Notatki z AiSD. Nr 7.

18 kwietnia 2021

KOPCE FIBONACCIEGO

IIUWr. II rok informatyki.

Opracował: Krzysztof Loryś

1 Wstęp

Operacją kopcową, której do tej pory nie rozważaliśmy, a która jest ważna w wielu zastosowaniach jest operacja $decrement(h, p, \Delta)$, polegająca na zmniejszeniu o Δ klucza w elemencie wskazywanym przez p. Wykonywana na kopcach dwumianowych może wymagać czasu $\log n$ (np. zmniejszenie wartości klucza znajdującego się w liściu może spowodować konieczność przesunięcia go aż do korzenia). Taki czas jest nieakceptowalny, gdy liczba operacji decrement jest duża.

Pokażemy jak w prosty sposób zmodyfikować kopce dwumianowe, by operacja deletemin wykonywała się w stałym czasie zamortyzowanym. Otrzymana struktura danych nosi nazwę kopców Fibonacciego.

2 Przykład zastosowania - algorytm Dijkstry

Algorytm Dijkstry oblicza najkrótsze odległości wszystkich wierzchołków grafu G=(V,E) od ustalonego wierzchołka s (źródła). Algorytm jest zachłanny. Buduje zbiór X, wierzchołków, których najkrótsza odległość od s jest już ustalona: rozpoczyna od jednoelementowego zbioru $\{s\}$ i na każdym kroku dokłada wierzchołek spoza X leżący najbliżej s. Do wyznaczenia takiego wierzchołka służą wartości D(u), które w każdej fazie algorytmu równe są długości najkrótszej ścieżki od u do s prowadzącej jedynie przez wierzchołki z X. Do pamiętania tych wartości możemy używać kopca, ponieważ na każdym kroku szukamy wierzchołka o minimalnej wartości D. Zwykłe kopce nie są tu jednak odpowiednie, ponieważ dołączenie nowego wierzchołka u do X może powodować konieczność uaktualnienia (zmniejszenia) wartości pozostających w kopcu dla wszystkich wierzchołków incydentnych z u. W rezultacie na elementach kopca wykonujemy |E| operacji decrement i |V| operacji deletemin. Zaimplementowanie algorytmu Dijkstry przy zastosowaniu kopców Fibonacciego da w efekcie jego złożoność $O(m+n\log n)$.

```
 \begin{array}{c} \mathbf{procedure} \ Dijkstra \\ X \leftarrow \{s\} \\ D(s) \leftarrow \emptyset \\ \mathbf{for} \ \mathbf{each} \ u \in V \setminus \{s\} \ \mathbf{do} \ D(u) \leftarrow l(s,u) \\ \mathbf{while} \ X \neq V \ \mathbf{do} \\ \mathrm{Niech} \ u \in V \setminus X \ \mathbf{o} \ \mathrm{minimalnej} \ \mathrm{wartości} \ D(u) \\ X \leftarrow X \cup \{u\} \\ \mathbf{for} \ \mathbf{each} \ \langle u,v \rangle \in E \ \mathrm{takiej}, \ \mathsf{ze} \ v \in V \setminus X \ \mathbf{do} \\ D(v) \leftarrow \min(D(v),D(u)+l(u,v)) \end{array}
```

3 Struktura kopców Fibonacciego

Podobnie jak kopce dwumianowe, kopce Fibonacciego są zbiorami drzew, których wierzchołki pamiętają elementy zgodnie z porządkiem kopcowym. Teraz jednak drzewa nie muszą być drzewami dwumianowymi.

Przyjmujemy taki sam sposób pamiętania drzew i elementu minimalnego, jak w przypadku kopców dwumianowych (wersja lazy). Ponadto w każdym wewnętrznym wierzchołku kopca pamiętamy war-

tość logiczną, mówiacą czy wierzchołek ten utracił jednego ze swoich synów w wyniku operacji cut - patrz niżej.

4 Operacje

Operacje makeheap, insert, findmin i meld wykonujemy w taki sam sposób jak na kopcach dwumianowych.

4.1 Operacja cut(h, p)

Operacja ta zastosowana do wierzchołka wewnętrznego (tj. takiego, który nie jest korzeniem) wskazywanego przez p, odcina go od swojego ojca p' i dołącza (operacją meld poddrzewo zakorzenione w p do listy drzew kopca. Jeśli p jest pierwszym synem jakiego utracił p', to fakt ten jest zapamiętywany w p'. Jeśli p' wcześniej utracił już jakiegoś syna, to wykonujemy operację cut(h,p'). W ten sposób będziemy wędrować w górę drzewa odcinając odpowiednie poddrzewa tak długo, aż napotkamy korzeń lub wierzchołek, który dotąd nie utracił żadnego syna.

4.2 Operacja $decrement(h, p, \Delta)$

Zmniejszamy wartość klucza w wierzchołku wskazywanym przez p. Jeśli nowa wartość klucza zakłóca porządek kopcowy (tzn. jest mniejsza od klucza ojca wierzchołka p), wykonujemy cut(h, p).

4.2.1 Zamortyzowany koszt

Teraz każdy wierzchołek ma swoje konto. Będzie ono niepuste tylko u wierzchołków, które utraciły jednego syna.

Operacji $decrement(h, p, \Delta)$ przydzielamy 4 jednostki kredytu. Jedną jednostką opłacamy koszt instrukcji niskiego poziomu i operację meld przyłączenia drzewa o korzeniu w p do kopca. Drugą umieszczamy na koncie tego drzewa (obowiązuje nas w dalszym ciągu niezmiennik kredytowy, mówiący, iż na koncie każdego drzewa kopca znajduje się jedna jednostka). Dwie pozostałe jednostki wykorzystujemy tylko wtedy, gdy wykonujemy cut(h,p) i p jest pierwszym synem odciętym od swojego ojca. Umieszczamy je wówczas na koncie ojca p. Jednostki te są wykorzystywane do opłacenia operacji cut wykonanej wskutek tego, że ojciec p straci drugiego syna.

4.3 Operacja deletemin(h)

Deletemin wykonujemy w sposób analogiczny jak w przypadku kopców dwumianowych. W szczególności podczas redukcji łączymy drzewa o jednakowym rzędzie (zdefiniowanym jako liczba synów korzenia), otrzymując drzewo o stopniu o jeden wyższym. Jedyna różnica wynika z tego, że teraz drzewa nie są dwumianowe i nie można oczekiwać, że łączone drzewa będą identyczne.

Aby wykazać, że $O(\log n)$ nadal ogranicza czas wykonywania tej operacji musimy dowieść, że stopień wierzchołków drzew występujących w kopcach Fibonacciego jest ograniczony przez $O(\log n)$. Oczywiście będzie to także ograniczeniem na liczbę różnych rzędów drzew.

Lemat 1 Dla każdego wierzchołka x kopca Fibonacciego o rzędzie k, drzewo zakorzenione w x ma rozmiar wykładniczy względem k.

Dowód: Niech x będzie dowolnym wierzchołkiem kopca i niech y_1, \ldots, y_k będą jego synami uporządkowanymi w kolejności przyłączania ich do x. W momencie przyłączania y_i do x-a, x miał co najmniej i-1 synów. Stąd y_i też miał wówczas co najmniej i-1 synów, ponieważ przyłączane są tylko drzewa o jednakowym rzędzie. Od tego momentu y_i mógł stracić co najwyżej jednego syna, ponieważ w przeciwnym razie zostałby odcięty od x-a. Tak więc w każdym momencie i-ty syn każdego wierzchołka ma rząd co najmniej i-2.

Oznaczmy przez F_i najmniejsze drzewo o rzędzie i, spełniające powyższą zależność. Łatwo sprawdzić,

że F_0 jest drzewem jednowierzchołkowym, a F_i składa się z korzenia oraz i poddrzew: $F_0, F_0, F_1, F_2, \ldots, F_{i-2}$. Tak więc liczba $|F_i|$ wierzchołków takiego drzewa jest nie mniejsza niż $1 + \sum_{j=0}^{i-2} |F_j|$, co, jak łatwo pokazać indukcyjnie, jest równe i-tej liczbie Fibonacciego. Stąd liczba wierzchołków w drzewie o rzędzie k jest nie mniejsza niż ϕ^k , gdzie $\phi = (1 + \sqrt{5})/2$.

Wniosek 1 Każdy wierzchołek w n-elementowym kopcu Fibonacciego ma stopień ograniczony przez $O(\log n)$.

4.3.1 Operacja delete(h, p)

Operację delete(h,p) można wykonać najpierw ustanawiając w p minimum kopca (poprzez operację $decrement(h,p,-\infty)$) a następnie usuwając minimum. Zamortyzowany koszt wynosi $O(\log n)$. UWAGA: W ten sam sposób możemy wykonywać delete na kopcach dwumianowych. Oczywiście wówczas decrement musi polegać na przesunięciu zmniejszonego elementu do korzenia drzewa.