Fundamentos de Algoritmos y Computabilidad

- * Autómatas con ϵ -transiciones
- * Equivalencia entre AFD y AFN-ε
- * Lenguajes regulares y autómatas finitos (construcción)

Autómatas con ε-transiciones

Considere los siguientes dos autómatas que aceptan ab* y (ab)* respectivamente

Autómatas con ε-transiciones

Suponga que se requiere diseñar un autómata que acepte $ab^* \cup (ab)^*$

Autómatas con ε-transiciones

Se pueden incluir ϵ -transiciones desde un nuevo punto inicial q_o a los puntos iniciales de los dos autómatas

Autómatas con ε-transiciones

Se pueden incluir ϵ -transiciones desde un nuevo punto inicial q_o a los puntos iniciales de los dos autómatas

Una ϵ -transición indica que la máquina puede cambiar de estado interno, sin consumir el símbolo de la cinta

• Suponga que se lee la cadena ab

• Se cambia de estado interno sin avanzar en la cinta

Autómatas con ε-transiciones

- · El autómata resultante es no determinista
- \bullet Aun cuando los autómatas fueran deterministas, las ϵ -transiciones generan uno no determinista

• ¿El autómata finito acepta o rechaza la cadena abab?

Incluso la decisión de aceptar la cadena vacía
 ε es no determinista

- 8
- 0
- ab
- b
- ab¹⁰

- **•** 8
- 0
- b
- ab

- 8
- \cdot a^{10}
- a¹⁰b
- ab¹⁰
- b¹⁰a

- **•** 8
- a
- b
- ab
- b¹⁰

Autómatas con ε -transiciones (AFN- ε)

Un AFN-ε es una colección de cinco elementos:

- Un alfabeto Σ
- Una colección finita de estados Q
- Un estado inicial q_o
- Una colección finita de estados de aceptación T
- Una relación de transición $\Delta:(Q\times(\Sigma\cup\{\epsilon\}))\rightarrow 2^Q$

Autómatas con ε -transiciones (AFN- ε)

Un AFN-ε es una colección de cinco elementos:

- Σ
- ·Q
- Un estado inicial
- T
- \triangle :(Qx($\Sigma \cup \{\epsilon\}$)) \rightarrow 2Q

Autómatas con ε -transiciones (AFN- ε)

Un AFN-ε es una colección de cinco elementos:

•
$$\Sigma = \{a\}$$

•
$$Q = \{q_0, q_1\}$$

Un estado inicial q₀

$$\cdot T = \{q_1\}$$

•
$$\triangle:(\mathbb{Q}\times(\Sigma\cup\{\varepsilon\}))\rightarrow 2^{\mathbb{Q}}$$

Δ	a	3
q 0		
q_1		

ε representa la transición sin consumir símbolo en la cinta

Autómatas con ε -transiciones (AFN- ε)

Un AFN-ε es una colección de cinco elementos:

•
$$\Sigma = \{a\}$$

•
$$Q = \{q_0, q_1\}$$

• Un estado inicial qo

$$\cdot T = \{q_1\}$$

• $\triangle:(\mathbb{Q}\times(\Sigma\cup\{\varepsilon\}))\rightarrow 2^{\mathbb{Q}}$

Δ	α	3
q 0	$\{q_0,q_1\}$	$\{q_0,q_1\}$
q_1	Ø	{q ₁ }

Complete la relación de transición:

- Σ ={a,b}
- $Q = \{q_0, q_1, q_2\}$
- Estado inicial qo
- $T = \{q_0\}$
- $\Delta: Qx(\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$

Δ	α	Ь	3
q 0			
q_1			
q ₂			

- $\Sigma = \{a,b\}$
- Q= $\{q_0, q_1, q_2\}$
- Estado inicial qo
- $T=\{q_0\}$
- $\Delta: Qx(\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$

Δ	a	Ь	3
q 0	{q ₁ }	Ø	{q ₀ }
q_1	Ø	${q_0,q_2}$	{q ₁ }
q ₂	$\{q_0,q_1\}$	Ø	${q_0,q_2}$

Complete la relación de transición para el siguiente AFN-E

Δ	α	Ь	3
q 0			
q_1			
q ₂			
q ₃			
q ₄			
q ₅			

Δ	a	Ь	3
q 0	$\{q_1, q_4\}$	Ø	{q _o }
q_1	Ø	$\{q_0, q_2, q_5\}$	${q_1,q_4}$
q ₂	{q ₃ }	{q ₄ }	{q ₂ }
q ₃	Ø	Ø	{q ₃ }
q ₄	Ø	$\{q_0, q_5\}$	{q ₄ }
q ₅	{q ₀ }	Ø	{q ₅ }

Complete la relación de transición para el siguiente AFN-E

Δ	α	Ь	3
q 0			
q_1			
q ₂			
q ₃			
q ₄			

Δ	α	Ь	3
q 0	{q ₃ }	Ø	{q ₀ ,q ₁ ,q ₂ }
q_1	Ø	Ø	{q ₁ ,q ₂ }
q ₂	Ø	Ø	{q ₂ }
q ₃	Ø	{q ₁ ,q ₂ ,q ₄ }	{q ₃ }
94	Ø	{q ₀ ,q ₁ ,q ₂ }	{q ₁ ,q ₂ ,q ₄ }

Δ	α	Ь	3
q 0			
q_1			
q ₂			
q ₃			
q ₄			
q ₅			

Δ	a	Ь
q 0		
q_1		
q ₂		
q ₃		
q ₄		
q ₅		

Δ	α	Ь	3
q 0			
q_1			
q ₂			
q ₃			
q ₄			
q ₅			

Δ	α	Ь
q 0	1	-
q_1		
q ₂		
q ₃		
94		
q ₅		

Δ	ď	ь	ε
q 0			
q_1			
q ₂			
q ₃			
q ₄			
q ₅			

Δ	a	Ь
q 0	$\{q_1,q_3,q_4,q_5\}$	{q ₂ }
q_1	{q ₄ ,q ₅ }	{q ₂ }
q ₂	Ø	Ø
q ₃	{q ₄ ,q ₅ }	{q ₂ ,q ₄ ,q ₅ }
q ₄	Ø	Ø
q ₅	Ø	Ø

Teorema. Dado un AFN- ϵ M, se puede construir un AFN M' equivalente a M

Para encontrar $\Delta(q_0,a)$ se debe tener en cuenta:

- Estados a donde se puede llegar consumiendo la a. $\{q_3\}$
- Estados a donde se puede llegar primero con ϵ -transiciones y luego consumiendo la a. $\{q_4\}$
- Estados a donde se puede llegar después de haber consumido la a, seguido de una o varias ε -transiciones. $\{q_1,q_5\}$

Para convertir un AFN- ϵ a un AFN se utilizan los siguientes conceptos:

- ε -cerradura de q, ε -c(q)
- Estados directos, $d(q, \sigma)$

ε-cerradura de q

• Para todo estado $q \in \mathbb{Q}$, se define la ε -cerradura de q, denotada como ε -c(q), de la siguiente forma:

 ϵ -c(q)={p | p es un estado accesible desde q sin consumir ningún símbolo de la entrada}

ε-cerradura de q

- Para todo estado $q \in \mathbb{Q}$, se define la ε -cerradura de q, denotada como ε -c(q), de la siguiente forma:
 - ϵ -c(q)={p | p es un estado accesible desde q sin consumir ningún símbolo de la entrada}

$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_2 }

ε-cerradura de q

- Para todo estado $q \in \mathbb{Q}$, se define la ε -cerradura de q, denotada como ε -c(q), de la siguiente forma:
 - ϵ -c(q)={p | p es un estado accesible desde q sin consumir ningún símbolo de la entrada}

$$\varepsilon$$
-c(q₀)={q₀,q₁,q₂}
 ε -c(q₁)=
 ε -c(q₂)=
 ε -c(q₃)=
 ε -c(q₄)=

ε-cerradura de q

- Para todo estado $q \in \mathbb{Q}$, se define la ε -cerradura de q, denotada como ε -c(q), de la siguiente forma:
 - ϵ -c(q)={p | p es un estado accesible desde q sin consumir ningún símbolo de la entrada}

$$\varepsilon$$
-c(q_0)={ q_0 , q_1 , q_2 }
 ε -c(q_1)={ q_1 , q_2 }
 ε -c(q_2)={ q_2 }
 ε -c(q_3)={ q_3 }
 ε -c(q_4)={ q_1 , q_2 , q_4 }

ε-cerradura de q

• Para todo estado $q \in \mathbb{Q}$, se define la ε -cerradura de q, denotada como ε -c(q), de la siguiente forma:

 ϵ -c(q)={p | p es un estado accesible desde q sin consumir ningún símbolo de la entrada}

 ϵ -c(q) permite conocer los estados a donde se puede llegar desde q, por medio de ϵ -transiciones (sin consumir símbolo)

Estados directos $d(q, \sigma)$

• Para $q \in Q$ y $\sigma \in \Sigma$ se define

Estados directos $d(q, \sigma)$

• Para $q \in Q$ y $\sigma \in \Sigma$ se define

$$d(q_0,a)=$$

Estados directos $d(q, \sigma)$

• Para $q \in Q$ y $\sigma \in \Sigma$ se define

$$d(q_0,a)=\{q_3\}$$

 $d(q_0,b)=\emptyset$
 $d(q_3,a)=$
 $d(q_3,b)=$

Estados directos $d(q, \sigma)$

• Para $q \in \mathbb{Q}$ y $\sigma \in \Sigma$ se define

$$d(q_0,a)=\{q_3\}$$

 $d(q_0,b)=\emptyset$
 $d(q_3,a)=\emptyset$
 $d(q_3,b)=\{q_4\}$

Estados directos $d(q, \sigma)$

• Se puede aplicar sobre conjuntos:

$$d(\{q_1,q_2,...,q_i\},\sigma)=d(q_1,\sigma)\cup d(q_2,\sigma)\cup...d(q_i,\sigma)$$

$$d({q_3,q_4},a)=$$

 $d({q_3,q_4},b)=$
 $d({q_0,q_4},a)=$
 $d({q_0,q_4},b)=$

Estados directos $d(q, \sigma)$

Se puede aplicar sobre conjuntos:

$$d(\{q_1,q_2,...,q_i\},\sigma)=d(q_1,\sigma)\cup d(q_2,\sigma)\cup...d(q_i,\sigma)$$

$$d({q_3,q_4},a)=\emptyset$$

 $d({q_3,q_4},b)={q_4}\cup{q_0}={q_0,q_4}$
 $d({q_0,q_4},a)=$
 $d({q_0,q_4},b)=$

Estados directos $d(q, \sigma)$

Se puede aplicar sobre conjuntos:

$$d(\{q_1,q_2,...,q_i\},\sigma)=d(q_1,\sigma)\cup d(q_2,\sigma)\cup...d(q_i,\sigma)$$

$$d(\{q_3,q_4\},\alpha)=\emptyset$$

$$d(\{q_3,q_4\},b)=\{q_4\}\cup\{q_0\}=\{q_0,q_4\}$$

$$d(\{q_0,q_4\},\alpha)=\{q_3\}$$

$$d(\{q_0,q_4\},b)=\{q_0\}$$

Estados directos $d(q, \sigma)$

• Se puede aplicar sobre conjuntos:

$$d(\lbrace q_1,q_2,...,q_i\rbrace,\sigma)=d(q_1,\sigma)\cup d(q_2,\sigma)\cup...d(q_i,\sigma)$$

d(q,σ) permite conocer los estados a donde se puede llegar desde q por medio de una transición directa σ

• Interprete el resultado de la operación ε - $c(d(q,\sigma))$

• ϵ -c(d(q, σ)) es el conjunto de estados accesibles desde q, primero mediante una transición con σ y después mediante una o más ϵ -transiciones

$$\varepsilon$$
-c(d(q, σ))={q₁,q₂,q₃,q₇}

• ϵ -c(d(q, σ)) es el conjunto de estados accesibles desde q, primero mediante una transición con σ y después mediante una o más ϵ -transiciones

$$\varepsilon$$
-c(d(q,a})=

• ϵ -c(d(q, σ)) es el conjunto de estados accesibles desde q, primero mediante una transición con σ y después mediante una o más ϵ -transiciones

$$d(q, a) = \{q_1, q_3\}$$

\varepsilon - c(d(q, a)) = \{q_1, q_2, q_3, q_4\}

• Interprete el resultado de la operación $d(\epsilon-c(q),\sigma)$

• $d(\epsilon-c(q),\sigma)$ es el conjunto de estados accesibles desde q, tomando primero una o más ϵ -transiciones y luego una transición con σ

$$d(\varepsilon-c(q),\sigma)=d(\{q,q_1,q_4\},\sigma)$$

= $\{q_2,q_5\}$

• $d(\epsilon-c(q),\sigma)$ es el conjunto de estados accesibles desde q, tomando primero una o más ϵ -transiciones y luego una transición con σ

$$d(\varepsilon-c(q),a)=$$

• $d(\epsilon-c(q),\sigma)$ es el conjunto de estados accesibles desde q, tomando primero una o más ϵ -transiciones y luego una transición con σ

$$\varepsilon$$
-c(q)={q,q₄}
d(ε -c(q),a)={q₁,q₃,q₅}

• Interprete el resultado de la operación ε -c(d(ε -c(q), σ))

• ϵ -c(d(ϵ -c(q), σ)) es el conjunto de estados accesibles desde q, tomando primero una o más ϵ -transiciones, luego una transición con σ y luego una o más ϵ -transiciones

$$\varepsilon$$
-c(d(ε -c(q), σ))= ε -c({q₂,q₅})
={q₂,q₃,q₅,q₆}

• ϵ -c(d(ϵ -c(q), σ)) es el conjunto de estados accesibles desde q, tomando primero una o más ϵ -transiciones, luego una transición con σ y luego una o más ϵ -transiciones

$$\varepsilon$$
-c(d(ε -c(q),a))=

• ϵ -c(d(ϵ -c(q), σ)) es el conjunto de estados accesibles desde q, tomando primero una o más ϵ -transiciones, luego una transición con σ y luego una o más ϵ -transiciones

- ε -c(q_0)
- $d(\varepsilon-c(q_0),a)$
- ε -c(d(ε -c(q_0),a))

- ε - $c(q_0)=\{q_0,q_1,q_5\}$
- $d(\varepsilon c(q_0), a) = \{q_9, q_2, q_6\}$
- ε -c(d(ε -c(q_0),a))={ q_9,q_2,q_6,q_7 }

