Methodology In this chapter, a brief description of the Data and the definition of the Registration Problem will be Data The CityGML models are public data in some states in Germany, for example, in Nordrhein-Westfalen [?]. O Besides the representation of the building, CityGML models provide other interesting information about the building. The point cloud data is collected and provided by the A-DRZ project partners that develop and operate the actual The point cloud data is collected and provided by the A-DRZ project partners that develop and operate the actual fig:initial $front_model$ and $fig:initial_back_model$ show aCityGML model and according to the data available. Therefore, the results are evaluate [htp] 1 [scale=0.2] images/solution $fig:initial_front_model.pngFrontview$. Setup The main setup is depicted in fig:system $fig:initial_front_model.pngFrontview$. Registration Problem in 3D In general, the registration task consists of finding the transformation that aligns the in More specifically, given a source point set $P = \{p_i\}_{i=1}^N$, where $p_i \in R^4$, and a target point set $Q = \{q_j\}_{j=1}^M$, where q_i

where $d(Tp_i, q_j)$ is the Euclidian distance between Tp_i and q_j . The points p_i and q_j are points in homogeneous cool In this case, the point set P corresponds to the point cloud, while the point set Q corresponds to the CityGML moderated The difficulty of this task is to find correspondences between P and Q that minimizes equiposition. If the correspondence Problem in 2D To simplify the problem, one can transform the 3D registration problem into a 2D registration problem in 2D remains the same as in 3D, but $p_i \in R^3$, $q_j \in R^3$, and $T \in SE(2)$. As in the 3D registration Problem as a Mixed Integer Linear Program The 3D registration problem defined in section:Registration There is a matrix $X \in R^{N \times M}$ that represents the correspondences between P and Q. That means that $x_{ij} = 1$ if the Then, there should be a homogeneous transformation T that transforms the point p_i into the point q_j , for all i, j we More formally, the objective of the Mixed Integer Linear Program is to maximize:

subject to:

 ${\it eq:subject}_s um_rows and eq: subject_s um_columns constraint to one the number of correspondences that a point can have, i.e., and the constraint to one the number of correspondences that a point can have, i.e., and the constraint to one the number of correspondences that a point can have, i.e., and the constraint to one the number of correspondences that a point can have, i.e., and the constraint to one the number of correspondences that a point can have, i.e., and the constraint to one the number of correspondences that a point can have a constraint to one the number of correspondences that a point can have a constraint to one the number of correspondences that a point can have a constraint to one the number of correspondences that a point can have a constraint to one the number of correspondences that a point can have a constraint to one the number of correspondences that a point can have a constraint to one the number of correspondences that a point can have a constraint to one that a constraint$ ${\it eq:subject}_t ransformation_0, eq: subject_t ransformation_n egative_0, eq: subject_t ransformation_1, and eq: subject_t ransformation_n, and eq: subject_t ransformation_n, eq: subj$ eq:subject_lines_preservationisusedtopreservelinesbetweenpointsafter thetransformation. If $|d(p_i, p_k) - d(q_j, q_l)| \ge T$ he elements of T are constrained by lower $(\delta_1^-, \delta_2^-, t_x^-, \text{ and } t_y^-)$ and upper $(\delta_1^+, \delta_2^+, t_x^+, \text{ and } t_y^+)$ boundaries in eq:s