

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

LAGRANGIAN AND HAMILTONIAN FORMULATION

Lizichen Chen¹ Advisor: Prof. Weiqiu Chen

¹Department of Engineering Mechanics, Zhejiang University lzcchen@zju.edu.cn

2025/1/1

MAIN CONTENT

- Background
- Lagrangian formulation and surface Green's functions
- Hamiltonian formulation (with multi-field coupling)
 - Exponentially graded model
 - Laminated model: interfacial effect and boundary effect
 - Viscoelastic model: dual Hamiltonian transformation
 - Couple stress model : size effect and local phase transition
 - Arbitrary gradient: generalized dual Hamiltonian transformation
 - Three-dimensional layered model: sub-symplectic structure

MAIN CONTENT

Background

- Lagrangian formulation and surface Green's functions
- Hamiltonian formulation (with multi-field coupling)
 - Exponentially graded model
 - Laminated model: interfacial effect and boundary effect
 - Viscoelastic model: dual Hamiltonian transformation
 - Couple stress model: size effect and local phase transition
 - Arbitrary gradient: generalized dual Hamiltonian transformation
 - Three-dimensional layered model: sub-symplectic structure

BACKGROUND

symmetry breaking

information

MAIN CONTENT

- Background
- Lagrangian formulation and surface Green's functions
- Hamiltonian formulation (with multi-field coupling)
 - Exponentially graded model
 - Laminated model: interfacial effect and boundary effect
 - Viscoelastic model: dual Hamiltonian transformation
 - Couple stress model: size effect and local phase transition
 - Arbitrary gradient: generalized dual Hamiltonian transformation
 - Three-dimensional layered model: sub-symplectic structure

LAGRANGIAN FORMULATION

Background

FIGURE 1. Horizontal graded plane (Normal case)

ANALYTICAL SOLUTIONS FOR NORMAL CASE

Methodology (vertical displacement)

$$\boxed{v\Big|_{y=0} = \mathscr{F}^{-1} \left[\mathcal{V} \right]_{y=0} = \frac{P e^{-\beta c}}{E_{\alpha 0} \pi} \int_{-\infty}^{+\infty} \frac{\sqrt{\omega^2 - i \beta \omega + \beta^2 \nu_{\alpha 0} / 4}}{\omega \left(\omega - i \beta\right)} e^{i \omega \left(x - c\right)} d\omega}$$

Weak Gradient Assumption $\beta^2 \to 0$

$$\beta^2 \to 0$$

$$v\Big|_{y=0} = \frac{P e^{-\beta c}}{E_{\alpha 0} \pi} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\omega^2 - i \beta \omega}} e^{i\omega(x-c)} d\omega$$

Homogeneous Case

$$v\Big|_{y=0} = \frac{P}{E_{\alpha 0}\pi} \int_{-\infty}^{+\infty} \frac{\sqrt{\omega^2}}{\omega^2} e^{i\omega(x-c)} d\omega$$
$$= \frac{P}{E_{\alpha 0}\pi} \int_{-\infty}^{+\infty} \frac{1}{|\omega|} e^{i\omega(x-c)} d\omega$$
$$= -\frac{2P}{E_{\alpha 0}\pi} \left(\ln|x-c| + \gamma \right)$$

ANALYTICAL SOLUTIONS FOR NORMAL CASE

Methodology (vertical displacement)

Analytical Solutions for Normal Case

Analytical solutions

$$\begin{aligned} v\Big|_{y=0} &= \mathscr{F}^{-1} \left[\mathcal{V} \right] \Big|_{y=0} = \frac{P \operatorname{e}^{-\beta c}}{E_{\alpha 0} \pi} \int_{-\infty}^{+\infty} \frac{\sqrt{\omega^2 - \operatorname{i} \beta \omega + \beta^2 \nu_{\alpha 0} / 4}}{\omega \left(\omega - \operatorname{i} \beta \right)} \operatorname{e}^{\operatorname{i} \omega \left(x - c \right)} \operatorname{d} \omega \end{aligned}$$

$$\begin{aligned} \operatorname{Weak Gradient} & \beta^2 \to 0 \\ v\Big|_{y=0} &= \frac{P \operatorname{e}^{-\beta c}}{E_{\alpha 0} \pi} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\omega^2 - \operatorname{i} \beta \omega}} \operatorname{e}^{\operatorname{i} \omega \left(x - c \right)} \operatorname{d} \omega \end{aligned}$$

$$\begin{split} \frac{P \operatorname{e}^{-\beta c}}{E_{\alpha 0} \pi} & \left[\frac{1}{2\sqrt{2}\pi} \left\{ G_{4,2}^{2,3} \left[\frac{2\operatorname{i}}{\beta|c-x|}, \frac{1}{2} \Big|_{\frac{1}{4}, \frac{3}{4}}^{\frac{1}{2}, 1, 1, \frac{1}{2}} \right] - \operatorname{i} \operatorname{sgn}(c-x) G_{4,2}^{2,3} \left[\frac{2\operatorname{i}}{\beta|c-x|}, \frac{1}{2} \Big|_{\frac{1}{4}, \frac{3}{4}}^{\frac{1}{2}, \frac{1}{2}, 1, 1} \right] \right\} \\ & + K_0 \left(\frac{\beta|c-x|}{2} \right) \left[\operatorname{sgn}\left(c-x\right) \operatorname{sinh}\left(\frac{\beta|c-x|}{2} \right) + \operatorname{cosh}\left(\frac{\beta|c-x|}{2} \right) \right] + \frac{1}{2} \operatorname{i} \pi \left[\operatorname{sgn}\left(c-x\right) - 1 \right] I_0 \left(\frac{\beta|c-x|}{2} \right) \left[\operatorname{cosh}\left(\frac{\beta|c-x|}{2} \right) - \operatorname{sinh}\left(\frac{\beta|c-x|}{2} \right) \right] \right] \end{split}$$

$$G_{p,q}^{m,n}\left[z,r\Big|_{b_1,\cdots,b_q}^{a_1,\cdots,a_p}\right] = \frac{r}{2\pi\,\mathrm{i}}\int_L \frac{\Gamma(1-a_1-rs)\cdots\Gamma(1-a_n-rs)\Gamma(b_1+rs)\cdots\Gamma(b_m+rs)}{\Gamma(a_{n+1}+rs)\cdots\Gamma(a_p+rs)\Gamma(1-b_{m+1}-rs)\cdots\Gamma(1-b_q-rs)}\,z^{-s}\,\mathrm{d}s$$

Analytical Solutions for Normal Case

Properties of Meijer G-Function & Fox H-Function

$$\begin{split} G_{p,q}^{m,n}\left[z,r\Big|_{b_1,\cdots,b_q}^{a_1,\cdots,a_p}\right] &= \frac{r}{2\pi\,\mathrm{i}}\int_L \frac{\Gamma(1-a_1-rs)\cdots\Gamma(1-a_n-rs)\Gamma(b_1+rs)\cdots\Gamma(b_m+rs)}{\Gamma(a_{n+1}+rs)\cdots\Gamma(a_p+rs)\Gamma(1-b_{m+1}-rs)\cdots\Gamma(1-b_q-rs)}\,z^{-s}\mathrm{d}s\\ H_{p,q}^{m,n}\left[z\Big|_{(b_1,\beta_1),\cdots,(b_q,\beta_q)}^{(a_1,\alpha_1),\cdots,(a_p,\alpha_p)}\right] &= \frac{1}{2\pi\,\mathrm{i}}\int_L \frac{\prod_{j=1}^m\Gamma(b_j+\beta_js)\prod_{j=1}^n\Gamma(1-a_j-\alpha_js)}{\prod_{j=m+1}^q\Gamma(1-b_j-\beta_js)\prod_{j=n+1}^p\Gamma(a_j+\alpha_js)}\,z^{-s}\mathrm{d}s \end{split}$$

Property 1

$$\begin{split} \frac{1}{\kappa} H_{p,q}^{m,n} \left[z \Big|_{(b_1,\beta_1),\cdots,(b_q,\beta_q)}^{(a_1,\alpha_1),\cdots,(a_p,\alpha_p)} \right] &= H_{p,q}^{m,n} \left[z^{\kappa} \Big|_{(b_1,\kappa\beta_1),\cdots,(b_q,\kappa\beta_q)}^{(a_1,\kappa\alpha_1),\cdots,(a_p,\kappa\alpha_p)} \right] \\ G_{p,q}^{m,n} \left[z, \frac{1}{2} \Big|_{b_1,\cdots,b_q}^{a_1,\cdots,a_p} \right] &= \frac{1}{2} H_{p,q}^{m,n} \left[z \Big|_{(b_1,\frac{1}{2}),\cdots,(b_q,\frac{1}{2})}^{(a_1,\frac{1}{2}),\cdots,(a_p,\frac{1}{2})} \right] &= H_{p,q}^{m,n} \left[z^2 \Big|_{(b_1,1),\cdots,(b_q,1)}^{(a_1,1),\cdots,(a_p,1)} \right] &= G_{p,q}^{m,n} \left[z^2 \Big|_{b_1,\cdots,b_q}^{a_1,\cdots,a_p} \right] \end{split}$$

Property 2

$$\begin{split} H_{p,q}^{m,n} \left[z \Big|_{(b_1,\beta_1),\cdots,(b_q,\beta_q)}^{(a_1,\alpha_1),\cdots,(a_p,\alpha_p)} \right] &= H_{q,p}^{n,m} \left[\frac{1}{z} \Big|_{(1-a_1,\alpha_1),\cdots,(1-a_p,\alpha_p)}^{(1-b_1,\beta_1),\cdots,(1-b_q,\beta_q)} \right] \\ & \qquad \qquad \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad$$

Mathai, Arak. M. "A handbook of generalized special functions for statistical and physical sciences." Oxford: Oxford University Press, 1993.

ANALYTICAL SOLUTIONS FOR NORMAL CASE

Simplification

$$\left| \frac{P \operatorname{e}^{-\beta c}}{E_{\alpha 0} \pi} \left[\frac{1}{2\sqrt{2}\pi} \left\{ G_{4,2}^{2,3} \left[\frac{2\operatorname{i}}{\beta | c - x|}, \frac{1}{2} \right]_{\frac{1}{4}, \frac{3}{4}}^{\frac{1}{2}, 1, 1, \frac{1}{2}} \right] - \operatorname{i} \operatorname{sgn}(c - x) G_{4,2}^{2,3} \left[\frac{2\operatorname{i}}{\beta | c - x|}, \frac{1}{2} \right]_{\frac{1}{4}, \frac{3}{4}}^{\frac{1}{2}, \frac{1}{2}, 1, 1} \right] \right\} \\ + K_0 \left(\frac{\beta | c - x|}{2} \right) \left[\operatorname{sgn}\left(c - x\right) \operatorname{sinh}\left(\frac{\beta | c - x|}{2} \right) + \operatorname{cosh}\left(\frac{\beta | c - x|}{2} \right) \right] + \frac{1}{2} \operatorname{i} \pi \left[\operatorname{sgn}\left(c - x\right) - 1 \right] I_0 \left(\frac{\beta | c - x|}{2} \right) \left[\operatorname{cosh}\left(\frac{\beta | c - x|}{2} \right) - \operatorname{sinh}\left(\frac{\beta | c - x|}{2} \right) \right] \right]$$

$$\begin{split} G_{2,4}^{3,2} \left[-\frac{\beta^2 (c-x)^2}{4} \bigg|_{\frac{1}{2},0,0,\frac{1}{2}}^{\frac{3}{4},\frac{1}{4}} \right] \\ G_{2,4}^{3,2} \left[-\frac{\beta^2 (c-x)^2}{4} \bigg|_{\frac{1}{2},0,0,\frac{1}{2}}^{\frac{3}{4},\frac{1}{4}} \right] = & \left[2\sqrt{2}\pi K_0 \left(\frac{\beta(c-x)}{2} \right) \cosh \left(\frac{\beta(c-x)}{2} \right) \right. \\ & \left. + \mathrm{i} \sqrt{2}\pi^2 \, \mathrm{sgn}(c-x) I_0 \left(\frac{\beta(c-x)}{2} \right) \left(\sinh \left(\frac{\beta(c-x)}{2} \right) - \cosh \left(\frac{\beta(c-x)}{2} \right) \right) \right]^* \end{split}$$

$$G_{2,4}^{3,2} \left[-rac{eta^2 (c-x)^2}{4} igg|_{rac{1}{2},rac{1}{2},0,0}^{rac{3}{4},rac{1}{4}}
ight]$$

$$\begin{split} G_{2,4}^{3,2}\left[-\frac{\beta^2(c-x)^2}{4}\Big|_{\frac{1}{2},\frac{1}{2},0,0}^{\frac{3}{4},\frac{1}{4}}\right] &= \left[-2\sqrt{2}\pi\operatorname{i}\operatorname{sgn}(c-x)K_0\left(\frac{\beta(c-x)}{2}\right)\operatorname{sinh}\left(\frac{\beta(c-x)}{2}\right)\right. \\ &\left. + \sqrt{2}\pi^2I_0\left(\frac{\beta(c-x)}{2}\right)\!\left(\operatorname{cosh}\left(\frac{\beta(c-x)}{2}\right) - \operatorname{sinh}\left(\frac{\beta(c-x)}{2}\right)\right)\right]^{\frac{3}{4}} \end{split}$$

NUMERICAL RESULTS AND FINITE ELEMENT ANALYSES

Results and comparison

FIGURE 2. Vertical & horizontal displacements of FEA in different scales (with surface sedimentation correction)

MAIN CONTENT

- Background
- Lagrangian formulation and surface Green's functions
- Hamiltonian formulation (with multi-field coupling)
 - Exponentially graded model
 - Laminated model: interfacial effect and boundary effect
 - Viscoelastic model: dual Hamiltonian transformation
 - Couple stress model: size effect and local phase transition
 - Arbitrary gradient: generalized dual Hamiltonian transformation
 - Three-dimensional layered model: sub-symplectic structure

(QUASI-)HAMILTONIAN OPERATORS

Symmetry & operators

quasi-Hamiltonian operators (2D)

Shifted Hamiltonian transformation

Dual Hamiltonian transformation

Dual Hamiltonian transformation Inherent Asymmetry

Generalized dual Hamiltonian transformation

Variable coefficients

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

quasi-Hamiltonian operators (3D)

$$\mathcal{H}^{\dagger} = egin{bmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{C}_{\chi} & -\mathbf{A}_{\chi}^{\mathcal{T}} \end{bmatrix}$$

Asymmetry induced by odd-dimension

$$oldsymbol{\mathcal{H}}^{\ddagger} = egin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{B} \ \mathbf{C}_{E_x} & -\mathbf{A}_{E_x}^{\mathcal{T}} \end{bmatrix}$$

$$\mathcal{H}^{**} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C}^{\mathbf{\bar{**}}} & -\mathbf{A}^{\mathbf{\bar{T}}} \end{bmatrix}$$

Incremental theory

upper triangular/diagonal······ Hamiltonian operators

operators

 $\mathcal{H} = \begin{vmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{C} & \mathbf{A}^{T} \end{vmatrix}$

Symplectic Formulation

Symplectic structure in mechanics

Lagrangian formulation

low dimension & high order

Hamiltonian formulation

high dimension & low order

High order, one-dimensional differential equations

(generalized) Almansi theorem, potential theory, (dual/singular) integral equation

method of separation of variables, Hamilton transformation, Jordan chain, symplectic orthogonality, symplectic adjoin, operator spectrum theorem

Symplectic Formulation

Definitions & properties

STATE VECTOR

- □ Original variable & Dual variable
- \square 2n-dimensional phase space

$$f = [q, p]^{\mathrm{T}}$$

SYMPLECTIC INNER PRODUCT

- $igl\langle m{f}_1, m{f}_2 igr
 angle = -igl\langle m{f}_2, m{f}_1 igr
 angle$
- $lack \left\langle \mathbf{kf}_1, \mathbf{f}_2 \right
 angle = k \left\langle \mathbf{f}_1, \mathbf{f}_2 \right
 angle \qquad k \in \mathbb{R}$
- If $\langle \mathbf{f}_1, \mathbf{f}_2 \rangle = 0$ for every $\mathbf{f}_2 \in \mathscr{L}$, then $\mathbf{f}_1 = 0$

Yao, Weian, Zhong, Wanxie, and Lim, Chee Wah. Symplectic elasticity. World Scientific, 2009.

SYMPLECTIC FORMULATION

Definitions & properties

MATRIX & TRANSFORMATION

□ Symplectic matrix

$$S^{T}JS = J$$

 $\mathbf{J}_{2n} = \begin{bmatrix} 0 & \mathbf{I}_n \\ -\mathbf{I}_n & 0 \end{bmatrix} \quad \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

symplectic self-adjoint

■ Hamiltonian matrix

$$\mathbf{H}^{\mathrm{T}} = \mathbf{J}\mathbf{H}\mathbf{J}$$

■ Hamiltonian transformation $\langle f_1, \mathcal{H} f_2 \rangle = \langle f_2, \mathcal{H} f_1 \rangle$

 $\sigma(\mathcal{H}) = \mathbb{C} \setminus \rho(\mathcal{H})$

spectrum is symmetric about the imaginary axis, and the union of the point spectrum and the remaining spectrum is also symmetric about the imaginary axis. $\sigma_p(\mathcal{H}) \cup \sigma_r(\mathcal{H})$

HAMILTONIAN MATRIX PROPERTIES

- Eigenvalues of \mathcal{H} : $\pm \mu$ (with same multiplicity for adjoint eigenvalues)
- Symplectic orthogonality of eigenvectors (with non-adjoint eigenvalues)

$$\left\langle \Phi_i^{(s)}, \Phi_j^{(t)} \right\rangle = 0 \quad (s = 0, 1, \dots, m; \ t = 0, 1, \dots, n)$$

Yao, Weian, Zhong, Wanxie, and Lim, Chee Wah. Symplectic elasticity. World Scientific, 2009.

EXPONENTIALLY GRADED MODEL

Background

FIGURE 3. Horizontal graded plane

Advantages (compared with the Lagrangian formulation):

- ➤ Method of separation of variables (suitable for arbitrary indenter shape)
- > Finite-sized model
- ➤ Applicable for inhomogeneous media with multi-field coupling

Multi-field coupling

$$\begin{cases} \frac{\partial u_x}{\partial z} = -\frac{\partial u_z}{\partial x} - a_1 \frac{\partial \varphi}{\partial x} - a_2 \frac{\partial \psi}{\partial x} + a_3 \hat{\sigma}_{xz} & \text{It can also be derived} \\ \frac{\partial u_z}{\partial z} = -a_4 \frac{\partial u_x}{\partial x} + a_5 \hat{\sigma}_{zz} + a_6 \hat{D}_z + a_7 \hat{B}_z \\ \frac{\partial \varphi}{\partial z} = a_8 \frac{\partial u_x}{\partial x} + a_6 \hat{\sigma}_{zz} - a_9 \hat{D}_z + a_{10} \hat{B}_z \\ \frac{\partial \psi}{\partial z} = a_{11} \frac{\partial u_x}{\partial x} + a_7 \hat{\sigma}_{zz} + a_{10} \hat{D}_z - a_{12} \hat{B}_z \\ \frac{\partial \hat{\sigma}_{xz}}{\partial z} = a_{13} \frac{\partial^2 u_x}{\partial x^2} - a_4 \frac{\partial \hat{\sigma}_{zz}}{\partial x} + a_8 \frac{\partial \hat{D}_z}{\partial x} + a_{11} \frac{\partial \hat{B}_z}{\partial x} + \beta \left(a_{13} \frac{\partial u_x}{\partial x} - a_4 \hat{\sigma}_{zz} + a_8 \hat{D}_z + a_{11} \hat{B}_z \right) \\ \frac{\partial \hat{\sigma}_{zz}}{\partial z} = -\frac{\partial \hat{\sigma}_{xz}}{\partial x} - \beta \hat{\sigma}_{xz} \\ \frac{\partial \hat{D}_z}{\partial z} = a_{14} \frac{\partial^2 \varphi}{\partial x^2} + a_{15} \frac{\partial^2 \psi}{\partial x^2} - a_1 \frac{\partial \hat{\sigma}_{xz}}{\partial x} + \beta \left(a_{14} \frac{\partial \varphi}{\partial x} + a_{15} \frac{\partial \psi}{\partial x} - a_1 \hat{\sigma}_{xz} \right) \\ \frac{\partial \hat{B}_z}{\partial z} = a_{15} \frac{\partial^2 \varphi}{\partial x^2} + a_{16} \frac{\partial^2 \psi}{\partial x^2} - a_2 \frac{\partial \hat{\sigma}_{xz}}{\partial x} + \beta \left(a_{15} \frac{\partial \varphi}{\partial x} + a_{16} \frac{\partial \psi}{\partial x} - a_2 \hat{\sigma}_{xz} \right) \end{cases}$$

$$\begin{cases} \hat{\sigma}_{xx} = -a_{13} \frac{\partial u_x}{\partial x} + a_4 \hat{\sigma}_{zz} - a_8 \hat{D}_z - a_{11} \hat{B}_z \\ \hat{D}_x = -a_{14} \frac{\partial \varphi}{\partial x} - a_{15} \frac{\partial \psi}{\partial x} + a_1 \hat{\sigma}_{xz} \\ \hat{B}_x = -a_{15} \frac{\partial \varphi}{\partial x} - a_{16} \frac{\partial \psi}{\partial x} + a_2 \hat{\sigma}_{xz} \end{cases}$$

$$\frac{\partial}{\partial z}\mathbf{I}_{8}\mathbf{f}=\mathcal{H}\mathbf{f}$$

$$\boldsymbol{f} = [\boldsymbol{q}, \boldsymbol{p}]^{\mathrm{T}} = \left[\{u_{\boldsymbol{x}}, u_{\boldsymbol{z}}, \varphi, \psi\}, \{\hat{\sigma}_{\boldsymbol{x}\boldsymbol{z}}, \hat{\sigma}_{\boldsymbol{z}\boldsymbol{z}}, \hat{D}_{\boldsymbol{z}}, \hat{B}_{\boldsymbol{z}}\}\right]^{\mathrm{T}}$$

$$\boldsymbol{f}(x,z) = \Phi(x)\boldsymbol{\xi}(z) = [u(x), w(x), \boldsymbol{\phi}(x), \boldsymbol{\psi}(x), \tau(x), \sigma(x), D(x), B(x)]^{\mathrm{T}} \boldsymbol{\xi}(z)$$

$$\xi(z) = e^{\mu z}, \quad \mathcal{H}\Phi(x) = \mu\Phi(x)$$

19

Multi-field coupling

$$\frac{\partial}{\partial z} \left\{ \begin{bmatrix} u_x \\ u_z \\ v_z \\ \vdots \\ \hat{D}_z \\ \hat{B}_z \end{bmatrix} \right\} = \begin{bmatrix} 0 & -\frac{\partial}{\partial x} & -a_1 \frac{\partial}{\partial x} & -a_2 \frac{\partial}{\partial x} & a_3 & 0 & 0 & 0 \\ -a_4 \frac{\partial}{\partial x} & 0 & 0 & 0 & 0 & 0 & a_5 & a_6 & a_7 \\ a_8 \frac{\partial}{\partial x} & 0 & 0 & 0 & 0 & 0 & a_6 & -a_9 & a_{10} \\ a_{11} \frac{\partial}{\partial x} & 0 & 0 & 0 & 0 & 0 & a_7 & a_{10} & -a_{12} \\ a_{13} \left(\frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial x} \right) & 0 & 0 & 0 & 0 & -a_4 \left(\frac{\partial}{\partial x} + \beta \right) & a_8 \left(\frac{\partial}{\partial x} + \beta \right) & a_{11} \left(\frac{\partial}{\partial x} + \beta \right) \\ 0 & 0 & 0 & 0 & -\left(\frac{\partial}{\partial x} + \beta \right) & 0 & 0 & 0 \\ 0 & 0 & a_{14} \left(\frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial x} \right) & a_{15} \left(\frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial x} \right) & -a_1 \left(\frac{\partial}{\partial x} + \beta \right) & 0 & 0 & 0 \\ 0 & 0 & a_{15} \left(\frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial x} \right) & a_{16} \left(\frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial x} \right) & -a_2 \left(\frac{\partial}{\partial x} + \beta \right) & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{H} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & -\mathbf{A}_{\beta}^{T} \end{bmatrix}$$

 $\mathcal{H} = \begin{vmatrix} \mathbf{A} & \mathbf{B} \\ - - - - - \mathbf{C} \\ \mathbf{C} & - \mathbf{A}_{\beta}^{T} \end{vmatrix}$ infinite dimensional quasi-Hamiltonian operator

$$-\mathcal{H}_{11}^{\mathcal{T}} = \lim_{eta o 0} \mathcal{H}_{22}, \quad \mathcal{H}_{12} = \mathcal{H}_{12}^{\mathcal{T}}, \quad \mathcal{H}_{21} = \mathcal{H}_{21eta o -eta}^{\mathcal{T}}$$

Zero eigenvalue

$$\boxed{ \boldsymbol{\mathcal{H}} \boldsymbol{\Phi}_{0,s}^{(1)} = 0 \quad (s = 1, 2, \cdots, 4) }$$

$$\boldsymbol{f}_{0,1}^{(0)} = \boldsymbol{\Phi}_{0,1}^{(0)} = [1, 0, 0, 0, 0, 0, 0, 0]^{\mathrm{T}}, \quad \boldsymbol{f}_{0,2}^{(0)} = \boldsymbol{\Phi}_{0,2}^{(0)} = [0, 1, 0, 0, 0, 0, 0, 0]^{\mathrm{T}}$$

$$\boldsymbol{f}_{0,3}^{(0)} = \boldsymbol{\Phi}_{0,3}^{(0)} = [0, 0, 1, 0, 0, 0, 0, 0]^{\mathrm{T}}, \quad \boldsymbol{f}_{0,4}^{(0)} = \boldsymbol{\Phi}_{0,4}^{(0)} = [0, 0, 0, 1, 0, 0, 0, 0]^{\mathrm{T}}$$

$$\begin{split} \boldsymbol{\mathcal{H}}\Phi_{0,s}^{(i+1)} &= \Phi_{0,s}^{(i)} \quad (s=1,2,\cdots,4) \\ \boldsymbol{f}_{0,1}^{(1)} &= \Phi_{0,1}^{(1)} + z \Phi_{0,1}^{(0)} = [z,-x,0,0,0,0,0]^{\mathrm{T}}, \qquad \boldsymbol{f}_{0,2}^{(1)} &= \Phi_{0,2}^{(1)} + z \Phi_{0,2}^{(0)} = [-a_{17}x,z,0,0,0,k_{1},k_{2},k_{3}]^{\mathrm{T}} \\ \boldsymbol{f}_{0,3}^{(1)} &= \Phi_{0,3}^{(1)} + z \Phi_{0,3}^{(0)} = [-a_{18}x,0,z,0,0,k_{4},k_{5},k_{6}]^{\mathrm{T}}, \qquad \boldsymbol{f}_{0,4}^{(1)} &= \Phi_{0,4}^{(1)} + z \Phi_{0,4}^{(0)} = [-a_{19}x,0,0,z,0,k_{7},k_{8},k_{9}]^{\mathrm{T}} \\ \boldsymbol{f}_{0,1}^{(2)} &= \Phi_{0,1}^{(2)} + z \Phi_{0,1}^{(1)} + \frac{z^{2}}{2} \Phi_{0,1}^{(0)} \\ \boldsymbol{f}_{0,1}^{(3)} &= \Phi_{0}^{(3)} + z \Phi_{0,1}^{(2)} + \frac{z^{2}}{2!} \Phi_{0,1}^{(1)} + \frac{z^{3}}{3!} \Phi_{0,1}^{(0)} + \zeta_{1} (z \Phi_{0,2}^{(1)} + \frac{z^{2}}{2!} \Phi_{0,2}^{(0)}) \end{split}$$

The specific form is omitted here for brevity

General eigenvalues

$$\det\begin{bmatrix} -\mu & -\eta & -a_1\eta & -a_2\eta & a_3 & 0 & 0 & 0 \\ -a_4\eta & -\mu & 0 & 0 & 0 & a_5 & a_6 & a_7 \\ a_8\eta & 0 & -\mu & 0 & 0 & a_6 & -a_9 & a_{10} \\ a_{11}\eta & 0 & 0 & -\mu & 0 & a_7 & a_{10} & -a_{12} \\ a_{13}\left(\eta^2 + \beta\eta\right) & 0 & 0 & 0 & -\mu & -a_4\left(\eta + \beta\right) & a_8\left(\eta + \beta\right) & a_{11}\left(\eta + \beta\right) \\ 0 & 0 & 0 & 0 & -\left(\eta + \beta\right) & -\mu & 0 & 0 \\ 0 & 0 & a_{14}\left(\eta^2 + \beta\eta\right) & a_{15}\left(\eta^2 + \beta\eta\right) & -a_1\left(\eta + \beta\right) & 0 & -\mu & 0 \\ 0 & 0 & a_{15}\left(\eta^2 + \beta\eta\right) & a_{16}\left(\eta^2 + \beta\eta\right) & -a_2\left(\eta + \beta\right) & 0 & 0 & -\mu \end{bmatrix} = 0$$

$$\text{symmetry & degeneracy} \qquad \eta = \sqrt{\lambda} - \beta/2$$

$$\mathcal{A}_{0}\lambda^{4} + (\mu^{2}\mathcal{A}_{1} + \beta^{2}\mathcal{A}_{2})\lambda^{3} + (\mu^{4}\mathcal{A}_{3} + \mu^{2}\beta^{2}\mathcal{A}_{4} + \beta^{4}\mathcal{A}_{5})\lambda^{2} + (\mu^{6}\mathcal{A}_{6} + \mu^{4}\beta^{2}\mathcal{A}_{7} + \mu^{2}\beta^{4}\mathcal{A}_{8} + \beta^{6}\mathcal{A}_{9})\lambda + (\mu^{8}\mathcal{A}_{10} + \mu^{6}\beta^{2}\mathcal{A}_{11} + \mu^{4}\beta^{4}\mathcal{A}_{12} + \mu^{2}\beta^{6}\mathcal{A}_{13} + \beta^{8}\mathcal{A}_{14}) = 0$$

$$\boldsymbol{\Phi} \, = \sum_{t=1}^8 \mathrm{e}^{\eta_t x} [\tilde{A}_t, \tilde{B}_t, \tilde{C}_t, \tilde{D}_t, \tilde{E}_t, \tilde{F}_t, \tilde{G}_t, \tilde{H}_t]^\mathrm{T}$$

$$\det \left[\varpi_{\left[\frac{i}{2}\right] j} e^{(-1)^{i+1} \eta_j l} \right] = 0 \quad (i = 1, \dots, 8; j = 1, \dots, 8)$$

$$f_{\mu,i}=\mathrm{e}^{\mu_i z}\Phi_i$$

Symplectic expansion

$$\tilde{\boldsymbol{f}} = \sum_{i=1}^{10} m_{0,i} \tilde{\boldsymbol{f}}_{0,i} + \sum_{i=1}^{\infty} \left[\left(m_{\mu,i}^{\text{Re}} \text{Re} \tilde{\boldsymbol{f}}_{\mu,i} + m_{\mu,i}^{\text{Im}} \text{Im} \tilde{\boldsymbol{f}}_{\mu,i} \right) + \left(m_{-\mu,i}^{\text{Re}} \text{Re} \tilde{\boldsymbol{f}}_{-\mu,i} + m_{-\mu,i}^{\text{Im}} \text{Im} \tilde{\boldsymbol{f}}_{-\mu,i} \right) \right] \equiv \sum_{i=1}^{\infty} m_i \tilde{\boldsymbol{f}}_i$$

In the Hilbert space, the symplectic expansion is complete under the Cauchy principal value.

p.v.
$$\sum_{k=-\infty}^{+\infty}a_k {\pmb f}_k = a_0 {\pmb f}_0 + \sum_{m=1}^{+\infty}(a_m {\pmb f}_m + a_{-m} {\pmb f}_{-m})$$

Hamiltonian mixed energy variational principle

$$\delta \left\{ \int_{0}^{h} \int_{-l}^{l} \left[\boldsymbol{p}^{\mathrm{T}} \frac{\partial \boldsymbol{q}}{\partial z} - H(\boldsymbol{q}, \boldsymbol{p}) \right] \mathrm{d}x \mathrm{d}z - \int_{\Gamma_{\boldsymbol{q}_{h}}} \left[\boldsymbol{p}^{\mathrm{T}} (\boldsymbol{q} - \overline{\boldsymbol{q}}_{h}) \right] \mathrm{d}x - \int_{\Gamma_{\boldsymbol{p}_{h}}} \left[\overline{\boldsymbol{p}}_{h}^{\mathrm{T}} \boldsymbol{q} \right] \mathrm{d}x + \int_{\Gamma_{\boldsymbol{q}_{0}}} \left[\boldsymbol{p}^{\mathrm{T}} (\boldsymbol{q} - \overline{\boldsymbol{q}}_{0}) \right] \mathrm{d}x + \int_{\Gamma_{\boldsymbol{p}_{0}}} \left[\overline{\boldsymbol{p}}_{0}^{\mathrm{T}} \boldsymbol{q} \right] \mathrm{d}x \right\} = 0$$

$$\mathcal{L}_{ij} = \int_{\Gamma_{\boldsymbol{p}_{h}}} \left[(\boldsymbol{q}_{i})^{\mathrm{T}} \boldsymbol{p}_{j} \right] \mathrm{d}x - \int_{\Gamma_{\boldsymbol{q}_{h}}} \left[(\boldsymbol{p}_{i})^{\mathrm{T}} \boldsymbol{q}_{j} \right] \mathrm{d}x + \int_{\Gamma_{\boldsymbol{q}_{0}}} \left[(\boldsymbol{p}_{i})^{\mathrm{T}} \boldsymbol{q}_{j} \right] \mathrm{d}x - \int_{\Gamma_{\boldsymbol{p}_{0}}} \left[(\boldsymbol{q}_{i})^{\mathrm{T}} \boldsymbol{p}_{j} \right] \mathrm{d}x$$

$$\mathcal{L}_{i} = \int_{\Gamma_{\boldsymbol{p}_{h}}} \left[(\boldsymbol{q}_{i})^{\mathrm{T}} \overline{\boldsymbol{p}}_{h} \right] \mathrm{d}x - \int_{\Gamma_{\boldsymbol{q}_{h}}} \left[(\boldsymbol{p}_{i})^{\mathrm{T}} \overline{\boldsymbol{q}}_{h} \right] \mathrm{d}x + \int_{\Gamma_{\boldsymbol{q}_{0}}} \left[(\boldsymbol{p}_{i})^{\mathrm{T}} \overline{\boldsymbol{q}}_{0} \right] \mathrm{d}x - \int_{\Gamma_{\boldsymbol{p}_{0}}} \left[(\boldsymbol{q}_{i})^{\mathrm{T}} \overline{\boldsymbol{p}}_{0} \right] \mathrm{d}x$$

$$m_{_{k}} = rac{\det \mathscr{A}_{_{ij;k}}}{\det \mathscr{A}_{_{ij}}}$$

23

Example

$$\frac{\partial}{\partial z}\mathbf{I}_{4}\boldsymbol{f} = \begin{bmatrix} 0 & -\nu_{\alpha0}\frac{\partial}{\partial x} & \frac{1-\nu_{\alpha0}^{2}}{E_{\alpha0}} & 0 \\ -\frac{\partial}{\partial x} & 0 & 0 & \frac{2(1+\nu_{\alpha0})}{E_{\alpha0}} \\ 0 & 0 & 0 & -\beta-\frac{\partial}{\partial x} \end{bmatrix}\boldsymbol{f}$$

$$0 & -E_{\alpha0}\frac{\partial^{2}}{\partial x^{2}} - E_{\alpha0}\beta\frac{\partial}{\partial x} & -\nu_{\alpha0}\beta & 0 \end{bmatrix}$$

$$\begin{split} \boldsymbol{f}_{0,s}^{(0)} &= \boldsymbol{\Phi}_{0,s}^{(0)} = [1,0,0,0]^{\mathrm{T}}, \quad \boldsymbol{f}_{0,a}^{(0)} = \boldsymbol{\Phi}_{0,a}^{(0)} = [0,1,0,0]^{\mathrm{T}} \\ \boldsymbol{f}_{0,s}^{(1)} &= \boldsymbol{\Phi}_{0,s}^{(1)} + z \boldsymbol{\Phi}_{0,s}^{(0)} = [z,-\nu_{\alpha 0} x, E_{\alpha 0},0]^{\mathrm{T}}, \quad \boldsymbol{f}_{0,a}^{(1)} = \boldsymbol{\Phi}_{0,a}^{(1)} + z \boldsymbol{\Phi}_{0,a}^{(0)} = [-x,z,0,0]^{\mathrm{T}} \end{split}$$

$$\boldsymbol{f}_{\scriptscriptstyle 0,a}^{\scriptscriptstyle (2)} = \boldsymbol{\Phi}_{\scriptscriptstyle 0,a}^{\scriptscriptstyle (2)} + z \boldsymbol{\Phi}_{\scriptscriptstyle 0,a}^{\scriptscriptstyle (1)} + \frac{z^2}{2} \boldsymbol{\Phi}_{\scriptscriptstyle 0,a}^{\scriptscriptstyle (0)} = [-xz, \frac{1}{2}(\nu_{\scriptscriptstyle \alpha 0}x^2 + z^2), -E_{\scriptscriptstyle \alpha 0}x, 0]^{\mathrm{T}}$$

$$\boldsymbol{f}_{0}^{(3)} = \boldsymbol{\Phi}_{0}^{(3)} + z \boldsymbol{\Phi}_{0,a}^{(2)} + \frac{z^{2}}{2!} \boldsymbol{\Phi}_{0,a}^{(1)} + \frac{z^{3}}{3!} \boldsymbol{\Phi}_{0,a}^{(0)} + \zeta_{0} z \boldsymbol{\Phi}_{0,s}^{(1)} + \zeta_{0} \frac{z^{2}}{2!} \boldsymbol{\Phi}_{0,s}^{(0)}$$

$$oldsymbol{f}_{\mu,n} = \mathrm{e}^{\mu_n z} \Phi_n = \mathrm{e}^{\mu_n z} \sum_{i=1}^4 \Bigl(\mathrm{e}^{\eta_{in} x} [\mathcal{A}_{in}, \mathcal{B}_{in}, \mathcal{C}_{in}, \mathcal{D}_{in}]^\mathrm{T} \Bigr)$$

$$\Phi_{0}^{(3)} = \begin{cases} \frac{2(1+\nu_{\alpha 0})}{E_{\alpha 0}} \left[-\frac{E_{\alpha 0}l}{\beta^{2} \sinh(\beta l)} e^{-\beta x} + \frac{E_{\alpha 0}}{\beta} \frac{x^{2}}{2} - (\frac{\zeta_{0}E_{\alpha 0}}{\beta} + \frac{E_{\alpha 0}}{\beta^{2}})x \right] - \frac{1}{6}\nu_{\alpha 0}x^{3} + \frac{1}{2}\zeta_{0}\nu_{\alpha 0}x^{2} \\ 0 \\ 0 \\ \frac{E_{\alpha 0}l}{\beta \sinh(\beta l)} e^{-\beta x} + \frac{E_{\alpha 0}}{\beta}x - (\frac{\zeta_{0}E_{\alpha 0}}{\beta} + \frac{E_{\alpha 0}}{\beta^{2}}) \end{cases}$$

NUMERICAL RESULTS AND FINITE ELEMENT ANALYSES

Numerical results

FIGURE 4. Deformations and stress distributions at the surface

Numerical Results and Finite Element Analyses

Finite element analyses

FIGURE 5. FEA results

LAMINATED MODEL

Background

Boundary continuity

Transfer matrix

The lateral boundaries and the state equations can be non-homogeneous, both of which may be homogenized through particular solutions

- 1. Applicable for the boundary effect and interfacial effect
- 2. If there are enough discrete layers, it is possible to simulate arbitrary gradient changes in the lateral direction of the material

FIGURE 6. Horizontal laminated plane

$$\begin{split} \boldsymbol{f} &= \sum_{i=1}^{10} m_{0,i} \boldsymbol{f}_{0,i} + \sum_{i=1}^{\infty} \left[(m_{\mu,i}^{\text{Re}} \text{Re} \boldsymbol{f}_{\mu,i} + m_{\mu,i}^{\text{Im}} \text{Im} \boldsymbol{f}_{\mu,i}) + (m_{-\mu,i}^{\text{Re}} \text{Re} \boldsymbol{f}_{-\mu,i} + m_{-\mu,i}^{\text{Im}} \text{Im} \boldsymbol{f}_{-\mu,i}) \right] \\ &= \sum_{i=1}^{10} m_{0,i} \bigcup_{k=1}^{n} \boldsymbol{f}_{0,i;k} + \sum_{i=1}^{\infty} \left[\left(m_{\mu,i}^{\text{Re}} \bigcup_{k=1}^{n} \text{Re} \boldsymbol{f}_{\mu,i;k} + m_{\mu,i}^{\text{Im}} \bigcup_{k=1}^{n} \text{Im} \boldsymbol{f}_{\mu,i;k} \right) + \left(m_{-\mu,i}^{\text{Re}} \bigcup_{k=1}^{n} \text{Re} \boldsymbol{f}_{-\mu,i;k} + m_{-\mu,i}^{\text{Im}} \bigcup_{k=1}^{n} \text{Im} \boldsymbol{f}_{-\mu,i;k} \right) \right] \end{split}$$

