

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina:	Química	N° Questões:	53
Duração:	120 minutos	Alternativas por questão:	5
Ano:	2016		

<u>INSTRUÇÕES</u>

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim A, se a resposta escolhida for A

	certeza das respostas, à esferográfica.
_	
1.	O sal de cozinha pode ser obtido da água do mar, através de:
_	A. Centrifugação B. Decantação C. Destilação D. Evaporação E. Filtração
2.	Ao misturar gasolina/água e gasolina/etanol resulta, respectivamente:
	A. Mistura heterogénea e mistura heterogénea B. Mistura heterogénea e mistura homogénea
	C. Mistura homogénea e mistura heterogénea D. Mistura homogénea e mistura homogénea
	E. Nenhuma das alternativas anteriores está correcta
3.	Encontram-se descritas, algumas propriedades de uma substância:
	A temperatura ambiente, encontra-se no estado sólido, não conduz corrente eléctrica e é solúvel em água; mas quando aquecido até
	que se funda, a solução obtida conduz corrente eléctrica. De acordo com tais características essa substância pode ser:
	A. Diamante B. Magnésio C. Cloreto de potássio D. Amónia E. Sacarose
4.	Ar, dióxido de carbono, Metano, Iodo e gasolina.
	Se esses materiais forem classificados em substâncias puras e misturas, pertencerão ao grupo das substâncias puras:
	A. Ar, dióxido de carbono e metano B. Iodo, dióxido de carbono e Metano
	C. Ar, metano e gasolina D. Gasolina, ar e iodo
	E. Dióxido de carbono, Iodo e ar
5.	O ácido sulfúrico concentrado tem uma densidade de 1,84 g/cm³. Calcule a massa de 0.253 litros deste ácido.
	A. 0.253 kg B. 0.253 g C. 465.52 g D. 46.55 kg E. 0.465 mg
6.	O metanol (CH ₃ OH) é um combustível limpo para o ambiente. Pode ser obtido pela reacção directa de monóxido de carbono
0.	(CO) e hidrogénio (H ₂). Partindo de 12.0 g de hidrogénio e 74.5 g de monóxido quantos gramas de metanol podem ser
	obtidos? (massas atómicas (g/mole): H – 1.01; C - 12.01; O - 16.00)
	A. 85.25 gramas B. 0.16 gramas C. 0.14 gramas D. 32.05 gramas E. 95.20 gramas
7.	Os ossos possuem 65% de sua massa constituída de matéria mineral. Esta, por sua vez, contém 80% de fosfato de cálcio
7.	(Ca ₃ (PO ₄) ₂) e 20% de carbonato de cálcio (CaCO ₃). Calcule a massa de fósforo existente num adulto cujo esqueleto tem 50 kg
	de peso do esqueleto. (massas atómicas (g/mol): Ca- 40; P- 31; C- 12; O- 16)
	A. 32.5 kg B. 36.0 kg C. 26.0 kg D. 5.2 kg E. 31.0 kg
8.	Faz-se reagir 45 g de hidróxido de sódio com igual massa de ácido sulfúrico. Quer se saber qual é a massa de súlfato de sódio
о.	obtida? (massas atómicas (g/mole): $S = 32.07$; $H = 1.01$; $Na = 22.99$; $O = 16.00$)
	A. 45.0 gramas B. 65.17 gramas C. 0.82 gramas D. 142.05 gramas E. 32.59 gramas
9.	Dadas as seguintes características:
	I. Sólido à temperatura ambiente
	II. Cristais duros e quebradiços
	III. Alto ponto de fusão (PF) e ponto de ebulição (PE)
	IV. Condutor de corrente eléctrica quando fundido, mas não no estado sólido
	É correcto afirmar que estas correspondem à:
	A. Um metal B. Um ametal C. Um composto iónico
	D. Um composto molecular E. Uma liga metálica
10.	Dados os seguintes átomos ${}^{42}_{21}X$, ${}^{43}_{21}Y$ e ${}^{22}_{22}Z$. Indique a alternativa correcta:
	Dados os seguintes átomos ${}^{42}_{21}X$, ${}^{43}_{21}Y$ e ${}^{23}_{22}Z$. Indique a alternativa correcta:
	A. X e Y sao isotopos; Y e Z isotonos; X e Z isobaros
	B. X e Y são isótopos; Y e Z isóbaros; X e Z isótonos
	C. X e Y são isóbaros; Y e Z isótonos; X e Z isótopos
	D. X e Y são isóbaros; Y e Z isótopos; X e Z isótonos
	E. nenhuma
