MAS241 - Analysis I

Quiz 2 - April 4, 2019

St	rudent ID: Name:		
Correct answer - 5 points No answer - 2 points Wrong answer - 0 points			
In	the following questions, every sequence is a sequence of real numbers.	${ m T}$	F
1.	If $\{p_n\}$ converges to p and p' , then $p' = p$. (True. See Theorem 3.2.)		
2.	There exists a convergent sequence whose subsequences have different limits. (False.)		
3.	Every bounded sequence contains a convergent subsequence. (True. See Theorem 3.6.)		
4.	If E_n is a sequence of sets such that $E_n \supset E_{n+1}$ and if $\lim_{n \to \infty} \operatorname{diam} E_n = 0$,		
	then $\bigcap_{n=1}^{\infty} E_n = \emptyset$.		
5.	(False. See Theorem 3.10.) Every Cauchy sequence converges.		
6.	(True. See Theorem 3.11.) If $a_n \ge b_n$ for all $n = 1, 2,$ and if $\sum b_n$ diverges, then $\sum a_n$ diverges.		
7.	(False. Consider $a_n = 0$ and $b_n = -1$.) If $\sum a_n$ converges and $a_n \ge 0$, then $\sum \frac{\sqrt{a_n}}{n}$ converges.		
••	(True. Check $\sqrt{a_n}/n \le a_n + n^{-2}$.)		
8.	There exists a convergent series $\sum a_n$ such that $\limsup_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right > 1$.		
0	(True. See Example 3.35.)		
9.	The radius of convergence of the power series $\sum \frac{z^n}{\sqrt{n}}$ is 1. (True.)		
10.	If $ a_1 \ge a_2 \ge \cdots$, and if $a_{2k-1} \ge 0$ and $a_{2k} \le 0$ for $k = 1, 2, \ldots$, then $\sum a_n$		
	converges. (False. Consider $a_n = (-1)^{n+1}$.)		