$N(1710) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1710) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1670 to 1770 (≈ 1720) OUR ESTI	MATE			
1690 ± 15	SOKHOYAN	15A	DPWA	Multichannel
1770± 5±2	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1690	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1698	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
1690 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1690 ± 15	GUTZ	14	DPWA	Multichannel
1670	SHKLYAR	13	DPWA	Multichannel
1687 ± 17	ANISOVICH	12A	DPWA	Multichannel
1644	SHRESTHA	12A	DPWA	Multichannel
1711 ± 15	² BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
1679	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 380 (≈ 230) OUR ESTIMA	TE			
170±20	SOKHOYAN	15A	DPWA	Multichannel
98± 8±5	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
200	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
88	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
80 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
170 ± 20	GUTZ	14	DPWA	Multichannel
159	SHKLYAR	13	DPWA	Multichannel
200 ± 25	ANISOVICH	12A	DPWA	Multichannel
104	SHRESTHA	12A	DPWA	Multichannel
174 ± 16	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
132	VRANA	00	DPWA	Multichannel

N(1710) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
5 to 15 (≈ 8) OUR ESTIMATE				
6 ± 3	SOKHOYAN	15A	DPWA	Multichannel
$5\!\pm\!1\!\pm\!1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
15	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
9	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
8 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
			_	
HTTP://PDG.LBL.GOV	Page 1		Creat	ed: 5/30/2017 17:20

•	• •	We do	not use	the	following	data	for	averages.	fits	limits	etc	•	•	•
•	•	VVC GO	HOL USC	LIIC	TOHOWHILE	uata	101	avciagos,	1113,	111111111111111111111111111111111111111	CLC.	•	•	•

6 ± 3	GUTZ	14	DPWA Multichannel
11	SHKLYAR	13	DPWA Multichannel
6 ± 4	ANISOVICH	12A	DPWA Multichannel
24	² BATINIC	10	DPWA $\pi N \rightarrow N \pi$, $N \eta$

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT
130 ± 35	SOKHOYAN	15A	DPWA	Multichannel
$-104\pm 7\pm 3$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-167	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
175 ± 35	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
120 ± 45	GUTZ	14	DPWA	Multichannel
9	SHKLYAR	13	DPWA	Multichannel
120 ± 70	ANISOVICH	12A	DPWA	Multichannel
20	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

N(1710) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in N $\pi \to N$ (1710) $\to N \eta$

MODULUS (%)	PHASE (°)	DOCUMENT ID	TECN	COMMENT
12 ± 4	0 ± 45	ANISOVICH 12	A DPWA	Multichannel

Normalized residue in $N\pi \to N(1710) \to \Lambda K$

MODULUS (%)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
17+6	-110 + 20	ANISOVICH	12A	DPWA	Multichannel

Normalized residue in $N\pi \rightarrow N(1710) \rightarrow N(1535)\pi$

MODULUS (%)	PHASE (°)	DOCUMENT ID	TECN	COMMENT
10±4	140 ± 40	GUTZ 14	DPWA	Multichannel

N(1710) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1680 to 1740 (≈ 1710) OUR ESTI	MATE			
1715 ± 20	SOKHOYAN	15A	DPWA	Multichannel
1737 ± 17	SHKLYAR	13	DPWA	Multichannel
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1723± 9	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1715 ± 20	GUTZ	14	DPWA	Multichannel
1710 ± 20	ANISOVICH	12A	DPWA	Multichannel
1662± 7	SHRESTHA	12A	DPWA	Multichannel
1729 ± 16	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1752± 3	PENNER	02C	DPWA	Multichannel
1699 ± 65	VRANA	00	DPWA	Multichannel

N(1710) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 250 (≈ 100) OUR ESTIMA	TE			
175 ± 15	SOKHOYAN	15A	DPWA	Multichannel
368 ± 120	SHKLYAR	13	DPWA	Multichannel
93± 30	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
90± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
120 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
175 ± 15	GUTZ	14	DPWA	Multichannel
200± 18	ANISOVICH	12A	DPWA	Multichannel
116 ± 17	SHRESTHA	12A	DPWA	Multichannel
180± 17	² BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
386 ± 59	PENNER	02 C	DPWA	Multichannel
143±100	VRANA	00	DPWA	Multichannel

N(1710) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	5–20 %
Γ_2	$N\eta$	10–50 %
Γ_3	N ω	1–5 %
Γ_4	ΛK	5–25 %
Γ_5	ΣK	seen
Γ_6	$N\pi\pi$	seen
Γ_7	$\Delta(1232)\pi$	
Γ ₈	$arDelta(1232)\pi$, $ extit{P} ext{-wave}$	seen
Γ_9	$N(1535)\pi$	9–21 %
Γ_{10}	$N \rho$	
Γ_{11}	$N\rho$, $S=1/2$, P -wave	seen
Γ_{12}	$ ho\gamma$, helicity $=1/2$	0.002-0.08 %
Γ ₁₃	$n\gamma$, helicity=1/2	0.0-0.02%

