

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 January 2002 (17.01.2002)

PCT

(10) International Publication Number
WO 02/04520 A2

(51) International Patent Classification⁷: **C07K 14/705**

(21) International Application Number: **PCT/US01/21448**

(22) International Filing Date: 5 July 2001 (05.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/216,547	7 July 2000 (07.07.2000)	US
60/218,232	14 July 2000 (14.07.2000)	US
60/220,112	21 July 2000 (21.07.2000)	US
60/221,839	28 July 2000 (28.07.2000)	US

(71) Applicant (*for all designated States except US*): **INCYTE GENOMICS, INC.** [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **RAUMANN, Brigitte, E.** [US/US]; 5801 South Dorchester Avenue #3B, Chicago, IL 60637 (US). **THORNTON, Michael** [US/US]; 9 Medway Road, Woodside, CA 94062 (US). **DING, Li** [CN/US]; 3353 Alma Street #146, Palo Alto, CA 94306 (US). **YUE, Henry** [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). **TANG, Y., Tom** [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). **HARLAND, Lee** [GB/GB]; 18 Chaucer Court, New Dover Road, Canterbury, Kent CT1 3AU (GB). **BURFORD, Neil** [GB/US]; 105 Wildwood Circle, Durham, CT 06422 (US). **GREENE, Barrie, D.** [US/US]; 1332 10th Avenue #104, San Francisco, CA 94122 (US). **SANJANWALA, Madhu, S.** [US/US]; 210 Sylvia Court, Los Altos, CA 94024 (US). **BAUGHN, Mariah, R.** [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). **YAO, Monique, G.** [US/US]; 111 Frederick Court, Mountain View, CA 94043 (US). **YANG, Junming** [CN/US]; 7125 Bark Lane, San Jose, CA 95129 (US). **PATTERSON, Chandra** [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). **GANDHI, Ameena, R.** [US/US]; 837 Roble Avenue #1, Menlo Park, CA 94025 (US). **HAFALIA, April, J., A.** [US/US]; 2227 Calle de Primavera, Santa Clara, CA 95054 (US). **TRIBOULEY, Catherine, M.** [FR/US]; 1121 Tennessee Street #5, San Francisco, CA 94107 (US). **WALIA, Narinder, K.** [US/US]; 890 Davis Street #205, San Leandro, CA 94577 (US). **AU-YOUNG, Janice** [US/US]; 233 Golden Eagle Lane, Brisbane, CA 94005 (US). **WALSH,**

Roderick, T. [IE/GB]; 8 Boundary Court, St. Lawrence Road, Canterbury, Kent CT1 3EZ (GB). **RAMKUMAR, Jayalaxmi** [IN/US]; 34359 Maybird Circle, Fremont, CA 94555 (US). **LU, Yan** [CN/US]; 3885 Corrina Way, Palo Alto, CA 94303 (US). **LU, Dyung, Aina, M.** [US/US]; 233 Coy Drive, San Jose, CA 95123 (US). **AZIMZAI, Yalda** [US/US]; 5518 Boulder Canyon Drive, Castro Valley, CA 94552 (US). **LAL, Preeti** [IN/US]; P.O. Box 5142, Santa Clara, CA 95056 (US). **ELLIOTT, Vicki, S.** [US/US]; 3770 Polton Place Way, San Jose, CA 95121 (US). **NGUYEN, Banniel, B.** [US/US]; 1403 Ridgewood Drive, San Jose, CA 95118 (US). **XU, Yuming** [US/US]; 1739 Walnut Drive, Mountain View, CA 94040 (US). **SEILHAMER, Jeffrey, J.** [US/US]; 12555 La Cresta, Los Altos Hills, CA 94022 (US). **BOROWSKY, Mark, L.** [US/US]; 122 Orchard Avenue, Redwood City, CA 94061 (US). **KHAN, Farrah, A.** [IN/US]; 3617 Central Road #102, Glenview, IL 60025 (US). **KEARNEY, Liam** [US/US]; 50 Woodside Avenue, San Francisco, CA 94127 (US). **THANGAVELU, Kavitha** [IN/US]; 1950 Montecito Avenue #23, Mountain View, CA 94043 (US). **DAS, Debopriya** [IN/US]; Apartment 13, 1179 Bonita Avenue, Mountain View, CA 94040 (US). **POLICKY, Jennifer, L.** [US/US]; 1511 Jarvis Court, San Jose, CA 95118 (US).

(74) Agents: **HAMLET-COX, Diana et al.**; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TRANSPORTERS AND ION CHANNELS

WO 02/04520 A2

(57) Abstract: The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.

TRANSPORTERS AND ION CHANNELS**TECHNICAL FIELD**

This invention relates to nucleic acid and amino acid sequences of transporters and ion channels and to the use of these sequences in the diagnosis, treatment, and prevention of transport, neurological, muscle, immunological, and cell proliferative disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.

10 BACKGROUND OF THE INVENTION

Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes which are highly impermeable to most polar molecules. Cells and organelles require transport proteins to import and export essential nutrients and metal ions including K^+ , NH_4^+ , P_i , SO_4^{2-} , sugars, and vitamins, as well as various metabolic waste products. Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C. Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29). Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or an ion gradient. Proteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational change that translocates the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.

Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moves into the cell down its electrochemical gradient and brings the solute into the cell with it. The sodium gradient that provides the driving force for solute uptake is maintained by the ubiquitous Na^+/K^+ ATPase system. Sodium-coupled transporters include the mammalian glucose transporter (SGLT1), iodide transporter (NIS), and multivitamin transporter (SMVT). All three transporters have twelve putative transmembrane segments, extracellular glycosylation sites, and cytoplasmically-oriented N- and C-termini. NIS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide thyroid-imaging

techniques and for specific targeting of radioisotopes to the thyroid gland (Levy, O. et al. (1997) Proc. Natl. Acad. Sci. USA 94:5568-5573). SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantothenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).

5 One of the largest families of transporters is the major facilitator superfamily (MFS), also called the uniporter-symporter-antiporter family. MFS transporters are single polypeptide carriers that transport small solutes in response to ion gradients. Members of the MFS are found in all classes of living organisms, and include transporters for sugars, oligosaccharides, phosphates, nitrates, nucleosides, monocarboxylates, and drugs. MFS transporters found in eukaryotes all have a structure
10 comprising 12 transmembrane segments (Pao, S.S. et al. (1998) Microbiol. Molec. Biol. Rev. 62:1-34). The largest family of MFS transporters is the sugar transporter family, which includes the seven glucose transporters (GLUT1-GLUT7) found in humans that are required for the transport of glucose and other hexose sugars. These glucose transport proteins have unique tissue distributions and physiological functions. GLUT1 provides many cell types with their basal glucose requirements and
15 transports glucose across epithelial and endothelial barrier tissues; GLUT2 facilitates glucose uptake or efflux from the liver; GLUT3 regulates glucose supply to neurons; GLUT4 is responsible for insulin-regulated glucose disposal; and GLUT5 regulates fructose uptake into skeletal muscle. Defects in glucose transporters are involved in a recently identified neurological syndrome causing infantile seizures and developmental delay, as well as glycogen storage disease, Fanconi-Bickel
20 syndrome, and non-insulin-dependent diabetes mellitus (Mueckler, M. (1994) Eur. J. Biochem. 219:713-725; Longo, N. and L.J. Elsas (1998) Adv. Pediatr. 45:293-313).

Monocarboxylate anion transporters are proton-coupled symporters with a broad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date. The isoforms are predicted
25 to have twelve transmembrane (TM) helical domains with a large intracellular loop between TM6 and TM7, and play a critical role in maintaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis. The best characterized H⁺-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates. Other cells possess H⁺-linked monocarboxylate transporters with differing
30 substrate and inhibitor selectivities. In particular, cardiac muscle and tumor cells have transporters that differ in their K_m values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors. There are Na⁺-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which allow the uptake of lactate, pyruvate, and ketone bodies in these tissues. In addition, there are specific and selective transporters for organic cations and organic anions

in organs including the kidney, intestine and liver. Organic anion transporters are selective for hydrophobic, charged molecules with electron-attracting side groups. Organic cation transporters, such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH (Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol. 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J. Biotechnol. 30:339-350).

ATP-binding cassette (ABC) transporters are members of a superfamily of membrane proteins that transport substances ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC transporters consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene, as is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes. When encoded by separate genes, each gene product contains a single NBD and MSD. These "half-molecules" form homo- and heterodimers, such as Tap1 and Tap2, the endoplasmic reticulum-based major histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zellweger syndrome (peroxisomal membrane protein-70, PMP70), and hyperinsulinemic hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, another ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglicht, D. and S. Michaelis (1998) Meth. Enzymol. 292:130-162).

A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106).

Transport of fatty acids across the plasma membrane can occur by diffusion, a high capacity, low affinity process. However, under normal physiological conditions a significant fraction of fatty acid transport appears to occur via a high affinity, low capacity protein-mediated transport process.

Fatty acid transport protein (FATP), an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty acids (Hui, T.Y. et al. (1998) J. 5 Biol. Chem. 273:27420-27429).

Mitochondrial carrier proteins are transmembrane-spanning proteins which transport ions and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, fumarate, and phosphate; the 10 tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism. Proteins in this family consist of three tandem repeats of an approximately 100 amino acid domain, each of which contains two transmembrane regions (Stryer, L. (1995) *Biochemistry*, W.H. Freeman and Company, New York NY, p. 551; PROSITE PDOC00189 Mitochondrial energy transfer 15 proteins signature; Online Mendelian Inheritance in Man (OMIM) *275000 Graves Disease).

This class of transporters also includes the mitochondrial uncoupling proteins, which create proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat. Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as 20 potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. (1999) J. Int. Med. 245:637-642).

Ion Channels

The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form ion-selective pores within the membrane. There are two basic types of ion channels, ion transporters and 25 gated ion channels. Ion transporters utilize the energy obtained from ATP hydrolysis to actively transport an ion against the ion's concentration gradient. Gated ion channels allow passive flow of an ion down the ion's electrochemical gradient under restricted conditions. Together, these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse 30 conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.

Ion Transporters

Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient.

These transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including $\text{Na}^+ \text{-K}^+$ ATPase, Ca^{2+} -ATPase, and H^+ -ATPase, are activated by a phosphorylation event. P-class ion transporters are responsible for maintaining resting potential distributions such that cytosolic concentrations of Na^+ and Ca^{2+} are low and cytosolic concentration of 5 K^+ is high. The vacuolar (V) class of ion transporters includes H^+ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion transporters are responsible for generating the low pH within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H^+ pumps in the mitochondria. F-class ion transporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (P_i).

10 The P-ATPases are hexamers of a 100 kD subunit with ten transmembrane domains and several large cytoplasmic regions that may play a role in ion binding (Scarborough, G.A. (1999) Curr. Opin. Cell Biol. 11:517-522). The V-ATPases are composed of two functional domains: the V_1 domain, a peripheral complex responsible for ATP hydrolysis; and the V_0 domain, an integral complex responsible for proton translocation across the membrane. The F-ATPases are structurally 15 and evolutionarily related to the V-ATPases. The F-ATPase F_0 domain contains 12 copies of the c subunit, a highly hydrophobic protein composed of two transmembrane domains and containing a single buried carboxyl group in TM2 that is essential for proton transport. The V-ATPase V_0 domain contains three types of homologous c subunits with four or five transmembrane domains and the essential carboxyl group in TM4 or TM3. Both types of complex also contain a single a subunit that 20 may be involved in regulating the pH dependence of activity (Forgac, M. (1999) J. Biol. Chem. 274:12951-12954).

The resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels. Carrier proteins utilize the resting potential to transport molecules into and out of the cell. Amino acid and glucose transport into many cells is linked to sodium ion co-transport 25 (symport) so that the movement of Na^+ down an electrochemical gradient drives transport of the other molecule up a concentration gradient. Similarly, cardiac muscle links transfer of Ca^{2+} out of the cell with transport of Na^+ into the cell (antiport).

Gated Ion Channels

Gated ion channels control ion flow by regulating the opening and closing of pores. The 30 ability to control ion flux through various gating mechanisms allows ion channels to mediate such diverse signaling and homeostatic functions as neuronal and endocrine signaling, muscle contraction, fertilization, and regulation of ion and pH balance. Gated ion channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open their pores in response to mechanical stress; voltage-gated channels (e.g., Na^+ , K^+ , Ca^{2+} , and Cl^- channels) open 35 their pores in response to changes in membrane potential; and ligand-gated channels (e.g.,

acetylcholine-, serotonin-, and glutamate-gated cation channels, and GABA- and glycine-gated chloride channels) open their pores in the presence of a specific ion, nucleotide, or neurotransmitter. The gating properties of a particular ion channel (i.e., its threshold for and duration of opening and closing) are sometimes modulated by association with auxiliary channel proteins and/or post 5 translational modifications, such as phosphorylation.

Mechanically-gated or mechanosensitive ion channels act as transducers for the senses of touch, hearing, and balance, and also play important roles in cell volume regulation, smooth muscle contraction, and cardiac rhythm generation. A stretch-inactivated channel (SIC) was recently cloned from rat kidney. The SIC channel belongs to a group of channels which are activated by pressure or 10 stress on the cell membrane and conduct both Ca^{2+} and Na^+ (Suzuki, M. et al. (1999) J. Biol. Chem. 274:6330-6335).

The pore-forming subunits of the voltage-gated cation channels form a superfamily of ion channel proteins. The characteristic domain of these channel proteins comprises six transmembrane domains (S1-S6), a pore-forming region (P) located between S5 and S6, and intracellular amino and 15 carboxy termini. In the Na^+ and Ca^{2+} subfamilies, this domain is repeated four times, while in the K^+ channel subfamily, each channel is formed from a tetramer of either identical or dissimilar subunits. The P region contains information specifying the ion selectivity for the channel. In the case of K^+ channels, a GYG tripeptide is involved in this selectivity (Ishii, T.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11651-11656).

20 Voltage-gated Na^+ and K^+ channels are necessary for the function of electrically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na^+ and K^+ ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na^+ channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na^+ 25 channels, which propagates the depolarization down the length of the cell. Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change. The open state lasts only about 1 millisecond, at 30 which time the channel spontaneously converts into an inactive state that cannot be opened irrespective of the membrane potential. Inactivation is mediated by the channel's N-terminus, which acts as a plug that closes the pore. The transition from an inactive to a closed state requires a return to resting potential.

Voltage-gated Na^+ channels are heterotrimeric complexes composed of a 260 kDa pore-forming α subunit that associates with two smaller auxiliary subunits, $\beta 1$ and $\beta 2$. The $\beta 2$ subunit is a integral

membrane glycoprotein that contains an extracellular Ig domain, and its association with α and $\beta 1$ subunits correlates with increased functional expression of the channel, a change in its gating properties, as well as an increase in whole cell capacitance due to an increase in membrane surface area (Isom, L.L. et al. (1995) Cell 83:433-442).

5 Non voltage-gated Na^+ channels include the members of the amiloride-sensitive Na^+ channel/degenerin (NaC/DEG) family. Channel subunits of this family are thought to consist of two transmembrane domains flanking a long extracellular loop, with the amino and carboxyl termini located within the cell. The NaC/DEG family includes the epithelial Na^+ channel (ENaC) involved in Na^+ reabsorption in epithelia including the airway, distal colon, cortical collecting duct of the kidney, and
10 exocrine duct glands. Mutations in ENaC result in pseudohypoaldosteronism type 1 and Liddle's syndrome (pseudohyperaldosteronism). The NaC/DEG family also includes the recently characterized H^+ -gated cation channels or acid-sensing ion channels (ASIC). ASIC subunits are expressed in the brain and form heteromultimeric Na^+ -permeable channels. These channels require acid pH fluctuations for activation. ASIC subunits show homology to the degenerins, a family of mechanically-gated
15 channels originally isolated from *C. elegans*. Mutations in the degenerins cause neurodegeneration. ASIC subunits may also have a role in neuronal function, or in pain perception, since tissue acidosis causes pain (Waldmann, R. and M. Lazdunski (1998) Curr. Opin. Neurobiol. 8:418-424; Eglen, R.M. et al. (1999) Trends Pharmacol. Sci. 20:337-342).

20 K^+ channels are located in all cell types, and may be regulated by voltage, ATP concentration, or second messengers such as Ca^{2+} and cAMP. In non-excitable tissue, K^+ channels are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes. In neurons and other excitable cells, in addition to regulating action potentials and repolarizing membranes, K^+ channels are responsible for setting resting membrane potential. The cytosol contains non-diffusible anions and, to balance this net negative charge, the cell contains a Na^+ -
25 K^+ pump and ion channels that provide the redistribution of Na^+ , K^+ , and Cl^- . The pump actively transports Na^+ out of the cell and K^+ into the cell in a 3:2 ratio. Ion channels in the plasma membrane allow K^+ and Cl^- to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl^- flows out of the cell. The flow of K^+ is balanced by an electromotive force pulling K^+ into the cell, and a K^+ concentration gradient pushing K^+ out of the cell. Thus, the resting membrane potential is
30 primarily regulated by K^+ flow (Salkoff, L. and T. Jegla (1995) Neuron 15:489-492).

Potassium channel subunits of the Shaker-like superfamily all have the characteristic six transmembrane/1 pore domain structure. Four subunits combine as homo- or heterotetramers to form functional K channels. These pore-forming subunits also associate with various cytoplasmic β subunits that alter channel inactivation kinetics. The Shaker-like channel family includes the voltage-

gated K⁺ channels as well as the delayed rectifier type channels such as the human ether-a-go-go related gene (HERG) associated with long QT, a cardiac dysrhythmia syndrome (Curran, M.E. (1998) Curr. Opin. Biotechnol. 9:565-572; Kaczorowski, G.J. and M.L. Garcia (1999) Curr. Opin. Chem. Biol. 3:448-458).

5 A second superfamily of K⁺ channels is composed of the inward rectifying channels (Kir). Kir channels have the property of preferentially conducting K⁺ currents in the inward direction. These proteins consist of a single potassium selective pore domain and two transmembrane domains, which correspond to the fifth and sixth transmembrane domains of voltage-gated K⁺ channels. Kir subunits also associate as tetramers. The Kir family includes ROMK1, mutations in which lead to Bartter syndrome, a renal tubular disorder. Kir channels are also involved in regulation of cardiac pacemaker activity, seizures and epilepsy, and insulin regulation (Doupnik, C.A. et al. (1995) Curr. Opin. Neurobiol. 5:268-277; Curran, supra).

10 The recently recognized TWIK K⁺ channel family includes the mammalian TWIK-1, TREK-1 and TASK proteins. Members of this family possess an overall structure with four transmembrane domains and two P domains. These proteins are probably involved in controlling the resting potential in a large set of cell types (Duprat, F. et al. (1997) EMBO J 16:5464-5471).

15 The voltage-gated Ca²⁺ channels have been classified into several subtypes based upon their electrophysiological and pharmacological characteristics. L-type Ca²⁺ channels are predominantly expressed in heart and skeletal muscle where they play an essential role in excitation-contraction coupling. T-type channels are important for cardiac pacemaker activity, while N-type and P/Q-type channels are involved in the control of neurotransmitter release in the central and peripheral nervous system. The L-type and N-type voltage-gated Ca²⁺ channels have been purified and, though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The α_1 subunit forms the membrane pore and voltage sensor, while the $\alpha_2\delta$ and β subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel. These subunits are encoded by at least six α_1 , one $\alpha_2\delta$, and four β genes. A fourth subunit, γ , has been identified in skeletal muscle (Walker, D. et al. (1998) J. Biol. Chem. 273:2361-2367; McCleskey, E.W. (1994) Curr. Opin. Neurobiol. 4:304-312).

20 The transient receptor family (Trp) of calcium ion channels are thought to mediate capacitative calcium entry (CCE). CCE is the Ca²⁺ influx into cells to resupply Ca²⁺ stores depleted by the action of inositol triphosphate (IP3) and other agents in response to numerous hormones and growth factors. Trp and Trp-like were first cloned from Drosophila and have similarity to voltage gated Ca²⁺ channels in the S3 through S6 regions. This suggests that Trp and/or related proteins may form mammalian CCC entry channels (Zhu, X. et al. (1996) Cell 85:661-671; Boulay, G. et al. (1997) J. Biol. Chem.

272:29672-29680). Melastatin is a gene isolated in both the mouse and human, and whose expression in melanoma cells is inversely correlated with melanoma aggressiveness *in vivo*. The human cDNA transcript corresponds to a 1533-amino acid protein having homology to members of the Trp family. It has been proposed that the combined use of malastatin mRNA expression status and tumor thickness
5 might allow for the determination of subgroups of patients at both low and high risk for developing metastatic disease (Duncan, L.M. et al (2001) *J. Clin. Oncol.* 19:568-576).

Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and organelle pH. In secretory epithelial cells, Cl⁻ enters the cell across a basolateral membrane through an Na⁺, K⁺/Cl⁻ cotransporter, accumulating in the cell above its electrochemical equilibrium concentration.
10 Secretion of Cl⁻ from the apical surface, in response to hormonal stimulation, leads to flow of Na⁺ and water into the secretory lumen. The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel encoded by the gene for cystic fibrosis, a common fatal genetic disorder in humans. CFTR is a member of the ABC transporter family, and is composed of two domains each consisting of six transmembrane domains followed by a nucleotide-binding site. Loss of CFTR function decreases
15 transepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear. The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and devastating "chronic obstructive pulmonary disease" (Al-Awqati, Q. et al. (1992) *J. Exp. Biol.* 172:245-266).

The voltage-gated chloride channels (CLC) are characterized by 10-12 transmembrane
20 domains, as well as two small globular domains known as CBS domains. The CLC subunits probably function as homotetramers. CLC proteins are involved in regulation of cell volume, membrane potential stabilization, signal transduction, and transepithelial transport. Mutations in CLC-1, expressed predominantly in skeletal muscle, are responsible for autosomal recessive generalized myotonia and autosomal dominant myotonia congenita, while mutations in the kidney channel CLC-5
25 lead to kidney stones (Jentsch, T.J. (1996) *Curr. Opin. Neurobiol.* 6:303-310).

Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to
30 excitatory neurotransmitters, such as acetylcholine, glutamate, and serotonin. This opening causes an influx of Na⁺ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to inhibitory neurotransmitters, such as γ -aminobutyric acid (GABA) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential. Neurotransmitter-gated ion channels have four

transmembrane domains and probably function as pentamers (Jentsch, *supra*). Amino acids in the second transmembrane domain appear to be important in determining channel permeation and selectivity (Sather, W.A. et al. (1994) *Curr. Opin. Neurobiol.* 4:313-323).

Ligand-gated channels can be regulated by intracellular second messengers. For example,

5 calcium-activated K⁺ channels are gated by internal calcium ions. In nerve cells, an influx of calcium during depolarization opens K⁺ channels to modulate the magnitude of the action potential (Ishi et al., *supra*). The large conductance (BK) channel has been purified from brain and its subunit composition determined. The α subunit of the BK channel has seven rather than six transmembrane domains in contrast to voltage-gated K⁺ channels. The extra transmembrane domain is located at the subunit N-
10 terminus. A 28-amino-acid stretch in the C-terminal region of the subunit (the "calcium bowl" region) contains many negatively charged residues and is thought to be the region responsible for calcium binding. The β subunit consists of two transmembrane domains connected by a glycosylated extracellular loop, with intracellular N- and C-termini (Kaczorowski, *supra*; Vergara, C. et al. (1998) *Curr. Opin. Neurobiol.* 8:321-329).

15 Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides. The best examples of these are the cAMP-gated Na⁺ channels involved in olfaction and the cGMP-gated cation channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell. CNG channels also represent a major pathway for Ca²⁺ entry into neurons, and play roles in neuronal development and plasticity.
20 CNG channels are tetramers containing at least two types of subunits, an α subunit which can form functional homomeric channels, and a β subunit, which modulates the channel properties. All CNG subunits have six transmembrane domains and a pore forming region between the fifth and sixth transmembrane domains, similar to voltage-gated K⁺ channels. A large C-terminal domain contains a cyclic nucleotide binding domain, while the N-terminal domain confers variation among channel
25 subtypes (Zufall, F. et al. (1997) *Curr. Opin. Neurobiol.* 7:404-412).

The activity of other types of ion channel proteins may also be modulated by a variety of intracellular signalling proteins. Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Kir channels are activated by the binding of the G $\beta\gamma$ subunits of heterotrimeric G-proteins (Reimann, F. and F.M. Ashcroft (1999) *Curr. Opin. Cell. Biol.* 11:503-508). Other proteins are involved in the localization of ion channels to specific sites in the cell membrane. Such proteins include the PDZ domain proteins known as MAGUKs (membrane-associated guanylate kinases) which regulate the clustering of ion channels at neuronal synapses (Craven, S.E. and D.S. Bredt (1998) *Cell* 93:495-498).

Disease Correlation

The etiology of numerous human diseases and disorders can be attributed to defects in the transport of molecules across membranes. Defects in the trafficking of membrane-bound transporters and ion channels are associated with several disorders, e.g., cystic fibrosis, glucose-galactose

- 5 malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small molecules across membranes include, e.g., cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease (van't Hoff, W.G. (1996) *Exp. Nephrol.* 4:253-262; Talente, G.M. et al. (1994) *Ann. Intern. Med.* 120:218-226; and Chillon, M. et al. (1995) *New Engl. J. Med.* 332:1475-1480).

- 10 Human diseases caused by mutations in ion channel genes include disorders of skeletal muscle, cardiac muscle, and the central nervous system. Mutations in the pore-forming subunits of sodium and chloride channels cause myotonia, a muscle disorder in which relaxation after voluntary contraction is delayed. Sodium channel myotonias have been treated with channel blockers. Mutations in muscle sodium and calcium channels cause forms of periodic paralysis, while mutations in the sarcoplasmic
15 calcium release channel, T-tubule calcium channel, and muscle sodium channel cause malignant hyperthermia. Cardiac arrhythmia disorders such as the long QT syndromes and idiopathic ventricular fibrillation are caused by mutations in potassium and sodium channels (Cooper, E.C. and L.Y. Jan (1998) *Proc. Natl. Acad. Sci. USA* 96:4759-4766). All four known human idiopathic epilepsy genes code for ion channel proteins (Berkovic, S.F. and I.E. Scheffer (1999) *Curr. Opin. Neurology* 12:177-
20 182). Other neurological disorders such as ataxias, hemiplegic migraine and hereditary deafness can also result from mutations in ion channel genes (Jen, J. (1999) *Curr. Opin. Neurobiol.* 9:274-280;
Cooper, supra).

Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia.

- 25 Voltage-gated channels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, C.P. and L.S. Narasimhan (1997) *Adv. Pharmacol.* 39:47-98). Various classes of ion channels also play an important role in the perception of pain, and thus are potential targets for new analgesics. These include the vanilloid-gated ion channels, which are activated by the vanilloid capsaicin, as well as by noxious heat. Local anesthetics such as lidocaine and
30 mexiletine which blockade voltage-gated Na⁺ channels have been useful in the treatment of neuropathic pain (Eglen, supra).

Ion channels in the immune system have recently been suggested as targets for immunomodulation. T-cell activation depends upon calcium signaling, and a diverse set of T-cell specific ion channels has been characterized that affect this signaling process. Channel blocking agents

can inhibit secretion of lymphokines, cell proliferation, and killing of target cells. A peptide antagonist of the T-cell potassium channel Kv1.3 was found to suppress delayed-type hypersensitivity and allogenic responses in pigs, validating the idea of channel blockers as safe and efficacious immunosuppressants (Cahalan, M.D. and K.G. Chandy (1997) Curr. Opin. Biotechnol. 8:749-756).

5 The discovery of new transporters and ion channels, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of transport, neurological, muscle, immunological, and cell proliferative disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.

10

SUMMARY OF THE INVENTION

The invention features purified polypeptides, transporters and ion channels, referred to collectively as "TRICH" and individually as "TRICH-1," "TRICH-2," "TRICH-3," "TRICH-4," "TRICH-5," "TRICH-6," "TRICH-7," "TRICH-8," "TRICH-9," "TRICH-10," "TRICH-11," 15 "TRICH-12," "TRICH-13," "TRICH-14," "TRICH-15," "TRICH-16," "TRICH-17," "TRICH-18," "TRICH-19," "TRICH-20," "TRICH-21," "TRICH-22," "TRICH-23," "TRICH-24," "TRICH-25," "TRICH-26," "TRICH-27," "TRICH-28," "TRICH-29," "TRICH-30," "TRICH-31," and "TRICH-32." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. In one alternative, the invention provides an 20 isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-32.

25

The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-32. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:33-64.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) combining the polypeptide with at least one test compound under

suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative 15 of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:33-64, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered 20 expression of the target polynucleotide.

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide 25 comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions 30 whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, iii) a 35 polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the

polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polymucleotides of the invention.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

25

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a

reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

“TRICH” refers to the amino acid sequences of substantially purified TRICH obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term “agonist” refers to a molecule which intensifies or mimics the biological activity of TRICH. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.

An “allelic variant” is an alternative form of the gene encoding TRICH. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

“Altered” nucleic acid sequences encoding TRICH include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TRICH or a polypeptide with at least one functional characteristic of TRICH. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TRICH, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TRICH. The encoded protein may also be “altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent TRICH. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge,

solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TRICH is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of TRICH. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind TRICH polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic TRICH, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'. A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding TRICH or fragments of TRICH may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

“Conservative amino acid substitutions” are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as 5 conservative amino acid substitutions.

	Original Residue	Conservative Substitution
10	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
15	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
20	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
25	Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the 30 side chain.

A “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term “derivative” refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, 35 hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A “detectable label” refers to a reporter molecule or enzyme that is capable of generating a 40 measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

“Differential expression” refers to increased or upregulated; or decreased, downregulated, or

absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

A "fragment" is a unique portion of TRICH or the polynucleotide encoding TRICH which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:33-64 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:33-64, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:33-64 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:33-64 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:33-64 and the region of SEQ ID NO:33-64 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-32 is encoded by a fragment of SEQ ID NO:33-64. A fragment of SEQ ID NO:1-32 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-32. For example, a fragment of SEQ ID NO:1-32 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-32. The precise length of a fragment of SEQ ID NO:1-32 and the region of SEQ ID NO:1-32 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to

the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

- 5 Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191.
- 10 For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and “diagonals saved”=4. The “weighted” residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other 20 polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to 25 compare two nucleotide sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

30 *Open Gap: 5 and Extension Gap: 2 penalties*

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases “percent identity” and “% identity,” as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and “diagonals saved”=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for

example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

10 The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

“Hybridization” refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

25 Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour.

Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as 5 formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

10 The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₆t or R₆t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells 15 or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

20 "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular 25 and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TRICH which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of 25 TRICH which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

30 The term "modulate" refers to a change in the activity of TRICH. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TRICH.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or

synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an TRICH may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TRICH.

"Probe" refers to nucleic acid sequences encoding TRICH, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR

Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

5 Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU
10 primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer
15 binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that
20 hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary
25 polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the
30 artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

“Reporter molecules” are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An “RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term “sample” is used in its broadest sense. A sample suspected of containing TRICH, nucleic acids encoding TRICH, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms “specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term “substantially purified” refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A “substitution” refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

“Substrate” refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers,

microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

5 "Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, 10 electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to 15 animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in 20 vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention 25 into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) 30 set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant

identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.

Species variants are polynucleotide sequences that vary from one species to another. The resulting 5 polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

10 A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at 15 least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

The invention is based on the discovery of new human transporters and ion channels (TRICH), 20 the polynucleotides encoding TRICH, and the use of these compositions for the diagnosis, treatment, or prevention of transport, neurological, muscle, immunological, and cell proliferative disorders.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted 25 by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by 30 BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank

homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and

2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte
5 polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3
shows the number of amino acid residues in each polypeptide. Column 4 shows potential
phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS
program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI).
Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7
10 shows analytical methods for protein structure/function analysis and in some cases, searchable
databases to which the analytical methods were applied.

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these

properties establish that the claimed polypeptides are transporters and ion channels. For example, SEQ
ID NO:5 is 83% identical to rat GABA receptor rho-3 subunit precursor (GenBank ID g1060975) as
15 determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST
probability score is 1.7e-206, which indicates the probability of obtaining the observed polypeptide
sequence alignment by chance. SEQ ID NO:5 also contains a neurotransmitter-gated ion channel
domain as determined by searching for statistically significant matches in the hidden Markov model
(HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from
20 BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID
NO:5 is a neurotransmitter-gated ion channel. In an alternate example, SEQ ID NO:16 is 57%
identical to human Na⁺/glucose cotransporter (GenBank ID g338055) as determined by the Basic Local
Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.4e-181, which
indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID
25 NO:16 also contains a sodium:solute symporter family domain as determined by searching for
statistically significant matches in the hidden Markov model (HMM)-based PFAM database of
conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN
analyses provide further corroborative evidence that SEQ ID NO:16 is a Na⁺/glucose cotransporter. In
an alternate example, SEQ ID NO:27 is 53% identical to human ATP-binding cassette transporter-1
30 (ABC-1) (GenBank ID g4128033) as determined by the Basic Local Alignment Search Tool (BLAST).
(See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the
observed polypeptide sequence alignment by chance. SEQ ID NO:27 also contains an ABC transporter
domain as determined by searching for statistically significant matches in the hidden Markov model
(HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from

BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:27 is an ABC transporter. In an alternate example, SEQ ID NO:12 is 45% identical to rat thyroid sodium/iodide symporter NIS (GenBank ID g1399954) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 3.0e-143, which indicates the 5 probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:12 also contains a sodium:solute symporter family domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:12 is a sodium:solute symporter. SEQ ID NO:1-4, SEQ ID 10 NO:6-11, SEQ ID NO:13-15, SEQ ID NO:17-26, and SEQ ID NO:28-32 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-32 are described in Table 7.

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any 15 combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification 20 technologies that identify SEQ ID NO:33-64 or that distinguish between SEQ ID NO:33-64 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5') 25 and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.

The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 6724643H1 is the 30 identification number of an Incyte cDNA sequence, and LUNLTMT01 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71495515V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g5746200) which contributed to the assembly of the full length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (*i.e.*, those sequences

- including the designation “ENST”). Alternatively, the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (*i.e.*, those sequences including the designation “NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (*i.e.*, those sequences including the designation “NP”). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an “exon stitching” algorithm. For example, FL_XXXXXX_N₁_N₂_YYYYY_N₃_N₄ represents a “stitched” sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N_{1,2,3...}, if present, represent specific exons that may have been manually edited during analysis (See Example V).
- 10 Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an “exon-stretching” algorithm. For example, FLXXXXXX_gAAAAAA_gBBBBB_1_N is the identification number of a “stretched” sequence, with XXXXXX being the Incyte project identification number, gAAAAAA being the GenBank identification number of the human genomic sequence to which the “exon-stretching” algorithm was applied, gBBBBB being the GenBank identification number or 15 NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the “exon-stretching” algorithm, a RefSeq identifier (denoted by “NM,” “NP,” or “NT”) may be used in place of the GenBank identifier (*i.e.*, gBBBBB).

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).

Prefix	Type of analysis and/or examples of programs
GNN, GFG, ENST	Exon prediction from genomic sequences using, for example, GENSCAN (Stanford University, CA, USA) or FGENES (Computer Genomics Group, The Sanger Centre, Cambridge, UK).
GBI	Hand-edited analysis of genomic sequences.
FL	Stitched or stretched genomic sequences (see Example V).

- In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 30 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte

cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

The invention also encompasses TRICH variants. A preferred TRICH variant is one which has 5 at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TRICH amino acid sequence, and which contains at least one functional or structural characteristic of TRICH.

The invention also encompasses polynucleotides which encode TRICH. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from 10 the group consisting of SEQ ID NO:33-64, which encodes TRICH. The polynucleotide sequences of SEQ ID NO:33-64, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding TRICH. In 15 particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:33-64 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide 20 sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:33-64. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TRICH, some bearing minimal similarity to the 25 polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TRICH, and all such variations are to be considered as being specifically disclosed.

30 Although nucleotide sequences which encode TRICH and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TRICH under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TRICH or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide

occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TRICH and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life,
5 than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode TRICH and TRICH derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce
10 mutations into a sequence encoding TRICH or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:33-64 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol.
15 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler
20 (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a
25 variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding TRICH may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic

DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)

Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids

5 Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences

10 are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).

Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences,

15 Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include 20 sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary 25 sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer 30 controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TRICH may be cloned in recombinant DNA molecules that direct expression of TRICH, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of

the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TRICH.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TRICH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULAR BREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) *Nat. Biotechnol.* 17:793-797; Christians, F.C. et al. (1999) *Nat. Biotechnol.* 17:259-264; and Crameri, A. et al. (1996) *Nat. Biotechnol.* 14:315-319) to alter or improve the biological properties of TRICH, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding TRICH may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) *Nucleic Acids Symp. Ser.* 7:215-223; and Horn, T. et al. (1980) *Nucleic Acids Symp. Ser.* 7:225-232.) Alternatively, TRICH itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) *Science* 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of TRICH, or any part thereof, may be altered during direct synthesis and/or combined with sequences

from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) *Methods Enzymol.* 182:392-421.)

5 The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, *supra*, pp. 28-53.)

In order to express a biologically active TRICH, the nucleotide sequences encoding TRICH or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a 10 suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding TRICH. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TRICH. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where 15 sequences encoding TRICH and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural 20 and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TRICH and appropriate transcriptional and translational control 25 elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. (See, e.g., Sambrook, J. et al. (1989) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) *Current Protocols in Molecular Biology*, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences 30 encoding TRICH. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or

animal cell systems. (See, e.g., Sambrook, *supra*; Ausubel, *supra*; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TRICH. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TRICH can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding TRICH into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of TRICH are needed, e.g. for the production of antibodies, vectors which direct high level expression of TRICH may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of TRICH. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, *supra*; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of TRICH. Transcription of sequences encoding TRICH may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311).

Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, 5 e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding TRICH may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader 10 sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses TRICH in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

15 Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of 20 TRICH in cell lines is preferred. For example, sequences encoding TRICH can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a 25 selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase 30 genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980)

Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding TRICH is inserted within a marker gene sequence, transformed cells containing sequences encoding TRICH can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding TRICH under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding TRICH and that express TRICH may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of TRICH using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TRICH is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TRICH include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding TRICH, or any fragments thereof, may be cloned into a vector for

the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega 5 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding TRICH may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein 10 produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TRICH may be designed to contain signal sequences which direct secretion of TRICH through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the 15 inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "pro" or "pre" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities 20 (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TRICH may be ligated to a heterologous sequence resulting in translation of a 25 fusion protein in any of the aforementioned host systems. For example, a chimeric TRICH protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TRICH activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose 30 binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize

these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TRICH encoding sequence and the heterologous protein sequence, so that TRICH may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled TRICH may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

TRICH of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TRICH. At least one and up to a plurality of test compounds may be screened for specific binding to TRICH. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of TRICH, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which TRICH binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express TRICH, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing TRICH or cell membrane fractions which contain TRICH are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TRICH or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TRICH, either in solution or affixed to a solid support, and detecting the binding of TRICH to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

TRICH of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TRICH. Such compounds may include agonists, antagonists, or partial

or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TRICH activity, wherein TRICH is combined with at least one test compound, and the activity of TRICH in the presence of a test compound is compared with the activity of TRICH in the absence of the test compound. A change in the activity of TRICH in the presence of the test compound is indicative of a compound that modulates the activity of TRICH. Alternatively, a test compound is combined with an *in vitro* or cell-free system comprising TRICH under conditions suitable for TRICH activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TRICH may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding TRICH or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent Number 5,175,383 and U.S. Patent Number 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding TRICH may also be manipulated *in vitro* in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding TRICH can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TRICH is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with

potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress TRICH, e.g., by secreting TRICH in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TRICH and transporters and ion channels. In addition, the expression of TRICH is closely associated with adrenal, testicular, and prostate tumors, Crohn's disease, teratocarcinoma and dendritic cells, brain, lung, ileum, small intestine, uterine myometrial, colon, and pancreatic tissues. Therefore, TRICH appears to play a role in transport, neurological, muscle, immunological, and cell proliferative disorders. In the treatment of disorders associated with increased TRICH expression or activity, it is desirable to decrease the expression or activity of TRICH. In the treatment of disorders associated with decreased TRICH expression or activity, it is desirable to increase the expression or activity of TRICH.

Therefore, in one embodiment, TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradycardia, tachyarrhythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartnup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other

extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthalmoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal

circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including
5 adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

In another embodiment, a vector capable of expressing TRICH or a fragment or derivative
10 thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those described above.

In a further embodiment, a composition comprising a substantially purified TRICH in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those
15 provided above.

In still another embodiment, an agonist which modulates the activity of TRICH may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those listed above.

In a further embodiment, an antagonist of TRICH may be administered to a subject to treat or
20 prevent a disorder associated with increased expression or activity of TRICH. Examples of such disorders include, but are not limited to, those transport, neurological, muscle, immunological, and cell proliferative disorders described above. In one aspect, an antibody which specifically binds TRICH may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express TRICH.

25 In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate
30 therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of TRICH may be produced using methods which are generally known in the art. In particular, purified TRICH may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TRICH. Antibodies to TRICH may also be generated using methods that are well known in the art. Such antibodies may include, but are 5 not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with TRICH or with any fragment or oligopeptide thereof 10 which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronics polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

15 It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TRICH have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TRICH amino acids may be fused with those of another protein, such as KLH, and antibodies to the 20 chimeric molecule may be produced.

Monoclonal antibodies to TRICH may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. 25 Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. 30 Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TRICH-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be

generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in 5 the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for TRICH may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin 10 digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy 15 identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either 15 polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TRICH and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TRICH epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

20 Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TRICH. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of TRICH-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple 25 TRICH epitopes, represents the average affinity, or avidity, of the antibodies for TRICH. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular TRICH epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10⁹ to 10¹² L/mole are preferred for use in immunoassays in which the TRICH-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from 30 about 10⁶ to 10⁷ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TRICH, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TRICH-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding TRICH, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TRICH. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TRICH. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Clin. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995) *9(13):1288-1296.*) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) *Blood* 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) *Pharmacol. Ther.* 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) *Br. Med. Bull.* 51(1):217-225; Boado, R.J. et al. (1998) *J. Pharm. Sci.* 87(11):1308-1315; and Morris, M.C. et al. (1997) *Nucleic Acids Res.* 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding TRICH may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) *Science* 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) *Science* 270:475-480; Bordignon, C. et al. (1995) *Science* 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) *Cell* 75:207-216; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:643-666; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:667-703), thalassamias, familial

hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., 5 against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in TRICH expression or regulation causes disease, the expression of 10 TRICH from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in TRICH are treated by constructing mammalian expression vectors encoding TRICH and introducing these vectors by mechanical means into TRICH-deficient cells. Mechanical transfer technologies for 15 use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

20 Expression vectors that may be effective for the expression of TRICH include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). TRICH may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus 25 (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the 30 FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. supra), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TRICH from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver

polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) *Virology* 52:456-467), or by electroporation (Neumann, E. et al. (1982) *EMBO J.* 1:841-845). The introduction of DNA to primary cells requires modification of these 5 standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TRICH expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TRICH under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive 10 element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) *Proc. Natl. Acad. Sci. USA* 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for 15 receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) *J. Virol.* 61:1647-1650; Bender, M.A. et al. (1987) *J. Virol.* 61:1639-1646; Adam, M.A. and A.D. Miller (1988) *J. Virol.* 62:3802-3806; Dull, T. et al. (1998) *J. Virol.* 72:8463-8471; Zufferey, R. et al. (1998) *J. Virol.* 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a 20 method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) *J. Virol.* 71:7020-7029; Bauer, G. et al. (1997) *Blood* 89:2259-2267; Bonyhadi, M.L. (1997) *J. Virol.* 71:4707-4716; Ranga, U. et al. 25 (1998) *Proc. Natl. Acad. Sci. USA* 95:1201-1206; Su, L. (1997) *Blood* 89:2283-2290).

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TRICH to cells which have one or more genetic abnormalities with respect to the expression of TRICH. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be 30 versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) *Transplantation* 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) *Annu.*

Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TRICH to target cells which have one or more genetic abnormalities with respect to the expression of TRICH. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing TRICH to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding TRICH to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TRICH into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TRICH-coding RNAs and the synthesis of high levels of TRICH in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application.

(Dryga, S.A. et al. (1997) *Virology* 228:74-83). The wide host range of alphaviruses will allow the introduction of TRICH into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and 5 performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, 10 transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

15 Ribozyymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TRICH.

20 Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of 25 candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. 30 Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding TRICH. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be 5 extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TRICH.

10 Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or 15 promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased TRICH expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TRICH may be therapeutically useful, and in the treatment of disorders associated with decreased TRICH expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TRICH may be therapeutically useful.

20 At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound 25 based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding TRICH is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an *in vitro* cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TRICH are assayed 30 by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TRICH. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide 35 exposed to a test compound indicates that the test compound is effective in altering the expression of

the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of TRICH, antibodies to TRICH, and mimetics, agonists, antagonists, or inhibitors of TRICH.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S.

Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of 5 an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising TRICH or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, TRICH or a fragment thereof may be joined to a short cationic N-10 terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) *Science* 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, 15 pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example TRICH or fragments thereof, antibodies of TRICH, and agonists, antagonists or inhibitors of TRICH, which 20 ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large 25 therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

30 The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy.

Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg , up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind TRICH may be used for the diagnosis of disorders characterized by expression of TRICH, or in assays to monitor patients being treated with TRICH or agonists, antagonists, or inhibitors of TRICH. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for TRICH include methods which utilize the antibody and a label to detect TRICH in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring TRICH, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TRICH expression. Normal or standard values for TRICH expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to TRICH under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of TRICH expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values.

Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding TRICH may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TRICH may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TRICH, and to monitor regulation of TRICH levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TRICH or closely related molecules may be used to identify nucleic acid sequences which encode TRICH. The specificity of the probe, whether it is made

from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding TRICH, allelic variants, or related sequences.

5 Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the TRICH encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:33-64 or from genomic sequences including promoters, enhancers, and introns of the TRICH gene.

Means for producing specific hybridization probes for DNAs encoding TRICH include the
10 cloning of polynucleotide sequences encoding TRICH or TRICH derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as
15 alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding TRICH may be used for the diagnosis of disorders associated with expression of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes
20 insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrhythmia, tachyarrhythmia, hypertension, Long QT syndrome, myocarditis,
25 cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis,
30 postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and

Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthalmoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic

anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis,

- 5 hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, 10 prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. The polynucleotide sequences encoding TRICH may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TRICH expression. Such qualitative or quantitative methods are well known in the art.

- 15 In a particular aspect, the nucleotide sequences encoding TRICH may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TRICH may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard 20 value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TRICH in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

- 25 In order to provide a basis for the diagnosis of a disorder associated with expression of TRICH, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment theréof, encoding TRICH, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with 30 values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several 5 days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ 10 preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding TRICH may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding 15 TRICH, or a fragment of a polynucleotide complementary to the polynucleotide encoding TRICH, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences 20 encoding TRICH may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH are used to amplify DNA using the 25 polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are 30 fluoresently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (*isSNP*), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the

alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of TRICH include radiolabeling or biotinylation of nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

10 In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and 15 display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

20

In another embodiment, TRICH, fragments of TRICH, or antibodies specific for TRICH may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to 25 generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by 30 hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression *in vivo*, as in the case of a tissue or biopsy sample, or *in vitro*, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention 5 may also be used in conjunction with *in vitro* model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) 10 Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested 15 compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for 20 example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at <http://www.niehs.nih.gov/oc/news/toxchip.htm>.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed 25 gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated 30 biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are

analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by 5 isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, *supra*). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently 10 positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of 15 at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for TRICH to quantify the levels of TRICH expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the 20 levels of protein bound to each array element (Lueking, A. et al. (1999) *Anal. Biochem.* 270:103-111; Mendoza, L.G. et al. (1999) *Biotechniques* 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should 25 be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) *Electrophoresis* 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid 30 degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference

in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding TRICH may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding TRICH on a physical

map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.

- 5 Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences
10 mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, TRICH, its catalytic or immunogenic fragments, or
15 oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TRICH and the agent being tested may be measured.

- Another technique for drug screening provides for high throughput screening of compounds
20 having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TRICH, or fragments thereof, and washed. Bound TRICH is then detected by methods well known in the art. Purified TRICH can also be coated directly onto plates for use in the aforementioned drug screening techniques.
25 Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TRICH specifically compete with a test compound for binding TRICH. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more
30 antigenic determinants with TRICH.

In additional embodiments, the nucleotide sequences which encode TRICH may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

5 The disclosures of all patents, applications and publications, mentioned above and below including U.S. Ser. No. 60/216,547, U.S. Ser. No. 60/218,232, U.S. Ser. No. 60/220,112, and U.S. Ser. No. 60/221,839 are expressly incorporated by reference herein., are expressly incorporated by reference herein.

10

EXAMPLES

I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a 15 suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA 20 purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

25 In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic 30 oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g.,

PBLUESCRIPT plasmid (Stratagene), PSSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), or pINCY (Incyte Genomics, Palo Alto CA), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX

5 DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC 10 Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

20 III. Sequencing and Analysis

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI 30 PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the

5 GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA

10 sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.

15 The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein

20 family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent

25 identity between aligned sequences.

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of

30 which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:33-64. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.

5 **IV. Identification and Editing of Coding Sequences from Genomic DNA**

Putative transporters and ion channels were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin 10 (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode transporters and ion channels, the encoded polypeptides were analyzed by querying 15 against PFAM models for transporters and ion channels. Potential transporters and ion channels were also identified by homology to Incyte cDNA sequences that had been annotated as transporters and ion channels. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by 20 Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling 25 Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data

"Stitched" Sequences

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification 30 program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence.

Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to
5 be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant
10 stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

15 Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A
20 chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the
25 addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

VI. Chromosomal Mapping of TRICH Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:33-64 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other
30 implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:33-64 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences

had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (<http://www.ncbi.nlm.nih.gov/genemap/>), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel (1995) *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \min\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For

example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

5 Alternatively, polynucleotide sequences encoding TRICH are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; 10 embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, 15 cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TRICH. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

20 **VIII. Extension of TRICH Encoding Polynucleotides**

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using 25 OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension 30 was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme

(Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:33-64 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, *supra*.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), *supra*). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the 5 biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on 10 the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is 15 reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with 20 GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated 25 using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μ l 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is 30 amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and 5 coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 µl of the array element DNA, at an average concentration of 100 ng/µl, is loaded into the open capillary printing element by a high-speed robotic 10 apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 15 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 µl of sample mixture consisting of 0.2 µg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with 20 an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 µl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

Detection

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide 30 containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, 35 Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate

filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

- 5 The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different
10 fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC
15 computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

- 20 A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

25 Sequences complementary to the TRICH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TRICH. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TRICH. To inhibit transcription, a
30 complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the TRICH-encoding transcript.

XII. Expression of TRICH

Expression and purification of TRICH is achieved using bacterial or virus-based expression systems. For expression of TRICH in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express TRICH upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TRICH in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TRICH by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, TRICH is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from TRICH at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10 and 16). Purified TRICH obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, and XVIII where applicable.

30 XIII. Functional Assays

TRICH function is assessed by expressing the sequences encoding TRICH at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which

contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish 5 transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of 10 fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; 15 and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of TRICH on gene expression can be assessed using highly purified populations 20 of cells transfected with sequences encoding TRICH and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression 25 of mRNA encoding TRICH and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIV. Production of TRICH Specific Antibodies

TRICH substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to 30 immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the TRICH amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the 5 oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TRICH activity by, for example, binding the peptide or TRICH to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring TRICH Using Specific Antibodies

Naturally occurring or recombinant TRICH is substantially purified by immunoaffinity 10 chromatography using antibodies specific for TRICH. An immunoaffinity column is constructed by covalently coupling anti-TRICH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing TRICH are passed over the immunoaffinity column, and the column is 15 washed under conditions that allow the preferential absorbance of TRICH (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected.

XVI. Identification of Molecules Which Interact with TRICH

Molecules which interact with TRICH may include transporter substrates, agonists or 20 antagonists, modulatory proteins such as G $\beta\gamma$ proteins (Reimann, *supra*) or proteins involved in TRICH localization or clustering such as MAGUKs (Craven, *supra*). TRICH, or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate 25 are incubated with the labeled TRICH, washed, and any wells with labeled TRICH complex are assayed. Data obtained using different concentrations of TRICH are used to calculate values for the number, affinity, and association of TRICH with the candidate molecules.

Alternatively, proteins that interact with TRICH are isolated using the yeast 2-hybrid system (Fields, S. and O. Song (1989) Nature 340:245-246). TRICH, or fragments thereof, are expressed as 30 fusion proteins with the DNA binding domain of Gal4 or lexA, and potential interacting proteins are expressed as fusion proteins with an activation domain. Interactions between the TRICH fusion protein and the TRICH interacting proteins (fusion proteins with an activation domain) reconstitute a transactivation function that is observed by expression of a reporter gene. Yeast 2-hybrid systems are

commercially available, and methods for use of the yeast 2-hybrid system with ion channel proteins are discussed in Niethammer, M. and M. Sheng (1998, Meth. Enzymol. 293:104-122).

TRICH may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions 5 between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

Potential TRICH agonists or antagonists may be tested for activation or inhibition of TRICH ion channel activity using the assays described in section XVIII.

XVII. Demonstration of TRICH Activity

10 Ion channel activity of TRICH is demonstrated using an electrophysiological assay for ion conductance. TRICH can be expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TRICH. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. A second plasmid which expresses any one of a number of marker genes, such as β -galactosidase, is co-transformed into the cells to allow rapid identification of those cells which have taken up and expressed the foreign DNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of TRICH and β -galactosidase.

20 Transformed cells expressing β -galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are well known in the art. Stained cells are tested for differences in membrane conductance by electrophysiological techniques that are well known in the art. Untransformed cells, and/or cells transformed with either vector sequences alone or β -galactosidase sequences alone, are used as controls and tested in parallel. Cells expressing TRICH will have higher anion or cation conductance relative to control cells. The contribution of TRICH to 25 conductance can be confirmed by incubating the cells using antibodies specific for TRICH. The antibodies will bind to the extracellular side of TRICH, thereby blocking the pore in the ion channel, and the associated conductance.

Alternatively, ion channel activity of TRICH is measured as current flow across a TRICH-containing Xenopus laevis oocyte membrane using the two-electrode voltage-clamp technique (Ishi et 30 al., supra; Jegla, T. and L. Salkoff (1997) J. Neurosci. 17:32-44). TRICH is subcloned into an appropriate Xenopus oocyte expression vector, such as pBF, and 0.5-5 ng of mRNA is injected into mature stage IV oocytes. Injected oocytes are incubated at 18°C for 1-5 days. Inside-out macropatches are excised into an intracellular solution containing 116 mM K-gluconate, 4 mM KCl, and 10 mM Hepes (pH 7.2). The intracellular solution is supplemented with varying concentrations 35 of the TRICH mediator, such as cAMP, cGMP, or Ca⁺² (in the form of CaCl₂), where appropriate.

Electrode resistance is set at 2-5 MΩ and electrodes are filled with the intracellular solution lacking mediator. Experiments are performed at room temperature from a holding potential of 0 mV. Voltage ramps (2.5 s) from -100 to 100 mV are acquired at a sampling frequency of 500 Hz. Current measured is proportional to the activity of TRICH in the assay.

5 In particular, the activities of TRICH-1, TRICH-2, and TRICH-10, are measured as K⁺ conductance, the activities of TRICH-6 and TRICH-9 are measured as K⁺ conductance in the presence of membrane stretch or free fatty acids, the activities of TRICH-18, TRICH-25 and TRICH-31 are measured as voltage-gated K⁺ conductance, TRICH-5 activity is measured as Cl⁻ conductance in the presence of GABA, TRICH-11 activity is measured as cation conductance in the presence of heat, and
10 the activity of TRICH-9, TRICH-28 is measured as Ca²⁺ conductance.

Transport activity of TRICH is assayed by measuring uptake of labeled substrates into Xenopus laevis oocytes. Oocytes at stages V and VI are injected with TRICH mRNA (10 ng per oocyte) and incubated for 3 days at 18°C in OR2 medium (82.5mM NaCl, 2.5 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 1mM Na₂HPO₄, 5 mM Hepes, 3.8 mM NaOH , 50μg/ml gentamycin, pH 7.8) to allow
15 expression of TRICH. Oocytes are then transferred to standard uptake medium (100mM NaCl, 2 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 10 mM Hepes/Tris pH 7.5). Uptake of various substrates (e.g., amino acids, sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g. radiolabeled with ³H, fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times in Na⁺-free medium, measuring the
20 incorporated label, and comparing with controls. TRICH activity is proportional to the level of internalized labeled substrate. In particular, test substrates include pigment precursors and related molecules for TRICH-3, aminophospholipids for TRICH-4, fructose and glucose for TRICH-7 and TRICH-15, amino acids for TRICH-8, Na⁺ and iodide for TRICH-12, Na⁺ and H⁺ for TRICH-13 and TRICH-21, Na⁺ and glucose for TRICH-16 and TRICH-19, and glucose for TRICH-23, TRICH-26,
25 TRICH-29, TRICH-30, and TRICH-32.

ATPase activity associated with TRICH can be measured by hydrolysis of radiolabeled ATP-[γ -³²P], separation of the hydrolysis products by chromatographic methods, and quantitation of the recovered ³²P using a scintillation counter. The reaction mixture contains ATP-[γ -³²P] and varying amounts of TRICH in a suitable buffer incubated at 37°C for a suitable period of time. The reaction is
30 terminated by acid precipitation with trichloroacetic acid and then neutralized with base, and an aliquot of the reaction mixture is subjected to membrane or filter paper-based chromatography to separate the reaction products. The amount of ³²P liberated is counted in a scintillation counter. The amount of radioactivity recovered is proportional to the ATPase activity of TRICH in the assay.

XVIII. Identification of TRICH Agonists and Antagonists

TRICH is expressed in a eukaryotic cell line such as CHO (Chinese Hamster Ovary) or HEK (Human Embryonic Kidney) 293. Ion channel activity of the transformed cells is measured in the presence and absence of candidate agonists or antagonists. Ion channel activity is assayed using patch clamp methods well known in the art or as described in Example XVII. Alternatively, ion channel activity is assayed using fluorescent techniques that measure ion flux across the cell membrane (Velicelebi, G. et al. (1999) Meth. Enzymol. 294:20-47; West, M.R. and C.R. Molloy (1996) Anal. Biochem. 241:51-58). These assays may be adapted for high-throughput screening using microplates. Changes in internal ion concentration are measured using fluorescent dyes such as the Ca^{2+} indicator Fluo-4 AM, sodium-sensitive dyes such as SBFI and sodium green, or the Cl^- indicator MQAE (all available from Molecular Probes) in combination with the FLIPR fluorimetric plate reading system (Molecular Devices). In a more generic version of this assay, changes in membrane potential caused by ionic flux across the plasma membrane are measured using oxonol dyes such as DiBAC₄ (Molecular Probes). DiBAC₄ equilibrates between the extracellular solution and cellular sites according to the cellular membrane potential. The dye's fluorescence intensity is 20-fold greater when bound to hydrophobic intracellular sites, allowing detection of DiBAC₄ entry into the cell (Gonzalez, J.E. and P.A. Negulescu (1998) Curr. Opin. Biotechnol. 9:624-631). Candidate agonists or antagonists may be selected from known ion channel agonists or antagonists, peptide libraries, or combinatorial chemical libraries.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Incite Project ID	Polypeptide SEQ ID NO:	Incite Polypeptide ID	Polynucleotide SEQ ID NO:	Polynucleotide ID	Incite Polynucleotide ID
3474673	1	3474673CD1	33	33	3474673CB1
4588877	2	4588877CD1	34	34	4588877CB1
7472214	3	7472214CD1	35	35	7472214CB1
7473053	4	7473053CD1	36	36	7473053CB1
7473347	5	7473347CD1	37	37	7473347CB1
7474240	6	7474240CD1	38	38	7474240CB1
7475338	7	7475338CD1	39	39	7475338CB1
7476747	8	7476747CD1	40	40	7476747CB1
7477898	9	7477898CD1	41	41	7477898CB1
7472728	10	7472728CD1	42	42	7472728CB1
7474322	11	7474322CD1	43	43	7474322CB1
5455621	12	5455621CD1	44	44	5455621CB1
7477248	13	7477248CD1	45	45	7477248CB1
2944004	14	2944004CD1	46	46	2944004CB1
3046849	15	3046849CD1	47	47	3046849CB1
4538363	16	4538363CD1	48	48	4538363CB1
6427460	17	6427460CD1	49	49	6427460CB1
7474127	18	7474127CD1	50	50	7474127CB1
7476949	19	7476949CD1	51	51	7476949CB1
7477249	20	7477249CD1	52	52	7477249CB1
7477720	21	7477720CD1	53	53	7477720CB1
7477852	22	7477852CD1	54	54	7477852CB1
1471717	23	1471717CD1	55	55	1471717CB1
3874406	24	3874406CD1	56	56	3874406CB1
4599654	25	4599654CD1	57	57	4599654CB1
5047435	26	5047435CD1	58	58	5047435CB1
7475603	27	7475603CD1	59	59	7475603CB1
7477845	28	7477845CD1	60	60	7477845CB1
168827	29	168827CD1	61	61	168827CB1
7472734	30	7472734CD1	62	62	7472734CB1
7473473	31	7473473CD1	63	63	7473473CB1
7477725	32	7477725CD1	64	64	7477725CB1

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	GenBank ID	Probability score	GenBank Homolog
1	3474673CD1	g13507377	1.00E-151	[f1] [Homo sapiens] potassium channel TASK-4 (Decher, N. et al. (2001) FEBS Lett. 492 (1-2), 84-89)	
2	4588877CD1	g13926111	3.00E-96	[f1] [Homo sapiens] channel Talk-2 (AF358910) 2p domain potassium	
3	7472214CD1	g1107730	1.70E-243	[Mus musculus] ABC8 (Savary, S. et al. (1996) Mamm. Genome 7 (9), 673-676)	
	g11342541	0	[f1] [Homo sapiens] putative white family ATP-binding cassette transporter		
4	7473053CD1	g3850108	9.00E-209	[Schizosaccharomyces pombe] putative calcium-transporting atpase (Bull, L.N. et al. (1998) Nat. Genet. 18 (3), 219-224)	
	g3628757	0	[Homo sapiens] FIC1		
5	7473347CD1	g1060975	1.70E-206	[Rattus norvegicus] GABA receptor rho-3 subunit precursor (Ogurusu, T. et al. (1996) Biochim. Biophys. Acta 1305 (1-2), 15-18)	
6	7474240CD1	g2745727	0	[Rattus norvegicus] potassium channel (Shi, W. et al. (1997) J. Neurosci. 17 (24), 9423-9432)	
7	7475338CD1	g183298	2.10E-158	[Homo sapiens] GLUT5 protein (Kayano, T. et al. (1990) J. Biol. Chem. 265 (22), 13276-13282)	
9	7477898CD1	g2745729	0	[Rattus norvegicus] potassium channel (Shi, W. et al. (1997) J. Neurosci. 17 (24), 9423-9432)	
10	747728CD1	g8452900	3.50E-261	[Rattus norvegicus] potassium channel TREK-2 (Bang, H. et al. (2000) J. Biol. Chem. 275 (23), 17412-17419)	
11	7474322CD1	g12003146	0	[f1] [Homo sapiens] capsaicin receptor (Rattus norvegicus) thyroid sodium/iodide symporter NIS (Dai, G. et al. (1996) Nature 379 (6564), 458-460)	
12	5455621CD1	g1399954	3.00E-143	[Homo sapiens] sodium-hydrogen exchanger 6 (Numata, M. et al. (1998) J. Biol. Chem. 273 (12), 6951-6959)	
13	7477248CD1	g2944233	3.10E-195	[Schizosaccharomyces pombe] membrane atpase	
14	2944004CD1	g3451312	1.40E-188	[f1] [Homo sapiens] (AJ271290) facilitative glucose transporter GLUT11	
15	3046849CD1	g12802047	0		

Table 2 (cont.)

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability score	GenBank Homolog
16	4538363CD1	g338055	7.40E-181	[Homo sapiens] Na+/glucose cotransporter (Hediger, M.A. et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86 (15), 5748-5752)
17	6427460CD1	g6457274	0	[Mus musculus] putative E1-E2 ATPase (Halleck, M.S. et al. (1999) Physiol. Genomics (Online) 1 (3), 139-150)
18	7474127CD1	g206044	0	[Rattus norvegicus] potassium channel Kv3.2b (Wiedmann, R. et al. (1991) FEBS Lett. 288, 163-167)
19	7476949CD1	g9588428	0	[5' incom] [Homo sapiens] dJ1024N4.1 (novel) Sodium:solute symporter family member similar to SLC5A1 (SGLT1)
		g338055	3.70E-202	[Homo sapiens] Na+/glucose cotransporter (Hediger, M.A. et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86 (15), 5748-5752)
20	7477249CD1	g7715417	0	[Oryctolagus cuniculus] RING-finger binding protein (Manshararamani, M. et al. (2001) J. Biol. Chem. 276 (5), 3641-3649)
21	7477720CD1	g205709	0	[Rattus norvegicus] sodium-hydrogen exchange protein-isoform 4 (Orlowski, J. et al. (1992) J. Biol. Chem. 267, 93331-93339)
22	7477852CD1	g8920219	0	[f1] [Homo sapiens] epithelial calcium channel (Muller, D. et al. (2000) Genomics 67 (1), 48-53)
23	1471717CD1	g529590	5.00E-36	[Rattus norvegicus] liver-specific transport protein (Simonson, G.D. et al. (1994) J. Cell. Sci 107, 1065-1072)
24	3874406CD1	g1514530	1.90E-117	[Homo sapiens] ABC-C transporter (Klugbauer, N. et al. (1996) FEBS Lett. 391 (1-2), 61-65)
25	4599654CD1	g3242244	0	[Mus musculus] hyperpolarization-activated cation channel, HAC3 (Ludwig, A. et al. (1998) Nature 393 (6685), 587-591)

Table 2 (cont.)

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability score	GenBank Homolog
26	5047435CD1	g13445575	0	[f1] [Homo sapiens] facilitative glucose transporter GLUT10 (McVie-Wylie,A.J. et al. (2001) Genomics 72 (1), 113-117)
27	7475603CD1	g9211112	0	[f1] [Homo sapiens] macrophage ABC transporter (Kaminski,W.E. et al. (2000) Biochem. Biophys. Res. Commun. 273 (2), 532-538)
28	7477845CD1	g3800830	0	[Rattus norvegicus] putative four repeat ion channel (Lee,J.H. et al. (1999) FEBS Lett. 445 (2-3), 231-236)
29	168827CD1	g7707622	1.20E-116	[Homo sapiens] organic anion transporter 4 (Cha,S.H. et al. (2000) J. Biol. Chem. 275 (6), 4507-4512)
		g3004482	0	[f1] [Rattus norvegicus] putative integral membrane transport protein (Schomig,E. et al. (1998) FEBS Lett. 425 (1), 79-86)
30	7472734CD1	g7707622	4.50E-117	[Homo sapiens] organic anion transporter 4 (Cha,S.H. et al. (2000) J. Biol. Chem. 275 (6), 4507-4512)
		g3004482	0	[f1] [Rattus norvegicus] putative integral membrane transport protein (Schomig,E. et al. (1998) FEBS Lett. 425 (1), 79-86)
31	7473473CD1	g6625694	0	[Rattus norvegicus] potassium channel Eag2 (Saganich,M.J. et al. (1999) J. Neurosci. 19 (24), 10789-10802)
32	7477725CD1	g3004482	1.00E-177	[f1] [Rattus norvegicus] putative integral membrane transport protein (Schomig,E. et al. (1998) FEBS Lett. 425 (1), 79-86)
		g7707622	4.20E-130	[Homo sapiens] organic anion transporter 4 (Cha,S.H. et al. (2000) J. Biol. Chem. 275 (6), 4507-4512)

Table 3

SEQ ID NO:	Incyte ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
1	3474673CD1	332	S201 S207 S234 S265 S280 S281 S289 S51 T169 T67	N65 N94	Transmembrane domains: R130-M155, V245-L264 TASK K+ channel domain: V14-S332	HMMER
2	4588877CD1	226	S101 S128 S159 S174 S175 S183 S95		Transmembrane domain: V139-L158	HMMER
3	7472214CD1	646	S143 S229 S261 S340 S341 S463 S554 S57 S644 S69 S89 T138 T157 T23 T472 T591	N169 N422	CHANNEL PROTEIN IONIC POTASSIUM SUBUNIT K+ PUTATIVE SUBFAMILY K MEMBER PD021430: A78-E162	BLAST_PRODOM

Table 3 (cont.)

