Berechenbare Analysis SoSe 19

Benedikt Lüken-Winkels

July 2, 2019

Contents

1	Vorlesung	3		
2	2.2 Entscheidbarkeit	3 3 3		
3	Vorlesung 3.1 Binary Sequence	4 5		
4	Vorlesung	5		
5	Vorlesung $5.1 (2) \Rightarrow (1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5 5		
6		6 6		
7	Vorlesung			
8	Vorlesung 8.1 Struktur berechenbarer Funktionen 8.1.1 Orakel-Turingmaschine OTM 8.1.2 Typ-2-Turingmaschinen 8.1.3 Zusammenhände OTM und Typ-2-TM	6 7		
9	Vorlesung	7		

10	Vorlesung 10.1 Cauchy-Darstellung	8
11	Vorlesung	8
12	Vorlesung 12.1 Metrischer Raum	8
13	Vorlesung 13.1 Mehrwertige Funktionen	9
14	Vorlesung 14.1 Berechenbare Mengen reeller Zahlen 14.1.1 Darstellung/Plotten einer Menge 14.1.2 Lemma 5.10	10 10 10 11 11
15	1. Übung	11
16	3. Übung	12
17	4. Übung	12
18	$18.2 \; \text{Entscheidbar} \\ 18.3 \; \text{Rekursiv aufzählbar} \\ 18.4 \; \delta\text{-rekursiv-aufzählbar} \\ 18.5 \; \mathbb{F} \\ \\ 18.6 \; \text{Berechenbarkeit} \\ \\ 18.6.1 \; \text{Berechenbarkeit einer reellen Zahl}$	13 13 13 13 13 13 13
	18.8 Effektiv stetig 18.9 Diagonialisierung 18.10Isomorphismus 18.11Homomorphismus 18.12Berechenbarkeits-Typen 18.13Cantorsche Zerlegung/Cantorsche Paarungsfunktion 18.14Cauchy-Darstellung 18.15Mengenlehre 18.15.1 Abgeschlossene Menge 18.15.2 Offene Menge	15 15 15 15 15 15 15 15 15
	18.15.3 Kompakte Menge	15 15

2 Vorlesung

2.1 Berechenbarkeit

Es gibt einen Algorithmus, der die Zahl angeben kann (es gibt nur eine abzählbar unendliche Anzahl an Algorithmen, aber überabzählbar viele reelle Zahlen)

Figure 1: g ist (ν_x, ν_y) berechenbar, wenn g von einer berchenbaren Funktion f realisiert wird

2.2 Entscheidbarkeit

Diagonalisierung Wären die Reellen Zahlen abzählbar, wäre die Diagonalzahl darin enthalten (!Widerspruch).

Table 1: Diagonialisierungsbeispiel: x_{∞} kann nicht in der Liste enthalten sein

x_0	0.500000
x_1	0.411110
x_2	0.312110
x_3	0.222220
x_4	0.233330

 $x_{\infty} \quad 0.067785....$

Definition Menge A Entscheidbar, wenn eine Funktion $f_A(x)$, die entscheidet, ob $x \in A$ berechenbar ist.

2.3 Berechenbare Reelle Zahlen

Konstruktive Mathematik Formulierung algorithmischen Rechnens: $zB \exists$ neu definiert als "es existiert ein Algorithmus". Nicht mehr für "klassische Mathematiker" lesbar

Definition Für $x \in \mathbb{R}$ sind die Bedingungen äquivalent (wenn eine Bedingung erfüllt ist, sind alle Erfüllt):

- 1. Eine TM erzeugt eine unendlich lange binäre Representation von x auf dem Ausgabeband
- 2. **Fehlerabschätzung** Es gibt eine TM, die Approximationen liefert. Formal: $q: \mathbb{N} \to \mathbb{Q}$ $(q_i)_{i \in \mathbb{N}}$ ist Folge rationaler Zahlen, die gegen x konvergiert. Bedeutet, dass alle q_i innerhalb eines bestimmten beliebig kleinen Bereichs um x liegen. Größter möglicher Fehler $2^0 = 1$
- 3. Intervalschachtelung Es gibt eine berechenbare Intervallschachtelung: Angabe zweier Folgen rationaler Zahlen mit der Aussage, dass x dazwischen liegt. Ziel: Abstände von linker und rechter Schranke soll gegen null gehen.
- 4. **Dedekindscher Schnitt**Menge $\{q \in \mathbb{Q} | q < x\}$ ist entscheidbar. Beispiel $\sqrt{2}$ ist berechenbar. $\{q|q < \sqrt{2}\} = \{q|q^2 < 2\}$. \Rightarrow Es gibt einen Test, ob die Zahl kleiner ist.
- 5. $z \in \mathbb{Z}$ $A \subseteq \mathbb{N}$, $x_A = \sum i \in A2^{-1} i$, $x = z + x_A$
- 6. Es exisitert eine Kettenbruchentwicklung

Folgerungen / Beispiele

- \bullet \Rightarrow Für Berechenbarkeit muss nur eine der Bedingungen bewiesen werden. Menge der berechenbaren reelen Zahlen $= \mathbb{R}_c$
- Nicht berechenbare reele Zahlen durch Diagonalisierung konstruierbar
- e berechenbar, weil die Fehlerabschätzung (2) existiert
- \bullet π (Notiert als alternierede Reihe) berechenbar, weil Intervalschachtelung existiert
- $\sqrt{2}$ berechenbar, weil Dedekindscher Schnitt existiert.

Implementierung Ziel: zB Berechnung von Differentialgleichungen

3 Vorlesung

Implementierung in C++ Ziel: shared pointer für temporäre Variablen verstecken (durch wrapper)

- (binary sequence) bs: ein Bit nach dem anderen wird ausgegeben. binseq gibt zur natürlichen Zahl n und liefert das n-te Bit der reellen Zahl (Vorzeichen, 0 oder 1).
- (rational approximations) ra: Fehler beliebiger Größe (Gnaze Zahlen). approx rationale Approximation mit einem beliebig großem Fehler. (Abänderung der Definition, weil ganze Zahlen zulässig)

- ni: Untere und obere Schranke. lower/upperbound gibt n-te Schranke
- (Dedekind cut) dc: Ist eine Zahl kleiner. smaller entscheidet, ob die angegebene Rationale Zahl kleiner ist.
- ds: decide ist das n-te Bit gesetzt oder nicht
- cf: cont-fraction n-tes Folgenglied

3.1 Binary Sequence

- make-node erzeugt den shared pointer auf das node Objekt
- DAG (directed acyclic graph) als Stuktur für Operatoren

4 Vorlesung

Programmierung

5 Vorlesung

$5.1 (2) \Rightarrow (1)$

Umsetung von Approximation zur Binärfolge für die gesuchte Zahl x:

- Bereich zwischen 2 ganzen Zahlen aproximieren (ist x eine 2er-Potenz, schlägt dieser Schritt fehl). Fallunterscheidung:
 - Ist die Zahl ein endlicher Binärbruch schreibe diesen auf
 - ,sonst appoximiere und schreibe dann den endlichen Binärbruch
- Binärsequenzen eignen sich nicht zum Rechnen

5.2 \mathbb{R}_c ist ein Körper

- \bullet Sind 2 Zahlen berechenbar, so auch das Ergebnis aus + * / \Rightarrow gilt für Intervallschachtelungen (Lemma 3.8)
 - + : untere/obere Grenze addieren
 - - : untere/obere Grenze subtrahieren
 - -*, /: min und max des Kreuzproduktes
- Ein Polynom mit berechenbaren Koeffizienten hat berechenbare Nullstellen

6.1 DAG

Interne Datenstruktur der Zahlen

- Auswertung der Zahlenwerte nur bei Bedarf (lazy eval)
- Bei einer Berechnung wird ein neuer "Rechenknoten" mit Pointer auf die Variable erstellt
 - Ein Knoten pro Operation (sehr Speicherintensiv)
 - Lösung: Komplexere Rechenknoten

6.2 Berechenbare reelle Folgen

Berechenbarkeit einer Folge

- Berechenbare Folge berechenbarer Zahlen
- \bullet Das n-te Folgenglied der Folge kann mit Fehler 2^-i durch eine berechenbare Folge rationaler Zahlen approximiert werden
- Nicht alle reellen Zahlen können durch eine berechenbare reelle Folge berechnet werden
 - Wähle eine rationale Folge q_n , die x_n approximiert
 - Wähle x_n so, dass es außerhalb dem approximierten Bereich von q_n liegt (Diagonalisierung)

7 Vorlesung

NACHTRAGEN

8 Vorlesung

8.1 Struktur berechenbarer Funktionen

8.1.1 Orakel-Turingmaschine OTM

- Turingmaschine mit Zugriff auf eine Orakelfunktion ϕ
- \bullet Ein Zustand ist Orakelzustand s_O
- Ein Band ist Orakelband
- Geht die Maschine in den Zustand $s_O \Rightarrow$ (partielle) Orakelfunktion wird aufgerufen:
 - Eingabe auf Orakelband wird evaluiert = 'Anfrage an das Orakel'

- $-v \in Def(\phi)$: Orakelfunktion schreibt Antwort auf Orakelband in einem Schritt
- $-v \notin Def(\phi)$: Orakelfunktion endet mit Fehler
- Orakel kann zB benutzt werden, um das Halteproblem entscheiden. Das richtige Orakel, kann P=NP simulieren.
- f_M^{ϕ} Berechnete Funktion
- $T_M^{\phi}(w)$ Anzahl der Rechenschritte
- $A_M^{\phi}(w)$ Menge der Angfragen

Menge der von OTM berechenbaren Funktionen ist \mathbb{F} . Typ-2-Mengen zB \mathbb{R} $\mathbb{N}^{\mathbb{N}} \Rightarrow$ Überabzähbar. Typ-1-Mengen \Rightarrow abzählbar unendlich

8.1.2 Typ-2-Turingmaschinen

- spezielles Ein/Ausgabeband (Eingabe: read-only, Ausgabe: one-way = Ausgabe nicht mehr modifizierbar)
- Arbeitsweise wie eine normale TM
- Eingabe darf unendlich lang sein
- Ausgabe endlich, wenn die Maschine hält oder läuft unendlich
- $T_M(p)(n)$ Anzahl der Rechenschritte bis Ausgabe des Zeichens q_n
- $A_M(p)(n)$ Anfragenlänge zur Berechnung bis zum Zeichen von q_n

8.1.3 Zusammenhände OTM und Typ-2-TM

Unendliche Eingabe aus Typ-2-TM wird durch Orakel zu einer Näherung, um von OTM verarbeitet werden zu können. So kann eine OTM eine Typ-2-TM simulieren.

9 Vorlesung

NACHTRAGEN vom 24.05.

• Darstellung für unendl
 Folgen von Zeichen oder Wortfunktionen von Strings auf Strings

10.1 Cauchy-Darstellung

 $M = [\mathbb{N} \to \mathbb{Q}]$

- Implementierung Folgen rationaler Zahlen mit gewissen Näherungen
- Cauchy-Folge: der Abstand zweier Folgeglieder ist kleiner, als ein Schwellenwert
- ρ sind die schnell konv rationalen Folgen
- Enthält unberechenbare Folgen
- Erfasst alle berechenbaren reelen Zahlen über berechenbare Namen

Beispiel Notation von f(x)=3x Die Typ-2-TM M kann einen der Namen für die Eingabe ausgeben. Namen für 1: 0.9999... und 1.0000... Fallunterscheidung:

- 1. Ab einem bestimmten Punkt ist p'=w999... und ergibt 1.00..2000
- 2. Ab einem bestimmten Punkt ist p'=w000... und ergibt 0.99..9000

 \Rightarrow Nicht berechenbar, wenn $\delta_{dez} \to \delta_{dez}$ Abgebildet wird. Berechenbarkeit kann nur durch andere Abbildungsmenge erreicht werden, wie Cauchy ($[\mathbb{N} \to \mathbb{Q}]$)

11 Vorlesung

NACHTRAGEN linksberechenbare/rechtsberechenbare Zahlen

12 Vorlesung

Stetig berechenbare Funktionen

12.1 Metrischer Raum

- d(x,y) Abstand zweier Punkte. Nahegelegene Punkte finden. Hilfreich für Cauchy-Darstellung um andere genäherte Zahlen zu finden, die sich auch innerhalb des Fehlers liegt.
- $B(x, \epsilon)$ Formale Kugel: Mittelpunkt, Radius: Gibt alle Punkte mit Abstand kleiner, als der Radius.
- B^n alle Formale Kugeln, wo Zentrum und Radius $\in \mathbb{Q}$. Zahl in 3 Komponenten als Kantorsche Zerlegung: (Zentrum, Radius)

Effektiv stetig $S \subseteq \mathbb{N}$ ist rekursiv aufzählbar. Eine Funktion ist genau dann berechenbar, wenn sie effektiv stetig ist. 07.06. NACHHÖREN für den Beweis

- 1. $\langle i, j \rangle \in S$ mit $f(B^n(x)) \subseteq B^1(j)$ erzeugt Rechtecke, durch die die Funktion laufen muss. Die Funktion liegt innerhalb der Schläuche.
- 2. für jedes $x \in Def(f)$ kann man ein $< i, j > \in S$ finden. Die Schläuche werden beliebig fein.

