Quantum Mechanics

Homework Assignment 06

Fall, 2019

1. In a given representation, the matrix representing the Hamiltonian of a particle is given by

$$H = \hbar\omega_0 \begin{pmatrix} -1 + \varepsilon & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 - \varepsilon & \sqrt{2}\varepsilon & 0 & 0 & 0 \\ 0 & \sqrt{2}\varepsilon & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & \sqrt{2}\varepsilon & 0 \\ 0 & 0 & 0 & \sqrt{2}\varepsilon & -1 - \varepsilon & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 + \varepsilon \end{pmatrix}$$

with $0 < \varepsilon < 1$. Find the energy eigenvalues and eigenfunctions of the particle in the representation.

- 2. [C-T exercise 2-4] Let \hat{K} be the operator defined by $\hat{K} = |\varphi\rangle\langle\psi|$, where $|\varphi\rangle$ and $|\psi\rangle$ are two vectors of the state space.
 - (a) Under what condition is \hat{K} Hermitian?
 - (b) Calculate \hat{K}^2 . Under what condition is \hat{K} a projector?
 - (c) Show that \hat{K} can always be written in the form $\hat{K} = \lambda \hat{P}_1 \hat{P}_2$ where λ is a constant to be calculated and \hat{P}_1 and \hat{P}_2 are projectors.
- 3. [C-T exercise 2-5] Let \hat{P}_1 be the orthogonal projector onto the subspace \mathscr{E}_1 , \hat{P}_2 the orthogonal projector on to the subspace \mathscr{E}_2 . Show that, for the product $\hat{P}_1\hat{P}_2$ to be an orthogonal projector as well, it is necessary and sufficient that \hat{P}_1 and \hat{P}_2 commute. In this case, what is the subspace onto which $\hat{P}_1\hat{P}_2$ projects?
- 4. [C-T exercise 2-11] Consider a physical system whose three-dimensional state space is spanned by the orthonormal basis formed by the three kets $|u_1\rangle$, $|u_2\rangle$, and $|u_3\rangle$. In the basis of these three vectors, taken in this order, the two operators \hat{H} and \hat{B} are defined by

$$H = \hbar\omega_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ B = b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

where ω_0 and b are real constants.

- (a) Are H and B Hermitian?
- (b) Show that H and B commute. Give a basis of eigenvectors common to H and B.
- 5. [C-T exercise 2-12] In the same state space as that of the preceding exercise, consider two operators \hat{L}_z and \hat{S} defined by

$$\hat{L}_z |u_1\rangle = |u_1\rangle, \ \hat{L}_z |u_2\rangle = 0, \quad \hat{L}_z |u_3\rangle = -|u_3\rangle;$$

$$\hat{S} |u_1\rangle = |u_3\rangle, \quad \hat{S} |u_2\rangle = |u_2\rangle, \ \hat{S} |u_3\rangle = |u_1\rangle.$$

- (a) Write the matrices which represent, in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis, the operators \hat{L}_z , \hat{L}_z^2 , \hat{S} , and \hat{S}^2 . Are these operators observables?
- (b) Give the form of the most general matrix which represents an operator which commutes with \hat{L}_z . Same question for \hat{L}_z^2 , then \hat{S}^2 .
- (c) Do \hat{L}_z^2 and \hat{S} form a CSCO? Give a basis of common eigenvectors.