

Alexander Panchenko

FROM UNSUPERVISED INDUCTION OF LINGUISTIC STRUCTURES FROM TEXT TOWARDS APPLICATIONS IN DEEP LEARNING

In close collaboration with ...

Chris Biemann

Stefano Faralli

Simone P. Ponzetto

In collaboration with ...

- Andrei Kutuzov
- Eugen Ruppert
- Fide Marten
- Nikolay Arefyev
- Steffen Remus
- Martin Riedl
- Hubert Naets
- Maria Pelevina
- Anastasiya Lopukhina
- Konstantin Lopukhin

Levels of Linguistic Analysis

Image source: https://commons.wikimedia.org/wiki/File:Major_levels_of_linguistic_structure.svg

Motivation 0 • 0 0 0 0 0 0 0

Levels of Linguistic Analysis

Image source: https://commons.wikimedia.org/wiki/File:Major_levels_of_linguistic_structure.svg

Linguistic Structures and Graphs

- (Written) language is a symbolic system
- Semantic level: typed weighted graphs of concepts
 - Co-occurrence networks
 - Lexical databases, e.g. WordNet
 - Thesauri, e.g. NLM
 - Ontologies, e.g. DBPedia
 - Associative networks, e.g. Edinburgh Associative Thesaurus
 - ...

Semantic Graphs

Motivation

Semantic Graphs

The new brave world of Deep Learning

- "Anti-connectivism"
- End-to-end learning: symbolic representations aren't needed

The new brave world of Deep Learning

- "Anti-connectivism"
- End-to-end learning: symbolic representations aren't needed
- Word embeddings lookup (at most)

Graph Matrix Duality

Graph Matrix Duality

lacksquare Adjacency matrix f A is dual with the corresponding graph G.

Graph Matrix Duality

- lacksquare Adjacency matrix **A** is dual with the corresponding graph G.
- Vector matrix multiply $\mathbf{A}^T\mathbf{x}$ is dual with breadth-first search.

Motivation 0000000

Goal: Linguistic Structures in DL

Learn interpretable symbolic structures from text in an unsupervised way, which are more complex than words.

Motivation 000000

Goal: Linguistic Structures in DL

- Learn interpretable symbolic structures from text in an unsupervised way, which are more complex than words.
- **Represent the learned structures** in a vector space.

Motivation ○○○○○○

Goal: Linguistic Structures in DL

- Learn interpretable symbolic structures from text in an unsupervised way, which are more complex than words.
- Represent the learned structures in a vector space.
- Use the vector representations instead/in addition to word embedding the deep learning applications. Lookup of word senses, frames, etc.

Motivation ○○○○○○

Goal: Linguistic Structures in DL

- Learn interpretable symbolic structures from text in an unsupervised way, which are more complex than words.
- **Represent the learned structures** in a vector space.
- Use the vector representations instead/in addition to word embedding the deep learning applications. Lookup of word senses, frames, etc.
- 4 More complex structures could improve performance, but also provide better interpretability of the deep learning models.