Chapitre 7

Vecteurs

I. Vecteur et translation

1) Translation

Définition:

Soit A et B deux points distincts du plan.

La translation du plan qui transforme A en B est appelé translation de vecteur \overrightarrow{AB} . Le vecteur \overrightarrow{AB} a pour direction celle de la droite (AB), pour sens celui de A vers B et pour longueur la longueur AB.

Exemple:

Image D d'un point C par la translation de vecteur AB

$$1^{er}$$
 cas: $C \notin (AB)$

D est le point tel que ABDC est un parallélogramme.

$$2^{e}$$
 cas: $C \in (AB)$

D est le point de (AB) tel que AB = CD et tel que le sens de C vers D soit le même que celui de A vers B.

2) Notion de vecteur

• La notation \overrightarrow{AB} se lit « vecteur AB ». Le vecteur \overrightarrow{AB} est représenté par une flèche. A est l'**origine** du vecteur et B son **extrémité**.

• Si A et B sont confondus, \overrightarrow{AB} s'écrit \overrightarrow{AA} . On dit que \overrightarrow{AA} est le **vecteur nul** note $\overrightarrow{0}$. Ainsi $\overrightarrow{AA} = \overrightarrow{0}$. Le vecteur nul n'a pas de direction.

3) Égalité de vecteurs

Définition:

L'égalité de deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} non nuls se définit en disant qu'ils ont :

- même direction : (AB) et (CD) sont parallèles
- même sens
- même longueur

Remarques:

- $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow ABDC$ est un parallélogramme $\Leftrightarrow [AD]$ et [BC] ont même milieu.
- On peut aussi utiliser une lettre pour désigner un vecteur.

Si \vec{u} est représenté par un vecteur \overrightarrow{AB} , on écrit $\vec{u} = \overrightarrow{AB}$ \vec{u} désignera tous les vecteurs égaux à \overrightarrow{AB} .

$$\vec{u} = \vec{A}B = \vec{C}D$$

 \overrightarrow{AB} , \overrightarrow{CD} ,... sont des représentants de \overrightarrow{u} .

Propriété:

Soit trois points A, I et B.

 $\vec{A}I = \vec{I}B$ si, et seulement si, I est le milieu de [AB].

II. Vecteur et coordonnées

Le plan est muni d'un repère (O; I, J)

1) Coordonnées d'un vecteur

Coordonnées de *ū*

Définition:

Les **coordonnées d'un vecteur** \vec{u} sont celles du point M tel que $\overrightarrow{OM} = \vec{u}$.

Le vecteur nul $\vec{0}$ a pour coordonnées $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Exemples:

Les coordonnées de M sont (3; 2) donc, par définition, les coordonnées de \vec{u} sont $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Notation:

 \vec{u} (x; y) signifie que les coordonnées de \vec{u} sont (x; y)

On utilise aussi la notation $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$.

Remarque:

Si
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors:
 $\vec{u} = \vec{v} \Leftrightarrow x = x' \text{ et } y = y'$

Coordonnées de \overrightarrow{AB}

Théorème:

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$, les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Notation: $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Démonstration :

Par définition, les coordonnées de \overrightarrow{AB} sont $\begin{pmatrix} x_M \\ y_M \end{pmatrix}$ où M est le

point tel que $\overrightarrow{OM} = \overrightarrow{AB}$.

Il s'agit donc de prouver que :

$$x_{M} - x_{O} = x_{M} = x_{B} - x_{A}$$
 et $y_{M} - y_{O} = y_{M} = y_{B} - y_{A}$

Or OMBA est un parallélogramme, donc [AM] et [OB] ont le même milieu K.

Comme *K* est le milieu de [*AM*], $2x_K = x_M + x_A$.

De plus, K est le milieu de [OB] donc

$$2x_{K} = x_{B} + x_{O} = x_{B} + 0 = x_{B}$$
.