Symplectic Framework

Interfacial effect

$$\begin{split} \boldsymbol{f}_{0,s;i}^{(0)} &= \boldsymbol{\Phi}_{0,s;i}^{(0)} = [1,0,0,0]^{\mathrm{T}}, & \boldsymbol{f}_{0,a;i}^{(0)} &= [0,1,0,0]^{\mathrm{T}} \\ \boldsymbol{f}_{0,s;i}^{(1)} &= \boldsymbol{\Phi}_{0,s;i}^{(0)} + z \boldsymbol{\Phi}_{0,s;i}^{(0)} = [z,-\nu x + \zeta_{1},E_{i},0]^{\mathrm{T}}, & \boldsymbol{f}_{0,a;i}^{(1)} &= \boldsymbol{\Phi}_{0,a;i}^{(0)} + z \boldsymbol{\Phi}_{0,a;i}^{(0)} = [-x + \zeta_{2},z,0,0]^{\mathrm{T}} \\ \boldsymbol{f}_{0,a;i}^{(2)} &= \boldsymbol{\Phi}_{0,a;i}^{(2)} + z \boldsymbol{\Phi}_{0,a;i}^{(1)} + \frac{z^{2}}{2} \boldsymbol{\Phi}_{0,a;i}^{(0)} = [(-x + \zeta_{2})z, \frac{1}{2}[\nu(x - \zeta_{2})^{2} + z^{2}] + \zeta_{3}, -E_{i}(x - \zeta_{2}), 0]^{\mathrm{T}} \\ \boldsymbol{f}_{0,a;i}^{(3)} &= \boldsymbol{\Phi}_{0,a;i}^{(3)} + z \boldsymbol{\Phi}_{0,a;i}^{(2)} + \frac{z^{2}}{2!} \boldsymbol{\Phi}_{0,a;i}^{(1)} + \frac{z^{3}}{3!} \boldsymbol{\Phi}_{0,a;i}^{(0)} \end{split}$$

$$\Phi_{0,a;i}^{(3)} = \begin{cases} \frac{2(1+\nu)}{6}(x-\zeta_2)^3 + \left[\frac{2(1+\nu)}{E_i} - \zeta_3\right](x-\zeta_2) + \beta_{3i} + \zeta_4 \\ 0 \\ 0 \\ \frac{E_i}{2}(x-\zeta_2)^2 + \beta_{1i} \end{cases}$$

Numerical Results and Finite Element Analyses

Numerical results

FIGURE 7. Deformations and stress distributions at the surface

2025/1/1

Numerical Results and Finite Element Analyses

Finite element analyses

FIGURE 8. FEA results

LAMINATED MODEL

Boundary effect

FIGURE 9. Horizontal layered plane

Numerical Results and Finite Element Analyses

Numerical results

FIGURE 10. Deformations and stress distributions at the surface

Numerical Results and Finite Element Analyses

Finite element analyses

FIGURE 11. FEA results

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

33

VISCOELASTIC MODEL

Background

$$\begin{split} & \left[\sigma_{xx} = c_{11} * \operatorname{d} \left(\frac{\partial u_x}{\partial x} \right) + c_{13} * \operatorname{d} \left(\frac{\partial u_z}{\partial z} \right) + e_{31} \frac{\partial \varphi}{\partial z} + q_{31} \frac{\partial \psi}{\partial z} - \mathfrak{a}_1 T \right. \\ & \left[\sigma_{zz} = c_{13} * \operatorname{d} \left(\frac{\partial u_x}{\partial x} \right) + c_{33} * \operatorname{d} \left(\frac{\partial u_z}{\partial z} \right) + e_{33} \frac{\partial \varphi}{\partial z} + q_{33} \frac{\partial \psi}{\partial z} - \mathfrak{a}_3 T \right. \\ & \left[\sigma_{xz} = c_{44} * \operatorname{d} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) + e_{15} \frac{\partial \varphi}{\partial x} + q_{15} \frac{\partial \psi}{\partial x} \right. \\ & \left[D_x = e_{15} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) - \varepsilon_{11} \frac{\partial \varphi}{\partial x} - d_{11} \frac{\partial \psi}{\partial x} \right. \\ & \left[D_z = e_{31} \frac{\partial u_x}{\partial x} + e_{33} \frac{\partial u_z}{\partial z} - \varepsilon_{33} \frac{\partial \varphi}{\partial z} - d_{33} \frac{\partial \psi}{\partial z} + \mathfrak{b}_3 T \right. \\ & \left[B_x = q_{15} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) - d_{11} \frac{\partial \varphi}{\partial x} - \gamma_{11} \frac{\partial \psi}{\partial x} \right. \\ & \left. B_z = q_{31} \frac{\partial u_x}{\partial x} + q_{33} \frac{\partial u_z}{\partial z} - d_{33} \frac{\partial \varphi}{\partial z} - \gamma_{33} \frac{\partial \psi}{\partial z} + \mathfrak{c}_3 T \right. \end{split}$$

$$\begin{cases} \frac{\partial \tilde{u}_x}{\partial z} = -\frac{\partial \tilde{u}_z}{\partial x} - a_1 \frac{\partial \tilde{\varphi}}{\partial x} - a_2 \frac{\partial \tilde{\psi}}{\partial x} + a_3 \tilde{\tilde{\sigma}}_{zz} \\ \frac{\partial \tilde{u}_z}{\partial z} = -a_4 \frac{\partial \tilde{u}_x}{\partial x} + a_5 \tilde{\tilde{\sigma}}_{zz} + a_6 \tilde{\tilde{D}}_z + a_7 \tilde{\tilde{B}}_z + \iota_1 \tilde{T} \\ \frac{\partial \tilde{\varphi}}{\partial z} = a_8 \frac{\partial \tilde{u}_x}{\partial x} + a_6 \tilde{\tilde{\sigma}}_{zz} - a_9 \tilde{\tilde{D}}_z + a_{10} \tilde{\tilde{B}}_z + \iota_2 \tilde{T} \\ \frac{\partial \tilde{\psi}}{\partial z} = a_{11} \frac{\partial \tilde{u}_x}{\partial x} + a_7 \tilde{\tilde{\sigma}}_{zz} + a_{10} \tilde{\tilde{D}}_z - a_{12} \tilde{\tilde{B}}_z + \iota_3 \tilde{T} \\ \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial z} = a_{13} \frac{\partial^2 \tilde{u}_x}{\partial x^2} - a_4 \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial x} + a_8 \frac{\partial \tilde{\tilde{D}}_z}{\partial x} + a_{11} \frac{\partial \tilde{\tilde{B}}_z}{\partial x} + \iota_4 \frac{\partial \tilde{T}}{\partial x} + \beta \left(a_{13} \frac{\partial \tilde{u}_x}{\partial x} - a_4 \tilde{\tilde{\sigma}}_{zz} + a_8 \tilde{\tilde{D}}_z + a_{11} \tilde{\tilde{B}}_z + \iota_4 \tilde{T} \right) \\ \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial z} = -\frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial x} - \beta \tilde{\tilde{\sigma}}_{zz} \\ \frac{\partial \tilde{\tilde{D}}_z}{\partial z} = a_{14} \frac{\partial^2 \tilde{\varphi}}{\partial x^2} + a_{15} \frac{\partial^2 \tilde{\psi}}{\partial x^2} - a_1 \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial x} + \beta \left(a_{14} \frac{\partial \tilde{\varphi}}{\partial x} + a_{15} \frac{\partial \tilde{\psi}}{\partial x} - a_1 \tilde{\tilde{\sigma}}_{zz} \right) \\ \frac{\partial \tilde{\tilde{B}}_z}{\partial z} = a_{15} \frac{\partial^2 \tilde{\varphi}}{\partial x^2} + a_{16} \frac{\partial^2 \tilde{\psi}}{\partial x^2} - a_2 \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial z} + \beta \left(a_{15} \frac{\partial \tilde{\varphi}}{\partial x} + a_{16} \frac{\partial \tilde{\psi}}{\partial x} - a_2 \tilde{\tilde{\sigma}}_{zz} \right) \\ \frac{\partial \tilde{\tilde{B}}_z}{\partial z} = a_{15} \frac{\partial^2 \tilde{\varphi}}{\partial x^2} + a_{16} \frac{\partial^2 \tilde{\psi}}{\partial x^2} - a_2 \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial z} + \beta \left(a_{15} \frac{\partial \tilde{\varphi}}{\partial x} + a_{16} \frac{\partial \tilde{\psi}}{\partial x} - a_2 \tilde{\tilde{\sigma}}_{zz} \right) \\ \frac{\partial \tilde{\tilde{\phi}}_z}{\partial z} = a_{15} \frac{\partial^2 \tilde{\psi}}{\partial x^2} + a_{16} \frac{\partial^2 \tilde{\psi}}{\partial x^2} - a_2 \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial z} + \beta \left(a_{15} \frac{\partial \tilde{\varphi}}{\partial x} + a_{16} \frac{\partial \tilde{\psi}}{\partial x} - a_2 \tilde{\tilde{\sigma}}_{zz} \right) \\ \frac{\partial \tilde{\tilde{\phi}}_z}{\partial z} = a_{15} \frac{\partial^2 \tilde{\psi}}{\partial x^2} + a_{16} \frac{\partial^2 \tilde{\psi}}{\partial x^2} - a_2 \frac{\partial \tilde{\tilde{\sigma}}_{zz}}{\partial z} + \beta \left(a_{15} \frac{\partial \tilde{\psi}}{\partial x} + a_{16} \frac{\partial \tilde{\psi}}{\partial x} - a_2 \tilde{\tilde{\sigma}}_{zz} \right)$$

Laplace transform

Non-homogeneous terms in the state equations

NEW FORM OF SYMPLECTIC ORTHOGONALITY

Dual Hamiltonian transformation

Shift Hamiltonian Transformation

$$\left\langle \mathbf{f}_{1}, \mathcal{H} \mathbf{f}_{2} \right\rangle = \left\langle \mathbf{f}_{2}, \mathcal{H} \mathbf{f}_{1} \right\rangle - \alpha \left\langle \mathbf{f}_{1}, \mathbf{f}_{2} \right\rangle$$

proved the shift symplectic self-adjoint property of \mathcal{H} operator

Here, we decide to prove the Dual Hamiltonian Transformation

$$\left\langle \mathbf{f}_{1},\mathcal{H}\mathbf{f}_{2}\right\rangle =\left\langle \mathbf{f}_{2},\mathcal{H}\mathbf{f}_{1}\right\rangle -\beta\left\langle \mathbf{f}_{1}^{*},\mathbf{f}_{2}^{*}\right\rangle$$

*Original and dual symplectic space

*Note: This condition holds only with the displacement constrained, and the stress-free boundary is not applicable

$$\boldsymbol{f} = \left[\{u_x, u_z, \varphi, \psi\}, \{\hat{\sigma}_{xz}, \hat{\sigma}_{zz}, \hat{D}_z, \hat{B}_z\} \right]^{\mathrm{T}}$$

$$\boldsymbol{f}^* = \left[\{u_{\scriptscriptstyle x}, u_{\scriptscriptstyle z}, \varphi, \psi\}, \{\hat{\sigma}_{\scriptscriptstyle xx}, \hat{\sigma}_{\scriptscriptstyle xz}, \hat{D}_{\scriptscriptstyle x}, \hat{B}_{\scriptscriptstyle x}\}\right]^{\rm T}$$

NEW FORM OF SYMPLECTIC ORTHOGONALITY

Dual Hamiltonian transformation

$$\langle \mathbf{f}_{1}, \mathcal{H}\mathbf{f}_{2} \rangle = \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \langle \mathbf{f}_{1}^{*}, \mathbf{f}_{2}^{*} \rangle$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \langle \mathcal{A}\mathbf{f}_{1}, \mathcal{A}\mathbf{f}_{2} \rangle$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \int_{-l}^{l} (\mathcal{A}\mathbf{f}_{1})^{\mathsf{T}} \mathbf{J} (\mathcal{A}\mathbf{f}_{2}) dx$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \int_{-l}^{l} \mathbf{f}_{1}^{\mathsf{T}} \mathcal{A}^{\mathsf{T}} \mathbf{J} (\mathcal{A}\mathbf{f}_{2}) dx$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \int_{-l}^{l} \mathbf{f}_{1}^{\mathsf{T}} \mathbf{J} (-\mathbf{J}) \mathcal{A}^{\mathsf{T}} \mathbf{J} (\mathcal{A}\mathbf{f}_{2}) dx$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \int_{-l}^{l} \mathbf{f}_{1}^{\mathsf{T}} \mathbf{J} \mathbf{J}^{\mathsf{T}} \mathcal{A}^{\mathsf{T}} \mathbf{J} \mathcal{A}\mathbf{f}_{2} dx$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \beta \int_{-l}^{l} \mathbf{f}_{1}^{\mathsf{T}} \mathbf{J} (\mathcal{A}\mathbf{J})^{\mathsf{T}} (\mathbf{J}\mathcal{A}) \mathbf{f}_{2} dx$$

$$= \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle - \langle \mathbf{f}_{1}, \beta \mathcal{B}\mathbf{f}_{2} \rangle$$

$$\langle \mathbf{f}_{1}, (\mathcal{H} + \beta \mathcal{B}) \mathbf{f}_{2} \rangle = \langle \mathbf{f}_{2}, \mathcal{H}\mathbf{f}_{1} \rangle$$

$$\mathcal{H}^{\mathsf{T}} = \mathbf{J} (\mathcal{H} + \beta \mathcal{B}) \mathbf{J}$$

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

Boundary conditions: fixed!!

 \mathcal{A}^T represents adjoint transpose

convert to the same symplectic space

Eigenvalue

THEOREM 1

If μ is an eigenvalue of operator matrix \mathcal{H} , then $-\mu$ is the eigenvalue of $\beta \mathcal{B} + \mathcal{H}$ with the same multiplicity.

$$\mathcal{H}^{T} = \mathbf{J}(\mathcal{H} + \beta \mathcal{B})\mathbf{J}$$

$$|\mu \mathbf{I} - \mathcal{H}| = |(\mu \mathbf{I} - \mathcal{H})\mathbf{J}|$$

$$= |\mu \mathbf{J}\mathbf{J} - \mathbf{J}\mathcal{H}\mathbf{J}|$$

$$= |\mu \mathbf{J}\mathbf{J} - \mathbf{J}(\mathcal{H} + \beta \mathcal{B})\mathbf{J} + \mathbf{J}\beta \mathcal{B}\mathbf{J}|$$

$$= |\mu \mathbf{J}\mathbf{J} + \mathbf{J}\beta \mathcal{B}\mathbf{J} - \mathcal{H}^{T}|$$

$$= |-\mu \mathbf{I} - (\beta \mathcal{B})^{T} - \mathcal{H}^{T}|$$

$$= |-\mu \mathbf{I} - (\beta \mathcal{B} + \mathcal{H})^{T}|$$

$$= |-\mu \mathbf{I} - (\beta \mathcal{B} + \mathcal{H})|$$

Q.E.D

Dual symplectic orthogonality

THEOREM 2

Let $\Phi_i^{(0)}, \Phi_i^{(1)}, \Phi_i^{(2)}, \cdots, \Phi_i^{(m)}$ and $\Omega_j^{(0)}, \Omega_j^{(1)}, \Omega_j^{(2)}, \cdots, \Omega_j^{(n)}$ are the basic eigenvectors and Jordan form eigenvectors of the eigenvalues μ_i and μ_j , respectively. For $\mu_i + \mu_j \neq 0$, the dual symplectic orthogonality between the eigenvectors are

$$\left\langle \Phi_i^{(\mathfrak{s})}, \Omega_j^{(\mathfrak{t})} \right\rangle = 0, (\mathfrak{s} = 0, 1, \dots, m; \mathfrak{t} = 0, 1, \dots, n)$$

Dual symplectic orthogonality

PROOF $\Phi_i^{(0)}, \Phi_i^{(1)}, \Phi_i^{(2)}, \dots, \Phi_i^{(m)}$ and $\Omega_i^{(0)}, \Omega_i^{(1)}, \Omega_i^{(2)}, \dots, \Omega_i^{(n)}$ are the basic eigenvectors and Jordan form eigenvectors of the eigenvalues corresponds to μ_i and μ_j , respectively. When $\mu_i + \mu_j \neq 0$, $\langle \Phi_i^{(s)}, \Omega_i^{(t)} \rangle = 0, (s = 0, 1, \dots, m; t = 0, 1, \dots, n)$

$$r = s + t = 0$$

$$\mathcal{H}\Phi_{i}^{(0)} = \mu_{i}\Phi_{i}^{(0)} \quad (\mathcal{H} + \beta\mathcal{B})\Omega_{j}^{(0)} = \mu_{j}\Omega_{j}^{(0)}$$

$$\left\langle \Phi_{i}^{(0)}, (\mathcal{H} + \beta\mathcal{B})\Omega_{j}^{(0)} \right\rangle = \left\langle \Phi_{i}^{(0)}, \mu_{j}\Omega_{j}^{(0)} \right\rangle = \mu_{j} \left\langle \Phi_{i}^{(0)}, \Omega_{j}^{(0)} \right\rangle$$

$$\left\langle \Omega_{j}^{(0)}, \mathcal{H}\Phi_{i}^{(0)} \right\rangle = \left\langle \Omega_{j}^{(0)}, \mu_{i}\Phi_{i}^{(0)} \right\rangle = \mu_{i} \left\langle \Omega_{j}^{(0)}, \Phi_{i}^{(0)} \right\rangle = -\mu_{i} \left\langle \Phi_{i}^{(0)}, \Omega_{j}^{(0)} \right\rangle$$

$$\left\langle \mu_{i} + \mu_{j} \right\rangle \left\langle \Phi_{i}^{(0)}, \Omega_{j}^{(0)} \right\rangle = 0 \Rightarrow \left\langle \Phi_{i}^{(0)}, \Omega_{j}^{(0)} \right\rangle = 0$$

$$r = s + t = k$$

$$= s + t = k$$
 If we assume $\left\langle \Phi_i^{(s)}, \Omega_j^{(t)} \right\rangle = 0$

$$r = s + t = k + 1$$

$$egin{aligned} \mathcal{H}\Phi_i^{\,(s)} &= \mu_i \Phi_i^{\,(s)} + \Phi_i^{\,(s-1)} \ &(\mathcal{H} + eta \mathcal{B})\Omega_j^{\,(t)} &= \mu_j \Omega_j^{\,(t)} + \Omega_j^{\,(t-1)} \end{aligned}$$

$$|\mathcal{H}^T = \mathbf{J}(\mathcal{H} + \beta \mathcal{B})\mathbf{J}$$

$$egin{aligned} egin{aligned} oldsymbol{\mathcal{H}}^{\mathcal{T}} &= \mathbf{J}(oldsymbol{\mathcal{H}} + eta oldsymbol{\mathcal{B}}) \mathbf{J} \end{aligned}$$
 $oldsymbol{\mathcal{H}} \left\langle oldsymbol{f}_1, (oldsymbol{\mathcal{H}} + eta oldsymbol{\mathcal{B}}) oldsymbol{f}_2
ight
angle &= \left\langle oldsymbol{f}_2, oldsymbol{\mathcal{H}} oldsymbol{f}_1
ight
angle$

$$\begin{split} \left\langle \Phi_{i}^{(s)}, (\mathcal{H} + \beta \mathcal{B}) \Omega_{j}^{(t)} \right\rangle &= \left\langle \Phi_{i}^{(s)}, \mu_{j} \Omega_{j}^{(t)} \right\rangle + \left\langle \Phi_{i}^{(s)}, \overline{\Omega_{j}^{(t-1)}} \right\rangle = \mu_{j} \left\langle \Phi_{i}^{(s)}, \Omega_{j}^{(t)} \right\rangle \\ \left\langle \Omega_{j}^{(t)}, \mathcal{H} \Phi_{i}^{(s)} \right\rangle &= \left\langle \Omega_{j}^{(t)}, \mu_{i} \Phi_{i}^{(s)} \right\rangle + \left\langle \Omega_{j}^{(t)}, \Phi_{i}^{(s-1)} \right\rangle = \mu_{i} \left\langle \Omega_{j}^{(t)}, \Phi_{i}^{(s)} \right\rangle = -\mu_{i} \left\langle \Phi_{i}^{(s)}, \Omega_{j}^{(t)} \right\rangle \end{split}$$

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

Q.E.D

Dual symplectic adjoint

THEOREM 3

Let μ and $-\mu$ be the dual symplectic adjoint eigenvalues of the operator \mathcal{H} and $\mathcal{H} + \beta \mathcal{B}$ with multiplicity \mathbf{m} , respectively. The respective adjoint symplectic orthogonal vector sets are $\left\{\Phi_i^{(0)}, \Phi_i^{(1)}, \Phi_i^{(2)}, \cdots, \Phi_i^{(\mathfrak{m}-1)}\right\}$ and $\left\{\Omega_j^{(0)}, \Omega_j^{(1)}, \Omega_j^{(2)}, \cdots, \Omega_j^{(\mathfrak{m}-1)}\right\}$, such that

$$\left\langle \Phi^{(i)}, \Omega^{(j)} \right\rangle = \begin{cases} (-1)^i \mathscr{C} \neq 0 & (i+j=\mathfrak{m}-1) \\ 0 & (i+j\neq\mathfrak{m}-1) \end{cases}$$

Dual symplectic adjoint

PROOF

If
$$i = 0$$
 when $j \le \mathfrak{m} - 2$

$$\left\langle \Phi^{(0)}, (\mathcal{H} + \beta \mathcal{B}) \Omega^{(j+1)} \right\rangle = -\mu \left\langle \Phi^{(0)}, \Omega^{(j+1)} \right\rangle + \left\langle \Phi^{(0)}, \Omega^{(j)} \right\rangle$$

$$\left\langle \Omega^{(j+1)}, \mathcal{H} \Phi^{(0)} \right\rangle = \mu \left\langle \Omega^{(j+1)}, \Phi^{(0)} \right\rangle = -\mu \left\langle \Phi^{(0)}, \Omega^{(j+1)} \right\rangle$$

with
$$\langle \Phi^{(0)}, (\mathcal{H} + \beta \mathcal{B}) \Omega^{(j+1)} \rangle = \langle \Omega^{(j+1)}, \mathcal{H} \Phi^{(0)} \rangle \implies \langle \Phi^{(0)}, \Omega^{(j)} \rangle = 0$$

So
$$\langle \Phi^{(0)}, \Omega^{(j)} \rangle = \mathcal{C} \neq 0$$
 when $j = \mathfrak{m} - 1$

Otherwise
$$\Phi^{(0)} \equiv 0$$

Assume the theorem is valid for $i = \mathfrak{k}$, then for $i = \mathfrak{k} + 1$, set $d = -\frac{1}{\mathscr{C}} \langle \Phi^{(\mathfrak{k}+1)}, \Omega^{(\mathfrak{m}-1)} \rangle$

$$\widehat{\Phi}^{(\mathfrak{k}+1+\mathfrak{p})} = \Phi^{(\mathfrak{k}+1+\mathfrak{p})} + d\Phi^{(\mathfrak{p})} \quad (\mathfrak{p} = 1, 2, \cdots, \mathfrak{m} - \mathfrak{k} - 2)$$

$$j \leq \mathfrak{m} - 2 \quad \left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, (\mathcal{H} + \beta \mathcal{B}) \Omega^{(j+1)} \right\rangle = -\mu \left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, \Omega^{(j+1)} \right\rangle + \left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, \Omega^{(j)} \right\rangle$$
$$\left\langle \Omega^{(j+1)}, \mathcal{H} \widehat{\Phi}^{(\mathfrak{k}+1)} \right\rangle = \mu \left\langle \Omega^{(j+1)}, \widehat{\Phi}^{(\mathfrak{k}+1)} \right\rangle + \left\langle \Omega^{(j+1)}, \Phi^{(\mathfrak{k})} \right\rangle$$
$$= -\mu \left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, \Omega^{(j+1)} \right\rangle - \left\langle \Phi^{(\mathfrak{k})}, \Omega^{(j+1)} \right\rangle$$

$$\left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, (\mathcal{H} + \beta \mathcal{B}) \Omega^{(j+1)} \right\rangle = \left\langle \Omega^{(j+1)}, \mathcal{H} \widehat{\Phi}^{(\mathfrak{k}+1)} \right\rangle \quad \left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, \Omega^{(j)} \right\rangle = -\left\langle \Phi^{(\mathfrak{k})}, \Omega^{(j+1)} \right\rangle$$

$$\left\langle \widehat{\Phi}^{(\mathfrak{k}+1)}, \Omega^{(j)} \right\rangle = -\left\langle \Phi^{(\mathfrak{k})}, \Omega^{(j+1)} \right\rangle = \begin{cases} (-1)^{(\mathfrak{k}+1)} \mathscr{C} \neq 0 & (\mathfrak{k}+j=\mathfrak{m}-2) \\ 0 & (\mathfrak{k}+j\neq\mathfrak{m}-2) \end{cases}$$

Q.E.D

Symmetry breaking

Dual Hamiltonian transformation

$$\begin{split} \left\{ & \Phi_i^{(0)}, \Phi_i^{(1)}, \Phi_i^{(2)}, \cdots, \Phi_i^{(m)} \right\} \\ & \left\{ \Omega_j^{(0)}, \Omega_j^{(1)}, \Omega_j^{(2)}, \cdots, \Omega_j^{(n)} \right\} \\ & \left\{ \mu_i + \mu_j \neq 0 \right. \\ & \left\langle \Phi_i^{(s)}, \Omega_j^{(t)} \right\rangle = 0, (s = 0, 1, \cdots, m; t = 0, 1, \cdots, n) \end{split}$$

$$\left|\left\langle \boldsymbol{f}_{1}, (\boldsymbol{\mathcal{H}} + \beta \boldsymbol{\mathcal{B}}) \boldsymbol{f}_{2} \right\rangle = \left\langle \boldsymbol{f}_{2}, \boldsymbol{\mathcal{H}} \boldsymbol{f}_{1} \right\rangle \right|$$

Shift Hamiltonian transformation

$$\begin{split} \left\{ & \Phi_i^{(0)}, \Phi_i^{(1)}, \Phi_i^{(2)}, \cdots, \Phi_i^{(m)} \right\} & \mu_i + \mu_j + \alpha \neq 0 \\ & \left< \Phi_i^{(s)}, \Phi_j^{(t)} \right> = 0, (s = 0, 1, \cdots, m; t = 0, 1, \cdots, n) \\ & \left| \left< \boldsymbol{f}_1, (\boldsymbol{\mathcal{H}} + \boldsymbol{I}\alpha) \boldsymbol{f}_2 \right> = \left< \boldsymbol{f}_2, \boldsymbol{\mathcal{H}} \boldsymbol{f}_1 \right> \right| \end{split}$$

Two different sets of (infinite-dimensional space) bases are orthogonal, and the expansion also requires another set of bases to obtain the respective coefficients.

$$\begin{cases} \sin x, \cdots, \sin nx \end{cases} \quad \begin{cases} 1, \cos x, \cdots, \cos nx \end{cases} \quad \begin{cases} J_{\nu}(x) \end{cases} \quad \begin{cases} P_{n}(x) \end{cases}$$

$$f = \sum a_{i} \sin ix$$

Viscoelastic Model

Non-homogeneous terms

$$\tilde{\boldsymbol{f}}' = \sum_{i=1}^{\infty} \left[\tilde{g}_{\mu,i}(z) \tilde{\boldsymbol{\Phi}}_{\mu,i} + \tilde{g}_{-\mu,i}(z) \tilde{\boldsymbol{\Phi}}_{-\mu,i} \right]$$

particular solution $\tilde{f}^p = \sum_{i=1}^{\infty} \left[\tilde{\mathfrak{g}}_{\mu,i}(z) \tilde{\Phi}_{\mu,i} + \tilde{\mathfrak{g}}_{-\mu,i}(z) \tilde{\Phi}_{-\mu,i} \right]$

$$\begin{cases} \frac{\mathrm{d}\tilde{\mathfrak{g}}_{\mu,i}(z)}{\mathrm{d}z} = \mu_{i}\tilde{\mathfrak{g}}_{\mu,i}(z) + \tilde{g}_{\mu,i}(z) \\ \frac{\mathrm{d}\tilde{\mathfrak{g}}_{-\mu,i}(z)}{\mathrm{d}z} = -\mu_{i}\tilde{\mathfrak{g}}_{-\mu,i}(z) + \tilde{g}_{-\mu,i}(z) \end{cases} \qquad \begin{cases} \tilde{g}_{\mu,i}(z) = \left\langle \tilde{\boldsymbol{f}}', \tilde{\Omega}_{-\mu,i} \right\rangle \\ \tilde{g}_{-\mu,i}(z) = \left\langle \tilde{\boldsymbol{f}}', \tilde{\Omega}_{\mu,i} \right\rangle \end{cases}$$

complete solution
$$\ \, \hat{\widehat{f}} = \hat{\widehat{f}}^g + \hat{\widehat{f}}^g$$

$$\begin{split} &= \sum_{i=1}^{\infty} (\tilde{m}_{\mu,i} \tilde{\hat{f}}_{\mu,i} + \tilde{m}_{-\mu,i} \tilde{\hat{f}}_{-\mu,i}) + \sum_{i=1}^{\infty} \left[\tilde{\mathfrak{g}}_{\mu,i}(z) \mathcal{M} \tilde{\Phi}_{\mu,i} + \tilde{\mathfrak{g}}_{-\mu,i}(z) \mathcal{M} \tilde{\Phi}_{-\mu,i} \right] \\ &= \sum_{i=1}^{\infty} \left\{ \left[\tilde{m}_{\mu,i} + \tilde{m}_{\mu,i}^{*}(z) \right] \tilde{\hat{f}}_{\mu,i} + \left[\tilde{m}_{-\mu,i} + \tilde{m}_{-\mu,i}^{*}(z) \right] \tilde{\hat{f}}_{-\mu,i} \right\} \end{split}$$

$$=\sum_{i=1}^{\infty} \left[(\tilde{m}_{\mu,i}^{\mathrm{Re}} \mathrm{Re} \hat{\tilde{\boldsymbol{f}}}_{\mu,i}^{i} + \tilde{m}_{\mu,i}^{\mathrm{Im}} \mathrm{Im} \hat{\tilde{\boldsymbol{f}}}_{\mu,i}^{i}) + (\tilde{m}_{-\mu,i}^{\mathrm{Re}} \mathrm{Re} \hat{\tilde{\boldsymbol{f}}}_{-\mu,i}^{i} + \tilde{m}_{-\mu,i}^{\mathrm{Im}} \mathrm{Im} \hat{\tilde{\boldsymbol{f}}}_{-\mu,i}^{i}) \right] + \hat{\tilde{\boldsymbol{f}}}_{\mathrm{R}}^{p}$$

where

$$\begin{cases} \tilde{\mathfrak{g}}_{\mu,i}(z) = e^{\mu_i z} \tilde{m}_{\mu,i}^*(z) = e^{\mu_i z} \int_0^z e^{-\mu_i \zeta} \tilde{g}(\zeta) d\zeta \\ \tilde{\mathfrak{g}}_{-\mu,i}(z) = e^{-\mu_i z} \tilde{m}_{-\mu,i}^*(z) = e^{-\mu_i z} \int_0^z e^{\mu_i \zeta} \tilde{g}(\zeta) d\zeta \end{cases}$$

$$\tilde{\hat{\boldsymbol{f}}}_{\mathrm{R}}^{p} = \sum_{i=1}^{\infty} \Bigl\{ 2 \operatorname{Re}[\tilde{m}_{\mu,i}^{*}(z)] \operatorname{Re} \tilde{\hat{\boldsymbol{f}}}_{\mu,i} - 2 \operatorname{Im}[\tilde{m}_{\mu,i}^{*}(z)] \operatorname{Im} \tilde{\hat{\boldsymbol{f}}}_{\mu,i} + 2 \operatorname{Re}[\tilde{m}_{-\mu,i}^{*}(z)] \operatorname{Re} \tilde{\hat{\boldsymbol{f}}}_{-\mu,i} - 2 \operatorname{Im}[\tilde{m}_{-\mu,i}^{*}(z)] \operatorname{Im} \tilde{\hat{\boldsymbol{f}}}_{-\mu,i} \Bigr\}$$

43

VISCOELASTIC MODEL

Hamiltonian mixed energy variational principle

$$\delta \left\{ \int_{0}^{h} \int_{-l}^{l} \left[\tilde{\tilde{\boldsymbol{p}}}^{\mathrm{T}} \frac{\partial \tilde{\tilde{\boldsymbol{q}}}}{\partial z} - H(\tilde{\boldsymbol{q}}, \tilde{\tilde{\boldsymbol{p}}}) \right] \mathrm{d}x \mathrm{d}z - \int_{\Gamma_{\tilde{\boldsymbol{q}}_{h}}} \left[\tilde{\tilde{\boldsymbol{p}}}^{\mathrm{T}} (\tilde{\tilde{\boldsymbol{q}}} - \tilde{\tilde{\boldsymbol{q}}}_{h}) \right] \mathrm{d}x \right.$$
$$\left. - \int_{\Gamma_{\tilde{\boldsymbol{p}}_{h}}} \left[\tilde{\tilde{\boldsymbol{p}}}^{\mathrm{T}} \tilde{\tilde{\boldsymbol{q}}} \right] \mathrm{d}x + \int_{\Gamma_{\tilde{\boldsymbol{q}}_{0}}} \left[\tilde{\tilde{\boldsymbol{p}}}^{\mathrm{T}} (\tilde{\tilde{\boldsymbol{q}}} - \tilde{\tilde{\boldsymbol{q}}}_{0}) \right] \mathrm{d}x + \int_{\Gamma_{\tilde{\boldsymbol{p}}_{0}}} \left[\tilde{\tilde{\boldsymbol{p}}}^{\mathrm{T}} \tilde{\tilde{\boldsymbol{q}}} \right] \mathrm{d}x \right\} = 0$$

$$\begin{split} &\int_{\Gamma_{\tilde{\pmb{p}}_h}} \left[(\sum_{i=1}^\infty \delta \tilde{m}_i \tilde{\hat{\pmb{q}}}_i)^\mathrm{T} (\tilde{\hat{\pmb{p}}}_\mathrm{R}^p + \sum_{j=1}^\infty \tilde{m}_j \tilde{\hat{\pmb{p}}}_j - \tilde{\tilde{\pmb{p}}}_h) \right] \mathrm{d}x - \int_{\Gamma_{\tilde{\pmb{q}}_h}} \left[(\sum_{i=1}^\infty \delta \tilde{m}_i \tilde{\hat{\pmb{p}}}_i)^\mathrm{T} (\tilde{\hat{\pmb{q}}}_\mathrm{R}^p + \sum_{j=1}^\infty \tilde{m}_j \tilde{\hat{\pmb{q}}}_j - \tilde{\tilde{\pmb{q}}}_h) \right] \mathrm{d}x \\ &+ \int_{\Gamma_{\tilde{\pmb{q}}_0}} \left[(\sum_{i=1}^\infty \delta \tilde{m}_i \tilde{\hat{\pmb{p}}}_i)^\mathrm{T} (\tilde{\hat{\pmb{q}}}_\mathrm{R}^p + \sum_{j=1}^\infty \tilde{m}_j \tilde{\hat{\pmb{q}}}_j - \tilde{\tilde{\pmb{q}}}_0) \right] \mathrm{d}x - \int_{\Gamma_{\tilde{\pmb{p}}_0}} \left[(\sum_{i=1}^\infty \delta \tilde{m}_i \tilde{\hat{\pmb{q}}}_i)^\mathrm{T} (\tilde{\hat{\pmb{p}}}_\mathrm{R}^p + \sum_{j=1}^\infty \tilde{m}_j \tilde{\hat{\pmb{p}}}_j - \tilde{\tilde{\pmb{p}}}_0) \right] \mathrm{d}x = 0 \end{split}$$

$$\begin{split} & \tilde{\mathcal{P}}_{ij} = \int_{\Gamma_{\tilde{p}_h}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_j \right] \mathrm{d}x - \int_{\Gamma_{\tilde{q}_h}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_j \right] \mathrm{d}x + \int_{\Gamma_{\tilde{q}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_j \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_j \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_h}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h \right] \mathrm{d}x - \int_{\Gamma_{\tilde{q}_h}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_h \right] \mathrm{d}x + \int_{\Gamma_{\tilde{q}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_0 \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_0 \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_h}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{q}_h}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_h^{p} \right] \mathrm{d}x + \int_{\Gamma_{\tilde{q}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_h}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{q}_h}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_h^{p} \right] \mathrm{d}x + \int_{\Gamma_{\tilde{q}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{q}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{q}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{q}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x - \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i = \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x + \int_{\Gamma_{\tilde{p}_0}} \left[(\tilde{\tilde{p}}_i)^{\mathrm{T}} \, \tilde{\tilde{p}}_h^{p} \right] \mathrm{d}x \\ & \tilde{\mathcal{P}}_i$$

Viscoelastic Model

Example

$$\begin{cases} s_{ij} = 2G(x,t) * d\widehat{e}_{ij}(t) = 2\int_0^t G(x,t-\tau) \frac{d\widehat{e}_{ij}(\tau)}{d\tau} d\tau \\ \sigma_{kk} = 3K(x,t) * d\widehat{\varepsilon}_{ij}(t) = 3\int_0^t K(x,t-\tau) \frac{d\widehat{\varepsilon}_{kk}(\tau)}{d\tau} d\tau \end{cases}$$

$$\begin{cases} G(x,t) = \mathfrak{G}(t)\mathrm{e}^{\beta x} = [\mathfrak{G}_{\infty} + \sum_{i=1}^{N} \mathfrak{G}_{i} \mathrm{e}^{-\frac{t}{\hat{\tau}_{1i}}}]\mathrm{e}^{\beta x} \\ K(x,t) = \mathfrak{K}(t)\mathrm{e}^{\beta x} = [\mathfrak{K}_{\infty} + \sum_{i=1}^{N} \mathfrak{K}_{i} \mathrm{e}^{-\frac{t}{\hat{\tau}_{2i}}}]\mathrm{e}^{\beta x} \end{cases}$$

$$\frac{\partial}{\partial z} \begin{bmatrix} \tilde{u}_z \\ \tilde{u}_x \\ \tilde{\sigma}_{zz} \\ \tilde{\sigma}_{xz} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{\mathfrak{A}_2}{\mathfrak{A}_1} \frac{\partial}{\partial x} & \frac{1}{\omega \mathfrak{A}_1} & 0 \\ -\frac{\partial}{\partial x} & 0 & 0 & \frac{1}{\omega \tilde{\mathfrak{G}}} \\ 0 & 0 & 0 & -\left(\frac{\partial}{\partial x} + \beta\right) \end{bmatrix} \begin{bmatrix} \tilde{u}_z \\ \tilde{u}_x \\ \tilde{\sigma}_{zz} \\ \tilde{\sigma}_{xz} \end{bmatrix}$$

$$0 - \omega \frac{\mathfrak{A}_1^2 - \mathfrak{A}_2^2}{\mathfrak{A}_1} \left(\frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial x} \right) \left[-\frac{\mathfrak{A}_2}{\mathfrak{A}_1} \left(\frac{\partial}{\partial x} + \beta \right) & 0 \end{bmatrix}$$

Numerical Results and Finite Element Analyses

Comparison

FIGURE 12. Comparison between FEA results and analytical solutions

2025/1/1

Numerical Results and Finite Element Analyses

Comparison

FIGURE 12. Comparison between FEA results and analytical solutions

NUMERICAL RESULTS AND FINITE ELEMENT ANALYSES

Numerical results

0.016 homogeneous-viscoelastic finite plane 0.014 0.012 0.014 0.008 0.008 0.000 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 $d_t/(\mathrm{m})$

- inhomogeneous-viscoelastic finite plane

FIGURE 13. Stress relaxation

FIGURE 14. Indentation curve

2025/1/1

NUMERICAL RESULTS AND FINITE ELEMENT ANALYSES

Numerical results

FIGURE 15. Case of multi-indenter

Background

FIGURE 16. Horizontally graded plane

Basic formulation

$$\frac{\partial}{\partial y} \begin{cases} u_x \\ u_y \\ \frac{\partial}{\partial z} \\ \hat{\sigma}_{yy} \\ \hat{m}_{yz} \end{cases} = \begin{bmatrix} 0 & \frac{\partial}{\partial x} & -2 & 0 & 0 & 0 \\ -\frac{\nu}{1-\nu}\frac{\partial}{\partial x} & 0 & 0 & 0 & \frac{(1+\nu)(1-2\nu)}{E_0(1-\nu)} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1+\nu}{2E_0\ell^2} \\ 0 & 0 & 0 & 0 & 0 & -\frac{\nu}{1-\nu}\left(\frac{\partial}{\partial x} + \beta\right) & 0 & 0 \\ 0 & -\frac{2E_0}{1+\nu}\left(\frac{\partial^2}{\partial x^2} + \beta\frac{\partial}{\partial x}\right) & \frac{2E_0}{1+\nu}\left(\frac{\partial}{\partial x} + \beta\right) & 0 & 0 \\ 0 & -\frac{2E_0}{1+\nu}\frac{\partial}{\partial x} & -\frac{2E_0\ell^2}{1+\nu}\left(\frac{\partial^2}{\partial x^2} + \beta\frac{\partial}{\partial x}\right) + \frac{2E_0}{1+\nu} & 2 & 0 & 0 \end{bmatrix}$$

$$\mathcal{H} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \qquad \mathbf{A} = -\lim_{\beta \to 0} \mathbf{D}^{T}, \mathbf{B} = \mathbf{B}^{T}, \lim_{\beta \to 0} \mathbf{C} = \lim_{\beta \to 0} \mathbf{C}^{T}$$

Eigenvectors

$$\boxed{\left\langle \boldsymbol{f}_{1},\boldsymbol{\mathcal{H}}\boldsymbol{f}_{2}\right\rangle = \left\langle \boldsymbol{f}_{2},\boldsymbol{\mathcal{H}}\boldsymbol{f}_{1}\right\rangle - \beta\left\langle \boldsymbol{f}_{1}^{*},\boldsymbol{f}_{2}^{*}\right\rangle}$$

$$\begin{cases} \frac{\mathrm{d}\,u_y(x)}{\mathrm{d}\,x} - 2\omega_z(x) = \mu u_x(x) \\ -\frac{\nu}{1-\nu} \frac{\mathrm{d}\,u_x(x)}{\mathrm{d}\,x} + \frac{(1+\nu)(1-2\nu)}{E_0(1-\nu)} \hat{\sigma}_{yy}(x) = \mu u_y(x) \\ \frac{1+\nu}{2E_0\ell^2} \hat{m}_{yz}(x) = \mu \omega_z(x) \\ -\frac{E_0}{1-\nu^2} \frac{\mathrm{d}^2u_x(x)}{\mathrm{d}\,x^2} - \frac{\nu}{1-\nu} \frac{\mathrm{d}\hat{\sigma}_{yy}(x)}{\mathrm{d}\,x} - \beta \left(\frac{E_0}{1-\nu^2} \frac{\mathrm{d}\,u_x(x)}{\mathrm{d}\,x} + \frac{\nu}{1-\nu} \hat{\sigma}_{yy}(x) \right) = \mu \hat{\sigma}_{yx}(x) \\ -\frac{2E_0}{1+\nu} \left(\frac{\mathrm{d}^2u_y(x)}{\mathrm{d}\,x^2} - \frac{\mathrm{d}\omega_z(x)}{\mathrm{d}\,x} \right) + \frac{\mathrm{d}\hat{\sigma}_{yx}(x)}{\mathrm{d}\,x} - \beta \left[\frac{2E_0}{1+\nu} \left(\frac{\mathrm{d}\,u_y(x)}{\mathrm{d}\,x} - \omega_z(x) \right) - \hat{\sigma}_{yx}(x) \right] = \mu \hat{\sigma}_{yy}(x) \\ -\frac{2E_0\ell^2}{1+\nu} \frac{\mathrm{d}^2\omega_z(x)}{\mathrm{d}\,x^2} - \beta \frac{2E_0\ell^2}{1+\nu} \frac{\mathrm{d}\omega_z(x)}{\mathrm{d}\,x} + \frac{2E_0}{1+\nu} \omega_z(x) + 2\hat{\sigma}_{yx}(x) - \frac{2E_0}{1+\nu} \frac{\mathrm{d}\,u_y(x)}{\mathrm{d}\,x} = \mu \hat{m}_{yz}(x) \end{cases}$$

$$\begin{split} &\eta^{6} + 3\beta\eta^{5} + \left[3\left(\beta^{2} + \mu^{2}\right) - \frac{1}{\ell^{2}}\right]\eta^{4} + \left[\left(\beta^{2} + 6\mu^{2}\right) - \frac{2}{\ell^{2}}\right]\beta\eta^{3} + \left[\beta^{2}\left(\mu^{2}\frac{3 - 2\nu}{1 - \nu} - \frac{1}{\ell^{2}}\right) + \mu^{2}\left(3\mu^{2} - \frac{2}{\ell^{2}}\right)\right]\eta^{2} \\ &+ \left(\frac{\beta^{2}\nu}{1 - \nu} + 3\mu^{2} - \frac{2}{\ell^{2}}\right)\beta\mu^{2}\eta + \frac{\beta^{2}\mu^{2}\nu + \mu^{4}\left(\beta^{2}\ell^{2}\nu + \nu - 1\right) + \ell^{2}\mu^{6}(1 - \nu)}{\ell^{2}(1 - \nu)} = 0 \end{split}$$

Couple Stress Model

Complete solutions

$$\begin{cases} \mathcal{H}\Phi_{n}^{(0)} = \mu_{n}\Phi_{n}^{(0)} \\ \mathcal{H}\Phi_{n}^{(r+1)} = \mu_{n}\Phi_{n}^{(r+1)} + \Phi_{n}^{(r)} \end{cases} & \text{or} \quad \left(\mathcal{H} - \mu_{n}\mathbf{I}_{6}\right)^{r+1}\Phi_{n}^{(r)} = 0 \\ (r = 0, 1, \cdots, N_{n} - 1) \end{cases}$$

$$\tilde{f} = \mathcal{M}f$$

$$= \sum_{n=1}^{6} \gamma_{0,n}\tilde{f}_{0,n} + \sum_{n=1}^{\infty} \sum_{i=0}^{N_{n}} \left(\gamma_{\mu,n}^{\mathrm{Re},i} \mathrm{Re}\tilde{f}_{\mu,n}^{(i)} + \gamma_{\mu,n}^{\mathrm{Im},i} \mathrm{Im}\tilde{f}_{\mu,n}^{(i)} + \gamma_{-\mu,n}^{\mathrm{Re},i} \mathrm{Re}\tilde{f}_{-\mu,n}^{(i)} + \gamma_{-\mu,n}^{\mathrm{Im},i} \mathrm{Im}\tilde{f}_{-\mu,n}^{(i)}\right)$$

$$\equiv \sum_{n=1}^{\infty} \gamma_{n}\tilde{f}_{n}$$

$$\boxed{f_{\mu,n}^{(i)} = e^{\mu_{n}y} \left[\Phi_{n}^{(i)} + y\Phi_{n}^{(i-1)} + \dots + \frac{y^{i}}{i!}\Phi_{n}^{(0)}\right]}$$

$$y = h, \begin{cases} u_{x} = 0 \\ u_{y} = 0; \\ u_{y} = 0; \end{cases} y = 0, \end{cases}$$

$$\begin{bmatrix} u_{y} = d & x \in [a,b] \\ u_{x} = 0 & x \in [a,b] \\ u_{z} = 0 & x \in [a,b] \\ \sigma_{yy} = 0 & x \in [-L,a] \cup [b,L] \\ \sigma_{yx} = 0 & x \in [-L,a] \cup [b,L] \end{cases}$$
No-slip indentation
$$\sigma_{yx} = 0 \quad x \in [-L,a] \cup [b,L]$$

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

Lizichen Chen (Zhejiang University)

53

Local phase transition

Couple Stress Model

Results

FIGURE 18. Examples of symplectic solutions for displacements and stresses.

Commutator

If we assume $N_n = 2$

$$\begin{cases} \mathcal{H}\Phi_{n}^{(0)} = \mu_{n}\Phi_{n}^{(0)} \\ \mathcal{H}\Phi_{n}^{(1)} = \mu_{n}\Phi_{n}^{(1)} + \Phi_{n}^{(0)} \\ \mathcal{H}\Phi_{n}^{(2)} = \mu_{n}\Phi_{n}^{(2)} + \Phi_{n}^{(1)} \end{cases} \qquad \begin{cases} \Phi_{n}^{(1)} = \mathbf{Q}_{n}^{(1)}\Phi_{n}^{(0)} \\ \Phi_{n}^{(2)} = \mathbf{Q}_{n}^{(2)}\Phi_{n}^{(1)} \end{cases}$$

$$\begin{cases} \boldsymbol{\Phi}_n^{(1)} = \boldsymbol{Q}_n^{(1)} \boldsymbol{\Phi}_n^{(0)} \\ \boldsymbol{\Phi}_n^{(2)} = \boldsymbol{Q}_n^{(2)} \boldsymbol{\Phi}_n^{(1)} \end{cases}$$

Evolution metrices

$$\begin{cases} \boldsymbol{Q}_n^{(1)} \boldsymbol{\mathcal{H}} \boldsymbol{\Phi}_n^{(0)} = \boldsymbol{\mu}_n \boldsymbol{Q}_n^{(1)} \boldsymbol{\Phi}_n^{(0)} \\ \boldsymbol{\mathcal{H}} \boldsymbol{Q}_n^{(1)} \boldsymbol{\Phi}_n^{(0)} = \boldsymbol{\mu}_n \boldsymbol{Q}_n^{(1)} \boldsymbol{\Phi}_n^{(0)} + \boldsymbol{\Phi}_n^{(0)} \end{cases}$$

$$\boxed{\left(\left[\mathbf{\mathcal{H}}, \mathbf{\mathcal{Q}}_{n}^{(1)} \right] - \mathbf{I}_{6} \right) \Phi_{n}^{(0)} = 0}$$

$$\left[\left[\left(\mathbf{\mathcal{H}} - \boldsymbol{\mu}_n \mathbf{I}_6 \right), \boldsymbol{Q}_n^{(2)} \right] \boldsymbol{\Phi}_n^{(1)} = \left(\boldsymbol{Q}_n^{(1)} - \boldsymbol{Q}_n^{(2)} \right) \boldsymbol{\Phi}_n^{(0)} \right]$$

where $\|\mathcal{H}, \mathbf{Q}_n^{(1)}\| = \mathcal{H}\mathbf{Q}_n^{(1)} - \mathbf{Q}_n^{(1)}\mathcal{H}$ is a commutator (对易子)

Film-substrate system & variable coefficients

$$\left\langle oldsymbol{f}_{k}^{lpha}, oldsymbol{\mathcal{H}}_{k}^{x} oldsymbol{f}_{k}^{eta}
ight
angle = \left\langle oldsymbol{f}_{k}^{eta}, oldsymbol{\mathcal{H}}_{k}^{x} oldsymbol{f}_{k}^{lpha}
ight
angle$$

$$oldsymbol{\mathcal{H}}_{k}^{x} = egin{bmatrix} \mathbf{A}_{k}^{x} & \mid & \mathbf{B}_{k}^{x} \ \mathbf{D}_{k}^{artheta_{x}} & \mid & -ig(\mathbf{A}_{k}^{artheta_{x}}ig)^{\mathcal{T}} \end{bmatrix}$$

$$\mathbf{A}_{k}^{x} = \begin{bmatrix} 0 & -\frac{\partial}{\partial x} & -a_{1:k}(x)\frac{\partial}{\partial x} & -a_{2:k}(x)\frac{\partial}{\partial x} \\ -a_{4:k}(x)\frac{\partial}{\partial x} & 0 & 0 & 0 \\ a_{8:k}(x)\frac{\partial}{\partial x} & 0 & 0 & 0 \\ a_{1:k}(x)\frac{\partial}{\partial x} & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{B}_{k}^{x} = \begin{bmatrix} a_{3:k}(x) & 0 & 0 & 0 \\ 0 & a_{5:k}(x) & a_{6:k}(x) & a_{7:k}(x) \\ 0 & a_{6:k}(x) & -a_{9:k}(x) & a_{10:k}(x) \\ 0 & a_{7:k}(x) & a_{10:k}(x) & -a_{12:k}(x) \end{bmatrix}$$

$$\mathbf{D}_{k}^{\theta_{x}} = \begin{bmatrix} a_{13;k}(x) \frac{\partial^{2}}{\partial x^{2}} + \frac{\mathrm{d}a_{13;k}(x)}{\mathrm{d}x} \frac{\partial}{\partial x} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & a_{14;k}(x) \frac{\partial^{2}}{\partial x^{2}} + \frac{\mathrm{d}a_{14;k}(x)}{\mathrm{d}x} \frac{\partial}{\partial x} & a_{15;k}(x) \frac{\partial^{2}}{\partial x^{2}} + \frac{\mathrm{d}a_{15;k}(x)}{\mathrm{d}x} \frac{\partial}{\partial x} \\ 0 & 0 & a_{15;k}(x) \frac{\partial^{2}}{\partial x^{2}} + \frac{\mathrm{d}a_{15;k}(x)}{\mathrm{d}x} \frac{\partial}{\partial x} & a_{16;k}(x) \frac{\partial^{2}}{\partial x^{2}} + \frac{\mathrm{d}a_{16;k}(x)}{\mathrm{d}x} \frac{\partial}{\partial x} \end{bmatrix}$$

$$-\left(\mathbf{A}_{k}^{\vartheta_{k}}\right)^{T} = \begin{bmatrix} 0 & -a_{4;k}(x)\frac{\partial}{\partial x} - \frac{\mathrm{d}a_{4;k}(x)}{\mathrm{d}x} & a_{8;k}(x)\frac{\partial}{\partial x} + \frac{\mathrm{d}a_{8;k}(x)}{\mathrm{d}x} & a_{11;k}(x)\frac{\partial}{\partial x} + \frac{\mathrm{d}a_{11;k}(x)}{\mathrm{d}x} \\ -\frac{\partial}{\partial x} & 0 & 0 & 0 \\ -a_{1;k}(x)\frac{\partial}{\partial x} - \frac{\mathrm{d}a_{1;k}(x)}{\mathrm{d}x} & 0 & 0 & 0 \\ -a_{2;k}(x)\frac{\partial}{\partial x} - \frac{\mathrm{d}a_{2;k}(x)}{\mathrm{d}x} & 0 & 0 & 0 \end{bmatrix}$$

Assumptions & Jordan chain

According to Weierstrass approximation theorem, the coefficient functions can be uniformly approximated on $x \in [-l, l]$ by polynomials to any degree of accuracy.

$$\vartheta_{ij;k}(x) = \sum_{r=0}^{\infty} \vartheta_{ij;k}^{(r)} x^r \quad (k=1,2)$$

Positive valued assumption: concerning the properties of the materials, we may further assume that no zero of the coefficient functions exists (i.e., coefficient functions remain positive or negative), which indicates the absence of the singularities in that interval.

$$\det\begin{bmatrix} a_{5;k}(0) & a_{6;k}(0) & a_{7;k}(0) \\ a_{6;k}(0) & -a_{9;k}(0) & a_{10;k}(0) \\ a_{7;k}(0) & a_{10;k}(0) & -a_{12;k}(0) \end{bmatrix} \neq 0, \quad \frac{c_{13;k}(0)}{c_{11;k}(0)} \begin{Bmatrix} \frac{c_{11;k}(0)}{c_{13;k}(0)} - a_{4;k}(0) \\ a_{8;k}(0) \\ a_{11;k}(0) \end{Bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

BITRARY GRADIENT

General eigenvalues & eigen-solutions

$$u_{1} = \sum_{r=0}^{\infty} \tilde{A}_{1}^{(r)} x^{r}, \qquad w_{1} = \sum_{r=0}^{\infty} \tilde{B}_{1}^{(r)} x^{r}, \qquad \phi_{1} = \sum_{r=0}^{\infty} \tilde{C}_{1}^{(r)} x^{r}, \qquad \psi_{1} = \sum_{r=0}^{\infty} \tilde{D}_{1}^{(r)} x^{r}$$

$$\int \tau_{1} dx = \sum_{r=0}^{\infty} \tilde{E}_{1}^{(r)} x^{r}, \qquad \int \sigma_{1} dx = \sum_{r=0}^{\infty} \tilde{F}_{1}^{(r)} x^{r}, \qquad \int D_{1} dx = \sum_{r=0}^{\infty} \tilde{G}_{1}^{(r)} x^{r}, \qquad \int B_{1} dx = \sum_{r=0}^{\infty} \tilde{H}_{1}^{(r)} x^{r}$$

$$\begin{cases} (r+1)\tilde{A}_{1}^{(r+1)} = -\mu_{1} \Biggl\{ \sum_{s=0}^{r} a_{17;1}^{(s)} \tilde{B}_{1}^{(r-s)} + \sum_{s=0}^{r} a_{18;1}^{(s)} \tilde{C}_{1}^{(r-s)} + \sum_{s=0}^{r} a_{19;1}^{(s)} \tilde{D}_{1}^{(r-s)} + \sum_{s=0}^{r} a_{20;1}^{(s)} \tilde{E}_{1}^{(r-s)} \Biggr\} \\ (r+1)\tilde{B}_{1}^{(r+1)} = -\mu_{1}\tilde{A}_{1}^{(r)} + \sum_{s=0}^{r} (r+1-s)\rho_{15;1}^{(s)} \tilde{E}_{1}^{(r+1-s)} + \mu_{1} \sum_{s=0}^{r} \rho_{16;1}^{(s)} \tilde{G}_{1}^{(r-s)} + \mu_{1} \sum_{s=0}^{r} \rho_{17;1}^{(s)} \tilde{H}_{1}^{(r-s)} \\ (r+1)\tilde{C}_{1}^{(r+1)} = \sum_{s=0}^{r} (r+1-s)\rho_{10;1}^{(s)} \tilde{E}_{1}^{(r+1-s)} + \mu_{1} \sum_{s=0}^{r} \rho_{12;1}^{(s)} \tilde{H}_{1}^{(r-s)} - \mu_{1} \sum_{s=0}^{r} \rho_{13;1}^{(s)} \tilde{H}_{1}^{(r-s)} \\ (r+1)\tilde{D}_{1}^{(r+1)} = \sum_{s=0}^{r} (r+1-s)\rho_{11;1}^{(s)} \tilde{E}_{1}^{(r+1-s)} + \mu_{1} \sum_{s=0}^{r} \rho_{12;1}^{(s)} \tilde{H}_{1}^{(r-s)} - \mu_{1} \sum_{s=0}^{r} \rho_{13;1}^{(s)} \tilde{G}_{1}^{(r-s)} \\ (r+1)\tilde{E}_{1}^{(r+1)} = -\mu_{1}\tilde{F}_{1}^{(r)} \\ (r+1)\tilde{F}_{1}^{(r+1)} = \mu_{1} \left(\sum_{s=0}^{r} \rho_{18;1}^{(s)} \tilde{B}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{19;1}^{(s)} \tilde{C}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{20;1}^{(s)} \tilde{D}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{22;1}^{(s)} \tilde{E}_{1}^{(r-s)} \right) \\ (r+1)\tilde{G}_{1}^{(r+1)} = \mu_{1} \left(\sum_{s=0}^{r} \rho_{2;1}^{(s)} \tilde{B}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{5;1}^{(s)} \tilde{C}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{8;1}^{(s)} \tilde{D}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{22;1}^{(s)} \tilde{E}_{1}^{(r-s)} \right) \\ (r+1)\tilde{H}_{1}^{(r+1)} = \mu_{1} \left(\sum_{s=0}^{r} \rho_{3;1}^{(s)} \tilde{B}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{6;1}^{(s)} \tilde{C}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{9;1}^{(s)} \tilde{D}_{1}^{(r-s)} + \sum_{s=0}^{r} \rho_{23;1}^{(s)} \tilde{E}_{1}^{(r-s)} \right) \\ (r \geq 0)$$

2025/1/1

Film-substrate system

$$\begin{aligned} \boldsymbol{f}_k &= \sum_{i=1}^{10} m_{0,i;k} \boldsymbol{f}_{0,i;k} + \sum_{i=1}^{\infty} \left[(m_{\mu,i;k}^{\text{Re}} \operatorname{Re} \boldsymbol{f}_{\mu,i;k} + m_{\mu,i;k}^{\text{Im}} \operatorname{Im} \boldsymbol{f}_{\mu,i;k}) + (m_{-\mu,i;k}^{\text{Re}} \operatorname{Re} \boldsymbol{f}_{-\mu,i;k} + m_{-\mu,i;k}^{\text{Im}} \operatorname{Im} \boldsymbol{f}_{-\mu,i;k}) \right] \\ &\triangleq \sum_{i=1}^{\infty} m_{i;k} \boldsymbol{f}_{i;k} \end{aligned}$$

$$f_1(x,h_1) = f_2(x,h_1)$$

$$\begin{split} m_{i;2} &= \frac{1}{\left\langle \Phi_{i;2}, \Phi_{-i;2} \right\rangle} \sum_{j=1}^{\infty} m_{j;1} \mathrm{e}^{(\mu_{j;1} - \mu_{i;2}) h_{1}} \left\langle \Phi_{j;1}, \Phi_{-i;2} \right\rangle \\ &\triangleq \sum_{i,j}^{\infty} m_{j;1} \lambda_{ij} \\ \end{split} \qquad \lambda_{ij} &= \mathrm{e}^{(\mu_{j;1} - \mu_{i;2}) h_{1}} \left\langle \Phi_{j;1}, \Phi_{-i;2} \right\rangle \end{split}$$

$$m{f}_2 = \sum_{i=1}^{\infty} m_{i;2} m{f}_{i;2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} m_{j;1} \lambda_{ij} m{f}_{i;2} = \sum_{j=1}^{\infty} m_{j;1} \sum_{i=1}^{\infty} \lambda_{ij} m{f}_{i;2} riangleq \sum_{j=1}^{\infty} m_{j;1} ilde{m{f}}_{j;2}$$

Generalized dual Hamiltonian transformation

$$\left\langle \boldsymbol{f}^{\alpha}, \boldsymbol{\mathcal{H}}^{x} \boldsymbol{f}^{\beta} \right\rangle = \left\langle \boldsymbol{f}^{\beta}, \boldsymbol{\mathcal{H}}^{x} \boldsymbol{f}^{\alpha} \right\rangle - \left\langle \sqrt{\frac{E'(x)}{E(x)}} \left(\boldsymbol{f}^{\alpha} \right)^{*}, \sqrt{\frac{E'(x)}{E(x)}} \left(\boldsymbol{f}^{\beta} \right)^{*} \right\rangle$$

$$\left\langle \sqrt{\frac{E'(x)}{E(x)}} \left(\boldsymbol{f}^{\alpha} \right)^{*}, \sqrt{\frac{E'(x)}{E(x)}} \left(\boldsymbol{f}^{\beta} \right)^{*} \right\rangle = \int_{-l}^{l} \left[\left(\boldsymbol{f}^{\alpha} \right)^{*} \right]^{T} \mathbf{J} \left(\boldsymbol{f}^{\beta} \right)^{*} \frac{E'(x)}{E(x)} dx$$

$$= \left\langle \sqrt{\frac{E'(x)}{E(x)}} \boldsymbol{\mathcal{A}} \boldsymbol{f}^{\alpha}, \sqrt{\frac{E'(x)}{E(x)}} \boldsymbol{\mathcal{A}} \boldsymbol{f}^{\beta} \right\rangle$$

$$\triangleq \left\langle \boldsymbol{\mathcal{A}}^{\dagger} \boldsymbol{f}^{\alpha}, \boldsymbol{\mathcal{A}}^{\dagger} \boldsymbol{f}^{\beta} \right\rangle$$

$$= \int_{-l}^{l} \left(\boldsymbol{\mathcal{A}}^{\dagger} \boldsymbol{f}^{\alpha} \right)^{T} \mathbf{J} \left(\boldsymbol{\mathcal{A}}^{\dagger} \boldsymbol{f}^{\beta} \right) dx$$

$$= \int_{-l}^{l} \left(\boldsymbol{f}^{\alpha} \right)^{T} \mathbf{J} \mathbf{J}^{T} \left(\boldsymbol{\mathcal{A}}^{\dagger} \right)^{T} \mathbf{J} \boldsymbol{\mathcal{A}}^{\dagger} \boldsymbol{f}^{\beta} dx$$

$$= \int_{-l}^{l} \left(\boldsymbol{f}^{\alpha} \right)^{T} \mathbf{J} \left(\boldsymbol{\mathcal{A}}^{\dagger} \mathbf{J} \right)^{T} \left(\mathbf{J} \boldsymbol{\mathcal{A}}^{\dagger} \right) \boldsymbol{f}^{\beta} dx$$

$$\triangleq \int_{-l}^{l} \left(\boldsymbol{f}^{\alpha} \right)^{T} \mathbf{J} \boldsymbol{\mathcal{B}}^{\dagger} \boldsymbol{f}^{\beta} dx$$

$$\left\langle f^{lpha}, (\mathcal{H}^{x} + \mathcal{B}^{\dagger}) f^{eta} \right\rangle = \left\langle f^{eta}, \mathcal{H}^{x} f^{lpha} \right
angle$$

Category (范畴)

$$\frac{\mathrm{d} \mathbf{Y}(x)}{\mathrm{d} x} = \mathbf{A}(x)\mathbf{Y}(x)$$

$$\mathbf{A}(x) \cdot \int_{x_0}^x \mathbf{A}(x) \mathrm{d} x = \int_{x_0}^x \mathbf{A}(x) \mathrm{d} x \cdot \mathbf{A}(x)$$

$$\langle u_i, \phi, \psi, T \rangle \xrightarrow{f} \langle \sigma_{ij}, D_i, B_i, Q_i \rangle$$

$$\downarrow^g$$

$$\langle \mathbf{0} \rangle$$

- (1) The element \mathcal{X} in a set $\mathrm{Ob}(\mathscr{C})$ is defined as an object of \mathscr{C} , where $\mathrm{Ob}(\mathscr{C}) = \{\langle u_i, \phi, \psi, T \rangle, \langle \sigma_{ij}, D_i, B_i, Q_i \rangle, \langle \mathbf{0} \rangle \}$, and $\langle \cdot \rangle$ stands for ordered index set, elements of which are in order by index.
- (2) For every two objects $\mathcal{X}, \mathcal{Y} \in \mathcal{C}$, there is a set $\text{Hom}_{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$, in which the elements are defined morphisms from \mathcal{X} to \mathcal{Y} , let $f: \mathcal{X} \to \mathcal{Y}$ represent a morphism from \mathcal{X} to \mathcal{Y} . f is a differential operator containing material constants, and g is a divergence operator.
- (3) For every three objects $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \mathcal{C}$, there is a mapping \circ : $\operatorname{Hom}_{\mathcal{C}}(\mathcal{Y}, \mathcal{Z}) \times \operatorname{Hom}_{\mathcal{C}}(\mathcal{X}, \mathcal{Y}) \to \operatorname{Hom}_{\mathcal{C}}(\mathcal{X}, \mathcal{Z})$.

