

(MATNA1901) Lineáris algebra

Dr. Facskó Gábor, PhD tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu.

2025. április 17.

Ütemterv I

- Már csak néhány óránk lesz: 2025. április 17 és május 8.
- ► Alterek összege és direkt összege. Faktortér.
- ► Képtér. Magtér. Dimenziótétel.

Vektortér I

▶ <u>Definíció</u>: A $V \neq \emptyset$ halmazt vektortérnek nevezzük \mathbb{R} felett, ha értelmezve van rajta egy +-al jelölt művelet az alábbi tulajdonságokkal:

$$\begin{aligned} \mathbf{a} + \mathbf{b} &= \mathbf{b} + \mathbf{a}, \mathrm{ahol} \left(\mathbf{a}, \mathbf{b} \in V \right) \\ \left(\mathbf{a} + \mathbf{b} \right) + \mathbf{c} &= \mathbf{a} + \left(\mathbf{b} + \mathbf{c} \right), \mathrm{ahol} \left(\mathbf{a}, \mathbf{b}, \mathbf{c} \in V \right) \\ \exists \mathbf{0} \in V \mathrm{úgy}, \mathrm{hogy} \ \mathbf{a} + \mathbf{0} &= \mathbf{a} \ \forall \mathbf{a} \in V \ \mathrm{eset\acute{e}n} \\ \forall \mathbf{a} \in V \exists \left(-\mathbf{a} \right) \in V : \mathbf{a} + \left(-\mathbf{a} \right) &= \mathbf{0}, \end{aligned}$$

Vektortér II

továbbá minden $\lambda \in \mathbb{R}$ és minden $\mathbf{a} \in V$ esetén értelmezve van $\lambda \mathbf{a} \in V$ és teljesülnek az alábbi műveleti tulajdonságok:

$$\lambda (\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}, \text{ahol} (\mathbf{a} \in V, \lambda, \mu \in \mathbb{R})$$

$$\lambda (\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}, \text{ahol} (\mathbf{a}, \mathbf{b} \in V, \lambda \in \mathbb{R})$$

$$(\lambda + \mu) \mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}, \text{ahol} (\mathbf{a} \in V \text{ \'es} \lambda, \mu \in \mathbb{R})$$

$$\forall \mathbf{a} \in V - \text{re} \mathbf{1} \cdot \mathbf{a} = \mathbf{a}.$$

Emlékezzünk arra, hogy ezen tulajdonságok igazak az eddig megismert V^2 és V^3 halmazokra, de hasonlóan vektortér az $\mathbb{R}^n=\mathbb{R}\times\mathbb{R}\times\cdots\times\mathbb{R}$, a valós szám-n-esek halmaza, illetve a legfeljebb n-edfokú polinomok $R_n[x]$ halmaza is.

Vektortér III

- <u>Definíció</u>: A V vektortér L nem üres részhalmazát lineáris altérnek nevezzük, ha L maga is vektortér a V-beli műveletekkel.
- ► <u>Tétel</u>: A *V* vektortér *L* nem üres részhalmaza pontosan akkor lineáris altér, ha a következő két tulajdonság teljesül:

$$\forall \mathbf{a}, \mathbf{b} \in L$$
 esetén $\mathbf{a} + \mathbf{b} \in L$
 $\forall \lambda \in \mathbb{R}, \forall \mathbf{a} \in L$ esetén $\lambda \mathbf{a} \in L$.

- ▶ <u>Definíció:</u> Legyen $H \neq \emptyset$ részhalmaza a V vektortérnek. A H által generált altér az a legszűkebb altere V-nek, mely tartalmazza H-t. (Azaz bármely H-t tartalmazó altérnek részhalmaza.) Jele: $\mathcal{L}(H)$.
- ▶ Mindig létezik *H*-t tartalmazó legszűkebb altér: tekintsük a *H*-t tartalmazó összes alterek metszetét.

Vektortér IV

- **Definíció:** A H halmaz generátorrendszere a V vektortérnek, ha: $\mathcal{L}(H) = V$.
- ▶ <u>Definíció</u>: A V vektortér végesen generált, ha van véges sok elemet tartalmazó generátorrendszere.
- Megjegyzés: A $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ vektorrendszer pontosan akkor generátorrendszere a végesen generált V vektortérnek, ha a V halmaz minden eleme felírható a $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vektorok egy lineáris kombinációjaként.
- <u>Definíció</u>: A V vektortér egy lineárisan független generátorrendszerét a V vektortér egy bázisának nevezzük.
- ► <u>Tétel:</u> Végesen generált vektortérben minden bázis azonos számosságú.
- Definíció: A vektortér bázisainak közös elemszámát a vektortér dimenziójának nevezzük. Jele: dim(V).

