Homework 4

Learning Bayesian Networks.

There are 10 datasets ordered by alphabetical order and ordered by train size.

Dataset	Dataset Size (MB)					
Alphabetical Order	Train	Valid	Test			
accidents	2.7	0.368	0.553			
baudio	2.86	0.39	0.585			
bnetflix	2.86	0.39	0.585			
jester	1.71	0.195	0.803			
kdd	21.9	2.42	4.26			
msnbc	9.44	1.25	1.88			
nltcs	0.505	0.0674	0.101			
plants	2.29	0.312	0.469			
pumsb_star	3.81	0.52	0.78			
tretail	5.67	0.774	1.13			

Dataset	Dataset Size (MB)				
Sorted by Train Size	Train	Valid	Test		
nltcs	0.505	0.0674	0.101		
jester	1.71	0.195	0.803		
plants	2.29	0.312	0.469		
accidents	2.7	0.368	0.553		
baudio	2.86	0.39	0.585		
bnetflix	2.86	0.39	0.585		
pumsb_star	3.81	0.52	0.78		
tretail	5.67	0.774	1.13		
msnbc	9.44	1.25	1.88		
kdd	21.9	2.42	4.26		

1. Tree Bayesian networks.

Index	Dataset	Valid Dataset Log-likelihood	Test Dataset Log-likelihood	Run Time(s)	
0	accidents	-32.896648	-33.18811	5.58	
1	baudio	-44.079822	-44.374902	5.718	
2	bnetflix	-60.249665	-60.250346	5.9	
3	jester	-58.342419	-58.226532	6.077	
4	kdd	-2.526486	-2.294894	41.175	
5	msnbc	-6.540025	-6.540127	19.935	
6	nltcs	-6.718532	-6.759045	1.065	
7	plants	-16.517598	-16.524015	4.497	
8	pumsb_star	-30.92578	-30.807048	8.106	
9	tretail	-10.940996	-10.946545	11.685	

We implemented the Tree Bayesian Networks by using the **Chow-Liu** algorithm to learn the structure and parameters of the Network. The provided implementation of Chow-Liu tree is using the 1-Laplace smoothing to ensure that we don't have any zeros when computing the mutual information as well as zero probabilities in the model. The implementation is very faster as it uses the **numpy.einsum (Einstein summation)** of the numpy library which provides the optimized & flexible way to compute the complex array operations.

2. Mixtures of Tree Bayesian networks using EM.

Log-Likelihood on the valid dataset using Mixture of Tree Bayesian Networks using EM

One latent variable having k values and each mixture component is a Tree Bayesian network. Thus, the distribution over the observed variables, denoted by X (variables in the data) is given by:

$$P(\mathbf{X} = \mathbf{x}) = \sum_{i=1}^{k} p_i T_i(\mathbf{X} = \mathbf{x})$$

where P_i is the probability of the *i*-th mixture component and T_i is the distribution represented by the *i*-th Tree Bayesian network.

Valid	К					
Dataset	2	5	10	20		
accidents	-31.745104	-30.352457	-29.868223	-29.404065		
baudio	-41.809687	-40.528947	-40.07817	-39.861195		
bnetflix	-59.07827	-57.90224	-57.064702	-56.818009		
jester	-55.434008	-53.921315	-53.425977	-53.364487		
kdd	-2.42186	-2.483029	-2.466805	-2.467078		
msnbc	-6.540024	-6.535772	-6.536489	-6.536742		
nltcs	-6.718429	-6.021783	-5.965517	-5.963121		
plants	-15.368295	-14.340616	-13.514582	-13.279228		
pumsb_star	-27.140188	-25.337168	-24.443475	-23.999558		
tretail	-10.8408	-10.902002	-10.9137	-10.9048		

Average and standard deviation of the Log-Likelihood on the test dataset using Mixture of Tree Bayesian Networks using EM by running this algorithm for 5 times.

Test Dataset	K	Seed1	Seed2	Seed3	Seed4	Seed5	Avg. LL	Std. LL
accidents	20	-29.80388	-29.75698	-29.79863	-29.75997	-29.74571	-29.77303	0.02637
baudio	20	-40.09325	-40.15204	-40.06020	-40.07224	-40.12685	-40.10091	0.03816
bnetflix	20	-56.77235	-56.83449	-56.78408	-56.76971	-56.86043	-56.80421	0.04089
jester	20	-53.05623	-53.12242	-53.09731	-53.13937	-53.17389	-53.11784	0.04428
kdd	2	-2.27089	-2.25181	-2.24938	-2.27233	-2.27152	-2.26319	0.01154
msnbc	5	-6.53593	-6.53679	-6.53477	-6.53651	-6.54013	-6.53683	0.00200
nltcs	20	-6.01834	-6.01487	-6.01230	-6.01708	-6.02060	-6.01664	0.00319
plants	20	-13.16684	-13.19326	-13.11489	-13.22107	-13.09661	-13.15853	0.05226
pumsb_star	20	-23.85073	-23.81292	-23.78840	-23.80789	-23.93006	-23.83800	0.05620
tretail	2	-10.92678	-10.93016	-10.92103	-10.92981	-10.92492	-10.92654	0.00377

We used the parameters for $K = \{2, 5, 10, 20\}$ and the iteration count = 50 and epsilon = 0.001 for the convergence (i.e., whichever is earlier terminates the loop). Completed the implementation of the two functions "learn(..)" and "computeLL(...)" in the code provided for the file MIXTURE CLT.py. and learns the structure and parameters of the model using the EM-algorithm (in the M-step each mixture component is learned using the Chow-Liu algorithm).

As this algorithm takes very long time to run over the all the 10 datasets as the complexity of computing the Joint Distribution probability for the Mixture is Length of dataset times the number of trees in the mixture O(d*k) so used multithreading process pool to calculate the computation of the probability which cut down by the number of processors on the system.

3. Mixtures of Tree Bayesian networks using Random Forests.

$$P(\mathbf{X} = \mathbf{x}) = \sum_{i=1}^{k} p_i T_i(\mathbf{X} = \mathbf{x})$$

Similar to the above (Item (2)) used the same technique for computing the distribution. The best k and r values obtained from the validation set are used for testing and calculated the average and the standard deviation of the log-likelihood.

Dataset	P(i) Baseline	К	R	Avg. LL	Std. Dev LL	Run Time(s)
	Baseline	10	100	-33.119495	0.014845	135.016
accidents	Reasonable	10	100	-33.119676	0.01492	135.438
hadia	Baseline	20	150	-43.776948	0.01986	277.83
baudio	Reasonable	20	150	-43.776919	0.019859	276.257
bootfliv	Baseline	20	150	-59.840093	0.008017	244.413
bnetflix	Reasonable	20	150	-59.840081	0.008014	244.124
inatau	Baseline	20	150	-57.318872	0.031609	154.56
jester	Reasonable	20	150	-57.318866	0.031613	154.812
ادماما	Baseline	20	50	-2.257766	0.0012	1567.536
kdd	Reasonable	20	50	-2.257764	0.001202	1567.498
msnbc	Baseline	20	25	-6.527941	0.000979	795.789
msnbc	Reasonable	20	25	-6.527948	0.000978	795.572
nltcs	Baseline	20	50	-6.535583	0.00926	48.612
nites	Reasonable	20	50	-6.5363	0.009359	48.903
, alauata	Baseline	10	150	-16.0117	0.042407	101.291
plants	Reasonable	10	150	-16.01154	0.042498	101.935
pumsb_star	Baseline	20	100	-30.685462	0.013369	377.42
	Reasonable	20	100	-30.68552	0.013379	377.746
trotail	Baseline	20	100	-10.90565	0.002138	525.537
tretail	Reasonable	20	100	-10.905655	0.002141	524.93
	6 out of 10					

Developed a new function in the Chow-Liu tree CLT_class.py such that while learning we are able to set the r mutual information to zeroes and able to learn the structure and parameters of the mixture of Tree Bayesian networks using Random Forests.

Used the baseline approach of $P_i = 1$ / k and for the extra credit reasonable method applied the higher weightage to the tree which has performed better on the validation dataset with very good log-likelihood scores. For those higher probability weightages to the trees applied normalization on the validation Log-likelihood scores of the trees in the mixture. And it performed better out of the 10 datasets it has performed better on the 6 datasets. For the datasets which are not very large the reasonable method performed better.

4. Mixtures of tree Bayesian networks using the gradient Boosting (Extra Credit)

A Bayesian network is a graphical model for describing a joint distribution over a set of random variables and the advantage of Bayesian networks is the ability to tune the strength of the weak learners using parameters such as number of edges and strength of prior. Bayesian networks learns iteratively building a prior distribution of functions over the hyperparameter space and sampling with the goal of minimizing the posterior variance of the loss surface.

Similar to the EM algorithm we initialize the random weights for the tree mixture and use a learning rate or a small coefficient. We have K Tree Bayesian Networks as the weak learners and a loss function which is the negative log-likelihood of the validation set.

Boosting algorithm sequentially finds the models T_1 , T_2 , T_3 , ... T_k and the constants P_1 , P_2 , P_3 ... P_k to minimize the loss function L

$$F_i = \sum_{j \le i} P_j T_j(X = x)$$

Minimize the

$$L = -log(\sum_{i} Pi \ Ti(X = x))$$

Identify the weak learner and add it to the model with a small coefficient epsilon in each step i of the boosting algorithm. We choose the weak learner and add it to the new model's training loss as

$$G = F_{i-1} + \epsilon T_i$$
 $F_{i-1} = (\sum_{j < i} Pi * Ti(X = x))$

As per the paper as epsilon is so small in the second order term can be ignored and we are able to find the first order optimal weak learner.

Ranking based on Log-Likelihood

		Test Dataset Log-likelihood	Test Dataset Avg. Log-likelihood			
Index	Dataset	Tree Bayesian	Expectation Maximization	Random Forests		
		Networks	(EM)	Reasonable	Baseline	
0	accidents	-33.18811	-29.77303389	-33.119676	-33.119495	
1	baudio	-44.374902	-40.10091435	-43.776919	-43.776948	
2	bnetflix	-60.250346	-56.8042117	-59.840081	-59.840093	
3	jester	-58.226532	-53.11784239	-57.318866	-57.318872	
4	kdd	-2.294894	-2.263186769	-2.257764	-2.257766	
5	msnbc	-6.540127	-6.536826494	-6.527948	-6.527941	
6	nltcs	-6.759045	-6.016637091	-6.5363	-6.535583	
7	plants	-16.524015	-13.15853409	-16.01154	-16.0117	
8	pumsb_star	-30.807048	-23.83799831	-30.68552	-30.685462	
9	tretail	-10.946545	-10.9265408	-10.905655	-10.90565	
Rank		0 out of 10	7 out of 10	1 out of 10	2 out of 10	
		4	1	3	2	

The higher the Log-likelihood score the better the algorithm performed. The Mixture of Tree Bayesian Networks using Expectation Maximization outperforms among all the three algorithms for datasets which are not very large (kdd, msnbc, tretail) whereas the Mixture of Tree Bayesian Networks using Random Forests outperforms for these large datasets. This Ranking may be specific to these datasets and may vary for the data which has the dependence on the features. Even though the reasonable method is overall winner in case of medium sized datasets but the baseline performed better for large ones. Also, it is evident from the table values that the Random Forests helps in reducing the standard deviation and which also means reduces the variance.