Lecture 19 - 2020.06.25 - 12:15 via Zoom

Boué-Dupuis formula

We assume that $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ is the canonical d-dimensional Wiener space, i.e. $\Omega = \mathcal{C}^d = C(\mathbb{R}_+, \mathbb{R}^d)$, $X_t(\omega) = \omega(t)$, \mathbb{P} is the law of the Brownian motion and $(\mathcal{F}_t)_{t \geq 0}$ is the right continuous \mathbb{P} -completed filtration generated by the canonical process $(X_t)_{t \geq 0}$ in particular we have $\mathcal{F}_\infty = \mathcal{F} = \overline{\mathcal{B}(\Omega)}^{\mathbb{P}}$. We will also use the notation μ for the Wiener measure \mathbb{P} .

In this and the next lecture we are going to prove the following result.

Theorem 1. (Boué–Dupuis formula) For any function $f: \Omega \to \mathbb{R}$ measurable and bounded from below we have

$$\log \mathbb{E}_{\mu}[e^f] = \sup_{u \in \mathbb{H}} \mathbb{E}_{\mu} \left[f(X + I(u(X))) - \frac{1}{2} ||u(X)||_{\mathbb{H}}^2 \right]$$

where the supremum on the r.h.s. is taken wrt. all the predictable functions $u: \mathbb{R}_+ \times \Omega \to \mathbb{R}$ such that

$$||u||_{\mathbb{H}}^2 = \int_0^\infty |u_s|^2 ds < \infty, \qquad \mu - a.s.$$
 (1)

and we write $u(\omega) = u(X(\omega))$ to stress the measurability wrt. the filtratrion $\mathcal F$ generated by X and where

$$I(u)(t) = \int_0^t u_s(X) ds, \qquad t \geqslant 0.$$

We call a function u as above, a drift (wrt. μ).

Remark 2. This formula is useful because transform the problem of computing the average $\mathbb{E}_{\mu}[e^f]$ into a control problem: one has find a control u which does not cost much (the cost is measured by the norm $\|u\|_{\mathbb{H}}$) and which allows the Brownian motion X to reach regions where f is large.

Entropy of a probability measure

We consider the measure space $(\Omega, \mathcal{B}(\Omega))$ but the following definition makes sense for any Polish space. Denote $\Pi(\Omega)$ the (Polish) space of probability measures on $(\Omega, \mathcal{B}(\Omega))$ endowed with the weak topology.

Definition 3. The relative entropy of a probability measure ν wrt. μ where $\mu, \nu \in \Pi(\Omega)$ is defined as

$$H(\nu|\mu) = \sup_{\varphi \in L^{\infty}(\Omega)} (\nu(\varphi) - \log \mu(e^{\varphi}))$$

where $v(f) = \int_{\Omega} f(\omega) v(d\omega)$ denotes the average of f wrt. the measure v.

Remark 4. The supremum is taken over the set $L^{\infty}(\Omega)$ of bounded measurable functions. The following properties are true (but we will not prove them).

- a) The supremum can also be taken wrt. all the continuous bounded functions on Ω
- b) The function $\nu \mapsto H(\nu | \mu)$ is non-negative, convex, lower semi-continuous (wrt. the weak topology) and moreover

$$H(\nu|\mu) = \int_{\Omega} \log \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\nu$$

if $\nu \ll \mu$ and $H(\nu|\mu) = +\infty$ otherwise. Note that $H(\nu|\mu) = 0$ iff $\nu = \mu$.

c) We have also the convex dual formula

$$\log \mu(e^{\varphi}) = \sup_{\nu \in \Pi(\Omega)} [\nu(\varphi) - H(\nu|\mu)]$$

This last formula will be important to prove the BD formula. And in general one has

$$\nu(\varphi) \leq \log \mu(e^{\varphi}) + H(\nu|\mu)$$

for any $\varphi \in L^{\infty}(\Omega)$ and $\nu, \mu \in \Pi(\Omega)$.

