Лабораторная работа 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Кагарманов Радмир Б01-106 11 апреля 2022 г. **Цель работы:** 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используется: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

Теория

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\rm BH} - P_{\rm CH} = \frac{2\sigma}{r} \tag{1}$$

где σ - коэффициент поверхностного натяжения, $P_{\text{вн}}$ и $P_{\text{сн}}$ - давление внутри пузырька и снаружи, r - радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис.1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора A. Кран K_2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K_2 заполняется водой. Затем кран K_2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней поло-

сти при открывании крана K_1 , когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

Рис. 1: Экспериментальная установка

Ход работы и обработка результатов

1. Измеряем d иглы по формуле (1) и с помощью микроскопа. $\Delta P = (147 \pm 2) \Pi a$.

$$d_{\Phi} = (1, 23 \pm 0, 02)_{\mathrm{MM}}$$

 $d_{\mathrm{m}} = (1, 20 \pm 0, 05)_{\mathrm{MM}}$

2. Помещаем иглу в пробирку с водой. При комнатной температуре измеряем h_1 и h_2 относительно неподвижной детали. Найдём $\rho g \Delta h$. $P_1 = (223, 7 \pm 2, 0) \Pi a$, $P_2 = (408, 1 \pm 2, 0) \Pi a$. По формуле найдём $\Delta h_{\Phi} = \frac{P_2 - P_1}{\rho q}$

$$\Delta h_{\pi} = (1, 70 \pm 0, 01) \text{cm}$$

 $\Delta h_{\Phi} = (1, 84 \pm 0, 04) \text{cm}$
 $\rho g \Delta h = (184, 4 \pm 4, 0) \Pi a$

 σ для комнатной температуры равна $(0,06711 \pm 0,00301)$ H/м.

3. Снимем температурную зависимость $\sigma(T)$ для воды. В таблице 1 измерения этой зависимости.

t, °C	Р, Па							$P_{\rm cp},~\Pi {\rm a}$	σ , H/M
25,5	412,0	402,2	400,2	400,2	392,4	396,3	396,3	400,0	0,0647
30,4	412,0	412,0	410,1	410,1	408,1	406,1	406,1	410,1	0,0677
35,3	412,0	410,1	408,1	408,1	406,1	408,1	406,1	408,4	0,0672
40,1	412,0	410,1	408,1	406,1	408,1	408,1	408,1	408,7	0,0673
45,2	404,2	404,2	402,2	404,2	402,2	402,2	402,2	403,3	0,0657
50,1	398,3	396,3	398,3	400,2	400,2	400,2	400,2	399,1	0,0644
55,0	392,4	394,4	394,4	396,3	396,3	396,3	398,3	395,5	0,0633
59,0	390,4	390,4	388,5	392,4	392,4	392,4	392,4	391,3	0,0621

Таблица 1: Caption

Во время измерения Δh я снял дополнительную рубашку с пробирки с водой и забыл надеть обратно, поэтому некоторые измерения с зависимостью $\sigma(T)$ были без неё. Начиная с температуры 40,1 я надел её, и коэффициент поверхностного начал стабильно падать. Первые температуры не будут включены в график.

Рис. 2: График зависимости $\sigma(t)$

При применении МНК получаем $\frac{d\sigma}{dT}=0,000269$ $\frac{\rm H}{{}_{\rm M}\cdot{}^{\circ}C}$. С учётом погрешности σ и МНК: $\frac{d\sigma}{dT}=(0,000269\pm0,000021)$ $\frac{\rm H}{{}_{\rm M}\cdot{}^{\circ}C}$.

4. На рисунке 3 представлены зависимости теплоты образования единицы поверхности жидкости q и поверхностной энергии U единицы площади F.

Рис. 3: График зависимости $\sigma(t)$

Вывод: проделав данную лабораторную работу, был найден коэффициент поверхностного натяжения воды при комнатной температуре $\sigma=(0,06711\pm0,00301)~{\rm H/m}.$ Результат похож на табличное значение, но не совпадает с ним. Также мы сняли зависимость σ от T, и $\frac{d\sigma}{dT}$ получилось $(0,000269\pm0,000021)~\frac{{\rm H}}{{\rm m}^{\circ}C}.$