Hiring Task: Al-Based UPSC Answer Sheet Evaluation with RAG

Objective

Design and build an **Al-powered automated grading workflow** that evaluates handwritten UPSC answers using **vision and language models**, and incorporates a **RAG** (**Retrieval-Augmented Generation**) system grounded in our official SOP Evaluation document.

* Task Overview

Step 1: Input Handling

- Accept input as PDFs or images of handwritten answer sheets.
- These documents contain:
 - A visible question
 - The student's answer, structured across Introduction, Body, Conclusion
 - Marking scheme (e.g., "15 marks") embedded in the question text

Step 2: Workflow Automation

You must build an **end-to-end pipeline** that includes:

a. OCR Extraction

- Extract handwritten content using a robust OCR system (e.g., Google Vision API, PaddleOCR, Amazon Textract, or vision-LMs like GPT-4o).
- Segment extracted text into structured fields: question, name, introduction, body, conclusion.

b. RAG-based Evaluation

- Implement a Retrieval-Augmented Generation system:
 - The retriever must reference a knowledge base built from the shared PDF:
 SOP_Evaluation_Test Series_Mentorship_Hindi.pdf
 - You must chunk, embed, and store this SOP in a vector database like Pinecone, Weaviate, or Qdrant.
 - When evaluating a student's response, the generator (LLM) should:
 - Retrieve relevant SOP snippets (in Hindi) per section (Intro, Body, Conclusion, etc.)
 - Use them as grounding context while generating feedback and assigning marks.

c. Evaluation Criteria

Evaluate each section based on:

- Content Adequacy
- Structure (IBC format)
- Depth of Argument & Analysis
- Use of Examples / Data
- Presentation
- Language and Grammar
- Alignment with the question's directive keyword (e.g., "Critically examine", "Discuss")

Step 3: Feedback Generation

The final report must follow this structured format:

Dear Student, Total Marks: X.X

Introduction

[3-line comment aligned with SOP criteria]

Body

- [Comment 1]
- [Comment 2]
- [Comment 3]

Marks Awarded: X.X

Conclusion

- [Comment 1]
- [Comment 2]
- [Comment 3]

Marks Awarded: X.X

Presentation

Strengths:

- [Point 1]
- [Point 2]

Improvements:

- [Point 1]
- [Point 2]
- [Point 3]

Marks Awarded: X.X

Strengths

- You have a fair understanding of the topics.
- Your contextual understanding is really appreciable.

- You have used the Introduction Body Conclusion approach.
- Your handwriting is neat and legible.

All the Best! Keep improving and striving for excellence.

X Tooling Requirements

Candidates can use modern tooling such as:

- LLMs: GPT-4o, Claude 3, Gemini, Mistral, LLaMA3
- **OCR**: PaddleOCR, Tesseract, Vision APIs
- RAG Components:
 - Embeddings: Cohere, OpenAI, SentenceTransformers
 - Vector DB: Pinecone, Qdrant, Weaviate
 - o Frameworks: LangChain, LlamaIndex
- Frontend: Streamlit, Gradio, or FastAPI
- Optional Enhancements:
 - Re-rankers
 - Section-specific chunking
 - Diagram detection and markup

Deliverables

- 1. GitHub link (or ZIP) containing:
 - Code
 - Preprocessed SOP
 - Chunking and embedding strategy
 - Inference flow
- 2. Example Input: 1 sample answer sheet (you may simulate)
- 3. Example Output: Corresponding evaluation report
- 4. README with:
 - Tech stack
 - o RAG architecture diagram
 - o Evaluation pipeline explanation

🌟 Bonus Points

- Hosted demo on Hugging Face Spaces / Streamlit Cloud
- Hindi language handling and alignment with SOP tone
- Vision-LLM integration (e.g., GPT-4o)

Timeline

Submit your task within **2 days** from assignment.