11.	Assinale a alternativa correcta:
11.	Assinale a alternativa correcta: A. Um electrão da camada K, ao passar para a camada L, absorve energia
11.	Assinale a alternativa correcta: A. Um electrão da camada K, ao passar para a camada L, absorve energia B. A massa do átomo é constituída pela massa dos protões e electrões
11.	Assinale a alternativa correcta: A. Um electrão da camada K, ao passar para a camada L, absorve energia B. A massa do átomo é constituída pela massa dos protões e electrões C. O subnível d contém, no máximo, 14 electrões
11.	Assinale a alternativa correcta: A. Um electrão da camada K, ao passar para a camada L, absorve energia B. A massa do átomo é constituída pela massa dos protões e electrões C. O subnível d contém, no máximo, 14 electrões D. O nº quântico magnético (m₁) varia de 0 a (n-1)
11.	Assinale a alternativa correcta: A. Um electrão da camada K, ao passar para a camada L, absorve energia B. A massa do átomo é constituída pela massa dos protões e electrões C. O subnível d contém, no máximo, 14 electrões
11.	Assinale a alternativa correcta: A. Um electrão da camada K, ao passar para a camada L, absorve energia B. A massa do átomo é constituída pela massa dos protões e electrões C. O subnível d contém, no máximo, 14 electrões D. O nº quântico magnético (m₁) varia de 0 a (n-1)

Exan	ne de Química - 2016 DAU Página 2 of 4
12.	Sobre os elementos com configurações electrónicas: I. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ II. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹
	III. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ IV. 1s ² 2s ² 2p ⁴
	V. $1s^22s^2p^63s^23p^64s^2$
	A afirmação falsa é:
	A. O elemento II é o mais electronegativo B. O elemento II é o que apresenta maior raio atómico C. O elemento IV é a mais electronegativo
	 C. O elemento III é o único gás nobre D. O elemento IV é o mais electronegativo E. O elemento V é o único metal alcalino terroso
13.	
	 A. Família 5B, período 5 D. Família 5A, período 4 B. Família 4B, período 5 E. Família 3B, período 3
14.	A /
	Dadas configurações electrónicas seguintes: $A = [Ne] 3s^23p^5 e B = [Ne]3s^1$
	Seleccione a sequência certa. A. A tem valência 5 e B 1; A está no 3° período VIIA e B 3° período IA; formam o composto iónico B ₅ A
	B. A tem valência 1 e B 1; A está no 3° período VA e B 3° período IA; formam composto covalente BA
15.	C. A tem valência 1 e B 1; A está no 3° período VIIA e B 3° período IA; formam o composto iónico BA
	D. A tem valência 1 e B 1; A está no 6° período VIIA e B 3° período IA; formam iónico AB
1.0	E. Nenhuma
16.	Com relação a Tabela Periódica actual, assinale a afirmação verdadeira: A. Os elementos químicos estão colocados em ordem crescente de massas atómicas
	B. Numa família, os elementos apresentam propriedades químicas bem distintas
	C. Numa família, os elementos apresentam o mesmo número de electrões nas camadas
	D. Num período, os elementos apresentam propriedades químicas semelhantes
17.	 E. Todos os elementos de transição pertencem ao grupo B da Tabela Periódica Os elementos enxofre (Z = 16) e oxigénio (Z = 8) combinam-se para formar trióxido de enxofre (SO₃). Este composto
17.	anresenta:
	A. 1 ligação covalente simples of ligações dativas (coordenadas)
	B. 2 ligações leb valentes simples e stigações coordenadas \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	C. Os ákonos, na projecula de un Didiocarboneto, são ligados entre si por 3 ligações covalentes simples e ligação doordenada
	D. 4 ligação covalentes simples E. 4 ligações coordenadas
18.	
