

2017 Mathematical Methods Trial Exam 2 Solutions © inte 2017

SECTION A – Multiple-choice questions

							1				
	1	2	3	4	5	6	7	8	9	10	
	Е	D	С	Е	A	D	В	A	A	В	
	11	12	13	14	15	16	17	18	19	20	
	D	С	Е	D	Е	A	A	В	Α	В	

Q1
$$y = \left(a\left(\frac{b+4}{a}\right) - b\right)^{1.5} = 8$$

Q2
$$x-1 \ge 0$$
 and $2+x > 0$, .: $x \ge 1$

Q3
$$g(x) = 0.2 f(0.1x + 0.2) + 0.1$$

 $g(10x - 2) = 0.2 f(0.1(10x - 2) + 0.2) + 0.1 = 0.2 f(x) + 0.1$
 $h(x) = 5g(10x - 2) - 0.5 = f(x)$

Q4 The inverse is
$$x = e^{\left(\frac{y}{10}\right)} - \log_e\left(\frac{y}{10}\right)$$

Q5
$$y = mx$$
 lies in the shaded region, .: $m \le 1$

Q6
$$\cos\left(\frac{\pi(x-1)}{2}\right) = \sin\left(\frac{\pi x}{2}\right), \cos\left(\frac{\pi(x+1)}{2}\right) = -\sin\left(\frac{\pi x}{2}\right)$$

Q7
$$(x-p)^3 = x^3 - 3px^2 + 3p^2x + p^3$$
, : $a = -3p$, $b = 3p^2$
: $a^2 - 3b$

Q8 Try
$$x = 0$$
, $by + z = 1$, $dy + z = 0$, eliminate z , $y = \frac{1}{b-d}$ and

$$z = -\frac{d}{b - d} = \frac{d}{d - b}$$

Q9
$$\frac{15-6}{12} = 0.75$$

Q10 The graph shows that y = f(x) is an even function.

:
$$f(-x) = f(x)$$
, $f(x) - f(-x) = 0$.

2017 Mathematical Methods Trial Exam 2 Solutions

http://www.learning-with-meaning.com/

Q11
$$e^{2x} = e^x + c$$
, $(e^x)^2 - e^x - c = 0$, $e^x = \frac{1 \pm \sqrt{1 + 4c}}{2}$

Two distinct roots if 1+4c > 0 and $\frac{1-\sqrt{1+4c}}{2} > 0$

$$\therefore -\frac{1}{4} < c < 0$$

Q12 The curve $y = a \sin(x) \cos\left(\frac{x}{2}\right)$ including the point at $x = \frac{1}{2}$ is dilated by the same factor in both x and y directions, x: same gradient at $x = \frac{1}{4}$.

Q13
$$\left[\frac{e^{bx}}{b} - \frac{2e^{\frac{bx}{2}}}{b}\right]_0^a = \frac{1}{b}, e^{\frac{ab}{2}}\left(e^{\frac{ab}{2}} - 2\right) = 0, ab = \log_e 4$$

Q15 Number of squares bounded by the graph and the *t*-axis ≈ 32 Each square represents 1 metre distance.

Average speed
$$\approx \frac{32}{12} \approx 2.7$$

Q16
$$\frac{\Pr(5.5 < X < 11)}{\Pr(X > 5.5)} = \frac{0.6}{0.65} \approx 0.92$$

Q17
$$\int_0^{2\pi} \frac{a}{2} (1 - \cos x) dx = 1$$
, .: $a = \frac{1}{\pi}$
$$\int_{-\pi}^{\frac{3\pi}{2}} \frac{1}{2\pi} (1 - \cos x) dx = \frac{\pi + 2}{2\pi}$$

Q18 Choice B is not a random variable, it is a subset of the sample space.

Q19
$$n = 4$$
, $p = 0.1$ and $q = 0.9$
 $\therefore \mu = np = 0.4$ and $\sigma = \sqrt{npq} = 0.6$

Q20 The mean of $\hat{P} = p = 0.60$

The standard deviation of $\hat{P} = \sqrt{\frac{p(1-p)}{n}} = 0.04$

 $Pr(\hat{P} < 0.56) \approx 0.16 \text{ (normal approx)}$ Number of samples $\approx 20 \times 0.16 \approx 3.2$

SECTION B

Q1a
$$y = x(2a-x)$$
, $p = \frac{2a+0}{2} = a$, $q = 2a^2 - a^2 = a^2$

Q1bi y = mx + c is the equation of the tangent.

Let
$$mx + c = 2ax - x^2$$
, .: $x^2 + (m - 2a)x + c = 0$

$$(m-2a)^2-4c=0$$

Q1bii From part bi,
$$(m-2a)^2 = 4c$$
, $m-2a = \pm 2\sqrt{c}$

$$m = 2(a \pm \sqrt{c})$$

Given
$$c > q$$
, i.e. $c > a^2$, .: $\sqrt{c} > a$, $a - \sqrt{c} < 0$

$$m = 2(a - \sqrt{c})$$
 for negative m .

Q1ci When
$$a = 1$$
, $m = 2(1 - \sqrt{c})$, $y = 2(1 - \sqrt{c})x + c$

$$2(\sqrt{c}-1)x + y = c$$

Q1cii Let
$$y = 0$$
 for x-intercept, :: $x = \frac{c}{2(\sqrt{c} - 1)}$

$$\therefore B = \left(\frac{c}{2(\sqrt{c}-1)}, 0\right)$$

Q1d Area of
$$\triangle AOB = \frac{1}{2} \times \frac{c}{2(\sqrt{c} - 1)} \times c = \frac{c^2}{4(\sqrt{c} - 1)} = \frac{c^2(\sqrt{c} + 1)}{4(c - 1)}$$

Q1e Let
$$\frac{d}{dc} \frac{c^2}{4(\sqrt{c}-1)} = 0$$
, $c = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$

Min. area of
$$\triangle AOB = \frac{c^2}{4(\sqrt{c}-1)} = \frac{\left(\frac{4}{3}\right)^4}{\frac{4}{3}} = \left(\frac{4}{3}\right)^3$$

Q1f Area bounded by the parabola and the x-axis:

$$\int_0^2 (2x - x^2) dx = \frac{4}{3}$$

:: min. shaded area =
$$\left(\frac{4}{3}\right)^3 - \frac{4}{3} = \frac{28}{27}$$

http://www.learning-with-meaning.com/

$$Q2a \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Q2b Same area as the region bounded by $y = e^x$, $y = -e^{-x}$ and $x = \pm 1$.

$$\int_{-1}^{1} \left(e^{x} - \left(-e^{-x} \right) \right) dx = 2e^{-x}$$

Q2c
$$g'(x) = -\frac{1}{x}$$
 for $x < 0$

Q2d
$$Q(-\alpha, -\log_e \alpha)$$

Q2e
$$(\overline{PQ})^2 = (\alpha - (-\alpha))^2 + (\log_e \alpha - (-\log_e \alpha))^2 = 4(\alpha^2 + (\log_e \alpha)^2)$$

$$\therefore \overline{PQ} = 2\sqrt{\alpha^2 + (\log_e \alpha)^2}$$

Q2f Let
$$\frac{d}{d\alpha} 2\sqrt{\alpha^2 + (\log_e \alpha)^2} = 0$$

$$\frac{1}{\sqrt{\alpha^2 + (\log_e \alpha)^2}} \times \left(2\alpha + \frac{2\log_e \alpha}{\alpha}\right) = 0$$

$$\therefore 2\alpha + \frac{2\log_e \alpha}{\alpha} = 0, \therefore \alpha^2 + \log_e \alpha = 0$$

Q2g
$$\alpha \approx 0.653$$
, $\overline{PQ} \approx 1.55954 \approx 1.560$

Q2h Since
$$\alpha^2 + \log_e \alpha = 0$$
, :: $\frac{\log_e \alpha}{\alpha^2} = -1$

Gradient of
$$\overline{PQ} = \frac{\log_e \alpha}{\alpha}$$
, gradient of both tangents $= \frac{1}{\alpha}$

.: gradient of
$$\overline{PQ} \times \text{gradient of each tangent} = \frac{\log_e \alpha}{\alpha^2} = -1$$

.: PQ is a common normal to both curves.

Q2i Area of the largest square $\approx 1.55954^2 \approx 2.432$

Q3a

$$f(x) = 0.0012833 \ x^2 (x^2 - 8\pi^2) = 0.0012833 \ x^2 (x^2 - (2\sqrt{2}\pi)^2)$$
$$= 0.0012833 \ x^2 (x + 2\sqrt{2}\pi)(x - 2\sqrt{2}\pi)$$
$$\therefore a = 0.0012833 \ \text{and} \ b = c = 2\sqrt{2}\pi$$

Q3b
$$f'(x) = 0.0051332 \ x^3 - 0.0205328 \ \pi^2 x$$

Let $f'(x) = 0$, $0.0051332 \ x^3 - 0.0205328 \ \pi^2 x = 0$
 $0.0051332 \ x(x^2 - 4 \ \pi^2) = 0.0051332 \ x(x + 2 \ \pi)(x - 2 \ \pi) = 0$
.: stationary points are at $x = -2\pi$, 0 and 2π

Q3c and d

Q3e Area =
$$\int_{-2\pi}^{2\pi} (f(x) + 1 - g(x)) dx \approx 0.837$$
 by CAS

Q3f
$$x \approx -3.400352 \approx -3.400$$
, or $x \approx 3.400$ by CAS x-intercepts: $(-3.400, 0)$ and $(3.400, 0)$

Q3g 3.400352
$$\rightarrow \pi$$
, .: $m \approx \frac{\pi}{3.400352} \approx 0.923902 \approx 0.924$

Q3h
$$x \rightarrow \frac{x}{m}$$
, .: $p = m^4 \approx 0.729$ and $q = m^2 \approx 0.854$

http://www.learning-with-meaning.com/

Q4a
$$\int_{0}^{1.5} a x^{2} (x-1.5)^{2} e^{x} dx = 1$$
,

$$a = \frac{1}{\int_{0}^{1.5} x^{2} (x-1.5)^{2} e^{x} dx} \approx \frac{1}{0.55773524} \approx 1.793 \text{ by CAS}$$

Q4b
$$\overline{X} = \int_{0}^{1.5} x f(x) dx \approx 0.82965 \approx 0.830$$
 by CAS

Q4c
$$\int_{0}^{m} \left(\frac{1}{0.55773524} \right) x^{2} (x - 1.5)^{2} e^{x} dx = 0.5, \ m \approx 0.843 \text{ by CAS}$$

Q4di Binomial:
$$n = 10$$
, $p = 0.137$
 $Pr(X < 3) = Pr(X \le 2) \approx 0.8527664 \approx 0.853$ by CAS

Q4dii
$$Pr(X < 3 \mid X \ge 1) = \frac{Pr(1 \le X \le 2)}{1 - Pr(X = 0)} \approx 0.8089999 \approx 0.809$$

Q4e The mean of sample proportion $\approx p = 0.137$, the standard deviation of sample proportion

$$\approx \sqrt{\frac{p(1-p)}{n}} \approx 0.03438 \approx 0.034$$

Q4f
$$\Pr(\hat{P} < 0.1 | \hat{P} < 0.2) = \frac{\Pr(\hat{P} < 0.1)}{\Pr(\hat{P} < 0.2)} \approx 0.1428 \approx 0.143 \text{ by CAS}$$

Q4g For sample size of 10, assuming the mean of sample proportion $\approx p = 0.137$, the standard deviation of sample proportion

$$\approx \sqrt{\frac{p(1-p)}{n}} \approx 0.109$$

$$\Pr(\hat{P} < 0.1 | \hat{P} < 0.2) = \frac{\Pr(\hat{P} < 0.1)}{\Pr(\hat{P} < 0.2)} \approx 0.511$$

For sample size of 200, the mean of sample proportion $\approx p = 0.137$,

the standard deviation of sample proportion $\approx \sqrt{\frac{p(1-p)}{n}} \approx 0.024$

$$\Pr(\hat{P} < 0.1 | \hat{P} < 0.2) = \frac{\Pr(\hat{P} < 0.1)}{\Pr(\hat{P} < 0.2)} \approx 0.062$$

 $\Pr(\hat{P} < 0.1 | \hat{P} < 0.2) \approx 0.062$ is more reliable than

 $\Pr(\hat{P} < 0.1 | \hat{P} < 0.2) \approx 0.511$ because the latter has a small sample size and normal approximation is not valid.

Q4h An approximate 95% confidence interval

$$\approx \left(0.137 - 1.96\sqrt{\frac{0.137(1 - 0.137)}{100}}, 0.137 + 1.96\sqrt{\frac{0.137(1 - 0.137)}{100}}\right)$$

$$\approx \left(0.070, 0.204\right)$$

Please inform mathline@itute.com re conceptual and/or mathematical errors