第一篇 力学

8.
$$\begin{cases} m_1 g - T = m_1 a \Rightarrow a = \frac{m_1 - m_2}{m_1 + m_2} g \\ T - m_2 g = m_2 a' \Rightarrow a' = \frac{m_1 - m_2}{m_2} g \\ a' = \frac{m_1 - m_2}{m_2} g$$

$$i a' > a \qquad \text{if } B$$

$$mgh = \frac{1}{2}mV^{2} = \frac{1}{2}mV^{2} \Rightarrow V = \sqrt{\frac{2}{2}}\frac{1}{2}mR$$

$$17.A: \int_{TR}^{R} mg - T = MG$$

$$TR = \int_{TR}^{R} \rho_{A} = \frac{g - G}{J}MR$$

B T'R=TPS PS=
$$\frac{9MR}{J}$$
 : R>PS= $\frac{1}{J}$: R>PS= $\frac{1}{J}$ = $\frac{1$

21 as wt =
$$\sqrt{1-5m^2wt} = \sqrt{1-\frac{3n^2}{A^2}}$$

24. $\sqrt{1-5m^2wt} = \sqrt{1-\frac{3n^2}{A^2}}$
 $\sqrt{1-5m^2wt} = \sqrt{1-\frac{3n^2}{A^2}}$
 $\sqrt{1-5m^2wt} = \sqrt{1-\frac{3n^2}{A^2}}$
 $\sqrt{1-\frac{3n^2}{A^2}}$
 $\sqrt{1-\frac{3n^2}{A^2}}$

20.
$$\overline{Ott} = 3f2t$$
. $\int_{u}^{u} O(v) = \int_{0}^{u} (3f2t) dt$
26. $I = \int_{0}^{u} F dt$ $F = ma = m \frac{dv}{dt}$
 $\Rightarrow \int_{u}^{u} m dv = \int_{0}^{u} F dt$

$$23 \ W = \int_{0}^{1} (12t-bt) dt = 2t$$

$$21 = R^{2} = - .$$

$$27 = 400 - \frac{4}{5} \times 10^{5} t = 0 \quad t = 0.003 \text{ s}$$

$$1 = \int_{0}^{1} Folt = - .$$

$$2! \text{ as wt} = \sqrt{1-5m^2wt} = \sqrt{1-\frac{3t^2}{A^2}}$$

$$2! \text{ as wt} = \sqrt{1-\frac{3t^2}{A^2}}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = 3tzt, \int_{u}^{u} olv = \int_{0}^{t} (3tzt) dt \text{ } 3 \text{ } w = \int_{0}^{t} (12t^2-6t) dt = -\frac{3t^2}{A^2}$$

$$2! \text{ oth} = \int_{0}^{t} (3tzt) dt = \int_{$$

链A

Ф

平均: 割钱 B.C N在A.D晚

11. P. OF = -12+25+5K 9. = mv I=PXMV LJW =79-12 狗:轴心,个 = 67.1 大小:L=Jb=YnV,7变

选C

4. V=Vo+at 6. 瞬时. 切代

2=16-2t

じる本知

·施D

15.机械轮抱括碧锥 華能も地強有关

16. 何心力:新雄的恒 YMV=YMU' 片岩r 港E

21.
$$Q = AE + W$$
 24. $W = PAV = \frac{PA}{R}RAT = ROT, \Delta T = \frac{W}{R}$
 $W = CP - CV = P = 8.51$ $RP = GAT = \frac{T}{2}R\frac{N}{R} = \frac{T}{2}N$

7.
$$V = \sqrt{2(\frac{1}{2})^2} U = \frac{2}{4\pi k_0}$$
 10. $W = 8(U_0 - U_0)$ 11. $W = 8(U_0 - U_0)$ 12. $W = 8(U_0 - U_0)$ 11. $W = 8(U_0 - U_0)$ 12. $W = 8(U_0 - U_0)$ 13. $W = 8(U_0 - U_0)$ 14. $W = 8(U_0 - U_0)$ 16. $W = 8(U_0 - U_0)$ 17. $W = 8(U_0 - U_0)$ 18. $W = 9(U_0 - U_0)$ 19. $W = 9(U_0 - U_0)$ 1

$$A \cdot$$
 触版
 $A \cdot$ 触版
 $A \cdot$ 是
 $A \cdot$

DBH, 满建运动
$$V = e\sqrt{\frac{1}{m(r_1 - r_2)}}$$
 $V = e\sqrt{\frac{1}{m(r_1 - r_2)}}$ $V =$

21.
$$U = \int \frac{\Lambda dL}{4\pi L_0 R} = \frac{\Lambda 2\pi R}{4\pi L_0 R} = \frac{\Lambda}{2\pi E}$$

$$24 \frac{g}{4\pi L_0 R} = \frac{q}{4\pi L_0 R}$$

$$21. U = \frac{g}{4\pi L_0 R} = \frac{\Lambda 2\pi R^2}{4\pi L_0 R} = \frac{R}{2\pi E} = \frac{R}{2\pi R} = \frac{R}{$$

第四篇磁场. 1. \$Boti = 4. Eli B= 7007 YTR, YCR B1, 1 = 0

5.图 品=167, 班 ... 品=267 B=B,-B=2001元) 选D.

9. 1的国路花电动势的 正相线动针换转

·W世入,出公(2) 落骸, 虚(

10. 波ab在中心有代上,至=0 Ma'b'>ab 即名>名 选品.

13. 豆成二水正1 14.1,中的在外面不计

15. \$\$ di = n. 21

16. 佩雕独维相對长电机 B=267 1=ih

 $18.2i = -\frac{olo}{olt} = -\frac{golk}{olt} = -\frac{go$

17. $G_i = -\frac{olb}{dt} = -\frac{d(BS)}{dt} = -S\frac{olB}{ott} = -S\frac{olB}{ott} = -S\frac{ol}{ott}(Nonl)$ $= -Suoneb = -Suon I_m$

第五篇 振动如波

KSIND = - TO , - FO 中國90、V朝加达加速的

4 x=-AWSm(W+Z) $\ddot{X} = -A \omega^2 \cos(\omega t + \frac{R}{4})$ t=] ;=-Awos(字4) =+Awsin==Aw2

5.解析一

且越来越大,故意C不选D. 3-3-4=T 伊斯二: t=0, 0=A005岁, y=-3 $t=t, A=A \cos(wt-\frac{2}{3})$ $wt-\frac{2}{3}=-\frac{2}{3}, t=\frac{1}{10}\cdot\frac{2}{10}=\frac{1}{10}$ 7-18 D.

b. t=0. 7.=A08\frac{2}{4}7 = -\frac{1}{2}A 7. \(\text{T}' = \frac{1}{4}\text{T}, \nu' = \frac{1}{4} = \frac{2}{4} = 2\end{2} 9. EB = W= Jo bodo = 4. 2k/2

10. f X = A. asp, \$ =0 X = A200\$ \$ \$ = TO 4=13-17 TU, X2>X,

8.半個期: -A->A W= CAMod=0 准D. 小和的:铝叶节·杜林A P位约0,055后,北高铁县 解前二: 方标准/根例也较

16. D同对河区动 17 j=-Azur Sinzw(rt-关) 内t=一、Xi b 19. C建版 任-附间 同附电影 - VmSin2TC(Vt-美) 681例入保 A:-

IJ. ザ x=最が=D

W= # = - 10

7=Aax[21(年-天)+月 T=2, A=4, V=====>n/s t=0150, X=4x=2nd 种植的状态度制 B 進品

39. Dy=是ONA=温OTIN U=1 A=100x3=300 m/s.

波动光学复习题

一、选择题

1, 3162

在真空中波长为 λ 的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B 两点相位差为 3π ,则此路径AB的光程为

- (A) 1.5 λ .
- (B) $1.5 \ \lambda / n$.
- (C) $1.5 n \lambda$.
- (D) 3 λ .

2、3664

如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为 e,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的波长,则两束反射光在相遇点的相位差为

- (A) $2\pi n_2 e / (n_1 \lambda_1)$.
- (B) $[4\pi n_1 e / (n_2 \lambda_1)] + \pi$.
- (C) $[4\pi n_2 e / (n_1 \lambda_1)] + \pi$.
- (D) $4\pi n_2 e / (n_1 \lambda_1)$.

3, 3665

真空中波长为 λ 的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径传播到B点,路径的长度为I. A、B 两点光振动相位差记为 $\Delta \phi$,则

- (A) $l=3 \lambda/2$, $\Delta \phi=3\pi$.
- (B) $l=3 \lambda/(2n)$, $\Delta \phi=3n\pi$.
- (C) $l=3 \lambda/(2n)$, $\Delta \phi=3\pi$.
- (D) $l=3n\lambda/2$, $\Delta\phi=3n\pi$.

4, 3165

在相同的时间内,一束波长为2的单色光在空气中和在玻璃中

- (A) 传播的路程相等, 走过的光程相等.
- (B) 传播的路程相等,走过的光程不相等.
- (C) 传播的路程不相等, 走过的光程相等.
- (D) 传播的路程不相等,走过的光程不相等.

Γ

5, 3163

单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为 e,且 $n_1 < n_2 > n_3$, λ_1 为入射光在 n_1 中的波长,则两束反射光的光程差为

- (A) $2n_2e$.
- (B) $2n_2e \lambda_1/(2n_1)$.
- (C) $2n_2e n_1 \lambda_1 / 2$.
- (D) $2n_2e n_2 \lambda_1 / 2$.

6, 3612

在双缝干涉实验中,若单色光源 S 到两缝 S_1 、 S_2 距离相等,则观察屏上中央明条纹位于图中 O 处. 现将光源 S 向下移动到示意图中的 S 位置,则

7

- (A) 中央明条纹也向下移动, 且条纹间距不变.
- (B) 中央明条纹向上移动, 且条纹间距不变.
- (C) 中央明条纹向下移动, 且条纹间距增大.
- (D) 中央明条纹向上移动,且条纹间距增大.

7、3172

在双缝干涉实验中, 为使屏上的干涉条纹间距变大, 可以采取的办法是

- (A) 使屏靠近双缝.
- (B) 使两缝的间距变小.

- (C) 把两个缝的宽度稍微调窄.
- (D) 改用波长较小的单色光源.

8、3345

如图,用单色光垂直照射在观察牛顿环的装置上. 当平凸透镜垂 直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹

- (A) 向右平移. (B) 向中心收缩.
- (C) 向外扩张.
- (D) 静止不动.
- (E) 向左平移.

Γ]

9、5531

如图所示,两个直径有微小差别的彼此平行的滚柱之间的 距离为 L, 夹在两块平晶的中间, 形成空气劈形膜, 当单色光垂 直入射时,产生等厚干涉条纹.如果滚柱之间的距离 L 变小, 则在 L 范围内干涉条纹的

- (A) 数目减少,间距变大.
- (B) 数目不变,间距变小.
- (C) 数目增加,间距变小.
- (D) 数目减少,间距不变.

Γ 7

10, 3516

在迈克耳孙干涉仪的一支光路中,放入一片折射率为 n 的透明介质薄膜后,测出两束光 的光程差的改变量为一个波长2,则薄膜的厚度是

- (A) $\lambda/2$.
- (B) $\lambda / (2n)$.
- (C) λ / n .

]

11, 3356

在如图所示的单缝夫琅禾费衍射实验中, 若将单缝 沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹

- (A) 间距变大.
- (B) 间距变小.
- (C) 不发生变化.
- (D) 间距不变,但明暗条纹的位置交替变 化.[]

12, 3631

在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的 中心位置不变外,各级衍射条纹

- (A) 对应的衍射角变小.
- (B) 对应的衍射角变大.
- (C) 对应的衍射角也不变.
- (D) 光强也不变.

]

13, 3355

一束波长为2的平行单色光垂直入射到一单缝 AB 上,装置如图. 在屏幕D上形成衍射图样,如果P是 中央亮纹一侧第一个暗纹所在的位置,则 \overline{BC} 的长度 为

- (A) $\lambda/2$.
- (B) λ .
- (C) $3\lambda/2$.
- (D) 2λ .
-]

两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过. 当其中一偏振片慢慢

转动 180° 时透射光强度发生的变体	七为:		
(A) 光强单调增加.			
(B) 光强先增加,后又减小至	₹.		
(C) 光强先增加,后减小,再 ⁵			
(D) 光强先增加,然后减小,		Γ]
23、3369	1. 1. 4.	_	_
三个偏振片 P_1 , P_2 与 P_3 堆叠石	F 一起, P_1 与 P_3 的偏振化方向	句相互垂直,	P ₂ 与 P ₁ 的偏振
化方向间的夹角为 30° . 强度为 I_0			
P_2 与 P_3 ,则通过三个偏振片后的光			
(A) $I_0/4$. (B) $3 I_0$	/8.		
(C) $3I_0 / 32$. (D) $I_0 /$	16.	[]
24、3545			
三个偏振片 P_1 , P_2 与 P_3 堆叠石	E 一起, P_1 与 P_3 的偏振化方向	句相互垂直,	P_2 与 P_1 的偏振
化方向间的夹角为 30° . 强度为 I_0		P_1 ,并依次 i	透过偏振片 P_1 、
P_2 与 P_3 ,则通过三个偏振片后的光			
(A) $I_0/4$. (B) $3 I_0$		_	_
(C) $3I_0 / 32$. (D) $I_0 /$	16.]
25、3639			
自然光以布儒斯特角由空气入	射到一玻璃表面上,反射光是	륃	
(A) 在入射面内振动的完全线	扁振光.		
(B) 平行于入射面的振动占优势	势的部分偏振光.		
(C) 垂直于入射面振动的完全经	线偏振光.		
(D) 垂直于入射面的振动占优	势的部分偏振光.	[]
二、填空题			
26, 3167			
如图所示,假设有两个同相的	相干点光源 S_1 和 S_2 ,发出	✓ :	√ ę
波长为λ的光. A 是它们连线的中垂		S_1	
之间插入厚度为 e 、折射率为 n 的海	尊玻璃片,则两光源发出的	$\frac{1}{n}$	
光在 A 点的相位差 $\Delta \phi =$	若已知 λ =500 nm, n =1.5,		\longrightarrow_A
A 点恰为第四级明纹中心,则 $e=$	nm. (1 nm		1
$=10^{-9} \mathrm{m}$		S_2	
27、3620		·	
用波长为λ的单色光垂直照射置		为 1.5 的透	坍溥膜,两宋 反
射光的光程差 δ =	•	n_1	λ
28、3668	· 2016年 日本中本中 1017年 101	V	<u> </u>
波长为 λ 的平行单色光垂直照射 e ,折射率为 n ,透明薄膜放在折射		10	e
表面反射的两束反射光在相遇处的			<u> </u>
29、3175	ΠΠΙΣΙΣΕ Δ ψ	•	
用一定波长的单色光进行双缝	干洗实验时. 欲使屏上的干洗	条纹间距变	大, 可采用的方
法是: (1)		/ 小头同此文	
30、3682			
把双缝干涉实验装置放在折射	率为 n 的媒质中,双缝到观察	展的距离为	D,两缝之间的

31、3690

波长为 λ 的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为n,第二条明纹与第五条明纹所对应的薄膜厚度之差是_____.

距离为 d (d<<D),入射光在真空中的波长为 λ ,则屏上干涉条纹中相邻明纹的间距是

32,	3511
	用波长为2的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹,距顶点为1
处是	$ar{\epsilon}$ 暗条纹,使劈尖角 $ heta$ 连续变大,直到该点处再次出现暗条纹为止,劈尖角的改变量 $\Delta \epsilon$
是_	·
33、	3378
	光强均为 I_0 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是
34、	3712
	在迈克耳孙干涉仪的一条光路中,插入一块折射率为 n ,厚度为 d 的透明薄片.插入这
块薄	计使这条光路的光程改变了
35、	3201
	若在迈克耳孙干涉仪的可动反射镜 M 移动 $0.620~\mathrm{mm}$ 过程中,观察到干涉条纹移动了
2300)条,则所用光波的波长为nm. (1 nm=10 ⁻⁹ m)
	3203
	用迈克耳孙干涉仪测微小的位移. 若入射光波波长 λ =628.9 nm, 当动臂反射镜移动时,
干涉	条纹移动了 2048 条,反射镜移动的距离 $d=$.
	0461
	波长为 600 nm 的单色平行光,垂直入射到缝宽为 $a=0.60$ mm 的单缝上,缝后有一焦
距 <i>f</i>	"=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为,
U	- 第三级暗纹之间的距离为 (1 nm=10 ⁻⁹ m)
	3207
	在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为
20	
39、	0464
畄 必	He $-$ Ne 激光器发出 λ =632.8 nm (1nm= 10^{-9} m)的平行光束,垂直照射到一单缝上,在距 δ 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 δ 10 cm,则单组
	$E \supset \Pi$ 远的屏上观众人成小页们别图件,侧侍网十另二级唱纹问的距离走 $\Pi \cup \Pi \cup \Pi$ 则半组 $E \cap \Pi$.
	3209
101	波长为 λ 的单色光垂直入射在缝宽 $a=4$ λ 的单缝上.对应于衍射角 $\varphi=30^\circ$,单缝处的波
面面	[划分为 个半波带.
	3633
711	将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的
衍射	\dagger 角的绝对值为 $ heta$,则缝的宽度等于 .
	3217
	· [单色光垂直入射在光栅上,衍射光谱中共出现 5 条明纹. 若已知此光栅缝宽度与不透明
	分宽度相等,那么在中央明纹一侧的两条明纹分别是第级和第
	级谱线
43、	3731
	波长为 λ =550 nm (1nm=10 ⁻⁹ m) 的单色光垂直入射于光栅常数 d =2×10 ⁻⁴ cm 的平面衍射
]上,可能观察到光谱线的最高级次为第级.
44、	3638
lee .	波长为 500 nm(1nm=10 ⁻⁹ m)的单色光垂直入射到光栅常数为 1.0×10 ⁻⁴ cm 的平面衍射光
	ω ,第一级衍射主极大所对应的衍射角 $arphi$ =
45、	5655
光海	若光栅的光栅常数 d 、缝宽 a 和入射光波长 λ 都保持不变,而使其缝数 N 增加,则光栅密的同级光谱线将变得

如图, P_1 、 P_2 为偏振化方向间夹角为 α 的两个偏振片.光强为 I_0 的平行自然光垂直入射到 P_1 表面上,则通过 P_2 的光强 I=______. 若在 P_1 、 P_2 之间插入第三个偏振片 P_3 ,则通过 P_2 的光强发生了变化.实验发现,以光线为轴旋转 P_2 ,使其偏振化方向旋转一角度 θ 后,发生消光现象,从而可以推算出 P_3 的偏振化方向与 P_1 的偏振化方向之间的夹角 $\alpha'=$ ______均为锐角,且设 $\alpha'<\alpha$).

____. (假设题中所涉及的角

47、5235

如果从一池静水(*n*=1.33)的表面反射出来的太阳光是线偏振的,那么太阳的仰角(见图)大致等于_____. 在这反

射光中的 \bar{E} 矢量的方向应

48, 3240

某一块火石玻璃的折射率是 1.65, 现将这块玻璃浸没在水中(n=1.33)。欲使从这块玻璃表面反射到水中的光是完全偏振的,则光由水射向玻璃的入射角应为_____.

49、3238

如图所示,一束自然光入射到折射率分别为 n_1 和 n_2 的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角 r 的值为

 $\frac{1}{r} \frac{n_1}{n_2}$

50、3808

光的干涉和衍射现象反映了光的_____性质.光的偏振现像说明光波是______波. 三、计算题

51, 3651

薄钢片上有两条紧靠的平行细缝,用波长 λ =546.1 nm (1 nm= 10^{-9} m)的平面光波正入射到钢片上. 屏幕距双缝的距离为 D=2.00 m,测得中央明条纹两侧的第五级明条纹间的距离为 Δx =12.0 mm.

- (1) 求两缝间的距离.
- (2) 从任一明条纹(记作 0)向一边数到第 20 条明条纹, 共经过多大距离?
- (3) 如果使光波斜入射到钢片上,条纹间距将如何改变?

52, 3613

在图示的双缝干涉实验中,若用薄玻璃片(折射率 n_1 =1.4)覆盖缝 S_1 ,用同样厚度的玻璃片(但折射率 n_2 =1.7)覆盖缝 S_2 ,将使原来未放玻璃时屏上的中央明条纹处 O 变为第五级明纹. 设单色光波长 λ =480 nm(1nm=10 $^{\circ}$ m),求玻璃片的厚度 d(可认为光线垂直穿过玻璃片).

53, 3659

图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R=400 cm. 用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm.

- (1) 求入射光的波长.
- (2) 设图中 OA = 1.00 cm, 求在半径为 OA 的范围内可观察到的明环数目。

用波长为 $500 \text{ nm} (1 \text{ nm}=10^{-9} \text{ m})$ 的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上. 在观察反射光的干涉现象中,距劈形膜棱边 l=1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.

- (1) 求此空气劈形膜的劈尖角 θ ;
- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?
 - (3) 在第(2)问的情形从棱边到 A 处的范围内共有几条明纹? 几条暗纹?

55、3628

用白光垂直照射置于空气中的厚度为 $0.50 \, \mu m$ 的玻璃片. 玻璃片的折射率为 1.50. 在可见光范围内($400 \, nm \sim 760 \, nm$)哪些波长的反射光有最大限度的增强? ($1 \, nm = 10^{-9} \, m$)

56, 3348

折射率为 1.60 的两块标准平面玻璃板之间形成一个劈形膜(劈尖角 θ 很小). 用波长 λ = 600 nm (1 nm =10 $^{-9}$ m)的单色光垂直入射,产生等厚干涉条纹. 假如在劈形膜内充满 n=1.40 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小 Δl =0.5 mm,那么劈尖角 θ 应是多少?

57, 3221

一束平行光垂直入射到某个光栅上,该光束有两种波长的光, λ_1 =440 nm, λ_2 =660 nm (1 nm = 10^{-9} m). 实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角 φ =60°的方向上. 求此光栅的光栅常数 d.

58, 3737

氢放电管发出的光垂直照射在某光栅上,在衍射角 φ =41°的方向上看到 λ_1 =656.2 nm 和 λ_2 =410.1 nm(1nm=10⁻⁹ μ)的谱线相重合,求光栅常数最小是多少?

59, 0470

用每毫米 300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱. 已知红谱线波长 λ_B 在 0.63—0.76 μ m 范围内,蓝谱线波长 λ_B 在 0.43—0.49 μ m 范围内. 当光垂直入射到光栅时,发现在衍射角为 24.46°处,红蓝两谱线同时出现.

- (1) 在什么角度下红蓝两谱线还会同时出现?
- (2) 在什么角度下只有红谱线出现?

60, 5662

钠黄光中包含两个相近的波长 λ_1 =589.0 nm 和 λ_2 =589.6 nm. 用平行的钠黄光垂直入射在每毫米有 600 条缝的光栅上,会聚透镜的焦距 f=1.00 m. 求在屏幕上形成的第 2 级光谱中上述两波长 λ_1 和 λ_2 的光谱之间的间隔 Δl . (1 nm =10⁻⁹ m)

61, 5536

设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有 5000 条刻线,用它来观察钠黄光($\lambda=589$ nm)的光谱线.

- (1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次 k_m 是多少?
- (2)当光线以 30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能

看到的光谱线的最高级次 k_m 是多少? (1 $nm=10^{-9}m$)

62、3530

一衍射光栅,每厘米 200 条透光缝,每条透光缝宽为 $a=2\times10^{-3}$ cm,在光栅后放一焦距 f=1 m 的凸透镜,现以 $\lambda=600$ nm $(1 \text{ nm}=10^{-9} \text{ m})$ 的单色平行光垂直照射光栅,求:

- (1) 透光缝 a 的单缝衍射中央明条纹宽度为多少?
- (2) 在该宽度内,有几个光栅衍射主极大?

63、3766

将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为 60° ,一束光强为 I_0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30° 角.

- (1) 求透过每个偏振片后的光束强度;
- (2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.

64, 3767

- 一束光强为 I_0 的自然光垂直入射在三个叠在一起的偏振片 P_1 、 P_2 、 P_3 上,已知 P_1 与 P_3 的偏振化方相互垂直.
 - (1) 求 P_2 与 P_3 的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强为 $I_0/8$;
- (2) 若以入射光方向为轴转动 P_2 , 当 P_2 转过多大角度时,穿过第三个偏振片的透射光强由原来的 I_0 / 8 单调减小到 I_0 / 16? 此时 P_2 、 P_1 的偏振化方向之间的夹角多大?

65、3779

两偏振片 P_1 、 P_2 叠在一起. 强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上. 测得穿过 P_1 后的透射光强为入射光强的 1/2;相继穿过 P_1 、 P_2 之后透射光强为入射光强的 1/4. 若忽略 P_1 、 P_2 对各自可透过的分量的反射和吸收,将它们看作理想的偏振片. 试问:

- (1) 入射光中线偏振光的光矢量振动方向与 P_1 的偏振化方向间夹角 θ 为多大?
- (2) P_1 、 P_2 的偏振化方向之间的夹角 a 为多大?
- (3) 测量结果仍如前,但考虑到每个偏振片实际上对可透分量的光有 10%的吸收率,试再求夹角 θ 、 α .

答案

一、选择题

1, A 2, C 3, C 4, C 5, C 6, B 7, B 8, B 9, B 10, D 11, C 12, B 13, B 14, C 15, D 16, D 17, B 18, B 19, A 20, A 21, B 22, B 23, C 24, D 25, C

- 二、填空题
- 26, 3167

 $2\pi (n-1) e/\lambda$; 4×10^3

27, 3620

 $3e + \lambda/2$ 或 $3e - \lambda/2$

28, 3668

[(4 ne/λ)-1]π 或 [(4 ne/λ)+1)π

- 29、3175
 - (1) 使两缝间距变小. ; (2) 使屏与双缝之间的距离变大.
- 30、3682

 $D\lambda/(dn)$

31, 3690

 $3\lambda/(2n)$

32、3511

 $\lambda / (2L)$

33、3378

 $4I_{0}$

34、3712

2(n-1) d

35, 3201

```
539.1
36, 3203
    0.644mm
37, 0461
    1.2 mm ; 3.6 mm
38、3207
                            第一级明(只填"明"也可以)
    6 ;
39、0464
    7.6 \times 10^{-2} \, \text{mm}
40、3209
    4
41, 3633
    \lambda / \sin \theta
42、3217
43、3731
    3
44、3638
    30° ?
45、5655
    更窄更亮
46, 5660
     \frac{1}{2}I_0\cos^2\alpha \; ;
                         \alpha + \theta - \frac{1}{2}\pi \quad (\vec{x} \quad \alpha + \theta - 90^{\circ})
47、5235
    37°;
                                   垂直于入射面
48, 3240
    51.1°
49、3238
     \pi / 2 - \operatorname{arctg}(n_2 / n_1)
50、3808
    波动
                                   横
三、计算题
51, 3651
解: (1)
                                             x = 2kD\lambda/d
                                             d = 2kD\lambda/\Delta x
    此处 k=5
                                      d = 10 D\lambda / \Delta x = 0.910 \text{ mm}
    (2) 共经过 20 个条纹间距, 即经过的距离
                                       l=20 D\lambda / d=24 \text{ mm}
    (3) 不变
52, 3613
解:原来,
                                \delta = r_2 - r_1 = 0
     覆盖玻璃后,
                          \delta = (r_2 + n_2 d - d) - (r_1 + n_1 d - d) = 5\lambda
```

:.

 $(n_2-n_1)d=5\lambda$

$$d = \frac{5\lambda}{n_2 - n_1}$$

= 8.0 \times 10^{-6} m

解: (1) 明环半径

$$r = \sqrt{(2k-1)R \cdot \lambda / 2}$$

$$\lambda = \frac{2r^2}{(2k-1)R} = 5 \times 10^{-5} \,\text{cm} \quad (\vec{x} 500 \,\text{nm})$$

(2) $(2k-1)=2 r^2 / (R\lambda)$ $\forall \exists r=1.00 \text{ cm}, \qquad k=r^2 / (R\lambda)+0.5=50.5$

故在 OA 范围内可观察到的明环数目为 50 个.

54, 3660

解: (1) 棱边处是第一条暗纹中心,在膜厚度为 $e_2 = \frac{1}{2} \lambda$ 处是第二条暗纹中心,依此可知第

四条暗纹中心处,即 A 处膜厚度 $e_4=\frac{3}{2}\lambda$

$$\theta = e_4 / l = 3\lambda / (2l) = 4.8 \times 10^{-5} \text{ rad}$$

- (2) 由上问可知 A 处膜厚为 e_4 =3×500 / 2 nm=750 nm 对于 λ' =600 nm 的光,连同附加光程差,在 A 处两反射光的光程差为 $2e_4+\frac{1}{2}\lambda'$,它与波长 λ' 之比为 $2e_4$ / $\lambda'+\frac{1}{2}$ = 3.0.所以 A 处是明纹。
- (3) 棱边处仍是暗纹, A 处是第三条明纹, 所以共有三条明纹, 三条暗纹.
- 55, 3628

解: 加强,
$$2ne + \frac{1}{2}\lambda = k\lambda,$$

$$\lambda = \frac{2ne}{k - \frac{1}{2}} = \frac{4ne}{2k - 1} = \frac{3000}{2k - 1} \text{ nm}$$

$$k = 1, \qquad \lambda_1 = 3000 \text{ nm},$$

$$k = 2, \qquad \lambda_2 = 1000 \text{ nm},$$

$$k = 3, \qquad \lambda_3 = 600 \text{ nm},$$

$$k = 4, \qquad \lambda_4 = 428.6 \text{ nm},$$

$$k = 5, \qquad \lambda_5 = 333.3 \text{ nm}.$$

 λ 在可见光范围内,干涉加强的光的波长是 λ =600 nm 和 λ =428.6 nm.

56、3348

解: 空气劈形膜时,间距
$$l_1 = \frac{\lambda}{2n\sin\theta} \approx \frac{\lambda}{2\theta}$$
 液体劈形膜时,间距
$$l_2 = \frac{\lambda}{2\sin\theta} \approx \frac{\lambda}{2n\theta}$$

$$\Delta l = l_1 - l_2 = \lambda (1 - 1/n)/(2\theta)$$

$$\therefore \theta = \lambda (1 - 1/n)/(2\Delta l) = 1.7 \times 10^{-4} \text{ rad}$$

57, 3221

解: 由光栅衍射主极大公式得

$$d\sin\varphi_1 = k_1\lambda_1$$
$$d\sin\varphi_2 = k_2\lambda_2$$

$$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{k_1 \lambda_1}{k_2 \lambda_2} = \frac{k_1 \times 440}{k_2 \times 660} = \frac{2k_1}{3k_2}$$

当两谱线重合时有 $\varphi_1 = \varphi_2$

即

$$\frac{k_1}{k_2} = \frac{3}{2} = \frac{6}{4} = \frac{9}{6}$$

两谱线第二次重合即是

$$\frac{k_1}{k_2} = \frac{6}{4}$$
, $k_1 = 6$, $k_2 = 4$

$$k_1=6, \quad k_2=4$$

由光栅公式可知 $d \sin 60^\circ = 6\lambda_1$

$$d = \frac{6\lambda_1}{\sin 60^{\circ}} = 3.05 \times 10^{-3} \,\mathrm{mm}$$

58, 3737

解:

$$(a+b)\sin\varphi = k \lambda$$
$$k_1\lambda_1 = k_2\lambda_2$$

在 φ =41°处,

$$k_2/k_1 = \lambda_1/\lambda_2 = 656.2/410.1 = 8/5 = 16/10 = 24/15 = \dots$$

取 k_1 =5, k_2 =8, 即让 λ_1 的第 5 级与 λ_2 的第 8 级相重合

$$a+b=k_1\lambda_1/\sin\varphi=5\times10^{-4} \text{ cm}$$

59、0470

解:::

$$a+b=(1/300) \text{ mm} = 3.33 \text{ } \mu\text{m}$$

$$(1) (a+b)\sin\psi = k\lambda$$

$$\lambda = (a+b) \sin 24.46^{\circ} = 1.38 \ \mu \text{m}$$

$$\lambda_R$$
=0.63—0.76 μm; λ_B =0.43—0.49 μm

对于红光,取k=2,则

$$\lambda_R=0.69 \, \mu m$$

对于蓝光,取 k=3,则

$$\lambda_B=0.46 \ \mu m$$

红光最大级次

$$k_{\text{max}} = (a + b) / \lambda_{\text{R}} = 4.8,$$

取 k_{max} =4 则红光的第 4 级与蓝光的第 6 级还会重合. 设重合处的衍射角为 ψ' , 则

$$\sin \psi' = 4\lambda_R / (a+b) = 0.828$$

(2) 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级 将出现.

$$\sin \psi_1 = \lambda_R / (a+b) = 0.207$$
 $\psi_1 = 11.9^\circ$

$$y_{1} = 11.9^{\circ}$$

$$\sin \psi_3 = 3\lambda_R / (a+b) = 0.621$$
 $\psi_3 = 38.4^\circ$

$$\psi_3 = 38.4^{\circ}$$

60, 5662

解: 光栅常数
$$d = (1/600) \text{ mm} = (10^6/600) \text{ nm}$$

=1667 nm

据光栅公式, λ1 的第2级谱线

$$d\sin\theta_1 = 2\lambda_1$$

$$\sin \theta_1 = 2\lambda_1/d = 2 \times 589/1667 = 0.70666$$

$$\theta_1 = 44.96^{\circ}$$

 λ_2 的第 2 级谱线 $d\sin\theta_2 = \lambda_2$

$$\sin \theta_2 = 2\lambda_2/d = 2 \times 589.6/1667 = 0.70738$$

$$\theta_2 = 45.02^{\circ}$$

$$\Delta l = f(\text{tg}\theta_2 - \text{tg}\theta_1)$$

=1.00×10³ (tg 45.02°-tg 44.96°) = 2.04 mm

- 61, 5536
- 解: 光栅常数 d=2×10⁻⁶ m
 - (1) 垂直入射时,设能看到的光谱线的最高级次为 k_m ,则据光栅方程有

$$d\sin\theta = k_m\lambda$$

- $\therefore \sin \theta \leq 1$ $\therefore k_{\rm m} \lambda / d \leq 1$, $\therefore k_{\rm m} \leq d / \lambda = 3.39$
- k_m 为整数,有 $k_m=1$
- (2) 斜入射时,设能看到的光谱线的最高级次为 k'_m ,则据斜入射时的光栅方程有

$$d(\sin 30^{\circ} + \sin \theta') = k'_{m}\lambda$$
$$\frac{1}{2} + \sin \theta' = k'_{m}\lambda/d$$

- $\therefore \quad \sin \theta' \leq 1 \qquad \qquad \therefore \qquad k'_m \lambda / d \leq 1.5$
- $k_m' \leq 1.5d / \lambda = 5.09$
- k'_m 为整数,有 $k'_m = 5$
- 62, 3530
- 解: (1) $a \sin \varphi = k\lambda$ $tg \varphi = x/f$

当 x << f时, $\operatorname{tg} \varphi \approx \sin \varphi \approx \varphi$, $ax/f = k\lambda$, 取 k = 1 有

$$x = fl / a = 0.03 \text{ m}$$

::中央明纹宽度为

$$\Delta x = 2x = 0.06 \,\mathrm{m}$$

(2)

$$(a+b)\sin\varphi = k'\lambda$$

$$k' = (a+b)x/(f\lambda) = 2.5$$

取 k'=2, 共有 k'=0, ± 1 , ± 2 等 5 个主极大

- 63、3766
- 解: (1) 透过第一个偏振片的光强 I₁

$$I_1 = I_0 \cos^2 30^\circ$$

= 3 $I_0 / 4$

透过第二个偏振片后的光强 I_2 , $I_2 = I_1 \cos^2 60^\circ$

$$=3I_0/16$$

(2) 原入射光束换为自然光,则

$$I_1 = I_0 / 2$$

 $I_2 = I_1 \cos^2 60^\circ = I_0 / 8$

- 64, 3767
- 解: (1) 透过 P₁ 的光强

$$I_1 = I_0/2$$

设 P_2 与 P_1 的偏振化方向之间的夹角为 θ ,则透过 P_2 后的光强为

$$I_2 = I_1 \cos^2 \theta = (I_0 \cos^2 \theta) / 2$$

透过 P_3 后的光强为

$$I_3 = I_2 \cos^2\left(\frac{1}{2}\pi - \theta\right) = \frac{1}{2} \left(I_0 \cos^2\theta \sin^2\theta\right) = \left(I_0 \sin^22\theta\right)/8$$

由题意可知 $I_3=I_0/8$,则 $\theta=45^\circ$.

- (2) 转动 P_2 ,若使 $I_3 = I_0 / 16$,则 P_1 与 P_2 偏振化方向的夹角 θ =22.5° P_2 转过的角度为(45°-22.5°)=22.5°.
- 65, 3779
- 解:设 I_0 为入射光中自然光的强度, I_1 、 I_2 分别为穿过 P_1 和连续穿过 P_1 、 P_2 的强度.
 - (1) 由题意,入射光强为 $2I_0$,

$$I_{1} = \frac{1}{2}(2I_{0}) = 0.5I_{0} + I_{0}\cos^{2}\theta$$

$$\cos^{2}\theta = 1/2, \quad \theta = 45^{\circ}$$
(2)
$$I_{2} = (0.5I_{0} + I_{0}\cos^{2}45^{\circ}) \cos^{2}\alpha = \frac{1}{4}(2I_{0})$$

$$\cos^{2}\alpha = \frac{1}{2}, \quad \alpha = 45^{\circ}$$
(3)
$$I_{1} = \left(\frac{1}{2}I_{0} + I_{0}\cos^{2}\theta\right)(1 - 10\%) = \frac{1}{2}(2I_{0})$$

$$\vdots \qquad \cos^{2}\theta = \frac{5.5}{9} \quad \theta = 38.58^{\circ}$$

$$I_{2} = I_{1}\cos^{2}\alpha(1 - 10\%) = \frac{1}{4}(2I_{0})$$

$$\cos^{2}\alpha = \frac{5}{9} \qquad \alpha = 41.81^{\circ}$$

磁场复习题

一、选择题

1, 5669

在半径为R的长直金属圆柱体内部挖去一个半径为r的长直圆柱体, 两柱体轴线平行, 其间距为 a, 如图. 今在此导体上通以电流 I, 电流在 截面上均匀分布,则空心部分轴线上 0'点的磁感强度的大小为

(A)
$$\frac{\mu_0 I}{2\pi a} \cdot \frac{a^2}{R^2}$$

(B)
$$\frac{\mu_0 I}{2\pi a} \cdot \frac{a^2 - r^2}{R^2}$$

(C)
$$\frac{\mu_0 I}{2\pi a} \cdot \frac{a^2}{R^2 - r^2}$$

(C)
$$\frac{\mu_0 I}{2\pi a} \cdot \frac{a^2}{R^2 - r^2}$$
 (D) $\frac{\mu_0 I}{2\pi a} (\frac{a^2}{R^2} - \frac{r^2}{a^2})$

]

2, 2448

磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为 R, x 坐标轴垂直圆筒 轴线,原点在中心轴线上. 图(A) \sim (E)哪一条曲线表示 B-x 的关系?

3, 2003

无限长载流空心圆柱导体的内外半径分别为 $a \times b$, 电流在导体截面上均匀分布, 则空 间各处的 \bar{B} 的大小与场点到圆柱中心轴线的距离r的关系如图所示。正确的图是[]

4, 5121

在图(a)和(b)中各有一半径相同的圆形回路 L_1 、 L_2 , 圆周内有电流 I_1 、 I_2 ,其分布相同,且均在真空中,但 在(b)图中 L_2 回路外有电流 I_3 , P_1 、 P_2 为两圆形回路上 的对应点,则:

(A)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} = \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} = B_{P_2}$$

(A)
$$\oint_{L_{1}} \vec{B} \cdot d\vec{l} = \oint_{L_{2}} \vec{B} \cdot d\vec{l} , B_{P_{1}} = B_{P_{2}}$$
(B)
$$\oint_{L_{1}} \vec{B} \cdot d\vec{l} \neq \oint_{L_{2}} \vec{B} \cdot d\vec{l} , B_{P_{1}} = B_{P_{2}}.$$
(C)
$$\oint_{L_{1}} \vec{B} \cdot d\vec{l} = \oint_{L_{2}} \vec{B} \cdot d\vec{l} , B_{P_{1}} \neq B_{P_{2}}.$$
(D)
$$\oint_{L_{1}} \vec{B} \cdot d\vec{l} \neq \oint_{L_{2}} \vec{B} \cdot d\vec{l} , B_{P_{1}} \neq B_{P_{2}}.$$

(C)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} = \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} \neq B_{P_2}.$$

(D)
$$\oint_{L_1} \vec{B} \cdot d\vec{l} \neq \oint_{L_2} \vec{B} \cdot d\vec{l} , B_{P_1} \neq B_{P_2}$$

A、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动. A 电子的速率是 B 电 子速率的两倍. 设 R_A , R_B 分别为 A 电子与 B 电子的轨道半径; T_A , T_B 分别为它们各自的周 期.则

(A)
$$R_A : R_B = 2$$
, $T_A : T_B = 2$. (B) $R_A : R_B = \frac{1}{2}$, $T_A : T_B = 1$.

(C)
$$R_A : R_B = 1, T_A : T_B = \frac{1}{2}$$
. (D) $R_A : R_B = 2, T_A : T_B = 1$.

6, 2063

图为四个带电粒子在 O 点沿相同方向垂直于磁感线射入均匀磁 场后的偏转轨迹的照片. 磁场方向垂直纸面向外, 轨迹所对应的四个 粒子的质量相等, 电荷大小也相等, 则其中动能最大的带负电的粒子 的轨迹是

- (A) *Oa*.
- (B) Ob.
- (C) *Oc*.
- (D) *Od*.

٦ Γ

7、2466

把轻的正方形线圈用细线挂在载流直导线 AB 的附近,两者在同一平 面内, 直导线 AB 固定, 线圈可以活动. 当正方形线圈通以如图所示的电 流时线圈将

- (B) 发生转动,同时靠近导线 AB.
- (C) 发生转动, 同时离开导线 AB.
- (D) 靠近导线 AB.
- (E) 离开导线 AB.

]

8, 2595

有一N 匝细导线绕成的平面正三角形线圈,边长为a,通有电流I,置于均匀外磁场 \bar{B} 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩 M_m 值为

- (A) $\sqrt{3}Na^2IB/2$. (B) $\sqrt{3}Na^2IB/4$.
- (C) $\sqrt{3}Na^2IB\sin 60^\circ$.
- (D) 0.

]

9, 2467

图示一测定水平方向匀强磁场的磁感强度 \vec{B} (方向见图)的 实验装置. 位于竖直面内且横边水平的矩形线框是一个多匝的 线圈. 线框挂在天平的右盘下, 框的下端横边位于待测磁场 中. 线框没有通电时,将天平调节平衡:通电后,由于磁场对 线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m才能使天平重新平衡. 若待测磁场的磁感强度增为原来的 3 倍,

而通过线圈的电流减为原来的 $\frac{1}{2}$,磁场和电流方向保持不变,则要使天平重新平衡,其左 盘中加的砝码质量应为

- (A) 6m.
- (B) 3m/2.
- (C) 2m/3.
- (D) m/6.
- (E) 9m/2.

Γ 7

有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片 上均匀分布,在铜片外与铜片共面,离铜片右边缘为 b 处的 P 点(如图) 的磁感强度 \bar{B} 的大小为

(A)
$$\frac{\mu_0 I}{2\pi(a+b)}.$$

(B)
$$\frac{\mu_0 I}{2\pi a} \ln \frac{a+b}{b} .$$

(C)
$$\frac{\mu_0 I}{2\pi b} \ln \frac{a+b}{b}$$
. (D) $\frac{\mu_0 I}{\pi(a+2b)}$.

(D)
$$\frac{\mu_0 I}{\pi(a+2b)}$$

11, 2016

无限长直导线在 P 处弯成半径为 R 的圆,当通以电流 I 时,则在圆心 O 点的磁感强度 大小等于

(A)
$$\frac{\mu_0 I}{2\pi R}$$
. (B) $\frac{\mu_0 I}{4R}$.

(B)
$$\frac{\mu_0 I}{4R}$$
.

(C) 0. (D)
$$\frac{\mu_0 I}{2R} (1 - \frac{1}{\pi})$$
.

(E)
$$\frac{\mu_0 I}{4R} (1 + \frac{1}{\pi})$$
.

Γ 7

12, 2609

用细导线均匀密绕成长为l、半径为a(l >> a)、总匝数为N的螺线管,管内充满相对磁 导率为 μ , 的均匀磁介质. 若线圈中载有稳恒电流 I, 则管中任意一点的

- (A) 磁感强度大小为 $B = \mu_0 \mu_r NI$.
- (B) 磁感强度大小为 $B = \mu_r NI/l$.
- (C) 磁场强度大小为 $H = \mu_0 NI/l$.
- (D) 磁场强度大小为H=NI/l.

13, 1932

如图所示,一矩形金属线框,以速度 \bar{v} 从无场空间进 入一均匀磁场中,然后又从磁场中出来,到无场空间中.不 计线圈的自感, 下面哪一条图线正确地表示了线圈中的感 应电流对时间的函数关系? (从线圈刚进入磁场时刻开始 计时, I 以顺时针方向为正) Γ

14, 2145

两根无限长平行直导线载有大小相等方向相反的电流 I,并各以 dI/dt的变化率增长,一矩形线圈位于导线平面内(如图),则:

- (A) 线圈中无感应电流.
- (B) 线圈中感应电流为顺时针方向.
- (C) 线圈中感应电流为逆时针方向.
- (D) 线圈中感应电流方向不确定,

在一通有电流I的无限长直导线所在平面内,有一半径为r、电阻为 R 的导线小环,环中心距直导线为a,如图所示,且a >> r. 当直导线的 电流被切断后,沿着导线环流过的电荷约为

(A)
$$\frac{\mu_0 I r^2}{2\pi R} (\frac{1}{a} - \frac{1}{a+r})$$

(B)
$$\frac{\mu_0 Ir}{2\pi R} \ln \frac{a+r}{a}$$

(C)
$$\frac{\mu_0 I r^2}{2aR}$$

(D)
$$\frac{\mu_0 Ia^2}{2rR}$$

16, 2123

如图所示,导体棒 AB 在均匀磁场 B 中 绕通过 C 点的垂直于棒 长且沿磁场方向的轴 OO' 转动 (角速度 \vec{o} 与 \vec{B} 同方向), BC 的长度 为棒长的 $\frac{1}{3}$,则

- (A) A 点比 B 点电势高.
- (B) A 点与 B 点电势相等.
- A 点比 B 点电势低. (B)
- (D) 有稳恒电流从A点流向B点. [

]

17, 2315

如图所示,直角三角形金属框架 abc 放在均匀磁场中,磁场 $ar{B}$ 平行于 ab 边,bc 的长度为 l. 当金属框架绕 ab 边以匀角速度 ab 动时,abc 回路 中的感应电动势 \triangle 和 a、c 两点间的电势差 $U_a - U_c$ 为

(A)
$$= 0$$
, $U_a - U_c = \frac{1}{2} B \omega l^2$.

(B)
$$= 0$$
, $U_a - U_c = -\frac{1}{2}B\omega l^2$.

(C)
$$\sqsubseteq B\omega l^2$$
, $U_a - U_c = \frac{1}{2}B\omega l^2$.

(D)
$$\sqsubseteq =B\omega l^2$$
, $U_a-U_c=-\frac{1}{2}B\omega l^2$.

Γ 7

18, 5138

在一自感线圈中通过的电流 I 随时间 t 的变化规律如 图(a)所示,若以 I 的正流向作为L的正方向,则代表线圈 内自感电动势 \angle 随时间 t 变化规律的曲线应为图(b)中(A)、

19、5677

真空中两根很长的相距为2a的平行直导线与电源组成闭合回路如图。 已知导线中的电流为 I,则在两导线正中间某点 P 处的磁能密度为

(A)
$$\frac{1}{\mu_0} (\frac{\mu_0 I}{2\pi a})^2$$

(A)
$$\frac{1}{\mu_0} (\frac{\mu_0 I}{2\pi a})^2$$
. (B) $\frac{1}{2\mu_0} (\frac{\mu_0 I}{2\pi a})^2$.

(C)
$$\frac{1}{2\mu_0} (\frac{\mu_0 I}{\pi a})^2$$
 . (D) 0.

在圆柱形空间内有一磁感强度为 \vec{B} 的均匀磁场,如图所示, \vec{B} 的大 小以速率 dB/dt 变化. 有一长度为 la的金属棒先后放在磁场的两个不同位 置 1(ab)和 2(a'b'),则金属棒在这两个位置时棒内的感应电动势的大小 关系为

- (A) $L_2 = L_1 \neq 0$. (B) $L_2 > L_1$.
- (C) $L_2 < L_1$. (D) $L_2 = L_1 = 0$.

二、填空题

21、2565

如图, 球心位于 O 点的球面, 在直角坐标系 xOy 和 xOz 平 面上的两个圆形交线上分别流有相同的电流, 其流向各与 v 轴和 z轴的正方向成右手螺旋关系.则由此形成的磁场在O点的方向

22, 2370

两根长直导线通有电流 I, 图示有三种环路; 在每种情况下, *∮ Ē* · d*Ī* 等于:

(对环路 a)
(对环路 b)
(对环路 c).

23, 2571

有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流 I 流通. 筒内空腔各 处的磁感强度为 ,简外空间中离轴线 r 处的磁感强度为

如图所示,磁感强度 \vec{B} 沿闭合曲线L的环流

25, 2053

有一同轴电缆, 其尺寸如图所示, 它的内外两导体中的电流均 为 I, 且在横截面上均匀分布, 但二者电流的流向正相反, 则

- (1) 在 $r < R_1$ 处磁感强度大小为______.
- (2) 在 $r > R_3$ 处磁感强度大小为

		_
26	271	(1
/n.	//	u

将半径为R的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h(h << R)的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i(如上图),则管轴线磁感强度的大小是

27, 2394

34、2149

271 2001
电子在磁感强度为 \bar{B} 的均匀磁场中沿半径为 R 的圆周运动,电子运动所形成的等效圆
电 流 强 度 $I=$
28、2208 图中 $A_1 A_2$ 的距离为 0.1 m , A_1 端有一电子,其初速度 $v = 1.0 \times 10^7$
$m \cdot s^{-1}$,若它所处的空间为均匀磁场,它在磁场力作用下沿圆形轨道运
动到 A_2 端,则磁场各点的磁感强度 \bar{B} 的大小 B
=,方向为,电子通过这段路
程所需时间 $t =$. (电子质量 $m_e = 9.11 \times 10^{-31}$ kg,基本电
荷 $e = 1.6 \times 10^{-19} \mathrm{C}$)
29、0361
如图所示,一半径为 R ,通有电流为 I 的圆形回路,位于 Oxy 平面内,圆心为 O . 一带正电荷为 q 的粒子,以速度 \bar{v} 沿 z 轴向上运动,当带正电荷的粒子恰好通过 O 点时,作用于圆形回路上的力为,作用在带电粒子上的力为。
30、2095
如图,半圆形线圈(半径为 R)通有电流 I . 线圈处在与线圈平面平行向 \bar{R}
右的均匀磁场 \bar{B} 中. 线圈所受磁力矩的大小为,方向为 R I
31, 2103
一电子以速率 $v=2.20\times10^6\mathrm{m\cdot s^{-1}}$ 垂直磁力线射入磁感强度为 $B=2.36\mathrm{T}$ 的均匀磁场,则该电子的轨道磁矩为 其方向与磁场方向 (电子质量为 $m=9.11\times10^{-31}\mathrm{kg})$ 32、2479
有一流过电流 $I=10$ A 的圆线圈,放在磁感强度等于 0.015 T 的匀强磁场中,处于平衡
位置. 线圈直径 $d=12$ cm. 使线圈以它的直径为轴转过角 $\alpha=\pi/2$ 时,外力所必需作的功 $A=$,如果转角 $\alpha=2\pi$,必需作的功 $A=$
33、2614
将条形磁铁插入与冲击电流计串联的金属环中时,有 $q=2.0\times10^{-5}$ C 的电荷通过电流
计. 若连接电流计的电路总电阻 $R=25$ Ω ,则穿过环的磁通的变化 $\Delta \Phi$

一面积为 S 的平面导线闭合回路, 置于载流长螺线管中, 回路的法向与螺线管轴线平 行. 设长螺线管单位长度上的匝数为 n, 通过的电流为 $I = I_m \sin \omega t$ (电流的正向与回路的 正法向成右手关系),其中 I_m 和 ω 为常数, t 为时间,则该导线回路中的感生电动势为 35, 2116 一半径 r=10 cm 的圆形闭合导线回路置于均匀磁场 \bar{B} (B=0.80 T)中, \bar{B} 与回路平面正 交. 若圆形回路的半径从 t=0 开始以恒定的速率 dr/dt=-80 cm/s 收缩,则在这 t=0 时刻, 闭合回路中的感应电动势大小为 :如要求感应电动势保持这一数值,则闭合 回路面积应以 dS/dt = 的恒定速率收缩. 36, 2753 如图所示,在与纸面相平行的平面内有一载有电流 I 的无限 长直导线和一接有电压表的矩形线框,线框与长直导线相平行的 边的长度为l,电压表两端a,b间的距离和l相比可以忽略不计.今 使线框在与导线共同所在的平面内以速度*v* 沿垂直于载流导线的 方向离开导线, 当运动到线框与载流导线相平行的两个边距导线 分别为 r_1 和 r_2 ($r_2 > r_1$)时,电压表的读数 V =电压表的正极端为 . 37、2135 四根辐条的金属轮子在均匀磁场 \bar{B} 中转动,转轴与 \bar{B} 平行,轮 子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮 边缘 b 之间的感应电动势为 , 电势最高点是在 38, 2625 自感系数 L=0.3 H 的螺线管中通以 I=8 A 的电流时,螺线管存储的磁场能量 W39, 5678 真空中一根无限长直导线中通有电流 I,则距导线垂直距离为 a 的某点的磁能密度 w_m 40, 5146 半径为 R 的无限长柱形导体上均匀流有电流 I,该导体材料的相对磁导率 $\mu_r=1$,则在导 体轴线上一点的磁场能量密度为 w_{mo} = ,在与导体轴线相距r处(r<R)的磁场能量 三、计算题 41, 2666 平面闭合回路由半径为 R_1 及 R_2 ($R_1 > R_2$)的两个同心半圆弧和两个直 导线段组成(如图). 已知两个直导线段在两半圆弧中心 O 处的磁感强度为 零,且闭合载流回路在 O 处产生的总的磁感强度 B 与半径为 R_0 的半圆弧 在 O 点产生的磁感强度 B_2 的关系为 B=2 $B_2/3$,求 R_1 与 R_2 的关系. 42, 2726

无限长直导线折成 V 形, 顶角为 θ , 置于 xy 平面内, 一个角边与 x轴重合,如图. 当导线中有电流 I 时,求v 轴上一点 P(0,a)处的磁感强 度大小.

一无限长圆柱形铜导体(磁导率 μ_0),半径为 R,通有均匀分布的电流 I. 今取一矩形平面 S (长为 1 m,宽为 2 R),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.

44、2764

如图所示,一个带有正电荷 q 的粒子,以速度 \bar{v} 平行于一均匀带电的长直导线运动,该导线的线电荷密度为 λ ,并载有传导电流 I. 试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为 r 的平行直线上? 45、2087

一圆线圈的半径为 R,载有电流 I,置于均匀外磁场 \bar{B} 中(如图示). 在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导线上的张力. (载流线圈的法线方向规定与 \bar{B} 的方向相同.)

46, 5128

用两根彼此平行的半无限长直导线 L_1 、 L_2 把半径为 R 的均匀导体圆环联到电源上,如图所示. 已知直导线中的电流为 I. 求圆环中心 O 点的磁感强度.

47、2252

绕铅直轴作匀角速度转动的圆锥摆,摆长为 l,摆球所带电荷为 q. 求角速度 ω 为何值时,该带电摆球在轴上悬点为 l 处的 O 点产生的磁感强度沿竖直方向的分量值最大.

48、2737

两根平行无限长直导线相距为 d,载有大小相等方向相反的电流 I,电流变化率 $dI/dt=\alpha>0$. 一个边长为 d 的正方形线圈位于导线平面内与一根导线相距 d,如图所示. 求线圈中的感应电动势。,并说明线圈中的感应电流是顺时针还是逆时针方向.

49、2499

无限长直导线,通以常定电流 I. 有一与之共面的直角 三角形线圈 ABC. 已知 AC 边长为 b,且与长直导线平行, BC 边长为 a. 若线圈以垂直于导线方向的速度 \bar{v} 向右平移, 当 B 点与长直导线的距离为 d 时,求线圈 ABC 内的感应电动势的大小和感应电动势的方向.

50、2138

求长度为 L 的金属杆在均匀磁场 \bar{B} 中绕平行于磁场方向的定轴 OO' 转动时的动生电动势. 已知杆相对于均匀磁场 \bar{B} 的方位角为 θ ,杆的角速度为 ω ,转向如图所示.

答案

一、选择题

21, 2565

两单位矢量 \bar{j} 和 \bar{k} 之和,即 $(\bar{j}+\bar{k})$ 的方向.

22, 2370

$$\mu_0 I$$
; 0 ; $2 \mu_0 I$

23, 2571

0;
$$\mu_0 I/(2\pi r)$$

24, 5124

$$\mu_0(I_2 - 2I_1)$$

25, 2053

$$\mu_0 rI/(2\pi R_1^2)$$
 ;

26, 2710

$$\frac{\mu_0 ih}{2\pi R}$$

27, 2394

$$Be^2/(2\pi m_e)$$
; $Be^2R^2/(2m_e)$ \Rightarrow

28, 2208

$$m_e v / (eR) = 1.14 \times 10^{-3} \,\mathrm{T}$$
 ; ⊗(垂直纸面向里) ; $\pi R / v = 1.57 \times 10^{-8} \,\mathrm{s}$

29、0361

30、2095

$$\frac{1}{2}\pi R^2 IB$$
 ; 在图面中向上 ; $\frac{1}{2}\pi + n\pi$ ($n = 1, 2, \dots$)

31, 2103

32、2479

$$1.70 \times 10^{-3} \,\mathrm{J}$$
;

$$5 \times 10^{-4} \text{ Wb}$$

34、2149

$$-\mu_0 nS\omega I_m \cos \omega t$$

$$0.40 \,\mathrm{V}$$
 ; $-0.5 \,\mathrm{m}^2/\mathrm{s}$

$$\frac{\mu_0 Ivl}{2\pi} (\frac{1}{r_1} - \frac{1}{r_2}) \qquad ; \qquad a \stackrel{\text{dis}}{=}$$

$$\pi BnR^2$$
;

9.6 J

39、5678

$$\mu_0 I^2 / (8\pi^2 a^2)$$

$$\mu_0 I^2 r^2 / (8\pi^2 R^4)$$

0

三、计算题

41, 2666

解:由毕奥一萨伐尔定律可得,设半径为 R_1 的载流半圆弧在O点产生的磁感强度为 B_1 ,则

$$B_1 = \frac{\mu_0 I}{4R_1}$$

同理,

$$B_2 = \frac{\mu_0 I}{4R_2}$$

$$B_1 < B_2$$

$$=\frac{\mu_0 I}{4R_2} - \frac{\mu_0 I}{4R_1} = \frac{\mu_0 I}{6R_2}$$

$$R_1 = 3R_2$$

42, 2726

解:如图所示,将 V 形导线的两根半无限长导线分别标为 1 和 2.则

导线 1 中电流在 P 点的磁感强度为

$$B_1 = \frac{\mu_0 I}{4\pi a}$$

 \bar{B}_1 方向垂直纸面向内.

导线 2 中电流在 P 点的磁感强度为

$$B_2 = \frac{\mu_0 I}{4\pi a \cos \theta} (1 + \sin \theta)$$

 \bar{B} , 方向垂直纸面向外.

P 点的总磁感强度为

$$B = B_2 - B_1 = \frac{\mu_0 I}{4\pi a \cos \theta} (1 + \sin \theta - \cos \theta)$$

 \bar{B} 的方向垂直纸面向外.

43, 2006

解:在圆柱体内部与导体中心轴线相距为r处的磁感强度的大小,由安培环路定

$$B = \frac{\mu_0 I}{2\pi R^2} r \qquad (r \le R)$$

因而,穿过导体内画斜线部分平面的磁通 ϕ 为

$$\boldsymbol{\Phi}_{1} = \int \vec{B} \cdot d\vec{S} = \int B dS = \int_{0}^{R} \frac{\mu_{0}I}{2\pi R^{2}} r dr = \frac{\mu_{0}I}{4\pi}$$

在圆形导体外,与导体中心轴线相距 r 处的磁感强度大小为

$$B = \frac{\mu_0 I}{2\pi r} \qquad (r > R)$$

因而,穿过导体外画斜线部分平面的磁通 Φ 2为

$$\Phi_2 = \int \vec{B} \cdot d\vec{S} = \int_R^{2R} \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I}{2\pi} \ln 2$$

穿过整个矩形平面的磁通量 $\Phi = \Phi_1 + \Phi_2 = \frac{\mu_0 I}{4\pi} + \frac{\mu_0 I}{2\pi} \ln 2$

44, 2764

解: 依据无限长带电和载流导线的电场和磁场知:

$$E(r) = \frac{\lambda}{2\pi\varepsilon_0 r}$$
 (方向沿径向向外)

$$B(r) = \frac{\mu_0 I}{2\pi r}$$
 (方向垂直纸面向里)

运动电荷受力
$$F$$
(大小)为:
$$F = \frac{q\lambda}{2\pi\varepsilon_0 r} - \frac{\mu_0 Iq}{2\pi r} v$$

此力方向为沿径向(或向里,或向外)

为使粒子继续沿着原方向平行导线运动, 径向力应为零,

$$\frac{q\lambda}{2\pi\varepsilon_0 r} - \frac{\mu_0 Iq}{2\pi r} \upsilon = 0$$

则有

$$v = \frac{\lambda}{\varepsilon_0 \mu_0 I}$$

45, 2087

解: 考虑半圆形载流导线 CD 所受的安培力

$$F_{\scriptscriptstyle m} = IB \cdot 2R$$

列出力的平衡方程式 $IB \cdot 2R = 2T$

46, 5128

解:设 L_1 中电流在O点产生的磁感强度为 B_1 ,由于 L_1 与O点在一条直线上,由毕奥一萨 伐定律可求出 $B_{1} = 0$

设 L_2 中电流在 O 点产生的磁感强度为 B_2 , L_2 为半无限长直电流,它在 O 处产生的场是无限长直电流的一半,由安培环路定律和叠加原理有

$$B_2 = \frac{\mu_0 I}{2\pi R} \cdot \frac{1}{2} = \frac{\mu_0 I}{4\pi R}$$

方向垂直图面向外.

3 分

以下求圆环中电流在 O 点产生的磁感强度. 电流由 L_1 经 a 点分两路流入圆环,一路由 a 点经 1/4 圆弧流至 b,称此回路为 L_3 . 另一路由 a 点经 3/4 圆弧流至 b,称此段回路为 L_4 . 由于圆环为均匀导体,若 L_2 的电路电阻为 R,则 L_4 的电阻必为 3R. 因此电流在 L_3 、 L_4 上的分配情况为 L_3 中电流为 3I/4, L_4 中电流为 I/4. L_3 、 L_4 中电流在 O 点产生的磁感强度的大小相等,方向相反,总值为 0. 即

$$\vec{B}_3 + \vec{B}_4 = 0$$

故O点的磁感强度:

$$\left| \vec{B}_0 \right| = \left| \vec{B}_1 + \vec{B}_2 + \vec{B}_3 + \vec{B}_4 \right| = \frac{\mu_0 I}{4\pi R}$$

方向垂直图面向外.

47, 2252

解:圆锥摆在O处产生的磁感强度沿竖直方向分量B相当于圆电流在其轴上一点产生的B,

故
$$B = \frac{\mu_0 R^2 I}{2(R^2 + x^2)^{3/2}}$$

$$I = \frac{q\omega}{2\pi}$$

$$R = l\sin\theta \quad , \qquad R^2 = l^2\sin^2\theta = l^2(1-\cos^2\theta)$$

$$x = l(1-\cos\theta)$$

用
$$\cos \theta = \frac{g}{\omega^2 I}$$
 代入上式

$$B = \frac{\mu_0 q (l\omega^2 + g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{1/2}}$$

$$\frac{dB}{d\omega} = \frac{\mu_0 q (l^2 \omega^3 - 3l\omega g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{3/2}}$$

$$\frac{dB}{d\omega} = 0 \quad \text{⊕} \quad \omega = \frac{\sqrt{3}g}{\sqrt{l}}$$

48, 2737

解: (1) 载流为 I 的无限长直导线在与其相距为 r 处产生的磁感强度为:

$$B = \mu_0 I / (2\pi r)$$

以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:

$$\Phi_1 = \int_{0}^{3d} d \cdot \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I d}{2\pi} \ln \frac{3}{2}$$

与线圈相距较近的导线对线圈的磁通量为:

$$\Phi_2 = \int_{d}^{2d} -d \cdot \frac{\mu_0 I}{2\pi r} dr = -\frac{\mu_0 I d}{2\pi} \ln 2$$

总磁通量

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}_1 + \boldsymbol{\Phi}_2 = -\frac{\mu_0 Id}{2\pi} \ln \frac{4}{3}$$

由_>0 和回路正方向为顺时针,所以_的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.

49、2499

解: 建立坐标系, 长直导线为 y 轴, BC 边为 x 轴, 原点在长直导线上, 则斜边的方程为 y=(bx/a)-br/a

式中r是t时刻B点与长直导线的距离. 三角形中磁通量

$$\Phi = \frac{\mu_0 I}{2\pi} \int_r^{a+r} \frac{y}{x} dx = \frac{\mu_0 I}{2\pi} \int_r^{a+r} \left(\frac{b}{a} - \frac{br}{ax}\right) dx = \frac{\mu_0 I}{2\pi} \left(b - \frac{br}{a} \ln \frac{a+r}{r}\right)$$

$$= -\frac{d\Phi}{dt} = \frac{\mu_0 Ib}{2\pi a} \left(\ln \frac{a+r}{r} - \frac{a}{a+r}\right) \frac{dr}{dt}$$

$$\stackrel{\cong}{=} \frac{\mu_0 Ib}{2\pi a} \left(\ln \frac{a+d}{d} - \frac{a}{a+d}\right) v$$

方向: ACBA(即顺时针)

50, 2138

解:在距O点为l处的dl线元中的动生电动势为

$$d = (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

$$v = \omega l \sin \theta$$

$$= \int_{L} (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_{L} vB \sin(\frac{1}{2}\pi) \cos \alpha dl$$

$$= \int_{L} \omega lB \sin \theta dl \sin \theta = \omega B \sin^{2} \theta \int_{0}^{L} l dl$$

$$= \frac{1}{2} \omega BL^{2} \sin^{2} \theta$$

 $\begin{array}{c}
O' \\
\uparrow \\
\theta \\
\downarrow \\
I
\end{array}$ $\vec{v} \times \vec{B}$ O

_的方向沿着杆指向上端.

近代物理复习题

一、选择题

1、8015		
有下列几种说法:		
(1) 所有惯性系对物理基本规律都是等价的.		
(2) 在真空中,光的速度与光的频率、光源的运动状态无关.		
(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.		
若问其中哪些说法是正确的, 答案是		
(A) 只有(1)、(2)是正确的.		
(B) 只有(1)、(3)是正确的.		
(C) 只有(2)、(3)是正确的.		
(D) 三种说法都是正确的.	Г	7
2, 4716	_	_
有一直尺固定在 K' 系中, 它与 Ox' 轴的夹角 $\theta'=45^\circ$, 如果 K'	系以匀i	東度沿 Or
方向相对于 K 系运动, K 系中观察者测得该尺与 Ox 轴的夹角	21.51.37	型/文门 0.4
(A) 大于 45°. (B) 小于 45°. (C) 急	垒干 45°	
(D) 当 K' 系沿 Ox 正方向运动时大于 45° ,而沿 Ox 负方向运动时	-	
3、4359	L	
(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个	重件 对	·工相对该
惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生		1 4111/1 18
(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其		山里丕同
时发生?	占灰压水	门足口问
关于上述两个问题的正确答案是:		
(A) (1)同时,(2)不同时.		
(B) (1)不同时, (2)同时.		
(C) (1)同时, (2)同时.	Г	٦
(D) (1)不同时, (2)不同时.	[]
4、4174	日山坊七	业化
某核电站年发电量为 100 亿度,它等于 36×10 ¹⁵ J 的能量,如果这静止能转化产生的,则需要消耗的核材料的质量为	定田悠州	科的主部
(A) 0.4 kg. (B) 0.8 kg.		
(C) $(1/12) \times 10^7 \text{ kg}$. (D) $12 \times 10^7 \text{ kg}$.		7
5、4723	_	_
质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为青	争止质量的	的
(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍.	Γ]
6、4498	_	_
一个电子运动速度 $v = 0.99c$,它的动能是: (电子的静止能量为 0.51	MeV)	
(A) 4.0MeV. (B) 3.5 MeV.	,	
(C) 3.1 MeV. (D) 2.5 MeV.	[]
7、4724		
α 粒子在加速器中被加速,当其质量为静止质量的 3 倍时,其动能为	7静止能量	量的
(A) 2 倍. (B) 3 倍. (C) 4 倍. (D) 5 倍.]
	_	_

某核电站年发电量为 100 亿度, 它等于 36×10¹⁵ J 的能量, 如果这是由核材料的全部 静止能转化产生的,则需要消耗的核材料的质量为

(A) 0.4 kg.

(B) 0.8 kg.

(C) $(1/12) \times 10^7$ kg.

(D) 12×10^7 kg.

Γ 7

9, 4182

用频率为 I_1 的单色光照射某种金属时,测得饱和电流为 I_1 ,以频率为 I_2 的单色光照射该 金属时,测得饱和电流为 I_2 ,若 $I_1 > I_2$,则

(A) $v_1 > v_2$.

(B) $v_1 < v_2$.

(C) $v_1 = v_2$.

(D) n与n的关系还不能确定.

Γ 7

10, 4607

当照射光的波长从 4000 Å 变到 3000 Å 时,对同一金属,在光电效应实验中测得的遏止 电压将:

(A) 減小 0.56 V. (B) 減小 0.34 V. (C) 增大 0.165 V. (D) 增大 1.035 V.

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$,基本电荷 $e = 1.60 \times 10^{-19} \,\text{C}$)

以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保 持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,满足题意的图 是 Γ

12, 4383

用频率为 ν 的单色光照射某种金属时,逸出光电子的最大动能为 E_K : 若改用频率为 2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:

(A) $2 E_K$. (B) $2h v - E_K$.

(C) $h v - E_K$.

(D) $hv + E_K$.

Γ 7

13, 0507

已知用光照的办法将氢原子基态的电子电离,可用的最长波长的光是 913 Å 的紫外光, 那么氢原子从各受激态跃迁至基态的赖曼系光谱的波长可表示为:

(A)
$$\lambda = 913 \frac{n-1}{n+1} \text{ Å.}$$
 (B) $\lambda = 913 \frac{n+1}{n-1} \text{ Å.}$

(B)
$$\lambda = 913 \frac{n+1}{n-1} \text{ Å}.$$

(C)
$$\lambda = 913 \frac{n^2 + 1}{n^2 - 1} \text{ Å.}$$
 (D) $\lambda = 913 \frac{n^2}{n^2 - 1} \text{ Å.}$

(D)
$$\lambda = 913 \frac{n^2}{n^2 + 1} \text{ Å.}$$

14, 4190

要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成 的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是

(A) 1.5 eV.

(B) 3.4 eV.

(C) 10.2 eV.

(D) 13.6 eV.

Γ 7

15, 4198

根据玻尔理论, 氢原子中的电子在 n=4 的轨道上运动的动能与在基态的轨道上运动的

	(A)	1/4.	(B)	1/8.						
	(C)	1/16.	(D)	1/32.]
16,	4619)								
		玻尔理论,电子								
	(A)	任意值. $2\pi nh$, $n=1$,	2 2		(B)	nh,	n = 1, 2,	3,	г	٦
17			2, 3	,	(D)	$nh/(2\pi)$,	n = 1, 2,	3,	L]
1/\	4770		层之	甘油七	四本油レ		17字 1113年765 2	7. 4A		
		:两种不同质量的				7日円, 则]及例們和7	_ HJ		
		动量相同.							Г	٦
1.0		速度相同.	(1	J) 对肥/	阳四.]
185	4206) :质量不为零的微:	加 李宁 二	乙化宣油	눈취 살!	计给之物质	舌油的油上	1 片油瓦	主,右加	下光系
					$x \propto 1/v$.		火伙时伙 区	心力逐步	之口行外	1下大尔:
	` '			, ,						
	(C)	$\lambda \propto \sqrt{\frac{1}{v^2} - \frac{1}{c^2}}$		(D)	$\lambda \propto \sqrt{c^2}$	$-\nu^2$.			Г]
	(0)	$\sqrt{v^2}$ c^2	•	(D)					L	_
19、	4428	3								
		粒子在一维矩形	无限涉	采势阱中	运动,其	波函数为	J:			
			(, 1	3π	¢ , _				
			$\psi(x)$	$z = \frac{1}{\sqrt{a}}$	$\cdot \cos \frac{\pi}{2a}$	$\frac{c}{a}$, $(-a \le$	=x = a			
那么	、粒子	\pm 在 $x = 5a/6$ 处出现	见的根	(率密度)	为					
	(A)	1/(2a). (B) 1	/a.						
	(C)	$1/\sqrt{2a}$.	(D)	$1/\sqrt{a}$]
20、	5619)								
	波长	:λ=5000 Å 的光浴	h x 轴	正向传持	番,若光的	的波长的不	下确定量Δλ	$=10^{-3} \text{ Å}$,则利	用不确定
关系	試 公	$p_x \Delta x \ge h$ 可得光	子的 x	坐标的	不确定量	至少为				
	(A)	25 cm.	(B)	50 cm.						
	(C)	250 cm.	(D)	500 cm	ı .				[]
_,	填空	题								
21,	8016	ó								
	有一	一速度为 u 的宇宙	飞船	沿 x 轴ī	E方向飞	行,飞船	头尾各有一	个脉冲	光源在	工作,处
于船	昆的	观察者测得船头	光源发	 设出的光	脉冲的传	播速度大	:小为		_;处于;	船头的观
察者	台测得	船尾光源发出的	光脉冲	中的传播	速度大小	、为	•			
22、	8017									
,		$ \exists \text{性系} S \text{和} S' \text{的} $								
		经过一段时间 t	百 (ES' 糸『	P经过时	间 t′), 」	此光脉冲的	球面方	桯(用]	直角坐板
系)	分别			C /	玄					
23	3 示。 4166		;	, s	环		•			
231		' 见察者测得一沿米	· 兄长!	度方向与	1凍法劫勢	等的米 尼亞	h长度为 n	5 m		以谏度 1
=		加尔有例付 和小 m·s ⁻¹			1 CC	コ ロリノトノ ヘロ	J N/X/J 0.	ン 111・火!	ルロノトノ ヘ	小心区区
	4165		***\/	лиду. П •						
211		, ^子是不稳定的粒	子. オ	宇它自己	的参昭至	中洲得平	·均寿命县?	6×10	-8 s. t/⊓⊒	果它相对
干垃		以 $0.8c$ (c) 为直空								

动能之比为

201	4733						
	己知一静止质量	量为 m_0 的粒子,是	其固有寿命为实	验室测量至	的寿命	的 1/n,	则此粒子的
动能	E 是		.,,,,				7
	4728	-'					
		一质点的质量 <i>m</i>	与速度 1) 的关	系式为		• -	其动能的表达
式头	5/			WE() 2		, ′	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	4499	- •					
2/\		情况	3下粒子的动量(医工非相对	公司書は	的無位	
	• •						
20	(2) 社.速浸 <i>し</i> = _ 4730	問り	Г 1. 4 7. 1 ПЛ <i>Э</i> ЛНС-	4 1 Chitt.	止 此里。		
205		明中神神神	廿氏具斗執 1.1.15	<u> </u>	7 n-1 +1	느 그는 신전 기	
		器中被加速,当	共灰重刀靜止原	可重的 3 位	的, 尹	长功 配力	分 静止配重出
29、	4179						
	光子波长为λ,	,则其能量=	; <u>z</u>	动量的大人	· =		; 质量
=		_ •					
	4184						
	己知钾的逸出功]为 2.0 eV,如果)	用波长为 3.60×	10 ⁻⁷ m 的光	照射在	钾上,原	则光电效应的
遏山	上电压的绝对值	$ U_a = $. 从	、钾表面发	射出电	子的最	大速度 υ _m
		h = 6.6					
	4391						
<i>5</i> 1 ($m (1 nm = 10^{-9} m)$)的来昭射左草/	- 全国表面时	米申-	乙的分台	此范围为 0α
40>		(1 mm - 10 m 止电压为 <i>Ua</i> =	*				
		$=6.63\times10^{-34} \mathrm{J\cdot s},$					
	(音朗兄吊里 <i>n</i> = 4742	-0.03 ^ 10 - J • S,	奎 平电闸 € =	-1.00 ^ 10 1/	C)		
<i>3</i> 45		し 效应的红限为 ω	当田縣家事	(1/ > 1/)#H	苗 岳 业 「	招 針 法	を届け 11.2
屋正				. ,		(177) [久]	正/内川, /火江
	•	质量为 m)的德布罗	7总级下月		 '		
33 ·	4389			L > 41	111 1 / 12		
		金中,测得某金属 · 三 · · · · · · · ·			$ U_a (V)$)	
		如图所示,由此可		限频率	2 +		
√0=_	Hz;	逸出功 $A = $	eV.			/.	$\nu(\times 10^{14} \text{ Hz})$
					أسرار	5 10	→
				=	2 🕇		
					I		
34、	4740						
34、		实验中, 散射角为	均ø」= 45° 和 ø	2 =60° 的措	女射 光沢	长改变	量之比//1:
	在X射线散射	实验中,散射角》	homegap ho	₂ =60°的背	 数射光波	5 长改变	を量之比Δλ1:
Δλ2 [:]			为 $\phi_1 = 45^\circ \ \pi \phi$	2 =60°的背	牧射光 波	妥长改 变	差量之比Δλι:
Δλ2:	在 X 射线散射 =	·					
Δλ ₂ : 35、	在 X 射线散射 = 	· J-0.85 eV 的状态	S跃迁到能量为-	−3.4 eV 的	状态时,		
Δλ ₂ : 35、 是_	在 X 射线散射 =4756 氢原子从能量为eV,这	·	S跃迁到能量为-	−3.4 eV 的	状态时,		
Δλ ₂ : 35、 是_	在 X 射线散射 =4756 氢原子从能量为 eV,这 4201	· ŋ-0.85 eV 的状态 是电子从 n =	S跃迁到能量为- 的能级到 <i>n</i> =	−3.4 eV 的 = 2 的能级的	状态时, 的跃迁.		肘的光子能量
Δλ ₂ : 35、 是_ 36、	在 X 射线散射 = 4756 氢原子从能量为 eV,这 4201 图示被激发的氢	· ŋ-0.85 eV 的状态 是电子从 n = 氢原子跃迁到低飠	S跃迁到能量为- 的能级到 n = 	-3.4 eV 的 = 2 的能级的 不是基态的	状态时, 的跃迁.	所发 ⁵	
Δλ ₂ : 35、 是_ 36、 级),	在 X 射线散射 =	$_{1}$ $_{0}$	S跃迁到能量为- 的能级到 n = - - - - - - - - - - - - - - - - -	-3.4 eV 的 = 2 的能级的 不是基态的 い。満足关系	状态时, 的跃迁.		計的光子能₫ E ₃
Δλ ₂ : 35、 是_ 36、 级),	在 X 射线散射 =	· ŋ-0.85 eV 的状态 是电子从 n = 氢原子跃迁到低飠	S跃迁到能量为- 的能级到 n = - - - - - - - - - - - - - - - - -	-3.4 eV 的 = 2 的能级的 不是基态的 い。満足关系	状态时, 的跃迁.	所发 ⁵	肘的光子能量

氢原子的部分能级跃迁示意如图. 在这些能级跃迁中,

- (1) 从 $n = ____$ 的能级跃迁到 $n = ____$ 的能级时所发射的光子的波长最短;
- (2) 从 $n = ____$ 的能级跃迁到 $n = ____$ 的能级时所发射的光子的频率最小.

38, 4207

令 $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量,c为真空中光速,h为普朗克常量). 当电子的动能等于它的静止能量时,它的德布罗意波长是 $\lambda = \underline{\qquad \qquad } \lambda_c$.

39, 4524

静止质量为 m_e 的电子,经电势差为 U_{12} 的静电场加速后,若不考虑相对论效应,电子的德布罗意波长 λ =

40, 4632

如果电子被限制在边界 x 与 x + Δx 之间, Δx =0.5 Å,则电子动量 x 分量的不确定量近似地为_____kg·m/s. (不确定关系式 $\Delta x \cdot \Delta p \ge h$,普朗克常量 h =6.63×10⁻³⁴ J·s) 三、计算题

41, 4366

在惯性系 S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生 Δt =2s; 而在 另一惯性系 S' 中,观测第二事件比第一事件晚发生 $\Delta t'$ =3s. 那么在 S' 系中发生两事件的 地点之间的距离是多少?

42, 5357

设有宇宙飞船 A 和 B,固有长度均为 $l_0 = 100$ m,沿同一方向匀速飞行,在飞船 B 上观测到飞船 A 的船头、船尾经过飞船 B 船头的时间间隔为 $\Delta t = (5/3) \times 10^{-7}$ s,求飞船 B 相对于飞船 A 的速度的大小.

43, 4364

一艘宇宙飞船的船身固有长度为 L_0 =90 m,相对于地面以v = 0.8 c (c 为真空中光速)的 匀速度在地面观测站的上空飞过.

- (1) 观测站测得飞船的船身通过观测站的时间间隔是多少?
- (2) 宇航员测得船身通过观测站的时间间隔是多少?

44, 4490

地球的半径约为 $R_0 = 6376$ km,它绕太阳的速率约为v = 30 km·s⁻¹,在太阳参考系中测量地球的半径在哪个方向上缩短得最多?缩短了多少? (假设地球相对于太阳系来说近似于惯性系)

45, 4357

在 O 参考系中,有一个静止的正方形,其面积为 100 cm^2 . 观测者 O' 以 0.8c 的匀速度沿正方形的对角线运动. 求 O' 所测得的该图形的面积.

46, 4610

红限波长为 λ_0 =0.15 Å 的金属箔片置于 B =30×10⁻⁴ T 的均匀磁场中. 今用单色 γ 射线照射而释放出电子,且电子在垂直于磁场的平面内作 R = 0.1 m 的圆周运动. 求 γ 射线的波长. (普朗克常量 h =6.63×10⁻³⁴ J·s,基本电荷 e =1.60×10⁻¹⁹ C,电子质量 m_e =9.11×10⁻³¹ kg) 47、0521

实验发现基态氢原子可吸收能量为 12.75 eV 的光子.

- (1) 试问氡原子吸收该光子后将被激发到哪个能级?
- (2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.

当电子的德布罗意波长与可见光波长(λ =5500 Å)相同时,求它的动能是多少电子伏特? (电子质量 m_e =9.11×10⁻³¹ kg,普朗克常量 h=6.63×10⁻³⁴ J·s, 1 eV =1.60×10⁻¹⁹ J)

49, 4525

已知第一玻尔轨道半径 a,试计算当氢原子中电子沿第 n 玻尔轨道运动时,其相应的德布罗意波长是多少?

50, 4430

己知粒子在无限深势阱中运动, 其波函数为

$$\psi(x) = \sqrt{2/a}\sin(\pi x/a) \quad (0 \le x \le a)$$

求发现粒子的概率为最大的位置.

答案

一、选择题

1, D 2, A 3, A 4, A 5, B 6, C 7, A 8, A 9, D 10, D

11、B 12、D 13、D 14、C 15、C 16、D 17、A 18、C 19、A 20、C

二、填空题

21, 8016

c ;

22、8017

$$x^{2} + y^{2} + z^{2} = c^{2}t^{2};$$
 $x'^{2} + y'^{2} + z'^{2} = c^{2}t'^{2}$

23、4166

 2.60×10^{8}

24、4165

 4.33×10^{-8}

25, 4733

$$m_0 c^2 (n-1)$$

26, 4728

$$m = \frac{m_0}{\sqrt{1 - (v/c)^2}}$$
; $E_K = mc^2 - m_0c^2$

27, 4499

$$v = \sqrt{3}c/2 \qquad ; \qquad v = \sqrt{3}c/2$$

28, 4730

4

29, 4179

$$hc/\lambda$$
 ; h/λ ; $h/(c\lambda)$

30, 4184

1.45 V ;
$$7.14 \times 10^5 \,\mathrm{m} \cdot \mathrm{s}^{-1}$$

31, 4391

$$2.5$$
 ; 4.0×10^{14}

32, 4742

$$\sqrt{\frac{h}{2m(\nu-\nu_0)}}$$

33, 4389

 5×10^{14} ;

34, 4740

0.586

35, 4756

2.55

36, 4201

$$v_3 = v_2 + v_1 \qquad ; \qquad \qquad \frac{1}{\lambda_2} = \frac{1}{\lambda_2} + \frac{1}{\lambda_1}$$

37, 4754

4

4

3

4

38, 4207

 $1/\sqrt{3}$

39, 4524

$$h/(2m_e e U_{12})^{1/2} \bowtie$$

1;

40, 4632

 1.33×10^{-23}

三、计算题

41, 4366

解: 令 S' 系与 S 系的相对速度为 v,有

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - (\upsilon/c)^2}}, \qquad (\Delta t/\Delta t')^2 = 1 - (\upsilon/c)^2$$

则
$$v = c \cdot (1 - (\Delta t / \Delta t')^2)^{1/2}$$
 $(= 2.24 \times 10^8 \,\mathrm{m \cdot s^{-1}})$

那么,在S'系中测得两事件之间距离为:

$$\Delta x' = v \cdot \Delta t' = c(\Delta t'^2 - \Delta t^2)^{1/2} = 6.72 \times 10^8 \text{ m}$$

42, 5357

解: 设飞船 A 相对于飞船 B 的速度大小为 v, 这也就是飞船 B 相对于飞船 A 的速度大小. 在飞船 B 上测得飞船 A 的长度为

$$l = l_0 \sqrt{1 - (\nu/c)^2}$$

故在飞船 B 上测得飞船 A 相对于飞船 B 的速度为

$$v = l / \Delta t = (l_0 / \Delta t) \sqrt{1 - (v / c)^2}$$

解得

$$v = \frac{l_0 / \Delta t}{\sqrt{1 + (l_0 / c \Delta t)^2}} = 2.68 \times 10^8 \text{ m/s}$$

所以飞船 B 相对于飞船 A 的速度大小也为 2.68×10^8 m/s.

43, 4364

解: (1) 观测站测得飞船船身的长度为

$$L = L_0 \sqrt{1 - (\upsilon/c)^2} = 54 \text{ m}$$

 $\Delta t_1 = L/v = 2.25 \times 10^{-7} \text{ s}$

(2) 宇航员测得飞船船身的长度为 L_0 ,则

$$\Delta t_2 = L_0/\nu = 3.75 \times 10^{-7} \text{ s}$$

44、4490

答: 在太阳参照系中测量地球的半径在它绕太阳公转的方向缩短得最多.

$$R = R_0 \sqrt{1 - (\upsilon/c)^2}$$

其缩短的尺寸为:

$$\Delta R = R_0 - R = R_0 (1 - \sqrt{1 - (\upsilon/c)^2}) \approx \frac{1}{2} R_0 \upsilon^2 / c^2$$

$$\Delta R = 3.2 \text{ cm}$$

45, 4357

解: 令 O 系中测得正方形边长为 a,沿对角线取 x 轴正方向(如 图),则边长在坐标轴上投影的大小为

$$a_x = \frac{1}{2}\sqrt{2}a$$
, $a_y = \frac{1}{2}\sqrt{2}a$

面积可表示为: $S = 2a_v \cdot a_x$

$$S = 2a_v \cdot a_x$$

在以速度 v 相对于 O 系沿 x 正方向运动的 O' 系中

$$a'_{x} = a_{x} \sqrt{1 - (\upsilon / c)^{2}} = 0.6 \times \frac{1}{2} \sqrt{2}a$$

$$a_y' = a_y = \frac{1}{2}\sqrt{2}a$$

在O'系中测得的图形为菱形,其面积亦可表示为

$$S' = 2a'_{y} \cdot a'_{x} = 0.6a^{2} = 60 \text{ cm}^{2}$$

46, 4610

解:

$$h v = A + \frac{1}{2} m_e v^2$$

$$evB = m_e v^2 / R$$
 2

(1)

$$A = hc/\lambda_0$$
 3

$$\lambda = c/v \qquad . \tag{4}$$

①, ②, ③, ④式联立可求得

$$\lambda = \frac{\lambda_0}{1 + \lambda_0 (eBR)^2 / (2m_e hc)} = 0.137 \text{ Å}$$

47, 0521

解: (1)
$$\Delta E = Rhc(1 - \frac{1}{n^2}) = 13.6(1 - \frac{1}{n^2}) = 12.75$$
 eV

(2) 可以发出 \(\lambda_{1}\)、\(\lambda_{21}\)、\(\lambda_{21}\)、\(\lambda_{43}\)、\(\lambda_{42}\)、\(\lambda_{32}\) 六条谱线. 能级图如图所示.

48, 4506

解:

$$E_K = p^2 / (2m_e) = (h/\lambda)^2 / (2m_e)$$

=5.0×10⁻⁶ eV

49, 4525

解:

$$\lambda = h/p = h/(mv)$$

因为若电子在第n玻尔轨道运动,其轨道半径和动量矩分别为

$$r_n = n^2 a$$
 $L = m \upsilon r_n = nh/(2\pi)$
 $m \upsilon = h/(2\pi na)$

故

$$\lambda = h/(mv) = 2\pi na$$

解: 先求粒子的位置概率密度

$$|\psi(x)|^2 = (2/a)\sin^2(\pi x/a) = (2/2a)[1-\cos(2\pi x/a)]$$

当
$$\cos(2\pi x/a) = -1$$
时, $|\psi(x)|^2$ 有最大值. 在 $0 \le x \le a$ 范围内可得 $2\pi x/a = \pi$

$$\therefore x = \frac{1}{2}a.$$

静电场复习题

]

一、选择题

1, 1366

如图所示,在坐标(a, 0)处放置一点电荷+q,在坐标(-a, 0)0)处放置另一点电荷-q. P 点是 x 轴上的一点,坐标为(x, y)0). 当 *x>>a* 时,该点场强的大小为:

(B)
$$\frac{qa}{\pi \varepsilon_0 x^3}$$
.

(C)
$$\frac{qa}{2\pi\varepsilon_0 x^3}$$
. (D) $\frac{q}{4\pi\varepsilon_0 x^2}$.

(D)
$$\frac{q}{4\pi\varepsilon_0 x^2}$$

2, 1405

设有一"无限大"均匀带正电荷的平面. 取 x 轴垂直带电平面, 坐标原点在带电平面上, 则其周围 空间各点的电场强度 \vec{E} 随距离平面的位置坐标 x 变 化的关系曲线为(规定场强方向沿x轴正向为正、反 之为负):[]

3、1559

图中所示为一沿 x 轴放置的 "无限长" 分段均匀带电直 线, 电荷线密度分别为 $+\lambda(x<0)$ 和 $-\lambda(x>0)$, 则 Oxy 坐标 平面上点(0, a)处的场强 \vec{E} 为

(B)
$$\frac{\lambda}{2\pi\varepsilon_0 a}\bar{i}$$
.

(C)
$$\frac{\lambda}{4\pi\varepsilon_0 a}\bar{i}$$

(D)
$$\frac{\lambda}{4\pi\varepsilon_0 a} (\bar{i} + \bar{j})$$
. [

(C) $\frac{\lambda}{4\pi\varepsilon_0 a}\vec{i}$. (D) $\frac{\lambda}{4\pi\varepsilon_0 a}(\vec{i}+\vec{j})$.

4, 1033

一电场强度为 \vec{E} 的均匀电场, \vec{E} 的方向与沿x轴正向,如图 所示.则通过图中一半径为R的半球面的电场强度通量为

- (A) $\pi R^2 E$.
- (C) $2\pi R^2 E$.

(B) $\pi R^2 E / 2$.] (D) 0.

5、1035

有一边长为 a 的正方形平面, 在其中垂线上距中心 O 点 a/2 处,有一电荷为q的正点电荷,如图所示,则通过该平面的电场 强度通量为

(B)
$$\frac{q}{4\pi\varepsilon_0}$$

]

点电荷 Q 被曲面 S 所包围 , 从无穷远处引入另一点电荷 q 至曲 面外一点,如图所示,则引入前后:

- (A) 曲面S的电场强度通量不变,曲面上各点场强不变.
- (B) 曲面S的电场强度通量变化,曲面上各点场强不变.
- (C) 曲面 S 的电场强度通量变化,曲面上各点场强变化.
- (D) 曲面S的电场强度通量不变,曲面上各点场强变化.

7

7, 1414

在边长为a的正方体中心处放置一点电荷O,设无穷远处为电势零点,则在正方体顶角 处的电势为:

(A)
$$\frac{Q}{4\sqrt{3} \pi \varepsilon_0 a}$$
 . (B) $\frac{Q}{2\sqrt{3} \pi \varepsilon_0 a}$. (C) $\frac{Q}{6 \pi \varepsilon_0 a}$. (D) $\frac{Q}{12 \pi \varepsilon_0 a}$. [

8, 1016

静电场中某点电势的数值等于

- (A)试验电荷 q_0 置于该点时具有的电势能.
- (B)单位试验电荷置于该点时具有的电势能.
- (C)单位正电荷置于该点时具有的电势能.
- (D)把单位正电荷从该点移到电势零点外力所作的功.

7

9、1199

如图所示, 边长为 a 的等边三角形的三个顶点上, 分别放置着三个 正的点电荷 q、2q、3q. 若将另一正点电荷 Q 从无穷远处移到三角形的 中心 O 处,外力所作的功为:

(B) $\frac{\sqrt{3}qQ}{\pi\varepsilon_0 a}$.

٦

(C)
$$\frac{3\sqrt{3qQ}}{2\pi\varepsilon_0 a}$$

(D)
$$\frac{2\sqrt{3}qQ}{\pi\varepsilon_0 a}$$

10, 1505

如图所示,直线 MN 长为 2l, 弧 OCD 是以 N 点为中 心,l为半径的半圆弧,N点有正电荷+q,M点有负电荷 -q. 今将一试验电荷 $+q_0$ 从 O 点出发沿路径 OCDP 移到 无穷远处,设无穷远处电势为零,则电场力作功

- (A) A < 0,且为有限常量.
- (B) A>0,且为有限常量.

 $(C) A = \infty$.

(D) A = 0.

Γ 7

11, 5085

在电荷为-Q 的点电荷 A 的静电场中,将另一电荷为 q的点电荷 B 从 a 点移到 b 点. a、b 两点距离点电荷 A 的距离 分别为 r_1 和 r_2 ,如图所示.则移动过程中电场力做的功为

(A)
$$\frac{-Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (B) $\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$.

(B)
$$\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$

(C)
$$\frac{-qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (D) $\frac{-qQ}{4\pi\varepsilon_0(r_2 - r_1)}$

(D)
$$\frac{-qQ}{4\pi\varepsilon_0(r_0-r_1)}$$

Γ

7

一个带负电荷的质点,在电场力作用下从 A 点经 C 点运动到 B 点,其运动轨迹如图所 示.已知质点运动的速率是递减的,下面关于C点场强方向的四个图示中正确的是:[

13, 1299

在一个带有负电荷的均匀带电球外,放置一电偶极子, 其电矩 \bar{p} 的方向如图所示. 当电偶极子被释放后,该电偶 极子将

- (A) 沿逆时针方向旋转直到电矩 p 沿径向指向球面而
- (B) 沿逆时针方向旋转至 \bar{p} 沿径向指向球面,同时沿电场线方向向着球面移动.
- (C) 沿逆时针方向旋转至 \bar{p} 沿径向指向球面,同时逆电场线方向远离球面移动. (D) 沿顺时针方向旋转至 \bar{p} 沿径向朝外,同时沿电场线方向向着球面移动. [7

14, 1304

质量均为m,相距为 r_1 的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相 距为 r_2 ,此时每一个电子的速率为

(A)
$$\frac{2ke}{m} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (B) $\sqrt{\frac{2ke}{m} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)}$. (C) $e\sqrt{\frac{2k}{m} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)}$. (D) $e\sqrt{\frac{k}{m} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)}$ (\vec{x} $+ k = 1 / (4\pi\epsilon_0)$)

15、1136

一带正电荷的物体 M,靠近一原不带电的金属导体 N,N 的左 端感生出负电荷,右端感生出正电荷. 若将 N 的左端接地,如图 所示,则

7

- (A) N上有负电荷入地.
- (B) N上有正电荷入地,
- (C) N 上的电荷不动.
- (D) N上所有电荷都入地.

Γ]

16, 1210

一空心导体球壳,其内、外半径分别为 R_1 和 R_2 , 带电荷 q, 如图 所示. 当球壳中心处再放一电荷为q的点电荷时,则导体球壳的电势(设 无穷远处为电势零点)为

- (A) $\frac{q}{4\pi\varepsilon_0 R_1}$. (B) $\frac{q}{4\pi\varepsilon_0 R_2}$

当一个带电导体达到静电平衡时:

- (A) 表面上电荷密度较大处电势较高.
- (B) 表面曲率较大处电势较高.
- (C) 导体内部的电势比导体表面的电势高.
- (D) 导体内任一点与其表面上任一点的电势差等于零. []

18, 1140

半径分别为R和r的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它 们带电. 在忽略导线的影响下,两球表面的电荷面密度之比 σ_R/σ_r 为

- (A) R/r.
- (B) R^2 / r^2 .
- (C) r^2/R^2 .
- (D) r/R.

Γ

٦

19, 5280

一平行板电容器中充满相对介电常量为&的各向同性均匀电介质.已知介质表面极化电 荷面密度为 $\pm \sigma'$,则极化电荷在电容器中产生的电场强度的大小为:

- (A) $\frac{\sigma'}{\varepsilon_0}$. (B) $\frac{\sigma'}{\varepsilon_0 \varepsilon_r}$.
- (D) $\frac{\sigma'}{s}$.

20, 1460

如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于 金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:

- (A) 使电容减小,但与金属板相对极板的位置无关.
- (B) 使电容减小,且与金属板相对极板的位置有关.
- (C) 使电容增大,但与金属板相对极板的位置无关.
- (D) 使电容增大,且与金属板相对极板的位置有关.