	A. Ligações iónicas B. Ligações covalentes C. Pontes de hidrogénio
10	D. Ligações metálicas E. Forças de Van der Waals
19.	No cianeto de sódio sólido existem: A. Somente ligações iónicas B. Somente ligações covalentes
	C. Somente ligações metálicas D. Ligações iónicas e covalentes
	E. Ligações metálicas e covalentes
20.	O diamante e a grafite são:
	A. Isomorfos B. Isómeros C. Alótropos D. Isótopos E. Isótonos
21.	A lâmpada acenderá quando no recipiente estiver presente a seguinte solução:
	A. $O_{2(g)}$ B. $H_2O_{(g)}$ C. $HC\ell_{(aq)}$ D. $C_6H_{12}O_{6(aq)}$
	E. CH _{4 (g)}
	T+ \ / I I I I I I I I I I I I I I I I I I
	solução
22.	Uma substância A conduz corrente eléctrica em solução aquosa. Outra substância B conduz corrente no estado sólido. Uma
	terceira substância, C, nunca conduz corrente eléctrica. O tipo de ligação química existente nessas substâncias é
	respectivamente:
	A. Iónica, metálica, molecular B. Metálica, iónica, covalente apolar C. Covalente polar, iónica, covalente apolar
22	D. Iónica, metálica, covalente apolar E. Iónica, covalente apolar, metálica
23.	1 0 , , , ,
24	A. CH ₄ e CO ₂ B. CO ₂ e CaCl ₂ C. CH ₄ , CaCl ₂ D. CH ₄ , NaH e OF ₂ E. CH ₄ , CaCl ₂ e CO ₂ Tomando como base a polaridade das moléculas de SO ₂ , CO ₂ , CH ₃ Cl, CH ₄ e PCl ₅ , assinale de entre as seguintes a opção
24.	correcta. Não são polares as moléculas seguintes:
	A. SO_2 , CO_2 e CH_3 Cl B. CH_4 , SO_2 e CH_3 Cl C. CH_3 Cl, PCl_5 e CO_2
	D . CO ₂ , CH ₄ e PCl ₅ E . Nenhuma opção está correcta
25.	O ácido que corresponde à classificação monoácido, oxiácido e ternário é:

	`								U
	Α.	HNO ₃ .	В. Н	Cl.	C.	H ₂ SO ₄ .	I). HCNO.	E. H ₃ PO ₄ .
26.	Os nome	s dos ácidos ox	igenados aba	ixo são, respect	ivamen	te: HNO ₂ (a	q), HClO ₃	(aq), H ₂ SO ₃ (a	q), H ₃ PO ₄ (aq)
		Nitroso, clóric							fosfórico Nítrico
		Hipocloroso, s				D. Nita	roso, percló	rico, sulfúrico,	fosfórico
27		Nítrico, cloros			nodos 1	250 ml do áa	ua A nava	aanaantua aã a	da solução será:
27.		125 mol/l	B . 5.0 × 10 ⁻⁴		0.214		ua. A nova). 1.2 × 10 ⁻³		. 1.0 × 10 ⁻³ mol/l
28.					na-se d	eterminado	volume de	solução 2 N d	a mesma base resultando uma
		1,5 N. O volum 17,5 L.	e da solução r B. 1,	esultante será: 75 L.	C.	1,25 L.	I). 0,625 L.	E. 0,175 L.
29.	Quando	numa reacção	verifica-se qu						maior que a dos reagentes,
		ie a reacção é :			г 1		ъг		T- ~
30.		oontânea ã o termoquími	B. Isotérm			otérmica		otérmica uma reacção:	E não espontânea
50.	A equaça A.	Exotérmica a			ΔП			ca a temperatur	a constante.
	C.	Exotérmica a						ica a pressão c	
2.1	<u>E.</u>	Endotérmica a							
31.		a combinação e M _S = 32g/mo		s de ferro com o	enxofre	libertam-se	3.77 kJ. Q	ual é o calor d	e formação do FeS? (M _{Fe} =
	A 90.2	2 kJ/mol	B 100.5 kJ	J/mol C	-110.4	kJ/mol	D 120.	.5 kJ/mol	E. 99.8 kJ/mol
32.		s equações tern	noquímicas:						
	I.	$C_{graf} + O_2(g) -$	$\rightarrow CO_2(g)$			$\Delta \mathbf{H}$ =	= - 393 kJ/n	nol	
	II.	g.u. 2(2)	2(0)			$\Delta H = -286$,0 kJ/mol		
		$H_2(g) + 1/2O_2(g)$	$(g) \rightarrow H_2O(1)$						
	III.	$C_{\text{graf}} + 2H_2(g)$	$O_2(g) \rightarrow C$	H₃COOH(1)		$\Delta \mathbf{H} = -4$	484,0 kJ/m	ol	
	A entalp			ácido acético é:					
22	A.	+ 874 kJ	B. +1			-195 kJ	D.	-874 kJ	E. −1163 kJ
33.	A varıaç	ao na concentr	X(mol/L)	função do tem	po e: 12	15	20		
			tempo(s)	0	240		600		
	A velocio	dade média da	1 , ,	tervalo de 4 a 6			000		
	A. 2,1	mol/L.min.	B. 1,5 m	ol/L.min		5 mol/L.min	D.	1,0 mol/L.mii	n. E. 1,33 mol/L
34.	Consider	re a reacção, N	$O_{2(g)} + CO_{(g)} \rightarrow$	$N_{2(g)} + CO_{2(g)}$					
			o do N _{2(g)} ten	n uma velocida	de méd	ia constante	igual a 0,	05 mol/min. A	massa de CO _{2(g)} , em gramas,
		em 1 hora, é: 8,8	B. 44		C. 8	R4	D	132	E. 528
35.		acção, o compl			<u> </u>	, i	<u></u>	132	2. 320
	A. Possi	ui mais energia	que os reagent	tes ou os produto	os				
		como catalisado pre forma produ							
		n composto está							
	E. Possi	ui menos energi	a que os reage	entes ou os produ					
36.				brio é Kc = [C]		A][B] ⁴ .			
