

CNN 모델의 발전

LeNet

- CNN을 처음으로 개발한 얀 르쿤(Yann Lecun) 연구팀이 1998년에 개발한 CNN 알고리즘의 이름
- 논문: "Gradient-based learning applied to document recognition"

- 손으로 적힌 우편 번호를 전통적인 방법보다 효율적으로 확인하기 위해 고안
 - 전통적인 모델은 사람이 직접 만든 특징 추출기로 추출하고 분류기를 붙여 사용

• 전통적인 방법의 한계

- 사람이 만든 특징 추출기는 제한된 특징만 추출
 - 설계자가 생각한 정보만 추출되어 활용됨
- 너무 많은 매개변수를 포함
 - 분류기에 사용되는 FC의 경우 엄청나게 많은 가중치를 포함
 - 시스템의 capacity를 증가시키므로 더 많은 훈련 셋과 메모리 저장공간이 많이 필요
- 입력 값의 Topology가 완전히 무시됨
 - 이미지는 공간적인 특징, 상관관계를 가지는데 FC는 공간적인 정보를 이용하지 못함
 - LeNet 발표 전에 활용되던 FC는 2차원 이미지를 1차원으로 펼쳐진 데이터를 입력함

• 문자 인식 업무에서의 CNN

• CNN은 약간의 shift, scale, distortion 불변성을 갖기 위해 세 개의 아이디 어를 결합함

- 수용 영역(Receptive Field)
 - hidden unit의 receptive field를 local로 제한함으로써 local feature를 추출

FULLY CONNECTED NEURAL NET

LOCALLY CONNECTED NEURAL NET

- 가중치 공유 (Shared Weight)
 - CNN은 가중치 배열을 강제로 복제함으로써 자동으로 shift 불변성 확보

- Feature map의 unit은 동일한 weights와 bias를 공유
 - 공유된 weight 집합을 컨볼루션 커널로 이용, 입력 데이터의 모든 위치에서 동일한 특징 추출
 - 예, 5x5 kernel은 5x5사이즈와 설정된 Stride에 맞춰 feature map를 돌아다니며 계산하지만, 5x5의 weight와 1개의 bias만 back propagation으로 학습 수행

- weight 공유 → 커널을 총 몇 개로 설정하는가에 따라 출력인 Feature Map의 수와 학습 해야 하는 파라미터만 증가(학습 파라미터가 증가하는 것이 아님)
 - 요구 계산량 감소, 학습 파라미터 감소 > 과적합 방지 > 학습~검증 오류간 갭 감소
 - 실제로 LeNet-5에는 340,908개의 커넥션이 있지만 60,000개의 학습 파라미터만 존재

• 가중치 공유로 인하여 입력 이미지가 변환되면 feature map의 결과값도 동일한 양만큼 변환됨 → 입력의 왜곡과 변환에 대한 Robust(강건함) 확보

• 서브 샘플링 (Subsampling)

- 현재 CNN 모델에서의 Pooling을 의미함 (LeNet-5에서는 Average Pooling 이용)
- 특징이 한 번 검출되면 위치 정보의 중요성은 감소함(이미 처리가 끝났으므로)
- 각 특징의 위치 정보는 패턴 식별과는 무관하며, 입력 값에 따라 특징이 나타나는 위치가 다를 가능성이 높음 → 잠재적 유해 정보가 됨
 - Feature Map으로 인코딩 되는 특징들의 위치에 대한 정확도를 감소시키기 위한 가장 간단한 방법 → Feature Map의 해상도를 감소시키는 것
 - 서브샘플링 레이어에서 지역평균값과 서브샘플링을 수행하여 Feature Map의 해상도를 감소 시키고 왜곡(Distortion)과 이동(Shift)에 대한 민감도를 감소시킬 수 있음
- 위치 정보 소실로 인한 손실 → Feature Map 크기가 작아질수록 더 많은 Filter를 사용하여 다양한 Feature를 추출함으로써 보완함

• LeNet-5의 구조

C1~F6까지 레이어의 활성화 함수는 tanh를 사용

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

• Input Layer, 3개의 Convolution Layer(C1, C2, C3), 2개의 Subsampling, 1 층의 Full Connected Layer, Output Layer로 구성

- C1 레이어 (Convolution)
 - 입력 영상(여기서는 32 x 32 사이즈의 이미지)을 6개의 5 x 5 필터와 컨볼루션 연산 수행
 - 그 결과 6장의 28 x 28 특성 맵 취득

