

Sistema de gestión de calidad

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor: _	Marco Antonio Martínez Quintana
Asignatura:	Fundamentos de programación
Grupo: _	3
No. de Práctica(s):	#11
Integrante(s):	María Guadalupe Martínez Pavón
No. de Equipo de cómputo empleado:	No aplica
No. de Lista o	
Semestre:	1
Fecha de entrega: _	11-01-2021
Observaciones:	
CALIFICACIÓN	:

Práctica 11: Arreglos unidimensionales y multidimensionales

Objetivo: Reconocer la importancia y utilidad de los arreglos, en la elaboración de programas que resuelvan problemas que requieran agrupar datos del mismo tipo, así como trabajar con arreglos tanto unidimensionales como multidimensionales.

Actividades:

- * Elaborar un programa en lenguaje C que emplee arreglos de una dimensión.
- * Resolver un problema que requiera el uso de un arreglo de dos dimensiones, a través de un programa en lenguaje C.
- Manipular arreglos a través de índices y apuntadores.

Introducción:

Un arreglo es un conjunto de datos contiguos del mismo tipo con un tamaño fijo definido al momento de crearse. A cada elemento (dato) del arreglo se le asocia una posición particular, el cual se requiere indicar para acceder a un elemento en específico. Esto se logra a través del uso de índices. Los arreglos pueden ser unidimensionales o multidimensionales. Los arreglos se utilizan para hacer más eficiente el código de un programa.

Arreglos unidimensionales

Código (arreglo unidimensional while)

```
Microsoft Windows [Versión 10.0.18363.1256]
(c) 2019 Microsoft Corporation. Todos los derechos reservados.

C:\Users\lupit\cd OneDrive

C:\Users\lupit\OneDrive\Escritorio

C:\Users\lupit\OneDrive\Escritorio\cd "Lenguaje C"

C:\Users\lupit\OneDrive\Escritorio\clenguaje C\cd Ejemplos

C:\Users\lupit\OneDrive\Escritorio\tenguaje C\cd Ejemplos>gcc Awhile.c -o Awhile.exe

C:\Users\lupit\OneDrive\Escritorio\tenguaje C\cdot\Ejemplos>Awhile.exe

Lista

Calificaci | n del alumno 1 es 10

Calificaci | n del alumno 2 es 8

Calificaci | n del alumno 3 es 5

Calificaci | n del alumno 4 es 8

Calificaci | n del alumno 5 es 7

C:\Users\lupit\OneDrive\Escritorio\tenguaje C\Ejemplos>_

C:\Users\lupit\OneDrive\Escritorio\tenguaje C\Ejemplos>_
```

Código (arreglo unidimensional for)

```
Microsoft Windows [Versión 10.0.18363.1256]
(c) 2019 Microsoft Corporation. Todos los derechos reservados.

C:\Users\lupit\cd OneDrive

C:\Users\lupit\OneDrive\cscritorio\cd "Lenguaje C"

C:\Users\lupit\OneDrive\Escritorio\Lenguaje C>cd Ejemplos

C:\Users\lupit\OneDrive\Escritorio\Lenguaje C\Ejemplos>gcc Afor.c -o Afor.exe

C:\Users\lupit\OneDrive\Escritorio\Lenguaje C\Ejemplos>Afor.exe

Lista

Calificaci | n del alumno 1 es 10
Calificaci | n del alumno 2 es 8
Calificaci | n del alumno 3 es 5
Calificaci | n del alumno 4 es 8
Calificaci | n del alumno 5 es 7

C:\Users\lupit\OneDrive\Escritorio\Lenguaje C\Ejemplos>__

C:\Users\lupit\OneDrive\Escritorio\Lenguaje C\Ejemplos>__

C:\Users\lupit\OneDrive\Escritorio\Lenguaje C\Ejemplos>__
```

Apuntadores

Código (apuntadores)

