Chapter 5: Differentiation

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 5.1. Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is a constant.

Proof.

(1) Write

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y|$$

if $x \neq y$.

(2) Given any $y \in \mathbb{R}$,

$$\left| \frac{f(x) - f(y)}{x - y} \right| \to 0 \text{ as } x \to y,$$

or |f'(y)| = 0.

(3) Or using ε - δ argument. Fix $y \in \mathbb{R}$. Given any $\varepsilon > 0$, there exists $\delta = \varepsilon > 0$ such that

$$\left| \frac{f(x) - f(y)}{x - y} - 0 \right| \le |x - y| < \delta = \varepsilon$$

whenever $|x - y| < \delta$. That is, |f'(y)| = 0.

(4) So f'(y) = 0 for any $y \in \mathbb{R}$. By Theorem 5.11 (b), f is a constant.

Exercise 5.2. Suppose f'(x) > 0 in (a,b). Prove that f is strictly increasing in (a,b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$
 $(a < x < b).$

Proof. Let E = (a, b).

(1) Theorem 5.10 implies that for any $a there exists <math display="inline">\xi \in (p,q)$ such that

$$f(p) - f(q) = (p - q)f'(\xi).$$

Since $\xi \in (p,q) \subseteq E$, by assumption $f'(\xi) > 0$. Hence $f(p) - f(q) = (p-q)f'(\xi) < 0$ (here p-q < 0), or

if p < q. Therefore, f is strictly increasing in (a, b).

- (2) Show that f is one-to-one in E if f is strictly increasing in E. If f(p) = f(q), then it cannot be p > q or p < q ((1)). So that p = q, or f is injective.
- (3) Show that g is well-defined. Theorem 5.2 and Theorem 4.17.
- (4) Show that $g'(f(x)) = \frac{1}{f'(x)}$. Given $y \in f(E)$, say y = f(x) for some $x \in E$. Given any $s \in f(E)$ with $s \neq y$. Here s = f(t) for some $t \in E$ and $t \neq x$.

$$\lim_{s \to y} \frac{g(s) - g(y)}{s - y} = \lim_{f(t) \to f(x)} \frac{g(f(t)) - g(f(x))}{f(t) - f(x)}$$

$$= \lim_{t \to x} \frac{t - x}{f(t) - f(x)}$$

$$= \lim_{t \to x} \frac{1}{\frac{f(t) - f(x)}{t - x}}$$

$$= \frac{1}{f'(x)}. \qquad (f' > 0)$$

Here $s \to y$ if and only if $t \to x$ since both f and g are continuous and one-to-one. Hence g is differentiable and $g'(f(x)) = \frac{1}{f'(x)}$.

Exercise 5.3. Suppose g is a real function on \mathbb{R}^1 , with bounded derivative (say $|g'| \leq M$). Fix $\varepsilon > 0$, and define $f(x) = x + \varepsilon g(x)$. Prove that f is one-to-one if ε is small enough. (A set of admissible values of ε can be determined which depends only on M.)

Proof.

(1) Note that $f'(x) = 1 + \varepsilon g'(x)$ (Theorem 5.3). Since $|g'| \le M$,

$$1 - \varepsilon M < f'(x) < 1 + \varepsilon M$$
.

(2) Pick

$$\varepsilon = \frac{1}{M+1} > 0.$$

Thus,

$$f'(x) \ge \frac{1}{M+1} > 0.$$

By Exercise 5.2, f(x) is strictly increasing in \mathbb{R} or one-to-one in \mathbb{R} .

Exercise 5.4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where $C_0, ..., C_n$ are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Let

$$g(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1} \in \mathbb{R}[x].$$

Then g(0) = g(1) = 0, and $g'(x) = C_0 + C_1 x + \cdots + C_{n-1} x^{n-1} + C_n x^n$. By the mean value theorem (Theorem 5.10), there exists a point $\xi \in (0,1)$ at which

$$g(1) - g(0) = g'(\xi)(1 - 0),$$

or $g'(\xi)=0$. That is, there exists a real root $x=\xi$ between 0 and 1 at which $C_0+C_1x+\cdots+C_{n-1}x^{n-1}+C_nx^n=0$. \square

