Assignment-4 Python Programming

Assignment Date	22 October 2022
Student Name	Hemalatha. S
Student Roll Number	319UEC028
Maximum Marks	2 Marks

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading the dataset

```
In [ ]:
    df = pd.read_csv('Mall_Customers.csv')
    df
```

Out[]:	: CustomerID		Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
	•••		•••				
19	95	196	Female	35	120	79	
19	96	197	Female	45	126	28	
19	97	198	Male	32	126	74	
19	8	199	Male	32	137	18	
19	9	200	Male	30	137	83	

200 rows × 5 columns

Encoding Categorical Columns

```
In [ ]:
    from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    df['Gender'] = le.fit_transform(df['Gender'])
```

```
In [ ]: df
```

Out[]:		CustomerID	Gend	ler	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1		1	19	15	39	
	1	2		1	21	15	81	
	2	3		0	20	16	6	
3		4	0	2	23	16		77
4		5	0	3	31	17		40
195		196	0	3	35	120		79
196		197	0	2	15	126		28
197		198	1	3	32	126		74
198		199	1	3	32	137		18
199		200	1	3	30	137		83

Visualizations

Univariate Analysis

<a list of 10 Patch objects>)

```
In [ ]:
         plt.hist(df['Age'])
         (array([31., 19., 34., 29., 16., 26., 15., 10., 6., 14.]),
Out[ ]:
          array([18., 23.2, 28.4, 33.6, 38.8, 44., 49.2, 54.4, 59.6, 64.8, 70.]),
          <a list of 10 Patch objects>)
         35
         30
         25
         20
         15
         10
          5
               20
                        30
                                 40
                                          50
                                                  60
In [ ]:
          plt.hist(df['Annual Income (k$)'])
         (array([24., 22., 28., 38., 30., 36., 8., 6., 4., 4.]),
          array([ 15. , 27.2, 39.4, 51.6, 63.8, 76. , 88.2, 100.4, 112.6, 124.8, 137. ]),
           35
           30
           25
           20
           15
           10
            5
                                              100
                                                      120
```

```
In [ ]: plt.hist(df['Spending Score (1-100)'])
```

Out[]: (array([16., 20., 10., 17., 35., 37., 11., 24., 14., 16.]), array([1., 10.8, 20.6, 30.4, 40.2, 50., 59.8, 69.6, 79.4, 89.2, 99.]), <a list of 10 Patch objects>)

In []: sns.countplot(df['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb93a2d490>

Bi-Variate Analysis

```
In [ ]: sns.scatterplot(df['Annual Income (k$)'], df['Spending Score (1-100)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variables as keyword args: x, y. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb93a1f1d0>


```
In [ ]: sns.barplot(df['Gender'], df['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variables as keyword args: x, y. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb93931b90>


```
In [ ]: sns.heatmap(df.corr(), annot = True)
```


Multi-variate Analysis

In []:

Descriptive Statistics

```
In [ ]: df.info()
```

Non-Null Count Dtype

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

0	CustomerID	200 non-null	int64
1	Gender	200 non-null	int64
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(5)
memory usage: 7.9 KB

Column

In []: df.describe()

