[CS M51A Fall 14] Solution to Assignment 1

Due: 10/17/14

TA: Teng Xu (xuteng@cs.ucla.edu)

Homework Problems (70 points total)

Problem 1 (10 points)

Find x and y such that the following conditions are satisfied and show all the steps of your work.

1.
$$(EC76)_{16} = (x)_8$$

 $(EC76)_{16} = (1110110001110110)_2 = (166166)_8$

2.
$$(465)_7 + (383)_9 = (y)_{11}$$

 $(465)_7 + (383)_9 = (243)_{10} + (318)_{10} = (561)_{10} = (470)_{11}$

Problem 2 (10 points)

Show that the following holds using the postulates of Boolean algebra.

1.
$$x'y'z' + x'y'z + x'yz + xy'z + xyz = x'y' + z$$
Solution

$$x'y'z' + x'y'z + x'yz + xy'z + xyz$$
= $x'y'(z'+z) + x'y'z + x'yz + xz(y'+y)$
= $x'y' + x'yz + xz$
= $x'(y'+yz) + xz$
= $x'(y'+z) + xz$
= $x'y' + x'z + xz$
= $x'y' + z$

$$2. xy' + xzw + yw = xy' + yw$$

Solution

$$xy' + xzw + yw = xy' + x(y + y')zw + yw$$
$$= xy' + xyzw + xy'zw + yw$$
$$= xy'(1 + zw) + yw(xz + 1)$$
$$= xy' + yw$$

Problem 3 (10 points)

We would like to convert the given switching expression into the specified form.

$$E(x_3, x_2, x_1, x_0) = (((x_3 + x_2 + x_2'x_1')x_1 + x_0)' + x_3x_2')'$$

1. Convert the given expression into a simplified sum of products form.

Solution

$$(((x_3 + x_2 + x_2'x_1')x_1 + x_0)' + x_3x_2')'$$

$$= ((x_3 + x_2 + x_2'x_1')x_1 + x_0) \cdot (x_3x_2')'$$

$$= ((x_3 + x_2 + x_2'x_1')x_1 + x_0)(x_3' + x_2)$$

$$= (x_3x_1 + x_2x_1 + x_2'x_1'x_1 + x_0)(x_3' + x_2)$$

$$= (x_3x_1 + x_2x_1 + x_0)(x_3' + x_2)$$

$$= x_3x_3'x_1 + x_3'x_2x_1 + x_3'x_0 + x_3x_2x_1 + x_2x_1 + x_2x_0$$

$$= x_3'x_0 + x_2x_1(x_3' + x_3 + 1) + x_2x_0$$

$$= x_3'x_0 + x_2x_1 + x_2x_0$$

2. Convert the sum of products form into a sum of minterms form.

Solution

$$x_3'x_0 + x_2x_1 + x_2x_0$$

$$= x_3'(x_2 + x_2')(x_1 + x_1')x_0 + (x_3 + x_3')x_2x_1(x_0 + x_0') + (x_3 + x_3')x_2(x_1 + x_1')x_0$$

$$= (m_7 + m_5 + m_3 + m_1) + (m_{15} + m_{14} + m_7 + m_6) + (m_{15} + m_{13} + m_7 + m_5)$$

$$= \sum m(1, 3, 5, 6, 7, 13, 14, 15)$$

Problem 4 (10 points)

Convert the following truth table to a switching expression (Boolean Algebra) and simplify the expression as much as possible.

\boldsymbol{x}	y	z	F	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	0	

Solution

$$F = x'y'z' + x'y'z + x'yz' + xy'z$$

$$= x'z'(y' + y) + y'z(x + x')$$

$$= x'z' + y'z$$

Problem 5 (10 points)

For the following diagrams, give the simplified POS expressions and show the corresponding two-level gate network.

Solution

$$F = (AB + C)'D(AB + C + D)$$

$$= (AB)'C'D(AB + C + D)$$

$$= (A' + B')C'D(AB + C + D)$$

$$= (A' + B')(ABC'D + CC'D + C'D)$$

$$= (A' + B')(ABC'D + C'D)$$

$$= (A' + B')C'D(AB + 1)$$

$$= (A' + B')C'D$$

Problem 6 (20 points)

Your goal is to design a module which adds two digits x and y belonging to the set $\{-1,0,1\}$ to produce an output in the set $\{-2,-1,0,1,2\}$. The inputs x and y are encoded via two bits, x_px_n and y_py_n with values given by $x_p - x_n$ (i.e. setting $x_p = 0$ and $x_n = 1$ encodes -1, with zero having two possible encodings 00 and 11). The outputs are encoded via three bits z_s, z_1, z_0 , whose value is interpreted via $(-1)^{z_s}(2z_1 + z_0)$.

1. Write the switching functions for the three output bits z_s, z_1, z_0 in tabular form.

Solution The table of switching functions is as shown. The three bits are the values of z_s, z_1, z_0 , in this order.

j	$x_p x_n y_p y_n$	$ z_s $	z_1	z_0
0	0000	-	0	0
1	0001	1	0	1
2	0010	0	0	1
3	0011	_	0	0
4	0100	1	0	1
5	0101	1	1	0
6	0110	_	0	0
7	0111	1	0	1
8	1000	0	0	1
9	1001	_	0	0
10	1010	0	1	0
11	1011	0	0	1
12	1100	-	0	0
13	1101	1	0	1
14	1110	0	0	1
15	1111	-	0	0

2. Obtain the minterm expressions (in *m*-notation) of z_s, z_1 and z_0 respectively.

Solution From the table of the previous section, we can write the following.

$$z_s = \sum m(1,4,5,7,13)$$

$$z_1 = \sum m(5,10)$$

$$z_0 = \sum m(1,2,4,7,8,11,13,14)$$

3. Obtain the maxterm expressions (in M-notation) of z_s, z_1 and z_0 respectively.

Solution Similarly, from the table we can write the following.

$$z_s = \prod M(2, 8, 10, 11, 14)$$

$$z_1 = \prod M(0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15)$$

$$z_0 = \prod M(0, 3, 5, 6, 9, 10, 12, 15)$$

4. Does any of the switching functions have a dc-set? If so, which one?

Solution The output z_s has a don't care set of dc - set(0, 3, 6, 9, 12, 15), since for zero it does not matter what the sign value is.

5. Implement z_1 as a two-level AND-OR gate network. Note that NOT gates do not count as the two levels, so include them as needed.

Solution Using the answer of 2., we get

$$z_1 = \sum_{m} m(5, 10)$$

= $x'_p x_n y'_p y_n + x_p x'_n y_p y'_n$

Therefore, using the 2 level AND-OR network, the implementation would be

