

LA MEDIDA EXTERIOR DE LEBESGUE

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 06) 30.ENERO.2023

Consideramos I un intervalo n-dimensional

$$I = \prod_{i=1}^{m} [a_i, b_i] = \{ \mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : a_i \le x_i \le b_i \}.$$

Definición

El **volumen** de I se define como $v(I) = \prod_{i=1}^{n} (b_i - a_i)$.

Tomemos ahora un subconjunto cualquiera $E \subseteq \mathbb{R}^n$. Cubrimos E por una cobertura enumerable de intervalos $S = \{I_k\}_{k \ge 1}$, de modo que $E \subseteq \bigcup S = \bigcup_{k \ge 1} I_k$.

Definimos $\sigma(S) = \sum_{k=1}^{\infty} v(I_k)$ el volumen asociado a la cobertura $\{I_k\}$.

Definición

La **medida exterior de Lebesgue** de $E \subseteq \mathbb{R}^n$ se define como

 $|E|_e = \inf \{ \sigma(S) : S \text{ es cobertura enumerable de E por intervalos} \}.$

Obs: Como los volúmenes de las coberturas son no negativas, $\sigma(S) \geq 0$, al tomar el ínfimo tenemos $0 < |E|_e < \infty$.

De hecho, si E es limitado (como subconjunto de \mathbb{R}^n), entonces $|E|_e < \infty$. Si E no es limitado, entonces $|E|_e = \infty$.

Proposición

Para un intervalo n-dimensional $I \subseteq \mathbb{R}^n$, vale $|I|_e = v(I)$.

Prueba: Mostramos $|I|_e = v(I)$, comprobando que $|I|_e \le v(I)$ e $|I|_e \ge v(I)$.

Observe que $C = \{I\}$ es una cobertura por intervalos de I, y que en este caso, como consiste de un solo elemento, tenemos que $\sigma(C) = v(I)$. Luego

$$|I|_e = \inf_{S} \sigma(S) \leq \sigma(C) = v(I).$$

Para mostrar la otra desigualdad, tome $S = \{I_k\}_k$ una cobertura enumerable de I por intervalos. Dado $\varepsilon >$ 0, para cada $k \ge$ 1, consideremos un intervalo cerrado $I_k^* \subseteq \mathbb{R}^n$ tal que

$$I_k \subseteq \operatorname{int}(I_k^*)$$
 y $V(I_k^*) < V(I_k) + \varepsilon$.

En particular,

$$I \subseteq \bigcup_{k=1}^{\infty} I_k \subseteq \bigcup_{k=1}^{\infty} \operatorname{int}(I_k^*) \subseteq \bigcup_{k=1}^{\infty} I_k^*,$$

y los $\{I_k^*\}_k$ forman otra cobertura enumerable de I.

Entonces, $I\subseteq\bigcup I_k^*$. Como I es compacto, del Teorema de Heine-Borel, existe una subcobertura finita $\{I_{k_j}^*\}_{j=1}^N$ tal que $I\subseteq\bigcup_j I_{k_j}^*$. Luego,

$$v(I) \leq v\left(\bigcup I_{k_j}^*\right) \leq \sum_{j=1}^N v(I_{k_j}^*) < \sum_{j=1}^N \left(v(I_{k_j}) + \varepsilon\right)$$

$$< \sum_{j=1}^N v(I_{k_j}) + N\varepsilon \leq \sum_{k\geq 1} v(I_k) + N\varepsilon = \sigma(\{I_k\}) + N\varepsilon.$$

Tomando ε suficientemente pequeño (esto es $\varepsilon \to$ o), tenemos

$$v(I) \leq \sigma(S),$$

para cualquier subcobertura S de I por intervalos. Portanto, $v(I) \leq |I|_e$. \Box

Proposición

Si $E_1 \subseteq E_2 \subseteq \mathbb{R}^n$, entonces $|E_1|_e \le |E_2|_e$.

Prueba: Observe que si S es cobertura de E_2 , entonces también es cobertrura de E_1 , pues $E_1 \subseteq E_2 \subseteq [-]S$.

De ahí que

 $\{S:\ S\ \text{es\ cobertura\ por\ intervalos\ de\ }E_1\}\supseteq \{S:\ S\ \text{es\ cobertura\ por\ intervalos\ de\ }E_2\}.$

Tomando el ínfimo sobre las coberturas S, obtenemos

$$|E_1|_e=\inf_S\{\sigma(S):\ S\ \text{cubre a}\ E_1\}\leq\inf_S\{\sigma(S):S\ \text{cubre a}\ E_2\}=|E_2|_e.\ _{\square}$$

Proposición

Suponga que $E = \bigcup_{k \geq 1} E_k$ es una unión enumerable se subconjuntos $E_K \subseteq \mathbb{R}^n$. Entonces

$$|E|_e \leq \sum_{k \geq 1} |E_k|_e.$$

Prueba:

- En el caso en que algún $|E_k|_e = \infty$, el enunciado se sigue del hecho que E_k es no limitado, y portanto E, también lo es. Así que $|E|_e = \infty = \sum |E_k|_e$.
- Asumamos entonces que $|E_k|_e < \infty$, para todo $k \ge 1$. Sea $\varepsilon > 0$. Para cada $k \ge 1$, elegimos una cobertura por intervalos cerrados $\{I_j^{(k)}\}_{j\ge 1}$ de E_k , tal que

$$E_k \subseteq \bigcup_j I_j^{(k)}, \qquad y \qquad \sum_{j \ge 1} v(I_j^{(k)}) < |E_k|_e + \frac{\varepsilon}{2^k}.$$

Entonces, como

$$E \subseteq \bigcup_{k} E_{k} \subseteq \bigcup_{k} \bigcup_{i} I_{j}^{(k)},$$

tenemos que

$$|E|_{e} \leq \sum_{k} v(E_{k}) \leq \sum_{k} \sum_{j} v(I_{j}^{(k)}) < \sum_{k} \left(|E_{k}|_{e} + \frac{\varepsilon}{2^{k}}\right)$$

$$< \sum_{k} |E_{k}|_{e} + \varepsilon \sum_{k=1}^{\infty} \frac{1}{2^{k}} < \sum_{k} |E_{k}|_{e} + \varepsilon.$$

Tomando de nuevo el ínfimo sobre todos los $\varepsilon >$ o, resulta

$$|E|_e \leq \sum_{k} |E_k|_e$$
.

Definición

Decimos que un subconjunto $E \subseteq \mathbb{R}^n$ es de **medida cero** o de **medida nula**, si $|E|_e = o$.

Obs: De las proposiciones 2 y 3 anteriores, tenemos

- subconjuntos de medida cero, son de medida cero.
- toda unión enumerable de conjuntos de medida cero, es de medida cero.

Ejemplo: El conjunto de Cantor.

$$C_{0} = [0,1]$$

$$C_{1} = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$$

$$C_{2} = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1]$$

$$C_{3} = \dots$$

Continuando este proceso, donde

$$C_{k+1} = \frac{1}{3}C_k \cup (\frac{2}{3} + \frac{1}{3}C_k),$$

obtenemos en general que C_k es una unión de 2^k intervalos cerrados disjuntos, cada uno de longitud $\frac{1}{2^k}$, todos formando una secuencia descendente:

$$C_0 \supset C_1 \supset C_2 \supset C_3 \supset \dots$$

Así,
$$v(C_k) = \sigma(C_k) = 2^k \cdot \frac{1}{3^k} = \left(\frac{2}{3}\right)^k$$
, para $k = 0, 1, 2, \ldots$

Definición

El **Conjunto de Cantor** se define como $C = \lim_k C_k = \bigcap_k C_k$.

Propiedades:

- C es no vacío. (Teorema de Intersección de Cantor).
- C es compacto.

Propiedades:

- C consiste de aquellos reales en [0,1] cuya representación en base 3 consiste sólo de o's y 2's.
- C es de medida nula.

Proposición

El conjunto de Cantor tiene medida exterior de Lebesgue o.

Prueba: Observe que cada uno de los conjuntos C_k , $k=0,1,2,\ldots$ forma una cobertura por intervalos cerrados para C.

De la definición de medida exterior, tenemos

$$|\mathbf{C}|_e \leq v(C_k) = \left(\frac{2}{3}\right)^k$$
, para todo $k = 0, 1, 2, \dots$

Como
$$\left(\frac{2}{3}\right)^k o$$
 o, entonces o $\leq |\mathbf{C}|_e \leq$ o, de modo que $|\mathbf{C}|_e =$ o. \Box

Propiedad interesante: El Conjunto de Cantor, al ser el límite de los C_k , satisface la identidad autoreferente: $\mathbf{C} = \tfrac{1}{3}\mathbf{C} \ \cup \ (\tfrac{2}{3} + \tfrac{1}{3}\mathbf{C}).$

Este tipo de identidades son comunes en aquellos subconjuntos de \mathbb{R}^n que llamamos fractales.

Propiedades:

• ${\bf C}$ es no enumerable, y tiene la misma cardinalidad de ${\mathbb R}.$

Proposición

El conjunto de Cantor está en correspondencia biunívoca con el intervalo [0, 1].

Esquema de Prueba: Considere los complementos

$$D_0 = [0, 1],$$
 $D_k = [0, 1] - C_k = \text{union de } k - 1 \text{ abiertos } I_i^{(k)}, \ k = 1, 2, 3, ...$

Para cada $k = 1, 2, 3, \ldots$, definimos funciones $f_k : [0, 1] \to \mathbb{R}$ con las siguientes propiedades:

- $f_k(0) = 0$, $f_k(1) = 1$, f_k es monótona no-decreciente,
- f_k es lineal por partes en cada componente conexa de C_k y de D_k ,

•
$$f_k(x) = j \cdot 2^{-k}$$
, para $x \in I_j^{(k)}$, $j = 1, 2, ..., 2^{k-1}$

Las f_k son continuas en [0, 1], portanto uniformemente continuas. Además, $f_k \to f$ convergen a una función continua $f: [0, 1] \to \mathbb{R}$, llamada la **función de Cantor-Lebesgue**.

Esta función sirve para establecer una biyección entre ${f C}$ y [0, 1].