SEQ NO:	Incyte ID	Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs
4	7473053CD1	1190	S153 S259 S268 S391 S413 S452 S493 S545 S573 S624 S631 S687 S723 S739 S744 S832 S1174 S1132 S1164 S1124 S1143 S1168 T267 T36 T370 T378 T514 T519 T580 T646 T705 T732 T899 T980 T1098 T1158 Y23 Y29 Y489 Y607	N579	Transmembrane domains: S77-V94, L276-W298, Y330-R350, I947-I971, Q991-I1009 E1-E2 ATPase domains: E381-V403, Q530-A562, Y633-G685, R788-D818	HMMER
					E1-E2 ATPases phosphorylation site proteins BL00154: G134-L151, V386-F404, D650-M690, T809-S832	BLIMPS_BLOCK5
					E1-E2 ATPases phosphorylation site: A372-V417 P-type cation-transporting ATPase superfamily signature PR00119: F390-F404, A666-D676, I812-I831	PROFILESCAN
5	7473347CD1	467	S149 S175 S344 S37 S390 S411 S419 S427 S53 S96 T100 T136 T157 T355 T356 T366 T41	N126 N197 N220	Transmembrane domain: V332-V351	HMMER

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
5					<p>Neurotransmitter-gated ion-channel domain: P58-Q362, H441-W463</p> <p>Neurotransmitter-gated ion channels signature BL00236: V85-P122, I139-H148, D169-Y207, Y254-A295</p> <p>Neurotransmitter-gated ion-channels signature: L164-H218</p> <p>Neurotransmitter-gated ion-channels signature PR00252: T105-F121, K138-S149, C184-C198, S261-P273</p> <p>Gamma-aminobutyric acid A (GABA) receptor signature PR00253: F270-W290, V296-V317, V330-V351, Y446-Y466</p> <p>CHANNEL TONIC TRANSMEMBRANE GLYCOPROTEIN POSTSYNAPTIC MEMBRANE RECEPTOR PRECURSOR SIGNAL PROTEIN PD000153: E62-S427</p> <p>NEUROTRANSMITTER-GATED ION-CHANNELS DM00560 P50573 34-464: S37-V467</p> <p>Neurotransmitter-gated ion channels motif: C184-C198</p>	<p>BLIMPS_BLOCKS</p> <p>BLIMPS_PRINTS</p> <p>BLIMPS_PRINTS</p> <p>BLIMPS_PRINTS</p> <p>BLAST_DOMO</p> <p>MOTIFS</p>

Table 3 (cont.)

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
7					SUGAR TRANSPORT PROTEINS DM00135 P22732 132-466: R138-T473 Sugar transporter 1 motif: S338-A353	BLAST_DOMO MOTIFS
8	7476747CD1	568	S143 S365 S4 S456 S46 S51 S55 T34 T430 Y45	N141 N205 N214 N256 N562 N62 N76	Transmembrane domains: I242-F269, Y289-P308, I322-Y342 Transmembrane amino acid transporter protein domain: A102-G543	HMMER HMMER_PFAM
9	7477898CD1	958	S105 S140 S145 S200 S26 S283 S288 S458 S488 S55 S670 S706 S724 S751 S774 S788 S864 S872 S879 S897 S929 T13 T170 T202 T220 T301 T326 T363 T377 T486 T522 T678	N218 N449 N510 N742	ACID AMINO PROTEIN TRANSPORTER PERMEASE TRANSMEMBRANE INTERGENIC REGION PUTATIVE PROLINE PD001875: W80-L380	BLAST_PRODOM HMMER HMMER_N318
					Transmembrane domain: L300-N318 Transmembrane region cyclic nucleotide gated ion channel: Y341-I580	HMMER HMMER_PFAM
					Cyclic nucleotide-binding domain: V608-A699	HMMER HMMER_PFAM
					POTASSIUM CHANNEL IONIC CHANNEL PD118772: E702-S955	BLAST_PRODOM
					CHANNEL PROTEIN IONIC POTASSIUM NONPHOTOTROPIC HYPOCOTYL PUTATIVE SUBUNIT REPEAT EAG PD009483: M1-L86	BLAST_PRODOM
					CAMP RECEPTOR PROTEIN CYCLIC NUCLEOTIDE-BINDING DOMAIN DM01165 I38465 562-948: H413-F738, do POTASSIUM CHANNEL; KST1; AKT1; DM02383 I38465 353-560: T201-A412	BLAST_DOMO

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
10	7472728CD1	724	S229 S283 S303 S333 S512 S545 S597 S666 S718 T104 T19 T223 T444 T515 T540 T557 T591 T636 T640 T650 T661 T676	N327 N330 N331 N532 N664 N684 N716	Transmembrane domains: A370-L388, I419-F437, V486-M503 TASK K+ Channel domain: M250-D646	HMMER
11	7474322CD1	470	S134 S142 S245 S326 S355 S408 S411 S415 S432 S452 T15 T22 T229 T265 T337 T341 T36	N236 N256 N321 N380 I312	TWIK1 RELATED POTASSIUM CHANNEL, SUBFAMILY K, MEMBER 2 TREK1 K+ CHANNEL SUBUNIT IONIC CHANNEL PD085853: P215-G326	BLAST_PRODOM
12	5455621CD1	618	S110 S265 S313 S373 S490 S550 S565 S576 S594 T154 T237 T268 T360 T37 T526 T567 T70	N219 N256 N480 N574 Y459, I502-R528	Transmembrane domains: D10-F28, F81-Y104, F278-M297, L439- Sodium:solute symporter family domain: F41-G445	HMMER
					BLIMPS_BLOCKS Sodium:solute symporter signature BL00456: T154-G208 Sodium:solute symporter family signature: N151-T198	PROFILESCAN
					TRANSMEMBRANE TRANSPORT PERMEASE PROTEIN BLAST_PRODOM SODIUM SYMPORT PROLINE COTRANSPORTER SYMPORTER GLYCOPROTEIN PD000991: F41-C304	
					SYMPORTER SODIUM IODIDE THYROID SODIUM/IODIDE NIS PD024705: I446-L489, S490-G575	BLAST_PRODOM
					SODIUM: SOLUTE SYMPORTER FAMILY DM00745 P31636 24-561: D10-N219, G220-Y459	BLAST_DOMO

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
13	7477248CD1	631	S149 S212 S258 S522 S9 T518 T551 T73 T79 Y14	N352 N516 N96	Transmembrane domains: V22-F41, L159-M181, I391-A407 Sodium/hydrogen exchanger family domain: L25-V491	HMMER
					Na+/H+ exchanger isoform 6 signature PR01088: Y14-I38, W39-V57, Y58-V84, Q119-E132, A269-M288, T480-Q506, K515- D533, P539-Q567, P566-E593	BLIMPS_PRINTS
					Na+/H+ exchanger signature PR01084: I133-F144, G147-S161, I162- T170, G208-T218	BLIMPS_PRINTS
					+ TRANSPORT EXCHANGER NA PD01672: I133-M181	BLIMPS_PRODOM
					NA+/H+ PROTEIN TRANSMEMBRANE TRANSPORT ANTIPORTER SYMPORT SODIUM EXCHANGER GLYCOPROTEIN SODIUM/HYDROGEN PD000631: G20-G63, E132-R490	BLAST_PRODOM
					SODIUMHYDROGEN EXCHANGER 6 MYELOBLAST KIAA0267 PD177855: G478-Y591	BLAST_PRODOM
					do BETA; EXCHANGER; NA; DM02572 P48764 0-734: L124-L541	BLAST_DOMO
					Transmembrane domains: Y231-Y251, L415-L434, I933-I959, F966- L985, I1002-F1020, N1104-M1122	HMMER
14	2944004CD1	1256	S103 S130 S144 S170 S227 S252 S523 S802 S817 S899 S901 S98 S1055 T269 T353 T358 T387 T502 T549 T576 T74 T912 T1212 T1061 T1236 Y349 Y407	N150 N23 N300 N312 N318 N704 N1045 N1053 N1059 N1073 N1247	E1-E2 ATPases phosphorylation site signature BL00154: V454-G490, L492-L510, K652- C662, N724-M764, V878-S901, A905-V938 E1-E2 ATPases phosphorylation site; I478-E526	BLIMPS_BLOCKS PROFILESCAN

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	P-typ cation-transporting ATPase superfamily signature PR00119: N318-T332, C496-I510, A740-D750, C881-L900	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
14					ATPASE PROBABLE CALCIUMTRANSPORTING PROTEIN HYDROLASE CALCIUM TRANSPORT TRANSMEMBRANE PHOSPHORYLATION MAGNESIUM PD090368: Q995-Y1094, D1064-L1114	BLAST_PRODOM	
15	3046849CD1	499	S100 S118 S215 S285 T466 T487	N292 N34 N50	E1-E2 ATPASES PHOSPHORYLATION SITE DM00115 P22189 49-801: S202-K331, P401-E505, S556-A575, V623-P767, H800-S984	E1-E2 ATPase motif: D498-T504	MOTIFS

Table 3 (cont.)

SEQ NO:	Incyte ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
16	4538363CD1	596	S17 T119 S290 T211	S5 N239 N386 N4 N545 N96	Transmembrane domains: S73-N95, I185-I212, L356-A376, I410-V430, F473-F491, Y513-L533 Sodium:solute symporter family domain: Y50-G479 Sodium:solute symporter signature BL00456: Y27-G81, A103-R132, L165-G219, P452-G461 Sodium:solute symporter family signatures: H162-I209, V412-D502	HMMER BLIMPS_BLOCKS HMMER_PFAM HMMER

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
17	6427460CD1	1192	S143 S169 S188 S283 S287 S335 S451 S507 S508 S52 S555 S561 S722 S933 T203 T255 T259 T269 T333 T380 T413 T418 T659 T708 T714 T715 T910 T1103 T1017 T1105 Y885 Y1026	N397 N745 N921 N989 N1001	Transmembrane domains: V299-Y316, F1004-L1022, I1030-W1049, A1075-L1092 E1-E2 ATPase domains: E403-E425 I550-C698 E1-E2 ATPases phosphorylation site signature BL00154: G149-F166, V408-F426, D663- L703 E1-E2 ATPases phosphorylation site: I395-C442	HMMER HMMER_PFAM BLIMPS_BLOCKS PROFILESCAN
18	7474127CD1	638	S205 S224 S336 S378 S414 S541 S553 S564 S86 T120 T146 T155 T17 T21 T25 T283 T374 T49 T520 T546 T579	N259 N266 N518 N536 N84	P-type cation-transporting ATPase superfamily signature PR00119: F412-F426, A679-D689 ATPASE HYDROLASE TRANSMEMBRANE PHOSPHORYLATION ATPBINDING PROTEIN PROBABLE CALCIUMTRANSPORTING CALCIUM TRANSPORT FD004657: A857-V1108 do ATPASE; CALCIUM; TRANSPORTING; DM02405 Q09891 206-1107: T105-Y436, F471-N921 E1-E2 ATPase motif: D414-T420	BLIMPS_PRINTS BLAST_PRODOM BLAST_DOMO

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
18					VOLTAGEGATED POTASSIUM CHANNEL PROTEIN KV3.2 KSHILIA IONIC TRANSMEMBRANE ION TRANSPORT GLYCOPROTEIN MULTIGENE FAMILY ALTERNATIVE SPLICING PHOSPHORYLATION PD085814: K495-S538	BLAST_PRODOM
19	7476949CD1	681	S307 S421 S56 S573 S582 S587 S638 S651 T422 T485 T650 Y510	N113 N251 N256 N403 N603	do CHANNEL; POTASSIUM; CDRK; FORM; DM00436 P22462 189-350: R189-R351 do CHANNEL; POTASSIUM; CDRK; SHAW; DM00490 P22462 34-151: L34-C152 Transmembrane domains: I38-I57, S90-W112, T1150-I1167, L188-M207, L373-A393, V432-I448, Y530-L550 Sodium:solute symporter family domain: Y67-G496	BLAST_DOMO BLAST_DOMO BLAST_DOMO HMMER BLIMPS_BLOCKS Sodium:solute symporter signature BL00456: Y44-G98, A120-R149, L182-G236, P469-A478 Sodium:solute symporter family PROFILESCAN signatures: Q179-V226, D458-D519 TRANSMEMBRANE TRANSPORT PERMEASE PROTEIN BLAST_PRODOM SODIUM SYMPORT PROLINE COTRANSPORTER SYMPORTE GLYCOPROTEIN PD000991: Y67-G496 SODIUM:SOLUTE SYMPORTE FAMILY DM00745 P13866 24-561: H34-W565 Na solute symporter 1 motif: G183-A208 MOTIFS

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
20	7477249CD1	1096	S115 S163 S276 S280 S332 S333 S404 S454 S46 S461 S462 S508 S514 S671 S863 S891 S1084 T262 T340 T345 T347 T407 T570 T612 T687 T840 T948 T1034 T1036 Y322	N331 N383 N395 N411 N720 N932	Transmembrane domains: F289-L307, F935-L953, W967-V996, F1008-D1028 E1-E2 ATPase domains: T340-Q352, H502-V648 E1-E2 ATPases phosphorylation site signature BL00154: G143-L160, V335-F353, K529-C539, D616-H656	HMMER
21	7477720CD1	707	S204 S299 S360 S417 S488 S51 S58 S585 S591 S620 S638 S679 T334 T350 T483 T634 Y225 Y528	N297 N31 N342 N35	BLIMPS_BLOCKS BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS BLAST_1_PRODOM BLAST_1_PRODOM BLAST_DOMO MOTIFS SPSCAN	HMMER_PFAM BLIMPS_BLOCKS BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS BLAST_1_PRODOM BLAST_DOMO MOTIFS SPSCAN HMMER HMMER_PFAM BLIMPS_PRINTS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
21					Na+/H+ exchanger isoform 2 (NHE2) signature PR01086: F115-S128, K616-I627 + TRANSPORT EXCHANGER NA PD01672: A83-I113, I129-L177, Y178-L212, A213-F249, D262-I287, S288-Y321, L322-M355, S359-F405, Y406-F452, I489-K531, I532-G562, R593-R640	BLIMPS_PRINTS BLIMPS_PRODOM
22	7477852CD1	729	S142 S144 S155 S285 S291 S299 S318 S654 S664 S669 S697 S719 T110 T138 T281 T379 T447 T532 T539	N208 N358 N717	ANTIPORTER SYMPORT SODIUM EXCHANGER GLYCOPROTEIN SODIUM/HYDROGEN PD000631: I77-A438 do BETA; EXCHANGER; NA; DM02572 P26434 14-716: L15-L687	BLAST_PRODOM
23	1471717CD1	492	S13 S18 S225 S314 S373 T323 T33 T351 T426	N229 N249	Transmembrane domains: F493-F512, M554-M570 Ankyrin repeats: L78-E108, A116-T148, F162-S194 VANILLOID RECEPTOR SUBTYPE 1 PD101189: F115-L220 ATP/GTP binding site (P-loop): A412-T419	HMMER HMMER_PFAM BLAST_PRODOM MOTIFS HMMER HMMER_PFAM BLAST_DOMO BLAST_DOMO

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases	
24	3874406CD1	1494	S30 S50 S134 S230 S368 S549 S638 S669 S686 S696 S792 S800 S831 S912 S1004 S1070 S1146 S1172 S1206 S1365 T111 T435 T449 T501 T520 T632 T649 T657 T729 T845 T1049 T1134 T1217 T1247 T1295 T1318 T1339 T1422 T1482 Y824	N109 N130 N313 N421 N453 N71 N788 N817 N84 N867 N91 N1182	transmembrane domain: L204-F221, T272-L290, L735-Y753, F896-S914, V941-I959, L975-R998, F1019-V1039 ABC transporter: G384-G566 G1190-G1366 ABC transporters Family proteins BL00211: I389-L400, L492-D523 ABC transporters Family signature: V472-D523	HMMER HMMER_PFAM BLIMPS_BLOCKS PROFILESCAN BLAST_DOMO ABC TRANSPORTERS FAMILY	

Table 3 (cont.)

SEQ NO:	Incyte ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
25	4599654CD1	774		S355 S356 S40 S505 S552 S559 S597 S61 S67 S734 S736 T203 T418 T668 T764 Y490	N291 N416	transmembrane domain: Y95-F118, T203-L219, L327-I353 transmembrane region cyclic Nucleotide G: Y168-I414	HMMER
				K443-M531		Cyclic nucleotide-binding domain:	HMMER_PFAM
						Cyclic nucleotide-binding domain proteins	BLIMPS_BLOCKS
						BL00888: G452-V475, G488-L497	
						cAMP-dependent protein kinase signature	BLIMPS_PRINTS
						PR00103: F449-R463, S489-T498	
						HYPERPOLARIZATIONACTIVATED CATION CHANNEL, HAC3	BLAST_PRODOM
						PD180735: T538-M774	
						CHANNEL IONIC POTASSIUM K+ SUBUNIT HYPERPOLARIZATIONACTIVATED PROTEIN PUTATIVE EAG LONG	BLAST_PRODOM
						PD001039: E74-R167	
						CAMP RECEPTOR PROTEIN CYCLIC NUCLEOTIDE-BINDING DOMAIN	BLAST_DOMO
						DM01165 A55251 333-706:H263-P561 DM01165 P29973 311-684:H263-P561 DM01165 Q03041 286-658:H263-G548 DM01165 S52072 262-635:H263-Q595	

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
26	5047435CD1	614	S116 S210 S290 S538 S577 S606 T267 T432 T443 T591	N407 N599	<p>transmembrane domain: V124-I142, A168-M190, A371-V390, W483-I511, S526-I543, F552-V570</p> <p>Sugar (and other) transporter: L83-F585</p> <p>Sugar transport proteins BL00216: L174-S223, G92-S103</p> <p>Sugar transporter signature PR00171: G92-I102, V175-I194, L486-V507, S509-F521</p> <p>Glucose transporter signature PR00172: V343-V364, L486-S509, R519-L537, W550-V570</p> <p>Sugar_Transport_1: G138-G153 A360-A375</p> <p>Sugar transport proteins signatures sugar_transport_1.prf: L344-S401 sugar_transport_2.prf: A160-A225</p> <p>SUGAR TRANSPORT PROTEINS DM00135 S25015 122-478 : A160-D417, L480-K574, DM00135 P09830 101-452 : G161-V405, L481-K574, DM00135 Q01440 101-433 : R178-G388, R178-G388, L486-G575 DM00135 P15729 242-463 : A485-S577, R286-L414</p>	<p>HMMER</p> <p>HMMER_FAM</p> <p>BLIMPS_BLOCKS</p> <p>BLIMPS_PRINTS</p> <p>BLIMPS_PRINTS</p> <p>MOTIFS</p> <p>PROFILESCAN</p> <p>BLAST_DOMO</p>

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Potential Glycosylation Domains and Motifs	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
27	7475603CD1	2180	S181 S216 S233 S260 S409 S419 S842 S983 S1008 S1172 S1229 S1237 S1269 S1349 S1353 S1462 S1469 S1504 S1566 S1881 S1993 S2018 S2174 S2167 T120 T165 T338 T348 T510 T599 T614 T822 T931 T1079 T1086 T1094 T1171 T1181 T1209 T1219 T1417 T1439 T1822 T1870 T1917 T1988 T2057 T2125 Y656 Y1448	N112 N132 N346 N374 N1100 N1415 N1420 N1491 N1552 N1695 N1831 S2174 T165 T510 T822 T1086 T1171 T1209 T1417 T1822 T1917 T2057 Y1448	N112 N132 transmembrane domain: F630-L648, L664-L680, V1570-V1590, M1622-Q1641	HMMER	

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
27					ABC TRANSPORTERS FAMILY DM00008 P41233 839-1045:V841-A1046, L1829-M2032	BLAST_DOMO
28	7477845CD1	1737	S23 S254 S687 S692 S695 S7 S713 S766 S773 S8 S861 S1113 S1228 S1271 S1455 S1463 S1537 S1595 S1647 S1652 S1730 T272 T324 T886 T1257 T1320 T1359 T1387 T1406 T1456 T1486 T1528 T1561 T1570 T1645 T1694 Y419 Y702 Y832	N210 N216 N859 N1064 N1371 N1449 N1228 N1455 N1537 N1647 N1730 N1886 N1359 N1406 N1486 N1561 N1645 N1694 Y419 Y702	V1319-F1336, I1338-F1357, M1244-A1262, V107-V126, V181-M199, S298- A1423-I1446, W1509-V531, V575-1598, Y879-M904, I321, I1017-F1034, I1134-V1152 transmembrane domain: W32-I321 M380-I598 L884-V1155 I1206- I1446	HMMER
					Ion transport protein ion_trans: PR00167: D535-D561	HMMER_PFAM
					PROTEIN F17C8 .6 C11D2 .5 NEARLY IDENTICAL C ELEGANS PREDICTED	BLIMPS_PRINTS
					PD023994: V1447-S1637, E1714-T1720	BLAST_PRODOM
					C11D2 .6 PROTEIN PD178227: L1241-R1368, I1206-F1292 F585-E606	BLAST_PRODOM
					C11D2 .6 PROTEIN SIMILARITY ALONG ENTIRE GENE CALCIUM CHANNEL ALPHA PROTEINS PD041964: L599-V885.	BLAST_PRODOM
					CHANNEL CALCIUM IONIC SUBUNIT VOLTAGE GATED SODIUM ALPHA TRANSMEMBRANE L TYPE PD000032: Y887-V1120, I33-V330, K1361- F1450, I1206-F1357, I577-I598, F1337- L1356, I1134-F1159, D1416-V1443	BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Potential Domains and Motifs	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
28					III REPEAT DM00079 A55138 1052-1268:V1020-L1227 DM00079 P35500 1424-1636:W1090-P1194, I1017-N1050		BLAST_DOMO
29	168827CD1	547	S109 S167 S201 S282 S336 S404 S408 S526 T133 T323 T35 T432 T453 T58	N102 N107 N56	transmembrane domain: F16-T35, Y180-C200, S201-V222, M410- E429, T469-Y492, L496-L514 Sugar (and other) transporter: L13-Q528	HMMER	BLAST_DOMO
30	7472734CD1	547	S143 S167 S201 S282 S336 S404 S408 S46 S526 S60 S68 T133 T323 T432 T453 T58	N102 N39 N56 N62	ORGANIC TRANSPORTERLIKE TRANSPORT PROTEIN RENAL ANION TRANSPORTER CATIONIC KIDNEYSPECIFIC SOLUTE PD151320: N102-L144 transmembrane domain: I18-F32, M147-Y163, Y180-C200, S201- V222, M410-E429, T469-Y492, L496-L514 Sugar (and other) transporter: L18-Q528	HMMER BLAST_PRODOM	BLAST_PRODOM
					SUGAR TRANSPORT PROTEINS DM00032 P46501 280-351:V121-K173	HMMER_PFAM	BLAST_PRODOM
					ORGANIC TRANSPORTERLIKE TRANSPORT PROTEIN RENAL ANION TRANSPORTER CATIONIC KIDNEYSPECIFIC SOLUTE PD151320: N102-K145		BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
3:1	7473473CD1	988	S142 S237 S24 S252 S322 S369 S502 S680 S773 S847 S883 S925	N170 N235 N403 N466 N663 N830	transmembrane domain: L342-A360 Transmembrane cyclic Nucleotide G: Y288-T536	HMMER
			S943 S952 S974 S981 T127 T14 T215 T442 T478 T521 T634 T725 T73 T832 T869 T909 T929		Cyclic nucleotide-binding domain: V564-A655	HMMER_PFM
					PAC motif PA: C92-T132	HMMER_PFM
					CHANNEL POTASSIUM IONIC EAG SUBUNIT HEAG BLAST_PRODOM LONG ELECTOCARDIOGRAPHIC QT SYNDROME PD017645: K809-D984	BLAST_PRODOM
					CHANNEL IONIC K+ SUBUNIT HYPERPOLARIZATION ACTIVATED PUTATIVE EAG LONG PD001039: S179-I284	BLAST_PRODOM
					CHANNEL K+ IONIC EAG SUBUNIT TRANSMEMBRANE ION TRANSPORT VOLTAGEGATED PD011550: N658-E737	BLAST_PRODOM
					CHANNEL PROTEIN IONIC POTASSIUM NON PHOTOTROPIC HYPOCOTYL PUTATIVE SUBUNIT REPEAT EAG PD009483: M1-E89	BLAST_PRODOM
					CAMP RECEPTOR PROTEIN CYCLIC NUCLEOTIDE-BINDING DOMAIN DM01165 148912 391-786:H361-S756 DM01165 Q02280 384-776:H361-E737 DM01165 138465 562-948:H361-R671, S974-E985	BLAST_DOMO
					POTASSIUM CHANNEL; KST1; AKT1; DM02383 148912 164-389:V162-E314, E314-A360, W362-V455	BLAST_DOMO

Table 3 (cont.)

SEQ NO:	Incyte ID	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
32	7477725CD1	533		S107 S109 S143 S167 S282 S345 S408 S469 S60 T133 T289 T323 T336 T432 T526	N102 N216 N56 N62 F150-D168, I380-N401, I407-V426, L486-F504 Sugar (and other) transporter: A111-K528	transmembrane domain: F150-D168, I380-N401, I407-V426, L486-F504 Organic transporter like transport Protein renal anion transporter cationic Kidney specific solute PDI51320: N102-K145	HMMER HMMER_PFAM BLAST_PRODOM

Table 4

Polynucleotide SEQ ID NO.	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
33	3474673CB1	1775	1-391, 578-786, 1024-1301	GNFL.g7798848_00000 3_004.edit 6724643H1 (LUNLIMT01)	1 861	1156 1347
				3474673H1 (LUNGNOT27)	249	568
				71495515V1	1205	1775
34	4588877CB1	1545	261-619, 794-1071	71495515V1) FL135171_00001	975 539	1545 1534
				71497982V1	1	662
35	7472214CB1	1941	1483-1558, 1- 413, 495-616, 732-1149	GBI:g8117242_000054 edit.8639-8803 GBI:g8117242_000054 edit.4857-4997 GBI:g8117242_000054 .edit.10305-10463 6891360H1 (BRAITDR03)	1171 544	1335 684
				GBI:g8117242_000054 edit.50-89 GBI:g8117242_000054 edit.6950-7093 GBI:g8117242_000054 edit.4345-4478 60124962D2 GBI:g8117242_000054 edit.8313-8414 GBI:g8118985_000043 edit.12301- 124444:comp	1441 1433 1433 1	1599 1905 240 925 358 1735 1069 685 241
				GBI:g8117242_000054 edit.4112-4228 GBI:g8117242_000054 edit.10957-11181 5500380H1 (BRABDIRO1)	1170 1119 907	1941 1119 1119
				GBI:g8117242_000054 edit.10616-10732	1600	1716

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (s)	Sequence Fragments	5' Position	3' Position	
35				GBI:g8117242_000054 edit. 8907-9011	1336	1440	
36	7473053CB1	4971	3312-3482, 1- 1466, 4307-4971, 2184-2221	GBI:g8117242_000054 edit. 6643-6756 8035016H1 (SMCRUNE01) 6822202J1 (SINTNOR01) 6781747H1 (OYARDIR01) 8035016J1 (SMCRUNE01) 6824230H1 (SINTNOR01) 6894266H1 (BRAITDR03) 6777836H1 (OYARDIR01) 6908503H1 (PITTUDIR01) 6908503J1 (PITTUDIR01) 6823447H1 (SINTNOR01) 6823447J1 (SINTNOR01) 6006310F8 (FTBRUNT02) 4171959T6 (SINTNOT21) 5088860F6 (UTRSTMRO1)	811 2315 2145 968 2979 2867 548 1601 1 1270 3525 4226 4501 3637 4461 1	924 2975 2877 1449 3643 3483 1157 2238 667 1830 4260 4829 4969 4287 4853 1404 1	1336 8907-9011 6643-6756 2184-2221 6781747H1 2184-2221 8035016J1 6824230H1 6894266H1 6777836H1 6908503H1 6908503J1 6823447H1 6823447J1 6006310F8 4171959T6 5088860F6 GBI.1ee4.edit 1404 1404
37	7473347CB1	1404	126-633, 1013- 1404, 768-838		1	1404	

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
38	7474240CB1	4048	3023-4048, 1753-2469, 1-920, 1593-1658, 2614-2908, 1138-1367	71984804V1 GBI:g7656646_edit 71986624V1 55055014H1 55037111J2 71983668V1 GBI:g5923734_edit 55037119J2 2502027F6 (ADRETUT05)	964 929 1369 1 95 1371 2612 224 696	1311 3418 1976 130 871 2043 4048 875 1235
39	7475338CB1	1539	1412-1539, 1-328, 495-837, 922-1218	GBI:g7960701_000004 edit.549-713 GBI:g7960701_000004 edit.13381-13480 GBI:g7960701_000004 edit.8755-8943 GBI:g7960701_000004 edit.4292-4417 GBI:g7960701_000004 edit.16237-16317 GBI:g7960701_000004 edit.20107-20325 GBI:g7960701_000004 edit.9989-10099 GBI:g7960701_000004 edit.18748-18873 GBI:g7960701_000003 edit.9783-9884 GBI:g7960701_000004 edit.5251-5403 GBI:g7960701_000004 edit.8384-8506 71906448V1 71753467V1 3351512F6 (PROSNOT28)	154 1015 715 313 1114 1321 904 52 1195 1014 1320 592 627 912 2185	312 1113 903 438 1194 1539 1082 714 860
40	7476747CB1	3114	1717-1870, 1-503, 1468-1650	7761783J1 (THYMMOE02) 6934981R8 (SINTTMR02)	1943 78	2570 860

Table 4 (cont.)

Polymerotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (S)	Sequence Fragments	5' Position	3' Position
40				6389368H1 (PROSTMC01) 70536163V1 6934981F8 (SINTTMR02) GNN.97712065_000012 002 7080657H1 (STOMTMR02) 5633289H1 (PLACFER01) 95746200 GBI.92262095 1	1782 2575 1 452 838 639 1215 1	2075 3114 643 1922 1403 890 1473 2877
41	7477898CB1	2877	846-901, 1272- 1378, 2319-2877 1-1399, 2207- 2229	55022826J1 55030210H1 4399366T6 (TESTTTUT03) 55030274H1 9565876 55018149J1 FL203597_00001 GNN.97263861_026.ed it	1138 403 2231 1482 2597 1907 712 1 1	1834 986 2777 2153 2820 2585 1807 1052
42	7472728CB1	2820				
43	7474322CB1	1440	1-604, 714-768	GBI.98081632_edit 71228887V1 70868623V1 988	1 1090 1 1	1440 1440 1440 1440
44	5455621CB1	2394	1483-1686, 1- 329, 838-1155, 2201-2235	3696546T6 (SININOT05) 70674954V1 1426382H1 (SINTEST01) 3696546F6 (SININOT05) 6828352H1 (SINTNOR01) 3699565H1 (SININOT05) 7700096H1 (KIDPTDDE01) 70678552V1 1419	1833 1520 1224 799 530 1 1 250 1419	2394 2091 1492 1381 1149 281 990 2055

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (s)	Sequence Fragments	5' Position	3' Position
45	7477248CB1	2890	1-58, 2739-2890, 2310-2349, 329- 1167	2777287H1 (OVARTUT03) (LSUBDMC01)	2250	2498
				7977733H1 (NOSETUE01)	841	1427
				7678168J1 (KIDCTME01)	1271	1827
				7611941J1 (OVARTUT10)	2273	2890
				6590507H1 (TLYMUNT03)	179	672
				2701794F6 (OVARTUT10)	1208	1741
				2544096F6 (UTRSNOT11)	1732	2252
				60117044D2 (OVARNON03)	1	431
				5020832H1 (UTRSTME01)	2195	2471
				7662529H1 (UTRSTME01)	526	926
				4762728F6 (PLACNOT05)	872	1387
				92264624 (BRAITUT23)	2268	2446
				6264977H1 (MCCLDTXN03)	1210	1797
				2944004F6 (MUSTTMC01)	2790	3531
				6610392H2 (SINTFER03)	3306	3926
				GNN.97328818_0000024 002.edit	2145	2648
				7035078H1 (HEARFEE03)	1	440
				7620248J1 (HNT2NOT01)	2431	3039
				496537H1 (MCCLDTXN03)	2329	2487
				6264427T8 (MCCLDTXN03)	453	1174
				6264427F8 (MCCLDTXN03)	170	842

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
46				7673654H1 (FIBPFEC01)	1733	2239
47	3046849CB1	2135	2072-2135, 596- 711, 1014-1263	8262790V1 71896642V1 71247870V1 FL3046849_96815043_- 000004_g183298	1383 1 1050 51	2135 592 1736 1520
48	4538363CB1	2637	1-183, 1575- 1680, 2094-2637	FL4538363_g3126781_- g520469	1	1917
49	6427460CB1	3783	985-1833, 2687- 3204	71401405V1 70857895V1 (UTRCDIE01) 70857789V1 95689372_edit	1766 416 3284 566 1092	2637 1035 3783 1109 3361
50	7474127CB1	2105	1078-2105	GBI.g8568959_edit_3 96140313 5819744F7 (PROSTUS23) 95920552	1119 482 168 1 1	2105 951 479 452 488
51	7476949CB1	2069	1233-1356, 1- 117, 2047-2069, 347-503, 1536- 1844	FL7476949_96714723_- g338053 4669722H1 (SINTNOT24)	862 1801 2404 1	1359 2046 2069 3156
52	7477249CB1	4245	2833-3018, 1869- 2121, 3707-4245, 1-252, 982-1239, 289-357	71660072V1 71657569V1 7633968J1 (SINTDIE01) 6440145F8 (BRAENOT02)	3106 2579 2404 3228 1	3854 3175 2046 3891 2547

Table 4 (cont.)

Polymerotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (s)	Sequence Fragments	5' Position	3' Position
52				7765571H1 (URETTUE01)	1	693
53	7477720CB1	2124	1-936, 1200- 1488, 1982-2124, 1562-1745	FL7477720_95836195_- 9205709	1427	1716
54	7477852CB1	2195	1-418, 1899-2195	GBI.g8748866.edit	1	2195
55	1471717CB1	2055	206-768, 881- 931, 1155-1323	70464956V1 72277206V1 70469664V1 GNN.g'109510_000068 002.edit	492 1 939 772	994 297 1582 1500
				GBI.g8039708_50_63_- 62_56_edit	238	897
				6540941H1 (LNODDNON02)	1571	2055
56	3874406CB1	4727	1-1299, 1576- 1632, 2550-3619, 2014-2192	70466394V1 71793833V1 55052105J1 71798347V1 71798870V1 55058313J1 55051482J1 FL3874406_g3810670_- g4240130_3_3-4	1035 4117 1673 3620 3575 1380 2475 482	1616 4727 2128 4358 4244 2125 3134 744
				55068154H1 3133035F6 (SMCCCNOT01)	2223 1 1	2741 605
57	4599654CB1	3852	1-335, 2014-3231	8016331J1 (BMARTXE01) 71040001V1 8041905H1 (OVARTUE01) 55062505H1 97959336_CD 6772024J1 (BRAINTOR01) 55064208J1	1778 3348 1666 660 349 1 1118	2424 1528 2685 3593 1233 2540 623 1718

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (s)	Sequence Fragments	5' Position	3' Position
57				6617183H2 (BRAXTDR14) 6195941H1 (PITUNNON01) 71909238V1 2216896F6 (SINTFET03) 71042073V1	2981 2823 1225 2474 2276 1211	3530 3458 1747 2923 2745 1917
58	5047435CB1	1917	1-238, 1162-1474	7431853H1 (UTPRMTMR02) GNN : g4375937_004_ed it	814	1336
59	7475603CB1	6791	1-3283, 5952- 6101, 3793-4761	7104421V1 7726210H1 (THYRDIE01) 7721710J2 (THYRDIE01) 7104173F8 (BRANDIN01) 71704256V1 7757131H1 (SPLNTUE01) GNN .g7711543_000002 002.edit	6240 1885 2696 6240 1885 2602 128 6240 5516 3025 2408 544 544 198 2751	941 394 394 6791 6791 2602 3232 6222 3093 3734 3093 696 696 3947 2676

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (s)	Sequence Fragments	5' Position	3' Position
59				7724639H1 (THYRDIE01) 55052451J1 7739867H1 (THYMNOE01) 6879936H1 (UTRSTMRO2) 55058371H1	951 4792 5131 697 3850	1545 5698 5794 1054 4747
60	7477845CB1	5214	2390-4599, 645-1796	GBI.g8346195_edit GBI.g8052096_edit 8104845H1 (MIXDDIE02) GBI.g8518014_edit	1765 1132 2822 1	5214 1839 3367 1266
61	168827CB1	1818	1-281, 796-912	g1081430 168827H1 (LIVRNNOT01) 55064792J1 55072770H1 GNN.g6498074_012.ed it 087510H1 (LIVRNNOT01) g751568	1036 65 1 495 1321 314	1525 406 209 1110 1818 574
62	7472734CB1	2245	1223-1339, 1-710	55055559H1 55045003H2 95361744 GBI.g8118965_0000015 _000006_00001_0000 10_00003.edit g751568	1336 1 908 602 1763 556	1773 699 697 1109 2245 2200
63	7473473CB1	3196	1-376, 460-1796	GBI.g8018151_000001 .edit GBI.g6433826_000001 .edit 55063069J1 g669271	1799 1172 1 1799	3196 2052 850 2106

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment (S)	Sequence Fragments	5' Position	3' Position
64	7477725CB1	1602	1072-1602	7455614H1 (LIVRTUE01) 4288148H1 (LIVRDIR01) GBI.98131631_000007 000005.edit q2656651	416 112 1 829	835 257 1602 1084

Table 5

Polynucleotide SEQ ID NO:	Incyte Project ID	Representative Library
33	3474673CB1	LUNLTMT01
34	4588877CB1	LUNLTMT01
35	7472214CB1	BRAENOT04
36	7473053CB1	SINTNOR01
38	7474240CB1	ADRETUT05
39	7475338CB1	SINTNOT18
40	7476747CB1	SINTTMR02
42	7472728CB1	TESTTUT03
43	7474322CB1	SINTBST01
44	5455621CB1	SINTNOT05
45	7477248CB1	UTRSNOT11
46	2944004CB1	MCLDTXN03
47	3046849CB1	HNT2AGT01
48	4538363CB1	PANCNOT07
49	6427460CB1	BRAUNOR01
50	7474127CB1	PROSTUS23
51	7476949CB1	COLNTMC01
52	7477249CB1	COLNPOT01
55	1471717CB1	OVARDIT01
56	3874406CB1	LIVRDIRO1
57	4599654CB1	LUNGNOT23
58	5047435CB1	OVARDIRO1
59	7475603CB1	THYRDIE01
60	7477845CB1	MIXDDIE02
61	168827CB1	LIVRNOT01
64	7477725CB1	LIVRTUE01

Table 6

Library	Vector	Library Description
ADRETUT05	PINCY	Library was constructed using RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma.
BRAENOT04	PINCY	Library was constructed using RNA isolated from inferior parietal cortex tissue removed from the brain of a 35-year-old Caucasian male who died from cardiac failure. Pathology indicated moderate Lepto meningeal fibrosis and multiple microinfarctions of the cerebral neocortex. Patient history included dilated cardiomyopathy, congestive heart failure, cardiomegaly and an enlarged spleen and liver.
BRAUNR01	PINCY	This random primed library was constructed using RNA isolated from striatum, globus pallidus and posterior putamen tissue removed from an 81-year-old Caucasian female who died from a hemorrhage and ruptured thoracic aorta due to atherosclerosis. Pathology indicated moderate atherosclerosis involving the internal carotids, bilaterally; microscopic infarcts of the frontal cortex and hippocampus; and scattered diffuse amyloid plaques and neurofibrillary tangles, consistent with age. Grossly, the leptomeninges showed only mild thickening and hyalinization along the superior sagittal sinus. The remainder of the leptomeninges was thin and contained some congested blood vessels. Mild atrophy was found mostly in the frontal poles and lobes, and temporal lobes, bilaterally. Microscopically, there were pairs of Alzheimer type II astrocytes within the deep layers of the neocortex. There was increased satellitosis around neurons in the deep gray matter in the middle frontal cortex. The amygdala contained rare diffuse plaques and neurofibrillary tangles. The posterior hippocampus contained a microscopic area of cystic cavitation with hemosiderin-laden macrophages surrounded by reactive gliosis. Patient history included sepsis, cholangitis, post-operative atelectasis, pneumonia CAD, cardiomegaly due to left ventricular hypertrophy, splenomegaly, arteriolonephrosclerosis, nodular colloid goiter, emphysema, CHF, hypothyroidism, and peripheral vascular disease.
COLNPOT01	PINCY	Library was constructed using RNA isolated from colon polyp tissue removed from a 40-year-old Caucasian female during a total colectomy. Pathology indicated an inflammatory pseudopolyp; this tissue was associated with a focally invasive grade 2 adenocarcinoma and multiple tubullous adenomas. Patient history included a benign neoplasm of the bowel.
COLNTMC01	PINCY	This large size-fractionated library was constructed using pooled cDNA from three different donors. cDNA was generated using mRNA isolated from colon epithelium tissue removed from a 13-year-old Caucasian female (donor A) who died from a motor vehicle accident; from ascending colon removed from a 29-year-old female (donor

Table 6 (cont.)

Library	Vector	Library Description
HNT2AGT01	PBLUESCRIPT	B); and from colon tissue removed from the appendix of a 37-year-old Black female (donor C) during myomectomy, dilation and curettage, right fimbrial region biopsy, and incidental appendectomy. Pathology for donor B indicated the proximal and distal resection margins of small bowel and colon away from the mass lesion were uninvolved by lymphoma. Pathology for donor C indicated an unremarkable appendix. Pathology for the matched tumor tissue (donor B) indicated malignant lymphoma, small cell, non-cleaved (Burkitt's lymphoma, B-cell phenotype), forming a polypoid mass in the region of the ileocecal valve, associated with intussusception and obstruction clinically. The liver and multiple (3 of 12) ileocecal region lymph nodes were also involved by lymphoma. Pathology for the associated tumor tissue (donor C) indicated multiple uterine leiomyomata. Donor C presented with deficiency anemia, an umbilical hernia, and premenopausal menorrhagia. Patient history included sarcoidosis of the lung.
LIVRDI01	PINCY	Library was constructed at Stratagene (STR937233), using RNA isolated from the hNT2 cell line derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor. Cells were treated with retinoic acid for 5 weeks and with mitotic inhibitors for two weeks and allowed to mature for an additional 4 weeks in conditioned medium.
LIVRN0T01	PBLUESCRIPT	The library was constructed using RNA isolated from diseased liver tissue removed from a 63-year-old Caucasian female during a liver transplant. Patient history included primary biliary cirrhosis diagnosed in 1989. Serology was positive for anti-mitochondrial antibody.
LIVRTUE01	PCDNA2.1	Library was constructed at Stratagene, using RNA isolated from the liver tissue of a 49-year-old male. This 5' biased random primed library was constructed using RNA isolated from liver tumor tissue removed from a 72-year-old Caucasian male during partial hepatectomy. Pathology indicated metastatic grade 2 (of 4) neuroendocrine carcinoma forming a mass. The patient presented with metastatic liver cancer. Patient history included benign hypertension, type I diabetes, prostatic hyperplasia, prostate cancer, alcohol abuse in remission, and tobacco abuse in remission. Previous surgeries included destruction of a pancreatic lesion, closed prostatic biopsy, transurethral prostatectomy, removal of bilateral testes and total splenectomy. Patient medications included Eulexin, Hytrin, Proscar, Ecotrin, and insulin. Family history included atherosclerotic coronary artery disease and acute myocardial infarction in the mother; atherosclerotic coronary artery disease and type II diabetes in the father.
LUNGNOT23	PINCY	Library was constructed using RNA isolated from left lobe lung tissue removed from

Table 6 (cont.)

Library	Vector	Library Description
LUNLNT01	PINCY	a 58-year-old Caucasian male. Pathology for the associated tumor tissue indicated metastatic grade 3 (of 4) osteosarcoma. Patient history included soft tissue cancer, secondary cancer of the lung, prostate cancer, and an acute duodenal ulcer with hemorrhage. Family history included prostate cancer, breast cancer, and acute leukemia.
LUNLNT01	PINCY	The library was constructed using RNA isolated from right middle lobe lung tissue removed from a 63-year-old Caucasian female during a segmental lung resection. Pathology for the associated tumor tissue indicated grade 3 adenocarcinoma in the right lower lobe and right middle lobe that infiltrated the parietal pleural surface. Metastatic grade 3 adenocarcinoma was found in the diaphragm. The lymph nodes contained metastatic grade 3 adenocarcinoma and involved the superior mediastinal and inferior mediastinal lymph nodes. Patient history included hyperlipidemia. Family history included benign hypertension, cerebrovascular disease, breast cancer, and hyperlipidemia.
MCLDTXN03	PINCY	This normalized dendritic cell library was constructed from one million independent clones from a pool of two derived dendritic cell libraries. Starting libraries were constructed using RNA isolated from untreated and treated derived dendritic cells from umbilical cord blood CD34+ precursor cells removed from a male. The cells were derived with granulocyte/macrophage colony stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF alpha), and stem cell factor (SCF). The GM-CSF was added at time 0 at 100 ng/ml, the TNF alpha was added at time 0 at 2.5 ng/ml, and the SCF was added at time 0 at 25 ng/ml. Incubation time was 13 days. The treated cells were then exposed to phorbol myristate acetate (PMA), and Ionomycin. The PMA and Ionomycin were added at 13 days for five hours. The library was normalized in two rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research (1996) 6:791, except that a significantly longer (48 hours/round) reannealing hybridization was used.
MIXDDIE02	PBK-CMV	This 5' biased random primed library was constructed using pooled cDNA from seven donors. cDNA was generated using mRNA isolated from brain tissue removed from two Caucasian male fetuses who died after 23 weeks gestation from hypoplastic left heart (A) and prematurity (B); from posterior hippocampus from a 55-year-old male who died from COPD (C); from cerebellum, corpus callosum, thalamus and temporal lobe tissue from a 57-year-old Caucasian male who died from a CVA (D); from dentate nucleus and vermis from an 82-year-old Caucasian male who died from a myocardial infarction (E); from pituitary gland from a 74-year-old Caucasian female who died from a myocardial infarction (F) and vermis tissue from a 77-year-old Caucasian female who died from pneumonia (G). For donor C, pathology indicated

Table 6 (cont.)

Library	Vector	Library Description
		mild lateral ventricular enlargement. For donor F, pathology indicated moderate Alzheimer's disease, recent multiple infarctions involving left thalamus, left parietal and occipital lobes (microscopic) and right cerebellum (gross), mild atherosclerosis involving middle cerebral arteries bilaterally and mild cerebral amyloid angiopathy. For donor G, pathology indicated severe Alzheimer's disease, mild atherosclerosis involving the middle cerebral and basilar arteries, and cerebral atrophy consistent with Alzheimer's disease. For donor D, patient history included Huntington's chorea. Donor E was taking nitroglycerin and dopamine; donor F was taking Lopressor, heparin, ceftriaxone, captorpril, Isordil, nitroglycerin, Clinoril, Ecotrin and tacrine; and donor G was taking insulin.
OVARDIR01	PCDNA2.1	This random primed library was constructed using RNA isolated from right ovary tissue removed from a 45-year-old Caucasian female during total abdominal hysterectomy, bilateral salpingo-oophorectomy, vaginal suspension and fixation, and incidental appendectomy. Pathology indicated stromal hyperthecosis of the right and left ovaries. Pathology for the matched tumor tissue indicated a dermoid cyst (benign cystic teratoma) in the left ovary. Multiple (3) intramural leiomyomata were identified. The cervix showed squamous metaplasia. Patient history included metrorrhagia, female stress incontinence, alopecia, depressive disorder, pneumonia, normal delivery, and deficiency anemia. Family history included benign hypertension, atherosclerotic coronary artery disease, hyperlipidemia, and primary tuberculous complex.
OVARDIT01	pINCY	Library was constructed using RNA isolated from diseased ovary tissue removed from a 39-year-old Caucasian female during total abdominal hysterectomy, bilateral salpingo-oophorectomy, dilation and curettage, partial colectomy, incidental appendectomy, and temporary colostomy. Pathology indicated the right and left adnexa were extensively involved by endometriosis. Endometriosis also involved the anterior and posterior serosal surfaces of the uterus and the cul-de-sac and the mesentery and muscularis propria of the sigmoid colon. Pathology for the associated tumor tissue indicated multiple (3 intramural, 1 subserosal) leiomyomata. Family history included hyperlipidemia, benign hypertension, atherosclerotic coronary artery disease, depressive disorder, brain cancer, and type II diabetes.
PANCNOT07	pINCY	Library was constructed using RNA isolated from the pancreatic tissue of a Caucasian male fetus, who died at 23 weeks' gestation.
PROSTUS23	pINCY	This subtracted prostate tumor library was constructed using 10 million clones from a pooled prostate tumor library that was subjected to 2 rounds of subtractive hybridization with 10 million clones from a pooled prostate tissue library. The

Table 6 (cont.)

Library	Vector	Library Description
		starting library for subtraction was constructed by pooling equal numbers of clones from 4 prostate tumor libraries using mRNA isolated from prostate tumor removed from Caucasian males at ages 58 (A), 61 (B), 66 (C), and 68 (D) during prostatectomy with lymph node excision. Pathology indicated adenocarcinoma in all donors. History included elevated PSA, induration and tobacco abuse in donor A; elevated PSA, induration, prostate hyperplasia, renal failure, osteoarthritis, renal artery stenosis, benign HTN, thrombocytopenia, hyperlipidemia, tobacco/alcohol abuse and hepatitis C (carrier) in donor B; elevated PSA, induration, and tobacco abuse in donor C; and elevated PSA, induration, hypercholesterolemia, and kidney calculus in donor D. The hybridization probe for subtraction was constructed by pooling equal numbers of cDNA clones from 3 prostate tissue libraries derived from prostate tissue, prostate epithelial cells, and fibroblasts from prostate stroma from 3 different donors. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR 19 (1991):1954 and Bonaldo, et al. Genome Research 6 (1996):791.
SININOT05	PINCY	Library was constructed using RNA isolated from ileum tissue obtained from a 30-year-old Caucasian female during partial colectomy, open liver biopsy, incidental appendectomy, and permanent colostomy. Patient history included endometriosis. Family history included hyperlipidemia, anxiety, and upper lobe lung cancer, stomach cancer, liver cancer, and cirrhosis.
SINTBST01	PINCY	Library was constructed using RNA isolated from the ileum tissue of an 18-year-old Caucasian female. The ileum tissue, along with the cecum and appendix, were removed during bowel anastomosis. Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. The cecum and appendix were unremarkable, and the margins were uninvolved. The patient presented with abdominal pain and regional enteritis. Patient history included osteoporosis of the vertebra and abnormal blood chemistry. Patient medications included Prilosec (omeprazole), Pentasa (mesalamine), amoxicillin, and multivitamins. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.
SINTNOR01	PCDNA2.1	This random primed library was constructed using RNA isolated from small intestine tissue removed from a 31-year-old Caucasian female during Roux-en-Y gastric bypass. Patient history included clinical obesity.
SINTNOT18	PINCY	Library was constructed using RNA isolated from small intestine tissue obtained from a 59-year-old male.
SINTTMR02	PCDNA2.1	This random primed library was constructed using RNA isolated from small intestine tissue removed from a 59-year-old male. Pathology for the matched tumor tissue

Table 6 (cont.)

Library	Vector	Library Description
TESTITU03	PINCY	indicated multiple (9) carcinoid tumors, grade 1, in the small bowel. The largest tumor was associated with a large mesenteric mass. Multiple convoluted segments of bowel were adhered to the tumor. A single (1 of 13) regional lymph node was positive for malignancy. The peritoneal biopsy indicated focal fat necrosis.
THYRDIE01	PCDNA2.1	Library was constructed using RNA isolated from right testicular tumor tissue removed from a 45-year-old Caucasian male during a unilateral orchectomy. Pathology indicated seminoma. Patient history included hyperlipidemia and stomach ulcer. Family history included cerebrovascular disease, skin cancer, hyperlipidemia, acute myocardial infarction, and atherosclerotic coronary artery disease.
UTRSNOT11	PINCY	This 5' biased random primed library was constructed using RNA isolated from diseased thyroid tissue removed from a 22-year-old Caucasian female during closed thyroid biopsy, partial thyroidectomy, and regional lymph node excision. Pathology indicated adenomatous hyperplasia. The patient presented with malignant neoplasm of the thyroid. Patient history included normal delivery, alcohol abuse, and tobacco abuse. Previous surgeries included myringotomy. Patient medications included an unspecified type of birth control pills. Family history included hyperlipidemia and depressive disorder in the mother; and benign hypertension, congestive heart failure, and chronic leukemia in the grandparent(s).

Table 7

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	<i>ESTs:</i> Probability value= 1.0E-8 or less <i>Full Length sequences:</i> Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>ESTs:</i> fasta E value= 1.06E-6 <i>Assembled ESTs:</i> fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value= 1.0E-8 or less <i>Full Length sequences:</i> fastx score= 100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Atwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.	<i>PFAM hits:</i> Probability value= 1.0E-3 or less <i>Signal peptide hits:</i> Score= 0 or greater

Table 7 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score≥GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Person, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Person, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Somhammer, B.L. et al. (1998) Proc. Sixth Int'l. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds, The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide selected from the group consisting of:
 - a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-32,
 - b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-32,
 - c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, and
 - d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-32.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:33-64.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method for producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 - b) recovering the polypeptide so expressed.

10. An isolated antibody which specifically binds to a polypeptide of claim 1.

11. An isolated polynucleotide selected from the group consisting of:

a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting

5 of SEQ ID NO:33-64,

b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64,

c) a polynucleotide complementary to a polynucleotide of a),

d) a polynucleotide complementary to a polynucleotide of b), and

10 e) an RNA equivalent of a)-d).

12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.

15 13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and

20 b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.

25

15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and

30 b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

16. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

35

17. A composition of claim 16, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

18. A method for treating a disease or condition associated with decreased expression of 5 functional TRICH, comprising administering to a patient in need of such treatment the composition of claim 16.

19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

- 10 a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting agonist activity in the sample.

20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.

15 21. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 20.

20 22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting antagonist activity in the sample.

25 23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.

24. A method for treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 23.

30 25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:

- a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and

b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

26. A method of screening for a compound that modulates the activity of the polypeptide of

5 claim 1, said method comprising:

- a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
 - b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
 - c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound
- 10 with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

27. A method for screening a compound for effectiveness in altering expression of a target

15 polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
- b) detecting altered expression of the target polynucleotide, and
- c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

28. A method for assessing toxicity of a test compound, said method comprising:

a) treating a biological sample containing nucleic acids with the test compound;

25 b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof;

30 c) quantifying the amount of hybridization complex; and

d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

29. A diagnostic test for a condition or disease associated with the expression of TRICH in a biological sample comprising the steps of:

- 5 a) combining the biological sample with an antibody of claim 10, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex; and
b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.

30. The antibody of claim 10, wherein the antibody is:

- 10 a) a chimeric antibody,
b) a single chain antibody,
c) a Fab fragment,
d) a F(ab')₂ fragment, or
e) a humanized antibody.

15

31. A composition comprising an antibody of claim 10 and an acceptable excipient.

32. A method of diagnosing a condition or disease associated with the expression of TRICH in a subject, comprising administering to said subject an effective amount of the composition of claim
20 31.

33. A composition of claim 31, wherein the antibody is labeled.

34. A method of diagnosing a condition or disease associated with the expression of TRICH in a subject, comprising administering to said subject an effective amount of the composition of claim
25 33.

35. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 10 comprising:

- 30 a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, or an immunogenic fragment thereof, under conditions to elicit an antibody response;
b) isolating antibodies from said animal; and

c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

5 36. An antibody produced by a method of claim 35.

37. A composition comprising the antibody of claim 36 and a suitable carrier.

38. A method of making a monoclonal antibody with the specificity of the antibody of claim
10 10 comprising:

a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32, or an immunogenic fragment thereof, under conditions to elicit an antibody response;

b) isolating antibody producing cells from the animal;

15 c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells;

d) culturing the hybridoma cells; and

e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

20

39. A monoclonal antibody produced by a method of claim 38.

40. A composition comprising the antibody of claim 39 and a suitable carrier.

25 41. The antibody of claim 10, wherein the antibody is produced by screening a Fab expression library.

42. The antibody of claim 10, wherein the antibody is produced by screening a recombinant immunoglobulin library.

30

43. A method for detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32 in a sample, comprising the steps of:

a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and

b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32 in the sample.

5 44. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32 from a sample, the method comprising:

a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and

10 b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-32.

45. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.

46. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.

15 47. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.

48. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.

20 49. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.

50. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.

51. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.

25 52. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.

53. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.

30 54. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.

55. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.

56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.

57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.

58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.

5 59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15.

60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:16.

10 61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:17.

62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:18.

63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:19.

15 64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:20.

65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:21.

66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:22.

20 67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:23.

68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:24.

25 69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:25.

70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:26.

71. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:27.

30 72. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:28.

73. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:29.

74. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:30.

75. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:31.

5 76. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:32.

77. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:33.

10 78. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:34.

79. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:35.

15 80. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:36.

81. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:37.

82. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:38.

25 83. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:39.

84. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:40.

30 85. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:41.

86. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:42.

87. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 5 NO:43.

88. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 10 NO:44.

89. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 15 NO:45.

90. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 20 NO:46.

91. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 25 NO:47.

92. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 20 NO:48.

93. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 25 NO:49.

94. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 30 NO:50.

95. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 35 NO:51.

96. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID 40 NO:52.

97. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:53.

5 98. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:54.

10 99. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:55.

100. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:56.

15 101. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:57.

102. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:58.

20 103. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:59.

104. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:60.

25 105. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:61.

106. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:62.

30 107. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:63.

108. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:64.

<110> INCYTE GENOMICS, INC.
RAUMANN, Brigitte E.
THORNTON, Michael
DING, Li
YUE, Henry
TANG, Y.Tom
HARLAND, Lee
BURFORD, Neil
GREENE, Barrie D.
SANJANWALA, Madhu S.
BAUGHN, Mariah R.
YAO, Monique G.
YANG, Junming
PATTERSON, Chandra
GANDHI, Ameena R.
HAFALIA, April J.A.
TRIBOULEY, Catherine M.
WALIA, Narinder K.
AU-YOUNG, Janice
WALSH, Roderick T.
RAMKUMAR, Jayalaxmi
LU, Yan
LU, Dyung Aina M.
AZIMZAI, Yalda
LAL, Preeti
ELLIOTT, Vicki S.
NGUYEN, Danniel B.
XU, Yuming
SEILHAMER, Jeffrey J.
BOROWSKY, Mark L.
KHAN, Farrah A.
KEARNEY, Liam
THANGAVELU, Kavitha
DAS, Debopriya
POLICKY, Jennifer L.