Exercise 5.5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Proof. Given any x > 0. Since f is differentiable for every x > 0, f is differentiable on [x, x+1]. By Theorem 5.2 and Theorem 5.10 (the mean value theorem), there is a point $\xi \in (x, x+1)$ at which

$$f(x+1) - f(x) = [(x+1) - x]f'(\xi)$$

or

$$g(x) = f'(\xi).$$

As $x \to +\infty$, $\xi \to +\infty$. Hence

$$\lim_{x \to +\infty} g(x) = \lim_{\xi \to +\infty} f'(\xi) = 0.$$

Exercise 5.6. Suppose

- (a) f is continuous for $x \ge 0$,
- (b) f'(x) exists for x > 0,
- (c) f(0) = 0,
- (d) f' is monotonically increasing.

Put

$$g(x) = \frac{f(x)}{r} \qquad (x > 0)$$

and prove that g is monotonically increasing.

Proof.

(1) It suffices to show that $g'(x) \ge 0$ for x > 0 (Theorem 5.11(a)), that is, to show that

$$g'(x) = \frac{xf'(x) - f(x)}{x^2} \ge 0$$
 $(x > 0),$

or

$$xf'(x) - f(x) \ge 0 \qquad (x > 0)$$

since $x^2 > 0$ for all nonzero x.

(2) Given x>0. By (a)(b), we apply the mean value theorem (Theorem 5.10) on f to get

$$f(x) - f(0) = (x - 0)f'(\xi)$$

for some $\xi \in (0, x)$. By (c),

$$f(x) = xf'(\xi).$$

By (d),

$$f(x) = xf'(\xi) \le xf'(x).$$

Hence $xf'(x) - f(x) \ge 0$, or g is monotonically increasing.

Note. g is increasing strictly if f is increasing strictly.

Exercise 5.7. Suppose f'(x), g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$$

(This holds also for complex functions.)

Proof.

$$\frac{f'(t)}{g'(t)} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}}$$

$$= \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{f(t) - f(x)}{t - x}}$$
(Both limits exist and $g' \neq 0$)
$$= \lim_{t \to x} \frac{f(t)}{g(t)}.$$
($f(x) = g(x) = 0$)

This proof is also true for complex functions. \Box

Exercise 5.8. Suppose f'(x) is continuous on [a,b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

 $\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$. (This could be expressed by saying f is uniformly differentiable on [a,b] if f' is continuous on [a,b].) Does this hold for vector-valued functions too?

Proof.

(1) Since f'(x) is continuous on a compact set [a, b], f'(x) is uniformly continuous on [a, b]. So given any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f'(t) - f'(x)| < \varepsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$.

(2) For such t < x in (1), by the mean value theorem (Theorem 5.10), there exists a point $\xi \in (t, x)$ at which

$$f'(\xi) = \frac{f(t) - f(x)}{t - x}.$$

Note that ξ is also satisfying $0<|t-\xi|<|t-x|<\delta$ and $a\leq \xi\leq b$. Hence by (1) we also have

$$|f'(\xi) - f'(x)| < \varepsilon,$$

or

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon.$$

(3) Suppose $\mathbf{f}'(x)$ is continuous on [a,b] and $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x) \right| < \varepsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$.

(a) Write

$$\mathbf{f}(x) = (f_1(x), \dots, f_k(x)) \in \mathbb{R}^k.$$

By Remarks 5.16, $\mathbf{f}(x)$ is differentiable at a point x if and only if each f_1, \ldots, f_k is differentiable at x. So that

$$\mathbf{f}'(x) = (f_1'(x), \dots, f_k'(x)) \in \mathbb{R}^k.$$

By Theorem 4.10, $\mathbf{f}'(x)$ is continuous if and only if each f_1, \ldots, f_k is continuous.

