A few results (over 100 runs if nothing explicitly said)
For more explanation, see ReadMe.txt and the source code

			automatic swarm size S			Swarm size = 40		
Function	Dim.	Comment	S	%	Mean best	%	Mean best	
4 Tripod	2		12	56	5.03E-001	63	3.10E-001	
11 Network	42 Partly binary		22	0	1.35E+002	0	1.06E+002	
15 Step	10 Biased		16	99	1.00E-002	3	4.53E+000	
17 Lennard-Jones	18		18	5	4.68E-001	3	6.40E-001	
18 Gear train	4 Discrete		14	9	1.55E-009	16	2.47E-010	
20 Perm	5 Discrete		14	16	5.10E+002	46	2.92E+002	
21 Compression spring	3 Partly discrete		13	31	3.96E-002	72	1.91E-003	
100 Sphere	30 Shifted		20	100	9.39E-007	100	9.00E-007	
102 Rosenbrock	1	0 Shifted	16	68	5.75E+000	9	1.81E+000	
103 Rastrigin	3	0 Shifted	20	0	5.39E+001	0	3.89E+001	
104 Schwefel	10 Shifted		16	100	9.09E-005	100	8.57E-005	
105 Griewank	1	0 Shifted	16	5	5.26E-002	18	3.05E-002	
106 Ackley	3	0 Shifted	20	30	1.12E+000	98	1.87E-002	
		Total		519	7.07E+002	528	4.44E+002	

SPSO 2011, seed = 1294404794, for reproducible results											
	Uniform distribution		Gaussian distribution		Uniform distribution		Gaussian distribution				
	mean 0.5, sigma 1/12					mean 0.5, sigma 1/12					
		Confinem	ent		No confinement						
	With "bells and whistles" (BW=(1,2)), mean swarm size = 40										
Function	%	Mean best	%	Mean best	%	Mean best	%	Mean best			
4	59	3.22E-001	56	4.93E-001	77	1.83E-001	64	3.43E-001			
11	0	1.16E+002	0	1.12E+002	0	3.00E+002	0	1.40E+002			
15	86	2.10E-001	97	3.00E-002	91	1.20E-001	100	0.00E+000			
17	3	1.29E+000	1	1.26E+000	3	9.67E-001	2	9.70E-001			
18	54	5.60E-011	61	3.67E-011	67	1.18E-011	64	1.11E-011			
20	68	1.37E+002	70	1.17E+002	49	2.24E+002	53	1.97E+002			
21	86	1.58E-003	74	3.13E-003	81	1.95E-003	80	1.97E-003			
100	100	9.21E-007	100	9.00E-007	100	9.19E-007	100	9.10E-007			
102	36	8.68E+001	40	5.25E+001	40	3.87E+001	43	6.80E+001			
103	0	4.56E+001	0	4.55E+001	0	5.96E+001	0	5.79E+001			
104	100	8.67E-005	100	8.75E-005	100	8.54E-005	100	8.71E-005			
105	29	2.24E-002	30	2.24E-002	26	2.63E-002	34	2.30E-002			
106	60	5.81E-001	66	4.46E-001	46	7.77E-001	57	5.86E-001			
Total	681	3,88E+002	695	3.29E+002	680	6,24E+002	697	4,65E+002			

SPSO 2007, seed=1294404794 with the RNG KISS

	O 2011, seed=tin	ne, S=40		SPSO 20)11, seed =	= 1294404794	, for reprodu	ucible results with	KISS			
Uniform distribution		Uniform distribution		Gaussian distribution		Uniform	Uniform distribution		Gaussian distribution			
					mean 0.5, sigma 1/12					mean 0.5, sigma 1/12		
	Confinement			Confinem			No confinement					
						stle" , swarm						
Function		Mean best	%	Mean best	%	Mean best	%	Mean best		Mean best		
		4.66E-001	67	2.81E-001	45	5.72E-001	67	2.33E-001	63	3.21E-001		
	,11 101 00	1.11E+002		1.08E+002	0	1.13E+002	0	1.31E+002	0	1.13E+002		
15 good	√ 96	4.00E-002	96	6.00E-002	100	0.00E+000		0.00E+000	100	0.00E+000		
	ation of	1.04E+000		1.01E+000	2	1.05E+000		6.61E-001	6	6.49E-001		
	eccss rate	3.82E-011	58	5.86E-011	61	2.74E-011	76	1.31E-011	74	7.55E-012		
20 (and c	70	8.96E+001	65	1.15E+002	61	1.46E+002	41	2.42E+002	52	2.13E+002		
400	100 to 100	2.13E-003	82	1.55E-003	75 400	3.64E-003	84	2.53E-003	73	3.92E-003		
	nodifying 100		100	9.13E-007	100	9.06E-007	100	9.12E-007	100	9.16E-007		
	ed of the	7.93E+001 4.66E+001	37	7.39E+001 4.59E+001	41	6.28E+001 4.95E+001	43	5.83E+001	51	5.71E+001		
103 RNG,	VOII IIIAV	8.81E-005	100	4.59E+001 8.74E-005	100	4.95E+001 8.85E-005	0 100	6.63E+001 8.87E-005	0	6.39E+001		
104 obtain	100 1 very 40	1.93E-002	43	6.74E-005 2.03E-002	100 36	0.05E-005 2.14E-002	100 30	2.19E-002	100 38	8.62E-005 2.03E-002		
106 difference	ent 40	8.68E-001	43	7.92E-001	48	6.36E-001	36	9.03E-001	53	6.39E-001		
Total results	C C	3.29E+002	692	7.92E-001 3.45E+002	669	3.74E+002		9.03E-001 4.99E+002	710	4.48E+002		
IOlai	0/3	3.29L 1002	092	3.43L+002	009	3.74L+002	000	4.99L1002	710	4.40L+002		
	SPSO 2011 sood = 129							4794, for reproducible results				
			Uniform dis			Gaussian distribution Uniform distribution			Gaussian distribution			
		Crimerin distribution			mean 0.5, sigma 1/12				mean 0.5, sigma 1/12			
				Confinem			No confinement					
				Comment	ent			No confine	ement			
1000 r	runs		_			l whistles" (B	BW=(1,1)), me	No confine • = ean swarm size		_		
	Mean best	Function	%			l whistles" (B Mean best	3W=(1,1)), me		40 %	Mean best		
	Mean best 4.12E-001	4	% 49	With Mean best 5.28E-001	"bells and	Mean best 4.83E-001		ean swarm size = /	40	Mean best 0.308		
% 54 0	Mean best 4.12E-001 1.12E+002	4 11	49 0	With Mean best 5.28E-001 1.09E+002	"bells and 54 0	Mean best 4.83E-001 1.07E+002	% 76 tir	ean swarm size = 0 Mean best 0.186 me out	40 % 66 time	0.308 out		
% 54 0 96	4.12E-001 1.12E+002 4.00E-002	4 11 15	49 0 92	With Mean best 5.28E-001 1.09E+002 1.00E-001	"bells and 54 0 98	Mean best 4.83E-001 1.07E+002 2.00E-002	% 76 tin	ean swarm size = . Mean best 0.186 me out 2.00E-002	40 % 66 time 100	0.308 out 0.00E+000		
% 54 0 96 3	4.12E-001 1.12E+002 4.00E-002 9.99E-001	4 11 15 17	49 0 92 0	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000	"bells and 54 0 98 0	Mean best 4.83E-001 1.07E+002 2.00E-002 3.87E+000	% 76 tin 98 0	ean swarm size =	40 % 66 time 100 0	0.308 out 0.00E+000 3.90E+000		
% 54 0 96 3 61	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011	4 11 15 17 18	49 0 92 0 61	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011	"bells and % 54 0 98 0 71	Mean best 4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011	% 76 tin 98 0 63	ean swarm size = . Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011	40 % 66 time 100 0 66	0.308 out 0.00E+000 3.90E+000 1.74E-011		
% 54 0 96 3 61 68	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002	4 11 15 17 18 20	49 0 92 0 61 71	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001	"bells and % 54 0 98 0 71 75	Mean best 4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001	% 76 tin 98 0 63 50	ean swarm size =	40 % 66 time 100 0 66 54	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002		
% 54 0 96 3 61 68 79	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003	4 11 15 17 18 20 21	49 0 92 0 61 71 82	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003	"bells and 54 0 98 0 71 75 87	Mean best 4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003	% 76 tin 98 0 63 50 80	ean swarm size = . Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011 2.44E+002 2.20E-003	40 % 66 time 100 0 66 54 76	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003		
