

FIGURE 1
BFA4 cDNA Sequence

ATGGTCCGAAAAAGAACCCCCCTTGAGAAACGTTGCAAGTGAAGGGAGGGCCAGATCCTGGAGCCTATAGGTACAGAAAGCAA
 GGTATCTGAAAGAACAAAGAACAAAGAATTCTCTGCAGATCAGATGTCAGAAAATACGGATCAGACTGATGCTGCAGAACTAAATCATAGGA
 5 GGAACATAGCTTGATGTTCAAGATCCATCTTAGCAGTAAGAAGGACTTGAAAAGCGCAGTCTGAGTGAAGAAGGCTGGCTTCAA
 TTATGAAAGCCCAGTAAGGGAGGAAACTTCCCTCTTCCGATGATGAGGTACAGACAGAAATATGTTGCTTCTCATTTCC
 AGCTGCTGGGGAGTCTGTGAGGCCITGAAGTCTCCGAAAGAGCAGAGGAGATGACCCCTCAAGATATGGCCTGCACCCCTCAGG
 GGACTCACTGGAGAACAAAGGAAGATCAGAAGATGTCACCAAAGGCTACAGAGGAAACAGGGCAAGCACAGAGTGGTCAAGCCAATTG
 10 TCAAGGTTGAGCCAGTTTCAGTGGCTCAGATGGCTTCAGATGGGGTGTAAAGACTGAATAATCCAAAATCTGA
 CTTACTGGTGAATGACAACCCAGACCCGGCACCTCTGTCTCCAGAGCTTCAGGACTTTAAATGCAATATGTTGAGTATGGTTACTA
 CGGCAACGACCCACAGATCTGATTAAGCAGTCTCCGAAAGTATCACTTAGGACTGCTACCCGACCAGGCAAGATGCTGAGCTGGA
 CAGAAAATCTGCCCTCATACATGGTCAGTTCAAGGCTGTTTACTAAATGGACCTATGATGTCAGGTGACTTCAGGTGAAATTCTGAT
 GCTGCAGGACATCAATTCTCAAGGCTGTTTACTAAATGGACCTATGATGTCAGGTGACTTCAGGTGAAATTCTGAT
 TGGACGGAAAACACCCAGATTGCAAGGGAACACCAAGTATTCGCTGTAATTCTGCAATTCACTTATATGGCAACTCATCCAC
 15 CGAATTAGAACACATTCTCAGACTCACCCAAACAAAATAAAAGCTTCTCTCCCTCTGAGGTTGAAACCTTCAGAGAA
 AAACCTAAACAAGTCCATCCCTGCACTTCATACCCAGTGAATTCTGGAGACTTGGGAAATGGCAGGACAAGATAACAGTCAAAGCAGG
 AGATGACACTCCGTGGTACTCAGTGCCTAAAGCCCTCGATTCTCTAGACAAAATGGTACAGAGGCCACAGTTACTACTG
 GTGTAATTGGTAGTTTCAGCTGTGAGTCATCTAGCTCACTTAAACTGCTAGAACATTATGCAAGCAGCACGGAGCAGTGCAGTC
 AGGCGCTTAATCCAGAGTTAAATGATAAGCTTCCAGGGCTCTGCTTAATCAGAATGATCTAGCCAAAGTTCTGAGGAGA
 20 GACAATGACCAAGACAGACAAGAGCTCGAGTGGGCTAAAAAGAAGGACTTCTCCAGCAAGGGAGGGAGGATAATATGGTAACGAG
 CTATAATTGTCAGTCTGTGACTTCCGATATTCCAAAAGCCATGGCCCTGATGTAATTGTTAGTGGGCACTTCTCCGTATTATCA
 ACAGCTCCATAACATTACAAGTGTACCATTAACACTGCTCATTCTGTCCTCCAGAGGACTTGCAGGCCAGAAAGCACCTGGAGA
 AATTACTTATCCGTTGCTTGAGAAAAGTAATTGTTCCACTGTGACTCTGCTCTGACTATGAAAGTGTGATGA
 CTCGCGAGTCAAACATCAGTGCATCAGTGTCACTTACCCAGTGCAGTGTGACTCTTCACTATGAAAGTGTGATGA
 25 GTCCCAAGCATGGATGTCAAACAGAACAACTCACCTGCAAGGATGGATGGCAGCAGTGTCAAGGAAGCAAGAACACTC
 ATGTACCAAATGTATTATTACCAAGTGGAGAGAGATTTCCGACACTACAGGAGAGCACACGCTGCTACAAATGCCGTCA
 GTGCAGTTTACAGCTGCCGATACTCAGTCAGTCACTACTGGGACTCTCAACACTGTTCACTGCCAGGAACAGGACATCACTACAGCCAA
 CGCGAAGAGGACGGTATGCCATATCCACCATCAAAGAGGAGCCAAAATTGACTTCAGGGTCTACAATCTGCTAACTCCAGACTC
 TAAAATGGGAGGCCAGTTCTGAGAGTGTGGTGAAGAGAGAGAAGCTGGAAGAGAAGGGACGGGCTCAAAGAGAAAGTTGGACGA
 30 GAGTCCAGTGTGACCTCGCAATGTGACTTGGAGAGGGCAGACATCTGCGGGGAGTCGTACACCCAAAGCAAGCTGGG
 GCTGCTGACGCCCTGTGCTGGCACCAAGAGCAGACAAAGACTCTAAGGGATAGTCCAATGTGGAGGCCCATCTGGCGCGACC
 TATTATGGCTGGCTGTGAAACCAAGGGATTCCTGCAAGGGGGCGCCAGCTGGGGAGAGAAGTCTGGGCCCCCTCCCCAGAGTA
 TCCTGCACTGGAGAAAACAAGTCCAAGGATGAATCCCTGTTACGGAGGCCAGGGCTCCGGTGTGTTTGTGCAATTG
 CCTGACCAACAAAGACCTCTCTGGCAGGAAAGATGCAAATGGGGATATGTATGCAACGCGTGTGCCCTCTACCAAGCTCACTC
 35 GACTCCCAGGCCCTTAAACATCATTAAACAAAACAACGGTGAAGCAGATTAGGAGGAGAACAGAAAGGCCCTAACCCAGAGGC
 ACTTCAGGCTGAGCAGCTCAACAAACAGCAGAGGGCAGCAATGAGGAGCAAGTCATGGAAGGCCCTAGAGGAGGAGGTCAAGAAG
 TCATCTAACTGAAAGTCACCAAGGAGAAAATTCCACTCCCAAGCTTAAGTAAATACGAAGGCCAGGGTCTATTGACTAAAGCCATT
 TGCTCAGCAGCCAGCTCTGGTCAAGCCAAACTCTGGATATTCAAAAAGGATGCAACCTTGCAATTGAGATAAAAGTCCTCAGGA
 AAGTACTGGAGATCCAGGAAATAGTCATCGTATCTGAAGGGAAAGGAAGTCTGAGAGAGGAGCAGTCTTATAGAAAAGTACATGAG
 40 ACCTGGAAACACCCAAATTTCACCAACAGGAGCCATTGAAAAGTACCAAGTACCCACTTTGGACTTCCCTTGTACATAA
 TGACTTCCAGAGTGAAGCTGATTGGCTGCCGGTCTGGAGTAAATATAAGCTCTCCGTTCTGGGAATCCGACTACTTGAGTCACGT
 GCCTGCCCTACCAAATCCTTGCAAAACTATGTCCTTATCCACCTTCATCTGCCCTCATTTTCAGCTGTTGGATCAGACAA
 TGACATTCCCTCTAGATTGGCGATCAAGCATTCCAGACCTGGCCAAGTGCACACGGTGCCTCCAAGGAGAAAACGAAGGCACCC
 AAATGTAAAAATGAAGGTCCCTGAATGTAGTAAAACAGAGAAAGTGTAGAAGTACTCAAGATGAACTTCAACAAATGTGT
 45 GCACTGTGGCATTGCTTCTGGATGAAGTGTATGCTTGCATATGAGTTGCATGGTACAGTGGACCTTCCAGTGCAGCAT
 ATGCCAGCATCTTGCAACGGACAAATATGACTTCACAACACATATCCAGAGGGCCTGCATAGGAACAATGCACAAGTGGAAAAAAA
 TGGAAAACCTAAAGAGTAA*

FIGURE 2**BFA4 Amino Acid Sequence**

MVRKKNPPLRNVASEGEGQILEPIGTESKVSGKNKEFSADQMSENTDQSDAAELNHKEEHLHVQDPSSS
SKKDLKSAVLSEKAGFNYESPCKGGNFPSFPHEVTDRNMLAFSPFAAGGVCEPLKSPQRAEADDPQDMA
5 CTPSGDSLETKEDQKMSPKATEETGQAQSGQANCQGLSPVSVASKNPQVPSDGTVRLNKSCTDLLVNDNP
DPAPLSPLELQDFKCNCIGYGYGGNDPTDLIKHFRKYHLGLHNTRQDAELDSKLALHNMVQFSHSKDFQ
KVNRSVFSGVLDINSSRPVLLNGTYDVQVTSGGTFIGIGRKTPDCQGNTKYFRCKFCNFTYMGNSSTEL
EQHFLQTHPNKIKASLPSSEVAKPSEKNSNKSI PALQSSDSGDLGKWQDKITVKAGDDTPVGYSVPPIKPL
10 DSSRQNGETEATSYYWCKFCFSCESSSLKLLEHYGKQHGAVQSGGLNPELNDKLSRGSVINQNDLAKSS
EGETMTKTDKSSSGAKKKDFSSKGAEDENMVTSYNCQFCDFRYSKSHGPDVIVVGPLLRYQQLHNIHKCT
IKHCPFCPRGLCSPKHLGEITYPFACRKSNC SHCALLLHLSPGAAGSSRVKHQCHQCSFTPDVDVLL
FHYESVHESQASDVKQEANHLQGSQDGQQSVKESKEHSCTKCDFITQVEEEISRHYRRAHSCYKCRQCSFT
AADTQSLLFHFTVHCQECDITTANGEEDGHAISTIKEEPKIDFRVYNLLTPDSKMGEPVSESVVKREKL
15 EEKDGLKEKVWTESSSDDLRNVWRGADILRGSPSYTQASLGLLPVSGTQEQTKTLRDSPNVEAAHLAR
PIYGLAVETKGFLQGAPAGGEKGALPQQYPASGENKS KDESQSLLRRRRSGGVFCANCLTTKTSLWRKN
ANGGYVCNACGLYQKLHSTPRPLNIKQNNGEQIIRRRTKRLNPEALQAEQLNKQQRGSNEEVNGSPL
ERRSEDHLTESHQREIPLPLSLSKYEAQGSLTKSHSAQQPVLVSQTLDIHKRMQPLHIQIKSPQESTGDPG
NSSSVSEGKGSSERGSPIEKYMRPAKHPNYSPPGSPIEKYQYPLFGLPFVHNDFQSEADWLRFWSKYKLS
VPGNPHYLSHVPGPNPCQNYVPYPTFNLPPHFSAVGSDNDIPLDLAIKHSRPGPTANGASKEKTKAPPN
20 VKNEGPLNVVKTEKVRSTQDELSTKCVHCGIVFLDEVMYALHMSCHGDSGPFCQCSICQHLCTDKYDFTT
HQRLGLHRNNAQVEKNGKPE

FIGURE 3**A. BCY1 cDNA Sequence**

5 TGCAAGATTAAGGCCCTGAGGGCCAAGACCAACACCATCACATCAAGACACCGGTGAGGGCGAGGAACCAGTGTTCATG
 GTGACAGGGCGACGGGAGGACGTGGCACAGCCGGAAATCATCTCAGCAGCGGAGCACTCTCCATGATCCGT
 GCCTCCCGAACAAAGTCAGGCAGCCTTGGTGGCTCTGCCTGCCCCCAGGTGACCACATCCGTGCGGGGTG
 CCCTACCGCGTGGTGGGCTGGTGGGCCAAAGGGCAACCATCAAGCGCATCCAGCAGCAAACCAACACATAC
 ATTATCACACCAAGCGTGACCGCGACCCGTGTTGAGATCACGGGTGCCCCAGGCAACGTGGAGCGTGCAGCGAG
 10 GAGATCGAGACGCACATCGCGTGCACACTGGCAAGATCCTCGAGTACAACAAATGAAAAGACTTCTGGCGGGGAGC
 CCCGACGCAGCAATCGATAGCGCTACTCGACGCCTGGCGGGTGCACCAAGCCGGCTGCAAGCCCCCTCTCCACCTTC
 CGGCAGAACAGCTGGGCTGCATCGCGAGTGCAGTGGACTCTGGCTTGAGGCCAACGCCCTGGGTGAGCAGGGC
 GGGGACTTTGGCTACGGCGGGTACCTCTTCCGGCTATGGCGTGGCAAGCAGGATGTGTACTACGGCGTGGCCAG
 ACTAGCCCCCGCTGTGGCGGGCCAGGAGAACGCCACGCCACCTCCGTGCTCTCTCTCYKCCCTCCTCC
 15 TCCTCTCCGCCAACGGCCCGCTGGGCCCCCGGGCGCACACCGCTCCCCTGCCACTTCCGCGGGACCCGAGCTGGCC
 GGACTCCCAGGGCGCCCCCGGGAGAGCGCTCCRGGGCTTCTCTAAACTTGGTGGGGCGGCCCTGCGGAGCCCCGCA
 GCCGGCGGGCGGGGATTGCATGGCTGCTTGAGAGCGAAGTGAATGCCGCCCCCTGTGCCCTGCGGACACAACCTGTT
 TGCATGGAGTGTGAGTACCCATCTGGAGAGGACGGACCCAGAGTGTCCCCTGTGCCACATCACAGCCACGCAAGCC
 ATCCGAATATTCTCTAACGGCCGTGCCCCATGCCCTGGGGGCCACTCCACTGGGCCACCCCTGGACCTGTTCCA
 20 CTAAGGCCTTTGAAAGCGGTGATTGAGGGCAAGGTGCTTAGAGATACTCGCTCGTGGGAAGGGGGAGGGAG
 GCAGTGGTGGCTGGAGGGTGCACCTTCAGAGCCTCTGGTACCCCTGTGAAAGATGGGAGGGGGCCAGACT
 GAAAATTTACTAGAGTTACAACACTCTGATACTCTAACACACCCCTAAATCTGAAAGCAGCTAAGAGAAACTTTGTT
 TGCCAGAGGTGGCCACTAACGGCATTCTGACGCCCTGCCACCTCCCCGCTGTGTCACTCCACCCCTCTCCG
 25 AGGAGGGGGTGGTAAAGGGAGGGAGATTACACCTGTATCTAGAGGTGCTTTGCAATCCCTAACCCCTG
 GTCCCTGACCTCCGACCTCCAGCTCTGTCTTGTCTTGTCTTCTCCCTCCCCCTGCCCTGCCCTAC
 CAGCCCAGCTTGGGACACCATCTCTGGGAGAAGTAGGGGAGGAATATTGGATGGTCCCTCATTCCCTTC
 AGGCATCTGGAGGCCCTCTCCCCACTCTCTCAAAGAACATCTCAAATTATTGATGGAATGTATCCCATTCTCAGT
 GAAAATGTGAGGAGGGACTAAACTGGGTAAGGGTCAAACCCCCACCTCATCACTATGGCATTATATTAGGG
 AGTAGTTCTGGGCTGGATTCTGGTTGGAAGTGGGGCGCCAGAGTAGTGTGTCGCTATTAAAGGAGCAGGA
 30 AAGGGCGTGAGGCAGGAGGAGACTGGTGGAGGGAAAGAGCTGCTCCTCCATGCACTGCCGACTCCCTGCACCCCT
 CTCAACCTGACCTGAACCTTATTGAAATCCTTATTAGCTGAACTCTTATTAGCTGAACTCCTCATGCAAATCATGG
 AGTCCTGTGCTCCACCTGATGTGGTTGAGGAGAACGCCAGGTCTCAAAGAGGGTCAGCTGGGAAAGCAGGACTGG
 GGGGAGGTGGGAGGGCCTATTCTGAGAATCACATATTGTACAGGCCCTGCACTGGGCTTGTGCTTCCCT
 GCTCATTTGGGCTGCCACAGCTCTCCACCCCTCTGGTTCCGCTGGCCGGCCAAGAGAGGATGGAGGGATGGAGT
 35 CCCAGGAGATCTTGAAATAGTGGGGTGGACTGTTCTGAGTGTGATCACCCAGCACTTAAAGCTCCAGAGTCCATT
 CTTCCTGGATGGAGCAGGTGGAGGTGCAAGAGGGATTCTCTCTCTGCGAGAATTAACACCTCTCCA
 CAGCCTCCCTCCAGAACACCAGCCAGGGGGGGGGAGGGGAGGGGAGGGGAGGGGAGGTGACAGCCAAGAAA
 ACTGCCCTGTGACGACTTCCCTCCATGTGAGGACATCTGAGATGTCTGTCAGAATAGAAACCAAA
 ACCAATGGGACCCCTCGGGTGC
 40 CAAAGGCAGAAGACTGTTACACTAGGGGCTCAGCAAATTCAATCCCACCCCTAACCAATTGAGCCAACCTAGAAACA
 AACACAAAACACAATAGTGAGAGACAAAATAGAGGAGAGAAAGAGAGCATGAGAGGGAGCGAGACAGGCACCAACA
 CAGAGGAGAGAAAACAAAAATAGCAAAAAAAAAAAAAAA

B. BCY1 Amino Acid Sequence

MAELRLKGSS NTTECVPVPT SEHVAEIVGR QGCKIKALRA KTNTYIKTPV RGEEPVMVT
 GRREDVATAR REIISAAEHF SMIRASRNKS GAAFGVAPAL PGQVTIRVRV PYRVVGLVVG
 PKGATIKRIQ QQTNTYIITP SRDRDPVFEI TGAPGNVERA REEIETHIAV RTGKILEYNN
 ENDFLAGSPD AAIDSRYSDA WRVHQPGCKP LSTFRQNSLG CIGECVDSG FEAPRLGEQG
 50 GDFGYGGYLPGYGVGKQDV YYGVAETSPP LWAGQENATP TSVLFSSASS SSSSSAKARA
 GPPGAHRSPA TSAGPELAGL PRRPPGEPLQ GFSKLGGGGL RSPGGGRDCM
 VCFESEVTAA LVPCGHNLFC MECAVRICER TDPECPVCHI TAAQAIRIFS

FIGURE 4

ATGACAAAGAGGAAGAAGACCATCAACCTTAATATACAAGACGCCAGAACAGGGACTGCTCTACACTGGGCCTGTGTC
 AATGCCATGAGGAAGTAGTAAACATTCTGGTAGACAGAAAAGTCCAGCTGACGTCTTGATGGCGAACACAGGACA
 CCTCTGATGAAGGCTCTACATGCCATCAGGAGGCTTGTGCAAATATTCTGATAGATTCTGGTCCCATAAAATCTC
 5 GTAGATGTGTATGGCAACATGGCTCTCATTATGCTGTTTATAGTGGAGATTTGTGAGCTGGTGGCAAACACTGCTGTC
 CATGGTGCAGTCATCGAACAGGCTAGCCTCACACCCTTTACTATCCATAACGAAAAGAAGTGAGCAA
 ATTGTGGAATTCTGCTGATAAAAAATGCAAATGCAATGCAAGTAAAGTATAATGCAACGCCCTCATGCTGCT
 GTATGTCTGGATCATCAGAGATAGTTGGCATGCTCTTCAGCAAATGTTGACGTCTTGCTGAGATATATGTGGA
 GTAAGTCAGAACATTATGCTTACTTGTGGATTTCATCACATTGATGAGGCTGCACCCCTGGCGGAAAGA
 10 TCTAAAATCATCAAACCAATCCAGAACATCTGAGAACACCTGATGAGGCTGCACCCCTGGGAAAGAACACCTGACAG
 ACACCTGACACAGCTGAAAGCTGGTGGAAAAAACACCTGATGAGGCTGCACCCCTGGGAAAGAACACCTGACAG
 GCTGAAAGCTGGTGGAAAAAACACCTGATGAGGCTGCACCCCTGGGAAACATCTGACAAAATTCAATGTTG
 GAGAAAGCGACATCTGGAAAGTTCGAAAGTCAGCAGAACACCTAGGGAAATTACGAGTCCTGCAAAAGAAC
 TCTGAGAAATTACGTGGCCAGCAAAGGAAGACCTAGGAAGATCGCATGGGAGAAAAAGAACAGACACAC
 15 ATTATGAGTCCCAGAAAGAACACATCTGAGAAATTACGTGGGAGCAGAACAGAACACTAGGAAGATCGCATGGGAG
