第三章 常见的曲面

在右手直角坐标系下

- § 1球面和旋转面
- 1.球面的普通方程

球心为 $M_0(x_0, y_0, z_0)$, 半径为 \mathbf{R} 的球面方程:

点
$$M(x, y, z)$$
 在 这 个 球 面 上 $\Leftrightarrow \left| \overrightarrow{M_0 M} \right| = R$ 即
$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$$

点 M(x, y, z) 满足三元二次方程 $x^2 + y^2 + z^2 + 2b_1x + 2b_2y + 2b_3z + c = 0$ $< \Rightarrow$ 它在球面上。

当
$$b_1^2 + b_2^2 + b_3^2 > c$$
 时 它 表 示 一 个 球 心 在 $(-b_1, -b_2, -b_3)$,半径为 $\sqrt{b_1^2 + b_2^2 + b_3^2 - c}$ 的球面;

当
$$b_1^2+b_2^2+b_3^2=c$$
时,它表示一个点, $(-b_1,-b_2,-b_3)$;

当 $b_1^2+b_2^2+b_3^2< c$ 时,它没有轨迹(虚球面)。

2.球面的参数方程 点的球面坐标

球心在原点,半径 R 的球面的参数方程:

$$\begin{cases} x = R \cos \theta \cos \varphi & 0 \le \varphi < 2\pi \\ y = R \cos \theta \sin \varphi & -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \end{cases}$$

$$z = R \sin \theta$$

其中 φ 称为经度, ϑ 称为纬度。

球面上的点与(θ , φ) ——对应, 称(θ , φ) 为 球面上的曲纹坐标

称 (\mathbf{R} , θ , φ) 为空间中点 \mathbf{M} 的球面坐标 (空间极坐标)

3.曲面和曲线的普通方程、参数方程

曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹.

曲面方程的定义:

如果曲面S与三元方程F(x,y,z)=0有下述关系:

- (1) 曲面S上任一点的坐标都满足方程;
- (2) 不在曲面S上的点的坐标都不满足方程;

那么,方程F(x,y,z) = 0就叫做曲面 S 的方程, 而曲面S 就叫做方程的图形. 曲面的普通方程是一个三元方程 $\mathbf{F}(x, y, z) = \mathbf{0}$

曲面的参数方程是含两个参数的方程:

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases} \qquad a \le u \le b \\ z = z(u, v) \qquad c \le v \le d$$

其中(u, v)称为曲面上点的曲纹坐标

曲线的普通方程是两个三元方程的联立
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

曲线的参数方程是含有一个参数的方程

$$\begin{cases} x = x(t) \\ y = y(t) & a \le t \le b \\ z = z(t) \end{cases}$$

4.旋转面

定义:一条曲线 Γ 绕一条直线l旋转所得到的曲面称为旋转面,l称为轴, Γ 称为母线

母线 Γ 上每个点 M_0 绕l旋转得到一个圆,称为纬圆,纬圆与轴垂直,过l的半平面与旋转面的交线称为经线(或子午线)。

已知轴l过点 $\mathbf{M}_1(x_1, y_1.z_1)$,方向向量v(l, m, n), 母线 Γ 的方程为 $\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$,求旋转面。

曲线
$$\Gamma$$

$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
 绕 l 轴

曲线
$$\Gamma$$

$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$
 绕 l 轴

旋转一周得旋转曲面S

$$\forall M(x,y,z) \in S$$

$$\begin{cases} F(x_0, y_0, z_0) = 0 \\ G(x_0, y_0, z_0) = 0 \end{cases}$$

$$\frac{\left|\overrightarrow{\boldsymbol{M}} \overrightarrow{\boldsymbol{M}_{1}} \times \overrightarrow{\boldsymbol{v}}\right|}{\left|\overrightarrow{\boldsymbol{v}}\right|} = \frac{\left|\overrightarrow{\boldsymbol{M}_{0}} \overrightarrow{\boldsymbol{M}_{1}} \times \overrightarrow{\boldsymbol{v}}\right|}{\left|\overrightarrow{\boldsymbol{v}}\right|}$$

$$l(x-x_0) + m(y-y_0) + n(z-z_0) = 0$$

建立旋转曲面的方程:

点 M(x,y,z) 在旋转面上 \Leftrightarrow \mathbf{M} 在经过母线 Γ 上某一点 $M_0(x_0,y_0.z_0)$ 的纬圆上。 $M_0(x_0,y_0.z_0) \in \Gamma$ 使 \mathbf{M} 和 M_0 到轴 l 的距离相等,并且 $\overrightarrow{MM_0}$ $\perp l$

$$\begin{cases} F(x_0, y_0, z_0) = 0 \\ G(x_0, y_0, z_0) = 0 \\ \frac{|\overrightarrow{MM_1} \times \overrightarrow{v}|}{|\overrightarrow{v}|} = d_1 = d_2 = \frac{|\overrightarrow{M_0M_1} \times \overrightarrow{v}|}{|\overrightarrow{v}|} \\ l(x - x_0) + m(y - y_0) + n(z - z_0) = 0 \end{cases}$$

曲线
$$\mathbb{C}$$

$$\begin{cases} f(y,z) = 0 \\ x = 0 \end{cases}$$
 绕 \mathbf{z} 轴

旋转一周得旋转曲面S

$$\forall M(x,y,z) \in S$$

$$f(y_1, z_1) = 0$$

$$z_1 = z$$

$$|y_1| = |\overline{MP}| = \sqrt{x^2 + y^2}$$

将
$$z = z_1$$
, $y_1 = \pm \sqrt{x^2 + y_1^2}$ 代入 $f(y_1, z_1) = 0$

得方程
$$f(\pm \sqrt{x^2+y^2}, z)=0$$
,

若母线
$$\Gamma$$
 为一条空间曲线 Γ :
$$\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases}$$

 $a \le t \le b$

$$\begin{cases} x = \sqrt{[f(t_0)]^2 + [g(t_0)]^2} \cos \theta \\ y = \sqrt{[f(t_0)]^2 + [g(t_0)]^2} \sin \theta \\ z = h(t_0) \end{cases}$$

$$\frac{y}{a^2} + \frac{z}{a^2} = 1$$

将 椭圆 $\frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$ 绕 y轴或 z轴;

旋转一周,求生成的旋转曲面的方程.

绕y轴旋转

旋转椭球面

$$\frac{y^2}{a^2} + \frac{x^2 + z^2}{c^2} = 1$$

绕な轴旋转

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1$$

几种特殊旋转曲面

- ◆1 双叶旋转曲面
- ●2 单叶旋转曲面
- ◆3旋转锥面
- ◆ 4 旋转抛物面
- ◆5 环面

$\text{双曲线} \begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$

绕 x 轴一周

1 双叶旋转双曲面

双曲线
$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$$

绕x轴一周

1 双叶旋转双曲面

双曲线
$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$$

绕x轴一周

得双叶旋转双曲面

$$\frac{x^2}{a^2} - \frac{y^2 + z^2}{b^2} = 1$$

2 单叶旋转双曲面

上题双曲线
$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$$
 绕 y 轴 一 周

2 单叶旋转双曲面

上题双曲线
$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$$

绕y轴一周

2 单叶旋转双曲面

上题双曲线
$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ z = 0 \end{cases}$$

绕y轴一周

得单叶旋转双曲面

$$\frac{x^2 + z^2}{a^2} - \frac{y^2}{b^2} = 1$$

3 旋转锥面

两条相交直线

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0\\ z = 0 \end{cases}$$

绕x轴一周

3 旋转锥面

两条相交直线

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0\\ z = 0 \end{cases}$$

绕x轴一周

3 旋转锥面

两条相交直线

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0\\ z = 0 \end{cases}$$

绕 來 轴一周

得旋转锥面

$$\frac{x^2}{a^2} - \frac{y^2 + z^2}{b^2} = 0$$

4 旋转抛物面

抛物线
$$\begin{cases} y^2 = az \\ x = 0 \end{cases}$$
 绕 z 轴 一 周 \ \ \ z

4 旋转抛物面

抛物线
$$\begin{cases} y^2 = az \\ x = 0 \end{cases}$$
 绕 z 轴 一 周 \ \ \ \ z

4 旋转抛物面

$$z = \frac{x^2 + y^2}{a}$$

生活中见过这个曲面吗?

卫星接收装置

5环面 圆 $(x-R)^2 + y^2 = r^2(R > r > 0)$ 绕 y轴 旋转所成曲面

5环面 圆 $(x-R)^2 + y^2 = r^2(R > r > 0)$ 绕 y轴 旋 转所成曲面

5环面 圆 $(x-R)^2 + y^2 = r^2(R > r > 0)$ 绕 y轴 旋转所成曲面

生活中见过这个曲面吗?

环面方程
$$(\pm \sqrt{x^2 + z^2} - R)^2 + y^2 = r^2$$

或 $(x^2 + y^2 + z^2 + R^2 - r^2)^2 = 4R^2(x^2 + z^2)$

5 环面

例:设 l_1 和 l_2 为两条异面直线,求 l_2 绕 l_1 旋转所得曲面的方程。