Feuille d'exercices séquence 1

SExercice 1.

Soient $z_1 = 2 + 3i$ et $z_2 = 5 - 6i$. Calculer $z_1 + z_2$, $z_1 - z_2$ et $z_1 z_2$.

Correction: On a

$$> z_1 + z_2 = 7 - 3i,$$

$$> z_1 - z_2 = -3 + 9i,$$

$$> z_1 z_2 = 28 + 3i.$$

Exercice 2.

Soient $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ les formes algébriques des nombres complexes z_1 et z_2 , et soit λ un réel. Déterminer les formes algébriques de $\lambda z_1, z_1 + z_2$ et $z_1 z_2$.

S Exercice 3.

Déterminer le conjugué des nombres complexes suivants :

a)
$$z_1 = 1 + 2i$$
,

c)
$$z_3 = 5i - 2$$
,

b)
$$z_2 = -i$$
,

d)
$$z_4 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

Correction:

a)
$$\bar{z}_1 = 1 - 2i$$
,

c)
$$\bar{z}_3 = -2 - 5i$$
,

b)
$$\bar{z}_2 = i$$
,

d)
$$\bar{z}_4 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
.

S Exercice 4.

Calculer le conjugué et le module des nombres complexes suivants :

a)
$$z_1 = i + 6 - 2i + 5$$
,

d)
$$z_4 = \left(\frac{1}{2} + \frac{2i}{3}\right) \left(\frac{2}{3} - \frac{6i}{5}\right),$$

b)
$$z_2 = \frac{1}{2} + \frac{i}{3} + \frac{2}{3} + \frac{i}{2} - \frac{1}{3}$$

e)
$$z_5 = (\sqrt{2} + i\sqrt{3})(\sqrt{2} - i\sqrt{3}),$$

c)
$$z_3 = (1+2i)(3-3i)$$
,

f)
$$z_6 = (3\sqrt{5} + 2i\sqrt{2})^2$$
.

Correction:

a)
$$\overline{z}_1 = 11 + i \text{ et } |z_1| = \sqrt{122}$$

d)
$$\overline{z}_4 = -\frac{7}{15} + \frac{7}{45}i$$
 et $|z_4| = \frac{7}{45}\sqrt{10}$,

b)
$$\overline{z_2} = \frac{5}{6} - i\frac{5}{6} \text{ et } |z_2| = \frac{5}{6}\sqrt{\frac{1}{2}},$$

e)
$$\overline{z}_5 = 5 \text{ et } |z_5| = 5,$$

c)
$$\overline{z}_3 = 9 - 3i$$
 et $|z_3| = 9\sqrt{10}$,

f)
$$\overline{z}_6 = 37 - 12\sqrt{10}$$
.

Exercice 5.

Soit z = 2 - 5i. Calculer $z + \overline{z}$, $z - \overline{z}$ et $z\overline{z}$.

Exercice 6.

Soit z un nombre complexe de forme algébrique z = a + ib. Calculer $z + \overline{z}$, $z - \overline{z}$ et $z\overline{z}$.

S Exercice 7.

- 1) Calculer les modules des nombres complexes $z_1 = 2 + 3i$ et $z_2 = 1 2i$.
- **2)** Vérifier que $|z_1z_2| = |z_1||z_2|$.
- 3) Vérifier que $|z_1 + z_2| < |z_1| + |z_2|$

S Exercice 8.

Soient $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ deux nombres complexes donnés sous forme algébrique. Calculer $|z_1 z_2|^2$, $|z_1|^2$ et $|z_2|^2$.

Exercice 9.

Soit $a \in \mathbb{C}$ et soit z = ia. Déterminer le conjugué de z.

Exercice 10.

Par convention, posons $i^0 = 1$.

- 1) Calculer i^3 , i^4 , i^{-1} , i^{-2} , i^{-3} , i^{-4} .
- 2) Calculer i^{4m} , i^{4m+1} , i^{4m+2} , i^{4m+3} pour $m \in \mathbb{Z}$.
- **3)** Calculer i^{2017} .

Exercice 11.

Mettre sous forme algébrique (c'est-à-dire simplifier) les nombres complexes suivants :

a)
$$z_1 = \frac{-1-i}{2-2i}$$
,

c)
$$z_3 = \frac{-1+4i}{-2-i}$$
,

e)
$$z_5 = \frac{2+i}{1+3i} \cdot \frac{1-i}{1+i}$$
,

b)
$$z_2 = \frac{5 - 5i}{-3 + 4i}$$
,

d)
$$z_4 = \frac{7+6i}{4-i} \cdot \frac{3+i}{i}$$
,

c)
$$z_3 = \frac{1+it}{-2-i}$$
, e) $z_5 = \frac{2+it}{1+3i} \cdot \frac{1+it}{1+i}$,
d) $z_4 = \frac{7+6i}{4-i} \cdot \frac{3+i}{i}$, f) $z_6 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$.

Correction:

a)
$$z_1 = -\frac{i}{2}$$

d)
$$z_4 = \frac{115 - 35i}{17}$$
.

a)
$$z_1 = -\frac{i}{2}$$
.
b) $z_2 = \frac{-7 - 5i}{5}$.

e)
$$z_5 = -\frac{1+i}{2}$$
.

c)
$$z_3 = \frac{-2 - 9i}{5}$$

$$f) \ z_6 = \frac{-6}{2} = -3.$$

S Exercice 12.

