MATH5735: Modules and Representation Theory (2014,S1) Problem Set 1 1

Throughout, k will denote some field, R a ring and n some positive integer.

- 1. Let R be a commutative ring. Prove that $M_n(R)^{\text{op}} \simeq M_n(R)$.
- 2. Let R be a ring and consider the subset T, respectively U, of $M_n(R)$ consisting of upper triangular, respectively, strictly upper triangular, matrices. Are either of T or U subrings of $M_n(R)$? If so, compute their centres. Are either of T or U ideals of $M_n(R)$?
- 3. Let G be a group and consider the subset J of kG consisting of elements of the form $\sum_{g \in G} \alpha_g g$ where $\sum \alpha_g = 0$. Show that J is an ideal of kG. Determine the algebra kG/J.
- 4. Let A be an R-algebra where R is a commutative ring. If I is an ideal of A, show that A/I is naturally an R-algebra too with unit map the composite $R \longrightarrow A \longrightarrow A/I$.
- 5. Suppose k is algebraically closed. Prove that every two-dimensional k-algebra A is isomorphic to $k \times k$ or $k[x]/(x^2)$. Hint: Let $\{1, x\}$ be a basis for A and show x satisfies a quadratic equation over k. Show this result no longer holds if k is not algebraically closed.
- 6. The quaternion algebra is

$$\mathbb{H} = \mathbb{R}\langle i, j \rangle / (i^2 + 1, j^2 + 1, ij + ji).$$

(a) Show that there is an injective \mathbb{R} -algebra homomorphism $\phi: \mathbb{H} \longrightarrow M_2(\mathbb{C})$ which sends

$$i \mapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad j \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

(b) Hence or otherwise show that \mathbb{H} is a division ring. Hint: First show that for any $h \in \mathbb{H} - 0$ we have $\phi(h)$ is invertible in $M_2(\mathbb{C})$ and then show that the inverse lies in $\phi(\mathbb{H})$.

¹by Daniel Chan

- (c) Show that the centre of \mathbb{H} is \mathbb{R} .
- 7. Prove that the 3-dimensional algebras $k[x]/(x^3)$ and $k[x,y]/(x^2,xy,y^2)$ are not isomorphic.
- 8. Let M be an R-module. For any $m \in M$, show that m0 = 0 and m(-1) = -m.
- 9. Consider the subring $R = k[x^2]$ of S = k[x]. Note that there is a ring homomorphism $\iota: R \longrightarrow S$ given by inclusion so we can change scalars from S to R. Hence we may consider S not just as an S-module but also as an R-module. Show that R is an R-submodule of S and that $S/R \simeq R$ as R-modules.
- 10. Let H be a subgroup of G and C = gH be a left coset of H in G. As in the previous question note that kG can also be considered as a kH-module. Show that $kC = \bigoplus_{g \in C} kg$ is a right kH-submodule of kG.
- 11. Let R = kG where $G = \langle \sigma \rangle$ is the cyclic group of order 6. Consider the R-module homomorphism $\phi : R \longrightarrow R$ given by left multiplication by $1 + \sigma^2 + \sigma^4$.
 - (a) Compute the kernel of ϕ .
 - (b) Compute the image of ϕ .
 - (c) What does the first isomorphism theorem applied to ϕ say in this case?
- 12. Using the universal property for quotient modules or otherwise, find all k[x]-module homomorphisms from $k[x]/(x^2)$ to $k[x]/(x^3)$.