Variabilidad en el ciclo anual de la velocidad de flujo en una zona del mar caribe

Paula Andrea Espinosa Ordoñez

Agenda

- Conceptualización
- Aplicación de métodos
- Resultados
- Conclusiones

PROBLEMA

Variables Independientes (X):

- Nivel del agua
- Salinidad
- Temperatura
- Altura y dirección de ola
- Magnitud y dirección del viento

Resolución:

- Pixeles: 4km x 8 km
- Temporal: promedio mensual
- Hycom
- ERA5

Variables Dependiente (Y):

- Magnitud de la velocidad
- Dirección de la velocidad

Predicciones estacionales de Velocidad de flujo

Datos

	index	waterlevel	temp	sal	hs_wave	dir_wave	vel_wind	di	r_wind	u_wind	v_wind	vel	flow
0	46	0.260220	0.260220	0.260220	0.116837	0.116837	0.116837	45.0	000000	0.116837	0.116837	0.36	8006
1	47	0.263163	0.263163	0.263163	0.122465	0.122465	0.122465	45.0	000000	0.122465	0.122465	0.37	'2168
2	48	0.258976	0.258976	0.258976	0.130494	0.130494	0.130494	45.0	000000	0.130494	0.130494	0.36	6247
3	49	0.256825	0.256825	0.256825	0.140012	0.140012	0.140012	45.0	000000	0.140012	0.140012	0.36	3206
4	50	0.258829	0.258829	0.258829	0.149988	0.149988	0.149988	45.0	000000	0.149988	0.149988	0.36	6040
								(dir_flow	u_flow	v_fl	ow	mes
221371	20939	0.218121	28.110162	35.755665	1.887047	87.019027	9.213161	259	45.0	0.260220	0.260	220	1
221372	20940	0.222498	28.105264	35.748895	1.888027	87.102830	9.229263	259	45.0	0.263163	0.263	163	1
221373	20941	0.226166	28.097134	35.737414	1.888999	87.187034	9.245683	259	45.0	0.258976	0.2589	976	1
221374	20942	0.229069	28.081057	35.720507	1.889970	87.271393	9.257756	259	45.0	0.256825	0.256	825	1
221375	20943	0.231113	28.077571	35.710580	1.890939	87.355596	9.262286	259					
45.0 0.258829 0.258829 1 221376 rows × 15 columns													
22137010	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	columns											
									225.0	-0.552490	-0.552	490	12
									225.0	-0.567478	-0.567	478	12
									225.0	-0.581518	-0.581	518	12
									225.0	-0.592680	-0.592	680	12

225.0 -0.599862 -0.599862

SELECCIÓN DE VARIABLES

A través del método

Recursive Feature Elimination (RFE)

Aplicación de métodos- Esquema

SELECCIÓN DE VARIABLES

A través del método Recursive Feature Elimination (RFE)

K-FOLD

Evaluar el rendimiento general del modelo sin entrar en detalle.

HIPERPARÁMETROS

Evaluar el selección de hiperparámetros dependiendo del modelo (paramétrico o no paramétrico)

APLICACIÓN DEL MÉTODO

Evaluar el modelo con los datos de entrenamiento y **testeo**.

ENTRENAMIENTO

Dep. Variabl	Le:	vel	_flow	R-sq	uared (unce	entered):		0.70
Model:		OLS		Adj.	R-squared	(uncenter	red):	0.70
Method:		Least Sq	uares	F-st		1.014e+0		
Date:		Tue, 06 Dec	2022	Prob	(F-statist	tic):		0.0
Time:		13:	33:14	Log-	Likelihood	:		-111.2
No. Observat	ions:	173085		AIC:				230.
Df Residuals	5:	1	73081	BIC:				270.
Df Model:			4					
Covariance 1	Гуре:	nonr	obust					
				=====			.=======	
	coef	std err		t	P> t	[0.025	0.975]	
waterlevel	0.1911	0.005	41.8	05	0.000	0.182	0.200	
temp	0.0049	6.97e-05	70.2	39	0.000	0.005	0.005	
ns_wave	0.1408	0.003	51.7	93	0.000	0.135	0.146	
vel_wind	0.0046				0.000	0.003	0.006	
======= Omnibus:	.======	11274.9				=======	2.005	
Prob(Omnibus)	:	0.6	900 J	arque-	Bera (JB):		13624.035	
Skew:		0.6	564 P	rob(JB):		0.00	
Kurtosis:		3.3	357 C	ond. N	0.		222.	

R2 0.151

VALIDACIÓN

Sin incluir el intercepto, Problemas de alto bias

Incluyendo el intercepto

Dep. Variabl	.e:	vel_flow		R-squared:			0.164
Model:			OLS	Adj. R-squ	ared:		0.164
Method:		Least :	Squares	F-statisti		8475.	
Date:		Tue, 06 D	ec 2022	Prob (F-st		0.00	
Γime:		1	5:30:12	Log-Likeli		637.46	
No. Observat	ions:		173085	AIC:			-1265.
of Residuals	::		173080	BIC:			-1214.
Of Model:			4				
Covariance T	vpe:	noi	nrobust				
					=======		
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	0.0824	0.002	38.779	0.000	0.078	0.087	
waterlevel	0.1837	0.005	40.305	0.000	0.175	0.193	
temp	0.0022	9.91e-05	21.707	0.000	0.002	0.002	
hs_wave	0.1346	0.003	49.670	0.000	0.129	0.140	
vel_wind	0.0051	0.001	8.801	0.000	0.004	0.006	
Omnibus:				in-Watson:		2.005	
Prob(Omnibus)	:			ue-Bera (JB):			
Skew:		0.740 Pro				0.00	
Kurtosis:			485 Cond	. NO.		222.	

TEST:

ENTRENAMIENTO

		OLS Re	gression Re	sults					
			-	.=====					
Dep. Variab		vel f		ared:		0.325			
Model:	10.	VC1_1	100 m	R-squared:		0.325			
Method:		Least Squa		tistic:		5559.			
Date:	Tu	e, 06 Dec 2		(F-statistic)		0.00			
Time:	10	16:21		ikelihood:	•	19191.			
No. Observat	tions:		8085 AIC:	.IKeIIII00u.		-3.835e+04			
Df Residuals			3069 BIC:			-3.835e+04			
Df Model:	5.	1/3	15			-3.0190+04			
	Turne	nonrob							
Covariance		nonrot	oust						
				D. +	[0.025	0.0751			
	coef	std err	t	P> t	[0.025	0.975]			
waterlevel	0.2695	0.004	63.718	0.000	0.261	0.278			
temp	-0.1125	0.002	-60.829	0.000	-0.116	-0.109			
hs_wave	0.4674	0.002	141.349	0.000	0.461	0.474			
vel_wind	-0.0361	0.001	-60.680	0.000	-0.037	-0.035			
mes_1	0.0905	0.002	47.339	0.000	0.087	0.094			
	2.7566	0.052	52.817	0.000	2.654	2.859			
mes2	2.7566	0.052	55.072	0.000	2.753	2.059			
mes3									
mes4	2.9366	0.052	56.320	0.000	2.834	3.039			
mes5	3.0290	0.053	57.031	0.000	2.925	3.133			
mes6	3.0972	0.054	57.611	0.000	2.992	3.203			
mes7	3.0584	0.054	56.688	0.000	2.953	3.164			
mes8	3.3107	0.054	60.904	0.000	3.204	3.417			
mes9	3.3975	0.055	62.122	0.000	3.290	3.505			
mes10	3.3879	0.055	61.507	0.000	3.280	3.496			
mes11	3.2966	0.055	60.354	0.000	3.190	3.404			
mes12	2.9788	0.054	55.485	0.000	2.874	3.084			
						========			
Omnibus: Prob(Omnibus):		6149.329 0.000	Durbin-Watso Jarque-Bera		2.004 7122.612				
Skew:		0.441	Prob(JB):	(38):	0.00				
Kurtosis:		3.459	Cond. No.		9.51e+03				
==========			=========		========				
Notes:									
	[1] Standard Errors assume that the covariance matrix of the errors is correctly specified								
The state of the s	[2] The condition number is large, 9.51e+03. This might indicate that there are								
strong multicollinearity or other numerical problems.									

Scatter para valores de velocidad > 1 m/s 0.6 Modelo 0.2 0.4 0.6 0.8 1.0 0.0 Valor real 12°N 82.5°W 81°W 79.5°W 78°W 76.5°W 75°W Celda 16504 Celda 12569 Celda 17994 Celda 15809 Celda 18865 Celda 16328 Celda 19925 Celda 5749 Celda 14408 Celda 20095 Celda 13932 Celda 9498 Celda 6749

EVALUACIÓN DEL LA REGRESIÓN LINEAL

Y: variable independiente

Predicción con OLS

EVALUACIÓN DEL LA REGRESIÓN LINEAL

Aplicando Regularización

Lasso

```
1 # RandomSearch
   2 from sklearn.model_selection import RandomizedSearchCV
   3 from scipy.stats import uniform
   5 param grid = {'alpha': uniform()}
   6 rsearch = RandomizedSearchCV(estimator=Lasso(fit_intercept = False), param_distributions=param_grid, n_iter=100
   7 rsearch.fit(X_train_sd.iloc[:,1:], y_train1)
   8 print(rsearch.best score )
     print(rsearch.best estimator .alpha)
 10
                                                                                                         Ridge
 ✓ 10.8s
-1.5969334930207655
0.00011437481734488664
                                                1 from sklearn.model selection import RandomizedSearchCV
                                                2 from scipy.stats import uniform
                                                3
                                                4 param grid = {'alpha': uniform()}
                                                5 rsearch = RandomizedSearchCV(estimator=Ridge(fit intercept = False), param distributions=param grid, n iter=100
                                                6 rsearch.fit(X train sd.iloc[:,1:], y train1)
                                                7 print(rsearch.best score )
                                                8 print(rsearch.best estimator .alpha)
                                             ✓ 7.9s
                                                                                                                                                                     Python
                                            -1.596933141314826
                                            0.9888610889064947
```


Aplicación de Métodos - KNN

Evaluación del desempeño del modelo

```
1 # Validación curzada con shufflesplit
2 from sklearn.neighbors import KNeighborsRegressor
3 from sklearn.model_selection import cross_val_score
4 from sklearn.model_selection import ShuffleSplit
5
6 kfold = ShuffleSplit(n_splits=5)
7 model = KNeighborsRegressor()
8 results = cross_val_score(model, X_train.iloc[:,1:], y_train1, cv=kfold)
9 print(results.mean())
10 print(results.std())

✓ 1.5s

0.9129901863252652
0.0032970304178354636
```

2

K-FOLD

Evaluar el rendimiento general del modelo sin entrar en detalle.

Selección de hiperparámetro K neighbors

```
1 # Buscada de Los vecinos
2 from sklearn.model_selection import RandomizedSearchCV
3 from scipy.stats import uniform
4
5 k_neighbors = np.arange(2,115,10)
6 param_grid = {'n_neighbors': k_neighbors}
7 rsearch = RandomizedSearchCV(estimator=KNeighborsRegressor(), param_distributions=param_grid, n_iter=100, randomizedSearch.fit(X_train.iloc[:,1:], y_train1)
9 print('Mejor R2',rsearch.best_score_)
10 print('Mejor estimador', rsearch.best_estimator_.n_neighbors)

V 1m 0.6s
Python
Mejor R2 0.9126437799970694
Mejor estimador 2
```


Aplicación de Métodos - KNN

Proceso

```
import math
model = KNeighborsRegressor(n_neighbors=2)
# Función de ajuste
fun_ajuste = model.fit(X_train.iloc[:,1:],y_train1)
# Score del entrenamiento
score=model.score(X train.iloc[:,1:],y train1)
print('R2 del entrenamiento:',score)
# Score del test
y pred test knn = model.predict(X test.iloc[:,1:])
r2_test = r2_score(y_test1,y_pred_test_knn)
print('El R2 de la validación: ',r2 test)
mse =mean_squared_error(y test1, y pred test knn)
print("Mean Squared Error:",mse)
rmse = math.sqrt(mse)
print("Root Mean Squared Error:", rmse)
R2 del entrenamiento: 0.9767871276795833
El R2 de la validación: 0.9217751532563562
Mean Squared Error: 0.005472961625236615
Root Mean Squared Error: 0.073979467592276
```

Validación

R2 0.92

Scatter para valores de velocidad > 1 m/s

Patrones de Velocidad con KNN

Y: variable independiente

Predicción con KNN

Aplicación de Métodos-SVM

Evaluación del desempeño del modelo

2

K-FOLD

Evaluar el rendimiento general del modelo sin entrar en detalle.

Selección de hiperparámetro C

Estandarizando los Features:

```
C Alta varianza Bajo Bias (overffiting)
C Baja varianza Alto Bias
```


Aplicación de Métodos- SVM

Proceso

```
1 from sklearn.svm import LinearSVR
      svr lin = LinearSVR(C=1)
      # svr lin = SVR(kernel="linear", C=1, gamma="auto")
      y lin = svr lin.fit(X train sd.iloc[:,1:],y train1)
      # Score del entrenamiento
      score=svr_lin.score(X_train_sd.iloc[:,1:],y_train1)
      print('R2 del entrenamiento:',score)
  10
  11
      # Score del test
      y_pred_test_svr = svr_lin.predict(X_test_sd.iloc[:,1:])
      r2_test = r2_score(y_test1,y_pred_test_svr)
      print('El R2 de la validación: ',r2_test)

√ 6.6s

R2 del entrenamiento: 0.13048822546044847
El R2 de la validación: 0.13061645633537422
```

Validación

R2 0.13

Aplicación de Métodos- SVM

Y: variable independiente

Predicción con SVR

Aplicación de Métodos-RAMDON FOREST

Evaluación del desempeño del modelo

```
1  # Evaluación general del desempeño del modelo con KFold
2  kfold = KFold(n_splits=5, shuffle= True,random_state=1)
3  model = RandomForestRegressor()
4  results1 = cross_val_score(model, X_train.iloc[:,1:], y_train1, cv=kfold, scoring='r2') # Obtengo la metrica R2
5  print('Resultados para la variable Y1')
6  print(results1, '\n')
7  print(results1.mean())
8  print(results1.std())

Resultados para la variable Y1
[0.95436978 0.95271959 0.95417483 0.95745627 0.95643969]

0.9550320304126885
0.0016958293958169108
```

```
1 from sklearn.ensemble import RandomForestRegressor
2 # Evaluación general del desempeño del modelo
3 # Validación cruzada
4 results=cross_validate(RandomForestRegressor(), X.iloc[:,1:], Y1, return_train_score=True, cv=5)
5 results

V 7m 10.8s

{'fit_time': array([92.02941251, 86.07804728, 76.96924305, 77.05657125, 76.81329918]),
'score_time': array([0.42453766, 0.35500216, 0.42325997, 0.45566773, 0.46896243]),
'test_score': array([0.16784284, 0.04835069, -0.19511127, -0.68669327, -0.15487245]),
'train_score': array([0.99458028, 0.99517407, 0.99618863, 0.99557515, 0.99593637])}
```

K-FOLD

Evaluar el rendimiento general del modelo sin entrar en detalle.

