Physical Models of an Elevator

by Gerrit Muller Embedded Systems Institute

e-mail: gerrit.muller@embeddedsystems.nl www.gaudisite.nl

Abstract

An elevator is used as a simple system to model a few physical aspects. We will show simple kinematic models and we will consider energy consumption. These low level models are used to understand (physical) design considerations. Elsewhere we discuss higher level models, such as use cases and throughput, which complement these low level models.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

February 10, 2011 status: planned version: 0.1

warning

This presentation starts with a trivial problem.

Have patience!

Extensions to the trivial problem are used to illustrate many different modeling aspects.

Feedback on correctness and validity is appreciated

February 10, 2011

EPMwarning

The Elevator in the Building

inhabitants want to reach their destination fast and comfortable

building owner and service operator have economic constraints: space, cost, energy, ...

Elementary Kinematic Formulas

$$S_t$$
 = position at time t
 v_t = velocity at time t
 a_t = acceleration at time t
 j_t = jerk at time t

$$v =$$
 $\frac{dS}{dt}$ $a =$ $\frac{dv}{dt}$ $j =$ $\frac{da}{dt}$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

Initial Expectations

What values do you expect or prefer for these quantities? Why?

 $t_{top floor}$ = time to reach top floor

 $v_{max} = maximum velocity$

 a_{max} = maximum acceleration

 $j_{max} = maximum jerk$

Initial Estimates via Googling

Google "elevator" and "jerk":

$$t_{top floor}$$
 ~= 16 s
$$v_{max}$$
 ~= 2.5 m/s relates to motor design and energy consumption
$$a_{max}$$
 ~= 1.2 m/s 2 (up)

 $j_{max} \sim = 2.5 \text{ m/s}^{-3}$ ——relates to control design

humans feel changes of forces high jerk values are uncomfortable

12% of gravity;

weight goes up

numbers from: http://www.sensor123.com/vm_eva625.htm CEP Instruments Pte Ltd Singapore

Exercise Time to Reach Top Floor Kinematic

input data

$$S_0 = 0m$$
 $S_t = 40m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^{-3}$$

elementary formulas

$$v = -\frac{dS}{dt}$$
 $a = -\frac{dv}{dt}$ $j = -\frac{da}{dt}$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

exercises

Make a model for t top floor

Make 0 e order model, based on constant velocity

Make 1 e order model, based on constant acceleration

What do you conclude from these models?

Models for Time to Reach Top Floor

input data

$$S_0 = 0m$$
 $S_t = 40m$

$$S_t = 40 \text{m}$$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^{-2} \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^{-3}$$

elementary formulas

$$v = \frac{dS}{dt}$$

$$a = \frac{dv}{dt}$$

$$j = \frac{da}{dt}$$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

$$S_{top floor} = v_{max} * t_{top floor}$$

$$40 = 2.5 * t_{top floor}$$

$$t_{top floor} = 40/2.5 = 16s$$

$$t_a \sim 2.5/1.2 \sim 2s$$

$$S(t_a) \sim = 0.5 * 1.2 * 2^2$$

$$S(t_a) \sim = 2.4 m$$

$$t_v \sim = (40-2*2.4) /2.5$$

$$t_{v} \sim = 14s$$

$$t_{top floor} \sim = 2 + 14 + 2$$

$$t_{\text{top floor}} = t_{\text{a}} + t_{\text{v}} + t_{\text{a}}$$

$$t_a = v_{max} / a_{max}$$

$$t_a = v_{max} / a_{max}$$

$$S(t_a) = \frac{1}{2} * a_{max} * t_a^2$$

$$t_v = S_{linear} / v_{max}$$

$$t_{\text{top floor}} = t_a + t_v + t_a$$
 $S_{\text{linear}} = S_{\text{top floor}} - 2 * S(t_a)$ $t_v \sim = 14s$

$$t_v = S_{linear} / v_{max}$$

BUSKERUD

Conclusions Move to Top Floor

Conclusions

v_{max} dominates traveling time

The model for the large height traveling time can be simplified into:

$$t_{travel} = S_{travel}/v_{max} + (t_a + t_j)$$

Exercise Elevator Performance

exercises

Make a model for t top floor

Take door opening and docking into account

What do you conclude from this model?

Elevator Performance Model

performance model

$$t_{top floor} = t_{close} + t_{undock} + t_{move} + t_{dock} + t_{open}$$

assumptions

$$t_{close} \sim = t_{open} \sim = 2s$$
 $t_{undock} \sim = 1s$
 $t_{dock} \sim = 2s$

$$t_{\text{move}} \sim 18s$$

outcome

$$t_{top floor} \sim = 2 + 1 + 18 + 2 + 2$$

$$t_{top floor} \sim = 25s$$

Measured Elevator Acceleration

Theory versus Practice

What did we ignore or forget?

acceleration: up <> down 1.2 m/s ² vs 1.0 m/s ²

slack, elasticity, damping et cetera of cables, motors....

controller impact

. . . .

Conclusions Performance Model Top Floor

Conclusions

The time to move is dominating the traveling time.

Docking and door handling is significant part of the traveling time.

$$t_{top floor} = t_{travel} + t_{elevator overhead}$$

Exercise Elevator Performance (2)

exercises

Make a model for t one floor

Take door opening and docking into account

What do you conclude from this model?

2nd Order Model Moving One Floor

t_i t_a t_i t_i t_a t_i

input data

$$S_0 = 0m$$
 $S_t = 3m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^{-3}$$

$$t_{one floor} = 2 t_a + 4 t_j$$

$$t_j = a_{max} / j_{max}$$

$$S_1 = 1/6 * j_{max} t_i^3$$

$$v_1 = 0.5 j_{max} t_i^2$$

$$S_2 = S_1 + v_1 t_a + 0.5 a_{max} t_a^2$$

$$V_2 = V_1 + a_{max} t_a$$

$$S_3 = S_2 + v_2 t_j + 0.5 a_{max} t_j^2 - 1/6 j_{max} t_j^3$$

$$S_3 = 0.5 S_{+}$$

$$t_i \sim 1.2/2.5 \sim 0.5$$
s

$$S_1 \sim 1/6 * 2.5 * 0.5^3 \sim 0.05 m$$

$$v_1 \sim 0.5 * 2.5 * 0.5^2 \sim 0.3 \text{m/s}$$

et cetera

1st Order Model Moving One Floor

input data

$$S_0 = 0m$$
 $S_t = 3m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^{-3}$$

$$t_{one floor} = 2 t_a$$

$$S(t_a) = \frac{1}{2} * a_{max} * t_a^2 = 1.5m$$

$$t_a \sim = sqrt(1.5 / (0.5*1.2)) \sim = 1.6s$$

$$v(t_a) \sim a_m t_a \sim 1.2*1.6 \sim 1.9 \text{ m/s}$$

coarse 2nd order correction

$$t_{one floor} \sim 2*1.6 + 2*0.5 \sim 4s$$

Conclusions

a_{max} dominates travel time

The model for small height traveling time can be simplified into:

$$t_{travel} = 2 \text{ sqrt}(S_{travel}/a_{max}) + t_{j}$$

Elevator Performance Model

performance model one floor (3m)

$$t_{one floor} = t_{close} + t_{undock} + t_{move} + t_{dock} + t_{open}$$

assumptions

$$t_{close} \sim = t_{open} \sim = 2s$$

$$t_{undock} \sim = 1s$$

$$t_{dock} \sim = 2s$$

$$t_{\text{move}} \sim = 4s$$

outcome

$$t_{one floor} \sim = 2 + 1 + 4 + 2 + 2$$

$$t_{one floor} \sim = 11 S$$

Conclusions Performance Model One Floor

Conclusions

Overhead of docking and opening and closing doors is dominating traveling time.

Fast docking and fast door handling has significant impact on traveling time.

$$t_{one floor} = t_{travel} + t_{elevator overhead}$$

Exercise Time Line

Exercise

Make a time line of people using the elevator.

Estimate the time needed to travel to the top floor.

Estimate the time needed to travel one floor.

What do you conclude?

