

Camada física Fibras e cabos

Carlos Gustavo A. da Rocha

- Transmissão da informação
 - É realizada pela passagem de um ou mais sinais analógicos ou digitais através de um meio físico
 - Basicamente um sinal digital é sempre discreto, enquanto que um sinal analógico é contínuo

Transmissão da informação

- Transmissão da informação
 - Banda passante
 - A banda passante de um sinal é o intervalo de frequências que o compõem
 - A largura de banda do sinal é a diferença (diminuição)
 entre a menor e maior frequência que compõem o sinal
 - Nenhum meio físico é capaz de transmitir um sinal sem que haja perda
 - Alterações no sinal transmitido

- Transmissão da informação
 - Banda passante (cont.)
 - Quanto maiores as alterações sofridas pelo sinal, maior serão as perdas sofridas
 - A banda passante de um meio físico é a faixa de frequências que permanecem praticamente preservadas pelo meio
 - Cada meio físico "padronizado" possui um valor de banda passante predeterminado, sendo esta uma das suas características mais importantes

- Transmissão da informação
 - Banda passante (cont.)

- Transmissão da informação
 - Taxa de transmissão de um meio físico
 - Um sinal pode ser transmitido satisfatoriamente por um meio físico caso a largura de banda do sinal seja menor que a largura de banda no meio
 - Em um canal de largura de banda de "X" Hz pode-se transmitir teoricamente um sinal de "2X" bps
 - Na prática uma série de ruídos e imperfeições do meio físico diminuem um pouco este valor

- Transmissão da informação
 - Multiplexação e modulação
 - É a técnica que permite o envio de mais que um sinal por um mesmo meio físico
 - Bastante justificável pois a banda passante do meio físico é quase sempre bem superior a de um sinal
 - Existem duas formas básicas de multiplexação
 - Na frequência
 - No tempo

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Multiplexação na frequência (FDM)
 - Consiste na utilização de intervalos de frequência diferentes para a transmissão de cada sinal
 - Sinais são modulados em intervalos de frequência distintas de forma que não haja interferência

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Multiplexação no tempo síncrono (S-TDM)
 - O tempo é dividido em intervalos de tamanho fixo "T" chamados frames
 - Cada frame é dividido em N subintervalos denominados slots ou segmentos (S1, S2, ...)
 - Um canal é o conjunto de todos os slots de cada frame situados em uma mesma posição

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Multiplexação no tempo síncrono (S-TDM)

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Multiplexação no tempo síncrono (S-TDM)
 - Cada equipamento espera seu slot em cada frame, quando então transmite durante o tempo do slot, usando toda a banda passante do meio
 - Os diversos slots de cada frame não precisam ter o mesmo tamanho
 - Caso uma estação não tenha dados para transmitir em seu slot, o meio físico ficará ocioso

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Multiplexação no tempo assíncrona (A-TDM)
 - Procura eliminar o desperdício de banda do S-TDM
 - Não há alocação de canais para estações
 - Parcelas de tempo são alocadas dinamicamente, de acordo com a demanda de cada estação
 - Quando uma estação deseja transmitir ela simplesmente verifica se o meio físico está livre. Caso positivo ela pode transmitir

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Multiplexação no tempo assíncrona (A-TDM)
 - É necessário um overhead que informe ao menos a origem e destino de cada unidade de dados transmitida na rede

- Transmissão da informação
 - Multiplexação e modulação (cont.)
 - Banda Larga e Banda Básica
 - Sistemas que se utilizam de FDM são também chamados de sistemas de Banda Larga
 - Sistemas que se utilizam de TDM são também chamados de sistemas de Banda Básica

- Codificação de sinais
 - Basicamente, é a forma como os "0" e "1" serão "escritos" no meio físico
 - A codificação de sinais binários mais simples é conhecida como NRZ (Non Return to Zero)
 - Cada bit é representado durante um intervalo de tempo, chamado de intervalo de sinalização
 - Bit 1 é representado pela presença de tensão no meio
 - Bit 0 é representado pela ausência de tensão no meio
 - O receptor deve realizar a leitura (amostragem) do sinal no meio de cada intervalo de sinalização

- Codificação de sinais
 - Codificação NRZ
 - Para uma amostragem correta o receptor tem que estar sincronizado com o receptor, de forma a determinar o momento correto das amostragens
 - Por seu simplismo, é pouco usado na prática

- Codificação de sinais
 - Codificação Manchester
 - Garante a existência de uma transição de sinal em todos os bits transmitidos
 - Uma transição "positiva" representa o bit 1
 - Uma transição "negativa" representa o bit 0
 - As transições são utilizadas pelo receptor para "recuperar" o relógio do transmissor e realizar as amostragens no momento correto

- Codificação de sinais
 - Codificação Manchester

- Codificação de sinais
 - Manchester ainda é utilizada nas redes atuais (ethernet, cabo de par trançado)
 - As redes mais recentes utilizam técnicas de codificação bem mais avançadas
 - 8B/10B
 - FHSS
 - DSSS
 - QAM
 - ...

