Problem 1:

Let G be a group, with H < G and K < G. Let HK < G.

Now, let HK = KH.

Thus, HK < G if and only if KH = HK.

Problem 2:

Let G be a group and $H \subseteq G$ and $K \subseteq G$, such that $H \cup K = \{e\}$. Part a:

Let $h \in H$, $k \in K$.

So hk = kh for all $h \in H$, $k \in K$.

Part b:

From the above, it is clear that HK = KH. From this fact and problem 1, it follows that HK is a subgroup of G.

Now, let $\phi: H \times K \to HK$ be given by $\phi((h, k)) = hk$.

We show that ϕ is an isomorphism:

First, ϕ is a homomorphism:

Next, ϕ is one-to-one:

Last ϕ is onto:

Thus, there is an isomorphism from $H \times K$ to HK. That is, $H \times K \cong HK$.

Problem 3:

First, Q_8 is non-Abelian:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

However, all of Q_8 's subgroups are normal.

Because 8 = 2 * 2 * 2, any subgroup of Q_8 has order 1,2,4, or 8.

Any subgroup of order 1,4, or 8 is trivially normal, from the discussion in class. It only remains to show that the subgroups of order 2 are normal.

Now, there is only one subgroup of order 2 in Q_8 ; it is I, -I. This is clear because there is only one element of order 2 in Q_8 , and any subgroup of order 2 has to have exactly one element of order 2 (which is trivial from Cayley's theorem... elements of a group must have order dividing the group, and there can only be one element of order 1 (e). So there has to be an element of an order other than 1...there must be an element of order 2. But e has to be in the subgroup, so there's an element of order 1. And because there's only two elements, one of them is e and the other is the element of order 2).

Problem 4:

```
Consider \langle s \rangle < \langle s, r^2 \rangle < D_4.
Now \langle s, r^2 \rangle = \{e, s, r^2, sr^2\}
```

Now, $\langle s, r^2 \rangle = \{e, s, r^2, sr^2\}$ has order 4; it is normal in D_4 .

Also, $\langle s \rangle$ has order 2; it is normal in $\langle blah \rangle$.

However, $\langle s \rangle$ is not normal in D_4 : $rsr^{-1} = sr^3r^{-1} = sr^2$, and $sr^2 \notin \langle s \rangle$.

So $\langle s \rangle \leq \langle s, r^2 \rangle \leq D_4$, but $\langle s \rangle$ isn't a normal subgroup of D_4 .

Problem 5:

Part a:

Part b (i):

Part b (ii):

Problem 6: