Introduction to Machine-Independent Optimizations - 7 Program Optimizations and the SSA Form

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Outline of the Lecture

- What is code optimization? (in part 1)
- Illustrations of code optimizations (in part 1)
- Examples of data-flow analysis (in parts 2,3, and 4)
- Fundamentals of control-flow analysis (in parts 4 and 5)
- Algorithms for machine-independent optimizations (in part 6)
- SSA form and optimizations

SSA Form: A Definition

- A program is in SSA form, if each use of a variable is reached by exactly one definition
- Flow of control remains the same as in the non-SSA form
- A special merge operator, ϕ , is used for selection of values in join nodes
- Conditional constant propagation is faster and more effective on SSA forms

Conditional Constant Propagation - 1

- SSA forms along with extra edges corresponding to d-u information are used here
 - Edge from every definition to each of its uses in the SSA form (called henceforth as SSA edges)
- Uses both flow graph and SSA edges and maintains two different work-lists, one for each (Flowpile and SSApile, resp.)
- Flow graph edges are used to keep track of reachable code and SSA edges help in propagation of values
- Flow graph edges are added to Flowpile, whenever a branch node is symbolically executed or whenever an assignment node has a single successor

Conditional Constant Propagation - 2

- SSA edges coming out of a node are added to the SSA work-list whenever there is a change in the value of the assigned variable at the node
- This ensures that all uses of a definition are processed whenever a definition changes its lattice value.
- This algorithm needs much lesser storage compared to its non-SSA counterpart
- Conditional expressions at branch nodes are evaluated and depending on the value, either one of outgoing edges (corresponding to true or false) or both edges (corresponding to \(\percap^2\)) are added to the worklist
- However, at any join node, the meet operation considers only those predecessors which are marked executable.

CCP Algorithm - Example 2

After second round of simplification – elimination of dead code, elimination of trivial Φ-functions, copy propagation etc.

Instruction Scheduling and Software Pipelining - 1

Y.N. Srikant

Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Outline

- Instruction Scheduling
 - Simple Basic Block Scheduling
 - Trace, Superblock and Hyperblock scheduling
- Software pipelining

Instruction Scheduling

- Reordering of instructions so as to keep the pipelines of functional units full with no stalls
- NP-Complete and needs heuristcs
- Applied on basic blocks (local)
- Global scheduling requires elongation of basic blocks (super-blocks)

Instruction Scheduling - Motivating Example

- time: load 2 cycles, op 1 cycle
- This code has 2 stalls, at i3 and at i5, due to the loads

i1:	r1	\leftarrow	load a
i2:	r2	\leftarrow	load b
i3:	r3	\leftarrow	r1 + r2
i4:	r4	\leftarrow	load c
i5:	r5	\leftarrow	r3 - r4
i6:	r6	\leftarrow	r3 * r5
i7:	d	\leftarrow	st r6

(a) Sample Code Sequence

(b) DAG

Scheduled Code - no stalls

There are no stalls, but dependences are indeed satisfied

Definitions - Dependences

Consider the following code:

```
i_1: r1 \leftarrow load(r2)

i_2: r3 \leftarrow r1 + 4

i_3: r1 \leftarrow r4 + r5
```

- The dependences are $i_1 \delta i_2$ (flow dependence) $i_2 \overline{\delta} i_3$ (anti-dependence) $i_1 \delta^o i_3$ (output dependence)
- anti- and ouput dependences can be eliminated by register renaming

Dependence DAG

- full line: flow dependence, dash line: anti-dependence dash-dot line: output dependence
- some anti- and output dependences are because memory disambiguation could not be done

i1:	t1	\leftarrow	load a
i2:	t2	\leftarrow	load b
i3:	t3	\leftarrow	t1 + 4
i4:	t4	\leftarrow	t1 - 2
i5:	t5	\leftarrow	t2 + 3
i6:	t6	\leftarrow	t4 * t2
i7:	t7	\leftarrow	t3 + t6
i8:	С	\leftarrow	st t7
i9:	b	\leftarrow	st t5

(a) Instruction Sequence

Basic Block Scheduling

- Basic block consists of micro-operation sequences (MOS), which are indivisible
- Each MOS has several steps, each requiring resources
- Each step of an MOS requires one cycle for execution
- Precedence constraints and resource constraints must be satisfied by the scheduled program
 - PC's relate to data dependences and execution delays
 - RC's relate to limited availability of shared resources

The Basic Block Scheduling Problem

- Basic block is modelled as a digraph, G = (V, E)
 - R: number of resources
 - Nodes (V): MOS; Edges (E): Precedence
 - Label on node v
 - resource usage functions, ρ_ν(i) for each step of the MOS associated with v
 - length I(v) of node v
 - Label on edge e: Execution delay of the MOS, d(e)
- Problem: Find the shortest schedule $\sigma: V \to N$ such that $\forall e = (u, v) \in E, \ \sigma(v) \sigma(u) \ge d(e)$ and $\forall i, \sum_{v \in V} \rho_v(i \sigma(v)) \le R$, where length of the schedule is $\max_{v \in V} \{\sigma(v) + I(v)\}$

Instruction Scheduling - Precedence and Resource Constraints

Consider R = 5. Each MOS substep takes 1 time unit.

At i=4,
$$\zeta_{v4}(1)+\zeta_{v3}(2)+\zeta_{v2}(3)+\zeta_{v1}(4) = 2+2+1+0=5 \le R$$
, satisfied

At i=2,
$$\zeta_{v3}(0)+\zeta_{v2}(1)+\zeta_{v1}(2) = 3+3+2=8 > R$$
, NOT satisfied

200

A Simple List Scheduling Algorithm

Find the shortest schedule $\sigma: V \to N$, such that precedence and resource constraints are satisfied. Holes are filled with NOPs.

```
FUNCTION ListSchedule (V,E)
BEGIN
  Ready = root nodes of V; Schedule = \phi;
  WHILE Ready \neq \phi DO
  BEGIN
   v = highest priority node in Ready;
    Lb = SatisfyPrecedenceConstraints (v, Schedule, \sigma);
   \sigma(v) = SatisfyResourceConstraints(v, Schedule, \sigma, Lb);
    Schedule = Schedule + \{v\}:
    Ready = Ready - \{v\} + \{u \mid NOT (u \in Schedule)\}
              AND \forall (w, u) \in E, w \in Schedule\};
  END
  RETURN \sigma:
FND
                                             4日 → 4周 → 4 至 → 4 至 → 9 Q P
```

List Scheduling - Ready Queue Update

Already scheduled nodes

Unscheduled nodes which will get into the Ready queue now

Currently scheduled node

Unscheduled nodes

Constraint Satisfaction Functions

```
FUNCTION SatisfyPrecedenceConstraint(v, Sched, \sigma)
BEGIN
  RETURN (\max_{u \in Sched} \sigma(u) + d(u, v))
END
FUNCTION SatisfyResourceConstraint(v, Sched, \sigma, Lb)
BEGIN
  FOR i := Lb TO \infty DO
                                        u∈Sched
     \mathsf{IF} \ \forall 0 \leq j < \mathit{I}(v), \ \rho_{\mathit{V}}(j) + \quad \sum \ \rho_{\mathit{U}}(i+j-\sigma(\mathit{U})) \leq \mathit{R} \ \mathsf{THEN}
        RETURN (i);
END
```


Precedence Constraint Satisfaction

Lower bound for $\sigma(v) = 29$

Already scheduled nodes

Precedence constraint satisfaction:

v can be scheduled only after all of u_1 , u_2 , and, u_3 , finish

Node to be scheduled

Lower bound for $\sigma(v)$ = max(10+2, 25+4, 18+3)

 $= \max(10+2, 20+4, 10+3)$ = $\max(12, 29, 21) = 29$

Resource Constraint Satisfaction

Time slots 2 and 3 are vacant because scheduling node \mathbf{v}_3 in either of them violates resource constraints

