

- 🗀 : Exercices de cours à faire avant le TD et qui ne seront pas corrigés en séances
- : Exercices à préparer avant le TD et qui seront corrigés en séance
- : Exercices non corrigés en TD (plus difficiles), pour réviser & s'entraîner

N'hésitez pas à demander des éclaircissements auprès de vos enseignant es.

1 Systèmes d'oscillateurs harmoniques quantiques

Un système constitué de N oscillateurs harmoniques quantiques de pulsation ω à une dimension, discernables et indépendants, est isolé, son énergie étant égale à E. Pour rappel, l'énergie de l'oscillateur $i=1,\ldots,N$ est donnée par $e_i=(n_i+\frac{1}{2})\hbar\omega$, où n_i est le nombre quantique d'excitation de l'oscillateur.

1 – Donner l'expression de l'énergie du système en fonction des nombres quantiques d'excitation n_i , où i = 1...N.

D'après ce qui précède fixer l'énergie E revient à fixer la valeur de la somme des nombres quantiques n_i à une valeur M:

$$\sum_{i=1}^{N} n_i = M$$

Soit $\Omega(N, E)$ le nombre de micro-états du système de N oscillateurs dont l'énergie vaut E.

- 2 Commencer par calculer $\Omega(N, E)$ pour N quelconque et pour M = 0, 1 puis 2.
- 3 Calculer à présent $\Omega(N, E)$ pour N = 2 et M = 3.
- 4 Calculer $\Omega(N, E)$ dans le cas général. Indice : ce problème est équivalent à trouver le nombre de façons de répartir M objets dans N boîtes distinctes.
- 5 Vérifier l'expression en calculant par une sommation directe la dégénérescence des niveaux d'énergie d'un oscillateur harmonique tridimensionnel (N=3), c'est-à-dire le nombre de possibilités d'avoir $n_x + n_y + n_z = M$.
- 6 Dans la limite des hautes énergies (N étant fixé et $M \gg N$), montrer que l'on a :

$$\Omega(N, E) \simeq \frac{1}{(N-1)!} \left(\frac{E}{\hbar\omega}\right)^{N-1}$$

7 – En déduire l'entropie micro-canonique dans la limite des hautes énergies, puis la température. Inverser cette relation pour obtenir E(T).

2 L'OHQ dans tout ses micro-états

On considère dans un premier temps une collection de N oscillateurs harmoniques quantiques 1D identiques, faiblement couplés entre eux et isolés du reste de l'univers. Le nombre de quanta d'énergie qu'ils se partagent est égal à M. Dans toute la suite, on considérera que $N \gg 1$ et $M \gg 1$.

- 1 Calculer l'énergie totale E(N,M) et le nombre de micro-états $\Omega(N,M)$ du système, puis $\ln \Omega(N,M)$.
- 2 Soit un OHQ particulier. Calculer le nombre de micro-états $\Omega(N, M|m)$ du système pour lequel cet OHQ possède exactement m quanta d'énergie. En déduire la probabilité p(m) qu'un OHQ contienne exactement m quanta d'énergie.

3 – On introduit $\overline{m} = \frac{M}{N}$. Quelle est l'interprétation de \overline{m} ? Montrer que dans l'hypothèse où $M \gg m, p(m)$ peut être approché par

$$p(m) \sim \frac{1}{1 + \overline{m}} \left(\frac{\overline{m}}{1 + \overline{m}} \right)^m$$

Tracer p(m). Montrer que même dans l'approximation précédente $\sum_{m=0}^{m=M} p(m) = 1$.

On considère désormais deux collections d'OHQ, appelées 1 et 2, comportant N_1 et N_2 OHQ respectivement et M_{1i} (resp. M_{2i}) quanta d'énergie. Initialement isolées, elles sont mises en contact thermique à l'instant initial pour former une collection unique de $N=N_1+N_2$ OHQ faiblement couplés avec $M=M_{1i}+M_{2i}$ quantas. Tous ces nombres sont $\gg 1$.

- 4 Calculer le nombre de micro-états du système réuni juste avant le contact Ω_i puis juste après Ω_f . Comparer Ω_i et Ω_f .
- 5 Grâce au contact et au faible couplage, le nombre de quanta de 1 est désormais libre de fluctuer par échange d'énergie avec 2. Exprimer littéralement la probabilité $P(M_1)$ pour que la collection 1 possède M_1 quantas exactement.
- 6 En vous aidant de la formule de Stirling pour écrire $\ln P(M_1)$, calculer la valeur $\overline{M_1}$ de M_1 qui rend $P(M_1)$ maximum. Interpréter le résultat obtenu.
- 7 Calculer le nombre Ω_e de micro-états du système correspondant à $\overline{M_1}$ quanta dans 1. Comparer Ω_e à Ω_i et Ω_f , puis $\ln \Omega_e$ à $\ln \Omega_i$ et $\ln \Omega_f$. Que constate-t-on avec bonheur?
- 8 Expliquer (avec des mots) ce qu'il advient quand on met en contact thermique deux systèmes.