CS698W: Game Theory and Collective Choice

Jul-Nov 2017

Lecture 3: 4 Aug 2017

Lecturer: Swaprava Nath Scribe(s): Scribe

Revisit Example: Let's revisit the game of Neighbouring Kingdoms dilemma. This is a One-Shot Non-Cooperative game. Notice the Change in notation i.e Alternatives $(a_i) \to \text{Outcomes}(o_i)$ e.g. $(A,A) = o_1$, $(A,D) = o_2$, $(D,A) = o_3$, $(D,D) = o_4$.

$1\backslash 2$	A	D
A	(5,5)	(0,6)
D	(6,0)	(1,1)

3.1 Normal Form Representation

Games being played between n players in Normal/Strategic form is represented and dealt with using following notations.

$$N = \{1, 2, 3, \dots, n\}$$

 $S_i = \text{set of strategies of player i}$

 $s_i \in S_i$: a strategy of player i

 s_{-i} : strategy profile of all agents except player i

 $\{s_1, s_2, \dots, n\} = (s_i, s_{-i}) = s$: A strategy profile

Note that $s \in S_1 \times S_2 \times S_3 \dots S_n = S$

 $u_i(s_1, s_2, \ldots, s_n)$: utility of player i where s_j represents strategy picked by player j $\forall j = \{1, 2, \ldots, n\}$

Here Von-Neumann Morgenstern utility function is defined this way $u_i: S \to \mathbb{R}$

3.2 Behaviour of players

We assume following things about the behaviour of the players :

- Rationality: Every agent picks strategy to maximize her utility.
- Intelligence : Every agent possesses enough information about the game and is able to find the best strategy for her

Common Knowledge: A fact is known as a common knowledge if

- 1. All players know the fact.
- 2. All players know the fact that all other players know the fact.
- 3. All players know the fact that all other players know the fact that all others know the fact and so on.

Example: As an example of common knowledge we saw interesting case of 3 blue-eyed individuals and a sage. Here it is assumed that statement of the sage can't be questioned. He states that there is at least one among the three with blue eyes and that the blue-eyed ones should leave the island. As a result of common knowledge, all three left the island after sufficient time.

Note: As per our assumptions, the fact that all players are rational, is a Common Knowledge.

3.3 Some important definitions

• Strictly dominated strategy: A strategy s_i' is strictly dominated by s_i if $\forall s_{-i} \in S_{-i}$

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

• Weakly dominated strategy: A strategy s'_i is weakly dominated by s_i if $\forall s_{-i} \in S_{-i}$

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$$

and $\exists s_{-i}$ such that

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

- Strictly/Weakly dominant strategy: A strategy s_i is strictly/weakly dominant strategy of player i if s_i strictly/weakly dominates all other $s_i' \in S_i \setminus \{s_i\}$
- Strictly/Weakly dominant strategy equilibrium: A strategy profile (s_i^*, s_{-i}^*) is an SDSE/WDSE if s_i^* is a SDS/WDS for i. $\forall i \in N$.
- Pure strategy Nash equilibrium: A strategy profile (s_i^*, s_{-i}^*) such that $\forall i \in N$ and $\forall s_i \in S_i$

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$

Does every Game have a SDSE/WDSE? Can there be more than 1 Nash equilibrium? we will answer these questions through an example of another game.

$1\backslash 2$	С	F
С	(2,1)	(0,0)
F	(0,0)	(1,2)

Through this example it is clear that every game is not guaranteed to have a SDSE/WDSE. Also we can see that there exists 2 pure strategy Nash equilibrium in this game. However when there exists an SDSE, there is exactly one equilibrium.