

Technische Informatik: Abgabe 4

Michael Mardaus

Andrey Tyukin

20. November 2013

Exercise 4.1 (Full adder from decoder)

Exercise 4.2 (Subtractors)

a) Here are the tables for the two circuits we wish to implement (namely Half-Subtractor and Full-Subtractor):

minuend	subtrahend	underflow	difference
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

If we read ms as numbers with high order bit on the left:

$$u_{out} = m_1$$
$$d = m_1 + m_2.$$

minuend	subtrahend	underflow	underflow	difference
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Again, in SOP-notation with high-order bit on the left:

$$u_{out} = m_1 + m_2 + m_3 + m_7$$

 $d = m_1 + m_2 + m_4 + m_7.$

b) More or less compact symbolic representations of these two circuits are as follows (first component is always the resulting underflow, second is the actual difference):

$$\begin{split} HalfSubtractor(m,s) &= (\bar{m}s, m \not\leftrightarrow s) \\ FullSubtractor(m,s,u) &= (\bar{m} \not\leftrightarrow su, m \not\leftrightarrow s \not\leftrightarrow u) \end{split}$$

c) Now we want to simplify both components (difference and undeflow) of the full subtractor using Karnaugh diagrams. We begin with the difference:

		minuend / subtrahend			
		00	01	11	10
underflow	0		1		1
undernow	1	1		1	

It seems that this diagram is not simplifiable at all: we have to cover every one by an own 1x1 block. The simpliest expression for difference is thus:

$$d = \bar{m}\bar{s}u + \bar{m}s\bar{u} + msu + m\bar{s}\bar{u}$$

The ones for the output-underflow can be covered by three 2x1 blocks, which all intersect at 011 (we use additive color combination, light gray is supposed to be combination of red, green and blue):

		minuend / subtrahend			
		00	01	11	10
underflow	0	0	1	0	0
undernow	1	1	1	1	0

Thus, the simplified formula for the output-underflow is:

$$u_{out} = \bar{m}u + \bar{m}s + su.$$

d)

Abbildung 1: Half subtractor.

Abbildung 2: Full subtractor. We recycled as many gatters as we could for both sub-circuits. Reason: that's the maximal complexity allowed for free LucidChart accounts...

Exercise 4.3 (TODO)

a) b)