Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев"

Вариант - 10

Выполнила	Ким А. А.		(подпись)
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
"	_ 20r.	Санкт-Петербург,	20r.
Работа выполнен	на с оценкой		
Дата защиты "	"20)г.	

Цель работы: Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные. В данной работе частотные характеристики элементарных динамических звеньев (см. таблицу 1) строятся по точкам на основании данных, полученных экспериментально. В эксперименте исследуется реакция звена на синусоидальное входное воздействие $g(t)=g_m\sin\omega t$ с амплитудой входного сигнала $g_m=1$. При заданном значении частоты и амплитуды входного сигнала для определения точек частотной характеристики необходимо измерить значение амплитуды выходного сигнала y_m и сдвиг фаз между входным и выходным сигналом в установившемся режиме ψ (см. рисунок 1). Для определения значения фазы следует учитывать, что на полученных графиках по оси абсцисс отложено время. Значение фазы выходного сигнала в радианах можно рассчитать, используя формулу $\psi=\phi\omega$, где ω значение частоты входного сигнала в радианах. После соответствующей обработки эти данные дадут одну точку на частотной характеристике. Повторение таких измерений при различных значениях частоты входного сигнала даст массив точек по которым строятся частотные характеристики.

Таблица 1 - Исходные динамические звенья

Тип звена	Передаточная функция
Апериодическое 1-го порядка	$W(s) = \frac{k}{Ts + 1}$
Колебательное	$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}$
Изодромное	$W(s) = \frac{k(1+Ts)}{s}$

Параметры исследуемых звеньев: k=4, T=0.8, ξ =0.45 Сопрягающая частота $\frac{1}{T}=1.25c^{-1}$

Рисунок 1 – Временная диаграмма

1 Апериодическое звено 1-го порядка

В таблице 2 представлены данные при исследовании апериодического звена 1-го порядка.

Таблица 2 – Экспериментальные данные для апериодического звена 1-го порядка

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, град
0,125	-0,90	9,95	19,95	-5,37
0,175	-0,75	9,90	19,91	-7,40
0,225	-0,64	9,84	19,86	-10,91
0,275	-0,56	9,76	19,79	-12,85
0,325	-0,48	9,68	19,71	-15,13
0,375	0,42	9,58	19,63	-15,89
0,425	0,37	9,47	19,53	-18,60
0,475	0,32	9,36	19,43	-20,84
0,500	0,30	9,31	19,37	-22,43
1,000	0,0	8,11	18,18	-36,78
2,000	0,30	6,22	15,88	-53,05
3,000	0,47	5,00	13,99	-61,02
4,000	0,60	4,17	12,41	-65,77
5,000	0,69	3,58	11,08	-70,19
7,000	0,84	2,78	8,90	-74,20
10,000	1,00	2,08	6,39	-77,35
20,000	1,30	1,137	1,11	-87,09
60,000	1,77	0,40	-7,89	-89,38

На рисунках 2-7 представлены частотные характеристики апериодического звена 1-го порядка.

Рисунок 2 - АЧХ

Рисунок 3 - ФЧХ

Рисунок 4 - ЛАЧХ

Рисунок 5 – ЛФЧХ

Рисунок 6 - АФЧХ

Рисунок 7 - Асимптотическая ЛАЧХ

2 Колебательное звено

В таблице 3 представлены данные при исследовании колебательного звена.

Таблица 3 – Экспериментальные данные для колебательного звена

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, град
0,125	-0,90	4,02	12,09	-4,81
0,175	-0,75	4,04	12,14	-6,67
0,225	-0,64	4,06	12,18	-9,98
0,275	-0,56	4,11	12,29	-10,61
0,325	-0,48	4,20	12,48	-13,65
0,375	0,42	4,30	12,66	-14,18
0,425	0,37	4,37	12,81	-21,16
0,475	0,32	4,41	12,90	-26,92
0,500	0,30	4,43	12,93	-27,36
1,000	0,00	4,01	12,07	-67,72
2,000	0,30	2,59	8,26	-114,36
3,000	0,47	1,70	4,62	-140,95
4,000	0,60	1,18	1,48	-155,61
5,000	0,69	0,88	-1,05	-164,73
7,000	0,84	0,51	-5,68	-179,28

На рисунках 8-13 представлены частотные характеристики колебательного звена.

Рисунок 8 - АЧХ

Рисунок 9 - ФЧХ

Рисунок 10 - ЛАЧХ

Рисунок 11 - ЛФЧХ

Рисунок 12 - АФЧХ

Рисунок 13 – Асимптотическая ЛАЧХ

3 Изодромное звено

В таблице 4 представлены данные при исследовании изодромного звена.

Таблица 4 – Экспериментальные данные для изодромного звена

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, град
0,125	-0,90	64,15	36,14	-4,8
0,175	-0,75	45,94	33,24	-6,67
0,225	-0,64	35,84	31,08	-9,98
0,275	-0,56	29,44	29,37	-10,61
0,325	-0,48	25,02	27,96	-13,65
0,375	0,42	21,80	26,76	-14,18
0,425	0,37	19,35	25,73	-21,16
0,475	0,32	17,43	24,82	-26,92
0,500	0,30	16,06	24,11	-27,36
1,000	0,00	9,11	19,19	-67,72
2,000	0,30	5,77	15,22	-114,36
3,000	0,47	4,80	13,62	-140,95
4,000	0,60	4,35	12,77	-155,61
5,000	0,69	4,09	12,25	-164,73
7,000	0,84	3,88	11,78	-179,28
10,000	1,00	3,62	11,18	-198,82
20,000	1,30	3,40	10,64	-222,31
60,000	1,77	3,26	10,28	-260,00
100,000	2,00	3,24	10,21	270,00

На рисунках 14-19 представлены частотные характеристики изодромного звена.

Рисунок 14 - АЧХ

Рисунок 15 - ФЧХ

Рисунок 16 - ЛАЧХ

Рисунок 17 - ЛФЧХ

Рисунок 18 - АФЧХ

Рисунок 19 - Асимптотическая ЛАЧХ

Вывод

В ходе лабораторной работы были изучены частотные и логарифмические частотные характеристики типовых динамических звеньев: апериодического 1-го порядка, колебательного и изодромного. Основываясь на данных можно говорить о том, что фазовый сдвиг для колебательного звена изменяется в пределах от 0° до -180° , для изодромного от -90° до 0° , а для апериодического звена 1-го порядка фазовый сдвиг от -90° до 0° .

Сравнивая графики ЛАЧХ и асимптотической ЛАЧХ, можно заметить, что асимптотические ЛАЧХ сходятся к реальным ЛАЧХ, и с их помощью удобно проводить синтез систем управления.

Также можно сделать вывод о том, что асимптотическая ЛАЧХ меняет свой наклон при частоте среза $\omega_c=1/T$ и для её построения не требуется выполнения дополнительных вычислений, достаточно лишь знать вид передаточной функции. Также по асимптотический ЛАЧХ можно восстановить передаточную функцию.