#### **CS221: Digital Design**

#### **Boolean Algebra**

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

# **Outline**

- Basic Gates in Digital Circuit
- Boolean Algebra : Definitions, Axioms
- Named, Simplification & Consensus Theorems
- Duality Principle, Shannon's Expansion
- Proof: Using Truth Table, Using Theorem
- Boolean function: Representation, Canonical form

### **Boolean Algebra**

- Computer hardware using binary circuit greatly simply design
- Binary circuits: To have a conceptual framework to manipulate the circuits algebraically
- George Boole (1813-1864): developed a mathematical structure
  - -To deal with binary operations with just two values.

#### **Basic Gates in Binary Circuit**

- Element 0: "FALSE". Element 1: "TRUE".
- '+' operation "OR", '\*' operation "AND" and ' operation "NOT".



| OR | 0 | 1 |
|----|---|---|
| 0  | 0 | 1 |
| 1  | 1 | 1 |

| AND | 0 | 1 |
|-----|---|---|
| 0   | 0 | 0 |
| 1   | 0 | 1 |

| NOT |   |
|-----|---|
| 0   | 1 |
| 1   | 0 |

#### **OR Gate**

• '+' operation "OR"



| OR | 0 | 1 |
|----|---|---|
| 0  | 0 | 1 |
| 1  | 1 | 1 |

| X | Y | R=X OR Y<br>R= X + Y |
|---|---|----------------------|
| 0 | 0 | 0                    |
| 0 | 1 | 1                    |
| 1 | 0 | 1                    |
| 1 | 1 | 1                    |

$$1 + Y = 1$$

#### **AND Gate**

• '\*' operation "AND"



| AND | 0 | 1 |
|-----|---|---|
| 0   | 0 | 0 |
| 1   | 0 | 1 |

| X | Y | R=X AND Y<br>R= X * Y |
|---|---|-----------------------|
| 0 | 0 | 0                     |
| 0 | 1 | 0                     |
| 1 | 0 | 0                     |
| 1 | 1 | 1                     |

$$0 * Y = 0$$

#### **NOT Gate**

• 'operation "NOT"



| X | R=X'<br>R= NOT X |
|---|------------------|
| 0 | 1                |
| 1 | 0                |

• Boolean Algebra B: 5-tuple

$${B, +, *, ', 0, 1}$$

- + and \* are binary operators,
- is a *unary* operator.

• Axiom #1: Closure

If a and b are Boolean

(a + b) and (a \* b) are Boolean.

• Axiom #2: Cardinality

if a is Boolean then a' is Boolean

• Axiom #3: Commutative

$$(\mathbf{a} + \mathbf{b}) = (\mathbf{b} + \mathbf{a})$$

$$(a * b) = (b * a)$$

•Axiom #4: Associative: If a and b are Boolean

$$(a + b) + c = a + (b + c)$$
  
 $(a * b) * c = a * (b * c)$ 

•Axiom #6: Distributive

$$a * (b + c) = (a * b) + (a * c)$$
  
 $a + (b * c) = (a + b) * (a + c)$ 

- •Axiom #5: Identity Element:
  - B has identity to + and \*
  - 0 is identity element for +: a + 0 = a
  - 1 is identity element for \*: a \* 1 = a
- •Axiom #7: Complement Element

$$a + a' = 1$$

$$a * a' = 0$$

# **Terminology**

Juxtaposition implies \* operation:

$$ab = a * b$$

Operator order of precedence is:

() > ' > \* > +
$$a+bc = a+(b*c) \neq (a+b)*c$$

$$ab' = a(b') \neq (a*b)'$$

### **Named Theorems**

| Idempotent  | a + a = a     | a * a = a   |
|-------------|---------------|-------------|
| Boundedness | a + 1 = 1     | a * 0 = 0   |
| Absorption  | a + (a*b) = a | a*(a+b) = a |
| Associative | (a+b)+c=      | (a*b)*c=    |
|             | a+(b+c)       | a*(b*c)     |

| Involution | (a')' = a        |                |
|------------|------------------|----------------|
| DeMorgan's | (a+b)' = a' * b' | (a*b)'=a' + b' |

