Lecture 1: Laplace Transform

Kreyszig: Sections 6.1 and 6.2

- Defintion of the Laplace transform
- Existence and uniqueness
- Properties: Linearity, s-shift, derivatives
- Many examples

Homework: Repeat partial fractions and ordinary differential equations.

Godkjenn utdanningsplanen din i studenweb før torsdag 25.08.!

Summary Lecture 1: Laplace Transform

$$F(s) = \mathcal{L}[f](s) = \int_0^\infty f(t)e^{-st}dt$$

- - (A1) f is piece-wise continuous
 - (A2) $|f(t)| \leq Me^{kt}$ for some M and k
- Uniqueness:

$$F(s) = G(s), s > k \Leftrightarrow f(t) = g(t), t \ge 0$$
 (except discont. points)

$$f:[0,\infty) o\mathbb{R}$$
 $\stackrel{\mathcal{L}}{\overbrace{\mathcal{L}^{-1}}}$ $F:(k,\infty) o\mathbb{R}$

Summary Lecture 1: Laplace Transform

Examples:

$$\mathcal{L}[\sin \omega t](s) = \frac{\omega}{s^2 + \omega^2}, \ s > 0,$$
 $|\sin \omega t| \le 1e^{0t}$
$$\mathcal{L}[e^{at}](s) = \frac{1}{s - a}, \ s > a,$$
 $|e^{at}| \le 1e^{at}$

Properties:

Linearity:
$$\mathcal{L}[af(t) + bg(t)](s) = a\mathcal{L}[f](s) + b\mathcal{L}[g](s)$$

s-shift:
$$\mathcal{L}[e^{at}f(t)](s) = \mathcal{L}[f](s-a)$$
 for $s-a > k$

Derivatives:
$$\mathcal{L}[f'(t)](s) = s\mathcal{L}[f](s) - f(0)$$

 $\mathcal{L}[f^{(n)}(t)](s) = s^n \mathcal{L}[f](s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$

3 / 3

Popular and powerful tool to solve linear differential and integral equations