LDPC Codes

A Very Short Introduction

Dmitry Adamskiy

UCL

▶ Reliable communication over noisy channel (Shannon model):

▶ Reliable communication over noisy channel (Shannon model):

▶ If we don't to anything to our message (Signal = Message), then if the channel is noisy, the reliable communication is not possible.

▶ Reliable communication over noisy channel (Shannon model):

- ▶ If we don't to anything to our message (Signal = Message), then if the channel is noisy, the reliable communication is not possible.
- ightharpoonup We need to add some redundancy to the message \implies codes.

Channels and Codes

- ▶ A channel is a triple of (A_1, A_2, P) , where A_1 and A_2 are the input and output alphabets and P(y|x) is a probability that y is received given that x was transmitted.
- ▶ A code is a (finite) set of vectors over the input alphabet. In a block code all these vectors have the same length *n*.
- ▶ If we have K different vectors, where $K = 2^k$, then we call k/n a rate of a code (in n times use of a channel, we transmitted k bits).

- ► Famous Shannon-Hartley Theorem about channel capacity
- Gives the guarantee that the reliable transmission is possible for rates below capacity (and not possible for the rates above).

Claude Shannon (1916-2001)

- ► Famous Shannon-Hartley Theorem about channel capacity
- Gives the guarantee that the reliable transmission is possible for rates below capacity (and not possible for the rates above).
- But is not constructive!

Claude Shannon (1916-2001)

Channels

Two common channels are

- ▶ Binary Erasure Channel: $A_1 = \mathbb{F}_2$, $A_2 = \mathbb{F}_2 \cup \{E\}$ and each bit is erased with probability p (and preserved with probability 1 p). Capacity is 1 p.
- ▶ Binary Symmetric Channel: $A_1 = A_2 = \mathbb{F}_2$ and each bit is flipped with probability p. Capacity is $1 H(p) = 1 + p \log_2 p + (1 p) \log_2 (1 p)$

Channels and codes: encoding and decoding

▶ How do we decode? In principle, if the channel is noisy, we could not be absolutely sure.

Channels and codes: encoding and decoding

- ▶ How do we decode? In principle, if the channel is noisy, we could not be absolutely sure.
- ▶ We could list all the codewords and calculate their likelihood P(X|Y) and find the most likely one. This is expensive and could still make an error but that's the best we could do.
- Shannon theorem states that there are codes with rates arbitrarily close to the capacity, such that the probability of error ML-decoder make goes to zero with increasing block length.
 - How to build codes close to the capacity?
 - How to encode/decode such codes?

Channels and codes: encoding and decoding

- ▶ How do we decode? In principle, if the channel is noisy, we could not be absolutely sure.
- ▶ We could list all the codewords and calculate their likelihood P(X|Y) and find the most likely one. This is expensive and could still make an error but that's the best we could do.
- Shannon theorem states that there are codes with rates arbitrarily close to the capacity, such that the probability of error ML-decoder make goes to zero with increasing block length.
 - How to build codes close to the capacity?
 - How to encode/decode such codes?

Random codes are capacity-achieving, but then we need a big codebook.

Suppose that $A_1 = \mathbb{F}_2$. Then we could get efficient encoding by restricting to *linear codes*.

Suppose that $A_1 = \mathbb{F}_2$. Then we could get efficient encoding by restricting to *linear codes*.

▶ Linear code of block length n and dimension (or rank) k is a linear sub-space of dimension k of the vector space \mathbb{F}_2^n

Suppose that $A_1 = \mathbb{F}_2$. Then we could get efficient encoding by restricting to *linear codes*.

- ▶ Linear code of block length n and dimension (or rank) k is a linear sub-space of dimension k of the vector space \mathbb{F}_2^n
- ▶ The rate of such code is k/n

Suppose that $A_1 = \mathbb{F}_2$. Then we could get efficient encoding by restricting to *linear codes*.

- ▶ Linear code of block length n and dimension (or rank) k is a linear sub-space of dimension k of the vector space \mathbb{F}_2^n
- ▶ The rate of such code is k/n
- ▶ And then encoding is easy (if we find a basis of this subspace, we could just take a linear combination with coefficients (x_1, \dots, x_k)).

Suppose that $A_1 = \mathbb{F}_2$. Then we could get efficient encoding by restricting to *linear codes*.

- ▶ Linear code of block length n and dimension (or rank) k is a linear sub-space of dimension k of the vector space \mathbb{F}_2^n
- ▶ The rate of such code is k/n
- And then encoding is easy (if we find a basis of this subspace, we could just take a linear combination with coefficients (x_1, \dots, x_k)).

Also, random linear codes achieve capacity! Good news?

Suppose that $A_1 = \mathbb{F}_2$. Then we could get efficient encoding by restricting to *linear codes*.

- ▶ Linear code of block length n and dimension (or rank) k is a linear sub-space of dimension k of the vector space \mathbb{F}_2^n
- ▶ The rate of such code is k/n
- And then encoding is easy (if we find a basis of this subspace, we could just take a linear combination with coefficients (x_1, \dots, x_k)).

Also, *random linear codes* achieve capacity! Good news? Well, ML-decoding is still hard.

Linear code example

A linear code could be defined by parity check matrix H:

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

The codewords are all x such that Hx = 0Each row is a parity check. E.g. the last one is

$$x_1 + x_4 + x_5 = 0$$

where summation is in \mathbb{F}_2 .

How to build a generator matrix?

If H is full-rank, then we could decompose it to the echelon form by Gaussian elimination. Then it would have the form (up to column permutation):

$$\begin{bmatrix} I_{N-K} & P \end{bmatrix}$$
,

where I_{N-K} is the identity matrix. Then we could select G as

$$G = \begin{bmatrix} P \\ I_K \end{bmatrix}$$

Indeed, HGx = (P+P)t = 0. This is a *systematic* encoding as bits of the original message are copied in the known locations of the codeword. This makes the decoding (from the codeword) trivial.

Exercise: Let's build the generator matrix for H from the previous slide.

LDPC-codes

- ► Invented by Robert Gallager in his PhD thesis in 1963.
- ► Largely forgotten for about 30 years.
- Rediscovered by David J.C. MacKay and Radford Neal.

Robert Gallager (b. 1931)

LDPC codes decoding

Let's build the probabilistic model for the messages P(x, y) (in, say, BSC case). For each bit x_i it gets inverted with probability p. So

$$p(y|x) = \prod_{n=1}^{N} p(y_n|x_n) = \prod_{n=1}^{N} q^{y_n + x_n} (1 - q)^{y_n + x_n + 1}$$

And all we know about x is that the probability of getting $P(Hx \neq 0) = 0$. So the model is:

$$p(x,y) \propto p(y|x)I[Hx = 0] = \prod_{n=1}^{N} p(y_n|x_n) \prod_{m=1}^{M} I[h_m^T x = 0]$$

We now try to estimate the marginals $p(x_n|y)$ and obtain the decoding $x_n^* = \arg \max p(x_n|y)$.

The graph

Factor-graph for LDPC-decoding. Not singly-connected, but we can still try to do belief propagation and "see what happens".

Message passing

We need to select a timetable. Let's send all the variable-to-factor messages first and then all factor-to-variable ones.

- 1. Initialisation: $\mu_{x_n \to f_m}(x_n) = p(y_n|x_n)$
- 2. Recomputing factor-to-variable messages:

$$\mu_{f_m \to x_n}(x_n) = \sum_{x_{n'}: n' \in N(m) \setminus n} I[x_n + \sum_{n'} x_{n'} = 0] \prod_{x_{n'}: n' \in N(m) \setminus n} \mu_{x_{n'} \to f_m}(x_{n'})$$

3. Recomputing variable-to-factor messages. . .

$$\mu_{\mathsf{x}_n \to \mathsf{f}_m} \propto p(y_n|\mathsf{x}_n) \prod_{m' \in \mathsf{N}(n) \setminus m} \mu_{\mathsf{f}_{m'} \to \mathsf{x}_n}(\mathsf{x}_n)$$

4. ... and the marginals:

$$\hat{p}_n(x_n|y) \propto p(y_n|x_n) \prod_{m' \in N(n)} \mu_{f_{m'} \to x_n}(x_n)$$

Why low-density

Of course we could build this factor graph for *any* linear code. Why low-density?

- ► The running time of this algorithm depends on the number of edges in the graph.
- Moreover, it turns out short cycles in the graph are detrimental to performance.

This means that we want our matrix H to be sparse. Other design choices when selecting H are an active area of research.

A bag of tricks (advanced)

Step 2 in the algorithm could take a lot of time as we have to sum over all possible combination of neighbour states. Could we make it faster?

- Let $x_1, x_2, \ldots, x_{N(m)-1}$ be all the neighbours of m-th factor apart from x_n (just a renaming). Then consider the chain graph on the variables $s_1, s_2, \ldots, s_{N(m)-1}$, where $s_i = \sum_{j=1}^i x_j$. Then setting $p(s_1) = \mu_{x_1 \to f_m}(s_1)$ and $p(s_i|s_{i-1}) = \mu_{x_i \to f_m}(0)$, if $s_i = s_{i-1}$ Then $\mu_{f_m \to x_n}(x_n)$ is the same vector as marginal $p(s_{N(m)-1})$, which we could calculate efficiently.
- Let $\delta\mu_{\mathsf{X}_n \to f_m} = \mu_{\mathsf{X}_n \to f_m}(0) \mu_{\mathsf{X}_n \to f_m}(1)$ and $\delta\mu_{f_m \to \mathsf{X}_n} = \mu_{f_m \to \mathsf{X}_n}(0) \mu_{f_m \to \mathsf{X}_n}(1)$. It is possible to show that

$$\delta\mu_{f_m \to x_n} = \prod_{n' \in N(m) \setminus n} \delta\mu_{x_{n'} \to f_m}$$

Then the messages could be recovered as

$$\mu_{f_m \to x_n}(0) = \frac{1}{2} (1 + \delta \mu_{f_m \to x_n}); \mu_{f_m \to x_n}(1) = \frac{1}{2} (1 - \delta \mu_{f_m \to x_n}).$$

A toy example for BEC

For BEC the algorithm becomes deterministic (in a way: the messages are either (1,0) or (0,1) or (0.5,0.5)). Let's have a look. . .

Suppose we received this message: '1?1?01'. Could you decode it? What about '1?1?0?'?

References

Claude Shannon (1948)

A Mathematical Theory of Communication Bell System Technical Journal 27, 379 – 423.

Robert Gallager (1963)

Low Density Parity-Check Codes

MIT Press, Cambridge, MA

Amin Shokrollahi (2004)

LDPC Codes: An Introduction

in Coding, Cryptography and Combinatorics, 85–110

Birkhäuser Basel