Empirical Likelihood

Coverage accuracy and extensions

Trial lecture for the degree of Philosophiae Doctor (PhD)

Martin Jullum

University of Oslo

martinju@math.uio.no

April 1, 2016

- Motivation
- 2 EL: Theory and practice
- **3** Coverage accuracy and extensions
- Summary

Basic setup

- ullet I.i.d. data Y_1,\ldots,Y_n stems from some d-dimensional distribution G_0
- ullet Want to learn about some properties, structures or mechanisms of G_0
 - $\mu = T(G)$ of dimension p, with true unknown value $\mu_{\mathrm{true}} = T(G_0)$

Basic setup

- ullet I.i.d. data Y_1,\ldots,Y_n stems from some d-dimensional distribution G_0
- ullet Want to learn about some properties, structures or mechanisms of G_0
 - $\mu = T(G)$ of dimension p, with true unknown value $\mu_{\text{true}} = T(G_0)$

Examples

Basic setup

- ullet I.i.d. data Y_1,\ldots,Y_n stems from some d-dimensional distribution G_0
- ullet Want to learn about some properties, structures or mechanisms of G_0
 - $\mu = T(G)$ of dimension p, with true unknown value $\mu_{\text{true}} = T(G_0)$

Examples

Basic setup

- ullet I.i.d. data Y_1,\ldots,Y_n stems from some d-dimensional distribution G_0
- ullet Want to learn about some properties, structures or mechanisms of G_0
 - $\mu = T(G)$ of dimension p, with true unknown value $\mu_{\text{true}} = T(G_0)$

Examples

Typical goals

- ullet Estimate and compute confidence intervals/regions (CR) for μ
- Perform hypothesis tests (HT): $H_0: \mu = \mu_0$ vs. $H_A: \mu \neq \mu_0$

Classical parametric likelihood approach

- Restrict G_0 to some parametric family F_{θ} , indexed by $\theta \in \Theta$
 - Density/probability mass function $f(\cdot; \theta)$
- Examples
 - Assume data $Y_i \sim \mathsf{Pois}(\theta), \theta > 0$,
 - Assume data $Y_i \sim \mathsf{N}(\xi, \sigma^2), \theta = (\xi, \sigma) \in (\mathbb{R} \times \mathbb{R}^+)$
- Likelihood: $L(\theta) = \prod_{i=1}^n f(Y_i; \theta)$
 - Measures the 'chance' of sampling the observed data if $G_0 = F_{\theta}$, as a function of θ
- $\bullet \ \ {\sf Maximum \ likelihood:} \ \widehat{\theta} = \mathop{\rm argmax}_{\theta} L(\theta)$
- Estimate $\mu_{\text{true}} = T(G_0)$ by $\widehat{\mu}_{\text{pm}} = T(F_{\widehat{\theta}})$
- Trust $F_{\widehat{\theta}}$ for further inference

Coverage accuracy and extensions

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{pm} \mu_{true}) \to_L N(0, v_{pm})$
- 95% CR: $C_{\rm N,0.95} = \{ \mu \, | \, \mu \in \widehat{\mu}_{\rm pm} \pm 1.96 \sqrt{v_{\rm pm}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{\mathsf{N},0.95}$

Likelihood ratio (LR) based inference

- Likelihood ratio: $LR(\theta) = L(\theta)/L(\widehat{\theta})$
- Profile likelihood ratio: $\mathcal{R}(\mu) = \sup\{LR(\theta) \mid \mu = T(F_{\theta}), \theta \in \Theta\}$
- Asymptotic theory (Wilks's theorem): $-2\log\mathcal{R}(\mu_{\mathrm{true}}) o_L \chi_f^2$
- 95% CR

$$C_{\mathsf{LR},0.95} = \{ \mu \, | \, -2 \log \mathcal{R}(\mu) \le \chi_p^{2,0.95} \} = \{ \mu \, | \, \mathcal{R}(\mu) \ge \exp(-\frac{1}{2}\chi_p^{2,0.95}) \}$$

- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{\mathsf{LR},0.98}$
- ullet Neyman-Pearson: LR is the most powerful test

Possible problems

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{\rm pm} \mu_{\rm true}) \rightarrow_L N(0, v_{\rm pm})$
- 95% CR: $C_{\text{N.0.95}} = \{ \mu \mid \mu \in \widehat{\mu}_{\text{pm}} \pm 1.96 \sqrt{v_{\text{pm}}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Likelihood ratio (LR) based inference

- Likelihood ratio: $LR(\theta) = L(\theta)/L(\widehat{\theta})$
- Profile likelihood ratio: $\mathcal{R}(\mu) = \sup\{LR(\theta) \mid \mu = T(F_{\theta}), \theta \in \Theta\}$
- 95% CR:

$$C_{LR,0.95} = \{ \mu \mid -2 \log \mathcal{R}(\mu) \le \chi_p^{2,0.95} \} = \{ \mu \mid \mathcal{R}(\mu) \ge \exp(-\frac{1}{2}\chi_p^{2,0.95}) \}$$

- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR,0.95}$
- ullet Neyman-Pearson: LR is the most powerful test

Coverage accuracy and extensions

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{\rm pm} \mu_{\rm true}) \rightarrow_L N(0, v_{\rm pm})$
- 95% CR: $C_{N,0.95} = \{ \mu \mid \mu \in \widehat{\mu}_{pm} \pm 1.96 \sqrt{v_{pm}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Likelihood ratio (LR) based inference

- Likelihood ratio: $LR(\theta) = L(\theta)/L(\widehat{\theta})$
- Profile likelihood ratio: $\mathcal{R}(\mu) = \sup\{LR(\theta) \mid \mu = T(F_{\theta}), \theta \in \Theta\}$
- Asymptotic theory (Wilks's theorem): $-2 \log \mathcal{R}(\mu_{\text{true}}) \to_L \chi_p^2$
- 95% CR·
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR,0.95}$
- ullet Neyman-Pearson: LR is the most powerful test

Coverage accuracy and extensions

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{\rm pm} \mu_{\rm true}) \rightarrow_L N(0, v_{\rm pm})$
- 95% CR: $C_{N,0.95} = \{ \mu \mid \mu \in \widehat{\mu}_{pm} \pm 1.96 \sqrt{v_{pm}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Likelihood ratio (LR) based inference

- Likelihood ratio: $LR(\theta) = L(\theta)/L(\widehat{\theta})$
- Profile likelihood ratio: $\mathcal{R}(\mu) = \sup\{LR(\theta) \mid \mu = T(F_{\theta}), \theta \in \Theta\}$
- Asymptotic theory (Wilks's theorem): $-2 \log \mathcal{R}(\mu_{\text{true}}) \to_L \chi_p^2$
- 95% CR:

$$C_{\mathsf{LR},0.95} = \{ \mu \, | \, -2 \log \mathcal{R}(\mu) \le \chi_p^{2,0.95} \} = \{ \mu \, | \, \mathcal{R}(\mu) \ge \exp(-\frac{1}{2}\chi_p^{2,0.95}) \}$$

- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR,0.95}$

Coverage accuracy and extensions

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{\rm pm} \mu_{\rm true}) \rightarrow_L N(0, v_{\rm pm})$
- 95% CR: $C_{N,0.95} = \{ \mu \mid \mu \in \widehat{\mu}_{pm} \pm 1.96 \sqrt{v_{pm}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Likelihood ratio (LR) based inference

- Likelihood ratio: $LR(\theta) = L(\theta)/L(\widehat{\theta})$
- Profile likelihood ratio: $\mathcal{R}(\mu) = \sup\{LR(\theta) \mid \mu = T(F_{\theta}), \theta \in \Theta\}$
- Asymptotic theory (Wilks's theorem): $-2 \log \mathcal{R}(\mu_{\text{true}}) \to_L \chi_p^2$
- 95% CR:

$$C_{\mathsf{LR},0.95} = \{ \mu \, | \, -2 \log \mathcal{R}(\mu) \le \chi_p^{2,0.95} \} = \{ \mu \, | \, \mathcal{R}(\mu) \ge \exp(-\frac{1}{2}\chi_p^{2,0.95}) \}$$

- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR,0.95}$
- Neyman-Pearson: LR is the most powerful test

Coverage accuracy and extensions

Further parametric inference

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{pm} \mu_{true}) \to_L N(0, v_{pm})$
- 95% CR: $C_{\text{N},0.95} = \{ \mu \, | \, \mu \in \widehat{\mu}_{\text{pm}} \pm 1.96 \sqrt{v_{\text{pm}}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Likelihood ratio (LR) based inference

- Likelihood ratio: $LR(\theta) = L(\theta)/L(\widehat{\theta})$
- Profile likelihood ratio: $\mathcal{R}(\mu) = \sup\{LR(\theta) \mid \mu = T(F_{\theta}), \theta \in \Theta\}$
- Asymptotic theory (Wilks's theorem): $-2 \log \mathcal{R}(\mu_{\text{true}}) \rightarrow_L \chi_p^2$
- 95% CR:

$$C_{\mathsf{LR},0.95} = \{\mu \,|\, -2\log\mathcal{R}(\mu) \leq \chi_p^{2,0.95}\} = \{\mu \,|\, \mathcal{R}(\mu) \geq \exp(-\tfrac{1}{2}\chi_p^{2,0.95})\}$$

- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR,0.95}$
- ullet Neyman-Pearson: LR is the most powerful test

Possible problems

Nonparametric modelling

- Let the data speak for themselves, with few structural restrictions
- For i.i.d. data, one typically uses the empirical distribution function:

$$\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}_{\{Y_i \le y\}}$$

• Plug-in estimators $\widehat{\mu}_{np} = T(\widehat{G}_n)$

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{np} \mu_{true}) \rightarrow_L N(0, v_{np})$
- 95% CR: $C_{\rm N,0.95} = \{ \mu \mid \mu \in \widehat{\mu}_{\rm np} \pm 1.96 \sqrt{v_{\rm np}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Drawbacks of normal theory

- Always symmetric confidence regions
- ullet No proper quantification of how likely each value of μ is

Nonparametric modelling

- Let the data speak for themselves, with few structural restrictions
- For i.i.d. data, one typically uses the empirical distribution function:

$$\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}_{\{Y_i \le y\}}$$

• Plug-in estimators $\widehat{\mu}_{np} = T(\widehat{G}_n)$

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{np} \mu_{true}) \to_L N(0, v_{np})$
- 95% CR: $C_{\text{N},0.95} = \{ \mu \mid \mu \in \widehat{\mu}_{\text{np}} \pm 1.96 \sqrt{v_{\text{np}}} / \sqrt{n} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{N,0.95}$

Drawbacks of normal theory

- Always symmetric confidence regions
- No proper quantification of how likely each value of μ is

Nonparametric modelling

- Let the data speak for themselves, with few structural restrictions
- For i.i.d. data, one typically uses the empirical distribution function:

$$\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n \mathbf{1}_{\{Y_i \le y\}}$$

• Plug-in estimators $\widehat{\mu}_{np} = T(\widehat{G}_n)$

Asymptotic normality based inference

- $\sqrt{n}(\widehat{\mu}_{np} \mu_{true}) \to_L N(0, v_{np})$
- 95% CR: $C_{\text{N},0.95} = \{ \mu \mid \mu \in \widehat{\mu}_{\text{np}} \pm 1.96 \sqrt{v_{\text{np}}} / \sqrt{n} \}$
- ullet HT: Reject H_0 on level 0.05 if $\mu_0
 otin C_{ exttt{N},0.95}$

Drawbacks of normal theory

- Always symmetric confidence regions
- No proper quantification of how likely each value of μ is

Likelihood inference without parameters?

• Likelihood is a parametric concept, however...

Empirical likelihood (EL)

- Constructs nonparametric pseudo likelihoods and pseudo likelihood ratios
- A nonparametric analogue to Wilks's theorem:

$$-2\log \mathcal{R}^*(\mu_{\text{true}}) \to_L \chi_p^2$$

Developed by Art B. Owen (1988, 1990, 1991)

Likelihood inference without parameters?

• Likelihood is a parametric concept, however...

Empirical likelihood (EL)

- Constructs nonparametric pseudo likelihoods and pseudo likelihood ratios
- A nonparametric analogue to Wilks's theorem:

$$-2\log \mathcal{R}^*(\mu_{\mathrm{true}}) \to_L \chi_p^2$$

Developed by Art B. Owen (1988, 1990, 1991)

Likelihood inference without parameters?

• Likelihood is a parametric concept, however...

Empirical likelihood (EL)

- Constructs nonparametric pseudo likelihoods and pseudo likelihood ratios
- A nonparametric analogue to Wilks's theorem:

$$-2\log \mathcal{R}^*(\mu_{\mathrm{true}}) \to_L \chi_p^2$$

Developed by Art B. Owen (1988, 1990, 1991)

Illustration: Typical behaviour

Confidence regions: Normal distribution

Confidence regions: Empirical likelihood

Illustration: Typical behaviour

Confidence regions: Empirical likelihood

Empirical likelihood (EL)

- $\bullet \ \ \mathsf{Write} \ G(\{y\}) = \mathsf{Pr}_G(Y=y) = G(y) G(y-)$
- A 'nonparametric likelihood': $L^*(G) = \prod_{i=1}^n G(\{Y_i\})$
- \widehat{G}_n maximises $L^*(G)$, thus sometimes referred to as the nonparametric maximum likelihood estimator
- A 'nonparametric likelihood ratio': $LR^*(G) = L^*(G)/L^*(\widehat{G}_n)$
- A 'profile nonparametric likelihood ratio' corresponding to μ :

$$\mathcal{R}^*(\mu) = \sup\{LR^*(G) \mid T(G) = \mu, G \in \mathcal{G}\},\$$

for $\mathcal G$ some (slightly restricted) space of distributions

Empirical likelihood theorem (ELT

Under certain conditions

$$-2\log \mathcal{R}^*(\mu_{\text{true}}) \to_L \chi_p^2$$

- 95% CR: $C_{LR^*,0.95} = \{ \mu \mid -2 \log \mathcal{R}^*(\mu) \le \chi_p^{2,0.95} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR^*,0.95}$

Empirical likelihood (EL)

- Write $G(\{y\}) = \Pr_G(Y = y) = G(y) G(y-)$
- A 'nonparametric likelihood': $L^*(G) = \prod_{i=1}^n G(\{Y_i\})$
- \widehat{G}_n maximises $L^*(G)$, thus sometimes referred to as the nonparametric maximum likelihood estimator
- A 'nonparametric likelihood ratio': $LR^*(G) = L^*(G)/L^*(\widehat{G}_n)$
- A 'profile nonparametric likelihood ratio' corresponding to μ :

$$\mathcal{R}^*(\mu) = \sup\{LR^*(G) \mid T(G) = \mu, G \in \mathcal{G}\},\$$

for ${\mathcal G}$ some (slightly restricted) space of distributions

Empirical likelihood theorem (ELT

Under certain conditions

$$-2\log \mathcal{R}^*(\mu_{\text{true}}) \to_L \chi_p^2$$

- 95% CR: $C_{LR^*,0.95} = \{ \mu \mid -2 \log \mathcal{R}^*(\mu) \le \chi_p^{2,0.95} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR^*,0.95}$

Empirical likelihood (EL)

- Write $G(\{y\}) = \Pr_G(Y = y) = G(y) G(y-)$
- A 'nonparametric likelihood': $L^*(G) = \prod_{i=1}^n G(\{Y_i\})$
- \widehat{G}_n maximises $L^*(G)$, thus sometimes referred to as the nonparametric maximum likelihood estimator
- A 'nonparametric likelihood ratio': $LR^*(G) = L^*(G)/L^*(\widehat{G}_n)$
- A 'profile nonparametric likelihood ratio' corresponding to μ :

$$\mathcal{R}^*(\mu) = \sup\{LR^*(G) \mid T(G) = \mu, G \in \mathcal{G}\},\$$

for $\ensuremath{\mathcal{G}}$ some (slightly restricted) space of distributions

Empirical likelihood theorem (ELT)

Under certain conditions:

$$-2\log \mathcal{R}^*(\mu_{\rm true}) \to_L \chi_p^2$$

- 95% CR: $C_{LR^*,0.95} = \{ \mu \mid -2 \log \mathcal{R}^*(\mu) \le \chi_p^{2,0.95} \}$
- HT: Reject H_0 on level 0.05 if $\mu_0 \notin C_{LR^*,0.95}$

Details of EL

- Let $w_i = w_i(G)$ be the weight which G puts on observation Y_i , $i = 1, \ldots, n$
- If no ties: $w_i = G(\{Y_i\})$, if ties $G(\{Y_i\}) = \sum_{i:Y_i=Y_i} w_i$
- $w_i \ge 0, \sum_{i=1}^n w_i \le 1$

If no ties

•
$$L^*(G) = \prod_{i=1}^n w_i, L^*(\widehat{G}_n) = \prod_{i=1}^n n^{-1}, LR^*(G) = \prod_{i=1}^n nw_i$$
, s.t.

$$\mathcal{R}^*(\mu) = \sup\{\prod_{i=1}^n nw_i \mid T(G) = \mu, G \in \mathcal{G}\}\$$

If ties

- $\prod_{i=1}^n w_i$ is not unique
- $\prod_{i=1}^n w_i$ is maximised if jumps in G at tied observations are equally distributed $\Rightarrow L^*(G) \propto \prod_{i=1}^n w_i$
- $\bullet \Rightarrow LR^*(G)$ and $\mathcal{R}^*(\mu)$ remain unchanged