We need to prove several lemmas before being ready to prove the BD formula. In the following μ will stand always for the Wiener measure and all drifts will be taken wrt. the Wiener measure (i.e. $\|\mu\|_{\mathbb{H}} < \infty$ μ -a.s.).

Lemma 5. Let u be a drift and let v be the law of the process Y = X + I(u(X)) under μ . Then

$$H(\nu|\mu) \leqslant \frac{1}{2} \mathbb{E}_{\mu}[\|u(X)\|_{\mathbb{H}}^2].$$

Proof. Assume for the moment that $||u||_{\mathbb{H}}$ is almost surely bounded by a finite deterministic number $K < \infty$. By Novikov's criterion we can define the probability measure $\rho \in \Pi(\Omega)$ with density

$$\frac{\mathrm{d}\rho}{\mathrm{d}\mu} = \mathcal{E}\left(-\int_0^\infty u_s(X)\,\mathrm{d}X_s\right)_\infty = \exp\left(-\int_0^\infty u_s(X)\,\mathrm{d}X_s - \frac{1}{2}\int_0^\infty |u_s|^2\mathrm{d}s\right)$$

with respect to μ . By Girsanov's theorem the process Y = X + I(u(X)) is a Brownian motion under ρ , that is it has law μ . This means that for any measurable bounded function $f \in L^{\infty}(\Omega)$ we have

$$\mathbb{E}_{\nu}[f(X)] = \mathbb{E}_{\mu}[f(Y)] = \mathbb{E}_{\mu}[f(X+I(u(X)))]$$
$$\mathbb{E}_{u}[f(X)] = \mathbb{E}_{o}[f(X+I(u(X)))]$$

Now, using the definition of the relative entropy $H(\nu|\mu)$ we have (by the above equalities)

$$\begin{split} H(\nu|\mu) &= \sup_{\varphi \in L^{\infty}(\Omega)} (\nu(\varphi) - \log \mu(e^{\varphi})) = \sup_{\varphi \in L^{\infty}(\Omega)} (\mathbb{E}_{\nu}[\varphi(X)] - \log \mathbb{E}_{\mu}[e^{\varphi(X)}]) \\ &= \sup_{\varphi \in L^{\infty}(\Omega)} \left(\mathbb{E}_{\mu} \left[\underbrace{\varphi(X + I(u(X)))}_{\psi(X)} \right] - \log \mathbb{E}_{\rho} \left[\underbrace{e^{\varphi(X + I(u(X)))}}_{e^{\psi(X)}} \right] \right) \\ &\leq \sup_{\psi \in L^{\infty}(\Omega)} (\mathbb{E}_{\mu}[\psi(X)] - \log \mathbb{E}_{\rho}[e^{\psi(X)}]) = H(\mu|\rho) = \int_{\Omega} \log \frac{\mathrm{d}\mu}{\mathrm{d}\rho} \mathrm{d}\mu = -\mathbb{E}_{\mu} \left[\log \frac{\mathrm{d}\rho}{\mathrm{d}\mu} \right] \\ &= \mathbb{E}_{\mu} \left[\int_{0}^{\infty} u_{s}(X) \mathrm{d}X_{s} + \frac{1}{2} \int_{0}^{\infty} |u_{s}|^{2} \mathrm{d}s \right] = \mathbb{E}_{\mu} \left[\frac{1}{2} \int_{0}^{\infty} |u_{s}|^{2} \mathrm{d}s \right] \end{split}$$

since under μ X is a Brownian motion and $M_t = \int_0^t u_s(X) dX_s$ a square integrable martingale up to $t = +\infty$. This proves the formula for $\|u\|_{\mathbb{H}}$ bounded. In general case one has to use stopping times τ_n and approximate drifts $u_s^n = 1_{\tau_n \le s} u_s$ stopped as soon as $\int_0^{\tau_n} |u_s|^2 ds = n$ and then taking limits as $n \to \infty$. Moreover one has to consider also the possibility that $\mathbb{E}_{\mu}[\|u(X)\|_{\mathbb{H}}^2] = +\infty$. In order to pass to the limit one uses the lower semicontinuity of the entropy, i.e. if $\nu_n \to \nu$ weakly then $H(\nu|\mu) \le \liminf_n H(\nu_n|\mu)$. Details are left to reader. (They are not necessary for the exam).

Lemma 6. Let ν be a probability measure which is absolutely continuous wrt. μ with density Z such that $Z \in \mathcal{C}$ (defined last week) and $Z \geqslant \delta$ for some $\delta > 0$. Let us call $\mathcal{S}_{\mu} \subseteq \Pi(\Omega)$ the set of all such measures. Then under $\nu \in \mathcal{S}_{\mu}$ the canonical process X is a strong solution of the SDE

$$dX_t = u_t(X)dt + dW_t, \quad t \ge 0$$

where W is a v-Brownian motion and u a drift such that

$$||u_t(x) - u_t(y)|| \le L||x - y||_{C([0,t];\mathbb{R}^d)} \qquad x, y \in \Omega$$
 (2)

for some finite constant L. Moreover

$$H(\nu|\mu) = \frac{1}{2} \mathbb{E}_{\nu} \|u(X)\|_{\mathbb{H}}^2.$$

Proof. Define the adapted process $Z_t(X) := \mathbb{E}[Z|\mathcal{F}_t]$ by the martingale representation theorem we have that

$$Z_t(X) = 1 + \int_0^t F_s(X) dX_s, \quad t \ge 0$$

where since $Z \in \mathcal{C}$ we can compute explicitly both $Z_t(x)$ and $F_t(x)$ as functions of $x \in \Omega$, respectively as linear combinations of random variables of the form

$$\sum_{k=0}^{n} \sum_{\sigma \in S_n} V_t^{\sigma,k}(x) e^{-\alpha(\sigma,k)t} U^{\alpha(\sigma,k)}(H^{\sigma,k})(x_t), \qquad \sum_{k=0}^{n} \sum_{\sigma \in S_n} V_t^{\sigma,k}(x) e^{-\alpha(\sigma,k)t} \nabla U^{\alpha(\sigma,k)}(H^{\sigma,k})(x_t)$$
(3)

where the important point is that the functions $V_t^{\sigma,k}(x)$ are smooth functionals of $x \in \Omega$ (a sequence of iterated integrals in time of nice smooth functions of values of the path x at various times) and where $U^{\alpha(\sigma,k)}(H^{\sigma,k})$ are smooth functions on \mathbb{R}^d .

Moreover we also have $Z_t(X) \ge \varepsilon$ since $Z \ge \varepsilon$ and conditional expectation preserves this inequality. We will assume that is also true that $Z_t(x) \ge \varepsilon$ for all $x \in \Omega$. So it is not difficult to prove that if we let

$$u_t(x) \coloneqq \frac{F_t(x)}{Z_t(x)}, \qquad x \in \Omega$$

then it satisfies the Lipshitz bound (2) and moreover

$$Z_t(X) = 1 + \int_0^t Z_s(X) u_s(X) dX_s,$$

which implies that

$$Z = \mathscr{E}\left(\int_0^{\cdot} u_s(X) \, \mathrm{d}X_s\right)_{\infty}.$$

So by Girsanov's theorem, under the measure $d\nu = Zd\mu$ the process W = X - I(u) is a Brownian motion, namely X satisfies the SDE

$$dX_t = u_t(X)dt + dW_t, \quad t \geqslant 0.$$

Given the Lipschitz bound on u, this SDE has a pathwise unique solution which is strong by the Yamada-Watanabe theorem. We denote by $X = \Phi(W)$ the strong solution, where $\Phi: \Omega \to \Omega$ is the solution map which is adapted. Finally,

$$H(\nu|\mu) = \mathbb{E}_{\nu} \left[\log \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right] = \mathbb{E}_{\nu} \left[\int_{0}^{\infty} u_{s}(X) \, \mathrm{d}X_{s} - \frac{1}{2} \int_{0}^{\infty} |u_{s}(X)|^{2} \, \mathrm{d}s \right]$$

$$=\mathbb{E}_{\nu}\bigg[\int_0^\infty u_s(X)\mathrm{d}W_s+\frac{1}{2}\int_0^\infty |u_s(X)|^2\mathrm{d}s\bigg]=\mathbb{E}_{\nu}\bigg[\frac{1}{2}\int_0^\infty |u_s(X)|^2\mathrm{d}s\bigg].$$

The fact that the drift satisfies $\frac{1}{2} \int_0^\infty |u_s(X)|^2 ds \le K$ for some K is left as exercise (this needs to use the exponential decay in time of the contributions of the form (3).

We are almost ready. One last lemma

Lemma 7. Let $f: \Omega \to \mathbb{R}$ which is measurable and bounded from below. For every $\varepsilon > 0$ there exists $v \in \mathcal{S}_{\mu}$ such that

$$\log \mu[e^f] \leq v(f) - H(v|\mu) + \varepsilon$$

Proof. By monotone convergence it is enough to consider only bounded functions f. Let $F = e^f$ and let ν be a probability measures on Ω . Note that

$$x \log(x) \le |x-1| + |x-1|^2/2, \quad x \ge 0$$

and using this we get

$$\begin{split} \mathbf{H}(\nu|\mu) - \nu(f) &= \int_{\Omega} \bigg(\log \bigg[\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(\omega) \bigg] - f(\omega) \bigg) \nu(\mathrm{d}\omega) \\ &= \int_{\Omega} \bigg(\log \bigg[\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(\omega) \bigg] - \log F(\omega) \bigg) \nu(\mathrm{d}\omega) \\ &= \int_{\Omega} \bigg(\log \bigg[\frac{1}{F(\omega)} \frac{\mathrm{d}\nu}{\mathrm{d}\mu}(\omega) \bigg] \bigg) \nu(\mathrm{d}\omega) \\ &= \int_{\Omega} \bigg(\log \bigg[\frac{1}{F(\omega)} \frac{\mathrm{d}\nu}{\mathrm{d}\mu}(\omega) \bigg] \bigg) \bigg(\frac{1}{F(\omega)} \frac{\mathrm{d}\nu}{\mathrm{d}\mu}(\omega) \bigg) F(\omega) \mu(\mathrm{d}\omega) \\ &= \int_{\Omega} \bigg(\log \bigg[\frac{G(\omega)}{F(\omega)} \bigg] \bigg) \bigg(\frac{G(\omega)}{F(\omega)} \bigg) F(\omega) \mu(\mathrm{d}\omega) \end{split}$$

where $G = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$. Using the inequality above we get

$$\mathbf{H}(\nu|\mu) - \nu(f) \leqslant \int_{\Omega} \left[\left| \frac{G}{F} - 1 \right| + \frac{1}{2} \left| \frac{G}{F} - 1 \right|^2 \right] F(\omega) \, \mu(\mathrm{d}\omega) \leqslant \|F - G\|_{L^1(\mu)} + C_f \|F - G\|_{L^2(\mu)}^2$$

where the constant C_f depends only on the lower bound on f. Moreover $||F - G||_{L^1(\mu)} \le ||F - G||_{L^2(\mu)}$. This proves that $H(\nu|\mu) - \nu(f)$ can be made (TO BE FINISHED)

Next week: proof of BD formula, some consequences and large deviations for small noise diffusions. After that backward SDEs and representations of non-linear PDEs.

Exam: first oral exam from 27/7-1/8. second oral exam mid september 14/9-25/9.