Medical Image Analysis

5. Medical image classification(4)

Taeyang Yang

Oct. 2020

https://tyami.github.io/

Contents

- Feature selection
- Feature visualization

1. Feature selection using L1 regularization

- 이전 포스팅 (Regularization: Ridge (L2), Lasso (L1), and Elastic Net regression) 참고
 - https://tyami.github.io/machine%20learning/regularization-Ridge-Lasso-ElasticNet/#ridge-vs-lasso

Entropy

Entropy

• Probability

$$Probability = p(x)$$

Information

Information =
$$I(x) = log \frac{1}{p(x)} = -log p(x)$$

• Entropy = measure of the amount of uncertainty in the event set S (Expectancy of information)

$$Entropy = H(S) = \sum_{i=1}^{c} p_i I(x_i) = \sum_{i=1}^{c} p_i \log \frac{1}{p_i} = -\sum_{i=1}^{c} p_i \log p_i$$

Mutual information

$$Entropy = H(S) = -\sum_{i=1}^{c} p_i \log p_i$$

두 사건의 관계: Joint entropy

Joint Entropy =
$$H(X,Y) = -\sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log p(x_i, y_j)$$

두 사건이 독립일 때 Joint Entropy: H(X,Y) = H(X) + H(Y)

따라서, H(X) + H(Y) - H(X,Y) 를 통해 두 벡터 간 관련성 measure 가능 \rightarrow Mutual information

Mutual information =
$$I(X;Y) = H(X) + H(Y) - H(X,Y) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$$

- 관련성이 없으면(독립일 때) Mutual information=0
- 관련성이 크면 Mutual information이 커진다

Mutual information-based algorithm: Decision tree ID3

- Feature와 Class간 Mutual information 계산을 통해 모델 학습
- Mutual information 을 이용한 알고리즘: Decision Tree ID3
 - 이전 포스팅 (의사결정 나무 (Decision Tree) ID3 알고리즘 설명) 참고
 - https://tyami.github.io/machine%20learning/decision-tree-2-ID3/

Mutual information-based feature selection: minimum-redundancy-Maximum-Relevance(mRMR)

 f_3

- Feature와 Class간, 그리고 Feature와 Feature간 Mutual information 계산을 통해 모델 학습
- 핵심: Class와 관련성이 높은 Feature를 찾되, 다음 부터는 비슷한 Feature는 뽑지 않겠다.
 - Feature-Class mutual information 을 높이고
 - Feature-Feature mutual information 을 낮춘다

	, -	, _	, 5
Subject	Feature 1	Feature 2	Feature 3
Normal	3	5	5.1
Normal	8.7	9	5
Normal	6	8	4.9
Normal	6.5	7	5.2
AD	8	16	5
AD	8.5	15	5
AD	9.2	20	4.8
AD	7.9	20	4.9

 f_1

С

Feature-Class Mutual information (높여야함)

$$D(S,c) = \frac{1}{|S|} \sum_{f_i \in S} I(f_i; c)$$

Feature-Feature Mutual information (낮춰야함)

$$R(S) = \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i, f_j)$$

$$mRMR = \max_{S} \left[\frac{1}{|S|} \sum_{f_i \in S} I(f_i; c) - \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i, f_j) \right]$$

3. Feature extraction using Deep Learning

Auto-encoder

(Compressed low dimensional representation of input)

4. Class Activation Map

- 이전 포스팅 (CNN visualization: CAM and Grad-CAM 설명) 참고
 - https://tyami.github.io/deep%20learning/CNN-visualization-Grad-CAM/

5. Weakly supervised learning

Example of CAM in medical image

5. Weakly supervised learning

Definition of weakly supervised learning

"학습 과정에서는 알려주지 않은 정보를, Test 시 찾아내는 문제"

예시 (CAM)

예시

Training	Test	
Image label	Bounding box	
Bounding box	Pixel label	

6. Multiple instance learning

Definition of Multiple instance learning

Test data (Open or not?)

6. Multiple instance learning

Medical example of Multiple instance learning

Cancer!

Test data (Cancer or not?)

Negative training data (Normal)

영상 단위 label만 있고, pixel label은 없을 때, 병변이 작을 때 활용