Exercise: Build a DFA M that recognizes the language $L=\{\times 1 \times does \text{ not contain olo as a substring }\}$

- · M accepts x if 3(q0,x) = A
- L(M) = $\{x \in \xi^* \mid \hat{\beta}(q_0, x) = A\}$ L(M) is language of M
- · languge is a subset of E*
- · If JM s.t LCM)=L, then M "recognizes" L, Lis DFA-recognizable

```
Q even Q odd)
```

Proof: $L = \{ x \in \Sigma^* \mid x \text{ has odd number of } 15 \}$, M is given by

·WTS L(M)=L

· i.e XELLM) IFF XEL

- let P(x) be
- · i.e $\forall x \in \Sigma^*$, if $\hat{S}(q_{even}, x) = q_{odd}$, then x has odd # of 1s
- WTS p(E) and p(XA) assuming p(X)
 - · P(E): WTS if \$ (geven, E) = god then E has odd # 15
 - · vacuously true because \$ (geven, E) & good
 - · p(xa): WTS if \(\hat{g}(geven, xa) = \hat{g}_{\text{odd}}\), then xa has odd # Is
 - · assume 3(geven, xa) = goda and p(x)
 - · i.e & (3 (qeven, x) a) = qodd
 - 50 $\alpha = 0$ and $\hat{\beta}(q_{even}, x) = q_{odd}$ $\alpha = 1$ and $\hat{\beta}(q_{even}, x) = q_{even}$
 - · STUCK!

* strengthened
$$p(x)$$
 0 If $\hat{s}(q_0,x) = q_{even}$ then x has an even # 1s 0 If $\hat{s}(q_0,x) = q_{odd}$ then x has an odd # 1s

- . p(E): WTS () and (2)
 - · D, 2 holds because & has even #1s
- · p(xa): wts @ and @ assuming p(x)
 - · WTS @ if $\hat{\beta}(q_0, x) = q_{even}$, let $\alpha = 0$ if $\hat{\beta}(q_0, x) = q_{odd}$, let $\alpha = 1$
 - · WTS @ : \$ (geven, Xa) = godd, so \$ (\$ (geven, x) a) = godd
 - If $\hat{S}(q_0,x) = q_{even}$ then $\alpha = 1$, x has even #1s by P(x)

so xa = x | has odd #1s

• If
$$\hat{S}(q_0, x) = q_{odd}$$
 then $\alpha = 0$, x has odd #15 by $p(x)$

so xa = xo has odd # 15

- · If $\times \in L(M)$, then $\hat{S}(q_{even}, \times) = q_{odd}$ so by above \times has odd #1s
- · If x ≠ L(M), then & (Geven, x) + Godd so by above x does not have odd # 1s

. M accepts
$$x$$
 means $\hat{\xi}(q_0,x) = A$

· j. p. M accepts × iff either M, or M2 accepts X

• so
$$(\hat{S}(q_{01}, \times), \hat{S}_{2}(q_{02}, \times)) = \{(q_{1}, q_{2}) | q_{1} \in A_{1} \text{ or } q_{2} \in A_{2}\}$$

· so
$$\hat{S}(q_{0k} \times) = A$$
, or $\hat{S}_2(q_{02}, x) = A_2$

proof: 7 unrecognizable language

- · language is set of sets of strings
 - · E* To infinite so |2 E* is uncountable
- · String can be ... set of states, alphabet, transition function, etc
 - · fewer DFA than string, so DFA is countable

pumping lemma

proof: If L is DFA-recognizable language, then I some n s.t Y XEL with (len(x) >n, 3 strings u, v, and w s.t r x = uvw $- (en(uv) \le n)$ $- (en(v) \ge 0)$ $\forall k \ge 0, uv^k w \in L$

rewritten proof: L= {on1 | nen} is not recognizable

- · For the sake of contradiction, L were recognizable
 - · i.e 3 M with L= LCM)
- · clearly x & L, so M must accept x
 - · while processing first n characters, M pass thru ntl states qo, qu... qn
 - · since M takes n States, two of them are same
 - create a loop; q, = q, for some i < j < n

- · uvvw is accepted, so uvvw & L(M)
- . V consists of one or more Os so uvvw has more Os than Is
- . so uvvw € L
- · This contradicts assumption L(M)=L

If it's possible to accept string X, it accepts X NFA (Non-deterministic Finite Automation): N = (Q, E, S, &., A), where Q: finite set of states of M - Σ : finite set of alphabet of M (elements are characters) - S: transition function $Q \times E \rightarrow 2^Q$ - 9. EQ: is the start state LACQ: set of final sets 3: extended transition function tells us where N could reach on input x $\hat{\mathfrak{F}}(\mathfrak{q}, \mathcal{E}) = \hat{\mathfrak{F}}(\mathcal{E}_{\mathfrak{F}})$, $\hat{\mathfrak{F}}(\mathfrak{q}, \times \alpha) = \bigcup_{\mathfrak{h} \in \hat{\mathfrak{F}}(\mathfrak{q}, \times)} \mathfrak{F}(\mathfrak{q}', \alpha)$ · if S is a set of states, &(s) is the set of states reachable from 5 with any # of E-transitions "E-closure of 5" . N accepts x if \exists an accept state in $\hat{\beta}(q_0,x)$ i.e. $\hat{\beta}(q_0,x) \cap A \neq \emptyset$ \cdot L(N):= $\{x \in \xi^* \mid \hat{\beta}(q_o, x) = A\}$ L(N) is set of Strings N accepts convert NFA to DFA proof: \ NFA N, \ DFA M with L(M) = L(N) · choose an arb N each State of M corresponds to a set of states of N · 4x & E * If & (fom, x) = S, then & (fom, x) = 5 · i.e. for (for, x) = for (for, x)

· prove by structural induction

```
regular expression: a way to define a language
              . rere := 0 | E | a | r,r2 | (r,+r2) | r*
                       \emptyset matches no strings. L(\emptyset) = \emptyset
                      - \varepsilon matches only the empty string. L(\varepsilon) = {\varepsilon}
                      - a matches the string "a". L(a) = {a}
                      - r_1 r_2 matches any string that can be broken into 	imes and y
                      with x matching r, and y matching r2.
                      L(r, r_2) = \{xy \mid x \in L(r_1), y \in L(r_2)\}
                      ritrz matches any string that matches either rior rz.
```

of which match r. $L(r) = \{x_1 x_2 x_3 ... \mid x_i \in L(r)\}$

L +* matches the concatenation of any number of strings, each

$$\cdot$$
 x matches r if $\times \in L(r)$. $L(r)$ is the language of r

 $L(r_1+r_2) = L(r_1) \cup L(r_2)$

$$L = \{ \times | \times | \text{has an even } \# | \text{Is} \}$$

Kleene's theorem: L is regular if there is a regular expression rerewith
$$L = L'(r)$$

L is DFA-vecognitable
L is NFA-vecognitable
L is regular

convert e_{E} to NFA

Proof: $\forall r \in R_{E}$, \exists an NFA N with $L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : \exists N \text{ with } L(N) = L(r)$
 $(e_{E} \neq p(v) : L(N) = L(r)$
 $(e_{E}$

proof: \UNFAN, & a RE r with L(N) = L(r)

- · generalized NFA has RE on the transitions
 - · remove non-final, non-start states and replace them with RE

