Arhitecturi de calculatoare și sisteme de operare (ACSO) AC1. Introducere în Arhitectura Calculatoarelor

(4.10.2024, ora 8, sala P02)

Welcome to ACSO Team on TEAMS ©

- Ce?
- Cu cine?
- De ce?
- Când?
- Cum?
- Unde?
-

Marţi	8-10	ACSO Lab gr 1124, sala 366
		ACSO Lab gr 1121, sala BT 3.02
	8-10	
		ACSO Lab gr 1622, sala BT 3.02
		ACSO Lab gr 1122 , sala BT 3.02
Miercuri	10-12	
		ACSO Lab gr 1621 , sala BT 3.02
		ACSO Lab gr 1123+1721 , sala BT 3.02
	12-14	
		ACSO Lab gr 1521 , sala BT 3.02
Vineri	8-10	ACSO - CURS - an II - sala P02

Şl.dr.ing. Anca Iulia NICU <u>anca.nicu@ethm.utcluj.ro</u> Departament Electrotehnică și Măsurari

STRUCTURA ANULUI UNIVERSITAR 2024/2025

Anii neterminali

	Octombrie 2024 Noiembrie 2024						Decembrie 2024 Ianuarie 2025																				
L	М	Mi	J	v	S	D	L	М	Mi	J	v	S	D	L	М	Mi	J	v	s	D	L	М	Mi	J	v	S	D
30	1	2	3	4	5	6					1	2	3							1			1	2	3	4	5
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26
28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29	27	28	29	30	31		
														30	31												
		Febr	uarie	2025					Ma	rtie 20	025					Ap	rilie 20	2025 Mai 20					1ai 20	25			
L	М	Mi	J	v	s	D	L	М	Mi	J	v	s	D	L	М	Mi	J	v	s	D	L	М	Mi	J	V	s	D
<u> </u>					1	2						1	2		1	2	3	4	5	6				1	2	3	4
3	4	5	6	7	8	9	3	4	5	6	7	8	9	7	8	9	10	11	12	13	5	6	7	8	9	10	11
10	11	12	13	14	15	16	10	11	12	13	14	15	16	14	15	16	17	18	19	20	12	13	14	15	16	17	18
17	18	19	20	21	22	23	17	18	19	20	21	22	23	21	22	23	24	25	26	27	19	20	21	22	23	24	25
24	25	26	27	28			24	25	26	27	28	29	30	28	29	30					26	27	28	29	30	31	
_							31							\vdash							\vdash						Ш
		lui	nie 20	25					lu	lie 202	25					Aug	gust 2	025					Septe	embrie	2025		
L	М	Mi	J	V	S	D	L	М	Mi	J	v	S	D	L	М	Mi	J	v	S	D	L	М	Mi	J	V	S	D
<u> </u>						1		1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7
2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10	8	9	10	11	12	13	14
9	10	11	12	13	14	15	14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	16	17	18	19	20	21
16	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	20	21	22	23	24	22	23	24	25	26	27	28
23	24	25	26	27	28	29	28	29	30	31				25	26	27	28	29	30	31	29	30					
30																											

Cod culori:

Activitate didactică

Sesiuni examene

Sesiuni consultații și restanțe

Vacanță studenți

OBS: Perioada de desfășurare a practicii se va gestiona la nivelul fiecărei facultăți.

Fișa disciplinei

An/ Sem		Denumirea	Nr. sapt.	Curs		Aplicaţii				Aplic	aţii	Stud. Ind.	AL	ij				
			3		ore/să	ipt.]			[ore/sem.]				4	Credit				
						-	S	L	Р		S	L	P		1-1-			
III	Arhitecturi de calculatoare și sisteme de operare			14	2	-	1	,	28	-	14	-	33	75	3			
3.1	Numar de ore pe 3 3.2 din c			are curs		2			3.3	aplicații		1						
3.4	Total ore d	otal ore din planul 42 3.5 din care cur e inv.				are curs	3			28		3.6	aplica	ţii	14			
Studiul individual												Ore						
Studiu	ıl dupa manı	ual, suport	de curs,	bibliog	rafie	și notițe)								15			
Docur	nentare sup	limentară î	n bibliote	сă, ре	platfo	rmele e	lectronice ș	i pe te	eren						4			
Pregătire seminarii/laboratoare, teme, referate, portofolii, eseuri											10							
Tutori	at																	
Exam	inari																4	
Alte a	ctivitati																-	
3.7		Total ore		3	3													

