Laboratorio Nro. 2 Complejidad de algoritmos

Objetivos: 1. Usar ecuaciones de recurrencia para determinar la complejidad en tiempo de algoritmos definidos de forma recursiva. 2. Usar la notación O para encontrar la complejidad asintótica en tiempo de algoritmos. 3. Realizar estudios empíricos para validar una hipótesis sobre el comportamiento en tiempo de ejecución de un algoritmo con varios tamaños de problema.

Consideraciones: Lean y verifiquen las consideraciones de entrega,

Leer la Guía

Trabajo en Parejas

Si tienen reclamos, regístrenlos en http://bit.ly/2g4TTKf

Ver
calificaciones
en Eafit
Interactiva

En el GitHub docente, encontrarán la traducción de los Ejercicios en Línea

Hoy, plazo de entrega

Subir el informe pdf en la carpeta informe, el código del ejercicio 1 en la carpeta codigo y el código del 2 en la carpeta ejercicioEnLinea

Porcentajes y criterios de evaluación

PhD. Mauricio Toro Bermúdez

Resumen de ejercicios a resolver

- **1.1** Midan los tiempos de ejecución de los algoritmos *Insertion Sort* y *Merge sort*
- 2.1 Resuelvan -mínimo-- 5 ejercicios del nivel Array 2 de la página CodingBat. http://codingbat.com/java/Array-2
- 2.2 Resuelvan --mínimo-- 5 ejercicios del nivel Array 3 de la página CodingBat. http://codingbat.com/java/Array-3
- 3.1 [Ejercicio opcional] De acuerdo a lo realizado en el numeral 1.1, construyan una tabla donde muestren, para cada algoritmo, cuánto se demora para 20 tamaños del problema.
- **3.2** Grafiquen los tiempos que tomó, cada algoritmo, para los 20 tamaños del problema.
- 3.3 Según la complejidad en tiempo, ¿es apropiado usar insertion sort para un videojuego con millones de elementos en una escena y demandas de tiempo real en la renderización de escenas 3D?
- 3.4 ¿Por qué aparece un logaritmo en la complejidad asintótica, para el peor de los casos, de merge sort o insertion sort?
- 3.5 [Ejercicio opcional] Para arreglos grandes, ¿cómo deben ser los datos para que insertion sort sea más rápido que merge sort? ¿ordenados? ¿todos iguales? ¿diferentes?
- 3.4 [Ejercicio opcional] Expliquen con sus propias palabras cómo funciona su solución del ejercicio de Array3, de Coding Bat, llamado maxSpan.
- 3.5 Calculen la complejidad de los ejercicios en línea, numerales 2.1 y 2.2.
- 3.6 Expliquen con sus palabras las variables (qué es 'n', qué es 'm', etc.) del cálculo de complejidad del numeral anterior.
- Simulacro de Parcial.
- 5. [Ejercicio Opcional] Lectura recomendada
- 6. [Ejercicio Opcional] Trabajo en Equipo y Progreso Gradual
- 7. [Ejercicio Opcional] Utilicen la plantilla dispuesta en este idioma para el laboratorio.

PhD. Mauricio Toro Bermúdez

1. Simulacro de Proyecto

Códigos para entregar en GitHub en la carpeta codigo

En la vida real, la documentación de software hace parte de muchos estándares de calidad como CMMI e ISO/IEC 9126

Vean Guía numeral 3.4

Código del ejercicio en línea en GitHub. Vean Guía en numeral 4.24

Documentación opcional. Si lo hacen, utilicen **Javadoc** o equivalente. No suban el HTML a GitHub.

No se reciben archivos en **.RAR** ni en **.ZIP**

Utilicen Java, C++ o Python

PhD. Mauricio Toro Bermúdez

Una de las principales características del videojuego *Silent Hill 3* es la niebla, que para modelarla se utiliza la transparencia. Para poder renderizar texturas o efectos que usen transparencia, se necesita renderizar los elementos en orden del que está más atrás al que está más adelante para tener una visualización correcta.

El criterio de ordenamiento de los objetos 3D es una métrica que representa la profundidad.
El problema de escoger el orden de los objetos a renderizar se reduce a un problema de ordenamiento de números.

Para poder que la renderización de los objetos 3D sea eficiente, se necesitar elegir un algoritmo que sea eficiente para este problema. Dos algoritmos conocidos para este

problema son Insertion Sort y Merge Sort. Nuestra tarea es decidir cuál es más eficiente

para este problema.

Imagen extraída de https://bit.ly/2ThpLw9

Extiendan el código existente para medir los tiempos (en milisegundos) de *Insertion Sort* y *Merge sort* con 20 tamaños del problema. Si para todos los tamaños del problema se demora 0 ms, no son adecuados. Si para todos los tamaños del problema se demora lo mismo, tampoco son adecuados.

Nota:

- Identifiquen valores apropiados para el tamaño del problema
- Tomen los tiempos para 20 tamaños del problema diferentes.
- Hagan una gráfica en Excel para cada algoritmo y pasarla luego a Word.
- Entreguen el informe en formato PDF

PhD. Mauricio Toro Bermúdez

2. Simulacro de Maratón de Programación sin documentación HTML, en GitHub,

en la carpeta ejercicioEnLinea

Simulacro de Maratón de Programación: sin documentación, en GitHub, dentro de ejercicioEnLinea

Vean Guía numeral 3.3

No se requiere documentación para los ejercicios en línea

Utilicen Java, C++ o Python

No se reciben archivos en .**PDF ni** .**TXT**

Resolver los problemas de CodingBat usando Recursión

Código del ejercicio en línea en **GitHub.** Vean Guía en **numeral 4.24**

- Nota: Si toman la respuesta de alguna fuente, deben referenciar según el tipo de cita. Vean *Guía en numerales 4.16 y 4.17*
- Resuelvan --al menos-- 5 ejercicios del nivel Array 2 de la página CodingBat. http://codingbat.com/java/Array-2
- Resuelvan --mínimo-- 5 ejercicios del nivel *Array* 3 de la página *CodingBat*. http://codingbat.com/java/Array-3
- Nota: La complejidad máxima para ejercicios de *Array 3* es O(n²)

PhD. Mauricio Toro Bermúdez

3. Simulacro de preguntas de sustentación de Proyecto en la carpeta informe

Simulacro de preguntas de sustentación de Proyecto en la carpeta informe

Vean **Guía** numeral 3.4

Exporten y entreguen informe de laboratorio en PDF, en español o Inglés

Si hacen el *informe* en español, usen la plantilla en español

No apliquen **Normas Icontec** para esto

Si hacen el informe en inglés, usen a plantilla en inglés

Sobre el Simulacro de Proyectos

[Ejercicio opcional] De acuerdo a lo realizado en el numeral 1, construyan una tabla donde muestren, para cada algoritmo, cuánto se demora para cada uno de los 20 valores del tamaño del problema.

En la vida real, las gráficas son una forma simple y concisa de representar resultados cuantitativos en Ingeniería de Sistemas

Grafiquen los tiempos que tomó en cada algoritmo para los 20 tamaños del problema. Grafiquen el Tamaño de la Entrada Vs. Tiempo de Ejecución. ¿Quién es la variable independiente? ¿Quién va en el eje X?

PhD. Mauricio Toro Bermúdez

En la vida real, bases de datos relacionales como *MySQL* guardan los datos ordenados, usando como criterio la llave primaria. Como las bases de datos pueden almacenar millones de elementos, es importante entender la eficiencia de los algoritmos de ordenamiento

¿Es apropiado usar insertion sort para un videojuego con millones de elementos en una escena y demandas de tiempo real en la

¿Por qué aparece un logaritmo en la complejidad asintótica, para el peor de los casos, de *merge sort* o *insertion sort*?

[Ejercicio opcional] Para arreglos grandes, ¿cómo deben ser los datos para que *insertion sort* sea más rápido que *merge sort*? ¿ordenados? ¿todos iguales? ¿diferentes? ¿desordenados?

Sobre el simulacro de maratón de programación

[Ejercicio opcional] Expliquen con sus propias palabras cómo funciona el ejercicio de *Array* 3 de *Coding Bat* llamado *maxSpan y ¿por qué?*

Calculen la complejidad de los Ejercicios en Línea de los numerales 2.1.

Expliquen con sus palabras las variables (qué es 'n', qué es 'm', etc.) del cálculo de complejidad del ejercicio anterior.

Ejemplos de su respuesta:

"n es el número de elementos del arreglo",

"V es el número de vértices del grafo",

"n es el número de filas de la matriz y m el número de columnas".

PhD. Mauricio Toro Bermúdez

4. Simulacro de parcial en informe PDF

4 Simulacro de Parcial en el informe PDF

Para este simulacro, agreguen *sus respuestas* en el informe PDF.

El día del Parcial no tendrán computador, JAVA o acceso a internet.

- Juanito implementó un algoritmo para sumar dos matrices cuadradas de dimensión NxN. Su algoritmo tiene complejidad $T(n)=c\times n^2$ y toma T(n) segundos para procesar n datos.
- ¿Cuánto tiempo tardará este algoritmo para para procesar 10000 datos, si sabemos que, para n=100, T(n)=T(100)=1ms? Recuerda que 1sg=1000ms. Así como en los parciales de Física 1, NO olvides indicar la unidad de medida del tiempo que calcules.
- Dayla sabe que la complejidad asintótica de la función P(n) es $O(\sqrt{n})$. Ayúdenle a Dayla a sacar la complejidad asintótica para la función mistery(n,m).

La complejidad de mistery(n,m) es:

PhD. Mauricio Toro Bermúdez

- **a)** O(m+n)
- b) $O(m \times n \times \sqrt{n})$
- c) O(m+n+ \sqrt{n})
- \mathbf{d}) $O(m \times n)$
- 4.3

Considera el siguiente algoritmo:

```
void f(int n) {
  for(int i=1; i*i <= n; i++) {
    for(int j=1; j*j<=n; j++) {
      for(int k=0; k<n; k++) {
        for(int h=0; h<=n; h++) {
            System.out.println("hola");
            }
        }
     }
}</pre>
```


- **a)** $O(n^3)$
- **b)** $O(n^2)$
- **c)** $O(n^3 \times \sqrt{n})$
- d) $O(n^4 \times \sqrt{n})$

La *lógistica de última milla* es el proceso de entregar un pedido de comercio electrónico (por ejemplo, en Amazon o Rappi) desde que sale de la tienda hasta que llega al cliente final. La logística de última milla representa hasta un 50% de los costos logísticos. Contar el número de caminos se utiliza en logística de última milla. Además, según el portal *Geeks for Geeks*, este es un problema –muy frecuente– en entrevistas de Amazon, Microsoft y y Adobe. El problema es contar todos los posibles caminos, desde la esquina superior izquierda (0,0) hasta la esquina inferior derecha (*n*–1,*m*–1), de una matriz de *n*×*m*, con la restricción de que desde cada celda sólo nos podemos mover hacia la derecha (*i*,*j*+1) o hacia abajo (*i*+1,*j*). Este problema es similar al

PhD. Mauricio Toro Bermúdez

problema del conejo, ¿cierto? Como un ejemplo, si n=3 y m=2, la salida es 3 porque hay estos 3 caminos:

- (0,0)->(0,1)->(0,2)->(1,2)
- $(0,0) \rightarrow (0,1) \rightarrow (1,1) \rightarrow (1,2)$
- $(0,0) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (1,2)$

