- 1. We are given that H is a hypethesis class for binary classification, and it is PAC learnable with sample complexity MH. We have to show that:
 - (i) For any fixed S, and $0 < \epsilon_1 \le \epsilon_2 < 1$, we must have $m_{\mathcal{H}}(\epsilon_1, \delta) \ge m_{\mathcal{H}}(\epsilon_2, \delta)$:
 - For \in 1

For ϵ_1 , $L(p,f)(h) \leq \epsilon_1$ and $\Pr(L_{(p,f)}(h) \leq \epsilon_1) \geq 1-\delta$, when sample size $m \geq m_{\mu}(\epsilon_1, \delta) = m_1$

For ϵ_2 , $L(p,t)(h) \leq \epsilon_2$ and $\Pr\{L_{(p,t)}(h) \leq \epsilon_2\} > 1-\delta$, when sample size $M \geq M_{H}(\epsilon_2, \delta) = M_2$

 \Rightarrow $L_{(p,f)}(h) \leq \epsilon_1 \leq \epsilon_2 \Rightarrow m_2 \leq m_1$

 $\therefore \quad \mathsf{M}_{\mathcal{H}}(\epsilon_1, \delta) > \mathsf{M}_{\mathcal{H}}(\epsilon_2, \delta)$

(ii) For any fixed ϵ , and $0 < \delta_1 \le \delta_2 < 1$, we must have $M_{\mathcal{H}}(\epsilon, \delta_1) \ge M_{\mathcal{H}}(\epsilon, \delta_2)$: \Rightarrow Following the definitions made in (i),

For δ_1 , $\Pr\{L_{(D,f)}(h) \leq \epsilon\} \geq 1-\delta_1$, when m=m, $m \geq m_H(\epsilon,\delta_1)$

For δ_2 , $\operatorname{fr}\{L_{(0,f)}(h) \leq \epsilon\} \geq 1-\delta_2$, when $M=M_2 \geq m_H(\epsilon,\delta_2)$ fince $\delta_1 \leq \delta_2 \Rightarrow 1-\delta_2 \leq 1-\delta_2$.

 $\Rightarrow \Pr\{L_{(p,f)}(h) \leq \epsilon\} \gg 1 - \delta_2 \gg 1 - \delta_1 \Rightarrow m_1 \geqslant m_2$ $\geq m_H(\epsilon, \delta_1) \geqslant m_H(\epsilon, \delta_2)$

2. We have an interval classifier $h_{[a,b]}$ given by $h_{[a,b]} = \begin{cases} 1 & \text{if } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$ where $a,b \in \mathbb{R}$

And the Mypethesis class It = { hca, b) | a, b \in \mathbb{R}}

Under the and realizability assumption, we have to show the following:

- (i) Consider the algorithm A that, when given a sample $S = \{x_1, ..., x_n\}$ outputs the smallest (tightest) interval that encloses all points in S that have label 1. Show that A minimizes empirical risk:
 - The following: The error of the prediction rule heart) will comprise of
 - (a) $h(x_i) = 1$ but $y_i \neq 1$: This occurs when $x_i \in [a, b]$ and $y_i = 0$
 - (b) $h(x_i) = 0$ but $y_i \neq 0$: this occurs when $x_i \notin (a,b)$ and $y_i \rightleftharpoons = 1$ But since A only chooses [a,b] such that all $y_i = 1$ are enclosed in it, case (b) cannot occur. Hence the empirical risk of hover S translates to

 $L_{s}(h) = \frac{1\{x_{i}: h(x_{i}) \neq 0 \mid y_{i} = 0 \& x_{i} \in [a,b] \} + 0}{n}$

By the realizability assumption, we assume that there exists $h^* \in \mathcal{H}$ such that $L_{(0,f)}(h^*) = 0$, which implies that $\mathfrak A$ when S is sampled over D and labelled by f, we have $L_S(h^*) = 0$. This represents the case when all points labelled 1 are adjacent, in which case (a,b) will tightly contain only 1-labelled points, giving $L_S(h) = 0$.

Hence the empirical risk is minimized by A.

(ii) show that H is PAC learnable via algorithm A and find the sample complexity:

We must find a polynomial bound on n such that $h_{(a,b)}$ has an error of at most \in , with a probability at least 1-S, to show that H is PAC learnable. Knowing algorithm A, the only erroneous labels made by $h_{(a,b)}$ will be when sample points within [a,b] and have label O.

Hence, L(p, f)(h) a represents the probability (a, b) having a 0-labelled data point in (a, b).

$$L_{(D,f)}(h) \leq \epsilon$$

Then the probability of not finding any points labelled 0, or finding at most that all points are labelled 1 is $(1-\epsilon)$. For a sample points, this at most becomes $(1-\epsilon)^n$.

$$(1-\epsilon)^n \leq \delta$$

Using the approximation
$$(1-\epsilon)$$
 $= e^{-\epsilon}$, we get $e^{-\epsilon n} \le S$ or $n \le \frac{\log(1/s)}{\epsilon}$

:. H is PAC learnable via algorithm A, and the sample complexity, $M_{\rm AH} \leq \left\lceil \frac{\log{(1/s)}}{\epsilon} \right\rceil$

4. For any joint distribution D over $X \times \{0,1\}$, the Bayes optimal predictor is defined as:

$$f_{\mathbf{p}} \triangleq \begin{cases} 1 & \text{if } \Pr[y=1 \mid X] \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

We have to show that this is optimal, i.e., show that for any $g: X \to \{0,1\}$, it must be the case that $L_D(f_b) \leq L_D(g)$:

For some $X \in X$, let X_X be the probability of a label 1 given X, by Bayes predictor, that is, $X_X = \Pr[f_{\mathcal{D}}(X) = 1 \mid X = X]$

Considering
$$\Pr\left[f_{\mathbf{x}}(\mathbf{x}) \neq y \mid \mathbf{x} = \mathbf{x}\right] = 1_{(a \neq \alpha_{\mathbf{x}} > 1_{2})} \cdot \Pr\left[Y = 0 \mid \mathbf{x} = \mathbf{x}\right] + 1_{(a \neq \alpha_{\mathbf{x}} < 1_{2})} \cdot \Pr\left[Y = 1 \mid \mathbf{x} = \mathbf{x}\right]$$

$$= 1_{(a \neq \alpha_{\mathbf{x}} > 1_{2})} \cdot (1 - \alpha_{\mathbf{x}}) + 1_{(a \neq \alpha_{\mathbf{x}} < 1_{2})} \cdot \alpha_{\mathbf{x}} \quad \text{(using disjoint union and independent events)}$$

$$= \min\left\{\alpha_{\mathbf{x}}, 1 - \alpha_{\mathbf{x}}\right\}$$

For $g: X \rightarrow \{0,1\}$, considering

$$\Pr[g(x) \neq y \mid x = x] = \Pr[g(x) = 0 \mid x = x]. \Pr[y = 1 \mid x = x]$$

$$+ \Pr[g(x) = 1 \mid x = x]. \Pr[y = 0 \mid x = x]$$

$$= \Pr[g(x) = 0 \mid x = x]. \alpha_{x} + \Pr[g(x) = 1 \mid x = x]. (1 - \alpha_{x})$$

$$\geq \Pr[g(x) = 0 \mid x = x]. \min\{\alpha_{x}, 1 - \alpha_{x}\} + \Pr[g(x) = 1 \mid x = x]. \min\{\alpha_{x}, 1 - \alpha_{x}\}$$

$$= \min\{\alpha_{x}, 1 - \alpha_{x}\}$$

$$\therefore L_p(f_p) \leq L_p(g)$$