RegEx

Format:

- 1. $a \in \Sigma$, "a" is a RegEx over Σ , where L(a) = {a}
- 2. $b \in \Sigma$, "b" is a RegEx over Σ , where L(b) = {b}
- 3. $c \in \Sigma$, "c" is a RegEx over Σ , where L(c) = {c}
- 4. $\lambda \in \Sigma$, " λ " is a RegEx over Σ , where $L(\lambda) = {\lambda}$
- 5. " Σ " is a RegEx, L(Σ) = Σ = {a, b, c} (of length 1, so $\Sigma \circ \Sigma$ has length 2)
- 6. "\Sigma" is a RegEx (line 8), so "(\Sigma)\sigma" is a RegEx over \Sigma, L((\Sigma)\sigma", set of all strings
- 7. "b" and "a" are RegEx (lines 2, 1), so " $(b \cup a)$ " is a RegEx over Σ , $L(b \cup a) = L(b) \cup L(a)$
- 8. " $(b \cup a)$ " is a RegEx (line 4), so " $((b \cup a))^*$ " is a RegEx over Σ , $L(((b \cup a))^*) = \{b,c\}^*$, set of all strings that do not include an "a"
- 9. "a" and "c" are RegEx (lines 1, 3), so " $(a \circ c)$ " is a RegEx over Σ , $L(a \circ c) = L(a) \circ L(b)$, set of size one
- 10. " $((b \cup a))^*$ " and " $(a \circ c)$ " are RegEx (lines 5, 4), so " $(((b \cup a))^* \circ (a \circ c))$ " is a RegEx over Σ , $L(((b \cup a))^*) \circ L(a \circ c)$, set of strings where any of "b" or "a" come before the last "a", followed by a "c"
- 11. "c" and " λ " are RegEx (line 3, 4), so " $(c \cup \lambda)$ " is a RegEx over Σ , $L(c \cup \lambda) = L(c) \cup L(\lambda)$, set of strings that include at most 1 (or no) "c's"

DFA

- Sanity Check 1: If it has a finite number of subsets
- Sanity Check 2: Every string belongs to exactly one subset
- Sanity Check 3:
- Sanity Check 4

DFA NFA Equivalence

Format:

- 1. 1st state introduced: initally, $\hat{Q} = \emptyset$, $\hat{R} = \{\hat{q_0}\}$, so $\hat{q_0}$ is $Cl\lambda(q_0) = \{q_0\}$. Our current DFA: (Drawing of DFA w/ start state) We pick $\hat{q_0}$ since it's the only state in \hat{R} so far:
 - (a) Transitions out for $\omega = a$ for \hat{q}_0

$$\bigcup_{r \in S_0} \bigcup_{s \in \delta(r,a)} Cl\lambda(s) = \bigcup_{r \in \{q_0\}} \bigcup_{s \in \delta(r,a)} Cl\lambda(s)$$

$$= \bigcup_{s \in \delta(q_0,a)} Cl\lambda(s)$$

$$= \bigcup_{s \in \{q_0\}} Cl\lambda(s)$$

$$= Cl\lambda(q_0)$$

$$= \{q_0\} = S_0$$

Same as S_0 , corresponding to state \hat{q}_0 . Thus, $\hat{\delta}(\hat{q}_0, a) = \hat{q}_0$

- (b) Transitions out for $\omega = b$ for \hat{q}_0 (Same outcome as $\omega = a$)
- (c) Transitions out for $\omega = c$ for $\hat{q_0}$

$$\bigcup_{r \in S_0} \bigcup_{s \in \delta(r,c)} Cl\lambda(s) = \bigcup_{r \in \{q_0\}} \bigcup_{s \in \delta(r,c)} Cl\lambda(s)$$

$$= \bigcup_{s \in \delta(q_0,c)} Cl\lambda(s)$$

$$= \bigcup_{s \in \{q_0,q_1\}} Cl\lambda(s)$$

$$= Cl\lambda(q_0) \cup Cl\lambda(q_1)$$

$$= \{q_0\} \cup \{q_1\} = \{q_0,q_1\}$$

This set does not correspond to any states in $\hat{Q} \cup \hat{R}$, so it will be a new set $S_1 = \{q_0, q_1\}$ corresponding to the state $\hat{q_1}$.

Now, $\hat{Q} = \{\hat{q_0}\}, \hat{R} = \{\hat{q_1}\}$. Our DFA: (draw DFA w/ state $\hat{q_0} \rightarrow \hat{q_1}$)

- 2. Since only $\hat{R} = \{\hat{q}_1\}$, set state to \hat{q}_1
 - (a) Transitions out for $\omega = a$ for $\hat{q}_1 \to \text{same process}$, set $S_2 = \{q_0, q_2\}$
 - (b) Transitions out for $\omega = b$ for $\hat{q}_1 \to \text{corresponds}$ to state \hat{q}_0 (b transition back to \hat{q}_0)
 - (c) Transitions out for $\omega = c$ for $\hat{q}_1 \to \text{corresponds}$ to state \hat{q}_1 (c transition remain in \hat{q}_1)

Now, $\hat{Q} = \{\hat{q}_0, \hat{q}_1\}, \hat{R} = \{\hat{q}_2\}$. Our DFA: (draw DFA w/ state \hat{q}_2)

- 3. Repeat until no more new states found
- Since $\hat{R} = \emptyset$, we have to find set \hat{F} of accepting states:

$$- S_0 = \{q_0\}$$
 corresponds to $\hat{q_0}$, and $S_0 \cap F = \{q_0\} \cap \{q_2\} = \emptyset$

$$-S_1 = \{q_0, q_1\}$$
 corresponds to $\hat{q_1}$, and $S_0 \cap F = \{q_0, q_1\} \cap \{q_2\} = \emptyset$

-
$$S_2 = \{q_0, q_2\}$$
 corresponds to $\hat{q_2}$, and $S_0 \cap F = \{q_0, q_2\} \cap \{q_2\} = \{\hat{q_2}\} \neq \emptyset, \hat{q_2} \in \hat{F}$

$$-S_3 = \{q_0, q_1, q_2\}$$
 corresponds to $\hat{q_3}$, and $S_0 \cap F = \{q_0, q_1, q_2\} \cap \{q_2\} = \{\hat{q_2}\} \neq \emptyset, \hat{q_3} \in \hat{F}$

Thus, $\hat{F} = \{\hat{q}_2, \hat{q}_3\}$. Final DFA: