Intégration et théorie

de la mesure

Espaces L^p

Question 1/13

$$\|f\|_{L^p}$$

Réponse 1/13

$$\left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \operatorname{si} p \in \mathbb{N}^{*}$$

$$\|f\|_{L^{\infty}} = \inf \{c \geqslant 0, |f| \leqslant c \ \mu\text{-pp}\}$$

Question 2/13

Inégalité de Jensen

Réponse 2/13

Soit $I \subset \mathbb{R}$ un intervalle, μ une mesure de probabilités $(\mu(X) = 1 \text{ et } \mu \geqslant 0)$, si $\varphi \colon I \to \mathbb{R}$ est convexe et $f \colon X \to \mathbb{R}$ mesurable alors $\varphi\left(\int_{\mathbb{Y}} f \,\mathrm{d}\mu\right) \leqslant \int_{\mathbb{Y}} \varphi \circ f \,\mathrm{d}\mu$

Question 3/13

Densité des fonctions lipschitziennes à support compact dans L^p

Réponse 3/13

Si (X, d) est un espace métrique localement compact (pour tout $x \in X$, il existe O ouvert tel que $x \in O$ et \overline{O} est compact), séparable et μ de Radon (finie sur tout compact) et $p \in [1, +\infty[$ alors les fonctions lipschitziennes à support compact de L^p sont dense dans L^p

Question 4/13

Densité des fonctions lipschitziennes dans L^p

Réponse 4/13

Si $p \in [1, +\infty[$ alors les fonctions lipschitziennes de L^p sont dense dans L^p

Question 5/13

Densité des fonctions en escalier dans L^p

Réponse 5/13

Si $p \in [1, +\infty]$ alors les fonctions en escalier sont dense dans L^p

Question 6/13

Inégalité de Hölder

Réponse 6/13

Si
$$p \in [1, +\infty]$$
 et $p' = \frac{p}{p-1}$ alors pour f et g mesurables, $\int |fg| \le ||f||_{L^p} ||g||_{L^{p'}}$

Question 7/13

$$\mathcal{B}(X \times Y)$$

Réponse 7/13

 $\mathcal{B}(X) \otimes \mathcal{B}(Y)$ si X et Y sont à base dénombrable d'ouverts

Question 8/13

$$\mathcal{L}^p(\mu)$$

Réponse 8/13

$$\left\{ f: X \to \mathbb{R} \text{ mesurables, } \int |f|^p \, \mathrm{d}\mu < +\infty \right\}$$

$$\mathcal{L}^{\infty} = \left\{ f: X \to \mathbb{R} \text{ mesurables, } ||f||_{\infty} < +\infty \right\}$$

Question 9/13

$$L^p(\mu)$$

Réponse 9/13

$$\mathcal{L}^p/\sim \text{où } f \sim g \text{ ssi } f = g \text{ μ-pp}$$

Question 10/13

Structures des L^p

Réponse 10/13

$$L^p$$
 sont des espaces de Banach L^2 est un expace de Hilbert avec $\langle f,g \rangle = \int fg$

Question 11/13

Inégalité de Minkowski

Réponse 11/13

Si
$$f, g: X \to \mathbb{R}$$
 sont mesurables et $p \in [1, +\infty]$, alors $||f + g||_{L^p} \leqslant ||f||_{L^p} + ||g||_{L^p}$

Question 12/13

$\mathcal{A}\otimes\mathcal{B}$

Réponse 12/13

$$\sigma(\{A\times B,(A,B)\in\mathcal{A}\times\mathcal{B}\})$$
 C'est la plus petite tribu qui rend les fonctions coordonnées mesurables

Question 13/13

$$\mu \otimes \nu$$

Réponse 13/13

L'unique mesure sur
$$\mathcal{A} \otimes \mathcal{B}$$
 vérifiant
$$\mu \otimes \nu(A \times B) = \mu(A) \times \nu(B)$$
$$\mu \otimes \nu(C) = \int_{Y} \nu(C_x) \, \mu(\mathrm{d}x) = \int_{Y} \mu(C^y) \, \nu(\mathrm{d}y)$$