Chowla-Selberg phenomenon over function fields

Period distribution

Fu-Tsun Wei National Tsing Hua University

International Seminar on Automorphic Forms

May 21, 2024

Outline

- Brief review of classical story.
- Gamma functions in positive characteristic and Lang–Rohrlich conjecture
- Period interpretation of special gamma values and distributions
- Thakur's recipe/conjecture on the Chowla–Selberg phenomenon over function fields

Period distribution

Euler's gamma function

Classical story

In order to solve the interpolation problem of factorials, Euler introduced

Period distribution

$$\Gamma(s) := \int_0^\infty e^{-t} t^{s-1} dt, \quad \forall s > 0$$

As $\Gamma(s+1) = s \cdot \Gamma(s)$ for Re(s) > 0, we may extend $\Gamma(s)$ to a meromorphic function on the whole complex s-plane with simple poles at $s \in \mathbb{Z}_{\leq 0}$.

The Weierstrass expression

For $s \in \mathbb{C} \setminus \mathbb{Z}_{<0}$,

$$\Gamma(s) = e^{-\gamma s} \cdot s^{-1} \prod_{n=1}^{\infty} (1 + \frac{s}{n})^{-1} \cdot e^{s/n},$$

where γ is the Euler-Mascheroni constant.

Functional equations

Reflection formula (Euler)

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}.$$

Period distribution

Duplication formula (Legendre)

$$\Gamma(s)\Gamma(s+\frac{1}{2})=\sqrt{\pi}\cdot 2^{1-2s}\cdot \Gamma(2s).$$

Multiplication formula (Gauss)

For every $n \in \mathbb{N}$,

$$\Gamma(s)\Gamma(s+\frac{1}{n})\cdots\Gamma(s+\frac{n-1}{n})=(2\pi)^{\frac{n-1}{2}}\cdot n^{\frac{1}{2}-ns}\cdot\Gamma(ns).$$

Given two complex values $\alpha, \beta \in \mathbb{C}^{\times}$, we write $\alpha \sim \beta$ if $\alpha/\beta \in \overline{\mathbb{Q}}^{\times}$.

Period distribution

Monomial relations

(1) (Reflection formula) For $x \in \mathbb{Q}$ with $x \notin \mathbb{Z}$, we have

$$\Gamma(x) \cdot \Gamma(1-x) \sim \pi$$
.

(2) (Multiplication formula) Let $n \in \mathbb{N}$. For $x \in \mathbb{Q}$ with $nx \notin \mathbb{Z}_{\leq 0}$, we have

$$\prod_{i=1}^{n-1} \Gamma(x + \frac{i}{n}) \sim \pi^{\frac{n-1}{2}} \cdot \Gamma(nx).$$

Diamond bracket relations

Given $x \in \mathbb{R}$, let $\langle x \rangle$ be the fractional part of x, i.e. $0 \leq \langle x \rangle < 1$ and $x - \langle x \rangle \in \mathbb{Z}$. As $\langle x + n \rangle = \langle x \rangle$ for every $n \in \mathbb{Z}$, we may regard $\langle \cdot \rangle$ as a function on \mathbb{R}/\mathbb{Z} .

Period distribution

Lemma

For each $x \in \mathbb{R}/\mathbb{Z}$, one has that

$$\langle x \rangle + \langle 1 - x \rangle = \begin{cases} 1, & \text{if } 0 \neq x \in \mathbb{Z} \\ 0, & \text{otherwise;} \end{cases}$$

and for each $n \in \mathbb{N}$.

$$\sum_{i=0}^{n-1} \langle x + \frac{i}{n} \rangle = \frac{n-1}{2} + \langle nx \rangle.$$

Gamma distribution

Define $\overline{\Gamma}: \mathbb{O}/\mathbb{Z} \to \mathbb{C}^{\times}/\overline{\mathbb{O}}^{\times}$ by

$$\overline{\Gamma}(x) := \frac{\Gamma(1 - \langle -x \rangle)}{\sqrt{\pi}} \cdot \overline{\mathbb{Q}}^{\times} \quad \in \ \mathbb{C}^{\times}/\overline{\mathbb{Q}}^{\times}.$$

Period distribution

Then $\overline{\Gamma}$ satisfies the following odd distribution property: for $0 \neq x \in \mathbb{Q}/\mathbb{Z}$,

$$\overline{\Gamma}(x) \cdot \overline{\Gamma}(-x) = 1 \cdot \overline{\mathbb{Q}}^{\times} \quad (\in \mathbb{C}^{\times} / \overline{\mathbb{Q}}^{\times}),$$

and

$$\prod_{i=0}^{n-1} \overline{\Gamma}(\frac{x+i}{n}) = \overline{\Gamma}(x), \quad \forall n \in \mathbb{N}.$$

Lang-Rohrlich conjecture

Conjecture (Lang-Rohrlich)

Given an integer n with n > 2,

$$\operatorname{tr.deg}_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}} ig(\pi, \Gamma(x) \ ig| x \in rac{1}{n} \mathbb{Z} \setminus \mathbb{Z}_{\leq 0} ig) \stackrel{?}{=} 1 + rac{\phi(n)}{2},$$

Period distribution

where ϕ is the Euler phi-function:

$$\phi(n) := n \prod_{\text{prime } p \mid n} (1 - \frac{1}{p}).$$

Chowla-Selberg formula

Let $K \subset \mathbb{C}$ be an imaginary quadratic field over \mathbb{Q} with discriminant D < -4, let O_K be the ring of integers in K. The Kronecker limit formula implies

$$\frac{\zeta_K'(0)}{\zeta_K(0)} = -\ln\left(\frac{\sqrt{D}}{2}\right) + \frac{1}{\#\operatorname{Pic}(O_K)} \cdot \sum_{\mathfrak{A} \in \operatorname{Pic}(O_K)} \ln\left(\operatorname{Im}(z_{\mathfrak{A}}) \cdot |\Delta(z_{\mathfrak{A}})|^{\frac{1}{6}}\right),$$

where for each ideal class $\mathfrak{A} \in \text{Pic}(O_K)$, we take $z_{\mathfrak{A}} \in K$ with $\text{Im}(z_{\mathfrak{A}}) > 0$ so that $\mathbb{Z}z_{\mathfrak{A}} + \mathbb{Z}$ represents \mathfrak{A} , and Δ is the modular discriminant function:

$$\Delta(z) = (2\pi)^{12} e^{2\pi\sqrt{-1}z} \prod_{n=1}^{\infty} (1 - e^{2\pi\sqrt{-1}nz})^{24}, \quad \forall z \in \mathbb{C}, \ \mathsf{Im}(z) > 0.$$

Chowla—Selberg formula

On the other hand, Lerch's formula implies

$$\begin{split} \frac{\zeta_{K}'(0)}{\zeta_{K}(0)} &= \frac{\zeta_{\mathbb{Q}}'(0)}{\zeta_{\mathbb{Q}}(0)} + \frac{L'(0,\chi_{K})}{L(0,\chi_{K})} \\ &= \ln(2\pi) + \left(-\ln D + \frac{1}{\#\operatorname{Pic}(O_{K})} \sum_{i=1}^{D-1} \chi_{K}(r) \ln \left|\Gamma\left(\frac{r}{D}\right)\right|\right), \end{split}$$

Period distribution

where χ_K is the quadratic character associated to K/\mathbb{Q} .

