Name: Jigar Siddhpura SAPID: 60004200155

DIV: C/C2 Branch: Computer Engineering

AI EXPERIMENT 4 - Hill Climbing

```
PS D:\SEM-5\AI\EXPERIMENTS> python -u "d:\SEM-5\AI\EXPERIMENTS\hillCimbing.py"

Current State: [[], [], [], ['B', 'C', 'D', 'A']]

Heuristic value for [[], [], [], ['B', 'C', 'D', 'A']] is -6

Heuristic value for [['A'], [], [], ['B', 'C', 'D']] is -3

Child chosen for exploration: [['A'], [], [], ['B', 'C', 'D']]

Current State: [['A'], [], [], ['B', 'C', 'D']] is -3

Heuristic value for [[A'], [], [B', 'C', 'D']] is -3

Heuristic value for [[], ['A'], [], ['B', 'C', 'D']] is -3

Heuristic value for [[], [], [], ['B', 'C', 'D']] is -3

Heuristic value for [[], [], [], ['B', 'C', 'D']] is -6

Heuristic value for [[A', 'D'], [], [B', 'C']] is -2

Child chosen for exploration: [['A', 'D'], [], [B', 'C']] is -2

Heuristic value for [['A', 'D'], [], [B', 'C']] is -1

Child chosen for exploration: [['A'], ['D'], [], ['B', 'C']] is -1

Current State: [['A'], ['D'], [], [B', 'C']] is -1

Heuristic value for [['A'], ['D'], [], [B', 'C']] is -1

Heuristic value for [[], ['D'], [], [B', 'C']] is -1

Heuristic value for [[], ['D'], [], [B', 'C']] is -2

Heuristic value for [[], ['D'], [], [B', 'C']] is -2

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A', 'D'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1

Heuristic value for [['A'], [], [B', 'C']] is -1
```

```
Current State: [['A'], ['D'], ['C'], ['B']] is 0
Heuristic value for [['A'], ['D'], ['C'], ['B']] is 0
Heuristic value for [[], ['D'], ['C'], A'], ['B']] is -1
Heuristic value for [[], ['D'], ['C'], A'], ['B']] is -1
Heuristic value for [[], ['D'], ['C'], A'], ['B']] is -1
Heuristic value for [['A'], D], ['C'], ['B'], B'] is -1
Heuristic value for [['A'], D], ['C'], ['B'], B'] is -1
Heuristic value for [['A'], D], ['C'], ['B'], B'] is -1
Heuristic value for [['A'], ['D'], ['D], ['B'], B'] is -1
Heuristic value for [['A'], ['D'], ['D], ['B]] is -1
Heuristic value for [['A'], ['D'], ['D], ['B]] is -1
Heuristic value for [['A'], ['D'], ['C], D]] is 1
Child chosen for exploration: [['A', 'B'], ['D'], ['C], D]]
Heuristic value for [['A'], ['D'], ['C], D]] is 1
Heuristic value for [['A'], ['D'], [B], ['C], D]] is 1
Heuristic value for [['A'], ['D'], B'], ['C], D]] is 1
Heuristic value for [['A'], ['D], ['C'], B'], D] is 1
Heuristic value for [['A'], B'], D], ['C'], D]] is 3
Heuristic value for [['A'], B'], D], ['C'], D]] is 6
Heuristic value for [['A'], B'], D], ['C'], D], D]
Heuristic value for [['A'], B'], D], D], D]

Current State: [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D], D]
Heuristic value for [['A'], B'], C'], D'], D], D], D]
Heuristic value for [['A'], B']
```

AI EXPERIMENT 5 - Genetic Algorithm

nitial Popu	1 - 4	V U-1			D b . b . i 1 . i	(5	
	Lation	X Value	Fitness Value	e(+(x))	Probability	(Expected Count)	Actual Count
00000		Θ	Θ		0.0		0
11111		63	3969		1.8181		2
01011		43	1849		0.847		ī
10110		54	2916		1.3358		i
9110		54	5910		1.3356		- L
ba Daal	Mata			Population			f(x)
te Pool	Mate	cr	ossover Points	New Pop	ulation	x value	+(x)
1111	3	5		111110		62	3844
11111	2	5		111111		63	3969
1011	1	5		101011		43	1849
0110	Θ	5		110111		55	3025
		in maining and mai	GEI	NERATION 1			
tial Popu	lation	X Value	Fitness Value	e(f(x))	Probability	(Expected Count)	Actual Count
1110		62	3844		1.2122		1
11111		63	3969		1.2517		1
01011		43	1849		0.5831		1
0111		55	3025		0.954		1
to Doel	Mate		New I ossover Points	Population	l ulation	x value	f(x)
ite Pool	mate	Gr.	ossover Points	мем Рор	ucacion	x value	TOO
11110	3	1		110111		55	3025
11111	2	4		111111		63	3969
91011	1	4		101011		43	1849
0111	Θ	1		111110		62	3844
				NERATION 2		<i>(</i>	
nitial Popu	lation	X Value	Fitness Value	e(f(x))	Probability	(Expected Count)	Actual Count
10111		55	3025		0.954		1
1111		63	3969		1.2517		1
1011		43	1849		0.5831		1
1110		62	3844		1.2122		1
				Population			
te Pool	Mate	Cr	ossover Points	New Pop	ulation	x value	f(x)
	1	4		110111		55	3025
10111	-			111111		63	3969
	ō	4					A TRAIN
1111		4 5		101010		42	1764
1111 1011	0					42 63	3969
10111 11111 01011 11110	0 3 2	5 5		101010 111111 NERATION 3		63	3969
11111 .01011 .11110	0 3 2	5		101010 111111 NERATION 3			
11111 01011 11110 nitial Popu	0 3 2	X Value	Fitness Value	101010 111111 NERATION 3	Probability 0.951	63	3969 Actual Count
11111 01011 11110 nitial Popu	0 3 2	5 5 X Value	Fitness Value	101010 111111 NERATION 3	Probability	63	3969 Actual Count
01111 01011 01110 01111 Popu 01111 01111	0 3 2	5 5 X Value 55 63 42	Fitness Value 3025 3969 1764	101010 111111 NERATION 3	Probability 0.951 1.2477 0.5545	63	3969 Actual Count 1 1 1
1111 1011 1110 itial Popu 0111 1111	0 3 2	5 5 X Value 55 63	Fitness Value 3025 3969	101010 111111 NERATION 3	Probability 0.951 1.2477	63	3969 Actual Count
11111 01011 11110 nitial Popu 10111 11111 01010	0 3 2	5 5 X Value 55 63 42 63	Fitness Value 3025 3969 1764 3969	101010 1111111 NERATION 3 e(f(x))	Probability 0.951 1.2477 0.5545 1.2477	63 (Expected Count)	3969 Actual Count 1 1 1
11111 01011 11110 nitial Popu 10111 11111 01010	0 3 2	5 5 X Value 55 63 42 63	Fitness Value 3025 3969 1764 3969	101010 111111 NERATION 3 e(f(x))	Probability 0.951 1.2477 0.5545 1.2477	63	3969 Actual Count 1 1 1
11111 01011 11110 nitial Popu 10111	0 3 2 Lation	5 5 X Value 55 63 42 63	Fitness Value 3025 3969 1764 3969	101010 1111111 NERATION 3 e(f(x))	Probability 0.951 1.2477 0.5545 1.2477	63 (Expected Count)	3969 Actual Count 1 1 1
11111 91011 11110 nitial Popu 10111 11111 91010 111111	0 3 2 lation	5 5 X Value 55 63 42 63	Fitness Value 3025 3969 1764 3969	101010 111111 NERATION 3 e(f(x)) Population New Pop	Probability 0.951 1.2477 0.5545 1.2477	63 (Expected Count) x value	3969 Actual Count 1 1 1 1 1 f(x)
11111 91011 11110 nitial Popu 10111 11111 91010 11111	0 3 2 lation Mate	5 5 5 5 5 5 5 5 5 6 3 42 63 Cr.	Fitness Value 3025 3969 1764 3969	101010 111111 NERATION 3 e(f(x)) Population New Pop	Probability 0.951 1.2477 0.5545 1.2477	63 (Expected Count) x value	3969 Actual Count 1 1 1 1 1 3 f(x) 3025

AI EXPERIMENT 6 - Perceptron Learning

```
PS D:\SEM-5\AI\EXPERIMENTS> python -u "d:\SEM-5\AI\EXPERIMENTS\perceptron.py"
Iteration 1
W 0 [-2.
W 1 [-3.
W 2 [-3.
                                                          3. ]
2. ]
1. ]
2. ]
2. ]
3. ]
2. ]
2. ]
              1.
                          0.7 - 1.
                                                    4.
                   -1.
                                       1.
                                              1.
              1.
                  -1.
                         -0.3 - 1.
                                       1.
                                             0.
                                                    3.
              1.
                  -1.
                                       1.
                         -0.3 -1.
                                              0.
                                                    3.
W 3 [-4.
              1.
                   -1.
                         -1.3 -1.
                                       1.
                                            -1.
                                                    2.
W 4 [-3.
                         -0.3 -1.
              1.
                   -1.
                                       2.
                                              0.
                                                    3.
  5 [-3.
                         -0.3 -1.
                   -1.
              1.
                                       2.
                                              Θ.
                                                    3.
              1.
                                             1.
  6
     Γ-2.
                   Θ.
                          0.7
                                Θ.
                                       2.
                                                    3.
W 7 [-3.
W 8 [-3.
                                0.
                                             0.
              1.
                   -1.
                         -0.3
                                       1.
                                                    3.
              1.
                   -1.
                         -0.3
                                 0.
                                              Θ.
                                       1.
                                                    3.
  9 [-3.
                                       1.
              1.
                   -1.
                         -0.3
                                 0.
                                              0.
                                                    3.
W after 1 epochs
                         [-3.
                                  1.
                                       -1.
                                             -0.3 0.
                                                            1.
                                                                  0.
                                                                        3.
                                                                               2. ]
Iteration
              2
W 0 [-3.
W 1 [-4.
W 2 [-3.
                                0.
                                       1.
                                             0.
                                                    3.
                                                          2. ]
1. ]
2. ]
2. ]
2. ]
3. ]
2. ]
              1.
                   -1.
                         -0.3
                                0.
              1.
                  -1.
                         -1.3
                                       1.
                                            -1.
                                                    2.
                         -0.3
                                 0.
                                             0.
              2.
                   -1.
                                                    3.
                                       1.
W 3 [-4.
              2.
                   -1.
                         -1.3
                                 0.
                                       1.
                                            -1.
                                                    2.
W 4 [-3.
              2.
                   -1.
                         -0.3
                                       2.
                                 0.
                                              Θ.
                                                    3.
W 5 [-3.
              2.
                   -1.
                         -0.3
                                       2.
                                                    3.
                                 0.
                                              Θ.
W 6 [-2.
                    0.
                          0.7
              2.
                                 1.
                                       2.
                                              1.
                                                    3.
     [-3.
                   -1.
  7
              2.
                         -0.3
                                 1.
                                       1.
                                              0.
                                                    3.
W 8 [-3.
                                 1.
                                       1.
                                                    3.
              2.
                   -1.
                         -0.3
                                              Θ.
W 9 [-4.
              1.
                   -2.
                         -1.3
                                 0.
                                       0.
                                                    3.
                                            -1.
W after 2 epochs
                         [-4.
                                  1.
                                       -2.
                                             -1.3 0.
                                                            0. -1.
                                                                        3.
                                                                               1.]
Iteration
              3
W 0 [-3.
W 1 [-4.
                                                          2. ]
1. ]
2. ]
2. ]
3. ]
2. ]
2. ]
              1.
                   -1.
                         -1.3
                                       0.
                                              0.
                                                    4.
                                 Θ.
              1.
                                 0.
                                       0.
                                            -1.
                                                    3.
                   -1.
                         -2.3
W 2 [-3.
W 3 [-4.
                         -1.3
                                       0.
              2.
                   -1.
                                0.
                                              0.
                                                    4.
                         -2.3
              2.
                                            -1.
                                                    3.
                   -1.
                                 0.
                                       0.
W 4 [-3.
              2.
                   -1.
                         -1.3
                                 0.
                                       1.
                                              Θ.
                                                    4.
                                                    4.
W 5 [-3.
              2.
                   -1.
                         -1.3
                                 0.
                                       1.
                                              0.
W 6 [-2.
              2.
                   0.
                         -0.3
                                                    4.
                                 1.
                                       1.
                                              1.
     [-3.
                   -1.
                         -1.3
                                                    4.
  7
              2.
                                 1.
                                       Θ.
                                              Θ.
W 8
     [-3.
              2.
                   -1.
                         -1.3
                                       0.
                                              Θ.
                                                    4.
                                 1.
W 9 [-3.
                                                    4.
                                1.
              2.
                   -1.
                         -1.3
                                       0.
                                              Θ.
```

```
2. ]
W after 3 epochs
                        [-3.
                                2.
                                     -1. -1.3 1.
                                                        Θ.
                                                              Θ.
                                                                    4.
Iteration 4
             2.
                              1.
                                     0.
                                          Θ.
                                                       2. ]
1. ]
2. ]
2. ]
2. ]
3. ]
2. ]
1. ]
W 0 [-3.
                                                 4.
                 -1.
                       -1.3
W 1 [-4.
             2.
                 -1.
                       -2.3
                              1.
                                     0.
                                          -1.
                                                 3.
W 2 [-3.
                                     0.
             3.
                 -1.
                       -1.3
                              1.
                                           0.
                                                 4.
W 3 [-4.
                 -1.
                                                 3.
             3.
                       -2.3
                                     0.
                                          -1.
                               1.
W 4 [-3.
                 -1.
                                     1.
                                           0.
                                                 4.
                               1.
             3.
                        -1.3
W 5 [-3.
             3.
                        -1.3
                 -1.
                                     1.
                                           Θ.
                                                 4.
                               1.
W 6 [-2.
                        -0.3
             3.
                  0.
                               2.
                                     1.
                                           1.
                                                 4.
W 7 [-3.
             3.
                 -1.
                        -1.3
                               2.
                                     0.
                                           0.
                                                 4.
W 8 [-3.
                                     0.
             3.
                 -1.
                        -1.3
                               2.
                                           0.
                                                 4.
W 9 [-4.
             2.
                 -2.
                        -2.3
                              1.
                                    -1.
                                          -1.
                                                 4.
W after 4 epochs
                        [-4.
                                2. -2.
                                          -2.3 1.
                                                       -1. -1.
                                                                    4.
                                                                          1.]
Iteration
             5
W 0 [-3.
W 1 [-4.
                                                      2. ]
1. ]
2. ]
2. ]
2. ]
3. ]
2. ]
2. ]
             2.
                 -1.
                       -2.3
                              1. -1.
                                                 5.
                                           Θ.
                               1.
                                   -1.
             2.
                 -1.
                                          -1.
                                                 4.
                       -3.3
                              1. -1.
                                          Θ.
W 2 [-3.
             3.
                 -1.
                       -2.3
                                                 5.
                              1.
W 3 [-4.
                                   -1.
             3.
                 -1.
                       -3.3
                                          -1.
                                                 4.
W 4 [-3.
             3.
                 -1.
                       -2.3
                               1.
                                     0.
                                           0.
                                                 5.
W 5 [-3.
                 -1.
                               1.
                                           Θ.
             3.
                        -2.3
                                    0.
                                                 5.
W 6 [-2.
             3.
                        -1.3
                                    0.
                  0.
                               2.
                                           1.
                                                 5.
W 7 [-3.
             3.
                        -2.3
                                   -1.
                                                 5.
                 -1.
                               2.
                                           Θ.
W 8 [-3.
                               2.
             3.
                 -1.
                        -2.3
                                    -1.
                                           0.
                                                 5.
                 -1.
                                                 5.
W 9 [-3.
             3.
                        -2.3
                               2.
                                    -1.
                                           Θ.
W after 5 epochs
                        [-3.
                                3.
                                   -1.
                                           -2.3
                                                 2.
                                                       -1.
                                                              Θ.
                                                                    5.
                                                                          2. ]
            6
Iteration
W 0 [-3.
W 1 [-4.
             3.
                 -1.
                       -2.3
                              2.
                                   -1.
                                           Θ.
                                                 5.
                                                      2. ]
1. ]
2. ]
2. ]
2. ]
3. ]
2. ]
                                   -1.
                 -1.
             3.
                       -3.3
                               2.
                                          -1.
                                                 4.
W 2 [-3.
             4.
                 -1.
                       -2.3
                               2.
                                    -1.
                                          0.
                                                 5.
W 3 [-4.
                                          -1.
             4.
                                    -1.
                 -1.
                       -3.3
                               2.
                                                 4.
             4.
W 4 [-3.
                 -1.
                                                 5.
                       -2.3
                               2.
                                    0.
                                           0.
W 5 [-3.
             4.
                 -1.
                       -2.3
                               2.
                                    0.
                                           0.
                                                 5.
                  0.
W 6 [-2.
                                    0.
                                           1.
                                                 5.
             4.
                       -1.3
                               3.
W 7 [-3.
W 8 [-3.
                 -1.
                              3.
                                   -1.
                                                 5.
             4.
                        -2.3
                                           Θ.
                 -1.
                        -2.3
                                    -1.
             4.
                               3.
                                           Θ.
                                                 5.
W 9 [-4.
                       -3.3
                                    -2.
             3.
                 -2.
                              2.
                                          -1.
                                                 5.
Wafter 6 epochs [-4.
                                3. -2. -3.3 2.
                                                       -2. -1.
                                                                    5.
                                                                          1.]
Final W after 6 epochs:
       3. -2. -3.3 2. -2. -1. 5.
                                                 1.]
Output for test input [1, 0, 1, 1, 0, 0, 1, 1, 0]: 0
Output for test input [1, 0, 0, 1, 1, -1, 1, 1, 1]: 1
PS D:\SEM-5\AI\EXPERIMENTS>
```

AI - EXPERIMENT 7 - Family Tree in PROLOG

```
% c:/users/jsidd/dropbox/pc/desktop/exp7 compiled 0.00 sec, 0 clauses
parent(X,luffy).
false.
?-
| parent(X,zoro).
X = nami ,
?-
| mother(X,Y).
X = nami,
Y = zoro ,
?- haschild(X).
X = nami ,
?- sister(X,Y).
X = hancock,
Y = otama
```

AI EXPERIMENT 8 - AI based game

MINESWEEPER

	1	2	3	4
1				
2		2		
3				
4				1

Enter row number followed by space and column number = 3 2 'clear' is not recognized as an internal or external command, operable program or batch file.

MINESWEEPER

	1	2	3	4
1				
2		2		
3		4		
4				1

Enter row number followed by space and column number = 1 4 'clear' is not recognized as an internal or external command, operable program or batch file.

MINESWEEPER

72	1	2	3	4
1		1	Θ	Θ
2		2	Θ	Θ
3		4	2	1
4				1

Enter row number followed by space and column number = 4 1 F 'clear' is not recognized as an internal or external command, operable program or batch file.
Flag set

MINESWEEPER

	1	2	3	4
1		1	Θ	Θ
2		2	0	Θ
3		4	2	1
4	F			1

Enter row number followed by space and column number = 4 2 F 'clear' is not recognized as an internal or external command, operable program or batch file.
Flag set

MINESWEEPER

	1	2	3	4
1		1	Θ	Θ
2		2	Θ	Θ
3		4	2	1
4	F	F		1

Enter row number followed by space and column number = 4 3 F 'clear' is not recognized as an internal or external command, operable program or batch file.
Flag set

MINESWEEPER

-	1	2	3	4
1		1	Θ	Θ
2		2	Θ	Θ
3		4	2	1
4	F	F	F	1

Enter row number followed by space and column number = 1 1 F 'clear' is not recognized as an internal or external command, operable program or batch file.
Flag set

MINESWEEPER

	1	2	3	4
1	F	1	Θ	Θ
2		2	Θ	Θ
3		4	2	1
4	F	F	F	1

Enter row number followed by space and column number = 2 1 F 'clear' is not recognized as an internal or external command, operable program or batch file.
Flags finished

MINESWEEPER

	1	2	3	4
1	F	1	Θ	Θ
2		2	Θ	Θ
3		4	2	1
4	F	F	F	1

Enter row number followed by space and column number = 2 1

AI EXPERIMENT 9 - Rule Based Expert System

Output:

PS D:\SEM-5\AI\EXPERIMENTS> python -u "d:\SEM-5\AI\EXPERIMENTS\EXP9.py"

Total Order Plan for Homemade Pizza:
Buy Pizza Dough
Preheat Oven
Roll Out Dough
Spread Pizza Sauce
Grate Cheese
Add Cheese to Dough
Chop Vegetables
Add Vegetables to Pizza
Bake Pizza

PS D:\SEM-5\AI\EXPERIMENTS>