- Cabos de par trançado
 - Conjunto de fios de cobre isolados e trançados aos pares
 - Sofre bastante interferência do ambiente externo
 - Podem ser "blindados" diminuindo a interferência

- Cabos de par trançado
 - Uma série de características técnicas e mecânicas são reunidas em uma "categoria" de cabo
 - CAT.5 = 4 pares; 24AWG; banda passante de 100MHz; redes fast ethernet (100 metros no máximo)

- Cabos de par trançado
 - Uma série de características técnicas e mecânicas são reunidas em uma "categoria" de cabo
 - CAT.5e = 4 pares; 24AWG; banda passante de 125MHz; redes gigabit ethernet (100 metros no máximo)

- Cabos de par trançado
 - Uma série de características técnicas e mecânicas são reunidas em uma "categoria" de cabo
 - CAT.6 = 4 pares; 23AWG; banda passante de 250MHz; redes gigabit ethernet (100 metros no máximo)

- Cabos de par trançado
 - Uma série de características técnicas e mecânicas são reunidas em uma "categoria" de cabo
 - CAT.6a = 4 pares; 23AWG; banda passante de 500MHz; redes 10 gigabit ethernet (100 metros no máximo)

- Cabos de par trançado
 - Os cabos CAT.5 até CAT.6a possuem o mesmo esquema de cores e padrão de crimpagem (conectorização), com o conector RJ45

- Cabos coaxiais
 - Núcleo possui um condutor rígido envolvido em um isolante e uma blindagem eletrostática (malha)
 - É bem menos suscetível a interferências externas

- Cabos coaxiais
 - Bastante usado nas redes de TV a cabo, CFTV etc

Historicamente foi bastante usado em LANs

 Banda passante se situa na casa de "alguns" GHz

- Cabos coaxiais
 - Normalmente são classificados com base na sua impedância, medida em Ω
 - Existem outras características importantes, como o "percentual" de malha

- Cabos de Fibra óptica
 - Fibra de vidro transportando pulsos de luz
 - Conhecida pela alta velocidade de operação, baixa taxa de erros e imunidade a interferências

Introdução às redes de computadores carlos.rocha@ifrn.edu.br

- Cabos de Fibra óptica
 - A sua banda passante teórica é quase "ilimitada", na faixa de "vários" THz
 - Na prática, equipamentos economicamente viáveis, utilizam bem menos que isso

- Cabos de Fibra óptica
 - Existe uma grande quantidade de tipos de cabos de fibra óptica, classificados de acordo com diversas características
 - Exemplo: tipo de ambiente (interno, externo, aéreo, subterrâneo etc)
 - Contudo, todos eles estão agrupados em duas "classes" principais
 - Cabos de fibra óptica multimodo
 - Cabos de fibra óptica monomodo

- Cabos de Fibra óptica
 - CFO monomodo X CFO multimodo
 - Diferença está no diâmetro do núcleo da fibra (e na forma como é feita a "dopagem" do revestimento)

- Cabos de Fibra óptica
 - CFO monomodo X CFO multimodo

- Cabos de Fibra óptica
 - Principais conectores usados em suas "terminações"

Quadro com principais padrões utilizados

Nome	Meio físico	Velocidade	Alcance
10BaseT	Par Trançado	10Mbps	100 metros
100BaseT	Par Trançado	100Mbps	100 metros
1000BaseT	Par Trançado	1Gbps	100 metros
1000BaseSX	Fibra multimodo	1Gbps	550 metros
1000BaseLX	Fibra monomodo	1Gbps	10.000 metros
1000BaseLH	Fibra monomodo	1Gbps	70.000 metros
10GBaseT	Par trançado	10Gbps	100 metros
10GBaseLR	Fibra monomodo	10Gbps	10.000 metros
10GBaseZR	Fibra monomodo	10Gbps	80.000 metros

- Sinal de rádio
 - É um meio "não guiado" (não há fios)
 - O ambiente afeta a muito a propagação
 - Reflexão
 - Obstrução por objetos
 - Interferência etc

