Análise de Sensibilidade:

a) <u>aos coeficientes da função objetivo</u> - cf

Seja Δ cf a variação que se pretende determinar em cf.

 i) cf é coeficiente da função objetivo duma variável não básica

No ótimo todos os " $z_j - c_j$ " ≥ 0

Como xf não pertence à base, qualquer variação só tem implicações em "zf - cf" logo

$$z_f - (c_f + \Delta c_f) \ge 0$$

$$\downarrow \\ -\infty < \Delta c_f \le z_f - c_f$$

A base ótima mantém-se desde que o novo cf $(cf+\Delta cf)$ não ultrapasse zf.

ii) cf é coeficiente da função objetivo duma variável básica

Como xf pertence à base, toda a linha dos "zj - cj" sofre alteração (assim como o valor do z*)

Recalcular toda a linha dos "zj - cj", considerar todos os valores obtidos como ≥ 0 e resolver o sistema de inequações resultante

Alternativamente:

$$\begin{split} \Delta c f^{min} &= \\ \left\{ \begin{array}{ll} \max \left[\frac{-(zj-cj)}{yfj} \right] & \text{para } yfj > 0 \\ -\infty & \text{se todo o } yfj \leq 0 \end{array} \right. \\ \Delta c f^{max} &= \\ \left\{ \begin{array}{ll} \min \left[\frac{-(zj-cj)}{yfj} \right] & \text{para } yfj < 0 \\ +\infty & \text{se todo o } yfj \geq 0 \end{array} \right. \\ \Delta c f^{min} &\leq \Delta c f \leq \Delta c f^{max} \end{split}$$

onde yfj é o elemento da linha f de Xj para todos os j correspondentes a variáveis não básicas.

O coeficiente da variável xf pode assumir qualquer valor de [cf + Δ cf^{min}; cf + Δ cf^{max}] sem que a base ótima se altere.

O valor de z* pertencerá ao intervalo:

$$[z^* + \Delta c f^{min} x f^*; z^* + \Delta c f^{max} x f^*]$$

Exemplo

Retome-se o exemplo anterior (pág. I-8), cujo quadro ótimo simplex é:

simplex c	⁻.						
•	$\mathbf{c_i}$ 6	3	0	0	0		
XB CB	$X_i X_1$	X 2	X 3	X 4	X 5	b	_
X3 0	0	0	1	-1	2	160	$X_1 = 160$
$\mathbf{x_2}$ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
$\mathbf{x_1}$ 6	1	0	0	0	1	160	$X_3 = 160$
z _j - c _j	0	0	0	3/4	3	1140	X4 = 0
							X5 = 0
							z = 1140

Proceda-se à análise de sensibilidade em relação a c1 = 6 (lucro unitário das secretárias).

Como x1 é variável básica, toda a linha dos " z_j - c_j " sofre alteração, bem como o valor do z^* .

Recalculando toda a linha dos " $z_j - c_j$ "

$\mathbf{c_i}$	6+∆c ₁	3	0	0	0	
$x_B c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	В
X 3 0	0	0	1	-1	2	160
\mathbf{x}_2 3	0	1	0	1/4	-1	60
x_1 6+ Δc_1	1	0	0	0	1	160
$\mathbf{z_{j}}$ - $\mathbf{c_{j}}$	0	0	0	3/4	-3+6+∆c ₁	1140+160∆c1
					≥ 0	•

$$-3 + 6 + \Delta c_1 \ge 0$$
 $z^* = 1140 + 160\Delta c_1$ $\Delta c_1 \ge -3$ $1140 + 160^*(-3) \le z^* \le +\infty$ $-3 \le \Delta c_1 \le +\infty$ $1140 - 480 \le z^* \le +\infty$ $3 \le c_1 \le +\infty$ $660 \le z^* \le +\infty$

Alternativamente, usando as fórmulas:

tal como anteriormente, $660 \le z^* \le +\infty$

b) <u>nos termos independentes das restrições</u> - bi

Seja Δb_k a variação que se pretende determinar em b_k .

$$\mathbf{x_B}^* = \mathbf{B}^{-1}\mathbf{b} \ge 0$$

para solução admissível

então

$$\mathbf{x_B}^*_{\Delta_{b_k}} = \mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \ge 0$$

$$\operatorname{com} \Delta \mathbf{b} = \begin{bmatrix} 0 \\ \vdots \\ \Delta b_k \\ \vdots \\ 0 \end{bmatrix}$$

Resolver o sistema de inequações resultante, ou, alternativamente:

$$\begin{split} \Delta b k^{min} &= \\ \left\{ \begin{array}{ll} \max \left[\frac{-(x_{Bi}^*)}{\beta i k} \right] & \text{para } \beta i k > 0 \\ -\infty & \text{se todo o } \beta i k \leq 0 \end{array} \right. \\ \Delta b k^{max} &= \\ \left\{ \begin{array}{ll} \min \left[\frac{-(x_{Bi}^*)}{\beta i k} \right] & \text{para } \beta i k < 0 \\ +\infty & \text{se todo o } \beta i k \geq 0 \end{array} \right. \end{split}$$

 $\Delta b_k^{\min} \leq \Delta b_k \leq \Delta b_k^{\max}$

onde x_{Bi}^* é o elemento da coluna dos termos independentes e linha i do quadro ótimo e β_{ik} é o elemento (i, k) da matriz B^{-1} ótima.

O segundo membro da k-ésima restrição pode assumir qualquer valor de $[b_k + \Delta b_k^{min}; b_k + \Delta b_k^{max}]$ sem que a base ótima se altere.

Porém, os valores da solução ótima alteram-se em conformidade com o valor concreto assumido por Δbk:

$$\mathbf{x_B}^*_{\Delta_{b_k}} = B^{-1}(\mathbf{b} + \Delta \mathbf{b})$$

acontecendo o mesmo ao valor de z*:

$$z^* = \mathbf{c'}_B \mathbf{x}_B^*_{\Delta_{bk}} = \mathbf{c'}_B B^{-1}(\mathbf{b} + \Delta \mathbf{b})$$

Exemplo

Retome-se o exemplo anterior (pág. I-8), cujo quadro ótimo simplex é:

c_i	6	3	0	0	0		
$x_B c_B^{X_i}$	X 1	X 2	X 3	X 4	X 5	b	
X 3 0	0	0	1	-1	2	160	$X_1 = 16$
x ₂ 3	0	1	0	1/4	-1	60	$\mathbf{X2} = 60$
x ₁ 6	1	0	0	0	1	160	X3 = 16
z _j - c _j	0	0	0	3/4	3	1140	X4 = 0
, and the second						•	$ \mathbf{X5} = 0 \\ \mathbf{z} = 1140 $

A solução ótima é:

$$\mathbf{x_B}^* = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 160 \\ 60 \\ 160 \end{bmatrix}$$

Proceda-se à análise de sensibilidade em relação a b2 = 880 (disponibilidade máxima da UMA)

Alternativamente, usando as fórmulas:

$$\Delta b2^{\min} = \max \left[\frac{-60}{1/4} \right] = -240$$

$$\Delta b2^{\max} = \min \left[\frac{-160}{-1} \right] = 160$$

$$\downarrow \downarrow$$

$$-240 \le \Delta b2 \le 160 \quad \text{ou} \quad 640 \le b2 \le 1040$$
tal como anteriormente, $960 \le z^* \le 1260$