UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS

Programador Universitario en Informática <u>ASIGNATURA: ELEMENTOS DE ÁLGEBRA</u> <u>GUÍA DE TRABAJOS PRÁCTICOS Nº 1 - 2020</u>

TEMAS: RELACIONES - FUNCIONES - LEYES DE COMPOSICION INTERNA

Objetivos

Que los alumnos logren:

- Interpretar situaciones problemáticas.
- Establecer relaciones y determinar sus propiedades.
- Reconocer estructuras de equivalencia y orden.
- Identificar tipos de funciones.
- Proponer operaciones binarias y trabajar con las estructuras algebraicas básicas.

I.- CONJUNTOS - RELACIONES:

- 1. Sean $U=\{0,1,2,3,4,5\}$, $A=\{2,4,5\}$, $B=\{x \in U/x^2 -2x = 0\}$, $C=\{x \in U/x \text{ es primo}\}$
 - i) Expresar por extensión los conjuntos B y C
 - ii) Efectuar las siguientes operaciones:

 $A \cup B, A \cap (B \cup C), C - A, C \cap \overline{A}, C \cup \overline{A}, \overline{(A \cup C)}, \overline{A} \cap \overline{C}, A \cap \overline{B}$

2. Interpretar gráficamente y resolver el siguiente problema:

Se llevo a cabo una investigación con 1000 personas para determinar qué medio utilizan para conocer las noticias del día, se encontró que 400 personas escuchan las noticias regularmente por **TV**, 300 escuchan las noticias por **Radio** y 275 se enteran de las noticias por otros medios.

- a) ¿Cuántas personas se enteran de las noticias solo por TV?
- b) ¿Cuántas personas se enteran de las noticias solo por Radio?
- c) ¿Cuántas personas no escuchan ni ven las noticias?

Observación: Se conoce que si A y B son conjuntos finitos, entonces Card($A \cup B$) = card A + cardB – card($A \cap B$)

- 3. Al investigar un grupo de 480 estudiantes sobre sus intereses de estudios superiores, se obtuvo la siguiente información:
 - Todos los que querían estudiar LSI también querían estudiar Ing. Electrónica.
 - Ninguno quería estudiar LSI e Ing. Civil
 - 10 alumnos preferirán estudiar otras carreras
 - 60 querían Ing. Civil en Ing. Electrónica
 - 440 querían estudiar Ing. Electrónica
 - 180 quieren estudiar LSI
 - a) Confeccionar el diagrama de Venn que represente la situación planteada
 - b) ¿Cuántos desean estudiar solamente Ing. Civil?

- 4. Representar gráficamente en el plano los productos cartesianos **A x B**
 - i) $A = \{-\frac{3}{2}, -1, 1, 2\}$ $B = \{--2, 1, \frac{5}{2}\}$
 - ii) $A = \{x \mid x \in \mathbb{Z} \land -3 \le x \le 1\}$ $B = \{x \in \mathbb{N} \mid x < 6\}$
 - iii) $A = \{-4, -3, -2, -1, 0, 1\}$ B = (-5, 3]
 - iv) A = [-5, 4] $B = \{x \in N / x \le 5\}$
 - v) A = (-2, 2) B = [-2, 1)
- 5. Sea $M = \{a, b, c, d\}$. Dibujar el grafo de alguna relación definida en M que sea:
 - i) Reflexiva, simétrica y no transitiva.
 - ii) Reflexiva, transitiva y no simétrica.
 - iii) Reflexiva, antisimétrica y no transitiva.
 - iv) Antisimétrica, no reflexiva y transitiva.
- 6. Escribe los pares de ${\bf R}^{{ ext{-}}{1}}$, siendo ${\bf R}$ la relación definida mediante el siguiente grafo

7. En cada uno de los siguientes grafos agregar los arcos imprescindibles para obtener una **relación de equivalencia** en $A = \{1, 2, 3, 4\}$, e indicar las **clases**.

- 8. Determine, en cada caso, si la relación indicada es de equivalencia en A={1,2,3,4,5}, en caso afirmativo halle las clases de equivalencia
 - a) R={ (1,1);(2,2);(3,3);(4,4);(5,5);(1,3);(3,1);(2,4);(4,2) }
 - b) $R=\{(x,y)/2 \text{ divide a } x-y\}$
- 9. En A={ 0, 1, 2, 3, 4 } se define R mediante $(x,y) \in R \Leftrightarrow x = y \lor x + y = 4$
 - i) Definir R por extensión.
 - ii) Realizar el grafo correspondiente.
 - iii) Determinar si la relación R es de equivalencia.
 - iv) En caso de ser de equivalencia, determinar las clases de equivalencia y el conjunto cociente.

