

(a) Χρησημοποιούμε τη μεθοδο των ειδώλων

Για να βρούμε το δυναμινό στην περιοχή () απίρχουμε είδωλο πυκύστητας λό συμμετρικά από του χάξουα. Θωρώντας παντού $ε=ε_1$ (υποπρίβλημα 1) με $λ_0'=\frac{ε_1-ε_2}{ε_1+ε_2}$ $λ_0$.

 $\vec{R} = (x - x')\hat{i}_{x} + y\hat{i}_{y} + (z - h)\hat{i}_{z} \implies R = \left[(x - x')^{2} + y^{2} + (z - h)^{2} \right]^{\frac{1}{2}}$ $\vec{R}' = (x - x')\hat{i}_{x} + y\hat{i}_{y} + (z + h)\hat{i}_{z} \implies R' = \left[(x - x')^{2} + y^{2} + (z + h)^{2} \right]^{\frac{1}{2}}$

And apxy enaddydian eivar $\Phi_{i} = \frac{\lambda_{0}}{4n\epsilon_{1}} \int_{-L}^{L} \frac{dx'}{R} \cdot \frac{\lambda'_{0}}{4n\epsilon_{1}} \int_{-L}^{L} \frac{dx'}{R'} \Rightarrow$

 $\Rightarrow \Phi_{1}(x,y,z) = \frac{\lambda_{0}}{4\pi\epsilon_{1}} \ln \frac{L-x + \left[(x-L)^{2} \cdot y^{2} + (z-h)^{2}\right]^{1/2}}{-L-x + \left[(x-L)^{2} + y^{2} + (z-h)^{2}\right]^{1/2}} + \frac{\lambda_{0}'}{4\pi\epsilon_{1}} \ln \frac{L-x + \left[(x-L)^{2} + y^{2} + (z+h)^{2}\right]^{1/2}}{-L-x + \left[(x+L)^{2} + y^{2} + (z+h)^{2}\right]^{1/2}}$ ≥ 20

Για να βρούμε το δυναμικό στην περιοχή ② Θεωρούμε παντού ε=ε₂ και πυμνότητα $λ_0'' = \frac{2ε_2}{ε_1 + ε_2} λ_0$ (νιοπρόβλημα) $\vec{R}'' = (x - x^n)\hat{\iota}_x + y\hat{\iota}_y + (z - h)\hat{\iota}_z \implies R'' = \left[(x - x^n)^2 + y^2 + (z - h)^2\right]^{1/2}$

And apxin snaddy dies sives $\Phi_2 = \frac{\lambda_0''}{4\pi\epsilon_2} \int_{-L}^{L} \frac{dx''}{R''} \Rightarrow \Phi_2(x,y,z) = \frac{\lambda_0''}{4\pi\epsilon_2} \ln \frac{L-x + [(x-L)^2 + y^2 + (z-h)^2]^{1/2}}{-L-x + [(x+L)^2 + y^2 + (z-h)^2]^{1/2}}, z \leq 0$

(1) Eagus requexity (1) since
$$\hat{C}_1 = \frac{\lambda_0}{4\pi i_1} \int_{-L}^{L} \frac{dx^2}{R^2} + \frac{\lambda_0}{R^2} \int_{-L}^{L} \frac{dx^2}{R^2} + \frac{\lambda_0}{R^$$

2 - 2 - 1 and C = 2 1 and 2 - 2 1 and 2 - 2 1 and 3 - 3 1 and 3 -

Χωρίτουμε τον αγωχό σε N κομμάτια μήκους $\Delta x = \frac{2L}{N}$ όπου το Έσσο έχει πυπότητα λ ί Τον θωρούμε ισοδοναμικό αφοί $\alpha << L$ Συνολικό φορτίο $Q = \sum_{i=1}^{N} \lambda_i \Delta x$

To Suvagnuò oro vierpo evòs ovjasupipierou nopparioù xi eiran
$$\Phi_{i} = \sum_{j=1}^{N} \frac{\lambda_{j} \Delta x}{4n\epsilon_{i} R_{ij}} \cdot \sum_{j=1}^{N} \frac{\lambda_{j} \Delta x}{4n\epsilon_{i} R_{ij}} = \sum_{j=1}^{N} \frac{\lambda_{j} \Delta x}{4n\epsilon_{i}} \left(\frac{1}{R_{ij}} + \frac{\epsilon_{1} - \epsilon_{2}}{\epsilon_{1} + \epsilon_{2}} \frac{1}{R_{ij}}\right)$$

'Apa Q =
$$\frac{\Phi}{\Phi_0} \stackrel{\stackrel{r}{\sim}}{\stackrel{j}{\sim}} \lambda_{0j} \Delta_X \implies \Phi = \Phi_0 \stackrel{\stackrel{r}{\sim}}{\stackrel{j}{\sim}} \lambda_{0j} \Delta_X$$

Man
$$[\lambda] = Q$$
 $Q_0[A]^{-1}[1]$ $Q_0[A]^{-1}[1]$ $Q_0[A]^{-1}[1]$ $Q_0[A]^{-1}[1]$ $Q_0[A]^{-1}[1]$

inou pa
$$i \neq j$$
 sivon $Aij = \frac{\Delta \times}{4n\epsilon_1} \left(\frac{1}{\rho_{ij}} + \frac{\xi_1 - \xi_2}{\epsilon_1 + \epsilon_2} \frac{1}{R_{ij}} \right) \mu\epsilon R_{ij} = \left[\times_j - \times_i \right] \kappa \alpha_1 R_{ij}' = \left[\left(\times_j - \times_i \right)^2 + \left(2h \right)^2 \right]^{1/2}$

$$= \kappa \omega \quad \text{for } i = j \quad \text{sivon} \quad Aii = \frac{1}{4n\epsilon_1} \left(\ln \frac{\Delta \times_2 + \left[a^2 + \left(\Delta \times_2 \right) \right]^{1/2}}{-\Delta \times_2 + \left[a^2 + \left(\Delta \times_2 \right) \right]^{1/2}} + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \frac{\lambda^{n/2}}{4n\epsilon_1} \left(\ln \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h}$$

$$= \frac{1}{4n\epsilon_1} \left(\ln \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h}$$

$$= \frac{1}{4n\epsilon_1} \left(\ln \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h}$$

$$= \frac{1}{4n\epsilon_1} \left(\ln \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h}$$

$$= \frac{1}{4n\epsilon_1} \left(\ln \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h}$$

$$= \frac{1}{4n\epsilon_1} \left(\ln \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h} \right) \left(\frac{\Delta \times}{a} \right)^2 + \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \frac{dx}{2h}$$

Το Suvapuno το βρίσπουμε με εnaddydia:

$$\Phi(x_{i}y_{i}z) = \sum_{j=1}^{N} \frac{\lambda_{j} \Delta x}{4n\epsilon_{1}} \left(\frac{1}{R_{j}} + \frac{\epsilon_{1} - \epsilon_{2}}{\epsilon_{1} + \epsilon_{2}} \frac{1}{R_{j}^{2}} \right), \quad z > 0 \quad \text{inou} \quad R_{j}^{*} = \left[(x - x_{j})^{2} + y^{2} + (2 - h)^{2} \right]^{\frac{1}{2}} \\
= \sum_{j=1}^{N} \frac{\lambda_{j} \Delta x}{4n\epsilon_{2}} \frac{2\epsilon_{1}}{\epsilon_{1} + \epsilon_{2}} \frac{1}{R_{j}^{2}}, \quad z < 0$$

Γραφικές Παραστάσεις

έγιναν σε Python 3.9

Άσκηση 7

(δ)

Normalised Electric Potential $\Phi(x,z)/(\lambda/\epsilon_0)$ on xz plane

Normalised Electric Potential $\Phi(x,z)/(\lambda/\epsilon_0)$ on xz plane for $\epsilon_1{=}5\epsilon_0$ and $\epsilon_2{=}\epsilon_0$

Normalised Electric Potential $\Phi(x,z)/(\lambda/\epsilon_0)$ on xz plane for $\epsilon_1{=}5\epsilon_0$ and $\epsilon_2{=}\epsilon_0$

Electric Field on xz plane for $\varepsilon_1 = \varepsilon_0$ and $\varepsilon_2 = 5\varepsilon_0$

Electric Field on xz plane for ε_1 =5 ε_0 and ε_2 = ε_0

Electric Potential Φ on separation plane (z=0, y=0) for $\varepsilon_1 = \varepsilon_0$, $\varepsilon_2 = 5\varepsilon_0$

