

Introduction To Programming

Decimal Number System (DNS):

In Decimal Number System there are **10** unique digits i.e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Therefore, DNS is **Base**₁₀.

Binary Number System (BNS):

In Binary Number System there are **2** unique digits i.e. {0, 1}. Therefore, BNS is **Base**₂. In Binary Number System,

$$0 + 0 = 1$$
; $0 + 1 = 1$; $1 + 0 = 1$; $1 + 1 = 10$;

Octal Number System (ONS):

In Octal Number System there are **8** unique digits i.e. {0, 1, 2, 3, 4, 5, 6, 7}. Therefore, ONS is **Base**₈. In Octal Number System,

$$3 + 4 = 7$$
; $4 + 5 = 11$; $5 + 6 = 13$; $23 = 27$;

HexaDecimal Number System (HNS):

In HexaDecimal Number System there are **16** unique digits i.e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}. Therefore, HNS is **Base**₁₆. In HexaDecimal Number System,

$$3 + 4 = 7$$
; $10 = A$; $15 = F$; $15 + 10 = 19$; $15 + 12 = 1B$;

Decimal Numbers	Binary Numbers	Octal Numbers	<u>HexaDecimal</u> Numbers
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12

To change number in any number system just check the **base** of that number system i.e., for decimal system the base is **10**, for binary system the base is **2**, for octal system the base is **8** and for hexadecimal system the base is **16**.

Decimal System to any Number System Conversion:

Formula:

Base	Quotient	Remainder

We'll divide the **Base** with the **Quotient** till the **Quotient** column becomes **0**, and write the number system form of the decimal number in the reverse order of the **Remainder** column.

• Suppose we need to find 27 in its Binary form.

2	27	Remainder (in reverse order)
2	13	<mark>1 </mark>
2	6	1
2	3	0
2	1	1
2	O	1

Therefore, 27 in binary form is 11011.

• Suppose we need to find 43 in its Binary form.

2	43	Remainder (in reverse order)
2	21	1 ,
2	10	1 1
2	5	0
2	2	1
2	1	0
2	O	1 4

Therefore, **43** in binary form is **101011**.

Any Number System to Decimal System Conversion:

Let's consider a number 278, we can write this number as:

$$2 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0} = 278$$

In the above example we can see that the base is 10. Similarly, a binary number, octal number and hexadecimal number can be converted to its equivalent decimal from with base as 2, 8 and 16 respectively.

• Suppose we need to find 101 in its **Decimal** form.

We can convert 101 as:

$$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5$$

Therefore, 101 in decimal form is $\underline{5}$.

• Suppose we need to find 110101 in its **Decimal** form.

We can convert 110101 as:

$$1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 16 + 0 + 4 + 0 + 1 = 53$$

Therefore, 110101 in decimal form is 53.

• Suppose we need to find **AC2** in its **Decimal** form.

We can convert AC2 as:

$$\frac{10}{10} \times 16^2 + \frac{12}{10} \times 16^1 + \frac{2}{10} \times 16^0 = 2560 + 192 + 2 = \frac{2754}{10}$$

Moore's Law:

It states that, in every 2 years the capacity of transistor will be increased by double.

History of Languages:

A computer only understands **binary form**. The language which computer understands is called **Machine Language**. A Machine Language is that language which consists of either '0' or '1'.

Eg: 010101000101;

To write Machine Language manually was a tough task and sometimes mistakes might happen. Therefore, to resolve this issue, an **assembler** was introduced which converts the **assembly language** submitted by user to computer into machine language (understandable to computer) i.e., **assembler** worked as a translator between user and computer.

Later on, more advancements were made to make a language which was similar to our speaking language which we termed as **high-level language**.

High-Level Language made our writing code convenient than before.

Eg: Java, Python, etc.

Machine Language is faster than Assembly Language and Assembly Language is faster than High-Level Language. This is because Assembly Language and High-Level Language are converted to Machine Language via some medium whereas Machine Language requires no conversion and is directly understandable to computer.

Data:

Programmers main goal should be to store maximum amount of data in minimum space, fetch data in less amount of time and arrange data in a sorted fashion.

