

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Кафедра информатики, математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №4 по дисциплине «Математическое моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02 $\frac{\text{Агличеев A.O.}}{(\Phi MO)}$ (подпись) « 16 » декабря 2022 г.

Содержание

1	Опр	ределение цели	3
2	Соз	здание математической модели	3
3	Реализация модели		5
	3.1	Сравнение линейных и нелинейных незатухающих колебаний	5
	3.2	Затухающие колебания	10
	3.3	Вынужденные колебания	13
	3.4	Резонанс	14
4	Вы	вод	14

1 Определение цели

В данной лабораторной работе необходимо создать модель математического маятника. Маятник — система, подвешенная в поле тяжести и совершающая механические колебания. Одним из простейших маятников является шарик, подвешенный на нити. Маятники используются в различных приборах, например, в часах и сейсмографах.

2 Создание математической модели

Математический маятник – система, состоящая из материальной точки, подвешенной на конце нерастяжимой нити или на невесомом стержне в поле тяжести. Другой конец нити неподвижен.

Рис. 1: Математический маятник

В записи второго закона Ньютона $m\vec{a}=\vec{F}$ выделим тангенциальную со-

ставляющую $ma_{\tau}=F_{\tau}$, получим:

$$mL\ddot{\theta} = -mg\sin\theta,$$

где L - длина нити, θ - угол отклонения маятника, g - ускорение свободного падения = $9.8 \mathrm{m/c^2}$), m - масса материальной точки

Поделим на mL и перенесём всё в правую часть, $\frac{g}{L}=\omega_0^2$ - частота собственных колебаний:

$$\ddot{\theta} + \omega_0^2 \sin \theta = 0,$$

При малых углах $\sin\theta \approx \theta$ и уравнение превращается в

$$\ddot{\theta} + \omega_0^2 \cdot \theta = 0,$$

При наличии затуханий

$$\ddot{\theta} + k\dot{\theta} + \omega_0^2 \sin \theta = 0,$$

где k - коэффициент затухания

Добавим внешнюю периодическую силу $a\cdot\sin\left(\omega t\right)$ и колебания станут вынужденными:

$$\ddot{\theta} + k\dot{\theta} + \omega_0^2 \sin \theta = a \cdot \sin (\omega t),$$

3 Реализация модели

Модель была реализована в MathCad.

3.1 Сравнение линейных и нелинейных незатухающих колебаний

Колебания без	$затухания при \theta=10^{\circ}$
$\theta 1 \coloneqq \begin{bmatrix} 10 & \mathbf{deg} \\ 0 \end{bmatrix} \omega 1 \coloneqq 3$	$\theta 2 \coloneqq \begin{bmatrix} 10 & \mathbf{deg} \\ 0 \end{bmatrix} \omega 2 \coloneqq 3$
$D1(t, heta) \coloneqq egin{bmatrix} heta & & & \ -(\omega 1^2) \cdot \sin\left(heta \ _0 ight) \end{bmatrix}$	$D2(t, heta) \coloneqq egin{bmatrix} heta_1 \ -(\omega 2^2) oldsymbol{\cdot} heta_0 \end{bmatrix}$
$Z1 \coloneqq \operatorname{rkfixed}(\theta 1, 0, 6, 1000, D1)$	$Z2 \coloneqq \operatorname{rkfixed} (\theta 2, 0, 6, 1000, D2)$
$t\!\coloneqq\!Z1^{\langle 0 angle}\; heta1\!\coloneqq\!Z1^{\langle 1 angle}$	$ heta 2 \coloneqq Z 2^{\langle 1 angle}$
$\theta 1 \coloneqq \theta 1 \cdot \frac{180}{\pi} \qquad v 1 \coloneqq Z 1^{\langle 2 \rangle}$	$\theta 2 \coloneqq \theta 2 \cdot \frac{180}{\pi} \qquad v 2 \coloneqq Z 2^{\langle 2 \rangle}$

Колебания без затухания при
$$\theta = 20^{\circ}$$

$$\theta 3 \coloneqq \begin{bmatrix} 20 & \mathbf{deg} \\ 0 \end{bmatrix} \quad \omega 3 \coloneqq 3$$

$$\theta 4 \coloneqq \begin{bmatrix} 20 & \mathbf{deg} \\ 0 \end{bmatrix} \quad \omega 4 \coloneqq 3$$

$$D 4(t, \theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 4^2) \cdot \theta_0 \end{bmatrix}$$

$$Z 3 \coloneqq \text{rkfixed}(\theta 3, 0, 6, 1000, D3)$$

$$Z 4 \coloneqq \text{rkfixed}(\theta 4, 0, 6, 1000, D4)$$

$$\theta 3 \coloneqq Z 3^{(1)}$$

$$\theta 3 \coloneqq \theta 3 \cdot \frac{180}{\pi} \quad v 3 \coloneqq Z 3^{(2)}$$

$$\theta 4 \coloneqq \theta 4 \cdot \frac{180}{\pi} \quad v 4 \coloneqq Z 4^{(2)}$$

Колебания без затухания
$$npu \ \theta = 40^{\circ}$$

$$\theta 5 \coloneqq \begin{bmatrix} 40 \ deg \\ 0 \end{bmatrix} \quad \omega 5 \coloneqq 3$$

$$\theta 6 \coloneqq \begin{bmatrix} 40 \ deg \\ 0 \end{bmatrix} \quad \omega 6 \coloneqq 3$$

$$D5(t,\theta) \coloneqq \begin{bmatrix} \theta \\ -(\omega 5^{2}) \cdot \sin(\theta_{0}) \end{bmatrix}$$

$$D6(t,\theta) \coloneqq \begin{bmatrix} \theta \\ -(\omega 6^{2}) \cdot \theta_{0} \end{bmatrix}$$

$$Z5 \coloneqq \text{rkfixed}(\theta 5, 0, 6, 1000, D5)$$

$$\theta 5 \coloneqq Z5^{(1)}$$

$$\theta 5 \coloneqq \theta 5 \cdot \frac{180}{\pi} \quad v 5 \coloneqq Z5^{(2)}$$

$$\theta 6 \coloneqq \theta 6 \cdot \frac{180}{\pi} \quad v 6 \coloneqq Z6^{(2)}$$

$$Kone бания без затухания $npu \ \theta = 60^{\circ}$
$$\theta 7 \coloneqq \begin{bmatrix} 60 \ deg \\ 0 \end{bmatrix} \ \omega 7 \coloneqq 3 \qquad \qquad \theta 8 \coloneqq \begin{bmatrix} 60 \ deg \\ 0 \end{bmatrix} \ \omega 8 \coloneqq 3$$

$$D7(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 7^2) \cdot \sin(\theta_0) \end{bmatrix} \qquad D8(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 8^2) \cdot \theta_0 \end{bmatrix}$$

$$Z7 \coloneqq \text{rkfixed}(\theta 7,0,6,1000,D7) \qquad Z8 \coloneqq \text{rkfixed}(\theta 8,0,6,1000,D8)$$

$$\theta 7 \coloneqq Z7^{(1)} \qquad \qquad \theta 8 \coloneqq Z8^{(1)}$$

$$\theta 7 \coloneqq \theta 7 \cdot \frac{180}{\pi} \quad \upsilon 7 \coloneqq Z7^{(2)} \qquad \qquad \theta 8 \coloneqq \theta 8 \cdot \frac{180}{\pi} \quad \upsilon 8 \coloneqq Z8^{(2)}$$$$

3.2 Затухающие колебания

$$Kone бания \ c \ затуханием \ npu \ \theta = 20^{\circ}$$

$$\theta 1 \coloneqq \begin{bmatrix} 20 \ deg \\ 0 \end{bmatrix} \ \omega 1 \coloneqq 3 \ k1 \coloneqq 0.25 \qquad \theta 2 \coloneqq \begin{bmatrix} 20 \ deg \\ 0 \end{bmatrix} \ \omega 2 \coloneqq 3 \ k2 \coloneqq 0.75$$

$$D1(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 1^2) \cdot \sin(\theta_0) - k1 \cdot \theta_1 \end{bmatrix} \qquad D2(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 2^2) \cdot \sin(\theta_0) - k2 \cdot \theta_1 \end{bmatrix}$$

$$Z1 \coloneqq \text{rkfixed} (\theta 1,0,10,1000,D1) \qquad Z2 \coloneqq \text{rkfixed} (\theta 2,0,10,1000,D2)$$

$$t \coloneqq Z1^{(0)} \ \theta 1 \coloneqq Z1^{(1)} \qquad \theta 2 \coloneqq Z2^{(1)}$$

$$\theta 1 \coloneqq \theta 1 \cdot \frac{180}{\pi} \quad v1 \coloneqq Z1^{(2)} \qquad \theta 2 \coloneqq \theta 2 \cdot \frac{180}{\pi} \quad v2 \coloneqq Z2^{(2)}$$

$$Kone бания \ c \ затуханием \ npu \ \theta = 40^{\circ}$$

$$\theta 1 \coloneqq \begin{bmatrix} 40 \ deg \\ 0 \end{bmatrix} \ \omega 1 \coloneqq 3 \ k1 \coloneqq 0.25 \qquad \theta 2 \coloneqq \begin{bmatrix} 40 \ deg \\ 0 \end{bmatrix} \ \omega 2 \coloneqq 3 \ k2 \coloneqq 0.75$$

$$D1(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 1^2) \cdot \sin(\theta_0) - k1 \cdot \theta_1 \end{bmatrix} \qquad D2(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 2^2) \cdot \sin(\theta_0) - k2 \cdot \theta_1 \end{bmatrix}$$

$$Z1 \coloneqq \text{rkfixed}(\theta 1,0,10,1000,D1) \qquad Z2 \coloneqq \text{rkfixed}(\theta 2,0,10,1000,D2)$$

$$\theta 1 \coloneqq Z1^{(1)} \qquad \theta 2 \coloneqq Z2^{(1)}$$

$$\theta 1 \coloneqq \theta 1 \cdot \frac{180}{\pi} \quad v1 \coloneqq Z1^{(2)} \qquad \theta 2 \coloneqq \theta 2 \cdot \frac{180}{\pi} \quad v2 \coloneqq Z2^{(2)}$$

3.3 Вынужденные колебания

3.4 Резонанс

При $\omega_0 = \omega$ возникает резонанс.

4 Вывод

Таким образом, были составлены математические модели линейных и нелинейных незатухающих, затухающих и вынужденных колебаний.