Productivity of Infinite Data Structures

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Vrije Universiteit Amsterdam Utrecht University

ISR 2010, Utrecht University

July 8, 2010

Outline

Introduction

Global Productivity

Friendly Nesting

Productivity via Context-Sensitive Termination

Productivity via Outermost Termination

Summary

Bibliography

Productivity of Trees

$$T \rightarrow 0(1(T,T),T)$$

Constructor Term Rewriting

Let R be a TRS over Σ :

- ▶ defined symbols $\mathcal{D}(R) = \{f \mid f(...) \rightarrow r \in R\},$
- constructor symbols $C(R) = \Sigma \setminus D(R)$.

Definition (Constructor TRS)

 \ldots for every $f(t_1,\ldots,t_n) \to r \in R$ we have $t_1,\ldots,t_n \in \mathit{Ter}(\mathcal{C}(R),\mathcal{X})$

Example (A Constructor TRS)

$$f(s(x), y) \rightarrow 0$$

$$g(x) \rightarrow f(f(x,x),x)$$

Example (Not a Constructor TRS)

$$f(g(x), y) \rightarrow 0$$

$$g(x) \rightarrow s(x)$$

Exhaustivity

Definition (Exhaustive)

... every $f(t_1,...,t_n)$ with $f \in \mathcal{D}(R)$ and $t_i \in \mathit{Ter}^{\infty}(\mathcal{C}(R),\varnothing)$ is a redex.

Example (A Non-Exhaustive TRS)

$$T \to 0(1(h(T),T),T)$$

 $h(0(x,y)) \to 1(x,h(y))$
 $h(1(0(x,y),z)) \to 0(x,1(z,h(y)))$

Not exhaustive, since there is no rule for h(1(1(...,...),...)).

Productivity

In the sequel, let R be an orthogonal and exhaustive constructor TRS.

Definition

R is productive for a term *t* if $t \rightarrow s$ with $s \in Ter^{\infty}(\mathcal{C}(R), \emptyset)$.

Proposition

R is productive for a term t if and only if for every $n \in \mathbb{N}$ there exists a rewrite sequence $t \twoheadrightarrow s$ with s consisting up to depth n only of $\mathcal{C}(R)$.

$$T \rightarrow 0(h(T,T),T)$$

$$h(0(x,y),z) \rightarrow 1(h(z,x),h(y,x))$$

$$h(1(x,y),z) \rightarrow 0(h(z,x),h(y,x))$$

Global Productivity

Definition (Global Productivity)

R is globally productive if *R* is productive for every $t \in Ter(\Sigma, \emptyset)$.

Example

```
\begin{array}{ccc} \mathsf{Alt} \to 0: 1: \mathsf{Alt} \\ \mathsf{Zeros} \to \mathsf{filter0}(\mathsf{Alt}) & \mathsf{Ones} \to \mathsf{filter1}(\mathsf{Alt}) \\ \mathsf{filter0}(0:x) \to 0: \mathsf{filter0}(x) & \mathsf{filter1}(0:x) \to \mathsf{filter1}(x) \\ \mathsf{filter0}(1:x) \to \mathsf{filter0}(x) & \mathsf{filter1}(1:x) \to 1: \mathsf{filter1}(x) \end{array}
```

Not globally productive since filter0(Ones) is not productive.

Proposition ([ZR10])

R is globally productive if and only if every $t \in Ter(\Sigma, \emptyset)$ admits a rewrite sequence $t \rightarrow c(t_1, ..., t_n)$ with $c \in C(R)$.

Friendly Nesting

Definition (Shallow TRS)

R is called shallow if for every rule $f(t_1, \ldots, t_n) \to r$ and $i = 1, \ldots, n$:

- ▶ $t_i \in \mathcal{X}$, or
- $\qquad \qquad t_i = \mathsf{c}(x_1,\ldots,x_m) \text{ with } x_1,\ldots,x_m \in \mathcal{X}.$

(that is, the maximal consumption for every argument is 1)

A simple criterion for productivity:

Theorem (Friendly Nesting [EGH08, ZR10])

A shallow R is globally productive if $root(r) \in \mathcal{C}(R)$ for all $\ell \to r \in R$.