- ε -c(q_0)={ q_0, q_1, q_5 }
- $d(\varepsilon c(q_0), a) = \{q_9, q_2, q_6\}$

 $\Delta(q_0,a)=\varepsilon-c(d(\varepsilon-c(q_0),a))$ $=\{q_9,q_2,q_6,q_7\}$

- ε - $c(q_0)$ =
- $d(\varepsilon-c(q_0),a)=$
- ε -c(d(ε -c(q_0),a))=

- ε - $c(q_0)=\{q_0,q_1\}$
- $d(\varepsilon c(q_0), a) = \{q_3, q_4\}$
- ε -c(d(ε -c(q_0),a))={ q_1,q_3,q_4,q_5 }

Por lo tanto, $\Delta(q_0, a) = \{q_1, q_3, q_4, q_5\}$

- ε - $c(q_0)$ =
- $d(\epsilon-c(q_0),b)=$
- ε -c(d(ε -c(q_0),b))=

- ε - $c(q_0)=\{q_0,q_1\}$
- $d(\epsilon c(q_0), b) = \{q_2\}$
- ε -c(d(ε -c(q_0),b))={ q_2 }

Por lo tanto, $\Delta(q_0,b)=\{q_2\}$

- ε - $c(q_1)$ =
- $d(\varepsilon-c(q_1),a)=$
- ε -c(d(ε -c(q_1),a))=

- ε - $c(q_1)=\{q_1\}$
- $d(\varepsilon-c(q_1),\alpha)=\{q_4\}$
- ε -c(d(ε -c(q_1), α))={ q_4 , q_5 }

Por lo tanto, $\Delta(q_1,a)=\{q_4,q_5\}$

- ε - $c(q_1)$ =
- $d(\varepsilon-c(q_1),b)=$
- ε -c(d(ε -c(q_1),b))=

- ε - $c(q_1)=\{q_1\}$
- $d(\epsilon c(q_1), b) = \{q_2\}$
- ε -c(d(ε -c(q_1),b))={ q_2 }

Por lo tanto, $\Delta(q_1,b)=\{q_2\}$

- ε -c(q₂)=
- $d(\varepsilon-c(q_2),a)=$
- ε -c(d(ε -c(q_2),a))=

- ε -c(q_2)={ q_2 }
- $d(\varepsilon-c(q_2),a)=\emptyset$
- ε -c(d(ε -c(q_2),a))= \emptyset

Por lo tanto, $\Delta(q_2,a)=\emptyset$ y también se cumple que $\Delta(q_2,b)=\emptyset$

- ε -c(q₃)=
- $d(\varepsilon-c(q_3),a)=$
- ε -c(d(ε -c(q_3),a))=

- ε - $c(q_3)=\{q_1,q_3\}$
- $d(\epsilon c(q_3), a) = \{q_4\}$
- ε -c(d(ε -c(q_3), α))={ q_4 , q_5 }

Por lo tanto, $\Delta(q_3,a)=\{q_4,q_5\}$

- ε -c(q₃)=
- $d(\epsilon-c(q_3),b)=$
- ε -c(d(ε -c(q_3),b))=

- ε - $c(q_3)=\{q_1,q_3\}$
- $d(\varepsilon-c(q_3),b)=\{q_2,q_4\}$
- ε -c(d(ε -c(q_3),b))={ q_2,q_4,q_5 }

Por lo tanto, $\Delta(q_3,b)=\{q_2,q_4,q_5\}$

- ϵ -c(q₄)=
- $d(\epsilon-c(q_4),a)=$
- ε -c(d(ε -c(q_4),a))=

- ε - $c(q_4)=\{q_4,q_5\}$
- $d(\varepsilon-c(q_4),a)=\emptyset$
- ε -c(d(ε -c(q_4),a))= \emptyset

Por lo tanto, $\Delta(q_4,a)=\emptyset$ y también se cumple que $\Delta(q_4,b)=\emptyset$

- ε - $c(q_5)$ = $\{q_5\}$
- $d(\varepsilon-c(q_5),a)=\emptyset$
- ε -c(d(ε -c(q_5), α))= \emptyset

Por lo tanto, $\Delta(q_5,a)=\emptyset$ y también se cumple que $\Delta(q_5,b)=\emptyset$

La relación de transición queda definida de la siguiente manera:

Δ	a	Ь
q 0	{q ₁ ,q ₃ ,q ₄ ,q ₅ }	{q ₂ }
q_1	{q ₄ ,q ₅ }	{q ₂ }
q ₂	Ø	Ø
q ₃	{q ₄ ,q ₅ }	$\{q_2,q_4,q_5\}$
q ₄	Ø	Ø
q ₅	Ø	Ø

Para conocer los estados de aceptación se tienen en cuenta las ϵ -transiciones

 q_3 es de aceptación, pero si el cómputo de una cadena termina en los estados q_2 y q_5 se debe aceptar

Para conocer los estados de aceptación se tienen en cuenta las ϵ -transiciones

$$\varepsilon$$
-c(q₀)={q₀,q₁,q₄}
 ε -c(q₁)={q₁,q₄}
 ε -c(q₂)={q₂,q₃,q₆}
 ε -c(q₃)={q₃,q₆}
 ε -c(q₄)={q₄}
 ε -c(q₅)={q₃,q₅,q₆}
 ε -c(q₆)={q₆}

Para conocer los estados de aceptación se tienen en cuenta las ϵ -transiciones

$$\varepsilon$$
-c(q₀)={q₀,q₁,q₄}
 ε -c(q₁)={q₁,q₄}
 ε -c(q₂)={q₂,q₃,q₆}
 ε -c(q₃)={q₃,q₆}
 ε -c(q₄)={q₄}
 ε -c(q₅)={q₃,q₅,q₆}
 ε -c(q₆)={q₆}

Los estados de aceptación serán aquellos en cuya ϵ -cerradura está q_3 , en este caso $T'=\{q_2,q_3,q_5\}$

Para conocer los estados de aceptación se tienen en cuenta las ϵ -transiciones

• Se obtiene el conjunto $\{q|\epsilon-c(q)\cap T\neq\emptyset\}$, los nodos de aceptación serán ahora $T'=T\cup\{q|\epsilon-c(q)\cap T\neq\emptyset\}$

Para conocer los estados de aceptación se hace lo siguiente:

$$\varepsilon$$
-c(q_0)={ q_0 , q_1 }
 ε -c(q_1)={ q_1 }
 ε -c(q_2)={ q_2 }
 ε -c(q_3)={ q_1 , q_3 }
 ε -c(q_4)={ q_4 , q_5 }
 ε -c(q_5)={ q_4 , q_5 }

• Se obtiene el conjunto $\{q|\epsilon-c(q)\cap T\neq\emptyset\}$, los nodos de aceptación serán ahora $T'=T\cup\{q|\epsilon-c(q)\cap T\neq\emptyset\}$

Para conocer los estados de aceptación se hace lo siguiente:

$$\varepsilon$$
-c(q₀)={q₀,q₁}
 ε -c(q₁)={q₁}
 ε -c(q₂)={q₂}
 ε -c(q₃)={q₁,q₃}
 ε -c(q₄)={q₄,q₅}
 ε -c(q₅)={q₄,q₅}

• En este caso $T'=\{q_2\}$

Δ	α	Ь
q o	{q ₁ ,q ₃ ,q ₄ ,q ₅ }	{q ₂ }
q_1	{q ₄ ,q ₅ }	{q ₂ }
q ₂	Ø	Ø
q ₃	{q ₄ ,q ₅ }	$\{q_2,q_4,q_5\}$
q ₄	Ø	Ø
q ₅	Ø	Ø

90

q₁

q₂

q₃ •

● 94

• **9**5

Δ	a	Ь
q 0	{q ₁ ,q ₃ ,q ₄ ,q ₅ }	{q ₂ }
q_1	{q ₄ ,q ₅ }	{q ₂ }
q ₂	Ø	Ø
q ₃	{q ₄ ,q ₅ }	$\{q_2,q_4,q_5\}$
q ₄	Ø	Ø
q ₅	Ø	Ø

• Diseñe un AFN sin ϵ -transiciones equivalente al que se muestra a continuación:

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_4 }

•
$$d(\varepsilon - c(q_0), a) = \{q_2, q_3\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_0),a))={ q_1 , q_2 , q_3 , q_4 }

$$\underline{\Delta(q_0,a)} = \{q_1,q_2,q_3,q_4\}$$

•
$$\varepsilon$$
- $c(q_1)=\{q_1\}$

•
$$d(\epsilon-c(q_1),\alpha)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),a))={ q_2 }

$$\Delta(q_1,a)=\{q_2\}$$

•
$$\varepsilon$$
-c(q₂)={q₂}

•
$$d(\varepsilon-c(q_2),a)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_2),a))= \emptyset

$$\Delta(q_2,a)=\emptyset$$

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_4 }

•
$$d(\epsilon - c(q_0), b) = \{q_1\}$$

•
$$\varepsilon$$
-c(d(ε -c(q₀),b))={q₁}

$\Delta(q_0,b)=\{q_1\}$

•
$$\varepsilon$$
- $c(q_1)=\{q_1\}$

•
$$d(\varepsilon-c(q_1),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),b))= \emptyset

$\Delta(q_1,b)=\emptyset$

•
$$\varepsilon$$
-c(q_2)={ q_2 }

•
$$d(\varepsilon-c(q_2),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q₂),b))= \emptyset

$$\Delta(q_2,b)=\emptyset$$

•
$$\varepsilon$$
-c(q_3)={ q_1,q_3,q_4 }

•
$$d(\varepsilon-c(q_3),a)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_3),a))={ q_2 }