(b) Similar to (1)(2), Since $f_i'(x)$ is continuous on a compact set [a,b] where $1 \leq i \leq k$, $f_i'(x)$ is uniformly continuous on [a,b]. So given any $\varepsilon > 0$ there exists $\delta_i > 0$ such that

$$|f_i'(t) - f_i'(x)| < \frac{\varepsilon}{\sqrt{k}}$$

whenever $0<|t-x|<\delta_i,\ a\le x\le b,\ a\le t\le b.$ Take $\delta=\min_{1\le i\le k}\delta_i>0.$

(c) For such t < x in (1), by the mean value theorem (Theorem 5.10), there exists a point $\xi_i \in (t, x)$ at which

$$f_i'(\xi_i) = \frac{f_i(t) - f_i(x)}{t - r}.$$

Note that ξ_i is also satisfying $0<|t-\xi_i|<|t-x|<\delta$ and $a\leq \xi_i\leq b$. Hence by (1) we also have

$$|f_i'(\xi_i) - f_i'(x)| < \frac{\varepsilon}{\sqrt{k}},$$

or

$$\left| \frac{f_i(t) - f_i(x)}{t - x} - f_i'(x) \right| < \frac{\varepsilon}{\sqrt{k}}.$$

(d) Hence

$$\left|\frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x)\right| = \left(\sum_{i=1}^{k} \left|\frac{f_i(t) - f_i(x)}{t - x} - f_i'(x)\right|^2\right)^{\frac{1}{2}} < \varepsilon.$$

Exercise 5.9. Let f be a continuous real function on \mathbb{R}^1 , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Dose it follow that f'(0) exists?

Proof.

(1) Show that f'(0) = 3. It is equivalent to show that

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3.$$

Write F(x) = f(x) - f(0) and G(x) = x - 0 on \mathbb{R}^1 . So that

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{F(x)}{G(x)} = 0.$$

(2) Note that

$$\lim_{x \to 0} \frac{F'(x)}{G'(x)} = \lim_{x \to 0} \frac{f'(x)}{1} = 3.$$

(3) Since f is continuous on \mathbb{R}^1 , F is continuous on \mathbb{R}^1 . Hence

$$\lim_{x \to 0} F(x) = F(\lim_{x \to 0} x) = F(0) = 0.$$

Also, G is continuous on \mathbb{R}^1 implies that

$$\lim_{x \to 0} G(x) = G(\lim_{x \to 0} x) = G(0) = 0.$$

(4) Apply L'Hospital's rule (Theorem 5.13) to (2)(3), we have

$$\lim_{x \to 0} \frac{F(x)}{G(x)} = 3,$$

or f'(0) = 3.

Exercise 5.10.

Exercise 5.11. Suppose f is defined in a neighborhood of x, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show by an example that the limit may exist even if f''(x) dose not. (Hint: Use Theorem 5.13.)

Proof (Theorem 5.13).

(1) Write F(h) = f(x+h) + f(x-h) - 2f(x) and $G(h) = h^2$. It is equivalent to show that

$$\lim_{h \to 0} \frac{F(h)}{G(h)} = f''(x).$$

We might apply Theorem 5.13 (L'Hospital rule) to get it.

(2) Show that $\lim_{h\to 0} F(h) = 0$ and $\lim_{h\to 0} G(h) = 0$. It is clear that $\lim_{h\to 0} G(h) = \lim_{h\to 0} h^2 = 0$ since $x\mapsto x^2$ is continuous on \mathbb{R}^1 . Besides, since f is continuous at x (by applying Theorem 5.2 twice),

$$\lim_{h \to 0} F(h) = f(x) + f(x) - 2f(x) = 0.$$

(3) Show that

$$\lim_{h \to 0} \frac{F'(h)}{G'(h)} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

is well-defined. Since f''(x) exists in a neighborhood B(x;r) of x (where r > 0), f'(x) exists and is continuous in B(x;r) (Theorem 5.2). As $0 < |h| < \frac{r}{2}$,

$$x + h \in B\left(x + h; \frac{r}{2}\right) \subseteq B(x; r)$$

and

$$x - h \in B\left(x - h; \frac{r}{2}\right) \subseteq B(x; r).$$

So f'(x+h) and f'(x-h) exist in B(x;r) as $0<|h|<\frac{r}{2}$. Hence

$$\lim_{h \to 0} \frac{F'(h)}{G'(h)} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

is well-defined (Theorem 5.3 and Theorem 5.5 (the chain rule)).

