Name: SUN RUI

Student ID: 18083229g

Ans1:

a)

$$\begin{aligned} & \mathsf{Dissim}(0001,\,0150) = 1 - \frac{|\{\mathsf{Romance},\mathsf{Drama}\}|}{|\{\mathsf{Drama},\mathsf{Romance},\mathsf{Sci-Fiction},\mathsf{Mystery},\mathsf{Fiction}\}|} = \frac{3}{5} = 0.6 \\ & \mathsf{Dissim}(0001,\,0553) = 1 - \frac{|\{\mathsf{Sci-Fiction}\}|}{|\{\mathsf{Romance},\mathsf{Sci-Fiction},\mathsf{Drama},\mathsf{Mystery},\mathsf{Action},\mathsf{Thriller},\mathsf{Horror}\}|} = \frac{6}{7} \approx 0.857 \\ & \mathsf{Dissim}(0001,\,1011) = 1 - \frac{|\{\mathsf{NULL}\}|}{|\{\mathsf{Romance},\mathsf{Sci-Fiction},\mathsf{Drama},\mathsf{Mystery},\mathsf{Horror},\mathsf{Thriller},\mathsf{Horror}\}|} = 1 \\ & \mathsf{Dissim}(0001,\,3997) = 1 - \frac{|\{\mathsf{Sci-Fiction}\}|}{|\{\mathsf{Romance},\mathsf{Sci-Fiction},\mathsf{Drama},\mathsf{Mystery},\mathsf{Action},\mathsf{Crime}\}|} = \frac{5}{6} \approx 0.833 \\ & \mathsf{Dissim}(0150,\,0553) = 1 - \frac{|\{\mathsf{NULL}\}|}{|\{\mathsf{Drama},\mathsf{Romance},\mathsf{Fiction},\mathsf{Action},\mathsf{Sci-Fiction},\mathsf{Thriller},\mathsf{Horror}\}|} = 1 \\ & \mathsf{Dissim}(0150,\,1011) = 1 - \frac{|\{\mathsf{NULL}\}|}{|\{\mathsf{Drama},\mathsf{Romance},\mathsf{Fiction},\mathsf{Action},\mathsf{Crime},\mathsf{Sci-Fiction}\}|} = 1 \\ & \mathsf{Dissim}(050,\,3997) = 1 - \frac{|\{\mathsf{NULL}\}|}{|\{\mathsf{Action},\mathsf{Sci-Fiction},\mathsf{Thriller},\mathsf{Horror}\}|} = \frac{2}{4} = 0.5 \\ & \mathsf{Dissim}(0553,\,3997) = 1 - \frac{|\{\mathsf{Action},\mathsf{Sci-Fiction},\mathsf{Thriller},\mathsf{Horror},\mathsf{Crime}\}|}{|\{\mathsf{Action},\mathsf{Sci-Fiction},\mathsf{Thriller},\mathsf{Horror},\mathsf{Crime}\}|} = \frac{3}{5} = 0.6 \\ & \mathsf{Dissim}(1011,\,3997) = 1 - \frac{|\{\mathsf{NULL}\}|}{|\{\mathsf{Action},\mathsf{Sci-Fiction},\mathsf{Thriller},\mathsf{Horror},\mathsf{Crime}\}|} = 1 \end{aligned}$$

dissimilarity matrix:

	0001	0150	0553	1011	3997
0001	0	-	-	-	-
0150	0.6	0	-	-	-
0553	0.857	1	0	-	-
1011	1	1	0.5	0	-
3997	0.833	1	0.6	1	0

b)

merge 0553 and 1011 (0.5), we have:

	(//			
	0553&1011	0001	0150	3997
0553&1011	0	-	-	-
0001	1	0	-	-
0150	1	0.6	0	-
3997	1	0.833	1	0

merge 0001 and 0150 (0.6), we have:

	0553&1011	0001&0150	3997
0553&1011	0	-	-
0001&0150	1	0	-
3997	1	1	0

merge 0553&1011 and 3997 (0.6), we have:

	0001&0150	0553&1011&3997
0001&0150	0	-
0553&1011&3997	1	0

c)

Firstly, store all dissimilarities in a list, each dissimilarity stands for a pair of items; Secondly, sort the list by ASC;

Thirdly, travel the ascending list:

If the pair has not existed in any clusters, then the pair is a new cluster;

If both of two items of a pair have been included in different two clusters, then combine these two clusters;

If both of two items of a pair have been included in a same cluster, do noting;

If one item of a pair has existed in a cluster, but another one is not in any clusters, then put it into the cluster.

Let us can see a demo by Python:

```
D:\Msc_learn\homework_and_project\.env_h\Scripts\python.exe D:/Msc_learn/homework_and_project/data_mining/assignment2/improve_linkage.py
[(('0553', '1011'), 0.5), (('0001', '0150'), 0.6), (('0553', '3997'), 0.6), (('0001', '3997'), 0.833), (('0001', '0553'), 0.857), (('0001', '1011'))
[('0553', '1011']]
[('0553', '1011'], ['0001', '0150']]
[('0553', '1011', '3997'], ['0001', '0150']]
[('0001', '0150', '0553', '1011', '3997']]
```

The result is same as above result, it can reduce Space Complexity and do not need to update distances between two items.

The code reference:

```
ITEM_NUM = 5
def search_cluster(item, clusters):
   for cluster_index in range(len(clusters)):
    if item in clusters[cluster_index]:
           return cluster_index
    return -1
dissimilarity = {("0001", "0150"): 0.6, ("0001", "0553"): 0.857, ("0001", "1011"): 1, ("0001", "3997"):
0.833, ("0150",
                 "0553"): 1,
               ("0150", "1011"): 1, ("0150", "3997"): 1, ("0553", "1011"): 0.5, ("0553", "3997"): 0.6,
("1011", "3997"):1}
dissimilarity_asc = sorted(dissimilarity.items(), key=lambda item: item[1])
print(dissimilarity_asc)
print("*"*100)
clusters = []
for each pair, distance in dissimilarity asc:
    cluster_position1 = search_cluster(each_pair[0], clusters)
   cluster_position2 = search_cluster(each_pair[1], clusters)
   if cluster_position1 != -1 and cluster_position2 != -1:
       if cluster_position1 != cluster_position2:
           clusters[cluster position1] = clusters[cluster position1] + clusters[cluster position2]
           clusters.pop(cluster_position2)
       print(clusters)
   elif cluster position1 == -1 and cluster position2 != -1:
       clusters[cluster_position2].append(each_pair[0])
       print(clusters)
    elif cluster_position1 != -1 and cluster_position2 == -1:
       clusters[cluster_position1].append(each_pair[1])
       print(clusters)
   else:
       clusters.append(list(each_pair))
       print(clusters)
   if len(clusters[0]) == ITEM_NUM:
       break
```

Ans2

a)

	P1	P2	Р3	P4	P5	P6	P7	P8
P1	0							
P2	4	0						
Р3	8.49	6.32	0					
P4	3.61	3.61	5	0				
P5	7.81	5.39	1	4.47	0			
P6	7.21	4.47	2	4.12	1	0		
P7	8.06	4.12	7.28	7.21	6.32	5.39	0	
P8	2.24	3.61	6.40	1.41	5.83	5.39	7.62	0

b)

initial centroids:

	Group 1	Group 2	Group 3
Record	P1	P4	P7
Cluster Mean	(2,10)	(5,8)	(1,2)

Calculate distances to cluster mean:

	Group 1	Group 2	Group 3
	Distance to P1	Distance to P4	Distance to P7
P1	0	-	-
P2	4	3.61	4.12
P3	8.49	5	7.28
P4	-	0	-
P5	7.81	4.47	6.32
P6	7.21	4.12	5.39
P7	-	-	0
P8	2.24	1.41	7.62

New centroids:

	Group 1	Group 2	Group 3
Record	P1	Mean of (P2, P3, P4, P5, P6, P8)	P7
Cluster Mean	(2, 10)	(5.33, 5.833)	(1, 2)

i) the new cluster: C1={P1}, C2={P2, P3, P4, P5, P6, P8}, C3={P7}

ii) The centroids of the new clusters: (2, 10) of C1, (5.33, 5.833) of C2, (1, 2) of C3

Ans3

a)

P(Activist)=2/6, P(Follower)=2/6, P(Superstar)=2/6

A1		
P(Many Activist)=1/2	P(Many Follower)=0/2	P(Many Superstar)=2/2
P(Few Activist)=1/2	P(Few Follower)=2/2	P(Few Superstar)=0/2
A2		
P(Many Activist)=1/2	P(Many Follower)=2/2	P(Many Superstar)=1/2
P(Few Activist)=1/2	P(Few Follower)=0/2	P(Few Superstar)=1/2
A3		
P(High Activist)=1/2	P(High Follower)=2/2	P(High Superstar)=0/2
P(Low Activist)=1/2	P(Low Follower)=0/2	P(Low Superstar)=2/2

	P(X Activist)P(Activist)=0.042	Target: Activist
A	P(X Follower)P(Follower)=0	Predict: Superstar
	P(X Superstar)P(Superstar)=0.167	Trodisc. Superstail
	P(X Activist)P(Activist)=0.042	Target: Activist
В	P(X Follower)P(Follower)=0.333	Predict: Follower
	P(X Superstar)P(Superstar)=0	Tredict. Follower
	P(X Activist)P(Activist)=0.042	Target: Follower
С	P(X Follower)P(Follower)=0.333	Predict: Follower
	P(X Superstar)P(Superstar)=0	redict. Follower
	P(X Activist)P(Activist)=0.042	Target: Superstar
D	P(X Follower)P(Follower)=0	Predict: Superstar
	P(X Superstar)P(Superstar)=0.167	r redict. Superstar
	P(X Activist)P(Activist)=0.042	Target: Superstar
E	P(X Follower)P(Follower)=0	Predict: Superstar
	P(X Superstar)P(Superstar)=0.167	redict. Superstar
	P(X Activist)P(Activist)=0.042	Target: Follower
F	P(X Follower)P(Follower)=0.333	Predict: Follower
	P(X Superstar)P(Superstar)=0	r realet. Tellower

So, the classification rate is 4/6

b)

G	Activist	1/2*1/2*P(A3 Activist)*2/6=1/12*P(A3 Activist)	A3=High	1/24
			A3=Low	1/24
	Follower	0*0*P(A3 Follower)*2/6=0*P(A3 Follower)	A3=High	0
			A3=Low	0
	Superstar	2/2*1/2*P(A3 Superstar)*2/6=1/6*P(A3 Superstar)	A3=High	0
			A3=Low	1/6

Н	Activist	P(A1 Activist)*1/2*1/2*2/6=1/12*P(A1 Activist)	A1=Many	1/24
			A1=Few	1/24
	Follower	P(A1 Follower)*2/2*2/2*2/6=1/3*P(A1 Follower)	A1=Many	1/6
			A1=Few	1/6
	Superstar	P(A1 Superstar)*1/2*0*2/6=0*P(A1 Superstar)	A1=Many	0
			A1=Few	0

According to above table:

User G can be classified to Superstar with the largest probability 1/6 as A3=Low.

User H can be classified to Follower with the largest probability 1/6 as A1= Many or Few.