(19) D本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平4-234126

(43)公開日 平成4年(1992)8月21日

(51) Int.Cl.5

識別配号

FI

技術表示箇所

H01L 21/321

21/288

N 7738-4M

庁内整理番号

9168-4M

H01L 21/92

F

審査請求 未請求 請求項の数5(全 4 頁)

		毎旦明水 不明水 開来項の数5(全 4 頁)
(21)出願番号	特顯平3-256603	(71)出顧人 590000248
(22)出顧日	平成3年(1991)10月3日	エヌ・ペー・フイリップス・フルーイラン ペンフアプリケン
(31)優先權主張番号 (32)優先日 (33)優先權主張因	9002163 1990年10月5日 オランダ (NL)	N. V. PHILIPS' GLOEIL AMPENFABRIEKEN オランダ国 アインドーフエン フルーネヴァウツウエツハ 1 (72)発明者 アンドレアス マルチヌス テオドラスパウルス フアン デル ブツテンオランダ国 5621 ペーアー アインドーフエンフルーネパウツウエツハ 1 (74)代理人 弁理士 杉村 暁秀 (外5名)

(54) 【発明の名称】 半導体装置の製造方法

(57) 【要約】

【目的】 横方向への過成長が生じない金属パンプの形成方法を実現する。

【構成】 陰極部分反応を抑制する安定剤が添加された 無電解金属浴を用い、半導体装置のポンディングパッド 上に横方向の過成長が生ずることなく切頭状角錐体パン ブ(53)を形成する。切頭角錐体の傾斜面の角度 αは 安定剤の関数となる。

【特許請求の範囲】

【請求項1】 活性化処理の後、無電解金属化処理によ り金属のパンプが形成されるポンディングパッドを有す る半導体装置を製造するに当り、前記パンプを、有効機 度の安定剤が添加されている無電解金属裕を用いて平坦 な面を有する角錐状に形成することを特徴とする半導体 装置の製造方法。

【請求項2】 請求項1に記載の半導体装置の製造方法 において、安定剤として鉛塩を用いることを特徴とする 半導体装置の製造方法。

【請求項3】 請求項1に記載の半導体装置の製造方法 において、安定剤としてカドミウム塩を用いることを特 徴とする半導体装置の製造方法。

【請求項4】 請求項2乂は3に記載の半導体装置の製 造方法において、安定剤の濃度を0.1 ~1.5mg / [とす ることを特徴とする半導体装置の製造方法。

【請求項5】 請求項1、2、3又は4に記載の半導体 装置の製造方法において、前記無電解金属浴としてニッ ケル浴を用いることを特徴とする半導体装置の製造方

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は活性化処理の後、無電解 金属化処理により金属のバンブが形成されるポンディン グパッドを有する半導体装置を製造する方法に関するも のである.

[0002]

[従来の技術] 湿式化学処理は、電子部品の製造に際し 材料の除去(エッチング)及び堆積の両方において重要 な役割を果たしている。半導体装置(IC及びLSI) を回路基板に装着する場合、半導体装置のポンディング パッドに突起状金属接点 (いわゆるパンプ) が形成さ れ、その後形成したパンプはポンディング、融着、半田 付又は熱圧着(いわゆるフリップチィップ法)により回 路基板に接続される。 TAB (テープ自動ポンディグ) I Cは、回路を有するフレキシブルテープ上に装着する ことができる。

[0003] 上述した方法は欧州特許出願第30897 1号から既知である。アルミニウムのポンディングバッ ドを有する半導体装置は、はじめに水性パラジウム塩溶 液を用いて活性化処理され、次にニッケルのパンプが形 成されている。この処理において無電解ニッケル浴が用 いられている。

[0004] 【発明が解決しようとする課題】無電解金属化処理は原 理的に等方性であり、金属材料の堆積速度は全ての方向 について等しい。基板に薄いコート層が形成され、この コート層にポンディングバッドを規定し金属化される関 口が形成されているものに金属化処理する場合、コート **層が開口を完全に横たすように金属層が形成されるとコ 50 停止してしまう。一方、安定剤の濃度を上記範囲よりも**

