Бройни системи. Методи за преобразуване.

Бройните системи (numeral systems) са начин за записване (представяне) на числата, чрез краен набор от графични знаци (символи) наречени цифри по опеделени правила за представяне на числата и може да се даде име на числото. Символите, които се използват при представянето на числата в дадена бройна система (БС), могат да се възприемат като нейна азбука.

1. Бройни системи. Видове БС

Непозиционни бройни системи (НБС)

Позиционни бройни системи (ПБС)

1.1. Непозиционни бройни системи

Непозиционни бройни системи— това са системи, при които значението на дадена цифра се определя само от нейния вид и не зависи от позицията, която тя заема в кода на числото. Те се делят на адитивни и мултипликативни.

Числата се формират чрез събиране и изваждане на съседни цифри – при адитивните бройни системи

или чрез умножение на съседни – при мултипликативните системи.

Непозиционни бройни системи нямат цифрата нула "0".

Например Римската бройна система, тя е адитивна непозиционна бройна система. Например: I II III IV V X

Римска НБС	I	V	X	L	С	D	M
Арабска ПБС	1	5	10	50	100	500	1000

Например:

$$IX = -1 + 10 = 9$$

 $XXII = +10 + 10 + 1 + 1 = 22$
 $XIX = +10 - 1 + 10 = 19$

1.2. Позиционни бройни системи

Числата в позиционната бройна система се записват, като всяка цифра си има стойност за съответния разред и тегло на този разред.

Най-употребяван представител на ПБС е десетичната БС.

Например:
$$123,45 = 1 * 10^2 + 2 * 10^1 + 3 * 10^0 + 4 * 10^{-1} + 5 * 10^{-2} = 1 * 100 + 2 * 10 + 3 * 1 + 4 / 10 + 5 / 100$$

Стойността (цифрата) на съответният разред се умножава по теглото на разреда. В ляво от десетичния разделител за цяла и дробна част степенните показатели на основата на БС (в случая десет) се повдига на съответната степен започвайки броенето от нула в посока от дясно на ляво, увеличавайки всеки следващ разред с едно. В дясно от десетичния разделител от -1 до - m.

Т.е. представянето на числата в ПС се записват като числото А представено в (1):

$$A = a_{n-1}a_{n-2}...a_2a_1a_0, a_{-1}a_{-2a-3}...a_m$$
 (1)

Числото А може да се запише във вид на полином виж формула (2):

$$A = a_{n-1} * d^{n-1} + a_{n-2} * d^{n-2} + ... + a_2 * d^2 + a_1 * d^1 + a_0 * d^0 + a_0 * d^0 + a_{-1} * d^{-1} + a_{-2} * d^{-2} + ... + a_{-m} * d^{-m}$$
(2)

Компютърните системи обработват цели числа (567), дробни числа (правилни дроби – 0,48) или реални числа съдържащи цяла и дробна част (123,45).

От ПБС в практиката и ежедневието намират приложение БС при основи от две до осемнадесет. В ежедневието най-разпространена е десетичната ПБС.

В компютърната техника се използуват: Decimal; Binary; Octal и Hexadecimal (десетична; двоична; осмична и шестнадесетична) БС.

Таблица 2.1. Запис на числата в пзиционни БС с снова 10, 2, 16, код 8421.

Decimal	Binary	Hexadecimal	код	код	Binary in bytes	
Десетично	•		8421	8421		
число	Двоично	Шестнадесетично	(2/10)	двоичен запис в един байт	двоичен запис в един байт	
0	0	00	00	0000 0000	0000 0000	
1	1	01	01	0000 0001	0000 0001	
2	10	02	02	0000 0010	0000 0010	
3	11	03	03	0000 0011	0000 0011	
4	100	04	04	0000 0100	0000 0100	
5	101	05	05	0000 0101	0000 0101	
6	110	06	06	0000 0110	0000 0110	
7	111	07	07	0000 0111	0000 0111	
8	1000	08	80	0000 1000	0000 1000	
9	1001	09	09	0000 1001	0000 1001	
10	1010	0A	10	0001 0000	0000 1010	
11	1011	0B	11	0001 0001	0000 1011	
12	1100	0C	12	0001 0010	0000 1100	
13	1101	0D	13	0001 0011	0000 1101	
14	1110	0E	14	0001 0100	0000 1110	
15	1111	0F	15	0001 0101	0000 1111	
16	10000	10	16	0001 0110	0001 0000	
17	10001	11	17	0001 0111	0001 0001	
18	10010	12	18	0001 1000	0001 0010	
19	10011	13	19	0001 1001	0001 0011	
20	10100	14	20	0010 0000	0001 0100	
21	10101	15	21	0010 0001	0001 0101	
22	10110	16	22	0010 0010	0001 0110	

2. Преминаване от една БС в друга

Преобразуване на числата от една БС при една основа в БС с друга основа. Например от десетична в двоична или от десетична БС в шестнадесетична.

