Classical, or frequentist, statistical paradigm:
•
•
•
•
Bayesian statistical paradigm
•
•
•

Axioms of Probability

Suppose $\{H_1, ..., H_K\}$ is a partition of \mathcal{H} , $Pr(\mathcal{H}) = 1$, and E is some specific event. The axioms of probability imply the following statements:

- 1. Rule of Total Probability: $\sum_{k=1}^{K} Pr(H_k) =$
- 2. Rule of Marginal Probability:

$$Pr(E) =$$

3. Bayes rule:

$$Pr(H_j|E) =$$

Example. Assume a sample of MSU students are polled on their skiing behavior. Let $\{H_1, H_2, H_3, H_4\}$ be the events that a randomly selected student in this sample is in, the first quartile, second quartile, third quartile and 4th quartile in terms of number of hours spent skiing.

Then
$$\{Pr(H_1), Pr(H_2), Pr(H_3), Pr(H_4)\} = \{.25, .25, .25, .25\}.$$

Let E be the event that a person has a GPA greater than 3.0.

Then
$$\{Pr(E|H_1), Pr(E|H_2), Pr(E|H_3), Pr(E|H_4)\} = \{.40, .71, .55, .07\}.$$

Now compute the probability that a student with a GPA greater than 3.0 falls in the first quartile for hours spent skiing: $Pr(H_1|E)$

$$Pr(H_1|E) =$$

$$=$$

$$=$$

Similarly, $Pr(H_2|E) = .41$, $Pr(H_3|E) = .32$, and $Pr(H_4|E) = .04$.

Independence

Two events F and G are conditionally independent given H if $Pr(F \cap G|H) = Pr(F|H)Pr(G|H)$. If F and G are conditionally independent given H then:

```
Example. What is the relationship between Pr(F|H) and Pr(F|H\cap G) in the following situation? F=\{ you draw the jack of hearts \} G=\{ a mind reader claims you drew the jack of hearts \} H=\{ the mind reader has extrasensory perception \} I=\{ the mind reader is Paul\} Pr(F|H)= Pr(F|G\cap H)= Pr(F|G\cap I)=
```

Random Variables

In Bayesian inference a random variable is defined as an unknown numerical quantity about which we make probability statements. For example, the quantitative outcome of a study is performed. Additionally, a fixed but unknown population parameter is also a random variable.

Discrete Random Variables

Let Y be a random variable and let \mathcal{Y} be the set of all possible values of Y. Y is discrete if the set of possible outcomes is countable, meaning that \mathcal{Y} can be expressed as $\mathcal{Y} = \{y_1, y_2, ...\}$.

The event that the outcome Y of our study has the value y is expressed as $\{Y = y\}$. For each $y \in \mathcal{Y}$, our shorthand notation for Pr(Y = y) will be p(y). This function (known as the probability distribution function (pdf)) p(y) has the following properties.

1.

2.

Example 1. Binomial Distribution

Let $\mathcal{Y} = \{0, 1, 2, ..n\}$ for some positive integer n. Then $Y \in \mathcal{Y}$ has a binomial distribution with probability θ if

Example 2. Poisson Distribution

Let $\mathcal{Y} = \{0, 1, 2...\}$. Then $Y \in \mathcal{Y}$ has a Poisson distribution with mean θ if

Continuous Random Variables

Suppose that the sample space \mathcal{Y} is \mathbb{R} , then $Pr(Y \leq 5) \neq \sum_{y \leq 5} p(y)$ as this sum does not make sense. Rather define the cumulative distribution function (cdf) $F(y) = Pr(Y \leq y)$. The cdf has the following properties:

1.
$$F(\infty) =$$

2.
$$F(-\infty) =$$

3.
$$F(b) \leq F(a)$$
 if

Probabilities of events can be derived as:

•
$$Pr(Y > a) =$$

•
$$Pr(a < Y < b) =$$

If F is continuous, then Y is a continuous random variable. Then $F(a) = \int_{-\infty}^{a} p(y) dy$.

Example. Normal distribution.

Let $\mathcal{Y} = (-\infty, \infty)$ with mean μ and variance σ^2 . Then y follows a normal distribution if

$$p(y|\mu,\sigma^2) =$$

Moments of Distributions

The mean or expectation of an unknown quantity Y is given by

$$\begin{split} E[Y] &=& \sum_{y \in \mathcal{Y}} y p(y) \text{ if Y is discrete and} \\ E[Y] &=& \int_{y \in \mathcal{Y}} y p(y) \text{ if Y is continuous.} \end{split}$$

The variance is a measure of the spread of the distribution.

$$Var[Y] = E[(Y - E[Y])^{2}]$$

$$= E[Y^{2} - 2YE[Y] + E[Y]^{2}]$$

$$= E[Y^{2}] - 2E[Y]^{2} + E[Y]^{2}$$

$$= E[Y^{2}] - E[Y]^{2}$$

If
$$Y \sim \operatorname{Binomial}(n,p)$$
, then $E[Y] = \operatorname{and} Var[Y] = \operatorname{if} Y \sim \operatorname{Poisson}(\mu)$, then $E[Y] = \operatorname{and} Var[Y] = \operatorname{if} Y \sim \operatorname{Normal}(\mu,\sigma^2)$, then $E[Y] = \operatorname{and} Var[Y] = \operatorname{if} Y \sim \operatorname{Normal}(\mu,\sigma^2)$

Joint Distributions

Let Y_1, Y_2 be random variables, then the joint pdf or joint density can be written as

$$P_{Y_1,Y_2}(y_1,y_2) = Pr(\{Y_1 = y_1\} \cap \{Y_2 = y_2\}), \text{ for } y_1 \in \mathcal{Y}_1, y_2 \in \mathcal{Y}_2$$

The marginal density of Y_1 can be computed from the joint density:

$$p_{Y_1}(y_1) = Pr(Y_1 = y_1)$$

$$= \sum_{y_2 \in \mathcal{Y}_2} Pr(\{Y_1 = y_1\} \cap \{Y_2 = y_2\})$$

$$= \sum_{y_2 \in \mathcal{Y}_2} p_{Y_1, Y_2}(y_1, y_2).$$

Note this is for discrete random variables, but a similar derivation holds for continuous.

The conditional density of Y_2 given $\{Y_1 = y_1\}$ can be computed from the joint density and the marginal density.

$$p_{Y_2|Y_1}(y_2|y_1) = \frac{Pr(\{Y_1 = y_1\} \cap \{Y_2 = y_2\})}{Pr(Y_1 = y_1)}$$
$$= \frac{p_{Y_1,Y_2}(y_1, y_2)}{p_{Y_1}(y_1)}$$

Note the subscripts are often dropped, so $p_{Y_1,Y_2}(y_1,y_2)=p(y_1,y_2)$, ect...

Independent Random Variables and Exchangeability

Suppose $Y_1, ..., Y_n$ are random variables and that θ is a parameter corresponding to the generation of the random variables. Then $Y_1, ..., Y_n$ are conditionally independent given θ if

$$Pr(Y_1 \in A_1, ..., Y_n \in A_n | \theta) = Pr(Y_1 \in A_1 | \theta) \times ... \times Pr(Y_n \in A_n | \theta)$$

where $\{A_1,...,A_n\}$ are sets. Then the joint distribution can be factored as

$$p(y_1, ..., y_n | \theta) = p_{Y_1}(y_1 | \theta) \times ... \times p_{Y_n}(y_n | \theta).$$

If the random variables come from the same distribution then they are conditionally independent and identically distributed, which is noted $Y_1, ..., Y_n | \theta \sim i.i.d.p(y|\theta)$ and

Exchangeability

Let $p(y_1,...y_n)$ be the joint density of $Y_1,...,Y_n$. If $p(y_1,...,y_n)=p(y_{\pi_1},...,y_{\pi_n})$ for all permutations π of $\{1,2,...,n\}$, then $Y_1,...,Y_n$ are exchangeable.

Example. Assume data has been collected on apartment vacancies in Bozeman. Let $y_i = 1$ if an affordable room is available. Do we expect $p(y_1 = 0, y_2 = 0, y_3 = 0, y_4 = 1) = p(y_1 = 1, y_2 = 0, y_3 = 0, y_4 = 0)$? If so the data are exchangeable.

Let $\theta \sim p(\theta)$ and if $Y_1, ..., Y_n$ are conditionally i.i.d. given θ , then marginally (unconditionally on θ) $Y_1, ..., Y_n$ are exchangeable.

Proof omitted, see textbook for details.