

暗号危殆化に対する 長期署名フォーマットの安全性評価

東京電機大学 西本 敬志

- ■背景
- 関連研究
- 長期署名フォーマットについて
- 研究目的
- 評価方法
- 評価

「暗号の2010年問題」

- デファクトスタンダード暗号技術の大移行
 - 米国立標準技術研究所(NIST)が2010年末までに 米国政府標準暗号の内の80bit安全性の暗号技術 の運用を終了し、112bit安全性以上の暗号技術へ 移行させる方針を発表
 - ▶ 内閣官房情報セキュリティセンター(NISC)でも日本 政府の情報システムを2013年までにより安全な暗 号技術へ対応させるという指針を打ち出している

現在の利用されている暗号アルゴリズムの 危殆化の危険性が見過ごせない

背景(1/2)

- デジタル署名はインターネット社会の基盤技術
 - ▶ 電子政府システム
 - 電子申請·届出
 - 電子決済
 - 情報公開

etc...

- ▶電子商取引システム
 - ■電子契約
 - ■電子帳票

etc...

前提:公開鍵暗号やハッシュ関数が安全である

- ●CPU性能の向上
- ●暗号アルゴリズムの欠陥
- ●量子計算機の開発

デジタル署名の偽造・改ざん

公開鍵暗号・ハッシュ関数の危殆化

背景(2/2)

出典:藤本 肇「デジタル署名付き文書への公開鍵暗号危殆化対策の組合せ最適化法の提案と一適用」

- ケース についての対策は色々検討されている
- ケース についての対策の検討は不十分

関連研究

- ■「デジタル署名付き文書への公開鍵暗号危殆化対策 の組合せ最適化法の提案と一適用」 藤本 肇
 - 公開鍵暗号危殆化時の
 - 既存のデジタル署名付き文書のリスク分析
 - 最適な具体的対策案の組み合わせの算出

長期署名フォーマットについて(1/3)

- 暗号アルゴリズムを破られる危険性
- 公開鍵証明書の有効期限

公開鍵証明書の失効

デジタル署名の有効期限 を長期間維持できない

デジタル署名の長期保存技術

- ●電子公証
 - ◆DVCS
 - ◆LTA

etc...

- ●長期署名フォーマット
 - **◆**CAdES
 - ◆XAdES

長期署名フォーマットについて(2/3)

- 長期署名フォーマットの基本的な仕組み
 - タイムスタンプを重ねがけすることにより、署名の有効期間を延長していく
 - 検証情報(CAの証明書や失効情報など)の保管
 - 定期的なタイムスタンプの更新

長期署名フォーマットについて(3/3)

- 欧州電気通信標準化協会(ETSI)によって提案
 - ETSI TS 101 733
 - ETSI TS 101 903
 - ► RFC3126 などで標準化
- 日本では次世代電子商取引推進協議会 (ECOM)が普及を図る
 - ▶ 長期署名プロファイルがJIS化(2008年3月)

研究目的

■ 暗号危殆化時のデジタル署名と長期署名 フォーマットのリスク分析を行い、それぞれの 結果を比較することでその安全性を評価する

評価方法

企業において電子保存された税務関連書類が 保存の義務づけられた期間中に危殆化する

前提条件

- 危殆化確認後,既に存在するデジタル署名が対象
- 十分に対策が取れる段階(半年~1年)で危殆化を発見
- 危殆化が発生しても十分に既存の署名の証拠性を確保 できる代替暗号が存在
- デジタル署名では以下の暗号アルゴリズムを使用
 - ▶ 公開鍵暗号: RSA1024bit
 - ▶ 公開鍵証明書: RSA2048bit
 - ▶ ハッシュ関数:SHA-1
- タイムスタンプでは以下の暗号アルゴリズムを使用
 - ▶ 公開鍵暗号: RSA2048bit
 - ▶ ハッシュ関数:SHA-2
- デジタル署名付き文書は法的に正し〈運用される

想定環境

- 政府:危殆化情報確認機関
- 認証業者:認証局,タイムスタンプ局
- 検証者:企業

ETAのリスク=
$$\sum_{i=1}^{3} R_i$$

基本的な対策の流れ

- 1. 暗号危殆化の発生
- 2. 暗号危殆化の確認
 - CRYPTRECによる監視
- 3. 暗号危殆化を認証業者へ伝達
 - 暗号危殆化の発表
- 4. 暗号危殆化に対する認証業者の対策
 - 暗号アルゴリズムの変更
- 5. 暗号危殆化を検証者へ伝達
 - メディアや認証業者による伝達
- 6. 暗号危殆化に対する検証者の対策
 - タイムスタンプの更新

イベントツリー(デジタル署名)

初期事象		危	5殆化確認後既存署名に対	する対策					
公開鍵暗号また はハッシュ関数が 危殆化	危殆化情報の 確認機構	認証業者 認証業者 認証 に伝達 の対	検証者に伝達 業者 認証業者 伝達機関から伝達 から伝達		シーケンス	シーケンス発生確率 P_i	影響 <i>M_i</i> (コスト)	リスク $R_i = P_i \times M_i$	デッタ名 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
P_0					١.	$P_{1} = P_{0} \cdot (1 - \overline{P}_{1}) \cdot (1 - \overline{P}_{2}) \cdot (1 - \overline{P}_{3}) \\ \cdot (1 - \overline{P}_{4}) \cdot (1 - \overline{P}_{6}) \cdot (1 - \overline{P}_{7})$ $P_{2} = P_{0} \cdot (1 - \overline{P}_{1}) \cdot (1 - \overline{P}_{2}) \cdot (1 - \overline{P}_{3})$	M_{1}	$R_1 = P_1 \times M_1$	成功
失敗:	\overline{P}_1 \overline{P}_2	\overline{P}_3	\overline{P}_4 \overline{P}	$\overline{P}_6 \mid \overline{P}_7 \mid$	2	$P_{2} = P_{0} \cdot (1 - \overline{P}_{1}) \cdot (1 - \overline{P}_{2}) \cdot (1 - \overline{P}_{3})$ $\cdot (1 - \overline{P}_{4}) \cdot (1 - \overline{P}_{6}) \cdot \overline{P}_{7}$	M_{2}	$R_2 = P_2 \times M_2$	失敗
			$\left(1-\overline{P}_{5}\right)$	<u> </u>	3	$P_{3} = P_{0} \cdot (1 - \overline{P}_{4}) \cdot (1 - \overline{P}_{6}) \cdot \overline{P}_{7}$ $P_{3} = P_{0} \cdot (1 - \overline{P}_{1}) \cdot (1 - \overline{P}_{2}) \cdot (1 - \overline{P}_{3})$ $\cdot (1 - \overline{P}_{4}) \cdot \overline{P}_{6}$	M_3	$R_3 = P_3 \times M_3$	失敗
				, 	4	$(1 - \overline{P}_4) \cdot \overline{P}_6$ $P_4 = P_0 \cdot (1 - \overline{P}_1) \cdot (1 - \overline{P}_2) \cdot (1 - \overline{P}_3)$ $\cdot (1 - \overline{P}_4) \cdot (1 - \overline{P}_5) \cdot (1 - \overline{P}_6) \cdot (1 - \overline{P}_7)$	$M_{\scriptscriptstyle A}$	$R_4 = P_4 \times M_4$	成功
			\overline{P}_5		5	$P_5 = P_0 \cdot (1 - \overline{P}_1) \cdot (1 - \overline{P}_2) \cdot (1 - \overline{P}_3)$	M_{5}	$R_5 = P_5 \times M_5$	失敗
					6	$ \frac{\cdot (1 - \overline{P}_4) \cdot (1 - \overline{P}_5) \cdot (1 - \overline{P}_6) \cdot \overline{P}_7}{P_6 = P_0 \cdot (1 - \overline{P}_1) \cdot (1 - \overline{P}_2) \cdot (1 - \overline{P}_3)} \\ \cdot (1 - \overline{P}_4) \cdot (1 - \overline{P}_5) \cdot \overline{P}_6 $	M_{6}	$R_6 = P_6 \times M_6$	失敗
					7	$(1 - \overline{P}_{4}) \cdot (1 - \overline{P}_{5}) \cdot \overline{P}_{6}$ $P_{7} = P_{0} \cdot (1 - \overline{P}_{1}) \cdot (1 - \overline{P}_{2}) \cdot (1 - \overline{P}_{3})$ $\cdot (1 - \overline{P}_{4}) \cdot \overline{P}_{5}$	M_{7}	$R_7 = P_7 \times M_7$	失敗
					8	$(1 - \overline{P}_4) \cdot \overline{P}_5$ $P_8 = P_0 \cdot (1 - \overline{P}_1) \cdot (1 - \overline{P}_2) \cdot \overline{P}_3$	M_{8}	$R_8 = P_8 \times M_8$	失敗
					9	$P_9 = P_0 \cdot (1 - \overline{P}_1) \cdot \overline{P}_2 \cdot (1 - \overline{P}_3)$ $\cdot (1 - \overline{P}_5) \cdot (1 - \overline{P}_6) \cdot (1 - \overline{P}_7)$	M_{\circ}	$R_{g} = P_{g} \times M_{g}$	成功
					10	$P_{10} = P_0 \cdot (1 - \overline{P}_5) \cdot (1 - \overline{P}_6) \cdot (1 - \overline{P}_7)$ $P_{10} = P_0 \cdot (1 - \overline{P}_1) \cdot \overline{P}_2 \cdot (1 - \overline{P}_3)$ $\cdot (1 - \overline{P}_5) \cdot (1 - \overline{P}_6) \cdot \overline{P}_7$	M_{10}	$R_{10} = P_{10} \times M_{10}$	失敗
					11	$P_{11} = P_0 \cdot (1 - \overline{P}_5) \cdot (1 - \overline{P}_6) \cdot \overline{P}_7$ $P_{11} = P_0 \cdot (1 - \overline{P}_1) \cdot \overline{P}_2 \cdot (1 - \overline{P}_3)$ $\cdot (1 - \overline{P}_5) \cdot \overline{P}_6$	M_{11}	$R_{11} = P_{11} \times M_{11}$	失敗
					12	$P_{12} = P_0 \cdot (1 - \overline{P}_3) \cdot \overline{P}_6$ $P_{12} = P_0 \cdot (1 - \overline{P}_1) \cdot \overline{P}_2 \cdot (1 - \overline{P}_3)$ \overline{P}_5	M_{12}	$R_{12} = P_{12} \times M_{12}$	失敗
					13		M_{13}	$R_{13} = P_{13} \times M_{13}$	失敗
					14	$P_{14} = P_0 \cdot \overline{P}_1$	M_{14}	$R_{14} = P_{14} \times M_{14}$	失敗

■ 目的関数

Min[*ETA*リスク+各対策コスト+運用コスト]

$$Min \left[\sum_{l=1}^{L} R_{l} + \sum_{i=1}^{I} \sum_{j=1}^{J_{i}} C_{gij} \cdot X_{ij} + \sum_{i=1}^{I} \sum_{j=1}^{J_{i}} C_{cij} \cdot X_{ij} + \sum_{i=1}^{I} \sum_{j=1}^{J_{i}} C_{vij} \cdot X_{ij} + OC \right]$$

■ 制約条件

▶ 政府の対策コスト

評価方法

パラメータの設定 (1/2)

- 暗号危殆化による影響
 - ▶ 経済界全体での税務関連書類の保存コスト = 3000億円
 - 日本経済団体連合会、「税務書類の電子保存に関する報告書」
 - 書類1枚あたりの保存コストを2円とする
 - ▶ 電子保存された税務関連書類数の割合を10%とする
 - ▶ 書類1枚あたりの危殆化による影響を変数Xとする

電子保存された税務関連書類数N

 $N = (3000億円 \div 2円) \times 7年 \times 0.1 = 1050億枚$

<u>税務関連書類の危殆化による影響 M</u>

atory

パラメータの設定 (2/2)

対策案		パラ		
1 . 暗号危殆化情報の確認機構	政府	認証業者	検証者	危殆化確率
(1-1)監視機関なし(X11)	Cg11=0 円	Cc11=0 円	Cv11=0 円	p11 = 0.5
(1-2)CRYPTREC による監視(X12)	Cg12=2000 万円	Cc12=0 円	Cv12=0 円	p12 = 0.01
(1-3)CRYPTREC による監視の強化(X13)	Cg13=6000 万円	Cc13=0 円	Cv13=0 円	p13 = 0.005
2 . 認証業者への伝達				
(2-1)伝達手段なし(危殆化の発表のみ) (X21)	Cg21=0 円	Cc21=0 円	Cv21=0 円	p21 = 0.01
(2-2)伝達手段あり(認定業者へ伝達) (X22)	Cg22=100 万円	Cc22=0 円	Cv22=0 円	p22 = 0.005
3.認証業者の対策(通常時)				
(3-1)対策なし (X31)	Cg31=0 円	Cc31=0 円	Cv31=0 円	p31 = 1.0
(3-2)ハッシュのリンキングと公知化 (X32)	Cg32=0 円	Cc32=8 億円	Cv32=0 円	p32 = 0.05
4.認証業者の対策(危殆化時)				
(4-1)対策なし (X41)	Cg41=0 円	Cc41=0 円	Cv41=0 円	p41 = 1.0
(4-2)代替暗号アルゴリズムへの変更 (X42)	Cg42=0 円	Cc42=6 億円	Cv42=0 円	p42 = 0.01
5 . 認証業者による伝達				
(5-1)伝達手段なし (X51)	Cg51=0 円	Cc51=0 円	Cv51=0 円	p51 = 1.0
(5-2)タイムスタンプ局による伝達 (X52)	Cg52=0 円	Cc52=297 万 7 千円	Cv52=297 万 7 千円	p52 = 0.01
6.伝達機関による伝達				
(6-1)伝達手段なし (X61)	Cg61=0 円	Cc61=0 円	Cv61=0 円	p61 = 0.9
(6-2)伝達機関による伝達 (X62)	Cg62=4 億円	Cc62=0 円	Cv62=0 円	p62 = 0.1
7.対策を試みる(通常時)				
(7-1)対策なし(X71)	Cg71=0 円	Cc71=0 円	Cv71=0 円	p71 = 0.9
8.対策を試みる(危殆化時)				
(8-1)対策なし(X81)	Cg81=0 円	Cc81=0 円	Cv81=0 円	p81 = 0.1
9.検証者の対策(通常時の対策)				
(9-1)対策なし(X91)	Cg91=0 円			p91 = 1.0
(9-2)タイムスタンプの更新処理(X92)	Cg92=0 円	Cc92=0 円	Cv92=1050 億円	p92 = 0.01
10.検証者の対策(危殆化時の対策)				
(10-1)対策なし(X101)	Cg101=0 円			p101 = 1.0
(10-2)タイムスタンプの更新処理(X102)	Cg102=0 円	Cc102=0 円	Cv102=10500 億円	p102 = 0.01

最適化

TDU

Information Security Laboratory

TDU

Information Security Laboratory

- デジタル署名と長期署名フォーマットにおいて 最適な対策案の組み合わせを求める
 - 各関与者の制約条件を上限値まで設定
 - 書類1枚あたりの危殆化による影響は5000円

最適化結果の比較

対策案番号	デジタル署名	長期署名フォーマット
x1	CRYPTRECによる監視の強化	CRYPTRECによる監視の強化
x2	認証業者への伝達	危殆化の発表
x3		対策なし
x4	アルゴリズムの変更とハッシュのリンキング	代替暗号アルゴリズムへの変更
x5	認証業者による伝達	認証業者による伝達
x6	伝達機関による伝達	伝達機関による伝達
x7		対策なし
x8	対策なし	対策なし
x9		対策なし
x10	タイムスタンプの更新処理	タイムスタンプの更新処理
トータル コスト	5,899,627,114,346	3,842,012,220,835

安全性の評価

- 以下の3方式で分析結果を比較
 - 1. デジタル署名
 - 2. デジタル署名 + タイムスタンプ
 - 3. 長期署名フォーマット

各方式の比較

- 長期署名フォーマットでは認証業者の対策などは現状で十分であるが、CRYPTRECによる監視の強化や検証者への情報の伝達手段の確保が重要である
- 暗号の危殆化という面から考えると書類の重要度に合わせた以下のような方式の使い分けが有効である
 - ▶ あまり重要ではない書類
 - ▶ 税務関係書類などの重要な書類□ デジタル署名 + タイムスタンプ
 - ▶ 非常に重要な書類
 - **長期署名フォーマット**

今後の課題

- ヒステリシス署名や電子公証などその他の長期 保存方式についても分析
- 暗号危殆化に対する効果的な対策手法についての検討

ご清聴ありがとうございました