n を 2 以上の偶数とする。2 つの曲線 $C_1: y = x^n$ と $C_2: y = n^x$ について、次の問いに答えよ。

- 1. C_1 と C_2 は x < 0 において、ただ 1 つの点 P_n で交わることを示せ.
- $2. C_1 \ge C_2$ の交点の個数を求めよ.
- 3. P_n の $n \to \infty$ のときの極限の位置を求めよ.

[解] (1) n は偶数とし, $f_n(x) = x^n$, $g_n(x) = n^x$ とおく. (1) x < 0 の時. t = -x とおくと, t > 0 であり, $f_n(x)$ と $g_n(x)$ が一致するとすると

$$f_n(x) = g_n(x)$$
 $\iff t^n = \left(\frac{1}{n}\right)^t \quad (*)$

両辺正だから, 自然対数をとって

$$n \log t = t \log n$$
 $\iff \frac{\log t}{t} = \frac{\log n}{n} \quad (\text{ttl } x > 0) \quad (**) \quad (1)$

である. ここで $h(t) = \frac{\log t}{t}$ とおくと, 一階微分は

$$h'(t) = \frac{1 - \log t}{t^2}$$

であり、また h(t) の極限値は

$$h(t) \to -\infty \quad (t \to +0)$$

 $h(t) \to 0 \quad (t \to +\infty)$

で与えられるから、h(t) の増減表は table 1 となる.

表 1: h(x) の増減表

t	(0)		e		(∞)
h'		+	0	_	
h	$(-\infty)$	7	$\frac{1}{e}$	>	(0)

よって h(t) のグラフは fig. 1 となる.

図 1: h(t) の概形 t = e で最大値をとる.

ここで n が 2 以上の偶数であるから h(x) < 0 であり,グラフの形から eq. (1) が成立する t が 0 < t < 1 にただひとつ存在する。 したがって C_1, C_2 は x < 0 にただ 1 つ交点を持つ...(答)

(2) x > 0 の時. $f_n(x), g_n(x)$ 共に正だから, (1) と同様に自然対数をとって考えると

$$f_n(x) = g_n(x)$$

$$\iff n \log x = x \log n$$

$$\iff \frac{\log x}{x} = \frac{\log n}{n}$$

である. n が 2 以上の偶数だから $\frac{\log n}{n}>0$ であり,また fig. 1 より $\frac{\log n}{n}<1/e$ である.従って fig. 1 からこれみた す x は 2 つある.

最後に x=0 の時は $f_n(0)=0$, $g_n(0)=1$ だから, C_1, C_2 は交わらない.

以上でxについて全ての場合が考えられた。x<0でつつ,x=0で0個,x>0で2つの解が存在する。 C_1,C_2 の交点の数は $f_n(x)=g_n(x)$ の実解の数に等しいことからあわせて3つの交点がある...(答)

(3) $P_n(-x_n, y_n)$ とおくと、(1) の結果から $0 < x_n < 1$

である. P_n の条件から,

$$y_n = (-x_n)^n = n^{-x_n} (2)$$

である.

 $n\to\infty$ のとき, fig. 1 から $\frac{\log n}{n}\to 0$ だから, eq. (1) より

$$\lim_{n \to \infty} \frac{\log x_n}{x_n} = 0$$

である. これを満たすには fig. 1 および $0 < x_n < 1$ から

$$\lim_{n \to \infty} x_n = 1 \tag{3}$$

である. これを eq. (2) に代入して

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \left(\frac{1}{n}\right)^{x_n} = 0 \tag{4}$$

である. eqs. (3) and (4) より、求める P_n の極限値は

$$\lim_{n \to \infty} P_n = (-1, 0)$$

である.