Contrôle d'algèbre linéaire N°2

Durée: 1 heure 30 minutes. Barème sur 15 points.

NOM:	_	
	Groupe	
PRENOM:		

1. Déterminer l'ensemble $S \subset \mathbb{M}_2(\mathbb{R})$ des solutions de l'équation matricielle

$$(A-I)(X+I+X^t)A=0,$$

où
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$$
 et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

S est-il un sous-espace vectoriel de $\mathbb{M}_2(\mathbb{R})$? Justifier rigoureusement la réponse.

2.5 pts

2. Soient les trois vecteurs de \mathbb{R}^3 dépendant d'un paramètre réel m:

$$\vec{a} = \begin{pmatrix} m+1 \\ m \\ 2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2m+4 \\ 2m+1 \\ m+5 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} m+1 \\ 1 \\ m+1 \end{pmatrix}.$$

(a) On considère le sous-espace vectoriel $V = [\vec{a}, \vec{b}, \vec{c}]_{\text{sev}}$.

Déterminer m tel que la dimension de $\dim V < 3$. Dans chaque cas, décrire V par une équation (paramétrique s'il s'agit d'une droite, cartésienne s'il s'agit d'un plan).

(b) On pose m=1. Soient encore les vecteurs

$$\vec{d} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix} \qquad \vec{u} = \begin{pmatrix} 8 \\ 2 \\ 10 \end{pmatrix}$$

et le sous-espace vectoriel $W = [\vec{a}, \vec{b}, \vec{c}, \vec{d}]_{\text{sev}}$.

Montrer que $\vec{u} \in W$ et déterminer les composantes de \vec{u} dans une base de W contenant \vec{a} .

3. Soit W le sous-espace vectoriel de $P_3[x]$ engendré par

$$P = x^3 + x^2 + 1$$
 $Q = 3x^3 - x^2 + 2x - 3$ $R = 4x^3 + 2x^2 + x + 1$ $S = 4x^3 + 2x - 2$.

- (a) Donner une base et la dimension de W.
- (b) Le polynôme $T = 2x^3 + x 1$ appartient-il à W? Si c'est le cas, donner ses composantes relativement à la base de W choisie.

Soit encore le sous-ensemble de $P_3[x]$

$$H = \{ P \in P_3[x] \mid P(1) - 4P'(0) = 0 \} ,$$

où $P'(x_0)$ est la dérivée de P en x_0 .

- (c) Montrer que H est un sous-espace vectoriel de $P_3[x]$.
- (d) Donner une base et la dimension de $W \cap H$.

5 pts

4. Soient $n \in \mathbb{N}^*$, $A \in \mathbb{M}_n(\mathbb{R})$ une matrice fixée et l'application

$$f: \mathbb{M}_n(\mathbb{R}) \longrightarrow \mathbb{M}_n(\mathbb{R})$$

 $X \longmapsto f(X) = (X^t + X)A.$

(a) Montrer que f est linéaire.

On fixe n = 2 et on pose

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right) .$$

- (b) Calculer les images des vecteurs de la base usuelle de $\mathbb{M}_2(\mathbb{R})$.
- (c) Déterminer une base et la dimension de Im f.
- (d) Déterminer une base et la dimension de $\ker f$.

3.5 pts