		ao que represe 3D === A+4		desse sistema d R		== 2C + 3	RD	C. A	$+B^4 \longrightarrow C^2 + D^3$
		= 2C + 3D				$C_2 + D$		0. 11	
37.				brio químico q					
				dos directo e inv ta e inversa são i					
		eagentes são tot			guais				
		mperatura do sis	_						
20				reagentes e proc			211 (-)	Δ.11× Ω	1''4.0
38.				la reacção 2CH uindo a temperat		= C2H2(g) +	- эп2(g)	∆n>v, par	a a direita?
				itando a tempera					
				indo a temperatu					
				ando a temperat	ura				
39.		iuma das opções re certa quant			imão.	misturados	num copo	. Sobre este	sistema fazem-se as seguintes
- •	afirmaçõ	ões:			,		P		
		O sistema é áci		~					
	II.	O pH do sisten	na e maior qu	e /					

	III. No sistema, a concentração dos iões H ⁺ é maior que a dos OH ⁻
	Assinale a alternativa correcta:
	A. As afirmações I e II estão certas
	 B. As afirmações I e III estão certas C. As afirmações II e III estão certas
	D. As três afirmações estão certas
	E. Nenhuma das três afirmações está certa
40.	À uma dada temperatura, o produto iónico da água é igual a 4,0·10 ⁻¹⁴ . À essa temperatura o valor de [H ⁺] de uma solução
	aquosa neutra é:
	A. 0.6×10^{-7} B. 4.0×10^{-7} C. 4.0×10^{-14} D. 2.0×10^{-7} E. 2.0×10^{-14} Quando se adicionam 10^{-2} moles de NaOH a 10 litros de água, o pH sofre alteração e torna-se igual a:
41.	Quando se adicionam 10 ⁻² moles de NaOH a 10 litros de água, o pH sofre alteração e torna-se igual a:
	A. $pH = 8.5$ B. $pH = 6.5$ C. $pH = 12.5$ D. $pH = 11$ E. $pH = 9$
42.	Mistura-se uma solução de um ácido com a quantidade equivalente de uma solução de uma base. Qual dos seguintes pares
	ácido-base dá origem a uma solução neutra?
	A. $NH_3 + Ba(OH)_2$ B. $NaOH + HCl$ C. $NaCH_3COO + CH_3COOH$
	D. . K ₂ SO ₄ + KOH E. NH ₃ + NH ₄ Cl
43.	Para a neutralização de HCl no estomago, têm sido usado anti-ácidos na forma de comprimido ou pó à base de Mg(OH)2,
	Al(OH) ₃ , CaCO ₃ e NaHCO ₃ . ($M_{Mg(OH)2} = 58$ g/mol; $M_{Al(OH)3} = 78$ g/mol; $M_{CaCO3} = 100$ g/mol e $M_{NaHCO3} = 84$ g/mol, $M_{HCl} = 36,5$
	g/mol) Qual dos quatro anti-ácidos é o mais eficaz?
	A. $Mg(OH)_2$ B. $Al(OH)_3$ C. $CaCO_3$ D. $NaHCO_3$ E. $Mg(OH)_2$ e $Al(OH)_3$
44.	
	no equilíbrio, quando se adiciona um excesso de AgCl numa solução 0,1 M de NaCl.