Quasi-Hamiltonian operator (variable coefficients)

$$\mathcal{H}^{x} = \begin{bmatrix} \mathbf{A}^{x} & \mathbf{B}^{x} \\ \mathbf{D}^{\theta_{x}} & -(\mathbf{A}^{\theta_{x}})^{\mathcal{T}} \end{bmatrix} \quad \text{variable coefficients}$$

- 1. Magnus expansion
- 2. Frobenius method

2. Frobenius method
$$\boldsymbol{Y}(x) = \exp(\Omega(x, x_0)) \, \boldsymbol{Y}_0$$

$$\Omega_n(x) = \sum_{j=1}^{n-1} \frac{B_j}{j!} \sum_{\substack{k_1 + \dots + k_j = n-1 \\ k_1 \ge 1, \dots k_j \ge 1}} \int_0^x \operatorname{ad}_{\Omega_{k_1}(X)} \operatorname{ad}_{\Omega_{k_2}(X)} \dots \operatorname{ad}_{\Omega_{k_j}(X)} \mathcal{A}(X) dX$$

adjoint endomorphism (伴随自同态)

Contact region determination

Shape function
$$R - \sqrt{R^2 - (x - x_0)^2}$$

Contact region $x \in [x_0 - l_1, x_0 + l_2]$

JKR Model

$$\left|d_{ac} = d_{\scriptscriptstyle h} - d_{\scriptscriptstyle ad}\right|$$

$$\tilde{\boldsymbol{f}}(x,z;l_{1},l_{2}) = \sum_{i=1}^{\infty} m_{i}(l_{1},l_{2})\tilde{\boldsymbol{f}}_{i}(x,z) = \sum_{i=1}^{\infty} m_{i}(l_{1},l_{2})\boldsymbol{\mathcal{M}}\boldsymbol{f}_{i}(x,z)$$

$$\begin{split} U &= \int_{-l}^{l} \int_{0}^{h} \frac{1}{2} \left(\sigma_{xx} \varepsilon_{x} + \sigma_{zz} \varepsilon_{z} + \sigma_{xz} \gamma_{xz} \right) \mathrm{d}z \mathrm{d}x \\ &= \int_{-l}^{l} \int_{0}^{h} \frac{1}{2} \left[\left(E(x) \frac{\partial \tilde{\mathbf{f}}_{|2}}{\partial x} + \nu_{0} \tilde{\mathbf{f}}_{|3} \right) \frac{\partial \tilde{\mathbf{f}}_{|2}}{\partial x} + \tilde{\mathbf{f}}_{|3} \frac{\partial \tilde{\mathbf{f}}_{|1}}{\partial z} + \tilde{\mathbf{f}}_{|4} \left(\frac{\partial \tilde{\mathbf{f}}_{|2}}{\partial z} + \frac{\partial \tilde{\mathbf{f}}_{|1}}{\partial x} \right) \right] \mathrm{d}z \mathrm{d}x \end{split}$$

$$\frac{\partial U}{\partial l_1} = \Delta \gamma, \quad \frac{\partial U}{\partial l_2} = \Delta \gamma$$

Contact region determination

$$\begin{split} &\frac{\partial U}{\partial l_1} = \sum_{s=1}^{\infty} \frac{\partial U}{\partial m_s} \frac{\partial m_s}{\partial l_1} \\ &= \sum_{s=1}^{\infty} \frac{\partial \left[\int_{-l}^{l} \int_{0}^{h} \frac{1}{2} \left[\left[E(x) \sum_{i=1}^{\infty} m_i \frac{\partial \tilde{f}_{i|2}}{\partial x} + \nu_0 \sum_{i=1}^{\infty} m_i \frac{\partial \tilde{f}_{i|2}}{\partial x} \right] + \left(\sum_{i=1}^{\infty} m_i \tilde{f}_{i|3} \right) \left[\sum_{i=1}^{\infty} m_i \frac{\partial \tilde{f}_{i|1}}{\partial z} \right] + \left(\sum_{i=1}^{\infty} m_i \tilde{f}_{i|4} \right) \left[\sum_{i=1}^{\infty} m_i \tilde{f}_{i|4} \right] \left(\sum_{i=1}^{\infty} m_i \frac{\partial \tilde{f}_{i|2}}{\partial x} + \sum_{i=1}^{\infty} m_i \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) \right] dx dx \right]} \\ &= \sum_{s=1}^{\infty} \frac{\partial \left[\int_{-l}^{l} \int_{0}^{h} \left[\sum_{i=1}^{\infty} \left[E(x) \frac{\partial \tilde{f}_{i|2}}{\partial x} + \nu_0 \tilde{f}_{i|3} \right] m_i \cdot \sum_{i=1}^{\infty} \tilde{f}_{i|3} m_i \cdot \sum_{i=1}^{\infty} \frac{\partial \tilde{f}_{i|1}}{\partial z} m_i + \sum_{i=1}^{\infty} \tilde{f}_{i|4} m_i \cdot \sum_{i=1}^{\infty} \left[\frac{\partial \tilde{f}_{i|2}}{\partial x} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right] m_i \right] dx dx \right]} \frac{\partial m_s}{\partial l_1} \\ &= \frac{1}{2} \sum_{s=1}^{\infty} \left[\int_{-l}^{l} \int_{0}^{h} \left[E(x) \frac{\partial \tilde{f}_{i|2}}{\partial x} + \nu_0 \tilde{f}_{i|3} \right] \cdot \sum_{i=1}^{\infty} \frac{\partial \tilde{f}_{i|2}}{\partial x} m_i + \frac{\partial \tilde{f}_{i|2}}{\partial x} \sum_{i=1}^{\infty} \left[E(x) \frac{\partial \tilde{f}_{i|2}}{\partial x} + \nu_0 \tilde{f}_{i|3} \right] m_i + \tilde{f}_{i|3} \cdot \sum_{i=1}^{\infty} \frac{\partial \tilde{f}_{i|1}}{\partial z} m_i + \frac{\partial \tilde{f}_{i|1}}{\partial z} \cdot \sum_{i=1}^{\infty} \left[\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right] m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial x} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|1}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z} + \frac{\partial \tilde{f}_{i|2}}{\partial z} \right) m_i + \left(\frac{\partial \tilde{f}_{i|2}}{\partial z$$

Contact region determination

$$\varpi_{si} = \frac{1}{2} \int_{-l}^{l} \int_{0}^{h} \left[E(x) \frac{\partial \tilde{\boldsymbol{f}}_{s|2}}{\partial x} + \nu_{0} \tilde{\boldsymbol{f}}_{s|3} \right] \frac{\partial \tilde{\boldsymbol{f}}_{i|2}}{\partial x} + \frac{\partial \tilde{\boldsymbol{f}}_{s|2}}{\partial x} \left[E(x) \frac{\partial \tilde{\boldsymbol{f}}_{i|2}}{\partial x} + \nu_{0} \tilde{\boldsymbol{f}}_{i|3} \right] + \tilde{\boldsymbol{f}}_{s|3} \frac{\partial \tilde{\boldsymbol{f}}_{i|1}}{\partial z} + \frac{\partial \tilde{\boldsymbol{f}}_{s|1}}{\partial z} \tilde{\boldsymbol{f}}_{i|3} + \tilde{\boldsymbol{f}}_{s|4} \left[\frac{\partial \tilde{\boldsymbol{f}}_{i|2}}{\partial z} + \frac{\partial \tilde{\boldsymbol{f}}_{s|1}}{\partial x} \right] + \left(\frac{\partial \tilde{\boldsymbol{f}}_{s|2}}{\partial z} + \frac{\partial \tilde{\boldsymbol{f}}_{s|1}}{\partial x} \right] \tilde{\boldsymbol{f}}_{i|4} \right] dz dx$$

$$\begin{split} \frac{\partial m_s}{\partial l_1} &= \frac{\partial \mathcal{A}_{si}^{-1}}{\partial l_1} \mathcal{H}_i + \mathcal{A}_{si}^{-1} \frac{\partial \mathcal{H}_i}{\partial l_1} \\ &= -\mathcal{A}_{si}^{-1} \frac{\partial \mathcal{A}_{is}}{\partial l_1} \mathcal{A}_{si}^{-1} \mathcal{H}_i + \mathcal{A}_{si}^{-1} \frac{\partial \mathcal{H}_i}{\partial l_1} \end{split}$$

$$\begin{cases} \frac{\partial \mathcal{L}_{is}}{\partial l_{1}} = \frac{\partial}{\partial l_{1}} \left\{ \int_{x_{0} - l_{1}}^{x_{0} + l_{2}} \left[\left(\hat{\sigma}_{zz} \right)_{i} \left(u_{z} \right)_{s} \right]_{z=0} dx - \int_{-l}^{x_{0} - l_{1}} \left[\left(u_{z} \right)_{i} \left(\hat{\sigma}_{zz} \right)_{j} \right]_{z=0} dx \right\} \\ = \left[\hat{\sigma}_{zz} \left(x_{0} - l_{1}, 0 \right) \right]_{i} \left[u_{z} \left(x_{0} - l_{1}, 0 \right) \right]_{s} + \left[u_{z} \left(x_{0} - l_{1}, 0 \right) \right]_{i} \left[\hat{\sigma}_{zz} \left(x_{0} - l_{1}, 0 \right) \right]_{s} \\ \frac{\partial \mathcal{H}_{i}}{\partial l_{1}} = \frac{\partial}{\partial l_{1}} \left\{ \int_{x_{0} - l_{1}}^{x_{0} + l_{2}} \left[\left\{ d_{ac} - \left[R - \sqrt{R^{2} - \left(x - x_{0} \right)^{2}} \right] \right\} \left(\hat{\sigma}_{zz} \right)_{i} \right]_{z=0} dx \right\} \\ = \left[d_{ac} - R + \sqrt{R^{2} - l_{1}^{2}} \right] \left[\hat{\sigma}_{zz} \left(x_{0} - l_{1}, 0 \right) \right]_{i} \end{cases}$$

Contact region determination

FIGURE 19. Comparison of contact region between FEA results and analytical solutions.

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

67

Network structure of symplectic analysis

QUANTUM COMPUTING

Quantum computing for symplectic analysis

3D LAMINATED MODEL

Basic formulations

$$\mathcal{H}_{s} = \begin{bmatrix} 0 & 0 & -\frac{\partial}{\partial \rho} & \frac{2(1+\nu)}{E_{s}\rho} & 0 & 0 \\ 0 & 0 & -\frac{1}{\rho}\frac{\partial}{\partial \varphi} & 0 & \frac{2(1+\nu)}{E_{s}\rho} & 0 \\ -\frac{\nu}{1-\nu}\left(\frac{\partial}{\partial \rho} + \frac{1}{\rho}\right) & -\frac{\nu}{1-\nu}\frac{1}{\rho}\frac{\partial}{\partial \varphi} & 0 & 0 & 0 & \frac{(1+\nu)(1-2\nu)}{E_{s}(1-\nu)\rho} \\ \mathcal{D}_{1;s} & \mathcal{D}_{2;s} & 0 & 0 & 0 & -\frac{\nu}{1-\nu}\left(\frac{\partial}{\partial \rho} - \frac{1}{\rho}\right) \\ \mathcal{D}_{3;s} & \mathcal{D}_{4;s} & 0 & 0 & 0 & -\frac{\nu}{1-\nu}\frac{1}{\rho}\frac{\partial}{\partial \varphi} \\ 0 & 0 & 0 & -\frac{\partial}{\partial \rho} & -\frac{1}{\rho}\frac{\partial}{\partial \varphi} & 0 \end{bmatrix}$$

$$\begin{cases} \mathcal{D}_{1;s} = -\frac{E_s}{1-\nu^2} \left(\rho \frac{\partial^2}{\partial \rho^2} + \frac{\partial}{\partial \rho} - \frac{1}{\rho} \right) - \frac{E_s}{2(1+\nu)} \frac{1}{\rho} \frac{\partial^2}{\partial \varphi^2} \\ \mathcal{D}_{2;s} = \frac{E_s(3-\nu)}{2(1-\nu^2)} \frac{1}{\rho} \frac{\partial}{\partial \varphi} - \frac{E_s}{2(1-\nu)} \frac{\partial^2}{\partial \rho \partial \varphi} \\ \mathcal{D}_{3;s} = -\frac{E_s}{2(1-\nu)} \frac{\partial^2}{\partial \rho \partial \varphi} - \frac{E_s(3-\nu)}{2(1-\nu^2)} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \\ \mathcal{D}_{4;s} = -\frac{E_s}{2(1+\nu)} \left(\rho \frac{\partial^2}{\partial \rho^2} + \frac{\partial}{\partial \rho} - \frac{1}{\rho} \right) - \frac{E_s}{1-\nu^2} \frac{1}{\rho} \frac{\partial^2}{\partial \varphi^2} \end{cases}$$

3D Laminated Model

Hamiltonian transformation

$$\begin{split} \left\langle \boldsymbol{f}^{\boldsymbol{\alpha}}, \boldsymbol{\mathcal{H}} \boldsymbol{f}^{\boldsymbol{\beta}} \right\rangle &= \left\langle \boldsymbol{f}^{\boldsymbol{\beta}}, \boldsymbol{\mathcal{H}} \boldsymbol{f}^{\boldsymbol{\alpha}} \right\rangle \\ &- \left\langle \frac{\partial}{\partial \rho} \widetilde{\boldsymbol{f}}^{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{f}}^{\boldsymbol{\beta}} \right\rangle - \left\langle \widetilde{\boldsymbol{f}}^{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\partial}} \widetilde{\boldsymbol{f}}^{\boldsymbol{\beta}} \right\rangle - \left\langle \widetilde{\boldsymbol{f}}^{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{f}}^{\boldsymbol{\beta}} \right\rangle - \left\langle \widehat{\boldsymbol{f}}^{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{f}}$$

$$\begin{cases} \widetilde{\boldsymbol{f}} = [u_{\rho}, u_{\varphi}, u_{z}, \rho \sigma_{\rho \rho}, \rho \sigma_{\rho \varphi}, \rho \sigma_{\rho z}]^{\mathrm{T}} \\ \widehat{\boldsymbol{f}} = [u_{\rho}, u_{\varphi}, u_{z}, \rho \sigma_{\varphi \rho}, \rho \sigma_{\varphi \varphi}, \rho \sigma_{\varphi z}]^{\mathrm{T}} \end{cases}$$

$$\left[\sum_{s=1}^{n} \iint_{\Omega^{s}} \left(\boldsymbol{f}_{s}^{\alpha}\right)^{\mathrm{T}} \mathbf{J} \boldsymbol{\mathcal{H}}_{s} \boldsymbol{f}_{s}^{\beta} \mathrm{d}\rho \mathrm{d}\varphi = \sum_{s=1}^{n} \iint_{\Omega^{s}} \left(\boldsymbol{f}_{s}^{\beta}\right)^{\mathrm{T}} \mathbf{J} \boldsymbol{\mathcal{H}}_{s} \boldsymbol{f}_{s}^{\alpha} \mathrm{d}\rho \mathrm{d}\varphi - \sum_{s=1}^{n} \iint_{\Omega^{s}} \frac{\partial}{\partial \rho} \left[\left(\widetilde{\boldsymbol{f}}_{s}^{\alpha}\right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta}\right] \mathrm{d}\rho \mathrm{d}\varphi - \sum_{s=1}^{n} \iint_{\Omega^{s}} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \left[\left(\widehat{\boldsymbol{f}}_{s}^{\alpha}\right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta}\right] \mathrm{d}\rho \mathrm{d}\varphi \right]$$

1. If
$$O_p(\Omega_c) = O_p(\Omega)$$

$$\begin{split} \sum_{s=1}^{n} \iiint_{\Omega^{s}} \frac{\partial}{\partial \rho} \left[\left(\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi &= \sum_{s=1}^{n} \int_{0}^{2\pi} \int_{R_{s-1}}^{R_{s}} \frac{\partial}{\partial \rho} \left[\left(\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi \\ &= \int_{0}^{2\pi} \left[\left(\widetilde{\boldsymbol{f}}_{1}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{1}^{\beta} \right]_{\rho = R_{0}}^{\rho = R_{1}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n-1}}^{\rho = R_{n}} \right] \mathrm{d} \varphi \\ &= \int_{0}^{2\pi} \left[\widetilde{\boldsymbol{f}}_{1}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{0}}^{\rho = R_{1}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n-1}}^{\rho = R_{n}} \right] \mathrm{d} \varphi \\ &= \int_{0}^{2\pi} \left[\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{1}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n-1}}^{\rho = R_{n}} \right] \mathrm{d} \varphi \\ &= \int_{0}^{2\pi} \left[\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{1}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n-1}}^{\rho = R_{n}} \right] \mathrm{d} \varphi \\ &= \int_{0}^{2\pi} \left[\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{1}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{n}} \right] \mathrm{d} \varphi \\ &= \int_{0}^{2\pi} \left[\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{1}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n-1}}^{\rho = R_{n}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{n}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{n}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{n}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_{n}}^{\rho = R_{n}} + \dots + \left[\left(\widetilde{\boldsymbol{f}}_{n}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{n}^{\beta} \right]_{\rho = R_{n}}^{\rho = R_$$

3D Laminated Model

Hamiltonian transformation

$$\begin{split} \sum_{s=1}^{n} \iint_{\Omega^{s}} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \left[\left(\widehat{\boldsymbol{f}}_{s}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d}\rho \mathrm{d}\varphi &= \sum_{s=1}^{n} \int_{0}^{2\pi} \int_{R_{s-1}}^{R_{s}} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \left[\left(\widehat{\boldsymbol{f}}_{s}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d}\rho \mathrm{d}\varphi \\ &= \sum_{s=1}^{n} \int_{R_{s-1}}^{R_{s}} \int_{0}^{2\pi} \frac{\partial}{\partial \varphi} \left[\frac{1}{\rho} \left(\widehat{\boldsymbol{f}}_{s}^{\alpha} \right)^{\mathrm{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d}\varphi \mathrm{d}\rho \\ &= \underbrace{\sum_{s=1}^{n} \int_{R_{s-1}}^{R_{s}} \left[-\sigma_{\varphi z;s}^{\alpha} u_{z;s}^{\beta} - \sigma_{\varphi \rho;s}^{\alpha} u_{\rho;s}^{\beta} - \sigma_{\varphi \varphi;s}^{\alpha} u_{\varphi;s}^{\beta} + u_{z;s}^{\alpha} \sigma_{\varphi z;s}^{\beta} + u_{\rho;s}^{\alpha} \sigma_{\varphi \rho;s}^{\beta} + u_{\varphi;s}^{\alpha} \sigma_{\varphi \varphi;s}^{\beta} \right]_{\varphi=0}^{\varphi=2\pi} \mathrm{d}\rho}_{u_{i;s}(\rho,2\pi)=u_{i;s}(\rho,0) \& \sigma_{ij;s}(\rho,2\pi)=\sigma_{ij;s}(\rho,0)} \end{split}$$

2. If
$$O_p(\Omega_c) \in \Omega$$
 but $O_p(\Omega_c) \neq O_p(\Omega)$

= 0

$$\begin{split} \sum_{s=1}^{n} \iint_{\Omega} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi &= \sum_{s=1}^{n} \left[\int_{\theta_{2s}}^{\theta_{2s+1}} \int_{\omega_{2s}(\psi)}^{\omega_{2s+1}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi - \int_{\theta_{2s-2}}^{\theta_{2s-1}} \int_{\omega_{2s-2}(\psi)}^{\omega_{2s-2}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi \right] \\ &= - \underbrace{\int_{\theta_{0}}^{\theta_{1}} \int_{\omega_{2s}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2s}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2}}^{\theta_{2s}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2s}}^{\theta_{2s}} \int_{\omega_{2s+1}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha} \right]^{\mathrm{T}} \mathbf{J} \widetilde{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi} + \underbrace{\int_{\theta_{2s}}^{\theta_{2s}} \int_{\omega_{2s}(\psi)}^{\omega_{2s}(\psi)} \frac{\partial}{\partial \rho} \left[\left[\widetilde{\boldsymbol{f}}_{s}^{\alpha}$$

Hamiltonian transformation

$$\begin{split} \sum_{i=1}^{n} \iint_{\mathcal{O}} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \left[\left[\widehat{\boldsymbol{f}}_{i}^{n} \right]^{\mathsf{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi &= \sum_{i=1}^{n} \left[\int_{s_{i-1}}^{s_{i-1}} \left[\sum_{i=1}^{n} \left[\widehat{\boldsymbol{f}}_{i}^{n} \right]^{\mathsf{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi - \int_{s_{i-1}}^{s_{i-1}} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right]^{\mathsf{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi - \int_{s_{i-1}}^{s_{i-1}} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right]^{\mathsf{T}} \mathbf{J} \widehat{\boldsymbol{f}}_{s}^{\beta} \right] \mathrm{d} \rho \mathrm{d} \varphi + \int_{s_{i-1}}^{s_{i-1}} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \left[\widehat{\boldsymbol{f}}_{s}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}^{\beta} \right] \sum_{i=1,\dots,n}^{n} \left[\widehat{\boldsymbol{f}}_{s_{i-1}}$$

Hamiltonian transformation

$$= \left\{ \int_{0}^{\omega_{2r+1}(\varphi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{\varphi x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\varphi x}^{\alpha} \sigma_{\varphi x r}^{\beta} + u_{z r}^{\alpha} \sigma_{\varphi z r}^{\beta} \right] d\rho \right\}_{\varphi=0}^{\varphi=2\pi} \\ + \cdots + \left\{ \int_{\omega_{2n-1}(\varphi)}^{\omega_{2n+1}(\varphi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi\varphi x}^{\alpha} u_{\varphi x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\varphi x}^{\alpha} \sigma_{\varphi x r}^{\beta} + u_{z r}^{\alpha} \sigma_{\varphi z r}^{\beta} \right] d\rho \right\}_{\varphi=0}^{\varphi=2\pi} \\ = \int_{0}^{\omega_{2r+1}(2\pi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{x r}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\varphi x}^{\alpha} \sigma_{\varphi x r}^{\beta} + u_{z r}^{\alpha} \sigma_{\varphi z r}^{\beta} \right]_{\varphi=2\pi} d\rho - \int_{0}^{\omega_{2r+1}(0)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{z r}^{\alpha} \sigma_{\varphi z r}^{\beta} \right]_{\varphi=2\pi} d\rho - \int_{0}^{\omega_{2r+1}(0)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} \right]_{\varphi=0} d\rho + \cdots + \int_{0}^{\omega_{2n+1}(2\pi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} \right]_{\varphi=2\pi} d\rho - \int_{0}^{\omega_{2r+1}(2\pi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi x r}^{\alpha} u_{z r}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} \right]_{\varphi=0} d\rho + \cdots + \int_{0}^{\omega_{2n+1}(2\pi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} + u_{\rho x}^{\alpha} \sigma_{\varphi\rho x}^{\beta} \right]_{\varphi=0} d\rho + \int_{0}^{\omega_{2n+1}(2\pi)} \left[-\sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi\rho x}^{\alpha} u_{\rho x}^{\beta} - \sigma_{\varphi\rho$$

$$\text{where} \quad \begin{cases} \omega_0(\varphi) = \omega_1(\varphi) = 0 \\ \theta_0 = \theta_1 \\ \theta_{2s} = 0; \theta_{2s+1} = 2\pi; \omega_{2s}(\varphi) = 0 \ (s \geq r) \end{cases}$$

Saint-Venant solution

$$\begin{split} & \Phi_{0,1;s}^{(0)} = \left[\sin \varphi, \cos \varphi, 0, 0, 0, 0, 0 \right]^{\mathrm{T}}, \quad \Phi_{0,2;s}^{(0)} = \left[-\cos \varphi, \sin \varphi, 0, 0, 0, 0, 0 \right]^{\mathrm{T}} \\ & \Phi_{0,3;s}^{(0)} = \left[0, 0, 1, 0, 0, 0 \right]^{\mathrm{T}}, \qquad \Phi_{0,4;s}^{(0)} = \left[0, \rho, 0, 0, 0, 0 \right]^{\mathrm{T}} \\ & \left[\Phi_{0,1;s}^{(1)} = \left[0, 0, -\rho \sin \varphi, 0, 0, 0 \right]^{\mathrm{T}} \\ & \Phi_{0,2;s}^{(1)} = \left[0, 0, \rho \cos \varphi, 0, 0, 0 \right]^{\mathrm{T}} \\ & \Phi_{0,2;s}^{(1)} = \left[-\nu \rho, 0, 0, 0, 0, E_s \rho \right]^{\mathrm{T}} \\ & \Phi_{0,3;s}^{(1)} = \left[-\nu \rho, 0, 0, 0, 0, E_s \rho \right]^{\mathrm{T}} \\ & \Phi_{0,4;s}^{(1)} = \left[0, 0, \psi_s, \frac{E_s}{2(1+\nu)} \rho \frac{\partial \psi_s}{\partial \rho}, \frac{E_s}{2(1+\nu)} \left(\frac{\partial \psi_s}{\partial \varphi} + \rho^2 \right), 0 \right]^{\mathrm{T}} \\ & k = 2 : \begin{cases} \Phi_{0,1;s}^{(2)} = \left[\frac{1}{2} \nu \rho^2 \sin \varphi, -\frac{1}{2} \nu \rho^2 \cos \varphi, 0, 0, 0, -E_s \rho^2 \sin \varphi \right]^{\mathrm{T}} \\ & \Phi_{0,2;s}^{(2)} = \left[-\frac{1}{2} \nu \rho^2 \cos \varphi, -\frac{1}{2} \nu \rho^2 \sin \varphi, 0, 0, 0, 0, E_s \rho^2 \cos \varphi \right]^{\mathrm{T}} \end{cases} \end{split}$$

$$k = 3: \begin{cases} \Phi_{\scriptscriptstyle 0,1;s}^{(3)} = \left[0,0,\widehat{\psi}_s + \frac{\rho^3\sin\varphi}{4},\frac{E_s}{2(1+\nu)} \left[\rho\frac{\partial\widehat{\psi}_s}{\partial\rho} + \frac{(3+2\nu)}{4}\rho^3\sin\varphi\right],\frac{E_s}{2(1+\nu)} \left[\frac{\partial\widehat{\psi}_s}{\partial\varphi} + \frac{(1-2\nu)}{4}\rho^3\cos\varphi\right],0 \right]^{\rm T} \\ \Phi_{\scriptscriptstyle 0,2;s}^{(3)} = \left[0,0,-\widetilde{\psi}_s - \frac{\rho^3\cos\varphi}{4},-\frac{E_s}{2(1+\nu)} \left[\rho\frac{\partial\widetilde{\psi}_s}{\partial\rho} + \frac{(3+2\nu)}{4}\rho^3\cos\varphi\right],-\frac{E_s}{2(1+\nu)} \left[\frac{\partial\widetilde{\psi}_s}{\partial\varphi} - \frac{(1-2\nu)}{4}\rho^3\sin\varphi\right],0 \right]^{\rm T} \end{cases}$$

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

Saint-Venant solution

$$\begin{split} &\left\{ \nabla^2 \hat{\psi}_1 = 0 \\ \left\{ E_1 \frac{\partial \hat{\psi}_1}{\partial \rho} \right|_{\rho = R_1} = E_2 \frac{\partial \hat{\psi}_2}{\partial \rho} \right|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_1^2 \sin \varphi \\ &\left\{ \nabla^2 \hat{\psi}_s = 0 \\ \left\{ E_s \frac{\partial \hat{\psi}_s}{\partial \rho} \right|_{\rho = R_s} = E_{s+1} \frac{\partial \hat{\psi}_{s+1}}{\partial \rho} \right|_{\rho = R_s} + (E_{s+1} - E_s) \frac{(3 + 2\nu)}{4} R_s^2 \sin \varphi \\ &\left[\hat{\psi}_{s-1} \right|_{\rho = R_{s-1}} = \hat{\psi}_s \right|_{\rho = R_{s-1}} \\ &(2 \le s \le n - 1) \end{split} \\ &\left\{ \nabla^2 \hat{\psi}_n = 0 \\ \left\{ E_n \frac{\partial \hat{\psi}_n}{\partial \rho} \right|_{\rho = R_n} = -E_n \frac{(3 + 2\nu)}{4} R_n^2 \sin \varphi \\ &\left[\hat{\psi}_{n-1} \right|_{\rho = R_{n-1}} = \hat{\psi}_n \right|_{\rho = R_{n-1}} \end{split}$$

$$\begin{cases} \nabla^2 \hat{\psi}_1 = 0 \\ E_1 \frac{\partial \hat{\psi}_1}{\partial \rho} \bigg|_{\rho = R_1} = E_2 \frac{\partial \hat{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_1^2 \sin \varphi \end{cases} \begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_1}{\partial \rho} \bigg|_{\rho = R_1} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_1^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_1}{\partial \rho} \bigg|_{\rho = R_1} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_1^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_1^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_1^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_1} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi \end{cases}$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} + (E_2 - E_1) \frac{(3 + 2\nu)}{4} R_2^2 \cos \varphi$$

$$\begin{cases} \nabla^2 \tilde{\psi}_1 = 0 \\ E_1 \frac{\partial \tilde{\psi}_2}{\partial \rho} \bigg|_{\rho = R_2} = E_2 \frac{\partial \tilde{\psi$$

$$\boldsymbol{f}_{0,i;s}^{(k)} = \boldsymbol{\Phi}_{0,i;s}^{(k)} + z \boldsymbol{\Phi}_{0,i;s}^{(k-1)} + \dots + \frac{z^k}{k!} \boldsymbol{\Phi}_{0,i;s}^{(0)} \quad (s = 1, 2, \dots, n; i = 1, 2, \dots, 4; k \ge 0)$$

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

General solutions

Papkovich-Neuber form

$$\Phi_{s} = \begin{cases} B_{\rho;s} - \frac{1}{4(1-\nu)} \frac{\partial}{\partial \rho} \left(B_{0;s} + \rho B_{\rho;s} \right) \\ B_{\varphi;s} - \frac{1}{4(1-\nu)} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \left(B_{0;s} + \rho B_{\rho;s} \right) \\ -\mu \frac{1}{4(1-\nu)} \left(B_{0;s} + \rho B_{\rho;s} \right) \\ \mu \frac{E_{s}}{2(1+\nu)} \rho \left[B_{\rho;s} - \frac{1}{2(1-\nu)} \frac{\partial}{\partial \rho} \left(B_{0;s} + \rho B_{\rho;s} \right) \right] \\ \mu \frac{E_{s}}{2(1+\nu)} \rho \left[B_{\varphi;s} - \frac{1}{2(1-\nu)} \frac{1}{\rho} \frac{\partial}{\partial \varphi} \left(B_{0;s} + \rho B_{\rho;s} \right) \right] \\ \frac{E_{s}\nu}{2(1-\nu^{2})} \rho \left[\frac{\partial B_{\rho;s}}{\partial \rho} + \frac{B_{\rho;s}}{\rho} + \frac{1}{\rho} \frac{\partial B_{\varphi;s}}{\partial \varphi} \right] - \frac{E_{s}}{4(1-\nu^{2})} \mu^{2} \rho \left(B_{0;s} + \rho B_{\rho;s} \right) \end{cases}$$

$$\left(B_{0;s}, B_{\rho;s}, B_{\varphi;s}\right) = \sum_{m=-\infty}^{\infty} \left(\mathcal{R}_{0;s}^{\{m\}}, \mathcal{R}_{\rho;s}^{\{m\}}, \mathrm{i}\mathcal{R}_{\varphi;s}^{\{m\}}\right) \mathrm{e}^{\mathrm{i}m\varphi}$$

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2}{\rho^2} \right) \mathcal{R}_{0;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\rho;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\rho;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\rho;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\rho;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\rho;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\rho;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\rho;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho} \frac{\mathrm{d}^2}{\mathrm{d}\rho} + \mu^2 - \frac{m^2 + 1}{\rho^2} \right) \mathcal{R}_{\varphi;s}^{\{m\}} + \frac{2m}{\rho^2} \mathcal{R}_{\varphi;s}^{\{m\}} = 0 \\ \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{1}{\rho^2} \frac{\mathrm{d}^2}$$

Sub-symplectic structure

$$\begin{split} L_{\mu} &= \bigcup_{s=1}^{n} L_{\mu;s} \\ &= \frac{1}{2} \bigcup_{s=1}^{n} \rho \left\{ \frac{E_{s}(1-\nu)}{(1+\nu)(1-2\nu)} \left[\left(\frac{\partial u_{\rho;s}}{\partial \rho} \right)^{2} + \frac{1}{\rho^{2}} \left(\frac{\partial u_{\varphi;s}}{\partial \varphi} + u_{\rho;s} \right)^{2} + \mu^{2} u_{z;s}^{2} \right] + 2 \frac{E_{s}\nu}{(1+\nu)(1-2\nu)} \left[\frac{1}{\rho} \frac{\partial u_{\rho;s}}{\partial \rho} \left(\frac{\partial u_{\varphi;s}}{\partial \varphi} + u_{\rho;s} \right) + \mu u_{z;s} \frac{\partial u_{\rho;s}}{\partial \rho} + \mu u_{z;s} \frac{1}{\rho} \left(\frac{\partial u_{\varphi;s}}{\partial \varphi} + u_{\rho;s} \right) \right] \right. \\ &\left. + \frac{E_{s}}{2(1+\nu)} \left[\left(\frac{1}{\rho} \frac{\partial u_{z;s}}{\partial \varphi} + \mu u_{\varphi;s} \right)^{2} + \left(\frac{\partial u_{z;s}}{\partial \rho} + \mu u_{\rho;s} \right)^{2} + \left(\frac{\partial u_{\varphi;s}}{\partial \rho} + \frac{1}{\rho} \frac{\partial u_{\rho;s}}{\partial \varphi} - \frac{u_{\varphi;s}}{\rho} \right)^{2} \right] \right\} \end{split}$$

$$\widehat{\boldsymbol{H}}_{\boldsymbol{\mu};\boldsymbol{s}}(\boldsymbol{q}_{s},\widehat{\boldsymbol{p}}_{s}) = \left(\widehat{\boldsymbol{p}}_{s}\right)^{\mathrm{T}} \frac{\partial \boldsymbol{q}_{s}}{\partial \boldsymbol{\varphi}} - L_{\boldsymbol{\mu};\boldsymbol{s}}(\boldsymbol{q}_{s},\frac{\partial \boldsymbol{q}_{s}}{\partial \boldsymbol{\varphi}})$$

$$\frac{\partial}{\partial \varphi} \left\{ \begin{matrix} \boldsymbol{q}_s \\ \hat{\boldsymbol{p}}_s \end{matrix} \right\} = \left\{ \begin{matrix} \frac{\partial \widehat{H}_{\mu;s}}{\partial \hat{\boldsymbol{p}}_s} \\ -\frac{\partial \widehat{H}_{\mu;s}}{\partial q_s} \end{matrix} \right\} = \begin{bmatrix} 0 & 1 - \rho \frac{\partial}{\partial \rho} & 0 & \frac{2(1+\nu)}{E_s} \rho & 0 & 0 \\ -1 - \frac{\nu}{1-\nu} \rho \frac{\partial}{\partial \rho} & 0 & -\frac{\nu}{1-\nu} \mu \rho & 0 & \frac{(1+\nu)(1-2\nu)}{E_s(1-\nu)} \rho & 0 \\ 0 & -\mu \rho & 0 & 0 & 0 & \frac{2(1+\nu)}{E_s} \rho \\ -\frac{E_s}{1-\nu^2} \frac{\partial}{\partial \rho} \left[\rho \frac{\partial}{\partial \rho} \right] & 0 & -\frac{E_s \nu}{1-\nu^2} \mu \frac{\partial}{\partial \rho} \left(\rho \cdot \right) & 0 & 1 - \frac{\nu}{1-\nu} \frac{\partial}{\partial \rho} \left(\rho \cdot \right) & 0 \\ \frac{E_s \nu}{1-\nu^2} \mu \rho \frac{\partial}{\partial \rho} & 0 & \frac{E_s}{1-\nu^2} \rho \mu^2 & 0 & \frac{\nu}{1-\nu} \mu \rho & 0 \end{bmatrix} \begin{bmatrix} u_{\rho;s} \\ u_{\varphi;s} \\ u_{\varphi;s} \\ u_{z;s} \\ \sigma_{\varphi \rho;s} \\ \sigma_{\varphi z;s} \end{bmatrix}$$

$$\begin{bmatrix} \textbf{ODEL} & \begin{cases} J_{-m}(\lambda) = (-1)^m J_m(\lambda), & J_m(-\lambda) = (-1)^m J_m(\lambda) \\ N_{-m}(\lambda) = (-1)^m N_m(\lambda), & N_m(-\lambda) = (-1)^m \left[N_m(\lambda) + 2\mathrm{i}J_m(\lambda) \right] \end{cases}$$

Complete solution

$$\begin{split} \boldsymbol{f} &= \sum_{i=1}^{12} \boldsymbol{\varpi}_{0,i} \boldsymbol{f}_{0,i} + \sum_{i=1}^{\infty} \sum_{m=0}^{\infty} \left(\boldsymbol{\varpi}_{\mu,i,\text{Re}}^{\{m\}} \operatorname{Re} \boldsymbol{f}_{\mu,i}^{\{m\}} + \boldsymbol{\varpi}_{\mu,i,\text{Im}}^{\{m\}} \operatorname{Im} \boldsymbol{f}_{\mu,i}^{\{m\}} + \boldsymbol{\varpi}_{-\mu,i,\text{Re}}^{\{-m\}} \operatorname{Re} \boldsymbol{f}_{-\mu,i}^{\{-m\}} + \boldsymbol{\varpi}_{-\mu,i,\text{Im}}^{\{-m\}} \operatorname{Im} \boldsymbol{f}_{-\mu,i}^{\{-m\}} \right) \\ &\triangleq \sum_{i=1}^{\infty} \boldsymbol{\varpi}_{i} \boldsymbol{f}_{i} \end{split}$$

$$\delta \left\{ \int_{0}^{h} \left[\sum_{s=1}^{n} \int_{0}^{2\pi} \int_{R_{s-1}}^{R_{s}} \left[\boldsymbol{p}_{s}^{\mathrm{T}} \frac{\partial \boldsymbol{q}_{s}}{\partial z} - H_{s}(\boldsymbol{q}, \boldsymbol{p}) \right] \mathrm{d}\rho \mathrm{d}\varphi \mathrm{d}z \right] - \sum_{s=1}^{n} \iint_{\Omega_{\boldsymbol{q}_{h}}^{s}} \left[\boldsymbol{p}_{s}^{\mathrm{T}} (\boldsymbol{q}_{s} - \overline{\boldsymbol{q}}_{h;s}) \right] \mathrm{d}\rho \mathrm{d}\varphi \right.$$
$$\left. - \sum_{s=1}^{n} \iint_{\Omega_{\boldsymbol{p}_{h}}^{s}} \left[\overline{\boldsymbol{p}}_{h;s}^{\mathrm{T}} \boldsymbol{q}_{s} \right] \mathrm{d}\rho \mathrm{d}\varphi + \sum_{s=1}^{n} \iint_{\Omega_{\boldsymbol{q}_{0}}^{s}} \left[\boldsymbol{p}_{s}^{\mathrm{T}} (\boldsymbol{q}_{s} - \overline{\boldsymbol{q}}_{0;s}) \right] \mathrm{d}\rho \mathrm{d}\varphi + \sum_{s=1}^{n} \iint_{\Omega_{\boldsymbol{p}_{0}}^{s}} \left[\overline{\boldsymbol{p}}_{0;s}^{\mathrm{T}} \boldsymbol{q}_{s} \right] \mathrm{d}\rho \mathrm{d}\varphi \right\} = 0$$

$$\begin{cases} \left\langle \bigcup_{s=1}^{n} \left(\Phi_{\mu,i;s}^{\{m\}} \mathrm{e}^{\mathrm{i} m \varphi} \right), \bigcup_{s=1}^{n} \left(\Phi_{-\mu,j;s}^{\{-k\}} \mathrm{e}^{-\mathrm{i} k \varphi} \right) \right\rangle = \delta_{ij} \delta_{mk} \\ \left\langle \bigcup_{s=1}^{n} \left(\Phi_{\mu,i;s}^{\{m\}} \mathrm{e}^{\mathrm{i} m \varphi} \right), \bigcup_{s=1}^{n} \left(\Phi_{\mu,j;s}^{\{k\}} \mathrm{e}^{\mathrm{i} k \varphi} \right) \right\rangle = \left\langle \bigcup_{s=1}^{n} \left(\Phi_{-\mu,i;s}^{\{-m\}} \mathrm{e}^{-\mathrm{i} m \varphi} \right), \bigcup_{s=1}^{n} \left(\Phi_{-\mu,j;s}^{\{-k\}} \mathrm{e}^{-\mathrm{i} k \varphi} \right) \right\rangle = 0 \\ \left\langle \bigcup_{s=1}^{n} \left(\Phi_{\mu,i;s}^{\{m\}} \mathrm{e}^{\mathrm{i} m \varphi} \right), \bigcup_{s=1}^{n} \Phi_{0,j;s}^{(k)} \right\rangle = 0 \end{cases}$$

