

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технологический университет «СТАНКИН»

(ФГБОУ ВО МГТУ «СТАНКИН»)

Институт автоматизации и

робототехникиКафедра

«Робототехника и мехатроника»

Учебный курс «Современные методы управления в робототехнике и мехатронике»

Лабораторная работа №1

«Управление перевёрнутым маятником с помощью контроллера на основе принципов нечёткой логики»

Абдулзагиров М.М.

	•			
Проверил :				<u>Колесниченко Р. В</u> .
Опенка			Лата:	

Выполнил: студент группы АДМ-21-05

Цель: научиться управлять перевёрнутым маятником с помощью систем управления на основе ПД-регулятора и нечёткого регулятора в пакете прикладных программ *Matlab*. Определить преимущества и недостатки системы управления с нечётким регулятором по сравнению с классическим методом управления на основе ПД-регулятора.

Задачи: на основе полученных уравнений движения перевёрнутого маятника и тележки построить структурную схему системы управления на основе ПД-регулятора и регулятора нечёткой логики в пакете прикладных программ *Matlab* и сравнить получившиеся в обоих случаях переходные процессы.

Ход выполнения работы

На рис. 1 приведена расчетная схема системы, состоящей из перевернутого маятника на тележке.

Рис. 1 Расчетная схема механической системы

При исследовании данной схемы будем использовать следующие параметры:

 ϕ — угол наклона маятника относительно вертикали, проходящей через шарнир, которым маятник соединён с тележкой (угол положительный при повороте маятника против часовой стрелки);

 Ω — угловая скорость движения маятника (угловая скорость положительна при вращении маятника против часовой стрелки);

x — положение тележки (положительное при смещении тележки вправо);

u – скорость движения тележки (положительная при движении тележки вправо);

F — сила, действующая на тележку (положительная сила действует слева направо);

l — длина маятника;

m — масса маятника;

M — масса тележки;

g – ускорение свободного падения.

Полная система уравнений в нормальной форме Коши, необходимая для компьютерного моделирования механической системы, выглядит так:

$$\begin{split} \frac{d\varphi}{dt} &= \Omega; \\ \frac{dx}{dt} &= v; \\ \frac{dv}{dt} &= D^{-1}[Fl - ml^2 sin\varphi(\Omega^2) + mgl sin\varphi cos\varphi]; \\ \frac{d\Omega}{dt} &= D^{-1}[F \cos\varphi - ml sin\varphi \cos\varphi(\Omega^2) + (M+m)gl sin\varphi], \\ \text{где } D &= Ml + ml sin^2\varphi. \end{split}$$

На основе приведенных выше уравнений была сформирована нелинейная динамическая модель перевернутого маятника (рис. 2-10).

Рис. 2 Блок, содержащий динамическую модель

Рис. 3 Динамическая модель перевернутого маятника

Рис. 4 Блок f1

Рис. 5 Блок f2

Рис. 6 Блок C₁₁

Рис. 7 Блок C₁₂

(u(1))*((M+m)/(M*I+m*I*((sin(u(2)))^2)))

Рис. 9 Блок C₂₂

f2

Система управления с ПД-регулятором

Запустим Matlab и Simulink. Загрузим файл "lab1_only_pendulum.mdl", содержащий нелинейную динамическую модель перевёрнутого маятника, полученную выше. Построим систему управления этим маятником на основе ПД-регулятора (рис.10).

Рис.10 Система управления перевёрнутым маятником

Обратный маятник имеет значения параметров, представленные в таблице 1.

Таблица 1. Исходные данные

переменная	параметр	значение	ед. измерения
M	масса тележки	10	KΓ
m	масса маятника	1	KI
1	длина маятника	1	M
<i>ω</i> ₀	частота свободных колебаний системы	10	рад/с
q_0	начальное отклонение маятника от вертикали	0.1	рад

Так как математическая модель, приведенная выше в нормальной форме Коши, является нелинейной, линеаризуем эти уравнения. Будем считать, что выполняются условия

$$\varphi = \varphi_0 + \Delta \varphi$$
; $\Omega = \Omega_0 + \Delta \Omega$; $x = x_0 + \Delta x$; $v = v_0 + \Delta v$.

Линеаризацию выполним в предположении, что значения величин φ_0 , Ω_0 , x_0 , v_0 характеризующих точку линеаризации, близки к 0. Тогда описание механической системы будет состоять из следующих уравнений:

$$\begin{split} \frac{d\Delta\varphi}{dt} &= \Delta\Omega; \\ \frac{d\Delta x}{dt} &= \Delta v; \\ \frac{d\Delta v}{dt} &= M^{-1}[F + mg\Delta\varphi]; \\ \frac{d\Delta\Omega}{dt} &= (Ml)^{-1}[F + (M + m)g\Delta\varphi]. \end{split}$$

Стабилизация нулевого положения маятника возможна благодаря отрицательным обратным связям по переменным φ и Ω . При этом сила, пропорциональная углу отклонения маятника от вертикали, формируется в соответствии с уравнением

$$F = -k_{\Pi}\Delta\varphi - k_{\underline{A}}\Delta\Omega,$$

где $k_{\rm n}$ и $k_{\rm d}$ — коэффициенты усиления обратных связей по положению и скорости маятника соответственно.

В соответствии с линеаризованными уравнения механической системы для стабилизации нулевого положения перевернутого маятника коэффициенты обратной связи по углу поворота и по скорости маятника определяются по формулам

$$k_{\pi} = \omega_0^2 M l + (M + m) g = 10^2 \cdot 10 \cdot 1 + (10 + 1) \cdot 9,8 = 1108;$$

$$k_{\mathrm{A}} = 2\xi_0 \omega_0 M l = 2\frac{\sqrt{2}}{2} \cdot 10 \cdot 10 \cdot 1 = 141,$$

где $\xi_0 = \frac{\sqrt{2}}{2}$ — оптимальное значение, полученное с помощью критерия интеграла от внешнего модуля ошибки.

Запустим моделирование системы в течение 5 секунд и пронаблюдаем процессы изменения угла отклонения маятника от вертикали (ϕ) и положения тележки (X).

Таблица 2. Параметры переходных процессов системы управления с ПД-

регулятором

	Угол откл	Угол отклонения маятника от вертикали Положение тележки,					
	Время установлени я(fi <= 0.005 рад), с	Максимальное перерегулирован ие, рад	Установивша яся ошибка, рад	Положен ие тележки через 5с, м	Характер перемещения тележки; направление		
Без двигател я	0,28	4,303*10^-3	0	-0,7953	Монотонный, неограниченны й, влево		
taum = 0.001c	0.292	4.05*10^-3	0	-0.7958	Монотонный, неограниченны й, влево		
taum = 0.02c	0.415	5.4*10^-3	0	-0.797	Монотонный, неограниченны й, влево		
taum = 0.1c	3.52	0.0466*10^-3	0	-0.803	Колебательный, неограниченны й, влево		

Рис. 11 Изменение положения тележки без двигателя

Рис. 12 Изменение угла отклонения маятника от вертикали без двигателя

Дополним полученную модель системы управления с помощью **П**Д-**регулятора** блоком апериодического звена, представляющим собой двигатель с постоянной времени taum (рис.13).

Рис. 13 Дополненная модель СУ перевернутым маятником

Также получим реакцию системы на отклонение маятника от вертикали на угол q0 при taum = 0.001, 0.02, 0.1 с.

Рис. 14 Изменение положения тележки при taum = 0.02c

Рис.15 Изменение угла отклонения маятника от вертикали при taum = 0.02c

Рис.16 Изменение положения тележки при taum = 0.001 c

Рис.17 Изменение угла отклонения маятника от вертикали при taum = 0.001 c

Рис.18 Изменение положения тележки при taum = 0.1c

Рис.19 Изменение угла отклонения маятника от вертикали при taum = 0.1c

Вывод: из таблицы можем заметить, что при увеличении постоянной времени двигателя, переходный процесс ухудшается.

Система управления с регулятором нечёткой логики

1. Построим модель системы управления перевёрнутым маятником с помощью **нечёткого регулятора** развиваемой силы, приложенной к тележке маятника.

Модель нечёткого регулятора с 9 правилами (на каждую лингвистическую переменную по 3 терма) на рис. 20.

Рис. 20 Модель нечёткого регулятора с 9 правилами

В модели переменные φ , ω , F имеют треугольные функции принадлежности (рис. 21-22).

Рис.21 Блок с треугольными функциями принадлежности переменных ϕ и ω

Рис.22 Блок с функциями принадлежности переменной F Модель блока, содержащего правило (рис. 23).

Рис. 23 Блок с правилом

На рис. 24-26 представлены функции принадлежности всех трех переменных.

Рис.24 Треугольный тип функции принадлежности переменой φ с 3 термами

Рис.25 Треугольный тип функции принадлежности переменной ω с 3 термами

Рис.26 Треугольный тип функции принадлежности переменной F с 3 термами

Отметим, что треугольная функция принадлежности зависит от трех параметров a, b, c. Такой вид функции принадлежности описывается следующей функцией:

$$f(x, a, b, c) = \begin{cases} 0, & x \le a \\ \frac{x - a}{b - a}, & a \le x \le b \\ \frac{c - x}{c - b}, & b \le x \le c \\ 0, & c \le x \end{cases}$$

В таблице 3 приведена таблица правил переменной F для 3 термов переменных φ и ω .

