Mathematical analysis 3

Chapter 2 : Integral transformations
Part 2: Laplace transform

2023/2024

Course outline

Definition and properties of Laplace

Definition of Laplace transform

Definition

Let $t \mapsto f(t)$ be a function from \mathbb{R}^+ to \mathbb{R} . The Laplace transform of f, denoted by L(f) or $\mathcal{L}(f)$, is defined by:

$$L(f)(x) = \int_0^{+\infty} f(t)e^{-xt} dt.$$

Remark

- We also use the notation F to denote L(f). F is called the image of f and f is called the original of F.
- 2 The Laplace transform is defined in the same way for complex x.

Definition of Laplace transform

Example.

If U(t) = 1 for $t \ge 0$ and is zero for t < 0 (called the unit step function or Heaviside function), then the Laplace transform of U is defined if x > 0 and we have:

$$L(U)(x) = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}.$$

Existence

The function *F* only exists if the integral defining it is convergent.

Definition

A function f is said to be of exponential order at infinity if for sufficiently large t we have:

$$|f(t)| \le Me^{\rho t},$$

where $\rho \in \mathbb{R}$ and M > 0 are constants.

Practical remark

- f is of exponential order at infinity if and only if there exists $k \in \mathbb{R}$ such that $\lim_{t \to +\infty} e^{-kt} f(t) = 0$.
- 2 If the constants M and ρ exist, they are not unique.

Existence

Example:

Bounded functions (such as sine and cosine) are of exponential order at infinity. Indeed, if f is bounded by a constant C, then

$$|f(t)e^{-t}| \le Ce^{-t} \to 0$$
, as $t \to +\infty$.

Existence

Theorem

If f satisfies the following two conditions:

- f is piecewise continuous on every interval $[0,L] \subset [0,+\infty[$,
- f is of exponential order ρ at infinity,

then the Laplace transform of f exists for all $x > \rho$ and $\lim_{x \to +\infty} L(f)(x) = 0$.

Abscissa of convergence

Theorem

Suppose there exists $x \in \mathbb{R}$ such that $\int_0^{+\infty} f(t)e^{-xt} dt$ converges.

Then, for any $x_0 > x$, $\int_0^{+\infty} f(t)e^{-x_0t} dt$ also converges.

Theorem (Abscissa of convergence)

Let f be a function from \mathbb{R}^+ to \mathbb{R} that is continuous. Then, there exists a unique $\rho \in \mathbb{R}$ (called Abscissa of convergence) such that

$$x > \rho \Rightarrow \int_0^{+\infty} f(t)e^{-xt} dt$$
 converges (L(f) exists).

$$x < \rho \Rightarrow \int_0^{+\infty} f(t)e^{-xt} dt \ diverges \ (L(f) \ does \ not \ exist).$$

Examples

For f(t) = 0 for all t < 0

L'origine f en t	L'image $F = \mathcal{L}(f)$ en x	Conditions d'existence
1	1 - x	x > 0
t ⁿ	$\frac{\frac{x}{n!}}{\frac{x^{n+1}}{x^{n+1}}}$	x > 0
\sqrt{t}	$\frac{1}{2}\sqrt{\frac{\pi}{x^3}}$	x > 0
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{x}}$	x > 0
e ^{at}	$\frac{1}{x-a}$	x > a
te ^{at}	$\frac{1}{(x-a)^2}$	x > a
cos(at)	$\frac{x}{x^2+a^2}$	<i>x</i> > 0
sin(at)	$\frac{a}{x^2 + a^2}$	x > 0
ch(at)	$\frac{x}{x^2-a^2}$	x > a
sh(at)	$\frac{a}{x^2-a^2}$	x > a

Proposition (Linearity)

Let f and g be two causal functions admitting Laplace transforms L(f) and L(g) respectively, such that

- L(f) exists for $x > \rho_1$,
- L(g) exists for $x > \rho_2$.

Then, for any $\alpha, \beta \in \mathbb{R}$, we have

$$L(\alpha f + \beta g)(x) = \alpha L(f)(x) + \beta L(g)(x), \forall x > \max(\rho_1, \rho_2)$$

Example: Calculate the Laplace transform of the function

$$f(t) = 3\cos(t) - 2t.$$

We have

$$L(f)(x) = 3L(\cos(t))(x) - 2L(t)(x) = \frac{3x}{x^2 + 1} - \frac{2}{x^2}, \quad \forall x > 0.$$

Proposition (Laplace Transform of Translation)

For any $\alpha > 0$, we have $L(f(t-\alpha))(x) = e^{-\alpha x}F(x)$, for all $x > \rho$.

Example: Since
$$L(\sin(t))(x) = \frac{1}{x^2 + 1}$$
 for all $x > 0$, then

$$L(\sin(t-3))(x) = \frac{e^{-3x}}{x^2+1}$$
, for all $x > 0$

Proposition (Translated Laplace Transform)

For any $\alpha \in \mathbb{R}$, we have $L(e^{\alpha t}f(t))(x) = F(x-\alpha)$, for all $x > \rho + \alpha$.