 AAAAGAACACCTGTAAGACTGGATGCGTGGCAAGAGTAACATCTAATAAAACTAAAGTTGGAAAAGGAAGA
 TCTAAGATGATTGCATGTCCTACAAAAGAACATCTACAAAAGCAAGTGCCTAATGATCAGAGGTTCCATCAGAAC
 AAACAAGAGGAAGATGAAGAATATTCTGATTCTGGAGCTCTTGTGAGAGTTCTGCAAAGATTCAAGTGTG
 20 CCTGAGTCTATATATCAAAGTAATGGAGATAATAGAGAAGTAGAGAACGCTCTTAAGAACGCCATCTGCC
 CCTGCCATTGAAATGCAAACACTCTGTTCAAATAAGCCTTGAATTGAGAACATGAAACAACATTGAGAGCAG
 ATCGGAGTCTGGGATTCTGGGAGACTGAGAGTCTGTGAGACTGTTTACAGAACAGGATGTGTTACCAAG
 CAGAAGGATGTGTTACCAAGGCTACACATCAAAGAACATGAAAGATTAGAACAGGCTCT
 AATAAGATGGTCTCTGAAGGCTACCTGCGGAATGAAAGTTCTATTCAACTAAAGCCTTAGAATTGAAG
 25 CAAACTTCAAGCGGAGCCTCCGGGAAGCCATCTGCCCTCGAGCCTGCCACTGAAATGCAAAGTCTGCC
 AAAGCCTTGGAAATTGAAAAATGAAACAACATGGAGAGCAGATGAGAACACTCCATCAGAAC
 GAAGAAAATTCTGGGAACTGAGAGTCTGTGAGACTGTTTACAGAACAGGATGTGTTACCAAGGCTGCG
 CAAAGAACATAGATAAAATGAAAGATTAGAACGGCTCTGTAAAGATGGTCTCTGAAGGCTAACTGCG
 ATGAAAGTTCTATTCAACTAAAGCCTTAGAATTGAGAACATGCAAACATTCAAGCAGAGCCTCC
 30 TCTGCCCTCGAGCCTGCCATTGAAATGCAAAGTCTGTTCAAATAAGCCTTGGAAATTGAGAAC
 AGAGCAGATGAGAACACTCCATCAGAACAAAGAACACTGAGAACAGTCTGGGATTCTGAGAGTCTGT
 GAGACTGTTTACAGAACGGATGTGTTACCAAGGCTACACATCAAAGAACATGAAAGTTCTATT
 GAAGAGTCTCTGATAATGATGGTTTCTGAAGGCTCCCTGAGAACATGAAAGTTCTATTCAACTAA
 TTGATGGACATGCAAACCTTCAAGCAGAGCCTCCCGAGAACGCCATCTGCCCTCGAGCCTGCC
 35 TCTGTTCAAATAAGCCTTGGAAATTGAGAACATGAAACAAACATTGAGAACAGAACATGAG
 CAGAACAGGATCTGAGACTGTTTACAGAACAGGCTCTGCCATTGAAATGCAAAG
 AAGGCTACACATCAAAGAACATGGATAAAATGAAAGATTAGAACAGTCTGAGAACAG
 ACAGTCTATTCTGTGAAAGAACAGGAAACTTCAAAAGAACATGAGAACAGAAC
 40 AAAAGAACAGGTTGAAAGAAAATTCTGGGATTCTGAGAGTCTCCGTGAGACTGTT
 TCTGTTCAAATAAGCCTTGGAAATTGAGAACATGAAACAAACATTGAGAACAGAAC
 AACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAAC
 AACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAAC
 45 AACACAATGCTCACTTCTAAATTGAGAACAGAACAGAACAGAACAGAACAGAAC
 AGACTGGCTTCTGCTGTACAAGACCATGATCAAATTGAGAACATCAAGAAC
 GGAGATGCTTGTGCAAAGAAAATGAATGTTGAGTGTGAGTAGTAC