(4) Show that

$$\lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h} = f''(x).$$

Since f''(x) exists, by definition

$$\lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = f''(x)$$

and

$$\lim_{h \to 0} \frac{f'(x-h) - f'(x)}{-h} = f''(x).$$

Sum up two expressions to get

$$2f''(x) = \lim_{h \to 0} \frac{f'(x-h) - f'(x-h)}{h}.$$

- (5) By (2)(3)(4) and Theorem 5.13 (L'Hospital rule), the result is established.
- (6) Given f(x) = x|x| on \mathbb{R}^1 . Show that

$$\lim_{h \to 0} \frac{f(h) + f(-h) - 2f(0)}{h^2} = 0$$

but f''(x) does not exist at x = 0. Clearly,

$$\lim_{h \to 0} \frac{f(h) + f(-h) - 2f(0)}{h^2} = \lim_{h \to 0} \frac{h|h| + (-h)| - h| - 2 \cdot 0}{h^2}$$

$$= \lim_{h \to 0} \frac{h|h| - h|h| - 0}{h^2}$$

$$= \lim_{h \to 0} 0$$

$$= 0.$$

But f''(x) does not exist by Exercise 5.12.

Exercise 5.12. If $f(x) = |x|^3$, compute f'(x), f''(x) for all real x, and show that $f^{(3)}(0)$ does not exist.

Proof.

(1) Write

$$f(x) = \begin{cases} x^3 & (x \ge 0), \\ -x^3 & (x \le 0). \end{cases}$$

(2) Show that f'(x) = 3x|x|. It is trivial that

$$f'(x) = \begin{cases} 3x^2 & (x > 0), \\ -3x^2 & (x < 0). \end{cases}$$

Note that

$$\lim_{x \to 0} f'(x) = 0.$$

Apply the same argument in Exercise 5.9, we have

$$f'(0) = 0.$$

Hence f' exists and f'(x) = 3x|x| for any $x \in \mathbb{R}$.

(3) Show that f''(x) = 6|x|. Similar to (2).

$$f''(x) = \begin{cases} 6x & (x > 0), \\ -6x & (x < 0). \end{cases}$$

Note that

$$\lim_{x \to 0} f''(x) = 0.$$

Apply the same argument in Exercise 5.9, we have

$$f''(0) = 0.$$

Hence f'' exists and f''(x) = 6|x| for any $x \in \mathbb{R}$.

(4) Show that $f^{(3)}(0)$ does not exist.

$$f'''(x) = \begin{cases} 6 & (x > 0), \\ -6 & (x < 0). \end{cases}$$

There are some proofs for showing that $f^{(3)}(0)$ does not exist.

(a) Since

$$\lim_{t \to 0+} \frac{f''(t) - f''(0)}{t - 0} = \lim_{t \to 0+} \frac{6t}{t} = 6$$

and

$$\lim_{t \to 0-} \frac{f''(t) - f''(0)}{t - 0} = \lim_{t \to 0-} \frac{-6t}{t} = -6,$$

 $f^{(3)}(0)$ does not exist.

(b) (Reductio ad absurdum) If f were differentiable on \mathbb{R}^1 , then

$$\lim_{t \to 0+} f'''(t) = 6$$

and

$$\lim_{t \to 0-} f'''(t) = -6,$$

or f''' has a simple discontinuity at x = 0, contrary to Corollary to Theorem 5.12.

Note. Given k > 0. We can construct one real function f on \mathbb{R}^1 , say

$$f(x) = \begin{cases} |x|^k & (k \text{ is odd}), \\ x|x|^{k-1} & (k > 0 \text{ is even}), \end{cases}$$

such that all $f^{(0)}(0) = \cdots = f^{(k-1)}(0) = 0$ exist but $f^{(k)}(0)$ does not exist.

Exercise 5.13.

Exercise 5.14. Let f be a differentiable real function defined in (a,b). Prove that f is convex if and only if f' is monotonically increasing. Assume next f''(x) exists for every $x \in (a,b)$, and prove that f is convex if and only if $f''(x) \geq 0$ for all $x \in (a,b)$.

Proof.

- (1) Show that f' is monotonically increasing if f is convex.
 - (a) Since f is convex, by definition (Exercise 4.23)

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

whenever a < x < b, a < y < b, $0 < \lambda < 1$.