## <u>Simplification Theorem</u>

• Uniting:

$$XY + XY' = X$$
  $X(Y+Y')=X.1=X$   $X(Y+Y')=X+X(Y+Y')+0=X$ 

Absorption:

$$X + XY = X$$
  $X(1+Y)=X.1=X$   $X(X + Y) = X$   $XX+XY=X+XY=X$ 

Adsorption

$$(X + Y')Y = XY, XY' + Y = X + Y$$
  $XY+YY'=XY+0=XY$ 

#### **Principle of Duality**

- Dual of a statement S is obtained
  - By interchanging \* and +
  - By interchanging 0 and 1
  - By interchanging for all x by x' also valid (for an expression)
- Dual of (a\*1)\*(0+a') = 0 is (a+0)+(1\*a') = 1

$$(a+b)' = a' * b'$$
  
 $(a+b) * 1 = (a'*b')+0$ 

### **Consensus Theorem**



Consensus (collective opinion) of X.Y and X'.Z is Y.Z

• 
$$(X + Y)(X' + Z)(Y + Z) = (X + Y)(X' + Z)$$

# **Shannon Expansion**

•  $F(X, Y, Z) = X \cdot F(1,Y,Z) + X' \cdot F(0, Y, Z)$ Example: XY+X'Z+YZ=X. (1.Y+0.Z+YZ) + X' (0.Y+1.Z+YZ)=X.(Y+YZ)+X'(Z+YZ)=X.(Y(1+Z))+X'(Z(1+Y))= X(Y.1) + X'(Z.1)=XY+X'7

### **N-bit** Boolean Algebra

- Single bit to *n-bit* Boolean Algebra
- Let a = 1101010, b = 1011011
  - a + b = 1101010 + 1011011 = 1111011
  - a \* b = 1101010 \* 1011011 = 1001010
  - a' = 1101010' = 0010101

# **Proof by Truth Table**

• Consider the distributive theorem:

$$a + (b * c) = (a + b)*(a + c)$$

Is it true for a two bit Boolean Algebra?

- Can prove using a truth table
  - -How many possible combinations of *a*, *b*, and *c* are there?
- Three variables, each with two values

$$-2*2*2 = 2^3 = 8$$

# **Proof by Truth Table**

| а | b | С | b*c | a+(b*c) | a+b | a+c | (a+b)*(a+c) |
|---|---|---|-----|---------|-----|-----|-------------|
| 0 | 0 | 0 | 0   | 0       | 0   | 0   | 0           |
| 0 | 0 | 1 | 0   | 0       | 0   | 1   | 0           |
| 0 | 1 | 0 | 0   | 0       | 1   | 0   | 0           |
| 0 | 1 | 1 | 1   | 1       | 1   | 1   | 1           |
| 1 | 0 | 0 | 0   | 1       | 1   | 1   | 1           |
| 1 | 0 | 1 | 0   | 1       | 1   | 1   | 1           |
| 1 | 1 | 0 | 0   | 1       | 1   | 1   | 1           |
| 1 | 1 | 1 | 1   | 1       | 1   | 1   | 1           |

### Proof using Theorems

• Use the properties of Boolean Algebra to proof

$$(x + y)(x + x) = x$$

• Warning, make sure you use the laws precisely

| (x+y)(x+x) | Given       |
|------------|-------------|
| (x+y)x     | Idempotent  |
| x(x+y)     | Commutative |
| X          | Absorption  |

### **Converting to Boolean Equations**

- Convert the following English statements to a Boolean equation
  - Q1. a is 1 and b is 1.
    - Answer: F = a AND b = ab
  - Q2. either of a or b is 1.
    - Answer: F = a OR b = a+b
  - Q3. both a and b are not 0.
    - Answer:
      - (a) Option 1: F = NOT(a) AND NOT(b) = a'b'
      - (b) Option 2: F = a OR b = a+b
  - Q4. a is 1 and b is 0.
    - Answer: F = a AND NOT(b) = ab'

### Example: Converting a Boolean Equation to a Circuit of Logic Gates

Q: Convert the following equation to logic gates:
 F = a AND NOT( b OR NOT(c) )



### **Some Circuit Drawing Conventions**



# **Thanks**