New lidar processing functionality in GRASS GIS 7.1 webinar for USFWS Remote Sensing group

Vaclav Petras (Vashek)

North Carolina State University, Center for Geospatial Analytics

NC STATE UNIVERSITY

February 22, 2016

Questions

- ▶ How many points are really necessary to create a detailed DEM?
- ▶ Which method of point decimation preserve more information?

Implementation

- Open source implementation for further review and improvement.
- ▶ Methods implemented in GRASS GIS so that they can be used by a broad audience.

Scripting

Python

- simple scripting but also advanced programming
- run_command('r.in.lidar', file=files.txt, output='surface',
 method='max', class_filter=[1, 2], flags='e')

Bash (shell)

- simple syntax, easy to work with files, for simple task
- ▶ native to Linux, possible to use on MS Windows (e.g. MSYS)
- ▶ r.in.lidar -e file=files.txt output=max method=max class_filter=1,2

also R: execGRASS("r.in.lidar", file = "files.txt", output="max", method="max", ...)

GUI and scripting interface convergence

Typical lidar workflow

r.in.lidar

- depend on the side of output and type of analysis
- can be reduced by percent option
- ▶ on Linux available memory for process is RAM + SWAP partition

Count-based decimation influence on interpolated elevation

g.region nsres=0.3 ewres=0.3 rows=149 cols=161 (cells=23989) v.surf.rst ... npmin=120 tension=20 smooth=2 segmax=40

Count-based decimation influence on local relief model

r.local.relief input=... output=... shaded_output=... neighborhood=11

Comparison of count-based and grid-based decimation

Merge point clouds as vector maps

v.patch: flags to work without topology and with z v.lidar.mcc: do not build topology in 7.1 This is enabled by the change in v.patch. This makes it little bit faster.

Count-based decimation

v.in.lidar - count-based decimation during import

v.decimate – point cloud decimation of vector maps (also supports grid-based decimation with preserving point properties)

Speed optimization

r.in.lidar

- choose computation region extent and resolution ahead
- have enough memory to avoid using percent option

v.in.lidar

- -r limit import to computation region extent
- -t do not create attribute table
- ▶ -b do not build topology (applicable to other modules as well)
- -c store only coordinates, no categories or IDs

Memory requirements

r.in.lidar

- depend on the side of output and type of analysis
- can be reduced by percent option
- ▶ on Linux available memory for process is RAM + SWAP partition

v.in.lidar

 \blacktriangleright

Store return and class information as category

v.in.lidar can store return or class information as category using layers and categories for something else than ID and class

Also: read coordinates only - speed improvement (-c flag)

Binning of points from multiple LAS files

r.in.lidar - read multiple LAS files in one run

```
The original workflow
r.in.lidar input=tile_01.las output=tile_01
 r.in.lidar input=tile_02.las output=tile_02
 . . .
 r.patch input=tile_01,tile_02,... output=elevation
is replaced by
r.in.lidar file=tile_list.txt output=elevation
where tile list txt is
tile 01.las
 tile 02.las
 . . .
```

Compute height above a given raster during binning

r.in.lidar – derive height above ground of features

The resolutions of binning and ground raster can differ, so different statistics can be computed during binning.

Export vector points from GRASS GIS as LAS

v.out.lidar - export points in a vector map as lidar points

- visualization (plas.io, CloudCompare)
- ▶ further processing (PDAL, libLAS, CloudCompare, ...)
- testing workflows with generated data

r.surf.fractal output in plas.io

Integration with PDAL

- ▶ v.in.pdal
- reprojection during import
- ground filter
- compute height as a difference from ground

GRASS Lidar tools roadmap

- ▶ now: basic tools available in GRASS GIS 7.0
 - ▶ 7.0.3 released this January with 64bit support for MS Windows
- now: presented functionality available for testing in development version of GRASS GIS
 - daily build for MS Windows and Ubuntu
 - self-compiled version (simple for Fedora, CentOS, ... possible on Mac OS)
- summer: 3D raster, 2D display, smooth reprojections finished
- fall/winter: backport of stable functionality to 7.0 or release of 7.1

Summary

- count-based and grid-based decimation perform the same on a given point cloud
- lacktriangle analysis needed for every dataset ightarrow need for tool to create a report
- improvements needed for the project integrated into GRASS GIS

Get GRASS GIS 7.1 development version at grass.osgeo.org/download