(b) As $x \neq y$, we have

$$f(y) - f(x) \ge \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}$$
$$= \frac{f(x + \lambda(y - x)) - f(x)}{\lambda(y - x)} \cdot (y - x)$$

and let $\lambda \to 0$ to get

$$f(y) - f(x) \ge f'(x)(y - x)$$

(since f'(x) exists). Similarly, we have

$$f(x) - f(y) \ge f'(y)(x - y).$$

(c) Given any y > x, we have

$$f'(y)(y-x) > f(y) - f(x) > f'(x)(y-x).$$

Hence $f'(y) \ge f'(x)$ whenever y > x, or f' is monotonically increasing.

- (2) Show that f is convex if f' is monotonically increasing. Given any y > x and any $0 < \lambda < 1$.
 - (a) By Theorem 5.10 (the mean value theorem), there is a point $x < \xi < y$ such that

$$f(y) - f(x) = f'(\xi)(y - x).$$

Since f' is monotonically increasing,

$$f'(y)(y-x) \ge f(y) - f(x) \ge f'(x)(y-x).$$

(b) Write $z = \lambda x + (1 - \lambda)y$. Hence

$$f(y) - f(z) \ge f'(z)(y - z),$$

$$f(z) - f(x) < f'(z)(z - x),$$

or

$$f(y) \ge f(z) + f'(z)(y - z),$$

$$f(x) \ge f(z) + f'(z)(x - z),$$

or

$$\lambda f(x) + (1 - \lambda)f(y) \ge \lambda [f(z) + f'(z)(x - z)]$$

$$+ (1 - \lambda)[f(z) + f'(z)(y - z)]$$

$$= f(z)$$

$$= f(\lambda x + (1 - \lambda)y).$$

Hence f is convex.

(3) Show that $f''(x) \ge 0$ if f is convex and f'' exists. By (1), f' is monotonically increasing since f is convex. Given any $x \ne y$, we have

$$\frac{f'(y) - f'(x)}{y - x} \ge 0.$$

Let $y \to x$, we have $f''(x) \ge 0$ if f'' exists.

(4) Show that f is convex if f'' exists and $f''(x) \ge 0$. By Theorem 5.11(a), f' is monotonically increasing. By (2), f is convex.

Exercise 5.15 (Landau-Kolmogorov inequality on the half-line). Suppose $a \in \mathbb{R}^1$, f is a twice-differentiable real function on (a, ∞) , and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2$$
.

(Hint: If h > 0, Taylor's theorem shows that

$$f'(x) = \frac{1}{2h}[f(x+2h) - f(x)] - hf''(\xi)$$

for some $\xi \in (x, x + 2h)$. Hence

$$|f'(x)| \le hM_2 + \frac{M_0}{h}.$$

To show that $M_1^2 = 4M_0M_2$ can actually happen, take a = -1, define

$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty), \end{cases}$$

and show that $M_0=1$, $M_1=4$, $M_2=4$. Does $M_1^2\leq 4M_0M_2$ hold for vector-valued functions too?

Note.

(1) Write

$$M_1 \le 2M_0^{\frac{1}{2}} M_2^{\frac{1}{2}}.$$

2 is called the Landau-Kolmogorov constant, which is the best possible by the above example.

(2) In general, suppose $a \in \mathbb{R}^1$, f is a nth differentiable real function on (a, ∞) , and M_0 , M_k , M_n are the least upper bounds of |f(x)|, $|f^{(k)}(x)|$, $|f^{(n)}(x)|$, respectively, on (a, ∞) where $1 \le k < n$. Then

$$M_k \le C(n,k) M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}}.$$

Proof.

(1) Consider some trivial cases.

- (a) If $M_0 = 0$, then f(x) = 0 on $(a, +\infty)$. So that f'(x) = f''(x) = 0 on $(a, +\infty)$, or $M_1 = M_2 = 0$. The inequality holds.
- (b) If $M_2 = 0$, then f''(x) = 0 on $(a, +\infty)$. So that $f'(x) = \alpha$ for some constant $\alpha \in \mathbb{R}^1$ (Theorem 5.11(b)), and $f(x) = \alpha x + \beta$ for some constant $\beta \in \mathbb{R}^1$ (by applying Theorem 5.11(b) to $x \mapsto f(x) \alpha x$). Hence $M_1 = |\alpha|$ and

$$M_0 = \begin{cases} +\infty & (\alpha \neq 0), \\ |\beta| & (\alpha = 0). \end{cases}$$

In any case, the inequality holds.

