

Задача 10 - 2. Утечка ... центра масс

В вертикальный тонкостенный цилиндрический сосуд радиуса R = 5.0 см до некоторого уровня h_0 налита вода $(\rho = 1.0 \cdot 10^3 \text{ кг/м}^3)$. Из-за небольшой дырочки в центре сосуда вода начала вытекать из него, и через некоторое время сосуд оказался пуст. В процессе вытекания оказалось, что

зависимость h(x) высоты центра масс сосуда с водой от уровня (высоты) x воды в сосуде имеет вид, представленный на $\Gamma pa\phi$ ике 1. Толщина d ($d \ll R$) стенок и дна сосуда одинакова, плотность материала сосуда $\rho_1 = 3.0 \cdot 10^3 \; \mathrm{kr/m^3}$.

Часть 1. «Сложный» график

- **1.4** Используя $\Gamma pa\phi u \kappa 1$, найдите величину h_0 начального уровня воды в сосуде, а также высоту h_1 , на которой находится центр масс пустого сосуда.
- 1.5 Получите вид функциональной зависимости h(x) для рассматриваемого случая. Используя полученную зависимость и $\Gamma pa\phiuk$ 1, найдите массу m_1 сосуда без воды.
- **1.6** Найдите минимум функциональной зависимости h(x), полученной в предыдущем пункте, и рассчитайте уровень x_1 жидкости в сосуде, при котором он достигается.
- **1.7** Используя значение x_1 , повторно найдите массу m_1

сосуда без воды. Сравните полученные результаты для m_1 (в п.п. 1.2 и 1.4) между собой и сделайте выводы.

Часть 2. «Простой» сосуд

- **4.1** Используя ранее полученные данные, найдите и вычислите высоту H стенок сосуда.
- **4.2** Используя ранее полученные данные, найдите и вычислите толщину d стенок сосуда.

Часть 3. Наливаем обратно...

3.1 Взяли другой сосуд такой же массы m_1 и высоты h_1 центра масс с высокими стенками. Начали наливать в него воду так, что уровень x жидкости в нём медленно увеличивается со временем. Проанализируйте функцию h(x) при больших x ($x \to \infty$). Достройте Γ рафик 1 на выданном «Бланке построений» для «больших» x в интервале 2,0 дм $\le x \le 5,0$ дм.

Подсказка: координата X_c центра масс системы материальных точек m_1 , m_2 , ..., m_n , находящихся на оси Ox и имеющих координаты x_1 , x_2 ,..., x_n соответственно, находится по формуле $X_c = \frac{m_1 x_1 + m_2 x_2 + ... + m_n x_n}{m_1 + m_2 + ... + m_n}$.