SYDNEY TECHNICAL HIGH SCHOOL MATHEMATICS

YEAR 11

2 UNIT COMMON

MAY 2003

Name:	Teacher:		
Instructions:	Time Allowed:	70 mins.	
Show necessary wo	rking		
Full marks may not	be given for incomplete worl	king	
Approximate marks	are shown but may be slight	ly varied.	

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total
/7	/7	/7	/7	/7	/7	/7	/8	/57

Question 1

a) Evaluate
$$V = \frac{4}{3}\pi r^3$$
 when $r = 6400$. Give your answer in scientific notation using 2 significant figures. (2)
b) Express $0.4\dot{5}$ in simplest fraction form (2)
c) Simplify $\sqrt{50} + 3\sqrt{8}$

d) Express
$$\frac{\sqrt{2}}{3\sqrt{2}+1}$$
 with a rational denominator (2)

Question 2

a) Expand and simplify
$$3x - (x+3)^2$$
 (2)

b) Factorise fully: (i)
$$16a^2 - 9$$
 (1)

(ii)
$$2x^2 - 2x - 24$$
 (1)

(iii)
$$x^3 + 8$$
 (1)

c) Solve
$$3x^2 - 2x - 1 = 0$$
 (2)

Question 3

a) Evaluate
$$-3|-2|+|-3|^2$$
 (1)

b) Simplify: (i)
$$\frac{3x-6}{x} \times \frac{x}{x-2}$$
 (2)

(ii)
$$\frac{3x-6}{x} - \frac{x}{x-2}$$
 (2)

c) Find the simultaneous solution to 5x - 2y = 1

$$8x - y = -5 \tag{2}$$

Question 4

Solve:

a)
$$|2x-3|=7$$
 (2)

b)
$$|4-x| < 5$$
 and show the solution on a number line (3)

c)
$$9^{1-x} = \frac{3}{\sqrt{3}}$$
 (2)

Question 5

a) Give the domain <u>and</u> range of each function: (i) $y = \sqrt{x-1}$ (2)

(ii)
$$y = \frac{1}{x^2}$$
 (2)

b) (i) Sketch the parabola y = -x(x-3) for $0 \le x \le 4$ (2)

(ii) Find the range for the above function given the restricted domain (1)

Question 6

Sketch each function below. Show x, y intercepts and other important points clearly:

$$a) y = |x+1| (2)$$

b)
$$y = \frac{-1}{x} + 2$$
 (2)

c)
$$y = \begin{bmatrix} x+1, & for & x < 0 \\ x^2 - 4, & for & x \ge 0 \end{bmatrix}$$
 (3)

Question 7

a) Given that |x| = x if $x \ge 0$ and

$$|x| = -x \text{ if } x < 0,$$

(i) Simplify the function y = x + |x| when $(\alpha) x < 0$ (1)

$$(\beta) x \geqslant 0 \tag{1}$$

(ii) Hence, or otherwise, sketch the function y = x + |x| (1)

b) Sketch the region satisfied by the intersection of $y \le \sqrt{4 - x^2}$ and y > -3 (4)

Question 8

a)

Given a circle with diameter AC and centre O.

- (i) How do we know that $x = 50^{\circ}$? (2)
- (ii) Find the size of $\angle ABC$ (1) (reasons not necessary)

b)

Find x, giving properly set out geometrical reasons.

c)Find the

inequalities whose intersection define the shaded region.

(3)

(2)

A) (et z = 0.4555...)

$$10 \times = 4.5755...$$
)

 $9x = 4.1$
 $10 \times = 4.1$

$$\frac{d}{3\sqrt{2}+1} \frac{\sqrt{2}}{3\sqrt{2}-1} = \frac{6-\sqrt{2}}{17}$$

2)
a)
$$3x - (x^2 + 6x + 9) = 3x - x^2 - 6x - 9$$

$$= -3x - x^2 - 9$$
 \bigcirc

(i)
$$(4a+3)(4a-3)$$
 0

c)
$$x = 2 \pm \sqrt{4 - 4 \times 3 \times -1}$$

$$= 2 \pm \sqrt{4 + 12}$$
6

$$= \frac{2 \pm 4}{6}$$
= $107 - \frac{1}{3}$ ①

$$(3) a) -3 \times 2 + 3^2 = -6 + 9$$
= 3 (1)

(11)
$$(3x-6)(x-2) - x^2$$
 $x(x-2)$

$$= \frac{3x^2 - (2x + 12 - x^2)}{x(x-2)}$$

$$=\frac{2\varkappa^{2}-(2\varkappa+1)}{\varkappa(\varkappa-2)}$$

c)
$$5x-2y=1$$
 — 0
 $8x-y=-5$ — 0

$$(2) \times -2 : -16 \times +2 y = 10 - 3$$

Sub in
$$D: -5-2y=1$$

$$-2y=6$$

$$[y=-3] \leftarrow 1 \text{ mak}$$

(mark if wether has an arror) but next is OK

(I mark for only I arswe-)

(I mark for 2 equations) 6 $(4)_{a}$ $(2x-3=7)_{a}$ or -(2x-3)=72x = 10 or -2x+3=7 x=5V subtract I mak if x, y not shown in all graphs · · × = 5 or -2 6 M) 4-2 (5 or - (4-x) < 5 -x <1 -4+x <5 x <9 0 x>-10 ·. -16 x <9 c)(32)1-x = 31-34 () 32-2× = 3 /2 (T) 1. (2-2x = /2 must O show : , -2x = -1/2 interegitsu 1, 2= 3 D 5) a) i) D: 2>1 0 R: 4>00 (ii) D: all x, except x=0 0 (do not accept "except x +c" R: 4>0 0 b)(i) 41 O intercepts 1 endpoint (ii) -4 < y < 21/4

$$(\beta) y = x + x$$

$$\therefore y = 2x \quad 0$$

c)
$$y \leqslant \frac{5}{4}x - 3$$
 D
 $y \geqslant -3$ D
 $x \leq 4$ D

b) [ABC = 102° (att. L's equal,

BALLEF) D

(ii)
$$90^{\circ}$$
 (iii) $AABO$ is isoscales
$$(0A = 0B)$$

$$(ABO = 25^{\circ}(base L's equal))$$

$$(x = 50^{\circ}(ext. L of AABO)$$