High Throughput Sequencing Revisited

Josh Granek

Amplicon Sequencing

PCR amplify and sequence a marker gene

	Marker Gene
Bacteria	16s rRNA
Fungi	18s or ITS rRNA
Archaea	16s rRNA
Protozoa	18s rRNA
Viruses	?????

Metagenomics

	What	Information	Analogy	Target Size	Cost	Discovery?
Amplicon	Marker Gene	Who is Present	Name	100bp - 1kb	Low	+/-
Shotgun Metagenome	Genomes	What Genes are Present	CV	100kb - 100Mb	High	++
Shotgun Metatranscriptome	All RNA	What Genes are Expressed	Twitter Feed	100kb - 100Mb	High	++

HTS Applications

- DNA-Seq
- RNA-Seq
- Amplicon Sequencing
- Many More
 - ChIP-Seq
 - Ribo-Seq
 - Hi-C
 - MethylC-Seq

DNA-Seq

- De Novo Genome Sequencing
- Genotyping
 - GWAS
 - Genetic risk factors
- Mutation identification

RNA-Seq

- Transcriptome: "Which genes are expressed in this sample?"
 - Differential Expression
 - Genome Annotation
- SNPs
- Gene Fusions

RNA-Seq

- Bulk RNA-Seq
- Single-Cell RNA-Seq (scRNA-Seq)

Amplicon Sequencing

- CRISPER Barcode Seq
- 16s rRNA

*-Seq Comparison

Method	Molecule	Target	Target Size (in humans)
DNA-Seq	DNA	Whole Genome	2 x 10 ⁹ bp
RNA-Seq	RNA	Transcriptome	<3 x 10 ⁷ bp
Amplicon	DNA?	Target Region	10 - 10,000bp

HTS Applications

- DNA-Seq
- RNA-Seq
- Amplicon Sequencing
- Many More
 - ChIP-Seq
 - Ribo-Seq
 - Hi-C
 - MethylC-Seq

DNA Sequencing Technologies (Abridged)

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

DNA Sequencing Technologies (Abridged)

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Comparing Technologies

Method	Read length	Accu racy	Reads per run	Max Output	Cost (\$/Mb)	Pros	Cons
Sanger	400-900 bp	99.9%	l	900 bp	\$2400	Longer reads.	Expensive. Low Output
Illumina	600 bp (300bp PE)	99.9%	20×10 ⁹	6000 Gb	\$ 0.01	High yield cost/base	Equipment expense. Short reads
PacBio	>10kb ave. >40kb max	99%	5×10 ⁵	I0 Gb	\$0.08	Very long reads	Homopolymer errors. Moderate Output. Equipment expense.
Nanopore	>100 kb N50 >1Mb Max	92%	l×I06	5 Gb	\$0.10	Very long reads Portable Cheap Equipment	Homopolymer errors. Moderate Output.

Single Molecule Technologies

Cluster generation – hybridization and amplification

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Pacific Biosciences

1st Generation	2nd Generation	3rd Generation
Chemical (Maxim-Gilbert)	Pyrosequencing (454)	Single molecule real time (PacBio)
Chain Termination (Sanger)	Chain Termination (Illumina)	Nanopore sequencing (Oxford Nanopore)
Pyrosequencing	Sequencing by ligation (SOLiD sequencing)	
	Ion semiconductor (Ion Torrent)	

Oxford Nanopore

Sequencers

Why Long Reads?

- Structural Variation
 - Large Insertions or Deletions
 - Duplications
 - Translocations
- De Novo Genome Assembly
- Phasing
- Large Amplicons

Short Reads

e of the U stablish J Union, est nited Stat to form a rder to fo e perfect ion, estab eople of t the Peopl

"Genome" Reference

Reference Based Mapping

We the People of the United States, in Order to form a more perfect Union, establish Justice, insur

e of the U stablish J Union, est nited Stat to form a rder to fo e perfect ion, estab eople of t the Peopl

Reference Based Mapping

We the People of the United States, in Order to form a more perfect Union, establish Justice, insur

```
the Peopl
eople of t
e of the U
nited Stat

rder to fo
to form a
e perfect
Union, est
ion, estab
stablish J
```

De Novo Assembly

Overlapping Random Fragments

```
rious disg
Age. "You
rinking Ag
uises of A
the portra
ugh the po
of every D
nking Age.
r various
, under va
```

Assemble Contigs

Age. "You rinking Ag nking Age.

rious disg r various , under va

the portra ugh the po

uises of A

of every D

Assemble Contigs

rinking Age. "You

, under various disg

ugh the portra

uises of A

of every D

Assemble Contigs

rinking Age. "You

, under various disg

ugh the portra

uises of A

of every D

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

rious disg Age."You rinking Ag uises of A the portra ugh the po of every D nking Age. r various , under va Age."Yo rough the rinking Ag ed, under ugh the po ry Drinkin sguises of u are a li "You are , under va

```
rough the
ugh the po
ugh the po
the portra
```

```
ed, under
, under va
, under va
r various
rious disg
sguises of
uises of A
```

```
of every D
ry Drinkin
rinking Ag
rinking Ag
nking Age.
Age. "You
Age. "Yo
"You are
u are a li
```

rough the portra

ed, under various disguises of A

of every Drinking Age. "You are a li

rough the portra

ed, under various disguises of A

of every Drinking Age. "You are a li

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

Longer Reads

various disguises of Drinking Age. "You every Drinking Age. sguises of Art, thro ough the portraits o through the portrai raits of every Drink ery Drinking Age." er various disguises, under various disg

Longer Reads

```
, under various disg
er various disguises
various disguises of
sguises of Art, thro
through the portrai
ough the portraits o
raits of every Drink
every Drinking Age.
ery Drinking Age.
Drinking Age. "You
```

Longer Reads

, under various disguises of Art, through the portraits of every Drinking Age. "You

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

Fragmentation

```
"You
Age.
Art,
Drinking
а
are
disguises
ed,
every
little
of
of
portraits
the
through
under
various
```

Problem Sequences

- Repeats
 - Transposons
 - Centromeres
- Homologs
- Duplications

De novo "Reference"

ed, under various disguises of Art, through the portraits of every Drinking Age. "You are a little

A Tale of Two Cities

Library Preparation

Amplicon Library Prep

Purified DNA

PCR Amplification

DNA-Seq Library Prep

Amplicon-Seq

DNA-Seq

- I. Purify DNA
- 2. PCR Amplify with Adapters

- I. Purify DNA
- 2. Fragment
- 3. Size Select
- 4. Adapter Ligation

Purified DNA

Fragmentation

Size Selection

Adapter Ligation

RNA-Seq Library Prep

DNA-Seq

RNA-Seq

- I. Purify DNA
- 2. Fragment
- 3. Size Select
- 4. Adapter Ligation

- I. Purify RNA
- 2. Fragment
- 3. Size Select
- 4. Make DNA From RNA
- 5. Adapter Ligation

Sequencing Library

Amplicon Library

Shotgun Library

