It is important to note that when *both* the constraints, the domain of definition Ω , and the objective function J are *convex*, if the KKT conditions hold for some $u \in U$ and some $\lambda \in \mathbb{R}^m_+$, then Theorem 50.6 implies that J has a (global) minimum at u with respect to U, independently of any assumption on the qualification of the constraints.

The above theorem suggests introducing the function $L: \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$L(v,\lambda) = J(v) + \sum_{i=1}^{m} \lambda_i \varphi_i(v),$$

with $\lambda = (\lambda_1, \dots, \lambda_m)$. The function L is called the Lagrangian of the Minimization Problem (P):

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0$, $i = 1, ..., m$.

The KKT conditions of Theorem 50.6 imply that for any $u \in U$, if the vector $\lambda = (\lambda_1, \ldots, \lambda_m)$ is known and if u is a minimum of J on U, then

$$\frac{\partial L}{\partial u}(u) = 0$$
$$J(u) = L(u, \lambda).$$

The Lagrangian technique "absorbs" the constraints into the new objective function L and reduces the problem of finding a constrained minimum of the function J, to the problem of finding an unconstrained minimum of the function $L(v,\lambda)$. This is the main point of Lagrangian duality which will be treated in the next section.

A case that arises often in practice is the case where the constraints φ_i are affine. If so, the m constraints $a_i x \leq b_i$ can be expressed in matrix form as $Ax \leq b$, where A is an $m \times n$ matrix whose ith row is the row vector a_i . The KKT conditions of Theorem 50.6 yield the following corollary.

Proposition 50.7. If U is given by

$$U = \{x \in \Omega \mid Ax \le b\},\$$

where Ω is an open convex subset of \mathbb{R}^n and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist some vector $\lambda \in \mathbb{R}^m$, such that

$$\nabla J_u + A^{\top} \lambda = 0$$

 $\lambda_i \ge 0$ and if $a_i u < b_i$, then $\lambda_i = 0$, $i = 1, \dots, m$.

If the function J is convex, then the above conditions are also sufficient for J to have a minimum at $u \in U$.