Selección de hiperparámetros

Se observó un gran gasto computacional: Tiempo de ejecución > 1h

```
17 # Create the random grid
 18 random grid = {'n estimators': n estimators,
                     'max features': max features,
 20
                     'max_depth': max_depth,
 21
                     'min samples split': min samples split,
 22
                     'min samples leaf': min samples leaf}
 23
     # search across 100 different combinations, and use all available cores
     rf_random = RandomizedSearchCV(estimator=RandomForestRegressor(), param_distributions=random_grid,
                                    n_iter = 10, scoring='neg_mean_absolute_error',
 27
                                    cv = 3, verbose=2, random_state=42, n_jobs=-1)
 28
 29
 30 rf_random.fit(X_train.iloc[:,1:], y_train1)
 31 print('Mejor R2',rf random.best score )
 32 print('Mejores hiperparametros',rf_random.best_params_)

√ 58m 2.5s

Fitting 3 folds for each of 10 candidates, totalling 30 fits
Mejor R2 -0.028374386503040458
Mejores hiperparametros {'n_estimators': 385, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'auto',
'max depth': 90}
```


Aplicación de Métodos-REDES NEURONALES

Evaluación del desempeño del modelo

K-FOLD

Evaluar el rendimiento general del modelo sin entrar en detalle.

Selección de hiperparámetros

Se observó un gran gasto computacional: Tiempo de ejecución > 1h

```
from sklearn.neural network import MLPRegressor
 # Capas ocultas
hidden layer sizes= np.arange(10, 100, 10)
 # Función de activación
 activation=['logistic', 'tanh' , 'relu']
 # Solver
 solver =['lbfgs', 'sgd', 'adam']
 # Create the random grid
 random_grid = {'hidden_layer_sizes': hidden_layer_sizes,
                'activation': activation,
                'solver': solver}
 # search across 100 different combinations, and use all available cores
 rf_random = RandomizedSearchCV(estimator=MLPRegressor(), param_distributions=random_grid,
                               n iter = 10, scoring='neg mean absolute error',
                               cv = 3, verbose=2, random state=42, n jobs=-1)
rf_random.fit(X_train.iloc[:,1:], y_train1)
 print('Mejor R2',rf random.best score )
 print('Mejores hiperparametros',rf_random.best_params_)
Fitting 3 folds for each of 10 candidates, totalling 30 fits
Mejor R2 -0.18339299571501808
Mejores hiperparametros {'solver': 'lbfgs', 'hidden layer sizes': 70, 'activation': 'logistic'}
```


Modelo Seleccionado

Modelo	R2 Testo			
Regresión Lineal	0.151			
Regresión Lineal (Variables Categóricas)	0.31			
KNN	0.92			
Suport Vector Regressor	0.13			
Modelos Ensamblados	Computacionalmente altos			

Conclusiones

El conocimiento profundo de los **features y la variable a predicir** es importante a la hora de elegir cual modelo se ajusta con la métrica deseada.

SVM, en sus modelos para regresión está limitado a la cantidad de muestras.

En general el desempeño de los modelos no paramétricos mostraron métricas más altas.

Se debe probar el modelo de ML, en una región diferente.

A grandes rasgos los modelos ensamblados son computacionalmente altos.

GRACIAS POR SU ATENCIÓN

Referencias

- Escobar, Carlos A., Liliana Velásquez, and Federico Posada. 2015. "Marine Currents in the Gulf of Urabá, Colombian Caribbean Sea." Journal of Coastal Research 31(6):1363–74.
- Liu, Y., & Weisberg, R. H. (2005). Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal of Geophysical Research: Oceans, 110(6), 1–12. https://doi.org/10.1029/2004JC002786
- Ambroise, C., G. Seze, F. Badran, and S. Thiria (2000), Hierarchical clustering of self-organizing maps for cloud classification, Neurocomputing, 30, 47 52
- Jirakittayakorn, A., Kormongkolkul, T., Vateekul, P., Jitkajornwanich, K., & Lawawirojwong, S. (2017). Temporal kNN for short-Term ocean current prediction based on HF radar observations. Proceedings of the 2017 14th International Joint Conference on Computer Science and Software Engineering, JCSSE 2017. https://doi.org/10.1109/JCSSE.2017.8025921