<120> TRANSPORTERS AND ION CHANNELS

<130> PI-0149 PCT

<140> To Be Assigned

<141> Herewith

<150> 60/216,547; 60/218,232; 60/220,112; 60/221,839
<151> 2000-07-07; 2000-07-14; 2000-07-21; 2000-07-28

<160> 64

<170> PERL Program

<210> 1
<211> 332
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3474673CD1

<400> 1
Met Tyr Arg Pro Arg Ala Arg Ala Ala Pro Glu Gly Arg Val Arg
1 5 10 15
Gly Cys Ala Val Pro Ser Thr Val Leu Leu Leu Ala Tyr Leu
20 25 30
Ala Tyr Leu Ala Leu Gly Thr Gly Val Phe Trp Thr Leu Glu Gly
35 40 45
Arg Ala Ala Gln Asp Ser Ser Arg Ser Phe Gln Arg Asp Lys Trp

	50		55		60									
Glu	Leu	Leu	Gln	Asn	Phe	Thr	Cys	Leu	Asp	Arg	Pro	Ala	Leu	Asp
					65			70		75				
Ser	Leu	Ile	Arg	Asp	Val	Val	Gln	Ala	Tyr	Lys	Asn	Gly	Ala	Ser
					80			85		90				
Leu	Leu	Ser	Asn	Thr	Thr	Ser	Met	Gly	Arg	Trp	Glu	Leu	Val	Gly
					95			100		105				
Ser	Phe	Phe	Phe	Ser	Val	Ser	Thr	Ile	Thr	Thr	Ile	Gly	Tyr	Gly
					110			115		120				
Asn	Leu	Ser	Pro	Asn	Thr	Met	Ala	Ala	Arg	Leu	Phe	Cys	Ile	Phe
					125			130		135				
Phe	Ala	Leu	Val	Gly	Ile	Pro	Leu	Asn	Leu	Val	Val	Leu	Asn	Arg
					140			145		150				
Leu	Gly	His	Leu	Met	Gln	Gln	Gly	Val	Asn	His	Trp	Ala	Ser	Arg
					155			160		165				
Leu	Gly	Gly	Thr	Trp	Gln	Asp	Pro	Asp	Lys	Ala	Arg	Trp	Leu	Ala
					170			175		180				
Gly	Ser	Gly	Ala	Leu	Leu	Ser	Gly	Leu	Leu	Leu	Phe	Leu	Leu	
					185			190		195				
Pro	Pro	Leu	Leu	Phe	Ser	His	Met	Glu	Gly	Trp	Ser	Tyr	Thr	Glu
					200			205		210				
Gly	Phe	Tyr	Phe	Ala	Phe	Ile	Thr	Leu	Ser	Thr	Val	Gly	Phe	Gly
					215			220		225				
Asp	Tyr	Val	Ile	Gly	Met	Asn	Pro	Ser	Gln	Arg	Tyr	Pro	Leu	Trp
					230			235		240				
Tyr	Lys	Asn	Met	Val	Ser	Leu	Trp	Ile	Leu	Phe	Gly	Met	Ala	Trp
					245			250		255				
Leu	Ala	Leu	Ile	Ile	Lys	Leu	Ile	Leu	Ser	Gln	Leu	Glu	Thr	Pro
					260			265		270				
Gly	Arg	Val	Cys	Ser	Cys	Cys	His	His	Ser	Ser	Lys	Glu	Asp	Phe
					275			280		285				
Lys	Ser	Gln	Ser	Trp	Arg	Gln	Gly	Pro	Asp	Arg	Glu	Pro	Glu	Ser
					290			295		300				
His	Ser	Pro	Gln	Gln	Gly	Cys	Tyr	Pro	Glu	Gly	Pro	Met	Gly	Ile
					305			310		315				
Ile	Gln	His	Leu	Glu	Pro	Ser	Ala	His	Ala	Ala	Gly	Cys	Gly	Lys
					320			325		330				
Asp	Ser													

<210> 2
<211> 226
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4588877CD1

<400> 2

Met	Val	Glu	Met	Gly	Trp	Asp	Trp	Ala	Asp	Arg	Lys	Asp	Met	Arg
1				5				10		15				
His	Arg	Leu	Gln	Ala	Gly	Asn	Leu	Glu	Asn	Thr	Asp	Gln	Val	Lys
					20			25		30				
Ser	Pro	Leu	Leu	Thr	Gly	Asp	Ser	Ser	Gly	Leu	Pro	Pro	Ala	Pro
					35			40		45				
Ser	Ala	Pro	Thr	His	Gly	Val	Lys	Ala	Ser	Gly	Gly	Leu	Gly	Thr
					50			55		60				
Ile	Leu	His	Pro	Gln	Asp	Pro	Asp	Lys	Ala	Arg	Trp	Leu	Ala	Gly
					65			70		75				
Ser	Gly	Ala	Leu	Leu	Ser	Gly	Leu	Leu	Leu	Phe	Leu	Leu	Leu	Pro
					80			85		90				
Pro	Leu	Leu	Phe	Ser	His	Met	Glu	Gly	Trp	Ser	Tyr	Thr	Glu	Gly
					95			100		105				
Phe	Tyr	Phe	Ala	Phe	Ile	Thr	Leu	Ser	Thr	Val	Gly	Phe	Gly	Asp
					110			115		120				
Tyr	Val	Ile	Gly	Met	Asn	Pro	Ser	Gln	Arg	Tyr	Pro	Leu	Trp	Tyr

	125		130		135
Lys Asn Met Val	Ser	Leu Trp Ile Leu	Phe Gly Met Ala Trp	Leu	
	140		145		150
Ala Leu Ile Ile	Lys	Leu Ile Leu Ser	Gln Leu Glu Thr Pro	Gly	
	155		160		165
Arg Val Cys Ser	Cys	Cys His His Ser	Ser Lys Glu Asp Phe	Lys	
	170		175		180
Ser Gln Ser Trp	Arg	Gln Gly Pro Asp	Arg Glu Pro Glu Ser	His	
	185		190		195
Ser Pro Gln Gln	Gly	Cys Tyr Pro Glu	Gly Pro Met Gly Ile	Ile	
	200		205		210
Gln His Leu Glu	Pro	Ser Ala His Ala	Gly Cys Gly Lys Asp		
	215		220		225
Ser					

<210> 3
<211> 646
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472214CD1

	<400> 3				
Met Ala Glu Lys Ala	Leu Glu Ala Val	Gly Cys Gly Leu Gly Pro			
1	5	10		15	
Gly Ala Val Ala	Met Ala Val Thr Leu	Glu Asp Gly Ala Glu Pro			
	20	25		30	
Pro Val Leu Thr	Thr His Leu Lys Lys	Val Glu Asn His Ile Thr			
	35	40		45	
Glu Ala Gln Arg	Phe Ser His Leu Pro	Lys Arg Ser Ala Val Asp			
	50	55		60	
Ile Glu Phe Val	Glu Leu Ser Tyr Ser	Val Arg Glu Gly Pro Cys			
	65	70		75	
Trp Arg Lys Arg	Gly Tyr Lys Thr Leu	Lys Cys Leu Ser Gly			
	80	85		90	
Lys Phe Cys Arg	Arg Glu Leu Ile Gly	Ile Met Gly Pro Ser Gly			
	95	100		105	
Ala Gly Lys Ser	Thr Phe Met Asn Ile	Leu Ala Gly Tyr Arg Glu			
	110	115		120	
Ser Gly Met Lys	Gly Gln Ile Leu Val	Asn Gly Arg Pro Arg Glu			
	125	130		135	
Leu Arg Thr Phe	Arg Lys Met Ser Cys	Tyr Ile Met Gln Asp Asp			
	140	145		150	
Met Leu Leu Pro	His Leu Thr Val Leu	Glu Ala Met Met Val Ser			
	155	160		165	
Ala Asn Leu Asn	Leu Thr Glu Asn Pro	Asp Val Lys Asn Asp Leu			
	170	175		180	
Val Thr Glu Ile	Leu Thr Ala Leu Gly	Leu Met Ser Cys Ser His			
	185	190		195	
Thr Arg Thr Ala	Leu Leu Ser Gly Gly	Gln Arg Lys Arg Leu Ala			
	200	205		210	
Ile Ala Leu Glu	Leu Val Asn Asn Pro	Pro Val Met Phe Phe Asp			
	215	220		225	
Glu Pro Thr Ser	Gly Leu Asp Ser Ala	Ser Cys Phe Gln Val Val			
	230	235		240	
Ser Leu Met Lys	Ser Leu Ala Gln Gly	Gly Arg Thr Ile Ile Cys			
	245	250		255	
Thr Ile His Gln	Pro Ser Ala Lys Leu	Phe Glu Met Phe Asp Lys			
	260	265		270	
Leu Tyr Ile Leu	Ser Gln Gly Gln Cys	Ile Phe Lys Gly Val Val			
	275	280		285	
Thr Asn Leu Ile	Pro Tyr Leu Lys Gly	Leu Gly Leu His Cys Pro			
	290	295		300	
Thr Tyr His Asn	Pro Ala Asp Phe Val	Ile Glu Val Ala Ser Gly			

	305		310		315										
Glu	Tyr	Gly	Asp	Leu	Asn	Pro	Met	Leu	Phe	Arg	Ala	Val	Gln	Asn	
				320		325			325		330				
Gly	Leu	Cys	Ala	Met	Ala	Glu	Lys	Lys	Ser	Ser	Pro	Glu	Lys	Asn	
				335		340			340		345				
Glu	Val	Pro	Ala	Pro	Cys	Pro	Pro	Cys	Pro	Pro	Glu	Val	Asp	Pro	
				350		355			355		360				
Ile	Glu	Ser	His	Thr	Phe	Ala	Thr	Ser	Thr	Leu	Thr	Gln	Phe	Cys	
				365		370			370		375				
Ile	Leu	Phe	Lys	Arg	Thr	Phe	Leu	Ser	Ile	Leu	Arg	Asp	Thr	Val	
				380		385			385		390				
Leu	Thr	His	Leu	Arg	Phe	Met	Ser	His	Val	Val	Ile	Gly	Val	Leu	
				395		400			400		405				
Ile	Gly	Leu	Leu	Tyr	Leu	His	Ile	Gly	Asp	Asp	Ala	Ser	Lys	Val	
				410		415			415		420				
Phe	Asn	Asn	Thr	Gly	Cys	Leu	Phe	Phe	Ser	Met	Leu	Phe	Leu	Met	
				425		430			430		435				
Phe	Ala	Ala	Leu	Met	Pro	Thr	Val	Leu	Thr	Val	Pro	Leu	Glu	Met	
				440		445			445		450				
Ala	Val	Phe	Met	Arg	Glu	His	Leu	Asn	Tyr	Trp	Tyr	Ser	Leu	Lys	
				455		460			460		465				
Ala	Tyr	Tyr	Leu	Ala	Lys	Thr	Met	Aia	Asp	Val	Pro	Phe	Gln	Val	
				470		475			475		480				
Val	Cys	Pro	Val	Val	Tyr	Cys	Ser	Ile	Val	Tyr	Trp	Met	Thr	Gly	
				485		490			490		495				
Gln	Pro	Ala	Glu	Thr	Ser	Arg	Phe	Leu	Leu	Phe	Ser	Ala	Leu	Aia	
				500		505			505		510				
Thr	Ala	Thr	Ala	Leu	Val	Ala	Gln	Ser	Leu	Gly	Leu	Leu	Ile	Gly	
				515		520			520		525				
Ala	Ala	Ser	Asn	Ser	Leu	Gln	Val	Ala	Thr	Phe	Val	Gly	Pro	Val	
				530		535			535		540				
Thr	Ala	Ile	Pro	Val	Leu	Leu	Phe	Ser	Gly	Phe	Phe	Val	Ser	Phe	
				545		550			550		555				
Lys	Thr	Ile	Pro	Thr	Tyr	Leu	Gln	Trp	Ser	Ser	Tyr	Leu	Ser	Tyr	
				560		565			565		570				
Val	Arg	Tyr	Gly	Phe	Glu	Gly	Val	Ile	Leu	Thr	Ile	Tyr	Gly	Met	
				575		580			580		585				
Glu	Arg	Gly	Asp	Leu	Thr	Cys	Leu	Glu	Glu	Arg	Cys	Pro	Phe	Arg	
				590		595			595		600				
Glu	Pro	Gln	Ser	Ile	Leu	Arg	Ala	Leu	Asp	Val	Glu	Asp	Ala	Lys	
				605		610			610		615				
Leu	Tyr	Met	Asp	Phe	Leu	Val	Leu	Gly	Ile	Phe	Phe	Leu	Ala	Leu	
				620		625			625		630				
Arg	Leu	Leu	Ala	Tyr	Leu	Val	Leu	Arg	Tyr	Arg	Val	Lys	Ser	Glu	
				635		640			640		645				
Arg															

<210> 4
<211> 1190
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7473053CD1

<400> 4
Met Ala Val Cys Ala Lys Lys Arg Pro Pro Glu Glu Glu Arg Arg
1 5 10 15
Ala Arg Ala Asn Asp Arg Glu Tyr Asn Glu Lys Phe Gln Tyr Ala
20 25 30
Ser, Asn Cys Ile Lys Thr Ser Lys Tyr Asn Ile Leu Thr Phe Leu
35 40 45
Pro Val Asn Leu Phe Glu Gln Phe Gln Glu Val Ala Asn Thr Tyr
50 55 60
Phe Leu Phe Leu Leu Ile Leu Gln Leu Ile Pro Gln Ile Ser Ser

	65		70		75
Leu Ser Trp Phe Thr	Thr Ile Val Pro	Leu Val Leu Val Leu	Thr		
80		85		90	
Ile Thr Ala Val Lys	Asp Ala Thr Asp	Asp Tyr Phe Arg His	Lys		
95		100		105	
Ser Asp Asn Gln Val	Asn Asn Arg Gln	Ser Gln Val Leu Ile	Asn		
110		115		120	
Gly Ile Leu Gln Gln	Glu Gln Trp Met	Asn Val Cys Val Gly	Asp		
125		130		135	
Ile Ile Lys Leu Glu	Asn Asn Gln Phe	Val Ala Ala Asp Leu	Leu		
140		145		150	
Leu Leu Ser Ser Ser	Glu Pro His Gly	Leu Cys Tyr Ile Glu	Thr		
155		160		165	
Ala Glu Leu Asp Gly	Glu Thr Asn Met	Lys Val Arg Gln Ala	Ile		
170		175		180	
Pro Val Thr Ser Glu	Leu Gly Asp Ile	Ser Lys Leu Ala Lys	Phe		
185		190		195	
Asp Gly Glu Val Ile	Cys Glu Pro Pro	Asn Asn Lys Leu Asp	Lys		
200		205		210	
Phe Ser Gly Thr Leu	Tyr Trp Lys Glu	Asn Lys Phe Pro Leu	Ser		
215		220		225	
Asn Gln Asn Met Leu	Leu Arg Gly Cys	Val Leu Arg Asn Thr	Glu		
230		235		240	
Trp Cys Phe Gly Leu	Val Ile Phe Ala	Gly Pro Asp Thr Lys	Leu		
245		250		255	
Met Gln Asn Ser Gly	Arg Thr Lys Phe	Lys Arg Thr Ser Ile	Asp		
260		265		270	
Arg Leu Met Asn Thr	Leu Val Leu Trp	Ile Phe Gly Phe Leu	Val		
275		280		285	
Cys Met Gly Val Ile	Leu Ala Ile Gly	Asn Ala Ile Trp Glu	His		
290		295		300	
Glu Val Gly Met Arg	Phe Gln Val Tyr	Leu Pro Trp Asp Glu	Ala		
305		310		315	
Val Asp Ser Ala Phe	Phe Ser Gly Phe	Leu Ser Phe Trp Ser	Tyr		
320		325		330	
Ile Ile Ile Leu Asn	Thr Val Val Pro	Ile Ser Leu Tyr Val	Ser		
335		340		345	
Val Glu Val Ile Arg	Leu Gly His Ser	Tyr Phe Ile Asn Trp	Asp		
350		355		360	
Lys Lys Met Phe Cys	Met Lys Lys Arg	Thr Pro Ala Glu Ala	Arg		
365		370		375	
Thr Thr Thr Leu Asn	Glu Glu Leu Gly	Gln Val Glu Tyr Ile	Phe		
380		385		390	
Ser Asp Lys Thr Gly	Thr Leu Thr Gln	Asn Ile Met Val Phe	Asn		
395		400		405	
Lys Cys Ser Ile Asn	Gly His Ser Tyr	Gly Asp Val Phe Asp	Val		
410		415		420	
Leu Gly His Lys Ala	Glu Leu Gly Glu	Arg Pro Glu Pro Val	Asp		
425		430		435	
Phe Ser Phe Asn Pro	Leu Ala Asp Lys	Lys Phe Leu Phe Trp	Asp		
440		445		450	
Pro Ser Leu Leu Glu	Ala Val Lys Ile	Gly Asp Pro His Thr	His		
455		460		465	
Glu Phe Phe Arg Leu	Leu Ser Leu Cys	His Thr Val Met Ser	Glu		
470		475		480	
Glu Lys Asn Glu Gly	Glu Leu Tyr Tyr	Lys Ala Gln Ser Pro	Asp		
485		490		495	
Glu Gly Ala Leu Val	Thr Ala Ala Arg	Asn Phe Gly Phe Val	Phe		
500		505		510	
Arg Ser Arg Thr Pro	Lys Thr Ile Thr	Val His Glu Met Gly	Thr		
515		520		525	
Ala Ile Thr Tyr Gln	Leu Leu Ala Ile	Leu Asp Phe Asn Asn	Ile		
530		535		540	
Arg Lys Arg Met Ser	Val Ile Val Arg	Asn Pro Glu Gly Lys	Ile		
545		550		555	
Arg Leu Tyr Cys Lys	Gly Ala Asp Thr	Ile Leu Leu Asp Arg	Leu		
560		565		570	

His	His	Ser	Thr	Gln	Glu	Leu	Leu	Asn	Thr	Thr	Met	Asp	His	Leu
				575					580					585
Asn	Glu	Tyr	Ala	Gly	Glu	Gly	Leu	Arg	Thr	Leu	Val	Leu	Ala	Tyr
				590					595					600
Lys	Asp	Leu	Asp	Glu	Glu	Tyr	Tyr	Glu	Glu	Trp	Ala	Glu	Arg	Arg
				605					610					615
Leu	Gln	Ala	Ser	Leu	Ala	Gln	Asp	Ser	Arg	Glu	Asp	Arg	Leu	Ala
				620					625					630
Ser	Ile	Tyr	Glu	Glu	Val	Glu	Asn	Asn	Met	Met	Leu	Leu	Gly	Ala
				635					640					645
Thr	Ala	Ile	Glu	Asp	Lys	Leu	Gln	Gln	Gly	Val	Pro	Glu	Thr	Ile
				650					655					660
Ala	Leu	Leu	Thr	Leu	Ala	Asn	Ile	Lys	Ile	Trp	Val	Leu	Thr	Gly
				665					670					675
Asp	Lys	Gln	Glu	Thr	Ala	Val	Asn	Ile	Gly	Tyr	Ser	Cys	Lys	Met
				680					685					690
Leu	Thr	Asp	Asp	Met	Thr	Glu	Val	Phe	Ile	Val	Thr	Gly	His	Thr
				695					700					705
Val	Leu	Glu	Val	Arg	Glu	Glu	Leu	Arg	Lys	Ala	Arg	Glu	Lys	Met
				710					715					720
Met	Asp	Ser	Ser	Arg	Ser	Val	Gly	Asn	Gly	Phe	Thr	Tyr	Gln	Asp
				725					730					735
Lys	Leu	Ser	Ser	Ser	Lys	Leu	Thr	Ser	Val	Leu	Glu	Ala	Val	Ala
				740					745					750
Gly	Glu	Tyr	Ala	Leu	Val	Ile	Asn	Gly	His	Ser	Leu	Ala	His	Ala
				755					760					765
Leu	Glu	Ala	Asp	Met	Glu	Leu	Glu	Phe	Leu	Glu	Thr	Ala	Cys	Ala
				770					775					780
Cys	Lys	Ala	Val	Ile	Cys	,Cys	Arg	Val	Thr	Pro	Leu	Gln	Lys	Ala
				785					790					795
Gln	Val	Val	Glu	Leu	Val	Lys	Lys	Tyr	Lys	Lys	Ala	Val	Thr	Leu
				800					805					810
Ala	Ile	Gly	Asp	Gly	Ala	Asn	Asp	Val	Ser	Met	Ile	Lys	Thr	Ala
				815					820					825
His	Ile	Gly	Val	Gly	Ile	Ser	Gly	Gln	Glu	Gly	Ile	Gln	Ala	Val
				830					835					840
Leu	Ala	Ser	Asp	Tyr	Ser	Phe	Ser	Gln	Phe	Lys	Phe	Leu	Gln	Arg
				845					850					855
Leu	Leu	Leu	Val	His	Gly	Arg	Trp	Ser	Tyr	Leu	Arg	Met	Cys	Lys
				860					865					870
Phe	Leu	Cys	Tyr	Phe	Phe	Tyr	Lys	Asn	Phe	Ala	Phe	Thr	Met	Val
				875					880					885
His	Phe	Trp	Phe	Gly	Phe	Phe	Cys	Gly	Phe	Ser	Ala	Gln	Thr	Val
				890					895					900
Tyr	Asp	Gln	Tyr	Phe	Ile	Thr	Leu	Tyr	Asn	Ile	Val	Tyr	Thr	Ser
				905					910					915
Leu	Pro	Val	Leu	Ala	Met	Gly	Val	Phe	Asp	Gln	Asp	Val	Pro	Glu
				920					925					930
Gln	Arg	Ser	Met	Glu	Tyr	Pro	Lys	Leu	Tyr	Glu	Pro	Gly	Gln	Leu
				935					940					945
Asn	Leu	Leu	Phe	Asn	Lys	Arg	Glu	Phe	Ile	Cys	Ile	Ala	Gln	
				950					955					960
Gly	Ile	Tyr	Thr	Ser	Val	Leu	Met	Phe	Phe	Ile	Pro	Tyr	Gly	Val
				965					970					975
Phe	Ala	Asp	Ala	Thr	Arg	Asp	Asp	Gly	Thr	Gln	Leu	Ala	Asp	Tyr
				980					985					990
Gln	Ser	Phe	Ala	Val	Thr	Val	Ala	Thr	Ser	Leu	Val	Ile	Val	Val
				995					1000					1005
Ser	Val	Gln	Ile	Gly	Leu	Asp	Thr	Gly	Tyr	Trp	Thr	Ala	Ile	Asn
				1010					1015					1020
His	Phe	Phe	Ile	Trp	Gly	Ser	Leu	Ala	Val	Tyr	Phe	Ala	Ile	Leu
				1025					1030					1035
Phe	Ala	Met	His	Ser	Asn	Gly	Leu	Phe	Asp	Met	Phe	Pro	Asn	Gln
				1040					1045					1050
Phe	Arg	Phe	Val	Gly	Asn	Ala	Gln	Asn	Thr	Leu	Ala	Gln	Pro	Thr
				1055					1060					1065
Val	Trp	Leu	Thr	Ile	Val	Leu	Thr	Thr	Val	Val	Cys	Ile	Met	Pro

1070	1075	1080
Val Val Ala Phe Arg Phe Leu Arg Leu Asn Leu Lys Pro Asp Leu		
1085	1090	1095
Ser Asp Thr Val Arg Tyr Thr Gln Leu Val Arg Lys Lys Gln Lys		
1100	1105	1110
Ala Gln His Arg Cys Met Arg Arg Val Gly Arg Thr Gly Ser Arg		
1115	1120	1125
Arg Ser Gly Tyr Ala Phe Ser His Gln Glu Gly Phe Gly Glu Leu		
1130	1135	1140
Ile Met Ser Gly Lys Asn Met Arg Leu Ser Ser Leu Ala Leu Ser		
1145	1150	1155
Ser Phe Thr Thr Arg Ser Ser Ser Trp Ile Glu Ser Leu Arg		
1160	1165	1170
Arg Lys Lys Ser Asp Ser Ala Ser Ser Pro Ser Gly Gly Ala Asp		
1175	1180	1185
Lys Pro Leu Lys Gly		
1190		

<210> 5

<211> 467

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7473347CD1

<400> 5

Met Val Leu Ala Phe Gln Leu Val Ser Phe Thr Tyr Ile Trp Ile		
1	5	10
Ile Leu Lys Pro Asn Val Cys Ala Ala Ser Asn Ile Lys Met Thr		
20	25	30
His Gln Arg Cys Ser Ser Ser Met Lys Gln Thr Cys Lys Gln Glu		
35	40	45
Thr Arg Met Lys Lys Asp Asp Ser Thr Lys Ala Arg Pro Gln Lys		
50	55	60
Tyr Glu Gln Leu Leu His Ile Glu Asp Asn Asp Phe Ala Met Arg		
65	70	75
Pro Gly Phe Gly Gly Ser Pro Val Pro Val Gly Ile Asp Val His		
80	85	90
Val Glu Ser Ile Asp Ser Ile Ser Glu Thr Asn Met Asp Phe Thr		
95	100	105
Met Thr Phe Tyr Leu Arg His Tyr Trp Lys Asp Glu Arg Leu Ser		
110	115	120
Phe Pro Ser Thr Ala Asn Lys Ser Met Thr Phe Asp His Arg Leu		
125	130	135
Thr Arg Lys Ile Trp Val Pro Asp Ile Phe Phe Val His Ser Lys		
140	145	150
Arg Ser Phe Ile His Asp Thr Thr Met Glu Asn Ile Met Leu Arg		
155	160	165
Val His Pro Asp Gly Asn Val Leu Leu Ser Leu Arg Ile Thr Val		
170	175	180
Ser Ala Met Cys Phe Met Asp Phe Ser Arg Phe Pro Leu Asp Thr		
185	190	195
Gln Asn Cys Ser Leu Glu Leu Glu Ser Tyr Ala Tyr Asn Glu Asp		
200	205	210
Asp Leu Met Leu Tyr Trp Lys His Gly Asn Lys Ser Leu Asn Thr		
215	220	225
Glu Glu His Met Ser Leu Ser Gln Phe Phe Ile Glu Asp Phe Ser		
230	235	240
Ala Ser Ser Gly Leu Ala Phe Tyr Ser Ser Thr Gly Trp Tyr Asn		
245	250	255
Arg Leu Phe Ile Ile Ser Val Leu Arg Arg His Val Phe Phe Phe		
260	265	270
Val Leu Pro Thr Tyr Tyr Pro Ala Ile Leu Met Val Met Leu Ser		
275	280	285
Trp Val Ser Phe Trp Ile Asp Arg Arg Ala Val Pro Ala Arg Val		

Ser	Leu	Gly	Ile	Thr	Thr	Val	Leu	Thr	Met	Ser	Thr	Ile	Ile	Thr	300
				305					310					315	
Ala	Val	Ser	Ala	Ser	Met	Pro	Gln	Val	Ser	Tyr	Leu	Lys	Ala	Val	320
									325					330	
Asp	Val	Tyr	Leu	Trp	Val	Ser	Ser	Leu	Phe	Val	Phe	Leu	Ser	Val	335
									340					345	
Ile	Glu	Tyr	Ala	Ala	Val	Asn	Tyr	Leu	Thr	Thr	Val	Glu	Glu	Arg	350
									355					360	
Lys	Gln	Phe	Lys	Lys	Thr	Gly	Lys	Ile	Ser	Arg	Met	Tyr	Asn	Ile	365
									370					375	
Asp	Ala	Val	Gln	Ala	Met	Ala	Phe	Asp	Gly	Cys	Tyr	His	Asp	Ser	380
									385					390	
Glu	Ile	Asp	Met	Asp	Gln	Thr	Ser	Leu	Ser	Leu	Asn	Ser	Glu	Asp	395
									400					405	
Phe	Met	Arg	Arg	Lys	Ser	Ile	Cys	Ser	Pro	Ser	Thr	Asp	Ser	Ser	410
									415					420	
Arg	Ile	Lys	Arg	Arg	Lys	Ser	Leu	Gly	Gly	His	Val	Gly	Arg	Ile	425
									430					435	
Ile	Leu	Glu	Asn	Asn	His	Val	Ile	Asp	Thr	Tyr	Ser	Arg	Ile	Leu	440
									445					450	
Phe	Pro	Ile	Val	Tyr	Ile	Leu	Phe	Asn	Leu	Phe	Tyr	Trp	Gly	Val	455
									460					465	
														Tyr Val	

<210> 6
<211> 1196
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7474240CD1

<400> 6															
Met	Pro	Val	Arg	Arg	Gly	His	Val	Ala	Pro	Gln	Asn	Thr	Phe	Leu	
1					5				10					15	
Gly	Thr	Ile	Ile	Arg	Lys	Phe	Glu	Gly	Gln	Asn	Lys	Lys	Phe	Ile	
					20				25					30	
Ile	Ala	Asn	Ala	Arg	Val	Gln	Asn	Cys	Ala	Ile	Ile	Tyr	Cys	Asn	
					35				40					45	
Asp	Gly	Phe	Cys	Glu	Met	Thr	Gly	Phe	Ser	Arg	Pro	Asp	Val	Met	
					50				55					60	
Gln	Lys	Pro	Cys	Thr	Cys	Asp	Phe	Leu	His	Gly	Pro	Glu	Thr	Lys	
					65				70					75	
Arg	His	Asp	Ile	Ala	Gln	Ile	Ala	Gln	Ala	Leu	Leu	Gly	Ser	Glu	
					80				85					90	
Glu	Arg	Lys	Val	Glu	Val	Thr	Tyr	Tyr	His	Lys	Asn	Gly	Ser	Thr	
					95				100					105	
Phe	Ile	Cys	Asn	Thr	His	Ile	Ile	Pro	Val	Lys	Asn	Gln	Glu	Gly	
					110				115					120	
Val	Ala	Met	Met	Phe	Ile	Ile	Asn	Phe	Glu	Tyr	Val	Thr	Asp	Asn	
					125				130					135	
Glu	Asn	Ala	Ala	Thr	Pro	Glu	Arg	Val	Asn	Pro	Ile	Leu	Pro	Ile	
					140				145					150	
Lys	Thr	Val	Asn	Arg	Lys	Phe	Phe	Gly	Phe	Lys	Phe	Pro	Gly	Leu	
					155				160					165	
Arg	Val	Leu	Thr	Tyr	Arg	Lys	Gln	Ser	Leu	Pro	Gln	Glu	Asp	Pro	
					170				175					180	
Asp	Val	Val	Val	Ile	Asp	Ser	Ser	Lys	His	Ser	Asp	Asp	Ser	Val	
					185				190					195	
Ala	Met	Lys	His	Phe	Lys	Ser	Pro	Thr	Lys	Glu	Ser	Cys	Ser	Pro	
					200				205					210	
Ser	Glu	Ala	Asp	Asp	Thr	Lys	Ala	Leu	Ile	Gln	Pro	Ser	Lys	Cys	
					215				220					225	
Ser	Pro	Leu	Val	Asn	Ile	Ser	Gly	Pro	Leu	Asp	His	Ser	Ser	Pro	

Lys	Arg	Gln	Trp	Asp	Arg	Leu	Tyr	Pro	Asp	Met	Leu	Gln	Ser	Ser
230	245				235				240					
Ser	Gln	Leu	Ser	His	Ser	Arg	Ser	Arg	Glu	Ser	Leu	Cys	Ser	Ile
260					265				250				255	
Arg	Arg	Ala	Ser	Ser	Val	His	Asp	Ile	Glu	Gly	Phe	Gly	Val	His
275					280				295				270	
Pro	Lys	Asn	Ile	Phe	Arg	Asp	Arg	His	Ala	Ser	Glu	Asp	Asn	Gly
290					300				325				300	
Arg	Asn	Val	Lys	Gly	Pro	Phe	Asn	His	Ile	Lys	Ser	Ser	Leu	Leu
305					310				340				315	
Gly	Ser	Thr	Ser	Asp	Ser	Asn	Leu	Asn	Lys	Tyr	Ser	Thr	Ile	Asn
320					325				355				330	
Lys	Ile	Pro	Gln	Leu	Thr	Leu	Asn	Phe	Ser	Glu	Val	Lys	Thr	Glu
335					340				370				345	
Lys	Lys	Asn	Ser	Ser	Pro	Pro	Ser	Ser	Asp	Lys	Thr	Ile	Ile	Ala
350					355				385				360	
Pro	Lys	Val	Lys	Asp	Arg	Thr	His	Asn	Val	Thr	Glu	Lys	Val	Thr
365					370				400				375	
Gln	Val	Leu	Ser	Leu	Gly	Ala	Asp	Val	Leu	Pro	Glu	Tyr	Lys	Leu
380					385				425				390	
Gln	Thr	Pro	Arg	Ile	Asn	Lys	Phe	Thr	Ile	Leu	His	Tyr	Ser	Pro
395					400				445				405	
Phe	Lys	Ala	Val	Trp	Asp	Trp	Leu	Ile	Leu	Leu	Leu	Val	Ile	Tyr
410					415				475				420	
Thr	Ala	Ile	Phe	Thr	Pro	Tyr	Ser	Ala	Ala	Phe	Leu	Leu	Asn	Asp
425					430				505				435	
Arg	Glu	Glu	Gln	Lys	Arg	Arg	Glu	Cys	Gly	Tyr	Ser	Cys	Ser	Pro
440					445				520				450	
Leu	Asn	Val	Val	Asp	Leu	Ile	Val	Asp	Ile	Met	Phe	Ile	Ile	Asp
455					460				550				465	
Ile	Leu	Ile	Asn	Phe	Arg	Thr	Thr	Tyr	Val	Asn	Gln	Asn	Glu	Glu
470					475				585				480	
Val	Val	Ser	Asp	Pro	Ala	Lys	Ile	Ala	Ile	His	Tyr	Phe	Lys	Gly
485					490				595				495	
Trp	Phe	Leu	Ile	Asp	Met	Val	Ala	Ala	Ile	Pro	Phe	Asp	Leu	Leu
500					505				610				510	
Ile	Phe	Gly	Ser	Gly	Ser	Asp	Glu	Thr	Thr	Leu	Ile	Gly	Leu	
515					520				615				525	
Leu	Lys	Thr	Ala	Arg	Leu	Leu	Arg	Leu	Val	Arg	Val	Ala	Arg	Lys
530					535				620				540	
Leu	Asp	Arg	Tyr	Ser	Glu	Tyr	Gly	Ala	Ala	Val	Leu	Met	Leu	Leu
545					550				625				555	
Met	Cys	Ile	Phe	Ala	Leu	Ile	Ala	His	Trp	Leu	Ala	Cys	Ile	Trp
560					565				630				570	
Tyr	Ala	Ile	Gly	Asn	Val	Glu	Arg	Pro	Tyr	Leu	Thr	Asp	Lys	Ile
575					580				635				585	
Gly	Trp	Leu	Asp	Ser	Leu	Gly	Gln	Gln	Ile	Gly	Lys	Arg	Tyr	Asn
590					595				640				600	
Asp	Ser	Asp	Ser	Ser	Ser	Gly	Pro	Ser	Ile	Lys	Asp	Lys	Tyr	Val
605					610				645				615	
Thr	Ala	Leu	Tyr	Phe	Thr	Phe	Ser	Ser	Leu	Thr	Ser	Val	Gly	Phe
620					625				650				630	
Gly	Asn	Val	Ser	Pro	Asn	Thr	Asn	Ser	Glu	Lys	Ile	Phe	Ser	Ile
635					640				655				645	
Cys	Val	Met	Leu	Ile	Gly	Ser	Leu	Met	Tyr	Ala	Ser	Ile	Phe	Gly
650					655				660				660	
Asn	Val	Ser	Ala	Ile	Ile	Gln	Arg	Leu	Tyr	Ser	Gly	Thr	Ala	Arg
665					670				675				675	
Tyr	His	Met	Gln	Met	Leu	Arg	Val	Lys	Glu	Phe	Ile	Arg	Phe	His
680					685				695				690	
Gln	Ile	Pro	Asn	Pro	Leu	Arg	Gln	Arg	Leu	Glu	Glu	Tyr	Phe	Gln
695					700				710				705	
His	Ala	Trp	Thr	Tyr	Thr	Asn	Gly	Ile	Asp	Met	Asn	Met	Val	Leu
710					715				725				720	
Lys	Gly	Phe	Pro	Glu	Cys	Leu	Gln	Ala	Asp	Ile	Cys	Leu	His	Leu
725					730				735				735	

Asn	Gln	Thr	Leu	Leu	Gln	Asn	Cys	Lys	Ala	Phe	Arg	Gly	Ala	Ser
				740				745					750	
Lys	Gly	Cys	Leu	Arg	Ala	Leu	Ala	Met	Lys	Phe	Lys	Thr	Thr	His
				755				760					765	
Ala	Pro	Pro	Gly	Asp	Thr	Leu	Val	His	Cys	Gly	Asp	Val	Leu	Thr
				770				775					780	
Ala	Leu	Tyr	Phe	Leu	Ser	Arg	Gly	Ser	Ile	Glu	Ile	Leu	Lys	Asp
				785				790					795	
Asp	Ile	Val	Val	Ala	Ile	Leu	Gly	Lys	Asn	Asp	Ile	Phe	Gly	Glu
				800				805					810	
Met	Val	His	Leu	Tyr	Ala	Lys	Pro	Gly	Lys	Ser	Asn	Ala	Asp	Val
				815				820					825	
Arg	Ala	Leu	Thr	Tyr	Cys	Asp	Leu	His	Lys	Ile	Gln	Arg	Glu	Asp
				830				835					840	
Leu	Leu	Glu	Val	Leu	Asp	Met	Tyr	Pro	Glu	Phe	Ser	Asp	His	Phe
				845				850					855	
Leu	Thr	Asn	Leu	Glu	Leu	Thr	Phe	Asn	Ile	Arg	His	Glu	Ser	Ala
				860				865					870	
Lys	Ala	Asp	Leu	Leu	Arg	Ser	Gln	Ser	Met	Asn	Asp	Ser	Glu	Gly
				875				880					885	
Asp	Asn	Cys	Lys	Leu	Arg	Arg	Arg	Lys	Leu	Ser	Phe	Glu	Ser	Glu
				890				895					900	
Gly	Glu	Lys	Glu	Asn	Ser	Thr	Asn	Asp	Pro	Glu	Asp	Ser	Ala	Asp
				905				910					915	
Thr	Ile	Arg	His	Tyr	Gln	Ser	Ser	Lys	Arg	His	Phe	Glu	Glu	Lys
				920				925					930	
Lys	Ser	Arg	Ser	Ser	Ser	Phe	Ile	Ser	Ser	Ile	Asp	Asp	Glu	Gln
				935				940					945	
Lys	Pro	Leu	Phe	Ser	Gly	Ile	Val	Asp	Ser	Ser	Pro	Gly	Ile	Gly
				950				955					960	
Lys	Ala	Ser	Gly	Leu	Asp	Phe	Glu	Glu	Thr	Val	Pro	Thr	Ser	Gly
				965				970					975	
Arg	Met	His	Ile	Asp	Lys	Arg	Ser	His	Ser	Cys	Lys	Asp	Ile	Thr
				980				985					990	
Asp	Met	Arg	Ser	Trp	Glu	Arg	Glu	Asn	Ala	His	Pro	Gln	Pro	Glu
				995				1000					1005	
Asp	Ser	Ser	Pro	Ser	Ala	Leu	Gln	Arg	Ala	Ala	Trp	Gly	Ile	Ser
				1010				1015					1020	
Glu	Thr	Glu	Ser	Asp	Leu	Thr	Tyr	Gly	Glu	Val	Glu	Gln	Arg	Leu
				1025				1030					1035	
Asp	Leu	Leu	Gln	Gln	Leu	Asn	Arg	Leu	Glu	Ser	Gln	Met	Thr	
				1040				1045					1050	
Thr	Asp	Ile	Gln	Thr	Ile	Leu	Gln	Leu	Glu	Lys	Gln	Thr	Thr	
				1055				1060					1065	
Val	Val	Pro	Pro	Ala	Tyr	Ser	Met	Val	Thr	Ala	Gly	Ser	Glu	Tyr
				1070				1075					1080	
Gln	Arg	Pro	Ile	Ile	Gln	Leu	Met	Arg	Thr	Ser	Gln	Pro	Glu	Ala
				1085				1090					1095	
Ser	Ile	Lys	Thr	Asp	Arg	Ser	Phe	Ser	Pro	Ser	Ser	Gln	Cys	Pro
				1100				1105					1110	
Glu	Phe	Leu	Asp	Leu	Glu	Lys	Ser	Lys	Leu	Lys	Ser	Lys	Glu	Ser
				1115				1120					1125	
Leu	Ser	Ser	Gly	Val	His	Leu	Asn	Thr	Ala	Ser	Glu	Asp	Asn	Leu
				1130				1135					1140	
Thr	Ser	Leu	Leu	Lys	Gln	Asp	Ser	Asp	Leu	Ser	Leu	Glu	Leu	His
				1145				1150					1155	
Leu	Arg	Gln	Arg	Lys	Thr	Tyr	Val	His	Pro	Ile	Arg	His	Pro	Ser
				1160				1165					1170	
Leu	Pro	Asp	Ser	Ser	Leu	Ser	Thr	Val	Gly	Ile	Val	Gly	Leu	His
				1175				1180					1185	
Arg	His	Val	Ser	Asp	Pro	Gly	Leu	Pro	Gly	Lys				
				1190				1195						

<210> 7
<211> 512
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7475338CD1

<400> 7

Met	Glu	Asn	Lys	Glu	Ala	Gly	Thr	Pro	Pro	Pro	Ile	Pro	Ser	Arg
1				5				10					15	
Glu	Gly	Arg	Leu	Gln	Pro	Thr	Leu	Leu	Leu	Ala	Thr	Leu	Ser	Ala
				20				25					30	
Ala	Phe	Gly	Ser	Ala	Phe	Gln	Tyr	Gly	Tyr	Asn	Leu	Ser	Val	Val
				35				40					45	
Asn	Thr	Pro	His	Lys	Val	Phe	Lys	Ser	Phe	Tyr	Asn	Glu	Thr	Tyr
				50				55					60	
Phe	Glu	Arg	His	Ala	Thr	Phe	Met	Asp	Gly	Lys	Leu	Met	Leu	Leu
				65				70					75	
Leu	Trp	Ser	Cys	Thr	Val	Ser	Met	Phe	Pro	Leu	Gly	Gly	Leu	Leu
				80				85					90	
Gly	Ser	Leu	Leu	Val	Gly	Leu	Leu	Val	Asp	Ser	Cys	Gly	Arg	Lys
				95				100					105	
Gly	Thr	Leu	Leu	Ile	Asn	Asn	Ile	Phe	Ala	Ile	Ile	Pro	Ala	Ile
				110				115					120	
Leu	Met	Gly	Val	Ser	Lys	Val	Ala	Lys	Ala	Phe	Glu	Leu	Ile	Val
				125				130					135	
Phe	Ser	Arg	Val	Val	Leu	Gly	Val	Cys	Ala	Gly	Ile	Ser	Tyr	Ser
				140				145					150	
Ala	Leu	Pro	Met	Tyr	Leu	Gly	Glu	Leu	Ala	Pro	Lys	Asn	Leu	Arg
				155				160					165	
Gly	Met	Val	Gly	Thr	Met	Thr	Glu	Val	Phe	Val	Ile	Val	Gly	Val
				170				175					180	
Phe	Leu	Ala	Gln	Ile	Phe	Ser	Leu	Gln	Ala	Ile	Leu	Gly	Asn	Pro
				185				190					195	
Ala	Gly	Trp	Pro	Val	Leu	Leu	Ala	Leu	Thr	Gly	Val	Pro	Ala	Leu
				200				205					210	
Leu	Gln	Leu	Leu	Thr	Leu	Pro	Phe	Phe	Pro	Glu	Ser	Pro	Arg	Tyr
				215				220					225	
Ser	Leu	Ile	Gln	Lys	Gly	Asp	Glu	Ala	Thr	Ala	Arg	Gln	Ala	Leu
				230				235					240	
Arg	Arg	Leu	Arg	Gly	His	Thr	Asp	Met	Gl	Ala	Glu	Leu	Glu	Asp
				245				250					255	
Met	Arg	Ala	Glu	Ala	Arg	Ala	Glu	Arg	Ala	Glu	Gly	His	Leu	Ser
				260				265					270	
Val	Leu	His	Leu	Cys	Ala	Leu	Arg	Ser	Leu	Arg	Trp	Gln	Leu	Leu
				275				280					285	
Ser	Ile	Ile	Val	Leu	Met	Ala	Gly	Gln	Gln	Leu	Ser	Gly	Ile	Asn
				290				295					300	
Ala	Ile	Asn	Tyr	Tyr	Ala	Asp	Thr	Ile	Tyr	Thr	Ser	Ala	Gly	Val
				305				310					315	
Glu	Ala	Ala	His	Ser	Gln	Tyr	Val	Thr	Val	Gly	Ser	Gly	Val	Val
				320				325					330	
Asn	Ile	Val	Met	Thr	Ile	Thr	Ser	Ala	Val	Leu	Val	Glu	Arg	Leu
				335				340					345	
Gly	Arg	Arg	His	Leu	Leu	Leu	Ala	Gly	Tyr	Gly	Ile	Cys	Gly	Ser
				350				355					360	
Ala	Cys	Leu	Val	Leu	Thr	Val	Val	Leu	Leu	Phe	Gln	Asn	Arg	Val
				365				370					375	
Pro	Glu	Leu	Ser	Tyr	Leu	Gly	Ile	Ile	Cys	Val	Phe	Ala	Tyr	Ile
				380				385					390	
Ala	Gly	His	Ser	Ile	Gly	Pro	Ser	Pro	Val	Pro	Ser	Val	Val	Arg
				395				400					405	
Thr	Glu	Ile	Phe	Leu	Gln	Ser	Ser	Arg	Arg	Ala	Ala	Phe	Met	Val
				410				415					420	
Asp	Gly	Ala	Val	His	Trp	Leu	Thr	Asn	Phe	Ile	Ile	Gly	Phe	Leu
				425				430					435	
Phe	Pro	Ser	Ile	Gln	Glu	Ala	Ile	Gly	Ala	Tyr	Ser	Phe	Ile	Ile
				440				445					450	
Phe	Ala	Gly	Ile	Cys	Leu	Leu	Thr	Ala	Ile	Tyr	Ile	Tyr	Val	Val
				455				460					465	

Ile	Pro	Glu	Thr	Lys	Gly	Lys	Thr	Phe	Val	Glu	Ile	Asn	Arg	Ile
				470					475					480
Phe	Ala	Lys	Arg	Asn	Arg	Val	Lys	Leu	Pro	Glu	Glu	Lys	Glu	Glu
				485					490					495
Thr	Ile	Asp	Ala	Gly	Pro	Pro	Thr	Ala	Ser	Pro	Ala	Lys	Glu	Thr
				500					505					510
Ser	Phe													

<210> 8
<211> 568
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7476747CD1

<400> 8															
Met	Thr	Ala	Ser	Thr	Pro	Glu	Ala	Thr	Pro	Asn	Met	Glu	Leu	Lys	
1					5				10					15	
Ala	Pro	Ala	Ala	Gly	Gly	Leu	Asn	Ala	Gly	Pro	Val	Pro	Pro	Ala	
					20				25					30	
Ala	Met	Ser	Thr	Gln	Arg	Leu	Arg	Asn	Glu	Asp	Tyr	His	Asp	Tyr	
				35					40					45	
Ser	Ser	Thr	Asp	Val	Ser	Pro	Glu	Glu	Ser	Pro	Ser	Glu	Gly	Leu	
				50					55					60	
Asn	Asn	Leu	Ser	Ser	Pro	Gly	Ser	Tyr	Gln	Arg	Phe	Gly	Gln	Ser	
				65					70					75	
Asn	Ser	Thr	Thr	Trp	Phe	Gln	Thr	Leu	Ile	His	Leu	Leu	Lys	Gly	
				80					85					90	
Asn	Ile	Gly	Thr	Gly	Leu	Leu	Gly	Leu	Pro	Leu	Ala	Val	Lys	Asn	
				95					100					105	
Ala	Gly	Ile	Val	Met	Gly	Pro	Ile	Ser	Leu	Leu	Ile	Ile	Gly	Ile	
				110					115					120	
Val	Ala	Val	His	Cys	Met	Gly	Ile	Leu	Val	Lys	Cys	Ala	His	His	
				125					130					135	
Phe	Cys	Arg	Arg	Leu	Asn	Lys	Ser	Phe	Val	Asp	Tyr	Gly	Asp	Thr	
				140					145					150	
Val	Met	Tyr	Gly	Leu	Glu	Ser	Ser	Pro	Cys	Ser	Trp	Leu	Arg	Asn	
				155					160					165	
His	Ala	His	Trp	Gly	Arg	Arg	Val	Val	Asp	Phe	Phe	Leu	Ile	Val	
				170					175					180	
Thr	Gln	Leu	Gly	Phe	Cys	Cys	Val	Tyr	Phe	Val	Phe	Leu	Ala	Asp	
				185					190					195	
Asn	Phe	Lys	Gln	Val	Ile	Glu	Ala	Ala	Asn	Gly	Thr	Thr	Asn	Asn	
				200					205					210	
Cys	His	Asn	Asn	Glu	Thr	Val	Ile	Leu	Thr	Pro	Thr	Met	Asp	Ser	
				215					220					225	
Arg	Leu	Tyr	Met	Leu	Ser	Phe	Leu	Pro	Phe	Leu	Val	Leu	Leu	Val	
				230					235					240	
Phe	Ile	Arg	Asn	Leu	Arg	Ala	Leu	Ser	Ile	Phe	Ser	Leu	Leu	Ala	
				245					250					255	
Asn	Ile	Thr	Met	Leu	Val	Ser	Leu	Val	Met	Ile	Tyr	Gln	Phe	Ile	
				260					265					270	
Val	Gln	Arg	Ile	Pro	Asp	Pro	Ser	His	Leu	Pro	Leu	Val	Ala	Pro	
				275					280					285	
Trp	Lys	Thr	Tyr	Pro	Leu	Phe	Phe	Gly	Thr	Ala	Ile	Phe	Ser	Phe	
				290					295					300	
Glu	Gly	Ile	Gly	Met	Val	Leu	Pro	Leu	Glu	Asn	Lys	Met	Lys	Asp	
				305					310					315	
Pro	Arg	Lys	Phe	Pro	Leu	Ile	Leu	Tyr	Leu	Gly	Met	Val	Ile	Val	
				320					325					330	
Thr	Ile	Leu	Tyr	Ile	Ser	Leu	Gly	Cys	Leu	Gly	Tyr	Leu	Gln	Phe	
				335					340					345	
Gly	Ala	Asn	Ile	Gln	Gly	Ser	Ile	Thr	Leu	Asn	Leu	Pro	Asn	Cys	
				350					355					360	

Trp	Leu	Tyr	Gln	Ser	Val	Lys	Leu	Leu	Tyr	Ser	Ile	Gly	Ile	Phe
				365					370					375
Phe	Thr	Tyr	Ala	Leu	Gln	Phe	Tyr	Val	Pro	Ala	Glu	Ile	Ile	
				380					385					390
Pro	Phe	Phe	Val	Ser	Arg	Ala	Pro	Glu	Pro	Cys	Glu	Leu	Val	
				395					400					405
Asp	Leu	Phe	Val	Arg	Pro	Val	Leu	Val	Cys	Leu	Thr	Ser	Leu	Ser
				410					415					420
Gly	Ser	Val	Asp	Asn	Gly	Trp	Tyr	Gly	Thr	Glu	Ala	Asp	Gly	Thr
				425					430					435
Ser	Cys	Gly	Ser	Ala	Pro	Leu	Val	Phe	Val	Ser	Ser	Ser	Phe	Leu
				440					445					450
Ala	His	Pro	Trp	Leu	Ser	Phe	Arg	Cys	Glu	Ser	Gln	Trp	Val	Ser
				455					460					465
Cys	His	Arg	Asp	Thr	Val	Val	Val	Trp	Gly	Phe	Ala	Arg	Gly	Ile
				470					475					480
Leu	Ala	Ile	Leu	Ile	Pro	Arg	Leu	Asp	Leu	Val	Ile	Ser	Leu	Val
				485					490					495
Gly	Ser	Val	Ser	Ser	Ser	Ala	Leu	Ala	Leu	Ile	Ile	Pro	Pro	Leu
				500					505					510
Leu	Glu	Val	Thr	Thr	Phe	Tyr	Ser	Glu	Gly	Met	Ser	Pro	Leu	Thr
				515					520					525
Ile	Phe	Lys	Asp	Ala	Leu	Ile	Ser	Ile	Leu	Gly	Phe	Val	Gly	Phe
				530					535					540
Val	Val	Gly	Thr	Tyr	Glu	Ala	Leu	Tyr	Glu	Leu	Ile	Gln	Pro	Ser
				545					550					555
Asn	Ala	Pro	Ile	Phe	Ile	Asn	Ser	Thr	Cys	Ala	Phe	Ile		
				560					565					

<210> 9

<211> 958

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7477898CD1

<400> 9

Met	Pro	Val	Arg	Arg	Gly	His	Val	Ala	Pro	Gln	Asn	Thr	Tyr	Leu
1				5					10					15
Asp	Thr	Ile	Ile	Arg	Lys	Phe	Glu	Gly	Gln	Ser	Arg	Lys	Phe	Leu
				20					25					30
Ile	Ala	Asn	Ala	Gln	Met	Glu	Asn	Cys	Ala	Ile	Ile	Tyr	Cys	Asn
				35					40					45
Asp	Gly	Phe	Cys	Glu	Leu	Phe	Gly	Tyr	Ser	Arg	Val	Glu	Val	Met
				50					55					60
Gln	Gln	Pro	Cys	Thr	Cys	Asp	Phe	Leu	Thr	Gly	Pro	Asn	Thr	Pro
				65					70					75
Ser	Ser	Ala	Val	Ser	Arg	Leu	Ala	Gln	Ala	Leu	Leu	Gly	Ala	Glu
				80					85					90
Glu	Cys	Lys	Val	Asp	Ile	Leu	Tyr	Tyr	Arg	Lys	Asp	Ala	Ser	Ser
				95					100					105
Phe	Arg	Cys	Leu	Val	Asp	Val	Val	Pro	Val	Lys	Asn	Glu	Asp	Gly
				110					115					120
Ala	Val	Ile	Met	Phe	Ile	Leu	Asn	Phe	Glu	Asp	Leu	Ala	Gln	Leu
				125					130					135
Leu	Ala	Lys	Cys	Ser	Ser	Arg	Ser	Leu	Ser	Gln	Arg	Leu	Leu	Ser
				140					145					150
Gln	Ser	Phe	Leu	Gly	Ser	Glu	Gly	Ser	His	Gly	Arg	Pro	Gly	Gly
				155					160					165
Pro	Gly	Pro	Gly	Thr	Gly	Arg	Gly	Lys	Tyr	Arg	Thr	Ile	Ser	Gln
				170					175					180
Ile	Pro	Gln	Phe	Thr	Leu	Asn	Phe	Val	Glu	Phe	Asn	Leu	Glu	Lys
				185					190					195
His	Arg	Ser	Ser	Ser	Thr	Thr	Glu	Ile	Glu	Ile	Ile	Ala	Pro	His
				200					205					210

Lys Val Val Glu Arg Thr Gln Asn Val Thr Glu Lys Val Thr Gln
 215 220 225
 Val Leu Ser Leu Gly Ala Asp Val Leu Pro Glu Tyr Lys Leu Gln
 230 235 240
 Ala Pro Arg Ile His Arg Trp Thr Ile Leu His Tyr Ser Pro Phe
 245 250 255
 Lys Ala Val Trp Asp Trp Leu Ile Leu Leu Leu Val Ile Tyr Thr
 260 265 270
 Ala Val Phe Thr Pro Tyr Ser Ala Ala Phe Leu Leu Ser Asp Gln
 275 280 285
 Asp Glu Ser Arg Arg Gly Ala Cys Ser Tyr Thr Cys Ser Pro Leu
 290 295 300
 Thr Val Val Asp Leu Ile Val Asp Ile Met Phe Val Val Asp Ile
 305 310 315
 Val Ile Asn Phe Arg Thr Thr Tyr Val Asn Thr Asn Asp Glu Val
 320 325 330
 Val Ser His Pro Arg Arg Ile Ala Val His Tyr Phe Lys Gly Trp
 335 340 345
 Phe Leu Ile Asp Met Val Ala Ala Ile Pro Phe Asp Leu Leu Ile
 350 355 360
 Phe Arg Thr Gly Ser Asp Glu Thr Thr Thr Leu Ile Gly Leu Leu
 365 370 375
 Lys Thr Ala Arg Leu Leu Arg Leu Val Arg Val Ala Arg Lys Leu
 380 385 390
 Asp Arg Tyr Ser Glu Tyr Gly Ala Ala Val Leu Phe Leu Leu Met
 395 400 405
 Cys Thr Phe Pro Leu Ile Ala His Trp Leu Ala Cys Ile Trp Tyr
 410 415 420
 Ala Ile Gly Asn Val Glu Arg Pro Tyr Leu Glu His Lys Ile Gly
 425 430 435
 Trp Leu Asp Ser Leu Gly Val Gln Leu Gly Lys Arg Tyr Asn Gly
 440 445 450
 Ser Asp Pro Ala Ser Gly Pro Ser Val Gln Asp Lys Tyr Val Thr
 455 460 465
 Ala Leu Tyr Phe Thr Phe Ser Ser Leu Thr Ser Val Gly Phe Gly
 470 475 480
 Asn Val Ser Pro Asn Thr Asn Ser Glu Lys Val Phe Ser Ile Cys
 485 490 495
 Val Met Leu Ile Gly Ser Leu Met Tyr Ala Ser Ile Phe Gly Asn
 500 505 510
 Val Ser Ala Ile Ile Gln Arg Leu Tyr Ser Gly Thr Ala Arg Tyr
 515 520 525
 His Thr Gln Met Leu Arg Val Lys Glu Phe Ile Arg Phe His Gln
 530 535 540
 Ile Pro Asn Pro Leu Arg Gln Arg Leu Glu Glu Tyr Phe Gln His
 545 550 555
 Ala Trp Ser Tyr Thr Asn Gly Ile Asp Met Asn Ala Val Leu Lys
 560 565 570
 Gly Phe Pro Glu Cys Leu Gln Ala Asp Ile Cys Leu His Leu His
 575 580 585
 Arg Ala Leu Leu Gln His Cys Pro Ala Phe Ser Gly Ala Gly Lys
 590 595 600
 Gly Cys Leu Arg Ala Leu Ala Val Lys Phe Lys Thr Thr His Ala
 605 610 615
 Pro Pro Gly Asp Thr Leu Val His Leu Gly Asp Val Leu Ser Thr
 620 625 630
 Leu Tyr Phe Ile Ser Arg Gly Ser Ile Glu Ile Leu Arg Asp Asp
 635 640 645
 Val Val Val Ala Ile Leu Gly Lys Asn Asp Ile Phe Gly Glu Pro
 650 655 660
 Val Ser Leu His Ala Gln Pro Gly Lys Ser Ser Ala Asp Val Arg
 665 670 675
 Ala Leu Thr Tyr Cys Asp Leu His Lys Ile Gln Arg Ala Asp Leu
 680 685 690
 Leu Glu Val Leu Asp Met Tyr Pro Ala Phe Ala Glu Ser Phe Trp
 695 700 705
 Ser Lys Leu Glu Val Thr Phe Asn Leu Arg Asp Val Thr Gly Gly

	710		715		720
Leu	His	Ser	Ser	Pro	Arg Gln Ala Pro Gly Ser Gln Asp His Gln
					725. 730 735
Gly	Phe	Phe	Leu	Ser	Asp Asn Gln Ser Asp Ala Ala Pro Pro Leu
					740 745 750
Ser	Ile	Ser	Asp	Ala	Phe Trp Leu Trp Pro Glu Leu Leu Gln Glu
					755 760 765
Met	Pro	Pro	Lys	His	Ser Pro Gln Ser Pro Gln Glu Asp Pro Asp
					770 775 780
Cys	Trp	Pro	Leu	Lys	Leu Gly Ser Arg Leu Glu Gln Leu Gln Ala
					785 790 795
Gln	Met	Asn	Arg	Leu	Glu Ser Arg Val Ser Ser Asp Leu Ser Arg
					800 805 810
Ile	Leu	Gln	Leu	Leu	Gln Lys Pro Met Pro Gln Gly His Ala Ser
					815 820 825
Tyr	Ile	Leu	Glu	Ala	Pro Ala Ser Asn Asp Leu Ala Leu Val Pro
					830 835 840
Ile	Ala	Ser	Glu	Thr	Thr Ser Pro Gly Pro Arg Leu Pro Gln Gly
					845 850 855
Phe	Leu	Pro	Pro	Ala	Gln Thr Pro Ser Tyr Gly Asp Leu Asp Asp
					860 865 870
Cys	Ser	Pro	Lys	His	Arg Asn Ser Ser Pro Arg Met Pro His Leu
					875 880 885
Ala	Val	Ala	Met	Asp	Lys Thr Leu Ala Pro Ser Ser Glu Gln Glu
					890 895 900
Gln	Pro	Glu	Gly	Leu	Trp Pro Pro Leu Ala Ser Pro Leu His Pro
					905 910 915
Leu	Glu	Val	Gln	Gly	Leu Ile Cys Gly Pro Cys Phe Ser Ser Leu
					920 925 930
Pro	Glu	His	Leu	Gly	Ser Val Pro Lys Gln Leu Asp Phe Gln Arg
					935 940 945
His	Gly	Ser	Asp	Pro	Gly Phe Ala Gly Ser Trp Gly His
					950 955

<210> 10

<211> 724

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472728CD1

<400> 10

Met	Gly	His	Gln	Gly	Pro	Phe	Glu	Glu	Gly	Asn	Gly	Gly	Leu	Arg
1					5				10				15	
Val	Ile	Ala	Thr	Trp	Arg	Arg	Lys	Glu	Ala	Trp	Arg	Arg	Asp	Cys
					20				25				30	
Leu	Leu	Gly	Ala	Leu	Pro	Ser	Val	Ser	Cys	Gly	Gly	Trp	Gly	His
					35				40				45	
Arg	Gly	Arg	Gln	Thr	Tyr	Gly	Arg	Ala	Cys	Gly	Val	Lys	Glu	Lys
					50				55				60	
Pro	Phe	Ser	Leu	Leu	Gly	Pro	Gln	Ile	Thr	Val	Tyr	Ala	Val	Trp
					65				70				75	
Pro	Gln	Ser	Glu	Gly	Pro	Gln	Glu	Gly	Arg	Leu	Arg	Val	Asn	Ser
					80				85				90	
Ala	Cys	Leu	Pro	Pro	Glu	Arg	Gly	Leu	Thr	Asn	Ala	Cys	Thr	Asn
					95				100				105	
His	Glu	Glu	Leu	Ser	Leu	Asp	Cys	Leu	Leu	Phe	Glu	Asn	Val	Asn
					110				115				120	
Thr	Leu	Thr	Leu	Asp	Phe	Cys	Leu	Trp	Glu	Lys	Thr	Thr	Ile	Val
					125				130				135	
Pro	Gly	Val	Leu	Pro	Tyr	Ala	Gly	Leu	Thr	Leu	Gln	Ser	Lys	Phe
					140				145				150	
Leu	Leu	Gly	Arg	Ala	Leu	Leu	Ala	Gly	Val	His	Val	Ile	Thr	Leu
					155				160				165	
Thr	Pro	Glu	Arg	Val	Thr	His	His	Val	His	Gly	Trp	Tyr	Met	Glu

Asp	Gly	Phe	Lys	170	Gly	Asp	Arg	Thr	Glu	175	Cys	Arg	Ser	Asp	Ser
				185						190					195
Val	Ala	Val	Pro	Ala	Ala	Ala	Pro	Val	Cys	200	Gln	Pro	Lys	Ser	Ala
										205					210
Thr	Asn	Gly	Gln	Pro	Pro	Ala	Pro	Ala	Pro	215	Thr	Pro	Thr	Pro	Arg
										220					225
Leu	Ser	Ile	Ser	Ser	Arg	Ala	Thr	Val	Val	230	Ala	Arg	Met	Glu	Gly
										235					240
Thr	Ser	Gln	Gly	Gly	Leu	Gln	Thr	Val	Met	245	Lys	Trp	Lys	Thr	Val
										250					255
Val	Ala	Ile	Phe	Val	Val	Val	Val	Val	Tyr	260	Leu	Val	Thr	Gly	Gly
										265					270
Leu	Val	Phe	Arg	Ala	Leu	Glu	Gln	Pro	Phe	275	Glu	Ser	Ser	Gln	Lys
										280					285
Asn	Thr	Ile	Ala	Leu	Glu	Lys	Ala	Glu	Phe	290	Leu	Arg	Asp	His	Val
										295					300
Cys	Val	Ser	Pro	Gln	Glu	Leu	Glu	Thr	Leu	305	Ile	Gln	His	Ala	Leu
										310					315
Asp	Ala	Asp	Asn	Ala	Gly	Val	Ser	Pro	Ile	320	Gly	Asn	Ser	Ser	Asn
										325					330
Asn	Ser	Ser	His	Trp	Asp	Leu	Gly	Ser	Ala	335	Phe	Phe	Phe	Ala	Gly
										340					345
Thr	Val	Ile	Thr	Thr	Met	Tyr	Gly	Asn	Ile	350	Ala	Pro	Ser	Thr	Glu
										355					360
Gly	Gly	Lys	Ile	Phe	Cys	Ile	Leu	Tyr	Ala	365	Ile	Phe	Gly	Ile	Pro
										370					375
Leu	Phe	Gly	Phe	Leu	Leu	Ala	Gly	Ile	Gly	380	Asp	Gln	Leu	Gly	Thr
										385					390
Ile	Phe	Gly	Lys	Ser	Ile	Ala	Arg	Val	Glu	395	Lys	Val	Phe	Arg	Lys
										400					405
Lys	Gln	Val	Ser	Gln	Thr	Lys	Ile	Arg	Val	410	Ile	Ser	Thr	Ile	Leu
										415					420
Phe	Ile	Leu	Ala	Gly	Cys	Ile	Val	Phe	Val	425	Thr	Ile	Pro	Ala	Val
										430					435
Ile	Phe	Lys	Tyr	Ile	Glu	Gly	Trp	Thr	Ala	440	Leu	Glu	Ser	Ile	Tyr
										445					450
Phe	Val	Val	Val	Thr	Leu	Thr	Thr	Val	Gly	455	Phe	Gly	Asp	Phe	Val
										460					465
Ala	Val	Val	Val	Phe	Arg	Gly	Asn	Ala	Gly	470	Ile	Asn	Tyr	Arg	Glu
										475					480
Trp	Tyr	Lys	Pro	Leu	Val	Trp	Phe	Trp	Ile	485	Leu	Val	Gly	Leu	Ala
										490					495
Tyr	Phe	Ala	Ala	Val	Leu	Ser	Met	Ile	Gly	500	Asp	Trp	Leu	Arg	Val
										505					510
Leu	Ser	Lys	Lys	Thr	Lys	Glu	Glu	Val	Gly	515	Glu	Ile	Lys	Ala	His
										520					525
Ala	Ala	Glu	Trp	Lys	Ala	Asn	Val	Thr	Ala	530	Glu	Phe	Arg	Glu	Thr
										535					540
Arg	Arg	Arg	Leu	Ser	Val	Glu	Ile	His	Asp	545	Lys	Leu	Gln	Arg	Ala
										550					555
Ala	Thr	Ile	Arg	Ser	Met	Glu	Arg	Arg	Arg	560	Leu	Gly	Leu	Asp	Gln
										565					570
Arg	Ala	His	Ser	Leu	Asp	Met	Leu	Ser	Pro	575	Glu	Lys	Arg	Ser	Val
										580					585
Phe	Ala	Ala	Leu	Asp	Thr	Gly	Arg	Phe	Lys	590	Ala	Ser	Ser	Gln	Glu
										595					600
Ser	Ile	Asn	Asn	Arg	Pro	Asn	Asn	Leu	Arg	605	Leu	Lys	Gly	Pro	Glu
										610					615
Gln	Leu	Asn	Lys	His	Gly	Gln	Gly	Ala	Ser	620	Glu	Asp	Asn	Ile	Ile
										625					630
Asn	Lys	Phe	Gly	Ser	Thr	Ser	Arg	Leu	Thr	635	Lys	Arg	Lys	Asn	Lys
										640					645
Asp	Leu	Lys	Lys	Thr	Leu	Pro	Glu	Asp	Val	650	Gln	Lys	Ile	Tyr	Lys
										655					660
Thr	Phe	Arg	Asn	Tyr	Ser	Leu	Asp	Glu	Glu	665	Lys	Lys	Glu	Glu	Glu
										670					675

Thr Glu Lys Met Cys Asn Ser Asp Asn Ser Ser Thr Ala Met Leu
 680 685 690
 Thr Asp Cys Ile Gln Gln His Ala Glu Leu Glu Asn Gly Met Ile
 695 700 705
 Pro Thr Asp Thr Lys Asp Arg Glu Pro Glu Asn Asn Ser Leu Leu
 710 715 720
 Glu Asp Arg Asn

<210> 11
 <211> 470
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7474322CD1

<220>
 <221> unsure
 <222> 253
 <223> unknown or other

<400> 11

Met	Tyr	Asn	Glu	Ile	Leu	Met	Leu	Gly	Ala	Lys	Leu	His	Pro	Thr
1				5					10					15
Leu	Lys	Leu	Glu	Glu	Leu	Thr	Asn	Lys	Lys	Gly	Met	Thr	Pro	Leu
					20				25					30
Ala	Leu	Ala	Ala	Gly	Thr	Gly	Lys	Ile	Gly	Asn	Arg	His	Asp	Met
				35				40						45
Leu	Leu	Val	Glu	Pro	Leu	Asn	Arg	Leu	Leu	Gln	Asp	Lys	Trp	Asp
				50				55						60
Arg	Phe	Val	Lys	Arg	Ile	Phe	Tyr	Phe	Asn	Phe	Leu	Val	Tyr	Cys
	65					70								75
Leu	Tyr	Met	Ile	Ile	Phe	Thr	Met	Ala	Ala	Tyr	Tyr	Arg	Pro	Val
				80				85						90
Asp	Gly	Leu	Pro	Pro	Phe	Lys	Met	Glu	Lys	Thr	Gly	Asp	Tyr	Phe
				95				100						105
Arg	Val	Thr	Gly	Glu	Ile	Leu	Ser	Val	Leu	Gly	Gly	Val	Tyr	Phe
				110				115						120
Phe	Phe	Arg	Gly	Ile	Gln	Tyr	Phe	Leu	Gln	Arg	Arg	Pro	Ser	Met
				125				130						135
Lys	Thr	Leu	Phe	Val	Asp	Ser	Tyr	Ser	Glu	Met	Leu	Leu	Phe	Leu
				140				145						150
Gln	Ser	Leu	Phe	Met	Leu	Ala	Thr	Val	Val	Leu	Tyr	Phe	Ser	His
				155				160						165
Leu	Lys	Glu	Tyr	Val	Ala	Ser	Met	Val	Phe	Ser	Leu	Ala	Leu	Gly
				170				175						180
Trp	Thr	Asn	Met	Leu	Tyr	Tyr	Thr	Arg	Gly	Phe	Gln	Gln	Met	Gly
				185				190						195
Ile	Tyr	Ala	Val	Met	Ile	Glu	Lys	Met	Ile	Leu	Arg	Asp	Leu	Cys
				200				205						210
Arg	Phe	Met	Phe	Val	Tyr	Ile	Val	Phe	Leu	Phe	Gly	Phe	Ser	Thr
				215				220						225
Ala	Val	Val	Thr	Leu	Ile	Glu	Asp	Gly	Lys	Asn	Asp	Ser	Leu	Pro
				230				235						240
Ser	Glu	Ser	Thr	Ser	His	Arg	Trp	Arg	Gly	Pro	Ala	Xaa	Arg	Pro
				245				250						255
Asn	Ser	Ser	Tyr	Asn	Ser	Leu	Tyr	Ser	Thr	Cys	Leu	Glu	Leu	Phe
				260				265						270
Lys	Phe	Thr	Ile	Gly	Met	Gly	Asp	Leu	Glu	Phe	Thr	Glu	Asn	Tyr
				275				280						285
Asp	Phe	Lys	Ala	Val	Phe	Ile	Ile	Leu	Leu	Leu	Ala	Tyr	Val	Ile
				290				295						300
Leu	Thr	Tyr	Ile	Val	Leu	Leu	Leu	Asn	Met	Leu	Ile	Ala	Leu	Met
				305				310						315
Gly	Glu	Thr	Val	Glu	Asn	Val	Ser	Lys	Glu	Ser	Glu	Arg	Ile	Trp

	320		325		330
Arg Leu Gln Arg	Ala Ile Thr Ile Leu	Asp	Thr Glu Lys Ser	Phe	
	335	340	345		
Leu Lys Cys Met	Arg Lys Ala Phe Arg	Ser	Gly Lys Leu Leu	Gln	
	350	355	360		
Val Gly Tyr Thr	Pro Asp Gly Lys Asp	Asp	Tyr Arg Trp Cys	Phe	
	365	370	375		
Val Asp Glu Val	Asn Trp Thr Trp	Asn	Thr Asn Val Gly	Ile	
	380	385	390		
Ile Asn Glu Asp	Pro Gly Asn Cys Glu	Gly	Val Lys Arg Thr	Leu	
	395	400	405		
Ser Phe Ser Leu	Arg Ser Ser Arg Val	Ser	Gly Arg His Trp	Lys	
	410	415	420		
Asn Phe Ala Leu	Val Pro Leu Leu Arg	Glu	Ala Ser Ala Arg	Asp	
	425	430	435		
Arg Gln Ser Ala	Gln Pro Glu Glu Val	Tyr	Leu Arg Gln Phe	Ser	
	440	445	450		
Gly Ser Leu Lys	Pro Glu Asp Ala Glu	Val	Phe Lys Ser Pro	Ala	
	455	460	465		
Ala Ser Gly Glu	Lys				
	470				

<210> 12
<211> 618
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5455621CD1

<400> 12

Met	Glu	Val	Lys	Asn	Phe	Ala	Val	Trp	Asp	Tyr	Val	Val	Phe	Ala	
1					5				10					15	
Ala	Leu	Phe	Phe	Ile	Ser	Ser	Gly	Ile	Gly	Val	Phe	Phe	Ala	Ile	
					20				25					30	
Lys	Glu	Arg	Lys	Lys	Ala	Thr	Ser	Arg	Glu	Phe	Leu	Val	Gly	Gly	
					35				40					45	
Arg	Gln	Met	Ser	Phe	Gly	Pro	Val	Gly	Leu	Ser	Leu	Thr	Ala	Ser	
					50				55					60	
Phe	Met	Ser	Ala	Val	Thr	Val	Leu	Gly	Thr	Pro	Ser	Glu	Val	Tyr	
					65				70					75	
Arg	Phe	Gly	Ala	Ser	Phe	Leu	Val	Phe	Phe	Ile	Ala	Tyr	Leu	Phe	
					80				85					90	
Val	Ile	Leu	Leu	Thr	Ser	Glu	Leu	Phe	Leu	Pro	Val	Phe	Tyr	Arg	
					95				100					105	
Ser	Gly	Ile	Thr	Ser	Thr	Tyr	Glu	Tyr	Leu	Gln	Leu	Arg	Phe	Asn	
					110				115					120	
Lys	Pro	Val	Arg	Tyr	Ala	Ala	Thr	Val	Ile	Tyr	Ile	Val	Gln	Thr	
					125				130					135	
Ile	Leu	Tyr	Thr	Gly	Val	Val	Val	Tyr	Ala	Pro	Ala	Leu	Ala	Leu	
					140				145					150	
Asn	Gln	Val	Thr	Gly	Phe	Asp	Leu	Trp	Gly	Ser	Val	Phe	Ala	Thr	
					155				160					165	
Gly	Ile	Val	Cys	Thr	Phe	Tyr	Cys	Thr	Leu	Gly	Gly	Leu	Lys	Ala	
					170				175					180	
Val	Val	Trp	Thr	Asp	Ala	Phe	Gln	Met	Val	Val	Met	Ile	Val	Gly	
					185				190					195	
Phe	Leu	Thr	Val	Leu	Ile	Gln	Gly	Ser	Thr	His	Ala	Gly	Gly	Phe	
					200				205					210	
His	Asn	Val	Leu	Glu	Gln	Ser	Thr	Asn	Gly	Ser	Arg	Leu	His	Ile	
					215				220					225	
Phe	Asp	Phe	Asp	Val	Asp	Pro	Leu	Arg	Arg	His	Thr	Phe	Trp	Thr	
					230				235					240	
Ile	Thr	Val	Gly	Gly	Thr	Phe	Thr	Trp	Leu	Gly	Ile	Tyr	Gly	Val	
					245				250					255	
Asn	Gln	Ser	Thr	Ile	Gln	Arg	Cys	Ile	Ser	Cys	Lys	Thr	Glu	Lys	

