Tutorial 5

Fei Gao & Yuliia Frund

Word Embeddings

Word Embedding Types

- Static
 - o (e.g.: Word2Vec, GloVe)

- Contextual
 - o (e.g.: ELMo, BERT)

Skip-gram embeddings

Train a model that predicts context words:

[CONTEXT TARGET CONTEXT]

Image: https://en.wikipedia.org/wiki/Word2vec

Skip-gram embeddings

Train a model that predicts context words:

[CONTEXT TARGET CONTEXT]

These are **static** embeddings!

Image: https://en.wikipedia.org/wiki/Word2vec

Skip-gram embeddings

In other words...

Suppose this is our training data:

The quick brown fox jumps over the lazy dog.

Target word: FOX

A model with a context size 1 will predict:

FOX, brown

FOX, jumps

Byte Pair Encoding

Lexicon

- Let's imagine that you're training a machine translation system.
- Will it see **ALL** possible words in target and source language?
 - No! There will always be words your system hasn't seen!
- How do you deal with **unseen words**?
 - Subword units!

Byte Pair Encoding

```
function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up into individual characters or bytes, and learning a vocabulary by iteratively merging tokens. Figure adapted from Bostrom and Durrett (2020).

Sennrich, Rico; Birch, Alexandra; Haddow, Barry (2015-08-31). "Neural Machine Translation of Rare Words with Subword Units" https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte Pair Encoding

In practice:

- Very frequent words are likely to be stored whole
- Rare and unseen words can still be handled
- Manageable vocabulary size

Class Slide 15

Attention Head (contd.)

- Now we have projected the inputs with three transformations
- We use the query and the key to compute attention

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\sqrt{d_{k}}} \underbrace{\mathbf{q}}_{2}$$

$$\boldsymbol{\alpha}_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j})) \ \forall j \leq i$$

$$\mathbf{a}_{i} = \sum \alpha_{ij} \mathbf{v}_{j}$$

$$(9.11)$$

$$(9.12)$$

Causal attention

Because we are only looking at the past

Full attention Looks at both past and the future

Calculate a3

• Now we have projected the inputs with three transformations

• We use the guery and the key to compute attention

How to calculate the weight

row αു?

 α_3 is a row. Think: What is its individual components?

Hint: what are i's that are smaller than i (i = 3, the query number), starting from 1?

Full attention

Because we are

only looking at

the past

Looks at both past and the future

Calculate a3

How to calculate the weight row

$$\alpha_3$$
?

 α_3 is a combination of

$$\alpha_{31}$$
, α_{32} , and α_{33}

- Now we have projected the inputs with three transformations
- We use the query and the key to compute attention

Calculate **a3**

transformations

• Now we have projected the inputs with three

Now, calculate the score for each pair of q_i and k_i

Then, do softmax for these three together.

Then we get α_{31} , α_{32} , and α_{33}

• We use the guery and the key to compute attention

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{x}_{j}}{\sqrt{d_{k}}}$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j})) \ \forall j \leq i$$

$$(9.11)$$

$$\mathbf{a}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j \tag{9.13}$$

Causal attention Because we are only looking at

the past

past and the future

Full attention Looks at both

Calculate a3

Q: query K: key

$$e^{ ext{Score}(q_3,k_1)} = e^{ ext{Score}(q_3,k_2)} + e^{ ext{Score}(q_3,k_3)} + e^{ ext{Score}(q_3,k_2)} = e^{ ext{Score}(q_3,k_2)} = e^{ ext{Score}(q_3,k_2)} + e^{ ext{Score}(q_3,k_3)} = e^{ ext{Score}(q_3,k_3)} = e^{ ext{Score}(q_3,k_3)} + e^{ ext{Score}(q_3,k_2)} + e^{ ext{Score}(q_3,k_3)}$$

