

Blockchain

Blockchain & Money

Curso 2024/2025

diego.martin.andres@uva.es

Clase 3 – Temas Principales

- Revisión de la Clase 2
- Características de diseño de Bitcoin
- Funciones hash criptográficas
- Registros inmutables con sello temporal
- Cabeceras de bloque y árboles de Merkle
- Criptografía asimétrica y firmas digitales
- Direcciones de Bitcoin
- Conclusiones

Revisión de la Clase 2

- El dinero es un consenso social y económico
- El dinero fiduciario es solo la etapa actual en una larga evolución del dinero
- La moneda fiduciaria también ha enfrentado desafíos e inestabilidades
- Los libros contables (ledgers) son una herramienta clave para registrar la actividad económica y las relaciones financieras
- La banca central y el sistema financiero se construyen sobre una red de libros contables
- Actualmente vivimos en una era de moneda electrónica
- Se han realizado numerosos intentos previos de crear monedas digitales criptográficas
- El artículo de Nakamoto "Bitcoin: Un sistema de efectivo electrónico entre pares" representa un hito en esta evolución

Bitcoin: A Peer-to-Peer Electronic Cash System

From: Satoshi Nakamoto <satoshi <at> vistomail.com>
 Subject: <u>Bitcoin P2P e-cash paper</u>

Newsgroups: gmane.comp.encryption.general

Date: Friday 31st October 2008 18:10:00 UTC

• "I've been working on a new electronic cash system that's fully peer-to-peer, with no trusted third party."

Blockchain Technology

timestamped append-only log

auditable database

network consensus protocol

Secured via cryptography

- Hash functions for tamper resistance and integrity
- Digital signatures for consent
 Consensus for agreement

Addresses 'cost of trust' (Byzantine Generals problem)

- Permissioned
- Permissionless

Bitcoin - Características Técnicas

- Funciones hash criptográficas
- Registros inmutables con sello temporal (bloques)
- Cabeceras de bloque y árboles de Merkle
- Criptografía asimétrica y firmas digitales
- Direcciones
- Consenso mediante prueba de trabajo (Proof of Work)
- Red descentralizada de nodos
- Moneda nativa (bitcoin como unidad de valor)
- Entradas y salidas de transacciones
- Salida de transacción no gastada (UTXO)
- Lenguaje de scripts

Cryptography:

Communications in the presence of adversaries

Scytale Cipher Ancient Times

© Luringen on Wikimedia Commons. License CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

Image by the CIA and is in the public domain via Wikimedia Commons.

Enigma Machine 1920s - WWII

Asymmetric Cryptography 1976 to today

Image is in the rublic domain via Wikipedia.

Huellas digitales para los datos

Propiedades generales

- Asocian una entrada x de cualquier tamaño a una salida de tamaño fijo: el hash
- Deterministas: el mismo input siempre produce el mismo hash
- De cálculo eficiente

Propiedades criptográficas

- Resistencia a preimagen (función unidireccional): es inviable obtener x a partir de Hash(x)
- Resistencia a colisiones: es inviable encontrar dos entradas distintas x y
 y tal que Hash(x) = Hash(y)
- Efecto avalancha: un pequeño cambio en x cambia completamente el
 Hash(x)
- Dificultad tipo rompecabezas: incluso conociendo parte de x y su
 Hash(x), es muy difícil recuperar el resto

Usos y funciones en Bitcoin

Usos como:

- Nombres (identificadores únicos)
- Referencias
- Punteros (para estructuras encadenadas como la blockchain)
- Compromisos criptográficos

Funciones hash usadas en Bitcoin:

- SHA-256: para cabeceras de bloque y árboles de Merkle
- SHA-256 + RIPEMD-160: para generar direcciones de Bitcoin

Estas funciones son fundamentales para garantizar la seguridad e integridad de la red Bitcoin.

'How to Time-Stamp a Digital Document'

Habor & Stornetta (1991)

Surety 1995 - present

NOTICES & LOST AND FOUND (5100-5102)

Timestamped Append-only Log - Blockchain

Block Header

- Version
- Previous Block hash
- Merkle Root hash
- Timestamp
- Difficulty target
- Nonce

Merkle Tree – Binary Data Tree with Hashes

Asymmetric Cryptography & Digital Signatures

Criptografía Asimétrica y Firmas Digitales

Algoritmos de Firma Digital

- Generación de claves: se genera un par de claves a partir de un número aleatorio
 - Clave pública (PK)
 - Clave privada (sk)
- Firma: se crea una firma digital (Sig) a partir de un mensaje (m) y la clave privada (sk)
- Verificación: permite comprobar si una firma (Sig) es válida para un mensaje
 (m) y una clave pública (PK)

Criptografía Asimétrica y Firmas Digitales

Propiedades

- Es computacionalmente inviable obtener la clave privada (sk) a partir de la clave pública (PK)
- Todas las firmas válidas pueden verificarse correctamente
- Las firmas son inviables de falsificar sin la clave privada correspondiente

Criptografía Asimétrica en Bitcoin

Función de Firma Digital en Bitcoin

- Algoritmo de Firma Digital con Curvas Elípticas (ECDSA)
 - Curva utilizada: $y^2 = x^3 + 7$

Este sistema permite que los usuarios firmen transacciones con su clave privada y que cualquiera pueda verificar su validez usando solo la clave pública.

Bitcoin Addresses

Deposits & Negotiable Orders

Transaction format

Preguntas de Estudio

- ¿Qué es el problema de los Generales Bizantinos? ¿Cómo lo resuelven la prueba de trabajo (Proof of Work) y la minería en Bitcoin? ¿Y de forma más general, cómo lo aborda la tecnología blockchain?
- ¿Qué otros protocolos de consenso existen? ¿Cuáles son las ventajas e inconvenientes de los algoritmos alternativos como proof-of-work, proof-of-stake, etc.?
- ¿Cómo registra Bitcoin las transacciones? ¿Qué es una salida de transacción no gastada (UTXO)?
 - ¿Qué código de script está incrustado en cada transacción de Bitcoin y qué tan flexible es como lenguaje de programación?

Conclusiones de la Clase 4

Diseño de Bitcoin

- Registros inmutables con sello temporal (bloques)
- Asegurados mediante funciones hash criptográficas y firmas digitales

Protocolo de Consenso

- Consenso alcanzado mediante prueba de trabajo (Proof of Work)
- Red descentralizada de nodos
- Moneda nativa (bitcoin)

Conclusiones de la Clase 4

Registro de Transacciones

- Entradas y salidas de transacción
- Salidas de transacción no gastadas (UTXO)
- Lenguaje de scripting embebido en cada transacción
- Estos elementos permiten que Bitcoin funcione como un sistema descentralizado, verificable y programable de transferencias de valor.