Michael Christopher - s224830467

CAPRI - Correlation of Air Pollution and Respiratory Illness

What have been done?

1. Finalised Data Collection for Air Quality Index

Completed the acquisition of AQI datasets across multiple regions, ensuring coverage for core pollutants (CO, NO_2 , O_3 , PM10, PM2.5).

So what? This establishes a solid foundation for analysis, ensuring our models are supported by comprehensive and reliable inputs.

Data from hourly-averages-yearly

⊿ A	В	С	D	Е	F	G	н		J	K	L
1 datetime_AEST	datetime_local 🔻	location_ic	location_n ×	DBT -	NO2	Sigma60 💌	SO2 -	SWD -	sws 🕝	VWD -	vws 🕝
2 2023-12-31 23:00:00	2024-01-01 00:00:00	10006	Altona North	16,498	0,966	14,93	0,611	154,087	2,894	153,371	2,802
3 2024-01-01 00:00:00	2024-01-01 01:00:00	10006	Altona North	16,491		15,488		152,279	2,952	151,498	2,851
4 2024-01-01 01:00:00	2024-01-01 02:00:00	10006	Altona North	16,503	1,441	14,504	1,033	146,637	2,465	146,034	2,395
5 2024-01-01 02:00:00	2024-01-01 03:00:00	10006	Altona North	16,122	2,314	14,623	1,295	122,633	2,469	122,036	2,396
6 2024-01-01 03:00:00	2024-01-01 04:00:00	10006	Altona North	15,427	2,78	16,766	2,242	112,545	2,08	113,91	2,011
7 2024-01-01 04:00:00	2024-01-01 05:00:00	10006	Altona North	14,554	3,037	21,651	2,032	97,454	1,215	99,707	1,148
8 2024-01-01 05:00:00	2024-01-01 06:00:00	10006	Altona North	14,1	6,428	84,389	1,277	154,11	0,616	46,532	0,058
9 2024-01-01 06:00:00	2024-01-01 07:00:00	10006	Altona North	17,264	5,117	43,5	2,552	193,91	1,189	179,388	0,982
10 2024-01-01 07:00:00	2024-01-01 08:00:00	10006	Altona North	18,794	3,032	30,321	2,529	159,401	1,644	155,779	1,48
11 2024-01-01 08:00:00	2024-01-01 09:00:00	10006	Altona North	19,842	2,453	35,143	3,116	153,118	1,899	150,671	1,644
12 2024-01-01 09:00:00	2024-01-01 10:00:00	10006	Altona North	21,853	2,16	20,956	3,25	159,511	2,375	159,362	2,248
13 2024-01-01 10:00:00	2024-01-01 11:00:00	10006	Altona North	22,854	1,806	21,844	2,709	164,611	2,728	163,222	2,572
14 2024-01-01 11:00:00	2024-01-01 12:00:00	10006	Altona North	24,282	2,093	20,291	2,222	169,128	3,235	167,619	3,066
15 2024-01-01 12:00:00	2024-01-01 13:00:00	10006	Altona North	25,112	1,483	19,474	2,248	175,013	3,636	174,064	3,467
16 2024-01-01 13:00:00	2024-01-01 14:00:00	10006	Altona North	25,134	1,422	19,777	2,201	180,367	4,034	179,189	3,838
17 2024-01-01 14:00:00	2024-01-01 15:00:00	10006	Altona North	24,812	1,329	20,945	1,765	186,204	4,292	184,903	4,067
18 2024-01-01 15:00:00	2024-01-01 16:00:00	10006	Altona North	24,251	1,167	18,864	1,542	180,814	4,258	179,587	4,082
19 2024-01-01 16:00:00	2024-01-01 17:00:00	10006	Altona North	24,765	2,598	19,277	1,355	183,494	4,019	181,829	3,832
20 2024-01-01 17:00:00	2024-01-01 18:00:00	10006	Altona North	23,048	2,22	22,077	1,748	195,898	3,719	193,946	3,503
21 2024-01-01 18:00:00	2024-01-01 19:00:00	10006	Altona North	20,683	1,029	24,47	1,676	198,82	3,057	198,851	2,86
22 2024-01-01 19:00:00	2024-01-01 20:00:00	10006	Altona North	19,409	1,241	23,773	1,38	200,62	2,418	199,187	2,261
23 2024-01-01 20:00:00	2024-01-01 21:00:00	10006	Altona North	18,971	1,12	23,916	1,179	199,015	1,931	198,247	1,8
24 2024-01-01 21:00:00	2024-01-01 22:00:00	10006	Altona North	18,622	1,307	25,925	1,244	207,175	1,568	208,058	1,44
25 2024-01-01 22:00:00	2024-01-01 23:00:00	10006	Altona North	18,365	0,893	26,402	0,306	207,955	1,567	207,828	1,438
26 2024-01-01 23:00:00	2024-01-02 00:00:00	10006	Altona North	18,531	1,115	29,142	-0,555	210,897	1,381	213,433	1,252
27 2024-01-02 00:00:00	2024-01-02 01:00:00	10006	Altona North	18,862		28,272		217,359	1,082	220,006	0,993

