(B) 日本国特許庁 (JP)

①特許出願公開

⑫ 公開特許公報 (A)

昭57-62052

⑤ Int. Cl.³G 03 F 1/00

識別記号

庁内整理番号 7447-2H ❸公開 昭和57年(1982)4月14日

発明の数 1 審査請求 未請求

(全4頁)

匈透過照明用被投影原板

川崎市高津区千年926

郊特 願 昭55-136483

切出 願 人 日本光学工業株式会社

②出 願 昭55(1980)9月30日

東京都千代田区丸の内3丁目2

0発 明 者 渋谷真人

番3号 個代理人 弁理士 岡部正夫

外6名

BEST AVAILABLE COPY

明 刺 ・ 朝

1.発明の名称 透過照明用被投影原版

2. 特許請求の範囲

透明部と不透明部とで形成された角定のパターンを有し、透過照明によつて投影される 被投影原版において、

前記不透明部をはさむ両側の透明部の少な くとも一方に位相部材を設け、該両側の透明 部に位相差を生する構成としたことを特徴と する透過照明用被投影原版。

3. 発明の許細な説明

本発明は、光学的な像の再生、特に、表過 照明により照明されレンズ系によつて投影される被投影像版に関する。

従来・フオトエツチング等に用いられる原版には、透明部と不透明部とにより所定のパターンが形成されており、これをレンズ系により感光膜面上に投影する手法が知られている。このようなあるパターンをレンズにより投影する場合には、回折現象のために再生像

には解像限外があることは関知である。そして、理論的な限界値としてのカットオフ周故数は、一般に、投影レンズの開口数を N A、 使用光線の故及を A とすると、インコヒーレント照明では 2 N A / A (本/mm)、またコヒーレント照明では N A / A (本/mm)であり、投影レンズの開口数を大きくしない限りある放長に対する解像を高めることは不可能とされている。

本発明の目的は、従来と何一の放長光及び何一の投影レンズを用いながら、解像限界を従来以上に高めることが可能な被投影原版を 提供することにある。

特開昭57-62052(2)

しかしながら、コヒーレント照明であつても、2つの部分からの光に位相差がある場合には解像を高めることが可能である。部2図には、2つの点光線がレーレーの解像服料の距離にある時に、四2つの光線がインコヒー

(31

老明部の1つに 1/2 板 3 を散けたものの断面を示し、併せてこれをコヒーレント照明によって投影された像の振幅分布の様子を複解分布の様子を観解分布の様子を観解のほこれた3つの満明部のうち両外側の透明にでいるが、これの間の透明部の像の振幅は 1/2 枚 3 の存在により場場は反転する。 従って、 不透明節で の光短度は怪性者となって、 解像限界が向上する。

このような解像限界の向上は、兜腊斑紋紋で考えれば、 シ2 板のために格子の環痛の基本制が 4 から 2 4 となり、振幅の基本制設 が 5 となり、 振幅の 3 本の 数で失まる カットオフ 制設 数により 従来では 通過できなかつ た 基本 周 設 数 が 3 となった、 物 体 に コ ヒーレンシ に よ る。 これは さら に、 物 体 に コ ヒーレンシ イ の あ る 場 合の 像 の 無 厳 に 関 す る 式 として、 「 フーリエ 錯 像 職 」 (小 瀬 輝 次 条 、 共 立 出 吸)

レントな場合、(の2つの光疎がコヒーレント で位相が一致している場合。(1)2つの光弧が コヒーレントで180位相がずれている場合 の3つの場合について、それぞれその強度分 布を示した。港2回から分るように、インコ ヒーレントな2点が解像されるとき、位相の 一枚したコヒーレントな2点は解像されない。 これが、一般にコヒーレント照明による場合 **に、解徴限界が下ることに対応している。し** かし、位相が180°ずれたコヒーレントな2 点については、インコヒーレントの場合より もはるかに良く解像されている。尚、このよ うな2つの点光敞についての解析は「放動と 、上田光宏、共著、森北出 映像丨(佐藤 版)の62頁~64頁に辞しい。

本発明は、上述のごとく位相が180°でれたコヒーレントの場合に解像が高まることに 特目し、上記のごとく構成したものである。 第3以には、本発明の一例として、透明部1 と不透明部2とから成る格子原版において、

(4)

の記 6 「良に配被された(3.2 4)式によつ て説明される。すなわち、この時の像の強度 Jn (X n) は、

 $J_{13}(X_n) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_$

持開昭57-62052(3)

も影響してくる。そして、強度の空間関数数は、ユーユニディー(一元/2)=元となる。従つて、1/2 板の無い場合には、元の固数数の強度を再生するためには、元の超数の凝幅が過過しなくてはならないが、1/2 板を散けた場合には、何じ元の周数数の強度を再生するために元/2 の周数数の振幅が通過すればよい。これが、1/2 板を散けた格子の解像限界が2倍になる独由である。

このようにコヒーレント照明において、解像限界が2倍になる訳であるが、解像限界だけではインコヒーレント限明の場合と変わりはない。ところが、インコヒーレント照明では0アドがカツトオフ周放数に近づくにつれて敵少するのに対し、コヒーレント照明のりたれ神るため、強度の病本関放数の利待は1/2 板を設けてコヒーレント照明の場合よりもはるかによく、コントラストが高くなる。

(7)

る敬酬パターンの焼付け等において、バターンの焼付け等においる場合にないて、バター明に「「「「「「「「「「「」」」」」である。また、投影を厳いない。また、投影を厳いないない、「「」」であることが明知を持ちている。には「「ない」」といいまる解像関邦以上に高い解像を得ることが可能である。

尚、本発明は、被投影服版上の焼付されるパターン面のみならず、アライメントマーク等にも用いることができ、位置合せの精展をより同止させることができることはいうまでもない。

4. 図面の簡単な説明

部 1 図は、一般的格子の断而及びこの格子の投影像の振幅分布の似子を示す。第 2 図は 2 つの点 光隙がレーレーの 解像限界の距離に あるときの 3 つの場合(a)(b)(c) についての強度 分布を示す。第 3 図に本発明の一例としての

以上、一次元格子の場合を述べたが、本発明による被牧影像版としては、例えば第4個に示すごとき二次元的パターンを有するものでもよい。 女に 位相登は 1 H 10 に限るものではない。 例えば、位相り 0 ずれた 2 つの点ではない。 例えば、位相り 0 ずれた 2 つの点ではなり、 股けるべき位は現することのに発明になり、 股けるならば、 3 つの選明部 1 1、12、

13が並列する区域では隣接する幾明部間での位相差がそれぞれりでになり、透明部11. 13が隣接する区域では位相差が180°となり、パターンのほぼ全域にわたつて解像を高めることが可能である。

以上のごとく、本発明による被投影像版を用いれば、従来と同一の投影レンズで同一の放長を用いたとしても解像限界を格段に高めることが可能であり、特に10数盗装徹によ

(8)

格子原版の透明部の1つに 2/2 板を設けた断 前及びこれをコヒーレント 脱明によつて投影 された像の振幅分布の様子(実融)を強度分 布の様子(破線)を示す。第4回は二次元的 バターンを有する彼投影原版の例を示す。

(主要部分の符号の説明)

1 … … 选明 那分

2 … … 不透明部分

3 … … 4/2 板