Introduction To Programming (Homework)

- 1. Convert Decimal to Binary
 - **a.** 37
 - **b.** 92
 - **c.** 128
 - **d.** 243
- 2. Convert Binary to Decimal
 - **a.** 1011
 - **b.** 111001
 - c. 10011011
 - **d.** 10100100
- 3. Convert Decimal to Octal
 - **a.** 28
 - **b.** 47
 - **c.** 928
 - **d.** 1243
- 4. Convert Octal to Decimal
 - a. 41
 - **b.** 207
 - **c.** 124

- **d.** 311
- 5. Convert Decimal to HexaDecimal
 - **a.** 317
 - **b.** 41
 - **c.** 14
 - **d.** 845

6. Convert HexaDecimal to Decimal

- **a.** A11
- **b.** 49
- c. AE2F
- **d.** D97

Solutions

1. a.

2	37	
2	18	1
2	9	0
2	4	1
2	2	0
2	1	0
2	0	1

37 in binary form is **100101**.

b.

2	92	
2	46	0
2	23	0
2	11	1
2	5	1
2	2	1
2	1	0
2	0	1

92 in binary form is **1011100**.

c.

2	128	
2	64	0
2	32	0
2	16	0
2	8	0

2	4	0
2	2	0
2	1	0
2	0	1

128 in binary form is **10000000**.

d.

2	243	
2	121	1
2	60	1
2	30	0
2	15	0
2	7	1
2	3	1
2	1	1
2	0	1

243 in binary form is **11110011**.

2. a.

$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = 11$$

1011 in decimal form is **11**.

b.

$$1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 32 + 16 + 8 + 0 + 0 + 1 = 57$$

111001 in decimal form is 57.

c.

$$1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 128 + 0 + 0 + 16 + 8 + 0 + 2 + 1 = 155$$

10011011 in decimal form is 155.

d.

$$1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 128 + 0 + 32 + 0 + 0 + 4 + 0 + 0 = 164$$

10100100 in decimal form is **164**.

3. a.

8	28	
8	3	4
8	0	3

28 in octal form is **34**.

b.

8	47	
8	5	7
8	0	5

47 in octal form is 57.

c.

8	47	
8	5	7
8	0	5

47 in octal form is <u>57</u>.

d.

8	928	
8	116	0
8	14	4
8	1	6
8	0	1

928 in octal form is 1640.

4. a.

$$4 \times 8^{1} + 1 \times 8^{0} = 32 + 1 = 33$$

41 in decimal form is 33.

b.

$$2 \times 8^2 + 0 \times 8^1 + 7 \times 8^0 = 128 + 0 + 7 = 135$$

207 in decimal form is **135**.

c.

$$1 \times 8^2 + 2 \times 8^1 + 4 \times 8^0 = 64 + 16 + 4 = 84$$

124 in decimal form is **84**.

d.

$$3 \times 8^2 + 1 \times 8^1 + 1 \times 8^0 = 192 + 8 + 1 = 201$$

311 in decimal form is **201**.

5. a.

16	317	
16	19	D
16	1	3
16	0	1

317 in hexadecimal form is 13D.

b.

_	16	41	
	16	2	9
_	16	0	2

41 in hexadecimal form is 29.

c.

16	14	
16	0	E

14 in hexadecimal form is **E**.

d.

16	845	
16	52	D
16	3	4
16	0	3

845 in hexadecimal form is 34D.

6. a.

A x $16^2 + 1 \times 16^1 + 1 \times 16^0 = 2560 + 16 + 1 = 2577$ A11 in decimal form is 2577.

b.

$$4 \times 16^{1} + 9 \times 16^{0} = 64 + 9 = 73$$

49 in decimal form is **73**.

c.

A x
$$16^3$$
 + E x 16^2 + 2 x 16^1 + F x 16^0 = 40960 + 3584 + 32 + 15 = 44591
AE2F in decimal form is **44591**.

d.

D x
$$16^2 + 9 \times 16^1 + 7 \times 16^0 = 3328 + 144 + 7 = 3479$$

D97 in decimal form is **3479**.