I. ARHITECTURI DE CALCULATOARE

AC1. Introducere în Arhitectura Calculatoarelor (4.10.2024)

- Definirea arhitecturii calculatoarelor
- Tipuri de arhitecturi (Von Neumann vs. Harvard)
- Elementele de bază ale unui calculator (unitatea centrală de procesare, memorie, periferice)

AC2. Organizarea Hardware-ului

- Unități funcționale: procesor, memorie, dispozitive de intrare/ieșire
- Tipuri de memorii: RAM, ROM, Cache, memorie secundară Magistrale (bus-uri) de date, adresare și control
- Modalități de adresare și acces la memorie
- Aritmetica în calculatoare (baze numerice, reprezentarea numerelor)

AC3. Unitatea Centrală de Procesare (CPU)

- Funcționarea unui procesor (Ciclul Fetch-Decode-Execute)
- Unități de execuție: ALU, FPU
- Tipuri de instrucțiuni și moduri de adresare
- Pipeline și hazarduri de date
- Arhitecturi RISC vs. CISC

I. ARHITECTURI DE CALCULATOARE

AC4. Unități de Intrare/Ieșire (I/O)

- Tehnici de interfațare: acces direct la memorie (DMA), interfațare programată, interfațare prin întreruperi
- Protocoale de comunicare și transfer de date

AC5. Arhitecturi Multi-core și Paralele

- Arhitectura calculatoarelor multi-core
- Programarea paralelă și gestionarea firelor (threads)
- Sincronizarea și coerența memoriei

II. Sisteme de Operare

SO1. Introducere în Sisteme de Operare(8.11.2024)

- Definiția și scopul unui sistem de operare
- Tipuri de sisteme de operare: sisteme batch, sisteme interactive, sisteme în timp real, sisteme distribuite
- Componentele principale ale unui sistem de operare

SO2. Procese și Fire (Threads)(15.11.2024)

- Definirea unui proces și a unui thread
- Modelul de procese (crearea și terminarea proceselor)
- Managementul proceselor și firelor (scheduling, sincronizare)
- Deadlocks: prevenire, evitare și detectare

SO3. Gestionarea Memoriei (22.11.2024)

- Alocarea memoriei: memorie statică vs. dinamică
- Gestionarea memoriei virtuale: paginare, segmentare
- Memoria cache și memoria principală

II. Sisteme de Operare

SO4. Sisteme de Fişiere

- Structura unui sistem de fișiere: blocuri de date, inode-uri, directoare
- Tipuri de sisteme de fișiere (NTFS, ext4, FAT)
- Acces la fișiere, permisiuni și protecție

SO5. Gestionarea Dispozitivelor I/O

- Driverele de dispozitive
- Gestionarea întreruperilor
- Buffering și spooling

SO6. Securitatea Sistemelor de Operare

- Autentificare și autorizare
- Politici de securitate și controlul accesului
- Amenințări și vulnerabilități în sisteme de operare

SO7. Virtualizare și Sisteme de Operare Distribuite

- Conceputul de mașină virtuală
- Hypervisor și virtualizarea hardware
- Sisteme de operare distribuite și managementul resurselor

Universitatea Tehnică din Clui-Napoca

- □ Proiect (P): 40% din Nota Finală
- ☐ Test final (**TF**):60% din Nota Finală

NOTA FINALĂ= 0,4P+0,6TF, dar P>5, TF>5

OBIECTIVE

- □ Dobândirea de cunoștințe de bază din structura și arhitectura calculatoarelor și a sistemelor de operare;
- Realizarea unei pagini web utilizând HTML-ul (proiect)

BIBLIOGRAFIE (1)

În Biblioteca UTC-N

- Paterson, D.A., Hennessy, J.L., Organizarea şi proiectarea calculatoarelor:interfaţa hardware/software, Ed. All, 2002;
- Tanembaum, A., Goodman, J.R., Organizarea structurată a calculatoarelor, Ed. Byblos, 2004;
- Baruch, Z.F., Arhitectura calculatoarelor, Ed. Todesco, Cluj-Napoca, 2000.
- Computer Organization and Design, Patterson & Hennessy
- etc.

BIBLIOGRAFIE (2)

- Materiale didactice virtuale:
 - www.pagetutor.com/html_tutor/index.html
 - www.societyofrobots.com/microcontroller_tutorial.shtml
 - en.wikipedia.org/wiki

BIBLIOGRAFIE (3)

În alte biblioteci:

- Paterson, D.A., Hennessy, J.L., Computer organization design: the hardware/software interface, Elsevier Inc., 2005;
- ***Bazele rețelelor de calculatoare, Ed. Teora, București, 1997;
- Operating Systems: Design and Implementation, Tanenbaum & Woodhull
- Glenn, E., White, R., Windows XP, McGraw-Hill/Osborne, 2002;
- Armstrong, J.C., UNIX Secrets, IDG Books Worldwide, Inc., 1999.

