Potential flow Theory

Let us consider an inviscid, irretational, incompressible and 2D flow.

So both 4 (streamfunction) and \$ (velocity potential) exists.

Let us define a function, f, such that:- (f: Complex potential) $f = \phi + i \psi$, where $i = \sqrt{-1}$ and f = f(z)

where z = x + iy, and (x,y) are real numbers.

In the Argand diagram, 2 represents a point in the x-y plane

Now,
$$\frac{df}{dz} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial z} \left| \frac{\partial x}{\partial z} = \bot \right| \times (z = x, y)$$

or $\frac{df}{dz} = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial z}$

$$= \frac{\partial}{\partial x} \left(\phi + i \psi \right) - i \frac{\partial}{\partial y} \left(\phi + i \psi \right)$$

$$= \left(\frac{\partial \phi}{\partial x} + i \frac{\partial \psi}{\partial x} \right) + \left(\frac{\partial \psi}{\partial y} - i \frac{\partial \phi}{\partial y} \right)$$

So differentiating in a direction parallel to y-axis ie

$$\frac{|df|}{|ds|} = \frac{\partial \varphi}{\partial y} - i \frac{\partial \varphi}{\partial y} \qquad \qquad \boxed{1}$$

Also differentiating in a direction parallel to x-axis ie $\frac{df}{dx}\Big|_{y=cont} = \frac{\partial \phi}{\partial x} + i\frac{\partial \phi}{\partial x} \qquad (2)$

As per the definition of ψ and φ , we have: $u = \frac{\partial \psi}{\partial y} = \frac{\partial \varphi}{\partial x}$

$$v = -\frac{\partial 4}{\partial x} = \frac{\partial \phi}{\partial y}$$

So from both 0 and 0, we get:
$$\frac{df}{dz} = u - iv$$
 (irrespective of the path of differentiation)

$$\frac{df}{dz} = u - iv$$

In polar coordinate system:

So
$$\frac{df}{ds} = u - iv$$

Here,
$$u = v_r \cos \theta - v_\theta \sin \theta$$

 $v = v_r \sin \theta + v_\theta \cos \theta$

So
$$\frac{df}{dz} = \left(v_r \cos \theta - v_\theta \sin \theta\right) - i \left(v_r \sin \theta + v_\theta \cos \theta\right)$$

Some elementary flows

Uniform flow:

det U be a free-stream uniform flow indined at an angle 'a' with x-axis

So
$$u = U \cos \alpha$$
, $v = U \sin \alpha$

$$\frac{df}{dz} = u - iv = U \left(\cos \alpha - i \sin \alpha\right)$$

or
$$\frac{df}{dz} = Ue^{-i\alpha}$$

or f = Ueix z + Constant)

Arbiterary, Not important as of is more important than f

Now it $\alpha = 0$, the uniform flow is along the x-direction, $U = U_{00}$

So
$$f = U \otimes y = \varphi + i \psi$$

$$\Rightarrow U \otimes (x + i y) = \varphi + i \psi \Rightarrow \qquad \psi = U \otimes y$$

$$\psi = U \otimes y$$

(2) Source: flow emerging from a point such that $v_{\tau} \propto \frac{1}{\tau}$, $v_{\theta} = 0$

Flow rate accross the circle, $q = v_r(2\pi r)$

$$v_r = \frac{9}{2\pi r} - (ii)$$

Comparing (i) k (ii), $c = \frac{9}{2\pi}$, 9 is also known as the strength of the

Now
$$\frac{df}{dz} = (v_r - iv_\theta)e^{-i\theta}$$

$$= \frac{9}{2\pi r} \cdot e^{-i\theta} = \frac{9}{2\pi (re^{i\theta})}$$

or
$$\frac{df}{dz} = \frac{q}{2\pi z}$$

$$(v_{\gamma} - iv_{\theta})e^{-i\theta}$$

$$= \frac{9}{2\pi\gamma} \cdot e^{-i\theta} = \frac{9}{2\pi}(re^{i\theta})$$

$$= \frac{9}{2\pi\gamma} \cdot e^{-i\theta} = \frac{9}{2\pi}(re^{i\theta})$$

$$= \frac{9}{2\pi\gamma} \cdot e^{-i\theta} = \frac{9}{2\pi\gamma} \cdot e^$$

Integrating
$$\rightarrow f = \frac{9}{2\pi} \ln(z) = \frac{9}{2\pi} \ln(re^{i\theta})$$

or $f = \phi + i\psi = \left(\frac{9}{2\pi} \ln r\right) + i\left(\frac{9\theta}{2\pi}\right)$

or
$$\phi = \frac{9}{2\pi} \ln \tau$$
, $\psi = \frac{9\theta}{2\pi}$ } $\psi = \text{const. lines or streamlines}$ signify $\theta = \text{const. lines}$

and $\phi = const$ lines or equipotential lines indicate v= const. lines.

Sink: flow radially converging to a point, $v_{r} \propto \frac{1}{r}$, $v_{\theta} = 0$

Here 9 < 0 (rest same as the source)

(4) Vortex: Free vortex flow, $v_r = 0$, $v_\theta = \frac{1}{7}$

or
$$v_{\theta} = \frac{c}{r}$$

So circulation,
$$\Gamma = \oint V_{\theta} dl$$

$$\Rightarrow \Gamma = c \int_{0}^{2\pi} r d\theta$$

Hence, $v_{\theta} = \frac{1}{2\pi r}, v_{r} = 0$

or
$$\Gamma = c.2\pi$$
 or $c = \frac{\Gamma}{2\pi}$

$$S_0 \frac{df}{dz} = \left(v_r - iv_\theta\right) e^{-i\theta} = -i \frac{\Gamma}{2\pi r} e^{-i\theta} = -i \frac{\Gamma}{2\pi (re^{i\theta})} = -i \frac{\Gamma}{2\pi z}$$

or
$$\frac{df}{dz} = -i\frac{\Gamma}{2\pi} \Rightarrow f = -i\frac{\Gamma}{2\pi} \ln(z) + cont$$

or $f = \phi + i\phi = -i\frac{\Gamma}{2\pi} \ln(re^{i\theta}) = -i\frac{\Gamma}{2\pi} \ln(r) - \frac{\Gamma}{2\pi} i^{2}\theta$
or $\phi + i\phi = \frac{\Gamma}{2\pi} \theta + i\left[-\frac{\Gamma}{2\pi} \ln(r)\right]$
 $\Rightarrow \phi = \frac{\Gamma}{2\pi} \theta$, $\phi = -\frac{\Gamma}{2\pi} \ln(r)$

So $\varphi = \text{const. or Streamlines}$ are $\gamma = \text{const. ant lines.}$ $\varphi = \text{const. or equipotential lines.}$ are $\theta = \text{const. lines.}$

Combination of elementary flows:

1 Combination of Source and Sink: Doublet

For an inviscid, incompressible, irrotational flow, we have $\nabla \phi = \nabla \psi = 0$ Hence due to linearity in the Laplace equation $\nabla^2(\phi + i\psi) = \nabla^2 f = 0$ Hence a linear superposition is possible for any elementary flows.

Let a sink be located at (-8,0) and a source at (8,0), both along the x-axis.

So
$$f = \frac{9}{2\pi} \ln (2+\delta) - \frac{9}{2\pi} \ln (2-\delta)$$

$$= \frac{9}{2\pi} \left[\ln \left\{ z \left(1 + \frac{\delta}{z} \right) \right\} - \ln \left\{ z \left(1 - \frac{\delta}{z} \right) \right\} \right]$$

$$= \frac{9}{2\pi} \left[\ln \left(1 + \frac{\delta}{z} \right) - \ln \left(1 - \frac{\delta}{z} \right) \right]$$

Taking $\delta(\langle \overline{z})$ $f = \frac{9}{2\pi} \left\{ \left(\frac{\delta}{z} \right) - \frac{1}{2} \left(\frac{\delta}{z} \right)^{\gamma} + \cdots \right\} - \left\{ \left(\frac{\delta}{z} \right) - \frac{1}{2} \left(\frac{\delta}{z} \right)^{\gamma} - \cdots \right\} \right\}$

Neglecting higher order terms, $f = \frac{9}{2\pi} \left(\frac{2\delta}{2} \right)$ or $f = \frac{9\delta}{\pi 2}$

or $f = \frac{m}{Z}$, where $m = \frac{9.8}{\pi} = \text{Strength of the doublet}$

When $\delta \rightarrow 0$, this source-Sink Combination is called a <u>doublet</u> but m = finite

So
$$f = \phi + i\phi = \frac{m}{2} = \frac{m}{\gamma} e^{-i\phi} = \frac{m}{\gamma} (\cos\phi - i\sin\phi)$$

or $\phi + i\phi = \frac{m}{\gamma^2} (\cos\phi + i\gamma\sin\phi) = \frac{m(\chi - i\gamma)}{(\chi^2 + \gamma^2)}$ —3

So
$$\psi = -\frac{my}{\chi^2 + y^2}$$
 or $\chi^2 + y^2 = -\left(\frac{m}{\psi}\right)^2$

$$\Rightarrow \chi^2 + \left\{y^2 + 2\left(\frac{m}{2\psi}\right)y + \frac{m^2}{4\psi^2}\right\} = \left(\frac{m}{2\psi}\right)^2$$

or $\chi^2 + \left(\gamma + \frac{m}{24}\right)^2 = \left(\frac{m}{24}\right)^2 \rightarrow \text{Signifies a family of}$ circles with Centre at $\left(0, \frac{m}{24}\right)$ and radius $\frac{m}{24}$.

for 4 = cont. these family of circles represent streamlines.

Again from (3)
$$\phi = \frac{mx}{x^2 + y^2} \Rightarrow x^2 + y^2 = \left(\frac{m}{2}\right)^2$$

$$\Rightarrow \left(x - \frac{m}{2\phi}\right)^2 + y^2 = \left(\frac{m}{2\phi}\right)^2$$
family of circles with centre as $\left(\frac{m}{2\phi}\right)^2$
and radius as $\frac{m}{2\phi}$
for $\phi = \text{const.}$, these represent equipotential lines

Lets try to draw it -

2 Combination of a uniform flow with doublet: uniform flow over a non-rotating cylinder

Let the uniform velocity be Vos along x-direction and let the strength of the doublet be m.

So
$$f(z) = U_{\infty}z + \frac{m}{z} = U_{\infty}re^{i\theta} + \frac{m}{r}e^{i\theta}$$

= $U_{\infty}r(cos\theta + isin\theta) + \frac{m}{r}(cos\theta - isin\theta)$

or
$$f(z) = \phi + i \psi = \left(U_{\infty} \gamma + \frac{m}{\gamma}\right) \cos \theta + i \left(U_{\infty} \gamma - \frac{m}{\gamma}\right) \sin \theta$$

So $\psi = \left(U_{\infty} \gamma - \frac{m}{\gamma}\right) \sin \theta$ So $\psi = constant$ for a stream line.

Consider a streamline along the contour/surface of a body. For such case, by convention 4 = constant = 0

So
$$\psi = \left(U_{\infty} \gamma - \frac{m}{\gamma} \right) \sin \theta = 0$$
 or $U_{\infty} \gamma = \frac{m}{\gamma}$
or $\gamma^2 = \chi^2 + \gamma^2 = \left(\frac{m}{U_{\infty}} \right) \rightarrow At r = R, \ \underline{m} = U_{\infty} R^2$

This confour represents a circle in 2D. In a 3D scenario it refresents a cylinder. Hence the streamlines indicate flow over a cylinder of radius $\sqrt{m/v_0}$.

