

Robotics

LED control

School of Computing, Gachon University

Youngmin Oh

Basics

Voltage

- Difference of electric potential between two points
- Unit: Volt (V)

Intensity (Electric Current)

- A flow of electric charge
- Unit: Ampere (A)

Resistance

- Opposition to the passage of an electric current
- \circ Unit: Ohm (Ω)

How to read resistor

Basics [cont.]

Breadboard

- Construction base for prototyping of electronics
- Makes it easy to use for creating temporary prototypes and experimenting with circuit designs

Try to make an LED pin blink in a pattern on a pin of your choice

LEDs

● FND(Flexible Numeric Display) - 7segment

Display device for displaying Arabic numerals using a LED / a LCD

Functions

pinMode()

- Configures the specified pin to behave either as an input or an output
- Syntax
 - pinMode(pin, mode)
 - pin: the pin number
 - mode: INPUT, OUTPUT

Example

```
void setup() {
  pinMode(13, OUTPUT);  // sets the digital pin as output
  pinMode(12, INPUT);  // sets the digital pin as input
}
```

Functions [cont.]

digitalWrite()

- O Write a value to a digital pin
- Syntax
 - digitalWrite(pin, value)
 - pin: the pin number
 - value: HIGH or LOW

Example

```
void loop() {
  digitalWrite(13, HIGH)  // sets the LED on
  delay(1000)  // waits for a second
}
```

Functions [cont.]

delay()

- Pauses the program for the amount of time (in miliseconds) specified as parameter
 - (There are 1000 milliseconds in a second.)
- Syntax
 - delay(ms)
 - ms: the number of milliseconds to pause (unsigned long)
- Example

```
void loop() {
  digitalWrite(13, HIGH);  // sets the LED on
  delay(1000);  // waits for a second
}
```

Functions [cont.]

digitalRead()

- Reads the value from a specified digital pin, either HIGH or LOW
- Syntax
 - digitalRead(pin)
 - pin: the number of the digital pin you want to read (int)
- example

Functions [cont.]

- •analogWrite(pin, value)
 - O Writes an analog value (PWM wave) to a pin
 - This function works on pins 3, 5, 6, 9, 10, and 11
 - Syntax
 - analogWrite(pin, value)
 - pin: the pin to write to, value: the duty cycle: between 0 and 255
 - o example

```
void loop() {
  for(int i=0;i<256;i++) {
  analogWrite(3,i);
  delay(10);
}</pre>
```

Lab. 1 - GND

- Turn on LED to cross at 1 second interval (page 5)
- (page 5)
 - Reads the value from a specified digital pin, either HIGH or LOW.
 - o turn the LED on (HIGH is the voltage level)
 - wait for a second
 - o turn the LED off by making the voltage LOW
 - o wait for a second

Lab. 2 - Blinking

- Turn on two LEDs to cross at 0.1 second interval
 - Turn on one LED→Turn off the LED after a period of time→Turn on the other LED
 - Define two variables for two output pins

Lab. 2 - Blinking [cont.]

Circuit diagram:

- Prepare two LEDs and a 220Ω resistor
- Connect the anode of your blue and red LEDs to digital output Dpin 12, 13 on your board,
 respectively
- Connect a 220Ω resistor between the cathode and ground

Lab. 3 - Fading

Fade two LEDs to cross repeatedly

- While one LED is increasingly brighter, and another LED is to be getting darker
- Writes an analog value (PWM wave) to a pin

− Value : 0~255

Lab. 3 – Fading [cont.]

Circuit diagram:

- Prepare two LEDs and a 220Ω resistor
- Connect the anode of your blue and red LEDs to digital output Dpin ~10, ~11 on your board, respectively
- Connect a 220Ω resistor between the cathode and ground

Lab. 4 - RGB LED

- Describe repeatedly different colors Using the RGB LED
 - Make functions for Red, Green, Blue, Make combinations of colors

Lab. 4 - RGB LED [cont.]

• Circuit diagram:

- o RGB LED is consist of three anode pins and a cathode
- \circ Connect each Anode pin 220 Ω to a resistor
- Connect each Anode with a resistor to Dpin 9, 10, 11, respectively

Lab. 5 - FND

• Make a countdown timer using FND

○ value = LOW → a LED turns on

Circuit diagram:

