Charge 1

Jean-Baptiste Bertrand

19 janvier 2022

$$H_p \frac{1}{2m} = \left\{ \vec{p} \cdot \underbrace{\left[\vec{p} - \frac{q}{c} \vec{A} \right]}_{\vec{\Pi}} \right\}^2 + qV(\vec{R})$$

$$(\vec{\sigma} \cdot \vec{\pi})^2 = \vec{\pi} \cdot \vec{\pi} + i\vec{\sigma} \cdot (\vec{\pi} \times \pi)$$

Preuve:

$$\sigma_i^2 = 1$$

$$\sigma_i \sigma_j = -\sigma_j \sigma_i$$

$$\sigma_1 \sigma_2 = i\sigma_3$$

$$(\vec{\sigma} \cdot \vec{\pi})^2 = \sum_{ij} \sigma_i \pi_i \sigma_j \pi_j = \sum_{ij} + \sum_{i \neq j}$$

... Pas le temps de retranscrire

$$\vec{\pi} \times \vec{\pi} \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \left(\frac{\hbar}{i} \vec{\nabla} - \frac{q}{c} \vec{A} \right) \times \left(\frac{\hbar}{i} \vec{\nabla} - \frac{q}{c} \vec{A} \right) \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}$$

$$= \underbrace{\left(\frac{\hbar}{i} \right)^2 \nabla \times \nabla(f)}_{0} - \frac{q}{c} \vec{A} \times \frac{\hbar}{i} \nabla(f) - \frac{\hbar}{i} \nabla \times \nabla \frac{q}{c} \vec{A}(F) + \underbrace{\left(\frac{q}{c} \right)^2 \vec{A} \times A(f)}_{0}$$

Expenssion du produit vectorielle : On se rend compte que sur A ou que sur f

$$= -\frac{\hbar}{i} \frac{q}{c} \underbrace{\boldsymbol{\nabla} \times \mathbf{A}}_{\mathbf{B}}(f)$$

$$H_p = \frac{1}{2m} \left(\vec{p} - \frac{q}{c} \mathbf{A} \right)^2 + \frac{i \vec{\sigma}}{2m} \cdot \left(-\frac{\hbar}{i} \frac{q}{c} \mathbf{B} \right) + qV(\mathbf{R})$$

Le 2eme terme est genre $S \cdot B$ ou dequoi

$$Y_0^0 = \frac{1}{\sqrt{4\pi}}$$

1 Spineurs et mesures

$$[\psi](\vec{r}) = Ne^{-\alpha r^2/2} \begin{pmatrix} \sin\theta\cos\varphi + \sin\theta\sin\varphi \\ 1 + \cos\theta \end{pmatrix} = \begin{pmatrix} \psi_+(\vec{r}) \\ \psi_-(\vec{r}) \end{pmatrix}$$
$$\psi_0(\vec{r}) = f_0(\mathbf{r}) \sum_{l,m} Y_l^m(\theta, \varphi) a_{lm\sigma}$$
$$\mathcal{N}([\phi]) = \int d^3r \Big(|\psi_+(\mathbf{r})|^2 + |\psi_-(\mathbf{r})|^2 \Big) = \int dr r^2 \Big(\sum_{lm\sigma} f_0(r)^2 |a_{lm\sigma}|^2 \Big)$$
$$P(l, m, \sigma) = \frac{1}{\mathcal{N}[\psi]} \times \int dr r^2 f_0(r)^2 |a_{lm\sigma}|^2$$

Épisode 0

Jean-Baptiste Bertrand

11 janvier 2022

1 Spin de l'electron : 2 confirmations

Problème de S-f de qqch

La théorie de Bohr n'est pas relativiste. C'est un problème si on considère que les éléctrons vont à $\sim 10^6$ m/s. Si on iclus la relativité, les niveaux d'énériges sont décallés correctement, cependant, la dégénéressance n'est pas levée comme observé expérimentalement.

POur arriver à le faire, on doit considérer l'effet Zeeman.

L'effet Zeeman est la levé des dégénéressance par l'application d'un champ magnétique.

$$-l \leq m \leq l$$

2l + 1 Projections possibles

Il y a toujours un nombre impair de projections.

On suppose que la sep des niv de H est similaire à celle de l'effet Zeeman.

On a donc pensé à l'ajout du nombre quantique du spin pour explique cette levé de dégénéressance.

$$|n,l,m\rangle \rightarrow |n,l,m,m_s\rangle$$

Équation de dirac

$$i\hbar\psi = H\psi \; \psi = \psi(\vec{r},t)$$

Épisode 2

Jean-Baptiste Bertrand

18 janvier 2022

Spineurs, bases et rerésentations

ECOC:
$$X, Y, Z, S_z, (S^2) : \mathcal{E}_{\vec{r}} \otimes \mathcal{E}_s = \mathcal{E} \mid \vec{r}, s \rangle$$
 (1)

$$ECOC: P_x, P_y, P_z, S_z; |\vec{p}, s\rangle$$
 (2)

$$ECOC: H_0, \mathbf{L}^2, L_z, S_z; |n, l, m, s\rangle$$
(3)

