

Practical Course: Modeling, Simulation, Optimization

Week 2

Daniël Veldman

Chair in Dynamics, Control, and Numerics, Friedrich-Alexander-University Erlangen-Nürnberg

Contents

- 2.A Review Exercise Week 1
- **2.B** Time-dependent problems
- 2.C Spatial discretization
- 2.D Temporal discretization
- 2.E Back to the spatial discretization

2.A Review Exercise Week 1

Exercise 1

Figure: The considered aluminum rod

Consider the steady-state temperature distribution in the aluminum rod in Figure 1 with a length of L=0.3 [m], a cross sectional area of $A_{\rm cs}=0.01$ [m²], and a thermal conductivity of k=237 [W/m/K]. Along the length of the rod, a constant heat load $Q(x)=Q_0\exp(-(x-\frac{1}{2}L)^2/a^2)$ [W/m] is applied. The parameters for the heat load are $Q_0=100$ [W/m] and a=0.1 [m].

The temperature increase w.r.t. a reference temperature of $T_0=293$ [K] is T(x). At the left end of the rod, the temperature is fixed at the reference temperature T_0 , i.e. T(0)=0. At the right end of the rod, the (outgoing) heat flow is proportional to the temperature increase, i.e. $A_{\rm cs}q(L)=hT(L)$ [W], where h=3 [W/K] is the cooling coefficient and the outgoing heat flux is $q(L)=-k\frac{{\rm d}T}{{\rm d}x}(L)$.

Another hint for problem a.

$$\frac{\partial \rho_u}{\partial t}(t,x) = -A \frac{\partial q}{\partial x}(t,x) + Q(t,x).$$

We again need constitutive relations to complete the model.

Fourier's law of heat conduction

$$q(t,x) = -k \frac{\partial T}{\partial x}(t,x).$$

The coefficient k [W/m/K] is the thermal conductivity and T(t,x) [K] is the temperature. 'Heat flows from locations with high temperatures to locations with low temperatures'

Internal energy

$$\rho_u(t,x) = cAT(t,x).$$

The coefficient c [J/K/m 3] heat capacity per unit length.

Part a: the BVP

Write down the boundary value problem for the temperature increase in the rod T(x).

Solution: 1-D conservation law and Fourier's law of heat conduction:

$$\frac{\partial \rho_u}{\partial t}(t,x) = -A \frac{\partial q}{\partial x}(t,x) + Q(x), \qquad q(t,x) = -k \frac{\partial T}{\partial x}(t,x).$$

Steady-state: $\frac{\partial \rho_u}{\partial t} = 0$.

The resulting BVP:

$$A_{cs}k\frac{\mathrm{d}^2T}{\mathrm{d}x^2}(x) + Q(x) = 0, \qquad Q(x) = Q_0 \exp\left(\frac{-(x - \frac{1}{2}L)^2}{a^2}\right).$$
$$T(0) = 0, \qquad A_{cs}k\frac{\mathrm{d}T}{\mathrm{d}x}(L) = -hT(L).$$

Part b: finite difference discretization

$$A_{cs}k\frac{\mathrm{d}^2T}{\mathrm{d}x^2} + Q(x) = 0, \qquad Q(x) = Q_0 \exp\left(\frac{-(x - \frac{1}{2}L)^2}{a^2}\right).$$

$$T(0) = 0, \qquad A_{cs}k\frac{\mathrm{d}T}{\mathrm{d}x}(L) = -hT(L).$$

$$\frac{A_{\mathrm{cs}}k}{\Delta x^2} \begin{bmatrix} 0 & \frac{\Delta x^2}{A_{\mathrm{cs}}k} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & & & \ddots & & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & & & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & & & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \frac{\Delta x}{2A_{\mathrm{cs}}k} & h\frac{\Delta x^2}{A_{\mathrm{cs}}k} & \frac{-\Delta x}{2A_{\mathrm{cs}}k} \end{bmatrix} \begin{bmatrix} T_0 \\ T_1 \\ T_2 \\ T_3 \\ \vdots \\ T_{N-2} \\ T_{N-1} \\ T_N \\ T_{N+1} \end{bmatrix} + \begin{bmatrix} 0 \\ Q_1 \\ Q_2 \\ Q_3 \\ \vdots \\ Q_{N-2} \\ Q_{N-1} \\ Q_N \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Part c: the analytic solution

