

Please use the bookmark to navigate

General information on RVT models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): nfet_acc, pfet_acc
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Sv@1hz: Gate noise voltage spectral density at 1Hz, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Aid: delta_Id/Id * sqrt(W.L)
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*1*W/(1*L+0+0*p_la) at Vds=Vdd/4V.
 - ✓ Avt : delta_Vt * sqrt(W.L)
 - ✓ Id_sv: Drain current at Vgs = Vgs_ana and Vds = Vdd/4V for which noise voltage and current spectral densities Sv, Si are extracted.
 - ✓ Cbd_off: Bulk-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Cdg_ana: Drain-to-Gate transcapacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft_ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Sv@th: Gate thermal noise voltage spectral density, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Abeta : delta_GmMax/GmMax * sqrt(w/L)
 - ✓ Cdd_ana: Total drain capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgg_ana: Total gate capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgd_0v : Gate-to-Drain capacitance at Vgs = 0V, Vds = vds_cggV, f = 100kHz.
 - ✓ Vtgmmax: Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

nfet_acc Electrical characteristics per geometry

nfet_acc @ w=0.30e-6, l=0.030e-6, pre_layout_local=1, nf=1, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, devtype=PCELLwoWPE, as=2.55e-14, ad=2.55e-14, ps=7.7e-07, pd=7.7e-07, vbs=0, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	415.2 0.0mV	384.6 0.0mV	360.8 0.0mV
Vgs_ana [mV]	662.9 0.0mV	608.2 0.0mV	557.7 0.0mV
GDC_ana []	4.49 0.0%	4.94 0.0%	4.94 0.0%
GBW_QS [GHz]	240.7 0.0%	272.8 0.0%	284.4 0.0%
Ft_ana [GHz]	209.5 0.0%	227.6 0.0%	239.7 0.0%
Gm_ana [μS]	304.4 0.0%	333.9 0.0%	364.7 0.0%
Gds_ana [μS]	67.83 0.0%	67.6 0.0%	73.82 0.0%
Cgg_ana [aF]	231.2 0.0%	233.4 0.0%	241.5 0.0%
Cdg_ana [aF]	194.5 0.0%	177 0.0%	187.2 0.0%
Cdd_ana [aF]	188.5 0.0%	187.1 0.0%	195.3 0.0%
Avt [mV.μm]	1.18 1.4%	1.27 1.3%	1.3 1.2%
Abeta [%.µm]	0.34 -1.0%	0.35 -0.8%	0.34 -0.9%
AId [%.μm]	0.24 0.8%	0.24 1.2%	0.23 1.1%
Sv@1Hz [V/√Hz]	3.33e-05 0.0%	1.15e-04 0.0%	4.25e-04 0.0%
Sv@th [V/√Hz]	1e-08 0.0%	9.65e-09 0.0%	9.35e-09 0.0%

nfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=0, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	559.6 0.0mV	518.9 0.0mV	487.3 0.0mV
Vgs_ana [mV]	673.3 0.0mV	626.7 0.0mV	590.9 0.0mV
GDC_ana []	186.5 0.0%	209.7 0.0%	216.8 0.0%
GBW_QS [GHz]	11.19 0.0%	12.12 0.0%	12.49 0.0%
Ft_ana [GHz]	0.25 0.0%	0.25 0.0%	0.24 0.0%
Gm_ana [μS]	584.3 0.0%	601.8 0.0%	618.9 0.0%
Gds_ana [μS]	3.13 0.0%	2.87 0.0%	2.85 0.0%
Cgg_ana [fF]	373.2 0.0%	389.9 0.0%	398.4 0.0%
Cdg_ana [fF]	150.4 0.0%	157 0.0%	159.8 0.0%
Cdd_ana [fF]	8.31 0.0%	7.9 0.0%	7.88 0.0%
Avt [mV.μm]	5.02 1.1%	5.23 1.1%	4.94 1.1%
Abeta [%.µm]	0.94 0.3%	0.92 0.3%	0.92 0.5%
AId [%.µm]	1.54 -0.6%	1.44 -0.6%	1.22 -0.8%
Sv@1Hz [V/√Hz]	1.46e-06 0.0%	1.69e-06 0.0%	1.98e-06 0.0%
Sv@th [V/√Hz]	4.16e-09 0.0%	4.09e-09 0.0%	4.01e-09 0.0%

pfet_acc Electrical characteristics per geometry

pfet_acc @ w=0.30e-6, l=0.030e-6, pre_layout_local=1, nf=1, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, devtype=PCELLwoWPE, as=2.55e-14, ad=2.55e-14, ps=7.7e-07, pd=7.7e-07, vbs=0, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	518.8 0.0mV	498.1 0.0mV	475.4 0.0mV
Vgs_ana [mV]	779.2 0.0mV	726.3 0.0mV	677.2 0.0mV
GDC_ana []	3.45 0.0%	3.5 0.0%	3.2 0.0%
GBW_QS [GHz]	105.5 0.0%	114.5 0.0%	115.3 0.0%
Ft_ana [GHz]	81.66 0.0%	87.88 0.0%	89.72 0.0%
Gm_ana [μS]	116.2 0.0%	126.2 0.0%	131.6 0.0%
Gds_ana [μS]	33.66 0.0%	36.06 0.0%	41.13 0.0%
Cgg_ana [aF]	226.5 0.0%	228.5 0.0%	232.6 0.0%
Cdg_ana [aF]	148.1 0.0%	146 0.0%	150.8 0.0%
Cdd_ana [aF]	169.1 0.0%	170.2 0.0%	175.2 0.0%
Avt [mV.μm]	1.93 1.2%	2.01 1.1%	2.11 1.0%
Abeta [%.µm]	0.43 -2.1%	0.48 -2.4%	0.58 -2.5%
AId [%.μm]	0.46 0.4%	0.5 -0.0%	0.6 -0.6%
Sv@1Hz [V/√Hz]	4.65e-05 0.0%	1.42e-04 0.0%	4.57e-04 0.0%
Sv@th [V/√Hz]	1.64e-08 0.0%	1.57e-08 0.0%	1.57e-08 0.0%

pfet_acc@ w=20e-6, l=2.0e-6, pre_layout_local=1, nf=4, sa=8.500e-08, sb=8.500e-08, sd=1.140e-07, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, devtype=PCELLwoWPE, as=4.25e-13, ad=4.25e-13, ps=1.017e-05, pd=1.017e-05, vbs=0, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	627.4 0.0mV	600.9 0.0mV	577.1 0.0mV
Vgs_ana [mV]	784.4 0.0mV	754.4 0.0mV	727.8 0.0mV
GDC_ana []	96.7 0.0%	113.5 0.0%	126.3 0.0%
GBW_QS [GHz]	1.41 0.0%	1.58 0.0%	1.73 0.0%
Ft_ana [GHz]	7.79e-02 0.0%	8.02e-02 0.0%	8.06e-02 0.0%
Gm_ana [μS]	202.9 0.0%	209.4 0.0%	214.9 0.0%
Gds_ana [μS]	2.1 0.0%	1.84 0.0%	1.7 0.0%
Cgg_ana [fF]	414.3 0.0%	414.8 0.0%	415.5 0.0%
Cdg_ana [fF]	170.4 0.0%	169.4 0.0%	168.8 0.0%
Cdd_ana [fF]	22.92 0.0%	21.06 0.0%	19.77 0.0%
Avt [mV.μm]	10.86 1.2%	10.2 1.2%	9.9 1.2%
Abeta [%.µm]	1.43 1.6%	1.52 1.9%	1.63 2.1%
AId [%.µm]	3.53 0.1%	2.72 -0.3%	2.22 -0.6%
Sv@1Hz [V/√Hz]	1.62e-06 0.0%	2.1e-06 0.0%	2.73e-06 0.0%
Sv@th [V/√Hz]	7.08e-09 0.0%	6.91e-09 0.0%	6.78e-09 0.0%

nfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

nfet_acc, VtGmmax [mV] vs "L=W/10 [m]"

nfet_acc, Vgs_ana [mV] vs "L=W/10 [m]"

dormieub ST Confidential

nfet_acc, GDC_ana [] vs "L=W/10 [m]"

W/L==10 and Temp==25

ST Confidential

nfet_acc, GBW_QS [GHz] vs "L=W/10 [m]"

W/L==10 and Temp==25

"L=W/10 [m]"

nfet_acc, Ft_ana [GHz] vs "L=W/10 [m]"

ST Confidential

dormieub

nfet_acc, Gm_ana/Id_Sv [1/V] vs "L=W/10 [m]"

W/L==10 and Temp==25

nfet_acc, Gm_ana*l/w [S/sq] vs "L=W/10 [m]"

nfet_acc, Gds_ana*l/w [S/sq] vs "L=W/10 [m]"

W/L==10 and Temp==25

dormieub

nfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

nfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

W/L==10 and Temp==25

nfet_acc, Sv@th*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

nfet_acc, Cgg_ana/l [fF/um] vs "L=W/10 [m]"

nfet_acc, Cdg_ana/w [fF/um] vs "L=W/10 [m]"