	A. $3,6 \cdot 10^{-10} \text{ M}$ B. $1,8 \cdot 10^{-9} \text{ M}$ C. $1,8 \cdot 10^{-5} \text{ M}$ D. 10^{-5} M E. 10^{-1} M
45.	·
	$KMnO_4 (aq) + aFeCl_2 (aq) + bHCl (aq) \rightarrow MnCl_2 (aq) + cFeCl_3 (aq) + KCl (aq) + dH_2O (aq)$
	A. $a = 5, b = 8, c = 5, d = 4$ B. $a = 2, b = 3, c = 2, d = 10$ C. $a = 5, b = 3, c = 3, d = 8$ D. $a = 10, b = 3, c = 2, d = 8$ E. Nenhuma das alternativas anteriores
46.	
10.	Ce ⁴⁺ +1 $e^- \rightarrow Ce^{3+}$ +1,61V
	$Sn^{4+} + 2e^{-} \rightarrow Sn^{2+}$ +0,15V
	Qual das reacções irá ocorrer espontaneamente?
	A. $2Ce^{4+} + Sn^{4+} \rightarrow 2Ce^{3+} + Sn^{2+}$ B. $2Ce^{4+} + Sn^{2+} \rightarrow 2Ce^{3+} + Sn^{4+}$
	C. $\operatorname{Sn}^{4+} + 2Ce^{3+} \to 2\operatorname{Ce}^{4+} + \operatorname{Sn}^{2+}$ D. $2\operatorname{Ce}^{3+} + \operatorname{Sn}^{2+} \to 2\operatorname{Ce}^{4+} + \operatorname{Sn}^{4+}$
	E. Nenhuma das reacções anteriores
47.	Qual o cátodo e qual é o ânodo da pilha de Daniell, respectivamente se os potenciais: Zn²+/Zn²=-0,76 e Cu²+/Cu²=0,34?
	A. Cátodo: Cu^{2+}/Cu^{0} ; ânodo: Zn^{0}/Zn^{2+} B. Cátodo: Cu^{0}/Cu^{2+} ânodo: Zn^{2+}/Zn^{0}
	C. Cátodo: Zn ²⁺ /Zn ⁰ ; ânodo: Cu ⁰ /Cu ²⁺ D. Cátodo: Zn ⁰ / Zn ²⁺ ; ânodo: Cu ²⁺ /Cu ⁰ E. Cátodo: Zn ⁰ /Cu ²⁺ ; ânodo: Zn ²⁺ /Cu ⁰
48.	
то.	A. um ΔG^0 positivo e um E^0 positivo. B.um ΔG^0 negativo e um E^0 positivo. C. um ΔG^0 negativo e um E^0 negativo.
	D . um ΔG^0 positivo e um E^0 negativo. E . um ΔG^0 nulo e um E^0 nulo.
49.	O nome correcto do composto CH ₃ -C[(CH ₃) ₂]-CH(CH ₃)-CH(C ₂ H ₅)-CH ₃ é:
	A. 2,2,3,4-tetrametipentano B. 2,2,3,4-Tetrametil hexano C. 2-etil 3,4,4-trimetil hexano E. 2,2,3-Trimetil hexano
50.	
50.	A. Somente carbonos primários e secundários
	B. 3 átomos de carbono primário, 3 átomos de carbono secundário e 1 átomo de carbono terciário
	C. 3 átomos de carbono primário, 1 átomo de carbono secundário e 3 átomos de carbono terciário
	D. 4 átomos de carbono primário, 2 átomos de carbono secundário e 1 átomo de carbono terciário
<i>E</i> 1	E. Nenhuma das opções anteriores está correcta
51.	A reacção entre buteno-2 e ácido clorídrico é uma reacção de: A. Adição B. Eliminação C. Redução D. Oxidação E. Substituição
52.	Dois líquidos orgânicos incolores apresentam a mesma fórmula molecular, mas os seus pontos de ebulição são 137,7°C e
٠2.	34,6°C. Esses líquidos podem ser, respectivamente:
	A. Um aldeído e uma cetona B. Um álcool e um éter C. Dois aldeídos isoméricos
	D. Duas cetonas isoméricas E. Dois éteres isoméricos
53.	, , ,
	A. Álcoois e ácidos inorgânicos B. Álcoois e ácidos orgânicos C. Fenóis e ácidos orgânicos E. Ácidos orgânicos o ácidos inorgânicos
	D. Fenóis e álcoois E. Ácidos orgânicos e ácidos inorgânicos