

THE TEACHER'S HAND-BOOK OF ALGEBRA;

CONTAINING

METHODS, SOLUTIONS AND EXERCISES

ILLUSTRATING

THE LATEST AND BEST TREATMENT OF THE ELEMENTS OF ALGEBRA.

BY

J. A. McLELLAN, M.A., LL.D.,

HIGH SCHOOL INSPECTOR FOR ONTARIO.

The object of pure Mathematics, which is another name for Algebra, is the unfolding of the laws of the human intelligence."—SYLVESTER.

FOURTH EDITION-REVISED AND ENLARGED.

TORONTO:

W. J. GAGE & COMPANY.

1881.

Entered according to Act of Parliament of Canada in the year 1880 by W. J. Gage & Company, in the office of the Minister of Agriculture.

T713

A or to

m

80

m ele

eff ad

qu he

top ord Div

eve ent exp

PREFACE.

This book—embodying the substance of Lectures at Teachers' Associations—has been prepared at the almost unanimous request of the teachers of Ontario, who have long felt the need of a work to supplement the elementary text-books in common use. The following are some of its special features:

It gives a large number of solutions in illustration of the best methods of algebraic resolution and reduction, some of which are not found in any text-book.

It gives, classified under proper heads and preceded by typesolutions, a great number of exercises, many of them illustrating methods and principles which are unaccountably ignored in elementary Algebras.

It presents these solutions and exercises in such a way that the student not only sees how Algebraic transformations are effected, but also perceives how to form for himself as many additional examples as he may desire.

It shows the student how simple principles with which he is quite familiar, may be applied to the solution of questions which he has thought beyond their reach.

It gives complete explanations and illustrations of important topics which are strangely omitted or barely touched upon in the ordinary books, such as the Principle of Symmetry, Theory of Divisors, Factoring, Applications of Horner's Division, &c.

A few of the exercises are chiefly supplementary to those proposed in the text-books, but the intelligent student will find that even these examples have not been selected in the usual apparently aimless fashion; he will recognise that they are really expressions of certain laws; they are in fact proposed with a view

to lead him to investigate these laws for himself as soon as he has sufficiently advanced in his course. Nos. 8, 9, 10 and 11 afford instances of such exercises.

Others of the questions proposed are preparatory or interpretation exercises. These might well have been omitted, were it not that they are generally omitted from the text-books and too often neglected by teachers. Practice in the interpretation of a new notation and in expression by means of it, should always precede its use as a symbolism itself subject to operations. Nos. 23 to 36 of Ex. iii., and nearly the whole of Ex. xv. may serve for instances.

By far the greater number of the exercises are intended for practice in the methods exhibited in the solved examples. As many as possible of these have been selected for their intrinsic value. They have been gathered from the works of the great masters of analysis, and the student who proceeds to the higher branches of mathematics will meet again with these examples and exercises, and he will find his progress aided by his familiarity with them, and will not have to interrupt his advanced studies to learn processes properly belonging to elementary Algebra. In making this selection, it has been found that the most widely useful transformations are, at the same time, those that best exhibit the methods of reduction here explained, so that they have thus a double advantage. A great part of the exercises have, of necessity, been prepared specially for this work.

Articles and exercises have been prepared on the theory of substitutions, on Elimination, &c., but it has finally been decided to hold these over for P⁺. ii., which will probably appear if the present work be favorably received.

SEC SEC

SEC:

SLC

SECT SECT SECT

SECT SECT SECT

Simi

Simui

EXAM

as he

rpreta-

it not o often a new orecede 23 to

led for

ve for

trinsic great higher

amples miliarvanced entary

at the

so that ercises

eory of ecided if the

CONTENTS.

CHAPTER I .- SUBSTITUTION, HORNER'S DIVISION, &C.

Saur. 1.—Numerical and Literal Substitution	PAGI
DEGI. 2.—Fundamental Formulas and their Application	
and Division and their	
Applications	2
CHAPTER II.—PRINCIPLE OF SYMMETRY, &c.	
SECT. 1.—The Principle of Symmetry and its Application	38
SECT. 2.—The Theory of Divisors and its Applications	39
CHAPTER III.—FACTORING.	
Sect. 1.—Direct Application of the Fundamental Formulas	62
SECT. 4.—Any ligation of the Formulas	71
The tree of the theory of Divisors	79
SECT. 5.—Factoring a Polynome by Trial Divisors	83 90
CHAPTER IV.—MEASURES AND MULTIPLES, &c.	
SECT. 1.—Division, Measures and Multiples	101
Tachons	
DECI. 5.—Italios	
Secr. 4.—Complete Squares, &c	130
CHAPTER V.	
SIMPLE EQUATIONS OF OUR UNKNOWN QUANTITY Preliminary Equations. Resolution by Factors. Fractional Equations. Application of Ratios. Equations involving Surds, Higher Equations, &c.	138
CHAPTER VI.	
Equations of Two Halmans O	70
Equations of Two Unknown Quantities. Systems of Equations. Application of Symmetry. Equations of Three Unknowns. Systems of Equations.	.70

CHAPTER VII.

EXAMINATION PAPERS...

2. valu

3. follov

CHAPTER I.

SECTION I .- SUBSTITUTION.

Exercise i.

1. If a = 1, b = 2, c = 3, d = 4, x = 9, y = 8, find the value of the following expressions:—

$$\begin{aligned} &1 - \{1 - (1 - \overline{1 - x})\}.\\ &a - (x - y) - (b - c)(d - a) - (y - b)(x + c).\\ &x - y \Big[y - (y - a) \} (d + c(b - c)) \Big].\\ &(x + d)(y + b + c) + (x - d)(a - b - d) + (y + d)(a - x - d).\\ &(d - x)^3 + (c + y)^3\\ &(a - b)(c^3 - b^2x) - (c - d)(b^3 - a^2x) + (d - b - c)(d^3 - e^3)\\ &\frac{d - a}{d + a} + \frac{d + c}{d - c} - 2\frac{d + b}{d - b}.\end{aligned}$$

2. If a = 3, b = -4, c = -9, and 2s = a+b+c, find the value of the following expressions:—

$$s(s-a)(s-b)(s-c).$$

$$s^{2} + (s-a)^{2} + (s-b)^{2} + (s-c)^{2}.$$

$$s^{2} - (s-a)(s-b) - (s-b)(s-c) - (s-c)(s-a).$$

$$2(s-a)(s-b)(s-c) + a(s-b)(s-c) + b(s-c)(s-a) + c(s-a)(s-b).$$

3. If a=2, b=-3, c=1, $x=4\frac{1}{3}$, find the value of the following expressions:—

$$\frac{a^2-b^2}{a^3+b^3}, \frac{a^2+b^2}{a^3-b^3}, \frac{(a-b)^2}{(a+b)^3}, \frac{(a-b)^3}{(a+b)^2}, \\ \frac{a^2+ab+b^2}{a^2-ab+b^2}, \frac{a^2-b^3}{a^3-b^2}, \frac{x}{2} \left\{ \frac{2x-3}{3} - \frac{3x-1}{4} \right\} \frac{x-1}{2}, \\ \frac{(a+b)\{(a+b)^2-c^2\}}{4b^2c^2-(a^2-b^2-c^2)^2}, \\ \frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{(a-b)(b-c)(c-a)}.$$

4. If a = 6, b = 5, c = -4, d = -3, find the value of the following expressions:—

wing expressions.

$$\sqrt{(b^2 + ac)} + \sqrt{(c^2 - 2ac)}$$
. $\sqrt{(b^2 + ac)} + \sqrt{(c^2 - 2ac)}$.
 $\frac{a^2 - \sqrt{(b^2 + ac)}}{2a - \sqrt{(b^2 - ac)}}$, $\frac{c + \sqrt{(d^2 + c^2)}}{c^3 + 2d(d^2 - c^2)}$.

5. If x=3, y=4, z=0, find the value of: $\{3x-\sqrt{(x^2+y^2)}\}^2\{2x+\sqrt{(x^2+y^2+z)}\}.$ $x^y+y^z+z^x, (x-y)^{x-y}+(y-z)^{y-z}+(z-x)^{z-x}.$

$$(x^3-y^3)\div \sqrt[3]{\{3x^3+3(3x^2+3xy+y^2)y\}}.$$
6. Calculate the values of
$$\frac{(x+y+z)^3-3(x^3+y^3+z^3)}{xyz}$$
 when

- (a) $\alpha = 1$, y = 2, z = 3.
- (b) x=2, y=3, z=4.
- (c) x=3, y=4, z=5.
- (d) x = 10, y = 11, z = 12.

7. Given x=3, y=4, z=-5, calculate the values of

$$(x+y+x)^3 - 3(x+y+z)(xy+yz+zx).$$

 $x^2(y+z) + y^2(z+x) + z^2(x+y) + 2xyz.$
 $x^2(y-z) + y^2(z-x) + z^2(x-y).$

$$(5x-4z)^2+9(4x-z)^2-(18x-5z)^2$$
.

$$(3x+4y+5z)^2+(4x+3y+12z)^2-(5x+5y+13z)^2$$
.

8. If s=a+b+c, find the value of

$$(2s-a)^2+(2s-b)^2-(2s+c)^2$$
, given

- (1) a=3, b=4, c=5, (2) a=21, b=20, c=29,
- (3) a = 119, b = 120, c = 169, (4) a = 3, b = -4, c = 5,
- (5) a=5, b=12, c=-13.

9. If a=1, b=3, c=5, d=7, e=9, f=11, prove that

$$a+b+c+d+e+f = \left(\frac{a+f}{2}\right)^{2}.$$

$$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{cd} + \frac{1}{de} + \frac{1}{ef} = \frac{1}{2}\left(\frac{1}{a} - \frac{1}{f}\right).$$

$$\frac{1}{abc} + \frac{1}{bcd} + \frac{1}{cde} + \frac{1}{def} = \frac{1}{4} \left(\frac{1}{ab} - \frac{1}{ef} \right).$$

$$\frac{1}{abcd} + \frac{1}{bcde} + \frac{1}{cdef} = \frac{1}{6} \left(\frac{1}{abc} - \frac{1}{def} \right) \cdot$$

the

(x-

(which

of the

hen

e)**3**,

),

$$a^{2} + b^{2} + c^{2} - ab - bc - ca = b^{2} + c^{2} + d^{2} - bc - ed - db = c^{2} + d^{2} + e^{2} - cd - de - ec = d^{2} + e^{2} + f^{2} - de - ef - fd.$$

$$c^{2}+d^{2}+e^{3}-cd-de-ec=d^{2}+e^{2}+f^{2}-de-ef-fd.$$
10. If $a=1$, $b=2$, $c=3$, $d=4$, $e=5$, $f=6$, $g=7$, prove that $a+b+c=\frac{1}{2}cd$, $a+b+c+d=\frac{1}{2}de$, $a+b+c+d+e=\frac{1}{2}ef$, $a+b+c+d+e+f=\frac{1}{2}fg$, $a^{2}+b^{2}+c^{2}=\frac{cd(c+d)}{ab(a+b)}$, $a^{2}+b^{2}+c^{2}+d^{2}=\frac{de(d+e)}{ab(a+b)}$, $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=\frac{ef(e+f)}{ab(a+b)}$, $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}=\frac{fg(f+g)}{ab(a+b)}$, $a^{3}+b^{3}+c^{3}=(a+b+c)^{2}$, $a^{3}+b^{3}+c^{3}+d^{3}=(a+b+c+d)^{2}$, $a^{3}+b^{3}+c^{3}+d^{3}+e^{3}+f^{3}=(a+b+c+d+e+f)^{2}$, $a^{3}+b^{3}+c^{3}+d^{3}+e^{3}+f^{3}=(a+b+c+d+e+f)^{2}$, $a^{3}+b^{3}+c^{3}+d^{3}+e^{3}+f^{3}=(a+b+c+d+e+f)^{2}$, $a^{4}+b^{4}+c^{4}=\frac{cd(c+d)(c^{2}d-1)}{bc(b+c)}$, $a^{4}+b^{4}+c^{4}+d^{4}+e^{4}=\frac{ef(e+f)(cef-1)}{bc(b+c)}$, $a^{4}+b^{4}+c^{4}+d^{4}+e^{4}+f^{4}=\frac{fg(f+g)(cfg-1)}{bc(b+c)}$, $a^{4}+b^{4}+c^{4}+d^{4}+e^{4}+f^{4$

11. Assume any numerical values for x, y, and z, and calculate the values of the following expressions:—

$$(x^{5}-10x^{3}+5x)^{2}+(5x^{4}-10x^{2}+1)^{2}-(x^{2}+1)^{5}.\\(x+1)^{3}-2(x+5)^{3}-(x+9)^{3}+2(x+11)^{3}+(x+12)^{3}-(x+16)^{3}.\\(x^{2}-y^{2})^{2}+(2xy)^{2}-(x^{2}+y^{2})^{2}\\(x^{3}-3xy^{2})^{2}+(3x^{2}y-y^{3})^{3}-(x^{2}+y^{2})^{3}.\\(3x^{2}+4xy+y^{2})^{2}+(4x^{2}+2xy)^{2}-(5x^{2}+4xy+y^{2})^{2}.\\(x-y)^{3}+(y-z)^{3}+(z-x)^{3}-3(x-y)(y-z)(z-x).$$

Art. I. If x = any number, as, for example, 3, then x^2 (which = x.x) = 3x, x^3 (which $= x.x^2$) = $3x^2$, x^4 (which $= x.x^3$) = $3x^3$, &c. Or 3 = x, $3x = x^2$, $3x^3 = x^4$, $3x^4 = x^5$, &c. Hence prob-

lems like the following may be solved like ordinary arithmetical problems in "Reduction Descending."

EXAMPLES.

1. Find the value of $x^2 - 2x - 9$ when x = 5.

2. Find the value of $x^4 - x^3 - 4x^2 - 3x - 5$ when x = 3.

 $\therefore x^4 - x^3 - 4x^2 - 3x - 5 = 4$

ti

if x=3.

and the value of
$$x^4 - x^3 - 4x^2 - 3x - 5$$

$$x^4 - x^3 - 4x^2 - 3x - 5$$

$$x^4 - x^3 - 4x^2 - 3x - 5$$

$$x_1 - x_2$$

$$x_1 - x_3$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_5$$

$$x_5$$

$$x_7$$

$$x_8$$

$$x_8$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_5$$

$$x_6$$

$$x_7$$

$$x_8$$

$$x_8$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_5$$

$$x_8$$

metical

Explanation.

$$x^{4} = 3x^{3},$$

$$x^{4} - x^{3} = 2x^{3} = 6x^{2},$$

$$x^{4} - x^{3} - 4x^{2} = 2x^{2} = 6x,$$

$$x^{4} - x^{3} - 4x^{2} - 3x = 3x = 9.$$

$$x^{4} - x^{3} - 4x^{2} - 3x - 5 = 4.$$

8. Find the value of $2x^4 + 12x^3 + 6x^2 - 12x + 10$. Using coefficients only, we have

$$\begin{array}{c} 2+12+6-12+10 \\ -5 \\ \hline \\ p_1 & -5 \\ \hline \\ r_1 & +2 \\ -5 \\ \hline \\ p_2 & -10 \\ +6 \\ \hline \\ r_3 & -20 \\ \hline \\ -12 \\ \hline \\ r_3 & -8 \\ \hline \\ -5 \\ \hline \\ p_4 & -80 \\ \hline \\ & +10 \\ \hline \end{array}$$

Art. II. If the coefficients, and also the values of x are small numbers, much of the above may be done mentally, and the work will then be very compact. Thus, performing mentally the multiplications and additions (or subtractions) of the coefficients, and merely recording the partial reductions r_1, r_2, r_3 , and the result r_4 , the last example would appear as follows:—

Art. III. In the above examples, the coefficients are "brought down" and written below the products p_1, p_2, p_3, p_4 , and are added or subtracted, as the case may require, to get the partial reductions r_1 , r_2 , r_3 , and the result r_4 . Instead of thus "bringing down" the coefficients, we may "carry up" the products p_1 . p2, p3, p4, writing them beneath their corresponding coefficients, and thus get r_1 , r_2 , r_3 , r_4 in a third (horizontal) line. Arranged in this way Ex. 2 will appear

and Ex. 3 will appear

Comparing these arrangements with those first given (Ex. 2) and 3), it will be seen that they are figure for figure the same, except that the multiplier is not repeated.

Art. IV. When there are several figures in the value of x_1 they may be arranged in a column, and each figure used separately, as in common multiplication. Where only approximate values are required, "contracted multiplication" may be used.

4. Find the value of $3x^5 - 160x^4 + 344x^3 + 700x^2 - 1910x +$ 1200, given x = 51.

for

for

wh

1 2

5. Given x=1.188, find the value of $64x^4-144x+45$ correct to three decimal places.

1 1 8 8	64	0 64 6·4 5·12 • 192	$\begin{matrix} 0 \\ \mathbf{75 \cdot 712} \\ \mathbf{7 \cdot 5712} \\ 6 \cdot 0570 \\ \cdot 2271 \end{matrix}$	-144 89·5673 8·9567 7·1654 •2687	+45 -38.0419 -3.8042 -3.0434 1141
	64, .:	75·712, result is	89·5673, -:004	-38.0419,	- ⋅0036.

Exercise ii.

Find the value of

ght are tial ng-

P 19

ots,

ged

s. 2

me.

 $f x_1$

pa-

ate

ed.

x+

- 1. $x^4 11x^3 11x^2 13x + 11$, for x = 12.
- 2. $x^4 + 50x^3 16x^2 16x 61$, for x = -17.
- 3. $2x^4 + 249x^3 125x^2 + 100$, for x = -125.
- 4. $2x^3 473x^2 234x 711$, for x = 200.
- 5. $x^5 3x^2 8$, for x = 4.
- 6. $x^6 515x^5 3127x^4 + 525x^3 2090x^2 + 3156x 15792$, for x = 521.
 - 7. $2x^5 + 401x^4 199x^3 + 399x^2 602x + 211$, for x = -201.
 - 8. $1000x^4 81x$, for x = 1.
 - 9. $99x^4 + 117x^3 257x^2 325x 50$, for $x = \frac{12}{3}$.
 - 10. $5x^5 + 497x^4 + 200x^3 + 196x^2 218x 2000$, for x = -99.
 - 11. $5x^5 620x^4 1030x^3 + 1045x^2 4120x + 9000$, for x = 205. Calculate, correct to three places of decimals,—
- 12. $x^3 + 3x^2 18x 38$ for x = 3.58443, for x = -3.77931, and for x = -2.80512.
- 13. $y^4 14y^2 + y + 38$ for y = 3.13131, for y = -1.84813, and for y = -3.28319.

Exercise iii.

What do the following expressions become (1) when x = a, (2) when x = -a?

- 1. $x^4 4ax^3 + 6a^2x^2 4a^3x + a^4$.
- 2. $\sqrt{(x^3 ax + a^2)}$. 3. $\sqrt{(x^3 + 2ax + a^2)}$.
- 4. $(x^2+ax+a^2)^3-(x^2-ax+a^2)^3$.

If x = y = z = a, find the value of the following expressions:

5.
$$(x-y)(y-z)(z-x)$$
.

6.
$$(x+y)^2 (y+z-a) (x+z-a)$$
.

7.
$$x(y+z)(y^2+z^2-x^2)+y(z+x)(z^2+x^2-y^2)+z(x+y)(x^2+y^2-z^2)$$
.

$$8. \frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y}.$$

Find the value of

9.
$$\frac{x}{a} + \frac{x}{b}$$
 when $x = \frac{abc}{a+b}$.

10.
$$\frac{1}{a(b-x)} + \frac{1}{b(c-x)} + \frac{1}{a(x-c)}$$
, when $x = \frac{b}{a}(a-b+c)$.

11.
$$\frac{x}{a} + \frac{x}{b-a}$$
, when $x = \frac{a^2(b-a)}{b(b+a)}$.

12.
$$(a+x)(b+x)-a(b+c)+x^2$$
, when $x=\frac{ac}{b}$.

13.
$$bx + cy + az$$
, when $x = b + c - a$, $y = c + a - b$, $z = a + b - c$.

14.
$$\frac{a(1+b)+bx}{a(1+b)-bx} - \frac{a}{a-2bx}$$
, when $x = -a$.

15.
$$\left(\frac{x+a}{x+b}\right)^3 - \frac{x+2a+b}{x-a-2b}$$
, when $x = \frac{1}{2}(b-a)$.

16.
$$(p-q)(x+2r)+(r-x)(p+q)$$
, when $x=\frac{r(3p-q)}{2q}$.

17.
$$a^2(b-c)+b^2(c-a)+c^2(a-b)$$
, when $a-b=0$.

18.
$$(a+b+c)(bc+ca+ab)-(a+b)(b+c)(c+a)$$
, when $a=-b$.

19.
$$(a+b+c)^3 - (a^3+b^3+c^3)$$
, when $a+b=0$.

20.
$$(x+y+z)^4 - (x+y)^4 - (y+z)^4 - (z+x)^4 + x^4 + y^4 + z^4$$
, when $x+y+z=0$.

21.
$$a^3(c-b^2)+b^3(a-c^2)+c^3(b-a^2)+abc(abc-1)$$
, when $b-a^2=0$.

22.
$$a^{5} \left(\frac{a^{5}+5b^{5}}{a^{5}-b^{5}}\right)^{5} + b^{5} \left(\frac{5a^{5}+b^{5}}{b^{5}-a^{5}}\right)^{5}$$
, when $a^{5}+b^{5}=0$.

$$(a-b)^2 = a^2 - 2ab + b^2$$
.

24. Express algebraically the fact "that the sum of two quantities multiplied by their difference is equal to the difference of the squares of the numbers."

ti Bi

the

the qua

the thei call

time l for

great root 34

gle co sides, squar

85.

25. The area of the walls of a room is equal to the height multiplied by twice the sum of the length and breadth: what are the areas of the walls in the following cases:

(1) length l, height h, breadth b.

(2) height x, length b feet more than the height, and breadth b feet less than the height.

26. Express in words the statement that

$$(x+a) (x+b) = x^2 + (a+b)x + ab.$$

27. Express in symbols the statement that "the square of the sum of two quantities exceeds the sum of their squares by twice their product."

28. Express in words the algebraic statement.

$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$
.

29. Express algebraically the fact that "the cube of the difference of two quantities is equal to the difference of the cubes of the quantities diminished by three times the product of the quantities multiplied by their difference."

30. If the sum of the cubes of two quantities be divided by the sum of the quantities, the quotient is equal to the square of their difference increased by their product; express this algebraically.

31. Express in words the following algebraic statement:

$$\frac{x^3 - y^3}{x - y} = (x + y)^3 - xy.$$

hen

uan-

e of

82. The square on the diagonal of a cube is equal to three times the square on the edge; express this in symbols, using l for length of the edge, and d for length of the diagonal.

33. Express in symbols that "the length of the edge of the greatest cube that can be cut from a sphere is equal to the square root of one-third the square of the diameter."

34. Express in symbols that any "rectangle is half the rectangle contained by the diagonals of the squares upon two adjacent sides." [The square on the diagonal of a square is double the square on a side.]

85. The area of a circle is equal to π multiplied into the square

of the radius; express this in symbols. Also express in symbols the area of the ring between two concentric circles.

 $(\alpha$

()

(x

(x

(x)

1

2

(x +

 $\{(a$

2{(0

(a + (aga

Th

(a+b)

(a-

36. The volume of a cylinder is equal to product of its height into the area of the base, that of a cone is one-third of this, and that of a sphere is two-thirds of the volume of the circumscribing cylinder; express these facts in symbols, using h for the height of the cylinder, and r for the radius of its base.

Exercise iv.

Perform the additions in the following cases:

1. (b-a)x+(c-b)y, and (a+b)x+(b+c)y.

2. ax - by, (a - b)x - (a + b)y, and (a + b)x - (b - a)y.

3. $(y-z)a^2 + (z-x)ab + (x-y)b^2$, and $(x-y)a^3 - (z-y)ab - (x-z)b^2$.

4. ax+by+cz, bx+cy+az, and cx+ay+bz.

5. $(a+b)x^2 + (b+c)y^2 + (a+c)z^2$, $(b+c)x^2 + (a+c)y^2 + (a+b)z^3$, $(a+c)x^2 + (a+b)y^2 + (b+c)z^2$, and $-(a+b+c)(x^2+y^3+z^2)$.

6. $x(a-b)^2 + y(b-c)^2 + z(c-a)^3$, $y(a-b)^2 + z(b-c)^2 + x(c-a)^2$, and $z(a-b)^2 + x(b-c)^2 + y(c-a)^2$.

7. $(a-b)x^2 + (b-c)y^2 + (c-a)z^2$, $(b-c)x^2 + (c-a)y^2 + (a-b)z^3$, and $(c-a)x^2 + (a-b)y^2 + (b-c)z^3$.

8. (a+b)x+(b+c)y-(c+a)z, (b+c)z+(c+a)x-(a+b)y, and (a+c)y+(a+b)z-(b+c)x.

9. $a^2 - 3ab - \frac{14}{21}b^2$, $2b^2 - \frac{2}{3}b^3 + c^2$, $ab - \frac{1}{3}b^2 + b^3$, and $2ab - \frac{1}{3}b^3$.

10. $ax^n - 3bx^n$, $-9ax^n + 7bx^n$, and $-8bx^n + 10ax^n$.

11. What will (ax-by+cz)+(bx+cy-az)-(cx+ay+bz) become when x-y-z=1?

SECTION II.—FUNDAMENTAL FORMULAS AND THEIR APPLICATION.

neight s, and ribing height

$$ab-(x$$

$$+b)z^2$$
,
).
 $+x(c-$

$$-b)z^3$$

$$-\frac{1}{8}b^{8}$$
.

$$(x+y) (x-y) = x^2 - y^2$$
.....[4]

From B we derive

$$(x\pm y)^3 = x^3 \pm 3x^2y + 3xy^2 \pm y^3 \dots [5]$$

= $x^3 \pm y^3 \pm 3xy \ (x\pm y) \dots [6]$

$$= x^3 + y^3 + z^3 + 3(x + y + z)(xy + yz + zx) - 8xyz...[9]$$

[The symbol 2 means the sum of all such terms as]

FORMULA [1].—EXAMPLES.

1. We have at once $(x+y)^2 + (x-y)^2 = 2(x^2 + y^2)$, and $(x+y)^2 - (x-y)^2 = 4xy$.

2.
$$(a+b+c+d)^2 + (a-b-c+d)^2$$
 may be written $\{(a+d)+(b+c)\}^2 + \{(a+d)-(b+c)\}^2$, which (Ex. 1) = $2\{(a+d)^2+(b+c)^2\}$; similarly

$$\begin{aligned} &(a-b+c-d)^2+(a+b-c-d)^2=\{(a-d)-(b-c)\}^2+\\ &\{(a-d)+(b-c)\}^2=2\{(a-d)^2+(b-c)^2\}\;; \end{aligned}$$

$$\therefore (a+b+c+d)^2 + (a-b-c+d)^2 + (a-b+c-d)^2 + (a+b-c-d)^2 + (a+d)^2 + (b+c)^2 + (a-d)^2 + (b-c)^2 \} =$$
(again by Ex. 1) $4(a^2+b^2+c^2+d^2)$.

3. Simplify
$$(a+b+c)^2-2(a+b+c)c+c^2$$
:

This is the square of a binomial of which the first term is (a+b+c) and the second -c; the given quantity $\therefore = \{(a+b+c)-c\}^2 = (a + b + c) + c$

4. Simplify $(a+b)^4 - 2(a^2+b^2)(a+b)^2 + 2(a^4+b^4)$.

By Ex. 1. $2(a^4+b^4) = (a^2+b^2)^2 + (a^2-b^2)^2$; ... given quantity $= (a+b)^4 - 2(a^2+b^2)(a+b)^2 + (a^2+b^2)^2 + (a^2-b^2)^2 = \{(a+b)^2 - (a^2+b^2)\}^2 + (a^2-b^2)^2 = a^4 + 2a^2b^2 + b^4 = (a^2+b^2)^2$.

Exercise v.

1.
$$(x+3y^2)^2+(x-3y^2)^2$$
, $(\frac{1}{3}a^2+3b^2)^2-(\frac{1}{3}a^2-3b^2)^2$.

2. Shew that
$$(mx+ny)^2 + (nx-my)^2 = (m^2+n^2)(x^2+y^2)$$
.

8. "
$$(mx-ny)^2-(nx-my)^2=(m^2-n^2)(x^2-y^2).$$

4. Simplify
$$\{a+3b\}^2 + 2(a+3b)(a-b) + (a-b)^2\} \{a-b\}^2$$
.

2(a

1

a2/,

2/2 +

=2

b-a

 $\{(a -$

 $(a^{2} +$

(c-a)

(c-a)

{(0

6.

8,

5. "
$$(x+3)^2 + (x+4)^2 - (x+5)^2$$
, and $(\frac{1}{2}x^3 - 2y^2)^2 - (\frac{1}{2}y^2 + 2x^2)^2$.

6. Simplify
$$(a+b+c)^2+(b+c)^2-2(b+c)(a+b+c)$$

7. Show that
$$(ax+by)^2 + (cx+dy)^2 + (ay-bx)^2 + (cy-dx)^2 = (a^2+b^2+c^2+d^2)(x^2+y^2)$$
.

8. Simplify
$$(x-3y^2)^2 + (3x^2-y)^2 - 2(8x^2-y)(x-3y^2)$$
.

9.
$$(x^2 + xy - y^2)^2 - (x^2 - xy - y^2)^2$$
, and $(1 + 2x + 4x^2)^2 + (1 - 2x + 4x^2)^2$.

10. If
$$a+b=-\frac{3}{4}c$$
, shew that $(2a-b)^2+(2b-c)^2+(2c-a)^2+$

$$2(2a-b) (2b-c) + 2(2b-c) (2c-a) + 2(2c-a) (2a-b) = \frac{1}{16}c^{2}.$$

11. Simplify
$$2(a-b)^2 - (a-2b)^2$$
; $(a^2+4ab+b^2)^2 - (a^2+b^2)^2$.

12. "
$$(a+b)^2 - (b+c)^2 + (c+d)^2 - (d+a)^2$$
.

13.
$$(\frac{1}{2}x-y)^2 + (\frac{1}{2}y-z)^2 + (\frac{1}{2}z-x)^2 + 2(\frac{1}{2}x-y) (\frac{1}{2}z-x) + 2(\frac{1}{2}y-z) (\frac{1}{2}y-z) (\frac{1}{2}y$$

14. Prove that
$$(x-y)^2 + (y-z)^2 + (z-x)^2 = 2(x-y)(z-y) + 2(y-x)(z-x) + 2(z-y)(z-x)$$
.

15. Simplify
$$(1+x)^4 - 2(1+x^2)(1+x)^2 + 2(1+x^4)$$
.

16. "
$$(x+y+z)^2 - (x+y-z)^2 - (y+z-x)^2 - (z+x-y)^2$$
.

17. "
$$(x-2y+3z)^2+(3z-2y)^2+2(x-2y+3z)(2y-3z)$$
."

18. "
$$(a^2+b^2-c^2)^2+(c^2-b^2)^2+2(b^2-c^2)(a^2+b^2-c^2)$$
.

19. "
$$(x+y)^4 + (x-y)^4 - 2(x-y)^2(x+y)^3$$
.

$$(x)^2 =$$

$$4x^2)^2$$

$$a)^{2} +$$

$$-b^{2})^{2}.$$

$$z-x$$

$$-y)+$$

$$-y)^{2}$$
.

$$-3z)$$
.

$$-c^{2}$$
).

20.
$$(5a+3b)^g+16(8a+b)^2-(18a+5b)^s$$
.

21. Shew that
$$(3a-b)^2 + (3b-c)^2 + (3c-a)^2 - 2(b-3a)(3b-c)$$

$$+2(8b-c)(8c-a)-2(a-3c)(8a-b)-4(a+b+c)^{2}=0.$$
22. If $c^{2}=2av$, proved that (2.2)

22. If
$$z^2 = 2xy$$
, prove that $(2x^2 - y^2)^2 + (z^2 - 2y^2)^2 + (x^2 - 2z^2)^2 - 2(2x^2 - y^2)(z^2 - 2y^2) + 2(x^2 - 2z^2)(z^2 - 2y^2) - 2(x^2 - 2y^2)(z^2 - 2y^2)$

$$2(x^2-2z^2)(2x^2-y^2)=(x+y)^4.$$

23. Simplify
$$(1+x+x^2+x^3)^2+(1-x-x^2+x^3)^2+$$

$$(1-x+x^2-x^3)^2+(1+x-x^2-x^3)^2$$
.

24. Simplify
$$(ax+by)^4-2(a^2x^2+b^2y^2)(ax+by)^2+2(a^4x^4+b^4y^4)$$
.

1.
$$(1-2x+3x^2)^2 = 1-4x+6x^2 + 4x^2-12x^3$$

$$-----+9x^{4}$$

$$=1-4x+10x^2-12x^3+9x^4.$$

2.
$$(ab+bc+ca)^2 = a^2b^2 + 2ab^2c + 2a^2bc + b^2c^2 + 2abc^2 + c^2a^2 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)$$
.

8.
$$\{(x+y)^2 + x^2 + y^2\}^2 = (x+y)^4 + 2(x+y)^2(x^2+y^2) + x^4 + 2x^2$$

 $y^2 + y^4 = (x+y)^4 + (x+y)^2\{(x+y)^3 + (x-y)^3\} + x^4 + 2x^2y^2 + y^4$
 $= 2(x+y)^4 + (x^2-y^2)^2 + x^4 + 2x^2y^2 + y^4 = 2\{(x+y)^4 + x^4 + y^4\}.$

4.
$$(x^2 + xy + y^2)^2 = x^4 + 2x^3y + 2x^2y^2 + x^2y^2 + 2xy^3 + y^4 = (x+y)^2x^2 + x^2y^2 + y^2(x+y)^2$$
.

5. In Ex. 3, substitute
$$b-c$$
 for x , $c-a$ for y , and consequently $b-a$ for $x+y$, then since $(b-a)^2 = (a-b)^2$, Ex. 3 gives $\{(a-b)^2 + (b-c)^2 + (c-a)^2\}^2 = 2\{(a-b)^4 + (b-c)^4 + (c-a)^4\}$.

$$(a^2+b^2+c^2-ab-bc-ca)^2 = (a-b)^2(b-c)^2+(b-c)^2(c-a)^2+(c-a)^2$$
, or, multiplying both sides by 4,

$$\{(a-b)^2 + (b-c)^2 + (c-a)^2\}^2 = 4(a-b)^2(b-c)^2 + 4(b-c)^2 \times (c-a)^2 + 4(c-a)^2(a-b)^2, \text{ and } : \text{ from Ex. 5, } (a-b)^4 + (b-c)^4 + (c-a)^4 = 2(a-b)^2(b-c)^2 + 2(b-c)^2(c-a)^2 + 2(c-a)^2(a-b)^2.$$

Exercise vi.

1.
$$(1-2x+3x^2-4x^3)^2$$
, $(1-x+x^2-x^3)^2$.

2.
$$(1-2x+2x^3-3x^3-x^4)^2$$
, $(1+8x+3x^2+x^3)^2$.

3.
$$(2a-b-c^3-1)^2$$
, $(1-x+y+z)^2$, $(\frac{1}{2}x-\frac{1}{3}y+6z)^3$.

4.
$$(x^3 - x^2y + xy^2 - y^3)^3$$
, $(ax + bx^2 + cx^3 + dx^4)^3$.

5. Show that
$$(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) - (ax + by + cz)^2 = (ay - bx)^2 + (cx - az)^2 + (bz - cy)^2$$
.

6. Prove that (a+b)x+(b+c)y+(c+a)z multiplied by (a-b)x+(b-c)y+(c-a)z, is equal to the difference of the squares of two trinomials.

7. Shew that
$$(a-b)(a-c) + (b-c)(b-a) + (c-a)(c-b) - \frac{1}{2}\{(a-b)^2 + (b-c)^2 + (c-a)^2\} = 0.$$

8. Simplify
$$\{a-(b-c)\}^2 + \{b-(c-a)\}^2 + \{c-(a-b)\}^2$$
.

9. Shew that
$$(a^2+b^2-x^2)^2+(a_1^2+b_1^2-x^2)^2+2(aa_1+bb_1)^3$$

$$=(a^2+a_1^2-x^2)^2+(b_1^2+b_1^2-x^2)^2+2(ab+a_1b_1)^2.$$

10. Prove that
$$\{(a-b)(b-c)+(b-c)(c-a)+(c-a)(a-b)\}^2 = (a-b)^2(b-c)^2+(b-c)^2(c-a)^2+(c-a)^2(a-b)^2$$
.

11. Square
$$2a - \frac{1}{2}bx - \frac{1}{4}cx + 2dx$$
.

12. If
$$x + y + z = 0$$
, show that $x^4 + y^4 + z^4 = (x^3 - y^2)^3 + (y^2 - z^2)^2 + (z^2 - x^2)^3$.

13. Prove that
$$a^2(b+c)^2 + b^2(c+a)^2 + c^2(a+b)^2 + 2abc(a+b+c)$$

= $2(ab+bc+ca)^2$.

Art. V. To apply formula [4] to obtain the product of two factors which differ only in the signs of some of their terms:—group together all the terms whose signs are the same in one factor as they are in the other, and then form into a second group all the other terms.

EXAMPLES.

1. Multiply a+b-c+d by a-b-c-d; here the first group is a-c, the second b+d; \therefore we have

$$\{(a-c)+(b+d)\}\ \{(a-c)-(b+d)\}=(a-c)^2-(b+d)^2.$$

2.
$$(1 + 9x + 3x^2 + x^3) (1 - 8x + 9x^2 - x^3) = \{(1 + 9x^2) - (9x + x^3)\} \{(1 + 9x^2) - (9x + x^3)\} = (1 + 8x^2)^2 - (9x + x^3)^2 = 1 - (9x^2 + 9x^4 - x^6)$$

3. Find the continued product of a+b+c, b+c-a, c+a-b and a+b-c.

The first pair of factors gives $\{(b+c)+a\}$ $\{(b+c)-a\}=(b+c)^2$ $-a^2=b^2+2bc+c^2-a^2$.

The second pair gives $\{a-(b-c)\}\ \{a+(b-c)\}=a^2-b^2+2bc-c^2$; the only term whose sign is the same in both these results is 2bc; hence, grouping the other terms, we have

4. Prove
$$(a^2+ab+b)^2-a^2b^2=(a^2+ab)^2+(ab+b^2)^2$$
.

The expression $= (a^2 + b^2) (a^2 + 2ab + b^2) = (a^2 + b^2) (a + b)^2 = a^3(a+b)^2 + b^2(a+b)^2 = (a^2 + ab)^2 + (ab + b^2)^2$.

Exercise vii.

1.
$$(a^2+2ab+b^2)(a^2-2ab+b^2)$$
.

)9 =

 $-b)\omega$

es of

b) —

b,)2

)}2=

2)2 +-

b+c

f two

ns:---

ne fac-

group

oup is

2.
$$(\frac{1}{2}x^2 - xy + y^2)(\frac{1}{2}x^2 + y^2 + xy)$$
.

8.
$$(a^2-ab+2b^2)(a^2+ab+2b^2)$$
; $(x^4+4xy)(x^4-4xy)$.

4.
$$\{(x+y)x-y(x-y)\}\ \{(x-y)\ x-y(y-x)\}.$$

5, Simplify:
$$(x+3)(x-3)+(x+4)(x-4)-(x+5)(x-5)$$

6. "
$$(1+x)^4+(1-x)^4-2(1-x^2)^2$$
.

7.
$$(x^2+y^2)^2-(2xy)^2-(x^2-y^2)^2$$
.

8.
$$(2a^2-3b^2+4c^2)$$
 $(2a^2+3b^2-4c^2)$.

9.
$$(2a+b-3c)(b+3c-2a)$$
; $(2a-b-3c)(b-3c-2a)$.

10.
$$(x^4+y^4)(x^2+y^2)(x+y)(x-y)$$
.

11.
$$(x^2+xy+y^2)(x^2-xy+y^2)(x^4-x^2y^2+y^4)$$
.

12.
$$(a+b-ab-1)(a+b+ab+1)$$
.

13. Prove
$$(a^2 + b^2 + c^2)(b^2 + c^2 - a^2)(c^2 + a^2 - b^2)(a^2 + b^2 - c^2)$$

= $4b^4c^4$ when $a^4 = b^4 + c^4$.

14.
$$(x^2+y^2-\frac{5}{4}xy)(x^2+y^2+\frac{5}{4}xy)$$
.

15.
$$(x^4-2x^3+3x^2-2x+1)(x^4+2x^3+3x^2+2x+1)$$
.

16. Multiply $(2x-y)a^2 - (x+y)ax + x^3$ by $(2x-y)a^2 + (x+y)ax - x^3$.

Prove the following:

17.
$$(a^2+b^2+c^2+ab+bc+ca)^2-(ab+bc+ca)^2=(a+b+c)^2\times(a^2+b^2+c^2)$$
.

18.
$$(a^{9}+b^{9}+c^{9}+ab+bc+ca)^{9}-(a^{9}+ab+ca-bc)^{9}=\{(a+b)(b+c)\}^{2}+\{(b+c)(c+a)\}^{2}.$$

19.
$$4(ab+cd)^2-(a^2+b^2-c^2-d^2)^2=$$

$$(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)$$
.

20. Find the product of $x^2 + y^2 + z^2 - 2xy + 2xz - 2yz$ and $x^3 + z^2 + z^2 - 2xy - 2xz + 2yz$.

21.
$$(x^2+y^2+xy\sqrt{2})(x^2-xy\sqrt{2}+y^2)(x^4-y^4)$$
.

22.
$$(1-6a+9a^2)(\frac{1}{4}+2a+3a^2)$$
.

23.
$$\{(m+n)+(p+q)\}\ (m-q+p-n)$$
.

24. Obtain the product of $1+x+x^2$, x^2+x-1 , x^2-x+1 , and $1+x-x^2$.

25.
$$(a-b^2)^2 (a+b^2)^2 (a^2+b^4)^2 (a^4+b^3)^2$$
.

26 Shew that $(x^2 + xy + y^2)^2 (x^2 - xy + y^2)^2 - (x^2y^2)^2 = (x^4 + x^2y^2)^2 + (x^2y^2 + y^4)^2$.

FORMULA A .- EXAMPLES.

- 1. Multiply $x^3 x + 5$ by $x^2 x 7$: here the common term is $x^2 x$, the other terms + 5, and 7, hence the product $= (x^2 x)^2 + (-7 + 5)(x_1^2 x) + (-7 \times 5) = (x^2 x)^2 2(x^2 x) 35 = x^4 2x^3 x^2 + 2x 35$.
- 2. (x-a)(x-3a)(x+4a)(x+6a): taking the first and third factors together, and the second and fourth, we have the product $=(x^2+3ax-4a^2)(x^2+3ax-18a^2)=(x^2+3ax)^2-(4a^2+156^2)\times(x^2+3ax)-72a^4=&c.$

Exercise viii.

1.
$$(x^2+2x+3)(x^2+2x-4)$$
; $(x-y+3z)(x-y+5z)$.

2.
$$(x+1)(x+5)(x+2)(x+4)$$
; $(x^3+a-b)(x^3+2b-a)$.

3.
$$(a^2-3)(a^2-1)(a^2+5)(a^2+7)$$
; $(x^4+x^2+1)(x^4+x^2-2)$.

4.
$$\{(x+y)^2 - 2xy\}$$
 $\{(x+y)^2 + 5xy\}$.

(2

+c (a+ 8

 \mathbf{T} $(x^{9} - \{(x^{2}$

1. 2.

6.
$$(x^n + a + 7)(x^n - a - 9)$$
; $(\frac{x}{y} + \frac{y}{x} - 1)(\frac{x}{y} + \frac{y}{x} + 8)$.

6.
$$(nx+y+3)(nx+y+7)$$
.

7.
$$(x+a-y)(x+a+3y)$$
.

8.
$$(x^{2n}+x^n-a)(x^{2n}+x^n-b)$$
.

9.
$$(\frac{1}{2}x^4 - y^2 + 2) (\frac{1}{2}x^4 - y^2 - 4)$$
.

10.
$$\left(\frac{1}{x} + \frac{1}{y} - \frac{1}{2}\right) \left(\frac{1}{x} + \frac{1}{y} + 2\frac{1}{2}\right)$$
.

11. Multiply together $x-2+\sqrt{2}$, $x-2+\sqrt{3}$, $x-2-\sqrt{2}$, and $x-2-\sqrt{3}$.

12.
$$(x+a+b)(x+b-c)(x-a+b)(x+b+c)$$
.

13.
$$(a+b+c)(a+b+d)+(a+c+d)(b+c+d)-(a+b+c+d)^2$$
.

14. Prove that

- c) 3

2 +

and

m is

 $-x)^{2}$ 4 _

hird duct

517)

-2).

$$(2a+2b-c)(2b+2c-a)+(2c+2a-b)(2a+2b-c)+(2b+2c-a)$$

$$(2c+2a-b)=9(ab+bc+ca).$$

FORMULAS [5] AND [6].—EXAMPLES.

1. We get at once

$$(x+y)^3 + (x-y)^3 = 2x(x^2 + 3y^2).$$

 $(x+y)^3 - (x-y)^3 = 2y(8x^2 + y^2).$

2. Simplify $(a+b+c)^3 - 3(a+b+c)^2c + 3(a+b+c)c^2 - c^3$.

This plainly comes under formula [5], the first term being a+b+c, the second -c; hence the expression is $\{(a+b+c)-c\}^3 =$ $(a+b)^3$.

3. Shew that $(x^2+xy+y^2)^3+(xy-x^2-y^2)^3 6xy(x^4+x^2y^3+y^4) = 8x^3y^3.$

This comes under formula [6], the first term being (x^2+xy+y^2) , and the second $-(x^2-xy+y^2)$; we have therefore $\{(x^2+xy+y^2)-(x^2-xy+y^2)\}^3=(2xy)^3=8x^3y^3.$

Exercise ix.

Simplify

1.
$$(1-x^2)^3+(1+x^2)^3$$
, $(x^2+xy^3)^3-(x^2-xy^3)^3$.

2.
$$(a+2b)^3-(a-b)^3$$
, $(3a-b)^3-(3a-2b)^3$.

8.
$$(x+y-z)^3+3(x+y-z)^2z+z^3+3(x+y-z)z^2$$

4.
$$(a-b)^3 + (a+b)^3 + 6a(a^2-b^2)$$
.

5.
$$(x-y)^3 + (x+y)^3 + 3(x-y)^2 (x+y) - 3(y-x)(x+y)^2$$
.

6.
$$(1+x+x^2)^3 - (1-x+x^2)^3 - 6x(1+x^2+x^4)$$
.

7.
$$(a-b-c)^3+(b+c)^3+3(b+c)^2(a-b-c)+3(c-b-c)^2(b+c)$$

7.
$$(a-b-c)^3+(b+c)^4+6(b+c)^$$

9.
$$(1+x+x^2)^3+3(1-x^3)(2+x^2)+(1-x)^3$$
.

9.
$$(1+x+x^2)^a + b(1-x^2)^a +$$

10. Show that
$$a(a^3-2b^2)^3+b^3(2a^3-b^3)^3=(a^3-b^3)(a^3+b^3)^3$$

11. Show that $a^3(a^3-2b^2)^3+b^3(2a^3-b^3)^3=(a^3-b^3)(a^3+b^3)^3$

11. Shew that
$$a^{2}(x^{2}+y^{2})^{3}+6(x^{2}+y^{2})(x^{4}+x^{2}y^{4}+y^{4})+(x^{2}-xy+y^{2})^{3}$$
.
12. $(x^{2}+xy+y^{2})^{3}+6(x^{2}+y^{2})(x^{4}+x^{2}y^{4}+y^{4})+(x^{2}-xy+y^{2})^{3}$.

13. Show that
$$a^3(a^3 + 2b^3)^3 + b^3(2a^3 + b^3)^3 + (3a^2b^2)^3 = b^6 + 7a^3b^3 + b^6)^2$$
.

14. Sin plify
$$(ax+by)^3+a^3y^3+b^3x^3-3abxy(ax+by)$$
.

15. What will
$$a^3 + b^3 + c^3 - 3abc$$
 become when $a + b + c = 0$?

16. Find the value of
$$x^6 - y^6 + z^6 + 3x^2y^2z^2$$
 when $x^2 - y^2 + z^2 = 0$.

1. Simplify
$$(2x-3y)^3 + (4y-5x)^3 + (3x-y)^3 -$$

$$3(2x-3y)(4y-5x)(3x-y).$$

By [8] this is seen to be $\{(2x-3y)+(4y-5x)+(3x-y)\}^3 = (0)^3 = 0$.

2. Prove that
$$(a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a)$$
.

In [8] substitute a-b for x, b-c for y, and c-a for z; for these values x+y+z=0, and the identity appears at once.

these values
$$x+y+z=0$$
, and $3-(a+c-b)^3-(a+b-c)^3=3$. Prove $(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=24abc$.

24abc.
In [7] let
$$x=b+c-a$$
, $y=c+a-b$, $z=a+b-c$, and therefore x $+y=2c$, $y+z=2a$, $z+x=2b$, and this identity at once appears.

Exercise x.

1. Cube the following:
$$1-x+x^2$$
, $a-b-c$, $1-2x+3x^2-4x^3$.

2. Simplify
$$(x^2 + 2x - 1)^3 + (2x - 1)(x^2 + 2x - 2) - (x^3 + 3x^2 - 1)^3$$
.

8. *Prove that
$$(x+y)(y+z)(z+x) + xyz = (x+y+z)(xy+yz+zx)$$

4. Prove that
$$(ax - by)^3 + a^3y^3 - b^3x^3 + 3abxy(ax - by) = (a^3 - b^3)(x^3 + y^3)$$
.

5. Simplify
$$(x-2y)^3 + (y-2z)^3 + (z-2x)^3 + 3(x-y-2z) \times (y-z-2x)(z-x-2y) + (x+y+z)^3$$
.

6. Simplify
$$(2x^2 - 3y^2 + 4z^2)^3 + (2y^2 - 3z^2 + 4x^2)^3 + (2z^2 - 3x^2 + 4y^2)^3$$
.

7. Simplify
$$(2ax - by)^3 + (2by - cz)^3 + (2cz - ax)^3 + 3(2ax + by - cz)(2by + cz - ax)(2cz + ax - by)$$
.

8. Prove
$$(x^3 + 3x^2y - y^3)^3 + \{3xy(x+y)\}^3 = \{(x-y)^3 + 9x^2y\}$$

 $\times \{x^2 + xy + y^2\}^3$.

9. Prove
$$9(x^3+y^3+z^3)-(x+y+z)^3=(4x+4y+z)(x-y)^2+(4y+4z+x)(y-z)^2+(4z+4x+y)(z-x)^2$$
.

10. If
$$x+y+z=0$$
, shew that $x^3+y^3+z^3=3xyz$.

11. If
$$x = 2y + 8z$$
 shew that $x^3 - 8y^3 - 27z^3 - 18xyz = 0$.

12. Show that
$$(x^2 + xy + y^2)^3 + (x^2 - xy + y^2)^3 + 8z^5 - 6z^2 (x^4 + x^2y^2 + y^4) = 0$$
, if $x^2 + y^2 + z^2 = 0$.

13. Prove that
$$8(a+b+c)^3 - (a+b)^3 - (b+c)^3 - (c+a)^3 = 8(2a+b+c)(a+2b+c)(a+b+2c)$$
.

Prove the following:

5z) —

-63)3

12)3.

2)3 =

0?

12 +22

 $|y\rangle$ 3 =

(c-a).

rz: for

 $-c)^3 =$

refore x

appears.

14
$$(ax-by)^3 + b^3y^3 = a^3x^3 + 3abxy(by-ax)$$
.

^{*}Note that the right-hand member is formed from the left-hand one by changing additions into multiplications, and multiplications into additions; hence in (x+y+ix+2x) the signs + and \cdot may be interchanged throughout without altering the value of the expression.

15.
$$a^3 + b^3 + c^3 - 3abc = \frac{1}{2} \{ (a-b)^2 + (b-c)^2 + (c-a)^2 \} \times (a+b+c)$$
.

16.
$$(a+b+c)$$
 $\{(a+b-c) (b+c-a) + (b+c-a) (c+a-b) + (c+a-b) (a+b-c)\} = (a+b-c) (b+c-a) (c+a-b) + 8abc.$

17.
$$a^3 + b^3 + c^3 + 2 \pm abc = (a+b+c)^3 - 3\{a(b-c)^2 + b(c-a)^2 + c(a-b)^2\}$$
.

18.
$$(a+b+7c)(a-b)^2+(b+c+7a)(b-c)^2+(c+a+7b)(c-a)^2$$

= $2(a+b+c)^3-54abc$.

19.
$$(a+b+c)$$
 { $(2a-b)$ ($2b-c$) + ($2b-c$) ($2c-a$) + ($2c-a$) × ($2a-b$)} = ($2a-b$) ($2b-c$) ($2c-a$) + ($2a+b-c$) ($2b+c-a$) × ($2c+a-b$).

20. If
$$x^2(y+z) = a^3$$
, $y^2(z+x) = b^3$, $z^2(x+y) = c^3$, and $xyz = abc$, shew that $a^3 + b^3 + c^3 + 2abc = (x+y) \ (y+z) \ (z+x)$

5

W

pr

ers

cier

terr

will used

EXPANSION OF BINOMIALS.

We have from formula [5]

We have now to the set
$$a = a^3 + 3a^2b + 3ab^2 + b^3$$
; multiplying by $a + b$ we get $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$; multiplying this by $a+b$ we get $(a+b)^5 = a^5 + 5a^4b + 10a^3b^3 + 10a^2b^3 + 5ab^4 + b^5$.

From these examples we derive the following law for the formation of the terms in the expansion of a+b to any required

- power:—
 (1). The *index* of a, in the *first* term, is that of the given power, and *decreases* by unity in each succeeding term; the index of b begins with unity in the *second* term and *increases* by unity in each succeeding term.
- (2). The coefficient of the first term is unity, and the coefficient of any other term is found by multiplying the coefficient of the immediately preceding term by the index of a in that term, and dividing the product by the number of that preceding term. It will be observed that the coefficients equally distant from the extremes of the expansion, are equal.

Exercise xi.

- 1. Expand $(x+y)^6$, $(x+y)^7$, $(x+y)^8$, $(x+y)^{19}$.
- 2. What will be the law of signs if -y be written for y in (1)?
- 8. Expand $(a-b)^5$, $(a-2b)^4$, $(2b-a)^4$.
- 4. Expand $(1+m)^6$, $(m+1)^5$, $(2m+1)^6$.

 $a)^{2} +$

 $(c-a)^2$

yz = abc,

e get

this by

he form- .

required

n power,

idex of b

unity in

oefficient

nt of the

erm, and

from the

term.

 $\alpha) \times$

X

- 5. What is the coefficient of the 4th term in $(a-b)^{10}$?
- 6. Expand $(x^2-y)^4$, $(a-2b^2)^5$, $(a^3-2b^3)^6$.
- 7. In the expansion of $(a-b)^{12}$, the third term is $66a^{10}b^2$, find the 5th and 6th terms.
 - 8. Show that $(x+y)^5 x^5 y^5 = 5xy(x+y)(x^2 + xy + y^2)$.
- 9. From (8) shew that $2\{(a-b)^5 + (b-c)^5 + (c-a)^5\} =$ $5(a-b)(b-c)(c-a)\{(a-b)^2+(b-c)^2+(c-a)^2\}.$

SECTION III.—HORNER'S METHODS OF MULTIPLICATION AND DIVISION.

EXAMPLES.

1. Find the product of $kx^3 + lx^2 + mx + n$ and $ax^2 + bx + c$. Write the multiplier in a column to the left of the multiplicand, placing each term in the same horizontal line with the partial product it gives:

Art. VI. The above example has been given in full, the powers of \boldsymbol{x} being inserted; in the following example detached coefficients are used. It is evident that if the coefficient of the first term of the multiplier be unity, the coefficients of the multiplicand will be the same as those of the first partial product, and may be used for them, thus saving the repetition of a line.

2. Multiply $3x^4 - 2x^3 - 2x + 3$ by $x^2 + 3x - 2$.

3. Find the product of (x-3) (x+4) (x-2) (x-5).

4. Multiply $x^3 - 4x^2 + 2x - 3$ by $2x^3 - 3$

In this example the missing terms of the multiplier are supplied by zeros; but instead of writing the zeros as in the example, we may, as in ordinary arithmetical multiplication, "skip a line" for every missing term.

5. Multiply $x^4 - 2x^2 + 1$ by $x^4 - x^2 + 3$.

X

7. cx + a

1. (3

2. (

3. (a

4. (x

5. (6 Ob

6. (1

7. M

6. Find the value of (x+2)(x+3)(x+4)(x+5) - 9(x+2)(x+3) $\times (x+4) + 3(x+2)(x+3) + 77(x+2) - 85.$

7. Find the coefficient of x^4 in the product of $x^4 - ax^3 + bx^2 - ax^3 + bx^4 - ax^4 - ax^4 + bx^4 - ax^4 - ax^4 + bx^4 - ax^4 - ax^4 - ax^4 + bx^4 - ax^4 - ax^4$ cx+d and x^2+px+q .

Exercise xii.

Find the product of

1. $(1+x+x^2+x^3+x^4)(1-x+x^3-x^7+x^8-x^{12}+x^{13})$.

2. $(1+x^5)(1-x^5+x^6)(1+x+x^2+x^3+x^4)$.

3. (x-5)(x+6)(x-7)(x+8); $(2x^5-x^2+1)(x^4-x+2)$.

4. $(x^3 + 5x^2 - 16x - 1)(x^3 - 5x^2 - 16x + 1)$.

5. $(6x^{6} - x^{5} + 2x^{4} - 2x^{3} + 2x^{2} + 19x + 6) (3x^{2} + 4x + 1)$.

Obtain the coefficients of x^4 and lower powers in

6. $(1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{1}{16}x^3-\frac{5}{128}x^4)$ $(1-\frac{1}{2}x-\frac{1}{8}x^2-\frac{1}{16}x^3-\frac{5}{128}x^4)$.

7. Multiply $2x^7 - x^3 + 3x - 4$ by $3x^5 - 2x^2 - x - 1$.

supplied nple, we

a line "

 x^8]

Simplify the following:

8.
$$(x+1)(x+2)(x+3)+3(x+1)(x+2)-10(x+1)+9$$
.

8.
$$(x+1)(x+2)(x+3)+3(x+1)(x+2)-2x(x+1)+2x$$

9. $x(x+1)(x-2)(x+3)-3x(x+1)(x+2)-2x(x+1)+2x$

9.
$$x(x+1)(x-2)(x+3) - 3x(x+1)(x+2) - 2x(x-1) - 2x$$
.
10. $x(x-1)(x-2)(x-3) + 3x(x-1)(x-2) - 2x(x-1) - 2x$.

10.
$$x(x-1)(x-2)(x-3)$$
 (x+5) -14(x-1) (x+1)+1.
11. $(x-1)(x+1)(x+3)(x+5)$ -14(x-1) (x+1)+1.

12. Given that the sum of the four following factors is -1, find (1) the product of the first pair; (2) the product of the second pair; and (3) the product of the sum of the first pair by the sum of the second pair.

$$(1) \quad x \quad +x^4 \ +x^{13} \ +x^{16}$$

(2)
$$x^9 + x^8 + x^9 + x^{15}$$

$$(3) \quad x^3 + x^5 + x^{12} + x^{14}$$

(4)
$$x^6 + x^7 + x^{10} + x^{11}$$
.

18. Given that the sum of the three following factors is equal to -1, find their product.

$$(1) \quad x \quad +x^5 \quad +x^8 \quad +x^{1\,3}$$

$$(2) \quad x^3 + x^3 + x^{10} + x^{11}$$

(3)
$$x^4 + x^6 + x^7 + x^9$$
.

Art. VII. Were it required to divide the product P in the first of the above examples by $ax^2 + bx + c$, it is evident that could we find and subtract from P the partial products p_2 , p_3 , (or what would give the same result, could we add them with the sign of each term changed), there would remain the partial product p_1 , which, divided by the monomial ax^2 , would give the quotient Q. This is what Horner's method does, the change of sign being secured by changing the signs of b and c, which are factors in each term of p_2 , p_3 , respectively.

$ \begin{array}{c} a \ln x^5 + (al + bk)x^4 + (am + bl + ck)x^3 + (an + bm + cl)x^2 + (bn + cm)x + cn \\ -b \ln x^3 - b \ln x^3 - b \ln x \\ -c \ln x - cn \\ \end{array} $	1d	
$\frac{\ln + \ln + cl}{- \ln x^3}$ $- cl x^3$	$+anx^2$	
$am + bl + ch x^3 + (a - blx^3 - chx^3 - chx^3 - chx^3$	$+amx^3$	1
$(al + bk)x^4 + (al - bkx^4)$	$+a x^4$	
-bx alix5 +	kx3	
1. bx c	3	

The dividend and divisor are arranged as in the example, the sign of every term in the 0 divisor, except the first, being changed in order to turn the subtractions into additions. The first term of the dividend (akx5) is brought down into the line of p1: dividing this by ax^2 , the first term of the divisor, we get kx^3 , the first term of the quosent. Multiplying this rows, makes all ready to give the second term of p_1 , which is got by simply adding up the term, hx^3 , by -bx and -c, respectively, and writing the products in the proper columns and second column of the work, giving alx^4 . Dividing this second term of p_1 by ax^2 , gives lx^2 , the second term of the quotient. Multiply lx^2 by -bx and -c respectively, and proceed in the same way as was done in getting the second term of the quotient, and the third will be obtained. Repeating the steps, the complete quotient and the remainder will finally be

Should the coefficient of the first term of the divisor be unity, the coefficients of the line Q will be the same as those of p1, and the line Q need not be written down, since one line

-1, find second he sum

P in the

2. Divide
$$3x^6 + 7x^5 - 12x^4 + 2x^3 - 3x^2 + 13x - 6$$
 by $x^2 + 3x - 2$.

Compare this example with the second example of Horner's Multiplication, performing a step in multiplication, then the corresponding step in division; then another step in multiplication and the second (corresponding) step in division, and so on.

3. Divide
$$x^7 - 3x^6 + 4x^4 + 18x^3 - 7x^1 + 12$$
 by $x^3 - 3x^2 + 3x - 1$.

The quotient is therefore $x^4 - 3x^2 - 12x - 9$, and the remainder $6x^2 + 8x + 3$.

4. Divide $x^8 - 3x^7 - 5x^5 + 2x^4 + 5x^3 + 4x^2 + 1$ by $x^3 + 2x - 1$. The zero coefficient in the divisor may be inserted, or it may be omitted and allowance made for it in the 2x-line. See examples 4 and 5 in multiplication.

 $[x^8 \div x^3 = x^5]$. The quotient is therefore $x^5 - 3x^4 - 2x^3 + 2x^5 + 3x - 1$, and the remainder 5x.

5. Divide $10x^6 - 11x^5 - 3x^4 + 20x^3 + 10x^2 + 2$ by $5x^5 - 3x^2 + 2x - 2$.

+3x - 2

 $=x^4$

Horner's the corplication on.

+3x-1.

 $x^3=x^4].$

emainder

+2x-1. may be examples

 $2x^3 + 2x^2$

3 - 322 +

Arranging as in the ordinary method, we have

Quotient =
$$2x^3 - x^2 - 2x + 4 + \frac{24x^2 - 12x + 10}{5x^3 - 8x^2 + 2x - 2}$$

We first draw a vertical line with as many vertical columns to the right as are less by unity than the number of terms in the divisor. This will mark the point at which the remainder begins to be formed. We then divide 5 into 10, and thus obtain the first coefficient of the dividend. We next multiply the remaining terms of the divisor by the 2 thus obtained. Adding the second vertical column and dividing by 5, we obtain -1; we multiply by the -1, add the next column and divide the sum by 5, and so on for the others.

This method is not, however, always convenient. If the first term of the dividend be not divisible by the first term of the divisor, the work would be embarrassed with fractions. We may then proceed as in the following examples:

6. Divide
$$x^5 - 9x^4 + x^3 + 9x^2 - x + 3$$
 by $2x^3 + x^2 - 9x + 1$.

Let
$$2x = y$$
, or $x = \frac{y}{2}$.

stitute $\frac{y}{2}$ for x in the dividend and divisor, and we have

$$\frac{y^{2}}{2^{5}} - \frac{3y^{4}}{2^{4}} + \frac{y^{3}}{2^{3}} + \frac{3y^{3}}{2^{2}} - \frac{y}{2} + 8 \div \frac{2y^{3}}{2^{3}} + \frac{y^{2}}{2^{2}} - \frac{3y}{2} + 1$$

$$= \frac{y^{5} - 2 \times 3y^{4} + 2^{2}y^{3} + 2^{3} \times 3y^{2} - 2^{4}y + 2^{5} \times 3}{2^{5}} \div \frac{y^{3} + y^{3} - 2 \times 3y + 2^{2}}{2^{3}}$$

$$= \frac{y^{5} - 6y^{4} + 4y^{3} + 24y^{2} - 16y + 96}{2^{3}} - y^{3} + y^{2} - 6y + 4 \dots A,$$

Dividing $y^{3} - 6y^{4} + 4y^{3} + 24y^{3} - 16y + 96$ by $y^{3} + y^{3} - 6y + 4$ by the ordinary method, and the quotient by 2^{3} we have

$$\frac{y^2 - 7y + 17}{2^3} - \frac{1}{2^3} \cdot \frac{39y^2 - 114y - 28}{y^3 + y^2 - 6y + 4}$$

Substituting for y its value 2x, and simplifying we get

$$\frac{x^2}{2} - \frac{7x}{4} + \frac{17}{8} - \frac{1}{8} \cdot \frac{89x^2 - 57x - 7}{2x^3 + x^2 - 3x + 1} \cdot \dots B.$$

By comparing the dividend of A with the original question, we find that we have multiplied the successive coefficients of the dividend by 2^0 , 2^1 , 2^2 , &c., and, omitting the first term, we have multiplied the successive coefficients of the divisor by the same numbers. Dividing then by Horner's division we get the coefficients 1, -7, 17, and for coefficients of remainder, -39, 114, and 28. The first of these divided by 2, 2^2 , 2^3 are the coefficients of x^2 &c.; and, -39, &c., are divided by 1, 2, 2^2 . Hence the work will stand as follows:—

*Quotient =
$$\frac{x^2}{2} - \frac{7x}{4} + \frac{17}{8} - \frac{1}{8} \cdot \frac{39x^2 - \frac{114x}{2} - \frac{28}{4}}{2x^3 + x^2 - 3x + 1}$$

= $\frac{x^2}{2} - \frac{7x}{4} + \frac{17}{8} - \frac{1}{8} \cdot \frac{39x^2 - 57x - 7}{2x^3 + x^2 - 3x + 1}$.

and

10

15

^{*}It will, in general, be as convenient to multiply the dividend by such a number as will make its first term exactly divisible by the first term of the divisor, and afterwards divide the quotient by this multiplier.

3y+4 by

the diviwe have the same the coeffi-39, 114,

ne coeffi-Hence

-1 4 +4

uch a numdivisor, and 7. Divide $5x^5 + 2$ by $3x^3 - 2x + 3$.

Coeffs. of Quotient =
$$\frac{5}{8} + \frac{10}{8^2} - \frac{25}{8^3} - \frac{140}{8^4} - \frac{1}{8^4} \cdot \frac{55 - 1740}{8 - 2 + 8}$$
.

Quotient =
$$\frac{5x^3}{8} + \frac{10x^2}{9} - \frac{25x}{27} - \frac{140}{81} - \frac{1}{81} \cdot \frac{55x - 582}{8x^2 - 2x + 3}$$

Exercise xiii,

1. Divide
$$6x^5 + 5x^4 - 17x^3 - 6x^2 + 10x - 2$$
 by $2x^2 + 3x - 1$.

2.
$$(5x^6+6x^5+1) \div (x^2+2x+1)$$
.

8.
$$(a^6-6a+5) \div (a^2-2a+1)$$
.

4.
$$(x^5 - 4x^3y^2 - 8x^2y^3 - 17xy^4 - 12y^5) \div (x^2 - 2xy - 3y^2)$$
.

5.
$$(a^6 - 3a^4x^2 + 3a^2x^4 - x^6) \div (a^3 - 3a^2x + 3ax^2 - x^3)$$
.
Divide

6.
$$4x^4 + 3x^2 - 3x + 1$$
 by $x^2 - 2x + 3$.

7.
$$10x^5 + 5x^4 - 90x^3 - 44x^2 + 10x + 1$$
 by $x^2 - 9$.

8.
$$x^5 - x^4y + x^3y^2 - x^2y^3 + xy^4 - y^5$$
 by $x^3 - y^3$.

9. Multiply $x^4 - 4x^3a + 6x^2a^2 - 4xa^3 + a^4$ by $x^2 + 2xa + a^2$, and divide the product by $x^4 - 2x^3a + 2xa^3 - a^4$.

Divide

10.
$$x^5 - ax^4 + hx^3 - bx^2 + ax - 1$$
 by $x - 1$.

11.
$$6x^5 + 7x^4 + 7x^3 + 6x^2 + 6x + 5$$
 by $2x^2 + x + 1$.

12.
$$60(x^4+y^4)+91xy(x^2-y^2)$$
 by $12x^2-18xy+5y^2$.

13.
$$6x^6 - 481x^5 + 79x^4 + 81x^3 - 81x^2 + 86x - 481$$
 by $x - 80$.

14.
$$6x^6 - x^5 + 2x^4 - 2x^3 + 2x^2 + 19x + 6$$
 by $3x^2 + 4x + 1$.

15.
$$a(a+2b)^3 - b(2a+b)^3$$
 by $(a-b)^3$.

16.
$$(x+y)^3 + 3(x+y)^2z + 3(x+y)z^2 + z^3$$
 by $(x+y)^2 + 2(x+y)z + z^3$.

17.
$$10x^{10} + 10x^0 + 10x^3 - 200$$
 by $x^7 + x^3 - x + 1$.

18.
$$bmx^4 + (bn + cm)x^3 + cnx^2 + abx + ac$$
 by $bx + c$.

19. Multiply
$$1 + \frac{2}{13}x - 18x^3$$
 by $1 - \frac{1}{4}^3x^2 + \frac{3}{4}x^3$ and divide the product by $1 + \frac{1}{4}^1x - 8x^3$.

H

abox

lines mult

exan

1 H 2. 3. 4. 5. 6.

8

9.

Find the remainders in the following cases:

20.
$$(x^3+3x^2+4x+5)-(x-2)$$
.

21.
$$(x^4 - 3x^2 + x - 3) \div (x - 1)$$
.

22.
$$(x^4+4x^3+6x+8)\div(x+2)$$

23.
$$(27x^4 - y^4) \div (8x - 2y)$$
.

24.
$$(3x^5 + 5x^4 + 3x^3 + 7x^2 - 5x + 8) \div (x^2 - 2x)$$
.

25.
$$(5x^4 + 90x^3 + 80x^2 - 100x + 500) \div (x + 17)$$
.

Art. viii. The following are examples of an important use of Horner's Division:

1. Arrange
$$x^3 - 6x^2 + 7x - 5$$
 in powers of $x - 2$.

2	1	$\frac{-6}{2}$	7 -8	$-5 \\ -2$
2	1	-4 2	-1; -4	-7
2	1	-2; +2	- 5	
	1;	0		

Hence, $x^3 - 6x^3 + 7x - 5 = (x-2)^3 - 5(x-2) - 7$, or as it is generally expressed, $x^3 - 6x^2 + 7x - 5 = y^3 - 5y - 7$ if y = x - 2.

e-80.

1.

divide the

tant use of

as it is gen-

2. Express $x^4 + 12x^3 + 47x^2 + 66x + 28$ in powers of x + 3.

Hence $x^4 + 12x^3 + 47x^2 + 66x + 28 = y^4 - 7y^2 + 10$ if y = x + 3.

After a few solutions have been written out in full, as in the above examples, the writing may be lessened by omitting the lines opposite the increments (-2 in Ex. 1, and 3 in Ex. 2), the multiplication and addition being performed mentally. The last example written in this way would appear as follows:

Exercise xiv.

1 Express $x^3 - 5x^2 + 3x - 8$ in powers of x - 1.

2. "
$$x^3 + 3x^2 + 6x + 9$$
 " $x+1$.

8. "
$$x^4 - 8x^3 + 24x^3 - 32x + 97$$
 in powers of $x - 2$.

4. "
$$x^4 + 12x^3 + 5x^2 - 7$$
 " $x + 2$

5. "
$$8x^5 - x^3 + 4x^2 + 5x - 8$$
 " $x - 2$.

6. "
$$x^4 - 7x^3 + 11x^2 - 7x + 10$$
 " $x - 2$, " $x - 1\frac{3}{4}$.

7. "
$$x^3 - 2x^2 - 4x + 9$$
 " $x - \frac{14}{3}$

9. "
$$x^5 - 5x^4y + 5xy^4 - y^5$$
 " $x - 2y$

10. "
$$8x^3 + 12x^2y + 10xy^3 + 8y^3$$
 " $2x + y$.
11. " $x^3 - \frac{3}{2}x^2 + \frac{3}{8}x - \frac{51}{72}$ " $\frac{1}{8}x - \frac{1}{16}$.
12. " $x^4 + 8x^3 - 15x - 10$ " $x + 2$.

CHAPTER II

SECTION I .- THE PRINCIPLE OF SYMMETRY.

An expression is said to be symmetrical with respect to two of its letters when these can be interchanged without altering the expression:

Thus if in $a^3+a^2x+ax^2+x^3$, we write x for a, and a for x, we get $x^3 + x^2a + xa^2 + a^3$, which is identical with the given expression. So, in $x^2+b^2x+ba+a^2x$, if we interchange a and b, there results $x^2 + a^2x + ab + b^2x$ which is identical with the given expression; but it will be seen that the expression is not symmetrical with respect to x and b, or x and a.

An expression is symmetrical with respect to three of its letters a, b, c, when a can be changed into b, b into c, and c into a, without altering the expression.

Thus $a^3 + b^3 + c^3 - 3abc$ remains unaltered by changing a into b, b into c, and c into a, and is therefore symmetrical with respect to these letters. So, $a^2b+b^2a+a^2c+c^2a+b^2c+bc^2$, and $(a-b)^3$ $+(b-c)^3+(c-a)^3$, are each symmetrical with respect to a, b, c.

Again $(x-a)(a-b)^2+(x-b)(b-c)^2+(x-c)(c-a)^2$ is symmetrical with respect to a, b, c, but not with respect to x and any of the other letters.

Generally, an expression is symmetrical with respect to any number of its letters a, b, c, \ldots, h, k , when a can be changed into b, b into c, c into d h into k, and k into a, without altering the expression.

bva +

 \mathbf{the}

 \times (c

1

resp

4. respe

8.

5. to a 6.

7. with

8. 9.

pect t 10.

with 1 11. respec

12.

V

13.

14. 15.

A symmetric function of several letters is frequently represented by writing each type-term once, preceded by the letter 2; thus for $a+b+c+\ldots+l$ we write Σa , and for $ab+ac+ad+\ldots$. +bc+bd+... (i. e. the sum of the products of every pair of the letters considered) we write Sab.

Exercise xv.

Write the following in full:

1.
$$\sum a^2b$$
, $\sum (a-b)^2$, $\sum a(b-c)$, $\sum ab(x-c)$, $\sum a^3b^2c$, $\sum (a+b)$
 $\times (c-a)(c-b)$, $\sum \{(a+c)^2-b^2\}$, and $\sum a(b+c)^2$, each for a, b, c .

2. $\sum abc$, $\sum a^2b$, $\sum a^2bc$, $\sum (a-b)$, and $\sum a^2(a-b)$, each with respect to a, b, c, d.

Shew that the following are symmetrical:

8.
$$(x+a)(a+b)(b+x)+abx$$
, with respect to a and b.

4. $(a+b)^2+(a-b)^2$ with respect to a and b, and also with respect to a and -b.

5. $(ab-xy)^2-(a+b-x-y) \{ab(x+y)-xy(a+b)\}$ with respect to a and b, and also with respect to x and y.

6.
$$a^2(b-c)-b^2(a-c)-c^2(b-a)$$
 with respect to a, b, c .

7. $(ac+bd)^2+(bc-ad)^2$ with respect to a^2 and b^2 , and also with respect to c^2 and d^2 .

8.
$$x^6 + y^6 + 3xy(x^2 + xy + y^2)$$
 with respect to x and y .

9. $\{x^3 - y^3 + 3xy(2x + y)\}^3 + \{y^3 - x^3 + 3xy(2y + x)\}^3$ with respect to x and y.

10. $a(a+2b)^3+b(b+2a)^3$ with respect to a and b, and also with respect to a and -b.

11. $ab \left[\left\{ (a+c)(b+c) + 2c(a+b) \right\}^2 - (a-c)^2(b-c)^2 \right]$ with respect to a, b, c.

12. $a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)$ with respect to ab, bc, ca With respect to what letters are the following symmetrical?

13.
$$xyz + 5xy + 2(x^2 + y^2)$$
.

14.
$$2(a^{9}x^{2} + b^{2}y^{9}) - 2ab(xy + yz + zx)$$
.

15.
$$(f^2-h^2)^2+4g^2(f+h)^2+(2fh-2g^2)^2$$
.

th respect without

-y.

- 1¹6.

2.

for x, we n expresd b, there given exmmetrical

its letters a, without

 $\mathbf{g} \mathbf{a}$ into b, th respect ad $(a-b)^3$ t to a, b, c.

)2 is symx and any

ect to any e changed a, without

16.
$$(x+y)(x-z)(y-z)-xyz$$
.

17.
$$a^2b^2 + b^2c^2 + c^2a^2 - 2abc(a+b-c)$$
.

18.
$$x^6 - y^6 + z^6 - 3(x^2 - y^2)(y^2 - z^2)(z^2 + x^2)$$
.

19.
$$(a+b)^2+(a+c)^2+(b-c)^4$$
.

20.
$$(a+b)^4 + (a-c)^4 + (b+c)^4 + (a+c)^4$$
.

21.
$$(a+b)^4 + (u-c)^4 + (b+c)^4 + (u+c)^4 + (c-b)^4$$
.

Select the type-terms in:

22.
$$a^2 + 2ab + b^2 + 2bc + c^2 + 2ca$$

23.
$$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)+(a+b)(b+c)(c+a)$$
.

7

T

-bi

(1

(2

H

Tc

8.

Th

to x,

 $=x^{5}$

type-No

 $3x^2z$,

may b

(

1 + 1

with

24.
$$a(b+c)^2 + b(c+a)^2 + c(a+b)^2 - 12abc$$
.

Write down the type-terms in:

25.
$$(x+y)^5$$
, $(x-y)^5$, $(x+y)^5 - x^5 - y^5$.

26.
$$(x+y)^7 + (x-y)^7$$
, $(x+y)^7 - (x-y)^7$.

27.
$$(x+y+z)^4$$
, $(x-y-z)^4$.

28.
$$(a+b+c+d)^4$$
, $(a^2+b^2+c^2+d^2)^2$.

29.
$$(a+b)^3+(b+c)^3+(c+a)^3$$
.

Art. x. In reducing an algebraic expression from one form to another, advantage may be taken of the principle of symmetry: for, it will be necessary to calculate only the *type-terms*, and the others may be written down from these.

EXAMPLES.

1. Find the expansion of $(a+b+c+d+e+&c.)^2$

This expression is symmetrical with respect to a, b, c, &c.; hence the expansion also must be symmetrical, and as it is a product of two factors, it can contain only the squares a^2 , b^2 , c^2 , &c., and the products in pairs, ab, ac, ad . . . bc, bd, &c.; so that a^2 and ab are type-terms.

Now $(a+b)^2 = a^2 + 2ab + b^2$; and the addition of terms involving a, b, c, &c., will not alter the terms $a^2 + 2ab$, but will merely give additional terms of the same type. Hence from symmetry we get

$$(a+b+c+d+e+&c.)^2 = a^2 + 2ab + 2ac + 2ad + 2ae + \dots + b^2 + 2bc + 2bd + 2be + \dots + c^2 + 2cd + 2ce + \dots + d^2 + 2de + \dots + e^2 + 2de + \dots + e^2 + \dots + e^2 + \dots + e^2 + \dots$$

This may be compactly written

$$(\Sigma a)^2 = \Sigma a^2 + 2\Sigma ab.$$

2. Expand $(a+b)^3$.

This has been found by actual multiplication—see formula [5]—but we may also proceed as follows:

- (1) The expression is of three dimensions, and is symmetrical with respect to a and b.
 - (2) The type-terms are a^3 , a^2b .

Hence $(a+b)^3 = a^3 + b^3 + n(a^2b + b^2a)$, where n is numerical.

To find the value of n, put a = b = 1, and we have $(1+1)^3 = 1+1+n(1+1)$; $\therefore n=3$.

8. Expand $(x+y+z)^3$.

This is of three dimensions, and is symmetrical with respect to x, y, z. We have

$$(x+y+z)^3 = \{(x+y)+z\}^3 = (x+y)^3 + &c.$$

 $=x^5+3x^2y+$ &c., which are type-terms, the only other possible type-term being xyz.

Now, since the expression contains $3x^2y$, it must also contain $3x^2z$, that is, it must contain $3x^2(y+z)$. Hence

$$(x+y+z)^3 = x^3 + 3x^2(y+z) + y^3 + 3y^2(z+x) + z^3 + 3z^2(y+x)$$

+ n(xyz), where n is numerical, and may be found by putting x=y=z=1 in the last result, giving

$$(1+1+1)^3 = 1+1+1+3(1+1)+3(1+1)+3(1+1)+n;$$

$$\therefore n = 6.$$

c+a).

one form ymmetry: as, and the

, b, c, &c.; it is a pro-, c², &c., c.; so that

ms involvvill merely symmetry 4. Similarly we may shew that

$$(a+b+c+d)^3 = a^3 + 3a^2(b+c+d) + 6bcd + b^3 + 3b^2(c+d+a) + 6cda + c^3 + 3c^2(d+a+b) + 6dab + d^3 + 3d^2(a+b+c) + 6abc.$$

d

 \mathbf{h}

te

CO

ot

let

(x

a

 (z^2)

eac

1

(d+

4.

5.

6.

(x+

5. Expand $(a+b+c+&c.)^3$.

The type-terms are a^3 , a^2b , abc.

Expanding $(a+b+c)^3$, we get $a^3+3a^2b+6abc+&c$.

Hence by symmetry we have

$$(\Sigma a)^3 = \Sigma a^3 + 3\Sigma a^2 b + 6\Sigma abc.$$

6. Simplify $(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2$.

This expression is symmetrical, involving terms of the types a^2 and ab. Now a^2 occurs with 1 as a coefficient in the first square, with 4 as a coefficient in the second square, and with 1 as a coefficient in the third square, and hence $6a^2$ is one type-term of the result: ab occurs with 2 as a coefficient in the first square, with -4 as a coefficient in the second square, and with -4 as a coefficient in the third square, and hence -6ab is the second type-term in the result: hence the total result is $6(a^2+b^2+c^2-ab-bc-ca)$.

- 7. Simplify $(x+y+z)^3+(x-y-z)^3+(y-z-x)^3+(z-x-y)^3$. This is symmetrical with respect to x, y, z; and the type-terms are x^3 , $3x^2y$, 6xyz:
- (1) x^3 occurs in each of the first two cubes, and $-x^3$ in each of the second two cubes. \therefore there are no terms of the type x^3 in the result.
- (2) $3x^2y$ occurs in the *first* and *third* cubes, and $-3x^2y$ in the second and fourth, \therefore there are no terms of this type in the result.
- (3) 6xyz occurs in each of the four cubes, $\therefore 24xyz$ is the total result.
- 8. Prove $(a^2 + b^2 + c^2 + d^2)(w^2 + x^2 + y^2 + z^2) (aw + bx + cy + dz)^2 = (ax bw)^2 + (ay |cw|)^2 + (az dw)^2 + (by cx)^2 + (bz dx)^2 + (cz dy)^2$.

The left hand member (considered as given) is symmetrical with respect to the pairs of letters, a and w, b and x, c and y, d and z, that is, any two pairs may be interchanged without affecting the expression. As the expression is only of the second degree in these pairs, no term can involve three pairs as factors; hence the type-terms may be obtained by considering all the terms involving a, b, w, x; these are a^2w^2 , a^2x^2 , b^2w^2 , b^2x^2 , $-a^2w^2$, $-b^2x^2$, -2abwx, and are the terms of $(ax-bw)^2$ which is consequently a type-term. From $(ax-bw)^2$ we derive the five other terms of the second member by merely changing the letters.

9. Prove that

$$(x^2-yz)^3+(y^2-zx)^3+(z^2-xy)^3-3(x^2-yz)$$
 (y^2-zx) (z^2-xy) is a complete square.

The expression will remain symmetrical if (x^2-yz) (y^2-zx) (z^2-xy) , instead of being multiplied by -3, be subtracted from each of the preceding terms, thus giving

$$\begin{array}{l} (x_2-yz) \; \{(x^2-yz)^2-(y^2-xz)\; (z^2-xy)\} \\ +(y^2-zx) \; \{(y^2-zx)^2-(z^2-xy)\; (x^2-yz)\} \\ +(z^2-xy) \; \{(z^2-xy)^2-(x^2-yz)\; (y^2-zx)\} \\ =(x^2-yz)x(x^3+y^3+z^3-3xyz) \\ +\&c. \\ +\&c. \\ =(x^3+y^3+z^3-3xyz)\; (x^3+y^3+z^3-3xyz). \\ \end{array}$$

 Exercise xvi.

Simplify the following:

1.
$$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$$

2.
$$(a-b-c)^2+(b-a-c)^2+(c-a-b)^2$$
.

3.
$$(a+b+c-d)^2+(b+c+d-a)^2+(c+d+a-b)^2+(d+a+b-c)^2$$
.

4.
$$(a+b+c)^2 - a(b+c-a) - b(a+c-b) - c(a+b-c)$$
.

5.
$$(x+y+z+n)^2+(x-y-z+n)^2+(x-y+z-n)^2+(x+y-z-n)^2$$

6.
$$(a+b+c)^3+(a+b-c)^3+(b+c-a)^3+(c+a-b)^3$$
.

the types the first with 1 as ype-term t square, —4 as a e second

 $-x-y)^3$. pe-terms

 $+b^{2}+c^{2}$

in each ype x^3 in

y in the pe in the

the total

7.
$$(x-2y-3z)^2+(y-2z-3x)^2+(z-2x-3y)^2$$
.

8.
$$(ma+nb+rc)^3-(ma+nb-rc)^3-(nb+rc-ma)^3-(rc+ma-nb)^3$$
.

9.
$$a(b+c)(b^2+c^3-a^3)+b(c+a)(c^2+a^2-b^2)+c(a+b)(a^2+b^2-c^2)$$
.

10.
$$(ab+bc+ca)^2-2abc(a+b+c)$$
.

Prove the following:

11.
$$(ax+by+cz)^2+(bx+cy+az)^2+(cx-bz)^2+(ax+cy+bz)^2+(cx+by+az)^2+(bx+ay-cz)^2$$

= $2(a^2+b^2+c^2)(x^2+y^2+z^2)+4(ab+bc+ca)(xy+yz+zx)$.

12.
$$(a+b+c)^4+(b+c-a)^4+(c+a-b)^4+(a+b-c)^4$$

= $4(a^4+b^4+c^4)+24(a^2b^2+b^2c^2+c^2a^2)$.

13.
$$(a+b+c)^4 = \Sigma a^4 + 4\Sigma a^3b + 6\Sigma a^2b^2 + 12\Sigma a^2bc$$
.

14.
$$(\Sigma a)^4 = \Sigma a^4 + 4\Sigma a^3 b + 6\Sigma a^2 b^2 + 12\Sigma a^2 bc + 24\Sigma abcd.$$

15.
$$(a^2+b^2+c^2)^3+2(ab+bc+ca)^3-3(a^2+b^2+c^2) \times (ab+bc+ca)^2 = (a^3+b^3+c^3-3abc)^2$$
.

16.
$$(a-b)^2(b-c)^2+(b-c)^2(c-a)^2+(c-a)^2(a-b)^2=(a^2+b^2+c^2-ab-ac-bc)^2$$
.

17.
$$(2a-b-c)^2(2b-c-a)^2+(2b-c-a)^2(2c-a-b)^2+(2c-a-b)^2(2a-b-c)^2=9(a^2+b^2+c^2-ab-bc-ca)^2$$

18.
$$(ar^2 + 2brs + cs^2)(ax^2 + 2bxy + cy^2) - \{arx + b(ry + sx) + csy\}^2 = (ac - b^2)(ry - sx)^2$$
.

19.
$$(a^2 + ab + b^2)(c^2 + cd + d^2) = (ac + ad + bd)^2 + (ac + ad + bd)(bc - ad) + (bc - ad)^2$$
.

20. Shew that there are two ways in which the given product in the last example can be expressed in the form $p^2 + pq + q^2$, and two ways in which it can be expressed in the form $p^2 - pq + q^2$.

is

div

21.
$$6(w^2 + x^2 + y^2 + z^2)^2 = (w+x)^4 + (w-x)^4 + (w+y)^4 + (w-y)^4 + (w+z)^4 + (w-z)^4 + (x+y)^4 + (x-y)^4 + (x+z)^4 + (x-z)^4 + (y+z)^4 + (y-z)^4$$

22.
$$\frac{1}{6} \{ (a+b+c)^5 + (a-b-c)^5 + (b-c-a)^5 + (c-a-b)^5 \} = \frac{1}{3} \{ (a+b+c)^3 + (a-b-c)^3 + (b-c-a)^3 + (c-a-b)^3 \} \times \frac{1}{2} \{ (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2 \}.$$

SECTION II .- THEORY OF DIVISORS.

Any expression which can be reduced to the form $ax^n + bx^{n-1} + cx^{n-2} + \ldots + \ldots + hx + k$, in which n is a positive integer and $a, b, c, \ldots + h$, k are independent of x, is called a Polynome in x of degree n.

The expressions $f(x)^n$, $F(x)^n$, $\varphi(x)^m$, are used as general symbest for polynomes; the index n. m, indicates the degree of the polynome.

Theorem I. If the polynome $f(x)^n$ be divided by x-a, the remainder will be $f(a)^n$.

Cor. 1. $f(x)^n - f(a)^n$ is always exactly divisible by x - a.

(Particular case: $x^n - a^n$ is always exactly divisible by x - a).

Cor. 2. If $f(a)^n = 0$, $f(x)^n$ is exactly divisible by x - a, i.e., $f(x)^n$ is an algebraic multiple of x - a.

Cor. 3. If the polynome $f(x)^n$ on division by the polynome $\varphi(x)^m$ leave a remainder independent of x, such remainder will be the value of $f(x)^n$ when $\varphi(x)^m = 0$.

Examples.—Theorem 1.

1. Find the remainder when $x^5 - 7x^4 + 13x^3 - 16x^3 + 9x - 12$ is divided by x - 5.

The remainder will be the value of the given polynome when 5 is substituted for x. (See Art. III.).

$$5 \begin{vmatrix} 1 & -7 & +18 & 16 & +9 & -12 \\ 5 & -10 & 15 & -5 & 20 \\ \hline 1 & -2 & 3 & -1 & 4; & 8 \end{vmatrix}.$$

Hence the remainder is 8.

2. Find the remainder when $(x-a)^3 + (x-b)^3 + (a+b)^3$ is divided by x+a.

For x substitute -a, then $(-2a)^3 + (-a-b)^3 + (a+b)^3 = -8a^3$.

3. Find the remainder when $x^3+a^3+b^3+(x+a)(x+b)(a+b)$ is divided by x+a+b.

(z + zx).

product $-q^2$, and $q+q^2$.

 $\left\{ \right\} =$ $\left\{ \right\} \times$

)2}.

For x substitute -(a+b) and we get

$$-(a+b)^3 + a^3 + b^3 + ab(a+b) = -2ab(a+b)$$
. See Formula [6].

4. Find the remainder when $(x^2+2ax-2a^2)^3(x^2-2ax-2a^2) + 32(x-a)^4(x+a)^4$ is divided by x^2-2a^2 .

 x^2-2a^2 may be struck out wherever it appears.

This reduces the dividend to

$$(2ax)^{3}(-2ax) + 32(x-a)^{4}(x+a)^{4} = -16a^{4}x^{4} + 32(x^{3}-a^{2})^{4}.$$

sil

di

2(.

als

In this substitute $2a^2$ for x^2 and it becomes $-64a^8 + 32a^8 = -32a^8$,

which is the required remainder.

Exercise xvii.

- 1. Find the remainder when $3x^4+60x^3+54x^2-60x+58$ is divided by x+19.
- 2. Find the remainder when $px^3-3qx^2+3rx-s$ is divided by x-a.
- 3. What number added to $4x^5 + 34x^4 + 58x^3 + 21x^3 123x 41$ will give a sum exactly divisible by 2x + 13?
- 4. What number taken from $10x^{10} 20x^8 10x^6 89x^4 89x^2 + 20$ will leave a remainder exactly divisible by $10x^2 11$?

· Find the remainders from the following divisions:

5.
$$(x+1)^5 - x^5 \div x + 1$$
, and $(x+a+3)^3 - (x+a+1)^3 \div x + 2$.

6.
$$x^n + y^n \div x - y$$
; $x^{2n} + y^{2n} \div x + y$; $x^{2n+1} + y^{2n+1} \div x + y$.

7.
$$(x+1)^3+x^3+(x-1)^3 \div x-2$$
.

8.
$$(x-a)^3(x+a)^3+(x^2-2b^2)^3 \div x^2+b^2$$
.

9.
$$(x^2 + ax + a^2)(x^2 - ax + a^2) - (x^2 - 3ax + 2a^2)(x^2 + 3ax + 2a^2)$$

 $\Rightarrow x^2 + 2a^2$

10.
$$(9a^2 + 6ab + 4b^2)(9a^2 - 6ab + 4b^2)(81a^4 - 36a^2b^2 + 16b^4) \div (8a - 2b)^2$$
.

11.
$$a^2(x-a)^3 + b^2(x-b)^3 \div x - a - b$$
.

12.
$$(ax+by)^3+a^3y^3+b^3x^3-3abxy(ax+by) \div (a+b)(x+y)$$
.

13.
$$x^3 + a^3 + b^3 - 3abx \div x - a + b$$
; also $\div x + a - b$ also $\div x - a - b$.

ıla [6]. $x - 2a^2$

 $-a^{9})^{4}$.

+58 is

rided by

23x - 41

 $-89x^{4}$ $x^2 - 11$?

 $\div x + 2.$

x+y.

 $ax + 2a^2$

 $-16b^4) \div$

-b also +

(x+y).

16. Any polynome divided by x-1 gives for remainder the sam of the soefficients of the terms.

EXAMPLES.—COR. 1.

1. $x^5 + y^5$ is exactly divisible by x+y.

In " $x^5 - a^5$ is exactly divisible by x - a," substitute -y for a.

2. $mx^3 - px^2 + qx + m + p + q$ is exactly divisible by x+1.

This may be written

 $\{mx^3 - px^2 + qx\} - \{m(-1)^3 - p(-1)^2 + q(-1)\}\$ is exactly divisible by x-(-1).

3. $(x^2+6xy+4y^2)^5+(x^2+2xy+4y^2)^5$ is exactly divisible by $(x+2y)^3$. For $(x^2+6xy+4y^2)^5-(-x^2-2xy-4y^2)^5$ is exactly divisible by $(x^2+6xy+4y^2)-(-x^2-2xy-4y^2)$, which is $2(x^2+4xy+4y^2)=2(x+2y)^2$.

Exercise xviii.

Prove that the following are cases of exact division:

1. $x^{2n+1} + y^{2n+1} \div x + y$; $x^{2n} - y^{2n} \div x + y$.

2. $x^{12} + y^{12} \div x^4 + y^4$; $x^{30} + y^{30} \div x^6 + y^6$; also $\div x^{10} + y^{10}$; also $\div x^2 + y^2$.

8. $(ax+by)^5+(bx+ay)^5 \div (a+b)(x+y)$.

4. $(ax+by+cz)^3-(bx+cy+az)^3 \div (a-b)x+(b-c)y+(c-a)z$.

5. $(2y-x)^n - (2x-y)^n \div 3(y-x)$.

6. $(2y-x)^{2n+1}+(2x-y)^{2n+1}+y+x$.

7. $(my-nx)^5-(mx-ny)^5 \div (m+n)(y-x)$.

8. $(x+y)^6 + (x-y)^6 \div 2(x^2+y^2)$.

9. $(x^2+xy+y^2)^3+(x^2-xy+y^2)^3 \div 2(x^2+y^2)$.

10. $(a+b)^9 - (a-b)^9 \div 2b(3a^2 + b^2)$.

11. $(x^2 + 5bx + b^2)^7 + (x^2 - bx + b^2)^7 \div 2(x+b)^2$.

12. $(a+b)^{4n+2}+(a-b)^{4n+2} \div 2(a^2+b^2)$.

18. $\{x^3 + 3xy(x-y) - y^3\}^3 + \{x^3 - 9xy(x-y) - y^3\}^3 \div 2(x-y)^3$

14. $8x^3 - 5x^2 + 4x - 2 \div x - 1$.

15. Any polynome in x is divisible by x-1 when the sum of the coefficients of the terms is zero.

of

of

wh

qua in

the

2

8

10

11

15

14

15

(b-1)

(c-

(c-

16

16. Any polynome in x is divisible by x+1, when the sum of the coefficients of the even powers of x is equal to the sum of the coefficients of the odd powers. (The constant term is included among the coefficients of the even powers).

EXAMPLES.—COR. 2.

1. Show that $a(a+2b)^3 - b(2a+b)^3$ is exactly divisible by a+b. By Cor. 2, the substitution of -b for a must cause the polynome to vanish.

Substituting; $a(a-2a)^3 + a(2a-a)^3 = -a^4 + a^4 = 0$.

2. Show that $(ab-xy)^2-(a+b-x-y)\{ab(x+y)-xy(a+b)\}$ is exactly divisible by (x-a)(y-a), also by (x-b)(y-b).

For substitute a and the expression becomes

$$(ab-ay)^2 - (b-y)\{ab(a+y) - ay(a+b)\} =$$

 $a^2(b-y)^2 - (b-y)\{a^2(b-y)\} = 0.$

The expression is, therefore, exactly divisible by x-a. But it is symmetrical with respect to x and y, hence it is divisible by y-a, and as x-a and y-a are independent factors, the expression is exactly divisible by (x-a)(y-a). Again, the given expression is symmetrical with respect to a and b, hence, making the interchange of a and b, the expression is seen to be divisible by (x-b)(y-b).

8. Show that $6(a^5 + b^5 + c^5) - 5(a^3 + b^3 + c^3)(a^2 + b^2 + c^2)$ is exactly divisible by a + b + c.

For a substitute -(h+c) and the result which would be the remainder were the division actually performed, must vanish.

$${}_{\circ}6\{-(b+c)^{5}+b^{5}+c^{5}\}-5\{-(b+c)^{3}+b^{3}+c^{3}\}\{(b+c)^{2}+b^{9}+c^{3}\}$$

$$=6\{-(b+c)^{5}+b^{5}+c^{5}\}+30bc(b+c)(b^{2}+bc+c^{2}). \text{ See [1] and [6] }.$$

The expansion being of the 5th degree, and symmetrical in b and c, it will be sufficient to show that the coefficients of b^5 , b^4c , b^3c^3 vanish, the coefficients of b^2c^3 , bc^4 , c^5 being the coefficients

e sum of

the sum e sum of rm is in-

e by a+b. polynome

(a+b)} is

e. But it visible by the expressible given e, making e divisible

 $+c^{2}$) is

uld be the anish.

 $+b^{3}+c^{3}$ } 1] and [6].

etrical in b of b⁵, b⁴c, of the former terms in reverse order. Calculating the coefficients of these type-terms we get

$$6\{-5b^4c-10b^3c^2-\ldots\}+30(b^4c+2b^3c^2+\ldots),$$

which evidently vanishes. Hence the truth of the proposition.

4. If
$$a+b+c=0$$
, $\frac{1}{5}(a^5+b^5+c^5)=\frac{1}{2}(a^2+b^5+c^3)\cdot\frac{1}{3}(a^3+b^3+c^3)$.

In the last example it has been proved that the difference of the quantities here declared to be equal, is a multiple of a+b+c, i.e., in this case, a multiple of zero. Hence under the given condition they are equal.

Exercise xix.

Prove that the following are cases of exact division:

1.
$$(ax-by)^3+(bx-ay)^3-(a^3+b^3)(x^3-y^3) \div a, b, x, y, a+b, x-y.$$

2.
$$ax^3 - (a^2 + b)x^2 + b^2 \div ax - b$$
. (Substitute ax for b.)

8.
$$\begin{cases} (ax+by)^2 - (a-b)(x+z)(ax+by) + (a-b)^2xz \div x + y. \\ (ax-by)^2 - (a+b)(x+z)(ax-by) + (a+b)^2xz \div x + y. \end{cases}$$

4.
$$6a^3x^2 - 4ax^3 - 10axy - 3a^2xy + 2x^2y + 5y^2 \div 2ax - y$$
.

5.
$$1 \cdot 2a^4x - 16 \cdot 32a^3x^2 + 4 \cdot 8a^2x^3 + 9ax^4 - x^5 \div 6ax - 2x^2$$

6.
$$x^8 + x^6y^2 + x^2y + y^3 \div x^6 + y$$
.

7.
$$(c-d)a^2 + 6(bc-bd)a + 9(b^2c-b^2d) \div a + 3b$$
.

8.
$$x(x-\frac{1}{12}y)^5+y(\frac{1}{12}x-y)^5\div x-y$$
.

9.
$$a(a+2b)^3 - b(b+2a)^3 \div a - b$$
, also $\div a + b$.

10.
$$a^5 + 2a^4b + a^3b^2 + a^2x^3 - 2abx^3 + 3^2x^3 \div (a-b)(x+a)$$
.

11.
$$a(b-c)^3+b(c-a)^3+c(a-b)^3+(a-b), (b-c), (c-a).$$

12.
$$a^3(b-c)+b^3(c-a)+c^3(a-b) \div (a-b), (b-c), (c-a).$$

13.
$$a^{4}(b-c)+b^{4}(c-a)+c^{4}(a-b)\div(a-b), (b-c), (c-a).$$

14.
$$(a-b)^2(c-d)^2+(b-c)^2(d-a)^2-(d-b)^2(a-c)^2\div(a-b)$$
.
 $(b-c), (c-d), (d-a).$

15.
$$\{(a-b)^2+(b-c)^2+(c-a)^2\}\{(a-b)^2c^2+(b-c)^2a^2+(c-a)^2b^2\}-\{(a-b)^2c+(b-c)^2a+(c-a)^2b\}^2 \div (a-b), (b-c), (c-a).$$

16.
$$(x+y)(y+z)(z+x) + xyz \div x + y + z$$
.

17.
$$ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)+a+b+o$$
.

18.
$$(ab-bc-ca)^2 - a^2b^2 - b^2c^2 - c^2a^2 + a + b - c$$
.

19.
$$(a+2b)^3+(2b-3c)^3-(3c-a)^3+a^3+8b^3-27c^3+a+2b-3c$$
.

20.
$$a^3b^3+b^3c^3+c^3a^3-3a^3/2c^2+ab+bc+ca$$
.

1. Find the value of $4 + 9x^3 - 5x^2 + 29x + 6$ when $2x^2 = 9x + 4$.

an m th

in fo

fro

th

 $\mathbf{u}\mathbf{n}$ d

6 7

1(

Since $2x^2 - 3x + 4 = 0$, we have simply to find the remainder on division by $2x^2 - 3x + 4$, and if it is independent of x, it is the value sought, Cor. 3.

Hence the required value is 10.

2. What value of c will make $x^3 - 5x^2 + 7x - c$ exactly divisible by x-2.

If 2 be substituted for x, the remainder must vanish, Cor. 2.

Hence 2-c=0, or c=2.

3. What value of c will make $6x^5 - 5x^4 + cx^3 - 20x^3 + 19x - 5$ vanish when $2x^2 = 3x - 1$?

By Cor. 3, the remainder must vanish when the given polynome is divide by $2x^2-3x+1$. We may divide at once and find, if possible, a value of c that will make both terms of the remainder vanish, or we may first express cx^3 in lower terms in x, and then divide and find the required value of c from the remainder.

1st. Method, (see page 28),

Hence 28c = 140 and 24c = 120. Both of these are satisfied by c = 5.

2nd Method.
$$x^3 = \frac{1}{4}x(9x-1) = \frac{3}{9}x^2 - \frac{1}{4}x = \frac{3}{4}(9x-1) - \frac{1}{2}x = \frac{3}{4}x - \frac{3}{4} - \frac{1}{4}x = \frac{13}{4}x - \frac{3}{4}$$
; $\therefore cx^3 = \frac{13}{4}cx - \frac{3}{4}c$.

Substituting for cx^3 in the given polynome it becomes $6x^5 - 5x^4 - 20x^3 + (1\frac{3}{4}c + 19)x - \frac{3}{4}c - 5.$

Divide and apply Cor. 8.

We thus obtain the same remainder as by the former method, and consequently the same result. A comparison of the two methods shews that they are but slightly different in form, but the second method shows rather more clearly that c need not be introduced into the dividend at all, but the proper multiples of it found by the preliminary reduction can be added to or taken from the numerical remainder, and the "true remainder" be thus found, and c determined from it.

Exercise xx.

Find the value of

1.
$$x^4 - 8x^3 + 4x^2 - 8x + 4$$
, given $x^3 = x - 1$.

2.
$$x^5 - 2x^4 - 4x^3 + 18x^2 - 11x - 10$$
, given $(x - 1)^2 = 2$.

8.
$$2x^5 - 7x^4 + 12x^3 - 11x^2 + 2x - 5$$
 given $(x-1)^2 + 2 = 0$.

4.
$$3x^6 + 11x^5 + 10x^3 + 7x^2 + 2x + 3$$
 given $x^9 + 3x^2 - 2x + 5 = 0$.

5.
$$6x^7 + 9x^6 - 16x^4 - 5x^3 - 12x^2 - 6x + 60$$
 given $3x^4 + x - 4 = 0$.
What relies of $x = 31$

What values of c will make the following polynomes vanish under the given conditions.

6.
$$x^4 + 19x^3 + 26x^3 + 52x + 8c$$
, given $x + 11 = 0$.

7.
$$x^4 - 2x^3 - 9x^2 + 2cx - 14$$
, given $3x + 7 = 0$.

8.
$$x^4 - 4x^3 - x^2 + 16x + 6c$$
, given $x^2 = x + 6$.

9.
$$2x^4 - 10x^2 + 4cx + 6$$
, given $x^2 + 3 = 3x$.

10.
$$2x^4 + x^3 - 7cx^2 + 11x + 10$$
, given $2x = 5$.

inder on it is the

=3x-4.

divisible

Cor. 2.

+19x-5

en polyand find, emainder n x, and emainder.

- 160

+280 +120 11. $4x^4 + cx^2 + 110x - 105$, given $2x^2 - 5x + 15 = 0$.

12. $8x^5 - 16x^4 + cx^3 - 5x^2 - 114x + 200$, given $x^2 = 8x - 4$.

13. What values of p and q will make $x^4 + 2x^3 - 10x^2 - px + q$ vanish, given $x^2 = 3(x-1)$?

14. What values of p and q will make $a^{12} - 5a^{10} + 10a^8 - 15a^6 + 29a^4 - pa^2 + q$ vanish, given $(a^2 - 2)^2 = a^2 - 3$?

Theorem II. If the polynome $f(x)^n$ vanish on substituting for x each of the n (different) values $a_1, a_2, a_3, \ldots, a_n$

$$f(x)^n = A(x-a_1)(x-a_2)(x-a_3)$$
 . . . $(x-a_n)$

in which A is independent of x and consequently is the coefficient of x^n in $f(x)^n$.

Cor. If $f(x)^n$ and $\varphi(x)^m$ both vanish for the same m different values of x, $f(x)^n$ is algebraically divisible by $\varphi(x)^m$.

EXAMPLES.

1. x^3+ax^2+bx+c will vanish if 2, or 3, or -4 be substituted for x, determine a, b, c.

The coefficient of the highest power of x is 1;

$$x^3 + ax^2 + bx + c = (x-2)(x-3)(x+4) = x^3 - x^2 - 14x + 24.$$

pa

th

th

5,

of

po.

and

$$\therefore a = -1; b = -14: c = 24.$$

2. x^3+bx^2+cx+d will vanish if -3 or 2, or 5 be substituted for x, determine its value if 3 be substituted for x.

The given polynome =(x+3)(x-2)(x-5);

$$\therefore \text{ the required value is } (3+3)(3-2)(3-5) = -12.$$

3. $ax^3 + 3bx^2 + 3cx + d$ will vanish if for x be substituted -3, or $\frac{1}{9}$, or $1\frac{1}{2}$, but it becomes 45 if for x there be substituted 3; determine the values of a, b, c, d.

The coefficient of the highest power of x is a;

$$ax^3 + 3bx^2 + 3cx + d = a(x+3)(x-\frac{1}{2})(x-\frac{1}{2})$$

$$\therefore a(3+3)(3-\frac{1}{2})(3-1\frac{1}{2})=45 ; \quad \therefore a=2.$$

$$\therefore 2x^3 + 3bx^2 + 3cx + d = 2(x+3)(x-\frac{1}{2})(x-\frac{1}{2})$$

$$b = \frac{9}{3}$$
, $c = -3\frac{1}{2}$, $d = 4\frac{1}{2}$

4. If $x^3 + px^2 + qx + r$ vanish for x = a or b, or c, determine p, q, and r in terms of a, b, c.

$$x^{3}+px^{2}+qx+r = (x-a)(x-b)(x-c)$$

$$= x^{3}-(a+b+c)x^{2}+(ab+bc+ca)x-abc$$

$$\therefore p = -(a+b+c) \quad \text{or} \quad -\sum a.$$

$$q = ab+bc+ca \quad \text{or} \quad \sum ab$$

$$r = -abc \quad \text{or} \quad -\sum abc.$$

5. If $x^3 + px^2 + qx + r$ vanish for x = a, or b, or c, determine the polynome that will vanish for x = b + c, or c + a, or a + b.

Since
$$x^3 + px^2 + qx + r$$
 vanishes for $x = a$ or b or c ,
 $x^3 - px^2 + qx - r$ will vanish for $x = -a$ or $-b$ or $-c$,
and $-p = a + b + c$;

But the required polynome will vanish for

that is, for
$$x+p=-a$$
, or $-p-b$, or $-p-c$;
that is, for $x+p=-a$, or $-b$, or $-c$.
Hence it is
$$(x+p)^3-p(x+p)^2+q(x+p)-r= \\ x^3+2px^2+(p^2+q)x+pq-r.$$

The following is the calculation in the last reduction. (See page 31).

6. In any triangle, the square of the area expressed in terms of the lengths of the sides, is a polynome of four dimensions; and the area of the triangle, the lengths of whose sides are 3, 4, and 5, respectively, is 6. Find the polynome expressing the square of the area.

Let a, b, and c be the lengths of the sides, and A the required polynome.

1st. The area vanishes if any two of the sides become together equal to the third side, hence if a+b=c, A=0, and consequently A is divisible by a+b-c. Similarly it is divisible by b+c-a and by c+a-b.

4. -px+q

-15a6

ituting a_n

efficient

lifferent

stituted

x + 24.

bstituted

2. ited **–3.**

ituted 8;

2nd. The area vanishes if the three sides vanish together, hence if a+b+c=0, A=0, and consequently A is divisible by a+b+c.

W

O

 \mathbf{m}

pu

ar

SO

for

fac

que

be:

(b -

 \times (

of t

1

We have thus found four linear factors, but A is of only four dimensions.

:
$$A = m(a+b+c)(b+c-a)(c+a-b)(a+b-c)$$

in which m is a numerical constant.

But 62 or 36 =
$$m(3+4+5)(4+5-3)(5+3-4)(3+4-5)$$

= $576m$; $m = \frac{1}{12}$.

(The above includes all the ways in which the area of a triangle can vanish, for the vanishing of only one side involves the equality of the other two, or if a=0, b=c, and a+b=c, which is included in 1st.; if two sides vanish simultaneously, the three must vanish).

Examples on the Corollary.

7. Prove that
$$(x+1)^{12} - x^{12} - 2x - 1$$
 is divisible by $2x^3 + 3x^2 + x$.

Factoring the latter expression we find it vanishes for x=0, or -1 or $-\frac{1}{2}$. Substituting these values in the former polynome, it also vanishes. But these are different values of x, hence the truth of the proposition.

8.
$$(x+y+z)^5 - x^5 - y^5 - z^5$$
 is divisible by $(x+y+z)^3 - x^3 - y^3 - z^3$.

The latter expression vanishes if x = -y, so also does the former.

By symmetry they both vanish if y=-z and if z=-x. Hence they are both divisible by (x+y)(y+z)(z+x). But this expression is of three dimensions, as also is the latter of the given polynomes, hence it is a divisor of the former.

9. Prove that
$$\{(a+b)^5+(c+d)^5\}(a-b)(c-d)+\{(b+c)^5+(a+d)^5\}(b-c)(a-d)+\{(b+d)^5+(c+a)^5\}(b-d)(c-a)$$
 is algebraically divisible by $(a-b)(c-d)(b-c)(a-d)(b-d)(c-a)$ $\times (a+b+c+d)$, and find the quotient.

Let
$$a = b$$
 and the former polynome reduces to $\{(a+c)^5 + (a+d)^5\}(a-c)(a-d) + \{(a+d)^5 + (c+a)^5\}(a-d)(c-a)$

ocether, ible by

ly four

triangle e equalwhich is ne three

ynome,
ace the

former. Hence expresn poly-

 $\begin{array}{l}
l)(c-a) \\
(c-a)
\end{array}$

(c-a)

which vanishes, the second complex term differing from the first only in the sign of one factor, having (c-a) instead of (a-c).

Hence the former polynome is divisible by a-b, and by symmetry it is also divisible by a-c, by a-d, by b-c, by b-d, by c-d.

Again, $(a+b)^5 + (c+d)^5$ is divisible by (a+b) + (c+d); for, on putting a+b=-(c+d), it becomes $\{-(c+d)\}^5 + (c+d)^5$ which

Similarly the other terms of the former of the given polnomes are each divisible by a+b+c+d, and consequently the whole is so divisible.

Now all these factors are different from each other, hence the former of the given polynomes is divisible by the product of these factors, *i.e.*, by the latter of the given polynomes.

Both of these polynomes are of seven dimensions, hence their quotient must be a number, the same for all values of a, b, c, d.

Put a=2, b=1, c=0, d=-1, and divide. The quotient will be found to be -5.

$$\begin{array}{l} \ddots \ \{(a+b)^5 + (c+d)^5\}(a-b)(c-d) + \{(b+c)^5 + (a+d)^5\} \times \\ (b-c)(a-d) + \{(b+d)^5 + (c+a)^5\}(b-d)(c-a) = -5(a-b)(c-d) \\ \times (b-c)(a-d)(b-d)(c-a)(a+b+c+d). \end{array}$$

· N.B.—It is not always necessary to find the factors of the divisor, as the following examples show.

10. Prove that $x^{2}+x+1$ is a factor of $x^{14}+x^{7}+1$. $x^{2}+x+1$ will be a factor of $x^{14}+x^{7}+1$ provided $x^{14}+x^{7}+1=0$ if $x^{2}+x+1=0$.

If $x^{2}+x+1=0$. $x^{3}+x^{2}+x=0$. $x^{3}+x^{2}+x=0$. $x^{3}+x^{2}+x+1=1$. $x^{3}=1$. $x^{4}=1$ and $x^{12}=1$. $x^{7}=x$ and $x^{14}=x^{2}$. $x^{14}+x^{7}+1=x^{2}+x+1=0$. $x^{2}+x+1$ is a factor of $x^{14}+x^{7}+1$.

Art. XII. Two other methods of proving this proposition are worthy of notice.

1st. x^2+x+1 will be a factor of $x^{14}+x^7+1$ provided it is a factor of $\{(x^{14}+x^7+1)\pm \text{a multiple of } (x^2+x+1)\}$.

$$x^{1\,4}+x^7+1$$
 differs by a multiple of x^2+x+1 from
$$x^{1\,4}+x^{1\,1}(x^2+x+1)+x^8(x^2+x+1)+x^7+x^4(x^2+x+1)+x(x^2+x+1)+1$$

$$=x^{1} \cdot 2(x^2 + x + 1) + x^9(x^2 + x + 1) + x^6(x^2 + x + 1) + x^3(x^2 + x + 1) + (x^2 + x + 1)$$

$$(x^2 + x + 1)$$

$$= (x^{12} + x^9 + x^6 + x^3 + 1)(x^2 + x + 1).$$

Hence x^2+x+1 is a factor of $x^{14}+x^7+1$.

$$\begin{aligned} & 2\mathrm{nd.} \quad \frac{x^{1\,4} + x^7 + 1}{x^2 + x + 1} \ = \ \frac{x^{2\,1} - 1}{x^7 - 1} \cdot \frac{x - 1}{x^3 - 1} \ = \\ & \frac{(x^{3\,1} - 1)\{(x^{1\,5} - 1) - x(x^{1\,4} - 1)\}}{(x^7 - 1)(x^3 - 1)} \ = \\ & \frac{(x^{2\,1} - 1)(x^{1\,5} - 1)}{(x^7 - 1)(x^3 - 1)} \ - \ \frac{x(x^{2\,1} - 1)(x^{1\,4} - 1)}{(x^3 - 1)(x^7 - 1)} \end{aligned}$$

But we see at once that on reduction both of these fractions give an integral quotient, hence $(x^{14}+x^7+1) \div x^2 + x + 1$ gives an integral quotient.

11. x^2+x+1 is a factor of $(x+1)^7-x^7-1$.

If $x^2+x+1=0$, $(x+1)^7-x^7-1$ will vanish also, for in such case $x+1=-x^2$.

$$\therefore (x+1)^7 - x^7 - 1 = (-x^2)^7 - x^7 - 1 = -x^{14} - x^7 - 1,$$

which by the last example vanishes if $x^2 + x + 1 = 0$;

$$\therefore x^2+x+1$$
 is a factor of $(x+1)^7-x^7$ 1.

For x substitute $\frac{x}{y}$ and multiply by y^2 and y^7 respectively,

 x^3

and this example becomes

$$x^{2}+xy+y^{2}$$
 is a factor of $(x+y)^{7}-x^{7}-y^{7}$.

osition

l it is a

.

-1) +

(c+1) +

ractions

⊢1 gives

in such

- 1,

pectively,

Exercise xxi.

Determine the values of a, b, c, d, e, in the following cases:—

- 1. $x^3 + 3bx^2 + 3cx + d$ vanishes for x = 2, or 3, or 4.
- 2. $x^4 + cx^2 + dx + e$ " $x = 1\frac{1}{2}$ or -8 or $4\frac{1}{2}$.
- 8. $x^3 + bx^2 + cx + 24$ " x = 2 or -3.
- 4. $ax^3 + bx^2 + cx + 90$. " x = 3 or -5 or 2.
- 5. $ax^4 + cx^2 30x + e$. " $x = 1\frac{1}{2}$ or -4, or $2\frac{1}{2}$.
- 6. $81x^4 + 6cx^2 + 4dx + e$ " $x = 1\frac{2}{3}$ or $-9\frac{1}{3}$ or $1\frac{1}{3}$.
- 7. $ax^4 + bx^3 + cx^2 81$ " $x = \frac{3}{5}$ or $\frac{3}{4}$ or $\frac{3}{4}$."
- 8. $ax^4 + cx^2 + dx + e$ " x = 2 or $1\frac{1}{2}$ or -1 and becomes 14 for x = 1.
- 9. ax^3+cx+d vanishes for $x=1\frac{1}{4}$, or $2\frac{3}{4}$, and becomes 49 for x=3, determine its value for x=-3.

Given that $x^3 - px^2 + qx - r$ vanishes for x = a, or b, or c, detertermine the polynome that vanishes for

- 10. x=c+1, or b+1, or c+1.
- 11. x=a-1, or b-1, or c-1.
- 12. $x=1-\frac{1}{a}$, or $1-\frac{1}{b}$, or $1-\frac{1}{c}$.
- 13. x = ab, or bc, or ca.
- 14. $x = a^2$, or b^2 , or c^3 .
- 15. x = a(b+c), or b(c+a), or c(a+b). $\left\{a(b+c) = q \frac{r}{a}\right\}$.
- 16. $x = \frac{a+b}{c}$ or $\frac{b+c}{a}$ or $\frac{c+a}{b}$. $\left\{\frac{a+b}{c} = \frac{p}{c} 1.\right\}$

Prove that the following are cases of exact division:

- 17. $(x-1)^{12}-x^6+(x^2-x+1)^2+x^3-2x^2+2x-1$.
- 18. $(x-1)^{16}-x^8+(x^2-x+1)^8+x^3-2x^2+2x-1$.
- 19. $(x-2)^{10}(2x-5)^{10}-x^{10}+2^{10}(x^2-4x+5)^5 \div x^3-6x^2+13x-10$.
 - 20. $(x^2+4x+3)^{18}-x^{18}-x^2-5x-9 \div x^3+6x^2+8x+3$.
- 21. $(9x-4)^{21}(x-1)^{21} \cdot x^{21} (9x^2 14x + 4)^{21} \div (x-1) \times (9x-4)(9x^2 14x + 4)$.
- 22. $\{6(x-1)\}^{13} (2x^2 + 3x 4)^{13} + (2x^2 3x + 2)^{13} \div (2x^2 + 3x 4)(2x^3 3x + 2)(x 1).$

28.
$${2(x+1)(x-2)}^{17} + (x^2 - 3x + 3)^{17} - (3x^2 - 5x - 1)^{17} \div (x+1)(x-2)(x^2 - 3x + 3)(3x^2 - 5x - 1).$$

24.
$${6(x-1)}^{16} - (2x^2 + 3x - 4)^{16} - (2x^2 - 3x + 2)^{16} + 2(2x^2 + 3x - 4)^8(2x^2 - 3x + 2)^4 \div (x - 1)(2x^2 + 3x - 4)(2x^2 - 3x + 2)$$

25.
$$\{2(x+1)(x-2)\}^{20} - (x^2-3x+3)^{20} - (3x^2-5x-1)^{20} + 2(x^2-3x+3)^9(3x^2-5x-1)^{11} \div (x+1)(x-2)(x^2-3x+3) \times (3x^2-5x-1).$$

26.
$$1+x^4+x^8 \div 1+x+x^3$$
.

27.
$$x^{10} + x^5y^5 + y^{10} \div x^2 + xy + y^2$$
.

28.
$$1+x^3+x^6+x^9+x^{12} \div 1+x+x^2+x^3+x^4$$
.

29.
$$1+x^4+x^8+x^{12}+x^{16} \div 1+x+x^2+x^3+x^4$$

80.
$$x^{15} + x^{10}y^5 + x^5y^{10} + y^{15} \div x^3 + x^2y + xy^2 + y^3$$
.

81.
$$x^{17} + x^4 + x^3 + x + 1 \div x^4 + x^3 + x^2 + x + 1$$
.

32.
$$1+x+x^2+x^3+x^5+x^6+x^{53} \div +x+x^2+x^3+x^4+x^5+x^6$$
.

Find the quotient of the following divisions in which D denotes the product

$$(b-c)(c-a)(a-b)(a-d)(b-d)(c-d)$$
;

33.
$$(b^2c^2+a^2d^2)(b-c)(a-d)+(c^2a^2+b^2d^2)(c-a)(b-d)+(a^2b^2+c^2d^2)(a-b)(c-d)\div D.$$

34.
$$(bc+ad)(b^2-c^2)(a^2-d^2)+(ca+bd)(c^5-a^2)(b^2-d^2)+(ab+cd)(a^2-b^2)(c^2-d^2) \div D.$$

35.
$$(b+c)(a+d)(b^2-c^2)(a^2-d^2)$$
 + the two similar terms ÷ D.

36.
$$(b^2+c^2)(a^2+d^2)(b-c)(a-d)+$$
 " D .

87.
$$\{bc(b+c)^2 + ad(a+d)^2\}(b-c)(a-d) +$$
 $\div D.$

38.
$$\{bc(b+c)+ad(a+d)\}(b^2-c^2)(a^2-d^2)+$$
 " $\div D.$

39.
$$\{bc(b^3+c^3)+ad(a^3+d^3)\}(b-c)(a-d)+$$
 $\div D.$

40.
$$(b+c-a-d)^4(b-c)(a-d)+$$
 " D .

of

are of f

n di

sible zero

b, an

x, but and : vanis

(b-c)

Su $\{(b+$ which and c

(c-d) only f hence

1. a

 $=x^{2}+$

+ -3x+2)

1)^{2 o} +

D denotes

- u₎ - -

-d²)+

 $\mathbf{rms} \div D.$ $\div D.$

 $\begin{array}{l} \div D. \\ \div D. \end{array}$

 $\div D$.

 $\div D$.

nsed by the m of their product is 42. In any trapezium the square of the area expressed in terms of the lengths of the parallel sides and the diagonals, is a polynome of four dimensions, determine that polynome.

48. In any quadrilateral inscribed in a circle, the square of the area expressed in terms of the lengths of the sides, is a polynome of four dimensions, find that polynome.

Theorem III. If the polynome $f(x)^n$ vanish for more than n different values of x, it vanishes identically, the coefficient of every term being zero.

Cor. If a rational integral expression of n dimensions be divisible by more than n linear factors, the expression is identically zero.

EXAMPLES.

1. $\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)} - 1 = 0$, if a, b, and c are unequal; for this is a polynome of two dimensions in x, but it vanishes for x=a, and, therefore, by symmetry for x=b, and for x=c, that is, for three different values of x, hence it vanishes identically.

2.
$$\{(a+b)^2+(c+d)^2\}(a-b)(c-d)+\{(c+b)^2+(b+d)^2\}(b-c)(a-d)+\{(c+a)^2+(b+d)^2\}(c-a)(b-d)=0$$
.

Substitute b for a and the expression becomes $\{(b+c)^2+(b+d)^2\}(b-c)(b-d)+\{(c+b)^2+(b+d)^2\}(c-b)(b-d)$ which vanishes, hence the given expression is divisible by a-b, and consequently by symmetry it is divisible by (a-b), (b-c), (c-d), (a-c), (b-d), and (a-d), But the given expression is of only four dimensions, while it appears to have six linear factors, hence it vanishes identically.

Exercise xxii.

Verify the following:

$$1. \frac{x^{2}y^{2}z^{2}}{b^{2}c^{2}} + \frac{(x^{2} - b^{2})(y^{2} - b^{2})(z^{2} - b^{2})}{b^{2}(b^{2} - c^{2})} + \frac{(x^{2} - c^{2})(y^{2} - c^{2})(z^{2} - c^{2})}{c^{2}(c^{2} - b^{2})}$$

$$= x^{2} + y^{2} + z^{2} - b^{2} - c^{2}.$$

$$2 \frac{y^{3}z^{3}}{b^{2}c^{2}} + \frac{(y^{2} - b^{2})(z^{2} - b^{2})}{b^{2}(b^{2} - c^{2})} + \frac{(y^{2} - c^{2})(z^{2} - c^{2})}{c^{3}(c^{2} - b^{2})} = 1.$$

$$3 \frac{x^{3}y^{2}}{a^{3}b^{2}} + \frac{(x^{2} - a^{2})(a^{3} - y^{2})z^{2}}{(z^{2} - a^{2})(b^{2} - a^{2})b^{2}} + \frac{(x^{2} - b^{2})(b^{2} - y^{2})z^{2}}{(b^{2} - a^{2})(b^{2} - a^{2})(b^{2} - a^{2})b^{2}} + \frac{(z^{2} - x^{3})(z^{2} - y^{2})}{(z^{2} - a^{2})(b^{3} - z^{2})} = 0.$$

$$4 \cdot \frac{1}{(x + a)(a - b)(a - c)} + \frac{1}{(x + b)(b - c)(b - a)} + \frac{1}{(x + c)(c - a)(c - b)} = \frac{1}{(x + a)(x + b)(x + c)}.$$

$$5 \cdot bc(b^{2} - c^{2}) + ca(c^{2} - a^{2}) + ab(a^{2} - b^{2}) = (a + b + c)\{a^{2}(b - c) + b^{2}(c - a) + c^{3}(a - b)\}.$$

$$6 \cdot \frac{a + x}{x(x - y)(x - z)} + \frac{a + y}{y(y - x)(y - z)} + \frac{a + z}{z(z - a)(z - y)} = \frac{a}{xyz}.$$

$$7 \cdot \frac{a^{4}(b^{2} - c^{2}) + b^{4}(c^{2} - a^{2}) + c^{4}(a^{2} - b^{2})}{a^{2}(b - c) + b^{2}(c - a) + c^{2}(a - b)} = \frac{1}{3}\{(a + b + c)^{3} - a^{3} - b^{3} - c^{3}\}.$$

$$8 \cdot (adf + bcf + bcd - ace)^{2} + (bce + aed + acf - bdf)^{3} = (a^{2} + b^{2})(c^{2} + d^{2})(e^{2} + f^{2}).$$

$$9 \cdot \frac{(a - b)^{5} + (b - c)^{5} + (c - a)^{5}}{(a - b)(b - c)(c - a)} = \frac{5}{2}\{(a - b)^{2} + (b - c)^{2} + (c - a)^{2}\}.$$

$$10 \cdot (-x + y + z)(x - y + z)(x + y - z) + x(x - y + z)(x + y - z) + y(x + y - z)(-x + y + z) + z(-x + y + z)(x - y + z) = 4xyz.$$

$$11 \cdot \frac{(a^{2} - b^{2})^{3} + (b^{2} - c^{2})^{3} + (c^{2} - a^{2})^{3}}{(a + b)(b + c)(c + a)} = (a - b)^{3} + (b - c)^{3} + (c - a)^{3}.$$

$$12 \cdot x^{2}(y + z)^{2} + y^{2}(z + x)^{2} + z^{2}(x + y)^{2} + 2xyz(x + y + z) = 2(xy + yz + zx)^{2}.$$

Theorem IV. If the polynomes $f(x)^n$, $\varphi(x)^m$ (n not less than m) are equal for more than n different values of x, they are equal for all values, and the coefficients of equal powers of x in each are equal to one another.

full simi

1.

A

Mu
∴
Noting in

in wh

 $egin{array}{c} \mathbf{ag} \ \mathbf{n} \\ \mathbf{Aga} \end{array}$

(x-b)

A

(a-b)(

2. a

.

(This is called the Principle of Indeterminate Coefficients. The full use of it cannot be exhibited till the student is able to work simultaneous equations.)

EXAMPLES.

1.
$$\frac{a^{2}}{(a-b)(a-c)(a-d)} + \frac{b^{2}}{(b-a)(b-c)(b-d)} + \frac{c^{2}}{(c-a)(c-b)(c-d)} + \frac{d^{2}}{(d-a)(d-b)(d-c)} = 0.$$

Assume
$$\frac{x^{2}}{(x-a)(x-b)(x-c)(x-d)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} + \frac{D}{x-d}$$
 (a)

in which A, B, C, D are independent of x.

Multiply by
$$(x-a)(x-b)(x-c)(x-d)$$
.

$$x^2 = (A+B+C+D)x^3 + \text{terms in lower powers of } x.$$

Now this equality holds for more than three values of x, holding in fact for all finite values of x.

$$\therefore A + B + C + D = 0$$
(6)

Again multiply both sides of (α) by $x-\alpha$

$$\frac{x^2}{(x-b)(x-c)(x-d)} = A + \left(\frac{B}{x-b} + \frac{C}{x-c} + \frac{D}{x-d}\right)(x-a).$$

Put x = a

 $\frac{1}{(-a)(c-b)}$

not less than

ey are equal of x in each

$$\cdot \cdot \frac{a^2}{(a-b)(a-c)(a-d)} = A.$$

By symmetry
$$\frac{b^2}{(b-a)(b-c)(b-d)} = B$$
, &c.

Adding

$$\frac{a^{2}}{(a-b)(a-c)(a-d)} + \frac{b^{2}}{(b-a)(b-c)(b-d)} + \frac{c^{2}}{(c-a)(c-b)(c-d)} + \frac{d^{2}}{(d-a)(d-b)(d-c)} = A+B+C+D=0 \text{ by } (\beta).$$

2.
$$\frac{a^{2}(a+b)(a+c)}{(a-b)(a-c)} + \frac{b^{2}(b+c)(b+a)}{(b-c)(b-a)} + \frac{c^{2}(c+a)(c+b)}{(c-a)(c-b)}$$
= $(a+b+c)^{2}$.

Assume
$$x^3 - px^2 + qx - r = (x - a)(x - b)(x - c)$$
. (a).

:
$$x^3 + px^2 + qx + r = (x+a)(x+b)(x+c)$$
. (B).

$$\frac{x^4 + px^3 + qx^2 + rx}{x^3 - px^2 + qx - r} = x + 2p + \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c} \qquad (\gamma).$$

20

1

1

16

Multiply by $x^3 - px^2 + qx - r$ and equate the coefficients of the terms in x^2 . {In multiplying the fractions in the right-hand member of (γ) , use the factor side of (α) .}

$$q = q - 2p^2 + A + B + C$$

 $\therefore A + B + C = 2p^2.$

Multiply both members of (γ) by x-a

$$\frac{x(x+a)(x+b)(x+c)}{(x-b)(x-c)} = A + \left\{x + 2p + \frac{B}{x-b} + \frac{C}{x-c}\right\}(x-a).$$

Put x = a,

$$\frac{2a^{2}(a+b)(a+c)}{(a-b)(a-c)} = A.$$

By symmetry

$$\frac{2b^2(b+c)(b+a)}{(b-c)(b-a)} = B \text{ and } \frac{2c^2(c+a)(c+b)}{(c-a)(c-b)} = C;$$

$$\frac{a^2(a+b)(a+c)}{(a-b)(a-c)} + \frac{b^2(b+c)(b+a)}{(b-c)(b-a)} + \frac{c^2(c+a)(c+b)}{(c-a)(c-b)}$$

$$=: \frac{1}{2}(A+B+C)=p^{2}.$$

$$= (a+b+c)^2$$
.

3. Extract the square root of $1+x+x^2+x^3+x^4+&c$.

Assume the square root to be $1+ax+bx^2+cx^3+dx^4+&c$.

$$\therefore 1 + x + x^2 + x^3 + x^4 + &c. = (1 + ax + bx^2 + cx^3 + dx^4 + &c.)^2$$

=
$$1 + 2ax + (a^2 + 2b)x^2 + 2(ab + c)x^3 + (2d + 2ac + b^2)x^4 + &c.$$

 $\cdot \cdot \cdot 2a = 1$ $\cdot \cdot \cdot a = \frac{1}{2}$

$$2b + a^{2} = 1 \qquad \therefore b = \frac{1}{2}(1 - \frac{1}{4}) = \frac{3}{8}$$
$$2(c + ab) = 1 \qquad \therefore c = \frac{1}{2} - (\frac{1}{2} \times \frac{3}{8}) = \frac{5}{16}$$

$$2d + 2ac + b^2 = 1 \quad \therefore d = \frac{1}{2} \left\{ 1 - \frac{5}{16} - \frac{9}{64} \right\} = \frac{35}{28}.$$

$$\therefore \sqrt{(1 + x + x^2 + \&c.)} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \frac{35}{28}x^4 + \&c.$$

(Note.—As it is frequently necessary to determine the coefficient of a particular power of x, a few preliminary exercises are given on this subject.)

 (α) .

$$(\beta)$$
.

$$\frac{C}{-a}$$
 (γ) .

ents of the right-hand

(c-a).

·c. 1+&c.

 $(dx^4 + \&c.)^2$ $(dx^4 + \&c.)^2$ $(dx^4 + \&c.)^2$

4 + &c.

the coeffi-

Exercise xxiii.

Determine the coefficient of

1.
$$x^4$$
 in $(1+ax)^3+(1+bx)^5+(1-cx)^4$.

2.
$$x^5$$
 in $(1+x+2x^2+3x^3)(1-x+3x^2+x^3-5x^4)$

3.
$$x^4$$
 in $(1+c+2x^2+3x^3+4x^4+&0)(1-x-x^2-x^3+x^4-&0)$.

4.
$$x^3$$
 in $A(x-b)(x-c)(x-d) + B(x-a)(x-c)(x-d) + C(x-a)(x-b)(x-d) + D(x-a)(x-b)(x-c)$.

5.
$$x^4$$
 in $(1-ax)^3(1+ax)^5$.

6.
$$x^4$$
 in $(1+ax)^3(1-bx)^5$.

$$(1+ax+bx^2+cx^3+&c.)(1-ax+bx^2-cx^3+&c.)$$

prove that the coefficients of the odd powers of x must be all zeros.

Determine the value of the following expressions:

8.
$$\frac{1}{(a-b)(a-c)(u-d)} + \frac{1}{(b-a)(b-c)(b-d)} + \frac{1}{(c-a)(c-b)(c-d)} + \frac{1}{(d-a)(d-b)(d-c)}$$

9.
$$\frac{a}{(a-b)(a-c)(a-d)} + \frac{b}{(b-a)(b-c)(b-d)} + &a$$

10.
$$\frac{a^2}{(a-b)(a-c)(a-d)}$$
 + three similar terms.

11.
$$\frac{a^3}{(a-b)(a-c)(a-d)}$$
 + "

12.
$$\frac{a^4}{(a-b)(a-c)(a-d)}$$
 + three similar terms.

13.
$$\frac{bcd}{(a-b)(a-c)(a-d)} + \cdots$$

14.
$$\frac{a(a+b)(a+c)}{(a-b)(a-c)}$$
 + two

15.
$$\frac{a^3(a+b)(a+c)}{(a-b(a-c)}$$
 + ""

16.
$$\frac{a^4(a+b)(a+c)}{(a-b)(a-c)}$$
 + "

17.
$$\frac{a(a+b)(a+c)(a+d)}{(a-b)(a-c)(a-d)} + \text{three similar terms.}$$

18.
$$\frac{a^2(a+b)(a+c)(a+d)}{(a-b)(a-c)(a-d)} + \cdots$$

19.
$$\frac{a^3(a+b)(a+c)(a+d)}{(a-b)(a-c)(a-d)} + \cdots$$

20.
$$\frac{bc(b+c)}{(a-b)(a-c)}$$
 +two similar terms.

[For numerator use $x^3 + 2px^2 + (p^2 + q)x + (pq - r)$.]

21.
$$\frac{(2a+b)(2a+c)}{(a-b)(a-c)} + \text{two similar terms.}$$

[For numerator use $x^3 - 2px^2 + (p^2 + q)x - (pq - r)$.]

22.
$$\frac{a(b+c)}{(a-b)(a-c)}$$
 + two similar terms.

[For numerator use x(x+p).]

23.
$$\frac{b+c+d}{(a-b)(a-c)(a-d)} + \text{three similar terms.}$$

24.
$$\frac{a^3(bc+cd+db)}{(a-b)(a-c)(a-d)} +$$
 " "

25.
$$\frac{bc+cd+db}{(a-b)(a-c)(a-d)} +$$
 " "

Extract the square-root of (to 4 terms):

26.
$$1+x$$
. | 27. $1-x$. | 28. $1+2x+3x^2+4x^3+&c$.

29.
$$1-4x+10x^2-20x^3+35x^4-56x^5+84x^6$$
.

30. Extract the cube-root of
$$1+x$$
. (To 4 terms).

Art. XI. 1. Find the condition that $px^2 + 2qx + r$ and $p'x^2 + 2q'x + r'$ shall have a common factor.

Multiply the polynomes by p' and p respectively, and take the difference of the products, also by r' and r respectively, and divide the difference of the products by x.

$$\begin{array}{c|c} p'px^2 + 2p'qx + p'r & pr'x^3 + 2qr'x + rr' \\ pp'x^2 + 2pq'x + pr' & p'rx^2 + 2q'rx + r'r \\ \hline 2(pq' - p'q)x + (pr' - p'r) & (pr' - p'r)x + 2(qr' - r'q). \end{array}$$

Multiply the former of these remainders by (pr'-p'r) and the latter by 2(pq'-p'q), and the difference of the products is

$$(pr'-p'r)^2-4(pq'-p'q)(qr'-r'q).$$

mus

I. mai

> 2. squa

remarkation quer

or sor.

from

 $\begin{array}{c} \text{If} \\ qx^2 + \\ \text{mon} \end{array}$

term

Re

But if the given polynomes have a linear factor this remainder must vanish, or

$$(pr'-p'r)^2 = 4(pq'-p'q)(qr'-r'q).$$

If the given polynomes have a quadratic factor, the linear remainders must vanish identically, or (Th. III.)

$$pq'-p'q=0$$
, $pr'-p'r=0$, and $qr'-r'q=0$,
or, $\frac{p}{p'}=\frac{q}{q'}=\frac{r}{r'}$.

2. Find the condition that $px^3 + 3qx^2 + 3rx + s$ shall have a square factor.

Assume the square factor to be $(x-a)^2$. On division, the remainder must be zero for every finite value of x, and consequently (Th. III.) the co-efficient of each term of the remainder must be zero. Divide by $(x-a)^2$, neglecting the first remainder.

: $pa^2 + 2qa + r = 0$;

 $\therefore px^2 + 2qx + r$ is divisible by x - a (Th. I. Cor. 2),

or, $px^3+3qx^2+3rx+s$ and $px^2+2qx+r$ have a common divisor. Multiply the latter polynome by x and subtract the product from the former, and the proposition reduces to

If $px^3+3qx^2+3rx+s$ have a square factor, $px^2+2qx+r$ and $qx^2+2rx+s$ will have the square-root of that factor for a common divisor.

3. If $px^3 + 3qx^2 + 3rx + s$ vanish for x = a, or b, or c, find in terms of x, p, q, r the value of

$$\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c}$$

Reduce to a common denominator and add the numerators

$$\frac{3x^{2}-2(a+b+c)x+(ab+bc+ca)}{(x-a)(x-b)(x-c)}$$

(q-r).

-(pq-r).

 $4x^3 + &c.$

and p/x^2

take the rely, and

r'q). and the

Multiply both numerator and denominator by p and reduce by Th. II., and Ex. 4 of Th. II.

$$\frac{3(px^2 + 2qx + r)}{px^3 + 3qx^2 + 3rx + s}$$

$$\therefore \frac{x^{m+1}}{x - a} + \frac{x^{m+1}}{x - b} + \frac{x^{m+1}}{x - c} = \frac{3(px^{m+3} + 2qx^{m+2} + rx^{m+1})}{px^3 + 3qx^2 + 3rx + s}$$

4. If $px^3 + 3qx^2 + 3rx + s$ vanish for x = a, or b, or c, express in terms of p, q, r, s, the following, a+b+c, $a^2+b^2+c^2$, $a^3+b^3+c^3$..., $a^m+b^m+c^m$.

Divide x^{m+1} by x-a.

mo

5 8 C

a

7

+6

find

H

9.

10

11

12

the r

Similarly divide x^{m+1} by x-b and also by x-c. add together the quotients

$$\frac{x^{m+1}}{x-a} + \frac{x^{m+1}}{x-b} + \frac{x^{m+1}}{x-c} = 3x^m + (a+b+c)x^{m-1} + (a^2 + b^2 + c^2)x^{m-2} + (a^3 + b^3 + c^3)x^{m-3} + &c.$$

Hence, by the last example, the required expressions are the coefficients taken in order, beginning with the second, of the terms in the quotient of $3(px^{m+3}+2qx^{m+2}+rx^{m+1})\div(px^3+3qx^2+3rx+s)$. These may now be found by Horner's Division.

5. Writing s_1 for a+b+c, s_2 for $a^2+b^2+c^2$, &c., express $(a-b)^4+(b-c)^4+(c-a)^4$ in terms of s_1 , s_2 , s_3 , s_4 . By actual expansion

$$(x-a)^{4} + (x-b)^{4} + (x-c)^{4} = 3x^{4} - 4(a+b+c)x^{3} + 6(a^{2}+b^{2}+c^{2})x^{2} - 4(a^{3}+b^{3}+c^{3})x + a^{4} + b^{4} + c^{4} = 3x^{4} - 4s_{1}x^{3} + 6s_{2}x^{2} - 4s_{3}x + s_{4}.$$

Put x = a, = b, = c in succession.

$$(a-b)^{4} + (c-a)^{4} = 3a^{4} - 4s_{1}a^{3} + 6s_{2}a^{2} - 4s_{3}a + s_{4}$$

$$(a-b)^{4} + (b-c)^{4} = 3b^{4} - 4s_{1}b^{3} + 6s_{2}h^{2} - 4s_{3}b + s_{4}$$

$$(b-c)^{4} + (c-a)^{4} = 3c^{4} - 4s_{1}c^{3} + 6s_{2}c^{2} - 4s_{3}c + s_{4}$$

$$\therefore 2\{(a-b)^{4} + (b-c)^{4} + (c-a)^{4}\} = 3s_{4} - 4s_{1}s_{3} + 6s_{2}^{2} - 4s_{3}s_{1} + 3s_{4}$$

$$\therefore (a-b)^{4} + (b-c)^{4} + (c-a)^{4} = s_{0}s_{4} - 4s_{1}s_{3} + 3s_{3}^{2}$$

in which s_0 is written for 3 or 1+1+1, i.e., $a^0+b^0+c^0$.

reduce by

Exercise xxiii. (a).

1. Determine the condition necessary in order that $x^2 + px + q$ and $x^3 + p'x + q$ may have a common divisor.

2. The expression $x^6+3a^2x^5+3bx^4+cx^3+3dx^2+3e^2x+f^3$ will be a complete cube if

$$f = \frac{e}{a} = \frac{d}{b} = \frac{c - a^6}{6a^2} = b - a^4.$$

3. Prove that $ax^5 + bx + c$ and $a + bx^4 + cx^6$ will have a common quadratic factor if

$$b^2c^2 = (c^2 - a^2 + b^2)(c^2 - a^2 + ab).$$

4. Prove that $ax^5 + bx^2 + c$ and $a + bx^3 + cx^5$ will have a common quadratic factor if

$$a^2b^2 = (a^2 - c^2)(a^2 - c^2 + bc).$$

5. Prove that $ax^4 + bx^3 + cx + d$ and $a + bx + cx^3 + dx^4$ will have a common quadratic factor if

$$(a+d)$$
 $^{2} = (b-c)(bd-ac).$

6. $x^3 + px^2 + qx + r$ will be divisible by $x^2 + ax + b$ if $a^3 - 2pa^2 + (p^2 + q)a + r - pq = 0$, and $b^3 - qb^2 + rpb - r^2 = 0$.

7.
$$x^4 + px + q$$
 will be divisible by $x^2 + ax + b$ if $a^6 - 4qa^2 = p^2$ and $(b^2 + q)(b^2 - q)^2 = p^2b^3$.

8. Determine the condition necessary in order that $x^4 + 4px^3 + 6qx^2 + 4rx + t$ may have a square factor.

If $x^4+4px^3+6qx^2+4rx+t$ vanish for x=a, or b, or c, or d, find in terms of x, p, q, r, t, the value of

9.
$$\frac{x^n}{x-a} + \frac{x^n}{x-b} + \frac{x^n}{x-c} + \frac{x^n}{x-d}$$

10. $\sum a$, $\sum a^2$, $\sum a^3$, $\sum a^4$, $\sum a^5$, $\sum a^6$.

11.
$$\sum (a-b)^4$$
, $\sum (a-b)^6$.

12. Determine the values of the expressions in Ex. 9, 10, 11, for the polynome $x^4 - 14x^2 + x - 38$.

express in

express in $a + b^3 + c^3$

 $\frac{m+1}{l^{m+1}}$

+ c2)x**-2

s are the d, of the $x^3 + 3qx^2$ sion.

, express

 $x^{3})x +$

 $-4s_3a + s_4$ $-4s_3b + s_4$

 $-4s_{3}c+s_{4}$

 $s_3s_1 + 3s_4$

CHAPTER III.

SECTION I .- DIRECT APPLICATION OF THE FUNDAMENTAL FORMULAS

FORMULAS [1] AND [2]. $(x\pm y)^2 = x^2 \pm 2xy + y^2$, &c.

Art. XII. From this it appears that a trinomial of whic. the extremes are squares, is itself a square if four times the product of the extremes is equal to the square of the mean, and that to factor such a trinomial, we have simply to connect the square root of each of the squares by the sign of the other term, and write the result twice as a factor.

EXAMPLES.

1.
$$4x^4 - 80x^2y^2 + 400y^4 = (2x^2 - 20y^2)(2x^2 - 20y^2)$$

2.
$$1-12x^2y^2+36x^4y^4=(1-6x^2y^2)(1-6x^2y^2)$$
.

8.
$$(a-b)^2 + (b-c)^2 + 2(a-b)(b-c)$$
. This equals $(a-b+b-c) \times (a-b+b-c) = (a-c)(a-c)$.

4.
$$x^2 + y^2 + z^2 + 2xy - 2xz - 2yz$$
.

Here the three squares and the three double products suggest that the expression is the square of a linear trinomial in x. y, z.

An inspection of the signs of the double products enables us to determine the signs which are to connect x, y, z: we see that

1st. The signs of x and y must be alike.

2nd. The signs of x and z must be different.

3rd. The signs of y and z must be different. Hence we have x+y-z, or -x-y+z=-(x+y-z), and the factors are (x+y-z)(x+y-z).

Exercise xxiv.

1.
$$9m^2 + 12m + 4$$
; $e^{2m} - 2e^m + 1$.

2.
$$y^6 - 2y^3z^3 + z^6$$
; $16x^2y^2 + 16xy^3 + 4y^4$.

8.
$$9a^2b^2 + 12abc + 4c^2$$
; $36x^2y^2 - 24xy^3 + 4y^4$

5.

6.

7. 8.

9.

10 11

12.

 $(5x^2 - 13)$

14. 15.

16.

+2(b + 2)

17.

Ar root o

1.

2.

 $\{(x^2)$

8.

4. $\frac{1}{4}x^4 + 16y^2z^2 - 4x^2yz$; $\frac{1}{4}a^4 - \frac{1}{3}a^2b^2c^2 + \frac{1}{9}b^4c^4$.

5.
$$(a+b)^2+c^2-2c(a+b)$$
; $9x^8-3x^4y^2+7\pi y^4$.

6.
$$z^2 + (x-y)^2 - 2z(x-y)$$
; $\left(\frac{a}{b}\right)^{\frac{2m}{2m}} + \left(\frac{b}{a}\right)^{\frac{2m}{2m}} - 2$.

7.
$$(x^2-y)^2+2(x^2-y)(y-z^2)+(y-z^2)^2$$
.

8.
$$(x^2-xy)^2-2(x^2-xy)(xy-y^2)+(xy-y^2)^2$$
.

9.
$$(a+b+c)^2-2c(a+b+c)+c^2$$
; $\binom{9}{196}p^6-2p^3q^2+\frac{1}{9}q^4$.

10.
$$(3x-4y)^2 + (2x-3y)^2 - 2(3x-4y)(2x-3y)$$
.

11.
$$(x^2 - xy + y_5^2)^2 + (x^2 + xy + y^2)^2 + 2(x^4 + x^2y^2 + y^4)$$

$$\begin{array}{l} 12. \ \ (5x^2 + 2xy + 7y^2)^2 + (4x^2 + 6y^2)^2 - 2(4x^2 + 6y^2) \times \\ (5x^2 + 2xy + 7y^2). \end{array}$$

13.
$$\left(\frac{a}{b}\right)^{3m} + \left(\frac{b}{a}\right)^{2n} - 2\left(\frac{a}{b}\right)^{m-n}$$

14.
$$a^2 + b^2 + c^2 - 2ab - 2bc + 2ac$$
.

15.
$$a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2 + 2b^2c^2$$

16.
$$(a-b)^{\frac{1}{4}} + (b-c)^{\frac{1}{2}} + (c-a)^{\frac{1}{2}} + 2(a-b)(b-c)^{\frac{1}{2}} - 2(a-b)(c-a) + 2(b-c)(a-c)$$
.

17.
$$4a^4 - 12a^2b + 9b^2 + 16a^2c + 16c^2 - 24bc$$

FORMULA [4].
$$x^2 - y^2 = (x+y)(x-y)$$
.

Art. XIII. In this case we have merely to take the square-root of each of the squares, and connect the results with the sign + for one of the factors, and with the sign -- for the other.

EXAMPLES.

1.
$$(a+b)^2 - (c+d)^2$$
.
This = $\{(a+b) + (c+d)\}\{(a+b) - (c+d)\}$
= $(a+b+c+d)(a+b-c-d)$.

2. Factor $(x^2 + 5xy + y^2)^2 - (x^2 - xy + y^2)^2$.

Here we have

$$\{(x^2 + 5xy + y^2) + (x^2 - xy + y^2)\} \{(x^2 + 5xy + y^2) - (x^2 - xy + y^2)\}$$

$$= 2(x^2 + 2xy + y^2)(6xy) = 12xy(x + y)^2,$$

$$3. \ a^2 - b^2 - c^2 + 2bc.$$

This =
$$a^2 - (b - c)^2 = (a + b - c)(a - b + c)$$
.

FORMULAS

&c. whic. the

e produ**ct** id that to

e square

-b+b-c

s suggest x. y, z.

nables us see that

we have

4. Resolve
$$(a^9 + b^2)^2 - (a^9 - b^2)^2 - (a^2 + b^2 - c^3)^3$$
.
This $= 4a^2b^2 - (a^2 + b^2 - c^2)^3$
 $= (2ab + a^2 + b^2 - c^2)(2ab - a^2 - b^2 + c^2)$.

The former of these factors = $(a+b)^2 - c^2 = (a+b+c)(a+b-c)$; and the latter = $c^2 - (a-b)^2 = (c+a-b)(c-a+b)$.

... the given expression
=
$$(a+b+c)(a+b-c)(c+a-b)(c-a+b)$$
.

Exercise xxv.

1.
$$49a^{9}-4b^{2}$$
.

2.
$$9a^2 - \frac{1}{4}b^2$$
.

3.
$$81a^4 - 16b^4$$
.

4.
$$100x^2 - 36y^2$$
.

6.
$$9x^6 - 18y^4$$
.

7.
$$\frac{9}{7}\sigma^2 - 1$$
.

8.
$$4y^4 - 4x^2z^9$$
.

9.
$$81a^4 - 1$$
.

10.
$$a^4 - 16b^4$$
.

12.
$$a^9 - b^9 + 2bc - c^2$$
.

18.
$$(a+2b)^2 - (3x-4y)^2$$
.

14.
$$(x^2+y^2)^2-4x^2y^2$$
.

15.
$$(x+y)^2 - 42^2$$
.

16.
$$(3x+5)^2-(5x+9)$$

17.
$$4x^2y^2 - (x^2 + y^2 - z^2)^2$$
.

18.
$$(x^2 + xy - y^2)^2 - (x^2 - xy - y^2)^2$$
.

19.
$$(x^2-y^2+z^2)^2-4x^2z^2$$
.

20.
$$(a+b+c+d)^2-(a-b+c-d)^2$$
.

21.
$$(2+3x+4x^2)^3-(2-3x+4x^2)^3$$
.

22.
$$(a^2+b^2+4ab)^2-(a^2+b^2)^2$$
.

23.
$$(a^2-b^2+c^2-d^2)^2-(2ac-2bd)^3$$
.

24.
$$(x^2-y^2-z^2)^2-4y^2z^2$$
.

25.
$$(a^6 - a^3b^3 + b^6)^2 - (a^6 - 5a^3b^3 + b^6)^2$$
.

26.
$$a^{12}-b^{12}+6a^9b^3-6b^9a^3+8b^9a^3-8a^9b^8$$
.

27.
$$(x^2+y^2+z^2-xy-yz-zx)^3-(xy+yz+zx)^4$$
.

28.
$$(x^2+y^2+z^2-2xy+2xz-2yz)-(y+z)^2$$
.

29.
$$2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4$$
.

80.
$$x^4 + y^4 + z^4 - 2x^2y^2 - 2y^2z^2 - 2z^2x^3$$
.

1. 2.

-8.

{(a2.

4.

5. = (ax

Ar the re the fi are de

(1)pression (2)

alread sion. an exp

 $\frac{\mathbf{n} \cdot \mathbf{exr}}{\mathbf{1st}}$.

2nd.
sum is
if the s

3rd. whose and be fore b i

1. x² 10, 4 a whose t

hence t

FORMULA A.
$$(x+r)(x+s) = x^2 + (r+s)x + rs$$
.

EXAMP. ES

1.
$$x^6 - 9x^3 + 20 = (x^3 - 5)(x^3 + 4)$$
.

+b-c):

2.
$$(x-y)^{2} + x - y - 110 = (x-y+11)(x-y-10)$$
.

8.
$$(a^2-ab+b^2)^2+6b(a^2-ab+b^2)-4a^2+9b^2$$

$$\{(a^2-ab+b^2)+(2a+3b)\}\{(a^2-ab+b^2)-(2a-3b)\}.$$

4.
$$(x^3 - 5x)^9 - 6(x^9 - 5x) - 40 = (x^9 - 5x + 4)(x^9 - 5x - 10)$$
.

5.
$$(ax+by+c)^{9} - (m-n)(ax+by+c) - mn$$

= $(ax+by+c-m)(ax+by+c+n)$.

Art. XIV. It will be seen that the first (or common) term of the required factors, is obtained by extracting the square root of the first term of the given expression, and that the other terms are determined by observing two conditions:

(1) Their product must equal the third term of the given expression.

(2) Their sum (algebraic) multiplied into the common term already found, must equal the middle term of the given expression. Hence, to make a systematic search for integral factors of an expression of the form $x^3 \pm bx \pm c$, we may proceed as follows:

1st. Write down every pair of factors whose product is c.

2nd. If the sign before c is +, select the pair of factors whose sum is b, and write both factors x+, if the sign before b is +; x-, if the sign before b is -.

3rd. But if the sign before c is -, select the pair of factors whose difference is b, and write before the larger factor x+ or x-, and before the other factor x- or x+, according as the sign before b is + or -.

EXAMPLES.

1. $x^2+9x+20$. The factors of 20 in pairs are 1 and 20, 2 and 10, 4 and 5. The sign before 20 is +, hence select the factors whose sum is 9. These are 4 and 5. The sign before 9 is +, hence the required factors are (x+4)(x+5).

2. $x^2-8x+12$. Pairs of factors of 12 are 1 and 12, 2 and 6, 3 and 4. Sign before 12 is +, therefore take pair whose sum is 8. These are 2 and 6. Sign before 8 is -, hence the factors are (x-2)(x-6).

3. $x^2-21x-100$. Pairs of factors of 100 are 1 and 100, 2 and 50, 4 and 25, 5 and 20, 10 and 10. Sign before 100 is —, therefore take the pair whose difference is 21. These are 4 and 25. The sign before 21 is —, therefore x— goes before 25, the larger factor, and the factors are (x+4)(x-25).

4. $x^2+12x-108$. Pairs of factors of 108 are 1 and 108, 2 and 54, 3 and 36, 4 and 27, 3 and 18, 9 and 12. Sign before 108 is –, therefore take the pair whose difference is 12. These are 6 and 18. Sign before 12 is +, therefore x+ goes before 18, the larger factor, and x- before 6, the other factor; hence the factors are (x-6)(x+18).

Note.—It will be found convenient to write the factors in two columns, separated by a short space. Taking Ex. 2 above, proceed thus: Since the sign of the third term is +, write the sign of the second term (in this case —) above both columns.

$$\begin{array}{ccc}
 & & - & - \\
 & & 12 \\
 (x-2) & & (x-6)
\end{array}$$

Ex. 3 above. Since the sign of the third term is —, write the sign of the 2nd term (in this case —) above the column of larger factors, and the other sign of the pair ±, above the other column.

$$\begin{array}{ccc} + & - \\ 1 & 100 \\ 2 & 50 \\ (x+4) & (x-25) \end{array}$$

5. $x^2 - 34x + 64$.

Here we have the factors

$$\begin{array}{c}
1, & 64 \\
x-2, & x-32 \\
4, & 16
\end{array}$$

and since the last term has the sign +, and the middle term has the sign -, we write - over both columns.

(+) the s

6.

H

An the stactor colum

1. 2.

3. 4.

5.

6.

7.

9. (

10. 11.

12.

2 and 6, se sum is e factors

and 100, 100 is —, are 4 and re 25, the

and 108, gn before L. These pefore 18, nence the

rs in two love, prothe sign

write the of larger column.

term has

6. $x^2 + 12x - 64$.

Here, since the last term has the sign -, we write the sign (+) of the middle term, over the column of larger factors, and the sign - over the other column.

7.
$$x^4 - 10x^2 - 144$$
.

Here we have the pairs of factors:

$$\begin{array}{ccccc}
+ & - \\
1, & 144 \\
2, & 72 \\
4, & 36 \\
x+8, & x-18.
\end{array}$$

And since the sign of the third term is -, we write the sign of the second term (in this case -) above the column of larger factors, and the other sign (of the pair \pm) above the other column.

Exercise xxvi.

1.
$$x^2-5x-14$$
; $x^2-9x+14$; $x^2+7x+12$.

2.
$$x^2 - 8x + 15$$
; $x^2 - 19x + 84$; $x^2 - 7x - 60$.

8.
$$4x^2-2x-20$$
; $9x^2-150x+600$.

4.
$$\frac{1}{4}x^2 + 4\frac{1}{2}x - 36$$
; $25x^2 + 40x + 15$; $9x^6 - 27x^3 + 20$.

5.
$$\frac{1}{16}x^2 + 1\frac{3}{4}x + 12$$
; $16x^4 - 4x^2 - 20$.

6.
$$x^4 - (a^2 + b^2)x^2 + a^2b^2$$
; $4(x+y)^2 - 4(x+y) - 99$.

7.
$$(x^2+y^2)^2-(a^2-b^2)(x^2+y^2)-a^2b^2$$
.

8.
$$(a+b)^2-2c(a+b)-3c^2$$
.

9.
$$(x+y)^2 + 2(x^2+y^2)(x+y) + (x^2-y^2)^3$$
.

10.
$$(a+b)^2 - 4ab(a+b) - (a^2 - b^2)^2$$
.

11.
$$(x^2+xy+y^2)^2+x^3-y^3-5xy-2y^2-2x^2$$
.

12.
$$a^2 - 2a(b-c) - 3(b-c)^2$$
.

18.
$$(x^3+y^3)^2+2a^3(x^3+y^3)+a^6-b^6$$
.

14.
$$(x^2-10x)^2-4(x^2-10x)-96$$
.

15.
$$(x^2-14x+40)^2-25(x^2-14x+40)-150$$
.

16.
$$(x^2-xy+y^2)^2+2xy(x^2-xy+y^2)-8x^2y^2$$
.

17.
$$z^4 - 8z^2 + 2$$
; $x^4 - 2x^2 - 3$; $9x^8 + 9x^4y^2 - 10y^4$.

18.
$$e^{2m} + e^m - 2$$
; $x^6 - x^3 - 2$; $x^{2m} - 2x^m y^n - 8y^{2m}$.

19.
$$x^{2m} - (a-b)x^my^n - aby^{2n}$$
.

Art. XV. Trinomials of the form $ax^2 + bx + c$ (a not a squa e) may sometimes be easily factored from the following considerations:—

The product of two binomials consists of

1st. The product of the first terms.

3rd. The sum (algebraic) of the products of the terms taken diagonally.

These three conditions guide us in the converse process of resolving a trinomial into its binomial factors.

EXAMPLES.

1. Resolve $6x^2 - 13xy + 6y^2$.

Here the factors of the first term are x and 6x, or 2x and 8x; those of the third term are y and 6y, or 2y and 8y. These pairs of factors may be arranged

Now, we may take (1) with (3) or (4), or (2) with (3) or (4); but none of these combinations will satisfy the third condition. If, however, in (4) we interchange the coefficients 2 and 3, then (2) and (4) give

$$2x$$
 $3y$, and

3x 2y, where we can combine the "diagonal" products to make 13, and the factors are

inte 2. H

T

prod

3.

to to comparis

in (4

Or resul

4.

Ho that efficie

chang

1. 6. 2. 6

6. 50 7. 50

8. 56 9. 56

10. 56

$$2x - 3y$$
, and

$$8x - 2y$$
.

The coefficients of (2), instead of those of (4), might have been interchanged, giving the same result.

2.
$$6x^2 - 15xy + 6y^2$$
.

Here, comparing (2) and (3), Ex. 1, we see that their diagonal products may be combined to give 15, and the factors are

$$2x-y$$
, and $3x-6y$.

8.
$$6x^2 - 20xy + 6y^2$$
.

Here, again referring to Ex. 1, we see at once that it is uselected to try both(2) and (4), since the diagonal products cannot be combined in any way to give a higher result than 13xy. But comparing (1) and (4), we obtain by interchanging the coefficients in (4) x-3y, and

$$6x-2y$$
, which satisfy the third condition.

Or, we might interchange the coefficients of (3), and take the resulting terms with (2), getting 2x-6y, and

$$3x-y$$
.

4.
$$6x^2 + 35xy - 6y^2$$
.

Here the large coefficient of the middle term shows at once that we must take (1) and (2) together. Interchanging the coefficients of (1) we have

$$6x - y$$
, and

x + 6y. The same result will be obtained by interchanging the coefficients of (3).

Exercise xxvii.

1.
$$6x^2 - 37xy + 6y^2$$
.

2.
$$6x^2 \div 9xy - 6y^2$$
.

3.
$$56x^2 - 76xy + 20y^2$$
.

4.
$$56x^2 - 36xy - 20y^2$$
.

5.
$$56x^2 - 1121xy + 20y^2$$
.

6.
$$56x^2 - 68xy + 20y^2$$
.

7.
$$56x^2 - 558xy - 20y^3$$
.

8.
$$56x^2 + 36xy - 20y^2$$
.

9.
$$56x^2 - 67xy + 20y^2$$
.

10.
$$56x^2 + 3xy - 20y^2$$
.

11.
$$6x^2 - 16xy - 6y^2$$
.

12.
$$6x^2 + 5xy - 6y^2$$
.

13.
$$56x^2 + 562xy + 20y^2$$
.

14.
$$56x^2 - 122xy + 20y^2$$
.

15.
$$56x^2 - 102xy - 20y^2$$
.

16.
$$56x^2 - 229xy + 20y^2$$
.

17.
$$56x^2 - 94xy + 20y^2$$
.

18.
$$56x^2 - 276xy - 20y^2$$
.

19.
$$36x^2 - 33xy - 15y^2$$
.

20.
$$72x^2 - 19xy - 40y^2$$
.

equa e) arebian

ken dia-

ocess of

and 8x; These

or (4); n lition. 8, then

agonal''

Art. XVI. More generally, trinomials of the form $ax^2 + bx + c$ (a not a square) may be resolved by Formula A, thus

Multiplying by a we get $a^2x^2 + bax + ac$. Writing z for ax this becomes $z^2 + bz + ac$. Factor this trinomial, restore the value of z and divide the result by a.

EXAMPLES.

- 1. $6x^2+5x-4$. Multiplying by 6, we get $(6x)^2+5(6x)-24$ or $z^2+5z-24$. Factoring, we get (z-3)(z+8), hence the required factors are $\frac{1}{6}(6x-3)(6x+8)=(2x-1)(3x+4)$.
- 2. $6x^2 13xy + 6y^2$. Factoring $z^2 13zy + 36y^2$ we get (z-4y) (z-3y), hence the required factors are $\frac{1}{6}(6x-4y)(6x-9y) = (3x-2y)(2x-3y)$.
- 3. $33-14x-40x^2$. Factoring $1320-14z-z^2$ we get (30-z)(44+z), hence the required factors are $\frac{1}{40}(30-40x) \times (44+40x) = (3-4x)(11+10x)$.

Note.—The factors may conveniently be arranged in two columns, each with its appropriate sign above it.

[Another method of factoring trinomials of the form $ax^2 + bx + c$ is as follows:

Multiply by 4a, thus obtaining $4a^2x^2 + 4abx + 4ac$. Add $b^2 - b^3$, which will not change the value, $4a^2x^2 + 4abx + b^2 - b^2 + 4ac$; by [1] this may be written $(2ax+b)^2 - (b^2 - 4ac)$. Factor this by [4] and divide the result by 4a.

E

6268

(112 W

num

1. 10 2. 10

3. 10 4. 6a

5. 12

6. 12

7. 12

8. 15 17.

18.

19.

20.

Ar applie multi:

In twhich

1.]

Non must ax this

+bx+a

) – 24 or required

(z-4y)

 $x) \times$

two col-

+ 6x+0

 $b^2 - b^2$, 4ac; by this by

Ex. Factor $56x^2 + 187x - 27885$. Multiply by 4×56 or 2×112 , $112^2x^2 + 2.187.112x - 6246240$. Add $187^3 - 187^2$, then $112^2x^2 + 2.187.112x + 187^2 - (187^2 + 6246240) = (112x + 187)^2 - 6265009 = {(112x + 187) + 2508} {(112x + 187) - 2508} = (112x + 2640)(112x - 2866)$.

We multiplied by 4×56 , we must, therefore, now divide by that number. Doing so, we obtain as factors (7x+165)(8x-169).]

Exercise xxviii.

1. $10x^2+x-21$

2. $10x^2 - 29x - 21$.

3. $10x^2 + 29x - 21$.

4. $6x^2 - 37x + 55$.

5. $12a^2 - 5a - 2$.

6. $12x^2 - 37x + 21$. 7. $12x^2 + 37x + 21$.

8. $15a^6 + 13a^3b^2 - 20b^4$.

9. $12x^2-x-1$

10. $9x^2y^3 - 3xy^4 - 6y^4$.

11. $4x^2 + 8xy + 3y^2$.

12. $6b^2x^2 - 7bx^3 - 3x^4$. 13. $6x^4 - x^2y^2 - 35y^4$.

14. $2x^4 + x^3 - 45$.

14. $2x^4 + x^3 - 45$.

15. $4x^4 - 37x^2y^2 + 9y^4$

15a⁶+13a³b²-20b⁴. | 16. $4(x+2)^4-37x^2(x+2)^3+9x^4$. 17. $6(2x+3y)^2+5(6x^2+5xy-6y^2)-6(3x-2y)^2$.

18. $6(2x+3y)^4+5(6x^2+5xy-6y^2)^2-6(3x-2y)^4$

19. $6(x^2+xy+y^2)^2+13(x^4+x^2y^2+y^4)-385(x^2-xy+y^2)^2$.

20. $21(x^2+2xy+2y^2)^2-6(x^2-2xy+2y^2)^2-5(x^4+4y^4)$.

SECTION II.—EXTENDED APPLICATION OF THE FORMULAS.

Art. XVII. The methods of factoring just explained may be applied to find the rational factors, where such exist, of quadratic multinomials.

EXAMPLES.

1. Resolve $12x^3 - xy - 20y^2 + 8x + 41y - 20$.

In the first place we find the factors of the first three terms, which are

$$4x+5y$$
, and $8x-4y$.

Now, to find the remaining terms of the required factors, we must observe the following conditions:

1st. Their product must = -20.

2nd. The sum (algebraic) of the products obtained by multiplying them diagonally into the y's, must =41y.

ean inc.

F

R

and

1.

2.

3.

4.

5.

6.

7. 1

8. (

10.

11. 4

12. 0

3rd. The sum of the products obtained by multiplying them diagonally into the x's, must =8x.

We see at once that -4 with the first pair already found, and +5 with the second pair, satisfy the required conditions, and : the factors are

$$4x+5y-4$$
, and $3x-4y+5$.

2.
$$p^2 + 2pr - 2q^2 + 7qr - 8r^3 + pq$$
.
Here the factors of $p^2 + pq - 2q^2$, are $p + 2q$, and $p - q$.

Now find two factors which will give $-3r^2$, and which multiplied diagonally into the p's and q's respectively, will give 2pr, and 7qr; these are found to be -r taken with the first pair, and +3r taken with the second pair. Hence the required factors are

$$p+2q-r$$
, and $p-q+3r$.

Art. XVIII. But the following examples illustrate a surer method.

3.
$$x^2 + xy - 2y^2 + 2xz + 7yz - 3z^3$$
.

Reject 1st the terms involving z,

and factor the expression that remains in each case.

1st.
$$x^2 + xy - 2y^2 = (x - y)(x + 2y)$$
.

2nd.
$$x^2 + 2xz - 3z^2 = (x+3z)(x-z)$$
.

8rd.
$$-2y^2+7yz-3z^2=(-y+3z)(2y-z)$$
.

Arrange these three pair of factors in two sets of three factors each, by so selecting one factor from each pair that two of each set of three may have the same coefficient of x, two may have the

came coefficient of y, and two the same coefficient of z (coefficient including sign). In this example there are

$$x-y$$
, $x+2z$, $-y+2z$, and $x+2y$, $x-z$, $2y-z$.

From the first set select the common terms (including signs) and form therewith a trinomial, x-y+2z.

Repeat with the second set, and we get x+2y-z.

$$\therefore x^{3} + xy - 2y^{2} + 2xz + 7yz - 3z^{2} = (x - y + 3z)(x + 2y - z).$$

4.
$$8x^2 - 8xy - 8y^2 + 30x + 27$$
.

1st.
$$8x^2 - 8xy - 3y^2 = (8x + y)(x - 3y)$$
.

2nd.
$$8x^2 + 30x + 27 = (8x + 3)(x + 9)$$
.

8rd.
$$-8y^2$$
 $+27 = (y+3)(-8y+9).$

: the factors are
$$(8x+y+3)(x-8y+9)$$
.

5.
$$6a^2 - 7ab + 2ac - 20b^2 + 64bc - 48c^2$$

1st.
$$6a^2 - 7ab - 20b^2 = (2a - 5b)(3a + 4b)$$
.

2nd.
$$6a^2 + 2ac - 48c^3 = (2a + 6c)(3a - 8c)$$
.

3rd.
$$-20b^2 + 64bc - 48c^2 = (-5b + 6c)(4b - 8c)$$
.

: the factors are
$$(2a-5b+6c)(3a+4b-8c)$$
.

Exercise xxix.

1.
$$7x^2 - xy - 6y^2 - 6x - 20y - 16$$
.

2.
$$20x^3 - 15xy - 5y^3 - 68x - 42y - 88$$
.

3.
$$3x^4 + x^2y^2 - 4y^4 + 10x^2 - 17y^2 - 13$$
.

4.
$$20x^2 - 20y^2 + 9xy + 28x + 35y$$
.

5.
$$72x^2 - 8y^3 + 55xy + 12y - 169x + 20$$
.

6.
$$x^2 - xy - 12y^2 - 5x - 15y$$
.

7.
$$8x^2 + 18xy + 9y^2 + 2xz - z^2$$

8.
$$6x^2 + 6y^2 - 18xy - 8z^2 - 2yz + 8xz$$
.

9.
$$6x^4 - 10y^4 + 11x^2y^2 - 25z^2 + 10y^2 + 25y^2z^2 - 15x^2 + 10x^2z^2$$
.

10.
$$15x^4 - 16y^4 - 22x^2y^2 + 15z^4 + 14y^2z^2 + 50x^2z^2$$
.

11.
$$4a^3 - 15b^2 - 4ab - 21c^2 - 36bc - 8ac$$
.

12.
$$a^4 + b^4 + c^4 - 2a^2b^2 - 2b^2c^2 - 2c^2a^2$$
.

multi-

g them

nd, and

and :

multiive 2pr,

air, and

ctors are

a surer

e factors of each have the Art. XIX. Trinomials of the form $ax^4 + bx^3 + c$ can always be broken up into real factors.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10. 11.

12.

13.

14.

15.

Ca

Art.

duction

1.

24 - T

2.

 $=(3\alpha$

8.

 $=(x^{2}$

 $= (x^2$ 5.

={ /

 $\{\nu$

4.

If a and c have different signs, the expression may be factored by Art. XVI.

If a and c are of the same sign, three cases have to be considered: i. $b=2\sqrt{(ac)}$, ii. $b>2\sqrt{(ac)}$, iii. $b<2\sqrt{(ac)}$

Case I. $b=2\sqrt{ac}$. This case falls under Art XII., formula [1]. where examples will be found.

Case II. $b>2\sqrt{(ac)}$. This case falls under Art XVI., where examples will be found. The following additional examples are resolved by the second method of that article.

EXAMPLES.

1. $4x^4 + 5x^2y^2 + y^4$.

Here we see that $(\frac{5}{4}y^2)^2$ will make, with the first two terms, a perfect square, and we therefore add to the given expression $(\frac{5}{4}y^2)^2 - (\frac{5}{4}y^2)^2$. The expression then becomes

$$\begin{aligned} &4x^4 + 5x^2y^3 + (\frac{5}{4}y^2)^2 + y^4 - (\frac{5}{4}y^2)^3 \\ &= (2x^3 + \frac{5}{4}y^2)^2 - \frac{9}{16}y^4. \\ &= (2x^3 + \frac{5}{4}y^3 + \frac{3}{4}y^2)(2x^3 + \frac{5}{4}y^2 - \frac{3}{4}y^3) \\ &= (2x^2 + 2y^2)(2x^2 + \frac{1}{2}y^2) = (x^2 + y^2)(4x^2 + y^2). \end{aligned}$$

$$2. 3x^4 + 6x^2 + 2.$$

Here multiplying by 4×3 , and completing the square as in Ex. 1, we have

$$36x^4 + 72x^2 + 6^3 + 24 - 6^2 = (6x^2 + 6)^2 - 12$$

= $(6x^7 + 6 - \sqrt{12})(6x^2 + 6 + \sqrt{12})$, which divided by 4×3 give the required factors.

8.
$$ax^4 + bx^2 + c$$
.

Proceeding as in Ex. 2 we have, by multiplying by 4a,

$$ax^{4} + bx^{2} + c = \{4a^{2}x^{4} + 4abx^{2} + b^{3} - b^{2} + 4ac\} \div 4a$$
$$= \{2ax^{2} + b + 1/(b^{2} - 4ac)\} \{2ax^{2} + b - 1/(b^{2} - 4ac)\} \div 4a.$$

Exercise. xxx.

ways be

factored

consid-

formula

., where ples are

o terms. pression

re as in

×3 give

a.

2. $x^4 + 7x^2y^2 + y^4$; $3x^4 + 5x^2y^2 + y^4$.

1. $x^4 + 7x^2 + 1$: $4x^4 + 14x^2 + 1$.

- 3. $4x^4+10x^2+3$; $3(x+y)^4+5z^2(x+y)^2+z^4$.
- 4. $x^4 + 7x^2y^2 + 3\frac{1}{4}y^4$; $x^4 + 7x^2y^2 + 8\frac{1}{4}y^4$.
- 5. $4x^4 + 9x^2y^2 + \frac{17}{16}y^4$; $4(a+b)^4 + 10c^2(a+b)^2 + 3c^4$.
- 6. $3x^4 + 8x^2y^2 + 4x^7y^4$; $36x^4 + 96x^2 + 55$.
- 7. $5x^4 + 20x^2 + 2$; $4a^4 + 12a^2 + 1$.
- 8. $4(x+y)^4+12(x+y)^2z^2+z^4$; $5x^4+20x^2y^2+2y^4$.
- 9. $9x^4 + 14x^2 + 4$: $2x^4 + 12x^2(y+z)^2 + 15(y+z)^4$.
- 10. $2x^4+12x^2+15$; $7x^4+40x^2+45$.
- 11. $8x^4 + 36x^3y^2 + 29y^4$: $7x^4 + 20x^2y^2 20y^4$.
- 12. $7(a-b)^4+16(a-b)^2c^2+5c^4$; $\frac{3}{9}a^4+3a^2b^2+b^4$.
- 13. $3x^4 + 6x^2y^2 + 2y^4$; $3(a+b)^4 + 6(a^2-b^2)^2 + 2(a-b)^4$
- 14. $49a^{2} 84a^{2}b^{2} + 22b^{4}$; $25m^{4} + 60m^{2}n^{2} + 27n^{4}$.
- 15. $49(m+n)^4 \$4(m^2 n^2)^2 + 22(m-n)^4$

Case III. $b < 2\sqrt{(ac)}$. This case may be brought under Art. XIII. The following examples illustrate the process of reduction and resolution.

EXAMPLES.

1. $x^4 - 7x^2 + 1$.

We have to throw this into the form a^2-b^2 :

$$x^4 - 7x^2 + 1 = (x^2 + 1)^3 - 9x^2 = (x^2 + 1 + 3x)(x^2 + 1 - 8x)$$

- 2. $9x^4 + 3x^2y^2 + 4y^4 = (3x^3 + 2y^3)^2 9x^2y^3$
- $= (3x^2 + 2y^2 3xy)(3x^2 + 2y^3 + 3xy).$
 - 3. $x^4 + y^4 = (x^2 + y^2)^2 2x^2y^3$
- $=(x^2+y^2+xy\sqrt{2})(x^2+y^2-xy_1/2).$
- 4. $x^4 \frac{1}{4}x^2y^2 + y^4 = (x^2 + y^2)^3 \frac{9}{2}x^2y^3$
- $=(x^2+y^2+\tfrac{3}{5}xy)(x^2+y^2-\tfrac{3}{5}xy).$
 - 5. $ax^4 + bx^3 + c = (\sqrt{a}, x^2 + \sqrt{c})^2 \{2\sqrt{(ac)} b\}x^3$
- $= \{ \sqrt{a}, x^2 + \sqrt{c} \sqrt{(2\sqrt{ac} b)x} \} \times$ $\{\sqrt{a}, x^2 + \sqrt{c} + \sqrt{(2\sqrt{ac} - b)x}\}.$

Art. XX. It is seen from these examples that we have merely to add to the given expression what will make with the first and last terms (arranged as in Ex. 5) a perfect square, and to subtract the same quantity. In Ex. 2, e. y., the square root of $9x^4 = 3x^2$, the square root of $4y^4 = 2y^2$, $\therefore 3x^2 + 2y^3$ is the binomial whose square is required; we need $\therefore 12x^2y^3$; but the expression contains $3x^2y^2$; \therefore we have to add and subtract $12x^2y^2 - 3x^3y^2 = 9x^2y^2$.

Hence we derive a practical rule for factoring such expressions.

- (1). Take the square roots of the two extreme terms and connect them by the proper sign; this gives the first two terms of the required factors.
- (2) Subtract the middle term of the given expression from twice the product of these two roots, and the square roots of the difference will be the third terms of the required factors.
- 6. $x^4 + \frac{7}{16}x^2y^2 + y^4$. Here $\sqrt{x^4 = x^2}$, $\sqrt{y^4 = y^2}$, and the first two terms of the required factors are $x^2 + y^2$; twice the product of these is $+2x^2y^2$, from which subtracting the middle term, $\frac{7}{16}x^2y^2$, we get $\frac{2}{16}x^2y^2$; the square roots of this are $\pm \frac{5}{4}xy$. Hence the factors are $x^2 + y^2 \pm \frac{5}{4}xy$.

Note that since $\sqrt{y^4} = +y^2$, or $-y^3$, it may sometimes happen that while the former sign will give irrational factors, the latter will give rational factors, and conversely.

7.
$$x^4 - 11x^2y^2 + y^4$$
. Here, taking $+y^2$, we have $x^2 + y^2 + xy \sqrt{13}$, and $x^3 + y^2 - xy \sqrt{13}$.

But taking $-y^2$, we have

$$x^2 - y^2 + 3xy$$
, and $x^2 - y^2 - 3xy$.

Sometimes both signs will give rational factors.

8.
$$16x^4 - 17x^2y^2 + y^4$$
. Here we have $(4x^2 + y^2 + 3xy)(4x^2 + y^3 - 3xy)$, and also $(4x^2 - y^2 + 5xy)(4x^2 - y^2 - 5xy)$.

4

7. 8.

9.

10.11.12.

13. 14.

15.

16. 17.

18. 19.

20. . 21.

 $\theta(x-1)$

sions of

1. 6a

Exercise xxxi.

1.
$$x^4 + 2x^2y^2 + 9y^4$$
, $x^4 - x^2y^2 + y^4$, $x^4 + x^2y^2 + y^4$.

2.
$$x^4 + 4y^4$$
, $16x^4 + y^4 - x^2y^2$, $\frac{1}{4}x^4 + y^4$.

3.
$$x^4+1$$
, x^4+9y^4 , $1-12y^2+16y^4$.

merely

est and

ubtract

 $=3x^{2}$.

whose

n con-

 $x^{3}y^{2} =$

ssions.

d con-

rms of

n from

of the

ne first

oroduct

term.

 $\pm \frac{5}{4}xy$.

es hap-

rs. the

4.
$$x^4 - 7x^2 + 1$$
, $x^4 + 9$, $4x^4 + y^4 - 3x^2y^3$.

5.
$$y^4 - x^4 + 11x^2y^2$$
, $x^8 + 4y^8$, $x^4 + 4x^2 + 16$.

6.
$$4x^4 + 4x^4 - 81x^2 - 2$$

6.
$$4x^4 + y^4 - 8\frac{1}{4}x^2y^2$$
, $x^4 + y^4 - \frac{7}{16}x^2y^2$, $4x^4 + 1$.
7. $x^{4m} + 64y^{4m}$, $x^{4m} + 4y^{4m}$, $\frac{1}{4}x^4 + \frac{9}{16}y^4 - 5\frac{3}{5}x^2y^2$.

8.
$$4x^4 - 8x^2 + 1$$
, $7x^2y^2 - \frac{1}{4}x^4 - 36y^4$, $x^4 + a^4y^4$.

9.
$$m^2x^4 + n^2y^4 - (2mn^2 + p) \cdot v^2y^2$$
, $x^{4m} + 2^{4m-2}y^{4m}$.

10.
$$16x^4 - 25x^2 + 9$$
, $4x^4 - 16x^2 + 4$, $13x^2y^2 - 9x^4 - 4y^4$.

11.
$$4x^4 - 12\frac{16}{25}x^2y^2 + 9y^4$$
, $x^4 + 6x^2 + 25$.

12.
$$a^4 + b^4 + (a+b)^4$$
, $1 + a^4 + (1+a)^4$.

13.
$$(x+y)^4 - 7z^2(x+y)^2 + z^4$$
.

14.
$$(a+b)^4 + 7c^2(a+b)^2 + c^4$$
.

15.
$$16a^4 + 4(b-c)^4 - 9a^2(b-c)^2$$
.

16.
$$4(a+b)^4 + 9(a-b)^4 - 21(a^2 - b^2)^2$$
.

17.
$$(x^2+y^2-xy)^4-7(x^3+y^3)^2+(x+y)^4$$
.

18.
$$(a^2+ab+b^2)^4+7(a^3-b^3)^2+(a-b)^4$$
.

19.
$$16a^4 + 4a^2 + 1$$
, $x^4 - 41x^2 + 16$.

20.
$$x^4 + 81y^8 - 63x^2y^4$$
, $1 + z^4 + 25z^8$.

21.
$$(a^2+1)^4+4(a^2+1)^2a^2+16a^4$$
, $(x+1)^4+2(x^2-1)^2+$

Art. XXI. We can apply [4], Art. XIII., to factor expressions of the form $ax^4+bx^3+rbx-r^2a$. This may be written $a(x^4-r^2)+bx(x^2+r)=\{a(x^2-r)+bx\}(x^2+r).$

EXAMPLES.

1.
$$6x^4 + 4x^3 + 12x - 54$$
. This
= $6(x^4 - 9) + 4x(x^2 + 3) = (x^2 + 3)\{6(x^2 - 3) + 4x\}$
= $(x^2 + 3)(6x^2 + 4x - 18)$.

2.
$$11x^4 + 10x^3 - 40x - 176$$
. This
$$= 11(x^4 - 16) + 10x(x^2 - 4) = (x^2 - 4)\{11(x^2 + 1) + 10x\}$$
$$= (x^2 - 4)(11x^2 + 10x + 44).$$

8.
$$40x^4 + 30x^3 + 60x - 160$$
. This $= 10(4x^4 - 16) + 15x(2x^2 + 4) = (2x^2 + 4)\{10(2x^2 - 4) + 15x\}$ $= (2x^2 + 4)(20x^2 + 15x - 40)$.

Note.—To determine r, take the ratio of the coefficient of x^3 to the coefficient of x.

Exercise xxxii.

Resolve into factors

1.
$$x^4 + 2x^3 + 6x - 9$$
.

2.
$$2x^4 + 2x^3 + 6x - 18$$
.

8.
$$x^4 + 3x^3 + 12x - 16$$
.

5.
$$5x^4 + 4x^3 - 12x - 45$$
.

6.
$$10x^4 + 5x^3 + 30x - 360$$
.

7.
$$4x^4 + 20x^3 + 4x - 100$$

8.
$$25x^4 - 40x^3 + 8x - 1$$
.

9.
$$87\frac{1}{2}x^4 - 30x^3 + 48x - 96$$
.

10.
$$63x^4 - 89x^3 + 52x - 112$$
.

10.
$$63x^4 - 50x^3 + 52x - 112$$

11. $810x^4 + \frac{81}{4}x^3 + \frac{9}{8}x - \frac{21}{4}$

12.
$$242x^4 - 83x^2 - 3x - 2$$
.

13.
$$\frac{1}{4}x^4 + \frac{1}{10}x^3 - \frac{2}{5}x - \frac{4}{5}$$

14.
$$80x^4 - 32x^3y + 64xy - 320y^4$$
.

3

6

7.

8.

10.

11.

13.

14.

15

16.

17.

Ar

Wh

to the

a and

pressi ful in

15.
$$24.e^4 - 12.e^3y + 30.ey^3 - 150y^4$$
.

16.
$$2x^4 + \frac{1}{2}x^3y - 8xy^3 - 512y^4$$
.

17.
$$11x^4 + 10x^3 - 12x - 15\frac{2}{3}\frac{1}{5}$$

18.
$$40x^4 + 30x^3 + 60x - 160$$
.

19.
$$13x^4 - 12x^3y + 72xy^3 - 468y^4$$
.

20.
$$3x^4 + 3x^3y + 12xy^3 - 48y^4$$
.

21.
$$5x^4 + 4x^3y - 12xy^3 - 45y^4$$
.

22.
$$4x^4 - 14x^3y + 28xy^3 - 16y^4$$
.

23.
$$x^4 + 80x_5^3y + 16xy^3 - \frac{1}{25}y^4$$
.

$$24. \ 2x^4 - x^3y + 6xy^3 - 72y^4$$

Art. XXII. Formulas [1] and [4] may sometimes be applied to factor expressions of the form $ax^4 + bx^3 + cx^2 + rbx + r^2a.$

This may be put under the form

$$a(x^4+r^2)+bx(x^2+r)+cx^2=a(x^2+r)^2+bx(x^2+r)+(e-2ar)x^2,$$
 which can sometimes be factored.

EXAMPLES.

1.
$$x^4 + 6x^3 + 27x^2 + 162x + 729$$
.

We have
$$x^4 + 729 + 6x(x^2 + 27) + 27x^3$$
.
= $(x^2 + 27)^2 + 6x(x^2 + 27) + 9x^2 - 86x^3$
= $\{x^2 + 27 + 5x\}^3 - 36x^3$, which gives the factors
 $x^2 - 8x + 27$, and $x^2 + 9x + 27$.

$$+15x$$

$$-150y^4$$

$$-468y^{4}$$

$$45y^4$$
.

$$-16y^4$$
.

$$\frac{1}{25}y^4$$
.

2. $x^4 + 4x^3 + 4x^2 + 20x + 25$. This $= (x^2 + 5)^2 + 4x(x^2 + 5) - 6x^2$ $= (x^3 + 5)^2 + 4x(x^3 + 5) + 4x^2 - 10x^2$ $= \{x^2 + 5 + 2x - x\sqrt{10}\}\{x^2 + 5 + 2x + x\sqrt{10}\}$.

Exercise xxxiii.

Resolve into factors .

1.
$$x^4 - 6x^3 + 27x^2 - 162x + 729$$
.

2.
$$x^4 + 2x^3 + 8x^2 + 8x + 16$$
.

3.
$$x^4 + x^3 + x^2 + x + 1$$
.

4.
$$x^4 - 4x^3 + x^2 - 4x + 1$$
.

5.
$$4x^4 - 12x^3 - 6x^2 - 12x + 4$$
.

6.
$$x^4 + 14x^3 - 25x^2 - 70x + 25$$
.

7.
$$16x^4 - 24x^3 - 16x^2 + 12x + 4$$
.

8.
$$x^4 + 5x^3 - 16x^2 + 20x + 16$$
.

9.
$$x^4 + 6x^3 - 11x^2 - 12x + 4$$
.

10.
$$x^4 + 4x^3y + x^2y^2 + 12xy^3 + 9y^4$$
.

11.
$$x^4 + 6x^3 - 9x^2 - 6x + 1$$
.

12.
$$x^4 + 4x^3y - 19x^2y^2 + 4xy^3 + y^4$$
.

13.
$$4x^4 + 4x^3y - 65x^2y^3 - 10xy^3 + 25y^4$$
.

14.
$$x^4 + 6x^3y - 9x^2y^2 - 6xy^3 + y^4$$
.

15.
$$x^4 + 6x^3y + 10x^2y^2 + 12xy^3 + 4y^4$$
.

16.
$$9x^4 + 18x^3y - 52x^2y^2 - 12xy^3 + 4y^4$$
.

17.
$$11x^4 + 10x_1^3y + 89_{12}^{96}x^2y^2 + 20xy^3 + 44y^4$$
.

SECTION III .- FACTORING BY PARTS.

Art. XXIII. In factor an expression which can be reduced to the form a.F(x) = b.r(x).

When the expression is thus arranged, any factor common to a and b, or to F(x) and f(x), will be a factor of the whole expression. The riethod about to be illustrated will be found useful in cases where only one power of some letter is found.

EXAMPLES.

1. Factor $acx^2 - abx - bc^2x + b^2c$.

Here we see that only one power of a occurs, and we therefore group together the terms involving this letter, and those not in volving it, getting

$$a(cx^{2} - bx) - bc^{2}x + b^{2}c$$

$$= ax(cx - b) - bc(cx - b) = (ax - bc)(cx - b).$$

2. Factor $m^2x^2 - mna^2x - mnx + n^2a^3$.

Here we observe that a occurs in only one power (a^2) .

Therefore we have

$$-a^{2}(mnx-n^{2})+m^{2}x^{2}-mnx$$

$$=-na^{2}(mx-n)+mx(mx-n)$$

$$=(mx-n)(mx-na^{2}).$$

3. $2x^2 + 4ax + 3bx + 6ab$.

Here we observe that the expression contains only one power of both a and b. We may, therefore, collect the coefficients in either of the following ways:

1. x

2. al.

8. x^2 4. 2x

5. x2

11.

12.

13.

14.

15. 16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. 3

27.

28. a

-22112

$$a(4x+6b)+(2x^2+3bx),$$

or, $b(3x+6a)+(2x^2+4ax).$

Now the expressions in the brackets ought to have a common factor, and we see that this is the case. Hence,

$$a(4x+6b)+(2x^2+3bx) = 2a(2x+3b)+x(2x+3b) = (2x+3b)(x+2a).$$

4.
$$abxy + b^2y^2 + acx - c^2$$

$$= a(bxy + cx) + b^2y^2 - c^2$$

$$= ax(by + c) + (by + c)(by - c) = (by + c)(ax + by - c).$$

5.
$$y^3 - (2a+b)y^2 + (2ab+a^2)y - a^2b$$

$$= -b(y^2 - 2ay + a^2) + y^3 - 2ay^2 + a^2y$$

$$= -b(y^2 - 2ay + a^2) + y(y^2 - 2ay + a^2)$$

$$= (y-b)(y-a)^2.$$

6.
$$2x^3y + 2bx^4 - bx^3y + 4abx^2y - x^2y^2 + 4axy^2 - 2abxy^2 - 2ay^3$$
.

$$= b(2x^4 - x^3y + 4ax^2y - 2axy^2) + 2x^3y - x^2y^2 + 4axy^2 - 2ay^3$$

$$= bx(2x^3 - x^2y + 4axy - 2ay^2) + y(2x^3 - x^2y + 4axy - 2ay^2)$$

$$= (y + bx)(2x^3 - x^2y + 4axy - 2ay^2).$$

herefore not in

e power ients in

common

c).

 $-2ay^3$. $-2ay^3$. ay^2)

And
$$2x^3 - x^2y + 4axy - 2ay^2$$

= $a(4xy - 2y^2) + 2x^3 - x^2y$
= $2ay(2x - y) + x^2(2x - y) = (2ay + x^2)(2x - y)$.

7.
$$x^{3} + (2a - b)x^{2} - (2ab - a^{2})x - a^{2}b$$

$$= b(-x^{2} - 2ax - a^{2}) + x^{3} + 2ax^{2} + a^{2}x$$

$$= -b(x+a)^{2} + x(x+a)^{2} = (x-b)(x+a)^{2}.$$
8.
$$x^{3} - (x-a)^{2} + (x-a)^{2} = (x-b)(x+a)^{2}.$$

8.
$$px^{3} - (p-q)x^{2} + (p-q)x + q$$

$$= q(x^{2} - x + 1) + px^{3} - px^{2} + px$$

$$= q(x^{2} - x + 1) + px(x^{2} - x + 1) = (px + q)(x^{2} - x + 1).$$
Exercise xxxiv.

1.
$$x^2y - x^2z - y^2 + yz$$
.

2.
$$abxy + b^2y^2 + acx - c^2$$
.

8.
$$x^2z^2 + ax^2 - a^2z^2 - a^3$$

4.
$$2x^2 - ax - 4hx + 2ab$$
.

5.
$$x^2 + 2bx + 3ax + 6ab$$
.

6.
$$x^3 - b^2x^2 - a^2x + a^2b^2$$

7.
$$x^5 - a^3x^2 - b^2x^3 + a^3b^2$$
.

8.
$$8x^2 + 12ax + 10/x + 15ab$$
.
9. $a^2 + (ac - b^2)x^2 + bcx^3$.

10.
$$a^2 + (ac - b^2)x^2 + bcx^3$$
.

11.
$$abx^3 + (ac - bd)x^2 - (af + cd)x + df$$
.

12.
$$px^3 - (p+q)x^2 + (p+q)x - q$$
.

13.
$$a^2 + ab + 2ac - 2b^2 + 7bc - 3c^2$$
.

14.
$$x^3 + (a+1)x^2 + (a+1)x + a$$
.

15.
$$mpx^3 + (mq - np)x^2 - (mr + nq)x + nr$$
.

16.
$$x^3 - (a+b+c)x^2 + (ab+bc+ac)x - abc$$
.

17.
$$x^3 + (a-b-c)x^2 - (ab-bc+ca)x + abc$$
.

18.
$$x^3 + (a+b-c)x^2 - (bc-ca-ab)x - abc$$
.

19.
$$a^2x^3 - a^3x^2y - a^2xy + a^3y^2 - ax^2yz + x^3z - xyz + ay^2z$$
.

20.
$$a^2bx^2 + ab^2xy + acdxy + bcdy^2 - aefxz - befyz$$
.

21.
$$a^2x^3 - a(b-c)x^2 + c(a-b)x + c^2$$
.

22.
$$mx^3 - nx^2y + rx^2z - mxy^2 + ny^3 - ry^2z$$
.

23.
$$amx^2 + (mby - nay + mcz)x - nby^2 - ncyz$$
.

24.
$$(am-bcn)x^2+(am-bcn)x+an+nax$$
.

25.
$$a^2b^2c^2 - b^2c^2xy - a^2c^2yz + c^2xy^2z - a^2b^2zx + b^2x^2yz + a^2z^2xy$$

- $x^2y^2z^3$.

26.
$$x^5 - m^2x^4 - (n - n^2)x^3 + (m^2n - m^2n^2)x^2 - a(x^2 + n^2 - n)$$
.

27.
$$1-(a-1)x-(a-b+1)x^2+(a+b-c)x^3-(a+c)x^4+cx^5$$
.
28. $a^3x^3-a^2(b-c+c)x^2+(a+b-c)x^3-(b+c)x^4+cx^5$.

28.
$$a^3x^3 - a^2(b - c + d)x^2y - (abc - abd + acd)xy^2 + bx/y^3$$
.

29.
$$m^2npx^3 - (n^2p - m^2n^2 - m^2pq)x^2 - (n^3 + npq - m^2nq)x - n^2q$$
.

30.
$$m^2p^2x^5 + m^3p^2x_1^4 - (p_1^2n^2 - q^2m^2)x^3y^2 - (p^3n^2 - q^2m^2)x^3y^2 - (n^3q^2 + n^2q^2x)y^4$$
.

Art. XXIV. Sometimes an expression which does not come directly under the preceding form, may be resolved by first finding the factors of its parts.

Examples.

1.
$$abx^2 + aby^2 - a^2xy - b^2xy$$
.

Here, taking ax out of the first and third terms, and by out of the second and fourth terms, we have

$$ax(bx-ay)-by(bx-ay)$$
, and hence $(ax-by)(bx-ay)$.

2.
$$x^4 - (a+b)x^3 + (a^2b+ab^2)x - a^2b^2$$
.

Here, taking the first and last terms together, and the two middle terms together, we have

$$(x^{2} + ab)(x^{2} - ab) - (a+b)x^{3} + ab(a+b)x$$

$$= (x^{2} + ab)(x^{2} - ab) - (a+b)x\{x^{2} - ab\}$$

$$= (x^{2} - ab)\{x^{2} + ab - (a+b)x\} = (x^{2} - ab)(x-a)(x-b).$$

3.
$$x^{3m} - 4x^m + 3$$
. This equals
$$x^{3m} - x^m - 3(x^m - 1) = x^m(x^{2m} - 1) - 3(x^m - 1)$$
$$= x^m(x^m + 1)(x^m - 1) - 3(x^m - 1)$$
$$= (x^m - 1)\{x^m(x^m + 1) - 3\}.$$

Exercise xxxv.

1.
$$a^2 - ab + ax - bx$$
.

2.
$$abx^2 + b^2xy - a^2xy - aby^2$$
.

3.
$$x^4 + ax^3 - a^3x - a^4$$
.

4.
$$a^3x + 2a^2x^2 + 2ax^3 + x^4$$
.

5.
$$acx^2 + (ad - bc)x - bd$$
.

6.
$$25x^4 - 5x^3 + x - 1$$
.

7.
$$a^2 - b^2 + ax - ac - bx + bc$$
.

8.
$$a^3 + (1+a)ab + b^2$$
.

9.
$$x^4 + 2xy(x^9 - y^2) - y^4$$
.

10.
$$x^3 - y^3 + x^2 + xy + y^2$$
.

11.
$$2b + (b^2 - 4)x - 2bx^2$$
.

12.
$$x^3 + 3x^2 - 4$$
.

13.
$$p^3 - p^2q - 2pq^2 + 2q^3$$
.

14.
$$a^3 + a^2 - 2$$
.

15.
$$3a^2b^4-2ab^2$$
 1.

16.
$$y^3 - 3y + 2$$
.

17.
$$2a^3 - a^2b - ab^2 + 2b^3$$
.

18.
$$b^{3m} + b^{2m} - 2$$
.

19.
$$y^{3n} - 2y^{2n}z^n - 2y^nz^{2n} + z^{3n}$$
.

27

28

29

80

By

x - a

 $x^n - a^n$

x + a

 $x^n + a$

x + a

(1) th

(3) the

of whi

2.]

3.]

4. I

Her

(x-2y)

 $x-2\eta$

.. t

20.
$$a^3 - 4ab^2 + 3b^3$$
.

21.
$$a^{2m} - 3a^mc^n + 2c^{2n}$$
.

22.
$$ax^3 - (a^2 + b)x^2 + b^3$$
.

23.
$$35x^{2n} - 6a^2x^n - 9a^4$$
.

24.
$$a^2b^2 + 2abc^3 - a^2c^2 - b^2c^3$$
.

25.
$$am^2 - ab^2 + b^2m - m^3$$
.

26.
$$\frac{1}{4} - 6a^2 + 27a^4$$
.

 $m^2)x^2y^2$

ot come rst find-

by out of

the two

-b).

2b3.

 $2n + g^{3n}$

 b^{2} .

 $c^2 - b^2 c^2$

 m^3 .

27. $(x-y)^3 + (1-x+y)(x-y)z - z^3$.

28. $24m^3 - 28m^2n + 6mn^2 - 7n^3$

29. $x^{m+n} + x^n y^n + x^m y^m + y^{m+n}$.

80. $x^4 + 2x^3y - a^2x^2 + x^2y^2 - 2axy^2 - y^4$.

SECTION IV .- APPLICATION OF THE THEORY OF DIV. SORS.

Art. XXV. By Theorem I. we prove that

 $x^n - a^n$ is divisible by x - a always

 $x^{n}-a^{n}$ " x+a when n is even

 $x^n + a^n$ " x + a when n is odd.

By actual division we find, in the above cases;-

$$\frac{x^n - a^n}{x + a} = x^{n-1} - x^{n-2}a + \dots + xa^{n-2} - a^{n-1}. \dots (2).$$

$$\frac{x^{n}+a^{n}}{x+a}=x^{n-1}-x^{n-2}a+ . . -xa^{n-2}+a^{n-1}....(3).$$

Examples.

1. Resolve into factors $x^3 - y^3$; here x - y is one factor and by (1) the other is $x^2 + xy + y^2$.

2. Resolve $a^3+(b-c)^3$; here a+(b-c) is one factor; and by (3) the other is $a^2-a(b-c)+(b-c)^2$.

3. Resolve $x^{1.5} + 1024y^{1.0}$. This $= (x^3)^5 + \{(2y)^2\}^5$, one factor of which is $x^3 + (2y)^2$, and by (3) the other factor is

$$\begin{array}{l} (x^3)^4 - (x^3)^3 (4y^2) + (x^3)^2 (4y^2)^2 - x^3 (4y^2)^3 + (4y^2)^4 \\ = x^{12} - 4x^9 y^2 + 16x^6 y^4 - 64x^3 y^6 + 256y^8 . \end{array}$$

4. Resolve $(x-2y)^3+(2x-y)^3$ into factors.

Here by (3) we have

$$\frac{(x-2y)^3+(2x-y)^3}{x-2y}+\frac{(x-2y)^2-(x-2y)(2x-y)+(2x-y)^3}{(x-2y)^2-(x-2y)(2x-y)+(2x-y)^3}$$

: the factors are

$$8(x-y)(7x^2-13xy+7y^2)$$

5. Resolve
$$x^5 + x^4y + x^3y^9 + x^9y^3 + xy^4 + y^5$$
:

By (1) we see that this =
$$\frac{x^6 - y^6}{x - y} = \frac{(x^3 + y^3)(x^3 - y^3)}{x - y}$$

= $(x + y)(x^2 - xy + y^2)(x^2 + xy + y^3)$.

6. Resolve
$$x^{11} - x^{10}a + x^{9}a^{2} - x^{4}a^{3} + x^{7}a^{4} - x^{9}a^{5} + x^{5}a^{6}$$

$$-x^{4}a^{7} + x^{8}x^{8} - x^{2}u^{9} + xa^{10} - a^{11}. \quad \text{This} = \frac{x^{12} - a^{12}}{x + a}$$

$$=\frac{(x^6+a^6)(x^6-a^6)}{x+a}=\frac{(x^6+a^6)(x^3-a^3)(x^3+a^3)}{x+a}$$

$$=(x^3+a^2)(x^4-x^2a^2+a^4)(x-a)(x^2+xa+a^2)(x^9-xa+a^2).$$

$$= (x^2 + a^2)(x^2 - x^2a^2 + a^2)(x^2 - a^2)(x^2 + a^2)(x^2 - a^2)$$

Exercise xxxvi.

Factor the following:-

1.
$$x^6 - y^6$$
, $x^3 - 1$, $x^3 + 8$, $8a^3 - 27x^3$, $8 + a^3x^3$.

2.
$$x^5 - a^{10}$$
, $27a^3 - 64$, $a^{12} - b^8$, $x^{10} - 32y^5$.

$$a^4 + a^3b + a^2b^3$$
. 3+b4, will give $a^5 - b^5$.

- 4. By what factor must $x = 4x^2y + 16xy^2 64y^3$ be multiplied to give $x^4 - 256y^4$?
 - 5. Factor $x^7 + x^6y + x^5y^2 + x^4y^3 + x^3y^4 + x^2y^5 + xy^4 + y^7$. Find the factors of the following:

6.
$$(3y^2-2x^2)^3-(3x^2-2y^2)^3$$
, a^8-16b^4 .

7.
$$x^3-y^3-x(x^2-y^2)+y(x-y)$$
.

8.
$$b(x^3-a^3)+ax(x^2-a^2)+a^3(x-a)$$
.

9.
$$b(m^3+a^3)+am(m^3-a^2)+a^3(m+a)$$
.

10.
$$x^6 - y^6 + 2xy(x^4 + x^2y^2 + y^4)$$
.

11.
$$(a^2-bc)^3+8b^3c^3$$
, $x^{4m}-a^{4n}$.

12.
$$x^3 - 3ax^2 + 3a^2x - a^3 + b^3$$
.

13.
$$x^3 + 8y^3 + 4xy(x^2 - 2xy + 4y^2)$$
.

14.
$$8x^3 - 6xy(2x+3y) + 27y^3$$
.

15.
$$1-2x+4x^2-8x^3$$
.

16.
$$a^5 + a^4bc + a^3b^2c^2 + a^2b^3c^3 + ab^4c^4 + b^5c^8$$
.

A II.. the f

2. R 1st

2ne

To fin which w

Art. XXVI. The principles illustrated in Section II., chap. II., may be applied to factor various algebraic expressions, as in the following cases:

EXAMPLES.

1. Find the factors of

2).

ultiplied

(a+b+c)(ab+bc+ca)-(a+b)(b+c)(c+a).

- 1st. Observe that the expression is symmetrical with respect to a, b c.
- 2nd. If there be any monomial factor a must be one. Putting a = 0, the expression vanishes. : a is a factor, and, by symmetry, b and c are also factor. .: abc is a factor.
- 8rd. There can be no other literal factor, because the given expression is of only three dimensions, and abc is of three dimensions.
- 4th. But there may be a numerical factor, m suppose, so that

(a+b+c)(ab+bc+ca)-(a+b)(b+c)(c+a)=mabc.

To find m, put a = b = c = 1 in this equation, and m = 1. : the expression = abc.

2. Resolve $a^2(b-c)+b^2(c-a)+c^2(a-b)$.

1st. For a=0 this does not vanish. \therefore a is not a factor, and by symmetry neither is b nor c.

2nd. Try a binomial factor; this will likely be of the form b-c; put b-c=0, i.e., b=c in the given expression, and there results

 $a^{2}(c-c)+c^{2}(c-a)+c^{2}(a-c)$, which = 0.

:. b-c is a factor, and by symmetry c-a and a-b are factors. Since the given expression is only of three dimensions, there can be no other literal factor; but there may be a numerical factor, m (say), so that

 $a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)=m(a-b)(b-c)(c-a).$

To find the value of m, give a, b, c, in this equation, any values which will not reduce eitner side to zero; let a=1, b=2, c=0,

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

and we have 2=m(-2), or m=-1; so that the given expression =-(a-b)(b-c)(c-a), or (a-b)(b-c)(a-c).

3. Resolve $a^3(b+c^2)+b^3(c+a^2)+c^3(a+b^2)+abc(abc+1)$.

Here we see at once that there is no monomial factor: put $b+c^2=0$, i.e., $b=-c^2$, and the expression becomes $a^3(-c^2+c^2)-c^6(c+a^2)+c^3(a+c^4)-c^3a(-c^3a+1)$ which =0; $b+c^2$ is a factor, and by symmetry $c+a^2$ and $a+b^2$ are also factors; and proceeding as in former examples we find m=1; $b+c^2$ the expression $b+c^2$ are $b+c^2$.

4. Resolve into factors the expression

$$(a-b)^3+(b-c)^3+(c-a)^3$$
.

As before, we find that there are no monomial factors.

Let a-b=0, or a=b, and substituting b for a the expression becomes zero; hence

a-b is a factor.

By symmetry b-c "

and c-a

Hence the factors are

$$m(a-b)(b-c)(c-a).$$

To find m let a=0, b=1, c=2, and we have 6=2m, or m=3.

The factors are, therefore,

$$3(a-b)(b-c)(c-a)$$
.

5. Resolve into factors

$$a^3(b-c)+b^3(c-a)+c^3(a-b)$$
.

As before, we find that there are no monomial factors.

Let a-b=0, or a=b; substituting b for a, the expression becomes zero;

therefore a-b is a factor.

By symmetry b-c "

and c-a

Now the product of these three factors is of three dimensions, while the expression itself is of four dimensions. There must, therefore, be another factor of one dimension. It cannot be a

b+cexpression
unless
were
be factories

mon

not

а³(То

6.]

