$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	$\tau_{1+}^{\#1} + \alpha \beta$	$\sigma_1^{\#_1} +^{lpha}$	$\sigma_1^{\#2} + ^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	_
	<u>ب</u>
	_
	$\overline{}$
	S
	\subseteq
	Ū
	σ
	_
	\Box
	=
	σ
•	=
	ರಾ
	<u>Č</u>
	_
	ത
	<u> </u>
	ട്ട
	σ
	٠,

 $r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \theta_\kappa \omega^{\theta \kappa \lambda} + r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \theta_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\phi \omega^{\kappa \lambda \phi} + 2 \, r_5 \, \partial_\phi \omega^{\kappa \lambda \phi} + 2 \, r_5 \, \partial_\phi \omega^{\kappa \lambda \phi} + 2 \,$ $\int_{\kappa} -r_5 \, \partial_{\theta} \omega_{\lambda}^{\ \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}$ $\frac{1}{2}t_1\partial_\kappa f^\lambda_{\ \theta}\partial^\kappa f_\lambda^{\ \theta} - t_1\partial^\alpha f^\lambda_{\ \alpha}\partial^\kappa f_{\lambda\kappa} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_\kappa \omega^{\theta\alpha\beta}\partial^\kappa \omega_{\alpha\beta\theta} \sigma_{\alpha\beta\chi}{}^-r_5\,\partial_{,}\omega^{\kappa\lambda}_{\kappa}\,\partial^{\prime}\omega_{\alpha}^{\alpha}\,+$ $_{\kappa}^{}\partial^{\kappa}f_{\alpha\lambda}+t_{1}\;\omega_{\kappa\alpha}^{\;\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\;}$ $_{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_{1}\partial_{\kappa}f_{\theta}^{\ \lambda}\partial^{\kappa}f_{\lambda}^{\ \theta} +$ $_{\lambda}\partial^{\kappa}f^{\prime}_{\ \prime}+2\,t_{1}\,\,\omega_{\prime\kappa\theta}\,\partial^{\kappa}f^{\prime\theta} _{\kappa}^{'}\partial_{\theta}\omega_{\alpha\beta}^{} - \frac{1}{3}r_{2}\,\partial_{\theta}\omega_{\alpha\beta}^{}\,\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{2}{3}r_{2}\,\partial_{\theta}\omega_{\alpha\beta}^{}\,\partial_{\kappa}\omega^{\theta\alpha\beta} -t_1\;\omega_{_{i}}^{\alpha_{i}}\;\omega_{_{\kappa\alpha}}^{\kappa}-t_1\;\omega_{_{i}}^{\kappa\lambda}\;\omega_{_{\kappa\lambda}}^{}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}$ $\frac{1}{2} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa}$ $'_{\kappa} + \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa}$ $t_1 \, \omega_{\kappa\lambda}^{\ \lambda} \, \partial^{\kappa} f'_{\ \prime} + 2 \, t_1 \, \partial^{\alpha} f_{\kappa\alpha} \, \partial^{\kappa} f'_{\ \prime} - t_1 \, \partial_{\kappa} f^{\lambda}_{\ \prime}$ $\frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}_{\kappa}$

 $\frac{t_1}{\sqrt{2}}$

2 7

15-

0

0

0

 $\omega_{1}^{\#1} +^{lpha}$

42

0

 $\frac{t_1}{\sqrt{2}}$

0

0

0

 $\omega_1^{\#2} \uparrow^{\alpha}$

0

0

0

0

0

 $f_{1}^{\#1} \dagger^{\alpha}$

0

 $-\bar{\imath}\,k\,t_1$

0

0

0

 $f_1^{\#2} + \alpha$

0

0

0

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_1^{\#1} \dagger^{\alpha\beta}$

0

0

 $-\frac{ikt_1}{\sqrt{2}}$

 $k^2 r_5 - \frac{t_1}{2}$

 $\omega_1^{\#1} +^{\alpha\beta}$

 α

 $\omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$

 $\omega_{1}^{\#1}{}_{\alpha\beta}$

0

0

0

0

 $\frac{t_1}{\sqrt{2}}$

 $\omega_1^{\#2} + \alpha \beta$

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_2^{\#1}_{\alpha\beta}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

#

Source constraints SO(3) irreps

Н

П

 $^{\circ}$

 \sim

 $^{\circ}$

2 0 =

$==0$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$ $=\frac{1}{1}$	$+ik \frac{\alpha_1^{++} + \beta_2^{-}}{\alpha_2^{++} + \beta_2^{+}} = 0$ $+2ik \frac{\alpha_2^{++} + \beta_2^{+}}{\alpha_2^{++}} = 0$ #:	$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 - t_1$	
$= 0$ $2 i k \sigma_0^{\#1}$ $x + 2 i k c$ $x = 0$ $x = 0$	+ K 0 - 2 K #:	$f_{0}^{#2}$	0	0	0	0	
$ \tau_0^{\#2} == 0 $ $ \tau_0^{\#1} - 2ikc $ $ \tau_1^{\#2}\alpha + 2i $ $ \tau_1^{\#1}\alpha == 0 $ $ \tau_1^{\#1}\alpha == 0 $	$t_1^{\#1}\alpha\beta$ - $t_2^{\#1}\alpha\beta$ - $t_2^{\#1}\alpha\beta$ - $t_2^{\#1}\alpha\beta$	$f_{0}^{\#1}$	$i\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0	
		$\omega_{0}^{\#1}$	-¢ ₁	$-i \sqrt{2} kt_1$	0	0	
			$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1} \dagger$	

 $\sigma_{2}^{\#1}$ $\alpha \beta \chi$

 $\sigma_{2}^{\#1}$

0

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{2}{(1+2k^2)^2t_1}$

 $\sigma_2^{\#1} \dagger^{\alpha\beta}$

0

 $\frac{4k^2}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_2^{\#1} + \alpha \beta$

² ¹

0

0

 $\sigma_{2^{-}}^{\#1} +^{\alpha\beta\chi}$

Massive particle			
Pole residue:	$-\frac{1}{r_2} > 0$		
Polarisations:	1		
Square mass:	$\frac{t_1}{r_2} > 0$		
Spin:	0		
Parity:	Odd		
	Pole residue: Polarisations: Square mass: Spin:		

 $r_2 < 0 && t_1 < 0$

Unitarity conditions

(No massless particles)