

- Cellular differentiation
- Establishment of pregnancy
- Embryonic implantation

Lactation

- Fetal growth
- Sexual differentiation
- Organogenesis

To marble or not to marble...

The term "marbling" refers to intramuscular fat, most commonly found in "British Breeds" of Beef Cattle.

In comparison, the "Exotic" (or "Continental" Breeds express a lot less intra-muscular fat.

Kobe Beef (from Wagyu Cattle)

Carcass Composition

• Definition:

 the dead body of an animal; specifically one that has been slaughtered for food, with the head, limbs, and entrails removed

What defines a Superior Carcass?

- High proportion of lean (muscle)
- Low proportion of bone...
- "Optimum" amount of fat

The expected changes in carcass composition during an animal's growth in terms of Fat, Muscle, and Bone:

Effects of frame size in the carcass composition

Earlier or later maturing animals have great difference in carcass composition <u>at similar live weights</u>. Earlier maturing animals have increased fat deposition at lighter weight than later maturing animals.

Effect of <u>sex of the animal</u> (male, female, or castrate) on carcass composition, *depending* on the Species

- In Cattle, heifers deposit fat earlier than steers and bulls and should, therefore, be slaughtered at a lower weight than the "males".
- However, in Swine, barrows accumulate fat earlier than gilts and boars at similar slaughter weight.

Average Muscle Fat Bone **Double-Muscled** Tissue weight Liveweight

Growth, Development, and Puberty

•Growth:

Increase in the body weight until *mature size* is reached.

•Development:

The directed coordination of all physiological processes until maturity is reached.

•Puberty:

when estrus is first expressed <u>with</u> ovulation (female); When ejaculation occurs with sperm production (male).

Puberty (Female)

Puberty is defined as the age when estrus is first expressed with ovulation (i.e., when enough gonadotropins are being produced to induce follicle growth, oocyte maturation and ovulation).

- Affected by species, breed, temperature, season and general level of management.
- Occurs well before 100% mature weight is reached (which means that we should rarely breed an animal at first estrus)

The difference between Puberty and Sexual Maturity is subtle!

Think of it as: "CAN do it" vs. "SHOULD do it"

Age at Puberty (Selected Species)

Species	Age at Puberty (range in months)	"Earliest" Possible Birth
Cats	6 - 18	8 months
Dogs	5 - 24	7 months
10915		
Swine	4 - 7	7½ months
Goats	5 - 7	10 months
Sheep	7 - 10	12 months
Cattle	8 - 13	17 months
Horses	12 - 24	23 months

<u>Species</u> and <u>Breed</u> Differences in Age and Weight at Puberty

Age of Puberty (months)	Weight (kg)
5-7	10-30
4-7	68-90
7-10	27-34
8-13	160-270
8	160
11	200
11	270
13	240
10-15	250-300
17-27	160-200
	5-7 4-7 7-10 8-13 8 11 11 13 10-15

Weight at Puberty is only *approximately* 40% of mature body weight!

How can we *quantify* Reproductive Efficiency?

- Desire and ability to mate
- Capacity to produce normal gametes
- Capacity to conceive
- Capacity to nourish the embryo
- Capacity to grow the fetus
- Ability to deliver and to raise offspring
- Complete recovery of the female reproductive tract for the establishment of a new gestation

Reproductive efficiency in livestock production

Reproductive Efficiency

Pregnancy rate
Birth percentage
Inter-parturition intervals

Days open

Number of offspring

Nervous vs. Endocrine (Hormone) Systems

- Major communication systems in the body
- Integrate stimuli and responses to changes in external and internal environment (homeostasis regulation)
- Both are crucial to coordinated functions of highly differentiated cells, tissues and organs
- Unlike the nervous system, the endocrine system is anatomically discontinuous

Nervous system

- The nervous system exerts point-to-point control through nerves.
- Nervous control is electrical in nature and fast!

Endocrine system

- Hormones travel via the bloodstream to target cells
- Target cells have specific receptors

"Relatively" slower!

Principal functions of the Endocrine System

- Maintenance of the internal environment in the body (Homeostasis regulation).
- Integration and regulation of growth and development.
- Control of sexual reproduction.
 - Gametogenesis
 - Coitus
 - Fertilization
 - Maintenance of pregnancy
 - Birth
 - Nourishment of the newborn / Lactation

