

Computer Science

Submodular maximization for random streams

Paul Liu, Aviad Rubinstein, Jan Vondrák, Junyao Zhao

MOTIVATION

Are submodular functions in your backyard?

Submodularity: $f(S \cup \{e\}) - f(S) \ge f(T \cup \{e\}) - f(T)$ when $S \subseteq T$. Monotone: $f(S \cup \{e\}) \ge f(S)$

Typical application: $\max_{|S| \le k} f(S)$ for a given k.

- "cardinality constrained submodular maximization"

REQUIREMENTS OF MODERN SYSTEMS

Modern data often comes in the form of a stream.

Characteristics of typical systems:

- Memory is limited
- Random access is not possible
- Data is sampled from some underlying distribution

Classical algorithms require storing the entire dataset. Can we do better?

OUR CONTRIBUTIONS

Our algorithms take exponentially less memory than current state-of-the-art while achieving better approximations in practice.

Our algorithm on real-world data. "Lazy greedy" is the best known offline solution.

Authors	Memory	Approx.	Notes
Sieve streaming, Badanidiyuru et al. '14	$O\left(\frac{k\log k}{\epsilon}\right)$	$\frac{1}{2} - \epsilon$	Adversarial order
Salsa, Norouzi-Fard et al. '18	$O(k \log k)$	$\frac{1}{2} + c,$ $0 < c$ $\leq 10^{-13}$	Random order, also gives 1/2 l.b. for adversarial order
Agrawal et al. '19	$O(k \exp(\operatorname{poly}(1/\epsilon))$	$1-\frac{1}{e}-\epsilon$	Optimal approx.; constant of > 2^{100} for $\epsilon < 0.2$.
Our paper	$O(k/\epsilon)$	$1-\frac{1}{e}-\epsilon$	Works in practice; also $\frac{1}{e}$ for non-mono.

THE COMPUTING MODEL

We only require black-box access to the submodular function and the ability to store data set elements.

Formally, we assume the following:

- Elements from a ground set *T* is streamed in to the algorithm, with order according to a uniformly random permutation.
- The algorithm chooses to store or throw away the element the moment it is seen.
- Only $\tilde{O}(k)$ elements can be stored.

ALGORITHM OUTLINE

Our algorithm relies on two ingredients: a solution cascade and a random window partitioning.

Random window partitioning:

- Randomly partition the stream into O(k) windows.
- Most optimal elements go into their own window.
- In these windows we can make progress.

Solution cascade:

- A pyramid of solutions $\{L_1, L_2, \dots, L_k\}$ with $|L_i| = i$.
- Greedily add one element to each level per window, choosing from window + elements added in previous windows.

