Maximum 40 marks

М	For using a method which should lead to a correct answer.		
Α	For a correct answer.		
	A marks can only be gained if the previous M mark has been gained.		
Aft	Follow through their working and allow A mark if correct.		
В	For an answer which is exactly as in the mark scheme.		

INSTRUCTIONS:

- Write **only** in the answer booklet.
- You **must** show your method.
- Where rounding is necessary give your answers correct to **3 significant figures** unless stated otherwise.
- Where appropriate give the **units** for your answers.

1	(You must show your method.)	
	(a) Simplify $\sqrt{12}$ = $\sqrt{3 \times 4}$ = $2\sqrt{3}$	B1 must show method
	(b) Rationalise and simplify $\frac{1}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1
	$=\frac{3+\sqrt{7}}{2}$	A1
	2	
2	Simplify (a) $x^3 \times x^7 = x^{10}$	B1
	(b) $(3t^3)^4 = 81t^{12}$	B1
3	Fully factorise	
	(a) $3x^2 - 2x - 8 = (3x + 4)(x - 2)$	B2
	Allow B1 for $(3x - 4)(x + 2)$	
	(b) $3x^2 - 75 = 3(x+5)(x-5)$	B2
	Allow B1 for only factorising once	

4	Make <i>n</i> the subject of	
	$B = \frac{4\sqrt{d}}{RT}$	
	RT	
	— BRT	A1
	$\sqrt{d}=rac{BRT}{4}$	
	$B^2R^2T^2$ $(BRT)^2$	A1 accept either
	$\therefore d = \frac{B^2 R^2 T^2}{16} = \frac{(BRT)^2}{16}$	answer
5	Solve the equation	
	$\frac{4}{3} = \frac{16}{x+5}$	
	$\frac{3}{3} - \frac{1}{x+5}$	M1 for eliminating the denominators
	$4(x+5) = 3 \times 16$	the denominators
	$\therefore x = 7$	A1
6	Use the quadratic formula to find the roots of	
	$6x^2 + 3x - 7 = 0$	
	6x + 3x - 7 = 0	
	giving your correct to 3 significant figures.	A1 for substituting values correctly
	$-(3) \pm \sqrt{(3)^2 - 4(6)(-7)}$	values correctly
	$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(6)(-7)}}{2(6)}$	M1 for finding two values
	x = 0.859 or x = -1.36	values
		A1 for both values
		correctly rounded
7	Use Pascal's triangle to find the expansion of $(4-3x)^4$	
	Simplify your answer.	B1 for 5 terms AND
	$= 16 - 96x + 216x^2 - 216x^3 + 81x^4$	correct powers of <i>x</i> B1 for correct
		coefficients
8	Solve the simultaneous equations	
0	Solve the simultaneous equations	
	2x + 7y = 11 (1)	
	$5x + 3y = 13 \qquad (2)$	M1 for \times (1) & (2) by
	$(1) \times 5: 10x + 35y = 55 (3)$	suitable values AND
	$(2) \times 2: 10x + 6y = 26 \qquad (4)$	subtracting
	(3)-(4): $29y = 29$	
	y = 1 using (1): $2x + 7(1) = 11$	A1 (or x)
	using (1): $2x + 7(1) = 11$ $\therefore x = 2$	A1 ft their y

9	(a) Cor	nvert 90° to radians giving your answer as a		
		tiple of π . $= \frac{\pi}{2} \text{ (rad)}$	B1 condone missing units but must be a multiple of π	
	(b) Cor	nvert 1.8 radians into degrees.	B1 condone missing	
		= 103° or 103.1°	units	
10	Find the	e two angles in the range 0° to 360° whose		
	tungent	= 135° and 315°	B1 must have both	
11	(a)	$BC^2 = 16^2 + 18^2 - 2(16)(18)\cos 35^\circ$	M1 A1	
		= 108.2		
		∴ <i>BC</i> = 10.4cm	A1*	
	(b)	$Area = \frac{1}{2} \times 16 \times 18 \times \sin 35^{\circ}$	M1	
		$= 82.6 \text{cm}^2$	A1*	
	(c)	Let perpendicular height of B be h		
		Either (using trig)	Either	
		$\frac{h}{16} = \sin 35^{\circ}$	M1	
		∴ <i>h</i> = 9.18cm	A1*	
		Or (using area)	Or	
		$82.6 = \frac{1}{2} \times 18 \times h$	M1	
		∴ <i>h</i> = 9.18cm	A1*	
	* Should be rounded to 3 sf and have the correct units but only penalise once in this question			

12	Differentiate the following with respect to x [4 marks]	
	(a) $y = \frac{3}{x^4} = 3x^{-4}$	M1
	$\therefore \frac{dy}{dx} = -12x^{-5} = -\frac{12}{x^5}$	A1 Accept either answer
	(b) $y = 6\sqrt[3]{x} = 6x^{\frac{1}{3}}$	M1
	$\therefore \frac{dy}{dx} = 2x^{-\frac{2}{3}} = \frac{2}{\sqrt[3]{x^2}}$	A1 Accept either answer
13	Determine the co-ordinates of the point on the graph	
	$y = 3x^2 + 8x - 1$	
	where the gradient is -4	
	$\frac{dy}{dx} = 6x + 8$	M1 for using differentiation A1
	let 6x + 8 = -4	
	$\therefore x = -2$	A1
	when $x = -2$, $y = 3(-2)^2 + 8(-2) - 1$	M1 for substituting
	= -5	
	So the required co-ordinates are $(-2, -5)$	A1 ft their value of <i>x</i> must be given as coordinates

End of Examination