N(1710) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{ ext{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5± 3	SOKHOYAN	15A	DPWA	Multichannel	
2± 2	SHKLYAR	13	PWA	Multichannel	
20± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
12± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	

• • • We do not use the following of	lata for averages	, fits,	limits, e	tc. • • •	
5± 3	GUTZ	14	DPWA	Multichannel	
5± 4	ANISOVICH	12A	DPWA	Multichannel	
15± 4	SHRESTHA	12A	DPWA	Multichannel	
22 ± 24	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
14± 8	PENNER	02 C		Multichannel	
27 ± 13	VRANA	00	DPWA	Multichannel	
$\Gamma(N\eta)/\Gamma_{\text{total}}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10 to 50 OUR ESTIMATE					
45± 4	SHKLYAR	13		Multichannel	
17 ± 10	ANISOVICH			Multichannel	
• • We do not use the following of		, fits,	limits, e	tc. • • •	
11± 7	SHRESTHA			Multichannel	
	BATINIC	10		$\pi N \rightarrow N\pi, N\eta$	
$36\pm 11 \\ 6\pm 1$	PENNER VRANA	02C		Multichannel Multichannel	
0± 1	VICANA	00	DEWA	Multichannei	
$\Gamma(N\omega)/\Gamma_{ ext{total}}$					Γ_3/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
2±2	DENISENKO	16	DPWA	Multichannel	
3±2	SHKLYAR	13		Multichannel	
• • • We do not use the following of	lata for averages	, fits,	limits, e	tc. • • •	
13 ± 2	PENNER	02 C	DPWA	Multichannel	
$\Gamma(\Lambda K)/\Gamma_{\text{total}}$					Γ ₄ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 25 OUR ESTIMATE					
23± 7	ANISOVICH			Multichannel	
5± 3	SHKLYAR	05		Multichannel	
• • We do not use the following of					
8± 4	SHRESTHA			Multichannel	
5± 2	PENNER VRANA			Multichannel	
10 ± 10	VKANA	00	DPWA	Multichannel	
$\Gamma(\Sigma K)/\Gamma_{\text{total}}$					Γ_5/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	J ,
• • We do not use the following of			limits, e	tc. • • •	
7±7	PENNER			Multichannel	
1 _ 1	LININEIX	02C	DIVVA	Multichamilei	
$\Gamma(\Delta(1232)\pi$, <i>P</i> -wave $)/\Gamma_{total}$					Γ_8/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	lata for averages	, fits,	limits, e	tc. • • •	
6 ± 3	SHRESTHA	12A		Multichannel	
39±8	VRANA	00	DPWA	Multichannel	

$\Gamma(N(1535)\pi)/\Gamma_{\text{total}}$					٦/و٦
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
15 ± 6	GUTZ	14	DPWA	Multichannel	
$\Gamma(N\rho, S=1/2, P-wave)/\Gamma_{total}$					Γ_{11}/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
17±6	SHRESTHA	12A	DPWA	Multichannel	
17 ± 1	VRANA	00	DPWA	Multichannel	

N(1710) PHOTON DECAY AMPLITUDES AT THE POLE

$N(1710) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID	TECN
$0.028 ^{+ 0.009}_{- 0.002}$	103^{+20}_{-6}	ROENCHEN 14	DPWA

N(1710) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1710) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.050 ± 0.010	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following of	lata for averages	s, fits,	limits, e	tc. • • •
$0.05\ \pm0.01$	GUTZ	14	DPWA	Multichannel
-0.050 ± 0.001	SHKLYAR	13	DPWA	Multichannel
$0.052\!\pm\!0.015$	ANISOVICH	12A	DPWA	Multichannel
$-0.008\!\pm\!0.003$	SHRESTHA	12A	DPWA	Multichannel
0.044	PENNER	02 D	DPWA	Multichannel

$N(1710) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.040 ± 0.020	ANISOVICH	13 B	DPWA	Multichannel
• • • We do not use the following of	data for averages	s, fits,	limits, e	tc. • • •
$0.017\!\pm\!0.003$	SHRESTHA	12A	DPWA	Multichannel
-0.024	PENNER	02 D	DPWA	Multichannel

N(1710) FOOTNOTES

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.

 $^{^2\,\}mathrm{BATINIC}$ 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

DENISENKO	16	PL B755 97	I. Denisenko et al.	
SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan et al.	(CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz et al.	CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen et al.	,
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mosel	(GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ŻAGR)
SHKLYAR	05	PR C72 015210	V. Shklyar, H. Lenske, U. Mosel	`(GIES)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	` (KARL)
CUTKOSKY	90	PR D42 235	R.E. Cutkosky, S. Wang	`(CMU)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	` (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
				, ,