INT 307 Multimedia Security System

Audio Representation and Compression

Sichen.Liu@xjtlu.edu.cn

XJTLU

Aims

Master how audio is represented by computer system
Understand how people perceive audio
Understand how audio representation is compressed by
computer system

What is Sound?

- $+0.5 \times 2 \times \text{fundamental}$
- $+0.33 \times 3 \times \text{fundamental}$
- $+0.25 \times 4 \times \text{fundamental}$
- $+0.5 \times 5 \times \text{fundamental}$

- Sound is a pressure wave. It takes on continuous values, as opposed to digitized ones.
- If we wish to use a digital version of sound waves, we must form digitized representations of audio information.

Sampling and Quantization

- Sampling the analog signal in the time dimension.
- Quantization is sampling the analog signal in the amplitude dimension.

Sample Rate

- Sample Rate:

The number of samples per second. Also known as sampling frequency.

- Telephone:

8000 Hz.

- CD (Compact Disc):

44100 Hz

Real Music Example

How fast to sample?

- Sampling with the times of the period can not detect the variation of the phase
- Sampling with half period can detect the rotation of the wheel, but can not judge the rotation direction (clock-wise or counter-clockwise).
- Sampling with less than half period can detect the variation of the phrase
- Sampling frequency > 2 * maximum signal frequency

Sampling Theorem

- Nyquist-Shannon sampling theorem
 - Formulated by Harry Nyquist in 1928 ("Certain topics in telegraph transmission theory")
 - Proved by Claude Shannon in 1949 ("Communication in the presence of noise").
- For no loss of information
- Sampling frequency > 2 * maximum signal frequency
- For a particular sampling frequency
 - Nyquist frequency = Sampling frequency/2
 - Nyquist frequency (or rate) is the highest frequency that can be accurately represented.
- Example
 - Limit of human hearing: 20KHz
 - By Nyquist, sample rate must be ≥ 40,000 samples/sec.
 - CD sample rate: 44,100 samples/sec.

Aliasing

- What happens to all those higher frequencies you can't sample?
- They add noise to the sampled data at lower frequencies
- The signal with red color contains 18 periods, but the sampling signal with the blue color only has 2 periods.

- The high-frequency signal is aliased to the low-frequency one.

Solve Aliasing: Filter

- If Sampling frequency < = 2 * maximum signal frequency, then sampling signal will be aliased.
- Low-pass filter: before sampling, the frequencies above the Nyquist frequency component should be filtered out
- The area with 80% of the bandwidth is alias-free.

Quantization

- Sampled analog signal needs to be quantized (digitized).
- How many discrete digital values?
- Simplest quantization: linear
 - 8-bit linear, 16-bit linear

How many levels?

- 8 bits (256 levels) linear encoding would probably be enough if the signal always used the full range.
- But signal varies in loudness.
 - If full range is used for loud parts, quiet parts will suffer from bad quantization noise (only a few levels used).
 - If full range is used for quiet parts, loud parts will clip, resulting in really bad noise.
- CD uses 16-bit linear encoding (65536 levels).
 - Pretty good match to dynamic range of human ear.
- Solution: use 8 bits with an "logarithmic" encoding.
 - Goal is that quantization noise is a fixed proportion of the signal, irrespective of whether the signal is quiet or loud.

Linear Encoding and Logarithmic Encoding

Linear Encoding

Logarithmic Encoding

µ-law vs A-law

- 8-bit μ -law used in US for telephony
- 8-bit A-law used in Europe for telephony
 - Similar, but a slightly different curve.
 - Both give similar quality to 12-bit linear encoding.
 - A-law used for International circuits.
- Both are linear approximations to a log curve.

Calculation Question

- Suppose we have a piece of audio lasting for 1 hour with sampling rate of 44.1 kHz. How many bits are needed to record the audio with 16-bit depth? How many bits are needed per second?

Why Audio Perception?

- We need to compress audio files
- Traditional lossless compression (such as entropy coding, Huffman coding) can achieve a compression rate of 50% at most
- For better compression rate, we need to compress the piece of audio in a lossy way
- Lossy compression means that we remove the redundancy information that cannot be perceived
- Hence we need to understand **auditory perception** first

Psychoacoustics

■ The range of human hearing is about 20 Hz to about 20 kHz

■ The frequency range of the voice is typically only from about 500 Hz to 4 kHz

■ The dynamic range, the ratio of the maximum sound amplitude to the quietest sound that humans can hear, is on the order of about 120 dB

Equal-Loudness Relations

- Decibel
 - A ratio with a standardized threshold of hearing intensity
- Phons
 - Equal intensity is not equal loudness
 - 60 Phons means "as loud as a 60 dB of a 1000 Hz sound"
- Equal loudness curves that display the relationship between perceived loudness (Phons) for a given stimulus sound volume (Sound Pressure Level), as a function of frequency
- Fletcher-Munson Curves

1000Hz

50Hz

Equal-Loudness Relations

- The ear's perception of equal loudness
- The bottom curve shows what level of pure sound stimulus is required to produce the perception of a 10 dB sound
- All the curves are arranged so that the perceived loudness level gives the same loudness as for that loudness level of a pure sound at 1 kHz

Frequency Masking

- Lossy audio data compression methods, such as MPEG/Audio encoding, remove some sounds which are masked anyway
- The general situation regarding masking is as follows:
 - A lower sound can effectively mask (make us unable to hear) a higher sound
 - The reverse is not true a higher sound does not mask a lower sound well
 - The greater the power in the masking sound, the wider is its influence the broader the range of frequencies it can mask
 - Therefore, if two sound are widely separated in frequency then little masking occurs

Frequency Masking Curves

Temporal Masking

- Phenomenon: any loud sound will cause the hearing receptors in the inner ear to become saturated and require time to recover
- For a masking sound that is played for a longer time, it takes longer before a test sound can be heard

Temporal Masking

Effect of temporal and frequency masking

Audio Compression

MPEG Audio Strategy

- MPEG approach to compression relies on
 - Quantization
 - Make use of masking effects on loudness / frequency / temporal
- Frequency masking: by using a psychoacoustic model to estimate the just noticeable noise level
 - Encoder balances the masking behaviour and the available number of bits by discarding inaudible frequencies
 - Scaling quantization according to the sound level that is left over, above masking levels
- May consider the actual width of the critical bands
 - For practical purposes, audible frequencies are divided into 25 main critical bands
 - To keep simplicity, adopts a uniform width for all frequency analysis filters, using 32 overlapping sub bands

MPEG Audio Compression Algorithm

(a) MPEG Audio Encoder

(b) MPEG Audio Decoder

Filter Bank

Filter Bank

Inversible Transform

$$F(\mu) = \frac{C(\mu)}{2} \sum_{x=0}^{7} f(x) \cos[(2x+1)\mu\pi/16]$$

$$extcolor{black}{C(\mu)} = egin{cases} rac{1}{\sqrt{2}}, \mu = 0 \ \ 1, \mu > 0 \end{cases}$$

MPEG Audio Framework

Industrial Standards

- MPEG-2 AAC (Advanced Audio Coding)
 - The standard vehicle for DVDs
 - Aimed at transparent sound reproduction for theaters
 - Also capable of delivering high-quality stereo sound at bit-rates below 128 kbps
 - Supports three different "profiles"
- MPEG-4 Audio
 - Integrates several different audio components into one standard: speech compression, perceptually based coders, text-to-speech and MIDI
- Others: Dolby AC-2, Dolby AC-3, Sony ATRAC

THANK YOU

