a) Correlation between TV time and Cholesterol : r = 0.389 with p = 0.01 level of significance.

Comment: Here r = 0.389 means the moderate positive correlation. The correlation is positive so if TV time increases, the cholesterol is also increase.

Correlations

		TV time	Cholesterol
TV time	Pearson Correlation	1	.389**
	Sig. (2-tailed)		.000
	N	100	100
Cholesterol	Pearson Correlation	.389**	1
	Sig. (2-tailed)	.000	
	N	100	100

^{**.} Correlation is significant at the 0.01 level (2-tailed).

b) Correlation between TV time and BMI : r = 0.112 with p = 0.01 level of significance.

Comment: Here r = 0.112 means the strong positive correlation. The correlation is strong positive so if TV time increases, the BMI is also increase.

Correlations

		TV time	BMI
TV time	Pearson Correlation	1	.112
	Sig. (2-tailed)		.269
	N	100	100
BMI	Pearson Correlation	.112	1
	Sig. (2-tailed)	.269	
	N	100	100

c) Correlation between Cholesterol and BMI: r = 0.027 with p = 0.01 level of significance.

Comment: Here r = 0.022 means the extremely weak positive correlation. The correlation doesn't implies caution in dataset.

Correlations

		Cholesterol	BMI
Cholesterol	Pearson Correlation	1	.027
	Sig. (2-tailed)		.788
	N	100	100
BMI	Pearson Correlation	.027	1
	Sig. (2-tailed)	.788	
	N	100	100

- 5. TV times has 2 outliers . They are case no 5 and 8. The values are 159 & 156.
- 6. Cholesterol has 1 outliers. It is case no 91. The value is 7.98
- 7. BMI has 3 outliers. They are case no 8, 32 & 34. The values are respectively 15.9, 33.1, 35.2
- 8. The Histogram is

As The distribution is positively skewed. Because The skewness statistic is 0.889 greater than 0. And in histogram we see that the tail of the distribution is in right. So The Distribution is positively Skewed.

Descriptive Statistics							
	N	Minimum	Maximum	Mean	Std. Deviation	Skev	vness
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error
Cholesterol	100	4.36	7.98	5.4406	.58015	.889	.241
Valid N (listwise)	100						

9. The Linear regression is:

	Coefficients ^a							
				Standardized				
		Unstandardize	ed Coefficients	Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	-2.127	1.812		-1.174	.243		
	TV time	.044	.011	.389	4.179	.000		

Dependent Variable: Cholesterol

Here Regression Equation Y = 0.044*X - 2.127

Where Y = Cholesterol, X = TV time

And $R^2 = 0.151$

So the 15.1% of the variation In Cholesterol is not accounted for by TV Time.

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.389ª	.151	.143	.53721

a. Predictors: (Constant), TV time

10. The scatterplot is:

Here the fitted line is Y=0.1333 * x -16.6667