Basic representation theory

Nepomuk Ritz, July 2021

A group G = (G, o) consists of a set G and an operation o s.t.

- (1) $\forall a,b \in G$, $aob \in G$
- (2) $(a \circ b) \circ c = a \circ (b \circ c) \quad \forall a, b, c \in G$
- (3) $\exists e \in G$, $a \circ e = e \circ \alpha = \alpha \quad \forall \alpha \in G$
- (4) $\forall \alpha \in G \ni \overline{\alpha}^{-1} \in G , \alpha \circ \overline{\alpha}^{-1} = \overline{\alpha}^{-1} \circ \alpha = e.$

Example: Set of transformations which map a given battice into itself by leaving one point fixed,

In the case of the 2D square battice:

 $C_{4v} = \{E, \text{ identity} \}$ $C_{2}, \text{ rotations by } \pi \text{ (self-inverse)}$ $C_{4v}, \text{ rotations by } \pi/2$ $C_{4v}, \text{ inverse of } C_{4v}^{-1}, \text{ inverse of } C_{4v}^{-1}$ $\sigma_{v}^{-1}, \text{ reflection about the horizontal axis (self-inverse)}$ $\sigma_{v}^{-1}, \text{ reflection about the first diagonal}$ $\sigma_{d}^{-1}, \text{ the first diagonal}$ $\sigma_{d}^{-1}, \text{ second}$

Conjugate elements and classes in a group

- (1) Two elements a, b of the group G = (G, o) are <u>conjugate</u> $a \sim b$, if and only if there is another element $x \in G$ such that $b = x \circ a \circ x^{-1}$.
- (2) A <u>class</u> is the entirety of conjugate elements.

Example:

Classes of
$$C_{4v}$$
: {E}, { C_{2} }, { C_{4} , C_{4}^{-1} } = $2C_{4}$, { σ_{v}^{-1} }, σ_{v}^{-2} } = $2\sigma_{v}$, { σ_{d}^{-1} , σ_{d}^{-2} } = $2\sigma_{d}$

Side note: # of classes = # irreducible representations

Representation of a group

A group $\mathcal{R}=(R,\bullet)$ is a representation of another group $\mathcal{G}=(G,\bullet)$, if there is a one-to-one mapping $M\colon G\mapsto R$ such that $M(a\circ b)=M(a)\cdot M(b)$ $\forall a,b\in G$.

Of interest here: R: set of n-dimensional square matrices
".": usual matrix multiplication

- (1) If a representation Γ consists of $(n \times n)$ -matrices, it is called <u>n-dimensional</u>.
- (2) Two n-dimensional representations Γ_1 , Γ_2 of a group G are equivalent, if \exists a regular (nxn)-matrix U s.t. $N(a) = U \cdot M(a) \cdot U^{-1} \quad \forall \ a \in G$ with $N(a) \in \Gamma_1$ and $M(a) \in \Gamma_2$.
- (3) A representation Γ is called <u>reducible</u> if it is equivalent to a representation, where all matrices have a common block structure: $M(a) = \begin{pmatrix} M_1(a) & O \\ O & M_2(a) \end{pmatrix}$ Otherwise, it is called <u>irreducible</u>.

How to determine all irreducible representations of a group? Use

Characters

The <u>character</u> of a group element g in a representation Γ_i is determined by the trace $\chi_i(g) = tr(D_i(g))$ of its representing matrix $D_i(g)$.

- (1) The <u>dimension</u> n_i of a representation Γ_i is given by the character of the identity map $e: n_i = \mathcal{X}_i(e)$.
- (2) The number of classes n_c in a given group equals the number of inequivalent irreducible representations.
- (3) The characters χ_i of a representation Γ_i are equivalent for all elements in the same class, we can hence arrange all characters in a $(n_c \times n_c)$ character table:

(4) To compute character tables, one can use these two identities:

$$\sum_{i=1}^{n_c} \chi_i(\mathcal{E}_q) \chi_i^*(\mathcal{E}_{q'}) = S_{q,q'} N/h_q \qquad (1)$$

$$\frac{h_{c}}{\sum_{q=1}^{n} h_{q} \mathcal{X}_{i}(\mathcal{E}_{q}) \mathcal{X}_{i}^{*}(\mathcal{E}_{q}) = S_{i,i}, N , \qquad (2)$$

where N is the total number of elements of the group and hq is the number of elements in the class eq.

Example: Character table of C4,

We have five classes and hence the same number of irreps:

	C_{4v}	E	C_2	204	200	
1D	A_1	1	1	1	1	1
	A_2	1	1	1	-1	-1
	\mathcal{B}_{\bullet}	1	1	-1	1	-1
	\mathcal{B}_{2}	1	1	-1	-1	1
	{ E,					

- - => W.l.o.g. $n_1 = n_2 = n_3 = n_4 = 1$ and $n_5 = 2$.
- Each group has a trivial representation with D(g) = 1 $\forall g \in G$ => $\chi_{trivial}(g) = tr(D(g)) \stackrel{1D}{=} 1$ => trivial row (w.l.o.g. the first)
- . Use (1) and (2) to determine the other entries (Lengthy task).

Side note: One can determine whether a given representation is irreducible or not by computing its characters. If they coincide with a row in the character table, it is.

Basis functions of irreducible representations

We want basis functions (bost computed in real space) $f_i(r_4-r_2)$ which transform as an irreducible representation of the point group (in this case C_{42}) For this we use that the operator

$$\mathcal{P}(\Gamma_i) = \sum_{g \in \mathcal{G}} \mathcal{X}_i^*(g) g$$

projects out the contribution of a trial wave-function, which transforms as the irrep Γ_i .

To classify the basis functions according to their extent in real-space, we use the trial wave-functions

$$\phi^{start}(\vec{x}) \in \{ \delta_{\vec{X},\vec{e}_x}, \delta_{\vec{X},\vec{e}_x + \vec{e}_y}, \delta_{\vec{X},\vec{e}_x}, \dots \}$$

For the irrep E_q , we need a second, linear-independent trial wave-function, as this irrep is two-dimensional. We use

$$\phi_{2}^{\text{start}}(\vec{x}) \in \{\delta\vec{x}, \vec{e_{r}}, \delta\vec{x}, -\vec{e_{x}} + \vec{e_{r}}, \delta\vec{x}, a\vec{e_{y}}, \dots \}$$

• The phrase "a function f transforms as (or according to) the irreducible representation Γ_i of the group g" means

$$g f = D_i(g) f \forall g \in G$$

where $D_i(g)$ is the representing matrix of the group element g in the irreducible representation Γ_i .

This means in particular that functions with this property can be used to build a basis for the representation Γ_i .

- An alternative to the notation Γ_i to label irreducible representations of point groups are the "Mullikan symbols" alredy used in the character table for C_{4v} above. They work as follows (only relevant parts for C_{4v} here):
 - One-dimensional representations are labelled either A or B.

 Two-E.
 - One-dimensional representations which are symmetric with respect to rotation about $2\pi/n$ (i.e. $\chi(C_n)=1$) are labelled A; those which are anti-symmetric (i.e. $\chi(C_n)=-1$) are labelled B.
 - there are more conventions...

Explicit calculations

1. NN $\phi^{stort} = \delta_{\vec{x}, \vec{e}_x}$

$$\mathcal{P}(A_{1}) \ \phi^{\text{start}}(\vec{x}) = \chi_{A_{1}}^{*}(E) \ \delta \vec{x}, \vec{e_{x}} \qquad \text{identity}$$

$$+ \chi_{A_{1}}^{*}(C_{2}) \ \delta \vec{x}, -\vec{e_{x}} \qquad \text{rotation by } \pi$$

$$+ \chi_{A_{1}}^{*}(C_{4}) \ \delta \vec{x}, \vec{e_{y}} \qquad \text{rotation by } \pi/2$$

$$+ \chi_{A_{1}}^{*}(C_{4}^{-1}) \ \delta \vec{x}, -\vec{e_{y}} \qquad \text{rotation by } -\pi/2$$

$$+ \chi_{A_{1}}^{*}(C_{4}^{-1}) \ \delta \vec{x}, \vec{e_{x}} \qquad \text{reflection about the horizontal axis}$$

$$+ \chi_{A_{1}}^{*}(\sigma_{v}^{-1}) \ \delta \vec{x}, -\vec{e_{x}} \qquad \text{'.} \qquad \text{vertical} \qquad \text{'.}$$

$$+ \chi_{A_{1}}^{*}(\sigma_{d}^{-1}) \ \delta \vec{x}, -\vec{e_{y}} \qquad \text{'.} \qquad \text{the first diagonal}$$

$$+ \chi_{A_{1}}^{*}(\sigma_{d}^{-1}) \ \delta \vec{x}, \vec{e_{y}} \qquad \text{'.} \qquad \text{second} \qquad \text{'.}$$

all characters are one for $A_1 = 2\left(\delta_{\vec{x},\vec{e}_x} + \delta_{\vec{x},-\vec{e}_x} + \delta_{\vec{x},\vec{e}_y} + \delta_{\vec{x},-\vec{e}_y}\right)$

This expression now needs to be transformed to momentum space (and normalized) to yield the form-factor $\cos(K_x) + \cos(K_y)$.

Continuing this procedure for the other representations and for other trial-functions generates the complete set of form-factors, see next page.

(not all normalized)