Daniel Remigio Valentin

Universidad Nacional de Ingeniería

Introducción

Procesos Estocásticos:

Una sucesión de de observaciones $X_1, X_2, X_3, \dots, X_n$ se denomina **proceso estocástico** si verifica lo siguiente :

• Si los valores de estas observaciones no se pueden predecir exactamente.

Introducción

Procesos Estocásticos:

Una sucesión de de observaciones $X_1, X_2, X_3, \dots, X_n$ se denomina **proceso estocástico** si verifica lo siguiente :

- Si los valores de estas observaciones no se pueden predecir exactamente.
- Pero se pueden especificar las probabilidades para los distintos valores posibles en cualquier instante de tiempo.

Introducción

Procesos Estocásticos:

Una sucesión de de observaciones $X_1, X_2, X_3, \ldots, X_n$ se denomina **proceso estocástico** si verifica lo siguiente :

- Si los valores de estas observaciones no se pueden predecir exactamente.
- Pero se pueden especificar las probabilidades para los distintos valores posibles en cualquier instante de tiempo.

Ahora tenemos que:

 X_1 : v.a. que define el **estado inicial del proceso**

 X_n : v.a. que define el **estado del proceso en el instante de tiempo** n

Para cada posible valor del estado inicial s_1 y para cada uno de los sucesivalores s_n de los estados $X_n, n = 1, 2, ...$ especificamos:

$$P(X_{n+1} = s_{n+1})|X_1 = s_1, X_2 = s_2, \dots, X_n = s_n$$

Propiedad Markoviana:

Si el estado actual X_n y los estados previos X_1, \ldots, X_{n-1} son conocidos, entonces, la probabilidad del estado futuro x_{n+1} , no depende de los estados anteriores X_1, \ldots, X_{n-1} , y solamente depende del estado actual X_n , es decir para $n = 1, 2, \ldots$ y cualquier sucesión de estados $s_1, s_2, \ldots, s_{n+1}$

Propiedad Markoviana:

Si el estado actual X_n y los estados previos X_1,\ldots,X_{n-1} son conocidos, entonces, la probabilidad del estado futuro x_{n+1} , no depende de los estados anteriores X_1,\ldots,X_{n-1} , y solamente depende del estado actual X_n , es decir para $n=1,2,\ldots$ y cualquier sucesión de estados s_1,s_2,\ldots,s_{n+1}

$$P(X_{n+1} = s_{n+1}|X_1 = s_1, X_2 = s_2, ..., X_n = s_n) = P(X_{n+1} = s_{n+1}|X_n = s_n)$$

Cadenas de Markov finitas con probabilidades de transición estacionaria

Cadena de Markov finita

Es una cadena de Markov para la que existe sólo un número finito k de estados posibles s_1, \ldots, s_k y en cualquier instante de tiempo la cadena está en uno de estos k estados.

Probabilidad de transición

Es la probabilidad condicionada:

Cadenas de Markov finitas con probabilidades de transición estacionaria

Cadena de Markov finita

Es una cadena de Markov para la que existe sólo un número finito k de estados posibles s_1, \ldots, s_k y en cualquier instante de tiempo la cadena está en uno de estos k estados.

Probabilidad de transición

Es la probabilidad condicionada:

$$P(X_{n+1}=s_{n+1}|x_n=s_n)$$

Probabilidad de transición estacionaria

Una cadena de Markov tiene probabilidades de transición estacionarias \vec{s} pacualquier par de estados s_i y s_j existe una probabilidad de transición pij

Cadenas de Markov finitas con probabilidades de transición estacionaria

Cadena de Markov finita

Es una cadena de Markov para la que existe sólo un número finito k de estados posibles s_1, \ldots, s_k y en cualquier instante de tiempo la cadena está en uno de estos k estados.

Probabilidad de transición

Es la probabilidad condicionada:

$$P(X_{n+1}=s_{n+1}|x_n=s_n)$$

Probabilidad de transición estacionaria

Una cadena de Markov tiene probabilidades de transición estacionarias s_i par cualquier par de estados s_i y s_j existe una probabilidad de transición pij

$$P(X_{n+1} = s_i | X_n = s_i) = pij \text{ para } n = 1, 2, ...$$

Matriz Estocástica

Son aquellas matrices cuadradas cuyos elementos son no negativos y tal que la suma de los elementos de cada fila es igual a 1.

Matriz de transición en un solo paso

Son aquellas matrices cuadradas cuyos elementos son no negativos y tal que la suma de los elementos de cada fila es igual a 1.

