SLR with AR(p) Errors

The simple linear regression model with AR(p) errors:

$$y_t = \beta_0 + \beta_1 x_t + \epsilon_t, \tag{1}$$

where

$$\epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \dots + \phi_p \epsilon_{t-p} + a_t, \tag{2}$$

and a_t are i.i.d $N(0, \sigma_a^2)$.

SLR with AR(p) Errors

- Durbin-Watson tests for autocorrelation at lag 1.
- A partial autocorrelation (PACF) plot of the residuals can allow us to assess the order of the AR structure of our errors.

ACF vs PACF

Consider a sequence of observations x_1, x_2, \cdots .

- Autocorrelation (ACF) at lag h of a sequence measures the correlation of any two points, x_t, x_{t+h} , in the sequence that are h apart in the sequence.
- PACF at lag h of a sequence measures the correlation of any two points, x_t, x_{t+h}, in the sequence that are h apart in the sequence, after removing the connections with all the points between x_t and x_{t+h}.

By definition, the ACF and PACF at lag 1 are equal.

ACF vs PACF

- ACF is a measure of correlation, but cannot be used to inform us of the order of the AR structure of the observations.
- PACF can be used to inform us of the order of the AR structure of the observations.

Check for significance of PACF at various lags. The largest lag that gives a significant PACF is the order of the AR structure of the observations.

PACF Plot

From tutorial example,

The PACF plot using pacf() starts at lag 1, whereas the ACF plot using the acf() starts at lag 0.