Knowledge Representation

Knowledge Representation?

- Ambiguous term
 - "The study of how to put knowledge into a form that a computer can reason with" (Russell and Norvig)
- Originally couple w/ linguistics
- Lead to philosophical analysis of language

2

Representation Representation Representation

- Think about knowledge, rather than data in Al
- Facts

1

- Procedures
- Meaning
 - Cannot have intelligence without knowledge
- Always been very important in Al
- Choosing the wrong representation
 - Could lead to a project failing
- Still a lot of work done on representation issues

How knowledge representations are used in cognitive models

 Contents of KB is part of cognitive model

 Some models hypothesize multiple knowledge bases. Questions, Answers, requests analyses

Inference Mechanism(s)

Knowledge Base

4

Representations for Problem solving techniques

- · For certain problem solving techniques
 - The "best" representation has already been worked out
 - Often it is an obvious requirement of the technique
 - Or a requirement of the programming language (e.g., Prolog)
- Examples:
 - First order theorem proving (first order logic)
 - Inductive logic programming (logic programs)
 - Neural networks learning (neural networks)
- But what if you have a new project?
 - What kind of general representations schemes are there?

Four General Representation Types

- Logical Representations
- Semantic Networks
- Production Rules
- Frames

6

Logical Representations What is a Logic?

- Lay down some concrete communication rules
 - In order to give information to agents, and get info
 - Without errors in communication (or at least, fewer)
- Think of a logic as a language
 - Many ways to translate from one language to another
- Expressiveness
 - How much of natural language (e.g., English)
 - We are able to translate into the logical language

7

Propositional Logic

- Syntax
 - Propositions such as P meaning "it is wet"
 - Connectives: and, or, not, implies, equivalent
- Semantics
 - How to work out the truth of a sentence
 - Need to know how connectives affect truth
 - E.g., "P and Q" is true if and only if P is true and Q is true
 - "P implies Q" is true if P and Q are true or if P is false
 - Can draw up truth tables to work out the truth of statements

9

Example Sentence

- In English:
 - "Every Monday and Wednesday I go to John's house for dinner"
- In first order predicate logic:

 $\forall \ X \ ((day_of_week(X, monday) \ \bigvee day_of_week(X, weds)) \\ \longrightarrow \ (go_to(me, house_of(john) \ \land \ eat(me, dinner))).$

- Note the change from "and" to "or"
 - Translating is problematic

Syntax and Semantics of Logics

- Syntax
 - How we can construct legal sentences in the logic
 - Which symbols we can use (English: letters, punctuation)
 - How we are allowed to write down those symbols
- Semantics
 - How we interpret (read) sentences in the logic
 - i.e., what the meaning of a sentence is
- Example: "All lecturers are six foot tall"
 - Perfectly valid sentence (syntax)
 - And we can understand the meaning (semantics)

This sentence happens to be false (there is a counterexample)

First Order Predicate Logic

- More expressive logic than propositional
- Syntax allows
 - Constants, variables, predicates, functions and quantifiers
- So, we say something is true for all objects (universal)
 - Or something is true for at least one object (existential)
- Semantics
 - Working out the truth of statement
 - This can be done using rules of deduction

10

Higher Order Predicate Logic

- More expressive than first order predicate logic
- Allows quantification over functions and predicates, as well as objects
- For example
 - We can say that all our polynomials have a zero at 17: $\forall f (f(17)=0)$.
- Working at the meta-level
 - Important to AI, but not often used

12

Other Logics

- Fuzzy logic
 - Use probabilities, rather than truth values
- Multi-valued logics
 - Assertions other than true and false allowed
 - E.g., "unknown"
- Modal logics
 - Include beliefs about the world
- Temporal logics
 - Incorporate considerations of time

Semantic Networks

- · Logic is not the only fruit
- Humans draw diagrams all the time, e.g.,
 - E.g. causal relationships:

And relationships between ideas:

15

13

Better Graphical Representation

- Because the formalism is the same
 - We can guess that Julia's age is similar to Bryan's
- Limited the syntax to impose formalism

Why Logic is a Good Representation

- Some of many reasons are:
 - It's fairly easy to do the translation when possible
 - There are whole tracts of mathematics devoted to it
 - It enables us to do logical reasoning
 - Programming languages have grown out of logics
 - Prolog uses logic programs (a subset of predicate logic)

14

Graphical Representations

- Graphs are very easy to store inside a computer
- For information to be of any use
 - We must impose a formalism on the graphs

- Jason is 15, Bryan is 40, Arthur is 70, Jim is 74
- How old is Julia?

16

Semantic Network Formalisms

- Used a lot for natural language understanding
 - Represent two sentences by graphs
 - Sentences with same meaning have exactly same graphs
- Conceptual Dependency Theory
 - Roger Schank's brainchild
 - Concepts are nodes, relationships are edges
 - Narrow down labels for edges to a very few possibilities
 - Problem:
 - Not clear whether reduction to graphs can be automated for all sentences in a natural language

17

Conceptual Graphs

- John Sowa
- Each graph represents a single proposition
- Concept nodes can be:
 - Concrete (visualisable) such as restaurant, my dog spot
 - Abstract (not easily visualisable) such as anger
- Edges do not have labels
 - Instead, we introduce conceptual relation nodes
- · Many other considerations in the formalism
 - See Russell and Norvig for details

19

21

Production Rule Representations

- Consists of <condition,action> pairs
- · Agent checks if a condition holds
 - If so, the production rule "fires" and the action is carried out
 - This is a recognize-act cycle
- Given a new situation (state)
 - Multiple production rules will fire at once
 - Call this the conflict set
 - Agent must choose from this set
 - Call this conflict resolution
- Production system is any agent
 - Which performs using recognize-act cycles

22

Frame Representations

- Information retrieval when facing a new situation
 - The information is stored in frames with slots
 - Some of the slots trigger actions, causing new situations
- Frames are templates
 - Which are to be filled-in in a situation
 - Filling them in causes an agent to
 - Undertake actions and retrieve other frames
- Frames are extensions of record datatype in databases
 - Also very similar to objects in OOP

Example Conceptual Graph

- Advantage:
 - Single relationship between multiple concepts is easily representable

20

Example Production Rule

102. After creating a new generalization G of Concept C

- Consider looking for non-examples of G
- This was paraphrased
 - In general, we have to be more concrete
 - About exactly when to fire and what to do

Flexibility in Frames

- Slots in a frame can contain
 - Information for choosing a frame in a situation
 - Relationships between this and other frames
 - Procedures to carry out after various slots filled
 - Default information to use where input is missing
 - Blank slots left blank unless required for a task
 - Other frames, which gives a hierarchy

23

Example Frame

25

Comparisons of KR Methods

- Semantic Nets
 - Adv.
 - Easy to follow hierarchy, easy to trace association, flexible
 - Disadv.
 - Meaning attached to nodes might be ambiguous
 - exception handling is difficult
 - difficult to program

Comparisons of KR Methods

- Rules
 - Adv.
 - simple syntax, easy to understand, simple interpreter, high modular, flexible
 - Disadv.
 - Hard to follow hierarchies, inefficient for large systems, not all knowledge can be expressed as rules

26

Comparisons of KR Methods

- Frames
 - Adv.
 - Expressive power, easy to set up slots for new properties and relations
 - easy to create specialized procedures
 - easy to include default information and detect missing values
 - Disadv.
 - Difficult to program
 - difficult for inference

28