Machine Learning

Building recommendation systems in Python with LightFM

Petrus Janse van Rensburg

Machine Learning

Using LightFM to run a dairy farm in Tanzania

Petrus Janse van Rensburg

Machine Learning

Using LightFM to run a dairy farm in Tanzania recommend groceries in Cape Town

Petrus Janse van Rensburg

NETFLIX

UBER Cals

"People who liked this item, also liked..."

- Incorporates user-item interaction data + feature information into the same model
- E.g. collaborative + content-based filtering
- Uses a traditional matrix-factorisation approach (rather than a neuralnetwork approach)
- Useful for a wide range of problems (movies, restaurants, groceries)

"It's tough to make predictions, especially about the future"

- Neils Bohr and others

Collaborative filtering

User-item interaction matrix

$$I = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 & 1 \\ 0 & 1 & 0 & \dots & 1 & 0 & 0 \end{bmatrix}$$

Calculate cosine distances to find similar users and make recommendations based on their interactions

Collaborative filtering

Calculate cosine distances to find similar users and make recommendations based on their interactions

Matrix factorization

Low-dimensional user- and item embeddings

$$I \approx U \qquad P$$
(users × items) \(\text{(users × n) (n × items)} \)

simple multiplication to predict scores

Matrix factorization

Dot-product between user and item representations

score 1 =
$$\begin{bmatrix} 0.25 & 0.93 & 1.43 & 0.48 & 0.34 \end{bmatrix}$$
 $\begin{bmatrix} 0.53 \\ 0.34 \\ 0.53 \\ 0.82 \\ 1.37 \end{bmatrix}$ (item 1)

Matrix factorization

- You can decide how many dimensions to use for your embeddings.
- Factorization can be done in a number of ways, e.g.
 - Stochastic Gradient Descent
 - Alternating Least Squares

Shortcomings

- Some users haven't bought anything.
- Some products haven't been bought.

Content-based filtering

Make use of item feature information

```
['huggies', 'diapers']
['huggies', 'nappy pants']
['huggies', 'baby wipes']
['pampers', 'diapers']
```

One-hot encode item features, then calculate cosine distances to find similar items and make recommendations

One-hot encoding

Vectorize categorical variables

```
item 1 = [1 \ 0 \ 1 \ 0 \ 0]
item 2 = [1 \ 0 \ 0 \ 1 \ 0]
item 3 = [1 \ 0 \ 0 \ 0 \ 1]
item 4 = [0 \ 1 \ 1 \ 0 \ 0]
```

Shortcomings

- Doesn't work for new users.
- No information-sharing between users.

Hybrid approach

user-item interactions

+

item features

+

user features

Hybrid approach

Users can also have features

```
['Cape Town', 'Observatory']

['Cape Town', 'Mitchell's plain']

['Cape Town', 'Langa']

['Cape Town', 'City Center']
```

One-hot encoding

Vectorize categorical variables

$$user 1 = [1 \ 1 \ 0 \ 0 \ 0]$$
 $user 2 = [1 \ 0 \ 1 \ 0 \ 0]$
 $user 3 = [1 \ 0 \ 0 \ 1 \ 0]$
 $user 4 = [1 \ 0 \ 0 \ 0 \ 1]$

How it works?

- Matrix Factorization that can incorporate interactions, item features and user features.
- Feature representations are summed before taking a dot-product for calculating score.
- Reduces to regular MF model when no features are provided.

Matrix Factorization with Stochastic Gradient Descent

Loss Function

Bayesian Personalised Ranking (BPR)

Weighted Approximate-Rank Pairwise (WARP)

- Learning Rate
- No. of components in latent space

$$I \approx U \qquad P$$
(user features × item features) \approx (user features × n) (n × item features)

addition, then multiplication to predict scores

Addition, then multiplication to predict scores

```
user 1 = western cape + cape town + observatory
item 1 = huggies + diapers
```

 $score = user 1 \cdot item 1$

Testing / evaluation

Split your interactions dataset, keep one part out for testing. The goal is to not have a large discrepancy between train and test sets (otherwise you're overfitting).

1. AUC ROC score:

(Area-Under-Curve Receiver Operating Characteristic)
The probability that a randomly chosen positive example has a higher score than a randomly chosen negative example. A perfect score is 1.0

2. Precision at k score:

The fraction of known positives in the first k positions of the ranked list of results. A perfect score is 1.0.

Grocery recommendation example

Assumptions

- 1. The future will be like the past.
- 2. Synonymy is accounted for when extracting features e.g.
 - "bath soap" vs. "beauty soap"
 - "peanut butter" vs. "butter"
- 3. Time-sensitivity is accounted for.

Further reading

- LightFM 'examples' directory on GitHub
- Maciej Kula PyData 2016 talk
- Maciej Kula article on arxiv: "Metadata Embeddings for User and Item Cold-start Recommendations"
- Spotlight package, if you'd rather use neural network / deep-learning approach

Thank you

petrus.jvrensburg@gmail.com @petrusjvr