He

is exac Let

we hav

therefo

a+b+
other for a binor must a quantity of three if so, the first post

of term

some n

expres-

1).

h = 0; are also =1; ::

pression

sion be-

nensions, re must, not be a monomial factor, for the expression has no such factors. It cannot be a binomial factor, such as a+b, for then, by symmetry, b+c and c+a would also be factors, which would give an expression of six dimensions. It cannot be a trinomial factor, unless a, b, and c are similarly involved. For instance, if a-b+c were a factor, then, by symmetry, b-c+a and c-a+b would also be factors, and the dimensions would be six instead of four. The other factor must, therefore, be a+b+c. Hence,

$$a^{3}(b-c)+b^{3}(c-a)+c^{3}(a-b)=m(a-b)(b-c)(c-a)(a+b+c).$$

To find m, put a = 0, b = 1, and c = 2, and we have -6 = 6m; m = -1.

Hence the factors are

or,
$$(a-b)(b-c)(c-a)(a+b+c)$$
,
or, $(a-b)(a-c)(b-c)(a+b+c)$.

6. Prove that

$$a^3+b^3+c^3+3(a+b)(b+c)(c+a)$$

is exactly divisible by a+b+c, and find all the factors.

Let a+b+c=0, or a=-(b+c); substituting this value for a, we have

$$-(b+c)^3 + b^3 + c^3 + 3bc(b+c)$$
, or $-(b+c)^3 + (b+c)^3$ which $= 0$, and

therefore a+b+c is a factor.

As before, we find that there are no monomial factors. Since a+b+c, the factor already obtained, is of one dimension, the other factor must be of two dimensions, and cannot, therefore, be a binomial; for if a+b were a factor, by symmetry b+c, and c+a must also be factors. The factors in that case would give a quantity of four dimensions, while the expression itself is only of three dimensions. Nor can $a^2+b^2+c^2$ be a factor. For if so, the other factor must involve a numerical multiple of the first power of a, and, therefore, on taking the first power of a out of terms involving first and third powers, we should have left some numerical multiple of $a^2+b^2+c^2$, instead of which we get

 $a^2+3(b+c)^2$. Nor can $a^2+(b+c)^2$ be a factor, for symmetry would require two other factors, viz.: $b^2+(c+a)^2$, and $c^2+(a+b)^2$, thus giving a quantity of seven dimensions.

The only factor admissible is, therefore, $(a+b+c)^2$.

Hence

$$a^{3} + b^{3} + a^{3} + 3(a+b)(b+c)(c+a) = m(a+b+c)(a+b+c)^{3}$$
$$= m(a+b+c)^{3}.$$

To find m, let a=1, b=0, and c=0, and we have 1=m. Hence the factors are

$$(a+b+c)(a+b+c)(a+b+c).$$

7. Simplify

$$a(b+c)^{2} + b(a+c)^{2} + c(a+b)^{2} - (a+b)(a-c)(b-c)$$

$$-(a-b)(a-c)(b+c) + (a-b)(b-c)(a+c).$$

Let a = 0, and the expression becomes

 $bc^2+cb^2+bc(b-c)-bc(b+c)-bc(b-c)$, which equals zero; therefore a is a factor; by symmetry b and c are also factors.

The expression is of three dimensions, and abc is of three dimensions, there cannot therefore be any other literal factor.

Hence the expression = mabc.

To find m, let a=b=c=1, and we have

$$4+4+4=m$$
;

$$m = 12$$
.

:. the expression = 12abc.

In the preceding examples the factors have been *linear*, but the principle applies equally well to those of higher dimensions. (See Th. ii. Cor.)

8. Examine whether x^n+1 is a factor of $x^{3n}+2x^{2n}+3x^n+2$.

Let $x^n+1=0$, or $x^n=-1$, and substituting, the expression vanishes, therefore, x^n+1 is a factor.

9. Examine whether $a^2 + b^2$ is a factor of $2a^4 + a^3b + 2a^2b^2 + ab^3$.

Let
$$a^2 + b^2 = 0$$
, or $a^2 = -b^2$, substituting, we have $2b^4 - ab^3 - 2b^4 + ab^3$ which = 0, and

therefore $a^2 + b^2$ is a factor.

10

Le

there

1.

2. 3.

4.5.6.

7. 8.

9.

10. 11.

12.

13. 14.

15.16.

17.

18.

19. 20.

21.

 $\frac{\mathbf{mmetry}}{(a+b)^2},$

 $-c)^3$

m.

o; there-

of three sctor.

or, but the

 $3x^n+2$.

expression

10. Prove that $a^3 + b^3$ is a factor of

$$a^5 + a^4b + a^3b^2 + a^2b^3 + ab^4 + b^5$$
.

Let $a^3+b^3=0$, or $a^3=-b^3$; substituting, we have $-a^2b^3-ab^4-b^5+a^2b^3+ab^4+b^5$, which = 0, and

therefore $a^3 + b^3$ is a factor.

Exercise xxxvii.

Resolve into factors

1.
$$(x+y+z)^3-(x^3+y^3+z^3)$$
.

2.
$$bc(b-c)-ca(a-c)-ab(b-a)$$
.

3.
$$(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3$$
.

4.
$$x(y+z)^2 + y(z+x)^2 + z(x+y)^2 - 4xyz$$
.

5.
$$(a+b)^3-(b+c)^3+(c-a)^3$$
.

6.
$$a(b-c)^3+b(c-a)^3+c(a-b)^3$$
.

7.
$$(a+b+c)(ab+bc+ca)-abc$$
.

8.
$$a^3(c-b^2)+b^3(a-c^2)+c^3(b-a^2)+abc(abc-1)$$
.

9.
$$a^2(b+c)+b^2(c+a)+c^2(a+b)+2abc$$
.

10.
$$(a-b)(c-h)(c-k)+(b-c)(a-h)(a-k)+(c-a)(b-h)(b-h)$$
.

11.
$$x^4y^2 + x^2y^4 + x^4z^2 + x^2z^4 + y^4z^2 + y^2z^4 + 2x^2y^2z^2$$
.

12.
$$(a-b)^5 + (b-c)^5 + (c-a)^5$$

13.
$$ab(a+b)+bc(b+c)+ca(c+a)+(a^3+b^3+c^3)$$
.

14.
$$a^4(c-b^3)+b^4(a-c^3)+c^4(b-a^3)+abc(a^2b^2c^2-1)$$
.

15.
$$x^4(y^2-z^2)+y^4(z^2-x^2)+z^4(x^2-y^2)$$
.

16.
$$x^4 + y^4 + z^4 - 2x^2y^2 - 2y^2z^2 - 2z^2x^2$$
.

17.
$$(b-c)(x-b)(x-c)+(c-a)(x-c)(x-a)+(a-b)(x-a)(x-b)$$
.

18.
$$(a+b)^3+(b+c)^3+(c+a)^3+(c+a)^3+(a+2b+c)(b+2c+a)(c+2a+b)$$
.

19. Shew that
$$a^5 + a^2b^2 - ab^2 - b^3$$
 has $a^2 - b$ for a factor.

20. Show that
$$(x+y)^7 - x^7 - y^7 = 7xy(x+y)(x^2 + xy + y^2)^2$$
.

21. Examine whether
$$x^3-5x+6$$
 is a factor of $x^3-9x^2+26x-24$.

22. Show that a-b+c is a factor of $a^{2}(b+c)-b^{2}(c+a)+c^{2}(a+b)+abc$.

25 Shew that $a^2 + 3b$ is a factor of $a^4 - 4a^3b^3 + 3a^2b^4 + 3a^3b - 12ab^4 + 9b^5$, and find the other factor.

24. Find the factors of $a^4(b-c)+b^4(c-a)+c^4(a-b)$.

SECTION V.—FACTORING A POLYNOME BY TRIAL DIVISORS.

Art. XXVII. To find, if possible, a rational linear factor of the polynome.

$$x^{n} + bx^{n-1} + cx^{n-2} + \dots + hx + h.$$

Substitute successively for x every measure (both positive and negative) of the term k, till one is found, say m, that makes the polynome vanish, then x-m will be a factor of the polynome.

EXAMPLES.

1. Factor $x^3 + 9x^2 + 16x + 4$.

The measures of 4 are ± 1 , ± 2 and ± 4 . Since every coefficient of the given polynome is positive, the positive measures of 4 need not be tried. Using the others, it will be found that -2 makes the polynome vanish; thus

Hence the factors are $(x+2)(x^2+7x+2)$.

The labour of substitution may often be lessened by arranging the polynome in ascending powers of x, and using $1 \div$ (measure of k) instead of the measures of k. (This is really substituting $1 \div$ measure of k, for $1 \div x$). Should a fraction occur during the course of the work, further trial of that measure of k will be needless.

Т 41

A a fra

A: finacti

Ne

Ne

 $\frac{\mathrm{Th}}{(x+5)}$

Ar

numb lessen

term i

EXAMPLES.

2. Factor $x^3 - 10x^2 - 69x + 60$.

The measures of 60 are ± 1 , ± 2 , ± 3 , ± 4 , ± 5 , &c. Neither +1 nor -1 will make the polynome vanish. Try 2; thus

A fraction occurring we need go no further. -2 will also give a fraction, as may easily be seen. Next try 3; thus

A fraction again occurring, we may stop. -3 will also give a fraction. Next try 4; thus

Next try -4.

Next trying 5 we find it fails, then try -5, thus

The remainder vanishes as required; the factors are, therefore, $(x+5)(x^2-15x+12)$.

Art. XXVIII. When k has a large number of factors, the number that need actually be tried can often be considerably lessened by the following means.

Add together all the coefficients of x (including the constant term k); let the sum be called k_1 .

ors.

ive and kes the

me.

actor of

y coeffisures of shat -2

arrangng 1 ÷ s really fraction measure From the sum of the coefficients of the even powers of x (including k) take the sum of the coefficients of the odd powers of x; let the remainder be called k_2 . (In the coefficients are included the signs of the terms).

Iı full

only

Ir

0

mus

we fi

(See

2.

8

 $\frac{12}{23}$

8

12

23

 $\mathbf{T}\mathbf{h}$

Tr

gives

1st. If k_1 vanish, x-1 will be a factor of the polynome.

2nd. If k_2 vanish, x+1 will be a factor of the polynome.

3rd. If both k_1 and k_2 vanish, x^2-1 will be a factor of the polynome.

4th. If neither k_1 nor k_2 vanish, (writing p for "a positive measure of k greater than 1");

- (a) We need not try the substitution of p for x unless p-1 be a measure of k_1 , and p+1 a measure of k_2 .
- (β) Nor need we try the substitution of -p for x unless p+1 be a measure of k_1 , and p-1 a measure of k_2 .

(In trying for measures, the signs of k, k_1 , and k_2 may be neglected.

EXAMPLES.

1. Find the factors of $x^3 - 10x^2 - 63x + 60$. (See Ex. 2 above). Here k = 60; $k_1 = 1 - 10 - 63 + 60 = -12$, $k_2 = -1 - 10 + 63 + 60 = 112$.

Tabulating the trial-measures we get

(It is evident that 12 is the highest measure of 60 we need try in the upper table, for the next measure, 15, would give 14 as a trial-measure of 12, and higher measures of 60 would give higher trial-measures. Similarly, 10 is the highest measure that need be tried in the lower table.)

ers of x owers of are in-

e. 1e.

or of the

positive

p-1 be

less p+1

may be

2 above).

e need try ve 14 as a ive higher that need In the upper table, 3 is the only measure of 60 that gives a full column; hence of the positive measures of 60 we need try only the substitution of 3 for x.

In the lower table, 2, 3, and 5 give full columns, hence we must try the substitutions -2, -8, -5 for x.

On trying the four substitutions to which we are thus restricted we find -5 is the only one for which the polynome vanishes. (See Ex. 2 above).

2. Find the factors of
$$x^4 + 12x^3 - 40x^2 + 67x - 120$$
.
 $k = -120$; $k_1 = 1 + 12 - 40 + 67 - 120 = -80$;

$$k_2 = 1 - 12 - 40 - 67 - 120 = -238.$$

The upper table gives us 6 as a trial-measure, and the lower gives us -3 and -15.

Trying these we get

Hence x+15 and x^3-8x^2+5x-8 are the factors. The latter cannot be resolved, for our tables above tell us we need try only x-6, x+3, and x+15. The first two have been found not to be factors, and 15 will not measure 8.

4. Factor $x^4 - 27x^2 + 14x + 120$.

The upper table gives us 3 and 4, the lower table gives us -2, -8, and -5. Using these in order we get

and there remains x+5, a factor.

Hence the factors are (x-3)(x-4)(x+2)(x+5).

5. Factor
$$x^4 - px^3 + (q-1)x^2 + px - q$$
.
 $k = -q$; $k_1 = 1 - p + (q-1) + p - q = 0$;
 $k_2 = 1 + p + (q-1) - p - q = 0$.

Since both k_1 and k_2 vanish, the polynome is divisible by both x-1 and x+1.

H. 6.

Th be re

may $a^2 \pm 3$ by a - 3

(See

7.]

The by eith and k_s the su

H

The latter try only not to be

c.

o.

es us - 2,

factor.

factor.

factor.

e by both

Hence the other factor is $x^2 - px + q$.

6. Factor
$$x^4 + 2ax^3 + (a^2 + a)x^2 + 2a^2x + a^3$$
.

$$\begin{array}{c} k=a^3 \ ; \ k_1=1+2a+(a^2+a)+2a^2+a^3=(a+1)^3 \ ; \\ k_2=1-2a+(a^2+a)-2a^2+c^3=a^3-a^2-a-1. \end{array}$$

The positive measures of k are 1, a, a^2 , a^3 . Of these 1 may be rejected at once, since neither k_1 nor k_2 vanish, and a^2 and a^3 may also be rejected since k_1 or $(a+1)^3$ is not divisible by either $a^2\pm 1$ or $a^3\pm 1$. But k_1 is divisible by a+1, and k_2 is divisible by a-1; thus we need only try the substitution of -a for x. (See 4β , page 92)

Hence the factors are $(x+a)^2(x^2+a)$.

7. Factor
$$x^3 - (a+c)x^2 + (b+ac)x - bc$$
.

$$k = -bc$$
:

$$k_1 = 1 - (a+c) + (b+ac) - bc = 1 - a + b - c + ac - bc$$
 $k_2 = -1 - (a+c) + (b+ac) - bc = 1 - a + b - c + ac - bc$

$$k_2 = -1 - (a+c) - (b+ac) - bc = -(1+a+b+c+ac+bc).$$

The factors of k_1 , other than 1, are b and c. k_1 is not divisible by either $b\pm 1$ nor by c+1. However, k_1 is divisible by c-1, and k_2 is at the same time divisible by c+1, \therefore we need only try the substitution of c for x. (See 4 α , page 86).

Hence the factors are $(x-c)(x^2-ax+b)$.

Exercise xxxviii.

1.
$$a^3 - 9a^2 + 16a - 4$$
.

2.
$$x^3 - 9x^2 + 26x - 24$$
.

3.
$$x^3 - 7x^2 + 16x - 12$$
.

4.
$$x^3 - 12x + 16$$
.

5.
$$x^3 + 3x^2 + 5x + 3$$
.

6.
$$x^4 + 1x^3 + 10x^2 + 12x + 9$$
.

7.
$$x^3 - 3x + 2$$
.

8.
$$x^4 + 2x^2 + 9$$
.

9.
$$m^3 - 3m^2n + 4mn^2 - 2n^3$$

10.
$$x^3 + 2x^2 + 2$$
.

11.
$$m^3 - 5m^2n + 8mn^2 - 4n^3$$
.

12.
$$b^3 + b^2c + 7bc^2 + 89c^3$$
.

13.
$$m^4 - 4mn^3 + 8n^4$$
.

14.
$$a^4 - 7a^3b + 28ab^3 - 16b^4$$
.

15.
$$x^3 - 11x^2 + 39x - 45$$
.

16.
$$x^3 + 5x^2 + 7x + 2$$
.

17.
$$a^3 - 3a^2 - 198a + 195$$
.

18.
$$p^3 - 8p^2 - 6p - 8$$
.

19.
$$a^4 + 3a^8 - 8a^2 - 7a + 6$$
.

20.
$$a^{6n} - 6a^{4n} + 11a^{2n} - 6$$
.

21.
$$a^4 - 41a^2b^2 + 16b^4$$

22.
$$a^4 - a^2b^2 - 2ab^3 + 2b^4$$
.

23.
$$p^3 - 4p^2 + 6p - 4$$
.

24.
$$x^{2n} + 4x^{2n} - 5$$
.

25.
$$y^4 - 5y^3 + 8y^2 - 8$$
.

$$26 \quad a^4 - 2a^3 + 3a^2 - 2a + 1.$$

27.
$$a^3 + a^2b^2 + ab^2 - 8b^3$$
.

28.
$$2a^{8n} - a^{2n} - a^n + 2$$
.

29.
$$x^4 - 18x^3 + 113x^2 - 288x + 252$$
.

80.
$$x^4 - 9x^3y + 29x^2y^2 - 39xy^3 + 18y^4$$
.

Art XXIX. To find, if possible, a rational linear factor of the polynome

$$ax^{n} + bx^{n-1} + cx^{n-2} + \dots + hx + k.$$

First Method. Multiply the polynome by a^{n-1} .

$$(ax)^n + b(ax)^{n-1} + ac(ax)^{n-2} + \dots + a^{n-2}h(ax) + a^{n-1}k;$$

or writing y for ax,

$$y^{n} + by^{n-1} + acy^{n-2} + \dots + a^{n-2}hy + a^{n-1}k$$
.

Factor this polynome by the method of the last article, replace y by ax, and divide the result by a^{n-1} .

Example.

Factor
$$3x^4 + 5x^3 - 33x^2 + 43x - 20$$
.

$$(3x)^4 + 5(3x)^3 - 99(3x)^2 + 387(3x) - 540$$
; or, $y^4 + 5y^3 - 99y^2 + 387y - 540$.

table tution

be to facto

 \mathbf{R}_{0}

A."

found a fac tutio

to arrof m

The only factors of 540 in full columns are 4 in the upper table and 2 in the lower one; hence we need try only the substitutions 4 and -2.

Hence y-4 is a factor. The substitution -2 need not now be tried, since we see that 135 is not a multiple of 2. The other factor is therefore $y^3+9y^2-63y+135$.

Replacing y by 3x and dividing by 27;

$$\begin{aligned} & \tfrac{1}{27}(3x-4)(27x^3+81x^2-189x+185) \\ & = (3x-4)(x^3+3x^2-7x+5), \end{aligned}$$

which are the factors.

5.

+C.

64.

+1. ₃.

actor of

, replace

Art. XXX. Second Method. Writing m for "a measure of a," and p for a "measure of k, positive or negative;"

For x substitute every value of p-m till one, say p'+m' be found which makes the polynome vanish; then m'x-p' will be a factor. Should a fraction be met with in the course of substitution, further trial of that value of p+m will be useless.

Should k have more factors than a, it will generally be better to arrange the polynome in ascending powers of x and use values of $m \div p$ instead of $p \div m$, making p positive and m positive or negative.

To reduce the number of trial-measures, calculate k_1 and k_2 , as directed on page 92, then 1, 2, 3 hold as on that page, but in 4 read p-m for p-1 and p+m for p+1.

EXAMPLES.

1. Factor
$$36x^3 + 171x^2 - 22x + 480$$
.
$$k = 480, k_1 = 36 + 171 - 22 + 480 = 665$$
$$k^2 = -36 + 171 + 22 + 480 = 637$$
.

m may have any of the values ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 18 , ± 36 .

In forming the table write out the measures of k_1 ; take each measure in succession and add to it each value of m separately, should the sum measure 480, i.e., k, add to it the same value of m, and should the new sum measure 637, i.e., k_2 , keep the measure of 480, writing above it the value of m used. Should the sum in either case not be a measure, another value of m must be tried; when all the values of m have been tried, another measure of 655, i.e., k_1 must be tried till all have been tested. (Measures of k_1 or 665 have been used in this instance because they are much fewer than those of 480; measures of k_2 or 637 would have done equally well).

Hence the only substitutions that need be tried are

$$\frac{3}{4}$$
, $\frac{1}{6}$, $\frac{3}{10}$, $\frac{-2}{3}$, $\frac{-3}{4}$, $\frac{-9}{10}$, $\frac{-3}{16}$, for $\frac{1}{2}$

Arrangement in ascending powers of x.

By actual trial, as below, we find $\frac{-3}{16}$ is the only one of these giving a zero remainder.

(Thother Her

The 30, an have 1

x(60y)

by ma We

2z+5 the su

 $\frac{2z}{5}$

 $d k_2$, as out in 4

·6, ±9,

ke each parately, value of the measure measure deasures they are uld have

3 9 6

of these

	480	- 22	171	86
3		360		
4 1	120	841		
1		68		
6	80	$9\frac{2}{3}$		
3		1.44		
10	48	12.2		
-2		-320	228	-266
8	160	-114	133;	-230
-3		360		
4	120	$-95\frac{1}{2}$		
-9		-432		
10	48	-45.4		
-3		- 90	21	-36
16	30	- 7	12;	0

(The coefficients are written only once, and understood for the other lines of substitution.)

Hence the factors are 9x+16 and $12x^2-7x+30$.

The latter factor cannot be resolved, for 16 will not measure 30, and all the other factors left for trial by the tables above, have been tried and have failed.

2. Factor $10x^4 - x^3(15y + 4z) - x^2(40y^2 - 6yz)$ $x(60y^3 + 16y^2z) - 24y^3z$.

Here
$$m = \pm 1$$
, ± 2 , ± 5 , or ± 10 . $k = -24y^3z$.
 $k_1 = 10 - (15y + 4z) - (40y^2 - 6yz) + (60y^3 + 16y^2z) - 24y^3z$
 $= 10 - 15y - 40y^2 + 60y^3 - 2z(2 - 3y - 8y^2 + 12y^3)$
 $= (5 - 2z)(2 - 3y - 8y^2 + 12y^3)$.

 $k_2 = (5+2z)(2+3y-8y^2-12y^3)$, as may easily be found by making the calculation.

We get at a glance 2z a factor of k, 2z-5 a factor of k_1 , and 2z+5 a factor of k_2 ; hence taking m=5, we are directed to try the substitution $\frac{2z}{5}$ for x.

$$\frac{2z}{5} \begin{vmatrix} 10 & -(15y + 4z) & -(40y^2 - 6yz) & (60y^3 + 16y^2z) & -24y^3z \\ 4z & -6yz & -16y^2z & 24y^3z \\ \hline 2 & -3y & -8y^2 & 12y^3; & 0 \end{vmatrix}$$

Hence 5x-2z is a factor, the other being

$$2x^3 - 3x^2y - 8xy^2 + 12y^3$$
.

The latter factor being homogeneous, the method of this article may be applied to it.

$$m=\pm 1$$
 or ± 2 , $k=12$, $k_1=3$, $k_2=15$.
 $m=1$, 2, 1, -1
 $\begin{vmatrix} 3 & 1 & 1 & 3 & 3 & \text{The other columns} \\ 12 & 2 & 3 & 4 & 2 & \text{are not full.} \\ 15 & 3 & 5 & 5 & 1 & 1 & 1 \end{vmatrix}$

Hence the trial-substitutions (arrangement in ascending powers of x) are $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{4}$, $\frac{-1}{3}$.

Hence the factors are (x-2y)(2x-3y)(x+2y), and these, with the factor 5x-2z already found, give the complete resolution of the polynome proposed.

(The factor 5x-2z, might easily have been got by the method of Art. XXIII., page 79, but the present solution shows we are independent of that article. It may also be obtained by rearranging the polynome in terms of y).

Exercise xxxix.

Factor

1.
$$2x^3 - 20x^2 + 38x - 20$$
; $x^3 - 7x^2y + 16xy^2 - 12y^3$.

2.
$$12x^3 + 5x^2y + xy^2 + 3y^3$$
; $8x^3 - 14x + 6$.

3.
$$8x^3 - 15ax + a^2x - 5a^3$$
; $2x^3 + 9x^2y + 7xy^2 - 9y^3$.

4.
$$2b^4 - 7b^3c - 4b^2c^2 + bc^3 - 4c^4$$
; $15a^3 + 47a^2b + 13ab^2 - 12b^3$.

5.
$$4p^4 + 8p^3q + 7p^2q^2 + 8pq^2 + 3q^4$$
.

6.
$$150x^4 - 725x^3y + 931x^2y^2 + 920xy^3 - 1152y^4$$
.

7,
$$86x^4 - 6(9 - 7y)x^3 - 7(9 + 14y)x^2y + 3(49 - 40y)xy^2 + 180y^3$$
.

8.
$$10x^4 - x^3(15y + 4z) + x^2(40y^2 + 6yz) + x(60y^3 - 16y^2z) - 24y^3z$$

the q

we settient

 $+x^{4}$. $(a^{2}+$

2.

3. dend

> 4. Div

 $-c^3 - a^2 - a^2$

The this d

Striki $b(x^2 - a)$

7.

 $ax^2 +$

s article

umns

powers

 $+x_{\circ}$ se, with ution of

ethod of re inderanging

 $-12b^3$.

 $-24y^3z$

 $+180y^3$.

CHAPTER IV.

SECTION I.—DIVISION. MEASURES AND MULTIPLES.

Art. XXXI. When one quantity is to be divided by another the quotient can often be readily obtained by resolving the divisor or dividend, or both, into factors.

EXAMPLES.

- 1. Divide $a^2 2ab + b^2 c^2 + 2cd d^2$ by a |b + c d|. we see at once that the dividend = $(a-b)^2 - (c-d)^2$, and : quotient = a - b - (c - d) = a - b - c + d.
- 2. Divide the product of $a^2 + ax + x^2$ and $a^3 + x^3$ by $a^4 + a^2x^2$ $+x^4$. Here $a^3+x^3=(a+x)(a^2-ax+x^2)$, and the divisor= $(a^2+ax+x^2)(a^2-ax+x^2)$: the quotient is a+x.
- 3. Divide $a^3 + a^2b + a^2c abc b^2c bc^2$ by $a^2 bc$. The dividend is $a(a^2 - bc) + b(a^2 - bc) + c(a^2 - bc)$: the quotient = a + b - c.
 - 4. $(a^3+b^3-c^3+3abc) \div (a+b-c)$.

Dividend = $a^3 + b^3 + 3ab(a+b) - c^3 - 3ab(a+b) + 3a = (a+b)^3$ $-c^3-3ab(a+b-c)$ which is exactly divisible by a+b-c; quotient $=a^2+b^2+c^2-ab+bc+ca.$

5. Divide $x^5 - x^4y + x^3y^2 - x^2y^3 + xy^4 - y^5$ by $x^3 - y^3$.

The dividend is (Art. XXV.) evidently $(x^6 - y^6) \div (x + y)$, and this divided by $x^3 - y^3 = (x^3 + y^3) \div (x + y) = x^2 - xy + y^2$.

- 6. Divide $b(x^3+a^3)+ax(x^2-a^2)+a^3(x+a)$ by (a+b)(x+a). Striking the factor x+a out of dividend and divisor we have $b(x^2 - ax + a^2) + ax(x - a) + a^3 = b(x^2 - ax + a^2) + a(x^2 - ax + a^2)$ $=(a+b)(x^2-ax+a^2)$: quotient $=x^2-ax+a^2$.
- 7. Divide $apx^4 + x^3(aq + bp) + x^3(ar + bq + pc) + x(qc + br) + cr$ by $ax^2 + bx + a$

Factoring the dividend (Art. XXIII.) we have

$$(ax^2+bx+c)(px^2+qx+r)$$
.

:. the quotient = the latter factor.

8. Divide $6x^4 - 13ax^3 + 13a^2x^2 - 13a^3x - 5a^4$ by $2x^3 - 3ax - a^3$.

This can be done by Art. XVII. The divisor is $2x^2 - a^2 - 3ax$, and we see at once that $3x^2 + 5a^2$ must be two terms of the quotient.

Multiplying diagonally into the first two terms of the divisor, and adding the products, we get $+7a^2x^2$; but $+13a^2x^2$ is required. $\therefore +6a^2x^2$ is still required, and as this must come from the third term multiplied into -3ax, that third term must be -2ax; \therefore the quotient is $3x^2+5a^2-2ax$.

Note.—By multiplying the terms -2ax, -3ax, diagonally into the x^2 's and a^2 's respectively, we get the remaining terms of the dividend; it is, of course, necessary to test whether the division is exact.

9. Divide
$$2a^4 - a^3b - 12a^2b^2 - 5ab^3 + 4b^4$$
 by $a^2 - b^2 - 2ab$.

Here, as before, one factor is a^2-b^2-2ab ; : two terms of the other factor are $2a^2-4b^2$. Multiplying, as in the last example, we get $-6a^2b^2$; but $-12a^2b^2$ is required. : $-6a^2b^2$ is still needed, and +3ab is the third term of the required quotient, which is therefore $2a^2-4b^2+3ab$.

Prove that

10.
$$(1+x+x^2+\ldots+x^{n-1})(1-x+x^2-\ldots+x^{n-1})$$

 $=1+x^2+x^4+\ldots+x^{2n-2}$.
Product $=\frac{1-x^n}{1-x}$. $\frac{1+x^n}{1+x}$
 $=\frac{1-x^{2n}}{1-x^2}=1+x^2+x^4+\ldots+x^{2n-2}$.

11. Divide
$$(a^3 - bc)^3 + 8b^3c^3$$
 by $a^2 + bc$.
= $(a^2 - bc)^3 + (2bc)^3$ by $(a^2 - bc) + 2bc$
= $(a^3 - bc)^2 - (a^2 - bc) \times 2bc + (2bc)^2$
= $a^4 - 4a^2bc + 7b^2c^2$.

12.

Find

2.

3. 4. :

5. 6.

7. *a*

9. 4 10. *a*

11. 2

12. 2 13. {

14. x
 15. x

16. x

17. x

18. x 19. a

20. a

 $\div a + 3c$ 21. a^2

22. a

12. Divide $1+2357947691x^9$ by $1-11x+121x^2$ Dividend $=1+(11x)^9$ $=\{1-(11x)^3\cdot+(11x)^6\}\{1+(11x)^5\}$ Divisor $=\{1+(11x)^3\}-(1+11x)$.

$$\therefore \text{ quotient} = \{1 - (11x)^3 + (11x)^6_4\}(1 + 11x)_6$$

Exercise xl.

Find the quotients in the following cases:

1.
$$1-x+x^2-x^3+1-x$$
.

 $-a^{3}$.

- 3ax,

quo-

visor,

is re-

from

ust be

v into

of the vision

ms of

e last

6a2b2

d quo-

2.
$$1-2x^4+x^8+x^4+2x^2+1$$
.

8.
$$x^{16} + a^8x^8 + a^{16} \div x^4 - a^2x^2 + a^4$$

4.
$$x^4 + 4x^2y^2 - 32y^4 \div x - 2y$$
.

5.
$$1-4x^2+12x^3-9x^4\div 1+2x-3x^2$$
.

6.
$$(a^2-2ax+x^2)(a^3+3a^2x+3ax^2+x^3)-a^3-x^3$$

7.
$$x^3 - y^3 + z^3 + 3xyz - x - y + z$$
.

8.
$$6a^4 - a^3b + 2a^2b^2 + 13ab^3 + 4b^4 \div 2a^2 - 3ab + 4b^4$$

9.
$$4x^4 - x^2y^2 + 6xy^3 - 9y^4 \div 2x^2 + 3y^2 - xy$$
.

10.
$$a^4 + b^4 - c^4 - 2a^2b^2 \div a^3 - b^2 - c^3$$
.

11.
$$21a^4 - 16a^3b + 16a^2b^2 - 5ab^3 + 2b^4 \div 3a^2 - ab + b^3$$
.

12.
$$2a^3 - 7a^2 - 46a - 21 \div 2a^2 + 7a + 3$$
.

13.
$$\{a^3(b-c)+b^3(c-a)+c^3(a-b)\} \div a+b+c$$
.

14.
$$x^3 - 3ax^2 + 3a^2x - a^3 + b^3 \div x - a + b$$
.

15.
$$x^4 - y^4 + z_4^4 + 2x^2z^2 - 2y^2 - 1 \div x^2 - y^2 + z^2 - 1$$
.

16.
$$x^4 - (a+c)x^3 + (b+ac)x^3 - bcx + x - c$$
.

17.
$$x^3 + x^2y + xy^2 + y^3 \div x + y$$
.

18.
$$x^7 - x^6y + x^5y^2 - x^4y^3 + x^3y^4 - x^2y^5 + xy^6 - y^7 \div x^4 + y^4$$

19.
$$a^4 + b^4 - c^4 - 2a^2b^2 - 2c^2 - 1 \div a^2 - b^2 - c^2 - 1$$
.

20.
$$a^4 - ab^3 - ac^3 - 2a^3b + 2b^4 + 2bc^3 - 3a^3c - 3b^3c - 3c^4 \div a + 3c - 2b$$
.

21.
$$a^2b-bx^2+a^2x-x^3 \div (x+b)(a-x)$$
.

22.
$$a(b-c)^3 + b(c-a)^3 + c(a-b)^3 \div a^2 - ab - ac + bc_0$$

23.
$$a^2b^2 + 2abc^2 - a^2c^2 - b^2c^2 + ab + ac - bc$$
.

24.
$$x^3 + y^3 + 3xy - 1 \div x + y - 1$$
.

25.
$$x^6 - x^3 - 2 \div x^2 - x + 1$$
.

26.
$$a^4 - 29a^2 - 50a - 21 \div a^2 - 5a - 7$$
.

27.
$$(2x-y)^2a^4-(x+y)^2a^2x^2+2(x+y)ax^4-x^6 \div$$

$$(2x-y)a^{2}+(x+y)ax-x^{3}$$
.

28.
$$(x^3-1)a^3-(x^3+x^2-2)a^2+(4x^2+3x+2)a-3(x+1)$$

 $\div (x-1)a^2 - (x-1)a + 3.$

Art. XXXII. The Highest Common Practor of two algebraic quantities may, in general, be readily found by factoring. The H. C. F. is often discovered by taking the sum or difference (or sum and difference) of the given expressions, or of some multiples of them.

EXAMPLES.

1. Find the H. C. F. of $(b-c)x^2+(2ab-2ac)x+a^2b-a^2c$, and $(ab-ac+b^2-bc)x+a^2c+ab^2-a^2b-abc$.

Taking out the common factor b-c we get $(b-c)(x^2+2ax+ab)$ and $(b-c)\{(a-b)x-a^2+ab\}$;

b-c is the H. C. F. of the riven expressions.

2. Find the H. C. F. of

$$1-x+y+z-xy+yz-zx-xyz$$
, and $1-x-y-z+xy+yz+zx-xyz$.

Their difference is 2y+2z-2xy-2zx=2(1-x)(y+z).

Their sum is
$$2-2x+2yz-2xyz=2(1-x)(1+yz)$$
.

... the H. C. F. is
$$(1-x)$$
.

3. Find the H. C. F. of
$$x^5 + 3x^4 - 8x^2 - 9x - 3$$
, and $x^5 - 2x^4 - 6x^3 + 4x^2 + 13x + 6$.

The annexed method of finding the H. C. F. depends on the principle, that if a quantity measures two other quantities, it will measure any multiple of their sum or difference.

The are to multi(d) he of the with do not to fin same contains.

4.

If (a 8 and

The coefficients are written in two lines, (a) and (b). They are then subtracted so as to cancel the first terms. (a) is next multiplied by 2, and added to cancel the last terms. If (c) and (d) had been the same their terms would have been the coefficients of the H. C. F. Since they are not, we proceed with them as with (a) and (b) till they become the same. When (a) and (b) do not contain the same number of terms it is more convenient to find only (c), and then use this with the quantity containing the same number of terms. The general rule is to operate on lines containing the same, or nearly the same number of terms.

If (a) and (b) have a common factor its first term must measure 8 and 6, and its last term must measure 8 and 12. (c) is not

1)

lgebraic g. The ence (or nultiples

 a^2c , and

2ax + ab

ls on the

therefore, the H. C. F. Resolve (c) into factors. 5x-7 is not a factor of (a) and (b). If, therefore, (a) and (b) have a common factor it is 8x-4. On trial 8x-4 is found to be a factor of (a) and \therefore it is the H. C. F. of (a) and (b).

5. If $x^2 + px + q$, and $x^2 + rx + s$ have a common factor, prove that this factor is

 $x' + \frac{q-s}{p-r}$. If x-a be the common factor then the remainders on dividing the given expressions by x-a, must be zero, i. e., $a^2+pa+q=0$, and $a^2+ra+s=0$, or

$$(p-r)a=s-q$$
, $\therefore a=\frac{s-q}{p-r}$, and $x-a=x-\frac{s-q}{p-r}=x+\frac{q-s}{p-r}$

6. What value of a will make $a^2x^2+(a+2)x+1$, and $a^2x^2+a^2-5$, have a common measure.

They cannot have a monomial factor. Neither can they have one of two dimensions unless (a+2) vanishes, i.e., unless a=-2, in which case the expressions become $4x^2+1$, and $4x^2-1$, which have no C. F. Hence if the given quantities have a C. F., it must be of the form x+m; dividing $a^2x^2+a^2-5$ by x+m, we have for remainder,

 $a^2m^2+a^2-5=0$, or $m^2=\frac{5-a^2}{a^2}$; $m=\frac{1}{a}\sqrt{(5-a^2)}$, in which $\sqrt{(5-a^2)}$ must be possible and integral, $a^2=4$, $a^2=4$, $a^2=1$ gives values to $a^2=4$, which on trial fail) and $a=\pm 2$, of which the positive value must be taken, and $a^2=2$ and $a^2=2$.

7. If the H. C. F. of a and b be c, the L. C. M. of $(a+b)(a^3-b^3)$, and $(a-b)(a^3+b^3)$ is $\frac{a^6-b^6}{c^2}$.

Let a = mc, b = nc, and $\therefore a^3 = m^3c^3$, $b^3 = n^3c^3$. Thus (a + b) = c (on +n); (a - b) = c (on -n), and $(a^3 + b^3) = c^3(m^3 + n^3)$; $(a^3 - b^3) = c^3(m^3 + n^3)$. Let a = mc, b = nc, and a = nc, a Th L. C.

8. I and r.

Let $x^3 + qx$ equation

Or Divid

and as ting coeff

Find 1. $2x^4$.

 $2. x^{3} +$

3. px3.

4. ax3 -

5. 1 - 3

6. $ac^{2a}+$

s not a ommon of (a)

, prove

ainders

. e.,

v have a=-2, which J. F., it

-m, we

n which 1 gives positive The H. C. F. of the last expressions is $c^4(m^2-n^2)$, ... the

L. C. M. =
$$c^4(m^6 - n^6) = \frac{c^6(m^6 - n^6)}{c^2} = \frac{a^6 - b^6}{c^2}$$

8. If $(x-a)^2$ measures x^3+qx+r , find the relation between qand r.

Let x+m be the other factor, then $x^3 + qx + r = (x - a)^2(x + m) = x^3 + (m - 2a)x_4^2 + (a^2 - 2am)x + ma^2$ equating coefficients.

$$m-2a=0$$
, $a^2-2am=q$, $ma^2=r$
 $a^2=a$, and $a^2-4a^3=q$, $2a^3=r$, and $a^2=-\frac{q}{3}$, or $a^6=-\frac{q^3}{27}$; and $a^3=\frac{r}{2}$ or $a^6=\frac{r^2}{4}$
 $\frac{r^2}{4}=-\frac{q^3}{27}$, or $\frac{r^2}{4}+\frac{q^3}{27}=0$.

Or thus :-

Dividing $x^3 + qx + r$ by $(x-a)^3$ we find the remainder $(q+3a^2)x+r-2a^3$

and as this will be the same for all values of x, we have, by equat ing coefficients.

$$q+3a^{2}=0,$$
and $r-2a^{3}=0,$
or $q^{3}=-27a^{6}$
and $r^{2}=4a^{6};$
therefore $\frac{r^{2}}{4}+\frac{q^{3}}{27}=0,$ as before.

Exercise xli.

Find the H. C. F. of the following:

1.
$$2x^4 + 3x^3 + 5x^2 + 9x - 3$$
, $3x^4 - 2x^3 + 10x^2 - 6x + 3$.

2.
$$x^3 + (a+1)x^2 + (a+1)x + a$$
, $x^3 + (a-1)x^2 - (a-1)x + a$.
3. $px^3 - (n+1)x^2 + (a-1)x + a$.

3.
$$px^3 - (p+q)x^2 + (p-q)x + q$$
, $x^3 + (a-1)x^2 - (a-1)x + a$.
4. $ax^3 - (a-b)x^2 - (b-q)x + q$, $px^3 - (p+q)x^2 + (p+q)x + q$.

4.
$$ax^3 - (a-b)x^2 - (b-c)x - c$$
, $2ax_{ij}^3 + (a+2b)x^2 + (b+q)x + q$.
5. $1 - 3^2x - 3^1x^2 + 1x^3$

5.
$$1 - 3\frac{1}{5}x - 3\frac{1}{3}x^2 + \frac{1}{3}x^3 - x^4$$
, $1 - 1\frac{1}{15}x - 3x^2 + 1\frac{1}{15}x^3 + x^4$.

6.
$$ac^{2a} + bc^{2b} + (a+b)c^{a+b}$$
, $a^{c}c^{a} + a^{c}c^{b} + c^{a}b^{e} + b^{c}c^{b}$.

7.
$$a^2x^3 + a^5 - 2abx^3 + b^2x^3 + a^3b^2 - 2a^4b$$
, and $2a^2x^4 - 5a^4x^2 + 3a^6 - 2b^2x^4 + 5a^2b^2x^2 - 3a^4b^2$.

8.
$$(ax+by)^2 - (a-b)(x+z)(ax+by) + (a-b)^2xz$$
, and $(ax-by)^2 - (a+b)(x+z)(ax-by) + (a+b)^2xz$.

9.
$$a(b^2-c^3)+b(c^9-a^3)+c(a^3-b^3)$$
 and $a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)$.

10.
$$a^{3m} + a^{2m} + a^m + 1$$
, and $a^{3m} - a^{2m} + a^m - 1$.

11. If $x^3 + ax^2 + bx + c$, and $x^2 + a'x + b'$, have a common factor of one dimension in x, it must be one the factors of $(a-a')x^2 + (b-b')x + c$.

12 Determine the H. C. F. of $(a-b)^5 + (b-c)^5 + (c-a)^5$, and $(a^2-b^2)^5 + (b^2-c^3)^5 + (c^2-a^2)^5$.

13. Find the H. C. F. of
$$2(y^3-2y^2-y+2)x^3+3(y^2-1)x^2-(2y^3-y^2-2y+1), \text{ and } \\ 8(y^3-4y^2+5y-2)x^2+7(y^2-2y+1)x-(3y^3-5y^2+y+1).$$

14. If x^2+px+q , and x^2+mx+n have a common linear factor, shew that

$$(n-q)^2 + n(m-p)^2 = m(m-p)(n-q).$$

15. Find the L. C. M. of $x^3 - 3x^9 + 3x - 1$, $x^3 - x^9 - x + 1$, $x^4 - 2x^3 + 2x - 1$, and $x^4 - 2x^3 + 2x^2 - 2x + 1$.

16. Find the L. C. M. of
$$x^3 + 6x^2 + 11x + 6$$
, $x^3 + 7x^2 + 14x + 8$. $x^3 + 8x^2 + 19x + 12$, and $x^3 + 9x^2 + 26x + 24$.

17. Find the value of y which will make $2(y^2+y)x^2+(11y-2)x+4$ and $2(y^3+y^2)x^3+(11y^2-2y)x^2+(y^2+5y)x+5y-1$, have a common measure.

18. The product of the H. C. F. and L. C. M. of two quantities is equal to half the sum of their squares, one of them is $2x^3 - 11x^2 + 17x - 6$; find the other.

19. If x+a and x-a are both measures of x^3+px^3+qx+r , shew that pq=r.

21. L. C.

20

22. of the 23.

F., sh

mon fa

24.

25. and a^5

y the I the L.

27. 1 L. C. M

28. Sabove)

Art.

of factor nominate 20. If x^3+qx+r and x^3+mx+n have a common measure $(x-a)^3$, show that $q^2n^3=m^2r^3$.

21. If the H. C. F. of $x^3 + px + q$ and $x^2 + mx + n$, be x + a, their L. C. M. is

$$x^4 + (m-a)x^3 + px^2 + (a^3 + mp)x + a(m-a)(a^2 + p)$$

22. If x^2+qx+1 , and x^3+px^2+qx+1 , have a common factor of the form x+a, shew that $(p-1)^2-q(p-1)+1=0$.

23. If x^3+px^2+q , and x^2+mx+n , have x+a for their H. C. F., shew that their L. C. M. is

$$x^4 + (m-a+p)x^3 + p(m-a)x^2 + a^2(a-p)x + a^2(a-p)(m-a)$$

24. If x^2+px+1 , and x^3+px^2+qx+1 , have x-a for a common factor, shew that $a=\frac{1}{1-q}$.

25. Find the H. C. F. of $(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3$, and $a^5(b-c)+b^5(c-a)+c^5(a-b)$.

26. If α be the H. C. F. of b and c, β the H. C. F. of c and a, γ the H. C. F. of a and b, and δ the H. C. F. of a, b. and c, then the L. C. M. of a, b, c, is $\frac{abc\delta}{\alpha \varepsilon \gamma}$.

27. If x+c be the H. C. F. of x^2+ax+b , and $x^2+a'x+b'$, their L. C. M. will be $x^3+(a+a'-c)x^2+(aa'-c^2)x+(a-c)(a'-c)c$.

28. Shew that the L. C. M. of the quantities in Ex. 2 (solved above) will be a complete square if $x=y^2+z^2-y^2z^2$.

29. Find the H. C. F. of $x^8 + 2x^6 + 3x^4 - 2x^2 + 1$, and $6x^8 + x^7 + 17x^5 - 7x^3 - 2$.

SECTION II.—FRACTIONS.

Art. XXXIII. When required to reduce a fraction to its lowest terms, we can often apply some of the preceding methods of factoring to discover the H. C. F. of the numerator and denominator.

on factor

a)5, and

+1), and +y+1).

ar factor,

+1,

, have a

[uantities

+qx+r

EXAMPLES.

1.
$$\frac{ac+by+ay+bc}{af+2bx+2ax+bf} = \frac{c(a+b)+y(a+b)}{f(a+b)+2x(a+b)} = \frac{c+y}{f+2x}.$$

2.
$$\frac{a^4 - ba^3 - a^2b^2 + ab^3}{a^5 - ba^4 - ab^4 + b^5} = \frac{a\{a^3 + b^3 - ab(a+b)\}}{a(a^4 - b^4) - b(a^4 - b^4)}$$
$$= \frac{a(a+b)(a-b)^2}{(a-b)(a^4 - b^4)} = \frac{a}{a^2 + b^2}.$$

$$8. \ \frac{x^{5} + x^{4}y + x^{3}y^{2} + x^{2}y^{3} + xy^{4} + y^{5}}{x^{5} - x^{4}y + x^{3}y^{2} - x^{2}y^{3} + xy^{4} - y^{5}}$$

Here the numerator is evidently $(x^6 - y^6) \div (x - y)$, and the denominator is $\frac{x^6 - y^6}{x + y}$. The result is $\therefore \frac{x + y}{x - y}$.

2.

(u

(a

11.

4.
$$\frac{(x+y)^{8} - x^{6} - y^{5}}{(x+y)^{4} + x^{4} + y^{4}} = \frac{5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4}}{(x+y)^{4} - x^{2}y^{2} + (x^{2} + y^{2})^{2} - x^{2}y^{2}}$$

$$= \frac{5xy\{x^{3} + y^{3} + 2xy(x+y)\}}{(x^{2} + y^{2} + xy)\{(x+y)^{2} + xy + x^{2} + y^{2} - xy\}}$$

$$= \frac{5xy(x+y)(x^{2} + xy + y^{2})}{2(x^{2} + xy + y^{2})^{2}} = \frac{5xy(x+y)}{2(x^{2} + xy + y^{2})}$$

5.
$$\frac{x^2 - 12x + 35}{x^3 - 10x^2 + 31x - 30}$$

Here we see at once that the numerator =(x-5)(x-7); and it is plain that x-7 is not a factor of the denominator; we ... try x-5 (Horner's division), and find the quotient to be x^2-5x+6 .

... the result =
$$\frac{x-7}{x^2-5x+6}$$

6.
$$\frac{x^4+2x^2+9}{x^4-4x^3+8x-21}$$

The factors of the numerator are at once seen to be x^2+2x+3 , and x^2-2x+3 , of which the latter is one factor of the denominator, the other being theorem's division) x^2-2x-7 : ... the result

is
$$\frac{x^2 + 2x + 3}{x^3 - 2x - 7}$$

Exercise xlii

Reduce the following to their lowest terms:

1.
$$\frac{x^9 - 7x + 6}{x^3 - 2x^2 - 8x - 96}, \qquad \frac{3xy^2 - 19xy + 14x}{7y^3 - 17y^2 + 6y}$$

2.
$$\frac{x^4 + a^2x^2 + a^4}{x^4 + ax^3 - a^3x - a^4}$$
, $\frac{x^2 + x - 12}{x^3 - 5x^2 + 7x - 3}$

8.
$$\frac{x^3 - 3x + 2}{x^3 + 4x^2 - 5}$$
, $\frac{x^4 + 2x^3 + 9}{x^4 - 4x^3 + 4x^2 - 9}$.

4.
$$\frac{2+bx}{2b+(b^2-4)x-2bx^2}$$
, $\frac{x^3+2x^2+|2x|}{x^5+4x}$.

5.
$$\frac{5a^5 + 10a^4x + 5a^3x^3}{a^3x + 2a^2x^2 + 2ax^3 + x^4}, \frac{20x^4 + x^2 - 1}{25x^4 + 5x^3 - x - 1}$$

6.
$$x^7 - x^6y + x^5y^3 - x^4y^3 + x^3y^4 - x^2y^5 + xy^6 - y^7$$

$$x^7 + x^5y + x^5y^2 + x^4y^3 + x^3y^4 + x^2y^5 + xy^6 + y^7$$

7.
$$\frac{3a^{2}x^{4} - 2ax^{2} - 1}{4a^{3}x^{6} - 2a^{2}x^{4} - 3ax^{2} + 1}, \frac{x^{2} + \left(\frac{a}{b} + \frac{b}{a}\right)xy + y^{2}}{x^{2} + \left(\frac{a}{b} - \frac{b}{a}\right)xy - y^{2}}$$

8.
$$\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{abc(a-b)(b-c)(c-a)}$$

9.
$$\frac{(a+b+c)^2}{a^3(b-c)+b^3(c-a)+c^3(a-b)}$$

10. From Ex. 4 (solved above) show that

$$\frac{(a-b)^4 + (b-c)^4 + (c-a)^4}{(a-b)^5 + (b-c)^5 + (c-a)^5} = \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{5(a-b)(b-c)(c-a)}$$

11.
$$\frac{(x+y)^5 - x^5 - y^5}{(x+y)^7 - x^7 - y^7}.$$

12. Shew that

$$\frac{(a-b)^7 + (b-c)^7 + (c-a)^7}{(a-b)^5 + (b-c)^5 + (c-a)^5} = \frac{7}{10} \{ (a-b)^9 + (b-c)^9 + (c-a)^9 \}.$$

and the

 c^2y^2

(-7); and we \therefore try -5x+6.

+2x+3, denominthe result

Art. XXXIV. In reducing complex fractions it is often convenient to multiply both terms of the complex fraction by the L. C. M. of all the denominators involved.

H and

is (a

form come

Oc

strik

5.

S

EXAMPLES.

1. Simplify
$$\frac{\frac{1}{2}(x+1\frac{1}{3})-\frac{2}{3}(1-\frac{2}{3}x)}{1\frac{4}{3}-\frac{1}{3}(x+4\frac{1}{3})}$$
.

Here the L. C. M. of all the denominators involved is 12; ... multiplying both terms of the complex fraction by 12, and removing brackets, we have

$$\frac{6x + 8 - 8 + 6x}{21 - 4x - 17} = \frac{12x}{4 - 4x} = \frac{3x}{1 - x}$$

2.
$$a - \frac{a - b}{1 + ab}$$

$$1 + \frac{a(a - b)}{1 + ab}$$
. Here multiplying both terms by $1 + ab$, we get
$$\frac{a(1 + ab) - a + b}{1 + ab + a(a - b)} = \frac{b(a^2 + 1)}{a^2 + 1} = b.$$

3.
$$\frac{1}{x-1+\frac{1}{1+\frac{x}{4-x}}}$$
 Here multiplying both terms of the fraction which follows $x-1$ by $4-x$, the given fraction becomes at once
$$\frac{1}{x-1+\frac{4-x}{4}}$$
, and now multiplying both terms by 4, we

have
$$\frac{4}{4x-4+4-x} = \frac{4}{3x}$$
.

It may be observed that when the fraction is reduced to the form $\frac{a}{b} \div \frac{c}{d}$, we may strike out any factor common to the two denominators, and also any factor common to the two numerators; it is sometimes more convenient to do this than to multiply directly by the L. C. M. of all the denominators.

t is often tion by the

red is 12; by 12, and

ab, wo get

of the fracbecomes at

ns by 4, we

duced to the n to the two

numerators; to multiply 4. Simplify $\left(\frac{a+b}{a-b} + \frac{a-b}{a+b}\right) \div \left(\frac{a^2+b^2}{a^2-b^2} - \frac{a^2-b^2}{a^2+b^2}\right)$.

Here the numerator of the first fraction is $(a+b)^2 + (a-b)^2$ and the denominator is $a^2 - b^2$; the numerator of second fraction is $(a^2+b^2)^2-(a^2-b^2)^2$, and the denominator is a^4-b^4 ; the former denominator cancels this to a^2+b^2 , which, of course, becomes a multiplier of the first numerator:

$$\therefore \text{ we have } \frac{(a^2+b^2)\{(a+b)^2+(a-b)^2\}}{(a^2+b^2)^2-(a^2-b^2)^2} = \frac{(a^2+b^2)^2}{2a^2b^2}.$$

Occasionally, we at once discover a common complex factor, strike this out, and simplify the result.

5.
$$\frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2} + \frac{2}{ab}}$$
: here the den. = $\left(\frac{1}{a} + \frac{1}{b}\right)^2 - \frac{1}{c^2}$

 $=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)$, and cancelling the common factor we have

$$\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{c}}$$
, and multiplying by abc, this =
$$\frac{abc}{bc + ca - ab}$$

Exercise xliii.

Simplify the following:

1.
$$\frac{1 - \frac{1}{2} \left\{ 1 - \frac{1}{3} (1 - x) \right\}}{1 - \frac{1}{3} \left\{ 1 - \frac{1}{2} (1 - x) \right\}}, \qquad \frac{\frac{a + b}{a - b} + \frac{a - b}{a + b}}{\frac{a + b}{a - b} - \frac{a - b}{a + b}}$$

2.
$$\frac{x}{x+y} + \frac{x}{x-y}$$
, $\frac{1}{1-a} - \frac{1}{1+a}$. $\frac{2x}{x^2-y^2}$ $\frac{1}{1-a} + \frac{1}{1+a}$.

3. $1 + \frac{a}{1+a+\frac{2a^2}{1+a}}$, $x - \frac{x-y}{(x-a)(x-y)}$

3.
$$1 + \frac{a}{1+a+\frac{2a^2}{1+a}}$$
, $x - \frac{x-y}{(x-a)(x-s)}$

4.
$$\frac{\frac{a^2+b^2}{2a^2} - \frac{2b^2}{a^2+b^2}}{\frac{a^2+b^2}{2b^2} - \frac{2a^2}{a^2+b^2}}; \qquad \frac{\frac{1}{a} + \frac{1}{ab^3}}{b-1 + \frac{1}{b}}.$$

5.
$$\frac{a+b}{a+b} + \frac{a-b}{c-d}; \qquad a+b+\frac{b^2}{a}$$

$$\frac{a+b}{c-d} + \frac{a-b}{c+d}; \qquad a+b+\frac{a^2}{b}$$

6.
$$\frac{8xyz}{yz - zx - xy} - \frac{\frac{x-1}{x} + \frac{y-1}{y} + \frac{z-1}{z}}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$$

7.
$$\frac{\frac{2}{a^2} + \frac{2}{b^2} + \frac{2}{c^2} + \frac{a^4 + b^4 + c^4}{a^2 b^2 c^2}}{\frac{a}{bc} + \frac{o}{ac} + \frac{c}{ab}}.$$

8.
$$\frac{a^3 + a^2b + ab^2 + b^3}{a^3 - a^2b + ab^2 - b^3} \div \frac{a^2 + 2ab + b^3}{a^2 - b^2}.$$

9.
$$\left(\frac{a+b}{a-b} + \frac{a^2+b^2}{a^2-b^2}\right) \div \left(\frac{a-b}{a+b} - \frac{a^3-b^3}{a^3+b^3}\right)$$

10.
$$\frac{\frac{1}{a} + \frac{1}{b+c}}{\frac{1}{a} - \frac{1}{b+c}} \left\{ 1 + \frac{b^2 + c^3 - a^2}{2bc} \right\}.$$

11.
$$\frac{\frac{2(1-x)}{1+x} + \frac{(1-x)^2}{(1+x)^2} + 1}{\frac{2(1+x)}{1-x} + \left(\frac{1+x}{1-x}\right)^2 + 1}; \qquad \frac{\left(\frac{x-a}{x+a}\right)^2 + \left(\frac{x+a}{x-a}\right)^2 - 2}{\left(\frac{x-a}{x+a}\right)^2 + 2 + \left(\frac{x+a}{x-a}\right)^2}$$

12.
$$\frac{\frac{x}{y} + 1 + \frac{y}{x}}{\frac{x}{y} - 1 + \frac{y}{x}} = \frac{1 - \frac{y^3}{x^5}}{1 + \frac{y^7}{x^7}}$$

19

14.

15.16.

17.

18.

Art. found, fraction them to

1. F

Here (x+y)

_

13.
$$\frac{8\left(\frac{a-b}{a+b}\right)^{2} - \left(\frac{a-b}{a+b}\right)^{3} - 8\left(\frac{a-b}{a+b}\right) + 1}{8\left(\frac{a+b}{a-b}\right) - 8\left(\frac{a+b}{a-b}\right)^{2} + \left(\frac{a+b}{a-b}\right)^{3} - 1}$$

14.
$$\frac{x^5 - x^4y + x^3y^3 - x^2y^3 + xy^4 - y^5}{x^5 + x^4y + x^3y^2 + x^2y^3 + xy^4 + y^5} \div \left(\frac{x - y}{x + y}\right)^3.$$

15.
$$\left(\frac{1-x^2}{1-x^3} + \frac{1-x}{1-x+x^2}\right) \div \left(\frac{1+x}{1+x+x^2} - \frac{1-x^2}{1+x^3}\right)$$

16. Find the value of

$$\frac{a}{2na-2nx} + \frac{b}{2nb-2nx} \text{ when } x = \frac{1}{2}(a+b).$$

17. Find the value of $\sqrt{\{1-\sqrt{(1-x)}\}}$

when
$$x = 2\left(\frac{1-b}{1+b}\right)^2 - \left(\frac{1-b}{1+b}\right)^4$$
.

18. Find value of

$$\frac{\sqrt{(a+bx)}+\sqrt{(a-bx)}}{\sqrt{(a+bx)}-\sqrt{(a-bx)}} \text{ when } x = \frac{2ac}{b(1+c^2)}$$

Art. XXXV. When the sum of several fractions is to be found, it is generally best, instead of reducing at once all the fractions to a common denominator, to take two (or more) of them together, and combine the results.

EXAMPLES.

1. Find the sum of

$$\frac{x+y}{2x-2y} - \frac{y-x}{2x+2y} - \frac{x^2-y^2}{x^2+u^2}$$

Here taking the first two together we have

$$\frac{(x+y)^2 + (x-y)^2}{2(x^2 - y^2)} = \frac{x^2 + y^2}{x^2 - y^2}; \text{ now add this to } -\frac{x^2 - y^2}{x^2 + y^2}.$$
and we get
$$\frac{(x^2 + y^2)^2 - (x^2 - y^2)^2}{x^4 - y^4} = \frac{4x^2y^2}{x^4 - y^4}.$$

2. Find the sum of

$$\frac{1+x}{1-x} + \frac{4x}{1+x^2} + \frac{8x}{1+x^4} - \frac{1-x}{1+x}$$

Here, taking the first and the last together, we have

$$\frac{(1+x)^2 - (1-x)^2}{1-x^2} = \frac{4x}{1-x^2};$$

taking this result with the second fraction, we have

$$4x\left(\frac{1}{1+x^2} + \frac{1}{1-x^2}\right) = \frac{8x}{1-x^4};$$

now take this result with the remaining fraction and we get

$$8x\left(\frac{1}{1-x^4} + \frac{1}{1+x^4}\right) = \frac{16x}{1-x^8}$$

8.
$$\frac{x^{n}}{x^{n}-1} - \frac{x^{n}}{x^{n}+1} - \frac{1}{x^{n}-1} + \frac{1}{x^{n}+1}$$
 Taking in pairs

those whose denominators are alike, we have

$$\frac{x^{3n}-1}{x^n-1} = \frac{x^{2n}-1}{x^n+1} = x^{2n}+x^n+1-(x^n-1)=x^{2n}+2.$$

The work is often made easier by completing the divisions represented by the fractions.

4. Find the sum of $1+\frac{2x+1}{2(x-1)}-\frac{4x+5}{2x+2}$. By dividing numerators into denominators, this

$$=1+1+\frac{3}{2x-2}-2-\frac{1}{2x+2}=\frac{3}{2x-2}-\frac{1}{2x+2}$$
$$=\frac{3x+3-x+1}{2x^2-2}=\frac{x+2}{x^2-1}.$$

5.
$$\frac{x}{x-2} + \frac{x-9}{x-7} - \frac{x+1}{x-1} - \frac{x-8}{x-6}$$
: we have, by division

$$1 + \frac{2}{x-2} + 1 - \frac{2}{x-7} - 1 - \frac{2}{x-1} - 1 + \frac{2}{x-6}, \text{ or }$$

$$\frac{2}{x-2} + \frac{2}{x-6} - \frac{2}{x-7} - \frac{2}{x-1} = \frac{2(2x-8)}{(x-2)(x-6)} - \frac{2(2x-8)}{(x-1)(x-7)}$$

$$= (4x-16) \left\{ \frac{1}{x^2 - 8x + 12} - \frac{1}{x^2 - 8x + 7} \right\}$$

$$= (80 - 20x) \div (x^4 - 16x^3 + 89x^2 - 152x + 84).$$

$$[\text{denominator} = (x^2 - 8x)^2 + 19(x^2 - 8x) + 84].$$

$$a^2$$

$$\Im.$$
 $\left(\frac{1}{a}\right)$

5.
$$\frac{3+}{2-}$$

6.
$$\frac{1}{4a^3}$$

$$7.\frac{1}{2}$$

8.
$$\frac{x}{2x}$$

9.
$$\frac{1}{2x}$$

6. Find the value of

$$\frac{x+2a}{x-2a} + \frac{x+2b}{x-2b} \text{ when } x = \frac{4ab}{a+b}$$

By division,
$$1 + \frac{4a}{x - 2a} + 1 + \frac{4b}{x - 2b}$$

$$= 2 + 4\left(\frac{a}{x - 2a} + \frac{b}{x - 2b}\right); \text{ but the quantity in the brackets}$$

$$= \frac{(a+b)x - 4ab}{(x-2a)(x-2b)} = 0 \text{ since } (a+b)x = 4ab$$

: the value of the given expression is 2.

Exercise xliv.

Simplify the following:

ve get

in pairs

ns repre-

ling num-

ivision

 $\frac{2(2x-8)}{(-1)(x-7)}$

1.
$$\frac{x-a}{5} + \frac{x^3+ax+a^3}{x+a} - \frac{x^3-a^3}{x^2-a^2}$$

2.
$$\frac{a^3+b^3}{a^2-ab+b^2} + \frac{a^3-3a^2b+3ab^2-b^3}{a^3-b^3} - \frac{a(a-b)-b(a-b)}{a^2+ab+b^2}$$

$$8. \left(\frac{1}{a+x} + \frac{1}{a-x} + \frac{2a}{a^2+x^2} \right) \times$$

$$\left(\frac{1}{a+x}-\frac{1}{a-x}-\frac{2x}{a^2+x^2}\right).$$

4.
$$\frac{a}{a+b} + \frac{b}{a-b} - \frac{ab}{ab-b^2} + \frac{ab}{a^2+ab}$$

5.
$$\frac{3+2x}{2-x} - \frac{2-3x}{2+x} + \frac{16x-x^2}{x^2-4}$$
.

6.
$$\frac{1}{4a^3(a+x)} + \frac{1}{4a^3(a-x)} + \frac{1}{2a^2(a^2+x^2)}$$

$$7.\frac{1}{2} \begin{pmatrix} 3x+2y \\ 3x-2y \end{pmatrix} \quad -\frac{1}{2} \begin{pmatrix} 3x-2y \\ 3x+2y \end{pmatrix}.$$

8.
$$\frac{x+1}{2x-1} - \frac{x-1}{2x+1} - \frac{1-3x}{x(1-2x)} + \frac{x}{x(4x^2-1)} + \frac{1}{x(16x^4-1)}$$

9.
$$\frac{1}{2x+2} - \frac{4}{x+2} + \frac{9}{2(x+3)} - \frac{x-1}{(x+2)(x+3)}$$

10.
$$\frac{2(x+y)}{x-y} - \frac{2(y-x)}{x+y} - \frac{4(x^2-y^2)}{x^2+y^2} + \frac{4(x^4+y^4)}{x^4-y^4}$$

11.
$$(a-b) \left\{ \frac{1}{(x+a)^2} + \frac{1}{(x+b)^2} \right\} + 2 \left\{ \frac{1}{x+a} - \frac{1}{x+b} \right\}$$

12.
$$\left\{ \frac{a+x}{a-x} + \frac{4ax}{a^2+x^2} + \frac{8a^3x}{a^4+x^4} - \frac{a-x}{a+x} \right\} \div \left\{ \frac{a^2+x^2}{a^2-x^2} + \frac{4a^2x^2}{a^4+x^4} - \frac{a^2-x^2}{a^2+x^2} \right\}.$$

13.
$$\frac{5x-4}{9} + \frac{12x+2}{11x-8} - \frac{10x+17}{18}$$

$$14 \quad \frac{a}{a^2 + b^2} + \frac{a}{a^2 - b^2} + \frac{a^2}{(a - b)(a^2 + b^2)} - \frac{2a^3 - b^3 - ab^2}{a^4 - b^4}$$

15.
$$\frac{12x+10a}{3x+a} + \frac{117a+28x}{9a+2x} - 18.$$

16.
$$\frac{4x-17}{x-4} - \frac{8x-30}{2x-7} + \frac{10x-3}{2x-5} - \frac{5x-4}{x-1}$$

17. Find the value of
$$\frac{a+b+2c}{a+b-2c} + \frac{a+b+2d}{a+b-2d}$$

when
$$a+b = \frac{4cd}{c+d}$$
.

18.
$$\frac{x^{3n}}{x^n-y^n} - \frac{y^n x^{2n}}{x^n+y^n} - \frac{x^{3n}}{x^n-y^n} + \frac{y^{3n}}{x^n+y^n}$$

19.
$$\frac{(a-b)^{3n}}{(a-b)^n-1} - \frac{(a-b)^{2n}}{(a-b)^n+1} - \frac{1}{(a-b)^n-1} + \frac{1}{(a-b)^n+1}.$$

20.
$$\frac{1}{(a^2-b^2)(x^2+b^2)} + \frac{1}{(b^2-a^2)(x^2+a^2)} - \frac{1}{(x^2+a^2)(x^2+b^2)}$$

21.
$$\frac{1+x}{1-x^3} + \frac{1-x}{1+x^3} - \frac{2}{1-x^2} - \frac{2x^3}{x^6+1}$$

Which is of a

1.

Car first f

denom numer numer

2.

The This gi metry

·· we

2. R

(a-b)(a-b)

Here numerat

second is

This vector be

Art. XXXVI. The following are additional examples in which a knowledge of factoring and of the principle of symmetry is of advantage.

EXAMPLES.

1.
$$\frac{x^2 - (y-z)^2}{(x+z)^2 - y^2} + \frac{y^2 - (z-x)^2}{(y+x)^2 - z^2} + \frac{z^2 - (x-y)^2}{(z+y)^2 - x^2}.$$

Cancelling the common factor x-y+z in the two terms of the first fraction, there results $\frac{x+y-z}{x+y+z}$, hence by symmetry, the denominators of the other two fractions will be x+y+z, and the numerators will be y+z-x, z+x-y; \therefore sum of the three numerators =x+y+z, and the result =1.

2. Simplify
$$\frac{ab}{(c-a)(c-b)} + \frac{bc}{(a-b)(a-c)} + \frac{ca}{(b-c)(b-a)}$$

The L. C. M. of denominators is evidently (a-b)(b-c)(c-a). This gives for numerator of first fraction -ab(a-b), and by symmetry the other numerators are -bc(b-c), -ca(c-a).

... we have
$$-\frac{ab(a-b)+bc(b-c)+ca(c-a)}{(a-b)(b-c)(c-a)}$$
.
 $=-\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(c-a)}=1$.

2. Reduce the following to a single fraction:

$$\frac{a}{(a-b)(a-c)(x-a)} + \frac{b}{(b-a)(b-c)(x-b)} + \frac{c}{(c-a)(c-b)(x-c)}$$

Here the L. C. M. is (a-b)(b-c)(c-a)(x-a)(x-b)(x-c); the numerator of the first fraction is

$$-a(b-c)(x-b)(x-c)$$
, and \cdot by symmetry that of second is $-b(c-a)(x-c)(x-a)$, and that of third is $-c(a-b)(x-a)(x-b)$; and their sum is $-\{a(b-c)(x-b)(x-c)+b(c-a)(x-c)(x-a)+c(a-b)(x-a)(x-b)\}$

This vanishes if a=b, hence a-b is a factor, and \cdot : by symmetry b-c and c-a are also factors. Now the product of these

is of the third degree, while the whole expression rises only to the fourth, hence x^2 cannot be involved. The other factor must therefore be of the form nx+n, in which m is a number.

To determine n put x = 0, and the expression becomes $abc\{a-b+b-c+c-a\}=0$; $\therefore n=0$, or the other factor is mx. To determine m put a=0, b=1, c=-1, and m will be found to be 1. The numerator is $\therefore x(a-b)(b-c)(c-a)$, and the result is

1.

9.

10.

11.

12.

13.

3. Simplify
$$\frac{(x-a)(x-b)(x-c)}{(b-c)(c-a)} + \frac{b+c}{(c-a)(a-b)} + \frac{c+a}{(a-b)(b-c)}$$

L. C. M. of denominators is (a-b)(b-c)(c-a); ... first numerator is a^2-b^2 , and by symmetry

second " b^2-c^2 , and third " c^2-a^2 ;

the sum of these = 0, which is the required result.

4. Reduce

$$\frac{2}{x-y} + \frac{2}{y-z} + \frac{2}{z-x} + \frac{(x-y)^2 + (y-z)^2 + (z-x)^3}{(x-y)(y-z)(z-x)}.$$

Here the numerator becomes

$$2(y-z)(z-x) + 2(x-y)(z-x) + 2(x-y)(y-z) + (x-y)^2 + (y-z)^2 + (z-x)^2, \text{ which is evidently } \{(x-y)+(y-z)+(z-x)\}^2 = 0.$$

5.
$$a^3 \left(\frac{a^3 + 2b^3}{a^3 - b^3}\right)^3 + b^3 \left(\frac{2a^3 + b^3}{b^3 - a^3}\right)^3$$
.

Observe that the denominators become the same by changing the sign between the fractions, and that the expression is symmetrical with respect to a and b. The numerator of the first fraction is $a^{12} + 6a^9b^3 + 12a^6b^6 + 8a^3b^9$, and by symmetry that of the other is $-b^{12} - 6b^9a^3 - 12b^6a^6 - 8b^3a^9$. Their sum is $a^{12} - b^{12} + 6a^3b^3(a^6 - b^6) - 8a^3b^3(a^6 - b^6)$

$$a^{12} - b^{12} + 6a^3b^3(a^3 - b^3) - 6a^3b^3(a^3 - b^6)(a^3 - b^3)^2$$

= $(a^6 - b^6)(a^6 + b^6 + 6a^3b^3 - 8a^3b^3) = (a^6 - b^6)(a^3 - b^3)^3$
= $(a^3 + b^3)(a^3 - b^3)^3$, and since the denominator of the given expression is $(a^3 - b^3)^3$: the result is $a^3 + b^3$.

only to

is mx.
ound to
esult is

-- c)·

:)*

changing is symthe first letry that sum is ::

the given

Exercise xlv.

Simplify the following:

1.
$$x\left(\frac{x-2y}{x+y}\right)^3 + y\left(\frac{2x-y}{x+y}\right)^3$$

2.
$$a \begin{pmatrix} a+2b \\ a-b \end{pmatrix}^3 + b \begin{pmatrix} 2a+b \\ b-a \end{pmatrix}^3$$

8.
$$\frac{a+b}{(b-c)(c-a)} + \frac{b+c}{(c-a)(a-b)} + \frac{c+a}{(a-b)(b-c)}$$

4.
$$\frac{1}{(a-b)(a-c)} + \frac{1}{(b-a)(b-c)} + \frac{1}{(c-a)(c-b)}$$

5.
$$\frac{a-b}{a+b} + \frac{b-v}{b+c} + \frac{c-a}{c+a} + \frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)}$$

6.
$$\frac{a^2}{(a+b)(a+c)(x+a)} + \frac{b^2}{(a+b)(b-c)(x+b)} - \frac{c^2}{(a+c)(b-c)(x+c)}$$

7.
$$\frac{x^9}{(x-y)(x-z)} + \frac{y^2}{(y-x)(y-z)} + \frac{z^2}{(z-x)(z-y)}$$

8.
$$\frac{a^3}{(a-b)(a-c)} + \frac{b^3}{(b-a)(b-c)} + \frac{c^3}{(c-a)(c-b)}$$

$$9. \frac{1}{\left(\frac{a}{b}-1\right)\left(\frac{a}{c}-1\right)} + \frac{1}{\left(\frac{b}{a}-1\right)\left(\frac{b}{c}-1\right)} + \frac{1}{\left(\frac{c}{a}-1\right)\left(\frac{c}{b}-1\right)}$$

10.
$$(x^3 - \frac{2y^3}{3})^3 + y^2(\frac{2x^3 - y^3}{x^3 + y^3})^3$$
.

11.
$$\frac{1}{(b+c-2a)(c+a-2b)} + \frac{1}{(c+a-2b)(a+b-2c)} + \frac{1}{(a+b-2c)(b+c-2a)}$$

12.
$$\frac{b^3-c^2}{(b+c)^2} + \frac{c^2-a^2}{(c+a)^2} + \frac{a^2-b^2}{(a+b)^2}$$

13.
$$\frac{a^{2}}{(a-b)(a-c)(x-a)} + \frac{b^{2}}{(b-a)(b-c)(x-b)} + \frac{c^{2}}{(c-a)(c-b)(x-c)}$$

14.
$$\frac{x(y+z)}{(x-y)(z-x)} + \frac{y(z+x)}{(y-z)(x-y)} + \frac{z(x+y)}{(z-x)(y-z)}.$$
15.
$$\frac{(a+b)^2 + (b-c)^2 + (a+c)^2}{(a+b)(b-c)(a+c)} - \frac{2}{a+c} - \frac{2}{b-c} + \frac{2}{a+b}.$$
16.
$$\frac{1}{x(x-a)(x-b)} + \frac{1}{a(b-a)(x-a)} + \frac{1}{b(b-a)(x-b)}.$$

SECTION III .- RATIOS.

Art. XXXVII. If
$$\frac{a}{b} = \frac{c}{d}$$
 : $ad = bc$. Now, dividing $ad = bc$ by ca we have $\frac{b}{a} = \frac{d}{c}$. . . (1)

" $ad = bc$ by cd " $\frac{a}{c} = \frac{b}{d}$. . . (2)

" $ad = bc$ by ab " $\frac{d}{b} = \frac{c}{a}$. . . (3)

Also
$$\frac{ma + nc}{mb + nd}$$
 = each of the given fractions . . . (4).

For
$$\frac{ma+nc}{mb+nd} = \frac{mb\left(\frac{a}{b}\right)+nd\left(\frac{c}{d}\right)}{mb+nd} = \frac{(mb+nd)\frac{a}{b}}{mb+nd} = \frac{a}{b}$$
 or $\frac{c}{d}$.

A very important case of this is m=1, $n=\pm 1$, hence

Also
$$\frac{a-b}{a+b} = \frac{c-d}{c+d}$$
 (6).

For by (2) and (5)

$$\frac{a}{c} = \frac{b}{d} = \frac{a-b}{c-d} = \frac{a+b}{c+d} : \frac{a-b}{a+b} = \frac{c-d}{c+d}$$

Or thus:
$$\frac{a-b}{a+b} = \frac{\frac{a}{b}-1}{\frac{a}{b}+1} = \frac{\frac{c}{d}-1}{\frac{c}{d}+1} = \frac{c-d}{c+d}$$

Gen

and a formed

fractio

and re

If

If $\frac{a}{b}$ $\frac{ma}{nb}$

For

But

If $\frac{a}{b}$

If an upper a the corpendent

Generally, to prove that if $\frac{a}{b} = \frac{c}{d}$, any fraction whose numerator and denominator are homogeneous functions of a and b, and are of the same degree, will be equal to a similar fraction formed with c instead of a and d instead of b:—Express the first fraction in terms of $\frac{a}{b}$, and for $\frac{a}{b}$ substitute its equivalent $\frac{c}{d}$, and reduce the result.

By (2) the fractions may be formed of a and c, and b and d.

If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, $\frac{ma + nc + pe}{mb + nd + pf} = \frac{a}{b}$ or $\frac{c}{d}$ or $\frac{e}{f}$(7)
$$\frac{ma + nc + pe}{mb + nd + pf} = \frac{mb\left(\frac{a}{b}\right) + nd\left(\frac{c}{d}\right) + pf\left(\frac{e}{f}\right)}{mb + nd + pf}$$

$$= \frac{(mb + nd + pf)\frac{a}{b}}{mb + nd + pf} = \frac{a}{b}$$

For
$$\frac{ma}{nb} = \frac{pc}{qd} = \frac{ma \pm pc}{nb \pm qd}$$
 by (5)
 $\frac{pa}{qb} = \frac{mc}{nd} = \frac{pa \pm mc}{qb \pm nd}$.

(1).

(2).

(3).

(4).

(5).

(6).

But $\frac{ma}{nb} = \frac{pa}{qb}$, hence the equality stated in (8).

If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
 and $\frac{m}{n} = \frac{p}{q} = \frac{r}{s}$,
$$\frac{ma \pm pc \pm re}{nb \pm qd \pm sf} = \frac{pa \pm rc \pm me}{qb \pm sd \pm nf} = &c., = \frac{ma}{nb} = &c. (9).$$

If an upper sign be taken in a numerator, the corresponding upper sign must be taken in the denominator; if a lower sign, the corresponding lower sign, otherwise all the signs are independent of each other.

EXAMPLES.

M

diffe

Ty and

(I: term

term

tion,

of th

7.

1. If
$$\frac{a}{b} = \frac{c}{d}$$
, show that $\frac{5a - 4b}{7a + 5b} = \frac{5c - 4d}{7c + 5d}$.

The given fraction
$$=$$
 $\frac{5\frac{a}{b}-4}{7\frac{a}{b}+5} = \frac{5\frac{c}{d}-4}{7\frac{c}{d}+5} = \frac{5c-4d}{7c+5d}$

2. If
$$\frac{a}{b} = \frac{c}{d}$$
 show that $\frac{2a^3 + 3a^2b}{3a^2b - 4b^3} = \frac{2c^3 + 3c^2d}{3c^2d - 4d^3}$

Dividing the given fraction by b⁸ we have

$$\frac{2\frac{a^3}{b^3} + 8\frac{a^2}{b^2}}{3\frac{a^2}{b^2} - 4}$$
, and this becomes, on substituting for $\frac{a}{b}$ its equal $\frac{c}{d}$,

$$\frac{2\frac{c^3}{d^3} + 8\frac{c^3}{d^2}}{8\frac{c^2}{d^2} - 4} = \frac{2c^3 + 8c^2d}{8c^2d - 4d^3}$$

3. If
$$3a = 2b$$
, find the value of $\frac{a^3 + b^3}{a^2b - ab^2}$. This = $\left(\frac{a^3}{b^3} + 1\right)$ ÷

$$\left(\frac{a^2}{b^2} - \frac{a}{b}\right)$$
 [by dividing both numerator and denominator by

$$b^3$$
]. But from the given relation $\frac{a}{b} = \frac{2}{3}$ we have, by substituting for $\frac{a}{b}$,

$$(\frac{8}{27} + 1) \div (\frac{4}{9} - \frac{2}{3}) = 35 \div (-6) = -5\frac{5}{6}.$$

4. If
$$\frac{a}{b} = \frac{c}{d}$$
. Prove that $\frac{a^3 + b^3}{c^3 + d^3} \times \frac{b}{d} = \left(\frac{a+b}{c+d}\right)^4$.

We have
$$\frac{a}{c} = \frac{b}{d} = \frac{a+b}{c+d}$$
. Also

$$\frac{a^3 + b^3}{e^3 + d^3} = \frac{b^3}{d^3} \left(\frac{a^3}{b^3} + 1 \right) \div \left(\frac{c^3}{d^3} + 1 \right) = \frac{b^3}{d^3}, \text{ and this multiplied}$$
by $\frac{b}{d}$ gives $\frac{b^4}{d^4} = \left(\frac{a + b}{c + d} \right)^4$.

5. If
$$\frac{x^3 + ax^3 - bx + c}{x^3 - ax^2 + bx + c} = \frac{x^2 + ax - b}{x^2 - ax + c}$$
, shew that $x = \frac{b}{a}$.

Multiplying both terms of second fraction by a, it becomes

$$\frac{x^3 + ax^2 - bx}{x^3 - ax^2 + bx}$$
; now each of the given fractions =

difference of numerators difference of denominators;

$$=\frac{c}{c}=1 : x^2+ax-b=x^2-ax+b$$

or
$$2ax = 2b$$
 $\therefore x = \frac{b}{a}$.

6. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, show that $\frac{ac + ce + ea}{bd + df + fb} = \frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}$

For
$$\frac{ac}{bd} = \frac{ce}{df} = \frac{sa}{fb} = \frac{ac + ce + ea}{bd + df + fb}$$
. By (7) making $m = p = p = 1$.

Also
$$\frac{a^3}{b^2} = \frac{c^3}{d^3} = \frac{e^2}{f^3} = \frac{a^3 + c^2 + e^2}{b^3 + d^2 + f^2}$$
. By (7).

But
$$\frac{ac}{bd} = \frac{a^2}{b^2}$$
 hence the required equality.

The problem is a particular case of (9), with all the signs + and a for m, b for n, c for p, &c.

(If the fractions given equal to one another have not monomial terms, instead of seeking to express the proposed quantity in terms of one fraction and then substituting an equivalent fraction, it is often better to assume a single letter to represent the common value of the fractions given equal, and to work in terms of this assumed letter.)

7. If
$$\frac{a+b}{3(a-b)} = \frac{b+c}{4(b-c)} = \frac{c+a}{5(c-a)}$$
, prove that $32a+55b+27c=0$.

Assume each of the given fractions = x, so that a+b=3(a-b)x, b+c=4(b-c)x, c+a=5(c-a)x.

.

sequal $\frac{e}{d}$,

+ 1) ÷

inator by

by substi-

 $\left(\frac{b}{d}\right)^4$.

 $\mathbf{multiplied}$

or
$$\frac{a+b}{8} + \frac{b+c}{4} + \frac{c+a}{5} = x(a-b+b-c+c-a) = 0.$$

: adding these fractions we have 32a+35b+27c=0.

This example might also be worked as a particular case of (7), thus

$$\frac{a+b}{8(a-b)} = \frac{b+c}{4(b-c)} = \frac{c+a}{5(c-a)}$$

$$= \frac{20(a+b)+15(b+c)+12(c+a)}{60(a-b)+60(b-c)+60(c-a)} = \frac{32a+35b+27c}{0}$$

$$\therefore 32a + 35b + 27c = 0 \times \frac{a+b}{3(a-b)} = 0.$$

8. If
$$\frac{a^3}{b^2} + \frac{c^2}{f^2} = \frac{2c}{d} \left\{ \frac{a}{b} - \frac{c}{d} + \frac{e}{f} \right\}$$
, prove that
$$\left(\frac{a+c+e}{b+d+f} \right)^2 = \frac{a^2+c^2+e^2}{b^2+d^2+f^2}.$$

Transposing terms, &c., we have

$$\frac{a^2}{b^2} - \frac{2ac}{bd} + \frac{c^2}{d^2} + \frac{e^2}{f^2} - \frac{2ce}{df} + \frac{c^2}{d^2} = 0,$$
or $\left(\frac{a}{b} - \frac{c}{d}\right)^2 + \left(\frac{e}{f} - \frac{c}{d}\right)^2 = 0;$

that is, the sum of two essentially positive quantities = 0;

... each of them must = 0; hence we have

$$\frac{a}{b} - \frac{c}{d} = 0, \text{ and } \frac{e}{f} - \frac{c}{d} = 0;$$

$$\therefore \frac{a}{b} = \frac{c}{d} = \frac{e}{f}; \quad \therefore \frac{a^2}{b^2} = \frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}.$$

then

13.

Also
$$\frac{a}{b} = \frac{a+c+e}{b+d+f}$$
; $\frac{a^2}{b^2} = \left(\frac{a+c+e}{b+d+f}\right)^2$;

$$\cdot \cdot \cdot \frac{(a+c+e)^3}{b+d+f} = \frac{a^2+c^2+e^3}{b^2+d^2+f^2} \cdot$$

Exercise xlvi.

1. If
$$\frac{a}{b} = \frac{c}{d}$$
, prove $\frac{a^2 - ab + b^2}{ab - 4b^2} = \frac{c^2 - cd + d^2}{cd - 4d^2}$.

2. If
$$\frac{a}{b} = \frac{c}{d}$$
, prove $\frac{a^2-c^2}{b^2-d^2} = \left(\frac{a-c}{b-d}\right)^2 = \left(\frac{a+c}{b-d}\right)^2$

3. Given the same, shew that each of these fractions

$$= \sqrt{\left(\frac{a^2+c^2}{b^2+d^2}\right)}.$$

4. If 2x = 3y, write down the value of

of (7),

$$\frac{2x^3 - x^2y + y^3}{x^2y + xy^2 + 2y^3}, \text{ and of } \frac{x^4 - 3x^3y + 2y^{\frac{1}{4}}}{(x^2 - y^2)^2}.$$

5. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, shew that $\frac{a}{b} = \frac{ma - nc - pe}{mb - nd - pf}$

6. From the same relations prove that $\frac{a^3}{b^3} = \left(\frac{a - mc - ne}{b - md - nf}\right)^3$.

7. If
$$\frac{1+x}{1-x} = \frac{b}{a} \left(\frac{1+x+x^2}{1-x+x^2} \right)$$
, then $x^3 = (b-a) \div (b+a)$.

8. If
$$\frac{\sqrt{(a+x)}+\sqrt{(a-x)}}{\sqrt{(a+x)}-\sqrt{(a-x)}} = a$$
, prove that $x = \frac{2a^2}{1+a^2}$.

9. If
$$\frac{mx+a+b}{nx+a+c} = \frac{mx-c-d}{nx-b-d}$$
, prove $x = \frac{b-c}{n-m}$.

10. If
$$\frac{a-b}{ay+bx} = \frac{b-c}{bz+cx} = \frac{c-a}{cy+az} = \frac{a+b+c}{ax+by+cz}$$
,

then each of these fractions = $\frac{1}{x+y+x}$, a+b+c not being zero.

11. If
$$\frac{a+b}{a-b} = \frac{b+c}{2(b-c)} = \frac{c+a}{3(c-a)}$$
, then $8a+9b+5c=0$.

12. If
$$\frac{\sqrt{a+\sqrt{(a-x)}}}{\sqrt{a-\sqrt{(a-x)}}} = \frac{1}{a}$$
, show that $\frac{a-x}{a} = \left(\frac{1-a}{1+a}\right)^2$

13. If $\frac{x^2 - yz}{x(1 - yz)} = \frac{y^2 - xz}{y(1 - xz)}$, and x, y, z be unequal, shew that each of these fractions is equal to x + y + z.

14. If $\frac{x^2+9x+1}{x^2-2x+3} = \frac{y^2+2y+1}{y^2-2y+3}$, shew that each of these fractions $=(xy-1)\div(xy-3)$.

15. If
$$\frac{25x^2-16}{10x+8} = \frac{3(x^2-4)}{2x-4}$$
, shew that $\frac{x-4}{x+5} = \frac{3}{5}$.

16. If
$$y = \frac{4bc}{b+c}$$
 shew that $\frac{y+2b}{y-2b} + \frac{y+2c}{y-2c} = 2$.

17. If
$$\frac{1}{4} \binom{a^2 + b^2}{a^2 - b^2} = \frac{1}{5} \binom{b^2 + c^2}{b^2 - c^2} = \frac{1}{6} \binom{c^2 + a^2}{c^2 - a^2}$$
, prove that $25a^2 + 27b^2 + 22c^2 = 0$,

28.

29.

30.

31.

32.

prove 1

18. If
$$\frac{a^2}{x^2 - yz} = \frac{b^2}{y^2 - zx} = \frac{c^2}{z^2 - xy}$$
, shew that $a^2x + b^2y + c^2z = (a^2 + b^2 + c^2)(x + y + z)$.

19. If
$$\frac{x}{a+b-c} = \frac{y}{b+c-a} = \frac{z}{c+a-b}$$
, then will $(a-b)x + (b-c)y + (c-a)z = 0$.

20. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
 then $\binom{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}^2 = \frac{a^4 + c^4 + e^4}{b^4 + d^4 + f^4}$.

21. If
$$\frac{bx+ay}{a-b} = \frac{cy+lz}{b-c} = \frac{az+cx}{c-a}$$
, shew that

$$(a+b+c)(x+y+z) = ax+by+cz.$$

22. If
$$\frac{x^3 - 5x^2a - a^3 + 5xa^2}{x^8 + x^2a + xa^2 + a^3} = \frac{x - a}{x + a}$$
, shew that each of these expressions $= 1$,

23. If
$$\frac{1}{6} \left(\frac{a-b}{a+b} \right) = \frac{1}{5} \left(\frac{b-c}{b+c} \right) = \frac{1}{10} \left(\frac{c-a}{c+a} \right)$$
, and a , b , c be different, shew that $16a + 11b + 15 = 0$.

24. If
$$\binom{x+yz}{y+zx}^2 = \frac{1-y^2}{1-x^2}$$
, prove that $x^2+y^2+z^2+2xyz=1$.

25. If
$$\frac{a}{x-y} = \frac{b}{y-z} = \frac{c}{z-x}$$
, shew that $a+b+c=0$.

26. If
$$\frac{a}{b} = \frac{c}{a}$$
, prove that $\frac{a+b}{a-b} = \frac{\sqrt{(ac)} + \sqrt{(bd)}}{\sqrt{(ac)} - \sqrt{(bd)}}$

f these

ve that

2y+c2z

-b)x +

of these

b, c be

yz=1.

27. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, then each is equivalent to $\frac{la+mc+ne}{lb+md+nf}$, hence shew that

$$\frac{a}{2z+2x-y} = \frac{b}{2x+2y-z} = \frac{c}{2y+2z-x}, \text{ when } \\ \frac{x}{2a+2b-c} = \frac{y}{2b+2c-a} = \frac{z}{2c+2a-b}.$$

28. If
$$\frac{a}{b} = \frac{c}{d}$$
, prove that $\left(\frac{a-b}{c-d}\right)^n = \sqrt{\left(\frac{a^{2n}+b^{2n}}{c^{2n}+d^{2n}}\right)}$.

29. If
$$\frac{x}{a(y+z)} = \frac{y}{b(x+z)} = \frac{z}{c(x+y)}$$
, prove that
$$\frac{x}{a}(y-z) + \frac{y}{b}(z-x) + \frac{z}{c}(x-y) = 0.$$

30. If
$$\frac{a}{lx(ny-mz)} = \frac{b}{my(lz-nx)} = \frac{c}{nz(mx-ly)}$$
, then will $\frac{a}{lx}(l-x) + \frac{b}{my}(m-y) + \frac{c}{nz}(n-z) = 0$.

31. If
$$z = \frac{\sqrt{(ay^2 - a^2)}}{y}$$
, and $y = \frac{\sqrt{(ax^2 - a^2)}}{x}$, shew that $x = \frac{\sqrt{(az^2 - a^2)}}{z}$.

32. If
$$\frac{x^2 - yz}{a^2} = \frac{y^2 - xz}{b^2} = \frac{z^2 - xy}{c^2} = 1$$
, shew that $x + y + z = \frac{a^2x + b^2y + c^2z}{a^2 + b^2 + c^2}$.

33. If
$$\frac{m}{x} = \frac{n}{y} = \frac{r}{z}$$
, and $\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} = 1$,

prove that
$$\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{r^2}{c^2} = 3 \frac{m^2 + n^2 + r^2}{x^2 + y^2 + z^2}$$
.

34. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = &c.$$
, then
$$\frac{a^{3n} - c^{3n}}{b^{3n} - d^{3n}} = \frac{a^n c^n e^n - (a^n - c^n + e^n)^3}{b^n d^n f^n - (b^n - d^n + f^n)^3}$$

85. If
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \dots = \frac{a_n}{b_n}$$
, then
$$\frac{a_1 a_2 - a_2 a_3 + \dots + (-1)^{n-1} a_{n-1} a_n}{b_1 b_2 - b_2 b_3} = \frac{a_1 \sqrt{a_2 a_3} + a_2 \sqrt{a_3 a_4} + \&c}{b_1 \sqrt{b_2 b_3} + b_2 \sqrt{b_3 b_4} + \&c}$$
86. If $\frac{A + B + C}{abc} = \frac{A}{a} + \frac{B}{b} + \frac{C}{c}$,
$$\text{and } (A + B + C)(a + b + c) = Aa + Bb + Cc$$
,
$$\text{then will } \frac{A}{1 + a^2} + \frac{B}{1 + b^2} + \frac{C}{1 + c^2} = 0.$$
and also $\frac{A}{a + \frac{1}{a}} + \frac{B}{b + \frac{1}{b}} + \frac{C}{c + \frac{1}{c}} = 0.$
87. If $\frac{xh}{a^2} = \frac{yk}{b^2} = \frac{zl}{c^2}$, and $\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} = 1$,
$$\text{then will } \left(\frac{x}{h} + \frac{y}{k} + \frac{z}{c}\right)^2 = \frac{a^2}{lh^2} + \frac{b^2}{h^2} + \frac{c^2}{l^2}.$$

m

SECTION IV. - COMPLETE SQUARES, &c.

1. What quantity must be added to $x^2 + px$ to make it a complete square?

Let r be the quantity.

Then
$$x^3 + px + r = \text{complete square} = (x + \sqrt{r})^3$$

= $x^2 + 2x\sqrt{r} + r$.

Equating coefficients we have

$$2\sqrt{r} = p$$

$$\therefore \quad r = \frac{p^2}{4} = \left(\frac{p}{2}\right)^2$$

Or thus: Since $(a+x)^2 = a^2 + 2ax + x^2$; we observe, (See Art. XII), that four times the product of the extremes is equal to the square of the mean,

$$4x^2r = p^2x^2;$$

$$\therefore r = \left(\frac{p}{2}\right)^2 \Rightarrow \text{ as before.}$$

Or we may extract the square root and equate the remainder to zero. thus

$$\begin{array}{c}
x^2 + px + r\left(x + \frac{p}{2}\right) \\
x^2 \\
2x + \frac{p}{2} \\
px + r \\
px + \frac{p^2}{4} \\
r - \frac{p^2}{4}.
\end{array}$$

Now, if the expression be a complete square, this remainder must vanish; hence we have

$$r = \frac{p^2}{4} = \left(\frac{p}{2}\right)^2$$

2. Find the relation connecting a, b, c, if $ax^2 + bx + c$ is a complete square.

Assume
$$ax^2 + bx + c = (\sqrt{a \cdot x} + \sqrt{c})^2 = ax^2 + 2\sqrt{(ac) \cdot x} + c$$
.

Now, since this holds for all values of x, we have $2\sqrt{ac} = b$, or $b^2 = 4ac$, the relation required.

3. Determine the relation amongst a, b, c, in order that $a^2x^2+bx+bc+b^2$ may be a perfect square.

As in Ex. 1, we have $4a^2x^2(bc+b^2) = b^2x^2$;

$$\therefore \frac{1}{4a^2} - \frac{c}{b} = 1.$$

Or thus:

 $\frac{a_3a_4 + \&c}{b_3b_4 + \&c}$

t a com-

rve, (See

ial to the

Assume
$$a^2x^2 + bx + bc + b^2 = (ax + \sqrt{bc + b^2})^2$$

= $a^2x^2 + 2a\sqrt{bc + b^2} + bc + b^2$.

Equating coefficients, we have $b = 2a\sqrt{bc + b^2}$;

$$\therefore \frac{1}{4a^2} - \frac{c}{b} = 1, \text{ as before.}$$

The same result may also be obtained by extracting the square root and equating the remainder to zero.

4. Show that if $x^4 + ax^3 + bx^2 + cx + d$ be a complete square, the coefficients satisfy the equation $c^2 - a^2 d = 0$.

Is it necessary that the coefficients satisfy any other equation?

Extracting the square root of $x^4 + ax^3 + bx^2 + cx + d$ in the usual manner, we have for the final remainder

$$\left\{c - \frac{a}{2}\left(b - \frac{a^2}{4}\right)\right\}x + d - \frac{1}{4}\left(b - \frac{a^2}{4}\right)^2$$

Now, if the expression be a complete square this remainder must vanish; and, that it may vanish for general values of x, we must have

$$e - \frac{a}{2} \left(b - \frac{a^2}{4} \right) = 0$$
 (1),

$$d - \frac{1}{4} \left(b - \frac{a^2}{4} \right) = 0 \quad . \quad . \quad . \quad . \quad . \quad . \quad (2);$$

Eliminating
$$b - \frac{a^2}{4}$$
, we have $a^2 - a^2 d = 0$. . . (3)

The coefficients must satisfy the equations (1) and (2), and therefore either of these equations, together with the equation (3), which results from them.

The same result may be obtained by assuming

$$x^{4} + ax^{3} + bx^{2} + cx + d = (x^{2} + \frac{1}{2}ax + \sqrt{d})^{2}$$

$$= x^{4} + ax^{3} + 2x^{2} \sqrt{d}$$

$$+ \frac{1}{4}a^{2}x^{2} + ax\sqrt{d} + d.$$

$$+\frac{1}{4}a^2x^2 + ax\sqrt{a+a}$$

Equating coefficients, we have
$$2\sqrt{d} + \frac{1}{4}a^2 = b$$
 . . . (1)
and $a\sqrt{d} = c$. . . (2).

From (2) we have $c^2 - a^2 d = 0$, as before.

5. What must be the value of m and n if $4x^4 - 12x^3 + 25x^2 - 4mx + 8n$ is a perfect square?

Assume the expression =
$$\{(2x^2 - 3x + \sqrt{(8n)})^2 = 4x^4 - 12x^3 + 4x^2 \sqrt{(8n)} + 9x^2 - 0x\sqrt{(8n)} + 9n.$$

Equating coefficients, we have
$$6\sqrt{(8n)} = 4m$$
 . . . (1), and $4\sqrt{(8n)} + 9 = 25$. . . (2);

and
$$4\sqrt{(8n)} + 9 = 25$$
 . . . (2)

$$\therefore n=2,$$

$$m=6$$
.

Orremai have

6.] and b

Ass

Equ

dividin

dividin

7. F

Assu

Equa

8. Sh rational

equal to

square,

nation? in the

nainder of **x, w**e

(1),

(2);

(3).

2), and ion (3),

+ d.

(2).

 $n)+\Im n.$

(1),

(2);

Or thus: Extracting the square root in the ordinary way, the remainder is found to be (-4m+24)x+8n-16; ... we must have 4m+24=0, or m=6, and 8n-16=0, or n=2.

6. If ax^3+bx^2+cx+d be a complete cube, shew that $ac^3=db^3$, and $b^2=3ac$.

Assume $ax^3 + bx^2 + cx + d = (x + d\frac{1}{3})$. 3

$$=ax^3+3a^{\frac{3}{2}}d^{\frac{1}{2}}x^2+3a^{\frac{1}{2}}d^{\frac{3}{2}}x+d$$

Equating coefficients,

dividing (1) by(2), $\frac{b}{c} = \frac{a^{\frac{1}{2}}}{d^2}$;

$$\begin{array}{cc} c & ds \\ ac^3 = db^3 \end{array}$$

dividing (3) by (2), $\frac{b^2}{c} = 3a$;

$$b^2 = 3ac.$$

7. Find the relations subsisting between a, b, c, d, e, when $ax^4 + bx^3 + cx^2 + dx + e$ is a complete fourth power.

Assume $ax^4 + bx^3 + cx^2 + dx + e = (a^{\dagger}x + e^{\dagger})^4$

$$= ax^4 + 4a^{\frac{3}{4}}e^{\frac{1}{4}}x^3 + 6a^{\frac{1}{4}}e^{\frac{1}{4}}x^2 + 4a^{\frac{1}{4}}e^{\frac{3}{4}}x + e.$$

Equating coefficients, we have

$$b = 4a^{\frac{3}{4}}e^{\frac{1}{4}}$$

$$c = 6a^{\frac{1}{2}}e^{\frac{1}{2}}$$
,

$$d = 4a^{\frac{1}{4}}e^{\frac{a}{4}}$$
:

$$bc = 24a^{\frac{1}{4}}e^{\frac{3}{4}} = 6a.4a^{\frac{1}{4}}e^{\frac{3}{4}} = 6ad.$$
 (2).

$$cd = 24a^{\frac{3}{4}}c^{\frac{4}{4}} = 6e \cdot 4a^{\frac{4}{4}}e^{\frac{1}{4}} = 6be.$$
 (2).

8. Shew that $x^4 + px^3 + qx^2 + rx + s$ can be so resolved into two rational quadratic factors if s be a perfect square, negative, and equal to r^2

equal to
$$\frac{r^2}{p^2-4q}$$
.

Since -s is a perfect square, let it be n^2 .

Assume
$$x^4 + px^3 + qx^2 + rx - n^3$$

= $(x^2 + mx + n)(x^2 + m'x - n)$
= $x^4 + (m+m')x^3 + mm'x^2 - n(m-m')x - n^3$.

Equating coefficients, we have

$$m+m'=p$$

$$mm'=q$$

$$m-m'=\frac{r}{n}$$

$$m^{2}+2mm'+m'^{2}=p^{2}$$

$$4mm'=4q ;$$

$$(m-m')^{3}=p^{2}-4q=\frac{r^{2}}{n^{2}}$$

$$\therefore \frac{r^{2}}{p^{2}-4p}=n^{2}=-s.$$

Exercise xlvii.

- 1. What is the condition that $(a-x)(b-x)-c^2$, may be a perfect square.
- 2. Find the value of n which will make $2x^2 + 8x + n$, a perfect square.
- 3. Find a value of x which will make $x^4 + 6x^3 + 11x^2 + 3x + 31$, a perfect square.
 - 4. Extract the square root of

$$(a-b)^4 - 2(a^2+b^2)(a-b)^2 + 2(a^4+b^4)$$

- . 5. Find the values of m and n which will make $4x^4-4x^3+5x^2-mx+n$, a perfect square.
- 6. What must be added to $x^4 \sqrt{(4x^4 16x^2 + 16) 4x^2}$ in order to make it a complete square?
- 7. The expression $x^4 + x^3 16x^2 4x + 48$, is resolvable into two factors of the form x^2+mx+6 , and x^2+nx+8 ; determine the factors.
- · 8. Find the value, of c which will make $4x^4 cx^3 + 5x^2 + \frac{cx}{2} + 1$, a complete square.

9. (4 { (a2

> 10. square

11. $a^{2}x^{2} +$ square

12. of the :

13. a factor

> 14. 1 coefficie

15. 1 that ax

16. I

 $ax^3 - bx$ 18. T

17. I

by (a-a)19. F exactly

20. If shew the

21. If squares.

9. Obtain the quare root of

$$4\{(a^2-b^2)cd+ab(c^2-d^2)\}^2+\{(a^2-b^2)(c^2-d^2)-4abcd\}^2.$$

10. If $(a-b)x^2 + (a+b)^2x + (a^2 - b^2)(a+b)$, is a complete square, then a = 3b, or b = 3a.

11. Find the simplest quantity which, subtracted from $a^3x^2+4abx+4acx+5bc+b^2c^2$, will give for remainder an exact square.

12. $x^4-4x^3-x^2+16x-12$ is resolvable into quadratic factors of the form x^2+mx+p , and x^2+nx+q : find them.

13. Find the values of m which will make $x^2 + max + a^2$ a factor of $x^4 - ax^3 + a^2x^2 - a^3x + a^4$.

14. Show that if $x^4 + ax^3 + bx^2 + cx + d$ be a perfect square, the coefficients satisfy the relations

$$8c = a(4b-a^2)$$
, and $64d = (4b-a^2)^2$.

15. Investigate the relations between the coefficients in order that $ax^2 + by^2 + cz^2 + dxy + eyz + fxz$ may be a complete square.

16. If $x^3 + ax^2 + bx + c$ is exactly divisible by $(x+d)^2$, shew that

$$\frac{1}{2}(b - d^2) = \frac{c}{d} = d(a - 2d)$$

17. Determine the relations among a, b, c, d, when $ax^3 - bx^2 + cx - d$, is a complete cube.

18. The polynome $ax^3 + 3bx^2 + 3cx + d$ is exactly divisible by $(a-x)^2$; shew that $(ad-bc)^2 = 4(ac-b^2)(bd-c^2)$.

19. Find the relation between p and q, when $x^3 + px^2 + q$, is exactly divisible by $(x-a)^2$.

20. If $x^2 + nax + a^2$ is a factor of $x^4 + ax^5 + a^2x^2 + a^3x + a^4$, shew that $n^2 - n - 1 = 0$.

21. If $x^4 + ax^3 + bx^2 + cx + d$, be the product of two complete squares, shew that

$$(4b-a^2)^2 = 64d$$
, $(4b-a^2)a = 8c$, $a\sqrt{(3a^2-2b)} = 3b$.

be a per-

 $(x-n^3)$

a perfect

-3x + 31,

 $-4x^2$ in

able into letermine

 $+\frac{cx}{2}+1$

- 22. Prove that $x^4 + px^3 + qx^2 + rx + s$ is a perfect square, if $p^2s = r$, and $q = \frac{p^3}{4} + 2\sqrt{s}$.
- 23. If $ax^3 + 3bx^2 + 3cx + d$ contain $ax^2 + 2bx + c$ as a factor, the former will be a complete cube, and the latter a complete square.

1.

8.

7. (8. 8. 8. 5. from t

(4

- 24. If $m^2x^2 + px + pq + q^2$ be a perfect square, find p in terms of m, q, and x.
 - 25. Find the relation between p and q in order that x^3+px^3+qx+r may contain $(x+2)^3$ as a factor.
 - 26. If $x^3 + px^2 + qx + r$ be algebraically divisible by $8x^2 + 2px + q$, show that the quotient is $x + \frac{p}{3}$.

RELATION IN INVOLUTION.

Art XXXVIII. If aa' = bb' = cc', prove that

- 1. (a+b')(b+c')(c+a') = (a'+b)(b'+c)(c'+a) $(a+b') \times a' = aa' + b'a' = bb' + b'a' = (b+a') \times b'$ $(b+c') \times b' = bb' + c'b' = cc' + c'b' = (c+b') \times c'$ $(c+a') \times c' = cc' + a'c' = aa' + a'c' = (a+c') \times a'$
- $\therefore (a+b')(b+c')(c+a') \times a'b'c' = (a'+b)(b'+c)(c'+a) \times b'c'a'$
- (a+b')(b+c')(c+a') = (a'+b)(b'+c)(c'+a).
- 2. (a+b)(a+b')(a'-c)(a'-c') = (a'+b)(a'+b')(a-c)(a-c'). $(a+b) \times a' = aa' + a'b = bb' + a'b = (b'+a') \times b$ $(a+b') \times a' = aa' + ab' = bb' + a'b' = (b+a') \times b'$ $(a'-c) \times a = aa' - ac = cc' - ac = (c'-a) \times c$ $(a'-c') \times a = aa' - ac' = cc' - ac' = (c-a) \times c'$
- $(a+b)(a+b')(a'-c)(a'-c') \times (aa')^2 = (b'+a')(b+a')(c'-a)(c-a) \times bb'.cc'$

But $bb'.cc' = (aa')^2$,

and
$$(c'-a)(c-a) = (a-c)(a-c')$$

$$\therefore (a+b)(a+b')(a'-c)(a'-c') = (a'+b)(a'+b')(a-c)(a-c')$$

e, if

stor, the square. Exercise xlviii.

If aa' = bb' = cc' prove that

1.
$$(a-b')(b-c)(c'-a') = (b-a')(a-c)(c'-b')$$
.

2.
$$(b-c')(c-a)(a'-b') = (c-b')(b-a)(a'-c')$$
.

8.
$$(c-a')(a-b)(b'-c') = (a-c')(c-b)(b'-a')$$
.

4.
$$(a-b')(b-c')(c-a') = (a-c')(b-a')(c-b')$$
.

5.
$$\frac{(a-b)(a-b')}{(a'-b)(a'-b')} = \frac{(a-c)(a-c')}{(a'-c)(a'-c')}$$

6.
$$\frac{(b-c)(b-c')}{(b'-c)(b'-c')} = \frac{(b-a)(b-a')}{(b'-a)(b'-a')}$$

7.
$$\frac{(c-a)(c-a')}{(c'-a)(c-a')} = \frac{(c-b)(c-b')}{(c'-b)(c'-b')}$$

8. Shew that the seven preceding relations may be derived from the single relation

$$(a+a')(bb'-cc')+(b+b')(cc'-aa')+(c+c')(aa'-bb')=0.$$

$$a-c^{r}$$

CHAPTER V.

SIMPLE EQUATIONS OF ONE UNKNOWN QUANTITY.

Art. XXXIX. Preliminary Equations. Although the following exercise belongs in theory to this chapter, in practice the numerical examples should immediately follow Exercise I., and the literal examples Exercise III. Like those exercises, this one is merely a specimen of what the teacher should give till his pupils have thoroughly mastered this preliminary work. But few numerical examples are given, it being left to the teacher to supply these.

Exercise xlix.

What values must x have that the following equations may be true?

1.
$$x-5=0$$
. $x-3=0$. $x-a=0$. $x+3=0$.

2.
$$x+4\frac{1}{2}=0$$
. $x+a=0$. $x+3=5$. $x-4=6$.

8.
$$x-a=b$$
. $x+a=c$. $x-b=-c$. $6-x=3$.

4.
$$8-x=10$$
. $5+x=11$. $9+x=4$. $7-x=-5$.

5.
$$8+x=-6$$
. $a-x=3b$. $2a=x+3b$. $3a=5b-x$.

6.
$$2x-6=8$$
. $8x+8=20$. $ax=a^2$. $mx=bm$.

7.
$$3x = c$$
. $ax = 5$. $ax = 0$. $(a+b)x = b+a$.

8.
$$(a-b)x=b-a$$
. $(a+bx)=(a+b)^2$. $(a-b)x=a^2-b^3$.

9.
$$(a+b)x=b^2-a^2$$
. $(a^2-ab+b^2)x=a^3+b^3$.

10.
$$(a^2-b^2)x=a-b$$
. $(a^2-b^2)x=a+b$. $(a^2+b^2)x=1$.

11.
$$(a+x-b)=(a+b)$$
. $x-a+b=b-x+a$.

12.
$$2a-x=x-2b$$
. $ax+bx=c$. $ax-b=cx$.

13.
$$ax - b = bx - c$$
, $ax - ab = ac$.

14.
$$ax-a^2 = bx-b^2$$
, $ax-a^3 = bx-b^3$.

15.

16. 17.

18.

19.

20. 21.

22.

23.

24.

25. 26.

27.

28.

29.

30. (

31. 2

32. a

33. n

34. a

25

85. a

15.
$$ax-a^3=b^3-bx$$
; $ax+b+c=a+bx+cx$.

16.
$$a-bx-c=b-ax+cx$$
; $a+bx+cx^3=ax-b+cx^9$.

17.
$$bx - cx^2 + c = ex - b - cx^2$$
; $3x = \frac{2}{x}$; $4x = \frac{6}{x}$.

18.
$$10x = \frac{1}{6} - 1$$
; $ax = \frac{b}{a}$; $ax = \frac{a^3}{b}$

19.
$$abx = \frac{a}{b} + \frac{b}{a}$$
; $bcx = \frac{ac^2}{b} + \frac{ab^2}{c}$.

20.
$$\frac{1}{2}x = 5$$
; $\frac{2}{3}x = 8$; $\cdot 5x = 2$; $\cdot 9x = \cdot 06$.

21.
$$02x = 20$$
; $8x = 2$; $4x = 6$.

22.
$$\dot{1}\dot{8}x = 1.8$$
; $\frac{x}{a} = b$; $\frac{ax}{b} = c$.

23.
$$\frac{ax}{b} = \frac{b}{c}$$
; $\frac{x}{a+b} = c$; $\frac{ax}{a+b} = b$

24.
$$\frac{a+b}{a-b}x = \frac{a}{b}; \quad \frac{a-b}{a+b}x = \frac{a+b}{b-a}.$$

25.
$$\frac{a}{b-a}x = \frac{a}{a-b}; \quad \frac{b-a}{a+b}x = \frac{a-b}{b+a}.$$

26.
$$\frac{a+b}{a+c}x = \frac{a-c}{a+b}$$
; $\frac{1}{x} = \frac{1}{2}$; $\frac{2}{x} = \frac{8}{5}$.

27.
$$\frac{1}{x} = \frac{1}{ab}$$
; $\frac{1}{x} = \frac{a}{b}$; $\frac{a}{x} = \frac{b}{c}$; $\frac{7}{x} = \frac{1}{3} + \frac{1}{4}$

28.
$$\frac{3}{20} + \frac{4}{5x} = \frac{38}{5x} - \frac{1}{3}$$
; $\frac{a}{x} + \frac{b}{c} = 0$.

29.
$$\frac{5}{x-7} = 6 - \frac{7}{x-7}$$
; $\frac{5}{3x-4} = 7 + \frac{9}{4-3x}$

30.
$$(x-4)-(x+5)+x=3$$
; $2x-(x-5)-(4-3x)=5$.

31.
$$2(3-x)+3(x-3)=0$$
; $2(3x-4)-3(3-4x)+9(2-x)=10$.

32.
$$a(1-2x)-(2x-a)=1$$
; $x-5(a-x)=bx-5a$.

33.
$$mx(3a-4)+3mx-3a+1=0$$
.

34.
$$a(bx-c)+b(cx-a)+c(ax-b)=0$$
.

85.
$$a(ax-b)+b(cx-c)+c(cx-a)=0$$
.

th the ractice ise I., es, this till his

her to

nay be

36.
$$a(bx-a)+b(cx-b)+c(ax-c)=0$$
.

37.
$$a(x-2b)+b(x-2c)+c(x-2a)=a^2+b^2+c^3$$
.

38.
$$3(3(3(3x-2)-2)-2)-2=1$$
.

39.
$$9(7\{5(3x-2)-4\}-6)-8=1$$
.

40.
$$\frac{1}{3}\left\{\frac{1}{3}\left(\frac{1}{3}\left(\frac{1}{3}(x+2)+2\right)+2\right)+2\right\}=1$$
.

41.
$$\frac{1}{9}\left\{\frac{1}{7}\left(\frac{1}{5}\left\{\frac{1}{3}(x+2)+4\right\}+6\right)+8\right\}=1$$
.

42.
$$\frac{1}{2}(\frac{1}{2}(\frac{1}{2}(\frac{1}{2}x-\frac{1}{2})-\frac{1}{2})-\frac{1}{2})-\frac{1}{2}=0.$$

49.
$$\frac{2}{3}\left(\frac{2}{3}\left(\frac{2}{3}\left(\frac{2}{3}x-1\frac{1}{3}\right)-1\frac{1}{3}\right)-1\frac{1}{3}\right)-1\frac{1}{3}=0$$
.

44.
$$\frac{18}{18} \left\{ \frac{5}{11} \left(\frac{5}{4} \left(\frac{3}{4} x + 4 \right) + 8 \right) + 12 \right) + 20 \right\} + 32 = 58$$

45.
$$\frac{4}{6}\left\{\frac{3}{4}\left(\frac{2}{3}\left\{\frac{1}{2}(x+7)-3\right\}+6\right)-1\right\}=4$$
.

46.
$$r\{q(p\{n(mx-a)-b\}-c)-d\}-e=0$$
.

47.
$$(1+6x)^2+(2+8x)^2=(1+10x)^2$$
.

48.
$$9(2x-7)^2 + (4x-27)^2 = 13(4x+15)(x+6)$$
.

49.
$$(3-4x)^2+(4-4x)^2=2(5+4x)^2$$
.

50.
$$(9-4x)(9-5x)+4(5-x)(5-4x)=36(2-x)$$

Art. XL. In order that the product of two or more factors may vanish, it is necessary, and it is sufficient, that one of the factors should vanish. Thus, in order that (x-a)(x-b) may =0, either x-a must =0, or x-b must =0, and it is sufficient that one of them should do so.

Hence the single equation (x-a)(x-b)=0 is really equivalent to the two disjunctive equations, either x-a=0 or x-b=0, for either of these will fulfil the condition of the given equation, and that is all that is required.

Similarly, were it required to find what values of x would make the product (x-a)(x-b)(x-c) vanish, they would be given by

$$x-a=0$$
, or $x-b=0$, or $x-c=0$: $x=a$ or b or c.

Hence the single equation

$$(x-a)(x-b)(x-c) = 0$$

is equivalent to the three disjunctive equations

$$x-a=0$$
, or $x-b=0$, or $x-c=0$.

1. S

factors

2. So This

3. So

4. Sol The fa

5. Sol

∴ the

6. Solv In this

7. Solve

The exp

EXAMPLES.

1. Solve
$$x^2 - x - 20 = 0$$
.

The expression = (x-5)(x+4), which will vanish if either of its factors does, that is, if x-5=0, or x+4=0,

$$\therefore x = 5, \quad \text{or } x = -4.$$

2. Solve
$$x^4 - x^3 - x^2 + x = 0$$
.

This gives
$$x^3(x-1)-x(x-1)=x(x-1)(x^2-1)$$

= $x(x-1)(x+1)(x-1)$, which vanishes for $x=0, x=1, x=-1$.

3. Solve
$$x^3 + a^2x^2 - ax - a^3 = 0$$
.

This =
$$x(x^2 - a) + a^2(x^2 - a)$$

= $(x + a^2)(x^2 - a)$, which vanishes for $x + a^2 = 0$, and $x^2 - a = 0$, or $x = -a^2$, and $x^2 = a$.

4. Solve
$$x^2(a-b) + a^2(b-x) + b^2(x-a) = 0$$
.

The factors of the expression are (Ex. 2, page 79)

$$a-a$$
, $x-b$, $a-b$; hence the expression vanishes if $x-a=0$, or $x-b=0$.

5. Solve
$$221x^2 - 5x - 6 = 0$$
.

Here we have the factors 17x-3 and 13x+2;

:. the equation is satisfied by
$$17x-3=0$$
, or $x=\frac{3}{17}$,

and
$$13x+2=0$$
, or $x=-\frac{2}{12}$.

6. Solve
$$2x^4 + 2x^3 + 6x - 18 = 0$$
.

In this case we have $2(x^4-9)+2x(x^2+3)$

$$=2(x^2+3)\{x^2-3+x\}$$
, which vanishes for $x^2+3=0$, or $x^2+x-3=0$.

7. Solve
$$(x-a)^3 + (a-b)^3 + (b-x)^3 = 0$$
.

The expression is equal to 3(x-a)(a-b)(b-x),

and therefore vanishes for
$$x-a=0$$
, or $x=a$;

and for
$$x-b=0$$
, or $x=b$.

factors e of the e ay e 0, and that

uivalent = 0, for on, and

d make

Exercisé 1.

- 1. If an equation in x has the factors 2x-4 and 2x-6, find the corresponding values of x.
- 2. If an equation gives the factors 2x-1 and 3x-1, what are the corresponding values of x?
- 3. If an equation gives the factors $3x^2 12$ and 4x 5, find the corresponding values of x.

Find the values of x for which the following expressions will vanish;

4.
$$x^2 - 2x + 1$$
; $4x^2 - 12x + 9$.

5.
$$9x^2-4$$
; $x^2-(a+b)^2$; $x^2-2ax+a^2$.

6.
$$x^2 - 9x + 20$$
; $4x^2 - 18x + 20$.

7.
$$x^2+x-6: x^2-x-12; 9x^2-9x-28.$$

8.
$$6x^2 - 12x + 6$$
; $6x^2 - 13x + 6$; $6x^2 - 20x + 6$.

9.
$$6x^2-5x-6$$
; $6x^2-37x+6$; $6x^2+x-12$.

10. A certain equation of the fourth degree gives the factors x^2-x-2 , and $4x^2-2x-2$, find all the values of x.

Find values of x in the following cases:

11.
$$x^3 - 2bx^2 - 3b^2x = 0$$
.

12.
$$x^3 - ax^2 + a^2x - a^3 = 0$$
.

13.
$$x^3-2x+1=0$$
; $x^3-3x+2=0$.

14.
$$x^4 - 2ax^3 + 2a^3x - a^4 = 0$$

15.
$$x^3 + (b+c)x^2 - bcx - b^2c - bc^2 = 0$$
.

16.
$$\frac{x-a}{x-b} + \frac{x-b}{x-a} - \frac{(a-b)^2}{(x-a)(x-b)} = \frac{x^2-a^2}{(x-a)(x-b)^2}$$

17.
$$x^3 - bx^2 - a^2x - a^2b = 0$$
.

18.
$$3x^3 + 4abx^2 - 6a^2b^2x - 4a^3b^3 = 0$$
.

19.
$$x^3(a-b)+a^3(b-x)+b^3(x-a)=0$$
.

20.
$$\frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)} = 1$$
.

21.
$$x\left(\frac{x-2a}{x+a}\right)^3 + a\left(\frac{2x-a}{x+a}\right)^3 = x^2 - a^2$$
.

22.

23.

24.

-6, o 25.

3a, or 26.

27.

and 1-

Art.

illustra with ac

When

1. So

Here, denomination on ce

 $\frac{\epsilon}{2}$.

In th

8

 $\frac{2}{1}$

2x-6, find

. what are

-5, find the

ssions will

the factors

22. $(x+a+b)^3-x^3-a^3-b^3=(x+a)(a^2-b^2)$.

23.
$$\frac{ab}{(b-a)(x-a)} + \frac{bx}{(x-a)(a-b)} + \frac{ax}{(a-b)(b-x)} = \frac{1}{a-b}$$

24. Form the polynome which will vanish for x equal 5, or -6, or 7.

25. Form the polynome which will vanish for x=a, or 4a, or 8a, or -4a.

26. Form the equation whose roots are 0, 1, -2, and 4.

27. Form the equation whose roots are $1+\sqrt{2}$, $1-\sqrt{2}$, $1-\sqrt{3}$, and $1+\sqrt{3}$.

Art. XLI. In solving fractional equations, the principles illustrated in the section on fractions may frequently be applied with advantage, as in the following cases.

When an equation involves several fractions, we may take two or more of them together.

EXAMPLES.

1. Solve
$$\frac{8x+5}{14} + \frac{7x-8}{6x+2} = \frac{4x+6}{7}$$
.

Here, instead of multiplying through by the L. C. M. of the denominators, we combine the first fraction with the last, getting at once

$$\frac{7x-3}{6x+2} = \frac{7}{14} = \frac{1}{2} \quad \therefore \ 7x-3=3x+1, \text{ and } x=1.$$

2.
$$\frac{2x+8\frac{1}{2}}{9} - \frac{13x-2}{17x-32} + \frac{x}{3} = \frac{7x}{12} - \frac{x+16}{36}$$

In this case, taking together all the fractions having only numerical denominators, we get

$$\frac{8x+34+12x-21x+x+16}{36} = \frac{13x-2}{17x-32}; \text{ or }$$

$$\frac{25}{18} = \frac{13x-2}{17x-32};$$

$$\therefore 425x - 800 = 234x - 36$$
, hence $x = 4$.

It is often advantageous to complete the divisions represented by the fractions.

3.
$$\frac{4x-17}{9} - \frac{3\frac{3}{3}-22x}{33} = x - \frac{6}{x} \left(1 - \frac{x^3}{54}\right)$$
.

Here, completing the divisions, we have

$$\frac{4x}{9} - \frac{17}{9} - \frac{1}{9} + \frac{2x}{8} = x - \frac{6}{x} + \frac{x}{9},$$

$$\frac{10x}{9} - 2 = x + \frac{x}{9} - \frac{6}{x} \therefore -2 = -\frac{6}{x}, \text{ or } x = 3.$$

4.
$$\frac{ax+b}{x-m} + \frac{cx+d}{x-n} = a+c$$

$$\therefore \quad a + \frac{am+b}{x-m} + c + \frac{cn+d}{x-n} = a + c$$

$$\therefore (am+b)(x-n)+(cn+d)(x-m)=0$$

$$\therefore (am+b+cn+d)x = (a+c)mn+bn+dm.$$

5. Similarly may be solved

$$\frac{ax+b}{x-m} + \frac{cx+d}{x-n} + \frac{ex^2+fx-g}{(x-m)(x-n)} = a+c+e$$

$$\therefore \frac{am+b}{x-m} + \frac{cn+d}{x-n} + \frac{\{e(m+n)+f\}x-emn-g}{(x-m)(x-n)} = 0.$$

 $\mathbf{w}\mathbf{k}$

wh

10.

This of The re

 $9x^2 + 1$

by x, \therefore

:
$$(am+b)(x-n)+(cn+d)(x-m)+\{e(m+n)+f\}x-emn-g=0.$$

$$(a+c)m+b+(c+e)n+d+f$$
 $x = (a+b+e)mn+bn+dm+g$.

6.
$$\frac{132x+1}{3x+1} + \frac{8x+5}{x-1} = 52;$$

$$\therefore 44 - \frac{48}{3x+1} + 8 + \frac{18}{x-1} = 52, \text{ or}$$

$$\frac{13}{x-1} = \frac{43}{3x+1}; \dots 39x+13 = 43x-43, \text{ and } x = 14.$$

7.
$$\frac{25 - \frac{1}{3}x}{x+1} + \frac{16x + 4\frac{1}{5}}{3x+2} = 5 + \frac{23}{x+1}$$

Taking the last fraction with the first, and multiplying the resulting equation by 15, we have

presented

$$\frac{240x+63}{3x+2} = 75 + \frac{5x-30}{x+1};$$

$$\therefore 80 - \frac{97}{3x+2} = 75 + 5 - \frac{85}{x+1}, \text{ or }$$

$$\frac{97}{8x+2} = \frac{35}{x+1}; \therefore 8x = 27, \text{ and } x = 3\frac{3}{8}.$$

8.
$$\frac{x-a}{b+c} + \frac{x-b}{a+c} + \frac{x-c}{b+c} = 3$$
.

$$\therefore \frac{x-a}{b+c} - 1 + \frac{x-b}{a+c} - 1 + \frac{x-c}{b+a} - 1 = 0;$$

$$\therefore \frac{x-(a+b+c)}{b+c} + \frac{x-(a+b+c)}{a+c} + \frac{x-(a+b+c)}{b+a} = 0,$$
which is satisfied by $x-(a+b+c)=0$; $\therefore x=a+b+c$.

9.
$$\frac{m}{x+a} + \frac{n}{x-b} = \frac{m+n}{x-c};$$

$$\therefore \frac{m(x-c)}{x-a} + \frac{n(x-c)}{x-b} = m+n,$$

which may be solved as in Ex. 1.

10.
$$\frac{3x+5}{x+1} - \frac{4x+9}{2x+4} = \frac{15x+7}{3x+1} - \frac{12x+17}{3x+4}$$
.
 $\therefore 3 + \frac{2}{x+1} - 2 - \frac{1}{2x+4} = 5 + \frac{2}{3x+1} - 4 - \frac{1}{3x+4}$, or $\frac{2}{x+1} - \frac{1}{2x+4} = \frac{2}{3x+1} - \frac{1}{3x+4}$;
 $\therefore \frac{3x+7}{2x^2+6x+4} = \frac{3x+7}{9x^2+15x+4}$.

This can be divided by 3x+7, giving 3x+7=0, or $x=-\frac{7}{3}$. The result of the division is

$$\frac{1}{2x^2+6x+4} = \frac{1}{9x^2+15x+4}$$
, or

 $9x^2+15x+4=2x^2+6x+4$, or $7x^2=-9x$, which we can divide by x, $\therefore x=0$; the result of the division is 7x=-9, or $x=-\frac{9}{7}$.

3.

y = 0.

nn - g = 0. -dm + g.

4.

ng the re-

Exercise li.

1.
$$\frac{10x+17}{18} - \frac{12x+2}{13x-16} = \frac{5x-4}{9}$$

2.
$$\frac{6x+18}{15} - \frac{9x+15}{5x-25} + 3 = \frac{2x+15}{5}$$

$$3. \quad \frac{7x+1}{x-1} = \frac{35}{9} \times \frac{x+4}{x+2} + 3\frac{1}{9}.$$

4.
$$\frac{4x-7}{2x-9} + \frac{2-14x}{7} + \frac{3\frac{1}{3}+x}{14} = \frac{10-3\frac{9}{7}x}{2} - \frac{19}{21}$$

5.
$$\frac{2x+a}{3(x-a)} + \frac{8x-a}{2(x+a)} = 2\frac{1}{6}$$
.

6.
$$\frac{x-4}{6x+5} + \frac{3x-13}{18x-6} = \frac{1}{3}$$

7.
$$\frac{3x+1}{2x-15} - \frac{x-11}{2x-10} = 1$$
; $\frac{x-9}{x-5} + \frac{x-5}{x-8} = 2$.

8.
$$\frac{x-12}{x-7} + \frac{x-4}{x-12} = 2 + \frac{7}{x-7}; \frac{3x-19}{x-13} + \frac{3x-11}{x+7} = 6.$$

9.
$$\frac{x-2}{2x+1} + \frac{x-1}{3(x-3)} = \frac{5}{6}$$
; $\frac{x+1}{4(x+2)} + \frac{x+4}{5x+13} = \frac{9}{20}$.

10.
$$\frac{5(2x^2+8)}{2x+1} + \frac{5-7x}{2x-5} = 5x-6; \quad \frac{3}{x-7} + \frac{1}{x-9} = \frac{4}{x-8}$$

11.
$$\frac{7x+55}{2x+5} - \frac{3x}{2} = 9 - \frac{3x^2+8}{2x-4}$$
; $\frac{17}{x-16} + \frac{15}{x-18} = \frac{32}{x-17}$

12.
$$\frac{1-25x}{15} - \frac{3-2\frac{1}{2}x}{14(x-1)} = \frac{28-5x}{3} - \frac{10x-11}{30} + \frac{x}{3}$$

13.
$$\frac{1}{x-2} - \frac{2+2\frac{1}{2}x^2 - \frac{1}{2}x^3}{6-5x+x^2} - \frac{1}{2}x = \frac{5}{x-5}$$

14.
$$\frac{30+6x}{x+1} + \frac{60+8x}{x+3} = \frac{48}{x+1} + 14.$$

15.
$$\frac{5x^3+x-3}{5x-4} = \frac{7x^2-3x-9}{7x-10}$$
.

16.
$$\frac{x}{x-2} + \frac{x-9}{x-7} = \frac{x+1}{x-1} + \frac{x-8}{x-6}$$

17.

18.

19.

20.

21.

22.

23. 5

24.

25. $\frac{x}{x}$

26.

27. $\frac{1}{1}$

28. $\frac{1}{2}$

29. $\frac{1}{2}$

30. $\frac{3x}{2}$

31. 1.

17.
$$\frac{x^2 - 3x - 9}{x - 5} + \frac{x^2 - 7x - 17}{x - 9} = \frac{x^2 - 6x - 15}{x - 8} \cdot 2$$

18.
$$\frac{4x+7}{4x+5} + \frac{4x+9}{4x+7} = \frac{4x+6}{4x+4} + \frac{4x+10}{4x+8}$$
.

19.
$$\frac{2x-3}{2x-4} - \frac{2x-4}{2x-5} = \frac{2x-7}{2x-8} - \frac{2x-8}{2x-9}$$

$$20. \frac{7x+6}{28} - \frac{2x+4\frac{2}{7}}{23x-6} + \frac{x}{4} = \frac{11x}{21} - \frac{x-3}{42}.$$

21.
$$\frac{x^2-5}{x^2-6} + \frac{x^2-11}{x^2-12} = \frac{x^2-7}{x^2-8} + \frac{x^2-9}{x^2-10}$$

22.
$$\frac{x-1\frac{25}{26}}{2} - \frac{2-6x}{18} = x - \frac{5x-\frac{1}{4}(10-3x)}{39}$$
.

23.
$$\frac{1-2x}{3(x^2-x+1)} + \frac{1+x}{2(x^2+1)} + \frac{1}{6(x+1)} = \frac{1}{9(x^2+1)}$$

24.
$$\frac{2x^2+x-30}{2x-7} + \frac{x^2+4x-4}{x-1} = \frac{x^2-17}{x-4} + \frac{2x^2+7x-13}{2x-3}$$

25.
$$\frac{x-a}{x-b} + \frac{x-b}{x-a} - \frac{(a-b)^2}{(x-a)(x-b)} = \frac{2(a-x)}{a+x}$$

26.
$$\frac{12x+10a}{3x+a} + \frac{28x+117a}{2x+9a} = 18.$$

 $= \frac{4}{x-8}$

 $= \frac{32}{x-17}.$

$$27. \frac{13\frac{1}{2}x-5}{13\frac{1}{2}x-6} + \frac{13\frac{1}{2}x-11}{13\frac{1}{2}x-12} = \frac{13\frac{1}{2}x-7}{13\frac{1}{2}x-8} + \frac{13\frac{1}{2}x-9}{13\frac{1}{2}x-10}.$$

28.
$$\frac{1}{2(x-1)^2} + \frac{1}{2(x-1)} - \frac{x}{2(x^2+1)} = \frac{16x}{(x-1)(x^2+1)}$$

29.
$$\frac{1}{2}(\frac{2}{3}x+4) - \frac{7\frac{1}{2}-x}{8} = \frac{x}{2}(\frac{6}{x}-1)$$
.

$$30. \ \frac{3x}{2} - \frac{81x^2 - 9}{(3x - 1)(x + 3)} = 3x - \frac{3}{2} \cdot \frac{2x^2 - 1}{x + 3} - \frac{57 - 3x}{2}$$

81.
$$1 + \frac{2x+1}{2(x-1)} - \frac{4x+5}{2(x+1)} = \frac{x^2+3x+2}{x^2-2x+1} - 1$$

82.
$$\frac{7x-80}{10\frac{1}{2}} - \frac{5x-7}{\frac{1}{2}x-3} - \frac{2-21x}{21} = \frac{42x-171}{63} - 10 + \frac{2x-9}{63-14x} - \frac{1}{7}(4-1)$$

83.
$$\frac{18x - 22}{13 - 2x} + 6x + \frac{1 + 6x}{8} = 13\frac{1}{4} - \frac{101 - 64x}{8}$$

31.
$$\frac{4-9x}{1-8x} - \frac{5-12x}{7-4x} = 2 - \frac{24x^2-5}{7-25x+12x^2}$$

35.
$$\frac{8x+25}{2x+5} + \frac{16x+93}{2x+11} = \frac{18x+86}{2x+9} + \frac{6x+26}{2x+7}$$

36.
$$\frac{1}{x+a+b} + \frac{1}{x-a+b} + \frac{1}{x+a-b} + \frac{1}{x-a-b} = 0.$$

Art. XLII. The results deduced in Section III., Chapter IV., may often be applied with advantage.

EXAMPLES.

1.
$$\frac{ax+b}{cx+d} = \frac{m}{n}$$

$$\therefore \frac{(ax+b)d-(cx+d)b}{(cx+d)a-(ax+b)c} = \frac{md-nb}{na-mc} \text{ (page 123).}$$

$$\therefore x = \frac{md - nb}{na - mc}$$

$$2. \quad \frac{ax^2 + bx + c}{mx^2 + nx + p} = \frac{a}{m}$$

$$\therefore \frac{(ax^2 + bx + c) - ax^2}{(mx^2 + nx + p) - mx^2} = \frac{a}{m} \text{ (page 122)}.$$

$$\therefore \frac{bx+c}{nx+p} = \frac{a}{m} \&c.$$

$$3. \quad \frac{3x+7}{x+4} = \frac{3x-13}{x-4}.$$

By different different

1

5.

Here

ber, and

.

6. $\frac{1}{1}$

 $\frac{\nu}{\nu}$

squari

By (5) each of these fractions =

difference of numerators difference of denominators
$$\therefore \frac{20}{8} = \frac{3x+7}{x+4} = 8 - \frac{5}{x+4}$$
 or $\frac{1}{2} = \frac{5}{x+4}$, $\therefore x=6$.

4.
$$\frac{mx+a+b}{nx-c-d} = \frac{mx+a+c}{nx-b-d}$$

$$\therefore \frac{mx+a+b}{mx+a+c} = \frac{nx-c-d}{nx-b-d}; \text{ or By 4, page 122,}$$

$$\frac{mx+a+b}{b-c} = \frac{nx-c-d}{b-c}; \text{ or } (n-m)x$$

$$=$$
 $a+b+c+d$, $x=\&c$.

5.
$$\frac{\sqrt{(a+x)} + \sqrt{(a-x)}}{\sqrt{(a+x)} - \sqrt{(a-x)}} = a$$
.

Here by (6), page 122, we have

$$\frac{2\sqrt{(a+x)}}{2\sqrt{(a-x)}} = \frac{a+1}{a-1}; \text{ or, cancelling the 2 in left hand mem-$$

ber, and squaring,

=0.

Chapter

$$\frac{a+x}{a-x} = \frac{(a+1)^2}{(a-1)^2}$$
, whence, again by (6),

$$\frac{2x}{2a} = \frac{(a+1)^2 - (a-1)^2}{(a+1)^2 + (a-1)^2} = \frac{4a}{2(a^2+1)} = \frac{2a}{a^2+1}$$

$$\therefore \quad x = \frac{2a^2}{a^2 + 1}.$$

6.
$$\frac{1/(x-a+b)-1/(x+a-b)}{1/(x-a+b)+1/(x+a-b)} = \frac{a-b}{a+b}$$

$$\therefore \frac{\sqrt{(x-a+b)}}{\sqrt{(x+a-b)}} = \frac{a}{b};$$

squaring and again applying (6),

$$\therefore -\frac{2x}{2(a-b)} = \frac{a^2 + b^2}{a^2 - b^2}, \text{ and } x = -\frac{a^2 + b^2}{a+b}.$$

Exercise lii.

1.
$$\frac{1+x}{1-x} = \frac{1}{a}$$
; $\frac{x+a}{x-a} = m$; $\frac{ax+b}{ax-b} = \frac{m}{n}$.

2.
$$\frac{a+x}{b+2x} = 1$$
; $\frac{a(b+x)}{a-x} = b$; $\frac{a}{a-x} = \frac{b}{b-x}$

3.
$$\frac{a+x}{a-x} = \frac{a+b}{a-b}$$
; $\frac{x+m}{x-m} = \frac{a+b}{a-b}$; $\frac{a+b}{1+cx} = \frac{a-b}{1-cx}$

4.
$$\frac{a+bx}{a+b} = \frac{c+dx}{c+d}$$
; $\frac{a+bx}{a-b} = \frac{c+dx}{c-d}$; $\frac{a-x}{b-x} = \frac{a+x}{b+x}$

$$5. \ \frac{2x^2 - 5x + 6}{2x^2 - 7x + 3} = \frac{x^3 - 7x + 5}{x^2 - 9x + 2}.$$

6.
$$\frac{ax+b-c}{ax-b+c} = \frac{(b-c)^2}{(b+c)^2}$$
.

7. If
$$\sqrt{(x+y)} + \sqrt{(x-y)} = \frac{x}{y}$$
, shew that $\frac{x+y}{x-y} = 1$.

8.
$$\frac{2x-7}{2x-8} = \frac{x+7}{x+11}$$
; $\frac{4x-5}{2x+10} = \frac{10x-32}{5x-8\frac{1}{2}}$.

9.
$$\frac{57x-48}{19x+13} = \frac{39x-7}{19x+25}$$
; $\frac{29x+5\frac{4}{5}}{115x-29} = \frac{36x-7}{180x+23}$

10.
$$\frac{210x-73}{310x-66} = \frac{21x+7\cdot3}{81x+8}; \frac{mx-a-b}{nx-c-d} = \frac{mx-a-c}{nx-b-d}$$

11.
$$\frac{8x + \sqrt{(4x - x^2)}}{8x - \sqrt{(4x - x^2)}} = 2$$
; $\frac{\sqrt{(12x + 1)} + \sqrt{(12x)}}{\sqrt{(12x + 1)} - \sqrt{(12x)}} = 18$

12.
$$\frac{x^3 + ax^2 - bx + c}{x^3 - ax^2 + bx + c} = \frac{x^2 + ax - b}{x^2 - ax + b}$$

13.
$$\frac{\sqrt{(2a^2 - x^2) + b\sqrt{(2a - x)}}}{\sqrt{(2a^2 - x^2) - b\sqrt{(2a - x)}}} = \frac{\sqrt{a + b}}{\sqrt{a - b}}$$

14.
$$\frac{\sqrt{(x^2+a^2)}+\sqrt{(x^2-a^2)}}{\sqrt{(x^2+a^2)}-\sqrt{(x^2-a^2)}} = a^2.$$

15.
$$\frac{8x^3 + 12x^2 - 8x + 5}{8x^3 - 12x^2 + 8x_1 + 5} = \frac{4x^2 + 6x - 4}{4x^2 - 6x + 4}$$

16

17

18.

18. 20.

21.

22.

23.

24.

25.

26.

27.

28.

29. 1

80. -

31.

Art.

16.
$$\frac{\sqrt[3]{(x+1)} - \sqrt[3]{(x-1)}}{\sqrt[3]{(x+1)} + \sqrt[3]{(x-1)}} = \frac{1}{2}$$

17.
$$\frac{28 + \sqrt{x}}{28 - \sqrt{x}} = \frac{9 + 3\sqrt{x}}{9 + 2\sqrt{x}}$$

18.
$$\frac{a^3x^3 + a^3bx^2 - acx + d}{a^3x^3 - a^2bx^2 + acx + d} = \frac{a^2x^2 + abx - c}{a^2x^3 - abx + c}$$

18.
$$\frac{5\sqrt{(2x-1)+2\sqrt{(3x-3)}}}{4\sqrt{(2x-1)-2\sqrt{(3x-3)}}} = 2\frac{11}{13}.$$

20.
$$\frac{1/2x + 1/(8 - 2x)}{1/2x - 1/(8 - 2x)} = \frac{3}{2}$$

21.
$$\frac{2\sqrt[8]{(3x+3)} + \sqrt[8]{(7x+8)}}{2\sqrt[8]{(3x+3)} - \sqrt[8]{(7x+8)}} = 5.$$

22.
$$83\{13-2\sqrt{(x-5)}\}=3\{13+2\sqrt{(x-5)}\}$$
.

23.
$$(\sqrt{n+1})\{\sqrt{(nx+1)} - \sqrt{nx}\} = (\sqrt{n-1})\{\sqrt{(nx+1)} + \sqrt{nx}\}$$

24.
$$\frac{\sqrt{(x+c)} + \sqrt{b}}{\sqrt{(x+c)} - \sqrt{b}} = \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} - \sqrt{a}}$$

1.

18

25.
$$\frac{\sqrt{x+28}}{\sqrt{x+4}} = \frac{\sqrt{x+38}}{\sqrt{x+6}}$$
; $\frac{\sqrt[3]{2x+17}}{\sqrt[3]{2x+9}} = \frac{\sqrt[3]{2x+27}}{\sqrt[3]{2x+15}}$.

26.
$$\frac{\sqrt{x+2a}}{\sqrt{x+b}} = \frac{\sqrt{x+4a}}{\sqrt{x+3b}}; \quad \frac{3x-1}{\sqrt{3x+1}} = \frac{1+\sqrt{3x}}{2}.$$

27.
$$\frac{\sqrt{a-\sqrt{(a-x)}}}{\sqrt{a+\sqrt{(a-x)}}} = a; \quad \frac{\sqrt{x+\sqrt{b}}}{\sqrt{x-\sqrt{b}}} = \frac{a}{b}.$$

28.
$$\frac{ax+1+\sqrt{(a^2x^2-1)}}{ax+1-\sqrt{(a^2x^2-1)}}=b.$$

29.
$$\frac{1 - \sqrt{1 - \sqrt{1 - x}}}{1 + \sqrt{1 - \sqrt{1 - x}}} = a.$$

30.
$$\frac{|a+x|}{\sqrt{(2ax+x^2)}} = \frac{b+1}{b-1}; \quad \frac{1+x+x^2}{1-x+x^2} = \frac{62}{63} \times \frac{1+x}{1-x}.$$

31.
$$\frac{5x^4 + 10x^2 + 1}{x^5 + 10x^3 + 5x} = \frac{a^5 + 10a^3 + 1}{5a^4 + 10a^2 + 1}.$$

Art. XLIII. Various other artifices may be employed to simplify the solution of equations.

EXAMPLES.

1. Solve $2+\sqrt{(4x^2-9x+8)}-2x=0$; here there is but one surd, and it is convenient to make that surd one side of the equation and transpose all the rational terms to the other; this gives $\sqrt{(4x^2-9x+8)}=2x-2$; squaring both sides,

$$4x^2-9x+8=4x^2-8x+4$$
, $x=4$.

2. $\sqrt{(a+x)} + \sqrt{(a-x)} = 2\sqrt{x}$. We might square this as it stands, but the work will be simplified if we first transpose, thus

$$\sqrt{(a+x)} = 2\sqrt{x} - \sqrt{(a-x)}$$
; now squaring,
 $a+x = 4x + a - x - 4\sqrt{(ax-x^2)}$, or
 $x = 2\sqrt{(ax-x^2)}$. Again squaring,
 $x^2 = 4ax - 4x^2$, whence $x = 0$, or $\frac{4a}{5}$.

3. Clear of radicals

$$\sqrt[3]{x} + \sqrt[3]{y} + \sqrt[3]{z} = 0$$
. Transposing,
 $\sqrt[3]{x} + \sqrt[3]{y} = -\sqrt[3]{z}$: cube by formula [6],
 $x + y + 3\sqrt[3]{x}y(\sqrt[3]{x} + \sqrt[3]{y}) = -z$; and substituting for
 $\sqrt[3]{x} + \sqrt[3]{y}$ its value $-\sqrt[3]{z}$, this becomes
 $x + y - 3\sqrt[3]{x}yz = -z$, or
 $x + y + z = 3\sqrt[3]{x}yz$; ... cabing again,
 $(x + y + z)^3 = 27xyz$.

4.
$$\frac{a+x+\sqrt{(2ax+x^2)}}{a+x} = b$$
.

Dividing and transposing, we have

$$\frac{\sqrt{(2ax+x^2)}}{a+x} = b-1, \quad \therefore \frac{2ax+x^2}{a^2+2ax+x^2} = (b-1)^3; \text{ again by}$$

division in left-hand member,

$$-\frac{a^2}{(a+x)^2} + 1 = (b-1) \therefore \frac{a}{a+x} = \sqrt{1 - (b-1)^2}, \text{ or }$$

$$\frac{x+a}{a} = 1 : \sqrt{1 + (b-1)^2}, \text{ or }$$

$$\frac{x}{a} + 1 = \&c.$$

5

W

No

equat

equat

6.

Cu

1

5. 1 4. 1

5.

6.

7. 4 8. 1

9. _V

10. 11.

12.

but one the equahis gives

is as it se, thus

ing ior

again by

5. Solve $\sqrt{(4x^2+19)} + \sqrt{(4x^2-19)} = \sqrt{47+8}$.

We have the identity

$$(4x^2+19)-(4x^2-19)=38=47-9$$
.

Now dividing the members of this identity by those of the given equation, we have

 $\sqrt{(4x^2+19)} - \sqrt{(4x^2-19)} = \sqrt{47-3}$. Adding this to the given equation, then

$$2\sqrt{(4x^2+19)} = 2\sqrt{47}$$
, $\therefore 4x^2+19 = 47$, and $a = \pm \sqrt{7}$.

6.
$$\sqrt[3]{(25+x)} + \sqrt[3]{(25-x)} = 2$$
.

Cubing by formula [6]. (See Ex. 3), we have

$$25+x+25-x+6\sqrt[3]{(25^2-x^2)}=8$$
, or

$$\sqrt[8]{(625-x^2)} = -7$$
, or $(625-x^2) = -343$;

$$x^9 - 525 + 458 = 968$$
, and $x = \pm 22\sqrt{2}$.

Exercise liii.

1.
$$\sqrt{(x+4)} + \sqrt{(x-3)} = 7$$
.

2.
$$\sqrt{(3x+1)} + \sqrt{(4x+4)} = 1$$
.

8.
$$\sqrt{(2x+10)} + \sqrt{(2x-2)} = 6$$
.

4.
$$\sqrt{(mx)} - \sqrt{(nx)} = m - n$$
.

5.
$$\sqrt{(bx)} + \sqrt{(ab+bx)} = \sqrt{x}$$
.

6.
$$\sqrt{x} + \sqrt{(x+3)} = \frac{5}{\sqrt{(x+3)}}$$

7.
$$\sqrt{(ax+x^2)} = (1+x)$$
.

8.
$$\sqrt[3]{(17x-26)} = \frac{2}{9}$$
.

$$9. \ \sqrt{x-\sqrt{(a+x)}} = \sqrt{\frac{a}{x}}$$

10.
$$b+x-\sqrt{(b^2+x^2)}=c^2$$
.

11.
$$\sqrt{(8+x)} - \sqrt{x} = 2\sqrt{(1+x)}$$
.

12.
$$\sqrt{(2x-27a)} = 9\sqrt{a} - \sqrt{(2x)}$$
.

13.
$$\sqrt[8]{(1-x)-1}\sqrt[8]{(1+x)} = \sqrt[8]{3}$$
.

14.
$$\sqrt[3]{(3+x)} + \sqrt[3]{(3-x)} = \sqrt[3]{7}$$
.

15.
$$t^{3/}(x+1) - t^{3/}(x-1) = t^{3/}11$$
.

16.
$$t^{3/}(a+x)+t^{3/}(a-x)=t^{3/}b$$
.

17.
$$\sqrt[3]{(1+\sqrt{x})} + \sqrt[3]{(1-\sqrt{x})} = 2.$$

18.
$$\sqrt{x} - \sqrt{a^2 + x^2} = \frac{1}{2} \sqrt{a}$$
.

19. Clear of radicals
$$\sqrt[3]{a} + \sqrt[3]{b} - \sqrt[3]{c}$$
.

20. Solve
$$x + \sqrt{(a^2 + x^2)} = \frac{na^2}{\sqrt{(a^2 + x^2)}}$$

21. Clear of radicals
$$\sqrt{x+\sqrt{y+\sqrt{x-\sqrt{n}}}}$$
. Solve the following equations:

22.
$$\sqrt{(1+x)} + \sqrt{1+x} + \sqrt{(1-x)} = \sqrt{1-x}$$

23.
$$\sqrt{(x+1/x)} - \sqrt{(x-1/x)} = a\sqrt{\frac{x}{x+1/x}}$$

24.
$$\sqrt{(1+x+x^2)} + \sqrt{(1-x+x^2)} = mx$$
.

25.
$$\sqrt{(a^2-x^2)} + x\sqrt{(a^2-1)} = a^2(1-x^2)$$
.

26.
$$\frac{bx-c^2}{1/(bx)+c} = \frac{1/(bx)+c}{n}-a$$
.

27.
$$\sqrt{(2x^2+5)} + \sqrt{(2x^2-5)} = \sqrt{15} + \sqrt{5}$$
.

28.
$$\sqrt{(3x^2+10)} + \sqrt{(3x^2-10)} = \sqrt{17} + \sqrt{3}$$
.

29.
$$\sqrt{(3x^2+9)} - \sqrt{(3x^2-9)} = \sqrt{34+4}$$
.

80.
$$\sqrt{(3a-3b+x^2)} + \sqrt{(2a-2b+x^2)} = \sqrt{a} + \sqrt{x}$$
.

81.
$$\sqrt{(4a^2 - 3b^2 - 2x^2)} + \sqrt{(3a^2 - 3b^2 - x^2)} = a + x$$

32. Clear of radicals,
$$\sqrt[3]{(2x)} - \sqrt[3]{(2y)} - \sqrt[3]{(2z)}$$
.

33.
$$\sqrt{(a+x)} + \sqrt{(a-x)} = 2x + \sqrt{(a^2+x^2)}$$

34.
$$\sqrt{(x^2+2ax)}+\sqrt{(x^2-2ax)}=\frac{nax}{\sqrt{(x^2+2ax)}}$$

85.
$$\sqrt{\left(\frac{\sqrt{x+a}}{\sqrt{x-a}}\right)} - \sqrt{\left(\frac{\sqrt{x-a}}{\sqrt{x+a}}\right)} = \sqrt{(x-a^2)}$$
.

86.
$$\sqrt{\{(2a+x)^2+b^2\}}+\sqrt{\{(2a-x)^2+b^2\}}=2a$$

Art princip

Fact

or

Tran

Add

Art. XLIV. Sometimes a factor can be discovered, and the principle of Art. XL. applied.

EXAMPLES.

1.
$$\frac{x^4 + a^2x^2 + a^4}{x - a} = x^3 + (a - b)x^2 + (a^2 - ab)x - a^2b.$$

Factoring we have

$$\frac{(x^2 + ax + a^2)(x^2 - ax + a^2)}{x - a} = (x - b)(x^2 + ax + a^2),$$

or
$$x^2 - ax + a^2 = (x - a)(x - b)$$
;

:.
$$(a+b-a)x = ab-a^2$$
, and $x = a - \frac{a^2}{b}$.

2.
$$\frac{8abc}{a+b} - \frac{bx}{a} + \frac{a^2b^2}{(a+b)^3} = 3cx - \frac{b^2x}{a} \cdot \frac{2a+b}{(a+b)^2}$$

Transpose $\frac{bx}{a}$ and factor, then

$$\frac{ab}{a+b} \left\{ 3c + \frac{ab}{(a+b)^2} \right\} = x \left\{ 3c + \frac{b}{a} \left(1 - \frac{2ab+b^2}{(a+b)^2} \right) \right\}$$

$$= x \left\{ 3c + \frac{b}{a} \cdot \frac{a^2}{(a+b)^2} \right\}$$

$$= x \left\{ 3c + \frac{ab}{(a+b)^2} \right\}$$

$$\therefore \frac{ab}{a+b} = x.$$

8.
$$\frac{x+a}{(a-b)(c-a)} - \frac{x-b}{(a-b)(b-c)} - \frac{x-c}{(b-c)(c-a)} = \frac{b+c}{(a-b)(b-c)(c-a)}$$

Add term by term the identity (Th. iii., page 54).

$$\frac{x-a}{(a-b)(c-a)} + \frac{x-b}{(a-b)(b-c)} + \frac{x-c}{(b-c)(c-a)} = 0.$$

$$\therefore \frac{2x}{(a-b)(c-a)} = \frac{b+c}{(a-b)(b-c)(c-a)}.$$

$$\therefore x = \frac{1}{2} \cdot \frac{b+c}{b-c}$$

4.
$$(x+a+b)^3+(a+b)^3-(x+b)^3-(x+a)^3+x^3+a^3+b^3=abc$$
.

The left hand member vanishes for x=0, and \therefore by symmetry for a=0 and b=0; \therefore it is of the form mabx in which m is numerical.

Put x = a = b, and m is found to be 6,

: the equation reduces to

$$6abx = abc$$
, : and $x = \frac{1}{6}c$.

5.
$$\left(\frac{x-a}{x-b}\right)^3 = \frac{x-2a+b}{x-2b+a}$$
; let $x-b=m$, $x-a=n$, and $x = m-n=a-b$, then we have

1.

2.

3.

4.

đ.

1.

10.

11.

12.

18.

$$\frac{m^3}{n^3} = \frac{n - (m - n)}{m + (m - n)} = \frac{2n - m}{2m - n}$$

$$2m^4 - nm^3 = 2n^4 - n^3m$$
, and $2(m^4 - n\frac{4}{2}) = mn(m^3 - n^2) = 0$, which is divisible by $m^3 - n^3$,

$$m^2 - n^2 = 0$$
, or $m + n = 0$;

But
$$m+n=2x-a-b=0$$
, : $x=\frac{1}{2}(a+b)$.

6.
$$\frac{1}{8}$$
: $\frac{x^2 - 4x + 2}{x^2 - 4x - 1} + \frac{1}{6}$: $\frac{x^2 - 4x + 3}{x^2 - 4x - 3} - \frac{2}{9}$: $\frac{x^2 - 4x + 3}{x^2 - 4x - 6} = \frac{5}{18}$

Let $y=x^2-4x$, then this equation becomes

$$\frac{1}{8}$$
. $\frac{y+2}{y-1} + \frac{1}{6}$. $\frac{y+3}{y-3} - \frac{2}{9}$. $\frac{y+8}{y-6} = \frac{5}{18}$, or by division,

$$\frac{1}{3} + \frac{1}{y-1} + \frac{1}{6} + \frac{1}{y-3} - \frac{2}{9} - \frac{2}{y-6} = \frac{5}{18}$$
, or

$$\frac{1}{y-1} + \frac{1}{y-3} - \frac{2}{y-6} = 0$$
; this may be written

$$\frac{1}{y-1} - \frac{1}{y-6} + \frac{1}{y-3} - \frac{1}{y-6} = 0$$
, or

$$\frac{5}{y-1} + \frac{3}{y-3} = 0$$
, $\therefore 5y-15+3y-3=0$, or

$$y = 2\frac{1}{4}$$
 ... $x^2 - 4x = 2\frac{1}{4}$, or $x^2 - 4x + 4 = 4 + 2\frac{1}{4}$,

• and $x-2=\pm \frac{5}{2}$. We might assume $(x-2)^2=y$, when the given equation would take the form

 $+b^3 = abc.$ symmetry
hich m is

and :

 $7m^2-n^2$

$$\frac{-3}{-6} = \frac{5}{18}$$

ision,

$$\frac{5}{18}$$
, or

the given

 $\frac{1}{8} \cdot \frac{y-2}{y-5} + \frac{1}{6} \cdot \frac{y-1}{y-7} - \frac{2}{9} \cdot \frac{y-1}{y-10} = \frac{5}{18}$

And reducing as before, we should find

$$y = 6\frac{1}{4} = (x-2)^2$$
, $\therefore x-2 = \pm \frac{6}{2}$, as before.

Exercise liv.

1.
$$\frac{x^4 + a^2x^2 + a^4}{x - b} = x^3 - (a - b)x^2 + (a^3 - ab)x + a^3b.$$

2.
$$\frac{x^4+4a^4}{x+b} = x^3+2a(a-b)x+(2a-b)x^2-2a^2b$$
.

3.
$$\frac{a^2}{a^2+ab+b^2} - \frac{a^2x}{a^3-b^3} = \frac{2c}{a-b} - 2cx$$

4.
$$\frac{1}{a+b+x} - \frac{1}{a} - \frac{1}{b} - \frac{1}{x} = 2ab(x+b)x^2$$
.

6.
$$\frac{1}{(x-b)(x-c)} + \frac{1}{(a+c)(a+b)} =$$

$$\frac{1}{(a+c)(x-c)} + \frac{1}{(a+b)(x-b)}$$

$$6. \frac{bx}{a} - \frac{8ab}{a-b} + \frac{a^2b^2}{(a-b)^3} = 3x - \frac{b^2x}{a} \cdot \frac{2a-b}{(a-b)^2}$$

$$I. \frac{x^3 + 2ax}{x^4 - 11x^2a^2 + a^4} = \frac{x - a}{x^2 - 3ax - a^2}.$$

3.
$$\frac{1}{2} \left(\frac{x-a}{x+a} \right)^2 - \frac{1}{2} (-x+a) = \frac{x-a}{x+a}$$

3.
$$x^3 - (a+b+c)x + (a^2+b^2+c^2)x - \frac{1}{3}(a^3+b^3+c^3)$$

= $(x-a)(x-b)(x-c)$.

10.
$$\frac{1}{ax} + \frac{1}{bx} + \frac{1}{cx} = \frac{1}{2}(a+b+c)^2 - \frac{1}{2}\left(\frac{a}{bcx} + \frac{b}{acx} + \frac{c}{abx}\right)$$

11.
$$\frac{1-ax}{bc} + \frac{1-bx}{ac} + \frac{1-cx}{ab} = \left(\frac{2}{a} + \frac{2}{b} + \frac{2}{c}\right)x$$
.

12.
$$\frac{(a-b)^2}{abc} - 1 + \frac{a}{b} = \frac{a^2 - b^2}{abc} + \left(1 + \frac{a}{b}\right)x_{\bullet}$$

18.
$$x^3 + (b+c)^3 + 3b(b+c)x = b^3$$
.

81.

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

14.
$$x-a-3\sqrt[3]{(abx)}=b$$
.

15.
$$11x^4 + 10x^3 - 40x = 176$$
.

16.
$$\frac{x}{(a+b)^3} + \frac{ac}{(a-b)^3} - \frac{c}{(a^2-b^2)(a+b)} = \frac{ax}{(a-b)^3}$$

17.
$$x^3 - \frac{a-b}{a+b} \cdot x^2 + \frac{2cx^2}{1+cx} = x - \frac{a-b}{a+b} \cdot \frac{1-cx}{1+cx}$$

18.
$$\frac{4x^4 + 4a^4 - 39x^2a^2}{2x + a} = \frac{1}{2}(4x^3 - 8x^2a - 9xa^2 - 2a^3).$$

19.
$$\frac{7}{x^2 - 11x + 28} + \frac{7}{x^2 - 17x + 70} = \frac{3\frac{1}{2}x^2}{x^2 - 14x + 40}$$
.

20.
$$\frac{8}{x^2 - 6x + 5} + \frac{8}{x^2 - 14x + 45} = \frac{x^4}{x^2 - 10x + 9}$$
.

21.
$$\frac{x+a}{(a-b)(c-a)} - \frac{x-b}{(a-b)(b-c)} + \frac{x+c}{(b-c)(c-a)}$$
$$= \frac{a+c}{(a-b)(b-c)(c-a)}.$$

22.
$$(x-a)^3 + (a-b)^3 + (b-x)^3 = x^2 - a^2$$
.

23.
$$x \left(\frac{x+2a}{x-a} \right)^3 + a \left(\frac{a+2x}{a-x} \right)^3 = 2a$$
.

24.
$$(x+a)^3 - (a+b)^3 + (b-x)^3 = (x+a)(x+b)(a+b)$$
.

25.
$$x^3 - (x-b)^3 - (x-a+b)^3 - a^3 + (x-a)^3 + (a-b)^3 + b^3$$

= $(a-b)c^2$

26.
$$(x+a)^3 - (x+b)^3 - (x-b)^3 - (2a)^3 + (x-a)^3 + (a+b)^3 + (a-b)^3 = (a^2-b^2)c$$
.

27.
$$\frac{x+a}{x^2+ax+a^2} - \frac{x-a}{x^2-ax+a^2} = \frac{a^4}{x(c^4+a^2x^2+a^4)}.$$

28.
$$(x+a+b)^4 - (x+a)^4 - (x+b)^4 + x^4 - (a+b)^4 + a^4 + b^4$$

= $12ab\{x^2 + (a+b)^2\}.$

29.
$$\frac{a-x}{a^2-bc} + \frac{b-x}{b^2-ca} + \frac{c-x}{c^2-ab} = \frac{3x}{ab+bc+ca}$$

30.
$$x^3(b-a^2) + a^3(x-b^2) + b^3(a-x^2) + abx(abx-1)$$

= $(a-x^2)(b^2-a^4)$.

81.
$$(1+x+x^2)^2 = \frac{ax+1}{ax-1} \cdot (1+x^2+x^4)$$
.

32.
$$\sqrt{\frac{x+a}{x+b}} - \frac{a-b}{2(x+c)} = 1.$$

$$88. \frac{x+a}{x+b} = \left(\frac{2x+a+c}{2c+b+c}\right)^{2}.$$

34
$$\sqrt{(x^2+27x+180)} - \sqrt{(x^2+26x+168)} = \sqrt{\frac{x+15}{x+12}}$$

35.
$$\{(x+a+y/(x^2+2ax+b^2))\}^3 + \{x+a-\sqrt{(x^2+2ax+b^2)}\}^3$$
' = 14(x+a)3. (See page 17, Ex. 1).

36.
$$\{x+a+\sqrt{(x^2-2ax-2b^2)}\}^2+\{x+a-\sqrt{(x^2-2ax-2b^2)}\}^2$$

= $x^2-b^2+2a(a-b)$.

$$37. \left(\frac{x+a}{-b}\right)^3 = \frac{x+2a+b}{x-a-2b}.$$

b)3+

-64

38.
$$(5x-7)^3-(2x-4)^3=27(x^3-1)$$
.

$$39. \frac{1}{8} \cdot \frac{x^2 - 6x - 1}{x^2 - 6x - 4} + \frac{1}{5} \cdot \frac{x^2 - 6x - 4}{x^2 - 6x - 9} - \frac{2}{9} \cdot \frac{x^2 - 6x - 7}{x^2 - 6x - 16}$$
$$= \frac{14}{45} + \frac{4}{x^2 - 6x - 9}.$$

40.
$$\frac{1}{5} \cdot \frac{x^2 - 2x - 3}{x^2 - 2x - 8} + \frac{1}{9} \cdot \frac{x^2 - 2x - 15}{x^2 - 2x - 24} - \frac{2}{13} \cdot \frac{x^2 - 2x - 35}{x^2 - 2x - 48}$$

$$= \frac{2}{585}$$

41.
$$\{x+a-b+(-2+a^2-b^2)\}^3 = (x+a-b-\sqrt{(x^2+a^2-b^2)})^3 = 8(x+a-b)^3$$
.

42.
$$\frac{1}{(x+a)^2} + \frac{1}{(x+b)^2 - a^2} = \frac{1}{x^2 - (a+b)^2} + \frac{1}{x^2 - (a-b)^2}.$$

43.
$$41\left(\frac{6 + 45}{x + 1} + \frac{7x + 67}{x - 4}\right) + 180 =$$

$$89\left(\frac{8x + 57}{x + 2} + \frac{9x + 68}{x + 8}\right).$$

44. 51
$$\frac{16x+45}{x-1} - \frac{9x+25}{x-4} + 863 =$$

$$61 \left(\frac{27x-8}{x-2} - \frac{7x+80}{x-3} \right).$$

45.
$$(x+a)(x+3a)(x+4a)(x+6a) = x^4+6a^2(x^2+7ax+6a^2)$$
.

46.
$$\frac{1}{x+6a} + \frac{2}{x-3a} + \frac{8}{x+2a} = \frac{6}{x+a}$$

Exercise lv.

1.
$$a(b-x) + b(c-x) = b(a-x) + cx$$
.

2.
$$(a+bx)(a-b)-(ax-b)=ab(x+1)$$
.

8.
$$(a-b)(x-c)+(a+b)(x+c)=2(bx+ad)$$
.

4.
$$(a-7)(x-c)-(a+b)(x+c)+2a(b+c)=0$$

5.
$$(a-b)(a-c)(a+x) + (a+b)(a+c)(a-x) = 0$$
.

6
$$(a-b)(a-c+x) + (a+b)(a+c-x) = 2a^2$$
.
(solve in $\{x-c\}$).

7
$$(m+a)(a+b-x)+(a-m)(b-x)=a(m+b)$$
.

8.
$$m(a+b-x)=n(x-a-b)$$
.

9.
$$(m+n)(m-n-x)+m(x-n)-n(x-m)=m^2-n^3$$
.

$$10. \ \frac{m-x}{m} + \frac{n-x}{n} + \frac{p-x}{n} = 3.$$

11.
$$\frac{a^2b-x}{a} + \frac{b^2c-x}{b} + \frac{c^2a-x}{c} = 0.$$

12.
$$\frac{a-x}{bc} + \frac{b-x}{ca} + \frac{c-x}{ab} = 0$$
.

18.
$$\frac{1-ax}{bc} + \frac{1-bx}{ca} + \frac{1-cx}{ab} = 0$$
.

(Deduce the solution from that of No. 12),

14.
$$\frac{a-bx}{bc} + \frac{b-cx}{ca} + \frac{c-ax}{ab} = 0.$$

15.
$$(a+b+c)x - \frac{a^2+b^3}{a-b} = \frac{2abx}{a+b} + \frac{a+b}{a-b}$$

16.

17.

18.

19.

20.

21.

22.

23.

24.

25. (a

26. 2

27. (a

28. (a

29. (a

(a;

30. (a

16.
$$\frac{2abc}{a+b} + \frac{a^9b^9}{(a+b)^8} + \frac{(2a+b)b^9x}{a(a+b)^9} = \frac{(b+8ac)x}{a}$$

17.
$$\frac{10}{x} + \frac{4}{9} = \frac{9}{x} + \frac{2}{3}$$
 (Solve in $\frac{1}{x}$).

18.
$$\frac{7}{x} + \frac{1}{3} = \frac{23 - x}{3x} + \frac{7}{12} - \frac{1}{4x}$$

+6a2).

19.
$$\frac{7}{8} + \frac{18}{5x} = \frac{2(5x - 12)}{8x} - \frac{17}{20} + \frac{10}{x}$$

20.
$$\frac{10-x}{3} + \frac{13-x}{7} = \frac{7x+266}{x+21} - \frac{4x+17}{2i}$$

21.
$$\frac{5}{x+3} + \frac{8}{2(x+3)} = \frac{1}{2} - \frac{7}{2(x+3)}$$

22.
$$\frac{6x+5}{8x-15} - \frac{1+8x}{15} = \frac{1-x}{3} - \frac{x-3}{5}$$
.

23.
$$\frac{a - \frac{1}{x}}{a + \frac{1}{x}} - \frac{1}{x} = \frac{x - \frac{1}{a}}{x + \frac{1}{a}} - \frac{1}{a}$$

24.
$$\frac{a^2}{b - \frac{c^2}{d - \frac{e^2}{a}}} = 1.$$

25.
$$(x-1)(x-2)-(x-3)(x-4)=3$$
;
 $(x-3)(x-4)=(x-2)(x-6)$.

26.
$$2(x-4)(3x+4)+(2x-3)(3x+2)-6(x-2)(2x-3)=0$$

27.
$$(a-x)(b-x)=x^2$$
; $(a-x)(x-b)=x^2-c^2$.

28.
$$(a-x)(b+x) = b^2 - x^2$$
; $(x-a)(x-b) = x^2 - a^3$.

29.
$$(a+x)(b+x) = (a-x)(b-x)$$
;
 $(ax+b)(bx+a) = (b-ax)(a-bx)$.

30.
$$(a-x)(b-x)+(a-c-x)(x-b+c)=0$$
.

81.
$$(a-x)(b-x)-(c-x)(d-x)=(c+d)x-cd$$
.

32.
$$(x-a)(x-b)-(x-c)(x-d)=(d-a)(d-b)$$
.

33.
$$\{(a^2-b^2)x-ab\}\{a-(a+b)x\}+2ab^2x=\{(a+b)^2x+ab\}\{b-(a-b)x\}.$$

34
$$(x+1)(x+2)(x+3) = (x-3)(x+4)(x+5)$$
.

35.
$$(x+1)(x+2)(x+3) = (x-1)(x-2)(x-3) + 3(x+1)(4x+1)$$

86.
$$(x+1)(x+4)(x+7) = (x+2)(x+5)^2$$
.

87.
$$(x+2)(x+5)^2 = (x+3)^2(x+6)$$
.

38
$$(x-1)(x-4)(x-6) - x(x-2)(x-9) = 136$$

89.
$$(a+x)(b+x)(c+x)-(a-x)(b-x)(c-x)=2(x^3+abc)$$
.

40
$$\frac{(x-a)(x-b)(x-c)-(d-a)(d-b)(d-c)}{x-d} = (x-d)^2.$$

41.
$$x(x-a)^2 - (x-a+b)(x-a+c)(x-b-c) = (a^2+bc)(b+c)$$
.

42.
$$(x-a+b)(x-b+c)(x-c+d)-x^2(x-a+d)=bc(d-a)$$
.

43.
$$(x-a+b)(x-b+c)(x-c+d)-x(x-a+c)(x-c+d)$$

= $bc(d-a)$.

44.
$$(x-2a)(x-2b)(x-2c) - (x-a-b)(x-b-c)(x-c-a)$$

= $(a+b+c)(a^2+b^2+c^2) - 9abc$.

45.
$$x^3 - (x-a+b)(x-b+c)(x-c+a)$$

= $(a+b+c)(a^2+b^2+c^2) - 2(a^2b+b^2c+c^2a) - 3abc$.

46.
$$x\left(a-\frac{1}{x}\right)\left(b-\frac{1}{x}\right)\left(c-\frac{1}{x}\right)+\frac{1}{x^2}=\frac{a+b+c}{x}$$
.

47.
$$(x+a)(x+b)+(x+c)(x+a)=(x+b)(x+d)+(x+d)(x+c)$$
.

48.
$$(ax+b)(ax-c)-a(b-x)(ax+b)=a^2(x-c)(x-b)-a(ax-c)(c-x)$$
.

49.
$$\frac{2x-3}{x-4} + \frac{3x-2}{x-8} = \frac{5x^2-29x-4}{x^2-12x+32}$$

50.
$$\frac{5x-1}{8(x+1)} - \frac{3x+2}{2(x-1)} = \frac{x^2-30x+2}{6x^2-6}$$

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

$$51 \quad \frac{3x-7}{2x-9} - \frac{3(x+1)}{2(x+3)} = \frac{11x+3}{2x^2 - 3x - 27}.$$

52.
$$\frac{7x-5}{3x-2} + \frac{8x-7}{3x-1} + \frac{10x+7}{9x^2-9x+2} = 5.$$

(4x+1)

bc).

 $-d)^{2}$.

-a

l)(x+c).

(b+c). -a). d)

$$53. \quad \frac{2x+7}{9x-7} + \frac{9x-6}{2x-5} + \frac{5(x-1)}{9x-25} = \frac{9x-2}{2x-5} + \frac{5x-8}{9x-25} + \frac{2x+2}{9x-7}.$$

54.
$$\frac{4x^2 - 3x}{1 + x} - \frac{3x}{1 - x} = \frac{4x^3 + 2x}{x^2 - 1}; \frac{x - a}{x - m} - \frac{x - b}{x - n} = 0.$$

55.
$$\frac{\frac{1}{4} - x}{\frac{1}{4} + x} + \frac{1}{4} = \frac{x}{\frac{1}{4} - 2x} - \frac{1}{4}; \quad \frac{a}{c} + \frac{cx}{ax - b} = \frac{c}{a} + \frac{ax}{cx - b}$$

$$66. \frac{\frac{3}{2} - \frac{1}{x}}{\frac{3}{2} + \frac{1}{x}} - \frac{\frac{2}{3} - \frac{1}{x}}{\frac{2}{3} + \frac{1}{x}} = \frac{\frac{3}{2} - \frac{2}{3}}{\frac{2}{3} \cdot \frac{1}{x} + 1}$$

$$57. \ \frac{2(x-1)}{x-7} + \frac{x+8}{x-4} = \frac{3(5x+16)}{5x-28}.$$

58.
$$\frac{ax}{mx-p} + \frac{cx}{nx-q} = \frac{a}{m} + \frac{c}{n};$$
$$\frac{ax+b}{mx-p} + \frac{cx+d}{nx-q} = \frac{a}{m} + \frac{c}{n}.$$

59.
$$\frac{b-x}{a+x} + \frac{c-x}{a-x} = \frac{a(c-2x)}{a^2-x^2}$$
;

$$\frac{a+b}{x-a} + \frac{b+c}{x-b} = \frac{a+c+2b}{x-c}.$$

60.
$$\frac{ax+b}{ax-b} - \frac{bx}{ax+b} = \frac{ax}{ax-b} - \frac{(ax^2-2b)b}{a^2x^2-b^2}$$

61.
$$\frac{ax-b}{mx-p} + \frac{cx-d}{nx-q} + \frac{(bn+dm)x-(bq+dp)}{(mx-p)(nx-q)} = \frac{a}{m} + \frac{c}{n}$$

62.
$$\frac{m}{x-a} + \frac{n}{x-b} + \frac{p}{x-c} = \frac{m}{x-c} + \frac{n}{x-a} + \frac{p}{x-b}$$

63.
$$\frac{ax-2a}{ax-2b} = \frac{ax-2b}{ax+2a}$$
; $\frac{\frac{1}{a} - \frac{1}{x}}{\frac{1}{x} + \frac{1}{x}} = \frac{a - \frac{1}{x}}{a + \frac{1}{x}}$;

$$\frac{2x^2 - 8x + 5}{7x^2 - 4x + 2} = \frac{2}{7}$$

64.
$$\frac{ax^3-bx+c}{mx^2-nx+p} = \frac{a}{m}; \frac{ax^3-bx^2+ax-d}{mx^3-nx^2+mx-q} = \frac{ax-b}{mx-n}$$

65.
$$\frac{\frac{1}{4}-x}{\frac{1}{4}+x} + \frac{1}{4} = \frac{x}{\frac{1}{4}+x} - \frac{1}{4};$$

$$\frac{\frac{3}{8}x-\frac{2}{3}}{\frac{2}{8}-x} - \frac{2}{3} = \frac{2}{3} + \frac{\frac{3}{3}x+\frac{2}{3}}{x-\frac{2}{3}}.$$

66.
$$\frac{21}{x-98} - \frac{71}{x-94} = \frac{21}{x+44} - \frac{71}{x-52}$$

67.
$$\frac{7}{x-6} + \frac{8}{x-11} = \frac{9}{x-7} + \frac{1}{x-12};$$

$$\frac{9}{x-51} - \frac{9}{x-15} = \frac{2}{x-81} - \frac{2}{x+81}.$$

69.
$$\frac{5}{x-6} + \frac{4}{x-9} = \frac{8}{x-7} + \frac{1}{x-10};$$

$$\frac{1}{x-6} + \frac{8}{x-3} = \frac{5}{x-2} + \frac{4}{x-5}.$$

69.
$$\frac{m-n}{x-a} - \frac{a-b}{x-m} = \frac{m-n}{x-b} - \frac{a-b}{x-n}$$

70.
$$\frac{a+b}{x-b} - \frac{a+c}{x-c} = \frac{b+d}{x-(a+b+2c+d)} - \frac{c+d}{x-(a+2b+c+c)}$$

71.
$$(x-a+b)^3 - (x-a)^3 + (x-b)^3 - x^3 + a^3 - (a-b)^3 - b^3 = (a-b)c^2$$
.

72.
$$(x+a+b)^5 - (a+b)^5 - (x+b)^5 - (x+a)^5 + x^5 + a^5 + b^5$$

= $10abx(2x+a+b)(x+a+b)$.

73.
$$\frac{(m-n)(x-a)}{b+c} + \frac{(n-p)(x-b)}{c+a} + \frac{(p-m)(x-c)}{a+b} = 0$$

74.

75.

76.

77.

78.

79.

80.

31.

Art ple illus

DEFIN expressio Thus, if

By T: $f(a)^n = 0$ solving to x which pose f(x)

74.
$$\frac{ax-1}{a^{2}(c+b)} + \frac{bx-1}{b^{2}(c+a)} + \frac{cx-1}{c^{2}(a+b)} = \frac{3x}{ab+bc+ca}$$
75.
$$\frac{x-2a}{b+c-a} + \frac{x-2b}{c+a-b} + \frac{x-2c}{a+b-c} = 3$$
76.
$$\frac{x-2a}{b+c-a} + \frac{x-2b}{c+a-b} + \frac{x-2c}{a+b-c} = \frac{3x}{a+b+c}$$
77.
$$\frac{a-x}{a^{3}-bc} + \frac{b-x}{b^{3}-ac} + \frac{c-x}{c^{2}-ab} = \frac{3}{a+b+c}$$
78.
$$\frac{x+2ab}{a+b+c} + \frac{2ab-x}{b+c-a} = \frac{x-2ab}{a-b+c} + \frac{x+2ab}{a+b-c}$$
79.
$$\frac{a}{x+b-c} + \frac{b}{x+a-c} = \frac{a-c}{x+b} - \frac{b+c}{x+a}$$
80.
$$\frac{m^{2}(a-b)}{x-m} + \frac{n^{2}(b-c)}{x-n} + \frac{p^{2}(c-d)}{x-p} + \frac{q}{x-p} + \frac{q}{x-p}$$
81.
$$\frac{(x-2)(x-5)(x-6)(x-9)+(a+2)(a-4)(a-5)(a-11)}{x} + \frac{(b+1)(b+5)(b+8)(b+12)}{x} = (x-4)(x-7)(x-11) + \frac{(a^{2}-1)(a-8)(a-10)+(b+2)(b+3)(b+10)(b+11)}{x}$$

Art XLV. Employing the language of algebra, the principle illustrated in Art. XL. may be stated as follows:

Definition.—Any quantity which substituted for x makes the expression f(x) vanish, is said to be a root of the equation f(x) = 0. Thus, if a is a root of the equation f(x) = 0, then f(a) = 0.

By Th. I., if x-a is a factor of the polynome $f(x)^n$, then $f(a)^n = 0$, and a must be a root of the equation $f(x)^n = 0$; hence in solving the equation we are merely finding a value, or values, of x which will make the corresponding polynome vanish. Suppose $f(x)^n = (x-a)\varphi(x)^{n-1} = 0$, we are required to find a value, or

- 60

0.

values, of x which will make $(x-a)\varphi(x)^{n-1}$ vanish. The polynome will certainly vanish if one of its factors vanishes, whether the other does or not, and will not vanish unless at least one of its factors vanishes. Hence $(x-a)\varphi(x)^{n-1}$ will vanish if x-a=0, quite irrespective of the value of $\varphi(x)^{n-1}$. Also, if $\varphi(x)^{n-1}=0$, the polynome will vanish, irrespective of the value of x-a. It follows, therefore, that if $f(x)^n$ can be resolved into two or more factors, each of these factors equated to zero will give one or more roots of the equation $f(x)^n=0$.

When there can be found two or more values of x which satisfy the conditions of given equations, they are sometimes distinguished thus: x_1, x_2, x_3 , &c., to be read "one alue of x," "a second value of x," "a third value of x," &c. Thus, if

$$(x-a)(x-b)(x-c) = 0,$$

 $x_1 = a, x_2 = b, x_3 = c.$

EXAMPLES.

1. Solve $2x^3 - 13x^2 + 27x - 18 = 0$.

Factoring,

$$(x-2)(x-3)(2x-3)=0$$
,
 $\therefore x_1=2, x_2=3, x_3=1\frac{1}{2}$.

2.
$$x^2 - (a+b)x + (a+c)b = (a+c)c$$
,

$$x^2 - (a+b)x + (a+c)(b-c) = 0$$
,

$$\therefore x^2 - \{(a+c) + (b-c)\}x + (a+c)(b-c) = 0,$$

$$\therefore \{x-(a+c)\}\{x-(b-c)\}=0,$$

$$\therefore x_1 = a + c, x_2 = b - c.$$

3.
$$x^2(a-b)+a^2(b-x)+b^2(x-a)=0$$
.

$$x^2(a-b)-x(a^2-b^2)+ab(a-b)=0$$
,

$$(x-a)(x-b)(a-b) = 0.$$

If a-b=0, the given equation holds irrespective of the values of x-a and x-b, and therefore of the values of x; but if a-b is not zero, $x_1=a$, $x_2=b$.

5.

4.

Sub

7. H

know : only v The polywhether st one of x-a=0, the It folor more or more

ch satisfy s distinf x," "a

4.
$$x = \frac{(a^{9} + b^{9})x - (a^{9} - b^{9})}{(a^{2} - b^{2})x - (a^{9} + b^{9})};$$

$$\therefore \frac{x+1}{x-1} = \frac{a^{2}(x-1)}{b^{2}(x+1)} \therefore \left(\frac{x+1}{x-1}\right)^{2} - \frac{a^{9}}{b^{9}} = 0,$$

$$\therefore \frac{x_{1}+1}{x_{1}-1} - \frac{a}{b} = 0 \therefore x_{1} = \frac{a+b}{a-b};$$

$$\frac{x_{2}+1}{x_{2}-1} + \frac{a}{b} = 0 \therefore x_{2} = \frac{a-b}{a+b};$$
5.
$$\frac{(a-x)^{2} + (b-x)^{2}}{(a-x)^{2} + (a-x)(b-x) + (b-x)^{2}} = \frac{34}{49};$$

$$\therefore \frac{(a-x)^{2} + 2(a-x)(b-x) + (b-x)^{2}}{(a-x)^{2} - 2(a-x)(b-x) + (b-x)^{2}} = \frac{2(49) - 34}{3(34) - 2(49)} = 16,$$

$$\therefore \frac{\left((a-x) + (b-x)\right)^{2} - 4^{2} = 0,}{(a-x) + (b-x)^{2}} = \frac{a-b}{a-b} - 4 = 0, \therefore x_{1} = \frac{1}{2}(5b-3a);$$

$$\frac{(a-x) + (b-x_{1})}{a-b} - 4 = 0, \therefore x_{2} = \frac{1}{2}(5a-8b).$$

6.
$$\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} = 1.$$

Subtract term by term from the identity (See page 53),

$$\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)} = 1$$

$$\therefore (x-c)(x-a) = 0, \quad \therefore x_1 = c, \ x_2 = a.$$

7. Find the rational roots of $x^4 - 12x^3 + 51x^2 - 90x + 56 = 0$. Factoring the left-hand member by the method of Art. xxviii.

$$(x-2)(x-4)(x^2-6x+7)=0$$

 $\therefore x_1=2, x_2=4, \text{ or } x^2-6x+7=0.$

Since x^2-6x+7 cannot be resolved into rational factors we know that it will not give rational roots, $x_1=2$, $x_2=4$ are the only values that meet the condition of the problem.

ne values if a-b is

Any literal equation of the second, third, or fourth degree, and many equations of the higher degree can be resolved that a series of disjunctive equations. A full analysis for the first four degrees will be given in Part II., meanwhile the following special forms of the Theorem in Art. XLV., will enable the student to solve nearly all the equations commonly proposed.

(A). In order that two expressions having a common factor may be equal, it is necessary either that the common factor should vanish, or else that the product of the remaining factors of one of the expressions should be equal to the product of the remaining factors of the other expression, and it is sufficient if one of these conditions be fulfilled. In symbols this is

If
$$(x-a)f(x) = (x-a)\varphi(x)$$
, $\therefore x_1 = a \text{ or } f(x) = \varphi(x)$.

(B). If an equation reduces to the form $(mx+n)^2 = c^3$

$$(mx+n)^2-c^2=0$$

$$\therefore (mx_1+n)-c=0 \text{ and } \therefore x_1=\frac{c-n}{m},$$

or
$$(mx_2+n)+c=0$$
 and $x_2 = \frac{-c-n}{m}$.

(C). If an equation reduces to the form

$$\left\{\frac{mx+n}{px+q}\right\}^3 = \frac{a^2}{b^3},$$

then
$$x_1 = \frac{qa - nb}{mb - pa}$$
, $x_2 = \frac{-qa - nb}{mb + pa}$. (See Exs. 4 and 5 above).

(D). If an equation appears under the form

$$(a-x)(x-b) = c,$$
then $x_1 = \frac{1}{2}(a+b+r), x_2 = \frac{1}{2}(a+b-r),$
in which $r^2 = (a-b)^2 - 4c.$

From the identity (a-x)+(x-b)=a-b

we get
$$(a-x)^2 + 2(a-x)(x-b) + (x-b)^2 = (a-b)^3$$
 (2)

(2)
$$-4(1)$$
 $\therefore (a-x)^2 - 2(a-x)(x-b) + (x-b)^2$
= $(a-b)^2 - 4c = r^2$ say
 $\therefore \{(a-x) - (x-b)\}^2 - r^2 = 0,$

$$\therefore \{(a-x_1)-(x_1-b)\}+r=0, \text{ and } \therefore x_1=\frac{1}{2}(a+b+r);$$

or
$$\{(a-x_2)-(x_2-b)\}-r=0$$
, and $x_2=\frac{1}{2}(a+b-r)$.

8.

9. (

.

10.

But m(x+2)

This

Assu reducti

11.

For a

Page 122, (5).

gree, and
o a series
r degrees
al forms
t to solve

on factor on factor actors of t of the ficient if

above).

(1)

(2)

); ·).

8.
$$x + \frac{1}{x} = a + \frac{1}{a}$$
 $\therefore x - a = \frac{1}{a} - \frac{1}{x}$, $\therefore \frac{x - a}{1} = \frac{x - a}{ax}$ Applying (A), $\therefore x - a = 0$, or $ax = 1$, $\therefore x_1 = a$, $x_2 = \frac{1}{a}$.

9.
$$(x+a+b)(x+b+c) = (x-3a+b)(2x-3a+2b-c)$$
;
 $\therefore \frac{x+a+b}{x-3a+b} = \frac{2x-3a+2b-c}{x+b+c}$

$$x - 3a + b = \frac{x + b + c}{x + b - c}$$

$$= \frac{x - 4a + b - c}{3a + c}$$

$$\therefore \frac{2(x-a+b)}{x-3a+b} = \frac{x-a+b}{3a+c},$$

10.
$$\frac{(x+2)^2}{x^2-2x} = \frac{\alpha}{b}$$
 $\therefore \frac{(x+2)^2}{m(x+2)^2+n(x^2-2x)} = \frac{a}{ma+nb}$ (1)

But (C) can be applied if m and n are so determined that $m(x+2)^2 + n(x^2-2x)$ is a square.

This requires that $4m(m+n) = (2m-n)^2$,

∴
$$4m^2 + 4mn = 4m^2 - 4mn + n^3$$
,
∴ $8m = n$,

Assume m=1, then n=8, and (1) becomes, on substitution and reduction,

$$\frac{(x+2)^2}{(3x-2)^2} = \frac{a}{a+8b} = r^2, \text{ say}$$

$$\therefore x_1 = \frac{2(1+r)}{3r-1}, x_2 = \frac{2(r-1)}{1+3r}.$$

11.
$$\frac{(x+1)^4}{(x^2+1)(x-1)^2} = \frac{a}{b} \cdot \cdot \cdot \frac{(x^2+2x+1)^2}{(x^2+1)(x^2-2x+1)} = \frac{a}{b} \cdot$$

For $x^2 + 1$ write x_2

$$\therefore \frac{(xz+2x)^3}{xz(xz-2x)} = \frac{a}{b} \cdot \cdot \cdot \frac{(z+2)^3}{z(z-2)} = \frac{a}{b}.$$

This equation was solved in Ex. 10, hence z may be treated as known.

But
$$\frac{x^2+1}{x} = z$$
, $\therefore \frac{x^2+2x+1}{x^2-2x+1} = \frac{z+2}{z-2}$.

$$\therefore \quad \left(\frac{x+1}{x-1}\right)^2 = \frac{z+2}{z-2}, \text{ a formed solved in } (C).$$

12.
$$(a-x)^4 \div (b-x)^4 = c$$
.

In the identity

$$(u+v)^4 = u^4 + v^4 + 4(u+v)^2 uv - 2u^2 v^3$$
,

Let
$$u = a - x$$
, $v = x - b$, $u + v = a - b$ and $u^4 + v^4 = c$,

$$\text{... } (a-b)^4 = c + 4(a-b)^2(a-x)(x-b) - 2(a-x)^2(x-b)^2$$

Write z for (a-x)(x-b)

$$z^2 - 2(a-b)^2z + (a-b)^4 = \frac{1}{2}\{c + (a-b)^4\} = t^2$$
, say,

$$\{z-(a-b)^2\}^2=t^2$$

... by (B)
$$z_1 = (a-b)^2 - t$$
; $z_2 = (a-b)^2 + t$, ... z is known;

But (a-x)(x-b)=z

•• by (D)
$$x_1 = \frac{1}{2}(a+b+r); x_2 = \frac{1}{2}(a+b-r)$$
 (1).

in which $r^2 = (a-b)^2 - 4z$,

$$= (a-b)^{2} - 4\{(a-b)^{2} - t\} = 4t - 3(a-b)^{2}$$
or $(a-b)^{2} - 4\{(a-b)^{2} + t\} = -4t - 3(a-b)^{2}\}$ (2

and
$$t^2 = \frac{1}{2} \{ c + (a - b)^4 \}.$$
 (8)

Hence x is expressed in terms of a, b, and r,

r is expressed in terms of a, b, and t,

t is expressed in terms of a, b, and c,

and the expressions for r and t are cases of (B).

13.
$$(a-x)(b+x)^4+(a-x)^4(b+x)=ab(a^3+b^3)$$

Let
$$a - x = n - z$$
 and $b + x = n + z$: $n = \frac{1}{2} (a + b)$ (1).

The equation reduces to

$$(n^2-z^2)\{(n+z)^3+(n-z)^3\}=ab(a^3+b^3)$$

$$(n^2-z^2)(2n^3+6nz^2)=ab(a^3+b^3)$$

$$(n^2-z^2)(n^2+3z^2) = ab(a^2-ab+b^2)$$

form

foun

D:

by tl

15 Di

Cu

.

As

eated as

)2

known;

(1).

(3)

(1).

 z^2 may now be found by (D), and from the result z may be found by (B), and from (1) $x = \frac{1}{2}(a-b) + z$;

$$3z^2 = \frac{3}{4}(a-b)^2 \text{ or } \frac{1}{4}(10ab-a^2-b^2)$$

.: $x = 0$, or $a - b$, or $\frac{1}{2}(a-b) + \frac{1}{6}\sqrt{(30ab-3a^2-3b^2)}$.

14.
$$\{\sqrt[4]{(a+x)} + \sqrt[4]{(a-x)}\}^2 \{\sqrt{(a+x)} + \sqrt{(a-x)}\} = 2ex.$$

Divide the terms of the identity

$$\sqrt[4]{(a+x)^4} - \sqrt[4]{(a-x)^4} = 2x$$

by the corresponding terms of the equation,

15. $\sqrt[3]{(a-x)^2 + \sqrt[3]{(a-x)(b-x)}} + \sqrt[3]{(b-x)^2} = \sqrt[3]{(a^2 + ab + b^2)}$ Divide the terms of the identity

$$\sqrt[3]{(a-x)^3 - \sqrt[3]{(b-x)^3}} = a - b$$

by the corresponding terms of the equation.

Cube, using the form $(u-v)^3 = u^3 - v^3 - 3uv(u-v)$.

$$(a-x)-(b-x)-3\sqrt[3]{\{(a-x)(b-x)\}} \cdot \frac{a-b}{\sqrt[3]{(a^2+ab+b^2)}}$$

$$= \frac{(a-b)^3}{a^2+ab+b^2} = a-b-\frac{8ab(a-b)}{a^2+ab+b^2},$$

$$\therefore \sqrt[3]{\{(a-x)(b-x)\}} = \frac{ab}{\sqrt[3]{(a^2+ab+b^2)^2}}$$

$$\therefore (a-x)(b-x) = \frac{a^3b^3}{(a^2+ab+b^2)^2}$$

a form solved in (D).

16.
$$\frac{\{\sqrt{(a-x)} + \sqrt{(x-b)}^2}{\sqrt{(a-x)} - \sqrt{(x-b)}} = \sqrt{c}$$
Assume $\sqrt{(a-x)} = z \sqrt{(x-b)}$

$$\therefore (a-x) + (x-b) = (z^2 + 1)(x-b).$$

$$(a-x)+(x-b)=(x^2+1)$$

$$(a-x)+(x-b)=(x^2+1)$$

The proposed equation now becomes

$$\frac{\sqrt{(x-b)(z+1)^2}}{z-1} = \sqrt{c}$$

$$\therefore \frac{(x-b)(z-1)^4}{(z-1)^2} = c.$$

$$\therefore \frac{(z+1)^4}{(z^2+1)(z-1)^2} = \frac{c}{a-b}, \text{ a form solved in Ex. 11.}$$

17.
$$(x-2)(x-5)(x-6)(x-9)+(y+2)(y-4)(y-5)(y-11)+(z+1)(z+5)(z+8)(z+12)=x(x-4)(x-7)(x-11)+(y+1)(y-1)(y-8)(y-10)+(z+2)(z+3)(z+10)(z+11).$$

Let
$$x' = x^2 - 11x$$
, $y' = y^2 - 9y$ and $z' = z^2 + 13z$,

$$\therefore (x'+18)(x'+30)+(y'-22)(y'+20)+(z'+12)(z'+40) = x'(x'+28)+(y'-10)(y'+8)+(z'+22)(z'+30)$$

$$\therefore x'^{2} + 48x' + 540 + y'^{2} - 2y' - 440 + z'^{2} + 52z' + 480 = x'^{2} + 28x' + y'^{2} - 2y' - 80 + z'^{2} + 52z' + 660,$$

••
$$20x' = 0$$
, •• $x^2 - 11x = 0$, : $x_1 = 0$, $x_2 = 11$.

Exercise lvi.

What can you deduce from the following statements?

1.
$$A \cdot B = 0$$
. 2. $A \cdot B \cdot C = 0$. 3. $(a - b)x = 0$. 4. $12xy = 0$.

$$(x-5y)(x-4y+3)=0$$

and the simultaneous equations

$$x-5y=0$$
 and $x-4y+3=0$.

What values of x will satisfy the following equations?

6.
$$x(x-a) = 0$$
. 7. $ax(x+b) = 0$. 8. $(x-a)(bx-c) = 0$.

9.
$$au^2 = 3ax$$
. 10. $x^2 = (a+b)x$. 11. $x(x^2 - a^2) = 0$.

12.
$$a^2x^3 = b^2x$$
. 13. $x^2 + (a-x)^2 = a^3$.

14.
$$x^2 + (a-x)^2 = (a-2x)^2$$
. 15. $(a-x)^2 + (x-b)^2 = a^2 + b^2$.

16.
$$(a-x)(x-b) + ab = 0$$
.

17.
$$(a-x)^2 - (a-x)(x-b) + (x-b)^2 = a^2 + ab + b^3$$

18.
$$x^3 - (a-b)x - ab = 0$$
.

19.
$$x^3 - (a+b+c)x^2 - ab+bc+ca)x-abc=0$$
.

If x : following

32.
$$\frac{a}{x}$$

41.
$$\frac{a_i}{m_i}$$

43.
$$4x$$

If x must be positive, what value or values of x will satisfy the following equations?

20.
$$(x-5)(x+4)=0$$
. 21. $x^2+29x-30=0$.

22.
$$x^2 - 17x - 84 = 0$$
. 23. $8x^2 + 10x + 8 = 0$.

24.
$$x^4 - 18x^2 + 36 = 0$$
. 25. $x^3 - 2x^2 - 5x + 6 = 0$.

Solve the following equations:

26.
$$(a-x)^2+(x-b)^2=(a-b)^2$$
.

11.

-11) +

+11).

40) =

=0.

18 ?

 $a^2 + b^2$.

27.
$$(a-x)^2 - (a-x)(x-b) + (x-b)^2 = (a-b)^3$$

28.
$$a^2(a-x)^2 = b^2(b-x)^2$$
. 29. $a^2(b-x)^2 = b^2(a-x)^2$.

80.
$$(x-a)^3 + (a-b)^3 + (b-x)^3 = 0$$
. 81. $(x-1)^2 = a(x^2-1)$.

32.
$$\frac{a-x}{x-b} = \frac{x-a}{c+x}$$
 33. $\frac{a+b-x}{a-c-x} = \frac{a-c+x}{a+c-x}$

34.
$$(x-a+b)(x-a+c) = (a-b)^2 - x^2$$

35.
$$(x-a)^2 - b^2 + (a+b-x)(b+c-x) = 0$$
.

36.
$$(a+b+c)x^2-(2a+b+c)x+a=0$$
.

$$87. \frac{a+b-x}{c} = \frac{a+b-c}{x}.$$

38.
$$(a-x)^2 + (a-b)^2 = (a+b-2x)^2$$

89.
$$x(a+b-x)+(a+b+c)c=0$$
.

40.
$$(n-p)x^2 + (p-m)x + m - n = 0$$
.

41.
$$\frac{ax^2 - bx + c}{mx^2 - nx + p} = \frac{c}{p}$$
. 42. $\frac{ax^2 - bx + c}{mx^2 - nx + p} = \frac{a - b + c}{m - n + p}$

43.
$$4x^2 + a^2 - b^2 - 2(a + b)x = (a - x)(b + x) - (a + x)(b - x)$$
.

44.
$$(2a-b-x)^2+9(a-b)^3=(a+b-2x)^2$$
.

45.
$$(2a+2c-x)^2 = (2b+x)(3a-b+3c-2x)$$
.

46.
$$(3a-5b+x)(5a-8b-x)=(7a-b-8x)^2$$

47.
$$(8a-b+x)(8a+b-x) = (5a+8b-8x)^{2}$$
.

48.
$$a(a-b)-b(a-c)x+c(b-c)x^2=0$$
.

49.
$$(ab+bc+ca)(x^2+x+1)+(a-b)^2=(2ac+b^2)(x^2+x+1)+(a-c)^2x$$

50.
$$(x+1)(x+3)(x-4)(x-7)+(x-1)(x-3)(x+4)(x+7)=96$$
.

51.
$$(x-1)(x+3)(x-5)(x+9)+(x+1)(x-3)(x+5)(x+9)+18$$

= 0.

52.
$$x + \frac{1}{x} = 3\frac{1}{3}$$
. 53. $x + \frac{1}{x} = \frac{a+b}{a-b} + \frac{a-b}{a+b}$

54.
$$x - \frac{1}{x} = \frac{a}{b} - \frac{b}{a}$$
. 55. $\frac{a+x}{b+x} + \frac{b+x}{a+x} = 2\frac{1}{2}$.

56.
$$\frac{a-x}{x-b} + \frac{x-b}{a-x} = \frac{13}{6}$$
. 57. $\frac{a-x}{b+x} - \frac{b+x}{a-x} = \frac{m}{n} - \frac{n}{m}$

58.
$$\frac{a}{x} + \frac{x}{a} = \frac{n_b}{x^2 - ax + a^2} = c$$
.

60.
$$\frac{x^2 + a^2}{x^2 - ax + a^2} = c$$
. 61. $\frac{x^2 + a^2}{(x+a)^2} = c$.

62.
$$\frac{(a-x)^2 + (x-b)^2}{(a-x)(x-b)} = \frac{5}{2}$$
 63.
$$\frac{a-x}{x-b} + \frac{x-b}{a-x} = \frac{m}{n}$$

64.
$$\frac{(x+a)^2 + (x-b)^2}{(x+a)^2 - (x-b)^2} = \frac{a^2 + b^2}{2ab}$$

65.
$$\frac{(a-x)^2 - (x-b)^2}{(a-x)(x-b)} = \frac{4ab}{(a^2 - b^2)}$$

66.
$$\frac{(a-x)^2 + (a-x)(x-b) + (x-b)^2}{(a-x)^2 - (a-x)(x-b) + (x-b)^2} = \frac{49}{19}.$$

67.
$$\frac{2a^2 + a(a-x) + (a+x)^2}{2a^2 + a(a+x) + (a-x)^2} = \frac{c+1}{c-1}$$
 (Also for $c=5$).

68.
$$(5-x)^4 + (2-x)^4 = 17$$
.

69.
$$x^4 + (a-x)^4 = c$$
; $x^4 + (x-4)^4 = 82$.

70.
$$(a-x)^4 + (x-b)^4 = (a-b)^4$$
. 71. $(a-x)^5 + (x-b)^5 = c$.

72.
$$x^5 + (a-x)^5 = a^5$$
; $x^5 + (6-x)^5 = 1056$.

73.
$$(a-x)^3(x-b)^2+(a-x)^2(x-b)^3=a^2b^2(a-b)$$
.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

$$x+1)$$

$$+7) = 96.$$

$$+9) + 18$$

$$a-b$$

$$+\frac{a-b}{a+b}$$

$$\frac{m}{n}$$

$$\frac{m}{n}-\frac{n}{m}$$

$$m$$
.

$$-b)^5=c.$$

74.
$$(a-x)(b+x)^4 + (a-x)^2(b+x)^3 + (a-x)^3(b+x)^3 + (a-x)^4(b+a) = (a+b)c$$
.

75.
$$\frac{(a-x)^4 + (x-b)^4}{(a-x)^2 + (x-b)^2} = \frac{41}{20} (a-b)^2.$$

76.
$$\frac{(a-x)^5 + (x-b)^8}{(a-x)^4 + (x-b)^4} = \frac{211}{97} (a-b).$$

77.
$$\frac{(a-x)^4 + (x-b)^4}{(a-x)^2 + (x-b)^2} = \frac{a^4 + b^4}{a^2 + b^2}$$

78.
$$\frac{(a-x)^4 + (x-b)^4}{(a-x)^3 + (x-b)^3} = \frac{a^4 + b^4}{a^3 - b^3}$$

79.
$$\frac{(a-x)^5 + (x-b)^5}{(a-x)^3 + (x-b)^3} = \frac{a^5 - t}{a^3 - b^3}$$

80.
$$\frac{(a-x)^3}{b-x} + \frac{(b-x)^3}{a-x} = \frac{a^3}{b} + \frac{b^3}{a}$$

81.
$$\frac{a-x}{(x-b)^2} + \frac{x-b}{(a-x)^2} = \frac{a}{b^2} - \frac{b}{a^2}$$

82.
$$\frac{(a-x)^4 + (x-b)^4}{(a+b-2x)^2} = \frac{a^4 + b^4}{(a+b)^2}$$

83.
$$\frac{(a-x)^5 + (x-b)^5}{(a+b-2x)^2} = \frac{a^5 - b^5}{(a+b)^3}$$

84.
$$\frac{(a-x)^5 + (x-b)^5}{(a-x)^2 + (x-b)^2} = (a-b)^3.$$

85.
$$\frac{(a-x)^4 - (x-b)^4}{(a-x) - (x-b)} = \frac{(a-b)^c}{(a-x)(x-b)^c}$$

86.
$$\frac{(u-x)^5 + (x-b)^5}{(a-x)^2 + (x-b)^2} = c(a-x)(x-b).$$

87.
$$\frac{(a-x)^3 + (x-b)^3}{(a-x)^4 + (x-b)^4} = \frac{c}{(a-x)(x-b)^4}$$

88.
$$(1+x^2)^3 = (x^3-3)^2$$
.

89.
$$\frac{x^4+1}{2x(x^2+1)} = \frac{a}{b}$$
 90. $\frac{(x+1)^2(x^2+1)}{(x-1)^2(x^2-x+1)} = \frac{a}{b}$

91.
$$\frac{(x-1)^2x}{(x^2-x+1)^2} = \frac{a}{b}$$
. 92. $\frac{(x^2+x+1)^2}{(x+1)^2(x^2+1)} = \frac{a}{b}$.

93.
$$\frac{(x^2+1)^2}{x(x+1)^3} = \frac{a}{b}$$
. 94. $\frac{(x+1)^4}{x(x^2+1)} = \frac{a}{b}$.

95.
$$\frac{x(x+1)^2}{(x-1)^4} = \frac{a}{b}$$
. 96. $\frac{x^2+x+1}{(x+1)^2} \cdot \frac{x^2+x-1}{(x-1)^3} = \frac{a}{b}$.

97.
$$\frac{x^4 - x^2 + 1}{(x^2 - 1)^2} = \frac{a}{b}$$
. 98. $\frac{x(x^2 + 1)}{(x^2 - 1)^2} = \frac{a}{b}$.

99.
$$\frac{(x+1)(x^3+1)}{(x-1)(x^3-1)} = \frac{a}{b}$$
 100. $\frac{(x+1)(x^5-1)}{(x-1)(x^5+1)} = \frac{a}{b}$

101.
$$\frac{(x+1)^4}{x^4+1} = \frac{a}{b}$$
. 102. $\frac{(x+1)^5}{x^5+1} = \frac{a}{b}$.

103.
$$2(a-x)^4 - 9(a-x)^3(x-b) + 14(a-x)^2(x-b)^2 - 9(a-x)(x-b)^3 + 2(x-b)^4 = 0$$
.

104.
$$4(a-x)^4 - 17(a-x)^2(x-b)^2 + 4(x-b)^4 = 0$$
.

Find the rational roots in the following equations:

105.
$$x^4 - 12x^3 + 49x^2 - 78x + 40 = 0$$
. [Let $z = x^2 - 6x$].

106.
$$x^4 - 6x^3 + 7x^2 + 6x - 8$$
.

107.
$$x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$$
.

. 108.
$$32x^4 - 48x^3 - 10x^2 + 21x + 5 = 0$$
.

109.
$$x^3 - 6x^2 + 5x + 12 = 0$$
.

110.
$$\frac{5}{x} - \frac{4}{x-a} - \frac{9}{x-2a} - \frac{4}{x-3a} + \frac{5}{x-4a} = 0.$$

111.
$$\frac{14}{x+20} + \frac{5}{x+5} - \frac{4}{x-4} = \frac{14}{x-55} + \frac{5}{x-40} - \frac{4}{x-25}$$

112.
$$\frac{2x+5a}{x} - \frac{x+8a}{x-a} + \frac{x}{x-2a} = \frac{x-a}{x-3a} - \frac{x+5u}{x-4a} + \frac{2x-5u}{x-5}$$

118

114

115.

116.

117. 118.

119.

120. 121.

Wri

$$\frac{a}{b}$$

$$\frac{a}{b}$$

$$x-2$$

118.
$$\frac{x+4}{x+2} + \frac{x+2}{x} + \frac{x+4}{x-1} = \frac{x+3}{x-2} + \frac{x-1}{x-3} + \frac{x-3}{x-5}$$
114. $\frac{7}{x} - \frac{31}{x-1} + \frac{20}{x-2} + \frac{8}{x-3} + \frac{20}{x-4} - \frac{31}{x-5} + \frac{7}{x-5}$

$$\frac{7}{x-6} = 0.$$
115. $\sqrt{(x^2 - a^2 - b^2)} + \sqrt{(x^2 - b^2 - c^2)} - \sqrt{(x^2 - c^2 - a^2)} = x.$

116.
$$\frac{\sqrt{(a^2 + 2x) + \sqrt{(a^2 - 2x)}}}{\sqrt{(a^2 + 2x) - \sqrt{(a^2 - 2x)}}} = \frac{m^2 x^2}{\sqrt{(m^2 - 1)^2 + (a^2 - 2x)}} = \frac{m^2 x^2}{\sqrt{(m^2 - 1)^2 + (a^2 - 2x)}}$$

$$\frac{m^2x^2}{a^2} \cdot \frac{\sqrt{(m^2x+2)} + \sqrt{(m^2x-2)}}{\sqrt{(m^2x+2)} - \sqrt{(m^2x-2)}}$$

117.
$$\sqrt{(x^2-a^2)} + \sqrt{(x^2-b^2)} + \sqrt{(x^2-c^2)} = x$$
.

118.
$$\{\sqrt[4]{(a-x)} + \sqrt[4]{(b-|x|)}\} \{\sqrt[4]{(a-x)} - \sqrt[4]{(b-x)}\} = \mathbf{c}.$$

119.
$$\frac{\mathfrak{f}^{3}(a-x) - \mathfrak{f}^{3}(x-b)}{\mathfrak{f}^{3}(a-x) + \mathfrak{f}^{3}(x-b)} = \frac{a+b-2x}{a-b}.$$

120.
$$\sqrt[6]{(a+x)} + \sqrt[6]{(a-x)} = \sqrt[6]{(2a)}$$
.

121.
$$\frac{\left\{i^{3/(a-x)^{2}}+i^{3/(x-b)^{2}}\right\}^{2}}{i^{3/(a-x)}+i^{3/(x-b)}}=a-b.$$

[Write u for $\sqrt[3]{(a-x)}$, and v for $\sqrt[3]{(x-b)}$].

CHAPTER VI.

SIMULTANEOUS EQUATIONS.

Art. XLVI. There are three general methods of resolving simultaneous linear equations, 1° by substitution, 2° by comparison, 3° by elimination. The last is often subdivided into the method by cross-multipliers, and the method by arbitrary multipliers.