훈련해야 할 파라미터 개수: (가중치 * 입력 맵 개수 + 바이어스) * 특성 맵 개수 = (5*5 * 1 + 1) * 6 = 156

• S2 레이어 (Subsampling)

- 6장의 28 x 28 특성 맵에 대해 서브샘플링 진행
- 2×2 필터를 stride 2로 설정해서 서브샘플링 하기때문에 결과적으로 28×28 사이즈의 특성 맵이 14×14 사이즈의 특성맵으로 축소됨
- 사용하는 서브샘플링 방법은 평균 풀링(average pooling)

훈련해야 할 파라미터 개수: (가중치 + 바이어스) * 특성 맵 개수 = (1 + 1) * 6 = 12

- 평균을 낸 후에 한 개의 훈련가능한 가중치(trainable weight)를 곱해주고
- 또 한 개의 훈련가능한 바이어스(trainable bias)를 더해 줌
- 그 값이 시그모이드 함수를 통해 활성화
 - 참고로 가중치와 바이어스는 시그모이드의 비활성도를 조절함

• C3 레이어 (Convolution)

- 6장의 14 x 14 특성맵에 컨볼루션 연산을 수행해서 16장의 10 x 10 특성맵을 산출
 - 6장의 14 x 14 특성맵에서
 - 연속된 3장씩 모아서 5x5x3 크기 필터와 컨볼루션→(열0-5)→6장의 10x10 특성맵 산출
 - 연속된 4장씩 모아서 5x5x4 크기 필터와 컨볼루션→(열6-11)→6장의 10x10 특성맵 산출
 - 불연속한 4장씩 모아서 5x5x4 크기 필터와 컨볼루션→(열12-14)→3장의 10x10 특성맵 산출
 - 특성맵 모두로 5x5x6 크기 필터와 컨볼루션→(열15)→1장의 10x10 특성맵 산출
 - 최종적으로 16장(6 + 6 + 3 + 1)의 10 x 10 특성맵 획득

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				X	X	X			Χ	X	Χ	Χ		X	X
1	X	X				X	X	X			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		X
2	X	\mathbf{X}	\mathbf{X}				X	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	\mathbf{X}	X
3		\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	X
			\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}		X
5				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	X

연속된 3장, 4장이나 불연속된 4장 등의 hyper parameter 값은 임의로 선택한 값 (논문에서 그렇게 밝히고 있음)

									채널								
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	Х				Х	Χ	Х			Χ	Х	Х	Х		Х	Х
입	1	Х	Χ				Χ	Χ	Χ			Χ	Χ	Χ	Χ		Х
	2	Х	Х	Х				Χ	Χ	Χ			Χ		Χ	Х	Х
렸	3		Χ	Х	Х			Х	Χ	Χ	Χ			Х		Χ	Х
	4			Χ	Χ	Х			Χ	Χ	Χ	Χ		Χ	Χ		Х
	5				Χ	Х	Χ			Χ	Χ	Χ	Χ		Χ	Χ	Х
		연속된 3장의 입력으로 convolution. 6개의 feature map 생성						연속된 4장의 입력으로 convolution. 6개의 feature map 생성									

불연속된 4장의 입력으로 convolution. 3개의 feature map 생성 연속된 6장의 입력으로 convolution. 1개의 feature map 생성

- 훈련해야 할 파라미터 수
 - 첫번째그룹=> (가중치*입력맵개수+바이어스)*특성맵 개수 = (5*5*3 + 1)*6 = 456
 - 두번째그룹=> (가중치*입력맵개수+바이어스)*특성맵 개수 = (5*5*4 + 1)*6 = 606
 - 세번째그룹=> (가중치*입력맵개수+바이어스)*특성맵 개수 = (5*5*4 + 1)*3 = 303
 - 네번째그룹=> (가중치*입력맵개수+바이어스)*특성맵 개수 = (5*5*6 + 1)*1 = 151
 - \bullet 456 + 606 + 303 + 151 = 1516

S4 Layer (Subsampling)

• 16장의 10 x 10 특성 맵에 대해서 서브샘플링을 진행해 16장의 5 x 5 특성 맵으로 축소 (2 x 2 필터, stride 2)

훈련해야 할 파라미터 개수: (가중치 + 바이어스) * 특성 맵 개수 = (1 + 1) * 16 = 32

- C5 Layer (Convolution)
 - 16장의 5 x 5 특성 맵을 120개의 5 x 5 x 16 사이즈의 필터와 컨볼루션 수행
 - 결과적으로 120개의 1 x 1 특성 맵 산출

훈련해야 할 파라미터 개수: (가중치 * 입력 맵 개수 + 바이어스) * 특성 맵 개수 = (5*5*16 + 1) * 120 = 48120

F6 Layer (Fully-Connected)

- 84개의 유닛을 가진 피드포워드 신경망
- C5의 결과를 84개의 유닛에 연결
- LeNet에서는 아직 Backpropagation을 사용하지 않음

훈련해야 할 파라미터 개수: 연결개수 = (입력개수 + 바이어스) * 출력개수 = (120 + 1) * 84 = 10164 출력 유닛이 84인 이유는...

아래의 ASCII set을 해석하기 적합한 형태로 나와 주길 바라는 마음으로 설정했다고 함.

각각의 문자가 7x12 크기의 bitmap 이기 때문

Output Layer

- 10개의 Euclidean radial basis function(RBF) 유닛들로 구성
- 각각 F6의 84개 유닛으로부터 입력을 받음
- 최종적으로 이미지가 속한 클래스 출력 > 10개의 출력에서 각각이 특정 이미지일 확률
- RBF에서는 학습할 때 역전파(Backpropagation)를 사용

LeNet-5를 제대로 가동하기 위해 훈련해야할 파라미터는 총 156 + 12 + 1516 + 32 + 48120 + 10164 = 60000개

AlexNet

- 2012년에 개최된 ILSVRC(ImageNet Large Scale Visual Recognition Challenge) 대회의 우승을 차지한 CNN 구조
 - Top 5 test error 기준 15.4%를 기록해 2위(26.2%)를 큰 폭으로 따돌리고 1위를 차지

Top 5 test error: 모델이 예측한 최상위 5개 범주 가운데 정답이 없는 경우의 오류율을 말함

- CNN의 부흥에 아주 큰 역할을 하였음
- · 논문: "ImageNet Classification with Deep Convolutional Neural Networks"
 - 논문의 첫번째 저자가 Alex Khrizevsky이기 때문에 그의 이름을 따서 AlexNet 이라고 함

• AlexNet의 구조

- AlexNet의 기본구조는 LeNet-5와 크게 다르지 않음
- 2개의 GPU로 병렬연산을 수행하기 위해서 병렬적인 구조로 설계되었다는 점이 가장 큰 변화

• 8개의 레이어로 구성

- 5개의 컨볼루션 레이어와 3개의 full-connected 레이어
- 2, 4, 5번 컨볼루션 레이어들은 전 단계의 같은 채널의 특성맵들과만 연결
- 3번 컨볼루션 레이어는 전 단계의 두 채널의 특성맵들과 모두 연결

- 첫번째 레이어(컨볼루션 레이어)
 - 96개의 11 x 11 x 3 사이즈 필터커널로 입력 영상을 컨볼루션

- stride=4로 설정했으며 zero-padding은 사용하지 않음
 - zero-padding: 컨볼루션으로 인해 특성맵의 사이즈가 축소되는 것을 방지하기 위해, 또는 축소되는 정도를 줄이기 위해 영상의 가장자리 부분에 0을 추가하는 것
 - 결과적으로 55 x 55 x 96 특성맵(96장의 55 x 55 사이즈 특성맵들) 산출됨

• ReLU 함수로 활성화

- 3 x 3 overlapping max pooling을 stride=2로 시행
 - 결과 27 x 27 x 96 특성맵을 가짐

- 수렴 속도를 높이기 위해 local response normalization 시행
 - local response normalization: 특성맵의 차원을 변화시키지 않으므로, 특성맵의 크기는 27 x 27 x 96으로 유지

- Overlapping Pooling
 - CNN에서 pooling의 역할은 컨볼루션을 통해 얻은 특성맵의 크기를 줄이기 위함
 - LeNet-5의 경우 Average Pooling이 사용된 반면, AlexNet에서는 Max Pooling 사용
 - LeNet-5는 풀링 커널이 움직이는 Stride를 커널 크기보다 작게 하는 Overlapping Pooling 적용
 - LeNet-5는 Non-Overlapping Average Pooling 사용
 - AlexNet은 Overlapping Max Pooling 사용