Преобразуването се извършва, чрез многократно деление на изходното число на

основата на новата БС, като действията се извършват в изходната БС. Получената нова цяла стойност отново се дели на основата на новата бройна система. И така докато новополучената нова цяла стойност остане по-малка от основата на новата БС. Получените остатъци от тези операции са разрядите в новата БС, записани в обратен ред. Разрядът с най-високо тегло се получава последен.

2.1. Преминаване от десетична БС към двоична

```
Например числото 123 _{(10)} от десетична БС да се преобразува в двоична БС. 123 _{(10)}=???_{(2)} _{(2)} _{(2)} _{(2)} _{(2)} _{(2)} _{(2)} _{(3)} _{(2)} _{(3)} _{(2)} _{(3)} _{(4)} _{(4)} _{(4)} _{(4)} _{(4)} _{(5)} _{(5)} _{(5)} _{(6)} _{(5)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)} _{(6)
```

След получаването на нова цяла стойност по-малка от основата на новата БС се записва числото. Както при делението на 3 на 2 стойността е $\underline{e\partial ho}$ (в Италик, удебелено и подчертано):

$$123_{(10)} = 1111011_{(2)}$$

2.2. Преминаване от БС с основа различна от десет към десетична БС

Преобразуването от произволна БС в десетична е, чрез записването на числото с полинома (2).

$$1111011_{(2)} = ???_{(10)}$$

1111011 (2) =
$$1 * 2^6 + 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 =$$

= $1 * 64 + 1 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 =$
= $64 + 32 + 16 + 8 + 0 + 2 + 1 = 80 + 32 + 11 = 112 + 11 = 123$ (10)

Примери за самостоятелна работа:

Да се преобразуват числата:

A)
$$123_{(10)} = ???_{(8)}$$

Б)
$$1234_{(10)} = ???_{(16)}$$

От получените числа, да се извърши обратното преобразуване към десетична БС по метода описан в т. 2.2.

2.3. Преобразуване на числа от БС с основа кратна на две

При БС с основа кратна на две преминаването от една в друга е по-лесно, като се преминаването през двоична БС.

Двоичните разреди се де делят на групи по три или четири бита от дясно наляво за цялата част и обратно за дробната част на реалното число – от ляво на дясно. Броят на разредите произлизат от степените на две:

$$2^3 = 8$$
 $2^4 = 16$, т.е. три бита за осмична БС и четири за шестнадесетична.

2.4. <u>Преобразуване на двоично число в осмично и обратно. Преобразуване на цяло двоично число в осмично</u>

Двоичното число се разделя на групи от три бита започвайки от младшия разряд до края на числото и се записва съответният осмичен еквивалент на групите от три бита.

ПРИМЕР: 11101011100111
$$_{(2)} = 11 101 011 100 111 _{(2)} = 35347 _{(8)}$$

2.5. <u>Преобразуване на двоично число в шестнадесетично и обратно.</u> <u>Преобразуване на цяло двоично число в шестнадесетично</u>

Двоичното число се разделя на групи от по четири бита започвайки от младшия разряд до края на числото и се записва съответният шестнадесетичен еквивалент на групите от четири бита. На мястото на липсващите от ляво битове на най-старшия двоичен разряд се прибавят нули.

ПРИМЕР: 11101011100111
$$_{(2)} = 0011 1010 1110 0111 _{(2)} = 3AE3 _{(16)}$$

3. Извършване на аритметични действия

3.1. Извършване на аритметични действия събиране и изваждане

Извършване на действията събиране и изваждане в ПБС с основа: десет; две; осем и шестналесет.

Аритметичните действия се извършват, както при десетичната БС като се аритметичните действия се извършват в съответната БС (да се внимава с основата на БС).

3.2. Извършване на аритметични действия умножение и деление

Извършване на действията умножение и деление в ПБС с основа: десет; две; осем и

шестнадесет.

Аритметичните действия се извършват, както при десетичната БС като се аритметичните действия се извършват в съответната БС (да се внимава с основата на БС).