Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних

циклічних алгоритмів»

Варіант 3

Виконав	студент	<u>III-15, Борисик Владислав Тарасович</u>
	• • •	(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
	_	(прізвише, ім'я, по батькові)

Лабораторна робота №3 Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 3

Задача

3 точністю $\varepsilon = 10^{-5}$ обчислити:

$$s = 1 - \frac{x^2 + 1}{3} + \frac{x^4 + 1}{5} - \dots + (-1)^n \cdot \frac{x^{2n} + 1}{2^n + 1} + \dots$$
, $e^{0 < x < 1}$.

Постановка задачі

За умовою задачі потрібно знайти значення s в залежності від значення x. При чому, значення s потрібно знайти з точністю $\varepsilon = 10^{\circ}(-5)$. Нам задана формула, за якою ми обчислюємо значення s.

Результатом розв'язку ϵ значення s.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Значення х	Дійсний	x	Початкове дане
Значення ѕ	Дійсний	S	Результат
Лічильник ітерацій	Цілий	counter	Проміжне дане
Значення умови	Дійсний	condition	Проміжне дане
Значення епсилон	Дійсний	eps	Проміжне дане

- 1) Потрібно запропонувати користувачу ввести значення x. Але це значення повинно бути більше 0 і менше 1 (0 < x < 1).
- 2) Створюємо змінну s і присвоюємо їй значення 0.
- 3) Створюємо змінну counter і присвоюємо їй значення 0.
- 4) Для піднесення до степеня будемо використовувати функцію pow().

Створюємо ітераційну форму з постумовою, і в ній, до змінної *s*, додаємо результат ітерації, який обчислюється за заданою нам формулою:

$$s + pow(-1, n) * ((pow(x, 2 * n) + 1) / (pow(2, n) + 1)),$$

- 5) Після кожної ітерації збільшуємо лічильник на 1.
- 6) Продовжуємо ітераційний цикл поки

$$\left| \left(-1
ight)^n ullet rac{x^{2n} + 1}{2^n + 1} \; + \; \left(-1
ight)^{(n-1)} ullet rac{x^{2(n-1)} + 1}{2^{(n-1)} + 1}
ight| \; > \; arepsilon$$

Для обчислення модуля будемо використовувати функцію abs().

Змінна s буде результатом виконання програми.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії
- Крок 2. Введення x
- Крок 3. Створення змінної eps і присвоєння їй значення 0.00001
- Крок 4. Створення змінної s і присвоєння їй значення 0
- Крок 5. Створення змінної counter і присвоєння їй значення 0
- Крок 6. Обчислення змінної умови
- Крок 7. Знаходження значення формули
- Крок 8. Виведення s

Псевдокод

Крок 1

Початок

введення х

створення змінної eps і присвоєння їй значення 0.00001 створення змінної s і присвоєння їй значення 0 створення змінної counter і присвоєння їй значення 0 обчислення змінної умови знаходження значення формули

```
виведення ѕ
```

Кінець

```
Крок 2
```

Початок

введення х

створення змінної ерѕ і присвоєння їй значення 0.00001 створення змінної s і присвоєння їй значення 0 створення змінної counter і присвоєння їй значення 0 обчислення змінної умови знаходження значення формули виведення s

Кінець

Крок 3

Початок

введення х

ерs := 0.00001<u>створення змінної *s* і присвоєння їй значення 0</u>

створення змінної *counter* і присвоєння їй значення 0 обчислення змінної умови знаходження значення формули виведення *s*

Кінець

Крок 4

Початок

введення х

```
eps := 0.00001
```

s := 0

<u>створення змінної counter і присвоєння їй значення 0</u>

```
обчислення змінної умови
  знаходження значення формули
  виведення ѕ
Кінець
Крок 5
Початок
  введення х
  eps := 0.00001
  s := 0
  counter := 0
  обчислення змінної умови
  знаходження значення формули
  виведення ѕ
Кінець
Крок 6
Початок
  введення х
  eps := 0.00001
  s := 0
  counter := 0
  condition := abs(pow(-1, counter)*((pow(x, 2*counter)+1)/(pow(2, counter)+1)) -
             pow(-1, counter - 1)*((pow(x, 2 * counter-1)+1)/(pow(2, counter-1)+1)))
  знаходження значення формули
  виведення s
Кінець
```

Крок 7

Початок

```
введення х
  eps := 0.00001
  s := 0
  counter := 0
  condition := abs(pow(-1, counter)*((pow(x, 2*counter)+1)/(pow(2, counter)+1)) -
              pow(-1, counter - 1)*((pow(x, 2 * counter - 1) + 1)/(pow(2, counter - 1) + 1)))
  повторити
     s = s + pow(-1, counter) * ((pow(x, 2*counter)+1)/(pow(x, counter)+1))
     counter := counter + 1
  поки condition > eps
  все повторити
  виведення s
Кінець
Крок 8
Початок
  введення х
  eps := 0.00001
  s := 0
  counter := 0
  condition := abs(pow(-1, counter)*((pow(x, 2*counter)+1)/(pow(2, counter)+1)) -
               pow(-1, counter - 1)*((pow(x, 2 * counter - 1) + 1)/(pow(2, counter - 1) + 1)))
  повторити
     s = s + pow(-1, counter) * ((pow(x, 2*counter)+1)/(pow(x, counter)+1))
     counter := counter + 1
  поки condition > eps
  все повторити
  виведення ѕ
Кінець
```

Блок-схема алгоритму

Випробування алгоритму

Блок	Дія
	Початок
1	Введення х = 0.99
2	s := 0
3	counter := 0
4	s = 0 + pow(-1, 0) *
	((pow(x,2*0)+1)/(pow(x,0)+1))
5	s = 1 + pow(-1, 1) *
	((pow(x,2*1)+1)/(pow(x, 1)+1))
6	s = -0.66003334+ pow(-1, 2) *
	((pow(x,2*2)+1)/(pow(x, 1)+2))
21	Виведення $s = 0.5911042781084812$
	Кінець