Time Line; Humans Using the Elevator

assumptions human dependent data

 $t_{wait for elevator} = [0..2 minutes]$ depends heavily on use

 $t_{\text{wait for leaving people}} = [0..20 \text{ seconds}] \text{ idem}$

 $t_{\text{walk in}} \sim = 2 \text{ s}$

 $t_{\text{select floor}} \sim = 2 \text{ s}$

outcome

$$t_{one floor} \sim = 8 + 2 + 11 + t_{wait}$$

 $\sim = 21 S + t_{wait}$

$$t_{\text{top floor}} \sim = 8 + 2 + 25 + t_{\text{wait}}$$

 $\sim = 35 \text{ S} + t_{\text{wait}}$

assumptions additional elevator data

t_{minimal waiting time} ~= 8s

t_{top floor} ~= 25s

t_{one floor} ~= 11s

Overview of Results for One Elevator

Conclusions

The human related activities have significant impact on the end-to-end time.

The waiting times have significant impact on the end-to-end time and may vary quite a lot.

$$t_{end-to-end} = t_{human \ activities} + t_{wait} + t_{elevator \ travel}$$

Exercise Energy and Power

Exercise

Estimate the energy consumption and the average and peak power needed to travel to the top floor.

What do you conclude?

Energy and Power Model

elementary formulas $E_{kin} = 1/2 \text{ mv}^2$ $E_{pot} = \text{mgh}$ $W = \frac{dE}{dt}$

Energy and Power Conclusions

Conclusions

E_{pot} dominates energy balance

W_{pot} is dominated by v_{max}

W_{kin} causes peaks in power consumption and absorption

 W_{kin} is dominated by v_{max} and a_{max}

$$E_{kin max} = 1/2 \text{ m v}_{max}^2$$
 $\sim = 0.5 * 1100 * 2.5 ^2$
 $\sim = 3.4 \text{ kJ}$
 $W_{kin max} = \text{m v}_{max} a_{max}$
 $\sim = 1100 * 2.5 * 1.2$
 $\sim = 3.3 \text{ kW}$
 $E_{pot} = \text{mgh}$
 $\sim = 100 * 10 * 40$
 $\sim = 40 \text{ kJ}$
 $W_{pot max} \sim = E_{pot}/t_{v}$
 $\sim = 40/16$
 $\sim = 2.5 \text{ kW}$

Exercise Qualities and Design Considerations

Exercise

What other qualities and design considerations relate to the kinematic models?

Conclusions Qualities and Design Considerations

Other Domains

applicability in other domains

kinematic modeling can be applied in a wide range of domains:

transportation systems (trains, busses, cars, containers, ...)

wafer stepper stages

health care equipment patient handling

material handling (printers, inserters, ...)

MRI scanners gradient generation

. . .

Exercise Multiple Users

Exercise

Assume that a group of people enters the elevator at the ground floor. On every floor one person leaves the elevator.

What is the end-to-end time for someone traveling to the top floor?

What is the desired end-to-end time?

What are potential solutions to achieve this?

What are the main parameters of the design space?

Multiple Users Model

elevator data

t_{min wait} ~= 8s

t_{one floor} ~= 11s

 $t_{\text{walk out}} = 2s$

 $n_{floors} = 40 \text{ div } 3 + 1 = 14$

outcome

$$t_{\text{end-to-end}} \sim = 14 (t_{\text{min wait}} + t_{\text{one floor}}) + t_{\text{walk out}} + t_{\text{wait}}$$

$$\sim = 14 * (8 + 11) + 2 + t_{\text{wait}}$$

$$\sim = 268 \text{ s} + t_{\text{wait}}$$

$$t_{\text{non-stop}} \sim = 35 \text{ S} + t_{\text{wait}}$$

Multiple Users Desired Performance

Considerations

desired time to travel to top floor ~< 1 minute

note that
$$t_{\text{wait next}} = t_{\text{travel up}} + t_{\text{travel down}}$$

if someone just misses the elevator then the waiting time is

```
missed return trip

trip down up

t_{end-to-end} = 268 + 35 + 268 = 571s \sim = 10 \text{ minutes!}
```

desired waiting time ~< 1 minute

Design of Elevators System

Design of a system with multiple elevator requires a different kind of models: oriented towards logistics

Exceptional Cases

Exceptional Cases

non-functioning elevator

maintenance, cleaning of elevator

elevator used by people moving household

rush hour

special events (e.g. party, new years eve)

special floors (e.g. restaurant)

many elderly or handicapped people

playing children