SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
NORDA Technical Note 238	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Physical and Acoustical Properties of Surface	Fina]
Sediment from Venezuela Basin: A Data Report	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
Kevin Briggs	o. Con that on Ghant Homber(s)
Michael Richardson	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Naval Ocean Research and Development Activity	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Ucean Science Directorate	P.E. 61153N
NSTL, Mississippi 39529 11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Same	
Same	January 1984 13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	282 15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Annroyed for Public Polonce Distribution 1	
Approved for Public Release, Distribution Unlin	nited
	4
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	om Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Sediment Geoacoustic Properties Deep-Sea Sed	
Venezuela Basin Sediment Geoacoustic Properties Deep-Sea Sed	iments
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
Physical and acquistic properties of surface and;	monte - 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- Vievenie DOV COLE MELE HEGGILDEU TRUM 16 ctations in	the Manager 17 D
69°22'W) was on the eastern slope of the Beata Rid Sediments were pelagic foraminifera ooze. Location	00 10 2050 t 1 11
The second secon	2 (13 45 N, 0/45 W) was in

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

the central Venezuela Basin in 5050 m water depth. Sediments consisted of interbedded turbidite and pelagic sediments. Location 3 (13°30'N, 64°45'W) was on the western flank of the Aves Ridge in 3500 m water depth. Sediments were predominantly hemipelagic in origin.

Values of porosity, grain size, percent CaCO3, organic carbon and nitrogen, shear strength, color, compressional wave velocity, and attenuation were determined from 6.1 cm inside diameter cylindrical subcores. X-radiographs of 36 x 44 x 3 cm rectangular acrylic subcores were made to determine sedimentary/biological structure. Probes used to measure shear strength and compressional wave velocity were occasionally inserted into whole box cores for additional measurements. The color of freshly collected sediments from whole box cores was also noted.

In this report we present the entire data set in table form. Methods of collection and subsequent laboratory and computational analysis are presented in detail. The data presented here will be the subject of more detailed analysis in future publications.

Naval Ocean Research and Development Activity

NSTL, Mississippi 39529

Physical and Acoustical Properties of Surface Sediment from Venezuela Basin: A Data Report

Approved for Public Release Distribution Unlimited

Kevin Briggs
Michael Richardson
Ocean Science Directorate
Oceanography Division
January 1984

EXECUTIVE SUMMARY

Physical and acoustic properties of surface sediments collected with a 0.25-m² box core were measured from 45 stations in the Venezuela Basin. Samples were collected from three locations representing different sedimentary provinces in addition to transects between the locations. Location 1 (15°07'N, 69°22'W) was on the eastern slope of the Beata Ridge in 3950 m water depth. Sediments were pelagic foraminifera ooze. Location 2 (13°45'N, 67°45'W) was in the central Venezuela Basin in 5050 m water depth. Sediments consisted of interbedded turbidite and pelagic sediments. Location 3 (13°30'N, 64°45'W) was on the western flank of the Aves Ridge in 3500 m water depth. Sediments were predominantly hemipelagic in origin.

Values of porosity, grain size, percent ${\rm CaCO}_3$, organic carbon and nitrogen, shear strength, color, compressional wave velocity, and attenuation were determined from 6.1 cm inside diameter cylindrical subcores. X-radiographs of 36 x 44 x 3 cm rectangular acrylic subcores were made to determine sedimentary/biological structure. Probes used to measure shear strength and compressional wave velocity were occasionally inserted into whole box cores for additional measurements. The color of freshly collected sediments from whole box cores was also noted.

In this report we present the entire data set in table form. Methods of collection and subsequent laboratory and computational analysis are presented in detail. The data presented here will be the subject of more detailed analysis in future publications.

ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of the ships' captains and crews of the R/V GYRE (cruise 79G7), USNS LYNCH (cruise 708-80), and USNS BARTLETT (cruise 1301-82). We also wish to thank all of the scientific colleagues who participated in the aforementioned cruises. Without their support a project of this scope would have been impossible. Thanks to David C. Young, Frank Carnaggio, and James Matthews for designing and fabricating the compressional wave velocity probes. Special thanks are extended to Skidaway Institute of Oceanography and Steve Bishop, in particular, for use of the CHN analyzer and to NAVOCEANO for the training and use of the Micromeritics Particle Size Analyzer. We thank Richard Ray for the compilation of data exhibited in Appendix A and David K. Young for careful review of the manuscript. This work was supported by Program Element 61153N; Ralph R. Goodman and James E. Andrews, Program Managers.

CONTENTS

LIST OF ILLUSTRATIONS	i١
LIST OF TABLES	iv
I. INTRODUCTION	1
II. MATERIALS AND METHODS	1
A. SITE SELECTION	1
B. FIELD COLLECTION	= 3
C. FIELD ANALYSIS	7
D. LABORATORY ANALYSIS	15
III. RESULTS	18
IV. REFERENCES	19
APPENDIX ASEDIMENT ACOUSTIC AND PHYSICAL PROPERTY DATA FROM BOX CORES COLLECTED IN THE VENEZUELA BASIN	21
APPENDIX BFREQUENCY HISTOGRAMS OF GRAIN SIZE DISTRIBUTION DATA FOR SEDIMENTS COLLECTED IN BOX CORES FROM THE VENEZUELA BASIN	19
APPENDIX CX-RADIOGRAPHS OF SEDIMENTS COLLECTED FROM THE VENEZUELA BASIN	233
APPENDIX DCOLOR DESCRIPTIONS OF CORES	253
APPENDIX ECOMPRESSIONAL WAVE VELOCITY PROBE DATA	257
APPENDIX FSEDIMENT SHEAR STRENGTH MEASURED WITH HAND-HELD VANE	263

ILLUSTRATIONS

Figure 1.	Location of sampling sites in the Venezuela Basin	2
Figure 2A.	MK III box corer ready to deploy	6
Figure 2B.	Deployment of box corer from rear U-frame of USNS BARTLETT	6
Figure 2C.	Retrieval of box corer containing bottom sediment sample	6
Figure 2D.	Subcoring of box core sample after detachment of box core and spade from box corer with aid of cart	6
Figure 3.	Block diagram of compressional wave velocity probe measuring system	10
Figure 4.	Line drawing of compressional wave velocity probes	10
Figure 5.	Block diagram of sediment core compressional wave velocity and attenuation measuring system	13
	TABLES	
Table 1.	Location, depth, date, and time of collection for the 68 box core stations occupied in the Venezuela Basin	4
Table 2.	Listing of subcores collected from 45 box core samples obtained for physical/acoustic properties analysis	8

I. INTRODUCTION

This report presents data on the horizontal and vertical distribution of surface sediment physical and acoustic properties. The data was collected in an investigation of the effects of biological processes on the physical and acoustic properties of deep-sea sediments. Results from the biological collections will be included in subsequent reports. The entire data set on the following sediment properties is printed in the form of tables: porosity, grain size distribution, percent calcium carbonate (CaCO_3), organic carbon and nitrogen, shear strength, color, and sedimentary/biological structure, sediment compressional wave velocity, and attenuation. Methods of collection and subsequent laboratory and computational analysis are presented in detail. The data presented here will be the subject of more detailed analysis in future publications. The purpose of the report is to make the bulk of the sediment data available as rapidly as possible to others involved with this study.

II. MATERIALS AND METHODS

A. Site Selection

Three locations representing different sedimentary provinces in the Venezuela Basin were selected for study (Fig. 1). Location 1 was on the eastern part of the Beata Ridge (15°07'N, 69°22'W) in 3950 m water depth. Sediments were pelagic foraminifera ooze. Location 2 was in the central Venezuela Basin in 5050 m water depth and centered about 13°45'N, 67°45'W. Sediments were interbedded turbidite depositions and pelagic sediments. Location 3 was on the eastern flank of the Aves Ridge in a hemipelagic sedimentary province in 3500 m water depth and centered about 13°30'N, 64°45'W.

A total of 99 stations were occupied consisting of: 19 box cores, eight trawls, and one dredge haul at location 1; 23 box cores and nine trawls at location 2; 18 box cores and eight trawls at location 3; three box cores along a transect between locations 1 and 2; five box cores along a transect between locations 2 and 3; and five trawls collected about 130 km north of location 2. A listing of the depth, latitude, longitude, date, and time (GMT) of each box core sample is

Figure 1. Location of sampling sites in the Venezuela Basin

presented in Table 1. Data pertinent to the trawl and dredge hauls will be presented in subsequent publications.

Samples were collected on three oceanographic cruises. Stations 1-6 were occupied from the R/V GYRE, cruise 79G7, which departed Panama City, Panama, on 10 November 1979 and terminated at Santo Domingo, Dominican Republic, on 26 November 1979. Stations 7-19 were occupied from the USNS LYNCH, cruise 708-80, which departed Roosevelt Roads, Puerto Rico, on 2 July 1980 and returned on 28 July 1980. Stations 20-99 were occupied from the USNS BARTLETT, cruise 1301-82, which departed Roosevelt Roads, Puerto Rico, on 14 October 1981 and returned on 8 December 1981.

B. Field Collection

Sediments were collected with the 0.25-m² MK III box corer depicted in Figure 2A-D. The design and function of the box corer were essentially the same as the box corer described by Hessler and Jumars (1974) with two exceptions: (1) the safety bar holding the release bolt was triggered by the downward fall of the column through the frame sleeve that released a lever holding the safety bar (this safety acted to prevent accidental triggering of the spade arm on deck or while the box corer was in transit to the bottom), and (2) spring-loaded doors at the top of the core box replaced the screened vents and flapper valves. A pinger, fastened on the wire 25 m from the box corer, was used to monitor sample collection on a Line Scan Recorder. Box core descent was approximately 50 m/min until the sampler was 50 m from the bottom. The box core was then lowered into the bottom as slowly as weather conditions permitted (10-25 m/min). The box core was retrieved at 50-75 m/min.

The box cores containing undisturbed surface sediment with overlying water together with the attached spade arm were carefully removed from the coring device. Cylindrical subcores (6.1-cm inside diameter and 46-cm length) and/or 36 cm (width) x 3 cm (thickness) x 44 cm (length) acrylic subcores were used to collect subsamples of the sediment. Extreme care was exercised to obtain relatively undisturbed subsamples with the sediment-water interface preserved intact within the subcores. In order to obtain undisturbed samples of the pelagic and turbidite layers at location 2, a second set of subcores was taken after manual removal of overlying sediment layers that had high shear strength and resistance to core penetration.

Table 1. Location, depth, date, and time of collection for the 68 box core stations occupied in the Venezuela Basin. Station listings do not include the 30 trawl hauls and dredge haul.

Station	Depth (m)	Latitude	Longitude	Date	GMT
1*	3958	15°08.3'N	69°24.6'W	15 Nov 79	0226
2	3958	15°08.3'N	69°24.6'W	15 Nov 79	1018
3	3958	15°14.7'N	69°14.7'W	15 Nov 79	1535
4*	3958	15°08.3'N	69°24.6'W	15 Nov 79	2223
5	3958	15°35.5'N	69°17.3'W	16 Nov 79	0320
6*	3958	15°08.3'N	69°24.6'W	16 Nov 79	1820
7*	5058	13°49.6'N	67°45.0'W	6 Jul 80	0105
8*	5059	13°48.4'N	67°40.7'W	7 Jul 80	1224
9	5054	13°46.6'N	67°45.2'W	8 Jul 80	0001
10*	5056	13°43.7'N	67°43.5'W	8 Jul 80	2103
11#	5060	13°46.0'N	67°49.7'W	23 Jul 80	0345
12#	5060	13°46.7'N	67°46.8'W	23 Jul 80	0842
13#	5060	13°49.4'N	67°42.7'W	23 Jul 80	1516
14	5054	13°50.6'N	67°39.0'W	23 Jul 80	2050
15*	5060	13°45.4'N	67°47.8'W	24 Jul 80	0752
16	5054	13°45.0'N	67°40.4'W	24 Jul 80	1620
17	3517	13°32.8'N	64°45.7'W	25 Jul 80	2150
18	3517	13°25.6'N	64°47.7'W	26 Jul 80	1143
19*	3514	13°25.1'N	64°51.0'W	26 Jul 80	1508
20*	3934	15°05.2'N	69°22.8'W	17 Oct 81	2335
21	3937	15°07.6'N	69°24.1'W	18 Oct 81	2053
22	3934	15°07.3'N	69°22.9'W	19 Oct 81	0241
23	3933	15°07.0'N	69°24.0'W	19 Oct 81	1223
24	3936	15°06.1'N	69°24.2'W	19 Oct 81	1606
25*	3934	15°07.9'N	69°22.7'W	19 Oct 81	2114
26	3940	15°06.4'N	69°22.3'W	21 Oct 81	0902
27*	3935	15°07.9'N	69°20.6'W	21 Oct 81	2342
28	3949	15°07.4'N	69°20.0'W	22 Oct 81	1236
29	3959	15°03.5'N	69°21.6'W	23 Oct 81	0340
30	3945	15°09.0'N	69°34.2'W	23 Oct 81	0845
31	3949	15°04.3'N	69°19.7'W	23 Oct 81	1234
32	3945	15°00.9'N	69°17.8'W	23 Oct 81	1637
42	4322	14°50.8'N	68°59.7'W	29 Oct 81	1659
43	4493	14°45.1'N	68°52.1'W	29 Oct 81	2336
44	4805	14°19.8'N	68°22.2'W	30 Oct 80	0958

^{* =} macrofauna box core

^{# =} disturbed box core, no subsamples collected

Table 1 (continued)

Station	Depth (m)	Latitude	Longitude	Date	GMT
45*	5065	13°53.1'N	67°44.9'W	31 Oct 81	0210
46	5053	13°50.5'N	67°47.7'W	31 Oct 81	2104
47	5049	13°44.4'N	67°48.3'W	1 Nov 81	0305
48	5049	13°44.1'N	67°48.8'W	1 Nov 81	0808
49*	5052	13°37.4'N	67°50.5'W	1 Nov 81	1630
50	5052	13°52.2'N	67°48.3'W	2 Nov 81	0612
51	5049	13°44.9'N	67°48.0'W	2 Nov 81	1226
52*	5052	13°49.5'N	67°50.3'W	2 Nov 81	1825
53	5049	13°47.3'N	67°47.9'W	3 Nov 81	0836
54	5052	13°43.0'N	67°44.8'W	3 Nov 81	1434
55	5050	13°46.4'N	67°47.7'W	3 Nov 81	2149
56*	5049	13°46.6'N	67°47.7'W	4 Nov 81	0741
57	5046	13°42.9'N	67°47.6'W	4 Nov 81	1747
67	4749	13°35.9'N	65°52.1'W	18 Nov 81	0646
68	4447	13°34.0'N	65°45.0'W	18 Nov 81	1429
69	4188	13°34.7'N	65°28.6'W	18 Nov 81	2200
70	3937	13°33.9'N	65°24.2'W	19 Nov 81	0415
71	3775	13°31.6'N	65°10.8'W	19 Nov 81	1057
72*	3476	13°29.6'N	64°45.2'W	20 Nov 81	0522
73	3542	13°33.6'N	64°42.1'W	20 Nov 81	2135
74	3503	13°32.6'N	64°44.0'W	21 Nov 81	0218
75*	3506	13°32.1'N	64°42.5'W	21 Nov 81	0934
76	3490	13°33.8'N	64°41.4'W	21 Nov 81	1934
77	3477	13°28.5'N	64°40.8'W	22 Nov 81	0207
78*	3447	13°32.7'N	64°43.0'W	22 Nov 81	0646
79	3495	13°33.4'N	64°43.3'W	22 Nov 81	2320
80	3429	13°32.3'N	64°32.9'W	23 Nov 81	0415
81*	3437	13°26.2'N	64°38.1'W	23 Nov 81	0921
82	3433	13°35.6'N	64°40.3°W	23 Nov 81	1954
83*	3464	13°23.0'N	64°26.3'W	24 Nov 81	0202
84*	3487	13°28.8'N	64°44.0'W	24 Nov 81	0745
85*	3472	13°30.1'N	64°40.2'W	24 Nov 81	1210
86	3440	13°32.1'N	64°39.6'W	25 Nov 81	0013

^{* =} macrofauna box core

Figure 2A. MK III box corer ready to deploy

Figure 2C. Retrieval of box corer containing bottom sediment sample

Figure 2B. Deployment of box corer from rear U-frame of USNS BARTLETT

Figure 2D. Subcoring of box core sample after detachment of box core and spade from box corer with aid of cart

One to 24 subcores were collected from each box core (except from stations 11, 12, and 13 which were disturbed samples). A listing of subcores by type of analysis is presented in Table 2. Some subcores were used for more than one type of analysis (e.g. compressional wave velocity and shear strength). Because of the dual-use of subcores, there will appear to be a disparity between the total number and the sum of the individual subcores. Those collected for analyses by workers outside of NORDA (i.e. benthic foraminifera: Barun Sen Gupta, LSU; meiofauna: Donald Woods, U. of Alabama; muramic acid: David White, FSU; microfaunal lipids: H. Rodger Harvey, U. of Georgia; radionuclide distribution: David Schink and Norman Guinasso, Texas A&M) will be the subject of subsequent publications.

C. Field Analysis

Sediment acoustic measurements were made utilizing three different types of apparatus: probes inserted into undisturbed box cores, USI-103 transducer-receiver head with the USI-103 sediment velocimeter, and USI-103 transducer-receiver head with different electronic components.

Replicate series of compressional wave velocity measurements were made at 0.5-cm intervals in four undisturbed box cores using the probes described in Figures 3 and 4. A Tektronix PG 501 Pulse Generator was used to trigger a Tektronix FG504 Function Generator and a Hewlett Packard 1743A dual-time interval Oscilloscope (Fig. 3). The Tektronix FG504 Function Generator drove the compressional wave transducer with a 70-kHz sine wave triggered for 10 μ sec duration every 2 msec. The electrical energy was transferred into mechanical energy using a piezoceramic thin sheet transducer (12.7-mm long, 2.5-mm wide, and 0.25-mm thick) cut from a G1195 series thin sheet manufactured by Gulton Industries. The transducer was epoxied at one end into a 15-mm long, 10-mm wide window machined into a 2.4-mm thick Phenolic Sheet and potted with Scotch Cast 8 (Fig. 4).

Compressional waves propagated through the sediments to two compressional wave receivers that were built as identically as possible to the compressional wave transducer. The mechanical energy was transferred into electrical energy by the piezoceramic receivers, amplified (20-dB gain) by Burr-Brown 3622K Differential amplifiers, and filtered by Krohn-Hite Model 3100R Band-Pass Filters (1-1000 kHz low cut-off and high cut-off frequencies) set in the maximum flat butterworth

Listing of subcores collected from the 45 box core samples obtained for physical/acoustic property analyses Table 2.

48	66 9	0	4 2
47	H HH23	0	
46	3 1172	14 2 3 3	
44	33 315	12 3 3 3 3 4 8	
43	33 315	11 3 2 2 2	
42	10 5 3 2	13 4 8 2 4	
32	.	0	
131	11122	0	4 9
8	1 2 5	0	
59	7 4 8	14 2 3 3	
88	1155	0	9
136	7047 -	0	
24	7 4 8	13 2 2 2	
133	1 1 53	0	9
22	8 - 1 3	0	2
21	3 1 2	13 2 2 2	
8		വ	
17	m m m	യ വ ത	
16	12	1 5	
14	33	വ വ	
6	222	3 3 6	
5	ω τυ 4	m m	
8	3 5 3	m m	
2	0	ო ო	
STATION	TOTAL SUBCORES Acoustic Physical Shear Strength X-ray boxes Organic Geotechnical	TOTAL SUBCORES Sen Gupta Woods White Harvey Schink and Guinasso	Measurements on Whole Box Cores Acoustic probes Shear strength (torque gauge)

Table 2 (continued)

ACROM		51	53	54	55	27	19	89	69	2	71	73	74	76	11	79	8	82	8
NOKDA																			
TOTAL SUBCORES Acoustic Physical Shear Strength X-ray boxes	8	0400E	7 4 2 2	94998	0	2	8 5 1 4	8446	8446	8 4 1 2	84-16	1 2	98 28	1 2	5 1 1 1 5 6	1 2	78137	1152	-
Organic Geotechnical	က	2	က	2			7	2 2	2 2	2 2	2 2	က		က	2	က	2		
Outside NORDA																			
TOTAL SUBCORES Sen Gupta Woods White Harvey Schink and Guinasso Measurements on Whole Box Cores Acoustic probes Shear strength (forme gauge)	22 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2	3 2 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0	0	0	111 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	111 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	0 4 0	0
(adapt and a)					,								,				>	,	

Figure 3. Block diagram of compressional wave velocity probe measuring system

Figure 4. Line drawing of compressional wave velocity probes

position. The time delay (Δt) between the two, amplified, filtered, received signals was measured with the Hewlett-Packard Oscilloscope.

The first " Δ t" measurement for each series was made in the water overlying the sediment-water interface. The difference in the distance between the transducer and the two receivers was calculated from the " Δ t" measurement and the compressional wave velocity for sea water (calculated from MacKenzie, 1982) given temperature, salinity, and depth. Temperature and salinity of the overlying water were measured with a YSI Model 43TD temperature probe and an AO Goldberg temperature-compensated, salinity refractometer. The difference in distance between probes was assumed to remain the same during any series of measurements. Time delay (Δ t) measurements were made at 0.5-cm intervals as the probes were inserted into the sediment. Simultaneous sediment temperature measurements were made with a YSI Model 43TD temperature probe. Compressional wave velocity at each depth was calculated from the difference in distance between the transducer and receivers and the measured time delay.

Values of compressional wave velocity were determined for sediment in the cylindrical core liners (stations 9, 14, 16, 17, and 18) with an Underwater Systems, Inc. (Model USI 103) Sediment Velocimeter. Time delay measurements made on distilled water through the core liner were compared to similar time delay measurements on the sediment sample to determine sediment compressional wave velocity using the following formula:

$$V_{p} = \frac{V_{w}}{1 - \left[\frac{\Delta t V_{w}}{d}\right]} \tag{1}$$

where V_p is the measured sound velocity through sediment (m/sec); V_w is the measured sound velocity through distilled water (m/sec); Δt is the measured time arrival of sound through distilled water minus the time arrival through sediment (sec); and d is the inside diameter of the core in meters.

Values of sediment compressional wave velocity and attenuation were determined at 1-cm intervals in the core samples collected at stations 21-84 with an Underwater System, Inc. (Model USI-103) transducer-receiver head. A Tektronix PG501 Pulse Generator, FG504 Function Generator, Krohn-Hite 3100R Band Pass Filter

and a Hewlett Packard 1743A dual-time interval oscilloscope were substituted for the electronics unit and oscilloscope usually employed with the USI-103 Velocimeter (Fig. 5). These substitutes increased resolution of compressional wave velocity measurements and provided accurate measurement of receiver voltages required for attenuation measurements.

The temperature of the cylindrical subcores was equilibrated with laboratory temperature prior to measurement of compressional wave velocity (V_p). Temperature and salinity of the overlying water were measured with a YSI Model 43TD temperature probe and a Guildline Instruments 8400A laboratory salinometer.

Sediment compressional wave velocity was determined using equation 1. All sound velocities were calculated at the common temperature, salinity, and pressure $(23^{\circ}\text{C}, 35^{\circ})/00$, 1 atm) suggested by Hamilton (1971). All measurements taken with the USI-103 transducer-receiver head were made at 400 kHz. Attenuation measurements were calculated as 20 log of the ratio of the received voltage through distilled water versus receiver voltage through sediment. Attenuation measurements were extrapolated to a 1-m path length and reported as dB/m at 400 kHz (Hamilton, 1972). Attenuation was also expressed as a sediment specific constant (k):

$$a = kf^{n}$$
 (2)

where a is the attenuation of compression waves in sediment (dB/m), f is the transmitted signal frequency (kHz), and n is a measure of frequency dependence. If n is assumed to be one (Hamilton, 1972), then the sediment specific constant (k) can be used to compare sediment attenuation to other sediment physical properties such as porosity and mean grain size without regard to the frequency at which the measurements were made.

Sediment shear strength was measured directly by a hand-held vane shear device in undisturbed box core samples and with a Wykeham-Farrance laboratory vane apparatus in cylindrical subcores. The hand-held vane shear device consisted of a 0-24 inch-ounce precision torque gauge equipped with a 1.89-cm high, 1.89-cm diameter or 2.54×2.54 cm vane, after the design of Dill and Moore (1965). The Wykeham-Farrance laboratory vane apparatus was equipped with a 1.26-cm high, 1.26-cm diameter vane. The torque required to shear the sediment was measured with both

Figure 5. Block diagram of sediment core compressional wave velocity and attentuation measuring system

devices. The rotation rate for the Wykeham-Farrance vane was 84°/min, whereas the hand-held vane was rotated as slowly as possible, approximately 360°/min. Sediment shear strength ($\tau_{\rm f}$) was calculated from the torque required to shear the sediment (T) and the height (H) and diameter (D) of the vane using the following formula from Monney (1974):

$$\tau_{f} = \frac{T}{\pi \left(H_{\frac{D}{2}}^{\frac{D}{2}} + \frac{D^{3}}{6}\right)}$$
 (3)

Hand-held torque measurements were made without regard to the resistance of the vane shaft to rotation in the sediment. Measurements were made every inch after additional insertion of the vane and its 50-cm shaft. Torque measurements made with the Wykeham-Farrance vane do not include the resistance of the vane shaft as part of the measurement. Sediment was extruded from the subcore after each torque measurement exposing fresh undisturbed sediment for the next measurement.

Color descriptions of collected sediment were made with the aid of Munsell® Soil Color Charts (1975). Depth profiles of hue, value, and chroma were determined for sediments after removing a side of the box core. Depth profiles of color were also determined for sediments extruded from subcores after vane shear measurement.

Sedimentary/biological structure was revealed by X-raying sediments collected with acrylic rectangular subcores. Rectangular cores were constructed of two 3-mm thick acrylic sheets (36 x 44 cm) separated by 6-mm thick acrylic sides (3-cm width). One face was sealed with silicone sealant and held together with stainless steel machine screws; the other face was sealed with neoprene and stainless steel machine screws. Two 19-mm diameter holes in the top of the core were used for displacement of air during core insertion. The holes were closed by means of neoprene stoppers after sediment collection. Bottom edges of the cores were beveled to improve penetration. The bottoms of the cores were sealed with rectangular acrylic boxes lined with cellular neoprene. Rubber straps held the bottoms fast to the cores.

The rectangular cores were X-rayed by placing a 35.3×42.8 cm sheet of Kodak AA industrial X-ray film on the back of each core and exposing it to 50 kV, 20 ma for 30 sec with a Kramex PX-20N portable X-ray unit (Rhoads et al., 1977). For

safety purposes, cores were X-rayed in a 1.6-cm thick plywood box lined with 1.6-mm thick lead sheeting.

D. Laboratory Analysis

All cylindrical core samples not extruded for sediment shear strength measurements were refrigerated or frozen for subsequent laboratory analysis. Refrigerated cores were used in determining sediment porosity, grain size, and percent calcium carbonate ($CaCO_3$). Organic and nitrogen determinations were made on sediment from frozen cores.

Cores were sectioned at 2-cm intervals by extruding the sediment with a plunger and slicing the exposed sediment off with a spatula. Immediately after sectioning, subsamples of extruded sediment for porosity determinations were placed in preweighed aluminum pans, weighed, dried in an oven at 105°C for 24 hr, cooled in a desiccator, and reweighed. Percent water was calculated by dividing the weight of evaporated water (difference between wet and dried sediment weights) by the weight of the dried solids and multiplying by 100. Using an average grain density value of 2.65 for noncarbonate sediment (location 2) and 2.70 for carbonate sediments (locations 1 and 3), porosity values were determined from tables relating porosity to water content (Lambert and Bennett, 1972). The values were not corrected for the salinity of pore water.

Grain-size analysis of sediment was accomplished essentially as described by Folk (1965). The silt and clay fractions from 4 to 10 ϕ (phi), however, were determined with a Micromeritics® Model 5000 Particle Size Analyzer rather than the standard pipette method. The sediment samples were soaked overnight in 200 ml of dispersant solution (2.5 g of sodium hexametaphosphate per liter of distilled water), then disaggregated by sonicating the sample with a cell disruptor for 12 min while stirring with a magnetic stirrer. The disaggregated sample was wet-sieved with dispersant through a 62- μ m screen to separate the sand-sized fraction from the silt- and clay-sized fraction. The finer fraction was collected in a 1000-ml graduated cylinder, and enough dispersant was added to fill the graduated cylinder to 1000 ml. The coarser fraction was rinsed off the screen into a beaker with distilled water and then dried.

The dried, coarser fraction was fractionated into -3 to -2, -2 to -1, -1 to 0, 0 to 1, 1 to 2, 2 to 3, and 3 to 4 ϕ intervals with an ATM sonic sifter and each fraction was individually weighed to determine the sand-sized particle distribution. The silt- and clay-sized fraction was thoroughly agitated by vigorous stirring and aeration. A 20-ml aliquot sample representative of the total distribution of particles in suspension was pipetted from the graduated cylinder and into a preweighed beaker, dried in an oven, and weighed. After 5 days, 20-ml aliquot samples were pipetted from the appropriate depths in the graduated cylinder and into preweighed beakers, dried, and weighed to estimate the weight of clay-sized particles in the 10 to 11, 11 to 12, and 12 to 14 ϕ intervals. At the conclusion of six days of settling, all particles 10 ϕ and coarser were near the bottom of the graduated cylinder. At this time the supernatant was slowly siphoned into another graduated cylinder, leaving the settled particles and about 200 ml of dispersant. The supernatant volume was recorded. A 20-ml aliquot sample was pipetted from the supernatant after agitation, dried, and weighed to estimate the weight of the particles finer than 10ϕ . Finally, the sample remaining in the graduated cylinder was sonicated and stirred for 12 minutes in a beaker prior to size determination with the Micromeritics® analyzer. This particle size analyzer determines the concentration of silt- and clay-sized particles in liquid suspension at various depths in a sample cell by means of a finely-collimated, horizontal X-ray beam. The concentration was presented in the form of a cumulative "percent-finer-than" distribution trace in relation to the Stokesian diameter of the particles.

Sediment grain size distributions were analyzed with an HP 9825A desktop computer and plotted with an HP 9862A plotter (unpublished program is available on request from MDR). Data were plotted as weight percent histograms and cumulative weight percent for all phi-sizes through $14\,\phi$. The fraction finer than $12\,\phi$ was equally divided between the 12 to $13\,\phi$ and 13 to $14\,\phi$ intervals. Percentages of gravel (< -1.0 ϕ), sand (-1.0 to 4.0 ϕ), silt (4.0 to 8.0 ϕ), and clay (> 8.0 ϕ) were tabulated. The mean phi, standard deviation, skewness, kurtosis, and normalized kurtosis were calculated according to the graphic formula of Folk and Ward (1957).

Percent ${\rm CaCO}_3$ analysis was accomplished with a gasometric apparatus based on the design of Hulsemann (1966). Sediment subsamples were dried at 105°C for 24 hr,

ground in a mortar and pestle, and stored in a desiccator prior to analysis. A weighed portion (200-500 mg dry weight) of the subsample was added directly to a flask from the weighing paper, and the amount of sediment adhering to the paper was subtracted to obtain the exact weight. A magnetic stir bar was added to the flask, and the flask was attached to the apparatus by means of a silicone-greased. ground-glass connection and secured with a joint clamp. Next, a side arm with 5 ml of 4N hydrochloric acid (HCl) was attached in the same manner to the apparatus above the sample flask, and the system was closed off from atmospheric pressure by means of a three-way stopcock. Negative pressure in the system was created by lowering an open flask of mercury connected to a 100-ml burette. After the side arm containing the acid was rotated emptying its contents into the sample flask, the acidified sample was mixed with a magnet and heated with a Bunsen burner until the liquid bubbled up the sides of the flask. The system was allowed to come to thermal equilibrium with laboratory temperature before the mercury manometer was adjusted and the reading recorded. Barometric pressure was noted and recorded before and after each sample run. Two ${\rm CaCO}_3$ standards were run at the beginning of the day to test for leaks in the system.

The volume of gas (${\rm CO_2}$) released was corrected to standard temperature and pressure and converted to carbonate as ${\rm CaCO_3}$ by means of the formula:

$$\frac{VP}{TW} \times 0.1605 = \% \text{ CaCO}_3$$
 (4)

where V = observed volume of CO₂, P = corrected pressure, T = room temperature (°K), and W = weight of the sample in grams. Gas pressure was corrected for barometric pressure, water vapor pressure, and temperature. Duplicates from each depth in the core were analyzed. If values of duplicates differed by more than 2%, another replicate was run.

Frozen sediment cores for organic carbon and nitrogen analysis were thawed before extruding and sectioning at 2-cm intervals. Care in sectioning and sampling the core was exercised so that organic contamination (e.g. plastic core liner) was not introduced. The samples of the cores were refrozen and stored until analysis at a later date.

Thawed sediment samples were added to preweighed, precombusted (475°C) beakers and dried at 90°C for 24 hr. After cooling in a desiccator the samples were reweighed and ground to a fine powder in a clean mortar and pestle. Calcium carbonate was removed from the samples by adding excess (approx. 110%) 4N HCl. The amount of acid added was determined a priori from percent CaCO₃ analysis of separate sediment cores. After 12 hr, the acidified samples were brought to seawater pH (8.2) by adding 8N sodium hydroxide (NaOH). A Corning Model 125 pH meter with a calomel reference electrode (ceramic-type junction) was used to monitor pH. Samples were dried at 90°C for 24-36 hr, cooled in a desiccator, then weighed to determine the reacted weight. Finally, the dried samples were ground in a clean mortar and pestle, added to clean vials, sealed, and weighed.

Immediately before weighing a subsample of finely-ground sediment for analysis, the vial was weighed again to correct for absorbed water. Any additional weight due to water absorption was added to the reacted weight value. The subsample $(20,000-45,000\,\mu\,g)$ was weighed in a precombusted (475°C) aluminum boat and loaded into a Perkin-Elmer Model 240 CHN analyzer for determination of organic carbon and nitrogen. Duplicates from each depth in the core were analyzed. Additional replicates were run if values of duplicates differed by more than 2%.

III. RESULTS

The bulk of data in this report is presented in five appendices. Appendix A contains data on the following sediment acoustic and physical properties: compressional wave velocity (V_p), compressional wave velocity ratio (V_p ratio), compressional wave attenuation (k), porosity, percent calcium carbonate ($CaCO_3$), percent organic carbon (C), percent organic nitrogen (N), shear strength, percent sand, percent silt, percent clay, mean ϕ (phi), standard deviation, skewness, kurtosis and normalized kurtosis. Sample designator consists of station number followed by subcore number (e.g. 3-4 designates the fourth subcore collected at station 3).

Appendix B contains frequency histograms of grain size distribution data. Grain size data were plotted as weight percent histograms and cumulative weight curves for phi sizes -4 through 14. Also included are percentage gravel, sand,

silt, and clay and mean phi, standard deviation, skewness, kurtosis, and normalized kurtosis.

X-radiographs of sediments collected with the 36 x 44.x 3 cm rectangular subcores are presented in Appendix C. X-radiographs depict sedimentary/biological structure from eight stations and include X-radiographs from all three locations. Images are "positives" produced from the developed X-ray transparency, and thus darker areas of the X-radiograph denote areas of greater sediment density.

Color descriptions of sediments are presented in Appendix D. Color descriptions are depicted as both Munsell® hue/value/chroma designations and soil color names. The "hue" refers to red, yellow, green, blue, and purple. The "value" refers to lightness. The "chroma" refers to strength (departure from a neutral of the same lightness). All descriptions are for sediments collected with subcores except at station 31 where the color was described from a freshly opened box core.

Compressional wave velocity probe measurements are presented in Appendix E.

Appendix F contains sediment shear strength values measured with the hand-held vane shear device.

IV. REFERENCES

Dill, R.F. and D.G. Moore (1965). A diver-held vane-shear apparatus. Mar. Geol., 3:323-327.

Folk, R.L. (1965). Petrology of sedimentary rocks. Hemphill's, Austin, Texas.

Folk, R.L. and W.C. Ward (1957). Brazos River Bar, a study in the significance of grain size parameters. J. Sed. Pet., 27:3-26.

Hamilton, E.L. (1971). Elastic properties of marine sediments. <u>J. Geophys. Res.</u>, 76:579-603.

Hamilton, E.L. (1972). Compressional wave attenuation in marine sediments. Geophysics, 37:620-645.

Hessler, R.R. and P.A. Jumars (1974). Abyssal community analysis from replicate box core in the central North Pacific. Deep Sea Res., 21:185-209.

Hulsemann, J. (1966). On the routine analysis of carbonates in unconsolidated sediments. J. Sediment Petrol., 36:622-625.

Lambert, D.N. and R.H. Bennett (1972). Tables for determining porosity of deep-sea sediments from water content and average grain density measurements. $\underline{\text{NOAA Technical}}$ Memo. ERL/AOML-17.

MacKenzie, K.V. (1981). Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am., 70:807-812.

Monney, N.T. (1974). An analysis of the vane shear test at varying rates of shear. In: A.L. Inderbitzen (Ed.), <u>Deep-Sea Sediments: Physical and Mechanical Properties</u>. Plenum Press, New York, pp. 151-167.

Munsell Soil Color Charts (1975). Munsell Color, Baltimore, Maryland.

Rhoads, D.C., R.C. Aller and M.B. Goldhaber (1977). The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine sea floor. In: B.C. Coull (Ed.), Ecology of Marine Benthos. Univ. of South Carolina Press, Columbia, South Carolina, pp. 113-138.

APPENDIX A SEDIMENT ACOUSTIC AND PHYSICAL PROPERTY DATA FROM BOX CORES COLLECTED IN THE VENEZUELA BASIN

Compressional wave velocity (V_p , m/sec), compressional wave velocity ratio (V_p ratio), attenuation (k), porosity (%), percent calcium carbonate ($CaCO_3$), percent organic carbon (C), percent organic nitrogen (N), shear strength (g/cm^2), percent sand, percent silt, percent clay, mean ϕ (phi), standard deviation, skewness, kurtosis and normalized kurtosis for sediments collected with cylindrical subcores from box cores in the Venezuela Basin are presented. Sample designator consists of station number followed by subcore number (e.g. 3-4 designates the fourth subcore collected at station 3).

	K Z						t									
	t.															
	Kurt															
	Skew															
	S															
	Dev															
6		-														
11/15/79 : 3958n. 460 kEz	Mean Phi															
Late: Juepth: 0 m 4(clay															
	silt 															
3-4	Sand															
Sample: 3	Shear Str.															
9-6a	or ∠															
796-7 ;65-14w 23.0 D	ا ر س	-														
CY FE 15-14N tor:	* CaCc3	<u>.</u>							٠							
Cruise: Fosition: Calculated	₩ ₩ № % r	77.6	76.1	75.1	74.1	73.1	71.9	71.2	70.9	70.9	9.07	72.3	73.2		73.0	71.9
Cru Fee Ca]	Attn. K	-														
	vE katic															
	VP n./sec															
	Derth (cn)	33. 34:	200	. v. d	200	0.00	11.0	13.0	15.0	17.0	19.0	222.0 23.0 24.0	25.0 26.0 27.0 28.0	29.0 30.0 31.0	3.22 3.44 3.00 3.00	36.0

	N. Kurt																
	Kurt 																
	Skew																
	Dev																
5/79 8m Hz	Mean Phi																
Date: 11/15/79 Depth: 3958m O m 400 kHz																	
Date Dept	2																
ń	Silt																
3-5	Sano																
Sample: 35.00	Shear Str.																
)-6a	≈ Z - -																
GYRE 79G-7 15-14N;69-14W tor: 23.0 D	مه ن																
	tacus																
Cruise: Fosition: Calculated	Por.	77.1	76.7	76.0	74.8	74.3	73.6	72.3	72.0	71.7	71.5		72.0	73.4		73.6	73.3
Cr u Fos Ca l	Attr. k																
	vE Ratio																
	VF m/sec																
	Depth (cm)		0.0 0.0	4.0 J.0	7.0	20,)) ;) []	35.0	15.0	10°	18.0	20.0 21.0	V 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25.0 27.0 28.0 28.0	30.00 30.00 31.00	100 100 100 100 100 100 100 100 100 100	0.90 0.70 0.70

	X X	0.3
	Kurt	0.61
	Skew	0.38
	Dev	4.37
11/15/79 1: 3958m 400 kHz	Mean Phi	5.35
Date: 1 Depth: 0 m 400	g Clay	36.63
	Silt	11, 00
3-6	Sand	. 52.37
Sample: 3	Shear Str.	
eg-C	or Z	
GYRE 79G-7 15-14N;69-14W for: 23.0 D	پ س ن	
	g CaCO3	
Cruise: Rosition: Calculated	% Por.	
Cru	Attn.	
	Vp Ratio	
	VP m/sec	11.53.2. 11.54.889.2. 11.54.889.3. 11.54.889.3. 11.54.889.3. 11.54.889.3. 11.54.889.3. 11.54.788.3. 11.54.788.3. 11.54.788.3. 11.54.788.3. 11.54.788.3. 11.54.788.3. 11.54.788.3.
	Depth (cm)	0.00 0.00
	4	

		Z	Y OZ																												
		Kurt	1																												
		Skew																													
		Dev	1 1 1 1	-																											
/15/79	KHZ	Mean	F11.1	•																											
Date: 11/15/	0 m 400	æ	[
		op :																													
3-7	00/00	, ე ი ი ი																													
Sample:	35.00 a/co	Shear																													
	Deg-C	æ∠	: !																							•					
GYRE 79G-7 15-14N:69-14W	23.0 D	مە ر											٠.																		
GYRE 15-14N		& Ca(C3	1																												
Cruise: Fosition:	Calculated	% 07 TO																													
Cr u FCS	Cal	Attn. K	1																												
		Vr Ratio	-		6.975	6.978		0.978		0.576	0.77	2/5°0	0 1 7 1 3		0.578	U. 978	0.978	•	0.475		0.973	0/6.0		•		•	٠	2000	•	•	•
		VP n/sec		5.4	20 2	1455.2	24	5	Δ, ·	א קייני	4, 2 V C	1490.2	7	455.2	495.2	2.964	475.2	7.065	4,00.4	2	487.5	200	483.7	479.9	6.625	479.5	5.614	5.674	7000	2.574	
		Derth		٠. ن	J	ν : • • •	4.0	D. S.	ے و ر) ·	0 1) _	11.0	12.0	13.0	14.0	15.0)) (18.0	15.0											

	N. Kurt		
	Kurt		
	Skew		
	Dev		
11/15/79 3958n 00 kHz	Mean Phi		
Date: 11/15/7 Depth: 3958m O m 400 kHz	s Clay		
	silt		
3-8	s Sand		
Semple: 3	Shear Str.		
69-C	ا اے دیں ا		
GYRE 796-7 5-14N;65-14N or: 23.0 D	∞ U		
7 #	cacu3		
Cruise: Fosition: Calculated	⊬ For•	<u>.</u>	
Cr. Fo.	Attn. k		
	VE katic	4827779999999999999999999999999999999999	0.968 0.968 0.970 0.970 0.968 0.968
	vp m/sec	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1479.9 1479.9 1479.9 1483.7 1483.7 1479.9 1483.7
	Derth (cm.)		. 4 u o c a o o

	N. Kurt	1																													
	Kurt																														
	Skew	<u> </u>																													
	Dev																														
Date: 11/15/79 Depth: 3958m 0 m 400 kHz	Nean Phi																														
	8 Clay	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																													
	silt	;																													
3-9	s Sano	 																													
Sample: 35.00 c	Shear Str.																														
7 IN Deg-C	or ∠.	1																													
79G-7 69-14 3.0	∞ ∪	·																													
	s cacc3	· • • • • • •																													
Cruise: Fosition: Calculated	% Por	 	77.7	76.4	75.1	0 92		73.2	1 62	1.7/	70.8	•	3.07	.17.3	•	71.7			,,,	•			74.0					72.8			72.1
Cruise Fositi Calcul	Attn. k																														
	V _E Ratio	1.001	0.985	0.975	0.970	0.975		0.980	080.0	0.980	0.980	0.980	0.880	0.000	0.975	0.975	0.975	0.070	0.70	0.6.0	0.876	0.970	0.970	0.970	0.870	0.870					
	2 S	30.8	1506.9	91.4	3.7	91.4	1.66	16.5	7. 7.	1.6	18.1	4.5	2.	7.7	1.4	1.4	1.4	7.00	7.	0 3.7	483.7	483.7	403.7	403.7	483.7	463.7					
	Derth (cm.)	0.0	1.c										o• 3	0.0	8.5	٥. د	ن ن	J.	2 0	. 4. 	5.0	0.9	7.0	٥.	ر ت ت	: د	37.05	53.0	34.0	36.0 3	57.0
		1																													

	N. Kurt	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.39	0.39	0.39	0.39		0.40		0.43
	Kurt	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.61	0.63	0.64	0.65	0.64		0.67		0.74
	S Ker	09.0	0.54	0.27	0.21	0.21	0.19	60.0	0.11	-0.14	-0.15	-0.15	-0.13	-0.04		-0.15		-0.27
	Dev	4.37	4.41	4.43	4.36	4.34	4.34	4.34	4.35	4.34	4.29	4.28	4.20	4.15		4.09		3.99
11/15/79 3958n 60 KHz	Mean	4.99	4.99	5.57	5.89	5.83	5.86	6.20	90.9	6.94	7.05	7.06	6.97	89•9		7.11		7.60
Date: 11/15/ Depth: 3958m O m. 460 kHz	å Clay	34.76	35.87	38.83	39.90	39.64	39.92	42.29	41.77	48.19	48.75	48.82	47.83	45.08		48.63		54.66
110	8 Silt	10.56	10.81	11.60	12.95	12.79	13.96	14.99	15.79	17.50	19.73	19.84	19.39	19,38		21.25		20.97
3-10	sand	54.68	53.32	49.57	47.15	47.57	46.12	42.71	42.44	34.31	31.52	31.34	32.78	35.55		30.06		24.30
Sample: 35.00	Shear Str.																	
o-6a	or ∠i													٠				
796-7 65-14 3.0		1																
GYRE 15-14N 2 0 10r: 2	* cac03	67.58	67.98	19.99	68.51	68.55	56.99	66.04	67.56	67.45	98.99	70.65	71.61	75.76		71.55		64.09
Cruise: Position: Calculated	% 0 € 0 € 0 € 0 € 0 € 0 € 0 € 0 € 0 € 0		76.7	75.6	73.5	72.7	71.9	70.8	70.6	71.1	71.5	72.4	72.6	73.6		72.7		71.4
Cru	Attr. K																	
	v. Katio	98.	, 0, 0		• •	י יי	, 01 0	ירכירו	יוסיית	ഗഗാ	າຫວ	ט כי ת	מסת	0.970	0,0	0.970		
	VF n/sec	0.04	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	495	495.	495.	495	4000	48 485 655	4.4.2 2.2.2 2.1.2	487				183.	20 20		
	Derth (cm)	၁၁၁			20	0.0	0.0	000	. c.	200		2 2 3))))		0.7)))	-:	(2)

	. N
	Kurt
	De v
11/16/79 : 3958m 400 kHz	Phi Phi
Date: 11/16/79 Depth: 3958m O m 400 kHz	Clay
	Silt
5-1	8 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2
Sample: 5	Str
ე−6ə	op 2
79G-7 69-14 3.0	ال مو
	C C C C C C C C C C C C C C C C C C C
Cruise: Fosition: Calculated	Po of a series of the series o
Cr Fo	Attn.
	κατι το τι
	7 × × × × × × × × × × × × × × × × × × ×
	22222222222222222222222222222222222222
	T

	N. Kurt	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	į	0.39		0.39		0.40
	Kurt	0.59	0.58	09.0	0.59	0.59	09.0	0.59	0.59	0.59	0.61		0.64		0.64		99.0
	Skew	0.50	09.0	0.35	0.23	0.43	0.21	0.16	0.04	0.01	-0.10		-0.12		-0.12		-0.19
	Dev	4.75	4.85	4.58	4.60	4.60	4.61	4.57	4.52	4.55	4.49		4.47		4.34		4.34
./16/79 .958m . kHz	Mean Phi	5.66	5.67	5.78	6.11	5.63	6.19	6.23	6.59	6.71	7.07		7.33		7.04		7.45
Date: 11/16/79 Depth: 3958m O m 400 kHz	g Clay	36.78	35.31	38.00	40.80	38.75	40.50	41.38	42.68	45.05	47.95		49.35		47.92		51.39
900	Silt	11.89	64.6	12.94	11.78	11.35	12.92	14.31	16.95	16.55	17.70		19.16		17.92		18.73
5-2	8 Sand	51.33	53.41	49.06	47.42	49.90	46.58	44.31	40.36	38.39	34.35		31.50		34.15		29.88
Sample: 35.00 c	Shear Str.																
o-6a	op ≥																
79G- 69-1 3.0	* O																
	\$ CaCO3																
Cruise: Fosition: Calculateò	Por.	78.1	77.2	6.94	74.5	73.3	72.4	71.3	70.8	71.0	72.0		73.1		74.7		711.7
Cru Fos Cal	Attn.																
	Vr Ratio																
	VF m/sec																
	Depth (cm)	0.00) n .	. v. (7.0	ာ ၁၀	11.0	13.0	15.0	17.0	19.0	21.0	23.6	25.0	27.0	30.0	32.0 33.0

	N. Kurt	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.40	0.41	0.40	0			0.41
	Kurt	0.59	0.58	09.0	0.59	0.59	0.59	09.0	09.0	0.59	0.62	0.67	69.0	99.0	6.3	9.0		69.0
	Skew	0.47	0.44	0.33	0.17	0.21	0.04	-0.05	-0.02	-0.07	-0.15	-0.21	-0.24	60.0-	5	-0.14		-0.23
	Dev	4.52	4.46	4.44	4.43	4.40	4.41	4.42	4.44	4.43	4.39	4.33	4.19	4.24		4.13		4.11
11/16/79 3958m 00 kHz	Mean Phi	5.43	5.32	5.64	6.02	5.81	6.33	6.71	6.54	69.9	7.00	7.28	7.41	7.04	ר כ	10.		7.35
Late: 11/16/ Lepth: 3958m O m 400 kHz	clay	39.70	39.45	40.14	41.48	39.48	41.77	45.96	45.02	46.51	48.52	50.70	51.82	47.23	L C	48.25		51.56
110	Silt	9.35	10.05	10.49	11.90	13.36	16.58	16.40	16.31	15.61	17.72	20.05	20.64	20.87	1	20.59		26.05
5-4	Sano	50.95	50.50	49.38	46.63	47.16	41.65	37.64	38.62	37.88	33.76	29.19	27.55	31.90		11.15		28.39
Sample: 35.00 c	Shear Str.																	
ე-69	op 4													II.				
GYRE 79G-7 15-13N;69-17W 10r: 23.0 D	» رر «،																	
	* cacc3 	66.14	65.50	63.39	99.59	65.14	65.79	65.48	63.69	64.86	66.53	68.89	06.69	73.52		76.77		62.92
cruise: Fosition: Calculatec	Por.	75.3	0.97	74.8	73.7	73.5	73.0	71.7	70.9	71.2	71.5	72.3	72.7	73.1		73.6		73.8
Cru Pos Ca j	Attr. K																	
	VF Ratic	9	0.978		0.978	0.975		6.975 0.975	0.975	0.973	0.973	0.973	0.968	0.468 U.968	6.968 6.968	C. 468	0.968	C. 40 C
	VF n/sec	459.	ນ ທ	495. 495.	1495.2	491. 491.	491. 491.	491. 491.	491.	487.	487.	1487.5	479.	479.	479.		479	
	Depth (cn.)	0.0	3.0	5.0 0.0	0.9	၁ ၀ ၁ ၀	10.0 11.0	12.0	14.0 15.0	16.0	18.0	26.6 21.0	22.0 23.0	24.0	26. U	28.0 29.0	36.0	32.0

	x 3	
	Kurt	
	S K e s	
	Dev	
11/16/79 : 3958m 400 kHz	Bean Phi 	
Date: 11/16/ Depth: 3958m O m 400 kHz	Clay	
	silt it	
5-5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Sample: 5. 35.00 d/co	Shear Str.	
o-6a	or ∠	
79G-7 65-17 33.0	ee ○	
	cacc3	
Cruise: Fosition: Calculateo	% O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Cruis Fosit Calcu	Attr.	
	VE Katic C.958 C.958 C.975 C.975 C.975 C.975 C.975 C.975 C.975 C.975 C.975 C.975	
	VF Sec 1465.0 1489.1 1481.4 1481.4 1481.4 1481.4 1481.4 1491.4 1491.4 1491.4	44 4 4 8 4 4 8 8 3 4 4 4 8 8 3 4 4 4 8 8 3 8 3
	Depth (cm) 1.0.0 2.0.0 2.0.0 2.0.0 2.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0	16.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2

	N. Kurt													
	Kurt													
	S ke w													
	Dev										51			
Date: 11/16/79 Depth: 3958m 0 m 400 kHz	hean Phi													
Date: Depth: O m 4	Clay													
	Silt													
2-6	Sanc													
Sample: 35,00	Shear Str.													
) - 6ə	op 2													
CYRE 79G-7 15-13N;65-17W IOr: 23.0 Deg-C	∞ ∪													
CY E E I I S - 1 3 N I C E E I C E E E E E E E E E E E E E E	6 cacc3													
Cruise: Fosition: Calculateo	PCF.	77.4	74.5	74.0	73.0	71.9	71.1	0.17	0.1/	71.7	72.6		73.7	71.7
Cru Pos Call	Attr. K													
	ve katic													
	VP III/Sec													
	Depth (cn)	0.04.0 0.00	000	3.6	11.0	13.0 14.0	15.0	18.0	20.0 20.0 21.0	22.0 23.0 43.0	25.0 27.0 27.0	30.00	0.25.0 0.33.0	36.0

	Kur											
	Kurt		- 6	7								
	S S S S S S S S S S											
	Dev											
11/16/79 : 3958m 400 kHz	Mean Phi 											
Date: 11/16/79 Depth: 3956m O m 400 kHz	Clay											
	Silt											
5-7	Sand Sand											
Sample: 5	Shear Str.											
eg-C	on ≥ 								•			
GYRE 79G-7 15-13N;65-17W FOr: 23.0 D	æ ∪ 											
6YE. 15-136 a tor:	cacu3											
Cruise: Fosition: Calculated	FOI.	9 4	73.9	73.3	72.4	71.1	71.0	72.2	73.0	73.8	71.7	72.8
Ca	Attn.											
	vp hatio											
	vp n, sec											
	Depth (cm.)	ယ် <u>4 က က ၊</u> ၁၀၀၁ (0.00	10.0	13.0	16.0	18.0 19.0 20.0	2222	26.0 27.0 28.0 29.0	30.00 32.00 33.000	36.0	39.04 0.04 0.0

	Kurt 			
	1			
	S ke			
	- 			
	Dev			
11/16/79 1: 3958m 400 kHz	Mean Phi			
Date: 11/16/ Depth: 3958m 0 m 400 kHz	Clay			
	Silt Filt			
5-14	Sand I sand			
Sample: 5- 35.00 o/oo	Shear Str.			
) S. /w Deg-C	₩ Z			
G-7 -17W 0 De	<u> </u>			
CYRE 79G-7-13N;69-170 r: 23.0	1			
15 fo	Cacco3			
Cruise: Position: Calculateò	P O O F			
C. P. C.	Attn.			
			300333333	3,03,03,00
	VF m/sec 1520-7 1495.2 1491.4 1491.4	1491.4 1491.4 1491.4 1491.4 1491.4	1144867.22 1144867.22 1144867.22 1144867.23 1144867.23 1144867.23 1144867.23	44444444
	Depth (cm) 0.0 1.0 2.0 3.0 4.0	8 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22222222222222222222222222222222222222

N. Kurt	0.56					
Kurt	1.27					
Skew	-0.18					
Dev	2.04					
Mean Phi	76. 6					
clay	82.59					
Silt	16.09					
Sand	1.31					
Shear Str.						
or ≥						
۵۰ U						
caco3						
Por.						
Attn.						
Vp Ratio	0.975	0.970 0.968 0.968	0.968 0.968 0.968	0.968 0.968 0.973 0.975	0.980 0.973 0.975 0.988	0.988 1.001 1.014 0.985 0.970
Vp m/sec	1491.4	رووه	نامناه	99744	പ് സ് 4 ത്	884979
Com (cm)	3.000.0	4.0 5.0 6.0	0.6	11.0 12.0 13.0 14.0	16.0 17.0 18.0 19.0	20.0 21.0 22.0 23.0 24.0
	Depth Vp Vp Attn. % % % % Shear % % % Mean Dev Skew Kurt (cm) m/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi	Depth Vp Vp Attn. % % % % % k Kurt (cm) m/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi Phi	Depth Vp Vp Attn. % % % Shear % % % Mean Dev Skew Kurt (cm) m/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi	Depth Vp Vp Attn. % % Shear % 8 % Shear % % Cm) m/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi Clay Phi 0.00	Ubepth Vp Vp Attn.	Depth Vp Vp Vp Attn. % % Shear % % Shear % % Wean Dev Skew Kurt (cm) m/Sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi Clay Phi Clay Phi Clay Phi Clay Phi Clay CaCO3 C N Str. Sand Silt Clay Phi Clay CaCO3 C CaCO3 C CaCO3 C CaCO3 C CaCO3 C CaCO3 C CaCO3 CaCO3

	N N I	0.5	0	3	0	0	0.4	0.4						
	Kurt	1.18	1.24	1.11	1.13	1.05	0.94	96.0						
	Skew	-0.18	-0.24	-0.14	-0.17	-0.14	-0.12	-0.18						
	Dev	2.04	1.58	2.10	2.00	2.10	2.15	2.17						
7/8/80 1: 5054m 400 kHz	Mean Phi	6.92	9.83	98.6	68.6	9.85	9.38	9.33						
Date: 7/8/8 Deptn: 5054m O n. 400 kHz	% Clay [82.11	81.92	80.17	81.54	79.58	71.57	70.99						
	silt	17.37	16.21	15.50	18.30	20.42	28.25	28.49						
9-2	Sand	0.52	1.87	0.33	0.16	0.00	0.14	0.52						
Sample: 9.	Shear Str.													
r Feg-C	≫ Z 	ļ												,
LYNCH 708-80 15-46N;67-45N 10r: 23.0 beg-C	∞ ∪													
	s caccus													
Cruise: Fosition: Calculateo	Por.	61.0	60.03	75.1	76.5	75.0	76.7	65.5	71.0	68.4	9.09	72.3	76.5	75.1
Cri	Attn.													
	vp katio	. j		0.970	0.970 0.970	0.968 0.968	7 7	6.975						
	VE n./sec	1459.1		463. 485.	1463.7	479.	1483.7	1491.4						
	Depth (cn)	0.0 1.0	0.0	4.0 0.1).0 7.0	0.8 0.0	10.00 11.0	12.0	15.0		10.00	23.0	22.0	25.0
	1													

		N. Kurt			0.47	0.50		0.48		0.46		0.46		0.46		0.46													
		Kurt			68.0	0.99		0.91		0.84		0.84		0.86		0.84													
		Skew	1		60.0	-0.12	i i	-0.08		-0.04		-0.04		-0.03		-0.03													
		Dev		,	2.19	2.07		2.21		2.20		2.22		2,33		2.38													
7/23/80 5054m	400 KHZ	Mean		:	10.47	10.23		10.31		10.36		10.31		9.71		9.73													
Date: 7 Depth: 5	E 0	& Clav			84.72	84.17		83.49		83.78		82.87		73.97		72.99													
		8 Silt		•	15.03	15.61		15.97		16.14		17.05		25.80		26.86													
14-6	20/0	s Sand			0.25	0.23		0.54		0.08		0.08		0.23		0.14													
Sample:	35.00 0/00	Shear																											
	ned-c	dP 12																											
LYNCH 708-80 13-50N;67-39W	23.0 D	æ ∪																											
	a ror:	& CaCO3																											
Cruise: Position:	Calculated	Por			84.9	80.3))	78.1		9.97		75.2		71.1		72.8		73.1		74.9		72.9				68.5			
Cru	Can	Attn. k																											
		Vp		0.978	0.970	0.970	0.968	996.0	0.968	0.968	0.968	0.970	0.975	0.978	0.973	0.970	0.970	0.970	0.970	0.970	0.973	0.973	0.973	0.978	0.978	0.985	0.988		0.970
		VP m/sec		1495.5	1484.0	1484.0	1480.2	1480.2	1480.2	1480.2	1480.2	1484.0	1491.6	1495.5	1487.8	1484.0	1484.0	1484.0	1484.0	1484.0	1487.8	1487.8	1487.8	1495.5	1495.5	1507.2	1511.1	96	1484.0
		Depth		0.0	1.0	3.0	4.0	5.0	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	4	25.0	26.0

	N. Kurt	0.53
	Kurt	1.12
	<pre>\$ Shear % % % Mean Dev Skew Kurt N. N Str. Sand Silt Clay Phi</pre>	1.08 14.37 84.56 10.21 2.08 -0.09 1.12 0.53
	Dev	2.08
/23/80 5054m kHz	Mean	10.21
Date: 7/23/80 Depth: 5054m 0 m 400 kHz	clay	84. 56
	8 Silt	14.37
14-7	Shear & & & & & & & & & & & & & & & & & & &	1.08
Cruise: LYNCH 708-80 Sample: 14-Position: 13-50N;67-39W Calculated for: 23.0 Deg-C 35.00 o/oo	Shear Str.	
San leg-C	op Z	
LYNCH 708-80 13-50N;67-39W for: 23.0 D	CaCO3	
LYNCH 13-50N for:	caco3	
ise: ition: culated	Por .	
Cru Pos Cal	Attn.	-
	VF Ratio	-
	Vp m/sec	1480.2 0.968 1480.2 0.970 1484.0 0.970 1480.2 0.968 1480.2 0.968 1480.2 0.968 1480.2 0.968 1480.2 0.968
	Depth (cm)	

Date: 7/23/80	Depth: 5054m	0 m 400 kHz
14-8		00/p
Sample:		35.00 d/oo
LYNCH 708-80	13-50N; 67-39W	for: 23.0 Deg-C
Cruise:	Position:	Calculated

	N. Kurt											
	Kurt											
	Skew											
	Dev											
5054m 5054m 0 kHz	Mean Phi											
Date: //23/00 Depth: 5054m 0 m 400 kHz	Clay											
	Silt											
d/00	Sand											
sample: 14.	Shear Str.											
v Jeg-C	# Z											
708-80 N;67-390 23.0 E	مه ن ا	_										
Cruise: LYNCH /U8-8U S Position: 13-50N;67-39W Calculated for: 23.0 Deg-C	caco3											
uise: sition: lculate	Por.											
Cr Ca	Attn.	H										
	Vp Ratio			000			0.978			0.983		0
	Vp m/sec	1495.5 1487.8 1484.0	1484.0	1480.2	1480.2	1487.8	1495.5	1484.0	1484.0	1503.2	1484.0	1480.2
	Depth (cm)	0.0	0.4 r	7.000	9.0	11.0	13.0	16.0	18.0	19.0 20.0	21.0	23.0

	N. Kurt	0.50	0.52	0.51	0.52	0.50	0.50	0.48													
	Kurt	1.01	1.06	1.04	1.10	1.01	66.0	0.93													
		2.62 -0.26	-0.12	-0.12	-0.12	-0.11	-0.12	-0.10													
	Dev	2.62	2.07	2.06	2.01	2.06	2.07	2.16													
7/23/80 : 5054m 400 kHz	Mean Phi	9.41	10.10	9.97	10.02	9.81	9.50	9.41													
Date: 7 Depth: 5 0 m 400	g Clay	72.62	83.47	82.00	83, 18	79.16	74.83	71.56													
	Silt	26.57	16.08	17.91	16.67	20.84	25.05	28.21													
14-9	% Sand	0.82	0.46	0.10	0.15	00.00	0.12	0.23													
Sample: 35.00 c	Shear Str.	1																			
San W Deg-C	æ Z															•					
LYNCH 708-80 13-50N;67-39w for: 23.0 De	‰ () 	 																			
LYNCH 13-50h d for:	\$ CaCO3																				
se: tion: ulate	٦,	0	82.7	77.3	80.8	74.0	72.1	73.5		73.6	75.7	73.4	72.4		7.7/	0.69	66.5	73.8	,	79.3	75.9
Cruis Posi Calci	ttn. k																				
	V.F Ratio	988	0.970	76	9.	97	.97	97	97	76	96	96	97	97	96	86	9 9	97	96		
	νp m/sec	511.	4 4	484	484. 484.	484.	487.	495. 495.	484.	484	480	480.	487.	491.	900	507.	507.	487.	476.		
	Depth (cm)	0.1	000	7. S	0.0	ထတ	10.0	20	4	S	1 0	a a	0 -	CVC	7 50	10 5	0 0	ma		-40	u m

		L.	ı																							
		N. Kur	1																							
		Kurt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							
		Skew	1																						٠	
		Dev	1																							
7/23/80 5054m	400 kHz	Mean	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							
Date:		g Clay	1																							
		silt																								
14-10	00/0	\$ Sand																								
Sample:	35.00 d/oo	Shear Str.																								
3	Deg-C	æ Z																						•		
LYNCH 708-80 13-50N:67-39W	23.0	æ ()																								
13-50	4	\$ CaCO3																								
Cruise: Position:	Calculated	Por.																								
Cr Po	Ca	Attn.																								
		Vp Ratio	0	0.973	o	•	0.968	0.968	Ö								968							0.991		
		Vp m/sec	- "	1487.8	1484.0	1484.0	1480.2	480.	1480.2	1480.2	1487.8	1487.8	1487.8	1491.7	1487.8	1484.0	1480.2	1480.2	1484.0	1487.8	1487.8	1491.7	1495.5	1515.1	1491.7	1484.0
		Depth	0.0	1.0	0.0	4.0	0.0	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	12.0	18.0	19.0	20.0	21.0	22.0	23.0	25.0	26.0	27.0

	Kur																								
	Kurt	1																							
	Skew	1																							
	Dev) } }																							
7/23/80 : 5054m 400 kHz	Mean Phi																								
Date: Depth: 0 m 40	g Clay																								
	silt																								
14-11	\$ Sand	1																							
Sample: 14- 35.00 o/oo	Shear Str.	1																							
. Sa ™ Deg∸C	ø Z]																							
LYNCH 708-80 13-50N;67-39W for: 23.0 De	o+ ()	·																							
TO	s caco3	1																							
Cruise: Fosition: Calculate	Δ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							
Cru	Ø.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							
	Vp Ratio	<u>i</u> o o	0.970	o	0	Ö	o	o o	o 0	0	Ċ	0	0 0	Ö	0	0	0	o	0	• ·	္ ေ	. 0	0	0.965	0.965
	Vp m/sec	1499.	1484.0	٠.,	484	484	484.	484	• •	487	491.	487.	ં ૦	480.	480.	484	487.	487.	491.	495	1507.2	484	476.	476.	14/p.4
	Depth	0.0	200	4.0	5.0	7.0	8.0	0.0	11.0	12.0	13.0	14.0	15.0	17.0	18.0	20.0	21.0	22.0	23.0	24.0	26.0	27.0	28.0	29.0	0.02

		N. Kurt	
		Kurt	
		Skew Kurt	
		Dev	
/23/80 054m	kHz	Mean Phi	
Date: //23/80 Depth: 5054m	m 400	* Clay	
- [2		g g	
14-17	00/0	& Sand	
Sample: 14-12	35.00	Shear & Str. Sand	
LYNCH /08-80 Sample: 14-1 13-50N:67-39W	Deg-C	o≠ Z,	
08-80/	23.0	æ ()	
13-50	d tor:	s caco3	
Cruise: Position:	lculate	Por.	
i õ	Ca	Attn.	
		Vp Ratio	0.985 0.973 0.973 0.968 0.968 0.968 0.968
		Vp m/sec	1507 - 2 0.985 1487 - 8 0.973 1484 - 0 0.973 1486 - 2 0.968 1480 - 2 0.968 1480 - 2 0.968 1480 - 2 0.968 1480 - 2 0.968
		Depth (cm)	0012 4 4 6 9 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

		ż	Kurt																										
		Kurt																											
		Skew	-																										
		Dev	-																										
7/23/80 5054m	kHz	Mean	Phi																										
Date: 7/23/8	m 400	a e	Clay																										
O C	0	-10.	Silt																										
14-13	00/10	ф	Sand																										
Sample:	35.00 a/oo	Shear	Str.																										
	Deg-C	dР	z																										
LYNCH 708-80	23.0 E	dР	C																										
LYNCH 13-50N	d for:	αp	CaCO3																										
Cruise: Position:	Calculate	ф	Por.																										
Cr	S as	Attn.	x																										
		ď	Ratio	Ö	0		•	0.970	0.968	0.968	0.968	996.0	0.968	0.968	0.970	0.973	0.973	0.975	0.970	0.968	0.968	996.0	0.968	896.0	0.970	0.973	0.978	0.978	0.973
		νp	m/sec	1507.2	1495.5	1484.0	1484.0		1480.2	1480.2	1480.2	1480.2		1480.2	1484.0	1487.8	1487.8	1491.7	1484.0		480.	1480.2	480.	480.	484.	487.	1495.5		1487.8
		Depth	(.CR.)	0.0	1.0	2.0	3.0	4.0	5.0	0 • 9	7.0	8.0	0.6	o	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	2	23.0	4	5
			- 1																										

	Kur				
	Kurt				
	Skev				
	Dev				
7/23/80 5054m) kHz	Mean Phi				
Date: 7/23/80 Depth: 5054m 0 m 400 kHz	clay				
	Silt				
14-14	Sand				
Sample: 14-)	Shear Str.				
ე − 6 e	o≠ Z.				
LYNCH 708-80 Si 13-50N;67-39W for: 23.0 Deg-C	۵ ر				
	caco3				
Cruise: Position: Calculated	Por.				
Cr Po Ca	Attn.				
		0.973 0.973 0.973			0.978
	Vp m/sec 1507.2 1491.6	1487.8 1487.8 1484.0	1484.0 1484.0 1484.0 1484.0 1491.6 1491.6	1484.0 1484.0 1484.0 1484.0 1484.0	1495.5 1503.2 1503.2
	Depth (cm)	4.0.9.	8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	15.0 17.0 18.0 19.0	23.0

	K ur t
	Kurt i
	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
	De d
7/23/80 : 5054m 400 kHz	Mean Phan
Date: Depth: 0 m 400	Clay
	Sil
14-15 a/oo	S I S I S I S I S I S I S I S I S I S I
Sample: 14-35.00 a/oo	Shear
9-6a	or ≥
LYNCH 708-80 13-5N;67-39W for: 23.0 D	₩ U
LYNCH 13-5h a for:	0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Cruíse: Position: Calculate	* O J
Cr Po Ca	Attn.
	VF 0.980 0.973 0.973 0.973 0.970
	VF 1499.3 1487.8 1487.8 1487.8 1484.0
	Depth (CEL) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

	N. Kurt			
	Kurt			
	Skew			
	Dev			
7/23/80 5054m 0 kHz	Mean			
Date: 7/23/80 Depth: 5054m 0 m 400 kHz	Clay			
	Silt			
14-16	Sand			
Sample: 14-)	Shear Str.			
)]	00 Z			Ì
LYNCH 708-80 13-50N;67-39W for: 23.0 De	۵۰ U			
LYNCH 13-501 d for:	caco3			
Cruise: Position: Calculated	Por			
Cr Po Ca	Attn.			
	VP Ratio 0.978 0.975	0.970 0.970 0.970 0.970 0.970 0.970	0.975 0.975 0.973 0.970 0.970 0.970 0.970 0.970	0.973 0.978 0.978 0.968 0.968
	0 0 0 1 0		998000000	1487.8 1495.5 1487.8 1480.2
	Depth (cm) 1.0	3.0 6.0 7.0 10.0 11.0	12.0 13.0 14.0 15.0 16.0 17.0 19.0 20.0	223.0 23.0 25.0 25.0

	X N																														
	Kurt																														
	Skew																														
	Dev																														
7/23/80 : 5054m 400 kHz	Mean																														
Date: Depth: 0 m 400	g Clay	1																													
	Silt																														
14-17	8 Sand																														
Sample: 14-	Shear Str.																														
) . 6 a	or Z	; ; ;																								•					
708-80 ;67-39% 23.0 D	œ ن ا	1																													
LYNCH 13-50N for:	% CaCO3	 - - - - - - -																													
Cruise: Position: Calculated		1																													
Cr Po Ca	٠ ب	1																													
	vp Ratio	9.0	o .	0.973	. 0	0.9	0.0	o (0	0.0	6.0	0.9	0.9	0.9	0.0	0	0	٥ ا	0 0	0	6	6.0	6.0	0.9	0.9	0.9	0.0	0.9	0.9	0.9	0.0
	Vp m/sec	1511.	499.	1491.6 1487.8	487.	487.	487.	487.	487	487.	484.	487.	491.	491.	487.	487.	487	487	487	787	491	491.	495.	499.	507.	511.	491.	484.	480.	80.	480.
	Depth	0.0	1.0	0 0 7 17	4	5.0	0.9	7.0	0.8	0.6	0	-	\sim	m	4	ഹ	9	~ 1	യാ	20.0	~~	\sim	173	4	S	9	~	α	9	0	_

	N. Kurt	
	Kurt	
	Skew	
	Dev	
7/23/80 5054m 10 kHz	Mean Phi	
Date: 7/23/8 Depth: 5054m 0 m 400 kHz	g Clay	
	% Silt	
14-18	* Sand	
Sample: 14-	Shear Str.	
J-be	or Z	1 1 1 1 1 1
LYNCH 708-80 13-50N;67-39W for: 23.0 D	æ ()	1 1 1 1 1
	aco3	
Cruise: Position: Calculated	Po &	
Cru Pos Ca]	ttn. k	1 1 1 1 1 1
	Vp ati	0.983 0.983 0.9970 0.9970 0.9970 0.9973 0.9978 0.9978 0.9978 0.9978 0.9978
	Vp m/sec	11550 11550
	epth (cm)	1000 1000 1000 1000 1000 1000 1000 100

