Def (Subset). $\forall x \in X, x \in A \text{ means } X \subset A$

Def (Set operations). Union, Intersection, $A \times B = \{(a,b) : a \in A, b \in B\}.$

Def (Indexed unions/intersections). $\bigcup_{\alpha \in S} A_{\alpha} = \{x : \exists \alpha \in S, \ x \in A_{\alpha}\}; \bigcap_{\alpha \in S} A_{\alpha} = \{x : \forall \alpha \in S, \ x \in A_{\alpha}\}.$ For $S = \mathbb{N}$, write $\bigcup_{n=1}^{\infty} A_n$.

Def (Function). $f: A \to B$ assigns to each $a \in A$ a unique $f(a) \in B$.

(Injective) $f(x) = f(x') \implies x = x'$. (Surjective) $\forall y \in B, \exists x \in A : f(x) = y$ (Bijective) Both injective and surjective.

Ex. $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ not injective (1, -1).

Ex. $f: \mathbb{N} \to \mathbb{N}, \ f(x) = x^2$ injective.

Ex. $f: \mathbb{Z} \to \mathbb{Z}, \ f(x) = 2x \text{ not surjective.}$

Ex. $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1 bijective.

Def (Composition). $(g \circ f)(x) = g(f(x))$. Def (Identity). $id_A(x) = x$.

Prop Composition of injectives is injective; of surjectives is surjective; of bijectives is bijective.

Prop $f: A \to B$ bijective $\iff \exists g: B \to A$ with $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

Def (Restriction). If $A' \subset A$, then $f|_{A'} : A' \to B$, $f|_{A'}(x) = f(x)$.

Def (Image). $f(E) = \{f(x) : x \in E\}.$

Def (Inverse image). $f^{-1}(F) = \{x \in A : f(x) \in F\}.$

Ex. $f(x) = x^2$, E = [-1, 2], then f(E) = [0, 4]. **Ex.** $f^{-1}([1, 4]) = [-2, -1] \cup [1, 2]$.

Def. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Def. S finite if $S = \emptyset$ or $\exists n$ bijection $[n] \to S$.

Prop $f^{-1}(F \cup G) = f^{-1}(F) \cup f^{-1}(G); f^{-1}(F \cap G) = f^{-1}(F) \cap f^{-1}(G); f(E \cup F) = f(E) \cup f(F); f(E \cap F) \subset f(E) \cap f(F).$

Ex. $f(x) = x^2$, $E = \{-1, 1\}$, $F = \{2\}$: $f(E \cap F) = \emptyset$, but $f(E) \cap f(F) = \{1\} \cap \{4\} = \emptyset$.

Ex. Inclusion can be strict (non-injective f).

Cor If f injective, then $f(E \cap F) = f(E) \cap f(F)$. **Props** Subset of finite set finite; finite unions finite; product of finite sets finite.

Def (Field). A set F with +, \cdot satisfies: commutativity, associativity, distributivity, identities 0, 1, inverses.

Def (Ordered set). (S, \leq) with reflexivity, antisymmetry, transitivity, and comparability.

Def (Maximum/minimum). Max: $y \in A$ with $x \le y$ for all $x \in A$; Min: $y \in A$ with $y \le x$ for all $x \in A$.

Lemma 3.20. Every nonempty subset of \mathbb{N} has a minimum (well-ordering).

Cor 3.21. Every nonempty finite subset of an ordered set has $\min + \max$.

Def (Upper bound). y is an UB of A if $x \le y \ \forall x \in A$. **Def (Supremum).** $\sup A = \text{least upper bound}$.

Def. Infimum = greatest lower bound.

Props 3.29–3.30. $\sup A$ unique; if $\max A$ exists then $\sup A = \max A$ (similarly for \inf , \min).

Thm \mathbb{R} is an ordered field with the LUB property, unique up to isomorphism.

Prop (Archimedean). $x > 0 \Rightarrow \forall y \ \exists n \in \mathbb{N} : nx > y$. **Prop** (Density of \mathbb{Q}). If x < y, then $\exists q \in \mathbb{Q}$ with x < q < y.

Ex ("Hole" in \mathbb{Q}). $A = \{x \in \mathbb{Q} : x > 0, x^2 < 2\}$ is bounded above in \mathbb{Q} but has no LUB in \mathbb{Q} (hence \mathbb{Q} fails LUB property).

Prop (Square roots). For $x \ge 0$ there exists a unique $y \ge 0$ with $y^2 = x$.

Def (Exponentiation). For $\beta = p/q \in \mathbb{Q}, \ x > 0$: $x^{\beta} = (\sqrt[q]{x})^p$. For x > 1, $\alpha \in \mathbb{R}$: $x^{\alpha} = \sup\{x^{\beta} : \beta \in \mathbb{Q}, \beta \leq \alpha\}$. If 0 < x < 1, use inf.

Quick sup/inf calculus. inf $A = -\sup(-A)$; $\sup(A + c) = \sup A + c$; $\inf(A + c) = \inf A + c$; $c \ge 0$: $\sup(cA) = c \sup A$, $\inf(cA) = c \inf A$; c < 0: $\sup(cA) = c \inf A$, $\inf(cA) = c \sup A$; $\sup(A \cup B) = \max\{\sup A, \sup B\}$; if A, B nonempty, bdd above: $\sup(A + B) = \sup A + \sup B$ (use $\varepsilon/2$).

Def (Countable). S is at most countable if S is finite or \exists bijection $f : \mathbb{N} \to S$.

Countability toolkit. Infinite subset of a countable set is countable; countable union of countables is countable; \mathbb{Q} and \mathbb{Q}^n are countable; \mathbb{R} is uncountable (Cantor diagonal).

Def (Inner product, norm, distance). $x \cdot y = \sum x_i y_i$; $||x|| = \sqrt{x \cdot x}$; d(x, y) = ||x - y|| on \mathbb{R}^n .

Cauchy–Schwarz. $|x \cdot y| \le ||x|| ||y||$. Triangle $||x + y|| \le ||x|| + ||y||$; also $|||x|| - ||y||| \le ||x - y||$.

Def (Metric space). $d: X \times X \to \mathbb{R}$ with: $d \ge 0$ and $d(x,y) = 0 \iff x = y$; symmetry; triangle inequality.

Def (Balls). $B_{\varepsilon}(p) = \{q : d(p,q) < \varepsilon\}$ (open ball); $\overline{B}_{\varepsilon}(p) = \{q : d(p,q) \le \varepsilon\}$ (closed ball).

Open-ball lemma. Each $B_{\varepsilon}(p)$ is open: if $q \in B_{\varepsilon}(p)$, set $\delta = \varepsilon - d(p,q) > 0$, then $B_{\delta}(q) \subset B_{\varepsilon}(p)$.

Def (Open/closed, interior). E open if $\forall p \in E \exists \varepsilon > 0$ with $B_{\varepsilon}(p) \subset E$. Closed if E^c open. Interior $\operatorname{int}(E) = \operatorname{largest}$ open subset of E.

Basic open/closed algebra. Arbitrary unions of open sets are open; finite intersections of open sets are open; arbitrary intersections of closed sets are closed; finite unions of closed sets are closed.

Subspace: $E \subset Y \subset X$ open in $Y \iff E = Y \cap G$ for some open $G \subset X$; similarly for closed.

Exs (Open/closed pitfalls). $\bigcap_{n\geq 1}(-1/n,1/n)=\{0\}$ (not open). $\bigcup_{n\geq 1}[-1/n,1/n]=(-1,1]$ (not closed).

Def (Limit points). p is a limit point of E if every $B_{\varepsilon}(p)$ contains some $q \in E$, $q \neq p$. E is closed $\iff E$ contains all its limit points.

Limit-point facts. Every neighborhood of a limit point contains infinitely many points of E; finite sets have no limit points \Rightarrow finite sets are closed; $\{1/n : n \in \mathbb{N}\}$ has the unique limit point 0; in \mathbb{R} , (a,b) has limit points a,b but omits them.

Def (Closure/boundary). $\overline{E} = E \cup \{\text{limit points of } E\}; \ \partial E = \overline{E} \setminus \text{int}(E).$

Closure characterizations. \overline{E} is the smallest closed set containing E and equals $\bigcap \{F \supset E : F \text{ closed}\}$; \overline{E} closed; $E = \overline{E}$ iff E closed; if $E \subset F$ and F closed, then $\overline{E} \subset F$; in \mathbb{R} : if $E \neq \emptyset$ and bounded above, then $\sup E \in \overline{E}$.

Def (Bounded sets). E is bounded if $\exists M$ with d(p,q) < M for all $p,q \in E$.

Boundedness equivalence. E bounded $\iff \exists x, M$ with $E \subset B_M(x)$. Exs: finite sets are bounded; $\mathbb{Z}^3 \subset \mathbb{R}^3$ unbounded.

One-liners you can reproduce. (1) inf $A = -\sup(-A)$ (lower bounds \leftrightarrow negative upper bounds). (2) $\sup(A + B) = \sup A + \sup B$ (" \leq ": monotonicity; " \geq ": $\varepsilon/2$ nearsups). (3) Neighborhoods are open: $\delta = \varepsilon - d(p,q)$. (4) Finite sets closed: a limit point forces infinitely many points per ball. (5) Floor trick: if U upper bound of \mathbb{N} , then $\lfloor U \rfloor + 1 > U$.

Fast exemplars. Open not closed: (0,1); Closed not open: [0,1]; Both: \varnothing , X (discrete metric); Neither: $(0,1] \cup \{2\}$.

Limit points: $E = \{1/n\}$ has only 0; 1 is isolated Sup in closure: E = (0,1) has sup $E = 1 \in \overline{E}$ but $1 \notin E$.

Canonical counts (know these cold).

- (1) \mathbb{N} countable; \mathbb{Z} countable (zig-zag); \mathbb{Q} countable (grid/diagonal).
- (2) If A, B countable, then $A \cup B$, $A \times B$ are countable; countable union of countables is countable.
- (3) \mathbb{Q}^n countable; finite strings over a countable alphabet are countable.
- (4) $\mathcal{P}(\mathbb{N})$ uncountable (Cantor); hence $2^{\mathbb{N}} = \{0,1\}^{\mathbb{N}}$ uncountable; $\mathbb{N}^{\mathbb{N}}$ uncountable.
- (5) If F finite with $|F| \geq 2$, then $F^{\mathbb{N}}$ uncountable; if D finite then \mathbb{N}^D countable.

Encodings you can write fast.

- (1) Pairs $\leftrightarrow \mathbb{N}$ (Cantor pairing): $\pi(m,n) = \frac{(m+n)(m+n+1)}{2} + n$ is bijection $\mathbb{N}^2 \to \mathbb{N}$.
- (2) Tuples: $\mathbb{N}^k \cong \mathbb{N}$ by iterating π (or prime coding $n \mapsto 2^{a_1} 3^{a_2} \cdots p_k^{a_k}$).
- (3) Finite sequences (any length): encode as $(\ell, a_1, \dots, a_\ell) \in \mathbb{N}^{\ell+1}$; union over ℓ (countable).
- (4) Finite subsets of \mathbb{N} : encode F by $n(F) = \prod_{i \in F} p_i$ (unique) injects into \mathbb{N} .

Diagonalization template (prove uncountable). Assume a list f_1, f_2, \ldots of all elements of $X^{\mathbb{N}}$ (e.g. $\{0,1\}^{\mathbb{N}}$). Define g by $g(n) \neq f_n(n)$ (flip $0 \leftrightarrow 1$). Then g differs from f_n at n for every n — contradiction.

function set sizes ex

- (1) Finite domain: if F finite then B^F finite ($|B|^{|F|}$), hence countable if B countable.
- (2) Finite codomain ≥ 2 : $F^{\mathbb{N}}$ uncountable (reduce from $\{0,1\}^{\mathbb{N}}$).
- (3) Eventually-zero sequences: $E = \{(a_n) : \exists N, a_n = 0 \ \forall n > N\}$ is countable (finite-sequence union).
- (4) All sequences: $\mathbb{N}^{\mathbb{N}}$ uncountable (diagonalize).
- (5) Rational vs real sequences: $\mathbb{Q}^{\mathbb{N}}$ uncountable (inject $\{0,1\}^{\mathbb{N}}$).

Countability of function sets.

- (1) Finite domain: if A finite and B countable, then B^A countable (finite power).
- (2) Finite codomain ≥ 2 : if A infinite and $|B| \geq 2$ finite, then B^A uncountable (reduce from $\{0,1\}^{\mathbb{N}}$).
- (4) All sequences: $\mathbb{N}^{\mathbb{N}}$ uncountable (diagonalization).
- (5) Countable domain + uncountable codomain: $B^{\overline{A}}$ uncountable (already $2^{\mathbb{N}}$).
- (6) Finite binary strings $\{0,1\}^*$ countable; infinite binary strings $\{0,1\}^{\mathbb{N}}$ uncountable.

Micro-Exs (1-3 lines).

- (1) \mathbb{Q} countable: list $\frac{p}{q}$ with $q \geq 1$, $\gcd(p,q) = 1$; enumerate diagonally, skip repeats/signs.
- (2) $\{0,1\}^{\mathbb{N}}$ uncountable: diagonal flip of putative list.
- (3) Fun(\mathbb{N} , $\{0,1,2\}$) uncountable: inject $\{0,1\}^{\mathbb{N}}$ (e.g. append 2's).
- (4) Countable union of countables: enumerate $A_k = \{a_{k,1}, a_{k,2}, \dots\}$, list along diagonals.
- (5) Finite subsets of \mathbb{N} countable: $F_k = \{S \subset \mathbb{N} : |S| = k\} \cong \mathbb{N}^k$, then $\bigcup_k F_k$ is countable.
- (6) Algebraic numbers countable: union over degree/coeff bounds, each inner set finite.

Creative proof skeletons. Encode & diagonalize; chunk by size (k-tuples / k-element subsets); pairing $\mathbb{N}^k \to \mathbb{N}$; finite-support \Rightarrow countable; prime-coding injection.

Typical exam prompts & 1-line starts.

- 1. $\{0,1\}^{\mathbb{N}}$ uncountable: assume list $(x^{(n)})$, set $y_n = 1 x_n^{(n)}$.
- 2. Eventually constant 0/1 sequences countable: $\bigcup_{N,c} \{\text{seqs constant after } N\} \cong \bigcup_{N} \{0,1\}^{N}$.
- 3. $\mathbb{Q}^{\mathbb{N}}$ uncountable: inject $\{0,1\}^{\mathbb{N}} \hookrightarrow \mathbb{Q}^{\mathbb{N}}$.
- 4. Polynomials with integer coeffs countable: coeff tuples $\in \mathbb{Z}^{k+1}$; union over k.
- 5. $\mathcal{P}(\mathbb{N})$ uncountable: subsets \leftrightarrow characteristic sequences; diagonalize.

Fast pitfalls. "Countable union of uncountable sets is countable" — false. "Product of countables is always countable" — only finite products. "Functions from a countable set to a finite set are countable" — false when domain infinite and codomain has ≥ 2 elements.

Extra key Exs.

- (1) On \mathbb{R} , $d(x,y) = |x^2 y^2|$ is not a metric: d(1,-1) = 0 though $1 \neq -1$.
- (2) In the discrete metric d(x, y) = 0 if x = y, else 1, every subset is both open and closed (clopen).
- (3) $E=\{0\}\cup\{1/n:n\in\mathbb{N}\}\cup\{1+1/n:n\in\mathbb{N}\}$ has exactly three limit points: 0,1,2.

More key Exs.

(1) On \mathbb{R} , $d(x,y) = \frac{|x-y|}{1+|x-y|}$ is a bounded metric that

induces the same open sets as the standard metric.

- (2) In the subspace $Y = [0,1] \subset \mathbb{R}$, the set (0,1] is open in Y but not open in \mathbb{R} (relative openness).
- (3) In \mathbb{R}^2 , $E = \{(x, y) : x < y\}$ is open; the distance from y x
- $(x,y) \in E$ to the boundary line y = x is $\frac{y-x}{\sqrt{2}}$.

 \mathbb{Q} is dense in \mathbb{R} but not closed, since $\sqrt{2} \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$.

Limit vs isolated points.

Limit point: every ball around p meets $E \setminus \{p\}$.

Isolated point: \exists ball around p containing no other point of E.

Ex: $E = \{1/n : n \in \mathbb{N}\}$ has unique limit point 0; each 1/n is isolated

Finite sets closed.

Let $F = \{x_1, \ldots, x_n\}$ in a metric space. For $p \in F$, the distances d(p,q) $(q \neq p)$ are > 0; set $\delta = \frac{1}{2} \min\{d(p,q) : q \in F, q \neq p\}$. Then $B_{\delta}(p) \cap (F \setminus \{p\}) = \emptyset$, so p is not a limit point. Thus F has no limit points and vacuously contains them all $\Rightarrow F$ is closed.

Irrationals in (0,1) are uncountable.

(0,1) is uncountable (Cantor); $\mathbb{Q} \cap (0,1)$ is countable. If the irrationals $I=(0,1)\setminus \mathbb{Q}$ were countable, then $(0,1)=I\cup (\mathbb{Q}\cap (0,1))$ would be a countable union of countables \Rightarrow countable — contradiction.