$\Delta(q_3,a)=\{q_2\}$

•
$$\varepsilon$$
-c(q₄)={q₁,q₄}

•
$$d(\varepsilon-c(q_4),a)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_4), a))={ q_2 }

$$\Delta(q_4,a)=\{q_2\}$$

•
$$\varepsilon$$
-c(q_3)={ q_1,q_3,q_4 }

•
$$d(\varepsilon-c(q_3),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_3),b))= \varnothing

$$\Delta(q_3,b)=\emptyset$$

•
$$\varepsilon$$
-c(q_4)={ q_1,q_4 }

•
$$d(\varepsilon-c(q_4),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_4),b))= \varnothing

$$\Delta(q_4,b)=\emptyset$$

Para conocer los estados de aceptación T' se tiene:

$$\epsilon - c(q_0) = \{q_0, q_1, q_4\}$$

 $\epsilon - c(q_1) = \{q_1\}$
 $\epsilon - c(q_2) = \{q_2\}$
 $\epsilon - c(q_3) = \{q_1, q_3, q_4\}$
 $\epsilon - c(q_4) = \{q_1, q_4\}$
Por lo tanto T' = $T \cup \{q \mid \epsilon - c(q) \cap T \neq \emptyset\}$
 $= \{q_2\} \cup \emptyset = \{q_2\}$

Δ	a	Ь
q 0	{q ₁ ,q ₂ ,q ₃ ,q ₄ }	{q ₁ }
q ₁	{q ₂ }	Ø
q ₂	Ø	Ø
q ₃	{q ₂ }	Ø
94	{q ₂ }	Ø

• Diseñe un AFN sin ϵ -transiciones equivalente al que se muestra a continuación:

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_2 }

•
$$d(\varepsilon-c(q_0),a)=\{q_0\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_0),a))={ q_0 , q_1 , q_2 }

$\underline{\Delta(q_0, a) = \{q_0, q_1, q_2\}}$

•
$$\varepsilon$$
- $c(q_1)=\{q_1,q_2\}$

•
$$d(\varepsilon-c(q_1),a)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),a))= \emptyset

$\Delta(q_1,a)=\emptyset$

•
$$\varepsilon$$
-c(q_2)={ q_2 }

•
$$d(\varepsilon-c(q_2),a)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_2),a))= \varnothing

$$\Delta(q_2,a)=\emptyset$$

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_2 }

•
$$d(\epsilon - c(q_0), b) = \{q_1\}$$

•
$$\varepsilon$$
-c(d(ε -c(q₀),b))={q₁,q₂}

$\Delta(q_0,b)=\{q_1,q_2\}$

•
$$\varepsilon$$
-c(q_1)={ q_1,q_2 }

•
$$d(\epsilon - c(q_1), b) = \{q_1\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),b))={ q_1,q_2 }

$\Delta(\underline{q_1},b)=\{\underline{q_1},\underline{q_2}\}$

•
$$\varepsilon$$
-c(q_2)={ q_2 }

•
$$d(\varepsilon-c(q_2),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_2),b))= \varnothing

$$\Delta(\mathbf{q}_2,\mathbf{b})=\emptyset$$

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_2 }

•
$$d(\epsilon - c(q_0), c) = \{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q₀),c))={q₂}

$\Delta(\mathbf{q}_0,\mathbf{c})=\{\mathbf{q}_2\}$

•
$$\varepsilon$$
-c(q_1)={ q_1,q_2 }

•
$$d(\varepsilon-c(q_1),c)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),c))={ q_2 }

$$\Delta(q_1,c)=\{q_2\}$$

•
$$\varepsilon$$
-c(q_2)={ q_2 }

•
$$d(\varepsilon-c(q_2),c)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_2),c))={ q_2 }

$\Delta(\mathbf{q}_2,\mathbf{c})=\{\mathbf{q}_2\}$

Para conocer los estados de aceptación T' se tiene:

$$\epsilon - c(q_0) = \{q_0, q_1, q_2\}$$
 $\epsilon - c(q_1) = \{q_1, q_2\}$
 $\epsilon - c(q_2) = \{q_2\}$
Por lo tanto T' = $T \cup \{q \mid \epsilon - c(q) \cap T \neq \emptyset\}$
 $= \{q_0, q_1, q_2\}$

Δ	α	Ь	С
q o	$\{q_0,q_1,q_2\}$	{q ₁ ,q ₂ }	{q ₂ }
q_1	Ø	{q ₁ ,q ₂ }	{q ₂ }
q ₂	Ø	Ø	{q ₂ }

• Diseñe un AFN sin ϵ -transiciones equivalente al que se muestra a continuación:

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1 }

•
$$d(\varepsilon-c(q_0),a)=\{q_0,q_2,q_3\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_0),a))={ q_0 , q_1 , q_2 , q_3 }