Data from Air Pollution in Victoria: Real-time Air Quality Index Visual Map

	A B C D
1	date, pm25, pm10, o3, no2, so2, co
2	2025/8/1, 43, 13, 13, 13, , 3
3	2025/8/2, 41, 20, 16, 12, , 4
4	2025/8/3, 73, 11, 22, 8, , 1
5	2025/8/4, 31, 12, 22, 6, ,
6	2025/8/5, 22, 14, 18, 10, , 1
7	2025/8/6, 21, 15, 20, 15, , 2
8	2025/8/7, 32, 16, 16, 15, , 3
9	2025/8/8, 40, 20, 13, 13, , 4
10	2025/8/9, 60, 21, 19, 11, , 4
11	2025/8/10, 68, 18, 19, 12, , 3
12	2025/8/11, 56, 11, 15, 8, , 1
13	2025/8/12, 32, 15, 20, 13, , 2
14	2025/8/15, 34, 10, 23, 10, , 1
15	2025/8/16, 33, 10, 19, 8, , 1
16	2025/8/17, 31, 12, 24, 10, , 1
17	2025/8/18, 28, 14, 1, 12, , 4
18	2025/8/19, 49, , , , ,
19	2025/7/1, 36, 9, 18, 9, , 1
20	2025/7/2, 18, 16, 14, 14, , 3
21	2025/7/3, 36, 15, 14, 9, , 3
22	2025/7/4, 43, 10, 18, 7, , 2
23	2025/7/5, 31, 17, 10, 14, , 4
24	2025/7/6, 49, 18, 14, 10, , 4
25	2025/7/7, 57, 8, 19, 4, , 1
26	2025/7/8 20 10 26 3 2

2. Developed Data Cleaning & Preprocessing Script

Implemented Python scripts to handle missing values, align timestamps, and standardise pollutant units across datasets.

So what? Automated preprocessing streamlines future updates, reduces error risk, and ensures consistent quality in downstream modelling.

```
# Read a sheet by its name

df_morwell_east = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Morwell_East_10017')

df_moroolbark = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Moroolbark_10136')

df_altona_north = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Pandenong_10022')

df_dandenong = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Pandenong_10022')

df_point_cook = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Point_Cook_10005')

df_gelong_south = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Point_Cook_10005')

df_traralgon = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Relong_10011')

df_alphington = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Melbourne_CBD_10239')

df_melbourne_cbd = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Melbourne_CBD_10239')

df_box_hill = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Brighton_10007')

df_morwell_south = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Brighton_10007')

df_morwell_south = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Brighton_10007')

df_macleod = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Brooklyn_1112')

df_macleod = pd.read_excel('datasets/2024_All_sites_air_quality_hourly_avg_AIR-I-F-V-VH-O-S1-DB-M2-4-0.xlsx', sheet_name='Brooklyn_1
```

In this case, I use a formula in https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf to calculate the AQI

Calculating the AQI from pollutant concentration data

The AQI is the highest value calculated for each pollutant as follows:

 Identify the highest concentration among all of the monitors within each reporting area and truncate as follows:

Ozone (ppm) - truncate to 3 decimal places

PM_{2.5} (µg/m³) - truncate to 1 decimal place

PM₁₀ (μg/m³) – truncate to integer

CO (ppm) - truncate to 1 decimal place

SO₂ (ppb) - truncate to integer

NO2 (ppb) - truncate to integer

- 2. Using Table 6 (next page), find the two breakpoints that contain the concentration.
- 3. Using Equation 1, calculate the index.
- 4. Round the index to the nearest integer.

Equation 1:

$$I_p = \frac{I_{Hi} - I_{Lo}}{BP_{HI} - BP_{Lo}} (C_p - BP_{Lo}) + I_{Lo}.$$

Where Ip = the index for pollutant p

Cp = the truncated concentration of pollutant p

BPHi = the concentration breakpoint that is greater than or equal to Cp

BPLo = the concentration breakpoint that is less than or equal to Cp

IHI = the AQI value corresponding to BPHI

ILD = the AQI value corresponding to BPLD

These Breakpoints							equal this AQI	and this category	
O ₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI		
0.000 - 0.054	-	0.0 - 9.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good	
0.055 - 0.070	-	9.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate	
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups	
0.086 - 0.105	0.165 - 0.204	(55.5 - 125.4) ³	255 - 354	12.5 - 15.4	³ 186 - 304	361 - 649	151 - 200	Unhealthy	
0.106 - 0.200	0.205 - 0.404	(125.5 - (225.4) ³	355 - 424	15.5 - 30.4	³ 305 - 604)	650 - 1249	201 - 300	Very unhealthy	
0.201-(2)	0.405+	225.5+	425+	30.5+	³ 605+	1250+	301+	Hazardous ⁴	

```
pollutant columns = ['03', 'CO', 'SBPM25', 'PM10', 'NO2', 'SO2']
cleaned columns = ['datetime local'] + pollutant columns
def removeUnwantedColumns(df):
    df columns = []
    for column in df.columns:
        if column in cleaned columns:
            df columns.append(column)
    return df[df columns]
df morwell east removed = removeUnwantedColumns(df morwell east)
df mooroolbark removed = removeUnwantedColumns(df mooroolbark)
df altona north removed = removeUnwantedColumns(df altona north)
df dandenong removed = removeUnwantedColumns(df dandenong)
df point cook removed = removeUnwantedColumns(df point cook)
df geelong south removed = removeUnwantedColumns(df geelong south)
df traralgon removed = removeUnwantedColumns(df traralgon)
df alphington removed = removeUnwantedColumns(df_alphington)
df melton removed = removeUnwantedColumns(df melton)
df melbourne cbd removed = removeUnwantedColumns(df melbourne cbd)
df box hill removed = removeUnwantedColumns(df box hill)
df brighton removed = removeUnwantedColumns(df brighton)
df morwell south removed = removeUnwantedColumns(df morwell south)
df macleod removed = removeUnwantedColumns(df macleod)
df brooklyn removed = removeUnwantedColumns(df brooklyn)
```

3. Tested API Call with WAQI (World Air Quality Index) API

Successfully wrote and executed test code to fetch real-time AQI data, validating the feasibility of API-based integration.

So what? This capability enables dynamic data ingestion, supporting future extensions like interactive dashboards or predictive monitoring.

```
apicall.py 1 X
dataset_preprocess.ipynb
C: > Users > micha > Desktop > deakin stuff > deakintrimester3 > CAPRI > 📌 apicall.py > ...
      import requests
      API KEY = "4fa9ac50f09c5dfc3a41b780793ecfff46af4148"
     BASE_URL = "https://api.waqi.info/feed/"
     all_data = []
 18 v for location in location_id:
         url = f"https://api.waqi.info/feed/{location}/?token={API_KEY}"
         data = requests.get(url).json()
         all_data.append(data)
 24 \vee for data in all_data:
         city = data["data"]["city"]["name"]
         aqi_us = data["data"]["aqi"]
dominant_pol = data["data"]["dominentpol"]
         print(f"City: {city} | AQI: {aqi_us} | Dominant Pollutant: {dominant_pol}")
```

4. Air Quality Prediction Models

Began predictive modelling using multiple machine learning approaches (e.g., Linear Regression, Random Forest, Gradient Boosting, etc.) to forecast AQI values, aiming to identify the model with the best predictive performance.

```
X = df[features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
models = {
    'LinearRegression': LinearRegression(),
    'RandomForest': RandomForestRegressor(random_state=42),
    'GradientBoosting': GradientBoostingRegressor(random state=42)
for name, model in models.items():
    model.fit(X_train_scaled, y_train)
    y_pred = model.predict(X_test_scaled)
    mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    print(f"\{name\} - MSE: \{mse:.2f\}, R2: \{r2:.2f\}")
last_row = df.iloc[-1]
future_features = [last_row[f'pm25_lag{lag}'] for lag in range(1, 4)] + [last_row[' pm10'], last_row['
future_features_scaled = scaler.transform([future_features])
for name, model in models.items():
    future_pm25 = model.predict(future_features_scaled)
    print(f"{name} predicted future pm25: {future_pm25[0]:.2f}")
```

```
date
            pm25
                                   so2
                   pm10
                         о3
                              no2
                                        co
  2025/8/1
0
              27
                    13
                          13
                              13
                                        3
1 2025/8/2
                              12
              32
                    20
                         16
                                        4
2 2025/8/3
              51
                    11
                         22
                               8
                                         1
3 2025/8/4
                          22
                               6
              18
                    12
4 2025/8/5
                8
                    14
                          18
                               10
                                         1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3859 entries, 0 to 3858
Data columns (total 7 columns):
    Column
            Non-Null Count
                            Dtype
    date
            3859 non-null
                            object
0
            3859 non-null
                            object
1
     pm25
            3859 non-null
                           object
 2
     pm10
3
     о3
            3859 non-null
                           object
            3859 non-null
                            object
4
     no2
5
            3859 non-null
                            object
      so2
6
      co
            3859 non-null
                            object
dtypes: object(7)
memory usage: 211.2+ KB
None
LinearRegression - MSE: 62.46, R2: 0.13
RandomForest - MSE: 59.23, R2: 0.17
RandomForest - MSE: 59.23, R2: 0.17
GradientBoosting - MSE: 57.62, R2: 0.19
LinearRegression predicted future pm25: 21.20
RandomForest predicted future pm25: 15.77
```

Next actions?

- 1. Refine preprocessing pipeline for full dataset integration with health data (AIHW).
- 2. Begin exploratory data analysis (EDA) to identify patterns and validate dataset reliability.
- 3. Prototype initial visualisations (e.g., pollutant trends, heatmaps) for technical and non-technical audiences.
- 4. Work more on the machine learning modelling so it is more in depth and meaningful.