파이썬 익스프레스

16장 기계학습

학습 목표

- 기계 학습의 개념에 대하여 살펴본다.
- 선형 회귀 문제를 sklearn 라이브러리를 이용하여 실습해본다.
- XOR 문제를 케라스 라이브러리를 이용하여 실습해본다.
- 숫자 인식 프로그램을 케라스 라이브러리를 이용하여 실습해본다.

이번 장에서 만들 프로그램

 선형 회귀 분석 프로그램을 sklearn 라이브러리를 이용하여 작성해 보자.

이번 장에서 만들 프로그램

 필기체 숫자 인식 프로그램을 Keras 라이브러리를 이용하여 작성해 보자.

인공지능, 기계학습, 딥러닝

기계학습

- □ 기계 학습(machine learning)은 인공 지능의 한 분야로, 컴퓨터에 학습 기능을 부여하기 위한 연구 분야이다.
- □ 이들 알고리즘은 항상 고정적인 의사 결정을 하는 프로그램과는 다르게, **데이터 중심의 예측 또는 결정**을 내릴 수 있다.
- 기계 학습은 어떤 문제에 대하여 명시적 알고리즘을 설계하고 프로 그래밍하는 것이 어렵거나 불가능한 경우에 주로 사용된다.

머신러닝으로 학습

새로운 환자 예측

진료 기록 1: 사망

진료 기록 그: 생손

진료 기록 3: 사망

새로운 환자? 생손할 것!

기계 학습이 중요하게 사용되는 분야

인공지능이 잘 동작하려면?

멋진 알고리즘

기존의 학습 알고리즘들

요즘 뜨는 Deep Learning

많은 데이터

사람들의 생활이 디지털로 기록됨

클라우드에 집약된 데이터들

좋은 컴퓨터

Public 또는 private 클라우드에 있는 수백대의 컴퓨터들

기계학습의 분류

신경망은 모든 기계학습 분야에서 사용될 수 있습니다!!!

기계 학습

□ 기계 학습은 항상 **입력을 받아서 출력하는 함수 y=f(x)를 학습**한다고 생각할 수 있다. (함수 근사)

기계 학습(machine learning) == 함수 근사(function approximation)

지도학습(Supervised Learning)

- 컴퓨터는 "교사"에 의해 주어진 예제와 정답(레이블)을 제공받는다.
- □ 지도 학습의 목표는 입력을 출력에 매핑하는 일반적인 규칙을 학습 하는 것이다.

Teachable Machine

https://teachablemachine.withgoogle.com/train

New Project

Open an existing project from a file.

Image Project

Teach based on images, from files or your webcam.

Audio Project

Teach based on one-second-long sounds, from files or your microphone.

Pose Project

Teach based on images, from files or your webcam.

비지도학습 (Unsupervised Learning)

 외부에서 정답(레이블)이 주어지지 않고 학습 알고리즘이 스스로 입 력에서 어떤 구조를 발견하는 학습이다.

강화학습

- □ 보상이나 처벌 형태의 피드백으로 학습이 이루어지는 기계 학습이다.
- 주로 차량 운전이나 상대방과의 게임 같은 동적인 환경에서 프로그램
 의 행동에 대한 피드백만 제공된다.

지도학습

□ 지도 학습은 입력(x)과 출력(y)이 주어질 때, 입력에서 출력으로의 매 핑 함수를 학습하는 것이라 할 수 있다.

$$y = f(x)$$

지도학습의 예

- 입력 데이터로 직선 y=10x 위에 있는 점 (1, 10), (2, 20), (3, 30), (4, 40)들이 주어져 있다고 하자.
- □ 학습이 끝난 후에 x=5를 입력하면 컴퓨터가 y=50이라는 답을 할 수 있도록 만드는 것이 지도 학습이다.

지도 학습: 회귀(regression)

□ 회귀(regression)란

일반적으로 예제 데이터들을 2차원 공간에 찍은 후에, 이들 데이 터들을 가장 잘 설명하는 직선이나 곡선을 찾는 문제라고 할 수 있다.

지도 학습: 회귀(regression)

- 🗖 회귀에서는 출력(y)의 형태가 이산적이 아니라 **연속적**이다.
- □ y = f(x)에서 입력 x와 출력 y가 모두 실수이다.

지도 학습: 분류(classification)

- 식 y = f(x)에서 출력 y가 이산적(discrete)인 경우에 이것을 분류 문제(또는 인식 문제)라고 부른다.
- □ 분류는 입력을 2개 이상의 클래스로 나눈다.

비지도학습

- □ 비지도 학습(unsupervised Learning)은 "교사" 없이 컴퓨터가 스스로 로 입력들을 분류하는 것을 의미한다.
- □ 식 y = f(x)에서 정답인 레이블 y가 주어지지 않는 것이다.

비지도학습

- □ 가장 대표적인 비지도 학습이 **클러스터링(군집화, clustering)**이다.
- 클러스터링이란 입력 데이터 간의 거리를 계산하여서 입력을 몇 개의 군집으로 나누는 방법이다.
 - > K-means 클러스터링이 가장 고전적인 클러스터링 방법이다.

특징(features)

특징이란 우리가 학습 모델에게 공급하는 입력이다. 가장 간단한 경우에는 입력 자체가 특징이 된다.

□ (예)

- 이메일에 "검찰"이라는 문자 포함 여부(yes 또는 no)
- 이메일에 "광고", "선물 교환권"이나 "이벤트 당첨" 문자열 포함 여부(yes 또는 no)
- 이메일의 제목이나 본문에 있는 '★'과 같은 특수 기호의 개수 (정수)

...

레이블과 샘플

□ 레이블(label), 정답

- ▶ y = f(X)에서 y 변수에 해당한다.
- 예를 들어서 농작물의 향후 가격, 사진에 표시되는 동물의 종류, 동영상의 의미 등 무엇이든지 레이블이 될 수 있다.

□ 샘플, 또는 예제

- 샘플은 기계 학습에 주어지는 특정한 예이다. y = f(X)에서 X에 해당한다.
- 레이블이 있는 샘플도 있고 레이블이 없는 샘플도 있다. 지도 학습을 시키려면 레이블이 있어야 한다.

학습 데이터와 테스트 데이터

Training Data vs Validation Data vs Test Data

선택한 모델의 정밀도를 시험용 데이터로 산출하여 모델을 평가합니다.

학습과 예측

- 학습(learning)은 모델을 만들거나 배우는 것을 의미한다.
- 예측(prediction)은 학습된 모델을 레이블이 없는 샘플에 적용하는 것을 의미한다.
 - ▶ 즉 학습된 모델을 사용하여 유용한 예측(y')을 해내는 것이다.

Lab: 기계 학습 체험하기

https://transcranial.github.io/keras-js/#/

Lab: 기계 학습 체험하기

https://transcranial.github.io/keras-js/#/

선형 회귀 소개

- □ 직선의 방정식: f(x) = mx+b
- 선형 회귀는 입력 데이터를 가장 잘 설명하는 기울기와 절편값을 찾는 문제이다
- □ 선형 회귀의 기본식: f(x) = Wx+b
 - > 기울기 m → 가중치 W
 - > 절편 b → 바이어스 b

선형 회귀 예제

선형 회귀 예제

이번 절에서는 아나콘다에 포함되어 있는 Scikit-Learn 라이브러리
 를 사용하여 회귀 함수를 구현하는 방법을 살펴본다.

import matplotlib.pylab as plt

linear_reg(p698).py

from sklearn import linear_model

선형 회귀 모델을 생성한다.

reg = linear_model.LinearRegression()

데이터는 파이썬의 리스트로 만들어도 되고 아니면 넘파이의 배열로 만들어도 됨

X = [[174], [152], [138], [128], [186]] # 학습 예제

y = [71, 55, 46, 38, 88] # 정답

reg.fit(X, y) # 학습 실행

학습 데이터 만들기

- 학습 데이터는 반드시 2차원 배열이어야 한다.
 - ▶ 한 열만 있어도 반드시 2차원 배열 형태로 만들어야 한다.
- 리스트의 리스트를 만들어서 다음과 같은 2차원 배열을 생성한다.
 - [[174], [152], [138], [128], [186]]

	7	몸무게
샘플 #1	174	71
샘플 #2	152	55
샘플 #3	138	46
샘플 #4	128	38
샘플 #5	186	88

선형 회귀 예제

>>> reg.coef_

직선의 기울기

array([0.82021132])

>>> reg.intercept_

직선의 절편

-68.0248807089298

>>> reg.**score**(X, y)

학습 성능

0.9812769231994423

>>> reg.**predict**([[178]])

예측: X가 178일 때 y를 계산

array([77.97273347])

선형 회귀 예제

```
# 학습 데이터를 산포도로 그린다.
plt.scatter(X, y, color='black')
# 학습 데이터를 입력으로 하여 예측값을 계산한다.
# 직선을 가지고 예측하기 때문에 직선 상의 점이 된다.
y_pred = reg.predict(X)
# 예측값으로 선그래프를 그린다.
# 직선이 그려진다.
plt.plot(X, y_pred, color='blue', linewidth=3)
plt.show()
```


Lab: 선형 회귀 실습

X	у
1.0	1.0
2,0	2.0
3.0	1.6
4.0	3.8
5.0	2,3

선형 회귀 예제

```
import matplotlib.pylab as plt
                                                            linear reg.py
from sklearn import linear_model
reg = linear_model.LinearRegression()
X = [[1.0], [2.0], [3.0], [4.0], [5.0]]
y = [1.0, 2.0, 1.6, 3.8, 2.3]
                               # 학습
reg.fit(X, y)
# 학습 데이터와 y 값을 산포도로 그린다.
plt.scatter(X, y, color='black')
# 학습 데이터를 입력으로 하여 예측값을 계산한다.
                       # 예측
y_pred = req.predict(X)
# 학습 데이터와 예측값으로 선그래프로 그린다.
# 계산된 기울기와 y 절편을 가지는 직선이 그려진다.
plt.plot(X, y_pred, color='blue', linewidth=3)
plt.show()
```

신경망

- 최근에 많은 인기를 끌고 있는 딥러닝(deep learning)의 시작은 1950년대부터 연구되어 온 인공 신경망(artificial neural network: ANN)
- 인공신경망은 생물학적인 신경망에서 영감을 받아서 만들어진 컴퓨팅 구조
- □ "스스로 생각하는 기계"는 항상 인간의 꿈이었고 1950년대에 사람들은 인간의 두뇌를 본떠서 기계로 만들려고 시도하였다.

신경망

- 구체적으로 다음과 같이 입력층과 출력층 사이에 은닉층(hidden layer)을 가지고 있는 신경망을 생각할 수 있다.
- □ 아래와 같은 구조의 신경망을 **다층 퍼셉트론(multilayer perceptron:** MLP)이라고 부른다.

딥러닝

- □ "딥(deep)"이라는 용어가 **은닉층이 깊다는 것을 의미**한다.
- 최근에 딥러닝은 컴퓨터 시각, 음성 인식, 자연어 처리, 소셜 네트워크 필터링, 기계 번역 등에 적용되어서 인간 전문가에 필적하는 결과를 얻고 있다.

뉴런 모델

□ 신경망에서는 하나의 뉴론을 다음과 같이 모델링한다.

활성화 함수

□ ReLU() 함수

- ▶ 입력값이 0보다 작으면 0을, 0보다 크면 입력값을 그대로 출력
- ▶ 예: [-1, 1, 3, -5, -7]가 ReLU()함수를 거치면,
 - [0, 1, 3, 0, 0]이 됨

□ Sigmoid() 함수

- ▶ 입력 데이터를 0과 1사이의 값으로 변환
- ▶ 결과값이 O과 1 중 어디에 가까운 지에 따라 카테고리 분류

역전파 학습 알고리즘

- 역전파 알고리즘은 입력이 주어지면 순방향으로 계산하여 출력을 계산한 후에 실제 출력과 우리가 원하는 출력(정답) 간의 오차를 계산
- □ 이 오차를 역방향으로 전파하면서 오차를 줄이는 방향으로 가중치를 변경한다.

손실 함수란 무엇인가?

VS.

$$E(w) = \frac{1}{2} \sum_{i} (t_i - o_i)^2$$

경사하강법

Lab: 활성화 함수 실험

http://playground.tensorflow.org/

Lab: 활성화 함수 실험

Keras

- Keras는 Python으로 작성되었으며 TensorFlow, CNTK 또는 Theano에서 실행할 수 있는 고수준 딥러닝 API이다.
 - ▶ 쉽고 빠른 프로토타이핑이 가능하다.
 - 순방향 신경망, 컨볼루션 신경망과 반복적인 신경망은 물론 여러 가지의 조합도 지원한다.
 - ▶ CPU 및 GPU에서 원활하게 실행된다.

Keras

□ Keras는 신경망을 레고 조립하듯이 만들 수 있다.

모델 작성

```
import tensorflow as tf
import numpy as np

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=2, input_dim=2, activation='sigmoid'))
model.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))

sgd = tf.keras.optimizers.SGD(lr=0.1)
model.compile(loss='mean_squared_error', optimizer=sgd) # 학습과정을 구성
```


학습

```
X = np.array([[0, 0],[0, 1],[1, 0],[1, 1]])
y = np.array([[0], [1], [1], [0]])

model.fit(X, y, batch_size=1, epochs=10000) # 10
print(_model.predict(X)_) # 0||
```

10000번 학습 # 예측값 계산

	x1	x2		У
샘플 #1	0	0		0
샘플 #2	0	1		1
샘플 #3	1	0		1
샘플 #4	1	1		0

예측

Lab: 논리적인 OR 학습

	x1	x2	_	У	keras_or.py
샘플 #1	0	0		0	
샘플 #2	0	1		1	
샘플 #3	1	0		1	
샘플 #4	1	1		1	

Sol:

```
import tensorflow as tf
                                                                            A 6
import numpy as np
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=2, input_dim=2, activation='sigmoid'))
model.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
sgd = tf.keras.optimizers.SGD(lr=0.1)
model.compile(loss='mean_squared_error', optimizer=sqd)
X = \text{np.array}([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], ([1]))
model.fit(X, y, batch_size=1, epochs=10000)
print( model.predict(X) )
```

MLP를 사용한 MNIST 숫자인식

MNIST 데이터셋

MLP를 사용한 MNIST 숫자인식

0 1 2 3 4 5 6 7 8 9

10개의 출력층 노드 0 0 0 0 0 0 0 0 0

512개의 은닉층 노드 0 0 0 0 0 0 0 0 0 0 0 0

512개의 은닉층 노드

MLP를 사용한 MNIST 숫자인식

import matplotlib.pyplot as plt import tensorflow as tf

keras_mnist.py

mnist = tf.keras.datasets.mnist

훈련 데이터와 테스트 데이터를 가져온다.

(x_train, y_train),(x_test, y_test) = mnist.load_data()

넘파이를 사용하여 입력을 0.0에서 1.0 사이로 만든다.

x_train, x_test = x_train / 255.0, x_test / 255.0

입력 이미지 출력

plt.imshow(x_train[0], cmap="Greys");

모델 구축하기

```
model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Flatten(input_shape=(28,28))) # 입력이미지: 28 x 28 → 784 x 1 model.add(tf.keras.layers.Dense(512, activation='relu'))

model.add(tf.keras.layers.Dropout(0.2)) # 과잉적합 방지책 : 20% 뉴론을 학습에서 제외 model.add(tf.keras.layers.Dense(10, activation='softmax'))

# softmax : 출력 가운데 최대값만 1로, 나머지는 0으로
```

0 1 2 3 4 5 6 7 8 9

학습(Training)

- □ 현재 옵티마이저는 "adam"으로 지정
 - ▶ ICLR 2015 학술대회에서 처음으로 발표된 "adam"은 학습 도중에 학습률을 적응적으로 변경시키는 최적화 알고리즘
- 손실 함수는 'sparse_categorical_crossentropy'로 지정
 - ▶ 이것은 교차 엔트로피 값을 손실 함수로 지정

학습

```
model.fit(x_train, y_train, epochs=5) # 학습데이터로 5회 학습
model.evaluate(x_test, y_test) # 테스트데이터로 평가
```

이번 장에서 배운 것

- 기계 학습(machine learning)은 인공지능의 한 분야로 컴퓨터에 학습 기능을 부여하기 위한 연구 분야
 - 기계학습 중에서 하나의 알고리즘이 답러닝
- 기계 학습은 "교사"의 존재 여부에 따라 크게 지도 학습과 비지도 학습으로 나 누어진다. 또 강화학습도 있다.
 - 지도 학습은 "교사"에 의해 주어진 예제(샘플)와 정답(레이블)을 제공받는다.
 - 비지도 학습은 외부에서 정답(레이블)이 주어지지 않고 학습 알고리즘이 스스로 입력에서 어떤 구조를 발견하는 학습이다.
- 지도 학습은 크게 **회귀**와 **분류**로 나눌 수 있다.
 - 회귀는 주어진 입력-출력 쌍을 학습한 후에 새로운 입력값이 들어왔을 때, 합리적인 출력값을 예측하는 것이다.
 - 분류(classification): 입력을 두 개 이상의 유형으로 분할하는 것이다. 학습 시에는 교사가 있어서 입력의 올바른 유형을 알려준다.