Vektortér V

- ▶ <u>Definíció:</u> Legyen $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ bázis V -ben és $\mathbf{a} \in V$. Ekkor azon $\lambda_1, \lambda_2, \dots, \lambda_n$ számokat, amelyekre $\mathbf{a} = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 + \dots + \lambda_n \mathbf{b}_n$, az \mathbf{a} vektor $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ bázisára vonatkozó koordinátáinak nevezzük.
- Az $L = \{\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_m \mathbf{u}_m : \alpha_1, \dots, \alpha_m \in \mathbb{R} \}$ halmaz éppen az $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ által generált lineáris altér. Amennyiben $\mathbf{u}_1, \dots, \mathbf{u}_m$ lineárisan függetlenek, az L halmaz egy m-dimenziós lineáris altér. Ekkor a $K = \{\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_m \mathbf{u}_m + \mathbf{v} : \alpha_1, \dots, \alpha_m, \in \mathbb{R} \}$ halmazt egy m-dimenziós affin altérnek nevezzük. Minden affin altér előáll $K = L + \mathbf{v}$ alakban, ahol L egy lineáris altér és $\mathbf{v} \in V$.
- ▶ <u>Definíció:</u> Halmazok (Minkowski-)összege: $A + B = \{a + b : a \in A, b \in B\}$.
- Állítás: Alterek összege és metszete: $L_1 + L_2$ és $L_1 \cap L_2$ is altér.
- ▶ Definíció: Azt mondjuk, hogy $L_1 + L_2$ direkt összeget alkot, ha $L_1 \cap L_2 = \{\mathbf{0}\}$.

Képtértér, magtér I

- Minden A mátrixhoz tartozik egy x → Ax leképezés. E leképezéseket lineáris leképezéseknek nevezük.
- A mátrixleképezés fogalma Mátrixhoz tartozó leképezésen, vagy egyszerűen mátrixleképezésen az $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ leképezést értjük, ahol \mathbf{A} egy mátrix. Egy $m \times n$ -es $\mathbf{A} \in \mathbb{R}^{m \times n}$ mátrixhoz így egy $\mathbb{R}^n \to \mathbb{R}^m$ leképezés tartozik, ugyanis ha $\mathbf{x} \in \mathbb{R}^n$ és $\mathbf{y} = \mathbf{A}\mathbf{x}$, akkor $\mathbf{y} \in \mathbb{R}^m$.
- A mátrixok jelölésére félkövér betűket használunk, a leképezésekére dőlt (kurzív) betűket. A továbbiakban azt a konvenciót követjük, hogy egy mátrixhoz tartozó mátrixleképezést ugyanannak a betűnek a dőlt változatával jelöljük, például az A mátrixhoz tartozó mátrixleképezést A jelöli, azaz

$$A: \mathbf{x} \mapsto A(\mathbf{x}) = \mathbf{A}\mathbf{x}.$$

Az $A(\mathbf{x})$ mellett az $A\mathbf{x}$ jelölés is használatos.

Képtértér, magtér II

- Az A leképezés értékkészletét Im(A) jelöli, mely az \mathbb{R}^m altere. Ezt szokás képtérnek is nevezni, minthogy ez az \mathbb{R}^n tér képe. Ez megegyezik az \mathbf{A} mátrix oszlopterével, azaz $\mathcal{O}(\mathbf{A})$ -val.
- Azoknak a vektoroknak az alterét, melyet A a nullvektorba visz, az A leképezés magterének nevezzük. Magtérre a kernel szó is használatos. Ker(A)-val jelöljük. Ez megegyezik a hozzá tartozó A mátrix nullterével. Tehát

$$Im(A) = \mathcal{O}(\mathbf{A}), Ker(A) = \mathcal{N}(\mathbf{A}).$$

Az Im rövidítés a kép jelentésű image, a Ker a mag jelentésű kernel szóból származik.

Képtértér, magtér III

Vektori szorzással definiált mátrixleképezés). Legyen $\mathbf{a}=(a_1,a_2,a_3)$ egy adott \mathbb{R}^3 -beli vektor. Legyen A az a transzformá- ció, mely a tér tetszőleges \mathbf{x} vektorához az $\mathbf{a} \times \mathbf{x}$ vektort rendeli. Tehát

$$A: \mathbb{R}^3 \to \mathbb{R}^3: \mathbf{x} \mapsto \mathbf{a} \times \mathbf{x}.$$

Mutassuk meg, hogy az A függvény egy mátrixleképezés, azaz létezik egy olyan \mathbf{A} mátrix, hogy $A(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

Az $\mathbf{a} \times \mathbf{x}$ vektori szorzat koordinátás alakban:

$$\mathbf{x}\mathbf{y} = \mathbf{a} \times \mathbf{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a_2x_3 - a_3x_2 \\ a_3x_1 - a_1x_3 \\ a_1x_2 - a_2x_1 \end{pmatrix}$$

Képtértér, magtér IV

Az eredményből azonnal látszik, hogy e transzformáció mátrixleképezés, hisz y minden koordinátája x koordinátáinak lineáris kifejezése. A szorzatot x koordinátái szerint rendezzük, ahonnan azonnal leolvasható a transzformáció mátrixa, amit a továbbiakban $(a)_{\times}$ jelöl. Segítségével fölírható a transzformáció mátrixszorzatos alakja:

$$\mathbf{a} \times \mathbf{x} = \begin{pmatrix} -a_3 x_2 + a_2 x_3 \\ a_3 x_1 - a_1 x_3 \\ -a_2 x_1 + a_1 x_2 \end{pmatrix} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Tehát

$$\mathbf{a} \times \mathbf{x} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}.$$

Képtértér, magtér V

- Definíció: (Nulltér). Az **A** együtthatómátrixú homogén lineáris egyenletrendszer megoldásainak alterét az **A** mátrix nullterének nevezzük és $\mathcal{N}(\mathbf{A})$ -val jelöljük.
- Definíció: (Sortér, oszloptér). Egy mátrix oszlopvektorai által kifeszített alteret oszloptérnek, a sorvektorai által kifeszített alteret sortérnek nevezzük. A sorterét $\mathcal{S}(\mathbf{A})$, oszlopterét $\mathcal{O}(\mathbf{A})$ jelöli.
- ▶ <u>Tétel:</u> (Dimenziótétel (rang-nullitási tétel)). Bármely valós $m \times n$ -es **A** mátrix esetén a sortér dimenziójának és a nulltér dimenziójának összege n. Képlettel:

$$dim(S(\mathbf{A})) + dim(N(\mathbf{A})) = n \ (r(\mathbf{A}) + null(\mathbf{A}) = n).$$

Bizonyítás: A mátrix sorterének dimenziója megegyezik a mátrix rangjával, azaz az (A|0) mátrixú egyenletrendszerben a kötött változók számával. Megmutatjuk, hogy a nulltér dimenziója megegyezik a szabad változók számával, így e két szám összege valóban n, ami bizonyítja az állítást.

Képtértér, magtér VI

Elég tehát megmutatnunk, hogy egy homogén lineáris egyenletrendszer redukált lépcsős alakkal előállított megoldásában a szabad változók száma megegyezik a nulltérből kiválasztható bázis elemszámával.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -2s - \frac{3}{2}t - u \\ s \\ -\frac{1}{2}t \\ t \\ u \end{pmatrix} = s \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{3}{2} \\ 0 \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},$$

ahol $x_2=s$, $x_4=t$ és $x_5=u$ a három szabad változó. A nullteret kifeszítő három vektor közül az elsőben $x_2=1$, de az összes többiben $x_2=0$, így az első vektor független a többitől. Hasonlóképp általában is igaz, hogy a redukált lépcsős

Képtértér, magtér VII

alakból való származtatás következtében a nullteret kifeszítő minden megoldásvektorban az összes szabad változóhoz tartozó koordináta 0, azt az egyet kivéve, amelyikhez a vektor tartozik. Így viszont mindegyik vektor független a többitől, vagyis e vektorok függetlenek, és mivel kifeszítik a nullteret, számuk megadja a nulltér dimenzióját.

Vége

Köszönöm a figyelmüket!