W/L==10 and Temp==25

nfet_acc, Cdd_ana/w [fF/um] vs "L=W/10 [m]"

W/L==10 and Temp==25

nfet_acc, Cgd_0V/w [fF/um] vs "L=W/10 [m]"

nfet_acc, Cbd_off/w [fF/um] vs "L=W/10 [m]"

W/L==10 and Temp==25

nfet_acc, Avt [mV.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

nfet_acc, Abeta [%.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

nfet_acc, AId [%.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

dormieub

pfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10 and W/NF<5e-6

pfet_acc, VtGmmax [mV] vs "L=W/10 [m]"

pfet_acc, Vgs_ana [mV] vs "L=W/10 [m]"

ST Confidential

pfet_acc, GDC_ana [] vs "L=W/10 [m]"

W/L==10 and Temp==25

ST Confidential

pfet_acc, GBW_QS [GHz] vs "L=W/10 [m]"

pfet_acc, Ft_ana [GHz] vs "L=W/10 [m]"

W/L==10 and Temp==25

pfet_acc, Gm_ana/Id_Sv [1/V] vs "L=W/10 [m]"

pfet_acc, Gm_ana*l/w [S/sq] vs "L=W/10 [m]"

W/L==10 and Temp==25

pfet_acc, Gds_ana*l/w [S/sq] vs "L=W/10 [m]"

pfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

pfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

pfet_acc, Sv@th*sqrt(W*L) [V.m/sqrt(Hz)] vs "L=W/10 [m]"

pfet_acc, Cgg_ana/l [fF/um] vs "L=W/10 [m]"

pfet_acc, Cdg_ana/w [fF/um] vs "L=W/10 [m]"

W/L==10 and Temp==25

pfet_acc, Cdd_ana/w [fF/um] vs "L=W/10 [m]"

pfet_acc, Cgd_0V/w [fF/um] vs "L=W/10 [m]"

W/L==10 and Temp==25

pfet_acc, Cbd_off/w [fF/um] vs "L=W/10 [m]"

pfet_acc, Avt [mV.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

dormieub

pfet_acc, Abeta [%.um] vs "L=W/10 [m]"

W/L==10 and Temp==25 and stratn==2 and devType=="PCELLwoWPE"

dormieub

pfet_acc, AId [%.um] vs "L=W/10 [m]"

 $W/L{=}10\ and\ Temp{=}{=}25\ and\ stratn{=}{=}2\ and\ devType{=}{=}"PCELLwoWPE"$

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model nfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 5e-6 A
 - **x** shrink iana = 1
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model_version = 1.2.d
 - \times vds_cgd = 0 V
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha

- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- **x** vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \times rvt_dev = 1
- Model pfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - **x** iana = 2e-6 A

ST Confidential

- **x** shrink_iana = 1
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- **X** ivt = 70e-9 A
- **✗** model_version = 1.2.d
- \times vds_cgd = 0 V
- \times vds_mm = 0.05 V
- \mathbf{X} ams release = 2018.3
- **✗** plashrink_iana = 0
- \times vgs_stop = vdd V
- X dlshrink ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- **x** vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **✗** plashrink_ivt = 1
- **✗** dlshrink iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V

ST Confidential

- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} rvt_dev = 1
- Model nfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds off = vds sat V
 - **x** iana = 5e-6 A
 - **x** shrink_iana = 1
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.c
 - \times vds_cgd = 0 V
 - **x** vds mm = 0.05 V
 - \times ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - \times vgs_stop = vdd V
 - X dlshrink ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V

- **x** mc_nsigma = 3
- \times shrink ivt = 1
- **x** vstep_iana = 0.01 V
- \times vgs_start = 0 V
- **x** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- \mathbf{X} vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \times rvt_dev = 1
- Model pfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 2e-6 A
 - **x** shrink_iana = 1

- \mathbf{x} mc_sens = 0
- \times vds lin = 0.05 V
- **x** ivt = 70e-9 A
- **✗** model_version = 1.2.c
- \times vds_cgd = 0 V
- \times vds_mm = 0.05 V
- \mathbf{x} ams_release = 2018.3
- **✗** plashrink_iana = 0
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **x** vstep_iana = 0.01 V
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- **✗** vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V
- \times vgs_off = 0 V

Sep 25, 2018

- **x** temp = $25 \, ^{\circ}$ C
- \mathbf{X} f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** rvt_dev = 1