Universidade Federal de Santa Catarina EEL51015: Técnicas e Circuitos Digitais Semestre: 2022/2-EXERCíCIO 1a

Circuito Multi-Função

Sendo $A = \{a_3 a_2 a_1 a_0\}$ uma entrada de 4 bits que permite um número inteiro pertencente ao intervalo [1; 12], deseja-se projetar um circuito lógico com quatro saídas, F3, F2, F1 e F0, que sigam as seguintes regras:

- F3 forneça um '1' lógico quando A é um múltiplo de 3;
- F2 forneça um '1' lógico quando A é um número par;
- F1 forneça um '1' lógico quando A é maior que 5;
- F0 forneça um '1' lógico quando A é um número primo.

As saídas são '0' no resto do intervalo de A. A continuação é mostrada a tabela de verdade para o circuito proposto:

Entrada A					Saídas			
$A_{(10)}$	a_3	a_2	a_1	a_0	F3	F2	F1	F0
0	0	0	0	0	_	_	_	_
1	0	0	0	1	0	0	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	1	0	0	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	0	0	1
6	0	1	1	0	1	1	1	0
7	0	1	1	1	0	0	1	1
8	1	0	0	0	0	1	1	0
9	1	0	0	1	1	0	1	0
10	1	0	1	0	0	1	1	0
11	1	0	1	1	0	0	1	1
12	1	1	0	0	1	1	1	0
13	1	1	0	1	_	_	_	_
14	1	1	1	0	_	_	_	_
15	1	1	1	1	_	_	_	_

A seguir é apresentado o mapa de Karnaugh para F3 e os agrupamentos para a obtenção da função lógica mais simples possível.

$$F3 = \overline{a_3} \ \overline{a_2} a_1 a_0 + a_2 a_1 \overline{a_0} + a_3 \overline{a_1} a_0 + a_3 a_2$$

F2 =

F1 =

F0 =

- 1. Com o objetivo de realizar esse projeto, obtenha numa folha em branco os mapas de Karnaugh associados aos bits de saída F2, F1 e F0 e, a partir deles, obtenha a função lógica mais simples possível indicando os agrupamentos no mapa e entregar ao professor. [3.9 pontos].
- 2. Implementar o circuito no Quartus usando VHDL e verificar o funcionamento em simulação usando Modelsim para o intervalo de A entre 1 e 12. Pode usar o modelo circuito_multi.vhd disponível no Moodle e preencher as equações lógicas obtidas para F2, F1, F0. Mostre a simulação junto com o arquivo VHDL circuito_multi preenchido ao professor. [3 pontos].
- 3. Implementar o circuito na FPGA e verificar o funcionamento para o intervalo de A entre 1 e 12. Para a emulação troque A(3...0) pelos Switches SW(3...0), e F3, F2, F1 e F0 por LEDR(3), LEDR(2), LEDR(1) e LEDR(0), respectivamente. Troque a entidade do arquivo para usertop (pode usar o modelo dado). Mostre ao professor o funcionamento na placa e o VHDL usertop preenchido. [3.1 pontos].