#### **OPERATING INSTRUCTIONS**

VICOTEC320
Measurement of
NO, NO<sub>2</sub>, CO and Visibility



Installation
Operation
Maintenance





#### **Document Information**

#### **Document ID**

Title: Operating Instructions VICOTEC320

Part No.: 8011703 Version: 2-2 Release: 2013-07

#### **Described Product:**

Product name: VICOTEC320 Variants: VICOTEC321

VICOTEC322 VICOTEC323 VICOTEC324

#### Manufacturer

SICK AG

Erwin-Sick-Str. 1 · 79183 Waldkirch · Germany

Phone: +49 7641 469-0 Fax: +49 7641 469-1149 E-mail: info.pa@sick.de

#### **Trademarks**

Windows is a Microsoft Corporation trademark.

Other product names used in this document may also be trademarks and are only used for identification purposes.

#### **Original Documents**

The English edition 8011703 of this document is an original document of SICK AG.

SICK AG assumes no liability for the correctness of an unauthorized translation.

Please contact the manufacturer or your local representative in case of doubt.

#### Legal information

Subject to change without notice.

© SICK AG. All rights reserved.

#### Glossary

**Skilled persons**: Persons who, based on their technical training and knowledge as well as knowledge of the relevant regulations, can assess the tasks given and recognize the dangers involved.

Competent persons: Persons who, based on their technical training on, and knowledge concerning the specific device, as well as knowledge of the relevant regulations, can assess the tasks given and recognize the dangers involved.

**Instructed persons:** Persons properly instructed on the tasks assigned, possible risks and necessary protective measures.

#### **Warning Symbols**



Hazard (general)



Hazard by voltage



Hazard in potentially explosive atmospheres



Hazard by ultraviolet radiation (UV light)

#### **Signal Words**

#### DANGER

Immediate hazard which will result in severe personal injury or death.

#### WARNING

Risk or hazardous situation which  $\it could$  result in severe personal injury or death.

#### **CAUTION**

Hazard which *could* result in less severe or minor injuries *and/or* property damage.

#### **Information Symbols**



Important technical information for this product



Supplementary information

#### Contents

| 1     | For your Safety7                               |
|-------|------------------------------------------------|
| 1.1   | Short summary of the most important hazards    |
| 1.2   | Basic information                              |
| 1.2.1 | Detail level of these Operating Instructions 8 |
| 1.2.2 | Scope of application and identification9       |
| 1.2.3 | Designated users                               |
| 1.2.4 | Responsibility of the operator                 |
| 1.2.5 | Intended use                                   |
| 1.2.6 | Warranty limits                                |
| 1.2.7 | Further literature                             |
| 2     | Product Description11                          |
| 2.1   | Functional principle                           |
| 2.2   | Performance features                           |
| 2.3   | Special features                               |
| 2.4   | Device variants                                |
| 2.5   | Device components/layout                       |
| 3     | Project Planning15                             |
| 3.1   | Assembly project planning                      |
| 3.1.1 | Arrangement along the tunnel section           |
| 3.1.2 | Arrangement in cross-section profile           |
| 3.1.3 | Arrangement with special prerequisites         |
| 3.2   | Electrical installation project planning       |
| 4     | Installation21                                 |
| 4.1   | Transport                                      |
| 4.2   | Scope of delivery                              |
| 4.3   | Material required                              |
| 4.4   | Assembly preparation                           |
| 4.5   | Assembly                                       |
| 4.5.1 | Fitting the assembly consoles                  |
| 4.5.2 | Fitting the VICOTEC320 sensors                 |
| 4.5.3 | Fitting the connection unit                    |
| 4.6   | Electrical installation                        |
| 4.6.1 | Connecting the sensors to the connection unit  |
| 4.6.2 | Connection unit cabling                        |
| 5     | Start-up and Operation 35                      |
| 5.1   | Start-up                                       |
| 5.2   | Operation                                      |
| 5.2.1 | Tunnel cleaning                                |

#### Contents

| 6                                                                                         | Using the SOPAS ET Software                                                                                                                                                           | 37                                     |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 6.1                                                                                       | Operating the VICOTEC320                                                                                                                                                              | 38                                     |
| 6.2                                                                                       | SOPAS ET software                                                                                                                                                                     | 38                                     |
| 6.2.1                                                                                     | SOPAS ET software functions for VICOTEC320 (Overview)                                                                                                                                 | 38                                     |
| 6.2.2                                                                                     | Installing the SOPAS ET software                                                                                                                                                      |                                        |
| 6.2.3                                                                                     | Basic setting for the SOPAS ET software                                                                                                                                               | 38                                     |
| 6.3                                                                                       | Using SOPAS ET                                                                                                                                                                        |                                        |
| 6.3.1                                                                                     | Creating a connection                                                                                                                                                                 |                                        |
| 6.3.2                                                                                     | Reading out the VICOTEC320 and operating manually                                                                                                                                     |                                        |
| 6.3.3                                                                                     | Saving, storing and printing the current parameter set                                                                                                                                | 44                                     |
| 7                                                                                         | Scheduled Maintenance                                                                                                                                                                 | 45                                     |
| 7.1                                                                                       | Cleaning                                                                                                                                                                              | 46                                     |
| 7.1.1                                                                                     | Cleaning sensors                                                                                                                                                                      | 46                                     |
| 7.2                                                                                       | Maintenance                                                                                                                                                                           | 46                                     |
| 7.2.1                                                                                     | Persons authorized to carry out maintenance                                                                                                                                           | 46                                     |
| 7.2.2                                                                                     | Replacing the activated charcoal                                                                                                                                                      |                                        |
| 7.2.3                                                                                     | Replacing the drying agent cartridge                                                                                                                                                  |                                        |
| 7.2.4                                                                                     | Replacing the lamp                                                                                                                                                                    |                                        |
| 7.2.5                                                                                     | Replacing the CO sensor                                                                                                                                                               | 49                                     |
| 8                                                                                         | Troubleshooting and Fault Clearance                                                                                                                                                   | 51                                     |
| 8.1                                                                                       | Fault messages                                                                                                                                                                        | 52                                     |
| 9                                                                                         | Technical Documentation                                                                                                                                                               | 53                                     |
| 9.1                                                                                       | Operating data                                                                                                                                                                        | 54                                     |
| 9.2                                                                                       | Dimensions                                                                                                                                                                            | 56                                     |
| 9.2.1                                                                                     | Sender/receiver unit                                                                                                                                                                  | 56                                     |
| 9.2.2                                                                                     | Sender/receiver drift                                                                                                                                                                 |                                        |
|                                                                                           | Reflector                                                                                                                                                                             | 57                                     |
| 9.2.3                                                                                     | •                                                                                                                                                                                     | 57                                     |
| 9.2.3<br>9.3                                                                              | Reflector                                                                                                                                                                             | 57<br>58<br>59                         |
| 9.2.3<br>9.3<br>9.3.1                                                                     | Reflector                                                                                                                                                                             | 57<br>58<br>59                         |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2                                                            | Reflector                                                                                                                                                                             | 575959                                 |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2<br>9.3.3                                                   | Reflector Connection unit  Part Nos.  Device components  Type key  Accessories                                                                                                        | 57<br>58<br>59<br>60<br>61             |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2                                                            | Reflector                                                                                                                                                                             | 57<br>58<br>59<br>60<br>61             |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2<br>9.3.3                                                   | Reflector Connection unit  Part Nos.  Device components  Type key Accessories Expendable and wearing parts  Mapping Table                                                             | 57<br>58<br>59<br>60<br>61<br>61       |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br><b>10</b><br>10.1                     | Reflector Connection unit  Part Nos.  Device components  Type key Accessories Expendable and wearing parts  Mapping Table  Mapping Table                                              | 57<br>58<br>59<br>60<br>61<br>61       |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br><b>10</b><br>10.1<br>10.1.1           | Reflector Connection unit  Part Nos.  Device components Type key Accessories Expendable and wearing parts  Mapping Table Mapping Table Measured values on SCU                         | 57<br>58<br>59<br>60<br>61<br>63<br>64 |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br><b>10</b><br>10.1<br>10.1.1<br>10.1.2 | Reflector Connection unit  Part Nos.  Device components Type key Accessories Expendable and wearing parts  Mapping Table  Mapping Table  Measured values on SCU Operating State Table | 57<br>59<br>60<br>61<br>63<br>64<br>64 |
| 9.2.3<br>9.3<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4<br><b>10</b><br>10.1<br>10.1.1           | Reflector Connection unit  Part Nos.  Device components Type key Accessories Expendable and wearing parts  Mapping Table Mapping Table Measured values on SCU                         | 575859606163646464                     |

### VICOTEC320

# **1** For your Safety

Safety information Responsibility of the operator Intended use

#### 1.1 Short summary of the most important hazards

Read and always observe the safety and warning information in these Operating Instructions.



