- .small-text {font-size: 0.75rem;}
- Chapter 2: Data Models
- Data Modeling and Data Models
- The Importance of Data Models
- Data Model Basic Building Blocks
- Business Rules
- Naming Conventions
- Supplement Naming Conventions
- The Evolution of Data Models
- Hierarchical Models
- Network Models
- Database Concepts Inherited from Network Model
- Relational Model
- Relational Diagram
- Supplement of Relational Model
- Entity Relationship Model
- Entity Relationship Model Notation
- Crow's Foot Notations
- Relational Model vs Entity Relationship Model
- Object-Oriented Model
- OODM Diagram
- ERDM and O/R DBMS
- Comparison of RDBMS, OODBMS and O/R DBMS
- Emerging Data Models: Big Data and NoSQL
- NoSQL Databases
- RDBMS (Relational DBMS) vs NoSQL
- Degrees of Data Abstraction
- External Model
- Conceptual Model
- Internal Model
- Physical Model
- Levels of Data Abstraction
- Review Questions
- Homework #A

marp: true theme: default class: invert size: 16:9 paginate: true footer: 國立陽明交通大學電子與光子學士學位學程 headingDivider: 1 style: | section::after { content: attr(data-

```
marpit-pagination) '/' attr(data-marpit-pagination-total); }
.columns { display: grid; grid-template-columns: repeat(2, minmax(0, 1fr)); gap: 1rem; }
.columns img { width: 50%; } .middle-grid { display: grid; grid-template-columns: repeat(2, minmax(0, 1fr)); gap: 1rem; } .middle-grid img { width: 75%; } .grid { display: grid; grid-template-columns: 1fr 1fr; gap: 10px; } .grid img { width: 100%; } .red-text { color: red; }
.blue-text { color: blue; }
.brown-text { color: brown; }
```

.small-text { font-size: 0.75rem; }

Chapter 2: Data Models

- Data modeling is to build data models, which is the first step in the database design
 journey, serving as a bridge between real-world
 objects and the computer database.
- One big problem of database design is that designers, programmers, and end users see data in different ways, which introduce misunderstanding and increase communication cost.
- Database designers must obtain a precise description (data model) of the data's nature and environments within the organization to reduce communication efforts.

Data Modeling and Data Models

- Data modeling refers to the process of creating a specific data model for a determined problem domain (mini-world).
- Data modeling is an iterative, progressive process.
- A data model is a relatively simple representation
 of more complex real-world objects
 - Entity (table)
 - Attribute (column)

- Relationship (linkage between tables)
- Constrain

The Importance of Data Models

- Data models are a communication tool
 - End users know the business rule running in real world
 - Developers develop aps to manage data and transform data into information
 - People view data in different ways
 - Managers want a universal view of data
 - Staffs need details of data
- A good database system environment requires an overall database design based on an appropriate data model
- No appropriate data model, no good database system environment

Data Model Basic Building Blocks

- An entity is a person, thing or event about which data will be collected and stored
- An attribute is a characteristic (property) of an entity
- A relationship describes an association among entities
 - One-to-many (1:M or 1..*): PAINTER paints PAINTING
 - Many-to-many (M:N or *..*): EMPLOYEE learn SKILL
 - o One-to-one (1:1 or 1..1): EMPLOYEE manage STORE
- A constraint is a restriction placed on the data to help data integrity
 - o An employee's salary must have values between 6,000 and 350,000
 - Each class must have one and only one teacher

Business Rules

 A business rule is a brief, precise, and unambiguous description of a policy, procedure, or principle within a specific organization

- made from company managers, policy makers, department managers, and written procedures
- o used to define entities, attributes, relationships, and constraints
- Example: A customer may generate many invoices' may be translated into data model
 - Customer and invoice are objects of interest and should be represented by respective entities
 - There is a 'generate' relationship between customer and invoice
 - The generate relationship is one-to-many (1:M)

Naming Conventions

- Names should be descriptive and familiar to the users
- A good naming convention can
 - Make less confusion and reduce errors
 - Promote code consistently and readability
- Follow organization practice or develop at the start of project by considering
 - Should table name and column name be singular or plural? (student or students)
 - Should prefix tables or columns? (name or prod_name)
 - Should use capital letters for naming? (cap_cap, capCap or CapCap)
 - Which terminology should be selected? (user, person or people)

Supplement - Naming Conventions

Udemy Video of naming conventions Naming conventions of MySQL

The Evolution of Data Models

Data models represent a lot of thought as to what a database is, what it should do, the types of structures that it should employ, and the technology that would be used to implement these structures by right:55% w:700 data models evolution

Hierarchical Models

 The hierarchical model organizes the data into a tree structure which consist of a single root node where each record is having a parent record and many child records and expands like a tree

Network Models

• In the network model, the user perceives the network database as a collection of records in 1:M relationships. However, unlike the hierarchical model, the network model allows a record to have more than one parent.

Database Concepts Inherited from Network Model

• The schema is the conceptual and structural definition of a whole database. Once you claim the schema of a database, it must

now no longer be modified often because it will distort the data organization inside the Database.

- The data manipulation language (DML)
 defines the way to insert, read, update, delete data in database
- A schema data definition language (DDL)
 enables the DBA to define the schema components (create, drop, alter table, create
 index or trigger)

Relational Model

The relational model's foundation is a mathematical concept known as a relation, which is introduced by Edgar F. Codd in 1969.