Pour chacun des nombres complexes z ci-dessous, donner la forme algébrique du conjugué \bar{z} :

8

a)
$$z_1 = \frac{1}{i},$$

c)
$$z_3 = (5+2i)^2$$
,

b)
$$z_2 = \frac{2i-1}{1-2i}$$
,

d)
$$z_4 = \frac{i}{i+1}$$
.

Correction:

a)
$$\overline{z}_1 = i$$
,

c)
$$\overline{z}_3 = 21 - 20i$$
,

b)
$$\bar{z}_2 = -1$$

d)
$$\bar{z}_4 = \frac{1-i}{2}$$
.

S Exercice 13.

Déterminer sous forme algébrique les solutions des équations suivantes :

1)
$$2z + 6 - 4i = 0$$
,

3)
$$-3z + 2 = 4iz - 2i$$
,

2)
$$(-1-2i)z-2=0$$
,

4)
$$(2+i)^2z - (1-i)^3 = 0$$
.

Correction:

1)
$$z = \frac{-6+4i}{2}$$
.

3)
$$z = \frac{14 - 2i}{25}$$
.

2)
$$z = \frac{2-4i}{5}$$
.

4)
$$z = \frac{-14 + 2i}{25}$$
.

Exercice 14.

- 1) Montrer que $z^2 2z + 5 = (z 1 2i)(z 1 + 2i)$.
- 2) En déduire les solutions dans \mathbb{C} de l'équation $z^2 2z + 5 = 0$ sans calculer le discriminant.

Correction:

1) On a

$$(z-1-2i)(z-1+2i) = z^2 - (1+2i)z + (-1+2i)z - (1+2i)(-1+2i) = z^2 - 2z + 5.$$

2) D'où

$$z^2 - 2z + 5 = 0$$
 \Leftrightarrow $(z - 1 - 2i)(z - 1 + 2i) = 0$ \Leftrightarrow $z = 1 + 2i$ ou $z = 1 - 2i$.

Exercice 15.

- 1) Montrer que $z^2 3 4i = (z 2 i)(z + 2 + i)$.
- 2) En déduire les solutions dans \mathbb{C} de l'équation $z^2 = 3 + 4i$.

Correction:

- 1) On a $(z-2-i)(z+2+i) = z^2 (2+i)z + (2+i)z (2+i)^2 = z^2 3 4i$.
- **2)** D'où

$$z^2 - 3 - 4i = 0$$
 \Leftrightarrow $(z - 2 - i)(z + 2 + i) = 0$ \Leftrightarrow $z = 2 + i$ ou $z = -2 - i$.

Exercice 16.

- 1) Montrer que $z^2 + (4+i)z + (5+5i) = (z+1+2i)(z+3-i)$.
- 2) En déduire les solutions dans \mathbb{C} de l'équation $z^2+4z+5=-iz-5i$.

Correction:

1) On a

$$(z+1+2i)(z+3-i) = z^2 + (3-i)z + (1+2i)z + (1+2i)(3-i) = z^2 + 4z + iz + 5 + 5i.$$

2) $z^2 + 4z + 5 = -iz - 5i \Leftrightarrow z^2 + (4+i)z + (5+5i) = 0 \Leftrightarrow (z+1+2i)(z+3-i) = 0$, d'ou z = -1 - 2i ou z = -3 + i.

Une application en électronique

On peut rencontrer les nombres complexes lorsque on travaille avec les circuits électriques.

Tout d'abord une précision. En mathématiques, on a vu que le nombre i est utilisé pour définir les nombres complexes. Par contre, en électronique, ce nombre i signifie déjà courant, donc on utilise j pour les nombres complexes (parce que la lettre suivante après i est j).

L'impédance électrique mesure la résistance d'un circuit électrique au passage d'un **courant** alternatif sinusoïdal. Il correspond à un nombre complexe, noté Z. L'admittance, notée Y, est l'inverse de l'impédance : $Y = \frac{1}{Z}$.

Si ω définit la pulsation (en radians par seconde) du courant sinusoïdal, alors

- \triangleright l'impédance d'une résistance est $Z_R = R$, où R est la valeur (en ohms Ω) de la résistance,
- \triangleright l'impédance d'un condensateur est $Z_C = \frac{1}{jC\omega}$, où C est la capacité (en farad F) du condensateur,
- \triangleright l'impédance d'une bobine est $Z_L = jL\omega$, où L est l'inductance (en henry H) de la bobine.

L'impédance complexe d'un circuit se calcule en suivant les règles suivantes :

▷ l'impédance d'éléments en série est la somme des impédances,

$$I \longrightarrow Z_1 \qquad Z_2 \qquad \qquad Z_{tot} \qquad \qquad Z_{tot} \qquad \qquad Z_{tot} = Z_1 + Z_2$$
 est équivalent à

⊳ si on a des éléments en parallèle, l'inverse de l'impédance du circuit est la somme des inverses des impédances. Donc dans ce cas ce sont les admittances qui s'additionnent.

$$Z_1$$

$$Z_{tot}$$

Exemple

Pour le circuit suivant :

avec
$$Z_{tot} = Z_R + \frac{1}{\frac{1}{Z_L} + \frac{1}{Z_C}} = R + \frac{1}{\frac{1}{jL\omega} + \frac{1}{\frac{1}{jC\omega}}} = R + \frac{jL\omega}{1 + (jC\omega)(jL\omega)} = R + \frac{jL\omega}{1 - CL\omega^2}$$

Exercice 1.

Calculer l'impédance complexe du circuit suivant :

Correction:
$$\frac{1}{Z_{tot}} = \frac{jCR\omega + 1 - CL\omega^2}{R(1 - CL\omega^2)}.$$