AArch64
Instructions

Index by Encoding

External Registers

ID_AA64MMFR3_EL1, AArch64 Memory Model Feature Register 3

The ID AA64MMFR3 EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch64 state.

Configuration

Note

Prior to the introduction of the features described by this register, this register was unnamed and reserved, res0 from EL1, EL2, and EL3.

Attributes

ID AA64MMFR3 EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Spec_FPAC	CADERR	SDERR	RES0	ANERR	SNERR	D128_2	D128
MEC	AIE	S2POE	S1POE	S2PIE	S1PIE	SCTLRX	TCRX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Spec_FPACC, bits [63:60] When FEAT FPACCOMBINE is implemented:

Speculative behavior in the event of a PAC authentication failure in an implementation that includes FEAT_FPACCOMBINE. Defined values are:

Spec_FPACC Meaning

060000	The implementation does not disclose whether the speculative use of pointers processed by a PAC Authentication is materially different in terms of the impact on cached microarchitectural state between passing and failing of the PAC Authentication.
0b0001	The speculative use of pointers processed by a PAC Authentication is not materially different in terms of the impact on cached microarchitectural state between passing and failing of the PAC Authentication.

For the purpose of this definition, cached microarchitecture state is the state of caching agents such as instruction caches, data caches and TLBs which can be altered as a result of speculation caused by a mispredicted execution, but is not restored to the state prior to the speculation when the misprediction is corrected.

Otherwise:

Reserved, res0.

ADERR, bits [59:56]

Asynchronous Device error exceptions. With ID_AA64MMFR3_EL1.SDERR, describes the PE behavior for error exceptions on Device memory loads. Defined values are:

ADERR	Meaning	
0b0000	If FEAT_RASv2 is not	
	implemented and	
	ID AA64MMFR3 EL1.SDERR	
	is 0b0000, then the behavior is	
	not described. Otherwise, the	
	behavior is described by	
	ID_AA64MMFR3_EL1.SDERR.	

0b0001	Some error exceptions for Device memory loads are taken asynchronously.	
0b0010	FEAT_ADERR is implemented. SCTLR2_ELx.EnADERR and <u>HCRX_EL2</u> .EnSDERR are implemented.	

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.SDERR is 0b0000, the value of this field is 0b0001.

When ID_AA64MMFR3_EL1.SDERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.SDERR is 0b0010, the value of this field is 0b0010.

FEAT_ADERR implements the functionality described by the value 0b0010.

SDERR, bits [55:52]

Synchronous Device error exceptions. With ID_AA64MMFR3_EL1.ADERR, describes the PE behavior for error exceptions on Device memory loads. Defined values are:

SDERR	Meaning
0b0000	If FEAT_RASv2 is not
	implemented and
	ID AA64MMFR3 EL1.ADERR
	is 060000, then the behavior is
	not described. Otherwise, the
	behavior is described by
	ID_AA64MMFR3_EL1.ADERR.
0b0001	All error exceptions for Device
	memory loads are taken
	synchronously.
0b0010	FEAT ADERR is implemented.
	SCTLR2 ELx.EnADERR and
	HCRX EL2.EnSDERR are
	implemented.

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.ADERR is 0b0000, the value of this field is 0b0001.

When ID_AA64MMFR3_EL1.ADERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.ADERR is 0b0010, the value of this field is 0b0010.

FEAT_ADERR implements the functionality described by the value 0b0010.

Bits [51:48]

Reserved, res0.

ANERR, bits [47:44]

Asynchronous Normal error exceptions. With ID_AA64MMFR3_EL1.SNERR, describes the PE behavior for error exceptions on Normal memory loads. Defined values are:

ANERR	Meaning	
0b0000	If FEAT RASv2 is not	
	implemented and	
	ID AA64MMFR3 EL1.SNERR	
	is $\overline{0}$ b0000, then the behavior is	
	not described. Otherwise, the	
	behavior is described by	
	ID_AA64MMFR3_EL1.SNERR.	
0b0001	Some error exceptions for	
	Normal memory loads are	
	taken asynchronously.	
0b0010	FEAT ANERR is implemented.	
	SCTLR2 ELx.EnANERR and	
	HCRX_EL2.EnSNERR are	
	implemented.	

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.SNERR is 0b0000, the value of this field is 0b0001.

When ID_AA64MMFR3_EL1.SNERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.SNERR is 0b0010, the value of this field is 0b0010.

FEAT_ANERR implements the functionality described by the value 0b0010.

SNERR, bits [43:40]

Synchronous Normal error exceptions. With ID_AA64MMFR3_EL1.ANERR, describes the PE behavior for error exceptions on Normal memory loads. Defined values are:

SNERR	Meaning	
0b0000	If FEAT_RASv2 is not	
	implemented and	
	ID AA64MMFR3 EL1.ANERR	
	is 0b0000, then the behavior is	
	not described. Otherwise, the	
	behavior is described by	
	ID_AA64MMFR3_EL1.ANERR.	
0b0001	All error exceptions for Normal	
	memory loads are taken	
	synchronously.	
0b0010	FEAT ANERR is implemented.	
	SCTLR2 ELx.EnANERR and	
	HCRX EL2.EnSNERR are	
	implemented.	

All other values are reserved.

When FEAT_RASv2 is implemented and ID_AA64MMFR3_EL1.ANERR is 0b0000, the value of this field is 0b0001.

When ID_AA64MMFR3_EL1.ANERR is 0b0001, the value of this field is 0b0000.

When ID_AA64MMFR3_EL1.ANERR is 0b0010, the value of this field is 0b0010.

FEAT_ANERR implements the functionality described by the value 0b0010.

D128 2, bits [39:36]

128-bit Page Table Descriptor at stage 2. Indicates support for 128-bit Page Table Descriptor at stage 2. Defined values are:

D128_2	Meaning
0b0000	128-bit Page Table Descriptor
	Extension at stage 2 is not
	supported.
0b0001	128-bit Page Table Descriptor
	Extension at stage 2 is
	supported.

All other values are reserved.

D128, bits [35:32]

128-bit Page Table Descriptor. Indicates support for 128-bit Page Table Descriptor. Defined values are:

D128	Meaning
000000	128-bit Page Table Descriptor
	Extension is not supported.
0b0001	128-bit Page Table Descriptor
	Extension is supported.

All other values are reserved.

MEC, bits [31:28]

Indicates support for Memory Encryption Contexts. Defined values are:

MEC	Meaning
0b0000	Memory Encryption Contexts is
	not supported.
0b0001	Memory Encryption Contexts is
	supported for Realm physical
	address space.

All other values are reserved.

FEAT_MEC implements the functionality identified by the value 0b0001.

AIE, bits [27:24]

Attribute Indexing. Indicates support for the Attribute Index Enhancement. Defined values are:

AIE	Meaning
0b0000	The Attribute Index
	Enhancement is not supported.
0b0001	The Attribute Index
	Enhancement at Stage 1 is
	supported.

All other values are reserved.

FEAT_AIE implements the functionality identified by the value 0b0001.

S2POE, bits [23:20]

Stage 2 Permission Overlay. Indicates support for Permission Overlay at Stage 2. Defined values are:

S2POE	Meaning
000000	Permission Overlay at Stage 2
	is not supported.
0b0001	Permission Overlay at Stage 2
	is supported.

FEAT_S2POE implements the functionality identified by the value 0b0001.

S1POE, bits [19:16]

Stage 1 Permission Overlay. Indicates support for Permission Overlay at Stage 1. Defined values are:

S1POE	Meaning
0b0000	Permission Overlay at Stage 1
	is not supported.
0b0001	Permission Overlay at Stage 1 is supported.

All other values are reserved.

FEAT_S1POE implements the functionality identified by the value 0b0001.

S2PIE, bits [15:12]

Stage 2 Permission Indirection. Indicates support for Permission Indirection at Stage 2. Defined values are:

S2PIE	Meaning
000000	Permission Indirection at Stage
	2 is not supported.
0b0001	Permission Indirection at Stage
	2 is supported.

All other values are reserved.

FEAT_S2PIE implements the functionality identified by the value 0b0001.

S1PIE, bits [11:8]

Stage 1 Permission Indirection. Indicates support for Permission Indirection at Stage 1. Defined values are:

S1PIE	Meaning
0b0000	Permission Indirection at Stage
	1 is not supported.

0b0001	Permission Indirection at Stage			
	1 is supported.			

FEAT_S1PIE implements the functionality identified by the value 0b0001.

SCTLRX, bits [7:4]

SCTLRX Extension. Indicates support for Extension of <u>SCTLR_EL1</u>. Defined values are:

SCTLRX	Meaning
0b0000	SCTLR2_EL1, SCTLR2_EL2
	and their associated trap
	controls are not implemented.
0b0001	SCTLR2 EL1, SCTLR2 EL2
	and their associated trap
	controls are implemented.

All other values are reserved.

TCRX, bits [3:0]

TCR Extension. Indicates support for Extension of <u>TCR_EL1</u>. Defined values are:

TCRX	Meaning
000000	TCR2_EL1, TCR2_EL2 and their
	associated trap controls are not
	implemented.
0b0001	TCR2 EL1, TCR2 EL2 and their
	associated trap controls are
	implemented.

All other values are reserved.

Accessing ID_AA64MMFR3_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR3_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0111	0b011

```
if PSTATE.EL == ELO then
    if IsFeatureImplemented(FEAT_IDST) then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() &&
(IsFeatureImplemented(FEAT_FGT) | !
IsZero(ID_AA64MMFR3_EL1) | boolean
IMPLEMENTATION DEFINED "ID AA64MMFR3 EL1 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        X[t, 64] = ID\_AA64MMFR3\_EL1;
elsif PSTATE.EL == EL2 then
    X[t, 64] = ID AA64MMFR3 EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = ID\_AA64MMFR3\_EL1;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.