	260		265		270
His Ala Lys Leu		Ala Leu Tyr Phe Asn	Leu Leu Gly Leu Trp	Ile	
	275		280		285
Ile Leu Val Cys		Ala Val Phe Ser Gly	Leu Ile Met Tyr Ser	His	
	290		295		300
Phe Lys Asp Cys		Asp Pro Trp Thr Ser	Gly Ile Ile Ser Ala	Pro	
	305		310		315
Asp Gln Leu Met		Pro Tyr Phe Val Met	Glu Ile Phe Ala Thr	Met	
	320		325		330
Pro Gly Leu Pro		Gly Leu Phe Val Ala	Cys Ala Phe Ser Gly	Thr	
	335		340		345
Leu Ser Thr Val		Ala Ser Ser Ile Asn	Ala Leu Ala Thr Val	Thr	
	350		355		360
Phe Glu Asp Phe		Val Lys Ser Cys Phe	Pro His Leu Ser Asp	Lys	
	365		370		375
Leu Ser Thr Trp		Ile Ser Lys Gly Leu	Cys Leu Leu Phe Gly	Val	
	380		385		390
Met Cys Thr Ser		Met Ala Val Ala Ala	Ser Val Met Gly Gly	Val	
	395		400		405
Val Gln Ala Ser		Leu Ser Ile His Gly	Met Cys Gly Gly Pro	Met	
	410		415		420
Leu Gly Leu Phe		Ser Leu Gly Ile Val	Phe Pro Phe Val Asn	Trp	
	425		430		435
Lys Gly Ala Leu		Gly Gly Leu Leu Thr	Gly Ile Thr Leu Ser	Phe	
	440		445		450
Trp Val Ala Ile		Gly Ala Phe Ile Tyr	Pro Ala Pro Ala Ser	Lys	
	455		460		465
Thr Trp Pro Leu		Pro Leu Ser Thr Asp	Gln Cys Ile Lys Ser	Asn	
	470		475		480
Val Thr Ala Thr		Gly Pro Pro Val Leu	Ser Ser Arg Pro Gly	Ile	
	485		490		495
Ala Asp Thr Trp		Tyr Ser Ile Ser Tyr	Leu Tyr Tyr Ser Ala	Leu	
	500		505		510
Gly Cys Leu Gly		Cys Ile Val Ala Gly	Val Ile Ile Ser Leu	Ile	
	515		520		525
Thr Gly Arg Gln		Arg Gly Glu Asp Ile	Gln Pro Leu Leu Ile	Arg	
	530		535		540
Pro Val Cys Asn		Leu Phe Cys Phe Trp	Ser Lys Lys Tyr Lys	Thr	
	545		550		555
Leu Cys Trp Cys		Gly Val Gln His Asp	Ser Gly Thr Glu Gln	Glu	
	560		565		570
Asn Leu Glu Asn		Gly Ser Ala Arg Lys	Gln Gly Ala Glu Ser	Val	
	575		580		585
Leu Gln Asn Gly		Leu Arg Arg Glu Ser	Leu Val His Val Pro	Gly	
	590		595		600
Tyr Asp Pro Lys		Asp Lys Ser Tyr Asn	Asn Met Ala Phe Glu	Thr	
	605		610		615
Thr His Phe					

<210> 13
<211> 631
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7477248CD1

<400> 13
Met Glu Arg Gln Ser Arg Val Met Ser Glu Lys Asp Glu Tyr Gln
1 5 10 15
Phe Gln His Gln Gly Ala Val Glu Leu Leu Val Phe Asn Phe Leu
20 25 30
Leu Ile Leu Thr Ile Leu Thr Ile Trp Leu Phe Lys Asn His Arg
35 40 45
Phe Arg Phe Leu His Glu Thr Gly Gly Ala Met Val Tyr Gly Leu

50	55	60
Ile Met Gly Leu Ile	Leu Arg Tyr Ala Thr	Ala Pro Thr Asp
65	70	Ile
Glu Ser Gly Thr Val	Tyr Asp Cys Val Lys	Leu Thr Phe Ser
80	85	Pro
Ser Thr Leu Leu Val	Asn Ile Thr Asp Gln	Val Tyr Glu Tyr
95	100	Lys
Tyr Lys Arg Glu Ile	Ser Gln His Asn Ile	Asn Pro His Gln
110	115	Gly
Asn Ala Ile Leu Glu	Lys Met Thr Phe Asp	Pro Glu Ile Phe
125	130	Phe
Asn Val Leu Leu Pro	Pro Ile Ile Phe His	Ala Gly Tyr Ser
140	145	Leu
Lys Lys Arg His Phe	Phe Gln Asn Leu Gly	Ser Ile Leu Thr
155	160	Tyr
Ala Phe Leu Gly Thr	Ala Ile Ser Cys Ile	Val Ile Gly Leu
170	175	Ile
Met Tyr Gly Phe Val	Lys Ala Met Ile His	Ala Gly Gln Leu
185	190	Lys
Asn Gly Asp Phe His	Phe Thr Asp Cys Leu	Phe Phe Gly Ser
200	205	Leu
Met Ser Ala Thr Asp	Pro Val Thr Val Leu	Ala Ile Phe His
215	220	Glu
Leu His Val Asp Pro	Asp Leu Tyr Thr Leu	Leu Phe Gly Glu
230	235	Ser
Val Leu Asn Asp Ala	Val Ala Ile Val Leu	Thr Tyr Ser Ile
245	250	Ser
Ile Tyr Ser Pro Lys	Glu Asn Pro Asn Ala	Phe Asp Ala Ala
260	265	Ala
Phe Phe Gln Ser Val	Gly Asn Phe Leu Gly	Ile Phe Ala Gly
275	280	Ser
Phe Ala Met Gly Ser	Ala Tyr Ala Ile Ile	Thr Ala Leu Leu
290	295	Thr
Lys Phe Thr Lys Leu	Cys Glu Phe Pro Met	Leu Glu Thr Gly
305	310	Leu
Phe Phe Leu Leu Ser	Trp Ser Ala Phe Leu	Ser Ala Glu Ala
320	325	Ala
Gly Leu Thr Gly Ile	Val Ala Val Leu Phe	Cys Gly Val Thr
335	340	Gln
Ala His Tyr Thr Tyr	Asn Asn Leu Ser Ser	Asp Ser Lys Ile
350	355	Arg
Thr Lys Gln Leu Phe	Glu Phe Met Asn Phe	Leu Ala Glu Asn
365	370	Val
Ile Phe Cys Tyr Met	Gly Leu Ala Leu Phe	Thr Phe Gln Asn
380	385	His
Ile Phe Asn Ala Leu	Phe Ile Leu Gly Ala	Phe Leu Ala Ile
395	400	Phe
Val Ala Arg Ala Cys	Asn Ile Tyr Pro Leu	Ser Phe Leu Leu
410	415	Asn
Leu Gly Arg Lys Gln	Lys Ile Pro Trp Asn	Phe Gln His Met
425	430	Met
Met Phe Ser Gly Leu	Arg Gly Ala Ile Ala	Phe Ala Leu Ala
440	445	Ile
Arg Asn Thr Glu Ser	Gln Pro Lys Gln Met	Met Phe Thr Thr
455	460	Thr
Leu Leu Leu Val Phe	Phe Thr Val Trp Val	Phe Gly Gly Gly
470	475	Thr
Thr Pro Met Leu Thr	Trp Leu Gln Ile Arg	Val Gly Val Asp
485	490	Leu
Asp Glu Asn Leu Lys	Glu Asp Pro Ser Ser	Gln His Gln Glu
500	505	Ala
Asn Asn Leu Asp Lys	Asn Met Thr Lys Ala	Glu Ser Ala Arg
515	520	Leu
Phe Arg Met Trp Tyr	Ser Phe Asp His Lys	Tyr Leu Lys Pro
530	535	Ile
Leu Thr His Ser Gly	Pro Pro Leu Thr Thr	Thr Leu Pro Glu
545	550	Trp
		555

Cys Gly Pro Ile Ser Arg Leu Leu Thr Ser Pro Gln Ala Tyr Gly
 560 565 570
 Glu Gln Leu Lys Glu Asp Asp Val Glu Cys Ile Val Asn Gln Asp
 575 580 585
 Glu Leu Ala Ile Asn Tyr Gln Glu Gln Ala Ser Ser Pro Cys Ser
 590 595 600
 Pro Pro Ala Arg Leu Gly Leu Asp Gln Lys Ala Ser Pro Gln Thr
 605 610 615
 Pro Gly Lys Glu Asn Ile Tyr Glu Gly Asp Leu Gly Pro Gly Arg
 620 625 630

Leu

<210> 14
<211> 1256
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2944004CD1

<400> 14
 Met Asp Arg Glu Glu Arg Lys Thr Ile Asn Gln Gly Gln Glu Asp
 1 5 10 15
 Glu Met Glu Ile Tyr Gly Tyr Asn Leu Ser Arg Trp Lys Leu Ala
 20 25 30
 Ile Val Ser Leu Gly Val Ile Cys Ser Gly Gly Val Ser Pro Pro
 35 40 45
 Pro Leu Tyr Trp Met Pro Glu Trp Arg Val Lys Ala Thr Cys Val
 50 55 60
 Arg Ala Ala Ile Lys Asp Cys Glu Val Val Leu Leu Arg Thr Thr
 65 70 75
 Asp Glu Phe Lys Met Trp Phe Cys Ala Lys Ile Arg Val Leu Ser
 80 85 90
 Leu Glu Thr Tyr Pro Val Ser Ser Pro Lys Ser Met Ser Asn Lys
 95 100 105
 Leu Ser Asn Gly His Ala Val Cys Leu Ile Glu Asn Pro Thr Glu
 110 115 120
 Glu Asn Arg His Arg Ile Ser Lys Tyr Ser Gln Thr Glu Ser Gln
 125 130 135
 Gln Ile Arg Tyr Phe Thr His His Ser Val Lys Tyr Phe Trp Asn
 140 145 150
 Asp Thr Ile His Asn Phe Asp Phe Leu Lys Gly Leu Asp Glu Gly
 155 160 165
 Val Ser Cys Thr Ser Ile Tyr Glu Lys His Ser Ala Gly Leu Thr
 170 175 180
 Lys Gly Met His Ala Tyr Arg Lys Leu Leu Tyr Gly Val Asn Glu
 185 190 195
 Ile Ala Val Lys Val Pro Ser Val Phe Lys Leu Leu Ile Lys Glu
 200 205 210
 Val Leu Asn Pro Phe Tyr Ile Phe Gln Leu Phe Ser Val Ile Leu
 215 220 225
 Trp Ser Thr Asp Glu Tyr Tyr Tyr Tyr Ala Leu Ala Ile Val Val
 230 235 240
 Met Ser Ile Val Ser Ile Val Ser Ser Leu Tyr Ser Ile Arg Lys
 245 250 255
 Gln Tyr Val Met Leu His Asp Met Val Ala Thr His Ser Thr Val
 260 265 270
 Arg Val Ser Val Cys Arg Val Asn Glu Glu Ile Glu Glu Ile Phe
 275 280 285
 Ser Thr Asp Leu Val Pro Gly Asp Val Met Val Ile Pro Leu Asn
 290 295 300
 Gly Thr Ile Met Pro Cys Asp Ala Val Leu Ile Asn Gly Thr Cys
 305 310 315
 Ile Val Asn Glu Ser Met Leu Thr Gly Glu Ser Val Pro Val Thr
 320 325 330

Lys Thr Asn Leu Pro Asn Pro Ser Val Asp Val Lys Gly Ile Gly
 335 340 345
 Asp Glu Leu Tyr Asn Pro Glu Thr His Lys Arg His Thr Leu Phe
 350 355 360
 Cys Gly Thr Thr Val Ile Gln Thr Arg Phe Tyr Thr Gly Glu Leu
 365 370 375
 Val Lys Ala Ile Val Val Arg Thr Gly Phe Ser Thr Ser Lys Gly
 380 385 390
 Gln Leu Val Arg Ser Ile Leu Tyr Pro Lys Pro Thr Asp Phe Lys
 395 400 405
 Leu Tyr Arg Asp Ala Tyr Leu Phe Leu Leu Cys Leu Val Ala Val
 410 415 420
 Ala Gly Ile Gly Phe Ile Tyr Thr Ile Ile Asn Ser Ile Leu Asn
 425 430 435
 Glu Val Gln Val Gly Val Ile Ile Ile Glu Ser Leu Asp Ile Ile
 440 445 450
 Thr Ile Thr Val Pro Pro Ala Leu Pro Ala Ala Met Thr Ala Gly
 455 460 465
 Ile Val Tyr Ala Gln Arg Arg Leu Lys Lys Ile Gly Ile Phe Cys
 470 475 480
 Ile Ser Pro Gln Arg Ile Asn Ile Cys Gly Gln Leu Asn Leu Val
 485 490 495
 Cys Phe Asp Lys Thr Gly Thr Leu Thr Glu Asp Gly Leu Asp Leu
 500 505 510
 Trp Gly Ile Gln Arg Val Glu Asn Ala Arg Phe Leu Ser Pro Glu
 515 520 525
 Glu Asn Val Cys Asn Glu Met Leu Val Lys Ser Gln Phe Val Ala
 530 535 540
 Cys Met Ala Thr Cys His Ser Leu Thr Lys Ile Glu Gly Val Leu
 545 550 555
 Ser Gly Asp Pro Leu Asp Leu Lys Met Phe Glu Ala Ile Gly Trp
 560 565 570
 Ile Leu Glu Glu Ala Thr Glu Glu Glu Thr Ala Leu His Asn Arg
 575 580 585
 Ile Met Pro Thr Val Val Arg Pro Pro Lys Gln Leu Leu Pro Glu
 590 595 600
 Ser Thr Pro Ala Gly Asn Gln Glu Met Glu Leu Phe Glu Leu Pro
 605 610 615
 Ala Thr Tyr Glu Ile Gly Ile Val Arg Gln Phe Pro Phe Ser Ser
 620 625 630
 Ala Leu Gln Arg Met Ser Val Val Ala Arg Val Leu Gly Asp Arg
 635 640 645
 Lys Met Asp Ala Tyr Met Lys Gly Ala Pro Glu Ala Ile Ala Gly
 650 655 660
 Leu Cys Lys Pro Glu Thr Val Pro Val Asp Phe Gln Asn Val Leu
 665 670 675
 Glu Asp Phe Thr Lys Gln Gly Phe Arg Val Ile Ala Leu Ala His
 680 685 690
 Arg Lys Leu Glu Ser Lys Leu Thr Trp His Lys Val Gln Asn Ile
 695 700 705
 Ser Arg Asp Ala Ile Glu Asn Asn Met Asp Phe Met Gly Leu Ile
 710 715 720
 Ile Met Gln Asn Lys Leu Lys Gln Lys Thr Pro Ala Val Leu Glu
 725 730 735
 Asp Leu His Lys Ala Asn Ile Arg Thr Val Met Val Thr Gly Asp
 740 745 750
 Ser Met Leu Thr Ala Val Ser Val Ala Arg Asp Cys Gly Met Ile
 755 760 765
 Leu Pro Gln Asp Lys Val Ile Ile Ala Glu Ala Leu Pro Pro Lys
 770 775 780
 Asp Gly Lys Val Ala Lys Ile Asn Trp His Tyr Ala Asp Ser Leu
 785 790 795
 Thr Gln Cys Ser His Pro Ser Ala Ile Asp Pro Glu Ala Ile Pro
 800 805 810
 Val Lys Leu Val His Asp Ser Leu Glu Asp Leu Gln Met Thr Arg
 815 820 825
 Tyr His Phe Ala Met Asn Gly Lys Ser Phe Ser Val Ile Leu Glu

830		835		840
His Phe Gln Asp	Leu Val Pro Lys Leu	Met Leu His Gly Thr	Val	
845		850		855
Phe Ala Arg Met	Ala Pro Asp Gln Lys	Thr Gln Leu Ile Glu	Ala	
860		865		870
Leu Gln Asn Val	Asp Tyr Phe Val Gly	Met Cys Gly Asp Gly	Ala	
875		880		885
Asn Asp Cys Gly	Ala Leu Lys Arg Ala	His Gly Gly Ile Ser	Leu	
890		895		900
Ser Glu Leu Glu	Ala Ser Val Ala Ser	Pro Phe Thr Ser Lys	Thr	
905		910		915
Pro Ser Ile Ser	Cys Val Pro Asn Leu	Ile Arg Glu Gly Arg	Ala	
920		925		930
Ala Leu Ile Thr	Ser Phe Cys Val Phe	Lys Phe Met Ala Leu	Tyr	
935		940		945
Ser Ile Ile Gln	Tyr Phe Ser Val Thr	Leu Leu Tyr Ser Ile	Leu	
950		955		960
Ser Asn Leu Gly	Asp Phe Gln Phe Leu	Phe Ile Asp Leu Ala	Ile	
965		970		975
Ile Leu Val Val	Val Phe Thr Met Ser	Leu Asn Pro Ala Trp	Lys	
980		985		990
Glu Leu Val Ala	Gln Arg Pro Pro Ser Gly	Leu Ile Ser Gly	Ala	
995		1000		1005
Leu Leu Phe Ser	Val Leu Ser Gln Ile	Ile Ile Cys Ile Gly	Phe	
1010		1015		1020
Gln Ser Leu Gly	Phe Trp Val Lys	Gln Gln Pro Trp Tyr	Glu	
1025		1030		1035
Val Trp His Pro	Lys Ser Asp Ala Cys	Asn Thr Thr Gly Ser	Gly	
1040		1045		1050
Phe Trp Asn Ser	Ser His Val Asp Asn	Glu Thr Glu Leu Asp	Glu	
1055		1060		1065
His Asn Ile Gln	Asn Tyr Glu Asn Thr	Thr Val Phe Phe Ile	Ser	
1070		1075		1080
Ser Phe Gln Tyr	Leu Ile Val Ala Ile	Ala Phe Ser Lys Gly	Lys	
1085		1090		1095
Pro Phe Arg Gln	Pro Cys Tyr Lys Asn	Tyr Phe Phe Val Phe	Ser	
1100		1105		1110
Val Ile Phe Leu	Tyr Ile Phe Ile Leu	Phe Ile Met Leu Tyr	Pro	
1115		1120		1125
Val Ala Ser Val	Asp Gln Val Leu Gln	Ile Val Cys Val Pro	Tyr	
1130		1135		1140
Gln Trp Arg Val	Thr Met Leu Ile Ile	Val Leu Val Asn Ala	Phe	
1145		1150		1155
Val Ser Ile Thr	Val Glu Asn Phe	Leu Asp Met Val Leu	Trp	
1160		1165		1170
Lys Val Val Phe	Asn Arg Asp Lys	Gln Gly Glu Tyr Arg	Phe Ser	
1175		1180		1185
Thr Thr Gln Pro	Pro Gln Glu Ser Val	Asp Arg Trp Gly Lys	Cys	
1190		1195		1200
Cys Leu Pro Trp	Ala Leu Gly Cys	Arg Lys Lys Thr Pro	Lys Ala	
1205		1210		1215
Lys Tyr Met Tyr	Leu Ala Gln Glu	Leu Val Asp Pro Glu	Trp	
1220		1225		1230
Pro Pro Lys Pro	Gln Thr Thr Glu	Ala Lys Ala Leu Val	Lys	
1235		1240		1245
Glu Asn Gly Ser	Cys Gln Ile Ile	Thr Ile Thr		
1250		1255		

<210> 15
<211> 499
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3046849CD1

<400> 15

Met	Leu	His	Ala	Leu	Leu	Arg	Ser	Arg	Thr	Ile	Gln	Gly	Arg	Ile
1				5					10	-				15
Leu	Leu	Leu	Thr	Ile	Cys	Ala	Ala	Gly	Ile	Gly	Gly	Thr	Phe	Gln
					20				25					30
Phe	Gly	Tyr	Asn	Leu	Ser	Ile	Ile	Asn	Ala	Pro	Thr	Leu	His	Ile
					35				40					45
Gln	Glu	Phe	Thr	Asn	Glu	Thr	Trp	Gln	Ala	Arg	Thr	Gly	Glu	Pro
					50				55					60
Leu	Pro	Asp	His	Leu	Val	Leu	Leu	Met	Trp	Ser	Leu	Ile	Val	Ser
					65				70					75
Leu	Tyr	Pro	Leu	Gly	Gly	Leu	Phe	Gly	Ala	Leu	Leu	Ala	Gly	Pro
					80				85					90
Leu	Ala	Ile	Thr	Leu	Gly	Arg	Lys	Lys	Ser	Leu	Leu	Val	Asn	Asn
					95				100					105
Ile	Phe	Val	Val	Ser	Ala	Ala	Ile	Leu	Phe	Gly	Phe	Ser	Arg	Lys
					110				115					120
Ala	Gly	Ser	Phe	Glu	Met	Ile	Met	Leu	Gly	Arg	Leu	Leu	Val	Gly
					125				130					135
Val	Asn	Ala	Gly	Val	Ser	Met	Asn	Ile	Gln	Pro	Met	Tyr	Leu	Gly
					140				145					150
Glu	Ser	Ala	Pro	Lys	Glu	Leu	Arg	Gly	Ala	Val	Ala	Met	Ser	Ser
					155				160					165
Ala	Ile	Phe	Thr	Ala	Leu	Gly	Ile	Val	Met	Gly	Gln	Val	Val	Gly
					170				175					180
Leu	Arg	Glu	Leu	Leu	Gly	Gly	Pro	Gln	Ala	Trp	Pro	Leu	Leu	
					185				190					195
Ala	Ser	Cys	Leu	Val	Pro	Gly	Ala	Leu	Gln	Leu	Ala	Ser	Leu	Pro
					200				205					210
Leu	Leu	Pro	Glu	Ser	Pro	Arg	Tyr	Leu	Leu	Ile	Asp	Cys	Gly	Asp
					215				220					225
Thr	Glu	Ala	Cys	Leu	Ala	Ala	Leu	Arg	Gln	Leu	Arg	Gly	Ser	Gly
					230				235					240
Asp	Leu	Ala	Gly	Glu	Leu	Glu	Glu	Leu	Glu	Glu	Glu	Arg	Ala	Ala
					245				250					255
Cys	Gln	Gly	Cys	Arg	Ala	Arg	Arg	Pro	Trp	Glu	Leu	Phe	Gln	His
					260				265					270
Arg	Ala	Leu	Arg	Arg	Gln	Val	Thr	Ser	Leu	Val	Val	Leu	Gly	Ser
					275				280					285
Ala	Met	Glu	Leu	Cys	Gly	Asn	Asp	Ser	Val	Tyr	Ala	Tyr	Ala	Ser
					290				295					300
Ser	Val	Phe	Arg	Lys	Ala	Gly	Val	Pro	Glu	Ala	Lys	Ile	Gln	Tyr
					305				310					315
Ala	Ile	Ile	Gly	Thr	Gly	Ser	Cys	Glu	Leu	Leu	Thr	Ala	Val	Val
					320				325					330
Ser	Cys	Val	Val	Ile	Glu	Arg	Val	Gly	Arg	Arg	Val	Leu	Leu	Ile
					335				340					345
Gly	Gly	Tyr	Ser	Leu	Met	Thr	Cys	Trp	Gly	Ser	Ile	Phe	Thr	Val
					350				355					360
Ala	Leu	Cys	Leu	Gln	Ser	Ser	Phe	Pro	Trp	Thr	Leu	Tyr	Leu	Ala
					365				370					375
Met	Ala	Cys	Ile	Phe	Ala	Phe	Ile	Leu	Ser	Phe	Gly	Ile	Gly	Pro
					380				385					390
Ala	Gly	Val	Thr	Gly	Ile	Leu	Ala	Thr	Glu	Leu	Phe	Asp	Gln	Met
					395				400					405
Ala	Arg	Pro	Ala	Ala	Cys	Met	Val	Cys	Gly	Ala	Leu	Met	Trp	Ile
					410				415					420
Met	Leu	Ile	Leu	Val	Gly	Leu	Gly	Phe	Pro	Phe	Ile	Met	Glu	Ala
					425				430					435
Leu	Ser	His	Phe	Leu	Tyr	Val	Pro	Phe	Leu	Gly	Val	Cys	Val	Cys
					440				445					450
Gly	Ala	Ile	Tyr	Thr	Gly	Leu	Phe	Leu	Pro	Glu	Thr	Lys	Gly	Lys
					455				460					465
Thr	Phe	Gln	Glu	Ile	Ser	Lys	Glu	Leu	His	Arg	Leu	Asn	Phe	Pro
					470				475					480
Arg	Arg	Ala	Gln	Gly	Pro	Thr	Trp	Arg	Ser	Leu	Glu	Val	Ile	Gln
					485				490					495

Ser Thr Glu Leu

<210> 16
<211> 596
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4538363CD1

<400> 16

Met	Ala	Ala	Asn	Ser	Thr	Ser	Asp	Leu	His	Thr	Pro	Gly	Thr	Gln
1									10					15
Leu	Ser	Val	Ala	Asp	Ile	Ile	Val	Ile	Thr	Val	Tyr	Phe	Ala	Leu
									25					30
Asn	Val	Ala	Val	Gly	Ile	Trp	Ser	Ser	Cys	Arg	Ala	Ser	Arg	Asn
									40					45
Thr	Val	Asn	Gly	Tyr	Phe	Leu	Ala	Gly	Arg	Asp	Met	Thr	Trp	Trp
									55					60
Pro	Ile	Gly	Ala	Ser	Leu	Phe	Ala	Ser	Ser	Glu	Gly	Ser	Gly	Leu
									70					75
Phe	Ile	Gly	Leu	Ala	Gly	Ser	Gly	Ala	Ala	Gly	Gly	Leu	Ala	Val
									85					90
Ala	Gly	Phe	Glu	Trp	Asn	Ala	Thr	Tyr	Val	Leu	Leu	Ala	Leu	Ala
									100					105
Trp	Val	Phe	Val	Pro	Ile	Tyr	Ile	Ser	Ser	Glu	Ile	Val	Thr	Leu
									115					120
Pro	Glu	Tyr	Ile	Gln	Lys	Arg	Tyr	Gly	Gly	Gln	Arg	Ile	Arg	Met
									130					135
Tyr	Leu	Ser	Val	Leu	Ser	Leu	Leu	Leu	Ser	Val	Phe	Thr	Lys	Ile
									145					150
Ser	Leu	Asp	Leu	Tyr	Ala	Gly	Ala	Leu	Phe	Val	His	Ile	Cys	Leu
									160					165
Gly	Trp	Asn	Phe	Tyr	Leu	Ser	Thr	Ile	Leu	Thr	Leu	Gly	Ile	Thr
									175					180
Ala	Leu	Tyr	Thr	Ile	Ala	Gly	Gly	Leu	Ala	Ala	Val	Ile	Tyr	Thr
									190					195
Asp	Ala	Leu	Gln	Thr	Leu	Ile	Met	Val	Val	Gly	Ala	Val	Ile	Leu
									205					210
Thr	Ile	Lys	Ala	Phe	Asp	Gln	Ile	Gly	Gly	Tyr	Gly	Gln	Leu	Glu
									220					225
Ala	Ala	Tyr	Ala	Gln	Ala	Ile	Pro	Ser	Arg	Thr	Ile	Ala	Asn	Thr
									235					240
Thr	Cys	His	Leu	Pro	Arg	Thr	Asp	Ala	Met	His	Met	Phe	Arg	Asp
									250					255
Pro	His	Thr	Gly	Asp	Leu	Pro	Trp	Thr	Gly	Met	Thr	Phe	Gly	Leu
									265					270
Thr	Ile	Met	Ala	Thr	Trp	Tyr	Trp	Cys	Thr	Asp	Gln	Val	Ile	Val
									280					285
Gln	Arg	Ser	Leu	Ser	Ala	Arg	Asp	Leu	Asn	His	Ala	Lys	Ala	Gly
									295					300
Ser	Ile	Leu	Ala	Ser	Tyr	Leu	Lys	Met	Leu	Pro	Met	Gly	Leu	Ile
									310					315
Ile	Met	Pro	Gly	Met	Ile	Ser	Arg	Ala	Leu	Phe	Pro	Asp	Asp	Val
									320					330
Gly	Cys	Val	Val	Pro	Ser	Glu	Cys	Leu	Arg	Ala	Cys	Gly	Ala	Glu
									335					345
Val	Gly	Cys	Ser	Asn	Ile	Ala	Tyr	Pro	Lys	Leu	Val	Met	Glu	Leu
									350					360
Met	Pro	Ile	Gly	Leu	Arg	Gly	Leu	Met	Ile	Ala	Val	Met	Leu	Ala
									365					375
Ala	Leu	Met	Ser	Ser	Leu	Thr	Ser	Ile	Phe	Asn	Ser	Ser	Ser	Thr
									380					390
Leu	Phe	Thr	Met	Asp	Ile	Trp	Arg	Arg	Leu	Arg	Pro	Arg	Ser	Gly
									395					405

Glu	Arg	Glu	Leu	Leu	Val	Gly	Arg	Leu	Val	Ile	Val	Ala	Leu
				410				415					420
Ile	Gly	Val	Ser	Val	Ala	Trp	Ile	Pro	Val	Leu	Gln	Asp	Ser
				425				430					435
Ser	Gly	Gln	Leu	Phe	Ile	Tyr	Met	Gln	Ser	Val	Thr	Ser	Ser
				440				445					450
Ala	Pro	Pro	Val	Thr	Ala	Val	Phe	Val	Leu	Gly	Val	Phe	Trp
				455				460					465
Arg	Ala	Asn	Glu	Gln	Gly	Ala	Phe	Trp	Gly	Leu	Ile	Ala	Gly
				470				475					480
Val	Val	Gly	Ala	Thr	Arg	Leu	Val	Leu	Glu	Phe	Leu	Asn	Pro
				485				490					495
Pro	Pro	Cys	Gly	Glu	Pro	Asp	Thr	Arg	Pro	Ala	Val	Leu	Gly
				500				505					510
Ile	His	Tyr	Leu	His	Phe	Ala	Val	Ala	Leu	Phe	Ala	Leu	Ser
				515				520					525
Ala	Val	Val	Val	Ala	Gly	Ser	Leu	Leu	Thr	Pro	Pro	Pro	Gln
				530				535					540
Val	Gln	Ile	Glu	Asn	Leu	Thr	Trp	Trp	Thr	Leu	Ala	Gln	Asp
				545				550					555
Pro	Leu	Gly	Thr	Lys	Ala	Gly	Asp	Gly	Gln	Thr	Pro	Gln	Lys
				560				565					570
Ala	Phe	Trp	Ala	Arg	Val	Cys	Gly	Phe	Asn	Ala	Ile	Leu	Leu
				575				580					585
Cys	Val	Asn	Ile	Phe	Phe	Tyr	Ala	Tyr	Phe	Ala			
				590				595					

<210> 17
<211> 1192
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6427460CD1

<400> 17														
Met	Asp	Cys	Ser	Leu	Val	Arg	Thr	Leu	Val	His	Arg	Tyr	Cys	Ala
1				5				10						15
Gly	Glu	Glu	Asn	Trp	Val	Asp	Ser	Arg	Thr	Ile	Tyr	Val	Gly	His
				20				25						30
Arg	Glu	Pro	Pro	Pro	Gly	Ala	Glu	Ala	Tyr	Ile	Pro	Gln	Arg	Tyr
				35				40						45
Pro	Asp	Asn	Arg	Ile	Val	Ser	Ser	Lys	Tyr	Thr	Phe	Trp	Asn	Phe
				50				55						60
Ile	Pro	Lys	Asn	Leu	Phe	Glu	Gln	Phe	Arg	Arg	Val	Ala	Asn	Phe
				65				70						75
Tyr	Phe	Leu	Ile	Ile	Phe	Leu	Val	Gln	Leu	Ile	Ile	Asp	Thr	Pro
				80				85						90
Thr	Ser	Pro	Val	Thr	Ser	Gly	Leu	Pro	Leu	Phe	Phe	Val	Ile	Thr
				95				100						105
Val	Thr	Ala	Ile	Lys	Gln	Gly	Tyr	Glu	Asp	Trp	Leu	Arg	His	Lys
				110				115						120
Ala	Asp	Asn	Ala	Met	Asn	Gln	Cys	Pro	Val	His	Phe	Ile	Gln	His
				125				130						135
Gly	Lys	Leu	Val	Arg	Lys	Gln	Ser	Arg	Lys	Leu	Arg	Val	Gly	Asp
				140				145						150
Ile	Val	Met	Val	Lys	Glu	Asp	Glu	Thr	Phe	Pro	Cys	Asp	Leu	Ile
				155				160						165
Phe	Leu	Ser	Ser	Asn	Arg	Gly	Asp	Gly	Thr	Cys	His	Val	Thr	Thr
				170				175						180
Ala	Ser	Leu	Asp	Gly	Glu	Ser	Ser	His	Lys	Thr	His	Tyr	Ala	Val
				185				190						195
Gln	Asp	Thr	Lys	Gly	Phe	His	Thr	Glu	Glu	Asp	Ile	Gly	Gly	Leu
				200				205						210
His	Ala	Thr	Ile	Glu	Cys	Glu	Gln	Pro	Gln	Pro	Asp	Leu	Tyr	Lys
				215				220						225

Phe Val Gly Arg Ile Asn Val Tyr Ser Asp Leu Asn Asp Pro Val
 230 235 240
 Val Arg Pro Leu Gly Ser Glu Asn Leu Leu Leu Arg Gly Ala Thr
 245 250 255
 Leu Lys Asn Thr Glu Lys Ile Phe Gly Val Ala Ile Tyr Thr Gly
 260 265 270
 Met Glu Thr Lys Met Ala Leu Asn Tyr Gln Ser Lys Ser Gln Lys
 275 280 285
 Arg Ser Ala Val Glu Lys Ser Met Asn Ala Phe Leu Ile Val Tyr
 290 295 300
 Leu Cys Ile Leu Ile Ser Lys Ala Leu Ile Asn Thr Val Leu Lys
 305 310 315
 Tyr Val Trp Gln Ser Glu Pro Phe Arg Asp Glu Pro Trp Tyr Asn
 320 325 330
 Gln Lys Thr Glu Ser Glu Arg Gln Arg Asn Leu Phe Leu Lys Ala
 335 340 345
 Phe Thr Asp Phe Leu Ala Phe Met Val Leu Phe Asn Tyr Ile Ile
 350 355 360
 Pro Val Ser Met Tyr Val Thr Val Glu Met Gln Lys Phe Leu Gly
 365 370 375
 Ser Tyr Phe Ile Thr Trp Asp Glu Asp Met Phe Asp Glu Glu Thr
 380 385 390
 Gly Glu Gly Pro Leu Val Asn Thr Ser Asp Leu Asn Glu Glu Leu
 395 400 405
 Gly Gln Val Glu Tyr Ile Phe Thr Asp Lys Thr Gly Thr Leu Thr
 410 415 420
 Glu Asn Asn Met Glu Phe Lys Glu Cys Cys Ile Glu Gly His Val
 425 430 435
 Tyr Val Pro His Val Ile Cys Asn Gly Gln Val Leu Pro Glu Ser
 440 445 450
 Ser Gly Ile Asp Met Ile Asp Ser Ser Pro Ser Val Asn Gly Arg
 455 460 465
 Glu Arg Glu Glu Leu Phe Phe Arg Ala Leu Cys Leu Cys His Thr
 470 475 480
 Val Gln Val Lys Asp Asp Asp Ser Val Asp Gly Pro Arg Lys Ser
 485 490 495
 Pro Asp Gly Gly Lys Ser Cys Val Tyr Ile Ser Ser Ser Pro Asp
 500 505 510
 Glu Val Ala Leu Val Glu Gly Val Gln Arg Leu Gly Phe Thr Tyr
 515 520 525
 Leu Arg Leu Lys Asp Asn Tyr Met Glu Ile Leu Asn Arg Glu Asn
 530 535 540
 His Ile Glu Arg Phe Glu Leu Leu Glu Ile Leu Ser Phe Asp Ser
 545 550 555
 Val Arg Arg Arg Met Ser Val Ile Val Lys Ser Ala Thr Gly Glu
 560 565 570
 Ile Tyr Leu Phe Cys Lys Gly Ala Asp Ser Ser Ile Phe Pro Arg
 575 580 585
 Val Ile Glu Gly Lys Val Asp Gln Ile Arg Ala Arg Val Glu Arg
 590 595 600
 Asn Ala Val Glu Gly Leu Arg Thr Leu Cys Val Ala Tyr Lys Arg
 605 610 615
 Leu Ile Gln Glu Glu Tyr Glu Gly Ile Cys Lys Leu Leu Gln Ala
 620 625 630
 Ala Lys Val Ala Leu Gln Asp Arg Glu Lys Lys Leu Ala Glu Ala
 635 640 645
 Tyr Glu Gln Ile Glu Lys Asp Leu Thr Leu Leu Gly Ala Thr Ala
 650 655 660
 Val Glu Asp Arg Leu Gln Glu Lys Ala Ala Asp Thr Ile Glu Ala
 665 670 675
 Leu Gln Lys Ala Gly Ile Lys Val Trp Val Leu Thr Gly Asp Lys
 680 685 690
 Met Glu Thr Ala Ala Ala Thr Cys Tyr Ala Cys Lys Leu Phe Arg
 695 700 705
 Arg Asn Thr Gln Leu Leu Glu Leu Thr Thr Lys Arg Ile Glu Glu
 710 715 720
 Gln Ser Leu His Asp Val Leu Phe Glu Leu Ser Lys Thr Val Leu

	725	730	735
Arg His Ser Gly	Ser	Leu Thr Arg Asp	Asn Leu Ser Gly Leu
	740	745	Ser 750
Ala Asp Met Gln	Asp	Tyr Gly Leu Ile	Ile Asp Gly Ala Ala
	755	760	Leu 765
Ser Leu Ile Met	Lys	Pro Arg Glu Asp	Gly Ser Ser Gly Asn
	770	775	Tyr 780
Arg Glu Leu Phe	Leu	Glu Ile Cys Arg	Ser Cys Ser Ala Val
	785	790	Leu 795
Cys Cys Arg Met	Ala	Pro Leu Gln Lys	Ala Gln Ile Val Lys
	800	805	Leu 810
Ile Lys Phe Ser	Lys	Glu His Pro Ile	Thr Leu Ala Ile Gly
	815	820	Asp 825
Gly Ala Asn Asp	Val	Ser Met Ile Leu	Glu Ala His Val Gly
	830	835	Ile 840
Gly Val Ile Gly	Lys	Glu Gly Arg Gln	Ala Ala Arg Asn Ser
	845	850	Asp 855
Tyr Ala Ile Pro	Lys	Phe Lys His Leu	Lys Lys Met Leu Leu
	860	865	Val 870
His Gly His Phe	Tyr	Tyr Ile Arg Ile	Ser Glu Leu Val Gln
	875	880	Tyr 885
Phe Phe Tyr Lys	Asn	Val Cys Phe Ile	Phe Pro Gln Phe Leu
	890	895	Tyr 900
Gln Phe Phe Cys	Gly	Phe Ser Gln Gln	Thr Leu Tyr Asp Thr
	905	910	Ala 915
Tyr Leu Thr Leu	Tyr	Asn Ile Ser Phe	Thr Ser Leu Pro Ile
	920	925	Leu 930
Leu Tyr Ser Leu	Met	Glu Gln His Val	Gly Ile Asp Val Leu
	935	940	Lys 945
Arg Asp Pro Thr	Leu	Tyr Arg Asp Val	Ala Lys Asn Ala Leu
	950	955	Leu 960
Arg Trp Arg Val	Phe	Ile Tyr Trp Thr	Leu Leu Gly Leu Phe
	965	970	Asp 975
Ala Leu Val Phe	Phe	Phe Gly Ala Tyr	Phe Val Phe Glu Asn
	980	985	Thr 990
Thr Val Thr Ser	Asn	Gly Gln Ile Phe	Gly Asn Trp Thr Phe
	995	1000	Gly 1005
Thr Leu Val Phe	Thr	Val Met Val Phe	Thr Val Thr Leu Lys
	1010	1015	Leu 1020
Ala Leu Asp Thr His	Tyr	Trp Thr Trp Ile	Asn His Phe Val Ile
	1025	1030	1035
Trp Gly Ser Leu Leu	Phe	Tyr Val Val Phe	Ser Leu Leu Trp Gly
	1040	1045	1050
Gly Val Ile Trp Pro	Phe	Leu Asn Tyr	Gln Arg Met Tyr Tyr
	1055	1060	Val 1065
Phe Ile Gln Met Leu	Ser	Ser Gly Pro Ala	Trp Leu Ala Ile Val
	1070	1075	1080
Leu Leu Val Thr Ile	Ser	Leu Leu Pro Asp	Val Leu Lys Lys Val
	1085	1090	1095
Leu Cys Arg Gln Leu	Trp	Pro Thr Ala Thr	Glu Arg Val Gln Gln
	1100	1105	1110
Asn Gly Cys Ala Gln	Pro	Arg Asp Arg Asp	Ser Glu Phe Thr Pro
	1115	1120	1125
Leu Ala Ser Leu Gln	Ser	Pro Gly Tyr	Gln Ser Thr Cys Pro Ser
	1130	1135	1140
Ala Ala Trp Tyr Ser	Ser	Ser His Ser Gln	Gln Val Thr Leu Ala Ala
	1145	1150	1155
Trp Lys Glu Lys Val	Ser	Thr Glu Pro Pro	Pro Ile Leu Gly Gly
	1160	1165	1170
Ser His His His Cys	Ser	Ser Ile Pro Ser	His Ser Cys Pro Arg
	1175	1180	1185
Ser Arg Val Gly Met	Leu	Leu Val	
	1190		

<210> 18
<211> 638
<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7474127CD1

<400> 18

Met	Gly	Lys	Ile	Glu	Asn	Asn	Glu	Arg	Val	Ile	Leu	Asn	Val	Gly
1				5					10					15
Gly	Thr	Arg	His	Glu	Thr	Tyr	Arg	Ser	Thr	Leu	Lys	Thr	Leu	Pro
					20				25					30
Gly	Thr	Arg	Leu	Ala	Leu	Leu	Ala	Ser	Ser	Glu	Pro	Pro	Gly	Asp
				35				40						45
Cys	Leu	Thr	Thr	Ala	Gly	Asp	Lys	Leu	Gln	Pro	Ser	Pro	Pro	Pro
					50			55						60
Leu	Ser	Pro	Pro	Pro	Arg	Ala	Pro	Pro	Leu	Ser	Pro	Gly	Pro	Gly
					65				70					75
Gly	Cys	Phe	Glu	Gly	Gly	Ala	Gly	Asn	Cys	Ser	Ser	Arg	Gly	Gly
				80					85					90
Arg	Ala	Ser	Asp	His	Pro	Gly	Gly	Gly	Arg	Glu	Phe	Phe	Phe	Asp
				95					100					105
Arg	His	Pro	Gly	Val	Phe	Ala	Tyr	Val	Leu	Asn	Tyr	Tyr	Arg	Thr
				110				115						120
Gly	Lys	Leu	His	Cys	Pro	Ala	Asp	Val	Cys	Gly	Pro	Leu	Phe	Glu
				125				130						135
Glu	Glu	Leu	Ala	Phe	Trp	Gly	Ile	Asp	Glu	Thr	Asp	Val	Glu	Pro
				140				145						150
Cys	Cys	Trp	Met	Thr	Tyr	Arg	Gln	His	Arg	Asp	Ala	Glu	Glu	Ala
				155				160						165
Leu	Asp	Ile	Phe	Glu	Thr	Pro	Asp	Leu	Ile	Gly	Gly	Asp	Pro	Gly
				170				175						180
Asp	Asp	Glu	Asp	Leu	Ala	Ala	Lys	Arg	Leu	Gly	Ile	Glu	Asp	Ala
				185				190						195
Ala	Gly	Leu	Gly	Gly	Pro	Asp	Gly	Lys	Ser	Gly	Arg	Trp	Arg	Arg
				200				205						210
Leu	Gln	Pro	Arg	Met	Trp	Ala	Leu	Phe	Glu	Asp	Pro	Tyr	Ser	
				215				220						225
Arg	Ala	Ala	Arg	Phe	Ile	Ala	Phe	Ala	Ser	Leu	Phe	Phe	Ile	Leu
				230				235						240
Val	Ser	Ile	Thr	Thr	Phe	Cys	Leu	Glu	Thr	His	Glu	Ala	Phe	Asn
				245				250						255
Ile	Val	Lys	Asn	Lys	Thr	Glu	Pro	Val	Ile	Asn	Gly	Thr	Ser	Val
				260				265						270
Val	Leu	Gln	Tyr	Glu	Ile	Glu	Thr	Asp	Pro	Ala	Leu	Thr	Tyr	Val
				275				280						285
Glu	Gly	Val	Cys	Val	Val	Trp	Phe	Thr	Phe	Glu	Phe	Leu	Val	Arg
				290				295						300
Ile	Val	Phe	Ser	Pro	Asn	Lys	Leu	Glu	Phe	Ile	Lys	Asn	Leu	Leu
				305				310						315
Asn	Ile	Ile	Asp	Phe	Val	Ala	Ile	Leu	Pro	Phe	Tyr	Leu	Glu	Val
				320				325						330
Gly	Leu	Ser	Gly	Leu	Ser	Ser	Lys	Ala	Ala	Lys	Asp	Val	Leu	Gly
				335				340						345
Phe	Leu	Arg	Val	Val	Arg	Phe	Val	Arg	Ile	Leu	Arg	Ile	Phe	Lys
				350				355						360
Leu	Thr	Arg	His	Phe	Val	Gly	Leu	Arg	Val	Leu	Gly	His	Thr	Leu
				365				370						375
Arg	Ala	Ser	Thr	Asn	Glu	Phe	Leu	Leu	Ile	Ile	Phe	Leu	Ala	
				380				385						390
Leu	Gly	Val	Leu	Ile	Phe	Ala	Thr	Met	Ile	Tyr	Tyr	Ala	Glu	Arg
				395				400						405
Val	Gly	Ala	Gln	Pro	Asn	Asp	Pro	Ser	Ala	Ser	Glu	His	Thr	Gln
				410				415						420
Phe	Lys	Asn	Ile	Pro	Ile	Gly	Phe	Trp	Trp	Ala	Val	Val	Thr	Met
				425				430						435
Thr	Thr	Leu	Gly	Tyr	Gly	Asp	Met	Tyr	Pro	Gln	Thr	Trp	Ser	Gly
				440				445						450

Met	Leu	Val	Gly	Ala	Leu	Cys	Ala	Leu	Ala	Gly	Val	Leu	Thr	Ile
				455				460						465
Ala	Met	Pro	Val	Pro	Val	Ile	Val	Asn	Asn	Phe	Gly	Met	Tyr	Tyr
				470				475						480
Ser	Leu	Ala	Met	Ala	Lys	Gln	Lys	Leu	Pro	Arg	Lys	Arg	Lys	Lys
				485				490						495
His	Ile	Pro	Pro	Ala	Pro	Gln	Ala	Ser	Ser	Pro	Thr	Phe	Cys	Lys
				500				505						510
Thr	Glu	Leu	Asn	Met	Ala	Cys	Asn	Ser	Thr	Gln	Ser	Asp	Thr	Cys
				515				520						525
Leu	Gly	Lys	Asp	Asn	Arg	Leu	Leu	Glu	His	Asn	Arg	Ser	Val	Leu
				530				535						540
Ser	Gly	Asp	Asp	Ser	Thr	Gly	Ser	Glu	Pro	Pro	Leu	Ser	Pro	Pro
				545				550						555
Glu	Arg	Leu	Pro	Ile	Arg	Arg	Ser	Ser	Thr	Arg	Asp	Lys	Asn	Arg
				560				565						570
Arg	Gly	Glu	Thr	Cys	Phe	Leu	Leu	Thr	Thr	Gly	Asp	Tyr	Thr	Cys
				575				580						585
Ala	Ser	Asp	Gly	Gly	Ile	Arg	Lys	Gly	Tyr	Glu	Lys	Ser	Arg	Ser
				590				595						600
Leu	Asn	Asn	Ile	Ala	Gly	Leu	Ala	Gly	Asn	Ala	Leu	Arg	Leu	Ser
				605				610						615
Pro	Val	Thr	Ser	Pro	Tyr	Asn	Ser	Pro	Cys	Pro	Leu	Arg	Arg	Ser
				620				625						630
Arg	Ser	Pro	Ile	Pro	Ser	Ile	Leu							
				635										

<210> 19
<211> 681
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7476949CD1

<400> 19														
Met	Ser	Lys	Asp	Leu	Ala	Ala	Met	Gly	Pro	Gly	Ala	Ser	Gly	Asp
1				5				10						15
Gly	Val	Arg	Thr	Glu	Thr	Ala	Pro	His	Ile	Ala	Leu	Asp	Ser	Arg
				20				25						30
Val	Gly	Leu	His	Ala	Tyr	Asp	Ile	Ser	Val	Val	Val	Ile	Tyr	Phe
				35				40						45
Val	Phe	Val	Ile	Ala	Val	Gly	Ile	Trp	Ser	Ser	Ile	Arg	Ala	Ser
				50				55						60
Arg	Gly	Thr	Ile	Gly	Gly	Tyr	Phe	Leu	Ala	Gly	Arg	Ser	Met	Ser
				65				70						75
Trp	Trp	Pro	Ile	Gly	Ala	Ser	Leu	Met	Ser	Ser	Asn	Val	Gly	Ser
				80				85						90
Gly	Leu	Phe	Ile	Gly	Leu	Ala	Gly	Thr	Gly	Ala	Ala	Gly	Gly	Leu
				95				100						105
Ala	Val	Gly	Gly	Phe	Glu	Trp	Asn	Ala	Thr	Trp	Leu	Leu	Leu	Ala
				110				115						120
Leu	Gly	Trp	Val	Phe	Val	Pro	Val	Tyr	Ile	Ala	Ala	Gly	Val	
				125				130						135
Thr	Met	Pro	Gln	Tyr	Leu	Lys	Lys	Arg	Phe	Gly	Gly	Gln	Arg	Ile
				140				145						150
Gln	Val	Tyr	Met	Ser	Val	Leu	Ser	Leu	Ile	Leu	Tyr	Ile	Phe	Thr
				155				160						165
Lys	Ile	Ser	Thr	Asp	Ile	Phe	Ser	Gly	Ala	Leu	Phe	Ile	Gln	Met
				170				175						180
Ala	Leu	Gly	Trp	Asn	Leu	Tyr	Leu	Ser	Thr	Gly	Ile	Leu	Leu	Val
				185				190						195
Val	Thr	Ala	Val	Tyr	Thr	Ile	Ala	Gly	Gly	Leu	Met	Ala	Val	Ile
				200				205						210
Tyr	Thr	Asp	Ala	Leu	Gln	Thr	Val	Ile	Met	Val	Gly	Gly	Ala	Leu
				215				220						225

Val Leu Met Phe Leu Gly Phe Gln Asp Val Gly Trp Tyr Pro Gly
 230 235 240
 Leu Glu Gln Arg Tyr Arg Gln Ala Ile Pro Asn Val Thr Val Pro
 245 250 255
 Asn Thr Thr Cys His Leu Pro Arg Pro Asp Ala Phe His Ile Leu
 260 265 270
 Arg Asp Pro Val Ser Gly Asp Ile Pro Trp Pro Gly Leu Ile Phe
 275 280 285
 Gly Leu Thr Val Leu Ala Thr Trp Cys Trp Cys Thr Asp Gln Val
 290 295 300
 Ile Val Gln Arg Ser Leu Ser Ala Lys Ser Leu Ser His Ala Lys
 305 310 315
 Gly Gly Ser Val Leu Gly Gly Tyr Leu Lys Ile Leu Pro Met Phe
 320 325 330
 Phe Ile Val Met Pro Gly Met Ile Ser Arg Ala Leu Phe Pro Asp
 335 340 345
 Glu Val Gly Cys Val Asp Pro Asp Val Cys Gln Arg Ile Cys Gly
 350 355 360
 Ala Arg Val Gly Cys Ser Asn Ile Ala Tyr Pro Lys Leu Val Met
 365 370 375
 Ala Leu Met Pro Val Gly Leu Arg Gly Leu Met Ile Ala Val Ile
 380 385 390
 Met Ala Ala Leu Met Ser Ser Leu Thr Ser Ile Phe Asn Ser Ser
 395 400 405
 Ser Thr Leu Phe Thr Ile Asp Val Trp Gln Arg Phe Arg Arg Lys
 410 415 420
 Ser Thr Glu Gln Glu Leu Met Val Val Gly Arg Val Phe Val Val
 425 430 435
 Phe Leu Val Val Ile Ser Ile Leu Trp Ile Pro Ile Ile Gln Ser
 440 445 450
 Ser Asn Ser Gly Gln Leu Phe Asp Tyr Ile Gln Ala Val Thr Ser
 455 460 465
 Tyr Leu Ala Pro Pro Ile Thr Ala Leu Phe Leu Leu Ala Ile Phe
 470 475 480
 Cys Lys Arg Val Thr Glu Pro Gly Ala Phe Trp Gly Leu Val Phe
 485 490 495
 Gly Leu Gly Val Gly Leu Leu Arg Met Ile Leu Glu Phe Ser Tyr
 500 505 510
 Pro Ala Pro Ala Cys Gly Glu Val Asp Arg Arg Pro Ala Val Leu
 515 520 525
 Lys Asp Phe His Tyr Leu Tyr Phe Ala Ile Leu Leu Cys Gly Leu
 530 535 540
 Thr Ala Ile Val Ile Val Ile Val Ser Leu Cys Thr Thr Pro Ile
 545 550 555
 Pro Glu Glu Gln Leu Thr Arg Leu Thr Trp Trp Thr Arg Asn Cys
 560 565 570
 Pro Leu Ser Glu Leu Glu Lys Glu Ala His Glu Ser Thr Pro Glu
 575 580 585
 Ile Ser Glu Arg Pro Ala Gly Glu Cys Pro Ala Gly Gly Ala
 590 595 600
 Ala Glu Asn Ser Ser Leu Gly Gln Glu Gln Pro Glu Ala Pro Ser
 605 610 615
 Arg Ser Trp Gly Lys Leu Leu Trp Ser Trp Phe Cys Gly Leu Ser
 620 625 630
 Gly Thr Pro Glu Gln Ala Leu Ser Pro Ala Glu Lys Ala Ala Leu
 635 640 645
 Glu Gln Lys Leu Thr Ser Ile Glu Glu Glu Pro Leu Trp Arg His
 650 655 660
 Val Cys Asn Ile Asn Ala Val Leu Leu Leu Ala Ile Asn Ile Phe
 665 670 675
 Leu Trp Gly Tyr Phe Ala
 680

<210> 20
 <211> 1096
 <212> PRT
 <213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7477249CD1

<400> 20
Met Trp Arg Trp Ile Arg Gln Gln Leu Gly Phe Asp Pro Pro His
1 5 10 15
Gln Ser Asp Thr Arg Thr Ile Tyr Val Ala Asn Arg Phe Pro Gln
20 25 30
Asn Gly Leu Tyr Thr Pro Gln Lys Phe Ile Asp Asn Arg Ile Ile
35 40 45
Ser Ser Lys Tyr Thr Val Trp Asn Phe Val Pro Lys Asn Leu Phe
50 55 60
Glu Gln Phe Arg Arg Val Ala Asn Phe Tyr Phe Leu Ile Ile Phe
65 70 75
Leu Val Gln Leu Met Ile Asp Thr Pro Thr Ser Pro Val Thr Ser
80 85 90
Gly Leu Pro Leu Phe Phe Val Ile Thr Val Thr Ala Ile Lys Gln
95 100 105
Gly Tyr Glu Asp Trp Leu Arg His Asn Ser Asp Asn Glu Val Asn
110 115 120
Gly Ala Pro Val Tyr Val Val Arg Ser Gly Gly Leu Val Lys Thr
125 130 135
Arg Ser Lys Asn Ile Arg Val Gly Asp Ile Val Arg Ile Ala Lys
140 145 150
Asp Glu Ile Phe Pro Ala Asp Leu Val Leu Leu Ser Ser Asp Arg
155 160 165
Leu Asp Gly Ser Cys His Val Thr Thr Ala Ser Leu Asp Gly Glu
170 175 180
Thr Asn Leu Lys Thr His Val Ala Val Pro Glu Thr Ala Leu Leu
185 190 195
Gln Thr Val Ala Asn Leu Asp Thr Leu Val Ala Val Ile Glu Cys
200 205 210
Gln Gln Pro Glu Ala Asp Leu Tyr Arg Phe Met Gly Arg Met Ile
215 220 225
Ile Thr Gln Gln Met Glu Glu Ile Val Arg Pro Leu Gly Pro Glu
230 235 240
Ser Leu Leu Leu Arg Gly Ala Arg Leu Lys Asn Thr Lys Glu Ile
245 250 255
Phe Gly Val Ala Val Tyr Thr Gly Met Glu Thr Lys Met Ala Leu
260 265 270
Asn Tyr Lys Ser Lys Ser Gln Lys Arg Ser Ala Val Glu Lys Ser
275 280 285
Met Asn Thr Phe Leu Ile Ile Tyr Leu Val Ile Leu Ile Ser Glu
290 295 300
Ala Val Ile Ser Thr Ile Leu Lys Tyr Thr Trp Gln Ala Glu Glu
305 310 315
Lys Trp Asp Glu Pro Trp Tyr Asn Gln Lys Thr Glu His Gln Arg
320 325 330
Asn Ser Ser Lys Val Glu Tyr Val Phe Thr Asp Lys Thr Gly Thr
335 340 345
Leu Thr Glu Asn Glu Met Gln Phe Arg Glu Cys Ser Ile Asn Gly
350 355 360
Met Lys Tyr Gln Glu Ile Asn Gly Arg Leu Val Pro Glu Gly Pro
365 370 375
Thr Pro Asp Ser Ser Glu Gly Asn Leu Ser Tyr Leu Ser Ser Leu
380 385 390
Ser His Leu Asn Asn Leu Ser His Leu Thr Thr Ser Ser Ser Phe
395 400 405
Arg Thr Ser Pro Glu Asn Glu Thr Glu Leu Ile Lys Glu His Asp
410 415 420
Leu Phe Phe Lys Ala Val Ser Leu Cys His Thr Val Gln Ile Ser
425 430 435
Asn Val Gln Thr Asp Cys Thr Gly Asp Gly Pro Trp Gln Ser Asn
440 445 450
Leu Ala Pro Ser Gln Leu Glu Tyr Tyr Ala Ser Ser Pro Asp Glu
455 460 465

Lys Ala Leu Val Glu Ala Ala Ala Arg Ile Gly Ile Val Phe Ile
 470 475 480
 Gly Asn Ser Glu Glu Thr Met Glu Val Lys Thr Leu Gly Lys Leu
 485 490 495
 Glu Arg Tyr Lys Leu Leu His Ile Leu Glu Phe Asp Ser Asp Arg
 500 505 510
 Arg Arg Met Ser Val Ile Val Gln Ala Pro Ser Gly Glu Lys Leu
 515 520 525
 Leu Phe Ala Lys Gly Ala Glu Ser Ser Ile Leu Pro Lys Cys Ile
 530 535 540
 Gly Gly Glu Ile Glu Lys Thr Arg Ile His Val Asp Glu Phe Ala
 545 550 555
 Leu Lys Gly Leu Arg Thr Leu Cys Ile Ala Tyr Arg Lys Phe Thr
 560 565 570
 Ser Lys Glu Tyr Glu Glu Ile Asp Lys Arg Ile Phe Glu Ala Arg
 575 580 585
 Thr Ala Leu Gln Gln Arg Glu Glu Lys Leu Ala Ala Val Phe Gln
 590 595 600
 Phe Ile Glu Lys Asp Leu Ile Leu Leu Gly Ala Thr Ala Val Glu
 605 610 615
 Asp Arg Leu Gln Asp Lys Val Arg Glu Thr Ile Glu Ala Leu Arg
 620 625 630
 Met Ala Gly Ile Lys Val Trp Val Leu Thr Gly Asp Lys His Glu
 635 640 645
 Thr Ala Val Ser Val Ser Leu Ser Cys Gly His Phe His Arg Thr
 650 655 660
 Met Asn Ile Leu Glu Leu Ile Asn Gln Lys Ser Asp Ser Glu Cys
 665 670 675
 Ala Glu Gln Leu Arg Gln Leu Ala Arg Arg Ile Thr Glu Asp His
 680 685 690
 Val Ile Gln His Gly Leu Val Val Asp Gly Thr Ser Leu Ser Leu
 695 700 705
 Ala Leu Arg Glu His Glu Lys Leu Phe Met Glu Val Cys Arg Asn
 710 715 720
 Cys Ser Ala Val Leu Cys Cys Arg Met Ala Pro Leu Gln Lys Ala
 725 730 735
 Lys Val Ile Arg Leu Ile Lys Ile Ser Pro Glu Lys Pro Ile Thr
 740 745 750
 Leu Ala Val Gly Asp Gly Ala Asn Asp Val Ser Met Ile Gln Glu
 755 760 765
 Ala His Val Gly Ile Gly Ile Met Gly Lys Glu Gly Arg Gln Ala
 770 775 780
 Ala Arg Asn Ser Asp Tyr Ala Ile Ala Arg Phe Lys Phe Leu Ser
 785 790 795
 Lys Leu Leu Phe Val His Gly His Phe Tyr Tyr Ile Arg Ile Ala
 800 805 810
 Thr Leu Val Gln Tyr Phe Phe Tyr Lys Asn Val Cys Phe Ile Thr
 815 820 825
 Pro Gln Phe Leu Tyr Gln Phe Tyr Cys Leu Phe Ser Gln Gln Thr
 830 835 840
 Leu Tyr Asp Ser Val Tyr Leu Thr Leu Tyr Asn Ile Cys Phe Thr
 845 850 855
 Ser Leu Pro Ile Leu Ile Tyr Ser Leu Leu Glu Gln His Val Asp
 860 865 870
 Pro His Val Leu Gln Asn Lys Pro Thr Leu Tyr Arg Asp Ile Ser
 875 880 885
 Lys Asn Arg Leu Leu Ser Ile Lys Thr Phe Leu Tyr Trp Thr Ile
 890 895 900
 Leu Gly Phe Ser His Ala Phe Ile Phe Phe Phe Gly Ser Tyr Leu
 905 910 915
 Leu Ile Gly Lys Asp Thr Ser Leu Leu Gly Asn Gly Gln Met Phe
 920 925 930
 Gly Asn Trp Thr Phe Gly Thr Leu Val Phe Thr Val Met Val Ile
 935 940 945
 Thr Val Thr Val Lys Met Ala Leu Glu Thr His Phe Trp Thr Trp
 950 955 960
 Ile Asn His Leu Val Thr Trp Gly Ser Ile Ile Phe Tyr Phe Val

Phe	Ser	Leu	Phe	Tyr	Gly	Gly	Ile	Leu	Trp	Pro	Phe	Leu	Gly	Ser
965					970					975				
980					985					990				
Gln	Asn	Met	Tyr	Phe	Val	Phe	Ile	Gln	Leu	Leu	Ser	Ser	Gly	Ser
995						1000					1005			
Ala	Trp	Phe	Ala	Ile	Ile	Leu	Met	Val	Val	Thr	Cys	Leu	Phe	Leu
1010									1015				1020	
Asp	Ile	Ile	Lys	Lys	Val	Phe	Asp	Arg	His	Leu	His	Pro	Thr	Ser
1025									1030				1035	
Thr	Glu	Lys	Ala	Gln	Leu	Thr	Glu	Thr	Asn	Ala	Gly	Ile	Lys	Cys
1040									1045				1050	
Leu	Asp	Ser	Met	Cys	Cys	Phe	Pro	Glu	Gly	Glu	Ala	Ala	Cys	Ala
1055									1060				1065	
Ser	Val	Gly	Arg	Met	Leu	Glu	Arg	Val	Ile	Gly	Arg	Cys	Ser	Pro
1070									1075				1080	
Thr	His	Ile	Ser	Arg	Cys	Glu	Ile	Ser	Leu	Ser	Ser	Leu	Cys	Cys
1085									1090				1095	
Arg														

<210> 21
<211> 707
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7477720CD1

<400> 21														
Met	Ala	Leu	Gln	Met	Phe	Val	Thr	Tyr	Ser	Pro	Trp	Asn	Cys	Leu
1					5				10					15
Leu	Leu	Leu	Val	Ala	Leu	Glu	Cys	Ser	Glu	Ala	Ser	Ser	Asp	Leu
									20					30
Asn	Glu	Ser	Ala	Asn	Ser	Thr	Ala	Gln	Tyr	Ala	Ser	Asn	Ala	Trp
									35					45
Phe	Ala	Ala	Ala	Ser	Ser	Glu	Pro	Glu	Glu	Gly	Ile	Ser	Val	Phe
									50					60
Glu	Leu	Asp	Tyr	Asp	Tyr	Val	Gln	Ile	Pro	Tyr	Glu	Val	Thr	Leu
									65					75
Trp	Ile	Leu	Leu	Ala	Ser	Leu	Ala	Lys	Ile	Gly	Phe	His	Leu	Tyr
									80					90
His	Arg	Leu	Pro	Gly	Leu	Met	Pro	Glu	Ser	Cys	Leu	Leu	Ile	Leu
									95					105
Val	Gly	Ala	Leu	Val	Gly	Gly	Ile	Ile	Phe	Gly	Thr	Asp	His	Lys
									110					120
Ser	Pro	Pro	Val	Met	Asp	Ser	Ser	Ile	Tyr	Phe	Leu	Tyr	Leu	Leu
									125					135
Pro	Pro	Ile	Val	Leu	Glu	Gly	Gly	Tyr	Phe	Met	Pro	Thr	Arg	Pro
									140					150
Phe	Phe	Glu	Asn	Ile	Gly	Ser	Ile	Leu	Trp	Trp	Ala	Val	Leu	Gly
									155					165
Ala	Leu	Ile	Asn	Ala	Leu	Gly	Ile	Gly	Leu	Ser	Leu	Tyr	Ile	
									170					180
Cys	Gln	Val	Lys	Ala	Phe	Gly	Leu	Gly	Asp	Val	Asn	Leu	Leu	Gln
									185					195
Asn	Leu	Leu	Phe	Gly	Ser	Leu	Ile	Ser	Ala	Val	Asp	Pro	Val	Ala
									200					210
Val	Leu	Ala	Val	Phe	Glu	Glu	Ala	Arg	Val	Asn	Glu	Gln	Leu	Tyr
									215					225
Met	Met	Ile	Phe	Gly	Glu	Ala	Leu	Leu	Asn	Asp	Gly	Ile	Thr	Val
									230					240
Val	Leu	Tyr	Asn	Met	Leu	Ile	Ala	Phe	Thr	Lys	Met	His	Lys	Phe
									245					255
Glu	Asp	Ile	Glu	Thr	Val	Asp	Ile	Leu	Ala	Gly	Cys	Ala	Arg	Phe
									260					270
Ile	Val	Val	Gly	Leu	Gly	Gly	Val	Leu	Phe	Gly	Ile	Val	Phe	Gly

	275	280	285
Phe Ile Ser Ala	Phe Ile Thr Arg Phe	Thr Gln Asn Ile Ser	Ala
290	295	300	
Ile Glu Pro Leu	Ile Val Phe Met Phe	Ser Tyr Leu Ser Tyr	Leu
305	310	315	
Ala Ala Glu Thr	Leu Tyr Leu Ser Gly	Ile Leu Ala Ile Thr	Ala
320	325	330	
Cys Ala Val Thr	Met Lys Lys Tyr Val	Glu Glu Asn Val Ser	Gln
335	340	345	
Thr Ser Tyr Thr	Thr Ile Lys Tyr Phe	Met Lys Met Leu Ser	Ser
350	355	360	
Val Ser Glu Thr	Leu Ile Phe Ile Phe	Met Gly Val Ser Thr	Val
365	370	375	
Gly Lys Asn His	Glu Trp Asn Trp Ala	Phe Ile Cys Phe Thr	Leu
380	385	390	
Ala Phe Cys Gln	Ile Trp Arg Ala Ile	Ser Val Phe Ala Leu	Phe
395	400	405	
Tyr Ile Ser Asn	Gln Phe Arg Thr Phe	Pro Phe Ser Ile Lys	Asp
410	415	420	
Gln Cys Ile Ile	Phe Tyr Ser Gly Val	Arg Gly Ala Gly Ser	Phe
425	430	435	
Ser Leu Ala Phe	Leu Leu Pro Leu Ser	Leu Phe Pro Arg Lys	Lys
440	445	450	
Met Phe Val Thr	Ala Thr Leu Val Val	Ile Tyr Phe Thr Val	Phe
455	460	465	
Ile Gln Gly Ile	Thr Val Gly Pro Leu	Val Arg Tyr Leu Asp	Val
470	475	480	
Lys Lys Thr Asn	Lys Lys Glu Ser Ile	Asn Glu Glu Leu His	Ile
485	490	495	
Arg Leu Met Asp	His Leu Lys Ala Gly	Ile Glu Asp Val Cys	Gly
500	505	510	
His Trp Ser His	Tyr Gln Val Arg Asp	Lys Phe Lys Lys Phe	Asp
515	520	525	
His Arg Tyr Leu	Arg Lys Ile Leu Ile	Arg Lys Asn Leu Pro	Lys
530	535	540	
Ser Ser Ile Val	Ser Leu Tyr Lys Lys	Leu Glu Met Lys Gln	Ala
545	550	555	
Ile Glu Met Val	Glu Thr Gly Ile Leu	Ser Ser Thr Ala Phe	Ser
560	565	570	
Ile Pro His Gln	Ala Gln Arg Ile Gln	Gly Ile Lys Arg Leu	Ser
575	580	585	
Pro Glu Asp Val	Glu Ser Ile Arg Asp	Ile Leu Thr Ser Asn	Met
590	595	600	
Tyr Gln Val Arg	Gln Arg Thr Leu Ser	Tyr Asn Lys Tyr Asn	Leu
605	610	615	
Lys Pro Gln Thr	Ser Glu Lys Gln Ala	Lys Glu Ile Leu Ile	Arg
620	625	630	
Arg Gln Asn Thr	Leu Arg Glu Ser Met	Arg Lys Gly His Ser	Leu
635	640	645	
Pro Trp Gly Lys	Pro Ala Gly Thr Lys	Asn Ile Arg Tyr Leu	Ser
650	655	660	
Tyr Pro Tyr Gly	Asn Pro Gln Ser Ala	Gly Arg Asp Thr Arg	Ala
665	670	675	
Ala Gly Phe Ser	Gly Lys Leu Pro Thr	Trp Leu Leu Cys Cys	Phe
680	685	690	
Ser Val Glu Ser	Gly Gly Lys Tyr Leu	Gly Val Trp Ala Lys	Arg
695	700	705	
Gln His			

<210> 22
<211> 729
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 7477852CD1

<400> 22

Met	Gly	Gly	Phe	Leu	Pro	Lys	Ala	Glu	Gly	Pro	Gly	Ser	Gln	Leu	
1				5					10						15
Gln	Lys	Leu	Leu	Pro	Ser	Phe	Leu	Val	Arg	Glu	Gln	Asp	Trp	Asp	
				20					25						30
Gln	His	Leu	Asp	Lys	Leu	His	Met	Leu	Gln	Gln	Lys	Arg	Ile	Leu	
				35					40						45
Glu	Ser	Pro	Leu	Leu	Arg	Ala	Ser	Lys	Glu	Asn	Asp	Leu	Ser	Val	
				50					55						60
Leu	Arg	Gln	Leu	Leu	Leu	Asp	Cys	Thr	Cys	Asp	Val	Arg	Gln	Arg	
				65					70						75
Gly	Ala	Leu	Gly	Glu	Thr	Ala	Leu	His	Ile	Ala	Ala	Leu	Tyr	Asp	
				80					85						90
Asn	Leu	Glu	Ala	Ala	Leu	Val	Leu	Met	Glu	Ala	Ala	Pro	Glu	Leu	
				95					100						105
Val	Phe	Glu	Pro	Thr	Thr	Cys	Glu	Ala	Phe	Ala	Gly	Gln	Thr	Ala	
				110					115						120
Leu	His	Ile	Ala	Val	Val	Asn	Gln	Asn	Val	Asn	Leu	Val	Arg	Ala	
				125					130						135
Leu	Leu	Thr	Arg	Arg	Ala	Ser	Val	Ser	Ala	Arg	Ala	Thr	Gly	Thr	
				140					145						150
Ala	Phe	Arg	Arg	Ser	Pro	Arg	Asn	Leu	Ile	Tyr	Phe	Gly	Glu	His	
				155					160						165
Pro	Leu	Ser	Phe	Ala	Ala	Cys	Val	Asn	Ser	Glu	Glu	Ile	Val	Arg	
				170					175						180
Leu	Leu	Ile	Glu	His	Gly	Ala	Asp	Ile	Arg	Ala	Gln	Asp	Ser	Leu	
				185					190						195
Gly	Asn	Thr	Val	Leu	His	Ile	Leu	Ile	Leu	Gln	Pro	Asn	Lys	Thr	
				200					205						210
Phe	Ala	Cys	Gln	Met	Tyr	Asn	Leu	Leu	Leu	Ser	Tyr	Asp	Gly	His	
				215					220						225
Gly	Asp	His	Leu	Gln	Pro	Leu	Asp	Leu	Val	Pro	Asn	His	Gln	Gly	
				230					235						240
Leu	Thr	Pro	Phe	Lys	Leu	Ala	Gly	Val	Glu	Gly	Asn	Thr	Val	Met	
				245					250						255
Phe	Gln	His	Leu	Met	Gln	Lys	Arg	Arg	His	Ile	Gln	Trp	Thr	Tyr	
				260					265						270
Gly	Pro	Leu	Thr	Ser	Ile	Leu	Tyr	Asp	Leu	Thr	Glu	Ile	Asp	Ser	
				275					280						285
Trp	Gly	Glu	Glu	Leu	Ser	Phe	Leu	Glu	Leu	Val	Val	Ser	Ser	Asp	
				290					295						300
Lys	Arg	Glu	Ala	Arg	Gln	Ile	Leu	Glu	Gln	Thr	Pro	Val	Lys	Glu	
				305					310						315
Leu	Val	Ser	Phe	Lys	Trp	Asn	Lys	Tyr	Gly	Arg	Pro	Tyr	Phe	Cys	
				320					325						330
Ile	Leu	Ala	Ala	Leu	Tyr	Leu	Leu	Tyr	Met	Ile	Cys	Phe	Thr	Thr	
				335					340						345
Cys	Cys	Val	Tyr	Arg	Pro	Leu	Lys	Phe	Arg	Gly	Gly	Asn	Arg	Thr	
				350					355						360
His	Ser	Arg	Asp	Ile	Thr	Ile	Leu	Gln	Gln	Lys	Leu	Leu	Gln	Glu	
				365					370						375
Ala	Tyr	Glu	Thr	Arg	Glu	Asp	Ile	Ile	Arg	Leu	Val	Gly	Glu	Leu	
				380					385						390
Val	Ser	Ile	Val	Gly	Ala	Val	Ile	Ile	Leu	Leu	Leu	Glu	Ile	Pro	
				395					400						405
Asp	Ile	Phe	Arg	Val	Gly	Ala	Ser	Arg	Tyr	Phe	Gly	Lys	Thr	Ile	
				410					415						420
Leu	Gly	Gly	Pro	Phe	His	Val	Ile	Met	Ile	Thr	Tyr	Ala	Ser	Leu	
				425					430						435
Val	Leu	Val	Thr	Met	Val	Met	Arg	Leu	Thr	Asn	Thr	Asn	Gly	Glu	
				440					445						450
Val	Val	Pro	Met	Ser	Phe	Ala	Leu	Val	Leu	Gly	Trp	Cys	Ser	Val	
				455					460						465
Met	Tyr	Phe	Thr	Arg	Gly	Phe	Gln	Met	Leu	Gly	Pro	Phe	Thr	Ile	
				470					475						480

Met Ile Gln Lys Met Ile Phe Gly Asp Leu Met Arg Phe Cys Trp
 485 490 495
 Leu Met Ala Val Val Ile Leu Gly Phe Ala Ser Ala Phe Tyr Ile
 500 505 510
 Ile Phe Gln Thr Glu Asp Pro Thr Ser Leu Gly Gln Phe Tyr Asp
 515 520 525
 Tyr Pro Met Ala Leu Phe Thr Thr Phe Glu Leu Phe Leu Thr Val
 530 535 540
 Ile Asp Ala Pro Ala Asn Tyr Asp Val Asp Leu Pro Phe Met Phe
 545 550 555
 Ser Ile Val Asn Phe Ala Phe Ala Ile Ile Ala Thr Leu Leu Met
 560 565 570
 Leu Asn Leu Phe Ile Ala Met Met Gly Asp Thr His Trp Arg Val
 575 580 585
 Ala Gln Glu Arg Asp Glu Leu Trp Arg Ala Gln Val Val Ala Thr
 590 595 600
 Thr Val Met Leu Glu Arg Lys Leu Pro Arg Cys Leu Trp Pro Arg
 605 610 615
 Ser Gly Ile Cys Gly Cys Glu Phe Gly Leu Gly Asp Arg Trp Phe
 620 625 630
 Leu Arg Val Glu Asn His Asn Asp Gln Asn Pro Leu Arg Val Leu
 635 640 645
 Arg Tyr Val Glu Val Phe Lys Asn Ser Asp Lys Glu Asp Asp Gln
 650 655 660
 Glu His Pro Ser Glu Lys Gln Pro Ser Gly Ala Glu Ser Gly Thr
 665 670 675
 Leu Ala Arg Ala Ser Leu Ala Leu Pro Thr Ser Ser Leu Ser Arg
 680 685 690
 Thr Ala Ser Gln Ser Ser Ser His Arg Gly Trp Glu Ile Leu Arg
 695 700 705
 Gln Asn Thr Leu Gly His Leu Asn Leu Gly Leu Asn Leu Ser Glu
 710 715 720
 Gly Asp Gly Glu Glu Val Tyr His Phe
 725

<210> 23
 <211> 492
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1471717CD1

<400> 23

Met	Ala	Thr	Lys	Pro	Thr	Glu	Pro	Val	Thr	Ile	Leu	Ser	Leu	Arg
1				5				10						15
Lys	Leu	Ser	Leu	Gly	Thr	Ala	Glu	Pro	Gln	Val	Lys	Glu	Pro	Lys
				20				25						30
Thr	Phe	Thr	Val	Glu	Asp	Ala	Val	Glu	Thr	Ile	Gly	Phe	Gly	Arg
	35							40						45
Phe	His	Ile	Ala	Leu	Phe	Leu	Ile	Met	Gly	Ser	Thr	Gly	Val	Val
	50							55						60
Glu	Ala	Met	Glu	Ile	Met	Leu	Ile	Ala	Val	Val	Ser	Pro	Val	Ile
	65							70						75
Arg	Cys	Glu	Trp	Gln	Leu	Glu	Asn	Trp	Gln	Val	Ala	Leu	Val	Thr
	80							85						90
Thr	Met	Val	Phe	Phe	Gly	Tyr	Met	Val	Phe	Ser	Ile	Leu	Phe	Gly
	95							100						105
Leu	Leu	Ala	Asp	Arg	Tyr	Gly	Arg	Trp	Lys	Ile	Leu	Leu	Ile	Ser
	110							115						120
Phe	Leu	Trp	Gly	Ala	Tyr	Phe	Ser	Leu	Leu	Thr	Ser	Phe	Ala	Pro
	125							130						135
Ser	Tyr	Ile	Trp	Phe	Val	Phe	Leu	Arg	Thr	Met	Val	Gly	Cys	Gly
	140							145						150
Val	Ser	Gly	His	Ser	Gln	Gly	Leu	Ile	Ile	Lys	Thr	Glu	Phe	Leu
	155							160						165

Pro	Thr	Lys	Tyr	Arg	Gly	Tyr	Met	Leu	Pro	Leu	Ser	Gln	Val	Phe
				170					175					180
Trp	Leu	Ala	Gly	Ser	Leu	Leu	Ile	Ile	Gly	Leu	Ala	Ser	Val	Ile
				185					190					195
Ile	Pro	Thr	Ile	Gly	Trp	Arg	Trp	Leu	Ile	Arg	Val	Ala	Ser	Ile
				200					205					210
Pro	Gly	Ile	Ile	Leu	Ile	Val	Ala	Phe	Lys	Phe	Ile	Pro	Glu	Ser
				215					220					225
Ala	Arg	Phe	Asn	Val	Ser	Thr	Gly	Asn	Thr	Arg	Ala	Ala	Leu	Ala
				230					235					240
Thr	Leu	Glu	Arg	Val	Ala	Lys	Met	Asn	Arg	Ser	Val	Met	Pro	Glu
				245					250					255
Gly	Lys	Leu	Val	Glu	Pro	Val	Leu	Glu	Lys	Arg	Gly	Arg	Phe	Ala
				260					265					270
Asp	Leu	Leu	Asp	Ala	Lys	Tyr	Leu	Arg	Thr	Thr	Leu	Gln	Ile	Trp
				275					280					285
Val	Ile	Trp	Leu	Gly	Ile	Ser	Phe	Ala	Tyr	Tyr	Gly	Val	Ile	Leu
				290					295					300
Ala	Ser	Ala	Glu	Leu	Leu	Glu	Arg	Asp	Leu	Val	Cys	Gly	Ser	Lys
				305					310					315
Ser	Asp	Ser	Ala	Val	Val	Val	Thr	Gly	Gly	Asp	Ser	Gly	Glu	Ser
				320					325					330
Gln	Ser	Pro	Cys	Tyr	Cys	His	Met	Phe	Ala	Pro	Ser	Asp	Tyr	Arg
				335					340					345
Thr	Met	Ile	Ile	Ser	Thr	Ile	Gly	Glu	Ile	Ala	Leu	Asn	Pro	Leu
				350					355					360
Asn	Ile	Leu	Gly	Ile	Asn	Phe	Leu	Gly	Arg	Arg	Leu	Ser	Leu	Ser
				365					370					375
Ile	Thr	Met	Gly	Cys	Thr	Ala	Leu	Phe	Cys	Leu	Leu	Leu	Asn	Ile
				380					385					390
Cys	Thr	Ser	Ser	Ala	Gly	Leu	Ile	Gly	Phe	Leu	Phe	Met	Leu	Arg
				395					400					405
Ala	Leu	Val	Ala	Ala	Asn	Phe	Asn	Thr	Val	Tyr	Ile	Tyr	Thr	Ala
				410					415					420
Glu	Val	Tyr	Pro	Thr	Thr	Met	Arg	Ala	Leu	Gly	Met	Gly	Thr	Ser
				425					430					435
Gly	Ser	Leu	Cys	Arg	Ile	Gly	Ala	Met	Val	Ala	Pro	Phe	Ile	Ser
				440					445					450
Gln	Val	Leu	Met	Ser	Ala	Ser	Ile	Leu	Gly	Ala	Leu	Cys	Leu	Phe
				455					460					465
Ser	Ser	Val	Cys	Val	Val	Cys	Ala	Ile	Ser	Ala	Phe	Thr	Leu	Pro
				470					475					480
Ile	Glu	Thr	Lys	Gly	Arg	Ala	Leu	Gln	Gln	Ile	Lys			
				485					490					

<210> 24
<211> 1494
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3874406CD1

Met	Asn	Met	Lys	Gln	Lys	Ser	Val	Tyr	Gln	Gln	Thr	Lys	Ala	Leu
1				5					10					15
Leu	Cys	Lys	Asn	Phe	Leu	Lys	Lys	Trp	Arg	Met	Lys	Arg	Glu	Ser
				20					25					30
Leu	Leu	Glu	Trp	Gly	Leu	Ser	Ile	Leu	Leu	Gly	Leu	Cys	Ile	Ala
				35					40					45
Leu	Phe	Ser	Ser	Met	Arg	Asn	Val	Gln	Phe	Pro	Gly	Met	Ala	
				50					55					60
Pro	Gln	Asn	Leu	Gly	Arg	Val	Asp	Lys	Phe	Asn	Ser	Ser	Ser	Leu
				65					70					75
Met	Val	Val	Tyr	Thr	Pro	Ile	Ser	Asn	Leu	Thr	Gln	Gln	Ile	Met
				80					85					90

Asn Lys Thr Ala Leu Ala Pro Leu Leu Lys Gly Thr Ser Val Ile
 95 100 105
 Gly Ala Pro Asn Lys Thr His Met Asp Glu Ile Leu Leu Glu Asn
 110 115 120
 Leu Pro Tyr Ala Met Gly Ile Ile Phe Asn Glu Thr Phe Ser Tyr
 125 130 135
 Lys Leu Ile Phe Phe Gln Gly Tyr Asn Ser Pro Leu Trp Lys Glu
 140 145 150
 Asp Phe Ser Ala His Cys Trp Asp Gly Tyr Gly Glu Phe Ser Cys
 155 160 165
 Thr Leu Thr Lys Tyr Trp Asn Arg Gly Phe Val Ala Leu Gln Thr
 170 175 180
 Ala Ile Asn Thr Ala Ile Ile Glu Val Ala Leu Val Phe Leu Met
 185 190 195
 Ser Val Leu Leu Lys Lys Ala Val Leu Thr Asn Leu Val Val Phe
 200 205 210
 Leu Leu Thr Leu Phe Trp Gly Cys Leu Gly Phe Thr Val Phe Tyr
 215 220 225
 Glu Gln Leu Pro Ser Ser Leu Glu Trp Ile Leu Asn Ile Cys Ser
 230 235 240
 Pro Phe Ala Phe Thr Thr Gly Met Ile Gln Ile Ile Lys Leu Asp
 245 250 255
 Tyr Asn Leu Asn Gly Val Ile Phe Pro Asp Pro Ser Gly Asp Ser
 260 265 270
 Tyr Thr Met Ile Ala Thr Phe Ser Met Leu Leu Leu Asp Gly Leu
 275 280 285
 Ile Tyr Leu Leu Leu Ala Leu Tyr Phe Asp Lys Ile Leu Pro Tyr
 290 295 300
 Gly Asp Glu Arg His Tyr Ser Pro Leu Phe Phe Leu Asn Ser Ser
 305 310 315
 Ser Cys Phe Gln His Gln Arg Thr Asn Ala Lys Val Ile Glu Lys
 320 325 330
 Glu Ile Asp Ala Glu His Pro Ser Asp Asp Tyr Phe Glu Pro Val
 335 340 345
 Ala Pro Glu Phe Gln Gly Lys Glu Ala Ile Arg Ile Arg Asn Val
 350 355 360
 Lys Lys Glu Tyr Lys Gly Lys Ser Gly Lys Val Glu Ala Leu Lys
 365 370 375
 Gly Leu Leu Phe Asp Ile Tyr Glu Gly Gln Ile Thr Ala Ile Leu
 380 385 390
 Gly His Ser Gly Ala Gly Lys Ser Ser Leu Leu Asn Ile Leu Asn
 395 400 405
 Gly Leu Ser Val Pro Thr Glu Gly Ser Val Thr Ile Tyr Asn Lys
 410 415 420
 Asn Leu Ser Glu Met Gln Asp Leu Glu Glu Ile Arg Lys Ile Thr
 425 430 435
 Gly Val Cys Pro Gln Phe Asn Val Gln Phe Asp Ile Leu Thr Val
 440 445 450
 Lys Glu Asn Leu Ser Leu Phe Ala Lys Ile Lys Gly Ile His Leu
 455 460 465
 Lys Glu Val Glu Gln Glu Val Gln Arg Ile Leu Leu Glu Leu Asp
 470 475 480
 Met Gln Asn Ile Gln Asp Asn Leu Ala Lys His Leu Ser Glu Gly
 485 490 495
 Gln Lys Arg Lys Leu Thr Phe Gly Ile Thr Ile Leu Gly Asp Pro
 500 505 510
 Gln Ile Leu Leu Leu Asp Glu Pro Thr Thr Gly Leu Asp Pro Phe
 515 520 525
 Ser Arg Asp Gln Val Trp Ser Leu Leu Arg Glu Arg Arg Ala Asp
 530 535 540
 His Val Ile Leu Phe Ser Thr Gln Ser Met Asp Glu Ala Asp Ile
 545 550 555
 Leu Ala Asp Arg Lys Val Ile Met Ser Asn Gly Arg Leu Lys Cys
 560 565 570
 Ala Gly Ser Ser Ile Phe Leu Lys Arg Arg Trp Gly Leu Gly Tyr
 575 580 585
 His Leu Ser Leu His Arg Asn Glu Ile Cys Asn Pro Glu Gln Ile

	590		595		600
Thr Ser Phe Ile	Thr His His Ile Pro		Asp Ala Lys Leu Lys	Thr	
605	610		610	615	
Glu Asn Lys Glu	Lys Leu Val Tyr Thr		Leu Pro Leu Glu Arg	Thr	
620	625		625	630	
Asn Thr Phe Pro	Asp Leu Phe Ser Asp		Leu Asp Lys Cys Ser	Asp	
635	640		640	645	
Gln Gly Val Thr	Gly Tyr Asp Ile Ser		Met Ser Thr Leu Asn	Glu	
650	655		655	660	
Val Phe Met Lys	Leu Glu Gly Gln Ser		Thr Ile Glu Gln Asp	Phe	
665	670		670	675	
Glu Gln Val Glu	Met Ile Arg Asp Ser		Glu Ser Leu Asn Glu	Met	
680	685		685	690	
Glu Leu Ala His	Ser Ser Phe Ser Glu		Met Gln Thr Ala Val	Ser	
695	700		700	705	
Asp Met Gly Leu	Trp Arg Met Gln Val		Phe Ala Met Ala Arg	Leu	
710	715		715	720	
Arg Phe Leu Lys	Leu Lys Arg Gln Thr		Lys Val Leu Leu Thr	Leu	
725	730		730	735	
Leu Leu Val Phe	Gly Ile Ala Ile Phe		Pro Leu Ile Val Glu	Asn	
740	745		745	750	
Ile Ile Tyr Ala	Met Leu Asn Glu Lys		Ile Asp Trp Glu Phe	Lys	
755	760		760	765	
Asn Glu Leu Tyr	Phe Leu Ser Pro Gly		Gln Leu Pro Gln Glu	Pro	
770	775		775	780	
Arg Thr Ser Leu	Leu Ile Ile Asn Asn		Thr Glu Ser Asn Ile	Glu	
785	790		790	795	
Asp Phe Ile Lys	Ser Leu Lys His Gln		Asn Ile Leu Leu Glu	Val	
800	805		805	810	
Asp Asp Phe Glu	Asn Arg Asn Gly Thr		Asp Gly Leu Ser Tyr	Asn	
815	820		820	825	
Gly Ala Ile Ile	Val Ser Gly Lys Gln		Lys Asp Tyr Arg Phe	Ser	
830	835		835	840	
Val Val Cys Asn	Thr Lys Arg Leu His		Cys Phe Pro Ile Leu	Met	
845	850		850	855	
Asn Ile Ile Ser	Asn Gly Leu Leu Gln		Met Phe Asn His Thr	Gln	
860	865		865	870	
His Ile Arg Ile	Glu Ser Ser Pro Phe		Pro Leu Ser His Ile	Gly	
875	880		880	885	
Leu Trp Thr Gly	Leu Pro Asp Gly Ser		Phe Phe Leu Phe Leu	Val	
890	895		895	900	
Leu Cys Ser Ile	Ser Pro Tyr Ile Thr		Met Gly Ser Ile Ser	Asp	
905	910		910	915	
Tyr Lys Lys Asn	Ala Lys Ser Gln Leu		Trp Ile Ser Gly Leu	Tyr	
920	925		925	930	
Thr Ser Ala Tyr	Trp Cys Gly Gln Ala		Leu Val Asp Val Ser	Phe	
935	940		940	945	
Phe Ile Leu Ile	Leu Leu Leu Met Tyr		Leu Ile Phe Tyr Ile	Glu	
950	955		955	960	
Asn Met Gln Tyr	Leu Leu Ile Thr Ser		Gln Ile Val Phe Ala	Leu	
965	970		970	975	
Val Ile Val Thr	Pro Gly Tyr Ala Ala		Ser Leu Val Phe Phe	Ile	
980	985		985	990	
Tyr Met Ile Ser	Phe Ile Phe Arg Lys		Arg Arg Lys Asn Ser	Gly	
995	1000		1000	1005	
Leu Trp Ser Phe	Tyr Phe Phe Ala		Ser Thr Ile Met Phe	Ser	
1010	1015		1015	1020	
Ile Thr Leu Ile	Asn His Phe Asp Leu		Ser Ile Leu Ile Thr	Thr	
1025	1030		1030	1035	
Met Val Leu Val	Pro Ser Tyr Thr Leu		Leu Gly Phe Lys Thr	Phe	
1040	1045		1045	1050	
Leu Glu Val Arg	Asp Gln Glu His Tyr		Arg Glu Phe Pro Glu	Ala	
1055	1060		1060	1065	
Asn Phe Glu Leu	Ser Ala Thr Asp Phe		Leu Val Cys Phe Ile	Pro	
1070	1075		1075	1080	
Tyr Phe Gln Thr	Leu Leu Phe Val Phe		Val Leu Arg Cys Met	Glu	
1085	1090		1090	1095	

Leu Lys Cys Gly Lys Lys Arg Met Arg Lys Asp Pro Val Phe Arg
 1100 1105 1110
 Ile Ser Pro Gln Ser Arg Asp Ala Lys Pro Asn Pro Glu Glu Pro
 1115 1120 1125
 Ile Asp Glu Asp Glu Asp Ile Gln Thr Glu Arg Ile Arg Thr Val
 1130 1135 1140
 Thr Ala Leu Thr Thr Ser Ile Leu Asp Glu Lys Pro Val Ile Ile
 1145 1150 1155
 Ala Ser Cys Leu His Lys Glu Tyr Ala Gly Gln Lys Lys Ser Cys
 1160 1165 1170
 Phe Ser Lys Arg Lys Lys Lys Ile Ala Ala Arg Asn Ile Ser Phe
 1175 1180 1185
 Cys Val Gln Glu Gly Glu Ile Leu Gly Leu Leu Gly Pro Ser Gly
 1190 1195 1200
 Ala Gly Lys Ser Ser Ile Arg Met Ile Ser Gly Ile Thr Lys
 1205 1210 1215
 Pro Thr Ala Gly Glu Val Glu Leu Lys Gly Cys Ser Ser Val Leu
 1220 1225 1230
 Gly His Leu Gly Tyr Cys Pro Gln Glu Asn Val Leu Trp Pro Met
 1235 1240 1245
 Leu Thr Leu Arg Glu His Leu Glu Val Tyr Ala Ala Val Lys Gly
 1250 1255 1260
 Leu Arg Glu Ala Asp Ala Arg Leu Ala Ile Ala Arg Leu Val Ser
 1265 1270 1275
 Ala Phe Lys Leu His Glu Gln Leu Asn Val Pro Val Gln Lys Leu
 1280 1285 1290
 Thr Ala Gly Ile Thr Arg Lys Leu Cys Phe Val Leu Ser Leu Leu
 1295 1300 1305
 Gly Asn Ser Pro Val Leu Leu Leu Asp Glu Pro Ser Thr Gly Ile
 1310 1315 1320
 Asp Pro Thr Gly Gln Gln Met Trp Gln Ala Ile Gln Ala Val
 1325 1330 1335
 Val Lys Asn Thr Glu Arg Gly Val Leu Leu Thr Thr His Asn Leu
 1340 1345 1350
 Ala Glu Ala Glu Ala Leu Cys Asp Arg Val Ala Ile Met Val Ser
 1355 1360 1365
 Gly Arg Leu Arg Cys Ile Gly Ser Ile Gln His Leu Lys Asn Lys
 1370 1375 1380
 Leu Gly Lys Asp Tyr Ile Leu Glu Leu Lys Val Lys Glu Thr Ser
 1385 1390 1395
 Gln Val Thr Leu Val His Thr Glu Ile Leu Lys Leu Phe Pro Gln
 1400 1405 1410
 Ala Ala Gly Gln Arg Tyr Ser Ser Leu Leu Thr Tyr Lys Leu
 1415 1420 1425
 Pro Val Ala Asp Val Tyr Pro Leu Ser Gln Thr Phe His Lys Leu
 1430 1435 1440
 Glu Ala Val Lys His Asn Phe Asn Leu Glu Glu Tyr Ser Leu Ser
 1445 1450 1455
 Gln Cys Thr Leu Glu Lys Val Phe Leu Glu Leu Ser Lys Glu Gln
 1460 1465 1470
 Glu Val Gly Asn Phe Asp Glu Glu Ile Asp Thr Thr Met Arg Trp
 1475 1480 1485
 Lys Leu Leu Pro His Ser Asp Glu Pro
 1490

<210> 25
 <211> 774
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4599654CD1

<400> 25
 Met Glu Ala Glu Gln Arg Pro Ala Ala Gly Ala Ser Glu Gly Ala
 1 5 10 15

Thr Pro Gly Leu Glu Ala Val Pro Pro Val Ala Pro Pro Pro Ala
 20 25 30
 Thr Ala Ala Ser Gly Pro Ile Pro Lys Ser Gly Pro Glu Pro Lys
 35 40 45
 Arg Arg His Leu Gly Thr Leu Leu Gln Pro Thr Val Asn Lys Phe
 50 55 60
 Ser Leu Arg Val Phe Gly Ser His Lys Ala Val Glu Ile Glu Gln
 65 70 75
 Glu Arg Val Lys Ser Ala Gly Ala Trp Ile Ile His Pro Tyr Ser
 80 85 90
 Asp Phe Arg Phe Tyr Trp Asp Leu Ile Met Leu Leu Leu Met Val
 95 100 105
 Gly Asn Leu Ile Val Leu Pro Val Gly Ile Thr Phe Phe Lys Glu
 110 115 120
 Glu Asn Ser Pro Pro Trp Ile Val Phe Asn Val Leu Ser Asp Thr
 125 130 135
 Phe Phe Leu Leu Asp Leu Val Leu Asn Phe Arg Thr Gly Ile Val
 140 145 150
 Val Glu Glu Gly Ala Glu Ile Leu Leu Ala Pro Arg Ala Ile Arg
 155 160 165
 Thr Arg Tyr Leu Arg Thr Trp Phe Leu Val Asp Leu Ile Ser Ser
 170 175 180
 Ile Pro Val Asp Tyr Ile Phe Leu Val Val Glu Leu Glu Pro Arg
 185 190 195
 Leu Asp Ala Glu Val Tyr Lys Thr Ala Arg Ala Leu Arg Ile Val
 200 205 210
 Arg Phe Thr Lys Ile Leu Ser Leu Leu Arg Leu Leu Arg Leu Ser
 215 220 225
 Arg Leu Ile Arg Tyr Ile His Gln Trp Glu Glu Ile Phe His Met
 230 235 240
 Thr Tyr Asp Leu Ala Ser Ala Val Val Arg Ile Phe Asn Leu Ile
 245 250 255
 Gly Met Met Leu Leu Leu Cys His Trp Asp Gly Cys Leu Gln Phe
 260 265 270
 Leu Val Pro Met Leu Gln Asp Phe Pro Pro Asp Cys Trp Val Ser
 275 280 285
 Ile Asn His Met Val Asn His Ser Trp Gly Arg Gln Tyr Ser His
 290 295 300
 Ala Leu Phe Lys Ala Met Ser His Met Leu Cys Ile Gly Tyr Gly
 305 310 315
 Gln Gln Ala Pro Val Gly Met Pro Asp Val Trp Leu Thr Met Leu
 320 325 330
 Ser Met Ile Val Gly Ala Thr Cys Tyr Ala Met Phe Ile Gly His
 335 340 345
 Ala Thr Ala Leu Ile Gln Ser Leu Asp Ser Ser Arg Arg Gln Tyr
 350 355 360
 Gln Glu Lys Tyr Lys Gln Val Glu Gln Tyr Met Ser Phe His Lys
 365 370 375
 Leu Pro Ala Asp Thr Arg Gln Arg Ile His Glu Tyr Tyr Glu His
 380 385 390
 Arg Tyr Gln Gly Lys Met Phe Asp Glu Glu Ser Ile Leu Gly Glu
 395 400 405
 Leu Ser Glu Pro Leu Arg Glu Glu Ile Ile Asn Phe Thr Cys Arg
 410 415 420
 Gly Leu Val Ala His Met Pro Leu Phe Ala His Ala Asp Pro Ser
 425 430 435
 Phe Val Thr Ala Val Leu Thr Lys Leu Arg Phe Glu Val Phe Gln
 440 445 450
 Pro Gly Asp Leu Val Val Arg Glu Gly Ser Val Gly Arg Lys Met
 455 460 465
 Tyr Phe Ile Gln His Gly Leu Leu Ser Val Leu Ala Arg Gly Ala
 470 475 480
 Arg Asp Thr Arg Leu Thr Asp Gly Ser Tyr Phe Gly Glu Ile Cys
 485 490 495
 Leu Leu Thr Arg Gly Arg Arg Thr Ala Ser Val Arg Ala Asp Thr
 500 505 510
 Tyr Cys Arg Leu Tyr Ser Leu Ser Val Asp His Phe Asn Ala Val

	515		520		525
Leu Glu Glu Phe Pro Met Met Arg Arg Ala Phe Glu Thr Val Ala					
	530		535		540
Met Asp Arg Leu Leu Arg Ile Gly Lys Lys Asn Ser Ile Leu Gln					
	545		550		555
Arg Lys Arg Ser Glu Pro Ser Pro Gly Ser Ser Gly Gly Ile Met					
	560		565		570
Glu Gln His Leu Val Gln His Asp Arg Asp Met Ala Arg Gly Val					
	575		580		585
Arg Gly Arg Ala Pro Ser Thr Gly Ala Gln Leu Ser Gly Lys Pro					
	590		595		600
Val Leu Trp Glu Pro Leu Val His Ala Pro Leu Gln Ala Ala Ala					
	605		610		615
Val Thr Ser Asn Val Ala Ile Ala Leu Thr His Gln Arg Gly Pro					
	620		625		630
Leu Pro Leu Ser Pro Asp Ser Pro Ala Thr Leu Leu Ala Arg Ser					
	635		640		645
Ala Trp Arg Ser Ala Gly Ser Pro Ala Ser Pro Leu Val Pro Val					
	650		655		660
Arg Ala Gly Pro Trp Ala Ser Thr Ser Arg Leu Pro Ala Pro Pro					
	665		670		675
Ala Arg Thr Leu His Ala Ser Leu Ser Arg Ala Gly Arg Ser Gln					
	680		685		690
Val Ser Leu Leu Gly Pro Pro Pro Gly Gly Gly Gly Arg Arg Leu					
	695		700		705
Gly Pro Arg Gly Arg Pro Leu Ser Ala Ser Gln Pro Ser Leu Pro					
	710		715		720
Gln Arg Ala Thr Gly Asp Gly Ser Pro Gly Arg Lys Gly Ser Gly					
	725		730		735
Ser Glu Arg Leu Pro Pro Ser Gly Leu Leu Ala Lys Pro Pro Arg					
	740		745		750
Thr Ala Gln Pro Pro Arg Pro Pro Val Pro Glu Pro Ala Thr Pro					
	755		760		765
Arg Gly Leu Gln Leu Ser Ala Asn Met					
	770				

<210> 26
<211> 614
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5047435CD1

<400> 26

Met Ala Glu Gly Glu Arg Gly Ala Asp Val Pro His Gly Leu Gly			
1	5	10	15
Ala Trp Leu Ala Asp Val Ala Leu Ala Leu Arg Ala Gly Gly			
20	25	30	
Gln Gly Arg Arg Asp Arg Gly Gly Gly Pro Glu Ser Leu Ser			
35	40	45	
Gly Gly Ser Gly Val Gly Asp Ser Gly Gly Cys Ala Pro Gly			
50	55	60	
Pro Ser Ala Pro Pro Ala Arg Arg Arg Val Pro Leu Ala Met Gly			
65	70	75	
His Ser Pro Pro Val Leu Pro Leu Cys Ala Ser Val Ser Leu Leu			
80	85	90	
Gly Gly Leu Thr Phe Gly Tyr Glu Leu Ala Val Ile Ser Gly Ala			
95	100	105	
Leu Leu Pro Leu Gln Leu Asp Phe Gly Leu Ser Cys Leu Glu Gln			
110	115	120	
Glu Phe Leu Val Gly Ser Leu Leu Leu Gly Ala Leu Leu Ala Ser			
125	130	135	
Leu Val Gly Gly Phe Leu Ile Asp Cys Tyr Gly Arg Lys Gln Ala			
140	145	150	
Ile Leu Gly Ser Asn Leu Val Leu Leu Ala Gly Ser Leu Thr Leu			

Gly	Leu	Ala	Gly	155	Ser	Leu	Ala	Trp	Leu	160	Val	Leu	Gly	Arg	Ala	165
				170						175					180	
Val	Gly	Phe	Ala		Ile	Ser	Leu	Ser	Ser	Met	Ala	Cys	Cys	Ile	Tyr	
				185						190					195	
Val	Ser	Glu	Leu		Val	Gly	Pro	Arg	Gln	Arg	Gly	Val	Leu	Val	Ser	
				200						205					210	
Leu	Tyr	Glu	Ala		Gly	Ile	Thr	Val	Gly	Ile	Leu	Leu	Ser	Tyr	Ala	
				215						220					225	
Leu	Asn	Tyr	Ala		Leu	Ala	Gly	Thr	Pro	Trp	Gly	Trp	Arg	His	Met	
				230						235					240	
Phe	Gly	Trp	Ala		Thr	Ala	Pro	Ala	Val	Leu	Gln	Ser	Leu	Ser	Leu	
				245						250					255	
Leu	Phe	Leu	Pro		Ala	Gly	Thr	Asp	Glu	Thr	Ala	Thr	His	Lys	Asp	
				260						265					270	
Leu	Ile	Pro	Leu		Gln	Gly	Gly	Glu	Ala	Pro	Lys	Leu	Gly	Pro	Gly	
				275						280					285	
Arg	Pro	Arg	Tyr		Ser	Phe	Leu	Asp	Leu	Phe	Arg	Ala	Arg	Asp	Asn	
				290						295					300	
Met	Arg	Gly	Arg		Thr	Thr	Val	Gly	Leu	Gly	Leu	Val	Leu	Phe	Gln	
				305						310					315	
Gln	Leu	Thr	Gly		Gln	Pro	Asn	Val	Leu	Cys	Tyr	Ala	Ser	Thr	Ile	
				320						325					330	
Phe	Ser	Ser	Val		Gly	Phe	His	Gly	Gly	Ser	Ser	Ala	Val	Leu	Ala	
				335						340					345	
Ser	Val	Gly	Leu		Gly	Ala	Val	Lys	Val	Ala	Ala	Thr	Leu	Thr	Ala	
				350						355					360	
Met	Gly	Leu	Val		Asp	Arg	Ala	Gly	Arg	Arg	Ala	Leu	Leu	Leu	Ala	
				365						370					375	
Gly	Cys	Ala	Leu		Met	Ala	Leu	Ser	Val	Ser	Gly	Ile	Gly	Leu	Val	
				380						385					390	
Ser	Phe	Ala	Val		Pro	Met	Asp	Ser	Gly	Pro	Ser	Cys	Leu	Ala	Val	
				395						400					405	
Pro	Asn	Ala	Thr		Gly	Gln	Thr	Gly	Leu	Pro	Gly	Asp	Ser	Gly	Leu	
				410						415					420	
Leu	Gln	Asp	Ser		Ser	Leu	Pro	Pro	Ile	Pro	Arg	Thr	Asn	Glu	Asp	
				425						430					435	
Gln	Arg	Glu	Pro		Ile	Leu	Ser	Thr	Ala	Lys	Lys	Thr	Lys	Pro	His	
				440						445					450	
Pro	Arg	Ser	Gly		Asp	Pro	Ser	Ala	Pro	Pro	Arg	Leu	Ala	Leu	Ser	
				455						460					465	
Ser	Ala	Leu	Pro		Gly	Pro	Pro	Leu	Pro	Ala	Arg	Gly	His	Ala	Leu	
				470						475					480	
Leu	Arg	Trp	Thr		Ala	Leu	Leu	Cys	Leu	Met	Val	Phe	Val	Ser	Ala	
				485						490					495	
Phe	Ser	Phe	Gly		Phe	Gly	Pro	Val	Thr	Trp	Leu	Val	Leu	Ser	Glu	
				500						505					510	
Ile	Tyr	Pro	Val		Glu	Ile	Arg	Gly	Arg	Ala	Phe	Ala	Phe	Cys	Asn	
				515						520					525	
Ser	Phe	Asn	Trp		Ala	Ala	Asn	Leu	Phe	Ile	Ser	Leu	Ser	Phe	Leu	
				530						535					540	
Asp	Leu	Ile	Gly		Thr	Ile	Gly	Leu	Ser	Trp	Thr	Phe	Leu	Leu	Tyr	
				545						550					555	
Gly	Leu	Thr	Ala		Val	Leu	Gly	Leu	Gly	Phe	Ile	Tyr	Leu	Phe	Val	
				560						565					570	
Pro	Glu	Thr	Lys		Gly	Gln	Ser	Leu	Ala	Glu	Ile	Asp	Gln	Gln	Phe	
				575						580					585	
Gln	Lys	Arg	Arg		Phe	Thr	Leu	Ser	Phe	Gly	His	Arg	Gln	Asn	Ser	
				590						595					600	
Thr	Gly	Ile	Pro		Tyr	Ser	Arg	Ile	Glu	Ile	Ser	Ala	Ala	Ser		
				605						610						

<210> 27
<211> 2180
<212> PRT
<213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7475603CD1

<400> 27

Met	Arg	Phe	Arg	Lys	Gly	Gln	Glu	Leu	Pro	Ala	Ala	Ala	Pro	His
1				5				10					15	
Val	Phe	Ser	Pro	Thr	Val	Val	Leu	Thr	Ser	Leu	Ser	Arg	Pro	Leu
				20				25					30	
Pro	Ser	Leu	Thr	Met	Ala	Phe	Trp	Thr	Gln	Leu	Met	Leu	Leu	Leu
				35				40					45	
Trp	Lys	Asn	Phe	Met	Tyr	Arg	Arg	Arg	Gln	Pro	Val	Gln	Leu	Leu
				50				55					60	
Val	Glu	Leu	Leu	Trp	Pro	Leu	Phe	Phe	Ile	Leu	Val	Ala		
				65				70					75	
Val	Arg	His	Ser	His	Pro	Pro	Leu	Glu	His	His	Glu	Cys	His	Phe
				80				85					90	
Pro	Asn	Lys	Pro	Leu	Pro	Ser	Ala	Gly	Thr	Val	Pro	Trp	Leu	Gln
				95				100					105	
Gly	Leu	Ile	Cys	Asn	Val	Asn	Asn	Thr	Cys	Phe	Pro	Gln	Leu	Thr
				110				115					120	
Pro	Gly	Glu	Glu	Pro	Gly	Arg	Leu	Ser	Asn	Phe	Asn	Asp	Ser	Leu
				125				130					135	
Val	Ser	Arg	Leu	Leu	Ala	Asp	Ala	Arg	Thr	Val	Leu	Gly	Gly	Ala
				140				145					150	
Ser	Ala	His	Arg	Thr	Leu	Ala	Gly	Leu	Gly	Lys	Leu	Ile	Ala	Thr
				155				160					165	
Leu	Arg	Ala	Ala	Arg	Ser	Thr	Ala	Gln	Pro	Gln	Pro	Thr	Lys	Gln
				170				175					180	
Ser	Pro	Leu	Glu	Pro	Pro	Met	Leu	Asp	Val	Ala	Glu	Leu	Leu	Thr
				185				190					195	
Ser	Leu	Leu	Arg	Thr	Glu	Ser	Leu	Gly	Leu	Ala	Leu	Gly	Gln	Ala
				200				205					210	
Gln	Glu	Pro	Leu	His	Ser	Leu	Leu	Glu	Ala	Ala	Glu	Asp	Leu	Ala
				215				220					225	
Gln	Glu	Leu	Leu	Ala	Leu	Arg	Ser	Leu	Val	Glu	Leu	Arg	Ala	Leu
				230				235					240	
Leu	Gln	Arg	Pro	Arg	Gly	Thr	Ser	Gly	Pro	Leu	Glu	Leu	Leu	Ser
				245				250					255	
Glu	Ala	Leu	Cys	Ser	Val	Arg	Gly	Pro	Ser	Ser	Thr	Val	Gly	Pro
				260				265					270	
Ser	Leu	Asn	Trp	Tyr	Glu	Ala	Ser	Asp	Leu	Met	Glu	Leu	Val	Gly
				275				280					285	
Gln	Glu	Pro	Glu	Ser	Ala	Leu	Pro	Asp	Ser	Ser	Leu	Ser	Pro	Ala
				290				295					300	
Cys	Ser	Glu	Leu	Ile	Gly	Ala	Leu	Asp	Ser	His	Pro	Leu	Ser	Arg
				305				310					315	
Leu	Leu	Trp	Arg	Arg	Leu	Lys	Pro	Leu	Ile	Leu	Gly	Lys	Leu	Leu
				320				325					330	
Phe	Ala	Pro	Asp	Thr	Pro	Phe	Thr	Arg	Lys	Leu	Met	Ala	Gln	Val
				335				340					345	
Asn	Arg	Thr	Phe	Glu	Glu	Leu	Thr	Leu	Leu	Arg	Asp	Val	Arg	Glu
				350				355					360	
Val	Trp	Glu	Met	Leu	Gly	Pro	Arg	Ile	Phe	Thr	Phe	Met	Asn	Asp
				365				370					375	
Ser	Ser	Asn	Val	Ala	Met	Leu	Gln	Arg	Leu	Leu	Gln	Met	Gln	Asp
				380				385					390	
Glu	Gly	Arg	Arg	Gln	Pro	Arg	Pro	Gly	Gly	Arg	Asp	His	Met	Glu
				395				400					405	
Ala	Leu	Arg	Ser	Phe	Leu	Asp	Pro	Gly	Ser	Gly	Gly	Tyr	Ser	Trp
				410				415					420	
Gln	Asp	Ala	His	Ala	Asp	Val	Gly	His	Leu	Val	Gly	Thr	Leu	Gly
				425				430					435	
Arg	Val	Thr	Glu	Cys	Leu	Ser	Leu	Asp	Lys	Leu	Glu	Ala	Ala	Pro
				440				445					450	
Ser	Glu	Ala	Ala	Leu	Val	Ser	Arg	Ala	Leu	Gln	Leu	Leu	Ala	Glu
				455				460					465	

His	Arg	Phe	Trp	Ala	Gly	Val	Val	Phe	Leu	Gly	Pro	Glu	Asp	Ser
				470				475						480
Ser	Asp	Pro	Thr	Glu	His	Pro	Thr	Pro	Asp	Leu	Gly	Pro	Gly	His
				485				490						495
Val	Arg	Ile	Lys	Ile	Arg	Met	Asp	Ile	Asp	Val	Val	Thr	Arg	Thr
				500				505						510
Asn	Lys	Ile	Arg	Asp	Arg	Phe	Trp	Asp	Pro	Gly	Pro	Ala	Ala	Asp
				515				520						525
Pro	Leu	Thr	Asp	Leu	Arg	Tyr	Val	Trp	Gly	Gly	Phe	Val	Tyr	Leu
				530				535						540
Gln	Asp	Leu	Val	Glu	Arg	Ala	Ala	Val	Arg	Val	Leu	Ser	Gly	Ala
				545				550						555
Asn	Pro	Arg	Ala	Gly	Leu	Tyr	Leu	Gln	Gln	Met	Pro	Tyr	Pro	Cys
				560				565						570
Tyr	Val	Asp	Asp	Val	Phe	Leu	Arg	Val	Leu	Ser	Arg	Ser	Leu	Pro
				575				580						585
Leu	Phe	Leu	Thr	Leu	Ala	Trp	Ile	Tyr	Ser	Val	Thr	Leu	Thr	Val
				590				595						600
Lys	Ala	Val	Val	Arg	Glu	Lys	Glu	Thr	Arg	Leu	Arg	Asp	Thr	Met
				605				610						615
Arg	Ala	Met	Gly	Leu	Ser	Arg	Ala	Val	Leu	Trp	Leu	Gly	Trp	Phe
				620				625						630
Leu	Ser	Cys	Leu	Gly	Pro	Phe	Leu	Leu	Ser	Ala	Ala	Leu	Leu	Val
				635				640						645
Leu	Val	Leu	Lys	Leu	Gly	Asp	Ile	Leu	Pro	Tyr	Ser	His	Pro	Gly
				650				655						660
Val	Val	Phe	Leu	Phe	Leu	Ala	Ala	Phe	Ala	Val	Ala	Thr	Val	Thr
				665				670						675
Gln	Ser	Phe	Leu	Leu	Ser	Ala	Phe	Phe	Ser	Arg	Ala	Asn	Leu	Ala
				680				685						690
Ala	Ala	Cys	Gly	Gly	Leu	Ala	Tyr	Phe	Ser	Leu	Tyr	Leu	Pro	Tyr
				695				700						705
Val	Leu	Cys	Val	Ala	Trp	Arg	Asp	Arg	Leu	Pro	Ala	Gly	Gly	Arg
				710				715						720
Val	Ala	Ala	Ser	Leu	Leu	Ser	Pro	Val	Ala	Phe	Gly	Phe	Gly	Cys
				725				730						735
Glu	Ser	Leu	Ala	Leu	Leu	Glu	Glu	Gln	Gly	Glu	Gly	Ala	Gln	Trp
				740				745						750
His	Asn	Val	Gly	Thr	Arg	Pro	Thr	Ala	Asp	Val	Phe	Ser	Leu	Ala
				755				760						765
Gln	Val	Ser	Gly	Leu	Leu	Leu	Leu	Asp	Ala	Ala	Leu	Tyr	Gly	Leu
				770				775						780
Ala	Thr	Trp	Tyr	Leu	Glu	Ala	Val	Cys	Pro	Gly	Gln	Tyr	Gly	Ile
				785				790						795
Pro	Glu	Pro	Trp	Asn	Phe	Pro	Phe	Arg	Arg	Ser	Tyr	Trp	Cys	Gly
				800				805						810
Pro	Arg	Pro	Pro	Lys	Ser	Pro	Ala	Pro	Cys	Pro	Thr	Pro	Leu	Asp
				815				820						825
Pro	Lys	Val	Leu	Val	Glu	Glu	Ala	Pro	Pro	Gly	Leu	Ser	Pro	Gly
				830				835						840
Val	Ser	Val	Arg	Ser	Leu	Glu	Lys	Arg	Phe	Pro	Gly	Ser	Pro	Gln
				845				850						855
Pro	Ala	Leu	Arg	Gly	Leu	Ser	Leu	Asp	Phe	Tyr	Gln	Gly	His	Ile
				860				865						870
Thr	Ala	Phe	Leu	Gly	His	Asn	Gly	Ala	Gly	Lys	Thr	Thr	Thr	Leu
				875				880						885
Ser	Ile	Leu	Ser	Gly	Leu	Phe	Pro	Pro	Ser	Gly	Gly	Ser	Ala	Phe
				890				895						900
Ile	Leu	Gly	His	Asp	Val	Arg	Ser	Ser	Met	Ala	Ala	Ile	Arg	Pro
				905				910						915
His	Leu	Gly	Val	Cys	Pro	Gln	Tyr	Asn	Val	Leu	Phe	Asp	Met	Leu
				920				925						930
Thr	Val	Asp	Glu	His	Val	Trp	Phe	Tyr	Gly	Arg	Leu	Lys	Gly	Leu
				935				940						945
Ser	Ala	Ala	Val	Val	Gly	Pro	Glu	Gln	Asp	Arg	Leu	Leu	Gln	Asp
				950				955						960
Val	Gly	Leu	Val	Ser	Lys	Gln	Ser	Val	Gln	Thr	Arg	His	Leu	Ser

Gly	Gly	Met	Gln	Arg	Lys	Leu	Ser	Val	Ala	Ile	Ala	Phe	Val	Gly
965					970									975
					980				985					990
Gly	Ser	Gln	Val	Val	Ile	Leu	Asp	Glu	Pro	Thr	Ala	Gly	Val	Asp
995								1000						1005
Pro	Ala	Ser	Arg	Arg	Gly	Ile	Trp	Glu	Leu	Leu	Leu	Lys	Tyr	Arg
						1010			1015					1020
Glu	Gly	Arg	Thr	Leu	Ile	Leu	Ser	Thr	His	His	Leu	Asp	Glu	Ala
					1025				1030					1035
Glu	Leu	Leu	Gly	Asp	Arg	Val	Ala	Val	Val	Ala	Gly	Gly	Arg	Leu
					1040				1045					1050
Cys	Cys	Cys	Gly	Ser	Pro	Leu	Phe	Leu	Arg	Arg	His	Leu	Gly	Ser
					1055				1060					1065
Gly	Tyr	Tyr	Leu	Thr	Leu	Val	Lys	Ala	Arg	Leu	Pro	Leu	Thr	Thr
					1070				1075					1080
Asn	Glu	Lys	Ala	Asp	Thr	Asp	Met	Glu	Gly	Ser	Val	Asp	Thr	Arg
					1085				1090					1095
Gln	Glu	Lys	Lys	Asn	Gly	Ser	Gln	Gly	Ser	Arg	Val	Gly	Thr	Pro
					1100				1105					1110
Gln	Leu	Leu	Ala	Leu	Val	Gln	His	Trp	Val	Pro	Gly	Ala	Arg	Leu
					1115				1120					1125
Val	Glu	Glu	Leu	Pro	His	Glu	Leu	Val	Leu	Val	Leu	Pro	Tyr	Thr
					1130				1135					1140
Gly	Ala	His	Asp	Gly	Ser	Phe	Ala	Thr	Leu	Phe	Arg	Glu	Leu	Asp
					1145				1150					1155
Thr	Arg	Leu	Ala	Glu	Leu	Arg	Leu	Thr	Gly	Tyr	Gly	Ile	Ser	Asp
					1160				1165					1170
Thr	Ser	Leu	Glu	Glu	Ile	Phe	Leu	Lys	Val	Val	Glu	Glu	Cys	Ala
					1175				1180					1185
Ala	Asp	Thr	Asp	Met	Glu	Asp	Gly	Ser	Cys	Gly	Gln	His	Leu	Cys
					1190				1195					1200
Thr	Gly	Ile	Ala	Gly	Leu	Asp	Val	Thr	Leu	Arg	Leu	Lys	Met	Pro
					1205				1210					1215
Pro	Gln	Glu	Thr	Ala	Leu	Glu	Asn	Gly	Glu	Pro	Ala	Gly	Ser	Ala
					1220				1225					1230
Pro	Glu	Thr	Asp	Gln	Gly	Ser	Gly	Pro	Asp	Ala	Val	Gly	Arg	Val
					1235				1240					1245
Gln	Gly	Trp	Ala	Leu	Thr	Arg	Gln	Gln	Leu	Gln	Ala	Leu	Leu	Leu
					1250				1255					1260
Lys	Arg	Phe	Leu	Leu	Ala	Arg	Arg	Ser	Arg	Arg	Gly	Leu	Phe	Ala
					1265				1270					1275
Gln	Ile	Val	Leu	Pro	Ala	Leu	Phe	Val	Gly	Leu	Ala	Leu	Val	Phe
					1280				1285					1290
Ser	Leu	Ile	Val	Pro	Pro	Phe	Gly	His	Tyr	Pro	Ala	Leu	Arg	Leu
					1295				1300					1305
Ser	Pro	Thr	Met	Tyr	Gly	Ala	Gln	Val	Ser	Phe	Phe	Ser	Glu	Asp
					1310				1315					1320
Ala	Pro	Gly	Asp	Pro	Gly	Arg	Ala	Arg	Leu	Leu	Glu	Ala	Leu	Leu
					1325				1330					1335
Gln	Glu	Ala	Gly	Leu	Glu	Glu	Pro	Pro	Val	Gln	His	Ser	Ser	His
					1340				1345					1350
Arg	Phe	Ser	Ala	Pro	Glu	Va	Pro	Ala	Glu	Val	Ala	Lys	Val	Leu
					1355				1360					1365
Ala	Ser	Gly	Asn	Trp	Thr	Pro	Glu	Ser	Pro	Ser	Pro	Ala	Cys	Gln
					1370				1375					1380
Cys	Ser	Arg	Pro	Gly	Ala	Arg	Arg	Leu	Leu	Pro	Asp	Cys	Pro	Ala
					1385				1390					1395
Ala	Ala	Gly	Gly	Pro	Pro	Pro	Gln	Ala	Val	Thr	Gly	Ser	Gly	
					1400				1405					1410
Glu	Val	Val	Gln	Asn	Gln	Thr	Gly	Arg	Asn	Leu	Ser	Asp	Phe	Leu
					1415				1420					1425
Val	Lys	Thr	Tyr	Pro	Arg	Leu	Val	Arg	Gln	Gly	Leu	Lys	Thr	Lys
					1430				1435					1440
Lys	Trp	Val	Asn	Glu	Val	Arg	Tyr	Gly	Gly	Phe	Ser	Leu	Gly	Gly
					1445				1450					1455
Arg	Asp	Pro	Gly	Leu	Pro	Ser	Gly	Gln	Glu	Leu	Gly	Arg	Ser	Val
					1460				1465					1470

Glu Glu Leu Trp Ala Leu Leu Ser Pro Leu Pro Gly Gly Ala Leu
 1475 1480 1485
 Asp Arg Val Leu Lys Asn Leu Thr Ala Trp Ala His Ser Leu Asp
 1490 1495 1500
 Ala Gln Asp Ser Leu Lys Ile Trp Phe Asn Asn Lys Gly Trp His
 1505 1510 1515
 Ser Met Val Ala Phe Val Asn Arg Ala Ser Asn Ala Ile Leu Arg
 1520 1525 1530
 Ala His Leu Pro Pro Gly Pro Ala Arg His Ala His Ser Ile Thr
 1535 1540 1545
 Thr Leu Asn His Pro Leu Asn Leu Thr Lys Glu Gln Leu Ser Glu
 1550 1555 1560
 Ala Ala Leu Met Ala Ser Ser Val Asp Val Leu Val Ser Ile Cys
 1565 1570 1575
 Val Val Phe Ala Met Ser Phe Val Pro Ala Ser Phe Thr Leu Val
 1580 1585 1590
 Leu Ile Glu Glu Arg Val Thr Arg Ala Lys His Leu Gln Leu Met
 1595 1600 1605
 Gly Gly Leu Ser Pro Thr Leu Tyr Trp Leu Gly Asn Phe Leu Trp
 1610 1615 1620
 Asp Met Cys Asn Tyr Leu Val Pro Ala Cys Ile Val Val Leu Ile
 1625 1630 1635
 Phe Leu Ala Phe Gln Gln Arg Ala Tyr Val Ala Pro Ala Asn Leu
 1640 1645 1650
 Pro Ala Leu Leu Leu Leu Leu Tyr Gly Trp Ser Ile Thr
 1655 1660 1665
 Pro Leu Met Tyr Pro Ala Ser Phe Phe Ser Val Pro Ser Thr
 1670 1675 1680
 Ala Tyr Val Val Leu Thr Cys Ile Asn Leu Phe Ile Gly Ile Asn
 1685 1690 1695
 Gly Ser Met Ala Thr Phe Val Leu Glu Leu Phe Ser Asp Gln Lys
 1700 1705 1710
 Leu Gln Glu Val Ser Arg Ile Leu Lys Gln Val Phe Leu Ile Phe
 1715 1720 1725
 Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Met Val Arg Asn
 1730 1735 1740
 Gln Ala Met Ala Asp Ala Phe Glu Arg Leu Gly Asp Arg Gln Phe
 1745 1750 1755
 Gln Ser Pro Leu Arg Trp Glu Val Val Gly Lys Asn Leu Leu Ala
 1760 1765 1770
 Met Val Ile Gln Gly Pro Leu Phe Leu Leu Phe Thr Leu Leu Leu
 1775 1780 1785
 Gln His Arg Ser Gln Leu Leu Pro Gln Pro Arg Val Arg Ser Leu
 1790 1795 1800
 Pro Leu Leu Gly Glu Glu Asp Glu Asp Val Ala Arg Glu Arg Glu
 1805 1810 1815
 Arg Val Val Gln Gly Ala Thr Gln Gly Asp Val Leu Val Leu Arg
 1820 1825 1830
 Asn Leu Thr Lys Val Tyr Arg Gly Gln Arg Met Pro Ala Val Asp
 1835 1840 1845
 Arg Leu Cys Leu Gly Ile Pro Pro Gly Glu Cys Phe Gly Leu Leu
 1850 1855 1860
 Gly Val Asn Gly Ala Gly Lys Thr Ser Thr Phe Arg Met Val Thr
 1865 1870 1875
 Gly Asp Thr Leu Ala Ser Arg Gly Glu Ala Val Leu Ala Gly His
 1880 1885 1890
 Ser Val Ala Arg Glu Pro Ser Ala Ala His Leu Ser Met Gly Tyr
 1895 1900 1905
 Cys Pro Gln Ser Asp Ala Ile Phe Glu Leu Leu Thr Gly Arg Glu
 1910 1915 1920
 His Leu Glu Leu Leu Ala Arg Leu Arg Gly Val Pro Glu Ala Gln
 1925 1930 1935
 Val Ala Gln Thr Ala Gly Ser Gly Leu Ala Arg Leu Gly Leu Ser
 1940 1945 1950
 Trp Tyr Ala Asp Arg Pro Ala Gly Thr Tyr Ser Gly Gly Asn Lys
 1955 1960 1965
 Arg Lys Leu Ala Thr Ala Leu Ala Leu Val Gly Asp Pro Ala Val

1970	1975	1980
Val Phe Leu Asp Glu	Pro Thr Thr Gly Met	Asp Pro Ser Ala Arg
1985	1990	1995
Arg Phe Leu Trp Asn	Ser Leu Leu Ala Val	Val Arg Glu Gly Arg
2000	2005	2010
Ser Val Met Leu Thr	Ser His Ser Met Glu	Glu Cys Glu Ala Leu
2015	2020	2025
Cys Ser Arg Leu Ala	Ile Met Val Asn Gly	Arg Phe Arg Cys Leu
2030	2035	2040
Gly Ser Pro Gln His	Leu Lys Gly Arg Phe	Ala Ala Gly His Thr
2045	2050	2055
Leu Thr Leu Arg Val	Pro Ala Ala Arg Ser	Gln Pro Ala Ala Ala
2060	2065	2070
Phe Val Ala Ala Glu	Phe Pro Gly Ala Glu	Leu Arg Glu Ala His
2075	2080	2085
Gly Gly Arg Leu Arg	Phe Gln Leu Pro Pro	Gly Gly Arg Cys Ala
2090	2095	2100
Leu Ala Arg Val Phe	Gly Glu Leu Ala Val	His Gly Ala Glu His
2105	2110	2115
Gly Val Glu Asp Phe	Ser Val Ser Gln Thr	Met Leu Glu Glu Val
2120	2125	2130
Phe Leu Tyr Phe Ser	Lys Asp Gln Gly Lys	Asp Glu Asp Thr Glu
2135	2140	2145
Glu Gln Lys Glu Ala	Gly Val Gly Val Asp	Pro Ala Pro Gly Leu
2150	2155	2160
Gln His Pro Lys Arg	Val Ser Gln Phe Leu	Asp Asp Pro Ser Thr
2165	2170	2175
Ala Glu Thr Val Leu		
2180		

<210> 28

<211> 1737

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7477845CD1

<400> 28

Met Leu Lys Arg Lys Gln Ser Ser Arg Val	Glu Ala Gln Pro Val	
1 5	10	15
Thr Asp Phe Gly Pro Asp Glu Ser Leu Ser	Asp Asn Ala Asp Ile	
20 25		30
Leu Trp Ile Asn Lys Pro Trp Val His Ser	Leu Leu Arg Ile Cys	
35 40		45
Ala Ile Ile Ser Val Ile Ser Val Cys Met	Asn Thr Pro Met Thr	
50 55		60
Phe Glu His Tyr Pro Pro Leu Gln Tyr Val	Thr Phe Thr Leu Asp	
65 70		75
Thr Leu Leu Met Phe Leu Tyr Thr Ala Glu	Met Ile Ala Lys Met	
80 85		90
His Ile Arg Gly Ile Val Lys Gly Asp Ser	Ser Tyr Val Lys Asp	
95 100		105
Arg Trp Cys Val Phe Asp Gly Phe Met Val	Phe Cys Leu Trp Val	
110 115		120
Ser Leu Val Leu Gln Val Phe Glu Ile Ala	Asp Ile Val Asp Gln	
125 130		135
Met Ser Pro Trp Gly Met Leu Arg Ile Pro	Arg Pro Leu Ile Met	
140 145		150
Ile Arg Ala Phe Arg Ile Tyr Phe Arg Phe	Glu Leu Pro Arg Thr	
155 160		165
Arg Ile Thr Asn Ile Leu Lys Arg Ser Gly	Glu Gln Ile Trp Ser	
170 175		180
Val Ser Ile Phe Leu Leu Phe Phe Leu	Leu Leu Tyr Gly Ile Leu	
185 190		195
Gly Val Gln Met Phe Gly Thr Phe Thr Tyr	His Cys Val Val Asn	

	200		205		210
Asp Thr Lys Pro	Gly Asn Val Thr Trp		Asn Ser Leu Ala Ile	Pro	
215	220		225		
Asp Thr His Cys	Ser Pro Glu Leu Glu		Glu Gly Tyr Gln Cys	Pro	
230	235		240		
Pro Gly Phe Lys	Cys Met Asp Leu Glu		Asp Leu Gly Leu Ser	Arg	
245	250		255		
Gln Glu Leu Gly	Tyr Ser Gly Phe Asn		Glu Ile Gly Thr Ser	Ile	
260	265		270		
Phe Thr Val Tyr	Glu Ala Ala Ser Gln		Glu Gly Trp Val Phe	Leu	
275	280		285		
Met Tyr Arg Ala	Ile Asp Ser Phe Pro		Arg Trp Arg Ser Tyr	Phe	
290	295		300		
Tyr Phe Ile Thr	Leu Ile Phe Phe Leu		Ala Trp Leu Val Lys	Asn	
305	310		315		
Val Phe Ile Ala	Val Ile Ile Glu Thr		Phe Ala Glu Ile Arg	Val	
320	325		330		
Gln Phe Gln Gln	Met Trp Gly Ser Arg		Ser Ser Thr Thr Ser	Thr	
335	340		345		
Ala Thr Thr Gln	Met Phe His Glu Asp		Ala Ala Gly Gly Trp	Gln	
350	355		360		
Leu Val Ala Val	Asp Val Asn Lys Pro		Gln Gly Arg Ala Pro	Ala	
365	370		375		
Cys Leu Gln Lys	Met Met Arg Ser Ser		Val Phe His Met Phe	Ile	
380	385		390		
Leu Ser Met Val	Thr Val Asp Val Ile		Val Ala Ala Ser Asn	Tyr	
395	400		405		
Tyr Lys Gly Glu	Asn Phe Arg Arg Gln		Tyr Asp Glu Phe Tyr	Leu	
410	415		420		
Ala Glu Val Ala	Phe Thr Val Leu Phe		Asp Leu Glu Ala Leu	Leu	
425	430		435		
Lys Ile Trp Cys	Leu Gly Phe Thr Gly		Tyr Ile Ser Ser Ser	Leu	
440	445		450		
His Lys Phe Glu	Leu Leu Leu Val Ile		Gly Thr Thr Leu His	Val	
455	460		465		
Tyr Pro Asp Leu	Tyr His Ser Gln Phe		Thr Tyr Phe Gln Val	Leu	
470	475		480		
Arg Val Val Arg	Leu Ile Lys Ile Ser		Pro Ala Leu Glu Asp	Phe	
485	490		495		
Val Tyr Lys Ile	Phe Gly Pro Gly Lys		Lys Leu Gly Ser Leu	Val	
500	505		510		
Val Phe Thr Ala	Ser Leu Leu Ile Val		Met Ser Ala Ile Ser	Leu	
515	520		525		
Gln Met Phe Cys	Phe Val Glu Glu Leu		Asp Arg Phe Thr Thr	Phe	
530	535		540		
Pro Arg Ala Phe	Met Ser Met Phe Gln		Ile Leu Thr Gln Glu	Gly	
545	550		555		
Trp Val Asp Val	Met Asp Gln Thr Leu		Asn Ala Val Gly His	Met	
560	565		570		
Trp Ala Pro Val	Val Ala Ile Tyr Phe		Ile Leu Tyr His Leu	Phe	
575	580		585		
Ala Thr Leu Ile	Leu Leu Ser Leu Phe		Val Ala Val Ile Leu	Asp	
590	595		600		
Asn Leu Glu Leu	Asp Glu Asp Leu Lys		Lys Leu Lys Gln Leu	Lys	
605	610		615		
Gln Ser Glu Ala	Asn Ala Asp Thr Lys		Glu Lys Leu Pro Leu	Arg	
620	625		630		
Leu Arg Ile Phe	Glu Lys Phe Pro Asn		Arg Pro Gln Met Val	Lys	
635	640		645		
Ile Ser Lys Leu	Pro Ser Asp Phe Thr		Val Pro Lys Ile Arg	Glu	
650	655		660		
Ser Phe Met Lys	Gln Phe Ile Asp Arg		Gln Gln Gln Asp Thr	Cys	
665	670		675		
Cys Leu Leu Arg	Ser Leu Pro Thr Thr		Ser Ser Ser Ser Cys	Asp	
680	685		690		
His Ser Lys Arg	Ser Ala Ile Glu Asp		Asn Lys Tyr Ile Asp	Gln	
695	700		705		

Lys Leu Arg Lys Ser Val Phe Ser Ile Arg Ala Arg Asn Leu Leu
 710 715 720
 Glu Lys Glu Thr Ala Val Thr Lys Ile Leu Arg Ala Cys Thr Arg
 725 730 735
 Gln Arg Met Leu Ser Gly Ser Phe Glu Gly Gln Pro Ala Lys Glu
 740 745 750
 Arg Ser Ile Leu Ser Val Gln His His Ile Arg Gln Glu Arg Arg
 755 760 765
 Ser Leu Arg His Gly Ser Asn Ser Gln Arg Ile Ser Arg Gly Lys
 770 775 780
 Ser Leu Glu Thr Leu Thr Gln Asp His Cys Asn Thr Val Ile Tyr
 785 790 795
 Arg Asn Ala Gln Arg Glu Val Ser Glu Ile Lys Met Ile Gln Glu
 800 805 810
 Lys Lys Glu Leu Ala Glu Met Leu Gln Gly Lys Cys Lys Lys Glu
 815 820 825
 Leu Arg Glu Ser His Pro Tyr Phe Asp Lys Pro Leu Phe Ile Val
 830 835 840
 Gly Arg Glu His Arg Phe Arg Asn Phe Cys Arg Val Val Val Arg
 845 850 855
 Ala Arg Phe Asn Ala Ser Lys Thr Asp Pro Val Thr Gly Ala Val
 860 865 870
 Lys Asn Thr Lys Tyr His Leu Leu Tyr Asp Leu Leu Gly Leu Val
 875 880 885
 Thr Tyr Leu Asp Trp Val Met Ile Ile Val Thr Ser Asp Ser Cys
 890 895 900
 Ile Ser Met Met Phe Glu Ser Pro Phe Arg Arg Val Met His Ala
 905 910 915
 Pro Thr Leu Gln Ile Ala Glu Tyr Val Phe Val Ile Phe Met Ser
 920 925 930
 Ile Glu Leu Asn Leu Lys Ile Met Ala Asp Gly Leu Phe Phe Thr
 935 940 945
 Pro Thr Ala Val Ile Arg Asp Phe Gly Gly Val Met Asp Ile Phe
 950 955 960
 Ile Tyr Leu Val Ser Leu Ile Phe Leu Cys Trp Met Pro Gln Asn
 965 970 975
 Val Pro Ala Glu Ser Gly Ala Gln Leu Leu Met Val Leu Arg Cys
 980 985 990
 Leu Arg Pro Leu Arg Ile Phe Lys Leu Val Pro Gln Met Arg Lys
 995 1000 1005
 Val Val Arg Glu Leu Phe Ser Gly Phe Lys Glu Ile Phe Leu Val
 1010 1015 1020
 Ser Ile Leu Leu Leu Thr Leu Met Leu Val Phe Ala Ser Phe Gly
 1025 1030 1035
 Val Gln Leu Phe Ala Gly Lys Leu Ala Lys Cys Asn Asp Pro Asn
 1040 1045 1050
 Ile Ile Arg Arg Glu Asp Cys Asn Gly Ile Phe Arg Ile Asn Val
 1055 1060 1065
 Ser Val Ser Lys Asn Leu Asn Leu Lys Leu Arg Pro Gly Glu Lys
 1070 1075 1080
 Lys Pro Gly Phe Trp Val Pro Arg Val Trp Ala Asn Pro Arg Asn
 1085 1090 1095
 Phe Asn Phe Asp Asn Val Gly Asn Ala Met Leu Ala Leu Phe Glu
 1100 1105 1110
 Val Leu Ser Leu Lys Gly Trp Val Glu Val Arg Asp Val Ile Ile
 1115 1120 1125
 His Arg Val Gly Pro Ile His Gly Ile Tyr Ile His Val Phe Val
 1130 1135 1140
 Phe Leu Gly Cys Met Ile Gly Leu Thr Leu Phe Val Gly Val Val
 1145 1150 1155
 Ile Ala Asn Phe Asn Glu Asn Lys Gly Thr Ala Leu Leu Thr Val
 1160 1165 1170
 Asp Gln Arg Arg Trp Glu Asp Leu Lys Ser Arg Leu Lys Ile Ala
 1175 1180 1185
 Gln Pro Leu His Leu Pro Pro Arg Pro Asp Asn Asp Gly Phe Arg
 1190 1195 1200
 Ala Lys Met Tyr Asp Ile Thr Gln His Pro Phe Phe Lys Arg Thr

Ile Ala Leu Leu Val	1205	Leu Ala Gln Ser Val	1210	Leu Leu Ser Val Lys	1215
1220		1225		1230	
Trp Asp Val Glu Asp	1235	Pro Val Thr Val Pro	1240	Leu Ala Thr Met Ser	1245
1250		1255		1260	
Val Val Phe Thr Phe	1250	Ile Phe Val Leu Glu	1255	Val Thr Met Lys Ile	1260
1265		1270		1275	
Tyr Asp Leu Leu Val	1280	Thr Ser Leu Gly Val	1285	Val Trp Val Val Leu	1290
1295		1300		1305	
His Phe Ala Leu Leu Asn Ala Tyr Thr	1300	Tyr Met Met Gly Ala Cys	1305		
1310		1315		1320	
Val Ile Val Phe Arg	1310	Phe Phe Ser Ile Cys	1315	Gly Lys His Val Thr	1320
1325		1330		1335	
Phe Phe Ile Ile Val	1325	Gly Met Phe Leu	1330	Leu Leu Cys Tyr Ala	1335
1340		1345		1350	
Phe Ala Gly Val Val	1340	Leu Phe Gly Thr Val	1345	Lys Tyr Gly Glu Asn	1350
1355		1360		1365	
Ile Asn Arg His Ala Asn Phe Ser Ser	1355	Ala Gly Lys Ala Ile Thr	1360		
1370		1375		1380	
Val Leu Phe Arg Ile Val Thr Gly Glu Asp	1370	Trp Asn Lys Ile Met	1375		
1385		1390		1395	
His Asp Cys Met Val Gln Pro Pro Phe Cys	1385	Thr Pro Asp Glu Phe	1390		
1400		1405		1410	
Thr Tyr Trp Ala Thr Asp Cys Gly Asn Tyr	1400	Ala Gly Ala Leu Met	1405		
1415		1420		1425	
Tyr Phe Cys Ser Phe Tyr Val Ile Ile Ala	1415	Tyr Ile Met Leu Asn	1420		
1430		1435		1440	
Leu Leu Val Ala Ile Ile Val Glu Asn Phe	1430	Ser Leu Ile Tyr Ser	1435		
1445		1450		1455	
Thr Glu Glu Asp Gln Leu Leu Ser Tyr Asn Asp	1445	Leu Arg His Phe	1450		
1460		1465		1470	
Gln Ile Ile Trp Asn Met Val Asp Asp Lys	1460	Arg Glu Val Phe Pro	1465		
1475		1480		1485	
Thr Phe Arg Val Lys Phe Leu Leu Arg Leu	1475	Leu Arg Gly Arg Leu	1480		
1490		1495		1500	
Glu Val Asp Leu Asp Lys Asp Lys Leu Leu	1490	Phe Lys His Met Cys	1495		
1505		1510		1515	
Tyr Glu Met Glu Arg Leu His Asn Gly Gly	1505	Asp Val Thr Phe His	1510		
1520		1525		1530	
Asp Val Leu Ser Met Leu Ser Tyr Arg Ser	1520	Val Asp Ile Arg Lys	1525		
1535		1540		1545	
Ser Leu Gln Leu Glu Glu Leu Leu Ala Arg	1535	Glu Gln Leu Glu Tyr	1540		
1550		1555		1560	
Thr Ile Glu Glu Val Ala Lys Gln Thr	1550	Ile Arg Met Trp Leu	1555		
1565		1570		1575	
Lys Lys Cys Leu Lys Arg Ile Arg Ala Lys	1565	Gln Gln Gln Ser Cys	1570		
1580		1585		1590	
Ser Ile Ile His Ser Leu Arg Glu Ser Gln	1580	Gln Glu Leu Ser	1585		
1595		1600		1605	
Arg Phe Leu Asn Pro Pro Ser Ile Glu Thr	1595	Thr Gln Pro Ser Glu	1600		
1610		1615		1620	
Asp Thr Asn Ala Asn Ser Gln Asp Asn Ser	1610	Met Gln Pro Glu Thr	1615		
1625		1630		1635	
Ser Ser Gln Gln Leu Leu Ser Pro Thr	1625	Leu Ser Asp Arg Gly	1630		
1640		1645		1650	
Gly Ser Arg Gln Asp Ala Ala Asp Ala Gly	1640	Lys Pro Gln Arg Lys	1645		
1655		1660		1665	
Phe Gly Gln Trp Arg Leu Pro Ser Ala Pro	1655	His	1660		
1670		1675		1680	
Ser Val Ser Ser Val Asn Leu Arg Phe Gly	1670	Arg Thr Thr Met	1675		
1685		1690		1695	
Lys Ser Val Val Cys Lys Met Asn Pro Met	1685	Thr Asp Ala Ala Ser	1690		
1700		1705		1710	

Cys	Gly	Ser	Glu	Val	Lys	Lys	Trp	Trp	Thr	Arg	Gln	Leu	Thr	Val
				1715				1720					1725	
Glu	Ser	Asp	Glu	Ser	Gly	Asp	Asp	Leu	Leu	Asp	Ile			
				1730				1735						

<210> 29
<211> 547
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 168827CD1

<400> 29														
Met	Ala	Phe	Gln	Asp	Leu	Leu	Asp	Gln	Val	Gly	Gly	Leu	Gly	Arg
1				5				10				15		
Phe	Gln	Ile	Leu	Gln	Met	Val	Phe	Leu	Ile	Met	Phe	Asn	Val	Ile
				20				25				30		
Val	Tyr	His	Gln	Thr	Gln	Leu	Glu	Asn	Phe	Ala	Ala	Phe	Ile	Leu
				35				40				45		
Asp	His	Arg	Cys	Trp	Val	His	Ile	Leu	Asp	Asn	Asp	Thr	Ile	Pro
				50				55				60		
Asp	Asn	Asp	Pro	Gly	Thr	Leu	Ser	Gln	Asp	Ala	Leu	Leu	Arg	Ile
				65				70				75		
Ser	Ile	Pro	Phe	Asp	Ser	Asn	Leu	Arg	Pro	Glu	Lys	Cys	Arg	Arg
				80				85				90		
Phe	Val	His	Pro	Gln	Trp	Lys	Leu	Ile	His	Leu	Asn	Gly	Thr	Phe
				95				100				105		
Pro	Asn	Thr	Ser	Glu	Pro	Asp	Thr	Glu	Pro	Cys	Val	Asp	Gly	Trp
				110				115				120		
Val	Tyr	Asp	Gln	Ser	Ser	Phe	Pro	Ser	Thr	Ile	Val	Thr	Lys	Trp
				125				130				135		
Asp	Leu	Val	Cys	Glu	Ser	Gln	Pro	Leu	Asn	Ser	Val	Ala	Lys	Phe
				140				145				150		
Leu	Phe	Met	Ala	Gly	Met	Met	Val	Gly	Gly	Asn	Leu	Tyr	Gly	His
				155				160				165		
Leu	Ser	Asp	Arg	Phe	Gly	Arg	Lys	Phe	Val	Leu	Arg	Trp	Ser	Tyr
				170				175				180		
Leu	Gln	Leu	Ala	Ile	Val	Gly	Thr	Cys	Ala	Ala	Phe	Ala	Pro	Thr
				185				190				195		
Ile	Leu	Val	Tyr	Cys	Ser	Leu	Arg	Phe	Leu	Ala	Gly	Ala	Ala	Thr
				200				205				210		
Phe	Ser	Ile	Ile	Val	Asn	Thr	Val	Leu	Leu	Ile	Val	Glu	Trp	Ile
				215				220				225		
Thr	His	Gln	Phe	Cys	Ala	Met	Ala	Leu	Thr	Leu	Thr	Leu	Cys	Ala
				230				235				240		
Ala	Ser	Ile	Gly	His	Ile	Thr	Leu	Gly	Ser	Leu	Ala	Phe	Val	Ile
				245				250				255		
Arg	Asp	Gln	Cys	Ile	Leu	Gln	Leu	Val	Met	Ser	Ala	Pro	Cys	Phe
				260				265				270		
Val	Phe	Phe	Leu	Phe	Ser	Arg	Trp	Leu	Ala	Glu	Ser	Ala	Arg	Trp
				275				280				285		
Leu	Ile	Ile	Asn	Asn	Lys	Pro	Glu	Glu	Gly	Leu	Lys	Glu	Leu	Thr
				290				295				300		
Lys	Ala	Ala	His	Arg	Asn	Gly	Met	Lys	Asn	Ala	Glu	Asp	Ile	Leu
				305				310				315		
Thr	Met	Glu	Val	Leu	Lys	Ser	Thr	Met	Lys	Gln	Glu	Leu	Glu	Ala
				320				325				330		
Ala	Gln	Lys	Lys	His	Ser	Leu	Cys	Glu	Leu	Leu	Arg	Ile	Pro	Asn
				335				340				345		
Ile	Cys	Lys	Arg	Ile	Cys	Phe	Leu	Ser	Phe	Val	Arg	Phe	Ala	Ser
				350				355				360		
Thr	Ile	Pro	Phe	Trp	Gly	Leu	Thr	Leu	His	Leu	Gln	His	Leu	Gly
				365				370				375		
Asn	Asn	Val	Phe	Leu	Leu	Gln	Thr	Leu	Phe	Gly	Ala	Val	Thr	Leu
				380				385				390		

Leu Ala Asn Cys Val Ala Pro Trp Ala Leu Asn His Met Ser Arg
 395 400 405
 Arg Leu Ser Gln Met Leu Leu Met Phe Leu Leu Ala Thr Cys Leu
 410 415 420
 Leu Ala Ile Ile Phe Val Pro Gln Glu Met Gln Thr Leu Arg Val
 425 430 435
 Val Leu Ala Thr Leu Gly Val Gly Ala Ala Ser Leu Gly Ile Thr
 440 445 450
 Cys Ser Thr Ala Gln Glu Asn Glu Leu Ile Pro Ser Ile Ile Arg
 455 460 465
 Gly Arg Ala Thr Gly Ile Thr Gly Asn Phe Ala Asn Ile Gly Gly
 470 475 480
 Ala Leu Ala Ser Leu Met Met Ile Leu Ser Ile Tyr Ser Arg Pro
 485 490 495
 Leu Pro Trp Ile Ile Tyr Gly Val Phe Ala Ile Leu Ser Gly Leu
 500 505 510
 Val Val Leu Leu Leu Pro Glu Thr Arg Asn Gln Pro Leu Leu Asp
 515 520 525
 Ser Ile Gln Asp Val Glu Asn Glu Gly Val Asn Ser Leu Ala Ala
 530 535 540
 Pro Gln Arg Ser Ser Val Leu
 545

<210> 30
 <211> 547
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472734CD1

<400> 30
 Met Gly Phe Asp Val Leu Leu Asp Gln Val Gly Gly Met Gly Arg
 1 5 10 15
 Phe Gln Ile Cys Leu Ile Ala Phe Phe Cys Ile Thr Asn Ile Leu
 20 25 30
 Leu Phe Pro Asn Ile Val Leu Glu Asn Phe Thr Ala Phe Thr Pro
 35 40 45
 Ser His Arg Cys Trp Val Pro Leu Leu Asp Asn Asp Thr Val Ser
 50 55 60
 Asp Asn Asp Thr Gly Thr Leu Ser Lys Asp Asp Leu Leu Arg Ile
 65 70 75
 Ser Ile Pro Leu Asp Ser Asn Leu Arg Pro Gln Lys Cys Gln Arg
 80 85 90
 Phe Ile His Pro Gln Trp Gln Leu Leu His Leu Asn Gly Thr Phe
 95 100 105
 Pro Asn Thr Asn Glu Pro Asp Thr Glu Pro Cys Val Asp Gly Trp
 110 115 120
 Val Tyr Asp Arg Ser Ser Phe Leu Ser Thr Ile Val Thr Glu Trp
 125 130 135
 Asp Leu Val Cys Glu Ser Gln Ser Leu Lys Ser Met Val Gln Ser
 140 145 150
 Leu Phe Met Ala Gly Ser Leu Leu Gly Gly Leu Ile Tyr Gly His
 155 160 165
 Leu Ser Asp Arg Phe Gly Arg Lys Phe Val Leu Arg Trp Ser Tyr
 170 175 180
 Leu Gln Leu Ala Ile Val Gly Thr Cys Ala Ala Phe Ala Pro Thr
 185 190 195
 Ile Leu Val Tyr Cys Ser Leu Arg Phe Leu Ala Gly Ala Ala Thr
 200 205 210
 Phe Ser Ile Ile Val Asn Thr Val Leu Leu Ile Val Glu Trp Ile
 215 220 225
 Thr His Gln Phe Cys Ala Met Ala Leu Thr Leu Thr Leu Cys Ala
 230 235 240
 Ala Ser Ile Gly His Ile Thr Leu Gly Ser Leu Ala Phe Val Ile
 245 250 255

Arg Asp Gln Cys Ile Leu Gln Leu Val Met Ser Ala Pro Cys Phe
 260 265 270
 Val Phe Phe Leu Phe Ser Arg Trp Leu Ala Glu Ser Ala Arg Trp
 275 280 285
 Leu Ile Ile Asn Asn Lys Pro Glu Glu Gly Leu Lys Glu Leu Arg
 290 295 300
 Lys Ala Ala His Arg Asn Gly Met Lys Asn Ala Glu Asp Ile Leu
 305 310 315
 Thr Met Glu Val Leu Lys Ser Thr Met Lys Gln Glu Leu Glu Ala
 320 325 330
 Ala Gln Lys Lys His Ser Leu Cys Glu Leu Leu Arg Ile Pro Asn
 335 340 345
 Ile Cys Lys Arg Ile Cys Phe Leu Ser Phe Val Arg Phe Ala Ser
 350 355 360
 Thr Ile Pro Phe Trp Gly Leu Thr Leu His Leu Gln His Leu Gly
 365 370 375
 Asn Asn Val Phe Leu Leu Gln Thr Leu Phe Gly Ala Val Thr Leu
 380 385 390
 Leu Ala Asn Cys Val Ala Pro Trp Ala Leu Asn His Met Ser Arg
 395 400 405
 Arg Leu Ser Gln Met Leu Leu Met Phe Leu Leu Ala Thr Cys Leu
 410 415 420
 Leu Ala Ile Ile Phe Val Pro Gln Glu Met Gln Thr Leu Arg Val
 425 430 435
 Val Leu Ala Thr Leu Gly Val Gly Ala Ala Ser Leu Gly Ile Thr
 440 445 450
 Cys Ser Thr Ala Gln Glu Asn Glu Leu Ile Pro Ser Ile Ile Arg
 455 460 465
 Gly Arg Ala Thr Gly Ile Thr Gly Asn Phe Ala Asn Ile Gly Gly
 470 475 480
 Ala Leu Ala Ser Leu Met Met Ile Leu Ser Ile Tyr Ser Arg Pro
 485 490 495
 Leu Pro Trp Ile Ile Tyr Gly Val Phe Ala Ile Leu Ser Gly Leu
 500 505 510
 Val Val Leu Leu Leu Pro Glu Thr Arg Asn Gln Pro Leu Leu Asp
 515 520 525
 Ser Ile Gln Asp Val Glu Asn Glu Gly Val Asn Ser Leu Ala Ala
 530 535 540
 Pro Gln Arg Ser Ser Val Leu
 545

<210> 31
 <211> 988
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7473473CD1

<400> 31
 Met Pro Gly Gly Lys Arg Gly Leu Val Ala Pro Gln Asn Thr Phe
 1 5 10 15
 Leu Glu Asn Ile Val Arg Arg Ser Ser Glu Ser Ser Phe Leu Leu
 20 25 30
 Gly Asn Ala Gln Ile Val Asp Trp Pro Val Val Tyr Ser Asn Asp
 35 40 45
 Gly Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Asp Val Met Gln
 50 55 60
 Lys Ser Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys
 65 70 75
 Lys Thr Ile Glu Lys Val Arg Gln Thr Phe Asp Asn Tyr Glu Ser
 80 85 90
 Asn Cys Phe Glu Val Leu Leu Tyr Lys Lys Asn Arg Thr Pro Val
 95 100 105
 Trp Phe Tyr Met Gln Ile Ala Pro Ile Arg Asn Glu His Glu Lys
 110 115 120

Val	Val	Leu	Phe	Leu	Cys	Thr	Phe	Lys	Asp	Ile	Thr	Leu	Phe	Lys
				125					130					135
Gln	Pro	Ile	Glu	Asp	Asp	Ser	Thr	Lys	Gly	Trp	Thr	Lys	Phe	Ala
				140					145					150
Arg	Leu	Thr	Arg	Ala	Leu	Thr	Asn	Ser	Arg	Ser	Val	Leu	Gln	Gln
				155					160					165
Leu	Thr	Pro	Met	Asn	Lys	Thr	Glu	Val	Val	His	Lys	His	Ser	Arg
				170					175					180
Leu	Ala	Glu	Val	Leu	Gln	Leu	Gly	Ser	Asp	Ile	Leu	Pro	Gln	Tyr
				185					190					195
Lys	Gln	Glu	Ala	Pro	Lys	Thr	Pro	Pro	His	Ile	Ile	Leu	His	Tyr
				200					205					210
Cys	Ala	Phe	Lys	Thr	Thr	Trp	Asp	Trp	Val	Ile	Leu	Ile	Leu	Thr
				215					220					225
Phe	Tyr	Thr	Ala	Ile	Met	Val	Pro	Tyr	Asn	Val	Ser	Phe	Lys	Thr
				230					235					240
Lys	Gln	Asn	Asn	Ile	Ala	Trp	Leu	Val	Leu	Asp	Ser	Val	Val	Asp
				245					250					255
Val	Ile	Phe	Leu	Val	Asp	Ile	Val	Leu	Asn	Phe	His	Thr	Thr	Phe
				260					265					270
Val	Gly	Pro	Gly	Gly	Glu	Val	Ile	Ser	Asp	Pro	Lys	Leu	Ile	Arg
				275					280					285
Met	Asn	Tyr	Leu	Lys	Thr	Trp	Phe	Val	Ile	Asp	Leu	Leu	Ser	Cys
				290					295					300
Leu	Pro	Tyr	Asp	Ile	Ile	Asn	Ala	Phe	Glu	Asn	Val	Asp	Glu	Gly
				305					310					315
Ile	Ser	Ser	Leu	Phe	Ser	Ser	Leu	Lys	Val	Val	Arg	Leu	Leu	Arg
				320					325					330
Leu	Gly	Arg	Val	Ala	Arg	Lys	Leu	Asp	His	Tyr	Leu	Glu	Tyr	Gly
				335					340					345
Ala	Ala	Val	Leu	Val	Leu	Leu	Val	Cys	Val	Phe	Gly	Leu	Val	Ala
				350					355					360
His	Trp	Leu	Ala	Cys	Ile	Trp	Tyr	Ser	Ile	Gly	Asp	Tyr	Glu	Val
				365					370					375
Ile	Asp	Glu	Val	Thr	Asn	Thr	Ile	Gln	Ile	Asp	Ser	Trp	Leu	Tyr
				380					385					390
Gln	Leu	Ala	Leu	Ser	Ile	Gly	Thr	Pro	Tyr	Arg	Tyr	Asn	Thr	Ser
				395					400					405
Ala	Gly	Ile	Trp	Glu	Gly	Gly	Pro	Ser	Lys	Asp	Ser	Leu	Tyr	Val
				410					415					420
Ser	Ser	Leu	Tyr	Phe	Thr	Met	Thr	Ser	Leu	Thr	Thr	Ile	Gly	Phe
				425					430					435
Gly	Asn	Ile	Ala	Pro	Thr	Thr	Asp	Val	Glu	Lys	Met	Phe	Ser	Val
				440					445					450
Ala	Met	Met	Met	Val	Gly	Ala	Leu	Leu	Tyr	Ala	Thr	Ile	Phe	Gly
				455					460					465
Asn	Val	Thr	Thr	Ile	Phe	Gln	Gln	Met	Tyr	Ala	Asn	Thr	Asn	Arg
				470					475					480
Tyr	His	Glu	Met	Leu	Asn	Asn	Val	Arg	Asp	Phe	Leu	Lys	Leu	Tyr
				485					490					495
Gln	Val	Pro	Lys	Gly	Leu	Ser	Glu	Arg	Val	Met	Asp	Tyr	Ile	Val
				500					505					510
Ser	Thr	Trp	Ser	Met	Ser	Lys	Gly	Ile	Asp	Thr	Glu	Lys	Val	Leu
				515					520					525
Ser	Ile	Cys	Pro	Lys	Asp	Met	Arg	Ala	Asp	Ile	Cys	Val	His	Leu
				530					535					540
Asn	Arg	Lys	Val	Phe	Asn	Glu	His	Pro	Ala	Phe	Arg	Leu	Ala	Ser
				545					550					555
Asp	Gly	Cys	Leu	Arg	Ala	Leu	Ala	Val	Glu	Phe	Gln	Thr	Ile	His
				560					565					570
Cys	Ala	Pro	Gly	Asp	Leu	Ile	Tyr	His	Ala	Gly	Glu	Ser	Val	Asp
				575					580					585
Ala	Leu	Cys	Phe	Val	Val	Val	Ser	Gly	Ser	Leu	Glu	Val	Ile	Gln
				590					595					600
Asp	Glu	Val	Val	Ala	Ile	Leu	Gly	Lys	Gly	Asp	Val	Phe	Gly	Asp
				605					610					615
Ile	Phe	Trp	Lys	Glu	Thr	Thr	Leu	Ala	His	Ala	Cys	Ala	Asn	Val

	620		625		630
Arg Ala Leu Thr	Tyr Cys Asp Leu His	Ile Ile Lys Arg Glu	Ala		
635		640		645	
Leu Leu Lys Val	Leu Asp Phe Tyr Thr	Ala Phe Ala Asn Ser	Phe		
650		655		660	
Ser Arg Asn Leu	Thr Leu Thr Cys Asn	Leu Arg Lys Arg Ile	Ile		
665		670		675	
Phe Arg Lys Ile	Ser Asp Val Lys Lys	Glu Glu Glu Arg	Leu		
680		685		690	
Arg Gln Lys Asn	Glu Val Thr Leu Ser	Ile Pro Val Asp His	Pro		
695		700		705	
Val Arg Lys Leu	Phe Gln Lys Phe Lys	Gln Gln Lys Glu Leu	Arg		
710		715		720	
Asn Gln Gly Ser	Thr Gln Gly Asp Pro	Glu Arg Asn Gln	Leu Gln		
725		730		735	
Val Glu Ser Arg	Ser Leu Gln Asn Gly	Ala Ser Ile Thr Gly	Thr		
740		745		750	
Ser Val Val Thr	Val Ser Gln Ile Thr	Pro Ile Gln Thr Ser	Leu		
755		760		765	
Ala Tyr Val Lys	Thr Ser Glu Ser Leu	Lys Gln Asn Asn Arg	Asp		
770		775		780	
Ala Met Glu Leu	Lys Pro Asn Gly Gly	Ala Asp Gln Lys Cys	Leu		
785		790		795	
Lys Val Asn Ser	Pro Ile Arg Met Lys	Asn Gly Asn Gly Lys	Gly		
800		805		810	
Trp Leu Arg Leu	Lys Asn Asn Met Gly	Ala His Glu Glu Lys	Lys		
815		820		825	
Glu Asp Trp Asn	Asn Val Thr Lys Ala	Glu Ser Met Gly Leu	Leu		
830		835		840	
Ser Glu Asp Pro	Lys Ser Ser Asp Ser	Glu Asn Ser Val Thr	Lys		
845		850		855	
Asn Pro Leu Arg	Lys Thr Asp Ser Cys	Asp Ser Gly Ile Thr	Lys		
860		865		870	
Ser Asp Leu Arg	Leu Asp Lys Ala Gly	Glu Ala Arg Ser Pro	Leu		
875		880		885	
Glu His Ser Pro	Ile Gln Ala Asp Ala	Lys His Pro Phe Tyr	Pro		
890		895		900	
Ile Pro Glu Gln	Ala Leu Gln Thr Thr	Leu Gln Glu Val Lys	His		
905		910		915	
Glu Leu Lys Glu	Asp Ile Gln Leu Leu	Ser Cys Arg Met Thr	Ala		
920		925		930	
Leu Glu Lys Gln	Val Ala Glu Ile Leu	Lys Ile Leu Ser Glu	Lys		
935		940		945	
Ser Val Pro Gln	Ala Ser Ser Pro Lys	Ser Gln Met Pro Leu	Gln		
950		955		960	
Val Pro Pro Gln	Ile Pro Cys Gln Asp	Ile Phe Ser Val Ser	Arg		
965		970		975	
Pro Glu Ser Pro	Glu Ser Asp Lys Asp	Glu Ile His Phe			
980		985			

<210> 32

<211> 533

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7477725CD1

<400> 32

Met Ala Phe Glu Glu Leu Leu Ser Gln Val	Gly Gly Leu Gly Arg		
1	5	10	15
Phe Gln Met Leu His	Leu Val Phe Ile Leu	Pro Ser Leu Met Leu	
20	25		30
Leu Ile Pro His Ile	Leu Leu Glu Asn Phe	Ala Ala Ala Ile Pro	
35	40		45
Gly His Arg Cys Trp	Val His Met Leu Asp	Asn Asn Thr Gly Ser	

	50		55		60
Gly Asn Glu Thr	Gly	Ile Leu Ser Glu	Asp Ala Leu Leu Arg	Ile	
	65		70		75
Ser Ile Pro Leu Asp	Ser Asn Leu Arg	Pro Glu Lys Cys Arg	Arg		
	80		85		90
Phe Val His Pro Gln	Trp Gln Leu Leu	His Leu Asn Gly Thr	Ile		
	95		100		105
His Ser Thr Ser Glu	Ala Asp Thr Glu	Pro Cys Val Asp Gly	Trp		
	110		115		120
Val Tyr Asp Gln	Ser Tyr Phe Pro Ser	Thr Ile Val Thr Lys	Trp		
	125		130		135
Asp Leu Val Cys Asp	Tyr Gln Ser Leu	Lys Ser Val Val Gln	Phe		
	140		145		150
Leu Leu Leu Thr Gly	Met Leu Val Gly	Gly Ile Ile Gly Gly	His		
	155		160		165
Val Ser Asp Arg Phe	Gly Arg Arg Phe	Ile Leu Arg Trp Cys	Leu		
	170		175		180
Leu Gln Leu Ala Ile	Thr Asp Thr Cys	Ala Ala Phe Ala Pro	Thr		
	185		190		195
Phe Pro Val Tyr Cys	Val Leu Arg Phe	Leu Ala Gly Phe Ser	Ser		
	200		205		210
Met Ile Ile Ile Ser	Asn Asn Ser Leu	Pro Ile Thr Glu Trp	Ile		
	215		220		225
Arg Pro Asn Ser Lys	Ala Leu Val Val	Ile Leu Ser Ser Gly	Ala		
	230		235		240
Leu Ser Ile Gly Gln	Ile Ile Leu Gly	Gly Leu Ala Tyr Val	Phe		
	245		250		255
Arg Asp Trp Gln Thr	Leu His Val Val	Ala Ser Val Pro Phe	Phe		
	260		265		270
Val Phe Phe Leu Leu	Ser Arg Trp Leu	Val Glu Ser Ala Arg	Trp		
	275		280		285
Leu Ile Ile Thr Asn	Lys Leu Asp Glu	Gly Leu Lys Ala Leu	Arg		
	290		295		300
Lys Val Ala Arg Thr	Asn Gly Ile Lys	Asn Ala Glu Glu Thr	Leu		
	305		310		315
Asn Ile Glu Val Val	Arg Ser Thr Met	Gln Glu Glu Leu Asp	Ala		
	320		325		330
Ala Gln Thr Lys Thr	Thr Val Cys Asp	Leu Phe Arg Asn Pro	Ser		
	335		340		345
Met Arg Lys Arg Ile	Cys Ile Leu Val	Phe Leu Arg Phe Ala	Asn		
	350		355		360
Thr Ile Pro Phe Tyr	Gly Thr Met Val	Asn Leu Gln His Val	Gly		
	365		370		375
Ser Asn Ile Phe Leu	Leu Gln Val Leu	Tyr Gly Ala Val Ala	Leu		
	380		385		390
Ile Val Arg Cys Leu	Ala Leu Leu Thr	Leu Asn His Met Gly	Arg		
	395		400		405
Arg Ile Ser Gln Ile	Leu Phe Met Phe	Leu Val Gly Leu Ser	Ile		
	410		415		420
Leu Ala Asn Thr Phe	Val Pro Lys Glu	Met Gln Thr Leu Arg	Val		
	425		430		435
Ala Leu Ala Cys Leu	Gly Ile Gly Cys	Ser Ala Ala Thr Phe	Ser		
	440		445		450
Ser Val Ala Val His	Phe Ile Glu Leu	Ile Pro Thr Val Leu	Arg		
	455		460		465
Ala Arg Ala Ser Gly	Ile Asp Leu Thr	Ala Ser Arg Ile Gly	Ala		
	470		475		480
Ala Leu Ala Pro Leu	Leu Met Thr Leu	Thr Val Phe Phe Thr	Thr		
	485		490		495
Leu Pro Trp Ile Ile	Tyr Gly Ile Phe	Pro Ile Ile Gly Gly	Leu		
	500		505		510
Ile Val Phe Leu Leu	Pro Glu Thr Lys	Asn Leu Pro Leu Pro	Asp		
	515		520		525
Thr Ile Lys Asp Val	Glu Asn Gln				
	530				

<210> 33

<211> 1775
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3474673CB1

<400> 33

attcaggaa	atgtgagggg	gctctgggcc	cttccctca	gcgcctgcgg	tcaccccagca	60
gcttcctcct	tctccctggc	ctaggcttag	caggtggggca	ccccgcacac	atttgaggcg	120
ggccagatg	cccacagttc	agagccttct	tttgtcccg	ggattggate	ccagggctgg	180
gtggggccag	gctgtccat	tcccaaacac	tcetctccc	cggcggaaacc	gggcaccagc	240
aggcggttgc	gagaggagat	acagagcttga	cgcctggccc	ttccctccca	ccgggtccta	300
gtccaccgct	cccgccgccc	gctcccccgc	tctcccgcta	tgtaccgacc	gcgagcccg	360
gcggctcccg	agggcagggt	ccggggctgc	ggggtgccca	gcaccgtgt	cctgctgtc	420
gcttacactgg	cttaacctggc	gctgggacc	ggcgtgttct	ggacgttga	ggggccgcgc	480
gcccaggact	ccaggccag	cttccagcgc	gacaagtggg	agctgttca	gaacttcacg	540
tgtctggacc	ccccggcgct	ggactcgctg	atccggatg	tcgtccaagc	ataaaaaaac	600
ggagccagcc	tcctcagcaa	caccaccagc	atggggcgct	gggagctcgt	gggctccttc	660
ttctttctg	tgtccaccat	caccaccatt	ggatatggca	acctgagccc	caacacgatg	720
gctgcccgc	tcttcgtcat	cttcttgcc	cttgtgggga	tcccactcaa	cctcgtggtg	780
ctcaaccgac	tggggcatct	catgcagcag	ggagtaaaccc	actggccag	caggctgggg	840
ggcacctggc	aggatcctga	caaggcgcgg	tggctggcgg	gctctggcgc	cctcctctcg	900
ggcctcctgc	tcttcctgct	gctgccaccg	ctgctcttct	cccacatgga	gggctggagc	960
tacacagagg	gctttactt	cgcccttcatc	accctcagca	cggcgtggctt	ccgcgactac	1020
gtgattggaa	tgaacccctc	ccagaggatc	ccatgtgggt	acaagaacat	ggtgcctctg	1080
tgatcctct	ttgggatggc	atggctggcc	ttgatcatca	aactatcct	ctcccagctg	1140
gagacgccag	ggagggtatg	ttcctgctgc	caccacagct	ctaaggaaaga	ttcaagttcc	1200
caaagctgga	gacagggacc	tgaccggag	ccagagtccc	actccccaca	gcaaggatgc	1260
tatccagagg	gaccatggg	aatcatacag	catctggAAC	cttctgtca	cgctgcaggc	1320
tgtggcaagg	acagctagt	atactccatt	cttgggtcg	cgtcctcggt	agcaagacc	1380
ctgattttaa	gcttgcaca	tgtccaccca	aactaaagac	tacattttcc	atccacccta	1440
gaggctgggt	gcagctatat	gattaattct	gccaatagg	gtatacagag	acatgtcctg	1500
ggtgacatgg	gatgtgactt	tcgggtgtcg	gggcagcatg	cccttctccc	ccacttcctt	1560
acttttagccg	gctgcaatgc	cgccgatatg	atggctggga	gctctggcag	ccatacggca	1620
ccatgaagta	gccccatgt	ttgagcggca	caataagata	ggaagagtct	ggatctctga	1680
tgtacacaga	gccatctta	caaacggaaat	atcacccgac	ctcctttatg	tgagagagaa	1740
ataaaacatct	tatgtaaaat	accaaaaaaaaaa	aaaaaa			1775

<210> 34
<211> 1545
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4588877CB1

<400> 34

aatgagggcc	ctgggggttg	ggcccaggag	tggggctgtg	gtggtgagtg	gacagggctg	60
ggctggaaat	gtcccctgag	tgccccctct	cacctcaggc	tatggcaacc	tgagcccaa	120
cacgatggct	ccccgcctct	tctgcatett	ctttgcctt	gtggggatcc	cactcaacct	180
cgtggtgctc	aaccgactgg	ggcatctcat	gcagcaggga	gtaaaccact	gggcccagcag	240
gctggggggc	acctggcagg	tgagggggct	gctggacggg	gtggggatgg	gtcacttcta	300
gaatgagggg	ctgtgggtgg	aattgggggtt	actaatgaca	agagggtggg	gcaagtgtt	360
ctggtaggat	tgtgtggga	ttgggggtca	ctgctcagaa	tagggtcctt	agtaaaaaaag	420
ggcattaaat	gtgggagatgg	gttgggactg	ggcagacagg	aaggacatga	ggcacaggct	480
ccaggcagg	aacctggaga	acacagacca	ggtgaagagc	ccccttctta	ctggggacag	540
ctctggcctg	cctccagctc	cctcggtctc	cacgcatggg	gtgaaggcct	caggaggcct	600
ggggacaata	ttgcacccac	aggatcctga	caaggcgcgg	tggctggcgg	gctctggcgc	660
cctcctctcg	ggcctctgc	tcttcctgtc	gctgccaccg	ctgctttct	cccacatgga	720
gggctggagc	tacacagagg	gcttctactt	cgcccttcata	accctcagca	ccgtgggctt	780
cggcgactac	gtgattggaa	tgaacccttc	ccagaggtac	ccactgtgtt	acaagaacat	840
ggtgtccctg	ttggatcctct	ttgggatggc	atggctggcc	ttgatcatca	aactatcct	900
ctcccagctg	gagacgccag	ggagggtatg	ttcctgctgc	caccacagct	ctaaggaaga	960
cttcaagtcc	caaagctgga	gacagggacc	tgaccggag	ccagagtccc	actccccaca	1020

gcaaggatgc tatccagagg gaccatggg aatcatacag catctggAAC cttctgctca 1080
 cgctgcaggc tgtggcaagg acagcttagt atactccatt ctttggtcg cgtcctcggt 1140
 agcaagaccc ctgatttaa gcttcaca tgcaccca aactaaagac tacattttcc 1200
 atccacccta gaggctgggt geagctatat gattaattct gcccaatagg gtatacagag 1260
 acatgtcctg ggtgacatgg gatgtgactt tcgggtgtcg gggcagoatg cccttctccc 1320
 ccacttcctt actttacggg gtcgaatgc cgccgatatg atggctggga gctctggcag 1380
 ccatacggca ccatgaaga gccgcaatgt ttgagcggca caataagata ggaagagtct 1440
 ggatctctga tgatcacaga gccatcctaa caaacggaat atcaccggac ctcccttatg 1500
 tgagagagaa ataaacatct tatgtaaaat accaaaaaaaaaaaaa 1545

<210> 35
 <211> 1941
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472214CB1

<400> 35
 atggcggaga aggcgctgga ggccgtggc tgtggactag ggccgggggc tggggccatg 60
 gccgtacgc tggaggacgg ggccggaccc cctgtgctga ccacgcacct gaagaagggt 120
 gagaaccaca tcactgaagc ccagcgcttc tcccacctac ccaagcgctc agccgtggac 180
 atcgagttcg tggagctgtc ctattccgtg cgggaggggc cctgctggcg caaaagggggt 240
 tataagaccc ttctcaagtg cctctcaggta aaattctgcc gccgggagct gattggcatc 300
 atggggccct cagggctgg caagtctaca ttcatgaaca tcttggcagg atacaggga 360
 tcttggatga agggggcagat cctggtaat ggaaggccac gggagcttag gaccccccgc 420
 aagatgtctt gctacatcat gcaagatgac atgctgtgc cgcacccatc ggtgttgaa 480
 gccatgtgg tggctgtcaa cctgaatctt actgagaatc ccatgtgaa aaacgatctc 540
 gtgacagaga tccgtacggc actgggcctg atgctgtct cccacacgag gacagccctg 600
 ctctctggcg ggcagaggaa gcgtctggcc atcggccctgg agctggtaa caaccgcct 660
 gtcatgttct ttgtatgagcc caccagtggg ctggatagcg cctcttggg ccaagtgggt 720
 tccctcatga agtccctggc acaggggggc cgtaccatca tctgcaccat ccaccagccc 780
 agtgc当地 gctttgagat gtttgcataag ctctacatcc tgagccaggg tcagtgcac 840
 ttcaaaggcg tggtcaccaa cctgtatcccc tatctaaagg gactcggtt gcattgcccc 900
 acctaccaca acccggtcga cttcgtcatc gagggtggct ctggcgagta tggagacctg 960
 aacccatgt tggtcaggc tggcagaat gggctgtgcg ctagggctga gaagaagagc 1020
 agccctgaga agaacgggt ccctgccccca tggccctcctt gtcctccggg agtggatccc 1080
 attgaaaggcc acacccatgc caccaggcacc ctcacacagt tctgcattt cttcaagagg 1140
 accttcgtgt ccatccatcg ggacacgggt ctgacccacc tacggttcat gtccacgtg 1200
 gttattggcg tgcgtatcg cctccatctac ctgcataattg gcgacgatgc cagcaagggtc 1260
 ttcaacaaca ccggctgcct cttttctcc atgctgttcc tcatgttgc cggccctcatg 1320
 ccaactgtgc tcaccgtccc cttagagatg gcggttca tgagggagca cctcaactac 1380
 tggtacagcc tcaaagcgta ttacctggcc aagaccatgg ctgacgtgcc ctttcagggt 1440
 gtgtgtccgg tggtctactg cagcattgtg tactggatga cggggccagcc cgctgagacc 1500
 agccgcttcc tgcctcttc agccctggcc accggccaccg ctttggggc ccaatctttg 1560
 gggctgtga tcggagctgc ttccaaactcc ctacagggtgg ccacttttgtt gggcccgatg 1620
 acggccatcc ctgtatccctt gtttccggc ttcttgcata gttcaagac catccccact 1680
 tacatgtcaat ggagctcta tcttcctat gtcaggtatg gctttgaggg tttgtatccctg 1740
 acgatctatg gcatggagcg aggagacctg acatgttttag aggaacgctg cccgttccgg 1800
 gagccacaga gcatccctcg agcgctggat gtggaggatg ccaagctta catggacttc 1860
 ctggcttctt gcatcttctt cctagccctg cggctgctgg cttaccttgt gtcgttac 1920
 cgggtcaagt cagagagata g 1941

<210> 36
 <211> 4971
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7473053CB1

<400> 36
 caaagttagcg ggccgaggcc cgggggagcg gggccgcagc tggggggggcg ggagcccggt 60
 gggagccgag ccgagccccc cccgccccag ccccccggcat gggcagtagc gggccgcccgg 120
 ggccggccgccc gaggcgctgag cgctgagggt ctcccatggg attgctggga tcttgcgtgg 180

tgagatggca gtgtgtgaa aaaagcgccc cccagaagaa gaaaggaggc cgccccctaa 240
 tgaccgagaa tacaatgaga aattccagta tgcgagtaac tgcataaga cctccaagta 300
 caaatattctc accttccctgc ctgtcaacct ctttgagcag ttccaggaag ttgccaacac 360
 ttacttcctg ttccctccta ttctgcagtt gatccccag atctttccc tgcctcggtt 420
 caccaccatt gtgcctttgg ttctgtctt caccatcaca gctgttaaag atgccactga 480
 tgacttattc cgccacaaga gcgataacca ggtgaataac cgccagtctc aggtgtcgat 540
 caacggaaat cttccagcagg agcagtggat gaatgtctgt ttgggtgata ttatcaagct 600
 agaaaaataac cagtttgtgg cggcgatct cctcccttcc tecagcgtg agccccatgg 660
 gctgtttac atagagacag gattccagtc acctcagaat tggagacat cagtaagctt gccaagttt acggtaagt 780
 gatctgtgaa cctcccaaca acaaactgga caaaattcagc ggaaccctct actggaaagga 840
 aaataagttc cctctgagca accagaacat gctgctgccc ggctgtgtgc tgcgaaacac 900
 cgagtgggtgc ttccggctgg tcatacttgc aggtcccgac actaagctga tgcaaaacag 960
 cgccagaaca aagttcaaaa gaacgagat cgatcgctta atgaataccc tggtgctctg 1020
 gatffffgaa ttccctgggtt gcatgggggt gatcctggcc attggcaatg ccatctggga 1080
 gcacgagggt gggatgcgtt tccaggctctt cctgcccgtt gatgaggcag tggacagtgc 1140
 ctcttcctct ggcttcctt cttctgttc ctacatcata atcctcaaca ccgttgc 1200
 catttcactc tatgtcagt gggaggtcat ccgtctgggc cacagctact tcatcaactg 1260
 ggataaagaag atgttgcga aacacgaggag ctgggtacat ctctccgac aagacggca ccctcaccca 1380
 aacacgaggag ctggggccagg gAACATCATG gtttcaaca agtgctccat caatggccac agctatggt atgtgttga 1440
 cgtcctggga cacaagctg aattgggaga gaggcctgaa cctgttact ttccttcaa 1500
 tcctctggct gacaagaat tcttattttg ggaccccgac ctgctggagg ctgtcaagat 1560
 cggggacccc cacacgcatg agttctccg ctcctttcc ctgtgtcata ctgtcatgtc 1620
 agaagaaaag aacgaaggag agctgtacta caaagctca gccccagatg agggggccct 1680
 ggtcaccgca gccaggaact ttggtttgt ttcccgctct ccaccccca aaacaatcac 1740
 ctccatcgag atggcacag catccgcaag cggatgtcg gatacttgcg gaatccagag 1800
 caaaggggct gacactatcc caccaccatg gaccaccta ctacatcgatcc ccaccccca 1860
 ctacaaggat ctggatgaag cctggcccgag gacagccggg catgatgtcg ctgggtgaa ctccttcc 1920
 cattgcctc ctgacactgg gacggctgtg aacatcgct catggatcgcc agggaaagg 1980
 catagtcact ggcatactg gatgtggac tcataccgtt ttcccaagctt acttctgtcc 2040
 tcaacatcaa gatttgggtt gtaacatcgatcc ccaccccca 2100
 gggccattga ggacaaactt tggggccgt tggggccgtt gatcctgttcc tccactcaag 2160
 ccaacatcaa gatttgggtt gtaacatcgatcc ccaccccca 2220
 attcctgca gatgtcgac gatgacatga ctgagggttt 2280
 tcctggaggt gccggaggag ctcaaggaaag cccggagaa 2340
 ctgttaggcaa cggcttcacc tatcaggaca agctttttc 2400
 tggggccgt tggggccgtt tacggccctt tcataaatgg 2460
 tggggccgtt gatggacgtt gatgggtttcc tccatcgatcc 2520
 gctgcccgggt gaccccttg gacggccac aggtggtaga 2580
 actggtaaag aagtacaaga aggctgtgac gtttgcattt ggagacggag ccaatgtatgt 2640
 cagcatgatc aaaacggctc acattgggtt gggatcagt gggcaggaag ggatccaggc 2700
 tgtcttggcc tccgattact ctttctccca gttcaagttc ctgcacgc 2760
 gcatgggcgc ttgtcctacc tgcaatgtg caagtttctt tgcttatttct tctacaaaaa 2820
 ctttgccttc accatggtcc acttctggtt tgcttcttc tgcgttctt cagccagac 2880
 cgtctatgac cagtatttca tcaccctgtt taacatcgatcc tgcgttcttcc 2940
 ggctatgggg gtcttgcgtt aggtgtccc cggcgtcgcc agcatggagt accctaagct 3000
 gtatgagccg ggcacagctg ccagggcattt tacacccccc tgcgttcttcc 3060
 ccagggcattt tacacccccc agctggctga ctaccagtcc tttgcgttca ctgtggccac 3120
 caccgggat gatggcactt attgggttta caaccacttc ttcatctggg gatgttccca 3180
 atccttggtc attgggttta caaccacttc ttcatctggg gatgttccca 3240
 cagcaatggg ctcttcgaca ttttgcgttca gatgttccca 3300
 caccttggcc cagcccacgg gatgttccca 3360
 gcccgtgggt gccttcggat ttcatctggg gatgttccca 3420
 ccgctacaca cagctcgat gatgttccca 3480
 tggccgtatc ggcctccggc gatgttccca 3540
 gtcctatcatg ttcggcaaga acatcggtt gatgttccca 3600
 ccgctccaggc tccagctgg ttttgcgttca gatgttccca 3660
 ccccagtggc ggtggccaca agccctcaa gatgttccca 3720
 ccagtgacca gagcaccaccc gatgttccca 3780
 ggtcctcatt ctttgcgttcc gatgttccca 3840
 atggctggga catctgttcc cagctgttagg gatgttccca 3900
 caggcccaag ggcagagcag aggctggaggc acggggagcc 3960
 atggaaacca aaaacaagaa aaaactgtga gagattgtgtt gatgttccca 4020
 acccacaggg agactataat ctccttattt ttttgcgttca gatgttccca 4080
 tgcctctgtt cctgaattac ataagaatgt accatggccgg gatgttccca 4140
 accatggccgg gatgttccca 4200

gcctcgcccc ctcacatcgt gtatgtctc ctttgattt tgggtgtcc agtttggttt 4260
 tgtctttttt tatttgc当地 gtggaggagg cttttatgtg acttttatgt tgggtgtgg 4320
 gtcttaactc tcctggaaa aggaggctgg cacacactgg gatgcccgag cctggccggc 4380
 tgtgggtgg ttgggagga tecatgtcgg ctctgcctgc agtaccagt gctctgtggg 4440
 gcagaggagc tgaccaggga gggaggtacc catgagcaga gggtagtggg agagtgtaaa 4500
 ggagggtttg gtcctgtctg ctccctcacc ttgagagtaa agtgcgtccc tctgccccca 4560
 acacacac atatcaattc ctggattct tagtccctgtc ggccttgggc tggagccta 4620
 gaaagtggcc cccaaatcct tagtggatca aagctggtc tgaaatttgg tcagtgggg 4680
 gggtagttt tctttttttt tttttttt tttttttt agatggagtc 4740
 tcactctgt cacctaggca agagtgcata ggcacaatct cagctcaactg caacctccac 4800
 ctctgggtt caagcgattc tcctgcctcc ccggacccaa ccactggact taatctca 4860
 ttcttaattt ctcttattct cagacacggg tctagtacca ttcccttcctc tttagccccag 4920
 ggagcaaattt aaagagggtt cgagttaaaaa ttctaaaaaaa aaaaaaaaaa a 4971

<210> 37
 <211> 1404
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7473347CB1

<400> 37
 atggcctgg cttccagtt agtctccttc acctacatct ggatcatatt gaaaccaa 60
 gtttgtctg cttctaacat caagatgaca caccagcggt gtcctcttc aatgaaacaa 120
 acctgcaac aagaaactag aatgaagaaa gatgacagta ccaaagcgcg gcctcagaaa 180
 tatgagcaac ttctccatag agaggacaat gattcgaa tgagacctgg atttggagg 240
 tctccagtc cagtagtat agatgtccat gttggaaagca ttgacagcat ttcagagact 300
 aacatggact ttacaatgac ttttatctc aggattact gggaaagacga gaggctctc 360
 tttcttagca cagcaaacaa aagcatgaca tttgatcata gattgaccag aaagatctgg 420
 gtgcctgata tctttttgt ccactctaaa agatcttca tccatgatac aactatggag 480
 aatatcatgc tgcgcgtaca ccctgatgga aacgtctcc taagtctcag gataacgggt 540
 tcggccatgt gctttatgga tttcagcagg tttcccttgg acactaaaaa ttgttctctt 600
 gaactggaaa gctatgccta caatgaggat gacctaattgc tatactggaa acacggaa 660
 aagtccctaa atactgaaga acatatgtcc ttttctcagt tcttcattga agacttcagt 720
 gcatctagt gattagctt ctatgcgc acaggtggg acaataggct tttcatcatc 780
 tctgtctaa ggaggcatgt tttcttctt gtgcgtccaa ctttacc accatattt 840
 atggatgtc tttcatgggt tttattttgg attgaccgaa gagctgtcc tgcaagagtt 900
 tccctggaa tcaccacagt gtcgaccatg tccacaatca tcaactgtgt gagcgcctc 960
 atgcccagg tgcctcacct caaggctgt gatgttacc tggggtcag ctccctctt 1020
 gtgtcctgt cagtcattga gtatgcagct gtgaactacc tcaccacagt ggaagagcgg 1080
 aaacaattca agaagacagg aaagatttct aggatgtaca atattgtgc agttcaagct 1140
 atggccttg atggttgtta ccatgacagc gagattgaca tggaccagac ttccctctc 1200
 ctaaacttag aagacttcat gagaagaaaa tcgatatgca gcccacac cgattcatct 1260
 cggataaaga gaagaaaatc cctaggagga catgttggta gaatcattct gaaaacaac 1320
 catgtcattt acaccttattc taggatttt ttcccttgg tttatattt attaatttt 1380
 ttttactggg gtgtatgtt atga 1404

<210> 38
 <211> 4048
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7474240CB1

<400> 38
 ctccatccc ccctcagcca ttccctactg ctctggca cccgcagggtt aagcccattt 60
 gcactggaa attggcgctg ttgggagaa gagaaacaga tcgattgccc ttgtgactcc 120
 ccgcacctt cccatcccc ccccccacgc tctcccttc ttccctccc ccgcaccc 180
 ccctcaccctt ccctccctcc cgttccccac ccccaaaaccc tctcaccgc ggcagtcgg 240
 tgcgaggccc cctccgaaag gtgagggaa tggattggac tccgggtggag aaagcgggt 300
 tctagaagtgt gtcataatgg gaagagaatt ctggttcaa aagaggatgc tctgccacaa 360
 agagcggctc ggcgcgtggc ctgggctcta gccgaggaga gatccggga ggactccaga 420
 gctccggggg agcgtcctc ggaagaccgg gccaacatg cctgtgcgc gggggcatgt 480

ggcaccacaa aatacatttc tggggaccat cattcgaaaa tttaagggc aaaataaaaa 540
atttatcatt gcaa atgcca gagtgcagaa ctgtgcacat atttatttgc acgtgggtt 600
ctgtgagatg actggttct ccaggccaga tgcatacgaa aagccatgca cctgcgactt 660
tctccatgga cccgagacca agaggcatga tattgccccaa attgcccagg cattgctggg 720
gtcagaagag aggaaagtgg aggtcaccta tgcatacaca aatgggtca ctttatttg 780
taacactcac ataattccag tgaaaaacca agagggcgta gctatgatgt tcattcattaa 840
ttttgaatat gtgacggata atgaaaacgc tggccacccca gagagggtaa acccaatatt 900
accaatcaaactgtaaacc ggaaatttt tgggttcaaa ttccctggtc tgagagttct 960
cacttacaga aagcagtct taccacaaga agaccccgat gtgggtgtca tcgattcattc 1020
taaacacagt gatgattcag tagccatgaa gcattttaag ttcctacaa aagaaagctg 1080
cagccctct gaagcagatg acacaaaagc tttgatcag cccagcaaat gttccctt 1140
ggtgaatata tccggacctc ttgaccattc ctctcccaaa aggcaatggg accgactcta 1200
ccctgacatg ctgcagtcaa gttcccagct gtcattcc agatcaaggg aaagctttag 1260
tagtatacgg agagcatctt cggtccatgaa tatagaagga ttccgggtcc accccaagaa 1320
catattttaga gaccgacatg ccagcgaaga caatggtcg aatgtcaaaag ggcctttaa 1380
tcatatcaag tcaaggctcc tggatccac atcagattca aacctaaca aatacagcac 1440
cattaacaag attccacagc tcactctgaa tttttagag gtcaaaactg agaaaaagaa 1500
ttcatcacct ccttcttcag ataaaaaccat tattgcaccc aagggttaaag atcgaacaca 1560
caatgtgact gagaaagtga cccaggttct ctctttagga gcagatgtcc tacctgaata 1620
caaactgcag acaccacgc tcaacaagtt tacgatattg cactacagcc ctcccaaggc 1680
agtctgggac tggcttatcc tgctgttgg catataact gctatattt ctccctact 1740
tgcagcctc ctccctacatg acagagaaga acagaaaaga cgagaatgtg gctattctg 1800
tagcccttg aatgtggtag acttgattgt ggtattatg tttatcatag atattttat 1860
aaacttcaga acaacatatg taaatcagaa tgaagaagtg gtaagtgtc ccgc当地 1920
agcaatacac tacttcaaa gctggttct gattgacatg gttcagcaa ttccctttga 1980
cttgctgatt ttggatcag gttctgtatg gacaacaaca ttaattggc tttgaagac 2040
tgcccactc ctccgtctg tgcgcgtggc cagggaaactg gatcgatatt cagaatatgg 2100
cgctgctgtt ctaatgctt taatgtgcattt ctttgcctg attgctcaact ggctggctt 2160
catttggat gcgattggg atgtagaaag gccttacctg actgacaatgg tcggatgggtt 2220
ggattccta ggacagcaaa ttgggaaacg ttacaatgac agtgcactcaa gttctggacc 2280
atccataaa gacaatatacg tcacagcact ttattttacc ttcagcagtt taaccatgt 2340
aggattcggg aatgtgtctt ctaacacgaa ttccggagaaa atttttcaat tttgtgtcat 2400
gttatttgc tcaactatgt atgcaagcat ttttggaaat gtatctgcattt ttatccaaag 2460
actataactcg ggaactgcac ggtaccatc gcagatgtc cgagtaaaag agttcattcg 2520
ctttcacccaa atccccaaacc ctctgaggca acgtctgaa gaatattttc agcacgcattg 2580
gacttacacc aatggcatgg acatgaacat ggtcctaaag ggtttcccaag aatgtttaca 2640
agcagacatt tgcattacatc tcaaccagac attgctgcaaa aactgcaaaag ctttcgggg 2700
ggcaagtaaa ggttgcctt gagctttggc aatgaagttc aaaaccaccc atgcaccc 2760
aggagacacc ctgcgttcaat gtggggatgt cctcactgca ctttattttt tatccagagg 2820
ctccattgaa attctcaaaatg atgacattgt ggtggctatt ctggaaaaaa atgatataatt 2880
tggagaaatg gttcatctt atgccaacc tggaaagtct aatgcagatg taagagccct 2940
cacatactgt gacttgcata agattcagcg agaagacttg tttagggtt tggatatgt 3000
tcttgatgtt tctgtatcact ttcttacaaa ccttagatgtt actttcaacc taaggcatga 3060
gagcgc当地 gctgtatccc tacgatcttccatc atccatgaat gttcagaaag gagacaactg 3120
taaactaaga agaaggaaat tgcatttgc aagtgaagga gagaagaaaa acagataaaa 3180
tgatctgaa gactctgcag ataccataag acattatcag agtccaaga gacactttga 3240
agagaaaaaaa agcagatctt catcttcat ctcctccatt gatgtgaac aaaaggccgt 3300
cttctcagga atagtagact ttctccagg aatagggaaa gcatctggc tcgattttga 3360
agaaaacagtg cccacctcaatg gaagaatgca catagataaa agaagtcaat cttgc当地 3420
tacactgac atgcgaagct gggaaacgaga aaatgcacat ccccagcctg aagactccag 3480
tccatctgca cttcagcggag ctgcctgggg tatctctgaa accgaaagcg acctcaccta 3540
cggggaaatgtt gAACAAAGAT tagatctgtt ccaggagcaat cttacacaggc ttgaatccc 3600
aatgaccact gacatccaga ccatttaca gttgctgcag aaacaaacca ctgtggtccc 3660
cccagcctac agtatggtaa cagcaggatc agaataatcag agacccatca tccagctgt 3720
gagaaccagt caaccggaaat catccatcaa aactgacca agtccatggc ttctctcaca 3780
atgtctgaa tttcttagacc ttggaaaatca taaacttaaa tccaaagaat cccttcaag 3840
tggggtgcat ctgaacacag cttcagaaga caacttgact tcacttttaa aacaagacag 3900
tgcattctcttgc ttagagcttc acctgcggca aagaaaaact tacgttcatc caattaggca 3960
tccatttttgc cagattcat ccctaaggcac tgcatttttttgc tgcatttttttgc ataggcatgt 4020
ttctgtatcctt ggttccatggaaataa tgcatttttttgc tgcatttttttgc 4048

<210> 39
<211> 1539
<212> DNA
<213> *Homo sapiens*

<220>

<221> misc_feature
 <223> Incyte ID No: 7475338CB1

<400> 39

atggagaaca	aagaggcggg	aacccttcca	ccattccat	ccagggaggg	gcggctccag	60
ccgaacgtgt	tgctggcgac	actgagcgcg	gccttggct	cagccttcca	gtacggctac	120
aacctctgt	tggtaaacac	gccgcacaag	gtgtcaagt	cattttacaa	cgaaacatctac	180
tttagcgcac	acgcaacatt	catggacggg	aagctcatgc	tgcttctatg	gtcttgcacc	240
gtctccatgt	ttcctctggg	cggctgttg	gggtcattgc	tcgtgggct	gctgggtgat	300
agctcgccga	ggaaggggac	cctgctgatc	aacaacatct	ttgcccattat	cccccccatc	360
ctgatggag	tcagcaaagt	ggccaaaggct	ttttagctga	tcgtctttc	ccgagttgggt	420
ctgggagtct	gtgcaggat	ctcttacagc	gcccttccca	tgtacctggg	agaactggcc	480
cccaagaacc	tgagaggcat	ggtgggaaca	atgaccgagg	tttctgtcat	cggtggagtc	540
ttccttagcac	agatcttcag	cctccaggcc	atcttggca	accggcagg	ttggccgggt	600
cttctggcgc	tcacaggggt	gccgcctctg	ctgcagctgc	tgaccctgtcc	cttcttcccc	660
gaaagcccc	gctactccct	gattcagaaa	ggagatgaag	ccacagcgcg	acaagctctg	720
aggaggctga	gaggccacac	ggacatggag	gccgagctgg	aggacatgcg	tgccggaggcc	780
cggccgagc	gcccggagg	ccacctgtct	gtgcgtcc	tctgtgcct	cggtccctg	840
cgctggcgc	tcctctccat	catctgtctc	atggccggcc	agcagctgtc	gggcatcaat	900
gcatcaact	actatgcga	caccatctac	acatctgcgg	gcgtggaggg	cgctcactcc	960
caatatgtaa	cggtgggtc	tgcgctcg	aacatagtga	tgaccatcac	ctcggtgtc	1020
cttgtggagc	ggctgggacg	gcccccaccc	ctgctggccg	gctacggcat	ctgcggctct	1080
gcctgcctgg	tgctgacgg	gggtgtccct	ttccagaaca	gggtccccga	gctgtcctac	1140
ctcggcatca	tctgtgtctt	tgcttacatc	gcgggacatt	ccattgggccc	cagtctgtc	1200
ccctcggtgg	tgaggaccga	gatcttcctg	cagttctccc	ggcgggcagc	tttcatgggt	1260
gacggggcag	tgcactggct	caccaacttc	atcataggtct	tcctgttccc	atccatccag	1320
gaggccatcg	tgccctacag	tttcatcatc	tttggccggaa	tctgcctct	cactgcgatt	1380
tatcatctacg	tggttatcc	ggagaccaag	ggcaaaacat	ttgtggagat	aaaccgcatt	1440
tttgc当地	gaaacagggt	gaagcttcca	gaggagaaag	aagaaaccat	tgatgttggg	1500
cctccacag	cctctctgc	caaggaaact	tccttttag			1539

<210> 40
 <211> 3114
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7476747CB1

<400> 40

ccaaacgtg	cctcacttct	gccttgcata	gctgtactct	ggaaaattaa	gaaatttatg	60
agtgtacac	caagtatacc	aatgggaagg	atgggagtca	gaagtcaagt	gaactcagcc	120
cgcctctgt	tactttgcac	tttccattt	cccttggta	caggcactt	catacttaat	180
ccatagtgg	gctgtcacag	tgagcaactc	tgacaatgac	agtttctacc	ccagaggcga	240
ccccaaacat	ggagctaaag	gtcccgatgt	caggaggct	taatgttgc	cctgtcccc	300
cagtcgcac	gtccacgcag	agacttcgg	atgaagacta	ccacgactac	agtcacacgg	360
acgtgagccc	tgaggagagc	ccgtcgaaag	gccttacaaa	cctctccccc	ccgggctcc	420
accacgcctt	tggtcaaaagc	aatagcacaa	catgttcca	gacctgtatc	cacctgttaa	480
aaggcaacat	tggcacagga	ctcctgggac	tccctctggc	ggtaaaaat	gcaggcatcg	540
tgatgggtcc	catcagctg	ctgatcatag	gcatctgtgc	cgtgcactgc	atgggtatcc	600
tggtaaaatg	tgctcaccac	ttctgcgc	ggcttataa	atccttgc	gattatgggt	660
atactgtat	gtatggacta	aatccagcc	cctgttctg	gtccggaaac	cacgcacact	720
ggggaaagacg	tgttgtggac	tttttctctg	ttgttccat	gtctggattc	tgctgtgtct	780
attttgtt	tctggctgac	aactttaaac	aggtgataga	agcggccaaat	gggaccacca	840
ataactgcac	caacaatgt	acgggtattc	tgacgcctac	catggactcg	cgactctaca	900
tgctctcc	cctgccttc	ctgggtctgc	tggtttcat	caggaacactc	cgagccctgt	960
ccatctctc	cctgttggcc	aacatcacca	tgctgttgc	cttggatcat	atctaccat	1020
tcattgttca	gaggatccca	gaccccgac	accttccctt	gttggccctt	tggaaagacct	1080
accctcttct	cttggcaca	gcatgttttt	catttgaagg	catttgcata	gttctgcccc	1140
tggaaaacaa	aatgaaggat	cctcggaaat	tccactcat	cctgttgc	ggcatggta	1200
tcgtcaccat	cctctacatc	agcctgggt	gtctgggtt	cctgcaattt	ggagctaata	1260
tccaaaggcag	cataaccctc	aacctgccc	actgttgc	gtaccagtca	gttaagctgc	1320
tgtactccat	cgggatctt	ttcacatc	cactccagtt	ctacgtcccg	gctgagatca	1380
tcatcccctt	cttgggttcc	cgagcgcccc	agccctgtga	gttagtgg	gacctgttt	1440
tgcgcccagt	gctgggtctgc	ctgacatcac	tgtctggcag	tgttgacaat	ggctggat	1500
gcacggaaac	cgatggcacc	tcctgcggca	gtgcaccatt	gttgc	atgttccct	1560

tcctggctca cccgtggctg agtttcagat gtgagagcca gtgggtgtcc tgcacagag 1620
 atacggcgt cggtggggc ttgcggagg gcatcttggc catccatc cccgcctgg 1680
 acctggcat ctcccgttg ggctccgtga gcagcagcgc cctggccctc atcatccac 1740
 cgctcctgga ggtcaccacc ttctactcgag agggcatgag cccctcacc atcttaagg 1800
 acgcctgat cagcatctg ggcttcgtgg gcttgggtt gggacctat gaggctct 1860
 attagctgat ccagccaagc aatgtccca tcttcataaa ttccacctgt gccttcata 1920
 agggatctgg gttcgtctc gcagctgc acccctgcc catgtgtccc cggtaactg 1980
 tcctcagagc ctcaggtat gtcagggtc tgaggaaagt cagggttgcgt gtgtggaaac 2040
 ccctctgcct ggacactggc taccctggc caggtaacct gagggcagtg gagaggtgg 2100
 gtggcagaca cgcagaagtg ctactgtga cagggctgcc atcgctcacc tgcatactt 2160
 tacacccaga actttccagc tccccctcat catgcctccct ccttcatacc tgcctccct 2220
 ctgctgggtc acctcgccca actcattttt actgcacagt tcacttttta taacaattt 2280
 catgtcccccc acctcatgtt ttcacctttt ctggggcagg catagattaa gtaactggg 2340
 acgccccctc ttataaaagc tgggcttctt ttcatactctt ctcccaaatg ttgtatctca 2400
 gtattcttcc tattcgagtc tccagggggt ggctggacct acctgtcat ttgaaacagg 2460
 ccccccaagct ggagttttt atctggactc tctggcttgc tgcacccct aaggcaatgc 2520
 ttcttcccccc tggatccctt agtgtgggtc acactgtgtt gttcttagt gctttagtgc 2580
 taaaacata cgaagtgttgc cctaaactga aaatattttt cttttattta aaatcagatt 2640
 ttgtttttt gactgtcttca gatctggggc tattacgaat cacttcttct tcagtaact 2700
 ttgactcaac ttctcctgtt gaaaagaagc tcgctccaga tgcctgcattt ggtcctcgcc 2760
 actcttggct gaggactcaa aggtttaat caggatgtc taaaatgtt cctcggtgag 2820
 gaggcacaga ttttgcctcc tggatccag cctgggttca taccggaaag acattgaagg 2880
 actgcagaaa tggatgggttgc caccggggcgg aggaaagggt ggctgagtga gaggcgtata 2940
 aaatggggct gtgtcatgc aggccatgt ttccatgtca gcccacgcca ggtgaaagga 3000
 tcagcaatgc tctgttgcca tcgtgttgc acgacaccag ctctattgtcc accgatgagt 3060
 agctgagggtc agtgtgcaca gagtttggaaa ttaagttaat agactttaca gcag 3114

<210> 41
 <211> 2877
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7477898CB1

<400> 41
 atgcgggtcc gcaggggcca cgtcgctccc caaaacactt acctggacac catcatccgc 60
 aagttcgagg gccaaagtgc gaagttcctg attgccaatg ctcatgttgc gaaactgcgc 120
 atcattttact gcaacgacgg ctctcgaaaa ctcttcggct actcccgagt ggaggtgtatg 180
 cagcaaccct gcacctgcga cttcctcaaa ggccccaaaca caccaaggcag cgccgtgtcc 240
 cgcttagcgc aggcctgtt gggggcttagt gaggtaagg tggacatccctt ctactaccgc 300
 aaggatgcctt ccagcttccg ctgcctggta gatgtgggtc ccgtgaagaa cgaggacggg 360
 gctgtcatca tggatccattt ctgcgttgcag gacctggccc agctcttgcg caagtgcgc 420
 agccgcagct tggcccttgcg ggcaggccag gccaggcaca ggcaggggcga agtacaggac catcaggccag 480
 atccccacatg tcaacgttca cttcggttgc ttcaacttgg agaaggacccg ctccagctcc 540
 accacggaga ttgagatcat ggcggcccat aagggtgggttgc agcggacaca gaacgttact 600
 gagaaggtca cccaggttctt gtcggatgtgc tgccggagta caagctgcag 660
 ggcggccgcga tccacccgtt gaccatcttgc cactacagcc ctttcaaggc cgtgtggac 720
 tggctcatcc tggatgggttgc catctacacg gctgttctca cgcctacttcc agccgccttc 780
 ctgctcagcg atcaggacga atcacggcgtt gggggcttgc gctataacctt cagtccttc 840
 actgtgggttgc atcttcatgtt ggcacatcatg ttctgttgc acatgtcat caacttcgc 900
 accacccatgt tcaacaccaa tggatgggttgc gtcaggccacc cccggccgcattt cgcgttccac 960
 tacttcaagg gctgggttctt ctttccatgtt gtcggccgcata ccccttgcgatc cctcctgtatc 1020
 ttccgcactt gtcctcgatga gaccacaaacc ctgttggggc tattaaagac agcggggctg 1080
 ctggggctgg tggcggttgc acggaaatgtt gaccgttactt ctgttatgg ggcggctgtt 1140
 ctcttcttgc tcatgttgcac ctttccgttgc atagcgactt ggcggcttgc catctgttac 1200
 gccatcgccat atgtggagcg gcccataactt gaaacacaaga tcggctgggtt ggacagctg 1260
 ggtgtgcagc ttggcaagcg ctacaacggc agcgacccag cttcggttgc ctcgggtcag 1320
 gacaagttatg tcacacccctt ctacttcaacc ttccatgttgc tcaccacgtt ggggttccgc 1380
 aatgtctcgcc caaacaccaa ctccggaaat gtcggatgttca ttcgttgc acatgtcat cgcgttccgc 1440
 tccctgtatgtt acgcccggat cttccggaaat gtcggatgttgc tcatccatgtt cctgtactcg 1500
 ggcacccgcgc gctaccacac gcaatgttgc gtcgttgcagg agtccatccg cttccaccatg 1560
 atcccccaacc cacttgcgcctt gcccttggat gaggatatttcc acgacccatgt gtccttacacc 1620
 aatggcatttgc acatgttgcgc ggtgttgcagg ggcttccccc agtgccttgc ggcgttgcac 1680
 tgccttgcacc tgcacccgcgc actgttgcac gacttgcggc ctttccatgttgc cgcggcaag 1740
 1800

ggctgcctgc	gchgctagc	cgtcaagttc	aagaccaccc	acgcggccgc	tggggacacg	1860
ctggtgacc	tccggcgtcg	gtctccacc	ctctacttca	tctcccgggg	ctccatcgag	1920
atccctgcgc	acgacgtgg	cgtggccatc	ctaggaaga	atgacatctt	tggggaaaccc	1980
gtcagcctcc	atgccccagcc	aggcaagtcc	agtgcagacg	tgcgggctct	gacctactgc	2040
gacctgcaca	agatcccgcg	ggcagatctg	ctggagggtc	tggacatgtt	cccgccctt	2100
gcggagagct	tctggagtaa	gctggagggt	accttcaacc	tgcgggacgt	aaccgggggt	2160
ctccactcat	ccccccgaca	ggctcttggc	agccaagacc	accaagggtt	cttctcagt	2220
gacaaccagt	cagatgcgc	ccctccccctg	agcatctcag	atgcattctg	gctctggct	2280
gagctactgc	aggaaaatgcc	cccaaagcac	agccccccaa	gcctctagga	agaccaggat	2340
tgctggctc	tgaagctgg	ctccaggcta	gagcagctcc	aggcccagat	gaacaggctg	2400
gagtcccgcg	tgtcctcaga	cctcagccgc	atcttgcagc	tcctccagaa	gccccatgccc	2460
cagggccacg	ccagctacat	tctggaaagcc	cctgccttca	atgacactggc	cttgggttct	2520
atagectcgg	agacgcacgag	tccagggccc	aggctgcccc	agggtttct	gcctctgcga	2580
cagaccggaa	gttatggaga	cttggatgac	tgttagtccaa	agcacaggaa	ctcctcccc	2640
aggatgcctc	acctgggtgt	ggcaatggac	aaaaactctgg	caccatcctc	agaacaggaa	2700
cagcctgagg	ggctctggcc	accccttagcc	tcacctctac	atcccctggaa	agtacaaggaa	2760
ctcatctgtg	gtccctgttt	ctcccccctc	cctgaacacc	ttggctctgt	tcccaagcag	2820
ctggacttcc	agagacatgg	ctcagatctt	ggatttgcag	ggagttgggg	ccactgaa	2877

<210> 42

<211> 2820

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472728CB1

<400> 42

attacatagc attgaagaat atatttcact gtgccataaa caactgaaag cttgctctgc 2340
 caaaaggaat cagagaacaa gaacttcatt tcagatagca aacgcaggac acaccaagag 2400
 tggccgtgca cgtagccgt tctggccgt a catgttaagg gcatttcagt ggcagtgctg 2460
 taccctggg cagtgtacc tgggcacaca cgtagacaag ggcagctatt ctttagacca 2520
 gcctcctgaa agaaacaggt gtgtctttt agtgaggatcg tagtaatatg tgcacacaca 2580
 gaaggggacc tgattgggtg ggagctggtt atgtgtactt agcgttggag ttgacatttt 2640
 ggcatgtgct ctgagcttga atttgtatac caaccattca gtgcattca ctttgtctt 2700
 ctatgtcca aatgaatgtc tgggggacc tgagagcacc tggaaatttgg tggaaaggcaga 2760
 tcagagcaca cgtacgaaaa ggtgcaattc ctttctcat gacaaaaggaa aaaaaaataa 2820

<210> 43
<211> 1440
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7474322CB1

<220>
<221> unsure
<222> 757
<223> a, t, c, g, or other

<400> 43
 atgtacaatg agattctgat gctgggggcc aaactgcacc cgacgctgaa gctggaggag 60
 ctcaccaaca agaaggaaat gacgcccgt gctctggcag ctgggaccgg gaagatcggg 120
 aatcgccacg acatgtctt ggtggagccg ctgaaccgac tcctgcaggca aagtgggac 180
 agattcgtca agcgcacattt ctacttcaac ttccctggct actgcctgtt catgtatcatc 240
 ttccaccatgg ctgctacta caggcccggt gatggcttgc ctccctttaa gatggaaaaaa 300
 actggagact atttccgagt tactggagag atccctgtctg tgtaggagg agtctacttc 360
 tttttccgag ggattcagta ttccctgcag aggccggcgt cgatgaagac cctgtttgt 420
 gacagctaca gtgagatgt tttgtttctg cagtcactgt tcatgctggc caccgtgggt 480
 ctgtacttca gccacacctaa ggagtatgtt gcttccatgg tattccctt ggccttggc 540
 tgaccacaaca tgctctacta caccggcggt ttccagcaga tgggcattcta tgccgtcatg 600
 atagagaaga tgatccttag agacctgtgc cgtttcatgt ttgttcatat cgttttttg 660
 ttccgggtttt ccacacgggt ggtgacgtt attaagacag ggaagaatga ctccctggc 720
 tctgagttca cgtcgacacat gtggcggggg cctgctngca gccccaaatag ctccataaac 780
 agcctgtactt ccacaccttgc ggagctgttc aagttcacca tcggcatggg cgacctggag 840
 ttcaactgaga actatgactt caaggctgtc ttcatcatcc tgctgctggc ctatgttaatt 900
 ctcacactaca tagttctctt cctcaacatg ctcattgtct tgatggcga gactgtggag 960
 aacgtctcca aggagagcga acgcacatgg cgccgtcaga gagccatcac catcctggac 1020
 acggagaaga gcttccttaa gtgcatgagg aaggcccttcc gctcaggcaa gctgctgcag 1080
 gtggggtaca cacctgtatgg caaggacgac taccgggtggt gcttcgttga cgaggtgaac 1140
 tgaccaccc ggaacaccaa cgtgggcattt atcaacacaa accccgggcaa ctgtgagggc 1200
 gtcaagcgcac ccctgagctt ctccctgtgg tcaaggacagat ttcaaggcag acactggaaag 1260
 aacttttgccttcc ttttggatggatggatgtc gcaagtgttc gagataggca gtctgctcag 1320
 cccgagggaaat tttatctgc acatgttca gggctctgtt agccagagga cgctgagggtt 1380
 ttcaagagtc ctgcccatttc cggggagaag tgaggacgtc acgcagacag cactgtcaac 1440

<210> 44
<211> 2394
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5455621CB1

<400> 44
 atttcagaac acatctgaat tccttctctg tggcatatgc tttaggagag gagcagacag 60
 ctcttagcta gggtcagatt tcaaatttctc atctttggt gccaataccca ccaccagatt 120
 ctctttgaa gtcaactttt gagatcttca ctaagtacac gttgggtgtt gaagatttcac 180
 acgagtgcctt ctggtaatca ttttcttctg ggaatcacag tctctctt cagcaaagca 240
 tccactgtac tgaactttgc ttttggaaac atcttcttcc tgagacctcg ttgaaagaaa 300
 ctctctgggt tcatacttttca caatatggag gtgaagaact ttgcagtttgg gatttatgtt 360
 gtatttgcag ccctttttt catttccttca ggaatttgggg tggatcttgc cattaaggag 420

agaaaaaaagg caactccccg agagttcctg gttgggggaa ggcaaatgag cttggccct 480
 gtcggcttgt ctctgacagc cagcttcatg tcagctgtca cggctctgg gacccttct 540
 gaagtctacc gcttggggc atccttccta gtcttcttca ttgcttacact atttgcatac 600
 ctcttaacat cagagcttt ttcctctgtt ttctacagat ctggtatcac cagcacttat 660
 gagtacttac aactacgatt caacaaacca gttcgctatg ctgcccacgt catctacatt 720
 gtacagacga ttctctacac aggagtgggt gtgtatgtc ctgcccctggc actcaatcaa 780
 gtgactgggt ttgatcttg gggctctgtt ttgcaacag gaattgttt cacattctac 840
 tgtaccctgg gaggattaaa agcagtgggt tggacagatg catttcagat ggtgtcatg 900
 attgtgggg tcttaacggt ttcattcaaa ggataactc atgctggggg attccacaat 960
 gtatttagac aatcacaaa tgatctcgat ctacatatat ttgacttga ttagatcct 1020
 ctcaggcgc acactttt gactatcaca gtgggaggaa ctttactt gctcggaaatc 1080
 tatggggtca atcaatcaac tattcagcga tgcatctt gcaaaacaga aaagcatgct 1140
 aagcttgcct tggattttaa ctgtctgggt ctctggatca ttctgggtg tgctgtcttc 1200
 tctggcttaa tcatgtactc tcactttaaa gactgtgacc ctggacttc tggcatcatc 1260
 tcagcaccag accagctgat gccgtacttt gtcatggaga tatttgcac aatgccagga 1320
 ctgcccaggac ttttgcgc ttgtgccttc agtggaaatc tgagcaccgt ggttcccage 1380
 atcaatgcct tggcaacatg gaccttttagt gattttgtca agagctttt teetcatctc 1440
 tccgacaagc tgagcacctg gatcgttaaa ggctttagtgc tcttattttgg cgtatgtgt 1500
 accttatgg ctgtggctgc atctgtatg ggagggttt tgcaaggcttc cctcagcatt 1560
 cacggcatgt gtggaggacc aatgctgggc ttattctcc tgggaatcgt gttcccttt 1620
 gtgaactgga agggtgcact aggagggtctt cttactggaa tcaccttgc attttgggtg 1680
 gccattgggg ctttcattta ccctgcacca gcctctaaga catggccctt gcctctatca 1740
 acagaccaat gtatcaatc aaatgtgaca gcaacaggaa ctccagact atccagcaga 1800
 cctggaatag ctgataacctg gtactcgatc tcctacctt actacagtgc actgggctgc 1860
 ttaggatgca ttgttgcgtt agtaatcatc agcctataa caggtcgcca aagaggtgag 1920
 gatattcaac cactgttaat tagaccaggat tgtaatttat tttgctttt gtctaagaag 1980
 tacaaaacac tatgtctgtt tgaggatcag catgacatgtt ggacagagca gggaaaacctt 2040
 gagaatggca gtggccggaa acaggggggctt gaatctgtc tacagaacgg actcagaaga 2100
 gaaaagctgg tacatgttcc aggctatgtat cctaaggaca aaagctacaa caatatggca 2160
 tttgagacta cccatttcta aggcaataacc tgatgatgtt cacacacaca cgtcaatac 2220
 acacacacac acacaaactc cacatacttc ttgcctactt gtttagatg atgtatagtt 2280
 gccattgcta gaagacaggg atgtctgggt cttatttcta ttattttata actacatgca 2340
 aaatgactgt ctctcggat atttttggaa agactccaac ttacacagag aaaa 2394

<210> 45
 <211> 2890
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7477248CB1

<400> 45
 gaatactaag ccagggcaga atgcttgcgtt agtagcaact aaagtggcag ttttttttctt 60
 gaaattctca ggcagtcaga ctgtctttagg caaatcttga taaaatagcc ctatccagg 120
 ttttatcta aggaatccca agaagactgg ggaatggaga gacagtcaag gtttatgtca 180
 gaaaaggatg agtacatgtt tcaacatcag ggagcgggtgg agctgtttt ctcaatttt 240
 ttgctcatcc ttaccatttt gacaatctgg ttattttaaa atcatcgatt ccgttcttg 300
 catgaaactg gaggagaat ggtgtatggc cttataatgg gactaattttt acgatatgtc 360
 acagcaccaa ctgatattga aagtggaaat gtctatgact gtgtaaaact aactttcagt 420
 ccatcaactc tgctggtaa tatcactgac caagtttatg aatataaata caaaagagaa 480
 ataagtccgc acaacatcaa tcctcatcaa ggaatgtca tacttggaaaa gatgacattt 540
 gatccagaaa tcttcttcaa tgttttactg ccaccaatta tatttcatgc aggatatagt 600
 ctaaagaaga gacactttt tcaaaaactt ggatcttattt taacgtatgc cttcttggga 660
 actgccccatct cctgcacatgtt catagggtt attatgtatg gttttgttggaa ggctatgtata 720
 catgctggcc agtgcggaaaa tggagactt catttcactg actgttttattt ttttgggttca 780
 ctgtgtctg ctacagatcc agtgcacgtt ctggccattt tccatgaact gcacgtcgac 840
 cctgacctgt acacacttcc gtttggagag agtgcgttgc atgatgcgtt gggccatagtc 900
 cttacatattt ctatattccat ttacagtccc aaggagaatc caaatgcatt tgatgccca 960
 gcatttctcc agtctgtggg gaatttccctg ggaatcttgc ctggcttattt tgcaatgggg 1020
 tctgcgtatg ccatcatcac agcactgtt accaaattta ccaagctgtg tgagttcccg 1080
 atgctggaaa ccggccctgtt ttctctgtt tcttggagtg ctttcctgtc tgccgaggct 1140
 gccggcttaa cagggatagt tgctgttctc ttctgtggag tcacacaagc acattataacc 1200
 tacaacaatc tgccttcgaa ttccaaaata agaactaaac agttgtttga atttatgaac 1260
 ttttggcg agaacgtcat ttctctgttac atgggcctgg cactgttcaac gtccagaat 1320
 catatctta atgctttttt tataacttggaa gccttcttag caatttttgc tgccagagcc 1380

tgcaacatata tccctctc cttcctctg aatctaggcc gaaaacagaa gatcccctgg 1440
 aacttcagc acatgatgat gttttaggt ttgcgaggag cgatcgatt tgccttagct 1500
 attcggaca cagaatctca gcccaaacaa atgatgtta ccactacgct gtcctcg 1560
 ttcttcactg tctgggtatt tggaggagga acaacccccca tggacttg gttcagatc 1620
 agagttggcg tggacctgga tggaaaatctg aaggaggacc cctccatacaca acaccaggaa 1680
 gcaaataact tggataaaaa catgacgaaa gcaagagatg ctgcgtctt cagaatgtgg 1740
 tatagctttg accacaagta tctgaaaccat atttaaccct actctggtcc tccgctgact 1800
 acaacattac ctgaatggta tggccgatt tccaggctgc ttaccatgc tcaagcctat 1860
 ggggaacagc taaaagagga tgatgtgaa tgcattgtaa accagatga actagccata 1920
 aattaccagg agcaagcctc ctcacccctgc agtccctctg caaggttagg tctggaccag 1980
 aaagcttcac cccagacgcc aggcaaggaa aacatttatg agggagacct cggccctggg 2040
 aggctatgaa ctcaagctt agcaaaactt gggtaatcc cagttgaatt aattggcatg 2100
 aagagtacag atgtaatcac aagtaatgca agactcaactg aggaatacaa gccaagctga 2160
 tgaggcagta caggggagag gctggaaaac atattaagag cataaatttg agagaatcaa 2220
 agccttgcata catggatcct ctgggtcctg aagaaatgag attttattat ccctcttat 2280
 tatgcaaatg aatttagttt ttgacacga gccattctga ttactggatt ggctgggggtg 2340
 gggatgggggatcattcaggat cttagctgtc gaggatggga cagctgtgtc ggggtctttag 2400
 ggcatttctgtc ctgcgaatgc ggctctccag gcccttcact tctattctgg attttattcc 2460
 ctccattaaag gagagttaa aataaaaaga aagttctga gagtaaacat tttgctccta 2520
 agctgaagggg aatgcccagc tatttagtaa gtgataagtt tcttattttg aggacttgac 2580
 tcccatattgc tctcaagtgc cccaggccag agcccagagaa agtgtccgt acccactgct 2640
 gatggtttcc cagagccac actgagttga agaacctatt gttcttcttgc gatccttct 2700
 tatgctactt ctcccatcgc tcaaagggtt tgcctatggc tgggtgtgcc ctgcctaaa 2760
 tgccacca ctttcaagca gcttctagct atagtttcc accaggtatt ttaatccca 2820
 ttccacctcc tcccccaagca attcaccatg caggagtat tttactgtaa agatgggtg 2880
 cttagtaaaa 2890

<210> 46
 <211> 3926
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2944004CB1

<400> 46

ctggacctt aatccactgt aggtatggac agggaaagaaa ggaagaccat caatcagggt 60
 caagaagatg aaatggagat ttatggttac aattttagtc gctggaaagct tgccatagtt 120
 tcttttagggat tgatttgc tgggtgggtt tctccctctc ctctctattt gatgcctgag 180
 tggcgggtga aagcgacctg tgcagatc gcaattaaag actgtgaagt agtgcgtcg 240
 aggactactg atgaattcaa aatgtggttt tggcaaaaaa ttgcgttctt ttctttggaa 300
 acttacccag tttcaagtcc aaaatctatg tctaataagc tttcaatgg ccatgcagtt 360
 tggtaatttgg agaattccac tgaagaaaat aggacacagga tcagtaataa ttcacagact 420
 gaatcacaaac agattcgta tttcaccac catagtgtaa aatatttctg gaatgatacc 480
 attcacaattt ttgatttctt aaaggggactg gatgaaggtt tttctgtac gtcaatttt 540
 gaaaagcata gtgcggactt gacaaagggg atgcgtcct acagaaaact gctttatgg 600
 gtaaatgaaa ttgctgtaaa agtgccttctt gttttaaagc ttcttaattaa agaggttctc 660
 aacccattttt acattttcca gctgttcaatg gtttatactgt ggagcaactga tgaataactat 720
 tactatgctc tagtattgtt ggttatgtcc atagtatcaa tcgttaagctc actatattcc 780
 attagaaagc aatatgttat gttgcgtac atgggtggcaaa ctcatagtac cgtaaagat 840
 tcagtttgc tggtaatgaa agaaatagaa gaaatctttt ctaccgaccc tggccagga 900
 gatgtcatgg tcattccatt aaatgggaca ataatgcctt gtgtatgtgt gtttattaa 960
 ggtacctgca ttgtaaaacga aagcatgttta acaggagaaaa gtttcccaatg gacaaagact 1020
 aatttgcataa atccatcgtt ggtatgtaaa ggaataggag atgaattata taatccagaa 1080
 acacataaaac gacatactttt gtttggggg acaactgtta ttcagactcg tttctacact 1140
 ggagaactcg tcaaaaggccat agttgttgc acaggatttt gttactccaa aggacagtt 1200
 gttcgttcca tattgtatcc caaaaccaact gattttaaac ttacagagaa tgcctacttg 1260
 ttctctactat gtcttgc tgggtgtttt tctacactat tattaaatgc 1320
 attttaaatg aggtacaatg tgggtgtataa attatcgatg ctcttgatat tattacaaatt 1380
 actgtgcccc ctgcacttcc tgctgcaatg actgtgttgc ttgtgtatgc tcagagaaga 1440
 ctgaaaaaaaaa tcggtattttt ctgtatcagt cctcaaagaa taaatatttgc tggacagctc 1500
 aatcttgcattt gctttgacaa gactggaaact ctaactgaag atggtttgc tctttggggg 1560
 attcaacgag tggaaaatgc acgattttttt tcaccagaag aaaatgtgtg caatgagatg 1620
 ttggtaaaaat cccagttgt tgcttgc tggacttgc attcacttac aaaaattgaa 1680
 ggagtgcctt ctgggtatcc acttgatctg aaaatgttttgc aggctattgg atggattctg 1740
 gaagaagcaa ctgaagaaga aacagcactt cataatcgaa ttatccccac agtgggtcgt 1800

cctccaaac aactgcttcc tgaatctacc cctgcaggaa accaagaaaat ggagctgttt 1860
 gaacttccag ctacttatga gataggaatt gttcgccagt tcccatttc ttctgctttg 1920
 caacgtatga gtgtgggtgc cagggtgctg gggatagga aaatggacgc ctacatgaaa 1980
 ggagcggccg aggccattgc cggtctctgt aaacctgaaa cagttctgt cgatttcaa 2040
 aacgtttgg aagacttcac taaacagggc ttccgtgtga ttgctcttc acacagaaaa 2100
 ttggagtcaa aactgacatg gcaataaagta cagaatatta gcagagatgc aattgagaac 2160
 aacatggatt ttatggatt aattataatg cagaacaaa taaagcaaaa aacccttgca 2220
 gtacttgaag attgcataa agccaacatt cgcaacgtca tggcacagg tgacagtatg 2280
 ttgactgtcg tctctgtggc cagagatgtt ggaatgattc tacctcgaa taaagtgatt 2340
 attgctgaag cattacccatcc aaaggatggg aaaggatgcca aataaaattt gcattatgca 2400
 gactccctca cgcagtgccag tcatccatca gcaattgacc cagaggctat tccggtaaaa 2460
 ttggtccatg atagcttaga ggatcttcaa atgactcggt atcatttgc aatgaatgga 2520
 aaatcattct cagtgataact ggagcatttt caagacattt ttcctaagtt gatgttgcatt 2580
 ggcaccgtgt ttgcccgtat ggcacctgat cagaagacac agttgataga agcattgca 2640
 aatgttgatt attttgggtt gatgtgtgg gatggcgaa atgattgtgg tgctttgaag 2700
 agggcacacg gaggcatttc cttatcgagg ctcgaagctt cagtgccatc tcccttacc 2760
 tctaaagactc ctagtattt ctgtgtgccca aacccatca gggaaaggccg tgctgttta 2820
 ataacttctc tctgtgtgtt taaaatcatg gcattgtaca gcattatcca gtacttcagt 2880
 gttactctgc tgtatttat cttaaatgaaat ctaggagat tccagtttctt cttcattgtat 2940
 ctggcaatca ttttggtagt ggtatttaca atgagttaa atcctgcctg gaaagaactt 3000
 gtggcacaataa gaccacccatc gggcttataa tctggggccc ttctcttctc cggtttgtct 3060
 cagattatca tctgcattgg attcaatct ttgggtttt tttgggtcaaa acagcaacct 3120
 tggatgaaag tggatccatcc aaaatcatg gcttgaata caacaggaag cgggttttg 3180
 aattttcac acgtagacaa tggaaaccgaa cttgatgaac ataataataca aaattatgaa 3240
 aataccacacg tggttttat ttccagttt cagtagctca tagtggcaat tgcctttca 3300
 aaaggaaaaac ccttcaggca accttgcac aaaaattttt tttttgttt ttctgtgatt 3360
 tttttatata tttttatattt attcatcatg ttgtatccag ttgcctctgt tgaccagggt 3420
 cttagatag tggatgtacc atatcatgtt cgttaacta tgctcatcat tggttctgtc 3480
 aatgccttgc tggatcatc agtggagaaac ttcttccttg acatggctt ttggaaagtt 3540
 gtgttcaacc gagacaaaca aggagagttt cgggtcagca ccacacagcc accgcaggag 3600
 tcagtgatc ggtggggaaa atgctgttta ccctggggccc tgggctgttag aaagaagaca 3660
 ccaaaggcaa agtacatgtt tctggcgccag gagctttgg ttgatccaga atggccacca 3720
 aaacactaga caaccacaga agctaaagct ttagtaagg agaatggatc atgtcaaatc 3780
 atcaccataa catagcagtg aatcagtctc agtggatattt ctgatagcag tattcaggaa 3840
 tatgtgatt taggatttc tgatcctgtg tgcagaatg gcactagttc agtttatgtc 3900
 ccttcgtata tagtagctt tttgac 3926

<210> 47
<211> 2135
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3046849CB1

<400> 47
 cgctcaggcc cctcttcga atgctccacg ccctcctgcg atctagaacg attcagggca 60
 ggatcctgtt cctgaccatc tgcgtgcgg gcattgggtt gactttttag ttggctata 120
 acctcttat catcaatgcc ccgacatttc acattcagga attcaccat gagacatggc 180
 aggcgcgtac tggagagcca ctgccccatc accttagtctt gctttagtgg tccctcatcg 240
 tgtctctgtt tcccctggaa ggccttttgc gggactgtt tgcaaggccc ttggccatca 300
 cgctggaaag gaagaagtcc ctcttgggttataacatctt tgggtgtca gcagcaatcc 360
 tggttggatt cagccgcaaa gcaggcttctt tgtagatgtt catgctggaa agactgctcg 420
 tgggagtcaa tgcagggtgtt agcatgaaca tccagccat gtactctgggg gagagcgc 480
 ctaaggagct ccgaggagat gtggccatca gtcagccat ctttacggct ctggggatcg 540
 tggatggaca ggtggccggc ctcaggggatc ttcttaggtgg ccctcaggccc tggccctgtc 600
 tggctggccat ctgccttggc cccggggccgc tccagctcgc ctccctccctt ctgctccctg 660
 aaagcccgcg ctaccccttc attgactgtt gagacaccgc ggcctgcctg gcagcaatcc 720
 ggcagctacg gggctccggg gacttggccatc gggagctggaa ggagctggag gaggagcgc 780
 ctgcctgcac gggctggccgt gcccggccgc catggagat gttccagcat cggccctgt 840
 ggagacaggat gacaaggctc gtgggtctgg gcagtgccat ggagctctgc ggaatgact 900
 cggtgtacgc ctacgcctcc tccgtgttcc ggaaggcagg agtgcggaa gcaagatcc 960
 agtacgcgtat catcggtact gggagctgcg agtgcgtac ggcgggtgtt agttgtgtgg 1020
 taatcgagat ggtgggtcg ggcgtgtcc tcacgggtgg tgcacagccat acactctacc 1080
 gggggagcat cttcaactgtt gcccgtgtcc tgcagagatc ctccccctgg acactctacc 1140
 tggccatggc ctgcattttt gccttcatcc tcaagtttgg cattggccct gccggagtg 1200

cggggatcct ggccacagag ctgtttgacc agatggccag gcctgctgcc tgcattggct 1260
 gcggggcgct catgtggatc atgctcatcc tggtcggcct gggattccc tttatcatgg 1320
 aggcccttgc ccacttcctc tatgtccctt tccttggtgt ctgtgtctgt gggggccatct 1380
 acactggcct gtcccttcct gagaccaaaag gcaagacctt ccaagagatc tccaaggaaat 1440
 tacacagact caacttcccc agggggggcc agggcccccac gtggaggagc ctggaggta 1500
 tccagtcAAC agaactctag tcccaaagggt gtggccagag ccaaagccag ctactgtcct 1560
 gtctctgtct tcctgccagg gcccgtgcc tcactccctc ctgcattctt catttaagga 1620
 gtgttattt agcacccttt gtgtcgacat atggctccag gtgtcttagca atcaatggtg 1680
 agcgtggtat tccaggctaa aggttaattaa ctgacagaaa atcagaaca acataattac 1740
 aggtgggtt tggcagctca tgactgttaat cccagcaattt tgggaggcca aggtgggagg 1800
 atcaatttag gccagagttt gaaaccagcc taggttaacat agtgagaccc cctatctct 1860
 caaaaaattt taaacattag ctgggcatgg tggtatgtgc taacagctct agctactcag 1920
 gaggctgagg cagcaggatc acttgagtcc caagagttca aggttagcagt aagctaacaa 1980
 ttccacaccac tgcatgccca gactgggtt acagagggag acttcatctc tttaaaaaca 2040
 taataataat aattacggac tccggaaatg cggtgacaac gaaacatacc ggtggccccc 2100
 tgaggtgggt atcccgatc ccagccttgg gaagc 2135

<210> 48
 <211> 2637
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4538363CB1

<400> 48

atgggctgga gatgccactg tccgcttggt ttaatgatca atgagctccc tgccaggaaa 60
 cccttctga cctggttgc ccctcagttc ctcggctca tacctagtgc ctgcggcagg 120
 acagccatgg ccccaactc caccagcgac ctccacactc coggagcga gctgagcgtg 180
 gctgacatca tcgtcatcac tggatatttt gctctgaacg tggccgtggg catatggtcc 240
 tcttgcggg ccagtaggaa cacggtaaat ggctacttcc tggcaggccg ggacatgacg 300
 tggtgccga ttggacccctt cctcttcgccc agcagcgagg gctctggctt cttcatttgg 360
 ctggcgggctt caggcgcggc aggaggcttg gccgtggcag gettcgagtg gaatgccacg 420
 tacgtgtgc tggcactggc atgggtttc gtgcccattt acatcttcc acagatcgctc 480
 actttacctg agtacattca gaagcgctac gggggccagc ggatccgcat gtacctgtct 540
 gtcctgtccc tgctactgtc tggatccacc aagatatgcg tggacctgtt cgcgggggtt 600
 ctgttgtgc acatctgcctt gggcttggaa ttctacccctt ccaccatctt cacgcttggc 660
 atcacaccc ttttacccat cgcagggggc ctggctgtt taatcacac ggacgcctt 720
 cagacgctca tcatgggtt gggggctgtc atccgtacaa tcaaagcttt tgaccagatc 780
 ggtggttacg ggcagctgga ggcagccatc gcccaggcca ttccctccag gaccattgcc 840
 aacaccaccc gccacctgccc acgtacagac gccatgcaca tgtttcgaga cccccacaca 900
 ggggacctgc cgtggacccgg gatgacccctt ggctgtacca tcatggccac ctggacttgg 960
 tgcaccgacc aggtcatcg tgcacgtatca ctgtcagccc gggacactgaa ccatgccaag 1020
 gccccgctcca tcctggccag ctacccatcaag atgctccccc tgggcctgtat catcatgccg 1080
 ggcacatgtca gccgcgcattt gttcccaat gatgtgggtt gctgtgtgcc gtccgagtgc 1140
 ctgcggggctt gggggccggaa ggtcggtgc tccaacatcg cctaccccaa gctggtcatg 1200
 gaactgtgc cccatcggtt ggggggggtt atgatcgatc tgatgttggc ggcgtctatg 1260
 tcgttgtca cctccatctt caacacgcgc agccacccctt tcactatggc catctggagg 1320
 cgctgcgtc cccgctccgg gtagcggtt gtcctgttgc tggacggctt ggtcatagtg 1380
 gcactcatcg gctgtgtgtt ggcctggatc cccgttctgc aggactccaa cagcggccaa 1440
 ctcttcatctt acatcgatc agtgaccaggc tccttggccc caccatgtac tgcaatcttt 1500
 gtcctggggc tcttggcg acgtgccaac gaggcaggggg ctttctggg cctgatagca 1560
 gggctgggtt tggggccac gaggctggc ctggaaattcc tgaacccagc cccaccgtgc 1620
 ggagagccag acacgcggcc agccgttctg gggagcatcc actacccgtca ctgcgtgtc 1680
 gcccctttt cactcagtgg tgctgtgtt gttggctggaa gctgtgtac cccacccca 1740
 cagagtgtcc agatttagaa ctttacctgg tggacccctgg ctcaggatgt gcccctggg 1800
 actaaagcc gttgtggccaa aacacccatc aaacacgcctt tctggggcccg tgcgttgtggc 1860
 ttcaatggccaa tccttcctat gtgtgtcaac atattttt atgcctactt cccctgaaca 1920
 ctggccatctt ggacagaaat gcaaggatc ttagtgcctca ggtccaccca ttccctcat 1980
 ggggatcccc agggcccaag agggccatgtt tcccctcaca gtcgacacagc agctcggtgc 2040
 ccaagaactg gccaagccag caaaggcggtt gctgaaaaac attagggggg aaactgggac 2100
 gaaacataag tggactttt tccaaacaaac agcaccctt gcaagtcaag catttggaaac 2160
 gcgacaaact tagattttcc tgaccggcc caccacaccc caaccccttc acctcccaa 2220
 ctaccaacac agctcatcac catactcaca ccacccacag cggcccgcccc ccactccaat 2280
 cagaaaggca ccccccact ctcaagacgc gacggcgcac gtcactgcaa ctccataacg 2340
 atgccaaaac gacacaagcc aggacacccggc actgtatataca gcacgagggt gatctgcaac 2400

gttgtggccg aatgcagaaaa atacactggg tgctggcgta aggaagatcc gcgagtaaac 2460
 aacggcttg taaacttact gcatccacca aggtacactt ccagaacgag accagacaac 2520
 tacactccac acaacctgca gccacacccct atttctgcta tcataaaagag cccccgcacc 2580
 acataataat gccggcagac tcagtgcgac aaacccttgt gctggacttc accacgg 2637

<210> 49
 <211> 3783
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 6427460CB1

<400> 49
 gcactagtac cccggagccc atgggcgcgc cgagccgggc gccccggcgc tgaacggcgg 60
 agcgggagcg gccggaggag ccatggactg cagctcgtg cggacgcgc tgacagata 120
 ctgtcgagga gaagagaatt gggtggacag caggaccatc tacgtggac acagggagcc 180
 acctccgggc gcagagccct acatcccaca gagataccca gacaacagga tgcgtcg 240
 caagtacaca ttttggaaact ttatacccaa gaatttattt gaacaattca gaagagtagc 300
 caacttttat ttcccttatca tatttctggt gcagttgatt attgatacac ccacaagtcc 360
 agtgacaagc ggactttcac tcttctttgt cattactgtg acggctatca aacagggtta 420
 tgaagactgg cttcgacata aagcagacaa tgccatgaac cagtgtcctg ttcatattcat 480
 tcagcacggc aagctcggtc gggaaacaaag tcgaaagctg cgagttgggg acattgtcat 540
 ggttaaggag gacgagacctt ttccctgcga cttgatctc ctttccagca accggggaga 600
 tgggacgtgc cacgtcacca cccggcagctt ggatggagaa tccagccata aaacgcattta 660
 cgcggtccag gacacccaaag gttccacac agaggaggat atcggcggac ttcacggcac 720
 catcgagtgt gaggcccccc agcccgacatc ctacaagtcc gtgggtcgca tcaacgttta 780
 cagtgacctg aatgaccccg tggtgaggcc ctttagatcg gaaaacctgc tgccttagagg 840
 agctacactg aagaacactg aaaaaatctt tggtgtggctt atttacacgg gaatggaaac 900
 caagatggca ttaaatttac aatcaaatttc tcagaagcga tctggcggtt aaaaatcgat 960
 gaatgcgttc ctcattgtgt atctctgcat tctgatcagc aaagccctga taaacactgt 1020
 gctgaaatac gtgtggcaga gtgagccctt tcgggatgag ccgtggata atcagaaaaac 1080
 ggagtccgaa aggccagagga atctgttctt caaggcattt acggacttcc tggccttcat 1140
 ggtcctctt aactacatca tccctgtgtc catgtacgtc acggtcgaga tgcagaagtt 1200
 cctcggtct tacttcatca cctgggacga agacatgttt gacgaggaga ctggcgaggg 1260
 gcctctgggt aacacgtcgg acctcaatga agagctggga caggtggagt acatcttcac 1320
 agacaagacc ggcaccctca cggaaaacaa catggatcc aaggagtct gcatcgaagg 1380
 ccatgtctac gtgccccacg tcatctgcac cggcagggtc ctcccagagt cgtcaggaat 1440
 cgacatgatt gactcgcccc ccagcgtcaa cgggaggaggc cgcgaggagc tggggcc 1500
 ggcctctgt ctctgcacca cctggcagggt gaaagacgat gacagctgtg acggccccag 1560
 gaaatcgccg gacggggggaa aatctgtgt gtacatctca tcctcgcccg acgagggtggc 1620
 gctggtcgaa ggtgtccaga gacttggct tacctaccta aggctgaagg acaattacat 1680
 ggagatatta aacagggaga accacatcga aaggttgaa ttgctggaaa ttttgagttt 1740
 tgactcagtc agaaggagaa tgagtgtaat tgtaaaatct gctacaggag aaatttatct 1800
 gttttgcaaa ggagcagatt ctgcataat ccccccggatc atagaaggca aagttgacca 1860
 gatccgagcc agagtggac gtaacgcagt ggaggggctc cgaacttgcgtt gttttgttta 1920
 taaaaggctg atccaagaag aatatgaagg cattttaag ctgtcagg 1980
 ggcctctcaa gatcgagaga aaaaaggtagc agaagcttat gagcaaatag agaaagatct 2040
 tactctgtt ggtgctacag ctgttgaggc cggctgcagc gagaagctg cagacaccat 2100
 cgaggccctg cagaaggccg ggatcaaagt ctgggttctc acgggagaca agatggagac 2160
 ggcgcgggcc acgtgctacg cctgcaagct ctccgcagg aacacgcagc tgctggagct 2220
 gaccaccaag aggtcgagg agcagagcct gcacgacgtc ctgttcgagc tgagcaagac 2280
 ggtcctgcgc cacagcggga gcctgaccag agacaaccc tcgggacttt cagcagatat 2340
 gcaggactac ggtttaatta tcgacggagc tgcactgtct ctgataatga agcctcgaga 2400
 agacgggagt tccggcaact acagggagct cttctctggaa atctgcggga gctgcagcgc 2460
 ggtgctctgc tgccgcattgg cgccttgcga gaaggctcgtt atgtttaat taatcaaatt 2520
 ttcaaaagag cacccaaact cgttgcattt tgccatggatgtt gcaaatatgt tcagcatgt 2580
 tctggaaagcg cacgtggca taggtgtcat ggcaaggaa ggccgcagg ctgcccaggaa 2640
 cagcgactat gcaatcccaa agttaaagca tttgaagaag atgctgcttgc ttcacggcga 2700
 ttttattac attagatct ctgagctgt gcagttacttc ttctataaga acgtctgtt 2760
 catcttcctt cagttttat accagttctt ctgtgggttt tcacaacaga ctttgtacga 2820
 caccgcgtat ctgaccctct acaacatcag ctgcacccatc ctccccatcc tcctgtacag 2880
 cctcatggag cagcatgttgc gattgcacgt gctcaagaga gaccgcaccc tgcacaggaa 2940
 cgtcgccaag aatgccttgc tgcgctggcg cgtgttcatc tactggacgc tcctgggact 3000
 gtttgacgca ctgggtttct tctttggcgt ttatttcgtt tttgaaaata caactgtgac 3060
 aagcaacggg cagatatttgc gaaactggac gtttggaaacg ctggatttca ccgtgtatgg 3120

```

gttcacagtt acactaaagg ttgcatttgg cacacactac tggacttggg tcaaccattt 3180
tgtcatctgg gggtcgctgc tggtctacgt tgtctttca cttctctggg gaggagtgtat 3240
ctggccgttc ctcaactacc agaggatgtt ctacgtttc atccagatgc tgtccagcgg 3300
gcccgctgg ctggccatcg tggctgtgtt gaccatcagg ctcctccccg acgtcctcaa 3360
gaaagtctgt tgccggcagg tggccaaac agcaacagag agagtccagg agaatgggtg 3420
cgcacagcct cgggaccggc actcagaatt cacccttgc gcctctctgc agagcccaagg 3480
ctaccagagc accttcctt cggccgtgt gtacagctcc cacttcaggc aggtgacact 3540
cgccgctgg aaggagaagg tggccacgg gcccaccc atcctggcg gttccatca 3600
ccactgcagt tccatccaa gtcacagctg ccctagggtcc cgtgtggaa tgctcggtg 3660
atggatggtc ctaagcctgt ggagactgtg cacgtgcctc ttcttgccc ccagcaggca 3720
aggagggggg tcacaggct tgccctcgaa catggcaccc tggccgcctg gaccagcac 3780
tgt 3783

```

<210> 50
<211> 2105

<212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7474127CB1

<400> 50

```

ccagcgcccc gggaaagcggc tcaaccacctt gaatccggaa aacgccaaca agtagttct 60
cgtcgagaaa gggcggtca cctggcgccc aagactcagt cccgctgccc agagaacctc 120
gtccactcg aaaccaaaggc agaaccactt ttctctcggt ctcgttaagt catgtctgag 180
tcacagatgg gggcaagatc gagaacaacg agagggtat cctcaatgtc gggggcacc 240
ggcagaaac ctaccgcgc accctcaaga cccctcggtt aacacgcctg gcccttcttg 300
cctcctccga gcccccaaggc gactgcttga ccaacggcggtt cgacaagctg cagccgtcgc 360
cgccctccact gtccggccggc cccgagagcgc ccccgctgtc ccccgccca ggcggctgtct 420
tcgagggcggc cgccggcaac tgcagttccc gggcgccag ggcacgcac catcccggtg 480
gcccggcgca gttcttcttc gaccggcacc cggcgctt cgcctatgtc ctcaattact 540
accgcaccgg caagctgcac tgcccccggc acgtgtggg gccgccttc gaggaggagc 600
tggccttctg gggcatcgac gagaccgacg tggagccctg ctgctggatg acctaccggc 660
agcaccggcga cgccgaggag cgcgtggaca tcttcgagac ccccgaccc attggcgccg 720
acccggcgcga cgacgaggac ctggcgccca agaggctggg catcgaggac gccggggggc 780
tcggggggccc cgacggccaa tctggccgtt ggaggaggctt gcagccccgc atgtggggcc 840
tcttcgaaga cccctactcg tccagagccg ccaggtttat tgcttttgct tctttattct 900
tcatctgtt ttcaattaca acttttttgc tggaaacaca tgaagtttc aatattgtta 960
aaaacaagac agaaccagtc atcaatggca caagtgttgc tctacaatat gaaattgaaa 1020
cagatcctgc cttgacgtat gtagaaggag tttgtgtggt gtggtttact tttgaatttt 1080
tagtccgtat tggttttca cccaaataaac ttgaattcat caaaaatctc ttgaatatca 1140
ttgactttgt ggccatccca ccttctact tagaggtggg actcagtggg ctgtcatcca 1200
aagctgtcaa agatgtgtt tttcaaggtt cccctccca ggggtgttaag gtttggagg atcctgagaa 1260
tttcaaggtt caccggccat ttgttaggtc tgagggtgtc tggacatact cttcgagcta 1320
gtactaatga attttgcgt ctgataattt tctgggtctt aggagtttg atatttgcata 1380
ccatgtctca ctatggcggc agagtggggag ctcacactaa cggcccttca gctagtggc 1440
acacacagtt caaaaacattt cccatgggt tctgggtggc tgtagtgacc atgactacc 1500
tgggttatgg ggatatgtac cccaaacat ggtcaggcat gctggggaa gccctgtgtg 1560
ctctggctgg agtgcgtaca atagccatgc cagtgcctgt cattgtcaat aatttggaa 1620
tgtactactc cttggcaatg gcaaaaggcaga aacttccaag gaaaagaaaag aagcacatcc 1680
ctcctgtctcc tcaggcaagc tcacctactt ttgcagac agaattaaat atggcctgca 1740
atagtacaca gagtgcacaca tgcgtggca aagacaatcg acttctggaa cataacagat 1800
cagtgttatac aggtgcacgc agtacaggaa gtgagccgcc actatcaccc ccagaaaggc 1860
tccccatcg acgctctgtt accagagaca aaaacagaag agggaaaaca tgtttctac 1920
tgacgacagg tgattacacg tgcgtttctg atggaggat cagggaaaggat tatgaaaaat 1980
cccgaaagctt aaacaacata gccccgttgg caggcaatgc tctggggctc tctccagtaa 2040
catcaccctt caactctctt tgctctctgtt ggcgcctctg atctccatc ccatctatct 2100
tgtaa 2105

```

<210> 51
<211> 2069

<212> DNA

<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 7476949CB1

<400> 51

atgagcaagg	acctggcagc	aatggggct	ggagcttcag	gggacggggt	caggactgag	60
acagctccac	acatagcaact	ggactccaga	gttggtctgc	acgccta	catcagcgtg	120
gtggtcatct	actttgtctt	cgtcattgtc	gtgggatct	ggcgtccat	cgtgcaagt	180
cgagggacca	ttggcgctta	tttcctggcc	gggaggtcca	tgagctgtg	gccaatttgg	240
gcatctctga	tgtccagcaa	tgtggggcgt	ggcttgtca	tggccttgc	tggcacagg	300
gctgccggag	gccttgcgt	aggtggcttc	gagtggaa	caacctggct	gctcctggcc	360
cttggctggg	tcttcgtccc	tgtgtacatc	gcagcagg	tggtcacaat	gccgcagtat	420
ctgaagaagc	gatttgggg	ccagaggatc	cagggttaca	tgtctgtctt	gtctctcatc	480
ctctacatct	tcaccaagat	ctcgactgac	atcttctcg	gagccctt	catccagatg	540
gcattgggct	ggaacctgt	cctctccaca	gggatcctgc	tggtggtgac	tgccgtctac	600
accattgcag	gtggcctcat	ggccgtgatc	tacacagatg	ctctgcagac	ggtgatcatg	660
gtagggggag	ccctggctct	catgttctg	ggcttcagg	acgtgggctg	gtacccagg	720
ctggagcagc	ggtacaggca	ggccatccct	aatgtcacag	tcccaaac	cacctgtcac	780
ctccacggc	ccgatgttt	ccacattt	cgggaccctg	tgaggggga	catcccttgg	840
ccaggtctca	ttttgcgg	cacagtgt	gcccacgtt	gttggtcac	agaccagg	900
attgtgcagc	ggtctcttc	ggccaagagt	ctgtctcatg	ccaaggagg	ctccgtgt	960
gggggctacc	tgaagatcct	ccccatgtt	ttcatcgta	tgcctggcat	gatcagccg	1020
gccctgttcc	cagacgagg	gggctgcgt	gaccctgtat	tctgcca	aatctgtgg	1080
gcccggatgg	gatgttccaa	cattgcctac	cctaagttgg	tcatggcc	catgcctgtt	1140
ggtctgcggg	ggctgtatgt	tgccgtgatc	atggccgtc	tcatgagctc	actcacctc	1200
atcttcaaca	gcagcagcac	cctgttca	attgtatgt	ggcagcgtt	ccgcagga	1260
tcaacagagc	aggagctgt	gggtgtggg	agagtgttt	tggtgttctt	ggttgtcatc	1320
agcatccctt	ggatccccat	catccaaagc	tccaaacagt	ggcagctt	cgactacatc	1380
caggctgtca	ccaggta	ggcccccaccc	atcacccgtc	tcttcctgt	ggccatcttc	1440
tgcaagagg	tcacagagc	cgaggat	tggggctcg	tgttggcct	gggagtggg	1500
cttctgcgt	tgatcctg	gttctcat	ccagcgccag	cctgtggg	ggtggaccgg	1560
aggccagcag	tgctgaag	cttccactac	ctgtacttt	caatccctt	ctgccccgtc	1620
actgccatcg	tcattgt	tgtcagc	tgtacaact	ccatccctga	ggaacagctc	1680
acacgcctca	catgg	tcggaact	cccctctg	agctggagaa	ggaggcccac	1740
gagagcacac	cgagat	cgagagg	gccggggagt	gccctgcagg	aggtggagcg	1800
gcagagaact	cgagcctgg	ccaggag	cctgaagccc	caagcaggtc	ctggggaaag	1860
ttgtctctg	gctgg	tggctct	gaaacac	agcaggcc	gagcccag	1920
gagaaggctg	cgctaga	aa	agcattgagg	aggagcc	ctggagacat	1980
gtctgc	aca	tcaatgt	cttgcgt	tcttcctt	ggctattt	2040
gcgtgattca	aa	cttgcgtt	cactgt			2069

<210> 52

<211> 4245

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7477249CB1

<400> 52

gcggcggcag	gctcagctgc	ggcgccgggg	ggcggcgctg	ggcccgcgcc	ttaggactc	60
ggggccgacg	ccggggatg	gggacgcggc	ggggggagt	aggcagtggc	ggccggcgcc	120
gtaagcgaa	tttcggccc	aggggtctgc	ccgcgtcccgc	ctctgtctt	tccgcctcca	180
cctgcagccc	cgccggcccc	gcccggcg	ggaccggac	ggcgcac	gggaaatgt	240
gctctggatc	cgccagc	tgggtttt	cccaccat	cagagtaca	caagaaccat	300
ctacgtagcc	aacagg	ctcagaat	cctttacaca	cctcaga	ttatagataa	360
caggatcatt	tcatctaa	actctgtgt	gaattttgtt	ccaaaaaa	tatttgaaca	420
gttcaaga	gtggcaaa	tttatttt	tattatatt	ttggttcage	ttatgatt	480
tacacctacc	agtcc	ccagtggact	tccattt	tttgtgataa	cagtaact	540
cataaagg	gat	atgggtac	gcataact	gataatg	taaatgg	600
tcctgttat	gttgc	gtgggtgg	tgtaaaact	agatcaaaa	acattcggt	660
gggtgatatt	gttcg	aa	aattttct	gcagactt	tgcctctgt	720
ctcagatcga	ctggatgg	cctgtcac	tacaact	agtttggac	gagaaact	780
cctgaagaca	catgtgg	ttccagaa	agcattat	caaacagt	ccaatttgg	840
cactcttagt	gtgt	aa	accagaag	gacttata	gattcat	900
acgaatgatc	ataaccc	aaatgg	aattgt	cctctggg	cgagagtc	960
cctgcttcgt	ggagcc	taaaaaac	aaaagaaatt	tttgggtt	cggtata	1020
tggaatgg	actaagat	cattaaat	caagag	tcacagaa	gatctgc	1080

agaaaagtca	atgaatacat	tttgataat	ttatcttagta	attcttat	ctgaagctgt	1140
catcagcact	atcttgaagt	atacatggca	agctgaagaa	aatgggatg	aacctggta	1200
taaccaaaaa	acagaacatc	aaagaaatag	cagtaaggta	gagtacgtgt	ttacagataa	1260
aactggtaca	ctgacagaaa	atgagatgca	gtttcgggaa	tgttcaatta	atggcatgaa	1320
ataccaagaa	attaatggta	gacttgtacc	cgaaggacca	acaccagact	cttcagaagg	1380
aaacttatct	tatcttagta	gtttatccca	tcttaacaac	ttatcccac	ttacaaccag	1440
ttccctttc	agaaccagtc	ctgaaaatga	aactgaacta	attaaagaaac	atgatctt	1500
crttaaagca	gtcagtctct	gtcacactgt	acagattagc	aatgttcaaa	ctgactgcac	1560
tggtgatgtt	ccctggcaat	ccaaacctggc	accatcgca	ttgggatact	atgatcttc	1620
accagatgaa	aaggctctag	tagaaagctgc	tgcaggatt	ggtattgtgt	ttattggcaa	1680
ttctgaagaa	actatggagg	ttaaaactct	tggaaaatcg	gaacggtaca	aactgcttca	1740
tattctggaa	tttatttcag	atcgtaggag	aatgagtgta	attgttcagg	cacccctcagg	1800
tgagaagtt	ttatggcta	aaggagctga	gtcatcaatt	ctccctaata	gtatagggtgg	1860
agaaaatagaa	aaaaccagaa	ttcatgtaga	tgaatttgct	ttgaaagggc	taagaactct	1920
gtgtatagca	tatagaaaat	ttacatcaaa	agagatgag	gaaatagata	aacgcatatt	1980
tgaagccagg	actgccttgc	agcagcggga	agagaatttg	gcagctgttt	tccagttcat	2040
agagaaagac	ctgatattac	ttggagccac	agcagtagaa	gacagactac	aagataaagt	2100
tcgagaaact	attgaagcat	tgagaatggc	tggtatcaaa	gtatgggtac	ttactgggga	2160
taaacatgaa	acagctgtt	gtgtgagtt	atcatgtggc	cattttcata	gaaccatgaa	2220
cattcttggaa	cttataaacc	agaaatcaga	cagcgagtgt	gctgaacaat	tgagggcag	2280
tgccagaaga	attacagagg	atcatgtgt	tcagcatggg	ctggtagtgg	atgggaccag	2340
cctatcttct	gcactcagg	agcatgaaaa	actatttat	gaagtttgc	gaaattgttc	2400
agctgttata	tgctgtcgta	tggotccact	gcagaaagca	aaagtaataa	gactaataaa	2460
aatatcacct	gagaaaccta	taacattggc	tgttgggtat	ggtgctaatg	acgtaagcat	2520
gatacaagaa	gcccatgtt	gcataggaat	catggtaaa	gaaggaagac	aggctgcaag	2580
aaacagtgac	tatgaatag	ccagatttaa	gttcctctcc	aaattgcttt	ttgttcatgg	2640
tcatttttat	tatatttagaa	tagtaccct	tgtacagttat	ttttttata	agaatgtgt	2700
ctttatcaca	ccccagttt	tatcatcgat	ctactgttt	ttttctcagc	aaacattgtat	2760
tgacagctgt	tacctgactt	tatacaat	ttgtttact	ttcttaccta	ttctgtat	2820
tagtctttt	gaacagcatg	tagaccctca	tgtgttacaa	aataagccca	ccctttatcg	2880
agacatttagt	aaaaccgccc	tcttaagtat	taaaacattt	ctttatttga	ccatcctggg	2940
cttcagtcat	gccttttattt	tctttttgg	atcctattta	ctaatacgga	aagatacatc	3000
tctgcttgg	aatggccaga	tgttggaaa	ctggacattt	ggcacttttg	tcttcacagt	3060
catggttatt	acagtcacag	taaagatggc	tctggaaact	catttttgg	cttggatcaa	3120
ccatctcggt	acctggggat	ctattatatt	ttattttgt	ttttccttgg	tttatggagg	3180
gattctctgg	ccatttttgg	gctcccagaa	tatgtatttt	gtgtttat	agctcctgtc	3240
aagtggttct	gttgggttt	ccataatct	catgggttt	acatgtctat	ttcttgat	3300
cataaagaag	gtctttgacc	gacacccctca	ccctacaagt	actgaaaagg	cacagcttac	3360
tgaaacaaat	gcaggatata	agtgttgg	ctccatgtc	tgtttcccg	aaggagaagc	3420
agcgtgtgca	tctgttggaa	gaatgttgg	acgagtata	ggaagatgt	gtccaaaccca	3480
catcagcagg	tgtaaatct	ctctaagtat	cctttgtc	agatgagtat	cctatcttga	3540
acaggatgaa	cctggcgctc	tagataccta	ataaaatcagc	agctgggtt	accaactgaa	3600
gcaggaagtc	tgcttattat	tagactctt	tgggtttaga	tttactttt	tggcttggg	3660
gtaagggctt	tttactcac	aaaggaagag	aaagcacatt	tgaagagact	tcatctaatt	3720
aacaaaaaat	tttgcatt	aatctttcta	aatgtgttc	agttaggatg	tgtttatgtt	3780
actcttttat	gttttgcata	actttcttt	ttaaattata	cataactat	ttccctttta	3840
ttttttttaa	attttttgc	ttttgtctt	tacaaaataa	tctcaacata	acagtgaagt	3900
caaaggctt	ccttttctt	ctctgtatgt	atattttcca	gttgggtatt	tgaggcttgc	3960
aggattttat	aaacacaaaa	ggctgttatt	ctgtccctt	accttttctt	atgtctgtaa	4020
tgaagtttt	aaatgagtc	tgattttaa	gttcttttgc	cttggatatt	attgcctta	4080
taaaagtgt	ttagttagaa	caggcttttt	aaattatgga	gtaaaagaat	cttagcatt	4140
ttgtcccttc	ctaaatctgt	ttcttgcatt	agatttatca	ccatgcctgc	tgttgcac	4200
cataacgaaa	aaaaacacact	tttggtaaac	accatttaaa	attca		4245

<210> 53
<211> 2124
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7477720CB1

```
<400> 53
atggcctctgc agatgttctgt gacttacagt ccttggaaatt gtttgcatact gctagtggtc 60
cttggatgttt ctgaagcattc ttctgttgc aatgaatctg caaatccac tgctcgttat 120
gcattcaacg cttgggttgc tgctgccagc tcagagccag aggaaggat atctgttttt 180
```

gaactggatt atgactatgt gcaaattcct tatgaggtca ctctctggat acttcttagca 240
 tcccttgcaa aaataggctt ccacctctac cacaggctgc caggcctcat gccagaaaagc 300
 tgcctccta tcctggggg ggcgctggg ggcgcac tcttcggcac cgaccacaaa 360
 tcgcctccgg tcatggactc cagcatctac ttccctgtatc tcctgccacc catcggtctg 420
 gaggcggct acttcatgcc caccggccc ttcttgaga acatcggtc catcctgtgg 480
 tggcagtat tgggggccct gatcaacgcc ttggcatttgc gcctctccct ctacctcatc 540
 tgccaggta aggcctttgg cctggggcgcac gtcaacctgc tgcagaacct gctgttggc 600
 agctgtatc cgcgcgtgg cccagtggc gtgcgtccg tggttgggaa agcgcgcgtg 660
 aacgagcgc tctacatgtat gatctttggg gaggccctgc tcaatgtatgg cattactgtg 720
 gtcttataca atatgttaat tgcccttaca aagatgcata aatttgaaga catagaaaact 780
 gtcacattt tggctggatg tgcccatttgc atcgttgtgg ggcttggagg ggtattgttt 840
 ggcacatgtt ttggatttat ttctgcattt atcacacgtt tcaactcagaa tatctctgca 900
 attgagccac tcatacgctt catgttcagc tatttgtctt acttagctgc tgaaacccctc 960
 tatctctccg gcatctggc aatcacagcc tgccgactaa caatgaaaaaa gtacgtggaa 1020
 gaaaacgtgt cccagacatc atacacgacc atcaagtaact tcatgaagat gctgagcagc 1080
 gtcagcgaga ccttgatctt catcttcatttgc ggtgtgtcca ctgtgggcaa gaatcacgag 1140
 tggaaactggg ctttcatttgc cttcacccctg gcctctgtcc aaatctggag accatcagc 1200
 gtatctgtc tcttctatat cagtaaccag tttcgactt tcccctctc catcaaggac 1260
 cagtgatca ttttctacag tgggttgcggaa ggagctggaa gtttttactt tgcatttttgc 1320
 cttctctgt ctcttttcc taggaagaaa atgtttgtca ctgctactct agtagttata 1380
 tacattactg tatttattca gggaaatcaca gttggccctc tggtcaggta cctggatgtt 1440
 aaaaaaaacca ataaaaaaaga atccatcaat gaagagctt atattctgtct gatggatcac 1500
 ttaaaggctg gaatcgaaga tgggtgtggg cactggagtc actaccaagt gagagacaag 1560
 tttaagaagt ttgatcatag atacttacgg aaaatcctca tcagaaagaa cctaccacaa 1620
 tcaagcattt tttctttgtt caagaagctg gaaatgaagc aagccatcga gatgggtggag 1680
 actgggatac tgagctctac agctttctcc atacccatc aggcccagag gatacaagga 1740
 atccaaagac ttccccctga agatgtggag tccataaggg acattctgac atccaaacatg 1800
 taccaagtgc ggc当地ggc cctgtcttac aacaaataca acctcaaaacc ccaaacaagt 1860
 gagaaggcagg ctaaagatg tctgtatccgc cgccagaaca ccttaaggaa gacatggagg 1920
 aaaggtcaca gctgccttgg gggaaagccg gctggccatc agaatatccg ctacotctcc 1980
 tacccctacg ggaatcctca gtctgcaggaa agagacacaa gggctgtgg gttctcagg 2040
 aagctgcccac cctggctgtct ctgctgttt tctgttagatg caggtggtaa atatctgggg 2100
 gtgtgggcca agaggcaaca tttaa 2124

<210> 54
 <211> 2195
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7477852CB1

<400> 54
 atggggggtt ttctaccaa ggcagaaggg cccgggagcc aactccagaa acttctgccc 60
 tccttctgg tcagagaaca agactgggac cagcacctgg acaagcttca tatgtgtcag 120
 cagaagagga ttcttagatc tccatgttgc egagcatcca agggaaaatga cctgtctgtt 180
 cttaggcaac ttctatggc ctgcacccctg gacgttgcac aaagaggagc cctggggggag 240
 acggcgctgc acatagcagc cctctatgtac aacttggagg cggccttgg gctgtatggag 300
 gctgccccag agctggctt tgagcccacc acatgtgagg cttttgcagg tcaagactgca 360
 ctgcacatcg ctgttgtaa ccagaatgtg aacctggtgc gtgcctgtct caccgcagg 420
 gccagttgtct ctgcacagac cacaggact gcctccgc gtagtccccg caacctcatc 480
 tacattgggtg agcaccctt gtccttgcgc gctgtgtga acagcgagga gatcggtcg 540
 ctgcttatttgc agcatggac tgacatcagg gcccaggact ccctggtaa cacagtatta 600
 cacatcctca tcctccagcc caacaaaacc tttgcctgc agatgtacaa cctgctgct 660
 tcctacatcg gacatggggc ccacctgcac cccctggacc ttgtgccaa tcaccagggt 720
 ctcacccctt tcaagctggc tggagtggag gtaacactg tgatgttcca gacactgtatg 780
 cagaagcgga ggcacatcca gtggacgtat ggacccctgaa cttccattct ctacgacccctc 840
 acagatcg actctctggg agaggagctg tccttcctgg agctgtgtt ctctctgtatg 900
 aaacgagagg ctgcacaaat tctggaaacag accccagtga aggagctgtt gagcttcaag 960
 tggaaacatgt atggccggcc gtacttctgc atcctggctt cttgttacatg gctctacatg 1020
 atctgcttta ccacgtctg cgtctaccgc ccccttaagt ttctgtgtgg caaccgcact 1080
 cattctcgag acatcaccat cttccagcaa aaactactac aggaggctt tgagacacgt 1140
 gaagatataca tcaggctggt gggggagctg gtgacatcg ttggggctgt gatcatcttgc 1200
 ctccttagaga ttccagacat cttcagggtt ggtgcctctc gctattttgg aaagacgatt 1260
 ctggggggcc cattccatgt catcatgatc acctatgcct ccctgggtct ggtgaccatg 1320
 gtgtgcggc tcaccaacac caatggggag gtggtggcca tgcctttgc cctgggtct 1380

ggctggtgca gtgtcatgta tttcaactcga ggattccaga tgctgggtcc cttcaccatc 1440
 atgatccaga agatgattt tggagaccta atgcgttct gctggctgat ggctgtggc 1500
 atcttggat ttgcctccgc gttctataatc atttccaga cagaggaccc aaccagtctg 1560
 gggcaattct atgactaccc catggcaactg ttaccacat ttgagcttt ttcactgtt 1620
 attgatgcac ctgccaacta cgacgtggac ttgccttca tggcagcat tgtcaactc 1680
 gcctcgcca tcattgccac actgctcatg ctaacttgt tcacgcctat gatgggcgac 1740
 acccaactgga gggtgccca ggagaggat gagctctgga gggccagggt cgtggccacc 1800
 acagtatgc tggagcggaa gtcgcctcg tgcctgtggc ctcgcctcg gatctgtggg 1860
 tgcgaattcg ggctggggaa ccgcgtttc ctgcgggtt agaaccacaa tgatcagaat 1920
 cctctgcgag tgcttcgcta tggaaatgt ttcaagaact cagacaagga gatgaccag 1980
 gagcatccat ctgagaaaca gcccctctgg gctgagatg ggactctagc cagagccct 2040
 ttggctcttc caacttcctc cctgtcccg accgcgtccc agagcagcag tcaccgaggc 2100
 tggagatcc ttctcaaaa caccctgggg cacttgaatc ttggactgaa ctttagtgag 2160
 gggatggag aggaggtcta ccattttga ttaac 2195