On a donc $x_M + x_A = x_B$ et, par conséquent, $x_M = x_B - x_A$

On montre de même que $y_M = y_B - y_A$

Exemple

Soient A(3;-4) et B(5;-1), on a donc $x_B - x_A = 5 - 3 = 2$ et $y_B - y_A = -1 - (-4) = 3$ donc:

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

2) <u>Propriétés</u>

Propriétés:

- Deux vecteurs \overrightarrow{AB} et \overrightarrow{DC} sont égaux si, et seulement si leurs coordonnées sont égales.
- ABCD est un parallélogramme $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow x_B x_A = x_C x_D$ et $y_B y_A = y_C y_D$.

III. Somme de vecteurs

1) <u>Vecteur somme</u>

Définition:

Soit \vec{u} et \vec{v} deux vecteurs.

La somme des deux vecteurs \vec{u} et \vec{v} est le vecteur associé à la translation résultant de l'enchaînement des translations de vecteur \vec{u} et de vecteur \vec{v} .

En enchaînant ces deux translations, un point A a pour image le point B vérifiant $\overrightarrow{AB} = \overrightarrow{u}$ et le point B a pour image le point C avec $\overrightarrow{BC} = \overrightarrow{v}$.

Par définition, le point C est l'image du point A par la translation de vecteur $\vec{u} + \vec{v}$.

2) Relation de Chasles

Propriété :

Quels que soient les points A, B et C du plan, on a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Théorème:

Le plan est muni d'un repère (O; \vec{i} , \vec{j}).

Soit
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

La somme des vecteurs \vec{u} et \vec{v} est le vecteur $\vec{w} = \vec{u} + \vec{v}$ de coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Démonstration :

Soient
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On choisit un point $A(x_A; y_A)$ et les points $B(x_B; y_B)$ et

$$C(x_C; y_C)$$
 tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$.

On a:
$$x=x_B-x_A$$
 et $y=y_B-y_A$
 $x'=x_C-x_B$ et $y'=y_C-y_B$

On additionne les coordonnées de \vec{u} et \vec{v} :

$$x + x' = (x_B - x_A) + (x_C - x_B) = x_B - x_A + x_C - x_B = x_C - x_A$$

$$y + y' = (y_B - y_A) + (y_C - y_B) = y_B - y_A + y_C - y_B = y_C - y_A$$

On obtient les coordonnées du vecteur \overrightarrow{AC} , c'est à dire celles du vecteur $\overrightarrow{u}+\overrightarrow{v}$

Exemple:

Soit
$$\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 4 \\ 7 \end{pmatrix}$. $\vec{w} = \vec{u} + \vec{v}$ a pour coordonnées $\begin{pmatrix} 2+4 \\ -5+7 \end{pmatrix}$ soit $\vec{w} \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.

Règle du parallélogramme

Soit \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs de même origine A.

On a $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ si, et seulement si, D est le point tel que \overrightarrow{ABDC} soit un parallélogramme.

Démonstration :

• Si \overrightarrow{ABDC} est un parallélogramme on a $\overrightarrow{AC} = \overrightarrow{BD}$ En utilisant la relation de Chasles, on en déduit que : $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$

Réciproquement, si
$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$$
, comme $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$, alors $\overrightarrow{BD} = \overrightarrow{AC}$ et \overrightarrow{ABDC} est un

parallélogramme.

Propriétés:

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

3) Opposé d'un vecteur

 $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$, donc on peut définir le vecteur \overrightarrow{BA} comme l'opposé du vecteur \overrightarrow{AB} .

On écrit : $\overrightarrow{B}A = -\overrightarrow{A}B$

Définition:

- L'opposé du vecteur \vec{u} est le vecteur $-\vec{u}$.
- L'opposé du vecteur \overrightarrow{AB} est le vecteur $-\overrightarrow{AB} = \overrightarrow{BA}$.

5

Exemple:

Soit A(-2;4) et B(3;-2).

Le vecteur \overrightarrow{AB} a pour coordonnées :

$$x_{\overline{AB}} = x_B - x_A = 3 + 2 = 5$$
 et $y_{\overline{AB}} = y_B - y_A = -2 - 4 = -6$

donc $\overrightarrow{AB} \begin{pmatrix} 5 \\ -6 \end{pmatrix}$ et \overrightarrow{BA} a pour coordonnées $\begin{pmatrix} -5 \\ 6 \end{pmatrix}$.