Κώδικας σε Python 3.9

Άσκηση 7

(δ)

```
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import math
#constants
L=0.5
h = 0.5
levels=np.array([0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5])
#Axes
xmin=-2
xmax=2
zmin=-2
zmax=2
N = 403
dx=(xmax-xmin)/N
dz=(zmax-zmin)/N
xx=np.arange(xmin,xmax,dx)
zz=np.arange(zmin,zmax,dz)
X,Z=np.meshgrid(xx,zz)
#functions to calculate potential
def phi_term1(x,z):
    R1=np.sqrt((x-L)**2+(z-h)**2)
    R2=np.sqrt((x+L)**^2+(z-h)**^2)
    return np.log((x-L+R1)/(x+L+R2))
def phi_term2(x,z):
    R3=np.sqrt((x-L)**2+(z+h)**2)
    R4=np.sqrt((x+L)**2+(z+h)**2)
    return np.log((x-L+R3)/(x+L+R4))
def potential1(x,z):
    condlist=[z>=0,z<0]
    choicelist = [phi\_term1(x,z)/(4*math.pi)-2*phi\_term2(x,z)/(12*math.pi), phi\_term1(x,z)/(12*math.pi)]
    return np.select(condlist,choicelist)
def potential2(x,z):
    condlist=[z>=0,z<0]
    choicelist = [phi\_term1(x,z)/(20*math.pi)+2*phi\_term2(x,z)/(60*math.pi), phi\_term1(x,z)/(12*math.pi)]
    return np.select(condlist,choicelist)
phi1=potential1(X,Z)
phi2=potential2(X,Z)
```

```
#functions to calculate electric field
def electric_field_term1(x,z):
                R1=np.sqrt((x-L)**2+(z-h)**2)
                R2=np.sqrt((x+L)**^2+(z-h)**^2)
                return (x-L)/(R1*((z-h)**2))-(x+L)/(R2*((z-h)**2))
def electric_field_term2(x,z):
                R3=np.sqrt((x-L)**2+(z+h)**2)
                R4=np.sqrt((x+L)**^2+(z+h)**^2)
                return (x-L)/(R3*((z+h)**2))-(x+L)/(R4*((z+h)**2))
def Ex_func1(x,z):
                condlist=[z>=0,z<0]
                \label{locality} choicelist = [x*electric_field_term1(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(4*x*electric_field_term2(x,z)/(4*x*electric_field_te
(12*math.pi),x*electric_field_term1(x,z)/(12*math.pi)]
                return np.select(condlist,choicelist)
def Ex_func2(x,z):
               condlist=[z>=0,z<0]
                choicelist = [x*electric_field_term1(x,z)/(20*math.pi) + 2*x*electric_field_term2(x,z)/(20*math.pi) + 2*x*ele
(60*math.pi),x*electric_field_term1(x,z)/(12*math.pi)]
                return np.select(condlist,choicelist)
def Ez_func1(x,z):
                condlist=[z>=0,z<0]
                choicelist=[(z-h)*electric field term1(x,z)/(4*math.pi)-2*(z+h)*electric field term2(x,z)/(12*math.pi),
(z-h)*electric_field_term1(x,z)/(12*math.pi)]
                return np.select(condlist,choicelist)
def Ez_func2(x,z):
                condlist=[z>=0,z<0]
                (z-h)*electric field term1(x,z)/(12*math.pi)]
               return np.select(condlist,choicelist)
Ex1=Ex_func1(X,Z)
Ex2=Ex_func2(X,Z)
Ez1=Ez_func1(X,Z)
Ez2=Ez_func2(X,Z)
```

#PLOTS

```
#contour lines of potential
fig1, ax1 = plt.subplots()
CS1 = ax1.contour(X,Z,-phi1,levels)
ax1.clabel(CS1, inline=True, fontsize=7)
ax1.set aspect('equal','box')
ax1.set_title('Normalised Electric Potential \Phi(x,z)/(\lambda/\epsilon_0)) on xz plane\nfor \epsilon_1=\epsilon_0 and
$E 2$=5$E 0$')
ax1.set_xlabel('x(m)')
ax1.set_ylabel('z(m)')
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X,Z,-phi2,levels)
ax2.clabel(CS2, inline=True, fontsize=7)
ax2.set_aspect('equal','box')
ax2.set_title('Normalised Electric Potential \Phi(x,z)/(\lambda/\xi\epsilon_0\xi) on xz plane\nfor \xi\epsilon_1\xi=5\xi\epsilon_0\xi and
$E_2$=$E_0$')
ax2.set_xlabel('x(m)')
ax2.set_ylabel('z(m)')
#surface plot of potential
fig3, ax3 = plt.subplots()
s3=ax3.pcolormesh(X,Z,-phi1,cmap=cm.jet)
ax3.set_aspect('equal','box')
ax3.set_title('Normalised Electric Potential \Phi(x,z)/(\lambda/\xi\epsilon_0\xi) on xz plane\nfor \xi\epsilon_1\xi=\xi\epsilon_0\xi and
SE 2$=5$E_0$')
cb3=fig3.colorbar(s3)
ax3.set_xlabel('x(m)')
ax3.set_ylabel('z(m)')
fig4, ax4 = plt.subplots()
s4=ax4.pcolormesh(X,Z,-phi2,cmap=cm.jet)
ax4.set aspect('equal','box')
ax4.set_title('Normalised Electric Potential \Phi(x,z)/(\lambda/\xi\epsilon_0\xi) on xz plane\nfor \xi\epsilon_1\xi=5\xi\epsilon_0\xi and
$\ 2$=$\ 0$')
cb4=fig4.colorbar(s4)
ax4.set_xlabel('x(m)')
ax4.set_ylabel('z(m)')
```

```
#surface plot of potential
fig3, ax3 = plt.subplots()
s3=ax3.pcolormesh(X,Z,-phi1,cmap=cm.jet)
ax3.set_aspect('equal','box')
ax3.set_title('Normalised Electric Potential \Phi(x,z)/(\lambda/\xi\epsilon_0\xi) on xz plane\nfor \xi\epsilon_1\xi=\xi\epsilon_0\xi and
$E 2$=5$E 0$')
cb3=fig3.colorbar(s3)
ax3.set xlabel('x(m)')
ax3.set ylabel('z(m)')
fig4, ax4 = plt.subplots()
s4=ax4.pcolormesh(X,Z,-phi2,cmap=cm.jet)
ax4.set_aspect('equal','box')
ax4.set_title('Normalised Electric Potential \Phi(x,z)/(\lambda/\xi_0\xi) on xz plane\nfor \xi_1\xi_0 and
$E_2$=$E_0$')
cb4=fig4.colorbar(s4)
ax4.set_xlabel('x(m)')
ax4.set_ylabel('z(m)')
#electric field streamplot
fig5,ax5=plt.subplots()
CS5=ax5.contour(X,Z,-phi1,levels,cmap=cm.autumn)
s15=ax5.streamplot(X,Z,-Ex1,-Ez1,color=np.log10(np.sqrt(Ex1**2+Ez1**2)),cmap=cm.gnuplot2,density=1.2)
ax5.set_aspect('equal','box')
ax5.set_title('Electric Field on xz plane\nfor $ε_1$=$ε_0$ and $ε_2$=5$ε_0$')
ax5.set_xlabel('y(m)')
ax5.set_ylabel('z(m)')
fig6,ax6=plt.subplots()
CS6=ax6.contour(X,Z,-phi2,levels,cmap=cm.autumn)
sl6=ax6.streamplot(X,Z,-Ex2,-Ez2,color=np.log10(np.sqrt(Ex1**2+Ez1**2)),cmap=cm.gnuplot2,density=1.2)
ax6.set_aspect('equal','box')
ax6.set_title('Electric Field on xz plane\nfor $ε 1$=5$ε 0$ and $ε 2$=$ε 0$')
ax6.set_xlabel('y(m)')
ax6.set_ylabel('z(m)')
plt.show()
```

```
import matplotlib
  import matplotlib.pyplot as plt
 import matplotlib.cm as cm
 import numpy as np
import math
#constants
L = 0.5
h=0.5
a=0.0025
e0=8.85*(10**(-12))
#Axes
N=50
xrmin=-L
xrmax=L
Dxr=(xrmax-xrmin)/(N+1)
Xr=np.linspace(xrmin,xrmax,N+1)
N2 = 203
xmin=-2
xmax=2
Dx=(xmax-xmin)/N2
X=np.linspace(xmin,xmax,N2)
#initialising arrays
xx=np.zeros(N)
AA=np.zeros((N,N))
for i in range (0,N):
                      xx[i]=0.5*(Xr[i]+Xr[i+1])
#calculating A matrix
for i in range(0,N):
                      for j in range(0,N):
                                          if i==j:
                                                                AA[i][j] = Dxr*(np.log((Dxr/2+np.sqrt(a**2+(Dxr/2)**2)))(-Dxr/2+np.sqrt(a**2+(Dxr/2)**2))) - 2/(Dxr/2+np.sqrt(a**2+(Dxr/2)**2))) - 2/(Dxr/2+np.sqrt(a**2+(Dxr/2)**2)) - 2/(Dxr/2+np.sqrt(a**2+(Dxr/2)**2)) - 2/(Dxr/2+np.sqrt(a**2+(Dxr/2)**2)) - 2/(Dxr/2+np.sqrt(a**2+(Dxr/2)**2)) - 2/(Dxr(a**2+(Dxr/2)**2)) - 2/(Dxr(a**2+(Dx
 (3*2*h))/(4*math.pi)
                                                                 R1=abs(xx[j]-xx[i])
                                                                 R2=np.sqrt((xx[j]-xx[i])**2+(2*h)**2)
                                                                 AA[i][j]=Dxr*(Dxr/R1 -2*Dxr/(3*R2))/(4*math.pi)
#charge density
 l0=np.dot(np.linalg.inv(AA),np.ones(N))
l=l0/(Dxr*sum(l0))
#function for phi
def potential(x):
                     res=0
                      for j in range(0,N):
                                        Rj=np.sqrt((x-xx[j])**2+h**2)
res=res+l[j]*Dxr*5/(12*Rj*5*math.pi)
                    return res
phi=potential(X)
#plots
 fig1, ax1 = plt.subplots()
 test=ax1.plot(xx,l)
ax1.set_aspect('equal','box')
ax1.set_title('Normalised Charge Density \lambda/\xi\epsilon_0\nfor \xi\epsilon_1\$=\xi\epsilon_0\ and \xi\epsilon_2\$=\xi\epsilon_0\ntotal charge \xi\epsilon_0\ and \xi\epsilon_0\$=\xi\epsilon_0\ and \xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\$=\xi\epsilon_0\
ax1.set_xlabel('Length of wire x(m)')
fig2, ax2 = plt.subplots()
test=ax2.plot(X,phi)
ax2.set_title('Electric Potential \phi on separation plane (z=0, y=0)\nfor \epsilon_1=\epsilon_0, \epsilon_2=\epsilon_0') ax2.set_ylabel('\phi')
ax2.set_xlabel('x(m)')
plt.show()
```


Naiproupe to natoripino exign pa z^{30} one Sixeran enions, puipe I non eivan nauroi σ = σ_{0} Xupi foure rov azuroi σ_{0} N= θ triphara rijeous $\Delta l_{ij} = \{ \frac{1}{3} \}$ pa j=1,2,3,7,8,9dneu to j-oriò ixy maderò piùpa I_{ij} Tor Osupoire voodovarino avoi acct, D (and apolytimis upis)

Zurodino piùpa $I=\sum_{i=1}^{N}I_{ij}$ Δl_{ij}

Θέτω x_j , z_j τις συντεταγρένες της αρχής κάθε κομματιού και $\hat{x}_j = \frac{1}{2} \left(x_j + x_{j-1} \right)$, $\hat{z}_j = \frac{1}{2} \left(z_j + z_{j-1} \right)$ τις συντεταγρένες του κέντρου κάθι κομματιού.

To Sovogrus or virgo viole nopported tires
$$\phi_i = \sum_{j=1}^N voF_{ij} I_j$$

O rivanus VDF opigua we ifis:

Fine it j VDF $ij = \frac{1}{4n\sigma_0} \Delta l_j \left(\frac{1}{Rij} + \frac{1}{Rij'}\right)$ Show $Rij = \sqrt{(\hat{z}_i - \hat{z}_j)^2 + (\hat{x}_i - \hat{x}_j)^2}$ can $Rij' = \sqrt{(\hat{z}_i - \hat{z}_{j'})^2 + (\hat{x}_i - \hat{x}_{j'})^2}$

Apa
$$[0] = [VDF][I] \Rightarrow [I] = [VDF]^{1}[1]\Phi$$
 $[I] = \frac{\Phi}{\Phi_{o}}[I_{o}]$

Oewpoisse gravosi Surageni Φ_{o} non Epionocyte $[I_{o}] = [VDF]^{1}[I_{o}]\Phi_{o}$

$$\sum_{\nu} v_{\nu} \lambda_{\nu} u_{\nu} = \sum_{j=1}^{\infty} I_{\nu} \sum_{j=1}^{\infty} I_{\nu} \lambda_{j} \Rightarrow 0 = 0$$

$$[I] = \frac{I}{\sum_{j=1}^{N} I_{o_j} \Delta \ell_j} [I_o] = \frac{I}{\sum_{j=1}^{N} I_{o_j} \Delta \ell_j} \Phi. [VDF]^{-1}[I]$$
 Directer $P_o = 1$ par ever λ ia

(8) H arrivacy privary Eivar
$$R_g = \frac{\Phi}{I} = \frac{\Phi_o}{\sum_{j=1}^{\infty} I_{oj} \Delta l_j}$$

Το δυναγικό για 260 είναι από επαλληλία:
$$\Phi(x,y,z) = \sum_{j=1}^{N} \frac{1_{j} \Omega l_{j}}{4 n \sigma_{0}} \left(\frac{1}{R_{j}} + \frac{1}{R_{j}}\right)$$
, 260 όπου $R_{j} = \sqrt{(x-\hat{x}_{j})^{2} + y^{2} + (z-\hat{z}_{j})^{2}}$ και $R_{j'} = \sqrt{(x-\hat{x}_{j'})^{2} + y^{2} + (z-\hat{z}_{j'})^{2}}$

$$\sum_{i\neq j} \frac{1}{2} \frac{1$$

Αριθμητικά αποτελέσματα και γραφικές παραστάσεις

έγιναν σε Python 3.9

Άσκηση 8

(a)

Έχω αριθμήσει τα κομμάτια ως εξής: πρώτα η αριστερή ράβδος από κάτω προς τα πάνω (κομμάτια 1-3), μετά η μεσαία ράβδος από τα αριστερά προς τα δεξιά (κομμάτια 4-6) και τέλος η δεξιά ράβδος από πάνω προς τα κάτω (κομμάτια 7-9)

Πίνακας VDF αντιστάσεων:

i/j	1	2	3	4	5	6	7	8	9
1	107.846	13.998	7.771	9.630	7.888	6.311	3.820	3.889	3.866
2	13.998	108.100	14.312	14.019	9.528	7.016	4.112	4.057	3.889
3	7.771	14.312	108.498	24.174	11.069	7.596	4.317	4.112	3.820
4	6.356	9.252	15.955	120.455	15.820	9.213	5.013	4.631	4.166
5	5.206	6.288	7.305	15.820	120.455	15.820	7.305	6.288	5.206
6	4.166	4.631	5.013	9.213	15.820	120.455	15.955	9.252	6.356
7	3.820	4.112	4.317	7.596	11.069	24.174	108.498	14.312	7.771
8	3.889	4.057	4.112	7.016	9.528	14.019	14.312	108.100	13.998
9	3.866	3.889	3.820	6.311	7.888	9.630	7.771	13.998	107.846

Κατανομή ρεύματος Ι_j:

	Αριστερός αγωγός			Μεσαίος αγωγός			Δεξιός αγωγός		
j	1	2	3	4	5	6	7	8	9
I_j	167.243	146.796	139.591	133.040	135.128	133.040	139.591	146.796	167.243

135 -

Ó

2

3

4

Piece number (from bottom left to bottom right)

5

1

N	Δυναμικό αγωγού Φ	Αντίσταση γείωσης R_g	$\Phi(0,0,0)$
3	26113.464	52.227	9343.564

N	Δυναμικό αγωγού Φ	Αντίσταση γείωσης R_g	$\Phi(0,0,0)$
5	25998.003	51.996	9317.350
10	25900.028	51.800	9298.684
15	25867.822	51.735	9292.212
20	25856.976	51.714	9288.923
25	25857.395	51.715	9287.261
30	25865.335	51.731	9286.399
35	25878.982	51.758	9286.121
40	25897.280	51.795	9286.269
45	25919.520	51.839	9286.774
50	25945.176	51.890	9287.478
55	25973.823	51.948	9288.420
60	26005.104	52.010	9289.529
65	26038.705	52.077	9290.772
70	26074.349	52.149	9292.121
75	26111.782	52.224	9293.553