Out[]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	0.440000	38.850000	60.560000	50.200000
	std	57.879185	0.497633	13.969007	26.264721	25.823522
	min	1.000000	0.000000	18.000000	15.000000	1.000000
	25%	50.750000	0.000000	28.750000	41.500000	34.750000
	50%	100.500000	0.000000	36.000000	61.500000	50.000000
	75%	150.250000	1.000000	49.000000	78.000000	73.000000
	max	200.000000	1.000000	70.000000	137.000000	99.000000

```
In [ ]: df.skew()
```

```
Spending Score (1-100)
                                    -0.047220
         dtype: float64
In [ ]:
          df.kurt()
         Spending Score (1-100)
                                    -0.826629
Out[]:
         dtype: float64
Customer ID df.corr()
In [ ]:
                           -1.200000
Gender
                           -1.960375
Age
                           -0.671573
Annual Income (k$)
                           -0.098487
Out[]:
                                                             Annual Income
                                                                               Spending Score
                             CustomerID
                                           Gender
                                                        Age
                                                                                      (1-100)
                                                                       (k\$)
                 CustomerID
                                1.000000
                                          0.057400
                                                   -0.026763
                                                                   0.977548
                                                                                     0.013835
                     Gender
                                0.057400
                                          1.000000
                                                    0.060867
                                                                   0.056410
                                                                                    -0.058109
                               -0.026763
                                          0.060867
                                                    1.000000
                                                                   -0.012398
                                                                                    -0.327227
                        Age
           Annual Income (k$)
                                0.977548
                                          0.056410
                                                   -0.012398
                                                                   1.000000
                                                                                     0.009903
           Spending Score (1-
                                0.013835 -0.058109 -0.327227
                                                                   0.009903
                                                                                     1.000000
                        100)
In [ ]:
          df.var()
         CustomerID
                                      3350.000000
Out[]:
         Gender
                                         0.247638
         Age
                                      195.133166
                                      689.835578
         Annual Income (k$)
         Spending Score (1-100)
                                       666.854271
         dtype: float64
In [ ]:
          df.std()
         CustomerID
                                      57.879185
Out[]:
         Gender
                                       0.497633
         Age
                                      13.969007
         Annual Income (k$)
                                      26.264721
         Spending Score (1-100)
                                      25.823522
         dtype: float64
         Checking for missing values
In [ ]:
          df.isna().sum()
                                      0
         CustomerID
Out[ ]:
         Gender
                                      0
         Age
                                      0
```

```
dtype: int64
In [ ]:
         df.isna().sum().sum()
Out[]:
In [ ]:
         df.duplicated().sum()
Out[ ]:
         Finding & Handling Ouliers
In [ ]:
         quantile = df.quantile(q = [0.25, 0.75])
         quantile
Out[]:
              CustomerID Gender
                                 Age Annual Income (k$) Spending Score (1-100)
         0.25
                   50.75
                             0.0 28.75
                                                   41.5
                                                                       34.75
         0.75
                  150.25
                             1.0 49.00
                                                   78.0
                                                                       73.00
In [ ]:
         IQR = quantile.iloc[1] - quantile.iloc[0]
        CustomerID
                                   99.50
Out[]:
        Gender
                                    1.00
        Age
                                   20.25
        Annual Income (k$)
                                   36.50
         Spending Score (1-100)
                                   38.25
        dtype: float64
In [ ]:
         upper = quantile.iloc[1] + (1.5 *IQR)
         upper
        CustomerID
                                   299.500
Out[]:
        Gender
                                     2.500
        Age
                                    79.375
        Annual Income (k$)
                                   132.750
        Spending Score (1-100)
                                   130.375
        dtype: float64
In [ ]:
         lower = quantile.iloc[0] - (1.5* IQR)
         lower
         CustomerID
                                  -98.500
Out[ ]:
         Gender
                                   -1.500
         Age
                                   -1.625
         Annual
                 Income
                           (k$)
                                  -13.250
         Spending Score (1-100) -22.625
         dtype: float64
```

```
In [ ]:
         df.mean()
        CustomerID
                                   100.50
Out[ ]:
         Gender
                                     0.44
         Age
                                    38.85
         Annual Income (k$)
                                    60.56
        Spending Score (1-100)
                                    50.20
        dtype: float64
In [ ]:
         df['Annual Income (k$)'].max()
         137
Out[ ]:
In [ ]:
         sns.boxplot(df['CustomerID'])
        /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin
        g: Pass the following variable as a keyword arg: x. From version 0.12, the only
        valid positional argument will be `data`, and passing other arguments without a
        n explicit keyword will result in an error or misinterpretation.
          FutureWarning
         <matplotlib.axes._subplots.AxesSubplot at 0x7fdb904c1290>
```

Out[]:


```
In [ ]:
         sns.boxplot(df['Gender'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb8ebea250> Out[]:

In []: sns.boxplot(df['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb93b3ee50>

In []: sns.boxplot(df['Annual Income (k\$)'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb8eb28450>


```
In [ ]: df['Annual Income (k$)'] = np.where(df['Annual Income (k$)'] > 132.750, 60.55,
```

```
In [ ]: sns.boxplot(df['Annual Income (k$)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb8eb18e90>


```
In [ ]: df['Annual Income (k$)'].max()
```

Out[]: 126.0

```
In [ ]: sns.boxplot(df['Spending Score (1-100)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarnin g: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without a n explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdb8ea8fc10>


