1) Data Informations

First, we describe the necessary libraries.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
```

After this step, we assigned our dataset, which is in CSV format, to a variable named "df". To easily examine the columns in the dataset, we displayed the first 5 rows.

```
df=pd.read_csv("car_prices.csv")

df.head()
```

Display of our dataset;

	year	make	model	trim	body	transmission	vin	state	condition	odometer	color	interior	seller	mmr	sellingprice	saledate
(2015	Kia	Sorento	LX	SUV	automatic	5xyktca69fg566472	ca	5.0	16639.0	white	black	kia motors america inc	20500.0	21500.0	Tue Dec 16 2014 12:30:00 GMT- 0800 (PST)
į	2015	Kia	Sorento	LX	SUV	automatic	5xyktca69fg561319	ca	5.0	9393.0	white	beige	kia motors america inc	20800.0	21500.0	Tue Dec 16 2014 12:30:00 GMT- 0800 (PST)
á	2014	BMW	3 Series	328i SULEV	Sedan	automatic	wba3c1c51ek116351	ca	45.0	1331.0	gray	black	financial services remarketing (lease)	31900.0	30000.0	Thu Jan 15 2015 04:30:00 GMT- 0800 (PST)
3	2015	Volvo	S60	T5	Sedan	automatic	yv1612tb4f1310987	ca	41.0	14282.0	white	black	volvo na rep/world omni	27500.0	27750.0	Thu Jan 29 2015 04:30:00 GMT- 0800 (PST)
	2014	BMW	6 Series Gran Coupe	650i	Sedan	automatic	wba6b2c57ed129731	ca	43.0	2641.0	gray	black	financial services remarketing (lease)	66000.0	67000.0	Thu Dec 18 2014 12:30:00 GMT- 0800 (PST)

Figure 1

2)Column Descriptions

- 1. **year**: The year of manufacture of vehicles.
- 2. make: The manufacturer or brand of vehicle (e.g., Kia).
- 3. **model**: The model name of the vehicle (e.g., Sorento).
- 4. **trim**: The specific version or configuration of the vehicle model (e.g., LX).

- 5. **body**: The body type of vehicle (e.g., SUV).
- 6. **transmission**: The type of transmission system (e.g., automatic or manual).
- 7. vin: The unique Vehicle Identification Number for each vehicle.
- 8. **state**: The location (state) where the vehicle was sold or listed (e.g., "ca" for California).
- 9. **condition**: The condition rating of the vehicle, typically on a scale of 1-5 (1: poor, 5: excellent).
- 10. **odometer**: The mileage recorded on the vehicle's odometer, representing how many miles it has traveled.
- 11. **color**: The exterior color of the vehicle (e.g., white).
- 12. **interior**: The interior color of the vehicle (e.g., black or beige).
- 13. **seller**: The name of the seller or dealership (e.g., Kia Motors America Inc).
- 14. **mmr**: The Manheim Market Report value, a wholesale price benchmark for the vehicle.
- 15. **sellingprice**: The actual selling price of the vehicle.
- 16. saledate: The date and time when the vehicle was sold

Then, we showed the features of our data set with the df.info() command.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 558837 entries, 0 to 558836
Data columns (total 16 columns):
    Column
                  Non-Null Count
                                   Dtype
                  -----
0
    year
                  558837 non-null int64
 1
    make
                  548536 non-null object
 2
    model
                  548438 non-null object
 3
    trim
                  548186 non-null object
                 545642 non-null object
 4
    body
 5
    transmission 493485 non-null object
 6
                558833 non-null object
    vin
                558837 non-null object
 7
    state
    condition 547017 non-null float64
odometer 558743 non-null float64
 8
 9
 10 color
                  558088 non-null object
 11 interior
                558088 non-null object
 12 seller
                  558837 non-null object
 13 mmr
                  558799 non-null float64
 14 sellingprice 558825 non-null float64
                  558825 non-null object
 15 saledate
dtypes: float64(4), int64(1), object(11)
```

Figure 2

3) Data Preprocessing

3.1) Dropping columns that will not be useful in model training

"vin" is the Vehicle identification number. It does not directly contribute to price prediction Also "saledate" not directly contribute to price prediction.

```
df.drop(columns=['vin','saledate'], inplace=True)
```

3.2) Replacing null values

Using the command df.isnull().sum(), we identified the number of null values present in each column of the dataset.

year	0				
make	10301				
model	10399				
trim	10651				
body	13195				
transmission	65352				
vin	4				
state	0				
condition	11820				
odometer	94				
color	749				
interior	749				
seller	0				
mmr	38				
sellingprice	12				
saledate	12				

Figure 3

After this step, we try to fill numeric null values with mean values. Our numeric columns are "year", "condition", "odometer", "mmr", "sellingprice".

```
df['year'].fillna(df['year'].mean())
df['condition'].fillna(df['condition'].mean())
df['odometer'].fillna(df['odometer'].mean())
df['mmr'].fillna(df['mmr'].mean())
df['sellingprice'].fillna(df['sellingprice'].mean())
```

Now, the count of null values in the numeric columns has been corrected.

```
year
                    0
make
                10301
model
                10399
trim
                10651
body
               13195
transmission
             65352
vin
                   4
state
                   0
condition
odometer
                   0
color
                  749
interior
                 749
seller
                   0
mmr
sellingprice
saledate
                   12
dtype: int64
```

Figure 4

We replaced the null values in columns with object data type with "unknown".

```
object_columns = df.select_dtypes(include=['object']).columns
df[object_columns] = df[object_columns].fillna('Unknown')
```

3.3) Convert categorical variables to numeric values

We converted the columns of the object data type into numerical values. We used target encoding for this. The reason we use target encoding in this case is due to having a large number of categorical variables. By doing so, the same variables within the same column are evaluated based on the average of their corresponding selling price values

```
categorical_columns = ['make', 'model', 'trim', 'body', 'transmission', 'state', 'color', 'interior', 'seller']
target_column = "sellingprice"
for col in categorical_columns:

target_encoding = df.groupby(col)[target_column].mean().to_dict()
    df[f"{col}_encoded"] = df[col].map(target_encoding)

df.drop(categorical_columns, axis=1, inplace=True)
```

4 Data Visulization

The histogram shows how many groups the data is collected in and how the distribution is. Here we created a histogram chart for selling price.

```
plt.hist(df['sellingprice'], bins=30, edgecolor='black')
plt.title('Selling Price Distribution')
plt.xlabel('Selling Price')
plt.ylabel('Frequency')
plt.show()
```


Figure 5

Scatter plot serves to visualize the relationship between two continuous variables. Here we created a scatter plot chart showing the relationship between autometer and selling price.

```
plt.scatter(df['odometer'], df['sellingprice'], alpha=0.5)
plt.title('Selling Price vs Odometer')
plt.xlabel('Odometer')
plt.ylabel('Selling Price')
plt.show()
```


The correlation matrix is used to examine the relationship between numerical variables. Correlation coefficient shows the linear relationship between two variables

```
correlation_matrix = df.corr()

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Matrix')
plt.show()
```

Correlation Matrix 1.0 year -1.000.330.770.600.590.070.210.280.040.070.210.220.250.55 condition -0.331.000.310.280.320.120.170.160.090.020.110.110.090.30 0.8 odometer -0.770.31<mark>1.00</mark>0.590.590.110.200.250.020.030.240.170.230.55 0.6 mmr -0.600.28<mark>0.59</mark>1.000.98<mark>0.460.690.65</mark>0.340.060.220.210.25 sellingprice -0.590.32<mark>0.580.981.00</mark>0.460.680.640.330.060.230.220.25 - 0.4 make encoded -0.070.120.110.460.461.000.660.460.250.030.080.120.110.39 model_encoded -0.210.170.200.690.680.661.000.550.400.040.120.140.140.46 - 0.2 trim_encoded -0.280.160.250.650.640.460.551.000.290.040.130.150.190.46 - 0.0 body_encoded -0.040.090.020.340.330.250.400.291.000.040.050.060.020.17 transmission encoded -0.070.020.030.060.060.030.040.040.041.000.120.020.010.06 -0.2state encoded -0.210.110.240.220.230.080.120.130.050.121.000.110.100.30 -0.4color_encoded -0.220.110.170.210.220.120.140.150.060.020.111.000.120.21 interior encoded -0.250.090.230.250.250.110.140.190.020.010.100.121.000.22 -0.6seller_encoded -0.550.30<mark>0.55</mark>0.690.70<mark>0.390.460.46</mark>0.170.060.300.210.22<mark>1.00</mark> sellingprice state_encoded seller_encoded odometer nake_encoded trim_encoded nterior_encoded nodel_encoded body_encoded transmission_encoded

Figure 7

A box plot visualizes the central tendencies (median, quartiles) and outliers of a variable.

```
sns.boxplot(x=df['sellingprice'])
plt.title('Selling Price Boxplot')
plt.show()
```

Selling Price Boxplot

Figure 8