LOM3232 - Metrologia

Metrology

Créditos-aula: 2 Créditos-trabalho: 0 Carga horária: 30 h Ativação: 01/01/2023

Departamento: Engenharia de Materiais

Curso (semestre ideal): EF (9)

Objetivos

Transmitir aos alunos o conhecimento básico sobre metrologia óptica ou seja métodos de medição de tamanho e geometria de componentes mecânicos com o emprego de métodos ópticos, com particular ênfase na interferometria a laser.

Provide students with basic knowledge of optical metrology, ie methods of measuring the size and geometry of mechanical components using optical methods, with particular emphasis on laser interferometry.

Docente(s) Responsável(eis)

5840793 - Sérgio Schneider

Programa resumido

Apresentar as principais técnicas ópticas para a medição de grandezas como comprimento, deslocamento e forma, com ênfase nas técnicas interferométricas a laser.

Present the main optical techniques for measuring quantities such as length, displacement and shape, with emphasis on laser interferometric techniques.

Programa

Teoria eletromagnética da luz: noções de representação matemática da onda de luz e interpretação de fenômenos como polarização, interferência e difração. Refração, reflexão e óptica geométrica: leis de Snell, equações de Fraunhofer, reflexão total e óptica geométrica. Propagação da luz em meios especiais como cristais fibras ópticas. Óptica de Fourier e holografia: transformada de Fourier e a sua aplicação na óptica como caso de filtros especiais e halográfia. Fontes e sensores de luz: definição e descrição de fontes incoerentes e coerentes e descrição de sensores do tipo puntual, de posição e de imagem. Componentes ópticos e ajuste de sistemas ópticos. Medição de comprimento: método como interferometria, franjas de Moirè, métodos para medição de grandes distâncias. Medição de forma: diversos métodos e técnicas para medição de forma geométrica. Medição de deslocamento, deformação e vibração: métodos de medição que empregam a holografia, speckle" e as franjas de Moirè. Medição de velocidade: métodos de medição de velocidade e sensor de fibras ópticas. Inspeção de falhas: métodos para inspeção de falhas geométricas e internas utilizando a difração ou a difusão da luz.

Electromagnetic theory of light: notions of mathematical representation of the light wave and interpretation of phenomena such as polarization, interference and diffraction. Refraction, reflection and geometric optics: Snell's laws, Fraunhofer equations, total reflection and geometric optics. Propagation of light in special media such as fiber optic crystals. Fourier optics and holography: Fourier transform and its application in optics as a case of special filters and halography. Light sources and sensors: definition and description of incoherent and coherent sources and description of point, position and image sensors. Optical components and tuning of optical systems. Length measurement: method such as interferometry, Moirè fringes, methods for measuring large distances. Shape measurement: various methods and techniques for geometric shape measurement. Displacement, deformation and vibration measurement: measurement methods employing holography, speckle" and Moirè fringes. Velocity measurement: speed measurement methods and optical fiber sensors. Fault inspection: methods for inspecting geometric and internal spaces using diffraction or scattering of light.

Avaliação

Método: Listas de exercícios, provas escritas, apresentação de seminário, aulas de laboratório e preparação de relatórios.

Critério: Média ponderada de duas provas escritas, trabalhos e relatórios: P1, P2 e TR. Conceito Final = (P1 + 2P2 + TR)/4

Norma de recuperação: Aplicação de uma prova escrita dentro do prazo regimental antes do início do próximo semestre letivo. A nota da segunda avaliação será a média aritmética entre a nota da prova de recuperação e a nota final da primeira avaliação

Bibliografia

YOSHIZAWA, T. Handbook of Optical Metrology, Boca Raton: CRC Press, 2009. SALEH, B. E. A.; TEICH, M. C. Handbook of Fotonics, Wiley-Interscience, 2007. JENKINS, F. A.; WHITE, H. E. Fundamentals of Optics, McGraw-Hill, 1981. CREATH, H.; WYANT, J. Measurement of ultraprecision components using non-contact interferometry based instrumentation, Ultraprecision in Manufacturing Engineering, Springer Verlag, 1988.

Requisitos

LOM3234 - Óptica Física (Requisito)