```
0 20 40 60 80 100
Spending Score (1-100)
```

Scaling the data

```
In [ ]:
         from sklearn.preprocessing import StandardScaler
         ss = StandardScaler().fit transform(df)
        array([[-1.7234121 , 1.12815215, -1.42456879, -1.78843062, -0.43480148],
Out[ ]:
               [-1.70609137, 1.12815215, -1.28103541, -1.78843062, 1.19570407],
               [-1.68877065, -0.88640526, -1.3528021, -1.74850629, -1.71591298],
               [-1.67144992, -0.88640526, -1.13750203, -1.74850629, 1.04041783],
               [-1.6541292 , -0.88640526, -0.56336851, -1.70858195, -0.39597992],
               [-1.63680847, -0.88640526, -1.20926872, -1.70858195, 1.00159627],
               [-1.61948775, -0.88640526, -0.27630176, -1.66865761, -1.71591298],
               [-1.60216702, -0.88640526, -1.13750203, -1.66865761, 1.70038436],
               [-1.5848463 , 1.12815215, 1.80493225, -1.62873328, -1.83237767],
               [-1.56752558, -0.88640526, -0.6351352, -1.62873328, 0.84631002],
               [-1.55020485, 1.12815215, 2.02023231, -1.62873328, -1.4053405],
               [-1.53288413, -0.88640526, -0.27630176, -1.62873328, 1.89449216],
               [-1.5155634 , -0.88640526 , 1.37433211 , -1.58880894 , -1.36651894],
               [-1.49824268, -0.88640526, -1.06573534, -1.58880894, 1.04041783],
               [-1.48092195, 1.12815215, -0.13276838, -1.58880894, -1.44416206],
               [-1.46360123, 1.12815215, -1.20926872, -1.58880894, 1.11806095],
               [-1.4462805 , -0.88640526 , -0.27630176 , -1.5488846 , -0.59008772],
               [-1.42895978, 1.12815215, -1.3528021, -1.5488846, 0.61338066],
               [-1.41163905, 1.12815215, 0.94373197, -1.46903593, -0.82301709],
               [-1.39431833, -0.88640526, -0.27630176, -1.46903593, 1.8556706],
               [-1.3769976, 1.12815215, -0.27630176, -1.42911159, -0.59008772],
               [-1.35967688, 1.12815215, -0.99396865, -1.42911159, 0.88513158],
               [-1.34235616, -0.88640526, 0.51313183, -1.38918726, -1.75473454],
               [-1.32503543, 1.12815215, -0.56336851, -1.38918726, 0.88513158],
               [-1.30771471, -0.88640526, 1.08726535, -1.26941425, -1.4053405],
               [-1.29039398, 1.12815215, -0.70690189, -1.26941425, 1.23452563],
               [-1.27307326, -0.88640526, 0.44136514, -1.26941425, -0.7065524],
               [-1.25575253, 1.12815215, -0.27630176, -1.26941425, 0.41927286],
               [-1.23843181, -0.88640526, 0.08253169, -1.22948991, -0.74537397],
               [-1.22111108, -0.88640526, -1.13750203, -1.22948991, 1.42863343],
               [-1.20379036, 1.12815215, 1.51786549, -1.18956557, -1.7935561],
               [-1.18646963, -0.88640526, -1.28103541, -1.18956557, 0.88513158],
               [-1.16914891, 1.12815215, 1.01549866, -1.06979256, -1.7935561],
               [-1.15182818, 1.12815215, -1.49633548, -1.06979256, 1.62274124],
               [-1.13450746, -0.88640526, 0.7284319, -1.06979256, -1.4053405],
               [-1.11718674, -0.88640526, -1.28103541, -1.06979256, 1.19570407],
               [-1.09986601, -0.88640526, 0.22606507, -1.02986823, -1.28887582],
               [-1.08254529, -0.88640526, -0.6351352, -1.02986823, 0.88513158],
               [-1.06522456, -0.88640526, -0.20453507, -0.91009522, -0.93948177],
               [-1.04790384, -0.88640526, -1.3528021 , -0.91009522, 0.96277471],
               [-1.03058311, -0.88640526, 1.87669894, -0.87017088, -0.59008772],
               [-1.01326239, 1.12815215, -1.06573534, -0.87017088, 1.62274124],
               [-0.99594166, 1.12815215, 0.65666521, -0.83024654, -0.55126616],
               [-0.97862094, -0.88640526, -0.56336851, -0.83024654, 0.41927286],
               [-0.96130021, -0.88640526, 0.7284319, -0.83024654, -0.86183865],
               [-0.94397949, -0.88640526, -1.06573534, -0.83024654, 0.5745591],
```

```
[-0.92665877, -0.88640526, 0.80019859, -0.79032221, 0.18634349],
[-0.90933804, -0.88640526, -0.85043527, -0.79032221, -0.12422899],
[-0.89201732, -0.88640526, -0.70690189, -0.79032221, -0.3183368],
[-0.87469659, -0.88640526, -0.56336851, -0.79032221, -0.3183368],
[-0.85737587, -0.88640526, 0.7284319, -0.71047353, 0.06987881],
[-0.84005514, 1.12815215, -0.41983513, -0.71047353, 0.38045129],
[-0.82273442, -0.88640526, -0.56336851, -0.6705492 , 0.14752193],
[-0.80541369, 1.12815215, 1.4460988, -0.6705492, 0.38045129],
[-0.78809297, -0.88640526, 0.80019859, -0.6705492, -0.20187212],
[-0.77077224, 1.12815215, 0.58489852, -0.6705492, -0.35715836],
[-0.75345152, -0.88640526, 0.87196528, -0.63062486, -0.00776431],
[-0.73613079, 1.12815215, 2.16376569, -0.63062486, -0.16305055],
[-0.71881007, -0.88640526, -0.85043527, -0.55077619, 0.03105725],
[-0.70148935, 1.12815215, 1.01549866, -0.55077619, -0.16305055],
[-0.68416862, 1.12815215, 2.23553238, -0.55077619, 0.22516505],
[-0.6668479 , 1.12815215 ,-1.42456879 ,-0.55077619 , 0.18634349],
[-0.64952717, -0.88640526, 2.02023231, -0.51085185, 0.06987881],
[-0.63220645, -0.88640526, 1.08726535, -0.51085185, 0.34162973],
[-0.61488572, 1.12815215, 1.73316556, -0.47092751, 0.03105725],
[-0.597565, 1.12815215, -1.49633548, -0.47092751, 0.34162973],
[-0.58024427, -0.88640526, 0.29783176, -0.47092751, -0.00776431],
\hbox{$[-0.56292355,-0.88640526,}\quad 2.091999\quad,\quad -0.47092751,\quad -0.08540743],
[-0.54560282, 1.12815215, -1.42456879, -0.47092751, 0.34162973],
[-0.5282821, -0.88640526, -0.49160182, -0.47092751, -0.12422899],
[-0.51096138, 1.12815215, 2.23553238, -0.43100318, 0.18634349],
[-0.49364065, -0.88640526, 0.58489852, -0.43100318, -0.3183368],
[-0.47631993, -0.88640526, 1.51786549, -0.39107884, -0.04658587],
[-0.4589992, -0.88640526, 1.51786549, -0.39107884, 0.22516505],
[-0.44167848, 1.12815215, 1.4460988, -0.23138149, -0.12422899],
[-0.42435775, 1.12815215, -0.92220196, -0.23138149, 0.14752193],
[-0.40703703, -0.88640526, 0.44136514, -0.23138149, 0.10870037],
[-0.3897163, 1.12815215, 0.08253169, -0.23138149, -0.08540743],
[-0.37239558, -0.88640526, -1.13750203, -0.23138149, 0.06987881],
[-0.35507485, -0.88640526, 0.7284319, -0.23138149, -0.3183368],
[-0.33775413, 1.12815215, 1.30256542, -0.23138149, 0.03105725],
[-0.3204334 , 1.12815215, -0.06100169, -0.23138149, 0.18634349],
[-0.30311268, 1.12815215, 2.02023231, -0.23138149, -0.35715836],
[-0.28579196, -0.88640526, 0.51313183, -0.23138149, -0.24069368],
[-0.26847123, -0.88640526, -1.28103541, -0.23138149, 0.26398661],
[-0.25115051, 1.12815215, 0.65666521, -0.23138149, -0.16305055],
[-0.23382978, -0.88640526, 1.15903204, -0.11160848, 0.30280817],
[-0.21650906, -0.88640526, -1.20926872, -0.11160848, 0.18634349],
[-0.19918833, -0.88640526, -0.34806844, -0.07168415, 0.38045129],
[-0.18186761, -0.88640526, 0.80019859, -0.07168415, -0.16305055],
[-0.16454688, -0.88640526, 2.091999 , -0.03175981, 0.18634349],
[-0.14722616, 1.12815215, -1.49633548, -0.03175981, -0.35715836],
[-0.12990543, 1.12815215, 0.65666521, 0.00816453, -0.04658587],
[-0.11258471, -0.88640526, 0.08253169, 0.00816453, -0.39597992],
[-0.09526399, -0.88640526, -0.49160182, 0.00816453, -0.3183368],
[-0.07794326, 1.12815215, -1.06573534, 0.00816453, 0.06987881],
[-0.06062254, -0.88640526, 0.58489852, 0.00816453, -0.12422899],
[-0.04330181, -0.88640526, -0.85043527, 0.00816453, -0.00776431],
[-0.02598109, 1.12815215, 0.65666521, 0.04808886, -0.3183368],
[-0.00866036, 1.12815215, -1.3528021, 0.04808886, -0.04658587],
[ 0.00866036, -0.88640526, -1.13750203,  0.0880132 , -0.35715836],
[0.02598109, -0.88640526, 0.7284319, 0.0880132, -0.08540743],
[ 0.04330181, 1.12815215, 2.02023231, 0.0880132, 0.34162973],
[ 0.06062254, 1.12815215, -0.92220196, 0.0880132, 0.18634349],
[ 0.07794326, 1.12815215, 0.7284319 , 0.0880132 , 0.22516505],
[ 0.09526399, -0.88640526, -1.28103541, 0.0880132 , -0.3183368 ],
[0.11258471, -0.88640526, 1.94846562, 0.12793754, -0.00776431],
```

```
[ 0.12990543, 1.12815215, 1.08726535, 0.12793754, -0.16305055],
[ 0.14722616, 1.12815215, 2.091999 ,
                                       0.12793754, -0.27951524],
[ 0.16454688, 1.12815215, 1.94846562,
                                       0.12793754, -0.08540743],
[ 0.18186761, 1.12815215, 1.87669894, 0.12793754, 0.06987881],
[ 0.19918833, -0.88640526, -1.42456879, 0.12793754, 0.14752193],
[ 0.21650906, -0.88640526, -0.06100169, 0.16786187, -0.3183368 ],
[ 0.23382978, 1.12815215, -1.42456879, 0.16786187, -0.16305055],
[0.25115051, -0.88640526, -1.49633548, 0.20778621, -0.08540743],
[ 0.26847123, -0.88640526, -1.42456879, 0.20778621, -0.00776431],
[ 0.28579196, -0.88640526, 1.73316556, 0.20778621, -0.27951524],
[ 0.30311268, -0.88640526, 0.7284319 , 0.20778621, 0.34162973],
[ 0.3204334 , -0.88640526, 0.87196528, 0.28763488, -0.27951524],
[ 0.33775413, -0.88640526, 0.80019859, 0.28763488, 0.26398661],
[ 0.35507485, 1.12815215, -0.85043527, 0.28763488, 0.22516505],
[0.37239558, -0.88640526, -0.06100169, 0.28763488, -0.39597992],
[ 0.3897163 , -0.88640526, 0.08253169, 0.36748356, 0.30280817],
[ 0.40703703, 1.12815215, 0.010765 , 0.36748356, 1.58391968],
[0.42435775, -0.88640526, -1.13750203, 0.40740789, -0.82301709],
[ 0.44167848, -0.88640526, -0.56336851, 0.40740789, 1.04041783],
[ 0.4589992 , 1.12815215, 0.29783176, 0.44733223, -0.59008772],
[0.47631993, 1.12815215, 0.08253169, 0.44733223, 1.73920592],
[ 0.49364065, 1.12815215, 1.4460988, 0.44733223, -1.52180518],
[ 0.51096138, 1.12815215, -0.06100169, 0.44733223, 0.96277471],
[ 0.5282821 , 1.12815215, 0.58489852, 0.44733223, -1.5994483 ],
[ 0.54560282, 1.12815215, 0.010765 , 0.44733223, 0.96277471],
 0.56292355, -0.88640526, -0.99396865, 0.48725657, -0.62890928],
[ 0.58024427, -0.88640526, -0.56336851, 0.48725657, 0.80748846],
[ 0.597565 , 1.12815215, -1.3528021 , 0.5271809 , -1.75473454],
[0.61488572, -0.88640526, -0.70690189, 0.5271809, 1.46745499],
 0.63220645, -0.88640526, 0.36959845, 0.5271809, -1.67709142],
[0.64952717, 1.12815215, -0.49160182, 0.5271809, 0.88513158],
[ 0.6668479 , 1.12815215, -1.42456879, 0.56710524, -1.56062674],
[ 0.68416862, -0.88640526, -0.27630176, 0.56710524, 0.84631002],
[ 0.70148935, -0.88640526, 1.30256542, 0.60702958, -1.75473454],
[ 0.71881007, 1.12815215, -0.49160182, 0.60702958, 1.6615628 ],
[ 0.73613079, -0.88640526, -0.77866858, 0.64695391, -0.39597992],
[ 0.75345152, -0.88640526, -0.49160182, 0.64695391, 1.42863343],
[ 0.77077224, 1.12815215, -0.99396865, 0.68687825, -1.48298362],
[ 0.78809297, 1.12815215, -0.77866858, 0.68687825, 1.81684904],
[ 0.80541369, 1.12815215, 0.65666521, 0.68687825, -0.55126616],
[ 0.82273442, -0.88640526, -0.49160182, 0.68687825, 0.92395314],
[ 0.84005514, -0.88640526, -0.34806844, 0.72680259, -1.09476801],
[ 0.85737587, 1.12815215, -0.34806844, 0.72680259, 1.54509812],
[ 0.87469659, 1.12815215, 0.29783176, 0.72680259, -1.28887582],
[ 0.89201732, 1.12815215, 0.010765 , 0.72680259, 1.46745499],
[0.90933804, -0.88640526, 0.36959845, 0.72680259, -1.17241113],
[ 0.92665877, -0.88640526, -0.06100169, 0.72680259, 1.00159627],
[0.94397949, -0.88640526, 0.58489852, 0.72680259, -1.32769738],
[0.96130021, -0.88640526, -0.85043527, 0.72680259, 1.50627656],
[0.97862094, 1.12815215, -0.13276838, 0.72680259, -1.91002079],
[0.99594166, -0.88640526, -0.6351352, 0.72680259, 1.07923939],
[ 1.01326239, 1.12815215, -0.34806844, 0.72680259, -1.91002079],
 1.03058311, -0.88640526, -0.6351352, 0.72680259, 0.88513158],
[ 1.04790384, -0.88640526, 1.23079873, 0.76672692, -0.59008772],
[ 1.06522456, -0.88640526, -0.70690189, 0.76672692, 1.27334719],
[ 1.08254529, 1.12815215, -1.42456879, 0.8465756 , -1.75473454],
[ 1.09986601, -0.88640526, -0.56336851, 0.8465756 , 1.6615628 ],
[ 1.11718674, 1.12815215, 0.80019859, 1.00627294, -0.93948177],
[ 1.13450746, -0.88640526, -0.20453507, 1.00627294, 0.96277471],
[ 1.15182818, 1.12815215, 0.22606507, 1.04619728, -1.17241113],
```

