Do Now: Graphing practice

1. Graph the line $y = \frac{1}{3}x + 1$ after filling in the values in the blanks.

y-intercept = _____

Slope = _____

In the following two problems, solve for the value of x.

2.
$$7 = 2x - x$$

$$3. \ \frac{1}{2}(2-4x) = 6$$

4. Graph the two inequalities after filling in the values in the blanks.

$$y \ge -3x + 1$$

$$y < -\frac{3}{2}x - 2$$

Solve each equation for y.

(a)
$$x + y = 5$$

(a)
$$4x - 2y = 12$$

Name:

Fitting linear models and interpreting correlation

5. Dr. Huson buys a new plant and measures how tall it is after a number of weeks. Some of his measurements are shown below. Plot the points in the grid below.

Weeks	2	5	7	10
Height (cm)	5	6	8	9

State, to the *nearest tenth*, the linear regression equation that approximates the height, y, of the plants after x weeks.

Explain what the y-intercept means in the context of the problem.

Explain what the slope means in the context of the problem.

Simplifying polynomials, standard form

6. Simplify the expresion 2x + 3(x + 5) + 4.

7. Write the expression $3x + 2x^2 - 6x^2 + 9x + 5 + 3x$ as a polynomial in standard form.

8. Write the expression $5x + 4x^2(2x + 7) - 6x^2 - 9x$ as a polynomial in standard form.

Graphing quadratic functions

9. Given the quadratic function $f(x) = x^2 + 1$, find the row differences.

(x)
10
5
2
1
2
5
10

Graph the function as a line over the domain $-3 \le x \le 3$.

Rate of change

10. Find the slope of the function from the ratio of the line differences.

	x	f(x)
(a)	-2	-1
	-1	1
	0	3
	1	5
	2	7

$$\begin{array}{c|cccc}
 & x & f(x) \\
 & -4 & 7 \\
 & -2 & 4 \\
\hline
 & 0 & 1 \\
 & 2 & -2 \\
\hline
 & 4 & -5 \\
\end{array}$$

Change in y =

Change in $y = \underline{\hspace{1cm}}$

Change in x =

Change in $x = \underline{\hspace{1cm}}$

Slope = _____

Slope = _____

11. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

Slope = _____

 $Slope = \underline{\hspace{1cm}}$

12. Fill in the T-chart, plot the points, and draw the line.

Write down the slope and y-intercept of the line.

$$m =$$

$$b =$$

Circle the row for the y-intercept.

Simplify each expression ("Collect like terms")

13.
$$x^2 - 3x - 4 + 2x^2 + 2x + 4$$

14.
$$5(a^2 - 3a + 1) - 2(a^2 + 2a - 3)$$