1 Enoncés des exercices

Exercice 1 : calculer la dérivée de f, déterminer les valeurs qui annulent f', en déduire les extremums et les variations de f. $f(t) = -\frac{t}{9} + 4 + \ln(t)$

Exercice 2 : calculer la dérivée de f , déterminer les valeurs qui annulent f' , en déduire les extremums et les variations de f. f(t) = (8t + 64) * exp(-t/8)

Exercice 3 : calculer la dérivée de f , déterminer les valeurs qui annulent f' , en déduire les extremums et les variations de f. f(t) = -t + 1 + ln(-2t + 8)

Exercice 4 : calculer la dérivée de f, déterminer les valeurs qui annulent f', en déduire les extremums et les variations de f. $f(t) = t^2 + 14t + 5$

Exercice 5 : calculer la dérivée de f , déterminer les valeurs qui annulent f' , en déduire les extremums et les variations de f. $f(t) = (6t + 48)exp(\frac{t}{6})$

Exercice 6 : calculer la dérivée de f, déterminer les valeurs qui annulent f', en déduire les extremums et les variations de f. $f(t) = \frac{t}{3} + 7 + \ln(t)$

2 corrigés

Correction 1: On détermine le domaine de définition de f. $f(t) = -\frac{t}{9} + 4 + \ln(t)$. f est définie pour t > 0 à cause de ln. Donc $D_f = \mathbb{R}^{+*}$. f est dérivable sur D_f et sa dérivée $f'(t) = -\frac{1}{9} + \frac{1}{t}$. La dérivée s'annule en t = 9.

t	0	9	+∞
f'(t)		+ 0	_
f		$3 + \ln(9)$	—

Correction 2: Le domaine de définition de f est \mathbb{R} . Sa dérivée : $f'(t) = 8.exp(-\frac{t}{8}) + (8t + 64).(-1/8).exp(-\frac{t}{8})$ et après simplification : $f'(t) = -texp(-\frac{t}{8})$. f' est s'annule en 0, est positive sur \mathbb{R}^{*-} et négative sur \mathbb{R}^{*-} .

541 1/2 00 11	cgaure sui	т пи •			
t	$-\infty$		0		$+\infty$
f'(t)		+	0	_	
f			→ 64 —		→

Correction 3: La fonction $f(t) = -t + 1 + \ln(-2t + 8)$ est définie lorsque -2t + 8 > 0, soit t < -4. $D_f =]-\infty, -4[$. Elle est dérivable sur D_f . Sa dérivée vaut : $f'(t) = -1 + -\frac{2}{-2t + 8}$ après simplification, $f'(t) = \frac{t-5}{-t+4}$. f' est négative sur D_f , f est donc décroissante sur D_f .

Correction 4: La fonction $f(t) = t^2 + 14t + 5$ est définie sur \mathbb{R} tout entier. Sa dérivée est f'(t) = 2t + 14, elle s'annule en -7.

t	$-\infty$		-7		$+\infty$
f'(t)		_	0	+	
f		—	_44		→

Correction 5: La fonction $f(t) = (6t + 48) \exp(\frac{t}{6})$ est définie sur \mathbb{R} . Elle est dérivable, sa dérivée est : $f'(t) = 6 \exp(\frac{t}{6}) + (6t + 48) \frac{1}{6} \exp(\frac{t}{6})$, soit $f'(t) = (t + 14) \exp(\frac{t}{6})$. f' s'annule en -14, elle est négative pour t < -14 et positive pour t > -14.

1

t	$-\infty$		-14		$+\infty$
f'(t)		_	0	+	
f	$-36\exp(\frac{-7}{3})$				

Correction 6: La fonction $f(t) = \frac{t}{3} + 7 + \ln(t)$. Son domaine de définition est $D_f = \mathbb{R}^{*+}$. Sa dérivé est $f'(t) = \frac{1}{3} + \frac{1}{t}$. Sur D_f , f' est strictement positive, donc f est croissante sur \mathbb{R}^{*+} .