```
[ 1.16914891, -0.88640526, -0.41983513,
                                       1.04619728, 1.73920592],
[ 1.18646963, -0.88640526, -0.20453507,
                                       1.08612162, -0.90066021],
[ 1.20379036, 1.12815215, -0.49160182, 1.08612162, 0.49691598],
[ 1.22111108, 1.12815215, 0.08253169, 1.08612162, -1.44416206],
[ 1.23843181, 1.12815215, -0.77866858, 1.08612162, 0.96277471],
[ 1.25575253, 1.12815215, -0.20453507, 1.08612162, -1.56062674],
[ 1.27307326, 1.12815215, -0.20453507, 1.08612162, 1.62274124],
[ 1.29039398, -0.88640526, 0.94373197,
                                       1.12604595, -1.44416206],
[ 1.30771471, -0.88640526, -0.6351352 , 1.12604595, 1.38981187],
[1.32503543, 1.12815215, 1.37433211, 1.12604595, -1.36651894],
[ 1.34235616, 1.12815215, -0.85043527, 1.12604595, 0.72984534],
[ 1.35967688, 1.12815215, 1.4460988,
                                       1.32566764, -1.4053405],
[ 1.3769976 , 1.12815215, -0.27630176, 1.32566764, 1.54509812],
[ 1.39431833, -0.88640526, -0.13276838, 1.48536498, -0.7065524 ],
[ 1.41163905, -0.88640526, -0.49160182, 1.48536498, 1.38981187],
[ 1.42895978, 1.12815215, 0.51313183, 1.52528932, -1.36651894],
[1.4462805, -0.88640526, -0.70690189, 1.52528932, 1.46745499],
[ 1.46360123, -0.88640526, 0.15429838, 1.56521366, -0.43480148],
[1.48092195, 1.12815215, -0.6351352, 1.56521366, 1.81684904],
[ 1.49824268, -0.88640526, 1.08726535, 1.64506233, -1.01712489],
[ 1.5155634 , 1.12815215, -0.77866858, 1.64506233, 0.69102378],
[ 1.53288413, -0.88640526, 0.15429838, 1.724911 , -1.28887582],
[ 1.55020485, -0.88640526, -0.20453507, 1.724911 , 1.35099031],
[ 1.56752558, -0.88640526, -0.34806844, 1.724911 , -1.05594645],
[ 1.5848463 , -0.88640526, -0.49160182, 1.724911 , 0.72984534],
[ 1.60216702, 1.12815215, -0.41983513, 2.12415437, -1.63826986],
[ 1.61948775, -0.88640526, -0.06100169, 2.12415437, 1.58391968],
[ 1.63680847, -0.88640526, 0.58489852, 2.40362473, -1.32769738],
[ 1.6541292 , -0.88640526, -0.27630176, 2.40362473, 1.11806095],
[ 1.67144992, -0.88640526, 0.44136514, 2.64317075, -0.86183865],
[ 1.68877065, 1.12815215, -0.49160182, 2.64317075, 0.92395314],
 1.70609137, 1.12815215, -0.49160182, 0.03012291, -1.25005425]
[ 1.7234121 , 1.12815215, -0.6351352 , 0.03012291, 1.27334719]])
```

Clustering Algorithm

```
In [ ]:
         from sklearn.cluster import KMeans
         TWSS = []
         k = list(range(2,9))
         for i in k:
           kmeans = KMeans(n_clusters = i , init = 'k-means++')
            kmeans.fit(df)
           TWSS.append(kmeans.inertia)
In [ ]:
         TWSS
        [381507.64738523855,
Out[ ]:
         268062.55433747417,
         191550.08627670942,
         153530.68956249507,
         119166.15727643928,
          101321.0166427429,
          85744.90139221892]
In [ ]:
         plt.plot(k,TWSS, 'ro--')
```

```
[<matplotlib.lines.Line2D at 0x7fdb8d642b90>]
Out[]:
          350000
          300000
          250000
          200000
          150000
          100000
                           3
In [ ]:
          model = KMeans(n_clusters = 4)
          model.fit(df)
         KMeans(n_clusters=4)
Out[]:
In [ ]:
          mb = pd.Series(model.labels_)
In [ ]:
          df['Cluster'] = mb
In [ ]:
Out[]:
               CustomerID Gender Age Annual Income (k$) Spending Score (1-100) Cluster
            0
                         1
                                 1
                                     19
                                                      15.00
                                                                                39
                                                                                         0
                         2
            1
                                     21
                                                       15.00
                                                                                81
                                                                                         0
                                 1
            2
                         3
                                 0
                                     20
                                                       16.00
                                                                                         0
            3
                         4
                                 0
                                      23
                                                       16.00
                                                                                77
                                                                                         0
                         5
                                 0
                                     31
                                                      17.00
                                                                                40
                                                                                         0
          195
                                 0
                                     35
                                                     120.00
                                                                                79
                      196
          196
                      197
                                 0
                                     45
                                                     126.00
                                                                                28
                                                                                         3
          197
                      198
                                 1
                                     32
                                                     126.00
                                                                                74
                                                                                         1
          198
                      199
                                      32
                                                      60.55
                                                                                18
                                                                                         3
          199
                      200
                                     30
                                                      60.55
                                                                                83
                                                                                         1
                                 1
         200 rows × 6 columns
```