Λογική Σχεδίαση - Λύσεις Προόδου Ακ. Έτους 2023 – 2024 -Τμήμα Α

Θέμα 1°

Α Ερώτημα:

Μετατροπή του 115 από δεκαδικό σε δυαδικό:

Διά 2	Πηλίκο	Υπόλοιπο (Ψηφίο)	Θέση Bit #
(115)/2	57	1	0
(57)/2	28	1	1
(28)/2	14	0	2
(14)/2	7	0	3
(7)/2	3	1	4
(3)/2	1	1	5
(1)/2	0	1	6

 $⁼⁽¹¹¹⁰⁰¹¹⁾_2$

Με 8 ψηφία (με κόκκινο τα ψηφία που προσθέτω για να γίνει 8-ψήφιος ο αριθμός):

(**0111 0011)**₂

Μετατροπή του (115)₁₀ = (**0111 0011)**₂ από δυαδικό σε δεκαεξαδικό:

	0111	0011			
	7	3			
= (73) ₁₆					

Με τον ίδιο τρόπο:

$$(39)_{10} = (00100111)_2 = (27)_{16}$$

$$(13)_{10} = (0000 \ 1101)_2 = (0D)_{16}$$

Συνολικά:

Δεκαδικό	Δυαδικό	Δεκαεξαδικό			
115	<mark>0</mark> 111 0011	73			
39	0010 0111	27			
13	0000 1101	0D			

Β Ερώτημα:

Αντίθετος του (115)10 ως συμπλήρωμα του 2:

Ξεκινώ από δεξιά στον δυαδικό αριθμό, αφήνω ως έχουν τα ψηφία μέχρι και το πρώτο '1' και μετά συμπληρώνω τα υπόλοιπα ψηφία. Για το $(115)_{10} = (1000\ 1101)_2$ το πρώτο '1' το συναντάμε στη θέση 0, άρα

 $(0111\ 0011)'_2 = (1000\ 1101)_2$

Με τον ίδιο τρόπο, για τους (39) 10 και (13) 10 αντίστοιχα, είναι:

 $(0010\ 0111)'_2 = (1101\ 1001)_2$

 $(0000\ 1101)'_2 = (1111\ 0011)_2$

Αντίθετος του 115 ως συμπλήρωμα του 16:

Υπολογίζω το συμπλήρωμα ως προς 15, και προθέτω μια μονάδα:

	F(15)	F(15)
-	7	3
	8	C(12)
Προσθέτω το 1	+	1
	8	D

ή

Από τον αντίθετο του (115)10 στο δυαδικό:

1000	1101			
8	D(13)			

Με τον ίδιο τρόπο:

Αντίθετος του (39)10 ως συμπλήρωμα του 16, είναι:

	F(15)	F(15)
-	2	7
	D(13)	8
Προσθέτω το 1	+	1
	D(13)	9

ή

Από τον αντίθετο του (39)₁₀ στο δυαδικό:

1101	1001
D(13)	9

Αντίθετος του (13)10 ως συμπλήρωμα του 16, είναι:

	F(15)	F(15)
-	0	D(13)
	F	2
Προσθέτω το 1	+	1
	F	3

ή

Από τον αντίθετο του (613) $_{10}$ στο δυαδικό:

1111	0011		
F	3		

Συνολικά, τα συμπληρώματα είναι:

Δεκαδικός	Αντίθετος Δυαδικός (8 ψηφία)	Αντίθετος Δεκαεξαδικός (2 ψηφία)
115	1000 1101	8D
39	1101 1001	D9
13	1111 0011	F3

Γ Ερώτημα:

$$\alpha + \beta = (115)_{10} + (39)_{10} = (154)_{10}$$

Δυαδική πρόσθεση:

		1			1	1	1		Κρατούμενα
	0	1	1	1	0	0	1	1	(115) ₁₀
+	0	0	1	0	0	1	1	1	(39) ₁₀
	1	0	0	1	1	0	1	0	(154) ₁₀

Δυαδική αφαίρεση (με χρήση συμπληρώματος του 2):

$$\beta - \gamma = (39)_{10} - (13)_{10} = (26)_{10}$$

		1	1			1	1	1		Κρατούμενα
		0	0	1	0	0	1	1	1	(39)10
+		1	1	1	1	0	0	1	1	Συμπλήρωμα του 2 (13)10
	1	0	0	0	1	1	0	1	0	-(398)10

Προσοχή, έχουμε κρατούμενο, άρα το αποτέλεσμα είναι θετικό. Αγνοούμε το κρατούμενο και προκύπτει το τελικό αποτέλεσμα. Δηλαδή, $(0001\ 1010)_2 = (26)_{10}$.

Δεκαεξαδική πρόσθεση:

			Κρατούμενα
	7	3	(115)10
+	2	7	(39)10
	9	A(10)	(154)10

Δεκαεξαδική αφαίρεση (με χρήση συμπληρώματος του 16):

			Κρατουμενα
	2	7	(39) ₁₀
+	F	3	(Συμπλήρωμα του 2 (13) ₁₀
1	1	Α	(26) ₁₀

Προσοχή, έχουμε κρατούμενο, άρα το αποτέλεσμα είναι θετικό. Αγνοούμε το κρατούμενο και προκύπτει το τελικό αποτέλεσμα. Δηλαδή, $(1A)_{16} = (26)_{10}$.

Θέμα 2ο

Α Ερώτημα:

Πίνακας Αληθείας της συνάρτησης f:

mi	х	у	Z	x + y	x + z	f
0	0	0	0	0	0	0
1	0	0	1	0	1	0
2	0	1	0	1	0	0
3	0	1	1	1	1	1
4	1	0	0	1	1	1
5	1	0	1	1	1	1
6	1	1	0	1	1	1
7	1	1	1	1	1	1

Πίνακας Αληθείας της συνάρτησης g:

mi	x	у	Z	xy'z	XZ	xyz'	g
0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
2	0	1	0	0	0	0	0
3	0	1	1	0	0	0	0
4	1	0	0	0	0	0	0
5	1	0	1	1	1	0	1
6	1	1	0	0	0	1	1
7	1	1	1	0	1	0	1

Β Ερώτημα:

Από τον πίνακα αληθείας της f, προκύπτουν οι ελαχιστόροι (όπου f = 1)) και μεγιστόροι (όπου f = 0). Άρα:

$$f=\Sigma(3, 4, 5, 6, 7)$$

$$f = \Pi(0, 1, 2)$$

Γ Ερώτημα:

$$f(x, y, z) = (x + y) (x + z) = xx + xz + xy + yz = x + xz + xy + yz = (απορρόφηση) x + yz ή$$

απλά με επιμεριστικό κανόνα: f(x, y, z) = (x + y) (x + z) = x + yz

$$g(x, y, z) = xy'z + xz + xyz' = xz(y' + 1) + xyz' = xz + xyz' = xz + xyz' = x(z + yz') = (επιμεριστικός κανόνας) $x(z+y)(z+z') = x(z+y)(z+z') = x(z+z') =$$$

Δ Ερώτημα:

Με βάση το θεώρημα DeMorgan:

$$f(x, y, z)' = (x + yz)' = x'(yz)' = x'(y' + z') = x'y' + x'z'$$

$$g(x, y, z)' = [x(z + y)]' = x' + (y + z)' = x' + y'z'$$

Ε Ερώτημα:

