Problem Sets

D. Zack Garza

Tuesday 5th May, 2020

Contents

_	1.1	1
	1.1 a	1
	1.2 b	1
2	1.3*	1
3	Relevant information (?):	2
	3.1 1	2
	3.2 2	2

1 1.1

1.1 a

If $M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces M_{μ} for which $\mu \in [\lambda]$. Prove that $M^{[\lambda]}$ is a $U(\mathfrak{g})$ -submodule of M and that M is the direct sum of finitely many such submodules.

1.2 b

Deduce that the weights of an indecomposable module $M \in \mathcal{O}$ lie in a single coset of $\mathfrak{h}^{\vee}/\Lambda_r$.

2 1.3*

Show that $M(\lambda)$ has the following property: for any $M \in \mathcal{O}$,

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda), M) = \operatorname{Hom}_{U(\mathfrak{g})}\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_{\lambda}, M\right) \cong \operatorname{Hom}_{U(\mathfrak{b})}\left(\mathbb{C}_{\lambda}, \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}M\right),$$

where $\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}$ is the restriction functor.

Hint: use the universal mapping property of tensor products.

3 Relevant information (?):

3.1 1

- $\mathfrak{h} \leq \mathfrak{g}$ is the Cartan subalgebra.
 - In finite-dimensional setting: maximal toral
 - Nilpotent subalgebra, i.e. LCS terminates, i.e. ad $h = [h, \cdot]$ is a nilpotent operator so ad h = 0 for some n.
 - Self-normalizing, so for a fixed y, $[h, y] \in \mathfrak{h} \ \forall h \in \mathfrak{h} \implies y \in \mathfrak{h}$.
- $\lambda \in \mathfrak{h}^{\vee}$ is a linear functional $\lambda : \mathfrak{h} \longrightarrow \mathbb{C}$
 - λ is a root relative to \mathfrak{h} if $\lambda \neq 0$ and there is some $g \in \mathfrak{g}$ such that $[hg] = \lambda(h)g$ for all $h \in \mathfrak{h}$.
- $\Phi \subset \mathfrak{h}^{\vee}$ is the root system of \mathfrak{g} relative to \mathfrak{h} .
 - Each $\lambda \in \Phi$ is a root
 - Each root λ has a corresponding root space $\mathfrak{g}_{\alpha} := \{x \in \mathfrak{g} \mid [hx] = \lambda(h)x \ \forall h \in \mathfrak{h} \}.$
- $\Lambda_r := \operatorname{span}_{\mathbb{Z}} \{ \lambda \in \Phi \} \subset \mathbb{C}^n$ is the root lattice.
- $M_{\mu} := \{ v \in M \mid h \cdot v = \mu(h)v \ \forall h \in \mathfrak{h} \}$ is the weight space for μ .
- $\bullet \ M^{[\lambda]} = \sum_{\mu \in [\lambda]} M_{\mu}$

 $M \in \mathcal{O} \implies$

- M is finitely generated as a $U(\mathfrak{g})$ -module.
- M is a weight module, so $M = \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} M_{\lambda}$
- For every $v \in M, U(\mathfrak{n}) \cdot v$ is finite-dimensional

3.2 2

 $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$ where $\mathfrak{b} \leq \mathfrak{g}$ is a fixed Borel subalgebra corresponding to a choice of positive roots, and C_{λ} is the 1-dimensional \mathfrak{b} -module defined for any $\lambda \in \mathfrak{h}^{\vee}$ by the fact that $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$ and thus $\mathfrak{n} \curvearrowright \mathfrak{h}$ can be taken to be a trivial action. The induction functor is given by $\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}}(\cdot) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\cdot)$.

The restriction functor is given by $\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}(\,\cdot\,) = ?$

Frobenius Reciprocity for groups looks like

$$\hom_{k[G]}(k[G] \otimes_{k[H]} V, W) \longrightarrow \hom_{k[H]}(V, W)$$
$$\lambda \mapsto 1 \otimes (\cdot) = (v \mapsto \lambda(1 \otimes v))$$
$$(q \otimes v \mapsto q \cdot f(v)) \longleftrightarrow f.$$