Таблица 3

	arphi						
	NM		ZE]	PM	
ω	NM	NM		NM		ZE	
	ZE	N	M	Z	Έ	PM	
	PM	Z	Έ	P	M	PM	

Параметры функции принадлежности входных и выходных переменных содержаться в следующем файле

fuzzy controller 3 trimf params.m:

```
% параметры функций принадлежности входной переменной fi
fi 1 a = -0.786;
fi_1b = -0.786;
fi 1 c = 0;
fi 2 a = -0.786;
fi 2 b = 0;
fi 2 c = 0.786;
fi 3 a = 0;
fi 3 b = 0.786;
fi^{-3}c = 0.786;
% параметры функций принадлежности входной переменной отеда
omega 1 a = -1.57;
omega 1 b = -1.57;
omega1c = 0;
omega 2 a = -1.57;
omega 2 b = 0;
omega 2 c = 1.57;
omega 3 a = 0;
omega 3 b = 1.57;
omega 3 c = 1.57;
% диапазон изменения выходной переменной force
FORCE Range 1 = -150;
FORCE Range 2 = 150;
% параметры функций принадлежности выходной переменной force
FORCE 1 a = -160;
FORCE 1 b = -150;
FORCE 1 c = 0;
FORCE 2_a = -150;
FORCE 2 b = 0;
FORCE 2 c = 150;
FORCE 3 = 0;
FORCE 3 b = 150;
FORCE 3 c = 160;
```

2. Копируем нечёткий регулятор в модель системы управления перевёрнутым маятником (рис. 27).

Рис. 27 Сравнение двух систем управления

3. Установим значения переменных в соответствии с таблицей 1. Установим значение переменной taum = 0,001с и запустим моделирование системы. Сравним переходные процессы обеих систем управления и занесем параметры этих процессов в соответствующие столбцы таблицы 4.

Таблица 4. Сравнение СУ с ПД-регулятором и нечётким регулятором с различным количеством правил

	Время	Максимальное	Установившаяся	Положение	
	переходного	перерегулирование	ошибка (t = 5.0	тележки через	
	процесса, с	fi, рад	с), рад	t = 5.0 c, M	
СУ с ПД-	0,292	4,35*10^-3	0	-0,7952	
регулятором	0,272	7,55 10 5	V	0,7752	
СУ с					
нечётким	_	_	_	-20,188	
регулятором	_	_	_	-20,100	
(9 правил)					
СУ с					
нечётким	2,1	0	2*10^-4	-11.51	
регулятором	2,1	U	2 10 -4	-11.31	
(25 правил)					
СУ с					
нечётким				0,786	
регулятором	_	_	_	0,780	
(49 правил)					

Рис. 28 Изменение угла отклонения маятника от вертикали (9 правил)

Рис.29 Изменение положения тележки (9 правил)

4. Теперь рассмотрим СУ с помощью нечёткого регулятора с 25 правилами. Функция принадлежности переменных содержит по 5 терм (рис. 30-32), а общее количество правил, заданных в соответствии с таблицей 5.

Таблица 5

φ					
NB	NM	ZE	PM	PB	

	NB	NB	NB	NB	NM	ZE
ω	NM	NB	NB	NM	ZE	PM
	ZE	NB	NM	ZE	PM	PB
	PM	NM	ZE	PM	PB	PB
	PB	ZE	PM	PB	PB	PB

Рис.30 Треугольный тип функции принадлежности переменой φ с 5 термами

Рис.31 Треугольный тип функции принадлежности переменой ω с 5 термами

Рис.32 Треугольный тип функции принадлежности переменой F с 5 термами

Рис.33 Изменение угла отклонения маятника от вертикали (25 правил)

Рис.34 Изменение положения тележки (25 правил)

5. Теперь рассмотрим СУ с помощью нечёткого регулятора с 49 правилами. Функция принадлежности переменных содержит по 7 терм (рис. 35-37), а общее количество правил, заданных в соответствии с таблицей 6.

Таблица 6

					φ			
		NB	NM	NS	ZE	PS	PM	PB
	NB	NB	NB	NB	NB	NM	NS	ZE
	NM	NB	NB	NB	NM	NS	ZE	PS
	NS	NB	NB	NM	NS	ZE	PS	PM
ω	ZE	NB	NM	NS	ZE	PS	PM	PB
	PS	NM	NS	ZE	PS	PM	PB	PB
	PM	NS	ZE	PS	PM	PB	PB	PB
	PB	ZE	PS	PM	PB	PB	PB	PB

Рис.35 Треугольный тип функции принадлежности переменой φ с 7 термами

Рис. 36 Треугольный тип функции принадлежности переменой ω с 7 термами

Рис.37 Треугольный тип функции принадлежности переменой F с 7 термами

Рис. 38 Изменение угла отклонения маятника от вертикали (49 правил)

Рис.39 Изменение положения тележки (49 правил)

Вывод: из таблицы 4 видно, что наилучшими свойствами обладает система управления с ПД-регулятором (с точки зрения быстродействия и качества переходного процесса).

Выберем систему управления на основе нечёткой логики с оптимальным количеством правил и сравним влияние различных типов функций принадлежности на переходные процессы и выберем оптимальные, исходя из следующих: треугольные, гауссовы, колоколообразные.

Системой управления с оптимальным количеством правил является СУ с 25 правилами.

Рис.40 СУ с нечётким регулятором (25 правил) — треугольный тип (X).

Рис.41 СУ с нечётким регулятором (25 правил) – треугольный тип (ф).

Рис.42 СУ с нечётким регулятором (25 правил) – гауссов тип (X).

Рис.43 СУ с нечётким регулятором (25 правил) – гауссов тип (ф).

Рис.44 СУ с нечётким регулятором (25 правил) – колоколообразный тип (X).

Рис.45 СУ с нечётким регулятором (25 правил) – колоколообразный тип (ф).

Таблица 7. Сравнение СУ с регулятором нечёткой логики с различным типом функций принадлежности

	Время переходного процесса, с	Максимальное перерегулирование fi, рад	Установившаяся ошибка (t = 5.0c), рад	Положение тележки через t = 5.0c, м
Треугольный тип(trimf)	2,1	0	2*10^-4	-11.51
Гауссов тип (gaussmf)	3,2	0	643*10^-4	-9.8
Колокообразный тип (gbellnf)	2.9	0.18	1563*10^-4	-18.53

Вывод: лучшей системой с точки зрения быстродействия является система с треугольным типом функции принадлежности.

Для системы управления на основе нечёткой логики с оптимальным количеством правил и оптимальным типом функций принадлежности изменим значение переменной taum. Сравним чувствительность систем управления на основе нечёткой логики и ПД-регулятора к изменению своих параметров.

Таблица 8. Параметры переходных процессов системы управления с нечётким регулятором

	Угол отк	лонения маятника о	т вертикали	Положение тележки, м		
	Время установлен ия (fi <= 0.005 рад), с	Максимальное перерегулирован ие, рад	Установившая ся ошибка, рад	Положен ие тележки через 5 с, м	Характер перемещения тележки; направление	
Без двигате ля	2.433	-	1.5*10^-4	-3.89	Монотонный, неограниченн ый, влево	
taum= 0.001 c	2.56	-	1.47*10^-5	-4.1	Монотонный, неограниченн ый, влево	
taum= 0.02 c	2.48	-	11*10^-5	-4.04	Монотонный, неограниченн ый, влево	
taum= 0.1 c	2.34	-	6.8*10^-5	-4.037	Монотонный, неограниченн ый, влево	

Рис.46 СУ с нечётким регулятором (25 правил) – треугольный тип – без двигателя (ф)

Рис.47 СУ с нечётким регулятором (25 правил) – треугольный тип – без двигателя (X)

Рис.48 СУ с нечётким регулятором (25 правил) — треугольный тип — taum = $0.001c\ (\phi)$

Рис.49 СУ с нечётким регулятором (25 правил) — треугольный тип — taum = $0.001c~(\mathrm{X})$

Рис.50 С $\overline{\mathrm{У}}$ с нечётким регулятором (25 правил) – треугольный тип – taum = $0.02\mathrm{c}$ (ϕ)

Рис.51 СУ с нечётким регулятором (25 правил) — треугольный тип — taum = $0.02c~(\mathrm{X})$

Рис.52 СУ с нечётким регулятором (25 правил) — треугольный тип — taum = 0.1c (ϕ)

Рис.53 СУ с нечётким регулятором (25 правил) — треугольный тип — taum = 0.1c(X)

По результатам анализа рисунков 46-53 и параметров переходных процессов в таблицах 2 и 8 можно сказать, что при использовании ПД-регулятора время установления значительно меньше, но такой тип системы управления сильнее реагирует на изменяющиеся параметры системы, в то время как система управления с нечетким регулятором при изменении параметров системы практически полностью сохраняет свои свойства.

Запустим моделирование системы в течение 5 с при taum=0.001 с, taum=0.1 с и при q0=0.1 рад и q0=0.5 рад. Сравним получившиеся переходные процессы и для наглядности заполним таблицу 9.

Таблица 9. Параметры переходных процессов системы управления

			_	слонения маятника от		Положен	ие тележки, м
taum , c	q0, ра д	Регулято р	Время установлен ия (fi <= 0.005 рад), с	Максимальное перерегулирован ие, рад	Установившая ся ошибка, рад	Положени е тележки через 5с, м	Характер перемещения тележки; направление
	0,1	пд	0.292	4.33*10^-3	0	-0.7951	Монотонный, неограниченны й, влево
0,001	0,1	fuzzy	2,1	-	1.47*10^-5	-4.1	Монотонный, неограниченны й, влево
0,001	0,5	пд	0.33	0.02*10^-3	0	-5.5	Монотонный, неограниченны й, влево
	0,5	fuzzy	5.15	-	4*10^-4	-32.89	Монотонный, неограниченны й, влево
	0,1	пд	3.32	0.0456*10^-3	0	-0.799	Колебательный , неограниченны й, влево
		fuzzy	2.34	0.11	6.8*10^-5	-4.04	Монотонный, неограниченны й, влево
0,1	0,5	пд	5.74	0.23*10^-3	1.5*10^-4	-5.64	Колебательный , неограниченны й, влево
	0,5	fuzzy	5.38	0.62	0	-59.96	Колебательный , неограниченны й, влево

Рис.54 ϕ – q0 = 0.1, taum = 0.001c

Рис.55 X - q0 = 0.1, taum = 0.001c

Рис.56 $\phi - q0 = 0.5$, taum = 0.001c

Рис.57 X - q0 = 0.5, taum = 0.001c

Рис.58 $\phi - q0 = 0.1$, taum = 0.1c

Рис.59 X - q0 = 0.1, taum = 0.1c

Рис. $60 \phi - q0 = 0.5$, taum = 0.1c

Рис.61 X – q0 = 0.5, taum = 0.1c

Вывод: при использовании ПД-регулятора время установления значительно меньше, но такой тип системы управления сильнее реагирует на изменение параметров системы, в то время как система управления с нечетким регулятором при изменении параметров системы практически полностью сохраняет свои свойства

Ответы на контрольные вопросы:

1. Объясните, почему в системе управления по 2 переменным положение тележки не принимает постоянное значение, а изменяется монотонно? Каким способом можно ограничить движение тележки, чтобы ее положение принимало постоянные значения?

Так как в используемых 2 переменных не было переменной положения тележки. Это можно исправить, применив метод Такаги-Сугено, который содержит 4 переменные: угол маятника, его угловая скорость, рассогласование между заданным и текущим положением тележки и скорость тележки.

2. Что такое FIS в Fuzzy Logic Toolbox системы Matlab?

Это нечеткие системы логического вывода.

3. <u>Как поменять тип функции принадлежности в системе нечеткого</u> вывода в пакете Fuzzy Logic Toolbox системы Matlab, не используя графическо-пользовательский интерфейс?

FIS-файл при сохранении представляет собой структуру с 10 полями, среди которых и содержится информации о типе функции принадлежности. Такой файл можно редактировать с помощью любого текстового редактора.

4. <u>Как можно изменить параметры переходных процессов СУ с нечетким регулятором?</u>

Изменить тип функций принадлежности и их параметры, изменить количество правил и терм, изменить логические методы.

5. <u>Каким образом можно приблизить параметры переходных процессов</u> <u>СУ с нечетким регулятором к СУ с ПД-регулятором?</u>

Путем изменения параметров функций принадлежности переменных.

6. Как влияет на данную СУ нечётким регулятором изменение методов конъюнкции, импликации, агрегирования и дефаззификации?

При изменении методов переходные процессы резко изменяются

7. Какая система управления имеет большую чувствительность к изменению своих параметров (параметров двигателя) в рамках данной задачи, система управления на основе ПД-регулятора или на основе нечёткого регулятора?

Большую чувствительность к изменению параметров двигателя в рамках данной задачи имеет система управления на основе ПД-регулятора.

8. Назовите преимущества и недостатки системы управления перевернутым маятником на основе алгоритма Такаги-Сугено с управлением по 4 переменным по сравнению с СУ на основе алгоритма Мамдани с управлением по 2 переменным.

Преимуществом метода Такаги-Сугано является то, что он позволяет учитывать больше переменных, в результате чего может быть учтено положение тележки. Это же является минусом алгоритма Мамдани.