Introduction to Markov State Models

Drug Computing — Mobley Lab — UCI

Markov processes describe the dynamics of systems that have no "long term memory"

Flipping a coin

Markov State Models (MSMs) reveal kinetics of configurational transitions

Highly Disordered Trajectory

MSMs can be used to capture the macrostates of protein dynamics

Markov State Models (MSMs) reveal kinetics of configurational transitions

Building a Markov State Model

Useful for combining many different simulations into a single model Example: building a (long timescale) kinetic protein folding pathway

MSMs can be built from many short simulations

MSMs can describe the equilibrium process of the model

First eigenvector of the probability matrix describes the equilibrium populations $\pi^T = \pi^T \mathbf{T}(\tau)$

Other eigenvectors (processes) show fluxes between states

Building a Markov State Model

Open

Good clustering is necessary for maintaining Markovian properties

Dimensionality Reduction: Principle Component Analysis (PCA) and Time-independent Component Analysis (TICA)

PCA finds the direction of maximum variance in the data

TICA identifies the slowest reaction coordinates (maximum autocorrelation)

Projection:

Testing the dimensionality reduction: Implied Timescales

Perfectly Markovian Process

$$t_i(k\tau_0) = t_i = -\frac{\tau_0}{\ln \lambda_i(\tau_0)}$$

http://docs.markovmodel.org/lecture_implied_timescales.html

Imperfect Markov Model

$$t_i(k\tau_0) = -\frac{k\tau_0}{\ln \lambda_i(k\tau_0)}$$

Choose a time scale at which the model appears to start behaving Markovian

Using the dimension reduction to identify macrostates of the system

PCCA and K-means Clustering

K-means Clustering:

 Identifies clusters based on distance in TICA space

Using the dimension reduction to identify macrostates of the system

PCCA and K-means Clustering

PCCA: Perron-Cluster Cluster Analysis

 Uses the eigenvector-eigenvalue decomposition to identify meta-stable states

 Splits the available conformational state space in order of longest relaxation time

Testing the Markov Model: Chapman-Kolmogorov test

How well do the interconversions between the coarse-grained macro-states of the model compare to the real trajectory?

$$[\hat{\mathbf{T}}(\tau)]^k \approx \hat{\mathbf{T}}(k\tau)$$

Core concepts and procedure to use Markov models

- (1) Identify Configuration Microstates
 - Dimensionality Reduction
 - O TICA, PCA
 - Clustering
 - K-means
- (2) Construct Transition Matrix Between States
- (3) Test for Self-Consistency
- (4) Calculate Kinetics + Free Energy Between State