Κώδικας σε Python 3.9

Άσκηση 8

```
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import math
#constants
a = 0.005
L=0.99
h=1
D=1.5
sigma0=1/160
I=500
N=3
#Axes for plot
xmin=-5
xmax=5
Nx=100
dx=(xmax-xmin)/Nx
X=np.linspace(xmin,xmax,Nx)
#length of pieces
Dl1=L/N*np.ones(N)
Dl2=D/N*np.ones(N)
Dl3=L/N*np.ones(N)
Dl=np.concatenate((Dl1,Dl2,Dl3))
#x coordinate of start of pieces (approximate, ignoring a)
x1=np.ones(N)*(-D/2)
x3=np.ones(N)*(D/2)
x2=np.linspace(-D/2,D/2,N+1)
x=np.concatenate((x1,x2,x3))
#x coordinate of center of pieces
xx1=np.zeros(N)
xx2=np.zeros(N)
xx3=np.zeros(N)
for i in range(0,N):
    xx1[i]=0.5*(x[i]+x[i+1])
    xx2[i]=0.5*(x[i+N]+x[i+1+N])
    xx3[i]=0.5*(x[i+2*N]+x[i+1+2*N])
xx=np.concatenate((xx1,xx2,xx3))
```

```
#z coordinate of start of pieces (approximate, ignoring a)
z1=np.linspace(-h-L,-h,N+1)
z3=np.linspace(-h,-h-L,N+1)
z2=np.ones(N-1)*(-h)
z=np.concatenate((z1,z2,z3))
#z coordinate of center of pieces
zz1=np.zeros(N)
zz2=np.zeros(N)
zz3=np.zeros(N)
for i in range(0,N):
    zz1[i]=0.5*(z[i]+z[i+1])
    zz2[i]=0.5*(z[i+N]+z[i+1+N])
    zz3[i]=0.5*(z[i+2*N]+z[i+1+2*N])
zz=np.concatenate((zz1,zz2,zz3))
#VDF matrix
VDF=np.zeros((3*N,3*N))
for i in range(0,3*N):
    for j in range(0,3*N):
        if i==j:
            R1=Dl[i]/2+np.sqrt(a**2+(Dl[i]/2)**2)
            R2=-Dl[i]/2+np.sqrt(a**2+(Dl[i]/2)**2)
            Riim=abs(2*zz[i])
            VDF[i][j]=(np.log(R1/R2)+Dl[i]/Riim)/(4*math.pi*sigma0)
        else:
            R1=np.sqrt((zz[i]-zz[j])**2+(xx[i]-xx[j])**2)
            R2=np.sqrt((zz[i]+zz[j])**2+(xx[i]-xx[j])**2)
            VDF[i][j]=Dl[j]*(1/R1+1/R2)/(4*math.pi*sigma0)
#charge at each piece
I0=np.dot(np.linalg.inv(VDF),np.ones(3*N))
Itot=0
for i in range (0, 3*N):
    Itot=Itot+I0[i]*Dl[i]
Ic=np.multiply(I0,I/Itot)
```

```
#potential of rod and ground resistance
phi_rod=I/Itot
Rg=phi_rod/I
#potential at ground level
def potential(x):
    res=0
    for i in range(0,3*N):
        R=np.sqrt((x-xx[i])**2+zz[i]**2)
        res=res+Ic[i]*Dl[i]*2/R
    return res/(4*math.pi*sigma0)
phi=potential(X)
phi0=potential(0)
print('For N={}:\nPotential at the rod: {}\nGround resistance: {}\nPotential at (0,0,0): {}'.format(N,phi_rod, Rg,
phi0))
#plots
fig1, ax1 = plt.subplots()
potplot=ax1.plot(X,phi)
ax1.set_title('Electric potential \Phi at ground level (y=0, z=0)\n for N={}'.format(N))
ax1.set_xlabel('x(m)')
ax1.set_ylabel('0')
fig2,ax2=plt.subplots()
iplot=ax2.plot(Ic)
ax2.set_title('Current $I_c$ at each piece of the conductor\nfor N={}'.format(N))
ax2.set_xlabel('Piece number (from bottom left to bottom right)')
ax2.set_ylabel('$I_c$')
plt.show()
```