ME40064: Systems Modelling & Simulation ME50344: Engineering Systems Simulation Lecture 4

Dr Andrew Cookson University of Bath, October 2019-20

LECTURE 4 FEM: Basis Functions

- Understand how fields of data might be represented in space
- Understand the different components of a finite element mesh
- Ability to represent a continuous field using finite elements

Fourier series - but can have oscillations & need periodicity

Polynomial fit - but can generate oscillations & need appropriate choice of functions

Piecewise linear functions - a simple & robust solution

Piecewise linear functions - a simple & robust solution

Actually all are used in the finite element method, but we will focus on the piecewise discretisation in this course

DISCRETISATIONS A C0 Continuous Approach

Function value is continuous across elements, but gradients are not

- C0 continuous discretisation

DISCRETISATIONS A C0 Continuous Approach

Function value is continuous across elements, but gradients are not

- C0 continuous discretisation

BASIS FUNCTIONS Linear Nodal Lagrange

Define linear functions in the standard element $\Omega_{st} = [-1, 1]$

Use sum of two linear functions to represent each linear segment in the line fitted to the data

BASIS FUNCTIONS Linear Nodal Lagrange

Note The following definitions generates the nodal property of these basis functions

$$\psi_0(-1) = 1, \quad \psi_0(1) = 0$$

 $\psi_1(-1) = 0, \quad \psi_1(1) = 1$

WORKED EXAMPLE How To Represent This Line?

WORKED EXAMPLE Sum Of Two Linear Basis Functions

WORKED EXAMPLE It Works!

$$\xi = -1 : x(-1) = 3\psi_0(-1) + 5\psi_1(-1) = 3.1 + 5.0 = 3$$

$$\xi = 1 : x(1) = 3\psi_0(1) + 5\psi_1(1) = 3.0 + 5.1 = 5$$

$$\xi = 0 : x(0) = 3\psi_0(0) + 5\psi_1(0) = 3.\left(\frac{1-0}{2}\right) + 5.\left(\frac{1+0}{2}\right) = 4$$

FINITE ELEMENT MESH TOPOLOGY What Does A Mesh Consist Of?

- In general, for a 3D element, such as a hexahedral or tetrahedral, there is:
- element
- faces
- lines
- nodes

FINITE ELEMENT MESH TOPOLOGY

- In general, for a 3D element, such as a hexahedral or tetrahedral, there is:
- element
- faces
- lines
- nodes

FINITE ELEMENT MESH TOPOLOGY

- In general, for a 3D element, such as a hexahedral or tetrahedral, there is:
- element
- faces
- lines
- nodes

FINITE ELEMENT MESH TOPOLOGY

- In general, for a 3D element, such as a hexahedral or tetrahedral, there is:
- element
- faces
- lines
- nodes

FINITE ELEMENT MESH What Do We Use It For?

Represents

- geometry volume & boundaries
- material parameters
- the model solution

A 1-D FINITE ELEMENT MESH Global Nodes

In 1D mesh there are only elements and nodes to consider **but** two kinds of nodes

Global nodes = N1, N2, ...

A 1-D FINITE ELEMENT MESH Local Nodes

Local nodes = n1, n2, for each element e

A 1-D FINITE ELEMENT MESH Link Between Local & Global Nodes

e.g. local node, n1 in element, e2, is global node N2

DISCRETISATIONS Revisiting Curve Fitting

DISCRETISATIONS Revisiting Curve Fitting

The original series of points now represented on a 4 element mesh, containing 5 global node values

Each mesh node has a spatial position

DISCRETISATIONS Representing Space Using The Mesh

$$f(x) = x$$

$$e1 \quad e2 \quad e3 \quad e4$$

$$x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x$$

The space variable, x, can be represented just like any other variable by the finite element mesh

DISCRETISATIONS Representing Space Using The Mesh

Interpolate x between the elemental nodes using the sum of basis functions:

Element 1

$$x(\xi) = x_0 \psi_0(\xi) + x_1 \psi_1(\xi)$$

Element 2

$$x(\xi) = x_1 \psi_0(\xi) + x_2 \psi_1(\xi)$$

Element 3

$$x(\xi) = x_2 \psi_0(\xi) + x_3 \psi_1(\xi)$$

Element 4

$$x(\xi) = x_3 \psi_0(\xi) + x_4 \psi_1(\xi)$$

DISCRETISATIONS Representing Space Using The Mesh

Interpolate x between the elemental nodes using the sum of basis functions:

Element 1

$$x(\xi) = x_0 \psi_0(\xi) + x_1 \psi_1(\xi) \quad x(\xi) = x_0 \left(\frac{1-\xi}{2}\right) + x_1 \left(\frac{1+\xi}{2}\right)$$

Element 2

$$x(\xi) = x_1 \psi_0(\xi) + x_2 \psi_1(\xi) \quad x(\xi) = x_1 \left(\frac{1-\xi}{2}\right) + x_2 \left(\frac{1+\xi}{2}\right)$$

General Form for Element e

$$x(\xi) = x_{e-1}\psi_0(\xi) + x_e\psi_1(\xi)$$

$$x(\xi) = x_{e-1} \left(\frac{1-\xi}{2}\right) + x_e \left(\frac{1+\xi}{2}\right)$$

A 1-D FINITE ELEMENT MESH Making A Mesh

To generate a 1D mesh with 10 elements, between x=0 and x=1, call following function:

• mesh = OneDimLinearMeshGen(0,1,10);

A 1-D FINITE ELEMENT MESH A Mesh Data Structure

```
mesh.ne = Ne; %set number of elements
mesh.ngn = Ne+1; %set number of global nodes
%set spatial positions of nodes
mesh.elem(i).x(1)
mesh.elem(i).x(2)
%set global IDs of the nodes
mesh.elem(i).n(1)
mesh.elem(i).n(2)
```