Attention Head (contd.)

- Now we have projected the inputs with three transformations
- We use the query and the key to compute attention

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\sqrt{d_{k}}} \mathbf{2}$$

$$\mathbf{q}_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j})) \ \forall j \leq i$$

$$\mathbf{q}_{i} = \sum_{i} \alpha_{i} \mathbf{v}_{i}$$

$$(9.11)$$

$$\mathbf{q}_{i} = \sum_{i} \alpha_{i} \mathbf{v}_{i}$$

$$(9.12)$$

Causal attention

Because we are only looking at the past

Full attention

Looks at both past and the future

Calculate **a3**

$$e^{ ext{Score}(q_3,k_1)} = e^{ ext{Score}(q_3,k_1)} = e^{ ext{Score}(q_3,k_2)} + e^{ ext{Score}(q_3,k_3)} = e^{ ext{Score}(q_3,k_2)} = e^{ ext{Score}(q_3,k_2)} = e^{ ext{Score}(q_3,k_2)} + e^{ ext{Score}(q_3,k_3)} = e^{ ext{Score}(q_3,k_3)} = e^{ ext{Score}(q_3,k_2)} + e^{ ext{Score}(q_3,k_3)} = e^{ ext{Score}(q_3,$$

Query and Key

Note how it is written here: For any j that is smaller than i... This means

- 1. i is bigger than j
- 2. i is your current position, and j is the information before

- Now we have projected the inputs with three transformations
- We use the query and the key to compute attention

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \mathbf{q}_{i} \mathbf{k}_{j} \mathbf{q}_{i}$$

$$\mathbf{a}_{i} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i} \mathbf{x}_{j})) \forall j \in i$$

$$\mathbf{a}_{i} = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_{j}$$

$$(9.11)$$

$$(9.12)$$

$$(9.13)$$

Causal attention

Because we are only looking at the past

Full attention
Looks at both
past and the
future

Query and Key

Query (Q): a search request in a database.

You send a request - Find me all books about dragons - to the library database.

Key (K): labels or tags attached to items in the database.

In the library, each book might have keys like "genre", "author", "subject"

How to Kill a Dragon: 'dragon', 'Indo-European linguistics', 'Calvert Watkins'

How does Q work with K?

The system compares the Q to the K.

Calculate α3

What this graph means:

You calculate for x3

Calculate **a3**

Calculate α3

$$rac{e^{\operatorname{Score}(q_3,k_1)}}{e^{\operatorname{Score}(q_3,k_2)}+e^{\operatorname{Score}(q_3,k_2)}}$$

$$e^{\operatorname{Score}(q_3,k_1)} + e^{\operatorname{Score}(q_3,k_2)} + e^{\operatorname{Score}(q_3,k_3)}$$

$$e^{\operatorname{Score}(q_3,k_1)} + e^{\operatorname{Score}(q_3,k_2)} + e^{\operatorname{Score}(q_3,k_3)}$$

Multi-head attention (see class slides)

Masked-attention
Bidirectional Self Attention

Multihead attention

Transformer architecture

Add & Norm

Feedforward Network

Add & Norm

Multi-head attention

This formula in class is: masked self attention

$$score(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\sqrt{d_{k}}} \mathbf{1}$$

$$\mathbf{a}_{ij} = softmax(score(\mathbf{x}_{i}, \mathbf{x}_{j})) \forall j \leq i$$

$$\mathbf{a}_{i} = \sum_{i \leq i} \alpha_{ij} \mathbf{v}_{j}$$

Multi-head attention (see class slides)
Masked self-attention
Bidirectional self-attention

Multi-head attention (see class slides)
Masked self-attention
Bidirectional self-attention
Encoder-decoder attention (not self-attention)

Attention again

Source: https://web.stanford.edu/~jurafsky/slp3/slides/transformer24aug.pdf

More resources?

https://www.youtube.com/watch?v=iDulhoQ2pro (Yannic Kilcher)

Or search for "attention calculation" "self-attention math" etc. on Youtube or medium

End