 GATATATAACAAATGAGAACAGAACAGAACAGAACAGAACAGAAC
 CTTCTGAGCTCAAAGGAAATCCAAAAGCTAAAAATTAACTCTCA
 50 TTGGTTCAGAACATGCACAAAGAGAACAGAACAGAACAGAACAGAACAGAAC
 GAACAAGATAATGTGAAACAAACACTGAGAACAGAACAGAACAGAACAGAAC
 ATGTTGCTTCAACAGCAATTAGTTGATGCACTAAAGAACAGCTGAC
 AACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAAC
 CTTGAGAGGAAATGCAACATCATCTCTAAAGAGAAAATGAGGAG
 GAGATATTGAGAACAGAACAGAACAGAACAGAACAGAACAGAAC
 CGTATATATCAATATGAAAAAGAGAACAGAACAGAACAGAACAGAAC
 AACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAAC

FIGURE 5

5 MTKRKKTINLNIQDAQKRTALHWACVNGHEEVVTFLVDRKCQLDVLDGEHRTPLMKALQCHQEACANILIDSGADINL
VDVYGNMALHYAVYSEILSVAKLLSHGAVIEVHNKASLTPLLSITKRSEQIVEFLLIKNANANAVNKYKCTALMLA
VCHGSSEIVGMLLQQNVDVFAADICGVTAEHYAVTCGFHHIHEQIMEYIRKLSKNHQNTNPEGTSAGTPDEAAPLAER
TPDTAESLVEKTPDEAABLVERTPDTAESLVEKTPDEAASLVEGTSDKIQCLEKATSGKFEQSAAETPREITSPAKET
SEKFTWPAKGRPRKIAWEKKEDTPREIMSPAKETSEKFTWAAKGRPRKIAWEKKETPVKGVARVTSNKTKVLEKGR
SKMIACTKESSTKASANDQRFPSESQFEEDEEYSCDSRSLFESSAKIQVCIPESIYQKVMENREVEEPCKPSAFK
10 PAIEMQNSVPNKAFLKNEQTLRADPMFPPESKQKDYEENSWDSESLCETVSQKDVCLPKATHQKEIDKINGKLEESP
NKGGLLKATCGMKVSIPTKAELKDMQTFKAEPGPKPSAFEPAITEMQKSVPNKALELKNEQTWRADEILPSESQKDY
EENSWDTESLCETVSQKDVCLPKAAHQKEIDKINGKLEGSPVKDGLLKANGCMKVSIPTKAELMDMQTFKAEPPEKP
SAFEPAIEMQKSVPNKALELKNEQTLRADEILPSESQKDYEESSWDSESLCETVSQKDVCLPKATHQKEIDKINGKL
EESPNDNGFLKAPCRMKVSIPTKALELMDMQTFKAEPPEKPSAFEPAIEMQKSVPNKALELKNEQTLRADQMFPSESQ
15 QKKVEENSWDSESLRETVSQKDVCPKATHQKEMDKISGKLEDSTSLSKILDTVHSCERARELQDHCEQRTGKMEQM
KKKFCVLKKKLSEAKEIKSQLENQKVWEQELCSVRLTLNQEEEKRRNADILNEKIREELGRIEEQHRKELEVQQLE
QALRIQDIELKSVESNLNQVSHTHENENYLLHENCMLKKEIAMLKLEIATLKHQYQEKENKYFEDIKILKEKNAELQM
TLKLKEESLTKRASQYSQQLKVLIAENTMLTSKLKEKQDKEILEAEIESHHPRLASAVQDHQIVTSRKSQEPAFHIA
GDAACLQRKMNVDVSSSTIYNNEVLHQPLSEAQRKSLSKINLNAYGDALRENTLVSEHAQRDQRETQCOMKEAEHMYQN
20 EQDNVNKHTEQQESLDQKLFLQSKNMWLQQQLVHAHKKADNKSKITIDIFLERKMQHLLKEKNEEI FNYYNNHLN
RIYQEKEKAETENS