

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

TRABAJO PRÁCTICO N°2: Funciones Algebraicas

1- Analizar cuáles de los siguientes gráficos representan a funciones. Justificar.

2- a) Determinar el dominio de las siguientes funciones

a)
$$y = \frac{1}{x-3}$$

b)
$$y = \frac{x+1}{x^2-4}$$

c)
$$y = \frac{x^3 + 7}{x^3 + x^2 - 6x}$$

a)
$$y = \frac{1}{x-3}$$
 b) $y = \frac{x+1}{x^2-4}$ c) $y = \frac{x^3+7}{x^3+x^2-6x}$ d) $y = \frac{\sqrt{2}}{9+x^2}$ e) $y = \sqrt{2x-5}$

f)
$$y = \sqrt[3]{x - 1}$$

g)
$$y = -\sqrt[4]{4 - x^2}$$

h)
$$y = \frac{\sqrt{x}}{2x^2 + x - 1}$$

f)
$$y = \sqrt[3]{x-1}$$
 g) $y = -\sqrt[4]{4-x^2}$ h) $y = \frac{\sqrt{x}}{2x^2+x-1}$ i) $y = x^4 + 3x^2 - 7x + 5$

$$j) y = \frac{x}{\sqrt{x+1}}$$

$$k) y = \left| \frac{x}{x-2} \right|$$

$$|y| = \begin{cases} x^2 & x < 0 \\ x + 1 & x \ge 0 \end{cases}$$

j)
$$y = \frac{x}{\sqrt{x+1}}$$
 k) $y = \left| \frac{x}{x-2} \right|$ l) $y = \begin{cases} x^2 & x < 0 \\ x+1 & x \ge 0 \end{cases}$ m) $y = \begin{cases} x + \frac{1}{x} & x \le 1 \\ \sqrt{x - \frac{3}{2}} & x > 1 \end{cases}$

n)
$$y = \frac{1}{x+1}$$

$$\tilde{n}$$
) $y = \frac{1}{x^2+4}$

p)
$$y = -\sqrt{9 - x^2}$$

q)
$$y = \begin{cases} 5 & x \le 2 \\ 2x - 1 & x > 2 \end{cases}$$

q)
$$y = \begin{cases} 5 & x \le 2 \\ 2x - 1 & x > 2 \end{cases}$$
 r) $y = \begin{cases} -x & si \ x \le 0 \\ 9 - x^2 & si \ 0 < x \le 3 \\ x - 3 & si \ x > 3 \end{cases}$ s) $y = \begin{cases} \sqrt{x} & x \le 1 \\ \frac{1}{2 - x} & x > 1 \end{cases}$

$$s) y = \begin{cases} \sqrt{x} & x \le 1\\ \frac{1}{2-x} & x > 1 \end{cases}$$

b) Clasificar las funciones del ítem a) según su regla de definición.

3- Sea la función $f(x) = x^2 + 3x - 1$.

- a) Determinar: i) f(a) ii) $f(-\frac{1}{2})$ iii) f(a+h) iv) $\frac{f(a+h)-f(a)}{h}$ con $h \neq 0$

b) Encontrar los puntos de intersección entre f y los ejes coordenados.

c) Analizar la paridad de la función f.

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

4- Partiendo de la f(x) = |x| representar las siguientes funciones considerando los desplazamientos de f.

a)
$$f(x) = |x| + 1$$

b)
$$f(x) = |x + 1|$$

b)
$$f(x) = |x + 1|$$
 c) $f(x) = |x + 1| + 1$ d) $f(x) = -|x|$

$$d) f(x) = -|x|$$

5- En los siguientes gráficos de funciones, determinar: a) Las coordenadas de los ceros, b) Las coordenadas de la ordenada al origen

6- En cada caso, encontrar las funciones (f+g)(x), (f-g)(x), $(f\cdot g)(x)$ y (f/g)(x) y determinar los dominios de cada una de las funciones obtenidas.

$$g(x) = \frac{4}{x+4}$$

b)
$$f(x) = \sqrt{x} y$$

b)
$$f(x) = \sqrt{x} \text{ y}$$
 $g(x) = \sqrt{1 - x^2}$

c)
$$f(x) = 3x^2 - 1$$
 y $g(x) = \sqrt{x+3}$

$$q(x) = \sqrt{x+3}$$

7- En cada caso, determinar el dominio de las siguientes funciones y representarlas gráficamente.

a)
$$f(x)=|x|$$

b)
$$f(x) = [x] = ent(x)$$

c)
$$f(x)=sgn(x)$$

8- a) Sabiendo que: $h(x) = \frac{x^2}{\sqrt{x-2}}$

- i) Hallar la imagen de x=5/2
- ii) Encontrar el valor de h(3) ii)
- ii) ¿La función está definida en x=2? Justificar.

b) Estudiar si f es par, impar o ninguna de ellas:

i)
$$f(x) = x^5 - 3x^3$$

ii)
$$f(x) = 3 - x^2$$

ii)
$$f(x) = 3 - x^2$$
 iii) $f(x) = x^3 - 4x^2 + 3$

c) Dadas las funciones:
$$f(x) = -x^2 + 3x$$
 y $g(x) = 2 - x^3$

$$y(x) = 2 - x^3$$

i) Determinar:
$$(f+g)(h)$$
 y $(f\cdot g)(h+k)$ ii) Calcular: $(f-g)(1/2)$ y $f(g(-1))$

9- Una función cuadrática tiene una expresión de la forma $y = x^2 + ax + a$ y pasa por el punto (1;9). Calcular el valor de a.

Confeccionar el gráfico de las siguientes funciones utilizando los ceros y ordenada al origen (intersecciones con los ejes coordenados).

a)
$$f(x) = 3x - 1$$

b)
$$y = \frac{3}{2}$$

a)
$$f(x) = 3x - 1$$
 b) $y = \frac{3}{2}$ c) $g(x) = -\frac{1}{2}x + \frac{5}{2}$ d) $h(x) = x^2 - 2x$

$$d) h(x) = x^2 - 2x$$

e)
$$y = 3x^2 + x - 2$$

e)
$$y = 3x^2 + x - 2$$
 f) $f(x) = (x+1)(x-1)(x+2)$ g) $y = (x-1)^2(x-3)$

g)
$$y = (x-1)^2(x-3)^2$$

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

h)
$$g(x) = -(x-2)^3(x+1)^2$$

h)
$$g(x) = -(x-2)^3(x+1)^2$$
 i) $f(x) = \left(x - \frac{1}{2}\right)^2(x+1)(x-2)^3$

11-Resolver las siguientes situaciones.

- a) El número de manzanas que produce cada árbol en una finca depende de la cantidad de árboles plantados. Si se plantan n árboles en una parcela de tierra, entonces cada árbol produce M(n) = n(900 - 9n) manzanas.
 - a.1) ¿Cuántos árboles se deben plantar por parcela a fin de obtener la máxima producción de manzanas? ¿Cuántas manzanas se producirán en ese caso?
 - a.2) ¿Cuántos árboles se deben plantar si se pretende una producción de 8.100 manzanas?
- b) Debido a la curvatura de la Tierra, la máxima distancia que puede ver una persona desde la parte alta de un edificio alto o desde un avión a la altura h está dada por la función $D(h) = \sqrt{2rh + h^2}$, donde $r = 3960 \ millas$ es el radio de la Tierra. (D y h se miden en millas).

La aviación comercial vuela a una altitud de 7 millas. ¿Qué tan lejos puede ver el piloto?

c) Una librería online cobra \$15 por envío para pedidos menores de \$100 pero el envío es gratis para pedidos de \$100 o más. El costo C de un pedido es una función del precio total x de los libros comprados está dada por: $C(x) = \begin{cases} x + 15 & \text{si } x < 100 \\ x & \text{si } x > 100 \end{cases}$

Encontrar el costo para un pedido de \$75 y para un pedido de 150.

Dadas las funciones: $f(x) = \sqrt{x}$, $g(x) = \sqrt{2-x}$, h(x) = 5x + 2 y $j(x) = \frac{x-2}{x}$. 12-

a) Analizar si son posibles las siguientes composiciones:

i)
$$(f_{\circ}g)$$

ii)
$$(g \circ f)$$
 iii) $(h \circ f)$ iv) $(j \circ h)$

- b) Encontrar las composiciones que sean factibles y determinar el dominio de cada función obtenida.
- c) Realizar las restricciones que sean necesarias para poder hallar las composiciones de las funciones que no cumplen con la condición de composición. Luego, encontrar dichas funciones y establecer sus dominios.
- 13a) Clasifique las funciones dadas en inyectivas, sobreyectivas y biyectivas.
 - b) Especifique si la función dada es par, impar o ninguna de las dos.
 - c) Esboce la gráfica correspondiente.

i)
$$y = 5$$
 ii) $y = 3x$ iii) $y = \pi x + 2\pi$ iv) $y = 3x^2 + 2x - 1$ v) $f(x) = \begin{cases} x^2 - 1 & \text{si } -2 \le x \le 2 \\ x + 2 & \text{si } 2 \le x \le 5 \end{cases}$ vi) $y = \begin{vmatrix} 2x \end{vmatrix}$