In applying the elimination-method the work should be done with detached coefficients, each equation should be numbered, and a register of the operations performed should be kept.

Ex. Resolve $u+v+x+y+z=15$.								
u+2v+4x+8y+16z=57.								
	u+3v+9x+27y+81z=179.							
	u + 4v + 16x +							
	u+5v+5u+5u+							
	u+507 - 02 7		aoy.			_		
Register		u	v	$\frac{x}{1}$	$egin{array}{c} y \ 1 \end{array}$	z 1 =	= 15	(1)
		1	1.	4	8	16	57	(2)
		1	22			81	179	(3)
		1	8	9	$\begin{array}{c} 27 \\ 64 \end{array}$	256	453	(4)
		1	5	$\frac{16}{25}$	125	625	975	(5)
		T			7	15	42	(6)
(2)-(1).			$\frac{1}{1}$	3 5	19	65	$1\overline{22}$	(7)
(3)-(2).			1	7	37	175	274	(8)
(4)-(3).			1	9	61	369	522	(9)
(5)-(4).			T	2	12	50	80	(10)
(7)-(6).				2	18	110	152	(11)
(8)-(7).				$\frac{2}{2}$	24	194	248	(12)
(9)-(8).				4	6	60	72	(18
(11) - (10).					6	84	96	(14
(12) - (11) .					U	24	24	(15
(14)-(13).						1	1	(16
$(15) \div 24.$	•				1		2	(17
$\frac{1}{6}\{(13)-60(16)\}$				1			3	(18
$\frac{1}{2}[(10) - \{12(17)\}]$) + 50(16)}]。		1	T			4	(19)
$(6) - \{3(18) + 7($	17)+15(10)	1	1				5	(20
$(1) - \{(19) + (18)\}$	3)+(17)+(16)}.	J.						1-0

An exhave been (3) + (1) 8(2) - 8(3)

A gen will be g tions it i

Arran

Form thus— Form thus—

Subtra

Divide quotient value of 3

the gener Ex. 1.

An examination of the Register will show how easy it would have been to shorten the process, thus (10) is (7) - (6) which is (3) + (1) - 2(2); similarly (11) is (4) + (2) - 2(3); ... (13) is (4) + (2) - 2(3); ... 8(2) - 8(8) - (1), &c.

A gene d systematic arrangement of the elimination-method will be given in Part II. For two or three simultaneous equations it may be stated as follows.

$$a_1x+b_1y+c_1=0$$

 $a_2x+b_2y+c_2=0$

Arrange the coefficients thus-

Form their products diagonally from left to right downwards, thus a_1b_2 b_1c_3 c_1a_2 .

Form their products diagonally from right to left downwards, thus $b_1 a_2 - c_1 b_2 - a_1 c_2$.

Subtract the latter products in order from the former, thus-

$$a_1b_2-b_1a_2$$
, $b_1c_2-c_1b_2$, $c_1a_2-a_1c_2$.

Divide the 2° and 3° remainders by the 1° remainder, the first quotient will be the value of x, the second quotient will be the value of y.

[Writing R_1 , R_2 , R_3 for the three 'remainders' respectively, the general result is $(mx+ny)R_1 = mR_2 + nR_3$].

esolving comparinto the y multi-

be done mbered, t.

15 (1)(2)57 (3)

179

(4) 453 975 (5)42 (6)

122(7)(8)274 522(9)

80 (10)152(11)248 (12)

72 (13)96 (14)

24(15)(16)

2 (17) 3 (18)

4 (19)

5 (20)

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

STATE OF THE STATE

Ex. 2.
$$\frac{12}{x} - \frac{25}{y} = 1$$
. $\frac{22}{x} + \frac{30}{y} = 17$.

x=2 and y=5.

2º Let the equations be

$$a_1x+b_1y+c_1z+d_1=0$$

 $a_2x+b_2y+c_2z+d_2=0$
 $a_3x+b_3y+c_3z+d_3=0$.

Arrange the coefficients thus

Selecting the first three columns form the diagonal products from left to right downwards, thus:

F

Frodu Simil

The

Ex.

Form the diagonal products from right to left downwards, thus:

$$a_1 \quad b_1 \quad c_1$$
 giving $c_1 b_3 a_3$
 $a_2 \quad b_3 \quad c_3$ $c_2 b_3 a_1$
 $a_3 \quad b_3 \quad c_3$ $c_3 b_1 a_3$
 $a_1 \quad b_1 \quad c_1$
 $a_2 \quad b_2 \quad c_2$

From the sum of the former products take the sum of the latter products obtaining a remainder, which call R_1 .

Similarly form a 2° remainder, R_2 from the 2°, 3° and 4° columns

Then $x=R_2\div R_1$, $y=R_3\div R_1$, $z=R_4\div R_1$, and generally

$$(mx+ny+pz)R_1 = mR_2 + nR_3 + pR_4$$

Ex. 8.
$$8x+2y-4z+20=0$$

 $5x-7y-6z-1=0$
 $7x+5y+5z-24=0$

l products

13.

15.

17.

19.

20.

22.

24.

26.

28.

80.

1

Exercise Ivii.

Solve the following systems of equations:

$$1. \quad 2x + 3y = 41$$
$$3x + 2y = 39$$

3.
$$11x + 12y = 100$$

 $9x + 8y = 80$.

5.
$$8x+7y=7$$

 $5x+8y=-86$.

7.
$$5x+3y+2=0$$

 $3x+2y+1=0$

9.
$$10x+7y+4=0$$

 $6x+5y+2=0$

11.
$$\frac{1}{3}x + \frac{1}{4}y = 6$$
. $3x - 4y = 4$.

2.
$$5x + 7y = 17$$

 $7x - 5y = 9$.

4.
$$18x - 35y + 13 = 0$$

 $15x + 28y - 275 = 0$

6.
$$3x+16y-5=0$$

 $28y=5x+19$.

8.
$$21x + 8y + 66 = 0$$

 $28y - 28x + 18 = 0$

10.
$$23x + 15y - 4\frac{1}{4} = 0$$

 $32x + 21y - 6 = 0$

12.
$$\frac{1}{2}x - \frac{1}{3}y = 1$$
.
 $\frac{1}{3}x - \frac{2}{3}y + 5 = 0$.

13.
$$\frac{1}{3}y = \frac{1}{2}x - 1$$
. $\frac{1}{4}y = \frac{2}{5}x - 1$.

14.
$$\frac{2}{3}x + \frac{3}{5}y = 17$$
. $\frac{3}{4}x + \frac{2}{3}y = 19$.

15.
$$1 \cdot 5x - 2y = 1$$
. $2 \cdot 5x - 3y = 6$.

-105

-100

=196

-- 90

0.

50, &c.)

- 84, &c)

16.
$$7x = 10y + \cdot 1$$
.
 $11x = 16y + \cdot 1$.

17.
$$5x-4y+1=0$$
.
 $1\cdot 7x-2\cdot 2y+7\cdot 9=0$.

18.
$$16x - 04y = 1$$
. $19x - 11y = 1$.

19.
$$8.5x + 2\frac{1}{3}y = 13 + 4\frac{1}{7}x - 3.5y$$
. $2\frac{1}{7}x + 8y = 22\frac{1}{2} + 7x - 3\frac{1}{3}y$.

$$20. \ \frac{1}{x} + \frac{1}{y} = \frac{5}{6}.$$

$$21. \ \frac{8}{x} + \frac{8}{y} = 3.$$

$$\frac{1}{x} - \frac{1}{y} = \frac{1}{6}.$$

$$\frac{15}{x}-\frac{4}{y}=4.$$

22.
$$\frac{1.6}{x} = \frac{2.7}{y} - 1.$$

$$23. 17x - \frac{3}{y} = 3.$$

$$\frac{\cdot 8}{x} + \frac{3 \cdot 6}{y} = 5.$$

$$16x - \frac{\cdot 4}{y} = 2.$$

$$\begin{array}{rcl} 24. & \frac{x}{3} + \frac{5}{y} = 4\frac{1}{3}. \\ & \frac{x}{6} + \frac{10}{y} = 2\frac{2}{3}. \end{array}$$

25.
$$\frac{5x}{.7} + \frac{.9}{y} = 6.$$

 $\frac{10x}{7} + \frac{9}{y} = 31.$

26.
$$\frac{3}{4}x - \frac{1}{2}(y+1) = 1$$
.

$$27. \ \frac{5}{x+2y} = \frac{7}{2x+y}.$$

$$\frac{1}{3}(x+1) + \frac{3}{4}(y-1) = 9.$$

$$\frac{7}{8x-2} = \frac{5}{6-y}.$$

$$28. \ \frac{1}{3x+1} = \frac{2}{5y+4}.$$

$$29. \frac{x+3y}{x-y} = 8.$$

$$\frac{1}{4x-3} = \frac{2}{7y-6}.$$

$$\frac{7x - 13}{3y - 5} = 4.$$

$$80. \ \frac{15x+1}{45-y} = 8.$$

$$31. \ \frac{3x+1}{4-2y} = \frac{4}{3}.$$

$$\frac{12y+19}{x-10} = 25.$$

$$x+y=1.$$

51.

53.

55.

57.

59.

61.

63.

65.

67.

$$\frac{7-2x}{5-3y} = \frac{8}{2}.$$

$$\frac{7-2y}{5-3x} = \frac{2}{8}.$$

$$89. \frac{x+2y+1}{2x-y+1} = 2.$$

$$\frac{3x-y+1}{x-y+3} = 5.$$

34.
$$\frac{x+3y+13}{4x+5y-2\cdot 5} = 30$$
. 35. $\frac{x+1}{3} - \frac{y+2}{4} = \frac{2(x-y)}{5}$
 $\frac{\cdot 8x+\cdot 1y+\cdot 6}{5x+3y-23} = \frac{1}{2}$. $\frac{x-3}{4} - \frac{y-3}{3} = 2y-x$.

$$36. \frac{2x-y+3}{3} - \frac{x-2y+3}{4} = 4.$$

$$\frac{3x-4y+3}{4} + \frac{4x-2y-9}{8} = 4.$$

87.
$$20(x+1) = 15(y+1) = 12(x+y)$$
.

38.
$$(x-2):(y+1):(x+y-3)::3:4:5$$
.

39.
$$(x-5):(y+9):(x+y+4)::1:2:3$$
.

40.
$$\frac{x+3}{x+1} = \frac{y+8}{y+5}$$
 41. $(x-4)(y+7) = (x-3)(y+4)$. $\frac{2x-3}{2(y+1)} = \frac{5x-6}{5y+7}$ $(x+5)(y-2) = (x+2)(y-1)$.

42.
$$(x-1)(5y-3) = 3(3x+1)$$
. 43. $(x+1)(2y+1) = 5x + 9y + 1$. $(x-1)(4y+3) = 3(7x-1)$. $(x+2)(3y+1) = 9x + 13y + 2$.

44.
$$(3x-2)(5y+1) = (5x-1)(y+2)$$
. $(3x-1)(y+5) = (x+5)(7y-1)$.

45.
$$x + y = 37$$
.
 $y + z = 25$.
 $z + x = 22$.
46. $2x + 2y = 7$.
 $7x + |9z = 29$.
 $y + 8z = 17$.

47.
$$1 \cdot 3x - 1 \cdot 9y = 1$$
.
 $1 \cdot 7y - 1 \cdot 1z = 2$.
 $2 \cdot 9z - 2 \cdot 1x = 3$.
48. $5x + 3y + 2z = 217$.
 $5x - 3y = 39$.
 $3y - 2z = 20$.

49.
$$\frac{1}{6}x - \frac{1}{2}y = 0$$
. 50. $\frac{1}{3}x + \frac{1}{2}y = 10$. $\frac{1}{3}x - \frac{1}{2}z = 1$. $\frac{1}{2}z - \frac{1}{3}y = 2$. 50. $\frac{1}{3}x + 2\frac{1}{6}z = 20$. $\frac{1}{3}y + 3\frac{1}{6}z = 30$.

$$\frac{2(x-y)}{5}$$

$$2y - x$$
.

$$-3)(y+4).$$

$$+2)(y-1).$$

$$x + 9y + 1$$
.

$$x + 13y + 2.$$

51.
$$x+y-z=17$$
.
 $y+z-x=13$.
 $z+x-y=7$.

53.
$$x+y+z=8$$
.
 $2x+4y+8z=13$.
 $3x+9y+27z=34$.

55.
$$3x+2y+3z=110$$
.
 $5x+y-4z=0$.
 $2x-3y+z=0$.

57.
$$x+2y+3z=32$$
.
 $2x+3y+z=42$.
 $3x+y+2z=40$.

59.
$$3x+3y+z=17$$
. $8x+y+3z=15$. $x+3y+3z=13$.

61.
$$x+2y-7z=21$$
.
 $3x+2y-z=24$.
 $9x+7y-2z=27$.

63.
$$\frac{1}{2}x + \frac{1}{3}y + \frac{1}{4}z = 36\frac{1}{2}$$
.
 $\frac{1}{3}x + \frac{1}{4}y + \frac{1}{5}z = 27$.
 $\frac{1}{5}x + \frac{1}{6}y + \frac{1}{7}z = 18$.

65.
$$\frac{x+1}{y+1} = 2.$$

$$\frac{y+2}{z+1} = 4.$$

$$\frac{z+3}{x+1} = \frac{1}{2}.$$

67.
$$\frac{x+y}{y-z} = 10.$$
$$\frac{x+z}{x-y} = 9.$$

$$\frac{y+z}{x+5} = 1.$$

52.
$$x+y+z=9$$
,
 $x+2y+4z=15$.
 $x+9y+9z=29$.

54.
$$7x+6y+7z=100$$
,
 $x-2y+z=0$.
 $3x+y-2z=0$,

66.
$$x+y+z=9$$
.
 $x+2y+3z=14$.
 $x+3y+6z=20$.

58.
$$x+y+2z=34$$
. $x+2y+z=38$. $2x+y+z=32$.

60.
$$x+2y-z = 4.6$$
,
 $y+2z-x = 10.1$.
 $z+2x-y = 5.7$.

62.
$$x+y=1\frac{1}{2}z+8$$
.
 $y+z=2\frac{2}{3}y-14$.
 $z+x=3\frac{3}{4}x-32$.

64.
$$2\frac{1}{2}x + 3\frac{1}{3}y + 4\frac{1}{4}z = 140$$
, $3\frac{1}{3}x + 4\frac{1}{4}y + 5\frac{1}{6}z = 175$, $2\frac{2}{3}x + 3\frac{3}{4}y + 4\frac{4}{6}z = 167$.

$$66. \frac{3x+y}{z+1} = 2.$$

$$\frac{3y+z}{x+1} = 2.$$

$$3z+x$$

$$\frac{6z+x}{y+1} = 2$$

$$68. \frac{x+8}{y+z} = 2.$$

$$\frac{y+3}{x+z} = 1.$$

$$\frac{z+3}{x+y} = \frac{1}{2}$$

69.
$$\frac{4}{x} - \frac{8}{y} = 1$$
.

70. $\frac{6}{x} + \frac{4}{y} + \frac{5}{z} = 4$.

 $\frac{2}{x} + \frac{8}{z} = 4$.

 $\frac{3}{x} + \frac{8}{y} + \frac{5}{z} = 4$.

 $\frac{3}{x} - \frac{1}{z} = 0$.

 $\frac{9}{x} + \frac{12}{y} - \frac{10}{z} = 4$.

71.
$$\frac{xy}{x+y} = \frac{1}{5}$$

$$\frac{yz}{y+z} = \frac{1}{6}$$

$$\frac{zx}{z+x} = \frac{1}{7}$$
72.
$$\frac{xy}{4y-3x} = 20$$

$$\frac{xz}{2x-3x} = 15$$

$$\frac{yz}{4y-5z} = 19$$

73.
$$(x+2)(2y+1) = (2x+7)y$$
.
 $(x-2)(3z-1) = (x+3)(3z-1)$.
 $(y+1)(z+2) = (y+3)(z+1)$.

74.
$$(2x-1)(y+1) = 2(x+1)(y-1)$$
.
 $(x+4)(z+1) = (x+2)(z+2)$.
 $(y-2)(z+3) = (y-1)(z+1)$.

75.
$$(x+1)(5y-3) = (7x+1)(2y-3)$$
.
 $(4x-1)(z+1) = (x+1)(2z-1)$.
 $(y+3)(z+2) = (5y-6)(8z-1)$.

76.
$$21x+31y+42z=115$$
. $6(2x+y)=3(3x+z)=2(y+z)$

77.
$$15(x-2y) = 5(2x-3z) = 8(y+z)$$
.
 $21x+31y+41z=185$.

78.
$$6x(y+z) = 4y(z+x) = 8z(x+y)$$
.
 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 9$.

79.
$$3x + y + z = 20$$
.
 $3u + x + 4y = 30$.
 $3u + 6x + z = 40$.
 $5u + 8y + 3z = 50$

60. $x + z + 8y = 33$.
 $5u + y + z = 11$.
 $4u + x + z = 11$.
 $3u + x + y = 11$.

81.

38.

85.

the a whice involved when the mine

1.

Μι

Di

He

81.
$$u+x+y+z=144$$
.
 $u+2x+2y+2z=267$.
 $u+2x+3y+3z=359$.
 $u+2x+3y+4z=410$.
82. $u+x+y+z=24$.
 $u+2x+3y-9z=0$.
 $3u-x-5y+z=0$.
 $2u+3x-4y-5z=0$.

38.
$$u+x+y+z=60$$
.
 $u+2x+3y+4z=100$.
 $u+3x+6y+10z=150$.
 $u+4x+10y+20z=210$.
84. $u+x+y+z=1$.
 $2u+4x+8y+16z=5$.
 $3u+9x+27y+81z=15$.
 $4u+16x+64y+256z=35$.

65.
$$\frac{1}{2}x + \frac{1}{4}y - \frac{1}{3}z = 1$$
.
 $\frac{1}{3}x - \frac{1}{4}y - \frac{1}{9}u = 1$.
 $\frac{1}{6}x + \frac{3}{5}z - \frac{1}{2}u = 1$.
 $\frac{3}{4}y - \frac{1}{5}z - \frac{1}{3}u = 0$.
86. $\frac{1}{2}u - \frac{1}{3}x + \frac{1}{5}y - \frac{1}{2}z = 47$.
 $\frac{1}{3}u + \frac{1}{5}x + \frac{1}{7}y - \frac{1}{2}z = 37$.
 $\frac{1}{6}u - \frac{2}{7}x + \frac{1}{2}y - \frac{1}{3}z = 17$.
 $\frac{2}{7}u - \frac{1}{2}x - \frac{1}{3}y + \frac{1}{5}z = 17$.

Art. XLVII. The principle of symmetry is often of use in the solution of symmetrical equations. For from one relation which may be bound to exist between two or more of the letters involved, other relations may be derived by symmetry; also, when the value of one of the unknown quantities has been determined, the values of the others can be at once written down, &c.

1.
$$(x+y)(x+z) = a$$
.
 $(x+y)(y+z) = b$.
 $(x+z)(y+z) = c$.

Multiply the equations together and extract the square root. $\therefore (x+y)(y+z)(z+x) = \sqrt{(abc)},$

Divide this equation by the third.

$$\therefore x+y = \frac{\sqrt{(abc)}}{c}, \text{ and therefore, by symmetry,}$$

$$\therefore y+z = \frac{\sqrt{(abc)}}{a},$$

$$\therefore z+x = \frac{\sqrt{(abc)}}{b}.$$

Hence we get

$$x = \frac{ab - bc + ca}{2\sqrt{(abc)}},$$

whence y and z may be derived by symmetry.

the

T

men

eupe

No

1.

2.

3.

whense u and z may be derived by symmetry,

(1). (2).

..... (8).

etry.

try.

.....(1)(2).(3).(4).(5). 5. Eliminate x, y, z, u (which are supposed all different) from the following equations:

$$x = by + cz + du,$$

$$y = cz + du + ax,$$

$$z = du + ax + by,$$

$$u = ax + by + cz.$$

Subtracting the second equation from the first,

$$x - y = by - ax$$
, or $(1+a)x = (1+b)y = (by \text{ symmetry}) (1+c)z = (1+d)u$.

These relations may be also obtained by adding ax to both members of the first equation, by, to both members of the second equation, &c.

Now divide the first equation by these equals.

Exercise lviii.

1. Given $ax + by = c$	and that $x = \frac{b'c - bc'}{b'a - ba'}$,
a'x + b'y = c'	3
2. Given $bx = ay$	and that $x = \frac{a(dm - cn)}{bc - ad}$,
dx + md = cy -	$+n\epsilon$ derive the value of y .
3. Given $ax + by + cz =$	d. and that $x =$
$a^2x + b^2y + c^2$	$z = d^2$ $\frac{a(d-b)(d-c)}{a(a-b)(a-c)}$, write down

the values of y and z.

 $a^3x + b^3y + c^3z = d^3$

4. There is a set of equations in x, y, z, u, and w, with corres rending coefficients (a to x, &c.), a, b, c, d, and e; one of the equations is

T

T

E

(2) -

T

E

b, c,

meti

a mi A

x = by + cz + du + ew, write down the others.

Solve the following equations:

5.
$$\frac{x}{m} + \frac{y}{n} = a, \frac{y}{n} + \frac{z}{p} = b, \frac{x}{m} + \frac{z}{p} = c.$$

- 6. x+ay+bz=m, y+az+bx=n, z+ax+by=p.
- 7. x + ay = l, y + bz = m, z + cu = n, u + dw = p, w + ex = r.
- 8. Eliminate x, y, z, (supposed to be all different) from the following equations:

$$x = by + cz$$
, $y = cz + ax$, $z = ax + by$.

9. Eliminate x, y, z, from

$$\frac{x}{y+z} = a, \quad \frac{y}{z+x} = b, \quad \frac{z}{x+y} = c.$$

10. Having given

Ex. 1.

$$x = by + cz + du + ew,$$

 $y = cz + du + ew + ax,$
 $z = du + ew + ax + by.$
 $u = ew + ax + by + cz,$
 $w = ax + by + cz + du,$

Show that
$$\frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} + \frac{d}{1+d} + \frac{e}{1+e} = 1$$
.

. Art. XLVIII. Resolution of Particular Systems of Linear Equations.

x+y+z=a

$$x+y+z=a$$
 (1)

$$y+z+u=b$$
 (2)

$$z + u + x = c \tag{3}$$

$$\begin{aligned}
z + u + x &= c \\
u + x + y &= d
\end{aligned} \tag{4}$$

$$(1)+(2)+(3)+(4) 3(u+x+y+z)=a+b+c+d (5')$$

$$3(u+x+y+z) = a+b+c+a$$
 (2)

$$3(1) 3(x+y+z) = 3a (6')$$

$$\frac{1}{3}\{(5')-(6')\} u = \frac{1}{3}(-2a+b+c+d.)$$

ith corres one of the

x=r.

from the

of Linear

(1)(2)

(3)

(4)

(5')

(6') +d.

The values of x, y and z may now be written down by symmetry.

The following is a variation of the above method, applicable to a much more general system.

Assume the auxiliary equation

$$u + x + y + z = s, \tag{5}$$

$$\therefore (1) \text{ becomes} \qquad s - u = a, \tag{6}$$

$$(2) " s-x=b, (7)$$

$$(3) \qquad \qquad s - y = c, \tag{8}$$

$$(4) \qquad \qquad s - z = d, \tag{9}$$

(5)+(6)+(7)+(8)+(9)
$$4s = s+a+b+c+d.$$

$$\vdots \quad s = \frac{1}{3}(a+b+c+d).$$

s is now a known quantity, and may be treated as such,

in (6) giving
$$u = s - a$$

'' (7) '' $x = s - b$
'' (8) '' $y = s - c$
'' (9) '' $z = s - d$.

Ex. 2.
$$yz = a(y+z),$$
 (1)

$$\mathbf{z} \cdot \mathbf{c} = b(\mathbf{z} + \mathbf{x}),\tag{2}$$

$$xy = c(x+y), \tag{3}$$

$$\frac{1}{y} + \frac{1}{z} = \frac{1}{a},$$

$$(2) + bzx, \qquad \frac{1}{z} + \frac{1}{x} = \frac{1}{b},$$

$$(3) \div cxy, \qquad \frac{1}{x} + \frac{1}{y} = \frac{1}{c}.$$

This may now be solved like Ex. 1, using the reciprocals of a b, c, x, y and z instead of these quantities themselves.

Ex. 3.
$$a_1 u + b_1 (x + y + z) = c_1$$
 (1)

$$a_2x + b_2(y+z+u) = c_2 \tag{2}$$

$$a_3y + b_3(z + u + x) = c_3$$
 (3)

$$a_{A}z + b_{A}(u + x + y) = c_{A} \tag{4}$$

Assume the auxiliary equation

$$u + x + y + z = s. ag{5}$$

(1) becomes $b_1 s - (b_1 - a_1)u = c_1$

$$\therefore \quad \frac{b_1}{b_1 - a_1} s - n = \frac{c_1}{b_1 - a_1} \tag{6}$$

Similarly from (2)
$$\frac{b_2}{b_2 - a_2} s - x = \frac{c_2}{b_2 - a_2}$$
 (7)

(8)
$$\frac{b_3}{b_3 - a_3} s - y = \frac{c_3}{b_3 - a_3}$$

" (4)
$$\frac{b_4}{b_4 - a_4} s - z = \frac{c_4}{b_4 - a_4}$$
 (5)

$$(5) + (6) + (7) + (8) + (9) \left(\frac{b_1}{b_1 - a_1} + \frac{b_2}{b_2 - a_2} + \frac{b_3}{b_3 - a_3} + \frac{b_4}{b_4 - a_4} \right) *$$

$$= s + \frac{c_1}{b_1 - a_1} + \frac{c_2}{b_2 - a_2} + \frac{c_3}{b_3 - a_3} + \frac{c_4}{b_4 - a_4}$$
(10)

From (10) we can at once get the value of s, which may therefore be treated as a known quantity.

in (6) giving
$$u = \frac{b_1 s - c_1}{b_1 - a_1}$$

and the value of x, y, and z may be obtained from (7), (8) and (9), or they may be written down by symmetry.

$$\mathbf{E}\mathbf{x}. \ \mathbf{4}. \qquad ax + b(y + z) = c \tag{1}$$

$$ay + b(z + u) = d \tag{2}$$

$$az + b(u + x) = e \tag{3}$$

$$au + b(x+y) = f \tag{4}$$

Assume
$$u + x + y + z = s$$
 (5)

Assume
$$(1) + (2) + (3) + (4)$$
 $(a+2b)s = c+d+e+f$ (6)

$$(1)+(2)+(3)+(4)$$
 $(a+2b)s = c+d+e+f$

Hence s is a known quantity and may be treated as such.

From (1) and (5)
$$bs-bu+(a-b)x=c$$
,

$$\therefore bu - (a-b)x = bs - c, \tag{7}$$

Similarly from (2) and (5)
$$bx - (a-b)y = bs - d$$
 (8)

arly from (2) and (5)
$$bx - (a - b)y = bx - a$$
. (9)

$$(a) \qquad (b) \qquad (a-b)u = bs - f, \qquad (10)$$

$$b(7) + (a-b)(8)$$
 $b^2u - (a-b)^2y = abs - bz - (a-b)d,(11)$

$$b(9) + (a-b)(10)$$
 $b^2y - (a-b)^2u = abs - bs_0 (a-b)f$, (12)

0-(1

T

meti

E

T

E:

E

(4) +

Te

B

82

$$b^{2}(11) + (a-b)^{2}(12) \quad \{b^{4} - (a-b)^{4}\} u = abs\{b^{2} + (a-b)^{2}\} - a\{b^{2}d + (a-b)^{2}f\} - b\{b^{2}(c-d) + (a-b)^{2}(e-f)\}$$
 (13)

The values of x, y, and z may now be written down by symmetry.

Ex. 5.
$$a^3 + a^2x + ay + z = 0$$
, $b^3 + b^2x + by + z = 0$, $c^3 + c^2x + cy + z = 0$.

The polynome $t^3 + xt^2 + yt + z$ vanishes for t = a, t = b, t = c,

.. by Th. II., p. 46, for
$$a''l$$
 values of t ,
$$t^3 + xt^2 + yt + z = (t-a)(t-b)(t-c)$$

$$= t^3 - (a+b+c)t^2 + (ab+bc+ca)t - abc.$$
.. Th. III., p. 53, $x = -(a+b+c)$.

Th. III., p. 53,
$$x = -(a+b+c),$$
$$y = ab + bc + ca,$$
$$z = -abc.$$

Ex. 6.
$$x+y+z+u=1,$$
 (1) $cx+by+cz+du=0,$ (2)

$$a^2x + b^2y + c^2z + d^2u = 0, (3)$$

$$a^3x + b^3y + c^3z + d^3u = 0. (4)$$

Employing the method of arbitrary multipliers,

To determine x assume

$$b^3 + lb^2 + mb + n = 0, (6)$$

$$c^3 + lc^2 + mc + n = 0, (7)$$

$$d^3 + ld^2 + md + n = 0, (8)$$

$$\therefore x = \frac{n}{a^3 + la^2 + ma + n} \tag{9}$$

But the system (6), (7), (8) has been solved in Ex. 5, from which it is seen that

and
$$l = -(b+c+d), m = bc+cd+db, n = -bcd,$$

 $a^3 + a^2l + am + n = (a-b)(a-c)(a-d)$:

 $\frac{b_4}{a-a_4}$

(6)

(7)

(8)

(9)

 $\frac{c_4}{-a_4} (10)$

ay there-

), (8) and

(1)

(2) (3)

(4)

(5) (6)

uch.

(7)

(8)

(9) (10)

(a-b)d,(11)

-b)f, (12)

.. using these values in (9)

$$\boldsymbol{x} = \frac{-bcd}{(a-b)(a-c)(a-d)}.$$

The values of y, z and u may now be written down by symmetry.

Ex. 7.
$$\frac{x}{m-a} + \frac{y}{m-b} + \frac{z}{m-c} = 1.$$
 (1)

$$\frac{x}{n-a} + \frac{y}{n-b} + \frac{z}{n-c} = 1. \tag{2}$$

$$\frac{x}{p-a} + \frac{y}{p-b} + \frac{z}{p-c} = 1.$$
 (3)

Assume
$$1 - \frac{x}{t-a} - \frac{y}{t-b} - \frac{z}{t-c} = \frac{t^3 + Bt^2 + Ct + D}{(t-a)(t-b)(t-c)}$$
 (4)

But in virtue of equations (1), (2) and (3), the first member of (4) vanishes for t=m, t=n, and t=p, and t=t. Th. II. p. 46,

$$t^3 + Bt^2 + Ct + D = (t - m)(t - n)(t - p)$$

.. (4) becomes
$$1 - \frac{x}{t-a} - \frac{y}{t-b} - \frac{z}{t-c}$$

$$= \frac{(t-m)(t-n)(t-p)}{(t-a)(t-b)(t-c)}.$$

To obtain the value of x multiply both sides of this equation by (t-a),

$$t-a-x-\frac{y(t-a)}{t-b} - \frac{z(t-a)}{t-c} = \frac{(t-m)(t-n)(t-p)}{(t-b)(t-c)}$$

Now t may have any value in this equation; let t = a.

$$\therefore x = \frac{(a-m)(a-n)(a-p)}{(a-b)(a-c)}.$$

The substitution (xyz|abc) will give the values of y and z.

Ex. 8.
$$\frac{x+a}{p} = \frac{y+b}{q} = \frac{z+c}{r} \tag{1}$$

$$lx + my + nz = s^2 (2)$$

(2)

B

•

E

(1) ÷

 $(2) \div$

Page

(4) a

(3)-

Ex

(1)

By Art. XXXVII.,

$$\frac{x+a}{p} = \frac{y+b}{q} = \frac{z+c}{r} = \frac{lx+my+nz+la+mb+nc}{lp+mq+nr}$$

(2)
$$= \frac{s^2 + la + mb + nc}{lp + mq + nr} = R, \text{ say}$$

$$x = pR - a$$
, $y = qR - b$, $z = rR - c$.

Ex. 9.
$$yz + zx + xf = (a+b+c)xyz$$
 (1)

$$\frac{yz + zx}{a} = \frac{zx + xy}{b} = \frac{xy + yz}{c} \tag{2}$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = a + b + o \tag{3}$$

(2) ÷
$$xyz$$
. $\frac{1}{x} + \frac{1}{y} = \frac{1}{y} + \frac{1}{z} = \frac{1}{z} + \frac{1}{x}$ (4)

Page 122 and (3)
$$= \frac{\frac{2}{x} + \frac{2}{y} + \frac{2}{z}}{a+b+c} = 2$$
 (5)

(3)-(6)
$$\frac{1}{x} = a-b+c, \frac{1}{y} = a+b-c, \frac{1}{z} = -a+b+c.$$

Ex. 10.
$$\frac{x+c}{a+b} + \frac{y+b}{a+c} = 2.$$
 (1)

$$\frac{x-b}{a-c} + \frac{y-c}{a-b} = 2. ag{2}$$

$$\therefore \frac{x+c}{a+b} - 1 = 1 - \frac{y+b}{a+c}$$

by sym-

(1)

(2)

(3)

 $\frac{+D}{(-c)}$ (4)

ember of +Ct+D

equation

d #.

(1)

(2)

Similarly from (2)
$$\frac{x-a-b+c}{a-c} = \frac{a-b+c-y}{a-b}$$
 (4)

(3) and (4)
$$x-a-b+c = \frac{a+b}{a+c}(a-b+c-y)$$

$$= \frac{a-c}{a-b}(a-b+c-y).$$

But unless $\frac{a+b}{a+c} = \frac{a-c}{a-b}$, this cannot be the case except for

$$a-b+c-y=0$$
,

in which case x-a-b+c=0 also,

giving
$$x=a+b-c$$
 and $y=a-b+c$. (5)

If
$$\frac{a+b}{a+c} = \frac{a-c}{a-b}$$
 : $a^2-b^2=a^2-c^2$ $b^2-c^2=0$, or $(b+c)(b-c)=0$, (6)

$$\therefore b = c, \text{ or } b = -c.$$

But if b = +c or -c, (1) and (2) are one and the same equation; hence if (1) and (2) are independent, (6) cannot be true, thus leaving only the alternative (5).

Ex. 11.
$$2ax = (b+c-a)(y+z),$$
 (1)

$$2by = (c + a - b)(z + x), (2)$$

H

E

$$(x+y+z)^2 + x^2 + y^2 + z^2 = 4(a^2 + b^2 + c^2)$$
 (3)

(1) and page 122 (5)
$$\frac{x}{b+c-a} = \frac{y+z}{2a} = \frac{x+y+z}{b+c+a}$$
 (4)

(2) "
$$\frac{y}{c+a-b} = \frac{x+z}{2b} = \frac{x+y+z}{c+a+b}$$
 (5)

(4), (5) and "
$$\therefore \frac{x+y+z}{a+b+c} = \frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c}$$

$$\therefore \frac{x^2}{(b+c-a)^2} = \frac{(x+y+z)^2 + x^2 + y^2 + z^2}{(a+b+c)^2 + (b+c-a)^2 + (c+a-b)^2 + (a+b-c)^3}$$

Reduction and (3) =
$$\frac{(x+y+z)^2 + x^2 + y^2 + z^2}{4(a^2 + b^2 + c^2)} = 1.$$

$$\therefore x^3 = (b+c-a)^2.$$

equation; true, thus

L. O.

(1)

(2)

$$+ c^2$$
) (3)

$$\frac{z}{a+b-c}$$

$$(a+b-c)^2$$

Ex. 12.
$$ax = by = cz = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$
 (1)

$$(1) \div xyz \qquad \therefore \quad \frac{a}{yz} = \frac{b}{zx} = \frac{c}{xy} \therefore = \frac{a+b+c}{xy+yz+zx}$$
 (2)

Also from (1)
$$\div xyz \frac{a}{yz} = \frac{1}{xyz} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) = \frac{xy + yz + zx}{x^2y^2z^2}$$
 (8)

(2)×(8)
$$\frac{a^3}{y^2z^3} = \frac{a+b+c}{x^2y^2z^3}$$

$$a^2x^2 = a+b+c$$

Ex. 13.
$$\frac{y+z-x}{a} = \frac{z+x-y}{b} = \frac{x+y-z}{c}$$
 (1)

$$xyz = m^3 \tag{2}$$

(1)
$$\frac{z}{a+b} = \frac{x}{b+c} = \frac{y}{c+a}, = \frac{m}{r} \text{ suppose} \quad (3)$$

then
$$\frac{xyz}{(a+b)(b+c)(c+a)} = \frac{m^3}{r^3}$$

$$\therefore r^3 = (a+b)(b+c)(c+a)$$

Hence the value of r is known and from (3) rx = m(b+c).

Ex. 14.
$$y+z=2axyz$$
 (1)

$$z + x = 2bxyz \tag{2}$$

$$x + y = 2cxyz \tag{3}$$

$$\therefore xyz = \frac{y+z}{2a} = \frac{z+x}{2b} = \frac{x+y}{2c} = \frac{x+y+z}{a+b+c}$$

$$=\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c} \tag{4}$$

$$x^{3}y^{3}z^{3} = \frac{xyz}{(b+c-a)(c+a-b)(a+b-c)}$$

$$x^{2}y^{2}z^{3} = \frac{1}{(b+c-a)(c+a-b)(a+b-c)}$$

Hence the value of $x^2y^2z^2$ is known, call it $\frac{z}{r^2}$ and substitute

in (4)

$$\frac{1}{r} = \frac{x}{b+c-a}$$

$$\therefore rx = b + c - a,$$

in which $r^2 = (b+c-a)(c+a-b)(a+b-c)$.

Ex. 15.
$$y^2 + z^2 - x(y+z) = a$$

$$z^2 + x^2 - y(z + x) = b (2)$$

$$x^{2} + y^{2} - z(x+y) = \mathbf{o} \tag{3}$$

(1)+(2)+(3)
$$2(x^2+y^2+z^2-xy-yz-zx)=a+b+c \quad (4)$$

(1) may be written
$$x^2 + y^2 + z^2 - x(x+y+z) = a$$
 (5)

(2)
$$x^2 + y^2 + z^2 - y(x+y+z) = b$$
 (6)

(3)
$$x^2 + y^2 + z^2 - z(x+y+z) = c$$
 (7)

$$\therefore x+y+z = \frac{a-b}{y-x} = \frac{b-c}{z-y} = \frac{c-a}{x-z}$$

$$(x+y+z)^2 = \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{(y-x)^2 + (z-y)^2 + (x-z)^2}$$

$$= \frac{a^2 + b^2 + c^2 - ab - bc - ca}{x^2 + y^2 + z^2 - xy - yz - zx}$$

(4)
$$= \frac{2(a^2 + b^2 + c^2 - ab - bc - ca)}{a + b + c}$$
 (8)

$$= \frac{2(a^3 + b^3 + c^3 - 3abc)}{(a+b+c)^2} \tag{9}$$

Write r^2 for $2(a^3+b^3+c^3-3abc)$.

(9)
$$x+y+z = \frac{r}{a+b+c}$$
 (10)

Returning to (8)
$$(x+y+z)^2 = \frac{2(u^2+b^2+c^2-ab-bc-ca)}{a+b+c}$$
 (8)

(4)
$$2(x^2 + y^2 + z^2 - xy - yz - zx) = \frac{(a+b+c)^2}{a+b+c}$$
 (11)

1{(8)

(5) ar

(12)

(5), this so of y a

(1)

1.

5.

7.

).

11.

bstituto

(1)

(2)

(3)

(5)

(6)

(7)

(8)

(9)

(10)

(8)

(11)

+c (4)

$$x^{2} + y^{2} + z^{2} = \frac{a^{2} + b^{2} + r^{2}}{a + b + c}$$
(12)
(5) and (10)
$$x^{2} + y^{2} + z^{3} - \frac{rx}{a + b + c} = a$$

$$\therefore rx = (a + b + c)(x^{2} + y^{2} + z^{2}) - a(a + b + c)$$

$$= a^{2} + b^{2} + c^{2} - a(a + b + c)$$

$$= b^{2} + c^{2} - a(b + c).$$

(5), (6), (7) are symmetrical with respect to (xyz|abc); (10) shows this substitution does not affect r, and consequently the values of y and z may be written down at once from that of x.

Exercise lix.

1.
$$ax+by=c$$
, $ax+by=c$, $mx+ny=d$. 2. $ax+by=c$, $mx-ny=d$.

3.
$$ax+by=c$$
, $mx+ny=c$.

4. $\frac{x}{a}+\frac{y}{b}=1$, $x+y=c$.

5.
$$\frac{x}{a} + \frac{y}{b} = 1$$
, 6. $\frac{x}{a} + \frac{y}{b} = 1$, $\frac{x}{b} + \frac{y}{a} = 1$, $\frac{x}{b} = \frac{y}{a}$.

7.
$$ax+bc=by+ac$$
.
 $x+y=c$.
8. $\frac{a}{y}+\frac{b}{y}=m$,
 $\frac{b}{y}+\frac{a}{y}=n$.

9.
$$(a+c)x-(a-c)y = 2ab$$
,
 $(a+b)y-(a-b)x = 2ac$.
10. $\frac{x-c}{y-c} = \frac{a}{b}$,
 $x-y=a-b$.

11.
$$\frac{x}{y} = \frac{a}{b},$$

$$\frac{x+m}{y+n} = \frac{c}{d},$$

$$\frac{y-1}{x+1} = \frac{a+b+c}{a+b-c},$$

13.
$$\frac{x-a+c}{y-a+b} = \frac{b}{c}$$

$$\frac{y+b}{x+c} = \frac{c+a}{b+a}$$
14.
$$\frac{x+c}{a+b} + \frac{y+b}{a+c} = 2$$
,
$$\frac{x-b}{a-c} + \frac{y-c}{a-b} = 2$$
,

$$\frac{y+b}{x+c} = \frac{c+a}{b+a}.$$

$$\frac{x-b}{a-c} + \frac{y-c}{a-b} = 2,$$
15.
$$\frac{x}{m-a} + \frac{y}{m-b} = 1,$$

$$\frac{x}{n-a} + \frac{y}{n-b} = 1.$$

$$16. \quad x+y+z=0,$$

$$(b+c)x+(a+c)y+(a+b)z$$

$$= 0,$$

$$bcx+acy+abz=1.$$

29

30.

82.

84.

86.

37.

17.
$$x+y+z=l$$
,
 $ax+by+cz=m$,
 $\frac{x}{l-a} + \frac{y}{l-b} + \frac{z}{l-c} = 1$.
18. $\frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$,
 $\frac{x}{l-a} + \frac{y}{l-b} + \frac{z}{l-c} = 1$.

bcx + acy + abz = 1.

19.
$$\frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$$
, 20. $a(x-a) = b(y-b) = c(z-c)$, $ax + by + cz = m^2$.

21.
$$x+y+z=a+b+c$$
, 22. $x+y+z=0$, $bx+cy+az=a^2+b^2+c^2$, $ax+by+cz=ab+bc+ca$, $cx+ay+bz=a^2+b^2+c^2$. $(b-c)x+(c-a)y+(a-b)z=0$.

23.
$$x+y+z=m$$
, 24. $ax+by+cz=r$, $x:y:z=a:b:c$. $mx=ny$, $qy=pz$

25.
$$xy + yz + zx = 0$$
, $ayz + bzx + cxy = 0$, $bcyz + acxz + abxy + (a - b)(b - c)(c - a)xyz = 0$.

26.
$$(a+b)x+(b+c)y+(c+a)z=ab+bc+ca$$
,
 $(a+c)x+(a+b)y+(b+c)z=ab+ac+bc$,
 $(b+c)x+(a+c)y+(a+b)z=a^2+b^2+c^3$.

$$27. mx + ny + pz + qu = r,$$

$$\frac{x}{a} = \frac{y}{b} = \frac{z}{c} \Rightarrow \frac{u}{d}.$$

$$-(a+b)z$$

$$\frac{z-c}{r}$$
,

$$\vdash n(z - c)$$

$$c(\mathbf{z}-c),$$

$$c + ca$$
,

$$(a-b)z$$

28.
$$\frac{x(y+z)}{a} = \frac{y(x+z)}{b} = \frac{z(x+y)}{c}, \quad \langle z = \frac{1}{a+b-c}, \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = a+b+c.$$

29.
$$(a-b)(x+c) - ay + bz = (c-a)(y+b) - cz + ax = 0$$
,
 $x+y+z=2(a+b+c)$.

30.
$$ax + by = 1,$$
 $by + cz = 1,$ $nx + lz = m,$ $cz + ax = 1,$ $mz + ny = l.$

82.
$$x+y=a$$
,
 $y+z=b$,
 $x+y=c$.
83. $y+z-x=\frac{mn}{l}$,
 $x+x-y=\frac{ln}{m}$,
 $x+y-z=\frac{lm}{n}$,

84.
$$\frac{1}{y} + \frac{1}{z} = 2a$$
. 85. $\frac{1}{y} + \frac{1}{z} - \frac{1}{x} = \frac{2}{a}$, $\frac{1}{z} + \frac{1}{x} = 2b$, $\frac{1}{z} + \frac{1}{x} - \frac{1}{y} = \frac{2}{b}$, $\frac{1}{x} + \frac{1}{y} = 2c$. $\frac{1}{z} + \frac{1}{y} - \frac{1}{z} = \frac{2}{c}$.

86.
$$(a+b)x+(a-b)z = 2bc$$
,
 $(b+c)y+(b-c)x = 2ac$,
 $(c+a)z+(c-a)y = 2ab$.

87.
$$x + \frac{y}{b} - \frac{z}{c} = a.$$

$$y + \frac{z}{c} - \frac{x}{a} = b,$$

$$\frac{x}{b+c} + \frac{y}{c+a} = b-a,$$

$$\frac{x}{b+c} + \frac{z}{a+b} = a-c,$$

$$x + \frac{z}{a-b} = a-c,$$

$$x + \frac{z}{a+b} = a-c,$$

15.

17.

19.

21.

23.

24.

26.

89.
$$x+y-z=a$$
, 40. $u+v-x=a$, $y+z-v=b$, $x+y-z=c$, $x+y-z=c$, $y+x-y=d$. $x+u-v=c$.

Exercise 1x.

Resolve

1.
$$(a+b)x+(a-b)y=2(a^2+b^2)$$
 2. $x+y=a$,
 $(a-b)x+(a+b)y=2(a^2-b^2)$ $x^2-y^3=b$.

3.
$$2x-3y=m$$
,
 $2x^2-3y^2=n^2+xy$.
3. $(a-b)x+(a+b)y=a+b$.
 $\frac{x}{a+b}-\frac{y}{a-b}=\frac{1}{a+b}$

5.
$$(a-b)x+y = \frac{a+b+1}{a+b}$$
, 6. $(a+b-c)x-(a-b+c)y$
 $x+(a+b)y = \frac{a-b+1}{a-b}$. $\frac{x}{y} = \frac{a+b-c}{a-b+c}$.

7.
$$\frac{x+y}{x-y} = \frac{a}{b-c},$$
8.
$$\frac{x-a}{y-a} = \frac{a-b}{a+b},$$

$$\frac{x+c}{a+b} = \frac{y+b}{a+c},$$

$$\frac{x}{y} = \frac{a^3-b^3}{a^3+b^3}.$$

9.
$$\frac{x-y+1}{x-y-1} = a$$
, 10. $\frac{x+y+1}{x-y+1} = \frac{a+1}{a-1}$, $\frac{x+y+1}{x+y-1} = b$, $\frac{x+y+1}{x-y-1} = \frac{1+b}{1-b}$.

11.
$$\frac{x-y+1}{x-y-1} = a$$
, 12. $\frac{x}{a+b} + \frac{y}{a-b} = a+b$, $\frac{x+y+1}{x-y-1} = b$. $\frac{x}{a} + \frac{y}{b} = 2a$.

13.
$$(a+c)x+(a-c)y=2ab$$
, 14. $a^2+ax+y=0$, $(a+b)y-(a-b)x=2ac$. $b^2+bx+y=0$.

15.
$$y+z-x=a$$
, $z+x-y=b$, $x+y-z=c$.

16.
$$7x+11y+z=a$$
,
 $7y+11z+x=b$,
 $7z+11x+y=c$.

$$\frac{b}{y} + \frac{c}{z} - \frac{a}{x} = 2bc,$$

$$\frac{c}{z} + \frac{a}{x} - \frac{b}{y} = 2ca.$$

17.
$$\frac{a}{x} + \frac{b}{y} - \frac{c}{z} = 2ab$$
, 18. $(a-b)(x+c) - ay + bz = 0$, $\frac{b}{y} + \frac{c}{z} - \frac{a}{x} = 2bc$, $(c-a)(y+b) - cz + ax = 0$, $\frac{c}{z} + \frac{a}{z} - \frac{b}{z} = 2ca$ $x+y+z=2(a+b+c)$.

$$(b)y = a + b.$$

$$(a - b + c)y$$

$$\frac{y}{c+a} + \frac{z}{a-b} = b+c,$$

19.
$$\frac{x}{b+c} + \frac{y}{c-a} = a+b$$
, 20. $\frac{x}{b+c} + \frac{y}{c-a} - \frac{z}{a-b} = 0$, $\frac{y}{c+a} + \frac{z}{a-b} = b+c$, $\frac{x}{b-c} - \frac{y}{c-a} + \frac{z}{a+b} = 0$

$$\frac{a}{a+b} + \frac{a}{b-c} = c+a.$$

$$\frac{z}{a+b} + \frac{x}{b-c} = c+a$$
. $\frac{x}{b+c} + \frac{y}{c-a} + \frac{z}{a+b} = 2a$.

21.
$$\frac{x}{a} + \frac{y}{a-1} + \frac{z}{a-2} = 1$$
, 22. $\frac{xy}{x+y} = a$,

$$22. \frac{xy}{x+y} = a$$

$$\frac{x}{b} + \frac{y}{b-1} + \frac{z}{b-2} = 1,$$

$$\frac{yz}{y+z} = b,$$

$$\frac{x}{c} + \frac{y}{c-1} + \frac{z}{c-2} = 1.$$

$$\frac{zx}{z+x} = c.$$

23.
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = \frac{x}{b} + \frac{y}{c} + \frac{z}{a} =$$

$$\frac{x}{c} + \frac{y}{a} + \frac{z}{b} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

24.
$$\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = \frac{u}{d}$$
, 25. $ax = by = cz = du$,

25.
$$ax = by = cz = du$$
,

$$\begin{array}{ccc}
a & b & c \\
mx + ny + pz + qu = r
\end{array}$$

$$y^2 - z^2 = x - u$$

$$26. y+z=au,$$

$$x + z = bu,$$

27.
$$x+y=m$$
, $y+z=n$,

$$x+y=cu,$$

$$z+u=a$$
,

$$\frac{1-x}{1-x} = \frac{a}{h}$$

$$u-x=h$$

$$u-x=b.$$

a.

 $=a+b_{\epsilon}$

28.
$$11x + 9y + z - u = a$$
,
 $11y + 9z + u - x = b$,
 $11z + 9u + x - y = c$,
 $11u + 9x + y - z = d$.

29.
$$x + ay + a^2z + a^3u + a^4 = 0$$
,
 $x + by + b^2z + b^3u + b^4 = 0$,
 $x + cy + c^2z + c^3u + c^4 = 0$,
 $x + dy + d^2z + d^3u + d^4 = 0$.

80.
$$x+y=a, y+z=b, z+u=c, u+v=d, v+x=e.$$

81.
$$x+ly=a,$$

$$y+mz=b,$$

$$z+nu=c,$$

$$u+pv=d,$$

$$v+qx=e,$$

82.
$$x + y + z = a$$
,
 $y + z + u = b$,
 $z + u + v = c$,
 $u + v + x = d$,
 $v + x + y = e$.

88.
$$x-y+z=a,$$

 $y-z+u=b,$
 $z-u+v=c,$
 $u-v+x=d,$
 $v-x+y=e.$

84.
$$x+y+z-u=a,$$

 $y+z+u-v=b,$
 $z+u+v-x=c,$
 $u+v+x-y=d,$
 $v+x+y-z=e.$

85.
$$x+y+z-u-v=a$$
,
 $y+z+u-v-x=b$,
 $z+u+v-x-y=c$,
 $u+v+x-y-z=d$
 $v+x+y-z-u=e$.

86.
$$2x-y-z+2u-v=3a$$
,
 $2y-z-u+2v-x=3b$,
 $2z-u-v+2x-y=3c$,
 $2u-v-x+2y-z=3d$.
 $2v-x-y+2z-u=3e$.

$$37. \ v - 2x + 3u - 2y + z = a,$$

$$x - 2y + 3v - 2z + u = b,$$

$$y - 2z + 3x - 2u + v = c,$$

$$z - 2u + 3y - 2v + x = d.$$

$$u - 2v + 3z - 2x + y = e.$$

Exercise lxi.

Resolve the following systems of equations:

1.
$$\frac{1+x+x^2}{1+y+y^2} = a,$$

$$\frac{1+y+x^2}{1+x+y^2} = b.$$

2.
$$\frac{x+1}{y+1} = a\left(\frac{x-1}{y-1}\right),$$

$$\frac{x^2+x+1}{y^2+y+1} = b^2\left(\frac{x-1}{y-1}\right)^{2}.$$

8.
$$\frac{(1+x)(1+y)}{(1-x)(1-y)} = \frac{1+a}{1-a}$$
, 4. $\frac{x+y}{1+xy} = \frac{a^2-\alpha^2}{a^2+\alpha^2}$

4.
$$\frac{x+y}{1+xy} = \frac{a^2-\alpha^2}{a^2+\alpha^2}$$

11.

13. y

14. 2

15. 2

17. oc

x

19. x

$$4 = 0,$$

= 0,
= 0,

$$4=0$$
.

$$a$$
 e .
 $z = a$,

$$u = b,$$

$$v = c,$$

$$x = d$$
.

$$y=e$$
.

$$\left(\frac{1}{1}\right)^{2}$$
.

$$\frac{(1+x)(1-y)}{(1-x)(1+y)} = \frac{1+b}{1-b}. \qquad \frac{x-y}{1-xy} = \frac{b^3-\beta^2}{b^3+\beta^2}.$$

$$\frac{x - y}{1 - xy} = \frac{b^2 - \beta^2}{b^2 + \beta^2}$$

$$5. \frac{x+y}{1+xy} = \frac{a}{b+c},$$

$$\frac{x-y}{1-xy} = \frac{b-c}{a},$$

6.
$$\frac{x+y}{1-xy} = \frac{2a}{1-a^3}$$

 $\frac{x-y}{1+xy} = \frac{2b}{1-b^3}$

$$7. \quad \frac{x+y}{1-xy} = \frac{2a\alpha}{a^2-\alpha^2},$$

$$\frac{x-y}{1+xy} = \frac{2h\beta}{b^2 - \beta^2}.$$

7.
$$\frac{x+y}{1-xy} = \frac{2a\alpha}{a^2 - \alpha^2}$$
, 8. $\frac{1+xy}{x+y} + \frac{x+y}{1+xy} = \frac{2a}{m}$, $\frac{x-y}{1+xy} = \frac{2b\beta}{b^2 - \beta^2}$. $\frac{1-xy}{x-y} + \frac{x-y}{1-y} = \frac{2b}{n}$.

$$9. \ \frac{y(1+x^2)}{x(1+y^2)} = a,$$

$$\frac{y(1-x^2)}{x(1-y^2)} = b.$$

10.
$$y+z=2axyz, \\ x+z=2bxyz,$$

$$x + y = 2cxyz.$$

11.
$$\frac{y+z-x}{a} = \frac{z+x-y}{b} = \frac{x+y-z}{c}$$
, 12. $ax = by = cz$, $xyz = m^3$. $= \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$.

18.
$$y^2 + z^2 - x(y+z) = a$$
,
 $x^2 + z^2 - y(x+z) = b$,
 $x^2 + y^2 - z(x+y) = c$.

14.
$$2ax = (b+c-a)(y+z),$$

 $2by = (c+a-b)(x+z),$
 $(x+y+z)^2 + x^2 + y^2 + z^2 = 4(a^2+b^2+c^2).$

15.
$$\frac{x-1}{y-1} = \frac{a-1}{b-1}$$
, 16. $\frac{x^2 + xy + y^2}{x^2 - xy + y^2} = \frac{x^2 + y^2}{a} = \frac{xy}{b}$ $\frac{x^3 - 1}{y^3 - 1} = \frac{a^3 - 1}{b^3 - 1}$.

16.
$$\frac{x^2 + xy + y^2}{x^2 - xy + y^2} = \frac{x^2 + xy + y^2}{x^2 -$$

17.
$$x^4 + x^2y^2 + y^4 = a$$
,

$$x^2 + xy + y^2 = b.$$

18.
$$e^3 + y^3 = \frac{a}{x - y}$$

$$x^2y - xy^2 = \frac{x - y}{x + y}.$$

19.
$$xy + \frac{x}{y} = a(x^2 + y^2)$$
 20. $x^3 = a(x^2 + y^2) - bxy$,

20.
$$x^3 = a(x^2 + y^2) - bxy$$
,

$$\alpha y - \frac{x}{y} = b(x^2 + y^2)$$
 $y^3 = b(x^2 + y^2) - axy$.

21.
$$4c(x^2+1) = (a+b)(x-y)^2$$
, $4c(y^2-1) = (a-b)(x-y)^2$.

22.
$$x^3 - u^5 = \frac{b+c}{2a} (x^2 + xy + y^2)(x+y),$$

 $y^3 - u^3 = \frac{b-c}{2a} (x^2 + xy + y^2)(x+y).$

23.
$$\frac{x+x^2}{y+y^2} = a$$
, $24. \frac{x^2+y^2}{xy} = a$, $\frac{y+x^2}{x+y^2} = b$. $\frac{1+x^2y^2}{xy} = b$.

25.
$$x(y+z) = a$$
, $y(z+x) = b$, $z(x+y) = c$. **26.** $(x+y)(x+z) = a$, $(y+z)(y+x) = b$, $(z+x)(z+y) = c$.

27.
$$x(x+y+z) = a - yz$$
, $y(x+y+z) = b - zx$, $y^2 - (z-x)^2 = a$, $y^2 - (z-x)^2 = b$, $z^2 - (x-y)^2 = c$.

29.
$$x^{2} + y^{2} = az$$
, $30. \frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{2a}{z^{2}}$, $x + y = bz$, $\frac{1}{x^{2}} - \frac{1}{y^{2}} = \frac{2b}{z^{2}}$, $\frac{1}{x} + \frac{1}{y} = \frac{1}{c}$.

81.
$$x^2 - y^2 = az$$
,
 $x + y = bz$,
 $x - y = cz$.

32. $xy = \frac{z - 1}{z + 1}$,
 $(x - y)(z + 1) = 2a$,
 $(x^2 - y^2)(z + 1)^2 = 4bz$.

EXA

1. quan

gener

2.

(1)(2)

(1)

CHAPTER VII.

Examination Papers: Education Department and University of Toronto.

I.

1. State the rules for the addition and subtraction of Algebraic quantities. Express in the simplest form

$$(b+c-a)x+(c+a-b)y+(a+b-c)z$$

 $(c+a-b)x+(a+b-c)y+(b+c-a)z$
 $(a+b-c)x+(b+c-a)y+(c+a-b)z$

2. State and prove the Index Laws. Assuming these to be general, interpret x^{-m} .

Find the products in the following cases:

(1)
$$(x^3+6x^2y+12xy^2+8y^3)(x^5-6x^2y+12xy^2-8y^3)$$

(2)
$$(a+b+c)(b+c-a)(c+a-b)(a+b-c)$$
.

3. Prove the rule of signs in Division.

Divide: [Apply Horner's Method to (1)]

(1)
$$x^6 - 22x^4 + 60x^3 - 55x^2 + 12x + 4$$
 by $x^2 + 6x + 1$.

(2)
$$x^4 + 9 + 81x^{-4}$$
 by $x^2 - 3 + 9x^{-2}$. (3) $x^{n^2} - 1$ by $x^2 - 1$.

4. Find the square roots of

4 bg.

(1)
$$4x^{4m} - \frac{4}{3}x^{5m} + \frac{1}{9}x^{6m}$$

(2)
$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} - 2\frac{a}{c} - 2\frac{c}{b} + 2\frac{b}{a}$$

Distinguish between an algebraic equation and an identity.
 Solve

(1)
$$t^{3}/(1-2x) + t^{3}/(1+2x) = 3$$
.

$$(2) \frac{x-2}{x+2} + \frac{x+2}{x-2} = 2 \cdot \frac{x+3}{x-3}$$

6. A person bought a certain number of exen for \$320. If he had been able to purchase four more for the same sum, each would have cost him \$4 less. Find the number of exen. Explain the negative result.

7. (1) If
$$\frac{a}{b} = \frac{c}{d}$$
 shew that $\frac{a^2 + 2ab + 3b^2}{c^2 + 2cd + 3d^2} = \frac{b(a - 3b)}{d(c - 3d)}$.

- (2) Find the value of $x^6 200x^5 + 198x^4 + 200x^3 197x^2 397x$ when x = 199.
- 8. Three towns, A, B, C, are at the angles of a triangle. From A to C, through B, the distance is 82 miles; from B to A, through C, is 97 miles; and from C to B, through A, is 89 miles. Find the direct distances through the towns.

II.

- 1. Prove $x^m \div x^n = x^{m-n}$. Simplify $(a+b+c)^3 - 3(a+b+c)^2c + 3(a+b+c)c^2 - c^3$.
- 2. Prove the rule for finding the L. C. M. of two quantities. Find the L. C. M. of

$$a^3+b^3+c^3-3abc$$
, and $(a+b)^2+2(a+b)c+c^2$.

8. Prove
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$
.
Simplify $\left(\frac{1-x^3}{1-x^3} + \frac{1-x}{1-x+x^2}\right) \div \left(\frac{1+x}{1+x+x^2} - \frac{1-x^2}{1+x^3}\right)$.

4. Reduce to their lowest terms $\frac{a^{3m}+a^{2m}-2}{a^{2m}+a^m-2}$, and

$$\frac{a(a+2b)+b(b+2c)+c(c+2a)}{a^2-b^2-c^2-2bc}$$

- 5. (1.) If $a^3 pa^2 + qa r = 0$, then $x^3 px^2 + qx r$ is exactly divisible by x a.
 - (2.) Prove that (a+b+c)(bc+ca+ab)-(b+c)(c+a)(a+b) is divisible by abc. Is there any other divisor?

6.

7.

8.
to reate to go, would speed

double sum o

10. month which per cer

1. I

 $\begin{array}{ccc}
2. & D \\
+cx^5 & \text{by}
\end{array}$

3. So

6. If
$$x = \left(\frac{a+b}{a-b}\right)^{\frac{2mn}{n-m}}$$
, then $\frac{1}{2} \frac{a^2-b^2}{\omega^2+b^2} \binom{m}{v} v + \frac{n}{v} v = \left(\frac{a+b}{a-b}\right)^{\frac{m+n}{n-m}}$

7. Solve the equations—

$$(1.) \frac{3-2x}{1-2x} - \frac{5-2x}{7-2x} = 1 - \frac{4x^2-2}{7-16x+4x^2}$$

(3.)
$$\frac{x+3}{x+4} - \frac{x+1}{x+2} = \frac{4x+9}{2x+7} - \frac{12x+17}{6x+16}$$

- 8. A person going at the rate of p miles an hour, and desiring to reach home by a certain time, finds, when he has still r miles to go, that, if he were continuing to travel at the same rate, he would be q hours too late. How much must be increase his speed to reach home in time?
- 9. Of the three digits comprising a number, the second is double of the third; the sum of the first and third is 9, and the sum of the three digits is 17. Find the number.
- 10. A owes B \$a due m months hence, and also \$b due n months hence. Find the equation which determines the time at which both sums could be paid at once, reckoning interest at 5 per cent. per annum.

III.

1. If x = 10, y = 11, z = 12, find the value of

$$\left\{ \begin{array}{l} x^2 - (y+z)^2 \end{array} \right\} \times \frac{x+y-z}{x+y+z}; \text{ and subtract}$$

$$(y-z)a^3 + (z-x)ab + (x-y)b^2 \text{ from}$$

$$(y-x)a^2 - (y-z)ab - (z-x)b^3.$$

2. Divide $a + (a+b)x + (a+b+c)x^3 + (a+b+c)x^3 + (b+c)x^4$ $+cx^5$ by $1+x+x^2+x^3$; and find the square root of $9 - 24x + 58x^2 - 116x^3 + 129x^4 - 140x^5 + 100x^6$.

8. Solve (1)
$$\frac{4x+5}{x+1} + \frac{x+5}{x+4} = \frac{2x+5}{x+2} - \frac{x^2-10}{x+3} + x$$
.

sum, each cen. Ex-

$$\frac{a-3b)}{c-3d)}$$

$$3 - 197x^2$$

$$\frac{1-x^2}{1+x^3}$$

$$a(a+b)$$
 is

(2)
$$\frac{1}{2}x + \frac{1}{3}y + \frac{1}{4}z = 9$$
, $\frac{1}{3}x + \frac{1}{4}y - \frac{1}{2}z = -1\frac{3}{4}$, $\frac{1}{4}x - \frac{1}{5}y + \frac{1}{3}z = 1$.

- 4. A boy bought a number of oranges at the rate of 45 cents a dozen; if he had received 20 oranges more for the same money the whole would have cost him only 40 cents a dozen. How many did he buy?
- 5. A farmer took to market two loads of wheat, amounting together to 75 bushels; he sold them at different prices per bushel, but received on the whole the same amount for each load; had he sold the whole quantity at the lower price he would have received \$78.75; but had he sold it at the higher price he would have received \$90. Find the number of bushels in each load.
 - 6. Show how to find the square root of $a + \sqrt{b}$. Find the square root of $1 + \sqrt{1-a^2}$
- 7. Solve $\frac{6x+5}{2x-7} + \frac{4x-1}{x-2} = \frac{7x+1}{x-3}$; and find the value of *a* when $ax^2 36x + 81 = 0$, has equal roots.

8. If
$$\frac{a}{b} = \frac{c}{d}$$
, prove that $\frac{a+c}{b+d} = \sqrt[8]{\frac{(a^3+c^3)}{(b^3+d^3)}}$; and that $\frac{a+b}{a-b} = \frac{\sqrt{(ac)+\sqrt{(bd)}}}{\sqrt{(ac)-\sqrt{(bd)}}}$.

9. Show that $a^3(b-c)+b^3(c-a)+c^3(a-b)$ is exactly divisible by a+b+c; and resolve the expression into its factors.

IV.

- 1. Multiply $a^2 + b^2 c^2 + 2ab$ by $a^2 b^2 + c^3 + 2ac$, and divide the product by $a^2 b^2 c^2 + 2bc$.
 - 2. Simplify $\frac{18a^2b^2}{x+y} \div \left\{ \frac{8ab(x-y)}{7(c+d)} \div \left(\frac{4(c-d)}{21ab^2} \div \frac{8(c^2-d^2)}{a(x^2-y^2)} \right) \right\}$

3.

13xy

 $3x^{2} +$

when

5. exam;

6.

7.

riage, a hour, a did the portion him 2 l riage, t

9. S

10. V

If a that a^3 .

3. Find the L.C.M. of $4x^2 - 9y^3$, $4x^2 - 10xy + 6y^2$, and $6x^2 - 19xy + 6y^2$, and the G.C.M. of $1 + x^{\frac{1}{2}} + x + x^{\frac{3}{2}}$ and $2x + 2x^{\frac{3}{2}} + 3x^{\frac{3}{2}}$

4. Obtain the square root of $\frac{1}{2} - \frac{2}{3} \sqrt{\frac{1}{2}}$, and find the value of σ when $4x^4 - 12x^3y + cx^2y^3 - 12cy^3 + 4y^4$ is a perfect square.

5. Distinguish between an equation and an identity. Give an example of each. What value of m makes $(x-3)^2 - (x-1)(x-5) = m$ an identity? Can any value of m make it an equation?

6. Reduce to its simplest form

$$\frac{\sqrt{(2+x)} - \sqrt{(1+x)}}{\sqrt{(1+x)} - \sqrt{x}} + \frac{1 + \sqrt{\{1 - 1 + (1+x)\}}}{1 + \sqrt{\{1 + 1 + (1+x)\}}}$$

7. Solve the equations

(1)
$$\frac{2x+5}{x+2} + \frac{2x-5}{x-2} - \frac{4x-5}{x-1} = 0$$
.

(2)
$$73y - 5x = (x - 5y)(x + 3y),$$

 $\frac{2}{x - 5y} - \frac{5}{x + 3y} = \frac{7}{33}.$

8. A person performed a journey of 22½ miles, partly by carriage, at 10 miles an hour, and partly by train, at 36 miles an hour, and the remainder by walking, at 4 miles an hour. He did the whole in 1 hour 50 minutes. Had he walked the first portion, and performed the last by carriage, it would have taken him 2 hours 30½ minutes. Find the respective distances by carriage, train and walking.

9. Solvo

$$\frac{x+3}{x+4} - \frac{x+1}{x+2} = \frac{4x+9}{2x+7} - \frac{12x+17}{6x+16}$$

10. What value of y will make $2x^2 + 3xy + 6y^2$ exactly divisible by x-3?

If a and b are the roots of the equation $x^2 + x + 1 = 0$, show that $a^3 - b^3 = 0$.

unting toor bushel, id; had he

e received

l have re-

5 cents a ne money

en. How

value of a

n**d**

ly divisible

and divide

 $\left. rac{d^2)}{y^2} \right| \; \left.
ight\}$

V.

1. Multiply

$$4x^2 - \frac{9}{5}x + \frac{1}{25}$$
 by $2x + \frac{1}{5}$.

Prove that

$$(\frac{1}{3}x-y)^3-(x-\frac{1}{2}y)^3$$
 is exactly divisible by $x+y$.

2. Express in words the meaning of the formula

$$(x+a)(x+b) = x^2 + (a+b)x + ab.$$

Retaining the order of the terms, how will the right-hand member of this expression be affected by changing, in the left-hand member (1) the sign of b only, (2) the sign of a only, (3) the signs of both a and b?

- 8. Simplify $(a+b)^4 + (a-b)^4 2(a^2 b^2)^2$; and show that $(a+b+c)(b+c-a)(a+c-b)(a+b-c) = 4a^2b^2$ when $a^2 + b^2 = c^2$.
- **4.** Prove that $\frac{a}{b} \div \frac{c}{d} = \frac{ad}{be}$.

Simplify

$$\left(\frac{a^2+b^2}{2ab}+1\right)\left(\frac{ab^2}{a^3+b^3}\right) \div \frac{4a(a+b)}{a^2-ab+b^3}$$

5. I went from Toronto to Niagara, 35 miles, in the steamer "City of Toronto" and returned in the "Rothsay," making the round trip in 5 hours and 15 minutes; on another occasion I went in the "Rothsay" (whose speed on this occasion was 1 mile an hour less than usual), from Toronto to Lewiston, 42 miles, and returned in the "City of Toronto," making the round trip in 6 hours and 30 minutes; find the usual rates per hour which these steamers make.

6. Solve

(1)
$$\frac{3}{x} - \frac{2}{y} = \frac{1}{a}$$
, $\frac{2}{x} - \frac{1}{y} = \frac{2}{a}$

(2)
$$x^2 + 5x = 5\sqrt{(x^2 + 5x + 28) - 4}$$
.

7. Find three consecutive numbers whose product is 48 times the middle number.

8.

Sh

9.

1.

2. expan

3.

4. 1 $5x^5 + \frac{1}{2}$ the va

5.]

6. I

8. If m and n are the roots of $ax^2 + bx + c = 0$, then $ax^2 + bx + c = a(x - m)(x - n)$.

Show that if $ax^2 + bx + c = 0$ has equal roots, one of them is given by the equation

$$(2a^2 - 2ab)x + ab - b^2 = 0$$

9. If
$$\frac{m}{x} = \frac{n}{y}$$
 and $\frac{x^2}{a^2} + \frac{y^2}{b_{23}^2} = 1$, prove that
$$\frac{m^2}{a^3} + \frac{n^2}{3} = \frac{m^2 + n^2}{x^2 + y^3}.$$

VI.

1. Simplify

$$\left(\frac{ax^2 - ay^2 + 2bxy}{x^2 + y^2}\right)^2 + \left(\frac{by^2 - bx^2 + 2axy}{x^2 + y^2}\right)^2$$

2. Divide $a^3-b^3-c^3-3abc$ by a-b-c, and show, without expansion, that

$$(1+x+x^2)^3 - (1-x+x^2)^3 - 6x(x^4+x^2+1) - 8x^3 = 0$$

- 3. Resolve into factors $x^4 \frac{1}{4}x^2y^2 + y^4$, and $7x^2 6y^2 xy + 19x + 33y 36$; and prove that $b^2(c+a) + c^2(a+b) a^2(b+c) + abc$ is exactly divisible by b+c-a.
- 4. Apply Horner's method of division to find the value of $5x^5 + 497x^4 + 200x^3 + 196x^2 218x 2000$ when x = -99, and the value of $6x^5 + 5x^4 17x^3 6x^2 + 10x 2$ when $2x^2 = -3x + 1$.
 - 5. Find what

$$\frac{\sqrt{(a+x)} + \sqrt{(a-x)}}{\sqrt{(a+x)} - \sqrt{(a-x)}}$$
, becomes when $x = \frac{2ab}{1+b^2}$

6. If a and b be any positive numbers, prove that

$$\frac{1}{a} + \frac{a}{1+a} > 1, \quad \frac{a}{b} + \frac{b}{a} > 2.$$

+y.

in the lefta only, (3)

right-hand

ow that

the steamer making the occasion I n was 1 mile 2 miles, and id trip in 6 which these

is 48 times

7. Solve the equations-

(1)
$$x^{\frac{1}{6}} + y^{\frac{1}{6}} = 5$$
,
 $x^{-\frac{1}{6}} + y^{-\frac{1}{6}} = \frac{5}{6}$.

(2)
$$x+2y+3z=14$$
,
 $2x+3y+z=11$,
 $3x+y+2z=11$.

(3)
$$(x+1)(x+3)(x+4)(x+6) = 16$$
.

8. There are three consecutive numbers such that the sum of their cubes is equal to $16\frac{2}{7}$ times the product of the two higher numbers: find the numbers.

- 9. (1) Form an equation three of whose roots are 0, V(-3), and $1-\sqrt{2}$.
 - (2) If one of the roots of the equation $x^2 + px + q = 0$, is a mean proportional between p and q, prove that $p^3 = q(1+p)^2$.

10. Two trains start at the same instant, the one from B to A, the other from A to B; they meet in $1\frac{1}{2}$ hours; and the train for A reaches its destination $52\frac{1}{2}$ minutes before the other train reaches B: compare the rates of the trains.

VII.

- 1. Give some application of the "rule of signs" in Algebraic Multiplication and Division.
 - 2. Find the numerical value of the quantity

$$bc(c-a)(a-b) - ca(a-b)(b-c) + ab(b-c)(c-a),$$

when a=10, b=01, c=0; and prove that if

$$x = \frac{c^2 - ab}{a + b}, \text{ then will } (a + b) \cdot \frac{a^2 + b^2 + c^2 + x^2}{a + b - c + x}$$
$$= b^2 + c^2 + (a + b)(a + c).$$

8, after Sh

is div

quant duced

Fir

5. not al denon

Sim

ô.

1. D

3. Investigate a method of finding by inspection the remainder after dividing any rational and integral function of x by x+a.

Show that the quantity

$$a^2b^2 - ab^2x - (a^2 + 2b^2)x^2 + ax^3 + 2x^4$$

is divisible by each of the quantities x+a, x+b, a-2x, b-x.

4. Investigate the rule for finding the H.C.F. of two algebraic quantities, showing under what limitations factors may be introduced or suppressed at any step.

Find the H.C.F. of

(1)
$$6x^4 - 7x^3 - 13x^2 + 19x - 6$$
 and $x^3 + 2x^2 - 1$.

(2)
$$(x+y)(ax^2-by^2)-xy(a-b)(x+y)$$
, and $(x-y)(ax^2-by^2)+xy(a-b)(x-y)$.

5. Prove, by general reasoning, that the value of a fraction is not altered by multiplying or dividing both the numerator and denominator by the same quantity.

Simplify (1)
$$\frac{13}{12(2x-3)} - \frac{7}{12(2x+3)} - \frac{x-4}{4x^2+9}$$
.
(2) $\left\{ \frac{1}{(x+a)(x-b)} + \frac{1}{(x-a)(x+b)} \right\} \div \left\{ \frac{1}{(x+a)(x+b)} + \frac{1}{(x-a)(x-b)} \right\}$.

6. with respect to x, the equations

$$\frac{18}{4} + \frac{2x - 24}{11} + \frac{11x - 34}{22} = \frac{7}{44}$$

(2)
$$\frac{5x^2 + x - 3}{5x - 4} - \frac{7x^2 - 3x - 9}{7x - 10} = \frac{x - 3}{35x^2 - 78x + 40}$$

(3)
$$x^2 = ax + by$$
, and $y^2 = bx + ay$.

VIII.

1. Define the terms "power," "root," "index," and "coefficient; explain also the reasoning by which it is shown that

$$a - (b - c) = a - b + c.$$

the sum of two higher

0, V(-3),

c+q=0, is a ve that

from B to A, the train for other train

in Algebraic

-a),

+x*

2. Multiply $(x^2 + xy + y^2)^2$ by $(x-y)^3$.

Find the values of a and b which will make

$$x^2 + ax + b$$
 divisible by $x + p$, and also by $x + q$.

8. Divide
$$x^6 + y^6 + 2x^8y^8$$
 by $(x+y)^9$, and $a^8 + a^4b^4 + b^8$ by $(a^9 - ab + b^9)(a^9 + ab + b^9)$.

4. Investigate a rule for the extraction of the square root of any algebraic quantity, and deduce the rule for the extraction of the square root of a number.

If to any square number be added the square of half the number immediately preceding it, the sum will be a complete square: viz., the square of half the number immediately following it.

5. Find the square root of

(1)
$$a^2x^6 + 2abx^4 + (b^2 + 2ac)x^2 + c^2x^{-2} + 2bc$$
.

(2)
$$\frac{1}{4}x^{\frac{1}{4}} - \frac{1}{8}x^{\frac{1}{4}} + \frac{1}{4}x^{\frac{4}{8}} + \frac{1}{9}x^{\frac{4}{4}} - \frac{1}{6}x^{\frac{3}{8}\frac{9}{4}} + \frac{1}{16}x^{\frac{7}{6}}$$

6. If $x^2 + ax + b$ and $x^2 + a'x - b$ have a common measure, it will be $x + \frac{a+a'}{2}$, and the condition that they may have a common measure is $4b = a^2 - a'^2$.

Find the H. C. F. of $x^4 + p^2x^2 + p^4$ and $x^4 + 2px^3 + p^2x^2 - p^4$.

Find the L. C. M. of $2\frac{1}{2}(x^2+x-20)$, $3\frac{1}{3}(x^2-x-30)$, and $4\frac{1}{6}(x^2-10x+24)$.

7. Find values of a and b which will render the fraction

$$\frac{3 \cdot x^2 - (4a+b)x + a + 2b^2}{5 \cdot x^2 - (8a+b)x - a + 4b^2}$$

the same, for all values of x.

8. Solve the equation $2+\sqrt{(x+1)(x+6)}-\sqrt{(x-1)(x+5)}=0$, and account for the circumstance, that the values of x, determined from it, apparently do not satisfy the equation.

 $\begin{bmatrix} 1. & 1 \\ = (a - 1) \end{bmatrix}$

2. prove

Ass stricte raic o

the fo

 a^2 .

5. hand is y;

of Alsuch

7.

6.

8.
of 5 p
gain
9.

by the

IX.

1. Prove that $a(2n+1)(a^2+n\cdot n+1)-n(2a+1)(n^2+a\cdot a+1)$ = $(a-n)^3$.

2. If a, b, and c are positive quantities, and if a > b and c > a - b, prove that

c - (a - b) = c - a + b.

Assuming this equation to hold good when a, b and c are unrestricted, prove that the expression -(-a), occurring in an algebraic operation, is equivalent to +a.

3. If x^3+ax^2+b and x^3+px+q have a common measure of the form of x^2+mx+n , then $a^3bq=(b-q)^3$

4. Find the H. C. F. of

$$a^2-b^2-abxy+abx^{-1}y^{-1}$$
, and $a^2x^3-b^3y^{-1}+a^2bx^2y-b^2xy^{-2}$

5. A and B are two numbers, each of two digits. The left-hand digit of A exceeds that of B by x; the excess of A above B is y; but the sum of the digits of B exceeds the sum of the digits of A by z. Prove that y+z=9x; and give an example of two such numbers as A and B.

6. If
$$\frac{a}{b} = \frac{b}{c} = \frac{c}{d}$$
, prove that each of these ratios
$$= \sqrt[3]{a} \text{ and also } = \frac{a+b+c}{b+c+d}.$$

7. Solve the equations

(1)
$$\frac{x+a}{x-a} - \frac{x-a}{x+a} = \frac{b+x}{b-x} - \frac{b-x}{b+x}$$

(2)
$$a(x^2+y^3)-b(x^2-y^2)=2a$$

 $(a^2-b^2)(x^2-y^2)=4ab.$

8. A farmer buys a sheep for P and sells b of them at a gain of 5 per cent.; at what price ought he to sell the remainder to gain 10 per cent. on the whole?

9. The sum of three numbers is 70; and if the second is divided by the first, the quotient is 2, and the remainder 1; but if the third is divided by the second, the quotient is 3, and the remainder is 3; what are the numbers.

root of any tion of the

f the numlete square: wing it.

measure, it

have a com-

 $+p^2x^2-p^4$. x-30), and

action

(x+5)=0, (x+5)=0, (x+5)=0,

1. Divide $ax^3 + 2cxyz + by^3 + ax^2(y+z) + by^2(z+x) + 2c.cy(x+y)$ by x+y+z.

2. Prove that if $x^4 + px^2 + qx + a^2$ be divisible by $x^2 - 1$, it is also divisible by $x^2 - a^2$.

8. Explain the reason for introducing or suppressing factors in the process of finding the H.C.F. of two algebraical quantities.

Why is the name "Greatest Common Measure" objectionable? Find the H.C.F. of $x^4 - x^3 - x^2$ x - 2 and $3x^3 - 7x^2 + 3x \cdot 2$.

4. A traveller leaves A for B at the same time that another leaves B for A; the former walks at the rate of 3 miles an hour till he has performed half the distance; he then rests for an hour; after which he resumes his journey, walking now at the rate of 4 miles an hour; the second traveller goes at the rate of 4 miles an hour till he has got over one-third of the distance between B and A; he then rests for 40 minutes; after which he resumes his journey, walking now at the rate of 3 miles an hour. The travellers reach A and B respectively at the same time. distance between A and B.

5. Show by examining the square of a+b how the square root of an algebraical quantity may be found.

Find the square roots of

(1)
$$25x^4 - 30ax^3 + 49a^2x^2 - 24a^3x + 16a^4$$
, and

(2)
$$\frac{x^2}{y^2} + \frac{y^2}{x^2} - \left(\frac{x}{y} + \frac{y}{x}\right)\sqrt{2} + \frac{5}{2}$$
.

6. Show that $a^{n} = \sqrt[n]{a^{m}}$, when m and n are integers, and m is divisible by n; and state the principle on which you would maintain the truth of the equation for all values of m and n.

7. Solve the equations

(1)
$$\frac{5x^2 + x - 3}{5x - 4} = \frac{7x^2 - 3x - 9}{7x - 10}$$

(2)
$$(3x-1)^2 + (4x-2)^2 = (5x-3)^2$$

8. T their si 4; find

1. 8 order t express

Also

2. T do mor one-hal what ti

3. P

(1)

(2) $(\frac{1}{4})$

4. D

(2) x^{ϵ} x:

5. S being a

6. D adding

Add

8. Two regular polygons are so related that the number of their sides is as 2 to 3, and the magnitude of their angles as 3 to 4; find the figures.

XI.

1. State in words the several operations to be performed in order to obtain the result expressed by the following algebraical expression:

$$\sqrt{\frac{ma^2+nb^2}{m+n}}$$
.

Also find its value when a = b = 4.

- 2. Two men, A and B, dig a trench in $3\frac{3}{7}$ days. If A were to do more work by one-third than he does, and B more work by one-half than he does, they would dig the trench in $2\frac{3}{5}\frac{6}{5}$ days. In what time would each dig it alone, at his present rate of work?
 - 3. Perform the multiplications in

$$\left(2x^{\frac{1}{4}} + 3y^{\frac{1}{4}}\right) \left(2x^{\frac{1}{4}} - 2y^{\frac{1}{4}}\right) \left(4x^{\frac{1}{4}} + 6x^{\frac{1}{4}}y^{\frac{1}{4}} + 9y^{\frac{1}{2}}\right) \left(4x^{\frac{1}{4}} - 6x^{\frac{1}{4}}y^{\frac{1}{4}} + 9y^{\frac{1}{4}}\right)$$

- (2) $(\frac{1}{4}x^2 + \frac{1}{3}xy + \frac{2}{9}y^2)(\frac{1}{4}x^2 \frac{1}{3}xy + \frac{2}{9}y^2)$.
 - 4. Divide
- (1) $x^4 + 9 + 81x^{-4}$ by $x^2 3 + 9x^{-3}$.
- (2) $x^4 (a+b+p)x^3 + (ap+bp-c+q)x^3 (aq+bq-cp)x qc$ by $x^2 px + q$.
- 5. Show that $x^{2m+1}-x^{2n-1}$ is always divisible by x+1, m and n being any positive integers.
- 6. Define a fraction; and from your definition prove a rule for adding together two fractions with different denominators.

Add together the fractions,

$$\frac{a^2 - bc}{(a+b)(a+c)}, \quad \frac{b^2 - ca}{(b+c)(b+a)}, \quad \frac{c^2 - ab}{(c+a)(c+b)}$$

another an hour

an hour:

 $c_{xy}(x+y)$

actors in

i nable?

 $+3x \cdot 2$.

atities.

rate of 4 miles an en B and umes his The tra-

lare root

and *m* is

7. Solve the following equations:

(1)
$$\frac{x^2 + 2x + 2}{x + 1} + \frac{x^2 + 8x + 20}{x + 4} = \frac{x^2 + 4x + 6}{x + 2} + \frac{x^2 + 6x + 12}{x + 3}.$$

(2)
$$(x^2+y^2)\frac{x}{y} = \frac{100}{3}, (x^2-y^2)\frac{y}{x} = \frac{21}{4}$$

XII.

 $\frac{1}{c}$ in

9

of 7

the

has

yea

E

mx

ind

for

12

1. When m and n are whole numbers, and m greater than n_i show that $\frac{a^m}{a^n} = a^{m-n}$ and that $\frac{1}{a^n}$ is correctly symbolized by a^{-n} .

2. Multiply $(a-b)(a+b)(a^2+b^2)(a^4+b^4)$... to (n+1) factors.

3. Divide 1-x by 1-2x, to 5 terms, and write down the (r+1)th term, and the remainder after (r+1) terms.

4. If the number three be divided into any two parts, show that the difference of the squares is three times the difference of the numbers.

5. Find the L. C. M. of
$$1-8x+17x^2+2x^3-24x^4$$
, and $1-2x-13x^2+38x^3-24x^4$.

6. What relation must there be between the coefficients m, n, p and q, in order that

$$(x^2 + mx + n)^2 + px^2 + qx$$

may be an exact square for all values of x?

7. Solve the following equations:

(1)
$$\frac{1+x^3}{(1+x)^2} + \frac{1-x^3}{(1-x)^2} = a.$$

(2)
$$\frac{ax-b^2}{\sqrt{(ax)+b}} = \frac{\sqrt{(ax)-b}}{n} - c.$$

(3)
$$\frac{xy}{x+y} = 1$$
, $\frac{xz}{x+z} = 2$, and $\frac{yz}{y+z} = 3$.

8. Given x+y+z = ax = by, find (x+y+z) - z.

9. Find a number expressed in the decimal notation by two digits, whose sum is 10; and such, that if 1 be taken form its double, the remainder will be expressed by the same digits in a reversed order.

XIII.

1. Find the value, when $a = 2\frac{1}{2}$, $b = 3\frac{1}{2}$, $c = 4\frac{1}{2}$ of

$$\frac{b^2c^2(c^2-b^2)+c^2a^2(a^2-c^2)+a^2b^2(b^2-a^2)}{(b+c)(c+a)(a+b)}$$

- 2. Show that the value of the expression, in the preceding question, is not altered by changing a into a+x, b into b+x, and c into c+x.
 - 3. Multiply $(1+a_1x)(1+a_2x)(1+a_3x) \dots (1+a_nx)$ to 3 terms.
- 4. A speculator borrows a sum of money at the yearly interest of 7 per cent.; part of the amount he livests at $8\frac{1}{2}$ per cent., and the remainder at 9; and, at the end of the year, he finds that he has made a profit of \$75; but, had the former part been invested at 9 per cent., and the latter at $8\frac{1}{2}$, his profit at the end of the year would have been only \$65. Find the whole sum borrowed.
- 5. Given ax + by = c, a'x + b'y = c', determine the value of mx + ny, and find the conditions under which the value becomes indeterminate

6. If
$$\frac{a_1}{a_2} = \frac{a_2}{a^3} = \dots = \frac{a_{n-1}}{a_n}$$
,
then will $a_1 + a_2 + a_3 + \dots + a_n = \frac{a_1^s - a_2 a_n}{a_1 - a_2}$

7. Eliminate x and y from the equations

$$x^{\frac{3}{5}} + y^{\frac{3}{5}} = a^{\frac{2}{5}}$$

$$\alpha = x + 3x^{\frac{1}{5}}y^{\frac{3}{5}}$$

$$\beta = y + 3x^{\frac{3}{5}}y^{\frac{1}{5}}.$$

- 8. If $ax^2 + bx + c = 0$ and $a_1x^2 + b_1x + c_1 = 0$, then will $(ab_1 a_1b)(bc_1 b_1c) = (ac_1 a_1c)^2$.
- 9. Find that number of two figures to which if the number formed by changing the places of the digits be added, the sum is 121; and if the same two numbers be subtracted, the remainder is 9.

er than n

ed by a^{-n} .

-1) factors.

down the

arts, show fference of

ınd

ients m, a,

on by two en form its digits in a

XIV.

1. Simplify

$$a(b+c)^2+b(c+a)^2+c(a+b)^2-\{(a-b)(a-c)(b+c)+(b-c)(b-a)(c+a)+(c-a)(c-b)(a+b)\}.$$

2. State the law of Indices, and prove it for positive integral indices; and assuming it to be general, interpret the expressions

dii is

ho

to

m

re

 \mathbf{m}

of

tio

(1

(2

P

- x^{-m} , x^{n} , where m and n are positive integers.
 - 3. Having given the equations,

$$x+y+z=0,$$
 $x'+y'+z'=0,$ $a^2=x^2+x'^2,$ $b^2=y^2+y'^2,$ $c^2=z^2+z'^2;$

prove that $a^{2}(yz-y'z')+b^{2}(zx-z'x')+c^{2}(xy-x'y')=0$.

- 4. A traveller P sets out to walk from A to B, proceeding at the rate of 3 miles an hour; and, 32 minutes afterwards, another traveller Q sets out to walk from B to A, proceeding at a uniform rate. They meet half way betwixt A and B. P then quickens his pace by 1 mile an hour; and Q slackens his 1 mile an hour. Q reaches A at the same time that P reaches B. Find the distance between A and B.
 - 5. How are equations classified?

Solve the equations—

- (1) $mnx + amn = n^2x + au^2$.
- (2) $x^4 x^2 + y^4 y^2 = 84$, $x^2 + x^2y^2 + y^2 = 49$.
- 6. What two numbers are those whose difference, sum and product are to each other as the three numbers 2, 3, 5?

XV.

1. What is the meaning of the symbols a, a^2 , a^3 . . ? Show a priori that $a^0 = 1$; how do you know that ab = ba?

How is it proved that the multiplication of like signs gives a positive, and that of unlike signs, a negative result.

2. Find the value of

$$(b-c)^3 + 2(c-a)^3 + (a-b)^3 - 2(b-c)(c-a)(a-b)$$

when $a = 1, b = -\frac{1}{2}, c = \frac{3}{2}$.

3. Simplify the following expression:

$$(ac-b^2)(ce-d^2)+(ae-c^2)(bd-c^2)-(ad-bc)(be-ca)$$

4. P and Q are travelling along the same road in the same direction. At noon P, who goes at the rate of m miles an hour, is at a point A; while Q who goes at the rate of n miles in the hour, is at a point B, two miles in advance of A. When are they together?

Has the answer a meaning, when m-n is negative? Has it a meaning when m=n? If so, state what interpretation it must receive in these cases.

5. Show how to find the Least Common Multiply of two or more algebraic quantities.

(1)
$$x^2 - ax - 2a^2$$
, $x^3 + ax^2$ and $ax^2 - x^3$.

(2)
$$x^3 - x^2y - a^2x + a^2y$$
 and $x^3 + ax^2 - xy^2 - ay^3$.

In what algebraic operations is the Lowest Common Multiple of two or more quantities required?

6. State and prove the principle upon which the rules of Addition and Subtraction of fractions are founded.

Simplify the following expressions:

$$(1) \ \frac{(a+b-c)^2-d^2}{(a+b)^2-(c+d)^2} + \frac{(b+c-a)^2-d^2}{(b+c)^2-(a+d)^2} + \frac{(c+a-b)^2-d^2}{(c+a)^2-(b+d)^2}.$$

(2)
$$\frac{x^2 + y^3 - z^2 + 2xy}{x^2 - y^2 - z^2 + 2yz}, \quad \frac{a^3 + a^2b}{a^2b - b^3} - \frac{a(a - b)}{(a + b)b} - \frac{2ab}{a^2 - b^2}.$$

7. If
$$ax - by + c(x - y) = (a - b)(a + b - c)$$
,
 $by - cz + a(y - z) = (b - c)(b + c - a)$,
 $cz - ax + b(z - a) = (c - a)(c + a - b)$
then will $a^2(b - c) + b^2(c - a) + c^2(a - b) = 0$.

8. P is a number, of two digits, x being the left hand digit, and y the right. By inverting the digits, the number Q is obtained. Prove that 11 (x+y)(P-Q)=9 (x-y) (P+Q).

) = 0.

e integral

pressions

eeding at s, another a uniform quickens an hour. I the dis-

sum and

. ? = ba ?

as gives a

XVI.

1. Show that

$$\{(ax+by)^2 + (ay-bx)^2\} \{(ax+by)^3 - (ay+bx)^2\} = (a^4-b^4)(x^4-y^4); \text{ and that}$$

$$2(a-b)(a-c) + 2(b-c)(b-a) + 2(c-b)(c-a)$$

quo

+(

the

is t

x +

an

wa

pro

9

2

is the sum of three squares.

2. If s = a + b + c + &c. to n terms, then

$$\frac{s-a}{s} + \frac{s-b}{s} + \frac{s-c}{s} + &c. = n-1.$$

3. Show that a-b, b-c, and c-a cannot be all three positive or all three negative.

4. Extract the square root of

$$4x^8 + 9x^6 - 12x^4 + 16x^2 + 9 - 2x(6x^6 - 8x^4 + 9x^3 - 12).$$

5. Given
$$ab - \frac{1}{2}(a+b)(p+q) + pq = 0,$$

 $cd - \frac{1}{2}(c+d)(p+q) + pq = 0,$

find the value of p-q, and show that if either a or b is equal to c or d, then p is equal to q, unless a+b=c+d.

6. Find the value of $\frac{x}{y}$, having given

$$\frac{x^{2n} - ay^{2n}}{x^{2n} + ay^{2n}} = \frac{x^n - b(x - y)^n}{x^n + b(x - y)^n}$$

7. Prove that (a-b)(b-c)(c-a) is a common measure of the quantities

$$(a^2-b^2)^5+(b^2-c^2)^5+(c^2-a^2)^5,$$

 $c^4(a-b)+a^4(b-c)+b^4(c-a).$

8. Find the conditions that $a_1x+b_1y=c_1$, $a_2x+b_2y=c_2$, and $a_3x+b_3y=c_3$ may be satisfied by the same values of x and y.

9. Two persons, A and B, start at the same instant from two stations (c) miles apart, and proceed in the same direction along the line joining the stations with velocities (a) and (b) miles perhour. Find the distance (x) from the stations where A overtakes B, and interpret the result when a
otin b.

XVII.

1. Express in symbols the result of subtracting from unity the quotient obtained by dividing the sum of a and b by their product.

2. Multiply together $x+\sqrt{a+b}$, $x-\sqrt{a+b}$, $x+\sqrt{a-b}$ and $x-\sqrt{a-b}$; and divide $24a^3-22a^2b+2a^2c-5ab^2+27abc-34ac^2+6b^3-22b^2c+16bc^2+8c^3$ by 3a-2b+4c.

8. If x+a be the H. C. F. of x^2+px+q and $x^2+p'x+q'$, their L. C. M. will be (x+a)(x+p-a)(x+p'-a).

Show that the difference between

$$\frac{x}{x-a} + \frac{x}{x-b} + \frac{x}{x-c}$$
 and $\frac{a}{x-a} + \frac{b}{x-b} + \frac{c}{x-c}$

is the same whatever values be given to x.

4. Prove, if the four fractions

$$bx+cy+dz$$
 $cx+dy+az$ $dx+ay+bz$ $ax+by+cz$
 $b+c+d-a$, $c+d+a-b$, $d+a+b-c$, $a+b+c-d$

are equal to one another, their common value will be equal to $\frac{x+y+z}{2}$ as long as a+b+e+d does not vanish.

5. What do you mean by solving an equation. Show that 3 is a root of the equation

$$\sqrt{(x^2-3x+4)} = \frac{3+\sqrt[3]{(x-2)}}{x^2-7}$$

6. Eliminate x between the equations

$$x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) = m$$
, and $x^3 - \frac{1}{x^3} - 3\left(x - \frac{1}{x}\right) = n$.

7. If
$$\frac{1}{a} + \frac{1}{b} - \frac{1}{c} = \frac{1}{a+b-c}$$
, a, b, c are not all different.

8. A cask, A, contains m gallons of wine and n gallons of water; and another cask, B, contains p gallons of wine and q gallons of water, how many gallons must be drawn from each cask so as to produce by their mixture b gallons of wine and c gallons of water?

positiva

2).

equal to o

are of the

 $= c_2$, and and y.

from two tion along miles per

XVIII.

1. Multiply together the factors

$$1-x$$
, $1+x$, $1+x^2$, $1+x^4$, and $1+x^3$,

and show that if n is any uneven number, the sum of the nth powers of any two numbers is always divisible by the sum of the numbers.

2. Find the numerical value of the experience

$$\frac{c}{b} \cdot \frac{\sqrt{a} + \sqrt{c}}{\sqrt{a} - \sqrt{c}}$$

where a, b, c are connected by the equation $a(b-c)^2 - c(b+c)^2 = 0$.

3. A has a younger brother, B. The difference between their ages is $\frac{3}{5}$ of the sum of their ages. Pradding twice B's age to 5 times A's, we obtain the age of the father; and by subtracting twice B's age from 5 times A's, we obtain the age of the mother. Show that the age of the mother is $\frac{9}{11}$ that of the father.

4. Find the H.C.F. of

$$x^3 - (2a+b)x^2 + a(2a+b)x - a^2(a+b)$$
, and $x^3 - (2b+a)x^2 + b(2b+a)x - b^2(b+a)$.

5. If
$$\frac{1}{b} + \frac{1}{c} = \frac{4}{a}$$
, shew that

$$(a+b-c)^3+2(b+c-a)^3+(c+a-b)^3=2(b+c)^3$$

6. Show fully how the rule for finding the square root of a given number is obtained. If n+1 figures of the square root of a number have been obtained, prove that the remaining n may be obtained by division.

Extract the square root of

$$x^{2}(x^{2}+y^{2}+z^{2})+y^{2}z^{2}+2x(y+z)(yz-x^{2}).$$

7. Find the value of the expression

$$\frac{x-y}{1+xy}$$
 when $x = \frac{a+b}{a-b}$, $y = \frac{b}{a}$.

8.

n.

1.

and o

8.

4.

find to

6.

 $7. \\ 3b^2x^2 \\ 8.$

child:

many

8. Solve the equations:

(1)
$$\frac{1}{2}(x-2a) - \frac{1}{3}(x+3a) + \frac{1}{6}(x-6a) = 0$$
.

(2)
$$\sqrt{(2x^2+1)} + \sqrt{(2x^2+3)} = 2(1-x)$$
.

9. Divide 21 into two parts, so that ten times one of them may exceed nine times the other by 1.

XIX.

1. Multiply together

$$x^{2} - \frac{9}{4}ax + \frac{1}{2}a^{9} + \frac{5}{4}x - \frac{3}{4}a + \frac{1}{4};$$

 $x^{2} + \frac{15}{4}ax - a^{2} - \frac{7}{4}x + \frac{3}{2}a - \frac{1}{2}.$

Divide this product by

$$\frac{1}{4}x^2 + \frac{1}{2}ax - 2a^2 - \frac{1}{4}x + 2a - \frac{1}{2}$$
;

and extract the square root of the quotient.

2. If
$$x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$$
, shew that $(x^6+y^6+z^6)\div(x^3+y^3+z^3)=xyz$.

- 8. Find the H. C. D. of $20x^4 + x^2 1$ and $75x^4 + 15x^3 3x 3$; also of $(x+y)^7 x^7 y^7$ and $(x^3 y^3)^2$.
 - 4. Given that ab (a+b)(x+y) + 4xy = 0, cd (c+d)(x-y) + 4xy = 0,

find the value of $(x-y)^2$.

5. Having given

Show that

$$x^{2} = y^{2} + z^{2} - 2ayz$$

$$y^{2} = z^{2} + x^{2} - 2bzx$$

$$z^{2} = x^{2} + y^{2} - 2cxy$$

$$\frac{x^{2}}{1 - a^{2}} = \frac{y^{2}}{1 - b^{2}} = \frac{z^{2}}{1 - c^{2}}$$

6.
$$\frac{1+x+\sqrt{(2x+x^2)}}{1-x+\sqrt{(2x+x^2)}} = 1-ax.$$

7. Determine x in terms of a and b in order that $x^4 + 2ax^3 + 3b^2x^2 - 4a^3x + 4b^4$ may be a perfect square.

8. A company of 90 persons consists of men, women, and children; the men are 4 in number more than the women, and the children exceed the number of men and women by 10. How many men, women, and children are there in the company.

 $c)^2 = 0.$ n their

the nth

of the

age to racting nother.

oct of a root of may be

XX.

1. Divide
$$(1+m)x^3 - (m+n)xy(x-y) - (n-1)y^3$$
 by $x^2 - xy + y^2$.

2. If x^3+px^2+qx+r is exactly divisible by x^2+mx+n , then $nq-n^2=rm$.

3. Prove that if m be a common measure of p and q, it will also measure the difference of any multiples of p and q.

Find the G.C.M. of
$$x^4 - px^3 + (q-1)x^2 + px - q$$
 and $x^4 - qx^3 + (p-1)x^2 + qx - p$.

4. Prove the rule for multiplication of fractions.

Simplify
$$\frac{x^2 - (y-z)^2}{(y+z)^2 - x^2} \times \frac{y^2 - (z-x)^2}{(z+x)^2 - y^2} \times \frac{z^2 - (x-y)^2}{(x+y)^2 - z^2}$$
;

and
$$\frac{a}{a^2+b^2} - \frac{a}{a^2-b^2} + \frac{a^2}{(a-b)(a^2+b^2)} - \frac{2a^3-b^3-ab^3}{a^4-b^4}$$

5. What is the distinction between an identity and an equation? If x-a=y+b, prove x-b=y+a.

Solve the equation

$$\frac{16x-13}{4x-3} + \frac{40x-43}{8x-9} = \frac{32x-30}{8x-7} + \frac{20x-24}{4x-5}$$

6. What are simultaneous equations? Explain why there must be given as many independent equations as there are unknown quantities involved. If there is a greater number of equations than unknown quantities, what is the inference?

Eliminate x and y from the equations ax + by = c, a'x + b'y = c'. a''x + b''y = c''.

7. Solve the equations—

(1) $t^{3/(n+x)} + t^{3/(n-x)} = m$.

(2)
$$3x+y+z=13$$
, $3y+z+x=15$, $3z+x+y=17$.

8. A person has two kinds of foreign money; it takes a pieces of the first kind to make one £, and b pieces of the second kind: he is offered one £ for c pieces, how many pieces of each kind must he take?

mile a most of vord pace

pac 1

we fact

ŋ

in v or give +n, then

t will also

$$\frac{3-ab3}{b4}$$

equation?

here must unknown equations

x + b'y = c'.

es a pieces cond kind : each kind

17.

9. A person starts to walk to a railway station four and a-half miles off, intending to arrive at a certain time; but after walking a mile and a half he is detained twenty minutes, in consequence of which he is obliged to walk a mile and a half an hour faster in order to reach the station at the appointed time. Find at what pace he started.

10. (a) If
$$\frac{a}{b} = \frac{c}{d}$$
 then will $\frac{a^4 + c^4}{b^4 + d^4} = \frac{a^2c^2}{b^2d^2}$.

(b) Find by Horner's method of division the value of $x^5 + 290x^4 + 279x^2 - 2892x^2 - 586x - 312$ when x = -289.

(c) Show without actual multiplication that $(a+b+c)^3-(a+b+c)(a^2-ab+b^2-bc+c^2-ac)-3abc=3(a+b)(b+c)(c+a)$.

Note.—In. Ex. 6, p. 87, after proving that a+b+c is a factor, we may proceed as follows to discover the remaining quadratic factor:

The quadratic factor must be of the form

$$m(a^2+b^2+c^2)+n(ab+bc+ca),$$

in which m and n are independent, being either zero, or a positive or negative number. To determine them put c=0, then the given expression gives

$$\{a^3 + b^3 + 3ab(a+b)\} \div (a+b) = a^2 + b^2 + 2ab,$$
but also = $m(a^2 + b^2) + nab$. $\therefore m = 1 \text{ and } n = 2.$

$$a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)\} \div (a+b+c) = a^2 + b^2 + c^2 + 2(ab+bc+ca) = (a+b+c)^2.$$

XXI.

- 1. Find the value of $x^3 \left(\frac{1}{a} + \frac{1}{b}\right)x^2 + \left(\frac{1}{b} \frac{1}{a}\right)x + \frac{2}{b^2}$ when $a = \frac{1}{3}$, $b = \frac{1}{3}$, x = 2. Simplify $a^3 - \left[x^3 - \left\{(3a^2x - 8ax^2) + a^3\right\} + 2a^3\right] + x^3$.
- 2. Find, by symmetry, the sum of $(a+b+c)^3 (a+b-c)^3 (a-b+c)^3 (b-a+c)^3$, and of $(a^4-4a^3x+3a^2x^2-2ax^3+3x^4)^2$ and $(a^4+4a^3x+3a^2x^2+2ax^3+3x^4)^2$.
 - 3. Explain and illustrate the signs >, <

Prove:
$$x^2 + y^2 > 2xy$$
, $(x+y+z)^2 > 3(xy+yz+zx)$, and $x^3 + y^3 + z^3 > 3xyz$.

- 4. Determine the value of $x+y-z+3x^{\frac{1}{3}}\frac{1}{3}\frac{1}{3}$, when $x^{\frac{1}{3}}+y^{\frac{1}{3}}-z^{\frac{1}{3}}=0$, &c.; of $a^{7}+7ax^{3}+8x^{2}-3a^{2}-(x^{4}+7ax^{3}-8x^{2}-3a^{2})$, when x=-1.
 - 5. Show that $(a^m)^{\frac{p}{q}} = a^{\frac{mp}{q}}$.

Simplify
$$\left\{ \begin{pmatrix} 1\\16 \end{pmatrix}^{\frac{1}{2}} \right\}^{-\frac{1}{2}} \times \begin{pmatrix} 1\\8 \end{pmatrix}^{-\frac{1}{3}} \times \sqrt[4]{(256)}$$
, and divide

$$x^{\frac{8}{3}} - 6ax^{\frac{8}{3}} + 5a^{\frac{8}{3}}x + 2a^{\frac{3}{2}}x^{\frac{1}{2}} - 2a^{\frac{9}{2}} \text{ by } x^{\frac{9}{3}} - 2a^{\frac{1}{2}}x + a^{\frac{9}{3}}.$$
6. If $u = \frac{1}{2}\left(x + \frac{1}{x}\right)$ and $v = \frac{1}{2}\left(y + \frac{1}{y}\right)$ prove that

$$uv - \sqrt{(1-u^2)}\sqrt{(1-v^2)} = \frac{1}{2}\left(xy + \frac{1}{xy}\right)$$

- 7. Gold is 19½ times as heavy as water, and silver 10½ times. A mixed mass weighs 4,160 ounces, and displaces 250 ounces of water. What proportion of gold and silver does the mass contain?
- 8. Show that $1+p+qx^2+rx^3$ is a perfect cube if $p^2=3q$, and $q^2=3pr$.
 - 9. Solve the equations:

(1)
$$\sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{x+2}{x-2}} = 4$$
.

$$(2) \quad (x^4 + y^4)^2 + x^2y^2(x^2 - y^2)^2 + x^2 - y^2 = 328, \ x^2 - y^2 = 3.$$

(3)
$$\frac{x^2}{y^2} + \frac{2x+y}{y/y} = 20 - \frac{y^2+x}{y}, \quad x+8=4y.$$

for \$24 the sec cent., h

1. Fi r = -7 r = a + p

 $\begin{array}{c}
2. \text{ W} \\
ax^2 + bx \\
\text{Find}
\end{array}$

(a). (b).

3. Wi

(a). E

(b). If consecut (Prove the

4. If

prove the

5. (a).

(b). If x

1-

$$\left(x+\frac{2}{b^2}\right)$$

$$(-h-c)^3 - (-c)^3 + 3x^4)^2$$

and

$$-y^{\frac{1}{3}}-z^{\frac{1}{3}}=$$
 $-z^{\frac{1}{3}}$, when

divide

01 times. ounces of 1988 con-

$$p^2 = 3q$$
,

$$-y^2=3.$$

10. A person buys two bales of cloth, each containing 80 yards, for \$240. By selling the first at a gain of as mach per cent. as the second cost him, and the second at a loss of as much per cent., he makes a profit of \$16 on the whole. Find the cost price per yard of each bale.

SECOND CLASS TEACHERS, 1880.

XXII.

- 1. Find the value of $x^5 + x^4 166x^3 166x^2 + 81x + 81$ when r=-7; and the value of $x^3-3\mu x^2+(3\mu^2+q)x-\mu q$ when r=n+p. (Arrange the latter result according to powers of a_1 .
- 2. What is the condition that x-1-b shall be a factor of $ax^{2} + bx + c$?

Find the factors of

(a).
$$(a^2 - ab) + 2(b^2 - ab) + 3(a^2 - b^2) + 4(a - b)^2$$
; and

(b).
$$(ax+b)(bx+c)(cx+a)-((ax+c)(bx+a)(cx+b)$$
.

- 3. What must be the relation among a, b, c, that $ax^2 + bx + c$ may be a perfect square?
 - (a). Extract the square root of

$$(a-b)^4 - 4(a^2+b^2)(a-b)^2 + 4(a^4+b^4) + 8a^2b^2$$
.

(b). If 5 be subtracted from the sum of the squares of any four consecutive numbers, the remainder will be a perfect square. (Prove this.)

4. If
$$\frac{a}{b} = \frac{c}{d} = \frac{c}{f}$$
 and $\frac{h}{k} = \frac{l}{m} = \frac{n}{p}$

cover that $\frac{(a+c+e)(h+l+n)}{ah+cl+en} = \frac{ah+cl+en}{ah+cl+en}$

prove that
$$\frac{(a+c+e)(h+l+n)}{(b+d+f)(k+m+p)} = \frac{ah+cl+en}{bk+dm+fp}.$$

- 5. (a). Reduce $\frac{ab(x^2-y^2)+xy(a^2-b^2)}{ab(x^2+y^2)+xy(a^2+b^2)}$ to its lowest terms.
- (b). If xy + yz + zx = 1 prove that

$$\frac{x}{1-x^2} + \frac{y}{1-y^2} + \frac{z}{1-z^2} = \frac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}$$

6. Prove that

(a)
$$\frac{2\{x+2+\sqrt{(x^2-4)}\}}{x+2-\sqrt{(x^2-4)}} = x+\sqrt{(x^2-4)}.$$

(b)
$$(b+c-a)a^{\frac{1}{2}}+(c+a-b)b^{\frac{1}{2}}+(a+b-c)c^{\frac{3}{2}}=(a+b+c)(a^{\frac{1}{2}}+b^{\frac{1}{2}}+c^{\frac{1}{2}})-2(a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}}).$$

7. Solve the equations-

(a).
$$(b-c)(x-a)^3+(c-a)(x-b)^3+(a-b)(x-c)^3=0$$
.

(b).
$$x+y=4xy$$
; $y+z=2yz$; $z+x=3zx$.

(c).
$$x+y+z=0$$
.
 $ax+by+cz=0$.
 $bex+cay+abz+(a-b)(b-c)(c-a)=0$.

(d)
$$\frac{x-1}{x+3} + \frac{x-3}{x+1} + 2 = 0.$$

FIRST-CLASS TEACHERS, 1876.

XXIII.

1. Investigate Horner's method of division.

Divide $x^0 - 3x^8 - 31x^7 + 25x^6 + 3x^5 - 8x^3 + 19x^2 + 8x + 10$ by $3x^4 - 21x^3 + 9x - 6$, showing the "final remainder."

Find the value of $2x^5 + 803x^4 - 398x^3 + 1605x^2 - 1204x + 422$, when x = -402.

2. If f(x), a rational and integral function of x is divided by $x^2 + px + q$, the remainder is $\frac{\{f(a) - f(\beta)\}x + af(\beta) - \beta f(a)}{a - \beta}$, where a, β are the roots of $x^2 + px + q = 0$.

Examine the case where $p^2 = 4q$.

3. Show without actual expansion that

$$\frac{a^{4}(b^{2}-c^{2})+b^{4}(c^{2}-a^{2})+c^{4}(a^{2}-b^{2})}{a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)} =$$

$$(a^{2}-b^{2})^{3}+(b^{2}-c^{2})^{3}+(c^{2}-a^{2})^{3}$$

$$(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$$

 $\frac{2z^2}{3z^2}$

me

o.f.

th

th

(1

(2

(

4. Find the value of x and y that will render the fraction $2z^2 + (x - a z + 2b(x - 2c)) \\ 3z^2 + (y - b)x + 3a(y - 3c)$ the same for all values of x.

5. Show how to find the sum of n terms of a series in Geometric progression.

(1) Show that the sum of n terms of the series $1+r+(1+2r)(1+r)+(1+3r)(1+r)^2+\ldots$, is n $(1+r)^n$.

(2) Sum to infinity the series
$$\frac{1}{2\cdot 4\cdot 6} + \frac{1}{4\cdot 6\cdot 8} + \frac{1}{6\cdot 8\cdot 10} + \dots$$

6. Explain the notation of functions: prove that if

$$f(m) = 1 + mx + \frac{m(m-1)}{1 \cdot 2}x^2 + &c.$$
, then $f(m) \times f(n) = f(m+n)$.

Show that in the expansion of $(1+x)^n$ the sum of the squares of the co-efficients = $\frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot 2n}{(1 \cdot 2 \cdot 3 \cdot \cdots n)^2}.$

7. Solve the equations-

3 -0.

-8x + 10 by

1204x + 422

s divided by

3/(a)

(1)
$$\frac{x-a}{b+c} + \frac{x-b}{a+c} + \frac{x-c}{a+b} = 3.$$

(2)
$$x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$$
.

(3)
$$\frac{1}{21x^2 - 13x + 2} + \frac{1}{28x^2 - 15x + 2} = 12x^2 - 7x + 1.$$

8. Give a brief account of mathematical induction, and show that a square of a multinomial is equal to the square of each term together with twice the product of each term into the sum of all that follow it.

Find the sum of the products of the first n natural numbers taken two and two together?

9. If
$$\frac{x}{a} = y + z$$
, $\frac{y}{b} = z + x$, $\frac{z}{c} = x + y$, prove

(1)
$$\frac{1}{a} \cdot \frac{1}{b} \cdot \frac{1}{c} = \frac{1+a}{1-ab} \cdot \frac{1+b}{1-bc} \cdot \frac{1+c}{1-ca}$$

(2)
$$\frac{x^2}{a(1-bc)} = \frac{y^3}{b(1-ca)} = \frac{z^2}{c(1-ab)}$$
.

(3)
$$\frac{\sqrt{1-bc}}{a} + \frac{\sqrt{1-ca}}{b} + \frac{\sqrt{1-ab}}{c} = \frac{\sqrt{1-bc}}{a} \cdot \frac{\sqrt{1-ca}}{b} \cdot \frac{\sqrt{1-ab}}{c}$$

10. AB is divided in C, so that AB, $BC = AC^2$; from CA is cut off a part CD equal to CB; from DC is cut off a part DE equal to DA; from ED is cut off a part equal to EC, and so on ad inf. Show that the points of section continually approach a point C' such that AC' = BC.

14. Eliminate x, y, z and u from the equations

$$\begin{aligned} &a_1x+b_1y+c_1z+d_1u=0.\\ &a_2x+b_2y+c_2z+d_2u=0.\\ &a_3x+b_3y+c_3z+d_3u=0.\\ &a_4x+b_4y+c_4z+d_4u=0.\end{aligned}$$

12. A railway train travels from Toronto to Collingwood. At Newmarket it stops 7 minutes for water, and two minutes after leaving the latter place it meets a special express that left Collingwood when the former was 28 miles on the other side of Newmarket; the express travels at double the rate of the other, and runs the distance from Collingwood to Newmarket in 1½ hour; and if on reaching Toronto it returned at once to Collingwood, it would arrive three minutes after the first train; find the distance between Toronto, Newmarket and Collingwood.

FIRST CLASS TEACHERS, 1877.

XXIV.

1. Simplify
$$\left(\binom{x+y}{x-y}^2 + 1 \right) \left\{ \left(\frac{x+z}{x-z} \right)^2 + 1 \right\} \left\{ \left(\frac{y+z}{y-z} \right)^2 + 1 \right\} \times \frac{x^2(y-z) + y^2(z-x) + z^2(x-y)}{x^4y^2 + x^2y^4 + x^4z^2 + x^2z^4 + y^4z^2 + y^2z^4 + 2x^2y^2z^2}$$

2. Solve (1.)
$$\frac{ax+m+1}{ax+m-1} + \frac{ax+n}{ax+n-2} = \frac{ax+m}{ax+m-2} + \frac{ax+n+1}{ax+n-1}$$
.
(2.) $\sqrt[3]{1+\sqrt{x}+\sqrt[3]{1-\sqrt{x}}} = 2$.

3. A, B, and C start from the same place; B, after a quarter of an hour, doubles his rate, and C, after walking 10 minutes, diminishes his rate one-sixth; at the end of half an hour, A is a quarter of a mile before B, and half a mile before C, and it is

obser contin

consta a perf

the eq

(2)

5. I will (*r*

6. I integr

7. (

of the

8. 1

9. F

10.

annual is the i

CA is art DE so on oach a

od. At es after Colling-of New-er, and hour; ngwood,

find the

} ×

 $\frac{n+1}{n-1}$

quarter minutes, r, A is a and it is

observed that the total distance walked by the three, had they continued to walk uniformly from the first, is $6\frac{1}{4}$ miles. Find the original rate of each.

- (i) Investigate the relations that must exist between the constants in order that $Ax^2 + By^2 + Cz^2 + ayz + bxz + cxy$ shall be a perfect square.
- (2) Find the conditions that the values of x and y derived from the equations $ax + by = \frac{a^3}{x} + \frac{b^2}{y} = c^2$ may be rational.
- 5. If x^2+px+q and x^2+mx+n have a common factor, then will $(n-q)^2+n(m-p)^2=m(m-p)(n-q)$.
- 6. Prove $(a^m)^n = a^{mn}$, whether m and n be positive or negative, integral or fractional.

Show that
$$(x^{2m} + x^{2n})^{\frac{1}{mn}} = x^{\frac{1}{m} + \frac{1}{n}} \times (x^{m-n} + x^{n-m})^{\frac{1}{mn}}$$

7. (1.) If
$$\frac{a}{b} = \frac{c}{d}$$
 then $\sqrt{\frac{a^{2n} + b^{2n}}{c^{2n} + d^{2n}}} = \left(\frac{a - b}{c - d}\right)^n$

(2.) If
$$\frac{a^n d^n - b^n c^n}{\frac{1}{4}n(a^n - b^n - c^n + d^n)} = \frac{a^n c^n - b^n d^n}{\frac{1}{4}n(a^n - b^n - d^n + c^n)}$$
, then each

of these fractions = $\frac{1}{n}$ $(a^n + b^n + c^n + d^n)$.

8. If x be very small, show that—

$$\frac{(1+2x)^{\frac{1}{2}}+(1+3x)^{\frac{1}{3}}}{2+5x-(1+4x)^{\frac{1}{4}}}=2-4x, \text{ very nearly.}$$

- 9. Prove that $1 n^2 + \frac{n^2(n^2 1^2)}{1^2 \cdot 2^2} \frac{n^2(n^2 1^2)(n^2 2^2)}{1^2 \cdot 2^2 \cdot 3^3} + \dots = 0$
- 10. If a debt a at compound interest be discharged in n years by annual payment of $\frac{a}{m}$, show that $(1+r)^n(1-mr)=1$, where r is the interest on 1 for a year.

11. Solve—(1.)
$$3x^2 - 2xy = 55$$
.

$$x^2 - 5xy + 8y^2 = 7.$$

(2)
$$\frac{5}{x^2 - 7x + 10} + \frac{5}{x^2 - 18x + 40} = x^2 - 10 - 19$$

(8)
$$a^2b^2x^{\frac{1}{q}} - 4a^{\frac{8}{2}}b^{\frac{8}{2}}x^{\frac{p+q}{2pq}} = (a-b)^2x^{\frac{1}{p}}$$

FIRST CLASS TEACHERS, 1878.

XXV

1. Simplify
$$\left(\sqrt{\frac{a+x}{x}} - \sqrt{\frac{x}{a+x}}\right)^2 - \left(\sqrt{\frac{x}{a}} - \sqrt{\frac{a}{x}}\right)^2 - \frac{x^2}{a(a-x)}$$

and
$$\frac{x^2 - (y-z)^2}{(x+z)^2 - y^2} + \frac{y^2 - (z-x)^2}{(x+y)^2 - z^2} + \frac{z^2 - (x-y)^2}{(y+z)^2 - x^2}$$

2. Divide
$$\frac{x}{a} - 1 - \frac{b}{a} - \frac{b^2}{a^2} + \frac{b}{x} + \frac{b^2}{x^2}$$
 by $x - a$;

shew that
$$(-9a^2)^{\frac{1}{4}} = \frac{1}{2} \{ \sqrt{(6a) + \sqrt{(-6a)}} \}.$$

8. If
$$\frac{m}{x} = \frac{n}{y} = \frac{r}{z}$$
 and $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, prove that

$$\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{r^2}{c^3} = \frac{m^2 + n^2 + r^2}{x^2 + y^2 + z^3}$$

4. Find the relations between the roots and co.efficients of the equation $ax^2 + bx + c = 0$.

If m and n are the roots of the equation $ax^2 + bx + c = 0$, show that the roots of the equation $acx^2 + (2ac - b^2)x + ac = 0$ are

$$\frac{m}{n}$$
 and $\frac{n}{m}$.

5. Solve the equations:

(1)
$$x^2 + 2\sqrt{x^2 - 2x} = 2x + 8$$
.

(2)
$$\frac{x^3}{y} - \frac{y^8}{x} = 10\frac{5}{6}, \frac{x}{y} - \frac{y}{x} = \frac{5}{6}$$

(3)
$$xz = y^2$$
, $x+y+z=12$, $x^2+y^2+z^2=91$.

towns than t each n

7. I shew t

8. H

Sup will be

9. I togeth

exceed two to

limit.

11. possib

7. (c-a)

2. simple 6. Two men start at the same time to meet each other from towns which are 28 miles apart; one takes five minutes longer than the other to walk a mile, and they meet in four hours. Find each man's rate per hour.

7. If P, Q, R be respectively the pth, qth, rth terms of a G.P., shew that

$$P^{q-r} \times Q^{r-p} \times R^{p-q} = 1$$
.

Sum to infinity the series $\frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^2} + &c.$

8. Find the amount of P at compound interest for n years, r being the interest on 1 for one year.

Supposing p to be withdrawn at the end of each year, what will be the amount at the end of p years?

9. Determine the number of combinations of n things taken r together.

The number of combinations of n things taken two together exceeds by 6 the number of combinations of n-1 things taken two together: find n.

10. (1) Find the limit of $(1+\frac{1}{x})^x$ when x increases without imit.

(2) Find the (r+1)th term in the expansion of $(3-5x)^{-\frac{1}{\delta}}$.

11. Determine the limits between which lies $\frac{x^2 - 3x - 3}{2x^2 + 2x + 1}$ for all possible values of x.

FIRST CLASS TEACHERS, 1879.

XXVI.

- 7. Prove that $2\{(a-b)^7 + (b-c)^7 + (c-a)^7\} = 7(a-b)(b-c)$ $(c-a)\{(a-b)^4 + (b-c)^4 + (c-a)^4\}.$
- 2. Extract the square root of $ab-2a\sqrt{(ab-a^2)}$, and find the simplest real forms of the expression

$$1/(3+4\sqrt{-1})+1/(3-4\sqrt{-1}).$$

 $-\frac{x^2}{a(a-x)}$

D-119

ients of the

-c = 0, show +ac = 0 are

- 3. Solve the equations:
 - (1). $2x^4 + x^3 11x^2 + x + 2 = 0$.

(2).
$$x^2 + y^2 + z^2 = a^2$$

 $yz + zx + xy = b^3$
 $z + y - z = c$.

- (3). $\sqrt{(x^2+5x+4)}+\sqrt{(x^2+3x-4)}=x+4$.
- 4. Prove that the number of positive integral solutions of the equation ax+by=c cannot exceed $\frac{c}{ab}+1$.

In how many ways may £11 15s, be paid in half-guineas and half-crowns?

5. If xy = ab(a+b), and $x^2 - xy + y^2 = a^3 + b^3$, shew that $\left(\frac{x}{a} - \frac{y}{b}\right) \left(\frac{x}{b} - \frac{y}{a}\right) = 0$.

- 6. Given the sum of an arithmetical series, the first term, and the common difference, shew how to find the number of terms. Explain the negative result. Ex. How many terms of the series 6, 10, 14, &c., amount to 96?
- 7. Find the relation between p and q, when $x^3 + px + x = 0$ has two equal roots, and determine the values of m which will make $a^2 + max + a^2$ a factor of $x^4 ax^3 + a^2x^2 a^3x + a^4$.
- 8. In the scale of relation in which the radix is r, shew that the sum of the digits divided by r-1 gives the same remainder as the number itself divided by r-1.
- 9. Assuming the Binomial Theorem for a positive integral index, prove it in the case of the index being a positive fraction.

Shew that the sum of the squares of the co-efficients in the expansion of $(1+x)^n$ is $|2n \div (|n|)^2$, n being a positive integer.

- 10. Sum the following series:-
 - (1.) $1+3x+5x^2+7x^3+&c$, to n terms.
 - (2.) $\frac{1}{3\times8} + \frac{1}{8\times13} + &c.$ to n terms, and to infinity.

11.

abc(a +

1. If for y, that of (B2).

2. Re

P

if u = x(

0 1

8. Ex (a

and the

4. Eli

ax

k(x)

5. Sin

in

6. Giv

terms, (i

11. Show that
$$\begin{vmatrix} bc, & -ac, & -ab \\ b^2 - c^2, & a^2 + 2ac, -a^2 - 2ab \\ c^2, & c^2, & (a+b)^2 \end{vmatrix}$$
 is divisible by $abc(a+b+c)$.

FIRST CLASS TEACHERS, 1880-GRADE C.

XXVII.

- 1. If in $ax^2 + 2bxy + cy^2$, ku + lv be substituted for x and nu + nv for y, the result takes the form $Au^2 + 2Buv + Cv^2$. Find the value of $(B^2 AC) \div (b^2 ac)$ in terms of k, l, m, n.
 - 2. Resolve $a(b-c)^3 + b(c-a)^3 + c(a-b)^3$ into factors.

Prove that
$$\frac{Au^3 + Bv^3 + Cw^3}{uvw} = \frac{Ax^3 + By^3 + Cz^3}{xyz}$$

if
$$u = x(By^3 - Cz^3)$$
, $v = y(Cz^3 - Ax^3)$, $w = z(Ax^3 - By^3)$.

3. Extract the square root of

$$(a-b)^2(b-c)^2 + (b-c)^2(c-a)^2 + (c-a)^2(a-b)^2$$

and the cube root of

$$A(a-b)^{6}+(b-c)^{6}+(c-a)^{6}-3(a-b)^{2}(b-c)^{2}(c-a)^{2}$$

4. Eliminate x, y, z from

$$ax + by + cz = 1$$
 $\frac{a}{x} = \frac{b}{y} = \frac{c}{z}$

$$k(x^2+y^2+z^2)+2(lx+my+nz)+h=0$$

5. Simplify $\frac{a\sqrt{b+b\sqrt{a}}}{\sqrt{a+\sqrt{b}}}$, $\{\sqrt{(4+3j)}+\sqrt{(4-3j)}\}^2$,

and
$$\left(\frac{-1+j\sqrt{3}}{2}\right)^2 + \frac{-1+j\sqrt{3}}{2} + 1$$
,

in which $j = \sqrt{(-1)}$.

6. Given the first term, the common difference and the number of terms of an arithmetical progression, find (i.) the sum of the terms, (ii.) the sum of the squares of the terms.

ons of the

ineas and

that

term, and of terms. the series

-x=0 has will make

shew that remainder

in the exeger.

e integrai

ity.

7. Solve the equations

(i.)
$$(a-x)^3 = (x-b)^3$$
.

(ii.)
$$ax + by = \frac{a}{x} + \frac{b}{y} = 1$$
.

(iii.)
$$x(y+z^{-1}) = a$$
, $y(z+x^{-1}) = b$, $z(x+y^{-1}) = c$.

8. What value (other than 1) must be given to q that one of the roots of $x^2-2x+q=0$, may be the square of the other.

If a, b, c are the roots of x^3-px^2+qx-r , express

$$\frac{2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4}{2ab + 2bc + 2ca - a^2 - b^2 - c^2}$$

in terms of p, q and r.

9. A vessel makes two runs on a measured mile, one with the tide in *m* minutes and one against the tide in *n* minutes. Find the speed of the vessel through the water, and the rate the tide was running at, assuming both to be uniform.

10. Five points, A, B, C, O and P lie on a straight line. The distances of A, B, and C, measured from the point O, are a, b, and c; their distances measured from the point P are x, y, z. Prove that whatever be the positions of the points O and F,

$$x^{2}(b-c)+y^{2}(c-a)+z^{2}(a-b)+(b-c)(c-a)(a-b)=0.$$

The remain D'A

degree duct of product

Eat R
merely
Take the
does so
dividen

It has formed ing R to not equivalues of that it such cas divisor although not equiple braic of the such cases.

sion by proof de not ope

APPENDIX.

Section I.—Elementary Theorems on Polynomes. (See page 39, et seq.)

Theorem I. If the polynome $f(x)^n$ be divided by x-a, the remainder will be $f(a)^n$.

D'Alembert's Proof. $f(x)^n$ is the dividend, x-a is the divisor; let $f_1(x)^{n-1}$ be the quotient, which is necessarily a polynome of degree n-1, and let R be the remainder. Then, since the product of the quotient and the divisor added to the remainder reproduces the dividend,

 $f(x)^n = (x-a)f_1(x)^{n-1} + R.$

Lat R does not contain x, hence it will remain the same, not merely in form but in actual value, whatever value be given to x. Take the case x = a, then $(x-a)f_1(x)^{n-1}$ vanishes for its factor x-a does so, hence $R = f(a)^n$. Thus the remainder is the value of the dividend when x has the value which makes the divisor vanish.

It has been objected to the above proof "Division can be performed only when there is an actual divisor, therefore in assuming R to be the remainder of $f(x)^n \div (x-a)$ it is assumed that x is not equal to a, and although R will remain unchanged for all values of x that fulfil this assumption, it cannot thence be inferred that it will do so if the contradictory assumption be made. In such case the only legitimate conclusion is that there being no divisor there is neither quotient nor remainder. Therefore, although $f(a)^n$ may be the remainder in the case in which x is not equal to a, yet the above argument does not prove it." This objection confuses arithmetical or numerical division with algebraic or formal division, division by a definite quantity with division by an undetermined or variable quantity. The following proof does not involve the assumption x = a, and consequently is not open to the foregoing objection.

that one of ther.

ne with the utes. Find the the tide

t line. The O, are a, b, O are x, y, z, and F,

b) = 0.

Lagrange's Proof. Lemma. $x^n - a^n$ is divisible by x a, if n be a positive integer.

By actual division
$$\frac{x^n - a^n}{x - a} = x^{n-1} - a \cdot \frac{x^{n-1} - a^{n-1}}{x - a};$$

$$\therefore x^n - a^n \text{ is divisible by } x - a \text{ if } x^{n-1} - a^{n-1} \text{ is so divisible,}$$
hence $x^{n-1} - a^{n-1}$ \(\text{``} \text{``

Thus we can reduce the exponent unit by unit until at last we arrive at, $x^2 - a^2$ is divisible by x - a if x - a is so divisible. But x - a is certainly divisible by itself, $x^2 - a^2$ is divisible by x - a, $x^3 - a^3$ is also divisible by x - a, $x^3 - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a, $x - a^3$ is also divisible by x - a.

Theorem. Writing $f(x)^n$ in polynomial form arranged in ascending powers of x,

$$f(x)^{n} = A_{0} + A_{1}x + A_{2}x^{2} + A_{3}x^{3} + A_{n}x^{n},$$

$$\therefore f(a)^{n} = A_{0} + A_{1}a + A_{2}a^{2} + A_{3}a^{3} + A_{n}a^{n},$$

$$f(x)^{n} - f(a)^{n} = A_{1}(x-a) + A_{2}(x^{2}-a^{2}) + A_{3}(x^{3}-a^{3}) + \cdots + A_{n}(x^{n}-a^{n}).$$

But every term of this polynomial is divisible by x-a, and the highest power of x in the quotient is x^{n-1} got from the term $A_n(x^n-a^n)$, so the quotient may be represented by $f_1(x)^{n-1}$,

$$\therefore \{f(x)^n - f(a)^n\} \div (x - a) = f_1(x)^{n-1}$$
or $\frac{f(x)^n}{x - a} = f_1(x)^{n-1} + \frac{f(a)}{x - a}$

Theorem II. If the polynome $f(x)^n$ vanish on substituting for x each of the n different values $a_1, a_2, a_3, \ldots, a_n$; then $f(x)^n = A(x-a_1)(x-a_2) \ldots (x-a_n)$, in which A is independent of x and consequently is the coefficient of x^n in $f(x)^n$.

Since $f(a_1) = 0$, $\therefore f(x)^n = (x - a_1)f(x)^{n-1}$. In this substitute a, for x, \therefore since $f(a_2)^n = 0$, it becomes $0 = (a_2 - a_1)f_1(a_2)^{n-1}$. Of this product the factor $a_2 - a_1$ does not vanish since by hypothesis a_2 is not equal to a_1 , therefore the other factor $f_1(a_2)^{n-1}$ must vanish that the product may vanish, and consequently $f_1(x)^{n-1}$ is

divisib $f(x)^n =$ as before Continuenth description

Cor.

Let which

which

a

The n difference every t

Let for wh

Subs

∴ 0 But no ∴ A r

and the term.

The m) are for all are equ

a, if n

visible.

at last we visible. But ible by x-a, a^4 and thus soever.

arrangea in

$$+ A_n x^n, + A_n a^n, a^3) + \dots$$

-a, and the

m the term $(x)^{n-1}$,

substituting a_n

he coefficient

is substitute $f_1(a_2)^{n-1}$. Of by hypothe $f_1(a_2)^{n-1}$ must thy $f_1(x)^{n-1}$ is divisible by $x-a_n$. Let the quotient be denoted by $f_2(x)^{n-2}$, $f(x)^n = (x-a_1)(x-a_2)f_2(x)^{n-2}$. Substitute a_3 for x and proceed as before, and it will be proved that $x-a_3$ is a factor of $f(x)^n$. Continuing to n factors we get a quotient independent of x, since each division reduces the exponent of x by unity, \cdot finally

$$f(x)^n = A(x-a_1)(x-a_2) \cdot \cdot \cdot (x-a^n).$$

Cor. If $f(x)^n$ and $\varphi(x)^m$ both vanish for the same p different values of x, $f(x)^n$ is algebraically divisible by $\varphi(x)^m$.

Let $a_1, a_2, a_3, \ldots a_m$ be the *m* different values of x for which the polynomes vanish,

$$f(x)^n = (x - a_1)(x - a_2) \dots (x - a_m) F(x)^{n-m}$$
and
$$\varphi(x)^m = A(x - a_1(x - a_2) \dots (x - a_m)$$

$$f(x)^n \div \varphi(x)^m = F(x)^{n-m} \div A,$$

which is an integral function of x since A does not contain x.

Theorem III. If the polynome $f(x)^n$ vanish for more than n different values of x it will vanish identically, the coefficient of every term being zero.

Let $a_1, a_2, a_3, \ldots, a_n, a_{n+1}$ be n+1 different values of x for which $f(x)^n$ vanishes,

:
$$f(x)^n = A(x-a_1)(x-a_2)(x-a_3)$$
 $(x-a_n)$

Substitute a_{n+1} for x, and since $f(a_{n+1})^n = 0$,

∴ $0 = A(a_{n+1} - a_1)(a_{n+1} - a_2)(a_{n+1} - a_3)$ $(a_{n+1} - a_n)$ But none of the factors $a_{n+1} - a_1$, $a_{n+1} - a_2$, &c. vanishes, ∴ A must be zero, or

$$f(x)^n = 0(x-a_1)(x-a_2)(x-a_3) \dots (x-a_n)$$

and the factor, zero, will be a factor in the coefficients of every term.

Theorem IV. If the polynomes $f(x)^n$, $\varphi(x)^m$ (n not less than m) are equal for more than n different values of x, they are equal for all values, and the coefficients of equal powers of x in each are equal to one another.

$$f(x)^{n} = A_{0} + A_{1}x + A_{2}x^{3} + A^{3}x_{3} + \dots + A_{n}x^{n}$$

$$\varphi(x)^{n} = B_{0} + B_{1}x + B_{2}x^{2} + B_{3}x^{3} + \dots + B_{m}x^{m},$$

$$\therefore f(x)^{n} - \varphi(x)^{m} = A_{0} - B_{0} + (A_{1} - B_{1})x + (A_{2} - B_{2})x^{2} + (A_{3} - B_{3})x^{3} + \dots + (A_{m} - B_{m})x^{m} + A_{m+1}x^{m+1} + A_{m+2}x^{m+2} + \dots + A_{n}x^{n},$$

and this is a polynome of degree n at most. But $f(x)^n = \varphi(x)^m$ for more than n different values of x, that is $f(x)^n - \varphi(x)^m$ vanishes for these values, $\cdot \cdot \cdot$ by Theorem III. $f(x)^n - \varphi(x)^m$ vanishes identically, and the coefficients $A_0 - B_0$, $A_1 - B_1$, $A_2 - B_2$, $\cdot \cdot \cdot \cdot \cdot A_m - B_m$, A_{m+2} , A_{m+2

••
$$A_0 = B_0$$
, $A_1 = B_1$, $A_2 = B_2$, ... $A_m = B_m$, $A_{m+1} = 0$, $A_{m+2} = 0$...

Note to Art. XVII. To find, where such exist, the factors of $ax^2 + bxy + cxz + ey^2 + gyz + hz^2$.

Multiply by 4a

$$4a^2x^2 + 4abxy + 4acxz + 4aey^2 + 4agyz + 4abz^2$$
.

Select the terms containing x and complete the square, thus

$$4a^{2}x^{2} + 4abxy + 4acxz + b^{2}y^{2} + 2bcxz + c^{2}z^{2}$$

$$-(b^{2} - 4ae)y^{2} - 2(bc - 2ag)yz - (c^{2} - 4ah)z^{2} =$$

$$(2ax + by + cz)^{2} - \{(b^{2} - 4ae)y^{2} + 2(bc - 2ag)yz + (c^{2} - 4ah)z^{2}\}$$

If the part within the double bracket is a square say $(my + uz)^2$ the given expression can be written

$$(2ax+by+cz)^2-(my+nz)^2$$

which can be factored by [4]. Factor and divide the result by 4a. If the part within the double bracket is not a square, the given expression cannot be factored. If b and c are both even, multiply by a instead of by 4a and the square can be completed without introducing fractions. If e is less than a it will be easier to multiply by 4e instead of by 4a and select the terms containing a. A similar remark applies to a.

This method can evidently be extended to quadratic multinomials of any number of terms.

1. R

Com

... th

2. 6a

.. th

3. a

1. 8

Multi in a, ar

EXAMPLES.

1. Resolve $x^2 + xy + 2xz - 2y^2 + 7yz - 9z^3$ into factors. Multiply by 4

$$4x^{2} + 4xy + 8yz - 8y^{2} + 28yz - 12z^{2}$$

Complete the square selecting terms in x,

$$\begin{aligned} 4x^2 + 4xy + 8xz + y^2 + 4yz + 4z^2 - 9y^2 + 24yz - 16z^3 &= \\ (2x + y + 2z)^2 - (3y - 4z)^2 &= \\ \{(2x + y + 2z) + (3y - 4z)\} \{(2x + y + 2z) - (3y - 4z)\} &= \\ (2x + 4y - 2z)(2x - 2y + 6z) &= 4(x + 2y - z)(x - y + 3z) \end{aligned}$$

- ... the factors are (x+2y-z)(x-y+3z).
- 2. $6a^2 7ab + 2ac 20b^2 + 64bc 48c^2$. Multiplyfby $4 \times 6 = 24$ $144a^2 - 168ab + 48ac - 480b^2 + 1536bc - 1152c^2 =$ $(12a - 7b + 2c)^2 - 520b^2 + 1564bc - 1156c^2 =$ $(12a - 7b + 2c)^2 - (23b - 34c)^2 =$ (12a + 16b - 32c)(12a - 30b + 36c) =
- \therefore the factors are 3a+4b-8c and 2a-5b+6c.

24(3a+4b-8c)(2a-5b+6c)

- 8. $x^2 + 12xy + 2xz + 26y^2 8yz 9z^2 =$ $(x^2 + 12xy + 2xz + 36y^2 + 12yz + z^2) 10y^2 20yz 10z^2 =$ $(x + 6y + z)^2 \{(y + z)\sqrt{10}\}^2 =$ $\{x + (6 + \sqrt{10})y + (\sqrt{10} + 1)z\} \times$ $\{x + (6 \sqrt{10})y (\sqrt{10} 1)z\}$
- 4. $3a^2+10ab-14ac+12ad-8b^2-8bd+8c^2-8cd$. Multiply by 3, not 4×3 , since the coefficients of the other terms in a, are all even.

$$9a^3 + 30ab - 42ac + 36ad - 24b^2 - 24bd + 24c^2 - 24cd$$

 x^n , $= \varphi(x)^m$ for vanishes ishes identi

 $A_n x^n$

 $B_m x^m$,

 $B_2)x^2 +$

ero, $A_{m+2} = 0 \dots$

e factors of

are, thus

 $c^{2} = c^{2} - 4ah)z^{2}$ by $(my + uz)^{2}$

he result by square, the

re both even, e completed will be easier as containing

tic multino-

W

In

1.

and e

5.

Select the terms containing a and complete the square

$$(3a+5b-7c+6d)^{2}-49b^{2}+$$

$$70bc-84bd-25c^{2}+60cd-36d^{2}=$$

$$(3a+5b-7c+6d)^{2}-(7b-5c+6d)^{2}=$$

$$(3a+12b-12c+12d)(3a-2b-2c)=$$

... the factors are a+4b-4c+4d and 3a-2b-2c.

Work Exercise XXIX by this method.

3(a+4b-4c+4d)(3a-2b-2c),

SECTION II .- INDICES AND SURDS.

The general Index-laws are

$$a^{\frac{m}{n}} \cdot a^{\frac{p}{q}} = a^{\frac{m}{n} + \frac{p}{q}} \tag{1}$$

$$\mathbf{a}^{\frac{m}{n}} - a^{\frac{p}{q}} = a^{\frac{m}{n}} - \frac{p}{q} \tag{2}$$

$$(ab)^{\frac{m}{n}} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}} \tag{3}$$

$$(a \div b)^{\frac{m}{n}} = a^{\frac{m}{n}} \div b^{\frac{m}{n}} \tag{4}$$

$$\left(u^{\frac{m}{n}}\right)^{\frac{p}{q}} = u^{\frac{mp}{nq}} \tag{5}$$

The law connecting the Index and the Surd symbols is

$$a^{\frac{m}{n}} = \sqrt[n]{(a^m)} \tag{6}$$

[The indices \(\frac{1}{2}\), \(\frac{1}{3}\), \(\frac{1}{4}\), &c., are generally used to denote 'cither square-root,' 'any of the cube-roots,' 'any one of the fourth-roots,' &c.

The surd symbols $\sqrt{2}$, $\sqrt{4}$, &c., are by some writers restricted to indicate the arithmetical or absolute roots, sometimes called the positive roots. Thus

$$\sqrt{4} = 2$$
, but $4^{\frac{1}{2}} = \pm 2$, $\therefore 4^{\frac{1}{2}} = \pm \sqrt{4}$

Also,
$$\sqrt{\{(-2)^2\}} = \sqrt{4} = 2$$
.

$$\sqrt[3]{27} = 3$$
, but $27^{\frac{1}{3}} = 3$ or $3\left(\frac{-1 \pm j\sqrt{3}}{2}\right) \cdot 8^{\frac{1}{3}} = (1^{\frac{1}{3}}) \cdot 3^{\frac{1}{3}}$

$$4/16 = 2$$
, but $16^{\frac{1}{4}} = \pm 2$ or $\pm 2j$, $\therefore 16^{\frac{1}{4}} = (1^{\frac{1}{4}}) 4/16$.

With this restriction the general connecting formula would be $a^{\frac{m}{n}} = (1^{\frac{m}{n}}) N(a^m)$

In the following exercises this restriction need not be observer.]

EXERCISE.

1. What is the arithmetical value of each of the following:

$$86^{\frac{1}{2}}$$
, $27^{\frac{1}{3}}$, $16^{\frac{1}{4}}$, $82^{\frac{1}{8}}$, $4^{\frac{2}{4}}$, $8^{\frac{2}{3}}$, $27^{\frac{5}{4}}$, $64^{\frac{2}{3}}$, $32^{\frac{3}{8}}$, $64^{\frac{2}{8}}$, $81^{\frac{2}{3}}$, $(8^{\frac{2}{8}})^{\frac{1}{3}}$, $(5^{\frac{1}{16}})^{\frac{1}{4}}$, $(1^{\frac{9}{16}})^{\frac{1}{6}}$, $(25)^{\frac{1}{2}}$, $(027)^{\frac{2}{3}}$, $49^{\frac{1}{5}}$, $32^{\frac{1}{2}}$, $81^{\frac{75}{5}}$

- 2. Interpret a^{-2} , a^{0} , a^{2} , $(a^{2})^{-2}$, a^{2} , $a^{-\frac{1}{2}}$, $a^{-\frac{1}{2}}$, $a^{-\frac{1}{2}}$, $a^{\frac{1}{2}}$, $a^{-\frac{1}{2}}$.
- 3. What is the arithmetical value of

$$36^{-\frac{1}{3}}, 27^{-\frac{1}{3}}, (\cdot 16)^{-\frac{8}{3}}, (\cdot 0016)^{-\frac{8}{4}}, (\frac{1}{4})^{-\frac{1}{2}}, (\frac{4}{25})^{-\frac{1}{3}}, (\frac{9}{10})^{-\frac{2}{3}}, (5\frac{1}{16})^{-\frac{1}{3}}$$

- **4.** Prove $(a^m)^n = (a^n)^m$; $(a^m)^{\frac{1}{n}} = (a^{\frac{1}{n}})^m$; $a^{-m} = (a^{-1})^m$; and express these theorems in words.
 - 5. Simplify $a^{\frac{1}{3}} a^{\frac{1}{3}} a^{\frac$
 - 6. Remove the brackets from

$$(a^{6})^{\frac{1}{2}}, (b)^{-\frac{1}{8}}, (c_{4}^{3})^{-\frac{1}{8}}, (d^{\frac{2}{3}})^{\frac{1}{6}}, (e^{-\frac{1}{3}})^{\frac{3}{4}}, (f^{-\frac{3}{4}})^{\frac{3}{4}}$$

$$(a^{2}b^{2})^{\frac{1}{6}}, (a^{\frac{3}{4}}b^{\frac{6}{5}})^{\frac{10}{8}}, (a^{2}c^{-1})^{-\frac{1}{2}}, (a^{-5}c^{\frac{2}{5}})^{-\frac{1}{2}}, (a^{\frac{2}{5}}b^{-\frac{4}{6}})^{-\frac{6}{6}}.$$

7. Remove the brackets and simplify

$$(x^{\frac{1}{\delta} - \frac{1}{7}})^{\frac{2}{3}} (x^{\frac{1}{7} - \frac{1}{3}})^{\frac{2}{\delta}} (x^{\frac{1}{3} - \frac{1}{\delta}})^{\frac{7}{7}}; x^{(\frac{1}{\delta} - \frac{1}{7})\frac{2}{3}} x^{(\frac{1}{7} - \frac{1}{3})\frac{2}{\delta}} x^{(\frac{1}{3} - \frac{1}{\delta})\frac{7}{7}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{13}})^{\frac{1}{2}} (x^{\frac{1}{\delta} - \frac{1}{2\delta}})^{\frac{1}{2}} (x^{\frac{1}{\delta} + \frac{1}{16}})^{\frac{1}{2}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{2}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{13}})^{\frac{1}{2}} (x^{\frac{1}{\delta} - \frac{1}{2\delta}})^{\frac{1}{2}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{2}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{13}})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{13}})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{13}})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta}})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta}})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta})^{\frac{1}{\delta}};$$

$$(x^{\frac{1}{\delta} + \frac{1}{\delta})^{\frac{1}{\delta}} (x^{\frac{1}{\delta} - \frac{1}{\delta$$

ls is

re

the fourth-

writers resometimes

$$1^{\frac{1}{3}} = (1^{\frac{1}{3}}) \sqrt[3]{9}$$

$$1^{\frac{1}{4}} \sqrt[4]{10}$$

17.

18.

19.

as cu

8. Simplify
$$-x\left\{x^{-\frac{1}{2}}(-x)^{-1}\right\}^{\frac{1}{3}}$$
, $x\left\{(-x)^{-\frac{2}{3}}(-x)^{-2}\right\}^{-\frac{5}{3}}$, $(-x)^{-\frac{3}{4}}$

9. Determine the commensurable and the surd factors of

$$12^{\frac{1}{2}}, 24^{\frac{1}{3}}, 18^{-\frac{1}{2}}, (-81)^{\frac{1}{3}}, 12^{\frac{2}{3}}, 64^{\frac{8}{3}}, (\frac{1}{16})^{\frac{2}{3}}, (6\frac{3}{4})^{-\frac{8}{4}}.$$

(The surd factor must be the incommensurable root of an integer.)

10. Simplify
$$8^{\frac{1}{2}} + 18^{\frac{1}{3}} - 50^{\frac{1}{2}}$$
; $72^{\frac{1}{3}} + (\frac{24}{125})^{\frac{1}{3}} - (\frac{3}{125})^{-\frac{1}{3}}$; $\{(6+2^{\frac{1}{2}})(6-2^{\frac{1}{2}})\}^{\frac{1}{3}}$; $(2^{\frac{1}{2}} + 3^{\frac{1}{2}})^2 + (2^{\frac{1}{2}} - 3^{\frac{1}{2}})^2$; $(2^{\frac{1}{3}} + 3^{\frac{1}{3}})(4^{\frac{1}{3}} + 9^{\frac{1}{3}} - 6^{\frac{1}{3}})$; $(7^{\frac{1}{2}} - 3^{\frac{1}{2}})^{\frac{1}{2}}(7^{\frac{1}{2}} + 3^{\frac{1}{2}})^{\frac{1}{2}}$.
$$[\{(a+x)(x+b)\}^{\frac{1}{2}} - \{(a-x)(x-b)\}^{\frac{1}{2}}]^2$$
;
$$\{a^{\frac{3}{4}} + (a^3 - x^3)^{\frac{1}{2}}\}^{\frac{1}{3}}$$
.
$$\{a^{\frac{3}{4}} - (a^3 - x^3)^{\frac{1}{2}}\}^{\frac{1}{3}}$$

Express as surds,

$$11 \quad a^{\frac{3}{4}}, \quad x^{\frac{5}{8}}, \quad p^{\frac{31}{2}}, \quad c^{-\frac{1}{2}}, \quad h^{-\frac{33}{3}}.$$

12.
$$x^{n+\frac{1}{2}}$$
, $y^{-n+\frac{2}{3}}$, $a^{.25}$, $b^{-n+\frac{1}{m}}$

13.
$$(ax-b)^{\frac{a}{b}}$$
, $(x^2-4x+1)^{\frac{m-3}{4}}$, $(p-qx)^{n-\frac{3}{3}}$

Express with indices,

14.
$$\sqrt[3]{a^2}$$
, $\sqrt[4]{c^3}$, $\sqrt[n]{x^m}$, $\sqrt[3]{y^{m-n}}$, $\sqrt[a]{(ax)}$, $\sqrt{a^{-3}}$.

15.
$$\sqrt[n]{(a^3+b^3)}$$
, $\sqrt[n]{(a^3+b^3)^2}$, $\sqrt[n]{(a^3+b^3)}$, $\sqrt[n]{(a-bx)^{n-1}}$, $\sqrt[n]{(a^n-b^n)^{m-8n}}$

16.
$$(a^{\frac{2}{3})^{\frac{3}{4}}}, (b^{-\frac{1}{3})^{\frac{2}{3}}}, (c^{-\frac{2}{3})^{-\frac{3}{4}}}, (x^{\frac{3}{5})^{-\frac{3}{3}}}, (a^2x)^{-\frac{1}{2}}, (a^{-8}x^{-\frac{1}{2})^{-\frac{1}{2}}}, (x^{\frac{1}{7}y^{-\frac{1}{6}}})^{\frac{14}{3}}$$

Simplify the following, expressing the results by both notations.

17. $a.a^{-\frac{1}{2}}$, $a^{0}.a^{-\frac{1}{2}}$, $a^{\frac{1}{3}}.a^{-\frac{1}{4}}$, $a.a^{-\frac{4}{3}}$, $a^{-\frac{1}{2}}$. \sqrt{a} , $a^{\frac{2}{3}}$, $a^{\frac{1}{2}}$.

a sof $a^{\frac{3}{6}} \sqrt[3]{a^3}, a^{\frac{3}{6}} \sqrt[3]{a^{-3}}, a^{\frac{5}{6}} \sqrt{a^{-1}}, a^{\frac{2}{3}}b^{\frac{1}{3}}c^{-\frac{1}{4}}. a^{\frac{1}{3}}b^{-\frac{1}{2}}c^{\frac{1}{2}}d,$ a $a^{\frac{1}{3}}b^{\frac{3}{3}}c^{\frac{1}{6}}.a^{-\frac{2}{3}}b^{-\frac{1}{3}}c^{-\frac{1}{6}}$ 18. $a^{\frac{1}{3}}a^{\frac{3}{3}}, a^{\frac{3}{4}}c^{\frac{1}{6}}c^{\frac{1}{6}}$ 19. $a^{\frac{1}{2}}+a^{-\frac{1}{2}}$ $a^{\frac{3}{2}}-a^{\frac{3}{2}}$ $a^{\frac{3}{2}}-a^{\frac{3}{2}}-a^{\frac{3}{2}}$ $a^{\frac{3}{2}}-a^{\frac{3}{2}}-a^{\frac{3}{2}}$ $a^{\frac{3}{2}}-a^{\frac{3}{2}}-a^{\frac{3$

1. Express the following quantities i. as quadratic surds, ii as cubic surds, iii. as quartic surds.

$$a, 3a, 2a^2, a^2x, x^n, y^{\frac{1}{2}}, a^{-m}, \frac{x}{y}, mx^{-\frac{n}{p}}, \cdot 1, \cdot 01, 1 \cdot 1x^2.$$

2. Reduce to entire surds,

$$x\sqrt{x}, a\sqrt[3]{a}, b^{2}\sqrt[3]{b^{2}}, 3\sqrt[3]{3}, 4\sqrt[3]{2}, \frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt[3]{4}, \frac{1}{3}\sqrt[3]{9}, 3\sqrt[3]{4},$$

$$a\sqrt{\left(\frac{b}{a}\right)}, \frac{a}{b}\sqrt{b}, \frac{a}{b}\sqrt{\left(\frac{b}{a}\right)}, \frac{a}{b}\sqrt{\left(\frac{a}{b}\right)},$$

$$\frac{x}{y}\sqrt[3]{\left(\frac{y}{x}\right)}, \frac{x}{y}\sqrt[3]{\left(\frac{y}{x}\right)^{2}}, \frac{x^{2}}{y}\sqrt[3]{\left(x^{2}y^{-1}\right)},$$

$$a\sqrt[n]{b}, a\sqrt[n]{a^{m}}, (a+x)\sqrt[n]{(a+x)^{m}}, (a+x)\sqrt[n]{(a-x)^{m+1}},$$

$$\frac{x+y}{m}\sqrt{\left(\frac{x+y}{m}\right)}, (x+y)\sqrt{\left(\frac{x-y}{x+y}\right)}, \frac{a-b}{a+b}\sqrt[3]{\left(\frac{a+b}{a-b}\right)^{2}},$$

$$(x-y)^{-2}\sqrt[5]{(x^{2}+2xy+y^{2})^{-4}}, (x-x^{-1})\sqrt[3]{(x^{2}+1)^{2}}.$$

 $(a-b)x\},$

both nota-

3. Reduce to their simplest form

$$\sqrt{12}, \sqrt{8}, \sqrt{50}, \sqrt[3]{16}, 4\sqrt[3]{250}, \sqrt{\frac{1}{2}}, \sqrt[3]{\frac{1}{4}}, \sqrt{\frac{8}{27}}, 5\sqrt[3]{(-820)}, \\ \sqrt[4]{(1-\frac{1}{81})}, \sqrt{a^3}, \sqrt{(a^3b^7)}, \sqrt[3]{a^5}, \frac{8\frac{1}{3}}{\sqrt[3]}(54x^9), \sqrt[4]{(x^5y^7z^9)}, \\ \sqrt{\{a^3(1-x^2)\}}, \sqrt[3]{\{a^2(a^2-1)^4\}}, \sqrt{(ab)}, \sqrt[n]{a^{n+1}}, \sqrt[n]{a^{m+n}}, \\ \sqrt[n]{a^{2n+8}}, \sqrt[n]{a^{8m-2}}, \sqrt{(a^2x+a^3)}, \sqrt[3]{(a^3+2a^4x+a^5x^2)}, \\ \sqrt{\{(x-1)(x^2-1)\}}, \sqrt[3]{\{(a^2+2ax+x^2)(a^3+x^3)\}}, \\ \sqrt[4]{\{(x^2-a^2)^2(x-a\}}, \sqrt{(4x^3-8x^2+4x)}, \\ \sqrt{(8x^2-16x+8)}, \sqrt[3]{\{(x^2-2+x^2)(x^4-2x^2+1)\}}, \\ \sqrt{(\frac{2x-2+2x^{-1}}{x+2+x^{-1}})} \sqrt{\frac{8x^3-6x^2+3x}{27x^2+18x+3}} \sqrt{\frac{(a^2-ab)^2+4a^3b}{a-b}}$$

4. Compare the tollowing quantities by reducing them to the same surd index:

5. Reduce to simple surds with lowest integral surd index

$$\begin{array}{l} \sqrt{(\sqrt[3]{a})}, \ \sqrt[3]{(\sqrt[4]{b})}, \ \sqrt[3]{(\sqrt[4]{c})}, \ \sqrt[3]{(\sqrt[4]{x^3})}, \ \sqrt[4]{(\sqrt[3]{x^2})}, \ \sqrt[5]{(\sqrt[3]{x^{10}})}, \\ \sqrt[3]{(\sqrt[4]{x^{15}})}, \ \sqrt[3]{(\sqrt[4]{2})}, \ \sqrt{(\sqrt[3]{81})}, \ \sqrt[4]{(\sqrt[3]{81})}, \ \sqrt[4]{(a\sqrt{a})}, \\ \sqrt[3]{(a\sqrt{a})}, \ \sqrt[4]{(x\sqrt[3]{x})}, \ \sqrt[3]{(x^2 \sqrt[4]{x})}, \ \sqrt[3]{(5\sqrt{5})}, \ \sqrt[4]{(3\sqrt[3]{3})}, \\ \sqrt[4]{(3\sqrt[3]{3})}, \ \sqrt[6]{(x\sqrt[5]{x})}, \ \sqrt[7]{(x\sqrt[3]{x^{10}})}, \ \sqrt[4]{(x\sqrt[4]{x})}, \ x\sqrt{(x^{-1}\sqrt{x^{-1}})}, \\ \sqrt[4]{(y\sqrt[4]{x^{10}})}, \ \sqrt[4]{(y\sqrt[4]{x^{10}})}, \ \sqrt[4]{(x\sqrt[4]{x^{10}})}, \ \sqrt[4]{(x\sqrt[4]{x^{$$

6. In the following quantities, combine the terms involving the same radical;

$$3\sqrt{2+5}\sqrt{2-7}\sqrt{2}$$
; $\sqrt{8}-\sqrt{2}$; $\sqrt[3]{16+3}\sqrt[3]{2}$; $\sqrt[3]{16}+\sqrt{2}$; $a\sqrt{x}-\sqrt{x}$; $a\sqrt[3]{x}-b\sqrt[3]{x}$; $8\sqrt{a+5}\sqrt{x}-7\sqrt{a}+\sqrt{(4a)}-3\sqrt{(4x)}+4\sqrt{(9x)}$; $\sqrt{x+3}\sqrt{(2x)}-2\sqrt{(8x)}+\sqrt{(4x)}-\sqrt{(8x)}+\sqrt{(12x)}$;

ind the

$$7x - 3\sqrt{x + 5}\sqrt[3]{x - 2} \sqrt[4]{x^2 + 6}\sqrt{x^2};$$

$$4\sqrt{(a^2x) + 2\sqrt{(b^2x)} - 3\sqrt{\{(a+b)^2x\}};}$$

$$\sqrt{\{(a-b)^2x\} + \sqrt{\{(a+b)^2x\}} - \sqrt{(a^2x) + \sqrt{\{(1-a)^2x\}} - \sqrt{x};}$$

$$\sqrt{(a-b) + \sqrt{(16a - 16b)} + \sqrt{(ax^2 - bx^2)} - \sqrt{\{9(a-b)\}};$$

$$\sqrt{(a^3 + a^2b) - \sqrt{(b^3 + ab^2)};}$$

$$\sqrt{(a^3 + 2a^2b + ab^2) - \sqrt{(a^3 - 2a^2b + ab^2)} - \sqrt{(4ab^2)}.$$

7. In the following quantities, perform, as far as possible, the indicated multiplications and divisions, expressing the results in their simplest forms:

$$\sqrt{2.\sqrt{6}}; \sqrt{3.\sqrt{12}}; \sqrt{14.\sqrt{35.\sqrt{10}}; \sqrt{a.\sqrt{(3a)}};$$

$$\sqrt{c.\sqrt{(12c)}}; \sqrt{(6x).\sqrt{(8x)}}; \sqrt{y^3.\sqrt{y^3}}; \sqrt[3]{y^5.\sqrt[3]{y^7}};$$

$$\sqrt[3]{a.\sqrt[3]{a^2.\sqrt{b}}; \sqrt{a.\sqrt{\frac{x}{a}}}}; \sqrt{a.\sqrt{\frac{a}{a}}}; \sqrt{a.\sqrt{\frac{5c}{6a}}};$$

$$\sqrt[3]{a^{n+1}.\sqrt{a^{n+1}}}; \sqrt[3]{b^{n+1}.\sqrt[3]{b^{2n+1}}}; \sqrt{12} \div \sqrt{3}; \sqrt{(6x)} \div \sqrt{(2x)};$$

$$a \div \sqrt[3]{a}; a^2 \div \sqrt[4]{a^3}; a \div \sqrt[n]{a^{n-1}}; a^p \div \sqrt[n]{a^{n-m}};$$

$$(a+x) \div \sqrt{(a+x)}; (a^2-x^2) \div \sqrt{(a-x)}; (x^2-1) \div \sqrt[3]{(x+1)^2};$$

$$(3\sqrt{8}-5\sqrt{2}+\sqrt{18}+\sqrt{32}+\sqrt{72}-2\sqrt{50}).\sqrt{2};$$

$$(7\sqrt{2}-5\sqrt{6}-3\sqrt{8}+4\sqrt{20})\sqrt{18}; (\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3}) \cdot (\sqrt{2}+1)(\sqrt{6}-\sqrt{3}); (3-\sqrt{2})(2+3\sqrt{2});$$

$$(5\sqrt{3}+\sqrt{6})(5\sqrt{2}-2); (\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b});$$

$$(a\sqrt{b}+b\sqrt{a})(b\sqrt{a}-a\sqrt{b});$$

$$(\sqrt{(x+1)}+\sqrt{(x-1)}) \{\sqrt{(x+1)}-\sqrt{(x-1)}\};$$

$$\{\sqrt{(3a-b)}+\sqrt{(3b-a)}\} \{\sqrt{(3a-b)}-\sqrt{(3b-a)}\};$$

$$\sqrt{(a+\sqrt{b}).\sqrt{(a-\sqrt{b})}; \sqrt{(\sqrt{x}+\sqrt{y}).\sqrt{(\sqrt{x}-\sqrt{y})}; }$$

$$\sqrt{(4+\sqrt{b}).\sqrt{(a-\sqrt{b})}; \sqrt{(x+\sqrt{x}-\sqrt{y})}; }$$

$$\sqrt{(4+\sqrt{b}).\sqrt{(a^2-x^2)}}.\sqrt{(4a-\sqrt{a^2-x^2})};$$

$$\sqrt[3]{a\sqrt{a}-\sqrt{(a^3-x^3)}}.\sqrt[3]{(x^3-x^3)+a\sqrt{a}};$$

 $a^2 + 4a^3b$

 $\frac{3}{(-320)}$

 $/(x^5y^7z^9).$

 $, a^{m+n}$

c²),

m to the

 $\sqrt[3]{22}$; $/b: \sqrt[8]{c}$;

~

ndex

Į³∕210),

e)**,**

3)**,** 1),

 $\sqrt{(x^2\sqrt{x^3})}$

lving the

$$\frac{\sqrt[3]{8+3\sqrt{7}}}{\sqrt[3]{8-3\sqrt{7}}}; (\sqrt{a+\sqrt{b}})^{2}; (\sqrt{a+\sqrt{b}})^{3}; (a-c\sqrt{x})^{2}; (\sqrt{x+\sqrt{x^{-1}}})^{2}; (a+b-x)-\sqrt{(a-b+x)})^{2}; (a+\sqrt{(1-a^{2})})^{2}; (\sqrt{(a+b-x)}-\sqrt{(a-b+x)})^{2}; (\sqrt{(a+x)(x-b)})^{2}; (\sqrt{(a+x)(x+b)})^{2}; (\sqrt{(a+x)(x+b)})^{2}; (\sqrt{(a+x)(x+b)})^{2}; (\sqrt{(a+x)(x+b)})^{2}; (\sqrt{(x^{2}-1)}) \cdot \sqrt{(x^{2}-1)}; (\sqrt{(x^{2}-1)}) \cdot \sqrt{(x^{2}-1)}; (\sqrt{(x^{2}-1)})^{2}; (\sqrt{(x^{2}-1)})^{$$

8. Find rationalizing multipliers for the following expressions, and also the products of multiplication by these:

$$a+\sqrt{b}, \ \sqrt{a}+b\sqrt{c}, \ a\sqrt{b}-b\sqrt{a}, \ a+\sqrt{(a^2-x^2)},$$

$$\sqrt{(a-x)}-\sqrt{(a+x)}, \ \sqrt{(a^2+\sqrt{c})}+\sqrt{(a^2-\sqrt{c})},$$

$$\sqrt{\{8+\sqrt{(24+\sqrt{5})}\}}-\sqrt{\{8+\sqrt{(24-\sqrt{5})}\}}, \ \sqrt{a}+\sqrt{b}+\sqrt{c},$$

$$3+\sqrt{2}+\sqrt{7}, \ \sqrt{6}+\sqrt{5}-\sqrt{3}-\sqrt{2}, \ \sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d},$$

$$\sqrt{(1+a)}-\sqrt{(1-a)}+\sqrt{(1+b)}-\sqrt{(1-c)}, \ \sqrt[3]{a}+\sqrt[3]{c},$$

$$\sqrt[3]{a^2}-\sqrt[3]{c^2}, \ \sqrt[4]{a}+\sqrt[4]{c}, \ \sqrt{a}-\sqrt[3]{b}, \ \sqrt[4]{a}+\sqrt{a}, \ \sqrt{x}+\sqrt[4]{y^3},$$

$$\sqrt{x}+1+\sqrt{x^{-1}}, \ \sqrt{(ab^{-1})}-\sqrt{(a^{-1}b)}, \ \sqrt[3]{2}+\sqrt[3]{3}-\sqrt[3]{5},$$

$$\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}, \ a+\sqrt{b}+\sqrt[3]{c},$$

9. Ing, ar

) 3 ;

$$\left\{\left(\frac{8b}{2a}\right)\right\}^2$$

 $(2+b^2);$

 $2\sqrt[3]{(ab)}$.

ressions.

lc. d,

4/1/3,

5,

9. Rationalize the divisors and the denominators in the following, and reduce the results to their simplest form:

$$1 \div (2 - \sqrt{3}), \ 3 \div (3 + \sqrt{6}), \ 5 \div (\sqrt{2} + \sqrt{7}), \ (\sqrt{3} + \sqrt{2}) \div (\sqrt{3} - \sqrt{2}), \ (7\sqrt{5} + 5\sqrt{7}) \div (\sqrt{5} + \sqrt{7}), \ a \div (\sqrt{a} + a), \ (x - a) \div (\sqrt{x} - \sqrt{a}), \ (a^2 + ab + b^2) \div \{a + \sqrt{(ab)} + b\}, \ (x + a) \div (\sqrt[3]{x} + \sqrt[3]{a}), \ a \frac{\sqrt{x} + b\sqrt{y}}{\sqrt{x} - e\sqrt{y}}, \ \frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3} - \sqrt{5}}, \ \frac{1 + 3\sqrt{2} - 2\sqrt{3}}{\sqrt{2} + \sqrt{3} + \sqrt{6}}, \ \frac{\sqrt{6} - \sqrt{5} - \sqrt{3} + \sqrt{2}}{\sqrt{2} + \sqrt{3} - \sqrt{2}}, \ \frac{2}{\sqrt{(a + 1)} - \sqrt{(a - 1)}}, \ \frac{2c}{a + x + \sqrt{(a^2 + x^2)}}, \ \frac{a + x + \sqrt{(a^2 + x^2)}}{a + x - \sqrt{(a^2 + x^2)}}, \ \frac{\sqrt{(a + x) + \sqrt{(a - c)}}}{a + x - \sqrt{(a^2 + x^2)}}, \ \frac{a\sqrt{(1 - b^2)} + b\sqrt{(1 + a^2)}}{a + x - \sqrt{(a^2 + x^2)}}, \ \frac{a\sqrt{(1 - b^2)} + e\sqrt{(1 - a^2)}}{a\sqrt{(1 - c^2)} + e\sqrt{(1 - a^2)}}, \ \frac{\sqrt{(1 + a)(1 + b)}}{\sqrt{(1 + a)(1 + b)}} + \sqrt{(1 - a)(1 - b)}}, \ \frac{\sqrt{(1 + a)(1 + b)}}{\sqrt{(1 + a)(1 + b)}} + \sqrt{(1 - a)(1 - b)}}, \ \frac{(a - x)\sqrt{(b^2 + y^2) - (b - y)\sqrt{(a^2 + x^2)}}}{(a + x)\sqrt{(b^2 + y^2) + (b + y)\sqrt{(a^2 + x^2)}}}, \ \frac{\sqrt{(1 + a) - \sqrt{(1 - a)} + \sqrt{(1 + b)} + \sqrt{(1 - b)}}}{\sqrt{(1 + a)} + \sqrt{(1 - a)} + \sqrt{(1 + b)} + \sqrt{(1 - b)}}, \ \frac{\sqrt{(x + a)} - \sqrt{(x - a)} - \sqrt{(x + b)} + \sqrt{(x - b)}}{\sqrt{(x + a)} + \sqrt{(x - a)} + \sqrt{(x + b)} + \sqrt{(x - b)}}, \ \frac{\sqrt{a} + \sqrt{b}}{\sqrt{b} + \sqrt{a}}, \ \sqrt{\frac{a + x}{a - x}}, \ \sqrt{\frac{a + x}{a}}, \ \sqrt{\frac{a}{a} - x}, \ \sqrt{\frac{x}{a}}, \ \sqrt{\frac{x}{a}}$$

10. Find the values of the following expressions for n = 1, 2, 3, 4, 5, respectively.

$$\frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{n} - \left(\frac{1-\sqrt{5}}{2} \right)^{n} \right\},$$

$$\frac{1}{2\sqrt{6}} \left\{ \frac{(2+\sqrt{6})^{n+1} - (2+\sqrt{6})}{1+\sqrt{6}} - \frac{(2-\sqrt{6})^{n+1} - (2-\sqrt{6})}{1-\sqrt{6}} \right\}$$

11. Show that

$$\frac{1}{2(x-1)} \big[\{ x + \sqrt{(x^2-1)} \}^{4n \pm 1} + \{ x - \sqrt{(x^2-1)} \}^{4n \pm 1} \mp 2 \big]$$

is a square for n=1, 2, or 3 respectively.

12. Extract the square roots of

$$x+y-2\sqrt{(xy)}, \ a+c+e+2\sqrt{(ac+ce)},$$

$$a+2c+e+2\sqrt{(a+c)(c+e)}, \ 2a+2\sqrt{(a^2-c^2)},$$

$$2\{a^2+b^2-\sqrt{(a^4+a^2b^2+b^4)}\}, \ x-2+x^{-1},$$

$$\sqrt{x}+2+\sqrt{x^{-1}}, \ x+3x^2+x^3+2x\sqrt{x}+2x^2\sqrt{x},$$

$$x^2-xy+\frac{1}{4}y^2+\sqrt{(4x^3y-8x^2y^2+xy^3)}, \ 2x+\sqrt{(3x^2-y^2)},$$

$$5-2\sqrt{6}, \ 10+2\sqrt{21}, \ 9+4\sqrt{5}, \ 4-\sqrt{15}, \ 7+4\sqrt{3},$$

$$12-5\sqrt{6}, \ 70+3\sqrt{451}, \ 4-\sqrt{15},$$

$$9+2\sqrt{6}+4(\sqrt{2}+\sqrt{3}), \ 15.25-5\sqrt{6}.$$

13. Find the value of

$$\frac{(a+b)xy}{ay^{2}+bx^{2}}, \text{ given } x = \frac{a\sqrt{a}}{\sqrt{(a+b)}} \text{ and } y = \frac{b\sqrt{b}}{\sqrt{(a+b)}};$$

$$\sqrt{(x^{2}+y^{2})}, \text{ given } x = \sqrt[3]{(a^{2}c)} \ y = \sqrt[3]{(a^{2}e)};$$

$$\frac{x+\sqrt{(x^{2}+1)}}{x-\sqrt{(x^{2}+1)}}, \text{ given } x = \frac{1}{2} \left\{ \sqrt{\frac{a}{c}} - \sqrt{\frac{c}{a}} \right\}$$

$$\frac{\sqrt{(1+x)-\sqrt{(1-x)}}}{\sqrt{(1+x)+\sqrt{(1-x)}}}, \text{ given } x = \frac{2ab}{a^{2}+b^{2}};$$

$$\frac{2a\sqrt{(1+x^{2})}}{x+\sqrt{(1+x^{2})}}, \text{ given } x = \frac{1}{2} \left\{ \sqrt{\frac{a}{e}} - \sqrt{\frac{e}{a}} \right\}.$$

14.

15

Quantinvolve is frequent that $a = \sqrt{-x}$.

Simp which t

Å. 1

.

1

3. j^2

4. α

6. -

_

_

for n = 1, 2,

 $3x^2 - y^2$),

14. If $\sqrt{(x+a+b)} + \sqrt{(x+c+d)} = \sqrt{(x+a-c)} + \sqrt{(x-b+d)}$, $\therefore b+c=0$.

15. Simplify
$$\frac{\frac{1}{3}(1+\sqrt{5})x-2}{x^2-\frac{1}{2}(1+\sqrt{5})x+1} + \frac{\frac{1}{2}(1-\sqrt{5})x-2}{x^2-\frac{1}{2}(1-\sqrt{5})x+1}$$

COMPLEX QUANTITIES.

Quantities of the form $a+b\sqrt{-1}$ in which neither a nor b involves $\sqrt{-1}$, are called complex quantities. The letter j (or i) is frequently used as the symbol of the ditensive unit $\sqrt{-1}$, so that $a+b\sqrt{-1}$ would be written a+bj. So also $\sqrt{-x}=j\sqrt{x}$, $\sqrt{-x}$. $\sqrt{-y}=j^2\sqrt{(xy)}=-\sqrt{xy}$, and $j^3=-j$

EXERCISE.

Simplify the following, writing j for $\sqrt{-1}$ in any result in which the latter occurs:

- 1. $\sqrt{-4}$, $\sqrt{-86}$, $\sqrt{-81}$, $\sqrt{-8}$, $\sqrt{-12}$, $\sqrt{-72}$, $\sqrt[8]{-8}$, $\sqrt{-5}$, $\sqrt{-6}$, $\sqrt{-6}$, $\sqrt{-8}$, $\sqrt{-8}$, $\sqrt{-8}$, $\sqrt{-8}$, $\sqrt{-8}$.
- 2. $\sqrt{-x}$, $\sqrt{-x^2}$, $\sqrt{-a^3}$, $\sqrt{-a^{2n}}$, $\sqrt{(-a)^2}$, $\sqrt{(-a)^3}$, $\sqrt{(-3ax^3)}$, $\sqrt{-a}$, $\sqrt{a^3}$, $\sqrt{-x^2}$, $\sqrt{-y^3}$, $\sqrt{-a}$, $\sqrt{-1}$, $\sqrt{5}$. $\sqrt{-a}$.
- $3.\ j^2,\ j^3,\ j^4,\ j^5,\ j^9,\ j^{1\,5},\ j^{1\,6},\ j^{1\,7},\ j^{1\,8},\ j^{4n},\ j^{4n+1},\ j^{4n+2},\ j^{4n+3},$
- 4. aj.bj, $j \sqrt{x.j}\sqrt{y}$, 5j, $j^2\sqrt{5}$, $j\sqrt{-a^2}$, $j\sqrt{-a^2}$, $j\sqrt{a.\sqrt{-a}}$.
- 5. $\sqrt{-j^2}$, $\sqrt{-j^3}$, $\sqrt{-j^4}$, $\sqrt{-j^5}$, $\sqrt{-j^{2n}}$, $\sqrt{-j^{4n}}$.
- 6. $\frac{\sqrt{-6}}{\sqrt{3}}$, $\frac{\sqrt{-6}}{\sqrt{-3}}$, $\frac{\sqrt{6}}{\sqrt{-3}}$, $\frac{\sqrt{a}}{\sqrt{-b}}$, $\frac{1}{\sqrt{-b}}$, $\frac{1}{\sqrt{-1}}$, $\frac{a}{\sqrt{-a}}$, $\frac{a^2}{\sqrt{-a^2}}$, $\frac{\sqrt{(-ax)}}{\sqrt{-x}}$, $\frac{-\sqrt{-1}}{\sqrt{-a}}$, $\frac{a^3}{\sqrt[3]{-a^3}}$, $\frac{-c}{\sqrt{-c^3}}$, $\frac{\sqrt{(-a)^{2n+1}}}{\sqrt{(-a)^{2n-1}}}$.

7.
$$\frac{1}{j}$$
, $\frac{1}{j^2}$, $\frac{1}{j^3}$, $\frac{-1}{j}$, $\frac{1}{j^6}$, $\frac{1}{j^{4n+1}}$, $\frac{-1}{j^{4n+1}}$, $\frac{1}{j^{4n+1}}$, $\frac{1}{j^{4n+1}}$, $\frac{x}{j^{4n+1}}$, $\frac{-y}{j\sqrt{-y^2}}$, $\frac{cj^3}{\sqrt{-c^2}}$.

8.
$$\sqrt{(a-b)} \cdot \sqrt{(b-a)}$$
, $\sqrt{(3x-4y)} \cdot \sqrt{(4y-3x)}$, $(3+5j)(7+4j)$, $(8-9j)(8-7j)$, $(7-j\sqrt{5})(7+j\sqrt{10})$, $(\sqrt{3}-j\sqrt{6})(\sqrt{2}-j\sqrt{6})$, $(a+bi)(c+cj)$, $\{a+(a-1)j\}\{a+(a+1)j\}$, $(\sqrt{a+j}\sqrt{b})(\sqrt{a-j}\sqrt{c})$ $(a+bi)(a-bj)$, $(aj+b)(aj-b)$, $(\sqrt{a+j}\sqrt{b})(\sqrt{a-j}\sqrt{b})$, $(a\sqrt{b+cj}\sqrt{x})(a\sqrt{b-cj}\sqrt{x})$, $\sqrt{(1+j)} \cdot \sqrt{(1-j)}$, $\sqrt{(3+4j)} \cdot \sqrt{(3-4j)}$, $\sqrt{(12+5j)} \cdot \sqrt{(12-5j)}$, $(1+j)^2$, $(\sqrt{a-j}\sqrt{b})^2$, $(5-2j\sqrt{6})^2$, $(a+bj)^2+(a-bj)^2$, $(a+bj)^2-(a-bj)^2$, $(a+bj)^2+(aj-b)^2$, $\{\sqrt{(4+3j)}+\sqrt{(1-j)}\}^2$, $\{\sqrt{(3-4j)}-\sqrt{(3+4j)}\}^2$, $\{\sqrt{(1+j)}+\sqrt{(1-j)}\}^2$, $(1+j)^3$, $(1+j)^4$, $(a+bj)^4$, $(a+bj)^3+(a-bj)^3$, $(a+bj)^3-(a-bj)^3$, $(1+j)^4$, $(x+jy)^4+(x-jy)^4$, $(x+jy)^4-(jx+y)^4$, $(1+j\sqrt{5})^4+(1-j\sqrt{5})^4$, $(a+bj)^5+(a-bj)^5$, $(a+bj)^5-(a-bj)^5$, $(a+bj)^5-(a-bj)^5$, $(1+j)^5-(a-bj)^5$, $(1+j\sqrt{3})^6$, $(3-\sqrt{3})^6$, $(3$

 $\left[\frac{1}{8}\left{\sqrt{(30-6\sqrt{5})-1-1/5}\right} + \frac{1}{8}j\left{\sqrt{15}+\sqrt{3}+\sqrt{(10-21/5)}\right}\right]^n$ for all positive integral values of n.

9.
$$\frac{4}{1+j\sqrt{3}}$$
, $\frac{64}{1-j\sqrt{7}}$, $\frac{21}{4|+3j\sqrt{6}}$, $\frac{5}{\sqrt{2+j\sqrt{3}}}$, $\frac{1-20j\sqrt{5}}{7-2j\sqrt{5}}$, $\frac{1-j\sqrt{3}}{1+j\sqrt{3}}$, $\frac{1+j}{1-j}$, $\frac{1+j^3}{1+j}$, $\frac{1-j^3}{1-j}$, $\frac{1-j^3}{(1+j)^3}$, $\frac{1+j^3}{1-j}$, $\frac{x+yj}{x-yj}$, $\frac{a+i\sqrt{x}}{a-j\sqrt{x}}$, $\frac{j\sqrt{a+\sqrt{-b}}}{\sqrt{-a-j\sqrt{b}}}$, $\frac{a-bj}{a/+b}$, $\frac{a+j\sqrt{(1-x^2)}}{a-j\sqrt{(1-x^2)}}$,

V

 $\tilde{(1)}$

 \boldsymbol{x}

1

0. v

. v . v

√

 ν

11. P

eq

tl

20

C

Heno (i

(

$$\frac{\sqrt{(x-y)} - \sqrt{(y-x)}}{\sqrt{(y-x)} + \sqrt{(x-y)}}, \quad \frac{1}{1+j} + \frac{1}{1-j}, \quad \frac{1+j}{1-j} + \frac{1-j}{1+j}, \\
\frac{1}{(1+j)^2} + \frac{1}{(1-j)^2}, \quad \frac{1}{(1+j)^4} - \frac{1}{(1-j)^4}, \quad \frac{x+yj}{a+bj} + \frac{x-yj}{a-bj}, \\
\frac{x+yj}{a+bj} - \frac{x-yj}{a-bj}, \quad \frac{\sqrt{x+j\sqrt{y}}}{\sqrt{x-j\sqrt{y}}} - \frac{\sqrt{y+j\sqrt{x}}}{\sqrt{y-j\sqrt{x}}}, \\
\frac{\sqrt{(1+a)+j\sqrt{(1-a)}}}{\sqrt{(1+a)-j\sqrt{(1-a)}}} - \frac{\sqrt{(1-a)+j\sqrt{(1+a)}}}{\sqrt{(1-a)-j\sqrt{(1+a)}}}, \\
10. \quad \sqrt{(3+4j)+\sqrt{(3-4j)}}, \quad \sqrt{(3+4j)-\sqrt{(3-4j)}}, \\
\sqrt{(4+3j)\pm\sqrt{(4-3j)}}, \quad \sqrt{(1+2j\sqrt{6})\pm\sqrt{(1-2j\sqrt{6})}}, \\
\sqrt{(5+2j\sqrt{6})\pm\sqrt{(5-2j\sqrt{6})}}, \\
\sqrt{(2\sqrt{15+30j})\pm\sqrt{(2\sqrt{15-30j})}}, \\
\sqrt{(3+j\sqrt{105})\pm\sqrt{(1/3-j\sqrt{105})}}, \\
\sqrt{(3+j\sqrt{105})\pm\sqrt{(1/3-j\sqrt{105})}}, \\
\sqrt{(3+j\sqrt{105})\pm\sqrt{(1-3-j\sqrt{105})}}, \\
\sqrt{(3+j\sqrt{105})\pm\sqrt{(3+j\sqrt{105})}}, \\
\sqrt{(3+j\sqrt{105})\pm\sqrt{(3+j\sqrt{105})}}}, \\
\sqrt{(3+j\sqrt{105})\pm\sqrt{(3+j\sqrt{105$$

11. Prove that both $\frac{1}{2}(-1+j\sqrt{3})$ and $\frac{1}{2}(-1-j\sqrt{3})$ satisfy the equation $\frac{x^3-1}{x-1}=0$,

that $(x+wy+w^2z)^3=x^3+y^3+z^3+9(x+wy)(y+wz)(z+wx)$ and that $(x+y+z)(x+wy+w^2z)(x+w^2y+wz)=$ $x^3+y^3+z^3-3xyz$, in which w represents either of the preceding complex quantities.

 $\sqrt{\{a^2+jx\sqrt{(x^2+2a^2)}\}}\pm\sqrt{\{a^2-jx\sqrt{(x^2+2a^2)}\}}$.

Hence, prove that

(i)
$$\{2a-b-c+(b-c)j\sqrt{3}\}^3 = \{2b-c-a+(c-a)j\sqrt{3}\}^3 = \{2c-a-b+(a-b)j\sqrt{3}\}^3$$
;

(ii)
$$u^3 + v^3 + w^3 - 3uvw = (a^3 + b^3 + c^3 - 3abc) x$$

 $(x^3 + y^3 + z^3 - 3xyz)$, if $u = ax + by + cz$, $v = ay + bz + cx$, $w = az + bx + cy$, or if $u = ax + cy + bz$, $v = cx + by + az$, $w = bx + ay + cz$.

(j)(7+4j), $(\sqrt{2}-j\sqrt{6}),$

(-b),

 $(-2j\sqrt{6})^2,$ + $(aj-b)^2,$ $\{2,$

 $\left(\frac{1-j}{\sqrt{2}}\right)^4$,

 $-(1-j\sqrt{2})^{5}$

 $2\sqrt{5}$]

 $\frac{\sqrt{5}}{\sqrt{5}}$,

 $, \quad \frac{x+yj}{x-yj}$

12. Prove that $\frac{1}{4} \left\{ \sqrt{5+1} + j \sqrt{(10-2\sqrt{5})} \right\}$ satisfies the equation x^5+1

$$\frac{x^5+1}{x^{-1}-1}=0.$$

Writing w for the proceeding complex quantity, prove that

$$(7+w+w^2+3w^3)(7-w^4-w^3-3w^2)=71,$$
and $(x+y+z)(x+w^2y-w^3z)(x-w_1^3y-wz)(x-wz+w^4z)$

$$(x+w^4y+w^2z)=x^5+y^5+z^5-5x^3yz+5xy^2z^2.$$

Prove that $\{4a + (b-c)(\sqrt{5}-1) + (b+c)j\sqrt{(10+2\sqrt{5})}\}^5 = \{[(a+b)\{-1+j\sqrt{(\sqrt{5}+2)}\} + (a-b)\{\sqrt{5}+j\sqrt{(\sqrt{5}-2)}\}] \times \sqrt[4]{5} - 4c\}^5.$

SECTION III.—PURE QUADRATICS.

EXAMPLES.

1.
$$\frac{x+3(a-b)}{x-3(a-b)} = \frac{a(3x+9a-7b)}{b(3x-7a+19b)}$$

Apply, if
$$\frac{m}{n} = \frac{p}{q}$$
, $\therefore \frac{m+n}{m-n} = \frac{p+q}{p-q}$;

$$\therefore \frac{x}{8(a-b)} = \frac{3x(a+b) + 9a^2 - 14ab + 9b^2}{3x(a-b) + 9(a^2 - b^2)}.$$

Dividing the denominators by 3(a-b)

$$\therefore x\{+3(a+b)\} = 3x(a-b) + 9a^2 - 14ab + 9b^2,$$

$$x^2 = 9a^2 - 14ab + 9b^2$$

2.
$$\left(\frac{x-2a+4b}{x+4a-2b}\right)^2 = \frac{5x-9a+3b}{5x+3a-9b}$$

Apply, if $\frac{m}{n} = \frac{p}{q}$, $\therefore \frac{n-m}{n} = \frac{q-p}{p}$, and factor the numerator $(x+4a-2b)^2-(x-2a+4b)^2$,

ence of n

í

. 4

3. 1

** /

4. m.

Square : (

Transf

The al

ing radic

o equation

that

 $-w^4z$

numerator

$$\therefore \frac{12(x+a+b)(a-b)}{(x+4a-2b)^2} = \frac{12(a-b)}{5x+3a-9b},$$

$$\therefore \frac{x+a+b}{x+4a-2b} = \frac{x+4a-2b}{5x+3a-9b} = \frac{3(a-b)}{4x-a-7b}, \text{ by taking differ-}$$

ence of numerators and difference of denominators. To the first and third of these fractions, apply if

$$\frac{m}{n} = \frac{p}{q}, \therefore \frac{m}{n-m} = \frac{p}{q-p},$$

$$\therefore \frac{x+a+b}{8(a-b)} = \frac{8(a-b)}{4x-4a-4b},$$

$$\therefore 4\{x^2 - (a+b)^2\} = 9(a-b)^2,$$

$$\therefore x^2 = \frac{1}{4} \{ 4(a+b)^2 \} + 9(a-b)^2 \}.$$

3.
$$\sqrt{\frac{(3x^2-1)+\sqrt{(3-x^2)}}{\sqrt{(3x^2-1)-\sqrt{(3-x^2)}}}} = \frac{a}{b}$$

$$\frac{3x^2 - 1}{3 - x^2} = \frac{a + b}{a - b},$$

$$\therefore \frac{3x^2-1}{3-x^2} = \frac{(a+b)^2}{(a-b)^2},$$

$$\therefore x^{2} = \frac{3(a+b)^{2} + (a-b)^{2}}{(a+b)^{2} + 3(a-b)^{2}} = \frac{x^{2} + ab + b^{2}}{a^{2} - ab + b^{2}}.$$

4.
$$m\sqrt{(1+x)} - n\sqrt{(1-x)} = \sqrt{(m^2 + n^2)}$$
 (1)

Square both members and reduce

$$\therefore (m^2 - n^2)x - 2mn\sqrt{1 - x^2} = 0.$$
 (2)

Transfer the radical term and square both members,

$$\therefore (m^3 - n^2)^2 x^2 = 4m^2 n^2 (1 - x^2)$$
(8)

$$\therefore (m^2 + n^2)^2 x^2 = 4m^2 n^2 \tag{4}$$

$$\therefore \qquad x = \frac{\pm 2mn}{m^2 + n^2}.\tag{4}$$

The above follows the usual mode of solving equations involving radicals, viz., make a radical term the right-hand member gathering all the other terms into the left-hand member, square each

member, repeat, if necessary, until all radicals are rationauzed. This method is convenient but it does not explain the difficulty

that only one of the values of x in (4) satisfies (1) viz. $\frac{+2mn}{m^2+n^2}$

The other value, $\frac{-2mn}{m^2+n^2}$ satisfies the equation

$$m\sqrt{(1+x)} + n\sqrt{(1-x)} = \sqrt{(m^2 + n^2)}.$$

The explanation is simple. Squaring both members of (1) is really equivalent to substituting for (1) the conjoint equation

$$\{ m\mathbf{V}(1+x) - n\mathbf{V}(1-x) - \mathbf{V}(m^2 + n^2) \}$$

$$\{ m\mathbf{V}(1+x) + n\mathbf{V}(1-x) - \mathbf{V}(m^2 + n^2) \} = 0$$
(5)

which reduces to (2) above.

Treating (5) or (2) by transferring and squaring is equivalent to substituting for it, the equation

$$\{ m \sqrt{(1+x)} - n \sqrt{(1-x)} - \sqrt{(m^2 + n^2)} \} \times$$

$$\{ m \sqrt{(1+x)} - n \sqrt{(1-x)} + \sqrt{(m^2 + n^2)} \} \times$$

$$\{ m \sqrt{(1+x)} + n \sqrt{(1-x)} - \sqrt{(m^2 + n^2)} \} \times$$

$$\{ m \sqrt{(1+x)} + n \sqrt{(1-x)} + \sqrt{(m^2 + n^2)} \} = 0$$

$$(6)$$

which reduces to

$$\{(m^2-n^2)x-2mnv(1-x^2)\}\{m^2-n^2)x+2mn\,\sqrt{(1-x^2)}=0 \eqno(7)$$
 which further reduces to (3)

Thus the whole process of solving (1) is equivalent to reducing it to an equation of the type A=0 and then multiplying the member A by rationalizing factors. Thus instead of solving (1) we really solve (6), i.e., a conjoint equation equivalent to four disjunctive equations. (See page 140, Art xl) Now the values given in (4) will satisfy (6), the positive value making the first factor vanish, the negative value making the third factor vanish, while no values can be found that will make either the second or the fourth factor vanish.

for s a value that

(T XLV equi some

F

in (6 poss of x be p any

lowi F

> ishe be 4 R

> > \mathbf{R}

whi

van

the

N

ationauzed.

e difficulty $\frac{+2mn}{m^2+n^2}$

rs of (1) is quation

(5)

equivalent

(6)

$$\} = 0 \qquad (7)$$

to reducing iplying the solving (1) ent to four the values ing the first eter vanish, e second or

Hence, if one of such a set of disjunctive equations is proposed for solution, the conjoint equation must be solved, and if there be a value of x which satisfies the particular equation proposed, that value must be retained and the others rejected.

(This process is the opposite to that given in Arts. XL. and XLV.: there a conjoint equation is solved by resolving it into its equivalent disjunctive equations. The two processes are related somewhat as involution and evolution are).

Further, it should be noticed that just as there are four factors in (6) while there are only two values in (4), it will in general be possible to form more disjunctive equations than there are values of x that satisfy the conjoint equation, and consequently it will be possible to select disjunctive equations that are not satisfied by any value of x, or, in other words, whose solution is impossible.

This will perhaps be better understood by considering the following problem.

Find a number such that if it be increased by 4 and also diminished by 4 the difference of the square-roots of the results shall be 4.

Reduced to an equation this is

$$\sqrt{(x+4)} - \sqrt{(x-4)} = 4$$
 (8)

Rationalizing this becomes

$$\left\{ 4 - \sqrt{(x+4)} + \sqrt{(x-4)} \right\} \left\{ 4 - \sqrt{(x+4)} - \sqrt{(x-4)} \right\} \times \\
 \left\{ 4 + \sqrt{(x+4)} + \sqrt{(x-4)} \right\} \left\{ 4 + \sqrt{(x+4)} - \sqrt{(x-4)} \right\} = 0$$
(9)

which reduces to

$${24-8\sqrt{(x+4)}}$$
 ${24+8\sqrt{(x+4)}}$ =0 *i.e.* 9-(x+4)=0, or x=5.

Now x=5 satisfies (9) because it makes the factor

$$4-\sqrt{(x+4)}-\sqrt{(x-4)}$$

vanish and it is the only finite value of x that does satisfy (9), or, in other words, there are no values of x which will make any of the factors

$$4-\sqrt{(x+4)}+\sqrt{(x-4)}$$
, $4+\sqrt{(x+4)}+\sqrt{(x-4)}$, or $4+\sqrt{(x+4)}-\sqrt{(x-4)}$

vanish. There is, therefore, no number that will satisfy the conditions of the problem.

[It will be found that as x increases, $\sqrt{(x+4)} - \sqrt{(x-4)}$ decreases, hence as 4 is the least value that can be given to x without involving the square-root of a negative, the greatest real value of $\sqrt{(x+4)} - \sqrt{(x-4)}$ is $\sqrt{8}$ which is less than 4. We see by this that our method of solution fails for (8) simply because (8) is impossible].

5.
$$\sqrt{\{(a+x)(b+x)\}} - \sqrt{\{(a-x)(b-x)\}} = \sqrt{\{(a-x)(b+x)\}} - \sqrt{\{(a+x)(b-x)\}}$$
 (1)

Collecting the terms involving $\sqrt{(a+x)}$ and $\sqrt{(a-x)}$ respectively the equation becomes

$$\{\sqrt{(a+x)} - \sqrt{(a-x)}\}\{\sqrt{(b+x)} + \sqrt{(b-x)}\} = 0$$
 (2)

This is satisfied if either

$$\sqrt{(a+x)} - \sqrt{(a-x)} = 0 \tag{3}$$

or
$$\sqrt{(b+x)} + \sqrt{(b-x)} = 0$$
 (4)

The rational form of (3) is (a+x)-(a-x)=0 which is satisfied by x=0 and this also satisfies (3).

The rational form of (4) is (b+x)-(b-x)=0 which requires x=0, but this does not satisfy (4). Hence the second factor of the left-hand member of (2) cannot vanish.

Therefore the only solution of (2) and \therefore of (1) is x = 0, derived from (3).

6.
$$\sqrt[3]{(a-1)x} + \sqrt[3]{(a-x)} = \sqrt[3]{(2a)}$$

Cube by the formula $(u+v)^3 = u^3 + v^3 + 3uv(u+v)$

$$\therefore (a+x)+(a-x)+3\sqrt[3]{2a(a^2-x^2)}=2a.$$

$$2a(a^2-x^2)=0$$

$$\therefore x = \pm a.$$

Both these values belong to the proposed equation.

The

The of this

7.

Assu

Also

Mult

Agai in (3)

Addi

• • •

· · a

The rationalizing factors of

$$\sqrt[3]{(a+x)} + \sqrt[3]{(a-x)} - \sqrt[3]{(2a)} = 0$$
 are
$$\sqrt[3]{(a+x)} + \omega \sqrt[3]{(a-x)} - \omega^2 \sqrt[3]{(2a)},$$
 and
$$\sqrt{(a+x)} + \omega^2 \sqrt[3]{(a-x)} - \omega \sqrt[3]{(2a)}.$$
 See page 257.

The remarks on Ex. 4, will apply mutatis mutandis to equations of this type.

7.
$$\frac{\sqrt[3]{(a+x)^2 + \sqrt[3]{(a^2 - x^2)} + \sqrt[3]{(a-x)^2}}}{\sqrt[3]{(a+x)^2 - \sqrt[3]{(a^2 - x^2)} + \sqrt[3]{(a-x)^2}}} = c.$$
 (1)

Assume $\sqrt[8]{(a+x)} = u$ and $\sqrt[8]{(a-x)} = v$

$$u^3 + v^3 = 2a$$
 and $u^3 - v^3 = 2x$,

and
$$\therefore \frac{u^3 - v^3}{u^3 + v^3} = \frac{x}{a}$$
 (2)

Also (1) becomes

$$\frac{u^2 + uv + v^2}{u^2 - uv + v^2} = \sigma \tag{3}$$

Multiply both members by $\frac{u-v}{u+v}$

$$\therefore \frac{u^3 - v^3}{u^3 + v^3} = c \frac{u - v}{u + v}, \therefore \text{ by (2)} \quad \frac{\boldsymbol{x}}{a} = c \frac{u - v}{u + v} \tag{4}$$

Again adding and subtracting denominators and numerators in (3)

$$\frac{u^2 + |v^2|}{uv} = \frac{c+1}{c-1}.$$

Adding and subtracting 2 (denominators) and numerators in this

$$\frac{u^2 - 2uv + v^2}{u^2 + 2uv + v^2} = \frac{3 - c}{3c - 1}, \text{ or } \left(\frac{u - v}{u + v}\right)^2 = \frac{3 - c}{3c - 1}.$$

$$\therefore$$
 substituting by (4), $\frac{x^2}{a^2} = c^2 \frac{3-c}{3c-1}$.

$$\therefore x = ac \sqrt{\frac{3-c}{3c-1}}$$

e con-

(x-4)

to x

Ve see

Ve see

ıs**e** (8)

(1)

espec-

(2)

(3)

(4)tisfied

quires

tor of

erived

2a.

8.
$$\{4/(x+a)+4/(x-a)\}^3\{4/(x+a)-4/(x-a)\}=2c$$
 (1)

Assume u = 4/(x+a) and v = 4/(x-a), and (1) becomes

$$(u+v)^3(u-v) = 2c \text{ or } (u+v)^2(u^2-v^2) = 2c$$
 (2)

Also
$$u^4 - v^4 = 2a$$
 or $(u^2 + v^2)(u^3 - v^2) = 2a$ (3)

and
$$u^4 + v^4 = 2x$$
. (4)

From (2) and (3),
$$(u-v)^2(u^2-v^2)=4a-2c$$
 (5)

$$(2) \times (5), (u^2 - v^2)^2 (u^2 - v^2)^2 \text{ or } (u^2 - v^2)^4 = 4c(2a - c)$$
 (6)

Also
$$(3)^2 + (6)$$
,

$$\{(u^2+v^2)^2+(u^2-v^2)^2\}(u^2-v^2)^2=4(a^2+2ac-c^2)$$
 or $(u^4+v^4)(u^2-v^2)^2=2(a^2+2ac-c^2)$

Substituting by (4) and (6)

$$2x\sqrt{(2ac-c^2)} = a^2 + 2ac - c^2$$
.

EXERCISE.

1.
$$(x+a+b)(x-a+b)+(x+a-b)(x-a-b)=0$$
.

2.
$$(a+bx)(b-ax)+(b+cx)(c-bx)+(c+ax)(a-cx)=0$$
.

3.
$$(a+bx)(ax-b)+(b+cx)(bx-c)+(c+ax)(cx-a)$$

 $=\frac{1}{2}(a^2+b^2+c^2).$

4.
$$(a+x)(b-x)+(1+ax)(1-bx)=(a+b)(1+x^2)$$
.

5.
$$(a+x)(b+x)(c-x)+(a+x)(b-x)(c+x)+(a-x)(b+x)(c+x)$$

 $+(a-x)(b-x)(c+x)+(a-x)(b+x)(c-x)+$
 $(a+x)(b-x)(c-x)=5abc.$

$$\begin{aligned} & 6. \ \ (a+x)(b+x)(c+x) + (a+x)(b+x)(c-x) + (a\div x)(b-x)(c+x) \\ & + (a-x)(b+x)(c+x) + (a+x)(b-x)(c-x) + (a-x)(b+x)(c-x) \\ & + (a-x)(b-x)(c+x) + (a-x)(b-x)(e-x) = 8x^2 \end{aligned}$$

7.
$$(a+5b+x)(5a+b+x) = 8(a+b+x)^2$$
.

8.
$$(a+17b+x)(17a+b+x)=9(a+b+x)^2$$
.

9.
$$(9a-7b+8x)(9b-7a+8x) = (8a+3b+x)^2$$
.

10.

12.

14.

16.

18.

20.

22. 23.

25.

26.

27.

29.

30.

31.

32.

38

²)

$$-x)(c+x)$$

$$-x)(c+x)$$

$$+x)(c-x)$$

10.
$$\frac{ab}{a^2 - b^2 x^2} + \frac{cd}{c^2 - d^2 x^2} = 0.$$
 11. $\frac{x - a}{x + 1} + \frac{x + a}{x - 1} = 2c.$

12.
$$\frac{a+x}{a-x} = \frac{x+b}{x-b}$$
. 13. $\frac{ax+b}{a+bx} = \frac{cx+d}{c+dx}$

14.
$$\frac{a-x}{1-ax} = \frac{1-bx}{b-x}$$
. 15. $\frac{a-x}{1-ax} = \frac{b-x}{1-bx}$

16.
$$\frac{x+a+2b}{x+a-2b} = \frac{b-2a+2x}{b+2a-2x}$$
. 17. $\frac{a+4b+x}{a-4b+x} = \frac{3b-a+x}{3b+a-x}$.

18.
$$\frac{x+5a+b}{x-3a+b} = \frac{x-a+b}{a-x+3b}$$
. 19. $\frac{a-7b+x}{7a-b-x} = \frac{a+5b+x}{5a+b+x}$.

20.
$$\frac{3a-b-x}{a-3b+x} = \frac{5b-3a+x}{5a-3b+x}.$$
 21.
$$\frac{3a-2b+3x}{a-2b+x} = \frac{x-a+2b}{3x-3a+2b}.$$

22.
$$\frac{3a-2b+3x}{a-2b+x} = \frac{x-7a+8b}{3x-5a+4b}.$$

23.
$$\frac{5a-6b+x}{a+x} = \frac{3a-5b+3x}{a+b+x}. \quad 24. \quad \frac{a+b-x}{3a-b-3x} = \frac{3(a-b+x)}{a-5b+x}.$$

25.
$$\frac{7a+b-x}{5a+3b-3x} = \frac{3(a-b+x)}{a-17b+x}$$

26.
$$\frac{5a-b+x}{2(a+2b-x)} = \frac{2(2a-b+x)}{a+11b-x}$$

27.
$$\frac{7a-b+x}{7b-a+x} = \frac{a(a+5b+x)}{b(5a+b+x)}.$$
 28.
$$\frac{x+a-b}{x-a+b} = \frac{a(x+a+5b)}{b(x+5a+b)}.$$

29.
$$\left(\frac{5a-3b+x}{5b-3a+x}\right)^2 = \frac{7a-9b+3x}{7b-9a+3x}$$

30.
$$\left(\frac{a+5b+x}{5a+b+x}\right)^2 = \frac{a+17b+x}{17a+b+x}$$

31.
$$\left(\frac{7a-b+x}{7b-a+x}\right)^2 = \frac{17a+b-x}{17b+a-x}$$

32.
$$\frac{17a+b-x}{a+17b-x} = \frac{a^2(a+17b+x)}{b^2(17a+b+x)}$$

83.
$$\frac{(x+7a+b)(x-a+b)}{(5x+3a-11b)(x-a+17b)} = \frac{x-5a+b}{5x+7a-59b}.$$

84.
$$\frac{(1+3x+5x^2)(x^2+3x+5)}{(1+2x+3x^2)(x^2+2x+3)} = \frac{9}{4}$$

85.
$$\frac{\sqrt{(1+x^2)} + \sqrt{(1-x^2)}}{\sqrt{(1+x^2)} - \sqrt{(1-x^2)}} = \frac{a}{b}$$

86.
$$\frac{\sqrt[3]{(1+x^2)} + \sqrt[3]{(1-x^2)}}{\sqrt[3]{(1+x^2)} - \sqrt[3]{(1-x^2)}} = \frac{a}{b}$$

37.
$$\frac{\sqrt[4]{(1+x^2)} + \sqrt[4]{(1-x^2)}}{\sqrt[4]{(1+x^2)} - \sqrt[4]{(1-x^2)}} = \frac{a}{b}$$

38.
$$\frac{\sqrt[5]{(1+x^2)} + \sqrt[5]{(1-x^2)}}{\sqrt[5]{(1+x^2)} - \sqrt[5]{(1-x^2)}} = \frac{a}{b}$$

$$\mathbf{39.} \quad \frac{\sqrt[6]{(1+x^2)} + \sqrt[6]{(x^2-1)}}{\sqrt[6]{(1+x^2)} - \sqrt[6]{(x^2-1)}} = \frac{a}{b}.$$

40.
$$\frac{\sqrt[n]{(x^2+1)} + \sqrt[n]{(x^2-1)}}{\sqrt[n]{(x^2+1)} - \sqrt[n]{(x^2-1)}} = \frac{a}{b}$$

41.
$$\sqrt{(4a+b-4x)-2\sqrt{(a+b-2x)}} = \sqrt{b}$$
.

42.
$$\sqrt{(3a-2b+2x)} - \sqrt{(3a-2b-2x)} = 2\sqrt{a}$$
.

43.
$$\sqrt{(2a-b+2x)} - \sqrt{(10a-9b-6x)} = 4\sqrt{(a-b)}$$
.

44.
$$\sqrt{(3a-4b+5x)} + \sqrt{(x-a)} = 2\sqrt{(x+a)}$$
.

45.
$$\sqrt{(3a-4b+5x)}+\sqrt{(x-a)}=2\sqrt{(2x-2b)}$$
.

46.
$$\sqrt{(5x-3a+4b)}+\sqrt{(5x-3a-4b)}=2\sqrt{(x+a)}$$
:

47.
$$\sqrt{(2a+b+2x)} + \sqrt{(10a+9b-6x)} = 2\sqrt{(2a+b-2x)}$$
.

48.
$$2\sqrt{(2a+b+2x)} + \sqrt{(10a+b-6x)} = \sqrt{(10a+9b-6x)}$$
.

49.
$$\sqrt{(2a-13b+14x)} + \sqrt{(3(b-2a+2x))} = 2\sqrt{(2a-b+2x)}$$

50.
$$\sqrt{3(7a+b+x)} - \sqrt{(a+7b-x)} = 2\sqrt{7a+b-x}$$
.

51.
$$\sqrt{\{(a+x)(x+b)\}} + \sqrt{\{(a-x)(x-b)\}} = 2\sqrt{(ax)}$$
.

52.
$$\mathbf{v}'\{(a+x)(x+b)\} - \mathbf{v}'\{(a-x)(x-b)\} = 2\mathbf{v}'(bx)$$
.

53.
$$\sqrt{(ax+x^2)} - \sqrt{(ax-x^2)} = \sqrt{(2ax-a^2)}$$
.

54. V(c

55.
$$1+$$

56.
$$\frac{x+}{a}$$

54.
$$\sqrt{(ax-x^2)}+\sqrt{(ax+x^2)}=\sqrt{(2ax+a^2)}$$
.

55.
$$\frac{1}{1+\sqrt{(1-x)}} + \frac{1}{1-\sqrt{(1-x)}} = \frac{2}{9}x$$
.

56.
$$\frac{x+\sqrt{(ax)}}{a-\sqrt{(ax)}} + \frac{a+\sqrt{(ax)}}{x-\sqrt{(ax)}} = \frac{x-a}{a}$$

57.
$$\frac{\sqrt{\{(a+x)(x+b)\}} + \sqrt{\{(a-x)(x-b)\}}}{\sqrt{\{(a+x)(x+b)\}} - \sqrt{\{(a-x)(x-b)\}}} = \sqrt{\frac{a}{b}}.$$

58.
$$\sqrt{\frac{3a-2b+2x}{3a-2b-2x}} = \frac{\{\sqrt{a}+\sqrt{(2a-2b)}\}^2}{2b-a}.$$

59.
$$\sqrt[3]{(a+x)} + \sqrt[3]{(a-x)} = 2\sqrt[3]{a}$$
.

60.
$$t^{3}/(a+x)^{2}-t^{3}/(a^{2}-x^{2})+t^{3}/(a-x)^{2}=t^{3}/a^{2}$$
.

$$61. \quad \frac{\sqrt[3]{(1+x)^2 + \sqrt[3]{(1-x^2) + \sqrt[3]{(1-x)^2}}}{\sqrt[3]{(1+x)^2 - \sqrt[3]{(1-x^2) + \sqrt[3]{(1-x)^3}}} = 2\frac{1}{3}.$$

62.
$$\eta^3/(1+x)^2 + \eta^3/(1-x)^2 = 2\frac{1}{2}\eta^3/(1-x^2)$$
.

63.
$$\sqrt[3]{(3+x)} + \sqrt[3]{(3-x)} = \sqrt[3]{6}$$
.

+2x)

64.
$$t^{3}/(1+x)^{2}+t^{3}/(1-x)^{2}=5\{t^{3}/(1+x)+t^{3}/(1-x)\}^{2}$$
.

65.
$$t^{3}/(14+x)^{2}-t^{3}/(196-x^{2})+t^{3}/(14-x)^{2}=7$$
.

66.
$$\{\sqrt[3]{(9+x)} + \sqrt[3]{(9-x)}\}\sqrt[3]{(81-x^2)} = 12.$$

67.
$$\{t^3/(14+x)^2-t^3/(14-x)^2\}\{t^3/(14+x)-t^3/(14-x)\}=16.$$

68.
$$\{\sqrt[3]{(57+x)^2} + \sqrt[3]{(57-x)^2}\}\{\sqrt[3]{(57-x)} + \sqrt[3]{(57+x)}\} = 100.$$

69.
$$5\{4\sqrt{(41+x)}+4\sqrt{(41-x)}\}^2 = 8\{\sqrt{(41+x)}+\sqrt{(41-x)}\}.$$

70.
$$\{4/(x+5)+4/(x-5)\}^3\{4/(x+5)-4/(x-5)\}=2$$
.

71.
$$\{4\sqrt{(x+1)} + 4\sqrt{(x-1)}\} \{\sqrt{(x+1)} + \sqrt{(x-1)}\} = 26\{4\sqrt{(x+1)} - 4\sqrt{(x-1)}\}.$$

72.
$$\sqrt[3]{\frac{1+x}{1-x}} + \sqrt[3]{\frac{-x}{1+x}} = a$$
. $[y+y^{-1} = a]$.

73.
$$2\{\sqrt[3]{(1+x)^2} + \sqrt[3]{(1-x^2)}\} = (c^2+1)\{\sqrt[3]{(1+x)} + \sqrt[3]{(1-x)}\}^2$$
.

74.
$$\sqrt[3]{(a+x)} + \sqrt[3]{(a-x)} = \sqrt[3]{c}$$
.

75.
$$\{1^{8}/(a+x)+1^{8}/(a-x)\}1^{8}/(a^2-x^2)=c$$
.

76.
$$\sqrt[3]{(a+x)^2} = \sqrt[3]{(a^2-x^2)} + \sqrt[3]{(a-x)^2} = \sqrt[3]{c^2}$$
.

77.
$$\{\sqrt[3]{(a+x)^2} - \sqrt[3]{(a-x)^2}\}\{\sqrt[3]{(a+x)} - \sqrt[3]{(a-x)}\} = c.$$

78.
$$\{y^{3}/(a+x)^{2}+y^{3}/(a-x)^{2}\}\{y^{3}/(a+x)+y^{3}/(a-x)\}=c.$$

79.
$$(a+x)\sqrt[3]{(a-x)-(a-x)}\sqrt[3]{(a+x)}=c\{\sqrt[3]{(a+x)-\sqrt[3]{(a-x)}}\}$$
.

80.
$$(a+x)\sqrt[3]{(a+x)} - (a-x)\sqrt[3]{(a-x)} = c\left(\sqrt[3]{(a+x)} - \sqrt[3]{(a-x)}\right)$$
.

81.
$$\{\sqrt[3]{(a+x)^2} - \sqrt[3]{(a^2-x^2)} + \sqrt[3]{(a-x)^2}\}^2 = c\{\sqrt[3]{(a+x)} + \sqrt[3]{(a-x)}\}.$$

82.
$$\{ \frac{4}{3}(a+x) + \frac{4}{3}(a-x) \}^2 = (c+1) \{ \sqrt{(a+x)} + \sqrt{(a-x)} \}$$

83.
$$\{4/(x+a) - 4/(x-a)\} \{\sqrt{(x+a)} + \sqrt{(x-a)}\}^2 = c\{4/(x+a) + 4/(x-a)\}.$$

SECTION IV.—QUADRATIC EQUATIONS AND EQUATIONS THAT

EXAMPLES.

1.
$$x^4 + (ab+1)^2 = (a^2 + b^2)(x^2 + 1) + 2(a^2 - b^2)x + 1$$
,

..
$$x^4 + a^2b^2 = (a^2 + b^2)x^2 + 2(a^2 - b^2)x + (a - b)^2$$

$$\therefore x^4 + 2abx^2 + a^2b^2 = (a+b)^2x^3 + 2(a^2 - b^2)x + (a-b)^2$$

:
$$x^2 + ab = \pm \{(a+b)x + (a-b)\},\$$

or
$$x^2 \mp (a+b)x + ab = \pm (a-b)$$
,

$$x^2 \mp (a+b)x + \frac{1}{4}(a+b)^2 = \frac{1}{4}(a-b)^2 \pm (a-b)$$

$$\therefore x + \frac{1}{2}(a+b) = \frac{1}{2} \checkmark \{(a-b)^2 + 4(a-b)\}.$$

2.

Wr

 ${f Th}$ ${f sum}$ ${f Th}$

3.

Ad

4.

S

2.
$$\frac{(a-x)^2\sqrt{(a-x)+(x-b)^2\sqrt{(x-b)}}}{(a-x)\sqrt{(a-x)+(x-b)}\sqrt{(x-b)}} = a-b.$$

Write a-b in the form (a-x)+(x-b) and multiply by the denominator of the left-hand member,

$$(a-x)^{2} \sqrt{(a-x)+(x-b)^{2}} \sqrt{(x-b)} =$$

$$(a-x)^{2} \sqrt{(a-x)+(a-x)(x-b)} \{\sqrt{(a-x)}+\sqrt{(x-b)}\} +$$

$$(x-b)^{2} \sqrt{(x-b)},$$

$$\therefore (a-x)(x-b)\{\sqrt{(a-x)}+\sqrt{(x-b)}\}=0,$$

:.
$$(a-x)=0$$
, or $x-b=0$,

or
$$\sqrt{(a-x)} + \sqrt{(x-b)} = 0$$
.

$$x_1=a, \quad x_2=b.$$

The equation $\sqrt{(a-x)} + \sqrt{(x-b)} = 0$ has no solution for the sum of two positive square-roots, cannot vanish.

The solution $x = \frac{1}{2}(a+b)$ belongs to the equation

$$\checkmark(a-x)-\checkmark(x-b)=0.$$

$$3. \quad \frac{ax+b}{bx-a} = \frac{mx-n}{nx-m}.$$

Add and subtract Numerators and Denominators

$$\frac{(a+b)(x+1)}{(a-b)(x-1)} = \frac{(m+n)(x-1)}{(m-n)(x+1)},$$

$$(\frac{x+1}{x-1})^2 = \frac{(a-b)(m+n)}{(a+b)(m-n)} = s^2 \text{ say,}$$

$$\therefore x_1 = \frac{s+1}{s-1}, \ x_2 = \frac{s-1}{s+1}.$$

4.
$$\sqrt[3]{\frac{a-x}{b+x}} + \sqrt[3]{\frac{b+x}{a-x}} = c$$
.

Square both members, subtract 4 and extract the square-root.

$$\therefore \sqrt[3]{\frac{a-x}{b+x}} - \sqrt[3]{\frac{b+x}{a-x}} = \pm \sqrt{(c^2-4)}$$

c.

3/(a-x). 3/(a-x).

 $-x)\}.$

THAT

-- 6)2

$$\therefore \ \ v^3 \frac{n-x}{b+x} = \frac{1}{2} \{ c \pm \sqrt{(c^2-4)} \} = e \text{ say,}$$

$$\therefore \frac{a-x}{b+x} = e^3 \quad \therefore \quad \frac{2x-(a-b)}{a+b} = \frac{1-e^3}{1+e^3}.$$

$$\therefore x = \frac{1}{2} \left\{ (a-b) + (a+b) \frac{1-e^3}{1+e^3} \right\}.$$

Or thus, cube both members,

$$\therefore \frac{a-x}{b+x} + 3c + \frac{b+x}{a-x} = c^3$$

$$\therefore \frac{(a-x)^2 + (b+x)^2}{2(a-x)(b+x)} = c^3 - 3c$$

$$\therefore \left\{ \frac{(b+x)-(a-x)}{(b+x)+(a-x)} \right\}^2 = \frac{c^3-3c-2}{c^3-3c+2} = \frac{(c+1)^6(c-2)}{(c-1)^2(c+2)}$$

$$\therefore \frac{2x-(a-b)}{a+b} = \frac{c+1}{c-1} \quad \sqrt{\frac{c-2}{c+2}}.$$

(Prove that
$$\frac{1-e^3}{1+e^3} = \frac{c+1}{c-1}$$
 $\sqrt{\frac{c-2}{c+2}}$, if $2e = c \pm \sqrt{(c^2-4)}$.

5.
$$\frac{\sqrt{(a-x)}-\sqrt{(b-x)}}{\sqrt{(a-x)}+\sqrt{(b-x)}} = \frac{\sqrt{\{(a-x)(b-x)\}}}{c}$$
. Rationalize Denom.

$$\therefore \frac{\left\{\sqrt{(a-x)}-\sqrt{(b-x)}\right\}^2}{(a-b)} = \frac{\sqrt{\left\{(a-x)(b-x)\right\}}}{c}$$

or
$$\frac{\{\sqrt{(a-x)}-\sqrt{(b-x)}\}^2}{\sqrt{\{(a-x)(b-x)\}}} = \frac{a-b}{c}$$
, (A)

$$\therefore \left\{ \frac{\sqrt{(a-x)!} - \sqrt{(b-x)}}{\sqrt{(a-x)} + \sqrt{(b-x)}} \right\}^2 = \frac{a-b}{a-b+4c};$$

$$\therefore \frac{\sqrt{\{(a-x)(b-x)\}}}{c} = \sqrt{\frac{a-b}{a-b+4c}}.$$
 (B)

Also from (A),

$$\frac{a+b-2x}{\mathbf{V}\{(a-x)(b-x)\}} = \frac{a-b+2c}{\mathbf{c}},$$

M

6.

Fi meth

T

N ratio junct Such XXV

the only factors to

whic

Multiply (B) and (C) member by member

:
$$a+b-2x=(a-b+2c)$$
 $\sqrt{a-b+4c}$

$$\therefore x = \frac{1}{2} \left\{ a + b - (a - b + 2e) \right\} \left\{ \frac{a - b}{a - b + 4e} \right\}.$$

6.
$$x^4 - 4 = \frac{x^2 + 20}{x^2 - 2}$$
; $x^6 - 2x^4 - 5x^2 - 12 = 0$.

Find the rational linear factors of the left-hand member by the method of Art. XXVII., page 90.

$$\therefore (x-2)(x+2)(x^4+2x^2+3)=0,$$

$$x-2=0$$
, or $x+2=0$, or $x^4+2x^2+3=0$.

The last of these equations may be solved as a quadratic giving

$$x^2 = -1 \pm 2\sqrt{-2}$$
, $\therefore x = \pm 1 \pm \sqrt{-2}$,

••
$$x_1 = 2$$
, $x_2 = -2$, $x_3 = 1 + \sqrt{-2}$, $x_4 = 1 - \sqrt{-2}$, $x_5 = -1 + \sqrt{-2}$, $x_6 = -1 - \sqrt{-2}$.

N.B.—In solving numerical equations of the higher orders, the rational linear factors should always be found and separated as disjunctive equations, before other methods of reduction are applied. Such separation may always be effected by the methods of Arts. XXVII. to XXX., and unless it is done the application of the higher methods may actually fail. Thus, if it be attempted to solve as a cubic the equation,

$$x^3 - 9x - 10 = 0$$

the result is $x = \{5 + \sqrt{-2}\}^{\frac{1}{3}} + \{5 - \sqrt{-2}\}^{\frac{1}{3}}$, which can be reduced only by trial. The left-hand member can however be easily factored by the method of Art. XXVII.. and the equation reduces to

$$(x+2)(x^2-2x-5)=0,$$

which gives x=2 or $1\pm\sqrt{6}$.

Denom.

(A)

(B)

7.
$$(x-2)^7 - x^7 + 2^7 = 0$$
.

Factor, (See No. 20, p. 89), rejecting constant factors,

$$x(x-2)(x^2-2x+4)^2=0$$

$$x = 0$$
, or $x - 2 = 0$, or $x^2 - 2x + 4 = 0$.

The last equation gives $x=1\pm\sqrt{-3}$.

EXERCISE.

Solve the following equations:

1.
$$(x+a+b)^3 = x^3 + a^3 + b^3$$
. 2. $(x+a+b)^5 = x^3 + a^5 + b^3$.

3.
$$(a-b)x^3 + (b-x)a^3 + (x-a)b^3 = 0$$
.

4.
$$(a-b)x^2 + (x-b)a^2 + (x+a)b^2 = 2abx$$
.

5.
$$(x-a)^5 + (a-b)^5 + (b-x)^5 = 0$$
.

6.
$$(x-a)^7 + (a-b)^7 + (b-x)^7 = 0$$
.

7.
$$(a^3-b)x^4+(x^3-a)b$$
. $(a^3-b)x^4=abx(a^2b^2x^2-1)$.

8.
$$(x-a)(x-b)(a-b)+(x-b)(x-c)(b-c)+$$

 $(x-c)(x-a)(c-a)=0.$

9.
$$\frac{x^5-1}{x-1}=0$$
. 10. $\frac{x^{12}-1}{x^4-1}=0$.

11.
$$\frac{x^{16}-1}{x^4-1}=0$$
. 12. $\frac{x^{20}-1}{x^4-1}=0$.

13.
$$x^4 + 5x^3 - 16x^2 + 20x - 16 = 0$$
. (See Art. XXII.)

14.
$$x^4 - 3x^3 + 5x^2 + 6x + 4 = 0$$
.

15.
$$(x-a)^4 + x^4 + a^4 = 0$$
. 16. $2x^3 = (x-6)^2$.

17.
$$x(x-2)^2(x+2) = 2$$
. 18. $(4x^2-17)x+12=0$.

19.
$$x^4 + (ab+1)^2 = (a^2+b^2)(x^2+1) + 2(a^3-b^2)x + 1$$
.

20.
$$x^2(x-169)^2+17x=x^2-3540$$
.

21.

22.

24.

26.

27.

29.

31.

33.

34.

85.

86.

37.

39.

41.

43.

45.

46.

21. $6x(x^2+1)^2+(2x^2+5)^3=150x+1$.

rs,

 $b + b^{8}$.

· O.

22. $2x(x-1)^2+2=(x+1)^2$. 23. $x^4=12x+5$.

24. $x^4 = 12x^3 + 1$. 25. $(x+4)^3 = 3(2x-1)^2$.

26. $\sqrt{(x^2+m^2)}+\sqrt{\{(n-x)^2+m^2\}}=\sqrt{\{(x-\frac{1}{2}n)^2+(\frac{1}{3}n\sqrt{3}-m)\}}$.

27. $\frac{(x+1)^4}{(x^2+1)(x-1)^2} = \frac{m}{n}$ 28. $\frac{(x+1)^5}{x(x^3+1)} = \frac{m}{n}$

 $29. \quad \frac{(x^2+1)(x^3+1)}{(x+1)(x^4+1)} = \frac{m}{n}. \qquad \qquad 30. \quad \frac{(x^2+1)(x^3+1)}{(x^2-1)(x^3-1)} = \frac{m}{n}.$

31. $\frac{(x^2+1)(x^3+1)}{x^2(x+1)} = \frac{m}{n}.$ 32. $\frac{(x^3-1)^2}{x(x^2+1)(x-1)^2} = \frac{m}{n}.$

33. $\frac{x(x+1)^2}{(x^2+1)(x-1)^2} = \frac{n(n-m)}{2m(2m-n)}.$

 $34. \quad \frac{(x^3+1)^3}{x(x^2-1)^2} = \frac{4m^2}{m^2-n^2}.$

85. $\frac{(x-1)(x^2+1)^2}{(x^3-1)(x+1)^2} = \frac{2(m-n)^2}{mn}.$

86. $\frac{x^6-1}{(x+1)(x^5-1)} = \frac{2m}{2m-n}.$

87. $\frac{(x^3-1)(x+1)^3}{(x^3+1)(x-1)^3} = \frac{m+n}{m-n}.$ 88. $\frac{(x+1)(x^4+1)}{(x-1)(x^4-1)} = \frac{m+n}{m-n}.$

39. $x^3 = \frac{ax - b}{bx - a}$. 40. $x^4 = \frac{ax - b}{bx - a}$.

41. $x^5 = \frac{ax - b}{bx - a}$. 42. $x^4 = \frac{ax^2 + bx + c}{a + bx + cx^2}$.

48. $x^2 = (x-1)^2(x^2+1)$. 44. $a^2x^2 = (a-x)^2(a^2-x^2)$.

45. $x^2 = (x-a)^2(x^2-1)$.

46. $a\sqrt{(x^2+1)}-x\sqrt{(x^2+a^2)}=cx$.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

SIM VIM GENTLE OF THE STATE OF

47.
$$t^{3/}(a^3+x^3)+t^{3/}(a^3-x^3)=t^{3/}(a^6-x^6)^2$$
.

48.
$$m(x+m-n)(x-m+7n)^2 = n(x-m+n)(x-17m-n)^2$$
.

49.
$$m^2(x+m+17n)(x-m-5n)^2 = n^2(x+17m+n)(x-5m+n)^2$$

50.
$$m^2(x+m+17n)(x-m+7n)^2 = n^2(x+17m+n)(x+7m-n)^2$$
.

51.
$$\frac{\sqrt{(x-a)} + \sqrt{(x-b)}}{\sqrt{(x-a)} - \sqrt{(x-b)}} = \sqrt{\frac{x-a}{x-b}}$$

52.
$$\frac{\sqrt{(x-a)} + \sqrt{(x-b)}}{\sqrt{(x-a)} - \sqrt{(x-b)}} = \sqrt{\frac{a-x}{x-b}}$$

58.
$$\sqrt{\frac{a-x}{b+x}} - \sqrt{\frac{b+x}{a-x}} = c.$$
 54.
$$\sqrt{\frac{a-x}{b-x}} + \sqrt{\frac{b-x}{a-x}} = c.$$

55.
$$\sqrt[3]{\frac{a-x}{b+x}} - \sqrt[3]{\frac{b+x}{a-x}} = c.$$
 56. $\sqrt[3]{\left(\frac{a-x}{b-x}\right)^2} - \sqrt[3]{\left(\frac{b-x}{a-x}\right)^2} = c.$

57.
$$\sqrt[4]{\frac{a-x}{b+x}} + \sqrt[4]{\frac{b+x}{a-x}} = c$$
. 58. $\sqrt[4]{\frac{a-x}{b-x}} - \sqrt[4]{\frac{b-x}{a-x}} = c$.

59.
$$\sqrt[5]{\frac{a-x}{b+x}} + \sqrt[5]{\frac{b+x}{a-x}} = c.$$
 60. $\sqrt[5]{\frac{a-x}{b-x}} - \sqrt[5]{\frac{b-x}{a-x}} = c.$

61.
$$\sqrt[6]{\frac{a-x}{b+x}} + \sqrt[6]{\frac{b+x}{a-x}} = c$$
. 62. $\sqrt[6]{\frac{a-x}{b-x}} - \sqrt[6]{\frac{b-x}{a-x}} = c$.

63.
$$\frac{\sqrt{(a-x)^3 + \sqrt{(b-x)^3}}}{\sqrt{(a-x) + \sqrt{(b-x)}}} = c.$$

64.
$$\frac{\sqrt{(a-x)^3 + \sqrt{(b-x)^3}}}{\sqrt{(a-x) + \sqrt{(b-x)}}} = c.$$

65.
$$\frac{\sqrt{(a-x)^3 + \sqrt{(b-x)^3}}}{\sqrt{(a-x)} - \sqrt{(b-x)}} = c.$$

66.
$$\frac{\{\sqrt{(a-x)} + \sqrt{(b-x)}\}^3}{\sqrt{(a-x)} - \sqrt{(b-x)}} = c.$$

67.
$$\frac{\sqrt{(a-x)^5 + \sqrt{(x-b)^5}}}{\sqrt{(a-x) + \sqrt{(x-b)}}} = c.$$

UC

8.

Q

O

68.
$$\frac{\sqrt{(a-x)^5 - \sqrt{(x-b)^5}}}{\{\sqrt{(a-x) - \sqrt{(x-b)}}\}^5} = c.$$

 $(m+n)^2$

 $(m-n)^2$

: C.

c.

 $\left|\frac{x}{x}\right|^2 = c.$

69.
$$\frac{\sqrt{(a-x)^5 + \sqrt{(x+b)^5}}}{\sqrt{(a-x)^3 + \sqrt{(x+b)^3}}} = \sqrt{\{(a-x)(x+b)\}}.$$

70.
$$\frac{\sqrt{(a-x)^3 + \sqrt{(x+b)^3}}}{\sqrt{(a-x) + \sqrt{(x+b)}}} = \frac{(a+b)^3}{4\sqrt{(a-x)(x+b)}}.$$

71.
$$\frac{x^3 + (a - x^2)\sqrt{(a - x^2)}}{x + \sqrt{(a - x^2)}} = c.$$

72.
$$\frac{x^3 + (a^2 - x^2)\sqrt{(a^2 - x^2)}}{x + \sqrt{(a^2 - x^2)}} = cx\sqrt{(a^2 - x^2)}.$$

73.
$$\sqrt[3]{(a-x)^2 - \sqrt[3]{(a-x)(x-b)} + \sqrt[3]{(x+b)^2} = \sqrt[3]{(a^2 - ab + b^2)}}$$

74.
$$\frac{b\sqrt{(a-x)+a\sqrt{(x-b)}}}{\sqrt{(a-x)+\sqrt{(x-b)}}} = x.$$

75.
$$\frac{a\sqrt{(a-x)} + b\sqrt{(x-b)}}{\sqrt{(a-x)} + \sqrt{(x-b)}} = x.$$

76.
$$\frac{\sqrt{(x-a)} + \sqrt{(x+a)} - \sqrt{(2a)}}{\sqrt{(x-a)} - \sqrt{(x+a)} + \sqrt{(2a)}} = \sqrt[4]{\frac{x+c}{x-c}}$$

77.
$$\frac{\sqrt{(a-x)+\sqrt{c}}}{\sqrt{(x-b)+\sqrt{c}}} = \sqrt[4]{\frac{a-x}{x-b}}.$$

78.
$$\sqrt[3]{(a-x)^2-\sqrt[3]{\{(a-x)(x+b)\}}+\sqrt[3]{(x+b)^2}}=\sqrt[3]{(a^2-ab+b^2)}.$$

79.
$$\{ \sqrt[3]{(a-x)^2} - \sqrt[3]{[(a-x)(x-b)]} + \sqrt[3]{(x-b^2)^2} \}^2 = (a-b) \{ \sqrt[3]{(a-x)} + \sqrt[3]{(x-b)} \}.$$

80.
$$\{y^3/(a-x)^2+y^3/(b+x)^2\}^2=(a+b)\{y^3/(a-x)+y^3/(b+x)\}.$$

81.
$$\eta^{3/}(a-x) + \eta^{3/}(x-b) = \eta^{3/}c$$
.

82.
$$\sqrt[3]{(a+x)^2 - \sqrt[3]{(a-x)^2}} = \sqrt[3]{(2ex)}$$
.

83.
$$\sqrt[3]{(a-x)^2 + \sqrt[3]{(a-x)(b-x)}} + \sqrt[3]{(b-x)^2} = \sqrt[3]{c^2}$$

84.
$$\sqrt[8]{(a-x)^2 - \sqrt[3]{\{(a-x)(x+b)\}} + \sqrt[8]{(x+b)^2}} = c\{\sqrt[8]{(a-x) + \sqrt[8]{(x+b)}}\}.$$

85.
$$\{x^3/(a-x)+x^3/(x+b)\}x^3/\{(a-x)(x+b)\}=c$$
.

86.
$$\sqrt[3]{(a-x)^2 + \sqrt[3]{(x-b)^2}} = c \{\sqrt[3]{(a-x) + \sqrt[3]{(x-b)}}\}^2$$

87.
$$x+\sqrt[3]{(a^3-x^3)} = \frac{c^3}{x\sqrt[3]{(a^3-x^3)}}$$

88.
$$\frac{a^3}{x^3 - b^3} = \frac{x + \sqrt[3]{(2b^3 - x^3)}}{x - \sqrt[3]{(2b^3 - x^3)}}.$$

89.
$$(a+x)^4 \checkmark (a+x) + (a-x)^4 \checkmark (a-x) = a \{ 4 \checkmark (a+x) + 4 \checkmark (a-x) \}.$$

90.
$$(a+x)^4/(a-x)+(a-x)^4/(a+x)=a\left\{\frac{4}{3}(a+x)+\frac{4}{3}(a-x)\right\}$$
.

91.
$$\frac{4}{2}(26-x)+\frac{4}{2}(x-10)=2$$
.

92.
$$\{4\sqrt{(a-x)} + 4\sqrt{(x-b)}\}^2 = c\{\sqrt{(a-x)} + \sqrt{(x-b)}\}$$
.

93.
$$(a-x)^4 (a-x) + (x-b)^4 (x-b) =$$

$$(a-b)\{\sqrt[4]{(a-x)}+\sqrt[4]{(x-b)}\}.$$

94.
$$\{4/(a-x)+4/(x-b)\}^2\{\sqrt{(a-x)}+\sqrt{(x-b)}\}=c(a+b-2x)$$
.

95.
$$\{4/(a-x)+4/(b-x)\}\{\sqrt{(a-x)}+\sqrt{(b-x)}\}^2 =$$

$$c\{\sqrt[4]{(a-x)} - \sqrt[4]{(b-x)}\}.$$

96.
$$a\sqrt{1+x^2}-x\sqrt{(x^2+a^2)}=e$$
.

97.
$$(a-x)\sqrt[3]{(x-b)+(x-b)}\sqrt[3]{(a-x)} = c\left\{\sqrt[3]{(a-x)+\sqrt[3]{(x-b)}}\right\}^{\frac{1}{2}}$$

98.
$$\{t^3/(a-x)+t^3/(b+x)\}^5 = c\{t^3/(a-x)^2+t^3/(b+x)^2\}$$
.

99.
$$\{\sqrt[3]{(a-x)} + \sqrt[3]{(b+x)}\}^5 = c\sqrt[3]{\{(x-x)(b+x)\}}$$
.

100.
$$\sqrt[3]{(a-x)^2 - \sqrt[3]{(b-x)^2}} = c\sqrt[3]{(a+b-2x)}$$
.

101.
$$\frac{4}{3}(a-x) + \frac{4}{3}(x-b) = \frac{4}{3}c$$
.

102.
$$\sqrt[5]{(a-x)} + \sqrt[5]{(x-b)} = \sqrt[5]{c}$$
.

103.
$$\frac{(a-x)^4 \sqrt{(a-x)} + (x-b)^4 \sqrt{(x-b)}}{(a-x)^4 \sqrt{(x-b)} + (x-b)^4 \sqrt{(a-x)}} = c.$$

104.
$$\frac{(a-x)\sqrt[4]{(b-x)} + (b-x)\sqrt[4]{(a-x)}}{\sqrt[4]{(a-x)} - \sqrt[4]{(b-x)}} = c.$$

105.
$$\sqrt[4]{(a-x)+\sqrt[4]{(x-b)}} = \frac{c}{a+b-2x}$$

107.

108.

109.

110.

111.

112.

SECT

1.

14

Ι÷

By I

Also

(Not an ently in square-

106.
$$\begin{cases} \frac{4}{3}(a-x) + \frac{4}{3}(b-x) \end{cases}^{5} = c.$$

107.
$$(a-x)^{5}/(a-x)-(x-b)^{5}/(x-b)=c\{5/(a-x)-5/(x-b)\}.$$

108.
$$(a-x)^{5}/(x+b) - (x+b)^{5}/(x-a) = c\{5/(a-x) - 5/(x+b)\}.$$

109.
$$\{\frac{5}{4}(a-x)^3 + \frac{5}{4}(x-b)^3\} \frac{5}{4}\{(a-x)(x-b)\} = c.$$

110.
$$\{ \sqrt[5]{(a-x)} - \sqrt[5]{(x-b)} \} \sqrt[3]{\{\sqrt[5]{(a-x)^2} - \sqrt[5]{(x-b)^2}} = c.$$

111.
$$\{ \sqrt[5]{(a-x)^2} - \sqrt[5]{(x-b)^2} \} \sqrt[2]{(a-x)} + \sqrt[5]{(x-b)} \} = c.$$

112.
$$\{ \sqrt[5]{(a-x)^3} + \sqrt[5]{(x+b)^3} \}^2 = c \{ \sqrt[5]{(a-x)} + \sqrt[5]{(x+b)} \}.$$

Section V.—Quadratic Equations involving two or more variables.

1.
$$(x+y)(x^2+y^2) = a,$$
 I. $x^2y+xy^2 = c.$ II.

1+2II.
$$(x+y)^3 = a + 2c$$

 $x+y=\sqrt[3]{(a+2c)}$. (Any one of the three cube-roots). III.

I ÷ II
$$\frac{x^2 + y^2}{xy} = \frac{a}{c}; \cdot \cdot \cdot \left| \frac{x - y}{x + y} \right|^2 = \frac{a - 2c}{a + 2c}.$$
By III.
$$x - y = \frac{\sqrt{(a - 2c)}}{\sqrt[6]{(a + 2c)}}.$$

Also
$$x+y = \frac{\sqrt{(a+2c)}}{\sqrt[6]{(a+2c)}},$$

$$\therefore x = \frac{\sqrt{(a+2c)} + \sqrt{(a-2c)}}{2\sqrt[6]{(a+2c)}}$$

$$\mathbf{y} = \frac{\sqrt{(a+2c)} - \sqrt{(a-2c)}}{2^6 \sqrt{(a+2c)}}.$$
The one of the six sixth-roots of $a+2c$ may be use

(Not any one of the six sixth-roots of a+2c may be used indifferently in the denominator, but only any cube-root of whichever square-root of a+2c is used in the numerator. Thus if the radi-

 $-x)\}.$

b-2x).

(c-b)

cal sign be restricted to denote merely the arithmetical root, if k be defined by the equation $k^2 - k + 1 = 0$, and if m and n indicate any integers whatever, equal or unequal, the value of x may be written

$$\{k^{9m} \sqrt{(a+2c)} + k^{9n-m} \sqrt{(a-2c)}\} \div 2 \sqrt[6]{(a+2c)}.$$
2.
$$8x^2 - 5xy + 3y^2 = 9(x+y)$$

$$11x^2 - 8xy + 5y^2 = 13(x+y)$$
II.

1st Method. Eliminate (x+y).

$$\cdot \cdot \cdot 104x^2 - 65xy + 39y^2 = 99x^2 - 72xy + 45y^{\bullet},$$

$$\therefore 5x^2 + 7xy - 6y^2 = 0,$$

$$(5x-3y)(x+2y)=0$$
,

$$\therefore x = \frac{3}{5}y \text{ or } -2y.$$

Substitute these values for x in I.

$$\therefore 72y^2 = 360y \text{ or } 45y^2 = -9y$$

:.
$$y = 0$$
, or 5, or $-\frac{1}{6}$,

and
$$x = 0$$
, or 3, or $\frac{2}{5}$.

2nd Method. Take the sum of the products of I. and II. by arbitrary multipliers k and l,

$$k(8x^2-5xy+3y^2)+l(11x^2-8xy+5y^2)=(9k+13l)(x+y). \quad \text{III}.$$

Determine k and l so that the left-hand member of III. may, like the right-hand member, be a multiple of x+y. This may be done by putting x=-y in III. from which

$$16k + 24l = 0$$
, $\therefore 2k = -3l$
 $\therefore \text{ if } k = 3, \ l = -2.$

Substituting these values in III., it becomes

$$2x^2 + xy - y^2 = x + y$$

$$(x+y)(2x-y) = x+y$$
, or $(x+y)(2x-y-1) = 0$.

: either
$$x+y=0$$
, or $2x-y-1=0$,

$$\therefore y = -x, \text{ or } 2x - 1.$$

Subs

8.

 $I \rightarrow I$

Write

III.,

Π..

1

V (

II.

ical root, if k nd n indicate of x may be

c).

I. and II. by

(x+y). III. of III. may,

. This may

) = 0

Substituting these values for y in I., it becomes

$$16x^2 = 0$$
, or $10x^2 - 7x + 3 = 27x - 9$,
 $x = 0$, or 3, or $\frac{2}{5}$;

and
$$y = 0$$
, or 5, or $-\frac{1}{5}$.

8.
$$\frac{x^{5} + y^{5}}{x^{3} + y^{3}} = \frac{a^{5} + b^{5}}{a^{3} + b^{3}}$$

$$x^{2} + xy + y^{2} = a^{2} + ab + b^{2}$$
II

I.:II.,
$$\frac{x^4 - x^3y + x^2y^2 - xy^3 + y^4}{(x^2 + y^2)^2 + x^2y^3} = \frac{a^4 - a^3b + a^2b^2 - ab^3 + b^4}{(a^2 + b^2)^2 - a^2b^2},$$

$$x^3y + xy^3 \qquad a^3b + ab^3$$

$$\frac{x^3y + xy^3}{(x^2 + y^2)^2 - x^2y^2} = \frac{a^3b + ab^3}{(a^2 + b^2)^2 - a^2b^2}$$
III.

Write z for
$$\frac{xy}{x^2+y^2}$$
 and k for $\frac{ab}{a^2+b^2}$

III.,
$$\therefore \frac{z}{1-z^2} = \frac{k}{1-k^2}$$
, $\therefore z = k \text{ or } -\frac{1}{k}$,

••
$$\frac{xy}{x^2 + y^2} = \frac{ab}{a^2 + b^2}$$
 or $\frac{a^2 + b^2}{-ab}$,

$$\therefore \frac{xy}{x^2 + xy + y^2} = \frac{ab}{a^2 + ab + b^2}, \text{ or } \frac{a^2 + b^2}{a^2 - ab + b^2}.$$

II.,
$$\therefore xy = ab$$
, or $(a^2 + b^2) \frac{a^2 + ab + b^2}{a^2 - ab + b^2}$ IV.

$$\sqrt{\text{(II.+IV.)}}$$
, $\therefore x+y=\pm(a+b)$
or $\sqrt{(2a^2-ab+2b^2)}$ $\sqrt{\frac{a^2+ab+b^2}{a^2-ab+b^2}}$

$$\sqrt{(\text{II.} - 3\text{IV.})}$$
 and $x - y = \pm (a - b)$,
$$j\sqrt{(2a^2 + ab + 2b^2)}\sqrt{\frac{a^2 + ab + b^2}{a^2 - ab + b^2}}$$

$$x = \pm a, \pm b$$
 or

$$\frac{1}{2} \{ \sqrt{(2a^2 - ab + b^2) + j} \sqrt{(2a^2 + ab + 2b^2)} \} \sqrt{\frac{a^2 + ab + b^2}{a^2 - ab + b^2}}.$$

$$y = \pm b \; ; \; \pm a \text{ or}$$

$$\frac{1}{2} \{ \sqrt{(2a^2 - ab + b^2) - j} \sqrt{(2a^2 + ab + 2b^2)} \} \sqrt{\frac{a^2 + ab + b^2}{a^2 - ab + b^2}}.$$

4.
$$(x^2+y^3)(x^3+y^3)=a$$
,

$$(x+y)(x^4+y^4) = b.$$
 II.

Put
$$z = \frac{xy}{x^2 + y^2}$$
, $\therefore \frac{1-z}{1-2z^2} = \frac{a}{b}$

:
$$2az^2 - bz - (a - b) = 0$$

:.
$$4az^2 = b \pm \sqrt{(8a^2 - 8ab + b^2)} = b + r$$
 say.

$$\therefore \frac{xy}{x^2 + y^2} = \frac{b+r}{4a}$$

$$\therefore \frac{x+y}{x-y} = \pm \sqrt{\frac{2a+b+r}{2a-b-r}}$$

$$\frac{x}{y} = \frac{\sqrt{(2a+b+r) + \sqrt{(2a-b-r)}}}{\sqrt{(2a+b+r) - \sqrt{(2a-b-r)}}}$$

$$= \frac{\{\sqrt{(2a+b+r) + \sqrt{(2a-b-r)}}\}^2}{2(b+r)}$$
IV.

$$1^{2}. \qquad (x^{2}+y^{2}+2xy)(x^{2}+y^{2})^{2}\left\{(x^{2}+y^{2})-xy\right\}^{2}=a^{2}.$$

III.
$$(xy)^5 \left\{ \frac{4a+2b+2r}{b+r} \right\} \left(\frac{4a}{b+r} \right)^2 \left\{ \frac{4a-b-r}{b+r} \right\}^2 - a^3$$

$$\therefore x^{10} \left(\frac{y}{x} \right)^{5} \left\{ \frac{32a^{2}(2a+b+r)(4a-b-r)^{2}}{(b+r)^{5}} \right\} = a$$

$$x^{10} = \left(\frac{x}{y}\right)^{5} \left\{ \frac{(b+r)^{5}}{32(2a+b+r)(4a-b-r)^{2}} \right\}$$

IV =
$$\frac{\{\sqrt{(2a+b+r)} + \sqrt{(2a-b-r)}\}^{10}}{1024(2a+b+r)(4a-b-r)^{3}}$$

The in IV.

E .

5. a

. 1

3

.. 6

,

v(

1/2 (V

77T

2.3

v

X.

$$\therefore x = \frac{\sqrt{(2a+b+r)} + \sqrt{(2a-b-r)}}{2\sqrt[3]{\{(2a+b+r)(4a-b-r)^2\}}}$$

in which $r = \pm \sqrt{(8a^2 - 8ab + b^2)}$.

The value of y may be derived from that of x by the first form in IV.

5.
$$x^4 = ax - by$$
,

1.

$$11. y^4 = ay - bx.$$

п.

$$x.I. - y.II.$$
 $x^5 - y^5 = a(x^3 - y^2)$

y.I.
$$-x$$
.II. $xy(x^3-y^3) = b(x^2-y^2)$,
: either $x-y=0$ from which $x=y=0$, or $\sqrt[3]{(a-b)}$

IV.

or
$$x^4 + x^3y + x^2y^2 + xy^3 + y^4 = a(x+y)$$

and $xy(x^2 + xy + y^2) = b(x+y)$

V.

(IV.+V.)
$$(x+y)^2(x^2+y^2) = a+b$$

VI.

V.
$$(x+y)^4 - (x^2+y^2)^2 = 4b(x+y)$$

VII.

$$\sqrt{(\text{VII}^2 + 4.\text{VI})}$$
. $(x+y)^4 + (x^2 + y^2)^2 = 2t(x+y)$

VIII.

in which
$$t = \sqrt{(a+b)^2 + 4b^2}$$
.

IX.

$$\frac{1}{2}$$
(VII.+VIII.), $\therefore (x+y)^4 = (2b+t)(x+y)$

$$(x+y)^3 = 2b+t$$

$$\therefore (x+y) = \sqrt[3]{(2b+t)}$$

X.

$$\therefore x^2 + y^2 = \frac{a+b}{\sqrt[3]{(2b+t)}}$$

XI.

$$\therefore (x-y)^2 = \frac{2(a+b)}{\sqrt[3]{(2b+t)}} - \sqrt[3]{(2b+t)^3} = \frac{2a-t}{\sqrt[3]{(2b+t)}}.$$

$$\therefore x - y = \frac{\sqrt{(2a-t)}}{\sqrt[6]{(2b+t)}}$$

and
$$x+y = \frac{\sqrt{(2b+t)}}{6\sqrt{(2b+t)}}$$

a³,

 $+ b^{2}$

I.

III.

IV.

= a

)25

$$x = \frac{\sqrt{(2b+t)} + \sqrt{(2a-t)}}{\sqrt[6]{(2b+t)}}$$
and
$$y = \frac{\sqrt{(2b+t)} - \sqrt{(2a-t)}}{\sqrt[6]{(2b+t)}}$$

in which $t = \sqrt{(a^2 + 2ab + 5b^2)}$.

6.
$$x^4-c^4=m(x+y)^4$$
;

$$y^4 + c^4 = n(x-y)^4$$
.

Let
$$z = \frac{x+y}{x-y}$$
, $\therefore z+1 = \frac{2x}{x-y}$ and $z-1 = \frac{2y}{x-y}$

I. + II.
$$x^4 + y^4 = m(x+y)^4 + n(x-y)^4$$

$$(z+1)^4 + (z-1)^4 = 16(mz^4 + n)$$

$$(8m-1)z^4-6z^2+(8n-1)=0,$$

II. & III.
$$(z-1)^4(x-y)^4 + 16c^4 = 16n(x-y)^4$$

$$\therefore x - y = \frac{2c}{\sqrt{\{16n - (z - 1)^4\}}}$$
 V.

and
$$x+y = \frac{2cz}{\sqrt{\{16n - (z-1)^4\}}}$$
.

••
$$x = \frac{c(z+1)}{\sqrt[4]{16n - (z-1)^4}} = \frac{c(z+1)}{\sqrt[4]{(z+1)^4 - 16mz^4}}$$

and $y = \frac{c(z-1)}{\sqrt{16n-(z-1)^4}}$, and the value of z is given by IV.

7.
$$x^2 + y^2 = \frac{1}{3}(2m + n^2)$$
,

$$x^3 + y^3 = mn.$$

$$(x+y)^2-2xy=\frac{1}{3}(2m+n^2)$$

and
$$(x+y)^3 - 3xy(x+y) = mn$$
.

Let

Elir

•

II.

•

ion b

c

.

•

If:

Let
$$u=x+y$$
 and $v=xy$, and the equations become $u^2-2v=\frac{1}{3}(2m+n^2)$; $u^3-3uv=mn$.

Eliminate
$$v$$
, $u^3 - (2m + n^2)u + 2mn = 0$

$$u^4 - (2m + n^2)u^2 + 2mn \ u = 0$$

$$u^4 - 2mu^2 + m^2 = n^2u^2 - 2mnu + m^2$$
.

:.
$$u^2 - m = \pm (nu - m)$$
,

II.

Ш.

IV.

V.

124}

n by IV.

 $\therefore u = n$, (the value u = 0 was introduced by the multiplication by u),

or
$$u^2 + nu - 2m = 0$$
,

:.
$$u = \frac{1}{2} \{ -n \pm \sqrt{(n^2 + 8m)} \}$$

..
$$v = \frac{1}{3}(n^2 - m)$$
 or $\frac{1}{6}\{n^2 + 8m \mp 3n\sqrt{(n^2 + 8m)}\}$

 \therefore u and v are completely determined.

Also
$$x+y=u$$
, $x-y=\sqrt{(u^2-4v)}$

$$x = \frac{1}{2} \{ u + \sqrt{(u^2 - 4v)} \}$$
;

..
$$y = \frac{1}{2} \{ u - \sqrt{(u^2 - 4v)} \}$$
.

If m=7 and n=5, the above equations become $x^2+y^3=13$, and $x^3+y^3=35$.

Solving, as above, gives

$$u = 5$$
, or 2, or -7 ,

$$2v = 12$$
, or -9 , or 36 ,

..
$$x+y=5$$
, or 2, or -7 ,
 $x-y=\pm 1$, or $\pm \sqrt{22}$, or $\pm j\sqrt{23}$.

$$x=3, 2, \frac{1}{2}(2\pm\sqrt{22}) \text{ or } \frac{1}{2}(-7\pm j\sqrt{23});$$

$$y=2, 3, \frac{1}{2}(2\mp\sqrt{22}) \text{ or } \frac{1}{2}(-7\mp j\sqrt{23}).$$

8.
$$x^2 + y = \frac{17}{6}$$
;
 $x + y^3 = \frac{5}{4}$.
 $\therefore \frac{17}{16} - y = (\frac{5}{4} - y^2)^2$,
 $\therefore y^4 - \frac{5}{2}y^2 + y + \frac{1}{2} = 0$.

Testing this for rational linear factors it is easily reduced to

$$(y-1)^2(y^2+2y+\frac{1}{2})=0$$
,
 $\therefore y=1 \text{ or } \frac{1}{2}(-2\pm\sqrt{2});$
 $x=\frac{1}{2} \text{ or } \frac{1}{2}(-1\pm4\sqrt{2}).$

9.
$$(2x-y+z)(x+y+z) = 9$$
; I. $(x+2y-z)(x+y+z) = 1$; II. $(x+y-2z)(x+y+z) = 4$.

Let s = x + y + z and the equations may be written

$$(s+x-2y)s = 9$$
 IV.
 $(s+y-2z)s = 1$ V.
 $(s-3z)s = 4$.

$$(s-8z)s=4.$$
 VI.
IV. +8.V. $(4s+x+y-6z)s=12$, or $(5s-7z)s=12$ VII.

8.VII - 7.VI.
$$\{(15s-21z)-(7s-21z)\}s=8$$
,
 $8s^2=8$. $s=+1$.

Substituting in I, II. and III. they become

$$2x-y+z=\pm 9$$
, $x+2y-z=\pm 1$, $x+y-2z=\pm 4$,
 $x=\pm 4$, $y=\mp 2$, $z=\mp 1$.

10
$$x^{3} + y^{3} = a;$$

 $u^{2} + v = b;$
 $xy + uv = c;$
 $xu + yv = e.$

Let
$$t = xy - uv$$
.

$$\therefore (x+y)^2 = a+c+t, \quad \therefore x = \frac{1}{2} \{ \sqrt{(a+c+t)} + \sqrt{(a+c-t)} \}$$
$$(x-y)^2 = a-c-t, \qquad y = \frac{1}{2} \{ \sqrt{(a+c+t)} - \sqrt{(a-c-t)} \}$$

Also

•••

•

11.

Let Als

Alı

El

•••

n.

$$(u+v)^2 = b+c-t,$$
 $u = \frac{1}{2} \{ \sqrt{(b+c-t)} + \sqrt{(b-c+t)} \}$
 $(u-v)^2 = b-c+t,$ $v = \frac{1}{2} \{ \sqrt{(b+c-t)} - \sqrt{(b-c+t)} \}$

Also 2(xu+yv) = (x+y)(u+v) + (x-y)(u-v) = 2e,

uced to

I.

II. III.

IV.

v.

VI.

-c-t)

-c-t)

VII.

$$\therefore 1/\{(a+c+t)(b+c-t)\} + \sqrt{\{a-c-t)(b-c+t)}\} = 2e,$$

$$\cdot \cdot \cdot \left\{ 4e^2 + (a-c-t)(b-c+t) - (a+c+t)(b+c-t) \right\}^2 = 16e^2 (a-c-t)(b-c+t).$$

$$\begin{aligned} \cdot \cdot \cdot & \{ (a-b)^2 + 4e^2 \} t^2 - 2(a^3 - b^2)ct + \\ & (a+b)^2 c^2 - 4e^2(ab + c^2) + 4e^4 = 0, \\ \cdot \cdot \cdot & t = \frac{(a^3 - b^2)c \pm 2c \sqrt{(ab - e^2)} \{ (a - b)^2 - 4(c^2 - e^2) \}]}{(a-b)^2 + 4e^2}. \end{aligned}$$

11.
$$xy = uv$$

$$x+y+u+v=a II.$$

$$x^3 + y^3 + u^3 + v^3 = b^3$$
 III

$$x^5 + y^5 + u^5 + v^5 = c^5$$
 IV.

Let
$$x+y=\frac{1}{2}(a+z)$$
. $\therefore u+v=\frac{1}{2}(a-z)$. V.

Also let
$$r = xy = uv$$
 VI.

$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

 $(u+v)^3 = u^3 + v^3 + 3uv(u+v)$

$$\therefore \ a(3z^3 + a^3) = 4(b^3 + 3ar)$$
 VII.

Also
$$(x+y)^5 = x^5 + y^5 + 5xy(x^3 + y^3) + 10x^2y^2(x+y)$$

 $(u+v)^5 = u^5 + v^5 + 5uv(u^3 + v^3) + 10u^2v^2(u+v)$

$$(u+v)^5 = u^5 + v^5 + 5ac(u^2 + v^3) + 10ac^2(u+v)$$

$$\therefore a(5z^4 + 10a^2z^2 + a^4) = 16\{c^5 + 5b^3r + 10ar^2\}$$
VIII.

Eliminating r between VII. and VIII,

$$45a^2z^4 - 80a(a^3 + 2b^3)z^2 + a^6 - 20a^3b^3 - 80b^6 + 144ac^5 = 0$$

∴ 15
$$az^2 - 5(a^3 + 2b^3) = \pm 2\sqrt{\{5(a^3 + 5b^3)^9 - 180ac^5\}}$$
 IX.

$$\therefore 15az^{2} - 5(a^{3} + 2b^{3}) = \pm 2\sqrt{(b(a^{3} + 5b^{3})^{2} - 36ac^{5})}$$

$$\therefore z = \sqrt{\frac{a^{3} + 2b^{3} \pm 2\sqrt{\left[\frac{1}{b}\left\{(a^{3} + 5b^{3})^{2} - 36ac^{5}\right\}\right]}}{8a}}$$
X.

VII. & IX.
$$12ar = a^3 - 4b^3 + 8az^2$$
$$= 2a^3 - 2b^3 \pm 2\sqrt{\left[\frac{1}{5}\left\{(a^3 + 5b^3)^2 - 86ac^5\right\}\right]}$$
$$\therefore r = \frac{5(a^3 - b^3) \pm \sqrt{\left\{5(a^3 + 5b^3)^2 - 180ac^5\right\}}}{80a}$$
XI.

X. and XI. give the values of z and r which may now be treated as known in \checkmark and \checkmark .

$$x+y=\frac{1}{2}(a+z)$$
, and $xy=r$
 $\therefore x-y=\frac{1}{2}\sqrt{\{(a+z)^3-16r\}}$
 $\therefore x=\frac{1}{4}(a+z\pm\sqrt{\{(a+z)^2-16r\}})$;
 $y=\frac{1}{4}(a+z\mp\sqrt{\{(a+z)^2-16r\}})$.

The values of u and v may be obtained from those of x and y respectively by changing z into -z.

EXERCISE.

1.
$$6\{(7-x)^2+y^3\}=13(7-x)y$$
, $x^2+4y=y^2+4$.

2.
$$10x^2 - 9y^2 = 2x^3$$
, $8x^2 - 6y^2 = 13x$.

S.
$$xy = (3-x)^2 = (2-y)^2$$
. 4. $x^2 + y^2 = 8x + 9y = 144$.

5.
$$x^2 + y^2 = x + y + 12$$
, $xy + 8 = 2(x + y)$.

6.
$$x+xy+y=5$$
, $x^2+xy+y^2=7$.

7.
$$x^3 + y^3 = 7xy = 28(x+y)$$
. 8. $x^2 + xy + y^2 = \frac{35}{x^2 + y^2} = \frac{28}{xy}$

9.
$$x^4 + x^2y^2 + y^4 = 133$$
, $x^3y + x^2y^2 + xy^3 = 114$,

10.
$$(x+y)(x^2+y^2) = 17xy$$
, $(x-y)(x^2-y^2) = 9xy$.

11.
$$25(x^3+y^3) = 7(x+y)^3 = 175xy$$
.

12.
$$2x^2 - y^2 = 14(x^2 - 2y^2) = 14(x - y)$$
.

13.
$$2x^2 - 3xy = 9(x - 3y)$$
, $3(x^2 - 3y^2) = 2(2x^2 - 3xy)$.

14.
$$2x^2 - xy + 5y^2 = 10(x+y)$$
, $x^2 + 4xy + 3y^2 = 14(x+y)$.

15.
$$(2x-3y)(3x+4y) = 39(x-2y), (3x+2y)(4x-3y) = (99(x-2y))$$

16.

17.

19.

20. 21.

22.

23.

24.

25.

27.

28.

29.

80.

81.

32.

33. 34.

35.

. . .

36.

37.

88.

16.
$$(x+2y)(x+3y) = 3(x+y)$$
, $(2x+y)(3x+y) = 28(x+y)$.

17.
$$x+y=8$$
, $x^4+y^4=706$. 18. $x+y=5$, $x^5+y^5=275$.

19.
$$x+y=2$$
, $13(x^5+y^5)=121(x^3+y^3)$.

20.
$$x+y=4$$
, $41(x^5+y^5)=122(x^4+y^4)$.

21.
$$x^2 - 5xy + y^2 + 5 = 0$$
, $xy = x + y - 1$.

22.
$$x^2 + y = 5(x - y)$$
, $x + y^2 = 2(x - y)$.

23.
$$3(x^2+y)=3(x+y^2)=13xy$$
.

24.
$$10(x^2+y)=10(x+y^2)=13(x^2+y^2)$$
.

25.
$$x^2 + y = \frac{16}{9}$$
, $x + y^2 = \frac{2}{9}$. 26. $9(x^2 + y) = 3(x + y^2) = 7$.

27.
$$x+xy+y=5$$
, $x^3+xy+y^3=17$.

28.
$$x+y=2$$
, $(x+1)^5+(y-2)^5=211$.

29.
$$3(x-1)(y+1) = 4(x+1)(y-1), \quad \frac{x^2+x+1}{y^2+y+1} = \frac{31}{39} \left(\frac{x^2-x+1}{y^2-y+1} \right)$$

80.
$$x+y = \frac{1}{xy}$$
, $x-y = xy$.

31.
$$x+y+1=0$$
, $x^6+y^6+2=0$.

32.
$$x+y=1$$
, $3(x^8+y^8)=7$.

33.
$$4xy^2 = 5(5-x)$$
, $2(x^2+y^2) = 5$.

34.
$$27xy = 17$$
, $9(x^3 + y^3) = -8$.

35.
$$(x^2+y^2)^2+4x^2y^2=5-12y$$
, $y(x^2+y^2)+3=0$.

36.
$$x+y=xy$$
, $x^2+y^2=x^3+y^3$.

37.
$$x^4 - 6x^2 \sqrt{(y^2 - x^2)^{\frac{1}{2}}} - 16y^2 = 9x^2$$
,
 $(x^2 + 2)^2 = 4\{2 + x^2 \sqrt{(y^2 + x^2)} - y^2\}$.

88.
$$x(y^2+3y-1)=2y^2+2y+3$$
, $y(x^2+3x-1)=2x^2+2x+3$.

XI. be treated

f x and y

= 144.

 $\frac{1}{y^2} = \frac{28}{xy}$

-y).

99(x-2y)

89.
$$\frac{x^3}{a^3} + \frac{y^3}{b^3} = 2e^3$$
. $\frac{x}{a} + \frac{y}{b} = e\left(\frac{x}{a} - \frac{y}{b}\right)$.

40.
$$x^3 + xy^2 = a$$
, $y^3 + x^2y = b$.

41.
$$x+y=a$$
, $\frac{x}{b-y} + \frac{b-y}{x} = c$.

42.
$$x^2 + ay^2 = \frac{a+1}{a-1}$$
, $ax^2 + y^2 = (a^2 - 1)y$.

43.
$$x + y^2 = ax$$
, $x^3 + y = by$. 44. $x + y^2 = ay^2$, $x^2 + y = bx^2$.

45.
$$x^4 - y^4 = a^2(x - y)^2$$
, $x^3 - x^2y + xy^2 - y^3 = b^2(x + y)$.

46.
$$(x+y)(x^2+3y^2)=m$$
, $(x-y)(x^2+3y^2)=n$.

47.
$$x^2y^2 = y(a-x)^3 = x(b-y)^3$$
.

48.
$$x^3(b-y) = y^3(a-x) = (a-x)^2(b-y)^2$$
.

49.
$$a^2(x^2+e^2) = b^2(x+y)^2$$
, $a^2(y^2+z^2) = c^2(x+y)^2$.

50.
$$x^3 - y^3 = a(x^2 - y^2), \quad x^2 + y^2 = b(x+y).$$

51.
$$x+y=a$$
, $x^3+y^3=bxy$.

52.
$$\sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}} = \frac{x-y}{a}, \frac{x(c^2+xy)}{y(c^2-xy)} = b^2.$$

53.
$$x+y=xy=x^2+y^2$$
. 54. $x-y=\frac{x}{y}=x^2-y^2$.

55.
$$x^3(1+y^2)(1+y^4) = a$$
, $x^3(1-y^2)(1-y^4) = b$.

$$56. \quad \frac{x^2 + xy + y^2}{x^2 - xy + y^2} = \frac{x^2 + y^2}{a} = \frac{xy}{b}.$$

57.
$$x^2y + xy^2 = \frac{a}{x^2 + y^2}$$
, $x^4y + xy^4 = b$.

58.
$$x^2y + xy^2 = a(x^2 + y^2), \quad x^2y - xy^2 = b(x^2 - y^2),$$

59.
$$\left(\frac{x}{y} + \frac{y}{x}\right)(x+y) = a, \quad \frac{x^2}{y} + \frac{y^2}{w} = b.$$

61.

62.

68.

64.

65.

66. 67.

68.

69.

70. 71.

78.

74.

75. 76.

77.

78.

79.

80.

81.

82.

60.
$$x^2 + y^2 = ax^2y^2 = xy(x+y)$$
.

61.
$$abxy = a(x^3 + y^3) = b(x+y)^3$$
.

62.
$$xy(x+y)=a$$
, $x^3y^3(x^3+y^3)=b$.

63.
$$\left(\frac{1}{x} \div \frac{1}{y}\right)(x^3-y^3)=a, \quad \left(\frac{1}{x} - \frac{1}{y}\right)(x^3+y^3)=b.$$

64.
$$x^4 + y^4 = m(x^2 + y^3)$$
, $x^2 + xy + y^3 = n$.

65.
$$ab(x+y) = xy(a+b)$$
, $x^2 + y^2 = a^2 + b^9$.

66.
$$x^3 + y^3 = a(x+y), \quad x^4 + y^4 = b(x+y)^4$$

67.
$$x^2 + y^2 = a$$
, $x^5 + y^5 = b(x^3 + y^3)$.

68.
$$xy = a$$
, $x^5 + y^5 = b(x^3 + y^3)$.

 $+y=bx^2$

y).

69.
$$(x-y)(x^3+y^3)=(a-b)(a^3+b^3), \quad x^2-y^2=a^2-b^2.$$

70.
$$x^2 - y^2 = a$$
, $x^3 + y^3 = b(x - y)$.

71.
$$x+y=a$$
, $x^4+y^4=b$. 72. $x+y=a$, $x^5+y^5=b$.

73.
$$x+y=a$$
, $x^2+y^2=b^2x^2y^2$.

74.
$$x+y=a+b$$
, $(a-b)^2(x^4+y^4)=(x-y)^2(a^4+b^4)$.

75.
$$x+y=a$$
, $c(x^4+y^4)=xy(x^3+y^3)$.

76.
$$(x+y)^3 = a(x^2+y^2), \quad xy = c(x+y).$$

77.
$$x^2y + xy^2 = a^{\$}$$
, $c^3(x^3 + y^3) = x^3y^3$.

78.
$$x^3 = a(x^2 + y^2) - cxy$$
, $y^3 = c(x^2 + y^2) - axy$.

79.
$$x^3 - y^3 = a^3$$
, $x^3 - y^3 = c^4 \left(\frac{1}{x} - \frac{1}{y} \right)$.

80.
$$x^4 - y^4 = a^2xy$$
, $(x^2 + y^2)^2 = b^2(x^2 - y^2)$.

81.
$$(x+y)x^2y^2 = a$$
, $x^5 + y^5 = b$.

82.
$$(x+y)xy = a$$
, $x^5 + y^6 = hxy$.

88.
$$x^4 + y^4 = a(x+y)^2$$
, $x^5 + y^5 = b(x+y)^3$.

84.
$$x^4 + x^2y^2 + y^4 = a$$
, $x^2 - xy + y^2 = 1$.

85.
$$(x^2+y^2)xy=x^2-y^2$$
, $\frac{x^4(1+x^2y^2)}{y^4(1+xy)^2}=\frac{a}{b}\cdot\frac{1+xy}{1-xy}$

86.
$$x+y=(x-y)\sqrt{(xy)}, \quad \frac{\sqrt{(x^7y^5)-x}}{\sqrt{(x^5y^7)+y}}=a.$$

87.
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{a}$$
, $\sqrt{(1-x)} - \sqrt{(1-y)} = b$.

88.
$$x^2 + y^2 = a(x+y), \quad x^4 + y^4 = b(x^3 + y^3).$$

89.
$$x^3 + y^3 = a$$
, $(x+y)(x^4 + y^4) = b(x^2 + y^2)$.

90.
$$(x^2+y^2)(x^3+y^3) = axy$$
, $(x+y)(x^4+y^4) = bxy$.

91.
$$(x+y)^2(x^2+y^2)=a$$
, $(x^2+y^2)^2(x^4+y^4)=b$.

92.
$$(x-y)(x^2-y^2)(x^4-y^4) = 4axy$$
,
 $(x+y)(x^2+y^2)(x^3+y^3) = b(x-y)$.

98.
$$x^4y + xy^4 = a(x^3y + xy^3) = b(x^4 + y^4)$$
.

94.
$$a(x^5+y^5) = ab(x+y) = bxy(x^3+y^3)$$
.

95.
$$\frac{x^3 - y^3}{x^2 - y^2} = \frac{a^3 - b^3}{a^2 - b^2}$$
, $\frac{x^5 - y^5}{x^4 - y^4} = \frac{a^5 - b^5}{a^4 - b^2}$.

96.
$$\frac{x^3 + y^3}{x^2 - y^2} = \frac{a^3 + b^3}{a^2 - b^2}$$
, $\frac{x^4 + y^4}{x^3 - y^3} = \frac{a^4 + b^4}{a^3 - b^2}$.

97.
$$x^5 = 2ax - by$$
, $y^5 = 2ay - bx$.

98.
$$(x+y)(x^3+y^3)=a$$
, $(x-y)(x^3-y^3)=b$.

99.
$$\frac{(x+y)^4(x^2+xy+y^2)}{(x^3+y^3)(x^2-xy+y^2)} = 8m^2,$$
$$\frac{(x-y)^4(x^2-xy+y^2)}{(x^2+y^3)(x^2+xy+y^2)} = 5n^2.$$

100.
$$(x+y)(x^3+y^3) = axy$$
, $(x-y)(x^3-y^3) = bxy$.

101.
$$(x+y)(x^3+y^3) = a(x^2+y^2), (x-y)(x^3-y^3) = b(x^2+y^2).$$

102.
$$\frac{(x+y)^3(x^3+y^3)}{(x^2+xy+y^2)(x^2+y^2)} = a^2,$$

$$\frac{(x-y)^3(x^3-y^8)}{(x^2-xy+y^2)(x^2+y^2)} = b^9.$$

103.
$$\frac{(x^3+y^3)(x+y)^3}{x^2+xy+y^2} = 2a^2, \qquad \frac{(x^3-y^3)(x-y)^3}{x^2-xy+y^2} = 2b^2.$$

104.
$$\frac{(x^3+y^3)(x+y)^5}{(x^2+xy+y^2)^2} = 8a^2, \quad \frac{(x^3-y^3)(x-y)^5}{(x^2-xy+y^2)^2} = 8b^2.$$

105.
$$xy(x+y)(x^3+y^3)=a$$
, $xy(x-y)(x^3-y^3)=b$.

106.
$$x(x+y)(x+2y)(x+3y) = a^2$$
, $(x+y)^2 + (x+2y)^2 = b$.

107.
$$\sqrt{(x-xy)} + \sqrt{(y-xy)} = a$$
, $\sqrt{(x-x^2)} + \sqrt{(y-y^2)} = b$.

108.
$$(x+1)(y-1) = a(x-1)(y+1)$$
, $(x^5+1)(y-1)^5 = b^3(x-1)^5(y^5+1)$.

109.
$$x+y=a$$
, $\sqrt[4]{(x-k)+\sqrt[4]{(y-k)}}=c$.

110.
$$x+y=a(1+xy)$$
, $(x+y)^4=b^4(1+x^4y^4)$.

111.
$$x+y=a(1+xy)$$
, $x^5+y^5=b^3(1+x^5y^5)$.

112.
$$(x+1)(y-1) = a(x-1)(y+1),$$

 $(x^5-1)(y-1) = b^2(y^5-1)(x-1).$

113.
$$\frac{(1+x)(1+y)}{(1-x)(1-y)} = a, \quad \frac{(1+x)^3(1+y)^3}{(1-x^3)(1-y^3)} = b.$$

114.
$$\frac{(c-x)(c+y)}{(c-x)(c-y)} = a, \quad \frac{(c^4+x^4)(c^4+y^4)}{(c^4-x^4)(c^4-y^4)} = b.$$

115.
$$\frac{(x+m)(y+n)}{(x-m)(y-n)} = a, \quad \frac{(x^4+m^4)(y^4+n^4)}{(x-m)^4(y-n)^4} = b.$$

116.
$$\frac{(x+1)(y+1)}{(x-1)(y-1)} = \frac{a}{c}, \quad \frac{(x^5+1)(y^5+1)}{(x^5-1)(y^5-1)} = \frac{b}{2}.$$

117.
$$\frac{y(1+x^2)}{x(1+y^2)} = a$$
, $\frac{y^2(1+x^4)}{x^2(1+y^4)} = b$.

118.
$$\frac{1+x}{1+y} = a\sqrt{\frac{x}{y}}, \quad \frac{y(1+x+x^2)}{x(1+y+y^2)} = b.$$

119.
$$\frac{y(1+x^2)}{x(1+y^2)} = a$$
, $\frac{y^3(1+x^3)}{x^3(1+y^4)} = b$.

120.
$$\frac{y(1+x^2)}{x(1+y^2)} = a$$
, $\frac{y^4(1+x^8)}{x^4(1+y^8)} = b$.

121.
$$\frac{y(1+x^9)}{x(1+y^9)} = a$$
. $\frac{y^5(1+x^{10})}{x^5(1+y^{10})} = b$.

122.
$$\frac{(x+y)(xy+1)}{(x-y)(xy-1)} = \frac{a^2 + b^2}{2ab}, \quad \frac{x(y^2+1)}{y(x^2-1)} = \frac{a-b}{a+b}$$

123.
$$\frac{(x+y)(1+xy)}{(x-y)(1-xy)} = a^2(b^2-1), \quad \frac{x(1-y^2)}{y(1-x^2)} = b,$$

124.
$$\frac{(x+y)(1+xy)}{(x-y)(1-xy)} = a$$
, $\frac{(x^2+y^2)(1+x^2y^2)}{(x^2-y^2)(1-x^2y^2)} = b$.

125.
$$\frac{(x+y)(1+xy)}{(x-y)(1-xy)} = a \quad \frac{(x^3+y^3)(1+x^3y^3)}{(x^3-y^3)(1-x^3y^3)} = b.$$

126.
$$\frac{(x^4+y^4)(1+x^4y^4)}{(x^4-y^4)(1-x^4y^4)} = a, \quad \frac{(x+y)(1+xy)}{(x-y)(1-xy)} = b.$$

127.
$$\frac{(x+y)(1+xy)}{(x-y)(1-xy)} = a, \quad \frac{(x^5+y^5)(1+x^5y^5)}{(x^5-y^5)(1-x^5y^5)} = b.$$

128.
$$\frac{(x^2 + xy + y^2)(1 + xy + x^2y^2)}{(x+y)^2(1 + xy)^2} = a.$$
$$\frac{(x^2 - xy + y^2(1 - xy + x^2y^2)}{(x-y)^2(1 - xy)^2} = b.$$

129.
$$x^4 - 3x^2y + 5a^3x + y^2 = 0$$
, $y^3 - x^2y^2 - 2a^6x = 0$.

(He)

182.

1.

8.

4.

6.

8.

10.

12.

130.
$$2x(y^2-2x)^2=a$$
, $y(y^2-2x)^2\sqrt{(y^2-4x)}=b$. (Hence deduce the solution of $x^5-5x^2+2=0$).

131.
$$2xy(x^2+y^2)^2=a$$
, $(x^2-y^2)(x^2+y^2)^2=b$.

182.
$$\sqrt{(x^2+y^2)} + \sqrt{(a-x)^2+y^2} = \sqrt{(\frac{1}{2}a\sqrt{8}-y)^2 + (\frac{1}{2}a-x)^2},$$

$$6(x^2-y^2) = a(6x-2y\sqrt{8}+a).$$

EXERCISE.

1.
$$(2x+y-4z)(x+y+z)=24$$
, 2. $x^2-yz=1$, $(x+2y-2z)(x+y+z)=6$, $y^2-xz=2$, $(-2x+8y+5z)(x+y+z)=30$, $z^2-xy=3$.

8.
$$(x+2y-3z)(x+y+z)-2(xy+yz+zx)=-12$$
,
 $(2x-3y+z)(x+y+z)+(xy+yz+zx)=61$,
 $(3x-y+2x)(x+y+z)-5(xy+yz+zx)=5$.

4.
$$x^2 - yz = 0$$
, $(x^5 + y^5 + z^5)^3 + (x+y)^2 = 81$.
 $x + y + z = 7$, $(x^5 + y^5 + z^5)^3 + (x+y+z)^3 = 729$.
 $x^2 + y^2 + z^2 = 21$. $(x+y)^2 + (x+y+z)^3 = 81$.

6.
$$x^2 - yz = 0$$
, 7. $x + yz = 14$, $x + y + z = 21$, $y + zx = 11$, $(x - y)^3 + (y - z)^3 + (z - x)^2 = 126$. $z + xy = 10$,

8.
$$x+y=8z$$
, 9. $x+y=5z$, $x^3+y^3=184z^3$, $x^2+y^2+z^2=184$. $x^3+y^3=105z^2$.

10.
$$x+y=7z$$
, $x+y=7z$, $x^2+y^2=25z^3$, $x^4+y^4=674z^3$. 11. $x+y=7z$, $x^2+y^2=25z^3$, $x^5+y^5=20272z$.

12.
$$x+y:y+z:z+x::a:b:c$$
, 13. $x+y:y+z:z+x::a:b:c$, $(a+b+c)xyz=2$, $(a+b+c)xyz=2(x+y+z)$

14.
$$ax = by = cz = \frac{1}{x} + \frac{1}{y} + \frac{1}{s}$$
 16. $z\left(\frac{x}{y} + \frac{y}{x}\right) = a$,

15.
$$(x+y-z)x = a,$$

$$(x-y+z)y = b,$$

$$(-x+y+z)z = c.$$

$$x\left(\frac{y}{z} + \frac{z}{y}\right) = c.$$

17.
$$(y+z)(2x+y+z) = a$$
, 18. $x(y+z):y(z+x):z(x+y) = (z+x)(x+2y+z) = b$, $b+c:c+a:a+b$, $(x+y)(x+y+2z) = c$, $xy+yz+zx = (a+b+c)(x+y+z)$.

19.
$$(a+b)x+(b+c)y+(c+a)z=(a+b+c)(x+y+z),$$

 $a(x+y)=c(y+z),$
 $(x+y)^2+(y+z)^2+(z+x)^3=4(a^2+b^2+c^2).$

20.
$$c(x+y)+b(x-z)-a(y+z)=0$$
,
 $b(x-z)=(a-c)y$,
 $x^2+y^2+z^2=a^2+b^2+c^2$.

21.
$$x+y-az = x-by+z = -cx+y+z = xyz$$
.

22.
$$(a+b+c)(x-y) + a(x+z) - b(y+z) = 0$$
,
 $(a+b+c)(x-z) + a(x+y) - c(y+z) = 0$,
 $\frac{ax^2}{(b+c)^2} + \frac{by^2}{(c+a)^2} + \frac{cz^2}{(a+b)^2} = 1$.

23.
$$xy + \frac{x}{z} = a$$
; $yz + \frac{y}{x} = b$, $zx + \frac{z}{y} = c$.

24.
$$y+z:z+x:x+y::b+c:c+a:a+b$$
,
 $(x+y+z)(xyz)=(a+b+c)(xy+yz+zx)$.

25.
$$n^2 - yz = a$$
, $y^2 - xz = b$, $z^2 - xy = c$.

26.
$$x^2 + (y-z)^2 = a^2$$
, $y^2 + (z-x)^2 = b^2$, $z^2 + (x-y)^2 = c^2$.

29.
$$x +$$

$$x^n$$

31.
$$x(y)$$

$$\mathbf{x}$$

$$x^2$$

27.
$$x^2 + xy + y^2 = a^2$$
, $y^2 + yz + z^2 = b^2$, $z^2 + zx + x^2 = c^2$.

28.
$$x^3 + y^3 - z^3 + 3xyz = a(x+y-z)$$

 $x^3 - y^3 + z^3 + 3xyz = b(x-y+z),$
 $-x^3 + y^3 + z^6 + 3xyz = c(-x+y+z).$

=a

=b.

=c.

-y+z).

=

29.
$$x+y+2az=0$$
,
 $x^2+y^2-2b^2z^2=0$,
 $x^n+y^n+z^n=e^n$.
30. $x+y-az=0$,
 $y(x^2+y^2)=b^2$,
 $x^3+y^3=e^3$.

83.
$$x(y-1) = a(z-1),$$
 84. $x(y-1) = a(z-1),$ $x^2(y^2-1) = b^2(z^2-1),$ $x^2(y^2-1) = b^2(z^2-1),$ $x^4(y^4-1) = c^4(z^4-1).$

85.
$$x(y-1) = a(z-1)$$
, 86. $(x-y^2 = az(x+y))$, $x^2(y^2-1) = b^2(z^2-1)$, $(x^3-y^3 = bz(x+y)^3)$, $x^5(y^5-1) = c^5(z^5-1)$. $(x-y)^3 = cz(x^3+y^3)$

87.
$$x-y=a$$
, $x+y=a$, $x+y=a$, $x+y=b$, $xy=uv$, $x^2+u^2=c^2$, $x^5-y^5+u^5-v^5=c(a+b)$. $x+y=a$, $x^2+v^2=c^2$, $x^2+v^2=c^2$.

89.
$$xy = uv = a^3$$
, $xy = uv = a^2$, $x + y + u + x = b$, $x + y + u + v = b$, $x^3 + y^3 + u^3 + v^3 = c^3$. $x^4 + y^4 + u^4 + v^4 = c^4$.

41.
$$xy = uv = a^2$$
, 42. $xy = uv = a^2$,

$$x+y+u+v=b$$
, $x+y+u+v=b$.
 $x^5+y^5+u^5+v^5=c^5$. $(x+u)^3+(y+v)^3=c^3$.

7. 14

. 1. 5. 96

10. -

1. (

5. 0.

11.

14.

17.

25.

85.

1.

3.

4.

6. 8. 10.

8.

43.
$$xy = uv = a^3$$
, $x+y+u+v=b$, $(x+u)^4 + (y+v)^4 = c^4$.

44.
$$xy = uv$$
,
 $x + y + u + v = a$,
 $x^2 + y^2 + u^2 + v^2 = b^2$,
 $x^3 + y^3 + u^3 + v^3 = c^3$.
45. $xy = uv$,
 $x + y + u + v = a$,
 $x^2 + y^2 + u^2 + v^2 = b^2$,
 $x^3 + y^4 + u^4 + v^4 = c^4$.

46.
$$xy = uv$$
, 47. $xy = uv$, $x+y+u+v=a$, $x+y+u+v=a$, $x^2+y^2+u^2+v^2=b^3$, $x^5+y^5+u^5+v^5=c^5$. $x^4+y^4+u^4+v^4=c^4$.

48.
$$xy - uv = 0$$
, 49 . $x^{3} + y^{2} = a^{3}$, $xu + yv = a^{2}$, $u^{2} + v^{3} = m^{3}$, $x + y + u + v = b$, $ux + vy = c^{2}$, $x^{3} + y^{3} + u^{3} + v^{3} = c^{3}$. $vx + uy = n^{2}$.

50.
$$x+y+u+v=a$$
, $51.$ $y(1+x^3)=2x$, $xy+uv=b^2$, $u(1+y^2)=2y$, $v(1+u^2)=2u$, $v(1+v^2)=2v$.

52.
$$x+y+u+v=a$$
, $(x+y)^2+(u+v)^2=b^2$, $(x+u)^2+(y+v)^2=c^2$, $(x+v)^2+(y+u)^2=c^2$.

58.
$$\frac{x}{y+z} = \frac{2a-u}{a-2u}$$
, $\frac{y}{z+x} = \frac{2b-u}{b-2u}$, $\frac{z}{x+y} = \frac{2e-u}{c-2u}$, $x^2+y^2+z^2=e^2$.

ANSWERS.

EXERCISE i.

1. 9, -69, 1, 0, 1206, -29, $1\frac{3}{6}$. 2. -160, 106, 41, 108.

8. $-\frac{5}{15}, \frac{13}{36}, -25, 125, \frac{7}{15}, -31, -4\frac{1}{81}, 0, -1.$ 4. 9, 8,

7, $-\frac{1}{39}$. 5. 176, 82, $254\frac{96}{27}$, $-37 \div 7\frac{3}{7}$ 9. 6. 18 each.

7. 146, 14, -72, -270, 396. 8. Each = 0.

Exercise ii.

1. -1. 2. -166542. 3. 100. 4. -2967511.

5. 968. 6. -162. 7. 10. 8. -8. 9. 0.

10. -20. 11. 706440254900. 12. 0 each. 13. Each 0.

Exercise iii.

1. 0, $16a^4$. 2. a, $a_1/3$. 3. 2a, 0. 4. $26a^6$, $-26a^6$.

5. 0. 6. $4a^4$. 7. $6a^4$. 8. $\frac{3}{2}$. 9. c. 10. 0.

11. $a \div (a+b)$. 12. $a^2c(b+2c) \div b^2$. 13. $a^2+b^2+c^2$.

14. 0. 15. $(12a^2b - 24ab^2 + 28b^3) \div (3b - a)^3$. 16. 0.

17. 0. 18. $-b^2c$. 19, 20, 21 and 22, each 0.

25. 2(b+l)h, $4x^2$. 82. $d^2 = 3l^2$. 33. $l = \sqrt{(\frac{1}{3}d^2)}$.

85. πr^2 , $\pi (r+r')(r-r')$.

= 03.

c4.

: b9.

c4.

= 68.

= c4.

Exercise iv.

1. 2(bx+cy). 2. 8(ax-by).

3. $a^2(x-z)-ab(x-y)-b^2(y-z)$.

4. (x+y+z)(a+b+c). 5. $(a+b+c)(x^2+y^2+z^2)$.

6. $2(x+y+z)\times(a^2+b^2+c^2-ab-bc-ca)$. 7. 0.

8. 2(ax+by+cz). 9. $a^2+b^2+c^2$.

10. $2x^n(a-2b)$. 11. a+b-c.

15. x

16. 4

20. (2

22.

24. 2

1. x

2. x

8.

4. a

5. a

6.

7.

10.

11. :

12. (

1.

6.

14.

1.

EXERCISE V.

1.
$$2(x^9+9y^4)$$
, $4a^9h^9$. 4. $4(a^9-b^9)^9$.

5.
$$x^2 + 4x$$
, $-8\frac{1}{4}x^4 - 4x^2y^2 + 8\frac{1}{4}y^4$. 6. a^2 .

8.
$$x^2 - 6x^3 + 9x^4 + 2xy - 6xy^2 - 6x^2y + 18x^2y^2 + y^2 - 6y^3 + 9y^4$$
.

9.
$$4xy(x^2-y^2)$$
, $2(1+12x^2+16x^4)$.

10.
$$\frac{1}{16}c^2$$
. 11. a^2-2b^2 , $8ab(a+b)^2$. 12. $2(a-c)(b-d)$.

18.
$$\frac{1}{4}x^2 + \frac{1}{4}y^2 + \frac{1}{4}z^2 + \frac{1}{2}(xy + yz + zx)$$
. 15. $(1+x^2)^2$.

16.
$$4(xy+yz+zx)-2(x^2+y^2+z^2)$$
. 17. x^2 .

18.
$$(a^2+2b^2-2c^2)^2$$
. 19. $16x^2y^2$. 20. $-4ab$.

21.
$$4(a+b+c)^{9}$$
. 23. $4(1+x^{9}+x^{4}+x^{6})$.

24.
$$(a^2x^2+b^2y^2)^2$$
.

Exercise vi.

1.
$$1-4x+10x^3-20x^3+25x^4-24x^5+16x^6$$
, $1-2x+3x^2-4x^3+8x^4-2x^5+x^6$.

2.
$$1-4x+8x^2-14x^3+14x^4-8x^5+5x^6+6x^7+x^8$$
, $1+6x+15x^2+20x^3+15x^4+6x^5+x^6$.

3.
$$4a^2+b^2+c^4+1-4ab-4ac^2-4a+2bc^2+2b+2c^2$$
, $1+x^2+y^2+z^2-2x+2y+2z-2xy-2xz+2yz$, $4x^2+\frac{1}{9}y^2+36z^2-\frac{1}{3}xy+6xz-4yz$.

4.
$$x^{6} - 2x^{5}y + 3x^{4}y^{3} - 4x^{3}y^{3} + 3x^{2}y^{4} - 2xy^{5} + y^{6}$$
,
 $a^{2}x^{2} + 2abx^{3} + (2ac + b^{2})x^{4} + 2(ad + bc)x^{5} + (2bd + c^{2})x^{6} + 2cdx^{7} + d^{3}x^{8}$. 8. $8(a^{2} + b^{2} + c^{2}) - 2(ab + bc + ca)$.

11.
$$4a^2 + \frac{1}{4}b^2x^2 + \frac{1}{16}c^2x^2 + 4d^2x^3 + 2c^2x - acx + 8adx + \frac{1}{4}bcx^3 - 2bdx^2 - cdx^3$$
.

Exercise vii.

1.
$$(a^2-b^2)^2$$
. 2. $\frac{1}{4}x^4+y^4$. 3. $a^4+3a^2b^2+4b^4$.

4.
$$x^4-y^4$$
. 5. ω^3 . 6. $16\omega^3$. 7. 0.

8.
$$4a^4 - 9b^4 - 16c^4 + 24b^2c^2$$
. 9. $b^2 - 9c^2 - 4a^2 + 12ac$, $9c^2 - 4a^2 - b^2 + 4ab$. 10. $x^8 - y^8$. 11. $x^8 + x^4y^4 + y^8$.

12.
$$a^2 - a^3b^3 + b^2 - 1$$
. 14. $x^4 + y^4 + \frac{7}{10}x^2y^3$.

15.
$$x^8 + 2x^6 + 8x^4 + 2x^2 + 1$$
.

49/4.

(b-d).

)9.

ac.

 $+y^8$

16.
$$4a^4x^2 - 4a^4xy + a^4y^2 - a^2x^4 - 2a^2x^3y + 2ax^5 + 2ax^4y - x^6$$
.

20.
$$(x^2+y^2-2xy-z^2)^2$$
. 21. x^8-y^8 .

22.
$$\frac{1}{3} - 6a^2 + 27a^4$$
. 28. $(m+p)^2 - (n+q)^3$.

24.
$$2x^2 + x^4 + 2x^6 - x^8 - 1$$
. 25. $a^8 - b^{16}$.

Exercise viii.

1.
$$x^4 + 4x^3 + 3x^2 - 2x - 12$$
, $x^2 + y^2 - 2xy + 8xz - 8yz + 15z^2$.

2.
$$x^4 + 12x^3 + 49x^2 + 78x + 40$$
, $x^6 + bx^3 - a^2 + 3ab - 2b^2$.

8.
$$a^8 + 8a^6 - 10a^4 - 104a^2 + 105$$
, $x^8 + 2x^6 - x^2 - 2$.

4.
$$x^4 + 5x^3y^2 - 12x^2y^2 + 5xy^3 + y^4$$
.

5.
$$x^{2n} - 2x^n - a^2 - 16a - 63$$
, $\frac{x^2}{y^2} + \frac{y^2}{x^2} + \frac{2x}{y} + \frac{2y}{x} - 1$.

6.
$$n^2x^2 + 2nxy + y^2 + 10nx + 10y + 21$$
.

7.
$$(x+a)^2 + 2y(x+a) - 3y^2$$
. 8. $x^{4n} + 2x^{3n} + x^{2n}(1-a-b) - x^n(a+b) + ab$. 9. $4x^8 - x^4y^2 + y^4 - x^4 + 2y^2 - 8$.

10.
$$\left(\frac{1}{x} + \frac{1}{y}\right)^3 = 2\left(\frac{1}{x} + \frac{1}{y}\right) - \frac{5}{4}$$

11.
$$x^4 - 8x^3 + 19x^2 - 12x + 2$$
.

12.
$$(x+b)^4 - (a^2+c^2)(x+b)^2 + a^2c^2$$
. 13. $ab+cd$.

Exercise ix.

1.
$$2(1+3x^4)$$
, $2xy^3(3x^4+x^2y^6)$. 2. $9b(a^2+b^2+ab^2)$, $b(27a^2-27ab+7b^2)$. 3. $(x+y)^3$. 4. $8a^3$. 5. $8x^3$.

6.
$$8x^3$$
. 7. a^3 . 8. $27x^3$. 9. $(2+x^3)^3$. 12. $8(x^2+y^2)^3$.

14.
$$(a^3+b^3)(x^3+y^3)$$
. 15. 0. 16. 0.

EXERCISE X.

1.
$$1-3x+6x^2-7x^3+6x^4-3x^5+x^6$$
, $a^3-b^3-c^3-3a^2(b+c)$.
 $+3b^2(a-c)+3c^2(a-b)+6abc$, $1-6x+21x^2-56x^3+111x^4-174x^5+219x^6-204x^7+144x^8-64x^9$.

- 2. $-(x^9+18x^8+27x^7+29x^6-24x^5-36x^4+5x^3-9x^3-2)_{\bullet}$
- 5. 0. 6. $45x^6 + 168\Sigma x^4y^2 432x^2y^2z^2$. 7. $(ax + by + cz)^3$.

9
 a

5.

7.

9.

11.

14.

17.

19.

22.

1.

2.

4.

5.

6.

7. 8.

9.

10.

11.

12.

1.

13.

Exercise xi.

- 1. $x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^7$, $x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7$, $x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8xy^7 + y^8$, $x^{12} + 12x^{11}y + 66x^{10}y^2 + 220x^9y^3 + 495x^8y^4 + 792x^7y^5 + 924x^6y^6 + 792x^5y^7 + &c.$
- 2. The signs will be alternately positive and negative.
- 3. $a^5 5a^4b + 10a^3b^2 10a^2b^3 + 5ab^4 b^5$, $a^4 8a^3b + 24a^2b^2 32ab^3 + 16b^4$, same as last, terms in inverse order. 4. $1 + 6m + 15m^2 + 20m^3 + 15m^4 + 6m^5 + m^6$, $m^5 + 5m^4 + 10m^3 + 10m^2 + 5m + 1$, $64m^3 + 192m^5 + 240m^4 + 160m^3 + 60m^2 + 12m + 1$. 5. 120.
- 6. $x^{8} 4x^{6}y + 6x^{4}y^{2} 4x^{2}y^{3} + y^{4}$, $a^{5} 10a^{4}b^{2} + 40a^{3}b^{4} 80a^{2}b^{6} + 80ab^{8} 32b^{10}$, $a^{18} 12a^{15}b^{3} + 60a^{12}b^{6} 160a^{9}b^{9} + 240a^{6}b^{12} 192a^{3}b^{15} + 64b^{18}$.
- 7. $495a^8b^4 792a^7b^3$.

Exercise xii.

- 1. $1+x^3+x^4+x^6+x^{17}$. 2. $1+x+x^2+x^3+x^4+x^6+x^7+x^8+x^9+x^{15}$. 3. $x^4+2x^3-85x^2-86x+1680$, $2x^9-3x^6+4x^5+x^4+x^3-2x^2-x+2$. 4. $x^6-57x^4+266x^3-1$. 5. $18x^8+21x^7+8x^6+x^5+63x^3+96x^2+48x+6$. 6. $1-\frac{1}{2}x^2-\frac{1}{8}x^4$. 7. $6x^{12}-4x^9-5x_0^8-2x^7+9x^6-10x^5+x^4-5x^3+5x^2+x+4$. 8. $x^3+9x^2+10x+11$.
- 9. $x^4 + 3x^3$. 10. $x^4 3x^3$. 11. $x^4 + 8x^3 8x$.
- 12. (1), -1, (2), -1, (3) -4. 13. -1.

$x^2 - 2).$

 $(+cz)^3$.

 $y^6 + y^7$ $3x^2y^6 +$

 $x^8y^4 +$

rms in

 $-6m^{b}+$ $92m^{5}+$

h4 _

 $+x^{7}+$

 $57x^4 +$

 $96x^{2} +$

 $-2x^{7}+$

0x + 11.

Exercise xiii.

1. $3x^3-2x^2-4x+2$.

2. $5x^4 - 4x^3 + 3x^3 - 2x + 1$.

8. $a^4 + 2a^3 + 3a^2 + 4a + 5$. 4. $x^3 + 2x^2y + 3xy^2 + 4y^3$.

5. $a^3 + 3a^2x + 3ax^2 + x^3$. 6. $4x^2 + 8x + 7$, -13x - 20.

7. $10x^2 + 5x^2 + 1$, 10x + 10. 8. $x^2 - xy + y^2$.

9. x^2-a^2 . 10. $x^4+(1-a)x^3+(1-a+b)x^2+(1-a)x+1$.

 $3x^3 + 2x^2 + x + 1\frac{1}{2}$, $3\frac{1}{2}(x+1)$. 12. $5x^2 + 13xy + 12y^3$.

11. 13. $6x^6 - x^4 - x^3 + x^2 - x + 6$, -1.

 $2x^4 - 3x^3 + 4x^2 - 5x + 6$. 15. a+b. 16. x+y+z. 14.

17. $10x^3$, $10(x^4-20)$.

18. $mx^3 + nx^2 + a$.

19. $1+x-5\frac{3}{4}x^2-3x^3+9x^4$. 20. 38. 21. -4.

-20, 23, $15y^4$, 24, 85x+8, 25, 755. 22.

Exercise xiv.

1. $y^3 - 2y^2 - 4y - 9$, if y = x - 1.

2. $y^3 + 3y + 5$, if y = x + 1. 3. $y^4 + 81$, if y = x - 2.

4. $y^4 + 4y^3 - 43y^2 + 92y - 67$, if y = x + 2.

5. $8y^5 + 30y^4 + 119y^3 + 238y^2 + 249y + 106$, if y = x - 2.

6. $y^4 - \frac{59}{8}y^2 - \frac{91}{8}y + \frac{845}{256}$, if $y = x - 1\frac{3}{4}$.

7. $y^3 - \frac{16}{3}y + \frac{1.65}{37}$, if $y = x - \frac{2}{3}$.

8. $(x-2y^3) - 8y(x-2y)^2 - 18y^2(x-2y) - 24y^3$.

9. $(x-y)^5 - 10y^2(x-y)^3 - 20y^3(x-y)^2 - 10y^4(x-y)$.

10. $(2x+y)^3+2y^2(2x+y)+5y^3$.

11. $512y^3 - 3y - \frac{19}{144}$, if $y = \frac{1}{8}x - \frac{1}{16}$.

12. $y^4 - 24y^2 + 49y - 28$, if y = x + 2.

EXERCISE XV.

1. a^2b , $+ab^2+a^2c+b^2c+bc^2+ac^3$, $(a-b)^2+(b-c)^2+(c-a)^3$, a(b-c)+b(c-a)+c(a-b), ab(x-c)+bc(x-a)+ac(x-b), $abc(a^2b+a^2c+b^2c+ab^2+ac^2+bc^2)$,

$$(a+b)(c-a)(c-b)+(b+c)(a-b)(a-c)+(c+a)(b-c)(b-a).$$

 $(a+c)^2-b^2+(b+a)^2-c^2+(c+b)^2-a^2,$
 $a(b+c)^2+b(c+a)^2+c(a+b)^2.$

8.

9.

11.

12.

13.

15.

1.

5.

12.

15.

16.

18.

22.

27.29.

1

8

2.
$$abc+bcd+cda+dab$$
,
 $a^{2}(b+c+d)+b^{2}(c+d+a)+c^{2}(d+a+b)+d^{2}(a+b+c)$,
 $(a-b)+(a-c)+(a-d)+(b-c)+(b-d)+(c-d)$,
 $a^{3}(a-b)+b^{2}(b-c)+c^{2}(c-d)+d^{2}(d-a)$.

- 19. x and y. 14. ax and by, x, y, z. 15. f and h.
- 16. x and y, also x and -z, and y and -z.
- 17. a, b and -c. 18. $x^2, -y^2 \text{ and } z^2.$ 19. b and c.
- 20. a and c. 21. a and b. 22. a² and 2ab.
- 23. a^2b and abc. 24. a^2b , abc. 25. x^5 , x^4y , and x^3y^2 ; same; x^4y , x^3y^2 . 26. Not symmetrical.
- 28. a4, a3b, a2bc, abcd; a4, a2b2. 29. a3, a2b.

Exercise xvi.

- 1. $4(a^2+b^2+c^2)$. 2. $3(a^2+b^2+c^2)+2(ab+bc+ca)$.
- 3. $4(a^2+b^2+c^2+d^2)$. 4. $2(a^2+b^2+c^2)$.
- 5. $4(x^2+y^2+z^2+n^2)$. 6. $2(a^3+b^3+c^3)+6\Sigma a^2b-12abc$.
- 7. $14(x^2+y^2+z^2)+2(xy+yz+zx)$. 8. 24abcmnr.
- 9. 2abc(a+b+c). 10. $a^2b^2+b^2c^2+c^2a^2$.

Exercise xvii.

- 1. 115. 2. $pa^3 3qa^2 + 3ra s$. 3. 2. 4. -17.3538.
- 5. 1, $2(3a^2+1)$. 6. 0 or $2y^n$, $2y^n$, 0. 7. 36.
- 8. $-(b^2+a^2)^3-(3b^2)^3$. 9. $-15a^4$. 10. $3888a^4b^4$.
- 11. $a^2b^2(a+b)$, 12. 0. 13. $2a^3-3ab(a-b)$, $2b^3+6ab(a+b)$, $2(a^3+b^3)$.

EXERCISE XX.

- 1. 3. 2. 1. 3. $-1\pm2\sqrt{-2}$. 4. 2. 5. 36. 6. 11.
- 7. $-1\frac{19}{27}$ 13. p = -q, q = 6. 14. p = -46, q = 14.

c)(b-a).

$$dh$$
.

and
$$c$$
. d $2ab$.

ad
$$x^3y^2$$
; etrical.

$$bc+ca$$
).

$$q = 14.$$

Exercise xxi.

1.
$$b = -3$$
, $c = 8\frac{3}{3}$, $d = -24$. 2. $c = -20\frac{1}{4}$, $d = -13\frac{1}{2}$, $e = 60\frac{3}{4}$.

3.
$$b=-3$$
, $c=-10$. 4. $a=3$, $b=0$, $c=-57$. 5. $a=-2$, $c=24\frac{1}{2}$, $e=0$. 6. $c=-106\frac{1}{2}$, $d=202\frac{1}{2}$. 7. $a=200$, $b=-810$, $c=639$. 8. $a=4$, $c=-27$, $d=7$, $e=30$.

9. 399. 10.
$$x^3 - (p+3)x^2 + (2p+q+3)x - (p+q+r+1)$$
.

11.
$$x^3 - (p-3)x^2 - (2p-q-3)x - (p-q+r-1)$$
.

12.
$$rx^3 - (3r - q)x^2 + (3r - 2q + p)x - (r - q + p - 1)$$
.

13.
$$x^3 - qx^2 + prx - r^2$$
. 14. $x^3 - (p^2 - 2q)x^2 + (q^2 - 2pr)x - r^2$.

15.
$$x^3 - 2qx^2 + (pr + q^2)x + r^2 - pqr$$
. 16. $rx^3 - (pq + 3r)x^2 + (p^3 - 2pq + 3r)x - (pq - r)$, 38. -1. 34. 1. 35. -1. 36. 1. 37. -1. 38 and 39. $a + b + c + d$. 40. -1.

Exercise xxiii.

1.
$$5b^4+15c^4$$
. 2. 6. 3. 3. $4.-\{A(b+c+d)+...+...+...\}$.

5. 0. 6.
$$5b^4 - 30ab^3 + 30a^2b^2 - 5a^3b$$
. 8. 0. 9. 0. 10. 0. 11. 1.

12.
$$(a+b+c+d)$$
. 13. -1. 14. $a+b+c+d$.

15.
$$(a+b+c)(a^2+b^2+c^2+ab+bc+ca)+abc$$
.

16.
$$(a+b+c)^2(a^2+b^2+c^2)+2abc(a+b+c)$$
. 17. $a+b+c+d$.

18.
$$(a+b+c+d)^2$$
. 19. $(a+b+c+d)\{(a+b+c+d)^2-(ab+ad+ac+bc+bd+cd)\}+abcd$. 20. $a+b+c$. 21. 3.

22. **-1.** 23. 0. 24. 0. 25. 0. 26.
$$1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$
.

27.
$$1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3$$
. 28. $1 + x + x^2 + x^3$.

29.
$$1-2x+3x^2-4x^3$$
. 30. $1+\frac{1}{3}x-\frac{1}{9}x^2+\frac{5}{81}x^3$.

Exercise xxiii. (a)

1.
$$(p-p'+q)^2 = (p+1)(p^2-pp'-q)$$
.

8.
$$9(p^2-q)(r^2-qt) - (pr-t)^2 = 9\{8(p^2-q)(qr-pt) - (pq-r)(pr-t)\} \times \{8(pq-r)(r^2-qt) - (pr-t)(qr-pt)\}.$$

9.
$$x^{n}(4x^{3}+3px^{2}+3qx+r) \div (x^{4}+4px^{3}+6qx^{2}+4rx+t)$$
.

14.

17.

18.

20.

23.

24.

25.

27.

28.

30.

1.

2.

3. 4.

5.

6.

7. 9.

10.

11.

12.

14.

15.

17.

10.
$$-4p$$
, $(4p)^2 - 2(6q)$, $-(4p)^3 + 3(4p)(6q) - 3(4r)$, $(4p)^4 - 4(4p)^3(6q) + 4(4p)(4r) + 2(6q)^2 - 4t$, $-(4p)^5 + 5(4p)^3(6q) - 5(4p)^2(4r) - 5(4p)(6q)^2 + 5(4p)t + 5(6q)(4r)$, $(4p)^6 - 6(4p)^4(6q) + 6(4p)^3(4r) + 9(4p)^2(6q)^2 - 6(4p)^2t - 12(4p)(6q)(4r) - 2(6q)^3 + 6(6q)t + 3(4r)^2$.

- 11. $s_0s_4-4s_1s_3+3s_2^s$, $s_0s_6-6s_1s_5+15s_2s_4-10s_2^s$, where s_0 , s_1 , &c., are the coefficients of the terms (taken in order) of the quotient in No. 10.
- 12. $x^{n}(4x^{3}-28x+1) \div (x^{4}-14x^{2}+x-38)$; $s_{1}=0$, $s_{2}=28$, $s_{3}=-3$, $s_{4}=544$, $s_{5}=-70$, $s_{6}=8683$; $\Sigma(a-b)^{4}=4526$, $\Sigma(a-b)^{6}=264122$.

Exercise xxiv.

1.
$$(3m+2)^2$$
, $(c^m-1)^2$. 2. $(y^3-z^3)^2$, $4y^2(2x+y)^2$.

8.
$$(3ab+2c)^2$$
, $4y^2(3x-y)^2$ 4. $(\frac{1}{2}x^2-4yz)^2$, $(\frac{1}{2}a^2-\frac{1}{3}b^2c^2)^2$

5.
$$(a+b+c)^2$$
, $(3x^4-\frac{1}{4}y^2)^2$. 6. $(z-x+y)^2$, $\left\{\left(\frac{a}{b}\right)^m-\left(\frac{b}{a}\right)^m\right\}^2$.

7.
$$(x^2-z^2)^2$$
. 8. $(x-y)^4$. 9. $(a+b)^2$, $(\frac{3}{4}p^3-\frac{4}{3}q^3)^2$.

10.
$$(x-y)^2$$
. 11. $4(x^2+y^2)^2$. 12. $(x+y)^4$.

18.
$$\left\{ \left(\frac{a}{b} \right)^m - \left(\frac{b}{a} \right)^n \right\}^2$$
 14. $(a-b+c)^2$.

15.
$$(a^2-b^2-c^2)^2$$
. 16. $(2a-2c)^2$. 17. $(2a^2-3b+4c)^2$.

EXERCISE XXV.

1.
$$(7a+2b)(7a-2b)$$
. 2. $(3a+\frac{1}{2}b)(3a-\frac{1}{2}b)$.

3.
$$(8a-2b)(9a^2+4b^2)(8a+2b)$$
. 4. $(10x-6y)(10x+6y)$.

5.
$$5b(a+2xy)(a-2xy)$$
 6. $(8x^3-4y^2)(8x^3+4y^2)$

7.
$$(\frac{3}{4}c+1)(\frac{3}{4}c-1)$$
. 8. $(2y^2-\frac{2}{3}xz)(2y^2+\frac{2}{3}xz)$.

9.
$$(8a-1)(8a+1)(9a^2+1)$$
. 10. $(a-2b)(a+2b)(a^2+4b^3)$.

11.
$$(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)$$
.

12.
$$(a+b-c)(a-b+c)$$
. 13. $(a+2b-3x+4y)(a+2b-3x+4y)$.

14.
$$(x^2-y^2)^2$$
 15. $(x+y+2z)(x+y-2z)$. 16. $16(x+1)(1-x)$.

17.
$$(x+y+z)(x+y-z)(z-x+y)(z+x-y)$$
.

(4p)t+

 $(6q)^2 -$

ere so, s1,

order) of

 $s_2 = 28, s_2$

4 = 4526

-y)2.

)2

- 1b2c2)2

 $\left(\frac{b}{a}\right)^m$ 3.

 $(x+y)^4$.

 $3b + 4c)^2$.

(x+6y).

2).

z).

 $4b^{2}$).

18.
$$4xy(x+y)(x-y)$$
. 19. $(x-z+y)(x-z-y)(x+z+y)(x+z-y)$.

20.
$$4(a+c)(b+d)$$
. 21. $24x(1+2x^2)$. 22. $8ab(a+b)^2$.

23.
$$(a+b+c+d)(a+c-b-d)(a-b-c+d)(a+b-c-d)$$
.

24.
$$(x+y+z)(x-y-z)(x+y-z)(x-y+z)$$
.

25.
$$\epsilon a^3b^3(a^6-8a^3b^3+b^6)$$
. 26. $(a^3+b^3)(a^3-b^3)^3$.

27.
$$(x^2+y^2+z^2)(x^2+y^2+z^2-2xy-2yz-2zx)$$
.

28.
$$(x+2z)(x-2y)$$
. 29. $(a+b-c)(a-b+c)(b+c+a)(b+c-a)$.

30.
$$(x-y+z)(x+y-z)(x+y+z)(x-y-z)$$
.

EXERCISE XXVI.

1.
$$(x-7)(x+2)$$
, $(x-7)(x-2)$, $(x+4)(x+3)$.

2.
$$(x-3)(x-5)$$
, $(x-7)(x-12)$, $(x-12)(x+5)$.

3.
$$2(2x-5)(x+2)$$
, $3(3x-20)(x-10)$.

4.
$$\frac{1}{3}(x+12)(\frac{1}{2}x-3)$$
, $5(x+1)(5x+3)$, $(3x^3-4)(9x^3-5)$.

5.
$$(\frac{1}{4}x+4)(\frac{1}{4}x+3)$$
, $4(4x-5)(x+1)$.

6.
$$(x-a)(x+a)(x-b)(x+b)$$
, $\{2(x+y)-11\}\{2(x+y)+9\}$.

7.
$$(x^2+y^2-a^2)(x^2+y^2+b^2)$$
. 8. $(a+b-3c)(a+b+c)$.

9.
$$(x+y)(1+x+y)\{x+y+(x-y)^2\}$$
.

10.
$$(a+b)(1-a-b)\{a+b+(a-b)^2\}$$
.

11.
$$(x^2 + xy + y^2 + 2x + y) \times \{x^2 + xy + y^2 - (x + 2y)\}$$
.

12.
$$(a-6b+3c)(a+b-c)$$
. 18. $(x^3+y^3+a^3)^2-b^6=\&c$.

14.
$$(x^2-10x-12)(x^2-10x+8)$$
.

15.
$$(x^2-14x+10)(x-9)(x-5)$$
. 16. $(x^2-y^2)^2$.

17.
$$(z+1)(z-1)(z^2-2)$$
, $(x^2-3)(x^2+1)$,

$$(9x^4+5y^2)(3x^4-2y^3)$$
. 18. $(c^m+2)(c^m-1)$, $(x^3-2)(x+1)(x^2-x+1)$, $(x^m-4y^n)(x^m+2y^n)$,

19.
$$(x^m - ay^n)(x^m + by^n)$$
.

Exercise xxvii.

1.
$$(x-by)(bx-y)$$
. 2. $3(x+2y)(2x-y)$.

3.
$$4(14x-5y)(x-y)$$
. 4. $4(14x+5y)(x-y)$.

5.
$$(14x-y)(x-20y)$$
. 6. $4(7x-5y)(2x-y)$.

7.
$$2(28x+y)(x-10y)$$
. 8. $4(14x-5y)(x+y)$.

9.
$$(8x-5y)(7x-4y)$$
. 10. $(8x+5y)(7x-4y)$.

11.
$$2(3x+y)(x-3y)$$
. 12. $(3x-2y)(2x+3y)$.

13.
$$2(28x+y)(x+10y)$$
, 14. $2(28x-5y)(x-2y)$.

15.
$$2(28x+5y)((x-2y))$$
. 16. $(56x-5y)(x-4y)$.

17.
$$2(4x-y)(7x-10y)$$
. 18. $4(14x+y)(x-5y)$.