AC1. Introducere în Arhitectura Calculatoarelo (4.10.2024)

AC1 - 4.10.2024

- Definirea arhitecturii calculatoarelor
- Istoric

AC1 - 11.10.2024

- Tipuri de arhitecturi (Von Neumann vs. Harvard)
- Elementele de bază ale unui calculator (unitatea centrală de procesare, memorie, periferice)

Istoric

Abac – inventat în Babylon în 2400 Î.H.,

- folosit prin trasarea unor linii în nisip cu pietricele. Acesta a fost probabil primul computer și cel mai avansat sistem de calcul cunoscut din aceea perioadă- precedând metoda elenă cu 2000 ani.

Istoric

- ☐ Generația 0 calculatoare mecanice (??-1940)
 - sec. XVII Pascal -maşina de calcul pt. adunare şi scădere (Pascalina)
 - sec. XVII-XVIII Leibnitz maşina pentru 4 operaţii aritmetice (Aritmometru)
 - sec XIX Ch. Babbage (Cambridge) maşina diferenţială şi maşina analitică (Ada Byron-prima programatoare)
 - Părți componente: memorie, unitate de calcul, cititor de cartele și perforator de cartele
 - inceputul sec. XX
 - ☐ Konrad Zuse -
 - ☐ John Athanasoff sistemul binar de numerație
 - ☐ H. Aiken Mark I, II
 - □ Stibbitz

http://www.computerhistory.org/timeline/computers/

Prima generație - 1945-1955

- tehnologie: tuburi electronice
- 1943-1946 P. Eckert & J. Mauchley ENIAC primul calculator
 - □ 18000 tuburi, 1500 relee, 30 tone
- J. von Neumann IAS
 - primul care a scris despre calculatoare
 - modelul clasic de calculator: 5 componente:
 - memorie, UC, UAL, DI,DE
- Shanonn teoria informației
 - Definește unitatea de informație
 - ☐ Informația = inversul entropiei
- Alan Turring Colossus modelul Turring
- alte variante: EDVAC, ILLIAC, MANIAC, Wirlwind, UNIVAC
- IBM 701,704,709 primele calculatoare comerciale
- DACICC, CIFA, MECIPT variante românești

Prima generație de calculatoare

Prima generație de calculatoare

Generația a doua - 1955-65

- tehnologia: tranzistorul
- Shockley&Brattain primul tranzistor (Bell labs)
- primul calculator tranzistorizat: TX-0
- IBM 7090 varianta tranzistorizată, IBM 1401
- Wirlwind MIT
- PDP-1, PDP-8, firma DEC
- CDC 6600 primul calculator paralel
- CETA calc. românesc

Primul tranzistor

TX-0

PDP-1

Generația a treia - 1965-75

- tehnologia: circuite integrate
- familii de calculatoare:
 - □ mainframe: IBM 360, IBM 370
 - mini: PDP 11
- calculatoare românesti:
 - □ Felix c-256, c-512, c-32
 - ☐ Independent, Coral copiază PDP-11
- Îmbunătățiri:
 - viteza
 - ☐ fiabilitate
 - dimensiuni mici
 - memorii de capacitate mai mare (256k-512k)
 - periferice noi
 - □ consola de tip display (PDP11)

Generația a treia

Primul circuit integrat

Calculator HP

Seymour - LOGO 1967

Apollo

HP 35(1973)

Generatia a 4-a 1975-90??

- tehnologia: VLSI
 - avantaje: viteza, grad ridicat de integrare, fiabilitate mare, cost redus, dimensiuni mici
- Apariţia primului microprocesor Intel 4004
- circuite de memorie ROM, RAM, DRAM de capacitate mare (1-16ko)
- Apariţia microcalculatoarelor care au la bază un microprocesor
- Apariția calculatoarelor personale:
 - □ home-computer: ZX81, Spectrum
 - □ PC: IBM-PC, XT, AT, Apple, Machintosh
- calculatoare românești:
 - □ seria M18, PRAE, aMIC, Felix PC, Telerom-PC

