1 Problem Setup: Two Asynchronous Price Streams

We observe two mid-price series

$$\{s_{t_i}\}_{i=1}^{N_S}, \qquad \{p_{u_j}\}_{j=1}^{N_P},$$

where the time-stamps t_i (spot) and u_j (perpetual) are irregular and generated by their respective matching engines (micro- to millisecond resolution). Importantly, the two calendars rarely coincide:

$$\Pr\{t_i = u_j\} \approx 0.$$

Figure above illustrates the core difficulty: $t_4 = 4.7$ ms in the spot feed has no counterpart in the perpetual feed, while the perpetual tick at $u_3 = 5.1$ ms arrives between two spot stamps.

Our objective is to exploit the few-millisecond causal link between the streams while avoiding the artefacts introduced by naïve time alignment.

Observed micro-structure facts

- Exchange clocks show **asynchronous arrival**: the same crypto pair prints on spot and perpetual feeds at different micro-/millisecond stamps.
- When a ≥ 0.07% mid-price jump appears in one feed, the **follower** market typically echoes it within 3–5 ms.
- Quotes arrive in **bursts**: several book-updates can share the *exact* time-stamp (exchange writes sequence ID, not true nanos).
- Quotes also show **idle gaps**: stretches of 50–100 ms with no update at all (overnight hours, maintenance blips, or bandwidth throttling).

Figure 1: Only four possible outcomes under the model. Cases 2 and 4 are labelled *noise* because the follower market remains idle.

How we decide "who leads whom" and what is noise

1. Native-tick pairing (no filling)

- Use the exchange time-stamps exactly as received.
- A jump in Market A is marked "leader" if Market B prints a $\geq 0.07\%$ jump of the *same sign* within the next 5 ms.
- If no such follower arrives, the event is labelled noise.

2. Forward-fill pairing (1 ms grid, LOCF)

- Resample both feeds to an equally-spaced 1 ms clock.
- Missing slots are filled with the last seen price (Last Observation Carried Forward).
- A jump is now a $\geq 0.07\%$ change over the previous three gridpoints, then the same 5 ms leader/follower rule is applied.
- Forward-fill can create *synthetic* jumps or hide micro-bursts, so counts differ from the native-tick method.

Metric	Value	Explanation
total_spot_jumps	7411	Number of price jumps in the spot market exceeding $\pm 0.07\%$ within any 3 ms interval.
$total_perp_jumps$	12841	Number of price jumps in the perpetual market exceeding $\pm 0.07\%$ within any 3 ms interval.
paired_events	4126	Count of jump events in either market that found a matching same-direction jump in the other market within 5 ms (each pair counted once).
noise_events	12000	Total number of jumps (spot + perp) that did not have a matching reaction in the other market within 5 ms.
noise_spot_jumps	3004	Number of spot jumps that remained unpaired—i.e. noise in the spot market.
noise_perp_jumps	8996	Number of perpetual jumps that remained unpaired—i.e. noise in the perpetual market.
spot_leads_perp	2684	Count of spot jumps that led matching perp jumps within 5 ms (spot drives perp).
perp_leads_spot	1161	Count of perp jumps that led matching spot jumps within 5 ms (perp drives spot).

Table 1: Lead–lag summary ($\pm 0.07\%$, 5 ms window) with metric definitions.

Figure 2: Three-point feeds for spot (blue) and perp (red), with LOCF drawn as step lines holding each price until the next tick.

Cross-Correlation

Cross-correlation measures how well two time-series align when one is shifted in time.

• **Definition**: Compute the correlation between

$$s_t$$
 and $p_{t+\tau}$

over various lags τ .

• Purpose:

- Detect lead-lag relationships (i.e. determine who leads whom).
- Quantify similarity at different time offsets.
- Find the time shift that maximizes predictability.

