Package 'ammiBayes'

February 2, 2024

```
Type Package
Title Bayesian Ammi Model for Continuous Data
Version 1.0-2
Date 2024-02-01
Maintainer Fabio M. Correa <fmcron@protonmail.com>
Contact Fabio Mathias Correa <fmcron@protonmail.com>
Author Luciano A. Oliveira [aut],
      Carlos P. Silva [aut],
      Cristian T. E. Mendes [aut],
      Alessandra Q. Silva [aut],
      Joel J. Nuvunga [aut],
      Marcio Balestre [ths],
      Julio S. S. Bueno-Filho [ths],
      Fabio M. Correa [aut, cre] (<a href="https://orcid.org/0000-0002-6708-9316">https://orcid.org/0000-0002-6708-9316</a>)
Depends R (>= 4.0.0)
VignetteBuilder R.rsp
Imports lattice, latticeExtra, distfree.cr, coda, spam, movMF, msm,
      bayesplot, Hmisc
Suggests ggpubr, R.rsp
LazyData true
Description Flexible multi-environment trials analysis via MCMC method for Additive Main Ef-
      fects and Multiplicative Model (AMMI) for continuous data.
      Biplot with the averages and regions of confidence can be generated. The chains run in paral-
      lel on Linux systems and run serially on Windows.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2024-02-02 10:20:02 UTC
```

2 ammiBayes

R topics documented:

Index		15
	summary.ammiBayes	13
	predict.ammiBayes	
	gen.effects	11
	diagnosis.ammiBayes	9
	ammiData	9
	ammiBayes.mean.plot	7
	ammiBayes.gen.plot	5
	ammiBayes.conf.plot	3
	ammiBayes	2

ammiBayes

Bayesian AMMI for continuous data

Description

Run the AMMI Bayesian model for continuous data.

Usage

```
ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep,
         iterations=3000, jump=2, burn=500,
         Var.error=0.5, Var.env=0.5, Var.gen=0.5,
         chains=2)
```

Arguments

Υ	Response variable vector
Gen	Genotype effects vector. Must be defined as factor
Env	Environmental effects vector. Must be defined as factor
Rep	Repetition vector. Must be defined as factor
iterations	Total of iterations after burnin and jumo
jump	Jump of iterations
burn	Initial burn
Var.error	Priori for the variance of error. Default is 0.5
Var.env	Priori for the variance of environment. Default is 0.5
Var.gen	Priori for the variance of genotype. Default is 0.5
chains	Number of chains. See details.

Details

The code is run in parallel for linux SO. If you are using Windows, the execution of the code will be serially.

ammiBayes.conf.plot 3

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

Examples

```
library(ammiBayes)
data(ammiData)

Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod

model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)
summary(model)</pre>
```

ammiBayes.conf.plot Plot ammiBayes object with confidence region

Description

Plot the confidence regions for genotype and environment effects

Usage

col.text.env="black", col.text.gen="black",
border.gen="transparent", border.env="transparent",
cex.env=1, cex.gen=1, lty.gen=1, lty.env=1,
lwd.gen=1, lwd.env=1, xlab, ylab, col.grid="grey",
lty.grid=2, lwd.grid=1, change.signal=FALSE,
plot.gen=TRUE, plot.env=TRUE)

Arguments

model	An object of the ammiBayes class
conf	Significant level for the confidence region. By default is 0.95.
pars.gen	An optional character vector of genotype names. If pars is omitted all genotypes are included.
pars.env	An optional character vector of environment names. If pars is omitted all environments are included.
gen.labels	Optional vector for the name of the genotypes.
env.labels	Optional vector for the name of the environments.
col.env	Color for the confidence region of the environment. Default is "red".
col.gen	Color for the confidence region of the genotype. Default is "green".
alpha.env	Specifies the opacity of the confidence region for the environment. Default is 80.
alpha.gen	Specifies the opacity of the confidence region for the genotype. Default is 80.
col.text.env	Define the color of environment names.
col.text.gen	Define the color of genotype names.
border.gen	Define the color for the border of the confidence region of genotype. Default is "transparent".
border.env	Define the color for the border of the confidence region of environment. Default is "transparent".
cex.env	Scale for the font size of the environment names. Default is 1
cex.gen	Scale for the font size of the genotype names. Default is 1
lty.gen	Line type for the border of confidence region of genotype. Default is 1
lty.env	Line type for the border of confidence region of environment. Default is 1
lwd.gen	Line width for the border of confidence region of genotype. Default is 1
lwd.env	Line width for the border of confidence region of environment. Default is 1
xlab	Label for the x-axis
ylab	Label for the y-axis
col.grid	Define the color for the grid. Default is "grey"
lty.grid	Line type of grid. Default is 2
lwd.grid	Line width of grid. Default is 1
change.signal	Changes the signal of the chain for better visualization of the sample. By default is FALSE
plot.gen	Plot effects of genotypes. By default is TRUE
plot.env	PLot effects of environment. By default is TRUE

ammiBayes.gen.plot 5

Details

The confidence regions are defined using the package distfree.cr.

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

See Also

lattice

Examples

```
library(ammiBayes)
data(ammiData)

Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod

model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)
ammiBayes.conf.plot(model)</pre>
```

ammiBayes.gen.plot

Plot genotype effects from ammiBayes object

Description

Plot the posterior mean for an ammiBayes object

6 ammiBayes.gen.plot

Usage

Arguments

x An object from gen.effects function.

1wd A line width, a positive number, default is 1.

1ty The line type. Default is 1.

pch Either an integer specifying a symbol or a single character to be used as the

default in plotting points.

method Defaults to "bars" to draw error-bar type plots. See panel.xYplot.

col.bands Define the color of genotype bands. See xYplot.

ylim A numeric vector of length 2 giving minimum and maximum for the y-axis.

xlab Label for the x-axis. ylab Label for the y-axis.

gen.names Define the names of genotypes on the x-axis. By default are the levels of the

Genotypes.