		N.																											
		Kurt																											
		Skew																											
		Dev	1																										
7/23/80 5054m	400 kHz	Mean																											
Date: Depth:	0 m 40	ж ; С																											
		ан г. С	S11C																										
14-19	0/00	op :	Sand																										
Sample:	35.00 0/00	Shear	-																										
	Deg-C	ow .	2																										
LYNCH 708-80 13-50N:67-39W	23.0	оно (ن ا																										
LYNCH 13-50N		() () ()	Cacos																										
Cruise: Position:	Calculated	окР	Por.																										
Cru	Ca 1	Attn.	× !!																										
		> 77	Ratio	0.970	0.973	0.973	0.973	0.973	0.970	0.970	0.970	0.970	0.970	0.970	0.970	0.973	0.973	0.973	0.973	0.970	0.970	0.970	0.970	0.975	0.980	•	0.980	•	0.970
		ر م	_	0	00	m	ဆ		1484.0	1484.0	1484.0	1484.0	0	0	0	മ	00	ω,	7.8	0	٥.	0	0	1491.6	1499.3	1511.1	1499.3	1484.0	4.
		Depth	(.Cff.)		1.0	2.0	0.6	4.0	5.0	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0

	i Kuri
	r r r r r r r r r r r r r r r r r r r
	$\frac{1}{2}$
	S Ke
	Dev
7/23/80 5054m 10 kHz	Mean
0	<u> </u>
Date: Depth: 0 m 4	Clay
	n ii
14-20	e constant of the constant of
0	Shear
Sample: 35.0	ς σ <u> </u>
) 1 6 a	on Z
LYNCH 708-80 13-50N;67-39W for: 23.0 D	ao O 1
LYNCH 13-50N for:	Ca C
Cruise: Position: Calculated	
Cruise: Positio Calcula	1
	Attn.
	April 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	N N N N N N N N N N
	Depth (CTM)

		z	Kurt																		
		Kurt	3 3 3																		
		Skew Kurt	111111111111111111111111111111111111111																		
		Dev	1																		
7/24/80 5054m	0 kHz	Mean	Pn1																		
Date: 7/24/80	0 m 40	ove (Clay																		
		ok≏ r	S11t																		
16-1	00/0	Shear &	Str. Sand																		
ample:	35.00	Shear	Str.																		
LYNCH 708-80 Sample: 16-	Deg-C	de ;	z	-																	
708-8(N:67-4(23.0	о н Р (ن <u>ا</u>																		
LYNCE 15-45	d tor:	ф ((Cacos																		
Cruise: Position:	Calculate	αP																			
2 2	(⁽³	Attn.	¥ !																		
		a .	Katio	0.975	0.975	0.973		0.620	0.970	0.970	0.650	0.650	0.620	0.970	0.970	0.970	0.620	0.970	0.973	0.975	0.980
		ď	m/sec	1491.6	1491.6 (1487.6	1487.8	1484.0	1484.0	1464.	1484.0	1484.0	1484.	1484.0	1484.0	1484.0	1484.0	1484.0	1487.8	1491.6	1499.3
		Depth	(CIII)	0.0	1.0	2.0	0.0	4.0	5.0	9.0	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0

		N. Kurt	
		Skew Kurt	1 1 1 1 1
		Skew]
		Dev	
Date: 7/24/80 Depth: 5054m	0 kHz	-	-
Date: Depth:	0 m 40		
		silt	
16-2	00/p	Shear % % Str. Sand Silt	
LYNCH 708-80 Sample: 16-2	35.00	Shear Str.	
SS	Deg-C	æ iZ	
1 708-80	23.0	<i>ه</i> و ن	
LYNCH	a for:	0 1	•
Cruise: Position:	lculate	vp vp Attn. % m/sec Ratio k Por.	
S S	ပီ	Attn.	
		Vp / Ratio	1505.2 0.983 1487.8 0.973 1487.8 0.973 1484.0 0.970 1484.0 0.970 1484.0 0.970 1484.0 0.970 1484.0 0.970 1484.0 0.970 1484.0 0.970
		Vp m/sec	1505.7 1487.8 1487.8 1488.0 1488.0 1488.0 1488.0 1488.0 1488.0 1488.0
		Depth (cm)	10.0 10.0 10.0 10.0 10.0

Skew Kurt N. Kurt						
Skew Kurt						
S I S I S I S I S I S I S I S I S I S I						
<u> </u>						
Dev						
7/24/80 5054m 0 kHz Mean I Phi						
0						
Date: Depth: 0 m 4 Silt Clay						
16-3 1/00 Sand						
LYNCH 708-80 Sample: 16-3 13-45N;67-40W for: 23.0 Deg-C 35.00 d/oo g g g Shear g SacO3 C N Str. Sand						
S S S S S S S S S S S S S S S S S S S						
LYNCH 708-80 13-45N;67-40W for: 23.0 D * 3.2603 C						
Cruise: Position: Calculated Por Por Por Por Por Por Por Por						
Cr. Pos Cal						
VP Attn. Ratio k 0.978 0.973 0.973 0.973	0.973	0.973	0.973	0.973	0.975	0.980
8144444	1487.5	1487.5	1487.5	1487.5	1491.4	1499.1
Depth (CE) 1.0 2.0 2.0 3.6 4.0 6.0 7.0	0.8	10.0	11.0	12.0	13.0	14.0

	K K K	
	Kurt	
	S	
	Dev	
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	Mean Phi	
Date: Depth: 0 m 40	Clay	
	Silt	
16-4	Sand	
Sample: 16.	Shear Str.	
LYNCH 708-80 Sion: 13-45N;67-40W ted for: 23.0 Deg-C	- 00 2	
H 708-81 5N;67-46 23.0	∞ ∪ j	
LYNC:	C a C C 3	
Cruise: Position: Calculate	* 10 e	
ย์ฉัช	A T T T T T T T T T T T T T T T T T T T	
	Note: 10.978	0.970 0.970 0.970 0.970 0.970 0.970
		1484.0 1484.0 1484.0 1484.0 1484.0 14984.0 1491.6
	Depth (cm) 1.0 1.0 1.0 2.0 2.0 2.0 2.0 5.0 6.0 6.0 6.0 9.0	10.0 11.0 12.0 13.0 14.0 15.0

	K N I I I I I I I I I I I I I I I I I I
	Kurt
	S 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	Dev
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	Clay Phi
Date: Depth: 0 m 4(Clay
	Sila
16-5	Str. Sand Silt Clay
mple: 35.00	Str.
Sa leg~C	on (2)
708-80 ;67-40% 23.0 E	on ○
Cruise: LYNCH 708-80 Sample: 16- Position: 13-45N;67-40W Calculated for: 23.0 Deg-C 35.00 o/oo	Cacos 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
nise: Sition: Culate	와 O 1
Cru Pos Ca]	Attn.
	Natio 0.985 0.973 0.973 0.970 0.970 0.970 0.970 0.970 0.973 0.985 0.988
	VF 1507.2 1495.5 1487.8 1484.0 1484.0 1484.0 1484.0 1484.0 1484.0 1484.0 1484.0 1487.8 1499.3 1507.2 1699.3
	Depth (cm) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 10.0 11.0 11.0 11.0 115.0 115.0

	Ku.										
	Kurt	1									
	Skew	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
	Dev										
7/24/80 5054m 0 kHz	Mean Phi	113111111111111111111111111111111111111									
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	\$ Clay	1									
	Silt	-									
16-6	Shear % % Str. Sand Silt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Cruise: LYNCH 708-80 Sample: 16-Position: 13-45N;67-40W Calculated for: 23.0 Deg-C 35.00 d/oo	Shear Str.	1									
w Deg⊷C	or 23. -										
708-80 N;67-40 23.0											
LYNCH 13-45 d tor:	* caco3										
uise: sition: lculate	8 Por										
523	Attn. k					. =					
	vp Ratio		0.970		0.970	0.970	0.978	0.980	0.980	0.983	0.978
	Vp m/sec	1491.6	1484.0	1484.0	1484.0	1484.0	1495.5	1495.5	1499.3	1503.2	1495.5
	Derth (cm)	0.0	32	4.0	9.0	7.0	0.0	11.0	12.0	14.0	15.0

	Z Z	1													
	Kurt	i i i i													
	Skew	1 1 1 1 1 1 1 1													
		1													
/24/80 054m kHz	Mean Phi	1													
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	s Clay	1													
) 1 1 1 1													
16-7	Sand														
Sample: 16.	Shear Str.] 													
Sa M Deg-C	or 23														
LYNCH 708-80 13-45N;67-40W for: 23.0 De	op ()														
LYNCH 13-451 1 tor:	caco3														
Cruise: LYNCH 708-80 San Position: 13-45N;67-40W Calculated for: 23.0 Deg-C	ı,	1													
Cru	Attn. k														
	Vp Ratio	0.975	0.973	0.970	0.870	0.970	0.970	0.970	0.970	0.970	0.975	0.978	0.983	0.980	0.970
	Vp m/sec	1491.6 0.975	1487.8	1484.0	1484.0	1484.0	1484.0	1484.0	1484.0	1484.0	1491.6	1495.5	1503.2	1499.3	1484.0
		0.0	1.0	2.6	3.0	4.0	5.0	0.9	7.6	0.8	o.6	10.0	11.0	12.0	13.0

		ų	1											
		N. Kurt	1											
		Skew Kurt												
		Skew												
		Dev												
7/24/80 5054m	2 KHZ	Mean												
Date: 7/24/80 Depth: 5054m	0 m 40	* C												
		* :: * :: * ::												
16-8	00/0	8 e c.												
Sample: 16-8	35.00	Shear &												
San	eg-C	ow ;2												
LYNCH 708-80	for: 23.0 Deg-C 35.00 d/oo	هەر												
LYNCH	for:	48 C C C) 1											
Cruise:	culated	оф () У												
Cri	Z g	Attn.												
		V V P	2	0.983	0.975	0.970	0.970	0.970	0.970	0.970	0.973	0.978	0.983	0.988
		Depth Vp	11/ 35 5	1503.2 0.983	1491.6	1484.0	1484.0	1484.0	1484.0	1484.0	1487.8	1495.5	1503.2	1511.1
		Depth		1.0				5.0			8.0	0.0	10.0	

	N. Kurt																	
	Kurt																	
	Skew																	
	ean Dev Phi																	
/24/80 054m kHz	Mean																	
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	clay																	
	Silt																	
16-9	Sand																	
LYNCH 708-80 Sample: 16- 13-45N;67-40W for: 23.0 Deg-C 35.00 d/oo	Shear Str.																	
Sa W Deg∸C	80 Z																	
LYNCH 708-80 13-45N;67-40V for: 23.0 I	ap ()																	
	caco3																	
Cruise: Position: Calculated	Por.																	
P. C. C.	Attn.																	
	VP Ratio	00	0.973		6 0 973					0.975				•	0.9	_	896.0	`
	()	1499.2	1487.6	1487.6	1487.6	1487.6	1487.6	1487.6	1487.6	1491.4	1507.0	1507.0	1507.0	1510.9	_	1487.	1480.0	1483 R
	Depth (cn)	0.0	3.0	4.0	0.0	7.0	8.0	0.6	10.0	11.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20 0

	N. Kurt	
	Ske	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Dev	1 1 1 1 1 1 1
/24/80 054m kHz	Mean	1 1 1 1 1
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	s Clay	
	silt Clay	1 } 1 1
16-10	s Sanā	J J J J I I
LYNCH 708-80 Sample: 16-10 13-45N;67-40W for: 23.0 Deg-C 35.00 q/oo	Shear % Str. Sand	
Sal eg-C	op 2	
LYNCH 708-80 13-45N;67-40W for: 23.0 De		
	s s CaCO3 C	
Cruise: Position: Calculated	8 Por.	
Cru	Attn.	
	Vp Ratio	0.9885 0.9883 0.9988 0.9988 0.9988 0.9988 0.9983
	Vp Vp Attn. 8 m/sec Ratio k Por.	1507.0 0.985 1499.1 0.983 1503.1 0.983 1510.9 0.988 1514.8 0.990 1514.8 0.990 1510.9 0.988 1503.1 0.983 1483.8 0.970
	Depth (cm)	8.0 9.0 10.0 11.0

	Z												
	Kurt												
	Skew												
	Dev												
/24/80)54m kHz	Mean Phi												
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	clay												
ă ă o	Silt												
16-11	Sand												
Cruise: LYNCH 708-80 Sample: 16-11 Position: 13-45N;67-40W Calculated for: 23.0 Deg-C 35.00 d/oo	Shear Str.												
Sam. eg•C	op 2												
LYNCH 708-80 13-45N;67-40W for: 23.0 D	оФ ()												
LYNCH 13-45N for:	caco3								•				
ise: ition: culated	Por.												
Cru Pos Cal	Attn.												
	Vp Vp Attn. m/sec Ratio K	0.978	0.973	0.973	0.973	0.970	0.970	0.970	0.970	0.970	0.973	0.980	0.988
	Vr m/sec	1495.3 0.978	1491.4 0.973	1487.6	1487.6	1483.8	1483.8	1483.8 0.970	1483.8	1483.8	1487.6	1499.2	1510.9
	Depth (cm)	0.0	2.0	3.0	4.0	5.0	0.9) c	0.6	10.0	11.0	12.0	13.0
	1												

	K N I I I I I I I I I I I I I I I I I I
	Kurt
	S K e s
	De d
7/24/80 5054m KHZ	Mean Phi
Date: 7/24/80 Depth: 5054m 0 m 400 kHz	Clay
	Sila 11t
16-12	S I I S I I I I I I I I I I I I I I I I
Cruise: LYNCH 708-80 Sample: 16-12 Position: 13-45N;67-40W Calculated for: 23.0 Deg-C 35.00 d/oo	Str.
Sa W Deg-C	on Z, }
LYNCH 708-80 13-45N;67-40W for: 23.0 De	ao () }
LYNCH 13-45 d for:	Caco
Cruise: Position: Calculate	P O O I
Cr Po	Attn.
	VE Attio 0.983 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968
	VP 1503.1 1503.1 1503.1 1503.1 1510.9 1510.9 1510.9 1510.9 1510.9 1510.9 1581.0 1581.0 1581.0 1581.0 1680.0 1480.0 1480.0
	Depth (Cn.) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 11.0 11.0 11.0 11.0 11.

	N. Kurt	0.54	0.55	0.55	0.56	0.53	0.55	0.53	0.56	0.58	0.56		0.55	0.55
	Kurt	1.17	1.23	1.24	1.28	1.14	1.21	1.13	1.29	1.36	1.29		1.24	1.21
		-0.41	-0.40	-0.37	-0.33	-0.31	-0.30	-0.28	-0.34	-0.24	-0.29		-0.30	-0.37
	Dev	3.72	3.60	3.36	3.21	3.03	2.93	2.83	2.91	2.49	2.82		3.00	3.46
7/25/80 3517m 0 kHz	Mean Phi	9.47	09.6	9.97	10.14	10.14	10.21	10.24	10.26	10.38	10.14		10.06	95.5
Date: 7/25/9 Depth: 3517m O m 400 kHz	8 Clay	73.94	75.09	76.79	78.37	77.68	78.59	36.62	80.53	84.09	80.39		78.63	73.64
113	% Silt	12.02	12.12	12.80	12.83	15.86	15.46	14.92	13.50	11.66	13.90		14.54	15.07
17-1	\$ Sano	14.04	12.80	10.41	8.80	6.46	5.95	5.10	5.97	4.24	5.71		6.43	11.29
Sample: 35.00 c	Shear Str.) - - - -												
o-6a	₩ Z	1												•
LYNCH 708-80 13-32N;64-45w tor: 23.0 D	≫ ()													
	* cacu3	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												
Cruise: Position: Calculated	Por.	80.3	79.8	79.3	79.2	78.3	78.4	77.4	76.1	76.1	75.3		75.6	75.4
Cr. FCs	Attn. K	- - - -												
	VF Katio	0.976	50	ω	0.973	0.973	U.973 U.973	0.973	0.973	76	0.975	0.975	0.975	
	vF n/sec	1495.2	1487.5		1487.5		1487.5	1487.5	1407.5	1491.4	1491.4	1491.4	1491.4	
	Depth (cm)	1.0	2.0 3.0	4.0 0.0	0°9	3.2	10.0 11.0	12.0 13.0	14.0	16.0	16.0 19.0	20.0 21.0	22.6	24.0 25.0 26.0 27.0

	ZZ	0	
	Kurt	1 9 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Skew	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Dev	3.26 -0.42	
: 7/25/80 n: 3517m 400 kHz	Mean Phi	9.63	
Date: 7 Depth: 3 0 m 400	, Clay	76.67	
	Silt	11.07 12.26	
17-2	Sand	11.07	
Sample: 17.	Shear Str.		
sa eg-c	op Z		
LYNCH 708-80 S. 13-32N;64-45W for: 23.0 Deg-C	æ∪		
— —	\$ CaCO3		
Cruise: Position: Calculated	& Por	1 1 3 1 1 1	
Cr	Attn.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Vp Ratio	0.988 0.988 0.975 0.975 0.975 0.975 0.975 0.973 0.973 0.973 0.973 0.973 0.973 0.973	
	Vp m/sec	1510.8 1499.1 1499.1 1499.2 1491.4 1491.4 1491.4 1487.5 1487.5 1487.5 1487.5 1487.5 1491.4 1491.4 1491.4	
	Depth (cm)	1000 200 200 500 600 700 1100 11100 1120 11300 11400 11800 1	

	ı u	10			~		~	~	~	_	_	~			
	N. Kurt	0.55	0.61	0.61	0.58	0.62	0.63	0.58	0.63	0.67	0.64	0.63	0.62	0.61	0.57
	Skew Kurt	1.22	1,56	1.56	1,36	1.64	1.67	1.39	1.69	2.01	1.76	1.73	1.60	1.54	1.34
			-0.46	-0.44	-0.47	-0.46	-0.38	-0.36	-0.32	-0.43	-0.31	-0.35	-0.37	-0.37	-0.39
	Dev		3,32	3.27	3.37	3,36	2.89	2.69	2.49	2.43	2.43	2.66	2.70	2.70	2.94
7/25/80 3517m 0 kHz	Mean	8.31	9.41	9.46	9.32	9.41	88.6	9.79	10.05	9.79	10.01	9.78	9.74	9.72	9.61
Date: 7/ Depth: 35 0 m 400	s Clay	70.42	75.38	75.59	70.68	75.91	79.38	78.51	82.73	82.02	82.73	80.12	78.57	78.03	75.08
1	% Silt	11.25	11.98	12.10	15.79	11.60	13.23	16.28	12.20	12.06	12.41	13.70	15.27	16.24	18.28
17-3	Sand	18.34	12.64	12,31	13,53	12.49	7.40	5.20	5.07	5.92	4.86	6.18	6.16	5.74	6.64
Sample: 17 35.00 d/oo	Shear Str.														
) - 6a	ep 22														
LYNCH 708-80 13-52N;64-45W for: 23.0 D	ر مو ا														
	s caco3	28.74	26.65	27.74	25.50	24.52	22.32	23.08	22.32	22.53	23.92	24.21	24.78	24.88	25.36
Cruise: Position: Calculated	Por.	81.6	80.4	79.5	79.1	78.9	77.8	76.3	75.9	74.7	74.7	74.1	74.2	75.2	75.9
Cr. Pos	Attn.														
	Vp Ratio	0.983	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.978	0.975	0.975	•		
	Vp fi./sec	•	1491.4	. 4	4 47 .	44			1491.4	1495.2	4.1	1491.4	. 10		
	Depth (cm)	၁၀၁ ၁၉	0.0	0.00	0.00	0.00	11.0	13.0	15.0	17.0	0.61	21.0	23.00	25.0	27.0

	Kurt	0.62	99.0	0.65	99.0	0.63	0.65	0:63	0.65	0.65	0.63	0.64	0.63
	Kurt	1.65	1.93	1.82	1.94	1.73	1.87	1.67	1.90	1.89	1.69	1.80	1.74
	Dev Skew Kurt	-0.50	-0.49	-0.43	-0.41	-0.47	-0.56	-0.41	-0.47	-0.51	-0.34	-0.46	-0.39
	Dev	3.44	2.85	2.93	2.74	2.63	2.75	2.43	2.08	2.31	2.10	2.45	2.77
//26/80 3517m) kHz	Mean	9.17	9.57	9.75	9.81	9.54	9.36	9.72	9.72	6.59	68.6	9.63	9.78
Date: 7/26/80 Depth: 3517m 0 m 400 kHz	s Clay	74.90	78.95	79.13	80.55	78.35	78.05	80.33	83,38	81.43	83.50	80.58	79.55
	silt	11.30	11.38	11.58	11.83	14.99	12.73	14.56	11.79	12.65	12.62	13,38	12.95
18-1	Sand	13.80	99.6	9.29	7.61	99.9	9.22	5.10	4.82	5.92	3.88	6.04	7.50
Sample: 18.	Shear Str.												
eg-C	op Z												
LYNCH 708-80 13-25N;64-47W for: 23.0 Deg-C	‰ ∪												
LYNCH 13-25h d for:	e CaCO3	24.24	22.38	21.38	20.46	20.38	21.99	20.54	20.63	20.91	20.74	24.44	24.65
Cruise: Position: Calculated	Por.	83.1	81.7	80.3	80.9	78.8	77.8	77.6	77.5	76.2	75.4	0.97	76.2
Cru Pos Ca]	Attn. k												
	Vp Ratio	0.983	0.975 0.975	0.973	0.975	0.973	0.975	0.975	0.975	- - (ο. y /α		
	Vp m/sec	1503.1	1491.4	487.	1491.4	1487.6	1491.4	1491.4	·	1495.3	1495.3		
	Depth (cm))) (O)	4. W	9. C	3°0	10.0	13.0	14.0	17.0	0.61	21.0	23.0

		z	Kurt																									
		Kurt	1																									
		Skew	1																									
		Dev	1																					Ē				
0/18/81 3937m	0 kHz	Mean	Phi																									
Date: 10/18/81 Depth: 3937m	0 m 40	σю	Clay																									
		ф	Silt																									
21-2	00/0	ф	Sand																									
Sample:	35.00 a/oo	Shear	Str.																									
	Deg-C	dф	z																									
BARTLT 1301-82 : 15-07N;69-24W	23.0 De	онр	C																									
BARTLT 1	d tor:	ф	CaCO3																									
Cruise: Position:	Calculated	æ	Por.																									
Cr Po	3	Attn.	 	<u> </u>																								
		ď۸	Ratio	-			0.976							0.972					696.0	0.969	0.969	0.969	0.968	0.968	0.968	0.968	0	0.968
		\ V	m/sec	1529.1	1512.7	1499.3	1492.3	1490.1	1488.3	1488.6	1488.3	1488.3	1487.5	1486.8	1486.4	1484.6	1482.8	1482.8	1482.1	1482.1	1482.1	1482.1	1480.7	1480.3	1480.7	1480.7	1479.9	1479.9
		Depth	(CIL)	WATER	0.0	1.0	0.4	0.4	5.0	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0

	N. Kurt				
	Kurt				
	Skew				
	Dev				
10/18/81 1: 3937m 400 kHz	Mean Phi				
Date: 10 Depth: 0 m 400	g Clay				
11	silt				
21-3	Sand				
Sample: 21.	Shear Str.				
o-6ə	or Z.	0.071			
KTLT 1301-82 15-07N;69-24W for: 23.0 D	<i>ه</i> ن	0.397			
⋖	caco3				
Cruise: B Position: Calculated	g Por.				
Cr	Attn. k				
	VP Ratio			0.976 0.974 0.974 0.974 0.974 0.974	
	Vp m/sec	1530.2 1521.8 1510.1 1510.1 1510.1 1498.2	1494.8 1493.4 1492.3 1491.9	14991.9 14890.1 14890.1 1489.0 1489.0	1486.1 1485.7 1484.6 1482.5 1481.7 1481.7 1481.7 1482.1 1488.6
	Depth (cm)	MATER 0.0 1.0 2.0 3.0 4.0	000000	10.0 112.0 113.0 115.0	18.0 19.0 20.0 22.0 23.0 24.0 25.0

	N. Kurt																	
	Kurt																	
	Skev																	
	Dev																	
/18/81 937m kHz	Mean Phi																	
Date: 10/18/81 Depth: 3937m 0 m 400 kHz	8 Clay																	
	8 Silt																	
21-4	8 Sand																	
Sample: 21.	Shear Str.	- 																
) - 6a	₩ Z																	
KTLT 1301-82 15-07N;69-24W for: 23.0 D	<i>ه</i> ن																	
BAKTLT 1301-82 15-07N;69-24V d for: 23.0	* caco3	- 																
Cruise: B. Position: Calculated	& Por.]]]]]																
Cru Pos Cal	ttn. k)))) 1																
	Vp atio	1.000 0.993 0.982 0.975	974	0.973	0.974	0.973	0.973	0.972	0.970 0.969	0.968	0.968	0.968	0.967	0.967	0.969	0.970	696.0	1.967
	່	529.1 518.4 501.1 491.5	489.7	488.6 488.6	489.4	487.9	488.3 486.8	486.1	m -			479.9	479.2	479.2	481.4	483.2	461.7	479.2
	Derth (cm) m	-				-	11.0 1	_				0.6	7.0	7	-	~ -	7 -	

	N. Kurt	
	Kurt	
	Skew	
	Dev	
Date: 10/18/81 Depth: 3937m 0 m 400 kHz	Mean	
Date: 1 Depth: 0 m 40	s Clay	
	silt	
21-5 d/00	sand	
Sample: 21.	Shear Str.	
ე − 6a	₩ Z	
FTLT 1301-82 15-07N;69-24W for: 23.0 D	* °∪	
≪.	-	
Cruise: B. Position: Calculated	Por.	
040	Attn.	
	Vp Rati	
	m/sec	1527 1519 1519 1519 1519 1489 1488 1488 1488 1488 1488 1488 14
	Depth (cm)	MATER 1:00.00.00.00.00.00.00.00.00.00.00.00.00.

		N. Kurt																										
		Kurt																										
		Skew																										
		Dev																										
0/18/81	Depth: 3937m 0 m 400 kHz	Mean Phi																										
Date:	Depth:	2 Clay																										
		Silt																										
21-9	00/0	Sand																										
Samcle:	35.00 0/00	Snear Str.		5.90				40.40	36.30			36.30			20.80			21.40			20.20				23.70			00° 6T
	r Deg−C	op 2																										
1301-82	15-U7N;69-24W 10r: 23.0 D	≫ U																										
BARTET 1301-82	15-071 a tor:	g caco3																										
Cruise: 1	on: ate	Por.	ľ.																									
Cr	2,0	Attr.																										
		Vp katio	•	• •	0.981			0.975		•	0.971		•	•		0.965	•	•	0	3	် င	0	Ö	0	33	်	၁	
		VP n/sec	529	4.0	1499.6 1484.8	93	491	4 y L	4.50	490	24 × 20 × 20 × 20 × 20 × 20 × 20 × 20 ×	3 3	484	40.4	1484 -6	481	480	1479 -6	480	00	1478.5	478		476	477	74	479	
		Deptr (cn)	MATER) - C	3.0	4 N	0- 9) · .	20.0	10.0	11.6	13:0	14.0	15.0	17.0	18.0	19.0	20.0	22.70	23.0	24-0	26 -0	27.6	28 -0	30.0	51.0	32.0	33.0

	N. Kurt	i																													
	×	İ																													
	دد	Ī																													
	Kurt	i																													
	×	;																													
	3	Ī																													
	Skew																														
	O ₂	<u>:</u>																													
		1																													
	Dev	i																													
	П	<u>i</u>																													
8	E :I	!																													
19/ 34m kH2	Mean Phi	1																													
10/19/ : 3934m 400 kHz		<u>i</u>																													
Date: 10/19/81 Depth: 3934m O m 400 kHz		į																													
Date:] Depth: 0 m 40	å Clay	i																													
Date Dept	o.	<u>i</u>																													
	u																														
	silt	Ì																													
*	<i>د</i> ه	<u>.</u>																													
22-2 *	rg.	į																													
22	s Sand																														
ple: 22.	-	.																													
00	Shear Str.																														
ple 35.	She																														
Sample:	•	-																													
် ပု	or ≥																							•							
ZW ZW Deg-C		i																													
2.2.v	•	!																													
9-1	op ()																														
BARTLT 1301-82 15-07N;69-22W d for: 23.0 D		į																													
170 "	m	Ī																													
RTLT 15-0 for:	caco	i																													
3AR 1 3 f	Ca	1																													
n: tec		Ī																													
io iio	Por																														
Cruise: B Position: Calculated	Щ.	_																													
Cr Ca	•) !																													
	Attn. k																														
	¥.	į																													
	io	8	4	20 4	0 4	9	<u>~</u>	ص رد م	9	2	S.	, ب	m	N 0	2 (7	_	0	,	တ	00	80	7	7	8	9	ڡ	S I		و م	>
	Vp Ratio	. 028	.01	1.008	000	66.	99	0.988	86	96	86	8	8	200	8	98	98	98	9 0	97	97	97	97	977	978	916	976	975	116	ى دى	χ
	_	, ~			-	0	o (• •	o	o	0	0	္ (. c		0	o	.	9	0	ဝံ	•	ં	ċ	•	0	ċ	0	.	.	•
	ပ္	2.4	1.2	1.8	1535.9	3.6	3.3	1.5	5			2.7		70		7	0.0		1498.5	2	٣.	6.5	• 2	. 8	.4			æ ,	•	י ע	•
	Vp m/sec	57.	55	54.	າຕ	528	515	511	1508.	506	506	20	1503.	1502	502	50.	1500.	498	498	495	496	495	484	1494	G C	6	a)	6	σ	4 y L	ν.
	E 1		7	,1 <i>-</i> -	-	1	٦,	-	-	-i	→ .	-i i	- i	-i -	-	Ã	-	<u> </u>	٦,	-	Ť	Ä	Ä	-	14	-	14	7		1	
		0	0.	0,0	20.0	0	0	0.0	0	0	0	0	0	9	0	0	0	0	9 0	0	0	0	0	0	0	0	0	0 9	5	ې د	>
	a 0 1		7	('') <	* 10	9	-	מ מ	2	11	ZÍ:	Ę,	14	1 2	17	188	19	50	22.0	2	24	25.	26.	27	28	29	0	d :	4.5	0 0	
	0 1	4																											•		

*Acoustic Data in Error

	z n z n z n z n z n z n z n z n z n z n	
	Kurt	
	3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
	Dec	
10/19/81 1: 3933m 400 kHz	Phi	
Date: 10/19/81 Depth: 393m 0 m 400 kHz	Clay	
	Silt	
23-1	Sand	
Sample:	Shear Str. 10.70 14.30 36.30 46.40 46.40 36.30 27.40 28.50	25.60
Sar W Deg≖C	de 2	
RTLT 1301-82 15-07N;69-24W for: 23.0 De	۵۰ U	
4	Caco3	
se: tion: ulate	Por .	
Crui Posi Calc	Attn. k k 00.8320 00.9820 00.9820 00.9642 11.1331 11.1066 11.0366	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Ratio 0.978 0.978 0.9880 0.9880 0.9880 0.9880 0.978 0.978 0.978 0.978	
	VE 1499 14	44488999999999999999999999999999999999
	Depth (Ca) 1.0 (Ca) 3.0 (Ca) 1.0 (Ca) 1	80012647078

	N. Kurt	1																												
	Kurt			-																										
	ж ж	1		9																										
	Skew	}		5																										
	s X	<u> </u>																												
	>	1																												
	Dev	1																												
18/	lean Phi	Ī																												
10/19/81 1: 3933m 400 kHz	Mean Phi	į																												
10.	-	1																												
Date:] Depth: 0 m 4(Clay																													
Q Q O	0.	<u>.</u>																												
	s silt																													
7		Ī																												
23-2	* Sand																													
ple: 23	_	1																												
Sample:	Shear Str.	į																												
Sam		1																	•											
Deg≖C	d# 22																													
82 24% D	_	<u>-</u>																												
RTLT 1301-82 15-07N;69-24W for: 23.0 D	₩ ()																													
1 1 1 0 7 N 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	en .	<u>.</u>																												
RTET 15-0 for:	# aC03																													
BA. n: ted	0]	_																												
se: tio ula	& Por																													
Crui Posi Calc	-	1							_																					
0 14 0	ttn. k	000	.820	9		õ	-i -		ö	3	Šč	, •	6	ωr	_	7	39	6	9 6	59	59	20 0	9	67	7	40	9 4	5.5	54	ഹ
	«	100	000	0			٦-	-	7	0 -	⊣ −	10	0	0	0	0	0	O C	0	0		o c		0	0	0	O		0	
	VPatio	60	980	9	2, 2	30,0	200	86	96	900	200	9	16	9	9	9	97	76	9	97	97	2 0	9	97	97	97	7 6	97	97	97
	× 1	40) O C	999	90	0	9 0	0	0	0	o c	0	0	0	0	0		0		0		O		0	0	0		0	0	
	O I		499																											
	E 1			· ·		7	7	. ~	_			4 ~4	7	٦,	-	7	_	7 -	4 ~	-	٦,		-	_	-		- ۱	ب ۔ ا	~ .	_
	epth (cm)	Hς	W 4				, 0	-	<u>ر</u>	เก๋ง		9	7		. 0	Ä	2	7	2	9	٠,		; ;	-	o	m =		9	-	œ .
	De								٦,	,(,	7 ~	י ר	, i		7 7	7	(4)	7 0	1 (4	7	(A) (40	4 (L.)	(A)	(M) (יז ניי) (*)	, (°)	(*) (ניז

	N. Kurt		
	Kurt		
	Skew		
	Dev		
10/19/81 3936m 00 kHz	Mean Phi		
Date: 10/19/8 Depth: 3936m 0 m 400 kHz	\$ Clay		
	silt		
24-3 d/00	Sand		
Sample: 24	Shear Str.		
w W Deg∸C	or Z		
NTLT 1301-82 15-06N;69-24W for: 23.0 De	æ ∪ 		
<	caco3		
Cruise: B Position: Calculated	e Por		
Cru Pos Cal	Attn. k		
	Vp Ratio	ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ ਗ਼ਗ਼ਗ਼	0.974 0.974 0.976 0.973 0.973
	Vp m/sec	1516 15516 15516 15506.8 115509.6 115009.6 11690.8 11690.8 11690.8 11688.3 116	1489.0 1489.0 1489.7 1492.6 1487.9
	Depth (cm)	222.00	26.0 28.0 29.0 30.0

		N. Kurt	 		
		Skew Kurt N. Kurt	, , , ,		
		Skew	0.270 0.051		
		Mean Dev Phi	} ! ! !		
18/61/1	KHZ	Mean	1		
Date: 10/19/81	m 400	s Clay	 		
		Shear % % % Str. Sand Silt Clay			
24-4	00/0	Sand	<u> </u>		
mple:	for: 23.0 Deg-C 35.00 o/oo	Shear Str.	 - - -		
Sal	Deg-C	op 23	0.051	0.053	0.049
1301-82	23.0	∞ ∪	0.270 0.051	0.261 0.053	0.232 0.049
BARTLT	d for:	•	<u>.</u>		
uise: I	rosition: Calculated	e Por.			
Cr	S S	Attn. k	1		
		Vp Ratio	1		
		Depth Vp (cm) m/sec	<u> </u>		
		Depth (cm)	1.0	3.0	. v

	r t	į																														
	N. Kur	<u> </u>																														
	Kurt																															
	Skew																															
	Dev	-																														
10/19/81 : 3936m 400 kHz	Mean Phi																															
Date: 10 Depth: 3 0 m 400	Clay																															
	Silt																															
24-6	Sand	-								,																						
Sample: 24 35.00 d/oo	Shear Str.																															
o−6a	øZ																															
RTLT 1301-82 15-06N;69-24W for: 23.0 D	ap ()																															
≪	-																															
Cruise: B. Position: Calculated	Por.																															
Cru Pos Ca J	Attn.																															
	Wpatio	ķä	0.982	.	·	· •		776.0	776.0	7700	0.976	0.976	0	0	Ö	o	0	0	٠ •	.		0	0	o	ં	0	o	ં	•	•	0.971	
	ec	1532.5	1502.2	1496.7	1495.2	1493.4	1493.4		1494.1	. 2	193	493	1494.5	9	10	464	1492.3	1491.5	1491.9	1492.3	1489.4	1488.3	1487.2	1487.2	1487.9	1486.5	1486.5	1481.8		-	1485.4	4 8
	~	1.0	2.0	3.0	4.0	0.0	• r) ;	0 0		11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	32.0	33.0

	× .	<u> </u>																								
	r T	-																								
	Kurt																									
		.																								
	Skew																									
	ري	<u> </u>																								
	>				1																					
	Dev																									
18	⊆.⊶	Ì																								
Date: 10/19/81 Depth: 3936m 0 m 400 kHz	Mean Phi																									
10/19/ : 3936m 400 kHz	۷.	<u>.</u>																								
	, <u>></u>																									
Date Dept 0 m	g Clay																									
000		Ī																								
	Silt	ľ																								
	ω ₋	+																								
24-7	no.																									
2000	8 Sand	i																								
ple: 24 35.00 o/oo	H	Ī																								
ole:	Shear Str.																									
Sample:	- ده	<u>!.</u>																								
s ၂	op 2																									
IW Deg-C	_	1																								
-82 -24 0	or ∪	1																								
301-8 ;69-3 23.0																										
190 190 190 190 190 190 190 190 190 190	_	!																								
BARTLT 1301-82 15-06N;69-24W d for: 23.0 D	& CaCO3	ļ.																								
φ _σ	ິວ	<u> </u>																								
e: B. ion: lated	or or.																									
ise iti cul	Q,	1																								
Cruise Positi Calcul	-	1																								
0 - 0	Attn. k																									
	¥.	<u>i·</u>																								
	oi	05	9 2	83	84	818	80	90	80	80	8 8	80	980	2,5	78	9/	97	75	9/	75	75	74	75	17	73	
	VP Ratio	3	0.0	0,0	, 0, 1	ກຸດ	9.	ກວ	ο.	<u>ن</u> ه	نی	٠.	ي م	, ס	ي و	ن ت	6	ی و	6.	٥,	, 0	0	ه. ه	0.9	ن ن	,
		7	5	0 6	00	- ~	S	ດ ທ	ç.	ν. u	9	0	v, œ	, α	m c	70	0	ųν	m	ď	2 ~				9 9	
	വംഗ	536	526	513 508	504	500	498	4 4 4 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	498	498	499	498	498	197	496	493	493	491	492	491	20 4	6	490	· w	 	
	-	<u>:</u> ~			1	7 7	7		٦		7 ~	П,		-	٦.		-	1 1	-	М,		~	- -	· ~	-	
		i oz	0.0	0.2	0	000	0.1	0.0	0.0	0 0	0	0	00	0	0.0	0	0	000	0:	0	0	0.	00	0	00	
		WATE	- -	. • 1.	. 47	٠, س	(~ 01	7(7	ĭ ;;	74	7 P	í -i	3 6	707	21	7 7	24	25	77	28	30	<u> </u>	32	
		r																								

	⊼ ¦
	Kur t
	S
	De v
/19/81 1936m kHz	Mean Phi
Date: 10/19/81 Depth: 3936m 0 m 400 kHz	Clay
24-8-1	s and
Sample: 35.00	Str.
) — ба	∞ Z
RTLT 1301-82 15-06N;69-24W for: 23.0 D	de C
A A	Ca Co 3
se: tion: ulate	Po & I
Crui Posi Calci	Attn.
	Natio 0.994 0.9983
	VP M Sec 1520.0 15520.0 15520.0 15520.0 1502.8 1500.2 1600.2
	Depth (Cm) 1.0 (Cm) 1.0 (Cm) 2.0 (Cm) 2.0 (Cm) 1.0 (Cm) 1

Date: 10/19/8]	Depth: 3936m	0 m 400 kHz
24-8-2		35.00 0/00
sample:		
BARTLT 1301-82	Fosition: 15-06N;69-24W	Led for: 23.0 Deg-
Cruise:	Fosition	Calculat

N X																															
Kurt	<u> </u>																														
Skew																															
Dev																															
Mean	·																														
e Clav																															
Sila																															
& Sand																															
Shear Str.																															
op '2																															
∞ C)	1																														
* CaCO3																															
& Por																															
Attn. k																															
Vp Ratio	0.996	0.982								0.977		•	•		•	•					•	0.972				•	•		•	1/6.0	
Vp m/sec	1523.	1501.1	501.	495.	494	404	494	494	494.	484.	495.	493.	493.	492.	492	491.	200	487	486.	486.	486.	486.	900	485	485.	484.	484.	478.	583	20 C	g S
Depth (cm)		3.0	4.0	5.0	0.0	0.0	0 0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.6	18.0	20.0	21.0	22.0	23.0	24.0	25.0	22.0	28.0	25.0	30.0	31.0	32.0	33.0	4.0	20.0
	1																														

	X X X I
	Kurt
	S ke
	Dev
/19/81 936m kHz	Mean Phi
Date: 10/19/81 Depth: 3936m 0 m 400 kHz	Clay.
	S ii
24-8-3	o D I I I I I I I I I I I I I I I I I I
Sample: 24-8 35.00 o/oo	Shear Str.
0-6a	₩ Z
RTLT 1301-82 15-06N;69-24W for: 23.0 D	۰۰ U
¥	C C a C O 3
Cruise: B. Position: Calculated	Po G I
Cr Po Ca	Attn.
	Neticological Ratio 0.980 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.980 0.972 0.97
	VF m/sec 1499.6 1499.6 1500.0 1500.0 1500.0 1699.6 1699.6 1699.6 1699.6 1699.6 1699.6 1699.7 1699.8 1699.8 1699.9 169
	Depth (GR) 1.00 3.00 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0 3.32.0
	1.