- Relation: a table with columns and rows.
- Attribute: a named column of a relation.
- Domain: the set of allowable values for one or more attributes.
- Tuple: a row of a relation

Relational Diagram

Supplement of Relational Model

- Relation schema
- Relational database schema
- Degree of a relation
- Cardinality of a relation
- Relation state (or relation instance) Relational model terminology

Entity Relationship Model

- Although the relational model was a vast improvement over the hierarchical and network models, it still lacked the features that would make it an effective database design tool.
- Database designers prefer to use a graphical tool in which entities and their relationships are pictured.
- The entity relationship model (ERM) using graphical representations to model database components has become a widely accepted standard for data modeling.
- The relational data model and ERM combined to provide the foundation for tightly structured database design

Entity Relationship Model Notation

- Entity an entity is represented in the ERD by a rectangle (entity box)
- Attributes each entity consists of a set of attributes that describes particular characteristics of the entity
- Relationships relationships describe associations among data
 bg right:50% w:600 ER model

Crow's Foot Notations

Relational Model vs Entity Relationship Model

ER Model first, then converted into Relational Model for DBMS implementation.

Aspect	ER Model	Relational Model
Used For	Conceptual database design	Logical database implementation
Representation	ER Diagram (graphical)	Tables (relational schema)
Elements	Entities, Attributes, Relationships	Tables, Attributes, Tuples

Aspect	ER Model	Relational Model
Constraints	Cardinality in ER Diagram	Primary/Foreign keys, SQL constraints
Conversion	Converted to Relational Model	Implemented in DBMS

Object-Oriented Model

In the object-oriented data model (OODM), both data and its relationship are contained in a single structure known as an object

- Object: an abstraction of a real-world entity
- Attributes: describe the properties of an object
- Method: represents a real-world action
- Class: a collection of similar objects with shared structure and behavior
- Inheritance: an object within the class hierarchy to inherit the attributes and methods of the classes above it. (class EMPLOYEE and CUSTOMER can be created as subclasses inherit from the class PERSON)
- OODM are typically depicted using Unified Modeling Language (UML) class diagrams

OODM Diagram

ERDM and O/R DBMS

- The extended relational data model (ERDM) adds many of the OO model's features within the simpler relational database structure
- A DBMS based on the ERDM is an object/relational database management system (O/R DBMS)

Comparison of RDBMS, OODBMS and O/R DBMS

Feature	RDBMS	OODBMS	O/R DBMS
Tables & SQL	Yes	X No	Yes
Objects & Classes	X No	▼ Yes	▼ Yes
Inheritance	X No	▼ Yes	▼ Yes
Encapsulation (Methods in DB)	X No	▼ Yes	▼ Yes
Complex Data Types	X No	✓ Yes	✓ Yes

Products of O/R DBMS

- PostgreSQL (most commonly used O/R DBMS)
- Oracle Database (with Object-Relational Features)
- Microsoft SQL Server (limited Object-Relational capabilities)

Emerging Data Models: Big Data and NoSQL

- Big Data refers to a movement to find new and better ways to manage large amounts which DBMS can not manage
- Big Data characteristics (3 Vs): volume, velocity, and variety
- Most frequently used Big Data technologies
 - Hadoop: an **ecosystem** provides a collection of softwares to operate big data
 - Hadoop Distributed File System (HDFS) is a fault-tolerant file storage system
 - MapReduce is an distributed computational framework

 NoSQL database is a large-scale distributed database system that stores unstructured and semi-structured data in efficient ways

NoSQL Databases

- Schemaless
- Horizontal scalability
- Distributed data store
- Lower cost
- Non-relational
- Handle large volume of data

RDBMS (Relational DBMS) vs NoSQL

RDBMS	NoSQL
Structured data with a rigid schema	Unstructured, Semi-structured data with a flexible schema
Storage in rows and columns	Data are stored in Key/Value pairs database, Columnar database, Document database, Graph Database.
Scale up	Scale out
SQL server, Oracle, mySQL	MongoDB, HBase, Cassandra
SQL language	Solution-specific method

Degrees of Data Abstraction

• External, Conceptual, Internal and Physical levels

External Model

- The end users' view of the data environment
- Use **ER diagrams** to represent the external model
- The external views represent subsets of the database
 - Easy to scope and communicate specific data required to support targeted end users
 - Ensure **security** constraints in the database design

Conceptual Model

- A **global view** of the entire database by the entire organization
- Use **ER diagrams** to represent the conceptual model
- · Identify and high-level describe main data objects
- Independent of both software and hardware
- The term conceptual design refers to creating a conceptual data model by ER diagrams

Internal Model

- Use the database constructs of the chosen DBMS to match the conceptual model's characteristics and constraints to build the internal model
- The term logical design refers to creating a logical data model by a set of SQL statements

Software dependent and hardware independent

Physical Model

- Operates at the lowest level of abstraction, describing which physical storage device the data is saved and how to access the data
- The term **physical design** refers to define data storage organization, security control, performance measure
- Both software and hardware dependent

Levels of Data Abstraction

TABLE 2.4 **LEVELS OF DATA ABSTRACTION DEGREE OF MODEL FOCUS INDEPENDENT OF** ABSTRACTION External High **End-user views** Hardware and software Conceptual Global view of data (database model independent) Hardware and software Internal Specific database model Hardware Physical Storage and access methods Neither hardware nor software Low

Review Questions

- Why data models are important?
- What are the data model basic building blocks
- How have the major data models evolved
- Explain NoSQL characteristics
- What are the four levels of data abstraction

Homework #A

資料庫課程作業(A)