Linear Algebra

Diego ROJAS

June 4, 2022

1 Introduction

Linear algebra is a discipline of mathematics that deals with linear equations, vectors, matrices and their transformations.

2 Systems of linear equations

Definition: (Linear system): A collection of one or more equations involving the same variables.

Rule: For any linear system of the following form:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

$$(1)$$

There exists a shorthand notation:

$$\begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} x_1 + \dots + \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 (2)

Which can be further compacted into the form Ax = b like so:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 (3)

Or using the augmented matrix notation [A|b]

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}$$
 (4)

3 Matrices

Definition: (Matrix): With $m, n \in \mathbb{N}$ a real-valued (m, n) matrix A is an $m \cdot n$ tuple of elements a_{ij} . $\mathbb{R}^{m \times n}$ is the set of all real valued matrices.

Rule: For matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times k}$, the elements c_{ij} of the product $C = AB \in \mathbb{R}^{m \times k}$ are computed as:

$$c_{ij} = \sum_{l=1}^{n} = a_{il}b_{lj}$$
, where $i = 1, \dots, m$, and $j = 1, \dots, k$. (5)

Rule: For matrices $A, B \in \mathbb{R}^{m \times n}$, addition is defined as element-wise.

Rule: Element wise multiplication of $A, B \in \mathbb{R}^{m \times n}$ is called a *Hadamard* product.

Definition: (Identity matrix): We define an identity matrix in $\mathbb{R}^{n \times n}$ as:

$$I_{n} := \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$(6)$$

Definition: (Inverse matrix): The inverse of a matrix $A \in \mathbb{R}^{n \times n}$ denoted A^{-1} is a unique matrix $B \in \mathbb{R}^{n \times n}$ given $AB = I_n = BA$. If there exists an inverse for a matrix A then it is called regular/invertible/nonsingular, otherwise singular/non-invertible.

Definition: (Transpose): For $A \in \mathbb{R}^{m \times n}$ the matrix $B \in \mathbb{R}^{n \times m}$ with $b_{ij} = a_{ji}$ is called the transpose of A. We write $B = A^{\top}$.

4 Solving systems of linear equations

Rule: When solving a system of linear equations of the form $\mathbf{A}\mathbf{x} = \mathbf{b}$ we're looking to find scalars x_1, \ldots, x_n such that $\sum_{i=1}^n x_i \mathbf{c}_i = \mathbf{b}$. A particular solution of a linear system is a solution to the equation with particular, arbitrary values. A general solution of a system of linear equations can be obtained using the following steps

- Use gaussian elimination to find a particular solution of Ax = b.
- Find all solutions of Ax = 0.
- Combine these solutions onto a set.

Definition: (Elementary transformations): Consists of three rule that can be applied on a linear system of the form Ax = b.

- ullet Exchange of two equations (swapping rows in $[{m A}|{m b}])$
- Multiplication of an equation with a constant $\lambda \in \mathbb{R} \setminus \{0\}$
- Addition of two equations (rows of [A|b])

We use \rightsquigarrow to indicate an elementary transformation.

Definition: (Pivot | Leading coefficient): The leading coefficient of a row (first nonzero number from the left) is called the *pivot* and is always strictly to the right of the pivot of the row above it.

Definition: (Row echelon form): A matrix being in row echelon form means that Gaussian elimination has operated on the rows or columns of that matrix such that:

- All rows consisting of only zeroes are at the bottom.
- The leading coefficient of a non-zero row is always strictly to the right of the leading coefficient of the row above it.

Definition: (Reduced row echelon form): An equation is in *reduced* row echelon form (or row cannonical form) if every pivot is 1, the pivot is the only nonzero entry in its column (each pivot's column is a unit vector).

Rule: The variables corresponding to the pivots in the row-echelon form are called *basic variables* and the other variables are *free variables*.

Rule: To obtain the inverse A^{-1} of a matrix A we can use Gaussian elimination to bring it into reduced row echelon form such as the desired inverse is given as its right hand side.

$$[\boldsymbol{A}|\boldsymbol{I}_n] \leadsto \cdots \leadsto [\boldsymbol{I}_n|\boldsymbol{A}^{-1}]$$
 (7)

5 Vector spaces

Definition: (Group): Given a set \mathcal{G} and an operation \otimes defined on \mathcal{G} . $G := (\mathcal{G}, \otimes)$ is a group if the following holds:

- Closure of \mathcal{G} under \otimes : $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- Associativity: $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- Neutral element: $\exists e \in \mathcal{G} \ \forall x \in \mathcal{G} : x \otimes e = x$
- Inverse element: $\forall x \in \mathcal{G} \ \exists y \in \mathcal{G} : x \otimes y = e \text{ where } e \text{ is the neutral element.}$

Definition: (Vector space): A real-valued vector space $V = (\mathcal{V}, +, \cdot)$ is a set \mathcal{V} with two operations + and \cdot defined where the following holds:

- $(\mathcal{V}, +)$ is an abelian group.
- Distributivity:
 - $\forall x, y \in \mathcal{V} \ \forall \lambda \in \mathbb{R} : \lambda(x + y) = \lambda x + \lambda y$
 - $\forall \boldsymbol{x} \in \mathcal{V} \ \forall \lambda, \psi \in \mathbb{R} : (\lambda + \psi)\boldsymbol{x} = \lambda \boldsymbol{x} + \psi \boldsymbol{y}$
- Associativity (outer operation)
- Neutral element (outer operation)

Definition: (Vector subspace): Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and $\mathcal{U} \subseteq \mathcal{V}, \mathcal{U} \neq \emptyset$. Then $U = (\mathcal{U}, +, \cdot)$ is a vector subspace (or linear subspace) if U is a vector space restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathcal{U} \times \mathbb{R}$. We write $U \subseteq V$.

Rule: Given $U \subseteq V$, the following properties of V are passed to U.

- Abelian group, distributivity, associativity and neutral element properties.
- $\mathcal{U} \neq \emptyset$, in particular: $\mathbf{0} \in \mathcal{U}$.
- Closure of U:
 - $\forall \lambda \in \mathbb{R} \ \forall \boldsymbol{x} \in \mathcal{U} : \lambda \boldsymbol{x} \in \mathcal{U}.$
 - $\forall x, y \in \mathcal{U} : x + y \in \mathcal{U}.$

Rule: Every subspace $U \subseteq (\mathbb{R}^n, +, \cdot)$ is the solution space of a homogeneous system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ for $\mathbf{x} \in \mathbb{R}^n$

6 Linear independence

Definition: (Linear combination): Consider a vector space V and a finite number of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$. Then every $\mathbf{v} \in V$ of the form:

$$\boldsymbol{v} = \sum_{i=1}^{k} \lambda_i \boldsymbol{x}_i \in V \tag{8}$$

with $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ is a linear combination of the vectors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k$.

Definition: (Linear independence): Given a vector space V and $k \in \mathbb{N}$. Vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k \in V$ are said to be linearly independent if there exists no non-trivial solution to $\mathbf{0} = \sum_{i=1}^k \lambda_i \mathbf{x}_i$ with at least one $\lambda_i \neq 0$. Otherwise they're linearly dependent.

Rule:

- If at least one of the vector x_i is 0 then they are linearly dependent.
- The vectors $\{x_1, \ldots, x_k : x_i \neq 0, i = 1, \ldots, k\}, k \geqslant 2$ are linearly dependent, if and only if, at least one of them is a linear combination of the others.
- To check whether $x_1, \ldots, x_k \in V$ are linearly independent we can use Gaussian elimation: write all vectors as columns of a matrix A and perform Gaussian elimination until the matrix is in row-echelon form.
 - Non-pivot columns can be expressed as linear combinations of vectors on their left.
 - Pivot columns are linearly independent from vectors on their left.

If all columns are pivots, the vectors are linearly independent.

Rule: Given m linear combinations over k linearly independent vectors $\boldsymbol{b}_1, \dots, \boldsymbol{b}_k \in V$.

$$\boldsymbol{x}_{1} = \sum_{i=1}^{k} \lambda_{i1} \boldsymbol{b}_{i}$$

$$\vdots$$

$$\boldsymbol{x}_{m} = \sum_{i=1}^{k} \lambda_{im} \boldsymbol{b}_{i}$$
(9)

We can write, with $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_k]$, the following:

$$\boldsymbol{x}_{j} = \boldsymbol{B}\boldsymbol{\lambda}_{j}, \quad \boldsymbol{\lambda}_{j} = \begin{bmatrix} \lambda_{1}j \\ \vdots \\ \lambda_{k}j \end{bmatrix}, \quad j = 1, \dots, m$$
 (10)