1 3 5 5 4 1 4 9 3 2 0 1 5 2 4 6 Stride 2 2 x 2 max pooling

Overlapping pooling

Non-overlapping pooling

overlapping 풀링을 하면 풀링 커널이 중첩되면서 지나가는 반면,
non-overlapping 풀링을 하면 중첩없이 진행됨
overlapping 풀링이 top-1, top-5 에러율을 줄이는데 좀 더 효과가 있다고 함

		_		
1	3	5	5	
4	1	4	9	
3	2	0	1	
5	2	4	6	

2 x 2 max pooling

- local response normalization (LRN)
 - 신경생물학에서의 Lateral Inhibition : 활성화된 뉴런이 주변 이웃 뉴런들을 억누르는 현상
 - Lateral Inhibition 현상을 모델링한 것이 Local Response Normalization
 - 강하게 활성화된 뉴런의 주변 이웃들에 대해서 normalization을 실행
 - 주변에 비해 어떤 뉴런이 비교적 강하게 활성화되어 있다면, 그 뉴런의 반응은 더욱더 돋 보이게 될 것
 - 반면 강하게 활성화된 뉴런 주변도 모두 강하게 활성화되어 있다면, LRN 이후에는 모두 값이 작아질 것

- 두번째 레이어(컨볼루션 레이어)
 - 256개의 5 x 5 x 48 커널을 사용하여 전 단계의 특성맵을 컨볼루션
 - stride는 =1로, zero-padding=2로 설정
 - 27 x 27 x 256 특성맵(256장의 27 x 27 사이즈 특성맵들) 산출
 - ReLU 함수로 활성화
 - 3 x 3 overlapping max pooling을 stride=2로 시행
 - 13 x 13 x 256 특성맵 산출
 - local response normalization이 시행
 - 특성맵의 크기는 13 x 13 x 256으로 그대로 유지

- 세번째 레이어(컨볼루션 레이어)
 - 384개의 3 x 3 x 256 커널을 사용하여 전 단계의 특성맵을 컨볼루션
 - stride와 zero-padding 모두 1로 설정
 - 13 x 13 x 384 특성맵(384장의 13 x 13 사이즈 특성맵들) 산출
 - ReLU 함수로 활성화

- 네번째 레이어(컨볼루션 레이어)
 - 384개의 3 x 3 x 192 커널을 사용하여 전 단계의 특성맵을 컨볼루션
 - stride와 zero-padding 모두 1로 설정
 - 13 x 13 x 384 특성맵(384장의 13 x 13 사이즈 특성맵들) 산출
 - ReLU 함수로 활성화

- 다섯번째 레이어(컨볼루션 레이어)
 - 256개의 3 x 3 x 192 커널을 사용해서 전 단계의 특성맵을 컨볼루션
 - stride와 zero-padding 모두 1로 설정
 - 13 x 13 x 256 특성맵(256장의 13 x 13 사이즈 특성맵들) 산출
 - ReLU 함수로 활성화
 - 3 x 3 overlapping max pooling을 stride=2로 시행
 - 6 x 6 x 256 특성맵 산출

• 여섯번째 레이어(Fully connected layer)

- 6 x 6 x 256 특성맵을 flatten으로 변환, 6 x 6 x 256 = 9216차원의 벡터로 만듦
- 생성된 벡터를 여섯번째 레이어의 4096개의 뉴런과 fully connected
- 결과를 ReLU 함수로 활성화

• 일곱번째 레이어(Fully connected layer)

- 4096개의 뉴런으로 구성 → 전 단계의 4096개 뉴런과 fully connected
- 출력 값은 ReLU 함수로 활성화

• 여덟번째 레이어(Fully connected layer)

- 1000개의 뉴런으로 구성
- 전 단계의 4096개 뉴런과 fully connected
- 1000개 뉴런의 출력값에 softmax 함수를 적용해 1000개 클래스 각각에 속할 확률 계산

• 비고

- 약 6천만개의 파라미터가 훈련되어야 함 (LeNet-5는 약 6만개)
- 컴퓨팅 기술도 좋아졌고, 훈련시간을 줄이기 위한 방법들도 사용 → 훈련 가능
 - 예전 기술 같으면 상상도 못할 연산량

VGGNet

- 옥스포드 대학의 연구팀 VGG에 의해 개발되었으며 2014년 이미지넷 이미지 인식 대회에서 준우승을 한 모델
- 16개 또는 19개의 층으로 구성됨 (VGG-16, VGG-19)

• 논문: "Very deep convolutional networks for large-scale image recognition"

• 깊이의 혁명

ImageNet Classification top-5 error (%)

Kalming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

역사적으로 봤을 때,

VGGNet 모델부터 시작해서 네트워크의 깊이가 확 깊어 졌다.

