Лабораторная работа 3(1).

Линейная свертка последовательностей во временной и частотной областях.

Цель работы: ознакомление с методами вычисления свертки последовательностей во временной и частотной областях в среде MATLAB.

Общие сведения.

В ЛПП - системе, импульсная характеристика которой h(n) имеет конечную длину M, выходная последовательность y(n) определяется отсчетами входной последовательности x(n) в соответствии с соотношением свертки:

$$y(n) = \Sigma(h(l) \cdot x(n-l))$$
 (1).

Если длина входной последовательности x(n) равна N, то длина выходной последовательности y(n) получается равной L=N+M-1. Такую свертку называют линейной апериодической сверткой. Обычно входная последовательность x(n) длиннее h(n), т.е. N>M.

При реализации соотношения (1) необходимо, прежде всего, дополнить нулями до длины L последовательность x(n), т.е. x(N),..., x(L-1)=0; x(n) --> x0(n) (2); соотношение (1) преобразуется к виду:

$$y0(n)=\Sigma(h(l)\cdot x0(n-l))$$
 (3) .

При вычислении отсчетов y0(n) по формуле (3) максимальное число умножений h(l)*x0(n-l) не будет больше длины последовательности h(n).

Линейной периодической (круговой) сверткой периодических последовательностей hp(n), xp(n) с периодом, равным L, называют соотношение вида: $vp(n) = \Sigma(hp(l)\cdot xp(n-l))$ (4) .

При этом выходная последовательность ур(n) имеет длину L, равную длинам сворачиваемых последовательностей. При вычислении отсчетов ур(n) число умножений hp(l)*xp(n-l) всегда одинаково и равно L. Периодической свертке (4) во временной области соответствует свертка спектров в частотной области:

$$yp(n)=OДП\Phi{ДП\Phi[hp(n)] *ДП\Phi[xp(n-l)]}$$
 (5).

Если для вычисления ДПФ(ОДПФ) используется алгоритм БПФ, то вычисления по (5) при больших размерностях будут выполняться быстрее, чем по (4), так как при свертке спектров требуется порядка $3 \cdot L \cdot log2(L)$ умножений (вычисление двух ДПФ и одного ОДПФ) вместо L^2 умножений в свертке (4).

Линейную апериодическую свертку (2) можно свести к периодической (4) или (5) путем дополнения нулями до длины L последовательности h(n), т.е. h(N),..., h(L-1)=0; h(n) --> h(n) (6).

Тогда во временной области получим соотношение вида:

$$y0(n) = \Sigma (h0(l) \cdot x0(n-l))$$
 (7) .

а в частотной области соотношение вида:

$$y0(n) = OДП\Phi{ДП\Phi[h0(n)] *ДП\Phi[x0(n-l)]}$$
 (8).

Свертку (8) называют быстрой апериодической в отличие от медленной апериодической свертки (7) во временной области.

В среде пакета MATLAB имеются две функции, обеспечивающие реализацию апериодической свертки (1) быстрее, чем вычисления по (8): функции filter и conv.

Так y0=filter(h,1,x0) обеспечивает вычисления по (3) при условии предварительного преобразования (2); y=conv(h,x) обеспечивает вычисления свертки (1), при этом используется функция filter, но предварительно выполняется дополнение нулями одной из входных последовательностей.

Основные задачи исследования.

Предлагается сравнить по времени вычислений описанные выше возможные методы реализации линейной апериодической свертки:

- 1) (2),(6),(7) сведением к периодической свертке, во временной области;
- 2) (2),(6),(8) сведением к периодической свертке, в частотной области;
- 3) (2) y0=filter(h,1,x0);
- 4) y=conv(h,x).

В качестве исходных данных принимается входная последовательность x(n), рассматриваемая в предыдущих работах:

```
t=(0:dt:(N-1)*dt)';

x=c(1)*5*sin(2*pi*F1*t)+c(2)*3*cos(2*pi*F2*t)+c(3)*rand(t).
```

Длина N задается в соответствии с вариантом задания и порядком выполнения работы. Последовательность h(n) формируется в соответствии с заданным вариантом по формуле: $h1=((1:M)').^{(-1)}; h2=(.5).^{(0:M-1)'}; h3=((1:M)').^{(-2)};$

Варианты заданий

	c(1)	c(2)	c(3)	М	h	N1	N2	m	F1	F2	dt=0.001;
1	2	5	.5	4	h1	25	40	5	25	250	
2	2.5	.6	.2	5	h2	20	50	4	50	250	
3	1.5	.1	.3	4	h3	25	40	5	100	250	
4	2.1	2	.5	5	h3	20	50	4	50	400	
5	1.8	.45	.25	4	h2	25	40	5	100	400	

Рекомендации по составлению программы моделирования.

Выражение для свертки во временной области с учетом принятой в MATLAB нумерации элементов векторов h0(i) и x0(j) преобразуется к виду:

```
y0(i) = \Sigma (h0(i)\cdot x0(i-j+1)); i=1,2,...,L; j=1,2,...,L.
```

При вычислении апериодической свертки практически всегда необходимо дополнить имеющуюся последовательность x(n) нулями до L отсчетов, где L=N+M-1. Для этого можно принять L - й элемент вектора равным нулю: x(L)=0; что обеспечит равенство нулю всех значений вектора x(n) от x(n)=x(n) от x(n)=x(n) от x(n)=x(n) нет необходимости переходить к новой переменной.

В случае приведения апериодической свертки к периодической та же операция выполняется с последовательностью h(n): h(L)=0.

1) Вычисление свертки во временной области по соотношению (7) можно выполнять в цикле, меняя аргументы і, ј от 1 до L. Организация таких циклов в MATLAB осуществляется с помощью операторов:

```
for i=1:L
for j=1:L
тело цикла
end
end
```

Отметим, что x(i-j+1) принимается равным нулю при j>i. Учет этого условия можно выполнить операторами:

```
if j<=i
```

```
тело цикла;
             end
    Этот фрагмент общей программы имеет вид:
                        длины выходной последовательности
L=N+M-1;
           % расчет
                                                                    x(L)=0;
//дополнение нулями ,преобразование (2); h(L)=0;
// дополнение нулями ,преобразование (6); y1=zeros(L,1);
// обнуление вектора - столбца выходных отсчетов;
   for i=1:L
            // цикл суммирования по і в соответствии с (8); su=0;
            // обнуление суммы перед вычислением очередного su;
   for j=1:L // цикл суммирования по j в соответствии с (8);
    if j <= i // учет нулевых отсчетов x(n) при n < 1; su = su + h(j) *x(i-j+1);
           // суммирование произведений h(j)*x(i-j+1);
    else
                     // цикл для if.
    end:
    end;
                     // цикл для суммирования по h(j)
y1(i)=su;
                     // запись результата в массив у1
  end
                     // цикл для суммирования по і
```

- 2) Вычисление свертки в частотной области осуществляется с помощью операторов: X=fft(x,L); H=fft(h,L); (при этом дополнение нулями выполняется при вычислении ДПФ); $Y=H\cdot X$; y2=real(ifft(Y));
 - 3) x(L)=0; y3=filter(h,1,x);
 - 4) y4=conv(h,x);

Предлагается оформить все описанные выше процедуры свертки в одной программе сравнения :svert.m .

При формировании этой программы следует сначала выполнить вычисления у4, затем у2, далее у3 и только затем у1.

В начале программы необходимо обеспечить формирование входной последовательности, предусмотрев возможность изменения ее длины; далее формирование последовательности h(n) в соответствии с заданием.

Результаты вычислений различными методами рекомендуется свести в таблицу: y=[y1 y2 y3 y4], записать в файл результатов и вывести на график. Для измерения времени вычислений по каждому из методов используется функция clock. Результаты оценки времени вычислений также следует свести в таблицу tsv=[t1 t2 t3 t4] и записать в файл результатов.

Порядок выполнения работы.

- 1. Разработать программу в соответствии с приведенными рекомендациями и выполнить исследования ,приняв N=N1.Убедиться в совпадении выходных данных для всех методов свертки.
- 2. Повторить исследования для 2,3,4 методов, изменяя длину входной последовательности: N=2·N1; 3·N1; 4·N1; при этом в файле результатов фиксируется лишь время выполнения свертки.

Контрольные вопросы:

- 1. За счет каких операций свертка в частотной области (8) выполняется быстрее свертки во временной (7) и насколько?
- 2. Поясните результаты сравнения 4-х методов вычисления линейной апериодической свертки по времени при N=N1.

ем это объясня	ется?	2 - 4 методов	