To find the velocity field,
$$\frac{df}{dz} = (v_7 - iv_8)e^{-i\theta} = U_{\infty} - \frac{m}{2^2}$$

or $\frac{df}{dz} = U_{\infty} - \frac{m}{\gamma^2}e^{-i(2\theta)} = (U_{\infty}e^{i\theta} - \frac{m}{\gamma^2}e^{-i\theta})e^{-i\theta}$

$$= \left[U_{\infty}\cos\theta + iU_{\infty}\sin\theta - \frac{m}{\gamma^2}\cos\theta + i\frac{m}{\gamma^2}\sin\theta \right]e^{-i\theta}$$

$$= \left[(U_{\infty} - \frac{m}{\gamma^2})\cos\theta - i\left(-U_{\infty} - \frac{m}{\gamma^2}\right)\sin\theta \right]e^{-i\theta}$$

$$= \frac{1}{2^2}$$

At
$$r=R$$
, $v_r = \left(v_{\infty} - \frac{m}{R^2} \right) \cos \theta = 0$ (: $m = v_{\infty} R^2$)

[No penetration condition at surface]

At
$$r=R$$
, $v_{\theta} \Big|_{r=R} = \left(-v_{\infty} - \frac{m}{R^2}\right) \sin \theta = -2v_{\infty} \sin \theta$

[No-slip Condition does not hold for potential floys]

So for an inviscid uniform flow incident on a wylinder, B.E. can be applied between any two points in the flow field (Since the flow is irrotational).

So between any point (R, t) on the cylinder surface and fan-fild, let us apply B.E.,

$$b_{\infty} + \frac{1}{2} P U_{\infty}^{2} = b_{s} + \frac{1}{2} P V^{2}$$

$$\frac{\partial}{\partial x} = \frac{\partial x}{\partial y} - \frac{\partial x}{\partial y} = 1 - \frac{v^2}{v_0 v} - 4$$

$$V^2 = \left(v_v^2 + v_\theta^2\right)_{v=R} = 0 + 4v_0^2 \sin \theta$$

$$\frac{|p_s - p_{\infty}|}{\frac{1}{2} p_{\infty}^2} = Cp = 1 - 4 \sin^2 \theta = \frac{\text{Coefficient of pressure}}{}$$

-> This coefficient of pressure is the same within the boundary layer also Lill adverse pressure gradient or B. L. Separation is encountered.

Stagnation points: $v_r = v_\theta = 0$ at r = R,

Now by = 0 at Y=R, if 0 = 0 or x

$$\varphi = \left(U_{\infty \gamma} - \frac{m}{\gamma} \right) Sin \theta$$

How does the Streamlines look like?

Calculating the lift and drag force acting on the cylinder

Net drag force acting on the cylinder is due to the pressure dixtribution on its surface. $S_0 F_D = -\int_0^{2\pi} \left(p_S \cos \theta \right) R d\theta = -R \int_0^{2\pi} \left[p_\infty + \frac{1}{2} p_\infty^2 \left(1 - 4 \sin^2 \theta \right) \right] \cos \theta d\theta$

$$S_0 F_D = - \int_0^{\infty} (P_S GSV) R^{(N)} = -R \int_0^{\infty} \left[\rho_\infty + \frac{1}{2} P_{0\infty} (P_S GSV) \right] dt$$

$$2\pi \int_0^{\infty} (P_S GSV) R^{(N)} = -R \int_0^{\infty} \left[\rho_\infty + \frac{1}{2} P_{0\infty} (P_S GSV) \right] dt$$

$$\Rightarrow F_D = -R \rho_\infty \int_0^{2\pi} \cos\theta \, d\theta - \frac{1}{2} P v_\infty^2 R \int_0^{2\pi} (\cos\theta - 4 \cos\theta \sin^2\theta) \, d\theta$$

$$\Rightarrow$$
 $F_D = 0$

> FD = O Strange Result. No drag 1 - D'Almberts paradox

No viscous forces were considered, hence gen drag.

