DSCI353-353m-453: Week11a-f Neural Network Topology

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

01 April, 2023

Contents

11.1.1.1 Underst	sanding neural networks: Perceptron Basics
11.1.1.1.1	How do Neural Networks work
11.1.1.1.2	Activation Functions
11.1.1.2 Neural	Network Topology
11.1.1.2.1	The number of layers
11.1.1.2.2	The direction of information travel
11.1.1.2.3	The number of nodes in each layer
11.1.1.3 Training	g neural networks with backpropagation
11.1.1.3.1	Backpropagation speeds up NN training
11.1.1.4 Cites .	

11.1.1.1 Understanding neural networks: Perceptron Basics

- The human brain is made up of about 85 billion neurons, resulting in a network capable of representing a tremendous amount of knowledge.
 - As you might expect, this dwarfs the brains of other living creatures.
 - For instance,
 - * a cat has roughly a billion neurons,
 - * a mouse has about 75 million neurons,
 - * and a cockroach has only about a million neurons.
 - In contrast, many ANNs contain far fewer neurons,
 - * typically only several hundred,
 - So we're in no danger of creating an artificial brain
 - * anytime in the near future -
 - * even a fruit fly brain with 100,000 neurons
 - * far exceeds the current state-of-the-art ANN.

Though it may be unfeasible to completely model a cockroach's brain,

- a neural network may still provide an adequate heuristic model of its behavior.
- Suppose that we develop an algorithm that can mimic how a roach flees when discovered.
- If the behavior of the robot roach is convincing,
 - does it matter whether its brain is as sophisticated as the living creature's?
- This question is the basis of the controversial Turing test,
 - proposed in 1950 by the pioneering computer scientist Alan Turing,
 - which grades a machine as intelligent
 - if a human being cannot distinguish its behavior from a living creature's.

Rudimentary ANNs have been used for over 50 years

- to simulate the brain's approach to problem-solving.
- At first, this involved learning simple functions
 - like the logical AND function or the logical OR function.
- These early exercises were used primarily
 - to help scientists understand how biological brains might operate.

However, as computers have become increasingly powerful in the recent years,

- the complexity of ANNs has likewise increased so much
- that they are now frequently applied to more practical problems including:
- Speech and handwriting recognition programs
 - like those used by voicemail transcription services
 - and postal mail sorting machines
- The automation of smart devices
 - like an office building's environmental controls
 - or self-driving cars and self-piloting drones
- Sophisticated models of weather and climate patterns,
 - tensile strength, fluid dynamics,
 - and many other scientific, social, or economic phenomena

Broadly speaking, ANNs are versatile learners

- that can be applied to nearly any learning task:
 - classification,
 - numeric prediction, and even
 - unsupervised pattern recognition.

ANNs are best applied to problems

- where the input data and output data
 - are well-defined or at least fairly simple,
- yet the process that relates the input to output is extremely complex.

As a black box method,

• they work well for these types of black box problems.

11.1.1.1.1 How do Neural Networks work

- The model of a single artificial neuron can be understood in terms
 - very similar to the biological model.
 - As depicted in the following figure,
 - * a directed network diagram
 - * defines a relationship between the input signals
 - * received by the dendrites (x variables),
 - * and the output signal (y variable).
 - Just as with the biological neuron,
 - * each dendrite's signal is weighted (w values)
 - * according to its importance
 - * ignore, for now, how these weights are determined.
 - The input signals are summed by the cell body
 - * and the signal is passed on
 - * according to an activation function denoted by f:

A typical artificial neuron with n input dendrites can be represented by the formula that follows.

- The w weights allow each of the n inputs (denoted by x_i)
 - to contribute a greater or lesser amount to the sum of input signals.
- The net total is used by the activation function f(x),

Figure 1: Neural Net Figure 0

- and the resulting signal, y(x), is the output axon:

$$y(x) = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

Figure 2: Neural Net Figure 0

Neural networks

- use neurons defined this way as building blocks
- to construct complex models of data.

Although there are numerous variants of neural networks,

- each can be defined in terms of the following characteristics:
- An activation function,
 - which transforms a neuron's combined input signals
 - into a single output signal to be broadcasted further in the network
- A network topology (or architecture),
 - which describes the number of neurons in the model
 - as well as the number of layers and manner in which they are connected
- The training algorithm that specifies
 - how connection weights are set
 - in order to inhibit or excite neurons in proportion to the input signal

Let's take a look at some of the variations within each of these categories

• to see how they can be used to construct typical neural network models.

11.1.1.1.2 Activation Functions

- The activation function is the mechanism
 - by which the artificial neuron
 - * processes incoming information and passes it throughout the network.
 - Just as the artificial neuron is modeled after the biological version,
 - so is the activation function modeled after nature's design.

In the biological case, the activation function could be imagined as

- a process that involves summing the total input signal
- and determining whether it meets the firing threshold.
- If so, the neuron passes on the signal;
 - otherwise, it does nothing.
- In ANN terms, this is known as a threshold activation function,
 - as it results in an output signal
 - only once a specified input threshold has been attained.

The following figure depicts a typical threshold function;

- in this case, the neuron fires when the sum of input signals is at least zero.
- Because its shape resembles a stair,
 - it is sometimes called a unit step activation function.

Figure 3: Neural Net Figure 0

Although the threshold activation function is interesting

- due to its parallels with biology,
 - it is rarely used in artificial neural networks.

- Freed from the limitations of biochemistry,
- the ANN activation functions can be chosen
 - based on their ability to demonstrate desirable mathematical characteristics
 - and accurately model relationships among data.

Perhaps the most commonly used alternative is the sigmoid activation function

- (more specifically, the logistic sigmoid) shown in the following figure.
 - Note that in the formula shown, e is the base of the natural logarithm.
- Although it shares a similar step or "S" shape with the threshold activation function,
 - the output signal is no longer binary;
 - output values can fall anywhere in the range from 0 to 1.
- Additionally, the sigmoid is differentiable,
 - which means that it is possible to calculate the derivative
 - across the entire range of inputs.
- As you will learn later, this feature is crucial
 - to create efficient ANN optimization algorithms.

Figure 4: Neural Net Figure 0

Although the sigmoid is perhaps the most commonly used activation function

- and is often used by default,
- some neural network algorithms allow a choice of alternatives.

A selection of such activation functions is shown in the following figure:

The primary detail that differentiates these activation functions

- is the output signal range.
- Typically, this is one of (0, 1), (-1, +1), or $(-\inf, +\inf)$.

Figure 5: Neural Net Figure 0

- The choice of activation function biases the neural network
 - such that it may fit certain types of data more appropriately,
 - allowing the construction of specialized neural networks.
- For instance, a linear activation function
 - results in a neural network very similar to a linear regression model,
 - while a Gaussian activation function
 - * results in a model called a Radial Basis Function (RBF) network.
 - Each of these has strengths better suited for certain learning tasks and not others.

It's important to recognize that for many of the activation functions,

- the range of input values that affect the output signal is relatively narrow.
 - For example, in the case of sigmoid,
 - the output signal is always nearly 0 or 1
 - * for an input signal below -5 or above +5, respectively.
- The compression of signal in this way results in a saturated signal
 - at the high and low ends of very dynamic inputs,
 - just as turning a guitar amplifier up too high results in a distorted sound
 - due to clipping of the peaks of sound waves.
- Because this essentially squeezes the input values
 - into a smaller range of outputs,
 - activation functions like the sigmoid
 - * are sometimes called squashing functions.

The solution to the squashing problem

- is to transform all neural network inputs
 - such that the features' values fall within a small range around 0.
- Typically, this involves standardizing or normalizing the features.
- By restricting the range of input values,
 - the activation function will have action across the entire range,
 - preventing large-valued features such as household income
 - from dominating small-valued features such as the number of children in the household.
- A side benefit is that the model may also be faster to train,
 - since the algorithm can iterate more quickly through the actionable range of input values.

11.1.1.2 Neural Network Topology

- The ability of a neural network to learn is rooted in its topology,
 - or the patterns and structures of interconnected neurons.

Although there are countless forms of network architecture,

- they can be differentiated by three key characteristics:
 - The number of layers
 - Whether information in the network is allowed to travel backward
 - The number of nodes within each layer of the network

The topology determines the complexity of tasks that can be learned by the network.

- Generally, larger and more complex networks are
 - capable of identifying more subtle patterns and complex decision boundaries.
- However, the power of a network is not only a function of the network size,
 - but also the way units are arranged.

11.1.1.2.1 The number of layers

• To define topology, we need a terminology

Neural network syntax

using the neuralnet() function in the neuralnet package

Building the model:

- target is the outcome in the mydata data frame to be modeled
- predictors is an R formula specifying the features in the mydata data frame to use for prediction
- data specifies the data frame in which the target and predictors variables can be found
- hidden specifies the number of neurons in the hidden layer (by default, 1)

The function will return a neural network object that can be used to make predictions.

Making predictions:

```
p <- compute(m, test)</pre>
```

- m is a model trained by the neuralnet() function
- test is a data frame containing test data with the same features as the training data used to build the classifier

The function will return a list with two components: **\$neurons**, which stores the neurons for each layer in the network, and **\$net.result**, which stores the model's predicted values.

Example:

Figure 6: Neural Network Syntax

- that distinguishes artificial neurons based on their position in the network.

The figure that follows illustrates the topology of a very simple network.

- A set of neurons called input nodes
 - receives unprocessed signals directly from the input data.
- Each input node is responsible for processing a single feature in the dataset;
 - the feature's value will be transformed by the corresponding node's activation function.
- The signals sent by the input nodes are received by the output node,
 - which uses its own activation function to generate a final prediction (denoted here as p).

The input and output nodes are arranged in groups known as layers.

- Because the input nodes process the incoming data exactly as it is received,
- the network has only one set of connection weights
 - (labeled here as w_1 , w_2 , and w_3).
- It is therefore termed a single-layer network.
- Single-layer networks can be used for basic pattern classification,
 - particularly for patterns that are linearly separable,
- but more sophisticated networks are required for most learning tasks.

Figure 7: Neural Net Figure 0

As you might expect, an obvious way to create more complex networks

• is by adding additional layers.

As depicted here, a multilayer network

- adds one or more hidden layers that process the signals
 - from the input nodes prior to it reaching the output node.
- Most multilayer networks are fully connected,
 - which means that every node in one layer
 - is connected to every node in the next layer,

but this is not required.

Figure 8: Neural Net Figure 0

11.1.1.2.2 The direction of information travel

- You may have noticed that in the prior examples,
 - arrowheads were used to indicate signals traveling in only one direction.
 - Networks in which the input signal is fed continuously in one direction
 - * from connection to connection
 - * until it reaches the output layer
 - * are called **feedforward networks**.

In spite of the restriction on information flow,

- feedforward networks offer a surprising amount of flexibility.
- For instance,
 - the number of levels and nodes at each level can be varied,
 - multiple outcomes can be modeled simultaneously,
 - or multiple hidden layers can be applied.
- A neural network with multiple hidden layers
 - is called a **Deep Neural Network (DNN)** and
- the practice of training such network
 - is sometimes referred to as deep learning.

In contrast, a recurrent network (or feedback network)

- allows signals to travel in both directions using loops.
- This property,
 - which more closely mirrors how a biological neural network works,
 - allows extremely complex patterns to be learned.

The addition of a short-term memory, or delay,

- increases the power of recurrent networks immensely.
- Notably, this includes the capability to understand
 - the sequences of events over a period of time.
- This could be used for

Figure 9: Neural Net Figure 0

- stock market prediction,
- speech comprehension,
- or weather forecasting.

A simple recurrent network is depicted as follows:

Figure 10: Neural Net Figure 0

In spite of their potential, recurrent networks

- are an area of active research
- and have some applications in practice.

On the other hand, feedforward networks

• have been extensively applied to real-world problems.

In fact, the multilayer feedforward network,

- sometimes called the Multilayer Perceptron (MLP),
- is the de facto standard ANN topology.
- If someone mentions that they are fitting a neural network,
 - they are most likely referring to a MLP.

11.1.1.2.3 The number of nodes in each layer

- In addition to the variations in
 - the number of layers and
 - the direction of information travel,

Neural networks can also vary in complexity

- by the number of nodes in each layer.
- The number of input nodes is predetermined
 - by the number of features in the input data.
- Similarly, the number of output nodes is predetermined
 - by the number of outcomes to be modeled
 - or the number of class levels in the outcome.
- However, the number of hidden nodes
 - is left to the user to decide
 - prior to training the model.

Unfortunately, there is no reliable rule

- to determine the number of neurons in the hidden layer.
- The appropriate number depends
 - on the number of input nodes,
 - the amount of training data,
 - the amount of noisy data,
 - and the complexity of the learning task,
 - among many other factors.

In general, more complex network topologies

- with a greater number of network connections
 - allow the learning of more complex problems.
- A greater number of neurons
 - will result in a model that more closely mirrors the training data,
 - but this runs a risk of **overfitting**;
 - it may generalize poorly to future data.
- Large neural networks can also be
 - computationally expensive
 - and slow to train.

The best practice is to use the fewest nodes

- $\bullet\,$ that result in adequate performance
 - in a validation dataset.
- In most cases, even with only a small number of hidden nodes
 - often as few as a handful
- the neural network can offer a tremendous amount of learning ability.

11.1.1.3 Training neural networks with backpropagation

- The network topology is a blank slate that by itself has not learned anything.
 - Like a newborn child,
 - * it must be trained with experience.

- As the neural network processes the input data,
 - * connections between the neurons are strengthened or weakened,
 - * similar to how a baby's brain develops
 - * as he or she experiences the environment.
- The network's connection weights are adjusted
 - * to reflect the patterns observed over time.

Training a neural network by adjusting connection weights

- is very computationally intensive.
- Consequently, though they had been studied for decades prior,
 - ANNs were rarely applied to real-world learning tasks
 - until the mid-to-late 1980s,
 - when an efficient method of training an ANN was discovered.
- The algorithm, which used a strategy of back-propagating errors,
 - is now known simply as **backpropagation**.

11.1.1.3.1 Backpropagation speeds up NN training

- Although NN's still notoriously slow
 - relative to many other machine learning algorithms,
 - the backpropagation method
 - * led to a resurgence of interest in ANNs.
 - As a result, multilayer feedforward networks
 - * that use the backpropagation algorithm
 - * are now common in the field of data mining.

Such models offer the following strengths and weaknesses:

Strengths	Weaknesses
 Can be adapted to classification or numeric prediction problems Capable of modeling more complex 	Extremely computationally intensive and slow to train, particularly if the network topology is complex
 patterns than nearly any algorithm Makes few assumptions about the data's underlying relationships 	Very prone to overfitting training data
	 Results in a complex black box model that is difficult, if not impossible, to interpret

Figure 11: Neural Net Figure 0

In its most general form, the backpropagation algorithm

• iterates through many cycles of two processes.

Each cycle is known as an **epoch**.

- Because the network contains no a priori (existing) knowledge,
 - the starting weights are typically set at random.
- Then, the algorithm iterates through the processes,
 - until a stopping criterion is reached.

Each epoch in the backpropagation algorithm includes:

- A forward phase in which the neurons are activated in sequence
 - from the input layer to the output layer,
 - applying each neuron's weights and activation function along the way.
 - Upon reaching the final layer,
 - an output signal is produced.
- A backward phase in which the network's output signal
 - resulting from the forward phase
 - is compared to the true target value in the training data.
- The difference between the network's output signal
 - and the true value
 - results in an error that is **propagated backwards** in the network
 - to modify the connection weights between neurons
 - and reduce future errors.

Over time, the network uses the information sent backward

- to reduce the total error of the network.
- Yet one question remains:
 - because the relationship between each neuron's inputs and outputs is complex,
 - how does the algorithm determine how much a weight should be changed?
- The answer to this question involves a technique called **gradient descent**.
- Conceptually, it works similarly to
 - how an explorer trapped in the jungle might find a path to water.
 - By examining the terrain and continually walking in the direction
 - with the greatest downward slope,
 - the explorer will eventually reach the lowest valley,
 - which is likely to be a riverbed.

In a similar process, the backpropagation algorithm

- uses the derivative of each neuron's activation function
 - to identify the gradient in the direction of
 - each of the incoming weights
 - hence the importance of having a differentiable activation function.
- The gradient suggests how steeply the error will
 - $-\,$ be reduced or increased for a change in the weight.
- The algorithm will attempt to change the weights
 - that result in the greatest reduction in error
 - by an amount known as the **learning rate**.
- The greater the learning rate,
 - the faster the algorithm will attempt to descend down the gradients,
 - which could reduce the training time
 - at the risk of overshooting the valley.

11.1.1.4 Cites

• Machine Learning with R, Brett Lantz

Perceptron: the main component of neural networks

Introduction to Deep Neural Networks

Figure 12: Gradient Pursuit with non-convex functions, requires new tricks