Universitatea Tehnică din Cluj-Napoca

Generația a 4-a

Generația a 4-a

Calc. cu display TV

IBM PS2

Calculator portabil (Osborn)

Motorola 68040

Universitatea Tehnică din Cluj-Napoca

Generația a 4-a

Bill Gates

Steve Jobs si Steve Wozniak

Evoluția microprocesoarelor

1971	I4004	4 biti		primul uP
1972	18008	8 biti	16ko	primul pe 8 biti
1974	8080	8 biti	64ko	primul uP de succes
1978	8086	16 biti	1Mo	primul uP pe 16 biti
1982	80286	16 biti	16Mo	PC-AT
1985	80386	32 biti	4Go	primul uP pe 32 biti
1989	80486	32 biti	4 Go	FPU incorporat
1993	Pentiu m	32 biti	4Go	pipeline
1995	P. Pro	32 biti	64 Go	superpipeline

Evoluția microprocesoarelor

- Alte familii de microprocesoare:
 - Motorola: 6800 (8 biti), 68000 (16 biti), 68020, 68030 (32 biti), 68040
 - Zilog: Z80, Z8000
 - Texas Instruments: -procesoare de semnal: TMS320c10/20/30/50/80
 - Microchip: microcontrolare: PIC12/16/18
 - MIPS, ARM, etc.

Generația a 5-a????

- proiect japonez grandios –rezultate mai putin grandioase
 - objective:
 - viteze f.mari de calcul (mil.inferențe/s)
 - Interfețe om-calculator naturale (voce, imagine)
 - mai multe aplicații de inteligență artificială
 - □ arhitecturi paralele de calcul
- ce nu s-a prevazut:
 - dezvoltarea sistemelor bazate pe microprocesoare
 - dezvoltarea rețelelor de calculatoare
 - dezvoltarea sistemelor și a aplicațiilor distribuite (aplicații pe Internet)

Procesare paralelă și era sistemelor multi-core:

Modernizarea evoluției procesoarelor (anii 2000–2010)

- Nu se dorește doar creștrea frecvenței ceasului ci, prin inovație se introduc procesoare multi-core
- Rezultă încorporarea mai multor nuclee de procesor într-un singur cip
- Gestionarea în mod simulta a sarcinilor

Calculul cuantic: Frontiera evoluției procesoarelor (anii 2020 – Prezent)

- Pe măsură ce cronologia evoluției procesoarelor a avansat în anii 2020, a apărut un nou orizont: calculul cuantic.
- Procesoarele clasice (biţi ca cea mai mică unitate de date,) Procesoarele cuantice - qubiţi, care pot reprezenta atât 0, cât şi 1 simultan datorită suprapunerii.

Aceasta permite calculatoarelor cuantice să proceseze cantități uriașe de informații în paralel, oferind soluții potențiale la probleme care în prezent sunt dincolo de capacitățile mașinilor clasice.

Calcul neuromorfic și biologic (Neuromorphic and Biological Computing)

- Calculul neuromorfic, inspirat de funcționarea creierului uman, își propune să reproducă structurile și operațiunile neuronale sub formă de siliciu.
- Aceste procesoare nu doar procesează informații, ci pot învăța și se pot adapta, punând bazele sistemelor avansate de inteligență artificială și învățare automată.
- Calculul biologic utilizare celule vii, ADN ca dispozitiv de calcul

O fuziune între biologie și tehnologie, science fiction??

Pe măsură ce procesoarele devin din ce în ce mai avansate, considerațiile etice legate de tehnologie, aplicațiile acesteia și implicațiile sale devin esențiale.

Arhitectura unui calculator dpdv structural:

HARDWARE

– partea materială -

Ansamblul elementelor fizice și tehnice cu ajutorul cărora datele se pot culege, verifica, transmite, stoca și prelucra.

Exemple: monitorul, tastatura, mouse-ul, boxele etc

SOFTWARE

– partea logică –

Ansamblul programelor care controlează funcționarea corectă și eficientă a elementelor hard

Exemple:

programele, sistemul de operare

Arhitectura unui calculator dpdv structural:

- **1.Unitatea centrală de procesare (CPU)**: Este considerată "creierul" calculatorului, responsabilă cu executarea instrucțiunilor și prelucrarea datelor. Arhitectura CPU poate include diverse componente, cum ar fi unitatea aritmetică și logică (ALU), unitatea de control și registrele.
- **2.Memoria**: Aceasta include memoria de acces aleator (RAM) și memoria permanentă (ROM, hard disk-uri, SSD-uri). Arhitectura memoriei se referă la modul în care datele sunt stocate, organizate și accesate.
- **3.Dispozitivele de intrare/ieșire (I/O)**: Acestea permit comunicarea între calculator și utilizator sau alte sisteme. Exemple includ tastaturi, mouse-uri, imprimante și monitoare.

