Redes Definidas por Software: Monitoramento Sensível ao Contexto

Lucas Powaczuk¹, Leonardo da C. Marcuzzo², Luiz E. G. da Silva¹, Vania Freitas¹, Tassiana Kautzmann¹, Roseclea D. Medina¹

¹Programa de Pós-Graduação em Informática – Universidade Federal de Santa Maria (PPGI/UFSM)

Avenida Roraima, 1000 - 97.105-900 - Santa Maria - RS - Brazil

²Grupo de Redes e Computação Aplicada – (GRECA/UFSM)

{lucaspw12, luizevandro.silva, 2.vania, tassik, roseclea.medina}@gmail.com, lmarcuzzo@inf.ufsm.br

Abstract. This paper focuses on monitoring systems to Software-Defined Networks (SDN), making a analysis of three tools developed over the last year: FlowCover, SUMA and EnterpriseVisor. With this study it's proposed to highlight the main features of each tool, detecting its effectiveness in the context-awareness aspect. It starts with a review on the subject, which aims to develop a context-aware monitoring tool for SDN.

Resumo. Este trabalho enfoca sistemas de monitoramento para Redes Definidas por Software, fazendo uma análise de três ferramentas desenvolvidas no último ano: FlowCover, SUMA e EnterpriseVisor. Propõe-se com o estudo destacar as características principais de cada uma das ferramentas, detectando sua eficácia no aspecto de sensibilidade ao contexto. Parte-se de uma revisão sobre o tema, que objetiva desenvolver uma ferramenta a sensível ao contexto para monitoramento de SDNs.

1. Introdução

Redes Definidas por Software ou *Software Defined Network (SDN)* caracterizam-se como um conceito emergente no mundo de redes, caracterizando uma mudança paradigmática. Seu caráter revolucionário propõe transformações nas formas de operações conhecidas da atualidade, especialmente por separar o plano lógico dos equipamentos, promovendo a centralização do controle em uma entidade gerenciadora da rede [Kreutz et al. 2015].

Em redes tradicionais, o gerenciamento é uma tarefa complexa que na maioria das vezes requer a configuração individual de cada equipamento, fragilizando o processo de monitoramento da rede na sua totalidade. Aliado a isso, está a dificuldade em detectar e/ou resolver falhas emergentes no uso, de forma dinâmica, caracterizando uma rede nada ou pouco sensível ao contexto.

O conceito de rede sensível ao contexto indica para a capacidade de adaptação da rede de acordo com as demandas evidenciadas no contexto, através da coleta de dados/informações, "para tomar a decisão ideal para a determinada situação de forma automática" [Burceanu et al. 2013]. Considera-se contexto de rede como um conjunto de

atributos que caracterizam uma determinada rede. Conforme [Wang et al. 2014] podem ser informações dos equipamentos e nós (*nodes*), informações do *link*, como perda de pacotes, atraso e *jitter*, largura de banda do controlador, informações estatísticas dos fluxos, entre outros

Nesta perspectiva, este trabalho enfoca sistemas de monitoramento para ambientes SDN, fazendo uma análise de 3 ferramentas desenvolvidas no último ano: o FlowCover, SUMA e EnterpriseVisor. Propõe-se com o estudo destacar as características principais de cada uma das ferramentas, detectando sua eficácia no quesito sensibilidade ao contexto. Logo, o interesse é investigar ferramentas de monitoramento com vistas a detectar características e funções que possam subsidiar a construção pretendida. Ressalta-se, desta forma para o caráter exploratório do estudo apresentado, justificando sua relevância na divulgação e socialização de dados coletados na pesquisa em desenvolvimento.

2. Sistemas de Monitoramento em SDN

Atualmente vários estudos vêm destacando ferramentas de monitoramento para ambientes SDN, evidenciando um campo de estudo em ascendência. [Kreutz et al. 2015] ao apresentar uma revisão sistêmica sobre o tema, destaca os seguintes sistemas de monitoramento em redes definidas por software: BISmark, DCM, FleXam, FlowSense, Measurement Model, OpenNetMon, OpenSample, OpenSketch, OpenTM, PaFloMon e PayLess.

Já no estudo realizado por [Yassine et al. 2015], são listados 15 ferramentas de monitoramento, dentre as quais estão: *OpenNetMon*, *iSTAMP*, *OpenTM*, *PayLess*, *FlowSense*, *Zhang*, *DREAM*, *Baadaat*, *HONE*, *PLANCK*, *OpenSample* e *OpenSketch* e as ferramentas desenvolvidas por [Jose et al. 2011], [Moshref et al. 2013] e [Dusi et al. 2014] as quais não receberam denominação específica.

A revisão desenvolvida para o presente trabalho identificou três ferramentas recentes que são: FlowCover, SUMA e EnterpriseVisor, as quais não foram mencionadas nas revisões sistêmicas acima mencionadas. A primeira ferramenta, o FlowCover, é um framework de monitoramento de baixo custo operacional e com alta precisão de monitoramento. O sistema utiliza pequena carga de recursos, pois ele agrega mensagens do tipo pedido e resposta, otimizando a frequencia de pollings (consultas) nos agentes, através do módulo Flow Stat Aggregator (figura 1). Os resultados mostraram que o uso do FlowCover diminuiu o overhead causado pelas funções de monitoramento da rede em até 50% dos casos.

Figura 1. Funcionamento do sistema FlowCover

O segundo sistema, o *SUMA*, é um *middlebox* de monitoramento inteligente que fornece controle, filtro e monitoramento [Choi et al. 2014]. Sua característica principal é a facilidade de monitorar eventos de detecção de anomalias e de filtragem de tráfego. Sua proposta engloba eventos para verificar *status* dos *switches*, inspeção de tráfego, modificação de mensagens, detecção de anomalias de rede e identificação de possíveis ataques. Seu custo operacional é baixo em eventos de detecção e filtragem entre controladores e *switches OpenFlow*. Sua implementação em hardware e software conseguiu atingir uma capacidade de processamento de pacotes de até 10Gbps.

Por último o *EnterpriseVisor*, é um sistema de gerenciamento de recursos de rede, que funciona dividindo a rede em *slices* (partes), conforme a figura 2, monitorando e alocando os recursos dinamicamente entre as partes [Chen et al. 2014]. Seu funcionamento ocorre a partir de um sistema de tomada de decisão baseado em regras pré-definidas, de modo a utilizar mais eficientemente os recursos da rede.

Figura 2. Sistema EnterpriseVisor segmentando a rede em slices.

O *EnterpriseVisor* utiliza o *FlowVisor*, que é um mecanismo de virtualização de rede, onde sua função é permitir que múltiplas redes lógicas possam compartilhar a mesma infraestrutura física conforme [Kreutz et al. 2015]. Através do *FlowVisor*, a rede é dividida em instâncias (*slices*) onde cada *slice* pode requisitar uma quantidade de recursos diferente das demais partes [Chen et al. 2014], melhorando a utilização de recursos ociosos.

2. Sistemas de Monitoramento em SDN

A partir da caracterização das três ferramentas de monitoramento buscou-se identificar o sistema mais indicado para o contexto de redes sensíveis. Considera-se, nesta direção, a configuração de uma rede inteligente, ou seja, que tenha capacidade de se adaptar ao ambiente/contexto, realizando tarefas de forma dinâmica e automática. O quadro abaixo apresenta as ferramentas analisadas destacando características relativas à condição do monitoramento, tipos de funções suportadas, custo operacional e funcionamento:

Tabela 1. Análise das ferramentas de monitoramento para SDNs:

Aplicação	Funções	Custo operacional	Funcionamento
FlowCover	Estáticas	Baixo (software)	Monitoramento de Flows
SUMA	Estáticas	Alto (hardware e software)	Monitoramento e detecção de anomalias
EnterpriseVisor	Dinâmicas	Alto (software)	Alocação dinâmica de recursos da rede

Dentre as ferramentas de monitoramento analisadas, o sistema mais indicado no quesito considerado foi o *EnterpriseVisor*. Com esta ferramenta é possível, dentre outros, configurar uma rede com foco na priorização de serviço/aplicação, incrementar a sensibilidade ao contexto através de seu sistema dinâmico de tomada de decisões, otimizar recursos ociosos e redistribuir estes nas demandas manifestas, através da alocação dinâmica e de forma automática. Conclui-se, desta forma, que as ferramentas de monitoramento sensíveis ao contexto para ambiente de redes definidas por software precisam ser maleáveis ao contexto exigindo uma alta capacidade de coleta e especialmente de tratamento de informações, de modo a adaptar-se ao contexto.

Referências

- Chen, J., Ma, Y., Kuo, H. and Hung, W. (2014). EnterpriseVisor: A Software Defined Enterprise Network Resource Management Engine. p. 381–384.
- Choi, T., Song, S., Park, H., Yoon, S. and Yang, S. (2014). SUMA: Software-defined unified monitoring agent for SDN. IEEE/IFIP NOMS 2014 IEEE/IFIP Network Operations and Management Symposium: Management in a Software Defined World,
- Kreutz, D., Rothenberg, C. E., Ieee, M., et al. (2015). Software-Defined Networking: A Comprehensive Survey. v. 103, n. 1.
- Su, Z., Wang, T., Xia, Y. and Hamdi, M. (2014). FlowCover: Low-cost Flow Monitoring Scheme in Software Defined Networks.
- Yassine, A., Rahimi, H. and Shirmohammadi, S. (2015). Software Defined Network Traffic Measurement: Current Trends and Challenges. n. April.
- L. Jose, M. Yu, and J. Rexford, "Online measurement of large traffic aggregates on commodity switches," in Proc. of the USENIX HotICE Workshop, 2011.
- M. Moshref, M. Yu, and R. Govindan. (2013). Resource/accuracy tradeoffs in software-defined measurement, in Proc. Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN '13, pp. 73–78.
- M. Dusi, R. Bifulco, F. Gringoli, and F. Schneider, Reactive logic in software-defined networking: Measuring flow-table requirements, in Proc. Intern. Wireless Comm. and Mobile Computing Conf. (IWCMC), pp. 340-345, 4-8 Aug. 2014.
- Burceanu, E.; Dobre, C.; Cristea, V.; Costan, A.; Antoniu, G. (2013) "Distributed Data Storage in Support for Context-Aware Applications". In: 12th International Symposium on Parallel and Distributed Computing, IEEE.