EEU44C04 / CS4031 / CS7NS3 / EEP55C27 Next Generation Networks

Spectrum Sharing

Nicola Marchetti

nicola.marchetti@tcd.ie

Frequency Band

^{*}Road Transport and Traffic Telematics

Benefits of unlicensed

- License-exempt bands provide significant benefits for equipment vendors and service providers in terms of:
 - Facilitating market entry there is no need to acquire a license to deploy a service
 - Enabling niche applications or services to be addressed quickly and cheaply using existing technology and spectrum – this has been particularly effective in serving new machine to machine (M2M) applications in areas such as health, transport and home automation
 - Providing certainty about spectrum access
 - There is no need to compete or pay for spectrum access (though the collective nature of spectrum use means quality of service cannot be guaranteed)
 - Security of tenure in general license exemption is not subject to an expiry date
 - Reduced congestion in licensed bands (e.g., through traffic offload from cellular networks to WiFi)
 - Ability to extend the reach of fixed communication networks, by providing wireless local area connectivity in homes, businesses and at public traffic hotspots

Benefits

- Key benefits from an end user's perspective include:
 - Greater convenience and flexibility by avoiding the need for lengthy
 runs of cable in home and work environments
 - Enhanced convenience, safety and security, e.g., through installation of low-cost wireless alarm systems, or ability to unlock vehicles remotely rather than fumbling with keys
 - Ability to connect mobile devices to a fixed broadband network,
 reducing dependence on the mobile network and potentially saving costs both for the service provider and the end-user

European unlicensed uses

Band	Frequency Limits (MHz)	Applications
169 MHz	169.4 – 169.475	Metering Devices
403 MHz	401 - 406	Active Medical Implants
433 MHz	433.05 – 434.79	Non-specific SRDs
446 MHz	446 – 446.2	PMR 446
868 MHz	863 – 870 MHz	Non-specific SRDs
	863 – 865 MHz	Wireless microphones and assistive listening devices
	865 – 868 MHz	RFID
870 MHz	870 – 876 MHz*	Tracking, Tracing and Data Acquisition (TTDA)
		Transport and Traffic Telematics; Non-specific SRDs

PMR = Personal Mobile Radio SRD = Short Range Device DECT = Digital Enhanced Cordless Telecommunications

Band	Frequency Limits (MHz)	Applications
915 MHz	915 – 921 MHz*	RFID
		Non-specific SRDs
		Assistive listening devices
1880 MHz	1880 - 1900	DECT
2.4 GHz	2400 – 2483.5 MHz	Wideband data transmission (e.g. Wi-Fi)
		Movement detection; Non- specific SRDs
	2446 – 2454 MHz	RFID
5 GHz	5150 – 5350 MHz 5470 – 5725 MHz	Wireless Access Systems (e.g. Wi-Fi)
5.8 GHz	5725 – 5875 MHz	Non-specific SRDs
	5795 – 5805 MHz	Transport and Traffic Telematics (TTT)
24 GHz	24 – 24.25 GHz	Non-specific SRDs
		Movement Detection
60 GHz	57 – 64 GHz	Non-specific SRDs
	57 – 66 GHz	Wideband data transmission (e.g. Wi-Gig)

unlicense Rules .

Band	Application(s)	Power Limit	Other mitigation requirements
433.05 – 434.79 MHz	Non-specific SRDs	10 mW	Duty cycle lir width of 05 b Iz apply
863 – 870 MHz	Non-specific SRDs	25 mW	Duty cycle limits or LBT / AFA apply
863 – 865 MHz	Wireless microphones and assistive listening devices	10 mW	No other mitigation requirements
865 – 865.6 MHz	RFID	100 mW	200 kHz max bandwidth. No oner minganor requirements
865.6 – 867.6 MHz	RFID	2 W	200 kHz max bandwidth. No other mitigation requirements
867.7 – 868 MHz	RFID	500 mW	200 kHz max bandwidth. No other mitigation requirements
869.4 – 869.65 MHz	Non-specific SRDs	500 mW	Duty cycle limits or LBT / AFA apply
870 – 875.6 MHz	Tracking, Tracing and Data Acquisition	500 mW	Duty cycle limits and APC required. Wide area networks may require licence
870 – 875.8 MHz	Transport and Traffic Telematics	500 mW	Duty cycle limits and APC required. Highest power limited to vehicle to vehicle communication (100 mW otherwise)
870 – 876 MHz	Non-specific SRDs	25 mW	Duty cycle limits apply
915 – 921 MHz	RFID	4 W	May operate only when RFID tags present. 400 kHz max bandwidth. Detect and Avoid may be required above 918 MHz.
	Non-specific SRDs	25 mW	Duty cycle limits apply. 100 mW permitted on certain channels
	Assistive listening devices	10 mW	Specific sub-bands only. Duty cycle limit applies
1880 - 1900	DECT		
2400 – 2483.5 MHz	Wideband data transmission (e.g. Wi-Fi)	100 mW	Spectrum sharing mechanism (e.g. LBT or DAA) required. 10 mW/MHz max PSD
	Movement detection	25 mW	No other mitigation requirements
	Non-specific SRDs	10 mW	No other mitigation requirements

Band	Application(s)	Power Limit	Other mitigation requirements
2446 – 2454 MHz	RFID	500 mW	No other mitigation requirements
MHZ		4 W	Duty cycle limit applies. FHSS must be used. Indoor use only
5150 – 5250 MHz	Wireless Access Systems (e.g. Wi-Fi)	200 mW	Indoor use only. 10 mW/MHz max PSD. No other mitigation requirements
5250 – 5350 MHz	Wireless Access Systems (e.g. Wi-Fi)	200 mW	Mitigation techniques at least as effective as those in EN 301 893 required. Indoor use only. 10 mW/MHz max PSD
5470 – 5725 MHz	Wireless Access Systems (e.g. Wi-Fi)	1W	Mitigation techniques at least as effective as those in EN 301 893 required. 50 mW/MHz max PSD
5725 – 5875 MHz	Non-specific SRDs	25 mW	No other mitigation requirements
5795 – 5805 MHz	Transport and Traffic Telematics	2 W	Higher powers (up to 8W) may require licence. No other mitigation requirements
24 – 24.25 GHz	Non-specific SRDs	100 mW	No other mitigation requirements
57 – 64 GHz	Non-specific SRDs	100 mW	Max.10 mW input to antenna; PSD 10 mW/MHz max. No other mitigation requirements
57 – 66 GHz	Wideband data transmission (e.g. Wi-Gig)	10 W	Spectrum sharing mechanism (e.g. LBT or DAA) required. 20 mW/MHz max PSD, No fixed outdoor use

Why so many rules?

Co-existence with other *like* devices.

Co-existence with other *different* systems.

WiFi

- Wi-Fi (Wireless Fidelity) is the wireless broadband data technology based on the IEEE 802.11 series of standards, whose main use is providing wireless broadband connectivity to fixed or mobile user devices
- The 802.11 series of standards has been developed over the last 25 years by the *US-based* IEEE standards body
- CSMA/CA interference mitigation is a key feature of the 802.11 standards, and is intended to facilitate equitable spectrum access between multiple Wi-Fi systems even in highly contended environments
- When we discuss WiFi, think also of 5G
 - If 5G wants to use this spectrum it must also abide by the rules applicable to
 WiFi → They are the same type of use

WiFi: 1Gbps, MIMO

802.11n variant which may be either single (2.4 GHz) or dual (2.4 / 5 GHz) band and incorporates additional enhancements such as MIMO antennas and the use of wider (40 MHz) channels, extending the theoretical overthe-air bit rate to as high as 600 Mbps

 Further enhancements are embodied in the 802.11ac standard, notably the ability to use even wider channels (80 or 160 MHz), higher level modulation (256QAM) and up to eight MIMO streams to extend the theoretical over-the-air bit rate to well over 1 Gbps

WiFi: M2M, < 1GHz

 More recent enhancements to the 802.11 standards extend the capability to lower and higher frequency bands

802.11ah

- primarily aimed at M2M and other relatively low bit rate applications...
- ...but may also be used to extend the coverage of broadband Wi-Fi connections by using sub-1 GHz spectrum
- provides bandwidth options of 1, 2, 4, 8, and 16 MHz

WiFi: 60GHz, ~ 7Gbps

- 802.11ad, also referred to as Wi-Gig, operates in the 60 GHz millimetre wave band and is intended for very high-speed, short-range applications
- The 60 GHz band is particularly attractive, having a total of 8 GHz of contiguous spectrum available in all EU Member States

• Suggested **applications** include cable replacement for displays, wireless docking between devices like laptops and tablets, *instant* data synchronisation and backup, and simultaneous streaming of multiple, ultra-high definition and 4K videos → Standard is intended to **deliver multi-Gigabit speeds with very low latency**

WiFi: 60GHz, ~ 7Gbps

Routers on the market

 The standard is expected to deliver speeds of up to 7 Gbps over ranges of up to 10 metres → in practice this is likely to be within a single room as most building materials have very high attenuation at these high (mmWave) frequencies

WiFi: 60GHz, > 30Gbps

- 802.11ay developed by the IEEE and aims at data rates in excess of 30
 Gbps
- Potential applications include line of sight wireless backhaul (extended transmission distance of 300–500 metres) and high-speed content downloads over very short ranges
 - Similar to today's contactless smart card technology, but enabling a full-length movie to be downloaded in under a second
 - What's the use of that????? ☺
- Note: all new standards are brought within the ambit of the Wi-Fi Alliance
 → Global industry body which plays a leading role in overseeing certification and interoperability of Wi-Fi products

WiFi by range

5GHz – potentially **720 MHz** available

^{*}WiFi – or any broadband technology adhering to the rules such as LTE

5GHz – the promised land of unlicensed capacity

- Why this band?
 - Trade-off between capacity and coverage
 - At these frequencies, a small cell can serve a full room or a few rooms (building material-dependent)
 - 5 GHz is relatively underutilized <u>for now</u>
 - 60 GHz doesn't offer useful coverage yet
 - More difficult to address mobile users/uses

Making best use of 5 GHz unlicensed band

LTE-U/LAA, LWA, MulteFire and 802.11 ac/ax will coexist in 5 GHz

Enterprises

Small Businesses

Venues

Residential/ Neighborhood

Large amounts of spectrum available globally (~500 MHz)

Ideal for small cells thanks to lower mandated transmit power Global neutral spectrum that can serve any user with same deployment - neutral hosts

Multiple technologies will coexist in unlicensed spectrum

LAA / LTE-U (Licensed-Assisted Access)

LWA (LTE Wi-Fi Link Aggregation)

Sharing the 3.5GHz band

US National
Telecommunications
and Information
Administration (NTIA)

Yellow – initial exclusion area to protect coastal radar @3.5GHz and Fixed Satellite Services (FSS) ground stations

Cyan/blue – final exclusion zone

Spectrum Access System (SAS) @USA

Which one among the following bands is the most relevant in the context of cognitive radio systems coexistence with radar systems?

- □ 400 MHz
- □ 3.5 GHz
- □ 60 GHz

Which one among the following bands is the most relevant in the context of cognitive radio systems coexistence with radar systems?

- □ 400 MHz
- □ 3.5 GHz
- □ 60 GHz

