lpoteze:

- ☐ Graful <u>nu</u> conține circuite
- Arcele pot avea <u>si cost negativ</u>

Amintim:

- □ Când considerăm un vârf v, pentru a calcula d(s, v) ar fi util să ştim deja δ
 (s, u), pentru orice u cu uv∈E
- □ atunci, putem calcula distanțele după relația

$$\delta(s, v) = \min \{ \delta(s, u) + w(u, v) \mid uv \in E \}$$

Amintim:

Când considerăm un vârf v, pentru a calcula d(s, v) ar fi util să ştim deja δ
 (s, u), pentru orice u cu uv∈E

 \Rightarrow

ar fi utilă o ordonare a vârfurilor, astfel încât, dacă uv∈E, atunci u se află înaintea lui v

Amintim:

Când considerăm un vârf v, pentru a calcula d(s, v) ar fi util să ştim deja δ
 (s, u), pentru orice u cu uv∈E

 \Rightarrow

ar fi utilă o ordonare a vârfurilor, astfel încât, dacă uv∈E, atunci u se află înaintea lui v

O astfel de ordonare <u>nu există</u> dacă graful conține circuite

Amintim:

Când considerăm un vârf v, pentru a calcula d(s, v) ar fi util să ştim deja δ
 (s, u), pentru orice u cu uv∈E

 \Rightarrow

ar fi utilă o ordonare a vârfurilor, astfel încât, dacă uv∈E, atunci u se află înaintea lui v

O astfel de ordonare există dacă graful nu conține circuite

= sortarea topologică

Pseudocod

- □ Considerăm vârfurile în ordinea dată de sortarea topologică
- Pentru fiecare vârf u, relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

```
s - vârful de start
// inițializăm distanțe - ca la Dijkstra
```

```
s - vârful de start

// inițializăm distanțe - ca la Dijkstra
pentru fiecare u∈V execută
    d[u] = ∞; tata[u] = 0

d[s] = 0

// determinăm o sortare topologică a vârfurilor
// este suficient să păstrăm vârfurile din sortare începând cu s
```

```
s - vârful de start
// inițializăm distanțe - ca la Dijkstra
pentru fiecare u∈V execută
    d[u] = \infty; tata[u] = 0
d[s] = 0
// determinăm o sortare topologică a vârfurilor
// este suficient să păstrăm vârfurile din sortare începând cu s
SortTop = sortare_topologică(G, s)
pentru fiecare u∈SortTop execută
```

```
s - vârful de start
// inițializăm distanțe - ca la Dijkstra
pentru fiecare u∈V execută
    d[u] = \infty; tata[u] = 0
d[s] = 0
// determinăm o sortare topologică a vârfurilor
// este suficient să păstrăm vârfurile din sortare începând cu s
SortTop = sortare_topologică(G, s)
pentru fiecare u∈SortTop execută
    pentru fiecare uv∈E execută
```

```
s - vârful de start
// inițializăm distanțe - ca la Dijkstra
pentru fiecare u∈V execută
    d[u] = \infty: tata[u] = 0
d[s] = 0
// determinăm o sortare topologică a vârfurilor
// este suficient să păstrăm vârfurile din sortare începând cu s
SortTop = sortare_topologică(G, s)
pentru fiecare u∈SortTop execută
    pentru fiecare uv∈E execută
        dacă d[u]+w(u,v) < d[v] atunci// relaxăm uv
             d[v] = d[u] + w(u,v)
             tata[v] = u
```

```
s - vârful de start
// inițializăm distanțe - ca la Dijkstra
pentru fiecare u∈V execută
    d[u] = \infty: tata[u] = 0
d[s] = 0
// determinăm o sortare topologică a vârfurilor
// este suficient să păstrăm vârfurile din sortare începând cu s
SortTop = sortare_topologică(G, s)
pentru fiecare u∈SortTop execută
    pentru fiecare uv∈E execută
        dacă d[u]+w(u,v) < d[v] atunci// relaxăm uv
             d[v] = d[u] + w(u,v)
             tata[v] = u
scrie d, tata
```

Exemplu

Exemplu

- □ Etapa 1 determinăm o ordonare topologică a vârfurilor
- Amintim algoritm

```
SortTop ← Ø
coada C ← Ø
adaugă în C toate vârfurile v cu d^{-}[v] = 0
cât timp C ≠ Ø execută
     i \leftarrow extrage(C)
     adaugă i în SortTop
     pentru ij ∈ E execută
          d<sup>-</sup>[i]--
          dacă d<sup>-</sup>[j] = 0 atunci
               adaugă(j, C)
returnează SortTop
```


C: 1 3

C: 1 3

C: 1 3

C: 1 3 6 5 4

C: 1 3 6 5 4

2

C: 1 3 6 5 4

2

C: 1 3 6 5 4 2

2

C: 1 3 6 5 4 2

C: 1 3 6 5 4 2

Sortare topologică - Exemplu

SORTARE TOPOLOGICĂ: 1 3 6 5 4 2

Sortare topologică - Algoritm

```
coada C ← Ø
adaugă în C toate vârfurile v cu d⁻[v]=0
cât timp C ≠ Ø execută
    i ← extrage(C)
    adaugă i în sortare
    pentru ij ∈ E execută
        d<sup>-</sup>[i]--
        dacă d<sup>-</sup>[j] = 0 atunci
            adaugă(j, C)
return C
```

Exemplu

Etapa 2 - parcurgem vârfurile în ordinea dată de sortarea topologică şi relaxăm, pentru fiecare vârf, arcele care ies din acesta

s = 3 - vârf de start

s = 3 - vârf de start

1 2 3 4 5 6 d/tata
$$[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$$

s = 3 - vârf de start

Ordine de calcul distanțe 1, 3, 6, 5, 4, 2

1 2 3 4 5 6 d/tata
$$[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$$
 $u = 1$ $[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$

1 nu este accesibil din s - putem să nu îl considerăm (să ignorăm vârfurile din ordonarea topologică aflate înaintea lui s)

s = 3 - vârf de start

1 2 3 4 5 6 d/tata
$$[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$$
 $u = 1$ $[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$ $u = 3$

s = 3 - vârf de start

1 2 3 4 5 6 d/tata
$$[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$$
 $u = 1$ $[\infty/0, \infty/0, \infty/0, \infty/0, \infty/0, \infty/0]$ $u = 3$

s = 3 - vârf de start

Ordine de calcul distanțe **1**, **3**, **6**, **5**, **4**, **2**

5

1 2 3 4 5 6
d/tata
$$[\infty/0, \infty/0, 0/0, \infty/0, \infty/0, \infty/0, \infty/0]$$

 $u = 1$ $[\infty/0, \infty/0, 0/0, \infty/0, \infty/0, \infty/0, \infty/0]$
 $u = 3$ $[\infty/0, 8/3, 0/0, \infty/0, 4/3, \infty/0]$

s = 3 - vârf de start

s = 3 - vârf de start

s = 3 - vârf de start

Ordine de calcul distanțe 1, 3, 6, 5, 4, 2

 $d[v] = min \{ d[v], d[u]+w(u,v) \}$

s = 3 - vârf de start

Ordine de calcul distanțe 1, 3, 6, 5, 4, 2

 $d[v] = min \{ d[v], d[u]+w(u,v) \}$

s = 3 - vârf de start

	1	2	3	4	5	6				
d/tata	[∞/ 0 ,	∞ /0 ,	0/0,	∞ /0 ,	∞ /0 ,	∞/0]				
u = 1	[∞/ 0 ,	∞ /0 ,	0/0,	∞ /0 ,	∞ /0 ,	∞/0]				
u = 3	[∞/ 0 ,	8/3,	0/0,	∞ /0 ,	4/3,	∞/ 0]				
u = 6	[∞/ 0 ,	8/3,	0/0,	∞ /0 ,	4/3,	∞/ 0]				
u = 5	[∞/ 0 ,	8/3,	0/0,	6/5,	4/3,	∞/0]				
u = 4	_	,		•		_				
					d[$d[v] = min \{ d[v], d[u]+w(u,v) \}$				

1, 3, 6, 5, 4, 2 s = 3 - vârf de start

Sortare topologică

Ordine de calcul distanțe 1, 3, 6, 5, 4, 2

	1	2	3	4	5	6			
d/tata	[∞/ 0 ,	∞ /0 ,	0/0,	∞ /0 ,	∞ /0 ,	∞/0]			
u = 1	[∞/ 0 ,	∞ /0 ,	0/0,	∞ /0 ,	∞ /0 ,	∞/0]			
u = 3	[∞/ 0 ,	8/3,	0/0,	∞ /0 ,	4/3,	∞/0]			
u = 6	[∞/ 0 ,	8/3,	0/0,	∞ /0 ,	4/3,	∞/0]			
u = 5	[∞/ 0 ,	8/3,	0/0,	6/5,	4/3,	∞/0]			
u = 4	[∞/ 0 ,	7/4,	0/0,	6/5,	4/3,	∞/0]			
			$d[v] = min \{ d[v], d[u]+w(u,v) \}$						

Un drum minim de la 3 la 2?

Observație

- Este suficient să considerăm, în ordonarea topologică, doar vârfurile accesibile din s
- 🗆 **În exemplu** fără 1 și 6

Complexitate

```
s - vârful de start
void df(int i) {
    viz[i] = 1;
    for ij \in E
        if (viz[j] == 0)
             df(j);
    // i este finalizat
    push(S, i)
for (i=1; i<=n; i++)
    if (viz[i] == 0)
        df(i);
while (not S.empty()) {
    u = S.pop();
    adaugă u în sortare
```

```
s - vârful de start
// inițializăm distanțe - ca la Dijkstra
pentru fiecare u∈V execută
    d[u] = \infty: tata[u] = 0
d[s] = 0
// determinăm o sortare topologică a vârfurilor
SortTop = sortare_topologică(G)
pentru fiecare u∈SortTop execută
    pentru fiecare uv∈E execută
        dacă d[u]+w(u,v) < d[v] atunci// relaxăm uv
             d[v] = d[u] + w(u,v)
             tata[v] = u
scrie d, tata
```

Complexitate

- Iniţializare
- ☐ Sortare topologică
- ☐ m * relaxare uv

- \rightarrow O(?)
- \rightarrow O(?)
- \rightarrow O(?)

Complexitate

- Iniţializare
- Sortare topologică
- ☐ m * relaxare uv

- \rightarrow O(n)
- \rightarrow O(m + n)
- \rightarrow O(m)

O(m + n)

Corectitudine

Algoritmul funcționează corect și dacă există arce cu cost negativ

Când algoritmul ajunge la vârful u, avem:

