CS151 Intro to Data Structures

QuickSort

Announcements

HW06 due next Wednesday 11/29 Lab08 due next Wednesday too

No lab this week Office hours in my lab – Park 200D

HW07 due 12/05

Quick Sort

A randomized sorting algorithm based on divide-and-conquer

divide: pick a random element \boldsymbol{x} (pivot) and partition into

- L: < x
- E := x
- G:>x

conquer: sort *L* and *G*

combine: join L, E and G

Pseudo Code

quickSort(S):

Pseudo Code

```
quickSort(S):
   if (S.size()<2)
      return</pre>
```

Pseudo Code – Choose a pivot

```
quickSort(S):
   if (S.size()<2)
       return
   p = S.first() // first as pivot</pre>
```

Pseudo Code - Parition

Pseudo Code – QuickSort L and G

Pseudo Code – then combine L, E, & G

```
quickSort(S):
  if (S.size()<2)
        return
  p = S.first()
                       // first as pivot
  L, E, G = partition(S, p)
  quickSort(L)
  quickSort(G)
  S = combine(L, E, G)
```

Pseudo Code – then combine L, E, & G (concat)

```
quickSort(S):
  if (S.size()<2)
        return
  p = S.first()
                        // first as pivot
  L, E, G = partition(S, p)
  quickSort(L)
  quickSort(G)
  S = L + E + G
```

```
partition(S, x)
   Input sequence S, pivot x
   Output subsequences L, E, G
   L, E, G = empty sequences
```

return L, E, G

Remove each y from S and insert into L, E or G

```
partition(S, x)
   Input sequence S, pivot x
   Output subsequences L, E, G
   L, E, G = empty sequences
```

return L, E, G

Remove each y from S and insert into L, E or G

```
partition(S, x)
   Input sequence S, pivot x
   Output subsequences L, E, G
   L, E, G = empty sequences
   while !S.isEmpty()
```

return L, E, G

Remove each y from S and insert into L, E or G

```
partition (S, x)
  Input sequence S, pivot x
  Output subsequences L, E, G
  L, E, G = empty sequences
  while !S.isEmpty()
    y = S.removefirst()
    if ...
    else if ...
    else
  return L, E, G
```

Remove each y from S and insert into L, E or G

```
partition(S, x)
  Input sequence S, pivot x
  Output subsequences L, E, G
  L, E, G = empty sequences
  while !S.isEmpty()
    y = S.removefirst()
    if y < x
   else if y = x
   else
return L, E, G
```

Remove each y from S and insert into L, E or G

```
partition(S, x)
  Input sequence S, pivot x
  Output subsequences L, E, G
  L, E, G = empty sequences
  while !S.isEmpty()
    y = S.removefirst()
    if y < x
      L.addLast(y)
    else if y = x
      E.addLast(y)
    else
      G.addLast(y)
  return L, E, G
```

Remove each y from S and insert into L, E or G

Each insertion and removal is O(1)

partition is O(n)

```
partition (S, x)
  Input sequence S, pivot x
  Output subsequences L, E, G
  L, E, G = empty sequences
  while !S.isEmpty()
    y = S.removefirst()
    if y < x
      L.addLast(y)
    else if y = x
      E.addLast(y)
    else
      G.addLast(y)
  return L, E, G
```

Pseudo Code

Quick Sort Tree

Execution is depicted by a binary tree

- each node is a recursive call
- leaves are sequences of size 0 or 1

Worst-case Running Time

When the pivot is the min or max

- one of L or G has size n-1
- $T(n) = n + (n-1) + \dots + 2 + 1 = O(n^2)$

Expected Running Time

Good pivot: sizes of L and G are each less than $\frac{3}{4}n$

A call is good with probability 50% - $\frac{1}{2}$ of the pivots cause

good calls

Expected Run Time

- node at depth i
 - $\frac{i}{2}$ ancestors are good
 - size of input is at most $(\frac{3}{4})^{\frac{1}{2}}n$
- Expected height of tree is O(logn)
- Amount of work at each level is O(n)

• Overall expected run time is O(nlogn)

total expected time: $O(n \log n)$

In-place Quick Sort

partition rearranges the input list

3 pieces, 2 indices

- L: [0, l-1], E: [l, r], G: [r+1, n-1]
- recursive calls on [0, l-1] and [r+1, n-1]

```
inPlaceQuickSort(S, s, e)
  if s ≥ e
    return
  i = random int in [s,e]
  x = S(i)
  (l,r)←inPlacePartition(x)
  inPlaceQuickSort(S,s,l-1)
  inPlaceQuickSort(S,r+1,e)
```

In-place Quick Sort

partition rearranges the input list

2 pieces, 1 index

- $L: [0, l-1], E \cup G: [l+1, n-1]$
- recursive calls on [0, l-1] and [l+1, n-1]

```
inPlaceQuickSort(S, s, e)
  if s ≥ e
    return
  l←inPlacePartition(S, s, e)
  inPlaceQuickSort(S,s,l-1)
  inPlaceQuickSort(S,l+1,e)
```

In-place Partitioning (Hoare's)

Use two indices to split into L and $E \cup G$ \uparrow 3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9 (pivot = 6)

Repeat until 1 and r cross:

- Move 1 to the right to find $\geq x$
- Move r to the left to find < x

31 24 17 45 63 85 96 **50** *l,r*

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	■ in-place■ slow (small inputs <1k)
insertion-sort	$O(n^2)$	■ in-place■ slow (small inputs <1k)
quick-sort	O(nlogn) expected	in-place, randomizedfastest (large inputs 1K-1M)
heap-sort	O(nlogn)	in-placefast (large inputs 1K-1M)
merge-sort	O(nlogn)	sequential data accessfast (huge inputs >1M)

quicksort vs mergesort

Quicksort is not a good choice for small n – too much bookkeeping

Why is quicksort is often preferred over mergesort?

- mergesort requires extra memory
- worst-case of quicksort is avoidable with randomized pivot choice
- quicksort exhibits good cache locality and works particularly well on arrays

mergesort is preferred for very large n and linked lists