- 5. Eigenvector, Eigenvalue, and Diagonalization
- 1) Eigenvectors and Eigenvalues
- 2) Characteristic Equation
- 3) Diagonalization

1. Eigenvectors and Eigenvalues

- 1) Eigenvectors and Eigenvalues
- (1) Definition: Eigenvectors and Eigenvalues

 $A: n \times n$ matrix

eigenvector of A : nonzero vector ${\pmb x}$ such that $A{\pmb x}=\lambda {\pmb x}$ for some scalar $\lambda.$

 λ : eigenvalue of A

 λ exists if there is nontrivial solution ${\boldsymbol x}$ of $A{\boldsymbol x}=\lambda{\boldsymbol x}$

 $m{x}$: an eigenvector corresponding to λ

 λ is an eigenvalue of A if and only if the equation

$$(A - \lambda I)\boldsymbol{x} = 0$$

has nontrivial solution.

The set of solutions of $(A - \lambda I)x = 0$: null space of the matrix $A - \lambda I$

: eigenspace of A corresponding to λ

The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ

ex)
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

ex)
$$A = \begin{bmatrix} 3-2 \\ 1 & 0 \end{bmatrix}$$
 , $\lambda = 2$

ex)
$$A=egin{bmatrix} 4-16 \\ 2&1&6 \\ 2-18 \end{bmatrix}$$
 , an eigenvalue of A is 2 . Find a basis for the corresponding eigenspace.

The eigenvalues of a triangular matrix are the entries on its main diagonal.

(2) Theorem

If $\emph{\emph{v}}_{1}$, $\emph{\emph{v}}_{2}$, \cdots , $\emph{\emph{v}}_{r}$ are eigenvectors that correspond to distinct eigenvalues λ_{1} , λ_{2} , \cdots , λ_{r} of an $n \times n$ matrix A, then the set $\left\{\emph{\emph{v}}_{1}, \emph{\emph{v}}_{2}, \cdots, \emph{\emph{v}}_{r}\right\}$ is linearly independent.

- (3) Properties
- ① Eigenvalues and invertible matrix

 ${\cal A}$ is not invertible if and only if one of eigenvalues of ${\cal A}$ is 0

② solution of $\mathbfilde{x_{k+1}} = A \, \mathbfilde{x_k}$

$$\mathbf{x_{k+1}} = A \mathbf{x_k}$$

2. The Characteristic Equation

- 1) The Characteristic Equation
- (1) Definition: The Characteristic Equation

 $A: n \times n$ matrix

 $\det(A - \lambda I) = 0$: characteristic equation of A

 $\det (A - \lambda I)$: characteristic polynomial of A

solution of characteristic equation of A: Eigenvalues of A

(If the solution has multiplicity : multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic equation.)

$$\text{ex) } A = \begin{bmatrix} 5-2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ex) The characteristic polynomial of a 6×6 matrix is $\lambda^6-4\lambda^5-12\lambda^4$. Find the eigenvalues and their multiplicities.

2) Similarity

(1) Definition: Similarity

A , B : $n \times n$ matrices

A is similar to B if there is an invertible matrix P such that $P^{-1}AP = B$, or $A = PBP^{-1}$

B is also similar to A - A and B are similar

Changing A into $P^{-1}AP = B$: similarity transformation.

(2) Theorem

- 1) Similar matrices have the same determinant.
- 2 Similar matrices have the same rank.
- 3 Similar matrices have the same nullity.
- 4 Similar matrices have the same trace.
- 5 Similar matrices have the same characteristic equation and have the same eigenvalues

- (3) Caution
- ① The matrices are not similar even though they have the same eigenvalues
- $\ensuremath{\text{(2)}}$ Similarity is not the same as row equivalence

3. Diagonalization

- 1) Diagonalization
- (1) Efficiency of diagonal matrix

ex)
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

ex)
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$, $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$

(2) Definition: Diagonalization

A square matrix \boldsymbol{A} is diagonalizable if \boldsymbol{A} is similar to a diagonal matrix

 $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D

(3) Theorem: The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In fact, $A = PDP^{-1}$, with D a diagonal matrix, columns of P are n linearly independent eigenvectors of A, and diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^n . - eigenvector basis of \mathbb{R}^n

ex)
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 - 5 - 3 \\ 3 & 3 & 1 \end{bmatrix}$$

ex)
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 - 6 - 3 \\ 3 & 3 & 1 \end{bmatrix}$$

(4) Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable

(5) Theorem

Let A be an $n\times n$ matrix whose distinct eigenvalues are $\lambda_1\,,\;\lambda_2\,,\;\cdots\,,\;\lambda_p$

- ① For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- $\ @$ The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n

This happens if and only if

- a. The characteristic polynomial factors completely into linear factors
- b. the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k
- $\ \ \,$ If A is diagonalizable and B_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets B_1 , \cdots , B_p forms an eigenvector basis for $\mathbb R^n$

ex)
$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$

$$\text{ex) } A = \begin{bmatrix} 4-3 \\ 2-1 \end{bmatrix}, \ A^8$$