

APLICACIONES DE DATA SCIENCE

¿Cuál es la utilidad de las probabilidades en el modelamiento predictivo?

Logro Unidad 2

El estudiante podrá utilizar las habilidades que necesita para aplicar la ciencia de datos a las diferentes tareas de la minería de textos.

Contenido 4

Modelo de lenguaje

- Modelamiento de Lenguaje
- Problema del Modelamiento del Lenguaje
- Repaso de Conceptos Probabilísticos
- Trigramas

1. Motivación

Problema: Speech Recognition (reconocimiento de voz)

Dado una señal de audio encontrar/asignar la oración en texto mas probable.

1. Motivación

Problema: Speech Recognition (reconocimiento de voz)

1. Motivación

Problema: Speech Recognition (reconocimiento de voz)

INPUT

1. Motivación

Problema: Speech Recognition (reconocimiento de voz)

INPUT

1. Motivación

Problema: Speech Recognition (reconocimiento de voz)

1. Motivación

Problema: Speech Recognition (reconocimiento de voz)

INPUT

OUTPUT

Modelamiento de Lenguaje

Trata de encontrar la oración más probable.

2. Contenido

2. Contenido

- ☐ Modelar probabilísticamente el lenguaje.
- Modelos Trigrama.
- ☐ Modelos de evaluación de lenguaje: Perplexity.
- □ Técnicas de Estimación
 - Interpolación Lineal
 - Método de desconteo

3. Problema del Modelamiento del Lenguaje

> Tenemos un conjunto finito de términos V.

$$V = \{$$
the, a, man, telescope, Beckham, two, . . . $\}$

3. Problema del Modelamiento del Lenguaje

> Tenemos un conjunto finito de términos V.

$$V = \{$$
the, a, man, telescope, Beckham, two,... $\}$

> Tenemos un conjunto de oraciones (strings) que se pueden formar V⁺.

3. Problema del Modelamiento del Lenguaje

> Tenemos un conjunto finito de términos V.

```
V = \{the, a, man, telescope, Beckham, two,...\}
```

Tenemos un conjunto de oraciones (strings) que se pueden formar V⁺.

```
the STOP
a STOP
the fan STOP
the fan saw Beckham STOP
the fan saw saw STOP
the fan saw Beckham play for Real Madrid STOP
```


3. Problema del Modelamiento del Lenguaje

> Tenemos un conjunto finito de términos V.

```
V = \{the, a, man, telescope, Beckham, two,...\}
```

Tenemos un conjunto de oraciones (strings) que se pueden formar V⁺.

```
the STOP

el fin de la oración (token especial).

a STOP

the fan STOP

the fan saw Beckham STOP

the fan saw STOP

the fan saw Beckham play for Real Madrid STOP
```


3. Problema del Modelamiento del Lenguaje

> Si quiero obtener un Modelamiento de Lenguaje.

- > Si quiero obtener un Modelamiento de Lenguaje.
- Debemos tener un conjunto de entrenamiento de oraciones (CORPUS de entrenamiento).

- > Si quiero obtener un Modelamiento de Lenguaje.
- Debemos tener un conjunto de entrenamiento de oraciones (CORPUS de entrenamiento).
- Necesitamos aprender una distribución de probabilidad P.

$$\sum_{x \in \mathcal{V}^{\dagger}} p(x) = 1, \quad p(x) \ge 0 \text{ for all } x \in \mathcal{V}^{\dagger}$$

- > Si queremos obtener un Modelamiento de Lenguaje:
 - ☐ Debemos tener un conjunto de entrenamiento de oraciones (CORPUS de entrenamiento).
 - ☐ Necesitamos <u>aprender</u> una distribución de probabilidad P.

$$\sum_{x \in \mathcal{V}^{\dagger}} p(x) = 1, \quad p(x) \ge 0 \text{ for all } x \in \mathcal{V}^{\dagger}$$

¿De donde partimos?

¿De donde partimos?

¿De donde partimos?

Base de datos de entrenamiento – atributos o características Q_3 etiqueta Q_2

¿De donde partimos?

¿De donde partimos?

¿De donde partimos?

EJEMPLO

Tabela adaptada de: Quinlan, J.R. Induction of decision trees. Machine Learning, 81-106 (1986). https://doi.org/10.1007/BF00116251

	outlook	temperature	humidity	windy	class
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
3	overcast	hot	high	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
7	overcast	cool	normal	true	yes
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
10	rainy	mild	normal	false	yes
11	sunny	mild	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
14	rainy	mild	high	true	no

(1)

Tabela adaptada de: Quinlan, J.R. Induction of decision trees. Machine Learning, 81-106 (1986). https://doi.org/10.1007/BF00116251

	outlook	temperature	humidity	windy	class
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
3	overcast	hot	high	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
7	overcast	cool	normal	true	yes
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
10	rainy	mild	normal	false	yes
11	sunny	mild	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
14	rainy	mild	high	true	no

15	rainy	mild	normal	false	?
----	-------	------	--------	-------	---

¿Cómo aprendemos probabilidades en tareas de NLP?

3. Problema del Modelamiento del Lenguaje

> Tenemos un conjunto finito de términos V.

```
V = \{the, a, man, telescope, Beckham, two,...\}
```

Tenemos un conjunto de oraciones (strings) que se pueden formar V⁺.

```
the STOP
a STOP
the fan STOP
the fan saw Beckham STOP
the fan saw saw STOP
the fan saw Beckham play for Real Madrid STOP
```


$$\sum_{x \in \mathcal{V}^\dagger} p(x) = 1, \quad p(x) \ge 0 \text{ for all } x \in \mathcal{V}^\dagger$$

$$\sum_{x \in \mathcal{V}^\dagger} p(x) = 1, \quad p(x) \ge 0 \text{ for all } x \in \mathcal{V}^\dagger$$

5

¿En que nos ayuda aprender la probabilidad?

Problema: Speech Recognition (reconocimiento de voz)

INPUT

1 entrada

Problema: Speech Recognition (reconocimiento de voz)

OUTPUT

Problema: Speech Recognition (reconocimiento de voz)

60%

15%

25%

OUTPUT

Problema: Speech Recognition (reconocimiento de voz)

$O_1\text{: "Las palabras parónimas"}\\O_2\text{: "Mas descalabras anónimas"}\\O_3\text{: "Las reabras homónimas"}$

1 entrada

4. Repaso de Conceptos Probabilísticos

P(A)

4. Repaso de Conceptos Probabilísticos

P(A)

P(A)

- El número de hijos de una familia.
- La cantidad de dedos que tiene una mano.
- El número de animales de una granja.
- Cantidad de empleados de una tienda.

4. Repaso de Conceptos Probabilísticos

P(A)

- El número de hijos de una familia.
- ❖ La cantidad de dedos que tiene una mano.
- El número de animales de una granja.
- Cantidad de empleados de una tienda.
- La estatura de un amigo.
- El ancho de una pelota.
- El volumen de agua en una piscina.
- El peso de una persona. (velocidad, tiempo, longitud)

4. Repaso de Conceptos Probabilísticos

P(A)

4. Repaso de Conceptos Probabilísticos

P(A)

Variable aleatoria discreta

Depende del azar o la suerte.

$$P(dado = 3) =$$

$$P(dado = 3) = \underline{1}$$

$$P(dado = 3 | impar) =$$

4. Repaso de Conceptos Probabilísticos

Probabilidad Condicional P(A | B)

$$P(dado = 3 | impar) = \frac{1}{3}$$

4. Método Básico

4. Método Básico

> Dado mi CORPUS de entrenamiento N (cantidad total de oraciones).

4. Método Básico

> Dado mi CORPUS de entrenamiento N (cantidad total de oraciones).

4. Método Básico

> Dado mi CORPUS de entrenamiento N (cantidad total de oraciones).

$$P(X_1) =$$

4. Método Básico

> Dado mi CORPUS de entrenamiento N (cantidad total de oraciones).

$$P(X_1) = c(X_1)$$

4. Método Básico

> Dado mi CORPUS de entrenamiento N (cantidad total de oraciones).

$$P(X_1) = \frac{C(X_1)}{N}$$

5. Método Trigramas

74

5. Método Trigramas

PROCESOS DE MARKOV

5. Método Trigramas

PROCESOS DE MARKOV

Tipo de proceso ESTOCASTICO, el cual tiene una secuencia de variables aleatorias $X_1,\,X_2,...,\,X_n$

5. Método Trigramas

PROCESOS DE MARKOV

Tipo de proceso ESTOCASTICO, el cual tiene una secuencia de variables aleatorias $X_1,\,X_2,...,\,X_n$

 X_n cada variable aleatoria es el proceso de sacar una palabra del vocabulario

5. Método Trigramas

PROCESOS DE MARKOV

Tipo de proceso ESTOCASTICO, el cual tiene una secuencia de variables aleatorias $X_1,\,X_2,...,\,X_n$

 X_n cada variable aleatoria es el proceso de sacar una palabra del vocabulario

5. Método Trigramas

PROCESOS DE MARKOV

Entonces una <u>oración</u> se puede ver como un proceso aleatorio.