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

See Also

xYplot

ammiBayes.mean.plot 7

Examples

```
library(ammiBayes)
data(ammiData)

Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod

model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)
genot.effects <- gen.effects(model)

ammiBayes.gen.plot(genot.effects)</pre>
```

ammiBayes.mean.plot Plot ammiBayes object

Description

Plot the means for the ammiBayes object

Usage

Arguments

model	An object of the ammiBayes class
pars.gen	An optional character vector of genotype names. If pars is omitted all genotypes are included.
pars.env	An optional character vector of environment names. If pars is omitted all environments are included.
gen.labels	Optional vector for the name of the genotypes
env.labels	Optional vector for the name of the environments
col.text.gen	Define the color of genotype names
col.text.env	Define the color of environment names
ylim	Define the limites applied to the y-axis

ammiBayes.mean.plot

1

xlim	Define the limites applied to the x-axis
cex.env	Scale for the font size of the environment names. Default is
cex.gen	Scale for the font size of the genotype names. Default is 1
xlab	Label for the x-axis
ylab	Label for the y-axis
col.grid	Define the color for the grid. Default is "grey"
lty.grid	Line type of grid
lwd.grid	Line width of grid

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA, L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

See Also

lattice

Examples

```
library(ammiBayes)
data(ammiData)

Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod

model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)
ammiBayes.mean.plot(model)</pre>
```

ammiData 9

ammiData

Dataset for example

Description

Simulated dataset in completely randomized design to illustrate the resources of the ammiBayes package.

Usage

```
data(ammiData)
```

Details

```
amb = Environment (4 environments)
rep = Repetition (9 repetitions)
gen = Genotype (6 genotypes)
prod = Variabel response
```

diagnosis.ammiBayes

Bayesian AMMI for ordinal data

Description

Extract the MCMC chain for diagnosis

Usage

```
diagnosis.ammiBayes(x, pars=NULL)
```

Arguments

x An object of class ammiBayes

pars It should be set, such as "Genotype", "Rep", "L", "Gen.PC1", "Gen.PC2", "Env.PC1",

"Env.PC2", "Comp.var". See details

Details

The output is compatible for diagnosis with the coda and bayesplot packages. Examples can be seen on the website: bayesplot

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

Examples

```
# Not run
library(ammiBayes)
library(bayesplot)
library(ggpubr)
data(ammiData)
Env <- factor(ammiData$amb)</pre>
Rep <- factor(ammiData$rep)</pre>
Gen <- factor(ammiData$gen)</pre>
Y <- ammiData$prod
model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=1000, burn=10, jump=2, chains=2)
gen.diagnosis <- diagnosis.ammiBayes(model, pars="Genotype")</pre>
mcmc_trace(gen.diagnosis)
mcmc_dens_overlay(gen.diagnosis)
mcmc_areas(gen.diagnosis)
dens <- bayesplot::mcmc_dens_overlay(gen.diagnosis)</pre>
trac <- bayesplot::mcmc_trace(gen.diagnosis, facet_args=list(ncol=1))</pre>
ggpubr::ggarrange(trac,dens, common.legend=TRUE)
```

gen.effects 11

gen.effects

Bayesian AMMI for continous data

Description

Extract the effects of genotypes and HPD interval

Usage

```
gen.effects(x, prob=0.95)
```

Arguments

x An object of class ammiBayes

prob Probability for HPD interval. Default is 0.95

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

Examples

```
library(ammiBayes)
data(ammiData)

Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod

model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)</pre>
```

12 predict.ammiBayes

```
gen.effects(model)
```

predict.ammiBayes

Bayesian AMMI for continuous data

Description

Extract predict values and HPD interval

Usage

```
## S3 method for class 'ammiBayes'
predict(object, prob=0.95, ...)
```

Arguments

object An object of class ammiBayes

prob Probability for HPD interval. Default is 0.95

... Potential further arguments (required by generic).

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA, L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

summary.ammiBayes 13

Examples

```
library(ammiBayes)
data(ammiData)

Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod

model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10, burn=1, jump=2, chains=2)
predict(model)</pre>
```

summary.ammiBayes

Summary Method for ammiBayes object

Description

Returns (and prints) a summary list for ammiBayes object.

Usage

```
## S3 method for class 'ammiBayes'
summary(object, ...)
```

Arguments

object A given object of the class ammiBayes.
... Potential further arguments (required by generic).

Author(s)

Luciano A. Oliveira Carlos P. Silva Cristian T. E. Mendes Alessandra Q. Silva Joel J. Nuvunga Marcio Balestre Julio S. S. Bueno-Filho Fabio M. Correa

References

OLIVEIRA, L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369

14 summary.ammiBayes

SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.

See Also

ammiBayes

Index

```
* datasets
    ammiData, 9
* package
    ammiBayes, 2
    ammiBayes.conf.plot, 3
    ammiBayes.gen.plot, 5
    ammiBayes.mean.plot, 7
    {\tt diagnosis.ammiBayes}, 9
    gen.effects, 11
    predict.ammiBayes, 12
    summary.ammiBayes, 13
ammiBayes, 2, 14
ammiBayes.conf.plot, 3
ammiBayes.gen.plot, 5
ammiBayes.mean.plot, 7
ammiData, 9
bayesplot, 9
{\tt diagnosis.ammiBayes}, {\tt 9}
distfree.cr, 5
gen.effects, 11
lattice, 5, 8
panel.xYplot, 6
predict.ammiBayes, 12
summary.ammiBayes, 13
xYplot, 6
```