Ellora: Productive AI-Assisted HPC Software Ecosystem

Lawrence Livermore National Laboratory (LLNL), PI: Harshitha Menon (POC)

Oak Ridge National Laboratory (ORNL), Co-PI: William Godoy

University of Maryland (UMD), Co-PIs: Abhinav Bhatele and Tom Goldstein

Northeastern University (NU), Co-PIs: Arjun Guha and David Bau

Large have impressive performance on Code Generation

- Use Cases of LLMs in Code Generation
 - Code Completion
 - Refactoring
 - Document Generation
- Benefits of LLMs in Code Generation
 - Faster Development
 - Error Detection
 - Language Support

Codex

PolyCoder

Can Large Language Models Write Parallel Code?

Co-PI Bhatele's work — Nichols et al. 2024

- · Parallel programs are more complicated
- LLMs process source code primarily as text and predicting next token conditioned on prompt and lack knowledge about the intricate details of these parallel programming model and don't consider structural aspect of code (control flow and data flow)
- LLMs struggle to generate parallel code
- Parallel code generated by LLMs has poor parallel speedup and efficiency

Ellora aims to revolutionize HPC software development

Improve LLMs' Effectiveness in HPC Domain

Enhance state-of-the-art LLMs to support large and relevant context and use data from multiple modalities for improved performance in parallel code generation.

Trustworthy and Verifiable LLM

Develop techniques to predict and explain model errors. Design models and techniques that enable explainability.

Enhance Productivity and Software Sustainability

Boost developer productivity through specialized Al-driven tools and frameworks for HPC, which will support DOE's extensive investments in ECP software ecosystem.

Advance contextual capabilities of LLMs to improve LLMs' effectiveness and reduce hallucinations

Large Context Inference: Develop novel, efficient techniques to expand LLMs' context window size to provide access to more contextual information.

Enhanced Contextual Abilities

Knowledge Graph for Contextual Information: Build a knowledge graph capturing associations among code entities to provide relevant context.

Domain-Specific Retrieval Models: Implement self-supervised training for customizable retrieval models to improve the accuracy and relevance of the retrieved content.

Multi-Modal LLMs for enhanced code understanding and performance

Expand Code Representations Beyond Text: Curate a multimodal code dataset incorporating Code, LLVM IR, and performance characteristics.

Learn from Disjoint Data Across Code Modalities: Learn unified representations of many modalities using contrastive learning.

Overcome Dataset Size Challenges: Generate additional semisynthetic data to address low-data nature of HPC domains.

Develop Multi-Modal Code LLMs: Design LLMs that learn across code modalities.

Trustworthiness and verifiability for reliable and transparent models

Attribution Methods:

Identify tasks performed by LLMs and linking model predictions to training data for improved transparency.

Model Error Prediction:

Develop techniques to predict and explain errors by analyzing LLMs to detect mispredictions.

Unlearning Techniques:

Apply unlearning methods to edit LLMs to remove erroneous behavior.

Al-Assisted software development via HPC-LLM-Agents

Generalize LLM agents to use HPC tools: Identify tasks performed by LLMs and linking model predictions to training data for improved transparency.

Train agents on tool-use sequence: Develop techniques to predict and explain errors by analyzing LLMs to detect mispredictions.

Enable reliable
human-agent
collaboration: Apply
unlearning methods to
edit LLMs to remove
erroneous behavior.

Our goal is to improve LLMs' effectiveness and reduce hallucinations by providing relevant context and enabling large context size

Tasks

- Advance LLMs for efficient large context inference
- Develop a Code Knowledge Graph for Contextual Retrieval
- Develop Retrieval Models
- Integrate with HPC-LLM-Agents

Deliverables

- Open source models
- Code knowledge graph of E4S ecosystem
- Publication on large context inference
- Publication on using knowledge graph for context
- Publication on specialized retrieval models for E4S codebase

Progress

- Train a retrieval model at scale with trillions of self-supervised tasks
- Parse code repositories and create code knowledge graph Planned Publication
- ChatHPC fine-tune CodeLlama on a subset of E4S libraries — Q2 FY25
- Retrieval model at scale Q3 FY25
- Code knowledge graph Q3 FY25

Our goal is to enable LLMs to use multiple representations of code as well as performance characteristics

Tasks

- Create Multi-Modal Source Code Data
- Learn from Disjoint Data Across Code Modalities
- Overcome Dataset Size Challenges
- Develop Multi-Modal Code LLMs
- Integrate with HPC-LLM-Agents

Deliverables

- Open source models and datasets
- Publication on Multi-Modal Code LLMs with different code representations
- Publication on low-data domain
- Publication on LLMs that support multiple code representation as well as performance characteristics

Progress

Curated dataset of multiple code representations

Planned Publications

- Multi-Modal Code LLMs Q2 FY25
- Dataset and model release Q2 FY25
- LLMs for Julia Q4 FY25

Our goal is to develop techniques for reliable and transparent LLMs

Tasks

- Develop efficient and accurate attribution methods
- Explain and predict code LLM errors
- Edit LLMs to unlearn systematic errors

Deliverables

- Publication on attribution techniques
- Publication on unlearning bad behavior
- Release benchmarks
- Publication on how LLMs reason about code

Progress

 Substance Beats Style: Why Beginning Students Fail to Code with LLMs — Submitted

Planned Publication:

- Understanding How CodeLLMs (Mis)Predict Types with Activation Steering — Q1 FY25
- How LLMs Reason about Pointers and Aliasing — Q3 FY25
- Attribution in Code LLMs Q3 FY25

Our final thrusts enables LLMs to use HPC tools to assist in HPC software development

Applications

- Develop Specialized HPC-LLM-Agents
- Effectively Invoke Multiple Tools and Multiple Agents
- Allow Users to Collaborate with LLM Agents

Deliverables

- Publication on modular approach for HPC tasks
- Open-source specialized LLM Agents
- Publication on integration of HPC tools with LLM Agents

Progress

- Designing HPC-LLM-Agents that can generate correct and performant parallel code
- Planned Publication:
- Modular approach for parallel code generation — Q3 FY25
- Integration of an E4S tool with LLM Agents — Q4 FY25

Team and Budget

Northeastern University

Harshitha Menon (0.35)

(0.35)

Abhinav Bhatele

Arjun Guha

Konstantinos Parasyris

Giorgis Georgakoudis (0.20)

Pedro Valero-Lara • (0.35)

Tom Goldstein

David Bau

Siu Wun Cheung

Aaron Young

Daniel Nichols (PhD student)

Francesca Lucchetti (PhD student)

(0.20)

Gautam Singh (New Postdoc)

Jeff Vetter

Terry Jones (0.20)

Alex Loftus (PhD student)

Todd Gamblin (advisor)

Tal Ben-Nun (advisor)

\$750K

William Godoy

M.A.H Monil (0.35)

Postdoc (TBD)

Project Challenges and Mitigation Strategies

Increasing context window size may cause memory related scaling issues: We plan to leverage Co-PI Bhatele's work on AxonNN for extreme-scale deep learning with memory optimizations.

Insufficient data for training and fine-tuning: We will generate generate synthetic data.

Reliance of HPC-LLM-Agent on various agents: We will adopt a modular approach to build Agents independently and enable individual Agents to be used.