

The Doghouse Project

Leaflet Interactive Map

Who's in the Doghouse: Alex, Amy, Beth, Jeanna, and Jordan

Our Inspiration...Jordan's Doggos

Additional Inspiration

- We were inspired by El Paso,
 Texas city's page that has an interactive Lost Pet Finder map
- The map includes markers that show where pets were found
- The pets are identified using unique IDs
- The markers include pop-ups with information for each pet including: picture, type, breed, color, etc

Source link

\$\$\$ Final Inspiration \$\$\$

- When searching Kaggle for datasets we found a competition where a group used Petfinder API to collect pet adoption data.
- This group is in the running to win \$25k!!!

Source

Project Process:

Data Sources II

ETL

JS and Leaflet

Final Display

Data Sources

- Used CSV for US Capital Lat Longs from a GitHub repo
- Petfinder API
 - Used to pull data for available dogs available for adoption
 - Utilizes both a standard API Key and a secret key
- Petpy
 - Python library used to interact with the Petfinder API Key and secret key

II ETL

Performed API calls and loaded CSVs

Exercise Time

Amy moved and Alex got a new (free) bike

Transform

Cleaned data, dropped columns, replaced null values, created new columns, updated headers, reformatting for Geocoding

Puppy Time

Jordan played with the pups

Load

Used PostgreSQL to load and store the data

Play Time

Beth went to Hilton Head Island and Jeanna went camping

Extract and Transform

- Performed 50 Petfinder API calls and returned 50 separate dataframes using Latitude and Longitude to search City names
- Dropped unnecessary columns
- Stored dataframes in lists using city name for each dataframe
- Concatenated lists of dataframes to form one giant dataframe with ~14k rows of data

Extract and Transform

- Looped through/created addresses and replaced P.O. Boxes with "address2"
- Looped through new addresses, converted addresses to the appropriate Google Geocode API format

```
df.fillna('0', inplace = True)
address_list =[]
for j,k in df.iterrows():
    if re.search('^P.0', k['contact.address.address1']) or re.search('^P0', k['contact.address.address1']):
        address_list.append(k['contact.address.address2'])
    else:
        address_list.append(k['contact.address.address1'])
```

```
df['search_address'] = address_list
def add_plus(x):
    return x.replace(' ', '+')
df['search_address'] = df['search_address'].apply(add_plus)
df['search_city'] ='+' + df['contact.address.city'].apply(add_plus)
df['search_state'] = '+' + df['contact.address.state']
df.to_csv('data_unclean.csv')
df
```


Extract and Transform... again

```
lat =[]
   long=[]
   for j,k in df.iterrows():
       try:
           address = k['search address']
           city = k['search city']
           state = k['search state']
           r = requests.get(f'https://maps.googleapis.com/maps/api/geocode/json?address={address},{city},{state}&key={gmaps_api_key}')
           print(r.json()['results'][0]['geometry']['location'])
           lat.append(r.json()['results'][0]['geometry']['location']['lat'])
           long.append(r.json()['results'][0]['geometry']['location']['lng'])
       except:
           print(f'failed to find {address}{city}{state}')
           lat.append('0')
           long.append('0')
{'lat': 33.5178907, 'lng': -84.66965479999999}
```

ETL: LOAD

- Read CSV using Pandas
- Dropped unnecessary columns... again!
- Created database and table schema in PostgreSQL
- Created connection in JupyterNotebook using Pandas to load data to DB

Primarily used the DB to warehouse the data.

ETL: LOAD continued...


```
Query Editor Query History
1 DROP TABLE "data"
2 CREATE TABLE "data" (
3
        "dog_id" BIGINT,
4
        "url" VARCHAR.
 5
        "age" VARCHAR.
 6
        "gender" VARCHAR.
 7
        "size" VARCHAR,
8
        "name" VARCHAR.
9
        "breeds.primary" VARCHAR,
10
        "breeds.secondary" VARCHAR,
11
        "breeds.mixed" BOOLEAN.
12
        "breeds.unknown" BOOLEAN.
13
        "colors.primary" VARCHAR,
14
        "colors.secondary" VARCHAR,
15
        "colors.tertiary" VARCHAR,
16
        "attributes.house trained" BOOLEAN.
17
        "attributes.special_needs" BOOLEAN,
18
        "attributes.shots current" BOOLEAN.
19
        "environment.children" BOOLEAN,
20
        "environment.dogs" BOOLEAN.
21
        "environment.cats" BOOLEAN.
        "contact.address.address1" VARCHAR.
```

Data Output Explain Messages Notifications

_	dog_id [PK] bigint	4	url character varying	age character varying	4	gender character varying		size character varying		name character varying		breeds.primary character varying	breeds.secondary character varying		reeds.mixed oolean		breeds.unknown boolean		colors.primar character var
1		0	https://www.petfinder	Adult		Female	P	Medium	1	Merry Lee	1	Labrador Retriever	Terrier	tru	ue		false	0) 9
2		1	https://www.petfinder	Adult		Male	L	Large	(Cedric	1	Pointer	American Bulldog	tru	ue		false	0)
3		2	https://www.petfinder	Adult		Male	L	Large	-	Trooper		Staffordshire Bull Terrier	Bull Terrier	tru	ue		false	0)
4		3	https://www.petfinder	Adult		Female	Ĺ	Large	(Cyndi		American Staffordshire	0	fa	ilse		false	0)
5		4	https://www.petfinder	Young		Male	P	Medium	1	Enzo	1	Coonhound	Labrador Retriever	tru	ue		false	0)
6		5	https://www.petfinder	Adult		Female	P	Medium	1	Holly	1	Labrador Retriever	Terrier	tru	ue		false	0)
7		6	https://www.petfinder	Adult		Male	L	Large	I	BamBam		American Staffordshire	0	fa	ilse	9	false	0)

JavaScript and Leaflet

JavaScript and Leaflet

- Created a base map using mapbox
- Initialized the layers for dog sizes
- Used leaflet control function to display the clickable layers
- Created specialized icons using the ExtraMarker library
- Stored the clean Petfinder data in a Javascript file that we called in the index file
- Looped through the data and created markers
- Assigned markers to the layer groups
- Assigned the layer groups to the map
- Finally we searched our interactive map to find our new, adorable BFF!

IIII Final Display

Pros and Cons

Pros

- Visually appealing
- Consumer driven final output
- Petpy library saved the day
- Comfortable using python for the bulk of the ETL
- Customizing the map markers

Cons

- API call specifications were challenging
- Data lacked lat longs before Geocoding
- Extensive data cleaning
- Dataset was too big to run on our computers and could only use a test set
- Had to conform cleaned data CSV to JSON format for Leaflet

Conclusion

The Doghouse Project can help people find their 4-legged bestfriends!

Thank you.

Questions?

Resources

Data

- Petfinder API Dogs for Adoption
 - https://www.petfinder.com/developers/
- US Capitals Lat Long Data
 - https://github.com/jasperdebie/Visl nfo/blob/master/us-state-capitals. csv

Google Slide Template

- https://slidesgo.com/theme/indoor-games-fordogs#search-dog&position-0&results-5
 - Stock images and slide formatting