

Outline

- Propositions and fundamental logical operators (AND, OR and NOT).
- Evaluating logical expression using truth tables.
- Satisfiability, Tautologies and Contradictions.

Thought for the day ...

While walking through a fictional forest, you encounter three identical trolls guarding a bridge. Each troll is either a knight, who always tells the truth, or a knave, who always lies. The trolls will not let you pass until you correctly identify each as either a knight or a knave. Each troll makes a single statement:

Which troll are knights? and which are knaves?

Outline

 Propositional logic is concerned with analysing propositions (true or false state ments). A proposition may be atomic or compound (build up using logical connectives) 	
	-
 A proposition may be atomic or compound (build up using logical connectives) 	
 Constructing compound propositions using And, Or and Not. 	

• Evaluating an expression for all possible input combinations.

• Statements that are always true or always false.

Logic

Logic is "science of reasoning"

- Allows us to represent knowledge in precise, unambiguous way.
- Allows us to make valid inferences using a set of consistent rules.
- Roots of logic date back to the ancient Greeks, e.g., Aristotle.
- Greeks were interested in valid logical inference rules, such as syllogisms:

"All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal."

Propositional Logic

• The building blocks of propositional logic are propositions

Definition 1 (Proposition)

A proposition (statement) is a sentence that is either **True** or **False**.

• Examples:

```
"Java is a programming language."

"Cork is the capital of Ireland."

"1+2=3"

"True

"Today is Tuesday."

"The universe is fine-tuned."

True

unknown (at present)
```

- Examples of sentences that are not propositions/statements:
 - "How are you?" A question cannot be assign a True/False value.
 - "Stop sleeping in class!" An order cannot be assign a **True/False** value.
 - "Correct horse battery staple."

 Not a sentence.
 - "This sentence is false." Pathological example.

Propositional Variables, Truth Value

Given a proposition we are interested in knowing its truth value.

Definition 2 (Truth Value)

The truth value of a proposition identifies whether a proposition is true (written True or T or 1) or false (written False or F or 0)

Question

What is truth value of "Tuesday in the day after Sunday"?

 \mathbf{F}

Notation

- Variables that represent propositions are called propositional variables.
- Denote propositional variables using lower-case letters, such as p, p_1 , p_2 , q, r, s, . . .
- Truth value of a propositional variable is either T or F.

Compound vs Atomic Propositions

- Propositional logic allows constructing more complex propositions from atomic ones.
- More complex propositions formed using logical connectives (also called boolean connectives or logical operators).
- The three basic logical connectives:

Connective	Symbol	Python
conjunction (AND)	\wedge	and
disjunction (OR)	\vee	or
negation (NoT)	\neg	not

 Propositions formed using these logical connectives called compound propositions; otherwise called atomic propositions.

Today is wet and I am hungry

Compound vs Atomic Propositions

- Propositional logic allows constructing more complex propositions from atomic ones.
- More complex propositions formed using logical connectives (also called boolean connectives or logical operators).
- The three basic logical connectives:

Connective	Symbol	Python
conjunction (AND)	\wedge	and
disjunction (OR)	\vee	or
negation (NoT)	\neg	not

 Propositions formed using these logical connectives called compound propositions; otherwise called atomic propositions.

Exercise

Classify each of the sentences below as an atomic statement, a compound statement, or not a statement at all.

- The sum of the first 100 odd positive integers.
- 2 Everybody needs somebody sometime.
- Waterford will win the All-Ireland or I'll eat my hat.
- Go to your room!
- Every natural number greater than 1 is either prime or composite.
- **o** This sentence is false.

Exercise

Classify each of the sentences below as an atomic statement, a compound statement, or not a statement at all.

- The sum of the first 100 odd positive integers.
 - —This is not even a sentence (no verb).
- 2 Everybody needs somebody sometime.
- —This is an atomic statement.
- **3** Waterford will win the All-Ireland or I'll eat my hat.
 - —This is a compound statement.

Go to your room!

- —This is an order, not a statement
- Every natural number greater than 1 is either prime or composite.
 - —This is a compound statement.

