Dimostrazione teoremi - Matematica del Continuo

Teoremi e relative dimostrazioni per la seconda prova scritta e l'orale ridotto	Teoremi e relative dimostrazioni per l'orale completo
☆ ☆	☆
Retta tangente al grafico di una funzione in un punto di derivabilità	Potenza n-esima di un numero complesso
Teorema di Fermat	Radici n-esime di un numero complesso
Teorema di Rolle	Unicità del limite per successioni convergenti
Teorema della media integrale	Teorema della permanenza del segno
Teorema fondamentale del calcolo integrale	Teorema del confronto
Formula fondamentale del calcolo integrale	Teorema di Darboux o dei valori intermedi
-	Relazione tra derivabilità e continuità
-	Teorema di Lagrange
-	(1) Conseguenze del teorema di Lagrange: funzioni con derivata nulla su un intervallo sono costanti
-	(2) Conseguenze del teorema di Lagrange: funzioni con derivate coincidenti su un intervallo differiscono per una costante additiva
-	(3) Conseguenze del teorema di Lagrange: relazioni tra monotonia e segno della derivata su un intervallo
-	Prima formula dell'incremento finito
-	Seconda formula dell'incremento finito

Teoremi e relative dimostrazioni per la seconda prova scritta e l'orale ridotto

☆ ☆ Retta tangente al grafico di una funzione in un punto di derivabilità Definizione

- Sia $f:(a,b) \subseteq \mathbb{R} \to \mathbb{R}$.
- Sia $x_0 \in (a, b)$.

f si dice **derivabile** in x_0 se esiste finito il limite $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$.

Questo limite si chiama **derivata** di f in x_0 e si indica con uno dei seguenti simboli:

$$f'(x_0), \frac{df}{dx}(x_0), Df(x_0)$$

Significato geometrico

Se f è derivabile in x_0 ($\exists f'(x_0) \in \mathbb{R}$) allora il grafico di f ammette in $(x_0, f(x_0))$ retta tangente di equazione $y = f'(x_0)(x - x_0) + f(x_0)$.

Infatti, l'equazione della retta passante per il punto $A = (x_0, f(x_0))$ e $B = (x_0 + h, f(x_0 + h))$ è data da:

$$y - f(x_0) = \frac{f(x_0 + h) - f(x_0)}{(x_0 + h) - x_0} (x - x_0)$$

$$y = \frac{f(x_0 + h) - f(x_0)}{h} (x - x_0) + f(x_0)$$

Passando al limite $h \rightarrow 0 => y = f'(x_0)(x - x_0) + f(x_0)$

☆☆ Teorema di Fermat

- Sia $f: I \subseteq \mathbb{R} \to \mathbb{R}$ con I intervallo;
- Sia $x_0 \in I$ punto interno;
- Sia x_0 punto estremante (di massimo o di minimo relativo) per f su I;
- Sia f derivabile in x_0 .

Allora
$$f'(x_0) = 0$$

Dimostrazione

Sia x_0 punto di minimo relativo. Allora:

$$\exists \delta > 0 \mid \forall x \in (x_0 - \delta, x_0 + \delta) => f(x) \geq f(x_0) => f(x) - f(x_0) \geq 0$$

Considero il rapporto incrementale: $\frac{f(x)-f(x_0)}{x-x_0}$. Questo è $\geq 0 \ \forall x \in (x_0,x_0+\delta)$ oppure $\leq 0 \ \forall x \in (x_0-\delta,x_0)$.

Considero ora il limite del rapporto incrementale:

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'_+(x_0) \ge 0 \text{ [Corollario del Teorema della permanenza del segno]}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = f'_-(x_0) \le 0$$

Poiché esiste $f'(x_0) = f'_+(x_0) = f'_-(x_0) => 0 \le f'(x_0) \le 0 => f'(x_0) = 0$

☆☆ Teorema di Rolle

- Sia $f: [a, b] \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia f continua su [a, b];
- Sia *f* derivabile in (*a*, *b*);
- Sia f(a) = f(b).

Allora $\exists x_0 \in (a, b) \mid f'(x_0) = 0 => x_0$ è punto stazionario.

Dimostrazione

I. Sia f(x) = c

Allora $f'(x) = 0 \ \forall x \in [a, b]$.

II. Sia f(x) non costante.

Poiché f è continua su [a,b] per il teorema di Weierstrass segue che $\exists x_0, x_1 \in [a,b]$ con x_0 punto di massimo e x_1 punto di minimo assoluto.

 x_0 e x_1 non possono essere entrambi gli estremi di a e b perché altrimenti sarebbe:

$$M = f(x_0) = f(x_1) = m = f(a) = f(b) = f(a)$$
 costante su [a, b] ASSURDO

Quindi almeno uno dei due punti x_0 e x_1 deve appartenere ad (a, b), ossia deve essere punto interno ad (a, b).

Allora, per il teorema di Fermat, in questo punto x_0 , f è derivabile ed ha un estremante relativo $\Rightarrow f'(x_0) = 0$

• Sia *f* continua su [*a*, *b*].

Allora
$$\exists z \in [a, b] \mid \int_a^b f(x) dx = (b - a)f(z).$$

Dimostrazione

Poiché f è continua su [a,b] per il teorema di Weierstrass f ammette massimo e minimo assoluti => $\exists x_0, x_1 \in [a,b]: m = f(x_0) \le f(x) \le f(x_1) = M, \forall x \in [a,b] => m \le f(x) \le M$

$$\int_{a}^{b} m \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} M \, dx$$

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

$$f(x_0) = m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M = f(x_1)$$

Poiché f è continua su [a,b], per la proprietà di Darboux => $\exists z \in [a,b]$: $f(z) = \frac{1}{b-a} \int_a^b f(x) \ dx$.

Quindi: $(b-a)f(z) = \int_a^b f(x) dx$.

☆ ☆ Teorema fondamentale del calcolo integrale

- Sia $f:[a,b] \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia F(x) la sua funzione integrale $F(x) = \int_a^x f(t) dt \ \forall x \in [a, b]$.

Allora F è derivabile su [a, b] e inoltre vale:

$$F'(x) = f(x) \forall x \in [a, b]$$

In particolare, F è una primitiva di f su [a, b].

Dimostrazione

Sia $x_0 \in (a, b)$.

Se |h| è sufficientemente piccolo => $x_0 + h \in (a, b) \operatorname{con} h \neq 0$.

Considero il rapporto incrementale di F centrato in x_0 e con incremento h:

$$\frac{F(x_0 + h) - f(x_0)}{h} = \frac{1}{h} \left[\int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt \right]$$
$$= \frac{1}{h} \left[\int_a^{x_0} f(t) dt + \int_{x_0}^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt \right] = \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt$$

Per il teorema della media integrale:

$$\exists z: x_0 < z < x_0 + h \text{ se } h > 0$$

 $x_0 + h < z < x_0 \text{ se } h < 0$

| f(z) media integrale

Passo al limite $h \rightarrow 0$ del rapporto incrementale:

$$\lim_{h \to 0} \frac{F(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} f(z) = \lim_{z \to x_0} f(z) = f(x_0)$$

Nota: $z \in [x_0, x_0 + h]$ se h > 0, $z \in [x_0 + h, x_0]$ se h < 0.

Dunque F è derivabile in x_0 e, inoltre, vale che $F'(x_0) = f(x_0)$.

Nota: Se $x_0 = a$ (o se $x_0 = b$), la dimostrazione è uguale alla precedente considerando solo il limite destro (sinistro), poiché h > 0 (h < 0).

<u>Conclusione</u>: $F'(x) = f(x) \forall x \in [a, b]$ e quindi F è primitiva di f su [a, b].