% 54 0 96 3 61 68 79 100	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003 9.15E-007	4 11 15 17 18 20 21	49 0 92 0 61 71 82 100	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003 8.95E-007	"bells and % 54 0 98 0 71 75 87 100	Mean best 4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003 8.84E-007	% 76 10 98 0 63 50 80 100	ean swarm size =	40 % 66 time 100 0 66 54 76 100	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003 8.87E-007		
% 54 0 96 3 61 68 79 100 37	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003 9.15E-007 7.41E+001	4 11 15 17 18 20 21 100	49 0 92 0 61 71 82 100 38	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003 8.95E-007 5.55E+001	"bells and % 54 0 98 0 71 75 87 100 50	4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003 8.84E-007 8.69E+001	98 0 63 50 80 100 41	Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011 2.44E+002 2.20E-003 8.98E-007 6.23E+001	40 % 66 time 100 0 66 54 76 100 42	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003 8.87E-007 7.11E+001		
% 54 0 96 3 61 68 79 100 37 0	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003 9.15E-007 7.41E+001 4.78E+001	4 11 15 17 18 20 21 100 102	49 0 92 0 61 71 82 100 38 0	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003 8.95E-007 5.55E+001 1.66E+002	"bells and % 54 0 98 0 71 75 87 100 50 0	4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003 8.84E-007 8.69E+001 1.62E+002	98 0 63 50 80 100 41 0	ean swarm size = Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011 2.44E+002 2.20E-003 8.98E-007 6.23E+001 1.65E+002	40 % 66 time 100 0 66 54 76 100 42 0	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003 8.87E-007 7.11E+001 1.63E+002		
% 54 0 96 3 61 68 79 100 37 0 100	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003 9.15E-007 7.41E+001 4.78E+001 8.77E-005	4 11 15 17 18 20 21 100 102 103	49 0 92 0 61 71 82 100 38 0 100	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003 8.95E-007 5.55E+001 1.66E+002 8.76E-005	"bells and % 54 0 98 0 71 75 87 100 50 0 100	4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003 8.84E-007 8.69E+001 1.62E+002 8.53E-005	% 76 tin 98 0 63 50 80 100 41 0 100	ean swarm size = . Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011 2.44E+002 2.20E-003 8.98E-007 6.23E+001 1.65E+002 8.53E-005	40 % 66 time 100 0 66 54 76 100 42 0	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003 8.87E-007 7.11E+001 1.63E+002 8.65E-005		
% 54 0 96 3 61 68 79 100 37 0 100 34	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003 9.15E-007 7.41E+001 4.78E+001 8.77E-005 2.18E-002	4 11 15 17 18 20 21 100 102 103 104 105	49 0 92 0 61 71 82 100 38 0 100 33	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003 8.95E-007 5.55E+001 1.66E+002 8.76E-005 2.22E-002	"bells and % 54 0 98 0 71 75 87 100 50 0 100 39	4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003 8.84E-007 8.69E+001 1.62E+002 8.53E-005 1.94E-002	% 76 tin 98 0 63 50 80 100 41 0 100 27	Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011 2.44E+002 2.20E-003 8.98E-007 6.23E+001 1.65E+002 8.53E-005 2.53E-002	40 % 66 time 100 0 66 54 76 100 42 0 100 31	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003 8.87E-007 7.11E+001 1.63E+002 8.65E-005 2.36E-002		
% 54 0 96 3 61 68 79 100 37 0 100	4.12E-001 1.12E+002 4.00E-002 9.99E-001 3.11E-011 1.10E+002 2.59E-003 9.15E-007 7.41E+001 4.78E+001 8.77E-005	4 11 15 17 18 20 21 100 102 103	49 0 92 0 61 71 82 100 38 0 100	With Mean best 5.28E-001 1.09E+002 1.00E-001 4.07E+000 5.56E-011 9.61E+001 1.02E-003 8.95E-007 5.55E+001 1.66E+002 8.76E-005	"bells and % 54 0 98 0 71 75 87 100 50 0 100	4.83E-001 1.07E+002 2.00E-002 3.87E+000 1.95E-011 7.77E+001 1.82E-003 8.84E-007 8.69E+001 1.62E+002 8.53E-005	% 76 tin 98 0 63 50 80 100 41 0 100 27 90	ean swarm size = . Mean best 0.186 me out 2.00E-002 3.95E+000 1.41E-011 2.44E+002 2.20E-003 8.98E-007 6.23E+001 1.65E+002 8.53E-005	40 % 66 time 100 0 66 54 76 100 42 0	0.308 out 0.00E+000 3.90E+000 1.74E-011 2.07E+002 2.61E-003 8.87E-007 7.11E+001 1.63E+002 8.65E-005		

Without any confinement and with some BW, the result can be pretty good ... or extremely bad when a variable is discrete with very few possible values (two, here)