

Non incremental Delaunay

- Divide and Conquer
 - 2D algorithm
 - Split the set of points into 2 subsets L and R using their median by ascending x if the 2 resulting subsets have more than 2 points
 - Delaunay Triangulation Del (L) of L
 - Delaunay Triangulation Del (R) of R
 - Merge Del (L) and Del (R)
 - Removal of some Del (L) (resp. Del (R)) edges
 - Adding edges joining points of L to points of R
 - No addition of edges joining points of L (resp. R)

233

233

Delaunay Fusion

- Determination of the common lower (or upper) tangent
 - Edge joining a vertex of the left (resp. right) convex hull to a vertex of the right (resp. left) convex hull
 - Leaving all the others points above (resp. below)

Lee and Schachter

Delaunay Fusion

• Build a sequence of « LR edges » starting from the common lower

tangent of LR

 The merge is done by incremental sewing between the two triangulations, until it reaches the upper tangent

234

235

237

Delaunay Fusion

- · Idea behind the construction of the edge sequence
 - We inflate a ball passing through the vertices of the last LR edge, until we meet a point on L or R, and we start again...

Delaunay Fusion

- · Idea behind the construction of the edge sequence
 - A ball is inflated while remaining centered on the LR edge mediator, until it meets a point on L or R
 - Depending on the reached point, some edges of Del(L) and Del(R) will be removed

236

Delaunay Fusion

- Construction of the next LR edge from a previously constructed LR edge
 - Let denote R_1 , R_2 , R_3 ... the vertices adjacent to R in del (R), clockwise around R
 - The vertices L_1 , L_2 , L_3 adjacent to L in del (L) counterclokwise around L

238

Delaunay Fusion

- Construction of the next LR edge from a previously constructed LR edge
 - Initialization i=1
 - As long as there is no $\mathtt{RR}_\mathtt{i}$ edge to be kept
 - The edge $\mathtt{RR}_\mathtt{i}$ is removed if \mathtt{L} conflicts with triangle $\mathtt{RR}_\mathtt{i+1}\mathtt{R}_\mathtt{i}$ (ie. \mathtt{L} $\,$ inside its circumcircle)
 - Symmetric process of edge removal in Del (L)
 - An LL_i edge is deleted if $\ _R$ conflicts with triangle $\ _{LL_iL_{i+1}}$

239

238

239

Delaunay Fusion

 Suppressed edges in dotted lines

Delaunay Fusion

• Once the edges have been deleted, we look which of the two edges \mathtt{RL}_1 and \mathtt{LR}_1

is Delaunay

• And we repeat the process by starting from the chosen edge

241

240

241

Delaunay Fusion

- Fusion in O(n)
- If the split is well balanced (by using the median): algorithm in O(nlog(n))

242

Division

242

245

Division Fusion

250 251

Delaunay Divide and Conquer Using a kd-tree

- Easily derecursifiable algorithm :
 - The construction of the connectivity is only performed at the recursive return (« Remontée récursive »)
 - The recursive split can be replaced by a prior sorting
- The split can be performed on x and y alternately using a kd-tree

252

Division

252 2

254 255