We can test whether x_1, \ldots, x_m are linearly independent using:

$$\sum_{j=1}^{m} \psi_j \boldsymbol{x}_j = \sum_{j=1}^{m} \psi_j \boldsymbol{B} \boldsymbol{\lambda}_j = \boldsymbol{B} \sum_{j=1}^{m} \psi_j \boldsymbol{\lambda}_j$$
 (11)

Which means that $\{x_1, \ldots, x_k\}$ is linearly independent if the column vectors $\{\lambda_1, \ldots, \lambda_m\}$ are linearly independent.

Rule: In a vector space V, m linear combinations of $\mathbf{b}_1, \ldots, \mathbf{b}_k$ are linearly independent if m > k.

7 Basis and rank

In a vector space V, we are interested in a set of vectors \mathcal{A} that possess the property that any vector $\mathbf{v} \in V$ can be obtained through a linear combination of vectors in \mathcal{A} .

7.1 Generating Set and Basis

Definition: (Generating Set and Span): Given a set of vectors $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combi-

nation of vectors in \mathcal{A} , \mathcal{A} is called a *generating set* of V. The set of all linear combinations of vectors in \mathcal{A} is called the span of \mathcal{A} . We write $V = \text{span}[\mathcal{A}]$ or $V = \text{span}[\boldsymbol{x}_1, \dots, \boldsymbol{x}_k]$.

Definition: (Basis): Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} \subseteq \mathcal{V}$. A generating set \mathcal{A} of \mathcal{V} is called *minimal* if there exists no smaller set $\tilde{\mathcal{A}} \subsetneq \mathcal{A} \subseteq \mathcal{V}$ that spans \mathcal{V} . Every linearly independent generating set of V is minimal and is called a *basis* of V.

Rule: Given $\mathcal{B} \subseteq \mathcal{V}, \mathcal{B} \neq \emptyset$. Then the following statements are equivalent:

- \mathcal{B} is a basis of V
- \mathcal{B} is a minimal generating set.
- \mathcal{B} is a maximal linearly independent set of vectors in V such that adding any vector to the set \mathcal{B} would make it linearly dependent.
- Every vector $x \in V$ is a linear combination of vectors from \mathcal{B} , and every combination is unique, i.e., with

$$\boldsymbol{x} = \sum_{i=1}^{k} \lambda_i \boldsymbol{b}_i \tag{12}$$

Rule: Every vector space V possesses a basis B. There can be many bases for V, all have the same number of elements, the basis vectors.

Rule: A basis of a subspace $U = \text{span}[\boldsymbol{x}_1, \dots, \boldsymbol{x}_k] \subseteq \mathbb{R}^n$ can be found by:

- ullet Writing the spanning vectors as columns of a matrix $oldsymbol{A}$
- ullet Determining the row-echelon form of $oldsymbol{A}$
- \bullet The spanning vectors associated with the pivots columns are a basis of U.

7.2 Rank

Definition: (Rank): The number of linearly independent columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of linearly independent rows and is called the rank. We write rk(A).

Rule:

- $\operatorname{rk}(\mathbf{A}) = \operatorname{rk}(\mathbf{A}^{\top})$ i.e column rank equals row rank.
- The columns of $\mathbf{A} \in \mathbb{R}^{m \times n}$ span a subspace $U \subseteq \mathbb{R}^m$ with $\dim(U) = \operatorname{rk}(\mathbf{A})$. This subspace is called the *image* or *range*. A basis of U can be found by applying Gaussian elimination to \mathbf{A} . Same goes for the rows, given a subspace $W \in \mathbb{R}^n$.
- For all $\mathbf{A} \in \mathbb{R}^{n \times n}$ it holds that \mathbf{A} is regular (invertible) if and only $\operatorname{rk}(\mathbf{A}) = n$.
- For all $A \in \mathbb{R}^{m \times n}$ and all $b \in \mathbb{R}^m$ it holds that the linear equation system Ax = b can be solved only and if rk(A) = rk(A|b)
- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have full-rank if $\operatorname{rk}(\mathbf{A}) = \min(m, n)$. Otherwise, it is rank-deficient.

8 Linear mappings

Definition: (Linear mapping): For vector spaces V, W, a mapping Φ : $V \to W$ is called a *linear mapping* (or *linear transformation* or *vector space homomorphism*). Linear transformations are generally represented as matrices.

$$\Phi(\mathbf{x} + \mathbf{y}) = \Phi(\mathbf{x}) + \Phi(\mathbf{y})
\Phi(\lambda \mathbf{x}) = \lambda \Phi(\mathbf{x})$$
(13)

Definition: (Injective, Surjective, Bijective): Consider a mapping $\Phi: \mathcal{V} \to \mathcal{W}$ where \mathcal{V}, \mathcal{W} can be arbitrary sets. Then Φ is called

• Injective if $\forall x, y \in \mathcal{V} : \Phi(x) = \Phi(y) \implies x = y$.

- Surjective if $\Phi(\mathcal{V}) = \mathcal{W}$.
- Bijective if it is injective and surjective. Which means there exists a mapping Ψ so that $\Psi \circ \Phi(\boldsymbol{x}) = \boldsymbol{x}$. This mapping Ψ is called the inverse of Φ and denoted Φ^{-1} .

Rule:

- Isomorphism $\Phi: V \to W$ linear and bijective.
- Endomorphism $\Phi: V \to V$ linear.
- Automorphism $\Phi: V \to V$ linear and bijective.
- We define $id_V: V \to V, \boldsymbol{x} \mapsto \boldsymbol{x}$ as the *identity mapping* or *identity automorphism* in V.

Rule: Finite dimensional vector spaces \mathcal{V} and \mathcal{W} are isomorphic $(\mathcal{V} \to \mathcal{W})$ linear and bijective) if and only if $\dim(\mathcal{V}) = \dim(\mathcal{W})$.

Definition: (Ordered basis): Matrix representation of the basis vectors for an n dimensional vector space \mathcal{V} . We write:

Ordered basis notation:
$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$$

Matrix notation: $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_n]$ (14)
Unordered basis notation: $\mathcal{B} = \{\boldsymbol{b}_1, \dots, \boldsymbol{b}_n\}$

Definition: (Coordinates): Given an ordered basis $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ The coordinate vector/coordinate representation of $\boldsymbol{x} \in V$ is given as:

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \tag{15}$$

Where

$$\boldsymbol{x} = \alpha_1 \boldsymbol{b}_1 + \dots + \alpha_n \boldsymbol{b}_n \tag{16}$$

Definition: (Transformation Matrix): Considering vector spaces V, W with corresponding (ordered) bases $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ and $C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m)$ and a linear mapping $\Phi: V \to W$. For $j \in \{1, \dots, n\}$:

$$\Phi(\boldsymbol{b}_j) = \alpha_{1j}\boldsymbol{c}_1 + \dots + \alpha_{mj}\boldsymbol{c}_m \tag{17}$$

is the unique representation of $\Phi(\mathbf{b}_j)$ with respect to C. Then we call the $m \times n$ matrix \mathbf{A}_{Φ} , whose elements are given by

$$A_{\Phi}(i,j) = \alpha_{ij} \tag{18}$$

the transformation matrix of Φ (with respect to B, V, C, W). Therefore, if \hat{x} is the coordinate vector of $x \in \mathcal{V}$ with respect to B and \hat{y} the coordinate vector of $y = \Phi(\mathbf{x}) \in \mathcal{W}$ with respect to C, then

$$\hat{\boldsymbol{y}} = \boldsymbol{A}_{\Phi} \hat{\boldsymbol{x}} \tag{19}$$

Definition: (Basis change): For a linear mapping $\Phi: V \to W$, the ordered bases B, \tilde{B} of V of n elements and C, \tilde{C} of W of m elements and the transformation matrix A_{Φ} of Φ with respect to B and C, \tilde{A}_{Φ} with respect to \tilde{B} and \tilde{C} is given as

$$\tilde{\boldsymbol{A}}_{\Phi} = \boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S} \tag{20}$$

where $\mathbf{S} \in \mathbb{R}^{n \times n}$ is the transformation matrix of id_V and $\mathbf{T} \in \mathbb{R}^{m \times m}$ is the transformation matrix of id_W .

Definition: (Equivalence): Two matrices $A, \tilde{A} \in \mathbb{R}^{m \times n}$ are equivalent if there exists regular matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$ such that $\tilde{A} = T^{-1}AS$.

Definition: (Similarity): Two matrices $A, \tilde{A} \in \mathbb{R}^{n \times n}$ are similar if there exists a regular matrix $S \in \mathbb{R}^{n \times n}$ such that $\tilde{A} = S^{-1}AS$.

Rule: Considering vector spaces V, W, X, the linear mapping $\Phi : V \to W$ and the linear mapping $\Psi : W \to X$. We know that the linear mapping $\Psi \circ \Phi : V \to X$ is linear and we can write $\mathbf{A}_{\Psi \circ \Phi} = \mathbf{A}_{\Psi} \mathbf{A}_{\Phi}$. Therefore

• A_{Φ} is the transformation matrix of a linear mapping $\Phi_{CB}: V \to W$

- \tilde{A}_{Φ} is the transformation matrix of a linear mapping $\Phi_{\tilde{C}\tilde{B}}: V \to W$
- ${m S}$ is the transformation matrix of a linear mapping $\Psi_{B\tilde{B}}:V\to V$
- T is the transformation matrix of a linear mapping $\Xi_{C\tilde{C}}:W\to W$

Definition: (Dimension): The dimension of a vector space V is the number of basis vectors of V.

Definition: (Kernel): The kernel $\ker(\Phi)$ is the set of vectors that Φ maps to the neutral element $\mathbf{0}_W \in W$. It is defined as

$$\ker(\Phi) := \Phi^{-1}(\mathbf{0}_W) = \{ \mathbf{v} \in V : \Phi(\mathbf{v}) = \mathbf{0}_W \}$$
(21)

Definition: (Image): The *image* or *range* of a linear transformation $\Phi: V \to W$ is the set of vectors in W that can be "reached" by Φ from any vector in V. It is defined as

$$\operatorname{Im}(\Phi) := \Phi(V) = \{ \boldsymbol{w} \in W | \exists \boldsymbol{v} \in V : \Phi(\boldsymbol{v}) = \boldsymbol{w} \}$$
 (22)

Rule:

- The null space is never empty because $\Phi(\mathbf{0}_V) = \mathbf{0}_W$ always holds.
- $\operatorname{Im}(\Phi) \subseteq W$ is a subspace of W and $\ker(\Phi) \in V$ is a subspace of V.
- Φ is injective if and only if $\ker(\Phi) = \mathbf{0}$ (one to one mapping between V and W with respect to Φ).

Definition: (Column space): The image is equivalent to the span of the columns of the transformation matrix. This is called the *column space*.

Definition: (Null space): The null space $\ker(\Phi)$ is the general solution to the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Rule: The rank-nullity theorem also reffered to as the fundamental theorem of linear mappings states that

$$\dim(\ker(\Phi)) + \dim(\operatorname{Im}(\Phi)) = \dim(V) \tag{23}$$

Therefore the following is true

- If $\dim(\operatorname{Im}(\Phi)) < \dim(V)$, then $\ker(\Phi)$ is non-trivial, i.e., the kernel contains more than $\mathbf{0}_V$ and $\dim(\ker(\Phi)) \geqslant 1$.
- If $\dim(\operatorname{Im}(\Phi)) < \dim(V)$, then the system of linear equations $\mathbf{A}_{\Phi}\mathbf{x} = \mathbf{0}$ has infinitely many solutions.
- If $\dim(V) = \dim(W)$ then the Φ is bijective since $\operatorname{Im}(\Phi) \subseteq W$.

9 Affine Subspaces

Definition: (Affine subspace): Let V be a vector space and $U \subseteq V$ a subset. Then

$$L = \mathbf{x}_0 + U := \{ \mathbf{x}_0 + \mathbf{u} : \mathbf{u} \in U \}$$

= $\{ \mathbf{v} \in V | \exists \mathbf{u} \in U : \mathbf{v} + \mathbf{x}_0 = \mathbf{u} \} \subseteq V$ (24)

is called affine subspace or linear manifold of V. U is called direction or direction space, and \mathbf{x}_0 is called support point.

Definition: (Affine mapping): For two vector spaces V, W, a linear mapping $\Phi: V \to W$ and $\mathbf{a} \in W$, the mapping

$$\phi: V \to W
\mathbf{x} \mapsto \mathbf{a} + \Phi(\mathbf{x})$$
(25)

is an affine mapping from V to W. \boldsymbol{a} is called the translation vector of ϕ .