- (c) If $M_0 = +\infty$ and $M_2 \neq 0$, there is nothing to do.
- (d) If $M_2 = +\infty$ and $M_0 \neq 0$, there is nothing to do.
- (2) By (1), we suppose that $0 < M_0 < +\infty$ and $0 < M_2 < +\infty$. Given $x \in (a, +\infty)$ and h > 0. By Taylor's theorem (Theorem 5.15):

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(\xi)$$

for some $\xi \in (x, x + 2h) \subseteq (a, +\infty)$. Thus

$$2h|f'(x)| \le |f(x+2h)| + |f(x)| + 2h^2|f''(\xi)|$$

$$\le 2M_0 + 2h^2M_2,$$

$$|f'(x)| \le \frac{M_0}{h} + hM_2$$

holds for all h > 0. In particular, take

$$h = \sqrt{\frac{M_0}{M_2}}$$

to get

$$|f'(x)| \le 2\sqrt{M_0 M_2}$$
.

Thus $2\sqrt{M_0M_2}$ is an upper bound of |f'(x)| for all $x \in (a, +\infty)$. Hence

$$M_1 \leq 2\sqrt{M_0 M_2}$$

or

$$M_1^2 \le 4M_0M_2.$$

(3) Define

$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty). \end{cases}$$

Show that $M_0 = 1$, $M_1 = 4$, $M_2 = 4$. Similar to Exercise 5.12,

$$f'(x) = \begin{cases} 4x & (-1 < x \le 0), \\ \frac{4x}{(x^2+1)^2} & (0 \le x < \infty). \end{cases}$$

(Here $\lim_{x\to 0+} f'(x) = 0$ and $\lim_{x\to 0-} f'(x) = 0$. So f'(0) = 0 by Exercise 5.9.) Also,

$$f''(x) = \begin{cases} 4 & (-1 < x \le 0), \\ \frac{-12x^2 + 4}{(x^2 + 1)^3} & (0 \le x < \infty). \end{cases}$$

(Here $\lim_{x\to 0+} f''(x) = 4$ and $\lim_{x\to 0-} f''(x) = 4$. So f''(0) = 4 by Exercise 5.9.) Hence, $M_0 = 1$, $M_1 = 4$, $M_2 = 4$.

(4) Given

$$\mathbf{f}(x) = (f_1(x), \dots, f_k(x))$$

be a twice-differentiable vector-valued function from (a, ∞) to \mathbb{R}^k . and M_0 , M_1 , M_2 are the least upper bounds of $|\mathbf{f}(x)|$, $|\mathbf{f}'(x)|$, $|\mathbf{f}''(x)|$, respectively, on (a, ∞) . Show that

$$M_1^2 \le 4M_0M_2$$
.

Similar to (1), we suppose that $0 < M_0 < +\infty$ and $0 < M_2 < +\infty$. Given any $\mathbf{v} = (v_1, \dots, v_k) \in \mathbb{R}^k$, $\mathbf{v} \cdot \mathbf{f}$ is a twice-differentiable real function on (a, ∞) . Similar to (2), Given $x \in (a, +\infty)$ and h > 0. By Taylor's theorem (Theorem 5.15):

$$(\mathbf{v} \cdot \mathbf{f})(x+2h) = (\mathbf{v} \cdot \mathbf{f})(x) + 2h(\mathbf{v} \cdot \mathbf{f})'(x) + 2h^2(\mathbf{v} \cdot \mathbf{f})''(\xi)$$

for some $\xi \in (x, x+2h) \subseteq (a, +\infty)$. Thus by the Schwarz inequality (Theorem 1.35)

$$2h|(\mathbf{v}\cdot\mathbf{f})'(x)| \leq |(\mathbf{v}\cdot\mathbf{f})(x+2h)| + |(\mathbf{v}\cdot\mathbf{f})(x)| + 2h^{2}|(\mathbf{v}\cdot\mathbf{f})''(\xi)|$$

$$\leq |\mathbf{v}||\mathbf{f}(x+2h)| + |\mathbf{v}||\mathbf{f}(x)| + 2h^{2}|\mathbf{v}||\mathbf{f}''(\xi)|$$

$$\leq (2M_{0} + 2h^{2}M_{2})|\mathbf{v}|,$$

$$|(\mathbf{v}\cdot\mathbf{f})'(x)| \leq \left(\frac{M_{0}}{h} + hM_{2}\right)|\mathbf{v}|$$

holds for any \mathbf{v} and h > 0. In particular, we take

$$\mathbf{v} = \mathbf{f}'(y)$$

and

$$h = \sqrt{\frac{M_0}{M_2}}$$

to get

$$|\mathbf{f}'(x) \cdot \mathbf{f}'(y)| \le 2\sqrt{M_0 M_2} |\mathbf{f}'(y)| \le 2M_1 \sqrt{M_0 M_2}.$$

Note that x and y are arbitrary (in $(a, +\infty)$). In particular, we take x=y to get

$$|\mathbf{f}'(x)|^2 \le 2M_1 \sqrt{M_0 M_2}.$$

Thus $2M_1\sqrt{M_0M_2}$ is an upper bound of $|\mathbf{f}'(x)|^2$ for all $x \in (a, +\infty)$. Hence

$$M_1^2 \le 2M_1\sqrt{M_0M_2}$$

or

$$M_1^2 \le 4M_0M_2.$$

Supplement (Landau-Kolmogorov inequality on the real line). Suppose f is a twice-differentiable real function on $(-\infty, +\infty)$, and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on $(-\infty, +\infty)$. Prove that

$$M_1^2 \le 2M_0M_2.$$

Proof.

- (1) Similar to (1) in Landau-Kolmogorov inequality on the half-line, we suppose that $0 < M_0 < +\infty$ and $0 < M_2 < +\infty$.
- (2) Similar to (2) in Landau-Kolmogorov inequality on the half-line. Given $x \in \mathbb{R}^1$ and h > 0. By Taylor's theorem (Theorem 5.15):

$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(\xi_1)$$
 (I)

$$f(x-2h) = f(x) - 2hf'(x) + 2h^2f''(\xi_2)$$
 (II)

for some $\xi_1 \in (x, x+2h)$ and $\xi_2 \in (x, x-2h)$. So (I) subtracts (II):

$$f(x+2h) - f(x-2h) = 4hf'(x) + 2h^2f''(\xi_1) - 2h^2f''(\xi_2).$$

Thus

$$4h|f'(x)| \le |f(x+2h)| + |f(x-2h)| + 2h^2|f''(\xi_1)| + 2h^2|f''(\xi_2)|$$

$$\le 2M_0 + 4h^2M_2,$$

$$|f'(x)| \le \frac{M_0}{2h} + hM_2$$

holds for all h > 0. In particular, take

$$h = \sqrt{\frac{M_0}{2M_2}}$$

to get

$$|f'(x)| \le \sqrt{2M_0 M_2}.$$

Thus $\sqrt{2M_0M_2}$ is an upper bound of |f'(x)| for all $x \in \mathbb{R}^1$. Hence

$$M_1 \le \sqrt{2M_0M_2}$$

or

$$M_1^2 \le 2M_0M_2$$
.

Note.

(1) Write

$$M_1 \leq \sqrt{2} M_0^{\frac{1}{2}} M_2^{\frac{1}{2}}.$$

 $\sqrt{2}$ is called the Landau-Kolmogorov constant, which is the best possible.

(2) In general, suppose f is a nth differentiable real function on \mathbb{R}^1 , and M_0 , M_k , M_n are the least upper bounds of |f(x)|, $|f^{(k)}(x)|$, $|f^{(n)}(x)|$, respectively, on \mathbb{R}^1 where $1 \leq k < n$. Then

$$M_k \le C(n,k) M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}}.$$

Exercise 5.16. Suppose f is twice-differentiable on $(0,\infty)$, f'' is bounded on $(0,\infty)$, and $f(x) \to 0$ as $x \to \infty$. Prove that $f'(x) \to 0$ as $x \to \infty$. (Hint: Let $a \to \infty$ in Exercise 5.15.)

Proof.

- (1) Write $|f''| \leq M$ for some real M since f'' is bounded on $(0, \infty)$.
- (2) Given any a > 0. As in Exercise 5.15, define M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)| on (a, ∞) . Note that $M_2 \leq M$ for any a > 0 (by (1)). So that

$$M_1^2 \le 4M_0M_2 \le 4MM_0$$

for any a > 0.

(3) By assumption, $M_0 \to 0$ as $a \to \infty$. (So given any $\varepsilon > 0$, there exists a real A such that

$$0 \le M_0 < \frac{\varepsilon}{4M+1}$$

whenever $a \geq A$. Hence

$$M_1^2 \le 4MM_0 \le 4M \cdot \frac{\varepsilon}{4M+1} < \varepsilon.$$

whenever $a \geq A$.) Therefore $M_1^2 \to 0$ as $a \to \infty$, or $f'(x) \to 0$ as $x \to \infty$.

Exercise 5.17.

Exercise 5.18.

Exercise 5.19.

Exercise 5.20.

Exercise 5.21. Let E be a closed subset of \mathbb{R}^1 . We saw in Exercise 4.22, that there is a real continuous function f on \mathbb{R}^1 whose zero set is E. Is it possible, for each closed set E, to find such an f which is differentiable on \mathbb{R}^1 , or one which is n times differentiable, or even one which has derivatives of all orders on \mathbb{R}^1 ?

Exercise 5.22.

Exercise 5.23.

Exercise 5.24.

Exercise 5.25.

Exercise 5.26. Suppose f is differentiable on [a,b], f(a)=0, and there is a real number A such that $|f'(x)| \leq A|f(x)|$ on [a,b]. Prove that f(x)=0 for all $x \in [a,b]$. (Hint: Fix $x_0 \in [a,b]$, let

$$M_0 = \sup |f(x)|, \qquad M_1 = \sup |f'(x)|$$

for $a \le x \le x_0$. For any such x,

$$|f(x)| \le M_1(x_0 - a) \le A(x_0 - a)M_0.$$

Hence $M_0 = 0$ if $A(x_0 - a) < 1$. That is, f = 0 on $[a, x_0]$. Proceed.)

Proof (Hint).

- (1) If A = 0, then f'(x) = 0 or f(x) is constant on [a, b] (Theorem 5.11(b)). Since f(a) = 0, f(x) = 0 on [a, b].
- (2) Suppose that A > 0. Fix $x_0 \in [a, b]$, let

$$M_0 = \sup |f(x)|, \qquad M_1 = \sup |f'(x)|$$

for $a \le x \le x_0$. Since $|f'(x)| \le A|f(x)|$ on [a, b],

$$|f'(x)| \le A|f(x)| \le AM_0.$$

Since AM_0 is an upper bound for |f'(x)|,

$$M_1 \leq AM_0$$
.

(3) Given any $x \in [a, x_0]$. Since f is differentiable on $[a, x_0] \subseteq [a, b]$, by the mean value theorem (Theorem 5.10), there is $\xi \in (a, x)$ such that

$$f(x) - f(a) = f'(\xi)(x - a).$$

Note that f(a) = 0 by assumption. So that

$$|f(x)| = |f'(\xi)|(x-a)$$

$$\leq M_1(x-a) \qquad \text{(Definition of } M_1\text{)}$$

$$\leq AM_0(x-a) \qquad \text{((2))}$$

$$\leq AM_0(x_0-a). \qquad (x \in [a,x_0])$$

Since $AM_0(x_0 - a)$ is an upper bound for |f(x)|,

$$M_0 \le AM_0(x_0 - a).$$

Take

$$x_0 = \min\left\{\frac{1}{2A} + a, b\right\}$$

so that $M_0 \le AM_0(x_0 - a) \le \frac{M_0}{2}$. $M_0 = 0$ or f(x) = 0 on $[a, x_0]$.

(4) Take a partition

$$P = \{a = x_{-1}, x_0, \dots, x_n = b\}$$

of [a,b] such that each subinterval $[x_{i-1},x_i]$ satisfying $\Delta x_i = x_i - x_{i-1} < \frac{1}{2A}$. By (3), f(x) = 0 on $[x_{-1},x_0]$. Apply the same argument in (3), f(x) = 0 on $[x_0,x_1]$. Continue this process, f(x) = 0 on each subinterval and thus on the whole interval [a,b].

Exercise 5.27.

Exercise 5.28.

Exercise 5.29.