一ト層上に横方向の過成長部分が直ちに形成されてしま う。半導体装置の場合、上記コート層(不像化層とも称 する) はほとんどSi〇: 又はSi: N、で構成され る。金属のパンプはコート層から突出しているので、横 方向に過成長が生ずるとパンプがコート層を部分的にお おってしまう。このため、横方向の過成長が増大すると 隣接するパンプ間で短絡が生ずる可能性がある。

【0005】従って、本発明の目的は、上述したコート 層上への横方向の過成長を抑制しその発生を防止するこ 10 とにある。

[0006] [課題を解決するための手段並びに作用] この目的を達 成するため、本発明による半導体装置の製造方法におい て、パンプを、有効最度の安定剤が添加されている無電 解金属俗を用いて平坦な面を有する角錐状に形成するこ とを特徴とする。無電解金属浴は金属イオン及び還元剤 を含んでいる。 金属化処理中に、金属に対する金属イオ ンの割合が減少し(いわゆる陰極部分反応)同時に還元 剤の酸化が生じてしまう。本発明に基いて添加される安 20 定剤は、金属イオンの減少を抑制する特性を有する。 こ のような安定剤が存在すると、ポンディングパッドに非 等方性の金属化が生じ、この結果コート層上への横方向 の過成長が防止され平坦な面を有する切頭角錐体が形成 される。この非等方性金属化は、安定剤の質量輸送の差 により生ずるものと考えられる。金属化されるポンディ ングパッドの緑部はパッドの中心部よりも一層大きな質 量輸送作用を受ける。安定剤の濃度を調整することによ り、ポンディングパッドの緑部において金属化を抑制さ せ、縁部において金属化の過成長を防止しパッドの中心 部において金属化を進行させるように設定することがで きる。金属化処理を連続すると、成長するポンディング パッドの中心に向けて安定剤の横方向の拡散が生じ、こ の結果表面領域の成長が時間の関数として減少する。こ の結果、平坦な面を有する金属の切頭角錐体が形成され る。ここで、形成される面は、傾斜面及び平坦な上面を 意味するものと理解されるべきである。従って、コート 層上への横方向の過成長が防止される。

【0007】本発明による半導体装置の製造方法の一実 施例は、安定剤として鉛塩を用いることを特徴とする。 この鉛塩は無電解金属浴中において溶解性でなければな らない。適当な鉛塩として、例えば酢酸鉛及び硝酸鉛が

[0008] 本発明による方法の別の好適実施例は、安 定剤としてカドミウム塩を用いることを特徴とする。好 適なカドミウム塩として、例えば酢酸カドミウム及び硝 酸カドミウムがある。

[0009] 本発明による実施例は、安定剤の濃度を0. 1 ~1.5mg / 1 とすることを特徴とする。安定剤の過度 をこの範囲よりも一層高くすると、金属化処理が完全に

低くすると、ポンディングパッドの成長が等方性にな り、コート層上に横方向の過成長が生じてしまう。

【0010】好適な無電解金属裕として、例えばニッケ ル塩、こはく酸及び次亜燐酸塩水溶液から成るニッケル 浴がある。無電解堆積させることができる他の金属とし て、何えば銅及び金がある。

【0011】必要な場合、金属パンプに金、すず、銅又 は半田の薄層を形成することができる。 これらの材料は 無電解ニッケルよりも一層伸延性があり、接続すべき回 路基板との半田付処理が一層良好になる。以下、図面に 10 基き本発明を詳細に説明する。

[0012]

【実施例】 実施例1 (本発明ではない)

図1は半導体装置の一部を線図的に示す。 図1において 符号1はn のシリコン基板を示し、このシリコン基板 上に通常の方法で(例えばCVD法又はスピンオングラ ス法) 厚さ0.7 μm のSiOz 層を形成する。このSi O: 暦3に100×100 µm の寸法の孔をリソグラフ ィ法により形成する。シリコン表面を希釈したPdCl ウム校を用いて活性化する。活性浴は11当り5gのP d C l ; と、1 7 5 μ l の濃塩酸と、1 %のHFを含 み、70℃で60秒に亘って処理する。 水洗後、シリコ ン基板を以下の組成の酸無電解ニッケル浴に浸漬する。

