Two≈200 mg 93% ²³⁵U samples were irradiated at the LBNL 88-Inch cyclotron in 12 and 16 MeV deuteron beams

Post-irradiation counting shows the 642.3 keV g-ray from the decay of the ²³⁶Np isomeric state (t_{1/2}=22.5 h)

- Neptunium-236g ($t_{1/2}$ =1.5 · 10⁵ a) is used for IDMS determination of ²³⁷Np ($t_{1/2}$ =2.14 · 10⁶ a).
- ²³⁸U(p,3n)^{236m+g}Np experimental measurements show a
 99.9: 0.1 favoring of ²³⁷Np: ^{236g}Np
- The formation of short-lived isomer ^{263m}Np (22.5h) generated via ²³⁵U(d,n) was quantified for two energies non-destructively after 60 minutes (16 MeV) and 9 hours (12 MeV) of deuteron irradiation at LBNL in August 2018.
- Preliminary analysis shows EoB ²³⁵U(d,n)^{236m}Np production yields of 29.95 kBq/uAh at 16 MeV and 5.15 kBq/uAh at 12 MeV.
- ^{236g}Np and ²³⁷Np production cannot be quantified through decay spectroscopy: irradiated ²³⁵U foils have been shipped to LANL for ICP-MS analysis.
- ²³⁸U(p,3n)^{236m+g}Np planned for Spring 2019, to measure the narrow 22 MeV <E_p< 27 MeV window for clean ^{236m+g}Np production
- Analysis underway by UCB postdoc Andrew Voyles

Gamma-ray spectra from ²³⁵U foils irradiated at 12 MeV (top) and 16 MeV

The LBNL/UCB nuclear data group is characterizing the use of "secondary" neutron beams for isotope production

- Produces a focused (~5°), **intense** ($\phi_n/\phi_d\approx$ 3%) energetic secondary neutron flux (ESNF) from breakup of primary deuteron beam.
- ESNF can be used to produce high specific-activity radionuclides via (n,2n), or charge exchange reactions such as (n,p) and (n,α).
- Neutron volumetric range allows for trivial scale-up of production through increased target mass
- Development supported under Research Development and Training in Isotope Production Proposal

The LBNL/UCB nuclear data group is characterizing the use of "secondary" neutron beams for isotope production

- First development run took place in August 2018: simultaneous production of ^{64,67}Cu via energetic Zn(n,x), using 33 and 16 MeV deuteron breakup.
 - ^{64,67}Cu are emerging as a "theranostic pair" for simultaneous dose delivery and imaging.
- Preliminary analysis shows EoB production rates of ⁶⁴Cu:⁶⁷Cu in an approximately 75:1 ratio at 33 MeV and an 800:1 ratio at 16 MeV.
 - Selection of deuteron energy allows co-production of ^{64,67}Cu in a tunable ratio for applications!
 - Complete analysis is underway and will form the master thesis for Ms. Nora Pettersen from the University of Oslo.
- Irradiation of targets mounted at 0° to maximize neutron fluence
 - Deuteron breakup neutrons have an energy-angle correlation the spectrum "hardness" varies with angle off-axis
 - This provides a second "tuning knob" for the ⁶⁴Cu:⁶⁷Cu ratio!
 - Experiments in November 2018 and Feb 2019 will better characterize the angular breakup neutron spectrum

We are also addressing the need for non-standard PET tracers: $^{\text{nat}}\text{Fe}(p,x)^{51,52}\text{Mn}$ – Novel PET imaging

Two overlapping stacks: E_p= 55→15 MeV, 25→0 MeV (120 nA@10 min, 100 nA@20 min)

- Emerging medical radionuclides
 - ⁵¹Mn (t_{1/2} = 46 min, 97% β⁺) short-lived PET tracer for metabolic studies
 - $^{-52g}$ Mn (t_{1/2} = 5.6 d, 29% β⁺) $^{-1}$ long-lived PET tracer for neuron tracking, immune studies

Behavior of excited nuclear states

Measurements across wide ranges of energy and product mass provide ideal inputs for improving predictive capabilities of reaction modeling

...as well as "Training and Retaining" the next generation...

Project	Status	Degree
Fe(p,x) ^{51,52m,52g} Mn	Manuscript Preparation	PhD, MSc
Zn(n,x) ^{64,67} Cu	Analysis Underway	MSc
Ir(d,x) ^{193m} Pt	Scheduled: Feb 2019	MSc
La(p,x) ¹³⁴ Ce	Manuscript Preparation	PhD
²³⁵ U(d,x) ^{236m} Np, Tm(d,x) ¹⁶⁹ Yb	Analysis Underway	n/a
$As(p,x)^{72}Se,^{68}Ge$	Analysis Underway	PhD
⁸⁶ Sr(p,x) ⁸⁶ Y, ⁸⁶ Sr(d,x) ⁸⁶ Y	Scheduled: Feb 2019	MSc
QMN Development	Analysis Underway	PhD

In addition to
measurements, we train
our students in
dissemination of nuclear
data to the user and
evaluation communities →
compiling each publication
into EXFOR, including
uncertainty analysis!

Since 2016, this student-led program has generated 1 PhD and 1 MSc, with an additional 3 PhD's and 2 MSc's in progress!