Si trabajas en Java, considera este código:

```
int numberOfPaths(int m, int n) {
  int count[][] = new int[m][n];

for (int i = 0; i < m; i++)
      count[i][0] = 1;

for (int j = 0; j < n; j++)
      count[0][j] = 1;

for (int i = 1; i < m; i++) {
  for (int j = 1; j < n; j++)
      count[i][j]=count[i-1][j]+count[i][j-1];
  }
  return count[m - 1][n - 1];
}</pre>
```

Si trabajas en Python, considera este código:

PhD. Mauricio Toro Bermúdez

- 1. ¿Cuál es la complejidad asintótica, en **tiempo**, en el peor de los casos, en términos de *n* y de *m*? O(......)
- 2. ¿Cuál es la complejidad asintótica, en **memoria**, en el peor de los casos, en términos de *n* y de *m*? O(.....)

La complejidad en memoria quiere decir cuántos enteros nuevos crea el algoritmo, fuera de los que ya existían.

Considera el siguiente algoritmo:

```
static int count7(int n) {
   if (n == 0) return 0;
   if (n % 10 == 7) return 1 + count7(n / 10);
   return count7(n / 10);
}
```

PhD. Mauricio Toro Bermúdez

- ¿Cuál es la ecuación de recurrencia que mejor define la complejidad, para el peor caso, del algoritmo anterior? Asume que c es la suma de todas las operaciones que toman un tiempo constante en el algoritmo.
 - (a) T(n)=T(n-1)+c, que es O(n)
 - (b) T(n)=4T(n/2)+c, que es $O(n^2)$
 - (c) T(n)=T(n-1)+T(n-2)+c, que es $O(2^n)$
 - (d) T(n)=T(n/10)+c, que es $O(\log_{10} n)$
- ¿El algoritmo anterior siempre termina para todo número entero *n*∈*Z*?
 - (a) Sí
 - (b) No
- [Opc] Sea $f(n,m) = n^2 + n \times \log(\log(m))$ y $g(n,m) = n^3 + m \times \sqrt{m}$. Calcula O(f(n,m) + g(n,m)). Ten en cuenta que no se sabe cuál es más grande entre n y m.
- Elige la respuesta que consideres acertada:
- a) $O(n^3 + n(\log(\log(m)) + m \times \sqrt{m})$
- **b)** $O(n^3)$
- c) $O(m \times \sqrt{(m)} + n^3)$
- **d)** O($m \times \sqrt{m}$)
- [Opc] Considera las siguientes proposiciones:
 - 1. O(f+g)=O(max(f,g))
 - 2. $O(f \times g) = O(f) \times O(g)$
 - 3. Si f=O(g) y g=O(h), entonces f=O(h)
 - 4. O(c.f)=O(f), donde c es una constante

¿Cuál(es) de las anteriores proposiciones son verdaderas?

PhD. Mauricio Toro Bermúdez

No es necesario justificar tu respuesta, pero, si estás viendo Estructuras Discretas, puedes realizar una demostración directa o por reducción al absurdo (opcional)

4.8 [Opc] ¿Cuál de las siguientes afirmaciones es correcta con respecto a func3(n)?

```
1 void func3(int n) {
2    if(n < 1) return;
3    else{
4        System.out.println(n);
5        func3(n-1);
6    }
7 }</pre>
```

Elija la respuesta que considere acertada:

- a) Esta ejecuta T(n) = c + T(n-1) pasos, que es O(n).
- **b)** Esta ejecuta T(n) = n + T(n-1) pasos, que es O(n!).
- c) Esta ejecuta T(n) = cn + T(n-1) pasos, que es O(n!).
- **d)** Esta ejecuta T(n) = c + 2.T(n-1) pasos, que es $O(2^n)$.
- Considera el siguiente código escrito en Java. Encuentra la ecuación de recurrencia que mejor representa la complejidad asintótica en el peor de los casos.

```
int f(int n) {
  if(n <= 0) {
    return 1;
  }
  int a = f(n / 2);
  int b = f(n / 2);
  int res = 0;
  for(int i = 0; i < n; i++) {
    res += (a*b);
  }</pre>
```

PhD. Mauricio Toro Bermúdez


```
return res;
}
```


Elija la respuesta que considere acertada:

- a) T(n)=2T(n-1)+n
- **b)** $T(n) = 2T(n/2) + n^2$
- **c)** T(n) = 2T(n/2) + n
- **d)** T(n)=2T(n-1)+(n-1)
- ¿Cuál de las siguientes afirmaciones es correcta con respecto a la función func2(n)?

```
void func2(int n) {
for(int i = 2; i * i <= n; i++) {
  for(int k = 2; k * k <= n; k++) {
    print(j);
  }
}</pre>
```


}

Elija la respuesta que considere acertada:

- a) Ejecuta más de n² pasos.
- **b)** Ejecuta más de n³ pasos.
- **c)** Ejecuta menos de *n*.log *n* pasos.
- d) Ejecuta exactamente n² pasos
- (4.11 [Opc] ¿Cuál de las siguientes afirmaciones es correcta con respecto a func3(n)?

```
int func3(int n) {
  if(n == 1 || n == 2) {
    return n;
  }
  int ni = func3(n - 1);
```

PhD. Mauricio Toro Bermúdez


```
int nj = func3(n - 2);
int suma = ni + nj;
return suma;
}
```


Elige la respuesta que considere acertada:

- a) Ejecuta T(n)=T(n-1)+c pasos.
- **b)** Ejecuta T(n)=T(n-1)+cn pasos.
- c) Ejecuta T(n)=T(n-1)+T(n-2)+c pasos.
- **d)** Ejecuta T(n)=T(n/2)+c pasos.
- [Opc] Sea $f(n,m) = n \times \log(n) + m^2$ y g(n,m) = n + m. Calcule $O(f(n,m) \times g(n,m))$. Ten en cuenta que si la regla del producto fuera válida para el producto de variables, entonces $O(n \times n)$ sería O(n), lo cual no es cierto. Ten en cuenta que no se sabe cuál es más grande entre n y m.

Elige la respuesta que considere acertada:

- a) $O(n \times \log(n) + m^2)$
- **b)** $O(m \times n \times \log(n) + n \times m^2 + n^2 \times \log(n) + m^3)$
- **c)** $O(m^3)$
- **d)** $O(n^3 + m^3)$

5. [Opcional] Lecturas Recomen<u>dadas</u>

[Opc] Lecturas recomendadas

Vean Guía en numeral 3.5 y 4.20

Exportar y entregar informe de laboratorio en PDF, en español o Inglés

Si hacen el *informe* en español, usen la plantilla en español

No apliquen **Normas Icontec** para esto

"El ejercicio de una profesión requiere la adquisición de competencias que se sustentan en procesos comunicativos. Así cuando se entrevista a un ingeniero recién egresado para un empleo, una buena parte de sus posibilidades radica en su capacidad de comunicación; pero se ha observado que esta es una de sus principales debilidades..." *Tomado de http://bit.ly/2gJKzJD*

Vean Guía en numerales 3.5 y 4.20

Lean a "R.C.T Lee et al., Introducción al análisis y diseño de algoritmos, Capítulo 2. 2005" y sumen puntos adicionales, así:

Hagan un mapa conceptual con los principales elementos teóricos.

Nota: Si desean una lectura adicional en idioma español, consideren la siguiente: "John Hopcroft et al., Fundamentos de Algoritmia. Capítulo 3: Notación Asintótica. Páginas 11– 98. 1983" que pueden encontrarla en biblioteca

PhD. Mauricio Toro Bermúdez

6. [Opcional] Trabajo en Equipo y Progreso Gradual

Vean Guía en numeral 3.5 y 4.20

Exportar y entregar informe de laboratorio en PDF, en español o Inglés

Si hacen el *informe* en español, usen la plantilla en español

No apliquen **Normas Icontec** para esto

El trabajo en equipo es una exigenciadel mercado. "Mientras algunos medios retratan la programación como un trabajo solitario, pero requiere mucha comunicación y trabajo grupal. Si trabajas para una compañía, serás parte de un equipo de desarrollo y esperarán que te comuniques bien con otras personas" *Tomado de http://bit.ly/1B6hUDp*

Vean Guía en numerales 3.6, 4.21,4.22,4.23

Entreguen el reporte de cambios del informe de laboratorio que se genera *Google docs* o herramientas similares

Nota: Estas respuestas también deben incluirlas en el informe PDF

PhD. Mauricio Toro Bermúdez

7. [Opcional] Laboratorio en Inglés con plantilla en Inglés

Guía Vean numeral 3.5 y 4.20

Exportar y entregar informe de laboratorio en PDF, en español o Inglés

Si hacen el *informe* en español, usen la plantilla en español

Normas No apliquen **Icontec** para esto

El inglés es un idioma importante en la Ingeniería de Sistemas porque la mayoría de los avances en tecnología se publican en este idioma y la traducción, usualmente se demora un tiempo.

Adicionalmente, dominar el inglés permite conseguir trabajos en el exterior que son muy bien remunerados. Tomado de goo.gl/4s3LmZ

Entreguen el código y el informe en inglés.

PhD. Mauricio Toro Bermúdez

Ayudas para resolver los Ejercicios

Ayudas para el Ejercicio 1	<u>Pág. 29</u>
Ayudas para el Ejercicio 3.1 y 3.2	Pág. 29
Ayudas para el Ejercicio 3.7	Pág. 29
Ayudas para el Ejercicio 4	<u>Pág. 30</u>
Ayudas para el Ejercicio 5	<u>Pág. 30</u>
Ayudas para el Ejercicio 6.1	<u>Pág. 30</u>
Ayudas para el Ejercicio 6.2	<u>Pág. 30</u>
Ayudas para el Ejercicio 6.3	Pág. 30

Ayudas para el Ejercicio 1

Pista 1: Si deciden hacer la documentación, consulten la *Guía en numeral 4.1 y* 4.6

Ayudas para el Ejercicio 3.1 y 3.2

Pista 1: Vean Guía en numeral 4.6 para "Cómo usar la escala logarítmica en Microsoft Excel".

Pista 2: Si todos los tiempos de un algoritmo dan más de 5 minutos, realice otra tabla, para ese algoritmo, tomando tiempos para arreglos de tamaño 1000, 10000 y 100000.

Pista 3: Vean Guía en numeral 4.4 para "Cómo aumentar el tamaño del heap y del stack en Java".

Pista 4: Vean Guía en numeral 4.5 para "Cómo visualizar el montículo (heap) y el stack, y el consumo total de memoria de Java".

Ayudas para el Ejercicio 3.7

Pista 1: Vean Guía en numeral 4.11 para "Cómo escribir la complejidad de un ejercicio en línea"

Pista 2: Vean Guía en numeral 4.19 para "Ejemplos para calcular la complejidad de un ejercicio de CodingBat"

PhD. Mauricio Toro Bermúdez

Ayudas para el Ejercicio 4

Vean la Guía en el numeral 4.18

Ayudas para el Ejercicio 5

Pista 1: Para que hagan el mapa conceptual se recomiendan herramientas como las que encuentran en https://cacoo.com/ o https://cacoo.com/ o https://cacoo.com/

Ayudas para el Ejercicio 6.1

Pista 1: Vean Guía en numeral 4.21

Ayudas para el Ejercicio 6.2

Pista 1: Vean Guía en numeral 4.23

Ayudas para el Ejercicio 6.3

Pista 1: Vean Guía en numeral 4.22

PhD. Mauricio Toro Bermúdez

¿Alguna inquietud?

CONTACTO

Docente Mauricio Toro Bermúdez Teléfono: (+57) (4) 261 95 00 Ext. 9473 Correo: mtorobe@eafit.edu.co Oficina: 19- 627

Agenden una cita dando clic en la pestaña -Semana- de http://bit.ly/2gzVg10