Relation de fermeture dans \mathcal{E} :

$$1 = 1_{\vec{r}} \otimes 1_S = \int d^3r \, |\vec{r}\rangle \, \langle \vec{r}| \otimes \sum_{\epsilon} |\epsilon\rangle \, \langle \epsilon|$$
$$\implies 1 = \sum_{\epsilon} \int d^3r \, |\vec{r}\epsilon\rangle \langle \vec{r}, \epsilon|$$

Preuve très similaire pour les autres bases.

$$|\psi\rangle = 1 |\psi\rangle = \sum_{\epsilon} \int \mathrm{d}^3 r |\vec{r}, \epsilon\rangle \underbrace{\langle \vec{r}, \epsilon | \psi\rangle}_{\Psi_{\epsilon}(\vec{r})}$$

Représentation matricielle :

$$|\psi\rangle = \int d^3r \begin{pmatrix} \psi_+(\vec{r}) \\ \psi_-(\vec{r}) \end{pmatrix} |\vec{r}\rangle$$
$$\langle \vec{r} | \psi \rangle = \begin{pmatrix} \psi_+(\vec{r}) \\ \psi_-(\vec{r}) \end{pmatrix} = [\psi] (Spineur!)$$
$$\langle \psi | = \int d^3r (\psi_+^*(\vec{r}) - \psi_-^*(\vec{r})) \langle \vec{r} |$$

$$|\psi\rangle = 1 |\psi\rangle = \sum_{\epsilon} \sum_{n,l,m} |n,l,m,\epsilon\rangle \overbrace{\langle n,l,m,\epsilon|\psi\rangle}^{C_{n,l,m,\epsilon}}$$
 (4)

si

$$|\vec{r}\rangle\langle n, l, m| = R_n, l(r)Y_l^m(\theta, \phi)$$

$$\langle \vec{r} | \psi \rangle = \sum_{n,l,m} \sum_{\epsilon} \underbrace{\langle \vec{r} | n,l,m \rangle}_{R_n,l(r)Y_l^m(\theta,\phi)} | \epsilon \rangle C_{n,l,m,\epsilon} = \sum_{n,l,m} \begin{pmatrix} c_{n,l,m,+} R_n, l(r)Y_l^m(\theta,\phi) \\ c_{n,l,m,-} R_n, l(r)Y_l^m(\theta,\phi) \end{pmatrix}$$

Norme

$$\langle \psi | \psi \rangle = \int \mathrm{d}^3 r [\psi^*] [\psi]$$

Produit interieur

$$\langle \psi | \phi \rangle = \int \mathrm{d}^3 r[\psi^*][\phi]$$

Élément de matrice

$$\begin{split} \langle \Psi | \mathbb{K} A \mathbb{K} | \Phi \rangle &= \sum_{\epsilon, \epsilon'} \int \mathrm{d}^3 r \mathrm{d}^3 r' \underbrace{\langle \psi | \vec{r}', \epsilon' \rangle}_{\psi_{\epsilon}^*(\vec{r}')} \underbrace{\langle \vec{r}', \epsilon' | A | \vec{r}, \epsilon \rangle}_{A_{\epsilon' \epsilon}(\vec{r}', \vec{r})} \underbrace{\langle \vec{r}', \epsilon' | \psi \rangle}_{\psi_{\epsilon}(\vec{r})} = \int \mathrm{d}^3 r \mathrm{d}^3 r' [\psi^*] \llbracket A \rrbracket [\phi] \\ L_z \to_{|\vec{r}\rangle} \frac{\hbar}{i} \frac{\partial}{\partial \varphi} \to \varepsilon_{\vec{r}} \otimes \varepsilon_{\epsilon} = \frac{\hbar}{i} \begin{pmatrix} \frac{\partial}{\partial \phi} & 0 \\ 0 & \frac{\partial}{\partial \phi} \end{pmatrix} \end{split}$$

Mesure

La quatrième postula reste valable :

$$|\psi\rangle : \text{ vecteur d'état}$$

$$\mathcal{P}(\underbrace{a_n}_{\text{val dicrete d'un obs}}) = |\langle \varphi_n | \psi \rangle|^2$$

$$d\mathcal{P}(\underbrace{\alpha}_{\text{val continue d'un obs}}) = |\langle \omega_\alpha | \psi \rangle|^2 d\alpha$$

$$val \text{ continue d'un obs}$$

$$\mathcal{P}(a_n) = \sum_{i=1}^{g_n} |\langle \varphi_n^i | \psi \rangle|^2$$

Dans notre cas, qui est une combinaisons de discret et continue, on a :

$$\mathrm{d}\mathcal{P}(\vec{r},\pm) = |\langle \vec{r}, \pm | \psi \rangle|^2 \mathrm{d}^3 r$$

$$\mathcal{P}_{\pm} = \int \mathrm{d}\mathcal{P} = \int \mathrm{d}^3 r |\psi(\vec{r})|^2$$
Si $[\psi] = \begin{pmatrix} \psi_+(r,\theta,\varphi) \\ \psi_-(r,\theta,\varphi) \end{pmatrix}$

$$\mathcal{P}_{\vec{L}^2} = \left| \int \sum_{l',m'} Y_l^{m*} a_{l',m',+}(r) Y_{l'}^{m'} \mathrm{d}\Omega \right|^2 + \left| \int \sum_{l',m'} Y_l^{m*} a_{l',m',-}(r) Y_{l'}^{m'} \mathrm{d}\Omega \right|^2$$

Épisode 3

Jean-Baptiste Bertrand

19 janvier 2022

Projection sur n,l,m

$$|\psi\rangle = \mathbb{1}|\psi\rangle$$

$$= \sum_{n,l,m,\epsilon} |n,l,m,\epsilon\rangle \underbrace{\langle n,l,m,\epsilon|\psi\rangle}_{c_{n,l,m,\epsilon}}$$

$$\langle \vec{r}|\psi\rangle = \sum_{n,l,m,\epsilon} \underbrace{\langle \vec{r}|n,l,m,\epsilon\rangle}_{R_{n,l}(r)Y_l^m(\theta,\varphi)} |\epsilon\rangle c_{n,l,m,\epsilon}$$

$$= [\psi] = \sum_{n,l,m} \begin{pmatrix} c_{n,l,m,+}R_{n,l}(r)Y_l^m(\theta,\varphi) \\ c_{n,l,m,-}R_{n,l}(r)Y_l^m(\theta,\varphi) \end{pmatrix}$$

$$[\psi] = \sum_{l,m} \begin{pmatrix} a_{n,l,+}(r)Y_l^m(\theta,\varphi) \\ a_{n,l,-}(r)Y_l^m(\theta,\varphi) \end{pmatrix}$$

$$d\mathcal{P}_{\epsilon}(l,m) = ?$$

$$\boxed{\mathbf{L}^2Y_l^m = l(l+1)\hbar^2Y_l^m}$$

$$\boxed{L_zY_l^m = m\hbar Y_l^m}$$

$$d\mathcal{P}_{\epsilon}(l,m) = \left| \int Y_l^{m*} \sum_{l',m'} a_{l',m',\epsilon}(r)Y_{l'}^{m*} d\Omega \right|^2 r^2 dr$$

$$\boxed{\int Y_l^{m*}Y_{l'}^{m'} d\Omega = \delta_{ll'}\delta_{mm'}}$$

$$\mathcal{P}_{\epsilon}(l,m) = \int r^2 \mathrm{d}r |a_{l,m,\epsilon}(r)|^2$$

$$\mathcal{P}(l,m) = \sum_{\epsilon} \mathcal{P}_{\epsilon}(l,m)$$

$$\mathcal{P}(l)\epsilon_{|m| \le l\mathcal{P}(l,m)} = \sum_{|m| \le l} \int r^2 (|a_{l,m,+}(r)|^2 + |a_{l,m,-}(r)|^2) dr$$

Composition du moment cinétique

Généralisation et mise en contexte

 $\vec{P_i}$ n'est pas conservé s'il y a de l'interaction. Ce n'est donc pas un bon nombre quantique.

Si le système satisfait :

$$\sum_i \mathbf{P}_i = \mathbf{P}_T$$

Alors

$$\frac{\mathrm{d}\mathbf{P}_T}{\mathrm{d}t} = 0$$

. Ce qui signigie que \mathbf{P}_T est un bon nombre quantique

$$W_{so} \approx \lambda \left(L_z S_z + \underbrace{L_x S_x + L_y S_y}_{\frac{1}{2}L_+ S_- + \frac{1}{2}L_- S_+} \right)$$

 $L_z(m)$ et $S_z(\epsilon)$ ne sont plus des bons nombre quantiques. Le moment cinétique peut être passsé de l'un à l'autre. Cepandant le moment cinétique total, comme toujours, est conservé. On utilise donc le spin total comme nouveau nombre quantique

$$J = L + S$$

ECOC:
$$\mathbf{L}^2, L_z, S_s \rightarrow \mathbf{L}^2, \mathbf{J}^2, J_z$$

 $\{|l, m, \epsilon\rangle\} \rightarrow \{|l, J, m\rangle\}$

Un exemple simple où cette base pourrait être utilisé est la composition de deux spin.

Épisode 4

Jean-Baptiste Bertrand

28 janvier 2022

Compostition du moment cinétique

Exemple simple : composition de spins $\frac{1}{2}$

E.C.O.C :
$$\mathbf{S}_1^2 \ \mathbf{S}_2^2 \ S_{1z} \ S_{2z}$$

 $\left|\frac{1}{2},\epsilon_1\right>\otimes\left|\frac{1}{2},\epsilon_2\right> = \left|\frac{1}{2},\frac{1}{2};\epsilon_1,\epsilon_2\right> \rightarrow |\epsilon_1,\epsilon_2\rangle \quad \text{Car les spins sont toujours } 1/2 \text{ dans notre cas}$

$$\mathbf{S}_{1}^{2} |\epsilon_{1}, \epsilon_{2}\rangle = \frac{1}{2} \left(\frac{1}{2} + 1 \right) \hbar^{2} |\epsilon_{1}, \epsilon_{2}\rangle$$
$$\mathbf{S}_{1z} |\epsilon_{1}, \epsilon_{2}\rangle = \frac{\epsilon}{2} \hbar |\epsilon_{1}, \epsilon_{2}\rangle$$

nouvel E.C.O.C :
$$\mathbf{S}_1^2$$
 , \mathbf{S}_2^2 , \mathbf{S}^2 , S_z

On peut vérifier qu'il commutent tous entre eux mais on le feras pas.

On peut également vérifier la complétion. On va le vérifier plus tard.

Cela induit nécessairement une nouvelle base

$$\left|\frac{1}{2}, \frac{1}{2}, S, M\right\rangle \to \left|S, M\right\rangle$$

$$\begin{split} |S,M\rangle &= \mathbb{1} |S,M\rangle \\ |SM\rangle &= \sum_{\epsilon_1,\epsilon_2} |\epsilon_1,\epsilon_2\rangle \langle \epsilon_1,\epsilon_2| \, |S,M\rangle \end{split}$$

Les coefficient de cette expression sont appelées Clebsch-Gordan

$$\mathbf{S}^{2} | S, M \rangle = S(S+1)\hbar^{2} | S, M \rangle$$

 $S_{z} | S, M \rangle = M\hbar | SM \rangle$

$$S \ge M \ge -S$$

Contrainte
$$S_z |\epsilon_1, \epsilon_2\rangle = (S_{1z} + S_{2z}) |\epsilon_1, \epsilon_2\rangle = \underbrace{\left(\frac{\epsilon_1}{2} + \frac{\epsilon_2}{2}\right)}_{M\hbar} |\epsilon_1, \epsilon_2\rangle$$

$$\implies M_{\max} = \frac{1}{2} + \frac{1}{2} = 1$$

$m \backslash S$	1 (triplet)	0 (singulet)	
1	$ 1,1\rangle = +,+\rangle$		
0	$ 1,0\rangle = \frac{1}{\sqrt{2}}[+-\rangle + -+\rangle]$	$ 0,0\rangle = +,-\rangle - -+\rangle$	
-1	$ 1,-1\rangle = \rangle$		

Pour savoir comment les nouveau opérateur agissent sur les vecteur, on expirme les nouveaux vecteur et opérateurs en fonctions des anciens

$$\mathbf{S}^{2} |1,1\rangle = (\mathbf{S}_{1} + \mathbf{S}_{2})^{2} |+,+\rangle = (\mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + 2\mathbf{S}_{1}\mathbf{S}_{2}) |+,+\rangle = \left(\mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + 2(\underbrace{S_{1x}S_{2x} + S_{1y}S_{2y}}_{S_{1+}S_{2+} + S_{1-}S_{2+}} + S_{1z}S_{2z})\right) |+,+\rangle$$

On fait le produit scalaire et on retrouver S_{\pm}

$$|0,0\rangle = \alpha |+,-\rangle + \beta |-+\rangle$$

On a les contraintes $\alpha^2+\beta^2=1$ et $\frac{\alpha}{\sqrt{2}}+\frac{\beta}{\sqrt{2}}=0$ par orthogonalité.

Généralisation à des spins plus grands : spins J_1 et J_2 fixées

L'idée reste la même. On part d'un acien ECOC

ECOC:
$$\mathbf{J}_{1}^{2}$$
, J_{2}^{2} , J_{1z} , J_{2z}

Base $|J_1, m_1\rangle \otimes |J_2, m_2\rangle \rightarrow |J_1, J_2; m_1, m_2\rangle$

$$\mathbf{J}_1^2 |J_1 J_2 m_1 m_2\rangle = J_1 (J_1 + 1) \hbar^2 |J_1 J_2 m_1 m_2\rangle$$

$$\mathbf{J}_{1z} |J_1 J_2 m_1 m_2\rangle = m_1 \hbar |J_1 J_2 m_1 m_2\rangle$$

nouvel ECOC
$$\mathbf{J}_1^2$$
, \mathbf{J}_2^2 , \mathbf{J}^2 , J_z

$$-J \le M \le J$$

On fait le même changement de base avec les coefficients de Clebsch-Gordan. Au lieu d'une somme sur epsilon on doit maintenant sommer sur tout les m_1 et m_2

On trouve, de manière similaire a précédement

$$M = m_1 + m_2$$

Encore une fois, on veut maintenant trouver les nouveau vecteurs prorpes.

$M \backslash J$	$J_1 + J_2$	$J_1 + J_s - 1$
$M_{\text{max}} = J_1 + J_2$	$ J_1+J_2,J_1+J_2\rangle$	
$J_1 + J_2 - 1$	$ J_1+J_2,J_1+J_2-1\rangle$	$ J_1+J_2-1,J_1+J_2-1\rangle$
• • • •		
$-J_1 - J_2$	$ -J_1-J_2,-J_1-J_2\rangle$	

$$|J_1 + J_2, J_1 + J_2\rangle = |J_1, J_2; J_1, J_2\rangle$$

$$\underbrace{J_{-}}_{J_{1-}+J_{2-}}\underbrace{|J_{1}+J_{2},J_{1}+J_{2}\rangle}_{J_{1},J_{2};J_{1},J_{2}} = \hbar\underbrace{\sqrt{(J_{1}+J_{2})(J_{1}+J_{2}+1)-(J_{1}+J_{2})(J_{1}+J_{2}-1)}}_{2(J_{1}+J_{2})}|J_{1},J_{2};J_{1},J_{2}\rangle$$

 $J_{1-}+J_{2-}$ S'applique et donne aussi des longues racines, je suis pas trop sur de la conclusion... On verifié que ça marche je crois

1 Théroème de composition du moment cinétique

Si \mathbf{j}_1 et J_2 deux moments cinétiques alors les valeurs propres à J^2 et J_z sibt telles que

$$J = J_1 + J_2, J_1 + J_2 - 1, \dots, |J_1 - J_2|$$

 $-J < M < J$

vecteur propres:

$$|J,M\rangle = \sum_{m_1} \sum_{m_2} |J_1,J_2;M_1,M_2\rangle\langle J_1,J_2;M_1,M_2| |J,M\rangle$$

2 Exemple, compostition d'un moment orbitale etd'un spin

$$\mathbf{J}_{1} = \mathbf{L}; \quad J_{2} = \mathbf{S}$$

$$L^{2} |l, m_{2}\rangle \otimes \left| \frac{1}{2}, m_{2} \right\rangle = \hbar^{2} l(l+1) |l, s, m_{1}, m_{2}\rangle$$

$$S^{2} |l, s, m_{1}, m_{2}\rangle = \frac{\hbar^{2}}{2} \cdot \cdots |\rangle$$

$$\cdots$$

$$\mathbf{J} = \mathbf{L} + \mathbf{S}; \quad J_{\mathbf{z}} = L_{\mathbf{z}} + S_{\mathbf{z}}$$
$$J = l + \frac{1}{2} \text{ et } J = l - \frac{1}{2}$$

Table 1 – tableau des vecteur propre

$m \backslash J$	$l + \frac{1}{2}$	$l-\frac{1}{2}$	
$l + \frac{1}{2}$	$\left l + \frac{1}{2}, l + \frac{1}{2} \right\rangle$		
$l-\frac{1}{2}$			

3 Opérateur scalaires et vectoriels (théorème de Wigner-Eckart)

Opérateur scalaire Si A est scalaire $\implies [A, \vec{J}] = 0$

Ex
$$J^2$$

$$[J^2, \vec{J}] = [J \cdot J, \vec{J}] = \vec{J} [\vec{J}, \vec{J}] + [\vec{J}, \vec{J}] \vec{J} = 0$$

Si
$$A$$
 est scalaire $[A,J^2]=\vec{J}[A,\vec{J}]+\vec{J}[\vec{J},A]=0$

Opérateur vectoriel

$$\vec{V}$$
est vectoriel

$$[J_i, V_j] = i\hbar \epsilon_{ijk} J_i V_j$$

1 Théorème de Wigner-Eckart

 ${\bf v}$ est vectroiel si $[J_i, v_i] = i\hbar\epsilon_{ijk}V_k$

 ${\bf J}$ est vectoriel. Si ${\bf J}={\bf L}+{\bf S},\,{\bf S},\,{\bf L}$ le sont aussi

$$[J_i, L_j + S_j] = [J_i, L_i] + [J_i, S_i] = i\hbar \epsilon_{ijk} (L_k + S_k)$$

$$[J_x, V_x] = 0$$

$$\begin{split} [J_x,v_y] &= i\hbar V_z \\ [J_x,\underbrace{V_x \pm i V_y}_{V_+}] &= \mp \hbar V_z \end{split}$$

$$[J_z, V_z] = 0$$

$$\mathcal{P}_{\mathcal{E}} = \sum_{\mathbf{m}} |k, j, m\rangle\!\langle k, j, m|$$

$$\mathcal{P}_{\mathcal{E}}V_{\mathbf{z}}\mathcal{P}_{\mathcal{E}} = \alpha P_{\mathcal{E}}J_{z}P_{\mathcal{E}}$$

$$\langle k, j, m | V_{\pm} | k', j', m' \rangle = \pm \frac{1}{\hbar} \langle k, j, m | [J_z, V_p m] | k', j', m' \rangle$$

frac12

2 Charge

2.1 Composition de 2 spins

$$H_1 \otimes H_1 = H_2 \oplus H_2 \oplus H_0$$

$$|j_1 - j_2| = 0 \le H \le j_1 + j_2 = 2$$

J=2

$$|2. + 2\rangle |1, +1; 1, +1\rangle$$

$$|2,-2\rangle = |1,-1;1,-1\rangle$$

$$\begin{array}{ccccc} M/S & 2 & 1 & 0 \\ +2 & |2,+2\rangle & & \\ +1 & |2,+1\rangle & |1,+1\rangle & & \\ 0 & |2,0\rangle & |1,0\rangle & |0,0\rangle \\ +1 & |2,-1\rangle & |1,-1\rangle & \\ +1 & |2,-2\rangle & & \end{array}$$

Table 1 – Tableau de toutes les valeurs possible

$$J_{-}|2,+2\rangle = \hbar\sqrt{2(2+1)-2(2-1)}|2,+1\rangle = (J_{1-}+J_{2-}|1,+1,1,+1\rangle) = \hbar\sqrt{1(1+1)-1(1-1)}|1,0;1,+1\rangle + \hbar\sqrt{2}|1,+1,1,0\rangle$$

$$|2,\pm 1\rangle = \frac{1}{\sqrt{2}}(|1,\pm 1,1,0\rangle + |1,0,1,\pm 1\rangle)$$

$$J_{1}|2,+1\rangle = \hbar\sqrt{2(2+1)-1(1-1)}|2,0\rangle = \frac{1}{\sqrt{2}}(J_{1-}+J_{2-}[|1,+1,1,0\rangle + |1,0;1,+1\rangle])$$

$$= \frac{\hbar}{\sqrt{2}}\Big[\sqrt{2}|1,0,1,0\rangle + \sqrt{2}|1,1,1,-1\rangle + \sqrt{2}|1,0,1,0\rangle + \sqrt{2}|1,1,1,-1\rangle\Big]$$

$$|2,0\rangle = \frac{1}{\sqrt{6}}(|1,-1,1,1\rangle + |1,1,1,-1\rangle + 2|1,0,1,0\rangle)$$

On a fini la première colone!

$$|1,+1\rangle = \alpha |1,+1,1,0\rangle + \beta |1,-;1,+1\rangle$$

$$J_{+} |1,+1\rangle = 0 = \hbar \sqrt{2}\alpha |1,+1,1,0\rangle + \hbar \sqrt{2} |1,0,1,+1\rangle$$

$$\Rightarrow \alpha = -\beta$$

$$|1,+1\rangle = \frac{1}{\sqrt{2}}(|1,+1;1,0\rangle - |1,0;1,+1\rangle)$$

$$|1,-1\rangle = \frac{1}{\sqrt{2}} |1,-1;1,0\rangle - |1,0;1,-1\rangle$$

$$J_{-} |1,+1\rangle = \cdots \Rightarrow |1,0\rangle \frac{1}{\sqrt{2}}(|1,+1;1,-1\rangle - |1,-1;1,+1\rangle)$$

$$|0,0\rangle = \alpha |1,0,1,0\rangle + \beta |1,+1,1,-1\rangle + \gamma |1,-1,1,+1\rangle$$

$$0 = J_{-} |0,0\rangle = \hbar \alpha \sqrt{2} + \cdots \Rightarrow \alpha + \beta + \alpha + \gamma = 0$$

$$\Rightarrow |0,0\rangle = \frac{1}{\sqrt{3}}[|1010\rangle - |11;1-1\rangle - |1,-1,1,+1\rangle]$$

(On a utlisé la normalisation comme 3eme équation)

'Opérateur vectoriles

 \vec{v} est vectoriel si $[v_{,i}, V_j] = i\hbar\epsilon_{ijk}$

sous-espace : $\mathcal{E}(k,j) = \left\{ \left| k,j,m \right\rangle, m = -j,\cdots,j \right\}$

$$P_{\mathcal{E}} = \sum_{j=1}^{j} |k, j, m\rangle\langle k, j, m|$$

$$P_{\mathcal{E}}\vec{v}P_{\mathcal{E}} = \alpha P_{\mathcal{E}}\vec{J}P_{\mathcal{E}}$$

On considère $P_{\mathcal{E}}^2 \vec{J} \cdot \vec{v}$

$$= P_{\mathcal{E}} \vec{J} P_{\mathcal{E}} \vec{v} P_{\mathcal{E}} = \alpha P_{\mathcal{E}} \vec{J} \cdot \vec{J} P_{\mathcal{E}} \equiv \alpha$$

$$\implies \langle \vec{J} \cdot \vec{v} \rangle_{\mathcal{E}(k,j)} = \alpha j(j+1)\hbar^2$$

Application Multiplet des spins et facteur de???

Atomes à plusieurs éléctrons

$$\vec{L} = \sum_{i=1}^{z} \vec{L}_i \quad \vec{S} = \sum_{i=0}^{z} \vec{S}_i$$

$$\vec{J} = \vec{L} + \vec{S}$$

$$\mathcal{E}(k,j) \to \mathcal{E}(E_0,L,S,J) \to \{|E_0,L,S,J,M\rangle \quad J \ge M \ge -J\}$$

champ mangétique

$$H = H_0 - \gamma \sum_{i=1}^{z} \left(\vec{L}_i + g \vec{S}_i \right) \cdot \vec{B}$$

dans
$$\mathcal{E}(E_0, L, S, J) : P_{\mathcal{E}} \left[-\gamma \left(\vec{L} + g \vec{S} \right) \right] P_{\mathcal{E}} = -\gamma \alpha_L \vec{J} - \gamma g \alpha_s \vec{J}$$

On remplace \vec{L} et \vec{S} par $\alpha \vec{J}$ dans le Hamiltonien

On réécrit les α s en fonction de produit scalaires.

Les produits scalairs impliquent de calculer :

$$<\vec{L}^2>_{\epsilon}=L(L+1)\hbar^2 \quad <\vec{L}\cdot\vec{S}>_{\epsilon_0}=?$$

Si
$$\vec{L} + \vec{S} = \vec{J} \implies \vec{J}^2 = \vec{L}^2 + \vec{S}^2 + 2\vec{S} \cdot \vec{L} \implies \vec{L} \cdot \vec{S} = \frac{1}{2} \left(J^2 - L^2 - s^2 \right)$$

On a finalement que

$$H = H_0 - \gamma g_L \vec{J} \cdot \vec{B}$$
 dans $\mathcal{E}(E_0, L, S, J)$

Si ${f B}$ est orienté en z on trouve

$$H = H_0 - \gamma g_{\rm L} J_{\rm z} B \implies H \left| E_0, L, S, J, M \right\rangle = \left(H_0 - \gamma g_{\rm L} M \hbar B \right) \left| E_0, L, S, J, M \right\rangle$$

Théorie des parturbation

En général,

$$H|\psi\rangle = E|\psi\rangle$$

n'est pas soluble exactement.

On prend

$$H = \underbrace{H_0}_{\text{soluble}} + \underbrace{W}_{\ll H}$$

$$H_0 |\varphi_n\rangle = E_n^0 |\varphi_n\rangle \quad \langle \varphi_n | \varphi_n' \rangle = \delta_{nn'}$$

on pose $w = \lambda \bar{w} \quad \lambda \ll 1$

On postule

$$E = E_n^0 + \lambda E^{(1)} + \lambda^2 E^{(2)} + \cdots$$
$$|\psi\rangle = |\varphi_n\rangle + \lambda \left|\varphi^{(1)}\right\rangle + \lambda^2 \left|\varphi^{(2)}\right\rangle + \cdots$$

Choix:

$$\langle \varphi_n | \psi \rangle = 1 = \underbrace{\langle \varphi_n | \varphi_n \rangle}_{1} + 0 + 0 + \cdots$$

$$(H_0 + \lambda \bar{W}) \left[|\varphi_n\rangle + \lambda \left| \varphi^{(1)} \right\rangle + \lambda^2 \left| \varphi^{(2)} \right\rangle + \cdots \right] = \left(E_{\lambda^0} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \cdots \right) (|\varphi_n\rangle + \lambda \left| \varphi^{(1)} \right\rangle + \lambda^2 \left| \varphi^{(2)} \right\rangle + \cdots)$$

$$O(\lambda^{0}): \quad H_{0} |\varphi_{n}\rangle = E_{n}^{0} |\varphi_{n}\rangle$$

$$O(\lambda^{1}): \quad H_{0} |\varphi^{(1)}\rangle + \bar{W} |\varphi_{n}\rangle = E_{n}^{0} |\varphi^{(1)}\rangle + E^{(1)} |\varphi\rangle \implies \cdots \implies E^{(1)} = \langle \varphi_{n} | \bar{W} |\varphi_{n}\rangle$$

$$O(\lambda^2): \quad H_0 \left| \varphi^{(2)} \right\rangle + \bar{W} \left| \varphi^{(1)} \right\rangle = E_n^? ? + ? + ? \implies \cdots$$

Bon, je note pas tout ça, je l'ai déjà fait une fois, pas une deuxième

$$\implies \left| \varphi^{(1)} \right\rangle = \sum_{g_n} \sum_{m \neq n} \frac{\left| \varphi_m \right\rangle \left\langle \varphi_m \right| \bar{W} \left| \varphi_n \right\rangle}{E_n^0 - E_m^0}$$

$$\implies E^{(2)} = \sum_{g_n} \sum_{m \neq n} \left\| \frac{\langle \varphi_n | \bar{W} | \varphi_n \rangle}{E_n^0 = E_m^0} \right\|^2$$

Théorie des perturbation (?)

Il fait un rappel de la théorie des perturbation, qu'on a fait au dernier cours

Figure 1 – spectre énérgétique

Cas dégénéré

On pose :

$$|\varphi_{n,\alpha}\rangle = \sum_{i=1}^{g_n} c_{n,i}^{\alpha} |\varphi_n^i\rangle$$

On fait un chanement de base pour utilisel les ket α au lieu d'utiliser les ket i

$$H_0 |\varphi_n, \alpha\rangle = E_n^0 |\varphi, \alpha\rangle$$

$$H_{0}\left|\varphi^{(1)}\right\rangle + W\left|\varphi_{n,\alpha}\right\rangle = E_{n}^{0}\left|\varphi_{n}^{i}\right\rangle + E^{(1)}\left|\varphi_{n,\alpha}\right\rangle$$
$$\left\langle\varphi_{n}^{i}\right|H_{0}\left|\varphi^{(1)}\right\rangle + \left\langle\varphi_{n}^{i}\right|W\left|\varphi_{n,\alpha}\right\rangle = \left\langle\varphi_{n}^{i}\right|E_{n}^{0}\left|\varphi_{n}^{i}\right\rangle + \left\langle\varphi_{n}^{i}\right|E^{(1)}\left|\varphi_{n,\alpha}\right\rangle$$

$$\sum_{i=1}^{g_n} \left\langle \varphi_n^i \middle| \bar{W} \middle| \varphi_n^{i\prime} \right\rangle \left\langle \varphi_n^{i\prime} \middle| \varphi_{n,\alpha} \right\rangle = E^{(1)} \left\langle \varphi_n^i \middle| \varphi_{n,\alpha} \right\rangle$$

C'est essentiellement un produit matriciel

$$\det\left(P_{\mathcal{E}}\left(\bar{W}=E^{(1)}\mathbb{F}\right)P_{\mathcal{E}}\right)=0\to E^{(1)}$$
 valeur propres

On va se limiter en ordre 1 en énérgie, et donc en ordre 0 en état dans le cadre du cours.

L'odre 0 n'est pas trivial même à l'ordre 0 dans le cas dégénéré.

Algorithme

 \sin

$$H = H_0 + W$$

si $|\varphi_n\rangle$ est non-dégénéré : formule sinon

$$E_0 = E_n^0 + \lambda E_\alpha^{(1)}$$

Application : structure fine de l'atome ${\cal H}$

rappel: eq dirac:

$$(c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V(r))\psi = E\psi \quad V = -\frac{e^2}{r}$$

$$H_{sf} = \frac{\vec{p}^2}{2m} + V + \underbrace{W_{mv} + W_D + W_{SD}}_{\text{perturbation}}$$

$$\boxed{|n=1,l=0,n=0,\pm\rangle=|\varphi_{1s}\rangle}$$

$$|n=2,l=0,m=0,\pm\rangle=|2s\rangle$$

$$|n=2, l=1, m \in \{1, 0, -11\}, \pm \rangle = |2p\rangle$$

on définit

$$E_n^0 = -\frac{E_I}{n^2}$$
 $E_I = \frac{me^4}{2\hbar^2} = \frac{1}{2}mc^2\alpha^2$

et

$$\alpha = \frac{e^2}{\hbar c} \simeq \frac{1}{137}$$

$$\begin{array}{c|c}
\hline
2S, 2P & m = 2 \\
\hline
1S & m = 1
\end{array}$$

FIGURE 2 – spectre de l'atome d'hydrogene

Niveau 1s

$$\begin{split} E_{1s} &= E_{1s}^0 \left< 1,0,0,\pm |W_{mv} + W_0| 1,0,0,\pm \right> \\ &\left< 1,0,0| \otimes \left< 1,0,0 \right| \pm W_0 \left| 1,0,0 \right> \otimes \left| \pm \right> = \left< 1,0,0 \right| W_0 \left| 1,0,0 \right> \\ &= \int \mathrm{d}^3 r \left< 1,0,0 \right| W_D \left| \vec{r} \right> \left< \vec{r} \right| 1,0,0 \right> = \int \mathrm{d}^3 r \varphi_{1s}(r) \frac{\hbar^2 e^2 \pi}{2m^2 c^2} \delta(\vec{r}) \varphi_{1s}(r) = \frac{\hbar^2 e^2 \pi}{2m^2 c^2} \underbrace{\| \varphi_{1s}(0) \|^2}_{\frac{1}{\pi a_0^2}} = \frac{1}{2} m c^2 \alpha^4 \\ &\left< 1,0,0,\pm |\underbrace{W_{mv}}_{\frac{-\vec{p}^4}{8m^3 c^2}} \right| 1,0,0,\pm \right> \\ &\text{si } \underbrace{\frac{p^2}{2m} H_{0-V}}_{} \implies P^4 = (2m)^2 (H_0 - V)^2 = 4m^2 (H_0^2 - H_0 V - V H_0 + V^2) \\ &\left< 1,0,0 \right| W_{mv} \left| 1,0,0 \right> = -\frac{1}{2mc^2} \left< 1,0,0 \right| H_{0^2} - H_0 V - V H_0 + V^2 \left| 1,0,0 \right> = \\ &-\frac{1}{2mc^2} \left(E_{1s}^2 + E_{1s} \left< 1,0,0 \right| V \left| 1,0,0 \right> + \left< 1,0,0 \right| V^2 \left| 1,0,0 \right> \right) = -\frac{5}{8} m c^2 \alpha^4 \end{split}$$

(On obtien le résultat après avoir intergrés sur V)

Donc:

$$E_{1s} = E_{1S}^0 + \left(\frac{1}{2} - \frac{5}{8}\right) mc^2 \alpha^2$$

Niveau n=2

$$2s:\left|2,0,0,\pm\right\rangle,\quad g=2$$

$$2p:\left|1,2,(\pm1,0),\pm\right\rangle,\quad g=6$$

$$[\mathbf{L}^2, \mathbf{P}^4] = [\mathbf{L}^2, P^2 P^2] = p^2 [L^2, P^2] + [L^2, P^2] P^2$$

$$\mathbf{P}^2 = P_{r^2} + L^2 \implies \text{tout commute}$$

$$\implies P^4$$
 conserve l

$$[L^2, \mathbf{L} \cdot \mathbf{S}] = L^2, \mathbf{L}] \cdot + \mathbf{L}[\mathbf{L}, \mathbf{S}] = 0$$

$$\implies W_{so}$$
 conserve l

$$\langle \pm, 2, 0, 0 | W_D | 2, 0, 0, \pm \rangle = \langle 2, 0, 0 | W_d | 2, 0, 0 \rangle$$

$$\varphi_{2s}(r) = \frac{1}{\sqrt{8\pi a_0^3}} \left(1 - \frac{r}{2a_0}\right) r^{-\frac{r}{2a_0}}$$

$$(WsF) = \begin{pmatrix} 2x2 & 0 \\ 2x2 & 0 \\ 0 & 6x6 \end{pmatrix}$$

FIGURE 3 – matrice de Wsf