- Sia $f:[a,b] \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia *f* continua su [*a*, *b*];
- Sia *G* una qualunque primitiva di *f* su [*a*, *b*].

Allora
$$\int_a^b f(t) dt = G(b) - G(a)$$
.

Dimostrazione

Dal teorema fondamentale del calcolo integrale sappiamo che la funzione integrale

$$F(x) = \int_{a}^{x} f(t) dt \,\forall x \in [a, b]$$

è una primitiva di f su [a, b].

Quindi F e G sono entrambe primitive della stessa funzione f su [a, b]. Dalla seconda conseguenza del teorema di Lagrange si ha che F(x) = G(x) + c, $\forall x \in [a, b]$.

Se sostituisco x = a ottengo:

$$F(a) = G(a) + c \implies \int_{a}^{a} f(t) dt = G(a) + c \implies 0 = G(a) + c \implies c = -G(a)$$

Se sostituisco x = b ottengo:

$$F(b) = G(b) + c = \int_{a}^{b} f(t) dt = G(b) + c$$

Dunque si ha che:

$$=> \int_a^b f(t) dt = G(b) - G(a)$$

Teoremi e relative dimostrazioni per l'orale completo

☆ Potenza n-sima di un numero complesso

Un numero complesso z può essere scritto in forma esplicita come segue:

$$z = a + ib$$

dove a e b sono i coefficienti reali e immaginari del numero complesso, rispettivamente.

Per calcolare la n-esima potenza di z, basta moltiplicare z per sé stesso n volte. Ad esempio, per calcolare la seconda potenza di z, si può fare:

$$z^2 = (a + ib)(a + ib) = a^2 + 2aib - b^2$$

Per calcolare la terza potenza di z, si può fare:

$$z^3 = (a+ib)(a+ib)(a+ib) = a^3 + 3a^2ib + 3ab^2i^2 - 3ab - b^3i$$

E così via.

È importante notare che per calcolare le potenze di un numero complesso, si devono seguire le regole di moltiplicazione dei numeri complessi. Ad esempio, per moltiplicare due numeri complessi z_1 e z_2 , si deve fare:

$$z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$

Per dimostrare che questo è il modo corretto di calcolare le potenze di un numero complesso, possiamo usare l'identità di Eulero per scrivere il numero complesso z in forma trigonometrica:

$$z = a + ib = r(\cos\theta + i \sin\theta)$$

dove r è la radice quadrata della somma dei quadrati dei coefficienti reali e immaginari di z, e θ è l'angolo che z forma con l'asse x-y del piano complesso.

Usando la proprietà di potenze di esponenziali, possiamo dimostrare che la n-esima potenza di z è:

$$z^n = r^n(\cos n\theta + i \sin n\theta)$$

Questo dimostra che la formula che abbiamo dato all'inizio per calcolare le potenze di un numero complesso è corretta.

☆ Radici n-esime di un numero complesso

Per calcolare le radici n-esime di un numero complesso z, possiamo partire dalla sua forma trigonometrica:

$$z = r (\cos \theta + i \sin \theta)$$

Che è equivalente alla forma algebrica di un numero complesso:

$$z = a + ib$$

Con $a = r \cos \theta$ e $b = r \sin \theta$.

Ora, possiamo utilizzare la definizione di radice n-esima per calcolare le radici n-esime di z. Se vogliamo calcolare la radice n-esima di z, denotata come $\sqrt[n]{z}$, possiamo scrivere:

$$\sqrt[n]{z} = \sqrt[n]{a + ib}$$

Poiché a e b sono numeri reali, possiamo utilizzare la formula per calcolare le radici n-esime di un polinomio di grado n con coefficienti reali:

$$\sqrt[n]{a+ib} = \sqrt[n]{r} \left(\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right)$$

Dove r è il modulo di z e θ è l'argomento di z.

Per calcolare esplicitamente le radici n-esime di z, dobbiamo calcolare il modulo $\sqrt[n]{r}$ e l'argomento $\frac{\theta}{n}$. Il modulo è facile da calcolare: basta elevare il modulo r alla potenza $\frac{1}{n}$. Per calcolare l'argomento, possiamo utilizzare la seguente formula:

$$\frac{\theta}{n} = \left(\frac{2\pi}{n}\right)k + \theta_0$$

Dove k è un intero compreso tra 0 e n-1 e θ_0 è l'argomento di z.

Utilizzando questa formula, possiamo calcolare tutte le radici n-esime di un numero complesso z. Ad esempio, per calcolare le radici quadrate di z, basta impostare n=2 e calcolare l'argomento per k=0 e k=1:

$$\frac{\theta}{2} = \left(\frac{2\pi}{2}\right)0 + \theta_0 = \theta_0 e^{\frac{\theta}{2}} = \left(\frac{2\pi}{2}\right)1 + \theta_0 = \theta_0 + \pi$$

Quindi le radici quadrate di z sono $\sqrt[n]{r}(\cos\theta_0 + i\sin\theta_0) e^{-n}\sqrt{r}(\cos\theta_0 + \pi + i\sin\theta_0 + \pi)$.

💢 Teorema dell'unicità del limite di successioni convergenti

• Sia
$$\lim_{n\to +\infty} a_n = a$$
 e $\lim_{n\to +\infty} a_n = b$.
Allora $a=b$.

Dimostrazione

Sia, per assurdo, che a < b. Fisso $\varepsilon = \frac{b-a}{2}$.

Poiché a_n converge ad a, allora:

$$\exists n_1(\varepsilon) \mid \forall n > n_1, a - \varepsilon < a_n < a + \varepsilon$$

Per lo stesso motivo:

$$\exists n_2(\varepsilon) \mid \forall n > n_2, b - \varepsilon < a_n < b + \varepsilon$$

Ma, allora, preso $n_0 = \max(n_1, n_2)$ si ha che:

$$\forall n > n_0 \quad \begin{cases} a - \varepsilon < a_n < a + \varepsilon \\ b - \varepsilon < a_n < b + \varepsilon \end{cases} Assurdo! (a - \varepsilon, a + \varepsilon) \cap (b - \varepsilon, b + \varepsilon) = \emptyset$$

☆ Teorema della permanenza del segno

• Sia $\lim_{n\to+\infty} a_n = a \in \mathbb{R}$.

Se
$$a>0 => \exists n_0 \mid \forall n>n_0 \ a_n>0$$

Se $a<0 => \exists n_0 \mid \forall n>n_0 \ a_n<0$

Dimostrazione

Fisso
$$\varepsilon = \frac{a}{2} > 0$$
. Allora $\exists n_0 \mid \forall n > n_0 \ a - \left(\frac{a}{2}\right) < a_n < a + \frac{a}{2} = > 0 < \frac{a}{2} < a_n < \frac{3}{2}a$

☆ Teorema del confronto

Siano a_n , b_n , c_n tre successioni.

Dimostrazione (3)

Poiché esistono i limiti, allora:

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} a_n = \alpha => \ \forall \alpha > 0 \ \exists n_0 \ | \ \forall n > \ n_0 \ \alpha - \varepsilon < \ a_n < \alpha + \varepsilon$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} c_n = \alpha => \ \forall \alpha > 0 \ \exists n_1 \ | \ \forall n > \ n_1 \ \alpha - \varepsilon < \ c_n < \alpha + \varepsilon$$

Considero $n_2 = \max(n_0, n_1)$. Allora:

$$\forall n > n_2 \mid \alpha - \varepsilon < \ a_n < \ \alpha + \varepsilon \ \lor \ \alpha - \varepsilon < \ c_n < \ \alpha + \varepsilon \ \ \text{è vero che} : \alpha - \varepsilon < \ a_n \leq \ b_n \leq c_n < \ \alpha + \varepsilon$$

☆ Teorema di Darboux o dei valori intermedi

- Sia $f:[a,b] \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia f continua su [a, b].