6 This sentence is false.

—This is sentence but is not a statement.

Negation (NoT)

- Negation of a proposition, p, written, $\neg p$, represents the proposition: "It is not the case that p."
- What is the relationship between the truth value of p and $\neg p$?

 If p is \mathbf{T} , then $\neg p$ is \mathbf{F} and vice versa.
- In simple English, what is $\neg p$ if p stands for ...

"Today is Tuesday." "Today is not Tuesday."
$$"1+1=2"$$
 " $1+1\neq 2$ "

- Properties of Not
 - $\bullet \neg \neg p = p$

Conjunction (AND)

• Conjunction of two propositions, p and q, written as $p \wedge q$, is the proposition:

• What is the relationship between the truth value of p and of q and the truth value of $p \land q$?

$$p \wedge q = \begin{cases} \mathbf{T} & \text{if both } p \text{ is } \mathbf{T} \text{ and } q \text{ is } \mathbf{T} \\ \mathbf{F} & \text{otherwise} \end{cases}$$

Example

What is the conjunction and the truth value of $p \wedge q$ for ...

- p = "It is a autumn semester", q = "Today is Thursday"
- p = "It is Tuesday", q = "It is morning"

Disjunction (OR)

• Disjunction of two propositions, p and q, written as $p \lor q$, is the proposition

• What is the relationship between the truth value of p and of q and the truth value of $p \lor q$?

$$p \lor q = \begin{cases} \mathbf{T} & \text{if either } p \text{ is } \mathbf{T} \text{ or } q \text{ is } \mathbf{T}, \text{ or both are } \mathbf{T} \\ \mathbf{F} & \text{otherwise} \end{cases}$$

Example

What is the disjunction and the truth value of $p \lor q$ for . . .

- p = "It is a autumn semester", q = "Today is Thursday"
- p = "It is Friday", q = "It is morning"

Python Implementation

Python supports the fundamental logical connectives (programmers call them "logical operators")

Logical Connective	Math	Python Operator
conjunction (AND)	\wedge	and
disjunction (OR)	\vee	or
negation (NOT)	\neg	not

Outline

1.	 Introduction Propositional logic is concerned with analysing propositions (true or false statements). A proposition may be atomic or compound (build up using logical connectives). Constructing compound propositions using <i>And</i>, <i>Or</i> and <i>Not</i>. 	3
2.	Truth tables	13

2. Truth tables

• Evaluating an expression for all possible input combinations.

• Statements that are always true or always false.

Propositional Formulas and Truth Tables

- A propositional formula is logical expression constructed from atomic and compound propositions and logical connectives.
- A truth table for a propositional formula, A, shows the truth value of A for every possible value of its constituent atomic propositions.

Neg	ation	Conjunction		Disjunction		ction	
		p	q	$p \wedge q$	p	q	$p \lor q$
p	$\neg p$	F	F	F	 F	F	F
F	T	\mathbf{F}	\mathbf{T}	\mathbf{F}	F	T	\mathbf{T}
T	\mathbf{F}	T	\mathbf{F}	\mathbf{F}	T	F	\mathbf{T}
		T	T	T	T	T	T
	>>> \						
N	OT		AN	1D		O	R

Other Resources

>iPad/iPhone Apps (assume similar on Android)

Boolean Master

Videos

• https://class.coursera.org/cs101/lecture/17 Part of the Computer Science 101 by Nick Parlante on coursera.

Constructing Truth Tables

Useful strategy for constructing truth tables for a formula:

STEP 1) Identify the constituent atomic propositions of the formula.

STEP 2) Identify compound propositions in within the formula in increasing order of complexity, including the formula itself.

STEP 3 Construct a table enumerating all combinations of truth values for atomic propositions.

(STEP 4) Fill in values of compound propositions for each row.

Examples

Construct truth tables for the following formulas:

- $2 \quad (p \wedge q) \vee (\neg p \wedge \neg q)$

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4 Fill in values of compound propositions for each row . .

- (STEP 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- $\fbox{\ensuremath{\mathsf{STEP}}\xspace\,4)}$ Fill in values of compound propositions for each row . .

p

- (STEP 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row . .

p	q	$p \lor q$	$\neg p$	$(p \vee q) \wedge \neg p$

- STEP 1) Identify the constituent atomic propositions ... p and q
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row . .

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F			
F	T			
T	F			
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F	F	T	F
\mathbf{F}	T			
T	F			
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$ (p \lor q) \land \neg p$
F	F	F	T	F
F	T	T	T	T
T	F			
T	T			

- STEP 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$ (p \lor q) \land \neg p$
F	F	F	T	F
\mathbf{F}	T	T	T	T
T	F	T	\mathbf{F}	F
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$ (p \lor q) \land \neg p$
F	F	F	T	F
F	T	T	T	T
T	F	T	\mathbf{F}	F
T	T	T	\mathbf{F}	F

- STEP 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$ (p \lor q) \land \neg p $
F	F	F	T	F
F	T	T	T	T
T	\mathbf{F}	T	\mathbf{F}	F
T	T	T	\mathbf{F}	\mathbf{F}

Example 2: $(p \land q) \lor (\neg p \land \neg q)$

- (STEP 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4 Fill in values of compound propositions for each row . .

Example 2: $(p \land q) \lor (\neg p \land \neg q)$

- (STEP 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row . .

p q

- STEP 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row . .

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4 Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F					
\mathbf{F}	T					
T	\mathbf{F}					
T	T					

- STEP 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F	F	T	T	T	T
\mathbf{F}	T					
T	\mathbf{F}					
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F	F	T	T	T	T
F	T	F	T	F	\mathbf{F}	F
T	\mathbf{F}					
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F		F				Т
F	T	F	T	F	\mathbf{F}	F
T	F	\mathbf{F}	\mathbf{F}	T	${f F}$	\mathbf{F}
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

						$(p \land q) \lor (\neg p \land \neg q)$
F	F	F	T	T	T	Т
\mathbf{F}	T	F	T	F	${f F}$	\mathbf{F}
T	\mathbf{F}	F	F	T	${f F}$	\mathbf{F}
T	T	T	F	F	T F F	T

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F					T	T
\mathbf{F}	T	F F	T	F	${f F}$	F
T	\mathbf{F}	F	F	T	${f F}$	\mathbf{F}
T	T	T	F	F	F	T

- STEP 1 Identify the constituent atomic propositions ... p, q, and r
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- STEP 4 Fill in values of compound propositions for each row ...

- (STEP 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- STEP 4 Fill in values of compound propositions for each row . .

p q r

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row . .

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row . .

p	q	r	$\neg r (p \lor q \lor \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F		
\mathbf{F}	\mathbf{F}	T		
\mathbf{F}	T	\mathbf{F}		
\mathbf{F}	T	T		
\mathbf{T}	${f F}$	\mathbf{F}		
\mathbf{T}	${f F}$	T		
T	T	F		
T	T	T		

- STEP 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	\mathbf{F}	F	T	T	F
\mathbf{F}	\mathbf{F}	T			
\mathbf{F}	T	F			
\mathbf{F}	T	T			
T	\mathbf{F}	F			
T	\mathbf{F}	T			
T	T	\mathbf{F}			
T	T	T			

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
F	\mathbf{F}	T	F	${f F}$	\mathbf{F}
\mathbf{F}	T	F			
\mathbf{F}	T	T			
T	\mathbf{F}	F			
T	\mathbf{F}	T			
T	T	\mathbf{F}			
T	T	T			

- Step 1 Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$ ($(p \lor q \lor \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
\mathbf{F}	\mathbf{F}	T	\mathbf{F}	${f F}$	F
F	T	F	T	T	F
\mathbf{F}	\mathbf{T}	T			
\mathbf{T}	${f F}$	F			
T	${f F}$	T			
T	T	F			
T	T	T			

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$ (p \lor q \lor \neg r) \land r$
F	\mathbf{F}	\mathbf{F}	T	T	F
\mathbf{F}	\mathbf{F}	T	F	${f F}$	\mathbf{F}
\mathbf{F}	T	\mathbf{F}	T	T	\mathbf{F}
F	T	T	F	T	T
T	\mathbf{F}	\mathbf{F}			
T	\mathbf{F}	T			
T	T	\mathbf{F}			
T	T	T			

