Segmentation de la clientèle

Société OLIST
Bailly DIOUNOU, Ingénieur IA - 09/02/2021

Contexte & périmètre du projet

Algorithme de

• Description actionable de la segmentation

Scoring

• Contrat de maintenance

Opportunités

 Gain de précision dans le ciblage Marketing

continue du ciblage

Amélioration

marketing

clientèle

• Identification de nouveaux types de

Présentation de la problématique

Interprétation & pistes de recherche

Comprendre les différents types d'utilisateurs

Croissance... de la base de clients

- Augmentation et diversification des flux de communication, de richesses, etc.
- Limites de la relation client/Marketing de proximité (ou ultra spécialisée)

Comprendre les différents types d'utilisateurs Axes de réponse

Croissance... de la base de clients

- Travail: augmenter les heures, diversifier la qualité de son métier
- Capital humain: investir dans de nouvelles compétences humaines
- Progrès technique: investir dans de nouvelles technologies

Comprendre les différents types d'utilisateurs

Nouvelles technologies

Croissance... de la base de clients

- Automatisation de tout ou partie du traitement de la donnée générée
- Economies d'échelle

<u>Exemple</u>: La boulangerie de Briis-sous-Forge face au nouveau parc d'activités (Institut supérieur, Entrepôt du secours populaire, Call center)

Profilage commercial de OLIST

- C.A. réalisé sur la transaction
 - Facteurs déterminants: Fidélité du client, Montant de la transaction
- OLIST: place de marché, intermédiation et transaction électronique en retail
- Base de clientèle à diversité potentiellement infinie, corrélé à la gamme des produits proposés par les vendeurs

Profilage commercial de OLIST

- C.A. réalisé sur la transaction
 - Facteurs déterminants: Fidélité du client, Montant de la transaction
- OLIST, place de marché, intermédiation et transaction électronique en retail
- Base de clientèle à diversité potentiellement infinie, dépendant des produits des vendeurs
- Croissance rapide de la base clientèle
 - Opportunité Marketing
 - Connaitre sa base client

Segmentation de la base de clientèle

- Segmentation manuelle sur la base des déterminants du CA: Fidélité
 & Montant des transactions
 - Segmentation RFM
- Segmentation automatique par modèles d'Intelligence Artificielle
 - Segmentation par K-Means & DBScan

Nettoyage & Analyse exploratoire des données

Présentation générale du jeu de données

Données statistiques de base -Données brutes

- Données relatives aux commandes (clients, produits, paiements et frêt)
- 100k commandes entre 2016 et 2018 (~2ans)
- Variables catégorielles (nominales et ordinales) majoritaires
- Relativement peu de valeurs manquantes (sauf sur les commentaires de satisfaction et les commandes)

Nettoyage des données

Commandes

- Suppression des 3% de commandes nonlivrées.
- Les données affectées: *orders, customers, items, payments*

Données sur les clients

Géographie

- 35% des commandes proviennent de 10 villes (0.24%)
- Champ de cibles pertinent pour des projets pilotes

Données sur les clients

Nombre de commandes

 Seulement 20 clients sur 96k ont plus de 4 commandes ordonnées

Données sur les commandes

Délais de livraison

 Distribution asymétrique du délai de livraison, avec plus de retard que d'avance

Données sur les commandes

Délais de livraison

- Distribution asymétrique du délai de livraison, avec plus de retard que d'avance.
- Note de satisfaction review_score bien mieux corrélée avec le délai de livraison gap qu'avec le chiffre d'affaires des partenaires vendeurs.

Données sur les paiements

moyens de paiement

- Près de ¾ de cartes de crédit, et relativement peu de carte de débit
 - •Propension à la consommation
- 15% de Boleto
 - •Taux de non-bancarisation des clients non-négligeable

Données sur les paiements

valeurs des paiements

 La grande majorité des paiements < C.A. moyen

Données sur les paiements

nombre de paiements/commande

- La grande majorité des paiements < C.A. moyen
- Recours important aux facilités de paiement
- -> Politique spécifique sur les coûts fixes des transactions (throughputs des serveurs, card scheme fees)

Segmentation Manuelle

RFM Score

Nature

- R pour Récence du client
 - Âge de la dernière transaction -> valeur prospective et stratégique
- F pour Fréquence du client
 - Nombre de transactions, indicateur objectif de la fidélité -> influence directe sur le C.A.
- M pour Monétaire (valeur)
 - Valeur des transactions -> influence directe sur le C.A.
 - Calculée comme la somme de toutes les transactions