Example (A Friendly Nesting Specification)

$$T \rightarrow 0(h(T,T),T)$$
 $h(0(x,y),z) \rightarrow 1(h(z,x),h(y,x))$
 $h(1(x,y),z) \rightarrow 0(h(z,x),h(y,x))$

Non-Productivity Preserving Transformations

Theorem ([ZR10])

Let R' be obtained from R by:

• replacing $\ell \to r \in R$ by $\ell \to r'$ such that $r \to_R^* r'$.

Then R is productive if and only if R' is productive.

Example

$$T \rightarrow h(0(T,T),T)$$

$$h(0(x,y),z) \rightarrow 1(h(z,x),h(y,x))$$

$$h(1(x,y),z) \rightarrow 0(h(z,x),h(y,x))$$

We can replace the first rule by:

$$T \rightarrow 1(h(T,T),h(T,T))$$

Then the specification is friendly nesting, and hence productive. As a consequence also the original specification is productive.

▶ replacement map $\mu(f) \subseteq \{1, ..., ar(f)\}$ defines in which arguments may be reduced.

Example

$$a \rightarrow cons(0, a)$$

with $\mu(cons) = \{1\}.$

▶ replacement map $\mu(f) \subseteq \{1, ..., ar(f)\}$ defines in which arguments may be reduced.

Example

$$a \rightarrow cons(0, a)$$

with $\mu(cons) = \{1\}.$

▶ replacement map $\mu(f) \subseteq \{1, ..., ar(f)\}$ defines in which arguments may be reduced.

Example

$$a \rightarrow cons(0, a)$$

with $\mu(cons) = \{1\}.$

Example

$$a o a$$
 $b o b$ $\operatorname{g}(x,y) o\operatorname{f}(x,y)$ with $\mu(f)=\{1,2\},\,\mu(g)=\{\}.$

By $\mu(g) = \{\}$ we forbid rewriting below g.

Example

$$a o a$$
 $b o b$ $\operatorname{g}(x,y) o\operatorname{f}(x,y)$ with $\mu(f)=\{1,2\},\,\mu(g)=\{\}.$

By $\mu(g) = \{\}$ we forbid rewriting below g.

Example

$$a o a$$
 $b o b$ $\operatorname{\mathsf{g}}(x,y) o\operatorname{\mathsf{f}}(x,y)$ with $\mu(f)=\{1,2\},\,\mu(g)=\{\}.$

By $\mu(g) = \{\}$ we forbid rewriting below g.

Theorem ([ZR10])

Let R be shallow. Let R_{μ} be defined as R with additionally:

$$\begin{split} \mu(\mathbf{f}) &= \{\mathbf{1}, \dots, \mathsf{ar}(\mathbf{f})\} & \textit{for every } \mathbf{f} \in \mathcal{D}(\textit{R}) \\ \mu(\mathbf{c}) &= \varnothing & \textit{for every } \mathbf{c} \in \mathcal{C}(\textit{R}) \end{split}$$

Then R is productive if R_{μ} is context-sensitive terminating.

Theorem ([ZR10])

Let R be shallow. Let R_{μ} be defined as R with additionally:

$$\begin{split} \mu(\mathbf{f}) &= \{1, \dots, \operatorname{ar}(\mathbf{f})\} & & \textit{for every } \mathbf{f} \in \mathcal{D}(R) \\ \mu(\mathbf{c}) &= \varnothing & & \textit{for every } \mathbf{c} \in \mathcal{C}(R) \end{split}$$

Then R is productive if R_{μ} is context-sensitive terminating.

The method allows for proving data-aware productivity:

$$\mathsf{T} \to \mathsf{f}(\mathsf{O}(\mathsf{T}))$$
 $\mathsf{f}(\mathsf{O}(x)) \to \mathsf{O}(\mathsf{f}(x))$ $\mathsf{f}(\mathsf{1}(x)) \to \mathsf{f}(x)$

Theorem ([ZR10])

Let R be shallow. Let R_{μ} be defined as R with additionally:

$$\begin{split} \mu(\mathbf{f}) &= \{\mathbf{1}, \dots, \mathsf{ar}(\mathbf{f})\} & \text{ for every } \mathbf{f} \in \mathcal{D}(R) \\ \mu(\mathbf{c}) &= \varnothing & \text{ for every } \mathbf{c} \in \mathcal{C}(R) \end{split}$$

Then R is productive if R_{μ} is context-sensitive terminating.

The method allows for proving data-aware productivity:

Example

$$\mathsf{T} o \mathsf{f}(\mathsf{O}(\mathsf{T})) \hspace{1cm} \mathsf{f}(\mathsf{O}(x)) o \mathsf{O}(\mathsf{f}(x)) \ \mathsf{f}(\mathsf{1}(x)) o \mathsf{f}(x)$$

We use the following replacement map:

$$\mu(f) = \{1\}$$
 $\mu(0) = \emptyset$ $\mu(1) = \emptyset$

Theorem ([ZR10])

Let R be shallow. Let R_{μ} be defined as R with additionally:

$$\begin{split} \mu(\mathbf{f}) &= \{1, \dots, \operatorname{ar}(\mathbf{f})\} & & \textit{for every } \mathbf{f} \in \mathcal{D}(R) \\ \mu(\mathbf{c}) &= \varnothing & & \textit{for every } \mathbf{c} \in \mathcal{C}(R) \end{split}$$

Then R is productive if R_{μ} is context-sensitive terminating.

The method allows for proving data-aware productivity:

Example

$$\mathsf{T} \to \mathsf{f}(\mathsf{O}(\mathsf{T}))$$
 $\mathsf{f}(\mathsf{O}(x)) \to \mathsf{O}(\mathsf{f}(x))$ $\mathsf{f}(\mathsf{1}(x)) \to \mathsf{f}(x)$

We use the following replacement map:

$$\mu(f) = \{1\}$$
 $\mu(0) = \emptyset$ $\mu(1) = \emptyset$

The obtained system is context-sensitive terminating.

Theorem ([ZR10])

Let R be shallow. Let R_{μ} be defined as R with additionally:

$$\begin{split} \mu(\mathbf{f}) &= \{\mathbf{1}, \dots, \mathsf{ar}(\mathbf{f})\} & \textit{for every } \mathbf{f} \in \mathcal{D}(R) \\ \mu(\mathbf{c}) &= \varnothing & \textit{for every } \mathbf{c} \in \mathcal{C}(R) \end{split}$$

Then R is productive if R_{μ} is context-sensitive terminating.

The method allows for proving data-aware productivity:

Example

$$\mathsf{T} \to \mathsf{f}(\mathsf{O}(\mathsf{T}))$$
 $\mathsf{f}(\mathsf{O}(x)) \to \mathsf{O}(\mathsf{f}(x))$ $\mathsf{f}(\mathsf{1}(x)) \to \mathsf{f}(x)$

We use the following replacement map:

$$\mu(\mathsf{f}) = \{\mathsf{1}\}$$
 $\mu(\mathsf{0}) = \varnothing$ $\mu(\mathsf{1}) = \varnothing$

The obtained system is context-sensitive terminating. Hence the specification is globally productive

Limitations of the method:

$$\begin{aligned} \mathbf{W} &\to \mathsf{zip}(\mathsf{0}(\mathbf{W}), \mathbf{W}) \\ \mathsf{zip}(\mathsf{0}(\sigma), \tau) &\to \mathsf{0}(\mathsf{zip}(\tau, \sigma)) \\ \mathsf{zip}(\mathsf{1}(\sigma), \tau) &\to \mathsf{1}(\mathsf{zip}(\tau, \sigma)) \end{aligned}$$

Limitations of the method:

Example

$$W
ightarrow zip(0(W), W)$$
 $zip(0(\sigma), \tau)
ightarrow 0(zip(\tau, \sigma))$ $zip(1(\sigma), \tau)
ightarrow 1(zip(\tau, \sigma))$

We use the following replacement map:

$$\mu(\mathsf{zip}) = \{\mathsf{1},\mathsf{2}\}$$
 $\mu(\mathsf{0}) = \varnothing$ $\mu(\mathsf{1}) = \varnothing$

Limitations of the method:

Example

$$W
ightarrow zip(0(W), W)$$
 $zip(0(\sigma), \tau)
ightarrow 0(zip(\tau, \sigma))$ $zip(1(\sigma), \tau)
ightarrow 1(zip(\tau, \sigma))$

We use the following replacement map:

$$\mu(\mathsf{zip}) = \{\mathsf{1},\mathsf{2}\}$$
 $\mu(\mathsf{0}) = \varnothing$ $\mu(\mathsf{1}) = \varnothing$

The obtained system is not context-sentitive terminating:

$$W \to zip(0(W),W) \to zip(0(W),zip(0(W),W)) \to \dots$$

- Only outermost redexes may be reduced.
- Outermost = not below another redex position.

Example

 $a \rightarrow f(b, a)$

 $f(x, f(y, z)) \rightarrow b$

b

Not terminating, but outermost terminating.

$$a \rightarrow f(a, a)$$

 $f(f(x, y), x) \rightarrow b$

$$f(f(x,y),f(z,w)) \rightarrow a$$

 $f(x,f(y,z)) \rightarrow b$

Example

$$a \to f(a, a)$$

 $f(f(x, y), x) \to b$

 $f(f(x,y),f(z,w)) \rightarrow a$

 $f(x, f(y, z)) \rightarrow b$

$$a \rightarrow f(a,a)$$
 $f(f(x,y),f(z,w)) \rightarrow a$ $f(x,y),x) \rightarrow b$ $f(x,f(y,z)) \rightarrow b$

$$a \rightarrow f(a, a)$$
 $f(f(x, y), f(z, w)) \rightarrow a$ $f(f(x, y), x) \rightarrow b$ $f(x, f(y, z)) \rightarrow b$

$$a \rightarrow f(a,a)$$
 $f(f(x,y),f(z,w)) \rightarrow a$ $f(x,y),x) \rightarrow b$ $f(x,f(y,z)) \rightarrow b$

What is Outermost Term Rewriting?

$$a \rightarrow f(a, a)$$
 $f(f(x, y), f(z, w)) \rightarrow a$ $f(f(x, y), x) \rightarrow b$ $f(x, f(y, z)) \rightarrow b$

What is Outermost Term Rewriting?

Example

$$a \rightarrow f(a, a)$$
 $f(f(x, y), f(z, w)) \rightarrow a$ $f(f(x, y), x) \rightarrow b$ $f(x, f(y, z)) \rightarrow b$

b

Not terminating, but outermost terminating.

Theorem (Generalisation of [ZR09])

Let R be shallow. Let R_{\perp} be the extension of R with rules:

$$c(x_1,\dots,x_n)\to\bot\qquad \qquad \textit{for every }c\in\mathcal{C}(R)$$

Then R is productive if R_{\perp} is outermost terminating.

Theorem (Generalisation of [ZR09])

Let R be shallow. Let R_{\perp} be the extension of R with rules:

$$c(x_1,\dots,x_n)\to\bot\qquad \qquad \textit{for every }c\in\mathcal{C}(R)$$

Then R is productive if R_{\perp} is outermost terminating.

The method allows for proving data-aware productivity:

$$\mathsf{T} o \mathsf{f}(\mathsf{O}(\mathsf{T})) \qquad \qquad \mathsf{f}(\mathsf{O}(x)) o \mathsf{O}(\mathsf{f}(x)) \ \mathsf{f}(\mathsf{1}(x)) o \mathsf{f}(x)$$

Theorem (Generalisation of [ZR09])

Let R be shallow. Let R_{\perp} be the extension of R with rules:

$$c(x_1,\dots,x_n)\to\bot \qquad \qquad \textit{for every } c\in\mathcal{C}(R)$$

Then R is productive if R_{\perp} is outermost terminating.

The method allows for proving data-aware productivity:

Example

$$\mathsf{T} o \mathsf{f}(\mathsf{O}(\mathsf{T})) \hspace{1cm} \mathsf{f}(\mathsf{O}(x)) o \mathsf{O}(\mathsf{f}(x)) \ \mathsf{f}(\mathsf{1}(x)) o \mathsf{f}(x)$$

We add overflow rules:

$$\mathsf{O}(\sigma) o \bot \qquad \qquad \mathsf{I}(\sigma) o \bot$$

Theorem (Generalisation of [ZR09])

Let R be shallow. Let R_{\perp} be the extension of R with rules:

$$c(x_1,\ldots,x_n)\to\bot\qquad \qquad \textit{for every }c\in\mathcal{C}(R)$$

Then R is productive if R_{\perp} is outermost terminating.

The method allows for proving data-aware productivity:

Example

$$\mathsf{T} \to \mathsf{f}(\mathsf{O}(\mathsf{T}))$$
 $\mathsf{f}(\mathsf{O}(x)) \to \mathsf{O}(\mathsf{f}(x))$ $\mathsf{f}(\mathsf{1}(x)) \to \mathsf{f}(x)$

We add overflow rules:

$$\mathsf{O}(\sigma) o ot$$
 $\mathsf{1}(\sigma) o ot$

The obtained system is outermost terminating.

Theorem (Generalisation of [ZR09])

Let R be shallow. Let R_{\perp} be the extension of R with rules:

$$\mathtt{c}(x_1,\ldots,x_n) o \bot$$
 for every $\mathtt{c} \in \mathcal{C}(R)$

Then R is productive if R_{\perp} is outermost terminating.

The method allows for proving data-aware productivity:

Example

$$\mathsf{T} o \mathsf{f}(\mathsf{O}(\mathsf{T})) \qquad \qquad \mathsf{f}(\mathsf{O}(x)) o \mathsf{O}(\mathsf{f}(x)) \ \mathsf{f}(\mathsf{1}(x)) o \mathsf{f}(x)$$

We add overflow rules:

$$0(\sigma) \to \bot$$
 $1(\sigma) \to \bot$

The obtained system is outermost terminating. Hence the specification is globally productive

$$\begin{aligned} \mathbf{W} &\to \mathsf{zip}(\mathsf{0}(\mathbf{W}), \mathbf{W}) \\ \mathsf{zip}(\mathsf{0}(\sigma), \tau) &\to \mathsf{0}(\mathsf{zip}(\tau, \sigma)) \\ \mathsf{zip}(\mathsf{1}(\sigma), \tau) &\to \mathsf{1}(\mathsf{zip}(\tau, \sigma)) \end{aligned}$$

Example

$$egin{aligned} \mathsf{W} & o \mathsf{zip}(\mathsf{0}(\mathsf{W}),\mathsf{W}) \ \mathsf{zip}(\mathsf{0}(\sigma), au) & o \mathsf{0}(\mathsf{zip}(au,\sigma)) \ \mathsf{zip}(\mathsf{1}(\sigma), au) & o \mathsf{1}(\mathsf{zip}(au,\sigma)) \end{aligned}$$

We add overflow rules:

$$\mathsf{O}(\sigma) o \bot \qquad \qquad \mathsf{1}(\sigma) o \bot$$

Example

$$W \rightarrow zip(0(W), W)$$

 $zip(0(\sigma), \tau) \rightarrow 0(zip(\tau, \sigma))$
 $zip(1(\sigma), \tau) \rightarrow 1(zip(\tau, \sigma))$

We add overflow rules:

$$\mathsf{O}(\sigma) o \bot \qquad \qquad \mathsf{I}(\sigma) o \bot$$

The obtained system is outermost terminating.

