Střední průmyslová škola	Zpráva z MIT	Třída: 4.C
elektrotechnická Havířov		Skupina: 1.
Teploměr		Zpráva číslo: 2
		Den: 7.1.2021
		Učitel: Ing. Petr Madecki
		Jméno: Tomáš Konvičný
		Známka:

2.Zadání:

1) Test čidla

- obsah registru LSB zobrazit na LED diodách

2) Test LCD

- výpis textu na 2 řádky

3) Zobrazit aktuální teplotu na LCD

- 4 desetinné místa

4) Zapamatovat si min. a max. teplotu

- zobrazovat průběžně na sériovém monitoru

5) Hlavní program:

- při poklesu pod 26,5°C zapnout topení
- při překročení 28,5°C zapnout klimatizaci
- vždy vypsat příslušný text na LCD displeji
- při překročení nebo poklesu rozsvítit příslušnou barvu na RGB (klid = zelená, topení = červená, klimatizace = modrá)

3. Teoretický rozbor:

Arduino Uno

Arduino UNO je vývojová deska založená na ATmega328P. Má 14 digitálních I/O pinů (z nichž 6 je možné použít jako PWM výstupy), 6 analogových vstupů, 16 MHz krystalový oscilátor, USB připojení, napájecí konektor, ICSP čtečku a resetovací tlačítko.

Použité periferie:

DS18B20

Číslicový teploměr Dallas 9-12bit +/-0,5°C -55..+125°C TO92

LCD displej 16x2, I2C

LCD displej s podsvícením bílou LED diodou a řízen přes I2C sběrnici

Odpory

3x 220 Ω odpory pro připojení k RGB LED diodě 1x 4.7k Ω odpor pro připojení teplotního čidla k desce

RGB LED dioda

Barva: červená, zelená, modrá (+ kombinace), průměr: 5mm, zapojení:

červená - společná katoda - zelená - modrá

Nastavení barev: Červená: (255,0,0) Zelená: (0,255,0)

Modrá: (0,0,255)

Vodiče (Male to Male, Male to Female)

Schéma zapojení:

4.Zdrojový kód:

```
#include <DallasTemperature.h>
#include <OneWire.h>
#include <LiquidCrystal I2C.h>
#include <Wire.h>
#define x 2
LiquidCrystal I2C lcd(0x27,16,2);
byte customChar[8] = {
   0b00110,
   0b01001,
   0b01001,
   0b00110
   0b00000,
   0b00000,
                                     INICIALIZACE
   0b00000,
   0b00000
};
                                     DEKLARACE
float tep;
float maxtep=-100;
float mintep=1000;
int red=10;
int green=9;
int blue=8;
OneWire oneWire(x);
DallasTemperature sensors (&oneWire);
void setup() {
 Serial.begin(9600);
 Serial.println("Teplomer s teplotnim snimacem DS18B20");
 Serial.println("Nacitani nejvyssich a nejnizsich hodnot z teplotniho snimace...");
 lcd.init();
                                          Nastavení sériového
 lcd.backlight();
 pinMode(x, INPUT);
                                          monitoru, vstupních a
 pinMode (10, OUTPUT);
 pinMode (9, OUTPUT);
                                          výstupních pinů
 pinMode (8, OUTPUT);
 sensors.begin();
 lcd.createChar(0, customChar);
}
```

```
void loop(){
  sensors.requestTemperatures(); -> získání teplot
  tep=sensors.getTempCByIndex(0); - uložení teplot v°C
  if(tep>maxtep)
    maxtep=tep;
  }
                           Uložení minimální a maximální
                           teploty
  if (tep<mintep)
    mintep=tep;
  if(tep>28.5)
    klimatizace();
  }
   if(tep<26.5)
                           Hlavní
   {
     topeni();
                           program
  if(tep>26.5 && tep<28.5)
    klid();
  vypis();
}
```

```
void topeni()
 {
   digitalWrite(green,0);
    digitalWrite (red, 255);
   digitalWrite(blue,0);
    lcd.setCursor(0,0);
    lcd.print("TOPENI=ON");
    lcd.setCursor(0,1);
    lcd.print("KLIMATIZACE=OFF");
   delay(2500);
    lcd.setCursor(0,0);
    lcd.print("TEPLOTA:
                                ");
    lcd.setCursor(0,1);
    lcd.print(tep,4);
    lcd.write(0);
    lcd.print("C
                                ");
   delay(2500);
                                          FUNKCE
  }
void klimatizace()
 {
   digitalWrite(green, 0);
   digitalWrite(red,0);
   digitalWrite(blue, 255);
    lcd.setCursor(0,0);
    lcd.print("KLIMATIZACE=ON");
    lcd.setCursor(0,1);
    lcd.print("TOPENI=OFF");
    delay(2500);
    lcd.setCursor(0,0);
    lcd.print("TEPLOTA:
                                ");
    lcd.setCursor(0,1);
    lcd.print(tep,4);
    lcd.write(0);
    lcd.print("C
                                ");
    delay(2500);
  }
```

```
void klid()
  {
    digitalWrite (green, 255);
    digitalWrite(red,0);
    digitalWrite(blue,0);
    lcd.setCursor(0,0);
    lcd.print("TOPENI=OFF");
    lcd.setCursor(0,1);
    lcd.print("KLIMATIZACE=OFF");
    delay(2500);
    lcd.setCursor(0,0);
    lcd.print("TEPLOTA:
                                 ");
    lcd.setCursor(0,1);
    lcd.print(tep, 4);
    lcd.write(0);
    lcd.print("C
                                 ");
    delay(2500);
  }
void vypis()
  Serial.println("Maximalni teplota je: ");
  Serial.println(maxtep, 4);
  Serial.println("Minimalni teplota je: ");
  Serial.println(mintep, 4);
  Serial.println("\n");
```

5.Závěr:

Cílem úlohy bylo seskládat a naprogramovat zařízení, které zaznamenává aktuální teplotu a následně danou teplotu vypíše na displej.

Jako hardware byla použita deska Arduino UNO R3 s teplotním čidlem DS18B20, LCD dispelejem a RGB ledkou.

Vývojové prostředí, z kterého se kód nahraje do desky se nazývá Arduino IDE.

Sériový monitor ve vývojovém prostředí ukládá nejnižší a nejvyšší teploty a ty vypisuje.

Úloha funguje podle následující tabulky:

PODMÍNKA	TEPLOTA < 26,5°C	26,5°C < TEPLOTA < 28,2°C	TEPLOTA > 28,5°C
RGB STAV			
STAV	Topení	Klidný stav	Klimatizace

Při psaní kódu je pro přehlednost důležité psát funkce.

Jako rozšíření bych přidal tlačítko, které by přepínalo teplotu ze stupňů Celsia na stupně Fahrenheita.