Folgerungen Vorzeichenfunktion ist nicht stetig. $sign : \mathbb{R} \to \mathbb{R}$ ist nicht implementierbar (nicht berechenbar). Berechenbarkeit wird durch sign' erreicht, indem die Funktion partiell wird, indem sign' bei x = 0 in eine Endlosschleife läuft. \overline{sign} ist total und bb, wenn, wenn x um 0 liegt \overline{sign} 0 oder 1 ausgibt.

13 Vorlesung

13.1 Mehrwertige Funktionen

Mehrwertige Funktion $f :\subseteq X \rightrightarrows Y$ ist eine Funktion, die für ein x mehrere Werte für y haben kann. Ein Funktionswert eines x sind alle möglichen Werte aus Y.

Komposition von mehrwertigen Funktionen In allen Fällen, muss das Ergebnis definiert sein. Definitionsbereich der Komposition $f \cdot g$ sind die x und y, die in beiden Funktionen im Definitionsbereich liegen. Außerhalb des Definitionsbereichs dürfen die Funktionen 'machen was sie wollen'. Beispiele:

- In der Implementierung: Approx von 2 und $\sqrt{2} * \sqrt{2}$.
- \bullet Konversion von $\mathbb R$ in Dezimalzahlen. Rundung mit erlaubter Schwankung ergibt verschiedene Ausgaben. Eindeutige Umwandlung (Rundung) ist nicht berechenbar, aber mehrwertig bb.

Konstruierte Folgen $(x_n)_n$ nicht-bb Grenzwert, aber monoton wachsend. Nicht berechenbarer Konvergenzmodul.

Die Funktion f ist auf den b
b reellen Zahlen stetig, aber nicht b
b mit einer nicht-bb kleinsten Nullstelle. Definitionsbereich von f ist $\mathbb{R}ohne\{x_A\}$, also nicht stetig auf x_A . Eigenschaften von f sind abhängig von A :

- Ist A entscheidbar und der Definitionsraum ohne x_A ist berechenbar. (Sonst ist A ist so kompliziert, wie das Halteproblem und x_A kodiert das Halteproblem in einer reellen Zahl)
- A ist rekursiv-aufzählbar, aber nicht entscheidbar. f bildet die bb reellen Zahlen auf die bb reellen Zahlen ab.

Funktion bildet bb Zahlen auf bb Zahlen ab oder eine Funktion ist überall stetig, springt aber trotzdem. \Rightarrow Typ-2 bb-Modell wird bevorzugt um solche Probleme zu umgehen.

14.1 Berechenbare Mengen reeller Zahlen

Für eine Teilmenge aus \mathbb{R} wird eine Funktion benötigt, um herauszufinden, wo die Werte dieser Menge liegen.

- ullet entscheidbare Teilmengen von \mathbb{N}^k
- \bullet rekursiv-aufzählbare Teilmengen von \mathbb{N}^k

Funktion χ_A $A \subseteq X$ mit Darstellung δ_X auf \mathbb{R} ab. χ_A gibt 0 aus, wenn $x \in A$, sonst 1.

Bemerkung Gleicheit reeller Zahlen sind mit Typ-2-TMs nicht entscheidbar, unanhängig von der Darstellung der Zahl.

Infimum der Abstände Funktion ist 0, wenn man sich im Berech der Menge befindet, sonst ist der Wert der Funktion der Abstand zu einem Bereich. $d_A(x)$ ist kleinster möglicher (Infimum) Abstand von einem x zu einem $y \in A$. Der Abstand ist 0, wenn x auf dem Rand der Menge oder innerhalb liegt.

Berechenbarkeit einer Menge

- Eine abgeschlossene Menge, also der ist Rand ein Teil der Menge, ist bb leer ist oder der Abstand zur Menge bb ist.
- Eine offene Menge, der ist Rand kein Teil der Menge, ist bb, wenn das Komplement der Menge bb ist.

Eine Menge aus \mathbb{N} ist entscheidbar wenn die Menge aus \mathbb{R} berechenbar ist.

