

Esquema-formulario

GEOMETRÍA

CONTENIDO:

- Triángulos
- Congruencia de triángulos
- Cuadriláteros
- Circunferencia
- Proporcionalidad y semejanza
- de triángulos
- Relaciones metricas
- Areas triángulares
- Áreas cuadrangulares

- · Area circular
- Geometria del espacio
- Poliedros regulares
- Prismas y Cilindro
- Pirámide Cono
- Esfera y teorema de Pappus
 Guldin
- Poligonos y Poliedros regulares

TRIÁNGULOS

Se cumple:

Se cumple:

Se cumple:

Se cumple:

1.

$$x = 90^{\circ} + \frac{A}{2}$$

2.

$$x = \frac{A}{2}$$

5.

CONGRUENCIA DE TRIÁNGULOS

T. de la Bisectriz

T. de los Puntos Medios

T. de la Mediatriz

Mediana relativa a la hipotenusa

Si BM es la mediana relativa a la hipotenusa \implies BM = AM = MC

▲ Aproximados

△Pitagóricos

5k

13k

CUADRILÁTEROS

1. ABCD es un paralelogramo

2. Si ABCD es un paralelogramo

3. Si ABCD es un paralelogramo

4. Si ABCD es un paralelogramo

5. Si ABCD es un cuadrado

6. Si ABCD es un cuadrado

* Si □ ABCD es un romboide

$$a + d = b + c$$

$$x = \frac{b-a}{2}$$

△ABCD trapecio isósceles

CIRCUNFERENCIA

Ángulos asociados a la circunferencia

(1)

(2)

(4)

$$x = \frac{\alpha + \theta}{2}$$

$$\alpha + \theta = 180^{\circ}$$

$$x = \frac{\alpha - \theta}{2}$$

Cuadrilátero inscrito

Cuadrilátero inscriptible

Teorema de Poncelet

Teorema de Pitot

$$a + c = b + d$$

PROPORCIONALIDAD Y SEMEJANZA DE TRIÁNGULOS

$$\frac{a}{b} = \frac{x}{y}$$

$$\frac{a}{b} = \frac{x}{y}$$

(3)

$$x^2 = ab$$

$$x = \frac{ab}{a+b}$$

En todo trapecio (M y N puntos de tangencia) (5)

$$\boxed{\frac{2}{x} = \frac{1}{a} + \frac{1}{b}}$$

RELACIONES MÉTRICAS

(1)

$$a^2 = c.m$$

$$h^2 = m \cdot n$$

$$a^2 + b^2 = c^2$$

$$b^2 = c_n$$

 $a \cdot b = m \cdot n$

 $a\cdot b=m\cdot n$

(2)

$$\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{R}} + \frac{1}{\sqrt{r}}$$

(3)

$$x^2 = a \cdot b$$

$$\sqrt[3]{a^2} + \sqrt[3]{b^2} = \sqrt[3]{c^2}$$

$$h^3 = abc$$

ÁREAS TRIANGULARES

$$A_{\Delta ABC} = pr$$

$$p = \frac{a+b+c}{2}$$

$$A_{\Delta ABC} = \frac{abc}{4R}$$

$$\frac{S}{T} = \frac{ab}{mn}$$

$$S = \frac{A_{\Delta ABC}}{4}$$

ÁREAS CUADRANGULARES

0

A = p.r

p: semiperimetro

0

 $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$

$$p = \frac{a+b+c+d}{2}$$

0

0

En todo trapecio:

ÁREA CIRCULAR

· Circulo:

 $S_{\odot} = \pi R^2$

$$S_{\odot} = \frac{\pi d^2}{4}$$

Sector Circular

 $S = \frac{\alpha \pi R^2}{360}$

Corona Circular

 $S_{\bigodot} = \pi(R^2 - r^2)$

$$S_{\odot} = \frac{\pi(\overline{AB})^2}{4}$$

GEOMETRÍA DEL ESPACIO Y POLIEDROS REGULARES

Teorema de Euler

C + V = A + 2

Donde:

C: N.º caras V: N.º vértices A: N.º aristas

Angulo diedro

Notación: diedro AB (d-AB)

Elementos:

* Arista: AB *Caras: P y Q

* ∡ Plano: ∡MON

 $m(diedro \overline{AB}) = m \angle MON = \alpha$

Diedro recto o planos perpendiculares

Si:
$$\begin{cases} \frac{\sigma P}{MN} \perp AB \Rightarrow \overline{MN} \perp \sigma P \\ \overline{MN} \subset \sigma Q \end{cases}$$

Tetraedro regular

C = 4; V = 4; A = 6

$$A_T = a^2 \sqrt{3}$$
; $V = \frac{a^3}{12} \sqrt{2}$
 $h = \frac{a\sqrt{6}}{3}$

Hexaedro regular

$$C = 6$$
; $V = 8$; $A = 12$
 $A_T = 6 a^2$; $V = a^3$
 $d = a\sqrt{3}$

Octaedro regular

$$A_T = 2a^2\sqrt{3}$$
; $V = \frac{a^3\sqrt{2}}{3}$

$$D = a\sqrt{2}$$

PRISMA Y CILINDRO

Cílindro recto

Fórmulas

1.
$$V = \pi r^2 g$$

2.
$$A_L = 2\pi rg$$

3.
$$A_T = 2\pi r(g+r)$$

Prisma recto

Fórmulas

2.
$$A_L = \begin{pmatrix} Perimetro de \\ la base \end{pmatrix}.h$$

3.
$$A_T = A_L + 2B$$

PIRÁMIDE - CONO

Pirámide regular

Fórmulas

1.
$$V = \frac{Bh}{3}$$

2.
$$A_L = \begin{pmatrix} semiperimetro \\ de la base \end{pmatrix}$$
. Ap

3.
$$A_T = A_L + B Ap^2 = h^2 + ap^2$$

Cono recto

Fórmulas

1.
$$V = \frac{\pi r^2 h}{3}$$

2.
$$A_L = \pi rg$$

3.
$$A_T = \pi r(g+r)$$

$$g^2 = h^2 + r^2$$

ESFERAS Y TEOREMA DE PAPPUS GULDIN

Esfera

Fórmulas:

1.
$$V = \frac{4}{3}\pi R^3$$

2.
$$A_T = 4\pi R^2$$

POLÍGONOS Y POLIEDROS REGULARES

Fórmulas

$$Sm_{4e} = 360^{\circ}$$

N°_{Diagonales}: N_D

$$N_D^{\circ} = \frac{n(n-3)}{2}$$

Polígonos regulares

n: número de lados

Fórmulas

 α_c : medida del ángulo central

$$\alpha_{c} = \frac{360^{\circ}}{n}$$

$$m_{1 \leqslant_j} = \frac{180^{\circ}(n-2)}{n}$$

$$m_{1 \ll_{\underline{e}}} = \frac{360^{\circ}}{n}$$

En todo polígono equiángulo:

Fórmulas

$$\theta = 180^{\circ} \frac{(n-2)}{n}$$

$$\alpha = \frac{360^{\circ}}{n}$$

VISITE NUESTRA PÁGINA EN FACEBOOK!!

https://web.facebook.com/Preparandote-Para-La-U-1785561948332382

Gracias por seguirnos; seguiremos trabajando para Usted.