Lecture 22: Bagging and Random Forest

Wenbin Lu

Department of Statistics North Carolina State University

Fall 2019

Outlines

- Bagging Methods
 - Bagging Trees
- Random Forest
 - Applications in Causal Inference/Optimal Treatment Decision

Ensemble Methods (Model Averaging)

A machine learning *ensemble* meta-algorithm designed to improve the stability and accuracy of machine learning algorithms

- widely used in statistical classification and regression.
- can reduce variance and helps to avoid overfitting.
- usually applied to decision tree methods, but it can be used with any type of method.

Bootstrap Aggregation (Bagging)

Bagging is a special case of the model averaging approach.

Bootstrap aggregation = Bagging

- Bagging leads to "improvements for unstable procedures" (Breiman, 1996), e.g. neural nets, classification and regression trees, and subset selection in linear regression (Breiman, 1994).
- On the other hand, it can mildly degrade the performance of stable methods such as K-nearest neighbors (Breiman, 1996).

Basic Idea

Given a standard training set D of size n, bagging

- generates B new training sets D_i , each of size n', by sampling from D uniformly and with replacement.
- The B models are fitted using the above B bootstrap samples and combined by averaging the output (for regression) or voting (for classification).

This kind of sample is known as a bootstrap sample.

- By sampling with replacement, some observations may be repeated in each D_i .
- If n'=n, then for large n, the set D_i is expected to have the fraction $(1-1/e)\approx 63.2\%$ of the unique examples of D, the rest being duplicates.

Bagging Procedures

Bagging uses the bootstrap to improve the estimate or prediction of a fit.

- Given data $\mathbf{Z} = \{(x_1, y_1), ..., (x_n, y_n)\}$, we generate B bootstrap samples \mathbf{Z}^{*b}
 - **Empirical distribution** \hat{P} : putting equal probability 1/n on each (x_i, y_i) (discrete)
 - Generate $\mathbf{Z}^{*b} = \{(x_{1*}, y_{n*}), ..., (x_{n*}, y_{n*})\} \sim \hat{\mathcal{P}}, b = 1, ..., B$
- Obtain $\hat{f}^{*b}(x)$, b = 1, ..., B.
- The Monte Carlo estimate of the bagging estimate

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

Properties of Bagging Estimates

Advantages:

- Note $\hat{f}_{\mathsf{bag}}(x) \longrightarrow E_{\hat{\mathcal{P}}}\hat{f}^*(x)$ as $B \to \infty$,
- $\hat{f}_{bag}(x)$ typically has smaller variance than $\hat{f}(x)$;
- $\hat{f}_{bag}(x)$ differs from $\hat{f}(x)$ only when the latter is nonlinear or adaptive function of data.

Bagging Classification Trees

In classification problems, there are two scenarios

- (1) $\hat{f}^b(x)$ is indicator-vector, with one 1 and K-1 0's (hard classification)
- (2) $\hat{f}^{*b}(x) = (p_1, ..., p_K)$, the estimates of class probabilities $\widehat{P}^b(Y = k|X = x)$, $k = 1, \cdots, K$ (soft classification). The bagged estimates are the average prediction at x from B trees

$$\hat{f}_k^{\text{bag}}(x) = B^{-1} \sum_{b=1}^B \hat{f}_k^{*b}(x), \quad k = 1, \dots, K.$$

Bagging Classification Trees (cont.)

There are two types of averaging:

- (1) Use the majority vote: $\arg\max_k \sum_{b=1}^B I\{\hat{f}^b(x) = k\}$.
- (2) Use the averaged probabilities. The bagged classifier

$$\hat{G}_{bag}(x) = \arg\max_{k} \hat{f}_{k}^{bag}(x).$$

Note: the second method tends to produce estimates with lower variances than the first method, especially for small B.

Example

- Sample size n = 30, two classes
- p = 5 features, each having a standard Gaussian distribution with pairwise correlation $Corr(X_i, X_k) = 0.95$.
- The response Y was generated according to

$$Pr(Y = 1|x_1 \le 0.5) = 0.2$$
, $Pr(Y = 1|x_1 > 0.5) = 0.8$.

- The Bayes error is 0.2.
- A test sample of size 2,000 was generated from the same population.