- •2012년, 2013년 우승 모델들은 8개의 층으로 구성
- 2014년의 VGGNet(VGG19)는 19층으로 구성됨
- GoogLeNet은 22층으로 구성됨
- 2015년에는 152개의 층으로 구성된 ResNet이 제안됨
- 네크워크가 깊어질 수록 성능이 좋아졌음을 그림을 통해 확인 가능
- VGGNet은 사용하기 쉬운 구조와 좋은 성능 덕분에 그 대회에서 우승을 거둔 조금 더 복잡한 형태의 GoogLeNet보다 더 인기를 얻었다.

- · VGGNet 연구의 핵심
 - 네트워크의 깊이를 깊게 만드는 것이 성능에 어떤 영향을 미치는지를 확인하고자 한 것
 - 깊이의 영향만을 최대한 확인하고자 컨볼루션 필터 커널 크기는 가장 작은 3x3으로 고정
 - 필터 커널 크기가 크면 그만큼 이미지의 사이즈가 금방 축소되기 때문에 네트워크의 깊이를 충분히 깊게 만들기는 불가능함

- VGG 연구팀은 총 6개의 구조 (A, A-LRN,
 B, C, D, E)를 만들어 성능을 비교함
 - 여러 구조를 만든 이유:
 - 기본적으로 깊이에 따른 성능 변화를 비교하기 위함
 - D 구조: VGG16
 - E 구조: VGG19

ConvNet Configuration										
A	A-LRN	В	C	D	E					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
input (224 × 224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
			pool							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
maxpool										
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
			pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
· · · · · · · · · · · · · · · · · · ·			pool							
			4096							
FC-4096										
			1000							
		soft-	-max							

VGGNet 구조 설명 표 [출처: original 논문]

• 연구 과정

- AlexNet 등이 사용한 Local Response Normalization(LRN)이
- A 구조 및 A-LRN 구조와의 성능 비교 결과, 성능 향상에 별로 효과가 없다는 것을 실험
 을 통해 확인 → B, C, D, E 구조에는 LRN을 적용하지 않음
- 깊이가 11층, 13층, 16층, 19층으로 깊어지면서 분류 에러가 감소하는 것을 관찰 → 깊어질수록 성능이 좋아진다

- · VGGNet 구조 분석에 앞서..
 - 3 x 3 필터로 두 차례 컨볼루션을 하는 것과 5 x 5 필터로 한 번 컨볼루션을 하는 것은 결과적으로 동일한 사이즈의 특성맵을 산출
 - 3 x 3 필터로 세 차례 컨볼루션
 하는 것은 7 x 7 필터로 한 번 컨볼루션 하는 것과 대응됨

- 3x3 필터로 세 차례 컨볼루션을 하는 것이 7x7 필터로 한 번 컨볼루션하는 것보다 나은 점은 무엇일까?
 - 가중치 또는 파라미터의 갯수의 차이
 - 3 x 3 필터가 3개면 총 27개의 가중치를 가지는 반면 7 x 7 필터는 49개의 가중치를 가짐
 - CNN에서 가중치는 모두 훈련이 필요한 것들이므로, 가중치가 적다는 것은 그만큼 훈련시켜 야할 것의 갯수가 작아짐을 의미함
 - 따라서 학습의 속도가 빨라지며, 동시에 층의 갯수가 늘어나면서 특성에 비선형성을 더욱 강화시키기 때문에 특성이 점점 더 유용해짐

• VGGNet 구조

• 입력

• 224 x 224 x 3 이미지(224 x 224 RGB 이미지)를 입력

• 1층(conv1_1)

- 64개의 3 x 3 x 3 필터 커널로 입력 이미지를 컨볼루션
- zero padding=1, stride=1로 설정
- 결과적으로 64장의 224 x 224 특성맵(224 x 224 x 64)들이 생성됨
- ReLU 함수로 활성화(ReLU함수는 마지막 16층을 제외하고는 항상 적용됨. 이후 생략)

• 2층(conv1_2)

- 64개의 3 x 3 x 64 필터 커널로 특성맵을 컨볼루션
- 결과적으로 64장의 224 x 224 특성맵들(224 x 224 x 64)이 산출됨
- 2 x 2 Max Pooling을 stride=2로 적용 → 특성맵의 사이즈를 112 x 112 x 64로 축소

*conv1_1, conv1_2와 conv2_1, conv2_2등으로 표현한 이유는 해상도를 줄여주는 최대 풀링 전까지의 층등을 한 모듈로 볼 수 있기 때문

• 3층(conv2_1)

- 128개의 3 x 3 x 64 필터 커널로 특성맵을 컨볼루션
- 결과적으로 128장의 112 x 112 특성맵들(112 x 112 x 128)이 산출

• 4층(conv2_2)

- 128개의 3 x 3 x 128 필터 커널로 특성맵을 컨볼루션
- 결과적으로 128장의 112 x 112 특성맵들(112 x 112 x 128)이 산출
- 2 x 2 Max Pooling을 stride=2로 적용 → 특성맵의 사이즈가 56 x 56 x 128로 축소

• 5층(conv3_1)

- 256개의 3 x 3 x 128 필터 커널로 특성맵을 컨볼루션
- 결과적으로 256장의 56 x 56 특성맵들(56 x 56 x 256)이 산출

• 6층(conv3_2)

- 256개의 3 x 3 x 256 필터 커널로 특성맵을 컨볼루션
- 결과적으로 256장의 56 x 56 특성맵들(56 x 56 x 256)이 산출

• 7층(conv3_3)

- 256개의 3 x 3 x 256 필터 커널로 특성맵을 컨볼루션
- 결과적으로 256장의 56 x 56 특성맵들(56 x 56 x 256)이 산출
- 2 x 2 Max Pooling을 stride=2로 적용 → 특성맵의 사이즈가 28 x 28 x 256으로 축소

• 8층(conv4_1)

- 512개의 3 x 3 x 256 필터 커널로 특성맵을 컨볼루션
- 결과적으로 512장의 28 x 28 특성맵들(28 x 28 x 512)이 산출

• 9층(conv4_2)

- 512개의 3 x 3 x 512 필터 커널로 특성맵을 컨볼루션
- 결과적으로 512장의 28 x 28 특성맵들(28 x 28 x 512)이 산출

• 10층(conv4_3)

- 512개의 3 x 3 x 512 필터 커널로 특성맵을 컨볼루션
- 결과적으로 512장의 28 x 28 특성맵들(28 x 28 x 512)이 산출
- 2 x 2 Max Pooling을 stride=2로 적용 → 특성맵의 사이즈가 14 x 14 x 512로 축소

• 11층(conv5_1)

- 512개의 3 x 3 x 512 필터 커널로 특성맵을 컨볼루션
- 결과적으로 512장의 14 x 14 특성맵들(14 x 14 x 512)이 산출

• 12층(conv5_2)

- 512개의 3 x 3 x 512 필터 커널로 특성맵을 컨볼루션
- 결과적으로 512장의 14 x 14 특성맵들(14 x 14 x 512)이 산출

• 13층(conv5-3)

- 512개의 3 x 3 x 512 필터 커널로 특성맵을 컨볼루션
- 결과적으로 512장의 14 x 14 특성맵들(14 x 14 x 512)이 산출
- 2 x 2 Max Pooling을 stride=2로 적용 → 특성맵의 사이즈가 7 x 7 x 512로 축소

• 14층(fc1)

- 7 x 7 x 512의 특성맵을 flatten
 - flatten이라는 것은 전 층의 출력을 받아서 단순히 1차원의 벡터로 펼쳐주는 것을 의미
- 결과적으로 7 x 7 x 512 = 25088개의 뉴런이 되고, fc1층의 4096개의 뉴런과 fully connected 됨. 훈련 시 dropout이 적용됨

• 15층(fc2)

- 4096개의 뉴런으로 구성
- fc1층의 4096개의 뉴런과 fully connected 됨. 훈련 시 dropout이 적용됨

• 16층(fc3)

- 1000개의 뉴런으로 구성
 - 1000개의 뉴런으로 구성 → 1000개의 클래스로 분류하는 목적으로 만들어진 네트워크
- fc2층의 4096개의 뉴런과 fully connected 됨
- 출력값들은 softmax 함수로 활성화

- GoogLeNet (Inception v1)
 - 2014년 이미지넷 이미지 인식 대회(ILSVRC)에서 VGGNet(VGG19)을 이기고 우승을 차지한 알고리즘
 - VGG19보다 좀 더 깊은 22층으로 구성됨
 - 논문: "Going Deeper with Convolutions"
 - 구글이 이 알고리즘 개발에 참여

• GoogLeNet 구조

• 22개 층으로 구성 (파란색 블럭의 층수를 세보면 22개 층임)

• 1 x 1 컨볼루션

- 먼저 주목해야할 것은 1 x 1 사이즈의 필터로 컨볼루션 해 주는 것
 - 구조도를 보면 곳곳에 1 x 1 컨볼루션 연산이 있음을 확인할 수 있음
- 1 x 1 컨볼루션의 의미
 - GoogLeNet에서 1 x 1 컨볼루션은 특성맵의 갯수를 줄이는 목적으로 사용됨
 - 특성맵의 갯수가 줄어들면 그만큼 연산량이 줄어듦

- 480장의 14 x 14 사이즈의 특성맵(14 x 14 x 480)이 있다고 가정
 - → 48개의 5 x 5 x 480의 필터커널로 컨볼루션
 - → 48장의 14 x 14의 특성맵(14 x 14 x 48) 생성 (zero padding=2, stride=1로 가정)
 - → 이때 필요한 연산횟수는 (14 x 14 x 48) x (5 x 5 x 480) = 약 112.9M

- 480장의 14 x 14 특성맵(14 x 14 x 480)
 - → 16개의 1 x 1 x 480의 필터커널로 컨볼루션
 - → 16장의 14 x 14의 특성맵(14 x 14 x 16) 생성
 - → 이 특성맵을 48개의 5 x 5 x 16의 필터커널로 컨볼루션
 - → 48장의 14 x 14의 특성맵(14 x 14 x 48)이 생성 (1 x 1 컨볼루션이 없을 때와 결과적으로 산출된 특성맵의 크기와 깊이가 같다)
 - → 이때 필요한 연산횟수는? (14 x 14 x 16)*(1 x 1 x 480) + (14 x 14 x 48)*(5 x 5 x 16) = 약 5.3M
- 112.9M에 비해 훨씬 적은 연산량 확인
- 연산량을 줄일 수 있다 > 네트워크를 더 깊이 만들 수 있게 해 준다는 점에서 중요

• 1 x 1 컨볼루션의 효과

- Inception 모듈
 - GoogLeNet의 핵심
 - GoogLeNet은 총 9개의 인셉션 모듈을 포함

- 인셉션 모듈
 - GoogLeNet에 실제로 사용된 모듈은 1x1 컨볼루션이 포함된 (b) 모델

(b) Inception module with dimensionality reduction

5x5 convolutions

1x1 convolutions

1x1 convolutions

3x3 max pooling

- 1x1 컨볼루션은 특성맵의 장수를 줄여주는 역할
- 나이브(naive) 버전(노란색 블럭으로 표현된 1x1 컨볼루션을 제외한 버전)
 - 이전 층에서 생성된 특성맵을 1x1 컨볼루션, 3x3 컨볼루션, 5x5 컨볼루션, 3x3 Max Pooling 을 적용하여 얻은 특성맵들을 모두 함께 쌓아줌 > 더 다양한 종류의 특성 도출
 - AlexNet, VGGNet 등의 이전 CNN 모델들은 한 층에서 동일한 사이즈의 필터커널을 이용해서 컨볼루션을 해줬던 것과 차이가 있음
 - 여기에 1x1 컨볼루션이 포함되었으니 당연히 연산량은 많이 줄어들었을 것임

Global Average Pooling

AlexNet, VGGNet 등에서는 FC 층들이 망의 후반부에 연결됨. 그러나 GoogLeNet은 FC 방식 대신에 Global Average Pooling 방식을 사용

- 전 층에서 산출된 특성맵들을 각각 평균낸 것을 이어서 1차원 벡터를 만들어주는 것
- 1차원 벡터를 만들어야 최종적으로 이미지 분류를 위한 softmax 층을 연결 가능
- 만약 전 층에서 1024장의 7 x 7의 특성맵이 생성되었다면
 → 1024장의 7 x 7 특성맵 각각의 평균을 계산하여 얻은 1024개의 값을 하나의 벡터로 연결함
- 장점: 가중치의 갯수를 상당히 많이 없애줌
 - FC 방식을 사용한다면 훈련이 필요한 가중치의 갯수가 7 x 7 x 1024 x 1024 = 51.3M
 - global average pooling을 사용하면 가중치가 단 한개도 필요하지 않음