Matriz de transición en un solo paso

$$p_{ij} = P(X_{n+1} = s_j | X_n = s_i) \rightarrow P = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1k} \\ p_{21} & p_{22} & \dots & p_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ p_{k1} & p_{k2} & \dots & p_{kk} \end{pmatrix}$$

La matriz de transición P de cualquier cadena de Markov finita con probabilidade transición estacionarias es una matriz estocástica

Ejemplo:

Supongamos que el clima de una determinada región sólo puede ser soleado (s_1) o nublado (s_2) y que las condiciones del clima en mañanas sucesivas forman una cadena de Markov con probabilidades de transición estacionarias. La matriz de transición está dada por:

Ejemplo:

Supongamos que el clima de una determinada región sólo puede ser soleado (s_1) o nublado (s_2) y que las condiciones del clima en mañanas sucesivas forman una cadena de Markov con probabilidades de transición estacionarias. La matriz de transición está dada por:

$$P = \left(\begin{array}{cc} 0.7 & 0.3 \\ 0.6 & 0.4 \end{array}\right)$$

Si un día concreto está nublado, cuál es la probabilidad de que esté nublado el siguiente?.

$$p_{22} = 0.4$$

Ejemplo:

En un pequeño pueblo el clima puede cambiar, de un día para otro, consideremos 2 estados del tiempo: clima seco y clima húmedo. La probabilidad de tener un clima seco es 0.8, si el día actual es seco; pero si es húmedo la probabilidad de obtener un clima seco es de 0.6. Suponga que dichos valores no cambian en el tiempo. Se pide determinar:

- Matriz de Transición.
- Diagrama de transición.
- La probabilidad de estado.

Matriz de transición:

X: Estado del clima
$$X = \begin{cases} 0 & \text{Clima seco} \\ 1 & \text{Clima húmedo} \end{cases}$$

La probabilidad de obtener un clima seco al día siguiente si hoy el clima esta seco:

$$P\left\{X_{t+1}=0|X_t=0\right\}=0.8.$$

La probabilidad de obtener un clima seco al día siguiente si hoy el clima esta húmedo:

$$P\left\{X_{t+1}=0|X_t=1\right\}=0.6$$

luego tenemos:

	0	1
0	$P_{00} = 0.8$	$P_{01} = 0.2$
1	$P_{10} = 0.6$	$P_{11} = 0.4$

Donde P_{ij} :Probabilidad de pasar del clima i al clima j

Por lo tanto la matriz de transición es:

La probabilidad de obtener un clima seco al día siguiente si hoy el clima esta seco:

$$P\left\{X_{t+1}=0|X_t=0\right\}=0.8.$$

La probabilidad de obtener un clima seco al día siguiente si hoy el clima esta húmedo:

$$P\left\{X_{t+1}=0|X_t=1\right\}=0.6$$

luego tenemos:

	0	1
0	$P_{00} = 0.8$	$P_{01} = 0.2$
1	$P_{10} = 0.6$	$P_{11} = 0.4$

Donde P_{ij} :Probabilidad de pasar del clima i al clima j

Por lo tanto la matriz de transición es:

$$M_T = \left(\begin{array}{cc} 0.8 & 0.2 \\ 0.6 & 0.4 \end{array}\right)$$

Diagrama de transición

La probabilidad de obtener un clima seco al día siguiente si hoy el clima esta seco:

$$P\left\{X_{t+1}=0|X_t=0\right\}=0.8.$$

La probabilidad de obtener un clima seco al día siguiente si hoy el clima esta húmedo:

$$P\left\{X_{t+1}=0|X_t=1\right\}=0.6$$

luego tenemos:

	0	1
0	$P_{00} = 0.8$	$P_{01} = 0.2$
1	$P_{10} = 0.6$	$P_{11} = 0.4$

Donde P_{ij} :Probabilidad de pasar del clima i al clima j

Por lo tanto la matriz de transición es:

$$M_T = \left(\begin{array}{cc} 0.8 & 0.2 \\ 0.6 & 0.4 \end{array}\right)$$

Diagrama de transición

La probabilidad de estado estable del sistema

 π_0 :Probabilidad que cierto día sea seco π_1 :Probabilidad que cierto día sea húmedo De lo anterior podemos concluir que :

$$\pi_0 + \pi_1 = 1$$

entonces tenemos:

$$\pi_0 = 1 - \pi_1$$

$$\begin{aligned}
\pi_0 + \pi_1 &= 1 \\
\pi_0 P_{00} + \pi_1 P_{10} &= \pi_0 \\
\pi_0 P_{01} + \pi_1 P_{11} &= \pi_1
\end{aligned}$$

reemplazando tenemos que:

La probabilidad de estado estable del sistema

 π_0 :Probabilidad que cierto día sea seco π_1 :Probabilidad que cierto día sea húmedo De lo anterior podemos concluir que :

$$\pi_0 + \pi_1 = 1$$

entonces tenemos:

$$\pi_0 = 1 - \pi_1$$

$$\begin{aligned}
\pi_0 + \pi_1 &= 1 \\
\pi_0 P_{00} + \pi_1 P_{10} &= \pi_0 \\
\pi_0 P_{01} + \pi_1 P_{11} &= \pi_1
\end{aligned}$$

$$\pi_0 = 0.75$$

$$\pi_1 = 0.25$$