19.
$$3(3x+y)(4x-5y)$$
, 20. $(8x+5y)(9x-8y)$.

Exercise xxviii.

1.
$$(5x-7)(2x+3)$$
. 2. $(5x+3)(2x-7)$. 3. $(5x-3)(2x+7)$.

4.
$$(2x-5)(3x-11)$$
. 5. $(4a+1)(3a-2)$. 6. $(3x-7)(4x-3)$.

7.
$$(3x+7)(4x+3)$$
. 8 $(5a^3-4b^2)(3a^2+5b^3)$.

9.
$$(4x+1)(3x-1)$$
. 10. $3y^2(x-y)(3x+2y)$.

11.
$$(2x+3y)(2x+y)$$
. 12. $x^2(3b+x)(2b-3x)$,

13.
$$(3x^2+7y^2)(2x^2-5y^2)$$
. 14. $(2x^2-9)(x^2+5)$.

15.
$$(2x+y)(2x-y)(x-3y)(x+3y)$$
.

16.
$$(2x+4+y)(2x+4-y)(x+2-3y)(x+2+3y)$$
.

17.
$$169xy$$
. 18. $(19y^2 + 60xy - 6x^2)(35x^2 - 12xy + 30y^2)$.

19.
$$2(4xy-3x^2-3y^2)(61x^2-49xy+61y^2)$$
.

20.
$$2(5x^2 + 4xy + 10y^2)(x^2 + 10xy + 2y^2)$$
.

1. (7

8. (8

5. (9

7. (4

9. (8

10. (1

11. (2

12. (

1. x

. .

4. (x

5. (2

6. T

7. 16

8.

9.

10.

11.

T.L.

12.

13.

14.

15.

 $^{n}-1),$

(2x+7).

(4x-3).

30y2).

Exercise xxix.

1.
$$(7x+6y+8)(x-y-z)$$
. 2. $(5x-5y-22)(4x+y+4)$.

8.
$$(3x^2+4y^2+13)(x^2-y^2-1)$$
. 4. $(4x+5y)(5x-4y+7)$.

5.
$$(9x+8y-20)(8x-y-1)$$
. 6. $(x+3y)(x-4y-5)$.

7.
$$(4x+3y-2)(2x+3y+z)$$
. 8. $(3x-2y-2z)(2x-3y+4z)$

9.
$$(8x^2-2y^2+5z^3)(2x^2+5y^2-5)$$
.

10.
$$(15x^2+8y^2+5z^2)(x^2-2y^2+3z^2)$$
.

11.
$$(2a-5b-7c)(2a+3b+3c)$$
.

12.
$$(a-b+c)(a+b-c)(a+b+c)(a-b-c)$$
.

EXERCISE XXX.

1.
$$x^2 + \frac{7}{2} \pm \frac{3}{2} \sqrt{5}$$
, $2x^2 + \frac{7}{2} \pm \frac{3}{2} \sqrt{5}$. 2. $x^2 + \frac{7}{2} y^2 \pm \frac{3}{2} y^2 \sqrt{5}$, $\frac{1}{2} (6x^2 + 5y^2 \pm y^2 \sqrt{18})$. 3. $\frac{1}{4} (4x^2 + 5 \pm \sqrt{18})$, $\frac{1}{16} \{6(x+y)^2 + 5z^2 \pm z^2 \sqrt{18}\}$.

4.
$$(x^2 + \frac{1}{2}y^2)(x^2 + 6\frac{1}{2}y^2), (x^2 + \frac{11}{2}y^2)(x^2 + \frac{3}{2}y^2).$$

5.
$$(2x^2+4\frac{1}{4}y^2)(2x^2+\frac{1}{4}y^2)$$
, $\frac{1}{4}\{4(a+b)^2+5c\pm\sqrt{13}\}$.

6.
$$\frac{1}{12}(6x^2+5y^2)(6x^2+11y^2)$$
, $(6x^2+5)(6x^2+11)$.

7.
$$\frac{1}{6}(5x^2+10\pm3\sqrt{10})$$
, $(2a^2+3\pm2\sqrt{2})$.

8.
$$\{2(x+y)^2 + (3\pm2\sqrt{2})z^2\}$$
;
 $\frac{1}{8}\{10x^2 + (10\pm3\sqrt{10})y^2\}\{10x^2 + (20-6\sqrt{10})y^2\}$.

9.
$$\frac{1}{9}(9x^2+7\pm\sqrt{13}), \frac{1}{2}\{2x^2+(6\pm\sqrt{16})(y+z)^2\}.$$

10.
$$\frac{1}{2}(2x^2+6\pm\sqrt{6})$$
, $\frac{1}{7}(7x^2+20\pm\sqrt{85})$.

11.
$$\frac{1}{2} \{4x^2 + (9 \pm \sqrt{23})y^2\}$$
.

12.
$$\frac{1}{6} \{ 7(a-b)^2 + 8c^2 \pm c\sqrt{29} \}, \frac{1}{6} \{ 8a^2 \pm b^2 \sqrt{9} \}.$$

13.
$$\frac{1}{3} \{3x^2 + (3 \pm \sqrt{3})y^2\}, \frac{1}{3} \{3(a+b)^2 + (3 \pm \sqrt{3})(a-b)^2\}.$$

14.
$$\{7a^2 + (6 \pm \sqrt{14})b^2\}, (5m^2 + 9n^2)(5m^2 + 3n^2).$$

15.
$$\{7(m+n)^2 + (6 \pm \sqrt{14})(m-n)^2\}.$$

Exercise xxxi.

 (x^2)

 $(\frac{1}{2}x)$

 $(5\alpha$

(3a

(11

8(2

(2a

 (x^2)

 (x^2)

 (x^2)

 (x^{2})

 (x^2)

2(:

(x

1. (x

 $3. \{x$

5. 2a

7. (4

9. (x

(x

(x

(a

2

15. x^{3}

16. (8

10.

11.

12.

13.

17.

5.

7.

9.

10.

12.

14.

15.

16.

17.

19.

20.

21.

22.

23.

1.
$$(x^2 \pm 2xy + 3y^2)$$
, $(x^2 \pm xy - y^2)$, $(x^2 \pm xy + y^2)$.

2.
$$(x^2 \pm 2xy + 2y^2)$$
, $(4x^2 \pm 3xy + y^2)$, $(\frac{1}{2}x^2 \pm xy + y^2)$.

8.
$$(x^2 \pm \sqrt{2x+1}), (x^2 \pm \sqrt{6xy+3y^2}), (1\pm 2y-4y^2).$$

4.
$$(x^2+3x+1)$$
, $x^2+\sqrt{6x+3}$, $\frac{1}{2}x^2+2xy+y^2$.

5.
$$(y^2 \pm \frac{11}{2}x^2 \pm \frac{5}{2}x^2 \sqrt{5}), (x^4 + 2y^4 \pm 2x^2y^2), x^2 + 4 \pm 2x.$$

6.
$$(2x^2+y^2\pm\frac{7}{2}xy)$$
, $(x^2+y^2\pm\frac{1}{4}xy\sqrt{39})$. $(2x^2+1\pm2x)$.

7.
$$(x^{2m} + 8y^{2m} \pm 4x^m y^m), x^{2m} + 2y^{2m} \pm 2x^m y^m),$$

 $(\frac{1}{2}x^2 - \frac{3}{4}y^2 \pm xy \sqrt{5}).$

8.
$$(2x^2-1\pm 2x)$$
, $-(\frac{1}{2}x^2-6y^2+xy)(\frac{1}{2}x^2-6y^2-xy)$, $(x^2+a^2y^2\pm axy\sqrt{2})$.

9.
$$mx^2 - ny^2 \pm xy\sqrt{p}$$
, $x^{2m} + 2^{m-1}y^{2m} \pm 2^my^m$.

10.
$$4x^2 - 3 \pm x$$
, $2x^2 - 2 \pm 2x\sqrt{2}$, $-(8x^2 - 2y^2 + xy)(8x^2 - 2y^2 - xy)$.

11.
$$2x^2 \pm 4xy - 3y^2$$
, $x^2 \pm 2x + 5$.

12.
$$2(a^2+ab+b^2)^2$$
, $(2a^2+a+1)^2$.

13.
$$\{(x+y)^2+3(x+y)z+z^2\}\{(x+y)^2-3(x+y)z+z^2\}$$

14.
$$(a+b)^2 + \frac{7}{5}c^2 + \frac{3}{5}c^2 \sqrt{5}$$
.

15.
$$\{4a^2+5a(b-c)+2(b-c)^2\}\{4a^2-5a(b-c)^{-1}(b-c)^2\}$$
.

16.
$$4(a^2+5ab-2b^2)(b^2+5ab-2a^2)$$
.

17.
$$\{(x^2+y^2-xy)^2\pm 3(x^2+y^2-xy)(x+y) + (x+y)^2\}.$$

18.
$$\{(a^2+ab+b^2)+\frac{7}{2}(a-b)^2\pm\frac{3}{2}(a-b)^2\sqrt{5}\}.$$

19.
$$(4a^2 \pm 2a + 1)$$
, $x^2 \pm 7x + 4$.

20.
$$(x^2+9xy+9y^2)$$
, $(1\pm 3z+5z^2)$.

21.
$$4(3x^2-2x+1)(x^2-2x+3)$$
.

Exercise xxxii.

1.
$$(x^2+3)(x+3)(x-1)$$
. 2. $2(x^2+3)(x^2+x-3)$

8.
$$(x^3+4)(x+4)(x-1)$$
. 4. $(x+2)(x-2)(3x^2+x+12)$.

5.
$$(x^2-8)(5x^2+4x+15)$$
. 6. $(x^2+6)(10x^2+5x-60)$.

7.
$$(\frac{1}{2}x^2 + \frac{1}{10})(\frac{1}{2}z^2 + 40x - \frac{1}{10})$$
. 8. $(5x^2 - 1)(5x^2 - 8x + 1)$.

9.
$$(5x^2-8)(7\frac{1}{2}x^2-6x-12)$$
.

-2x.

2x).

 $-c)^{2}$.

x+12).

10.
$$(3x^2-4)(21x^2-13x-28)$$
. 11. $(18x^2+1)(45x^2+\frac{9}{3}x+\frac{5}{2})$.

12.
$$(11x^2+1)(22x^2-3x-2)$$
. 13. $(\frac{1}{2}x^2-\frac{2}{5})(\frac{1}{2}x^2+\frac{1}{5}x+\frac{2}{5})$.

14.
$$8(x^2-2y^2)(10x^2-4xy+20y^2)$$
.

15.
$$(2x^3-5y^2)(12x^2-6xy+30y^2)$$
.

16.
$$(x^3-16y^2)(2x^2+\frac{1}{2}xy+32y^2)$$
.

17.
$$(x^2 - \frac{6}{5})(11x^2 + 10x + \frac{6.6}{5})$$
. 18. $10(x^2 + 2)(4x^2 + 3x - 8)$.

19.
$$(x^2-6y)^2(13x^2-12xy+78y^2)$$
.

20.
$$(x^2+4y^2)(3x^2+3xy-12y^2)$$
.

21.
$$(x^2-3y^2)(5x^2+4xy+15y^2)$$
.

22.
$$2(x^2-2y^2)(2x^2-7xy+2y^2)$$
.

23.
$$(x^2 + \frac{1}{5}y^2)(x^2 + 80xy - \frac{1}{5}y^2)$$
. 24. $(x^2 - 6y^2)(2x^2 - xy + 12y^2)$.

Exercise xxxiii.

1.
$$(x^2+3x+27)(x^2-9x+27)$$
. 2. $x^2+x(1\pm \sqrt{3})+4$.

3.
$$\{x^2+1+\frac{1}{2}(1\pm\sqrt{5})x\}$$
. 4. $x^2+1-x(2\pm\sqrt{5})$.

5.
$$2x^2+2-3x\pm x\sqrt{23}$$
. 6. $(x^2+15x-5)(x^2-x-5)$.

7.
$$(4x^2-2)(4x^3-6x-2)$$
. 8. $(x^2+8x+4)(x^2-3x+4)$.

9.
$$(x^2+7x-2)(x^2-x-2)$$
.

10.
$$(x^2+5xy+3y^2)(x^2-xy+3y^2)$$
.

11.
$$(x^2+10x-1)(x^2+2x-1)$$
.

12.
$$(x^2+7xy+y^2)(x^2-3xy+y^2)$$
.

13.
$$2x^2 + xy - 5y^2 \pm xy \sqrt{46}$$
. 14. $(x^2 + 7xy - y^2)(x^2 - xy - y^2)$.

15.
$$x^2 + 2y^2 + 3xy \pm xy\sqrt{3}$$

16.
$$(3x^2+10xy-2y^2)(3x^2-4xy-2y^2)$$
.

17.
$$\int_{1}^{1} \{11x^2 + 22y^2 + 5xy \pm \frac{28}{11}xy\sqrt{11}\}.$$

Exercise xxxiv.

1.
$$(y-z)(x^3-y)$$
. 2. $(by+c)(ax+by-c)$.

8.
$$(x^2+a)(x+a)(x-a)$$
. 4. $(2x-a)(x-2b)$.

5.
$$(x+3a)(x+2b)$$
. 6. $(x-b^2)(x-a)(x+a)$.

7.
$$(x-b)(x+b)(x-a)(x^2+ax+a^2)$$
. 8. $(2x+3a)(4x+5b)$.

9.
$$(a+bx)(a-bx+cx^2)$$
 10. $(a-bz)(a+bx+cx^2)$.

11.
$$(ax-d)(bx^2+cx-f)$$
. 12. $(px-q)(x^2-x-1)$.

13.
$$(a-b-c)(a+2b+3c)$$
. 14. $(x+a)(x^2+x+1)$.

15.
$$(mx-n)(px^2+qx-r)$$
. 16. $(x-a)(x-b)(x-c)$.

17.
$$(x+a)(x-b)(x-c)$$
. 18. $(x+a)(x+b)(x-c)$.

19.
$$(a^2+z)(x-ay)(x^2-y)$$
. 20. $(abx+cdy-cfz)(ax+by)$.

21.
$$(ax+c)(ax^2-bx+c)$$
. 22. $(x-y)(x+y)(mx-ny+rz)$

21.
$$(ax+c)(ax^2-bx+c)$$
. 22. $(x-y)(x+y)(mx-ny+c)$
23. $(mx-ny)(ax+by+cz)$. 24. $(mx+n)(ax-bcx+a)$.

25.
$$(c^2-xz)(b^2-yz)(a^2-xy)$$
. 26. $(x^3-m^2x^2-a)(x^2-n+n^2)$

27.
$$(1+x-x^2)(1-ax+bx^2-cx^3)$$
.

28.
$$(ax-dy)(ax-by)(ax+cy)$$
. 29. $(mx+q)(px+n)(m^2x-n)$.

30.
$$(mx+ny)(mx-ny)(p^2x^2+q^2y^2)(x+1)$$
.

Exercise xxxv.

1.
$$(a+x)(a-b)$$
. 2. $(ax+by)(bx-ay)$.

3.
$$(x-a)(x+a)(x^2+ax+a^2)$$
. 4. $x(a+x)(a^2+ax+x^2)$.

5.
$$(ax-b)(cx+d)$$
. 6. $(5x^2-1)(5x^2-x+1)$.

7.
$$(a-b)(a+b+x-c)$$
. 8. $(a^2+b)(a+b)$.

9.
$$(x-y)(x+y)^3$$
. 10. $(x-y+1)(x^2+xy+y^2)$.

11.
$$(b-2x)(2+bx)$$
. 12. $(x-1)(x+2)^2$.

13.
$$(p-q)(p^2-2q^2)$$
. 14. $(a-1)(a^2+2a+2)$.

15.
$$(ab^2-1)(3ab^2+1)$$
. 16. $(y-1)^2(y+2)$.

17. (

19. (3

21. (

23. (8 25. (7

27. (2

(1

29.

1. (2

2. (s

(i

3. (

5
 y

9. (

10. (a

12. (

13. (4

14. (

16. (

20.

1. 8

3. 3

17.
$$(a+b)(2a^2-3ab+2b^2)$$
. 18. $(b^m-1)(b^{2m}+2b^m+2)$.

19.
$$(y^n + z^n)(y^{2n} - 3y^n z^n + z^{2n})$$
. 20. $(a-b)(a^2 + ab - 3b^2)$.

21.
$$(a^m-c^n)(a^m-2c^n)$$
. 22. $(ax-b)(x^2-ax-b)$.

23.
$$(5x^n - 3a^2)(7x^n + 3a^2)$$
. 24. $(ab + bc - ca)(ab - bc + ca)$.

25.
$$(m-b)(m+b)(a-m)$$
. 26. $(\frac{1}{3}-3a^2)(1-3a)(1+3a)$.

27.
$$(x-y-z)(x^2-2xy+y^2+z)$$
. 28. $(6m-7n)(4m^2+n^2)$.

29.
$$(x^m + y^n)(x^n + y^m)$$
. 30. $(x^2 + xy + ax + y^2)(x^2 + xy - ax - y)^2$.

Exercise xxxvi.

1.
$$(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)$$
, $(x-1)(x^2+x+1)$, $(x+2)(x^2-2x+4)$, $(2a-3x)(4u^2+6ax+9x^2)$, $(2+ax)(4-2ax+a^2x^2)$.

2.
$$(x-a^2)(x^4+x^3a^2+x^2a^4+xa^6+a^8)$$
, $(3a-4)(9a^2+12a+16)$, $(a^3-b^2)(a^3+b^2)(a^6+b^4)$, $(x^2-2y)(x^8+2x^6y+4x^4y^2+8x^2y^3+16y^4)$.

3.
$$(a-b)$$
. 4. $x+4y$. 5. $(x+y)(x^2+y^2)(x^4+y^4)$

6.
$$5(y^2-x^2)(7x^4-11x^2y^2+7y^4)$$
, $(a^2-2b)(a^2+2b)(a^4+4b^2)$.

7.
$$y(x-y)(y+1)$$
. 8. $(x-a)(x^2+ax+a^2)(a+b)$.

9.
$$(a+b)(m+a)(m^2-am+a^2)$$
.

(x+5b).

 $\cdot hy).$

/+rz)

 $2-n+n^2).$

 n^2x-n).

 x^2).

-1).

 $+y^{2}$).

10.
$$(x^2+xy+y^2)(x^2-xy+y^2)(x^2+2xy-y^2)$$
.

11.
$$(a^2+bc)(a^4-4a^2bc+7b^2c^2)$$
.

12.
$$(x-a+b)\{(x-a)^2-(x-a)b+b^2\}.$$

13.
$$(x^2-2xy+4y^2)(x+2y+4xy)$$
.

14.
$$(2x+3y)(2x-3y)^2$$
. 15. $(1-2x)(1+4x^2)$.

16.
$$(a^2 + abc + b^2c^2)(a+bc)(a^2 - abc + b^2c^2)$$
.

Exercise xxxvii.

1.
$$8(x+y)(y+z)(z+x)$$
. 2. $(a-b)(b-c)(a-c)$.

3.
$$3(a^2-b^2)(b^2-c^2)(c^2-a^3)$$
. 4. $(x+y)(y+z)(z+x)$.

5.
$$3(a+b)(b+c)(c+a)$$
.

6.
$$(a+b+c)(a-b)(b-c)(c-a)$$
.

7.
$$(a+b)(b+c)(c+a)$$
.

8.
$$(a^2-b)b^2-c)(c^2-a)$$
.

9.
$$(a+b)(b+c)(c+a)$$
.

10.
$$(a-b)(b-c)(c-a)$$
.

11.
$$(x^2+y^2)(y^2+z^2)(z^2+x^2)$$
.

12.
$$(a^{2}+b^{2}+c^{2}-ab-bc-ca)(a-b)(b-c)(c-a)$$
.

13.
$$(a^2+b^2+c^3)(a+b+c)$$
.

14.
$$(c-b^3)(a-c^3)(b-a^3)$$
. 15. $(x^2-y^2)(y^2-z^2)(x^2-z^2)$.

16.
$$(x+y+z)(x-y+z)(y-z+x)(z+y-x)$$
.

17.
$$(a-b)(b-c)(a-c)$$
. 18. $8(a+b+c)^3$.

24.
$$(a-b)(b-c)(a-c)(a^2+b^2+c^2+ab+bc+ca)$$
.

Exercise xxxviii.

1.
$$(a-2)(a^2-7a+2)$$
. 2. $(x-2)(x-3)(x-4)$.

8.
$$(x-3)(x-2)^2$$
. 4. $(x-2)^2(x+4)$.

5.
$$(x+1)(x^2+2x+3)$$
. 6. $(x^2+2x+3)(x^2+2x+3)$.

7.
$$(x+2)(x-1)^2$$
. 8. $(x^2+2x+3)(x^2-2x+3)$.

9.
$$(m-n)(m^2-2mn-2n^2)$$
. 10. None.

11.
$$(m-n)(m-2n)^2$$
. 12. $(b+3c)(b^2-2bc+13c^2)$.

13.
$$-(m-n)^2(m^2-mn+n)$$
. 14. $(a+2b)(a-2b)(a^2-7ab+4b^2)$.

15.
$$(x-5)(x-3)^2$$
. 16. $(x+2)(x^2+3x+1)$.

17.
$$(a-1)(a^2-2a-195)$$
. 18. $(p+2)(p-1)(p+4)$.

19.
$$(a-1)^2(a+2)(a+3)$$
. 20. $(a^{2n}-1)(a^{2n}-2)(a^{2n}-3)$.

21.
$$a^2 + 4b^2 \pm 7ab$$
. 22. $(a-b)^2(a^2 + 2ab + 2b^2)$.

23.
$$(p-2)(p^2-2p+2)$$
. 24. $(x^n-1)(x^{2n}+5x^n+5)$.

25.
$$(y-2)(y^3-3y^2+2y+4)$$
. 26. None.

27.
$$(a-b)(a^2+2ab+3b^2)$$
. 28. $(a^n+1)(2a^{2n}-3a^n+2)$.

29.
$$(x-2)(x-3)(x-6)(x-7)$$
. 30. $(x-y)(x-2y)(x-3y)^2$.

1. 20

2. (4

3. (a

4. (l

5. (

6. (

7. (

8. (

4.

6. 8.

10.

12.

14.

16.18.

20.

23.

05

25.

27.

1.

5.

c)(c-a).

-a).

$$^{2}-z^{2}$$
).

$$7ab + 4b^2$$
).

$$^{n}-3).$$

$$b^{2}$$
).

2).

$$)(x-3y)^2.$$

Exercise xxxix.

1.
$$2(x-1)(x^2-9x+10), (x-2y)^3(x-9y).$$

2.
$$(4x+3y)(3x^3-xy+y^2)$$
, $(x-1)(4x-2)(2x+3)$.

8.
$$(x-5a)(3x^9+a^2)$$
, $(2x+3y)(x^2+3xy-y^3)$.

4.
$$(b+c)(b-4c)(2b^2-bc+c^2)$$
, $(5a+4b)(8a^2+7ab-8b^3)$.

5.
$$(2p+q)(2p+3q)(p^2+q^2)$$
.

6.
$$(10x-9y)(15x+16y)(x^3-5xy+8y^2)$$
.

7.
$$(2x-3y)(2x+3y)(3x+4y)(3x-5y)$$
.

8.
$$(5x-2z)(2x^3-3x^2y+8xy^2+12y^3)$$
.

EXERCISE XI.

1.
$$1+x^2$$
. 2. $(x^2-1)^2$. 3. $(x^4+a^2x^2+a^4)(x^8-a^4x^4+x^8)$.

4.
$$(x+2y)(x^2+8y^2)$$
. 5. $1-2x+3x^2$.

6.
$$(a-x)(a+x)^2$$
. 7. $x^2+y^2+z^2+xy+yz-2x$.

8.
$$(a+b)(3a+b)$$
. 9. $(x-y)(2x+3y)$.

10.
$$a^2-b^2+c^2$$
. 11. $7a^2-8ab+2b^2$.

12.
$$a-7$$
. 13. $(a-b)(b-c)(a-c)$.

14.
$$(x-a)^2 - b(x-a) + b^2$$
. 15. $x^2 + y^2 + z^2 + 1$.

16.
$$x(x^2 - ax + b)$$
. 17. $x^2 + y^2$.

18.
$$(x-y)(x^2+y^2)$$
. 19. $a^2-b^2+c^2+1$.

20.
$$a^3-b^3-c^3$$
. 21. $a+x$. 22. $(c-b)(a+b+c)$.

23.
$$ab-ca-bc$$
. 24. $x^2+y^2+1-xy+x+y$.

25.
$$(x^3-2)(x+1)$$
. 26. a^2+5a+3 .

27.
$$(2x-y)a^2 - (x+y)ax + x^3$$
. 28. $a(x^2+x+1) - (x+1)$.

Exercise xli.

1.
$$x^2-3$$
. 2. $x+a$. 3. x^2-x+1 4. ax^2+bx+c .
5. None. 6. c^a+c^b . 7. $(a-b)(x+a)$. 8. $b(x+y)$.

1.

4.

7.

9.

11.

13.

15.

16.

18.

20.

22.

1.

6.

8.

12.

13.

16.

5.

8.

12.

13.

9.
$$(a-b)(b-c)(c-a)$$
. 10. $a^{2m}+1$.

12.
$$5(a-b)(b-c)(c-a)$$
. 13. $(y-1)(x-1)$.

15.
$$(x+1)(x^2+1)(x-1)^3$$
. 16. $(x+1)(x+2)(x+3)(x-4)$. 17. 5

18. Same as given quantity. 25.
$$(a-b)(b-c)(c-a)$$
.

29.
$$x^4 + x^3 + 2x + 1$$
.

Exercise xlii.

1.
$$(x-1) \div (x^2+4x+16)$$
, $x(3y-7) \div y(7y-3)$.

2.
$$(x^2-ax+a^2)\div(x^2-a^2), (x+4)\div(x-1)^2$$
.

8.
$$(x-1)(x+2)+(x^2+5x+5), (x^2+2x+3)+(x^2-2x-3)$$

4.
$$1 \div (b-2x), 1 \div (x^2-2x+2).$$

5.
$$5a^3(a+x) \div x(a^2+ax+x^2)$$
, $(4x^2+1) \div (5x^2+x+1)$

6.
$$(x-y) \div (x+y)$$
. 7. $(3ax^2+1) \div (4a^2x^4+2ax^2-1)$, $(ax+by) \div (ax-by)$. 8. $-1 \div abc$.

9.
$$-(a+b+c)\div(a-b)(b-c)(c-a)$$
. 11. $5\div7(x^2+xy+y^2)$

Exercise xliii.

1.
$$(4-x) \div (5-x), (a^2+b^2) \div 2ab.$$

2.
$$x$$
, $2a \div (a^2 + 1)$. 3. $a(1+a) \div (1+2a+3a^2)$, x .

4.
$$b^2 \div a^2$$
, $(b+1) \div ab^2$. 5. $(ac-bd) \div (ac+bd)$, $b \div a$.

6.
$$1+6x^2yz(y+z)\div\{y^2z^2-x^2(y+z)^2\}$$
. 7. $(a^2+b^2+c^2)\div abc$.

8. 1. 9.
$$-(a^4+a^2b^2+b^4)\div ab(a-b)^2$$
.

10.
$$(a+b+c)^2 \div 2bc$$
. 11. $\left(\frac{1-x}{1+x}\right)^2$, $4a^2x^2 \div (a^2+x^2)$.

12.
$$(x+y) \div (x-y)$$
. 13. $(a-b)^3 \div (a+b)^3$.

14.
$$(x+y) \div (x-y)$$
 15. $1 \div x^3$.

16.
$$1 \div n$$
. 11. $\pm (1-b) \div (1+o)$. 18. $1 \div c$.

EXERCISE XIV.

1.
$$(x-a) \div 5$$
. 2. $a+b$. 3. $16a^5x \div (a^4-x^4)^3$.

4. 0. 5.
$$1 \div (x+2)$$
. 6. $1 \div (a^4 - x^4)$.

7.
$$12xy \div (9x^2 - 4y^2)$$
. 8. $(4x^2 + 2) \div x(16x^4 - 1)$.

9.
$$1 \div (x+1)(x+2)(x+3)$$
. 10. $4(x^4+4x^2y^2+y^4)\div (x^4-y^4)$

11.
$$(a-b)^3 \div (x+a)^2(x+b)^2$$
. 12. $2a \div x$.

13.
$$(236-77x) \div 18(11x-8)$$
. 14. $1 \div (a-b)$.

15.
$$15a(3a-x) \div (9a+2x)(a+3x)$$
.

. 17. 5

-3).

1),

 $+y^{2}$)

a.

 $) \div abc$

 $+x^{2}$).

16.
$$(10x-7) \div (x-1)(2x-5) - 1 \div (2x-7)(x-4)$$
. 17. 2.

18.
$$y^n(y^n-x^n)$$
. 19. $(a-b)^{2n}+2$.

20. 0.
$$21. 4x^2 \div (x^{1/2} - 1).$$

22.
$$-(a^2+b^2)(a^2-ab+b^2) \div (a^2-b^2)(a^2+ab+b^2)$$
.

EXERCISE XIV.

1.
$$x-y$$
. 2. $a+b$. 3. 0. 4. 0. 5. 0.

6.
$$\{(a+b)(c+a)x^2 + 2(ab+bc-ca)ax - 2a^2bc\} \div (a+b)(a+c)(x+a) \times (x+b)(x+c)$$
 7. 1.

8.
$$a+b+c$$
. 9. 1. 10. x^3-y^3 11. 0.

12.
$$(a-b)(b-c)(a-c) \div (a+b)(b+c)(c+a)$$
.

13.
$$x^2 \div (x-a)(x-b)(x-c)$$
. 14. 1. 15. 0.

16.
$$\{b(x+a-b)+ax\} \div \{ab+(b-a)(x-b)\}.$$

Exercise xivii.

1.
$$(a-b)^2 + 4c^2 = 0$$
. 2 8. 3. 10. 4. $a^2 + b^2$.

5.
$$m=2$$
, $n=1$. 6. $2x^2$, or 5. 7. $m=-5$, $n=6$.

8.
$$\pm 12$$
. 9. $(a^2+b^2)(c^2+d^2)$. 11. $-8bc-4c^2+b^2c^2-4b^2$.

12.
$$(x^2-4x+3)(x^2-4)$$
, also $(x^2-3x+2)(x^2-x-6)$.

13.
$$\frac{1}{3}(-1\pm\sqrt{5})$$
. 15. $a \div c = d^2 \div e^2$, $a \div b = f^2 \div e^2$,

$$b \div c = d^2 \div f^2$$

17.
$$ac^3 = b^3d$$
 and $9ad = bc$.

19.
$$4p^3 + 27q = 0$$
.

$$4p^3 + 27q = 0$$
, 24 , $p = 2m^2q \pm 2mq \sqrt{m^2 + 2}$.

25.
$$4(p-3)=q$$
.

Exercise xlix.

1. 5,
$$3\frac{1}{4}$$
, a , -3 .

1. 5,
$$3\frac{1}{4}$$
, a , -3 . 2. $-4\frac{1}{2}$, $-a$, 2, 10.

3.
$$a+b$$
, $c-a$, $b-c$, 3. 4. -2 , 6, -5 , 12.

$$4. -2, 6, -5, 12.$$

5.
$$-14$$
, $a-3b$, $2a-3b$, $5b-3a$. 6. 7, 4, a, b.

6.
$$7, 4, a, b$$

1.

12.

15.

18.

21.

23. 25.

26.

1.

7.

11.

14.

20

24.

80.

88.

86.

1.

2.

5. 9.

7.
$$\frac{1}{3}c$$
, $5 \div a$, 0, 1.

7.
$$\frac{1}{3}c$$
, $5 \div a$, 0, 1. 8. -1 , $\{(a+b)^2 - a\} \div b$, $a+b$.

9.
$$(b-a), a+b$$

9.
$$(b-a)$$
, $a+b$. 10. $1 \div a-b$, $1 \div (a-b)$, $1 \div (a^2+b^2)$.

11.
$$2b$$
, a .

11. 2b, a. 12.
$$a+b$$
, $c \div (a+b)$, $b \div (a-c)$.

13.
$$(b-c) \div (a-b)$$
, $b+c$. 14. $a+b$, a^2+ab+b^2 .

14.
$$a+b$$
, a^2+ab+b^2

15.
$$a^2-ab+b^2$$
, 1

15.
$$a^2-ab+b^2$$
, 1. 16. -1 , $(a+b)\div(a-b)$.

17.
$$(e+b)(e-b)$$
, $2-15$, $5-14$.

17.
$$(e+b)(e-b)$$
, $2 \div 15$, $3 \div 14$. 18. $-1 \div 12$, $b \div ac$, $a \div b$.

19.
$$(a^2+b^2) \div a^2b^2 + a^2b^2$$
, $a(b^3+c^3) \div bc$.

20. 10, 12, 4,
$$\frac{1}{5}$$
. 21. 1000, $\frac{3}{5}$, $\frac{3}{2}$. 22. $9\frac{9}{10}$, ab, $bc \div a$.

23.
$$b^2 \div ac$$
, $c(a+b)$, $b(a+b) \div a$.

24.
$$a \div b$$
, $(a-b) \div (a+b)$, $-(a+b)^2 \div (a-b)^2$.

$$25. -1, -1.$$

26.
$$(a^2-c^2)\div(a+b)^2$$
, 2, $3\frac{1}{3}$.

27.
$$ab$$
, $b \div a$, $ac \div b$, 12.

28. 12.
$$-ac \div b$$
.

29, 9, 2. 30, 12, 1. 31, 3, 1. 32,
$$(2a-1)(2a+2)$$
, 0.

$$9.1 \quad 92 \quad (2a-1)(2a-1)$$

$$95 \quad (ab + bc + ca) \rightarrow (a^2 + bc)$$

33.
$$1 \div m$$
. 34. 1.

33.
$$1 \div m$$
. 34. 1. 35. $(ab + bc + ca) \div (a^2 + bc + c^2)$.

36.
$$(a^2+b^2+c^2)$$
÷

$$(a^2+b^2+c^2)$$
 : $(ab+bc+ca)$. 87. $a+b+c$. 38. 1.

45. 5. 46.
$$(npqa+pqb+qc+d) \div mnpq$$
. 47. $-\frac{1}{6}$.

$$+d) \rightarrow mnva.$$

$$47. -\frac{1}{8}$$

Exercise 1.

- 1. 2, 3. 2. $\frac{1}{2}$, $\frac{1}{3}$. 3. ± 2 , $1\frac{1}{4}$. 4. 1, $1\frac{1}{2}$. 5. $\pm \frac{2}{3}$, $\pm (a+b)$, a. 6. 4, 5, 2, $2\frac{1}{2}$. 7. -3 or 2; 4, -3; $2\frac{1}{3}$, $-1\frac{1}{3}$. 8. 1; $\frac{2}{3}$ or $\frac{5}{2}$; $\frac{1}{3}$ or 3. 9. $-\frac{2}{3}$ or $\frac{3}{2}$, $\frac{1}{6}$ or 6; $\frac{4}{3}$ or $-\frac{2}{3}$. 10. -1, 2; $-\frac{1}{2}$, 1. 11. 0, -b, 3b.
- 12. $a, \pm a \sqrt{-1}$. 13. 1; $\frac{1}{2}(-1+\sqrt{5})$. 14. $\pm a$.
- 15. $\pm bc$, -(b+c). 16. a+2b. 17. b or $\pm a$.
- 18. -2ab, $\frac{1}{3}ab(1\pm\sqrt{7})$. 19. a, b, -(a+b). 20. a, b.
- 21. a or 1-a. 22. -a, -b, a-2b.

i+b.

b).

 $a \div b$.

 $bc \div a$.

, 31.

+2), 0.

44. 6.

).

1.

 $^{2}+b^{2}$).

- 28. $a, b, b(1-b) \div (1+a-b)$. 24. $x^3-6x^2-37x+210$.
- 25. $x^4 4ax^3 13a^2x^2 + 64a^3x 48a^4$.
- 26. x(x-1)(x+2)(x-4) = 0. 27. $x^4 4x^3 + x^2 + 6x + 2 = 0$.

Exercise li.

- 1. 4. 2. $-7\frac{6}{7}$. 3. -107. 4. 8. 5. 3a. 6. $\frac{31}{159}$.
- 7. $50\frac{30}{50}$, 17. 8. 22, $46\frac{1}{3}$. 9. 7, 3. 10, 10, 11.
- 11. 0 or 11; 33. 12. 3956÷3971. 13. $\frac{1}{7}(15 \pm \sqrt{190})$.
- 14. 3. 15. 3. 16. 4. 17. $1\frac{3}{8}$. 18. $1\frac{1}{2}$. 19. $8\frac{1}{4}$.
- 20 4. 21. ± 3 . 22. 11. 23. 2 and $-1 \pm \sqrt{-3}$.
- 24. $2\frac{1}{2}$. 25. 0. 26. 3a. 27. $\frac{2}{3}$. 28. $\frac{16}{15}$. 29. 8.
- 80. 10. 31. 0, 1, or $(-5 \pm \sqrt{-23}) \div 8$. 32. $102\frac{3}{50}$.
- 33. $(-11\pm\sqrt{4681})\div20$. 34. 2, $\frac{1}{3}$, $\frac{7}{4}$. 35. -4
- 86. 0 or $\pm \sqrt{(a^2+b^2)}$.

Exercise lii.

- 1. $(1-a) \div (1+a)$, $a(m+1) \div (m-1)$, $b(m+1) \div a(m-1)$.
- 2. a-b, 0, 0. 8. b, $ma \div b$, $b \div ca$. 4. 1, -1, 0.
- 5. $-\frac{3}{2}$ or -1. 6. $(c-b)(b^2+c^2) \div 2abc$. 8. 14, $4\frac{1}{2}$.
- 9. 2, 6-295. 10. $73 \div 210$, $(a+b+c+d) \div (m+n)$.

11.
$$b \div a$$
. 12. $b \div a$. 13. $a \text{ or } 0$.

14.
$$\pm \sqrt{a^2 + 1} \div 2$$
. 15. $\frac{1}{8}$. 16. $\frac{14}{13}$. 17. 0 or 4.

32.

34.

36.

1.

3.

4.

7. 11.

14.

17.21.

23.

27.

30.

32

33.

35. 38.

42.

45.

1.

3.

8.

12.

18.
$$c \div ab$$
. 19. $83\sqrt{(2x-1)} = 100\sqrt{(3x-3)}$.

20.
$$75 \div 52$$
. 21. 8. 22. 84_{144}^{49} .

23.
$$1 \div n(n-1)$$
. 24. $ac \div (b-a)$. 25. 4, $3\frac{3}{4}$ or $13\frac{1}{2}$.

26.
$$a^2b^2 \div (a-b)^2$$
, 3. 27. $4a^2 \div (1+a)^2$, $b(a+b)^2 \div (a-b)^2$.

28.
$$(1+b^2) \div 2ab$$
. 29. $\sqrt{(1-x)} = 2 \div (a+1)^2$.

- 30.
$$-a \pm a \sqrt{(1+b+b^2) \div 2b}$$
.

81.
$$\left(\frac{x+1}{x-1}\right)^{5} = \left(\frac{a+1}{a-1}\right)^{5}$$
.

Exercise liii.

1. 8. 2. 0. 3. 3. 4.
$$(\sqrt{m} \sqrt{n})^3$$
.

5.
$$ab \div (1-2\sqrt{b})$$
. 6. $4 \div 7$. 7. $1 \div (a-2)$.

8.
$$18962 \div 12393$$
. 9. $\sqrt{a} \div (\sqrt{a+2})$.

10.
$$(c^4 - 2bc^2) \div (2c^2 - 2b)$$
. 11. $\frac{1}{2}$. 12. 18a.

13.
$$x^2 = 80 \div 81$$
. 14. $\pm \frac{10}{3} \sqrt{\frac{17}{21}}$. 15. $\pm \frac{4}{11} \sqrt{-11}$.

16.
$$\pm \sqrt{\left\{a^2 - \frac{(b-2a)^3}{27b}\right\}}$$
. 17. 0. 18. $\frac{9}{16}a$.

19.
$$(c-a-b)^3 = 27abc$$
. 20. $x^2 = a^2(n-1)^2 \div (2n-1)$

21.
$$16xy = (n-4x-y)^2$$
. 22. 0, $-\frac{24}{25}$.

23.
$$\left(\frac{a^2}{2a-2}-1\right)^2$$
, 0. 24. $2\sqrt{(1-m^2)} \div m\sqrt{(4-m^2)}$.

25.
$$(a^2-1)\{a^2+2\pm\sqrt{(a^2+1)}\} \div a^2$$
.

26.
$$(cn-an+c)^2 \div b(n-1)^2$$
. 27. ± 5 .

28.
$$2\sqrt{(3x^2+10)} = (17\sqrt{17}-3\sqrt{3}) \div 7.$$
 29. $\pm 5.$

90.
$$\pm \sqrt{(8b-2a)}$$
. 81 $\sqrt{\frac{3}{2}(a^2-b^2)}$.

33 or 131.

 $\div (a-b)^2$.

 $-1/n)^{2}$.

-2.

18a.

 $\sqrt{-11}$.

 $\frac{9}{18}a$.

(2n-1)

 $4 - m^2$).

5.

-3).34 4 9.

32.
$$(2y+2z-2x)^3+216xyz=0$$
. 38. $\frac{2}{5}a\sqrt{6}$.

34.
$$a(n^2-4n+8) \div (2n-4)$$
. 35. a^2+2a .

35.
$$a^2 + 2a$$

36.
$$\pm \sqrt{(3a^2+b^2)} = \sqrt{3}$$
.

Exercise liv.

1.
$$-(a^2+b^2) \div a$$
. 2. $(2a^2+b^2) \div 2a$.

2.
$$(2a^2+b^2)\div 2a$$

3.
$$\{(a-b)a^2-2c(a^2+a^2+b^2)\} \div \{a^2-2c(a^3-b^3)\}$$
.

5.
$$a+b+c$$
.

4. -b. 5.
$$a+b+c$$
. 6. $ab \div (b-a)$.

7.
$$x^2 - 3ax - a^2 = 0$$
, c

$$x^2 - 3ax - a^2 = 0$$
, &c. 8. a. 9. $\frac{1}{3}(a+b+c)$ 10. 1÷abc.

11.
$$1 \div (a+b+c)$$
.

11.
$$1 \div (a+b+c)$$
. 12. $(a-b)(ac-2b) \div (a+b)ac$. 13. $-c$.

14.
$$(\sqrt[3]{a} + \sqrt[3]{b})^3$$
. 15. ± 2 . 16. $e \div (a - b)$.

19.
$$\pm 2$$
.

17.
$$(a-b)\div(a+b)$$
. 18. $\frac{5}{6}a$. 19. ± 2 . 20. ± 2 , &c.

21.
$$\frac{1}{2}(a+c)\div(a-c)$$
. 22.

$$\frac{1}{2}(a+c)\div(a-c)$$
. 22. a , $(3ab-3b^2-a)\div(1+3a-3b)$.

a. 24. a, b, 2b. 25. a,
$$(c^2 + 6ab) \div 6b$$
. 26. $\frac{1}{6}(c + 6a)$.

27.
$$\frac{1}{2}a$$
. 28. $a+b$.

$$\frac{1}{2}a$$
. 28. $a+b$. 29. $(ab+bc+ca)\div(a+b+c)$.

30.
$$+b, \pm a$$
.

$$\pm b, \pm a.$$
 31. $\sqrt{\{1 \div (a \ 1)\}}.$

32
$$\{6(a-b)-4c(c-b)\} \div \{4c-3b-a\}$$
.

33.
$$(c^2 - ab) \div (a + b - 2c)$$

$$(c^2 - ab) \div (a + b - 2c)$$
 34. $\frac{1}{2}(-29 \pm \sqrt{37})$.

$$(x+a)^2 = 2b^2 - a^2$$
. 36. $\sqrt{(b^2 - \frac{2}{3}ab)}$. 37. $\frac{1}{2}(b-a)$.

35.
$$(x+a)^2 =$$

38.
$$3\frac{1}{2}$$
, $\frac{5}{4}$. 39. $x^2 - 6x = a$. 40. $1 \pm \sqrt{19}$. 41. b, $b - a$.

42.
$$(a^2 + b^2) \div (a + b)$$

$$(a^2 + b^2) \div (a + b)$$
. 43. $x = -5 \div 2$. 44. $\frac{1}{2}(5 \pm \sqrt{8})$.

44.
$$\frac{1}{2}(5 \pm \sqrt{3})$$
.

45.
$$-2a, \frac{6}{7}a, \frac{3}{2}a$$
.

46.
$$-3a$$
.

EXERCISE IV.

1.
$$bc \div (a+c)$$
.

2.
$$(a^2+b-2ab) \div (a+b^2)$$
.

3.
$$(ad-bc)\div(a-b)$$
. 5. $\frac{a^2+bc}{b+c}$. 6. c. 7. $\frac{1}{2}(a+b)$

5.
$$\frac{a^2 + bc}{b + c}$$

6. c. 7.
$$\frac{1}{2}(a - \frac{1}{2})$$

8.
$$a+b$$
. 9. 0. 10. 0.

12.
$$(a^2+b^2+c^2)\div(a+b+c)$$
.

12
$$(a^2+b^2+c^2)\div(a+b+c)$$
. 13. $(a+b+c)\div(a^2+b^2+c^2)$.

14.
$$(a^2+b^2+c^2)$$
 $\div (ab+bc+ca)$ 15. $\frac{a+b}{a-b}$. 16. $\frac{ab}{a+b}$

17.
$$4\frac{1}{2}$$
. 19. 4. 20. -140. 21. 17. 22. 10. 28. a.

24.
$$\frac{e^2(a^2-b)}{a^2d+c^2-bd}$$
. 25. $3\frac{1}{4}$, 0. 26. $3\frac{1}{21}$. 27. $(ab-c^2)\div(a+b)$.

28. -b, a, 29. 6, 0, 20.
$$\frac{1}{2}(a+b-c)$$
. 31. $\frac{ab}{a+b}$.

82. d. **83.**
$$at = -b^2$$
). **34.** $-3\frac{2}{3}$. **35.** $\frac{3}{5}$. **36.** $-3\frac{2}{3}$

37. Infinity. 38. 10. 39.
$$abc \div (ab + bc + ca)$$
.

40.
$$(ab+bc+ca-ad-bd-cd)$$
: $(a+b+c-3d)$.

41.
$$a(b+c)^2 \div (b^2+c^2-ab+bc-ca)$$
.

42.
$$bc(d-a)-c(a-b)(b-c)(c-d) \div (ab+bc+cd-ad-b^2-c^2)$$
.

43.
$$bc^2 - b^2c - ac^2 + b^2d - abd + acd \div (ab + bc - ac - b^2)$$
.

44.
$$-(a+b+c)$$
. **45.** $a+b+c$. **46.** $(ab+bc+ca)-abc$.

47.
$$-\frac{1}{2}(b+c)$$
. 48. $(ab+c)\div 2a$. 49. 9. 50. 2. 51. 7.

52. 4. 53.
$$\frac{1}{2.7}(5 \pm \sqrt{785})$$
. 54. 4, $(am-nb) \div (n-m+a-b)$.

55.
$$\frac{1}{15}$$
, $b(a+c) \div (a^2+ab+b^2)$. 56. 0, $-\frac{2}{3}$, $\frac{1}{3}$. 57. 10.

58.
$$(apnq - cmpq) \div (apn^2 + cqm^2)$$
; $\frac{nq(ap + mb) - mp(cq + nd)}{apn^2 + mn^2b - m^2cq - m^2nd}$.

59.
$$ab \div (b-c)$$
, $c\{a^2+(b-c)a-bc\}+a(b^2-c^2)\div (a^2+b^2-c^2+ab-bc-ac)$. 60. $b\div (a+b)$.

61.
$$mpcq + apnq \div (apn^2 - cqm^2)$$
.

62.
$$\{bm(a-c)+cn(b-a)+ap(c-b)\}$$
 \div $\{m((a-c)+n(b-a)+p(c-b)\}$. 68. (a^2+b^2) $\div ab$, 0, $\frac{31}{13}$.

64.
$$(ap-cm) \div (an-bm), \frac{d(n-q)-q(b-d)}{a(n-q)-m(b-d)}.$$
 55. $\frac{1}{4}, \frac{1}{3}.$

69.
$$(a+b-m-n)$$
. 70. $\frac{a^2+2ac+aa+2bc+2ab}{a-d}$

71.

74.

77. (

79. d

1.

3. a

5. I

7. a

8

9. x

11. x

13. x15. x

17.

17.

19. x

23. x

25. x

 $27. \quad x$

39. (2

1. x

 $^{\circ}4.$ x

36. x

88, x

$$\frac{ab}{+b}$$
.
23. a.

$$(a+b)$$
.

$$+b$$
 $86. -83$

$$b^2 - c^2$$
).

$$+ca) = abc.$$

$$m+a-b$$
).

$$q+nd)$$

$$-m^2nd$$

55.
$$\frac{1}{4}$$
, $\frac{1}{3}$.

71.
$$\frac{1}{2}(a+b) \pm \sqrt{\left\{\frac{1}{4}(a-b)^2 - \frac{1}{6}c^2\right\}}$$
, a or b. 72. 0. 73. $a+b+c$.

74.
$$\frac{ab+bc+ca}{abc}$$
. 75. $a+b+c$. 76. $a+b+c$.

77.
$$(ab+bc+ca) \div (a+b+c)$$
. 78. $b^2+a^2-c^2$.

79.
$$c-a-b$$
. 80. 0. 81. 0 or 11.

Exercise lvi.

1.
$$A = 0$$
, or $B = 0$.

1.
$$A=0$$
, or $B=0$. 2. $A=0$, or $B=0$, or $C=0$.

3.
$$x=0$$
, or $a-b=0$. 4. $x=0$, or $y=0$.

4.
$$x = 0$$
, or $y = 0$.

5. In the first case either
$$x-5y=0$$
, or $x-4y+3=0$, in the second case both conditions hold.

6. $x=0$, or $x=a$.

7.
$$x=0$$
, or $x=-b$.

8.
$$x=a$$
, or $x=c \div b$.

9.
$$x = 0$$
, or $x = 3$.

10.
$$x=0$$
, or $x=a+b$.

11.
$$x = 0$$
, or $x = \pm a$:

12.
$$x = 0$$
, or $x = b_4 \div a$.

13.
$$x = 0$$
, or $x = a$.

14.
$$x = 0$$
, or a.

15.
$$x=0$$
, or $x=a+b$.

16.
$$x = 0$$
, or $a + b$.

17.
$$-(2ab) \div (a+b)$$
.

18.
$$x = a$$
, or **b**.

19.
$$x = a$$
, or b , or c .

19.
$$x = a$$
, or b , or c .

23.
$$x = \frac{1}{3}, x = 3.$$

24.
$$x = 9, x = 4.$$

25.
$$x=1$$
, or 3.

26.
$$(ab) \div (a+b)$$
.

27.
$$x = a$$
, or b.

27.
$$x = a$$
, or b. 28. $x = (a^2 + b^2) \div (a + b)$, $x = b + a$.

$${}^{2}9. \quad (2ab) \div (a+b).$$

30.
$$\omega = a$$
, or b.

1.
$$x=1$$
, or $(1+a) \div (1-a)$.

32.
$$x = a$$
.

22.

21.

34.
$$x=a-b$$
, or $\frac{1}{2}(b+c)$.

35.
$$x=a+b$$
, or $\frac{1}{2}(a+c)$.

36.
$$x = \frac{a}{a+b+c}$$
, or 1.

37.
$$a+b-c$$
.

88,
$$x=a$$
, or $\frac{1}{3}(4b-a)$.

39.
$$c = -c$$
, or $a+b+c$.

40.
$$x=1$$
, or $\frac{m-n}{n-p}$.

41.
$$x = \frac{nc - pb}{mc - ap}$$

42.
$$\frac{p(a-b)-c(m-n)}{m(c-b)-a(n-p)}$$

43.
$$x = \frac{1}{2}(a+b)$$
, or $\frac{1}{2}(b-a)$.

44.
$$x = 2a - b$$
, or $3b - 2a$.

45.
$$x = a + c - b$$
, or $x = a + c - b$

46.
$$x=a+b$$
, or $\frac{17a-7b}{5}$. $\frac{4a+4c-2b}{8}$.

$$\frac{4a+4c-2b}{8}$$

47.
$$x=4a+b$$
, or $a+b$.

48.
$$x = \frac{a-b}{b-c}$$
, or $\frac{a}{c}$.

49.
$$(a-b)(b-c)x^3 - (a^2+b^2+c^2-ab-bc-ca)x + (a-c)(a-b) = 0.$$

50.
$$x = \pm 3$$
, or ± 2 .

51.
$$x = \pm 6$$
, or $+2$.

52.
$$x=3$$
, or $\frac{1}{3}$. 53 $x=\frac{a+b}{a-b}$, or $\frac{a-b}{a+b}$. 54. $x=\frac{a}{b}$, or $-\frac{b}{a}$.

55.
$$x=b-2a$$
, or $a-2b$. 56. $x=\frac{2a+3b}{5}$, or $\frac{3a+2b}{5}$

57.
$$x = (mb + na) \div (m+n)$$
, or $(ma - nb) \div (m+n)$.

58.
$$x = \sqrt{(m+2n)} - \sqrt{(m-2n)} \div \sqrt{(m+2n)} + \sqrt{(m-2n)}$$
.

59.
$$a\left\{\frac{\sqrt{(c+1)}+\sqrt{(c-1)}}{\sqrt{(b+1)}-\sqrt{(c-1)}}\right\}$$
.

60.
$$a\{\sqrt{(3c-2)}+\sqrt{(2-c)}\} \div \{\sqrt{(3c-2)}-\sqrt{(2-c)}\}$$
.

61.
$$a\{\sqrt{(2c-1)+1}\} \div \{1-\sqrt{(2c-1)}\}.$$

62.
$$\frac{1}{3}(a+2b)$$
. 63. $\frac{1}{2}(a+b)-(a-b)\sqrt{(m-2n)}$.

64.
$$\frac{-a^2+b^3}{2b}$$
, or $\frac{a^2+b^3}{2a}$. 65. $2ab \div (a+b)$.

66.
$$x = \frac{8a + 5b}{8}$$
, or $\frac{3b - 5a}{8}$.

67.
$$x = 2a\{\sqrt{(c+4)} - \sqrt{(c-4)}\} \div \{\sqrt{(c+4)} + \sqrt{(c-4)}\}.$$

68.

69.

70.

72.

73.

74.

76.

77.

78.

81. 84.

85.

87.

89-

89. 90.

91.

92.

94.

95.

96.

99.

68. x = 4, or 8.

69. $\frac{1}{2}\{a\pm\sqrt{a^2-4m}\}$ where $m=a^2\pm\frac{1}{2}\sqrt{(c+a^4)}$; 3 or 1.

70. a, b. 71. $x = \frac{1}{2} [a + b \pm \sqrt{(a+b)^2 - 4(ab+t)}]$, where $t = \frac{1}{2} (a-b)^2 \pm \frac{1}{2} \sqrt{(a-b)^4 + 4r}$.

72. x=0, or a, or $\frac{1}{2}a(1\pm \sqrt{-3})$; x=4, or 2.

78. x=0, or a+b, or $\frac{1}{2}\{(a+b)\pm\frac{1}{2}\sqrt{(a-b)^2-4ab}\}$.

74. $x^2 - (a-b)x + ab = \&c.$ 75. $x = \frac{1}{2}(8a-b)$, or $\frac{1}{2}(3b-a)$.

76. x = 3a - 2b, or 3b - 2a.

77. $y^2 - m^2 = 0$, where y - m - x and 2m = a + b. See Key.

78. $y^2 - m^2 = 0$. 79. $y^2 - m^2 = 0$. 80. $y^2 - m^2 = 0$.

81. $y^2 - m^2 = 0$. 82. $y^2 - m^2 = 0$. 83. $y^2 - m^2 = 0$.

84. $(y^2-k^2)(5y^2+7k^2)=0$, (where also $k=\frac{1}{2}(a-b)$.

85. $k^4 - y^4 = c$. 86. $k^5 + 10k^3y^2 + 5ky^4 = c(k^4 - y^4)$ &c.

87. $sy \pm k\sqrt{(k-3c\pm r)} = 0$, where $s^2 = 3k+c$, and $r^2 = (k-3c)^2 + (k-c)(3k+c)$. 88. $-3 \pm \sqrt{(9\pm 12\sqrt{24})}$.

89-102. Work with a variable w such that $wx = x^2 + 1$.

89. $w = (a \pm s) \div b$, where $s = a^2 + 2b^2$.

90. $w = (3a + 2b \pm s) \div 2(a - b)$ where $s = \pm 5\sqrt{(a^2 + 2ab + 4b^2)}$.

91. $w = (3 \pm s) - (1 \pm s)$ where $s = (b - 4a) \div b$.

92. $(w+1)^2 = a \div (a-b)$. 93. $w^2 = 2a \div (b-a)$.

94. $(x+1) \div (x-1) = a \div (a-8b)$.

95. $(w+2) \div (w-2) = \frac{1}{2}(1 \pm s)$ where $s = (16a+b) \div b$.

96. $w^2(4a-b) \div (a-b)$. 97. $w^2 = (4a-3b) \div (a-b)$.

93. $w = (b \pm s) \div 2a$ where $s^2 = b^2 + 16a^2$.

99. $w = (a+b\pm s) \div 2(a-b)$ where $s = (a+b)^2 + 8(a-b)$.

 $\frac{a+2b}{5}$

or $-\frac{b}{a}$

 $\frac{1}{3}(b-a)$

x =

-2n).

(m+2n)

}.

87.

40.

42.

45.

47.

50.

53.

56.

59.

62.

64.

67.

70.

73.

76.

78.

81.

83.

85.

86.

1.

3.

4.

5.

100.
$$w = (a+b\pm s) \div 2(a-b)$$
 where $s^2 \div (a-b)^3 = \{(a+b)^2 + 4(a-b)^2\} \div (a-b)^2$.

101.
$$(w+2) \pm (w-2) = \pm s \div (4 \pm 3s)$$
 where $s^2 = 2a \div (a+b)$.

102.
$$(w+2) \div w = \pm \sqrt{\{5a \div (a+4b)\}}$$
.

103.
$$\frac{1}{3}(2a+b)$$
, $\frac{1}{3}(a+2b)$. 104. $2a-b$, $\frac{1}{2}(a+b)$, &c.

105. 1, 2, 4, 5.
$$106. \pm 1, 2, 4.$$
 $107. 1, 2, 3, 4.$

108.
$$-\frac{1}{2}$$
, $-\frac{1}{4}$, 1, $\frac{5}{4}$. 109. -1, 3, 4. 110. -a, 5a, 5a.

111. 15, 20. 112.
$$2\frac{1}{4}a$$
. 113. 4, -1.

114. 7, -1. 115.
$$\frac{1}{2}(bc \div a + ca \div b + ab \div c)$$
. 116. $\pm c \div m$, &c.

117.
$$2s(s-a)(s-b)(s-c) \div \sqrt{\{s^{/2}-a^2\}(s^{/2}-e)(s^{/2}-c^2)\}}$$
 where $2s=a+b+c$, $2s^1=a^2+b^2+c$.

118.
$$(2ab+2ac^2+2bc^2-a^2+b^2-c^4)\div 4c^2$$
. 119. $a, b, \frac{1}{2}(a+b)$.

120.
$$\pm a$$
 or $\pm ja\sqrt{3}$. 121. $a, b. \frac{1}{2}(a+b)$.

Exercise Ivii.

- 1. x, 7; y, 9. 2. x, 2; y, 1. 3. x, 8; y, 1.
- **4.** x, 9; y, **5.** x, $-10\frac{1}{2}$; y, $5\frac{1}{2}$. **6.** x, -2; y, $\frac{1}{2}$.
- 7. x, -1; y, 1. 8. x, -2; y, -3. 9. $x, -\frac{3}{4}; y, \frac{1}{2}.$
- 10. $x_1, -\frac{1}{4}$; $y_2, \frac{3}{4}$. 11. $x_1, 12$; $y_2, 8$. 12. $x_1, 8$; $y_2, -9$.
- **18.** x, 10; y, 12. 14. x, 12; y, 15. 15. x, 18; y, 18.
- **16.** x, '8; y, '2. 17. x, 7; y, 9. 18. x, 7; y, ·8.
- 19. x, 7; y, 8. 20. x, 2; y, 8. 21. x, 3; y, 4.
- **22.** $x, \frac{4}{5}; y, \frac{9}{10}$. **23.** $x, \cdot 3; y, \frac{1}{7}$. **24.** x, 12; y, 15
- 25. $x, \frac{7}{10}$; $y, \frac{3}{10}$. 26. x, 8; y, 9. 27. x, 9; y, 1.
- **28.** x, 7; y, 8. **29.** x, 11; y, 7. **30.** x, 17; y, 18.
- **81.** x, 5; y, -4. **82.** x, $-\frac{31}{10}$; y, $-\frac{19}{10}$. **83.** x, 18; y, 10.
- **84.** x, $4\frac{2}{5}$; y, $8\frac{3}{10}$. **85.** x, 11; y, 6. **86.** x, 7; y, 5.

	87.	x, 2; y, 3.	88.	x, 5; y	y, 3 .	89	. Equatio	ns
	40.	x, 3; y, 1.	41.	x, 7; 1	y, 5 .	1	not indepen	dent
	42.	x=0=y=0.	48.	0, 0.	44.	x = 0 or	18; $y = 0$	or 26.
	45.	x, 17; y, 20;	z, 5.		46.	$x, \frac{221}{130},$	$y, \frac{234}{130}, z,$	247 130
	47.	11, 7, 9.	48.	21, 22,	23.	49.	-15, -6,	- 8.
	50.	8, 4, 5.	51.	12, 15,	10.	52 .	5, 8, 1.	
	53.	$\frac{5}{6}$, $1\frac{1}{2}$, $\frac{2}{3}$.	54.	8, 5, 7.		55.	11, 13, 17.	
	56.	5, 8, 1.	57.	9, 7, 3.		58.	74, 84, 94.	
ı	59.	$8\frac{1}{7}$, $2\frac{1}{7}$, $1\frac{1}{7}$.	60.	2.3, 3.4	, 4.5.	61.	30, 20, 70.	
	62.	88 + 59, 1098	8 + 58	0, 1004 -	÷ 59.	68.	80, 12, 70,	,
	64.	6, 12, 20.	65.	5, 2, 0.		66.	1, 1, 1.	
	67.	11, 9, 7.	68.	5, 8, 1.		69.	2, 3, 1.	
	70.	3, 4, 5.	71.	$\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{4}$.		72.	5, 4, 8.	
	73.	7, 3, 1.	74.	2, 3, 1.		75.	1, 3, 5.	
	76.	0, 1, 2.	77.	$1755 \div 6$	698, 36	$30 \div 349,$	-15705 ÷	- 698.
ı	78.	$\frac{1}{5}$, $\frac{1}{8}$, 1	79.	5, 4, 1,	8.	80.	$4\frac{2}{5}$, 8_{10}^{3} , 2_{1}^{2}	$\frac{11}{0}, \frac{11}{19}$
	81.	31, 41, 51, 21	•	8	32. 7,	$4\frac{1}{2}$, 4, 8	<u>.</u>	
	83.	20, 10, 0, 30.		8	4. 11	÷ 24, ¼	$1 \div 24, \frac{1}{4}$	
	85.	$270 \div 117, -$	- 52 ÷	117, 15	÷ 117,	-126	÷ 117.	
n i								

Each 210.

86.

y, ·3.

, 4. y, 15

, 1.

y, 13.

y, 10.

, 5.

Exercise lviii.

1.
$$(a'c-ac') \div (a'b-ab')$$
. 2. $b(cn-dm) \div (ad-bc)$.
3. $b(d-c)(d-a) \div d(b-c)(b-a)$, $c(d-a)(d-b) \div d(c-a)(c-b)$.
4. $y = cz + du + ew + ax$, $z = du + ew + ax + by$, $u = ew + ax + by + cz$, $w = ax + by + cz + du$.

5.
$$x = \frac{1}{2}m(a-b+c)$$
, &c. 6. $x = \{p(a^2-b) - m(ab-1) + ab = 0\}$

$$n(b^2-a)+\{a^3+b^3-3ab+1\}, &c.$$

7.
$$\mathbf{x} = (l - am + abn - abcp + abcdr) \div (1 + abcde)$$
, &c.

8.
$$1 = a \div (1+a) + b \div (1+b) + c \div (1+c)$$
.

9.
$$1 = ab + bc + ca + 2abc$$
.

Exercise lix.

1.
$$(nc-bd) \div (na-bm)$$
, $(mc-ad) \div (mb-na)$.

2.
$$(no+bd) \div (an+bm)$$
, $(mc-ad) \div (bm+an)$.

8.
$$c(n-b) \div (an-mb)$$
, $c(m-a) \div (bm-am)$.

4.
$$(b-c)a \div (b-a)$$
, $b(a-c) \div (a-b)$. 5. $ab \div (a+b)$, y, same.

6.
$$ab^2 \div (a^2 + b^2)$$
, $a^2b \div (a^2 + b^2)$. 7. $ac \div (a + b)$, $bc \div (a + b)$

8.
$$(a^2-b^2)\div(am-bn)$$
, $(b^2-a^2)\div(bm-an)$.

9.
$$a+b-c$$
, $c+a-b$. 10. $a+c$. $b+c$.

11.
$$a(cn-dm) \div (bd-ac), b(cn-dm) \div (ad-bc).$$

12.
$$y = \{93(a^2 - c^2) - b(b + 2a)\} \div \{(a - b)^2 - c^2 + 4bc\}.$$

13.
$$a+b-c$$
, $a-b+c$. 14. $a+b-c$, $c+a-b$.

15.
$$(m-a)(n-a) \div (b-a)$$
, &c. 16. $1 \div (a-b)(a-c)$, &c.

17.
$$(m-bc)(l-a) \div (c-a)(a-b)$$
, &c.

18.
$$x = p \div (pl + mq + nr) + a$$
, so y and z.

19.
$$p\{1-(la+mb+nc)\} \div (pl+mq+nr)+a$$
, &c.

20.
$$(m^2 + 2a^2 - b^2 - c^2) \div 8a$$
, &c. 21. $y = a - b + c$, &c.

22.
$$x = (ab + bc + ca)(b + c - 2a)(2b - a - c) \div \{(a - c)(b + c - 2a) + (b - c)(2b - a - c)\}$$
. Corrected equation, $x = \frac{1}{2}(b + c)$, &c.

23.
$$ma + (a+b+c)$$
, &c. 24. $npr + (anp+bmp+cmq)$.

25.
$$1 \div (b-c)$$
, &c. 26. $\frac{1}{2}(b+c-a)$, &c.

27.
$$au \div d$$
, &c. 28. $z = 1 \div (a + b - c)$.

29.
$$a+b$$
, &c. **80.** $1 \div 2a$, &c.

81.
$$(m^2+n^2-l^2)+2mn$$
, &c. 82. $\frac{1}{2}(a+c-b)$, &c.

83.
$$l(m^2 + n^2) \div 2mn$$
, &c. 84. $1 \div (b + c - a)$, &c.,

35.
$$bc \div (b+c)$$
, &c. 86. $b+c-a$, &c.

37.
$$a, b, c$$
, 88. $b^2 - c^2$, &c.

39.
$$\frac{1}{5}(a+2b-c+3d)$$
, &c. 40. $\frac{1}{5}(4a+b+3c-2d+5e)$.

EXERCISE IX.

1.
$$a+b$$
, $a-b$. 2. $\frac{1}{2}(a^2+b)$, $\frac{1}{2}(a^2-b)$.

3.
$$(3n^2+m^2)\div 5m$$
, $(2n^2-m^2)\div 5m$.

4.
$$a \div (a-b)$$
, $b \div (a+b)$. 5. $1 \div (a-b)$, $1 \div (a+b)$.

6.
$$a+b-c$$
, $a-b+c$. 7. $a+b-c$, $a-b+c$.

8.
$$(a^2+ab+b^3)\div(a+b)$$
, $(a^2-ab+b^3)\div(a-b)$.

9.
$$(ab-1) \div (a-1)(b-1)$$
, $(a-b) \div (a-1)(b-1)$.

10.
$$(1+a) \div (ab-1)$$
, $(1+b) \div (ab-1)$.

11.
$$(a+1)(b+1) \div (ab-1)$$
, $(a-b) \div (ab-1)$.

12.
$$a(a+b)$$
, $b(a-b)$.

13. $a\{b(a+b)-c(a-c)\} \div (a^2-bc)$,
 $a\{b(a-b)+c(a+c)\} \div (a^2-bc)$.

14. $-(a+b)$. ab.

15.
$$\frac{1}{2}(b+c)$$
, &c. 16. $(a-2b+3c) \div 88$, &c.

17.
$$2 \div (b+c)$$
, &c. (by symmetry).

19.
$$b^2 - c^2$$
, &c. 20. $b^2 - c^2$, &c.

21.
$$\frac{1}{2}abc$$
, $(1-a)(1-b)(1-c)$, $(2-a)(2-b)(2-c)$.

22.
$$2abc \div (ab + bc - ca)$$
. 23. 1, 1, 1.

24.
$$ar + (ma + nb + pc + qd)$$
, &c.

25.
$$u = 0$$
, or $\left(\frac{d}{a} - 1\right) \div \left(\frac{d^2}{b^2} - \frac{d^2}{c^2}\right)$.

26.
$$(b+c-a) \div (a+b+c)$$
, $y = (b-c-a) \div (a-b-e)$.

27.
$$\frac{1}{2}(a-b+m-n)$$
, &c.

y, same. $c \div (a+b)$

ь.

&c.

-c - 2a) +

c), &c. cmq).

16.

17.

18.

19.

20. 22.

23.

24.

25.

26.

28.

29. 80.

81.

82.

28.
$$(4a+2c-d-3b)$$
, $y+z$ by symmetry.

29.
$$-(a-b+c+d)$$
, $(ab+bc, &c.)$, $-(abd+&c.)$, abcd.

30.
$$\frac{1}{2}(a-b+c-d+e)$$
, others by symmetry.

31.
$$x = (a - lb + lmc - lmnd + lmnpc) \div (1 + lmnpq)$$
, the others by symmetry. 32. $x = b + c - e$, &c.

34.
$$y = (a+5b+3c-7d+9e) \div 22$$
, &c.

35.
$$z = \frac{1}{2}(a+c)$$
, then symmetry. 36. $z = c+d+e$, &c.

87.
$$x = a - 2b + 3c - 2d + e$$
, then by symmetry.

Exercise lxi.

1.
$$x = (2ab + a + b + r) \div 2(a - b)$$
 where $r = 4a(b^2 + b + 1) \div (3a - b)(3b - a)$.

2.
$$x = (ar + 1) \div (ar - 1)$$
 where $r^2 = (b^2 - 1) \div 3(a^2 - b^2)$.

3.
$$x = \{ \sqrt{(1+a)(1+b)} - \sqrt{(1-a)(1-b)} \} \div \{ \sqrt{(1+a)(1+b)} + \sqrt{(1-a)(1-b)} \}.$$

4.
$$(ab-\alpha\beta) \div (ab+\alpha\beta)$$
, $(a\beta+b\alpha) \div (a\beta-b\alpha)$.

5.
$$x = \{ \sqrt{(a+b+c)(a+b-c)} + \sqrt{(b+c-a)(a+c-b)} \} \div \{ \sqrt{(a+b+c)(a+b-c)} - \sqrt{\ldots} \}.$$

6.
$$(a+b) \div (1-ab)$$
. 7. $x = (\alpha\beta - ab) \div (a\beta + b\alpha)$

8.
$$\left(\frac{x+1}{x-\frac{1}{a}}\right)^4 = \frac{(a+m)(b+n)}{(a-m)(b-n)}$$
.

9.
$$x = \{a\sqrt{(1-b^2)} - b\sqrt{(1-a^2)} \div \sqrt{(a^2-b^2)}\}$$

10.
$$x = (b+c-a) \div \{(\sqrt{b+c-a})(c+a-b)(a+b-c)\}$$

11.
$$x=(b+c) \div \sqrt[3]{(a+b)(b+c)(c+a)}$$
.

12.
$$x = \sqrt{(a+b+c)} \Rightarrow a, \&c.$$

13.
$$x = \{b^2 + c^2 - a(b+c)\} + \sqrt{2(a^3 + b^3 + c^3 - 3abc)}$$
.

14.
$$(b+c-a)$$
, &c. 15. $a \text{ or } (a^2-b) \div (1-ab)$.

16.
$$x+y = \sqrt{(a+b)(a+2b)} \div \sqrt{(a-b)_t}$$

 $x-y = \sqrt{(a+b)(a-2b)} \div \sqrt{(a-b)}$, &c.

17.
$$(x+y)^2 = \frac{1}{2} \left(8b - \frac{a}{b} \right), \quad (x-y)^2 = \frac{1}{2} \left(\frac{8a}{b} - b \right).$$

18.
$$(x+y) \div (x-y) = \sqrt{(a+3b)} \div \sqrt{(a-b)} = m$$
 suppose.

19.
$$y^2 = m \div (am^2 - m + 1)$$
 where $m = 1 \div a + b \pm \sqrt{(a^2 - b^2 + 1)} \div (a + b)$.

20.
$$a, b.$$
 21. $x = {\sqrt{(a-c) + \sqrt{c}}y \div {\sqrt{(a-c) - \sqrt{c}}}.$

22.
$$x = (a+c)y \div (a-c)$$
, &c.

ers by

23.
$$x+y=(ab-1)\div(a-b)$$
, &c.

24.
$$xy = \{ \sqrt{(b+2)} - \sqrt{(b-2)} \} \div \sqrt{\{(b+2)} - \sqrt{(b-2)} \} =$$
 $p \text{ suppose, } x \div y = \{ \sqrt{(a+2)} + \sqrt{(a-2)} \} \div \{ \sqrt{(a+2)} - \sqrt{(a-2)} \}.$

25.
$$x^2y^2z^2 = \frac{1}{3}(a+b-c)(b+c-a)(c+a-b)$$
, &c.

26.
$$x = (ab - bc - ca) \div 2 \sqrt{abc}$$
. 27. $a - x^2 = \pm m$, where m is the value of v in the equation $4ca - 4(c+a)r + 4v^2 = (ca - ab - bc)^2 + 4b(ca - ab - bc)v + 4b^2v^2$.

28.
$$x = \frac{1}{2} \sqrt{(abc)} \left(\frac{1}{b} + \frac{1}{c} \right)$$
, y and z by symmetry.

29.
$$a(b^2+c^2)\div(b^2+c^2)\div(b^2+c^2)$$
, &c.

80.
$$c\{\sqrt{(a+b)} + \sqrt{(a-b)}\} \div \sqrt{(a+b)}$$
.

81. 0 or
$$a(b+c) \div 2bc$$
, &c.

82.
$$s = -1$$
 or $a_1/(a^2-1) \div \sqrt{(a^2-b^2)}$, &c.

EXAMINATION PAPERS.

I.

1.

8.

5.

9.

2.

5.

6.

2.

3.

5.

6.

7.

8.

4.

5.

7

1.
$$(a+b+c)(x+y+z)$$
.

2.
$$(x^2-4y^2)^3$$
, $2(a^2b^2+b^2c^2+c^2a^2)-a^4-b^4-c^3$.

8.
$$x^4 - 6x^3 + 18x^2 - 12x + 4$$
, $x^2 + 9x^{-2} + 3$, $x^{n(n-1)} + x^{n(n-2)} + x^{n(n-3)} \cdot \cdot \cdot \cdot \cdot$

4.
$$2x^{2m} - \frac{1}{3}x^{3m}$$
, $\frac{a}{b} - \frac{b}{c} - \frac{c}{a}$. 5. $\pm 14\sqrt{-19 \div 27}$, 0 or $\frac{4}{3}$.

II.

1.
$$(a+b)^3$$
. 2. $(a+b+c)(a^3+b^3+c^3-3abc)$. 3. $1 \div x^3$.

4.
$$(a^{2m}+2a^m+2)$$
: (a^m+2) , $(a+b+c)$: $(a-b-c)$.

7.
$$-\frac{7}{8}$$
, 4 or 6. 8. $p^2q \div (r-pq)$.

9. 584. 10.
$$(am+bn) \div (a+b)$$
, (by common rule).

III.

1.
$$-117$$
, $a^2(z-x)+(x-y)ab+(y-z)b^2$.

2.
$$a+bx+cx^2$$
, $3-4x+7x^2-10x^3$

5. 40, 85.

8.
$$2\frac{1}{2}$$
; 6, 9, 12. 4. 160 eggs.

7. 5 or
$$\frac{1}{4}$$
; 4. 9. $(a+b+c)(a-b)(b-c)(a-c)$

IV.

6. $\sqrt{\frac{1}{2}(1+a)} + \sqrt{\frac{1}{2}(1-a)}$.

1.
$$(a+b+c)^2$$
. 2. $a+b$. 3. $(4x^2-9y^2)(4x^2-4y^2)$, $1+\sqrt{x}$.

4.
$$\frac{1}{3}\sqrt{8} - \frac{1}{6}\sqrt{6}$$
, 17. 5. 4. 6. 1. 7. 0 or 4; 8, 1.

8.
$$7\frac{1}{2}$$
, 12. 9. 4 or 6. 10. $\frac{1}{2}(-3 \pm \sqrt{-39})$.

V.

1.
$$8x^{8}+1\div125$$
. 3. $16a^{2}b^{2}$. 4. $b\div8a$. 5. 15, 12.

6.
$$\frac{1}{2}a$$
, $\frac{1}{4}a$; 4 or -9, 7. 6, 7, 8, or -6, -7, -8.

VI.

1.
$$(a^2+b^2)$$
. 2. $a^2+b^2+c^2+ab+ac-bc$.

8.
$$x^2 + y^2 \pm \frac{3}{2}xy$$
, $(7x + 6y - 9)(x - y + 4)$. 4. -20 , 0.

5.
$$b \text{ or } 1 \div t$$
. 7. $x = 4 \text{ or } 9, y = 9 \text{ or } 4; 1, 2, 3;$
 $x = \frac{1}{2}(-7 \pm \sqrt{33})$. 8. $-1, 0, 1, \text{ or } 5, 6, 7, \text{ or } -\frac{11}{7}, -\frac{4}{7}, \frac{3}{7}$.

9.
$$x(x^2+3)(x^2-2x-1)=0$$
. 10. $x \div y = 3 \div 4$.

VII.

2.
$$-.01$$
. 4. x^2+x-1 .

5.
$$(36x^2+18x+9)\div(16x^4-81), (x^2-ab)\div(x^2+ab)$$
.

6. 9; 3;
$$x = \frac{1}{2}(a-b)$$
.

2.
$$(x^3-y^3)^2(x-y)$$
; $a=p+q$, $b=pq$.

3.
$$(x^2-xy+y^2)^2$$
; $a^4+b^4-a^2b^2$.

5.
$$ax^3 + bx + cx^{-1}$$
; $\frac{1}{2}x^{\frac{3}{4}} + \frac{1}{3}x^{\frac{5}{8}} - \frac{1}{4}x^{\frac{7}{8}}$

6.
$$x^2+px+p^2$$
; $50(x+5)(x-4)(x-6)$.

7.
$$a=0=b$$
 or $a=1$, $b=2$.

8. 3 or
$$-43 \div 7$$
 satisfies the equation $2 - \sqrt{\ldots \&c}$.

IX.

4.
$$axy+b$$
. 7. $\pm \sqrt{ab}$; $\sqrt{(a+b)} \div \sqrt{(a-b)}$, and $y=$ reciprocal of this. 8. $P(22a-21b)\div 20a(a-b)$. 9. 7, 15, 48. X.

1.
$$ax^2 + by^2 + 2cxy$$
. 8. $x-2$. 4. 24.

5.
$$5x^2 - 3ax + 4a^2$$
; $\frac{x}{y} + \frac{y}{x} - \sqrt{\frac{1}{2}}$. 7. 3; $\frac{1}{2}$. 8. 4, 6.

1. 2. 2. 6, 8. 3.
$$(4x^{\frac{1}{2}} - 9y^{\frac{1}{2}})^3$$
, $\frac{1}{19}x^4 + \frac{4}{81}y^4$.

4.
$$x^{2}+3+9x^{-2}$$
, $x^{2}-(a+b)x-c$. 6. 0.

7. 0 or
$$-2\frac{1}{2}$$
; $y = \pm 3$ or $\pm \sqrt{-9}$, &c.

or 4.

 $1 \div x^3$.

- c.

+vx.; 8, 1.

5, 12.

XII.

1.

8.

1.

7.

1.

6.

1.

4.

5.

7.

8.

4.

10

- 2. $a^{2^n} b^{2^n}$. 3. $1 + x + 2x^2 + 4x^3 + 8x^4$, $2^n x^{n+1}$.
- 5. $(1-3x-4x^2)(1-2x-13x^2+38x^3-24x^4)$.
- 6. $m^2 m = p$, q = 0.
- 7. $x^2 = (a-2) \div (a+4)$, $\sqrt{x} = \{b(n-1) cn\} \div \sqrt{a(n-1)}$
- 8. $ab \div \{(a-1)(b-1)-1\}$. 9. 87

XIII.

- 1. 2. 3. $1+c_1x+c_2x^2+\&c$, where c_1 , c_2 , &c., represent the combinations of a_1 , a_2 , ... taken one, two, &c. at a time.
- 4. \$4000. 5. $\{m(b'c-bc')-n(ca'-c'a)\} \div (ab'-a'b),$ $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}.$ $7 (\alpha + \beta)^{\frac{2}{3}} + (\alpha \beta)^{\frac{2}{3}} 2a^{\frac{2}{3}} = 0.$ 9. 65.

XIV.

1. 12abc. 4. 8 miles. 5. $am \div n$; $x+y=\pm 5$ or ± 1 , $x-y=\pm 1$ or ± 5 . 6. 20.

XV.

- 2. $\frac{1}{8}$. 3. $c^2(c^2-bd)+d^2(b^2-ac)+ac(ad-bc)$. 4. $2\div(m-n)$. If m-n is negative x is neg. which shows that they were together before noon. If m-n=0, x is infinite, i.e., they are never together.
- 5. $x^2(x^2-a^2)(x-2a)$; $(x^2-a^2)(x^2-y^2)$.
- 6. $(a+b+c+3d) \div (a+b+c+d)$. $(x+y+z) \div (x-y+z)$; $8a \div (a+b)$.

XVI.

- 4. $2x^4 3x^3 + 4x + 3$. 5. See paper XIX., prob. 4.
- 6. $\frac{1}{2} \{ 1 \pm \sqrt{(a^{\frac{1}{n}} + 4b^{\frac{1}{n}})} \div \sqrt{4b^{\frac{1}{n}}}.$ 8. $(b_2c_1 b_1c_2) \div (a_1b_2 a_2b_1)$ = $(b_3c_2 - b_2c_3) \div (a_2b_3 - a_3b_2).$ 9. $ac \div (a - b)$,

XVII.

1.
$$\{2ab-(a+b)\} \div ab$$
. 2. $x^4-2x^2(a+b^2)+(a-b^2)^2$; $8a^2-2ab-10ac-8b^2+2c^2+5bc$. 6. $m^3-n^{\frac{3}{3}}=4$.

8.
$$(m+n)(bq-pc) \div (mq-pn)$$
, $(p+q)(mc-bn) \div (mq-pn)$.

XVIII.

1.
$$1-x^{16}$$
. 2. 1. 4. $x-a-b$. 6. $(x-y)(x-z)$.

7. 1. 8.
$$9a$$
; $\pm 1 \div \sqrt{2}$ or $\pm \frac{1}{2} \sqrt{6}$. 9. 10, 11.

XIX.

1.
$$\frac{1}{4}(4x-a+1)^3$$
. 3. $5x^2-1$; $(x^2+xy+y^2)^3$.

4.
$$(a-c)(a-d)(b-c)(b-d) \div (a+b-c-d)^2$$
.

6.
$$(a+2)^2 \div 4(a^2+a)$$
. 7. $(7b^2-a^2)\div 12a$. 8. 18, 22, 50, XX.

2.
$$(1+m)x+(1-n)y$$
. 8. x^2-1 .

4.
$$(x+y-z)(y+z-x)(z+x-y) \div (x+y+z)^2$$
;
 $(a^2b-2ab^2-a^3+ab^3+b^3) \div (a^4-b^4)$.

5. 1. 6.
$$a''(cb'-bc')+b''(ac'-a'c)+c''(a'b-ab')=0$$
.

7.
$$\sqrt{n^2-\left(\frac{m^3-2n}{8m}\right)^3}$$
; 2, 3, 4.

8.
$$a(b-c)\div(b-a)$$
, $b(c-a)\div(b-a)$. 9. 8. 10. 2000.

XXI.

1, 8. 2.
$$24abc$$
; $2a^8 + 43a^6x^2 + 62a^4x^4 + 44a^2x^6 + 18x^8$.

4. 0;
$$a^7 + 16$$
. 5. 16; $x + 2a^{\frac{1}{2}x^{\frac{1}{2}}} - 2a$. 7. 3377 oz. of gold, 783 oz. of silver. 9. $-(8 \pm 4\sqrt{3}) \div (3 \pm 2\sqrt{3})$; $x = \pm 2$ or $\sqrt{-1}$, $y = \mp 1$ or $\pm 2\sqrt{-1}$; 8, 4.

10.
$$y = \cos t \text{ of } 2nd \text{ bale} = 60 \pm 20 \sqrt{7}$$
.

nt the ne.

′b), 65.

±1.

- n).

were they

 (b_1)

XXII.

10

1. •02997,
$$a^3 + aq + p^3$$
. 2. $ab^2 - b^2 + c = 0$,
(a). $(a-b)(8a-3b)$. (b). $x(x-1)(a-b)(b-c)(a-c)$.

3.
$$b^2 = 4ac$$
. (a). $(a^2 + b)^2$. 5. (a) $(ax - by) \div (ax + by)$

7. (a)
$$\frac{1}{3}(a+b+c)$$
, (b), $\frac{2}{5}$, $\frac{2}{3}$, 2.
(c). $b-c$, $c-a$, $a-b$. (d). $-1 \pm \sqrt{2}$.

XXIII.

1.
$$\frac{1}{3}x^5 + \frac{4}{3}x^4 - x^3 + \frac{1}{3}x^2 + \frac{1}{13}^6 + (95x^3 + 21x^2 - 40x + 42) \div (8x^4 - 21x^3 + 9x - 6); -382.$$
 4. $x = a + 2c, y = b + 3c.$

5. (2).
$$\frac{1}{32}$$
. 7. (1). $a+b+c$. (2), 1, 2, 3, 4. (3), 0 or $\frac{7}{13}$.

$$\begin{cases}
a_1b_1c_1d_1 \\
a_2b_2c_2d_2 \\
a_3b_3c_3d_3 \\
a_4b_4c_4d_4
\end{cases} = 0.$$

12. Coll. to Newmarket 63 miles.

XX1V.

1.
$$1 op \{(x-y)(y-z)(z-x).$$
 2. $3-m-n$; 0. 3. 5, 3, $4\frac{1}{2}$.

4. (1).
$$A = bc \div 2a$$
, $B = ac \div 2b$, $C = ab \div 2c$; (2). $a^2 + b^2 = c^3$.

11.
$$y = \pm 2$$
, $x = \pm 5$, &c. $x^2 - 10x = -19$ or -16 ,

:.
$$x = 8$$
 or 3, &c. $(b^{-\frac{1}{2}} \pm a^{-\frac{1}{2}})^{\frac{4pq}{p-q}}$

XXV.

1.
$$(a^2-8x)\div(a^2-x^2)$$
; 1. 2. $\frac{1}{a}-\frac{b}{ax}-b^2(x+a)\div a^2x^2$.

5.
$$x^2 - 2x = 2$$
, $x = 3$, $y = 2$; $y = 53 \div 24$, &c. 6. 4 miles, 3 do.

7.
$$(x^n-1)\div(x^2-1)x^{n-1}$$
. 8. $R^n\left(P-\frac{p}{r}\right)+\frac{p}{r}$. 9. 7.

10
$$1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + &c. = 2 \cdot 71828 \text{ approximately;}$$

$$\{(5x)^r \div 3^{r+\frac{1}{2}}\} \{1 \cdot 6 \cdot 11 \dots (5r-4)\} \div |\underline{r}. \quad 11. \frac{3}{2} \text{ and } -\frac{7}{2}.$$
XXVI.

2.
$$a - \sqrt{(ab - a^2)}$$
; 4. 8. 2, $\frac{1}{2}$, or $\frac{1}{2}(-3 \pm \sqrt{5})$; $x + y + z = \sqrt{(a^2 + 2b^2)}$, $\therefore z = c + \sqrt{(a^2 + 2b^2)}$, &c. $\frac{1}{3}(-4 \pm \sqrt{76})$.

4. 8. 7.
$$p^2 \div 4 + r^3 \div 27 = 0$$
. 10. $(1+x) \div (1-x)^2 - x^{n-1} \{ 8x - 1 + 2n(1-x) \} \div (1-x)^2$; $n \div (15n+9)$, $\frac{1}{16}$.

XXVII.

1.
$$(lm-nk)^2$$
. 2. $(a+b+c)(a-b)(b-c)(a-c)$.

3.
$$(a-b)(b-c)+(b-c)(c-a)+(c-a)(a-b)$$
; $(a-b)^2+(b-c)^2+(c-a)^2$.
4. $x=a\div(a^2+b^2+c^2)$, &c.

5.
$$\sqrt{ab}$$
; 18 or -2 ; $\frac{3}{4} + 3j$. 7. $\frac{1}{2}(a+b)$ &c.
$$x = \{1 + a^2 - b^2 \pm \sqrt{(1-a-b)(1-a+b)(1+a-b)(1+a+b)}\}$$
 $\div 2a$; $x \div y = (1+a)(1-b) \div (1-ac)$, &c.

8.
$$-8$$
; $(p^4-4p^2q+8pr)\div(p^2-4q)$.

9.
$$(m+n) \div 2mn, (n-m) \div 2mn$$

3c. r <u>1</u>.

41.

 $= c^*$

r2.

3 do.

7.

W. J. GAGE & CO'S, List of Educational Publications,

FOR SCHOOLS AND COLLEGES.

MATHEMATICS.

HAMBLIN SMITH'S ARITHMETICAn Ad-	
vanced treatise, on the Unitary System, by J.	
Hamblin Smith, M.A., of Gonville and Caius Col-	
leges, and late lecturer of St. Peter's College Cam-	
bridge. Adapted to Canadian Schools, by The mas	
Kirkland, M.A., Science Master, Normal School	
Toronto and William Scott, B. A. Hand Muster	
Model School for Ontario, 6th Edition 20 75	i
KEV -A complete Key to the above Avithmetic be-	

Mathematicul Master Galt Collegiate Institute.

"Introducing Fractions immediately after the 'Simple Rules' will be hailed by all practical teachers as a step in the right direction. I shall advocate the exclusive use of your work in all elementary schools, as my past experience enables me to estimate its value"—John Macoun, M.A., F.L.S., Rector of Albert College Grammar School, Belleville.

W. J. GAGE & Co's Educational Series.

VV. 3. GAGE & COS Excidentional Series	20.
p)	RICE.
McLellan & Kirkland's Examina- Tion Papers in Arithme ic.—A complete series of Problems, designed for use in Schools and Colleges, and especially adapted for the pre- paration of candidates for Teachers' Certificates, by J. A. McLelian, M.A., Ll.D., Inspector of High Schools and Thomas Kirkland, M. A., Science	% ,
Master Normal School, Toronto. 4th Edition McLELLAN & KIRKLAND'S EXAMINA- TION PAPERS.—PART I.—Containing the Ex- amination Papers for admission to High Schools, and for Candidates for Third-Class Teachers' Cer- tificates	0 50
HINTS AND ANSWERS TO McLELLAN & KIRKLAND'S EXAMINATION PAPERS, containing answers to Problems and Solutions to all difficult questions. Prepared by the authors. 2nd Edition	1 00
The leading American Educational Journal (Not: Teachers' Monthly) says of McLellan and Kirkland's E ination Papers:—"In our opinion, the best collection problems on the American Continent."	xam- on of
SMITH & McMURCHY'S ADVANCED	0.50
SMITH & McMURCHY'S ELEMENTARY	0 25
McLELLAN'S MENTAL ARITHME'TIC.—PART I. Containing the Fundamental Rules, Fractions, and Analysia, By J. A. McLellan, M.A., LL.D., Inspector of high Schools, Ontario. 2nd	
Edition. McLELIAN'S MENTAL ARITHMETIC.— PART II. By the same author, fully treats Forcentage in its various as polications. General Analysis, Stocks and Shares, Interest, Discount, &c., &c., and gives practical solutions of almost every type of question likely to be met with in any treatise on Arithmetic. 2nd Edition	0 30
"His treatment of the subject has been so practical skillful that teachers have frequently expressed the that he would prepare a text-book on Mental Arithm. The volume before us, Part I. of the work, treats systically and comprehensively of the fundamental rules, tions, analysis reduction, &c. It contains about 1,200 graded practical problems. We can recommend the to all teachers of arithmetic."—London dvertiser. JUVENILE MENTAL ARITHMETIC.—By John F. Stoddord, M.A.	l and wish netic. sema- frac- well book

W. J. GAGE & Co's Educational Series

HAMBLIN SMITH'S ALGEBRA.—An Elementury Algebra, by J. Hamblin Smith, M.A., of Gonville and Caius Colleges, and late Lecturer at St. Peter's College, Cambridge, with Appendix by Alfred Baker, B.A., Mathematical Tutor, University College, Toronto	0 90
KEYA complete Key to Hamblin Smith's Algebra.	2 75
"Arrangements of subjects good; explanations and prexhaustive, concise and clear; examples for the most from University and College Examination papers numerous, easy and progressive. There is no better gebra in use in our High Schools and Collegiate Institution of the College Dickson, B.A., Head Master Collegiate Institution.	roofs part are Al-
HAMBLIN SMITH'S EXERCISE IN ALGEBRA. PART I	0 75
GROSS' ALGEBRA.—PART II. By E. J. Gross, M.A., Fellow of Gonville and Caius Colleges, and Mathematical Lecturer at Gerton College, Cam- bridge	2 50
HAMBLIN SMITH'S ELEMENTS OF GEO- METRY, containing Books I. to VI., and portions of Books XI. and XII., of Fuelid with Exercises and Notes, by J. Hamblin Smith, M.A., &c., and Examination Papers, from the Toronto and McGill Universities, and Normal School, Toronto	0 90
HAMBLIN SMITH'S GEOMETRY.—BOOKS I. and II., with Exercises, &c	0 30
HAMBLIN SMITH'S GEOMETRY BOOKS	
II. and III., with exercises, &c	0 80
POTTS' EUCLIDBOOKS I. and II., with Exer-	0 50
POTTS' EUCLID,—BOOKS II. AND III, with Ex-	0 30
I shall recommend Pott's Euclid to the teache	0 30
training as a book of invaluable use."—W. Crockett, Principal Normal Training School, New Brunswick.	A.M.,

W. J. GAGE & Co's Educational Series.

	ICB.
**************************************	1 00
"It supplies a great want felt by those preparing Teachers' Certificates. This-did it possess no other method make it a great success. It is by far the best book on the subject for the schools of Outario I have seedeo. Baptie, M. A., M. D., Science Master Normal Sciottawa.	en."
HAMBLIN SMITH'S STATICS.—ELEMENTARY STATICS. By J. Hamblin Smith, M. A., Gonville and Caius College, and late lecturer at St. Peter's College, Cambridge, with appendix by Thomas Kirkland, M.A., Science Master, Normal School, Toronto	0 90
HYDROSTATICS.—ELEMENTARY HYDROSTATICS. By J. Hamblin Smith, M.A., Gonville and Caius College, late lecturer at St. Peter's College, Cambridge.	0 75
KEY.—A Key to Hamblin Smith's Statics and Hydrostatics in one volume	2 00
TRIGONOMETRYELEMENTARY TRIGONOMETRY. By J. Hamblin Smith, M. A.	1 25
KEY. A Key to Hamblin Smith's Elementary Trigonometry	2 50

ENGLISH.

"I asked a grammar school inspector in the old country to send me the best grammar published there. He immediately sent Mason's. The chapters on the analysis of difficult sentences is fitself sufficient to place the work far beyond any English Grammar interto before the Canadian public."—Alex. Sims. M.A., H.M.H.S., Oakville.

W. J. GAGE & Cos Educational Series.

Commence of the second	
MASON'S ENGLISH GRAMMAR.—(Common School edition) with copious and carefully graded exercises, 243 pages	O 6
MASON'S OUTLINES OF ENGLISH GRAMMAR, for the use of junior classes	0 5
ENGLISH GRAMMAR EXERCISES, -By C. P. Mason, Reprinted from Com. Sch. Edition	0 30
MILLER'S SWINTON'S LANGUAGE LES- SONS, (revis d'adition), adapted as an introduc- tory text-book to Mason's Grammar, by J. A. Mac- millan, B.A., Ottawa ollegiaie Institute. It con- tains the Examination Papers for admission to High Schools, and teacres grammar and composi- tion simultaneously. 5th edition, 40th thousand	. 0 2
"In accordance with a motion passed at the last reg- meeting of the County of Flgin Teachers' Association pointing the undersigned a Committee to consider the pective merits of different English Grammars, with a sto- to suggest the most suitable one for Public Schools, we leave to report, that, after fully comparing the various tions that have been recommended we believe that 'ler's Swinton's Language Lessons' is the best adapted to wants of junior pupils, and would urge its authorization the Government, and its introduction into our Pu- Schools." (Signed.)	ulan res- view beg edi- Mil- othe
A. F. Butler, Inspector.	
J. McLean, Town Inspector. J. Millar, M. A., Head Master St. Thomas High School. A. Steele, B.A., Head Master Aylmer High School. N. M. Campbell, Head Master Co of Elgin Model School. It was moved and seconded that the report be receand adopted. Carried unanimously.	toor
NEW ENGLISH GRAMMARIn three parts:	
Swinton. A. M. Revised by J. B. Calkin, M. A.,	
DAVITES' INTERODITOR OF A TRACE TOTAL	0 50
DAVIES INTRODUCTORY ENGLISH GRAMMAR	0 25
DAVIES' NOTES ON 5TH READER.—Literary Extracts selected from Book V of the authorized series of Readers, for "Examination in English Literature," of candidates for third class certificates, with notes original and selected. By H. W. Davies, D. D., Principal Normal School.	0 20
Toronto. 5th edition	0 25
MILLER'S ANALYTICAL AND PRACTICAL GRAMMAR	0 38

W. J. GAGE & Co's Educational Series.

Annahuse Control of Co
EPOCH SERIES.—PART I. Containing first four of Series
EPOCH SERIES.—PART II. Containing last four of the Series
EPOCH SERIES COMPLETE, in one volume. 1 00
CREIGHTON'S EPOCH PRIMER OF ENG- LISH HISTORY.—An introductory volume to "Epochs of English History." A complete sum- mary of the history of England, in 140 pages. By Mandell Creighton, M. A., late Fellow and Tutor of Merton College, Oxford
"The work is admirably done, and it will no doubt obtain a very considerable sale."—Athenæum.
"This volume, taken with the eight small volumes, containing the accounts of the different epochs, presents what may be regarded as the most thorough course of elementary English History ever published.—Aberdeen Journal.
PINNOCK'S CATECHISM OF ENGLISH 0 10
A SCHOOL MANUAL OF ENGLISH COM- POSITION.For advanced classes in Academies, High and Public Schools. By William Swinton A 45
REID'S ENGLISH DICTIONARY of the English language, containing the Pronounciation, Etymology, and Explanation of all words authorized by eminent writers; to which are added a vocabulary of the roots of English words and an accented list of Greek, Latin and Scripture proper names. By Alexander Reid, A.M., Rector of the Circus-place School, Edinburgh; author of "Rudiments of English Composition," &c. with an introduction by Henry Reid, Professor of English Literature in the University of Pennsylvania; and an appendex showing the pronounciation of nearly 3,000 of the most important geographical names. 3rd Canadian and 23rd English edition
UNIVERSAL PRONOUNCING POCKET DICTIONARY OF THE ENGLISH LANGUAGE. -Founded on the principles of Walker, Webster, Worcester, Johnston, Goodrich and Porter
NATIONAL PRONOUNCING DICTIONARY 0 40

W. J. GAGE & Co's Educational Series.

GOLDSMITH'S TRAVELLER, AND GRAY'S ELEGY.—In one volume; edited by the Rev. E. T. Stevens, M. A., Oxon, joint editor of "The Grade Lesson-books," "The Useful Knowledge Series, etc.; and the Rev. D. Morris, B.A., London, author of "The Class-Book History of England," etc. Interleaved edition
SCOTT'S LADY OF THE LAKE.—With introduction, notes, and glossarial index; by R. W. Taylor, M.A., Assistant Master at Rugby School, and formerly Fellow of St. John's College, Cambridge. Interleaved edition 040
MORRISON'S ENGLISH COMPOSITION.— For the use of schools. By Thomas Morrison, M.A., Rector of the Free Church Normal School, Glasgow 0 45
CREIGHTON'S EPOCHS OF ENGLISH HISTORY—Edited by the Rev. M Creighton, M.A late Fellow and Tutor of Merton College, Oxford. Eight volumes in convenient and cheap form, adapted to Public and High Schools. Price 20c each. THE SERIES CONSIST OF:
 I. Early England up to the Norman Conquest. By Frederick York-Powell, M.A. With four maps. II. England a Continental Power from the Conquest to Magna Charta, 1066-1216. By Louise Creighton. With a coloured map of the Dominion of the Angevin Kings.
III. The Rise of the People, and Growth of Parliament, from the Great Charter to the Accession of Henry VII, 1215-1485. By James Rowley, M.A., Professor of Mod. Hist. and Lit., Univ. Coll. Bristol. With four maps.
IV. The Tudors and the Reformation, 1485-1603. By the Rev. Mandell Creighton, M.A., late Fellow and Tutor of Merton College, Oxford, Editor of the series. With three maps.
V. Struggle against Absolute Monarchy, from 1603 to 1688. By Bertha M. Cordery.
VI. The Settlement of the Constitution from 1689-1788. By James Rowley, M.A., Professor of Modern History and Literature, University College, Bristol.
VII. England during the American and European Wars, from 1789-1820. By O. W. Tancock, M.A., Assistant Master King's School, Sherborne, Dorset. VIII. Modern England, from 1820-1875. By Oscar Browning, M.A., Fellow of King's College, Cambridge.
"Amongst manuals in English History the Epoch Series is sure to take high rank."—Daily Globe.

MASON'S GRADUATED SERIES OF ENGLISH GRAMMARS

Mason's Outlines of English Grammar.

By C. P. Mason, B. A., F. C. P., Fellow of University College London. Authorized for use of Schools in Ontario. For the use of junior classes. Price.

Mason's Shorter English Grammar.

With copious and carefully graded exercises, 243 pages. Price, 60 Cents.

Mason's Advanced Grammar.

Including the principles of Grammatical Analysis. Enlarged and thoroughly revised, with Examination Papers added by W. Houston, M.A.

27th Edition, Price,

75 Cents.

E

A P

1, T

3. E

4. I

5. 8

By

get.

sch

of the

di

ge:

or

tal

"I asked a grammar school inspector in the old country to send me the best grammar published there. He immediately sent Mason's. The chapters on the analysis of difficult sentences is of itself sufficient to place the work far beyond any English Grammar hitherto before the Canadian public."—Alex. Sims, M. A., H. M. H. S., Oakville.

English Grammar Practice.

This work consists of the Exercises appended to the "Shorter English Grammar," published in a separate form. They are arranged in progressive lessons in such a manner as to be available with almost any text book of English Grammar, and take the learner by easy stages from the simplest English work to the most difficult constructions in the language.

Price,

30 Cents.

Outlines of English Grammar.

These elementary ideas are reduced to regular form by means of careful definitions and plain rules, illustrated by abundant and varied examples for practice. The learner is made acquainted, in modern measure, with the most important of the older forms of English, with the way in which words are constructed, and with the elements of which modern English is made up. Analysis is treated so far as to give the power of dealing with sentences of plain construction and moderate difficulty. In the

English Grammar,

the same subjects are presented with much greater fulness, and carried to a more advanced and difficult stage. The work contains ample materials for the requirements of Competitive Examinations reaching at least the standard of the Matriculation Examination of the University of London.

The Shorter English Grammar

is intended for learners who have but a limited amount of time at their disposal for English studies; but the experience of schools in which it has been the only English Grammar used has shown that, when well mastered, this work also is sufficient for the London Matriculation Examination.

Examination Primer in Canadian History.

(History Taught by Topical Method.)

By JAMES L. HUGHES, Inspector of Public Schools, Toronto. A Primer for Schools, and Students preparing for Examinations. Price 25c.

NEW AND SPECIAL FEATURES.

I, The History is divided into periods in accordance with the great national changes that have taken place.

2. The history of each period is given topically instead of in chronological order.

3. Examination Questions are given at the end of each chapter.

4. Examination Papers, selected from the official examinations of the different provinces, are given in the Appendix.

Student's Review Outlines, to enable a Student to thoroughly test his own progress, are inserted at the end of each chapter.

 Special attention is paid to the Educational, Social, and Commercial progress of the country.

7. Constitutional Growth is treated in a brief but comprehensive exercise.

By the aid of this work Students can prepare and review for Examinations in Canadian History more quickly than by the use of any other work.

Gage's Practical Speller.

A Manual of Spelling and Dictation. Price 30c.

PROMINENT FEATURES.

The book is divided into five parts as follows:

PART I. Contains the words in common use in daily life, together with Abbreviations, Forms, etc. If a boy has to leave school early, he should at least know how to spell the words of common occurrence in connection with his business.

PART II. Gives werds liable to be spelled incorrectly because the same sounds are spelled in various ways in them.

PART III. Contains words pronounced alike but spelled differently with different meanings.

PART IV. Contains a large collection of the most difficult words in common use, and is intended to supply material for a general review, and for spelling matches and tests.

PART V. Contains *Literary Selections* which are to be memorized and recited as well as used for Dictation Lessons, and lessons in Morals.

DICTATION LESSONS.—All the lessons are suitable for Dictation Lessons on the slate or in dictation book.

RENIEWS.—These will be found throughout the book.

ARS.

ondon. r classes.

Cents.

mar.

Cents.

ged and Houston,

Cents.

i me the he chapplace the ian pub-

English progressext book he simpage.
Cents,

f careful examples are, with n which English dealing In the

carried materiat least of Lon-

at their ch it has masternination.