Convolutional neural networks

Convolutional filters

Input Feature Map

3	5	2	8	1
9	7	5	4	3
2	0	6	1	6
6	3	7	9	2
1	4	9	5	1

Convolutional Filter

1	0	0
1	1	0
0	0	1

Input Feature Map

3×1	5×0	2×0	8	1
9×1	7×1	5×0	4	3
2×0	0×0	6×1	1	6
6	3	7	9	2
1	4	9	5	1

Strides

Strides Stride=2 3×3 3 × 3 7 × 7 Conu over volume can all be different 6x6x3 ng: # of -filters = 2 4×4×1 $n_{\forall}n_{\star}n_{\iota}$ * $f \times f \times n_{\iota} \rightarrow n_{-}(f-1) \times n_{-}(f-1) \times n_{f}$

A convolutional layer

Number of parameters in a conv layer

```
More If layer 1 is a converge input shape: N^{(e)} \times N^{(e)} \times N^{(e)}

generally. I layer 1 is a converge input shape: N^{(e)} \times N^{(e)} \times N^{(e)} \times N^{(e)}

The filter size: f^{(e)} \times N^{(e)} \times N^{(
```

E.g., A deep Conv Net

Pooling

For a given layer, pooling reduces the size of the layer output

Classical network

Why convolutions?

· Parameter sharing: reusing the same weights for different parts of the image.

• Sparsity of connections: In FC, each output pixel is connected to all input pixels via weights.

In conv. each output pixel only depends on small # of input pixels.