Theorem (Lerch 1897, Chowla-Selberg 1949)

$$\prod_{\mathfrak{A}\in\mathsf{Pic}(O_{K})}\left(\mathsf{Im}(z_{\mathfrak{A}})|\Delta(z_{\mathfrak{A}})|^{\frac{1}{6}}\right)=\left(\frac{\pi}{\sqrt{D}}\right)^{\#\mathsf{Pic}(O_{K})}\cdot\prod_{r=1}^{D-1}\left|\Gamma\left(\frac{r}{D}\right)^{\chi_{K}(r)}\right|. \quad (1)$$

Relation with "CM periods"

Consequently, let E be an elliptic curve over $\overline{\mathbb{Q}}$ with CM by O_K . For each non-zero period ϖ of E, we have

$$\prod_{\mathfrak{A} \in \mathsf{Pic}(O_{K})} \left(\mathsf{Im}(z_{\mathfrak{A}}) |\Delta(z_{\mathfrak{A}})|^{\frac{1}{6}} \right) \\
\sim \varpi^{2\# \mathsf{Pic}(O_{K})} \sim \pi^{\# \mathsf{Pic}(O_{K})} \cdot \prod_{r=1}^{D-1} \Gamma\left(\frac{r}{D}\right)^{\chi_{K}(r)}.$$
(2)

Period distribution

Here we denote by $x \sim y$ for $x, y \in \mathbb{C}^{\times}$ with $x/y \in \overline{\mathbb{O}}^{\times}$.

In the function field case, we may also derive (1) via an analogue of the Kronecker limit formula established in my previous work.

Go from (1) to (2) \Longrightarrow The journey begins...

Notations

- $A := \mathbb{F}_q[\theta]$, the polynomial ring with one variable θ over a finite field \mathbb{F}_q with $q = p^r$ elements.
- $k := \mathbb{F}_{q}(\theta)$, the fraction field of A.
- $|\cdot|_{\infty}$: the absolute value on k normalized so that $|\theta|_{\infty}=q$.
- $k_{\infty} := \mathbb{F}_{q}((1/\theta))$, the completion of k with respect to $|\cdot|_{\infty}$.
- \mathbb{C}_{∞} : the completion of a chosen algebraic closure \bar{k}_{∞} of k_{∞} .
- \bar{k} : the algebraic closure of k in \mathbb{C}_{∞} .

$$(A, k, k_{\infty}, \overline{k}, \mathbb{C}_{\infty}) \longleftrightarrow (\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \overline{\mathbb{Q}}, \mathbb{C}).$$

Arithmetic gamma function

Given $r \in \mathbb{Z}_{>0}$, let

$$D_r := \prod_{\substack{a \in A_+ \ \deg a = r}} a.$$

Given $n \in \mathbb{Z}_{>0}$, write $n = n_0 + n_1 q + \cdots + n_r q^r$ with $0 \le n_1, ..., n_r < q$. The Carlitz factorial of n is defined by

$$(n)_q! := D_0^{n_0} \cdots D_r^{n_r}.$$

Goss gave the following interpolation: for $y=\sum_{i=n}^{\infty}y_iq^i\in\mathbb{Z}_p$ with $0 < y_i < q$

$$\Pi_{\mathsf{ari}}(y) := \prod_{i=0}^\infty \overline{D}_i^{y_i}, \quad \text{ where } \quad \overline{D}_i := D_i/ heta^{\deg D_i},$$

and introduced the arithmetic gamma function

$$\Gamma_{\mathsf{ari}}(y) := \Pi(y-1) \in k_{\infty}, \quad \forall y \in \mathbb{Z}_p.$$

Relations among arithmetic gamma values

Put $\mathbb{Z}_{(p)} := \mathbb{Q} \cap \mathbb{Z}_p$. For each $y \in \mathbb{Z}_{(p)} \setminus \mathbb{Z}$, write the fractional part of -yas $\sum_{i=0}^{\ell-1} y_i q^i / (q^{\ell} - 1)$ with $0 \le y_i < q$. Then

$$\Gamma_{\mathsf{ari}}(y) \sim \prod_{i=0}^{\ell-1} \Gamma_{\mathsf{ari}} (1 - rac{q^i}{q^\ell - 1})^{y_i},$$

and $\Gamma_{ari}(1-a/(q-1)) \sim \tilde{\pi}^{a/(q-1)}$ for 0 < a < q-1, where:

$$ilde{\pi} := (- heta)^{rac{q}{q-1}} \prod_{n=1}^{\infty} (1-rac{ heta}{ heta q^n})^{-1} \quad ext{(Carlitz fundamental period)}.$$

Proposition (Goss)

Given $y \in \mathbb{Z}_{(p)}$,

$$\Gamma_{\rm ari}(y)\Gamma_{\rm ari}(1-y)\sim \tilde{\pi},$$

and for $n \in \mathbb{N}$ with $p \nmid n$,

$$\prod^{n-1} \Gamma_{\operatorname{ari}}(y + \frac{i}{n}) \sim \tilde{\pi}^{\frac{n-1}{2}} \Gamma_{\operatorname{ari}}(ny).$$

Geometric gamma function

On the other hand, Thakur defined

$$\Pi_{\text{geo}}(x) := \prod_{a \in A_{\perp}} (1 + \frac{x}{a})^{-1}, \quad \forall x \in \mathbb{C}_{\infty} \setminus (-A_{+}),$$

and introduced the geometric gamma function: for every $x \in \mathbb{C}_{\infty} \setminus (-A_{+} \cup A_{+})$ {0}),

$$\Gamma_{\text{geo}}(x) := x^{-1} \Pi_{\text{geo}}(x) = x^{-1} \prod_{x \in A} (1 + \frac{x}{a})^{-1} \in \mathbb{C}_{\infty}.$$

