0 \\ 2 \end{bmatrix} \cdot 10$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \\ \text{c} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0.40 & 4.05 \\ 2 & 18.83 & -10.08 \\ 3 & 8.16 & 8.19 \\ 4 & -25.86 & -14.47 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j},r}} & \sigma_{p_{stator_{j},r}} \\ \sigma_{n_{rotor_{j},r}} & \sigma_{n_{stator_{j},r}} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -8.9 & 3.5 \\ 2 & 21.9 & -7.1 \end{bmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \cdot 10^{6}$$

Вывод результатов расчета Л на прочность

▼ Выбор материала Д

Запас по температуре (K): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk_i = "ВЖ175" if turbine = "ТВД" "ЭП742" if turbine = "ТНД"

Плотность материала Д (кг/м^3):

$$\rho_disk_i = \begin{bmatrix} 8266 & if material_disk_i = "BЖ175" \\ 8320 & if material_disk_i = "ЭП742" \\ 8393 & if material_disk_i = "ЖС-6К" \\ 7900 & if material_disk_i = "BT41" \\ 4500 & if material_disk_i = "BT25" \\ 4570 & if material_disk_i = "BT23" \\ 4510 & if material_disk_i = "BT9" \\ 4430 & if material_disk_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

$$\rho_{disk}^T = \boxed{\begin{array}{c|c} 1 \\ 1 \\ 8266 \end{array}}$$

$$\sigma_disk_long^T = \boxed{\begin{array}{c|c} 1 \\ \hline 1 \\ \hline \end{array}} \cdot 10^6$$

Предел длительной прочности Д (Па):

$$\sigma_{disk_long_i} = 10^6 \cdot \begin{vmatrix} 620 & \text{if material_disk}_i = "BK175" \\ 680 & \text{if material_disk}_i = "ЭП742" \\ 125 & \text{if material_disk}_i = "KC-6K" \\ 123 & \text{if material_disk}_i = "BT41" \\ 150 & \text{if material_disk}_i = "BT25" \\ 230 & \text{if material_disk}_i = "BT23" \\ 200 & \text{if material_disk}_i = "BT9" \\ 210 & \text{if material_disk}_i = "BT6" \\ NaN & \text{otherwise} \end{vmatrix}$$

Рассматриваемая ступень:
$$j_w = \begin{cases} j = Z \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} chord_{rotor_{i},ORIGIN} \cdot sin \Big(\upsilon_{rotor_{i},ORIGIN}\Big) \Big) \cdot e^{\frac{\rho_{-}disk_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-}z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \Big[\big(R_{st(i,2),ORIGIN}\big)^{2} - z^{2} \big]} \\ \text{if } z \leq R_{st(i,2),ORIGIN} \end{pmatrix}$$

$$NaN \quad otherwise$$

$$z = 0, \frac{R_{st(j,2),ORIGIN}}{N_{dis}} .. R_{st(j,2),ORIGIN}$$

$$j_w = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

Hа тепловую раскрутку:
$$\Delta T_{\text{раскрутка}} = \begin{bmatrix} 0 & \text{if type} = \text{"stator"} = 0.0 \\ 100 & \text{otherwise} \end{bmatrix}$$

Степень окружной неравномерности:
$$\delta_{\text{окр}}$$
 неравномерность = 0.25

Толщина стенки Л [м]:
$$\delta_{\rm cT} = 1.10^{-3}$$

Ширина охл. канала дефлектора Л [м]:
$$\Delta_{\text{дефлектор}} = 0.3 \cdot 10^{-3}$$

Ширина канала выходного участка [м]:
$$\Delta_{\text{охл.вых}} = 0.5 \cdot 10^{-}$$

Длина выходного участка [м]:
$$L_{\text{вых.уч}} = 2.10^{-}$$

Коэф. теплопроводности стенки
$$\Pi[B_T/M/K]$$
: λ_{c_T}

Толщина ТЗП [м]:
$$\delta_{\text{ТЗ\Pi}} = 0.15 \cdot 10^{-3}$$
 $0.1 \cdot 10^{-3} \le \delta_{\text{ТЗ\Pi}} \le 0.3 \cdot 10^{-3} = 1$

Коэф. теплопроводности ТЗП [
$$Bт/m/K$$
]: $\lambda_{T3\Pi} = 3.5$

$$\begin{pmatrix} \varepsilon_{t} \\ \varepsilon_{r} \\ \varepsilon_{l} \end{pmatrix} = \begin{pmatrix} 0.985 \\ 0.99 \\ 1 \end{pmatrix}$$

Материал	$\sigma_{\scriptscriptstyle B},$	$T_{\rm плав}$,	ρ,	$E \cdot 10^{-5}$	$\alpha \cdot 10^6$,	λ,
	МПа,	K	кг/м ³	МПа	1/K	Вт/м·К
	при <i>T</i> , K			при 1260		
				K		
Si ₃ N ₄ ,	180	2170	3200	2,9	2,3	18
горяче-	(1470 K)				(300-	
пресс.					1270K)	
Si_3N_4 ,	123 240	2520	3120	2,0	4,8	22
спеченный	(1293 K)				(300-	
					1270 K)	
SiC	420	2870	3040	3,94	5,2	16,7
	(1800 K)			(300 K)	(300-	(470–
					1270 K)	1670 K)
ZrO_2	600	2640	5700	2,0	9,8	3,5
	(1070 K)					(1670 K)
Al_2O_3	265	2320	3990	4,2	7,5	5,2
	(1500 K)			(300 K)	(1270–	(1670 K)
	10				1870K)	
	(1870 K)					
$Al_2O_3 + Si_3N_4$	2000	1750	2500	2,5	3,0	20
	(300 K)			(300 K)	(300 K)	(300 K)
Ni+37%Cr+	400	не более	8800	2,18	16	25,5
1%W+1%Ti	(1070 K)	1700			(1070 K)	(1070 K)
(для						
сравнения)						

c. 49

Распределение относ. скорости по Л:

 $S_{OTH} = \begin{pmatrix} -1.0 & -0.9 & -0.8 & -0.7 & -0.6 & -0.5 & -0.4 & -0.3 & -0.2 & -0.1 & 0 & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 1.0 \end{pmatrix}^{T}$

 $\lambda_{\text{профиль}} = \begin{pmatrix} 1 & 1.05 & 1.14 & 1.08 & 0.89 & 0.80 & 0.75 & 0.65 & 0.53 & 0.35 & 0 & 0.18 & 0.26 & 0.26 & 0.26 & 0.32 & 0.42 & 0.54 & 0.67 & 1 \end{pmatrix}^{\text{T}}$

$$\lambda_{\text{профиль}} = \lambda_{\text{профиль}} \cdot \begin{vmatrix} \frac{c_{st(j,2),r}}{a^*_{c_{st(j,2),r}}} & \text{if type} = "stator" \\ \frac{w_{st(j,3),r}}{a^*_{w_{st(j,3),r}}} & \text{otherwise} \end{vmatrix}$$

 $\lambda_{\text{профиль}}(S) = \text{linterp}(S_{\text{ОТН}}, \lambda_{\text{профиль}}, S)$

$$S_{\text{w}} = -1, -0.95..1.01$$

		1	2
	1	-1.00	1.18
	2	-0.90	1.24
	3	-0.80	1.34
	4	-0.70	1.27
	5	-0.60	1.05
	6	-0.50	0.94
	7	-0.40	0.88
	8	-0.30	0.77
	9	-0.20	0.62
$\operatorname{augment}\left(S_{\text{OTH}}, \lambda_{\Pi po \phi u \pi b}\right) =$	10	-0.10	0.41
, ,	11	0.00	0.00
	12	0.10	0.21
	13	0.20	0.31
	14	0.30	0.31
	15	0.40	0.31
	16	0.50	0.38
	17	0.60	0.49
	18	0.70	0.64
	19	0.80	0.79
	20	1.00	1.18

$$P_{\Gamma, \text{OTH}}(S) = \frac{ \left[\frac{P^*_{st(j,1),r} \cdot \left(1 - \frac{k_{st(j,1),r-1}}{k_{st(j,1),r} + 1} \lambda_{\Pi p \circ \phi \cup \Pi b}(S)^2 \right)^{\frac{k_{st(j,1),r}}{k_{st(j,1),r} - 1}} - P_{st(j,1),r}}{P^*_{st(j,1),r} - P_{st(j,1),r}} \right] } \quad \text{if type = "stator"}$$

$$\frac{P^*_{st(j,2),r} \cdot \left(1 - \frac{k_{st(j,2),r-1}}{k_{st(j,2),r} + 1} \lambda_{\Pi p \circ \phi \cup \Pi b}(S)^2 \right)^{\frac{k_{st(j,2),r}}{k_{st(j,2),r} - 1}}} - P_{st(j,2),r}}{P^*_{st(j,2),r} - P_{st(j,2),r}} \quad \text{otherwise}$$

$$\overline{\mathbf{P}} = \frac{\mathbf{P} - \mathbf{P}_1}{\mathbf{P}_1^* - \mathbf{P}_1}$$

Проверить индексы по литературе

Иванов:

▶ Результаты конвективного охлаждения		

▼

Количество рядов на спинке

Количество рядов на корыте

$$\begin{pmatrix} n_{\text{CII}} \\ n_{\text{KOP}} \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{n}_{\text{CII}} \\ \mathbf{n}_{\text{KOP}} \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \qquad \begin{pmatrix} s \\ k \end{pmatrix} = \begin{pmatrix} 1, 2 \dots \mathbf{n}_{\text{CII}} \\ 1, 2 \dots \mathbf{n}_{\text{KOP}} \end{pmatrix}$$

Количество рядов отв:

$$n_{OTB} = n_{C\Pi} + n_{KOp} + 1 = 13$$

$$S = -0.6$$

$$S_{\text{сверхзвук}} = \text{root}(\lambda_{\textпрофиль}(S) - 1, S) = -0.6$$

Относ. координаты отверстий ():

$$s_{\text{OTHC}\Pi_S} = 0.06 + (s - 1) \cdot \frac{0.82 - 0.06}{n_{\text{C}\Pi} - 1}$$

$$s_{\text{OTHKOP}_k} = 0.06 + (k-1) \cdot \frac{0.9 - 0.06}{n_{\text{Kop}} - 1}$$

$$N_{C\Pi_s} = 15$$

$$N_{KOP_k} = 15$$

$$\begin{pmatrix} N_{\text{C}\Pi_1} \\ N_{\text{KOP}_1} \end{pmatrix} = \begin{pmatrix} 15 \\ 15 \end{pmatrix}$$

$$\binom{N_{\text{C}\Pi_1}}{N_{\text{KOP}_1}} = \binom{15}{15} \qquad \binom{N_{\text{C}\Pi_{n_{\text{C}\Pi}}}}{N_{\text{KOP}_{n_{\text{KOP}}}}} = \binom{15}{15}$$

Диаметры отв. [м]:

$$d_{C\Pi_s} = 0.48 \cdot 10^{-3}$$

$$d_{\text{CII}_{\text{S}}} = 0.48 \cdot 10^{-3}$$
 $d_{\text{KOP}_{\text{k}}} = 0.48 \cdot 10^{-3}$

$$\begin{pmatrix} d_{\text{CII}_1} \\ d_{\text{KOP}_1} \end{pmatrix} = \begin{pmatrix} 0.48 \\ 0.48 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} d_{\text{CII}_1} \\ d_{\text{KOP}_1} \end{pmatrix} = \begin{pmatrix} 0.48 \\ 0.48 \end{pmatrix} \cdot 10^{-3} \qquad \begin{pmatrix} d_{\text{CII}_{n_{\text{CII}}}} \\ d_{\text{KOP}_{n_{\text{Kop}}}} \end{pmatrix} = \begin{pmatrix} 0.58 \\ 0.48 \end{pmatrix} \cdot 10^{-3}$$

Зазоры в дефлекторе:

•

$$\begin{pmatrix} \Delta_{c_s} \\ \Delta_{\kappa o p_k} \end{pmatrix} = \begin{pmatrix} 0.3 \cdot 10^{-3} \\ 0.3 \cdot 10^{-3} \end{pmatrix}$$

 $I_{\text{CII.max}} = \frac{1}{2 \cdot \max(N_{\text{CII}})} = 1 \cdot 10^{-1}$ $\kappa_{\text{cop.max}} = \frac{1}{2 \cdot \max(N_{\text{KOP}})} = 1.10^{-1}$

 $\cdot 10^{-3}$

▶ Результат конвективно-пленочного охлаждения ———

Вывод результатов охлаждения

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 100.00 \\ 927.16 \\ 147.28 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 100.00 \\ 231.94 \\ 147.27 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 520.18 \\ 451.35 \\ 504.94 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90.00 \\ 14.49 \\ 89.31 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 510.48 \\ 510.48 \\ 484.75 \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{st(j,1),r} \\
\beta_{st(j,2),r} \\
\beta_{st(j,3),r}
\end{pmatrix} = \begin{pmatrix}
11.08 \\
149.08 \\
16.96
\end{pmatrix}$$

$$\varepsilon_{\mathrm{stator}_{j,r}} = 75.51^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 132.12^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 100.00 \\ 892.55 \\ 174.05 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 100.00 \\ 223.28 \\ 174.03 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 542.17 \\ 399.52 \\ 550.87 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90.00 \\ 14.49 \\ 90.87 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 532.86 \\ 532.86 \\ 520.00 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 10.63 \\ 146.02 \\ 18.42 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{stator}_{j,r}} = 75.51^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 127.61^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 100.00 \\ 860.58 \\ 191.81 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 100.00 \\ 215.28 \\ 191.70 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 564.18 \\ 351.59 \\ 593.43 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90.00 \\ 14.49 \\ 91.90 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 555.25 \\ 555.25 \\ 555.25 \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{st(j,1),r} \\
\beta_{st(j,2),r} \\
\beta_{st(j,3),r}
\end{pmatrix} = \begin{pmatrix}
10.21 \\
142.24 \\
18.85
\end{pmatrix}$$

$$\varepsilon_{\mathrm{stator}_{j,r}} = 75.51^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 123.4^{\circ}$$