<u>Propriété :</u>

Si une symétrie centrale de centre O transforme un point A en un point A' et un point B en un point B', alors $\overline{A'B'} = -\overline{AB}$

IV. Vecteurs colinéaires

Multiplication d'un vecteur par un nombre

Le plan est muni d'un repère $(O; \vec{i}, \vec{j})$.

Définition:

Soit $\vec{u} \mid x$ un vecteur et k un nombre réel.

Le produit du vecteur \vec{u} par le réel k est le vecteur k \vec{u} de coordonnées

Remarque:

Lorsque $k \neq 0$ et $\overrightarrow{AB} \neq \overrightarrow{0}$, le vecteur $k \overrightarrow{AB}$ est le vecteur \overrightarrow{CD} tel que :

 \overrightarrow{AB} et \overrightarrow{CD} ont la même direction : (AB)//(CD)

- Si k < 0 \overrightarrow{CD} et \overrightarrow{AB} sont de sens contraire $CD = (-k) \times AB$

Convention: Si k=0 ou si $\overrightarrow{AB} = \overrightarrow{0}$, on convient que $k \overrightarrow{AB} = \overrightarrow{0}$.

Propriété:

Si une homothétie de centre O et de rapport k transforme un point A en un point A' et un point B en un point B', alors $\overline{A'B'} = k \overline{AB}$

Règle de calculs 2)

Propriétés:

Pour tous vecteurs \vec{u} et \vec{v} et pour tous nombres réels k et k':

- $k(\vec{u}+\vec{v})=k\vec{u}+k\vec{v}$
- $(k+k')\vec{u} = k\vec{u} + k'\vec{u}$
- $k(k'\vec{u}) = (kk')\vec{u}$

Exemples:

- $3(\overrightarrow{A}B + \overrightarrow{E}F) = 3\overrightarrow{A}B + 3\overrightarrow{E}F$
- $2(\overrightarrow{AB} \overrightarrow{EF}) = 2\overrightarrow{AB} 2\overrightarrow{EF}$
- $2\overrightarrow{A}B 5\overrightarrow{A}B = (2-5)\overrightarrow{A}B = -3\overrightarrow{A}B$
- $-5(2\overrightarrow{AB}) = -10\overrightarrow{AB}$

3) Conséquence

Définition:

Deux vecteurs, non nuls, \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires lorsque \overrightarrow{AB} et \overrightarrow{CD} ont la même direction.

Théorème:

 \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires si, et seulement si, il existe un nombre k tel que $\overrightarrow{CD} = k \overrightarrow{AB}$.

Remarques:

• On a donc:

(AB) et (CD) sont des droites \Leftrightarrow \overrightarrow{AB} et \overrightarrow{CD} sont \Leftrightarrow Il existe un nombre k tel que colinéaires $\overrightarrow{CD} = k \overrightarrow{AB}$.

• Dire que trois points A, B, C distincts deux à deux sont alignés équivaut à dire qu'il existe un nombre k tel que $\overrightarrow{AC} = k \overrightarrow{AB}$

4) <u>Utilisation des coordonnées</u>

Dans un repère, les coordonnées de $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et celles de $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

La colinéarité des vecteurs \vec{u} et \vec{v} , non nuls, se traduit par l'existence d'un nombre k tel que $\vec{v} = k \vec{u}$, c'est-à-dire x' = kx et y' = ky.

Le tableau $\frac{x}{y} \frac{x'}{y'}$ est donc un tableau de proportionnalité

Théorème :

Les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont colinéaires si, et seulement si, xy' - x'y = 0.

Exemples:

- Les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -8 \\ 20 \end{pmatrix}$ sont colinéaires car $2 \times 20 (-8) \times (-5) = 40 40 = 0$.
- Les vecteurs $\vec{u} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ ne sont pas colinéaires car $(-3) \times 2 5 \times 4 = -6 20 = -26$.

7