Arhitectura unui calculator dpdv structural:

- **4.Barele de date și de adrese**: Aceste canale de comunicare permit transferul de informații între CPU, memorie și dispozitivele I/O.
- **5.Arhitectura sistemului**: Acest aspect se referă la modul în care diferitele componente hardware sunt conectate și interacționează între ele, inclusiv busurile de date și schemele de conectare.
- **6.Setul de instrucțiuni**: Aceasta reprezintă lista de operații pe care CPU le poate executa, influențând modul în care software-ul este dezvoltat și optimizat pentru a rula pe acel tip de arhitectură.
- **7.Paralele și arhitecturi multi-core**: Aceste arhitecturi permit procesarea simultană a mai multor instrucțiuni, îmbunătățind performanța și eficiența.

Unitatea centrală de procesare (CPU). Componente

1.Unitatea Aritmetică și Logică (ALU):

Funcție: responsabil pentru **realizarea operațiunilor aritmetice** (cum ar fi adunarea, scăderea, înmulțirea și împărțirea) și pentru operațiile logice (cum ar fi compararea valorilor, operațiile AND, OR, NOT).

Importanță: permite CPU-ului să efectueze calcule complexe și să ia decizii bazate pe condiții logice, fiind esențial pentru procesarea datelor.

2. Unitatea de Control:

Funcție: **coordonează activitățile** din cadrul CPU-ului și gestionează fluxul de date între diferitele componente ale sistemului. Aceasta interpretează instrucțiunile din programul în execuție și trimite semnale către ALU și registre pentru a le executa.

Importanță: Fără o unitate de control eficientă, CPU-ul nu ar putea să funcționeze corect, deoarece nu ar ști care operații trebuie efectuate și în ce ordine.

Unitatea centrală de procesare (CPU). Componente

3. Registre:

Funcție: unități de memorie extrem de rapide, utilizate pentru a **stoca temporar datele și instrucțiunile** pe care CPU-ul le prelucrează. Acestea sunt folosite pentru a păstra valorile intermediare necesare pentru executarea instrucțiunilor.

Tipuri: de date (care stochează datele), de adresă (care conțin adresele de memorie) și de instrucțiune (care stochează instrucțiunile în execuție).

4. Cache-ul:

Funcție: memorie de tip SRAM (Static Random Access Memory) integrată în CPU sau foarte aproape de acesta, care **stochează datele și instrucțiunile utilizate frecvent.** Are un timp de acces mult mai rapid comparativ cu RAM-ul obișnuit.

Importanță: ajută la reducerea timpilor de așteptare și îmbunătățește performanța CPU-ului prin furnizarea rapidă a datelor necesare.

Funcționarea CPU

Ciclul de Execuție: format din trei etape principale:

Fetch (Preluare): CPU-ul preia instrucțiunea din memorie și o încarcă în registrul de instrucțiune.

Decode (Decodare): Unitatea de control decodifică instrucțiunea, determinând ce operație trebuie efectuată și ce resurse sunt necesare.

Execute (Executare): Instrucțiunea este executată, iar rezultatul este stocat în registre sau în memorie, în funcție de natura instrucțiunii.

Semnalizarea: Semnalele electrice sunt esențiale pentru comunicarea între diferitele componente ale CPU-ului. Aceste semnale coordonează activitățile ALU-ului, unității de control și registrelor, asigurând o funcționare fluidă și sincronizată.

Impactul CPU-ului asupra Performanței

Performanța unui sistem de calcul depinde în mare măsură de arhitectura și eficiența CPU-ului. Cu evoluția tehnologică, CPU-urile au devenit din ce în ce mai complexe, având mai multe nuclee (multi-core), capacitate de procesare paralelă și funcții avansate de gestionare a energiei, ceea ce le permite să execute sarcini mai complexe și să funcționeze mai eficient.

Astfel, CPU-ul este un element crucial în arhitectura unui calculator, având un impact direct asupra vitezei și eficienței generale a sistemului de calcul.

Bibliografie

- http://www.unix.org/
- http://www.kernel.org/
- http://www.gnu.org/
- http://www.distrowatch.com/
- https://en.wikipedia.org/wiki/Usage_share_of_o perating_sy

stems

Vezi folderul maculatura din Teams ©