Find a particular solution of the ODE:

$$T_{\text{part}}(x) = \frac{Q_0 a^2}{2A_{\text{cs}} k} \exp\left(\frac{-(x - \frac{1}{2}L)^2}{a^2}\right) + \frac{Q_0 a}{2A_{\text{cs}} k} \sqrt{\pi} (x - \frac{1}{2}L) \operatorname{erf}\left(\frac{x - \frac{1}{2}L}{a}\right),$$

where $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-y^2) \, dy$.

Homogeneous solution of the ODE $\frac{d^2T}{dx^2} = 0$ is given by $T_{\text{hom}}(x) = Ax + B$. Insert $T_{\text{part}}(x) + T_{\text{hom}}(x)$ into the BCs.

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} T(0) \\ A_{cs}k \frac{dT}{dx}(L) + hT(L) \end{bmatrix} = \begin{bmatrix} T_{part}(0) \\ A_{cs}k \frac{dT_{part}}{dx}(L) + hT_{part}(L) \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ A_{cs}k + hL & h \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$
$$\frac{dT_{part}}{dx}(x) = \frac{Q_0 a}{A_{cs}k} \frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\frac{x - \frac{1}{2}L}{a}\right).$$

This is a linear system from which A and B can be determined.

Resulting solution is thus $T(x) = T_{part}(x) + Ax + B$.

2.B Time-dependent problems

Motivating example: Diffusion of mass

$$\frac{\partial \rho}{\partial t}(t,x) = -\frac{\partial \phi}{\partial x}(t,x).$$

To complete the model, we need a *constitutive relation* that relates the mass flux $\phi(t,x)$ to the mass density $\rho(t,x)$.

We could for example use.

Fick's law

$$\phi(t,x) = -D\frac{\partial \rho}{\partial x}.$$

The coefficient D [m²/s] is called the diffusivity.

'Mass flows from locations with high concentrations to locations with low concentrations'

We then obtain

$$\frac{\partial \rho}{\partial t}(t,x) = D \frac{\partial^2 \rho}{\partial x^2}(t,x).$$

Motivating example: Heat conduction

$$\frac{\partial \rho_u}{\partial t}(t,x) = -A_{\rm cs} \frac{\partial q}{\partial x}(t,x) + Q(t,x).$$

We again need constitutive relations to complete the model.

Fourier's law of heat conduction

$$q(t,x) = -k \frac{\partial T}{\partial x}(t,x).$$

The coefficient k^* [W/m/K] is the thermal conductivity and T(t,x) [K] is the temperature. 'Heat flows from locations with high temperatures to locations with low temperatures'

Internal energy

$$\rho_u(t,x) = cA_{\rm cs}T(t,x).$$

The coefficient c [J/K/m 3] heat capacity per unit volume.

We thus obtain

$$cA_{\rm cs}\frac{\partial T}{\partial t}(t,x) = kA_{\rm cs}\frac{\partial^2 T}{\partial x^2}(t,x) + Q(t,x). \tag{1}$$

2.C Spatial discretization

Spatial discretization / Method of Lines (MOL) / Semi-discretization

Suppose we want to approximate the solution u(t,x) of the initial value problem

$$\frac{\partial u}{\partial t}(t,x) = \kappa \frac{\partial^2 u}{\partial x^2}(t,x) + f(t,x), \qquad (t,x) \in (0,T) \times (0,L),$$

$$u(t,0) = 0, \qquad \frac{\partial u}{\partial x}(t,L) = 0, \qquad u(0,x) = u_0(x).$$

Introduce an M-point grid in the interval [0,L] with a grid spacing $\Delta x = L/(M-1)$

Also introduce $f_m(t) = f(t, x_m)$ and the approximations $u_m(t) \approx u(t, x_m)$.

Finite difference discretization (implicit BCs):

$$\frac{du_m}{dt}(t) = \kappa \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + f_m(t), \qquad m = 1, 2, \dots, M,$$

$$u_1(t) = 0, \qquad \frac{u_{M+1}(t) - u_{M-1}(t)}{2\Delta x} = 0, \qquad u_m(0) = u_0(x_m).$$

Implicit or explicit implementation of the boundary conditions

Finite difference discretization (implicit BCs):

$$\frac{\mathrm{d}u_m}{\mathrm{d}t}(t) = \kappa \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + f_m(t), \qquad m = 1, 2, \dots, M,$$

$$u_1(t) = 0, \qquad \frac{u_{M+1}(t) - u_{M-1}(t)}{2\Delta x} = 0, \qquad u_m(0) = u_0(x_m).$$

This is a system of Diffferential Algebraic Equations (DAEs)

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{u}_1(t) \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1(t) \\ \mathbf{u}_2(t) \end{bmatrix} + \begin{bmatrix} \mathbf{f}(t) \\ 0 \end{bmatrix}.$$

Implicit or explicit implementation of the boundary conditions

Finite difference discretization (implicit BCs):

$$\frac{\mathrm{d}u_m}{\mathrm{d}t}(t) = \kappa \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + f_m(t), \qquad m = 1, 2, \dots, M,$$

$$u_1(t) = 0, \qquad \frac{u_{M+1}(t) - u_{M-1}(t)}{2\Delta x} = 0, \qquad u_m(0) = u_0(x_m).$$

This is a system of Diffferential Algebraic Equations (DAEs)

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{u}_1(t) \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1(t) \\ \mathbf{u}_2(t) \end{bmatrix} + \begin{bmatrix} \mathbf{f}(t) \\ 0 \end{bmatrix}.$$

Finite difference discretization (explicit BCs):

$$\frac{\mathrm{d}u_m}{\mathrm{d}t}(t) = \kappa \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + f_m(t), \qquad m = 2, 3, \dots, M - 1,$$

$$\frac{\mathrm{d}u_M}{\mathrm{d}t}(t) = \kappa \frac{-2u_M(t) + 2u_{M-1}(t)}{\Delta x^2} + f_M(t), \qquad u_m(0) = u_0(x_m),$$

where we should remember that $u_1(t) = 0$.

This is a system of Ordinary Differential Equations (ODEs) for the free DOFs $\mathbf{u}_{\mathrm{f}}(t)$

$$\dot{\mathbf{u}}_{\mathrm{f}}(t) = \mathbf{A}_{\mathrm{ff}}\mathbf{u}_{\mathrm{f}}(t) + \mathbf{f}_{\mathrm{f}}(t).$$

The explicit implementation of the BCs is preferred in time-dependent problems.

2.D Temporal discretization

Consider the following system of linear ODEs:

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = \mathbf{A}\mathbf{u}(t) + \mathbf{f}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0.$$

Consider the following system of linear ODEs:

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = \mathbf{A}\mathbf{u}(t) + \mathbf{f}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0.$$

- ▶ Choose a uniform time grid t_0, t_1, t_2, \ldots with $t_k = k\Delta t$.
- ▶ Define $\mathbf{f}^k := \mathbf{f}(t_k)$ and introduce the approximations $\mathbf{u}^k \approx \mathbf{u}(t_k)$.

Consider the following system of linear ODEs:

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = \mathbf{A}\mathbf{u}(t) + \mathbf{f}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0.$$

- ▶ Choose a uniform time grid t_0, t_1, t_2, \ldots with $t_k = k\Delta t$.
- ▶ Define $\mathbf{f}^k := \mathbf{f}(t_k)$ and introduce the approximations $\mathbf{u}^k \approx \mathbf{u}(t_k)$.

By Taylor's theorem

$$\mathbf{u}(t_{k+1}) = \mathbf{u}(t_k + \Delta t) = \mathbf{u}(t_k) + \Delta t \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_k) + \frac{\Delta t^2}{2} \frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}t^2}(\tau),$$

for some $\tau \in [t_k, t_{k+1}]$. Rearranging, we find

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_k) + O(\Delta t).$$

Consider the following system of linear ODEs:

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = \mathbf{A}\mathbf{u}(t) + \mathbf{f}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0.$$

- ▶ Choose a uniform time grid t_0, t_1, t_2, \ldots with $t_k = k\Delta t$.
- ▶ Define $\mathbf{f}^k := \mathbf{f}(t_k)$ and introduce the approximations $\mathbf{u}^k \approx \mathbf{u}(t_k)$.

By Taylor's theorem

$$\mathbf{u}(t_{k+1}) = \mathbf{u}(t_k + \Delta t) = \mathbf{u}(t_k) + \Delta t \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_k) + \frac{\Delta t^2}{2} \frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}t^2}(\tau),$$

for some $\tau \in [t_k, t_{k+1}]$. Rearranging, we find

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_k) + O(\Delta t).$$

We thus find the following scheme.

Forward Euler

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{A}\mathbf{u}^k + \mathbf{f}^k, \qquad \mathbf{u}^0 = \mathbf{u_0}.$$

Backward Euler

Instead of making a Taylor series expansion of $\mathbf{u}(t_{k+1})$ around $t=t_k$, we can also expand $\mathbf{u}(t_k)$ in a Taylor series around $t=t_{k+1}$:

$$\mathbf{u}(t_k) = \mathbf{u}(t_{k+1} - \Delta t) = \mathbf{u}(t_{k+1}) - \Delta t \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) + \frac{\Delta t^2}{2} \frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}t^2}(\tau),$$

for some $\tau \in [t_k, t_{k+1}]$. Rearranging, we find

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} + O(\Delta t).$$

Backward Euler

Instead of making a Taylor series expansion of $\mathbf{u}(t_{k+1})$ around $t=t_k$, we can also expand $\mathbf{u}(t_k)$ in a Taylor series around $t=t_{k+1}$:

$$\mathbf{u}(t_k) = \mathbf{u}(t_{k+1} - \Delta t) = \mathbf{u}(t_{k+1}) - \Delta t \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) + \frac{\Delta t^2}{2} \frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}t^2}(\tau),$$

for some $\tau \in [t_k, t_{k+1}]$. Rearranging, we find

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} + O(\Delta t).$$

We thus find the following scheme.

Backward Euler

$$rac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{A}\mathbf{u}^{k+1} + \mathbf{f}^{k+1}, \qquad \qquad \mathbf{u}^0 = \mathbf{u}_0.$$

Backward Euler

Instead of making a Taylor series expansion of $\mathbf{u}(t_{k+1})$ around $t=t_k$, we can also expand $\mathbf{u}(t_k)$ in a Taylor series around $t=t_{k+1}$:

$$\mathbf{u}(t_k) = \mathbf{u}(t_{k+1} - \Delta t) = \mathbf{u}(t_{k+1}) - \Delta t \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) + \frac{\Delta t^2}{2} \frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}t^2}(\tau),$$

for some $\tau \in [t_k, t_{k+1}]$. Rearranging, we find

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} + O(\Delta t).$$

We thus find the following scheme.

Backward Euler

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{A}\mathbf{u}^{k+1} + \mathbf{f}^{k+1}, \qquad \mathbf{u}^0 = \mathbf{u}_0.$$

Updates with forward and backward Euler:

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \Delta t (\mathbf{A} \mathbf{u}^k + \mathbf{f}^k), \qquad \mathbf{u}^{k+1} = (\mathbf{I} - \Delta t \mathbf{A})^{-1} (\mathbf{u}^k + \Delta t \mathbf{f}^{k+1}).$$

In backward Euler we need to solve a system of linear equations in every time step. Forward Euler is an *explicit scheme*, backward Euler is an *implicit scheme*.

θ -schemes

From the previous two slides, we have

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_k) + O(\Delta t),$$

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) + O(\Delta t).$$

Take a convex combination (with $\theta \in [0, 1]$)

$$(1 - \theta + \theta) \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = (1 - \theta) \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_k) + \theta \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t_{k+1}) + O(\Delta t).$$

θ -scheme

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = (1 - \theta) \left(\mathbf{A} \mathbf{u}^k + \mathbf{f}^k \right) + \theta \left(\mathbf{A} \mathbf{u}^{k+1} + \mathbf{f}^{k+1} \right), \qquad \mathbf{u}^0 = \mathbf{u}_0.$$

For $\theta = 1/2$, we find the Crank-Nicolson scheme.

Crank-Nicolson

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \frac{1}{2} \left(\mathbf{A} \mathbf{u}^k + \mathbf{f}^k \right) + \frac{1}{2} \left(\mathbf{A} \mathbf{u}^{k+1} + \mathbf{f}^{k+1} \right), \qquad \mathbf{u}^0 = \mathbf{u}_0.$$

Convergence analysis

Two ingredients:

1) ODE with continuous solution u(t).

$$F(\mathbf{u}(t)) = 0.$$

2) Discrete numerical scheme

$$\mathbf{F}_{\Delta t}((\mathbf{u}^k)_k) = 0.$$

Theorem (Lax)

The numerical scheme is convergent if it is both

- consistent and
- > stable.

Definition (Consistent numerical scheme)

The numerical scheme is consistent iff $\mathbf{F}_{\Delta t}((\mathbf{u}(t_k))_k) = O((\Delta t)^p)$ for some p > 0.

Definition (Stable numerical scheme)

The numerical scheme is stable iff there exists a constant K independent of Δt such that $\|\mathbf{u}^k - \mathbf{u}(t_k)\| \le K \|\mathbf{F}_{\Delta t}((\mathbf{u}(t_k))_k)\|$

Consistency

The computations on the previous slide already show that

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = (1 - \theta) \left(\mathbf{A}\mathbf{u}(t_k) + \mathbf{f}^k \right) + \theta \left(\mathbf{A}\mathbf{u}(t_{k+1}) + \mathbf{f}^{k+1} \right) + O(\Delta t).$$

But for the Crank-Nicolson scheme ($\theta = \frac{1}{2}$) we can do better

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = \frac{1}{2} \left(\mathbf{A} \mathbf{u}(t_k) + \mathbf{f}^k \right) + \frac{1}{2} \left(\mathbf{A} \mathbf{u}(t_{k+1}) + \mathbf{f}^{k+1} \right) + O((\Delta t)^2).$$

(Exercise: check this using Taylor series expansions)

Proving stability (1/2)

We have

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = (1 - \theta) \left(\mathbf{A}\mathbf{u}(t_k) + \mathbf{f}^k \right) + \theta \left(\mathbf{A}\mathbf{u}(t_{k+1}) + \mathbf{f}^{k+1} \right) + \mathbf{r}_k.$$

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = (1 - \theta) \left(\mathbf{A} \mathbf{u}^k + \mathbf{f}^k \right) + \theta \left(\mathbf{A} \mathbf{u}^{k+1} + \mathbf{f}^{k+1} \right), \qquad \mathbf{u}(t_0) = \mathbf{u}^0 = \mathbf{u}_0,$$

where the residues \mathbf{r}_k are $O(\Delta t)$ (or $O((\Delta t)^2)$ if $\theta = \frac{1}{2}$).

Proving stability (1/2)

We have

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = (1 - \theta) \left(\mathbf{A}\mathbf{u}(t_k) + \mathbf{f}^k \right) + \theta \left(\mathbf{A}\mathbf{u}(t_{k+1}) + \mathbf{f}^{k+1} \right) + \mathbf{r}_k.$$

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = (1 - \theta) \left(\mathbf{A} \mathbf{u}^k + \mathbf{f}^k \right) + \theta \left(\mathbf{A} \mathbf{u}^{k+1} + \mathbf{f}^{k+1} \right), \qquad \mathbf{u}(t_0) = \mathbf{u}^0 = \mathbf{u}_0,$$

where the residues \mathbf{r}_k are $O(\Delta t)$ (or $O((\Delta t)^2)$ if $\theta = \frac{1}{2}$).

Introduce $e^k := u^k - u(t_k)$ and subtract the first equation from the second:

$$\frac{\mathbf{e}^{k+1} - \mathbf{e}^k}{\Delta t} = (1 - \theta)\mathbf{A}\mathbf{e}^k + \theta\mathbf{A}\mathbf{e}^{k+1} - \mathbf{r}_k, \qquad \mathbf{e}^0 = 0.$$

Proving stability (1/2)

We have

$$\frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} = (1 - \theta) \left(\mathbf{A}\mathbf{u}(t_k) + \mathbf{f}^k \right) + \theta \left(\mathbf{A}\mathbf{u}(t_{k+1}) + \mathbf{f}^{k+1} \right) + \mathbf{r}_k.$$

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = (1 - \theta) \left(\mathbf{A} \mathbf{u}^k + \mathbf{f}^k \right) + \theta \left(\mathbf{A} \mathbf{u}^{k+1} + \mathbf{f}^{k+1} \right), \qquad \mathbf{u}(t_0) = \mathbf{u}^0 = \mathbf{u}_0,$$

where the residues \mathbf{r}_k are $O(\Delta t)$ (or $O((\Delta t)^2)$ if $\theta = \frac{1}{2}$).

Introduce $e^k := u^k - u(t_k)$ and subtract the first equation from the second:

$$\frac{\mathbf{e}^{k+1} - \mathbf{e}^k}{\Delta t} = (1 - \theta)\mathbf{A}\mathbf{e}^k + \theta\mathbf{A}\mathbf{e}^{k+1} - \mathbf{r}_k, \qquad \mathbf{e}^0 = 0.$$

Rearranging shows that

$$(\mathbf{I} - \theta \Delta t \mathbf{A}) \mathbf{e}^{k+1} = (1 - \theta) \Delta t \mathbf{A} \mathbf{e}^k - \mathbf{r}_k$$

 $\mathbf{e}^{k+1} = \mathbf{B} \mathbf{e}^k - \Delta t \mathbf{b}_k, \qquad \mathbf{e}^0 = 0,$

where

$$\mathbf{B} = (\mathbf{I} - \theta \Delta t \mathbf{A})^{-1} (\mathbf{I} + (1 - \theta) \Delta t \mathbf{A}), \qquad \mathbf{b}_k = (\mathbf{I} - \theta \Delta t \mathbf{A})^{-1} \mathbf{r}_k.$$

Note that $\mathbf{b}_k = O(\Delta t)$ (or $O((\Delta t)^2)$ if $\theta = 1/2$).

Proving stability (2/2)

$$\mathbf{e}^{k+1} = \mathbf{B}\mathbf{e}^k - \Delta t \mathbf{b}_k, \qquad \mathbf{e}^0 = 0,$$

When $\|\mathbf{B}\| > 1$, the scheme is clearly unstable.

Assume that $\|\mathbf{B}\| \leq 1$, then

$$|\mathbf{e}^{k+1}| \le |\mathbf{e}^k| + \Delta t |\mathbf{b}_k|, \quad \Rightarrow \quad |\mathbf{e}^k| \le \Delta t \sum_{k=0}^{k-1} |\mathbf{b}_k| \le Ck(\Delta t)^2,$$

where it was used that \mathbf{b}_k is $O(\Delta t)$, i.e. there exists a C such that $|\mathbf{b}_k| \leq C\Delta t$.

Proving stability (2/2)

$$\mathbf{e}^{k+1} = \mathbf{B}\mathbf{e}^k - \Delta t \mathbf{b}_k, \qquad \mathbf{e}^0 = 0,$$

When $\|\mathbf{B}\| > 1$, the scheme is clearly unstable.

Assume that $\|\mathbf{B}\| \leq 1$, then

$$|\mathbf{e}^{k+1}| \le |\mathbf{e}^k| + \Delta t |\mathbf{b}_k|, \quad \Rightarrow \quad |\mathbf{e}^k| \le \Delta t \sum_{k=0}^{k-1} |\mathbf{b}_k| \le Ck(\Delta t)^2,$$

where it was used that \mathbf{b}_k is $O(\Delta t)$, i.e. there exists a C such that $|\mathbf{b}_k| \leq C\Delta t$.

So the error after a *fixed number of* k *time-steps* is of $O((\Delta t)^2)$. However, the error at a fixed time-instant T, i.e. the error after $K = T/\Delta t$ is

$$|\mathbf{e}^K| = CK(\Delta t)^2 = CT\Delta t = O(\Delta t).$$

Stability regions

Recall that

$$\mathbf{B} = (\mathbf{I} - \theta \Delta t \mathbf{A})^{-1} (\mathbf{I} + (1 - \theta) \Delta t \mathbf{A}).$$

Suppose that v is an eigenvalue of A, i.e. that $Av = \lambda v$. Then also

$$\mathbf{B}\mathbf{v} = \frac{1 + (1 - \theta)\lambda \Delta t}{1 - \theta \lambda \Delta t} \mathbf{v}.$$

Stability regions

Recall that

$$\mathbf{B} = (\mathbf{I} - \theta \Delta t \mathbf{A})^{-1} (\mathbf{I} + (1 - \theta) \Delta t \mathbf{A}).$$

Suppose that v is an eigenvalue of A, i.e. that $Av = \lambda v$. Then also

$$\mathbf{B}\mathbf{v} = \frac{1 + (1 - \theta)\lambda \Delta t}{1 - \theta \lambda \Delta t} \mathbf{v}.$$

The scheme is thus stable when

$$\left| \frac{1 + (1 - \theta)\lambda \Delta t}{1 - \theta \lambda \Delta t} \right| \le 1,$$
 for all $\lambda \in \sigma(\mathbf{A})$.

Forward Euler (
$$\theta = 0$$
) Crank-Nicolson ($\theta = \frac{1}{2}$)

Backward Euler ($\theta = 1$ **)**

$$|1 + \lambda \Delta t| \le 1$$

$$|1 + \frac{1}{2}\lambda \Delta t| \le |1 - \frac{1}{2}\lambda \Delta t|$$

$$|1 - \lambda \Delta t| \ge 1$$

Summary

$$\frac{d\mathbf{u}}{dt}(t) = \mathbf{A}\mathbf{u}(t) + \mathbf{f}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0.$$

θ -scheme

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = (1 - \theta) \left(\mathbf{A} \mathbf{u}^k + \mathbf{f}^k \right) + \theta \left(\mathbf{A} \mathbf{u}^{k+1} + \mathbf{f}^{k+1} \right), \qquad \mathbf{u}^0 = \mathbf{u}_0.$$

The scheme is stable iff

$$|1 + (1 - \theta)\lambda \Delta t| \le |1 - \theta\lambda \Delta t|,$$
 for all $\lambda \in \sigma(\mathbf{A})$.

Forward Euler (
$$\theta=0$$
) Crank-Nicolson ($\theta=\frac{1}{2}$) Backward Euler ($\theta=1$)

$$|1 + \lambda \Delta t| \le 1$$

$$|1 + \frac{1}{2}\lambda \Delta t| \le |1 - \frac{1}{2}\lambda \Delta t|$$

$$|1 - \lambda \Delta t| \ge 1$$

2.E Back to the spatial discretization

Returning to our original problem

Suppose we want to approximate the solution u(t,x) of the initial value problem

$$\frac{\partial u}{\partial t}(t,x) = \kappa \frac{\partial^2 u}{\partial x^2}(t,x) + f(t,x), \qquad (t,x) \in (0,T) \times (0,L),$$
$$u(t,0) = 0, \qquad \frac{\partial u}{\partial x}(t,L) = 0, \qquad u(0,x) = u_0(x).$$

Introduce an M-point grid in the interval [0, L] with a grid spacing $\Delta x = L/(M-1)$

Also introduce $f_m(t) = f(t, x_m)$ and the approximation $u_m(t) \approx u(t, x_m)$. Finite difference discretization (explicit BCs):

$$\frac{\mathrm{d}u_m}{\mathrm{d}t}(t) = \kappa \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + f_m(t), \qquad m = 2, 3, \dots, M - 1,$$

$$\frac{\mathrm{d}u_M}{\mathrm{d}t}(t) = \kappa \frac{-2u_M(t) + 2u_{M-1}(t)}{\Delta x^2} + f_M(t), \qquad u_m(0) = u_0(x_m),$$

where we should remember that $u_1(t) = 0$.

Returning to our original problem

Finite difference discretization (explicit BCs):

$$\frac{du_m}{dt}(t) = \kappa \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + f_m(t), \qquad m = 2, 3, \dots, M - 1,
\frac{du_M}{dt}(t) = \kappa \frac{-2u_M(t) + 2u_{M-1}(t)}{\Delta x^2} + f_M(t), \qquad u_m(0) = u_0(x_m),$$

where we should remember that $u_1(t) = 0$.

This is a system of Ordinary Diffferential Equations (ODEs) for the free DOFs $\mathbf{u}_{\mathrm{f}}(t)$

$$\dot{\mathbf{u}}_{\mathrm{f}}(t) = \mathbf{A}_{\mathrm{ff}}\mathbf{u}_{\mathrm{f}}(t) + \mathbf{f}_{\mathrm{f}}(t).$$

$$\mathbf{A}_{\mathrm{ff}} = \frac{\kappa}{\Delta x^2} \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & & -2 & 1 & 0 \\ 0 & 0 & 0 & & 1 & -2 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 2 & -2 \end{bmatrix}.$$

Note: $A_{\rm ff}$ depends on Δx ,

The stability of the numerical scheme may thus depend on Δt and Δx !

A first observation

Claim: All eigenvalues of ${\bf A}_{\rm ff}$ are nonpositive.

Conclusion:

The Crank-Nicolson and Backward Euler scheme are stable (for all Δx and Δt).

What about Forward Euler?

In the lecture next week, we will see how we can prove that

$$\sigma(\mathbf{A}_{\mathrm{ff}}) \subset \left[\frac{-4\kappa}{(\Delta x)^2}, 0\right]$$

The Forward Euler scheme is stable when

Forward Euler ($\theta = 0$)

$$|1 + \lambda \Delta t| \le 1$$

$$\left|1 + \frac{-4\kappa}{(\Delta x)^2} \Delta t\right| \le 1$$

$$1 + \frac{-4\kappa}{(\Delta x)^2} \Delta t \le 1, \quad \text{and} \quad -\left(1 + \frac{-4\kappa}{(\Delta x)^2} \Delta t\right) \le 1$$
$$\frac{-4\kappa}{(\Delta x)^2} \Delta t \le 0, \quad \text{and} \quad \frac{4\kappa}{(\Delta x)^2} \Delta t \le 2$$

Conclusion:

The Forward Euler scheme is stable when

$$\Delta t \le \frac{1}{2\kappa} (\Delta x)^2$$

A nice trick for Finite Differences with Forward Euler

We consider

$$\frac{\partial u}{\partial t}(t,x) = \kappa \frac{\partial u^2}{\partial x^2}(t,x).$$

Finite differences+Forward Euler:

$$\frac{u_m^{k+1} - u_m^k}{\Delta t} = \kappa \frac{u_{m+1}^k - 2u_m^k + u_{m-1}^k}{(\Delta x)^2}$$

This scheme is of $O(\Delta t + (\Delta x)^2)$.

However, when we check the consistency error we see that

$$\frac{u(t_{k+1}, x_m) - u(t_k, x_m)}{\Delta t} = \frac{\partial u}{\partial t}(t_k, x_m) + \frac{\Delta t}{2} \frac{\partial^2 u}{\partial t^2}(t_k, x_m) + O((\Delta t)^2)$$

$$\kappa \frac{u(t_k, x_{m+1}) - 2u(t_k, x_m) + u(t_k, x_{m-1})}{(\Delta x)^2} = \kappa \frac{\partial^2 u}{\partial x^2}(t_k, x_m) + \kappa \frac{(\Delta x)^2}{12} \frac{\partial^4 u}{\partial x^4}(t_k, x_m) + O((\Delta x)^4)$$

Note that $\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial t^2}(t_k, x_m) = \kappa^2 \frac{\partial^4 u}{\partial x^4}(t_k, x_m)$. When $\Delta t = \frac{1}{6\kappa}(\Delta x)^2$ we get $O((\Delta t)^2 + (\Delta x)^4)!$ (But you need to discretize the BCs with the same rates...)