NOM: GROUPE:

R01.06 - Mathématiques discrètes Contrôle Continu (1h15) Mardi 12 octobre 2021 - A. Ridard

Exercice 1.

Soit P et Q deux assertions. On considère l'assertion R définie par :

$$R \sim (P \land Q) \Longrightarrow (P \lor \neg Q)$$

1. Compléter la table de vérité de R.

P	Q		R
V	V		
V	F		
F	V		
F	F		

2. Transformer R en une assertion équivalente 1 ne contenant que les connecteurs \neg et \land .

^{1.} Vous pouvez d'ailleurs vous en servir pour "vérifier" la table de vérité de R

Exercice 2.

Soit $(u_n)_{n\in\mathbb{N}}=(u_0,u_1,u_2,\ldots)$ une suite réelle.

On rappelle les définitions suivantes :

• On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est *croissante* quand elle vérifie :

$$\forall n \in \mathbb{N}, \ u_{n+1} \ge u_n$$

• On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est *bornée* quand elle vérifie :

$$\exists m \in \mathbb{R}, \; \exists \mathbf{M} \in \mathbb{R}, \forall n \in \mathbb{N}, \; m \leq u_n \leq \mathbf{M}$$

• On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0 quand elle vérifie :

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge n_0 \Longrightarrow |u_n| < \epsilon)$$

En niant ces définitions, exprimer à l'aide d'une phrase quantifiée chacune des assertions suivantes.

1. La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas croissante.

2. La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas bornée.

3. La suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0.

Exercice 3.

Les assertions suivantes sont-elles vraies ou fausses? Justifier 2 .

1. $\exists x \in \mathbb{R}^*, \ \forall y \in \mathbb{R}^*, \ \forall z \in \mathbb{R}^*, \ z - xy = 0$

2. $\forall y \in \mathbb{R}^*, \ \forall z \in \mathbb{R}^*, \ \exists x \in \mathbb{R}^*, \ z - xy = 0$

3. $\forall \epsilon > 0$, $\exists a > 0$, $a < \epsilon$

4. $\exists a > 0$, $\forall \varepsilon > 0$, $a < \varepsilon$

5.
$$\forall x \in \left[-\frac{5}{4}, +\infty \right[, \ x = \sqrt{4x+5} \Longleftrightarrow x^2 - 4x - 5 = 0$$

NOM: GROUPE:

Exercice 4.

1. Soit a et b des réels. Démontrer **par contraposition** l'implication :

$$a+b\notin\mathbb{Q}\Longrightarrow a\notin\mathbb{Q}$$
 ou $b\notin\mathbb{Q}$

On rappelle qu'un réel x est rationnel 3 s'il peut s'écrire comme une fraction de deux entiers relatifs :

$$\exists p \in \mathbb{Z}, \exists q \in \mathbb{Z}^*, x = \frac{p}{q}$$

2.	Soit f une application de $\mathbb R$ dans $\mathbb R$. Démontrer par double implication l'équivalence 4 :
	$\left(\exists b \in \mathbb{R}, \forall x \in \mathbb{R}, \ f(x) \leq b\right) \Longleftrightarrow \left(\exists m \in \mathbb{R}, \ \exists \mathbf{M} \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ m \leq f(x) \leq \mathbf{M}\right)$
	On rappelle que $ f(x) \le b$ signifie $-b \le f(x) \le b$.

^{4.} Elle exprime qu'une fonction est bornée si et seulement si elle est minorée et majorée