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

Cantor pairing diagram

Contact region determination

$$\begin{split} U &= \frac{1}{2} \int_{0}^{h} \iint_{\Omega} \left(\sigma_{\rho\rho} \varepsilon_{\rho\rho} + \sigma_{\varphi\varphi} \varepsilon_{\varphi\varphi} + \sigma_{zz} \varepsilon_{zz} + \sigma_{\rho\varphi} \gamma_{\rho\varphi} + \sigma_{\rhoz} \gamma_{\rhoz} + \sigma_{\varphiz} \gamma_{\varphiz} \right) \rho \mathrm{d}\rho \mathrm{d}\varphi \mathrm{d}z \\ &= \frac{1}{2} \int_{0}^{h} \iint_{\Omega} \left[\left(\frac{1}{1 - \nu^{2}} \rho \frac{\partial E f_{||}}{\partial \rho} + \frac{\nu}{1 - \nu^{2}} \left(\frac{\partial E f_{||}}{\partial \varphi} + E f_{||} \right) + \frac{\nu}{1 - \nu} f_{||6} \right] \frac{\partial f_{||}}{\partial \rho} + f_{||4} \left(\frac{\partial f_{||}}{\partial z} + \frac{\partial f_{||3}}{\partial \rho} \right) \right. \\ &\quad + \left(\frac{\nu}{1 - \nu^{2}} \rho \frac{\partial E f_{||}}{\partial \rho} + \frac{1}{1 - \nu^{2}} \left(\frac{\partial E f_{||2}}{\partial \varphi} + E f_{||} \right) + \frac{\nu}{1 - \nu} f_{||6} \right) \left(\frac{1}{\rho} \frac{\partial f_{||2}}{\partial \varphi} + \frac{f_{||1}}{\rho} \right) + f_{||6} \frac{\partial f_{||3}}{\partial z} \\ &\quad + \frac{1}{2(1 + \nu)} \left(\rho \frac{\partial E f_{||2}}{\partial \rho} + \frac{\partial E f_{||1}}{\partial \varphi} - E f_{||2} \right) \left(\frac{\partial f_{||2}}{\partial \rho} + \frac{1}{\rho} \frac{\partial f_{||1}}{\partial \varphi} - \frac{f_{||2}}{\rho} \right) + f_{||5} \left(\frac{1}{\rho} \frac{\partial f_{||3}}{\partial \varphi} + \frac{\partial f_{||2}}{\partial z} \right) \right] \mathrm{d}\rho \mathrm{d}\varphi \mathrm{d}z \end{split}$$

$$\begin{split} &\sum_{j=1}^{\infty} \frac{\partial U}{\partial \varpi_{j}} \delta \varpi_{j} - \Delta \tilde{\gamma} \int_{0}^{2\pi} g(\varphi) \delta g \mathrm{d}\varphi = 0 \\ &\delta U_{f} = \delta \bigg[U - \Delta \tilde{\gamma} \int_{0}^{2\pi} \int_{0}^{g(\varphi)} \rho \mathrm{d}\rho \mathrm{d}\varphi \bigg] = 0 \\ &\delta U - \Delta \tilde{\gamma} \delta \int_{\alpha_{1}}^{\alpha_{2}} \int_{g_{1}(\varphi)}^{g_{2}(\varphi)} \rho \mathrm{d}\rho \mathrm{d}\varphi = \delta U - \Delta \tilde{\gamma} \underbrace{\int_{g_{1}(\alpha_{2})}^{g_{2}(\alpha_{2})} \rho \mathrm{d}\rho \delta \alpha_{2}}_{g_{2}(\alpha_{2}) = g_{1}(\alpha_{2})} + \Delta \tilde{\gamma} \underbrace{\int_{g_{1}(\alpha_{1})}^{g_{2}(\alpha_{1})} \rho \mathrm{d}\rho \delta \alpha_{1}}_{g_{2}(\alpha_{1}) = g_{1}(\alpha_{1})} \\ &-\Delta \tilde{\gamma} \int_{\alpha_{1}}^{\alpha_{2}} g_{2}(\varphi) \delta g_{2} \mathrm{d}\varphi + \Delta \tilde{\gamma} \int_{\alpha_{1}}^{\alpha_{2}} g_{1}(\varphi) \delta g_{1} \mathrm{d}\varphi \end{split}$$

Contact region determination

$$\begin{split} &\frac{\partial U}{\partial \varpi_{j}} = \frac{1}{2} \int_{0}^{h} \iint_{\Omega} \left[\left[\frac{1}{1 - \nu^{2}} \rho \frac{\partial E f_{j|1}}{\partial \rho} + \frac{\nu}{1 - \nu^{2}} \left(\frac{\partial E f_{j|2}}{\partial \varphi} + E f_{j|1} \right) + \frac{\nu}{1 - \nu} f_{j|6} \right] \cdot \sum_{i=1}^{\infty} \varpi_{i} \frac{\partial f_{i|1}}{\partial \rho} + \frac{\partial f_{j|1}}{\partial \rho} \cdot \sum_{i=1}^{\infty} \varpi_{i} \left(\frac{1}{1 - \nu^{2}} \rho \frac{\partial E f_{i|1}}{\partial \rho} + \frac{\nu}{1 - \nu^{2}} \left(\frac{\partial E f_{j|2}}{\partial \varphi} + E f_{i|1} \right) + \frac{\nu}{1 - \nu} f_{j|6} \right] \\ &+ f_{j|4} \cdot \sum_{i=1}^{\infty} \varpi_{i} \left(\frac{\partial f_{i|1}}{\partial z} + \frac{\partial f_{j|3}}{\partial \rho} \right) + \left(\frac{\partial f_{j|1}}{\partial z} + \frac{\partial f_{j|3}}{\partial \rho} \right) \cdot \sum_{i=1}^{\infty} \varpi_{i} f_{i|4} + f_{j|6} \cdot \sum_{i=1}^{\infty} \varpi_{i} \frac{\partial f_{i|3}}{\partial z} + \frac{\partial f_{j|3}}{\partial z} \cdot \sum_{i=1}^{\infty} \varpi_{i} f_{j|6} \\ &+ \left(\frac{\nu}{1 - \nu^{2}} \rho \frac{\partial E f_{j|1}}{\partial \rho} + \frac{1}{1 - \nu^{2}} \left(\frac{\partial E f_{j|2}}{\partial \varphi} + E f_{j|1} \right) \right) + \frac{\nu}{1 - \nu} f_{j|6} \right) \cdot \sum_{i=1}^{\infty} \varpi_{i} \left(\frac{1}{\rho} \frac{\partial f_{j|2}}{\partial \varphi} + \frac{f_{i|1}}{\rho} \right) \\ &+ \left(\frac{1}{\rho} \frac{\partial f_{j|2}}{\partial \varphi} + \frac{f_{j|1}}{\rho} \right) \cdot \sum_{i=1}^{\infty} \varpi_{i} \left(\frac{\nu}{1 - \nu^{2}} \rho \frac{\partial E f_{i|1}}{\partial \rho} + \frac{1}{1 - \nu^{2}} \left(\frac{\partial E f_{j|2}}{\partial \varphi} + E f_{i|1} \right) \right) + \frac{\nu}{1 - \nu} f_{j|6} \right) \\ &+ \frac{1}{2(1 + \nu)} \left(\frac{\partial f_{j|2}}{\partial \rho} + \frac{1}{\rho} \frac{\partial f_{j|1}}{\partial \varphi} - \frac{f_{j|2}}{\rho} \right) \cdot \sum_{i=1}^{\infty} \varpi_{i} \left(\rho \frac{\partial E f_{i|2}}{\partial \varphi} + \frac{\partial E f_{i|1}}{\partial \varphi} - E f_{i|2} \right) + f_{j|5} \cdot \sum_{i=1}^{\infty} \varpi_{i} \left(\frac{1}{\rho} \frac{\partial f_{i|3}}{\partial \varphi} + \frac{\partial f_{j|2}}{\partial z} \right) + \left(\frac{1}{\rho} \frac{\partial f_{j|2}}{\partial \varphi} + \frac{\partial f_{j|2}}{\partial z} \right) \cdot \sum_{i=1}^{\infty} \varpi_{i} f_{i|5} \right] d\rho d\varphi dz \end{aligned}$$

$$\begin{split} -\tilde{\Delta\gamma}g(\varphi) + \sum_{j=1}^{\infty} & \left\{ \frac{\partial \, U}{\partial \varpi_j} \Big[\mathscr{A}_{ji}^{-1} \Big[\big(\rho\sigma_{zz}\big)_i \big(u_z\big)_j + \big(u_z\big)_i \big(\rho\sigma_{zz}\big)_j \Big]_{\rho = g(\varphi)} \, \mathscr{A}_{ji}^{-1} \mathscr{H}_i \right. \\ & \left. + \, \mathscr{A}_{ji}^{-1} \Big[\Big\{ d - r + \sqrt{r^2 - \Big[\rho^2 + R_p^2 - 2\rho R_p \cos\Big(\varphi - \phi_p\Big)\Big]} \Big\} \Big(\rho\sigma_{zz}\big)_i \Big]_{\rho = g(\varphi)} \Big] \right\} = 0 \end{split}$$

Dual Hamiltonian transformation

$$rac{\partial}{\partial z}\mathbf{I}_{6}oldsymbol{f}^{\dagger}=oldsymbol{\mathcal{H}}^{\dagger}oldsymbol{f}^{\dagger}$$

$$\sigma_{ij}^{\dagger} = \sigma_{ij} e^{-\chi \rho}$$

$$\mathcal{H}^{\dagger} = \begin{bmatrix} 0 & 0 & 0 & -\frac{\partial}{\partial \rho} & \frac{2(1+\nu)}{E_{0}\rho} & 0 & 0 \\ 0 & 0 & -\frac{1}{\rho}\frac{\partial}{\partial \varphi} & 0 & 0 \\ -\frac{\nu}{1-\nu}\left(\frac{\partial}{\partial \rho} + \frac{1}{\rho}\right) & -\frac{\nu}{1-\nu}\frac{1}{\rho}\frac{\partial}{\partial \varphi} & 0 & 0 & \frac{2(1+\nu)}{E_{0}\rho} & 0 \\ -\frac{E_{0}}{1-\nu^{2}}\left(\rho\frac{\partial^{2}}{\partial \rho^{2}} + \frac{\partial}{\partial \rho} - \frac{1}{\rho}\right) - \frac{E_{0}}{2(1+\nu)}\frac{1}{\rho}\frac{\partial^{2}}{\partial \varphi^{2}} - \chi\frac{E_{0}}{1-\nu^{2}}\left(\rho\frac{\partial}{\partial \rho} + \nu\right) & -\frac{E_{0}}{2(1-\nu)}\frac{\partial^{2}}{\partial \rho\partial \varphi} + \frac{E_{0}(3-\nu)}{2(1-\nu^{2})}\frac{1}{\rho}\frac{\partial}{\partial \varphi} - \chi\frac{E_{0}\nu}{1-\nu^{2}}\frac{\partial}{\partial \varphi} & 0 & 0 & 0 & -\frac{\nu}{1-\nu}\left(\frac{\partial}{\partial \rho} - \frac{1}{\rho} + \chi\right) \\ -\frac{E_{0}}{2(1-\nu)}\frac{\partial^{2}}{\partial \rho\partial \varphi} - \frac{E_{0}(3-\nu)}{2(1-\nu^{2})}\frac{1}{\rho}\frac{\partial}{\partial \varphi} - \chi\frac{E_{0}}{2(1+\nu)}\frac{\partial}{\partial \varphi} & -\frac{E_{0}}{2(1+\nu)}\left(\rho\frac{\partial^{2}}{\partial \rho^{2}} + \frac{\partial}{\partial \rho} - \frac{1}{\rho}\right) - \frac{E_{0}}{1-\nu^{2}}\frac{1}{\rho}\frac{\partial^{2}}{\partial \varphi^{2}} - \chi\frac{E_{0}}{2(1+\nu)}\left(\rho\frac{\partial}{\partial \rho} - 1\right) & 0 & 0 & -\frac{\nu}{1-\nu}\frac{1}{\rho}\frac{\partial}{\partial \varphi} \\ 0 & 0 & -\frac{\nu}{1-\nu}\frac{1}{\rho}\frac{\partial}{\partial \varphi} & 0 & 0 & -\frac{\nu}{1-\nu}\frac{1}{\rho}\frac{\partial}{\partial \varphi} \end{bmatrix}$$

$$\left\langle \left(\boldsymbol{f}^{\alpha} \right)^{\dagger}, \boldsymbol{\mathcal{H}}^{\dagger} \left(\boldsymbol{f}^{\beta} \right)^{\dagger} \right\rangle = \left\langle \left(\boldsymbol{f}^{\beta} \right)^{\dagger}, \boldsymbol{\mathcal{H}}^{\dagger} \left(\boldsymbol{f}^{\alpha} \right)^{\dagger} \right\rangle - \chi \left\langle \left(\widetilde{\boldsymbol{f}}^{\alpha} \right)^{\dagger}, \left(\widetilde{\boldsymbol{f}}^{\beta} \right)^{\dagger} \right\rangle$$

2025/1/1

Numerical example

(QUASI-)HAMILTONIAN OPERATORS

Symmetry & operators

quasi-Hamiltonian operators (2D)

Shifted Hamiltonian transformation

Dual Hamiltonian transformation

Generalized dual Hamiltonian transformation

Variable coefficients

CONTACT ANALYSIS OF HETEROGENEOUS MEDIA

quasi-Hamiltonian operators (3D)

$$\mathcal{H}^{\dagger} = egin{bmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{C}_{\chi} & -\mathbf{A}_{\chi}^{\mathcal{T}} \end{bmatrix}$$

Asymmetry induced by odd-dimension

$$oldsymbol{\mathcal{H}}^{\ddagger} = egin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{B} \ \mathbf{C}_{E_x} & -\mathbf{A}_{E_x}^{\mathcal{T}} \end{bmatrix}$$

$$\mathcal{H}_{\oplus} = egin{bmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{C}_{\oplus} & -\mathbf{A}^{\mathcal{T}} \end{bmatrix}$$

Incremental theory

operators

$$\mathcal{H} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{A}^T \end{bmatrix}$$

upper triangular/diagonal······ Hamiltonian operators

SUMMARY

HYPOTHESIS

- □ 推广到三维直角坐标辛体系的难点:边界条件混合与控制方程混合(而柱坐标较易推 广,均匀情况下最终直接化为Bessel函数叠加)
 - □Hypothesis1:三维是否需要三类变量?
 - \Box 三类变量广义变分原理在构建辛失效(三类变量分别是位移、应力、应变) $\dot{q}=r$ $\dot{p}=\frac{\partial L}{\partial q}$ $p=\frac{\partial L}{\partial r}$
 - □对应于3n维相空间,依据Nambu力学推广Hamilton力学体系 [南部阳一郎,经典弦理论],但是 需要引入两个Hamiltonian, 以及两个Lagrangian
 - □Hypothesis2:三维是否需要构造新空间以区别辛体系?

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \{f, H_{\scriptscriptstyle 1}, H_{\scriptscriptstyle 2}\} \equiv \frac{\partial(f, H_{\scriptscriptstyle 1}, H_{\scriptscriptstyle 2})}{\partial(q, p, r)}$$

- □ Clifford体系(四元数是Clifford的一种特殊情况)引入外微分形式
- □ 想法的来源与依据:

$$dH_{\scriptscriptstyle 1} \wedge dH_{\scriptscriptstyle 2} = \frac{1}{\dot{q}} \, d(p \dot{q} - L_{\scriptscriptstyle 1}) \wedge d(r \dot{q} - L_{\scriptscriptstyle 2})$$

- □ 第一, 辛内积区别于欧氏内积, 具有面积度量, 辛矩阵就是旋转90度的旋转矩阵, 而三维是不是需要定 义体积度量, 考虑三维旋转(四元数用干旋转恰可以避免万向结自锁)
- □ 第二,借助于算子矩阵理论,我们发现,倘若需要将三维的调和算子分解,需要引入Clifford代数,分 $\Delta = \mathcal{D}^2 = \left[e_1 \frac{\partial}{\partial x} + e_2 \frac{\partial}{\partial y} + e_3 \frac{\partial}{\partial z} \right] \left[e_1 \frac{\partial}{\partial x} + e_2 \frac{\partial}{\partial y} + e_3 \frac{\partial}{\partial z} \right]$ 解为Dirac算子
- □ 第三,从命名而言,symplectic来源于希腊语,是复(complex)的含义,辛空间对应于复域分析,而 缺少四元域分析体系, 需要区别于闵可夫斯基空间(不存在三元数, 域不封闭)

SUMMARY

Hypothesis

- □Hypothesis3:不改变辛,能不能引入多辛(multi-symplectic)体系?
 - □确实存在多辛体系,但大多对非线性双变元情况

$$J\boldsymbol{z}_{\scriptscriptstyle t} = \boldsymbol{\nabla}_{\scriptscriptstyle \boldsymbol{z}} \boldsymbol{H}(\boldsymbol{z}) \qquad \boldsymbol{K}\boldsymbol{z}_{\scriptscriptstyle t} + \boldsymbol{L}\boldsymbol{z}_{\scriptscriptstyle \boldsymbol{x}} = \boldsymbol{\nabla}_{\scriptscriptstyle \boldsymbol{z}} \boldsymbol{S}(\boldsymbol{z})$$

□Hypothesis4:构建直角形式的二次辛化(升维)

$-\mu$	$-rac{ u}{1- u}rac{\partial}{\partial y}$	$-\frac{\nu}{1-\nu}\frac{\partial}{\partial x}$	0	$\frac{(1+\nu)(1-2\nu)}{E_{\scriptscriptstyle 0}(1-\nu)}$	0	0	0	
$-\frac{\partial}{\partial y}$	$-\mu$	0	0	0	$\frac{2(1+\nu)}{E_{_0}}$	0	0	
$-\frac{\partial}{\partial x}$	0	$-\mu$	0	0	0	$\frac{2(1+\nu)}{E_{o}}$	0	$\left \left egin{array}{c} u_z \ u_y \end{array} ight $
0	$-\frac{1+\nu}{1-\nu}\frac{\partial}{\partial x}$	$-rac{1+ u}{1- u}rac{\partial}{\partial y}$	-1	0	0	0	$\frac{2}{1-\nu}\frac{2(1+\nu)}{E_{\scriptscriptstyle 0}}$	$\left\{ \begin{cases} u_x \\ \gamma_{xy} \end{cases} \right\} = 0$
0	0	0	0	$-\mu$	$-\frac{\partial}{\partial y}$	$-\frac{\overline{\partial}}{\partial x}$	0	$\left \begin{array}{c} \sigma_z \\ \tau_{yz} \end{array} \right ^{-6}$
0	$-\frac{E_{_0}}{1-\nu^2}\frac{\partial^2}{\partial y^2}+\frac{E_{_0}\nu}{1-\nu^2}\frac{\partial^2}{\partial x^2}$	0	0	$-rac{ u}{1- u}rac{\partial}{\partial y}$	$-\mu$	0	$-\frac{1+\nu}{1-\nu}\frac{\partial}{\partial x}$	$\left[egin{pmatrix} au_{xz}^{yz} \ au_{xy} \end{bmatrix} ight]$
0	0	$-\frac{E_{\scriptscriptstyle 0}}{1-\nu^2}\frac{\partial^2}{\partial x^2}+\frac{E_{\scriptscriptstyle 0}\nu}{1-\nu^2}\frac{\partial^2}{\partial y^2}$	0	$-\frac{\nu}{1-\nu}\frac{\partial}{\partial x}$	0	$-\mu$	$-\frac{1+\nu}{1-\nu}\frac{\partial}{\partial y}$	[xy]
0	0	0	$\frac{E_{_0}}{2(1+\nu)} \bigg $	0	0	0	-1	

ACKNOWLEDGMENTS

THANK YOU!

It is a great honor to invite you!

I am wondering if I could have some feedbacks.

Lizichen Chen
Department of Engineering Mechanics, Zhejiang University
lzcchen@zju.edu.cn