Fiche TD N = 03(b): Estimation NP de la fonction densité de probabilité

Exercice 01:

In the case when the true density is Uniform(0,1) calculate the exact bias of the histogram.

Exercice 02:

Prove that if $\widehat{f}_X(x)$ is the Kernel density estimator, then

$$var(\widehat{f}_X(x)) = \frac{1}{n} \left((K_h^2 * f_X)(x) - (K_h * f_X)^2(x) \right)$$

where
$$(f * g)(x) = \int f(x - y)g(y)dy$$

Exercice 03:

Let $(X_1, ..., X_n)$ be a random sample from a distribution on \mathbb{R} with Lebesgue density $2^{-1}(1 - \theta^2)e^{\theta x - |x|}$, where $\theta \in (-1, 1)$ is unknown.

- 1. Show The cumulative distribution function?
- 2. Show that the median of the distribution of X_1 is given by $m(\theta) = (1 \theta)^{-1} \log(1 + \theta)$ when $\theta > 0$ and $m(\theta) = -m(-\theta)$ when $\theta < 0$.
- 3. Show that the mean of the distribution of X_1 is $\mu(\theta) = 2\theta/(1-\theta^2)$.

Exercice 04:

- 1. If $K(t) = \frac{15}{16}(1-x^2)^2$; $|x| \le 1$ Find $\int K^{(2)}(x)dx$ and $\int x^2K(x)dx$? if f''(x) = -1 find h^* ?
- 2. The efficiency of a kernel K(.) is defined as:

$$eff(K) = \frac{3}{5\sqrt{5}} \left(\int t^2 K(t) dt \right)^{(-1/2)} \left(\int K(t)^2 dt \right)^{(-1)}$$

Determine the efficiencies for the following kernels:

- **a.** Biweight: $K(t) = \frac{15}{16}(1-t^2)^2$; $|t| \le 1$.
- **b.** Triangular: $K(t) = (1 |t|); |t| \le 1.$
- c. Normal: $K(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$; $t \in \mathbb{R}$
- **d.** Rectangular: $K(t) = \frac{1}{2}$; $|t| \le 1$.

Exercice 05:

Which of the following serve as kernel functions for a density estimator? Prove your assertion one way or the other.

a.
$$K(x) = \mathbf{1}_{(-1 < x < l)/2},$$

b.
$$K(x) = \mathbf{1}_{(0 < x < 1)},$$

c. K(x) = 1/x,

d.
$$K(x) = \frac{3}{2}(2x+1)(1-2x)\mathbf{l}_{-\frac{1}{2} < x < \frac{1}{2}}$$

e. $K(x) = 0.75(1 - x^2)\mathbf{l}_{(-1 < x < 1)}$,

Exercice 06:

A natural estimate of the derivative of a density f'(x) is the derivative of a kernel estimate of the density; that is,

$$\hat{f}'(x) = \frac{1}{nh^2} \sum_{i=1}^{n} K'\left(\frac{x - X_i}{h}\right)$$

(assuming differentiability of K). Calculations similar to those leading to h^* of \hat{f} imply that the optimal bandwidth is $O(n^{-1/7})$, with optimal AMISE of order $O(n^{-1/7})$. Compare "reasonable" choices of h for estimation of f'. Are the density derivative estimates less precisely determined than the density estimates, as the asymptotics would suggest?

Exercice 06:Calculate the exact values of $\int K^2(u)du$ and $\int u^2K(u)du$ for the Gaussian, Epanechnikov and Quartic kernels.

Exercice 07: Multivariate Density Estimation

Kernel density estimation can be easily generalized from univariate to multivariate data, in theory if not always in practice The general form of the estimator is

$$\hat{f}(x) = \frac{1}{n|H|} \sum_{i=1}^{n} K_d \left(\frac{x - X_i}{H^{-1}} \right)$$

where |H| is the absolute value of the determinant of the matrix H. Here $K_d : \mathbb{R} \longrightarrow \mathbb{R}$ is the kernel function, often taken to be a d-variate probability density function, and if is a nonsingular $d \times d$ bandwidth matrix A popular technique for generating K_d from a univariate kernel K is by using a product kernel,

$$K_d(u) = \prod_{i=1}^n K(u_i).$$

using multivariate Taylor Series expansions Assume that all second partial derivatives of f are piecewise continuous and square integrable, and that the kernel K_d satisfies the usually conditions

Define h > 0 and the $d \times d$ matrix A to satisfy H = hA, where A has unit determinant Then, if $h \longrightarrow 0$ and $nh_d \longrightarrow \infty$ as $n \longrightarrow \infty$, show that the AMISE has the form

where $\nabla^2 f(u)$ is the $d \times d$ Hessian matrix,

$$\nabla^2 f(u) = \frac{\partial f(u)}{\partial u_i \partial u_j}$$

The optimal H is not generally available in closed form, but AMISE shows that h should be taken to be $O(n^{-1/(d+4)})$,