0.07モル/1の硫酸ニッケル

0.01モル/1の酢酸ニッケル

0.1 モル/1のコハク酸

0.1 モル/IのH₁ PO₂

水酸化アンモニウムを用いてpH値を4.5 に調整する。 度は20με/時間とする。この松中におけるシリコン 基板の蒂留時間は20分とし、形成されるニッケル層 (パンプ51) は約7μπの厚さを有することになる。 無電解ニッケル俗中に安定剤が含まれていないため、S iO: 層3の模方向の過成長量はSiO: 層の層厚に匹 敵してしまう。これは、メタライゼーション処理の等方 性能による結果である。

【0013】 実施例2

上述した実施例1と同様な処理を行うが、安定剤として 0.5mg / 1 の酢酸鉛を含む無電解ニッケル浴を用いる点 40において相異する。この場合、形成されるニッケルのパ ンプは切頭角錐体52の形状をなし(図2)、この切頭 角健体の面は平坦である。S ! O: 層3上には横方向の 過成長は生じない。

【0014】実施例3

上述した実施例1と同様な処理を行うが、無電解ニッケ

ル浴に1.5mg / l の酢酸鉛を添加した点において相異す る。形成されるニッケルのパンプは平坦面を有する切頭 角錐体 5 3 の形状をなし(図 3)、斜面とシリコン基板 面とのなす角度αは実施例によって得られた角度よりも 小さい。メタライゼーション処理を統行すると(すなわ ち、20分以上)、切頭状の角錐体が形成され(図3の 破線7参照)、その後メタライゼーションを停止する。 横方向の過成長は発生しなかった。

【0015】 実施例4

2曜/1の漫度の酢酸鉛を含む無電解ニッケル浴を用い て実施例1と同様な処理を行う。 この場合、ニッケルの 堆積は全く生じなかった。尚、2mg/1を超える濃度の 酢酸鉛を含む無電解ニッケル浴の場合も同様な結果であ った。この護度の場合、金属化されるべき表面は完全に 劣化されていた。

【0016】 <u>実施例5</u>

図4は半導体装置の一部を線図的に示す。この半導体装 優はシリコン基板11及び厚さ0.5 μm で100×10 0 μα の寸法のスパッタされたアルミニウムのポンディ $_2$ /HF溶液中において電気化学交換反応によりパラジ 20 ングパッド 1 5 を有している。基板 1 1 上に厚さ0.7 μ n のSiОュ 層13が形成され、このSiОュ 層のアル ミニウムのポンディングパッド15の位置に閉口がリソ グラフィ法により形成される。このアルミニウム表面 は、米国特許明細書第4205099号に記載されてい るように、亜塩酸溶液で活性化する。 アルミニウムの自 然酸化膜を除去し極めて持い亜鉛被膜(図示せず)を形 成する。次に、実施例1の無電解ニッケル裕中で亜鉛被 膜をニッケルで置換する。このニッケル裕にlug/lの 酢酸鉛を添加する。20分後に、平坦面を有する切頭角 浴の温度は90℃にする。この条件下において、堆積速 30 錐状のニッケルのパンプ54が形成され、このパンプは S i O₂ 層上にはみ出す機方向の過成長は生じなかっ

【図面の簡単な説明】

【図1】 図1は従来方法によって形成したパンプを有す る半導体装置の一部を示す断面図である。

【図2】 図2は本発明による方法によって形成したパン ブを有する半導体装置の一部を示す断面図である。

【図3】図3は本発明による方法によって形成したパン プを有する半導体装置の一部を示す断面図である。

【図4】図4は本発明による方法によって形成したパン プをアルミニウムのポンディングパッド上に有する半導 体装置の一部を示す断面図である。

【符号の説明】

- 1 シリコン基板
- 3 SIO2 居
- 52, 53, 54 パンプ

(4)

☆開平4-234126

[図2]