$\Delta(q_0,\alpha)=\{q_0,q_1,q_2,q_3\}$

•
$$\varepsilon$$
-c(q_1)={ q_1 }

•
$$d(\epsilon - c(q_1), a) = \{q_2, q_3\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),a))={ q_2 , q_3 }

$$\Delta(q_1,a)=\{q_2,q_3\}$$

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1 }

•
$$d(\varepsilon-c(q_0),b)=\{q_1,q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_0),b))={ q_1,q_2,q_3 }

$\Delta(q_0,b)=\{q_1,q_2,q_3\}$

•
$$\varepsilon$$
- $c(q_1)=\{q_1,q_2\}$

•
$$d(\varepsilon-c(q_1),b)=\{q_1,q_2,q_3\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),b))={ q_2 }

$\Delta(q_1,b)=\{q_1,q_2,q_3\}$

•
$$\varepsilon$$
-c(q_2)={ q_2,q_3 }

•
$$d(\varepsilon-c(q_2),a)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_2),a))= \emptyset

$\Delta(q_2,a)=\emptyset$

•
$$\varepsilon$$
-c(q_3)={ q_3 }

•
$$d(\varepsilon-c(q_3),a)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_3),a))= \emptyset

$$\Delta(q_3,a)=\varnothing$$

•
$$\varepsilon$$
-c(q_2)={ q_2,q_3 }

•
$$d(\varepsilon-c(q_2),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q₂),b))= \emptyset

$\Delta(q_2,b)=\emptyset$

•
$$\varepsilon$$
- $c(q_3)=\{q_3\}$

•
$$d(\varepsilon-c(q_3),b)=\emptyset$$

•
$$\varepsilon$$
-c(d(ε -c(q_3),b))= \emptyset

$$\Delta(q_3,b)=\emptyset$$

· Para conocer los estados de aceptación T' se tiene:

$$\epsilon - c(q_0) = \{q_0, q_1\}$$
 $\epsilon - c(q_1) = \{q_1\}$
 $\epsilon - c(q_2) = \{q_2, q_3\}$
 $\epsilon - c(q_3) = \{q_3\}$
Por lo tanto T' = $T \cup \{q \mid \epsilon - c(q) \cap T \neq \emptyset\}$
 $= \{q_2, q_3\}$

Δ	α	Ь
q 0	$\{q_0, q_1, q_2, q_3\}$	{q ₁ ,q ₂ ,q ₃ }
q_1	{q ₂ ,q ₃ }	{q ₂ }
q ₂	Ø	Ø
q ₃	Ø	Ø

• Diseñe un AFN sin ϵ -transiciones equivalente al que se muestra a continuación:

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_2,q_3,q_4 }

•
$$d(\varepsilon-c(q_0), a) = \{q_1, q_2, q_5\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_0), α))={ q_1 , q_2 , q_5 }

$\Delta(\underline{q}_0,\underline{\alpha}) = \{\underline{q}_1,\underline{q}_2,\underline{q}_5\}$

•
$$\varepsilon$$
-c(q_1)={ q_1,q_2 }

•
$$d(\varepsilon - c(q_1), a) = \{q_1, q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1), α))={ q_1 , q_2 }

$$\Delta(q_1,a)=\{q_1,q_2\}$$

•
$$\varepsilon$$
-c(q_0)={ q_0,q_1,q_2,q_3,q_4 }

•
$$d(\varepsilon - c(q_0), b) = \{q_2, q_3\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_0),b))={ q_1,q_2,q_3,q_4 }

$\Delta(q_0,b)=\{q_1,q_2,q_3,q_4\}$

•
$$\varepsilon$$
- $c(q_1)=\{q_1,q_2\}$

•
$$d(\epsilon - c(q_1), b) = \{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_1),b))={ q_2 }

$\Delta(q_1,b)=\{q_2\}$

•
$$\varepsilon$$
-c(q_2)={ q_2 }

•
$$d(\varepsilon-c(q_2),a)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_2),a))={ q_2 }

$\Delta(q_2,a)=\{q_2\}$

- ε -c(q_3)={ q_1,q_2,q_3,q_4 }
- $d(\varepsilon-c(q_3), \alpha)=\{q_1, q_2, q_5\}$
- ε -c(d(ε -c(q_3), α))={ q_1 , q_2 , q_5 }

$\Delta(q_3,\alpha)=\{q_1,q_2,q_5\}$

•
$$\varepsilon$$
- $c(q_2)$ = $\{q_2\}$

•
$$d(\varepsilon-c(q_2),b)=\{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q₂),b))={q₂}

$\Delta(q_2,b)=\{q_2\}$

•
$$\varepsilon$$
-c(q_3)={ q_1,q_2,q_3,q_4 }

•
$$d(\varepsilon-c(q_3),b)=\{q_2,q_3\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_3),b))={ q_1,q_2,q_3,q_4 }

$$\Delta(q_3,b)=\{q_1,q_2,q_3,q_4\}$$

•
$$\varepsilon$$
-c(q₄)={q₁,q₂,q₄}

•
$$d(\varepsilon-c(q_4),a)=\{q_1,q_2,q_5\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_4), α))={ q_1 , q_2 , q_5 }

$\Delta(q_4,\alpha)=\{q_1,q_2,q_5\}$

•
$$\varepsilon$$
-c(q_5)={ q_5 }

•
$$d(\varepsilon-c(q_5),a)=\{q_5\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_5),a))={ q_5 }

$$\Delta(q_5, \alpha) = \{q_5\}$$

•
$$\varepsilon$$
-c(q₄)={q₁,q₂,q₄}

•
$$d(\epsilon - c(q_4), b) = \{q_2\}$$

•
$$\varepsilon$$
-c(d(ε -c(q₄),b))={q₂}

$\Delta(q_4,b)=\{q_2\}$

•
$$\varepsilon$$
-c(q_5)={ q_5 }

•
$$d(\epsilon - c(q_5), b) = \{q_1\}$$

•
$$\varepsilon$$
-c(d(ε -c(q_5),b))={ q_1,q_2 }

$$\Delta(q_5,b)=\{q_1,q_2\}$$

· Para conocer los estados de aceptación T' se tiene:

$$\epsilon$$
-c(q_0)={ q_0 , q_1 , q_2 , q_3 , q_4 }
 ϵ -c(q_1)={ q_1 , q_2 }
 ϵ -c(q_2)={ q_2 }
 ϵ -c(q_3)={ q_1 , q_2 , q_3 , q_4 }
 ϵ -c(q_4)={ q_1 , q_2 , q_4 }
 ϵ -c(q_5)={ q_5 }
Por lo tanto T' = T \cup { q | ϵ -c(q) \cap T $\neq\emptyset$ }
= { q_0 , q_1 , q_2 , q_3 , q_4 , q_5 }

Δ	α	Ь
q 0	{q ₁ ,q ₂ ,q ₅ }	{q ₁ ,q ₂ ,q ₃ ,q ₄ }
q_1	{q ₁ ,q ₂ }	{q ₂ }
\mathbf{q}_2	{q ₂ }	{q ₂ }
q ₃	{q ₁ ,q ₂ ,q ₅ }	{q ₁ ,q ₂ ,q ₃ ,q ₄ }
q ₄	{q ₁ ,q ₂ ,q ₅ }	{q ₂ }
q ₅	{q ₅ }	{q ₁ ,q ₂ }

Teorema. Para toda expresión regular R se puede construir un AFN- ϵ M tal que L(R)=L(M)

Se prueba que dada la definición de lenguaje regular se puede construir un autómata finito

- \varnothing es un lenguaje regular
- $\{\epsilon\}$ es un lenguaje regular
- Para todo $a \in \Sigma$, $\{a\}$ es un lenguaje regular
- Si A y B son lenguajes regulares, entonces $A \cup B$, $A \cdot B$ y A^* son lenguajes regulares
- Ningún otro lenguaje es regular

Autómata cuyo lenguaje aceptado es la cadena vacía, $\{\epsilon\}$

Autómata cuyo lenguaje es la cadena a, {a}

Autómata que acepta R

Autómata que acepta S

Autómata que acepta R∪S

Autómata que acepta R

Autómata que acepta S

Autómata que acepta R∪S

Construya un autómata que acepte aub

Autómata que acepta a

Autómata que acepta b

Autómata que acepta aub

Autómata que acepta R.S

Autómata que acepta R

Autómata que acepta S

Autómata que acepta R.S

Construya un autómata que acepte (a∪b)·c

Autómata que acepta aub

Autómata que acepta c

Autómata que acepta (aUb)·c

Construir un autómata para cada una de las siguientes expresiones regulares:

- ab∪a
- (a∪b)(a∪b)
- $a(a \cup b)b$

Autómata que acepta R

Autómata que acepta R*

Autómata que acepta R

Autómata que acepta R*

Construya un autómata que acepte a*

Autómata que acepta a

Autómata que acepta R*

Construir el autómata que reconoce abuca

Construir el autómata que reconoce abuca

Autómata que acepta ab Autómata que acepta ca

Autómata que acepta abuca

Construir el autómata que reconoce a*b\b*a

Construir el autómata que reconoce a*b\b*a

Autómata que acepta a*

Autómata que acepta b*

Construir el autómata que reconoce a*b\b*a

Autómata que acepta a*

Autómata que acepta b*

Autómata que acepta a*b

Autómata que acepta b*a

Construir el autómata que reconoce a*b\b*a

Autómata que acepta a*b\b*a

Construir el autómata que reconoce (ab∪ba)*

Construir el autómata que reconoce (ab∪ba)*

Autómata que acepta (abuba)

Autómata que acepta (abuba)

Autómata que acepta (ab∪ba)*

Construir el autómata que reconoce (ab)(ab)*∪b* mostrando la construcción de los autómatas que aceptan los lenguajes dados por las siguientes expresiones regulares:

- 0
- b
- ab
- (ab)*
- b*
- (ab)(ab)*
- (ab)(ab)*∪b*