

Hashing

Introdução

- Quais são as operações básicas esperadas sobre chaves/dados de em uma estrutura de dados?
 - Inserção / Atualização
 - Remoção
 - Pesquisa / Busca
 - Fundamental às demais operações: em todas precisamos identificar local do dado
 - Fundamental para desempenho da estrutura de dados

Discussão Inicial

- Suponha uma lista encadeada L onde cada uma das n chaves tem um endereço
- ▶ Como funciona a pesquisa da chave k em L?
 - Visitamos tantos endereços quantos necessário até achar k
 - Ou concluir que ele não está em L
 - i.e., em uma lista, não sabemos, a priori, o endereço de uma chave dada
 - Desempenho: No pior caso acessa todos os *n* elementos
- ▶ E se, dada uma chave, soubéssemos seu endereço de armazenamento na estrutura de dados sem precisar percorrer n elementos?
 - Melhoria de desempenho mediante devido tecnologia RAM
 - Acesso direto

Espalhamento (Hashing)

- Hash é uma estrutura de dados que determina o endereço de uma chave com base em seu valor
- Basicamente composta por:
 - ▶ Tabela T
 - Contém M posições/endereços contíguos diferentes (vetor)
 - M é constante, pois integra a fórmula para cálculo dos endereços
 - Função de espalhamento f(x)
 - Mapeia o valor de uma chave x a um endereço da tabela T
 - \triangleright A chave x é, de alguma forma, transformada em um número natural
 - \triangleright O valor f(x) (o hash code) é utilizado para armazenar x na tabela T
 - \triangleright f(x) deve estar no intervalo [0,M-1]

Hash: Ilustração da idéia básica (inserção)

Funções Hashing

- Que tipo de operadores podemos usar em f(x) para assegurar que seu resultado seja sempre <M ?</p>
 - "Resto" (%) operador base para um dos métodos mais usados para f(x).
 - x % M está no intervalo [0,M-1]
- Método da Divisão
 - f(x) = x % M;
 - Uma chave x é mapeada em um dos M endereços da tabela, calculando o resto da divisão de x por M
- Método da Multiplicação
 - $f(x) = [M ((x \cdot A) \% I)];$
 - ▶ A é uma constante entre 0 e l e [] é a função piso
 - Nuth sugere: $A = (\sqrt{5} 1)/2$

Hash: Vantagens e limitações

Eficiência

- Em várias circunstâncias, não é difícil garantir execução em tempo constante,
 - i.e. tempo não é afetado pelo número de chaves existentes.
- ▶ Hash não resolve todos os problemas!?!
 - Não convém criar uma posição na tabela para cada possível valor de chave
 - M é o total de chaves que se espera armazenar
 - Qual a principal implicação disso?

Hashing & Colisão

Colisões

- Motivos
 - Função de espalhamento não ser perfeita
 - Há mais valores de chaves do que posições na tabela
- São especialmente agravados quando a função definida pelo programador não consegue tratar padrão matemático presente na entrada (vício)
- Para melhor entender o problema, resolve o seguinte exercício:
 - Indexe as chaves 12,24,36 e 48 em duas tabelas hash usando o método da divisão
 - ► MI=6, isto é, TI[0,5]
 - M2=7, isto é, T2[0,6]
 - Para cada tabela, contabilize o número de colisões

Mitigando Colisões

- De forma geral, não é possível assegurar inexistência de colisões. Resta-nos:
 - I.Tentar diminuir o número de colisões (projetar melhores funções)
 - 2. Tratar colisões
- Alguma sugestão?

Hashing: Mitigando Colisões

- O uso de números primos para M, é recomendado para ajudar a mitigar a ocorrência de colisões especialmente quando há padrões matemáticos entre as chaves.
- Números primos dificultam a formação de padrões em posições da tabela.
- Logo, tende a melhorar a distribuição e diminuir conflitos
 - Ex.: Se são necessárias M chaves, e M não é primo, usar o menor primo maior que M

Tratamento Efetivo de Colisões

- Mesmo usando números primos, não podemos garantir que não haverá colisões.
- Colisões, se não tratadas, levam ao descarte de chaves
 - i.e. Sobre-escrever a chave "Ciclano" ou rejeitar a chave "Beltrano"
- ▶ Como tratar colisão, i.e. Nem sobre-escrever nem descartar?
 - Endereçamento Aberto
 - Listas Encadeadas

Endereçamento Aberto

- Quando há colisão, procura-se por uma nova posição através do cálculo de um novo endereço para inserção na tabela.
 - "Re-hashing"
- Quando uma chave x é endereçada na posição f(x) que esta já está ocupada, outras posições vazias (na própria tabela) são procuradas.
- Há diferentes estratégias para o novo cálculo
 - Linear probing (tentativa linear)
 - Double hashing (tentativa dupla)

Endereçamento Aberto: Linear Probing

Se a posição i da tabela já está ocupada, procura-se pela próxima posição livre a partir de i.

Endereçamento Aberto: Linear Probing

- Primeira tentativa: f(x) = x % M
- Incremento em f(x) após I° falha: f(x) = (x+1) % M
- Incremento em f(x) após 2° falha: f(x) = (x+2) % M
- Incremento em f(x) após 3° falha: f(x) = (x+3) % M
- ...

Endereçamento Aberto: Linear Probing

```
Primeira tentativa: f(x) = x \% M
Incremento em f(x) após I^{\circ} falha: f(x) = (x+1) \% M
Incremento em f(x) após 2° falha: f(x) = (x+2) \% M
Incremento em f(x) após 3° falha: f(x) = (x+3) % M
for(incr = 0; incr < M; incr++)</pre>
  fx = (chave + incr) % M;
  if (v[fx] == -1 \mid \mid v[fx] == chave)
    break; //achei lugar! Saia e insira!
assert(incr < M); //checa hash mal projetado</pre>
v[fx] = chave;
```


Endereçamento Aberto: Quadratic Probing

- Primeira tentativa: f(x) = x % M
- Incremento em f(x) após I° falha: f(x) = (x+I*I) % M
- Incremento em f(x) após 2° falha: f(x) = (x+2*2) % M
- Incremento em f(x) após 3° falha: f(x) = (x+3*3) % M
- ...

Endereçamento Aberto: Quadratic Probing

```
Primeira tentativa: f(x) = x \% M
Incremento em f(x) após I^{\circ} falha: f(x) = (x+I^*I) \% M
Incremento em f(x) após 2° falha: f(x) = (x+2*2) \% M
Incremento em f(x) após 3° falha: f(x) = (x+3*3) % M
for(incr = 0; incr < M; incr++)</pre>
  fx = (chave + incr*incr) % M;
  if (v[fx] == -1 \mid \mid v[fx] == chave)
    break; //achei lugar! Saia e insira!
assert(incr < M); //checa hash mal projetado</pre>
v[fx] = chave;
```


Hash com Listas Encadeadas

- Cada posição na tabela aponta para uma lista encadeada dinâmica.
- Chaves são armazenadas somente nas listas
- Listas não unitárias = houve conflito.

h(3)=h(10) e h(7)=h(5)

Hash com Listas Encadeadas

- Para listas encadeadas, pode-se admitir que o total n de chaves seja maior do que o total M de endereços se a divisão n/M for limitada a um valor constante
 - Ex 4 < n/m < I I (Sedgewick)</pre>

Hashing: Exemplos de Aplicação

- ▶ Tabela de Símbolos em Compiladores.
 - símbolos declarados e.g. Variáveis, frequentemente precisam ser consultados
 - E.g. Para verificar o tipo de dado da variável
- Tabela de Roteamento em Roteadores da Internet.
 - E.g.: Calcular o próximo destino do pacote dado seu endereço de final.
- Indices de Pesquisa em Bancos de Dados
 - Retorno de consultas ao Banco.
- Muitas outras aplicações em computação!