14.1.1 Darstellung/Plotten einer Menge

Ist $A \in \mathbb{R}^k$ bb, dann gibt es eine Funktion $f: \mathbb{N}x\mathbb{Z}^k \to \{0,1\}$, wobei N die Schrittweite und Z das Gitter, auf das abgebildet wird. f ist 0, wenn der Abstand $d(\frac{d}{2^n})$ zur Menge kleiner 2^{-n} ist und 1, falls der Abstand größer $2 \cdot 2^{-n}$ und 0 oder 1, falls der Abstand dazwischen liegt. Ein größeres n verfeinert die Darstellung und macht sie genauer

 δ -rekursiv-aufzählbar wenn eine Orakel TM M existiert wenn die TM anhält, sobald das Element in der Menge ist. Wenn M anhält, kennt M einen endlichen Teil des Namens und es liegt auch eine Umgebung von Element in der Menge.

14.1.2 Lemma 5.10

U ist eine offene Menge, A ist das abgeschlossene Komplement von U dann ist äquivalent

- 1. Es gibt eine OTM, die Anhält, wenn ein x aus U ist.
- 2. Wir finden eine rekursiv-aufzählbare Menge S, sodass sich U als Vereinigung der durch S aufgespannten Kreise darstellen lässt. (Menge wird von innen aufgezählt)
- 3. Menge aller der Kreise, die innnen liegen. Komplette Menge mit Rand. und eine Teilmenge von U
- 4. A = $f^{-1}(\{0\})$. A ist das Urbild der 0, also alle Werte, die von f auf 0 abgebildet werden
- 5. Das Komplement ist die leere Menge, oder der Abstand zum Komplement ist $(\rho, \rho_{<})$ -bb (Approximation von unten)
- Ist $d_A(\rho, \rho_{<})$ -bb
- Ist $d_A(\rho, \rho_>)$ -bb

14.2 Darstellung von Funktionen

Darstellung durch Abstandsfunktionen. Ähnliche Darstellungsstruktur bei den reellen, komplexen Zahlen und den stetigen Funktionen mit Argumenten 0 und 1. (X, d) = Menge X und Anstandsfunktion d ergeben einen Metrischen Raum.

15 1. Übung

Aufgabe 1

- Ziel: Finden des richtigen n für den Fehler
- Die Größe des Unterschieds zwischen x und y muss größer sein, als die Summe der Fehler
- Gleichheit testen geht nicht mit einer totalen Funktion

Aufgabe 2

- $(4) \Rightarrow (3)$
 - Menge der kleineren Zahlen ist entscheidbar
 - Durchtesten der Integers ob die Zahlen innerhalb oder außerhalb der Menge liegen
 - Aus der Entscheidbarkeit der Menge werden die Folgen für die Schranken
- $(3) \Rightarrow (2)$

- Differenz zwischen den Schranken ergibt Fehlergröße
- Folge q ist die die Folge, die sich aus der Mitte $\frac{a+b}{2}$

 $(2) \Rightarrow (3)$

- Schranken a, b ergeben sich aus Folge +/- Fehler
- $a_k = max(q_k + 2^-k \frac{1}{k}, a_k 1)$
- $b_k = min(q_k 2^-k \frac{1}{k}, a_k 1)$

$$(2/3) \Rightarrow (4)$$

Zusätzlicher Test, wenn die Zahl rational ist, weil der Test auf Gleichheit eine Endlosschleife

Aufgabe 3

 $x_Abb \Rightarrow A_{entscheidbar}$ Tablemakers dilemma

16 3. Übung

1. Aufgabe

ldentität auf den reellen Zahlen ist nicht (ρ, δ'_{dez}) -berechenbar

ldentität auf den reellen Zahlen ist (δ'_{dez}, ρ) -berechenbar Nimm eine Kommastelle nach der Anderen und Formuliere die Rationale Zahl

2.Aufgabe

max Problem bei Gleichheit

17 4. Übung

18 Zusammenfassung

18.1 Abzählbar unendlich

Es besteht eine Bijektion zu \mathbb{N} .

Bemerkung Es gibt so viele berechenbare reelle Zahlen, wie Programme

18.2 Entscheidbar

Eine Menge M ist entscheidbar, wenn eine Funktion $f_A : \mathbb{N} \to \mathbb{N}$ berechenbar ist und angibt, ob ein Element in der Menge ist, oder nicht. Bzw eine TM bei jeder Eingabe anhält.

18.3 Rekursiv aufzählbar

Eine Menge M ist rekursiv aufzählbar, wenn eine Funktion $f_A :\subseteq \mathbb{N} \to \mathbb{N}$ berechenbar ist und angibt, ob ein Element in der Menge ist, aber sonst undefiniert ist. Bzw eine TM bei einer korrekten Angabe anhält und sonst in eine Endlosschleife läuft.

18.4 δ -rekursiv-aufzählbar

wenn eine Orakel TM existiert wenn die TM anhält.

18.5 𝔽

18.6 Berechenbarkeit

18.6.1 Berechenbarkeit einer reellen Zahl

Eine reelle Zahl ist dann berechenbar, wenn eine der **äquivalenten** Bedingungen erfüllt ist:

- 1. Es gibt eine TM, die eine unendlich lange binäre Representation von x auf dem Ausgabeband erzeugt.
- 2. **Fehlerabschätzung** Es gibt eine TM, die Approximationen liefert. Formal: $q: \mathbb{N} \to \mathbb{Q}$ $(q_i)_{i \in \mathbb{N}}$ ist Folge rationaler Zahlen, die gegen x konvergiert. Bedeutet, dass alle q_i innerhalb eines bestimmten beliebig kleinen Bereichs um x liegen. Größter möglicher Fehler $2^0 = 1$
- 3. Intervalschachtelung Es gibt eine berechenbare Intervallschachtelung mit rationalen Endpunkten: Angabe zweier Folgen rationaler Zahlen mit der Bedingung, dass sie beide gegen x gehen und x dazwischen liegt. Ziel: Abstände von linker und rechter Schranke soll gegen null gehen.

- 4. **Dedekindscher Schnitt**Menge $\{q \in \mathbb{Q} | q < x\}$ ist entscheidbar. Beispiel $\sqrt{2}$ ist berechenbar. $\{q|q<\sqrt{2}\}=\{q|q^2<2\}$. \Rightarrow Es gibt einen Test, ob die Zahl kleiner ist.
- 5. Man kann x als endliche Summe von Brüchen darstellen: $z \in \mathbb{Z}$ $A \subseteq \mathbb{N}$, $x_A = \sum_{i \in A} 2^{-i-1}$, $x = z + x_A$
- 6. Es exisitert eine Kettenbruchentwicklung

Folgerungen / Beispiele

- $\bullet \Rightarrow$ Für Berechenbarkeit muss nur eine der Bedingungen bewiesen werden. Menge der berechenbaren reelen Zahlen = \mathbb{R}_c
- Nicht berechenbare reele Zahlen durch Diagonalisierung konstruierbar
- e berechenbar, weil die Fehlerabschätzung (2) existiert
- \bullet π (Notiert als alternierede Reihe) berechenbar, weil Intervalschachtelung existiert
- $\sqrt{2}$ berechenbar, weil Dedekindscher Schnitt existiert.

18.6.2 $(\rho, \rho) - bb$ '(Approximation, Approximation)-bb'

Warum kann nicht auf 0 geprüft werden.

- Eine Funktion $f:\subseteq \mathbb{R}^n \to \mathbb{R}$ ist genau dann berechenbar, wenn sie effektiv stetig ist
- Aus Stetigkeit, Berechenbarkeit. Aus nicht Stetigkeit folgt nicht Berechenbarkeit
- Um nicht-Berechenbarkeit zu zeigem, zeigt man nicht-Stetigkeit
- Aus nicht-effektiver Stetigkeit folgt nicht-Berechenbarkeit. Bsp $f(x)=1, x\geq 0; 0, x<0$ ist nicht stetig und nicht berechenbar

18.7 Konvergenzmodul

18.8 Effektiv stetig

Aus effektiver Stetigkeit folgt Stetigkeit.

- 18.9 Diagonialisierung
- 18.10 Isomorphismus
- 18.11 Homomorphismus
- 18.12 Berechenbarkeits-Typen
- 18.13 Cantorsche Zerlegung/Cantorsche Paarungsfunktion
- 18.14 Cauchy-Darstellung
- 18.15 Mengenlehre
- 18.15.1 Abgeschlossene Menge
- 18.15.2 Offene Menge
- 18.15.3 Kompakte Menge
- 18.16 Orakel-Turingmaschine

abgeschlossen und beschräkt