Allora f assume tutti i valori compresi tra f(a) e f(b).

Dimostrazione

- i. Se f(a) = f(b) = l'unico valore compreso è f(a) = segue la tesi.
- ii. Se $f(a) \neq f(b) => f(a) > f(b)$ oppure f(a) < f(b). Si assuma che f(a) sia minore di f(b). Considero $y_0 \in (f(a), f(b))$ con $f(a) < y_0 < f(b)$.

Considero la funzione
$$g(x)=f(x)-y_0$$
. La funzione $g(x)$ è continua su $[a,b]$.
$$g(a)=f(a)-y_0<0$$

$$g(b)=f(b)-y_0>0$$

Con g(a)g(b) < 0. Applico il teorema degli zeri alla funzione g:

$$\exists x_0 \in (a,b) \mid g(x) = 0 => f(x) - y_0 = 0 => f(x_0) = y_0$$

Relazione tra derivabilità e continuità

- Sia $f:(a,b) \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia $x_0 \in (a, b)$.

Se f(x) è derivabile in x_0 , allora è continua in x_0 .

Dimostrazione

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) - f(x_0) + f(x_0) = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) + f(x_0) \right] = f(x_0)$$

☆ Teorema di Lagrange o del valor medio

- Sia $f: [a, b] \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia *f* continua su [*a*, *b*];
- Sia *f* derivabile in (*a*, *b*).

Allora
$$\exists x_0 \in (a,b) \mid f'(x_0) = \frac{f(b) - f(a)}{b - a}$$
 ovvero $f(b) - f(a) = f'(x_0)(b - a)$.

Dimostrazione

Costruisco la retta passante per (a, f(a)) e (b, f(b)):

$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Definisco la funzione $g(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] \cdot g$ è continua su [a, b]. g è derivabile in (a, b).

$$g(a) = f(a) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (a - a) \right] = 0$$

$$g(b) = f(b) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (b - a) \right] = 0$$

Applicando il teorema di Rolle alla funzione g sull'intervallo $[a,b] => \exists x_0 \in (a,b) \mid g'(x_0) = 0$.

È noto che
$$g'(x) = f'(x) - \left[\frac{f(b) - f(a)}{b - a}\right]$$
 in $x_0 => g'(x_0) = 0 => f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$.

Dunque
$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$
.

☆ (1) Conseguenze del teorema di Lagrange: funzioni con derivata nulla su un intervallo sono costanti

- Sia *f* continua su [*a*, *b*];
- Sia *f* derivabile su (*a*, *b*);
- Sia $f'(x) = 0 \quad \forall x \in (a, b)$.

Allora $f(x) = c \ \forall x \in [a, b]$.

Dimostrazione

Sia $z \in (a, b]$. Considero $[a, z] \subseteq [a, b]$. Applico il teorema di Lagrange alla funzione f sull'intervallo [a, z].

Allora
$$\exists x_0 \in [a, b] \mid f'(x_0) = \frac{f(z) - f(a)}{z - a}$$
.

Per ipotesi, sia
$$f'(x_0) = 0 \Rightarrow \frac{f(z) - f(a)}{z - a} = 0 \Rightarrow f(z) - f(a) = 0 \Rightarrow f(z) = f(a)$$
.

Essendo z un punto arbitrario, f è costante su [a, b].

☆ (2) Conseguenze del teorema di Lagrange: funzioni con derivate coincidenti su un intervallo differiscono per una costante additiva

- Siano *f* e *g* continue su [*a*, *b*];
- Siano f e g derivabili su (a, b);
- Sia $f'(x) = g'(x) \quad \forall x \in (a, b)$.

Allora $f \in g$ differiscono di una costante additiva $c: \exists c \mid f(x) = g(x) + c$

Dimostrazione

Chiamo h(x) = f(x) - g(x).

h è continua su [a, b].

h è derivabile su (a, b).

$$h'(x) = f'(x) - g'(x) = 0 \ \forall x \in (a, b)$$

Applicando la prima conseguenza del teorema di Lagrange, si ha che:

$$h(x) = c \ \forall x \in (a, b) => f(x) - g(x) = c \ \forall x \in (a, b) => f(x) = g(x) + c$$

☆ (3) Conseguenze del teorema di Lagrange: relazioni tra monotonia e segno della derivata su un intervallo

- Sia *f* continua su [*a*, *b*];
- Sia *f* derivabile su (*a*, *b*).

Allora valgono le seguenti proposizioni:

- i. $f'(x) \ge 0 \ \forall x \in (a,b) \Leftrightarrow f \ \text{è} \ monotona \ crescente \ su \ (a,b);$
- ii. $f'(x) \le 0 \ \forall x \in (a,b) \Leftrightarrow f \ \text{è} \ monotona \ decrescente \ su(a,b);$
- iii. $f'(x) > 0 \ \forall x \in (a,b) => f$ è monotona strettamente crescente su (a,b);
- iv. $f'(x) < 0 \ \forall x \in (a,b) \Leftrightarrow f \ endowner \ endowner$

Dimostrazione [i] e [iii]

[i] => fisso $x_1 e x_2 \in [a, b] con x_1 < x_2$.

Applico il teorema di Lagrange all'intervallo $[x_1, x_2] \subseteq [a, b]$.

Allora $\exists z : x_1 < z < x_2$ per il quale vale:

$$f'(z) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Longrightarrow f(x_2) - f(x_1) \ge 0 \Longrightarrow f(x_1) \le f(x_2)$$

Per ipotesi, $f'(z) \ge 0 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0$.

Fisso $x_0 \in (a, b)$. Considero il rapporto incrementale centrato in x_0 :

$$\frac{f(x) - f(x_0)}{x - x_0} \begin{cases} \ge 0 \text{ se } x < x_0, f(x_0) \le f(x) \\ \ge 0 \text{ se } x < x_0, f(x) \le f(x_0) \end{cases}$$

 $\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)\geq 0 \text{ per il corollario del teorema della permanenza del segno.}$

[iii] => Siano $x_1 < x_2 con \ x_1, x_2 \in [a, b] => [x_1, x_2] \subseteq [a, b]$. Applico il teorema di Lagrange. Quindi $\exists z \mid x_1 < z < x_2$ per il quale vale:

$$f'(z) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \operatorname{ma} f'(z) > 0 \Longrightarrow f(x_2) - f(x_1) > 0 \Longrightarrow f(x_1) < f(x_2)$$

☆ Prima formula dell'incremento finito

- Sia $f:(a,b) \subseteq \mathbb{R} \to \mathbb{R}$;
- Sia $x_0 \in (a, b)$;
- Sia f derivabile in x_0 .

Allora vale la formula:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) per x \rightarrow x_0$$

Dimostrazione

Poiché f è derivabile in x_0 segue che $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \sum_{x = x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + o(1) \ per \ x \to x_0.$

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0) per x \rightarrow x_0$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) per x \to x_0.$$

☆ Seconda formula dell'incremento finito

• Sia f derivabile in un intorno di x_0 : $\mho_\delta(x_0) = (x_0 - \delta, x_0 + \delta) \ con \ \delta > 0$.

Allora
$$\forall x \in (x_0 - \delta, x_0 + \delta) \exists z \in \begin{cases} (x_0, x) \text{ se } x > x_0 \\ (x, x_0) \text{ se } x < x_0 \end{cases}$$
 tale per cui $f(x) = f(x_0) + f'(z)(x - x_0)$.