Interior-Point Method for Nuclear Norm Approximation with Application to System Identification

Author: Zhang Liu and Lieven Vandenberghe

Presentation by: Martin Hellkvist

May 7, 2019

Summary

- Nuclear Norm: $||X||_* = \text{sum of singular values}$
- $ightharpoonup min ||X||_*$ typically has low rank solutions
 - ► Can be cast as Semidefinite Program (SDP)
- min rank(X) is NP-hard
 - System Identification
 - Machine Learning
 - Computer Vision
- Contribution:
 - Describe a more efficient interior-point method for high order problems with the structure that follows $||\cdot||_*$

Nuclear Norm Approximation Problem

minimize
$$||A(x) - B||_*$$

 $B \in \mathbb{R}^{p \times q}$ (1)
 $A(x) = x_1 A_1 + x_2 A_2 + \dots + x_n A_n$

Can be cast as

minimize
$$(\mathbf{tr}U + \mathbf{tr}V)/2$$

subject to $\begin{bmatrix} U & (A(x) - B)^T \\ A(x) - B & V \end{bmatrix} \succeq 0$ (2)

Where $U=U^T\in\mathbb{R}^{q\times q}$ and $V=V^T\in\mathbb{R}^{p\times p}$ are new variables, and the problem is an SDP which is very difficult to solve for $q\approx 100$ and $p\approx 100$ for general purpose interior-point methods

Custom Interior-Point Method

Exploiting the structure of

minimize
$$(\mathbf{tr}U + \mathbf{tr}V)/2$$

subject to $\begin{bmatrix} U & (A(x) - B)^T \\ A(x) - B & V \end{bmatrix} \succeq 0$ (3)

We need to solve the following linear equation system

$$\mathcal{A}_{\mathrm{adj}}(\Delta Z) = r, \quad \begin{bmatrix} \Delta U & \mathcal{A}(\Delta x)^T \\ \mathcal{A}(\Delta x) & \Delta V \end{bmatrix} + T \begin{bmatrix} 0 & \Delta Z^T \\ \Delta Z & 0 \end{bmatrix} T = R$$

$$(4)$$

which can be solved by first finding Δx

$$\tilde{\mathcal{A}}_{\text{adj}}(\mathcal{S}^{-1}(\tilde{\mathcal{A}}(\Delta x))) = \tilde{\mathcal{A}}_{\text{adj}}(\mathcal{S}^{-1}(\tilde{R}_{21})) - r \tag{5}$$

which gives ΔZ and in turn ΔU and ΔV