- Step 1 Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \lor q \lor \neg r)$	$(p \lor q \lor \neg r) \land r$
F	\mathbf{F}	\mathbf{F}	T	T	F
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f F}$	\mathbf{F}
\mathbf{F}	T	\mathbf{F}	T	T	F
\mathbf{F}	T	T	\mathbf{F}	T	T
T	F	F	T	T	F
T	\mathbf{F}	T			
T	T	\mathbf{F}			
\mathbf{T}	T	T			

- Step 1 Identify the constituent atomic propositions ... p, q, and r
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \lor q \lor \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
\mathbf{F}	\mathbf{F}	T	F	${f F}$	\mathbf{F}
\mathbf{F}	T	F	T	T	\mathbf{F}
\mathbf{F}	T	T	F	T	T
T	\mathbf{F}	F	T	T	\mathbf{F}
T	\mathbf{F}	T	F	T	T
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	T	T			

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$ ($(p \lor q \lor \neg r)$	$ (p \lor q \lor \neg r) \land r $
F	F	F	T	T	F
\mathbf{F}	\mathbf{F}	T	F	${f F}$	F
\mathbf{F}	T	F	T	T	F
\mathbf{F}	\mathbf{T}	T	F	T	T
\mathbf{T}	${f F}$	\mathbf{F}	T	T	F
\mathbf{T}	${f F}$	T	F	T	T
T	T	F	T	T	F
\mathbf{T}	\mathbf{T}	T			

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$ ($p \lor q \lor \neg r$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
\mathbf{F}	\mathbf{F}	T	F	\mathbf{F}	\mathbf{F}
\mathbf{F}	T	F	T	T	\mathbf{F}
\mathbf{F}	T	T	F	T	T
T	\mathbf{F}	F	T	T	\mathbf{F}
T	\mathbf{F}	T	F	T	T
\mathbf{T}	\mathbf{T}	\mathbf{F}	T	T	\mathbf{F}
T	T	T	F	T	T

- STEP 1) Identify the constituent atomic propositions ... p, q, and r
- STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions ...
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$ ($(p \lor q \lor \neg r)$	$ (p \lor q \lor \neg r) \land r $
F	F	F	T	T	F
\mathbf{F}	\mathbf{F}	T	F	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	F	T	T	\mathbf{F}
F	T	T	F	T	T
\mathbf{T}	${f F}$	\mathbf{F}	T	T	\mathbf{F}
T	\mathbf{F}	T	F	T	T
T	\mathbf{T}	F	T	T	\mathbf{F}
T	T	T	F	T	T

Outline

• Propositional logic is concerned with analysing propositions (true or false state-
 ments). A proposition may be atomic or compound (build up using logical connectives). Constructing compound propositions using <i>And</i>, <i>Or</i> and <i>Not</i>.

• Evaluating an expression for all possible input combinations.

3. Tautologies and Contradictions

• Statements that are always true or always false.

21

Introduction to Propositional Logic — Summary

1.	Introduction	
	 Propositional logic is concerned with analysing propositions (true or false statements). A proposition may be atomic or compound (build up using logical connectives). 	
	• Constructing compound propositions using <i>And</i> , <i>Or</i> and <i>Not</i> .	

2. Truth tables

21

• Evaluating an expression for all possible input combinations.

3. Tautologies and Contradictions

• Statements that are always true or always false.

Satisfiable, Tautologies and Contradictions

Satisfiable

A proposition is satisfiable if it is **True** for at least one set of inputs (case).

> Tautology

A tautology is an expression involving logical variables that is **True** in all cases.

- Examples
 - $p \vee \neg p$

"Tomorrow, I will be dead or I will be alive"

 $\bullet \ (p \wedge q) \vee (p \wedge \neg q) \vee \neg p$

Contradiction

A contradiction is an expression involving logical variables that is **False** in all cases.

- Examples
 - $p \land \neg p$

"On Friday, I will win the lottery and not win the lottery."