RISC-V Processor CircuiTikZ Library

March 12, 2025

1 Component List

1.1 Instruction Memory

1.2 Data Memory

```
\begin{circuitikz}[]
                              \node[datamem, align=center] (comp) {Data\\Memory
     we
                              \draw[->, red] (comp.a) -- ++(-.5, 0) node[left]
                                  {a};
                              \draw[->, red] (comp.wd) -- ++(-.5, 0) node[left]
                                  {wd};
     RD
                              \draw[->, red] (comp.clk) -- ++(0, .5) node[above
 Data
                                  ] {clk};
Memory
                              \draw[->, red] (comp.we) -- ++(0, .5) node[above]
                                   {we};
                              \draw[->, blue] (comp.rd) -- ++(.5, 0) node[right
                                  ] {rd};
                           \end{circuitikz}
```

1.3 Register File

```
\begin{circuitikz}[]
                                                  \node[regfile, align=center] (comp) {
                                                       Register\\File};
                                                  \draw[->, red] (comp.a1) -- ++(-.5, 0)
                                                      node[left] {a1};
                                                  \frac{-}{\text{draw}} = - + (-.5, 0)
             clk we3
                                                      node[left] {a2};
                                                  \text{draw}[->, red] (comp.a3) -- ++(-.5, 0)
                                                      node[left] {a3};
                WE3
                                                  \draw[->, red] (comp.wd3) -- ++(-.5, 0)
                                \rightarrow rd1
                                                      node[left] {wd3};
               Register
                 File
          A2
                      RD2
 a2 ←
                                → rd2
                                                  \draw[->, red] (comp.clk) -- ++(0, .5)
 a3 ←
          А3
                                                      node[above] {clk};
wd3 ←
          WD3
                                                  \draw[->, red] (comp.we3) -- ++(0, .5)
                                                      node[above] {we3};
                                                  \draw[->, blue] (comp.rd1) -- ++(.5, 0)
                                        10
                                                      node[right] {rd1};
                                                  \draw[->, blue] (comp.rd2) -- ++(.5, 0)
                                        11
                                                      node[right] {rd2};
                                               \end{circuitikz}
```

1.4 Extend Unit

1.5 Arithmetic Logic Unit

1.6 Register

1.7 Adder

1.8 Subtractor

1.9 Multiplexer

1.10 Multiplexer with 3 inputs

```
\begin{circuitikz}[]
                                   \node[3mux, align=center] (comp) {};
                                   \draw[->, red] (comp.in0) -- ++(-.5, 0) node[left] {in
                                   \draw[->, red] (comp.in1) -- ++(-.5, 0) node[left] {in
                                   \draw[->, red] (comp.in2) -- ++(-.5, 0) node[left] {in
         00
                                       2};
         01
                 → out
in1 ⋅
                                   \draw[->, red] (comp.sel) -- ++(0, .5) node[above] {sel
in2 ⊀
                                       };
                                   \draw[->, blue] (comp.out) -- ++(.5, 0) node[right] {
                                       out};
                                \end{circuitikz}
```

1.11 Single-Cycle Control Unit

```
\begin{circuitikz}[]
                                                 \node[ctrlunitsc, align=center] (comp) {
                                                     Control\\Unit};
                                                \draw[->, red] (comp.op) -- ++(-.5, 0)
                                                     node[left] {op};
                                                \draw[->, red] (comp.funct3) -- ++(-.5, 0)
                                                      node[left] {funct3};
                                                \draw[->, red] (comp.funct7) -- ++(-.5, 0)
                                                      node[left] {funct7};
                                                \draw[->, red] (comp.zero) -- ++(-.5, 0)
                        → pcsrc
                                                     node[left] {zero};
            Control
                        → resultsrc
             Unit
                        memwrite
                                                \draw[->, blue] (comp.pcsrc) -- ++(.5, 0)
   op ←
            ор
                                                     node[right] {pcsrc};
                        → alucontrol
                                                \draw[->, blue] (comp.resultsrc) -- ++(.5,
            funct3
funct3 \leftarrow
                        → alusrc
                                                      0) node[right] {resultsrc};
            funct7<sub>5</sub>
                        → immsrc
funct7 ←
                                                \draw[->, blue] (comp.memwrite) -- ++(.5,
            zero
                        → regwrite
 zero ←
                                                     0) node[right] {memwrite};
                                                \draw[->, blue] (comp.alucontrol) --
                                                     ++(.5, 0) node[right] {alucontrol};
                                                \draw[->, blue] (comp.alusrc) -- ++(.5, 0)
                                                      node[right] {alusrc};
                                                \draw[->, blue] (comp.immsrc) -- ++(.5, 0)
                                                      node[right] {immsrc};
                                                \draw[->, blue] (comp.regwrite) -- ++(.5,
                                                     0) node[right] {regwrite};
                                              \end{circuitikz}
```

1.12 Multi-Cycle Control Unit

```
\begin{circuitikz}[]
                                                    \node[ctrlunitmc, align=center] (comp)
                                                        {Control\\Unit};
                                                    \draw[->, red] (comp.op) -- ++(-.5, 0)
                                                        node[left] {op};
                                                    \draw[->, red] (comp.funct3) -- ++(-.5,
                                                         0) node[left] {funct3};
                                                    \draw[->, red] (comp.funct7) -- ++(-.5,
                                                         0) node[left] {funct7};
                                                    \draw[->, red] (comp.zero) -- ++(-.5,
                                                        0) node[left] {zero};
                 clk
                                                    \draw[->, red] (comp.clk) -- ++(0,.5)
                                                        node[above] {clk};
                                                    \draw[->, blue] (comp.resultsrc) --
  pcwrite +
                Control
                                                        ++(.5, 0) node[right] {resultsrc};
   adrsrc +
                Unit
                                                    \draw[->, blue] (comp.memwrite) --
memwrite +
                                                        ++(-.5, 0) node[left] {memwrite};
   irwrite ←
                           → resultsrc
                                                    \draw[->, blue] (comp.alucontrol) --
                           → alucontrol
                                                        ++(.5, 0) node[right] {alucontrol};
      op ←
               ор
                             alusrcb
                                                    \draw[->, blue] (comp.alusrca) --
                                                        ++(.5, 0) node[right] {alusrca};
               funct3
   funct3 ←
                             alusrca
                                                    \draw[->, blue] (comp.alusrcb) --
   funct7 ←
               funct7<sub>5</sub>
                           → immsrc
                                                        ++(.5, 0) node[right] {alusrcb};
     zero ←
               zero
                           → regwrite
                                                    \draw[->, blue] (comp.immsrc) -- ++(.5,
                                                         0) node[right] {immsrc};
                                                    \draw[->, blue] (comp.regwrite) --
                                                        ++(.5, 0) node[right] {regwrite};
                                                    \draw[->, blue] (comp.irwrite) --
                                                        ++(-.5, 0) node[left] {irwrite};
                                                    \draw[->, blue] (comp.adrsrc) --
                                                        ++(-.5, 0) node[left] {adrsrc};
                                                    \draw[->, blue] (comp.pcwrite) --
                                                        ++(-.5, 0) node[left] {pcwrite};
                                                 \end{circuitikz}
```

2 Keys

The desired CircuiTikZ key can be set via $\text{ctikzset}\{processor/<key>=value\}$. E.g. if one whishes to set the line width of all components to 4, the line $\text{ctikzset}\{processor/thickness=4\}$ would have to be included in the specific circuitikz picture.

Key	Description	Default value
scale	Sets scale for all processor components.	1
thickness	Sets line width for all processor components.	2
font	Sets font family for all labels of processor components.	\rmfamily
memory/height	Sets height for all memory components.	2
memory/width	Sets width for all memory components except regfile.	1.25
control/heightsc	Sets height for ctrlunitsc.	2.5
control/heightmc	Sets height for ctrlunitmc.	3.5
control/width	Sets height for control components.	3.5
control/radius	Sets the border radius for control components.	5
arith/height	Sets height for arithmetic components.	0.9
arith/width	Sets height for arithmetic components.	0.7
arith/slope	Sets slope for arithmetic components in degrees.	15
extend/height	Sets height of the big side of the extend unit.	0.6
extend/width	Sets height of the extend unit.	2
extend/slope	Sets slope of the extend unit in degrees.	7
mux/slope	Sets slope of the multiplexers in degrees.	15
misc/smallheight	Sets height for small components	0.65
misc/smallwidth	Sets width for small components. Also affects the CLK input triangle.	0.3
misc/leadlen	Sets length of input and output leads.	0.25

Component family	Component list
memory components	instrmem, datamem, regfile
control components	ctrlunitsc, ctrlunitmc
arithmetic components	alu, add, sub
small components	mux, reg

3 Single-Cycle RISC-V Processor

4 Multi-Cycle RISC-V Processor

9