The Final Presentation

Final Listing Price Prediction for Private Used Car Sellers

Group 2

Ji-Soo Kim, Tae-Yoon Kim, Jun-Beom Lee, Jin-Joo Yang, Sung-Hyun Kim

Table of Contents

1. Introduction		
2. Target Audience Analysis ——		
3. Our Dataset		
4. Data Preprocessing		
5. Model Works		
6. Model Results		
7. Conclusion		

1. Introduction

News

How much profit do car dealers make on new and used cars? Here's the perception versus reality

- Huge disparity between how much buyers think dealers make and the reality
- Some consumers think dealers are making more than 75 per cent profit per car
- What Car? survey shows average consumer thinks dealers make 10-20 per cent per unit
- Dealers reveal that they really make about seven per cent on new cars

The used car market is a lot stronger with profit margins for dealers around 12 to 15 per cent.

David Kendrick, partner and accountancy UHY Hacker Young, said the figures dealers quoted to Car Dealer are accurate.

He said: 'There is a huge misconception as to how much retailers make on vehicle sales.

'We take on a large number of graduates every year and one of our questions is how much the average dealer makes on a £15k vehicle.

'Answers range from £10k down to those who understand it may be minimal to a loss.

'The issue is that there is such a huge range and misunderstanding. The substantial multi-million pound dealerships certainly don't help that perception. I am not sure how this will ever change.'

Kendrick said the average most dealers make on new and used cars is around £1,000 a car.

Dealers benefiting from the difference between the selling price and the buying price of a used car

Sellers have difficulty measuring the price they can actually obtain..

1. Introduction

With a total volume of 429 billion euros in 2021, the market for used cars in Europe is similar to the market for new cars. Of the 32 million used cars sold in Europe in 2021, some 44% were sold privately in consumer-to-consumer (C2C) transactions, while 56% were sold by professional retailers, which tend to focus on higher-class, younger cars. Furthermore, used car margins typically beat new car margins for dealers. Overall, the used car market is growing healthily, with a CAGR of 7% between 2015 and 2021.

Private Transactions are not easy to investigate with official statistics

Buyers also have difficulty determining whether the sale posted on the used car site is a false sale or not..

2. Target Audience Analysis - Seller & Buyer

Daniel Brühl - Seller

- Trying to sell my original car in order to buy a new car!
- But I'm afraid of the dealer fraud....
- Can't I just sell this privately with "Appropriate Price"?

Maria Stein - Buyer

- Want to buy used car cheaper because I'm out of budget.
- Then I have to find a used car in private sale, without a dealer...
- How much will be "the common selling price" of my dream car?

3. Our Dataset

dateCrawled, name, seller, offerType, price, abtest, vehicleType, yearOfRegistration, gearbox etc.

Source of data: ebay or other sites where cars can be posted.

3. Our Dataset

car_brand	car_model	car_age	kilometer	vehicleType	gearbox	powerPS	fuelType	notRepairedDamage	price
volkswagen	golf	19	150000	limousine	manual	75	gasoline	no	600
volkswagen	golf	17.58333	150000	station wagon	manual	90	diesel	no	1459
volkswagen	passat	7.666667	150000	station wagon	manual	170	diesel	no	5890
volkswagen	golf	9.75	150000	limousine	manual	80	gasoline	no	4000
volkswagen	touareg	10.91667	150000	suv	automatic	224	diesel	no	11900
volkswagen	beetle	12.66667	150000	convertible	manual	75	gasoline	no	5800
volkswagen	fox	5	80000	compact cars	manual	60	gasoline	no	7800
volkswagen	golf	4	60000	limousine	manual	211	gasoline	no	19200
volkswagen	golf	15.83333	150000	limousine	manual	75	gasoline	no	1200
volkswagen	golf	32.16667	150000	limousine	manual	75	gasoline	no	3799
volkswagen	golf	6.166667	90000	limousine	manual	105	diesel	no	8990
volkswagen	golf	21.75	150000	convertible	manual	90	gasoline	no	1750
volkswagen	passat	7.5	150000	station wagon	manual	105	diesel	no	5100
volkswagen	passat	10.58333	150000	limousine	manual	140	diesel	no	6700
volkswagen	golf	5.833333	50000	station wagon	manual	80	gasoline	no	9899
volkswagen	polo	12.08333	125000	limousine	automatic	75	gasoline	no	4900
volkswagen	polo	15.83333	150000	station wagon	manual	75	gasoline	no	1690
volkswagen	golf	7.666667	150000	limousine	automatic	105	diesel	no	8499
volkswagen	polo	11.91667	125000	compact cars	manual	72	gasoline	no	3000
volkswagen	sharan	10	150000	bus	manual	140	diesel	no	6350
volkswagen	golf	2.833333	40000	convertible	manual	211	gasoline	no	20450
volkswagen	golf	4.416667	125000	limousine	automatic	170	diesel	no	15900

3. Our Dataset

1.00

0.95

0.85

0.80

0.70

0.60

0.50

0.40

0.35

0.25

0.15

0.05

0.00 -0.05

-0.10 -0.15

-0.20

-0.25 -0.30

-0.35 -0.40

-0.45 -0.50

-0.55

-0.60 -0.65

-0.70 -0.75

-0.80

-0.85

-0.90

4. Data Preprocessing Recap

• Outliers (Too big or small value)

*_Mercedes_Benz_W220_S_400_CDI_Langvers._<>_162_TKM_>_1

- Ridiculous Values
- Duplicated Data

9999

0 s klasse

150000

mercedes benz

5. Model - Our Evaluation metrics

Evaluation metric	Advantage	Disadvantage	Why Selected?
R^2	Evaluate how much the model describes price volatility & explanatory	Sensitive to outliers	Suitable for assessment of explanatory power
MAPE	Intuitive with prediction error as a percentage	Small prices may distort the result	Intuitively assess actual predictive performance
RMSE	More accurate reflection of prediction errors in high-priced vehicles	Sensitive to outliers	Useful for performance evaluation of high-priced vehicle predictions

5. Model Works - Multiple Linear Regression (MLR)

5. Model Works - Multiple Linear Regression (MLR)

Nominal values for MLR: Label encoding

Q. Why not One-hot Encoding?

A. Experienced the Curse of Dimensionality...

Fixed) Linear correlation > 0.5 : car_age, kilometer, powerPS, car_model

vehicleType(1), gearbox(2), fuelType(3), notRepairedDamage(4)

CASE	X	1, 3, 4	2, 3, 4	1, 2, 3, 4
R^2	0.63506842	0.648601815	0.656494454	0.655735274
mean absolute error	3174.356195	3132.950155	3118.916731	3124.028734
mean squared error	25281779.31	24440843.29	23588280.12	23578420.14
root mean squared error	5028.098976	4943.768127	4856.776721	4855.761541
mean signed difference	-5.4771E-10	-4.02865E-09	4.30216E-10	4.01539E-10
mean absolute percentage error	0.906901314	0.903172851	0.910689249	0.899603956
adjusted R^2	0.63506842	0.648601815	0.656494454	0.655735274

5. Model Works - Multiple Linear Regression (MLR)

- **Limit number of levels (tree_depth)**: Number of tree levels to be learned
- **★Minimum child node size (min_child_size)**: Minimum number of records in child nodes

tree_depth

min_child_size

Start Value	Stop Value	Step Size	Best Param
3	100	5	73
5	30	5	5

performance	prediction (price)
R^2	0.88045
MAPE (Mean Absolute Percentage Error)	0.356
RMSE (Root Mean Squared Error)	2882.6

tree_depth

min_child_size

Start Value	Stop Value	Step Size	Best Param
50	90	1	69
5	6	1	5

★Optimal Hyperparameter

tree_depth: 69 / min_child_size: 5

performance	prediction (price)
R^2	0.8808
MAPE (Mean Absolute Percentage Error)	0.356
RMSE (Root Mean Squared Error)	2878.83

★Target Encoding..?

Convert brands and models to average prices

car_brand	car_model	car_brand_enc	car_model_enc	price
volkswagen	golf	6819.045426	6024.54069	600
volkswagen	golf	6819.045426	6024.54069	1459
volkswagen	passat	6819.045426	6013.214716	5890
volkswagen	golf	6819.045426	6024.54069	4000
volkswagen	touareg	6819.045426	17980.71884	11900
volkswagen	beetle	6819.045426	8735.380631	5800
volkswagen	fox	6819.045426	2997.835766	7800
volkswagen	golf	6819.045426	6024.54069	19200
volkswagen	golf	6819.045426	6024.54069	1200
volkswagen	golf	6819.045426	6024.54069	3799
volkswagen	golf	6819.045426	6024.54069	8990
volkswagen	golf	6819.045426	6024.54069	1750
volkswagen	passat	6819.045426	6013.214716	5100

in order to prevent 'the data leakage'...

tree_depth

min_child_size

Start Value	Stop Value	Step Size	Best Param
90	110	1	100
5	6	1	5

★Optimal Hyperparameter

tree depth: 100 / min_child_size: 5

performance	prediction (price)
R^2	0.878
MAPE (Mean Absolute Percentage Error)	0.37
RMSE (Root Mean Squared Error)	2911.78

Original Dataset (Unencoded)

Min child node size

	5	6	
60	0.879586	0.876837	
61	0.878303	0.876403	
62	0.880456	0.876057	
63	0.878985	0.878191	
64	0.878234	0.877959	
65	0.876653	0.878279	
66	0.879733	0.878207	
67	0.878702	0.877476	
68	0.877936	0.876826	
69	0.880798	0.876526	
70	0.879721	0.876119	
71	0.87931	0.876935	
72	0.878709	0.877494	
73	0.879647	0.877303	
74	0.879002	0.875762	
75	0.878169	0.876279	

Tree

depth

Target Encoded Dataset

Min child node size

Willi Cillia Hode Size					
	5	6			
90	0.876485	0.874156			
91	0.87578	0.875022			
92	0.877532	0.875158			
93	0.877572	0.875161			
94	0.875064	0.876897			
95	0.877696	0.87456			
96	0.877193	0.874161			
97	0.877141	0.874666			
98	0.877741	0.873691			
99	0.875669	0.874567			
100	0.878054	0.874959			
101	0.876756	0.874575			
102	0.877514	0.87576			
103	0.877466	0.874616			
104	0.877498	0.875535			
105	0.877946	0.874174			
106	0.877408	0.874065			
107	0.877069	0.876749			
108	0.877184	0.875546			
109	0.877206	0.874147			
110	0.877418	0.875256			

5. Model Works - Multi-Layer Perceptron (MLP)

5. Model Works - Multi-Layer Perceptron (MLP)

performance	prediction (price)
R^2	0.672
MAPE (Mean Absolute Percentage Error)	0.404
RMSE (Root Mean Squared Error)	4659.79

5. Model Works - Multi-Layer Perceptron (MLP)

Number of hidden layers

	2	3	4	5	6	7	8	9	10
3	0.65017	0.615928	0.614016	0.622766	0.509766	0.573377	0.370194	0.403561	0.39479
4	0.642803	0.632683	0.6247	0.610568	0.603258	0.512381	0.557201	0.355451	0.334034
5	0.639394	0.633924	0.632836	0.629655	0.606527	0.596536	0.584553	0.548112	0.511847
6	0.643445	0.641206	0.617749	0.631223	0.621891	0.615441	0.569108	0.433752	0.361475
7	0.635318	0.639291	0.652641	0.623891	0.653204	0.605677	0.604397	0.585897	0.556575
8	0.648531	0.650159	0.642627	0.631599	0.642783	0.572472	0.640443	0.532577	0.596598
9	0.650508	0.656796	0.639056	0.64895	0.649066	0.648743	0.59522	0.576442	0.603677
10	0.669919	0.648926	0.64796	0.644714	0.639783	0.649168	0.640463	0.567658	0.588777
11	0.65793	0.65408	0.658042	0.639319	0.650362	0.651778	0.621998	0.645935	0.63396
12	0.658547	0.654088	0.644217	0.644421	0.652721	0.634978	0.638008	0.618387	0.650662
13	0.658306	0.659108	0.649263	0.654403	0.659177	0.635069	0.651555	0.642547	0.632144
14	0.661775	0.653396	0.657138	0.654256	0.657063	0.636648	0.638928	0.636911	0.638158
15	0.650996	0.651512	0.657177	0.662008	0.658917	0.646684	0.650571	0.643291	0.592856
16	0.661198	0.654775	0.656722	0.655743	0.657195	0.655165	0.639675	0.638021	0.626475
17	0.66177	0.665334	0.652482	0.655764	0.656715	0.658282	0.619201	0.650585	0.648881
18	0.668007	0.656835	0.660502	0.651676	0.651214	0.658392	0.649922	0.641516	0.636192
19	0.67212	0.666316	0.654828	0.66083	0.659117	0.655186	0.652515	0.634711	0.648319
20	0.671967	0.655871	0.663365	0.657645	0.651424	0.641183	0.647533	0.645191	0.643466
21	0.662363	0.651803	0.654011	0.647677	0.65368	0.65391	0.653154	0.649486	0.627727
22	0.66328	0.656507	0.666222	0.658549	0.657493	0.651311	0.647223	0.655864	0.645305
23	0.659553	0.669976	0.655335	0.649904	0.651897	0.643876	0.643862	0.648783	0.623982
24	0.657986	0.655509	0.658985	0.663448	0.650668	0.65276	0.64579	0.652146	0.616976
25	0.659514	0.650194	0.653474	0.664067	0.657976	0.653952	0.660429	0.651348	0.656586

Number of hidden neurons per layer

6. Model Results

Performance	Multiple Linear Regression	Random Forest	Multi-Layer Perceptron
R^2	0.656	0.878	0.672
MAPE (Mean Absolute Percentage Error)	0.899	0.37	0.404
RMSE (Root Mean Squared Error)	4855.76	2911.78	4659.79

7. Conclusion

Q1. Why Random Forest?

A. Since it's an ensemble model of individual decision trees...

- Good at catching nonlinear relationships
- Good at handling categorical variables well
- Can effectively reflect interactions between variables
- Automatically calculates feature importance -> use important variables

Q2. Why not MLP?

A. Without sufficient training data and adequate hyperparameter tuning, MLP may not capture nonlinearity well...

 Requires learning all its characteristics & consideration of non-critical variables => Can lead to a lot of unnecessary learning!

O & A

Thank you for listening!