

6.867 Machine learning: lecture 3

Tommi S. Jaakkola MIT CSAIL

tommi@csail.mit.edu

Topics

- Beyond linear regression models
 - additive regression models, examples
 - generalization and cross-validation
 - population minimizer
- Statistical regression models
 - model formulation, motivation
 - maximum likelihood estimation

Linear regression functions,

$$f: \mathcal{R} \to \mathcal{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$, or $f: \mathcal{R}^d \to \mathcal{R}$ $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

combined with the squared loss, are convenient because they are *linear in the parameters*.

Linear regression functions,

$$f: \mathcal{R} \to \mathcal{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$, or $f: \mathcal{R}^d \to \mathcal{R}$ $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

combined with the squared loss, are convenient because they are *linear in the parameters*.

we get closed form estimates of the parameters

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where, for example, $\mathbf{y} = [y_1, \dots, y_n]^T$.

Linear regression functions,

$$f: \mathcal{R} \to \mathcal{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$, or $f: \mathcal{R}^d \to \mathcal{R}$ $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

combined with the squared loss, are convenient because they are *linear in the parameters*.

we get closed form estimates of the parameters

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where, for example, $\mathbf{y} = [y_1, \dots, y_n]^T$.

- the resulting prediction errors $\epsilon_i = y_i - f(\mathbf{x}_i; \hat{\mathbf{w}})$ are uncorrelated with any linear function of the inputs \mathbf{x} .

Linear regression functions,

$$f: \mathcal{R} \to \mathcal{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$, or $f: \mathcal{R}^d \to \mathcal{R}$ $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

combined with the squared loss, are convenient because they are *linear in the parameters*.

we get closed form estimates of the parameters

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where, for example, $\mathbf{y} = [y_1, \dots, y_n]^T$.

- the resulting prediction errors $\epsilon_i = y_i f(\mathbf{x}_i; \hat{\mathbf{w}})$ are uncorrelated with any linear function of the inputs \mathbf{x} .
- we can easily extend these to non-linear functions of the inputs while still keeping them linear in the parameters

Beyond linear regression

• Example extension: m^{th} order polynomial regression where $f:\mathcal{R} \to \mathcal{R}$ is given by

$$f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

- linear in the parameters, non-linear in the inputs
- solution as before

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where

$$\hat{\mathbf{w}} = \begin{bmatrix} \hat{w}_0 \\ \hat{w}_1 \\ \dots \\ \hat{w}_m \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix}$$

Polynomial regression

$$degree = 3$$

$$degree = 5$$

0 x

-1

$$degree = 7$$

> 0

Complexity and overfitting

 With limited training examples our polynomial regression model may achieve zero training error but nevertless has a large test (generalization) error

train
$$\frac{1}{n} \sum_{t=1}^{n} (y_t - f(x_t; \hat{\mathbf{w}}))^2 \approx 0$$
 test $E_{(x,y)\sim P} (y - f(x; \hat{\mathbf{w}}))^2 \gg 0$

 We suffer from over-fitting when the training error no longer bears any relation to the generalization error

Avoiding over-fitting: cross-validation

 Cross-validation allows us to estimate the generalization error based on training examples alone

Leave-one-out cross-validation treats each training example in turn as a test example:

$$\mathsf{CV} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f(x_i; \hat{\mathbf{w}}^{-i}) \right)^2$$

where $\hat{\mathbf{w}}^{-i}$ are the least squares estimates of the parameters without the i^{th} training example.

Polynomial regression: example cont'd

$$degree = 5$$
, $CV = 6.0$

$$degree = 5$$
, $CV = 6.0$ $degree = 7$, $CV = 15.6$

Additive models

• More generally, predictions can be based on a linear combination of a set of basis functions (or features) $\{\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})\}$, where each $\phi_i(\mathbf{x}) : \mathcal{R}^d \to \mathcal{R}$, and

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x})$$

Examples:

If
$$\phi_i(x) = x^i$$
, $i = 1, \ldots, m$, then

$$f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

Additive models

• More generally, predictions can be based on a linear combination of a set of basis functions (or features) $\{\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})\}$, where each $\phi_i(\mathbf{x}) : \mathcal{R}^d \to \mathcal{R}$, and

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x})$$

Examples:

If
$$\phi_i(x) = x^i$$
, $i = 1, \ldots, m$, then

$$f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

If
$$m = d$$
, $\phi_i(\mathbf{x}) = x_i$, $i = 1, \dots, d$, then

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$

Additive models cont'd

• The basis functions can capture various (e.g., qualitative) properties of the inputs.

For example: we can try to rate companies based on text descriptions

$$\mathbf{x} = \text{text document (collection of words)}$$

$$\phi_i(\mathbf{x}) = \begin{cases} 1 \text{ if word } i \text{ appears in the document} \\ 0 \text{ otherwise} \end{cases}$$

$$f(\mathbf{x}; \mathbf{w}) = w_0 + \sum_{i \in \text{words}} w_i \phi_i(\mathbf{x})$$

Additive models cont'd

 We can also make predictions by gauging the similarity of examples to "prototypes".

