ECE661 Quiz 5

N	ame: UniqueID: Score:
Co	s quiz is closed-book. By signing your name above, you agree to follow Duk mmunity Standard. For True/False and multiple-choice questions, no justification ded.
1.	(1pt) (T/F) When implementing quantization-aware training with straight-throug estimator (STE), gradients are quantized during backpropagation, ensuring the updates are consistent with the quantized weights.
	se. Gradients are typically not quantized, but the forward pass uses the quantized ghts.
	(3pt) (Short Answer) Describe the potential regularization effects of weight quantization in neural networks. Can it perform a role similar to dropout? Provide a brief explanation supporting your answer.
	Quantization and dropout serve different purposes (1pt); while quantization reduce
	del size and computational complexity (1pt), dropout is a technique for preventing training (1pt).
3.	(3pt) (Short Answer) Explain the concept of mixed-precision quantization in neuranetworks. What are the primary benefits of it?
	s involves using different quantization precisions for different layers or parts of the
	work (1pt). It can provide a balance between efficiency (lower memory an apputation) (1pt) and maintaining high accuracy, as critical parts of the network can
	kept at higher precision (1pt).
4.	(3pt) (Short Answer) Discuss the impact of inducing sparsity in the structure of deeneural networks. What are the primary benefits of sparsity in terms of architecturand performance?

Sparsity in a neural network refers to the presence of many zero-valued or near-zero weights (1pt). This reduces the model's size and can improve inference efficiency by skipping unnecessary calculations (1pt). However, achieving optimal sparsity without

sacrificing performance requires careful tuning (1pt).