SAT-based optimisation for the RCPSP/t

Jelle Pleunes (J.G.Pleunes@student.tudelft.nl), supervisor: Emir Demirović

What is the RCPSP/t?

Resource-Constrained Project Scheduling Problem with **T**ime-dependent resource capacities and requests

For example, you are given:

- A set of activities $A = \{1, 2, 3, 4\}$, where each $i \in A$ has a duration.
- A set of resources $R = \{1, 2\}$.

There are precedence constraints:

Figure 1: Precedence graph: an activity can only start once all predecessors are finished.

And there are resource constraints:

Figure 2: RCPSP resource constraints. Capacity (dotted line) may not be exceeded by requests of acitivties (boxes).

Figure 3: RCPSP/t resource constraints. Capacities and requests are now time-dependent.

Goal: assign start times, minimising total project duration. (NP-hard!)

Practical applications?

Model & schedule industrial processes [1]:

Production schedulina Medical research projects

How to find optimal

solutions?

satisfiability problem (SAT), or one of its

exensions such as MaxSAT¹ or SMT².

2. Exact solver solves encoded problem.

Existing research [2] used SMT encoding.

inequalties for precedence constraints.

This work: **new** SAT (& MaxSAT) encoding.

- Slightly more variables/clauses needed

+ Allows you to simply write linear

for encoding (< 2% increase).

+ SAT solvers are less complex.

Research question:

- SMT solvers are complex.

1. Encode (reduce) RCPSP/t into Boolean

All studied solving approaches used pseudo-Boolean encoding for resource constraints, instead of state-of-the-art pseudo-Boolean at-most-one encoding [2].

Main conclusion

SAT and MaxSAT approaches are efficient;

performance of both scales better than the

SMT approach for larger problem instances.

→ Performance could be improved.

Limitations

Only one solver measured per encoding. → Different solvers may result in different performance; this work makes it possible to use many different solvers.

Future work

New SAT encoding can be used. SAT solvers are less complex, making them more suitable for implementing heuristic augmentations, which could further improve performance.

Results

Is a SAT encoding efficient for solving?

¹Maximum satisfiability, ²satisfiability modulo theories

n = 30	t_{total}	#c	Δ_{LB}	n = 120	t_{total}	#c	Δ_{LB}
SMT	0.93	<u>2875</u>	0.00%	SMT	35.13	1758	6.71%
SAT	1.44	2845	0.02%	SAT	32.28	<u>1854</u>	4.25%
MaxSAT	1.64	2843	0.02%	MaxSAT	42.60	1822	3.18%

Figure 4: Average performance on test instances. n activities per instance, 2880 instances (L) and 3600 instances (R). t_{total} : execution time (s), #c: num. proven optimal/infeasible, Δ_{LB} : distance from good known solution. Best values underlined.

References

- [1] S. Hartmann. "Time-varying resource requirements and capacities". In: Handbook on Project Management and Scheduling. Vol. 1. Springer, 2015, pp. 163–176.
- [2] M. Bofill et al. "SMT encodings for resourceconstrained project scheduling problems". In: Computers & Industrial Engineering 149 (2020).