	4 1		
	K Nr.		
	- i		
	Kurt		
	Σ.		
	3 T		
	2 2 2 2 2 2 2 2 2 2		
	1		
	Dev		
	0 1		
/81 n z	Phi		
10/19/81 3936m 00 kHz	Mean Phi		
Date: 10/19/ Depth: 3936m 0 m 400 kHz	<u>;</u>		
Date: Depth: 0 m 4	Clay		
Date Dept 0 m	2 <u>1</u>		
	ļ.		
	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4	<u> </u>		
24-8-4	& S and		
ple: 24-8 35.00 c/oo	φ <u>1</u>		
.00	Shear Str.		
Sample: 35.00	S S		
Sar	op 2.		
2 IW Deg-C			·
24 W De	†		
301-8 1;69-2 23.0	∞ ∪		
RTLT 1301-82 15-06N;69-24W for: 23.0 D	<u> </u>		
RTLT 15-06 for:	% Pa C O 3		
<€	2 C &		
BA n: ted	.T		
Cruise: B. Position: Calculated	* 0		
Cruise: Positio Calcula	$-\frac{1}{1}$		
2 4 2	i j		
	Att h		
	0	700L0U4UU	2464446465 2464446465
	Patho 0.981 0.981 0.982 0.982 0.982 0.982 0.982 0.982 0.983	0000000000	76.00 76.00 76.00 76.00 76.00 76.00 76.00
	T		
	18131111111111111111111111111111111111	22222222222222222222222222222222222222	4 4 4 4 4 4 4 4 4 4 4 6 0 0 0 0 0 0 0 0
	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4444444444	114888999999999999999999999999999999999
	,		0000000000
	Dopth 1.0 2.0 2.0 2.0 6.0 6.0 6.0 9.0 110.0 111.0 112.0	222222222222222222222222222222222222222	144444 14444

	N. Kur t								Ś.,																				
	Kurt																												
	Skew																												
	Dev																												
10/19/81 3936m .00 kHz	Mean																												
Date: 10/19/8 Depth: 3936m 0 m 400 kHz	s Clay	 																											
	Silt	 																							er!				
24-8-5	Sand																												
Sample: 35.00	Shear Str.	<u> </u>																											
0-6a	op Z	 									,																		
AKTLT 1301-82 15-06N;69-24W for: 23.0 D	e ن	1																											
BA G	caco3																												
Cruise: B. Position: Calculateò	% Por.	 																						٠					
Cru Pos Ca J	Attn. k																				den viter								
	νp ati	IONO	0.979	9	\mathbf{o}	0.978	0.978	0.979	0.979	0.979	0.979	0.979	0.978	0.976	0.976	0.975	0.973	0.973	0.973	0.973	0.973	0.973	0.972	0.972	0.972	0.972	0.972		
	Vp //sec	508.	1497.2	496.	495.	95.	496	496.	49	497	497.	1496.9	4400	49	492.	490.	400	1488.5	488.	487	487.	487.	487.	486	487	487.	1487.0	487	487.
	Depth (cm)	1.0	0 0 0 0	4.0	9.0	2.0	8.0	o. c.	11.0	12.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	22.0	23.0	24.0	26.0	27.0	28.0	29.0	31.0	32.0	.33.0	35.0	36.0

Date: 10/21/81	Depth: 3940m	0 m 400 kHz
26-1		00/0
Sample:		35.00 0/00
	on: 15-06N;69-22W	Calculated for: 23.0 Deg-C
Cruise:	Position	Calcula

N. Kurt																														
Kurt							35																				•			
Skew																														
Dev																														
Mean																														
& Clay																														
Silt						20																								
Sand																														
Shear Str.																														
ø Z																														
ж ()																														
\$ CaCO3																														
& Por																														
Attn. k	:																													
VP			0.984																											
VP Sec	1529.1	1520.3	1505.0	1498.7	1498.7	1499.4	1499.4	1499.8	1502.4	1502.0	1501.3	1502.8	1503.9	1503.9	1502.8	1502.8	1502.8	1502.4	1500.5	1498.7	1494.3	1492.5	1491.0	1489.6	1490.3	1488.8	1489.9	1489.6	1488.8	1488.8
Depth	WATER	0.0	2.0 15	0.8	4.0	5.0	0.9	7.0	0.8	J. 6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0

	Kur	1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	1.0	0.4	4.0	4.0
	Kurt		0.58	0.56	0.58	0.58	0.57	0.57	0.58	0.58	0.58	09.0	0.64	0.70	19.0	0.63	0.65	0.75	0.68	0.77	0.81
	Skew		0.47	-0.09	0.16	0.00	0.10	0.14	0.14	0.07	-0.10	-0.20	-0.26	-0.31	-0.17	-0.09	-0.12	-0.35	-0.23	-0.29	-0.29
	Dev		4.35	4.26	4.31	4.24	4.24	4.18	4.25	4.22	4.18	4.13	4.06	4.01	3.98	3.97	3.96	3.77	3.90	3.82	3.82
10/21/81 3940m 00 kHz	Mean		5.17	6.19	5.82	6.14	5.91	5.83	5.84	90.9	6.36	6.71	6.92	7.15	68.9	6.64	9.68	7.40	7.04	7.38	7.46
Date: 10/21/ Depth: 3940m 0 m 400 kHz	clay		37.86	46.12	40.79	43.19	41.12	40.02	40.13	42.15	45.41	48.25	49.87	52.04	47.96	45.38	45.78	53.93	49.39	53.17	53.55
	Silt		10.92	10.63	12.31	13.77	13.41	14.05	14.39	15.98	16.57	18.48	20.58	21.85	23.36	22.50	23.14	22.40	22.25	23.49	24.24
26-2	Sand		51.21	43.18	46.90	43.04	45.47	45.92	45.48	41.87	38.02	33.27	29.55	26.12	28.68	32.12	31.08	23.67	28.28	23.34	22.21
Sample:	Shear Str.	_																			
ე_6ə	op 23;																				
RTLT 1301-82 15-06N;69-22W for: 23.0 D	ø () .																				
~	caco3		63.73	63.98	66.53	64.37	67.42	67.13	65.60	66.50	67.89	67.12	67.24	68.47	70.75	72.57	74.59	73.59	72.66	67.51	67.40
Cruise: BA Position: Calculated	% Por.	! ! ! !	83.0	77.3	76.4	75.3	75.0	73.7	72.7	71.5	71.8	72.3	72.7	73.2	74.5	74.4	74.9	75.4	75.0	73.7	72.6
Cri	Attn.	1																			
	at to	1.00	0.0	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.0	0.97	0.97	0.97	0.97	0.0		
	Vp /sec		508.	503.	500.	500.	501.	502.	505.	506.	505.	501.	498.	495	492.	490.	491.	489.	489. 489.		
	ert Ca	1 (-1				٠.		9.4	2.6	4	917	8 9	9	22.0	4. 5.	9.	80	9	2 6	4.10	9.

Date: 10/21/81	Depth: 3940m	0 m 400 kHz	
<pre>Cruise: BARTLT 1301-82 Sample: 26-3</pre>		culated for: 23.0 Deg-C 35.00 c/oo	
Cr	PO	Ca	

N. Kurt	0.36		
Kurt	0.56		
Skew	0.41		
Dev	4.15		
Mean	5.15		
g Clay	36.22		
Silt	10.49		
Sand	53.27		
Shear Str.			
S 40			
90 C)			
caco3			
% Por.			
Attn.			
Vp Ratio	000000000000000000000000000000000000000	0.984 0.985 0.985 0.984 0.984 0.982 0.979 0.979	0.974 0.974 0.975 0.975 0.975 0.974 0.974 0.974
VF m/sec	529. 5529. 5500. 5501. 5503. 5501. 5501. 5505.	00000000000000000000000000000000000000	44 44 46 46 46 46 46 46 46 46 46 46 46 4
Depth (cm)	MATER 1.00 1.00 2.00 3.00 4.00 6.00 7.00 10.00	12.0 14.0 15.0 16.0 17.0 19.0 22.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1			

	Kur
	Kurt
	S K e k e
	Dev
10/21/81 1: 3940m 400 kHz	Mean Phi
Date: 10/21/ Depth: 3940m 0 m 400 kHz	Class
	α 1
26-4	e a l
Sample: 26.	Str.
2 Sa 2₩ Deg∸C	90 Z
RTLT 1301-82 15-06N;69-22W for: 23.0 De	op ∪
Y T	CaC03
Cruise: B. Position: Calculated	o o o o o o o o o o o o o o o o o o o
Cru Pos Cal	Attn. 6.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
	Ratio 10.0983 0.9883 0.9883 0.9883 0.9883 0.9883 0.99883 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974
	VP Sec 1533.05 15501.05 15503.05 15503.05 15503.05 15501.05
	Depth (cm) -[

			٠																									
		N. Kurt																										
		Kurt																										
		Skew																										
		Dev	! ! !																									
Date: 10/22/81 Depth: 3949m	0 kH2	Mean																										
Date: 1 Depth:	0 m 400 kHz	g Clay	<u> </u>																									
		\$ Silt	<u> </u>																									
28-1	00/0	Sand	±																									
Sample:	35.00 0/00	Shear Str.	-		6.50			21.40		34.50				43.40		44.00			41 60		30.60				30.00	;	31.50	
	eg-C	op Z																										
RTLT 1301-82 15-07N;69-20W	23.0 Deg-C	φ () -																										
BARTLT 15-07		eaco3																										
Cruise: Position:	lculated		 - -																									
Crui	Ca]	Attn.	-0.014		•		0.779		•	0.957	•	•	•	•	•		•	•	0.957			•	•	•	•	•	0.635	•
		VP atio	1.002	•		0.981			•	0.981	•	•		•		•		•	0.980			•	0.976	•		•	0.975	•
		۷p /sec	532.	1513.7	501.	500.	500	500.	501.	1500.0	501.	502.	501.	1501.5	501.	502.	500.	500.	1498.9	494	494.	493.	492.	491.	491.	491.	4.	. TC .
		ept (cm	WATER	0.0	•	•	0.4 0.5	•			•	•	0	÷	તં	'n	4	5	16.0		6	•	4	2	e,	4	'n,	ċ

	N. Kurt	0.37			
	Kurt	0.58			
	Skew	0.27			
	Dev	4.36			
/22/81 949m kHz	Mean Phi	5.58			
Date: 10/22/81 Depth: 3949m 0 m 400 kHz	8 Clay	39.18			
	silt 	12.25			
28-2*	g Sand	48.57			
Sample: 28	Shear Str.				
v Jeg−C	op 23				
.RTLT 1301-82 15-07N;69-20W for: 23.0 D	ه» ر <u>ا</u>				
	& CaCO3 				
Cruise: bA Position: Calculateα	Por.				
Cr. Pos	A - 0	0.638 0.844 0.871 0.899 0.964	1.002 0.982 0.982 0.987	0.871 0.844 0.786 0.726 0.652 0.638	0.585 0.597 0.652
		1.005 1.005 1.004 1.004 1.004 1.005			0.997 0.997 0.997
	vp m/sec	1549.4 1536.6 11535.8 11535.8 11536.2 11536.2	1535.6 1535.0 1535.8 1537.3	1536.2 1533.9 1533.5 1532.7 1531.2 1527.3	1525.4 1525.4 1525.4
	Depth (cm)	01284000	12.0	14.0 15.0 17.0 18.0 20.0	22.0 23.0 24.0
	ī				

*Acoustic Data in Error

		N. Kurt																												
		Kurt																												
		Skew																												
		Dev																												
10/23/81	00 kHz	Mean Phi																												
Date: 10/23/8	0 m 4	g Clay	<u> </u>																											
		8 Silt																												
29-1	00/0	\$ Sand																												
Sample:	35.00 0/00	Shear Str.	 - - - -	8.40			22.00		36.30				4/.60		01.10			47.00		41.60			34 50		28.40				34.50	24.90
	Deg-C	or Z																												
BARTLT 1301-82 15-03N:69-21W	for: 23.0 D	æ ()																								•				
BARTL1 15-03	d for:	e caco3	- - -																											
Cruise: Position:	. 0	& Por.	<u> </u>																											
Cr	Ca	ttn. k	00.	. 69	0.791	8	.83	88.	.92	. 94	94	9,	70.	0 0		ν. α	9	92	. 79	69.	.63	50.0	57	57	. 63	. 62	. 63	.67	.71	
		Vp ati	1.001	0.980	0.978	0.979	0.978	0.978	0.978	0.978	0.978	0.978	2/6.0	0.98L	0.00	979.0	0.978	0.977	0.978	0.975	0.976	0.975	0.973	0.973	0.974	0.974	0.974	•	•	
		/p /sec	13.	98.	1496.3	96.	96	96.	95.	96	96	9 0	9 0	ער		. 9	5	93.	95.	91.	6	0 0	88	88	89.	99	00	68	90	
		pth cm)	WATER	1.0	2.0	4.0	5.0	0.9	7.0	0.8	s, c		• (, ·	; ,	ی پ	9		φ	6	٠	÷ ~	8	4	5	•	-	ъ Э	29.0	;

	X Z				
	Kurt				
	Skew				
	Dev				
10/23/81 1: 3959m 400 kHz	Mean Phi				
Date: 10/23/81 Depth: 3959m O m 400 kHz	clay				
- - -	Silt				
29-2	Sand				
Sample: 29 35.00 c/oo	Shear Str.				
0-6a	op Z				.
RTLT 1301-82 15-03N;69-21W for: 23.0 D	% U				
	caco3				
se: tion: ulate	Por.				
Cruis Fosit Calci	k k .82	88826	44860	9999999	0.638 0.638 0.638 0.638 0.717 0.717 0.638
	Rat 1.0				
	Vp m/se 	0000 0000 0000 0000 0000 0000	244444 200000 200000	4 4 C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1493.01 14893.01 14899.01 14899.01 1491.0 1491.0 1491.0 1491.0
	Dept (CE				22222222222222222222222222222222222222
	T				

	Kur.																						
	Kurt																						
	Skew																						
	Dev												4										
10/23/81 : 3959m 400 kHz	Mean Phi																						
Date: 10/23/81 Depth: 3959m 0 m 400 kHz	8 Clay																						
	Silt																						
29-3	Sand																						
Sample: 35.00	Shear Str.	7 20	?	22.00	35.10		41.60	48.70			35.70	44.00			39.80	43.40			36.90	33.90			
eg-C	e Z																,						
TLT 1301-82 15-03N69-21W or: 23.0 D	* O	- <u>-</u>																					
<u>ж</u> н	* CaCO3																						
e: ion: Late	a Por																						
Cruíse Positi Calcul	ktn	21	0.820 0.729 0.778	ဆင္	တ ဆ တ	96	010	90	9	9	2 2	7	, 39	9	9	ň vớ	7	- 9	ق	9	ف و	7	
	V.F Rat	1 - 3	000	9.0	00	33	5.0	3	. 0	3	3 3	0	3	00	0		0	.		ं		00	
	psec	1530.1 1528.5	95. 95.	97.	98.	8 8 8	86	0	30	00	000	9	93	193	061	2 0	190	160	480	064	400	491	1
	epth (cm)	-1 WATER 0.0	3.0 3.0	5.0	0.9	3 o	•	12.0		•		•			· ~			~ ~	~ M	0 -	- ~	m 4	•

	Dev Skew Kurt N. Kurt															
.4 Date: 10/23/81 Depth: 3959m 0 m 400 kHz	silt Clay Phi															
-82 Sample: 29-4 -21w 0 Deg-C 35.00 o/oo	ī	15 0.044	32 0.047	80 0.041	47 0.036	22 0.034	24 0.044	09 0.042	92 0.043	78 0.044	74 0.043	17 0.036	50 0.036	24 0.034	19 0.036	50 0.038
Cruise: BARTL1 1301-82 Position: 15-03N;69-21W Calculated for: 23.0 D	Vp Vp Attn. 8 8 8 m/sec Ratio k Por. CaCO3	0.315	0.332	0.280	0.247	0.222	0.224	0.209	0.192	0.178	0.174	0.147	0.150	0.124	0.119	0.150
	Depth (cm)	1000	4. W) O C	900	11.0	13.0	15.0	17.0	10.00	21.0	23.0	25.0	27.0	29.0	31.0

Dat	Dep 0 II
.16	
29-1	00/0
Sample:	35.00
	-21W 0 Deg-C
1301-82	3N;69 23.
ARTLT	15-0 tor:
Cruise: B	ion:

ate: 10/23/81 apth: 3959m m 400 kHz

N. Kurt Kurt Skew Dev Mean Phi & Clay % Silt Sand Str. Shear op 2 CaCO3 Por. OND. 0.638 0.717 0.740 0.740 0.675 0.805 0.885 1.038 1.038 1.038 0.987 0.987 0.885 0.850 0.729 0.729 0.638 0.675 0.656 0.696 0.675 0.656 0.620 0.000 Attn. 1.001 0.999 0.982 0.9880 0.979 0.9880 0.978 0.978 0.979 0.979 0.979 0.979 0.979 0.979 0.979 Vp Ratio 0.972 1489.0 1489.0 1487.9 1486.5 1530.5 1528.6 1502.6 1498.1 1498.1 1498.1 1495.9 1495.9 1497.4 1497.4 1497.4 1497.6 1495.2 1495.2 1490.8 1489.7 1486.8 VF m/sec -----0.0 1.0 1.0 1.0 2.0 6.0 6.0 6.0 10.0 111.0 112.0 113.0 113.0 114.0 115.0 116.0 118.0 WATER (.cm.)

Posttion: BAFUTI 1301-82 Sample: 30-1 Date: 10/23/81			z	Kur																										
Calculate: BAFILT 1301-82 Sample: 30-1 Dapte: 10,23/81			Kurt																											
Depth 30-18			Skew																											
Calculated for: 23.0 beg-C 35.00 c/oo Calculated for: 23.0 beg-C 35.0 c/o			Dev		1 1 1 1 1 1 1																									
Calculated for: 23.0 beg-C 35.00 c/oo Calculated for: 23.0 beg-C 35.0 c/o	/23/81 945m	kHz	Mean	Phi																										
Calculated for: 23.0 beg-C 35.00 c/oo Calculated for: 23.0 beg-C 35.0 c/o	Date: 10 Depth: 3	0 m 400	оNР	clay																										
Cruise: BARTLT 1301-82 Sample: Position: 15-09N;69-34W Calculated for: 23.0 Deg-C 35.00 O/ Calculated for: 23.0 Deg-C 35.0 O/ Calculated for: 23.0 Deg-C 35.0 O/ Calculated for: 23.0 Deg-C 35.0 O/ Calculated for			æ	Silt																										
Cruise: BARTLT 1301-82 Sam Position: 15-09N;69-34W Calculated for: 23.0 Deg-C L	30-1	00/0	a	Sand																										
Cruise: BARTLT 1301-82 Position: 15-09N;69-34W Calculated for: 23.0 Deg-C (cm.)	mple:	35.00	Shear	Str.	7 20	•			27.90				42.80				52.90				45.20								27.90	
Cruise: Positio Calcula (cm.) n./sec Ratio k Por 1.0 1497.4 0.979 0.851 2.0 1496.3 0.978 0.885 3.0 1498.5 0.980 0.885 4.0 1496.7 0.979 0.885 5.0 1496.7 0.979 0.987 6.0 1496.7 0.979 0.967 6.0 1496.7 0.979 0.967 10.0 1495.9 0.978 1.012 10.0 1495.9 0.978 1.066 11.0 1495.9 0.978 1.066 11.0 1497.8 0.979 1.086 11.0 1497.8 0.979 1.038 14.0 1498.9 0.980 0.964 15.0 1499.8 0.979 0.922 16.0 1497.9 0.979 0.922 18.0 1498.6 0.978 0.851 19.0 1499.7 0.979 0.958 22.0 1488.6 0.973 0.588 23.0 1488.6 0.973 0.573 24.0	S. S.	Deg-C	æ	z																										
Cruise: Positio Calcula (cm.) n./sec Ratio k Por 1.0 1497.4 0.979 0.851 2.0 1496.3 0.978 0.885 3.0 1498.5 0.980 0.885 4.0 1496.7 0.979 0.885 5.0 1496.7 0.979 0.987 6.0 1496.7 0.979 0.967 6.0 1496.7 0.979 0.967 10.0 1495.9 0.978 1.012 10.0 1495.9 0.978 1.066 11.0 1495.9 0.978 1.066 11.0 1497.8 0.979 1.086 11.0 1497.8 0.979 1.038 14.0 1498.9 0.980 0.964 15.0 1499.8 0.979 0.922 16.0 1497.9 0.979 0.922 18.0 1498.6 0.978 0.851 19.0 1499.7 0.979 0.958 22.0 1488.6 0.973 0.588 23.0 1488.6 0.973 0.573 24.0	1301-82 N;69-34	23.0	dР	ပ																										
Cruise: Positio Calcula (cm.) n./sec Ratio k Por 1.0 1497.4 0.979 0.851 2.0 1496.3 0.978 0.885 3.0 1498.5 0.980 0.885 4.0 1496.7 0.979 0.885 5.0 1496.7 0.979 0.987 6.0 1496.7 0.979 0.967 6.0 1496.7 0.979 0.967 10.0 1495.9 0.978 1.012 10.0 1495.9 0.978 1.066 11.0 1495.9 0.978 1.066 11.0 1497.8 0.979 1.086 11.0 1497.8 0.979 1.038 14.0 1498.9 0.980 0.964 15.0 1499.8 0.979 0.922 16.0 1497.9 0.979 0.922 18.0 1498.6 0.978 0.851 19.0 1499.7 0.979 0.958 22.0 1488.6 0.973 0.588 23.0 1488.6 0.973 0.573 24.0	3ARTLT 15-091	d for:	оp	CaCO3	1																									
Defth Vp Vp Atti (cn) m/sec Ratio k 1.0 1497.4 0.979 0.85 2.0 1496.3 0.978 0.88 3.0 1495.9 0.978 0.82 5.0 1496.7 0.979 0.82 5.0 1496.7 0.979 0.98 6.0 1496.7 0.979 0.98 6.0 1495.9 0.978 0.96 6.0 1495.9 0.978 1.01 11.0 1496.7 0.979 1.05 12.0 1497.8 0.979 1.05 13.0 1497.8 0.979 1.05 14.0 1497.8 0.979 0.92 15.0 1497.9 0.979 0.92 16.0 1497.4 0.979 0.92 18.0 1495.5 0.978 0.95 19.0 1491.2 0.978 0.85 22.0 1488.6 0.973 0.58	uise: Beition:	lculate	οφ	Por.																										
Depth VP VF (cm) m/sec Ratio 1.0 1497.4 0.979 2.6 1496.3 0.978 3.0 1495.9 0.978 4.0 1496.7 0.979 6.0 1496.7 0.979 6.0 1496.7 0.979 6.0 1496.7 0.979 11.0 1496.7 0.979 11.0 1496.7 0.979 12.0 1496.7 0.979 12.0 1496.7 0.979 18.0 1497.4 0.979 18.0 1491.2 0.978 22.0 1488.6 0.973 24.0	Cr	Ca	Attn.		ļα	. A & . C	0.885	0.820	0.885	0.765	0.987	0.964	1.012	1.066	1.097	1.066	1.038	0.964	0.922	0.942	0.922	0.851	0.791	0.717	0.604	0.588	•			
Depth Vp (CR) 1.0 1499 1.0 149			4	Ratio	070	0.978	0.978	0.980	0.979	978	616	978	978	979	979	979	0.979	ö	0	0.979	0.979		•	•			•			
Depth (CCI) 1.0 2.6 3.0 4.0 5.0 5.0 6.0 11.0 11.0 11.0 11.0 11.0 11.0 11.			٧p	n/sec	1497 4	1496.3	1495.9	1498.5	1496.7	496.	496.	495.	495.	496	4	4	49	458	498	497	496	495	493	491	490	488.	188.			
			Derth	('CII')	1 0	, c	0	•	•	0.9	7.0	٥.	0	0	_	_	_	0	0	٥	٥	_	٥	2	0	_	<u> </u>	24.0	25.0	

	N. Kurt																												
	Kurt	_																											
	Skew																												
	Dev	1																											
10/23/81 1: 3945m 400 kHz	Mean																												
Date: 10/23/81 Depth: 3945m 0 m 400 kHz	g Clay	-																											
	Silt	1																											
30-2	Sand	-																											
Sample: 30.	Shear Str.	7.10				32.10				48.10			•	40.40			08 38	•		0	30.90			08 90	70.00			25.60	
o−6a	w Z	! ! !																											
RTLT 1301-82 15-09N;69-34W for: 23.0 D	* U																												
≪	_	 																											
Cruise: B Position: Calculated	% Por.	1																											
Cr. Pos	Attn.	96.0	0.964	4 9	96	1.012								•	•		•			•	٠	•		•					•
	VP atio	0.986	0.980	0.981	0.979	0.979	0.978	0.978	0.978	0.979	0.979	0.979	0.979	0.979	8/60	0.977	010	0.976	0.975	0.973				0.974					0.973
	Vp /sec	07.	94	200	497.	496.	95.	495.	495.	497.	97.	497.	496.	. 10	495.	400	440	1493.4	450.	1488.6	487.	48	487.	489.	200	400	87.	488.	1488.6
	Opth (cm)	1.0-1	2.0	2 4 0 0	5.0	0.0		0.6	0	$\overline{}$	\sim	m	4	ഹ	0	· ·	o o	20.0	_	α	ຕ	4	S	9 (~ a	0 0	$^{\circ}$	_	\sim

	K Kur				
	Kurt				
	Skew				
	Dev				
)/23/81 3945m) kHz	Mean Phi				
Date: 10/23/81 Depth: 3945m 0 m 400 kHz	clay				
	Silt				
30-3	Sand				
Sample: 30.	Shear Str.	23.80	46.40	43.40	26.20
ე − 6a	op Z,				
ARTLT 1301-82 15-09N;69-34W for: 23.0 D	مه ن ا				
	caco3				
se: tion: ulate	Por.				
Cruis Fosi Calci	ttn k .76	0.000000000000000000000000000000000000	90. 80. 80. 80. 80.	88. 88. 60. 60.	63.67
	4kr atio 981	0.980 0.980 0.980 0.980 0.980	0.980 0.981 0.981 0.980 0.980	0,000,000	, 0, 0, 0, 0
	VF / sec 500.	14997.8 14998.5 1498.5 1498.5 1498.5 1498.5 1498.5	4 4 4 5000	1499.3 1497.1 1498.9 1494.8 1493.7	4 4 4 4 0 0 0 0 0 0 0 0
	+ + 1 ± 1 + +	24 N & C & Q	244w4.00		4.0.0
	1				

	N. Kurt																									
	Kurt																									
	Skew																									
	Dev																									
10/23/81 1: 3945m 400 kHz	Mean Phi																									
Date: 10/23/81 Depth: 3945m 0 m 400 kHz	clay																									
	Silt																									
30-4	Sand																									
Sample: 30.	Shear Str.	7.10		23.70	30,30			36.90		48.80			45.50	6	39.20		1	36.30	30.90			0	76.80	30.90		
₩ Deg-C	ap 23	<u>.</u>																								
RTLT 1301-82 15-09N;69-34W for: 23.0 D	ao ()																									
BARTLT 1301-82 15-09N;69-34 d for: 23.0	caco3	, , ,																								
Cruise: Position: Calculate	Por.																									
Cr. Pos	t th	1 20	1.038	$\omega \propto$	9	9	9	တ္ေ	20	ຸໝ	ο.	ວັ ລ	3 3	w	30 1	- ' -		٠,	u 1 u			٠.	•	•		
	Vp atio	io	0.983	o c	ာ်	òò	o	0	5 c	0	0	j	o ⊂	0	O	o c	•	0	0	O)	0	9	O	9	
	VP S	504	1504.1	197.	50.	194	494.	494		496	497.	295		453	491.	4 90°	488	486.	-	486.	4 8 4 8		487.	•	486.	
	epth (cm)	1.0	3.0	4 v	900	° °	0.6	10.0	11.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	22.0	23.0	24.0	25.0	27.0	28.0	29.0	30.0	32.0	

	N. Kurt																								
	Kurt																								
	Skew																								
	Dev																								
10/23/81 1: 3945m 400 kHz	Mean Phi																								
Date: 10/23/; Depth: 3945m 0 m 400 kHz	g Clay																								
000	silt																								
30-5	Sand																								
Sample: 30 35.00 0/00	Shear Str.																								
eg-C	o≠ Z.																								
RTLT 1301-82 15-09N;69-34W for: 23.0 D	ص ر) ! ا																								
≪	& CaCO3	:															,								
Cruise: B Fosition: Calculated	Por.																								
Cru Fos Ca]	Attn. k	00	0.376			•			•	•			•			•	•	•	•			•	•	•	•
	Vp Ratio	.000	0.989	0.979	0.978	0.978	0.979	0.978	0.978	0.979	0.980	0.980	0.980	0.980	0.979	0.980	0.978	0.976	0.470	0.974	0.973	0.974	0.974	0.974	•
	Vp m/sec	29.	13	.6	ວິດ ທີ	95	97.	95.	96		98.	86	98.	858	97.	98.	95.	6		0 0	87.	89.	89.	90	90.
	Depth (cm)	WATER	1.0 15	3.0	4. 7. D. 0	0.9	7.0	0.6	10.0	11.0	13.6	14.0	15.0	16.0	18.0	19.0	20.0	21.0	22.0	24.0	25.0	26.0	27.0	28.0	29.0
	_																								

		N N																											
		Kurt																											
		Skew																											
		Dev																											
3945m	0 kHz	Mean Phi																											
Date: 10/23/81 Depth: 3945m	0 m 40	clay																											
		Silt	<u>:</u>																										
30-6	00/0	s Sand																											
Sample:	35.00 0/00	Shear Str.	<u>.</u>	8.30		15.50		29.10				44.60	0	52.30				23.30	38.70				29.10		31.50			00	30.90
	Deg-C	ф Z 	_																										
RTLT 1301-82	23.0	оФ ()																											
3.4	O	s CaCO3																											
<u>.</u>	Calculated	PO F.																											
Cr	C C	Attr.	0.	0.636	œ	9	ن ي	9	9	5	Ō.	0	•	6	٠.	٠.	0	ۍ د	2	α	9.	• 6	9.	. 60	9.	.67	.67		
		0	1.00	000	0	50	200	0.9	0.5	0.9	0.5	3	5.0	0	0.5	0	0	o	0	0	0	0	0	3	0	0	0		
		Vp /sec	1530	1507	1495	1495	1494	1495	1495	1495	1495	1495	1496	1497	1498	1497	1497	1497	1470	1493	1491	1490	1489	1488	1488	1488	1488		
		De De	-L WATEK 0.0) J C	, m	4.0	0.0	7.0	0.8	0.6									18.0										

	K K L		
	Kurt		
	S ke s		
	Dev		
: 10/23/81 1: 3949m 400 kHz	Mean Phi		
Date: 10/23/ Depth: 3949m 0 m 400 kHz	Clay		
	Silt		
31-1	8 an a		
Sample: 31 35.00 d/oo	Shear Str. 10.70	42.60	34.50 30.90 27.30
W Deg-C	on Z		
KTLT 1301-82 15-04N;69-19W for: 23.0 D	on () 		
₹	CaCO3		
Cruise: BA Position: Calculated	Por		
Cr Poor	Attn. k 0.000 0.218 0.765 0.851 0.885 0.885 0.985	1.066 1.097 1.098 0.987 0.922	0.851 0.765 0.765 0.666 0.588 0.573 0.656 0.675
	VP Ratio 1.002 1.000 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981		0.948 0.948 0.948 0.946 0.945 0.945 0.945
	VP m/sec 1532.0 1528.9 1501.8 1500.7 1499.6 1499.6	500.	1498.7 1498.7 14996.7 14991.9 1490.8 1491.2 1491.2
	Depth (GR) 1.0 0.0 1.0 2.0 3.0 4.0 5.0	7.0 8.0 9.0 110.0 113.0 113.0	16.0 17.0 18.0 19.0 20.0 22.0 24.0 25.0

	Kur					
	Kurt					
	Skew					
	Dev					
10/23/81 1: 3949m 400 kHz	Mean Phi					
Date: 10/23/81 Depth: 3949m 0 m 400 kHz	clay					
	silt 					
31-2	Sand					
Sample: 35.00	Shear Str.					
r Deg−C	op Z					
RTL1 1301-82 15-04N;69-19W for: 23.0 D	* O					
	caco3					
Cruise: BA Position: Calculated	Por.	79.2	76.7	73.9		
Cr Po Ca	tt k	767	25 82 83 83	96.03	000000000000000000000000000000000000000	0.6556 0.6556 0.6575 0.6575 0.6575 0.6575
	VF Rat 	00000	0000	00000		0.000000000000000000000000000000000000
	VP m/sec 	9000	955. 986. 986.	98.	999. 999. 995. 91.	14890.8 14889.4 14889.4 14889.0 14887.6 1489.0
	Depth (.cm)	3.0				22. 22.0 22.0 22.0 22.0 20.0 31.0

		N. Kurt	
		Kurt	
		8 8 Shear 8 8 8 Mean Dev Skew Kurt N. Por. CaCO3 C N Str. Sand Silt Clay Phi	
		Dev	
1,29/81) kHz	Mean	
Date: 10/29/81 Depth: 4322m	0 m 400	the Clay	
		silt	
42-2	00/p	sand	
Sample: 42-2	35.00	Shear Str.	
Sar	Deg-C	ae :Z	0.078
301-82	23.0	an C)	0.371
Cruise: BARTLT 1301-82 Sample: 42- Position: 14-50N:68-59W	for:	s CaCO3	
ise: BA	culated	Por.	
Crı	Ca	Attn. k	
		Vp A	
		Depth Vp Vp Attn. % (cm.) m/sec Ratio k Por.	
		Depth (cm.)	0.1
			1

	. t					
	Kur -					
	Kurt					
	<u>!</u> * !					
	Skew					
	Dev					
0/29/81 4322m 0 kHz	Mean Phi [
Date: 10/29/81 Depth: 4322m 0 m 400 kHz	clay					
	Silt		•			
42-8	Sand					
Sample: 35.00	Shear Str.					
0-6a	se :2					
RTLT 1301-82 14-50N;68-59W for: 23.0 D	په د د					
BARTLT 14-501 d for:	s caco3					
Cruise: Position: Calculated	POI.					
Cru Pos Ca]	Attn. k	9 6 6 L	1 L 20 20 X	യൊയായായാ	பவ வ வ வ் வ வ வ வ	0.834 0.849 0.820 0.729 0.732 0.635
	vp Ratio	43000	00000			
	Vp n/sec	523.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	500. 500. 501. 501.	50002	1499.6 1497.0 1494.1 1493.6 1492.6 1490.5 1489.4
	Depth (.cn.)	MATER 0.0 1.0 2.0	4.0000	10.0 11.0 13.0	15.0 16.0 17.0 18.0 19.0 20.0 21.0	25.5.2 26.5.2 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26

	Z																							
	Kurt																							
1	Skew																							
	Dev																							
10/29/81 : 4322m 400 kHz	Mean																							
Date: 10 Depth: 4 0 m 400	clay																							
	Silt																							
42-9	sand																							
Sample: 42.	Shear Str.		5.40		20.80	32.70			44.60	00	4 / • 0 0			48.20	42.20			26.80		22.60			04.40	04.47
Sar W Deg-C	op Z.																							
RTLT 1301-82 14-50N;68-59W For: 23.0 Deg	هه <u>ن</u> ا																				•			
~	caco3	•																						
se: tion: ulate	Por.																							
Crui Posi Calc	Attn.	0.000	0.71 0.76	0.83	98.0	0.89	98.0	0.95	0.95	0.97	2.0	1.00	0.91	0.93	0.97	0.95	68.0	0.86	0.86	0.80	0.73	0.72	0.61	0.08
	Vp Ratio	.002			0.981	• •	0.981					0.984	•		0.982	•	•	0.979		0.976	•	•	•	0.9/4
	νp m/sec	53.	.503. 1500.	500.	500.	500	500.	501.	501.	501.	502	504	502.	502.	502	501.	501	497	495	493.	492.	491.	489	489
	Depth (cm)	WATER 0.0	2.0	w 4 O O	0.0	7.0	0.3	10.0	11.0	12.0	13.0	15.0	16.0	17.0	18.0	20.0	21.0	23.0	24.0	25.0	26.0	27.0	28.0	79.0

	N. Kurt	1					
	Kurt	! ! ! !					
	Skew	! !					
	Dev	, 					
10/29/81 1: 4322m 400 kHz	Mean	 					
Date: 10/29/81 Depth: 4322m 0 m 400 kHz	s Clay	 					
	Silt	1					
42-10	Sand						
Sample: 35.00	Shear Str.	7.10	21.40	43.40	52.30	35.10	28.50
. Sa W Deg-C	ж Z						
RTLT 1301-82 14-50N;68-59W tor: 23.0 Dc	‰ €)						
BA G	caco3	<u>'</u>					
Cruise: Position: Calculate	Por.						
Pos	k tt	. 000 170 635 690 779	0 2 2 6 6	2000	202000	20088888	
	Vp Ratio	999999	0 0 0 0 0	9999	<u>, , , , , , , , , , , , , , , , , , , </u>	00000000	0.975 0.973 0.973 0.972 0.972 0.972 0.978
	Vp/sec	528. 5227. 5527. 4498.	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	440040 00000 0000	502. 502. 502. 502.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1490.5 1488.3 1488.3 1487.6 1487.2 1487.2 1486.1 1496.3
	Depth (cm.)	ATE C.		9044	44.00.000	0 1 2 6 4 6 6	325.0 326.0 337.0 34.0 35.0

	N. Kurt	0.36	0.37	0.37	0.37	0.37	0.36	0.37	98.0	0.37	0.37	0.38	0.38	0.39	0.38	0.40	0.39	0.40
	Kurt	0.57	0.58	0.58	0.57	0.58	0.57	0.58	0.57	0.58	0.58	0.61	0.61	0.64	0.62	99.0	0.65	99.0
	Sker	0.64	09.0	0.52	0.45	0.52	0.49	0.16	-0.09	-0.21	-0.02	-0.32	-0.28	-0.36	-0.35	-0.36	-0.41	-0.46
ing the state of t	Dev	4.36	4.33	4.33	4.33	4.37	4.34	4.34	4.37	4.32	4.30	4.26	4.20	4.35	4.22	4.21	4.15	4.15
10/29/81 : 4322m 400 kHz	Mean Phi	4.76	4.93	5.17	5.35	5.17	5.22	5.95	6.63	06.9	6.57	7.26	90°2	7.56	7.26	7.44	7.59	7.73
Date: 10/29/81 Depth: 4322m O m 400 kHz	clay	37.09	37.50	39.66	42.00	38.92	40.49	43.38	47.91	49.57	47.22	52.40	50.89	54.33	52.69	54.87	55.80	57.45
M 00 (silt	6.51	8.39	8.21	7.56	8.77	7.73	9.93	10.31	12.20	12.43	13.10	13.67	13,62	13.06	15.41	12.78	12.44
42-11	Sand	56.40	54.11	52.14	50.44	52,31	51.79	46.69	41.78	38.23	40.35	34.50	35.43	32.05	34.25	29.72	31.42	29.95
Sample: 35.00 c	Shear Str.																	
o-6a	00 Z																	
RFLT 1301-82 14-50N;68-59W for: 23.0 D	به U																	
	& CaC03	62.50	63.24	64.12	64.66	63.40	64.91	61.82	61,39	68.09	63.27	60.23	62.19	64.50	62.09	62.89	62.95	62.43
Cruise: BA Position: Calculated	Por.	81.3	77.9	77.0	76.5	75.2	73.5	72.6	71.3	70.5	70.5	70.5	70.7	72.9	73.9	74.5	73.7	71.5
Crui Posi Calc	# 4 1 4	0.573	- 80 (ည်ထွင	×α	ထစ္	0.0	0.0	9.9	ο, α	6.0	æ æ	ي. ف ف	2.8		9.	ထ	
	a tro	0.991 0.981	200	نين	20	ي ق	0.0	9.9	6.0	9.0	0.0	ي ق	ي ق	2.0	ο. o.	0.0	σ.	
	VP /sec	1515.6	498.	498.	497.	497.	499.	501.	502.	502.	499.	497.	500. 497.	496.	489.	482.	489.	
	FI GPt	WATER 0.0					6-1	N m	-10	100		· i	3.6	4.10	50.	m on	. i	200

Date: 10/29/81	Depth: 4322m	0 m 400 KHZ
42-17		00/
Sample:		35.00 0
Cruise: BARTLT 1301-82	Position: 14-50N;68-59W	Calculated for: 23.0 Deg-C

	N. Kurt																								
	Kurt																								
	Skew																								
	Dev																								
0/29/81 4322m 0 kHz	Mean Phi																								
Date: 10/29/81 Depth: 4322m 0 m 400 kHz	clay																								
	Silt																								
42-17	Sand																								
Sample: 42-]	Shear Str.		5.90		11.30	23.80			404		5.0 5.0				51.70	20 80	•			38.10	•	25.60			
o−6a	ap 23																								
o,	æ U																								
A B	caco3																								
se: tior ulat	Bor.																								
Cruis Posi Calci	Attn.	0 %	0.618	∞ ∞		r- 0	စ္ထာ	O.	S,	on o	3 1 (<i>y</i> , c		1		٠, ١	•	٠,	~ `	~	~ `	~ `	•	•	
	Vp Ratio	1.001	0.982	9.0	0	0.0	5 0	0	0	0	0	0	5		0	0	3	0	3	•	÷ (•	•	•	•
	Vp m/sec	30	1502.6	98	99	000	900	56	000	00	$\frac{1}{2}$	000	0.0	2 0	0	50	6	498	5	9	2	64	2	Ž.	0
	Dep (.c	WATER	2.0	3.0	0	0.9	0.0	0.0	10.0	11.0	12.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	7.1.0

	Kurt N. Kurt																			ď							
	Skew																										
	Dev																										
10/29/81 : 4493m 400 kHz	Mean																										
Date: Jepth: 0 m 4(Clay																			g da							
	Silt																										
43-1	Sand																										
Sample: 35.00	Shear Str.		0.90		11.90	25.00		1	51.70	54.10			62.40	53, 50			47.60	,	34.50			39.20	0	30.90			
ე-6a-	# Z																			. 1/2							
TLT 1301-82 14-45N;68-52W for: 23.0 D	ao ()																										
<u> </u>	caco3						54																				
Cruise: BA Position: Calculated	Por.																										
C. C.	Attn.	0.292	2.0	9.9	9.9		9.		.,	٠.	α,	ر د د	ထ	ထ္၀	. ~	000	٥.			ی و		9		•			æ
	at v	1.001	2.0	ن ن	9.0	9	ກຸວ	. 0.	0,0	ນ໌ວ	6.	ع م	. 0.	9.0	, o	9.0	ນໍລ	٠.	۵,	200	.0	6.	9	ο, ο	, 0	9	٠.
	Vp /sec	1531.2	498. 498.	498.	498.	498	497.	499.	500	500. 501.	501.	501.	502.	502.	500.	499.	499°	497.	493.	49T	491.	493.	492.	491.	492	492.	492.
	Depth (cm)	ATO	2.0	0.4 0.0	5.0	7.0	ص د د	10.0	11.0	12.0	14.0	15.0	17.0	18.0	20.0	21.0	23.0	24.0	25.0	26.0	28.0	29.0	30.0	31.0	33.0	34.0	35.0

		N. Kurt																													
		Kurt																												980	
		Skew																													
		Dev																													
Date: 10/29/81 Depth: 4493m	0 kHz	Mean																													
Date: 10/29/ Depth: 4493m	0 m 40	s Clay																													
		Silt																												v	
43-2	00/0	8 Sand																													
Sample:	35.00 0/00	Shear Str.			4.20			20.20		29.70				41.60)	49.90				61.80		54.10				21.10	41 60	•			40.40
Sa	Deg-C	op Z																													
	23.0 D	æ ()	-																									•			
<u>~</u>	d for:	s caco3																													
Cruise: B Fosition:	alcutated	% Por.	1																												
C. C.	S.	-	<u> </u>		0.531	0.573	0.638	0.675	0.656	0.656	969.0	0.740	0.717	969.0	0.675	0.656	0.765	0.903	0.851	0.791	0.820	0.835	0.020	0.132	0.00	0.706	0.717	0.717	0.604	0.656	969.0
		0	.001	•	0.979 0.979	976.	.979	.980	.980	.981	981	981	186	186	981	981	981	982	982	983	0.983	מ מ מ	100	000	186	926		716	916.	926.	
		Vp m/sec	531	528	1497.8	1497.8	497.	1498.9	498	1500.0	0	m	m	m	_	~	m				1502.9			4 9 9 6	499.6	493.4	95.2	4.8	93.4	93.4	3.7
		epth (cn.)	WATER	0.0	2.0	3.0	4.0				•	٠	0	0							0.0								٥.	28.0	29.0

	N N N N N N N N N N N N N N N N N N N
	De c
10/29/81 : 4493m 400 kHz	Mean Phin
Date: 10/29/ Depth: 4493m 0 m 400 kHz	Clay
43-3	o a n i i i i i i i i i i i i i i i i i i
Sample: 35.00	Shear
ე− 6 a	do Z
T 1301-82 -45N;68-52W r: 23.0 D	de C)
ARTL 14 d fo	Caco3
Cruise: B Position: Calculate	J O O
0 4 0	Attn. - - - - - - - - - -
	Ratio 12 1 10 10 10 10 10 10 10 10 10 10 10 10 1
	No. 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1
	Depth (CE) (CE) (CE) (CE) (CE) (CE) (CE) (CE)

	Kur t														
•	Kurt														
	Skew														
	Dev														
Date: 10/29/81 Depth: 4493m 0 m 400 kHz	Mean Phi														
Date: 1 Depth: 0 m 40	Clay														
	silt														
43-6	Sand														
Sample: 43.	Shear Str.	6.50	23.80	36.30		56.50		90.09		63.00	52.30		46.40	35.70	
ე−6≅	ap 22														
	ap ()														
BARTLT 1301-82 :: 14-45N;68-5 ed for: 23.0	* caco3														
Cruise: Bi Position: Calculate	a Por.														
Cr u Pos.	Attn. k		0.573 0.618 0.635	0.690	0.710	0.710	0.690	0.820	0.779	0.779	0.899	0.806	0.732	0.792	0.779
	Vp Ratio	1.001 0.992 0.982	0.979 0.979 0.979	0.980	0.980	0.980	0.980	0.982	0.982	0.982	0.985	0.982	0.980	0.979	0.976
	Vp m/sec	531.2 517.9 1502.6	497.4 1497.8 1497.8	1499.2	1498.9	1498.9	1498.9	1502.2	1502.2	1501.4	1505.9	1501.4	1498.5	1497.8	1492.3
	À	WATER 0.0	2.0.4	.00 .00	8.0	10.0	11.0	13.0	15.0	16.0	18.0	20.0	22.0	25.0	26.0

	N. Kurt		0.37	0.36	,	10.0	0.37	0.37		0.37	0.37	75 0		0.37	0.38	0.38		0.38	0.41	0.41	t	0.41	0.39
	Kurt		0.58	0.57	0	0.00	0.58	0.58		0.58	0.58	c a	•	0.58	0.61	0.61		0.62	69.0	0.70		69.0	9.65
			-0.01	0.68	6	0.03	0.07	0.07		-0.16	-0.40	٠ - ١	7	-0.29	-0.28	-0.36		-0.33	-0.41	-0.43		-0.43	-0.40
	Dev		4.36	4.29	00	4.30	4.32	4.32		4.25	4.07	91 4		4.03	4.08	3.94		3.92	3,85	3.77		3.77	3.68
10/29/81 4493m 00 kHz	Mean		6.15	4.78		10.0	6.03	6.01		6.57	06.9	99		6.73	6.87	96.9		6.92	7.26	7.30		7.27	7.14
Date: 10/29/ Depth: 4493m 0 m 400 kHz	8 Clay		45.23	36.34		43.02	43.01	43.11		47.35	52.33	48 45		49.45	50.13	51.70		50.82	54.83	55.32		55.18	53.00
0.00	å Silt		9.25	7.94	000	10.39	10.15	10.69		12.92	15.00	13 66	•	14.93	15.79	16.85		17.74	18.61	19.09		18.44	19.53
43-15	& Sand		45.53	55.35	10	40.19	46.84	46.20		39.73	32.67	37 89		35.62	34.07	31.45		31.43	26.56	25.58		26.32	27.47
Sample: 35.00 c	Shear Str.																						
Sam W Deg-C	de Z																						
TLT 1301-82 14-45N;68-52W for: 23.0 De	₩ ()																		•				
\simeq	t CaCO3	- ' ' '	55.10	57.14	66.03	26.95	58.40	58.60		54.39	55.29	56 40	•	57.81	57.41	57.30		56.36	58.65	57.78		58.28	58.65
യ •• വ		-																					
	Por.	,	81.5	78.7		** / /	77.1	75.8		74.6	73.4	726		71.3	71.3	71.4		71.5	72.3	72.7		73.0	71.3
•• 🔾 🚜	4	0.7	499 81.	632	. 632	704	96	746 75.	.746	724 74.	820 73.	793 72	757	.793 71. .820	. 793	781	757	724 71.	757 72.	632 72	617	820 73.	
	k Por	001 0.00	499 81.	979 0.632	.980 0.632	979 0.704	979 0.66	980 0.746 75.	980 0.746	980 0.724 74.	982 0.820 73.	981 0.848	982 0.757	982 0.793 71. 982 0.820	982 0.793	080 0.781	980 0.757	977 0.724 71. 977 0.704	977 0.757 72.	977 0.632 72	975 0.617	978 0.820 73.	
	Vp Attn. 8 atio k Por	531.6 1.001 0.00 523 2 0 996 0 24	9 0.983 0.499 81.	497.8 0.979 0.632	498.1 0.980 0.632	497.4 0.979 0.704	497.4 0.979 0.66	498.9 0.980 0.746 75.	498.9 0.980 0.746	498.9 0.980 0.724 74.	501.4 0.982 0.820 73.	501.1 0.981 0.848 502.6 0.982 0.793 72	502.6 0.982 0.757	502.6 0.982 0.793 71. 502.6 0.982 0.820	501.8 0.982 0.793	498.9 0.980 0.781	499.2 0.980 0.757	494.1 0.977 0.724 71. 494.8 0.977 0.704	494.8 0.977 0.757 72.	494.1 0.977 0.683 72	490.5 0.975 0.617	196.3 0.978 0.820 73.	
	epth Vp Vp Attn. % (cm) m/sec Ratio k Por	SR 1531.6 1.001 0.00	502.9 0.983 0.499 81.	0 1497.8 0.979 0.632	.0 1498.1 0.980 0.632	0 1497.4 0.979 0.704	0. 1497.4 0.979 0.66	.0 1498.9 0.980 0.746 75.	0.0 1498.9 0.980 0.746	1.0 1498.9 0.980 0.724 74.	3.0 1501.4 0.982 0.820 73.	4.0 1501.1 0.981 0.848 5.0 1502.6 0.982 0.793 72	6.0 1502.6 0.982 0.757	7.0 1502.6 0.982 0.793 71. 8.0 1502.6 0.982 0.820	9.0 1501.8 0.982 0.793	1.0 1498.9 0.980 0.781	2.0 1499.2 0.980 0.757	3.0 1494.1 0.977 0.724 71. 4.0 1494.8 0.977 0.704	5.0 1494.8 0.977 0.757 72.	7.0 1494.1 0.977 0.683 72	3.0 1490.5 0.975 0.617	0 1496.3 0.978 0.820 73.	1.0

		N. Kurt		
		Kurt		
		Skew		
		Mean Dev Skew Kurt N. Phi		
1/29/81 493m	kHz	Mean Phi		
Date: 10//29/81	0 m 400 kHz	s Clay		
	,	Shear % % % Str. Sand Silt Clay	1	
43-17	00/0	Sand		
Sample: 43-17	35 -00	Shear & Str. Sand	1 1 1 1	
	og-C	# Z		0.081
Sruise: BARTLT 1301-82	rosition: 14-43N,00-32N Calculated for: 23.0 Deg-C 35.00 d/oo	æ U -	111111	0.344 0.081
RTLT 13	for:	* cac03		
Cruise: BA	ition: culated	Por.		
Cro	S. S.	Attn. k	1	
		Vp Ratio		
		Depth Vp (cm) m/sec R		
		Depth (.cm)		

Kur
Kurt
Skew
Dev
% Mean Dev Skew Kurt N ay Phi
s s shear s s shear N. CaCO3 C N Str. Sand Silt Clay Phi
silt
s Sand
Shear Str.
Z C
Caco3 C N
caco3
Por.
Attn.
Vp Ratio
epth vp Vp Attn. % (cm) m/sec Ratio k Por
Depth (cm)

	N. Kur t																									
	Kur																									
	÷																									
	Kurt																									
	¥					3																				
	÷																									
	Skew																									
	S																									
	÷	•																								
	>																									
	Dev																									
H	<u> </u>	-																								
Z = Z	Mean																									
30.5 kE	X i																									
10/30/ : 4805m 400 kHz	+	-																								
•• 🚾	> !																									
Date Dept O m	\$ Clay																									
ÃÃO	<u> </u>	4																								
	ابد																									
	Silt	•																								
	W -	_																								
.11	_ g																									
44-11	g Sand																									
ple: 44-35.00 d/oo	0, -	_																								
00	Str.																									
ole 35.	Shear Str.																									
Sample:	0, .	<u>'</u>																								
ن ن	op 2																									
2W Deg-C																										
ZW De		<u>'</u>																								
TLT 1301-82 14-19N;68-22W for: 23.0 D	اريمه	i i																								
101-87 168-7 23.0		!																								
1301-82 9N;68-2 23.0	-	<u>:</u>																								
TLT 14-1 for:	* aC03	1																								
RTLT 14-1 for:	% O	ļ.																								
Ø '0	O I	<u>.</u>																								
E 10	• 1	1																								
ise iti sul																										
Cruise: Positio Calcula	-	<u> </u>																								
OAO	ċ	000	336	47	75	9	90	47	33	20	20	23	98	58	78	78	96	43	17	80 0	200	17	999	407	124	
																	•						•	•	• •	
	-	-																								
	p tio	100	978	77	76	74	75	74	974	75	74	9/	176	975	7.5	175	920	9/	17	78	97.9	378	976	7 7	378	
	Vr	1.0	. ס	o. o.	6.0		6.0	, 0	9.6	6	ი :	, 0	6	6	ים מים	0.0	5	, 0	0.0	0 0	0,0		0.0			
.*	-		5 O O				20 1	- 4					9	00 0	20 00	∞	σ,	* 4	2	~	0	0	0	ο α	m	
	ပ္	1																			-		-			
	VP m/se	152	1495.	49	149	148	149	148	148	149	149	145	149	149	145	145	149	145	149	145	149	145	149	145	149	
	ith		00	00	0.0	0	0.	. 0	0	0	0	> C	0	0.0	0	0	0.0	200	3.0	0.	0	0.0	0.8	30	1.0	
	Depth (cm)	WAT	7.0	יא ש	4.11	1 9	1- (~ 0	7	Ξ	77	14	1 ~	16	٦ ٣	12	5(7 0	7	5	7,0	7 7	25	7 0	n m	

	N. Kurt	0.41	0.39	0.41	0.45	0.58	0.56	0.48	0.43	0.52	0.46	0.40	0.42	0.41	0.40	0.39	0.39	0.47
	Kurt	0.68	0.64	0.71	0.80	1.37	1.27	0.91	0.74	1.06	0.87	0.67	0.73	0.71	0.67	0.64	0.65	06.0
	Skew	-0, 59	-0.53	-0.53	-0.51	-0.53	-0.57	-0.52	-0.53	-0.64	-0.57	-0.56	-0.57	-0.52	-0.53	-0.43	-0.48	-0.58
	Dev	4.25	4.35	4.19	4.26	3.87	4.01	4.26	4.28	3.91	4.09	4.04	3.95	3.93	3.84	3,95	3.87	3.55
10/30/81 4805m 00 kHz	Mean	7.61	7.59	7.59	7.77	8.43	8.10	7.86	7.80	7.81	7.69	7.44	7.50	7.46	7.36	7.22	7.21	7.82
Date: 10/30/ Depth: 4805m 0 m 400 kHz	clay	64.87	62.84	63.69	62.69	71.33	69.55	65.80	64.08	67.54	64.44	61.64	61.85	59.98	58.44	55.59	55.94	63.74
110	silt	8.75	9.29	10.70	9.86	11.27	10.91	11.19	11.07	11.50	11.85	11.64	13.31	14.55	15.04	15.60	16.05	16.69
44-12	Sand	26.37	27.87	25.60	24.46	17.40	19.55	23.01	24.85	20.96	23.70	26.73	24.84	25.47	26.52	28.81	27.94	19.57
Sample: 35.00 c	Shear Str.																	
)-6a	op 22																	
TLT 1301-82 14-19N;68-22W for: 23.0 D	ap ()													•				
24	caco3	40.10	2.0	40.39	38.56	34.45	36.65	41.62	40.94	41.09	42.57	44.73	44.35	46.51	48.89	49.63	51.71	44.75
se: B tion: ulate	Por.	82.7		78.9	77.4	76.0	75.1	74.7	74.4	74.0	74.1	73.6	73.2	72.7	72.8	72.6	72.3	72.5
Cruis Posi Calci			444	24.23	.21	.13	.16	.31	34	.34	.39	44.	. 51	51	.58	.67		
	V p	1.001 - 0.995 0.979	999	0,00	9.9	ي ق	0.0	0.0	0.0	0.0	ο. Ο	ن ق	ο.	9.9	<u> </u>	9.9		
	Vp/sec	1531.2 1521.7 1496.7	493. 493.	492. 491.	490.	490.	490.	491.	492.	493.	494.	495. 496.	497.	496. 498.	499.	499.		
	Depth (cm)	WATER 0.0 1.0	2 6 0 0 0 0	5.0	0.0	10.0	2 6	4. 5	6.	α. φ.	0:	35	5.	9:	ဆံတံ	0:1	32.0	4.0

	N. Kurt																							
	Kurt																							
	Skew																							
	Dev																							
10/30/81 1: 4805m 400 kHz	Mean Phi																							
Date: 10/30/81 Depth: 4805m 0 m 400 kHz	8 Clay 																							
	Silt																							
44-13	Sand																							
Sample: 44- 35.00 d/oo	Shear Str.	9	0.00		16.60	0.50	00.61		0	42.80	50				49.30	50.50			0	50.00	40 00	42.40		52.90
ე−6a	op 2																							
LT 1301-82 4-19N;68-22W or: 23.0 D	as ()																							
F 4	caco3																							
Cruise: BA Position: Calculated	Por.																							
Por	Attn. k		27	30	29	27	27	2	21	21	87	7,	30	36	36	32	36	36	40	4	4	4.	٠ ک	
	Vp Ratio	002 998	مُن	ص م	ری	0,1	ຫຸວ	ا م	5	ο.	σ,	3, 0	ייסיי		5.	5, 0	5 5	5	0,	٥.	٠.	0.980	•	
	Vp m/sec	532	198. 195.	493.	492.	491.	492.	490.	490.	490.	491.	491.	491.	493.	494.	493.	496	496.	496.	498.	498.	498.	499.	
	Depth	ER.	1.0																					

	N. Kurt																						
	Kurt																						
	Skew																						
	Dev																						
10/30/81 1: 4805m 400 kHz	Mean																						
Date: 10 Depth: 4 0 m 400	Clay																						
	Silt																						
44-14	Sand																						
Sample: 44-	Shear Str.	4.20		7.70	11.30			23.20	47 60			46.40		54.70			51./0	52.30			47.60	53.50	
J-68	# Z																						
	æ () │																						
BARTLT 1301-82 :: 14-19N;68-2 :ed for: 23.0	s CaCO3																						
se: tion ulat	Por.																						
Cruis Posit Calct	Attn.	0.000 0.261 0.247	26	26	26	24	7,5	21	20	2 6	36	36	, m	6	4	4	4	4.	٠,٠	9			
	Vp Ratio	1.002 0.992 0.978	0.0	0.0	0.0	6	0 0	. 0	0.9	000	0	0.0	5 0	0	0 0	0	0	0	o c	0			
	Vp m/sec	70 70 4	93.	92.	92.	92.	191	91.	161	93.	94	194	404	195	96	498	498	498	669	502			
	Depth	WATER 0.0	3.0	4.0	0.9	8.0	on c	•	-:				~ ~	-	<u> </u>	10	m		0 4	0	~ 0	30.0	4

		Kur.		
		Kurt		
		Mean Dev Skew Kurt N. Phi		
		Dev		
/01/81 049m	kHz	Mean Phi		
Date: 11/01/81 Depth: 5049m	0 m 400	Shear & & Shear & & Mean Dev Skew Kurt CacO3 C N Str. Sand Silt Clay Phi		
J		silt		
47-1	00/0	Sand		
Cruise: BARTLT 1301-82 Sample: 47-1	35.00	Snear Str.		
S. S.	Deg-C	∞ Z		
301-82	23.0	∞ U		
ARTLT 1	i for:	* caco3		
uise: B	sition: culate	Por		
Cr	Ca	Attn.	0.233 0.159 0.603	0.00%
		VP Ratio	0.984 0.983 1.007	T.003
		Vp n/sec	1505.0 0.984 0.233 1503.1 0.983 0.159 1540.7 1.007 0.603	1533.3
		eptu (cn.)	32.0 33.0	35.0

		Kurt						
		8 8 Shear 8 8 Mean Dev Skew Kurt N. acc3 C K Str. Sana Silt Clay Phi						
		Skew						
		Mean Dev Phi						
1/01/81	kHz kHz	Mean						
Date: 11/01/81	0 m 400	Shear & & & & Str. Sana Silt Clay						
		silt						
47-2	00/0	8 8 8 8 8 8 8 8						
hple:	35.00	Shear Str.	50.98		56 -19			
1301-82 Sample: 47-2	Deg-C	ap 설						
301-82	23.0	∞ ∪	<u>.</u>					
ARILI 1	i tor:	e caccu3						
Cruise: EAR	resition: Calculateó	₩ Por.						
Cr	C a	Attn. K	0.098	860.0	0.098	0.261	0.429	
		v _F Ratio	976.0	0.979	0.979	0.985	1.007	
		Depth Vp Vp Attn. % % (cn) m/sec Ratio k Por. CaC	1498.0	1458.0	1457.2	1507.2	1539.5	
		Depth	32.0	33.0	34.6	35.0	30.0	

	N. Kurt																										
	~ × 1																										
	Kurt																										
	3 1																										
	Skew																										
	Dev																										
7	+																										
11/01/81 : 5049m 400 kHz	Mean Phi																										
th: 400	8 K																										
Date:] Depth: 0 m 40	Clay																										
	Silt																										
48-3	Sand																										
0	Shear Str.																										
Sam	[S 3]	:																									
o-6a	op Z 																										
TLT 1301-82 13-44N;67-48W for: 23.0 D	مە ن																										
<u>~</u>	caco3	•																									
Cruise: BA Position: Calculated	Por.																										
Cruise Positi Calcul	Attn.	67	0.123	0.123 0.102	0.083	0.065	0.065	0.056	0.144	0.144	0.247	0.471	0.471	0.391	0.851	0.942	0.518	0.083	0.065	0.083	0.056	0.048	0.048	0.040	0.083	0.083	0.167
	Vp atio	980	977 977	975 974	974	974	975	976	983	986	886	992	004	666	002	022	600	67.0	973	973	973	973	975	9/6	982	980	983
	24	<u>;</u> ~ .	m o	0 0	0 9	2 O	0 0	8 0	၁	0 6	3	0 m	0 -	10	6 1	5.1	ر د د	ים סכ	4	4 0	7 0	သ	- 1	- 0	<u>س</u>	m	
	γp m/se	1499	1494		-	1489	1491	7,	1503	1507	1511	1517		7.	' '	_	Π.				•						150
	Depth (cm)	1.0	3.0	4.0	0.9	7.0	0.6	10.0	12.0	13.0	14.0	15.0	16.0	18.0	19.0	20.0	21.0	22.0	24.0	25.0	26.0	27.0	28.0	29.0	31.0	32.0	33.0

	N. Kurt																												
	Kurt																												
	Skew																												
	Dev																												
11/01/81 :: 5049m 400 kHz	Mean Phi																												
Date: 1 Depth: 0 m 400	clay																												
	Silt																												
48-4	Sand	-																											
Sample: 48.	Shear Str.	5.20	8.32	13.53	1	33.30	45.79		174.82										٠										
ე-6a	ø Z 																							,					
20	æ ()																												
BARTLT 1301-82 i: 13-44N;67-4 ed for: 23.0	caco3	 - - - -																											
Cruise: BA Position: Calculated	% Por.	1 1 1																											
Cr. Pos	ttn		0.294	•							•	•					•	•				•	•	•	•	•	•	•	•
	Vp atio		0.983 0.978							•				•											•	•	•	0.985	•
	/P /sec	506.	1502.7	493.	489.	489.	4α υσο	491.	494.	506.	506.	514.	514.	000	548.	572.	552.	531.	4 7 0 0	485	485.	486.	487.	489.	492.	492	503.	o	494.
	Der Co	1.0	3.0	0.4	9.0	7.0	⊃ c		i.	ď	۳,	·	<u>.</u> د	• •	. &	6	0	21.0	10	, 4	5	9	7	ထိ	6		÷	2	'n

	N. Kurt								
	Kurt								
	Skew								
	Dev								
/01/81 049m kHz	Mean								
Date: 11/01/81 Depth: 5049m 0 m 400 kHz	Clay								
	silt								
48-5	sand							,	
Sample: 48-	Shear Str.								
ro	∞ Z								
TLT 1301-82 S. 13-44N;67-48W for: 23.0 Deg-C	æ 0								
PE	& CaCO3								
Cruise: BA Position: Calculateo	Por.								
Cru Pos Ca]	Attn. k		0.439	0.573	0.588	1.066	0.074	0.048	
	VP Ratio	0.0000	1.000	1.016	1.008	0.981	0.972	0.972	0.983
	Vp m/sec	1520.7	1529.4	1553.9	1541.8	1499.8		485 486 488	1493.2
		16.0	18.0	21.0	23.0	25.0	27.0	30.0	33.0

		z	Kur																		
		Kurt	1																		
		Skew Kurt																			
		Dev																			
/01/81	KHZ	Mean	Phi																		
Date: 11/01/81	0 m 400	ф	Clay																		
		ф	Silt	!																	
48-6	00/0	ф	Sand																		
Sample:	35.00 0/00	Shear	Str.		8.32		12.49		28.10		31.22		14.57		19.77		31.22		136.32		45.79
Sa	Deg-C	эр	z																		
301-82	N;6/-48 23.0	ою	C																		
BARTLT 1301-82	n: 13-44N;0/-46W tea for: 23.0 Deg-C	æ	. caco3																		
Cruise: B	rosition: Calculate	э¥Р	Por.																		
Cr	C C a	Attn.	*	0.312	0.391	0.391	0.429	0.482	0.638	0.922	0.922	0.851	0.370	0.065	0.056	0.083	0.048	0.048	0.048	0.048	0.144
		ď	Ratio	1.004	1.000	1.000	1.003	1.009	1.017	1.038	1.047	1.028	0.976	0.972	0.972	0.973	0.972	0.973	0.973	0.976	0.984
		d,	m/sec	1534.8	1529.8	1529.8	1533.3	1543,3	1555.9	1588.2	1601.1	1571.5	1492.8	1485.9	1485.9	1487.4	1486.3	1487.7	1488.1	1493.2	1504.2
		Depth	-	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0		32.0
			1	ı																	

		z	Kurt	1																					
		Kurt																							
		Skew																							
		Dev																							
Date: 11/01/81 Depth: 5049m	O kHz	æ.,	- Phi																						
Date: 1	.0 m 40	de	Clay	-																					
		de	Silt																						
48-7	00/0		pu																						
Sample:	35.00 0/00	Shear	Str.	-	7 2 2		6.24		10.41		15.61		14.57		14.57		19.77		78.88		126.95		32.25		36.42
S	oeg-C	ф	z																						
11-82	23.0 I	æ	ပ																						
BARTLT 1301-82	Calculated for: 23.0 Deg-C	de	CaC03	-																					
Cruise: B	culate	ф	Por.																						
Cr	Ca]	Attn.	×	; '	ů.	0.391	٠,	0.349	0.471	0.740	•	•	0.885	0.102	0.056	0.065	•	0.048	0.048	0.048	0.218	•	-	7	0.133
		۸p	- 4		1.003	0.998	0.995	0.995	0.999	1.017	1.011	1.010	1.007	0.973	0.972	0.972	0.972	0.972	0.973	0.975	0.987	0.984	0.979	0.978	0.977
		ďA	m/sec		1533.7	1526.0	1522.2	1522.2	1527.9	1555.9	1545.7	1544.9	1539.4	1488.8	1487.0	1486.7	1486.7	1487.0	1487.7	1491.0	1509.4	1505.3	1496.8	1495.0	1493.6
		Depth	(cm)		15.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	35.0	36.0

		× !			
		Kurt			
		Skew Kurt			
		Mean Dev Phi			
./01/81 049m	kH z	Mean Phi			
Date: 11/01/81 Depth: 5049m	n 400	% % % Shear % % % Mean Dev Skew Kurt K Por. CaCO3 C N Str. Sand Silt Clay Phi			
Cruise: BARTLT 1301-82 Sample: 48-8 D Position: 13-44N;67-48W		\$ Silt 			
	00./0	Shear & & & & & & & & & & & & & & & & & & &			
	35.00	Shear Str. S			
	Deg-C	op Z			
301-82 V:67-481	23.0	æ ()			
13-447	i for:	Por. CaC03			
nise: BA Sition:	culated	Pos.			
Cru	Ca	VE Attn. Ratio k	0.717	0.638	0.740
		VE Ratio	0.890	0.985	1.001
		Vp m/sec	1513.6	1506.1	1531.4
		Depth Vp Vp Attn. (cm) m/sec Ratio k	35.0	36.0	37.0
		1			

		Kurt				
		Kurt				
		8 8 Shear 8 8 Mean Dev Skew Kurt N. CO3 C N Str. Sand Silt Clay Phi				
		Dev				
/U1/81 049m	kHz	Mean Dev Phi 				
Date: 11/01/81 Depth: 5049m	0 m 400	8 Clay				
		silt				
48-9	00/0	s Sand				
Cruise: BARTLT 1301-82 Sample: 48-9 Position: 13-44N:67-48W	35.00	Shear % % % Silt Clay	110.30	15.61	34.34	54.11
San	eg-C	op 23,	-			
301-82 ; 67-48W	23.0 E	مه ر) ا ا	-			
RTLT 13 13-44N	for:	caco3				
nise: BA sition:	culated	& Por				
Cru	Ca]	Attn. k	976	0.294	0.093	
		Vp Ratio	0,00	0.980	0.977 0.981	
		epth vp Vp Attn. % % (cn) m/sec Ratio k Por. CaC	3 406 6	1499.1	1493.6 0.977 0 1500.5 0.981 0	
		epth	33.0	35.0	36.0 37.0	38.0

		n	<u> </u>
		Kurt	
		Skew Kurt	
		Dev	
1/01/81 5049m	2 KH Z	Mean Phi	
Date: 11/01/81 Depth: 5049m	0 m 40	Shear % % % % % Str. Sand Silt Clay	<u>.</u>
Cruise: BARTLT 1301-82 Sample: 48-8 D Position: 13-44N;67-48W		Silt	
	00/00	Sand	
	35.00	Shear Str.	
	D-bəq	op Z	
	23.0	æ ∪ -	
ARTLT 1 13-44	ā for:	% % Por. CaCO3	1 1 1 1
uise: B/ sition:	lculate	Por.	
S A	ß	Attn.	0.717
		VF Ratio	0.990
		Vp m/sec	35.0 1513.6 0.990 0.717 35.0 1506.1 0.985 0.638 37.0 1531.4 1.001 0.740
		Depth	35.0
			1

		Kurt							
		Kurt							
		Skew Kurt N. Kurt							
		Dev							
/01/81 149m	kHz	Mean Phi							
Date: 11/01/81	H 400	Depth vp vp Attn. 8 8 8 Shear 8 8 8 Mean Dev Skew Kurt N. (cn) m/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi							
מם	. 0	Silt							
48-9	00/0	s Sand							
Sample: 48-9	rosition: 13-44N,0/1-40N Calculated for: 23.0 Deg-C 35.00 0/00	Shear Str.	110.30	;	15.61		34.34		54.11
Sai	oeg−C	ap Z.							
301-82	23.0 I	<i>ф</i> ()							
RTLT 1	for:	e CaCO3							
iise: B	culated	Por.							
Cri	S B	Attn. k		1.458	0.294	0.093	0.414		
		Vp Ratio		0.978	0.980	0.977	0.981		
		vp m/sec		1496.5	1499.1	1493.6	1500.5		
		Depth (cm)	33.0	34.0	35.0	36.0	37.0	.38.0	39.0

	Kur t	0.51	0.52	0.49	0.47	0.47	0.47	0.48	0.71	
	Kurt	1.04	1.10	0.95	0.88	0.87	0.88	0.92	2.46	
	Skew	-0.12	-0.15	-0.09	-0.07	-0.07	0.03	-0.06	0.59	
	Dev	2.24 -0.12	2.17	2.27	2.28	2.33	2.50	2.36	2.08	
/02/81 049m kHz	Mean Dev Skew Kurt N. Phi 	10.11	96.6	10.10	10.10	9.93	9.42	9.29	5.86	
Date: 11/02/81 Depth: 5049m 0 m 400 kHz	clay	17.61 81.51 10.11	80.69	80.63	79.76	76.50	67.56	67.62 55.00	15.70	
999	Silt	17.61	18.30	18.93	20.12	23.40	32.34	32.30	82.83	
51-3	Sand Sand	0.87	1.01	0.45	0.12	0.09	0.10	0.08	1.46	
Sample: 51.	Shear Str.									
San eg-C	ж Z									
Cruise: BAKTLT 1301-82 S Position: 13-44N;67-48W Calculated for: 23.0 Deg-C	* U									
BARTLT 1301-82 13-44N;67-48V d for: 23.0	\$ CaC03	7 38	7.38	6.29	4.40	3, 17	4.04	2.77	4.43	
Cruise: E Position: Calculated	% Por.	0 14	20 80	6.08	7 8 4	74.5	71.8	70.7	56.4	
Cr. Pos Ca.	k k	0.000	0.083	0.093	0.083	0.056	0.065	0.093	0.167	0.439
	Vp Ratio	0.996	0.976	0.975	0.973	0.972			1499.3 0.980	1505.9 0.985
	Vp m/sec	1528.6	1498.5	1490.0	1488.6	1486.8	1487.9			
	Depth (cm)	WATER 0.0	0.00	J 4. p	0.0	8.0	0.01	12.0	24. 0.04.	15.0

		N.																						
		Kurt	1																					
		Skew											,											
		Dev	-																					
1/02/81 5049m) kHz	Mean																						
Date: 11/02/81 Depth: 5049m	0 m 40(жо ; (C1ay																					
		дю е •	SILE																					
51-4	00/2	ф. (Sand																					
Sample:	35.00 a/oo	Shear	Str.		0	90.7		4 -16	•	9 .37	,	19. 41		13.53		17-49			1	65.56				
Sa	o-6a-C	dP	z																					
BARTLT 1301-82	tor: 23.0 Deg-C	œ	0																					
BARTLT	d tor:	dР	CaC03																					
Cruise:		ф	Por.	_																				
J 3	, S	Attn.	×	0.0	7	•	•	0.112	0.112	0.112	0.112	0.093	0.085	0.085	0.093	0.085	0.093	0.102	0.102	0.121	0.173	.2	\sim	1.160
		۷ بر	Ratio	999	0.991	0.979	0.978	776.0	976.0	0.975	0.974	0.973	0.972	0.972	0.972	0.973	0.973	0.974	976.0	0.978	$\overline{}$	_	0.880	0.981
		Z.	n:/sec	528	1514.9	497	1495.6	1493.7	1492.3	1490.5	1485.0	1487.6		•		1488.3	1488.6	1489.7	1492.3	1496.3	1497.8	•	1513.7	1500.4
		berth	1	AT	0.0	1.0	2.0	3.0	7.0	5.0	0. 9		80	o• 6	10.0	11.0	12-0	13.0	14.0	15.0	16.0	17.0	18.0	19.0

	N. Kurt	0.47	0.44	0.56	0.46	0.49	0.54	0.63	0.55	0.53	0.48	0.51	0.47	0.50	0.46
	Kurt	06.0	0.80	1.28	0.86	96.0	1.18	1.71	1.21	1.12	0.92	1.03	0.89	1.00	0.84
	Skew	0.47	0.35	0.59	0.56	0.59	09.0	0.56	0.64	-0.17	-0.10	-0.14	-0.08	-0.14	0.00
	Dev	2.73	2.91	2.41	2.69	2.66	2.57	2.04	2.59	2.18	2.32	2.27	2.33	2.28	2.67
11/02/81 1: 5049m 400 kHz	Mean	7.39	7.51	6.78	7.01	7.00	6.74	6.10	6.64	9.88	10.06	96.6	10.06	9.70	9.36
Date: 11/02/81 Depth: 5049m 0 m 400 kHz	clay	35.28	39.03	22.62	30.55	28.13	23.47	17.19	22.79	79.19	79.00	90.62	78.64	74.59	65.87
110	Silt	61.06	54.86	75.33	65.08	68.70	73.94	80.50	75.05	20.35	20.89	20.36	21.36	25.41	34.02
51-5	8 Sand	3.66	6.11	2.05	4.38	3.17	2.59	2.30	2.16	0.46	0.11	0.58	0.00	0.00	0.11
Sample: 35.00	Shear Str.	_													
w Deg-C	# Z -	í													
BARTLT 1301-82 13-44N;67-48W d for: 23.0 D	₩ ()														
BA d	CaCO3	4.88	5.41	5.52	3.96	6.18	5.09	5.17	6.17	4.61	5.26	6.15	3,33	1.67	2.82
Cruise: Position: Calculate	& Por.	75.	79.0	64.6	6.99	69.4	66.7	59.5	5		79.5	79.2	73.3	68.3	75.9
Cr Po Ca	Attn. k	0.262	27	19	.20	34	34	. 60	42	13	.07	0.056	.03	97.	
	Vp Ratio	0.993	00	44	٠,٥	00	٠. د		00	00	00	00	00	00	
	VP /sec		517.	535.	539.	525.	526.	551.	516.	487.	483.	48	487.	501.	
	7 =	1 44 10	9:	α σ	0:	3.6	4.10	9	800	0.1	a m	34.0	9:	800	0-

		. H	1																					
		N. Kurt																						
		Kurt																						
		Skew																						
		Dev																						
1/02/81	zHx 0	Mean	-																					
Date: 11/02/81	0 m 400 kHz	g Clay																						
	L	Silt																						
51-7	00/0	Sand																						
Sample:	35.00 0/00	Shear Str.		13.53		16.65		10.41		10.41		17.96		14.57		10.41	12 40	74 .37	27.06		105.10		55.16	20.81
	oeg-C	* Z																						
ARTLT 1301-82	23.0 Deg-C	.e≠ ()																						
BARTLT 1301-82		\$ CaCO3	-																					
Cruise: Position:	Calculated	Por.																						
Cr	Ca	Attn.	0.206	0.508	0.424	0.453	0.463	₹.	0.533	0.364	0.276	0.587	0.652	0.587	0.792	0.117	0.070	0.071	0.062	0.046	•	7	•	0.09B
		VP Ratio	10	0.986	•	•	0.997	1.001	1.002	0.995	0.993	1.002	1.016	1.018	1.037	0.973	2/6.0	0.971	0	0	9	0.988	•	976.0
		Vp m/sec	1494.8	1507.8	1516.4	1519.4	1525.5	1530.4	1533.1	1521.3	1519.4	1532.4	1554.6	1557.0	1586.1	1488.6	1485 7	1485.7	1486.5	1486.8	1495.9	1510.4	0	1491.9
		Depth	16.0	0° 91	19.0		21.0	22.0	23.0	24 -0	25.0	26.0	27.0	28.0	29.0	ල ද ල ද	32.0	33.0	34.0	35.0	36.0	37.0	38.0	39.0

		N. Kurt			
		Kurt			
		Skew Kurt N. Kurt			
		Dev			
Date: 11/03/81 Depth: 5049m	0 kHz	% % % Shear % % Mean Dev Skew Kurt N. 2aCO3 C N Str. Sand Silt Clay Phi			
	0 m 40	8 Shear 8 8 8 N Str. Sand Silt Clay			
		Silt			
53-16	00/0	Sand			
Cruise: BARTLT 1301-82 Sample: 53-16 Position: 13-47N:67-47W	35.00	Shear Str.			
	J-6əc	æ Z	0.154	0.145	0.144
	23.0 I	مه <u>ر</u>	0.849 0.154	0.690 0.145	0.688 0.144
BARTLT 1	d for:	0,			
Cruise: Dosition:	lculate	Por.			
	Ca	Attn. k			
		Vp Ratio			
		Depth Vp Vp (cm) m/sec Ratio			
		Depth (cm)	000	9.00	* n

			بد	ı																					
		z	Kur																						
		Kurt	٠																						
		Skew																							-
		Dev																							
1/03/81 5049m	0 kHz	Mean	Phi																						
Date: 11/03/81 Depth: 5049m	0 m 40		Clay																						
		фP	Silt																						
53-18	00/0	ф	Sand																						
Sample:	35.00 0/00	Shear	Str.			6	2.08		6.24		10.41		16.65		21.85		48.91		88.45	84.29					
	oeg-C	ф	Z																						
13-47N:67-47W	23.0 Deg-C	ф	ပ	T																					
BA		ФP	CaCO3																						
Cruise: Fosition:	Calculateó	о¥Р	Por.																						
E C	Ca	Attn.	×		0.000	0.102	0.102	0.093	0.093	0.093	0.083	0.083	0.083	0.083	0.074	0.065	0.065	0.065	0.074	0.083	0.093	0.123	0.167	0.370	0.638
		o v	Ratio	٠.			0.980	0.976	်	0.973	0.972	0.972		0.971	0.972	0.972	0.973						0.976	0.984	0.990
		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	n/sec		1530.0	1521.5	1499.4	1492.8	1489.9	1488.6	1487.0	1486.6	1485.9	1485.5	1486.6	1486.6	1488.1	1489.5	1491.0	1494.3	1493.5	1492.8	1492.4	1504.2	1514.3
		Derth	(cu)		WATER	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	0.8	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0

	Kurt	0.53	0.48	0.50	0.48	0.46	0.47	0.47	0.44					
	Kurt 	1.11	0.93	1.00	0.91	98.0	0.88	0.88	0.77					
	Skew	-0.11	-0.08	-0.10	-0.08	-0.05	-0.01	-0.19	0.10					
	Dev	2.13	2.25	2.20	2.28	2.31	2.34	2.26	2.91					
Date: 11/03/81 Depth: 5049m 0 m 400 kHz	Mean Phi	10.13	10.23	10.10	10.12	10.12	9.82	9.72	8.58					
Date: 1 Depth: 0 m 40	clay	82.76	82.36	81.41	80.32	79.58	74.73	74.64	53.82					
	silt 	16.29	17.41	18.35	19.40	20.32	25.20	25.05	45.59					
53-19	s Sand	0.94	0.23	0.24	0.28	0.10	0.07	0.31	09.0					
Sample: 53- 35.00 d/oo	Shear Str.													
o-6a	ж Z 													
ARTLT 1301-82 13-47N;67-47W for: 23.0 D	۵۰ U													
BARTLT 13-47 a for:	& CaC03	6.46	6.57	5.43	3.85	3.07	2.42	2.05	4.17					
Cruise: F Position: Calculated	Por.	85.9	83.3	81.1	79.5	74.8	71.3	70.8	75.2					
Cr. Pos Ca.	Attr. k 	-0.015 0.083 0.102	90.	80.	.07	0.5	0.4	.04	16	0.262	0.04	0.031 0.048	.08	100
	Vp Ratio	001 998 981	0.978	0.976	0.974	0.973	0.974	0.976	0.982	0.979	0.972	0.972	•	0.979
	vp m/sec	1530.2 1525.6 1500.1	495.	492. 489.	489. 488.	1487.3	1489.9	492.	501.	487	486.	4 4 8 9	499.	496.
	Depth (.cm.)	WAT 0	3.0	4°0 0°0	7.0	0.0	10.0	12.0	14.0 15.0	17.0	19.0	20.0	22.0	24.0

	N. Kurt															
	Kurt															
	Skew															
	Dev															
/03/81 049m kHz	Mean Phi															
Date: 11/03/81 Depth: 5049m 0 m 400 kHz	g Clay															
	silt															
53-20	\$ Sand															
Sample: 53-	Shear Str.		12.49	13.53	9.37	7.28	12 49	71.77	10.41	11.45	15.61		18.73	47.87	110.30	
O-68	oP Z;															
RTLT 1301-82 S 13-47N;67-47W For: 23.0 Deg-C	مه ن ا															
4	caco3															
Cruíse: B. Position: Calculateó	& Por															
Cr.	Attn. k	.179	0.518	0.471	0.439	0.851	0.765	0.765	0.638	0.102	0.093	0.102	0.093	0.083	0.133	166.0
	VP Ratio		0.999	0.999	0.998	1.015	1.003	1.003	1.013	0.971	0.971	0.970	0.968	0.968	0.973	0.010
	Vp m/sec	1497.9 1511.7	1528.0	1527.6	1526.5	1552.6	1534.6	1533.4	1549.4	1484.8	1484.4	1484.1	1480.5	1485.5	1487.7	•
	4 -	17.0	19.0	21.0	23.0	24.0	26.0	27.0	29.0	31.0	32.0	34.0	35.0	36.0	38.0	٥٠,٠

	N. Kurt	0.48	0.45	0.44	0.47	0.65	09.0	0.55	0.49	0.47	0.46	0.50	0.49
	Kurt	.0.94	0.82	0.79	0.89	1.86	1.48	1.25	0.94	0.88	0.87	66.0	0.95
		0.52	0.50	0.41	95.0	0.55	0.59	09.0	-0.12	-0.11	-0.08	-0.12	-0.11
	Dev Skew	2.44	2.54	2.76	2.61	1.85	2.41	2.51	2.31	2.31	2.37	2.26	2.30
./03/81 049m) kHz	Mean	7.41	7.55	7.61	7.16	6.24	6 . 59	99.9	9.92	10.05	10.00	96.6	9.84
Date: 11/03/81 Depth: 5049m 0 m 400 kHz	s Clay	30.06	35.10	38.42	30.97	16.40	20.93	22.91	77.43	78.95	77.18	78.85	75.55
110	Silt	69.23	63.62	58.54	64.79	82.41	75.59	74.72	22.14	20.80	22.72	21.06	24.45
53-21	Sand	0.71	1.28	3.03	4.24	1.19	3.49	2.37	0.43	0.26	0.10	0.09	00.0
Sample: 53-	Shear Str.												
eg-C	oko 12,												
RTLT 1301-82 13-47N;67-47W for: 23.0 D	∞ ∪												
	e caco3	2.92	3.55	4.33	4.50	4.30	5.06	5.04	4.44	5.83	3.72	2.26	2.05
Cruise: BA Position: Calculated	\$ Por.	64.0	0.89	72.9	73.1	58.5	62.8	61.0	79.8	78.7	9.92	74.0	73.1
Cru	Attn. k	04	0.419	0.312	0.312	0.429	0.805	0.706	0.382	0.065	0.056	0.218	
	Vp		0.991	0.989	0.991	0.997			0.977			0.976	
	vp m∕sec	526 524	515 510	1512.8	515	1524.9	550	1533.3	1494.3	1487.0	4 4	1493.2	
	G 🗢	14.0	16.0	18.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	34.0	36.0

	N. Kurt																			
	Kurt																			
	Skew																			
	Dev																			
1/03/81 5052m 0 kHz	Mean Phi																			
Date: 11/03/81 Depth: 5052m 0 m 400 kHz	clay																			
	silt 																			
54-1	sand																			
Sample: 54	Shear Str.	8.32		10.41	16.65		28.10	29.14	;	19.61	15.61		17.61	18.73		154.00	,	56.19	26.03	10.01
2 Sa 4W Deg-C	ap 23																			
RTLT 1301-82 13-43N;67-44W for: 23.0 De	مه																			
44	\$ CaCO3																			
Cruise: B. Position: Calculateo	Por.																			
C P C	Attn. k	.012			•		•		•	•				0.031						
	Vp Ratio	0.98	; -i -	;	٦.	; ;	<u>ب</u>	-i -	Ö	o	0	o	o	o c	9	o	0			
	VF m/sec	507	40. 540.	53.	559	562.	999	200	92	485.	485	484	484	1486.8	491	459				
	epth (cn.)	20.0	23.0	25.0	26.0	28.0	29.0	30.0	32.0	33.0	34.0	36.0	37.0	38.0	29.0	41.0	42.0	43.0	44.0	45.0

		N. Kurt		0.57	0.46	0.48	0.69	0.67	0.47	0.47	0.47	0.49	0.45
		Kurt		1.30	0.87	0.92	2.24	2.07	0.90	0.87	0.89	0.95	0.83
		Skew		0.62	0.55	09.0	0.41	0.41	60.0-	-0.05	90.0-	-0.06	90.0
		Dev		2.30	2.68	2.57	1.57	1.46	2.35	2.35	2.30	2.35	2.65
./03/81	kHz (Mean		6.84	7.27	7.09	5.52	5.24	10.09	10.13	10.10	89.6	9.36
Date: 11/03/81	0 m 400 kHz	g Clay		22.86	33.33	29.83	11.11	10.97	79.49	79.68	79.94	73.16	64.92
		Silt	 	76.08	64.29	64.89	87.09	86.56	20.39	20.21	20.06	26.84	35.00
54-2	00/0	Sand		1.06	2.38	2.27	1.80	2.47	0.12	0.16	0.00	0.00	0.08
Sample:	35.00 0/00	Shear Str.	1										
Sal	Deg-C	d≠ 'Z,	1										
RTLT 1301-82	13-43N;0/-44W for: 23.0 D	ae ()	1										
BARTLT		cac03	1	3.62	4.34	5.67	4.46	4.17	6.08	5.99	3.87	2.92	3.31
Cruise: E	Fosition: Calculated	Por.		63.7	70.9	70.4	55.6	52.9	79.4	79.0	73.4	7.69	0.69
Cr	Ca J	Attn. k	0.219	0.732	0.443	0.344	0.834	0.587	0.690	0.062	0.062	0.046	0.098 0.098
		Vp Ratio	10			0		1.04		000		00	0.981 0.981
		Vp m/sec	1505.9	1533.9	1533.6	1524.4	1538.6	1594.5	1589.9	1485.4	1485.7	1486.5	1500.0
		Depth (cm)	20.0	21.0	23.0	25.0	27.0	29.0	31.0	33.0 4.0	36.0	38.0	40.0

		J.	1										
		N. Kurt											
		Kurt											
		Skew											
		Dev											
1/03/81 5052m	0 kHz	Mean	<u></u>										
Date: 11/03/81 Depth: 5052m	0 m 40	s Clay	 										
		Silt			,•								
54-3	00/0	Sand	-										
Sample:	35.00 0/00	Shear Str.											
·z	Deg-C	dP ZZ	-	1.060 0.123	0.122	0.130	0.064	0.106	0.053	0.114	0.116	0.110	0.101
1301-82 N:67-44	for: 23.0 Deg-C	æ U		1.060	1.120	1.540	0.707	1.260	0.408	0.577	0.578	0.561	0.669
BARTLT 1301-82 13-43N:67-441	for:	caco3											
Cruise: BA Fosition:	lculate	Por.	<u> </u>										
Cr	S	Attn. k											
		Vp Ratio											
		Vp m/sec	1 1 1 1 1										
		Depth (cm)	16.0	17.0	19.0	21.0	23.0	25.0	27.0	29.0	31.0	33.0	35.0

	N. Kurt	0.51	0.48	0.48	0.47	0.47	0.49	4. 6. 4. 4.
	Kurt	1.06	0.93	0.92	0.89	0.88	0.95	0.78
	Skew	-0.13	-0.07	-0.06	-0.03	-0.07	-0.12	0.42
	Dev	2.16	2.24	2.27	2.33	2 -41	2.24	2.63
1/03/81 5052m) kHz	Mean Phi	9.96	10.06	9.96	9.97	88- 6	9 .14	7.70
Date: 11/03/81 Depth: 5052m 0 m 400 kHz	clay	80.57	80.05	77.99	77.69	75.15	67.69	39 95
140	silt 	18.65	19.69	21.84	22.05	24.78	32.31	59.41
54-4	Sand	0.77	0.26	0.18	0.26	0.07	0.00	0.64
Sample: 35.00 c	Shear Str.							
69-C	op 23							
RTLT 1301-82 13-43N;67-44W for: 23.0 D	90 C)							
≪	2 c c c c c c c c c c c c c c c c c c c	5.23	5.68	3.39	3.40	2.94	2.50	3.01
Cruise: B Position: Calculateô	Por.	85.7	81.1	78.2	73.0	74.2	68.3	64.8
Cru	tt.				0.048 0.031 0.048			000077070
	Vp atio	99. 98. 79.	76.	76.	760	. 97 79.	98.	0.982 0.982 0.982 1.004 1.020 1.021 1.031
	vr /sec 530.	25. 04. 95.	490 489 487	4887	488. 488. 487.	486 486 488	4 50 50 5	502 502 502 502 503 503 503 503 503 503 503 503 503 503
	Depth (cm.)	32.000	0.0.0	6 8 9 5 0 0 0 3	12.0	400	~ xx cv c	222.0 222.0 224.0 225.0 226.0

		N.	7 7 7 7											Ç																			
		Kurt																															
		Skew																															
		Dev																															
11/3/81 5052m	400 kHz	Mean																															
Date: Depth:	0 m 40	S S	75-																														
		8 i s																															
54-5	00/0	Sand																															
Sample:	35.00 0/00	Shear Str.	-			2.08		9.37		12.49		16.65		40.58		53.07		33,30	•	49.95		55.16		165.46		33.30							
S	Deg-C	op z																															
.301-82 1;67-44W	23.0 De	ae ()	-1																														
BARTLT 1301-82 13-43N;67-44	d tor:	s caco3																															
Cruise: Position:	Calculate	& Por.																															
Cru	Cal	Attn. k			0.031	•	•	•	0.083	•	•	•	•	•	0.031	•	•	•	•	0.048	•	•	0.123	•	•	0.39L	•	•	•		•		•
		Vp Ratio		•	0.998	•	•	•	0.973	•	•	•	0.973	•	•	•	•	•	•	•	•	0.974	٠		•	42000	•	266.0	•	1.000	1 033	1.032	
		Vp m/sec	ŀ	530.	1525.9	501.	493.	488	487	88	486.	486.	487.	488.	488.	488.	488.	486.	485.	1486.5	487.	189	4.	770		1508 9	9 6	220		, y	0 7 0	28	1
		Deptn (cm)	1	WATER	0.0	1.0 1.0	2.0	3.0	0.4	5.0	0.9	7.0	0.8	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	20.00	20.0	22.0	20.00	24.0	25.00	26.0	27.0	28.0	2

	1 4								
	N. Kurt								
	Skew Kurt								
	Skew								
	Dev						71		
11/3/81 5052m 5 kHz	% Mean Dev Skew Kurt N. Clay Phi 								
Date: 11/3/81 Depth: 5052m 0 m 400 kHz	clay								
	Shear % % % % Str. Sand Silt Clay								
54-6	Sand								
mple:	Shear Str.								
Sa eg-C	e 2	0.128	0.124	0.119	0.116	0.116	0.118	0.130	0.120
ARTLT 1301-82 Sample: 54- 13-43N;67-44W for: 23.0 Deg-C 35.00 o/oo	an ()	0.778 0.128	0.635 0.124	0.614	0.591	0.588	0.630	699.0	0.605 0.120 0.602 0.100
BARTLT 1 13-43N	\$ CaC03								
Cruise: BA Position: Calculated	% Por.								
200.00	Attn. k								
	Vp Ratio								
	VP m/sec								
	Depth (cm)	0.0	3.0	5.0	7.0	8 6 0 0	10.0	12.0	15.0

		N. Kurt	
		Kurt	
		Mean Dev Skew Kurt N. Phi	
		Dev	
1/4/81 046m	kH2	Mean Phi	
Date: 11/4/81 Depth: 5046m	0 m 400 kHz	Depth Vp Vp Attn. % % % Shear % % % Mean Dev Skew Kurt N. (Cm) m/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi Kurt Kurt	
		Silt	
RTLT 1301-82 Sample: 57-2 13-42N:67-47W	00/0	% Shear % % % % % No Str. Sand Silt Clay	
mple:	for: 23.0 Deg-C 35.00 o/oo	Shear Str.	
	Deg-C	s 2	0.166
1301-82 N;67-47	23.0	# U	0.797 0.166
SARTLT . 13-421	for:	caco3	
Cruise: BA Position:	Calculated :	Por.	
r S	g	Attn. k	
		VP Ratio	
		Depth Vp Vp Attn. (cm) m/sec Ratio k	
		Depth (cm)	1.0

	N. Kurt	0.56	0.51	0.51	0.53	0.53	0.51	0.52	0.52	0.51	0.54	0.58	95.0	0.54	95.0	0.56	0.57	0.55	0.57	0.61
	Kurt	1.26	1.02	1.03	1.13	1.14	1.05	1.07	1.07	1.05	1.17	1.36	1.25	1.16	1.28	1.26	1.31	1.22	1.34	1.53
	Skew	-0.20	-0.12	-0.12	-0.14	-0.11	-0.07	-0.09	-0.07	-0.07	-0.08	-0.13	-0.12	-0.13	-0.17	-0.13	-0.12	60.0-	-0.16	-0.17
	Dev	2.57	2.26	2.31	2.20	2.12	2.13	2.06	2.06	2.08	1.98	1.84	2.00	2.09	2.06	1.98	1.99	1.92	2.00	1.86
11/18/81 4749m 00 kHz	Mean	10.33	10.34	10.24	10.22	10.25	10.41	10.27	10.39	10.40	10.30	10.11	10.24	10.27	10.14	10.25	10.27	10.39	10.21	10.14
Date: 11, Depth: 4 0 m 400	8 Clay	83,36	83.99	82.65	83.71	84.94	86.38	85.70	87.26	86.76	87.03	87.03	86.77	85.97	84.93	96.98	86.62	88.89	86.39	87.41
	Silt	12.07	15.29	16.60	15.53	14.67	13,39	13.99	12.62	13.05	12.85	12.88	13.01	13.15	14.04	12.71	12.75	10.73	12.70	12.27
67-1	Sand	4.57	0.72	0.75	0.76	0.39	0.22	0.32	0.12	0.19	0.12	0.09	0.22	0.88	1.03	0.33	0.63	0.38	0.91	0.32
Sample: 35.00	Shear Str.																			
ე6ə	∞ Z																			
RTLT 1301-82 13-35N;65-52W for: 23.0 D	ap ()													•						
BA d	caco3	11.08	10.64	10.50	10.94	9.59	10.06	8.33	7.37	8.13	8.69	10.36	11.83	12.74	15.39	15.10	16.37	16.57	18.19	18.43
uise: sition: lculate	Por.	87.0	85.2	84.8	82.7	7.67	78.9	78.1	78.0	78.2	78.1	76.4	6.97	77.5	77.5	6.97	76.7	9.97	6.97	76.3
Cruis Posi Calc	t × t	0.000 0.031 0.112	50.0	300	300	0 0	90	2.7.	90	200	0.0	0.0	0.00	0.4	0.0	90	100	27		
	281	110	000	300	000	000	000	000	000	900	000	0.0	0.0	0.0	000	0.0	000	0.0		
	Vp m/sec	1536.1 1534.2 1522.7	000	501	66	197	94	95	50.5	93.	98	95.	95.	95.	94	94	96	95.		
	ည်းပေါင်း	WATER 0.0 1.0				9	4.0	ໍຕໍ່ຈ	ທິເ	- a	, a		m d	10.5						

		N. Kurt				
		Skew Kurt			ı	
		Skew				
		Dev				
1/18/81 4749m	0 kHz	Mean				
Date: 11/18/81 Depth: 4749m	0 m 40	clay	29.73			
		Silt				
67-4	00/0	Shear % % % Str. Sand Silt Clay				
Cruise: BARTLT 1301-82 Sample: 67-4 Position: 13-35N:65-52W	35.00	Shear Str.	29.73	51.73	48.17	52.92
S. S.	Deg-C					
1301-82 N:65-52	23.0	⊕ ∪				
3ARTLT 3	for:	caco3 c	200			
ise:	culate	e Por.				
Cru	Ca.	Attn. k	0.102 0.048 0.031	0.048	0.065	0.065 0.065 0.065
		Vp Ratio	0.978 0.977 0.977	0.978	0.979	0.978 0.978 0.978 0.979
		Vp n/sec	1495.6 0.978 1493.7 0.977 1493.7 0.977	1495.9		1496.3 1495.6 1495.6 1497.4
		Depth (cm)	19.0 20.0 21.0	22.0	25.0	27.0 28.0 30.0

	N. Kurt																																
	Kurt																																
	Skew																																
	Dev																																
11/18/81 1: 4749m 400 kHz	Mean Phi																																
Date: 11/18/81 .Depth: 4749m 0 m 400 kHz	å Clay																																
	å Silt																																
67-5	å Sand																																
Sample: 67.	Shear Str.			2.97				11.30		37.46				46.38		59.47				75.52	1	11.76			44.00		48.17				42.81		48.17
o−6a	₩ Z																																
RTLT 1301-82 13-35N;65-52W for: 23.0 D	‰ ()																										•						
BARILT 1301-82 13-35N;65-52 a for: 23.0	* CaCO3																																
Cruise: Dosition: Calculate	% Por.	1																															
Cru Pos Cal	Attn. k		<u> </u>	0.102	30.	õ.	0	ã.	90.	.04	.04	.04	.04	.06	. 0	0	.04	0.	90.	90.	0.		. 0	.04	90.	90.	.04	90.	90.	90.	90.		
	νp ati			0.985																													
	ν μ π/sec	1000	512.8	1506.0	502.7	5000.5	498.7	498.7	497.2	495.7	493.9	493.6	493.2	452.0	493.6	493.2	493.2	493.6	453.6	493.2	493.9	444	495.2	493.4	494.5	494.5	495.2	495.6	495.6	495.6	495.6		
]]	MATER	1.0	2.0	3.0	7.0	ა. ა	n· 9	7.0	ე.გ	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0
		1																															

		N. Kurt													
		Skew Kurt													
		Skew													
		Dev													
1/18/81 1749m	kH2	Mean Phi													
Date: 11/18/81 Depth: 4749m	0 m 400 kHz	* Clay													
		silt	,												
9-19	00/0	Shear % % Sir. Sand Silt Clay													
Sample:	35.00	Shear Str.	55.30				101.09		81.47				122.50		65.41
	oeg-C	# Z													
RTLT 1301-82 13-35N;65-52W	For: 23.0 Deg-C 35.00 o/oo														
Cruise: BA	lculate														
Cr	Ca	Attn. k	0.558	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.048				
		Vp Ratio	0.983	0.978	0.978	0.978	0.978	0.979	0.978	0.978	0.977				
		Vp m/sec	1502.9	1495.2 0.978	1495.2	1495.2	1496.3	1497.4	1496.3	1496.3	1494.8				
		Depth (cm)	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0

	N. Kurt																											
	Kurt																											
	Skew																											
	Dev	1 1																										
11/18/81 : 4749m 400 kHz	Mean																								•			
Date: 1] Depth: 4 0 m 400	\$ Clay																											
	silt																											
67-8	Sand																											
Sample: 67 35.00 o/oo	Shear Str.		3.57			13.08		19.62			38.65		42.81			78.49		57.09			51.14		41.03			44.00		09.99
Sal W Deg-C	op 23																											
KTLT 1301-82 13-35N;65-52W for: 23.0 De	* U	-																						•				
3A	_	1																										
Cruise: Position: Calculated	% Por.	! !																										
C S	ttn. k	i ~	0.065	•			٠,	•			٠.	٠,	٠,	٠, ١	90	. 0		0:	-	. 0	9	0	0,	9	, c	0		
	·-	0	0.995	9	2 0	6	6	9 9	9	9	97	97	9	2 6	9	, 6	97	97	7 0	97	97	97	97	97	70	. 97		
	p sec	529.	1521.3	498.	494	492	491.	48 48 9	490	488.	487.	487.	487.	20.	48.7	489	489.	487.	4 C C C	88	488.	184.	187.	787	200	88.		
	Dept (cm	E.R.	0.0	0.	- 0	0	0,	<u>ء</u> د	0	0.0	1.0	2.0	3.0	3 0	ວຸດ	0.0	8.0	0.0	3 C	0.2	3.0	0.	0.0	٠ • •		29.0	O -	

		N. Kurt	
		Kurt	
		Mean Dev Skew Kurt N. Phi Kurt -	
		Dev	
./18/81 .749m	КНZ	Mean Phi	
Date: 11/18/81 Depth: 4749m	0 m 400	% % % Shear % % % Mean Dev Skew Kurt N. 3CO3 C N Str. Sand Silt Clay Phi	
		silt 	
6-29	00/0	Sand	
ple:	35.00	Shear Str.	
San	o-6a	ap Z	777
301-82;65-52W	23.0 D	CO3 C N	000
ARTLT 1301-82 Sample: 67-9 13-35N:65-52W	for:	* CaCO3	
Cruise: BAF Position: 1	.0	_	
Cru	Cal	Attn. k l	
		Vp Ratio	
		epth Vp Vp Attn. % (cm.) m/sec Ratio k Por.	
		epth (cm)	

	N. Kur	_																							
	Kurt																								
	Skew																								
	Dev																								
11/18/81 1: 4447m 400 kHz	Mean																								
Date: 11/18/81 Depth: 4447m 0 m 400 kHz	s Clay																								
	Silt																								
68-1	Sand																								
Sample: 68.	Shear Str.		3.57		17 24		36.27			55.30		104.06			80.87	6	77.50			97.52		115.36			22 60
2 Sa 5W Deg-C	oP Z;											•										•			
RTLT 1301-82 13-34N;65-45W for: 23.0 De	هه ن ا	•																							
-4	caco3	4																							
se: tion: ulate	Por.																								
Crui Posi Calci	Attn.	015	000	3	80.	.0.	0.	0.	, 0	90	90	0.7	0,0	07	0.7	0.7	07	07	90	90	07	07	0,7	0.9	
	Vp Ratio	തത	0.978	.97	76.	97	97	. 97	, 6	.97	. 97	76.	60,0	97	97	97	97	. 97	.97	.97	.97	97	76	97	
	Vp m/sec	28	496	492	491.	488.	487.	487	486.	486.	487.	200	φ. 200	490.	489.	φ. φ. σ.	488	489	489.	188.	188.	491.		489.	
	Depth (cm)	α ο	00	0	0 0	0	0,	.	0	0	0 ()	.	0	0	0 0	0	0)	0	0	0 0	, o	0	
	1																								

	N. Kurt	0.65	0.65	0.61	0.61	99.0	0.61	0.62	0.65	0.61	0.61	09.0	0.61	0.59	09.0	0.61
	Kurt	1.89	1.90	1.59	1.58	1.93	1.56	1.64	1.87	1.59	1.56	1.49	1.60	1.42	1.47	1.56
	Skew	-0.32	-0.27	-0.20	-0.14	-0.14	-0.10	-0.14	-0.22	-0.13	-0.10	-0.04	90.0-	90.0-	-0.07	-0.12
	Dev	2.80	2.28	2.27	2.01	1.82	1.85	1.82	2.05	1.95	1.90	1.81	1.81	1.87	1.83	1.75
11/18/81 : 4447m 400 kHz	Mean Phi	10.11	10.20	10.32	10.36	10.39	10.45	10.37	10.25	10.41	10.47	10.53	10.48	10.55	10.45	10.34
Date: 11/18/81 Depth: 4447m 0 m 400 kHz	g Clay	82.21	85.30	85.54	87.48	89.47	89.76	89.68	86.98	88.56	89.31	91.11	90.54	90.12	89.87	88.68
	Silt	10.32	9.94	10.00	10.49	9.29	9.34	8.57	10.53	19.6	9.80	8.44	8.57	9.22	9.64	65.6
68-3	\$ Sand	7.47	4.76	4.46	2.03	1.23	0.89	1.75	2.49	1.78	0.88	0.44	06.0	99.0	0.49	0.53
Sample: 35.00	Shear Str.															
о-бә	op 23															
RTLT 1301-82 13-34N;65-45W for: 23.0 D	∞ ()															
BARTLT] 13-34N d for:	& CaCO3	17.63	16.53	15.60	14.19	13.46	13.25	16.41	17.66	18.46	16.70	16.34	19.73	19.37	19.05	19.44
se: tion: ulate		86.9	83.9	82.5	81.1	80.1	78.9	77.5	77.1	77.4	77.4	76.3	76.3	0.97	75.7	76.3
Crui Posi Calci	Attn. k	0.09	0.00	.07	90.	90.	0.04	0.04	90.	90	0.00	0.4	900	0.4		
	∨p ati	96.	76.	.97	76.	.97	.97	.97	.97	. 62.	76.	.97	0.975	.97		
	> \	501.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	492	491.	488	488. 488.	488. 488.	490.	490	4 90.	491.	300	489.		
	Depth (cm.)	1.0	900	. S.	7.0	20	6-	2 %	4.50	• •	, o o	5-1.	23.0	. 27	٠ <u>٠</u> ،	ာ် တ

	N. Kurt	-																									
	Kurt	-																									
	Skew																										
	Dev																										
11/18/81 4447m 00 kHz	Mean																										
Date: 11/18/8 Depth: 4447m 0 m 400 kHz	s Clay																										
	silt																										
68-4	Sand																										
Sample: 68.	Shear Str.	-	3.57			14.87		28.54				33.90		54.11				95.74		57.09		95.14				113.58	
Sar -C	op 25																									7	
BARTLT 1301-82 : 13-34N;65-45W ed for: 23.0 Deg-C	‰ () -																										
SARTLT 1 13-34N d for:	s CaCO3]]] 																									
Cruise: Position: Calculated	Por.																										
Cr. Pos Ca.]	Attn.	0.000	0.102	0.093	0.074	0.083	0.083	0.083	0.065	0.065	0.065	0.065	0.065	0.065	0.048	0.048	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	
	Vp Ratio	.001	0.985	0.981	9.60	0.976	0.976	0.975	0.975	0.974	0.973	0.973	0.972	0.973	0.973	0.973	0.975	0.975	0.974		•	•	0.974	6.	ę.		.97
	VP m/sec	530.	506	1499.7	492.	492.	492.	491.	0	489		488.	487.	48	1488.4	œ	491.	491.	489.	489.	489.	1489.8	489.	489.	90.		490.
	Depth (cm)	M	1.0	3.0	4.0	5.0	0.9	7.0	8.0	0.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	9	0	21.0	2	m	4	25.0	9

		N. Kurt	<u> </u>																											
		Kurt] 																											
		Skew																												
		Dev	 																											
11/18/81 4447m	400 kHz	Mean Phi																												
te: pth:	0 m 40	g Clay] 																											
		Silt																												
9-89	00/0	Sand	1 1 1 1 1																											
Sample:	35.00 a/oo	Shear Str.	; ; ; ; ;	2.97			11.89		33,30				46.38		73.74			00 00	00.00	67.20				105.85		76.12			76 06	0/.0/
	Deg-C	op 2	; ; ;																											
RTLT 1301-82 13-34N;65-45W	23.0 D	مە U																									•			
	ed for:	caco3	 																											
se: tion	lculate	% Por																												
Cr	Ca]	Attn. k	00.0	0.102	.08	.08	0.0	.07	.08	.06	. 04	.04	.04	.04	90.	90.	90.	9 0	90	.06	• 06	90.	.04	90.	.08	90.	.08	80.	.29	٠,٠
		p tio	00	0.997	98	97	y 7	97	97	97	97	97	97	97	97	97	97	7 0	97	97	97	97	97	97	97	97	97	97	97	
		Vp m/sec	1531.	1524.9	499.	496.	474.	492.	492.	490.	489.	489.	490.	490.	490.	489.	492	493	, d	490.	491.	491.	491.	492.	491.	;	493.	494	495.	
		epth (cm)	WATER	0.0	2.0	3.0	4. č.	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	14.0	15.0	7. 9T	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	73.0

	N. Kurt)
	Kurt	
	Skew	
	Mean Dev Skew Kurt N. Phi Kurt].0
/18/81 447m kHz	Mean	
Date: 11/18/81 Depth: 4447m .0 m 400 kHz	s Clay	
ппò	Shear % % % Str. Sand Silt Clay	
68-7	\$ Sand	
ple:	Shear &	
Sam eg-C	# Z	0.178
ARTLT 1301-82 Sample: 68-7 13-34N;65-45W for: 23.0 Deg-C 35.00 o/oo	æ U -	0.831 0.178
ARTLT 1 13-34N for:	s caco3	
Cruise: BA Position: Calculated	% Por.	
Cr. Ca.	Attn. k	
	Vp Ratio	
	wy op u	
	Depth (cm) m	1-0-1

	ا ب																		
	N. Kurt	-																	
	Kurt																		
	Skew																		
	Dev																		
1/18/81 4188m 0 kHz	Mean Phi																		
Date: 11/18/81 Depth: 4188m 0 m 400 kHz	* Clay																		
	g Silt																		
00/0	8 Sand																		
Sample: 69	Shear Str.	2, 38		9, 5]		44.00			63.63		65 63		115.36			107.04			88.01
sa v Jeg-C	ø Z																		
.RTLT 1301-82 13-34N;65-28W for: 23.0 Deg-C	æ ∪																		
AC.	t caco3	_																	
Cruise: B. Fosition: Calculated	Por.																		
Cr Fo Ca	Attn. k					•		•			•		•	•					
	Vp Ratio	000	, 0, 0	000	joj	0.0	. 0	6	ກີ		9,0	, o,	9	<u> </u>	, 0,				
	Vp m/sec	530.	900	94.	92.	91.	90.	68	ა თ თ	89.	60	493.	493.	493.	491.				
	Depth (cm.)	ATE	77.	4.7	0.9	7.0	. 0	10.0	12.0	13.0	14.0	16.0	17.0	18.0	20.0	21.0	22.0	24.0	25.0

	N. Kurt																					
	Kurt																					
	Skew																					
	Dev																					
1/18/81 1188m) kHz	Mean																					
Date: 11/18/81 Depth: 4188m 0 m 400 kHz	t clay																					
1	Silt																					
9-69	\$ Sand																					
Sample: 69	Shear Str.		1.78		5.95	10 71				45.19	58.28			68.38		85.03				87.41	20	20.00
w Deg-C	ж Z																					
BARTL1 1301-82 13-34N;65-28W d for: 23.0 D	∞ ن																					
4	caco3																					
Cruise: E Position: Calculated	Por.	<u>.</u>																				
Cr Ca	Attn. k		0.144	• •	•	• •			•			•						•		•		
	Vp Ratio	1.001	0.987	0.981	0.977	0.977	0.975	0.974	0.973	0.973	0.974	0.974	0.974	0.980	0.984		0.933	•	•	•	•	
	Vp m/sec	1530.	1510.1	1499.	1494.	493.	490.	489.	488	2002	489	489.	489	498	505.	427.	427.	427.	377.	453	010	
	Depth (cm)	WATER	2.00	3.0	5.0	0.9	8.0	0.6	10.0	12.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	0.4.0	

		N. Kurt		0.58	09.0		0.62	0.61		0.52	0.55		0.58	0.55		0.57	0.57		0.08	0.56		0.57	0.59
		Kurt		1.38	1.52	,	1.64	1.58	,	1.07	1.22		1.36	1.24	,	1.31	1.32		1.30	1.29		1.33	1.45
		Skew		-0.50	-0.45		-0.39	-0.28	,	-0.12	-0.23		-0.16	-0.09	,	-0.14	-0.13	•	-0.12	-0.20		-0.16	-0.23
		Dev	 	4.06	3.40		3.15	2.72	6	2.33	2.42		2.18	2.13		1.95	2.03	•	7.04	2.28		2.29	2.54
1/18/81 4188m	0 kHz	Mean Phi	1	8.58	9.34		9.68	10.14		10.33	10.06		10.14	10.25		10.28	10.29		10.25	10.09		10.22	10.14
Date: 11/18/81 Depth: 4188m	0 m 400	g Clay	 	72.87	75.60		77.65	82.42	•	84.15	81.29		84.44	85.63		87.59	87.43		86.63	83.07		84.29	82.91
		Silt	! !	9.57	10.30		10.73	11.21		12.81	14.77		11.90	12.37		11.05	11.10	:	11.44	13.41		11.92	12.17
6-69	00/0	* Sand) ; ; !	17.55	14.10		11.62	6.37		3.04	3,95		3.67	2.00		1.36	1.47		1.93	3.52		3.79	4.93
Sample:	35.00	Shear Str.	i ! ! !																				
	Deg-C	æ Z -	! ! ! ! !																				
RTLT 1301-82 13-34N;65-28W	23.0	⊕ ()	• •																				
BARTLT 13-34		_	-	25.76	24.36		22.72	19.11		14.49	18.03		18.12	18.60		18.04	17.35		18.76	20.17		21.81	23.35
Cruise: Position:	lculated	% Por.	-	87.2	85.3		83.4	81.5		79.9	78.1	•	77.3	6.97	•	76.1	75.7		76.0	75.7		76.1	75.9
C. P. C.	S	ttn k	00.	14.	0.133	. 11	1.	60.	.07	90.	90.	10	10	200	.07	.08	80.	.08	80.	.11	. 14		
		Vp atio	100	<i>y</i>	0.979	9	ი, ი	, 0	6.	٥.	000	0	6.0	200	6	9.0	20	0.9	0	20	0.9		
		> \	1530	1522	1497.8	1494	1494	1490	1490	1488	1488 1488	1490	1490	1489 1488	1489	1490	1490 1490	1490	1490	1490.2	1491		
		epth (cm)	WATER).).	3.0	4.0	5.0	7.0	8.0	0.6	10.0	12.0	13.0	14.0	16.0	17.0	18.0	20.0	21.0	22.0	24.0	25.0	27.0

	K K U I
	Kurt
	Sk e w
	Dev
/18/81 188m kHz	Mean Phi
Date: 11/18/81 Depth: 4188m 0 m 400 kHz	Clay
	Sil
69-10	Sand
Sample: 69-3	Shear Str 3.57 7.73 29.14 49.95 64.82
Sa eg-C	oo 2
RTLT 1301-82 S 13-34N;65-28W for: 23.0 Deg-C	هه ن ا ا
∢ _	CaC03
Cruise: B Position: Calculateó	P P P P P P P P P P P P P P P P P P P
Pos	Attn. 0.000 0.033 0.123 0.123 0.0123 0.083 0.083 0.083 0.083 0.083 0.093 0.093 0.102 0.102 0.102 0.112
	Ratio 1.001 1.001 1.001 0.984 0.975 0.975 0.975 0.975 0.975 0.976 0.976 0.976 0.976
	N N N N N N N N N N
	Depth (CR) (CR) (CR) (CR) (CR) (CR) (CR) (CR)

		Kur	
		Kurt	
		\$ \$ \$ Shear \$ \$ \$ Mean Dev Skew Kurt N. CaCO3 C N Str. Sand Silt Clay Phi	
		Dev	
./18/81 188m	kHz	Mean	
Date: 11/18/81 Depth: 4188m	0 m 400	\$ Clay	
		Shear & & & & & & & & & & & & & & & & & & &	
91-69	00/0	Sand	
Sample: 69-16	35.00	Shear & Str. Sand	
San	D-69	o	138
301-82 :65-28h	23.0 E	مه <i>ن</i>	818 0
BARTLT 1301-82 Sample: 69-1 n: 13-34N:65-28W	for:	8 CaCO3	•
ruise: B	Calculated	Por.	•
Cru	င်္ခ	Attn. k	•
		Vr Ratio	
		Оертh Vp Vp Attn. (сп.) п/sec Ratio k	
		Depth (cm.)	

Cruise: BARTLT 1301-82 Sample: 70-3 Date: 11/19/81 Fosition: 13-33N;65-24W Calculated for: 23.0 Deg-C 35.00 o/oo 0 m 400 kHz		
BARTLT 1301-82 Sample: 7 13-33N;65-24W d for: 23.0 Deg-C 35.00.0/o	Date: 11/19/81 Depth: 3937m	О m 400 kHz
BARTLT 1301-82 Sam 13-33N;65-24W d for: 23.0 Deg-C	70-3	00/0
BARTLT 1301- 13-33N;65- d for: 23.0	Sample:	
	BA	i for: 23.0

N. Kurt Skew Kurt Dev Mean å Silt \$ Sand Shear Str. \$ CaCO3 % Por. Attn. k Vp Vp m/sec Ratio Depth (cm)

	N. Kur																						
	Kurt	<u>-</u>																					
	. Ku																						
	Skew																						
	ŝ.	<u> </u>																					
	Dev																						
н	-	<u> </u>																					
Date: 11/19/81 Depth: 3937m 0 m 400 kHz	Mean Phi																						
11/1 393 00	٠.	<u>i</u> !																					
te: pth: m 4	\$ Clay																						
De De	٥.	1																					
	silt																						
φ		 																					
9-0/	& Sand																						
ple: 70. 35.00 o/oo	-	Ī																•					
Sample:	Shear Str.	<u> </u>																					
Sar -c	op Z	!																					
Deg-C	-	<u> </u>																					
BARTLI 1301-82 13-33N;65-25W d for: 23.0 D	ob ()																						
130 3N; 6 23	-	 																					
RTL1 13-3: for:	* caco3																						
BAR : 1	S.	<u> </u>																					
<u></u>	% Por.	1																					
Cruise: Fositio Calcula		<u>i</u> 				~	~	_	~	_	_	_	۵.	_								~	_
0 4 0	Attn. k	.000		•				•	•	•	•	•	•	•	•		•	•	• •			.21	w.
	1	0 9																					
	Vp Ratio	0.996		•		•		•	0.97	•	•	0.97	•	•		9.0	•	•	•		•	0.97	0.97
		. w.r.	9	0.3		0	۳,	۳.	۳,	σ.	٦.	6.	'n	4	m	4.	* 0	, 0	1 4	و	m	m	9
	> \	1523	49	34	48	1485	1484	1484	48	1483	49	48	1483	1486	1492	1500	1500	1505	1497	1495	1492	1489	1491
	-	WATER		٥.		0.	0.	0.	٥.	0.	0.	0	0.	0.	٥,	٠. د		•			0.	0.	0.
	9 0 0	WAT	· ~	7 0) 4t	S	9	7	00	0	11	12	13	14	15	91	ן מ	7 -	200	21	22	23	24
		ı																					

	Kur '	 																					
	Kurt																						
	Skew	-																					
	Dev	 																					
1/19/81 1937m 1 KHZ	Mean Phi	- - - - - -																					
Date: 11/19/81 Depth: 3937m 0 m 400 kHz	* Clay																						
110	silt																						
70-9	sand							•															
Sample: 70.	Shear Str.		5.95			14:27		22.60				64.82	0	79.68			145.69		83.25				
¥ Deg∽C	# Z	-																					
RTLT 1301-82 13-33N;65-25W for: 23.0 De	<i>ه</i> ن																						
BARTLT 1301-82 : 13-33N;65-25 ed for: 23.0	caco3																						
Cruise: Position: Calculate	Por.	-																					
Cr.	Attn. k	-0.015	0.068	0.129	0.129	0.118	0.108	0.097	0.097	0.118	0.129	0.108	0.118	0.097	0.068	0.078	0.118	0.118	•		•	0.118	.20
	vp Ratio	666.	0.991	0.976	0.974	0.974	0.974	_						0.974					0.976	0.975	0.974	0.974	7
	Vp m/sec	1527.	1515.7	1492.	1490.	1490	1490	148	148	149	149	148	148	1489.3	148	148	148	149		1491	14	7	14
	Depth (cm.)	WATER	0.0	2.0	2. 4.	5.0	0.9	7.0	8.0	<i>ي</i> . د	10.0	11.0	12.0	13.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0
		1																					

		2	Kur t	1																							
			אחז ר																								
		: .3	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1																							
			E																								
/19/81 937m	kHz		Phi	1																							
Date: 11/19/81	0 m 400 kHz	ď	Clay																								
		ď	Silt																								
70-10	00/0	ď	Sand																								
Sample:	35.00 0/00	9	Str.			5.35			רכי	17.61	11.89) •			17.24		15.46			95.14		126.07			78.49		
	Deg-C	ď	°Z																								
RTLF 1301-82	23.0	d	• ပ	1																							
<₽:		d	Ca	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							
Cruise: Position:	lculated	ď	Por.	!																							
Cr	C S	\$ 4 4	k k	?	٦.	7	∹.	٦,	፣ -		10		0.	0.	٠.	ᅻ.	0.190	٦-	0.108		٠.	٠.	٦.	0.	-	7	
		3	v. atio	99	. 98	.97	. 97	.97	7.0	, ,	, 6	. 97	.97	.97	.97	.97	. 97	.97	0.973	.97	.97	.97	.97	.97	7.0	.6	.97
		5	s c c	526.	507.	495.	491.	490.	48.9	000	466	487.	487.	487.	486.	489.	491.	1491.2	1487.9	486.	48	486.	490.	490.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4	489.
		4) EO.	WATER	0.0	1.0	2.0	0.0	9.0	0.0	0.0	8.0	9.0	10.0	$\overline{}$	$^{\circ}$	ന	4 u	16.0	7	œ	Q,	0	- 1 (A 4.	14.	2

	N. Kurt	ſ	0.3/	0.62	9.0	0.61	0.61	0.55	0.55	09.0	0.61	0.57	0.58	95.0	0.57
	Kurt		0.59	1.64	1.83	1.54	1.57	1.24	1.21	1.49	1.54	1.35	1.39	1.27	1.31
	Skew		-0.46	-0.49	-0.39	-0.29	-0.31	-0.21	-0.13	-0.20	-0.18	-0.15	-0.20	-0.16	-0.20
	Dev		4.55	3.49	2.99	2.76	2.73	2.50	2.25	2.29	2.00	2.13	2.34	2.28	2.31
11/19/81 3937m 00 kHz	Mean		7.52	9.13	9.73	10.03	06.6	10.08	10.29	10.17	10.12	10.15	10.14	10.22	10.04
Date: 11/19/ Depth: 3937m O m 400 kHz	s Clay	<u>.</u>	59.00	75.09	78.47	81.25	79.75	81.49	84.61	84.33	86.10	85.06	83.44	84.10	82.57
E 3	Silt	 	7.50	10.04	11.34	12.50	14.27	14.25	12.40	11.48	11.33	11.97	12.45	12.46	14.16
70-11	Sand	 	33.00	14.88	10.19	6.25	5.98	4.26	2.99	4.19	2.57	2.97	4.11	3.44	3.27
Sample: 35.00	Shear Str.	! ! ! !													
ე − 6ə	# Z	 													
RTLT 1301-82 13-33N;65-25W for: 23.0 D	₩ U	-													
AC.	s caco3		32.30	26.10	22.06	19.67	22.18	20.78	20.80	21.00	19.38	21.50	22.24	21.92	22.21
Cruise: B. Position: Calculated	& Por.	 	85.2	83.0	81.5	80.8	81.5	78.1	77.5	7.97	76.0	7.97	77.5	76.8	75.8
Cru	Attn. k	10.7	.15	133	0.133	0.102	0.093	0.102	0.083	0.093	0.083	0.102	0.102		
	Vp Ratio	100	97	97	97	97	0.972	97	97	97	.97	7	.97		
	vp /sec		495.9	491.2	70	487.9	487.2	486.8	487.2		497.	491.	488. 488.		
	Depth (cm)	WATER 0.0	1.0	3.0	4.0	6.0	300	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0

		Z Z	1 1 1																									
		Kurt	1																									
		Skew																										
		Dev																										
Date: 11/19/81 Depth: 3775m	0 kHz	Mean	1 7																									
Date: 1 Depth:	0 m 40	مه <u>د</u>	יוחויין	 																								
		φ. -																										
71-7	00/0	3 960 10 10	ממומ																									
Sample:	35.00 0/00	Shear	. I	4		7.14				17.84		19.62				52.33		90.98				125.69		79.09			0	90.98
S	o−6a	ою 'Z	2																									
1301-82 4:65-10W	for: 23.0 Deg-C	ow (֝֝֝֝֝֝֝֝֝֝֝֝֝ ֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֩֞֞֞֩֞֡																									
ВА	·O	مه ر د د	רמכטז																									
ise: ition:	Calculate	op (FOI .																									
Crui	Cal	Attn.	4	00.	15	.21	.23	.16	.16	.15	.14	0.144	. 14	.13	0.144	.20	0.167	. 13	0.133	. 13	. 14	.13	. 14	.16	• 16	٠	. 14	0
		V.p.	Kario	.997	0.989	•	•	•	•		•	•		•	•	•	0.969	•	0.970	•	•	•	•	•		0.972	•	0.973
		VE S	III/sec	524.	1512.7	494.	491.	489.	487.	487.	486.	1486.1	486.	486	1485.3	483	1482.4	482.	483.	484.	487.	48	485.	488.	487.	1486.8	483.	487.
		Depth	(CII.)	ATE	0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	0.8	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0

Skew Kurt	
S H H H H H H H H H H H H H H H H H H H	
<u> </u>	
Dev	
11/19/81 3775m 00 kHz Mean Phi 	
Date: 11/19/19/19 Depth: 3775m 0 m 400 kHz Clay Ph	
Silt	
2/00 8 sand	
Sample: 71.35.00 o/oo Shear & Str. San Str. San 13.68 17.84 17.84 18.93 118.93 165.31	96.93
S D & Z 1	
ARTLT 1301-82 13-31N;65-10W for: 23.0 De % % % CaCO3 C	
BARTLT 1301-82 13-31N;65-10 13 for: 23.0 2 CaCO3	
Cruise: BA Position: Calculated Calculated 1.	
	0.133 0.123 0.192
VF 	0.970 0.970 0.971
VF 157.7 157.7 157.7 157.7 157.2 157.2 16.8 16	1483.2 1482.8 1485.3
Depth (Cm)	23.0 24.0 25.0

		N. Kurt																					
		Kurt																					
		Skew																					
		Dev																					
11/19/81 3775m	kHz	Mean																					
Date: 1]	0 m 400 kHz	g Clay																					
		silt																					
71-9	00/0	sand																					
Sample:	35.00 0/00	Shear Str.	4	8.32		23 79		26.76				54.11		58.71			127.26		84.44			93.36	
S.	9-C	op izt																					
RTLT 1301-82	for: 23.0 Deg-C	æ∪ ¦																					•
BARTLT 1		caco3																					
Cruise: Position:	Calculated	P 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																					
Cru	Cal	Attn.	015	0.083	0.167	16 15	0.133	0.133	0.123	0.112	0.123	0.123	0.102	0.093	0.102	0.093	0.144	0.144	. 15	. 13		34	•
		Vp Ratio	. 996	0.975	0.973	0.973	0.971	•	•	0.971	0.971	0.971	0.970	0.969	•	0.909		•	•	0.971	•		0.972
		Vp m/sec		404	1488.2	1487.5	485	S	1485.0	S	ഹ	S	ന	2	\sim	1482.4	D	1487.5	7		4 to 4	486	486.
		Depth (cm.)	WATER	1.0	3.0	4 r	0.9	7.0	0.8	0.6	10.0	11.0	12.0	13.0	14.0	16.0	17.0	18.0	19.0	20.0	22.0	23.0	24.0

Cruise: BARTLI 1301-82 Sample: 71-10 Date: 11/19/81			z	Kurt		0.59	1	0.58	0	0.09	67	70.0		79.0		0.00	0 64	•	0 62	70.0	17			70.0	0.63
Depth: 3775m Depth: 3775m Depth: 3775m Depth: 3775m Calculated for: 23.0 Deg-C 35.00 o/oo Depth: 3775m Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz New Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz New Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz New Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz New Calculated for: 23.0 Deg-C 35.00 o/oo Om 400 kHz Om 400			Kurt			1.42	,	1.35	,	7 % T		70.1	,	1.63	•	1.48	1 75		1 64	T . 0 4		1.30		10.1	1.70
Cruise: BARFLI 1301-82 Sample: 71-10 Date: 11 Pepth: 3 Calculated for: 23.0 Deg-C 35.00 o/oo 0 m 400			Skew	1		-0.48		-0.48	•	-0.45		-0.3/		-0.31	0	-0.30	70 0-	£7.0-	000	-0.20	ć	-0.20	•	*7·0-	-0.36
Cruise: BARFLI 1301-82 Sample: 71-10 Date: 11 Pepth: 3 Calculated for: 23.0 Deg-C 35.00 o/oo 0 m 400			Dev	; ; ;		3.58		3.71		3.5/	6	7.98	6	7.13		2.54	01 0	07.7	, ,	70.7	C C	7.30		7.03	2.77
Cruise: BARKEL 1301-82 Sample: 7 Position: 13-31N;65-10W Calculated for: 23.0 Deg-C 35.00 o/ Calculated for: 23.0 Deg-C 35.00 o/ Calculated for: 23.0 Deg-C 35.00 o/ Attn. \$ \$ \$ \$ \$ Shear \$ (cm) m/sec Ratio	1/19/81 1775m	kHz	Mean	Phi		60.6		8.90	6	9.19	0	ν α π	0	10.07	(9.90	00	10.03	כו טו	10.13	0	56.5		10.01	9.81
Cruise: BARKEL 1301-82 Sample: 7 Position: 13-31N;65-10W Calculated for: 23.0 Deg-C 35.00 o/ Calculated for: 23.0 Deg-C 35.00 o/ Calculated for: 23.0 Deg-C 35.00 o/ Attn. \$ \$ \$ \$ \$ Shear \$ (cm) m/sec Ratio	Date: 1]	0 m 400	οNP	Clay		73.54		72.71	6	73.94		0T.6/		81.07	•	80.49	67 40	04.07	67 30	20.08		81.13		84.43	80.05
Cruise: BARKEL 1301-82 Sample: 7 Position: 13-31N;65-10W Calculated for: 23.0 Deg-C 35.00 o/ Calculated for: 23.0 Deg-C 35.00 o/ Calculated for: 23.0 Deg-C 35.00 o/ Attn. \$ \$ \$ \$ \$ Shear \$ (cm) m/sec Ratio	7.		оP	Silt		11.37		11.69	,	11.32	,	12.18		12.72	1	14.70	11 65	CQ.TT	20	11.90	,	14.20		13.4 K	13,38
Cruise: BARTL1 1301-82 Sample: Fosition: 13-31N;65-10W Calculated for: 23.0 Deg-C 35.00 Org. Mysec Ratio k Per. CaCO3 C N Str. 1	71-10	00/0	о¥Р	Sand	<u> </u>	15.09		15.40		14.73		8.72		6.21		4.81	(3.12		7 6 T		4.66	4	2.09	6.58
Cruise: BARTL1 1301-82	mple:	35.00		Str.																					
Depth Vp Vp Attn. 8 8 8 8 6 Calculated for: 13-31N Calculated for: 13-31N Mysec Ratio k Por. CaCO3 (cm) Mysec Ratio k Por. CaCO3 0.096 0.015 0.065 0.005 0.0		o-6-	æ	Z																					
Depth Vp Vp Attn. 8 8 8 8 6 Calculated for: 13-31N Calculated for: 13-31N Mysec Ratio k Por. CaCO3 (cm) Mysec Ratio k Por. CaCO3 0.096 0.015 0.065 0.005 0.0	301-82	23.0 D	ф	ပ	 																				
Depth Vp Vp Attn. % Calculate (Cm) m/sec Ratio k Position: 0.01 152.3 7 0.996 0.015 0.015 0.0 1521.8 0.995 0.065 0.015 0.0 1501.8 0.995 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.097 0.294 0.232 0.097 0.294 0.232 0.097 0.971 0.167 79.5 0.097 0.972 0.294 0.097 0.972 0.294 0.972 0.972 0.294 0.972 0.972 0.294 0.972 0.997 0.196 0.997 0.997 0.196 0.997 0.1	BARTE1 1	a for:	ою	CaCO3	 	26.81		28.07		26.51		22.23		23.32		21.60		21.28	,	21.52		21.80		19.02	22 93
Depth Vp Vp Atti (CT) M/SeC Ratio k 	ise:	culate	ж	Por.	! ! !	7.	,	'n				•		78.2		77.0		6.9/		76.8		•		0.97	75 4
Depth VP (cm) m/sec Ratio 0.0 1521.8 0.995 0.0 1521.8 0.995 0.0 1521.8 0.995 0.0 1521.8 0.995 0.0 1485.3 0.972 0.9	Cru	Ca]	Attn.	*	.01	90.	0.247	0.294	0.232	•	0.218	0.167	0.144	0.156	0.294	0.247	0.167	0.179	0.232	•	•	•	.40	. 19	
Depth VP (CT) M/Se (CT) MATER 1523 WATER 1523 3.0 14896 5.0 1488 5.0 1488 5.0 1488 11.			4		. 996	99	0.980	0.979	0.974	0.973	0.972	0.971	0.971	0.971	0.972	0.972	0.971	0.972	0.974	•		0.982	0.976	0.951	
<u> </u>			۷p	m/sec	1523.7	1521.8	1498.5				1487.2	1485.3	1485.0		1486.6	1486.4	1485.0	1486.1	1489.0	1451.5	1494.1	1502.2	9	54.	
			Depth	_	WATER	0.0	2.0		•	•	•	7.0	3° c	0.6	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0

		N. Kurt																															
		Kurt										·							2														
		Sker																															
		Dev	-																														
11/20/81 3542m) kHz	Mean																															
Date: 11/20/8 Depth: 3542m	0 m 40	s Clay																															
		silt																															
73-15	00/0	Sand																															
Sample:	35.00 0/00	Shear Str.			10.11				24.98		37.48				38.06		106.44			ì	137.36	, , ,	100.44			,	86.22		93.36				63.63
	Deg-C	op Z	-																														
RTLT 1301-82	23.0 D	æυ.																															
BARTLT 1	d for:	s CaCO3																															
		% Por.																															
2 2	S a	Attr. k			.19	. 15	. 16	2	. 14	. 14	٦.	7	∹.	2	۳.	7	~	۳.	4	۳,	⁻:		፣ '	۱ ب	'n	σ.	∞.	4.	۳.	c.	٠,		
		Vp ati		0.986		0.973		•	•	•	0.973	•	0.973	•		•	•		•	0.990	1.001	1.001	1.000	1.000	1.000	6.993	•	0.982	•	•	•	6.984	
		νp m/sec	10	1507.8	491.	488.	487.	1486.6	486.	487.	487.	486.	488.	490.	491.	490.	491.	487.	506.	513.	530.	1530.5	529.	529.	529.	518.	509.	01.	498.	496.	•	504.	
		Derth (cm)		0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0		$\overline{}$	N	m	4	n	9		യ	on −	ο,	┥.	S.	(*)	4	L(1)	vo	1	28.0	ത

		N. Kurt	
		Mean Dev Skew Kurt N. Phi Kurt	-
		Skew	
		Dev	
/20/81 542m	kHz	Mean Phi	
Date: 11/20/81 Depth: 3542m	т 400	* Clay	0.650 0.129
44	0	Shear % % % % % % % % % % % % % % % % % % %	
73-17	00/0	s Sand	1 1 1 1 1 1
Sample: 73-17	35.00 c	Shear Str.	
Sam	o-c	ap /2	0.129
301-62 :64-42W	23.0 D	av ()	0.650 0.129
EAKTL1 1301-62 Sample: 73-1: 13-33N:64-42W	tor:	caco3	
Cruise: B Position:	Calculated	% Por.	
Cru	Cal	Attn. k	
		Vp Ratio	
		Depth Vp (cm) m/sec	1 0

		N. Kurt	 															
		Kurt	i i i i				2											
		Skew																
		Dev	; ; ; ;															
1/20/81 3542m	Z U	Mean																
Date: 11/20/81 Depth: 3542m	÷	g Clay	<u> </u>															
		8 Silt) 															
73-18	00/0	\$ Sand	* · · · · · · · · · · · · · · · · · · ·															
Sample:	33.00 0/00	Shear Str.																
1	חהשיר ר	or Z	960.0	0.101	0.106	0.106	0.114	0.118	0.128	0.130	0.124	0.114	0.106	0.092	060.0	0.088	0.086	0.089
RTLT 1301-82 13-33N;64-42W		æ ()	0.585	0.510	0.507	0.495	0.585	0.663	0.661	0.731	0.673	0.639	0.580	0.455	0.503	0.457	0.450	0.449
∢.		g CaCO3																
Cruise: B Fosition:	cutare		;] ; 															
Cru	3	Attr. k																,
		Vp Ratio	!															
		Vp m/sec	-															
		ept (.cm	1.0	3.0	4. 1. (.00	0.0	11.0	13.0	15.0	17.0	19.0	21.0	23.0	25.0	27.0	29.0	31.0

		N. Kurt																										
		Kurt																										
		Skew																										
		Dev																										
/21/81 503m	kHz	Mean																										
Date: 11/21/81 Depth: 3503m	0 m 400	s Clay	<u>.</u>																									
		silt																										
74-1	00/0	Sand																										
Sample:	35.00 c/oo	Shear Str.		5.35		ı	20.22	29.14			1	50.55	,	61.19			133.80	71 13	15.70			79.68	- (06.77			75 57	10.01
	Deg-C	or 'Z																										
RTLT 1301-82 13-32N;64-44w	23.0	∞ U																										
BARTLT 1301-82 13-32N;64-44		* CaCO3) 1 1 1																									
Cruise: Position:	lculated	% Por.																										
Cry	Ca	t x	10.	17	7	15	14	. 14	91.	. 15	. 17	.17	. 15	. 13	01.	37	.27	4.	2.27	31	.31	.51	.49	. 63	96	• •		. Y
		/F atic	100	ש סי	0.978	نون	9	ص ه	ن ص	6.	σ.	σ.	σ,	ດ,	σ, ο	ກວາ	ુ. •	9	ກຸດ	יסי	٥.	2	٥.	σ,	0,	· ·	. ·	٠,
		Vp /sec	530.	499.	1495.9	492.	491.	491.	491.	491.	491.	490.	490.	488	487.	466.	494.	500.	200°	498	497.	501.	504.	1503.3	507.	507.	501.	500.
		ept (.cm	7-1		2.0								•		•									•	•	•	•	•
			ī																									

	ZN		
	Kur t		
	s ;		
	Dev		
/21/81 503m kHz	Mean Phi		
Date: 11/21/81 Depth: 3503m 0 m 400 kHz	2 Clay		
	S : 1 : 4		
74-2	s s s s s s s s s s s s s s s s s s s		
Sample: 74	Shear Str. 6.54 24.38 35.68	47.57 63.63 102.87 115.36	83.27
0-6a	00 4		
RTL1 1301-82 13-32N;64-44W FOr: 23.0 Deg-C	ж () 		
e: BARTL1 1301-82 ion: 13-32N;64-44 latea Ior: 23.0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
se: tion: ulate	- I - I - I - I - I - I - I - I - I - I		
Crui Fosi Calc	7 x x x x x x x x x x x x x x x x x x x	0.218 0.1218 0.1218 0.144 0.167 0.144 0.144 0.179 0.205 0.218	203.23
	777 22222222	0.9976 0.9976 0.9976 0.9976 0.9976 0.9976 0.9976	0101010101
	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	, , , , , , , , , , , , , , , , , , ,	495. 494. 493. 493.
	Depth (Ca) 1 .0 2 .0 2 .0 5 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6 .0 6	0.00 111.00 112.00 113.00 114.00 118.00 118.00	22.0 23.0 24.0 25.0

	M M L L L L L L L L L L L L L L L L L L
	Kurt
	S Kew
	De v
: 11/21/81 n: 3503m 400 kHz	Phi
Date: 1] Depth: 3 0 m 400	Clay
74-3	sand f
Sample: 74	Str
. Sa W Deg-C	o♥ ⊠
BARTLT 1301-82 13-32N;64-44W d for: 23.0 De	₩ U
2	CaCO3
Cruise: BA Position: Calculated	. P ⊗ ∞
Cr. Pos Cal	Attn. 0.000 0.205 0.192 0.192 0.192 0.179 0.
	Natio 0.999 0.999 0.975 0.975 0.975 0.974 0.973
	Wp m/sec 1527.8 1514.1 1491.2 1491.2 1499.7 1489.7 1489.7 1488.6 1488.6 1488.6 1488.6 1488.6 1488.6 1488.6 1488.7 1488.6 1488.6 1510.7 1510.8 151
	Depth (cm) - (cm

		Skev
		Dev
/21/81	KHZ	Mean Dev Phi
Date: 11/21/81	0 m 400	!
		Shear & & & & & & & & & & & & & & & & & & &
76-8	00/0	& Sand
Sample: 76-8	35.00	Shear & Str. Sanc
Sar	oeg-C	o♥ 2Z,
Cruise: BARTLT 1301-82 Sample: 76-	23.0 D	ر مه ن ا
SARTLT]	for:	Por CaCO3
ise: E	culated	& Por.
Cri	Cal	Vp Attn. Ratio k
		Vp Attn. Ratio k
•		υŢ

Kurt	_																								
Kurt																									
Skew	_																								
Dev																									
Mean	E																								
g Clay																									
Silt	_																								
Sand																									
Shear Str.																									
* Z																						•			
æυ																									
* CaCO3																									
Por.																									
4	0.000		0.194	0.194 0.182	0.182	0.206	0.206	0.194	0.170	0.159	0.137	0.137	0.170	0.206	0.184	0.194	0.182	0.219	0.233	0.292	0.276	0.261	0.292	0.261	0.304
p tio	0.999 0.982 0.976	0.975	0.973	0.974	0.974	0.975	0.974	0.974	0.973	0.973	0.973	0.973	0.974	.		<u>.</u>	o.	0.980	•	0.979	0.976	•	.97	0.975	1.8.0
p sec	1527.3 1502.4 1493.2	1491.0	1488.8	1489.2	•	1489.9	1490.3	1489.5	1488.1	1468.1	1487.7	1488.1	1489.9	1490.6	1491.4	1491.0	1493.6	1499.1	1496.1		1493.2	_	1488.4	1491.4	1493.9
Dept (cm	- WATER 0.0	3.0	0.4	0.0	7.0		10.0	11.0	12.0	13.C	15.0	16.0	17.0	18.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0

