Bisimilarity of diagrams YR-CONCUR 2017

Jérémy $\operatorname{D}_{\operatorname{UBUT}}$ - LSV, ENS Paris-Saclay

September 4th, 2017

Geometry of true concurrency

Interleaving vs continuity

$$X := 0 \parallel Y := 1$$

Interleaving behaviors : A then B or B then A

Interleaving vs continuity

$$X := 0 \parallel Y := 1$$

Continuous behaviors : any scheduling of A and B

True concurrency, geometrically

truly concurrent system	directed space (ex : pospace)
states	points
executions	directed paths (ex : monotonic paths)
modulo scheduling of independent actions	modulo directed homotopy

Execution spaces

states = points of a partially ordered space X

executions = dipaths = continuous and *monotonic* functions from [0,1] to X, noted $\overrightarrow{P}(X)$ executions from a to $b = \overrightarrow{P}(X)(a,b) = \{ \gamma \in \overrightarrow{P}(X) \mid \gamma(0) = a \land \gamma(1) = b \}$

 $\overrightarrow{P}(X)(a,b)$ can be equipped with a *topology* that has a **concurrent** meaning Ex: its *path-connected components* correspond to directed homotopy, i.e., to equivalence classes of executions modulo the scheduling of independent actions

the spaces $\overrightarrow{P}(X)(a,b)$ can be finitely presented for geometric models of simple truly concurrent systems

from this finite presentation, it is possible to compute algebraic invariants

Diagram of execution spaces

$\mathcal{E}_X = \text{category whose}$:

- objects are pairs of accessible points (a, b), such that ∃ a dipath from a to b
- morphisms are extensions

Diagram of execution spaces [D., Goubault \times 2] :

Diagram
$$\overrightarrow{P}(X): \mathcal{E}_X \longrightarrow \mathbf{Top}$$

$$(a,b) \longmapsto \overrightarrow{P}(X)(a,b)$$

$$(\alpha,\beta) \longmapsto (\gamma \mapsto \alpha \star \gamma \star \beta)$$

We can apply classical invariants (homology) on this diagram to produce diagrams with values in modules (real or rational vector spaces, Abelian groups)

Example of a produced diagram

 $\mathcal{E}_{\mathsf{a}+\mathsf{b}}$

Computability

Those diagrams are not countable, so not computable. But :

Theorem [D., Goubault×2]:

When X is a geometric model of a simple truly concurrent system, we can compute a finitary diagram **equivalent** to $\overrightarrow{H}_n(X)$.

Bisimilarity of diagrams, via open maps

Bisimulations of transition systems

Bisimulations [Park81]:

A **bisimulation** between $T_1=(Q_1,i_1,\Delta_1)$ and $T_2=(Q_2,i_2,\Delta_2)$ is a relation $R\subseteq Q_1\times Q_2$ such that :

- (i) $(i_1, i_2) \in R$;
- (ii) if $(q_1, q_2) \in R$ and $(q_1, a, q_1') \in \Delta_1$ then there is $q_2' \in Q_2$ such that $(q_2, a, q_2') \in \Delta_2$ and $(q_1', q_2') \in R$;
- (iii) if $(q_1, q_2) \in R$ and $(q_2, a, q_2') \in \Delta_2$ then there is $q_1' \in Q_1$ such that $(q_1, a, q_1') \in \Delta_1$ and $(q_1', q_2') \in R$.

Morphisms and (bi)simulations

Morphism of TS:

A morphism of TS $f: T_1 = (Q_1, i_1, \Delta_1) \longrightarrow T_2 = (Q_2, i_2, \Delta_2)$ is a function $f: Q_1 \longrightarrow Q_2$ such that $f(i_1) = i_2$ and for every $(p, a, q) \in \Delta_1$,

$$(f(p), a, f(q)) \in \Delta_2$$
.

A morphism always induces a simulation. But bisimulation \neq simulations in both directions.

Are there conditions on morphisms to enforce the existence of a bisimulation?

Morphisms and (bi)simulations

Morphism of TS:

A morphism of TS $f: T_1 = (Q_1, i_1, \Delta_1) \longrightarrow T_2 = (Q_2, i_2, \Delta_2)$ is a function $f: Q_1 \longrightarrow Q_2$ such that $f(i_1) = i_2$ and for every $(p, a, q) \in \Delta_1$,

$$(f(p), a, f(q)) \in \Delta_2.$$

A morphism always induces a simulation. But bisimulation \neq simulations in both directions.

Are there conditions on morphisms to enforce the existence of a bisimulation?

Yes, if they lift transitions [Joyal et al. 94]

Lifting properties and open morphisms (in TS)

f has the **right lifting property** with respect to g iff

A morphism is **open [Joyal et al. 94]** if it has the right lifting property with respect to every :

Theorem:

Two systems are bisimilar iff there is a span of open morphisms between them.

Lifting properties and open morphisms (in diagrams)

f has the **right lifting property** with respect to g iff

A morphism is **open** if it has the right lifting property with respect to every :

$$E_0 \xrightarrow{f_1} E_1 \cdots E_{n-1} \xrightarrow{f_n} E_n$$

$$\vdots id \qquad \vdots id \qquad \vdots id \qquad \vdots id$$

$$E_0 \xrightarrow{f_1} E_1 \cdots E_{n-1} \xrightarrow{f_n} E_n \xrightarrow{f_{n+1}} E_{n+1} \cdots E_{n+p-1} \xrightarrow{f_{n+p}} E_{n+p}$$

Definition:

Two diagrams are bisimilar iff there is a span of open morphisms between them.

Computability

Those diagrams are not countable, so not computable. But :

Theorem [D., Goubault×2]:

When X is a geometric model of a simple truly concurrent system, we can compute a finitary diagram **bisimilar** to $\overrightarrow{H}_n(X)$.

Two characterizations of bisimilarity

Bisimulation of diagrams

Bisimulation between $F: C \longrightarrow \mathcal{M}$ and $G: D \longrightarrow \mathcal{M}$ = set R of triples (c, η, d) such that :

- c is an object of C,
- d is an object of D,
- $\eta: F(c) \longrightarrow G(d)$ is an isomorphism of modules

satisfying:

• for every object c of C, there exists d and η such that $(c, \eta, d) \in R$

 $(c, \eta, d) \in R$

and symmetrically

Similar to bisimulations of event structures [Rabinovitch, Trakhtenbrot 88].

Bisimilarity and bisimulations

Proposition [D.]:

Two diagrams are bisimilar iff there is a bisimulation between them.

In the case of finitary diagrams with values in finite dimensional real vector spaces, bisimilarity becomes a problem of matrices!

ightarrow It can be expressed as the existence of invertible matrices satisfying linear conditions which can be encoded in the existential theory of the reals

Theorem [D.]:

Knowing if two finitary diagrams are bisimilar is decidable in EXPSPACE.

Theorem [D., Goubault×2]:

When X is a geometric model of a simple truly concurrent system, we can compute a finitary diagram **bisimilar** to $\overrightarrow{H}_n(X)$. It is then decidable wether two such systems have the same diagrams (modulo bisimulation).

Diagrammatic logic

Object formulae :
$$S ::= [x]P$$
 $x \in Ob(\mathcal{M})$ **Morphism formulae :** $P ::= \langle f \rangle P \mid ?S \mid \neg P \mid \bigwedge_{i \in I} P_i$ $f \in Mor(\mathcal{M})$ and I a set

- [x]P means "at the current states, the value of the diagram is isomorphic to x",
- $\langle g \rangle P$ means "at the current states, there is a outgoing morphism in the diagram that is equivalent to g".

Diagrammatic logic

Object formulae : S := [x]P

 $x \in \mathsf{Ob}(\mathcal{M})$

Morphism formulae : $P ::= \langle f \rangle P \mid ?S \mid \neg P \mid \bigwedge P_i$ $f \in \mathsf{Mor}(\mathcal{M})$ and I a set

For $F: \mathcal{C} \longrightarrow \mathcal{M}:$

- $F, c \models [x]P$ iff there exists an isomorphism $f : F(c) \longrightarrow x$ of \mathcal{M} such that $F, f, c \models P$
- $F, f, c \models \langle g \rangle P$ iff $g: x \longrightarrow x'$ and there exists $i: c \longrightarrow c'$ in C and an isomorphism $h: F(c') \longrightarrow x'$ such that $h \circ F(i) = g \circ f$ and $F, h, c' \models P$,

Bisimilarity and logic

We say that a diagram $F: \mathcal{C} \longrightarrow \mathcal{M}$ is **logically simulated** by another diagram $G: \mathcal{D} \longrightarrow \mathcal{M}$ if for every object c of \mathcal{C} , there exists an object d of \mathcal{M} such that for all object formula $S, F, c \models S$ iff $G, d \models S$. Two diagrams F and G are **logically equivalent** if F is logically simulated by G and G is logically simulated by G.

Proposition [D.]:

Two diagrams are bisimilar iff they are logically equivalent.

Similarly, in the case of finitary diagrams with values in finite dimensional real vector spaces, bisimilarity becomes a problem of matrices!

Theorem [D.]:

Knowing if a finitary diagram satisfies a positive formula in decidable in PSPACE, the full case being in EXPSPACE.

Decidability in the finitary case

Finitary diagrams

- a finite poset C, \leq , the **domain**,
- for every element c of C, a natural number F(c) (which stands for the real vector space $\mathbb{R}^{F(c)}$),
- for every pair $c \le c'$ of C, a matrix $F(c \le c')$ of size $F(c) \times F(c')$, with coefficient in rationals,

such that :

- $F(c \le c)$ is the identity matrix,
- for every triple $c \le c' \le c''$, $F(c \le c'') = F(c' \le c'').F(c \le c')$.

In short, a finitary diagram is a functor from a finite poset to the category of matrices in rationals.

Bisimulation of diagrams

Bisimulation between $F: C \longrightarrow \mathcal{M}$ and $G: D \longrightarrow \mathcal{M}$ = set R of triples (c, η, d) such that :

- c is an object of C,
- d is an object of D,
- $\eta: F(c) \longrightarrow G(d)$ is an isomorphism of modules

satisfying:

• for every object c of C, there exists d and η such that $(c, \eta, d) \in R$

 $(c, \eta, d) \in R$

and symmetrically

Similar to bisimulations of event structures [Rabinovitch, Trakhtenbrot 88].

From bisimilarity to a problem of matrices

Given two finitary diagrams F with domain $\mathcal C$ and G with domain $\mathcal D$:

- guess a bisimulation $R = \{(c, \eta, d)\}$, excepting the isomorphism part η ,
- for every " $(c, \eta, d) \in R$ ", we create a fresh variable X (for the matrix η),
- for every " $(c, \eta, d) \in R$ ", we check that F(c) = G(d),
- for every $c \in \mathcal{C}$, we check that there is a " $(c, \eta, d) \in R$ ",
- for every " $(c, \eta, d) \in R$ " with variable X, and every c' > c, guess a " $(c', \eta', d') \in R$ " with variable X' with $d' \ge d$. This produces an equation $G(d \ge d').X = X'.F(c \ge c')$ to be checked.

Result : collection of equations A.X = X'.B, for some variables X, X', ...

F and G are bisimilar iff there are non-deterministic choices and values of the variables that satisfies the equations.

How can we check that there is such invertible matrices?

From a problem of matrices to the existential theory of the reals

Given:

- \bullet a set of variables X, which represent invertible matrices (the size is known),
- a set of equations A.X = X'.B with A and B rational matrices.

Produce: a set of equations in **reals**, which has a solution iff the matrix equations have a solution. Check it using the existential theory of the reals (decidable).

X of size $n \longrightarrow$ create n^2 real variables $(x_{i,j})$ representing the coefficients of X

 $A.X = X'.B \longrightarrow$ linear equations on $x_{i,j}$ and $x'_{i,j}$ by computing the multiplications

X invertible \longrightarrow create n^2 new variables $(y_{i,j})$ representing the coefficients of a matrix Y, which will be the inverse of X. Produce $2n^2$ polynomial equations in reals by developing $X.Y = \operatorname{Id}$ and $Y.X = \operatorname{Id}$.

Other categories

• finite sets : only a finite number of possible bisimulations \longrightarrow decidable,

 presentation of groups and homomorphisms: isomorphism is already undecidable,

• rational vector spaces : coincide with real case \longrightarrow decidable,

Abelian groups of finite type : open question.

Conclusion

- A notion of bisimilarity of diagrams with applications to directed algebraic topology
- General characterizations for any category :
 - using open morphisms (initial def., nice for the theory),
 - using bisimulations (better for computation),
 - using logic (better for giving certificates)
- Decidability depends mainly on decidability of isomorphism in the category
 - $\rightarrow\,$ using the existential theory of the reals, the finitary case on real vector spaces is decidable in EXPSPACE