#### WARNING: Danger through defective device

The VICOTEC320 is likely to be unsafe when it:

- Shows visible damage on the outside.
- Has been penetrated by moisture.
- Has been stored or operated under irregular conditions.

When safe operation is no longer possible:

► Put the VICOTEC320 out of operation, separate all connectors from the power supply and secure against unauthorized start-up.



#### WARNING: Risk of explosions through explosive sample gas

▶ Do not use the VICOTEC320 to measure explosive, combustible or flammable gases.



#### WARNING: Hazard in potentially explosive atmospheres

▶ Do not use the VICOTEC320 in potentially explosive atmospheres.



**CAUTION:** Eye damage through very bright light

UV radiation (VICOTEC322, -323, -324) and halogen light (VICOTEC321) can cause eye inflammation when eyes are subjected to the radiation for longer than 10 minutes.

Wear protective goggles (normal glass or plastic is sufficient).

#### 1.2 **Basic information**

#### 1.2.1 Detail level of these Operating Instructions

These Operating Instructions contain a fundamental description of the VICOTEC320 series measuring system and serve as guide for installation, operation and scheduled maintenance. They also contain information on safe operation of VICOTEC320 series devices.

► Read and observe the corresponding Sections in these Operating Instructions.

#### 1.2.2 Scope of application and identification

These Operating Instructions are applicable for VICOTEC320 series devices

The following variants are available to measure different components:

- VICOTEC 321 to measure visibility and NO<sub>2</sub>
- VICOTEC 322 to measure visibility and NO
- VICOTEC 323 to measure visibility, NO and NO<sub>2</sub>
- VICOTEC 324 to measure NO and NO<sub>2</sub>

The Identification number of the VICOTEC320 (type plate) is located as follows:

#### Table 1 Type plate locations

| Device               | Type plate location                               |
|----------------------|---------------------------------------------------|
| Sender/receiver unit | Outside: Next to the connections                  |
|                      | Inside: At the bottom of the left enclosure side  |
| Reflector            | Outside: Next to the connections                  |
|                      | Inside: At the middle of the right enclosure side |
| Connection unit      | Outside: At the top of the right enclosure side   |
|                      | Inside: Next to the connections                   |

#### 1.2.3 **Designated users**

The VICOTEC320 may only be installed and put into operation by skilled persons who, based on their technical training and knowledge as well as knowledge of the relevant regulations, can assess the tasks given and recognize the dangers involved.

The VICOTEC320 may only be maintained by persons properly instructed on the tasks assigned, possible risks and protective measures.

#### 1.2.4 Responsibility of the operator

- Only operate the VICOTEC320 according to the intended use (→ § 1.2.5).
- Follow all specifications in these Operating Instructions and only operate the VICOTEC320 as described in these Operating Instructions.
   Contact your local SICK representative before performing any work described where the

information in these Operating Instructions is inadequate or capable of being misunderstood.

- Keep these Operating Instructions for future use.
- Pass these Operating Instructions on to a new owner.
- Pay attention to the prescribed maintenance work.
- Do not change any settings on or in the device and do not modify any components when such changes are not described in these Operating Instructions or in documents referred to in these Operating Instructions.
- In addition to the Operating Instructions, follow local laws, regulations and operating directives applicable at the respective installation location.

#### 1.2.5 Intended use

Devices of the VICOTEC320 series only serve continuous measurement of concentrations of certain gases, visibility (not on all types) and the temperature in the atmosphere in road tunnels.

#### 1.2.6 Warranty limits

The following parts have limited service lives shorter than five years:

- Lamp (one to four years depending on parameter settings, ambient conditions and contamination in the tunnel)
- Drying agent cartridge in the reflector (one to two years)

#### 1.2.7 Further literature

#### **Other Instructions**

- SOPAS ET Software Manual
- VICOTEC320 Service Manual

# VICOTEC320

# **2** Product Description

Functional principle

Design

#### 2.1 Functional principle

The VICOTEC320 is a sensor system for continuous measurement of NO,  $NO_2$  and CO (option) concentrations as well as visibility and temperature in road tunnels.

The following functional principles are used:

- NO, NO<sub>2</sub>: DOAS (Differential Optical Absorption Spectroscopy)
- CO: Electrochemical cell
- Visibility: Transmission measurement



For the functional principles, please see the relevant literature, e.g. the internet

#### 2.2 **Performance features**

- Fast, representative local measurement
- Very low detection limits for NO and NO<sub>2</sub>
- Automatic function monitoring and self-adjustment
- Independent maintenance prompt when contaminated
- Very sturdy design: IP 69K, stainless steel 1.4571
- Compatible to assembly consoles and measuring path lengths of the VICOTEC 410/400 from SICK

#### 2.3 **Special features**

- Operating hour meter for UV lamp and Logbook function
- High-precision adjustment through automatic mirror tracking
- Temperature recording
- Reflector, heated
- Communication via CAN System bus or Ethernet (optional)

#### 2.4 **Device variants**

The device variants differ in

- measurable components,
- measuring path,
- connection unit interfaces.

The following variants are available to measure different components:

- VICOTEC 321 (halogen lamp) to measure visibility and NO<sub>2</sub>
- VICOTEC 322 (UV lamp) to measure visibility and NO
- VICOTEC 323 (UV lamp) to measure visibility, NO and NO<sub>2</sub>
- VICOTEC 324 (UV lamp) to measure NO and NO<sub>2</sub>

The sender/receiver unit and the reflector are available for the following measuring distances:

- 10 m
- 20 m

The connection unit is available with the following interfaces:

- Analog/digital
- Ethernet
- The connection unit can contain an optional CO sensor (electrochemical cell)



| 1 | Reflector                                    |
|---|----------------------------------------------|
| 2 | LED matrix to signal automatic beam tracking |
| 3 | Sender/receiver unit                         |
| 4 | Dust protection tube                         |
| 5 | Connection unit                              |
| 6 | Plug connections                             |

## VICOTEC320

# 3 Project Planning

# Subject to change without notice

#### 3.1 Assembly project planning

#### 3.1.1 Arrangement along the tunnel section

The number and distribution of measuring points depends on the ventilation system used. Single factors are:

- Type of tunnel profile
- Section route
- Ventilation system design
- Number and arrangement of fans
- Regional regulations

Measuring point selection depends primarily on the following criteria:

- A combination of VICOTEC320 with VICOTEC 411 (visibility) or VICOTEC 414 (CO and visibility) is recommended for optimum measurement results. In this case, position the VICOTEC 411/414 units closer to each other and the VICOTEC320 units further apart.
- The recommended distance between visibility measurements depends on whether these are also to be used for smoke detection:
  - Without smoke detection: ≤ 400 m
  - With smoke detection: ≤ 150 m
- An even spread along the tunnel length is recommended for semi and transverse ventilation, with at least 2 measuring points per ventilation section.
- NO/NO<sub>2</sub> can be measured every 400 1000 m. Position the measuring points preferably at the tunnel exit in tunnels with one-way traffic.
- Two-way traffic can still arise in tunnels with one-way traffic. It is therefore recommended to install at least 3 measuring points for visibility in tunnels with lengthwise ventilation: one each about 150 m from the entrance and at least one in the middle of the tunnel.
- It is recommended to install additional fog sensors (e.g. VISIC620) near the tunnel portals when there is a risk that fog can be sucked into the tunnel. Dust particles acting as additional condensation crystals can strengthen the fog effect in the tunnel sections. Fog moisture overlays visibility due to dust particles. Fog sensors serve to prevent fog drifts being sucked into the tunnel. Alternately, visibility can be measured at the tunnel portals using extractive measuring devices (e.g. VICOTEC450) that heat the air sucked in and therefore evaporate fog moisture.
- When the tunnel roadway curves, ensure that the measuring beam between single sensors is not interrupted by the tunnel wall, fixtures or vehicles passing each other (see
   → p. 18, §3.1.3).

#### 3.1.2 Arrangement in cross-section profile

Particle concentration distribution in a tunnel is generally very even across the profile cross-section during traffic movement. Traffic flows and lengthwise flows through natural ventilation and the piston effect of vehicle movement in separate tunnel sections for each direction effect rapid swirling of the air in the tunnel. The turbulence behind vehicles strengthens this effect.

The height is not critical due to excellent swirling. A fitting height between 2.8 and 4.5 meters is aimed at. The sensors contaminate faster when fitted lower and the maintenance effort increases when the sensors are fitted higher.

Fig. 2 VICOTEC320 fitting height



Fitting location selection of the respective sensor pairs depends primarily on the following criteria:

- Mount the sensors at a safe distance from traffic movement (see for example Section 2 of the German "Richtlinie für die Ausstattung und den Betrieb von Straßentunneln RABT", version 2006 (Regulations governing equipping and operating road tunnels)).
- Good access for maintenance and checking work must be ensured. Locate the sensors in a protected recess when possible.
- Do not locate sensors in close vicinity to ventilators or in the fresh air flow from blowout units so that the measured value records the effective concentration ratios.
- The measuring beam must run lengthwise between sensors and must not be hindered by fixtures or vehicles passing each other. Fixtures that shine (e.g. emergency exit signs) should be at least 1 m from the optical axis.
- No reflecting paint should be on the wall between sensors.
- Maintain a distance of 10 to 20 m between both sensors depending on the VICOTEC320 variant used.
- Plan sufficient clearance to be able to flap or remove the enclosure cover.



Measured values are kept constant at first when the light beams are interrupted. A malfunction message is sent to the evaluation unit when interruptions last longer than two minutes.

#### Fitting options:

- Both sensors on a wall in a recess (recommended).
- Both sensors on a wall above the side strip; requires safety measures for maintenance work in cramped conditions.

#### 3.1.3 Arrangement with special prerequisites

#### **Tunnel curvature**

The sensors can be used with tunnel curvatures up to the following curve radiuses:

| Measuring section (A)          | 10 m       | 20 m       |
|--------------------------------|------------|------------|
| Inner radius (R <sub>1</sub> ) | Min. 58 m  | Min. 115 m |
| Outer radius (R <sub>2</sub> ) | Min. 147 m | Min. 438 m |

#### Fig. 3 Fitting sensors on the inner curve wall



Fig. 4 Fitting sensors on the outer curve wall



#### Tunnel with sound insulation wall

Provide appropriate assembly bases onsite when fitting sensors on a tunnel wall with sound insulation.

The assembly bases must provide a firm base suitable for reliable sensor fitting.

Fitting sensors with sound insulation Fig. 5



1

Sound insulation

Observe the relevant safety regulations during all installation work. Take suitable protective measures against all possible local risks or those arising in connection with the system. See also  $\rightarrow$  "For your Safety" (page 7)

- Sender/receiver unit (2) must always be fitted on the left (see → Fig. 6), so that visor (4) is accessible.
- Position connection unit (1) so that it can be connected to the sender/receiver unit with a 1 m long cable.
- It must be possible to separate every device singly from the power supply system, e.g. using a switch or circuit breaker.

Fig. 6 Sensor arrangement



| 1 | Connection unit                    |
|---|------------------------------------|
| 2 | Sender/receiver unit               |
| 3 | Reflector                          |
| 4 | Visor                              |
| Α | Measuring section (10 or 20 m)     |
| В | Max. 0.7 m (Cable length max. 1 m) |

## VICOTEC320

## 4 Installation

Transport Assembly Installation



Only use the packing provided by SICK to transport sensors. Warranty claims are void when this is not observed.

The packing can be obtained from SICK free of charge when required.

#### 4.2 Scope of delivery

The scope of delivery includes:

- Sender/receiver unit (incl. screws for fastening on assembly console)
- Reflector (incl. screws for fastening on assembly console)
- Connection unit (incl. dowels and screws for wall fitting)
- Connection lines from the connection unit to the sender/receiver unit and to the reflector

Not included in the scope of delivery:

• Stainless steel assembly consoles for the sensors

#### 4.3 Material required

#### **Tools required**

Apart from standard tools (such as drill, water level, tape measure), you also need the following tools for the installation:

- Drill tips 8 and 15 mm
- Blowout pump for dowel holes
- 18 and 19 mm socket wrench
- Rubber or plastic hammer
- Two laser adjustment units (obtainable from SICK; see → p. 61, §9.3.3)

#### Additional material required

- 2 stainless steel assembly consoles incl. fixing accessories
- Connection lines acc. to → Table 2 (page 26)

#### 4.4 **Assembly preparation**

- ► Secure the place of work
- Provide adequate lighting and power
- ► Provide a jack lift or stable ladder with clearance to wall

#### 4.5 **Assembly**

Assembly work must only be carried out by skilled persons familiar with the assembly work.

#### 4.5.1 Fitting the assembly consoles

The assembly consoles comprise 2 parts:

Fig. 7 Assembly console



<sup>2</sup> Angle bracket to fasten the sensor

Two screws fasten the wall holder and the assembly console together. The angle bracket can be swiveled up to  $\pm 7.5^{\circ}$  to compensate any assembly unevenness.



Observe the following points during assembly:

- Keep the length of the measuring section as exact as possible. Record small deviations in the Assembly protocol.
- Mount both assembly consoles at the same height. Height differences in the optical axis can be compensated later by swiveling the angle bracket.
- Only use high-strength and absolutely non-corrosive fastening material made of stainless steel because the tunnel atmosphere is highly corrosive.
- ► Align both assembly consoles at the same tilt angle to the tunnel wall. Different tilt positions to the tunnel perpendicular make the following sensor alignment difficult. Insert washers under the wall holder when necessary.
- Ensure there is enough space to remove the tube and device cover.
- ► Observe local valid safety measures.

#### **Procedure**

- 1 Determine the installation location for the assembly consoles according to the project planning.
- 2 Drill the wall holder openings according to the Drilling plan, see figure 8.
- 3 Insert dowels or wall ties according to the manufacturer's assembly specifications (walls must be made of at least B25 concrete).
- 4 Screw the wall holder on and tighten the screws with 70 Nm according to the manufacturer's assembly specifications, use a torque wrench as necessary.
- 5 Screw the consoles on provisionally at first.

#### Wall holder assembly drilling plan



| Tolerances for | measuring path A |
|----------------|------------------|
| 10 ±0.1 m      |                  |
| 20 ±0.2 m      |                  |

#### 4.5.2 Fitting the VICOTEC320 sensors

- 1 Position the sender/receiver unit on the **left** assembly console and screw it on lightly with both the retaining screws included in the delivery.
- 2 Position the reflector on the **right** assembly console and screw it on lightly with both the retaining screws included in the delivery.
- 3 Screw a laser adjustment unit on each sensor above the tube using both knurled-head screws.



#### WARNING: Laser class 2

- ► Do not point the laser beam at persons.
- ► Do not look directly into the laser beam.
- 4 Switch the laser adjustment unit on one sensor on.
- 5 Align the sensor horizontally so that the laser beam strikes the vertical line of the cross-hair of the other laser adjustment unit. To do this, tap very lightly against the front lower edge of the sensor enclosure with a rubber hammer (see → Fig. 9).

#### Fig. 9

#### Horizontal sensor alignment



- 6 Tighten both screws of the sensor with 45 Nm, use a torque wrench as necessary.
- 7 Loosen the two screws of the angle bracket slightly





- 9 Tighten both screws of the angle bracket, use a torque wrench as necessary.
- 10 Check again whether the laser beam strikes the crosshair and correct as necessary.
- 11 Switch the laser adjustment unit off.
- 12 Repeat steps 5 to 11 on the opposite sensor and laser adjustment unit.

#### 4.5.3 Fitting the connection unit

Position the connection unit so that it can be connected to the sender/receiver unit with the 1 m long cables.

- 1 Determine the installation location for the connection unit according to the project planning.
- 2 Drill the openings according to the Drilling plan, see figure 11.
- 3 Insert dowels or wall ties according to the manufacturer's assembly specifications (walls must be made of at least B25 concrete).
- 4 Screw the connection unit on.

Fig. 11 Connection unit assembly drilling plan





#### **WARNING:** Danger though electrical voltage.

- Only allow an authorized electrician to work on the electric system.
- ► Observe the relevant safety regulations during all installation work.
- ► Take suitable protective measures against local risks and those arising from the system.

#### 4.6.1 Connecting the sensors to the connection unit

- 1 Plug the connection lines mounted fixed on the connection unit in the corresponding sockets of the sender/receiver unit.
- 2 Connect the connection line to the reflector unit (12 m/22 m) included in the delivery to the connection unit and plug in to the reflector.
- 3 Fasten the connection lines to the tunnel wall.
- 4 Fit the power separation options provided for each device in the project planning.

#### 4.6.2 Connection unit cabling

#### **Connection lines**

The following connection lines can be used:

#### Table 2 Connection lines

| For                                        | Line/type                                                         | Max. length                                | Cross-section                |
|--------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|------------------------------|
| VICOTEC322, -323, -324:                    |                                                                   |                                            |                              |
| Energy supply:<br>115/230 V AC; 50/60 Hz   |                                                                   | Dependent on                               | 3 x 1.5 mm <sup>2</sup>      |
| VICOTEC321:                                |                                                                   | cable resistance                           | 3 X 1.3 111112               |
| Energy supply:<br>100 - 240 V AC; 50/60 Hz |                                                                   |                                            |                              |
| Digital input                              | A2Y(L)2Y                                                          | Dependent on cable resistance              | 2 x 2 x 0.75 mm <sup>2</sup> |
| Relay outputs                              | A2Y(L)2Y                                                          | Dependent on cable resistance              | 4 x 2 x 0.75 mm <sup>2</sup> |
| Ethernet                                   | - Category 5 cop-<br>per line accord-<br>ing to ANSI/<br>TIA -568 | - 100 m                                    |                              |
|                                            | - Fiber optic cable                                               | Up to about 5     km according     to type |                              |
| CAN bus                                    | Li12YC11(TP) [1]                                                  |                                            |                              |
| Analog outputs:<br>0 20 mA                 | Screened and twisted in pairs                                     | Dependent on cable resistance              | 4 x 2 x 0.75 mm <sup>2</sup> |

[1]Unitronic LiHCH(TP) or equivalent cables can also be used



Warranty claims are void when you use cables not released by SICK for use with the VICOTEC320 ( $\rightarrow$  Table 2).

#### **Cabling of voltage supply**

► For VICOTEC322, -323, -324:

Set the mains voltage for the connection unit to  $115\,\mathrm{V}$  or  $230\,\mathrm{V}$  before connecting the unit to the power supply system.

Use slide switch (1) in the connection unit to the correct voltage.

Fig. 12 Slide switch and voltage supply (shown on VICOTEC322, -323, -324)



- Slide switch for voltage selection (only for VICOTEC322, -323, -324)
  Terminals for voltage supply (position also for VICOTEC321)
- ► Connect voltage supply according to terminal designation (L1/N/PE).

Fig. 13 Connection options for peripherals



| 1 | Sender/receiver unit connection (2x) |
|---|--------------------------------------|
| 2 | Reflector connection                 |
| 3 | Ethernet (when used)                 |
| 4 | Analog signals (when used)           |
| 5 | Voltage supply                       |



The CAN bus terminator must be set to "ON" (LED must be on; see  $\rightarrow$  page 32, Fig. 17)

The inputs and outputs of the connection unit are assigned as follows:

#### Table 3 Inputs/outputs assignment

| Input or output | Assignment                                                                                                     |
|-----------------|----------------------------------------------------------------------------------------------------------------|
| Analog          |                                                                                                                |
| Output 1        | Visibility                                                                                                     |
| Output 2        | Temperature                                                                                                    |
| Output 3        | NO                                                                                                             |
| Output 4        | NO <sub>2</sub>                                                                                                |
| Output 5        | CO                                                                                                             |
| Digital         |                                                                                                                |
|                 | Operation/fault for NO, NO <sub>2</sub> , visibility                                                           |
| Relay 1         | Operation: Relay is closed                                                                                     |
|                 | Fault: Relay is open                                                                                           |
|                 | Maintenance request signal                                                                                     |
| Relay 2         | <ul> <li>No maintenance request: Relay is open</li> </ul>                                                      |
| Titolay 2       | <ul> <li>Maintenance request (e.g.: contamination): Relay is closed</li> </ul>                                 |
|                 | Measuring operation signal                                                                                     |
| Relay 3         | <ul> <li>Measuring operation: Relay is open</li> </ul>                                                         |
| inelay 3        | <ul> <li>Not in measuring operation (e.g. during maintenance,<br/>adjustment etc.): Relay is closed</li> </ul> |
|                 | Operation/fault for CO (option)                                                                                |
| Relay 4         | Operation: Relay is open                                                                                       |
|                 | Fault: Relay is closed                                                                                         |
| Input 1         | Maintenance mode (measured values frozen)                                                                      |

I Analog Out Visibility + I-11 State State State State Visibility I - 12 Analog Output Analog Output Digital Output Digital Temperature -I-21 Input Temperature -I - 23 0...20mA 0...20mA Signal II Analog Out  $\begin{array}{c} \text{Load} \\ 500\Omega \end{array}$ Load Relais NO+ II - 11 500Ω NO -II - 12 N02 + II - 21 N02 -II - 23 III Digital Out III - 11 Operation/Fault D01 D02 D03 D04 DI1 DI2 DI3 DI4 AO1 AO2 AO1 AO2 III - 12 III - 22 Maintenance call III - 21 III - 14 Not in measuring III - **1**3 mode 00 00 00 00 III - 23  $\odot$ 00 00  $\bigcirc$ Not assigned \ III - 24 IV Digital In 00 00 00 00 IV - 11 Maintenance  $\Theta$  $\Theta$  $\Theta$ IV - 12 IV - 21 Not used IV - 22 00 00 00 IV - 13 Not used IV - 14 IV - 21 Ø Ø 0 0 14 24 00 00 Not used IV - 22 00  $\odot$ 

internal

··· external

Fig. 14 I/O modules and circuit diagram of analog modules without CO inlets/outlets

Ш

(IV

Table 4 Significance of LEDs

Ш

١٧

Ш

| Module      | LED   | Significance                               |
|-------------|-------|--------------------------------------------|
| Digital out | Green | Active                                     |
| Digital in  | Green | Contact closed                             |
| Analog out  | Green | Actual current value = rated current value |
| Analog in   | Green | 0 mA ≤ I <sub>on</sub> < 22 mA             |
|             | Off   | $I_{on} \ge 22 \text{ mA}$                 |

VI

#### Cabling of reflector heating

► For VICOTEC322, -323, -324:

Connect the blue and brown lead of the line between reflector heating and connection unit to the "reflector heating" terminals ( $\rightarrow$  page 32, Fig. 17).

► For VICOTEC321:

Connect the blue and brown lead of the line between reflector heating and connection unit to terminals 1 and 2 (A) of the terminal strip.

Fig. 16 Reflector heating connection on VICOTEC321



A Terminals 1 and 2
B Fuse 2 A, slow
Reflector heating

#### **Checking cabling**

Correct cabling can be checked as follows:

- The gateway LEDs are green (State, CAN, I/O).
- The error LED on the gateway is off.
- The 120 V LED (only on VICOTEC322, -323, -324) and the 24 V LED are green.
- The status LEDs of the I/O module blink green.
- The reflector heating LED is green (only on VICOTEC322, -323, -324).
- The alignment LEDs on the sender/receiver unit flash sequentially.





Fig. 18 VICOTEC321: Positions of the LEDs in the connection unit for analog/digital variant



| 1 | Gateway state     | Green LED blinks in operation                                 |
|---|-------------------|---------------------------------------------------------------|
|   |                   | Red LED on: CAN bus is connected but not initialized          |
| 2 | I/O module state  | LED1 blinks in I <sup>2</sup> C bus cycle pulse               |
|   |                   | LED2 blinks in data transfer cycle pulse                      |
| 3 | Gateway CAN       | LEDs blink: Data transfer via CAN bus                         |
|   |                   | LEDs on: No CAN bus connected                                 |
| 4 | Gateway I/O       | LED1 blinks in I <sup>2</sup> C bus cycle pulse               |
|   |                   | LED2 blinks in data transfer cycle pulse                      |
| 5 | Gateway error     | LED on: No I/O module found on gateway or one or more modules |
|   |                   | failed during operation                                       |
| 6 | 120 V             |                                                               |
| 7 | 24 V              |                                                               |
| 8 | Reflector heating |                                                               |
|   | 24 V              |                                                               |
| 9 | CAN bus           | LED is green: CAN bus terminator is activated.                |
|   | connection        | S green. Only bus terminator is activated.                    |

Fig. 19 Ethernet connection (shown for VICOTEC322, -323, -324. Corresponding for VICOTEC321)



- ► Lead the Ethernet cable through the nearest cable gland (→ page 27, Fig. 13) and plug into switch (1).
- ► Cabling of reflector heating: → page 31

# VICOTEC320

# **5** Start-up and Operation

The start-up must only be performed by authorized technicians and is described in the Service Manual.



Wait two hours after start-up until the system has heated up. It has then reached a thermal balance and delivers measured values within the tolerance band.

#### 5.2 **Operation**

#### 5.2.1 Tunnel cleaning



Cover every sensor tube with a protective cap during tunnel cleaning.

# VICOTEC320

# **6** Using the SOPAS ET Software

# 6.1 Operating the VICOTEC320

The VICOTEC320 runs automatically after start-up and does not require further operator intervention. You can however use the SOPAS ET software to change the configuration or display measured values.

# 6.2 **SOPAS ET software**

The SOPAS ET software serves to set the VICOTEC320 parameters. The parameter records can be stored as a Project file as well as archived on the PC. Measured values can also be read out.

# 6.2.1 SOPAS ET software functions for VICOTEC320 (Overview)

The Online Help of the SOPAS ET software (Help menu) describes the general function of the software and how to use it.

- Menu language selection (German, English)
- Setting up communication with the VICOTEC320
- Password protected configuration for different operator levels
- Output current measured values
- System diagnostics

# 6.2.2 Installing the SOPAS ET software

Refer also to the booklet in the CD-ROM sleeve for installation information.

- 1 Start the PC and insert the Installation CD.
- 2 Call setup.exe directly from the CD when installation does not start automatically.
- **3** Follow the operating instructions to complete installation.

## 6.2.3 Basic setting for the SOPAS ET software

## Table 5 Basic setting for the SOPAS ET software (extract)

| Parameter                                 | Value                                         |
|-------------------------------------------|-----------------------------------------------|
| Operating interface language              | English <sup>[1]</sup>                        |
| Unit of measure for lengths               | Metric                                        |
| User groups (operating level)             | Operator                                      |
| Download parameters when modified         | Immediate, fail-safe in the VICOTEC320 EEPROM |
| Upload parameters after switching on-line | Automatic                                     |
| Screen split                              | 3 (project tree, help, workarea)              |

<sup>[1]</sup>The software must be restarted after changes

# 6.3 Using SOPAS ET

# 6.3.1 Creating a connection

## **Connect data interfaces**

► Connect PC (Ethernet interface) and VICOTEC320 via crossover Ethernet line.

# Start the SOPAS ET software and call the Scan Wizard

- 1 Ensure the supply voltage of the VICOTEC320 is switched on.
- 2 Switch the PC on and start the SOPAS ET software.
  SOPAS ET opens the Program window with the English user interface as standard.
- 3 To change the language setting, click on CANCEL and use the TOOLS/OPTIONS menu to switch the program interface language to GERMAN/DEUTSCH.
- 4 Terminate and restart SOPAS ET after changing the language setting.
- 5 Select the Create a new project option in the dialog window and confirm with OK.
- 6 Click on Configuration in the main window under Scan Wizard. The Scan Wizard dialog window appears.

## **Configure the Ethernet connection**

- 1 Select the Enable IP communication checkbox under Internet Protocol/Internet Protocol (IP) in the Scan Wizard dialog window.
- 2 Select the ENABLE AUTOIP checkbox.
- 3 Click on EXTENDED....
- 4 Select CoLa DIALECT "Binary" and TCP PORT "2112" and confirm with OK.
- 5 Click on Auto IP Configuration....
- ${\bf 6}$   $\,$  Click on Search in the Auto IP configuration dialog window.

All connected sensors are shown.

7 To change the IP address, subnet mask or gateway of a particular sensor, mark the sensor and click on Edit.



The sensor IP address must not be changed when the VICOTEC320 is integrated in a network or connected to a customer WLAN module. The IP address of the PC can be adapted to the sensor address in order to create a connection. The procedure depends on the operating system on the PC and is described in the Help function on the PC.

- 8 Close the Auto IP CONFIGURATION dialog window.
- 9 Click on INSERT in the SCAN WIZARD dialog window.
- 10 Enter the sensor IP address and confirm with OK.
  A new entry appears in the IP ADDRESS CONFIGURATION list.
- 11 Confirm settings with OK.

- Click on SCAN in the SCAN WIZARD register tab.
   The scan progress is displayed in a new window.
- 2 Close the PROGRESS dialog window with OK after the message SCAN COMPLETE is displayed.
  - The devices found are listed in the SCAN WIZARD register tab.
- 3 Drag the desired device into the project tree with the left mouse button held down. The stored parameters for the selected device are read out.

Fig. 20 VICOTEC320 menu tree New Project ☐ ■ ■ VICOTEC321 (VIC321\_N5\_012) -- 📄 Bargraph measured values Parameter Device parameter Spectrometer Spectral analysis Visibility 📄 Logbook Signal output Alignment Device information Logbook Spectral evaluation Spectrometer 📄 Visibility Alignment 📄 Emitter 😑 💋 Spectra Measurement reflector Aperture signal measurement reflector LPF aperture signal measurement reflector Zeropoint reflector Aperture signal zeropoint reflector Absorption Filtered absorption Wavelength corrected absorption Reference Normalisation

Maintenance

Operating mode switch

# 6.3.2 Reading out the VICOTEC320 and operating manually

The corresponding operator level must first be selected to configure a device with the SOPAS ET software. The SOPAS ET software runs in the operator level Operator after startup and parameters can only be read.

- 1 Select the LOGIN ON DEVICE command in the Tools menu.
- 2 Select Maintenance under Userlevel in the dialog window and click on Login.
- 3 Double-click a register tab in the project tree to start it.
- 4 To save all the data, select the EXPORT DEVICE command in the PROJECT menu.

The following tabs are important for you; the other tabs are shown colored gray and are only relevant for Service technicians.

## Bargraph measured values



This screen shows whether the sensors are in measuring operation or whether a fault or maintenance requirement exist.

Apart from that, the current measured values for visibility, temperature, NO and  $\rm NO_2$  are displayed (depending on the device variant).

When fault or maintenance request is shown, the measurement triggering the fault or maintenance request is shown next to the measured values.

The UNSAFE LED next to the measured values signals that the measured value is "unsafe" (e.g.: Calibration range exceeded.  $\rightarrow$  Logbook).

# Subject to change without notice

# Alignment



The beam is tracked automatically to the center of the reflector.

Manual alignment is only possible for authorized users:

- Click on START ALIGNMENT.
   Measuring operation is interrupted during alignment.
- 2 Click on MEASURING after alignment has completed.

# **Device information**

This screen shows the serial number, device process and operating hours of the lamp.

## Logbook

All sensor messages are stored in the Logbook. Messages marked with a red dot are still active, messages with a green dot are already completed.

Messages can be filtered according to type:

Click on the dropdown box and select the type of message required.

Fig. 21 Logbook



Messages can be exported as follows:

- Click on Export.
- 2 Select the storage location and file names.
- 3 Click on SAVE.

The Logbook is saved as a Log file.

# Operating mode switch

#### Fig. 22 Operating mode switch

| Operating mode switch                                          |  |  |  |
|----------------------------------------------------------------|--|--|--|
| Operation 🥥                                                    |  |  |  |
| Operating mode Measuring                                       |  |  |  |
| Maintenance Measuring                                          |  |  |  |
|                                                                |  |  |  |
| Reference cycle                                                |  |  |  |
| Reference cycle                                                |  |  |  |
|                                                                |  |  |  |
| System reset                                                   |  |  |  |
|                                                                |  |  |  |
| Start system reset (After execution establish new connection!) |  |  |  |

This screen serves to switch between Measuring mode and Maintenance mode. Apart from that, a reference cycle and a system reset can also be initiated. The parameters are not deleted. The connection between SOPAS and VICOTEC320 must be established again after a system reset ( $\rightarrow$  p. 39, §6.3.1).

# 6.3.3 Saving, storing and printing the current parameter set

- 1 Saving the parameter set. The saved file can then be restored, for example on new hardware.
  - Select: EXPORT PROJECT/ DEVICE
- **2** Storing the project (a "project" can be several devices). This file can then, for example, be printed but can however *not* be restored in the device.
  - a) To store the current parameter set, select the SAVE AS command in the PROJECT menu.
  - b) Enter a file name in the dialog window and confirm with SAVE.

    The SOPAS ET software stores the current settings in an SPR file.
- 3 To print the current parameter set, select the PRINT/PRINT PREVIEW command in the PROJECT menu.
  - The SOPAS ET software displays a preview of the tabular list of all parameter values.
- 4 Select the PRINT command in the FILE menu dialog window.
  - The PRINT dialog window opens to configure the printer.
- 5 Edit the settings as required and confirm with OK.
  The current project settings are printed in tabular form.

# VICOTEC320

# 7 Scheduled Maintenance

Maintenance work

# 7.1 Cleaning

# 7.1.1 Cleaning sensors

The tube can be removed in order to clean the protective screen of the sender/receiver unit or reflector.



**CAUTION:** Eye damage through very bright light

UV radiation (VICOTEC322, -323, -324) and halogen light (VICOTEC321) can cause eye inflammation when eyes are subjected to the radiation for longer than 10 minutes.

- Wear protective goggles (normal glass or plastic is sufficient).
- 1 Loosen both nuts at the end of the tube and pull the tube off.
- 2 Clean the protective screens with clean optical tissues.
- 3 Check the tube and the optical beam path for contamination through deposits or animals and clean when necessary.
- 4 Position the tube and tighten both nuts.

## 7.2 **Maintenance**

# 7.2.1 Persons authorized to carry out maintenance

Maintenance going beyond the tasks described here must be performed by authorized technicians only and is described in the Service Manual.



# WARNING: Danger though electrical voltage.

Live parts are accessible when the device is open!

- ► Switch the supply voltage off before opening the device.
- Only use suitable, insulated tools.

# Subject to change without notice

# 7.2.2 Replacing the activated charcoal

The activated charcoal sachet is located in the sender/receiver unit.

► Replace the used activated charcoal sachet with a new activated charcoal sachet.

Fig. 23 Replacing the activated charcoal sachet



# 7.2.3 Replacing the drying agent cartridge

The drying agent cartridge is located in the reflector.

► Unscrew the lid with pin key and replace the drying agent cartridge.

Fig. 24 Replace the drying agent cartridge



#### Replacing the lamp 7.2.4

Fig. 25



| 1 | Lamp plug             |
|---|-----------------------|
| 2 | Lamp                  |
| 3 | Lamp retaining screws |



# WARNING: Lamp is hot.

Risk of skin burns

Let the lamp cool down before exchanging it.

Exchange the lamp at regular intervals. These intervals depend on the parameter settings for the device and the ambient conditions in the tunnel and are about 1 to 4 years.

- 1 Disconnect all poles of the connection unit from the mains.
- 2 Open the enclosure cover of the sender/receiver unit.
- 3 Disconnect plug (1) (On VICOTEC322, -323, -324: Loosen the screw on the plug).
- 4 Loosen the retaining screws (3) of the lamp and take lamp (2) out.
- 5 Insert the new lamp and fasten with both retaining screws.
- 6 Connect the plug (on VICOTEC322, -323. -324: Screw the plug tight.).
- 7 Close the enclosure cover of the sender/receiver unit.

Measured values are output about 5 minutes after the lamp has been exchanged but can be outside the tolerances during the first 30 minutes.

# 7.2.5 Replacing the CO sensor

► Replace the CO sensor once a year (recommendation).

# **Procedure**

- 1 Disconnect all poles of the connection unit from the mains.
- 2 Disconnect both connection lines from the terminals of the small electronic board of the CO sensor.
- **3** Loosen 2 screws (→ Fig. 26).
- 4 Pull off the upper part of the CO sensor.
- 5 Insert the new CO sensor.
- 6 Screw the new CO sensor tight.
- 7 Reconnect both connection lines.
- 8 Switch the voltage supply of the connection unit on again.

Fig. 26 Position of the CO sensor in the connection unit (shown for VICOTEC322, -323, -324)



# VICOTEC320

# **8** Troubleshooting and Fault Clearance

# 8.1 Fault messages

Error messages are shown in the SOPAS configuration software Logbook.

+i

Only those error messages are shown that the user can clear in own responsibility. Please contact SICK Customer Service for all other error messages.

| Source           | Error message   | Significance                                                                                                         | Clearance                                                                                                                                         |
|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| System           | Lamp fault      | Lamp does not go on.                                                                                                 | Exchange lamp (→ p. 48, § 7.2.4).                                                                                                                 |
| System           | Mirror adj. End | Mirror tracking has reached maximum position.                                                                        | Check alignment and realign when necessary (see Service Manual).                                                                                  |
| Visibility       | No signal       | Sudden signal loss of more than 50% (light path interrupted).                                                        | Check for animals or dirt in the dust tubes or other obstacles in the optical beam path $(\rightarrow p. 46, \S 7.1.1)$ .                         |
| System           | Lamp spectro    | UV lamp current for spectrometer operation exceeds 1000 mA (limit).                                                  | Exchange the UV lamp if required (→ p. 48, § 7.2.4) or correct the parameter settings (see Service Manual).                                       |
| System           | Lamp 4Q         | UV lamp current for visibility measurement operation exceeds 1000 mA during adjustment (limit).                      | Exchange the UV lamp if required (→ p. 48, § 7.2.4) or correct the parameter settings (see Service Manual).                                       |
| System           | Temp. Extern    | External temperature sensor defective.                                                                               | Check connection, exchange the sensor if required (see Service Manual).                                                                           |
| Tempera-<br>ture | Temp failure    | Temperature sensor signal invalid.                                                                                   | Check connection, exchange the sensor if required (see Service Manual).                                                                           |
| System           | CO failure      | The read in current of the CO sensors is below the error limit (see SOPAS ET: Factory setting 35 mA) or above 21 mA. | Check the wiring of the CO sensor.  Check the settings of the analog input (in SOPAS ET).  Otherwise: Replace the CO sensor (→ page 49, § 7.2.5). |
| System           | Systemstart     | Shows when the last system start was made.                                                                           | -                                                                                                                                                 |
| System           | Zero adjust     | Shows when the last adjustment was made.                                                                             | -                                                                                                                                                 |
| System           | Spantest        | Shows when the last spantest was made.                                                                               | -                                                                                                                                                 |

# VICOTEC320

# 9 Technical Documentation

Operating data

# 9.1 **Operating data**

| Measured value recording    |                                                                                                                           |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Measured variable:          | NO/NO <sub>2</sub> /CO/visibility/temperature                                                                             |  |  |
| Measuring range:            | - NO: min. 0 20 ppm, max. 0 45 ppm (0 25 mg/m <sup>3</sup> , 0 60 mg/m <sup>3</sup> )                                     |  |  |
|                             | - NO <sub>2</sub> : min. 0 1 ppm, max. 0 5 ppm (0 2 mg/m <sup>3</sup> , 0 10 mg/m <sup>3</sup> )                          |  |  |
|                             | - CO (option): Max. 0 300 ppm                                                                                             |  |  |
|                             | - Visibility: 0 15*10 <sup>-3</sup> m <sup>-1</sup>                                                                       |  |  |
|                             | - Temperature: -25+55 °C                                                                                                  |  |  |
| Measuring principle:        | <ul> <li>NO/NO<sub>2</sub>: UV/VIS spectroscopy (DOAS principle, Differential Optical Absorption Spectroscopy)</li> </ul> |  |  |
|                             | - CO: Electrochemical cell                                                                                                |  |  |
|                             | - Visibility: Transmission measurement                                                                                    |  |  |
| Measuring section:          | 10 or 20 m, +/- 1 %                                                                                                       |  |  |
| Interval - measuring cycle: | - 5 360 s (adjustable)                                                                                                    |  |  |
|                             | - C0: 50 s                                                                                                                |  |  |
| T90:                        | - 60 s                                                                                                                    |  |  |
| Reference cycle interval    | - 2 h (Adjustable: 0 1440 min)                                                                                            |  |  |

| Max. measurement                |                           |
|---------------------------------|---------------------------|
| error                           |                           |
| Temperature:                    | ± 2 K                     |
| Visibility:                     | ± 0.8*10 <sup>-3</sup> /m |
| Accuracy:                       | ± 5 % of measuring range  |
| - NO:                           | ± 1 ppm                   |
| - NO <sub>2</sub> (VICOTEC321): | ± 0.05 ppm                |
| - CO:                           | Approx. 10 ppm            |

| Device features        |                                            |                    |
|------------------------|--------------------------------------------|--------------------|
| Measuring path length: | 10 or 20 m                                 |                    |
| Light source:          | VICOTEC 321: Halogen lamp                  |                    |
| Light source.          | VICOTEC 322, -323, -324: UV Deuterium lamp |                    |
| Material:              | Stainless steel enclosure (1.4571)         |                    |
| Device dimensions:     | Sender/receiver unit:                      | 718 x 470 x 310 mm |
| (W x H x D)            | Reflector:                                 | 617 x 278 x 245 mm |
|                        | Connection unit:                           | 450 x 254 x 148 mm |
| Weights:               | Sender/receiver unit:                      | 20 kg              |
|                        | Reflector:                                 | 9 kg               |
|                        | Connection unit:                           | 8 kg               |
| Enclosure color:       | Gray RAL 7042, powder-coated               |                    |
| Temperature sensor:    | Pt 1000                                    |                    |

| Ambient conditions    |                                 |  |
|-----------------------|---------------------------------|--|
| Ambient temperature:  | -25 +55 °C; CO cell: -20 +40 °C |  |
| Storage temperature:  | -25 +75 °C; CO cell: -40 +55 °C |  |
| Relative humidity:    | 10 95 % non-condensing          |  |
| Ambient air pressure: | 700 1200 hPa                    |  |
| Protection class:     | IP 69K                          |  |

| Interfaces      |                                         |  |
|-----------------|-----------------------------------------|--|
| Display:        | LEDs                                    |  |
| Relay outputs:  | For NO, NO <sub>2</sub> , visibility:   |  |
|                 | - Operation/Fault                       |  |
|                 | <ul> <li>Maintenance request</li> </ul> |  |
|                 | <ul> <li>Function control</li> </ul>    |  |
|                 | For CO:                                 |  |
|                 | <ul> <li>Operation/Fault</li> </ul>     |  |
| Digital inputs: | - Maintenance mode                      |  |
| Analog outputs: | - NO                                    |  |
|                 | - NO <sub>2</sub>                       |  |
|                 | - Visibility                            |  |
|                 | - Temperature                           |  |
|                 | - CO                                    |  |
| Ethernet:       | 10 BaseT                                |  |
| Slot:           | Compact Flash Type II                   |  |

| Mechanical installation                   |                                        |  |
|-------------------------------------------|----------------------------------------|--|
| Measuring section:                        | 10 or 20 m                             |  |
| Allowable fitting location <sup>[1]</sup> | Along the measuring section: 0°        |  |
|                                           | Transverse to measuring section: ± 15° |  |
| Electrical connection line:               | → p. 22, §4.3                          |  |

[1]Allowable enclosure tilt during operation

| Electrical installation | VICOTEC322, -323, -324                                 | VICOTEC321                       |
|-------------------------|--------------------------------------------------------|----------------------------------|
| Mains fuses:            | 115 V: 2 A, slow, 5x20 mm<br>230 V: 1 A, slow, 5x20 mm | 3.15 A, 5x20 mm (not accessible) |
| Secondary fuses:        | 24 V DC: 6.3A, slow, 5x20mm                            | 24 V DC: 2 A, slow               |
|                         | 120V: 1.6A slow, 5 x 20 mm                             | Reflector heating (→ Fig. 16)    |
| Supply voltage:         | 230 V AC +6 % /-10 %; 50 Hz                            | 85 - 264 VAC, 47 - 63 Hz         |
|                         | 115 V AC +6 % /-10 %; 60 Hz                            |                                  |
| Power input:            | 200 VA                                                 | 100 VA                           |

# 9.2.1 Sender/receiver unit

Fig. 27 Sender/receiver unit dimensions







# 9.2.2 **Reflector**

Fig. 28 Reflector dimensions







Fig. 29



# Subject to change without notice

# 9.3 Part Nos.

# 9.3.1 **Device components**

| Part number | Designation                                                   | Туре         |
|-------------|---------------------------------------------------------------|--------------|
| 1028793     | VIC320-A011 CONNECTION UNIT                                   | VIC320-A011  |
| 1041130     | VIC320-A012 CONNECTION UNIT                                   | VIC320-A012  |
| 1040009     | VIC320-A013 CONNECTION UNIT                                   | VIC320-A013  |
| 1041069     | VIC320-A014 CONNECTION UNIT                                   | VIC320-A014  |
| 1050553[1]  | VIC320-A016 CONNECTION UNIT                                   | VIC320-A016  |
| 1044818     | VIC320-A0151 connection unit with electrochemical cell for CO | VIC320-A0151 |
| 1052357[1]  | VIC320-A0161 connection unit with electrochemical cell for CO | VIC320-A0161 |
| 1028736     | VIC320-R01 REFLECTOR MS=20M                                   | VIC320-R01   |
| 1040643     | VIC320-R02 REFLECTOR MS=10M                                   | VIC320-R02   |
| 1051332[1]  | VIC320-R03 REFLECTOR MS=20M                                   | VIC320-R03   |
| 1051333[1]  | VIC320-R04 REFLECTOR MS=10M                                   | VIC320-R04   |
| 1051235     | VIC321-M05 OPTIC HEAD MS=20M                                  | VIC321-M05   |
| 1031236     | VIC321-M06 OPTIC HEAD MS=10M                                  | VIC321-M06   |
| 1041126     | VIC322-M03 OPTIC HEAD MS=20M                                  | VIC322-M03   |
| 1040642     | VIC322-M04 OPTIC HEAD MS=10M                                  | VIC322-M04   |
| 1028627     | VIC323-M03 OPTIC HEAD MS=20M                                  | VIC323-M03   |
| 1041127     | VIC323-M04 OPTIC HEAD MS=10M                                  | VIC323-M04   |
| 1041128     | VIC324-M03 OPTIC HEAD MS=20M                                  | VIC324-M03   |
| 1041129     | VIC324-M04 OPTIC HEAD MS=10M                                  | VIC324-M04   |

[1]Only for VICOTEC321

# 9.3.2 **Type key**

Fig. 30 Type key



# 9.3.3 Accessories

| Part No. | Designation                                     |
|----------|-------------------------------------------------|
| 2031397  | Assembly console made of 1.4571 stainless steel |
| 2034795  | Laser adjustment unit (1 piece)                 |
| 2040063  | Filter and cuvette case for linearity test      |

# 9.3.4 Expendable and wearing parts

| Part No. | Designation                                      |
|----------|--------------------------------------------------|
| 2033796  | UV lamp                                          |
| 2055423  | Halogen lamp                                     |
| 2012785  | Drying agent cartridge (reflector)               |
| 5323946  | Activated charcoal sachet (sender/receiver unit) |
| 2045856  | CO sensor                                        |

# VICOTEC320

# **10** Mapping Table

Mapping Table for SCU

# 10.1 Mapping Table

Mapping Table for SCU parameter settings

# 10.1.1 Measured values on SCU

Measured value (MV)

| Index | Measured value              |
|-------|-----------------------------|
| MV01  | VIS [1/Km]                  |
| MV02  | T [K]                       |
| MV03  | NO (not used on VICOTEC321) |
| MV04  | NO2 [ppm]                   |
| MV05  | CO [ppm]                    |

# 10.1.2 **Operating State Table**

• States (S)

| Index | Operating state    |
|-------|--------------------|
| S01   | Initialization     |
| S02   | Warming up         |
| S03   | Measuring          |
| S04   | Maintenance        |
| S05   | Maintenance Switch |
| S06   | Zero adjust        |
| S07   | Alignment          |
| S08   | RCycle             |
| S09   | RESTART            |
| S10   | Span Test          |

# 10.1.3 **Status**

• Failure, Maintenance, Uncertain, Check, Extended

| Index  | Diagnostic message   |
|--------|----------------------|
| F01F64 | Failure messages     |
| M01M32 | Maintenance messages |
| U01U08 | Uncertain messages   |
| C01C08 | Check messages       |
| E01E16 | Extended messages    |

# 10.1.4 Status of measured values

• MVxx (xx = 01..04)

| Index      | Diagnostic message   |
|------------|----------------------|
| MVxxF01F64 | Failure messages     |
| MVxxE01E32 | Extended messages    |
| MVxxU01U16 | Uncertain messages   |
| MVxxM01M08 | Maintenance messages |
| MVxxC01C08 | Check messages       |

| A                                 | S                        |    |
|-----------------------------------|--------------------------|----|
| Activated charcoal, replacing 47  | Scan Wizard              | 39 |
| Alignment                         | Sensor arrangement       | 16 |
| Assembly consoles                 | Smoke detection          | 16 |
|                                   | SOPAS ET                 | 38 |
| В                                 | Sound insulation wall    | 19 |
| Bargraph measured values          | Switching operating mode | 43 |
| 0.1                               |                          |    |
| C                                 | Т                        |    |
| Cabling                           | Tools                    | 22 |
| CO sensor                         | Tunnel cleaning          |    |
| - Replacing                       | Tunnel curvature         |    |
| Curve radiuses                    | Type plate               |    |
|                                   | 7F-0 F                   |    |
| D                                 |                          |    |
| Device information                |                          |    |
| Drilling plan, assembly console   |                          |    |
| Drilling plan, connection unit    |                          |    |
| Drying agent cartridge, replacing |                          |    |
| brying agont outchago, replacing  |                          |    |
| E                                 |                          |    |
| Ethernet connection               |                          |    |
| Ethornot connection               |                          |    |
| F                                 |                          |    |
| Fitting height                    |                          |    |
| Fog                               |                          |    |
| 10g 10                            |                          |    |
| 1                                 |                          |    |
| I/O module                        |                          |    |
| Identification                    |                          |    |
| identification                    |                          |    |
|                                   |                          |    |
| Lamp, replacing                   |                          |    |
| Laser adjustment unit             |                          |    |
| Layout                            |                          |    |
| LEDs                              |                          |    |
|                                   |                          |    |
| Logbook                           |                          |    |
| M                                 |                          |    |
| •••                               |                          |    |
| Maintenance operation (menu)      |                          |    |
| Mapping Table                     |                          |    |
| ^                                 |                          |    |
| One way traffic                   |                          |    |
| One-way traffic                   |                          |    |
| Р                                 |                          |    |
| -                                 |                          |    |
| Peripherals                       |                          |    |
| B                                 |                          |    |
| R<br>Poference evals              |                          |    |
| Reference cycle                   |                          |    |
| Reset                             |                          |    |
| Roadway curves                    |                          |    |

### Australia

Phone +61 3 9457 0600 1800 334 802 - tollfree

E-Mail sales@sick.com.au

## Belgium/Luxembourg

Phone +32 (0)2 466 55 66

E-Mail info@sick.be

#### Brasil

Phone +55 11 3215-4900 E-Mail sac@sick.com.br

## Canada

Phone +1 905 771 14 44 E-Mail information@sick.com

## Ceská Republika

Phone +420 2 57 91 18 50

E-Mail sick@sick.cz

#### China

Phone +86 4000 121 000 E-Mail info.china@sick.net.cn Phone +852-2153 6300 E-Mail ghk@sick.com.hk

### Danmark

Phone +45 45 82 64 00 E-Mail sick@sick.dk

#### Doutschland

Phone +49 211 5301-301 E-Mail kundenservice@sick.de

### España

Phone +34 93 480 31 00 E-Mail info@sick.es

## France

Phone +33 1 64 62 35 00

E-Mail info@sick.fr

## **Great Britain**

Phone +44 (0)1727 831121

E-Mail info@sick.co.uk

## India

Phone +91-22-4033 8333 E-Mail info@sick-india.com

## Israel

Phone +972-4-6881000

E-Mail info@sick-sensors.com

## Italia

Phone +39 02 27 43 41

E-Mail info@sick.it

# Japan

Phone +81 (0)3 3358 1341

E-Mail support@sick.jp

# Magyarország

Phone +36 1 371 2680

E-Mail office@sick.hu

## Nederlands

Phone +31 (0)30 229 25 44

E-Mail info@sick.nl

## Norge

Phone +47 67 81 50 00 E-Mail austefjord@sick.no

#### Österreich

Phone +43 (0)22 36 62 28 8-0

E-Mail office@sick.at

## Polska

Phone +48 22 837 40 50 E-Mail info@sick.pl

## România

Phone +40 356 171 120 E-Mail office@sick.ro

#### Russia

Phone +7-495-775-05-30 E-Mail info@sick.ru

## Schweiz

Phone +41 41 619 29 39 E-Mail contact@sick.ch

#### Singapore

Phone +65 6744 3732 E-Mail admin@sicksgp.com.sg

#### Slovenija

Phone +386 (0)1-47 69 990

E-Mail office@sick.si

#### South Africa

Phone +27 11 472 3733 E-Mail info@sickautomation.co.za

## South Korea

Phone +82 2 786 6321/4 E-Mail info@sickkorea.net

## Suomi

Phone +358-9-25 15 800 E-Mail sick@sick.fi

## Sverige

Phone +46 10 110 10 00 E-Mail info@sick.se

## Taiwan

Phone +886 2 2375-6288 E-Mail sales@sick.com.tw

## Türkiye

Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

# **United Arab Emirates**

Phone +971 (0) 4 88 65 878

E-Mail info@sickusa.com

E-Mail info@sick.ae

# USA/México

Phone +1(952) 941-6780 1 (800) 325-7425 - tollfree

More representatives and agencies

at www.sick.com