5. Método Trigramas

PROCESOS DE MARKOV

Entonces una <u>oración</u> se puede ver como un proceso aleatorio.

"EL PERRO LADRA FUERTE"

5. Método Trigramas

PROCESOS DE MARKOV

Entonces una oración se puede ver como un proceso aleatorio.

"EL PERRO LADRA FUERTE"

En donde saco una palabra aleatoria, saco la siguiente palabra aleatoria, luego la siguiente y que cada proceso de sacar una palabra aleatoria pueda <u>estar</u> condicionada a la palabras anteriores para que así ojala las oraciones con mas sentido tengan mayor probabilidad.

5. Método Trigramas

PROCESOS DE MARKOV

Entonces una oración se puede ver como un proceso aleatorio.

"EL PERRO LADRA FUERTE"

En donde saco una palabra aleatoria, saco la siguiente palabra aleatoria, luego la siguiente y que cada proceso de sacar una palabra aleatoria pueda <u>estar</u> condicionada a la palabras anteriores para que así ojala las oraciones con mas sentido tengan mayor probabilidad.

5. Método Trigramas

PROCESOS DE MARKOV

Entonces una oración se puede ver como un proceso aleatorio.

"EL PERRO LADRA FUERTE"

En donde saco una palabra aleatoria, saco la siguiente palabra aleatoria, luego la siguiente y que cada proceso de sacar una palabra aleatoria pueda <u>estar</u> condicionada a la palabras anteriores para que así ojala las oraciones con mas sentido tengan mayor probabilidad.

5. Método Trigramas

PROCESOS DE MARKOV

Entonces una oración se puede ver como un proceso aleatorio.

"EL PERRO LADRA FUERTE"

En donde saco una palabra aleatoria, saco la siguiente palabra aleatoria, luego la siguiente y que cada proceso de sacar una palabra aleatoria pueda <u>estar condicionada</u> a la palabras anteriores para que así ojala las oraciones con mas sentido tengan mayor probabilidad.

5. Método Trigramas

PROCESOS DE MARKOV

Nuestro objetivo es tener un modelo así:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

5. Método Trigramas

PROCESOS DE MARKOV

Nuestro objetivo es tener un modelo así:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Normalmente, se asume que la longitud n es fijo (con la idea de que todas las oraciones tengan el mismo numero de palabras).

5. Método Trigramas

PROCESOS DE MARKOV

Nuestro objetivo es tener un modelo así:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Normalmente, se asume que la longitud n es fijo (con la idea de que todas las oraciones tengan el mismo numero de palabras).

Ejemplo: "EL PERRO LADRA FUERTE"

5. Método Trigramas

PROCESOS DE MARKOV

Nuestro objetivo es tener un modelo así:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Normalmente, se asume que la longitud n es fijo (con la idea de que todas las oraciones tengan el mismo numero de palabras).

Ejemplo: "EL PERRO LADRA FUERTE"

$$P(X_1 = "El", X_2 = "perro", X_3 = "ladra", X_4 = "fuerte")$$

5. Método Trigramas

PROCESOS DE MARKOV

Nuestro objetivo es tener un modelo así:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Normalmente, se asume que la longitud **n** es fijo (con la idea de que todas las oraciones tengan el mismo numero de palabras).

Ejemplo: "EL PERRO LADRA FUERTE"

$$P(X_1 = \text{"El"}, X_2 = \text{"perro"}, X_3 = \text{"ladra"}, X_4 = \text{"fuerte"})$$

5. Método Trigramas

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

5. Método Trigramas

PROCESOS DE MARKOV

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Probabilidad Conjunta

5. Método Trigramas

$$P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n)$$
Probabilidad Conjunta $P(A\mid B)=P(A,B)$

5. Método Trigramas

$$P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n)$$
Probabilidad Conjunta $P(A\mid B)=P(A,B)$
 $P(A\mid B,C)=P(A,B,C)$

5. Método Trigramas

$$P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n)$$
Probabilidad Conjunta $P(A\mid B)=P(A,B)$
 $P(A\mid B,C)=P(A,B,C)$
 $P(A\mid B,C,D)=P(A,B,C,D)$

5. Método Trigramas

PROCESOS DE MARKOV

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Probabilidad Conjunta

$$P(A \mid B) = P(A,B)$$

$$P(A \mid B,C) = P(A,B,C)$$

$$P(A \mid B,C,D) = P(A,B,C,D)$$

5. Método Trigramas

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Probabilidad Conjunta

$$P(A | B) = P(A,B)$$

 $P(A | B,C) = P(A,B,C)$
 $P(A | B,C,D) = P(A,B,C,D)$

$$P(X_1 = \text{``El''}, X_2 = \text{``perro''}, X_3 = \text{``ladra''}, X_4 = \text{``fuerte''})$$

5. Método Trigramas

PROCESOS DE MARKOV

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

$$P(A \mid B) = P(A,B)$$

$$P(A \mid B,C) = P(A,B,C)$$

$$P(A \mid B,C,D) = P(A,B,C,D)$$

¿Hay algún problema aquí?

$$P(X_1 = "El", X_2 = "perro", X_3 = "ladra", X_4 = "fuerte")$$

5. Método Trigramas

PROCESOS DE MARKOV

1. <u>Procesos de Markov de Primer Orden</u>

5. Método Trigramas

PROCESOS DE MARKOV

1. <u>Procesos de Markov de Primer Orden</u>

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

Trata de simplificar estas probabilidades condicionales haciendo algunos supuestos de independencia.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

¿Qué dice Markov?

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

Trata de simplificar estas probabilidades condicionales haciendo algunos supuestos de independencia.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

¿Qué dice Markov?

$$P(C \mid A,B) = P(C,B)$$

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

Trata de simplificar estas probabilidades condicionales haciendo algunos supuestos de independencia.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

¿Qué dice Markov?

$$P(C \mid A,B) = P(C,B)$$

Es decir, solamente me importa donde estuve antes no me importa donde dos veces antes.

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

5. Método Trigramas

PROCESOS DE MARKOV

1. <u>Procesos de Markov de Primer Orden</u>

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_{i-1} = x_{i-1})$$

5. Método Trigramas

PROCESOS DE MARKOV

1. <u>Procesos de Markov de Primer Orden</u>

Trata de simplificar estas probabilidades condicionales haciendo algunos supuestos de independencia.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_{i-1} = x_{i-1})$$

Suposición de independencia = Solamente me importa un estado hacia atrás.

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

Ejemplo:

$$P(C \mid A,B) = P(C \mid B) \rightarrow Markov de Primer Orden$$

Es decir, solamente me importa donde estuve antes no me importa dos veces antes (olvido eso).

5. Método Trigramas

PROCESOS DE MARKOV

1. Procesos de Markov de Primer Orden

Ejemplo:

$$P(C \mid A,B) = P(C \mid B) \rightarrow Markov de Primer Orden$$

Es decir, solamente me importa donde estuve antes no me importa dos veces antes (olvido eso).

$$P(X_1 = "El", X_2 = "perro", X_3 = "ladra", X_4 = "fuerte")$$

5. Método Trigramas

PROCESOS DE MARKOV

2. <u>Procesos de Markov de Segundo Orden</u>

5. Método Trigramas

PROCESOS DE MARKOV

2. <u>Procesos de Markov de Segundo Orden</u>

Proceso menos agresivo y solamente condiciono dos palabras hacia atrás.

5. Método Trigramas

PROCESOS DE MARKOV

2. <u>Procesos de Markov de Segundo Orden</u>

Proceso menos agresivo y solamente condiciono dos palabras hacia atrás.

$$P(D \mid A,B,C) = P(D \mid C,B) \rightarrow Markov de Segundo Orden$$

5. Método Trigramas

PROCESOS DE MARKOV

2. <u>Procesos de Markov de Segundo Orden</u>

Proceso menos agresivo y solamente condiciono dos palabras hacia atrás.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

PROCESOS DE MARKOV

2. Procesos de Markov de Segundo Orden

Proceso menos agresivo y solamente condiciono dos palabras hacia atrás.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \times P(X_2 = x_2 | X_1 = x_1)$$

$$\times \prod_{i=3}^{n} P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

5. Método Trigramas

PROCESOS DE MARKOV

2. Procesos de Markov de Segundo Orden

Proceso menos agresivo y solamente condiciono dos palabras hacia atrás.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \times P(X_2 = x_2 | X_1 = x_1)$$

$$\times \prod_{i=3}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

$$= \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

5. Método Trigramas

PROCESOS DE MARKOV

2. Procesos de Markov de Segundo Orden

Proceso menos agresivo y solamente condiciono dos palabras hacia atrás.

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

$$= P(X_1 = x_1) \times P(X_2 = x_2 | X_1 = x_1)$$

$$\times \prod_{i=3}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

$$= \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$
(For convenience we assume $x_0 = x_{-1} = *$, where * is a special "start" symbol.)

5. Método Trigramas

PROCESOS DE MARKOV

2. Procesos de Markov de Segundo Orden

Ejemplo:

$$P(X_1 = "El", X_2 = "perro", X_3 = "ladra", X_4 = "fuerte")$$

PROCESOS DE MARKOV

2. Procesos de Markov de Segundo Orden

Ejemplo:

$$P(X_1 = \text{``El''}, X_2 = \text{``perro''}, X_3 = \text{``ladra''}, X_4 = \text{``fuerte''})$$

Tenemos un conjunto de oraciones (strings) que se pueden formar V⁺.

the STOP
a STOP
the fan STOP
the fan saw Beckham STOP
the fan saw Beckham STOP
the fan saw Beckham play for Real Madrid STOP

5. Método Trigramas

MODELO DE TRIGRAMAS

5. Método Trigramas

MODELO DE TRIGRAMAS

MODELO DE TRIGRAMAS

```
x_{-1} = *
```

$$x_0 = *$$

$$x_1 = eI$$

$$x_2 = perro$$

$$x_3 = ladra$$

$$x_4$$
 = fuerte

$$x_5 = STOP$$

MODELO DE TRIGRAMAS

$$x_{-1} = *$$

$$x_0 = *$$

$$x_1 = eI$$

$$x_2 = perro$$

$$x_3 = ladra$$

$$x_4$$
 = fuerte

$$x_5 = STOP$$

MODELO DE TRIGRAMAS

```
x_{-1} = *

x_0 = *

x_1 = el

x_1 = el

x_2 = perro

x_3 = ladra

x_4 = fuerte

x_5 = STOP

P(El, perro, ladra, fuerte) =

P(El | *,*)

P(El | *,*)
```


5. Método Trigramas

MODELO DE TRIGRAMAS

```
x_{-1} = *

x_0 = *

x_1 = el

x_1 = el

x_2 = perro

x_3 = ladra

x_4 = fuerte

x_5 = STOP

P(El, perro, ladra, fuerte) =

P(El, perro, ladra, fuerte) =
```


5. Método Trigramas

MODELO DE TRIGRAMAS

```
x_{-1} = *

x_0 = *
x_1 = el
x_1 = el
x_2 = perro

x_3 = ladra

x_4 = fuerte

x_5 = STOP

P(El, perro, ladra, fuerte) =

P(El, perro, ladr
```


5. Método Trigramas

MODELO DE TRIGRAMAS

El perro ladra fuerte Ejemplo:

```
\chi_{-1} = *
```

$$x_0 = *$$

P(El, perro, ladra, fuerte) =

$$x_1 = el$$

P(El | *,*) * P(perro | *,El) * P(ladra | El, perro) * P(fuerte | perro,ladra)

 $x_2 = perro$

 $x_3 = ladra$

 x_4 = fuerte

 $x_5 = STOP$

5. Método Trigramas

MODELO DE TRIGRAMAS

Ejemplo: El perro ladra fuerte

$$\chi_{-1} = *$$

$$x_0 = *$$

 $x_1 = el$

v = por

 $x_2 = perro$

 $x_3 = ladra$

 x_4 = fuerte

 $x_5 = STOP$

P(El, perro, ladra, fuerte) =

P(El | *,*) * P(perro | *,El) * P(ladra | El, perro) * P(fuerte | perro,ladra)

* P(STOP | ladra, fuerte)

5. Método Trigramas

MODELO DE TRIGRAMAS

Consiste en:

- > Tener un conjunto finito V
- ➤ Un parámetro $\mathbf{q}(w | u, v)$ para cada **trigrama** u, v, w donde cada $w \in V \cup \{STOP\}$ y donde $u, v \in V \cup \{*\}$.

5. Método Trigramas

MODELO DE TRIGRAMAS

Consiste en:

- > Tener un conjunto finito V
- ➤ Un parámetro $\mathbf{q}(w | u, v)$ para cada **trigrama** u, v, w donde cada $w \in V \cup \{STOP\}$ y donde $u, v \in V \cup \{*\}$.

Entonces la idea es **APRENDER** esos q (esas probabilidades) dado un CORPUS de entrenamiento = **ESTIMACIÓN DE PARAMETROS**.

5. Método Trigramas

MODELO DE TRIGRAMAS

Estimación de Parámetros

5. Método Trigramas

MODELO DE TRIGRAMAS

Estimación de Parámetros

$$q(w_i \mid w_{i-2}, w_{i-1})$$

5. Método Trigramas

MODELO DE TRIGRAMAS

Estimación de Parámetros

$$q(w_i \mid w_{i-2}, w_{i-1})$$

Estimación de Máxima Similitud

5. Método Trigramas

MODELO DE TRIGRAMAS

Estimación de Parámetros

$$q(w_i \mid w_{i-2}, w_{i-1})$$

Estimación de Máxima Similitud

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

EJEMPLO

EJEMPLO

P(El, perro, ladra, fuerte) =

P(El|*,*)*P(perro|*,El)*P(ladra|El,perro)*P(fuerte|perro,ladra)*P(STOP|ladra,fuerte)

EJEMPLO

P(El, perro, ladra, fuerte) =

P(El | *,*) *P(perro | *,El)*P(ladra | El,perro)*P(fuerte | perro,ladra)*P(STOP | ladra,fuerte)

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El | *,*) *P(perro | *,El)*P(ladra | El,perro)*P(fuerte | perro,ladra)*P(STOP | ladra,fuerte)

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El|*,*) *P(perro|*,El)*P(ladra|El,perro)*P(fuerte|perro,ladra)*P(STOP|ladra,fuerte)

$$P(E||*,*) = count(*,*,E|)$$

$$count(*,*)$$

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El|*,*)*P(perro|*,El)*P(ladra|El,perro)*P(fuerte|perro,ladra)*P(STOP|ladra,fuerte)

$$P(E||*,*) = count(*,*,E|)$$

$$count(*,*)$$

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El|*,*)*P(perro|*,El)*P(ladra|El,perro)*P(fuerte|perro,ladra)*P(STOP|ladra,fuerte)

$$P(E||*,*) = count(*,*,E|)$$

$$count(*,*)$$

$$P(perro \mid *,El) = count(*,El,perro)$$

$$count(*,El)$$

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El|*,*)*P(perro|*,El)*P(ladra|El,perro)*P(fuerte|perro,ladra)*P(STOP|ladra,fuerte)

$$P(E||*,*) = count(*,*,E|)$$

$$count(*,*)$$

P(fuerte | perro,ladra) = count(perro,ladra,fuerte) count(perro,ladra)

$$P(perro \mid *,El) = count(*,El,perro)$$

$$count(*,El)$$

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El|*,*)*P(perro|*,El)*P(ladra|El,perro)*P(fuerte|perro,ladra)*P(STOP|ladra,fuerte)

$$P(E||*,*) = count(*,*,E|)$$

$$count(*,*)$$

EJEMPLO

$$q(w_i \mid w_{i-2}, w_{i-1}) = \frac{\mathsf{Count}(w_{i-2}, w_{i-1}, w_i)}{\mathsf{Count}(w_{i-2}, w_{i-1})}$$

P(El, perro, ladra, fuerte) =

P(El | *,*)*P(perro | *,El)*P(ladra | El,perro)*P(fuerte | perro,ladra)*P(STOP | ladra,fuerte)

$$\frac{3}{-} * \frac{3}{-} * \frac{2}{-} * \frac{1}{-} * \frac{1}{-} = \frac{1}{3}$$

$$3 \quad 3 \quad 3 \quad 2 \quad 1 \quad 3$$

TAREA Nº 1

Explicar gráficamente cual seria el principal problema del método básico que acabamos de ver.

Este modelo NO va a generalizar a oraciones que NO vimos en el CORPUS de entrenamiento. Cualquier oración que NO esta en el CORPUS de entrenamiento tiene probabilidad 0%.

TAREA N° 2

- 1. Dado el siguiente CORPUS de entrenamiento.
 - "Mi amigo Miguel Diaz es feliz"
 - "Mi amigo Miguel Diaz es triste"
 - "Miguel Diaz es mi mejor amigo"
 - "Tengo varios amigos"
- 2. Calcular la probabilidad de la siguiente oración:
 - "Miguel Diaz es mi mejor amigo"

¿Qué es un proceso de Markov?

¿Qué es la probabilidad?

¿Cuál es el rol de una base de datos de entrenamiento?

CONSULTAS

pcsirife@upc.edu.pe