Semana 1

- En la primera semana se sugiere resolver los ejercicios 1 a 9 de la Guía 1.
- Se sugiere antes de resolver los ejercicios ver los videos de YouTube de los temas coorrespondientes así como también leer la bibliografía recomendada y el material teórico subido en el campus del curso.
- A continuación se presentan algunos ejercicios resueltos y algunas observaciones para resolver los ejercicios correspondientes a la semana 1. Los ejercicios propuestos que no están en la guía (pero que se relacionan con los mismos) no tienen numeración.

Espacios vectoriales

Ejemplo de espacio vectorial Sea $I \subseteq \mathbb{R}$ un intervalo y $\mathcal{C}(I) = \{f : I \to \mathbb{R} : f \text{ es continua}\}$. En $\mathcal{C}(I)$ definimos la operación + como

$$(f+g)(x) = f(x) + g(x), f, g \in \mathcal{C}(I), x \in I.$$

Para el cuerpo de escalares $\mathbb{K} = \mathbb{R}$ definimos la acción de \mathbb{R} en $\mathcal{C}(I)$ como

$$(\alpha \cdot f)(x) = \alpha f(x), \ f \in \mathcal{C}(I), x \in I.$$

Ejercicio Demostar que $(\mathcal{C}(I), +, \mathbb{R}, \cdot)$ es un \mathbb{R} -espacio vectorial.

Antes de comenzar el ejercicio, dado que vamos a trabajar con igualdad de funciones, repasemos qué significa eso. Supongamos que tenemos $f,g:I\to\mathbb{R}$ (es decir dos funciones definidas en un intervalo $I\subseteq\mathbb{R}$ que toman valores en \mathbb{R}). Entonces

$$f = g$$
 si y sólo si $f(x) = g(x)$ para todo $x \in I$.

Por ejemplo, si definimos $f,g:\mathbb{R}\to\mathbb{R}$ con $f(x)=\begin{cases} 13 \text{ si } x=0\\ x \text{ si } x\neq 0 \end{cases}$ y g(x)=x. Entonces $f\neq g$ simplemente porque $f(0)\neq g(0)$. Meditar un poco sobre este ejemplo y sobre qué implica la igualdad de funciones.

Dem. Vamos a verificar que se cumplen los axiomas de los espacios vectoriales.

Observemos que $\mathcal{C}(I)$ es un conjunto no vacío. Por ejemplo si definimos la función $\mathbf{0}: I \to \mathbb{R}$ como $\mathbf{0}(x) = 0$, para todo $x \in I$. Claramente $\mathbf{0} \in \mathcal{C}(I)$.

Ax. 1: Veamos que + es una ley de composición interna. Sean $f, g \in \mathcal{C}(I)$ entonces $f + g \in \mathcal{C}(I)$, esto es así debido a que la suma usual (tal como se definió en este caso) de funciones continuas es también una función continua.

Ax. 2: La operación + es conmutativa en C(I). Es decir, queremos probar que f + g = g + f para todo $f, g \in C(I)$.

Vamos a probar que la igualdad anterior ocurre para todo $x \in I$. Sean $f, g \in C(I)$ y $x \in I$, entonces (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x), donde usamos que la suma de números reales es conmutativa. Entonces como (f+g)(x) = (g+f)(x), para todo $x \in I$ (fijarse que

la igualdad anterior la obtuvimos para cualquier x), entonces (aplicando la definición de igualdad de funciones) f + g = g + f.

- **Ax.** 4: Existe un elemento neutro en $\mathcal{C}(I)$ respecto de la suma. En este ítem, tenemos que proponer un elemento de $\mathcal{C}(I)$ que sea elemento neutro para la suma y verificar que dicho elemento cumple. Por ejemplo, podemos proponer como elemento la función nula $\mathbf{0} \in \mathcal{C}(I)$ que definimos arriba. Veamos que $f + \mathbf{0} = f$ para todo $f \in \mathcal{C}(I)$. Sean $f \in \mathcal{C}(I)$ y $x \in I$, entonces $(f + \mathbf{0})(x) = f(x) + \mathbf{0}(x) = f(x) + 0 = f(x)$. Como la igualdad anterior vale para todo $x \in I$, tenemos lo que queríamos probar.

Observación: Se puede probar que el elemento neutro de un espacio vectorial es único. Por lo tanto, en este caso, la función nula $\mathbf{0} \in \mathcal{C}(I)$, no sólo es "un" elemento neutro sino que es "el" elemento neutro. Meditar sobre la diferencia de estas expresiones.

Ax. 5: Para cada $f \in \mathcal{C}(I)$ existe opuesto (inverso aditivo) en $\mathcal{C}(I)$ respecto de la suma. En este ítem, tenemos que proponer un elemento de $\mathcal{C}(I)$ que sea un inverso aditivo para la suma y verificar que dicho elemento cumple, es decir, debemos proponer una función $g \in \mathcal{C}(I)$ tal que para cada $f \in \mathcal{C}(I)$ se cumple $f + g = \mathbf{0}$ (observar que ya verificamos que $\mathbf{0}$ es el elemento neutro para la suma). Sean $f \in \mathcal{C}(I)$ y $x \in I$. Se define la función $g: I \to \mathbb{R}$ por g(x) = -f(x). Entonces veamos que g es un inverso aditivo de f. Claramente $g \in \mathcal{C}(I)$ porque el producto de una función continua por el escalar -1 es también una función continua. Por otra parte $(f+g)(x) = f(x)+g(x) = f(x)+-f(x) = 0 = \mathbf{0}(x)$ y como la igualdad anterior vale para todo $x \in I$, tenemos lo que queríamos probar.

Observación: Se puede probar que el inverso aditivo de un espacio vectorial es único.

- **Ax. 6:** Veamos que la aplicación \cdot es una ley de composición externa. Sean $f \in \mathcal{C}(I)$ y $\alpha \in \mathbb{R}$ entonces $\alpha \cdot f \in \mathcal{C}(I)$; esto es así debido a que el producto de un número real por una función continua (tal como se definió) es también una función continua.
- **Ax. 7:** La operación · es distributiva respecto de la suma de escalares,. Es decir queremos ver que $(\alpha + \beta) \cdot f = \alpha \cdot f + \beta \cdot f$, para todo $f \in \mathcal{C}(I)$ y $\alpha, \beta \in \mathbb{R}$. Sean $f \in \mathcal{C}(I)$, $x \in I$ y $\alpha, \beta \in \mathbb{R}$, entonces $((\alpha + \beta) \cdot f)(x) = (\alpha + \beta)f(x) = \alpha f(x) + \beta f(x) = (\alpha \cdot f)(x) + (\beta \cdot f)(x)$, donde usamos la propiedad distributiva de los números reales. Finalmente, como la igualdad anterior vale para todo $x \in I$, tenemos lo que queríamos probar.
- **Ax. 8:** La operación · es distributiva respecto de la suma de vectores. Es decir queremos ver que $\alpha \cdot (f+g) = \alpha \cdot f + \alpha \cdot g$, para todo $f,g \in \mathcal{C}(I)$ y $\alpha \in \mathbb{R}$. Sean $f,g \in \mathcal{C}(I)$, $x \in I$ y $\alpha \in \mathbb{R}$, entonces $(\alpha \cdot (f+g))(x) = \alpha((f+g)(x)) = \alpha(f(x)+g(x)) = \alpha f(x) + \alpha g(x) = (\alpha \cdot f)(x) + (\alpha \cdot g)(x)$, donde usamos la propiedad distributiva de los números reales. Finalmente, como la igualdad anterior vale para todo $x \in I$, tenemos lo que queríamos probar.
- **Ax. 9:** La operación · es asociativa respecto del producto de escalares. Es decir queremos ver que $(\alpha\beta) \cdot f = \alpha \cdot (\beta \cdot f)$, para todo $f \in \mathcal{C}(I)$ y $\alpha, \beta \in \mathbb{R}$. Sean $f \in \mathcal{C}(I)$, $x \in I$ y $\alpha, \beta \in \mathbb{R}$, entonces $((\alpha\beta) \cdot f)(x) = (\alpha\beta)f(x) = \alpha(\beta f(x)) = \alpha((\beta \cdot f)(x)) = (\alpha \cdot (\beta \cdot f))(x)$, donde usamos la propiedad asociativa de los números reales. Finalmente, como la igualdad anterior vale para todo

 $x \in I$, tenemos lo que queríamos probar.

Ax. 10: El escalar $1 \in \mathbb{R}$ cumple que $1 \cdot f = f$, para todo $f \in \mathcal{C}(I)$. Sean $f \in \mathcal{C}(I)$ y $x \in I$, entonces $(1 \cdot f)(x) = 1f(x) = f(x)$ y como la igualdad anterior vale para todo $x \in I$, tenemos lo que queríamos probar.

Ejercicio Sea \mathbb{K} un cuerpo y $(\mathbb{V}, +, K, \cdot)$ un \mathbb{K} -espacio vectorial. Sea $0_{\mathbb{V}}$ el elemento neutro de \mathbb{V} y dado $v \in \mathbb{V}$, el vector -v denota al inverso aditivo de v. Demostar que, para todo $v \in \mathbb{V}$,

$$0 \cdot v = 0_{\mathbb{V}}, \ \mathbf{y} - v = (-1) \cdot v.$$

Dem. Por el axioma 7, vale que $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$. Sea w el inverso aditivo de $0 \cdot v$, que existe por el axioma 5. Entonces:

$$0v = 0 \cdot v + w = (0 \cdot v + 0 \cdot v) + w = 0 \cdot v + (0 \cdot v + w) = 0 \cdot v + 0v = 0 \cdot v.$$

Donde se usaron los axiomas 3, 4 y 5.

Finalmente,

$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = (1-1) \cdot v = 0 \cdot v = 0_{\mathbb{V}}.$$

Donde se usaron los axiomas 7 y 10 y la igualdad anterior. Por lo tanto $(-1) \cdot v$ es el inverso aditivo de v, es decir $-v = (-1) \cdot v$.

Ejercicio 1.1: Su resolución se encuentra en el campus de la cátedra.

Subespacios

Definición. Sea \mathbb{K} un cuerpo y ($\mathbb{V}, +, \mathbb{K}, \cdot$) un \mathbb{K} -espacio vectorial. Un subconjunto $S \subseteq \mathbb{V}$ es un subespacio de \mathbb{V} si ($S, +, \mathbb{K}, \cdot$) es un \mathbb{K} -espacio vectorial.

Es decir, si \mathbb{V} es un \mathbb{K} -espacio vectorial, un subespacio de \mathbb{V} es un subconjunto de \mathbb{V} que es un \mathbb{K} -espacio vectorial con las mismas operaciones + y \cdot restringidas a dicho subconjunto.

Teorema 1. Sea \mathbb{K} un cuerpo y (\mathbb{V} , +, \mathbb{K} , ·) un \mathbb{K} -espacio vectorial. Un subconjunto $S \subseteq \mathbb{V}$ es un subespacio de \mathbb{V} si y sólo si:

- $i) \mathcal{S} \neq \emptyset,$
- ii) si $u, v \in \mathcal{S}$ entonces $u + v \in \mathcal{S}$,
- *iii*) si $\alpha \in \mathbb{K}$ y $v \in \mathcal{S}$ entonces $\alpha \cdot v \in \mathcal{S}$.

La prueba del teorema anterior es muy simple así que se sugiere hacer como ejercicio.

El ítem i) del teorema anterior se puede reemplazar por la condición i') $0_{\mathbb{V}} \in \mathcal{S}$. De hecho, si i) del teorema anterior se reemplaza por la condición i') : claramente tenemos que \mathcal{S} es no vacío (pues $0_{\mathbb{V}} \in \mathcal{S}$) y recuperamos i) del teorema anterior.

Recíprocamente, si valen i), ii), iii) del teorema anterior, entonces $\mathcal{S} \neq \emptyset$. Sea $v \in \mathcal{S}$ (existe pues \mathcal{S} es no vacío), entonces $-v = (-1) \cdot v \in \mathcal{S}$, donde usamos el ejercicio que probamos arriba y que

vale iii). Por lo tanto $0_{\mathbb{V}} = v + -v \in \mathcal{S}$, donde usamos que vale ii) y entonces tenemos la condición i').

Ejercicio 1.4 Verificar las siguientes afirmaciones:

1.4 (b) El conjunto $S := \{ \alpha [1 \ 0 \ 0]^T + \beta [1 \ 0 \ 1]^T : \alpha, \beta \in \mathbb{R} \}$ es un subespacio de \mathbb{R}^3 .

Dem. Vamos a usar el teorema anterior para probar esta afirmación.

- i) El vector $[0\ 0\ 0]^T = 0[1\ 0\ 0]^T + 0[1\ 0\ 1]^T \in \mathcal{S} \text{ con } \alpha = \beta = 0.$
- ii) Si $u, v \in \mathcal{S}$, entonces $u = \alpha_1 [1 \ 0 \ 0]^T + \beta_1 [1 \ 0 \ 1]^T$ para ciertos $\alpha_1, \beta_1 \in \mathbb{R}$ y $v = \alpha_2 [1 \ 0 \ 0]^T + \beta_2 [1 \ 0 \ 1]^T$ para ciertos $\alpha_2, \beta_2 \in \mathbb{R}$. Entonces $u + v = (\alpha_1 + \alpha_2)[1 \ 0 \ 0]^T + (\beta_1 + \beta_2)[1 \ 0 \ 1]^T \in \mathcal{S}$ con $\alpha = \alpha_1 + \alpha_2 \in \mathbb{R}$ y $\beta = \beta_1 + \beta_2 \in \mathbb{R}$.
- iii) Si $u \in \mathcal{S}$, $u = \alpha_1 \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T + \beta_1 \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ para ciertos $\alpha_1, \beta_1 \in \mathbb{R}$. Sea $c \in \mathbb{R}$, entonces $cu = (c\alpha_1) \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T + (c\beta_1) \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \in \mathcal{S}$, con $\alpha = c\alpha_1 \in \mathbb{R}$ y $\beta = c\beta_1 \in \mathbb{R}$.

Como se cumple i), ii), por el teorema anterior, S es un subespacio de \mathbb{R}^3 .

Observación: el conjunto S lo notamos como $S = gen\{[1 \ 0 \ 0]^T, [1 \ 0 \ 1]^T\}.$

1.4 (d) Para cada $n \in \mathbb{N}$, el conjunto $S := \{ \sum_{k=0}^n a_k x^k : a_0, a_1, \dots, a_n \in \mathbb{R} \}$ es un subespacio de $\mathbb{R}[x]$.

Dem. Vamos a usar el teorema anterior para probar esta afirmación. Sea $n \in \mathbb{N}$. Entonces:

- i) El polinomio nulo $\mathbf{0}(x) = 0 = \sum_{k=0}^{n} 0x^{k}$. En este caso $a_{0} = a_{1} = \cdots = a_{n} = 0$. Entonces $\mathbf{0} \in \mathcal{S}$.
- ii) Si $p, q \in \mathcal{S}$, entonces $p(x) = \sum_{k=0}^{n} b_k x^k$, para ciertos $b_0, b_1, \dots b_n \in \mathbb{R}$ y $q(x) = \sum_{k=0}^{n} c_k x^k$, para ciertos $c_0, c_1, \dots c_n \in \mathbb{R}$. Entonces $p(x) + q(x) = \sum_{k=0}^{n} b_k x^k + \sum_{k=0}^{n} c_k x^k = \sum_{k=0}^{n} (b_k + c_k) x^k$. Entonces $p + q \in \mathcal{S}$, con $a_i = b_i + c_i \in \mathbb{R}$ para cada $i \in \{0, 1, \dots, n\}$.
- iii) Si $p \in \mathcal{S}$, entonces $p(x) = \sum_{k=0}^{n} b_k x^k$, para ciertos $b_0, b_1, \dots b_n \in \mathbb{R}$. Sea $\alpha \in \mathbb{R}$, entonces $\alpha p(x) = \alpha \sum_{k=0}^{n} b_k x^k = \sum_{k=0}^{n} (\alpha b_k) x^k$. Entonces $\alpha p \in \mathcal{S}$, con $a_i = \alpha b_i \in \mathbb{R}$ para cada $i \in \{0, 1, \dots, n\}$.

Como se cumple i), ii), por el teorema anterior, S es un subespacio de $\mathbb{R}[x]$.

Ejercicio 1.5: Su resolución se encuentra en el campus de la cátedra.

Notación: Sean A, B dos conjuntos, diremos que:

 $A \subseteq B$, si para cada $x \in A$ vale que $x \in B$.

 $A \subseteq B$, si para cada $x \in A$ vale que $x \in B$ y existe $z \in B$ tal que $z \notin A$.

$$A = B$$
, si $A \subseteq B$ y $B \subseteq A$.

Combinaciones lineales y sistema de generadores

Ejercicio 1.7 En cada uno de los siguientes casos describir el subespacio \mathcal{S} mediante un sistema de generadores minimal.

c)
$$S = \{ p \in \mathbb{R}_3[x] : \int_{-1}^1 p(x) dx = \int_{-1}^1 x p(x) dx = 0 \}.$$

e)
$$S = \{X \in \mathbb{R}^{2 \times 2} : X \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} X\}.$$

Antes de resolver el ejercicio repasemos la definición de sistema de generadores minimal. Sea \mathbb{V} un \mathbb{K} -ev y $\mathcal{S} \subseteq \mathbb{V}$ un subespacio. Un conjunto G es un sistema de generadores minimal de \mathcal{S} si:

- i) $S = gen\{G\}$ (es decir G es un sistema de generadores de S),
- ii) si G'' es otro conjunto tal que $gen\{G''\} = S$ entonces $G \subseteq G''$.

Observar que a partir de la definición anterior podemos decir que si G es un sistema de generadores minimal de S entonces todo $G' \subsetneq G$ (es decir todo subconjunto propio G' de G) no es sistema generador de S.

Dem. c): Sea $p \in \mathcal{S}$ entoces $p \in \mathbb{R}_3[x]$, es decir $p(x) = ax^3 + bx^2 + cx + d$ con $a, b, c, d \in \mathbb{R}$ y $\int_{-1}^1 p(x) dx = \int_{-1}^1 x p(x) dx = 0$. Entonces

$$0 = \int_{-1}^{1} (ax^3 + bx^2 + cx + d)dx = \frac{a}{4}x^4 + \frac{b}{3}x^3 + \frac{c}{2}x^2 + dx|_{-1}^{1} = \frac{2}{3}b + 2d$$

у

$$0 = \int_{-1}^{1} x(ax^3 + bx^2 + cx + d)dx = \frac{a}{5}x^5 + \frac{b}{4}x^4 + \frac{c}{3}x^3 + \frac{d}{2}x^2\Big|_{-1}^{1} = \frac{2}{5}a + \frac{2}{3}c.$$

Es decir nos quedó el siguiente sistema:

$$\begin{cases} \frac{2}{3}b + 2d = 0\\ \frac{2}{5}a + \frac{2}{3}c = 0. \end{cases}$$

La solución del sistema es b=-3d y $a=-\frac{5}{3}c$. Entonces volviendo a la expresión de p nos queda que $p(x)=ax^3+bx^2+cx+d=-\frac{5}{3}cx^3-3dx^2+cx+d$ con $c,d\in\mathbb{R}$. Entonces

$$S = \{ p \in \mathbb{R}_3[x] : p(x) = c(-\frac{5}{3}x^3 + x) + d(-3x^2 + 1) : c, d \in \mathbb{R} \} = gen\{-\frac{5}{3}x^3 + x, -3x^2 + 1\}.$$

Un sistema de generadores minimal de S puede ser $G := \{-\frac{5}{3}x^3 + x, -3x^2 + 1\}$; claramente $S = gen\{G\}$, además G es minimal porque si G' es un subconjunto propio de G (cuántos subconjuntos propios tiene G?) no genera S. Por ejemplo, el subconjunto $G' := \{-3x^2 + 1\} \subsetneq G$ claramente no es un sistema de generadores de S (por qué?). De la misma manera se razona con los demás subconjuntos propios de G.

 $e): \text{Si } X \in \mathcal{S} \text{ entonces } X \in \mathbb{R}^{2 \times 2}, \text{ es decir } X = \left[egin{array}{cc} a & b \\ c & d \end{array}
ight] ext{con } a,b,c,d \in \mathbb{R} \text{ y además}$

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right] = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right].$$

Operando, nos queda que

$$\left[\begin{array}{cc} 2a & 3b \\ 2c & 3d \end{array}\right] = \left[\begin{array}{cc} 2a & 2b \\ 3c & 3d \end{array}\right].$$

Entonces nos quedó el siguiente sistema:

$$\begin{cases} 2a = 2a \\ 3b = 2b \\ 2c = 3c \\ 3d = 3d. \end{cases}$$

La solución del sistema es b=c=0. Entonces, volviendo a la expresión de X nos queda $X=\begin{bmatrix}a&0\\0&d\end{bmatrix}=a\begin{bmatrix}1&0\\0&0\end{bmatrix}+d\begin{bmatrix}0&0\\0&1\end{bmatrix}$ con $a,d\in\mathbb{R}$. Entonces

$$\begin{split} \mathcal{S} &= \{X \in \mathbb{R}^{2 \times 2} : X \, \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right] = \, \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right] X \} \\ &= \{X \in \mathbb{R}^{2 \times 2} : X = a \, \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + d \, \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] : a, d \in \mathbb{R} \} \\ &= gen \{ \, \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \, \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \}. \end{split}$$

Además el conjunto $G := \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$ es un sistema de generadores minimal de \mathcal{S} . Cualquier subconjunto propio de G por ejemplo $G' := \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \} \subsetneq G$ (qué otros subconjuntos propios tiene G?) no es un sistema de generadores de \mathcal{S} (por qué?).