ÖVEGES JÓZSEF Fizikaverseny

III. forduló 2018. április 28. VIII. osztály

JAVÍTÓKULCS

I. feladat

a) $m = \rho V$ $S_2 = m/\rho d$	0,5 p 0,5 p	$V = dS_2$ $S_2 = 10 \ cm^3$	0,5 p 0,5 p	$m = \rho dS_2$	0,5 p 2,5 p	
b) $G + p_0S_2 = F_{min} + p_0S_1$ $F_{min} = mg + p_0(S_2 - S_1)$ $F_{min} = 40,32 \text{ N}$					2 p 0,5 p 1 p	
c) $G + (p_0S_2 + \rho g(h - d)S_2) = F'_{min} + p_0S_1$ $F'_{min} = G + p_0(S_2 - S_1) + \rho g(h - d)S_2$ $F'_{min} = 42,672 \text{ N}$						

II. feladat

a) Soros kapcsolás estén mindkét kaloriméterben ugyanakkor I erősségű áram halad át.					
$\eta_1 \mathrm{Q}_{\mathrm{le}} = \mathrm{Q}_{\mathrm{fel}}$	$\eta_2 \mathrm{Q'}_{\mathrm{le}} = \mathrm{Q'}_{\mathrm{fel}}$	0,5 p			
$Q_{le} = I^2 R_1 \Delta t$	$Q'_{le} = I^2 R_{2x} \Delta t$	0,5 p			
$Q_{\rm fel} = m_1 c_1 \Delta T$	$Q'_{fel} = m_2 c_2 \Delta T$	0,5 p			
$\eta_1 \mathbf{I}^2 \mathbf{R}_1 \Delta t = m_1 c_1 \Delta \mathbf{T}$	$\eta_2 \mathbf{I}^2 \mathbf{R}_{2x} \Delta t = m_2 c_2 \Delta \mathbf{T}$	0,5 p			
$ \rightarrow (\eta_1 R_1)/(\eta_2 R_{2x}) = (m_1 c_1)/(m_2 c_2) $		0,5 p			
$R_{2x} = (\eta_1 R_1 m_2 c_2) / (\eta_2 m_1 c_1)$	\rightarrow R _{2x} = 125 Ω	1 p			
Párhuzamos kapcsolás esetén mindkét kaloriméter fűtőszála ugyanakkora					
U felszültségre van kapcs	olva.	0,5 p			
$\eta_1 \mathrm{Q}_{\mathrm{le}} = \mathrm{Q}_{\mathrm{fel}}$	$\eta_2 \mathrm{Q'}_{\mathrm{le}} = \mathrm{Q'}_{\mathrm{fel}}$	0,25 p			
$Q_{le} = U^2/R_1 \Delta t$	$Q'_{le} = U^2/R_{2y} \Delta t$	0,5 p			
$Q_{\rm fel} = m_1 c_1 \Delta T$	$Q'_{\text{fel}} = m_2 c_2 \Delta T$	0,25 p			
$\eta_1 U^2/R_1 \Delta t = m_1 c_1 \Delta T$	$\eta_2 U^2 / R_{2y} \Delta t = m_2 c_2 \Delta T$	0,5 p			
$\rightarrow (\eta_1 R_{2y})/(\eta_2 R_1) = (m_1 c_1)$	$/(m_2c_2)$	0,5 p			
$\rightarrow \mathbf{R}_{2y} = (\eta_2 \mathbf{R}_1 m_1 c_1) / (\eta_1 m_2 c_1)$	$R_{2y} = 80 \Omega$	0,5 p			
b) $Q_{elegy} = Q_1 + Q_2$		1 p			
$(m_1 + m_2)c_{el}\Delta T = m_1c_1\Delta T + m_2c_2\Delta T$ 1 p					
$c_{\rm el} = (m_1c_1 + m_2c_2)/(m_1 + m_2c_2)$	$(c_{\rm el})$ $c_{\rm el} = 1674,666 \text{J/kgK}$	1 p			

III. feladat

c) $1/R_{2,34} = 1/R_2 + 1/(R_3 + R_4) \rightarrow R_{2,34} = 125 \Omega$ $R_{\text{ered}\tilde{0}} = R_1 + R_{2,34} = 250 \Omega$	0,5 p 0,5 p
	, 1
d) $I' = U/R_{\text{eredő}} = 0.3 \text{ A}$	0,5 p
$\mathbf{I}' = \mathbf{I}_2 + \mathbf{I}_3$	0,5 p
$I_2R_2 = I_3 (R_3 + R_4)$	0,5 p
$R_2 = R_3 + R_4$ $I_2 = I'/2 = 0.15 A$	0,25 p
$P_{R2} = I_2^2 R_2 = 5,625 \text{ W}$	0,25 p
B) Az R ₁ -es fogyasztó rövidre van zárva.	0,5 p
$I = U/R_2 = 1.2 A$	0,5 p
C) a) Soros kapcsolás $R_S = 45 \Omega$	0,5 p
b) Párhuzamos kapcsolás $R_P = 5 \Omega$	0,5 p
c) R_1 , R_2 soros $\rightarrow R_{12}$ párhuzamos R_3 -al $R_{12,3} = 10 \Omega$	0.5^{1} p
d) R_1 , R_2 párhuzamos \rightarrow R_{12} sorosan R_3 -al az eredő pedig 22,5 Ω	0,5 p

D) A B pontok potenciálja azonos, az U feszültség teljes egészében az R_1 ellenállásra jut. 1,5 p $I=U/R_1=12$ A. 0,5 p