Constitution

- Score agrégé = produit des variables scores de chaque client
 - Perte de l'information "spatiale" de chaque facteur.
 - Appréciation issue de ce score ne peut se faire que sur une échelle unique globale.
- Segment = Niveau global du potentiel de chiffre d'affaire

Segments

Segment 1: l'étincelle: rfm_score in [1,16]

Segment 2: la buchette [d'allumette]:

rfm_score in [17,32]

Segment 3: le briquet: rfm_score in [33,48]

Segment 4: le flambeau: rfm_score in [49,64]

Segment 5: **le feu de camp**: rfm_score in

[65,80]

Segment 6: le dragon: rfm_score in [81, 100]

Limitations de la modélisation

- Perte d'information "spatiale" (agrégation par produit)
- Fréquence inexploitable
 - Distribution quasi unimodale vs Effectif de 9 modalités

Limitations de la modélisation

- Perte d'information "spatiale" (agrégation par produit)
- Fréquence inexploitable
 - Distribution quasi unimodale vs Effectif de 9 modalités
- Segmentation non-pertinente!

Feature engineering

Variables additionnelles injectées

- Score de satisfaction
 - moyennée sur toutes les commandes du client
- Nombre d'objets achetés
 - calculée comme la somme de tous les objets achetés

Segmentation automatique

KMeans, DBScan

Segmentation KMeans

Constitution

- Définition: proximité par rapport à un point représentatif parmi K points représentatifs
- K dans {2,3,4,5,6}
- Evaluation du K optimal par le score silouhette (quantification relative de l'appartenance effective à son cluster)

Segmentation KMeans Résultats

- Appliqué sur un espace à 4 dimensions (récence, monetaire, review_score, items)
- Les meilleures scores silouhette:
 - K=3; silouhette score = 0.464
 - K=6; silouhette score = 0.407
- La valeur K=6 est retenue
 - Faible fluctuation de la taille des silouhettes
 - Possibilité d'interprétation plus diverse

Silhouette analysis for KMeans clustering on sample data with n_c clusters = 3

Silhouette analysis for KMeans clustering on sample data with $n_{clusters} = 6$

Segmentation KMeans

Segments

Segment 0: le dragon déchainé

Segment 1: le phoenix endormi

Segment 2: la braise fraîche

Segment 3: le feu de camp interrompu

Segment 4: l'étincelle

Segment 5: l'allumette fumante

Segmentation DBScan Constitution

- Définition: proximité avec d'autres individus, séparation en densités locales
- Pré-calcul du rayon de boule optimal

Segmentation DBScan

Constitution

- Définition: proximité avec d'autres individus, séparation en densités locales
- Pré-calcul du rayon de boule optimal

Segmentation DBScan Calcul

- Appliqué sur un espace à 4 dimensions (récence, monétaire, review_score, items)
- epsilon = 0.1, min_samples = 5

Segmentation DBScan Calcul

- Appliqué sur un espace à 4 dimensions (récence, monétaire, review_score, items)
- epsilon = 0.1, min_samples = 5
- Densité trop importante du nuage

Segmentation DBScan

- Appliqué sur un espace à 4 dimensions (récence, monétaire, review_score, items)
- epsilon = 0.1, min_samples = 5
- Densité trop importante du nuage
- Modélisation incompatible avec la structure des données!

Bilan des essais de segmentation

- Segmentation manuelle RFM
- Segmentation KMeans
- Segmentation DBScan

Bilan des essais de segmentation

- Segmentation manuelle RFM: Fréquence inexploitable
- Segmentation KMeans (6 clusters)
- Segmentation DBScan: Incompatible avec la structure des données

Stabilité des segments

KMeans

Stabilité des segments

Procédure

- Base initiale B_0; Clusterer[ing] intial C_0 : entrainement sur et segmentation de B_0.
- Bases futures {B_i} obtenues par extension incrémentales successives
- Clusterers futures {C_i}: entrainements sur {B_i}
- Clusterings prospectifs {C_0_i}: segmentation de B_i par C_0
- Clusterings futures {C_i_i} : segmentation de B_i par C_i
- Analyse dynamique de l'écart ({C_0_i}, {C_i_i})

Stabilité des segments

Résultat

- B_0, de taille 12 mois
- KMeans (n_clusters = 6)
- Incrément = 1 mois

Stabilité des segments Résultat

- B_0, de taille 12 mois
- KMeans (n_clusters = 6)
- Incrément = 1 mois
- Analyse comparative par adjusted rand_score

Contrat de Maintenance

- Rupture de similarité prospectif-futur
- Fréquence de mise à jour de 3 mois

Merci pour votre attention

Disponible pour des questions/réponses