

Fraud Detection

WHY FRAUD DETECTION?

With our custom-built fraud detection model, you will:

- Prevent revenue loss by identifying fraudulent consumption early
- Increase efficiency by reducing timeconsuming manual investigations
- Ensure fair billing practices to maintain customer trust and regulatory compliance

OVERVIEW

Part 1

Getting the best out of the data

Part 2

Finding the best model for prediction

Part 3

Conclusion & Evaluation

Part 01

Getting the best out of the data

Merging Data •

Client data

- Client ID
- Client Category Classification of the customer
- Region
- Target (Fraud/Non-Fraud)

135.493

Invoice data

- Tarif Type pricing category
- Consumption in kWh (elec.) or m³ (gaz)
- Months timespan of the invoice
- Reading Remark annotations for counter readings
- Counter Type gaz or electricity

<u>4,476,749</u>

Merging Data •

Data

- Client ID
- Client Category Classification of the customer
- Region
- Target (Fraud/Non-Fraud)

- Tarif Type pricing category
- Consumption in kWh (elec.) or m³ (gaz)
- Months timespan of the invoice
- Reading Remark annotations for counter readings
- Counter Type gaz or electricity

53 Features

135,433

Imbalanced Data •

Oversampling

SMOTE*

*Synthetic Minority
Oversampling
Technique

Part 02

Finding the best model for prediction

Baseline Model —

Decision Tree

A simple model with a single Decision Tree and a maximum depth of 7, oversampling applied

Approaches to get the best model

Random Forest

A model with multiple decision trees that work together by averaging their outcomes

Stacking

A technique that combines multiple different models (base learners) and uses a metamodel to learn from their predictions (DecisionTree, KNN, SGDClassifier)

Boosting

A method that trains models sequentially, where each model corrects the errors of the previous one, gradually improving performance

ROC AUC

Measures how well the model separates fraud from non-fraud

→ used for overall assessment

Recall

The percentage of actual fraud cases correctly identified

→ important as the goal is to identify as much fraud as possible

Accuracy

The proportion of all correct predictions out of total cases.

Precision

The percentage of predicted fraud cases that are actually fraud.

F1 Score

The balance between Precision and Recall.

Main KPIs and their priority for evaluating the models

Model Comparison - ROC Curves

- The Baseline model is by far outperforming the complex models
- all complex model achieve the same ROC AUC values of 0.62 while the Baseline model achieves 0.84

Model Comparison - Other KPIs

Also looking at the other KPIs Accuracy, Precision, Recall and the F1 Score, the Baseline Model achieves the overall best results

Decision Tree

A simple model with a single Decision Tree and a maximum depth of 7, oversampling applied

Random Forest

A model with multiple decision trees that work together by averaging their outcomes

Stacking

A technique that combines multiple different models (base learners) and uses a metamodel to learn from their predictions

Boosting

A method that trains models sequentially, where each model corrects the errors of the previous one, gradually improving performance

Part 03

Conclusion & Evaluation

CONCLUSION

- A Simple solution can be the best
- Still need to check and compare with different models
- Importance of EDA and Feature Engineering
- Fraud detection is difficult to detect and compound correlations hard to find
- Working as a team is essential

LOOK FURTHER

- Optimize the base model again
- More Data Engineering
- Read the decision tree as good as possible