We fit

- classification trees to the training sample
- classification trees to each of 200 bootstrap samples

Elements of Statistical Learning © Hastie, Tibshirani & Friedman 2001 Chapter 8

Figure 8.9: Bagging trees on simulated dataset. Top left panel shows original tree. Five trees grown on bootstrap samples are shown.

About Bagging Trees

The original tree and five bootstrap trees are all different:

- with different splitting features
- with different splitting cutpoints
- The trees have high variance due to the correlation in the predictors

Averaging reduces variance and leaves bias unchanged.

- Under squared-error loss, averaging reduces variance and leaves bias unchanged.
- Therefore, bagging will often decrease MSE.

Figure 8.10: Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The green points correspond to majority vote, while the purple points average the probabilities.

About Bagging

- Bagging can dramatically reduce the variance of unstable procedures like trees, leading to improved prediction
 - Bagging smooths out this variance and hence reducing the test error
 - Bagging can stabilize unstable procedures.
- The simple structure in the model can be lost due to bagging
 - A bagged tree is no longer a tree.
 - The bagged estimate is not easy to interpret.
- Under 0-1 loss for classification, bagging may not help due to the nonadditivity of bias and variance.

Random Forest

Random Forests (Breiman, 2001):

- Random forest is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees.
- Bagging: random subsampling the training set
- Random subspace method (Ho, 1995, 1998): random subsampling
 the feature space (called "feature bagging"); To reduce the
 correlation of the trees in an ordinary bootstrap sample: if one or a
 few features are very strong predictors for the response variable
 (target output), these features will be selected in many of the trees,
 causing them to become correlated.
- Random forest: combine bagging and random subspace method.

Learning Algorithm for Building A Tree

Denote the training size by n and the number of variables by p. Assume m < p is the number of input variables to be used to determine the decision at a node of the tree.

- Randomly choose n samples with replacement (i.e. take a bootstrap sample).
- Use the rest of the samples to estimate the error of the tree, by predicting their classes.
- For each node of the tree, randomly choose *m* variables on which to base the decision at that node. Calculate the best split based on these *m* variables in the training set.
- Each tree is fully grown and not pruned.

Properties of Random Forest

Advantages:

- highly accurate in many real examples; fast; handles a very large number of input variables.
- ability to estimate the importance of variables for classification.
- generates an internal unbiased estimate of the generalization error as the forest building progresses.
- impute missing data and maintains accuracy when a large proportion of the data are missing.
- provides an experimental way to detect variable interactions.
- can balance error in unbalanced data sets.
- compute proximities between cases, useful for clustering, detecting outliers, and (by scaling) visualizing the data
- can be extended to unlabeled data, leading to unsupervised clustering, outlier detection and data views

Properties of Random Forest

Disadvantages:

- Random forests are prone to overfitting for some data sets. This is even more pronounced in noisy classification/regression tasks.
- Random forests do not handle large numbers of irrelevant features

Implementation:

 R packages: randomForest; randomForestSRC (for survival data); grf (generalized random forest for causal effect estimation).

Asymptotics of generalized random forest: Athey et al. (2019)

Applications in Causal Inference/Optimal Treatment Decision

- Potential outcomes: $Y^*(a)$, an outcome that would result if a patient were given treatment $a \in A$.
- Observed data: response, Y (larger value of Y indicates better outcome); p-dimensional covariates, $X \in \mathcal{X}$; received treatment, $A \in \mathcal{A}$.
- Consider binary treatment case: $A = \{0, 1\}$.
- Average treatment effect (ATE): $\Delta = E\{Y^*(1) Y^*(0)\}.$
- Conditional treatment effect (CTE): $\tau(x) = E\{Y^*(1)|X=x\} E\{Y^*(0)|X=x\}.$
- Average treatment effect on the treated (ATT): $\Delta_1 = E\{Y^*(1)|A=1\} E\{Y^*(0)|A=1\}.$

Assumptions for Causal Inference

A1. Consistency assumption:

$$Y = Y^*(1)A + Y^*(0)(1 - A)$$

A2. No unmeasured confounders assumption (strong ignorablility):

$$\{Y^*(1), Y^*(0)\} \perp \!\!\!\perp A \mid X$$

A3. Positivity assumption: 0 < P(A = 1|X) < 1 for any X.

Estimation of Causal Effects

- Note that $\Delta \neq E(Y|A=1) E(Y|A=0)$. (why?)
- In fact,

$$E\left\{\frac{I(A=1)}{\pi(X)}Y\right\}=E\{Y^*(1)\},$$

where
$$\pi(X) = P(A = 1|X)$$
.

- Under assumptions A1-A2, we have $\tau(x) = E(Y|A=1, X=x) E(Y|A=0, X=x)$.
- Proof:

$$E\{Y^*(1)|X=x\}=E\{Y^*(1)|A=1,X=x\}=E\{Y|A=1,X=x\}.$$

• How about Δ_1 ?

$$E\{Y^*(0)|A=1\}=E\{Y^*(0)A\}/P(A=1)=E\{Y^*(0)\pi(X)\}/P(A=1)$$

Estimation of CTE

- Two ways of using random forests:
 - Method I: Fit $Y \sim RF(X, A)$. Denote the resulting estimator by $\widehat{\mu}(X, A)$. Then, $\widehat{\tau}(x) = \widehat{\mu}(x, 1) \widehat{\mu}(x, 0)$.
 - Method II: Fit $Y \sim RF(X)$ separately for A=1 and A=0 groups. Denote the resulting estimators by $\widehat{\mu}_1(X)$ and $\widehat{\mu}_0(X)$, respectively. Then, $\widehat{\tau}(x) = \widehat{\mu}_1(x) \widehat{\mu}_0(x)$.
- Method II is usually better than method I (more accurate).
- Under the assumptions A1-A2, it can be shown that the optimal treatment decision rule is estimated by $d^{opt}(x) = I\{\widehat{\tau}(x) > 0\}$.
- The decision rule \(\hat{\tau}(x)\) obtained by RF may be difficult to interpret clinically. In practice, it may prefer a simple and interpretable decision rule. We may consider a tree classification based on the labels \(Z_i \equiv I\{\hat{\tau}(X_i) > 0\}\) and features \(X_i\).
- More accurately, we should consider a weighted classification of Z_i on X_i with the weight $w_i = |\widehat{\tau}(X_i)|$.

Estimation of ATE

Inverse probability weighted estimation (IPW):

$$\widehat{\Delta} = \sum_{i=1}^n \frac{A_i}{\widehat{\pi}(X_i)} Y_i - \sum_{i=1}^n \frac{(1-A_i)}{1-\widehat{\pi}(X_i)} Y_i,$$

where $\widehat{\pi}(X)$ is estimated propensity score, e.g., using logistic regression or random forest.

- IPW estimator is lack of efficiency (why?).
- Augmented inverse probability weighted estimation (AIPW):

$$\widehat{\Delta} = \sum_{i=1}^{n} \frac{A_{i}}{\widehat{\pi}(X_{i})} Y_{i} - \sum_{i=1}^{n} \left\{ \frac{A_{i}}{\widehat{\pi}(X_{i})} - 1 \right\} \widehat{\mu}_{1}(X_{i}) \\
- \left[\sum_{i=1}^{n} \frac{1 - A_{i}}{1 - \widehat{\pi}(X_{i})} Y_{i} - \sum_{i=1}^{n} \left\{ \frac{1 - A_{i}}{1 - \widehat{\pi}(X_{i})} - 1 \right\} \widehat{\mu}_{0}(X_{i}) \right].$$

Estimation of ATE/ATT

- AIPW estimator is doubly robust: $\widehat{\Delta}$ is consistent when either $\widehat{\pi}(x)$ is consistent or $\widehat{\mu}_0(x)$ and $\widehat{\mu}_1(x)$ are consistent.
- Alternative estimators of ATE (regression estimators):

$$\widehat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \{ \widehat{\mu}_1(X_i) - \widehat{\mu}_0(x) \},$$

$$\widehat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \left[A_i \{ Y_i - \widehat{\mu}_0(X_i) \} + (1 - A_i) \{ \widehat{\mu}_1(X_i) - Y_i \} \right].$$

Estimator of ATT:

$$\widehat{\Delta}_{1} = \frac{\sum_{i=1}^{n} A_{i} Y_{i}}{\sum_{i=1}^{n} A_{i}} - \frac{\sum_{i=1}^{n} \frac{(1 - A_{i}) \widehat{\pi}(X_{i})}{1 - \widehat{\pi}(X_{i})} Y_{i}}{\sum_{i=1}^{n} A_{i}}.$$

$$\widehat{\Delta}_1 = \sum_{i=1}^n A_i \{ Y_i - \widehat{\mu}_0(X_i) \} / \sum_{i=1}^n A_i.$$

AIDS Data Example

AIDS Clinical Trials Group Study 175 (ACTG175)

- ullet HIV-infected patients with CD4 counts 200 \sim 500/mm 3
- Randomized to four treatment groups:
 - zidovudine alone (ZDV)
 - zidovudine plus didanosine (ZDV+ddI)
 - zidovudine plus zalcitabine (ZDV+zal)
 - didanosine alone (ddl)
- 12 baseline clinical covariates, such as age (years), weight (kg),
 Karnofsky score (scale of 0-100), CD4 count (cells/mm³) at baseline
- Primary endpoints of interest: (i) CD4 count at 20 ± 5 weeks post-baseline; (ii) the first time that a patient had a decline in their CD4 cell count of at least 50%, or an event indicating progression to AIDS, or death.

Survival Curves

A Closer Look of Top 2 Treatments

A=1: ZDV + ddI

• A=0: ZDV + zal

	Age ≤ 34	Age > 34	
A = 1	266	256	522
A = 0	263	261	524
	529	517	1046

Note: Age 34 is the median age for the patients

Heterogeneous Treatment Effects

Random Forest Estimation of CTE

```
library(survival)
a = read.table("C:\\Users\\wlu4\\all.dat",sep=" ")
b = read.table("C:\\Users\\wlu4\\events.dat")
ix = match(as.numeric(b[,1]), as.numeric(a[,1]))
trt = as.numeric(b[!is.na(ix),4])
###Kaplan-Meier curve
t.time = as.numeric(b[!is.na(ix),3])
delta = as.numeric(b[!is.na(ix),2])
km.fit = survfit(Surv(t.time,delta)~trt)
plot(km.fit,ylim=c(0.55,1),col = c("black","red","blue",
"green") )
legend(10, .7, c("black: ZDV only", "red: ZDV+ddI",
"blue: ZDV+zal", "green: ddI only"))
```

Random Forest Estimation of CTE

```
####consider ZDV + ddI & ZDV + zal groups
ix1 = (trt == 1) | (trt == 2)
Y = as.numeric(a[ix1,20])
A = as.numeric(trt[ix1]==1)
X = as.matrix(a[ix1,c(2,3,7,19,23,4,5,6,12,13,14,16)])
###random forest fit
library(randomForestSRC)
Y1 = Y[A==1]
X1 = X[A==1,]
data1 = data.frame(cbind(Y1,X1))
fit1 = rfsrc(Y1~.,data=data1)
YO = Y[A==0]
XO = X \Gamma A == 0.7
data0 = data.frame(cbind(Y0,X0))
fit0 = rfsrc(Y0~.,data=data0)
```

Random Forest Estimation of CTE

```
mu11 = predict(fit1)
mu10 = predict(fit1,data0)
mu01 = predict(fit0,data1)
mu00 = predict(fit0)
## $predicted.oob: out of bag prediction
tau1 = mu11$predicted.oob - mu01$predicted
tau0 = mu10$predicted - mu00$predicted.oob
tau = numeric(length(Y))
tau[A==1] = tau1
tau[A==0] = tau0
cr = sum((tau > 0)*(Y > 0))/length(Y) #correct decision rate
```

OTR Estimation Using Tree

```
## Tree classification for optimal treatment rule
library(tree)
Z = as.numeric(tau > 0)
data2 = data.frame(cbind(Z,X))
## fit the original tree with split="deviance"
tree_otr=tree(Z~., data=data2, split="deviance")
## tree summary
summary(tree_otr)
plot(tree_otr)
text(tree otr)
```

OTR Estimation Using Tree

```
## 10-fold CV for parameter tuning
set.seed(11)
tree_cv = cv.tree(tree_otr,,prune.tree,K=10)
min_idx = which.min(tree_cv$dev)
min_idx
tree_cv$size[min_idx]

tree_otr_prune = prune.tree(tree_otr, best = 12)
plot(tree_otr_prune)
text(tree_otr_prune)
```

Original Tree Using Deviance

After Parameter Tuning based on 10-CV