- Auxiliary Classifier (보조 분류기)
 - 네트워크의 깊이가 깊어지면 깊어질수록 Vanishing Gradient 문제를 피하기 어려움
 - 가중치를 훈련하는 과정에 역전파(back propagation)를 주로 활용
 - 역전파과정에서 가중치 업데이트에 사용되는 gradient가 점점 작아져서 0이 되어버리는 문제
 - 네트워크 내의 가중치들이 제대로 훈련되지 않게 됨
 - Vanishing Gradient 문제를 극복하기 위해서 네트워크 중간에 두 개의 보조 분류기 (auxiliary classifier)를 추가함
 - 보조 분류기의 구성
 - 5 x 5 Max Pooling(stride=3) → 128개 1x1 필터 커널로 컨볼루션 → 1024 FC 층 → 1000 FC 층 → softmax
 - 보조 분류기들은 훈련시에만 활용되고 사용할 때는 제거함

- ResNet
 - 마이크로소프트에서 개발한 알고리즘
 - 2014년 GoogLeNet은 22개 층으로 구성 → ResNet은 152개 층으로 구성
 - 논문: "Deep Residual Learning for Image Recognition"

- 연구의 초점: 망을 깊게하면 무조건 성능이 좋아질까?
 - 20층의 컨볼루션 레이어, 56층의 Fully Connected 레이어를 만든 후 성능 테스트

- 더 깊은 구조를 가진 56층의 네트워크가 20층의 네트워크보다 더 나쁜 성능을 보임
- 기존 방식으로 망을 무조건 깊게 한다고 되는 일이 아님
 → 뭔가 새로운 방법이 있어야 망을 깊게 만드는 효과를 볼 수 있다는 것을 확인

• Residual Block (잔차 블록)

- 기존 방식과의 차이는?
 - 입력값을 출력값에 더해줄 수 있도록 지름길(shortcut)을 하나 만들어준 것

• 기존의 신경망은 입력값 x를 타겟값 y로 매핑하는 함수 H(x)를 얻는 것이 목적

• ResNet은 F(x) + x를 최소화하는 것이 목적

기존 방식

Residual block

- F(x) + x를 최소화하려면
 - x는 현시점에서 변할 수 없는 값이므로 F(x)를 0에 가깝게 만드는 것이 목적이 됨
 - F(x)가 0이 되면 출력과 입력이 모두 x로 같아지게 됨
 - F(x) = H(x) x이므로 F(x)를 최소로 해준다는 것은 H(x) x를 최소로 해주는 것과 동일
- H(x) x를 잔차(residual)라고 함
- 잔차를 최소로 해주는 것이므로 ResNet이란 이름이 붙음

- ResNet의 구조
 - ResNet은 기본적으로 VGG-19의 구조를 뼈대로 함
 - VGG-19의 뼈대에 다수의 컨볼루션 레이어를 추가해서 깊게 만든 후, shortcut을 추가
 - 참고 그림: 34층의 ResNet과 거기에서 shortcut들을 제외한 버전인 plain 네트워크의 구조

• 구조 분석

- 34층의 ResNet은 처음을 제외하고는 균일하게 3 x 3 사이즈의 컨볼루션 필터를 사용
- 특성맵의 사이즈가 반으로 줄어들 때, 특성맵의 뎁스를 2배로 증가
- Residual block들이 효과가 있는지를 알기 위해 이미지넷에서 18층 및 34층의 plain 네트 워크와 ResNet의 성능을 비교

- 왼쪽 그래프
 - plain 네트워크는 망이 깊어지면서 오히려 에러가 커졌음
 - 34층의 plain 네트워크가 18층의 plain 네트워크보다 성능이 나쁨
- 오른쪽 그래프(ResNet)
 - 망이 깊어지면서 에러도 역시 작아짐
 - shortcut을 연결해서 잔차(residual)를 최소가 되게 학습한 효과가 있다는 것을 확인

• 18층, 34층, 50층, 101층, 152층의 ResNet의 구성

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 8 \]
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 36
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3 \]
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10 ⁹	3.6×10^{9}	3.8×10^{9}	7.6×10 ⁹	11.3×10 ⁹

• 깊은 구조일수록 성능이 좋음 → 즉, 152층의 ResNet이 가장 성능이 뛰어남

참고 자료

- LeNet-5
 - https://deep-learning-study.tistory.com/368
 - https://bskyvision.com/418
- AlexNet → https://bskyvision.com/421
- VGG-16, VGG-19 → https://bskyvision.com/504
- GoogLeNet(inception v1) → https://bskyvision.com/539
- ResNet → https://bskyvision.com/644