

A Guided Exploration through Signal Acquisition and Processing with...

Presentation Agenda

- A. A Brief Intro about Physiological Signals
- **B.** biosignalsplux
 - a) Description of the Device
 - b) Available Sensors
 - c) Synchronization Process
 - d) Purchase Options
- C. OpenSignals
 - a) Demonstration of Real-Time Signal Acquisition
 - b) Software Main Functionalities
- Additional Resources (Signal Samples)
- E. Biosignalsnotebooks
 - *a)* Project Intro
 - b) A Guide through Notebooks
 - c) Challenge to the audience

♂ Electromyographic Signal (EMG)

Characteristics

Partial Random Nature

(Due to the motor unit firing process)

Frequency Range: [25; 500] Hz

Voluntary Origin

(Neuronal impulse transmission through motor neurons connected to muscles)

Applications **Analysis of Maximum Voluntary Contraction** Fatigue Monitoring Diagnosis of Neuromuscular Disorders Interactive Gamming

♂ Electrodermal Activity (EDA)

Characteristics

- **♂** Electrodermal Activity (EDA)
 - Applications

pluy wearable body sensing platform EEG ECG ACC

biosignalsplux Hub

- 4 Analog Channels/Inputs
- 4 Additional Analog Channels/Inputs
- Power Button
- Reference/Ground Port [Digital Channel]
- Digital Port [Sync Functionality]

Acquisition Parameters:

ADC configurable resolution between 8 and 16 bits Sampling rates up to 4000 Hz

biosignalsplux Sensors

Electromyography (EMG)

Electrodermal Activity (EDA)

Electrocardiography (ECG)

biosignalsplux Sensors

Electroencephalography (EEG)

Accelerometer (ACC)

Respiration (PZT)

Force Sensor (FSR)

biosignalsplux Sensors

biosignalsplux Sync

biosignalsplux - Options

biosignalsplux Explorer

The package includes:

- of 1 x Portable and rugged storage case with foam cushioning to house all the parts

biosignalsplux - Options

biosignalsplux Researcher

The package includes:

- 8 h Personalised technical support
- Xtra Care 1 year service and maintenance agreement

biosignalsplux - Options

biosignalsplux Professional

The package includes:

- 1 x Portable and rugged storage case
- Xtra Care 2 years service and maintenance agreement

biosignalsplux API List

knldstadioiq

Signal Samples

Description

Through Python language, some signal processing tasks ① are illustrated following a step by step methodology supported by Jupyter Notebook ② environment. This interactive experience can be complemented and developed with the biosignalsnotebooks ③ Python package, which synthesises the described processing functionalities in different modules and their functions.

Jupyter Notebook

Highlights

Used by

Purposes

Extension of OpenSignals

Open Contribution to the User

Facilitates Learning

Notebook Categories

Data Acquisition

o Configure €

o Indicate **d** Archive

o Open ♂ Read

o Convert

Visualise

o Draw

of Interpret

o Zoom

Signal Processing

Pre-Process

o Smooth

o Normalise €

o Denoise ර Filter

of Recognise €

o Segment €

Detect

o Annotate

♂ Compute

o Generate €

o Vectorise o Optimise of the other of the

Train

o Model

o Tune o Train

Machine Learning

Classify

o Decide

♂ Decode

o Interact

o Imitate

Understand

♂ Analyse

ط Explain

o Compare €

of Characterise €

o Validate

o Report

Notebook Example

Demonstration

"Hands On" Challenge

d Determine the maximum, minimum and average duration of the muscular activation periods, after acquiring EMG data!

biosignalsplux

User Contributions

Created by

Lisbon Office

Phone +351 211 956 542 Fax +351 211 956 546 Av. 5 de Outubro, 70 - 8° 1050-059 Lisboa