Proposition (Thakur)

For $x \in k \setminus A$.

$$\prod_{\epsilon \in \mathbb{F}_a^{\times}} \mathsf{\Gamma}_{\mathsf{geo}}(\epsilon x) \sim \tilde{\pi},$$

and for each $\mathfrak{n} \in A_+$,

$$\prod_{a \in A.\deg a < \deg \mathfrak{n}} \Gamma_{\mathsf{geo}}(\frac{x+a}{\mathfrak{n}}) \sim \tilde{\pi}^{\frac{|\mathfrak{n}|_{\infty}-1}{q-1}} \cdot \Gamma_{\mathsf{geo}}(x)$$

Two-variable gamma function (by Goss)

For
$$x \in \mathbb{C}_{\infty} \setminus (-A_+ \cup \{0\})$$
 and $y = \sum_i y_i q^i \in \mathbb{Z}_p$, set

$$\Pi(x,y) := \Pi_{\mathsf{ari}}(y)^{-1} \cdot \prod_{i=0}^{\infty} \left(\prod_{\substack{a \in A_+ \ \deg a = i}} (1 + rac{x}{a})^{-y_i}
ight),$$

and
$$\Gamma(x,y) := x^{-1}\Pi(x,y-1)$$
. Then for $a \in A \setminus (-A_+ \cup \{0\})$,

$$\Gamma(a,y) \sim \Gamma_{\mathsf{ari}}(y)^{-1} \quad \mathsf{and} \quad \Gamma(x,1-\frac{1}{g-1}) \sim \tilde{\pi}^{\frac{-1}{g-1}} \cdot \Gamma_{\mathsf{geo}}(x).$$

Monomial relations among two-variable gamma values

Proposition (Goss and Thakur)

deg a < deg n

Let $x \in k \setminus A$, $y \in \mathbb{Z}_{(p)}/\mathbb{Z}$, $a \in A$, and $N \in \mathbb{N}$. Write the fractional part of -v as $\sum_{i=0}^{\ell-1} v_i q^i/(q^\ell-1)$. We have:

$$\Gamma(x,N) \sim 1 \quad \text{and} \quad \Gamma(x+a,y+N) \sim \Gamma(x,y);$$

$$\Gamma(x,y) = \prod_{i=0}^{\ell-1} \Gamma(x,1-\frac{q^i}{q^\ell-1})^{y_i};$$

$$\prod_{c=0}^{\ell-1} \prod_{\epsilon \in \mathbb{F}_q^\times} \Gamma(\epsilon x,q^c y) \sim 1,$$

$$\prod_{a \in A} \quad \Gamma(\frac{x+a}{\mathfrak{n}},y) \sim \Gamma(x,|\mathfrak{n}|_{\infty}y), \quad \forall \mathfrak{n} \in A_+.$$

Algebraic independence of special gamma values

Theorem 1 (W.)

Let $\mathfrak{n} \in A_+$ and $\ell \in \mathbb{N}$. We have

$$\begin{split} \operatorname{tr.deg}_{\bar{k}} \bar{k} \Big(\Gamma_{\text{geo}}(x), \Gamma_{\text{ari}}(y), \Gamma(x,y) \Big| x &\in \frac{1}{\mathfrak{n}} A \setminus (-A_{+} \cup \{0\}), \ y \in \frac{1}{q^{\ell} - 1} \mathbb{Z} \Big) \\ &= 1 + (\ell - \frac{1}{(q-1)^{\epsilon_{\mathfrak{n}}}}) \cdot \#(A/\mathfrak{n})^{\times}, \end{split}$$

where $\epsilon_{\mathfrak{n}} := 1$ if deg $\mathfrak{n} > 0$ and 0 otherwise.

Remark. The algebraic independence of geometric (resp. arithmetic) gamma values was derived by Anderson-Brownawell-Papanikolas [ABP] (resp. Chang-Papanikolas-Thakur-Yu [CPTY]).

Stickelberger functions

Consider $\mathbb{F}_q(t)$ where t is another variable (transcendental over \mathbb{C}_{∞}). Let $\mathsf{G} := \mathsf{Gal}(\mathbb{F}_q(t)^{\mathrm{sep}})/\mathbb{F}_q(t))$. Fix an \mathbb{F}_q -algebra embedding $\nu : \mathbb{F}_q(t)^{\mathrm{sep}} \hookrightarrow$ \mathbb{C}_{∞} sending t to θ . Let $G_{\infty} := \nu^* \operatorname{Gal}(k_{\infty}^{\operatorname{sep}}/k_{\infty}) \subset G$.

•0000000000000

Definition

A Stickelberger function on G is a locally constant \mathbb{Q} -valued function φ on G satisfying that

$$\varphi(g_1(g_2\varrho_{\infty}g_2^{-1}g_{\infty}^{-1})) = \varphi(g_1), \quad \forall g_1, g_2 \in G, \ g_{\infty} \in G_{\infty}.$$

(2)
$$\int_{G_{\infty}} \varphi(g_1g_{\infty})dg_{\infty} = \int_{G_{\infty}} \varphi(g_2g_{\infty})dg_{\infty}, \quad \forall g_1, g_2 \in G.$$

The space of Stickelberger function on G is denoted by $\mathcal{S}(G)$.

Examples of Stickelberger functions

- (1) The characteristic function $\mathbf{1}_{G}$ lies in $\mathscr{S}(G)$.

 (2) Let $K(\subset \mathbb{F}_{q}(t)^{\mathrm{sep}})$ be a CM field over $\mathbb{F}_{q}(t)$ (i.e. $K/\mathbb{F}_{q}(t)$ is separable and every place ∞^+ of the maximal totally real subfield K^+ over $\mathbb{F}_q(t)$ lying ever ∞ is not split in K). Put $H_K := \operatorname{Gal}(\mathbb{F}_q(t)^{\operatorname{sep}}/K)$. We may identify

Let I_K be the free abelian group generated by J_K , and let $\Xi = \xi_{\nu}^{g_1} + \cdots +$ $\xi_{\nu}^{g_d} \in I_{\mathsf{K}}$ be a CM type of K (i.e. $J_{\mathsf{K}^+} = \{\xi_{\nu}^{g_1}|_{\nu_+}, ..., \xi_{\nu}^{g_d}|_{\nu_+}\}$). Suppose $[G, G_{\infty}] \subset H_{\kappa}$. Then

$$\varphi_{\mathsf{K},\Xi} := \sum_{i=1}^{d} \mathbf{1}_{g_i \mathsf{H}_{\mathsf{K}}} \in \mathscr{S}(\mathsf{G}).$$

