09 - Classification

Logistic Regression, Discriminant Analysis, and Naive Bayes

SYS 6018 | Fall 2019

09-classification.pdf

Contents

1	Classification Intro	2
	1.1 Credit Card Default data (Default)	2
2	Classification and Pattern Recognition	5
	2.1 Binary Classification	5
3	Logistic Regression	8
	3.1 Basics	8
	3.2 Estimation	8
	3.3 Logistic Regression in Action	Ģ
4	Linear/Quadratic Discriminant Analysis (LDA/QDA)	11
	4.1 Estimation	11
	4.2 LDA/QDA in Action	
5	Evaluation Classification Models	12
	5.1 Evaluation of Binary Classification Models	13
	5.2 Common Binary Loss Functions	
	5.3 Evaluating Binary Classification Models	
	5.4 Evaluation Metrics	

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

1 Classification Intro

1.1 Credit Card Default data (Default)

The textbook *An Introduction to Statistical Learning (ISL)* has a description of a simulated credit card default dataset. The interest is on predicting whether an individual will default on their credit card payment.

```
data(Default, package="ISLR")
```

The variables are:

- response variable is categorical (factor) Yes and No, (default)
- the categorical (factor) variable (student) is either Yes or No
- the average balance a customer has after making their monthly payment (balance)
- the customer's income (income)

default	student	balance	income
No	No	729.5	44362
No	Yes	817.2	12106
No	No	1073.5	31767
No	No	529.3	35704
No	No	785.7	38463
No	Yes	919.6	7492

```
summary(Default)
   default
                           balance
             student
                                          income
                                      Min. : 772
   No :9667 No :7056
                        Min. : 0
   Yes: 333
             Yes:2944
                                      1st Qu.:21340
                        1st Qu.: 482
                        Median : 824
                                      Median :34553
#>
                        Mean : 835
                                      Mean :33517
#>
                        3rd Qu.:1166
                                      3rd Qu.:43808
                        Max. :2654
                                      Max. :73554
```


Your Turn #1 : Credit Card Default Modeling				
How would you construct a model to predict defaults?				

09 - Classification SYS 6018 | Fall 2019 5/16

2 Classification and Pattern Recognition

- The response variable is categorical and denoted $G \in \mathcal{G}$
 - Default Credit Card Example: $G = \{\text{"Yes", "No"}\}\$
 - Medical Diagnosis Example: $\mathcal{G} = \{\text{"stroke"}, \text{"heart attack"}, \text{"drug overdose"}, \text{"vertigo"}\}$
- The training data is $D = \{(X_1, G_1), (X_2, G_2), \dots, (X_n, G_n)\}$
- The optimal decision/classification is often based on the posterior probability $Pr(G = g \mid \mathbf{X} = \mathbf{x})$

2.1 Binary Classification

- Classification is simplified when there are only 2 classes.
 - Many multi-class problems can be addressed by solving a set of binary classification problems (e.g., one-vs-rest).
- It is often convenient to *code* the response variable to a binary $\{0,1\}$ variable:

$$Y_i = \begin{cases} 1 & G_i = \mathcal{G}_1 \\ 0 & G_i = \mathcal{G}_2 \end{cases}$$
 (outcome of interest)

• In the Default data, it would be natural to set default=Yes to 1 and default=No to 0.

2.1.1 Linear Regression

• In this set-up we can run linear regression

$$\hat{y}(\mathbf{x}) = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j$$

```
#-- Create binary column (y)
Default = Default %>% mutate(y = ifelse(default == "Yes", 1L, 0L))
#-- Fit Linear Rergression Model
fit.lm = lm(y~student + balance + income, data=Default)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-0.0812	0.0084	-9.685	0.0000
studentYes	-0.0103	0.0057	-1.824	0.0682
balance	0.0001	0.0000	37.412	0.0000
income	0.0000	0.0000	1.039	0.2990

Your Turn #2: OLS for Binary Responses

1. For the binary Y, what is linear regression estimating?

- 2. What is the *loss function* that linear regression is using?
- 3. How could you create a hard classification from the linear model?
- 4. Does is make sense to use linear regression for binary classification?

2.1.2 k-nearest neighbor (kNN)

- The k-NN method is a non-parametric *local* method, meaning that to make a prediction $\hat{y}|x$, it only uses the training data in the *vicinity* of x.
 - contrast with OLS linear regression, which uses all X's to get prediction.
- The model (for regression and binary classification) is simple to describe

$$f_{knn}(x;k) = \frac{1}{k} \sum_{i:x_i \in N_k(x)} y_i$$
$$= \text{Avg}(y_i \mid x_i \in N_k(x))$$

- $N_k(x)$ are the set of k nearest neighbors
- only the k closest y's are used to generate a prediction
- it is a *simple mean* of the k nearest observations
- When y is binary (i.e., $y \in \{0, 1\}$), the kNN model estimates

$$f_{\rm knn}(x;k) \approx p(x) = \Pr(Y=1|X=x)$$

Your Turn #3: Thoughts about kNN

The above plots show a kNN model using the continuous predictors of balance and income.

• How could you use kNN with the categorical student predictor?

• The k-NN model also has a more general description when the response variables is categorical $G_i \in \mathcal{G}$

$$f_g^{\text{knn}}(x;k) = \frac{1}{k} \sum_{i:x_i \in N_k(x)} \mathbb{1}(g_i = g)$$
$$= \widehat{\Pr}(G_i = g \mid x_i \in N_k(x))$$

- $N_k(x)$ are the set of k nearest neighbors
- only the k closest y's are used to generate a prediction
- it is a *simple proportion* of the k nearest observations that are of class g

3 Logistic Regression

3.1 Basics

- Let $0 \le p \le 1$ be a probability.
- The log-odds of p is called the *logit*

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

• The inverse logit is the *logistic function*. Let f = logit(p), then

$$p = \frac{e^f}{1 + e^f}$$
$$= \frac{1}{1 + e^{-f}}$$

• For binary response variables $Y \in \{0,1\}$, linear regression models estimate

$$E[Y | X = x] = Pr(Y = 1 | X = x) = \beta^{\mathsf{T}} x$$

• Logistic Regression models alternatively estimate

$$\log\left(\frac{\Pr(Y=1\mid X=x)}{1-\Pr(Y=1\mid X=x)}\right) = \beta^{\mathsf{T}}x$$

and thus,

$$\Pr(Y = 1 \mid X = x) = \frac{e^{\beta^{\mathsf{T}} x}}{1 + e^{\beta^{\mathsf{T}} x}} = \left(1 + e^{-\beta^{\mathsf{T}} x}\right)^{-1}$$

3.2 Estimation

- The data for logistic regression is: $(\mathbf{x}_i, y_i)_{i=1}^n$ where $y_i \in \{0, 1\}, \mathbf{x}_i = (x_{i0}, x_{i1}, \dots, x_{ip})^\mathsf{T}$.
- $y_i \mid \mathbf{x}_i \sim \text{Bern}(p_i(\beta))$

-
$$p_i(\beta) = \Pr(Y = 1 \mid \mathbf{X} = \mathbf{x}_i; \beta) = \left(1 + e^{-\beta^\mathsf{T} \mathbf{x}_i}\right)^{-1}$$

$$- \beta^\mathsf{T} \mathbf{x}_i = \mathbf{x}_i^\mathsf{T} \beta = \beta_0 + \sum_{j=1}^p x_{ij} \beta_j$$

· Bernoulli Likelihood Function

$$L(\beta) = \prod_{i=1}^{n} p_i^{y_1} + (1 - p_i)^{1 - y_i}$$

$$\log L(\beta) = \sum_{i=1}^{n} \{ y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \}$$

• The usual approach to estimating the Logistic Regression coefficients is maximum likelihood

$$\hat{\beta} = \underset{\beta}{\operatorname{arg max}} L(\beta)$$
$$= \underset{\beta}{\operatorname{arg max}} \log L(\beta)$$

• We can also view this as the coefficients that minimize the *loss function*, where the loss function is the negative log-likelihood

$$\hat{\beta} = \underset{\beta}{\operatorname{arg \, min}} \ell(\beta)$$

$$= -C \sum_{i=1}^{n} \left\{ y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \right\}$$

- where C is some constant, e.g., C = 1/n
- This view facilitates penalized logistic regression

$$\hat{\beta} = \underset{\beta}{\arg\min} \, \ell(\beta) + \lambda P(\beta)$$

- Ridge Penalty

$$P(\beta) = \sum_{j=1}^{p} |\beta_j|^2 = \beta^{\mathsf{T}} \beta$$

Lasso Penalty

$$P(\beta) = \sum_{j=1}^{p} |\beta_j|$$

- Best Subsets

$$P(\beta) = \sum_{j=1}^{p} |\beta_j|^0 = \sum_{j=1}^{p} 1_{(\beta_j \neq 0)}$$

3.3 Logistic Regression in Action

- In **R**, logistic regression can be implemented with the glm() function since it is a type of *Generalized Linear Model*.
- Because logistic regression is a special case of *Binomial* regression, use the family=binomial() argument

term	estimate	std.error	statistic	p.value
(Intercept)	-10.8690	0.4923	-22.0801	0.0000
studentYes	-0.6468	0.2363	-2.7376	0.0062
balance	0.0057	0.0002	24.7376	0.0000
income	0.0000	0.0000	0.3698	0.7115

Your Turn #4: Interpreting Logistic Regression

- 1. What is the estimated probability of default for a Student with a balance of \$1000?
- 2. What is the estimated probability of default for a *Non-Student* with a balance of \$1000?
- 3. Why does student=Yes appear to lower risk of default, when the plot of student status vs. default appears to increase risk?

Linear/Quadratic Discriminant Analysis (LDA/QDA)

- Discriminant analysis seeks to find a function that will *discriminate* between class boundaries.
 - Linear Discriminant Analysis (LDA) finds linear boundaries between classes
 - Quadratic Discriminant Analysis (QDA) finds quadratic boundaries between classes

FIGURE 4.9 (from ISLR). Left: The Bayes (purple dashed), LDA (black dotted), and QDA (green solid) decision boundaries for a two-class problem with $\Sigma_1 = \Sigma_2$. The shading indicates the QDA decision rule. Since the Bayes decision boundary is linear, it is more accurately approximated by LDA than by QDA. Right: Details are as given in the left-hand panel, except that $\Sigma_1 \neq \Sigma_2$. Since the Bayes decision boundary is non-linear, it is more accurately approximated by QDA than by LDA.

- Suppose there are $K = |\mathcal{G}|$ classes in the training data, $D = \{(\mathbf{X}_i, G_i)\}_{i=1}^n$ - where $\mathbf{X}_i \in \mathbf{R}^p$, $G_i \in \mathcal{G}$
- Consider the posterior probability of class g, given X = x,

$$Pr(G = g \mid \mathbf{X} = \mathbf{x}) = \frac{f(x \mid G = g) Pr(G = g)}{f(x)}$$
$$= \frac{f_g(x)\pi_g}{\sum_{k=1}^K f_k(x)\pi_k}$$

- $f_k(x)$ is the class conditional density
- $0 \le \pi_k \le 1$ are the prior class probabilities $\sum_{k=1}^K \pi_k = 1$
- The challenge is to estimate the densities $\{f_k(\cdot)\}$
 - Note: $\hat{\pi}_k = n_k/n$ is a natural estimate for the class priors if we think the testing data will have the same proportions as the training data

4.1 Estimation

- LDA and QDA have strong connections to model based clustering.
 - But easier, since we have the true class labels in the supervised setting
- Both LDA and QDA model the class conditional densities $f_k(x)$ with Gaussians
 - Thus, they model the observations as coming from a Gaussian mixture model
 - Each class has its own mean vector μ_k
 - The difference between LDA and QDA is what they use for their covariance matrix

• LDA

$$f_k(x) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu_k)^\mathsf{T} \Sigma^{-1} (\mathbf{x} - \mu_k)\right\}$$

- $\Sigma_k = \Sigma$ $\forall k$ (uses the same variance-covariance for all classes)

• QDA

$$f_k(x) = (2\pi)^{-p/2} |\Sigma_k|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu_k)^\mathsf{T} \Sigma_k^{-1} (\mathbf{x} - \mu_k)\right\}$$

- Σ_k is different for each classes

Your Turn #5: Model Complexity

The LDA model uses a common covariance matrix while QDA allows each class to have a different covariance (which permits quadratic boundaries). But this flexibility comes at a cost.

1. How many parameters have to be estimated in an LDA model with K classes and p dimensions?

2. How many parameters have to be estimated in an QDA model with K classes and p dimensions?

- · There are a few methods to maintain some flexibility, yet protect the model from high variance
- One is to use a regularlized covariance matrix (see ESL 4.3.1)

$$\hat{\Sigma}_k(\alpha, \gamma) = \alpha \hat{\Sigma}_k + (1 - \alpha) \{ \gamma \hat{\Sigma} + (1 - \gamma) \hat{\sigma}^2 I_p \}$$

- Another is to fit an LDA model in an enlarged feature space
 - E.g., for p=2 dimensions, use $X_1, X_2, X_1 \cdot X_2, X_1^2, X_2^2$ instead of QDA in X_1, X_2 .
 - Think basis expansion like what we say with polynomial regression or B-splines

4.2 LDA/QDA in Action

- In **R**, LDA and QDA can be implemented with the lda() and qda() functions from the MASS package.
- See ISLR 4.6 for details

5 Evaluation Classification Models

- Training Data: $\{X_i, G_i\}$
 - $G_i \in \{1, \dots, K\}$ (i.e., there are K classes)
- Predictor: $\hat{G}(X)$
- Loss function: $L(G, \hat{G}(X))$ is the loss incurred by estimating G with \hat{G}

• Risk is the expected loss (or expected prediction error EPE)

$$\begin{split} \operatorname{Risk}(\hat{G}) &= \operatorname{EPE} \\ &= \operatorname{E}_{XG} \left[L(G, \hat{G}(X)) \right] \\ &= \operatorname{E}_{X} \left[\operatorname{E}_{G|X} \left[L(G, \hat{G}(X)) \mid X \right] \right] \\ &= \operatorname{E}_{X} \left[R_{X}(\hat{G}) \right] \end{split}$$

• The Risk at input X = x is

$$R_x(\hat{G}) = \mathcal{E}_{G|X} \left[L(G, \hat{G}(x)) \mid X = x \right]$$
$$= \sum_{k=1}^K L(K, \hat{G}(x)) \Pr(G = k \mid X = x)$$

• Thus the optimal class label, given X = x, is

$$\hat{G}(x) = \operatorname*{arg\,min}_{g} R_{x}(g)$$

5.1 Evaluation of Binary Classification Models

- We are considering binary outcomes, so use the notation $Y \in \{0, 1\}$
- Let $p(x) = \Pr(Y = 1 \mid X = x)$
- The Risk (for a binary outcome) is:

$$R_x(g) = L(1,g) \Pr(Y = 1 \mid X = x) + L(0,g)(1 - \Pr(Y = 1 \mid X = x))$$

= $L(1,g)p(x) + L(0,g)(1 - p(x))$

• Decision: choose $\hat{G}(x) = 1$ if

$$\begin{split} R_x(1) &< R_x(0) \\ L(1,1)p(x) + L(0,1)(1-p(x)) &< L(1,0)p(x) + L(0,0)(1-p(x)) \\ p(x)\left(L(1,1) - L(1,0)\right) &< (1-p(x))\left(L(0,0) - L(0,1)\right) \\ \frac{p(x)}{1-p(x)} &< \frac{L(0,0) - L(0,1)}{L(1,1) - L(1,0)} \\ \frac{p(x)}{1-p(x)} &\geq \frac{L(0,1) - L(0,0)}{L(1,0) - L(1,1)} \end{split}$$

5.1.1 Example

- Say we have a goal of estimating if a patient has cancer using medical imaging
 - Let G = 1 for cancer and G = 0 for no cancer
- Suppose we have solicited a loss function with the following values
 - $L(G=0,\hat{G}=0)=0$: There is no loss for correctly diagnosis a patient without cancer
 - $L(G=1,\hat{G}=1)=0$: There is no loss (for our model) for correctly diagnosis a patient with cancer
 - $L(G = 0, \hat{G} = 1) = FP$: There is a cost of FP units if the model issues a *false positive*, estimating the patient has cancer when they don't
 - $L(G = 1, \hat{G} = 0) = FN$: There is a cost of FN units if the model issues a *false negative*, estimating the patient does not have cancer when they really do

- In these scenarios FN >> FP because the patient can have serious effects if not treated promply (and correctly)
- Our model should decide for a positive cancer if $R_x(1) < R_x(0)$ which becomes

$$\frac{p(x)}{1-p(x)} \ge \frac{FP}{FN}$$

$$p(x) \ge \frac{FP}{FP+FN}$$

- The ratio of FP to FN is all that matter to make the decision. Let's say that FP=1 and FN=10. Then if $p(x) \ge 1/11$, our model will diagnose cancer.
 - Note: $p(x) = \Pr(Y = 1 | X = x)$ is affected by the class prior $\Pr(Y = 1)$ (e.g., the portion of the population tested with cancer), which is usually going to be small.

5.2 Common Binary Loss Functions

- Suppose we are going to estimate a binary reponse $Y \in \{0,1\}$ with a (possibly continuous) predictor $\hat{y}(x)$
- 0-1 Loss or Misclassification Error

$$L(y, \hat{y}(x)) = \mathbb{1}(y \neq \hat{y}(x)) = \begin{cases} 0 & y = \hat{y}(x) \\ 1 & y \neq \hat{y}(x) \end{cases}$$

- This assumes L(0,1) = L(1,0) (i.e., false positive costs the same as a false negative)
- Requires that a hard classification is made
- The optimal prediction is $y^*(x) = \mathbb{1}(p(x) > 1 p(x))$
- Squared Error

$$L(y, \hat{y}(x)) = (y - \hat{y}(x))^2$$

- The optimal prediction is $y^*(x) = E[Y \mid X = x] = Pr(Y = 1 \mid X)$
- Absolute Error

$$L(y, \hat{y}(x)) = |y - \hat{y}(x)|$$

Bernoulli negative log-likelihood

$$L(y, \hat{y}(x)) = -\{y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)\}\$$
$$= \begin{cases} -\log \hat{y} & y = 1\\ -\log(1 - \hat{y}) & y = 0 \end{cases}$$

- Requires $\hat{y}(x) \in [0, 1]$

5.3 Evaluating Binary Classification Models

• Recall, the optimal (hard classification) decision is to choose $\hat{G} = 1$ if:

$$\frac{p(x)}{1 - p(x)} \ge \frac{L(0, 1) - L(0, 0)}{L(1, 0) - L(1, 1)}$$

• Denote $\gamma(x)$ as the *logit* of p(x):

$$\gamma(x) = \log \frac{p(x)}{1 - p(x)} = \frac{\Pr(G = 1 \mid X = x)}{\Pr(G = 0 \mid X = x)}$$

• Then we get

$$p(x) = \Pr(G = 1 \mid X = x)$$
$$= \frac{e^{\gamma(x)}}{1 + e^{\gamma(x)}}$$

• And the optimal (hard classification) decision becomes

Choose
$$\hat{G}(x) = 1$$
 if $\hat{\gamma}(x) > t$, where t is a threshold

• If the loss/cost is known, then

$$t^* = \log\left(\frac{L(0,1) - L(0,0)}{L(1,0) - L(1,1)}\right)$$

• For a given threshold t and input x, the hard classification is $\hat{G}_t(x) = \mathbb{1}(\hat{\gamma}(x) \geq t)$

5.4 Evaluation Metrics

5.4.1 Metrics

Metric	Definition	Estimate
	$P_{XG}(\hat{G}_t(X) \neq G(X)) =$	
Mis-classification Rate	$P_X(\hat{G}_t(X) = 0, G(X) = 1) +$	$\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}(\hat{G}_t(x_i)\neq G_i)$
	$P_X(\hat{G}_t(X) = 1, G(X) = 0)$	
False Positive Rate (FPR)	$P_X(\hat{G}_t(X) = 1 \mid G(X) = 0)$	$\frac{1}{n_0} \sum_{i:G_i=0} \mathbb{1}(\hat{G}_t(x_i) = 1)$
True Positive Rate (TPR)		
{Hit Rate, Recall, Sensitivity}	$P_X(\hat{G}_t(X) = 1 \mid G(X) = 1)$	$\frac{1}{n_1} \sum_{i:G_i=1} \mathbb{1}(\hat{G}_t(x_i) = 1)$
Precision	$P_X(G(X) = 1 \mid \hat{G}_t(X) = 1)$	$\frac{1}{\hat{n}_1} \sum_{i: \hat{G}(x_i) = 1} \mathbb{1}(G(x_i) = 1)$

• Note: Performance estimate is best carried out on *hold-out* data!

5.4.2 Confusion Matrix

• Given a threshold t, we can get confusion matrix

Model Outcome

Table from: https://tex.stackexchange.com/questions/20267/how-to-construct-a-confusion-matrix-in-latex

• See Wikipedia Page: Confusion Matrix for more metrics