```
In [23]: import pandas as pd
In [24]: data=pd.read_csv("fiat500 (1).csv")
In [25]: data
Out[25]:
                   ID model engine_power age_in_days
                                                           km previous_owners
                                                                                      lat
                                                                                               lon price
               0
                                        51
                                                   882
                                                         25000
                                                                             1 44.907242
                                                                                          8.611560
                                                                                                    8900
                    1 lounge
                                                         32500
                                                                             1 45.666359 12.241890
               1
                                        51
                                                  1186
                                                                                                    8800
                          pop
               2
                         sport
                                        74
                                                  4658
                                                       142228
                                                                             1 45.503300 11.417840
                                                                                                    4200
                                                       160000
                                                                             1 40.633171 17.634609
               3
                       lounge
                                        51
                                                  2739
                                                                                                    6000
                                        73
                                                  3074
                                                        106880
                                                                             1 41.903221 12.495650
                                                                                                    5700
                          pop
            1533
                                                  3712 115280
                                                                             1 45.069679
                                                                                          7.704920
                                                                                                    5200
                 1534
                         sport
                                        51
                                                        112000
            1534
                 1535
                       lounge
                                        74
                                                  3835
                                                                             1 45.845692
                                                                                          8.666870
                                                                                                    4600
            1535 1536
                                        51
                                                  2223
                                                         60457
                                                                             1 45.481541
                                                                                          9.413480
                                                                                                    7500
                          pop
                                        51
            1536
                 1537
                       lounge
                                                  2557
                                                         80750
                                                                             1 45.000702
                                                                                          7.682270
                                                                                                    5990
            1537 1538
                          pop
                                        51
                                                  1766
                                                         54276
                                                                             1 40.323410 17.568270
                                                                                                    7900
           1538 rows × 9 columns
In [26]: | data=data.drop(['lat','lon','ID',],axis=1)
```

2/15

In [27]: data

Out[27]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [46]: # ridge regression

In [47]: from sklearn.model_selection import GridSearchCV
from sklearn.linear model import Ridge

```
alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
          ridge = Ridge()
         parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
         ridge regressor.fit(X train, y train)
Out[47]: GridSearchCV(estimator=Ridge(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 20, 301})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [48]: ridge regressor.best params
Out[48]: {'alpha': 30}
In [49]: ridge=Ridge(alpha=30)
          ridge.fit(X train,y train)
         y pred ridge=ridge.predict(X test)
In [50]: Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[50]: 579521.7970897449
In [51]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[51]: 0.8415526986865394
```

```
In [52]: Results= pd.DataFrame(columns=['Price','Predicted'])
    Results['Price']=y_test
    Results['Predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(25)
```

Out[52]:

	index	Price	Predicted	Id
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
5	1414	9900	9650.311090	5
6	1089	9900	9669.183317	6
7	1507	9950	10115.128380	7
8	970	10700	9900.241944	8
9	1198	8999	9347.080772	9
10	1088	9890	10431.237961	10
11	576	7990	7725.756431	11
12	965	7380	7691.089846	12
13	1488	6800	6583.674680	13
14	1432	8900	9659.240069	14
15	380	10500	10370.231518	15
16	754	10690	9620.427488	16
17	30	6990	7689.189244	17
18	49	4300	4954.595074	18
19	240	10500	10452.262871	19
20	344	9980	10353.107796	20

	index	Price	Predicted	ld
21	354	10500	10388.635632	21
22	124	7500	7503.302407	22
23	383	9600	9948.970588	23
24	1389	5500	7009.047336	24

```
In [53]: import seaborn as sns
import matplotlib.pyplot as plt

sns.lineplot(x='Id',y='Price',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
plt.plot()
```

Out[53]: []

In [54]: # *Elastic*