	N. Kurt																						
	Kurt																						
	Skew																						
	Dev																						
/21/81 490m kHz	Mean Phi																						
Date: 11/21/81 Depth: 3490m 0 m 400 kHz	8 Clay 																						
990	silt.																						
76-11	Sand																						
Sample: 76-	Shear Str.	8.33		22.60		40.44		52.33	,	76.12			133.20	107 63				141.53		113.58			
)- 6a	o40 Z.																				L		
RTL1 1301-82 13-33N;64-41W for: 23.0 D	æ)																						
	\$ CaCO3																						
se: tion: ulate	8 Por.																						
Crui Posi Calc	Attn. k	.000	212	9 -	16	0.156	16	16	19	15	14	17	1.7	16	7	Ξ.	<u> </u>	7	2	.31		$\frac{21}{2}$. 24
	Vp Ratio	0.998				0 0	0	o o	òò	0	o	o 0	<u>ن</u> د	0	0	0	0	0	0	0	0	0	0
	vp m/sec	27.	95.	91.		191	91.	191.	900	189	189.	888	4 4 2 6 2 1	493	494	493	863	4 9 8	497	494	492	491	487
	De (WATER 0.0	2.0	0.44 0.00	. o . o	7.0	. o	10.0	12.0	13.0	14.0	15.0	17.0	18.0	19.0	20.0	21.0	23.6	24.0	25.0	26.0	27.0	28.0
		1																					

		N. Kurt	1		0.55																					
		Kurt			1.29																					
		Skew			-0.46																					
		Dev			3.61																					
11/22/81 3477m	kHz	Mean Phi]		6.07																					
Date: 11/22/ Depth: 3477m	0 m 400 kHz	* Clay			72.14																					
		s Silt			15.56 12.31 72.14																					
77-2	00/0	s Sand			15.56																					
Sample:	35.00 c/oo	Shear Str.																								
Sa	J-68	ø₽ Z																								
RTLT 1301-82 13-28N:64-40W	23.0 Deg-C	æ ()																								
BARTLT]		\$ CaCO3																								
Cruise: Position:	Calculated	% Por.																								
Cr	Ca	Attn. k		0.000	0.218	0.179	0.179	0.205	•	0.167	U.19 2	٦.	•	•	0.133	0.133	0.144	0.167	0.133	0.144	0.156	0.179	0.192	0.192	2	0.312
		VP Ratio		0.00 0.00 0.00								0.975	0.975	0.974	0.974							6.979	0.977	0.976	0.975	0.977
		νp π/sec		1528.6	1498.9	1493.0	1491.2	1491.2	1491.2	1491.2	1490.8	1490.8	1490.8	1490.1	1490.1	1489.7	1490.8	1491.2	1450.0	1493.0	1495.6	1497.4	1454.8	1492.6		1493.7
		Depth (.cm)		MATER		2.0	3.0	4.0	5.0	7.9	7.0	0.8	o. 0	10.0	11.0	12.0	13.0	14.0	16.0	17.0	18.0	19.0	20.0	21.0		23.0

	Kurt																			
	Kurt																			
	Skew																			
	Dev	_																		
1/22/81 8477m kHz	Mean Phi																			
Date: 11/22/81 Depth: 3477m 0 m 400 kHz	s Clay																			
	Silt																			
77-3	Sand																			
Sample: 77-	Shear Str.			25.57		49.95			71.95	126.60			159.37	107.04			114.77		68.38	
Sai W Deg-C	or Z;																			
.KTLL 1301-82 13-28N;64-40W for: 23.0 De	≫ U	-																		
20 0	g caco3	-																		
Cruise: P Fosition: Calculate	% Por.																			
Cruis Fosi Calci	Attn. k	.000	.24	.17	.16	. 15	0.167	.21	. 19	12	.12	91.	.15	4 C	. 15	.16	0.294	.53	.40	.34
	VP Retic	998.	نون	0.975	6	<u>م</u> د	0.974	٠.	0.974	2	9.0	0.972	9	ത ത	. 0	6.	0.976	. 0.	6.	0.976
	Vp m/sec	527.	493.	490. 490.	489.	489		490.	490.	488.	488.	4 4	493.	1494.5	490.	487.	1493.0	503.	493.	92.
	Depth (cm)	AT.	3.0		0.9	0.0)))	10.0	11.0	(7)	4 1	15.0	-	18.0	20.0	21.6	22.0	24.0	25.0	26.0

		N. Kurt	1 1																													
		Kurt																														
		Skew	1 1 1 1 1																													
		Dev																														
11/22/81 3495m	400 kHz	Mean Phi																														
Date: 1]	0 m 400	e Clay																														
		% Silt																														
79-8	00/0	8 Sand																														
Sample:	35.00 0/00	Shear Str.																														
Sa	Deg-C	# Z																														
RTLI 1301-82 13-33N;64-43W	23.0 De	ጭ ()																												•		
BARTLI 1		\$ CaCO3																														
	lat	Por.	1																													
Crui	Calcı	Attn. k		0.000	0.167	0.167	0.167	0.179	0.192	0.205	0.152	0.205	0.205	0.218	0.262	0.144	0.133	0.123	U.144	0.179	0.205	0.247	0.312	•	•	•	•	•	•	0.232	•	0./1/
		Vp ati	,	•	0.993		•		0.974		0.975	0.575	0.975			0.974	•	•	•		•	•	•	•	•	0.976	0.979	686.0	0.978	•	•	0.981
		VF n/sec	1	528.	1518.5	492.	491.	491.	485.	489.	490.	451.	490.	491.	489.	489.	488.	488.	4×9.	491.	ω,	494	497.	496.	493.	493.	497.	512.	496.	492.	1500.2	200
		Depth (.cm.)	1	WATER	0.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	o•6	10.0	11.0	12.0	13.0	14.0	15.0	9	17.0	သား	3	:	7.	c i	ω,	4.	5	9	27.0	ò

			ż	Kurt																											
			Kurt																												
			Skew																												
			Dev																												
	1/22/81 3495m	KHZ	Mean	Phi																											
	Date: 11/22/81 Depth: 3495m	₩ 0	ою	Clay	 																										
		•	ф	Silt	-																										
	6-62	00/0	ф	Sand	1 1 1 1																										
mple:	Sample:	35.00 0/00	Shear	Str.	<u> </u>		6.54				29.54		41.03				55.30		70.76			00 101	70.101		95.15				110.01		71.35
	•	Deg-C	ф	z	; ; ;																										
	ETLT 1301-82 13-33N; 64-43W	23.0 Deg-C	о¥Р	ပ																											
	× A	ā for:	оно	CaC03																											
	Cruise: E Fosition:	lculate	οнρ	Por.																											
	Cri	Ca	Attn.	×		0.048		•		•			•	•		•		•	•	•		•	•		•	•	•	•	•		•
			۵ >	Ratio	0.999	0.998	0.983	0.978	0.977	0.975	0.975	0.977	0.976	0.976	0.975	0.974	0.974	0.975	0.975	0.974	0.974	0.9/4	0.970	0.975	0.977	0.976	0.976	0.976	0.976	0.955	6.975
			2	\	528.	1526.3	503.	495.	493.	491.	491.	493.	493.	492.	490.	490.	489.	490.	491.	490.	490.	4ας.	492.	491.	494.	493.	493.	493.	492.	461.	49]
			Decth	(,cm,	 WATER	0.0	1. C	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	0	÷.	2	3	14.0	'n,	، ف	:	ဆဲ	ģ	0	į.	3	ė	4.	ď
					1																										

		Kur			
		Kurt			
		Mean Dev Skew Kurt N. Phi Kur			
		Dev			
1/22/81	kHz	Mean Phi			
Date: 11/22/81	0 m 400	Shear % % %	0.535 0.109		
		Silt			
79-18	00/0	s Sand			
mple:	35.00	Shear Str.			
es Sa	Deg-C	op 2;	0.109	0.105	0.106
1301-82 N:64-43	23.0	ر) مه	0.535 0.109	0.571 0.105	0.463 0.106
Cruise:	á for:	caco3	1		
Lise: Sition:	Calculate				
r Cr	Ca	Attn. k			
		-	-		
		epth Vp (.cm) m/sec			
		epth (.cm)	1.0	, m 4	5.0

	N. Kurt		0.61	0.61	69 0	70.0	09.0	0.60		09.0	9	0.00	0.64		0.58	0.63		0.61	8		0.61	0 57		0.59	0.58
	Kurt		1.53	1.57	ו און	T 0 • T	1.48	1 53	T . T	1.53	,	1.3/	1.81		1.40	1.74		1.55	7 70	· -	1.59	ני	10.1	1.42	1.36
	Skew		-0.43	-0.48	34 0		-0.38	α c	00.00	-0.43		-0.36	-0.35		-0.33	-0.36		-0.35	25	5.0	-0.46	-0 43		-0.39	-0.35
	Dev		3.36	3.40	,	7.7	3.15	0 0 5	C6.7	2.98	6	78.7	2.63		2.64	2.31		2.66	7 2 7	£6.2	3.17	2	0.0	2.96	3.12
11/23/81 3429m 00 kHz	Mean		9.41	9.18		75.6	9.72	69 0	70.6	9.49	i	9.7	9.92		9.75	9.83		9.81	63	60.6	9.34	90 0	2.40	9.59	9.16
Date: 11/23/ Depth: 3429m 0 m 400 kHz	g Clay		74.82	74.16		11.6/	76.84	16 97	46.0/	75.24		76.48	81.69		78.04	82.08		89.62	נרני	11.13	74.91	73 62	00.7/	76.16	76.48
	silt		12.95	12.45		13.20	13.74	, at	15.41	16.88	•	16.98	12.17		16.69	13.24		14.63	200	7.00	14.66	16 43	T0.43	16.52	15.26
80-2	\$ Sand		12.23	13.39		11.09	9.41	27 6	00./	7.89		6.54	6.13		5.27	4 69	•	5.68		4.0/	10.43	10011	10.11	7.31	8.26
Sample: 35.00	Shear Str.																								
o-6ə	op 23																								
RTLT 1301-82 3-32N;;64-32W for: 23.0 D	% C)																								
BARTL1] 13-32N; q for:	caco3		27.76	27.46	- 1	25.19	25.10		24.51	24.87		23.44	23.34	;	23.00	25.60)	24.65	ι	25.42	27.70	(29.03	26.48	27.18
Cruise: Position: Calculated	% Por.		84.4	81.3		80.6	79.5	(79.5	77.9		78.1	77.1		77.0	9 92	•	75.6	ı	75.7	76.2	L	15.4	75.5	76.4
Cru	Attn. K	000	0.167	. 16	.26	20	14	15	15	97.	16	. 15	14	14	. 14	.15	16	17	.17	24	23	. 26	ι.		
	VF Ratio	000.	0.980	76.	.97	76.	.97	.97	76.	76	.97	.97	0.974	97	.97	.97	16	. 97	16.	დ თ თ	97	.97			
	VF /sec		1498.5	493.	494.	491.	450.	490.	492	492.	489.	489.	489.	489	487.	491.	492.	492.	493.	500.	404	494.	494.		
	9 5	TER	7.0	3.0	4.0	0. c	7.0	0.8	S	o -1	N	n	4 R) O	-	∞	ر د	-	N	(C) 4	2	9	~ c	29.0	\circ \leftarrow

K C L	6.	
Kurt	0.73	
Skew	-0.	
Dev	4.20	
Mean Phi	7.67	
g Clay	64.86	
Silt	10.05	
Sand	25.06	
Shear Str.		
æ Z		
په دن ا		
& CaCO3		
Por.		
ttn. k	000000000000000000000000000000000000000	MANAMANANA
Vp Ratio		00000000000
/p /sec	200528 200627 200627 200827 200827 200827	######################################
Dept (cm	MATER 0.0 1.0 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 11.0 11.0	14.0 16.0 17.0 17.0 19.0 20.0 22.0 23.0 23.0
	Depth Vp Attn. % % % % Mean Dev Kurt (cn.) ni/sec Ratio k Por. CaCO3 C N Str. Sand Silt Clay Phi	h vp vp vp Attn. % % % 8 shear % % % wean Dev Skew Kurt in shear % % % % wean Dev Skew Kurt in shear % % % % in shear % % % in shear % % % in shear % % in shear % % in shear %

	Kur.																						
	Kurt																						
	Skew																						
·	Dev																						
11/23/81 : 3433m 400 kHz	Mean																						
Date: 11/23/81 Depth: 3433m 0 m 400 kHz	s Clay																						
	Silt																						
82-2	Sand																						
Sample: 82.	Shear Str.		.4.76			18.43		29.73				27.95		65.41			92.77		92.77			73.74	
eg-C	or Z	 																					
1301-82 1;64-401 23.0 I	₩ U	1 1 1 1 1																					
BARTLT 1301-82 13-35N;64-40W d for: 23.0 D	caco3																						
Cruise: BA Position: Calculated	% Por.																						
Cru Pos	ttn. k	0.000	0.247	0.179	0.192	0.205	0.205	0.167	0.144	0.144	0.167	0.167	0.482	0.656	0.885	0.349	0.262	0.218	0.167	0.247	0.247	0.218	
	VP atio	0.999		•	0.976		0.975		•	•		•		•	0.984			•	•	•	•	0.975	•
	P sec		1502.	1495.	1493	1492.	1491.	1490.		1490.	1491.	1490.	1499.	1511.		1495.	1492.	1492.	14	1496.	14	1491.	.76LT
	epth (cm)	WATER	1.0	2.0	w 4	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	2.0

		1
		1
	al	1
		i
		1
		1
		i
		1
		2
		1
		1

APPENDIX B FREQUENCY HISTOGRAMS OF GRAIN SIZE DISTRIBUTION DATA FOR SEDIMENTS COLLECTED IN BOX CORES FROM THE VENEZUELA BASIN

Grain size data are plotted as weight percent histograms and cumulative weight curves for phi sizes -4 through 14. Also included are percentage gravel, sand, silt, and clay and Folk and Ward's mean phi, standard deviation, skewness, kurtosis, and normalized kurtosis. Data include three stations from location 1, five stations from location 2, three stations from location 3, three stations along a transect from location 1 to location 2, and five stations along a transect from location 2 to location 3.

Station	Subcore	Sample	Page
3	10	0-35	200
5	2	0-35	201
5	4	0-35	202
9	2	0-26	203
14	6	0-30	204
14	9	0-30	205
14	9	30-34	206
17	1	0-30	207
17	3	0-28	208
18	1	0-24	209
26	2	0-30	210
26	2	30-38	211
42	11	0-30	212
42	11	30-33	213
43	15	0-30	214
43	15	30-32	215
44	12	0-30	216
44	12	30-36	217
51	3	0-16	218
51	5	14-42	219
53	19	0-16	220
53	21	16-38	221
54	4	0-22	222
54	2	20-42	223
67	1	0-30	224
67	1	30-38	225
68	3	0-30	226
69	9	0-28	227
70	11	0-25.5	228
71	10	0-22	229
80	2	0-30	230
80	2	30-31	231

APPENDIX C X-RADIOGRAPHS OF SEDIMENTS COLLECTED FROM THE VENEZUELA BASIN

X-radiographs of sediments collected with X-ray boxes from intact box cores are presented. X-radiographs depict sedimentary/biological structure from eight stations and include X-radiographs from all three locations. Images are "positives" produced from the developed X-ray transparency and thus darker areas of the X-radiograph denote areas of greater sediment density.

X-radiograph	Station	Location	Page
15 16 17 18 19	22 22 26 30 30	1 1 1 1	234 235 236 237 238
20 21 22 23 24 25	51 51 51 54 54 54	2 2 2 2 2 2	239 240 241 242 243 244
26 27 28 29 30 31 32	74 74 74 77 77 80 80	3 3 3 3 3 3	245 246 247 248 249 250 251

APPENDIX D COLOR DESCRIPTIONS OF CORES

Color descriptions are depicted as both Munsell®hue/value/chroma designations and soil color names. The "hue" refers to red, yellow, green, blue, and purple. The "value" refers to lightness. The "chroma" refers to strength (departure from a neutral of the same lightness). All descriptions were derived from subcores except at station 31 where the color was described from a freshly opened box core.

Station	Depth (cm)	Hue/Value/Chroma	Color
23(24)	0 to 3	10YR/6/3	Pale brown
	3 to 15	10YR/6/4	Light yellowish-brown
	15 to 39	10YR/6/3	Pale brown
31	0 to 15	10YR/6/4	Light yellowish-brown
	15 to 30	10YR/6/3	Pale brown
42(10)	0 to 6	10YR/6/4	Light yellowish-brown
	6 to 39	10YR/6/3	Pale brown
43(6)	0 to 6	10YR/6/4	Light yellowish-brown
	6 to 12	10YR/6/3	Pale brown
	12 to 15	10YR/6/4	Light yellowish-brown
	15 to 27	10YR/6/3	Pale brown
44(14)	0 to 3	10YR/5/3	Brown
	3 to 12	10YR/6/4	Light yellowish-brown
	12 to 33	10YR/6/3	Pale brown
48(1)	0 to 10	10YR/4/3	Brown/dark brown
	10 to 11	10YR/4/2	Dark grayish-brown
	11 to 13	10YR/2/2	Very dark brown
	13 to 14	10YR/4/1	Dark gray
48(4)	0 to 8 8 to 12 12 to 14	10YR/4/3 10YR/4/2 10YR/2/2 10YR/3/3 10YR/3/2 10YR/3/3	Brown/dark brown Dark grayish-brown Very dark brown Dark brown Very dark grayish-brown Dark brown
	16 to 18 18 to 20 20 to 21.5	10YR/3/1 10YR/4/1 10YR/4/1 10YR/3/1	Very dark gray Dark gray Dark gray Very dark gray
	21.5 to 28	10YR/5/1	Gray
	28 to 32	10YR/4/1	Dark gray
	32 to 34	10YR/3/1	Very dark gray
48(9)	32 to 34	10YR/5/1 10YR/6/4	Gray Light yellowish-brown
	34 to 36 36 to 40	10YR/4/1 10YR/3/1 10YR/3/1	Dark gray Very dark gray Very dark gray
	30 00 40	1011/, 5/, 1	reig durk gray

Station	Depth (cm)	Hue/Value/Chroma	Color
67(5)	0 to 3	10YR/5/3	Brown
07 (0)	3 to 6	10YR/4/3	Brown/dark brown
	6 to 9	10YR/3/3	Dark brown
		10YR/3/2	Very dark grayish-brown
	9 to 12	2.5Y/4/2	Dark grayish-brown
	12 to 15	10YR/5/1	Gray
		10YR/6/4	Light yellowish-brown
	15 to 18	2.5Y/3/2	Very dark grayish-brown
		2.5Y/5/2	Dark grayish-brown
	18 to 33	10YR/5/1	Gray
68(4)	0 to 6	10YR/4/3	Brown/dark brown
	6 to 9	10YR/3/3	Dark brown
	9 to 15	10YR/3/3	Dark brown
		5Y/3/1	Very dark gray
	15 to 21	5Y/4/2	Olive gray
	21 to 27	5Y/5/2	Olive gray
	27 to 30	5Y/4/4	Olive
		5Y/5/2	Olive gray
69(7)	0 to 6	10YR/4/3	Brown/dark brown
	6 to 9	10YR/3/3	Dark brown
	9 to 13	10YR/3/3	Dark brown
		10YR/3/2	Very dark grayish-brown
	13 to 16	10YR/5/3	Brown
	16 to 25	5Y/5/1	Gray
70(9)	0 to 6	10YR/4/3	Brown/dark brown
	6 to 9	10YR/4/3	Brown/dark brown
		5Y/4/2	Olive gray
	9 to 16	10YR/4/3	Brown/dark brown
		5Y/3/2	Dark olive gray
	16 to 18	5Y/5/2	Olive gray
	18 to 21	5Y/5/2	Olive gray
		5Y/4/2	Olive gray
71(8)	0 to 6	10YR/5/3	Brown
- , - ,	6 to 15	10YR/5/3	Brown
		5Y/3/2	Dark olive gray
	15 to 18	5Y/5/2	Olive gray
	18 to 24	5Y/5/2	Olive gray
		5Y/4/3	Olive
74(1)	0 to 6	10YR/4/4	Dark yellowish-brown
. ,	6 to 15	10YR/5/4	Yellowish-brown
		5Y/3/2	Dark olive gray
	15 to 30	5Y/5/2	Olive gray

APPENDIX E COMPRESSIONAL WAVE VELOCITY PROBE DATA

Compressional wave velocity (V $_{\rm p}$, m/sec) as measured by probes inserted into intact box cores is presented. Velocity values are calculated for 20°C.

~				•
ш	r	٦	2	-1
			а	

Station	Depth (cm)	1 _	2	$\overline{V_p}$
22	0 1 2 3 4 5 6	1485.9 1439.7 1458.7 1491.6 1501.3 1489.5 1503.1	1520.2 1483.4 1492.5 1484.3 1495.3 1495.5	1485.9 1480.0 1471.1 1492.1 1492.8 1492.4 1499.3
	7 8 9 10 11 12	1501.3 1498.1 1500.8 1503.5 1496.8 1505.1	1498.0 1496.3 1488.2 1502.6 1510.9 1525.5	1499.7 1497.2 1494.5 1503.1 1503.9 1515.3
	13 14 15 16 17	1505.0 1512.6 1519.1 1526.7 1527.3 1527.3	1532.3 1527.7 1518.1 1521.4 1515.9 1535.0	1518.7 1520.2 1518.6 1524.1 1521.6 1531.2
	19 20 21 22 23 24	1525.8 1528.5 1523.3 1516.5 1519.2 1513.6	1534.0 1533.8 1531.2 1531.0 1516.4 1523.1	1529.9 1531.2 1527.3 1523.8 1517.8 1518.4
	25 26 27 28 29 30	1517.9 1508.8 1507.4 1501.3 1509.8 1504.2	1510.7 1511.6 1515.3 1515.3 1514.0 1511.6	1514.3 1510.2 1511.4 1508.3 1511.9 1507.9
	31 32 33 34 35 36 37	1507.0 1499.6 1500.5 1499.8 1492.2 1493.5 1501.0	1507.4 1513.2 1503.8 1506.4 1507.5 1503.1	1507.2 1506.4 1502.2 1503.1 1499.9 1498.3 1501.0

			ITIQI						
Station	Depth (cm)	1	2	3	4	V _p			
31	0 1 2 3 4 5	1470.2 1450.1 1479.3 1476.0 1484.9	1491.6 1476.1 1486.5 1481.2 1474.6	1467.4 1464.2 1507.7 1490.9 1490.3	1479.6 1439.8 1503.9 1483.6 1470.8	1469.7 1457.6 1494.4 1482.9 1480.2			
	6	1488.1	1482.9	1506.0	1496.7	1493.4			
	7	1488.3	1482.0	1496.7	1491.6	1489.7			
	8	1486.3	1486.4	1487.4	1486.7	1486.7			
	9	1502.7	1492.0	1514.0	1505.1	1503.5			
	10	1513.5	1500.0	1493.1	1496.7	1500.8			
	11	1520.3	1494.6	1510.1	1501.0	1506.5			
	12	1518.5	1508.6	1509.3	1502.2	1509.7			
	13	1522.5	1498.4	1523.9	1505.2	1512.5			
	14	1522.3	1508.6	1505.6	1533.0	1517.4			
	15	1523.0	1499.6	1539.3	1517.9	1520.0			
	16	1532.2	1511.5	1527.5	1507.1	1519.6			
	17	1534.6	1498.9	1528.9	1524.0	1521.6			
	18	1525.8	1494.6	1529.9	1519.7	1517.5			
	19	1534.2	1505.2	1531.7	1523.4	1523.6			
	20	1522.0	1498.4	1527.8	1520.1	1517.1			
	21	1517.8	1508.5	1525.5	1510.0	1515.5			
	22	1520.9	1495.6	1530.8	1509.2	1514.1			
	23	1520.3	1509.0	1525.0	1518.2	1518.1			
	24	1514.6	1509.4	1517.3	1501.3	1510.7			
	25	1508.7	1506.3	1508.3	1508.4	1507.9			
	26	1513.0	1504.0	1518.2	1508.8	1511.0			
	27	1509.3	1505.1	1516.4	1509.8	1510.2			
	28	1501.9	1505.7	1506.4	1506.5	1505.1			
	29	1502.3	1503.4	1512.6	1509.3	1506.9			
	30	1503.6	1500.2	1509.2	1507.9	1505.2			
	31 32 33 34 35	1502.6 1512.3 1493.5	1501.6 1500.2 1498.4 1497.5 1490.9	1498.3 1501.0 1496.1 1506.9	1502.8 1510.3 1503.9 1502.4 1501.7	1501.3 1506.0 1498.0 1502.3 1496.3			

		Trial					
Station	Depth (cm)	1	2	3	4	\overline{V}_{p}	
48	0 1 2 3 4 5	1514.8 1705.7 1462.1 1479.5 1484.3	1575.9 1751.4 1468.4 1483.0	1487.5 1515.5 1468.8 1469.0	1454.8 1489.6 1477.4 1478.5	1514.8 1556.0 1554.7 1473.5 1478.7	
	5 6 7 8 9 10	1478.4 1481.8 1496.3 1500.4 1490.5 1492.0	1488.1 1484.1 1488.5 1488.8 1487.9 1491.6	1477.2 1478.4 1480.8 1480.8 1485.7 1491.6	1478.5 1479.7 1478.2 1488.0 1480.6 1476.0	1480.6 1481.0 1486.0 1489.5 1486.2 1487.8	
	11 12 13 14 15	1487.2 1507.5 1515.8 1516.1 1517.0	1506.2 1514.7 1502.0 1527.6 1512.3	1493.4 1499.1 1499.5 1501.5 1506.1	1493.9 1515.6 1519.4 1489.7 1499.1	1495.2 1509.2 1509.2 1508.7 1508.9	
	16 17 18 19 20	1525.7 1507.7 1501.7 1511.2 1514.4	1513.3 1524.8 1513.8	1523.2 1536.9 1498.7 1511.3 1511.3	1507.5 1524.7 1515.0 1504.7 1502.9	1517.4 1523.5 1507.3 1509.1 1509.5	
	21 22 23 24 25 26 27	1528.8 1534.6 1517.3 1526.3	1524.8 1551.1 1548.7 1553.7 1545.7 1553.2	1552.1 1524.3 1520.5 1514.8 1540.8 1527.7 1537.3	1506.5 1508.1 1515.1 1568.8 1566.2 1547.2 1613.4	1528.1 1529.5 1525.4 1540.9 1550.9 1537.5 1568.0	

		ж	Tri	ial		
Station	Depth (cm)	1	2	3	4	
82	0	1526.1	1568.5	1504.6	1553.7	1538.2
	1	1496.1	1490.9	1496.9	1450.1	1483.5
	2	1492.8	1513.7	1472.3	1502.4	1495.3
	3	1499.4	1511.4	1481.5	1482.2	1493.6
	0 1 2 3 4 5	1506.7	1513.8	1494.8	1484.5	1500.0
	5	1509.3	1514.9	1499.3	1484.2	1501.9
	6	1518.3	1515.9	1492.0	1486.5	1503.2
	7	1516.0	1528.7	1495.1	1492.9	1508.2
	6 7 8 9	1527.4	1525.8	1500.0	1503.1	1514.1
		1521.3	1538.7	1508.1	1500.6	1517.2
	10	1532.5	1530.4	1508.5	1504.8	1519.1
	11	1533.3	1526.0	1506.4	1495.0	1515.2
	12	1527.9	1532.4	1510.8	1495.8	1516.7
	13	1531.4	1535.2	1511.5	1492.8	1517.7
	14	1528.2	1532.4	1510.6	1500.7	1518.0
	15	1534.1	1540.9	1512.1	1501.6	1522.2
	16	1544.1	1541.4	1512.9	1507.5	1526.5
	17	1539.9	1544.4	1513.8	1503.8	1525.5
	18	1544.5	1539.4	1510.0	1511.8	1526.4
	19	1540.3		1512.9		1526.6

APPENDIX F SEDIMENT SHEAR STRENGTH MEASURED WITH HAND-HELD VANE SHEAR PROBE

Shear strength of sediments ($\tau_{\rm F}$, g/cm²) was measured in undisturbed box cores with a 1.89 x 1.89 cm or a 2.54 x 2.54 cm vane. The larger vane was used at stations 23, 28, and 31 only.

	Dep	th			Tr:	ial			
Station	(in.)	(cm)	1	2	3	4	5	6	$\overline{ au}$ f
23	1 2	2.54 5.08	12.43 24.87	12.43 19.89	12.43 17.41	12.43 29.84	9.95 19.89	14.92 24.87	13.77 22.80
	3	7.62 10.16	44.76 64.65	54.70 64.65	42.27 64.65	34.81 59.68	49.73 79.57	64.65	48.44
	5 6	12.70	94.50	74.60	89.51	77.08	79.57	84.54	83.30
	6 7	15.24 17.78	94.50 79.57	89.51 89.51	89.51 89.51	84.54 49.57	94.49 84.54	89.51 89.51	90.34 80.37
	8 9	20.32 22.86	79.57 69.62	79.57 69.62	74.60 69.62	69.62 64.65	79.57 79.57	84.54 79.57	77.91 72.11
	10	25.40	69.62	69.62	74.60	59.68	79.57	74.60	71.28
	11 12	27.94 30.48	59.68 64.65	69.62 59.68	69.62 74.60	62.16 69.62	59.68 59.68	64.65 67.14	64.24 65.90
. 6	13	33.02	44.76	59.68	44.75	59.68	59.68	59.68	54.71
	14 15	35.56 38.10	47.24 47.24	64.65 44.76	44.75 44.75	57.19 59.68	64.65 59.68	59.68 59.68	56.36 52.63
	16	40.64	54.70	49.73	47.25	59.68	59.68	59.68	55.12
28	1	2.54	7.5	12.4	12.4	19.9	9.9	9.9	12.0
	2 3 4	5.08 7.62	24.9 59.7	34.8 67.1	19.9 59.7	24.9 59.7	27.4 52.2	39.8 67.1	28.6 60.9
	4	10.16	64.6	89.5	77.1	84.5	77.1 89.5	92.0 99.5	80.8 92.8
	5 6	12.70 15.24	94.5 94.5	87.0 99.5	89.5 79.6	97.0 104.4	89.5	119.4	97.8
	7 8	17.78 20.32	84.6 84.5	89.5 82.1	84.6 84.5	89.5 94.5	74.6 74.6	104.4 89.5	87.9 85.0
	9	22.86	64.6	69.6	69.6	74.6	74.6	84.5	72.9
	10	25.40	59.7	79.6	74.6	67.1	69.6	69.6	70.0
	11 12	27.94 30.48	59.7 64.6	69.6 49.7	64.6 49.7	67.1 64.7	64.7 59.7	69.6 59.7	65.9 58.0
	13	33.02	49.7	54.7	64.6	59.7	52.2	49.7	55.1
	14 15	35.56 38.10	49.7 44.8	52.2 42.3	67.1 49.7	49.7 49.7	49.7 67.1	49.7 54.7	53.0 51.4
	16	40.64	47.2	49.7	54.7	49.7		J	50.3

Depth		+h	Trial							
Station	(in.)	(cm)	1	2	3	4	5	6	<u>7</u> f	
31	1	2.54	14.9	14.9	19.9	19.9	19.9	12.4	17.0	
	2	5.08	34.8	42.3	24.9	24.9	39.8	24.9	31.9	
	3	7.62	64.7	67.1	57.2	44.8	54.7	69.6	59.7	
	4 5 6	10.16	74.6	84.5	84.5	79.6	84.5	77.1	80.8	
	5	12.70	89.5	114.4	94.5	106.9	84.5	89.5	96.6	
	6	15.24	99.5	114.4	119.4	104.4	84.5	119.4	106.9	
	7	17.78	99.5	99.5	97.0	106.9	99.5	87.0	98.2	
	8	20.32	99.5	89.5	84.5	89.5	84.5	84.5	88.7	
	9	22.86	79.6	69.6	74.6	67.1	74.6	67.1	72.1	
	10	25.40	74.6	64.6	64.6	72.1	67.1	67.1	68.4	
	11	27.94	59.7	67.1	72.1	69.6	72.1	64.6	67.5	
	12	30.48	59.7	59.7	64.6	67.1	64.6	64.6	63.4	
	13	33.02	54.7	54.7	62.2	57.2	39.8	49.7	53.1	
	14	35.56	44.8	47.2	54.7	54.7	44.8	64.6	51.8	
	15	38.10	42.3	42.3	52.2	52.2	39.8	62.2	48.5	
	16	40.64			39.8	42.2			41.0	
48	1	2.54	2.5	2.5	2.5	2.5	5.0		3.0	
	2	5.08	12.4		14.9	12.4	10.9		12.7	
	2 3	7.62	14.9	29.8	24.9	29.8	39.8		27.8	
	4	10.16	47.2	59.7	49.7	64.6	104.4		65.1	
	5	12.70	94.5	223.8	149.2	198.9	248.7		183.0	
	6	15.24	159.1	124.3	149.2	134.3	119.4		137.3	
	7	17.78	74.6	49.7	49.7	34.8	29.8		47.7	
	8	20.32	34.8	19.9	24.9	14.9	29.9		24.9	
	9	22.86	17.4	19.9	39.8	12.4	29.9		23.9	
	10	25.40	14.9	19.9	19.9	34.8	39.8		25.9	
	11	27.91	24.9	29.8	24.9	24.9	34.8		27.9	
	12	30.48	22.4	29.8	29.8	39.8	39.8		32.3	
	13	33.02	34.8	39.8	44.8	134.3	159.1		82.6	
	14	35.56	94.5	104.4	159.1	124.3	134.3		123.3	
	15	38.10	149.2	129.3	99.5	59.7	79.6		103.5	
	16	40.64				54.7	69.6		62.2	

	Dep	oth			Tr	ial			
Station	(in.)	(cm)	1	2	3	4	5	6	$\overline{ au}$ f
55	1	2.54	4.9	12.4	4.9	4.9	4.9	4.9	6.2
	2	5.08	14.9	17.4	19.9	14.9	9.9	14.9	15.3
	3	7.62	29.8	34.8	34.8	29.8	29.8	44.8	34.0
	4	10.16	49.7	69.6	59.7	49.7	69.6	69.6	61.3
	5	12.70	169.1	159.1	134.3	149.2	119.4	134.3	144.2
	6 7	15.24	134.3	149.2	119.4	124.3	114.4	134.3	129.3
		17.78	34.8	24.9	17.4	29.8			26.7
	8	20.32	24.9	24.9	19.9	29.8	w es		24.9
	9	22.86	19.9	14.9	14.9	19.9			17.4
	10	25.40	29.8	19.9	19.9	24.9			23.6
	11	27.91	29.8	19.9	29.9	29.9			27.4
	12	30.48	29.9	24.9	24.9	24.9			26.2
	13	33.02	44.8	34.8	29.9	39.8			37.8
	14	35.56	134.3	104.4	49.7	104.4			98.2
	15	38.10	238.7	208.5	268.5	208.9			231.2
	16	40.64	69.6		54.7	59.7			61.3
74	1	2.54	29.8	14.9	14.9	14.9	14.9	14.9	17.4
	2	5.08	44.8	44.8	44.8	49.7	34.8	29.8	41.5
	3 4	7.62	74.6	64.6	74.6	89.5	64.6	54.7	70.4
	4	10.16	94.5	104.4	104.4	114.4	84.5	84.5	97.8
	5	12.70	119.4	129.3	109.4	124.3	119.4	94.5	116.1
	6	15.24	149.2	149.2	129.3	208.9	134.3	129.3	150.0
	7	17.78	179.0	263.6	218.8	179.0	258.6	169.1	211.4
	8	20.32	198.9	253.6	198.9	218.8	303.4	238.7	235.4
	9	22.86	184.0	248.7	218.8	263.6	238.7	228.8	230.4
	10	25.40	218.8	238.7	218.8	308.3	293.4	189.0	244.5
	11	27.91	273.5	248.7	189.0	288.4	258.6	189.0	241.2
	12	30.48	243.7	228.8	198.9	228.8	238.7	238.7	229.6

	Dep	th	Trial						
Station	(in.)	(cm)	1	2	3	4	5	6	$\overline{ au}$ f
80	1	2.54	14.9	14.9	14.9	9.9	14.9	14.9	14.1
	2	5.08	44.8	29.8	24.8	29.8	29.8	29.8	31.5
	3	7.62	54.7	54.7	34.8	49.7	49.7	54.7	49.7
	4	10.16	49.7	44.8	64.7	84.5	44.8	64.7	58.9
	5	12.70	69.6	84.5	99.5	119.4	59.7	74.6	84.6
	6	15.24	79.6	89.5	109.4	129.3	84.5	99.5	98.6
	7	17.78	129.3	129.3	129.3	149.2	94.5	119.4	125.2
	8 9	20.32	174.0	208.9	169.1	218.8	169.1	134.3	179.0
	9	22.86	179.0	129.3	228.8	228.8	198.9	184.0	191.5
	10	25.40	179.0	233.7	248.7	174.1	208.9	248.7	215.5
	11	27.91	169.1	223.8	248.7	248.7	203.9	189.0	213.9
	12	30.48	198.9	119.4	189.0	189.0	169.1	218.8	180.7
82	1	2.54	9.9	9.9	9.9	14.9	14.9	19.8	13.2
	2	5.08	19.9	29.8	24.9	29.8	34.8	34.8	29.0
	2 3 4 5 6	7.62	29.8	44.8	44.8	49.7	54.7	59.7	47.3
	4	10.16	54.7	54.7	39.8	74.6	79.6	94.5	66.3
	5	12.70	99.5	79.6	79.6	74.6	104.4	109.4	91.2
	6	15.24	114.4	119.4	129.3	99.5	114.4	144.2	120.2
	7	17.78	139.2	139.2	149.2	144.2	149.2	164.1	147.5
	8	20.32	208.9	174.1	238.7	253.6	313.3	268.5	242.9
	9	22.86	213.8	238.7	293.4	273.5	268.5	303.4	265.2
	10	25.40	233.7	288.4	218.8	238.7	233.7	198.9	235.4
	11	27.94	261.5	238.7	218.8	293.4	268.5	288.4	261.6
	12	30.48	223.8	149.2	348.1	273.5	198.9	308.3	250.3
	13	33.02	174.1	193.9	193.9	198.9	203.9	179.0	190.6
	14	35.56			318.3	179.0	174.1	248.6	230.0

U210225