Administração de Redes 2023/24

Virtual Local Area Networks (VLAN)

Introdução

- Frequentemente é necessário dividir uma rede em "ilhas" sem ligação directa entre si (domínios de difusão separados)
 - Organização da rede, desempenho, segurança, privacidade, etc.
- · Tradicionalmente, a divisão lógica correspondia à divisão física
 - E.g., com ethernet cada domínio de difusão corresponde a um ou mais comutadores ligados entre si → LAN indepentende
 - Comunicação entre as diferentes LAN ("ilhas") através de routers
- Problema: muitas vezes a divisão lógica que se pretende não se mapeia bem na organização física do espaço

Organização lógica desejada

Organização física

Não se mapeia na organização lógica desejada

Solução indesejável

- Multiplicação do hardware necessário (comutadores, cablagem)
- A falta de uma porta no comutador de uma LAN obriga à compra de outro, mesmo que sobrem portas nos comutadores das outras LAN

LAN Virtuais (VLAN)

- Muitos comutadores permitem configurar conjuntos de portas como se fossem LAN fisicamente independentes
 - LAN virtuais VLAN
- Cada VLAN é um domínio de difusão
 - Tramas broadcast propagadas apenas às portas pertencentes à VLAN
- Não há comunicação directa entre VLAN diferentes
 - Cada VLAN vai corresponder a uma sub-rede diferente
 - Tal como no caso de várias LAN fisicamente independentes, a comunicação entre diferentes VLAN faz-se através de routers
 - Ou dos chamados comutadores de camada 3, que são basicamente 2-em-1 de comutador e router
- O uso de VLAN permite tornar a organização lógica da rede independente da configuração física dos equipamentos

Uso de VLAN

Atribuição de VLAN a portas físicas

- A atribuição de VLAN pode ser feita de diferentes formas
 - Por configuração directa VLAN estáticas
 - De forma automática, segundo determinado critério VLAN dinâmicas
- · Alguns critérios para atribuição de VLAN a portas físicas
 - Endereço MAC do terminal
 - Autenticação 802.1x
 - Endereço IP do terminal
 - Critério de camada 3 (camada de rede)
 - A comutação continua a ser feita na camada 2 (ligação de dados), o endereço IP é usado apenas inicialmente para atribuir a VLAN à porta física

Atribuição de VLAN a portas físicas

- Alguns comutadores permitem várias VLAN na mesma porta física, para pacotes de protocolos diferentes
 - Uso de portas (TCP, UDP) ou até informação da camada de aplicação!
 - Permite isolar e priorizar determinados tipos de tráfego (e.g., VoIP)
 - Permite fazer distribuição de carga
 - Violação da separação por camadas... 🕾

Interligação de comutadores com VLAN

- Na interligação entre dois comutadores com várias VLAN têm que circular tramas de todas essas VLAN
- Não se podem misturar para não perder o isolamento entre VLAN diferentes
- Uma solução seria usar um cabo diferente para cada VLAN

- Esta solução é ineficiente
 - Impraticável com muitas VLAN

Interligação de comutadores com VLAN

- Os comutadores que suportam VLAN têm dois tipos de configuração para cada porta
 - Modo acesso pertence a uma única VLAN
 - Modo trunk não pertence a uma VLAN específica, podendo transportar tramas de todas as VLAN
- A interligação entre comutadores faz-se usando portas trunk

- Para manter o isolamento entre VLAN, cada trama na ligação trunk tem que identificar a que VLAN pertence
 - Uso de uma etiqueta (VLAN tag)
- · Tramas ethernet não têm campo para a etiqueta ⊗
 - Portas trunk usam um encapsulamento diferente 802.1Q

Encapsulamento 802.1Q

Trama enviada numa porta em modo acesso

	Preamble	SFD	Dst Address	Src Address	Туре	Data 461500	CRC
L	/	I	U	O	2	401300	4

Trama enviada numa porta em modo trunk

- O tipo indica que é uma trama 802.1Q
- Prio e DEI controlam prioridade e possibilidade de descarte da trama
- VLAN ID de 12 bits permite 4096 VLAN diferentes

VLAN Nativa

- · Numa interface em modo trunk, a VLAN nativa é aquela
 - Cujas tramas são enviadas com encapsulamento ethernet normal
 - À qual são atribuídas tramas recebidas com encapsulamento ethernet normal
- Não confundir com VLAN-padrão (default), que é a VLAN atribuída a interfaces em modo acesso sem configuração explícita!
- Sem uma VLAN nativa, tramas recebidas com encapsulamento ethernet normal seriam descartadas
- Nos comutadores Cisco IOS, existe sempre uma VLAN nativa nas ligações trunk (embora possa ser filtrada)
- A VLAN nativa pode ser diferente em portas trunk diferentes
- Terminologia usada por outros fabricantes:
 - PVID (Port Vlan ID, aplicável apenas ao ingresso)
 - Untagged VLAN (aplicável apenas ao egresso)

Exemplo de criação de VLAN:

```
vtp mode transparent
vlan 5
  name Marketing
```

- A primeira linha indica que a configuração de VLAN é local
 - VTP é um protocolo para configuração centralizada de VLAN
 - O modo transparente é para não participar nesse protocolo
- A atribuição de nome à VLAN é opcional
 - Sem ela, o sistema atribuiria automaticamente o nome VLAN0005
- É possível criar várias VLAN de uma vez: vlan 5,7-9,12
 - Ficam com o nome automático
- A VLAN 1 (VLAN default) já vem preconfigurada
 - Usada por todas as portas a que não se atribua explicitamente outra

Configuração de f1/0 como porta de acesso na VLAN 5:

```
interface FastEthernet 1/0
switchport mode access
switchport access vlan 5
```

Configuração de f1/1 em modo trunk com encapsulamento 802.1Q:

```
interface FastEthernet 1/1
  switchport trunk encapsulation dot1q
  switchport mode trunk
```

Limitar as VLAN que circulam numa porta em modo trunk*:

```
switchport trunk allowed vlan 1,5,1002-1005
```

^{*} As VLAN 1 e 1002-1005 têm sempre que ser permitidas

Configuração da VLAN nativa numa porta em modo trunk :

```
interface FastEthernet 1/1
switchport trunk native vlan 5
switchport mode trunk
```

Verificação das VLAN configuradas

SW1#show vlan brief

VLAN	Name	Status	Ports
1	default	active	Fa1/2, Fa1/3, Fa1/4, Fa1/5 Fa1/6, Fa1/7, Fa1/8, Fa1/9 Fa1/10, Fa1/11, Fa1/12, Fa1/13 Fa1/14, Fa1/15
5	Marketing	active	Fa1/0
1002	fddi-default	act/unsup	
1003	token-ring-default	act/unsup	
1004	fddinet-default	act/unsup	
1005	trnet-default	act/unsup	

Verificação das interfaces trunk

SW1#show interfaces trunk

Port Mode Encapsulation Status Native vlan Fa1/1 802.1q trunking on Port Vlans allowed on trunk Fa1/1 1-4094 Vlans allowed and active in management domain Port Fa1/1 1,5 Port Vlans in spanning tree forwarding state and not pruned Fa1/1 1,5

Verificação do estado das interfaces

SW1#show interfaces status

Port	Name	Status	Vlan	Duplex :	Speed T	ype
Fa1/0		connected	5	a-full		10/100BaseTX
Fa1/1		connected	trunk	a-full	a-100	10/100BaseTX
Fa1/2		connected	1	a-full	a-100	10/100BaseTX
Fa1/3		connected	1	a-full	a-100	10/100BaseTX
Fa1/4		notconnect	1	auto	auto	10/100BaseTX
Fa1/5		notconnect	1	auto	auto	10/100BaseTX
Fa1/6		notconnect	1	auto	auto	10/100BaseTX
Fa1/7		notconnect	1	auto	auto	10/100BaseTX
Fa1/8		notconnect	1	auto	auto	10/100BaseTX
Fa1/9		notconnect	1	auto	auto	10/100BaseTX
Fa1/10		notconnect	1	auto	auto	10/100BaseTX
Fa1/11		notconnect	1	auto	auto	10/100BaseTX
Fa1/12		notconnect	1	auto	auto	10/100BaseTX
Fa1/13		notconnect	1	auto	auto	10/100BaseTX
Fa1/14		notconnect	1	auto	auto	10/100BaseTX
Fa1/15		notconnect	1	auto	auto	10/100BaseTX

- Configuração do endereço IP do router numa dada VLAN
 - Semelhante à de qualquer outra interface

```
interface vlan 5
ip address 192.168.1.1 255.255.25.0
no shutdown
```

Configuração de VLAN em Linux

Para funcionar como terminal ou router (sem comutação)

- Interfaces em modo acesso configuram-se normalmente
- Interfaces em modo trunk :
 - 1. Adicionar a(s) VLAN desejada(s)¹
 - # vconfig add eth0 5
 - Ao criar a VLAN aparece uma nova interface (eth0.5, neste caso)
 - 2. Configurar a(s) interface(s) lógica(s)

```
ifconfig eth0.5 192.168.5.2 netmask 255.255.255.0 up
```

3. O endereço na VLAN nativa configura-se na interface-mãe ifconfig eth0 192.168.1.2 netmask 255.255.255.0 up

¹ Em vez do comando vconfig também pode usar-se o comando ip: ip link add link *eth0* name *eth0.5* type vlan id 5

Configuração de VLAN em Linux

- Pode configurar de forma permanente interfaces VLAN
 - E.g., /etc/sysconfig/network-scripts/ifcfg-eth0.5
 - Ficheiro deve conter a linha
 VLAN=yes
- Verificar as VLAN configuradas: