Neyman-Pearson Hypothesis Testing

- H_o : $\mu = 0$
- H_a : $\mu = n$
- Requires a rejection region, a small area where the null hypothesis should be rejected
- If the observed value falls in the region, H_a is true, reject H_o, vice versa.

Fisher's Significance Testing

- Select an appropriate test
- Set up H_o
- \bullet Calculate the theoretical proabability of the results under H_o (p)
- If $p = \alpha$: statistically significant
- If $p > \alpha$... statistically insignificant

POWER ANALYSIS

- 1. To compute the critical region:
 - need α , H_0 (value of P under H_0)
 - \bullet Sampling distribution of test statistic under H_0
- 2. To computer power
 - \bullet Need critical region, H_1 (value of P under H_1)
 - Sampling distribution of test statistic under H₁

NPHT

- Parameter is μ [population mean]. $\mu_0 = \mu_1$
- \bar{X} is sample mean. Under CLT, normal distribution at μ_0 for H_0 and μ_1 for H_1 .
- We accept H_0 if \underline{not} in CR.

N-P Power Analysis

- $\bullet\,$ Define parameter and its value under H_0 and H_1
- Define a test statistic and its sampling distribution under both hypotheses.
- Use α to compute critical region
- $\bullet~$ Compute power and compare to 80

One-Sample T-Statistic [NP]

• If $t_{observed}$ in CR, then accept H_1 : $\mu = \mu_1$. Else accept H_0 : $\mu = \mu_0$

Two-Tailed Test

• Take the upper and lower limit of the curve and the significance level (α) is the cut off point of being $statistically\ significant$. Treat as critical region. If in CR, then accept H_1 . Else accept H_0 .

ANOVA

- Null Hypothesis: $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_{\rm i}$
- If the variability BETWEEN the means (Δx) in the numerator is relatively large compared to the variance within the samples (internal spread) in the denominator, the ratio will be much larger than 1.
- The samples then most likely do NOT come from a common population REJECT H_0 . (if at least one of the μ is not equal.)
- ANOVA tests **CANNOT** determine/make conclusions about all populations means (\forall) , only at least one element in the set $(\mu \in \forall)$
- <u>Usage:</u> compare control group and observational studies of more than three populations.

Null Hypothesis Significance Testing

- $\bullet~H_{\rm o}\colon$ (if candy causes cancer, assume candy does not cause cancer and find counter arguments)
- H_a : $\theta[<,>,\neq]\theta_1$
- Find its distribution under H_o
- Define a critical region such that if in critical region, reject Ho.
- $\bullet~$ Else fail to reject ${\rm H}_{\rm o}$

t-Statistics and t-Tests

• i++i.

ANOVA

insert table here

NHST

- Define a parameter and it's value under H_0 .
- Define an interval representing an inequality
- $\bullet\,$ Define a test statistic and its sampling distribution under H_0
- Compute p-value. P-Value \leq sig level \implies reject H_0 & accept H_1 . P-Value j, sig level \implies fail to reject H_0 . Can only be j, $j \neq j$.

Two-Sided Test

- Neyman-Pearson
- Critical region is $\frac{1}{2}$ left tail and $\frac{1}{2}$ right tail of sampling distribution under H_0 . Power will \downarrow .
- NHST
- Find the "one-sided" p-value and double it.

Matched Pairs t-Test

- Paired subjects receives their respective treatment or an individual gets two treatments. Also a subset of block design.
- H_0 : $\mu_d = 0$ (no difference) and H_a : $\mu_d \neq 0$ (difference).
- If p-value $\leq \alpha$, we reject H_0 & accept H_a conclude there is a difference.
- If p-value $\dot{\iota}$ significance level, we fail to reject H_0 cannot claim there is a difference. (We do not have any definitive truth to accept the null hypothesis)
- $\bullet\,$ Requirements: large population, normal distribution, σ is unknown.