α) Η ευθεία ($ε_1$) έχει εξίσωση: y = x + 2, συνεπώς συντελεστή διεύθυνσης $λ_1 = 1$. Η ευθεία ($ε_2$) είναι κάθετη στην ευθεία $ε_1$, συνεπώς το γινόμενο των συντελεστών διεύθυνσης των δύο ευθειών θα ισούται με -1, άρα $λ_2 = -1$. Επιπλέον η ευθεία ($ε_2$) διέρχεται από το σημείο Α, άρα η εξίσωσή της θα είναι:

$$y-y_A=\lambda_2\cdot(x-x_A)$$
 ή $y-(-2)=-1\cdot(x-4)$ ή $y+2=-x+4$ ή $y=-x+2$. Άρα η εξίσωση της ευθείας (ε₂) είναι: $y=-x+2$.

- β) οι συντεταγμένες του σημείου τομής Β, των δύο ευθειών (ε₁) και (ε₂) θα προκύψει από τη λύση του συστήματος: $\begin{cases} y=x+2 \\ y=-x+2 \end{cases} \acute{\eta} \begin{cases} y=x+2 \\ x+2=-x+2 \end{cases} \acute{\eta} \begin{cases} y=x+2 \\ 2x=0 \end{cases} \acute{\eta} \begin{cases} y=x+2 \\ 0 \end{cases} \acute{\eta}$
- γ) Αν Γ το συμμετρικό του Α ως προς το Β τότε τα σημεία Α, Β και Γ είναι συνευθειακά και μάλιστα το Β είναι το μέσο του τμήματος ΑΓ, άρα θα ισχύει:

$$\begin{cases} x_B = \frac{x_A + x_\Gamma}{2} \\ y_B = \frac{y_A + y_\Gamma}{2} \end{cases} \acute{\eta} \begin{cases} 0 = \frac{4 + x_\Gamma}{2} \\ 2 = \frac{-2 + y_\Gamma}{2} \end{cases} \acute{\eta} \begin{cases} x_\Gamma = -4 \\ y_\Gamma = 6 \end{cases} . \text{ Οπότε το συμμετρικό του σημείο A ως}$$

προς την ευθεία (ε1) είναι το σημείο Γ(-4,6).

