Control & Estimation of Electrochemical Model-based Battery Management Systems

Scott J. Moura, Ph.D.

Cymer Center for Control Systems and Dynamics Mechanical & Aerospace Engineering UC San Diego

April 6, 2012
Robert Bosch LLC
Research and Technology Center
Palo Alto, CA

Outline

- About Me
- PHEV Power Management
 - Models
 - Stochastic Optimal Control
 - Sample Results
- SOC/SOH Estimation
 - Single Particle Model
 - State Estimation via PDE Backstepping
 - Parameter Identification via Adaptive & Nonlinear Control
- 4 Outlook on Collaborative Efforts with Bosch

About Me: Education & Work Experience

Education

- Postdoctoral Fellow UC San Diego (July 2011 June 2013)
- Ph.D. & M.S.E. University of Michigan (Sept 2006 Apr 2011)
- B.S. UC Berkeley (Aug 2002 June 2006)

all in Mechanical Engineering

Industrial Work Experience

- DaimlerChrysler Corp Electrical Engineering (June 2006 Aug 2006)
- Ford Motor Company Manufacturing (June 2005 Aug 2005)
- Southern California Edison Staff Engineering (June 2004 Aug 2004)

About Me: Publications

Authored 20 peer-reviewed publications in energy systems and control

- Offline Parameter Identification of Electrochemical Models [ACC11, JPS]
- Charge Un-balancing in Battery Packs [DSCC09, IEEE TIE]
- Sensor Placement, Estimation, & Control of Battery Pack Thermal Dynamics [CDC12]
- Optimal PEV Charging on the Grid [DSCC10, JPS]
- Extremum Seeking with Application to Photovoltaic Systems [ACC09, IEEE TEC]
- Optimal Boundary Control of PDEs via Weak Variations [ACC11, ASME JDSMC]

About Me: Honors

- UC Presidential Postdoctoral Fellowship
- NSF Graduate Student Fellowship
- University of Michigan Distinguished Dissertation Honorable Mention
- University of Michigan Distinguished Leadership Award
- Best Student Paper Finalist
 - 2011 American Control Conference
 - 2009 ASME Dynamic Systems and Control Conference
- SHPE Conference Best Paper Award

5/37

Open Problems in Battery Systems and Control

Cell Level

- Modeling & Design
- Optimal Control under Constraints
- SOC/SOH Estimation
- ...

Pack Level

- Change (Un)balancing
- Thermal Management
- Energy Management
- ...

Smart-Grid Level

- Renewable Energy Integration
- Optimal Power Flow
- PEV Power Management
- **.**...

Battery Models

Equivalent Circuit Model

Electrochemical Model

Outline

- About Me
- PHEV Power Management
 - Models
 - Stochastic Optimal Control
 - Sample Results
- SOC/SOH Estimation
 - Single Particle Model
 - State Estimation via PDE Backstepping
 - Parameter Identification via Adaptive & Nonlinear Control
- 4 Outlook on Collaborative Efforts with Bosch

Outline

- About Me
- PHEV Power Management
 - Models
 - Stochastic Optimal Control
 - Sample Results
- SOC/SOH Estimation
 - Single Particle Model
 - State Estimation via PDE Backstepping
 - Parameter Identification via Adaptive & Nonlinear Control
- 4 Outlook on Collaborative Efforts with Bosch

PHEV Power Management

Problem Statement

Design a supervisory control algorithm for plug-in hybrid electric vehicles (PHEVs) that splits engine and battery power in some optimal sense.

J. Voelcker, "Plugging Away in a Prius," IEEE Spectrum, vol. 45, pp. 30-48, 2008.

A Short History

Heuristic algorithms

A Short History

- Heuristic algorithms
- Rizzoni (2004) Equivalent Consumption Minimization Strategy
- Peng & Grizzle (2004) Deterministic Dynamic Programming
- Peng & Grizzle (2007) Stochastic Dynamic Programming
- Bemporad / Vahidi / Kolmanovsky (2010) Model Predictive Control

A Short History

- Heuristic algorithms
- Rizzoni (2004) Equivalent Consumption Minimization Strategy
- Peng & Grizzle (2004) Deterministic Dynamic Programming
- Peng & Grizzle (2007) Stochastic Dynamic Programming
- Bemporad / Vahidi / Kolmanovsky (2010) Model Predictive Control
- Moura (2011) SDP with Electrochemical Battery Model for Health

Power-Split PHEV Model

Ex: Toyota Prius, Ford Escape Hybrid

- Control Inputs
 - Engine Torque
 - M1 Torque
- State Variables
 - Engine speed
 - Vehicle speed
 - Battery SOC
 - Vehicle acceleration (Markov Chain)

State transition dynamics

$$p_{ijm} = \Pr(a_{k+1} = j | a_k = i, v_k = j)$$

Transition Probabilities for $v_{L} = 0$ mph

State transition dynamics

$$p_{ijm} = \Pr(a_{k+1} = j | a_k = i, v_k = j)$$

Transition to "vehicle off," denoted $a_{k+1} = t$

$$p_{itm} = \Pr(a_{k+1} = t | a_k = i, v_k = 0)$$

State transition dynamics

$$p_{ijm} = \Pr(a_{k+1} = j | a_k = i, v_k = j)$$

Transition to "vehicle off," denoted $a_{k+1} = t$

$$p_{itm} = \Pr(a_{k+1} = t | a_k = i, v_k = 0)$$

Absorbing state "vehicle off"

$$1 = \Pr(a_{k+1} = t | \mathbf{a_k} = \mathbf{t}, v_k = 0)$$

Transition Probabilities for v = 0 mph Absorbing state "vehicle off" Normal state transition dynamics Probability 0.2 OFF Current Accel. +2.5 [m/s²] -2.5 Next Accel, [m/s²] Non-zero transition probabilit OFF to absorbing "vehicle off" state

State transition dynamics

$$p_{ijm} = \Pr(a_{k+1} = j | a_k = i, v_k = j)$$

Transition to "vehicle off," denoted $a_{k+1} = t$

$$p_{itm} = \Pr(a_{k+1} = t | a_k = i, v_k = 0)$$

Absorbing state "vehicle off"

$$1 = \Pr(a_{k+1} = t | \mathbf{a_k} = \mathbf{t}, v_k = 0)$$

Transition Probabilities for v = 0 mph Absorbing state "vehicle off" Normal state transition dynamics Probability 9.0 0.2 OFF Current Accel. +2.5 [m/s²] Next Accel, [m/s2] Non-zero transition or OFF to absorbing "vehicle off" state

Identification data:

federal certification cycles, "naturalistic" driving data, 2009 NHTS

Two Battery Health Model Case Studies

Anode-side SEI Layer Growth

 Resistive film layer at solid/electrolyte interface

Ramadass, Haran, White, Popov (2003)

Two Battery Health Model Case Studies

Anode-side SEI Layer Growth

 Resistive film layer at solid/electrolyte interface

Ramadass, Haran, White, Popov (2003)

Charge Processed

 \bullet Capacity fade \propto Ah into/out of cell

Two Battery Health Model Case Studies

Anode-side SEI Layer Growth

 Resistive film layer at solid/electrolyte interface

Ramadass, Haran, White, Popov (2003)

Charge Processed

ullet Capacity fade \propto Ah into/out of cell

^{*}Degradation depends on multitude of physical phenomena (e.g. temperature, stress, manufacturing, operating conditions, etc.)

Optimal Control Problem

Multiobjective Shortest-Path Stochastic Dynamic Program

Cost Functional:

Constraints:

Objective:

$$J^{g} = \lim_{N \to \infty} \mathbb{E} \left[\sum_{k=0}^{N} c(x_{k}, u_{k}) \right] \qquad x_{k+1} = f(x_{k}, u_{k}, w_{k})$$
$$x \in X$$

$$x_{k+1} = f(x_k, u_k, w_k)$$
$$x \in X$$
$$u \in U(x)$$

$$g^* = \arg\min_{g \in G} J^g$$

Optimal Control Problem

Multiobjective Shortest-Path Stochastic Dynamic Program

Cost Functional:

Constraints:

Objective:

$$J^{g} = \lim_{N \to \infty} \mathbb{E} \left[\sum_{k=0}^{N} c(x_{k}, u_{k}) \right] \qquad \begin{array}{c} x_{k+1} = f(x_{k}, u_{k}, w_{k}) \\ x \in X \end{array}$$

$$x_{k+1} = f(x_k, u_k, w_k)$$
$$x \in X$$
$$u \in U(x)$$

 $g^* = \arg\min_{g \in G} J^g$

Cost per time step: Convex sum of energy cost and battery health

$$c(x_k, u_k) = \alpha \cdot c_E(x_k, u_k) + (1 - \alpha) \cdot c_H(x_k, u_k)$$

Optimal Control Problem

Multiobjective Shortest-Path Stochastic Dynamic Program

Cost Functional:

Constraints:

Objective:

$$J^{g} = \lim_{N \to \infty} \mathbb{E}\left[\sum_{k=0}^{N} c(x_{k}, u_{k})\right] \qquad x_{k+1} = f(x_{k}, u_{k}, w_{k}) \qquad g^{*} = \arg\min_{g \in G} J^{g}$$
$$x \in X$$
$$u \in U(x)$$

Cost per time step: Convex sum of energy cost and battery health

$$c(x_k, u_k) = \alpha \cdot c_E(x_k, u_k) + (1 - \alpha) \cdot c_H(x_k, u_k)$$

Energy:
$$c_E(x_k, u_k) = \beta W_{fuel} + \frac{-V_{oc}Q_{batt}SOC}{\eta_{EVSE}}$$

Health:
$$c_H(x_k, u_k) = \dot{\delta}_{film}(I, SOC)$$
 OR $|I/I_{max}|$

Optimization Procedure

Pareto Set of Optimal Solutions

Anode-side SEI Layer Growth

SOC Trajectories

Anode-side SEI Layer Growth | UDDSx2

Outline

- About Me
- PHEV Power Management
 - Models
 - Stochastic Optimal Control
 - Sample Results
- SOC/SOH Estimation
 - Single Particle Model
 - State Estimation via PDE Backstepping
 - Parameter Identification via Adaptive & Nonlinear Control
- 4 Outlook on Collaborative Efforts with Bosch

SOC/SOH Estimation

Problem Statement

Simultaneously estimate SOC (states) and SOH (parameters) via an electrochemical model with measurements of voltage and current, only.

Mathematical Structure

- Two spherical diffusion PDEs
 - States: $c_s^-(r,t)$, $c_s^+(r,t)$

Mathematical Structure

- Two spherical diffusion PDEs
 - States: $c_s^-(r,t)$, $c_s^+(r,t)$
- Neumann boundary conditions
 - Input: *I*(*t*)

Mathematical Structure

- Two spherical diffusion PDEs
 - States: $c_s^-(r,t)$, $c_s^+(r,t)$
- Neumann boundary conditions
 - Input: *I*(*t*)
- Nonlinear output function of PDEs' boundary values
 - Output:

$$V(t) = h(c_{ss}^{-}(t), c_{ss}^{+}(t), I(t))$$

Mathematical Structure

- Two spherical diffusion PDEs
 - States: $c_s^-(r,t), c_s^+(r,t)$
- Neumann boundary conditions
 - Input: *I*(*t*)
- Nonlinear output function of PDEs' boundary values
 - Output:

$$V(t) = h(c_{ss}^{-}(t), c_{ss}^{+}(t), I(t))$$

Definitions

- SOC: Bulk concentration SOC_{bulk} , Surface concentration $c_{ss}^-(t)$
- SOH: Physical parameters, e.g. ε, q, n_{Li}, R_f

The SOC Estimation Problem

Problem Statement

Estimate states $c_s^-(r,t),c_s^+(r,t)$ from measurements I(t),V(t) and SPM

The SOC Estimation Problem

Problem Statement

Estimate states $c_s^-(r,t), c_s^+(r,t)$ from measurements I(t), V(t) and SPM

Simplify the Math

- Model reduction to achieve observability
- Normalize time and space
- State transformation

The SOC Estimation Problem

Problem Statement

Estimate states $c_s^-(r,t), c_s^+(r,t)$ from measurements I(t), V(t) and SPM

Simplify the Math

- Model reduction to achieve observability
- Normalize time and space
- State transformation

Observer Model Equations

$$\frac{\partial c}{\partial t}(r,t) = \varepsilon \frac{\partial^2 c}{\partial r^2}(r,t)$$

$$c(0,t) = 0$$

$$\frac{\partial c}{\partial r}(1,t) - c(1,t) = -q\rho I(t)$$
Measurement = $c(1,t)$

Heat PDE

Backstepping PDE Estimator

Estimator

$$\frac{\partial \hat{c}}{\partial t}(r,t) = \varepsilon \frac{\partial^2 \hat{c}}{\partial r^2}(r,t) + p_1(r)\tilde{c}(1,t)$$

$$\hat{c}(0,t) = 0$$

$$\frac{\partial \hat{c}}{\partial r}(1,t) - \hat{c}(1,t) = -q\rho I(t) + p_{10}\tilde{c}(1,t)$$

$$\tilde{c}(1,t) = c(1,t) - \hat{c}(1,t)$$

- Form error system $\tilde{c}(r,t)$
- Select target system $\tilde{w}(r,t)$ exponentially stable
- Find backstepping transformation: $\tilde{c}(r,t) \rightarrow \tilde{w}(r,t)$
- Derive kernels for transformation and solve analytically

$$p_1(r) = \frac{-\lambda r}{2\varepsilon z} \left[I_1(z) - \frac{2\lambda}{\varepsilon z} I_2(z) \right] \qquad \text{where} \quad z = \sqrt{\frac{\lambda}{\varepsilon} (r^2 - 1)}$$

$$p_{10} = \frac{1}{2} \left(3 - \frac{\lambda}{\varepsilon} \right)$$

The SOH Estimation Problem

Problem Statement

Estimate physical parameters from measurements I(t), V(t) and SPM

The SOH Estimation Problem

Problem Statement

Estimate physical parameters from measurements I(t), V(t) and SPM

Relate uncertain parameters to SOH-related concepts

- Capacity fade
- Power fade

The SOH Estimation Problem

Problem Statement

Estimate physical parameters from measurements I(t), V(t) and SPM

Relate uncertain parameters to SOH-related concepts

- Capacity fade
- Power fade

Technical Challenges

- PDE models
- Nonlinear in parameters

Adaptive Observer

Combined State & Parameter Estimation

Output Function Nonlinear Parameter ID

Nonlinearly Parameterized Output

$$V(t) = h(c_{ss}^{-}(t), I(t); \theta)$$

- \bullet θ contains many parameters
- Linear dependence between parameters?

Output Function Nonlinear Parameter ID

Nonlinearly Parameterized Output

$$V(t) = h(c_{ss}^{-}(t), I(t); \theta)$$

- \bullet θ contains many parameters
- Linear dependence between parameters?

Identifiability Analysis Result

- Linearly independent parameter subset : $\theta_h = [n_{Li}, R_f]^T$
 - n_{Li} : Total amount of cyclable Li (Capacity Fade)
 - \bullet R_f : Resistance of current collectors, electrolyte, etc. (Power Fade)

Output Function Nonlinear Parameter ID

Nonlinearly Parameterized Output

$$V(t) = h(c_{ss}^{-}(t), I(t); \theta)$$

- \bullet θ contains many parameters
- Linear dependence between parameters?

Identifiability Analysis Result

- Linearly independent parameter subset : $\theta_h = [n_{Li}, R_f]^T$
 - n_{Li} : Total amount of cyclable Li (Capacity Fade)
 - \bullet R_f : Resistance of current collectors, electrolyte, etc. (Power Fade)

Enables the application of nonlinear least squares parameter identification tools applied to vector θ_h

Adaptive Observer

Combined State & Parameter Estimation

Adaptive Output Function Inversion

Recall state observer requires boundary value $c_{ss}^-(t)$ for output error injection

Adaptive Output Function Inversion

Recall state observer requires boundary value $c_{ss}^-(t)$ for output error injection

Nonlinear Function Inversion

Solve $g(c_{ss}^-,t)=0$ for c_{ss}^- , where

$$g(c_{ss}^-, t) = h(c_{ss}^-(t), I(t); \hat{\theta}_h) - V(t)$$

Adaptive Output Function Inversion

Recall state observer requires boundary value $c_{ss}^-(t)$ for output error injection

Nonlinear Function Inversion

Solve $g(c_{ss}^-,t)=0$ for c_{ss}^- , where

$$g(c_{ss}^-, t) = h(c_{ss}^-(t), I(t); \hat{\theta}_h) - V(t)$$

Newton's Method

Main Idea: Construct ODE with exp. stable equilibrium $g(c_{ss}^-,t)=0$

$$\frac{d}{dt}\left[g(\check{c}_{ss}^{-},t)\right] = -\gamma g(\check{c}_{ss}^{-},t)$$

which expands to a Newton's method update law:

$$\frac{d}{dt} \check{\mathbf{c}}_{ss}^{-} = -\frac{\gamma g(\check{\mathbf{c}}_{ss}^{-}, t) + \frac{\partial g}{\partial t}(\check{\mathbf{c}}_{ss}^{-}, t)}{\frac{\partial g}{\partial c_{ss}^{-}}(\check{\mathbf{c}}_{ss}^{-}, t)}$$

Adaptive Observer

Combined State & Parameter Estimation

Results

UDDS Drive Cycle Input

Work in Progress: Validation on Full Electrochemical Model

Outline

- About Me
- PHEV Power Management
 - Models
 - Stochastic Optimal Control
 - Sample Results
- SOC/SOH Estimation
 - Single Particle Model
 - State Estimation via PDE Backstepping
 - Parameter Identification via Adaptive & Nonlinear Control
- Outlook on Collaborative Efforts with Bosch

Vision for Electrochemical-model based BMS

Future Research Tasks

Adaptive SOC/SOH Observer for Single Particle Model

- Simulator for full model
- Validate adaptive observer
- Publish

Target completion: May 15

Parameter Estimation for Full Model (i.e. retain x-dimension)

- Analyze parameter identifiability
- Develop parameter estimation algorithm
- Validation
- Publish

Target completion: Aug 1

ARPA-E AMPED Project

ARPA-E AMPED Project

Advanced Management and Protection of Energy-storage Devices

A Coupled Mechanical/Electrochemical Approach

- Stress/strain sensor in case
- Analyze observability and parameter identifiability
- Estimate SOC, stress, and params

Optimal-Safe Fast Charging - A Model Predictive Control Approach

- Output feedback
- Temp, side-rxn, and stress constraints

Thanks for your attention! Questions?

Scott J. Moura, Ph.D.
UC Presidential Postdoctoral Fellow
UC San Diego
http://flyingv.ucsd.edu/smoura/

Parameterized Output

$$V(t) = h(t, c_{ss}^{-}(t); \theta)$$

$$\theta = \left[n_{Li}, \frac{1}{a^{+}AL^{+}k^{+}\sqrt{c_{e}^{0}}}, \frac{1}{a^{-}AL^{-}k^{-}\sqrt{c_{e}^{0}}}, R_{f} \right]^{T}$$

Linear dependence between parameters?

Parameter Sensitivity

$$S_i = \frac{\partial h}{\partial \theta_i}$$

$$S = [S_1, S_2, S_3, S_4]^T$$

$$S \in R^{n_T \times 4}$$

A particular decomposition of S^TS reveals linear dependence between parameters!

Decomposition of $S^TS = D^TCD$

$$C = \begin{bmatrix} 1 & \frac{\langle S_1, S_2 \rangle}{\|S_1\| \|S_2\|} & \frac{\langle S_1, S_3 \rangle}{\|S_1\| \|S_2\|} & \frac{\langle S_1, S_3 \rangle}{\|S_1\| \|S_3\|} & \frac{\langle S_1, S_4 \rangle}{\|S_1\| \|S_4\|} \\ \frac{\langle S_2, S_1 \rangle}{\|S_2\| \|S_1\|} & 1 & \frac{\langle S_2, S_3 \rangle}{\|S_2\| \|S_3\|} & \frac{\langle S_2, S_4 \rangle}{\|S_2\| \|S_4\|} \\ \frac{\langle S_3, S_1 \rangle}{\|S_3\| \|S_1\|} & \frac{\langle S_3, S_2 \rangle}{\|S_4\| \|S_2\|} & 1 & \frac{\langle S_3, S_4 \rangle}{\|S_4\| \|S_4\|} \\ \frac{\langle S_4, S_1 \rangle}{\|S_4\| \|S_1\|} & \frac{\langle S_4, S_2 \rangle}{\|S_4\| \|S_2\|} & \frac{\langle S_4, S_3 \rangle}{\|S_4\| \|S_3\|} & 1 \end{bmatrix}$$

$$\frac{|\langle S_i, S_j \rangle|}{\|S_i\| \|S_j\|} pprox 1 \Rightarrow \text{linear dependence} \qquad \qquad \frac{|\langle S_i, S_j \rangle|}{\|S_i\| \|S_j\|} pprox 0 \Rightarrow \text{linear independence}$$

Decomposition of $S^TS = D^TCD$

$$\frac{|\langle S_i, S_j \rangle|}{||S_i|| ||S_i||} \approx 1 \Rightarrow \text{linear dependence}$$

$$\frac{|\langle S_i, S_j \rangle|}{||S_i|| ||S_j||} pprox 0 \Rightarrow$$
 linear independence

Example: UDDS Drive Cycle Applied to Battery Model

$$C = \begin{bmatrix} 1 & -0.3000 & 0.2908 & 0.2956 \\ -0.3000 & 1 & -0.9801 & -0.9805 \\ 0.2908 & -0.9801 & 1 & 0.9322 \\ 0.2956 & -0.9805 & 0.9322 & 1 \end{bmatrix}$$

 $\theta_2, \theta_3, \theta_4$ are linearly dependent Identify the subset $\theta_h = [\theta_1, \theta_4]^T$ via nonlinear least squares

- ullet $heta_1 = n_{Li}$: Capacity Fade
- $\theta_4 = R_f$: Power Fade

Decomposition of $S^TS = D^TCD$

$$\frac{|\langle S_i, S_j \rangle|}{\|S_i\| \|S_j\|} pprox 1 \Rightarrow \text{linear dependence}$$

$$\frac{|\langle S_i, S_j \rangle|}{||S_i|| ||S_j||} pprox 0 \Rightarrow$$
 linear independence

Example: UDDS Drive Cycle Applied to Battery Model

$$C = \begin{bmatrix} 1 & -0.3000 & 0.2908 & 0.2956 \\ -0.3000 & 1 & -0.9801 & -0.9805 \\ 0.2908 & -0.9801 & 1 & 0.9322 \\ 0.2956 & -0.9805 & 0.9322 & 1 \end{bmatrix}$$

 $\theta_2, \theta_3, \theta_4$ are linearly dependent Identify the subset $\theta_h = [\theta_1, \theta_4]^T$ via nonlinear least squares

- ullet $heta_1 = n_{Li}$: Capacity Fade
- $\theta_4 = R_f$: Power Fade

Remarks on extensions to high-dimensional parameter spaces

- Orthogonalization and permutation of S^TS to rank sensitivity
- Min parameter variance via Cramer-Rao inequality to rank certainty