- 14-Definir una función polinómica de tercer grado cuyas raíces sean (2;0), (3;0) y (-1;0). ¿Se puede definir más de una función polinómica con estas raíces?
- 15-Sean las funciones f y g:

i)
$$f(x) = x^2 + 1$$

$$g(x) = 3x - 2$$

i)
$$f(x) = x^2 + 1$$
 ; $g(x) = 3x - 2$ ii) $f(x) = 1 + \sqrt{x}$; $g(x) = x^3$

$$g(x) = x^3$$

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

a) Analizar si se cumple la condición de existencia para las composiciones: $f_o g$ y $g_o f$.

b) Hallar la composición $f_o g$, realizando restricciones si fuese necesario, luego determinar los dominios de dichas compuestas.

16-En cada una de las funciones dadas:

a)
$$y = (x+1)^2$$

a)
$$y = (x+1)^2$$
 b) $y = \frac{2x+3}{1-x}$ c) $y = -\sqrt{x}$

c)
$$y = -\sqrt{2}$$

I) Analice si admiten inversas o no. Justifique.

II) Si admite inversa, encuéntrela. Si no admite inversa, realice las restricciones que sean necesarias para que exista la inversa de y = f(x).

III) Compruebe que ambas funciones son inversas y elabore la gráfica de ambas en el mismo sistema de ejes coordenados:

17-Dadas las siguientes funciones:

a)
$$f(x) = \frac{x^2 - 4}{x + 2}$$

b)
$$g(x) = \frac{x+3}{x^2-9}$$

c)
$$h(x) = \frac{x+1}{x^2-5x+10}$$

d)
$$y = \frac{x^3 - x^2 + x - 1}{x - 1}$$

e)
$$y = \frac{x^2 - 4x + 4}{x^2 + 2x}$$

b)
$$g(x) = \frac{x+3}{x^2-9}$$
 c) $h(x) = \frac{x+1}{x^2-5x+10}$
e) $y = \frac{x^2-4x+4}{x^2+2x}$ f) $f(x) = \frac{(x+3)^2(x-1)(x-4)^2}{(x+3)(x-1)^3}$
h) $t(x) = \frac{(x-1)(x-4)^2}{(2x+4)^3(x-1/2)^2}$ i) $g(x) = \frac{x^3-10x^2+25x}{x^2(x^2-25)}$

g)
$$y = \frac{x^2 - 3x - 2}{x^2 - 4}$$

h)
$$t(x) = \frac{(x-1)(x-4)^2}{(2x+4)^3(x-1/2)}$$

i)
$$g(x) = \frac{x^3 - 10x^2 + 25x}{x^2(x^2 - 25)}$$

I) Determinar el dominio, ordenada al origen y los ceros.

II) Encontrar los ceros del denominador y estimar si poseen asíntotas verticales.

III) Bosquejar el comportamiento de las gráficas de las funciones.

Determinar un valor para a y b en la función $f(x) = \frac{(x+1)(x-a)}{(x-b)(x-\sqrt{2})}$ para que f: 18-

a) tenga 2 asíntotas verticales.

b) posea 2 "huecos"

c) presente un "hueco" y una asíntota vertical.

19-Bosquejar el gráfico de una función que reúne las siguientes condiciones:

- * Cero de multiplicidad par en (3/2;0)

* asíntota vertical en x=-3/2

* La función es positiva en (-3;-3/2)

20-Resolver las siguientes situaciones.

a) Algunos científicos opinan que la temperatura superficial promedio del mundo está aumentando en forma constante. La temperatura superficial promedio se expresa mediante

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

T(t)= 0,02t+8,5. Donde T es la temperatura en °C y t es el tiempo medido en años a partir de 1900.

- i) Identificar cuál es la variable independiente y cuál la variable dependiente.
- ii) ¿Cuál era la temperatura superficial en el año 1900?
- iii) ¿Cuál es la temperatura superficial estimada para el año 2100?
- b) La velocidad que adquiere un paracaidista t segundo después de saltar se expresa como:
- $v(t) = 80 (1 e^{-0.2t})$. ¿Después de cuántos segundos la velocidad es 70 pies/s?
- c) Cuando cierto fármaco se toma oralmente, su concentración en el torrente sanguíneo de paciente después de t minutos está dada por $C(t) = 0.06t 0.0002t^2$, donde $0 \le t \le 240$ y la concentración se mide en mg/l. ¿cuál es dicha concentración de dicho medicamente en el torrente sanguíneo de un paciente a 30 minutos de haberlo ingerido?