Example

$$W \rightarrow zip(0(W), W)$$

 $zip(0(\sigma), \tau) \rightarrow 0(zip(\tau, \sigma))$
 $zip(1(\sigma), \tau) \rightarrow 1(zip(\tau, \sigma))$

We add overflow rules:

$$\mathsf{O}(\sigma) o \bot \qquad \qquad \mathsf{I}(\sigma) o \bot$$

The obtained system is outermost terminating. Hence the specification is globally productive

Limitations of the method:

$$\begin{array}{c} \mathsf{D} \to \mathsf{zip}(\mathsf{Alt},\mathsf{D}) \\ \mathsf{Alt} \to \mathsf{0}(\mathsf{1}(\mathsf{Alt})) \\ \mathsf{zip}(\mathsf{0}(\sigma),\tau) \to \mathsf{0}(\mathsf{zip}(\tau,\sigma)) \\ \mathsf{zip}(\mathsf{1}(\sigma),\tau) \to \mathsf{1}(\mathsf{zip}(\tau,\sigma)) \end{array}$$

Limitations of the method:

Example

$$\begin{array}{c} \mathsf{D} \to \mathsf{zip}(\mathsf{Alt},\mathsf{D}) \\ \mathsf{Alt} \to \mathsf{0}(\mathsf{1}(\mathsf{Alt})) \\ \mathsf{zip}(\mathsf{0}(\sigma),\tau) \to \mathsf{0}(\mathsf{zip}(\tau,\sigma)) \\ \mathsf{zip}(\mathsf{1}(\sigma),\tau) \to \mathsf{1}(\mathsf{zip}(\tau,\sigma)) \end{array}$$

We add overflow rules:

$$0(\sigma) \rightarrow \bot$$

$$1(\sigma) \rightarrow \bot$$

Limitations of the method:

Example

$$\begin{array}{c} \mathsf{D} \to \mathsf{zip}(\mathsf{Alt},\mathsf{D}) \\ \mathsf{Alt} \to \mathsf{0}(\mathsf{1}(\mathsf{Alt})) \\ \mathsf{zip}(\mathsf{0}(\sigma),\tau) \to \mathsf{0}(\mathsf{zip}(\tau,\sigma)) \\ \mathsf{zip}(\mathsf{1}(\sigma),\tau) \to \mathsf{1}(\mathsf{zip}(\tau,\sigma)) \end{array}$$

We add overflow rules:

$$0(\sigma) \to \bot$$
 $1(\sigma) \to \bot$

The obtained system is not outermost terminating:

$$\mathsf{D} \to \mathsf{zip}(\mathsf{Alt},\mathsf{D}) \to \mathsf{zip}(\mathsf{Alt},\mathsf{zip}(\mathsf{Alt},\mathsf{D})) \to \dots$$

Summary

We have seen:

- friendly nesting: a simple criterion for productivity
- rewriting right-hand sides
- transformations from productivity to termination:
 - to context-sensitive, and
 - to outermost rewriting.

These latter methods allow for proving data-aware productivity!

Bibliography

[EGH08]	Endrullis, Grabmayer and Hendriks Data-Oblivious Stream Productivity, LPAR 2008
[EH09]	Endrullis and Hendriks From Outermost to Context-Sensitive Rewriting, RTA 2009
[ZR08]	Zantema and Raffelsieper A transformational approach to prove outermost termination

automatically, WRS 2008

- [ZR09] Zantema and Raffelsieper Stream Productivity by Outermost Termination, WRS 2009
- [ZR10] Zantema and Raffelsieper Proving Productivity in Infinite Data Structures, RTA 2010