[]

二、填空题

21, 1258

一半径为R的带有一缺口的细圆环,缺口长度为d(d << R)环上均匀带有正电,电荷为 q,如图所

示.则圆心 O 处的场强大小 E=

,场强方向为

22, 5166

一均匀带电直线长为d,电荷线密度为 $+\lambda$,以导线中点O为 球心,R为半径(R > d)作一球面,如图所示,则通过该球面的电场

在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面 S_1 、 S_2 、 S_3 ,则通过这些闭合面的电场强度通量分别是: $\boldsymbol{\phi}_1$ =

24、1576

25、1517

真空中一半径为R的均匀带电球面,总电荷为Q.今在球面上挖去很小一块面积 $\triangle S$ (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为

26, 1418

一半径为 R 的均匀带电圆环,电荷线密度为 λ . 设无穷远处为电势零点,则圆环中心 O 点的电势 U=_____.

27, 1592

一半径为R的均匀带电球面,其电荷面密度为 σ . 若规定无穷远处为电势零点,则该球面上的电势U=

28, 1438

如图所示,在场强为 \bar{E} 的均匀电场中,A、B 两点间距离为d. AB 连线方向与 \bar{E} 方向一致. 从A 点经任意路径到B 点的场强线积分 $\int_{-E}^{\bar{E}} \cdot d\bar{l} =$ _____.

29, 1591

30, 1242

一半径为 R 的均匀带电细圆环,带有电荷 Q,水平放置。在圆环轴线的上方离圆心 R 处,有一质量为 m、带电荷为 q 的小球。当小球从静止下落到圆心位置时,它的速度为 v= _______.

31, 1614

一 "无限长"均匀带电直线,电荷线密度为 λ . 在它的电场作用下,一质量为m,电荷为q的质点以直线为轴线作匀速率圆周运动. 该质点的速率 v=_____.

32, 1330

一金属球壳的内、外半径分别为 R_1 和 R_2 ,带电荷为 Q. 在球心处有一电荷为 q 的点电荷,则球壳内表面上的电荷面密度 $\sigma=$

33、1350

空气的击穿电场强度为 $2\times10^6\,\mathrm{V\cdot m^{-1}}$,直径为 $0.10\,\mathrm{m}$ 的导体球在空气中时最多能带的电荷为______. (真空介电常量 $\varepsilon_0=8.85\times10^{-12}\,\mathrm{C^2\cdot N^{-1}\cdot m^{-2}}$)

在一个带负电荷的金属球附近,放一个带正电的点电荷 q_0 ,测得 q_0 所受的力为 F,则 F/q_0 的值一定_____于不放 q_0 时该点原有的场强大小. (填大、等、小)

35, 1606

地球表面附近的电场强度约为 100~N~/C,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带_____电,电荷面密度 σ =_____.(真空介电常量 ε_0 = $8.85~\times 10^{-12}~C^2/(N\cdot m^2)$)

36, 5109

A、B 为两块无限大均匀带电平行薄平板,两板间和左右两侧充满相对介电常量为 ϵ 。的各向同性均匀电介质. 已知两板间的场强大小为 E_0 ,两板外的场强均为 $\frac{1}{3}E_0$,方向如图. 则 A、B 两板所带电荷面密度分别为 $\sigma_A = ______$, $\sigma_B = ______$. 37、1105

半径为 R_1 和 R_2 的两个同轴金属圆筒,其间充满着相对介电常量为 ϵ_r 的均匀介质.设两筒上单位长度带有的电荷分别为+ λ 和- λ ,则介质中离轴线的距离为 r 处的电位移矢量的大小 D=______,电场强度的大小 E=______.

38, 1237

两个电容器 1 和 2, 串联以后接上电动势恒定的电源充电. 在电源保持联接的情况下, 若把电介质充入电容器 2 中,则电容器 1 上的电势差______; 电容器 1 极板上的电荷______. (填增大、减小、不变)

39、5287

一个带电的金属球,当其周围是真空时,储存的静电能量为 W_{e0} ,使其电荷保持不变,把它浸没在相对介电常量为 ε ,的无限大各向同性均匀电介质中,这时它的静电能量 W_{e}

40、1334

在电容为 C_0 的平行板空气电容器中,平行地插入一厚度为两极板距离一半的金属板,则电容器的电容 C=

三、计算题

41, 1011

半径为R的带电细圆环,其电荷线密度为 $\lambda=\lambda_0\sin\phi$,式中 λ_0 为一常数, ϕ 为半径R与x轴所成的夹角,如图所示. 试求环心O处的电场强度.

42, 1013

"无限长"均匀带电的半圆柱面,半径为R,设半圆柱面沿轴线OO/单位长度上的电荷为 λ ,试求轴线上一点的电场强度.

43., 1283

边长为b的立方盒子的六个面,分别平行于xOy、yOz 和xOz 平面. 盒子的一角在坐标原点处. 在此区域有一静电场,场强为 $\bar{E}=200\bar{i}+300\bar{j}$. 试求穿过各面的电通量.

44、1197

- 一半径为R的"无限长"圆柱形带电体,其电荷体密度为 $\rho = Ar(r \leq R)$,式中A为常量. 试求:
 - (1) 圆柱体内、外各点场强大小分布;
- (2) 选与圆柱轴线的距离为 l(l>R) 处为电势零点,计算圆柱体内、外各点的电势分布. 45、、1653

电荷以相同的面密度 σ 分布在半径为 r_1 =10 cm 和 r_2 =20 cm 的两个同心球面上. 设无限远处电势为零,球心处的电势为 U_0 =300 V.

- (1) 求电荷面密度 σ .
- (2) 若要使球心处的电势也为零,外球面上应放掉多少电荷? $[\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)]$

46, 1421

一半径为R的均匀带电圆盘,电荷面密度为 σ . 设无穷远处为电势零点. 计算圆盘中心 O 点电势.

47、1095

如图所示,半径为R的均匀带电球面,带有电荷q.沿某一半径方向上有一均匀带电细线,电荷线密度为 λ ,长度为l,细线左端离球心距离为 r_0 .设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零).

48, 1074

两根相同的均匀带电细棒,长为 *l*,电荷线密度为 *l*,沿同一条直线放置.两细棒间最近距离也为 *l*,如图所示.假设棒上的电荷是不能自由移动的,试求两棒间的静电相互作用力.

49、1531

两个同心金属球壳,内球壳半径为 R_1 ,外球壳半径为 R_2 ,中间是空气,构成一个球形空气电容器. 设内外球壳上分别带有电荷+O 和-O 求:

- (1) 电容器的电容;
- (2) 电容器储存的能量.

50、5683

一质量为 m、电荷为-q 的粒子,在半径为 R、电荷为 Q (>0)的均匀带电球体中沿径向运动. 试证明粒子作简谐振动,并求其振动频率.

静电场复习题答案

一、选择题

1、B 2、C 3、B 4、D 5、D 6、D 7、B 8、C 9、C 10、D 11、C 12、D 13、B 14、D 15、B 16、D 17、D 18、D 19、A 20、C 二、填空题

21, 1258

$$\frac{qd}{4\pi\varepsilon_0 R^2(2\pi R - d)} \approx \frac{qd}{8\pi^2\varepsilon_0 R^3}$$
; 从 O 点指向缺口中心点.

$$\lambda d/\varepsilon_0$$
 ; $\frac{\lambda d}{\pi \varepsilon_0 \left(4R^2-d^2\right)}$; 沿矢径 \overrightarrow{OP}

23, 1600

$$q / \varepsilon_0$$
 0 ; $-q / \varepsilon_0$

24, 1576

半径为 R 的无限长均匀带电圆柱体

25, 1517

$$\frac{Q}{4\pi\varepsilon_0 R} \left(1 - \frac{\Delta S}{4\pi R^2} \right)$$

26、1418

$$\lambda / (2\varepsilon_0)$$

27、1592

 $R\sigma/\varepsilon_0$

28、1438

Ed

29、1591

<

30, 1242

$$\left[2gR - \frac{Qq}{2\pi m\varepsilon_0 R} \left(1 - \frac{1}{\sqrt{2}}\right)\right]^{1/2}$$

31、1614

$$\left(\frac{\lambda q}{2\pi\varepsilon_0 m}\right)^{1/2}$$

32, 1330

$$-q/(4\pi R_1^2)$$

33、1350

$$5.6 \times 10^{-7} \,\mathrm{C}$$

34、1645

大

35, 1606

负; 8.85×10⁻¹⁰ C/m²

36, 5109

$$-2\varepsilon_0\varepsilon_r E_0/3$$
; $4\varepsilon_0\varepsilon_r E_0/3$

37、1105

$$\lambda/(2\pi r)$$
; $\lambda/(2\pi \varepsilon_0 \varepsilon_r r)$

38、1237

增大;

增大

39、5287

 W_{e0} / ε_r

40, 1334

 $2C_0$

三、计算题

41, 1011

解: 在任意角 ϕ 处取微小电量 $dq=\lambda dl$,它在 O 点产生的场强为:

$$dE = \frac{\lambda dl}{4\pi\varepsilon_0 R^2} = \frac{\lambda_0 \cos\phi d\phi}{4\pi\varepsilon_0 R}$$

它沿 x、y 轴上的二个分量为:

$$dE_x = -dE\cos\phi$$

$$dE_v = -dE\sin\phi$$

对各分量分别求和

$$E_x = \frac{\lambda_0}{4\pi\varepsilon_0 R} \int_0^{2\pi} \cos^2 \phi \, d\phi = \frac{\lambda_0}{4\varepsilon_0 R}$$

$$E_{y} = \frac{\lambda_{0}}{4\pi\varepsilon_{0}R} \int_{0}^{2\pi} \sin\phi \, d(\sin\phi) = 0$$

故O点的场强为:

$$\vec{E} = E_x \vec{i} = -\frac{\lambda_0}{4\varepsilon_0 R} \vec{i}$$

42, 1013

解:设坐标系如图所示.将半圆柱面划分成许多窄条.dl宽的窄条的电荷线密度为

$$\mathrm{d}\,\lambda = \frac{\lambda}{\pi R}\,\mathrm{d}\,l = \frac{\lambda}{\pi}\,\mathrm{d}\,\theta$$

取 θ 位置处的一条,它在轴线上一点产生的场强为

$$dE = \frac{d\lambda}{2\pi\varepsilon_0 R} = \frac{\lambda}{2\pi^2\varepsilon_0 R} d\theta$$

如图所示. 它在x、y 轴上的二个分量为:

$$dE_x = dE \sin\theta$$
, $dE_y = -dE \cos\theta$

对各分量分别积分

$$E_{x} = \frac{\lambda}{2\pi^{2} \varepsilon_{0} R} \int_{0}^{\pi} \sin \theta \, d\theta = \frac{\lambda}{\pi^{2} \varepsilon_{0} R}$$

$$E_{y} = \frac{-\lambda}{2\pi^{2} \varepsilon_{0} R} \int_{0}^{\pi} \cos\theta \, d\theta = 0$$

场强

$$\vec{E} = E_x \vec{i} + E_y \vec{j} = \frac{\lambda}{\pi^2 \varepsilon_0 R} \vec{i}$$

解: 由题意知

 E_x =200 N/C, E_y =300 N/C, E_z =0

平行于 xOy 平面的两个面的电场强度通量

$$\Phi_{e1} = \vec{E} \cdot \vec{S} = \pm E_z S = 0$$

平行于 vOz 平面的两个面的电场强度通量

$$\Phi_{e2} = \vec{E} \cdot \vec{S} = \pm E_x S = \pm 200 \quad b^2 \text{N} \cdot \text{m}^2/\text{C}$$

"+","一"分别对应于右侧和左侧平面的电场强度通量,平行于 xOz 平面的两个面的电场强度通量

$$\Phi_{e3} = \vec{E} \cdot \vec{S} = \pm E_{v} S = \pm 300 \quad b^2 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}$$

"十","一"分别对应于上和下平面的电场强度通量.

44、1197

解: (1) 取半径为r、高为h的高斯圆柱面(如图所示). 面上各点场强大小为E并垂直于柱面. 则穿过该柱面的电场强度通量为:

$$\oint_{S} \vec{E} \cdot d\vec{S} = 2\pi r h E$$

为求高斯面内的电荷,r < R 时,取一半径为r',厚 d r'、高 h 的圆筒,

其电荷为

$$\rho \, \mathrm{d}V = 2\pi A h r'^2 \, \mathrm{d}r'$$

则包围在高斯面内的总电荷为

$$\int_{V} \rho \, dV = \int_{0}^{r} 2\pi A h r'^{2} \, dr' = 2\pi A h r^{3} / 3$$

由高斯定理得

$$2\pi rhE = 2\pi Ahr^3 / (3\varepsilon_0)$$

解出

$$E = Ar^2 / (3\varepsilon_0) \qquad (r \le R)$$

r>R时,包围在高斯面内总电荷为:

$$\int_{V} \rho \, dV = \int_{0}^{R} 2\pi A h r'^{2} \, dr' = 2\pi A h R^{3} / 3$$

由高斯定理

$$2\pi rhE = 2\pi AhR^3 / (3\varepsilon_0)$$

解出

$$E = AR^3 / (3\varepsilon_0 r) \qquad (r > R)$$

(2) 计算电势分布

r≤R 时

$$U = \int_{r}^{l} E \, \mathrm{d} \, r = \int_{r}^{R} \frac{A}{3\varepsilon_{0}} r^{2} \, \mathrm{d} \, r + \int_{R}^{l} \frac{AR^{3}}{3\varepsilon_{0}} \cdot \frac{\mathrm{d} \, r}{r}$$
$$= \frac{A}{9\varepsilon_{0}} \left(R^{3} - r^{3} \right) + \frac{AR^{3}}{3\varepsilon_{0}} \ln \frac{l}{R}$$

r>R时

$$U = \int_{r}^{l} E \, \mathrm{d} r = \int_{r}^{l} \frac{AR^{3}}{3\varepsilon_{0}} \cdot \frac{\mathrm{d} r}{r} = \frac{AR^{3}}{3\varepsilon_{0}} \ln \frac{l}{r}$$

45, 1653

解: (1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,即

$$U_0 = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} \right) = \frac{1}{4\pi\varepsilon_0} \left(\frac{4\pi r_1^2 \sigma}{r_1} - \frac{4\pi r_2^2 \sigma}{r_2} \right)$$
$$= \frac{\sigma}{\varepsilon_0} (r_1 + r_2)$$
$$\sigma = \frac{U_0 \varepsilon_0}{r_1 + r_2} = 8.85 \times 10^{-9} \,\mathrm{C/m^2}$$

(2) 设外球面上放电后电荷面密度为 σ' ,则应有

$$U_0' = \frac{1}{\varepsilon_0} (\sigma r_1 + \sigma' r_2) = 0$$

即
$$\sigma' = -\frac{r_1}{r_2}\sigma$$

外球面上应变成带负电, 共应放掉电荷

$$q' = 4\pi r_2^2 (\sigma - \sigma') = 4\pi r_2^2 \sigma \left(1 + \frac{r_1}{r_2} \right)$$
$$= 4\pi \sigma r_2 (r_1 + r_2) = 4\pi \varepsilon_0 U_0 r_2 = 6.67 \times 10^{-9} \text{ C}$$

46, 1421

解:在圆盘上取一半径为 $r \rightarrow r + dr$ 范围的同心圆环.其面积为

 $dS=2\pi r dr$

其上电荷为

 $dq=2\pi\sigma rdr$

它在 O 点产生的电势为

$$dU = \frac{dq}{4\pi\varepsilon_0 r} = \frac{\sigma dr}{2\varepsilon_0}$$

总电势

$$U = \int_{\mathcal{S}} dU = \frac{\sigma}{2\varepsilon_0} \int_0^R dr = \frac{\sigma R}{2\varepsilon_0}$$

解:设x轴沿细线方向,原点在球心处,在x处取线元 dx,其上电荷为 d $q' = \lambda$ dx,该线元在带电球面的电场中所受电场力为:

$$\mathrm{d}F = q\lambda\mathrm{d}x / (4\pi\varepsilon_0 x^2)$$

整个细线所受电场力为:

$$F = \frac{q\lambda}{4\pi\varepsilon_0} \int_{r_0}^{r_0+l} \frac{\mathrm{d}x}{x^2} = \frac{q\lambda l}{4\pi\varepsilon_0 r_0 (r_0+l)}$$

方向沿 x 正方向.

电荷元在球面电荷电场中具有电势能:

$$dW = (q\lambda dx) / (4\pi \varepsilon_0 x)$$

整个线电荷在电场中具有电势能:

$$W = \frac{q\lambda}{4\pi\varepsilon_0} \int_{r_0}^{r_0+l} \frac{\mathrm{d}x}{x} = \frac{q\lambda}{4\pi\varepsilon_0} \ln\left(\frac{r_0+l}{r_0}\right)$$

48, 1074

解:

选左棒的左端为坐标原点 O, x 轴沿棒方向向右,在左棒上 x 处取线元 dx,其电荷为 $dq = \lambda dx$,它在右棒的 x' 处产生的场强为:

$$dE = \frac{\lambda dx}{4\pi\varepsilon_0 (x'-x)^2}$$

整个左棒在 x' 处产生的场强为:

$$E = \int_0^l \frac{\lambda \, \mathrm{d} x}{4\pi\varepsilon_0 (x' - x)^2} = \frac{\lambda}{4\pi\varepsilon_0} \left(\frac{1}{x' - l} - \frac{1}{x'} \right)$$

右棒x'处的电荷元 $\lambda dx'$ 在电场中受力为:

$$dF = E\lambda dx' = \frac{\lambda^2}{4\pi\varepsilon_0} \left(\frac{1}{x'-l} - \frac{1}{x'} \right) dx'$$

整个右棒在电场中受力为:

$$F = \frac{\lambda^2}{4\pi\varepsilon_0} \int_{2l}^{3l} \left(\frac{1}{x'-l} - \frac{1}{x'} \right) dx' = \frac{\lambda^2}{4\pi\varepsilon_0} \ln \frac{4}{3}, \quad 方向沿 x 轴正向.$$

左棒受力

49、1531

解: (1) 已知内球壳上带正电荷 Q,则两球壳中间的场强大小为

$$E = Q/(4\pi\varepsilon_0 r^2)$$

两球壳间电势差

$$U_{12} = \int_{R_1}^{R_2} \vec{E} \cdot d\vec{r} = \frac{Q}{4\pi\varepsilon_0} (\frac{1}{R_1} - \frac{1}{R_2})$$
$$= Q(R_2 - R_1) / (4\pi\varepsilon_0 R_1 R_2)$$

电容

$$C = Q/U_{12} = 4\pi\varepsilon_0 R_1 R_2 / (R_2 - R_1)$$

(2) 电场能量
$$W = \frac{Q^2}{2C} = \frac{Q^2(R_2 - R_1)}{8\pi\varepsilon_0 R_1 R_2}$$

50, 5683

证:由高斯定理求得球内场强为

$$E = \frac{Q}{4\pi\varepsilon_0 R^3} r$$

粒子受力:
$$F = -qE = -\frac{qQ}{4\pi\varepsilon_0 R^3}r$$

由牛顿第二定律: F = ma

$$F = ma$$

$$\therefore \qquad -\frac{qQ}{4\pi\varepsilon_0 R^3} r = m \frac{\mathrm{d}^2 r}{\mathrm{d}t^2}$$

$$-\frac{qQ}{4\pi\varepsilon_0 R^3}r = m\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} , \qquad \frac{\mathrm{d}^2 r}{\mathrm{d}t^2} + \frac{qQ}{4\pi\varepsilon_0 mR^3}r = 0$$

粒子沿径向作简谐振动, 其频率:

$$\omega^2 = \frac{qQ}{4\pi\varepsilon_0 mR^3} \quad , \qquad v = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{qQ}{4\pi\varepsilon_0 mR^3}}$$

力学复习题

一、选择题

1, 0018

某质点作直线运动的运动学方程为 $x=3t-5t^3+6$ (SI),则该质点作

- (A) 匀加速直线运动,加速度沿 x 轴正方向.
- (B) 匀加速直线运动,加速度沿 x 轴负方向.
- (C) 变加速直线运动,加速度沿x轴正方向.
- (D) 变加速直线运动,加速度沿x 轴负方向.

7 Γ

2, 0587

如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定 滑轮拉湖中的船向岸边运动. 设该人以匀速率 v_0 收绳,绳不伸长、 湖水静止,则小船的运动是

- (A) 匀加速运动.
- (B) 匀减速运动,
- (C) 变加速运动.
- (D) 变减速运动.
- (E) 匀速直线运动.

3, 5003

一质点在平面上运动,已知质点位置矢量的表示式为 $\vec{r} = at^2\vec{i} + bt^2\vec{i}$ (其中 $a \times b$ 为 常量),则该质点作

- (A) 匀速直线运动.
- (B) 变速直线运动.
- (C) 抛物线运动.
- (D)一般曲线运动.

Γ]

4, 0586

一质点作直线运动,某时刻的瞬时速度v=2 m/s,瞬时加速度 $a=-2m/s^2$,则一秒钟 后质点的速度

- (A) 等于零.
- (B) 等于-2 m/s.
- (C) 等于 2 m/s.
- (D) 不能确定.

Γ]

一运动质点在某瞬时位于矢径 $\bar{r}(x,v)$ 的端点处, 其速度大小为

(A)
$$\frac{\mathrm{d}r}{\mathrm{d}t}$$

(B)
$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

(C)
$$\frac{\mathrm{d}|\vec{r}|}{\mathrm{d}t}$$

(D)
$$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$$

Γ

٦

6,0001

一质点在平面上作一般曲线运动,其瞬时速度为 \bar{v} ,瞬时速率为 v,某

一时间内的平均速度为 \bar{v} ,平均速率为 \bar{v} ,它们之间的关系必定有:

(A)
$$|\vec{v}| = v, |\vec{v}| = \overline{v}$$

(B)
$$|\vec{v}| \neq v, |\vec{v}| = \overline{v}$$

(C)
$$|\vec{v}| \neq v, |\vec{v}| \neq \overline{v}$$
 (D) $|\vec{v}| = v, |\vec{v}| \neq \overline{v}$

(D)
$$|\vec{v}| = v, |\vec{v}| \neq \bar{v}$$

7、0025

一条河在某一段直线岸边同侧有 $A \times B$ 两个码头,相距 1 km. 甲、乙两人需要从码头 A到码头 B, 再立即由 B 返回. 甲划船前去, 船相对河水的速度为 4 km/h; 而乙沿岸步行, 步 行速度也为 4 km/h. 如河水流速为 2 km/h, 方向从 $A \ni B$, 则

- (A) 甲比乙晚 10 分钟回到 A.
- (B) 甲和乙同时回到A.

- (C) 甲比乙早 10 分钟回到 A. (D) 甲比乙早 2 分钟回到 A.
-]

Γ

8, 0331

如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为 m_1 和 m_2 的重物,且 $m_1 > m_2$. 滑轮质量及轴上摩擦均不计,此时重物的加速度的大 小为 a. 今用一竖直向下的恒力 $F = m_1 g$ 代替质量为 m_1 的物体,可得质量 为 m_2 的重物的加速度为的大小a',则

(B) a' > a

(C) a' < a

(D) 不能确定.

Γ]

9、5636

一质点作匀速率圆周运动时,

- (A) 它的动量不变,对圆心的角动量也不变.
- (B) 它的动量不变,对圆心的角动量不断改变.
- (C) 它的动量不断改变,对圆心的角动量不变.
- (D) 它的动量不断改变,对圆心的角动量也不断改变.

٦

 m_1

速度为 v_0 的小球与以速度 $v(v = v_0)$ 方向相同,并且 $v < v_0$)滑行中的车发生完全弹 性碰撞, 车的质量远大于小球的质量, 则碰撞后小球的速度为

(A) $v_0 - 2v$.

(B) 2 (v_0-v) .

(C) $2v - v_0$.

(D) 2 $(v - v_0)$.

Γ]

11, 0350

一个质点同时在几个力作用下的位移为:

$$\Delta \vec{r} = 4\vec{i} - 5\vec{j} + 6\vec{k} \quad (SI)$$

其中一个力为恒力 $\vec{F} = -3\vec{i} - 5\vec{j} + 9\vec{k}$ (SI),则此力在该位移过程中所作的功为

(A) -67J.

(B) 17 J.

(C) 67 J.

(D) 91 J.

Γ

12, 0413

如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子, 今用同样的水平恒力 \vec{F} 拉箱子,使它由小车的左端达到右端,一次小 车被固定在水平地面上,另一次小车没有固定. 试以水平地面为参照 系, 判断下列结论中正确的是

٦

- (A) 在两种情况下, \vec{F} 做的功相等.
- (B) 在两种情况下,摩擦力对箱子做的功相等.
- (C) 在两种情况下,箱子获得的动能相等.
- (D) 在两种情况下,由于摩擦而产生的热相等.

7

13, 5019

对功的概念有以下几种说法:

- (1) 保守力作正功时,系统内相应的势能增加.
- (2) 质点运动经一闭合路径,保守力对质点作的功为零.
- (3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数 和必为零.

在上述说法中:

- (A) (1)、(2)是正确的. (B) (2)、(3)是正确的.
- (C) 只有(2)是正确的.
- (D) 只有(3)是正确的.

Γ

7

静止在光滑水平面上的一质量为 M 的车上悬挂一单摆, 摆球 质量为m,摆线长为l.开始时,摆线水平,摆球静止于A点.突 然放手, 当摆球运动到摆线呈竖直位置的瞬间, 摆球相对于地面 的速度为

(A) 0.

(B)
$$\sqrt{2gl}$$

(C)
$$\sqrt{\frac{2gl}{1+m/M}}$$

$$\frac{2gl}{1+m/M}$$
. (D) $\sqrt{\frac{2gl}{1+M/m}}$.

15, 0477

一光滑的圆弧形槽 M 置于光滑水平面上,一滑块 m 自槽的顶部由 静止释放后沿槽滑下,不计空气阻力,对于这一过程,以下哪种分析 是对的?

- (A) 由m和M组成的系统动量守恒.
- (B) 由m和M组成的系统机械能守恒.
- (C) 由 $m \times M$ 和地球组成的系统机械能守恒.
- (D) M对 m 的正压力恒不作功.

Γ 7

16, 0128

如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相 连结,绳的另一端穿过桌面中心的小孔 O. 该物体原以角速度 ω 在半径 为 R 的圆周上绕 O 旋转, 今将绳从小孔缓慢往下拉. 则物体

- (A) 动能不变,动量改变.
- (B) 动量不变,动能改变.
- (C) 角动量不变,动量不变.
- (D) 角动量改变,动量改变.
- (E) 角动量不变,动能、动量都改变.

17, 5028

如图所示,A、B 为两个相同的绕着轻绳的定滑轮. A 滑轮挂一 质量为 M 的物体,B 滑轮受拉力 F,而且 F=Mg. 设 $A \setminus B$ 两滑轮 的角加速度分别为 β_A 和 β_B ,不计滑轮轴的摩擦,则有

- (A) $\beta_A = \beta_B$.
- (B) $\beta_A > \beta_B$.
- (C) $\beta_A < \beta_B$.
- (D) 开始时 $\beta_A = \beta_B$, 以后 $\beta_A < \beta_B$.

18, 0289

关于刚体对轴的转动惯量,下列说法中正确的是

- (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.
- (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.
- (C) 取决于刚体的质量、质量的空间分布和轴的位置.
- (D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关. Γ 7

19, 0126

花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 Jo,角速度为 ω_0 . 然后她将两臂收回,使转动惯量减少为 $\frac{1}{3}J_0$. 这时她转动的角速度变为

(B)
$$\left(1/\sqrt{3}\right)\omega_0$$
.

(C) $\sqrt{3} \omega_0$.

(D) 3 ω_0 .

Γ 7

20, 0133

如图所示,一静止的均匀细棒,长为L、质量为M,可绕通过 棒的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯 量为 $\frac{1}{2}ML^2$. 一质量为 m、速率为 v 的子弹在水平面内沿与棒垂 俯视图 直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 $\frac{1}{2}v$, 则此时棒的角速度应为 (A) $\frac{mv}{ML}$ 二、填空题 21, 0503 一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为 $v = A\sin\omega t$, 其中 $A \times \omega$ (1) 物体的速度与时间的函数关系式为 (2) 物体的速度与坐标的函数关系式为 22, 0007 一质点沿x方向运动,其加速度随时间变化关系为 a = 3+2 t(SI), 如果初始时质点的速度 v_0 为 5 m/s,则当 t 为 3s 时,质点的速度 v=23, 0261 一质点从静止出发沿半径 R=1 m 的圆周运动,其角加速度随时间 t 的变化规律是 $β=12t^2-6t$ (SI), 则质点的角速ω= ; 切向加速度 a_t 24, 0016 一物体作斜抛运动,初速度 \bar{v}_0 与水平方向夹角为 θ ,如图所示. 物体轨道 最高点处的曲率半径 ρ 为 . 25, 0006 质点沿半径为 R 的圆周运动,运动学方程为 $\theta=3+2t^2$ (SI),则 t时刻质点的法 向加速度大小为 a_n = ; 角加速度 β = . 26, 0631 一物体质量为 10 kg,受到方向不变的力 F=30+40t (SI)作用,在开始的两秒内,此 力冲量的大小等于_________;若物体的初速度大小为 10 m/s,方向与力 \bar{F} 的方向 相同,则在 2s 末物体速度的大小等于 . 27, 0371 一颗子弹在枪筒里前进时所受的合力大小为 $F = 400 - \frac{4 \times 10^5}{3}t$ (SI)子弹从枪口射 出时的速率为 300 m/s. 假设子弹离开枪口时合力刚好为零,则 (1)子弹走完枪筒全长所用的时间 t= , (2)子弹在枪筒中所受力的冲量 I=(3)子弹的质量 m= . 质量为m的质点以速度 \bar{v} 沿一直线运动,则它对直线外垂直距离为d的一点的角动量 大小是

29、0484

下列物理量: 质量、动量、冲量、动能、势能、功中与参考系的选取有关的物理量是 . (不考虑相对论效应)
$\overline{}$ 30、0449
$\vec{v}=2\vec{j}$ (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是 31、0173
湖面上有一小船静止不动,船上有一打渔人质量为 60 kg. 如果他在船上向船头走了 4.0 米,但相对于湖底只移动了 3.0 米,(水对船的阻力略去不计),则小船的质量为
32、0757 质量为 m_1 和 m_2 的两个物体,具有相同的动量. 欲使它们停下来,外力对它们做的功之比 W_1 : W_2 =
33、0465
如图,两个用轻弹簧连着的滑块 A 和 B ,滑块 A 的质
量为 $\frac{1}{2}m$, B 的质量为 m , 弹簧的劲度系数为 k , A 、 B 静
止在光滑的水平面上(弹簧为原长). 若滑块 A 被水平方向
射来的质量为 $\frac{1}{2}m$ 、速度为 v 的子弹射中,则在射中后,
滑块 A 及嵌在其中的子弹共同运动的速度 v_A =,此时刻滑块 B 的速度 v_B =,在以后的运动过程中,滑块 B 的最大速度 v_{\max} =
34、0645
35、0982 半径为 30 cm 的飞轮,从静止开始以 0.50 rad • s ⁻² 的匀角加速度转动,则飞轮边缘上一点在飞轮转过 240° 时的切向加速度 a_t =,法向加速度 a_n = 36、0676
一定滑轮质量为 M 、半径为 R ,对水平轴的转动惯量 $J=\frac{1}{2}MR^2$. 在滑轮的边缘绕一细
绳,绳的下端挂一物体. 绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦. 物体下落的加速度为 a ,则绳中的张力 $T=$ 37、5402
一根均匀棒,长为 l ,质量为 m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于,初角加
速度等于 已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为 $\frac{1}{3}ml^2$.
38、0685 如图所示,滑块 <i>A</i> 、重物 <i>B</i> 和滑轮 <i>C</i> 的质量分别为 <i>m_A</i> 、 <i>C</i>
m_B 和 m_C ,滑轮的半径为 R ,滑轮对轴的转动惯量 $J=\frac{1}{2}m_C$
R^2 . 滑块 A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动. 滑块 A 的加速度 $a=$

判断图示的各种情况中,哪种情况角动量是守恒的.请把序号填在横线上的空白处 ...

- (1) 圆锥摆中作水平匀速圆周运动的小球 *m*, 对竖直轴 *OO'* 的角动量.
- (2) 光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴 *O* 的角动量.
- (3) 绕光滑水平固定轴 O 自由摆动的米尺,对轴 O 的角动量.
 - (4) 一细绳绕过有光滑轴的定滑轮,滑轮一

侧为一重物 m,另一侧为一质量等于 m 的人,在人向上爬的过程中,人与重物系统对转轴 O 的角动量.

40, 0125

一飞轮以角速度 ω 绕光滑固定轴旋转,飞轮对轴的转动惯量为 J_1 ;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度 ω =

三、计算题

41, 0377

如图,用传送带 A 输送煤粉,料斗口在 A 上方高 h=0.5 m处,煤粉自料斗口自由落在 A 上. 设料斗口连续卸煤的流量为 q_m =40 kg/s,A 以 v=2.0 m/s 的水平速度匀速向右移动. 求装煤的过程中,煤粉对 A 的作用力的大小和方向. (不计相对传送带静止的煤粉质重)

42, 0103

如图所示,质量 m 为 0.1 kg 的木块,在一个水平面上和一个劲度系数 k 为 20 N/m 的轻弹簧碰撞,木块将弹簧由原长压缩了 x=0.4 m. 假设木块与水平面间的滑动摩擦系数 μ_k 为 0.25,问在将要发生碰撞时木块的速率 v 为多少?

43, 0180

如图所示,质量为 m_A 的小球 A 沿光滑的弧形轨道滑下,与放在轨道端点 P处(该处轨道的切线为水平的)的静止小球 B 发生弹性正碰撞,小球 B 的质量为 m_B , A、B 两小球碰撞后同时落在水平地面上. 如果 A、B 两球的落地点距 P 点正下方 O 点的距离之比 L_A / L_B =2/5,求: 两小球的质量比 m_A / m_B .

44, 0159

一定滑轮半径为 0.1 m,相对中心轴的转动惯量为 $1 \times 10^{-3} \text{ kg} \cdot \text{m}^2$. 一变力 F = 0.5t (SI) 沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦. 试求它在 1 s 末的角速度.

45, 0242

质量为 M=15 kg、半径为 R=0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量 $J=\frac{1}{2}MR^2$). 现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量 m=8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:

- (1) 物体自静止下落, 5 s 内下降的距离;
- (2) 绳中的张力.

在光滑的水平面上,有一根原长 $l_0 = 0.6 \,\mathrm{m}$ 、劲度系数 $k = 8 \,\mathrm{N/m}$ 的弹性绳,绳的一端系着一个质量 $m = 0.2 \,\mathrm{kg}$ 的小球 B,另一端固定在水平面上的 A 点. 最初弹性绳是松弛的,小球 B 的位置及速度 $\bar{\upsilon}_0$ 如图所示. 在以后的运动中当小球 B 的速率为 v 时,它与 A 点的距离最大,且弹性绳长 $l = 0.8 \,\mathrm{m}$,求此时的速率 v 及初速率 v_0 .

47, 0115

有一半径为 R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为 μ ,若平板绕通过其中心且垂直板面的固定轴以角速度 ω_0 开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量 $J=\frac{1}{2}mR^2$,其中 m 为圆形平板的质量)

48, 0156

如图所示,转轮 A、B 可分别独立地绕光滑的固定轴 O 转动,它们的质量分别为 $m_A=10$ kg 和 $m_B=20$ kg,半径分别为 r_A 和 r_B . 现用力 f_A 和 f_B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动. 为使 A、B 轮边缘处的切向加速度相同,相应的拉力 f_A 、 f_B 之比应为多少? (其中 A、B

轮绕
$$O$$
 轴转动时的转动惯量分别为 $J_A = \frac{1}{2} m_A r_A^2$ 和 $J_B = \frac{1}{2} m_B r_B^2$)

49、0211

质量为 M=0.03 kg,长为 l=0.2 m 的均匀细棒,在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动。细棒上套有两个可沿棒滑动的小物体,每个质量都为 m=0.02 kg. 开始时,两小物体分别被固定在棒中心的两侧且距棒中心各为 r=0.05 m,此系统以 n1 =15 rev/ min 的转速转动。若将小物体松开,设它们在滑动过程中受到的阻力正比于它们相对棒的速度,(已知棒对中心轴的转动惯量为 $Ml^2/12$)求:

- (1) 当两小物体到达棒端时,系统的角速度是多少?
- (2) 当两小物体飞离棒端,棒的角速度是多少?

50, 0784

如图所示,一半径为 R 的匀质小木球固结在一长度为 l 的匀质细棒的下端,且可绕水平光滑固定轴 O 转动. 今有一质量为 m,速度为 \bar{v}_0 的子弹,沿着与水平面成 α 角的方向射向球心,且嵌于球心. 已知小木球、细棒对通过 O 的水平轴的转动惯量的总和为 J. 求子弹嵌入球心后系统的共同角速度.

力学复习题答案

一、选择题

1、D	2, C	3、B	4、D	5、D	6、D	7、A
8, B	9、C	10、C	11、C	12、D	13、C	14、C
15、C	16, E	17、C	18、C	19、D	20, B	

二、填空题

21, 0503

 $v = dy/dt = A\omega\cos\omega t$

 $v = A\omega\cos\omega \ t = \omega\sqrt{A^2 - y^2}$

(1), (2), (4).

$$\frac{1}{3}\omega_0$$

三、计算题

41, 0377

解: 煤粉自料斗口下落,接触传送带前具有竖直向下的速度

$$v_0 = \sqrt{2gh}$$

设煤粉与 A 相互作用的 Δt 时间内,落于传送带上的煤粉质量为

$$\Delta m = q_m \Delta t$$

设A对煤粉的平均作用力为 \bar{f} ,由动量定理写分量式:

$$f_x \Delta t = \Delta m \upsilon - 0$$

$$f_{y}\Delta t = 0 - (-\Delta m v_{0})$$

将 $\Delta m = q_m \Delta t$ 代入得

$$f_x = q_m v , \qquad f_y = q_m v_0$$

$$f = \sqrt{f_x^2 + f_y^2} = 149 \text{ N}$$

 \bar{f} 与 x 轴正向夹角为 α = arctg (f_x/f_y) = 57.4°

由牛顿第三定律煤粉对 A 的作用力 $f' = f = 149 \, \text{N}$,方向与图中 \overline{f} 相反.

42, 0103

解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械

能的增量. 由题意有
$$-f_r x = \frac{1}{2}kx^2 - \frac{1}{2}mv^2$$

$$f_r = \mu_k mg$$

由此得木块开始碰撞弹簧时的速率为 $v = \sqrt{2\mu_k gx + \frac{kx^2}{m}}$ = 5.83 m/s

[另解]根据动能定理,摩擦力和弹性力对木块所作的功,等于木块动能的增量,应有

$$-\mu_k mgx - \int_0^x kx dx = 0 - \frac{1}{2} mv^2$$
$$\int_0^x kx dx = \frac{1}{2} kx^2$$

其中

43, 0180

解: A、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得

$$m_A v_{A0} = m_A v_A + m_B v_B \tag{1}$$

$$\frac{1}{2}m_{A}v_{A0}^{2} = \frac{1}{2}m_{A}v_{A}^{2} + \frac{1}{2}m_{B}v_{B}^{2}$$
 (2)

联立解出

$$v_A = \frac{m_A - m_B}{m_A + m_B} v_{A0}, \qquad v_B = \frac{2m_A}{m_A + m_B} v_{A0}$$

由于二球同时落地, \therefore $\upsilon_{\scriptscriptstyle A}>0$, $m_{\scriptscriptstyle A}>m_{\scriptscriptstyle B}$;且

$$L_A/\upsilon_A = L_B/\upsilon_B \ rac{\upsilon_A}{\upsilon_B} = rac{L_A}{L_B} = rac{2}{5} \ , \qquad rac{m_A-m_B}{2m_A} = rac{2}{5} \ ,$$

解出

$$m_A/m_B=5$$

解:根据转动定律
$$M=Jd\omega/dt$$
 即 $d\omega=(M/J)dt$

其中 M=Fr, r=0.1 m, F=0.5 t, $J=1\times 10^{-3} \text{ kg} \cdot \text{m}^2$,

分别代入上式,得

$$d\omega = 50t dt$$

则 1 s 末的角速度 $\omega_1 = \int_0^1 50t \, dt = 25 \, \text{rad/s}$

45, 0242

解:

$$J = \frac{1}{2}MR^2 = 0.675 \text{ kg} \cdot \text{m}^2$$

$$\therefore mg - T = ma$$

$$TR = J\beta$$

$$a = R\beta$$

$$\therefore a = mgR^2 / (mR^2 + J) = 5.06 \text{ m/s}^2$$

$$h = \frac{1}{2}at^2 = 63.3 \text{ m}$$

因此(1)下落距离

$$T = m(g-a) = 37.9 \text{ N}$$

(2) 张力

46、0974

解: 重力、支持力、绳中张力对A点的力矩之和为零,故小球对A点的角动量 守恒. 当B与A距离最大时,B的速度应与绳垂直. 故有

$$mdv_0 \sin 30^\circ = mlv$$
 1

由机械能守恒有
$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{1}{2}k(l-l_0)^2$$
 ②

由式①得
$$v = v_0/4$$
 代入②式得 $v_0 = \sqrt{\frac{16k(l-l_0)^2}{15m}} = 1.306$ m/s $v = 0.327$ m/s

47、0115

解: 在r处的宽度为dr的环带面积上摩擦力矩为

$$\mathrm{d}M = \mu \frac{mg}{\pi R^2} \cdot 2\pi r \cdot r \mathrm{d}r$$

 总摩擦力矩
$$M = \int_0^R \mathrm{d}M = \frac{2}{3} \, \mu mgR$$

 故平板角加速度
$$\beta = M/J$$

设停止前转数为 n,则转角 θ = 2 πn

$$\dot{\omega}_0^2 = 2\beta\theta = 4\pi Mn/J$$

可得
$$n = \frac{J\omega_0^2}{4\pi M} = 3R\omega_0^2/16\pi \mu g$$

48, 0156

解:根据转动定律
$$f_A r_A = J_A \beta_A$$
 ①

其中
$$J_A = \frac{1}{2} m_A r_A^2$$
,且
$$f_B r_B = J_B \beta_B$$
 ②

其中 $J_B = \frac{1}{2} m_B r_B^2$. 要使 $A \times B$ 轮边上的切向加速度相同,应有

$$a=r_Aeta_A=r_Beta_B$$
 ③ 由①、②式,有
$$\frac{f_A}{f_B}=\frac{J_Ar_Beta_A}{J_Br_Aeta_B}=\frac{m_Ar_Aeta_A}{m_Br_Beta_B}$$
 ④ 电③式有
$$\beta_A/\beta_B=r_B/r_A$$
 将上式代入④式,得
$$f_A/f_B=m_A/m_B=\frac{1}{2}$$

49、0211

解: 选棒、小物体为系统,系统开始时角速度为

$$\omega_1 = 2\pi n_1 = 1.57 \text{ rad/s}.$$

(1) 设小物体滑到棒两端时系统的角速度为 ω 2. 由于系统不受外力矩作用,所以角动量守恒.

故
$$\left(\frac{Ml^2}{12} + 2mr^2\right)\omega_1 = \left(\frac{Ml^2}{12} + \frac{1}{2}ml^2\right)\omega_2$$

$$\omega_2 = \frac{\left(\frac{Ml^2}{12} + 2ml^2\right)\omega_1}{\frac{Ml^2}{12} + \frac{1}{2}ml^2} = 0.628 \text{ rad/s}$$

(2) 小物体离开棒端的瞬间,棒的角速度仍为ω. 因为小物体离开棒的瞬间内并未对棒有冲力矩作用.

50, 0784

解: 选子弹、细棒、小木球为系统. 子弹射入时,系统所受合外力矩为零,系统对转轴的角动量守恒.

$$mv_0 (R+l)\cos\alpha = [J+m (R+l)^2]\omega$$
$$\omega = \frac{mv_0(R+l)\cos\alpha}{J+m(R+l)^2}$$

热学复习题

一、选择题

1, 4569

一个容器内贮有 1 摩尔氢气和 1 摩尔氦气, 若两种气体各自对器壁产生的压强分别为 p_1 和 p_2 ,则两者的大小关系是:

(A) $p_1 > p_2$.

(B) $p_1 < p_2$.

(C) $p_1 = p_2$.

(D)不确定的.

Γ 7

2, 5601

一容器内装有 N_1 个单原子理想气体分子和 N_2 个刚性双原子理想气体分子, 当该系统处 在温度为T的平衡态时,其内能为

(A) $(N_1+N_2)(\frac{3}{2}kT+\frac{5}{2}kT)$. (B) $\frac{1}{2}(N_1+N_2)(\frac{3}{2}kT+\frac{5}{2}kT)$.

(C) $N_1 \frac{3}{2} kT + N_2 \frac{5}{2} kT$. (D) $N_1 \frac{5}{2} kT + N_2 \frac{3}{2} kT$.

3, 4012

关于温度的意义,有下列几种说法:

- (1) 气体的温度是分子平均平动动能的量度.
- (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.
- (3) 温度的高低反映物质内部分子运动剧烈程度的不同.
- (4) 从微观上看,气体的温度表示每个气体分子的冷热程度.

这些说法中正确的是

(A) (1), (2), (4). (C) (2), (3), (4). (B) (1), (2), (3).

(D) (1), (3), (4).

4, 4014

温度、压强相同的氦气和氧气,它们分子的平均动能 $\bar{\epsilon}$ 和平均平动动能 $\bar{\epsilon}$ 有如下关系:

(A) $\bar{\varepsilon}$ 和 \bar{w} 都相等. (B) $\bar{\varepsilon}$ 相等, 而 \bar{w} 不相等.

(C) \overline{w} 相等, 而 $\overline{\varepsilon}$ 不相等. (D) $\overline{\varepsilon}$ 和 \overline{w} 都不相等.

Γ

5, 4452

压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为:

(A) $\frac{5}{2}pV$. (B) $\frac{3}{2}pV$.

(C) pV.

(D) $\frac{1}{2}pV$.

Γ ٦

6, 4015

1 mol 刚性双原子分子理想气体, 当温度为 T 时, 其内能为

(A) $\frac{3}{2}RT$.

(C) $\frac{5}{2}RT$. (D) $\frac{5}{2}kT$.

٦

(式中 R 为普适气体常量, k 为玻尔兹曼常量)

7, 5056

一定质量的理想气体的内能 E 随体积 V 的变化关系为一直 线(其延长线过 $E \sim V$ 图的原点),则此直线表示的过程为:

(A) 等温过程.

(B) 等压过程.

(C) 等体过程.

(D) 绝热过程.[

一瓶氦气和一瓶氦气密度相同,分子平均平动动能相同,而且它们都处于平衡状态, 则它们

- (A) 温度相同、压强相同.
- (B) 温度、压强都不相同.
- (C) 温度相同,但氦气的压强大于氮气的压强.
- (D) 温度相同,但氦气的压强小于氮气的压强.

Γ

9、4041

设图示的两条曲线分别表示在相同温度下氧气和氢气 分子的速率分布曲线; 令 $(v_p)_{O_1}$ 和 $(v_p)_{H_1}$ 分别表示氧气和 氢气的最概然速率,则

- (A) 图中 a 表示氧气分子的速率分布曲线; $(v_p)_{O_2}/(v_p)_{H_2}=4.$
- (B) 图中 a 表示氧气分子的速率分布曲线; $(v_p)_{O_2}/(v_p)_{H_2} = 1/4.$

(D) 图中 b 表示氧气分子的速率分布曲线; $(v_p)_{O_2}/(v_p)_{H_2}=4$. ٦

在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则

- (A) 温度和压强都提高为原来的 2 倍.
- (B) 温度为原来的 2 倍, 压强为原来的 4 倍.
- (C) 温度为原来的 4 倍, 压强为原来的 2 倍.
- (D)温度和压强都为原来的 4 倍.

Γ ٦

11, 4050

一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率 \bar{Z} 和 平均自由程 $\bar{\lambda}$ 的变化情况是:

- (A) \bar{Z} 减小,但 $\bar{\lambda}$ 不变.
- (B) \bar{Z} 不变,但 $\bar{\lambda}$ 减小.
- (C) \bar{Z} 和 $\bar{\lambda}$ 都减小.
- (D) \bar{Z} 和 $\bar{\lambda}$ 都不变.

Γ 7

12, 4091

如图所示,一定量理想气体从体积 1/1,膨胀到体积 1/2分 别经历的过程是: $A \rightarrow B$ 等压过程, $A \rightarrow C$ 等温过程; $A \rightarrow D$ 绝热过程, 其中吸热量最多的过程

- (A) \not \not \not \not $A \rightarrow B$. (B) \not \not \not \not $A \rightarrow C$.
- (D)既是 $A \rightarrow B$ 也是 $A \rightarrow C$, 两过程吸热一样多。[

13, 4310

一定量的理想气体,其状态改变在p-T图上沿着一条直线从 平衡态 a 到平衡态 b(如图).

- (A) 这是一个膨胀过程.
- (B) 这是一个等体过程.
- (C) 这是一个压缩过程.
- (D) 数据不足,不能判断这是那种过程.[

一定量的理想气体,从 p-V 图上初态 a 经历(1)或(2)过程到达末态 b,已知 a、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在

- (A)(1)过程中吸热,(2)过程中放热.
- (B)(1)过程中放热,(2)过程中吸热.
- (C) 两种过程中都吸热.
- (D) 两种过程中都放热.

15, 4579

对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和 对外作的功三者均为负值?

- (A) 等体降压过程.
- (B) 等温膨胀过程.
- (C) 绝热膨胀过程.
- (D) 等压压缩过程.

[]

16, 4100

一定量的理想气体经历 acb 过程时吸热 $500\,$ J. 则 经历 acbda 过程时,吸热为

- (A) -1200 J.
- (B) -700 J.
- (C) -400 J.
- (D) 700 J.

[]

17, 4095

一定量的某种理想气体起始温度为 T,体积为 V,该气体在下面循环过程中经过三个平衡过程: (1) 绝热膨胀到体积为 2V,(2)等体变化使温度恢复为 T,(3) 等温压缩到原来体积 V,则此整个循环过程中

- (A) 气体向外界放热
- (B) 气体对外界作正功
- (C) 气体内能增加
- (D) 气体内能减少

]

Γ

18, 4123

在温度分别为 327℃和 27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为

- (A) 25%
- (B) 50%
- (C) 75%
- (D) 91.74%

[]

19, 4122

如果卡诺热机的循环曲线所包围的面积从图中的 abcda 增大为 ab'c'da,那么循环 abcda 与 ab'c'da 所作的净功和热机效率变化情况是:

- (A) 净功增大,效率提高.
- (B) 净功增大,效率降低.
- (C) 净功和效率都不变.
- (D) 净功增大,效率不变.

7

20, 4340

气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍?

- (A) $2^{2/5}$.
- (B) $2^{2/7}$.
- (C) $2^{1/5}$.
- (D) $2^{1/7}$.

[]

二、填空题
21, 4016
三个容器内分别贮有 1 mol 氦(He)、 1 mol 氢(H_2)和 1 mol 氨(NH_3)(均视为刚性分子的
理想气体). 若它们的温度都升高1K,则三种气体的内能的增加值分别为: (普适气体常量
$R=8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
氦: △E=;
氢: △E=
氨: △E=
22、4017
1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中, 温度为 27℃, 这
瓶氧气的内能为J; 分子的平均平动动能为J; 分子
的平均总动能为
玻尔兹曼常量 $k=1.38\times 10^{-23}\mathrm{J} \cdot \mathrm{K}^{-1})$
23、4273
一定量 H ₂ 气(视为刚性分子的理想气体),若温度每升高 1 K,其内能增加 41.6 J,
则该 H_2 气的质量为
24、4454
1 mol 的单原子分子理想气体,在 1 atm 的恒定压强下,从 0℃加热到 100℃,则
气体的内能改变了
25、4072
2g氢气与2g氦气分别装在两个容积相同的封闭容器内,温度也相同.(氢气分
子视为刚性双原子分子)
(1) 氢气分子与氦气分子的平均平动动能之比 $\overline{w}_{H_2}/\overline{w}_{H_e} = $
(2) 氢气与氦气压强之比 $p_{\rm H_2} = p_{\rm He} =$
(3) 复有与复有内能之比 下 / 下 =
(3) 氢气与氦气内能之比 $E_{\text{H}_2}/E_{\text{He}} =$
26、4034
在平衡状态下,已知理想气体分子的麦克斯韦速率分布函数为 $f(v)$ 、分子质量为 m 、最概然
速率为 v_p ,试说明下列各式的物理意义:
(1) $\int_{v_{-}}^{\infty} f(v) dv$ 表示
, 1
(2) $\int_0^\infty \frac{1}{2} m v^2 f(v) dv 表示_{\underline{}}.$
27、4042
某气体在温度为 $T=273$ K 时,压强为 $p=1.0\times10^{-2}$ atm,密度 $\rho=1.24\times10^{-2}$ kg/m³,则
该气体分子的方均根速率为 (1 atm = 1.013×105 Pa)
28、4283
当理想气体处于平衡态时, 若气体分子谏率分布函数为 $f(v)$, 则分子谏率处于最概然谏

在 p-V 图上

(1) 系统的某一平衡态用_____来表示;

率 ν_p 至∞范围内的概率 $\triangle N/N=$ ______.

- (2) 系统的某一平衡过程用_____来表示;
- (3) 系统的某一平衡循环过程用 来表示;

30、	4090		
	要使一热力学系统的内能增加,可以通过		
	两种方式,或者两种方式兼用来完成	ὰ.	
	热力学系统的状态发生变化时,其内能的改变量只决定于	于	,
而与	无关。		
31、	4108	p	
	如图所示,一定量的理想气体经历 $a ightharpoonup b ightharpoonup c$ 过程,在此	<i>b</i>	
过程	中气体从外界吸收热量 Q ,系统内能变化 ΔE ,请在以下		, p
空格	内填上>0 或<0 或= 0:	a	
	Q , ΔE	0	\longrightarrow V
32、	4583		0 0
	在大气中有一绝热气缸,其中装有一定量的理想气体,然	然后用电	
炉徐	徐供热(如图所示),使活塞(无摩擦地)缓慢上升. 在此过程	星中,以	1-1-1-1-1-1-1-1
下物	理量将如何变化?(选用"变大"、"变小"、"不变"填空)	1	
	(1) 气体压强;		
	(2) 气体分子平均动能; (3) 气体内能	_·	
33、	4687		• μ\
	已知 1 mol 的某种理想气体(其分子可视为刚性分子),在	等压过程中	□温度上升1
Κ,	内能增加了 20.78 J,则气体对外作功为	,气体	吸收热量为
	. (普适气体常量 $R=8.31$ J·mo	$1^{-1} \cdot K^{-1}$	
)	
34、	4319		
	有 1 mol 刚性双原子分子理想气体,在等压膨胀过程中对	外作功 W ,	则其温度变
	$r=$; 从外界吸取的热量 $Q_p=$		2
35、	4472	/	\
 \	一定量理想气体,从 A 状态 $(2p_1, V_1)$ 经历如图所示的直	.线过 2 <i>p</i> ₁	^A
	到 B 状态($2p_1$, V_2),则 AB 过程中系统作功 $W=$; p ₁	B
内能	:改变Δ <i>E</i> =	0	$V \rightarrow V$
		· ·	$V_1 2V_1 V$
36、	4689	* .h.t	ル、ユルカーロ
	压强、体积和温度都相同的氢气和氦气(均视为刚性分子		
	$ m_1:m_2=$,它们的内能之比为 $E_1:E_2=$		
	吸收了相同的热量,则它们对外作功之比为 $W_1:W_2=$	·	(各量下角标
表示	氢气,2表示氦气)		p
			\bigwedge_a
37、	4481	D A - I :	$d b 3T_0$
VII 4: -	如图,温度为 T_0 ,2 T_0 ,3 T_0 三条等温线与两条绝热线围痕	区三个卡	c $2T_0$
诺循	环: (1) abcda, (2) dcefd, (3) abefa, 其效率分别为		l Ver

_____K. 今欲将该热机效率提高到 50%, 若低温热源保持不变, 则高温热源的温度应增

一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为

 η_1 , η_2 , η_3 .

38, 4127

加_____K.

气体经历如图所示的一个循环过程, 在这个循环中, 外界传 给气体的净热量是

40、4713

给定的理想气体(比热容比 γ 为已知),从标准状态(p_0 、 V_0 、 T_0)开始,作绝热膨

胀,体积增大到三倍,膨胀后的温度 T= ,压强 p=

三、计算题

41, 4076

一密封房间的体积为 $5\times3\times3$ m^3 ,室温为 20 \mathbb{C} ,室内空气分子热运动的平均平动动 能的总和是多少?如果气体的温度升高 1.0 K,而体积不变,则气体的内能变化多少?气体 分子的方均根速率增加多少?已知空气的密度 ρ =1.29 kg/m³,摩尔质量 M_{mol} =29×10⁻³ kg /mol,且空气分子可认为是刚性双原子分子. (普适气体常量 $R = 8.31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$)

42, 5604

一氧气瓶的容积为 V,充了气未使用时压强为 p_1 ,温度为 T_1 ;使用后瓶内氧气的质量 减少为原来的一半,其压强降为 p_2 ,试求此时瓶内氧气的温度 T_2 . 及使用前后分子热运动 平均速率之比 v_1/v_2 .

43, 4120

 $1 \mod$ 双原子分子理想气体从状态 $A(p_1,V_1)$ 沿 p-V 图所示直线 变化到状态 $B(p_2,V_2)$, 试求:

- (1) 气体的内能增量.
- (2) 气体对外界所作的功.
- (3) 气体吸收的热量.
- (4) 此过程的摩尔热容.

(摩尔热容 $C = \Delta O / \Delta T$, 其中 ΔO 表示 1 mol 物质在过程中升

高温度 ΔT 时所吸收的热量.)

44, 4114

一定量的某单原子分子理想气体装在封闭的汽缸里,此汽缸有可活动的活塞(活塞与气 缸壁之间无摩擦且无漏气). 已知气体的初压强 p_1 =1atm,体积 V_1 =1L,现将该气体在等压下 加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的 2 倍,最后作绝热膨 胀,直到温度下降到初温为止,

- (1) 在 p-V 图上将整个过程表示出来. (2) 试求在整个过程中气体内能的改变.
- (3) 试求在整个过程中气体所吸收的热量. (4) 试求在整个过程中气体所作的功.

 $(1 \text{ atm} = 1.013 \times 10^5 \text{ Pa})$

45, 4324

3 mol 温度为 T_0 =273 K 的理想气体,先经等温过程体积膨胀到原来的 5 倍,然后等体 加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为 $O = 8 \times 10^4$ J. 试画 出此过程的 p-V 图, 并求这种气体的比热容比 $\gamma = C_p / C_V$ 值. (普适气体常量 $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

46, 4102

温度为 25℃、压强为 1 atm 的 1 mol 刚性双原子分子理想气体, 经等温过程体积膨胀至 原来的 3 倍. (普适气体常量 R=8.31 J·mol⁻¹·K⁻¹, ln 3=1.0986)

- (1) 计算这个过程中气体对外所作的功.
- (2) 假若气体经绝热过程体积膨胀为原来的 3 倍,那么气体对外作的功又是多少?

一定量的某种理想气体进行如图所示的循环过程. 已知气体在状态 A 的温度为 T_A =300 K, 求

- (1) 气体在状态 B、C 的温度;
- (2) 各过程中气体对外所作的功;
- (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).

48, 4332

设以氮气(视为刚性分子理想气体)为工作物质进行卡诺循环,在绝热膨胀过程中气体的体积增大到原来的两倍,求循环的效率.

49、4598

如图所示,有一定量的理想气体,从初状态 $a(p_1,V_1)$ 开始,经过一个等体过程达到压强为 $p_1/4$ 的 b 态,再经过一个等压过程达到状态 c,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功 W 和所吸的热量 Q.

50, 4110

如图所示,abcda 为 1 mol 单原子分子理想气体的循环过程,求:

- (1) 气体循环一次,在吸热过程中从外界共吸收的热量;
 - (2) 气体循环一次对外做的净功;
 - (3) 证明 在 abcd 四态, 气体的温度有 $T_aT_c=T_bT_d$.

答案

一、选择题

1, C 2, C 3, B 4, C 5, A 6, C 7, B 8, C

9, B 10, D 11, A 12, A 13, C 14, B 15, D 16, B

17, A 18, B 19, D 20, D

二、填空题

21、12.5 J ; 20.8 J ; 24.9 J

 $22 \cdot 6.23 \times 10^{3}$; 6.21×10^{-21} ; 1.035×10^{-21}

23, 4.0×10^{-3} kg

24, 1.25×10^3

25, 1 ; 2 ; 10/3

26、分布在 $v_p \sim$ 速率区间的分子数在总分子数中占的百分率; 分子平动动能的平均值.

27, 495 m/s

 $28. \int_{v_p}^{\infty} f(v) \, \mathrm{d}v$

29、一个点; 一条曲线; 一条封闭曲线

30、外界对系统作功; 向系统传递热量

始末两个状态; 所经历的过程

34.
$$W/R$$
; $\frac{7}{2}W$

35,
$$\frac{3}{2}p_1V_1$$
; 0

39、90J

40.
$$(\frac{1}{3})^{\gamma-1}T_0$$
; $(\frac{1}{3})^{\gamma}p_0$

41, 4076

解:根据
$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}kT$$
, 可得 $N\frac{1}{2}m\overline{v^2} = \frac{3}{2}NkT$,

$$\mathcal{B} \qquad \Delta \left(\overline{v^2}\right)^{1/2} = \left(\overline{v_2^2}\right)^{1/2} - \left(\overline{v_1^2}\right)^{1/2} = \left(3R/M_{\text{mol}}\right)^{1/2} \left(\sqrt{T_2} - \sqrt{T_1}\right) = 0.856 \text{ m/s}.$$

42、5604

解:
$$p_1V = vRT_1$$
 $p_2V = \frac{1}{2} vRT_2$

$$\vdots$$
 $\frac{T_2 = 2 T_1p_2 / p_1}{\frac{U_1}{U_2}} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{P_1}{2P_2}}$

43, 4120

解: (1)
$$\Delta E = C_V (T_2 - T_1) = \frac{5}{2} (p_2 V_2 - p_1 V_1)$$

(2)
$$W = \frac{1}{2}(p_1 + p_2)(V_2 - V_1),$$

W 为梯形面积,根据相似三角形有 $p_1V_2=p_2V_1$,则

$$W = \frac{1}{2}(p_2V_2 - p_1V_1).$$

(3)
$$Q = \Delta E + W = 3(p_2V_2 - p_1V_1).$$

(4) 以上计算对于 $A \rightarrow B$ 过程中任一微小状态变化均成立,故过程中

$$\triangle Q = 3 \triangle (pV)$$
.

由状态方程得
$$\Delta (pV) = R \Delta T$$

故
$$\triangle Q = 3R \triangle T$$
,

摩尔热容
$$C=\Delta Q/\Delta T=3R$$
.

解: (1) p-V图如右图.

(2)
$$T_4=T_1 \quad \Delta E=0$$

(3)
$$Q = \frac{M}{M_{mol}} C_p (T_2 - T_1) + \frac{M}{M_{mol}} C_V (T_3 - T_2)$$
$$= \frac{5}{2} p_1 (2V_1 - V_1) + \frac{3}{2} [2V_1 (2p_1 - p_1)]$$
$$= \frac{11}{2} p_1 V_1 = 5.6 \times 10^2 \text{ J}$$

(4) $W = Q = 5.6 \times 10^2 \text{ J}$

45、4324

解:初态参量 p_0 、 V_0 、 T_0 .末态参量 p_0 、 $5V_0$ 、T.

由
$$p_0V_0/T_0 = p_0(5V_0)/T$$
 得 $T = 5T_0$

p-V 图如图所示

等温过程: $\Delta E=0$

$$Q_T = W_T = (M/M_{mol})RT \ln(V_2/V_1)$$

= 3RT₀ln5 = 1.09 × 10⁴ J

等体过程:

$$W_V = 0$$

$$Q_V = \Delta E_V = (M/M_{mol})C_V \Delta T$$

=
$$(M/M_{mol})C_V(4T_0)$$
=3.28×10³ C_V
 $O = O_T + O_V$

$$C_V = (Q - Q_T)/(3.28 \times 10^3) = 21.0 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$\gamma = \frac{C_p}{C_V} = \frac{C_V + R}{C_V} = 1.40$$

46, 4102

解: (1) 等温过程气体对外作功为

$$W = \int_{V_0}^{3V_0} p \, dV = \int_{V_0}^{3V_0} \frac{RT}{V} \, dV = RT \ln 3$$

$$=8.31\times298\times1.0986 \text{ J}=2.72\times10^3 \text{ J}$$

(2) 绝热过程气体对外作功为

$$W = \int_{V_0}^{3V_0} p \, dV = p_0 V_0^{\gamma} \int_{V_0}^{3V_0} V^{-\gamma} \, dV$$
$$= \frac{3^{1-\gamma} - 1}{1 - \gamma} p_0 V_0 = \frac{1 - 3^{1-\gamma}}{\gamma - 1} RT$$
$$= 2.20 \times 10^3 \, \text{J}$$

47, 4104

解: 由图, p_A =300 Pa, p_B = p_C =100 Pa; V_A = V_C =1 m³, V_B =3 m³.

(1)
$$C \rightarrow A$$
 为等体过程,据方程 $p_A/T_A = p_C/T_C$ 得

$$T_C = T_A p_C / p_A = 100 \text{ K}.$$

B→C 为等压过程,据方程 $V_B/T_B=V_C/T_C$ 得

$$T_{\rm B} = T_{\rm C} V_{\rm B} / V_{\rm C} = 300 \, {\rm K}$$
.

(2) 各过程中气体所作的功分别为

$$A \rightarrow B$$
: $W_1 = \frac{1}{2} (p_A + p_B)(V_B - V_C) = 400 \text{ J.}$
 $B \rightarrow C$: $W_2 = p_B (V_C - V_B) = -200 \text{ J.}$

$$C \rightarrow A$$
: $W_3 = 0$

(3) 整个循环过程中气体所作总功为

$$W = W_1 + W_2 + W_3 = 200 \text{ J}.$$

因为循环过程气体内能增量为 $\Delta E=0$,因此该循环中气体总吸热

$$Q = W + \Delta E = 200 \text{ J}.$$

48, 4332

解得

循环效率

解:据绝热过程方程: $V^{\gamma-1}T=$ 恒量,依题意得

$$V_1^{\gamma - 1}T_1 = (2V_1)^{\gamma - 1}T_2$$
 $T_2 / T_1 = 2^{1 - \gamma}$
 $\eta = 1 - \frac{T_2}{T_1} = 1 - 2^{1 - \gamma}$
 $\gamma = \frac{i + 2}{2}, \quad i = 5, \quad \gamma = 1.4$

: 49、4598

氮气:

解:设 c 状态的体积为 V_2 ,则由于 a,c 两状态的温度相同, $p_1V_1=p_1V_2/4$

故
$$V_2 = 4 V_1$$

循环过程 $\Delta E = 0$, Q = W.

而在 $a \rightarrow b$ 等体过程中功 $W_1 = 0$.

在 $b\rightarrow c$ 等压过程中功

$$W_2 = p_1(V_2 - V_1)/4 = p_1(4V_1 - V_1)/4 = 3 p_1V_1/4$$

在 $c \rightarrow a$ 等温过程中功

$$W_3 = p_1 V_1 \ln (V_2/V_1) = -p_1 V_1 \ln 4$$

$$W = W_1 + W_2 + W_3 = [(3/4) - \ln 4] p_1 V_1$$

$$Q = W = [(3/4) - \ln 4] p_1 V_1$$

50, 4110

解: (1) 过程 ab 与 bc 为吸热过程,

吸热总和为
$$Q_1 = C_V(T_b - T_a) + C_p(T_c - T_b)$$

$$= \frac{3}{2} (p_b V_b - p_a V_a) + \frac{5}{2} (p_c V_c - p_b V_b)$$
=800 J

(2) 循环过程对外所作总功为图中矩形面积

$$W = p_b(V_c - V_b) - p_d(V_d - V_a) = 100 \text{ J}$$

(3)
$$T_a = p_a V_a / R$$
, $T_c = p_c V_c / R$, $T_b = p_b V_b / R$, $T_d = p_d V_d / R$, $T_a T_c = (p_a V_a p_c V_c) / R^2 = (12 \times 10^4) / R^2$
 $T_b T_d = (p_b V_b p_d V_d) / R^2 = (12 \times 10^4) / R^2$

$$T_aT_c=T_bT_d$$

振动和波复习题

一、选择题

1, 3002

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为 x_1 = $A\cos(\omega t + \alpha)$. 当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点 正在最大正位移处. 则第二个质点的振动方程为

(A)
$$x_2 = A\cos(\omega t + \alpha + \frac{1}{2}\pi)$$
. (B) $x_2 = A\cos(\omega t + \alpha - \frac{1}{2}\pi)$.

(B)
$$x_2 = A\cos(\omega t + \alpha - \frac{1}{2}\pi)$$
.

(C)
$$x_2 = A\cos(\omega t + \alpha - \frac{3}{2}\pi)$$
.

(C)
$$x_2 = A\cos(\omega t + \alpha - \frac{3}{2}\pi)$$
. (D) $x_2 = A\cos(\omega t + \alpha + \pi)$.

2, 3003

轻弹簧上端固定,下系一质量为 m_1 的物体,稳定后在 m_1 下边又系一质量为 m_2 的物体, 于是弹簧又伸长了 Δx . 若将 m_2 移去,并令其振动,则振动周期为

(A)
$$T = 2\pi \sqrt{\frac{m_2 \Delta x}{m_1 g}}$$
 . (B) $T = 2\pi \sqrt{\frac{m_1 \Delta x}{m_2 g}}$.

(B)
$$T = 2\pi \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$

(C)
$$T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$

(C)
$$T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$
. (D) $T = 2\pi \sqrt{\frac{m_2 \Delta x}{(m_1 + m_2)g}}$.

3、3396

一质点作简谐振动. 其运动速度与时间的曲线如图所 示. 若质点的振动规律用余弦函数描述,则其初相应为

- (A) $\pi/6$. (B) $5\pi/6$.
- (C) $-5\pi/6$.
- (D) $-\pi/6$.
- (E) $-2\pi/3$.

4, 5501

一物体作简谐振动,振动方程为 $x = A\cos(\omega t + \frac{1}{4}\pi)$. 在 t = T/4(T 为周期)时刻, 物体的加速度为

(A)
$$-\frac{1}{2}\sqrt{2}A\omega^{2}$$
. (B) $\frac{1}{2}\sqrt{2}A\omega^{2}$.

(B)
$$\frac{1}{2}\sqrt{2}A\omega^2$$
.

(C)
$$-\frac{1}{2}\sqrt{3}A\omega^2$$
. (D) $\frac{1}{2}\sqrt{3}A\omega^2$.

(D)
$$\frac{1}{2}\sqrt{3}A\omega^2$$
.

5, 3254

一质点作简谐振动,周期为T. 质点由平衡位置向x轴正方向运动时,由平衡位置到二 分之一最大位移这段路程所需要的时间为

- (A) T/4.
- (B) T/6
- (C) T/8
- (D) T/12

7

6, 3031

已知一质点沿 y 轴作简谐振动. 其振动方程为 $y = A\cos(\omega t + 3\pi/4)$. 与之对应的振动

1

曲线是

当质点以频率 ν 作简谐振动时,它的动能的变化频率为

- (A) 4ν .
- (B) 2 v . (C) v.
- (D) $\frac{1}{2}v$.
 - 7

8, 3560

弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为

- (A) kA^2 .
- (B) $\frac{1}{2}kA^2$.
- (C) $(1/4)kA^2$.
- (D) 0.

7

Γ

9、5182

一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的

- (A) 1/4.
- (B) 1/2.
- (C) $1/\sqrt{2}$.

- (D) 3/4.
- (E) $\sqrt{3}/2$.

10、3562

图中所画的是两个简谐振动的振动曲线. 若这两个简谐 振动可叠加,则合成的余弦振动的初相为

- (A) $\frac{3}{2}\pi$.
- (B) π .

- (C) $\frac{1}{2}\pi$. (D) 0.

]

11, 3147

一平面简谐波沿 Ox 正方向传播,波动表达式为 $y = 0.10\cos[2\pi(\frac{t}{2} - \frac{x}{4}) + \frac{\pi}{2}]$ (SI), 该波在 t = 0.5 s 时刻的波形图是

12, 3058

在下面几种说法中,正确的说法是:

- (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.
- (B) 波源振动的速度与波速相同.
- (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).
- (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前. (按差值不大于π 计) ٦

13, 3066

机械波的表达式为 $y = 0.03\cos6\pi(t + 0.01x)$ (SI),则

- (A) 其振幅为 3 m.
- (B) 其周期为 $\frac{1}{2}$ s.
- (C) 其波速为 10 m/s.
- (D) 波沿 *x* 轴正向传播.

7

Γ

在简谐波传播过程中,沿传播方向相距为 $\frac{1}{2}\lambda$ (λ 为波长)的两点的振动速度必定

- (A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反. [

15, 5513

频率为 100 Hz, 传播速度为 300 m/s 的平面简谐波,波线上距离小于波长的两点振动 的相位差为 $\frac{1}{3}\pi$,则此两点相距

(A) 2.86 m.

(B) 2.19 m.

(C) 0.5 m.

(D) 0.25 m.

]

16, 3407

横波以波速 u 沿 x 轴负方向传播. t 时刻波形曲线如图. 则该时刻

- (A) A 点振动速度大于零. (B) B 点静止不动.
- (C) C 点向下运动. (D) D 点振动速度小于零. [

17, 3603

一平面简谐波的表达式为 $y = A\cos 2\pi (vt - x/\lambda)$. 在 t = 1/v 时刻, $x_1 = 3\lambda/4$ 与 $x_2 =$ λ/4 二点处质元速度之比是

- (B) $\frac{1}{3}$. (C) 1. (D) 3
-]

18, 3149

一平面简谐波沿x轴正方向传播,t=0 时刻的波形图如图所示,则P处质点的振动在 t = 0 时刻的旋转矢量图是

19, 3069

一沿x轴负方向传播的平面简谐波在t=2s时的波形曲 线如图所示,则原点O的振动方程为

(C)
$$y = 0.50 \cos \left(\frac{1}{2}\pi t + \frac{1}{2}\pi\right)$$
, (SI).

]

20, 3087

一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它

的能量是

- (A) 动能为零,势能最大. (B) 动能为零,势能为零.
- (C) 动能最大,势能最大.
- (D) 动能最大,势能为零. []

21, 3090

一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:

- (A) 它的动能转换成势能.
- (B) 它的势能转换成动能.
- (C) 它从相邻的一段质元获得能量其能量逐渐增大.
- (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [

22、3289

图示一平面简谐机械波在 t 时刻的波形曲线. 若此时 A 点处媒 质质元的振动动能在增大,则

- (B) 波沿 x 轴负方向传播.
- (C) B 点处质元的振动动能在减小.
- (D) 各点的波的能量密度都不随时间变化.

23, 3308

在波长为λ 的驻波中,两个相邻波腹之间的距离为

- (A) $\lambda/4$.
- (B) $\lambda/2$.
- (C) $3\lambda/4$.
- (D) λ .

Γ 7

24, 3598

电磁波在自由空间传播时,电场强度 \bar{E} 和磁场强度 \bar{H}

- (A) 在垂直于传播方向的同一条直线上.
- (B) 朝互相垂直的两个方向传播.
- (C) 互相垂直,且都垂直于传播方向.
- (D) 有相位差 $\frac{1}{2}\pi$.

Γ ٦

25、3458

在真空中沿着 x 轴正方向传播的平面电磁波, 其电场强度波的表达式是 $E_z = E_0 \cos 2\pi (vt - x/\lambda)$, 则磁场强度波的表达式是:

(A)
$$H_y = \sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt - x/\lambda)$$
.

(B)
$$H_z = \sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt - x/\lambda)$$
.

(C)
$$H_v = -\sqrt{\varepsilon_0/\mu_0} E_0 \cos 2\pi (vt - x/\lambda)$$
.

(D)
$$H_v = -\sqrt{\varepsilon_0 / \mu_0} E_0 \cos 2\pi (vt + x/\lambda)$$
.

二、填空题

26, 3820

将质量为 0.2 kg 的物体,系于劲度系数 k = 19 N/m 的竖直悬挂的弹簧的下端。假定在 弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为,振 幅为

27、5187

一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为 x_0 ,此振子自由振动的周期 $T=$
28、3038 一水平弹簧简谐振子的振动曲线如图所示. 当振子处在位移 为零、速度为-ωA、加速度为零和弹性力为零的状态时,应对应 于曲线上的
29、3567 图中用旋转矢量法表示了一个简谐振动. 旋转矢量的长度为 0.04 m, 旋转角速度 $ω = 4π$ rad/s. 此简谐振动以余弦函数表示的振动方程为 x =(SI).
30、3033 一简谐振动用余弦函数表示,其振动曲线如图所示,则此 简谐振动的三个特征量为 $A =$
31、3046 一简谐振动的旋转矢量图如图所示,振幅矢量长 2 cm,则该简 谐振动的初相为 振动方程为 $t=0$
32、3268
一系统作简谐振动, 周期为 T ,以余弦函数表达振动时, 初相为零. 在 $0 \le t \le \frac{1}{2}T$ 范围
内,系统在 $t =$ 时刻动能和势能相等.
33、3821 一弹簧振子系统具有 1.0 J 的振动能量, 0.10 m 的振幅和 1.0 m/s 的最大速率, 则弹簧的劲度系数为, 振子的振动频率为
34、3269 —作简谐振动的振动系统,振子质量为 2 kg,系统振动频率为 1000 Hz,振幅为 0.5 cm, 则其振动能量为 35、3839
两个同方向的简谐振动,周期相同,振幅分别为 $A_1 = 0.05$ m 和 $A_2 = 0.07$ m,它们合成为一个振幅为 $A = 0.09$ m 的简谐振动.则这两个分振动的相位差为rad.
36、5314 一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为
$x_1 = 0.05\cos(\omega t + \frac{1}{4}\pi)$ (SI), $x_2 = 0.05\cos(\omega t + \frac{9}{12}\pi)$ (SI), 其合成运动的运动方程
为 $x = $
A , B 是简谐波波线上的两点. 已知, B 点振动的相位比 A 点落后 $\frac{1}{3}\pi$, A 、 B 两点相距
3 0.5 m,波的频率为 100 Hz,则该波的波长 $\lambda =$ m,波速 $\underline{u} =$ m/s.

一平面简谐波沿 x 轴正方向传播, 波速 u = 100 m/s, t = 0时刻的波形曲线如图所示. 可知波长λ= ; 振幅 A= ; 频率 $\nu=$.

39、

40, 3342

一平面简谐波(机械波)沿x轴正方向传播,波动表达式为 $y = 0.2\cos(\pi t - \frac{1}{2}\pi x)$ (SI),

则 x = -3 m 处媒质质点的振动加速度 a 的表达式为 .

41, 3418

频率为 100 Hz 的波, 其波速为 250 m/s. 在同一条波线上, 相距为 0.5 m 的两点的相位 差为

42, 3133

一平面简谐波沿 Ox 轴正方向传播,波长为 λ . 若如图 P_1 点处 质点的振动方程为 $y_1 = A\cos(2\pi \nu t + \phi)$, 则 P_2 点处质点的振动方 态相同的那些点的位置是

43、3132

一平面简谐波沿 Ox 轴正向传播,波动表达式为 $v = A\cos[\omega(t-x/u) + \pi/4]$,则 x_1

 $= L_1$ 处质点的振动方程是 $x_1 = L_1$ 处质点的振动的相位差为 $\phi_2 - \phi_1 =$.

______; $x_2 = -L_2$ 处质点的振动和

44、3135

如图所示为一平面简谐波在 t=2 s 时刻的波形图,该简谐波 的表达式是 处质点的振动方程是

(该波的振幅 A、波速 u 与波长 λ 为已知量)

45、3856

已知某平面简谐波的波源的振动方程为 $y = 0.06 \sin \frac{1}{2} \pi t$ (SI), 波速为 2 m/s. 则在波 传播前方离波源 5 m 处质点的振动方程为

46、3343

图示一简谐波在 t=0 时刻与 t=T/4 时刻 (T 为周期) 的波形图,则 x_1 处质点的振动方程为 .

47、3610

一简谐波沿x轴正方向传播, x_1 与 x_2 两点处的振动曲线 分别如图(a)和(b)所示,已知 $x_2 > x_1$ 且 $x_2 - x_1 < \lambda$ (λ 为波长), 则这两点的距离为__ (用波长2表示).

两相干波源 S_1 和 S_2 的振动方程分别是 $y_1 = A\cos(\omega t + \phi)$ 和 $y_2 = A\cos(\omega t + \phi)$. S_1 距 P 点 3 个波长, S_2 距 P 点 4.5 个波长.设波传播过程中振幅不变,则两波同时传到 P 点时的合振幅是

49, 3126

在真空中沿着 z 轴的正方向传播的平面电磁波,O 点处电场强度为 $E_x = 900\cos(2\pi \nu t + \pi/6)$,则O 点处磁场强度为______.

(真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$, 真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$)

50, 3460

广播电台的发射频率为 ν = 640 kHz. 已知电磁波在真空中传播的速率为c = 3×108 m/s,则这种电磁波的波长为

三计算题

51, 3828

- 一质量 m = 0.25 kg 的物体,在弹簧的力作用下沿 x 轴运动,平衡位置在原点. 弹簧的劲度系数 k = 25 N·m⁻¹.
 - (1) 求振动的周期 T 和角频率 ω .
- (2) 如果振幅 A = 15 cm, t = 0 时物体位于 x = 7.5 cm 处,且物体沿 x 轴反向运动,求初速 v_0 及初相 ϕ .
 - (3) 写出振动的数值表达式.

52, 3824

有一轻弹簧,当下端挂一个质量 $m_1 = 10$ g 的物体而平衡时,伸长量为 4.9 cm. 用这个弹簧和质量 $m_2 = 16$ g 的物体组成一弹簧振子. 取平衡位置为原点,向上为 x 轴的正方向. 将 m_2 从平衡位置向下拉 2 cm 后,给予向上的初速度 $v_0 = 5$ cm/s 并开始计时,试求 m_2 的振动周期和振动的数值表达式.

53, 3555

一质点接如下规律沿 x 轴作简谐振动: $x = 0.1\cos(8\pi t + \frac{2}{3}\pi)$ (SI). 求此振动的周

期、振幅、初相、速度最大值和加速度最大值.

54、5191

- 一物体作简谐振动,其速度最大值 $\nu_m = 3 \times 10^{-2}$ m/s,其振幅 $A = 2 \times 10^{-2}$ m. 若 t = 0 时,物体位于平衡位置且向 x 轴的负方向运动. 求:
 - (1) 振动周期 T;
 - (2) 加速度的最大值 a_m ;
 - (3) 振动方程的数值式.

55, 3558

一质量为 0.20 kg 的质点作简谐振动, 其振动方程为

$$x = 0.6\cos(5t - \frac{1}{2}\pi)$$
 (SI).

求: (1) 质点的初速度;

(2) 质点在正向最大位移一半处所受的力.

56、3410

- 一横波沿绳子传播,其波的表达式为 $y = 0.05\cos(100\pi t 2\pi x)$ (SI)
- (1) 求此波的振幅、波速、频率和波长.
- (2) 求绳子上各质点的最大振动速度和最大振动加速度.

(3) 求 $x_1 = 0.2$ m 处和 $x_2 = 0.7$ m 处二质点振动的相位差.

57, 5206

沿x轴负方向传播的平面简谐波在t=2s时刻的波形曲线如图所示,设波速u=0.5 m/s. 求:原点O的振动方程.

58、3084

- 一平面简谐波沿 x 轴正向传播,其振幅和角频率分别为 A 和 ω ,波速为 u ,设 t=0 时的波形曲线如图所示.
 - (1) 写出此波的表达式.
 - (2) 求距 O 点分别为 $\lambda/8$ 和 $3\lambda/8$ 两处质点的振动方程.
 - (3) 求距 O 点分别为 $\lambda/8$ 和 $3\lambda/8$ 两处质点在 t=0 时的振动速度.

59, 3333

- 一简谐波沿 Ox 轴正方向传播,波长 $\lambda = 4$ m, 周期 T = 4 s,已知 x = 0 处质点的振动曲线如图所示.
 - (1) 写出 x = 0 处质点的振动方程;
 - (2) 写出波的表达式;
 - (3) 画出 t=1 s 时刻的波形曲线.

60, 5516

平面简谐波沿 x 轴正方向传播,振幅为 2 cm,频率为 50 Hz,波速为 200 m/s. 在 t=0 时,x=0 处的质点正在平衡位置向 y 轴正方向运动,求 x=4 m 处媒质质点振动的表达式及该点在 t=2 s 时的振动速度.

61, 3476

平面简谐波沿 Ox 轴正方向传播,波的表达式为 $y = A\cos 2\pi(u - x/\lambda)$, 而另一平面简谐波沿 Ox 轴负方向传播,波的表达式为 $v = 2A\cos 2\pi(u + x/\lambda)$

- 求: (1) $x = \lambda/4$ 处介质质点的合振动方程;
 - (2) $x = \lambda/4$ 处介质质点的速度表达式.

62, 3060

一个沿x轴正向传播的平面简谐波(用余弦函数表示)在t=0时的波形曲线如图所示.

(2) 画出 t = T/4 时的波形曲线.

63, 0321

一定滑轮的半径为 R,转动惯量为 J,其上挂一轻绳,绳的一端系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示. 设弹簧的劲度系数为 k,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力. 现将物体 m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动,并求出其角频率.

64、3428

一平面简谐波, 频率为 300 Hz, 波速为 340 m/s, 在截面面积为 3.00×10⁻² m² 的管内空

气中传播, 若在 10 s 内通过截面的能量为 2.70×10⁻² J, 求

- (1) 通过截面的平均能流;
- (2) 波的平均能流密度;
- (3) 波的平均能量密度.
- 65、3436

图中A、B是两个相干的点波源,它们的振动相位差为 π (反相). A、

B 相距 30 cm,观察点P 和 B 点相距 40 cm,且 \overline{PB} 上 \overline{AB} . 若发自 A、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.

答案

一、选择题

1, B 2, B 3, C 4, B 5, D 6, B 7, B 8, D 9, D

10, B 11, B 12, C 13, B 14, A 15, C 16, D 17, A 18, A

19, C 20, C 21, D 22, B 23, B 24, C 25, C

- 二、填空题
- 26, 3820

1.55 Hz ; 0.103 m

27、5187

$$2\pi\sqrt{x_0/g}$$

- 28, 3038
 - b, f;

a, b

29、3567

$$0.04\cos(4\pi t - \frac{1}{2}\pi)$$

- 30, 3033
 - 10 cm ;

 $(\pi/6)$ rad/s ;

 $\pi/3$

31, 3046

$$\pi/4$$
 ;

 $x = 2 \times 10^{-2} \cos(\pi t + \pi/4)$ (SI)

32, 3268

T/8, 3T/8

33、3821

$$2 \times 10^2 \,\mathrm{N/m}$$

1.6 Hz

34、3269

$$9.90 \times 10^{2} \, J$$

35、3839

1.47

36, 5314

0.05
$$\cos(\omega t + \frac{23}{12}\pi)$$
 (SI) [或 0.05 $\cos(\omega t - \frac{1}{12}\pi)$ (SI)]

37、5515

3;

300

 $a = -0.2\pi^2 \cos(\pi t + \frac{3}{2}\pi x)$ (SI)

 41×3418 $2\pi / 5$

42、3133

$$y_2 = A\cos[2\pi(vt - \frac{L_1 + L_2}{\lambda}) + \phi]$$
 $x = -L_1 + k\lambda$ $(k = \pm 1, \pm 2, \cdots)$

43、3132

$$y_1 = A\cos[\omega(t - L_1/u) + \pi/4];$$
 $\frac{\omega(L_1 + L_2)}{u}$

44, 3135

$$y = A\cos[2\pi \frac{u}{\lambda}(t-2+\frac{x}{u})-\frac{\pi}{2}]$$
; $y_P = A\cos[2\pi \frac{u}{\lambda}(t-2)+\frac{\pi}{2}]$

45、3856

$$y = 0.06\sin(\frac{1}{2}\pi t - \frac{5}{4}\pi)$$

46、3343

47、3610

 $3\lambda/4$

48、3588

0

49、3126

$$H_v = 2.39\cos(2\pi vt + \pi/6)$$
 A/m

50、3460

$$4.69 \times 10^{2} \text{ m}$$

三、计算题

51, 3828

解: (1)
$$\omega = \sqrt{k/m} = 10 \text{ s}^{-1}$$

$$T = 2\pi/\omega = 0.63 \text{ s}$$
(2) $A = 15 \text{ cm}$,在 $t = 0$ 时, $x_0 = 7.5 \text{ cm}$, $v_0 < 0$ 由
$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$
得
$$v_0 = -\omega\sqrt{A^2 - x_0^2} = -1.3 \text{ m/s}$$

$$\phi = \text{tg}^{-1}(-v_0/\omega x_0) = \frac{1}{3}\pi \text{ is } 4\pi/3$$

$$\therefore x_0 > 0 , \therefore \qquad \phi = \frac{1}{3}\pi$$
(3)
$$x = 15 \times 10^{-2} \cos(10t + \frac{1}{3}\pi) \quad \text{(SI)}$$

解: 设弹簧的原长为 l, 悬挂 m_1 后伸长 Δl , 则 $k \Delta l = m_1 g$,

$$k = m_1 g / \Delta l = 2 \text{ N/m}$$

取下 m_1 挂上 m_2 后,

$$\omega = \sqrt{k/m_2} = 11.2 \text{ rad/s}$$

$$T = 2\pi/\omega = 0.56 \text{ s}$$

t=0时,

$$x_0 = -2 \times 10^{-2} \text{ m} = A\cos\phi$$

$$v_0 = 5 \times 10^{-2} \text{ m/s} = -A\omega \sin \phi$$

解得

$$A = \sqrt{x_0^2 + (v_0/\omega)^2} \text{ m} = 2.05 \times 10^{-2} \text{ m}$$

$$\phi = \text{tg}^{-1}(-\nu_0 / \omega x_0) = 180^{\circ} +12.6^{\circ} =3.36 \text{ rad}$$

也可取

$$\phi = -2.92 \text{ rad}$$

振动表达式为

$$x = 2.05 \times 10^{-2} \cos(11.2t - 2.92)$$
 (SI)

$$x = 2.05 \times 10^{-2} \cos(11.2t + 3.36)$$
 (SI)

53、3555

解:周期

$$T = 2\pi/\omega = 0.25$$
 s, $A = 0.1$ m,

振幅 初相

$$\phi = 2\pi/3,$$

 $v_{\text{max}} = \omega A = 0.8\pi \text{ m/s } (= 2.5 \text{ m/s}),$

$$a_{\text{max}} = \omega^2 A = 6.4\pi^2 \text{ m/s}^2 \text{ (} = 63 \text{ m/s}^2 \text{)}.$$

54, 5191

解: (1)
$$v_m = \omega A \quad : \omega = v_m / A = 1.5 \text{ s}^{-1}$$

$$T = 2\pi/\omega = 4.19 \text{ s}$$

(2)
$$a_m = \omega^2 A = \nu_m \ \omega = 4.5 \times 10^{-2} \text{ m/s}^2$$

$$\phi = \frac{1}{2}\pi$$

$$x = 0.02\cos(1.5t + \frac{1}{2}\pi)$$
 (SI)

55、3558

$$w = \frac{\mathrm{d}x}{\mathrm{d}t} = -3.0\sin(5t - \frac{\pi}{2})$$
 (SI)

$$t_0 = 0$$

$$v_0 = 3.0 \text{ m/s}$$

(2)
$$t_0 = 0,$$

$$F = ma = -m\omega^2 x$$

$$x = \frac{1}{2} A$$
 时, $F = -1.5$ N.

56, 3410

解: (1) 已知波的表达式为 $y = 0.05\cos(100\pi t - 2\pi x)$ 与标准形式 $y = A\cos(2\pi ut - 2\pi x/\lambda)$

比较得

$$A = 0.05 \text{ m}, \quad v = 50 \text{ Hz}, \quad \lambda = 1.0 \text{ m}$$

$$u = \lambda v = 50 \text{ m/s}$$

(2)
$$v_{\text{max}} = (\partial y / \partial t)_{\text{max}} = 2\pi vA = 15.7 \text{ m/s}$$

 $a_{\text{may}} = (\partial^2 y / \partial t^2)_{\text{may}} = 4\pi^2 v^2 A = 4.93 \times 10^3 \text{ m/s}^2$

(3)
$$\Delta \phi = 2\pi (x_2 - x_1)/\lambda = \pi$$
, 二振动反相

57, 5206

解: 由图, $\lambda = 2 \text{ m}$, 又:u = 0.5 m/s, ∴ v = 1 / 4 Hz,

$$T = 4 \text{ s.}$$
 题图中 $t = 2 \text{ s} = \frac{1}{2} T$. $t = 0$ 时,波形比题图中

的波形倒退 $\frac{1}{2}\lambda$,见图.

所以

此时 O 点位移 $y_0 = 0$ (过平衡位置) 且朝 y 轴负方向运动,

58、3084

解: (1) 以 O 点为坐标原点. 由图可知,该点振动初始条件为

$$y_0 = A\cos\phi = 0$$
, $v_0 = -A\omega\sin\phi < 0$
 $\phi = \frac{1}{2}\pi$

波的表达式为 $y = A\cos[\omega t - (\omega x/u) + \frac{1}{2}\pi]$

(2) $x = \lambda/8$ 处振动方程为

$$y = A\cos[\omega t - (2\pi\lambda/8\lambda) + \frac{1}{2}\pi] = A\cos(\omega t + \pi/4)$$

 $x = 3\lambda/8$ 的振动方程为

$$y = A\cos[\omega t - 2\pi \frac{3\lambda/8}{\lambda} + \frac{1}{2}\pi] = A\cos(\omega t - \pi/4)$$

(3)
$$dy/dt = -\omega A \sin(\omega t - 2\pi x/\lambda + \frac{1}{2}\pi)$$

t=0, $x=\lambda/8$ 处质点振动速度

$$dy/dt = -\omega A \sin[(-2\pi\lambda/8\lambda) + \frac{1}{2}\pi] = -\sqrt{2}A\omega/2$$

t=0, $x=3\lambda/8$ 处质点振动速度

$$dy/dt = -\omega A \sin[(-2\pi \times 3\lambda/8\lambda) + \frac{1}{2}\pi] = \sqrt{2}A\omega/2$$

59、3333

解: (1)
$$y_0 = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi t + \frac{1}{3}\pi)$$
 (SI)

$$(1) \quad y_0 = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi t + \frac{1}{3}\pi)$$

$$(2) \quad y = \sqrt{2} \times 10^{-2} \cos[2\pi(\frac{1}{4}t - \frac{1}{4}x) + \frac{1}{3}\pi]$$

$$(3) \quad t = 1 \text{ s 时, 波形表达式:}$$

$$y = \sqrt{2} \times 10^{-2} \cos(\frac{1}{2}\pi x - \frac{5}{5}\pi)$$

$$(SI) \quad (SI) \quad (SI)$$

(3) t = 1 s 时,波形表达式:

故有如图的曲线.

60、5516

解:设x=0处质点振动的表达式为 $y_0=A\cos(\omega t+\phi)$,

已知
$$t=0$$
 时, $y_0=0$, 且 $v_0>0$ $\therefore \phi=-\frac{1}{2}\pi$

$$y_0 = A\cos(2\pi vt + \phi) = 2 \times 10^{-2}\cos(100\pi t - \frac{1}{2}\pi) \quad (SI)$$

由波的传播概念,可得该平面简谐波的表达式为

$$y_0 = A\cos(2\pi vt + \phi - 2\pi vx/u) = 2 \times 10^{-2}\cos(100\pi t - \frac{1}{2}\pi - \frac{1}{2}\pi x)$$
 (SI)

x = 4 m 处的质点在 t 时刻的位移

$$y = 2 \times 10^{-2} \cos(100\pi t - \frac{1}{2}\pi)$$
 (SI)

该质点在 t = 2 s 时的振动速度为 $v = -2 \times 10^{-2} \times 100 \pi \sin(200 \pi - \frac{1}{2} \pi)$ = 6.28 m/s

61, 3476

解: (1) $x = \lambda/4$ 处

$$y_1 = A\cos(2\pi vt - \frac{1}{2}\pi)$$
, $y_2 = 2A\cos(2\pi vt + \frac{1}{2}\pi)$

 \therefore y_1,y_2 反相 \therefore 合振动振幅 $A_s=2A-A=A$,且合振动的初相 ϕ 和 y_2 的初相 一样为 $\frac{1}{2}\pi$.

合振动方程

$$y = A\cos(2\pi vt + \frac{1}{2}\pi)$$

(2)
$$x = \lambda/4$$
 处质点的速度 $v = dy/dt = -2\pi vA \sin(2\pi vt + \frac{1}{2}\pi)$

$$=2\pi vA\cos(2\pi vt+\pi)$$

62, 3060

解: (1)
$$x = 0$$
 点 $\phi_0 = \frac{1}{2}\pi$; $x = 2$ 点 $\phi_2 = -\frac{1}{2}\pi$; $x = 3$ 点 $\phi_3 = \pi$;

(2) 如图所示.

63, 0321

解:取如图 x 坐标,平衡位置为原点 O,向下为正,m 在平衡位置时弹簧已伸长 x_0

$$mg = kx_0$$
 ①

设m在x位置,分析受力,这时弹簧伸长 $x+x_0$

$$T_2 = k(x + x_0) \tag{2}$$

由牛顿第二定律和转动定律列方程:

$$mg - T_1 = ma$$

$$T_1 R - T_2 R = J\beta \tag{4}$$

$$a = R\beta$$
 (5

$$a = \frac{-kx}{(J/R^2) + m}$$

由于 x 系数为一负常数, 故物体做简谐振动, 其角频率为

$$\omega = \sqrt{\frac{k}{(J/R^2) + m}} = \sqrt{\frac{kR^2}{J + mR^2}}$$

64, 3428

解: (1)
$$P = W/t = 2.70 \times 10^{-3} \text{ J/s}$$

(2)
$$I = P/S = 9.00 \times 10^{-2} \text{ J/(s} \cdot \text{m}^2)$$

$$(3) I = \vec{w} \cdot u$$

$$\vec{w} = I/u = 2.65 \times 10^{-4} \text{ J/m}^3$$

65、3436

解:在 P最大限度地减弱,即二振动反相.现二波源是反相的相干波源,故要求因传播路径不同而引起的相位差等于 $\pm 2k\pi$ ($k=1, 2, \cdots$).

曲图
$$\overline{AP} = 50$$

$$\overline{AP} = 50 \text{ cm}.$$
 $\therefore 2\pi (50-40)/\lambda = 2k\pi,$

$$\lambda = 10/k \text{ cm}, \stackrel{\text{\tiny Δ}}{=} k = 1 \text{ pd}, \quad \lambda_{\text{max}} = 10 \text{ cm}$$