Zadanie: WID Widoczność

2002-11-08

Dany jest ciąg liczb całkowitych $x_1, x_2, ..., x_n$. Powiemy, że dwa elementy x_i i x_j (dla $1 \le i < j \le n$) widzą się bezpośrednio nawzajem, jeśli każdy z elementów $x_{i+1}, ..., x_{j-1}$ jest mniejszy od min (x_i, x_j) . W szczególności każde dwa kolejne elementy w ciągu widzą się bezpośrednio nawzajem.

Powiemy, że dwa elementy x_i i x_j (dla $1 \le i < j \le n$) widzą się *pośrednio* nawzajem, jeżeli:

- widzą się bezpośrednio nawzajem, lub
- istnieje takie k, i < k < j, że x_i i x_k widzą się bezpośrednio nawzajem, oraz x_k i x_j widzą się bezpośrednio nawzajem.

Zadanie polega na obliczeniu dla danego ciągu x_1, x_2, \dots, x_n liczby wszystkich takich par (i, j), że $1 \le i < j \le n$ oraz elementy x_i i x_j widzą się *pośrednio* nawzajem.

Wejście

W pierwszym wierszu zapisana jest jedna liczba całkowita n, $1 \le n \le 40000$. W kolejnych wierszach zapisane są kolejne elementy ciągu, po jednym w wierszu. Elementy ciągu to liczby całkowite z zakresu od $-1\,000\,000$ do $1\,000\,000$.

Wyjście

Program powinien wypisać jeden wiersz, zawierający jedną liczbę całkowitą — liczbę takich par (i, j), że $1 \le i < j \le n$ oraz elementy x_i i x_j widzą się *pośrednio* nawzajem.

Przykład

Dla danych wejściowych:

12

2

8

3 5

2

9

7

-1

4

4

12

poprawnym wynikiem jest: 42