

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano < jmorale@ethz.ch>

Assignment 12

Due date: Thursday, 12 December 2024, 23:59

Exercise 12.6, Semantics of Predicate Logic

(8 Points)

Prove the following statements using the semantics of predicate logic (Definition 6.36). Do not use other results from the lecture notes.

- a) $\exists x \, \forall y \, P(x,y) \models \exists x \, P(x,f(x)).$
- **b)** $\neg(\forall x \ P(x)) \models \exists x \neg P(x).$

a)

Let $\mathcal{A} = (U, \phi, \psi, \xi)$ be an arbitrary suitable structure for the formulas. Assume \mathcal{A} is a model for the first formula, i.e. $\mathcal{A} \models \exists x \forall y P(x, y)$. There are no free variables in the formula since all are bound, hence it is a closed formula. The $P^{\mathcal{A}}$ is omitted for simplicity, as it remains a free predicate symbol not involved in the proof. By Definition 6.9 of suitable interpretation for a formula:

$$\mathcal{A} \models \exists x \, \forall y \, P(x,y) \implies \mathcal{A} \left(\exists x \, \forall y \, P(x,y) \right) = 1$$

Recall the semantics of \exists , $\mathcal{A}(\exists x \, G) = 1$ if $\mathcal{A}_{[x \to u]}(G) = 1$ for some $u \in U$ (Definition 6.36). Since the formula $\forall y \, P(u, y)$ is true for some $u \in U^{\mathcal{A}}$, applying the semantics results in overriding $\xi(x) = u$ for:

$$\mathcal{A}_{[x \to u]} (\forall y P(x, y)) = 1$$
 for some $u \in U^{\mathcal{A}}$

Recall the semantics of \forall , $\mathcal{A}(\forall x G) = 1$ if $\mathcal{A}_{[x \to u]}(G) = 1$ for all $u \in U$ (Definition 6.36). Since the formula P(u, w) is true (for some $u \in U^{\mathcal{A}}$ and) for all $w \in U^{\mathcal{A}}$, applying the semantics results in overriding also $\mathcal{E}(y) = w$ for:

$$\mathcal{A}_{[x \to u][y \to w]}(P(x, y)) = 1$$
 for some $u \in U^{\mathcal{A}}$ and for all $w \in U^{\mathcal{A}}$

Notice that the contraint on w is very loose, and most importantly, that it is satisfied by definition of $\phi: U^k \to U$ with k = 1 for any arbitrary unary function symbol f in the structure (Definition 6.36). Specifically, $\phi: U \to U$ where $w = \phi(f)(A(x)) = \phi(f)(\xi(x)) = \phi(f)(u)$ with $u \in U^A$ and f arbitrary. Instead of $\phi(f)$, the notation f^A is used for simplicity. Thus:

$$\mathcal{A}_{[x \to u][y \to f^{\mathcal{A}}(x)]}\left(P(x,y)\right) = 1$$
 for some $u \in U^{\mathcal{A}}$ and arbitrary $f^{\mathcal{A}}$

By using the recursivity of the semantics of Predicate Logic, the unary function symbols is embedded as a term in the formula (Definition 6.36). The superscript \mathcal{A} is omitted for simplicity on unary function symbol f of arbitrary suitable structure \mathcal{A} .

$$\mathcal{A}_{[x \to u]}(P(x, f(x))) = 1$$
 for some $u \in U^{\mathcal{A}}$

Thus, by applying the semantics of \exists again, since the formula P(u, f(u)) is true for some $u \in U^{\mathcal{A}}$, the proof to show that the structure \mathcal{A} is a model for the second formula is completed:

$$\mathcal{A}(\exists x \, P(x, f(x))) = 1$$

Finally,

$$\exists x \, \forall y \, P(x,y) \models \exists x \, P(x,f(x))$$

b)

Let $\mathcal{A} = (U, \phi, \psi, \xi)$ be an arbitrary suitable structure for the formulas. Assume \mathcal{A} is a model for the first formula, i.e. $\mathcal{A} \models \neg(\forall x P(x))$. There are no free variables in the formula since all are bound, hence it is a closed formula. The $P^{\mathcal{A}}$ is omitted for simplicity, as it remains a free predicate symbol not involved in the proof. By Definition 6.9 of suitable interpretation for a formula:

$$\mathcal{A} \models \neg(\forall x P(x)) \implies \mathcal{A}(\neg(\forall x P(x))) = 1$$

Recall the semantics of \neg for a formula in predicate logic (Definition 6.16, 6.24). Since $\forall x P(x)$ is a formula in predicate logic (Definition 6.36), then also its negation is (Definition 6.31). Since $\mathcal{A}(\neg F) = 1 \iff \mathcal{A}(F) = 0$, recursively decoupling the formula yields:

$$\mathcal{A}\left(\forall x \, P(x)\right) = 0$$

Recall the semantics of \forall , $\mathcal{A}(\forall x G) = 1$ if $\mathcal{A}_{[x \to u]}(G) = 1$ for all $u \in U$, otherwise $\mathcal{A}(\forall x G) = 0$ (Definition 6.36). Since the formula P(u) is **not** true for all $u \in U^{\mathcal{A}}$, applying the semantics results in overriding $\xi(x) = u$ for:

$$\mathcal{A}_{[x \to u]}(P(x)) = 0$$
 for **not** all $u \in U^{\mathcal{A}}$

Reasoning about the formula P(u) not being true for all $u \in U^{\mathcal{A}}$, means that there is some, at least one, u in the Universe for which P(u) is false. Rephrasing the statement, P(u) is false for some $u \in U^{\mathcal{A}}$, or equivalently, $\neg P(u)$ is true for some $u \in U^{\mathcal{A}}$ by semantics of \neg (Definition 6.16). Thus:

$$\mathcal{A}_{[x \to u]}(\neg P(x)) = 1$$
 for some $u \in U^{\mathcal{A}}$

Recall semantics of \exists , $\mathcal{A}(\exists x G) = 1$ if $\mathcal{A}_{[x \to u]}(G) = 1$ for some $u \in U$ (Definition 6.36). Since the formula $\neg P(u)$ is true for some $u \in U^{\mathcal{A}}$, applying the semantics results in:

$$\mathcal{A}(\exists x \neg P(x)) = 1$$

Finally, this complete the proof that for any arbitrary structure for the first formula, it is also a model for the second formula:

$$\neg \left(\forall x \, P(x) \right) \models \exists x \, \neg P(x)$$