CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

SEQUENTIAL SYSTEMS

DEFINITION

Example ODD/EVEN

TIME-BEHAVIOR SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

Function: $z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ contains an even number of } b's \\ 0 & \text{otherwise} \end{cases}$

I/O SEQUENCE:

STATE DESCRIPTION OF ODD/EVEN

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{\text{EVEN, ODD}\}$

Initial state: s(0) = EVEN

Functions: Transition and output functions

$$NS, z(t)$$
 $PS \mid x(t) = a \mid x(t) = b$
EVEN EVEN, 1 ODD, 0
ODD ODD, 0 EVEN, 1

STATE DESCRIPTION OF ODD/EVEN

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{\text{EVEN, ODD}\}$

Initial state: s(0) = EVEN

Functions: Transition and output functions

	NS	z(t)
PS	x(t) = a	x(t) = b
EVEN	EVEN, 1	odd, 0
ODD	odd, 0	EVEN, 1

\overline{PS}	x(t) = a	x(t) = b
	EVEN, 1	_
ODD	odd, 0	EVEN, 1
	NS,	z(t)

REPRESENTATION OF STATE-TRANSITION AND OUTPUT FUNCTIONS WITH STATE DIAGRAM

Simplified state diagram

What is the state diagram for this example?

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{\text{EVEN, ODD}\}$

Initial state: s(0) = EVEN

Functions: Transition and output functions

PS	x(t) = a	x(t) = b
EVEN	EVEN, 1	odd, 0
ODD	ODD, 0	EVEN, 1
	NS,	z(t)

Example

Functions: The transition and output functions are

s(t)	x(t)		
	a	b	
S_0	S_1, p	S_2, q	
S_1	S_1, p	S_0, p	
S_2	S_1, p	S_2, p	
	s(t+1)	$\overline{1),z(t)}$	

What is the state diagram for this example?

MEALY AND MOORE MACHINES

Mealy machine

$$z(t) = H(s(t), x(t))$$

$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

Example: MOORE SEQUENTIAL SYSTEM

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: Transition and output functions:

PS	Input			
	\overline{a}	b	c	
S_0	S_0	S_1	S_1	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3	S_0	1
S_3	S_0	S_1	S_2	0
		NS		Output

What is the state diagram for this example?

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: Transition and output functions:

PS	Input			
	a	b	c	
S_0	S_0	S_1	S_1	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3	S_0	1
S_3	S_0	S_1	S_2	0
		NS	1	Output

Example - state diagram

Input: $x(t) \in \{0, 1, 2, 3\}$

Output: $z(t) \in \{a, b\}$

State: $s(t) \in \{S_0, S_1\}$

Initial state: $s(0) = S_0$

Functions: The transition and output functions are

$$s(t+1) = \begin{cases} S_0 & \text{if } (s(t) = S_0 \\ & \text{and } [x(t) = 0 \text{ or } x(t) = 2]) \\ & \text{or } (s(t) = S_1 \text{ and } x(t) = 3) \\ S_1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} a & \text{if } s(t) = S_0 \\ b & \text{if } s(t) = S_1 \end{cases}$$

- state diagram

Example

Input: $x(t) \in \{0, 1, 2, 3\}$

Output: $z(t) \in \{a, b\}$

State: $s(t) \in \{S_0, S_1\}$

Initial state: $s(0) = S_0$

Functions: The transition and output functions are

$$s(t+1) = \begin{cases} S_0 & \text{if } (s(t) = S_0 \\ & \text{and } [x(t) = 0 \text{ or } x(t) = 2]) \\ & \text{or } (s(t) = S_1 \text{ and } x(t) = 3) \\ S_1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} a & \text{if } s(t) = S_0 \\ b & \text{if } s(t) = S_1 \end{cases}$$

PS	Input				
	0	1	2	3	
S_0 S_1					
		N	S		Output

Example - state diagram

Input: $x(t) \in \{0, 1, 2, 3\}$

Output: $z(t) \in \{a, b\}$

State: $s(t) \in \{S_0, S_1\}$

Initial state: $s(0) = S_0$

The transition and output functions are Functions:

 $s(t+1) = \begin{cases} S_0 & \text{if } (s(t) = S_0 \\ & \text{and } [x(t) = 0 \text{ or } x(t) = 2]) \\ & \text{or } (s(t) = S_1 \text{ and } x(t) = 3) \\ S_1 & \text{otherwise} \end{cases}$ What is the state for this example?

$$z(t) = \begin{cases} a & \text{if } s(t) = S_0 \\ b & \text{if } s(t) = S_1 \end{cases}$$

What is the state diagram

Clicker Question

FSM

If we start in state 10 and have the input stream A = 0, 0, 1, 0, 0, 1, 1, which state do we end up in?

- **a** 00
- b 01
- **c** 10
- d 11
- e none of the above

FSM

If we start in state 11 and have the input stream A=0,0,1,0,0,1,1, which state do we end up in?

- **a** 00
- b 01
- **c** 10
- d 11
- e none of the above

Example

Input:
$$x(t) \in \{0, 1\}$$
Output: $z(t) \in \{0, 1\}$
Function: $z(t) = \begin{cases} 1 & \text{if } x(t-3, t) = 1101 \\ 0 & \text{otherwise} \end{cases}$

PATTERN DETECTOR ⇒ DETECT SUBPATTERNS

State	indicates that
S_{init}	Initial state; also no subpattern
S_1	First symbol (1) of pattern has been detected
S_{11}	Subpattern 11 has been detected
S_{110}	Subpattern 110 has been detected

What is the state diagram for this example?

TIME BEHAVIOR AND FINITE-STATE MACHINES

STATE DESCRIPTION \Rightarrow I/O SEQUENCE

Initial state: $s(0) = S_2$

Functions: Transition and output functions are

PS	x(t)			
	a	b	c	
S_0	S_0	_	S_1	p
S_1	S_2	S_0	S_1	q
S_2	S_2	S_3	S_0	q
S_3	S_0	S_1	S_2	p
		\overline{NS}	z(t)	

Clicker Question

INPUT:
$$x(t) \in \{0, 1\}$$

OUTPUT: $z(t) \in \{0, 1\}$

FUNCTION:
$$z(t) = \begin{cases} 1 & \text{if } x(t-2,t) = 101 \\ 0 & \text{otherwise} \end{cases}$$

e) none

INPUT:
$$x(t) \in \{0, 1\}$$

OUTPUT: $z(t) \in \{0, 1\}$

FUNCTION:
$$z(t) = \begin{cases} 1 & \text{if } x(t-2,t) = 101 \\ 0 & \text{otherwise} \end{cases}$$

What is the state diagram for this system?

• k-DISTINGUISHABLE STATES: DIFF. OUTPUT SEQUENCES

$$z(x(t, t+k-1), S_v) \neq z(x(t, t+k-1), S_w)$$

- k-EQUIVALENT STATES: NOT DISTINGUISHABLE FOR SEQUENCES OF LENGTH k
- P_k : PARTITION OF STATES INTO k-EQUIVALENT CLASSES

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Functions: TRANSITION AND OUTPUT

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B,0	C, 0	F, 1
		\overline{NS} , z	

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Functions: TRANSITION AND OUTPUT

PS	x = a	x = b	x = c
\overline{A}	E, 0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

A and B ARE 1-DISTINGUISHABLE BECAUSE

$$z(b, A) \neq z(b, B)$$

A and C ARE 1-EQUIVALENT BECAUSE

$$z(x(t), A) = z(x(t), C), \quad for \ all \ x(t) \in I$$

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D, E, F\}$

Initial state: s(0) = A

Functions: TRANSITION AND OUTPUT

A and C ARE ALSO 2-EQUIVALENT BECAUSE

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

$$z(aa, A) = z(aa, C) = 00$$

 $z(ab, A) = z(ab, C) = 01$
 $z(ac, A) = z(ac, C) = 00$
 $z(ba, A) = z(ba, C) = 10$
 $z(bb, A) = z(bb, C) = 10$
 $z(bc, A) = z(bc, C) = 11$
 $z(ca, A) = z(ca, C) = 00$
 $z(cb, A) = z(cb, C) = 00$
 $z(cc, A) = z(cc, C) = 01$

PS	x(t) = a	x(t) = b	x(t) = c
Α	0	1	0
В	0	0	1
C	0	1	0
D	0	0	1
Ε	0	1	0
F	0	0	1
		NS, z	

• 1-EQUIVALENT IF SAME "row pattern"

$$P_1 = (A, C, E) \quad (B, D, F)$$

- NUMBER THE CLASSES IN P_1
- ullet TWO STATES ARE IN THE SAME CLASS OF P_2 IF THEIR SUCCESSOR COLUMNS HAVE THE SAME NUMBERS

PS	x = a	x = b	x = c
\overline{A}	E, 0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

		1			2	
P_1	(A,	C,	E)	(B,	D,	F)
	1			2	2	2
b	2	2	2	2	2	1
c	2	2	2	1	1	2

BY IDENTIFYING IDENTICAL COLUMNS OF SUCCESSORS, WE GET

$$P_2 = (A, C, E) (B, D) (F)$$

SAME PROCESS TO OBTAIN THE NEXT PARTITION:

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B, 0	C, 0	F, 1
		NS, z	

		1		2		3
P_2	(A,	C,	E)	(B,	D),	(<i>F</i>)
\overline{a}	1	1	1	3	3	
b	2	2	3	2	2	
c	2	2	3	1	1	

$$P_3 = (A, C) (E) (B, D) (F)$$

• SIMILARLY, WE DETERMINE $P_4 = (A, C) (E) (B, D) (F)$

BECAUSE $P_4 = P_3$ THIS IS ALSO THE EQUIVALENCE PARTITION P

THE MINIMAL SYSTEM:

PS	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B, 0
B	F, 0	D, 0	A, 1
C	E, 0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B,0	C, 0	F, 1
		NS, z	

PS	x = a	x = b	x = c
\overline{A}	E,0	B, 1	B,0
B	F, 0	B, 0	A, 1
E	A, 0	F, 1	F, 0
F	B,0	A, 0	F, 1
		\overline{NS} , z	