13	12	The points $A(-2, -1)$, $B(-2, 24)$, $C(22, 42)$
	b	and $D(22, 17)$ form a parallelogram as shown.
		The point $E(18, 39)$ lies on BC . The point F is
		The points $A(-2, -1)$, $B(-2, 24)$, $C(22, 42)$ and $D(22, 17)$ form a parallelogram as shown. The point $E(18, 39)$ lies on BC . The point F is the midpoint of AD .

- (i) Show that the equation of the line through A and D is 3x 4y + 2 = 0.
- (ii) Show that the perpendicular distance from *B* to the line through *A* and *D* is 20 units.
- (iii) Find the length of EC.
- (iv) Find the area of the trapezium *EFDC*.

(i) grad
$$AD = \frac{17+1}{22+2}$$

= $\frac{18}{24}$
= $\frac{3}{4}$
 $y + 1 = \frac{3}{4}(x + 2)$
 $4y + 4 = 3x + 6$

3x - 4y + 2 = 0

(ii) Use
$$B(-2, 24)$$
 and $3x - 4y + 2 = 0$

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

$$= \left| \frac{3(-2) - 4(24) + 2}{\sqrt{3^2 + (-4)^2}} \right|$$

$$= \left| \frac{-100}{\sqrt{25}} \right|$$

$$= |-20|$$

$$= 20 \qquad \therefore 20 \text{ units}$$

(iii)
$$d = \sqrt{(22-18)^2 + (42-39)^2}$$
 State Mean:
1.82/2
= $\sqrt{16+9}$ 0.83/1
= $\sqrt{25}$ 0.91/1
1.10/2
= 5 \therefore 5 units

(iv) Midpoint of AD $= \left(\frac{22-2}{2}, \frac{17-1}{2}\right)$ = (10, 8)

Now, distance (10, 8) to (22, 17):

$$d = \sqrt{(22-10)^2 + (17-8)^2}$$

$$= \sqrt{144+81}$$

$$= \sqrt{225}$$

$$= 15 \qquad \therefore 15 \text{ units}$$

.. Area of trapezium:

$$A = \frac{1}{2} \times 20(5 + 15)$$
= 10(20)
= 200 \therefore 200 units²

Board of Studies: Notes from the Marking Centre

 Most candidates found the gradient and then, using an appropriate point, found the required equation. Some correctly substituted two appropriate points into the given equation to establish the required result.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

HSC Worked Solutions projectmaths.com.au

Common problems were:

- using the incorrect formula to find the gradient
- using an incorrect point, which meant they could not establish the equation of AD.
- (ii) Most candidates found the required distance using the correct formula. Some attempted to find the equation of the perpendicular line from B to AD, then the point of intersection of this line with AD, and then applied the distance formula to give the result of 20 units.

Common problems were:

- not including absolute value notation in their response
- using the incorrect formula for perpendicular distance.
- (iii) This question was well done by most candidates.

Common problems were:

arithmetic errors, such as

$$\sqrt{(18-22)^2 + (39-42)^2} = 4+3$$
$$= 7$$

using the incorrect formula

$$EC = \sqrt{(18-22)^2 - (39-42)^2}$$
 for the distance of EC.

(iv) Most candidates correctly used either the formula for the area of a trapezium or the formula for the area of a triangle.

Common problems were:

- not using their result from (b) (ii) in their answer
- using the incorrect value of h = 25 for the height of the trapezium.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/