Научная и компьютерная коммуникация в современных условиях

«Обнаружение разладки с помощью метода SSA»

Кононыхин Иван Александрович

группа 20.М03-мм Санкт-Петербургский государственный университет Прикладная математика и информатика

2022

Введение в теорию

Основные обозначения

Обозначения

```
F^{(1)} = F_{N_1}^{(1)}, \ F^{(2)} = F_{N_2}^{(2)} - временные ряды. L: 2 \leq L \leq \min(N_1-1,N_2) - длина окна. U_I^{(1)}, I=1,\ldots,L- собственные векторы траекторной матрицы ряда F^{(1)} \mathfrak{L}^{(L,1)} — линейное пространство, натянутое на L—сдвинутые векторы ряда F^{(1)}, \ d \stackrel{\text{def}}{=} \dim \mathfrak{L}^{(L,1)} I=\{i_1,\ldots,i_r\} — подмножество \{1,\ldots,L\} \mathfrak{L}^{(1)}_r \stackrel{\text{def}}{=} \operatorname{span}(U_I^{(1)},I\in I) X_1^{(2)},\ldots,X_{K_2}^{(2)}-L-сдвинутые векторы ряда F^{(2)}
```

Индекс неоднородности

Определение

Индекс неоднородности:

$$\begin{split} g(F^{(1)};F^{(2)}) &= \frac{\sum\limits_{l=1}^{K_2} \operatorname{dist}^2(X_l^{(2)},\mathfrak{L}_r^{(1)})}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \frac{\sum\limits_{l=1}^{K_2} (\|X_l^{(2)}\|^2 - \sum\limits_{i=1}^r \langle X_l^{(2)},U_i^{(1)}\rangle^2)}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \\ &= 1 - \frac{\sum\limits_{l=1}^{K_2} \sum\limits_{i=1}^r \langle X_l^{(2)},U_i^{(1)}\rangle^2}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}. \end{split}$$

Индекс неоднородности характеризует несоответствие между рядом $F^{(2)}$ и структурой ряда $F^{(1)}$ (описываемого подпространством $\mathfrak{L}_r^{(1)}$). $g\in[0,1].$

Матрица неоднородности

Обозначения

 $F_N: F_N = (f_0, \ldots, f_{N-1}), N > 2$ — исходный временной ряд; $F_{i,j}$ — подряды ряда $F_N: F_{i,j} = (f_i, \ldots, f_j), \ 0 \le i < j \le N-1;$ B — длина базовых подрядов ряда $F_N: B > L;$ T — длина тестовых подрядов ряда $F_N: T \ge L;$

Определение

Матрица $\mathbf{G} = \mathbf{G}_{B,T}$, состоящая из элементов g_{ij} :

$$g_{ij} = g(F_{i,i+B-1}; F_{j,j+T-1}),$$

$$1 \le i \le N - B + 1$$
, $1 \le j \le N - T + 1$,

есть **матрица неоднородности** временного ряда F_N .

 $F_{i,i+B-1}$ — Базовый подряд.

 $F_{i,i+T-1}$ — Тестовый подряд.

На основе матрицы неоднородности введем функции неоднородности.

Определение

Ряд $D_{T,N}^{(r)}$, элементы которого задаются как

$$d_{n-1}^{(r)} \stackrel{\text{def}}{=} g(F_{1,B}; F_{n-T+1,n}), T \le n \le N.$$

есть строковая функция обнаружения.

Обнаружение структурных изменений по отношению к начальной части ряда F_N .

Определение

Ряд $D_{B,N}^{(c)}$, элементы которого задаются как

$$d_{n-1}^{(c)} \stackrel{\text{def}}{=} g(F_{n-B+1,n}; F_{1,T}), B \leq n \leq N.$$

есть столбцовая функция обнаружения.

Определение

Ряд $D_{T+B,N}^{(d)}$, элементы которого задаются как

$$d_{n-1}^{(d)} \stackrel{\text{def}}{=} g(F_{n-T-B+1,n-T+1}; \ F_{n-T+1,n}), \ T+B \le n \le N.$$

есть диагональная функция обнаружения.

Поскольку промежуток между базовым и тестовым интервалами отсутствует, данная функция обнаружения может использоваться для обнаружения резких структурных изменений на фоне медленных.

Определение

Пусть T=B. Ряд $D_{B,N}^{(s)}$, элементы которого задаются как

$$d_{n-1}^{(s)} \stackrel{\text{def}}{=} g(F_{n-B+1,n}; F_{n-B+1,n}), B \le n \le N.$$

есть симметричная функция обнаружения.

Свойство

Любой однородный ряд F_N порождает нулевую матрицу неоднородности, а наличие ненулевых элементов g_{ij} в этой матрице свидетельствует о нарушении однородности.

Типы неоднородности

Определение

Q — момент возмущения.

 $S \ge 0$ — длина переходного интервала.

Пусть подряды $F_{1,Q-1}$ и $F_{Q+S,N}$ ряда F_N однородны. Обозначим $d=\mathrm{rank}_L(F_{1,Q-1}),\ d_1=\mathrm{rank}_L(F_{Q+S,N}).$ Пусть $L\geq \max(d,d_1)$ и $L\leq Q-1$ и $L\leq N-Q-S+1.$ Если $\mathfrak{L}^{(L)}(F_{1,Q-1})=\mathfrak{L}^{(L)}(F_{Q+S,N})$ тогда обе однородные части временного ряда соответствуют одному минимальному LRR — случай **временной** неоднородности. Отсюда вытекает случай **постоянной** неоднородности.

Вид матрицы неоднородности

Пусть $\max(B,T) < Q$. Предположим, что $I = \{1,\dots,r\}$ и $r = d \leq \min(L,B-L+1)$. Тогда все элементы g_{ij} матрицы $\mathbf{G}_{B,T}$ равны нулю для $i+B \leq Q$ и $j+T \leq Q$. Значения остальных элементов матрицы неоднородности зависят от типа неоднородности и значений параметров.

Сравнение функций обнаружения разладки

Постановка задачи

Задача

Эмпирическим путем попытаться оценить, какая из четырех функций обнаружения неоднородности лучше обнаруживает разладку во временном ряде с шумом.

Подготовка эксперимента

Рассмотрим ряд

$$f_n = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1) + \epsilon, & n < Q, \\ C_2 \sin(2\pi\omega_2 n + \phi_2) + \epsilon, & n \ge Q, \end{cases}$$

чьи параметры буду задаваться типом разладки и соответствующим изменением параметров. Рассмотрим два типа неоднородности:

- 💶 Временную, заданную
 - **①** Фазовым сдвигом: $\phi_1 \neq \phi_2$;
 - Выбросом:

$$f_n = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1) & n \neq Q, \\ 10 \cdot C_1 & n = Q. \end{cases}$$

- **3** Изменением амплитуды: $C_1 \neq C_2$.
- Постоянную, заданную
 - **①** Изменением частоты: $\omega_1 \neq \omega_2$.

В качестве оценок качества функций неоднородности будем учитывать скорость возрастания значений и момент преодоления $n_{overcome}$ заданного порога δ .

Параметры

$$\omega_1 = \frac{1}{10}, \, \omega_2 = \frac{1}{5}$$
 $C_1 = 1, \, C_2 = 2$
 $\phi_1 = 0, \, \phi_2 = \frac{\pi}{2}$
 $N = 700, \, L = 50, \, Q = 301, \, B = T = 100$
 $r = d = rank(F_N) = 2.$
 $\epsilon \sim N(0, \sigma^2), \, \sigma = 0.5.$

Для ряда с временной разладкой, заданной изменением амплитуды $(C_1 \neq C_2)$, зададим дисперсию шума до разладки как $\frac{\sigma^2}{2}$, чтобы шум ϵ был пропорционален амплитуде ряда.

В тестах предполагаем, что момент разладки Q известен и для оценки скорости возрастания будем выводить значения функций в точках [Q,Q+10,Q+20,Q+30].

Порог δ , относительно которого будем определять, какая из функций неоднородности раньше обнаруживает разладку зададим в соответствии с промоделированными значениями, описанными далее.

Ряды

17 / 58

Матрицы неоднородности взятых рядов

Функции неоднородности взятых рядов

Моделирование порога δ

Промоделируем реализации шума $n_{mod}=200$ раз и посчитаем такие характеристики ряда на промежутке $[0,\dots,Q-1]$, как средний максимум и 95-й процентиль. Эти два значения возьмем в качестве параметра δ .

Таблица: Промоделированные пороги δ

Type	Statistic	Row	Col	Sym	Diag
Permanent	Mean max	0.133	0.111	0.131	0.126
Permanent	Mean 95 proc	0.131	0.111	0.128	0.124
Temporary	Mean max	0.036	0.030	0.035	0.035
Temporary	Mean 95 proc	0.035	0.030	0.035	0.034
Shifted	Mean max	0.132	0.115	0.130	0.125
Shifted	Mean 95 proc	0.130	0.114	0.127	0.124
Outlier	Mean max	0.132	0.110	0.130	0.127
Outlier	Mean 95 proc	0.130	0.110	0.127	0.126

Таблица: Характеристики функций неоднородности для постоянной разладки ($\omega_1 \neq \omega_2$).

Row					Col		
Sym	Statistic #n _{overcome} n _{overcome} Confidence f _{novercome}	Mean Max 200 309.12 [309.09, 309.15] 0.137	Mean 95 200 308.65 [308.61, 3 0.135	5 proc , 308.68]		Mean Max 200 313,46 [313.35, 313.57] 0.1167	Mean 95 proc 200 313,29 [313.17, 313.39] 0.1165
Sym	Statistic #Novercome novercome Confidence fnovercome	Mean Max 200 309.46 [309.42, 309.49] 0.134	Mean 95 200 308.94 [308.91, 3 0.131	•	Diag	Mean Max 200 307.78 [307.74, 307.81] 0.13	Mean 95 proc 200 307.45 [307.41, 307.48] 0,128
		$\begin{array}{c} D_Q \\ D_{Q+10} \\ D_{Q+20} \\ D_{Q+30} \end{array}$	Row 0,1085 0,1469 0,2405 0,3734	Col 0,1075 0,1102 0,1206 0,1433	Sym 0,1055 0,1416 0,2273 0,3476	Diag 0,1084 0,1466 0,2400 0,3727	

Таблица: Характеристики функций неоднородности для постоянной разладки ($C_1 \neq C_2$).

Row					Col		
Sym	Statistic #novercome novercome Confidence fnovercome	Mean Max 200 306,885 [306.86, 306.91] 0,0373	Mean 95 proc 200 306,525 [306,50, 306,55] 0,0366		Diag	Mean Max 200 306,57 [306.51, 306.63] 0,0321	Mean 95 proc 200 306,465 [306.41, 306.52] 0,032
- Sym	Statistic #novercome novercome Confidence fnovercome	ercome 200 200 come 307,53 307,07 dence [307.50, 307.56] [307.04, 307.10]		Diag	Mean Max 200 305,94 [305,91, 305,97] 0,0357	Mean 95 proc 200 305,745 [305.72, 305.77] 0,0354	
		$\begin{array}{c} D_Q \\ D_{Q+10} \\ D_{Q+20} \\ D_{Q+30} \end{array}$	Row 0,0296 0,0458 0,0713 0,0876	Col 0,0297 0,0331 0,0475 0,0645	Sym 0,0289 0,0418 0,0537 0,0536	Diag 0,0296 0,0458 0,0713 0,0873	

Таблица: Характеристики функций неоднородности для постоянной разладки $(\phi_1 \neq \phi_2)$.

Row					Col		
Sym	Statistic Mean Max Mean 95 proc # Povercome 200 200 novercome 309,37 308,925 Confidence [309.33, 309.41] [308.89, 308.96] fnovercome 0,1351 0,1331			200 200 311,73 311,485	311,485 [311.40, 311.57]		
Sym	Statistic #novercome novercome Confidence fnovercome	Mean Max 200 310,105 [310.06, 310.15] 0,1320	Mean 95 200 309,58 [309.54, 3 0,1298		Diag	Mean Max 200 307,84 [307.80, 307.88] 0,1282	Mean 95 proc 200 307,535 [307.50, 307.57] 0,1269
		$D_Q \\ D_{Q+10} \\ D_{Q+20} \\ D_{Q+30}$	Row 0,1078 0,1421 0,2158 0,3008	Col 0,1077 0,1123 0,1347 0,1836	Sym 0,1050 0,1351 0,1907 0,2407	Diag 0,1077 0,1421 0,2158 0,3005	

Таблица: Характеристики функций неоднородности для постоянной разладки (выброс).

Row				Col		
	Statistic	Mean Max	Mean 95 proc		Mean Max	Mean 95 proc
	#novercome	200	200		200	200
	n _{o vercome}	301,935	301,92		303,401	303,394
	Confidence	[301.93, 301.94]	[301.916, 301.93]		[303.34, 303.46]	[303.33, 303.45]
	f _{no vercome}	0,1579	0,1571		0,1185	0,1182
Sym	0 101001110			Diag		
	Statistic	Mean Max	Mean 95 proc		Mean Max	Mean 95 proc
	#novercome	200	200		200	200
	n _{o vercome}	301,98	301,95		301,88	301,87
	Confidence	[301.976, 301.984]	[301.946, 301.953]		[301.876, 301.883]	[301.866, 301.873]
	f _{Do vercome}	0.1531	0.1517		0.1550	0.1545

	Row	Col	Sym	Diag
D _O	0,1072	0,1100	0,1042	0,107
D_{Q+10}^{-}	0,4369	0,1423	0,5462	0,436
Da+20	0,5652	0,1459	0,1907	0,564
Do 120	0.6336	0.1387	0.6204	0.633

Выводы

Явными фаворитами являются строковая $d_{n-1}^{(r)}$ и диагональная $d_{n-1}^{(d)}$ функции неоднородности. Они обе показывают превосходство над столбцовой $d_{n-1}^{(c)}$ и симметричной $d_{n-1}^{(s)}$ в устойчивости к шуму ϵ , моментом обнаружения разладки $n_{overcome}$ и скорости возрастания значений $[D_Q, D_{Q+10}, D_{Q+20}, D_{Q+30}]$ после момента нарушения однородности Q.

Постановка задачи

Задача

Попробуем аналитически упростить индекс неоднородности g, чтобы явно увидеть, как разности частот ряда до и после разладки влияют на его значения.

Рассмотрим ряд

$$F_N = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n \in [0, Q - 1], \\ C_2 \sin(2\pi\omega_2 n + \phi_2), & n \in [Q, N - 1]. \end{cases}$$

Пусть $\omega_1 \neq \omega_2$; $C_1 = C_2$. Для простоты зададим амплитуды $C_1 = C_2 = 1$.

Индекс неоднородности

$$\begin{split} g(F^{(1)};F^{(2)}) &= \frac{\sum\limits_{l=1}^{K_2} \operatorname{dist}^2(X_l^{(2)},\mathfrak{L}_r^{(1)})}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \frac{\sum\limits_{l=1}^{K_2} (\|X_l^{(2)}\|^2 - \sum\limits_{i=1}^r \langle X_l^{(2)},U_i^{(1)}\rangle^2)}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \\ &= 1 - \frac{\sum\limits_{l=1}^{K_2} \sum\limits_{i=1}^r \langle X_l^{(2)},U_i^{(1)}\rangle^2}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}. \end{split}$$

Знаменатель

$$||X_{l}^{(2)}||^{2} = \sum_{i=1}^{L} (X_{l}^{(2)})_{i}^{2} \approx \int_{0}^{L} \sin^{2}(2\pi\omega_{2}y + \psi_{l})dy =$$

$$= \frac{L}{2} - \frac{\sin(4\pi L\omega_{2} + \psi_{l}) - \sin(2\psi_{l})}{8\pi\omega_{2}} \approx \frac{L}{2},$$

при достаточно больших L.

 ψ_I формируется из ϕ_2 и сдвига, порождаемого номером вектора вложения.

Отсюда $\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2 pprox K_2 \cdot rac{L}{2}.$

Числитель

$$\begin{split} &\sum_{l=1}^{K_2} \sum_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2 = \sum_{l=1}^{K_2} \left(\langle X_l^{(2)}, U_1^{(1)} \rangle^2 + \langle X_l^{(2)}, U_2^{(1)} \rangle^2 \right) = \\ &= \sum_{l=1}^{K_2} \left[\left(\sum_{j=1}^L (X_l^{(2)})_j \cdot (U_1^{(1)})_j \right)^2 + \left(\sum_{j=1}^L (X_l^{(2)})_j \cdot (U_2^{(1)})_j \right)^2 \right]. \end{split}$$

В силу задания ряда, базисом $U_1^{(1)}$ и $U_2^{(1)}$ пространства $\mathfrak{L}_r^{(1)}$, порожденного элементами $f_n^{(1)}=\sin(2\pi\omega_1 n+\phi_1)$ являются некие нормированные $\sin(2\pi\omega_1 n+\psi)$ и $\cos(2\pi\omega_1 n+\psi)$. Пусть $p_1=\sin(2\pi\omega_1 n+\psi)$, $p_2=\cos(2\pi\omega_1 n+\psi)$. Вычислим нормы p_1 и p_2 для поиска $U_1^{(1)}$ и $U_2^{(1)}$. По аналогии со знаменателем, $\|p_1\|=\|p_2\|\approx \sqrt{\frac{L}{2}}$, откуда $U_1^{(1)}=\frac{\sin(2\pi\omega_1 n+\psi)}{\sqrt{L/2}}$, $U_2^{(1)}=\frac{\cos(2\pi\omega_1 n+\psi)}{\sqrt{L/2}}$.

Числитель

Пусть

$$I_{l} = \left(\sum_{j=1}^{L} (X_{l}^{(2)})_{j} \cdot (U_{1}^{(1)})_{j}\right)^{2},$$

$$J_{l} = \left(\sum_{j=1}^{L} (X_{l}^{(2)})_{j} \cdot (U_{2}^{(1)})_{j}\right)^{2},$$

$$a = \omega_{1} + \omega_{2}, \ b = \omega_{1} - \omega_{2}.$$

$$\begin{split} I_{l} &\approx \left(\int\limits_{0}^{L} \sin(2\pi\omega_{2}y + \psi_{l}) \cdot \frac{\sin(2\pi\omega_{1}y + \psi)}{\sqrt{L/2}} dy\right)^{2} = \\ &= \frac{2}{L} \left(\int\limits_{0}^{L} \sin(2\pi\omega_{2}y + \psi_{l}) \cdot \sin(2\pi\omega_{1}y + \psi) dy\right)^{2} = \\ &= \frac{2}{L} \left(\frac{\sin(2\pi Lb + \psi - \psi_{l}) - \sin(\psi - \psi_{l})}{4\pi b} - \frac{\sin(2\pi La + \psi + \psi_{l}) - \sin(\psi + \psi_{l})}{4\pi a}\right)^{2}. \end{split}$$

$$J_{l} \approx \left(\int_{0}^{L} (\sin(2\pi\omega_{2}y + \psi_{l}) \cdot \frac{\cos(2\pi\omega_{1}y + \psi)}{\sqrt{L/2}}) dy \right)^{2} =$$

$$= \frac{2}{L} \left(\int_{0}^{L} (\sin(2\pi\omega_{2}y + \psi_{l}) \cdot \cos(2\pi\omega_{1}y + \psi)) dy \right)^{2} =$$

$$= \frac{2}{L} \left(\frac{\cos(2\pi Lb + \psi - \psi_{l}) - \cos(\psi - \psi_{l})}{4\pi b} - \frac{\cos(2\pi La + \psi + \psi_{l}) - \cos(\psi + \psi_{l})}{4\pi a} \right)^{2}.$$

Утверждение 1

$$\psi = 0$$

$$\mathsf{T.}$$
 к. $\frac{\sum\limits_{l=1}^{K_2}\sum\limits_{i=1}^r \langle X_l^{(2)}, U_i^{(1)}
angle^2}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}$ - линейная проекция на пространство \mathfrak{L}_r , эта проекция не должна зависеть от базиса.

Предположение 1

B сумме по $I=1\ldots K_2$ зависимость от ψ_I пропадает.

Для данного предположения нет теоретически строгого доказательства, однако имперически оно подтверждено. Пусть

$$I = \left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a}\right)^2.$$

$$J = \left(\frac{\cos(2\pi Lb) - 1}{4\pi b} - \frac{\cos(2\pi La) - 1}{4\pi a}\right)^2.$$

Тогда:

$$\sum_{l=1}^{K_2} \sum_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2 \approx K_2 \cdot \frac{2}{L} \cdot [I + J] =$$

$$= \frac{K_2 \cdot 2}{L} \cdot \left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a} \right)^2 + \left(\frac{\cos(2\pi Lb) - 1}{4\pi b} - \frac{\cos(2\pi La) - 1}{4\pi a} \right)^2 \right]$$

Индекс неоднородности

$$\begin{split} g(F^{(1)};F^{(2)}) &= 1 - \frac{\sum\limits_{l=0}^{K_2-1}\sum\limits_{i=0}^{r-1}\langle X_l^{(2)},U_i^{(1)}\rangle^2}{\sum\limits_{l=0}^{K_2-1}\|X_l^{(2)}\|^2} \approx \\ &\approx 1 - \frac{\frac{K_2\cdot 2}{L}\cdot\left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a}\right)^2 + \left(\frac{\cos(2\pi Lb)-1}{4\pi b} - \frac{\cos(2\pi La)-1}{4\pi a}\right)^2\right]}{K_2\cdot\frac{L}{2}} = \\ &1 - \frac{\left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a}\right)^2 + \left(\frac{\cos(2\pi Lb)-1}{4\pi b} - \frac{\cos(2\pi La)-1}{4\pi a}\right)^2\right]}{\frac{L^2}{4}} \end{split}$$

Проверка точности аппроксимации

При сравнении индекса неоднородности, вычисленного классическим способом и аналитически упрощенным, результаты оказались довольно похожи, причем при $L \to \infty$ оба значения сходятся друг к другу.

Зададим параметры:

$$N = 700$$
, $Q = 301$, $B = 200$, $T = 200$

Проверка точности аппроксимации: изменения L

Зафиксируем $w_1 = \frac{1}{10}$, $w_2 = \frac{1}{11}$ и будем изменять L.

 L
 g_c
 g_a

 50
 0.518365
 0.562352

 80
 0.890753
 0.891823

 90
 0.955854
 0.953909

Проверка точности аппроксимации: разность ω_1 и ω_2

Предположение 2

Чем сильнее разница ω_1 и ω_2 , тем больше значение g.

$$w_1 = \frac{1}{10}$$

Система обнаружения структурной неоднородности ряда с автоматически выстраиваемым порогом срабатывания на основе выведенной аналитической формулы.

Постановка задачи

Рассмотрим ряд

$$F_N = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n \in [0, Q - 1], \\ C_2 \sin(2\pi\omega_2 n + \phi_2), & n \in [Q, N - 1]. \end{cases}$$

в котором присутствует разладка в неизвестный момент времени Q. Пусть нам известна начальная частота ряда ω_1 . Задача системы — обнаружить разладку при отклонении от начальной частоты ряда ω_1 на Δ_{min} не позже чем за промежуток времени k. Обозначим $\omega_{min} = \omega_1 + \Delta_{min}$

Далее мы будем рассматривать только строковую функцию неоднородности $d_n^{(r)}$, поэтому обозначим ее как d_n

Предпосылки

По теории, чем меньше размер окна L, тем более линеен переходный интервал у d_n . При уменьшении размера окна L размер векторов вложений также уменьшается, а их количество K_2 увеличивается, следовательно, при скольжении тестового подряда, начиная с момента Q векторы вложений ... в сумму числителя индекса неоднородности

TODO: оставить 10, 30, 60, как на след слайде

Предпосылки

Благодаря этому наблюдению мы можем аппроксимировать переходный интервал прямой. Длина этого интервала будет равна размеру $\mathcal T$ тестовых подрядов. Обозначим эту аппроксимацию как $a_{\mathcal T}$.

TODO: Сделать масштаб от 0 до 1

Аппроксимируя переходный интервал от 0 до $g_a(\omega_1,\omega_{min})$ прямой, мы получим a_T , имеющая примерный вид переходного интервала функции d_n .

Так как по постановке задачи ω_{min} — минимальное изменение частоты для обнаружения неоднородности ряда, то отклонение на $\Delta \geq \Delta_{min}$ приведут к более высокому значению d_n после момента Q+T, из-за чего переходный отрезок у d_n будет иметь еще более крутой наклон. TODO: 0.2 - $\omega_2 TODO$: $\omega_2=0.3$

Реализация

В силу этого, мы можем брать порог γ в точке k прямой a_T и сигнализировать об обнаружении неизвестного момента возмущения Q как момент преодоления этого порога \hat{Q} .

Обозначим это значение как γ_a .

По постановке задачи $\hat{Q} \in [Q, Q+k]$.

Формализуем систему:

- Входные данные: ω_1 , Δ_{min} , k;
- Результат: Q̂;
- Алгоритм:
 - lacksquare Вычисление $g_a(\omega_1,\omega_{min})$;
 - \bigcirc Аппроксимация переходного интервала a_T ;
 - lacktriangle Фиксирование γ_a ;
 - ullet Определение \hat{Q} как момент преодоления d_n значения γ_a .

Реализация

Зафиксируем параметры: $\omega_1=\frac{1}{10}$, $\omega_{min}=\frac{1}{100}$, k=30, $\omega_2=\frac{1}{5}$, Q=301, L=60, B=100, T=100.

При таких параметрах, для графика ниже $g_a(\omega_1,\omega_{min})=0.7252,$ $\gamma_a=0.2198,~\hat{Q}=326.$

Параметры

Все параметры, используемые выше можно разделить на 3 категории:

- **1** Заданные формулировкой задачи: ω_1 , ω_{min} , k;
- **②** Неизвестные: ω_2 , Q;
- Выбираемые системой: L, B, T.

Первую категорию параметров можно интерпретировать как заданные пользователем системы. Они фиксированы и не могут меняться для определения более хорошего порога.

Вторая категория зависит от ряда, подаваемого системе и вообще говоря не известны.

Третья категория параметров - те, которые система может подстраивать под тот или иной ряд. Позже попробуем оценить их влияние на оценку системы.

Оценка системы

В случае ряда без шума, оценить надежность системы невозможно, так как $\forall \; \gamma \in [0, \gamma_a]$ покажет стопроцентное определение разладки.

При добавлении шума, у d_n до момента возмущения появятся колебания и смещается среднее значение. Обозначим дисперсию шума как ϵ_V .

Оценка системы

Зафиксируем дисперсию шума $\epsilon_v = 0.25$ и введем характеристики системы:

- ullet $FPR(\gamma)$ преодоление порога γ кривой d_n до момента Q
- ullet $TPR(\gamma)$ преодоление порога γ кривой d_n в промежутке [Q,Q+k]

Значения параметров рассмотренных категорий оставим такими же.

Промоделируем реализации шума $n_{iter}=200$ раз и для $\forall \gamma \in [0,1]$ с шагом 0.01 определим $FPR(\gamma)$ и $TPR(\gamma)$. Также будем смотреть на $FPR(\gamma_a)$.

Проблема аппроксимации при наличии шума

Без шума в ряде, мы знаем, что d_n до момента Q будет принимать значение 0, поэтому мы аппроксимируем переходный интервал прямой от 0 до значения γ_a . Однако при наличии шума, значения d_n до разладки смещаются выше, и при задании слишком маленького значения ω_{min} , система не сможет определить \hat{Q} .

Проблема аппроксимации при наличии шума

В таком случае, нужно ввести предположение о наличии исторических данных без разладки в ряде. На таких данных мы сможем оценить начальное значение a_n и аппроксимировать переходный интервал не 0, а, к примеру, 95-м процентилем, посчитанном на промежутке, где гарантированно нет неоднородности ряда.

Оценка системы

Оценка влияния параметров: Т

Из изображений видно, что влияя на параметр T мы можем регулировать устойчивость порога к шуму.

Оценка влияния параметров: Т

Уменьшая T, мы можем сделать γ_a устойчивее к шуму. Однако при $T \to L$, количество элементов в тестовых рядах для подсчета индекса неоднородности g сокращается, усиливая влияние шума на подсчет элементов d_n и приводит к усилению колебаний и увеличению $FPR(\gamma)$.

Оценка влияния параметров: L

Как было отмечено ранее, сходимость g_a и g достигается при достаточно больших L.

Изменяя параметр L, мы регулируем скорость возрастания кривой d_n . Таким образом, подстраивая параметр L мы можем определять \hat{Q} раньше момента Q+k.

Оценка влияния параметров: В

В целом, параметр B не влияет на устойчивость системы в силу предположении о наличии исторических данных и отсутствия влияния на переходный интервал d_n .

Дальнейшие планы

- lacksquare Доказать отсутствие зависимости от ψ_I в сумме по $I=1\dots K_2.$
- Исправить неточности в эксперименте со сравнением функций обнаружения неоднородности.
- Исследовать применимость описанной системы.

Литература:

Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC.