

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Surface area enhancement of nickel foam by low-temperature chemical alloying/dealloying and its application for sodium borohydride hydrolysis

Yu-Jin Lee ^{a, b}, Yong-Seok Lee ^{a, c}, Hyun A Shin ^a, Young Suk Jo ^a, Hyangsoo Jeong ^a, Hyuntae Sohn ^a, Chang Won Yoon ^{a, d}, Yongmin Kim ^{a, **}, Kwang-Bum Kim ^{b, *}, Suk Woo Nam ^{a, ***}

- ^a Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- ^b Department of Material Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- c Department of Mechanical Engineering, School of Industrial and Mechanical Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
- ^d KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea

ARTICLEINFO

Article history: Received 9 January 2020 Received in revised form 19 May 2020 Accepted 21 May 2020 Available online 8 June 2020

Keywords: Ni-Al alloy High-surface-area nickel Low-temperature chemical alloying (LTCA) Aluminum dealloying Sodium borohydride hydrolysis Hydrogen production

ABSTRACT

Structured nickel catalysts for sodium borohydride hydrolysis (SBH) were synthesized by surface modification of nickel foam. The fabrication process consisted of i) nickel aluminization, ii) post-annealing, and iii) selective aluminum leaching. Through low-temperature chemical alloying, nickel was aluminized at 400 °C, and a 0.5 μ m-thick NiAl₃ alloy outer-layer was formed. While discontinuing the influx of the aluminum source, post-annealing was conducted to transform the NiAl₃ outer-layer into different Ni–Al alloys, such as NiAl₃ on Ni₂Al₃, Ni₂Al₃ on NiAl, and NiAl on Ni₃Al at 400, 500, and 600 °C, respectively. After the selective aluminum leaching, the surface treatment increased the surface area by factors of 2.2–77.1, leading to a significant enhancement of activity in SBH hydrolysis. Additionally, the catalyst undergoing post-annealing at 400 °C achieved superior performance in both initial activity and durability, due to the adhesion layer of Ni₂Al₃ formed between the outermost catalytic layer and the nickel substrate. Finally, continuous SBH-based hydrogen generation using the catalyst with post-annealing at 400 °C was achieved and the as-developed nickel catalyst produced hydrogen at a rate of up to 400 \pm 27 sccm/g_{catalyst} while exhibiting excellent durability for 3 h.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Surface modification on nickel (Ni) by aluminizing is of great interest in providing chemical and mechanical stability to bulk Ni substrates [1,2] as well as enlarging the Ni surface area [3]. Diffusing aluminum (Al) into Ni substrates followed by selectively removing Al [4–6] has been studied for enhancing catalytic activity through the extension of the Ni surface area. There are several methods for aluminizing Ni structured substrates, such as plasma spraying [7], hot dipping [8], slurry aluminizing [9], and pack cementation [10].

E-mail addresses: yongminkim@kist.re.kr (Y. Kim), kbkim@yonsei.ac.kr (K.-B. Kim), swn@kist.re.kr (S.W. Nam).

According to pack cementation, the most cost-effective and commercially successful method, Ni-based structures are inserted into a reactor with a mixture of aluminum and alumina powders and then the reactor is heated while filled with a halide gas (e.g., NH₄Cl and AlF₃) [1,2,10]. Notably, utilizing halide gas as an activator simplifies the process of aluminizing nickel substrates with complex 3D structures by forming volatile aluminum-deposit sources. Pack cementation has been applied mostly to achieve Ni-rich Ni—Al alloy-based coating layers (e.g., NiAl and Ni₃Al) for enhancing high-temperature oxidation resistance [11,12]. However, a higher alloying temperature (>950 °C) was required in this method, and the resulting coating layers had a thickness of more than 100 µm [13].

Hence, the conventional pack cementation method should be modified for aluminizing nickel substrates with a thickness of several tenths of a micrometer. For example, when aluminizing commercial nickel foam for fabricating structured catalysts, it is

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.