Physical Properties of Near-Earth Objects

ASTEROIDS III p255 - 268

20243069 M1 土井知也

Contents

- 1. INTRODUCTION
- 2. TABULATION OF NEAR-EARTH-OBJECT PHYSICAL PROPERTIES
- 3. ANALYSIS
 - 3-1. Taxonomy of Near-Earth Objects
 - 3-2. Relationships of Near-Earth Objects to Comets
 - 3-3. Relationships of Near-Earth Objects to Ordinary-Chondrite Meteorites
 - 3-4. Shapes and Rotations
 - 3-5. Optical Properties and Surface Structure
- 4. CONCLUSIONS AND FUTURE WORK

- ・NEO(地球近傍天体)の定義:近日点距離 q < 1.3 au
- ・NEOの起源は?割合は?それぞれの関係性は?

Fig. 1. Cartoon illustration of the many different groups of objects found within near-Earth space.

- ・メインベルト由来の割合は?彗星の割合は?
- ・NEOの起源の理解=隕石の起源の理解

隕石(実験室)と 実際の観測 スペクトルの違い

Asteroids
Space
Junk

Meteorites

Comets
Interstellar Dust Particles

枯渇彗星
休眠彗星

Fig. 1. Cartoon illustration of the many different groups of objects found within near-Earth space.

・NEOの物理量研究 の意義

サンプルリターン ターゲット

レーダー実験 ターゲット

Arecibo Observatory/NASA/NSF

地球衝突のリスク

全体の数量

小惑星と彗星の 関係<u>性の理解</u>

Fig. 2(left). Itokawa

Fig. 3(right). Phaethon, Arecibo Observatory/NASA/INSF.

・NEOの数量

2000個、(短周期) 彗星は約50個(2002年)

Fig. 4. Near-Earth Asteroids Discovered, https://cneos.jpl.nasa.gov/stats/totals.html.

a: 軌道長半径

q:近日点距離

Q:遠日点距離

・NEOの軌道要素による分類

Amors

Earth-approaching NEAs with orbits exterior to Earth's but interior to Mars' (named after asteroid (1221) Amor)

a > 1.0 AU1.017 AU < q < 1.3 AU

Apollos

Earth-crossing NEAs with semi-major axes larger than Earth's (named after asteroid (1862) Apollo)

a > 1.0 AUq < 1.017 AU

Atens

Earth-crossing NEAs with semi-major axes smaller than Earth's (named after asteroid (2062) Aten)

a < 1.0 AUQ > 0.983 AU

Atiras

NEAs whose orbits are contained entirely within the orbit of the Earth (named after asteroid (163693) Atira)

 $\begin{array}{c} a < 1.0 \ \mathrm{AU} \\ Q < 0.983 \ \mathrm{AU} \end{array}$

(q = perihelion distance, Q = aphelion distance, a = semi-major axis)

Fig. 5. NEOs orbit, https://cneos.jpl.nasa.gov/ca/.

・NEOの主な物理量

Aster	roid	Provisional				Diameter		Period	Amplitude		
Number*	Name	Designation	Group	H (mag)†	Albedo [‡]	(km)§	Class¶	(hrs)	(mag)	U-B	B-V
433	Eros	1898 DQ	Am	11.24	0.21	23.6	S(IV)	5.270	0.03-1.38	0.52	0.90
719	Albert	1911 MT	Am	15.8M	m	2.4		5.80	0.6		
887	Alinda	1918 DB	Am	13.83	0.23	4.2	S	73.97	0.35	0.43	0.84
1036	Ganymed	1924 TD	Am	9.42	0.17	38.5	S(IV)	10.31	0.12 - 0.40	0.42	0.84
1221	Amor	1932 EA1	Am	17.46	m	1.1					
1566	Icarus	1949 MA	Ap	15.95	0.33	1.3	SU,Q	2.273	0.03 - 0.18	0.54	0.80

・H: (小惑星の) 絶対等級

小惑星が太陽からも地球からも 1 auの位置にあると仮定した場合

の明るさ

 $H = m - 5 \log_{10}(r \cdot \Delta) - 2.5 \log_{10} A$

m:見かけの等級 r:小惑星太陽間距離

Δ:小惑星地球間距離 A:位相角補正項

Tab. 1. NEOs physical properties.

Fig. 6. Phase angle dependance of the V-magnitude, Ishiguro 2017.

・NEOの主な物理量

Aste	oid	Provisional				Diameter		Period	Amplitude		
Number*	Name	Designation	Group	H (mag)†	Albedo‡	(km)§	Class¶	(hrs)	(mag)	U-B	B-V
433	Eros	1898 DQ	Am	11.24	0.21	23.6	S(IV)	5.270	0.03-1.38	0.52	0.90
719	Albert	1911 MT	Am	15.8M	m	2.4		5.80	0.6		
887	Alinda	1918 DB	Am	13.83	0.23	4.2	S	73.97	0.35	0.43	0.84
1036	Ganymed	1924 TD	Am	9.42	0.17	38.5	S(IV)	10.31	0.12-0.40	0.42	0.84
1221	Amor	1932 EA1	Am	17.46	m	1.1					
1566	Icarus	1949 MA	Ap	15.95	0.33	1.3	SU,Q	2.273	0.03 - 0.18	0.54	0.80

・Class:表面組成による分類

Tab. 1. NEOs physical properties.

Major Taxonomic Types	Reflectance Spectrum (0.4-0.9 um)	Spectral Features	Visible Albedo	Suspected Composition
D (D,T)	Blue → Red	Relatively featureless spectrum Steep red slope	0.02-0.06	Primitive carbonaceous Organic-rich compounds Hydrated minerals
C (C,B,F,G)	Blue → Red	Slight bluish to slight reddish slope Shallow to deep absorption blueward of 0.5 µm Hydrated asteroids with absorption at 0.7 and 3.0 µm	0.03-0.10	Hydrated minerals Silicates Organics
X (E,M,P)	Blue → Red	Slightly reddish spectrum E: absorption features at 0.5 and 0.6 µm	E: 0.18-0.40 M: 0.10-0.18 P: 0.03-0.10	E: Enstatite-rich M: metallic, Nickel-Iron P: Carbonaceous, Organics
S (S,Q,A,K,L)	Blue	Moderately steep red slope ($\lambda < 0.7~\mu\text{m})$ Shallow to deep absorption at 1.0 and 2.0 μm	0.10-0.22	Stony composition Magnesium Iron silicates
V	Blue → Red	Moderate to steep red slope ($\lambda < 0.7~\mu m)$ Very deep absorption at 1.0 μm	0.20-0.60	Volcanic basalts Plutonic rocks

Fig. 7. Asteroid classification, https://www.researchgate.net/publication/261499766_PING_Gamma_ray_and_neutron_measurements_of_a_meter-sized_carbonaceous_asteroid_analog/figures?lo=1.

・NEOの主な物理量

Asteroid	Provisional	-	** / \		Diameter	GI II	Period	Amplitude	*** 5	
Number* Name	Designation	Group	H (mag) [†]	Albedo [‡]	(km)§	Class¶	(hrs)	(mag)	U-B	B-V
433 Eros	1898 DQ	Am	11.24	0.21	23.6	S(IV)	5.270	0.03-1.38	0.52	0.90
719 Albert	1911 MT	Am	15.8M	m	2.4		5.80	0.6		
887 Alinda	1918 DB	Am	13.83	0.23	4.2	S	73.97	0.35	0.43	0.84
1036 Ganymed	1924 TD	Am	9.42	0.17	38.5	S(IV)	10.31	0.12 - 0.40	0.42	0.84
1221 Amor	1932 EA1	Am	17.46	m	1.1					
1566 Icarus	1949 MA	Ap	15.95	0.33	1.3	SU,Q	2.273	0.03 - 0.18	0.54	0.80

・Albedo: 測定できていないものは

Tab. 1. NEOs physical properties.

各タイプの代表値を記載

d : Ctype 0.06

m, mh: Stype 0.15-0.18

h: Xtype 0.30

・直径:アルベドと等級から経験則を用いて

 $2 \log(D) = 6.247 - 0.4H - \log(Albedo)$

・NEOの主な物理量

Aster	roid	Provisional				Diameter		Period	Amplitude		
Number*	Name	Designation	Group	H (mag) [†]	Albedo [‡]	(km)§	Class¶	(hrs)	(mag)	U-B	B-V
433	Eros	1898 DQ	Am	11.24	0.21	23.6	S(IV)	5.270	0.03-1.38	0.52	0.90
719	Albert	1911 MT	Am	15.8M	m	2.4		5.80	0.6		
887	Alinda	1918 DB	Am	13.83	0.23	4.2	S	73.97	0.35	0.43	0.84
1036	Ganymed	1924 TD	Am	9.42	0.17	38.5	S(IV)	10.31	0.12 - 0.40	0.42	0.84
1221	Amor	1932 EA1	Am	17.46	m	1.1					
1566	Icarus	1949 MA	Ap	15.95	0.33	1.3	SU,Q	2.273	0.03-0.18	0.54	0.80

· Period: 自転周期

→ライトカーブより

・Amplitude: 光度振幅

→形状の推定にも

Tab. 1. NEOs physical properties.

Fig. 8. 2001 CC21 light curve, Warner 2023.

・NEOの主な物理量

Asteroid		Provisional				Diameter		Period	Amplitude		
Number* Nam	ne	Designation	Group	H (mag)†	Albedo‡	(km)§	Class¶	(hrs)	(mag)	U-B	B-V
433 Eros	s	1898 DQ	Am	11.24	0.21	23.6	S(IV)	5.270	0.03-1.38	0.52	0.90
719 Albe	ert	1911 MT	Am	15.8M	m	2.4		5.80	0.6		
887 Alin	nda	1918 DB	Am	13.83	0.23	4.2	S	73.97	0.35	0.43	0.84
1036 Gan	ymed	1924 TD	Am	9.42	0.17	38.5	S(IV)	10.31	0.12 - 0.40	0.42	0.84
1221 Amo	or	1932 EA1	Am	17.46	m	1.1					
1566 Ican	us	1949 MA	Ap	15.95	0.33	1.3	SU,Q	2.273	0.03 - 0.18	0.54	0.80

・U-B, B-V: 色指数

Tab. 1. NEOs physical properties.

Fig. 9, 10. Johnson-Cousins filter.

3-1. Taxonomy of Near-Earth Objects

- ・様々なタイプが存在→起源も様々
- ・S(Q)typeは明るい(アルベドが高い)→発見しやすい

P, Dtype 外側メインベルト、 トロヤ群、彗星

Fig. 11(left). 各メインベルト小惑星の軌道分布, 長谷川 2008. Fig. 12(right). Histogram of the relative proportions of measured taxonomic properties for more than 300 NEOs listed in Table 1.

3-2. Relationships of Near-Earth Objects to Comets

・Phaethon: 軌道計算からふたご座流星群の母天体 現在は小惑星として観測

→元は彗星?その起源は?

・Dtype: 彗星核に多い少数だが、DtypeのNEOも元は彗星?

→枯渇彗星 or 休眠彗星の可能性

3-3. Relationships of Near-Earth Objects to Ordinary-Chondrite Meteorites

・隕石の90%を占める普通コンドライトと、 Stype小惑星の反射スペクトルの不一致

Q(S)type

Fig. 13(left). Stype asteroids and ordinary chondrites spectral.

Fig. 14, 15(right). 普通コンドライト, https://ja.wikipedia.org/wiki/普通コンドライト.

3-3. Relationships of Near-Earth Objects to Ordinary-Chondrite Meteorites

- ・10-100 mのStypeNEOのうち、小さなサイズで 普通コンドライトと合致するスペクトルのものが確認
- 粒子サイズの影響(△)
 直径が小さく、表面重力が小さいと、レゴリスが大きく →可視光の吸収、反射、散乱特性に影響
- 2. 宇宙風化(○)
 - 小さなNEOは表面がフレッシュで、宇宙風化を受けていない
 - →隕石とスペクトルが合致
 - →Qtypeの大きな(古い)NEOの存在、一方で Stypeの小さな(若い)高速自転NEOの存在も確認
 - →Qtypeは強度が高く、隕石として発見されやすいバイアス

3-4. Shapes and Rotations

- ・形状と自転周期はクレーター統計より、ほとんどが地球近傍に移動する以前に決定している
 - →YORP効果で自転周期が後天的に変化

いびつな形の場合 小惑星の熱吸収と熱放射の 強度に違い →トルクが自転を高速化

3-4. Shapes and Rotations

・NEOが小さなサイズのメインベルト小惑星の代表と 考えて良い

Population	$\langle D \rangle$ (km)	Observed Amplitude (mag)	N	Reduced Amplitude (mag)	Rotation Rate (rev/d)	N
NEOs	2.9 ± 0.5	0.49 ± 0.04	118	0.29	4.80 ± 0.29	119
MBAs (D $< 12 \text{ km}$)	6.8 ± 0.3	0.35 ± 0.03	102	0.28	4.34 ± 0.23	100
MBAs (D > 130 km)	186 ± 1	0.22 ± 0.01	100	0.19	2.90 ± 0.12	100

- ・NEOの中には自転周期が2-20分の小型高速自転小惑星 も確認
 - →遠心力>重力で、レゴリスが吹き飛ばされる ラブルパイル構造 (×) モノリス構造 (○)

Tab. 2. Mean values of asteroid amplitudes and rotation rates.

3-5. Optical Properties and Surface Structure

・StypeNEAと大きなメインベルト 小惑星の比較

			MBAs	
Parameter	NEAs	N	(D > 100 km)	N
Albedo polarimetric	0.183 ± 0.011	9	0.177 ± 0.004	28
Albedo radiometric	0.190 ± 0.014	23	0.166 ± 0.006	27
U-B (mag)	0.445 ± 0.013	30	0.453 ± 0.008	28
B-V (mag)	0.856 ± 0.013	31	0.859 ± 0.006	28
β (mag/deg)	0.029 ± 0.002	9	0.030 ± 0.006	18
P _{min} (%)	0.77 ± 0.04	3	0.75 ± 0.02	28
h (%/deg)	0.098 ± 0.006	9	0.105 ± 0.003	23
$\alpha_{\rm inv}$ (deg)	20.7 ± 0.2	6	20.3 ± 0.2	18

- ・NEAのアルベドが高い
 - →宇宙風化
- ・偏光パラメータの一致
 - →表面の粗さは一致

Tab. 3. Mean optical parameters of Stype NEOs and Stype main-belt asteroids.

P_r vs α 偏光カーブ

Fig 17. NEA 1566 Icarus, Ishiguro 2017.

3-5. Optical Properties and Surface Structure

・Hapkeパラメータ

→表面反射特性を推定、マイクロスケールで一致

		Particle Albedo	Oppos Width	tion Surge Amplitude	Asymmetry Parameter	Microscopic Roughness	
Object	Data	W	h	Во	g	θ (deg)	Reference
Eros	NEAR	0.44	0.03	1.0	-0.31	28	Clark et al. (2000)
		±0.044	±0.003	±0.1	±0.031	±2.8	
Geographos	EB,rad	≥0.22	0.02	1.32	-0.34	25	Hudson and Ostro (1999)
				±0.10	±10	_	
Apollo	EB	0.318	0.034	0.90	-0.32	15	
		± 0.004	±0.007	±0.02	±0.01	±1	
Toutatis	EB	0.261	0.036	1.20	-0.29	32	
		±0.019	± 0.023	±0.32	±0.06	±8	小惑星起源と
Castalia N	EB	0.384	_	_	-0.11	46	
		±0.07			±0.09	±10	考えられている
Castalia S	EB	0.239	_	_	-0.30	25	考えり付しいる
		±0.07			±0.09	±10	
Golevka	EB	0.58	0.0114	0.758	-0.435	7	火星衛星とも比較
		±0.03	± 0.0004	±0.014	±0.001	±7	
Golevka	rad	0.173	0.024	1.03	-0.34	20	
		±0.006	±0.012	±0.45	±0.02	±5	
Phobos	VK	0.070	0.055	4.0	-0.08*	22	Olinia (
		±0.020	± 0.025	+6–1		±2	
Deimos	VK	0.079	0.068	1.65	-0.29	16	Thomas et al. (1996)
		+0.008	+0.082	+0.90	±0.03	±5	
		-0.006	-0.037	-0.61			

Tab. 4. Hapke parameters of NEOs and other small bodies.

3-5. Optical Properties and Surface Structure

・SC/OC: 円偏光比

→マクロスケール(cm以上)では不一致

・SC/OCが大きい

→NEAの表面は粗い

Sample	⟨D⟩ km	Radar Albedo	N	SC/OC	N	
433 Eros	13 × 13 × 33	0.20 ± 0.01	1	0.22 ± 0.06	1	
NEAs, S-type	6.3 ± 2.7	0.16 ± 0.02	15	0.31 ± 0.03	17	
MBAs, S-type	136.5 ± 12.2	0.15 ± 0.01	14	0.14 ± 0.02	10	
NEAs, all types	4.9 ± 1.8	0.18 ± 0.02	24	0.36 ± 0.04	36	
MBAs, all types	179.8 ± 27.3	0.15 ± 0.01	36	0.11 ± 0.01	22	

NEA エロスのレゴリス

Tab. 5. Mean radar albedos and circular polarization ratios of NEAs and main-belt asteroids. Fig. 18, 19. Eros, https://www.astroarts.co.jp/news/2001/10/05nao483/index-j.shtml.

4. CONCLUSIONS AND FUTURE WORK

・NEAの供給プロセス 内側メインベルト→地球近傍→地球衝突(隕石)

Fig 20. NEAs and MBAs orbit movie, https://cneos.jpl.nasa.gov/ca/.

- ・NEAの理解が、同サイズのメインベルトへの理解に →サンプルリターンミッション
- ・その他、地球衝突、金属質のNEAの資源としての活用 →NEOの継続的な研究は重要