

Machine Learning

Clustering

Unsupervised learning introduction

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

Machine Learning

Clustering

K-means algorithm

Input:

- *K* (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n
Repeat {
         for i = 1 to m
            c^{(i)}:=\operatorname{index} (from 1 to K ) of cluster centroid
                     closest to x^{(i)}
         for k = 1 to K
             \mu_k := average (mean) of points assigned to cluster k
```

Andrew Ng

K-means for non-separated clusters

Machine Learning

Clustering Optimization objective

K-means optimization objective

 $c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
        for i = 1 to m
           c^{(i)} := \text{index (from 1 to } K \text{) of cluster centroid}
                   closest to x^{(i)}
        for k = 1 to K
            \mu_k := average (mean) of points assigned to cluster k
```


Machine Learning

Clustering

Random initialization

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
        for i = 1 to m
           c^{(i)} := \text{index (from 1 to } K \text{) of cluster centroid}
                   closest to x^{(i)}
        for k = 1 to K
            \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \dots, μ_K equal to these K examples.

Random initialization

```
For i = 1 to 100 { Randomly initialize K-means. Run K-means. Get c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K. Compute cost function (distortion) J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