Código (apuntadores)

```
ticrosoft Windows [Versión 10.0.18363.1256]
(c) 2019 Microsoft Corporation. Todos los derechos reservados.

C:\Users\lupit\componention. Todos lenguaje C'= pemplos

C:\Users\lupit\componention. Todos los desemblos per Capuntadores.exe

C:\Users\lupit\componention. Todos los derechos lenguaje C\text{Ejemplos}Aapuntadores.exe

a = 5, b = 10, c[10] = (5, 4, 3, 2, 1, 9, 8, 7, 6, 0)

apEnt = 8a

a = "apEnt -> b = 5

a = "apEnt + 1 -> b = 6

apEnt = 8c[0] -> apEnt = 5

C:\Users\lupit\componention. Todos lenguaje C\text{Ejemplos}_\lupit\componention.}

C:\Users\lupit\componention. Todos lenguaje C\text{Ejemplos}_\lupit\componention.}
```

Código (apuntadores en ciclo for)

```
Microsoft Windows [Versión 10.0.18363.1256]
(c) 2019 Microsoft Corporation. Todos los derechos reservados.

C:\Users\lupit\cd OneDrive

C:\Users\lupit\oneDrive\Escritorio\cd "Lenguaje C"

C:\Users\lupit\oneDrive\Escritorio\Lenguaje C>cd Ejemplos

C:\Users\lupit\oneDrive\Escritorio\Lenguaje C\Ejemplos>gcc apuntadoresfor.c -o apuntadoresfor.exe

C:\Users\lupit\oneDrive\Escritorio\Lenguaje C\Ejemplos>apuntadoresfor.exe

C:\Users\lupit\oneDrive\Escritorio\Lenguaje C\Ejemplos>apuntadoresfor.exe

Calificaci | n del alumno 1 es 10
Calificaci | n del alumno 2 es 8
Calificaci | n del alumno 3 es 5
Calificaci | n del alumno 4 es 8
Calificaci | n del alumno 5 es 7

C:\Users\lupit\oneDrive\Escritorio\Lenguaje C\Ejemplos>
```

Código (apuntadores en cadenas)

```
C:\Users\lupit\OneDrive\Escritorio\Lenguaje C\Ejemplos>apuntadorescadena.exe
Ingrese una palabra: Azul
La palabra ingresada es: Azul
A
z
u
1
B
@
P
B
@
```

Arreglos multidimensionales

Código (arreglos multidimensionales)

```
#include<stdio.h>

/* Este programa genera un arreglo de dos dimensiones (arreglo
multidimensional) y accede a sus elementos a través de dos ciclos
for, uno anidado dentro de otro.

//

Bint main(){
    int matriz[3][3] = {{1,2,3},{4,5,6},{7,8,9}};
    int i, j;
    printf("Imprimir Matriz\n");
    for (i=0; i<3; i++){
        for (j=0; j<3; j++){
            printf("%d, ",matriz[i][j]);
        }
        printf("\n");
    }
    return 0;
}</pre>
```

```
::\Users\lupit\OneOrive\Escritorio\Lenguaje C\Ejemplos>gcc arreglosmultidimensionales.c -o arreglosmultidimensionales.exe
::\Users\lupit\OneOrive\Escritorio\Lenguaje C\Ejemplos>arreglosmultidimensionales.exe
imprimir Matriz
, 2, 3,
, 5, 6,
, 8, 9,
::\Users\lupit\OneOrive\Escritorio\Lenguaje C\Ejemplos>_
::\Users\lupit\OneOrive\Escritorio\Lenguaje C\Ejemplos>_
```

Código (arreglos multidimensionales con apuntadores)

Conclusión

Este tipo de arreglos nos van a permitir tener un orden mejor para identifica y acodar nuestras condiciones, considero que gracias a esto un trabajo se puede ver mas ordenado y una estética mejor, a parte que nos vas a dar más visualización de variantes u cualquier otro tipo, supongo que con este tipo de códigos se hacen para muchas cosas, pero mas en las bases de datos, para poder tener un orden y control, poder encontrar y saber un dato más rápido.

Como otra conclusión hubo un error en el ultimo ejemplo y con la depuración pude encontrar en donde sin embargo tuve que investigar cual era el error

Bibliografía

El lenguaje de programación C. Brian W. Kernighan, Dennis M. Ritchie, segunda edición, USA, Pearson Educación 1991.