Algorithm 1: Computing earliest-arrival time

```
Input : A temporal graph G = (V, E) in its edge stream representation, source vertex x, time interval [t_{\alpha}, t_{\omega}]

Output : The earliest-arrival time from x to every vertex v \in V within [t_{\alpha}, t_{\omega}]

1 Initialize t[x] = t_{\alpha}, and t[v] = \infty for all v \in V \setminus \{x\};

2 foreach incoming edge e = (u, v, t, \lambda) in the edge stream do

3 | if t + \lambda \le t_{\omega} and t \ge t[u] then

4 | if t + \lambda < t[v] then

5 | t[v] \leftarrow t + \lambda;

6 | else if t \ge t_{\omega} then

7 | Break the for-loop and go to Line 8;
```

The classic Dijkstra's algorithm for computing single-source shortest paths is based on the fact that the prefix-subpath of a shortest path is also a shortest path. However, according to Lemma 1, the prefix-subpath of an earliest-arrival path may not be an earliest-arrival path. This seems to imply that the greedy strategy to grow the shortest paths that is applied in Dijkstra's algorithm cannot be applied to compute earliest-arrival paths, though the following observation shows otherwise.

LEMMA 6. Let \mathbf{P} be the set of earliest-arrival paths from x to a vertex v_k within the time interval $[t_\alpha, t_\omega]$. If $\mathbf{P} \neq \emptyset$, then there exists $P = \langle x, v_1, v_2, \dots, v_k \rangle \in \mathbf{P}$ such that every prefix-subpath, $P_i = \langle x, v_1, v_2, \dots, v_i \rangle$, is an earliest-arrival path from x to v_i within $[t_\alpha, t_\omega]$, for $1 \leq i \leq k$.

PROOF. Given any earliest-arrival path $P \in \mathbf{P}$, if not every prefix-subpath in it is an earliest-arrival path, we can always construct a path \hat{P} as follows. We traverse P in reverse order and find the first vertex v_i such that the corresponding prefix-subpath P_i is not an earliest-arrival path from x to v_i . Thus, there exists another path \hat{P}_i that is an earliest-arrival path from x to v_i . We replace P_i in P by \hat{P}_i . The new path \hat{P} is still a valid temporal path because $end(\hat{P}_i) < end(P_i)$. In addition, \hat{P} is an earliest-arrival path from x to v_k (i.e., $\hat{P} \in \mathbf{P}$) because $end(\hat{P}) = end(P)$. This process continues until every prefix-subpath is an earliest-arrival path and the resulting \hat{P} is in \mathbf{P} , which proves the lemma. \square

Based on Lemma 6, we can apply the greedy strategy to grow the earliest-arrival paths in a similar way to Dijkstra's algorithm. However, this approach needs to use a minimum priority queue, resulting in an algorithm with $O(m\log \pi + m\log n)$ time and O(M+n) space complexity [19], which is too expensive for processing temporal graphs with a large number of temporal edges.

Dijkstra's greedy strategy requires the entire graph to be present as random access to vertices and edges are needed. However, for temporal graphs, Lemma 5 implies that the input graph can be in the natural edge stream representation, and it is possible to compute the earliest-arrival paths with only one scan of the graph. We present our one-pass algorithm in Algorithm 1 and elaborate as follows.

We use an array t[v] to keep the current earliest-arrival time from x to every vertex $v \in V$ that has been seen in the stream. According to Lemma 5, if there is a temporal path P from x to v so that all edges on P have been seen in the stream, then $t[v] = end(P) = t + \lambda$ as updated in Line 5. The condition " $t + \lambda < t[v]$ " in Line 4 ensures that t[v] will be updated with the smallest end(P) for any P from x to v within the time interval $[t_{\alpha}, t_{\omega}]$.

We linearly scan G and for each incoming edge $e=(u,v,t,\lambda)$ in the stream, we check whether e meets the time constraint of a temporal path within $[t_{\alpha},t_{\omega}]$, i.e., whether $t+\lambda \leq t_{\omega}$ and $t \geq t[u]$.

If yes, we grow the temporal path by extending to v via the edge e. During the process, we update t[v] when necessary as discussed earlier. The process terminates when we meet the first edge in the stream that has starting time greater than or equal to t_{ω} (Lines 6-7).

EXAMPLE 3. Consider the temporal graph G in Figure 1(a), where we assume that the traversal time λ is 1 for all edges. Let a be the source vertex. We compute the earliest-arrival time from a to every vertex in G within the time interval [1,4].

Initially, t[a] = 1, and $t[v] = \infty$ for all $v \in V \setminus \{a\}$. The first incoming edge is (a,b,1,1), since it satisfies the conditions in Lines 3-4, we update t[b] = 1+1=2 in Line 5. The second edge is (a,b,2,1), the condition in Line 4 is not satisfied. The next edge is (g,j,2,1), since $t[g] = \infty$, the condition " $t \geq t[u] = t[g]$ " in Line 3 is not met. Then, the edges (b,g,3,1), (b,h,3,1), and (a,f,3,1) are followed, for which we update t[g] = 4, t[h] = 4, and t[f] = 4. After that the edge (a,c,4,1) comes, which satisfies the condition in Line 6 and the process is terminated. It can be easily verified that we have obtained the correct earliest-arrival time from a to every vertex in G within the time interval [1,4].

The following lemma shows that when Algorithm 1 terminates, t[v] correctly reports the earliest-arrival time from x to v.

LEMMA 7. For any vertex $v \in V$, if the earliest-arrival path from x to v within the time interval $[t_{\alpha}, t_{\omega}]$ exists, then t[v] returned by Algorithm 1 is the corresponding earliest-arrival time; otherwise, $t[v] = \infty$.

PROOF. Suppose that the earliest-arrival path from x to v within $[t_\alpha,t_\omega]$ exists. Then, according to Lemma 6, there exists an earliest-arrival path from x to v, $P=\langle x=v_1,v_2,\ldots,v_k,v_{k+1}=v\rangle$, such that every prefix-subpath of P is an earliest-arrival path from x to some vertex v_i on P. Let $t_e[v_i]$ be the earliest-arrival time from x to v_i , for $1\leq i\leq k+1$. Let e_1,e_2,\ldots,e_k be the edges on P, where $e_i=(v_i,v_{i+1},t_i,\lambda_i)$ for $1\leq i\leq k$. Then, we have $t_i\geq t_e[v_i]$ and $t_i+\lambda_i=t_e[v_{i+1}]$ for $1\leq i\leq k$.

We prove that Algorithm 1 computes $t[v_i] = t_e[v_i]$, for $1 \le i \le i$ k+1, by induction on i. When $i=1, x=v_1, t[x]=t_e[x]=t_\alpha$ is initialized in Line 1 of Algorithm 1, and t[x] will not be updated any more. When i=2, obviously we have $t[v_2]=t_e[v_2]=t_1+$ λ_1 when we process e_1 , and $t[v_2]$ will not be updated again due to the condition in Line 4. Now assume that for i = j, where j < k + j $1, t[v_j] = t_e[v_j] = t_{j-1} + \lambda_{j-1}$ when we process e_{j-1} . Consider i = j + 1 and we want to prove $t[v_{j+1}] = t_e[v_{j+1}]$. According to Lemma 5, e_j comes after e_{j-1} in the stream. Thus, when the algorithm scans e_j , we have the following two cases regarding the value of $t[v_{j+1}]$. (1) $t[v_{j+1}] = t_e[v_{j+1}]$. In this case, Line 5 will not be processed due to the condition in Line 4 and $t[v_{j+1}]$ gives the correct earliest-arrival time from x to v_{j+1} . (2) $t[v_{j+1}] > t_e[v_{j+1}]$. In this case, $t[v_{j+1}]$ is updated to $t_e[v_{j+1}] = t_j + \lambda_j$ in Line 5, and it will not be updated again due to the condition in Line 4. In both cases, we have $t[v_{j+1}] = t_e[v_{j+1}]$ and by induction, $t[v_i] = t_e[v_i]$ for $1 \le i \le k+1$.

Finally, if the earliest-arrival path from x to v does not exist, then there is no temporal path from x to v and t[v] remains to be ∞ . \square

The following theorem states our main result for earliest-arrival path computation.

Theorem 1. Algorithm 1 correctly computes the earliest-arrival time from a source vertex x to every vertex $v \in V$ within the time interval $[t_{\alpha}, t_{\omega}]$ using only one linear scan of the graph, O(n+M) time and O(n) space.

PROOF. The correctness is proved in Lemma 7. The initialization in Line 1 takes O(n) time. Every temporal edge in G is