Aufgabe 3

Seien $\Sigma = \{a,b,c\}$ und $L = \{wc\hat{w} \mid w \in \{a,b\}*\}$. Dabei ist \hat{w} das zu w gespiegelte Wort.

(a) Zeigen Sie, dass *L* nicht regulär ist.

Exkurs: Pumping-Lemma für Reguläre Sprachen

Es sei L eine reguläre Sprache. Dann gibt es eine Zahl j, sodass für alle Wörter $\omega \in L$ mit $|\omega| \geq j$ (jedes Wort ω in L mit Mindestlänge j) jeweils eine Zerlegung $\omega = uvw$ existiert, sodass die folgenden Eigenschaften erfüllt sind:

- (i) $|v| \ge 1$ (Das Wort v ist nicht leer.)
- (ii) $|uv| \le j$ (Die beiden Wörter u und v haben zusammen höchstens die Länge j.)
- (iii) Für alle $i=0,1,2,\ldots$ gilt $uv^iw\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iw in der Sprache L)

Die kleinste Zahl j, die diese Eigenschaften erfüllt, wird Pumping-Zahl der Sprache L genannt.

L ist regulär. Dann gilt für L das Pumping-Lemma. Sei j die Zahl aus dem Pumping-Lemma. Dann muss sich das Wort $a^jbcba^j\in L$ aufpumpen lassen (da $|a^jbcba^j|\geq j$). $a^jbcba^j=uvw$ ist eine passende Zerlegung laut Lemma. Da |uv|< j, ist $u=a^x, v=a^y, w=a^zbcba^j$, wobei y>0 und x+y+z=j. Aber dann $uv^0w=a^{x+z}bcba^j\notin L$, da x+z< j. Widerspruch. a

 $^{\it a} {\tt https://userpages.uni-koblenz.de/~sofronie/gti-ss-2015/slides/endliche-automaten6.pdf}$

(b) Zeigen Sie, dass *L* kontextfrei ist, indem Sie eine geeignete Grammatik angeben und anschließend begründen, dass diese die Sprache *L* erzeugt.

```
P = \{ \\ S \rightarrow aSa \mid aCa \mid bSb \mid bCb \\ C \rightarrow c \\ \} \\ S \vdash aSa \vdash abCba \vdash abcba \\ S \vdash bSb \vdash bbSbb \vdash bbaSabb \vdash bbacabb \\ \}
```