- 10. En $A = \{-2, -1, 0, 1, 2, 3, 4, 5\}$ se define la relación R de la siguiente manera: $(a,b) \in R \Leftrightarrow 3 \mid b-a$
 - i) Definir **R** por **extensión**.
 - ii) Realizar el grafo correspondiente.
 - iii) Decidir si la relación R es de equivalencia.
 - iv) En caso de ser de equivalencia, determinar sus clases y el conjunto cociente
- 11. Definir en $A = \{-2, -1, 0, 1, 2, 3, 4\}$ una partición que tenga 3 subconjuntos.
 - i) Proponer una relación de equivalencia, cuyas clases de equivalencia sean los subconjuntos elegidos anteriormente
 - ii) Representar gráficamente mediante grafos
- **12.** En los conjuntos A1={3,9,15,18,90} y A2={2,3,5,8,12,15,16,30} se define la relación " **a R b si v sólo si a es divisor de b**".
 - a. Para ambos dibujar el grafo y analizar si es relación de orden.
 - **b.** En caso afirmativo construir el diagrama de Hasse orientado y no orientado.
 - **c.** Determinar ,si existen ,los elementos mínimo ,máximo ,minimales y maximales.
- 13. En el conjunto $A = \{1, 2, 3, 4, 5\}$ se define la relación: $a R b \Leftrightarrow a + b \leq 6$
 - i) Determinar las **propiedades** de dicha relación
 - ii) Si es de orden, indicar tipo
 - iii) Construir el diagrama de Hasse.
 - iv) Hallar, si existen, minimales, mínimo, maximales y máximo.
- Dado el conjunto $A = \{1, 2, 3, 4, 5\}$, definir en él una relación de **orden amplio** que tenga a " 3" como elemento **máximo** y a " 1" como elemento **mínimo**
- Dado el conjunto A ={1, 2, 3, 4, 5, 6, 7, 8}, definir en él una relación de **orden estricto parcial** que tenga a "5" como elemento **mínimo** y a "7 y 8" como elementos **máximales**.
- **16.** Dado el **diagrama de Hasse**:

iii)

- a) Definir cada relación por extensión.
- b) Analizar si el orden es total o parcial.
- c) Hallar, si existen, el elemento **mínimo** y el **máximo**, **minimales** y **maximales**.

II.- FUNCIONES

17. Dados
$$A = \{1, 2, 3\}$$
; $B = \{a, b, c\}$; $C = \{4, 5, 6, 8\}$, y las relaciones: $R_1 = \{(4,1), (5,1), (6,2), (8,3)\}$ $R_2 = \{(4,1), (5,2), (6,3)\}$ $R_4 = \{(1,4), (2,6), (3,8),\}$

- i) Reconocer si las siguientes relaciones son o no funciones. Indicar dominio y recorrido en caso afirmativo
- ii) En caso afirmativo, decidir si son inyectivas, sobreyectivas o biyectivas.
- iii) Escribir la relación inversa. ¿Es función? Justificar la respuesta.
- **18.** Sean las funciones:

$$\begin{array}{ccc} f: R \to R & g: R \to R \\ x \mapsto 3x^2 & x \mapsto 4x-3 \end{array}$$

- i) Indicar dominio y recorrido
- ii) Analice las propiedades que poseen f y g
- iii) Escribir la relación inversa. ¿Es función? Justificar
- iii) Calcular:

$$\begin{array}{lll} f(0); & f(2); & f(x+1); \\ g(-3); & g(-2); & fog(0) \\ gof(x) & gof(0) & gof(5) \end{array}$$

iii) Hallar $x \in \Re$ tal que:

$$2f(x) - 3 = 4$$
 ; $g(x) = f(x)$ $g(x) + 2f(x) = -6$; $2g(x) - 10 = 0$

19. Se dice que dos conjuntos tienen el mismo cardinal, si entre ellos es posible definir una función biyectiva. Comprobar que los siguientes conjuntos tienen el mismo cardinal.

a)
$$A = \{-2, -1, 3, 6, 10\}$$
 $B = \{u, v, x, y, z\}$
b) $N = \{$ números naturales $\}$ $P = \{$ números naturales pares $\}$

III.-LEY DE COMPOSICION INTERNA-SEMIGRUPO Y GRUPO

- 20. Determinar si * es una operación binaria. En caso afirmativo, averiguar si es semigrupo.
 - i) En N, a * b = a b
 - ii) En N, $a * b = a^b$
 - iii) En $R-\{0\}$, a * b = a : b
 - iv) En **Z**, a * b = a + b + 5
- 21. Las siguientes tablas definen leyes de composición interna en los conjuntos dados:
 - i) Sea $A = \{u, v, w\}$ y "*" una operación definida en él, se pide :

*	u	V	W
u	u	V	V
V	W	u	W
W	V	W	u

- a) Analizar si "*" es LCI en A
- b) Indicar, si existe, su elemento neutro
- c) Hallar, si existe, el inverso de cada elemento
- d) Determinar si "*" es conmutativa
- ii) Sea A = { a, b, c,d} y "*" una operación definida en él, se pide :

*	a	b	c	d
a	c	a	b	a
b	a	b	c	d
c	d	С	a	b
d	С	d	b	a

- a) Analizar si "*" es LCI en A
- b) Indicar, si existe, su elemento neutro
- c) Hallar, si existe, el inverso de cada elemento
- d) Determinar si "*" es conmutativa
- En i) hallar, si existen, valores de x que verifiquen: $\mathbf{x} * \mathbf{u} = (\mathbf{v} * \mathbf{u}) * \mathbf{w}$ x * v = v * (a * v)
- Sea A = { a, b, c,} y "*" una operación definida en él, completar sabiendo: 22.

*	a	b	c
a			
b			
С			С

- a) "*" es LCI en A
 b) e = a es el neutro
 c) b' = c y c' = b
 *" es conmutativa
- 23. Averiguar si la operación * es asociativa, conmutativa, tiene elemento neutro e inverso, con las siguientes definiciones: $\forall a, b \in \mathbb{Z}$: $a * b = a + b^2$
 - i) Para la ley dada en i. calcular: 2 * 5 =; i.
 - Hallar, si es posible, $x \in \mathbb{Z}$ que verifique: (para la segunda ley) ii. $x * 3 = 11 ; (-5) * x^2 = (-15)$
- Para cada LCI determinar si es grupo conmutativo en el conjunto dado
 - i) En **Z** se define la ley a * b = a + b + 3
 - ii) En \mathbf{Q} se define la ley a * b = 2a ab