<210> 55

<211> 2055

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1471717CB1

<400> 55

cgcgtctggg ccctcagcct ggctcatgca caactgtctg aagtgtctg gactatggg 60
 atgaacacgcg gcctcagac gcgaggctgg ggaggaatcg tcggggttt tattatttt 120
 gccgtatttg ctgtcctgac agtagccat ctctgtatca tggagggcct ctctgcttc 180
 ctgcacgccc tgcgtactgca ctggaaagct gtttggggaa cttgagctat ttagaagatg 240
 gcaaccaaggc caacagagcc tgcacgatc ctgcgccttc gggaaatttggag cctggggacc 300
 gcagagccac aggttaaaga gccaaagacg ttaccgtgg aagatgcagt ggagactatc 360
 ggcttcgggg gtttccacat tgcctcttt ctgatcatgg gcagactgg ggtgggttag 420
 gccatggaga tcatgttcat agctgttgtg tccctgtca tccgcgttga atggcaactg 480
 gagaatttggc aggtggcatt agtaaccacg atgggtttt ttggctacat gtttttcagt 540
 atcccttttgc gcctcctggc tgacagatat gggcgtggg agattctgtc catctcggtc 600
 ctgtggggag cctatttctc ctgtgttacc tcgtttgtc cttcgatcat ctgggtttgtc 660
 ttccctgcgga cgatgtggg ctgtgttgtg tccggccact cgcagggtt aatcataaag 720
 actgaattttt tgcccacaa ataccggac tatatgttac cttgttctca ggtgttctgg 780
 ctgcggggtt ccctgtctc cattgggtt gcctctgtca tcatccccac catcggttgg 840
 cgctggctca ttgcgtcgc ctccatcccg ggcattatcc tcattgttgc cttcaagttt 900
 attcctgaat ctgcccgggtt caatgtctcc actggaaaca ctgcggctgc cctggccact 960
 ctggagcgcg ttgccaagat gaaccgtcg gtcattgcgg agggaaagct ggtggagccc 1020
 gtcctggaaa aaagaggaag atttgcagac ctattggatg ctaaatattt acggaccaca 1080
 ttacagatct gggtcatatg gtttggaaatc tcttttgcct actatgggtt tattctggcc 1140
 agtgctgagc tgctggagcg ggacttggtc tgggttcaa agtcagactc tgcgggtgg 1200
 gtgactgggg gggactcagg ggagaggccag agccctgtct actgcacat gtttgcaccc 1260
 tctgactatc ggaccatgtat catcagcacc atcgggtaaa ttgttttcaa tcccttaat 1320
 atactgggea tcaatttcc gggaaagacgg ctgacccatc ttatccat gggatgcacg 1380
 gctttatctt gccttctctt caacatttgc acttcaatgtt cggccgtat tggcttcctc 1440
 ttcatgttgc gggctctggt agctgcaaac ttcaacaccg tctacattta cacagcttag 1500
 gtcctacccca ccacgtcgc cgcttgggg atggaaacca gggccctt gtgtcgatt 1560
 ggtgcaatgg tggccatt tataatccag gtttttatgat gtgcattatc actggggcc 1620
 ctgtgtctt tctcatctgt ctgtgttgta tgcgcattt ctgcattcac tctccccatc 1680
 gaaacaaaag gacggccctt ccagcaattt aaatgaagac ctgcaagct atgtctacca 1740
 gatgagaaaaa atgaatttca tcttcagaac tgcgggtcat ttttttaaaa cttgggttta 1800
 ctctgtatc ctactcggtt attagtaatg tgatttttt taaaaggca tataatggaa 1860
 tgggttaggt aactgtatc tgatcttcc ctgaggaac aatataaaa gtacttttat 1920
 aaaatataat ttaagcttc aaaggggtgt gaggggaga tggtgccccc gaagatggct 1980
 ttcttcgtt gaaatcaagt ctgtaaacct ttatatgaat aaatactaaa ttttaaactt 2040
 aaaaaaaaaaaa aaaaaa 2055

<210> 56

<211> 4727

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte ID No: 3874406CB1

<400> 56

aagagctgct	ggagtaggc	cccat	ttaaa	gaaaaatga	agaagcagca	ataaaagaagt	60
tgttatcg	acctagaca	acagaga	act	ggtttgc	gtgtttctag	agtgc	120
attat	ttcc	tgacagtt	gttcc	cacca	tccttc	cacg	180
atgat	atg	aacagaaa	cgt	tatc	cacttc	caaga	240
cttaa	aaag	ggaggat	gaa	aagagag	ggggc	cctc	300
ggactgt	ttg	ctgt	ttc	tttgc	tcc	tttcc	360
cctc	agaatc	tg	ggg	atgaga	ttt	atgt	420
ccaat	atcta	at	ggg	aat	taat	ttgt	480
ggaaca	agg	ttt	ggg	aaat	tttt	tata	540
ttaccat	at	ccat	ggg	ac	act	tttgc	600
caggat	at	act	ggg	ac	at	tttgc	660
ggtg	at	cat	ggg	at	act	tttgc	720
gctat	at	gt	ggg	aaat	act	tttgc	780
aaag	ctgt	ccat	ggg	tttgc	tttgc	tttgc	840
ttc	actgt	ttt	ggg	at	tttgc	tttgc	900
cctt	ttgc	act	ggg	tttgc	tttgc	tttgc	960
gtat	at	act	ggg	at	act	tttgc	1020
cttt	ggat	ct	ggg	tttgc	tttgc	tttgc	1080
ggag	atg	tc	ggg	at	tttgc	tttgc	1140
caaagg	acta	at	ggg	tttgc	tttgc	tttgc	1200
tat	tttgc	act	ggg	at	tttgc	tttgc	1260
gtat	at	ct	ggg	aaat	tttgc	tttgc	1320
cttt	ggat	tc	ggg	tttgc	tttgc	tttgc	1380
ggag	atg	cc	ggg	at	tttgc	tttgc	1440
caaagg	act	at	ggg	tttgc	tttgc	tttgc	1500
tat	tttgc	aaat	ggg	at	tttgc	tttgc	1560
ttcaat	gtt	at	ggg	tttgc	tttgc	tttgc	1620
aaagg	gat	tc	ggg	at	tttgc	tttgc	1680
atc	aaa	at	ggg	tttgc	tttgc	tttgc	1740
actt	tttgc	tttgc	ggg	at	tttgc	tttgc	1800
ggatt	ggat	cc	ggg	tttgc	tttgc	tttgc	1860
catgt	gtat	ca	ggg	at	tttgc	tttgc	1920
gtat	catgt	cc	ggg	tttgc	tttgc	tttgc	1980
tgggt	tctt	at	ggg	at	tttgc	tttgc	2040
acat	tttgc	tttgc	ggg	tttgc	tttgc	tttgc	2100
cttg	tat	tttgc	ggg	at	tttgc	tttgc	2160
ata	at	tttgc	ggg	tttgc	tttgc	tttgc	2220
gata	at	tttgc	ggg	at	tttgc	tttgc	2280
gtctt	at	tttgc	ggg	tttgc	tttgc	tttgc	2340
ata	at	tttgc	ggg	at	tttgc	tttgc	2400
gat	at	tttgc	ggg	tttgc	tttgc	tttgc	2460
tttgc	at	tttgc	ggg	at	tttgc	tttgc	2520
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	2580
tttgc	at	tttgc	ggg	at	tttgc	tttgc	2640
aaaat	at	tttgc	ggg	tttgc	tttgc	tttgc	2700
atc	at	tttgc	ggg	at	tttgc	tttgc	2760
gat	at	tttgc	ggg	tttgc	tttgc	tttgc	2820
tttgc	at	tttgc	ggg	at	tttgc	tttgc	2880
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	2940
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3000
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3060
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3120
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3180
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3240
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3300
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3360
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3420
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3480
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3540
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3600
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3660
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3720
tttgc	at	tttgc	ggg	tttgc	tttgc	tttgc	3780

gctggaaaaaa gttcatctat tagaatgata tctggatca caaagccaac tgctggagag 3840
 gtggactga aaggctgcag ttcatgttgc ggcacccctgg ggtactgccc tcaagagaac 3900
 gtgctgtggc ccatgctgac gttgagggaa cacctggagg tgtatgctgc cgtcaagggg 3960
 ctcagggaaag cggacgcgag gctcgccatc gcaagattag tgagtctt ccaaactgcat 4020
 gagcagctga atgttccctgt gcagaaaatta acagcaggaa tcacgagaaa gttgtt 4080
 gtgctgagcc tcctgggaaa ctcacctgtc ttgtcttgc atgaaccatc tacggcata 4140
 gaccccacac ggcagcagca aatgtggcag gcaatccagg cagtcgttaa aaacacagag 4200
 agaggtgtcc tcctgaccac ccataacatc gctgaggcgg aaggcttgc tgaccgtgt 4260
 gcacatcatgg tgcgttggaa gcttagatgc attggctca tccaaacacct gaaaaacaaa 4320
 ctggcaagg attacattct agagctaaaaa gtgaaggaaa cgtctcaagt gactttggtc 4380
 cacactgaga ttctgaagct tttcccacag gctgcaggc agcaaaggta ttctctttg 4440
 ttaacctata agctgcccgt ggcagacgtt taccctctat cacagacctt tcacaatta 4500
 gaagcagtga agcataactt taacctggaa gaatacagcc tttctcagtg cacactggag 4560
 aaggtattct tagagcttcc taaagaacag gaagtaggaa attttgatga agaaatttat 4620
 acaacaatga gatggaaact cctccctcat tcagatgaac cttaaaacact caaaccttagt 4680
 aattttcttg ctgtatctcc tataaaactt tgtttatgt aataatt 4727

<210> 57

<211> 3852

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4599654CB1

<400> 57

cggccggcgat tcggagccctt cgacgcctcc gctagagccc gcggggctgc gccgactcct 60
 gctctggagg ggttgcgggt acctgatggc cacagaggc tcttaggaggc cgagcgtgt 120
 agcgggggtgg ggcgcattggaa ggcagagcag cggccggcgg cgggggcccag cgaaggggcg 180
 accccctggac tggaggcggt gcctcccggt gctccccgc ctgcgaccgc ggcctcagg 240
 ccgatccccca aatctggggcc tggccctaaag aggaggcacc ttgggacgct gctccagcct 300
 acggtaaca agttctccct tcgggtgttc ggcagccaca aagcagtggaa aatcgagcag 360
 gagcgggtga agtcagcggt ggcctggatc atccacccct acagcactt cgggtttac 420
 tgggacctga tcatgctgct gctgatggt gggAACCTCA tcgtctgccc tggggcatc 480
 accttcttca aggaggagaa ctcccccgc tggatcgct tcaacatgtt gtctgatact 540
 ttcttcttac tggatctggt gtcacacttc cgaacggcga tcgtgttggaa ggagggtgt 600
 gagatcttgc tggccacccgc ggccatccgc acgcgttacc tcgcacccctt gttctgggt 660
 gacccatctt ctatccatccc tgggattac attccttag tggtgaggtt ggagccacgg 720
 ttggacgctg aggttacaa aacggcacgg gcccctacgca tcggtcgctt caccacatc 780
 ctaaggctgc tgaggctgct ccgcctctcc cgccctcatcc gctacatata ccagtggag 840
 gagatcttcc acatgaccta tgacctggcc agtgcgttgg ttcgcatctt caacccatc 900
 gggatgtatgc tgctgtatgc tcactggat ggctgtctgc agttctgtt gcccattgt 960
 caggacttcc ctcccgactg ctgggtctcc atcaaccaca tggtaacca ctcgtggggc 1020
 cggcaggattt cccatccctt gttcaaggcc atgagccaca tgctgtgc tggctatggg 1080
 cagcaggcac ctgttaggc gcccgcgtc tggtctacca tgctcagcat gatcgtaggt 1140
 gccacatgtc acgcctgtt catccggccat gccacggcac tcattccatc cctggactt 1200
 tcctggcgctc agtaccagga aagatcacaag cagggtggagc agtacatgtc ttccacaag 1260
 ctggccagcag acacgcggca ggcgcattccac gagtactatg agcaccgtt ccaggcaag 1320
 atgttcgatg agggaaagcat cctggggcag ctgagcggac cgcttcgca gggatctt 1380
 aacttcaccc tgcggggccct ggtggccac atgccgtgt ttgcctatgc cgaccccaac 1440
 ttctgtactg cagttctcac caagctgcgc tttggaggct tccagccggg gnatctgt 1500
 gtgcgtgagg gctccgtggg gaggaaatgt tacttcatcc agcatgggt gtcagtgt 1560
 ctggcccgcc ggcgggggaa cacacgcctc accatggat cctactttgg ggagatctgc 1620
 ctgctaacta gggggccggc cacagccatg gttcgggctg acaccatgtt ccgcctttac 1680
 tcactcagcg tggaccattt caatgcgtt cttggaggat tccccatgt ggcggggcc 1740
 tttagactg tggccatggaa tcggctgtc cgcattccgc agaagaattt catactgcag 1800
 cggaaaggctt ccgaggccaaatg tccaggcggc agtgggtggca tcattgagca gcatgggt 1860
 caacatgaca gagacatggc tgggggttgc cggggcgggccccggcagcac aggagcttag 1920
 cttagtggaa agccagttact gttggggccca ctggatcatg cggcccttca ggcagctgt 1980
 gtgacccatcca atgtggccat tggccctgtact catcagccgg gcccctgtcc cctctccct 2040
 gactctccag ccacccttct tgctcgctt gcttggcgct cagcaggctc tccagcttcc 2100
 ccgctgggtgc ccgtccgagc tggccctatgg gcatccaccc cccgcctgtcc cggcccaact 2160
 gcccgaaccc tgcacccgcag cctatcccg gcaggccgtt cccaggttcc cctgtgtt 2220
 ccccccctccag gaggagggtgg acggccgtt ggcacccctggg gccgcccactt ctcagccctcc 2280
 caaccctctcc tgcctcagcg ggcaacagggc gatggcttcc ctggcgtaa gggatcagga 2340
 agtgagcgcc tgcctccctc agggctcttgc gccaaacactt caaggacagc ccagcccccc 2400

aggcaccagg tgcctgagcc agccacaccc cggggctc agctttctgc caacatgtaa 2460
 aacctttag tacatccagc cttagttctt ggggtgcagt agtatgtacc caagggcaga 2520
 tgcccttgg ggaaggccat gggacactga aacattgccc catggaaatg tcgaccctgt 2580
 gcggacattc cgcatactgc catgaagacg gtctctgtgt cctcagctca agaattcctgt 2640
 agcttgtccc atcataatcc attcaccctgt tcatcatgtg tactgagcag ctaccatgtt 2700
 caaggtata tgccaggcgc tgtatgttcc cactgccaag tagaagtgc taaaacccct 2760
 ctgacaagga tattcccttg gctatgttcc tgccagggtgc aggcccaggc ccatgaccctc 2820
 accttacta agcacaacta ctgcactgc ccatactgc caagtaacta gatgtctctg 2880
 tttccctgcc aatgatctcg cagggtctgc ccggctcggt tatcttcctg tttcctgttag 2940
 catagccagg cactgcagg cacctgtgc cccattgtgc tcagcagatg tcttgggtcc 3000
 tgagtggtgg tatccacttt taccctgtca ctgccccctg tggacactct gtgtctaccc 3060
 tctgagtggtt aacatacttc taagttccct gcagttctgt tcctgtggta gaccatctt 3120
 ttgtaaactg cgagcttcctt cttccctgtta ccctctgccc cagtcgtgac cccctaaaaag 3180
 ttaagggtt gttggcacct cttattaaat atgcacgtt agatcccccc cggtggaggg 3240
 gcaaatggct gaatccttgcgt gtatattttttttttctcgat tttttatcta ttcatattt 3300
 taattgtatt tattcatatca ctaactttat gtgttaccaa ttaattttgtt ttacccattc 3360
 ctatccatccat ccctccctc ctttcaggta aaggagacag gaggagttagg aggaggcagg 3420
 gcctccatccat gccagctctt gtggtccttgc cccaaacccca tcagcgaat acttgaacct 3480
 tctccagggtt agggcaggaa ggagccacat gagagaggga gaaggaccgc gtttacctt 3540
 agagttttgtt tttttttt cttctgtgtt ttgtgttgg tgcaggaata agggaaaggc 3600
 ccaaggatatac caagccctggg gaagggcagg ccagccagca cctctgcctt ctcagggaca 3660
 agagtagtcc tttaccaccc tcaactctgc tgcctccctt cctactctac accattaaag 3720
 actgtgggac caggaccata agtctccctt cttctgtggt ggggagttctt aggggttctt 3780
 ggtgtgtggg agaagttta taattgttca caaacagctg gtttaataaataaaatagac 3840
 acactcaaaa aa 3852

<210> 58
 <211> 1917
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5047435CB1

<400> 58
 atggcagaag gtgaaagggg agcagacgtg ccacatggcc tcggggcctg gctggccgac 60
 gtggcgttgg cggcgctgcg cgccggaggc caggcagga gggacagagg cggggggcggg 120
 ccggaaatgt tgcggcgcc cagcggcggtt ggggactccg gcgggggatg cgcgcccggc 180
 ccctcagcgc ccccagcagc cccgcgcgtc ccgcctgcgc tggccactc cccacctgtc 240
 ctgccttgcgt gtgcctgtgt gtcttgcgt ggtggcctgat cttttgttta tgaactggca 300
 gtcatatcag gtgcctgtgtt gccactgcag cttgacttttgg ggcataagctg ctggagcag 360
 gagttcttgg tggcagcgtt gtccttgggg gtcctcctcg cttccctgtt tgggtggcttc 420
 ctcattgact gctatggcag gaagcaagcc atcctcggga gcaacttggt gctgctggca 480
 ggcagcctga ccctggccct ggctggttcc ctggcctggc tggcccttggg ccgcgtgtg 540
 gttggcttcg ccattttccct ctctccatgc gtttgcgttgc tctacgtgtc agagctgggt 600
 gggccacggc agcggggagt gtcgggtgtcc ctctatgagg caggcatcac cgtgggcattc 660
 ctgtctctat atgccttcaa ctatgcactt gtcgttaccat cttggggatg gaggcacatg 720
 ttccggcttggg ccactgcacc tgctgttccgc caatccctca gcctccctt cctccctgtt 780
 ggtacagatg agactgcac acacaaggac ctatccccac tccaggagg tgaggcccc 840
 aagctgggac cggggaggcc acggtaactcc tttctggacc tcttcagggc acgcgataac 900
 atgcgaggcc ggaccacagt gggcttgggg ctgggtgtct tccagcaact aacaggccag 960
 cccaaacgtgc tgcgttatgc ctccaccatc ttcaactccg tgggtttcca tgggggatcc 1020
 tcagccgtgc tggcctctgtt ggggcttggc gcagtgaagg tggcagctac cctgaccggc 1080
 atggggctgg tggaccgtgc aggccgcagg gtcctgttgc tagctggctg tgccttcatg 1140
 gccctgtccg tcagtggcat aggccctgtc agcttgcgg tgcctatggca ctcaggcccc 1200
 agctgtctgg ctgtgccttccaa tgccaccggg cagacaggcc tccctggaga ctctggctg 1260
 ctgcaggact ctccttaccatc tcccttccaa aggaccaatg aggaccaaaag ggagccaatc 1320
 ttgttccatgt ctaagaaaaac caagccccat cccagatctg gagacccttc agcccctcc 1380
 cggctggccc tgagctgtc cttcccttggg cccctctgc cgcgtcgccgg gcatgcactg 1440
 ctgcgttggc cgcactgtc gtgcctgtat gtccttgcgtt gtccttctc ctttgggttt 1500
 gggccagtga ctggcttgcgt ctcagcggat atctaccctg tggagatacg aggaagagcc 1560
 ttccgcttctt gcaacagctt caactggggc gccaacctct tcatcagctt ctccttccctc 1620
 gatcttccatgtt gcaaccatggc ttgttccctgg accttccctgc tctacggact gaccgctgtc 1680
 ctccggcttgg gtttcatatca ttatattttttt cctgaaacaa aaggccagtc gttggcagag 1740
 atagaccaggc agttccagaa gagacgggttc accctgagct ttggccacag gcaagaactcc 1800
 actggcatcc cgtacagccg catcgagatc tctgcggccct cctgaggaat ccgtctgcct 1860

ggaaaattctg gaactgtggc tttggcagac catctccagc atcctgcttc ctaggcc 1917

<210> 59

<211> 6791

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7475603CB1

<400> 59

cgcgctccct gcctgctgct gggcggagg aaggcggcaa gagctgcgga gcccctggaa 60
 gagcttccag gaaccctgct ctgtggata aaggaatgag gttcagaaag gggcaggagt 120
 tgcccgccag cgcacccgac gtcttcagcc cgaccgttgt cctgacactt ctgtcccgctc 180
 ccctgcccag ttcacccatg gccttctgga cacagctgtat gctgctgctc tggagaatt 240
 tcatgtatcg cccggagacag cccgtccagc ttctggtca attgtgtgg octctcttcc 300
 tcttcttcat cctggggct gttcgccact cccacccggc cctggagcac catgaatgcc 360
 acttcccaa caagccactg ccacccggg gcaccgtcc ctggctccag ggtctcatct 420
 gtaatgtgaa caacacccgt tttccgcagc tgacaccggg cgaggagccc gggccctgaa 480
 gcaacttcaa cgactccctg gtatccccggc tgctagccga tgcccgact gtgctggag 540
 gggccagtgc ccacaggacg ctggctggcc tagggaaagct gatcccacg ctgaggggctg 600
 cacgcacccggc ggcccgaccc caaccaacca agcagtctcc actggaacca cccatgctgg 660
 atgtcgccga gctgctgacg tcactgctgc gcacccgaaatc cctgggttg gcactggcc 720
 aagcccgagg gcccctgcac agttgttgg aggccgtga ggacctggcc caggagctcc 780
 tgccgtgcg cggctgggt gggcccttgc gggccctct gcaatgtca gggacttagc agcacagttg 840
 gcccccttgg gttgtgtca gggccctct gcaatgtca gggacttagc agcacagttg 900
 gccccctccat caactggta gggctgtac acctgtatgg gttgtgggg caggagccag 960
 aatccggccct gccagacacg acgctgagcc cccctggccat gggctgtatgg gggcccttgg 1020
 acagccaccc gctgtcccgcc tcgtctggta gacgcctgaa gcctctgatc ctcggaaagc 1080
 tactctttgc accagataca ccttttaccc ggaagctcat gggccagggtg aaccggaccc 1140
 tcgaggagct caccctgctg agggatgtcc gggagggtgtg ggagatgtctg ggacccggaa 1200
 tcttccacccat catgaacccac agttccaatg tgccatgtct gcaacccggcc ctgcagatgc 1260
 agatgaagg aagaaggcag cccagacccgt gaggccggga ccacatggag gcccctgcgat 1320
 cccttctggta ccctggggac ggtggctaca gctggcagga cgcacacgct gatgtggggc 1380
 acctgggtgg caccgtggcc cacccttccat gggacttagc cttggacaaag ctggaggccgg 1440
 cacccttccat ggcacccggc ggtggcttccat gggacttagc cttggcggaa catcgattct 1500
 gggccggccgt cgtttcttgc ggcacccggc gggacttagc cccacccggc cacccttccat 1560
 cagacccgggg cccctggccac gtcgcgtatc aaatccgcata ggcacccggc gttgtcacga 1620
 ggaccaataa gatcaggac aggttttggg accctggccc agccggaccc cccctgaccg 1680
 acctgcgcta cgtgtggggc gggttcgtgt acctgcaaga cctgggtgg gttgtggccg 1740
 tccgcgtgtc cagccggcc cacccttccat gggacttagc cttggcggcc atgccttatac 1800
 cgtgttatgt ggacacgtg ttcttgcgtg tgctgagccg gtcgtggccg ctcttcttgc 1860
 cgctggccctg gatctactcc gtcacactg cagtgaaggc cgtgggtgg gagaaggaga 1920
 cgccggctcg ggcacccatg cccatggccat ggttcgtgtc cggccgtgtc tggcttaggt 1980
 ggttcctcag ctgcctcgcc cccatggccat ggttcgtgtc gtcgtggcc tgggtgtca 2040
 agctgggggg catccatccc tacagccacc cggccgttgtt cttcccttgc ttggcagcc 2100
 tcgcgggtggc caccgtgtc ctcgttccat gggacttagc cttcccttgc ttggcagcc 2160
 tgctgcggc ctgcggccgc ctcgttccat gggacttagc cttcccttgc ttggcagcc 2220
 tgcttggcc ggcacccggc cccatggccat gggacttagc cttcccttgc ttggcagcc 2280
 tgcccttcgg cttcggctgc gagacccgtt ctcgtgtgg ggcacccggc gggccggcc 2340
 agtggcacaa cgtggccacc cggccctaccc cagacgtctt cggcccttgc caggctctg 2400
 gccttctgtc gtcgtggccg cgcgttccat gggacttagc cttcccttgc ttggcagcc 2460
 gcccaggcca gtacgggatc ctcgttccat gggacttagc cttcccttgc ttggcagcc 2520
 gccggactcg gcccccccaag agtccagccc ctcgttccat gggacttagc cccacccggc 2580
 tggtagaaga ggcacccggc ggcctgtatc ctcgttccat gggacttagc cttcccttgc ttggcagcc 2640
 gcttcttgc aaggccggc cccatggccat gggacttagc cttcccttgc ttggcagcc 2700
 acatcaccgc ctteccggcc cacaacccggc cccatggccat gggacttagc cttcccttgc ttggcagcc 2760
 gtggcccttc cccatggccat gggacttagc cttcccttgc ttggcagcc 2820
 gcatggccgc catccggcc cccatggccat gggacttagc cttcccttgc ttggcagcc 2880
 tgctgaccgt ggacacgtc gtcgttccat gggacttagc cttcccttgc ttggcagcc 2940
 tagtggggcc cggccggcc ctcgttccat gggacttagc cttcccttgc ttggcagcc 3000
 tgcagactcg ccacccgtt ggtggatgc aacggaaagct gtcgtggcc attgccttgc 3060
 tggccggcc ccaagttgtt atccctggacg agctacccggc tggccgtggat cctgttccat 3120
 gcccgccgtat ttgggagctg ctgcctaaat accgagaagg tgcacccgtt atcccttgc 3180
 cccaccacccat ggtggggcc cccatggccat gggacttagc cttcccttgc ttggcagcc 3240
 gcttcttgc ctgtggatcc ccaacttccat gggacttagc cttcccttgc ttggcagcc 3300

tgacgctggt gaaggccccgc ctgccccctga ccaccaatga gaaggctgac actgacatgg 3360
agggcagtgt ggacaccagg caggaaaaga agaatggcag ccagggcagc agagtccgca 3420
ctccctcagct gctggccctg gtacagcact ggggcccg ggcacggctg gtggaggagc 3480
tgccacacga gctggctgt gtgctgccct acacgggtgc ccatgacggc agcttcgcca 3540
caactttccg agagctagac acgcggctgg cggagctgag gctcactggc tacggatct 3600
ccgacaccag cctcgaggag atcttccctga aggtggtgga ggagtgtgtc ggggacacag 3660
atattggagga tggcagctgc gggcagcacc tatgcacagg cattgtctgc ctagacgtaa 3720
ccctacggc caagatggcc ccacaggaga cagcgtggaa gaacggggaa ccagctgggt 3780
cagccccaga gactgaccag ggcctggggc cagacggcgt gggccgggta cagggctggg 3840
caactgaccgg cccagcgtc caggccctgc ttctcaagcg ctttctgtt gcccggccca 3900
gccggccggg cctgttcgccc cagatcgtgc tgcctgccct ctttgtggc ctggccctcg 3960
tgttcagctt catcgtgcct cctttcgggc actaccggc tctgcggctc agtcccacca 4020
tgtacgggtgc tcaggtgtcc ttcttcagtg aggacgcccc aggggacccct ggacgtgccc 4080
ggctgtcgaa ggcgtcgtc caggaggcag gactggagga ccccccaagt cagcatagct 4140
cccacagggtt ctcggcaca gaagttccctg ctgaagtggc caaggtctt gccagtggca 4200
actggacccc agagtctcca tccccagcct gccagtgtag cccggccggt gcccggcc 4260
tgctgcccga ctgccccggc gcagctgggt gtccccctcc gcccaggca gtgaccggct 4320
ctggggaaagt gtttcagaac cagacaggcc ggaacctgtc tgacttcctg gtcaagacct 4380
acccgcgcct ggtgcggcag ggcctgaaaga ctaagaagtg ggtGAATGAG gtcagatacg 4440
gaggcttctc gctggggggc egagaccccg gcctgcctc gggcaaaagag ttggggccgt 4500
cagttggagga gttgtggcgc ctgctgagtc ccctgcctgg cggggccctc gaccgtgtcc 4560
tgaaaaaacct cacagctgg gtcacagcc tggatgtca ggacagtctc aagatctgg 4620
tcaacaacaa aggctggcac tccatggtg ccttgccta ccgagccagc aacgcaatcc 4680
tccgtgtca cctggccca gccccggccc gccacgcccc cagcatcacc acactcaacc 4740
acccttggaa cctcaccacag gacgagctgt ctgaggctgc actgatggcc tcctcggtgg 4800
acgtccctcg tccatctgt gtgtctttt ccatgtcctt tgccggcc agtttcaactc 4860
ttgtccctcat tgaggagcga gtcacccggc ccaagcacct gcagctcatg gggggccctgt 4920
ccccccaccc tctactggcgtt ggcaactttc tctggacat gtgtaaactac ttgtgcccag 4980
catgcatctgt ggtgtctatc ttctggccct tccacagag ggcataatgtg gcccctgcca 5040
acctgcgtc tctctgtctg ttgtactac tgtatggctg gtcgatcaca ccgctcatgt 5100
accaggcctc cttctcttc tcctgtccccca gcacagccct tgggtgctc acctgtcataa 5160
acctctttat tggcatcaat ggaagcatgg ccaccttgc ttttgagctc ttctctgtatc 5220
agaagctgca ggaggtgagc cggatcttgc aacaggttt ctttatcttc ccccacttct 5280
gcttggccgg ggggcttattt gacatggtgc ggaaccaggc catggctgtat gcttttgagc 5340
gcttgggaga tggccatggt gatacagggg ccccttcc ttctcttcac actactgtc gagaacactct 5400
gccaactcc gccacaccc agggtgaggt ctctgcact cctgggagag ggggacgggg 5460
atgtagcccg tgaacgggg cgggtggcct aaggagccac ccagggggat gtgtgggtgc 5520
tgaggaactt gaccaaggta taccgtgggc agagatgcc agctgttgc cgttggc 5580
tggggattcc ccctggtag tttttgggc tgctgggtgt gatgttgc tttttggggat 5640
ccacgtttcg catggtagcgg ggggacacat tggccagccag gatgttgc tttttggggat 5700
gccacacccg gggccggaa cccagtgtcg cgcacccctcg gatgttgc tttttggggat 5760
ccgatgcccc ttttagctgt ctgacggggc gcgagcacct gatgttgc tttttggggat 5820
gccccgtccc ggaggcccg gttggccaga ccgtggctc gatgttgc tttttggggat 5880
tctcatggta cgcagaccgg cctgcaggca cctacagccg gatgttgc tttttggggat 5940
cgacggccct ggccgtgggtt ggggaccccg ccgtgggttt tctggacgag cgcaccacag 6000
gcatggaccc cagcgcgcgg cgcttcctt ggaacagccct tttggccgtg tggcggggagg 6060
gcccgtcaat gatgttgcacc tccatagca tgaggaggat gatgttgc tttttggggat 6120
tagccatcat ggtGAATGG CGTTCCTGT GCTGGGGCAG CCGCAACAT CTCAGGGCA 6180
gattcgcggc ggttcacaca ctgaccctgc ggggtcccgc cgaggacat gatgttgc tttttggggat 6240
cgcccttcgt ggcggccgag tttccctgggg cggagctgctcg gatgttgc tttttggggat 6300
tgcgtttcca gctggcccg ggagggcgct ggccttggc gatgttgc tttttggggat 6360
cggtgcacgg cgcagagcac ggcgtggagg actttccgt gatgttgc tttttggggat 6420
aggtattctt gtacttcctc aaggaccagg ggaaggacga gatgttgc tttttggggat 6480
aggcaggagt gggagttggac cccgcgcctcg gcctgcagca gatgttgc tttttggggat 6540
tcctcgatga cccttagact gccgagactg tgctctgagc gatgttgc tttttggggat 6600
cggggaggcc ctgggaatgg caagggcaag gtagagtgcc taggaccct ggactcaggc 6660
tggcagaggg gctgggtgccc tggagaaaaat aaagagaagg ctggagagaa gccgtgggtgg 6720
tgaaaaaaa a 6780
tgaaaaaaa a 6791

<210> 60
<211> 5214
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 7477845CB1

<400> 60
atgctcaaaa ggaagcagag ttccagggtg gaagcccgc cagtcactga ctttggtcct 60
gatgagtctc tgtcggataa tgctgacatc ctctggatta acaaaccatg ggttcactct 120
ttgctgcgca tctgtccat catcagcgta atttctgtt gtatgaatac gccaatgacc 180
ttcggacact atccctccact tcagtatgtg accttcaact tggatacatt attgatgtt 240
ctctacacgg cagagatgt agcaaaaatg cacaatccgg gcattgtcaa gggggatagt 300
tcctatgtg aagatcgctg gtgtttttt gatggattt tggcttttgc ctttgggtt 360
tctttgtgc taggtgtt gtaaaattgt gatatagttg atcagatgtc accttgggc 420
atgttgcgga ttccacggcc actgattatg atccgagcat tccggattt tttcgattt 480
gaactgccaa ggaccagaat tacaaatatt taaaagcgat cgggagaaca aatatggagt 540
gttccattt ttctacttt ctttctactt cttatcgat tttaggagt tcagatgtt 600
ggaacattt cttatcgat tggtaaat gacacaaagc cagggaatgt aacctggaa 660
agtttagcta ttccagacac acactgctca ccagagctag aagaaggcta ccagtcccc 720
cctggattt aatgcatttga ctttgaagat ctgggactt gcaggcaaga gctggctac 780
agtggctta atgagatagg aactagtata ttcaccgtt atgaggccgc ctcacaggaa 840
ggctgggtgt tcctcatgt cagagcaatt gacagettc cccgttggog ttcctacttc 900
tattcatca ctctcattt cttctcgcc tggctgtga agaacatgtt tattgtcttt 960
atcattgaaa aatttgcaga aatcagatgt cagttcaac aaatgtgggg atcagaagc 1020
agcactacct caacagccac caccatgtt tttcatgaag atgctgtctt aggttggcag 1080
ctggtagctg tggatgtcaa caagccccag gacgcgccc cagcctgcct ccagaaaatg 1140
atgcggcat cctgtttcca catgttcatc ctgagcatgg tgaccgtgaa cgtgatcg 1200
gcggctagca actactacaa aggagaaaaac ttcaggaggc agtacgacga gttcacctg 1260
gcggagggtgg ctttacagt actttttgtat ttggaagcac ttctgaagat atgggtttt 1320
ggatttactg gatataatttttgc cttatcttc actacttccatc aactactact cgtaatttgg 1380
actactcttc atgtataacc agatctttat cattcacaat tcacgtactt tcaggtactc 1440
cgagtagttc ggctgattaa gattcacct gcatthaag actttgtgtt caagatattt 1500
ggctctggaa aaaagcttgg gagggttttttgc gtttgcagat ttgcaagaac ttgacagattt 1560
tcagcaattt gtttgcagat gtttgcgtt ctcaccagg aaggatgggtt ggacgtatgt 1620
ccgaggccat ttatgtccat gtttgcagatc tgggcaccccg tgggttgcatt ctatttcatt 1680
gaccaaactc taaatgttgtt gggacatatg ctgagttgtt ttgttgcgtt tattttggac 1740
ctctatcatc ttttgcacat tctgtatcctc cttaaacaaat taaagcaaaat taaagcaaaat 1800
aacttagaac ttgatgaaga cctaaagaag ctgcgaatct ttgaaaaatttccaaacaga 1860
gcggacacca aagaaaagct cccttacgc tcagattttttaa cagttcctaa aatcagggag 1920
cctcaaatgg taaaatctc aaagcttctt caacaggaca catgttgctc tctgagaagc 1980
agtttatga agcagtttat tgaccgcac cactccaaac gctcagcaat tgaggacaac 2040
ctcccgacca ccttccctc ctctgtcgac gtttgcagca tcagggcaag gaacctctg 2100
aaatacatcg accaaaaact tcgcaacttgc aggtcaatcc tcagctgac gcatcatatc 2160
gaaaaggaga cccgacttgc taaaatcttgc tcaaacagcc agaggatcag caggggaaaa 2220
ggatcatttgc aggggcaccc tcgcaaggatc tcaaaacagcc aatacgtga tatataaaaaaa 2280
cgccaagagc gcaggttactt aagacatggaa aatacgttgc aggtcaatcc tcagctg 2340
tctcttgaaa ctttgactca agatcattgc aaaaaggagc tagcagatgt gcttcaagga 2400
gaagtcaactg aaataaaatgtt gattcaggaa ccataacttcg ataagccact gtttattgtc 2460
aagtgcaaaaa aggaactcaag agagagccac cgggtgggtt tccgagacag cttcaacgc 2520
gggcgagaac acagggttcaag aaacttttgc aaaaatataaa agtaccatct tcttattgt 2580
tctaaaacag accctgtcac aggagctgtt gtcattgtca cctggacttgc tgcattgtca 2640
ttgctggat tggacttca cctggacttgc atgcatgtca tgcattgtca tgcattgtca 2700
atttccatga tggggatgtt cccgtttcgat agagtcattgc atgcacccatc tttcgatgtt 2760
gctgatgtt tggggatgtt attcatgtgc tggatgttgc tggatgttgc tggatgttgc 2820
ggcttattttt tcacttccatc tgctgtcatc tggatgttgc tggatgttgc tggatgttgc 2880
atatatcttgc tggatgttgc atttctttgtt tggatgttgc tggatgttgc tggatgttgc 2940
ggagctcaggc ttctaatgtt ccttcgggtc tggatgttgc tggatgttgc tggatgttgc 3000
ccccagatga gggaaatgtt tcgagaactt tggatgttgc tggatgttgc tggatgttgc 3060
tccatttttgc tgctgacatt aatgtctgtt tggatgttgc tggatgttgc tggatgttgc 3120
ggaaaactgg ccaagtgcac tgatccaaat tggatgttgc tggatgttgc tggatgttgc 3180
ttcagaatttgc atgtcactgtt gtcaaaagac tggatgttgc tggatgttgc tggatgttgc 3240
aaacctggat ttgggttgc cctgggttgc gcaatccctc ggaactttaa tttcgacaat 3300
gtggggaaacgc ctatgttgc gttgtttgaa gtcgttgc tggatgttgc tggatgttgc 3360
agagatgttta ttatgttgc tggggggccg tggatgttgc tggatgttgc tggatgttgc 3420
ttcctgggtt gcatgttgc actgaccgtt tggatgttgc tggatgttgc tggatgttgc 3480
gaaaacaagg ggacggctt gtcgttgc tggatgttgc tggatgttgc tggatgttgc 3540
cgactgaaga tcgcacacggcc tcttcatttttgc tggatgttgc tggatgttgc tggatgttgc 3600
gctaaaatgtt atgacataac ccagcatcc ttttttgc tggatgttgc tggatgttgc 3660
ctggcccaacttgc cgggtgttgc ctgttgc tggatgttgc tggatgttgc tggatgttgc 3720
ttggcaacaa tggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 3780
atagcaatgtt cggctgttgc ttttgc tggatgttgc tggatgttgc tggatgttgc 3840

```

acgtcgcttg gcgttgtatg ggtggtgctt cacttgcctt tcctgaatgc atataacttac 3900
atgatggcg cttgtgtat ttttatttgc tctgtggaaa acatgtaaacg 3960
ctaaagatgc tcctcttgc agtggtcgtc agcatgtaca agagcttctt tatcatagta 4020
ggcatgttcc tcttgcgtct gtgttacgtc ttgtctggag ttgtttattt tggtactgtg 4080
aaatatgggg agaatattaa caggcatgca aattttctt cggctggaaa agctattacc 4140
gtactgttcc gaattgtcac aggtgaagac tggacaacaaga ttatgcataa ctgtatggta 4200
cagcctccgt ttgttactcc agatgaattt acatactggg caacagactg tgaaaattat 4260
gctggggcac ttatgtatcc ttgttcatca ttatgtcatca ttgcctacat catgctaaat 4320
ctgcttgttag ccataattgt ggagaatttc tccttgattt attccactga ggaggaccag 4380
ctttaagtt acaatgatct tcgccactt caaataatat ggaacatggt ggatgataaa 4440
agagaggtat tccccacgtt ccgcgtcaag ttccctgctgc ggctactgcg tggaggctg 4500
gagggtggacc tggacaagga caagctcctg tttaagcaca tttgttacga aatggagagg 4560
ctccacaatg gcccgcacgt cacccatcat gatgttgc gcatgcttc ataccggc 4620
gtggacatcc ggaagagctt gcagctggag gaactctgg cgagggagca gctggagtac 4680
accatagagg aggagggtggc caagcagacc atccgcattt ggctcaagaa gtgcctgaag 4740
cgcacatggc ctaaacacgca gcagtcgtgc agtacatcc acagccttag agagagtca 4800
cagaagagc cttggccgtt ttgttgc cccagcatcg agaccaccca gccaggatgag 4860
gacacgaatg ccaacacgtca ggacaacacg atgcacccatg agacaaggc ccagcagc 4920
ctcctgagcc ccacgcgtc ggatcgaggaa ggaagtcggc aagatgcagc cgacgcagg 4980
aaaccccaaga gggaaatttgg gcagttggcgt ctgcctctt ccccaaaacc aataagccat 5040
tcagtgtctt cagtcaacctt acggtttggg ggaaggacaa ccatgaaatc tgcgtgtgc 5100
aaaatgaacc ccatgactga cgcggcttcc tgcgttctt aagttaagaa gtgggtggacc 5160
cgccagctga ctgtggagag cgacgaaagt gggatgacc ttctggatat ttag 5214

```

<210> 61
<211> 1818
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 168827CB1

```

<400> 61
ggaaattgtc tccgtgaccc tgctgcagat gggagagagg gcccattaag aagagagtgg 60
ggtcaggatc aacacacaca cttagtgta ttttaaggaaa gggaaatattt tctctttgaa 120
cttatcttgc tacagtctt ttgtcttc tttggggatca cttgtccagc ctaatggcc 180
tttcaggacc tccttagatca agtggggaggc ctggggagat tccagatcct tcagatggtt 240
ttccttataa tttcaacgt catagtatac catcaaactc agctggagaa cttcgcagca 300
ttcatacttg atcatcgctg ctgggttcat atactggaca atgacactat ccctgacaaat 360
gaccctggga ccctcagcca ggatgcctc ctgagaatct ccatcccattt cgactcaaat 420
ctgaggccag agaagtgtcg tcgctttgtc catccccagt ggaagctcat tcatctgaat 480
gggaccttcc ccaacacgag tgagccagat acagagccct gtgtggatgg ctgggtataat 540
gaccggacttcc caccattgtg actaagtggg atctggatg cgaatctcaa 600
ccactgaatt cagtagctaa atttcttattt atggctggaa tgatgggtggg aggcaaccta 660
tatggccatt tgcagacag gtttgggaga aagtctgtc tcagatggc ttacctccag 720
ctcgccattt taggcacatg tgcggctt gtcacccatc tccctgtata ctgctccctg 780
cgcttcttgg ctggggctgc tacatattttt atcattgtaa atactgtttt gtaattgtt 840
gagttggataa ctcaccaatt ctgtgcccattt gcattgacat tgacacttt tgctgtctgt 900
attggacata taaccctggg aaggctggct tttgttcatc gagaccagtg catctccag 960
ttgggtatgt ctgcacccatg ctttgcattt tttctgttctt caaggtggct ggcagagtc 1020
gctcggtggc tcattatcaa caacaaacca gaagagggtc taaaggaact tacaacaaagct 1080
gcacacagga atggaaatgaa gaatgtgtt gacatcctaa ccatggaggt ttgaaatcc 1140
accatgtggc aagaacttggc ggcagcacag aaaaagcatt ctctttgtga attgtccgc 1200
atacccaaca tatgtaaaat aatctgtttc ctgtcccttgc tgagatttgc aagtaccatc 1260
cctttttggg gccttactt gcacccatccatctggaa acaatgtttt cctgttgcag 1320
actcttttg gtgcgtcac cttcttggcc aattttgttgc cacccttggg actgaatcac 1380
atgagccgtc gactaagcca gatgttgc atgttcttgc tggcaacctg cttctggcc 1440
atcatatttg tgcctcaaga aatgcagacc ctgcgtgtgg ttttggcaac cctgggtgtg 1500
ggagctgtttt ctcttggcat tacctgtttt actggcccaag aaaaatgtact aatttcccttc 1560
ataatcagggg gaagagctac tggaaatcaat gggaaactttt ctaatattttt gggagccctg 1620
gcttcctca tggatgttgcct aagcatatat tctcgacccat tggccctggat catctatgg 1680
gtcttgcctt tgcctcttgc ctttgcattt ctccttgc tggaaaccat gaaccagcct 1740
cttcttgaca gcatccagga tttttttttt gggatgatcaat atagccttagc tggcccttc 1800
aggagctctg tgcattatgg 1818

```

<210> 62

<211> 2245
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 7472734CB1

 <400> 62

cccttggAAC	agttaggatgt	tggtgatgca	aaagtcaatg	tttaaactca	acattccact	60
ttcctttaAC	taagaatagt	ttttattaac	ttttagtaaa	actcagtcct	agtccaaaaa	120
aaggccctgcT	ctctgatctt	tgtacaagaa	catcataaag	caattcactt	tggattttct	180
aatatccccat	ttctgagaag	aatggcagac	tattgaacag	gtgtatTTA	ggtcacgtgg	240
ggactgcATC	cacctgaaaa	tccaccgttG	acttacagg	aaactcagag	atcaggatct	300
ttcacagAGT	agtctttAA	gaagattcag	tgtcaacag	ctagcagtct	ctttGCCAAA	360
taattatATC	tgtgacttct	gaaactattt	ggctgcctaa	agttaaaggA	cttggggaaa	420
gtccccccac	tgctcttctG	cagttagtgc	acccactca	gtgcaggGCC	caccaagaag	480
aaagcagtGT	caggatccac	atggcacttG	ggttaactttG	tgaaggggGA	cattttctcc	540
ctctgaACTT	ctcttcataa	agtcttGtg	cttcccttG	gggatCACCT	gttcagtctc	600
aatgggcttT	gatgtgctCC	tggatcaagt	gggtggcatG	gggagattcc	agatttGtct	660
gatagcttC	ttttgcatca	ccaacatcct	actgttcccT	aatattgtgt	tggagaactt	720
cactgcattC	acccttagtC	atcgctgctG	ggtccccctc	ctggacaatG	acactgtgtc	780
tgacaatgat	accgggacCC	tcagcaagga	tgaacctctG	agaatctcca	tcccactgga	840
ctcaaaccTG	aggccacaga	agtgtcagcg	ctttatccat	ccccagtggc	agctccttca	900
cctgaacGGG	accttccccA	acacaaatga	gccagacacg	gagccctgtG	tggatggctg	960
ggtgtacgac	agaagcttC	tcctctccac	cattgtactG	gagtggacc	tggtatgtGA	1020
atctcagtCA	ctaaaatcaa	tggtcaatc	cctattatG	gctgggtcac	ttctgggagg	1080
tctaataatAT	ggccatcttT	cagacaggTT	tggagaaAG	tgcgtctca	gatggtctta	1140
cctccagcTC	gccattgtAG	gcacctgtcG	ggccttgcT	cccaccatcc	tgcgtatactG	1200
ctccctgcGC	ttcttggctG	gggctgtcAc	atttagcatc	attgtaaata	ctgtttgtt	1260
aattgttagAG	tggataactC	accaattctG	tgccatggca	ttgacattGA	cactttgtc	1320
tgcttagtatt	ggacatataa	ccctgggaAG	cctggcttt	gtcattcgag	accagtgcAt	1380
cctccagttG	gtgatgtctG	caccatgtt	tgtttcttt	ctgttctcaa	ggtggctggc	1440
agagtctgt	cggtggtca	ttatcaacaa	caaaccagaa	gagggtttaa	aggaacttag	1500
aaaagctgca	cacaggaatG	gaatgaagaa	tgtgaagac	atcctaaccA	tggagggttt	1560
gaaatccacc	atgaagcaag	aactggaggc	agcacagaaa	aagcattctc	tttgtgaatt	1620
gctccgcata	cccaacatat	gtaaaaaat	ctgtttctG	tcctttgtGA	gatttgcaag	1680
taccatccct	ttttggggcc	ttactttca	cctccagcat	ctggaaaaca	atgtttct	1740
gtgcagact	ctcttggtg	cagtcaccc	cctggccaat	tgtgtgcac	tttgggcact	1800
gaatcacatG	agccgtcgac	taagccagat	gcttctcatG	ttctacttgg	caacctgcct	1860
tctggccatC	atatttgc	ctcaagaat	gcagaccctG	cgtgtggtt	tggcaaccct	1920
gggtgtgggA	gctgcttctC	ttggcattac	ctgttctact	gcccaagaaa	atgaactaat	1980
tccttcata	atcaggggaa	gagctactgg	aatcaacttggA	aactttgcta	atattggggg	2040
agccctggct	tcctctatga	tgatcctaag	catatattct	cgaccctgc	cctggatcat	2100
ctatggagtc	tttggccatcc	tctctggcct	tgtgtcctc	ctccttcctg	aaaccagggaa	2160
ccagcctctT	cttgacagacA	tccaggatgt	gaaaaatgag	ggagtaaata	gcctagctgc	2220
ccctcagaggG	agctctgtc	tataG				2245

<210> 63
 <211> 3196
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 7473473CB1

 <400> 63

ggggcgcccg	ggggagcgct	actaccatga	actgcctggT	cctccctcccc	agagctgctc	60
atccgggtcg	ggctggagac	acagtcaagg	gaccccgctcg	ccgcccgcgc	gccccctctt	120
cttcggctc	aatcttctct	tccacccttt	cctccctttc	ctccacccctc	tttgcctgca	180
tccccccctc	ccccggcccg	gatcctggcc	gctgctctcc	agaccaggA	tgcgggggg	240
caagagaggg	ctggtggcac	cgcagaacac	attttggag	aacatcgta	ggcgctccag	300
tgaatcaagt	ttcttactgg	gaaatgccta	gattgtggat	tggcctgtag	tttatagtaa	360
tgacggttt	tgtaaactct	ctggatatacA	tcgagctgac	gtcatgcaga	aaagcagcac	420
ttgcagttt	atgtatgggg	aattgactga	caagaagacc	attgagaaag	tcaggcaaac	480
tttgcacaac	tacgaatcaa	actgcttgc	agttcttctG	tacaagaaaa	acagaacccc	540

tgttggttt tatatgcaaa ttgcaccaat aagaaaatgaa catgaaaagg tggcttggt 600
 cctgtgtact ttcaaggata ttacgttggt caaacagcca atagaggatg attcaacaaa 660
 aggttggacg aaatttgcac gattgacacg ggcttgaca aatagccaa gtgtttgca 720
 gcagctcacg ccaatgaata aaacagaggt ggtcataaa cattcaagac tagctgaagt 780
 tcttcagctg ggatcagata tccttcctca gtataaaca aagcgc当地 agacgccacc 840
 acacatttatt ttacatttatt gtgcttttaa aactacttgg gattgggtga ttttaattct 900
 tacatctac accgcccata tggttccctta taatgttcc ttcaaaacaa agcagaacaa 960
 catagcctgg ctggacttgg atagtgtgtt ggacgttatt tttctgttgc acatcggttt 1020
 aaatttccac acgactttcg tggggccccc tggagaggtc atttctgacc ctaagctcat 1080
 aaggatgaaat tatctgaaaaa cttgggttgc gatcgtctg ctgtctgtt taccttatga 1140
 catcatcaat gccttgaaa atgtggatga gggaatcagc agtctttca gttctttaaa 1200
 agtggtgctg ctcttacgac tggccgtgtt ggcttaggaaa ctggaccatt acctagaata 1260
 tggagcagca gtcctcggtc tcctgggtgt tgggttggaa ctgggtggcc actggctggc 1320
 ctgcataatgg tatagcatcg gagactacga ggtcattgtt gaagtcaacta acaccatcca 1380
 aatagacagt tggctctacc agctggctt gaggattggg actccatatac gctacaatac 1440
 cagtgcgtggg atatggaaag gaggacccag caaggattca ttgtacgtt cctctctcta 1500
 ctttaccatg acaaggctta caaccatagg atttggaaac atagctctta ccacagatgt 1560
 ggagaagatg ttttccgggtt ctatgtat ggttggcgct cttctttatg caactattt 1620
 tggaaatgtt acaacaattt tcctggcaat gtatggccaa accaaccatg accatgagat 1680
 gctgaaataat gtacggact tcctaaaact ctatcaggc cccaaaggcc tttagtgagcg 1740
 agtcatggat tatattgtct caacatggc catgtcaaaa ggcatttgata cagaaaagggt 1800
 cctctccatc tggcccaagg acatgagagc tgatatctgt gttcatctaa accggaagggt 1860
 ttttaatgaa catcctgctt ttgcattggc cagcgatggg tggctcgcg ctttggcggt 1920
 agagttccaa accattcaat gtgctccccc ggacctcatt taccatgtt gagaaggatgt 1980
 ggtatggccctc tgctttgtgg tgcaggatc ttggaaagtc atccaggatg atgagggttgt 2040
 ggcttattttt gggaaagggtt atgttatttttgg agacatcttc tggaaagaaaa ccacccttgc 2100
 ccatgcattt gcgAACGTC gggcaactgac gtactgtgac ctacacatca tcaagcggga 2160
 agcctgtctc aaagtccgtt acttttatac agctttgtca aactcccttca caagggatct 2220
 cacttctact tgcatttgc gggaaacggat catctttcgat aagatcatgt atgtgaagaa 2280
 agaggaggag gaggcccttc ggcagaagaa tgagggtgacc ctcagcattt ccgtggacca 2340
 cccagtcaga aagctttcc aagaagttcaa gcagcagaag gagctcgga atcagggtc 2400
 aacacagggtt gaccctgaga ggaaccaact ccaggttagag agccgccttct tacagaatgg 2460
 agcctccatc accggaaaccat gcgtgggtgac tggtcacag attactccca ttccagacgtc 2520
 tctggccttat gtggaaacca gtgaatccct taaggcagaac aaccgtgtt ccatggaaact 2580
 caagccccaa ggcgggtctg accaaaaatg tctcaagtc aacagccaa taagaatgaa 2640
 gaatggaaat gggaaagggtt ggctgcaact caagaataat atggggagccc atgaggagaa 2700
 aaaggaagac tggaaataatg tcaactaaagc tgagtcaatg gggcttattgtt ctgaggaccc 2760
 caagagcagt gattcagaga acagtgtgac caaaaaccca ctaagaaaaa cagattctt 2820
 tgacagtgg attacaaaaaa gtgacatttcg tttggataag gctggggagg cccgaagttc 2880
 gctagagcac agtcccatcc aggctgatgc caagcaccctt ttttatccca tcccgagaca 2940
 ggcttacag accacactgc aggaagtcaa acacgaactc aaagaggaca tccagctgt 3000
 cagctgcaga atgactgccc tagaaaagca ggtggcagaa attttaaaaa tactgtcgga 3060
 aaaaagcgta ccccaggcct catctcccaa atcccaaatgtt ccactccaag tacccttccca 3120
 gataccatgtt caggatattt ttagtgttcc aaggcctgaa tcacctgaat ctgacaaaga 3180
 tgaaatccac ttttaa 3196

<210> 64
 <211> 1602
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7477725CB1

<400> 64
 atggccttg aggagctttt ggttcaagtt ggaggccttg ggagatttca gatgcttcat 60
 ctggttttt ttcttccttc tctcatgttta ttaatccctc atatactgtt agagaacttt 120
 gctcgccca ttcttggca tcgttgcgtt gtcacatgc tggacaataa tactggatct 180
 ggttaatggaa ctggaaatctt cagttcaatggat ggccttgcga gaatcttat cccactagac 240
 tcaaatcttca ggccagagaa gtgtcgctgc tttgtccatc cccagttgc gcttcttcatc 300
 ctgaatggaa ctatccacag cacaagttagtgcagacacag aaccctgttggatggctgg 360
 gtatgtatgtt aaagctactt cccttcgacc attgtgacta agtgggaccc ggtatgttat 420
 ttttgcatttgc tggaaatcattt gtttcaattt ctacttgcga ctggaaatgtt ggtgggaggc 480
 atcataggtt gccatgttcc agacagggtt gggcgaagat ttatttgcatttgc atgggtttt 540
 ctccagcttgc ccattactga cacctgcgtt gccttcgttcc ccacccccc ttcttttgc 600
 gtactacgtt tcttggcagg ttttttttttcc atgatcatttttatcaatataa ttcttttgc 660

attactgagt ggataaggcc caactctaaa gccctggtag taatattgtc atctggtgcc 720
cttagtattt gacagataat cctggggaggc ttggcttatg tcttcggaga ctggcaaac 780
ctgcacgtgg tggcgcttgtt acctttcttt gtcttctttc ttcttcaag gtggctggtg 840
gaatctgctc ggtgggtgat aatcaccaat aaactagatg agggcttaaa ggcacttaga 900
aaagttgcac gcacaaatgg aataaagaat gctgaagaaa ccctgaacat agaggttcta 960
agatccacca tgcaggagga gctggatgca gcacagacca aaactactgt gtgtgacttg 1020
ttccgcaacc ccagtatgca taaaaggatc tgatcctgg tatttttagt atttgcaaac 1080
acaataacctt tttatggta catggtaat cttcagcatg tggggagcaa cattttccctg 1140
ttgcaggtaa tttatggagc tgtcgctctc atagttcgat gtcttgctct tttgacacta 1200
aatcatatgg gccgtcgaat aagccagata ttgttcatgt tcctgggtgg cctttccatt 1260
ttggccaaca cgtttgcctt caaagaaatg cagaccctgc gtgtggcttt ggcatgtctg 1320
ggaatcggtt gttctgctgc tacttttcc agtggcgtg ttcacttcat tgaactcatc 1380
cccactgttc tcagggcaag agtttcagga atagattaa cggcttagtag gattggagca 1440
gcactggctc ccctttgtat gaccttaacg gtattttta ccacttgcc atggatcatt 1500
tatggaatct tccccatcat tggtggcctt attgtcttcc tcctaccaga aaccaagaat 1560
ctgccttgc ctgacaccat caaggatgtg gaaaatcagt ga 1602

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 January 2002 (17.01.2002)

PCT

(10) International Publication Number
WO 02/004520 A3

(51) International Patent Classification⁷: C12N 15/12,
C07K 14/47, 16/18, C12Q 1/68, G01N 33/68

(21) International Application Number: PCT/US01/21448

(22) International Filing Date: 5 July 2001 (05.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/216,547 7 July 2000 (07.07.2000) US
60/218,232 14 July 2000 (14.07.2000) US
60/220,112 21 July 2000 (21.07.2000) US
60/221,839 28 July 2000 (28.07.2000) US

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RAUMANN, Brigitte, E. [US/US]; 5801 South Dorchester Avenue #3B, Chicago, IL 60637 (US). THORNTON, Michael [US/US]; 9 Medway Road, Woodside, CA 94062 (US). DING, Li [CN/US]; 3353 Alma Street #146, Palo Alto, CA 94306 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). HARLAND, Lee [GB/GB]; 18 Chaucer Court, New Dover Road, Canterbury, Kent CT1 3AU (GB). BURFORD, Neil [GB/US]; 105 Wildwood Circle, Durham, CT 06422 (US). GREENE, Barrie, D. [US/US]; 1332 10th Avenue #104, San Francisco, CA 94122 (US). SANJANWALA, Madhu, S. [US/US]; 210 Sylvia Court, Los Altos, CA 94024 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). YAO, Monique, G. [US/US]; 111 Frederick Court, Mountain View, CA 94043 (US). YANG, Junming [CN/US]; 7125 Bark Lane, San Jose, CA 95129 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). GANDHI, Ameena, R. [US/US]; 837 Roble Avenue #1, Menlo Park, CA 94025 (US). HAFALIA, April, J., A. [US/US]; 2227 Calle de Primavera, Santa Clara, CA 95054 (US). TRIBOULEY, Catherine, M. [FR/US]; 1121 Tennessee Street #5, San Francisco, CA 94107 (US). WALIA,

Narinder, K. [US/US]; 890 Davis Street #205, San Leandro, CA 94577 (US). AU-YOUNG, Janice [US/US]; 233 Golden Eagle Lane, Brisbane, CA 94005 (US). WALSH, Roderick, T. [IE/GB]; 8 Boundary Court, St. Lawrence Road, Canterbury, Kent CT1 3EZ (GB). RAMKUMAR, Jayalaxmi [IN/US]; 34359 Maybird Circle, Fremont, CA 94555 (US). LU, Yan [CN/US]; 3885 Corrina Way, Palo Alto, CA 94303 (US). LU, Dyung, Aina, M. [US/US]; 233 Coy Drive, San Jose, CA 95123 (US). AZIMZAI, Valda [US/US]; 5518 Boulder Canyon Drive, Castro Valley, CA 94552 (US). LAL, Preeti [IN/US]; P.O. Box 5142, Santa Clara, CA 95056 (US). ELLIOTT, Vicki, S. [US/US]; 3770 Polton Place Way, San Jose, CA 95121 (US). NGUYEN, Dannie, B. [US/US]; 1403 Ridgewood Drive, San Jose, CA 95118 (US). XU, Yuming [US/US]; 1739 Walnut Drive, Mountain View, CA 94040 (US). SEILHAMER, Jeffrey, J. [US/US]; 12555 La Cresta, Los Altos Hills, CA 94022 (US). BOROWSKY, Mark, L. [US/US]; 122 Orchard Avenue, Redwood City, CA 94061 (US). KHAN, Farrah, A. [IN/US]; 3617 Central Road #102, Glenview, IL 60025 (US). KEARNEY, Liam [US/US]; 50 Woodside Avenue, San Francisco, CA 94127 (US). THANGAVELU, Kavitha [IN/US]; 1950 Montecito Avenue #23, Mountain View, CA 94043 (US). DAS, Debopriya [IN/US]; Apartment 13, 1179 Bonita Avenue, Mountain View, CA 94040 (US). POLICKY, Jennifer, L. [US/US]; 1511 Jarvis Court, San Jose, CA 95118 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

[Continued on next page]

(54) Title: TRANSPORTERS AND ION CHANNELS

WO (57) Abstract: The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(88) Date of publication of the international search report:

20 March 2003

INTERNATIONAL SEARCH REPORT

Final Application No

PCT/US 01/21448

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/12 C07K14/47 C07K16/18 C12Q1/68 G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, WPI Data, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE EMBL [Online] 7 January 2000 (2000-01-07) "Human DNA sequence from clone RP1-137F1 on chromosome 6p21.1-21.2 Contains two genes for novel members of the potassium channel subfamily K (KCNK).Contains ESTs, STSs, GSSs and a CpG island." Database accession no. AL136087 XP002212498 see nts 51861-67180 and complement thereof;/product="dJ137F1.1 (novel member of the potassium channel subfamily K)";/translation="MYRPRARA.....;/db_xref=" SPTREMBL:Q9H592"</p> <p>---</p> <p style="text-align: center;">-/-</p>	1,3,4, 11,12

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

6 September 2002

Date of mailing of the international search report

09.01.2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

MADDOX, A

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/21448

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL [Online] 23 December 1998 (1998-12-23) "CIT-HSP-2384B13.TRB CIT-HSP Homo sapiens genomic clone 2384B13, genomic survey sequence." Database accession no. AQ310967 XP002212499 the whole document ---	11,12
P,X	WO 00 52164 A (CURTIS RORY A J ;MILLENNIUM PHARM INC (US)) 8 September 2000 (2000-09-08) SEQ ID NOS:5-8 figure 3 ---	1,3, 6-16,18, 19,22, 25,26
P,X	WO 01 32872 A (SILOS SANTIAGO INMACULADA ;CURTIS RORY A J (US); MILLENNIUM PHARM) 10 May 2001 (2001-05-10) SEQ ID NOS:4-6 figure 3 ---	1,3, 6-16,18, 19,22, 25,26
P,X	DATABASE EMBL [Online] 2 May 2001 (2001-05-02) "Homo sapiens 2P domain potassium channel TaIk-2 (KCNK17) mRNA, complete cds." Database accession no. AF358910 XP002212647 the whole document ---	1-4,11, 12,45
P,X	GIRARD C ET AL: "GENOMIC AND FUNCTIONAL CHARACTERISTICS OF NOVEL HUMAN PANCREATIC 2P DOMAIN K+ CHANNELS" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, vol. 1, no. 282, 23 March 2001 (2001-03-23), pages 249-256, XP002908280 ISSN: 0006-291X figure 1A ---	1-4,9, 11,12,45
X	WO 00 05367 A (KATO SEISHI ;KIMURA TOMOKO (JP); PROTEGENE INC (JP); SAGAMI CHEM R) 3 February 2000 (2000-02-03) SEQ ID NO:68 and 88 page 79, line 32 -page 81, line 26 ---	1-19,22, 25-45,77
X	WO 00 27871 A (CENTRE NAT RECH SCIENT) 18 May 2000 (2000-05-18) figure 14A ---	1-19,22, 25-45,77
		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/21448

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00 26253 A (SMITHKLINE BEECHAM PLC) 11 May 2000 (2000-05-11) SEQ ID NOS:1-4 ---	1-19,22, 25-45,77
E	WO 01 55367 A (HUMAN GENOME SCIENCES INC ; ROSEN CRAIG A (US); BARASH STEVEN C (US) 2 August 2001 (2001-08-02) see SEQ ID NOS:3748 and 881 ---	3,11,12
L	DATABASE GENESEQ [Online] 8 January 2002 (2002-01-08) "Human musculoskeletal system related polynucleotide SEQ ID NO 3748." Database accession no. AAL37383 XP002212648 Cited to indicate SEQ ID NO:3748 of W00155367 the whole document ---	3,11,12
L	DATABASE GENESEQ [Online] 8 January 2002 (2002-01-08) "Human musculoskeletal system related polynucleotide SEQ ID NO 881." Database accession no. AAL35539 XP002212649 Cited to indicate SEQ ID NO:881 of W00155367 the whole document -----	3,11,12
A	WO 00 26245 A (INCYTE PHARMA INC ;AZIMZAI YALDA (US); CORLEY NEIL C (US); YUE HEN) 11 May 2000 (2000-05-11) the whole document -----	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 01/21448

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

45 and 77 both completely, 1-44 all partially

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 01/21448

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: 45 and 77 both completely,
1-44 all partially

Polypeptide and corresponding nucleotide as defined by SEQ ID NOS:1 and 33; methods, hosts, compositions and antibodies based on said sequences

Inventions 2-32: Claims 1-108 in so far as is applicable for the sequences as defined below

Polypeptide and corresponding polynucleotide defined by SEQ ID NOS:2-32 and 34-64, each individual polypeptide sequence of 2 through 32 representing an individual invention in combination with the corresponding polynucleotide sequence of 34 through 64, where invention 2 is represented by SEQ ID NOS:2 and 34 and each subsequent sequential pair representing another invention through to invention 32 represented by SEQ ID NOS:32 and 64; methods, hosts, compositions and antibodies based on said sequences.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 01/21448

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claim 18 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claim(s)32 and 34 are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.2

Present claims 20,21,23, and 24 relate to a product/compound/method defined by reference to a desirable characteristic or property, namely agonists and antagonists of the polypeptide of claim 1. The claims cover all products/compounds/methods having this characteristic or property, whereas the application does not provide support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the product/compound/method by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has not been carried out for claims 20,21,23, and 24

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 01/21448

INTERNATIONAL SEARCH REPORT

Information on patent family members

I	nternational Application No
PCT/US 01/21448	

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0155367	A		AU 4141301 A	07-08-2001
			AU 4141401 A	07-08-2001
			AU 4141501 A	07-08-2001
			AU 4141601 A	07-08-2001
			AU 4141701 A	07-08-2001
			AU 4141801 A	07-08-2001
			AU 4141901 A	07-08-2001
			AU 4313401 A	07-08-2001
			AU 4313501 A	07-08-2001
			AU 4313601 A	07-08-2001
			AU 4313701 A	14-08-2001
			AU 4526201 A	07-08-2001
			AU 4719001 A	07-08-2001
			AU 4719101 A	07-08-2001
<hr/>				
WO 0026245	A	11-05-2000	AU 1606800 A	22-05-2000
			EP 1144443 A2	17-10-2001
			WO 0026245 A2	11-05-2000
<hr/>				