Junio 2018

1. Debido a la acción simultánea de dos movimientos armónicos simples perpendiculares de igual frecuencia, una partícula describe, en el plano XY, una trayectoria elíptica centrada en el origen. Cuando la partícula se encuentra en el punto $\left(\frac{\sqrt{3}}{6}, \frac{1}{2}\right)$ mm, su aceleración es $-2\pi^2 \left(\frac{\sqrt{3}}{3}\vec{u}_x + \vec{u}_y\right)$ mm s⁻². Sabiendo que en ese punto, el vector $\left(\vec{u}_x - \vec{u}_y\right)$ es perpendicular a la trayectoria y apunta hacia el interior de la misma, determinar razonadamente:

- 1) La frecuencia de los dos movimientos armónicos simples que actúan sobre la partícula.
- 2) Las componentes intrínsecas de la aceleración en el punto $\left(\frac{\sqrt{3}}{6},\frac{1}{2}\right)$ mm.

Marzo 2016

- **2.** Una partícula describe un movimiento armónico simple de amplitud b y frecuencia angular $\frac{\pi}{3}$ rad s⁻¹, a lo largo del eje Z y en torno al origen de coordenadas. Sabiendo que el primer instante para el que z = b es $t = \frac{1}{2}$ s, obtener razonadamente:
- 1) La velocidad de la partícula en el instante $t = \frac{5}{4}$ s.
- 2) Las posiciones de la partícula para las que su energía cinética es la octava parte de su energía potencial.

Enero 2019

- 3. Sobre una partícula actúan dos movimientos armónicos simples, ambos de frecuencia angular $\omega = 6\pi \text{ rad s}^{-1}$, en las direcciones de los ejes X e Y. Si en el instante inicial la partícula se encuentra en el punto de coordenadas $\left(5\sqrt{3},5\right)$ cm y su velocidad es $\vec{v} = 30\pi \left(-\vec{u}_x + \sqrt{3}\vec{u}_y\right)$ cm s⁻¹, obtener de forma razonada:
- 1) La expresión de la elongación de ambos movimientos armónicos simples.
- 2) Las componentes intrínsecas de la aceleración en el instante $t = \frac{1}{6}$ s.
- 3) Qué movimiento armónico simple, a lo largo de uno de los ejes coordenados, sería necesario superponer a los dos anteriores, para que la partícula describiera una trayectoria rectilínea en la dirección del eje *Y*. Considerando ésta trayectoria recta, determinar las componentes intrínsecas de la aceleración en el instante $t = \frac{1}{6}$ s.

Enero 2017

4. Una partícula está sometida a dos movimientos armónicos simples cuyas elongaciones son:

$$x = 2 \operatorname{sen}\left(\frac{\pi}{2}t + \frac{\pi}{6}\right) \operatorname{cm}$$
 e $y = 3 \operatorname{sen}\left(\frac{\pi}{2}t - \frac{\pi}{2}\right) \operatorname{cm}$ donde t se mide en s.

De forma razonada:

- 1) Determinar los instantes de tiempo en los que la trayectoria de la partícula corta al semieje *X* positivo. En los instantes obtenidos en el apartado anterior, calcular:
- 2) La velocidad y la aceleración de la partícula.
- 3) Las componentes intrínsecas de la aceleración.

Octubre 2017

5. Una partícula está sometida a dos movimientos armónicos simples cuyas elongaciones son:

$$y = \text{sen}(2\pi t + \pi/2) \text{ mm } y z = -\text{sen} 2\pi t \text{ mm}, \text{ donde } t \text{ se mide en s.}$$

De forma razonada, obtener:

- 1) La ecuación de la trayectoria descrita por la partícula.
- 2) Las componentes intrínsecas de la aceleración de la partícula en el instante $t = \frac{8}{3}$ s.
- 3) Si la energía cinética de la partícula es $40\pi^2$ nJ, obtener su masa.

Marzo 2018

- **6.** Una partícula de 30 g de masa está sometida a la acción de dos movimientos armónicos simples cuyas elongaciones son $x_1 = 2\cos\left(2\pi t \frac{\pi}{2}\right)$ cm y $x_2 = 4\sin\left(2\pi t + \frac{2\pi}{3}\right)$ cm, donde t se mide en s. De forma razonada:
- 1) Obtener la elongación resultante, indicando su amplitud y su fase inicial.
- 2) Calcular las energías cinética y potencial de la partícula cuando se encuentra a una distancia $\sqrt{3}$ cm del origen, expresando el resultado en unidades fundamentales del Sistema Internacional.
- 3) Determinar los vectores velocidad y aceleración de la partícula en los puntos en los que su energía potencial es triple que su energía cinética.

Marzo 2015

7. Una partícula está sometida simultáneamente a dos movimientos armónicos simples paralelos de igual amplitud (2 cm) y frecuencia (0,1Hz), cuyas fases iniciales son $\varphi_1 = \pi/6$ y φ_2 (0 < φ_2 < π). Si la velocidad de la partícula cuando han transcurrido 5 s desde el inicio del movimiento es $-\frac{\pi\sqrt{3}}{5}\vec{u}_x$ cm s⁻¹, obtener razonadamente la elongación descrita por la partícula, indicando su amplitud y fase inicial.

Marzo 2017

- **8.** Una partícula de 10 g de masa está sometida a un movimiento armónico simple de elongación $x = 4 \operatorname{sen} \left(10\pi t + \pi/4 \right)$ mm, donde t se mide en s. Si, simultáneamente, se somete a la partícula a otro movimiento armónico simple de igual frecuencia, aplicado en la dirección del eje Y, se observa que la componente tangencial de la aceleración es nula en todo instante de tiempo. Sabiendo que en el instante inicial la velocidad de la partícula es paralela al vector $\vec{u}_x + \vec{u}_y$, determinar razonadamente:
- 1) La ecuación de la trayectoria y la expresión de la elongación del movimiento armónico simple en la dirección del eje *Y*, indicando su amplitud y su fase inicial.
- 2) La fuerza que actúa sobre la partícula en el instante $t = \frac{1}{24}$ s.

Julio 2015

9. Una partícula de masa m está sometida a una fuerza F = -Cx, donde C es una constante positiva. Obtener de forma razonada el periodo del movimiento, T.

En el instante t = 0 la energía cinética de la partícula es 15C/8 y su velocidad es paralela al vector $-\vec{u}_x$ y en el instante t = T/4 la energía cinética de la partícula es 5C/8 y su velocidad es paralela al vector \vec{u}_x . Obtener la elongación de la partícula, expresando la fase inicial entre 0 y 2π .

Enero 2018

10. Una partícula se encuentra sometida a la acción de dos movimientos armónicos simples perpendiculares, de periodo 8s. Sabiendo que en el instante inicial la posición de la partícula viene dada por

$$\vec{r} = \sqrt{3} \ \vec{u}_x - \frac{3}{2} \vec{u}_z \text{ mm} \text{ y que, transcurridos } 4\text{s, su velocidad es } \vec{v} = \frac{\pi}{4} \left(-\vec{u}_x + \frac{\sqrt{3}}{2} \vec{u}_z \right) \text{mm s}^{-1}, \text{ determinar}$$

razonadamente:

- 1) Las elongaciones de ambos movimientos armónicos simples, indicando su amplitud y su fase inicial.
- 2) La ecuación de la trayectoria descrita por la partícula.
- 3) Las componentes intrínsecas de la aceleración cuando t = 6 s.

Junio 2014

11. Una partícula, sometida a la acción de dos movimientos armónicos simples, describe una trayectoria elíptica en el plano XY, cuyos semiejes no coinciden con los coordenados, siendo el periodo del movimiento $\frac{\pi}{3}$ s. Si en el instante inicial la partícula se encuentra en el punto $\left(-\frac{5}{2},0\right)$ cm y su velocidad es $\left(15\sqrt{3}\ \vec{u}_x - 24\ \vec{u}_y\right)$ cm s⁻¹, obtener razonadamente la expresión del vector de posición en cualquier instante de tiempo.

Abril 2019

- 12. Una partícula, sometida simultáneamente a la acción de dos movimientos armónicos simples, describe la trayectoria $9x^2 + y^2 = 36$ (x e y en mm), con frecuencia angular $2\pi \operatorname{rad} s^{-1}$, siendo su posición en el instante inicial $(x, y) = (\sqrt{2}, -3\sqrt{2}) \operatorname{mm}$. Considerando las fases iniciales de ambos movimientos armónicos simples comprendidas entre $-\frac{\pi}{2}$ y $\frac{\pi}{2}$, obtener razonadamente:
- 1) Las elongaciones de dichos movimientos armónicos simples.
- 2) La relación entre la energía cinética de la partícula cuando cruza el eje X y cuando cruza el eje Y.
- 3) Las componentes intrínsecas de la aceleración en el instante inicial.

TETUS 1. - En porto P (= 1) mon siderició a = -27 (13 xx + 27) mon /32 1. Junio 2018 - Plane XY - Toyaters eliptics ENUNCODDE a) frecuence de les des mass férmile de la richerción: a = - w2 x (ux) Prince Demonico Simple: ax = - W2 x x x - 0x = - 2#2 3 xx mm/s2 Sind provinte Simple: ay = - wiy my forest ay = -2#2 my ma/si $\frac{3}{6} \text{ mm} \quad (\text{Purto})$ $a_{X} = -2\pi^{2} \frac{13}{3} = -\omega^{2} \times \rightarrow$ $-2\pi^{2} \frac{13}{3} = -\omega^{2} \times$ $-2\pi^{2} \frac{13}{3} = -\omega^{2} \times$ $= -2\pi^{2} \frac{13}{3} = -\omega^{2} \times$ Stende: X = 13 mm (Pento) W = JATE = (1) 2T nd/5 freces Frecers: f= 2# = 2# = 1 HZ = 15-1 b) compenents intrinseis ENLINCODDO + Vector: (ax, - uy) I intropectorio Vector in brio: 1 (mx, - my) + { \frac{1}{\sqrt{1}} \cdot \frac{1}{2} \left(mx, - my)} Aceleración normal (Madda) : lant = an = ar. un $a_0 = \vec{a} \cdot \vec{u} = -2\pi^2 \left(\frac{13}{3} \vec{u} \times , \vec{u}_{\gamma} \right) \cdot \frac{\sqrt{2}}{2} \left(\vec{u} \times , -\vec{u}_{\gamma} \right) =$ Vector Acelescich norrol: an = an . un ão = an. un = - 2 1 (13-3) . [(ux, - ux) a= = = (13-3). (ux- ux/mm/s2 Vedo Acelescic. Engencol: at = a - an at = a- a0 = -202 (\$ ux, uy) - (-\$ 15 -3) (ux - uy) at = - 1 (3+1) (inx + in) mon (52)

	48.00
2. Marzo 2016	
Frecens Dogabi: W= = Trad/s (ote 2)	
Frecens Dos-br: W= 3 12012	
Frecence Angelor: W= 3 Everia meniente province simple: 2(1) = Az en (uè + fz)	
termina meniem	
a) Velecided de la particula en 6 = 55 5	
ENUNCIADO: En (1= 1 s) Z= b	
ENLINOSEDE: Applitude: Az = b	
$-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$ $-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$ $-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$ $-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$ $-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$ $-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$ $-4 \ 2(6 = \frac{1}{2}s) = 6 \ \text{And} \left(\frac{\pi}{3} \cdot \frac{1}{2} + \frac{1}{4s}\right) = 6$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
V= Az. wes (wet de) = 6. \$\frac{\pi}{3} \cs (\frac{\pi}{3} \chi + \frac{\pi}{3}) \\ \[\begin{array}{c} \text{V= Az. wes (wet de)} = \frac{\pi}{3} \cs (\frac{\pi}{3} \chi + \frac{\pi}{3}) \\ \frac{\pi}{3} \chi + \p	
V= Az. W (5 (3 + 5) = 6 3 (5 (4)	
$l=\frac{5}{4} \rightarrow V(t-\frac{7}{4})$	
, [] L - VE = 6	1
Tiez- Voide Voleridd V(t= \frac{5}{4}s) = -\pi \sigma \sigm	
tje ? - Voide Volerield	
Enosis Cinetico : Ee = 1 mw2 x2 Enosis Potenest: Ep = 1 mw2 x2 Enosis Potenest: Ep = 1 mw2 x2	
Energia Cinetical	
From Potencel: bp = 2	
Jewlando: 1 mw A- ~ 8 2	
$8x^{2} - 8x^{2} = x^{2}$ $9x^{2} - 8x^{2} = x^{2}$ $9x^{2} - 8x^{2} = x^{2}$	
- 2 E b	

Des. c. cos:

$$\nabla^{2} = 30\pi \left(+ \frac{1}{4} \frac{1}{2} + \sqrt{3} \frac{1}{4} \frac{1}{4} \right)$$

$$\nabla^{2} = 30\pi \left(+ \frac{1}{4} \frac{1}{2} + \sqrt{3} \frac{1}{4} \frac{1}{4} \right)$$

$$\nabla^{2} = 30\pi \left(+ \frac{1}{4} \frac{1}{4} + \sqrt{3} \frac{1}{4} \frac{1}{4} \right)$$

$$\nabla^{2} = 30\pi \left(+ \frac{1}{4} \frac{1}{4} + \sqrt{3} \frac{1}{4} \frac{1}{4} \right)$$

$$\nabla^{2} = 30\pi \left(+ \frac{1}{4} \frac{1}{4} + \sqrt{3} \frac{1}{4} \frac{1}{4}$$

$$ax = \frac{dV}{dt} = -\Delta_x \quad \omega^2 \quad \text{sen} \left(\omega t + V \right)$$

$$ax \left(t = \frac{1}{4} \right) = -10 \left(6\pi \right)^2 \quad \text{sen} \left(4\pi \cdot \frac{1}{4} + \frac{2\pi}{3} \right)$$

$$ax = -360 \quad \pi^2 \left(-\frac{13}{2} \right)$$

$$ax = -360 \quad \pi^2 \left(-\frac{13}{2} \right)$$

$$ax = -480 \cdot \pi^2 \cdot 13 \quad \text{ax} \quad \text{conh}^2$$

$$ay \left(t = \frac{1}{4} \right) = -10 \left(6\pi \right)^2 \quad \text{sen} \left(6\pi \frac{1}{4} + \frac{1}{4} \right)$$

$$ay \left(t = \frac{1}{4} \right) = -10 \left(6\pi \right)^2 \quad \text{sen} \left(6\pi \frac{1}{4} + \frac{1}{4} \right)$$

$$ay = -360 \quad \pi^2 \left(-\frac{1}{4} \right)$$

4.
$$x = 7 \cdot 3 co \left(\frac{\pi}{2} \cdot 4 \cdot \frac{\pi}{2}\right) cm$$
 $y = 3 \times n \left(\frac{\pi}{2} \cdot 4 \cdot \frac{\pi}{2}\right) cm$

4. Instants it fictions:

$$x > 0 \qquad pos: y = 3 \cdot 8 co \left(\frac{\pi}{2} \cdot 4 - \frac{\pi}{2}\right) = 0$$

$$y = 0$$

$$\frac{\pi}{2} \cdot 6 - \frac{\pi}{2} = m\pi + \frac{1}{2} \cdot 4 = m + \frac{1}{2}$$

$$(= 1 \times costs d cyx)$$

$$T = \frac{2\pi}{w} = \frac{2\pi}{\gamma_1} = 4s \qquad \left[\frac{1}{2} \cdot \left(\frac{\pi}{2} \cdot 4 + \frac{\pi}{2}\right) + \frac{\pi}{2} \cdot \left(\frac{\pi}{2} \cdot 4 + \frac{\pi}{2}\right) \right]$$

$$V_y = \frac{dv}{dt} = A \cdot \omega \cdot co \left(\omega \cdot (u + \frac{1}{2})\right) = 2 \cdot \frac{\pi}{2} \cdot \omega \cdot \left(\frac{\pi}{2} \cdot 4 + \frac{\pi}{2}\right)$$

$$V_y = \frac{dv}{dt} = A \cdot \omega \cdot co \left(\omega \cdot (u + \frac{1}{2})\right) = -2 \cdot \left(\frac{\pi}{2}\right)^2 \cdot sco \left(\frac{\pi}{2} \cdot 4 + \frac{\pi}{2}\right)$$

$$v_y = \frac{dv}{dt} = A \cdot \omega \cdot co \left(\omega \cdot (u + \frac{1}{2})\right) = -3 \cdot \left(\frac{\pi}{2}\right)^2 \cdot sco \left(\frac{\pi}{2} \cdot 4 + \frac{\pi}{2}\right)$$

$$v_y = \frac{dv}{dt} = A \cdot \omega \cdot co \left(\omega \cdot (u + \frac{1}{2})\right) = -3 \cdot \left(\frac{\pi}{2}\right)^2 \cdot sco \left(\frac{\pi}{2} \cdot 4 + \frac{\pi}{2}\right)$$

$$v_y = \frac{dv}{dt} = A \cdot \omega \cdot co \left(\omega \cdot (u + \frac{1}{2})\right) = -3 \cdot co \left(2\pi m + \frac{\pi}{2} \cdot \frac{\pi}{2}\right)$$

$$v_y = \frac{dv}{dt} = A \cdot \omega \cdot co \left(2\pi m + \frac{2\pi}{3}\right) \cdot co \left(2\pi m + \frac{\pi}{2} \cdot \frac{\pi}{2}\right)$$

$$v_y = \pi \cdot co \left(2\pi m + \frac{2\pi}{3}\right) \cdot co \left(2\pi m + \frac{\pi}{3}\right) \cdot co \left(2\pi m + \frac{\pi}{3}\right)$$

```
6. MOTEO 2018
m=30g
ZHAS TP
X1 = 2 CE ( 2T ( - = )
X2 = 4-sen 2 T (+ 2T)
1) Elengación resultante (Drplita) y fore incol)
(0) Y = sen(9+7/2) -> ×2 = 4 sen(27) + 27 + 17 ) = 4 cs (27) + 27)
 2TT - TT = TT - N X2 = 4 (5 (2TT & + T))
X1 = Zes(2TH - T) = 2 sen (2TH - T+ T/2) = 2 sen (2TH)
Formulo: sent 9+B) = sen 4 (5B+ (59. sen B
   AT son(we+PT) = At son(we+Pt) + Az son(w + Pz)
serious) Arcs (4) + is (ut) Ar ser (4) = solut) [A164, + A2 (6/42)] +
                                            + ces(wt) [ 4 20 9 + Az son 42]
AT 60547 = Ay cos 47 + Az cos 42 - AT cos 47 = 2cos (0) +4 cos (27/3) = 0
AT son 4 = Ay sen 4+ Az son 42 - AT sen 4 = 2 sen(0) + 4 son 2 = 253
AT colf) = 0
AT son (4) = 213
AT son (4) = 213
AT colf
     CON = 0 | AT SON = 2 \( \frac{1}{2} = 2\sqrt{3} \)
   AT = 7 55 cm 1 XT (+) = 2 13 son/2 Tt + T/2)
```

2)
$$E_{0} = \frac{1}{4} \cdot m^{3} \frac{1}{4} = \frac{1}{$$

7. Horse 2018

2. Horse problem

4) Eligarith

we saw = 2 = 2 = 0 = 76 int (orl) = 1 = 0.015

$$x(1) = ho 2n(\omega 1 + 9)$$

Pro $l = 5s$
 $y = -\frac{1}{6}$ int (orl) = $\frac{dx}{dt} = \frac{dx}{dt} + \frac{dy}{dt} = \frac{d}{dt} (2x^{2} + 2x^{2}) = V$

Pro $l = 5s$
 $y = -\frac{1}{6}$ int (orl) = $\frac{dx}{dt} = \frac{dx}{dt} + \frac{dy}{dt} = \frac{d}{dt} (2x^{2} + 2x^{2}) = V$
 $x(1) = ho 2n(\omega 1 + 9u)$
 $x(2) = ho 2n(\omega 1 + 9u)$
 $x(3) = ho 2n(\omega 1 + 9u)$
 $x(4) = ho 2n($

8. Her 20 20 AT

$$al = 0$$
 Pro $l = 0$ — $\sqrt{11} (40 + 4\pi)$

1) Forcion $\gamma(l)$
 $al = 0$, $\forall l = 0$
 $al = 0$

10. Emo 2018 2 725 1 1/ Elengociones de son les moviments straines simples T=55 Bro 6=0 - == 53 ex - 3 liz mm Para +=45 - V= + (- ux + 3 uz) mm/s 7= ZT = 8 - W= ZT = T 10d/s Por 6=0: xU1- Acslut + (x) x(t) = A cs(4x) = 13 Vx = dx(1) = - W A. ser (wt + Px) A = (4x) = 13 | $45(4x) = \frac{A \times 1(8x)}{A \times 1(9x)} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$ cos (2 > 0) R = - T A - Del - T) = 1 - [A = 2 m/m] XH7=7(5/ + 6- T) mm

$$\frac{2(1)}{2(1)} = \frac{1}{4} \frac{2}{2} \frac{1}{2} \frac{1}$$

c) Compens to intrinsion. por to 65,

cano
$$an = 0$$
; $a = al$

$$ax = \frac{dvx(1)}{dt} = -\omega^{2} \cdot x = -\left(\frac{\pi^{2}}{4^{2}}\right) \cdot 2 \cdot 3m \left(\frac{\pi}{4} \cdot 4 \cdot 1 \cdot \frac{\pi}{15}\right) = 1,06$$

$$ax = \frac{dvx(1)}{dt} = -\omega^{2} \cdot x = -\left(\frac{\pi}{4}\right)^{2} \cdot \left(\frac{\pi}{3} \cdot 3m \cdot 1 \cdot \frac{\pi}{4} + \frac{\pi}{15}\right) = 7,03$$

$$ax = \frac{\pi}{5} \cdot \frac{\pi}{5} \cdot \frac{\pi}{5} \cdot \left(\frac{\pi}{4x}\right) + \frac{3\pi^{2}}{32} \cdot \frac{\pi}{32} \cdot \left(\frac{\pi}{33} \cdot \frac{\pi}{43} + \frac{3\pi^{2}}{32}\right)$$

$$ax = \frac{\pi^{2}}{5} \cdot \frac{\pi}{5} \cdot \left(\frac{\pi}{4x}\right) + \frac{3\pi^{2}}{32} \cdot \frac{\pi}{32} \cdot \left(\frac{\pi}{33} \cdot \frac{\pi}{43} + \frac{3\pi^{2}}{32}\right)$$

41 The 2009 to Clipto.

To
$$\frac{\pi}{3}$$
5

A) $\frac{\pi}{1}$ 1 $w = \frac{2\pi}{3} = \frac{2\pi}{3} = \frac{6\pi}{3} = 613d5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_2 = -1,5$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3})$
 $x_1(1) = \lambda_0 \operatorname{re}(\lambda 1 + \frac{1}{3$

4) Elongwies de la tibos

$$x(t) = A_x \frac{1}{2} \frac{1}{2}$$

$$Vx = \frac{dx}{dt} = .2.7\pi \cdot cs(a\pi \cdot 6 + \pi/4)$$

$$Vx = (1 = \frac{3}{5}s) = 4\pi \cdot cs(2\pi \cdot \frac{3}{5} + \pi/4) = -4\pi \cdot ma/s \quad axy$$

$$Vx = 6.2\pi \cdot cs(2\pi \cdot \frac{3}{5} - \frac{\pi}{6}) = 0$$

$$Ec pop y = 0.5 \cdot m(-4\pi)^{2}$$

$$Ec pop y = 0.5 \cdot m(-4\pi)^{2}$$

$$Ec pop y = 0.5 \cdot (-4\pi)^{2}$$

$$= \frac{1}{2} \cdot \frac{1$$

Problema 1

1) f = 1 Hz

2)
$$\vec{a}_n = \pi^2 \left(1 - \frac{\sqrt{3}}{3} \right) (\vec{u}_x - \vec{u}_y) \, \text{mm s}^{-2}; \quad \vec{a}_t = -\pi^2 \left(\frac{\sqrt{3}}{3} + 1 \right) (\vec{u}_x + \vec{u}_y) \, \text{mm s}^{-2}$$

Problema 2

$$1) \quad \vec{v} = -\frac{\pi b \sqrt{2}}{6} \, \vec{u}_z$$

$$2) \quad z = \pm \frac{2\sqrt{2}}{3}b$$

Problema 3

1)
$$x = 10 \operatorname{sen} \left(6\pi t + \frac{2\pi}{3} \right) \operatorname{cm}; \quad y = 10 \operatorname{sen} \left(6\pi t + \frac{\pi}{6} \right) \operatorname{cm}$$

2)
$$\vec{a}_t = 0$$
; $\vec{a}_n = 180\pi^2 \left(\sqrt{3} \, \vec{u}_x + \vec{u}_y \right) \text{cm s}^{-2}$

3)
$$x' = 10 \operatorname{sen} \left(6\pi t - \frac{\pi}{3} \right) \operatorname{cm}; \ \vec{a}_t = 180\pi^2 \vec{u}_y \operatorname{cm s}^{-2}; \ \vec{a}_n = 0$$

Problema 4

1) $t = (1+4m)s, m \ge 0$

2)
$$\vec{v} = \frac{\pi}{2} \left(-\vec{u}_x + 3\vec{u}_y \right) \text{cm s}^{-1}; \quad \vec{a} = -\frac{\pi^2 \sqrt{3}}{4} \vec{u}_x \text{ cm s}^{-2}$$

3)
$$\vec{a}_t = \frac{\pi^2 \sqrt{3}}{40} \left(-\vec{u}_x + 3\vec{u}_y \right) \text{cm s}^{-2}; \quad \vec{a}_n = -\frac{3\pi^2 \sqrt{3}}{40} \left(3\vec{u}_x + \vec{u}_y \right) \text{cm s}^{-2}$$

Problema 5

1)
$$y^2 + z^2 = 1$$
 (y, z en mm)

2)
$$\vec{a}_t = 0$$
; $\vec{a}_n = 2\pi^2 (\vec{u}_y - \sqrt{3} \vec{u}_z) \text{ mm s}^{-2}$

3)
$$m = 20 \text{ g}$$

Problema 6

1) $x = 2\sqrt{3}\cos 2\pi t$ cm (amplitud $2\sqrt{3}$ cm, fase inicial nula)

1

2)
$$E_c = \frac{27\pi^2}{5} \cdot 10^{-5} \text{ kg m}^2 \text{s}^{-2}$$
; $E_p = 18\pi^2 \cdot 10^{-6} \text{ kg m}^2 \text{s}^{-2}$

3)
$$\vec{v} = \pm 2\pi\sqrt{3} \ \vec{u}_x \text{ cm s}^{-1}; \ \vec{a} = \pm 12\pi^2 \ \vec{u}_x \text{ cm s}^{-2}$$

Problema 7

$$x = 2\sqrt{3}\operatorname{sen}\left(\frac{\pi}{5}t + \frac{\pi}{3}\right)\operatorname{cm}$$

Problema 8

1)
$$x^2 + y^2 = 16 (x, y \text{ en mm}); \quad y = 4 \text{ sen} (10\pi t - \pi/4) \text{ mm}$$

2)
$$\vec{F} = -2 \cdot 10^{-3} \pi^2 \left(\sqrt{3} \ \vec{u}_x + \vec{u}_y \right) \text{N}$$

Problema 9

$$T = 2\pi \sqrt{\frac{m}{C}}$$
; $x = \sqrt{5} \operatorname{sen}\left(\sqrt{\frac{C}{m}} t + \frac{7\pi}{6}\right)$

Problema 10

1)
$$x = 2 \operatorname{sen}\left(\frac{\pi}{4}t + \frac{\pi}{3}\right) \operatorname{mm}; \quad z = \sqrt{3} \operatorname{sen}\left(\frac{\pi}{4}t + \frac{4\pi}{3}\right) \operatorname{mm}$$

$$2) \quad z = -\frac{\sqrt{3}}{2}x$$

3)
$$\vec{a}_t = \frac{\pi^2}{16} \left(\vec{u}_x - \frac{\sqrt{3}}{2} \vec{u}_z \right) \text{mm s}^{-2}; \quad \vec{a}_n = 0$$

Problema 11

$$\vec{r} = 5 \operatorname{sen} \left(6t - \frac{\pi}{6} \right) \vec{u}_x - 4 \operatorname{sen} 6t \ \vec{u}_y \ \operatorname{cm}$$

Problema 12

1)
$$x = 2\operatorname{sen}\left(2\pi t + \frac{\pi}{4}\right)\operatorname{mm}; \ y = 6\operatorname{sen}\left(2\pi t - \frac{\pi}{4}\right)\operatorname{mm}$$

$$(E_c)_{eje\ X} = 9$$

3)
$$\vec{a}_t = \frac{16\pi^2\sqrt{2}}{5} (\vec{u}_x + 3\vec{u}_y) \text{ mm s}^{-2}; \quad \vec{a}_n = -\frac{12\pi^2\sqrt{2}}{5} (3\vec{u}_x - \vec{u}_y) \text{ mm s}^{-2}$$