Cross-Correlation Analysis (Forward-Filled 1 ms Grid)

We know that the spot market leads the futures (perpetual) market. Using a forward-filled, uniform 1 ms mid-price grid and computing log-returns, the Pearson cross-correlation at various lags τ (spot leads futures by τ ms) is: Interpretation:

- The highest correlation occurs at $\tau = 2 \,\mathrm{ms}$, with $r \approx 0.063$.
- Correlation declines for larger lags, indicating diminishing predictive power beyond a few milliseconds.

$\overline{\mathrm{Lag}, au}$ (ms)	Cross-corr.
1	0.061641
2	0.062578
3	0.049808
4	0.042298
5	0.026826

Table 2: Cross-correlation $r(\tau)$ between spot and future returns on a forward-filled 1 ms grid. Positive r indicates spot returns at time t predict future returns at time $t + \tau$.

• All values are positive, confirming that spot returns lead futures returns on average.

Brief Argumentative Summary

Our jump-pairing analysis found that over 59% of spot and futures jumps remain unpaired (noise), and the peak cross-correlation of log-returns is only $r \approx 0.063$ at a 2ms lag. Together, these facts imply:

- **Dominant Noise:** Most sudden price moves do not carry over between markets within our 5ms window.
- Weak Signal: Even at the optimal lag, spot returns explain less than 0.4% of futures variance.

Figure 3: My plot caption.

Compact Supervised Classification Pipeline

• Trade-side inference: Merge each trade to the most recent spot quote (using pd.merge_asof), then

$$side = \begin{cases} +1, & \text{if } P_{\text{trade}} \ge \text{ask,} \\ -1, & \text{if } P_{\text{trade}} \le \text{bid,} \\ 0, & \text{otherwise.} \end{cases}$$

• Feature construction (at each spot-jump trigger):

[3 ms spot return, 20 ms volatility, spread, net signed volume, trade count].

- **Label:** perp mid-price move of $\pm 0.07\%$ within 5 ms lead (1) vs. noise (0).
- Sampling: 1 000 leads + 1 000 noise for training; remainder for testing (or 70/30 split).
- Model:
 - XGBoost (with balanced sampling or class_weight)

Comparison of Two XGBoost Pipelines

1. Threshold Calibration (PR AUC Method)

Average precision (PR AUC): 0.1536 Chosen threshold for $\approx 50\%$ recall: 0.6300 (precision = 0.1337)

Class	Precision	Recall	\mathbf{F}_1	Support
No-lead (0) Lead (1)	0.9463 0.1337	$0.7310 \\ 0.5000$	0.00	8431 700
Accuracy = 0.7133			9131	

Table 3: XGBoost with threshold calibrated to PR AUC on full hold-out set.

2. 70/30 Train/Test Split (Balanced Sample)

Class	Precision	Recall	\mathbf{F}_1	Support
No-lead (0) Lead (1)	0.00.0	0.6076 0.6479	0.00-0	316 284
Accuracy = 0.6267			600	

Table 4: XGBoost on balanced 70%/30% train/test split.

3. Metric Definitions

Metric	Formula	Interpretation
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	Fraction of predicted-positive events that are true leads. High precision means few false alarms.
Recall	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Fraction of actual leads that are correctly identified. High recall means few missed signals.
F_1 -score	$2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$	Harmonic mean of precision and recall. Balances false alarms vs. missed detections.
Support		Number of true instances in each class (i.e. actual count of leads vs. no-leads in the test set).
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{Total}}$	Overall correct classification rate. Can be misleading if classes are imbalanced.

Table 5: Key evaluation metrics for the lead–lag classification problem.

Conclusion

- Price changes are predominantly noise; a spot-market move rarely induces a perp-market response.
- Genuine lead—lag events are so infrequent that our supervised learning faces a severe class imbalance.
- The limited feature set (returns, spread, volume, count, filtered velocities) lacks the richness needed to separate real spill-overs from noise.
- Unfortunately, even though a supervised model(XGBoost) can recognize some patterns in short term, it is risky to rely solely on it for noise detection. Alternative approaches—such as Kalman filters, autoregressive models (AR/ARIMA), and LSTMs—should also be explored.