Name :	•••••	• • • • • • • •		• • • • • •	•••••		• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • •
Roll No.	:		••••			••••	• • • • • •	• • • • • •	• • • • • •		
Invigila	tor's S	Signat	ure :								

CS/B.TECH(N)/SEM-1/PH-101/2012-13 2012 PHYSICS - I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alt rnat ves for any ten of the following: $10 \times 1 = 10$
 - i) The relax tion time (τ) of a damped harmonic oscillator with damping constant (K) is
 - a) $\tau = 1/K$
- b) $\tau = 1/2K$

c) $\tau = K$

- d) $\tau = 2K$.
- The resonant frequency of an electrical oscillator is ii) given by
 - a) $v = 2\pi \sqrt{LC}$
- c) $v = \frac{2\pi}{\sqrt{LC}}$
- b) $v = \frac{1}{2\pi \sqrt{LC}}$ d) $v = 2\pi \sqrt{\frac{L}{C}}$.

1101 (N) [Turn over

- iii) If ' α ' is the force constant of an oscillating body of mass 'm' the Q-factor is
 - a) $Q \propto \sqrt{\alpha m}$
- b) $Q \propto \sqrt{\frac{m}{\alpha}}$
- c) $Q \propto \sqrt{\frac{\alpha}{m}}$
- d) $Q \propto \frac{\alpha}{m}$.
- iv) If a thin mica sheet is placed between two interfering waves, then
 - a) Fringe width increases
 - b) Fringe width decreases
 - c) Fringe pattern gets shifted
 - d) No change in the fringe pa tern
- v) The emissive power of a black body kept at absolute temperature T which is very near to the temperature of surroundings (T $_{0}$) is proportional to
 - a) $(T T_0)^4$
- b) $(T-T_0)$
- c) T⁴

- d) $T^{2/3}$.
- vi) The miller ndices of a plane haing intercepts 2, 3, 4 units along X, Y, Z axis respectively are
 - a) (6, 4, 3)
- b) (4, 3, 6)
- c) (2, 3, 1)
- d) (2, 3, 4).
- vii) Compton shift $\Delta\lambda$ and Compton wavelength λ $_c$ are equal if the angle of scattering is
 - a) $\theta = 0^{\circ}$

- b) $\theta = 90^{\circ}$
- c) $\theta = 180^{\circ}$
- d) $\theta = 360^{\circ}$.

1101 (N)

viii) The relativistic energy momentum relation is

- a) $p^2 = E^2 + m_0^2 c^2$
- b) $E^2 = p^2 + m_0^2 c^4$
- c) $E^2 = p^2 c^2 + m_0^2 c^4$
- d) $p^2 = E^2 c^2 + m_0^2 c^4$.

According to Wien's displacement law ix)

- a) $\lambda_m T = \text{Constant}$ b) $\frac{\lambda_m}{T} = \text{Constant}$
- c) $\lambda_m T^2 = \text{Constant}$ d) $\frac{\lambda_m}{T^2} = \text{Constant}$.

Volume of a unit cell in FCC structure is x)

- a) $16\sqrt{2} r^3$
- b) $4\sqrt{2} r^3$
- c) $\frac{16\sqrt{2}}{3}$

d) $2\sqrt{2} r^3$

[r = mean radiu of the constituent atoms]

Polarization conclus vely proves that light waves are xi)

- longitudinal a)
- b) progressive
- c) stationary
- d) transverse.

An α -particle is 4 times heavier than proton. If a proton xii) and and α -particle are moving with the same velocity, their de-Broglie wavelengths are given by

- $\lambda_p = \lambda_a$
- b) $\lambda_p = 4\lambda_a$
- $\lambda_p = \lambda_{a/2}$
- d) $\lambda_p = \lambda_{a/4}$

xiii) For larger value of damping constant k the resonance curve will be

- a) Unchanged
- b) Flatter
- c) Sharper
- d) None of these.

1101 (N)

3

[Turn over

xiv) In Ruby Laser, the host crystal is

- a) Al₂ O₃
- b) MnO ₂
- c) CaCO₃
- d) Al $_2$ SO $_4$.
- xv) If we measure the energy of a particle accurately then the uncertainty of the measurement of time becomes
 - a) 0

b) >

c) 1

d) $\frac{1}{2}$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. a) Show that for a particle executing SHM, the average kinetic energy is half of the corresponding maximum energy.
 - b) Calculate the time period of the liquid column of length 1 in a U-tub , if it is depressed in one arm by x, d is the densi y of 1 quid and A is the cross-sectional area of each arm of the tube. 3+2
- 3. a) What do you mean by population inversion?
 - b) Draw the energy level diagram in helium and neon laser transition. 2 + 3
- 4. a) Determine the atomic packing fraction of FCC lattice.
 - b) X-rays of wavelength 1.54 $\rm \mathring{A}$ are used for the calculation of the d $_{100}$ plane of a cubic crystal, the Bragg's angle of 1st order reflection is 10° . What is the size of the unit cell?

1101 (N)

4

- 5. What is Einstein's A and B coefficient? Relate Spontaneous and stimulated emission probabilities and hence find out the relation between field energy and A, B coefficient. 1 + 4
- 6. Define Black-Body? Establish Wein's distribution law and Stefan's law from Plank's black body radiation law. 1 + 2 + 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following $3 \times 15 = 45$

- 7. a) A cubical block of side L cm and d nsity ρ is floating in water of density ρ o (ρ o > ρ). The block is slightly depressed and released Show that it will execute simple harmonic motion D termine the frequency and time period of oscillation. 3+1+1
 - b) Write down the differences between standing and progressive wav and establish the differential equation of a progre sive wave. 2 + 2
 - c) Establish the differential equation of SHM from energy conservation principle. An oscillator executing SHM has zero displacement at time t=0. If the displacements are 1 mm and 1.5 mm at instants 0.1 and 0.2 seconds, calculate the frequency and amplitude of oscillation.

2 + 2

d) A body of mass 10 g is acted upon by a restoring force/unit displacement of 10 7 dyne/cm, a frictional force/unit velocity of 4 × 10 3 dyne/cm, s $^{-1}$ and a driving force of 10 5 cos ωt dyne. Find the value of maximum amplitude.

- 8. a) Two independent sources of light of same wavelength can not produce interference. Justify.
 - b) Plot the intensity distribution curve of Young's doubleslit interference experiment and label it. 2
 - c) Can you measure the refractive index of a liquid by Newton's ring experiment? Explain.
 - d) In Young's experiment the width of the fringe obtained with light of wavelength 6000 Å is 2.0 mm. What will be the fringe width if the entire apparatus is immersed in a liquid of refractive index 1.33.
 - e) Newton's ring experiment is performed with reflected light of wavelength 5700 Å using a plano-convex lens and a plane glass plate. What would be the observation when the glass plate is moved away from the lens along the axis of the lens by 10^{-5} m?
- 9. a) Distinguish between Fresnel and Fraunhofer class of diffraction.
 - b) Using the expression of single-slit diffraction intensity, show that the secondary maxima are given by the equation $\tan \alpha = d$, where $\alpha = \pi e \sin \theta / \lambda$, symbols have their usual meaning.
 - c) Draw and explain the intensity distribution curve in case of Fraunhofer single slit diffraction phenomenon. 4
 - d) State and explain Rayleigh criterion of resolution. 3
 - e) An oil immersion microscope just resolves the rulings of a grating having 3900 lines/mm when light of wavelength 400 nm is employed. Find the numerical aperture of the lens.

- 10. a) Calculate the distance between the adjacent parallel planes of the type [100], [110] and [111] in an FCC lattice of lattice constant 'a'. Check the validity of the statement "The most closely packed planes are the most widely spaced".
 - b) Establish the relation between lattice constant and density of a material of a simple cubic crystal. 5
 - c) If an *X*-ray tube is subjected to a potential difference of 50 kV and the corresponding current is 8 m A, find
 - the number of electrons striking per second the target material
 - ii) speed of electron
 - iii) minimum wavelength of the X-ray produced
 - iv) cut-off wav length of the X-ray produced
 - v) energy of ach stricking electron. 5
- 11. a) What is holography? Why is it called a wavefront reconstruction?
 - Explain with neat diagram, spontaneous emission,
 stimulated absorption and stimulated emission of
 radiation and deduce of expressions relating various
 Einstein's coefficients.
 - c) Write a short note on Nicol prism and its use as polarizer and analyser. 5
- 1101 (N) 7 [Turn over

- 12. a) What is the origin of modified and unmodified lines in Compton effect?
 - b) Can you observe Compton effect if visible light is used instead of *X*-rays?
 - c) Prove that the maximum recoil energy of a free electron of rest mass m_0 when struck by a photon of wavelength λ is given by $E_{max} = \frac{2m_0 \ c^2 \ \lambda_c^2}{\lambda^2 + 2\lambda_c \ \lambda}$. Here λ_c is the Compton wavelength of the electron
 - d) Show that in Compton scattering while the photon can be scattered at any angle between 0° to 180° , the recoil electron can only be emitted at angles between 0° and 90° . 3+2+5+5