《商品期货因子挖掘及组合构建再探究》

——海通证券2017年金融工程与产品研究

联系人姚石

商品期货因子挖掘及组合构建再探究

- 商品期货因子挖掘
- 商品期货组合构建

参考文献: Harvesting Commodity Risk Premia

回测参数设置

- 1. 回测区间: 2010.01.01-2017.07.31
- 2. 所有品种的保证金固定为20%; 策略初始无杠杆,即调仓日使用20%的资金作为保证金买入期货合约,余下的现金不计算收益;
- 3. 交易成本: 全品种按单边万分之三计算;
- 4. 使用复权主力合约发出交易信号,使用主力合约交易,在切换日收盘时平掉当前仓位,在下一个主力合约上开仓,开平仓的合约价值相同;
- 5. 在每个调仓时点上剔除上市不足半年或过去20个交易日日均成交不足1万 手的品种,其中时间序列动量因子交易全品种,其他因子多空各包含前 20%的品种;
- 6. 若调仓周期为H个交易日,则将资金等权分成5份,依次相隔[H/5]个交易日建仓,将每个通道的净值相加得到策略的总净值,避免存在路径依赖

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

时间序列动量因子:根据前R个交易日的涨跌幅,做多上涨的品种,做空下 跌的品种,向后持有H个交易日

动量因子

横截面动量因子: 比较不同品种在同一时间窗口 (R个交易日)的涨跌幅, 做多高涨幅的品种,做空低涨幅的品种,向后持有H个交易日

计算所有期货品种过去R个交易日的累计收益率,做多上涨的品种,做空下跌的品种,持有H个交易日调仓,构建时间序列动量因子,当回看期为35-45、持有期为5-15个交易日时,时间序列动量因子表现相对较好。

表: 时间序列动量因子在不同参数组下的表现

R H	5	10	15	20	25	30	35	40	45	50	55	60
5	1%	5%	6%	4%	6%	6%	7%	8%	7%	6%	5%	5%
10	4%	5%	4%	4%	5%	6%	8%	8%	6%	6%	5%	6%
15	4%	3%	4%	4%	4%	6%	7%	7%	6%	6%	5%	6%
20	3%	3%	3%	3%	5%	5%	6%	5%	5%	5%	5%	5%
25	2%	3%	4%	4%	5%	6%	5%	5%	4%	4%	4%	5%
30	4%	3%	4%	4%	5%	5%	5%	4%	4%	5%	4%	5%
35	2%	3%	4%	3%	4%	5%	4%	4%	4%	4%	4%	4%
40	4%	3%	2%	3%	3%	3%	3%	3%	3%	3%	3%	3%

图: 时间序列动量因子在最优参数下的净值曲线

计算所有期货品种过去R个交易日的累计收益率,做多高涨幅的品种,做空低涨幅的品种,持有H个交易日调仓,横截面动量因子,当回看期为30-45、持有期为5-10个交易日时

,横截面动量因子表现相对较好。

表: 横截面动量因子在不同参数组下的表现

R H	5	10	15	20	25	30	35	40	45	50	55	60
5	0.48%	4.84%	4.78%	3.70%	4.69%	5.47%	5.47%	5.68%	4.79%	3.09%	2.21%	2.00%
10	2.70%	4.91%	3.81%	4.68%	3.69%	4.49%	4.77%	4.73%	4.08%	2.48%	2.13%	2.92%
15	2.81%	3.12%	3.64%	3.59%	2.15%	3.60%	3.74%	3.91%	2.98%	2.23%	1.95%	2.16%
20	2.56%	3.43%	2.92%	2.24%	2.74%	3.05%	3.16%	3.21%	2.54%	1.58%	1.84%	2.06%
25	1.44%	2.55%	3.59%	3.10%	2.27%	3.04%	2.99%	2.50%	2.37%	1.76%	1.94%	1.39%
30	3.15%	2.26%	3.00%	3.00%	2.83%	2.18%	1.56%	1.15%	1.25%	1.87%	1.93%	1.63%
35	2.43%	1.49%	2.58%	2.38%	1.59%	2.02%	2.05%	1.01%	1.54%	1.63%	1.21%	1.55%
40	2.03%	1.38%	1.90%	0.85%	0.77%	0.28%	1.52%	1.50%	1.24%	0.89%	1.15%	1.11%

图: 横截面动量因子在最优参数下的净值曲线

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

根据不同到期合约之间的价格差距可以计算出展期收益率(Roll-return)。 做多展期收益率较高的品种,做空展期收益率较低的品种,构建展期收益率因子。

$$R_{t} = \left[ln(P_{t,n}) - ln(P_{t,d})\right] \times \frac{365}{N_{t,d} - N_{t,n}}$$

Futures prices

请务必阅读正文之后的信息披露和法律声明

计算所有期货品种当前的展期收益率,做多高展期收益率的品种,做空低展期收益率的品种,持有H个交易日调仓,构建期限结构因子,当期限结构类型为后两种时,因子表现相对较好,且对持有周期不敏感。

表: 期限结构因子在不同参数组下的表现

TS H	ts1	ts2	ts3	ts4
5	5.23%	7.06%	9.72%	10.72%
10	4.98%	6.70%	9.63%	10.17%
15	4.98%	6.91%	9.38%	9.86%
20	5.40%	6.48%	9.97%	9.05%
25	5.31%	7.72%	9.71%	9.71%
30	5.27%	7.45%	10.03%	9.58%
35	5.27%	8.52%	11.09%	9.16%
40	5.58%	7.99%	9.94%	8.14%

图: 期限结构因子在不同参数下的净值曲线

很多文献在动量和期限结构因子的基础上作了增强,使夏普比率获得明显提升。

表: 原始信号增强策略文献综述

	Base	Commis	Original signals / Origi	nal strategies	Improved signals / Improved strategies		
Strategies and authors	assets	Sample	Strategy	Average SR	Strategy	Average SR	
Panel A: Curve strategies							
Mouakhar and Roberge (2010)	10	1994-2006			Long-short curve	0.68	
De Groot, Karstanje and Zhou (2014)	27	1990-2011	Front-end momentum	0.73	Curve momentum	0.96	
Szymanowska, De Roon, Nijman and Van Den Goorbergh (2014)	21	1986-2010	Front-end TS	0.48	2-period forward TS	0.88	
					3-period forward TS	1.06	
					4-period forward TS	0.90	
Szymanowska, De Roon, Nijman and Van Den Goorbergh (2014)	21	1986-2010	Front-end EW	0.06	Long second nearest, Short front	0.61	
			Front-end TS	0.48	Long third nearest, Short front	0.52	
					Long forth nearest, Short front	0.64	
Panel B: Multi-sort approaches							
Fuertes, Miffre and Rallis (2010)	37	1979-2007	Momentum	0.61	Double-sort	0.78	
			TS	0.59			
Fuertes, Miffre and Fernandez-Perez (2015)	27	1985-2011	Momentum	0.37	Triple-sort	0.69	
			TS	0.34			
			Idiosyncratic volatility	0.38			
Panel C: Modification of the original signals							
Kim and Kang (2014)	20	1990-2012	TS	0.54	Change in roll-yield	1.33	
Boons and Prado (2015)	21	1959-2014	Momentum	0.63	Basis momentum	0.90	
,			TS	0.53			

