Le théorème de Steinbach et Wendland :

Theorem 1. Soient V et W deux espaces de Hilbert, et soient V_h , W_h , deux sous-espaces de dimension finie M et N de V et W_h respectivement. Soit $A:V \longrightarrow V^*$ et $B:W \longrightarrow V^*$ deux opérateurs satisfaisant les conditions suivantes .

• A est auto-adjoint sur V, tel que

$$\langle Au, u \rangle \ge c_A \|u\|_{\mathcal{V}}^2$$

 $\langle Au, v \rangle \le C_A \|u\|_{\mathcal{V}} \|v\|_{\mathcal{V}}$

• B est continu

$$\langle Au, v \rangle \leq C_B \|u\|_{\mathcal{V}} \|v\|_{\mathcal{V}}$$

• B satisfait à la condition de stabilité

$$c_B \|w_h\|_{\mathcal{W}} \leq \sup_{v_h \neq 0, v_h \in \mathcal{V}} \frac{|\langle Bw_h, v_h \rangle|}{\|v_h\|_V},$$

où la constante c_B ne dépend pas du choix de W_h .

On pose $\mathcal{T} := \mathcal{B}' \mathcal{A}^{-1} \mathcal{B} : \mathcal{W} \longrightarrow \mathcal{W}^*$. Pour tous ces opérateurs, on note $[\cdot]$ leur matrice de Galerkine. Alors pour tout vecteur $w_h \in \mathbb{R}^N$,

$$\gamma_1 w_h^T [\mathcal{T}] w_h \leq [B]^T [A]^{-1} [B] w_h \leq w_h^T [\mathcal{T}] w_h$$

Soit Γ un arc ouvert C^{∞} (C^1 suffirait ?), on note S_{ω} le simple couche défini sur $H_{\omega}^{-1/2}(\Gamma)$ (on définit $H_{\omega}^s([-1,1])$ en transportant l'espace de Sobolev H^s sur le cercle, puis $H_{\omega}^s(\Gamma)$ en utilisant un C^{∞} difféomorphisme. Il faudrait prouver ce qui suit :

Conjecture 1. $H^s_{\omega}(\Gamma)$ est un espace de Hilbert pour le produit scalaire

$$(u,v)\mapsto \int_{\Gamma} \frac{1}{\sqrt{d(x,\partial\Gamma)}} u(x)v(x)dx,$$

et pour tout s et pour s < t, l'injection $H^s_{\omega}(\Gamma) \subset H^t_{\omega}(\Gamma)$ est compacte. $H^{1/2}_{\omega}(\Gamma)$ est le dual de $H^{-1/2}_{\omega}(\Gamma)$. L'opérateur $A: u \mapsto (\omega(x)\partial_x)^2 u + (u|1)_{\omega}$ est auto-adjoint continu et elliptique de $H^{1/2}_{\omega} \longrightarrow H^{-3/2}_{\omega}(\Gamma)$.

On pose Δ_{ω} l'opérateur défini

Theorem 2. contenu...