Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 22 - 28/10/2025

Funciones en \mathbb{R}^n

Recordemos que una función consta de tres elementos: un dominio, un codominio y una regla que a cada elemento del dominio, le asigna uno del codominio. Trabajaremos fundamentalmente con funciones $f: \mathbb{R}^n \to \mathbb{R}$, veamos algunos ejemplos que ya conocemos.

Ejemplos 6.1 (dominio \mathbb{R}^2)

Ejemplo 1

Las normas con las que trabajamos en el capítulo anterior son funciones que toman valores reales (positivos específicamente):

$$f_1(x,y) = \|(x,y)\|_1 = |x| + |y|f_2(x,y) = \|(x,y)\|_2 = \sqrt{x^2 + y^2}$$

Ejemplo 2

Otras clases de funciones conocidas son las transformaciones lineales. En particular un ejemplo como:

$$f_3(x,y) = 2x - 3y$$

Ejemplo 3

Podemos también definir una función en el plano de forma arbitraria como:

$$f_4(x,y) = e^{x^2y} + \sin(x+y) + 1$$

Representación gráfica de una función

Si queremos representar una función $f:\mathbb{R}^2\to\mathbb{R}$, lo debemos hacer en el espacio tridimensional $\mathbb{R}^2\times\mathbb{R}$. Considerando las coordenadas de este espacio como (x,y,z), usaremos el "piso" para representar el dominio y la "altura" para representar las imágenes de la función.

Figura 1

Figure 1: Figura 1

Figura 2

Figure 2: Figura 2

Notemos que cuando trabajabamos con funciones de \mathbb{R} en \mathbb{R} la figura que obteníamos al graficar era una curva, es fácil observar que al trabajar en funciones de \mathbb{R}^2 en \mathbb{R} estas resultan en una superficie de "dimensión dos". Veamos una herramienta para obtener información parcial sobre la forma del gráfico de una función.

Conjuntos de nivel

Los conjuntos de nivel son subconjuntos del dominio, cuyos puntos tienen la misma imagen por la función. Dado un número $k \in \mathbb{R}$, el conjunto de nivel de k es:

•
$$C_k = \{(x, y) \in \mathbb{R}^2 : f(x, y) = k\}$$

Tomemos por ejemplo la función $f(x,y) = x^2 + y^2$. La curva de nivel k = 1 son los puntos (x,y) del plano tales que f(x,y) = 1. Veamoslo gráficamente, mostrando los conjuntos de nivel en el plano (primera imagen), y luego gráficandolos en la altura correspondiente al nivel que representan.

Otra forma de obtener información adicional es observando cortes complementarios. Por ejemplo, podemos ver cómo es el comportamiento cuando y = 0, es decir estudiar f(x,0). En el caso de $f(x,y) = x^2 + y^2$, resulta $f(x,0) = x^2$. Tenemos entonces que el corte de la superficie-gráfico con el plano y = 0 es una parábola. Lo mismo ocurre si trabajamos con el plano x = 0. El gráfico de esta función tiene como nombre paraboloide.

Sin embargo, cuando consideramos la función $f(x,y) = \sqrt{x^2 + y^2}$, al cortar con el plano y = 0, resulta $f(x,0) = \sqrt{x^2} = |x|$. Lo mismo ocurre con el plano x = 0. Observemos que los conjuntos de nivel son circunferencias, por lo que el gráfico es como un cono:

Límites y continuidad

Definición 6.4 (límite)

Dado un conjunto $D\subset\mathbb{R}^n,$ una función $f:D\to\mathbb{R}$ y $a\in\mathbb{R}^n$ un punto de acumulación de D, decimos que:

$$\lim_{x\to a} f(x) = L$$

$$\iff \forall \varepsilon > 0, \exists \delta > 0 \text{ tal que } \forall x \in B^*(a,\delta) \cap D \text{ se cumple } f(x) \in B(L,\varepsilon)$$

Figura 3

Figure 3: Figura 3

Figura 4

Figure 4: Figura 4

Figura 5

Figure 5: Figura 5

Observemos que no necesitamos que la función esté definida en el punto a, e incluso si está definida en ese punto, no influye en la definición.

Definición 6.5 (continuidad)

Dado un conjunto $D\subset\mathbb{R}^n$ una función $f:D\to\mathbb{R},$ y $a\in\mathbb{R}^n$ un punto de D, decimos que f es continua en a sii:

$$\forall \varepsilon > 0, \exists \delta > 0$$
 tal que $\forall x \in B(a, \delta) \cap D$ se cumple $f(x) \in B(f(a), \varepsilon)$

Observación 6.6

El punto a debe estar en el dominio (en particular porque calculamos f(a)), pero no necesariamente debe ser un punto de acumulación. Así podemos distinguir dos casos:

1. Si a es un punto de acumulación de D, entonces la definición de continuidad coincide con la de límite, con L = f(a). Es decir, en ese caso:

$$f$$
 es continua en $a \iff \lim_{x \to a} f(x) = f(a)$

2. Si a no es un punto de acumulación de D, entonces es un punto aislado. Es decir existe un radio $\delta > 0$ tal que no hay puntos de D en $B(a, \delta)$. Entonces una función f siempre será continua en los puntos aislados del dominio.