L3 Linear Equations Number of operations

Linear Systems

Gabriel Cramer

Gauss Elimination

Carl Friedric Gauss

Gauss – Jordan Elimination

Camille Jordan

LU Factorization

Iterative Methods

Norms and Conditions

Iterative Compensation

For linear system Ax = b,

The exact solution x

Your numerical solution Z

 $\delta x = (x - z)$ your error

 $\delta b = Az - b$ Recover

 $A \delta x = \delta b$ Solve for δx

Improved solution $(z + \delta x)$

- This procedure can be continued iteratively for better accuracy.
- Convergence checked at every iteration
- Use of LU factorization will reduce no. of operations (?).

Accuracy and Convergence

Two subsequent iterations

k and k+1

x- vector values

$$x^k$$
 and x^{k+1}

Error at step
$$k+1$$

$$\Delta x^k = x^{k+1} - x^k$$

Accuracy – Choose ε to be much smaller than unity.

Absolute accuracy

$$\left|\Delta x_i^k\right|_{max} \le \varepsilon$$

$$\textstyle \sum_{i=1}^n \left| \Delta x_i^k \right| \leq \varepsilon$$

$$\left[\sum_{i=1}^{n} \left(\Delta x_i^k\right)^2\right]^{1/2} \le \varepsilon$$

Relative accuracy

$$\left| \frac{\left| \Delta x_i^k \right|_{max}}{x_i} \right| \le \varepsilon$$

$$\sum_{i=1}^{n} \left| \frac{\Delta x_i^k}{x_i} \right| \le \varepsilon$$

$$\left[\sum_{i=1}^{n} \left(\frac{\Delta x_i^k}{x_i}\right)^2\right]^{1/2} \le \varepsilon$$

Iterative Methods

For
$$Ax = b$$
 or $\sum_{j=1}^{n} a_{ij}x_j = b_i$

$$a_{11} x_1 + a_{12}x_2 + a_{13}x_3 - b_1 = R_1$$

 $a_{21} x_1 + a_{22}x_2 + a_{23}x_3 - b_2 = R_2$
 $a_{31} x_1 + a_{32}x_2 + a_{33}x_3 - b_3 = R_3$

Residual values for row $i = R_i$

Jacoby Method

At iteration k, solve for x_i in row i

$$R_i^k = a_{i1} x_1^k + a_{i2} x_2^k + a_{i3} x_3^k - b_i$$

$$x_1^{k+1} = \frac{R_1^k + b_1 - a_{12}x_2^k - a_{13}x_3^k}{a_{11}} = x_1^k - \frac{R_1^k}{a_{11}}$$

$$x_2^{k+1} = \frac{R_2^k + b_2 - a_{21}x_1^k - a_{13}x_3^k}{a_{11}} = x_2^k - \frac{R_2^k}{a_{22}}$$

$$x_3^{k+1} = x_3^k - \frac{R_3^k}{a_{33}}$$

Initial guess

$$x_i^0$$
 as x_1^0, x_2^0, x_3^0

Use recurrence equations above to solve for x_1^1, x_2^1, x_3^1 and beyond, until desired convergence.

Gauss-Seidel Method

Jacoby method with updated values for k+1 iteration known as successive iteration

$$\begin{split} x_1^{k+1} &= \frac{R_1^k + b_1 - a_{12} x_2^k - a_{13} x_3^k}{a_{11}} \\ x_2^{k+1} &= \frac{R_2^k + b_2 - a_{21} x_1^{k+1} - a_{13} x_3^k}{a_{11}} \\ x_3^{k+1} &= \frac{R_3^k + b_3 - a_{31} x_1^{k+1} - a_{32} x_2^{k+1}}{a_{11}} \end{split}$$

Faster convergence than Jacoby method.

Successive Over Relaxation-SOR

Recurrence equations can be modified for faster convergence. Use

Gauss-Seidel method with

$$x_i^{k+1} = x_i^k - \frac{R_i^k}{a_{ii}}$$

- ω is over-relaxation factor and for most systems $1 < \omega < 2$.
- Optimal ω , ω_{opt} is determined by numerical experimentation.
- For marginally stable systems, SOR can diverge the calculations
- For $0<\omega<1$, successive under relaxation (SUR). Slows the calculations and can stabilize the calculations for complex systems.

$$\begin{bmatrix} 4 & -1 & 0 & 1 & 0 \\ -1 & 4 & -1 & 0 & 1 \\ 0 & -1 & 4 & -1 & 0 \\ 1 & 0 & -1 & 4 & -1 \\ 0 & 1 & 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{bmatrix}$$

k	x_1	x_2	x_3	x_4	x_5		
0	0.000000	0.000000	0.000000	0.000000	0.000000		
1	25.000000	25.000000	25.000000	25.000000	25.000000		
2	25.000000	31.250000	37.500000	31.250000	25.000000		
3	25.000000	34.375000	40.625000	34.375000	25.000000		
4	25.000000	35.156250	42.187500	35.156250	25.000000		
5	25.000000	35.546875	42.578125	35.546875	25.000000		
16	25.000000	35.714284	42.857140	35.714284	25.000000		
17	25.000000	35.714285	42.857142	35.714285	25.000000		
18	25.000000	35.714285	42.857143	35.714285	25.000000		

k	x_1	x_2	x_3	x_4	x_5		
0	0.000000	0.000000	0.000000	0.000000	SUP. AUT		
1	25.000000	31.250000	32.812500	26.953125	23.925781		
2	26.074219	33.740234	40.173340	34.506226	25.191498		
3	24.808502	34.947586	42.363453	35.686612	25.184757		
4	24.815243	35.498485	42.796274	35.791447	25.073240		
5	24.926760	35.662448	42.863474	35.752489	25.022510		
• • •							
13	25.000002	35.714287	42.857142	35.714285	25.999999		
14	25.000001	35.714286	42.857143	35.714285	25.000000		
15	25.000000	35.714286	42.857143	35.714286	25.000000		

k	x_1	x_2	x_3	x_4	x_5
0	0.000000	0.000000	0.000000	0.000000	0.000000
1	27.500000	35.062500	37.142188	30.151602	26.149503
2	26.100497	34.194375	41.480925	35.905571	25.355629
3	24.419371	35.230346	42.914285	35.968342	25.167386
4	24.855114	35.692519	42.915308	35.790750	25.010375
5	24.987475	35.726188	42.875627	35.717992	24.996719
11	24.999996	35.714285	42.857145	35.714287	25.000000
12	25.000000	35.714286	42.857143	35.714286	25.000000
13	25.000000	35.714286	42.857143	35.714286	25.000000

Use Jacobi and Gauss-Seidel to calculate x iteratively

Linear System

$$A = [1,2;3,4]$$

 $b = [2;2]$
 $x^{(o)} = [0;0]$