将基差动量定义为近月合约和远月合约在过去N个交易日累计收益率之差,可以理解为期限结构斜率的变化。

$$\textit{basis momentum} = \prod_{i=t-R+1}^t \left(1 + R_{fut,i}^{T_1}\right) - \prod_{i=t-R+1}^t \left(1 + R_{fut,i}^{T_2}\right)$$

按过去R个交易日基差动量从高到低排序,做多排名靠前的20%品种,做空排名靠后的20%品种,持有H个交易日调仓,构建基差动量因子,当回看期为100-140个交易日,持有期为25-40个交易日时,因子表现相对较好。

_		表: 7	垦差功	重因于	在不同	了多数约	且下的	表现	
R H	20	40	60	80	100	120	140	160	180
5	-4.20%	-2.07%	0.79%	3.73%	4.59%	5.60%	5.44%	4.92%	4.57%
10	-4.11%	-1.60%	0.66%	3.32%	4.72%	5.56%	6.00%	4.69%	4.25%
15	-4.22%	-2.05%	0.71%	3.07%	4.95%	5.61%	5.80%	4.97%	4.21%
20	-3.43%	-1.30%	1.12%	2.97%	4.69%	6.37%	6.06%	4.56%	3.99%
25	-2.22%	-0.56%	1.69%	3.30%	5.62%	6.88%	6.16%	5.06%	3.59%
30	-2.58%	0.13%	1.97%	3.80%	6.20%	6.37%	6.84%	4.50%	3.17%
35	-1.44%	0.02%	1.95%	3.97%	5.76%	6.28%	6.76%	4.55%	3.28%
40	-0.36%	1.36%	2.18%	3.99%	6.01%	7.10%	6.21%	4.23%	3.17%

图: 基差动量因子在最优参数下的净值曲线

使用主力和次主力合约累计收益率之差来计算基差动量因子,在各个参数组下因子均能取得正收益;回看期和持有期越长,因子表现越好。

表: 基差动量因子在不同参数组下的表现

R									
Н	20	40	60	80	100	120	140	160	180
5	0.75%	1.42%	2.92%	2.83%	4.56%	4.17%	3.91%	4.69%	5.00%
10	1.29%	1.05%	3.04%	2.41%	4.62%	4.03%	3.97%	4.51%	4.98%
15	1.47%	0.94%	3.06%	3.13%	4.54%	4.23%	4.84%	4.93%	5.54%
20	1.18%	1.04%	3.75%	4.05%	4.24%	4.34%	5.32%	5.42%	5.65%
25	2.40%	1.55%	4.27%	4.75%	5.36%	4.81%	4.83%	5.81%	5.76%
30	1.96%	2.20%	3.63%	4.40%	4.19%	4.57%	4.68%	5.39%	5.63%
35	1.02%	2.66%	3.53%	4.61%	4.58%	4.60%	5.33%	5.12%	5.96%
40	0.33%	2.74%	3.68%	4.89%	3.81%	4.54%	5.20%	5.53%	6.07%

图: 基差动量因子在最优参数下的净值曲线

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

AQR创始人Asness定义了大类资产中的动量和价值因子。

股票指数: 成分股加权的账面市值比B/M;

债券、商品、外汇:将5年前的现货价格(spot price)定义为账面价值,将其除以最近的现货价格来作为价值因子,可以理解为商品过去5年累计收益率的负数。为了避免单一时间节点的影响,价值因子定义为

$$ln(\frac{\frac{1}{D}\sum_{d=1}^{D}f_d}{f_d})$$

每个品种的权重和组合的收益率分别为

$$w_{it}^{S} = c_{t}(rank(S_{it}) - \sum_{j=1}^{N} rank(S_{jt})/N) \qquad r_{t}^{S} = \sum_{i=1}^{N} w_{it}^{S} r_{it}$$

按50/50的比例构建价值和动量因子(COMBO),其收益率为

$$r_t^{COMBO} = 0.5r_t^{VALUE} + 0.5r_t^{MOM}$$

表: 大类资产中的价值和动量因子的表现

				PANEL	B: OTHE	R ASSET CL	ASS PORT	FOLIOS					
			Va	lue			Mome	entum			50-50 Con	nbination	1
		Volatility	Adjusted	Unad	usted	Volatility	Adjusted	Unad	justed	Volatility	Adjusted	Unad	justed
		P3 - P1	Factor	P3 - P1	Factor	P3 - P1	Factor	P3 - P1	Factor	P3 - P1	Factor	P3 - P1	Facto
	mean	1.1%	1.1%	6.0%	5.7%	1.8%	1.5%	8.7%	7.4%	2.2%	2.0%	7.3%	10.69
	(t -stat)	(2.86)	(2.91)	(3.45)	(3.40)	(4.52)	(3.87)	(4.14)	(3.57)	(5.91)	(5.30)	(6.62)	(5.72
Country indices	stdev	2.1%	2.1%	9.8%	9.5%	2.3%	2.3%	11.9%	11.8%	2.1%	2.2%	6.3%	10.69
01/1978 -	Sharpe	0.50	0.51	0.61	0.60	0.79	0.68	0.73	0.63	1.04	0.93	1.16	1.0
07/2011	alpha	1.0%	1.0%	5.9%	5.3%	1.7%	1.5%	8.2%	7.1%	2.0%	1.8%	7.1%	10.0
	(t-stat)	(2.77)	(2.66)	(3.45)	(3.24)	(4.32)	(3.72)	(4.00)	(3.47)	(5.62)	(4.94)	(6.49)	(5.47
										-0.37	-0.38	-0.34	-0.3
	mean	0.7%	1.0%	3.3%	3.9%	1.1%	1.0%	3.5%	3.0%	1.3%	1.4%	3.4%	5.69
	(t-stat)	(1.72)	(2.37)	(1.89)	(2.47)	(2.51)	(2.29)	(1.90)	(1.77)	(3.73)	(3.93)	(3.51)	(3.89
Currencies	stdev	2.4%	2.4%	9.7%	9.0%	2.4%	2.4%	10.3%	9.6%	2.0%	2.0%	5.4%	8.0
01/1979 -	Sharpe	0.31	0.42	0.34	0.44	0.45	0.41	0.34	0.32	0.67	0.70	0.63	0.6
07/2011	alpha	0.8%	1.0%	3.4%	4.1%	1.1%	1.0%	3.6%	3.1%	1.4%	1.4%	3.5%	5.7
	(t-stat)	(1.85)	(2.50)	(2.04)	(2.63)	(2.61)	(2.37)	(1.99)	(1.84)	(4.00)	(4.15)	(3.83)	(4.11
	((,,	,,	,,	,,	,,	,,	,,	-0.44	-0.45	-0.42	-0.4
	mean	0.6%	0.5%	1.1%	0.5%	0.0%	0.3%	0.4%	1.0%	0.2%	0.4%	0.8%	0.7
	(t-stat)	(1.52)	(1.35)	(0.97)	(0.39)	-(0.01)	(0.75)	(0.35)	(0.88)	(0.50)	(0.97)	(1.03)	(1.0
Fixed income	stdev	2.1%	2.1%	6.3%	6.4%	2.1%	2.1%	6.0%	5.8%	2.2%	2.2%	4.0%	3.5
01/1982 -	Sharpe	0.29	0.25	0.18	0.07	0.00	0.14	0.06	0.17	0.09	0.18	0.19	0.2
07/2011	alpha	1.0%	0.9%	1.9%	1.4%	-0.2%	0.0%	-0.3%	0.1%	0.3%	0.5%	0.8%	0.7
	(t-stat)	(2.51)	(2.51)	(1.68)	(1.21)	(-0.56)	(0.00)	(-0.29)	(0.08)	(0.75)	(1.20)	(1.10)	(1.1
	(1 3123)	(====)	(====/	(=,	(/	(5.00)	(0.00)	()	(/	-0.12	-0.29	-0.17	-0.3
	mean	0.6%	0.8%	6.3%	7.3%	1.4%	1.3%	12.4%	11.5%	1.5%	1.7%	9.4%	17.1
	(t-stat)	(1.70)	(2.03)	(1.61)	(1.92)	(3.67)	(3.40)	(3.29)	(3.14)	(4.12)	(4.70)	(4.42)	(4.7
Commodities	stdev	2.4%	2.4%	24.2%	23.7%	2.3%	2.4%	23.4%	22.8%	2.3%	2.2%	13.1%	22.2
01/1972 -	Sharpe	0.27	0.33	0.26	0.31	0.59	0.55	0.53	0.51	0.67	0.76	0.71	0.7
07/2011	alpha	0.8%	0.9%	7.7%	8.2%	1.2%	1.1%	11.4%	10.5%	1.5%	1.7%	9.5%	17.1
,	(t-stat)	(2.10)	(2.31)	(2.02)	(2.19)	(3.36)	(3.08)	(3.06)	(2.89)	(4.21)	(4.72)	(4.57)	(4.8
	(c stat)	(2.10)	(2.52)	(2.02)	(2.23)	(3.30)	(3.00)	(3.00)	(2.00)	-0.34	-0.39	(4.57)	-0.4

图: 商品中的价值和动量因子表现(对数净值)

将上市满半年、过去20个交易日日均成交量超过1万手的期货品种按过去1-8年(向前前后取0.5年均值)取涨跌幅的负数排序,做多排名靠前的30%品种,做空排名靠后的30%品种,持有H个交易日调仓,构建价值因子,当回看期为4年、持有期为80-120个交易日时,价值因子表现相对较好。

表:价值因子在不同参数组下的表现

R 2 6 8 5 7 н 0.34% 0.51% -1.31% -2.81% 0.88% 10 -2.51% -2.65% -1.81% -0.26% -0.52% 0.12% -1.92% -2.72% -2.81% 0.74% -2.68% 20 -0.26% -0.53% -2.99% -3.01% 0.46% -2.07% 0.68% -1.20% 30 -3.15% -2.99% 0.91% 0.39% 0.42% -2.23% 0.42% -1.21% 40 -3.15% -3.01% 0.83% 0.98% 0.83% -2.51% 0.25% -1.00% **50** -0.97% -3.56% -3.33% 0.72% 1.18% 0.68% -2.29% 0.44% 60 -3.71% -3.09% 1.22% -0.06% -0.39% -1.25% 1.02% -2.43% 70 -2.81% 2.05% 0.97% -2.25% -0.36% -1.33% 80 -3.95% 0.96% -3.84% -2.87% 1.07% 2.07% 0.77% -1.74% -0.38% -0.74% 90 -4.04% -2.77% 0.86% 2.22% 1 04% -2.39% -1.56% -1.70% 100 0.32% 110 -3.53% -2.45% 1.04% 1.86% -2.37% -1.73% -1.78% -2.23% 0.87% -1.75% -1.25% -2.39% 120 -3.49% 1.94% 0.45%

图:价值因子在最优参数组下的净值曲线

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

Keynes (1930)和Hicks (1939)最早提出了对冲压力假说 (hedging pressure hypothesis),对期货市场的风险溢价作出如下解释:期货市场的参与者可以分为套保者和投机者两类,二者参与期货市场的目的不同,投机者承担了套保者转移过来的现货价格波动风险,要求获得一定的风险补偿。

CFTC (美国商品期货贸易委员会)每周会公布大额交易者的持仓头寸,它被分为商业持仓和非商业持仓。商业交易者一般从事与现货有关的业务,被认为是套期保值者;而非商业交易商不涉及现货业务,被归为投机者。非商业持仓又分为多头、空头和套利,多头与空头的差额就是净持仓。

某一类别交易者(套保者、投机者)的对冲压力定义为净多头持仓数量除以总持仓,为了排序方便起见,也可以采用如下定义

$$HP_{H} = \frac{1}{W} \sum_{i=1}^{W} \frac{Short_{H,i} - Long_{H,i}}{Short_{H,i} + Long_{H,i}}$$

$$HP_{S} = \frac{1}{W} \sum_{i=1}^{W} \frac{Long_{S,i} - Short_{S,i}}{Short_{S,i} + Long_{S,i}}$$

SAP 500 STOCK INDEX - CHICAGO MERCANTILE EXCHANGE

Miffre (2012) 将所有商品期货在过去一段时间 (R周) 套保者和投机者的对冲压力均值排序,分别构建套保者和投机者对冲压力因子,其中多头和空头各包含排序在前15%的品种,二者分别取得了5.79%和5.37%的年化超额收益。

目前国内只有郑商所披露套保持仓明细,故该因子难以在国内市场上回测。

图: CFTC大户持仓报告

图: 郑商所套保持仓明细

	Total :			Reportable	Positions			:	Nonreport	table
				ial :					FOSICIO	5118
								Short :		
			NDEX X \$250					:		
	:							:		
111	56,755:	3,906	4,297	0	20,506	37,982	24,412	42,279:	32,343	14,476
old :	56,755:	3,906	4,297	0	20,506	37,982	24,412	42,279:	32,343	14,476
ther	. 0:	. 0	. 0	0	. 0	. 0	. 0	0:	. 0	
	:							:		
	:	C	hanges in C	ommitments f	rom: July 2	5, 2017		:		
	968:	-1,099	1,281	-280	1,001	-1,090	-378	-89:	1,346	1,057
	:							:		
	:	Percent	of Open In	terest Repre	sented by E	ach Categor	y of Trade:	: :		
111 :	100.0:	6.9	7.6	0.0	36.1	66.9	43.0	74.5:	57.0	25.5
								74.5:		25.5
ther	100.0:	0.0	0.0	0.0	0.0	0.0	0.0	0.0:	0.0	0.0
	:							:		
	# Traders :		Number o	f Traders in	Each Categ	ory		:		
111 :	48:	5	8	0	16	23				
old :	48:	5	8	0	16	23				
ther	0:	0	0	0	0	0	0	0:		
		Percent o		rest Held by s Position				gest Traders		_
		4 or Le	ss Traders	8 or Les	s Traders	4 or Les	s Traders	8 or Less	Traders	
	:							Long		
111	•							28.8		-
old								28.8		
ther	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

品种	买套保额度	期货买套保持仓里	卖套保额度	期货卖套保持仓里
SR	394, 000	38, 392	438, 000	41, 705
ZC	98, 200	500	132, 200	0
TA	480, 000	20, 880	2, 227, 000	595, 839
OI	89, 000	600	270, 160	30, 824
CF	144, 050	5, 536	181, 880	2, 706
MA	135, 700	1, 000	137, 700	3, 060
FG	20,000	0	20, 000	0
RM	25, 700	250	234, 440	14, 231
SF	2,000	0	30, 000	0
SM	6, 000	0	11,000	0

参考文献: Capturing the risk premium of commodity futures: The role of hedging pressure

将上市满半年、过去20个交易日日均成交量超过1万手的期货品种按过去R个交易日持仓量的变化率排序,做多变化率最大的前20%品种,做空最小的前20%品种,持有H个交易日调仓,构建持仓量变化率因子,在各个参数下该因子效果均不显著。

表: 持仓量变化率因子在不同参数组下的表现

R H	10	20	30	40	50	60	70	80	90	100
5	-5.94%	-2.79%	-2.72%	-2.08%	-1.60%	-1.07%	-1.83%	-2.76%	-1.29%	-2.26%
10	-3.64%	-1.78%	-1.80%	-0.58%	-0.51%	-0.10%	-1.18%	-1.62%	-0.23%	-1.12%
15	-1.40%	-1.63%	-0.18%	-0.05%	0.70%	0.87%	-1.41%	-0.67%	0.43%	-1.18%
20	-1.62%	-1.56%	-0.15%	0.50%	0.46%	0.56%	-0.75%	-0.81%	0.47%	-0.91%
25	-1.23%	-1.12%	-0.01%	0.22%	0.12%	-0.10%	-0.61%	-0.56%	0.01%	-1.03%
30	-1.62%	-0.60%	1.21%	0.33%	0.80%	0.41%	-1.13%	-0.07%	0.36%	-0.90%
35	-1.24%	-0.49%	0.05%	-0.81%	0.37%	-0.23%	-0.30%	-0.27%	0.95%	-0.65%
40	0.34%	0.21%	0.50%	0.86%	0.66%	0.23%	-0.41%	0.14%	-0.37%	-0.69%

图: 持仓量变化率因子在最优参数下的净值曲线

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

特质波动率(idiosyncratic volatility)异象在股票市场中广泛存在,低特质波动率的股票往往具有较高的预期收益。Hirshleifer(1988)最早开始研究特质波动率因子对期货溢价的驱动作用,Bessembinder(1992)在此基础上做了进一步的研究。

在得到特质波动率因子之前,首先要选择合适的定价模型或风险因子。传统的基于权益和固定收益市场的风险因子(例如Fama-French三因子)效果并不理想,而使用商品市场特有的一些风险因子定价效果更好。

多数文献中使用EW (equally weighted)、TS (term structure)、HP (hedging pressure)和Mom (momentum)四个因子作为商品的风险因子,将期货日收益率对风险因子回归得到的残差的波动率称为特质波动率。

$$r_{i,d} = \alpha_i + \sum_{j=1}^M \beta_{j,i} f_{j,d} + \varepsilon_{i,d}, \quad d = 1, \dots, D$$

特质波动率在海外市场上的表现

使用传统风险因子构建的12个组合平均年化收益率为4.94%,其中有7个在5%的置信水平 下是显著的。而使用商品特有的风险因子构建的32个组合平均年化收益率为2.53%,但并 不显著。这说明特质波动率因子的收益有较大部分会被商品特有的风险因子所解释。

表, 特质波动率因子分组效果

	Traditi	onal bend	hmarks		Fun	damental con	nmodity bench	marks	
	Mean Ret		Sharpe ratio	Mean l		Sharpe ratio	Mean I Ret		Sharpe ratio
	(A) FF + Bo	ond + S&P	-GSCI + LRP	(D) TS +	+ HP + Mo	m + LRP	(H) SMB +	TS + HP +	Mom + LRF
R = 1	0.0537	(2.37)	0.5100	0.0231	(1.10)	0.2374	0.0071	(0.33)	0.0719
R = 3	0.0613	(2.62)	0.5646	0.0164	(0.71)	0.1539	0.0183	(0.79)	0.1697
R = 6	0.0465	(1.93)	0.4162	0.0401	(1.64)	0.3526	0.0309	(1.25)	0.2697
R = 12	0.0539	(2.30)	0.4945	0.0338	(1.57)	0.3377	0.0322	(1.49)	0.3197
	(B) F	F + Bond	+ LRP	(E)	TS + HP +	LRP	(I) SM	(I) SMB + TS + H	
R = 1	0.0452	(1.93)	0.4151	0.0284	(1.22)	0.2627	0.0171	(0.80)	0.1713
R = 3	0.0529	(2.11)	0.4542	0.0142	(0.57)	0.1231	0.0229	(0.95)	0.2053
R = 6	0.0255	(1.06)	0.2287	0.0265	(1.06)	0.2283	0.0330	(1.39)	0.2991
R = 12	0.0312	(1.34)	0.2891	0.0257	(1.11)	0.2382	0.0260	(1.17)	0.2522
	(C) S	S&P-GSCI	+ LRP	(F) T	S + Mom	+ LRP	(J) SME	+ TS + M	om + LRP
R = 1	0.0682	(3.04)	0.6544	0.0276	(1.26)	0.2704	0.0225	(0.94)	0.2029
R = 3	0.0597	(2.58)	0.5562	0.0222	(0.94)	0.2020	0.0184	(0.74)	0.1588
R = 6	0.0452	(1.90)	0.4099	0.0286	(1.21)	0.2615	0.0237	(0.94)	0.2033
R = 12	0.0495	(2.13)	0.4583	0.0271	(1.27)	0.2739	0.0230	(0.98)	0.2118
				(G) H	P + Mom	+ LRP	(K) SME	8 + HP + M	om + LRP
R = 1				0.0245	(1.16)	0.2507	0.0205	(0.94)	0.2019
R = 3				0.0233	(0.98)	0.2105	0.0270	(1.14)	0.2452
R = 6				0.0350	(1.47)	0.3159	0.0275	(1.16)	0.2489
R = 12				0.0364	(1.63)	0.3501	0.0253	(1.18)	0.2534
EW portfolio	0.0494	(2.33)	0.4543				0.0253	(1.23)	0.2361
Opdyke t-test	5.5151	,,					3.0233	,,	(2.30)

图: 动量、期限结构、特质波动率三因子策略净值

参考文献: 1. Commodity futures returns and idiosyncratic volatility; 2. Commodity strategies based on momentum, term structure, and idiosyncratic volatility

HP因子在国内市场上无法实现,使用前三个因子或只使用EW一个因子可以起到类似的效果。将上市满半年、过去20个交易日日均成交量超过1万手的期货品种按过去R个交易日的特质波动率排序,做多特质波动率最小的前20%品种,做空特质波动率最大的前20%品种,持有H个交易日调仓,构建特质波动率因子。

表: 特质波动率因子在不同参数组下的表现

R H	20	40	60	80	100	120	140	160	180
5	-3.16%	-1.51%	-1.35%	-3.83%	-1.78%	-0.60%	0.35%	-0.93%	-0.12%
10	-2.63%	-1.04%	-1.15%	-2.62%	-1.41%	-0.03%	0.47%	-0.04%	0.01%
15	-2.20%	-1.27%	-1.32%	-2.82%	-1.29%	0.16%	0.12%	0.48%	0.24%
20	-1.07%	-1.07%	-2.19%	-1.67%	-1.37%	0.42%	0.32%	0.03%	0.12%
25	-1.35%	-0.27%	-2.62%	-1.87%	-1.29%	0.80%	0.19%	-0.45%	0.18%
30	-1.59%	-0.88%	-2.74%	-1.91%	-1.09%	0.29%	0.84%	0.80%	0.97%
35	-1.28%	-1.23%	-2.59%	-2.31%	-0.20%	0.65%	0.39%	-0.48%	0.79%
40	-0.34%	-1.78%	-3.06%	-0.96%	-0.67%	0.91%	-0.26%	0.25%	0.95%

图: 特质波动率因子在最优参数组下的净值

供需或库存冲击会导致收益率出现极值。极端天气、自然灾害将导致库存骤降,从而引起价格上升、期货贴水和收益分布的正偏;而天气好转、技术进步将导致库存上升,从而引起价格下跌、期货升水和收益分布的负偏。

表:偏度因子的表现

衣: 偏度囚丁的衣现												
P1	P2	P3	P4	P5	P1-P5							
0.0513	0.0401	0.0020	0.0277	0.1000	0.0801							
		,	,	,	(4.08)							
					0.1020							
					0.7848							
0.0090	-0.7888	-0.2246	-0.5818	-0.1563	0.2874							
(0.07)	(-5.80)	(-1.65)	(-4.28)	(-1.15)	(2.11)							
1.3891	3.1699	0.9979	2.7427	1.0168	1.1646							
(5.10)	(11.65)	(3.67)	(10.08)	(3.74)	(4.28)							
0.1291	0.1696	0.1341	0.1577	0.1321	0.0627							
0.5525	0.5556	0.4846	0.5062	0.4105	0.5926							
-0.4244	-0.6006	-0.7300	-0.8205	-0.9731	-0.2973							
0.0428	0.0410	0.0134	-0.0174	-0.0889	0.0658							
(1.79)	(1.93)	(0.67)	(-0.80)	(-3.96)	(3.58)							
0.9571	1.0502	1.0427	1.0283	0.8949	0.0311							
(13.12)	(15.05)	(19.31)	(13.80)	(14.55)	(0.66)							
0.1951	0.2375	-0.0933	-0.1096	-0.1645	0.1798							
(2.27)	(3.69)	(-1.45)	(-1.66)	(-2.31)	(2.74)							
					0.0021							
					(0.04)							
				,	0.1113							
					(1.46)							
					5.66%							
	0.0512 (1.52) 0.1748 0.2932 0.0090 (0.07) 1.3891 (5.10) 0.1291 0.5525 -0.4244 0.0428 (1.79) 0.9571 (13.12)	P1 P2 0.0512 0.0401 (1.52) (1.19) 0.1748 0.1755 0.2932 0.2287 0.0090 -0.7888 (0.07) (-5.80) 1.3891 3.1699 (5.10) (11.65) 0.1291 0.1696 0.5525 0.5556 -0.4244 -0.6006 0.0428 0.0410 (1.79) (1.93) 0.9571 1.0502 (13.12) (15.05) 0.1951 0.2375 (2.27) (3.69) 0.0334 -0.0894 (0.47) (-1.78) 0.0786 0.0806 (0.93) (1.65)	P1 P2 P3 0.0512 0.0401 -0.0020 (1.52) (1.19) (-0.06) 0.1748 0.1755 0.1715 0.2932 0.2287 -0.0114 0.0090 -0.7888 -0.2246 (0.07) (-5.80) (-1.65) 1.3891 3.1699 0.9979 (5.10) (11.65) (3.67) 0.1291 0.1696 0.1341 0.5525 0.5556 0.4846 -0.4244 -0.6006 -0.7300 0.0428 0.0410 0.0134 (1.79) (1.93) (0.67) 0.9571 1.0502 1.0427 (13.12) (15.05) (19.31) 0.1951 0.2375 -0.0933 (2.27) (3.69) (-1.45) 0.0334 -0.0894 0.0037 (0.47) (-1.78) (0.07) 0.0786 0.0806 -0.0606 (0.93) (1.65) (-0.98)	P1 P2 P3 P4 0.0512 0.0401 -0.0020 -0.0277 (1.52) (1.19) (-0.06) (-0.87) 0.1748 0.1755 0.1715 0.1647 0.2932 0.2287 -0.0114 -0.1683 0.0090 -0.7888 -0.2246 -0.5818 (0.07) (-5.80) (-1.65) (-4.28) 1.3891 3.1699 0.9979 2.7427 (5.10) (11.65) (3.67) (10.08) 0.1291 0.1696 0.1341 0.1577 0.5525 0.5556 0.4846 0.5062 -0.4244 -0.6006 -0.7300 -0.8205 0.0428 0.0410 0.0134 -0.0174 (1.79) (1.93) (0.67) (-0.80) 0.9571 1.0502 1.0427 1.0283 (13.12) (15.05) (19.31) (13.80) 0.1951 0.2375 -0.0933 -0.1096 (2.27) (3.69) (-1.45) <td>P1 P2 P3 P4 P5 0.0512 0.0401 -0.0020 -0.0277 -0.1089 (1.52) (1.19) (-0.06) (-0.87) (-3.54) 0.1748 0.1755 0.1715 0.1647 0.1596 0.2932 0.2287 -0.0114 -0.1683 -0.6820 0.0090 -0.7888 -0.2246 -0.5818 -0.1563 (0.07) (-5.80) (-1.65) (-4.28) (-1.15) 1.3891 3.1699 0.9979 2.7427 1.0168 (5.10) (11.65) (3.67) (10.08) (3.74) 0.1291 0.1696 0.1341 0.1577 0.1321 0.5525 0.5556 0.4846 0.5062 0.4105 -0.4244 -0.6006 -0.7300 -0.8205 -0.9731 0.0428 0.0410 0.0134 -0.0174 -0.0889 (1.79) (1.93) (0.67) (-0.80) (-3.96) 0.9571 1.0502 1.0427 <</td>	P1 P2 P3 P4 P5 0.0512 0.0401 -0.0020 -0.0277 -0.1089 (1.52) (1.19) (-0.06) (-0.87) (-3.54) 0.1748 0.1755 0.1715 0.1647 0.1596 0.2932 0.2287 -0.0114 -0.1683 -0.6820 0.0090 -0.7888 -0.2246 -0.5818 -0.1563 (0.07) (-5.80) (-1.65) (-4.28) (-1.15) 1.3891 3.1699 0.9979 2.7427 1.0168 (5.10) (11.65) (3.67) (10.08) (3.74) 0.1291 0.1696 0.1341 0.1577 0.1321 0.5525 0.5556 0.4846 0.5062 0.4105 -0.4244 -0.6006 -0.7300 -0.8205 -0.9731 0.0428 0.0410 0.0134 -0.0174 -0.0889 (1.79) (1.93) (0.67) (-0.80) (-3.96) 0.9571 1.0502 1.0427 <							

表:偏度因子的敏感性分析

Mean StDev SR													
Panel A: Choice of ranking periods (H=1)													
R = 6	0.0556	(2.94)	0.0991	0.5615	0.0479	(2.57)							
R = 12	0.0801	(4.08)	0.1020	0.7848	0.0658	(3.58)							
R = 36	0.0516	(2.48)	0.1041	0.4959	0.0388	(1.66)							
R = 60	0.0591	(2.46)	0.1149	0.5140	0.0474	(2.00)							
R = 96	0.0649	(2.52)	0.1153	0.5632	0.0533	(1.93)							
Average	0.0623		0.1071	0.5839	0.0506								
Panel B: Choice of holding periods	(R=12)												
H=1	0.0801	(4.08)	0.1020	0.7848	0.0658	(3.58)							
H=3	0.0828	(4.21)	0.1022	0.8100	0.0618	(3.16							
H=6	0.0616	(3.13)	0.1023	0.6022	0.0424	(2.03							
H=12	0.0514	(2.63)	0.1015	0.5065	0.0278	(1.51							
Average	0.0690		0.1020	0.6759	0.0495								
Panel C: Choice of sorting signal													
Systematic skewness	0.0183	(0.83)	0.1150	0.1591	0.0112	(0.48							
Idiosyncratic skewness	0.0653	(3.64)	0.0931	0.7017	0.0626	(3.46							
Expected idiosyncratic skewness	0.0241	(1.25)	0.0984	0.2453	0.0196	(1.03							
Panel D: Lack of liquidity and trans	action cos	ts											
90% most liquid contracts	0.0631	(3.30)	0.0992	0.6364	0.0504	(2.61							
T-costs = 0.033%	0.0783	(3.99)	0.1020	0.7680	0.0641	(3.49							
T-costs = 0.066%	0.0766	(3.90)	0.1020	0.7512	0.0624	(3.40							
Break-even transaction costs	0.9330												
Panel E: Sub-sample analysis													
Jan 1987-May 2001	0.0705	(2.51)	0.1032	0.6837	0.0534	(2.02							
June 2001-Nov 2014	0.0896	(3.26)	0.1010	0.8864	0.0683	(2.63							
Jan 1987-Dec 2005	0.0774	(3.10)	0.1062	0.7289	0.0712	(2.89							
Jan 2006-Nov 2014	0.0855	(2.73)	0.0935	0.9145	0.0372	(1.94							
Jan 1987-July 2007	0.0767	(3.25)	0.1047	0.7329	0.0698	(3.00							
Aug 2007-Nov 2014	0.0890	(2.54)	0.0950	0.9370	0.0290	(1.33							

偏度因子国内市场回测效果

将上市满半年、过去20个交易日日均成交量超过1万手的期货品种按过去R个交易日的偏度排序,做多偏度最小的前20%品种,做空偏度最大的前20%品种,持有H个交易日调仓,构建偏度因子,当回顾期为120-180天,持有期为15-30天时,策略表现相对较好。

表: 偏度因子在不同参数组下的表现

R H	20	40	60	80	100	120	140	160	180
5	-0.17%	-1.03%	-0.51%	-1.12%	0.97%	0.90%	0.71%	1.33%	1.40%
10	0.95%	-0.70%	-0.50%	-0.62%	0.98%	0.90%	1.72%	1.17%	1.82%
15	1.57%	-0.81%	-0.28%	-0.36%	1.41%	1.35%	2.03%	1.55%	2.37%
20	1.49%	-0.93%	-0.82%	-0.67%	0.44%	1.01%	1.60%	0.86%	1.67%
25	1.88%	-0.11%	-0.22%	-0.27%	1.19%	1.99%	1.65%	1.53%	2.27%
30	1.51%	-1.33%	-0.83%	0.11%	0.93%	1.75%	1.85%	1.43%	1.69%
35	0.58%	-0.86%	-1.18%	-0.23%	1.14%	1.13%	2.18%	1.31%	1.75%
40	0.70%	-0.45%	-0.72%	-0.64%	0.75%	1.03%	1.31%	0.96%	0.76%

图:偏度因子在最优参数下的净值曲线

参考文献: The Skewness of Commodity Futures Returns

流动性因子即为股票市场上的Amihud非流动性因子

$$ILLIQ = \frac{1}{R} \sum_{i=1}^{R} \frac{|r_i|}{Amount_i}$$

将上市满半年、过去20个交易日日均成交量超过1万手的期货品种按过去R个交易日的流动性因子排序,做多流动性最低的前20%品种,做空流动性最高的前20%品种,持有H个交易日调仓,构建流动性因子,流动性因子在各参数组下均能取得正收益,其中当回看期R不超40个交易日时,因子表现较好,且对持有期H不敏感。

表: 流动性因子在不同参数组下的表现

R H	10	20	30	40	50	60	70	80	90	100
5	2.14%	2.02%	2.25%	2.03%	1.50%	1.58%	0.48%	0.51%	0.65%	1.08%
10	1.82%	1.71%	2.40%	1.86%	1.59%	1.54%	0.64%	0.41%	0.50%	0.99%
15	1.82%	2.02%	2.14%	1.68%	1.75%	1.08%	0.61%	0.25%	0.36%	0.71%
20	2.34%	2.28%	2.02%	2.23%	1.59%	1.38%	0.43%	0.44%	0.37%	0.83%
25	2.23%	2.46%	2.44%	2.27%	1.98%	1.30%	0.92%	0.90%	0.62%	0.95%
30	2.13%	2.13%	2.26%	2.17%	1.70%	1.14%	0.84%	0.45%	0.64%	0.81%
35	2.25%	1.93%	2.31%	2.11%	1.57%	1.36%	0.98%	0.83%	0.74%	0.68%
40	2.65%	2.41%	2.29%	2.11%	1.72%	1.23%	0.77%	0.58%	0.84%	1.18%

图: 流动性因子在不同参数下的净值曲线

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

期货仓单是期货交易所制定交割仓库签发的实物提货凭证,是商品库存的一种表现形式,仓单的变化能反映出商品的供求关系的变化。

将上市满半年、过去20个交易日日均成交量超过1万手的期货品种按过去R个交易日注册仓单的变化率排序,做多仓单下降幅度最大的前20%品种,做空仓单上升幅度最大的前20%品种,持有H个交易日调仓,构建仓单因子,因子在各个参数组下均取得正收益。

表:仓单变化因子在不同参数组下的表现

 R
H
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 5
 3.91%
 4.10%
 3.57%
 3.40%
 1.79%
 2.45%
 2.62%
 2.89%
 5.77%
 5.31%

 10
 2.74%
 2.64%
 3.09%
 2.46%
 2.44%
 2.03%
 3.86%
 3.74%
 6.87%
 4.68%

 15
 3.02%
 2.32%
 2.83%
 2.98%
 2.39%
 2.51%
 3.60%
 4.29%
 6.22%
 5.20%

 20
 2.47%
 2.56%
 2.21%
 2.32%
 1.87%
 2.98%
 2.83%
 4.84%
 5.48%
 5.19%

 25
 1.57%
 1.89%
 2.14%
 1.67%
 2.56%
 2.00%
 3.46%
 4.19%
 5.37%
 4.08%

 30
 1.64%
 2.08%
 2.50%
 1.60%
 2.56%
 3.16%
 3.39%
 4.70%
 5.54%
 5.18%

 35
 1.67%
 2.49%
 2.48%
 2.82%
 2.99%
 3.40%
 3.19%
 4.63%
 5.31%
 4.58%

 40
 2.29%
 3.40%
 2.66

图: 仓单变化因子在最优参数下的净值曲线

除了交易所的注册仓单之外,总库存还包括预报仓单、社会库存等,部分国际化的商品,还要考虑海外交易所的库存。我们汇总统计了各商品总库存。将满足条件的期货品种按过去R个交易日总库存的变化率排序,做多库存下降幅度最大的前20%品种,做空库存上升幅度最大的前20%品种,持有H个交易日调仓,构建库存变化率因子。

库存变化率因子对参数的敏感性与仓单变化率因子十分接近,净值曲线走势也高度一致。

表: 库存变化因子在不同参数组下的表现

R H	10	20	30	40	50	60	70	80	90	100
5	2.54%	3.52%	2.90%	3.58%	3.90%	3.85%	3.31%	4.08%	6.03%	6.66%
10	2.38%	1.77%	2.87%	3.98%	3.29%	2.68%	3.34%	3.95%	6.46%	5.71%
15	2.45%	2.02%	2.93%	4.11%	3.39%	2.57%	3.64%	3.86%	5.63%	5.55%
20	2.68%	1.96%	2.45%	3.10%	3.29%	2.76%	3.20%	4.56%	5.57%	5.30%
25	2.81%	2.44%	2.76%	3.05%	2.89%	2.40%	2.80%	4.20%	4.94%	4.80%
30	1.72%	1.91%	2.78%	3.38%	3.38%	2.79%	3.23%	4.76%	4.69%	4.80%
35	1.09%	1.89%	2.33%	2.62%	3.08%	3.06%	4.15%	4.11%	4.36%	4.63%
40	1.34%	2.00%	3.18%	3.70%	3.72%	3.15%	4.61%	4.94%	4.98%	4.61%

图: 库存变化因子在最优参数下的净值曲线

请务必阅读正文之后的信息披露和法律声明

商品期货因子挖掘

- 动量因子
- 期限结构因子
- 价值因子
- 持仓相关因子
- 量价因子
- 基本面因子
- Beta因子

• 通胀beta

商品具有对冲通胀的效果,在通胀上升期往往具有很好的表现。可以通过将过去60个月商品的月收益率对通胀冲击做回归得到beta系数,其中通胀冲击定义为CPI同比(环比)涨幅的月度变化率,通过买入高通胀beta的品种,卖出低通胀beta的品种来构建通胀beta因子。

美元beta

Erb and Harvey(2006)发现GSCI指数的超额收益与美元相对其他主要货币的汇率具显著的负相关性,这是因为大宗商品多数是以美元定价的,美元走弱时商品价格会上涨,使用过去60个月的期货收益率与美元相对其他主要货币的涨跌幅做回归得到beta系数,通过买入低beta的品种,卖出高beta的品种,构建美元beta因子。

通胀beta因子及回测效果

考虑到CPI披露日期存在滞后,我们以调仓日期前两个月作为起点,回溯过去R年,将满足条件的期货品种的月收益率对通胀冲击回归,其中通胀冲击分别基于CPI同比涨幅和环比涨幅计算。做多beta值最大的前20%品种,做空beta值最小的前20%品种,持有H个交易日调仓,构建通胀beta因子。

基于CPI环比涨幅计算的因子表现更好。当回看期R为4年48个月时,因子可以取得5%以上的年化收益率,但敏感性相对较高。R的变化将导致因子收益大幅下降。

表: 通胀beta因子在不同参数组下的表现

CPI同比 CPI环比 R(年) -0.77% 1.03% 1.34% 5.46% -0.77% 2.42% -2.76% -2.50% 1.40% -0.34% 0.88% 0.81% 5.49% 0.24% 20 -0.73% 2.66% 1.89% 0.84% 5.44% 0.99% 1.10% -0.56% 0.58% 0.62% 2.68% -0.75% -1.73% 1.73% 0.90% 0.84% 5.56% 1.66% 2.94% -0.55% -1.36% 2.08% 1.29% -0.28% 0.79% 6.28% 2.66% 2.42% 1.17% 50 0.17% 1.04% 2.96% -0.14% -0.70% 1.50% 0.87% 6.80% 2.66% 2.67% 1.01% 2.44% -0.60% 70 1.80% 0.51% 6.20% 2.46% 2.06% -0.50% -0.17% 3.09% 1.07% 0.83% 1.99% 0.40% 0.83% 1.60% 0.59% 6.62% 1.82% -1.00% -0.15% 2.82% 0.90% 1.59% 0.94% 6.71% 1.82% 1.28% -0.87% 0.05% 3.07% 0.51% 1.86% -0.59% 0.22% 0.65%

图: 通胀beta因子在最优参数下的净值曲线

请务必阅读正文之后的信息披露和法律声明

商品期货因子挖掘及组合构建再探究

- 商品期货因子初探
- 商品期货组合构建

构建组合所使用的因子

构建组合使用的因子主要包括

- 时间序列动量(R:40)
- 横截面动量(R:40)
- 期限结构因子(TsType:TS4)
- 基差动量因子(R:120)
- 仓单变化率因子(R:90)

分别构建基于时间序列动量、横截面动量、期限结构因子的三因子模型,以及加入基差动量因子和仓单变化率因子的四因子、五因子模型。

效仿多因子选股策略,对每个满足流动性条件的期货品种排序打分,然后将分数相加得到总分。做多总分最高的20%品种,做空总分最低的20%品种。

时间序列动量因子无法排序, 此处没有使用。

表: 不同组合净值曲线

表: 不同组合收益风险特征

持仓天数	年化和	文益率	收益反	风险比	收益回撤比		
村也入数	三因子	四因子	三因子	四因子	三因子	四因子	
5	12.51%	12.82%	1.90	1.84	1.70	1.70	
10	11.08%	11.98%	1.72	1.77	1.29	1.57	
15	11.13%	11.55%	1.75	1.74	1.32	1.28	
20	10.32%	10.78%	1.66	1.67	1.30	1.31	
25	10.98%	11.34%	1.78	1.76	1.45	1.21	
30	10.94%	11.36%	1.79	1.80	1.54	1.27	
35	9.41%	10.08%	1.58	1.64	1.26	1.36	
40	9.25%	10.65%	1.58	1.75	1.28	1.45	

将K个因子等权配置,将同一品种在不同因子中的多空持仓进行对冲,对于每个单因子策略,如果某一品种在多头中,令其分数为+1,如果在空头中,令其分数为-1,如果没有入选多头和空头,令其分数为0,将每个品种在各个因子上的分数相加,得到总分。最后将多头和空头的品种权重做归一化处理,将50%的资金投资于多头,50%的资金投资于空头。

表: 不同组合净值曲线

2.20 2.00 2.01

表: 不同组合收益风险特征

持仓	年化收益率			此	上益风险!	七	收益回撤比			
天数	三因子	四因子	五因子	三因子	四因子	五因子	三因子	四因子	五因子	
5	6.66%	8.44%	9.15%	1.16	1.59	1.83	0.86	1.15	1.13	
10	6.78%	8.42%	9.59%	1.21	1.62	1.96	0.85	1.20	1.40	
15	6.06%	7.77%	8.90%	1.09	1.50	1.80	0.79	1.04	1.22	
20	6.11%	7.95%	8.86%	1.13	1.57	1.84	0.78	1.08	1.25	
25	6.23%	8.34%	9.13%	1.16	1.65	1.90	0.82	1.10	1.26	
30	5.69%	7.78%	8.63%	1.07	1.55	1.81	0.71	1.08	1.27	
35	6.00%	7.93%	8.25%	1.15	1.62	1.78	0.73	1.16	1.26	
40	5.36%	7.58%	8.10%	1.05	1.59	1.76	0.67	1.08	1.22	

若资金量相对较小,可以构建复合信号策略,即分别计算K个因子中每个品种的交易信号(+1,0,-1),并相加得到每个品种的初始权重

$$w_0^i = \frac{abs(\sum_{k=1}^K signal_{t,k}^i)}{\sum_{j=1}^N abs(\sum_{k=1}^K signal_{t,k}^j)}$$

K为信号的个数(此处为3),头寸方向为 $sign(\sum_{t=1}^{K} signal_{t,k}^{i})$

同样可以从组合目标波动率推出品种的目标波动率

每个品种的权重为

$$\sigma_{tgt}(\overline{\rho}) = \frac{\sigma_{P,tgt}}{\sqrt{\sum_{i=1}^{N} w_0^{i^2} + 2\sum_{i=1}^{N} \sum_{j=i+1}^{N} w_0^{i} w_0^{j} \rho_{ij}}}$$

$$w_{t+1}^{i} = \frac{\sigma_{P,tgt} w_0^{i}}{\sigma_{t}^{i} \sqrt{\sum_{i=1}^{N} w_0^{i^2} + 2\sum_{i=1}^{N} \sum_{j=i+1}^{N} w_0^{i} w_0^{j} \rho_{ij}}}$$

按信号加权方式构建三因子策略(时间序列动量、横截面动量、期限结构),并在此基础上加入基差动量和仓单变化率因子构建四因子和五因子策略,加入了额外的因子能进一步提升策略表现。

图:不同组合净值曲线

表: 不同组合收益风险特征

	年化收益率			4	文益风险	<mark></mark> ይ	收益回撤比			
Н	三因子	四因子	五因子	三因子	四因子	五因子	三因子	四因子	五因子	
5	11.47%	13.09%	13.88%	2.05	2.35	2.51	2.23	2.44	2.32	
10	11.23%	12.89%	13.82%	2.03	2.33	2.52	2.36	2.76	2.76	
15	9.87%	11.60%	12.48%	1.82	2.13	2.30	2.07	2.40	2.40	
20	8.87%	10.74%	11.58%	1.67	2.02	2.18	1.68	2.28	2.38	
25	8.41%	10.42%	11.19%	1.61	1.99	2.13	1.60	2.22	2.62	
30	7.59%	9.50%	10.32%	1.47	1.83	1.97	1.47	2.05	2.24	
35	7.00%	8.86%	9.52%	1.39	1.75	1.86	1.44	1.93	2.15	
40	5.69%	7.66%	8.38%	1.17	1.56	1.69	1.14	1.63	1.80	

以2014.1.1为界,把样分为样本内和样本外,选择各因子样本内最优参数应用到样本外,五因子复合信号策略样本外表现依然稳定,当持有期为15天时,策略可以取得10.68%的年化收益率,1.91的收益风险比和3.38的calmar比率。

图: 不同持有期的五因子复合信号策略样本外表现

我们在交易成本中加入1-3个tick作为滑点,在单边万三+N(0-3)个tick四种交易成本假设下,五因子组合在样本外的收益风险比分别为1.91、1.73、1.55和1.37,calmar比率分别为3.38、2.90、2.30和1.81。随着交易成本的提升,策略表现逐渐下降,但依然处于较高水平。

图: 五因子复合信号策略在不同交易成本下的净值(左图:全样本,右图:样本外)

