Определение 2.1. *Эллипсоидом* называется поверхность второго порядка, определяемая в некоторой прямоугольной декартовой системе координат *Охух* уравнением вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad a \ge b \ge c > 0.$$
 (2.1)

(Уравнение (2.1) называется *каноническим уравнением* эллипсоида. Эллипсоид обладает центральной симметрией относительно начала координат и симметрией относительно координатных плоскостей.)

Эллипсоид – *ограниченная* поверхность. Он находится внутри шара радиуса a с центром в начале координат. Действительно, для расстояния |OM| любой точки M(x, y, z) эллипсоида до начала координат с учётом (2.1) имеем

$$|OM|^2 = x^2 + y^2 + z^2 = a^2 \left(\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{a^2}\right) \le a^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) = a^2 \cdot 1 = a^2.$$

Произведём сечения эллипсоида плоскостями, параллельными координатным плоскостям. В сечении плоскостью $P: z=z_0, |z_0| < c$, получим эллипс $\Gamma_1:$ определяемый уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{z_0^2}{a^2}$ в прямоугольной декартовой системе координат $O_1 xy$, введённой на этой плоскости так, что точка $O_1(0,0,z_0)$ — начало

Рис. 2.1. Эллипсоид

координат, а оси O_1x и O_1y параллельны осям Ox и Oy пространственной системы координат Oxyz (рис. $2.1,\ z_0\neq 0$). Полуоси Γ_1 равны $a\sqrt{1-z_0^2/a^2}$ и $b\sqrt{1-z_0^2/a^2}$. В сечении плоскостью z=0 ($z_0=0$) получается эллипс Γ_2 с наибольшими полуосями a и b (рис. 2.1). Аналогичным образом можно убедиться, что сечения эллипсоида плоскостями $x=x_0$ ($|x_0|<a$) и $y=y_0$ ($|y_0|<b$) тоже эллипсы, полуоси которых не превосходят a,b,c. В сечении координатными плоскостями x=0, y=0 полуоси этих эллипсов Γ_3 и Γ_4 наибольшие и равны b,c и a,c соответственно (рис. 2.1). Числа a,b,c называются nonyocsmu эллипсоида, а точки $A_1(-a,0,0),\ A_2(a,0,0),$

 $B_1(0,-b,0)$, $B_2(0,b,0)$, $C_1(0,0,-c)$, $C_2(0,0,c)$ — его вершинами (рис. 2.1). Описанный эллипсоид иногда называют также *трёхосным эллипсоидом*.