Connection with CM types

Lemma

Let I_K^0 be the subgroup of I_K generated by all CM types of K, and $\mathscr{S}(G/H_K)$ be the subspace of Stickelberger functions invariant by H_K . The map $(\Xi \mapsto \varphi_{K,\Xi})$ induces an isomorphism

$$I_{\mathsf{K}}^{0} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathscr{S}(\mathsf{G}/\mathsf{H}_{\mathsf{K}}).$$

Note that for each subgroup H of G with finite index and $[G,G_{\infty}]\subset H$, the fixed field K_H of H in $\mathbb{F}_q(t)^{\mathrm{sep}}$ is actually a CM field over $\mathbb{F}_q(t)$. As $\mathscr{S}(G) = \varinjlim_H \mathscr{S}(G/H)$, we obtain that

Proposition

$$\left(\varinjlim_{\mathsf{K}: [\mathsf{G},\mathsf{G}_{\infty}] \subset \mathsf{H}_{\mathsf{K}}} I_{\mathsf{K}}^{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathscr{S}(\mathsf{G}),$$

Period distribution

For each CM field $K \subset \mathbb{F}_a(t)^{\text{sep}}$ with $[G, G_{\infty}] \subset H_K$, set

$$\widetilde{\mathscr{P}}_{\nu,\mathsf{K}}:I^0_\mathsf{K}\longrightarrow\mathbb{C}^{\times}_{\infty}/ar{k}^{\times},\quad \Xi\longmapsto\mathcal{P}_\mathsf{K}(\xi_{\nu},\Xi),$$

where $\xi_{\nu} := \nu|_{\kappa} \in J_{K}$ and $\mathcal{P}_{K}(\xi_{\nu}, \Xi)$ is the analogue of Shimura's "period symbol" introduced by Brownawell-Chang-Papanikolas-W. The inflationrestriction relation among period symbols induces

$$\widetilde{\mathscr{P}}_{\nu}: \varinjlim_{\mathsf{K}: [\mathsf{G},\mathsf{G}_{\infty}] \subset \mathsf{H}_{\mathsf{K}}} I_{\mathsf{K}}^{0} \longrightarrow \mathbb{C}_{\infty}^{\times}/\bar{k}^{\times}.$$

Composing with the (inverse of the) isomorphism in the above proposition, we get an analogue of Anderson's period distribution

$$\mathscr{P}_{\nu}:\mathscr{S}(\mathsf{G})\to\mathbb{C}_{\infty}^{\times}/\bar{k}^{\times}.$$

Shimura's conjecture

Theorem (Brownawell-Chang-Papanikolas-W.)

Let $K \subset \mathbb{F}_q(t)^{\text{sep}}$ be a CM field with $[G, G_{\infty}] \subset H_K$. Then

$$\operatorname{tr.deg}_{\bar{k}}\bar{k}\big(\mathscr{P}_{\nu}(\varphi) \bigm| \varphi \in \mathscr{S}(\mathsf{G}/\mathsf{H}_{\mathsf{K}})\big) = 1 + (1 - \frac{1}{[\mathsf{K} : \mathsf{K}^{+}]}) \cdot [\mathsf{K} : \mathbb{F}_{q}(t)].$$

Period distribution

(In particular, \mathscr{P}_{ν} is injective.)

The bridges between period symbols and special gamma values at fractions are built from the "Stickelberger distributions" associated to Thakur's "diamond brackets".

Thakur's diamond brackets

(Arithmetic case.) Let $\mathbb{Z}_{(p)} := \mathbb{Z}_p \cap \mathbb{Q}$. For $y \in \mathbb{Z}_{(p)}$, put $\langle y \rangle_{ari}$ to be the fractional part of y.

(Geometric case.) Given $x = \sum_{i} \epsilon_{i} \theta^{-i} \in k_{\infty}$ and $N \in \mathbb{Z}_{>0}$, put

$$\langle x \rangle_{N} := \begin{cases} 1, & \text{if } \epsilon_{i} = 0 \text{ for } 0 < i \leq N \text{ and } \epsilon_{N+1} = 1; \\ 0, & \text{otherwise.} \end{cases}$$

Define $\langle x \rangle_{\text{geo}} := \sum_{N=0}^{\infty} \langle x \rangle_{N}$.

(Two-variable case.) Given $x \in k_{\infty}$ and $y \in \mathbb{Z}_{(p)}$ with $\langle y \rangle_a = \sum_{i=0}^{\ell-1} y_i \frac{q^i}{q^{\ell-1}}$ and $0 < y_i < q$, set

$$\langle x,y\rangle := \sum_{i=0}^{\ell-1} y_i \langle x, \frac{q^i}{q^\ell-1} \rangle, \quad \text{ where } \quad \langle x, \frac{q^i}{q^\ell-1} \rangle := \sum_{\substack{N \in \mathbb{Z}_{\geq 0} \\ N \equiv -1-i \text{ mod } \ell}} \langle x \rangle_N.$$

Diamond bracket relations

(Arithmetic case.) for $y \in \mathbb{Z}_{(p)}$ and $N \in \mathbb{N}$ with $p \nmid N$,

$$\langle y \rangle_{\mathsf{ari}} + \langle 1 - y \rangle_{\mathsf{ari}} = \begin{cases} 1, & \text{if } y \notin \mathbb{Z}, \\ 0, & \text{otherwise,} \end{cases} \text{ and } \sum_{i=1}^{N-1} \langle y + \frac{i}{N} \rangle_{\mathsf{ari}} = \langle \mathit{N}y \rangle_{\mathsf{ari}} + \frac{\mathit{N}-1}{2}.$$

Period distribution

0000000000000000

(Geometric case.) Given $x \in k$ and $\mathfrak{n} \in A_+$,

$$\sum_{\epsilon \in \mathbb{F}_q^{\times}} \langle \epsilon x
angle_{\mathsf{geo}} = egin{cases} 1, & ext{if } x
otin A, \ 0, & ext{otherwise,} \end{cases}$$

and

$$\sum_{\substack{a \in A \\ \text{deg } a < \text{deg } n}} \langle x + \frac{a}{\mathfrak{n}} \rangle_{\text{geo}} = \langle \mathfrak{n} x \rangle_{\text{geo}} + \frac{|\mathfrak{n}|_{\infty} - 1}{q - 1}.$$

Diamond bracket relations

(Two-variable case). Take $x \in k$ with $|x|_{\infty} < 1$ and $y \in \mathbb{Z}_{(p)}$.

$$\langle x,y \rangle + \langle x,1-y \rangle = egin{cases} (q-1)\langle x
angle_{\mathsf{geo}}, & ext{if } y
otin \mathbb{Z}, \ 0, & ext{otherwise}. \end{cases}$$

Period distribution

0000000000000000

For $\ell \in \mathbb{N}$ and $i \in \mathbb{Z}$ with $0 < i < \ell$.

$$\sum_{\epsilon \in \mathbb{F}_{+}^{\times}} \langle \epsilon x, \frac{q^{i}}{q^{\ell} - 1} \rangle = \begin{cases} 1, & \text{if } x \neq 0 \text{ and } \operatorname{ord}_{\infty}(x) \equiv -i \bmod \ell, \\ 0, & \text{otherwise}. \end{cases}$$

For $\mathfrak{n} \in A_{\perp}$,

$$\sum_{\substack{a \in A \\ \text{deg } a < \text{ deg } \mathfrak{n}}} \langle x + \frac{a}{\mathfrak{n}}, y \rangle = \langle \mathfrak{n} x, |\mathfrak{n}|_{\infty} y \rangle - \langle |\mathfrak{n}|_{\infty} y \rangle_{\mathsf{ari}} + |\mathfrak{n}|_{\infty} \langle y \rangle_{\mathsf{ari}}.$$

Stickelberger distributions

Type ~ Mock

Given $\mathfrak{n}\in\mathbb{F}_q[t]_+$, let $C^*_\mathfrak{n}(t,z)\in\mathbb{F}_q[t,z]$ be the \mathfrak{n} -th Carlitz cyclotomic polynomial. For $\ell \in \mathbb{N}$, let $O_{\mathfrak{n},\ell} := \mathbb{F}_{q^{\ell}}[t,z]/(C_{\mathfrak{n}}^{*}(t,z))$ and $K_{\mathfrak{n},\ell}$ be the fraction field of $O_{n,\ell}$, called the (n,ℓ) -th cyclotomic function field over $\mathbb{F}_q(t)$. We may assume that $K_{\mathfrak{n},\ell} \subset \mathbb{F}_q(t)^{\mathrm{sep}}$ for every \mathfrak{n},ℓ , and take an embedding $\nu_1: \mathbb{F}_q(t)^{\rm sep} \hookrightarrow \mathbb{C}_{\infty}$ satisfying that $t \mapsto \theta$ and

$$z \longmapsto \exp_{\mathcal{C}}(rac{ ilde{\pi}}{\mathfrak{n}(heta)}) \quad \in ar{k}.$$

When identifying k/A (resp. $\mathbb{Z}_{(p)}/\mathbb{Z}$) with the Carlitz torsions in \overline{k} (resp. $\overline{\mathbb{F}}_{a}^{\times}$), we may define an action \star of G on k/A (resp. $\mathbb{Z}_{(p)}/\mathbb{Z}$) via ν_1 .

Stickelberger distributions

Definition

Given $x \in k/A$ and $y \in \mathbb{Z}_{(p)}/\mathbb{Z}$, set

$$\mathsf{St}_{\mathsf{ari}}(y)(\varrho) := \langle -\varrho \star y \rangle_{\mathsf{ari}},$$

$$\operatorname{\mathsf{St}}_{\mathsf{geo}}(x)(\varrho) := \langle \varrho \star x \rangle_{\mathsf{geo}} - \frac{1}{q-1},$$

$$\mathsf{St}(x,y)(\varrho) := \langle \varrho \star x, -\varrho \star y \rangle - \langle -\varrho \star y \rangle_{\mathsf{ari}}.$$

Proposition

For every $x \in k/A$ and $y \in \mathbb{Z}_{(p)}/\mathbb{Z}$, we have that

$$A$$
 and $y \in \mathbb{Z}_{(p)}/\mathbb{Z}$, we have that $St_{ari}: \mathbb{Z}_{(p)}/\mathbb{Z}$ $St_{ari}(y)$, $St_{geo}(x)$, $St(x,y) \in \mathscr{S}(G)$.

Period distribution

Moreover, the diamond bracket relations assure the "distribution properties" of St_{ari}, St_{geo}, and St.

Gamma distribution

Composing with the period distribution \mathscr{P}_{ν_1} introduced before, we have the following:

Period distribution

Theorem 2 (W.)

$$\begin{split} \mathscr{P}_{\nu_1} \circ \mathsf{St}_{\mathsf{ari}} &= \hat{\Gamma}_{\mathsf{ari}} : \mathbb{Z}_{(p)}/\mathbb{Z} \longrightarrow \mathbb{C}_{\infty}^{\times}/\bar{k}^{\times}, \\ \mathscr{P}_{\nu_1} \circ \mathsf{St}_{\mathsf{geo}} &= \hat{\Gamma}_{\mathsf{geo}} : k/A \longrightarrow \mathbb{C}_{\infty}^{\times}/\bar{k}^{\times}, \\ \mathscr{P}_{\nu_1} \circ \mathsf{St} &= \hat{\Gamma} : k/A \times \mathbb{Z}_{(p)}/\mathbb{Z} \longrightarrow \mathbb{C}_{\infty}^{\times}/\bar{k}^{\times}, \end{split}$$

where $\hat{\Gamma}_{ari}$, $\hat{\Gamma}_{geo}$, and $\hat{\Gamma}$ are the "arithmetic, geometric, and two-variable gamma distributions", respectively.

Gamma distribution

(Arithmetic case.) Define $\tilde{\Gamma}_{ari}: \mathbb{Z}_{(p)}/\mathbb{Z} \longrightarrow \mathbb{C}_{\infty}^{\times}$ by

$$\tilde{\Gamma}_{\mathsf{ari}}(y) := \Gamma_{\mathsf{ari}}(1 - \langle -y \rangle_{\mathsf{ari}}).$$

Period distribution 0000000000000000

(Geometric case.) Define $\tilde{\Gamma}_{geo}: k/A \longrightarrow \mathbb{C}_{\infty}^{\times}$ by

$$\tilde{\Gamma}_{\mathrm{geo}}(x) := \tilde{\pi}^{\frac{-1}{q-1}} \cdot egin{cases} \Gamma_{\mathrm{geo}}(\{x\}), & \text{if } \{x\}
eq 0, \\ 1, & \text{if } \{x\} = 0. \end{cases}$$

Here $\{x\} \in k_{\infty}$ with $|\{x\}|_{\infty} < 1$ and $x - \{x\} \in A$.

(Two-variable case.) Define $\tilde{\Gamma}: k/A \times \mathbb{Z}_{(p)}/\mathbb{Z} \longrightarrow \mathbb{C}_{\infty}^{\times}$ by

$$\tilde{\Gamma}(x,y) := \begin{cases} \Gamma(\{x\}, 1 - \langle -y \rangle_{\mathsf{ari}}), & \text{if } \{x\} \neq 0, \\ \Gamma_{\mathsf{ari}}(1 - \langle -y \rangle_{\mathsf{ari}})^{-1}, & \text{if } \{x\} = 0. \end{cases}$$

Then $\hat{\Gamma}_{ari}$, $\hat{\Gamma}_{geo}$, and $\hat{\Gamma}$ are the corresponding induced maps to $\mathbb{C}_{\infty}^{\times}/\bar{k}^{\times}$.

Proof of the Lang–Rohrlich conjecture (Sketch)

We first point out that the functions $\operatorname{St}(x,y)$ are in fact "evaluators" of certain Artin L-values (via inner product with characters). This implies the "universality" of the Stickelberger distributions $\operatorname{St}_{\operatorname{ari}}$, $\operatorname{St}_{\operatorname{geo}}$, and St . Consequently, for each $\mathfrak n\in \mathbb F_q[t]_+$ and $\ell\in\mathbb N$, put

$$\mathsf{H}_{\mathfrak{n},\ell} := \mathsf{Gal}(\mathbb{F}_q(t)^{\mathrm{sep}}/\mathsf{K}_{\mathfrak{n},\ell}) \subset \mathsf{G}.$$

Then we get

$$\mathscr{S}(\mathsf{G}/\mathsf{H}_{\mathfrak{n},\ell}) = \left\langle \mathsf{St}(x,y) \;\middle|\; x \in \frac{1}{\mathfrak{n}(\theta)} A/A, \; y \in \frac{1}{q^{\ell}-1} \mathbb{Z}/\mathbb{Z} \right\rangle_{\mathbb{Q}}.$$

Proof of the Lang-Rohrlich conjecture (Sketch)

Therefore

$$\begin{split} & \operatorname{tr.deg}_{\bar{k}} \, \bar{k} \bigg(\Gamma_{\operatorname{geo}}(x), \Gamma_{\operatorname{ari}}(y), \Gamma(x,y) \, \, \bigg| \, \, x \in \frac{1}{\mathfrak{n}(\theta)} A \setminus (A_{+} \cup \{0\}), y \in \frac{1}{q^{\ell} - 1} \mathbb{Z} \bigg) \\ &= \, \operatorname{tr.deg}_{\bar{k}} \, \bar{k} \bigg(\tilde{\Gamma}(x,y) \, \, \bigg| \, \, x \in \frac{1}{\mathfrak{n}(\theta)} A / A, \, \, y \in \frac{1}{q^{\ell} - 1} \mathbb{Z} / \mathbb{Z} \bigg) \\ &= \, \operatorname{tr.deg}_{\bar{k}} \, \bar{k} \bigg(\mathscr{P}_{\nu_{1}}(\varphi) \, \, \bigg| \, \, \varphi \in \mathscr{S}(G / H_{\mathfrak{n},\ell}) \bigg) \\ &= 1 + (1 - \frac{1}{[K_{\mathfrak{n},\ell} : K_{\mathfrak{n},\ell}^{+}]}) \cdot [K_{\mathfrak{n},\ell} : \mathbb{F}_{q}(t)] \\ &= 1 + (1 - \frac{1}{\ell(q - 1)^{\epsilon_{\mathfrak{n}}}}) \cdot \Big(\ell \cdot \#(A / \mathfrak{n}(\theta))^{\times} \Big) \\ &= 1 + (\ell - \frac{1}{(q - 1)^{\epsilon_{\mathfrak{n}}}}) \cdot \#(A / \mathfrak{n}(\theta))^{\times}. \end{split}$$

Chowla-Selberg phenomenon

Given $\mathfrak{n} \in \mathbb{F}_a[t]_+$ and $\ell \in \mathbb{N}$, recall that

$$\mathscr{S}(\mathsf{G}/\mathsf{H}_{\mathfrak{n},\ell}) = \left\langle \mathsf{St}(x,y) \;\middle|\; x \in \frac{1}{\mathfrak{n}(\theta)} A/A, \; y \in \frac{1}{q^{\ell}-1} \mathbb{Z}/\mathbb{Z} \right\rangle_{\mathbb{Q}}.$$

Let K be a CM field over $\mathbb{F}_q(t)$ with K \subset K_{n, ℓ}. Then

$$H_K\supset H_{\mathfrak{n},\ell}, \quad \text{ and so } \quad \mathscr{S}(G/H_K)\subset \mathscr{S}(G/H_{\mathfrak{n},\ell}).$$

Hence for each generalized CM type Ξ of K (i.e. Ξ is a sum of CM types of K), we may express

$$\varphi_{\mathsf{K},\Xi} = \sum_{\mathsf{x} \in \frac{1}{\mathsf{n}(\theta)} A / A} \sum_{\mathsf{y} \in \frac{1}{n^{\ell} - 1} \mathbb{Z} / \mathbb{Z}} m_{\mathsf{x},\mathsf{y}} \, \mathsf{St}(\mathsf{x},\mathsf{y}) \quad \text{ with } m_{\mathsf{x},\mathsf{y}} \in \mathbb{Q}.$$

Therfore

$$(\mathcal{P}_{\mathsf{K}}(\xi_{\nu_1}, \Xi) =) \quad \mathscr{P}_{\nu_1}(\varphi_{\mathsf{K},\Xi}) = \prod_{\substack{x \in \frac{1}{n(\theta)} A/A \ y \in \frac{1}{r^{\ell}-1} \mathbb{Z}/\mathbb{Z}}} \hat{\Gamma}(x,y)^{m_{x,y}}.$$

Chowla—Selberg phenomenon

Theorem 3 (W.)

Let E_{ρ} be a CM abelian t-module over \bar{k} with generalized CM type (K, Ξ) where $K \subset K_{\mathfrak{n},\ell}$ for some $\mathfrak{n} \in \mathbb{F}_a[t]_+$ and $\ell \in \mathbb{N}$. The space of quasi-periods of E_{ρ} is spanned by

Period distribution

$$\prod_{x \in \frac{1}{n(\theta)}A/A} \prod_{y \in \frac{1}{\sigma^{\ell}-1}\mathbb{Z}/\mathbb{Z}} \tilde{\Gamma}(\varrho \star x, \varrho \star y)^{m_{x,y}}, \quad \text{ for } \varrho \in G/H_K.$$

Thakur's recipe/conjecture

Corollary

Let E_{ρ} be a Drinfeld $\mathbb{F}_q[t]$ -module over \bar{k} with full-CM by an imaginary field $K \subset K_{n,\ell}$. Write

Period distribution

$$\mathbf{1}_{\mathsf{H}_{\mathsf{K}}} = \sum_{\mathsf{x} \in rac{1}{\mathsf{n}(heta)} \mathsf{A}/\mathsf{A}} \sum_{\mathsf{y} \in rac{1}{\sigma^{\ell} - 1} \mathbb{Z}/\mathbb{Z}} m_{\mathsf{x},\mathsf{y}} \, \mathsf{St}(\mathsf{x},\mathsf{y}) \quad \text{ with } m_{\mathsf{x},\mathsf{y}} \in \mathbb{Q}.$$

For each non-zero period ϖ of E_o , we have that

$$(\mathscr{P}_{\nu_1}(\mathbb{1}_{\mathsf{H}_{\mathsf{K}}}) =) \quad arpi \sim \prod_{\substack{x \in rac{1}{\mathsf{n}(heta)}A/A}} \prod_{\substack{y \in rac{1}{\mathsf{n}^\ell - 1}\mathbb{Z}/\mathbb{Z}}} \tilde{\Gamma}(x,y)^{m_{x,y}}.$$

Let $\mathfrak{n} \in \mathbb{F}_q[t]_+$ and $\ell \in \mathbb{N}$. Given a CM field $K \subset K_{\mathfrak{n},\ell}$, put $G_K := \operatorname{Gal}(K/\mathbb{F}_q(t)) = G/H_K$. For each $\varphi \in \mathscr{S}(G_K)$, we have

$$\varphi = \frac{1}{\#G_{\mathsf{K}}} \left(\sum_{g \in \mathsf{G}} \varphi(g) \right) \mathbf{1}_{\mathsf{G}_{\mathsf{K}}} + \frac{1}{\#G_{\mathsf{K}}} \sum_{\chi \in \widehat{\mathsf{G}}_{\mathsf{K}} \setminus \widehat{\mathsf{G}}_{\mathsf{K}^{+}}} \left(\sum_{g \in \mathsf{G}} \varphi(g) \overline{\chi}(g) \right) \chi.$$

On the other hand, note that

$$(\mathbb{F}_q[t]/\mathfrak{n})^{\times} \times \mathbb{Z}/\ell\mathbb{Z} \cong G/H_{\mathfrak{n},\ell} \twoheadrightarrow G_K.$$

For each $\chi \in \widehat{G}_K \setminus \widehat{G}_{K^+}$, viewing χ as a character on $(\mathbb{F}_q[t]/\mathfrak{n})^\times \times \mathbb{Z}/\ell\mathbb{Z}$, the "evaluator" property of the Stickelberger functions implies that

$$\chi = \sum_{\mathbf{a} \in (\mathbb{F}_q[\mathsf{t}]/\mathfrak{c}_\chi)^\times} \sum_{i \in \mathbb{Z}/\ell\mathbb{Z}} \frac{\overline{\chi}(\mathbf{a}, i + \deg \mathfrak{c}_\chi)}{ \frac{L_A(0, \overline{\chi})}{}} \cdot \mathsf{St}(\frac{\mathbf{a}(\theta)}{\mathfrak{c}_\chi(\theta)}, \frac{q^i}{1 - q^\ell}).$$

Chowla—Selberg formula over function fields

For $\mathfrak{c} \mid \mathfrak{n}$, $a \in (\mathbb{F}_q[t]/\mathfrak{c})^{\times}$, $i \in \mathbb{Z}/\ell\mathbb{Z}$, and $g \in G_K$, define

$$n_{\mathfrak{c}}(g,a,i) := \sum_{\substack{\chi \in \widehat{G}_{K} \setminus \widehat{G}_{K^{+}} \\ \mathfrak{c}_{\gamma} = \mathfrak{c}}} \frac{\chi(g)\chi(a,i+\deg \mathfrak{c})}{L_{A}(0,\chi)} \in \mathbb{Q}.$$

Then

$$\begin{split} \varphi &= \frac{1}{[\mathsf{K}:\mathbb{F}_q(t)]} \left(\sum_{g \in \mathsf{G}_\mathsf{K}} \varphi(g) \right) \cdot \mathbf{1}_{\mathsf{G}_\mathsf{K}} \\ &+ \frac{1}{[\mathsf{K}:\mathbb{F}_q(t)]} \sum_{\mathsf{c} \mid \mathfrak{n}} \sum_{a \in (\mathbb{F}_q[t]/\mathfrak{c})^{\times}} \sum_{i \in \mathbb{Z}/\ell\mathbb{Z}} \left(\sum_{g \in \mathsf{G}_\mathsf{K}} \varphi(g) n_{\mathsf{c}}(g,a,i) \right) \\ &\cdot \mathsf{St}(\frac{a(\theta)}{\mathfrak{c}(\theta)}, \frac{q^i}{1 - q^\ell}). \end{split}$$

Chowla-Selberg formula over function fields

Theorem 4 (W.)

Let E_{ρ} be a CM abelian t-module over \bar{k} with generalized CM type (K, Ξ) where $K \subset K_{\mathfrak{n},\ell}$ for some $\mathfrak{n} \in \mathbb{F}_q[t]_+$ and $\ell \in \mathbb{N}$. Write $\Xi = \sum_{g \in G_K} m_g \xi_{\nu_1}^g$. The space of quasi-periods of E_{ρ} is spanned by

$$\tilde{\pi}^{\frac{\text{wt}(\Xi)}{[K:K^+]}} \cdot \prod_{g \in G_K} \prod_{c \mid n} \prod_{a \in (\mathbb{F}_q[t]/c)^\times} \prod_{i \in \mathbb{Z}/\ell\mathbb{Z}} \tilde{\Gamma}(\frac{a(\theta)}{\mathfrak{c}(\theta)}, \frac{q^i}{1-q^\ell})^{\frac{n_c(gg_0, a, i)m_g}{[K:\mathbb{F}_q(t)]}}, \text{ for } g_0 \in G_K.$$

In particular, when E_{ρ} is a CM Drinfeld $\mathbb{F}_q[t]$ -module, we get that for every non-zero period ϖ of E_{ρ} ,

$$\varpi^{[\mathsf{K}:\mathbb{F}_q(t)]} \sim \tilde{\pi} \cdot \prod_{\mathfrak{c}\mid \mathfrak{n}} \prod_{a \in (\mathbb{F}_q[t]/\mathfrak{c})^{\times}} \prod_{i \in \mathbb{Z}/\ell\mathbb{Z}} \tilde{\Gamma}(\frac{a(\theta)}{\mathfrak{c}(\theta)}, \frac{q^i}{1 - q^{\ell}})^{n_{\mathfrak{c}}(\mathsf{id}_{\mathsf{K}}, a, i)}.$$

Chowla-Selberg formula over function fields

- (1) The above result agrees with Thakur's formula when $K = \mathbb{F}_{q^{\ell}}(t)$ (constant field extension) or $K = \mathbb{F}_q(\sqrt[q-1]{-t})$ (Carlitz *t*-torsions).
- (2) Let E_{ρ} be a Drinfeld $\mathbb{F}_q[t]$ -module of rank 2 over \overline{k} with CM by K, where ∞ is tamely ramified in K. Let \mathfrak{d} be the discriminant of $O_K/\mathbb{F}_q[t]$. Then $K \subset K_{\mathfrak{d},2}$. Let χ_K be the quadratic character of $K/\mathbb{F}_q(t)$. Then for $a \in (\mathbb{F}_q[t]/\mathfrak{d})^{\times}$ and $i \in \mathbb{Z}/2\mathbb{Z}$, we get

$$n_{\mathfrak{d}}(\mathsf{id}_{\mathsf{K}},a,i) = \frac{w_{\mathsf{K}}\chi_{\mathsf{K}}(a,i+\deg\mathfrak{d})}{\#\operatorname{Pic}(O_{\mathsf{K}})}, \quad \text{ where } w_{\mathsf{K}} \coloneqq \frac{\#\mathbb{F}_{\mathsf{K}}^{\times}}{\#\mathbb{F}_{q}^{\times}}.$$

Hence for every non-zero period ϖ of E_{ρ} , we have that

$$arpi \sim \sqrt{ ilde{\pi}} \cdot \prod_{oldsymbol{a} \in (\mathbb{F}_q[t]/\mathfrak{d})^{ imes}} \prod_{i \in \mathbb{Z}/2\mathbb{Z}} ilde{\Gamma}(rac{a(heta)}{\mathfrak{d}(heta)}, rac{q^i}{1-q^2})^{rac{w_K \chi_K(a,i+\deg\mathfrak{d})}{2\#\operatorname{Pic}(O_K)}}.$$

Deligne-Gross-type period conjecture

Let M be a pure uniformizable dual t-motive over \bar{k} , and H(M) be its "Hodge-Pink structure" of M. Given a Hodge-Pink substructure $H = (H, W_{\bullet}H, \mathfrak{q})$ of H(M), suppose it has *full-CM* by a field $K \subset K_{\mathfrak{n},\ell}$. Then H is regarded as a one-dimensional vector space over K.

Note that the underlying space $\mathbb{C}_{\infty} \otimes_k H$ is identified with a subspace of the de Rham space $H_{dR}(M,\mathbb{C}_{\infty})$. Take $\omega \in \mathbb{C}_{\infty} \otimes_k H \subset H_{dR}(M,\mathbb{C}_{\infty})$ to be an "eigen-differential" under the K-multiplication, i.e. there exists an embedding $\iota_{\omega} : K \hookrightarrow \mathbb{C}_{\infty}$ such that

$$\alpha^*\omega = \iota_\omega(\alpha) \cdot \omega, \quad \forall \alpha \in K.$$

Deligne-Gross-type period conjecture

We derive that:

Theorem 5 (W.)

Suppose ω is algebraic, i.e. $\omega \in H_{dR}(M, \bar{k})$. Then for every cycle $\gamma \in H_{Betti}(M)$ such that the period integral $\int_{\gamma} \omega \neq 0$, we have that

$$\int_{\gamma} \omega \sim \prod_{x \in \frac{1}{\mathfrak{n}} A/A} \prod_{y \in \frac{1}{q^{\ell}-1} \mathbb{Z}/\mathbb{Z}} \tilde{\Gamma}(x, y)^{\varepsilon(x, y)},$$

where the exponents $\varepsilon(x,y)$ are described via the embedding ι_{ω} and the decomposition of the "Hodge-Pink-type" of H'.

Working in progress: v-adic counterpart

Following Morita's construction in the *p*-adic case, Goss also introduced the *v*-adic arithmetic gamma function: for $y = \sum_{i=0}^{\infty} y_i q^i \in \mathbb{Z}_p$ with $0 \le y_i < q$, set

$$\Gamma_{\operatorname{ari}, v}(y+1) = \prod_{i=0}^{\infty} D_{i, v}^{y_i}, \quad ext{where} \quad D_{i, v} := \prod_{a \in A_+ top \deg a = i, v
eq a} a.$$

Theorem 6. (Chang-W.-Yu)

Given a positive integer ℓ , we have that

$$\mathsf{tr}.\,\mathsf{deg}_k\,k\big(\mathsf{\Gamma}_{\mathsf{ari},\nu}(z)\ \big|\ z\in\mathbb{Q}\ \mathsf{with}\ \big(q^\ell-1\big)z\in\mathbb{Z}\big)=\ell-\mathsf{gcd}(\ell,\mathsf{deg}\ \nu).$$

Consequently, the algebraic relations among v-adic arithmetic gamma values at rational p-adic integers are generated by the monomial relations coming from the functional equations and Thakur's analogue of Gross–Koblitz formula.

Working in progress: v-adic counterpart

Remark:

- One-side inequality "\leq" in Theorem 6 comes from the functional equations and Thakur's analogue of Gross-Koblitz formula. To show the opposite innequality, we express the v-adic arithmetic gamma values in terms of the v-adic periods of the "crystalline-de Rham comparison isomorphism" for Carlitz t-motives with complex multiplication by constant field extensions (a v-adic Chowla-Selberg-type formula).
- The *v*-adic geometric gamma functions was introduced by Thakur in the 90's, and Ting-Wei Chang is currently extending this definition to the "two-variable" one and demonstrating a "geometric version" of the Gross–Koblitz–Thakur formula. Our ultimate goal is to establish the whole Chowla–Selberg phenomenon for the *v*-adic CM periods in the function field context.

The end. Thank you very much for your attention.