Details of EL

- Let $w_i = w_i(G)$ be the weight which G puts on observation Y_i , $i = 1, \ldots, n$
- If no ties: $w_i = G(\{Y_i\})$, if ties $G(\{Y_i\}) = \sum_{i:Y_i=Y_i} w_i$
- $w_i \ge 0, \sum_{i=1}^n w_i \le 1$

If no ties

• $L^*(G) = \prod_{i=1}^n w_i, L^*(\widehat{G}_n) = \prod_{i=1}^n n^{-1}, LR^*(G) = \prod_{i=1}^n nw_i$, s.t.

$$\mathcal{R}^*(\mu) = \sup\{\prod_{i=1}^n nw_i \mid T(G) = \mu, G \in \mathcal{G}\}\$$

If ties

- $\prod_{i=1}^n w_i$ is not unique
- $\prod_{i=1}^n w_i$ is maximised if jumps in G at tied observations are equally distributed $\Rightarrow L^*(G) \propto \prod_{i=1}^n w_i$
- ullet $\Rightarrow LR^*(G)$ and $\mathcal{R}^*(\mu)$ remain unchanged

Details of EL

- Let $w_i = w_i(G)$ be the weight which G puts on observation Y_i , $i = 1, \ldots, n$
- If no ties: $w_i = G(\{Y_i\})$, if ties $G(\{Y_i\}) = \sum_{i:Y_i=Y_i} w_i$
- $w_i \ge 0, \sum_{i=1}^n w_i \le 1$

If no ties

• $L^*(G) = \prod_{i=1}^n w_i, L^*(\widehat{G}_n) = \prod_{i=1}^n n^{-1}, LR^*(G) = \prod_{i=1}^n nw_i$, s.t.

$$\mathcal{R}^*(\mu) = \sup\{\prod_{i=1}^n nw_i \mid T(G) = \mu, G \in \mathcal{G}\}\$$

If ties

- $\prod_{i=1}^n w_i$ is not unique
- $\prod_{i=1}^n w_i$ is maximised if jumps in G at tied observations are equally distributed $\Rightarrow L^*(G) \propto \prod_{i=1}^n w_i$
- $\bullet \Rightarrow LR^*(G)$ and $\mathcal{R}^*(\mu)$ remain unchanged

Restricting the distribution space

• Consider $G_{\varepsilon}=(1-\varepsilon)\widehat{G}_n+\varepsilon\delta_y$, with

$$LR^*(G_{\varepsilon}) = L^*(G_{\varepsilon})/L^*(\widehat{G}_n) = \frac{\prod_{i=1}^n (1-\varepsilon)/n}{\prod_{i=1}^n 1/n} = (1-\varepsilon)^n$$

- $LR^*(G_{\varepsilon})$ can be arbitrarily close to 1, while G_{ε} may have an arbitrarily large/small mean
- \bullet Allowing such distributions gives CR for the mean covering all of \mathbb{R}^p
- ullet One way out is to restrict ${\cal G}$ to distributions with domain equal to the convex hull of the data
- Any mean in the convex hull can be represented solely by a linear combinations of the sampled values
- \Rightarrow no means are ruled out by requiring $\sum_i w_i = 1$
- ullet Consequently, $\mathcal{R}^*(\mu)$ takes the form

$$\mathcal{R}^*(\mu) = \sup\{\prod_{i=1}^n nw_i \mid T(G) = \mu, w_i \ge 0, \sum_{i=1}^n w_i = 1\}$$

Restricting the distribution space

• Consider $G_{\varepsilon}=(1-\varepsilon)\widehat{G}_n+\varepsilon\delta_y$, with

$$LR^*(G_{\varepsilon}) = L^*(G_{\varepsilon})/L^*(\widehat{G}_n) = \frac{\prod_{i=1}^n (1-\varepsilon)/n}{\prod_{i=1}^n 1/n} = (1-\varepsilon)^n$$

- $LR^*(G_{\varepsilon})$ can be arbitrarily close to 1, while G_{ε} may have an arbitrarily large/small mean
- Allowing such distributions gives CR for the mean covering all of \mathbb{R}^p
- ullet One way out is to restrict ${\cal G}$ to distributions with domain equal to the convex hull of the data
- Any mean in the convex hull can be represented solely by a linear combinations of the sampled values
- \Rightarrow no means are ruled out by requiring $\sum_i w_i = 1$
- ullet Consequently, $\mathcal{R}^*(\mu)$ takes the form

$$\mathcal{R}^*(\mu) = \sup\{\prod_{i=1}^n nw_i \mid T(G) = \mu, w_i \ge 0, \sum_{i=1}^n w_i = 1\}$$

Restricting the distribution space

• Consider $G_{arepsilon}=(1-arepsilon)\widehat{G}_n+arepsilon\delta_y$, with

$$LR^*(G_{\varepsilon}) = L^*(G_{\varepsilon})/L^*(\widehat{G}_n) = \frac{\prod_{i=1}^n (1-\varepsilon)/n}{\prod_{i=1}^n 1/n} = (1-\varepsilon)^n$$

- $LR^*(G_{\varepsilon})$ can be arbitrarily close to 1, while G_{ε} may have an arbitrarily large/small mean
- Allowing such distributions gives CR for the mean covering all of \mathbb{R}^p
- ullet One way out is to restrict ${\cal G}$ to distributions with domain equal to the convex hull of the data
- Any mean in the convex hull can be represented solely by a linear combinations of the sampled values
- \Rightarrow no means are ruled out by requiring $\sum_i w_i = 1$
- ullet Consequently, $\mathcal{R}^*(\mu)$ takes the form

$$\mathcal{R}^*(\mu) = \sup\{\prod_{i=1}^n nw_i \mid T(G) = \mu, w_i \ge 0, \sum_{i=1}^n w_i = 1\}$$

- Consider estimation of a univariate mean: $\mu = T(G) = \int y \ dG(y)$
- $\widehat{\mu}_{np} = T(\widehat{G}_n) = \int y \, d\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n Y_i = \overline{Y}$
- Finding $\mathcal{R}^*(\mu) \Leftrightarrow$ solving the following optimisation problem:

- All relevant $\mu \in [\min Y_i, \max Y_i]$
- $\sum_{i} \log(nw_i)$ is strictly concave, convex set of weights
- Lagrange multiplier problem, optimizing:

$$\sum_{i=1}^{n} \log(nw_i) - n\lambda \sum_{i=1}^{n} (Y_i - \mu) + \gamma \left(\sum_{i=1}^{n} w_i - 1 \right), \tag{1}$$

• One finds $\gamma = -n$ and λ the root of

$$n^{-1} \sum_{i=1}^{n} \frac{Y_i - \mu}{1 + \lambda (Y_i - \mu)} \tag{2}$$

Coverage accuracy and extensions

- Consider estimation of a univariate mean: $\mu = T(G) = \int y \ \mathrm{d}G(y)$
- $\widehat{\mu}_{np} = T(\widehat{G}_n) = \int y \ d\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n Y_i = \overline{Y}$
- Finding $\mathcal{R}^*(\mu) \Leftrightarrow$ solving the following optimisation problem:
 - Maximize $\prod_i nw_i$ (or $\sum_i \log(nw_i)$) over $w_i \geq 0$ subject to $\sum_i w_i = 1$ and $\mu = \sum_{i=1}^n w_i Y_i$
- All relevant $\mu \in [\min Y_i, \max Y_i]$
- $\sum_{i} \log(nw_i)$ is strictly concave, convex set of weights
- Lagrange multiplier problem, optimizing:

$$\sum_{i=1}^{n} \log(nw_i) - n\lambda \sum_{i=1}^{n} (Y_i - \mu) + \gamma \left(\sum_{i=1}^{n} w_i - 1 \right), \tag{1}$$

for λ and γ Lagrange multipliers

• One finds $\gamma = -n$ and λ the root of

$$n^{-1} \sum_{i=1}^{n} \frac{Y_i - \mu}{1 + \lambda (Y_i - \mu)} \tag{2}$$

- Consider estimation of a univariate mean: $\mu = T(G) = \int y \ \mathrm{d}G(y)$
- $\widehat{\mu}_{np} = T(\widehat{G}_n) = \int y \ d\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n Y_i = \overline{Y}$
- Finding $\mathcal{R}^*(\mu) \Leftrightarrow$ solving the following optimisation problem:
 - Maximize $\prod_i nw_i$ (or $\sum_i \log(nw_i)$) over $w_i \geq 0$ subject to $\sum_i w_i = 1$ and $\mu = \sum_{i=1}^n w_i Y_i$
- All relevant $\mu \in [\min Y_i, \max Y_i]$
- \bullet $\sum_{i} \log(nw_i)$ is strictly concave, convex set of weights
- Lagrange multiplier problem, optimizing:

$$\sum_{i=1}^{n} \log(nw_i) - n\lambda \sum_{i=1}^{n} (Y_i - \mu) + \gamma \left(\sum_{i=1}^{n} w_i - 1\right),$$
 (1)

for λ and γ Lagrange multipliers

• One finds $\gamma = -n$ and λ the root of

$$n^{-1} \sum_{i=1}^{n} \frac{Y_i - \mu}{1 + \lambda(Y_i - \mu)} \tag{2}$$

- Consider estimation of a univariate mean: $\mu = T(G) = \int y \ dG(y)$
- $\widehat{\mu}_{np} = T(\widehat{G}_n) = \int y \, d\widehat{G}_n(y) = n^{-1} \sum_{i=1}^n Y_i = \overline{Y}$
- Finding $\mathcal{R}^*(\mu) \Leftrightarrow$ solving the following optimisation problem:
 - Maximize $\prod_i nw_i$ (or $\sum_i \log(nw_i)$) over $w_i \geq 0$ subject to $\sum_i w_i = 1$ and $\mu = \sum_{i=1}^{n} w_i Y_i$
- All relevant $\mu \in [\min Y_i, \max Y_i]$
- $\sum_{i} \log(nw_i)$ is strictly concave, convex set of weights
- Lagrange multiplier problem, optimizing:

$$\sum_{i=1}^{n} \log(nw_i) - n\lambda \sum_{i=1}^{n} (Y_i - \mu) + \gamma \left(\sum_{i=1}^{n} w_i - 1 \right), \tag{1}$$

for λ and γ Lagrange multipliers

• One finds $\gamma = -n$ and λ the root of

$$n^{-1} \sum_{i=1}^{n} \frac{Y_i - \mu}{1 + \lambda(Y_i - \mu)} \tag{2}$$

Proving ELT for the univariate mean

- The proof for the χ^2 -limit for the EL is non-trivial
- \bullet Taylor expand (2) on the previous slide around $\lambda=0$ (corresponding to $\mu=\overline{Y})$ to find

$$\lambda \approx (Y - \mu)/\widehat{\sigma}^2$$

where $\hat{\sigma}^2$ is the sample variance

EL: Theory and practice

 Inserting that approximation in (1), and another Taylor expansion of that expression shows that

$$-2\log \mathcal{R}^*(\mu_{\rm true}) \approx n(\overline{Y} - \mu_{\rm true})^2/\widehat{\sigma}^2$$

•
$$n(\overline{Y} - \mu_{\rm true})^2/\widehat{\sigma}^2 \to_L \chi_1^2$$
, since by CLT $\sqrt{n}(\overline{Y} - \mu_{\rm true})/\widehat{\sigma} \to_L N(0, 1)$

Proving ELT for the univariate mean

- The proof for the χ^2 -limit for the EL is non-trivial
- \bullet Taylor expand (2) on the previous slide around $\lambda=0$ (corresponding to $\mu=\overline{Y})$ to find

$$\lambda \approx (\overline{Y} - \mu)/\widehat{\sigma}^2,$$

where $\widehat{\sigma}^2$ is the sample variance

EL: Theory and practice

• Inserting that approximation in (1), and another Taylor expansion of that expression shows that

$$-2\log \mathcal{R}^*(\mu_{\text{true}}) \approx n(\overline{Y} - \mu_{\text{true}})^2/\widehat{\sigma}^2$$

• $n(\overline{Y} - \mu_{\rm true})^2/\widehat{\sigma}^2 \to_L \chi_1^2$, since by CLT $\sqrt{n}(\overline{Y} - \mu_{\rm true})/\widehat{\sigma} \to_L {\rm N}(0,1)$

EL: Theory and practice

Volatility

$$\mu = \{255 \operatorname{Var}(Y_i)\}^{1/2}$$
$$Y_i = \log(Z_i/Z_{i-1})$$

Volatility

$$\mu = \{255 \operatorname{Var}(Y_i)\}^{1/2}$$
$$Y_i = \log(Z_i/Z_{i-1})$$

Estimating equations

- A flexible way to represent interest quantities and statistics
- \bullet Specifies the interest parameter μ as the solution to

$$E\{m(Y_i, \mu, \nu)\} = 0,$$

where $m(Y_i, \mu, \nu) \in \mathbb{R}^r$ is a vector valued function of

- vector valued data $Y_i \in \mathbb{R}^d, i = 1, \dots, n$,
- ullet the interest quantity $\mu \in \mathbb{R}^p$,
- ullet a possible nuisance parameter $u \in \mathbb{R}^q$
- ullet Also called Φ -type M-estimators or Z-estimators
- lacksquare A wide range of the functionals $\mu=T(G)$ takes this form
- Examples
 - Means: $E(Y_{i1} \mu_1) = 0, E(Y_{i2} \mu_2) = 0$
 - ullet Event probabilities: $\mathrm{E}(1_{\{Y_i\in A\}}-\mu)=0$ for some event μ
 - Univariate quantiles: $\mathrm{E}(\mathbf{1}_{\{Y_i < u\}} \alpha) = 0$ for a quantile $\alpha \in (0,1)$
 - Covariance: $\mathrm{E}(Y_{i1} \nu_1) = 0, \mathrm{E}(Y_{i2} \nu_2) = 0$, and
 - $E\{(Y_{i1} \nu_1)(Y_{i2} \nu_2) \mu\} = 0$

Estimating equations

- A flexible way to represent interest quantities and statistics
- ullet Specifies the interest parameter μ as the solution to

$$E\{m(Y_i, \mu, \nu)\} = 0,$$

where $m(Y_i, \mu, \nu) \in \mathbb{R}^r$ is a vector valued function of

- vector valued data $Y_i \in \mathbb{R}^d, i = 1, \dots, n$,
- ullet the interest quantity $\mu \in \mathbb{R}^p$,
- \bullet a possible nuisance parameter $\nu \in \mathbb{R}^q$
- ullet Also called Φ -type M-estimators or Z-estimators
- ullet A wide range of the functionals $\mu = T(G)$ takes this form
- Examples:
 - Means: $E(Y_{i1} \mu_1) = 0, E(Y_{i2} \mu_2) = 0$
 - Event probabilities: $\mathrm{E}(\mathbf{1}_{\{Y_i \in A\}} \mu) = 0$ for some event A
 - Univariate quantiles: $\mathrm{E}(\mathbf{1}_{\{Y_i \leq \mu\}} \alpha) = 0$ for a quantile $\alpha \in (0,1)$
 - Covariance: $E(Y_{i1} \nu_1) = 0$, $E(Y_{i2} \nu_2) = 0$, and $E\{(Y_{i1} \nu_1)(Y_{i2} \nu_2) \mu\} = 0$

ELT for estimating equations

ullet For a given data set, μ_{true} is estimated by solving

$$n^{-1}\sum_{i=1}^n m(Y_i;\mu,\nu)=0, \quad \text{for } \mu \text{ and } \nu$$

Define then

$$\mathcal{R}^*(\mu, \nu) = \sup\{\prod_{i=1}^n nw_i \mid \sum_{i=1}^n w_i m(Y_i; \mu, \nu) = 0, w_i \ge 0, \sum_{i=1}^n w_i = 1\}$$
$$\mathcal{R}^*(\mu) = \sup_{\nu} \mathcal{R}^*(\mu, \nu)$$

Empirical likelihood theorem (ELT)

Under weak conditions:

$$-2\log \mathcal{R}^*(\mu_{\text{true}}) \to_L \chi^*$$

ELT for estimating equations

Coverage accuracy and extensions

• For a given data set, $\mu_{\rm true}$ is estimated by solving

$$n^{-1}\sum_{i=1}^n m(Y_i;\mu,\nu)=0, \quad \text{for } \mu \text{ and } \nu$$

Define then

$$\mathcal{R}^*(\mu, \nu) = \sup\{\prod_{i=1}^n nw_i \mid \sum_{i=1}^n w_i m(Y_i; \mu, \nu) = 0, w_i \ge 0, \sum_{i=1}^n w_i = 1\}$$
$$\mathcal{R}^*(\mu) = \sup_{\nu} \mathcal{R}^*(\mu, \nu)$$

$$-2\log \mathcal{R}^*(\mu_{\text{true}}) \to_L \chi^*$$

ELT for estimating equations

ullet For a given data set, μ_{true} is estimated by solving

$$n^{-1} \sum_{i=1}^{n} m(Y_i; \mu, \nu) = 0$$
, for μ and ν

Define then

$$\mathcal{R}^*(\mu, \nu) = \sup\{\prod_{i=1}^n nw_i \mid \sum_{i=1}^n w_i m(Y_i; \mu, \nu) = 0, w_i \ge 0, \sum_{i=1}^n w_i = 1\}$$
$$\mathcal{R}^*(\mu) = \sup_{\nu} \mathcal{R}^*(\mu, \nu)$$

Empirical likelihood theorem (ELT)

Under weak conditions:

$$-2\log \mathcal{R}^*(\mu_{\rm true}) \to_L \chi_p^2$$

Auxiliary information

- ullet Sometimes one has additional knowledge related to μ
- Easy to incorporate in the EL optimisation through estimating equations

Basic examples

Coinciding mean and median (symmetric distribution):

$$E(Y_i - \mu) = 0$$
, and $E(\mathbf{1}_{\{Y_i \le \mu\}} - 1/2) = 0$

• Conditional mean of Y_{i1} , given that $Y_{i2} > 7$:

$$E\{(Y_{i1} - \mu)\mathbf{1}_{\{Y_{i2} > 7\}}\} = 0$$

Also possible to combine different data sources

Auxiliary information

- ullet Sometimes one has additional knowledge related to μ
- Easy to incorporate in the EL optimisation through estimating equations

Basic examples

Coinciding mean and median (symmetric distribution):

$$E(Y_i - \mu) = 0$$
, and $E(\mathbf{1}_{\{Y_i \le \mu\}} - 1/2) = 0$

• Conditional mean of Y_{i1} , given that $Y_{i2} > 7$:

$$E\{(Y_{i1} - \mu)\mathbf{1}_{\{Y_{i2} > 7\}}\} = 0$$

Also possible to combine different data sources

Auxiliary information

- ullet Sometimes one has additional knowledge related to μ
- Easy to incorporate in the EL optimisation through estimating equations

Basic examples

Coinciding mean and median (symmetric distribution):

$$E(Y_i - \mu) = 0$$
, and $E(\mathbf{1}_{\{Y_i \le \mu\}} - 1/2) = 0$

• Conditional mean of Y_{i1} , given that $Y_{i2} > 7$:

$$E\{(Y_{i1} - \mu)\mathbf{1}_{\{Y_{i2} > 7\}}\} = 0$$

Also possible to combine different data sources

Other data and situations

Coverage accuracy and extensions

Regression

- Data $(Y_i, X_i), i = 1, ..., n$
- Trust e.g. $E(Y_i|X_i=x)=\beta_0+\beta_1x$, but no normality or homoscedasticity assumption
- EL based tests and confidence regions ($\widehat{\beta}_{LS}$ optimises $L^*(G)$)
 - Random covariate: Through estimating equations

$$\mathbf{E}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) = 0$$
 and $\mathbf{E}\{(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})\boldsymbol{X}\} = 0$

- Fixed covariates: Requires a triangular ELT
- Similarly: Generalised linear models

- Kernel based regression and density estimation, censored data, time series
- Nonstandard cases: Missing data, combining parametric and

Other data and situations

Regression

- Data $(Y_i, X_i), i = 1, ..., n$
- Trust e.g. $E(Y_i|X_i=x)=\beta_0+\beta_1x$, but no normality or homoscedasticity assumption
- EL based tests and confidence regions ($\widehat{\beta}_{LS}$ optimises $L^*(G)$)
 - Random covariate: Through estimating equations

$$\mathrm{E}(\boldsymbol{Y}-\boldsymbol{X}\boldsymbol{\beta})=0\quad\text{and}\quad\mathrm{E}\{(\boldsymbol{Y}-\boldsymbol{X}\boldsymbol{\beta})\boldsymbol{X}\}=0$$

- Fixed covariates: Requires a triangular ELT
- Similarly: Generalised linear models

Other situations

- Kernel based regression and density estimation, censored data, time series data...
- Nonstandard cases: Missing data, combining parametric and nonparametrics, growing number of estimating equations, high dimension low sample size, confidence distributions and goodness-of-fit tests

Coverage accuracy of the EL

- Recall $C_{\mathsf{LR},1-\alpha} = \{\mu \mid -2\log \mathcal{R}^*(\mu) \le \chi_p^{2,1-\alpha}\}$
 - \bullet Based on the asymptotic result $-2\log\mathcal{R}^*(\mu_{\mathrm{true}})\to_L\chi_p^2$
- Coverage error $CE = \Pr(\mu_{\text{true}} \in C_{\text{LR},1-\alpha}) (1-\alpha) \to 0$
- Under weak moment conditions $CE = O(n^{-1})$
- \bullet Typically $C_{\mathrm{LR},1-\alpha}$ undercovers for finite n, i.e. CE<0
- ullet This might be corrected by replacing the threshold $\chi_p^{2,1-lpha}$

Coverage accuracy of the EL

- Recall $C_{\mathsf{LR},1-\alpha} = \{\mu \mid -2\log \mathcal{R}^*(\mu) \le \chi_p^{2,1-\alpha}\}$
 - Based on the asymptotic result $-2\log \mathcal{R}^*(\mu_{\mathrm{true}}) \to_L \chi_p^2$
- Coverage error $CE = \Pr(\mu_{\text{true}} \in C_{\text{LR},1-\alpha}) (1-\alpha) \to 0$
- Under weak moment conditions $CE = O(n^{-1})$
- \bullet Typically $C_{{\rm LR},1-\alpha}$ undercovers for finite n, i.e. CE<0
- ullet This might be corrected by replacing the threshold $\chi_p^{2,1-lpha}$

Correcting the coverage probability

F-distribution correction

- Use $\frac{p(n-1)}{n-p}F_{p,n-p}^{1-\alpha}$ as threshold
- Larger confidence regions
- Still $CE = O(n^{-1})$, but better for small samples

Bartlett correction

Use as threshold

$$\left(1-\frac{a}{n}\right)^{-1}\chi_p^{2,1-\alpha}$$
 or $\left(1+\frac{a}{n}\right)\chi_p^{2,1-\alpha}$

for some proper constant a.

- a typically unknown
- $CE = O(n^{-2})$ even if we estimate a

Bootstrap correction

- ullet Resample the data B times
- For $b=1,\ldots,B$: Compute $r^{(b)}=\mathcal{R}^*(\widehat{\mu}_{\mathrm{np}})$ using the data from resample b
- Use as threshold the $1-\alpha$ empirical quantile of $\{r^{(b)}\}_{b=1,...,B}$

Correcting the coverage probability

F-distribution correction

- Use $\frac{p(n-1)}{n-p}F_{p,n-p}^{1-\alpha}$ as threshold
- Larger confidence regions
- Still $CE = O(n^{-1})$, but better for small samples

Bartlett correction

Use as threshold

$$\left(1-\frac{a}{n}\right)^{-1}\chi_p^{2,1-\alpha}$$
 or $\left(1+\frac{a}{n}\right)\chi_p^{2,1-\alpha}$,

for some proper constant a.

- a typically unknown
- $CE = O(n^{-2})$ even if we estimate a

Bootstrap correction

- ullet Resample the data B times
- For $b=1,\ldots,B$: Compute $r^{(b)}=\mathcal{R}^*(\widehat{\mu}_{\mathrm{np}})$ using the data from resample b
- Use as threshold the $1-\alpha$ empirical quantile of $\{r^{(b)}\}_{b=1,...,B}$

Correcting the coverage probability

F-distribution correction

- Use $\frac{p(n-1)}{n-n}F_{p,n-p}^{1-\alpha}$ as threshold
- Larger confidence regions
- Still $CE = O(n^{-1})$, but better for small samples

Bartlett correction

Use as threshold

$$\left(1-\frac{a}{n}\right)^{-1}\chi_p^{2,1-\alpha}$$
 or $\left(1+\frac{a}{n}\right)\chi_p^{2,1-\alpha}$,

for some proper constant a.

- a typically unknown
- $CE = O(n^{-2})$ even if we estimate a

Bootstrap correction

- Resample the data B times
- For $b=1,\ldots,B$: Compute $r^{(b)}=\mathcal{R}^*(\widehat{\mu}_{np})$ using the data from resample
- Use as threshold the $1-\alpha$ empirical quantile of $\{r^{(b)}\}_{b=1,\ldots,B}$

- For the mean: Only values within convex hull of the data are available
- Possibly the main reason for undercoverage

Penalized EL (Bartolucci, 2007)

 Removes the convex hull constraint and replaces it with penalisation term based on the Mahalanobis distance

Adjusted EL (Chen et. al, 2008)

Adds one (or two) cleverly placed pseudo-observation to the sample

- Uses $\mathcal{R}^{\circ}(\mu) = \mathcal{R}^{*}(h_{n}(\mu))$, where h_{n} is a shrinkage function ensuring μ is mapped to the proper domain
- Generally $\mathcal{R}^*(\mu) \leq \mathcal{R}^{\circ}(\mu)$
- Simulations studies suggests it is accurate for samples as small as 10

- For the mean: Only values within convex hull of the data are available
- Possibly the main reason for undercoverage

Penalized EL (Bartolucci, 2007)

 Removes the convex hull constraint and replaces it with penalisation term based on the Mahalanobis distance

Adjusted EL (Chen et. al, 2008)

Adds one (or two) cleverly placed pseudo-observation to the sample

- Uses $\mathcal{R}^{\circ}(\mu) = \mathcal{R}^{*}(h_{n}(\mu))$, where h_{n} is a shrinkage function ensuring μ is mapped to the proper domain
- Generally $\mathcal{R}^*(\mu) \leq \mathcal{R}^{\circ}(\mu)$
- Simulations studies suggests it is accurate for samples as small as 10

- For the mean: Only values within convex hull of the data are available
- Possibly the main reason for undercoverage

Penalized EL (Bartolucci, 2007)

 Removes the convex hull constraint and replaces it with penalisation term based on the Mahalanobis distance

Adjusted EL (Chen et. al, 2008)

Adds one (or two) cleverly placed pseudo-observation to the sample

- Uses $\mathcal{R}^{\circ}(\mu) = \mathcal{R}^{*}(h_{n}(\mu))$, where h_{n} is a shrinkage function ensuring μ is mapped to the proper domain
- Generally $\mathcal{R}^*(\mu) \leq \mathcal{R}^{\circ}(\mu)$
- Simulations studies suggests it is accurate for samples as small as 10

- For the mean: Only values within convex hull of the data are available
- Possibly the main reason for undercoverage

Penalized EL (Bartolucci, 2007)

 Removes the convex hull constraint and replaces it with penalisation term based on the Mahalanobis distance

Adjusted EL (Chen et. al, 2008)

Adds one (or two) cleverly placed pseudo-observation to the sample

- Uses $\mathcal{R}^{\circ}(\mu) = \mathcal{R}^{*}(h_{n}(\mu))$, where h_{n} is a shrinkage function ensuring μ is mapped to the proper domain
- Generally $\mathcal{R}^*(\mu) \leq \mathcal{R}^{\circ}(\mu)$
- Simulations studies suggests it is accurate for samples as small as 10

Summary

- Nonparametric procedure for constructing CR and HT based on a 'likelihood approach'
- Alternative to bootstrap (and jackknife)
- Combines the reliability of nonparametrics with flexibility and effectivness of the likelihood approach
- Empirical likelihood theorem (ELT): Nonparametric analogue to Wilks's theorem
- CR and HT constructed by solving a (convex) optimisation problem
- Gives data-shaped CR
- 'Easy' to incorporate auxiliary information
- Efficiency and power comparable to parametric approaches
- The optimization problem is 'easy' for estimating equations in lower dimensions, but may be harder and computationally intensive in general
- Several adjustment routines and extensions
- R-packages:
 - emplik: EL for estimating equations (with censored data)
 - eel: Extended EL for estimating equations

Suggested further readings

- General methodology: Owen (2001), Empirical likelihood, Chapman & Hall
- Regression: Chen and Van Keilegom (2009), A review on empirical likelihood methods for regression, Test
- Extended EL: Tsao and Wu (2013), Extended empirical likelihood on the full parameter space, Annals of Statistics