Total lift:
$$F_L = \int (b_s \sin \theta) R d\theta = 0$$
 (So no lift forces acting)

Plot of Cp Vx D

Potential flow solution (--)

$$Cp = \frac{p_S - p_\infty}{\frac{1}{2} p V_{\infty}^2} = 1 - 4 \sin^2 \theta \quad \text{(No B.L. separation)}$$

Considering B.L. Separation

3 Uniform flow + Doublet + Vortex: Uniform flow past a rotating cylinder

So,
$$f = U_{\infty} Z + \frac{1}{2\pi} I_{\infty} I$$

Stagnation points

At a stagnation point, $v_8 = v_\theta = 0$

or
$$(U_{\infty} - \frac{m}{r^2})\cos\theta = 0 \Rightarrow \text{Zero radial velocity will occur}$$

$$\frac{1}{r^2} = \frac{m}{U_{\infty}} \text{ or } \theta = \pm \frac{\pi}{2} \Rightarrow \text{ or at } \theta = \pm \frac{\pi}{2}$$

Also,
$$v_{\theta} = 0 \Rightarrow \left(v_{\infty} + \frac{m}{r^2} \right) \sin \theta = -\frac{\Gamma}{2\pi r}$$
 or $\theta = \sin^{-1} \left[\frac{-\Gamma/2\pi r}{\left(v_{\infty} + \frac{m}{r^2} \right)} \right]$

Since for a stagnation point, both $v_{\theta} = v_r = 0$

So, the stagnation point will be along the circle of radius $r = \sqrt{\frac{m}{V_{\infty}}}$ and $\theta = \sin^{-1}\left[\frac{-\sqrt{2\pi}r}{(U_{\infty} + \frac{m}{r^2})}\right]$

or
$$\theta = \sin^{-1} \left[\frac{1}{2\pi} \left(\frac{V_{\infty}}{m} \right)^{1/2} \right]$$
 (Substituting $r^2 = \frac{m}{V_{\infty}}$)

or
$$\theta = \sin^{-1}\left(-\frac{1}{4\pi\sqrt{mU\omega}}\right)$$
 \rightarrow Two values of $\theta = \exp t$ for $\sin^{-1}\left(\pm 1\right)$

Substituting the Stagnation coordinate (r, θ) in the expression for r will give us the equation for the streamline passing through the stagnation point.

$$4 + \frac{\pi}{2\pi} = U_{\infty} \times \sin \theta - \frac{m}{r} \sin \theta + \frac{\Gamma}{2\pi} \ln(r)$$

or
$$4 ext{stag} = \left(\frac{m}{2\pi} - \frac{m}{r} \right) \sin \theta + \frac{\Gamma}{2\pi} \ln(r)$$
or $4 ext{Stag} = \left[\frac{1}{2\pi} \left(\frac{m}{2\pi} \right)^{1/2} - \frac{\Gamma}{m} \left(\frac{1}{2\pi} \right)^{1/2} \right] \left\{ -\frac{\Gamma}{4\pi} \left(\frac{m}{2\pi} \right)^{1/2} \right\} + \frac{\Gamma}{2\pi} \ln\left(\frac{m}{2\pi} \right)^{1/2}$
or $4 ext{Stag} = \frac{\Gamma}{2\pi} \ln\left(\frac{m}{2\pi} \right)^{1/2}$

Now equating this with the general expression of a streamline:

or
$$U_{\infty} r \sin \theta - \frac{m \sin \theta}{r} + \frac{1}{2\pi} l_{nr} = \frac{\Gamma}{2\pi} l_{n} \left(\frac{m}{U_{\infty}} \right)^{1/2}$$
or $\left(U_{\infty} r - \frac{m}{r} \right) \sin \theta + \frac{\Gamma}{2\pi} \left\{ l_{nr} - l_{n} \left(\frac{m}{U_{\infty}} \right)^{1/2} \right\} = 0$

So clearly the above equation is satisfied if $r = \left(\frac{m}{V_{00}}\right)^{1/2}$. Hence a streamline is present along the circle of radius, $r = \left(\frac{m}{V_{00}}\right)^{1/2}$ and two stagnation points also lie on this streamline. So this circle can be taken to be the contour of a solid cylinder.

Figueratively

Stagnation points: A and B.

[: Sin 0 < 0 only for 180 < 0 < 360]

Special case

We have
$$\theta = \sin^{-1}\left[\frac{-\Gamma}{4\pi(mU_{\infty})^{1/2}}\right]$$

$$= \sin^{-1}\left[-\frac{\Gamma}{4\pi U_{\infty}}\right]$$

$$= \sin^{-1}\left[-\frac{\Gamma}{4\pi U_{\infty} r}\right] \quad \text{If } \frac{\Gamma}{4\pi U_{\infty} r} = 1 \text{, then } \theta = -\frac{\overline{\Lambda}}{2}$$

Here the two stagnation points now converge at a single point. $\theta = -\pi/2$. So:

5: Stagnation point.

Lift and Drag force for flow about a rotating cylinder

To calculate the lift force:
$$F_{L} = \int_{0}^{2\pi} \left(p_{S} \sin \theta \right) R d\theta \quad , R = \left(\frac{m}{U_{ND}} \right)^{V_{2}} d\theta$$

$$Applying 8.E, \qquad \frac{p_{S} - p_{ND}}{\frac{1}{2} p_{ND}^{2}} = 1 - \frac{\left(\frac{m^{2} + v_{D}^{2}}{V_{ND}^{2}} \right)_{Y=R}}{\left(\frac{m^{2} + v_{D}^{2}}{V_{ND}^{2}} \right)_{Y=R}} d\theta$$

$$= 1 - \frac{1}{U_{ND}^{2}} \left[-\left(v_{ND} + \frac{m}{R^{2}} \right) \sin \theta - \frac{\Gamma}{2\pi R} \right]^{2}$$

$$= 1 - \frac{1}{U_{ND}^{2}} \left[2U_{ND} \sin \theta + \frac{\Gamma}{2\pi R} \right]^{2}$$

$$= 1 - \left[2 \sin \theta + \frac{\Gamma}{2\pi R} U_{ND} \right]^{2}$$
or
$$p_{S} = p_{ND} + \frac{1}{2} p_{ND}^{2} \left[1 - \left\{ 4 \sin^{2} \theta + \frac{\Gamma^{2}}{4\pi^{2} R^{2} U_{ND}^{2}} + \frac{2 \Gamma \sin \theta}{\pi R U_{ND}} \right\} \right]$$

$$S_{0} \quad F_{L} = \int_{0}^{2\pi} \left[\frac{\rho_{0}R\sin\theta + \frac{R}{2}\rho U_{0}^{2}\sin\theta}{\sqrt{R}U_{0}} \left\{ 1 - \left(\frac{4\sin^{2}\theta + \frac{\eta^{2}}{4\pi^{2}R^{2}U_{0}^{2}} + \frac{2\Gamma\sin\theta}{\sqrt{R}U_{0}} \right) \right\} \right] d\theta$$

$$o_{1} \quad F_{L} = 0 + \frac{R\rho U_{0}^{2}}{2} \left(\frac{2\Gamma}{\sqrt{R}U_{0}} \right) \left[\int_{0}^{2\pi} \sin^{2}\theta d\theta \right] = \frac{2\Gamma R\rho U_{0}^{2}R}{2\pi R V_{0}} = \frac{\rho \Gamma U_{0}}{2\pi R V_{0}}$$

$$\left[\int_{0}^{2\pi} \sin^{2}\theta d\theta \right] \quad O_{1} \quad F_{L} = \rho \Gamma U_{0} \quad \partial_{0} \quad$$

- -> This lift force is independent of the body shape
- -> Even though this is derived for a potential flow, it holds true for most real flows
- This effect of generation of a lift force due to rotation of a body in a flow is called Magnus effect. Application:

 Swing in cricket ball

Drag force: A similar calculation can be done for the drag force $F_D = -\int_0^{2K} (p_p \cos\theta) R d\theta = 0$

Again the drag force is zero, due to the viscous forces not being considered

Next: Aerofoil Theory