UNIVERSIDAD DE SAN ANDRÉS - Matemática 2 (Administración- Contador- Negocios Digitales)

Ejercitación 2: Planos y rectas en \mathbb{R}^2 y \mathbb{R}^3

- 1. Dibujar los vectores v+w, -2v, v-w, 3v+2w y -v+2w-3(v+2w) en cada caso.
 - (a) v = (1, 2), w = (3, 2).
 - **(b)** v = (1, 2, 1), w = (3, 2, 0).
- 2. Dibujar en \mathbb{R}^2 los siguientes conjuntos de vectores:

(a)
$$\alpha(1,2) + (3,2)$$
, con $\alpha = 0$, $\alpha = \frac{1}{2}$ y $\alpha = 1$.

- **(b)** $\alpha(1,2) + (3,2)$, con $\alpha \in [0,1]$.
- (c) $\alpha(1,2) + (3,2)$, con $\alpha \in \mathbb{R}$.
- 3. Decidir en cada caso si el conjunto A representa una recta en \mathbb{R}^2 o en \mathbb{R}^3 .

(a)
$$A = \{(x, y) \in \mathbb{R}^2 : x - y = 3\}$$

(b)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x - 2y = 0; \ 2y + x - z + 2 = 0\}$$

(c)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x - z = 3\}$$

(d)
$$A = \{(x, y, z) \in \mathbb{R}^3 : z - 3 = -3x + y\}$$

(e)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = z + 1; \ 2z = -2 + 2x + 4y\}$$

Describir las rectas halladas en forma paramétrica.

- 4. Pasar de forma paramétrica a implícita las siguientes rectas:
 - (a) $\mathbb{L}: [(2,-1)] + (3,-1)$
 - **(b)** \mathbb{L} : [(-2,1,3)] + (0,-1,-1)
 - (c) $\mathbb{L}: [(4,2,1)]$

y calcular la intersección entre (b) y (c).

- 5. Encontrar las ecuaciones de:
 - (a) Todas la rectas $\mathbb{L} \subset \mathbb{R}^2$, que son paralelas a la recta que contiene a los puntos (1,2) y (-1,3). ¿Cuál es la ecuación que corresponde a la recta que pasa por (7,4)?

- (b) La recta $\mathbb{L} \subset \mathbb{R}^3$ que pasa por (3, -1, 0) y tiene la dirección del vector (1, 1, 2).
- (c) La recta $\mathbb{L} \subset \mathbb{R}^3$ que pasa por los puntos (1,2,3) y (0,2,2).
- 6. Considerar los vectores u = (-1, 0, 2), v = (3, -2, -1), w = (4, -3, 0).Hallar $\langle u, v \rangle, \langle v, w \rangle, ||w|| y \frac{\langle u, w \rangle}{||w||^2} w.$
- 7. Calcular $(1, -1, -2) \times (3, -4, 1)$ y $(1, 1, 1) \times (2, 2, 2)$.
- 8. Pasar de forma paramétrica a implícita los siguientes planos
 - (a) Π : [(-2,0,3),(1,1,1)]+(3,2,0)
 - **(b)** Π : [(1,0,1),(2,-2,5)]

y calcular la intersección.

- 9. Encontrar las ecuaciones de:
 - (a) Hallar el plano Π que pasa por los puntos (1, -2, 0), (2, 1, 1) y (0, 3, 4).
 - (b) El plano Π_1 de \mathbb{R}^3 generado por los vectores (1,0,1) y (2,-1,-1) y el plano $\Pi_2 \subset \mathbb{R}^3$ paralelo a Π_1 que pasa por el punto (4,-1,1).
 - (c) El plano Π_3 de \mathbb{R}^3 que pasa por el punto (1,1,1) y que sea paralelo al plano [(1,1,-1),(1,0,1)].
- 10. Sea Π el plano de ecuación -3x + z = 2.
 - (a) Dar dos vectores que generen el plano Π' paralelo a Π que pasa por el origen.
 - (b) Dar la ecuación del plano paralelo a Π que pasa por (1, 1, 1).
- 11. Sea $\mathbb{L} \subset \mathbb{R}^3$ la recta dada por las ecuaciones 2x 3y 4z = -9, x + y + 3z = 3. Hallar un plano Π tal que $\mathbb{L} \subset \Pi$ y $(0,3,1) \in \Pi$.
- 12. Sea Π el plano que pasa por los puntos (5,-1,1), (2,1,2) y (3,0,0). Calcular la ecuación de Π y de una recta $\mathbb L$ paralela a Π que pase por el origen. ¿Es única?
- 13. Hallar un plano Π cuya normal es (1, -1, 2) y pasa por el punto (4, 1, 0).
- 14. Se tienen los siguientes conjuntos de \mathbb{R}^3 :
 - $\Pi_1: [(3,2,0),(0,7,-3)]+(-1,1,-1)$
 - $\Pi_2: [(1,1,1),(0,3,2)] + (0,-1,1)$
 - $\Pi_3 = \{(x, y, z) / 2x y + z = 1\}$
 - $\mathbb{L}_1: [(0,3,2)] + (0,-1,1)$
 - $\mathbb{L}_2 = \{(x, y, z) : 2x y + z = 1; x y + 2z = 2\}$

Hallar $\Pi_1 \cap \Pi_2$, $\mathbb{L}_1 \cap \Pi_1$, $\mathbb{L}_1 \cap \Pi_2$, $\mathbb{L}_2 \cap \Pi_3$.

- 15. (a) Hallar todos los vectores de \mathbb{R}^2 perpendiculares a (3,1).
 - (b) De los vectores hallados en (a) exhibir aquellos de igual norma que (3, 1).
 - (c) Sea u = (1, 2, 2). Hallar todos los $v \in \mathbb{R}^3$, perpendiculares a u, de igual norma que u y tales que $\langle v, (0, 1, 0) \rangle = -1$.
- 16. Determinar, y hallar, el plano o la recta que es perpendicular a cada conjunto A.
 - (a) $A = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0\}$
 - **(b)** A: [(1,2,1),(2,0,2)] + (1,1,0)
 - (c) $A = \{(x, y, z) \in \mathbb{R}^3 : x y = 3x + y + z = 1\}$
- 17. (a) Hallar la recta perpendicular al plano de ecuación x+y-z=2 que pasa por (-2,1,4).
 - (b) Hallar el plano perpendicular a la recta [(-1,2,1)] + (3,0,2) que pasa por (2,1,8).
- 18. Se consideran los planos Π : 4x y + 3z = 2 y $\Pi' = 2x + 2y z = 6$. Hallar la ecuación de un plano que sea ortogonal a $\Pi \cap \Pi'$ y que pase por (4, 2, -1).
- 19. Hallar todos los puntos que están a igual distancia de (1,2,3) y de (0,1,2).
- 20. Hallar la distancia del punto (-3,2) a la recta \mathbb{L} : [(2,-1)]+(6,-1).
- 21. Se consideran el plano Π : 3x y + 2z = 4 y la recta \mathbb{L} , perpendicular a Π que pasa por (7, -3, 5). Hallar la distancia del punto (3, 2, 1) a $\Pi \cap \mathbb{L}$.
- 22. Para el plano Π : [(1,1,-1),(0,1,2)]+(2,0,0) y el punto P=(1,2,1), Hallar:
 - (a) La ecuación de la recta \mathbb{L} perpendicular a Π que pasa por P.
 - (b) La intersección entre \mathbb{L} y Π .
 - (c) La distancia de P al plano Π .

$$\frac{\text{NORMAL: } \pi \times \pi}{\text{Index}} = (a,b,c)$$

NORMAL DEL PLANO + PTO PASO
implicito
$$\frac{7}{9}$$
 pro $\frac{7}{9}$ pro $\frac{7$

- 8. Pasar de forma paramétrica a implícita los siguientes planos
 - (a) $\Pi: [(-2,0,3),(1,1,1)] + (3,2,0)$
 - **(b)** Π : [(1,0,1),(2,-2,5)]

(a)
$$TT: [(2,0,3)(1,1,1)] + (3,2,0)$$

Li impliao:

$$N = \begin{bmatrix} -2 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix} = \begin{pmatrix} -3 & 5 & -2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{2}{2} - \frac{2}{2} + \frac{2}$$

$$-3x + 5y - 2 \cdot z = d$$

$$(3,2,0) -3 \cdot (3) + 5 \cdot 2 - 2 \cdot 0 = d$$

$$-9 + 10 = d$$

$$-3x + 5y - 2 = 1$$

(b)
$$\Pi: [(1,0,1), (2,-2,5)] + (0,0,0)$$

$$N=(2,-3,-2)$$

$$2x - 31 - 2z = 0$$

V

$$-3x + 5y - 2 = 1$$

I SOLA LETRA DESPEJA).

$$-\frac{3x}{2} + \frac{5y}{2} - \frac{1}{2} = \frac{2}{2}$$

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}$

$$(x, 0, -\frac{3}{2}x) + (0, 0, 5, 0) + (0, 0, -\frac{1}{2})$$

$$\left[\left(1, 0, -\frac{3}{2} \right), \left(0, 1, \frac{5}{2} \right) \right] + \left(0, 0, -\frac{1}{2} \right)$$

(a)
$$\Pi: [(-2,0,3),(1,1,1)] + (3,2,0)$$

(b)
$$\Pi: [(1,0,1),(2,-2,5)]$$

$$\begin{cases} -3x + 5y - 2 \cdot z = 1 \\ 2x - 3y - 2z = 0 \end{cases}$$

$$\begin{cases} -3x + 5y - 2 \cdot z = 1 \\ 2x - 3y - 2z = 0 \end{cases}$$

$$\begin{pmatrix} -3 & 5 & -2 & 1 \\ 2 & -3 & -2 & 0 \\ -3 & 5 & -2 & 1 \\ 2 & -3 & 5 & -2 & 1 \\ 2 & -3 & 5 & -2 & 1 \\ 2 & -3 & 5 & -2 & 1 \\ 2 & -3 & 5 & -2 & 1 \\ 2 & -3 & 5 & -2 & 1 \\ 3f_2 + 2f_1 & 2f_2 & 2f_3 & 2f_4 & 2f_4 \\ 2 & 2 & 2 & 2f_2 & 2f_3 & 2f_4 &$$

$$-3x+5-(2+102)-22=1$$

$$-3x$$
 $=1-10-482$

$$-3x = -9 - 482$$

$$[(162, 102, 12)] + (3,2,0)$$

$$[(16, 10,1)] + (3,2,0).$$

T, Π_2 : 1°) T, escrito en implicite

2°) Π_2 escrito en implicite

3°): Resolver sistemo de ecs.

LOTT (1°) L: EN PARAMETRICA

LARECTA

E AC #/

S LA SOULUOP

ES LA MISMISIMA

RECTA

- $\Pi_1: [(3,2,0),(0,7,-3)] + (-1,1,-1)$
- $\Pi_2: [(1,1,1),(0,3,2)] + (0,-1,1)$
- $\Pi_3 = \{(x, y, z) / 2x y + z = 1\}$ $\mathbb{L}_1 : [(0, 3, 2)] + (0, -1, 1)$

 - $\mathbb{L}_2 = \{(x, y, z) : 2x y + z = 1; x y + 2z = 2\}$

Hallar $\Pi_1 \cap \Pi_2$, $\mathbb{L}_1 \cap \Pi_1$, $\mathbb{L}_1 \cap \Pi_2$, $\mathbb{L}_2 \cap \Pi_3$.

2

$$\begin{pmatrix} -6 & 9 & 21 & (-6) \\ -1 & -2 & 3 & | 5 \end{pmatrix} \leftarrow 6F_{2} = 6$$

$$\begin{pmatrix} -6 & 9 & 21 & | -6 \\ 0 & -21 & -3 & | 36 \end{pmatrix}$$

$$\frac{-21}{3}y - 36 = + 2$$

$$-6x + 9y + 2((-7y - 12)) = 6$$

$$-6x + 9y - 197y - 252 = 6$$

$$\left(\frac{-11+23y}{23y}, \frac{y}{y}, \frac{-1}{y} - \frac{12}{12} \right)$$

$$\left(\frac{23y}{3}, \frac{y}{y}, \frac{-7y}{y} \right) + \left(\frac{-41}{10}, \frac{-12}{12} \right)$$

$$\left(\frac{23}{10}, \frac{1}{y}, \frac{-7}{y} \right) + \left(\frac{-41}{10}, \frac{-12}{12} \right)$$

•
$$\mathbb{L}_1: [(0,3,2)] + (0,-1,1)$$

$$-6 \cdot (0) + 9(3a-1) + 2(2a+1) = -6$$

$$U_1: \left(0, 3\cdot\left(-\frac{6}{23}\right) - 1, 2\cdot\left(-\frac{6}{23}\right) + 1\right)$$