For example, our additive regression function could be

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x})$$

where the basis functions are "radial basis functions"

$$\phi_k(\mathbf{x}) = \exp\{-\frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}_k\|^2\}$$

measuring the similarity to the prototypes; σ^2 controls how quickly the basis function vanishes as a function of the distance to the prototype.

(training examples themselves could serve as prototypes)

Additive models cont'd

 We can view the additive models graphically in terms of simple "units" and "weights"

• In *neural networks* the basis functions themselves have adjustable parameters (cf. prototypes)

Squared loss and population minimizer

 What do we get if we have unlimited training examples (the whole population) and no constraints on the regression function?

minimize
$$E_{(x,y)\sim P}(y-f(x))^2$$

with respect to an unconstrained function $f: \mathcal{R} \to \mathcal{R}$

Squared loss and population minimizer

To minimize

$$E_{(x,y)\sim P}(y-f(x))^2 = E_{x\sim P_x} \left[E_{y\sim P_{y|x}}(y-f(x))^2 \right]$$

we can focus on each x separately since f(x) can be chosen independently for each different x. For any particular x we can

$$\frac{\partial}{\partial f(x)} E_{y \sim P_{y|x}} (y - f(x))^2 = 2E_{y \sim P_{y|x}} (y - f(x))$$
$$= 2(E\{y|x\} - f(x)) = 0$$

Thus the function we are trying to approximate is the conditional expectation

$$f^*(x) = E\{y|x\}$$

Topics

- Beyond linear regression models
 - additive regression models, examples
 - generalization and cross-validation
 - population minimizer
- Statistical regression models
 - model formulation, motivation
 - maximum likelihood estimation

Statistical view of linear regression

 In a statistical regression model we model both the function and noise

Observed output = function + noise
$$y = f(\mathbf{x}; \mathbf{w}) + \epsilon$$

where, e.g., $\epsilon \sim N(0, \sigma^2)$.

 Whatever we cannot capture with our chosen family of functions will be interpreted as noise

Statistical view of linear regression

• $f(\mathbf{x}; \mathbf{w})$ is trying to capture the mean of the observations y given the input \mathbf{x} :

$$E\{y \mid \mathbf{x}\} = E\{f(\mathbf{x}; \mathbf{w}) + \epsilon \mid \mathbf{x}\}$$
$$= f(\mathbf{x}; \mathbf{w})$$

where $E\{y | \mathbf{x}\}$ is the conditional expectation of y given \mathbf{x} , evaluated according to the model (not according to the underlying distribution P)

Statistical view of linear regression

According to our statistical model

$$y = f(\mathbf{x}; \mathbf{w}) + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$

the outputs y given \mathbf{x} are normally distributed with mean $f(\mathbf{x}; \mathbf{w})$ and variance σ^2 :

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(y - f(\mathbf{x}; \mathbf{w}))^2\}$$

(we model the uncertainty in the predictions, not just the mean)

Loss function? Estimation?

Maximum likelihood estimation

• Given observations $D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ we find the parameters \mathbf{w} that maximize the (conditional) likelihood of the outputs

$$L(D_n; \mathbf{w}, \sigma^2) = \prod_{i=1}^n p(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2)$$

Example: linear function

$$p(y|\mathbf{x}, \mathbf{w}, \sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\{-\frac{1}{2\sigma^{2}}(y - w_{0} - w_{1}x)^{2}\}$$

(why is this a bad fit according to the likelihood criterion?)

Likelihood of the observed outputs:

$$L(D; \mathbf{w}, \sigma^2) = \prod_{i=1}^{n} P(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2)$$

 It is often easier (but equivalent) to try to maximize the log-likelihood:

$$l(D; \mathbf{w}, \sigma^2) = \log L(D; \mathbf{w}, \sigma^2) = \sum_{i=1}^n \log P(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2)$$

$$= \sum_{i=1}^n \left(-\frac{1}{2\sigma^2} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 - \log \sqrt{2\pi\sigma^2} \right)$$

$$= \left(-\frac{1}{2\sigma^2} \right) \sum_{i=1}^n (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 + \dots$$

 Maximizing log-likelihood is equivalent to minimizing empirical loss when the loss is defined according to

$$Loss(y_i, f(\mathbf{x}_i; \mathbf{w})) = -\log P(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2)$$

Loss defined as the negative log-probability is known as the log-loss.

The log-likelihood of observations

$$\log L(D; \mathbf{w}, \sigma^2) = \sum_{i=1}^n \log P(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2)$$

is a generic fitting criterion and can be used to estimate the noise variance σ^2 as well.

• Let $\hat{\mathbf{w}}$ be the maximum likelihood (here least squares) setting of the parameters. What is the maximum likelihood estimate of σ^2 , obtained by solving

$$\frac{\partial}{\partial \sigma^2} \log L(D; \mathbf{w}, \sigma^2) = 0 \quad ?$$

The log-likelihood of observations

$$\log L(D; \mathbf{w}, \sigma^2) = \sum_{i=1}^n \log P(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2)$$

is a generic fitting criterion and can be used to estimate the noise variance σ^2 as well.

• Let $\hat{\mathbf{w}}$ be the maximum likelihood (here least squares) setting of the parameters. The maximum likelihood estimate of the noise variance σ^2 is

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - f(\mathbf{x}_i; \hat{\mathbf{w}}))^2$$

i.e., the mean squared prediction error.