Example: Since
$$L(\cos(t))(x) = \frac{x}{x^2 + 1}$$
 for all $x > 0$, then

$$L(e^{2t}\cos(t))(x) = \frac{x-2}{(x-2)^2+1}, \quad \forall x > 2$$

Proposition

For any $\alpha > 0$,

$$L(f(\alpha t))(x) = \frac{1}{\alpha}F(\frac{x}{\alpha}), \forall x > \alpha \rho$$

Example: Since $L(\sin(t))(x) = \frac{1}{x^2 + 1}$ for all x > 0, then

$$L(\sin(2t))(x) = \frac{2}{x^2 + 4}, \forall x > 0$$

. Since $L(\cos(t))(x) = \frac{x}{x^2 + 1}$ for all x > 0, then

$$L(\cos(3t))(x) = \frac{x}{x^2 + 9}, \forall x > 0$$

.

Proposition (Laplace Transform of the Derivative)

Let f be a function from \mathbb{R}^+ to \mathbb{R} such that

- f is piecewise continuous on each interval $[0,N] \subset \mathbb{R}^+$.
- \bullet f is of exponential order at the infinity.
- f differentiable on \mathbb{R}^+ .
- f' piecewise continuous on each interval $[0,N] \subset \mathbb{R}^+$

and if
$$L(f)(x) = F(x)$$
 for all $x > \rho$. Then

$$L(f'(t))(x) = xF(x) - f(0^+), \forall x > \rho$$

Proposition (Generalization)

Let f be a function from \mathbb{R}^+ to \mathbb{R} .

- For all $k \in \{0,...,n\}$, $f^{(k)}$ exists and is piecewise continuous on \mathbb{R}^+ .
- For all $k \in \{0, ..., n-1\}$, there exist M and $\rho \in \mathbb{R}$ such that $|f^{(k)}(t)| \leq Me^{\rho t}$ for t large enough.

Then, for all $x > \rho$, we have

$$L(f^{(n)}(t))(x) = x^n F(x) - x^{n-1} f(0^+) - \dots - x f^{(n-2)}(0^+) - f^{(n-1)}(0^+).$$

Proposition (Derivative of the Laplace Transform)

If $f: \mathbb{R}^+ \to \mathbb{R}$ such that L(f)(x) = F(x) for $x > \rho$, then F is C^{∞} on $]\rho, +\infty[$ and for all $n \in \mathbb{N}$ we have

$$F^{(n)}(x) = (-1)^n L(t^n f(t))(x), \quad \forall x > \rho.$$

Example. Calculate $L(t^2 \sin(t))$.

We set :
$$f(t) = \sin(t)$$
, then we have $F(x) = L(f(t)) = \frac{1}{x^2 + 1}$ for $x > 0$. So

$$L[t^2 \sin(t)] = (-1)^2 F''(x) = \left(\frac{1}{(x^2+1)}\right)'' \text{ for } x > 0.$$

$$L[t^2 \sin(t)] = \frac{6x^2 - 2}{(x^2 + 1)^3}$$
 for $x > 0$.

Proposition (Integration of the Laplace Transform)

If $f: \mathbb{R}^+ \to \mathbb{R}$ such that L(f)(x) = F(x) for $x > \rho$ and $\lim_{t \to 0^+} \frac{f(t)}{t}$ is finite,

$$\int_{x}^{\infty} F(s) \, ds = L\left(\frac{f(t)}{t}\right)(x), \forall x > \rho.$$

Proposition (Transform of the Primitive)

Let f be a function from \mathbb{R}^+ to \mathbb{R} such that L(f) = F for $x > \rho$. Then,

$$L\left(\int_0^t f(s) \, ds\right)(x) = \frac{F(x)}{x}, \forall x > \max(0, \rho).$$

Proposition

If f is a T-periodic function, defined, continuous, and bounded on \mathbb{R}^+ , then

$$L(f)(x) = \frac{\int_0^T f(t)e^{-xt}}{1 - e^{-xT}} dt, \forall x > \max(0, \rho).$$

Initial and final value

Proposition

Suppose f and f' are piecewise continuous on the interval [0,L] and of exponential order.

1) If f has a Laplace transform L(f) = F for $x > \rho$, then

$$\lim_{x \to +\infty} x L(f)(x) = \lim_{t \to 0} f(t).$$

2) If f has a Laplace transform L(f) = F for $x > \rho$ with $\rho < 0$, and $\lim_{t \to +\infty} f(t)$ exists, then

$$\lim_{x \to 0} x L(f)(x) = \lim_{t \to +\infty} f(t).$$

Laplace transform of the convolution product

Definition

The convolution product of two functions f and g is defined by:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(u)g(t - u) du$$

Proposition (Laplace Transform of the Convolution Product)

Let f and g be two functions from \mathbb{R}^+ to \mathbb{R} such that L(f) = F and L(g) = G respectively for $x > \rho_1$ and $x > \rho_2$ respectively. Then,

$$L(f * g)(x) = F(x)G(x), \forall x > \max(\rho_1, \rho_2)$$