Eserciziario di Dinamica Non Lineare

Edoardo Gabrielli

 $26~\mathrm{aprile}~2021$

Indice

1	\mathbf{Intr}	roduzione ai sistemi dinamici	2
	1.1	Definire un sistema dinamico	2
	1.2	Esistenza ed unicità delle soluzioni di un IVP	3
	1.4	Mappe ricorsive	
	1.6	Flusso di Fase	4
	1.7	Soluzioni Speciali di Sistema dinamico	4
	1.8	Campi vettoriali	5
2	Studio della stabilità delle soluzioni		
	2.1	Soluzioni stazionarie	7
	2.2	Stabilità delle soluzioni	
	2.3	Studio della stabilità mediante linearizzazione	
	2.4	Equazioni differenziali lineari a coeff. costanti	9
	2.5	Soluzione generale dell'IVP di un sistema dinamico $\dot{\boldsymbol{x}} = A\boldsymbol{x}$	9
	2.7	Sistemi lineari in dimensione n	
	2.8	Manifold lineari, stabile, instabile e centro	
	2.9	Teorema di Hartman-Grobman	
	2.10	Teorema di Lyapunov	

Capitolo 1

Introduzione ai sistemi dinamici

1.1 Definire un sistema dinamico

Esercizio 1.1.1: (Σ_2 (della shift map) spazio metrico) Dimostrare che Σ_2 è uno spazio metrico.

Soluzione È necessario dimostrare le 4 proprietà della distanza d definita come:

$$d = \sum_{j=0}^{\infty} \frac{|s_j - t_j|}{2^j}.$$
 (1.1.1)

Le prime 3 sono banali, la triangolare è l'unica da valutare.

$$d(s,t) \le d(s,k) + d(k,t) = \sum_{j=0}^{\infty} \frac{|s_j - k_j| + |k_j - t_j|}{2^j}.$$
(1.1.2)

Che risulta verificata poichè vale la triangolare per la norma all'interno della sommatoria.

Esercizio 1.1.2: (σ continua)

Dimostrare che la σ nello spazio metrico (Σ_2, d) è continua.

Soluzione Dimostriamo prima che se due stringhe hanno i primi n simboli identici vale la disuguaglianza:

$$\forall t, s \in \Sigma_2 \text{ con } t_i = s_i, \ i = 1, \dots, n \implies d(s, t) \le \frac{1}{2^n}. \tag{1.1.3}$$

Partiamo dalla seguente relazione:

$$d(s,t) = \sum_{j=0}^{\infty} \frac{|s_j - t_j|}{2^j} = \sum_{j=n+1}^{\infty} \frac{|s_j - t_j|}{2^j} \le \sum_{j=n+1}^{\infty} \frac{1}{2^j}.$$
 (1.1.4)

Si tratta quindi di trovare un estremo superiore alla ultima sommatoria. Definiamo la quantità ausiliaria:

$$A_n = \sum_{j=0}^n \frac{1}{2^j}. (1.1.5)$$

Tale quantità rispetta la seguente uguaglianza:

$$A_n = A_{n+1} - \frac{1}{2^{n+1}} \implies A_{n+1} = A_n + \frac{1}{2^n \cdot 2} \implies \frac{A_{n+1}}{\frac{1}{2}} = \frac{1}{\frac{1}{2}} + 1 + \frac{1}{2} + \dots + \frac{1}{2^n} = 2 + A_n.$$
 (1.1.6)

In conclusione si ottiene la relazione:

$$A_{n+1} = 1 + \frac{A_n}{2}. (1.1.7)$$

Possiamo sostituire il termine A_{n+1} ottenuto nella 1.1.7 nella prima equazione di 1.1.6, in questo modo si esprime A_n senza sommatoria:

$$A_n = 1 + \frac{A_n}{2} - \frac{1}{2^{n+1}} \implies A_n = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right). \tag{1.1.8}$$

Possiamo concludere mettendo in relazione la sommatoria di 1.1.4 con la A_n ricavata:

$$\sum_{j=n+1}^{\infty} \frac{1}{2^j} = \sum_{j=0}^{\infty} \frac{1}{2^j} - \sum_{j=0}^{n} \frac{1}{2^j} = A_{\infty} - A_n = 2 - 2\left(1 - \left(\frac{1}{2}\right)^{n+1}\right) = \frac{1}{2^n}.$$
 (1.1.9)

Quindi si ottiene la relazione cercata per le due stringhe con i primi n termini identici:

$$d(s,t) \le \frac{1}{2^n}. (1.1.10)$$

Adesso serve dimostrare che:

Se
$$d(s,t) < \frac{1}{2^n} \implies s_i = t_i \ \forall i = 1,\dots, n.$$
 (1.1.11)

Per assurdo ipotizziamo non sia vero. Se $\exists k \leq n$ tale che $s_k \neq t_k$ allora deve valere, per quanto dimostrato prima, che

$$d(s,t) \ge \frac{1}{2^k}. (1.1.12)$$

Ma essendo $k \leq n$ abbiamo anche che:

$$d(s,t) \ge \frac{1}{2^k} \ge \frac{1}{2^n}. (1.1.13)$$

Che contraddice l'ipotesi assurda.

Con queste basi possiamo dimostrare la continuità di σ :

dato $\epsilon > 0$ ed $s \in \Sigma_2$ allora $\exists n$ tale che $1/2^n < \epsilon$. Prendendo $\delta = \frac{1}{2^{n+1}}$ allora $\exists t \in \Sigma_2$ tale che $d(s,t) < \delta$. In particolare per rispettare la disuguaglianza si deve scegliere t del seguente tipo:

$$t = (s_0, s_1, \dots, s_{n+1}, t_{n+2}, \dots). \tag{1.1.14}$$

La σ applicata a questi due vettori restituisce:

$$\sigma(s) = (s_1, s_2, s_3, \dots, s_{n+1}, s_{n+2}, \dots)
\sigma(t) = (s_1, s_2, s_3, \dots, s_{n+1}, t_{n+2}, \dots).$$
(1.1.15)

Visto che si hanno i primi n elementi uguali abbiamo che la relazione necessaria per la continuità è rispettata:

$$d(\sigma(s), \sigma(t)) \le \frac{1}{2^n} < \epsilon. \tag{1.1.16}$$

1.2 Esistenza ed unicità delle soluzioni di un IVP

Esercizio 1.2.1: (Studio di IVP 1)

Studiare al variare del parametro x_0 il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2\\ x(0) = x_0 \end{cases} \tag{1.2.1}$$

Esercizio 1.2.2: (Studio di IVP 2)

Studiare al variare del parametro a il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{x} \\ x(0) = a \end{cases} \tag{1.2.2}$$

1.4 Mappe ricorsive

Esercizio 1.4.1: (Sulla mappa di Arnold)

Dimostrare che la mappa di Arnold è invertibile se $0 \le k \le 1$.

Figura 1.1: Mappa di Arnold al variare di k con $\omega = 0.4$ fissato.

Soluzione Come possiamo vedere in figura 1.1 la mappa non è invertibile per tutti i valori di k.

Prendiamo ad esempio la mappa con k=0.1 e valutiamo ¹ il punto $x_n=0$: la linea blu in figura 1.1, che rappresenta la mappa, a destra di questo punto vale $\omega+\epsilon$, a sinistra di questo punto vale $\omega-\epsilon$. La pendenza della curva in questo punto è quindi positiva.

La presenza della perturbazione oscillante fa si che i due "rami" della mappa si avvicinino l'un l'altro "distorcendosi", di conseguenza se la perturbazione è abbastanza forte è possibile che in un punto tra 0 e 1 il ramo in alto e quello in basso abbiano la stessa x_{n+1} : si perde l'iniettività e quindi l'invertibilità.

Nel grafico la perdita di iniettività si ha quando la mappa oltrepassa la linea tratteggiata (che rappresenta la separatrice tra i rami).

Per capire quando questo succede possiamo studiare la pendenza della mappa nei pressi di $x_n = 0$ (considerandola di fatto come una funzione continua).

$$x_{n+1} = x_n + \omega + kx_n = (1 - k)x_n + \omega. \tag{1.4.1}$$

Se in un intorno (destro) di questo punto la pendenza della curva è negativa allora significa che la mappa è scesa sotto ω e quindi ha perso l'iniettività: deve essere $k \leq 1$ per avere pendenza positiva.

1.6 Flusso di Fase

Esercizio 1.6.1: (Sul flusso di fase)

Verificare la validità delle 3 proprietà per:

$$\varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0\\ 0 & e^{\Gamma t} \end{pmatrix}. \tag{1.6.1}$$

1.7 Soluzioni Speciali di Sistema dinamico

Esercizio 1.7.1: (Sistema in \mathbb{R}^2)

Prendiamo il seguente:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = nt^{n-1}y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -nt^{n-1}x \end{cases}$$
 (1.7.1)

Dimostrare che la soluzione è:

$$x(t) = A\sin(t^n) + B\sin(t^n)$$

$$y(t) = A\cos(t^n) - B\sin(t^n).$$
(1.7.2)

Verificare che $x^2 + y^2 = A^2 + B^2$.

Le soluzioni formano un cerchio di raggio $R^2 = A^2 + B^2$. Nonostante questo la soluzione non è periodica perché:

$$\nexists T \text{ t.c. } t^u = (t+T)^u.$$
(1.7.3)

¹Questa corrisponde (circa) alla circle rotation map

Esercizio 1.7.2: (Verifica di non periodicità)

Data la seguente equazione differenziale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = (1 + \sin(t)) \cdot x = F(x, t). \tag{1.7.4}$$

Dimostrare che, anche se il coefficiente $1 + \sin t$ è periodico, la soluzione non è periodica risolvendo il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = (1 + \sin t) \cdot x\\ x(0) = x_0 \end{cases} \tag{1.7.5}$$

Dimostrare che la seguente funzione è soluzione:

$$x(t) = x_0 e^{1+t-\cos t}. (1.7.6)$$

e che questa funzione non è mai periodica $\forall x_0 \in \mathbb{R}$.

Esercizio 1.7.3: (Esercizio con Simulazione)

Presa la seguente equazione differenziale:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g}{l}\sin(\theta) - \frac{\gamma}{ml}\frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{r}{ml}\sin(\Omega t). \tag{1.7.7}$$

Ridefinire la variabile temporale e gli opportuni parametri per ricondurlo a:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\sin(\theta) - b\frac{\mathrm{d}\theta}{\mathrm{d}t} + A\sin(\Omega t). \tag{1.7.8}$$

Verificare numericamente che per $b=0.05,\,a=0.6,\,\Omega=0.7$ il sistema presenta un comportamento asintotico complesso.

1.8 Campi vettoriali

Esercizio 1.8.1: (Su campo vettoriale)

Preso il seguente campo vettoriale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -(1+x^2). \tag{1.8.1}$$

e sia $x(t_0) = x_0$.

• Verificare che una soluzione è:

$$x(t) = -\tan(t - t_0 - \arctan(x_0)). \tag{1.8.2}$$

• Verificare che $x(t+\tau)$ è ancora soluzione.

Esercizio 1.8.2: (Teorema di Shift e sistemi non autonomi 1)

Preso il sistema

$$\frac{\mathrm{d}x}{\mathrm{d}t} = e^t; \qquad x(0) = x_0. \tag{1.8.3}$$

Dimostrare che la soluzione è:

$$x(t) = e^t - 1 + x_0. (1.8.4)$$

e verificare che il teorema di invarianza per shift non è verificato.

Esercizio 1.8.3: (Teorema di Shift e sistemi non autonomi 2)

Dato il sistema

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t); \qquad \text{Soluzione: } \boldsymbol{x}_s(t). \tag{1.8.5}$$

Verificare che, posti $\boldsymbol{x}_{\tau}(t)$ e F_{τ} :

$$\boldsymbol{x}_{\tau}(t) = \boldsymbol{x}_{s}(t+\tau); \qquad F_{\tau}(\boldsymbol{x}_{\tau}, t) = F(\boldsymbol{x}_{\tau}, t+\tau). \tag{1.8.6}$$

Allora si ha che $x_s(t+\tau)$ è soluzione di:

$$\frac{\mathrm{d}\boldsymbol{x}_{\tau}}{\mathrm{d}t} = F_{\tau}(\boldsymbol{x}_{\tau}, t). \tag{1.8.7}$$

In pratica quindi lo shift temporale per un sistema non autonomo richiede di traslare anche il funzionale F.

Esercizio 1.8.4: (Esercizi sul teorema)

Determinare i campi vettoriali associati ai seguenti flussi:

- $\varphi(t,x) = \frac{xe^t}{xe^t x + 1}$.
- $\varphi(t,x) = \frac{x}{(1-2x^2t)^{1/2}}$.
- $\varphi(t, x, y) = (xe^t, \frac{y}{1-yt}).$

Capitolo 2

Studio della stabilità delle soluzioni

2.1 Soluzioni stazionarie

Esercizio 2.1.1: (Stati Stazioari)

Trovare gli stati stazionari dei seguenti SD a tempo continuo autonomi:

• 1)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \epsilon x \frac{\mathrm{d}x}{\mathrm{d}t} + x = 0 \tag{2.1.1}$$

• 2)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + x^3\\ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y \end{cases}$$
 (2.1.2)

• 3)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y - \mu x - x^2 \end{cases}$$
 (2.1.3)

Esercizio 2.1.2: (Punto fisso della mappa logistica)

Dimostrare che per $0 \le \mu \le 1$ esiste solo uno stato stazionario.

Suggerimento: utilizzare l'espressione

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mu - 2\mu x\tag{2.1.4}$$

con $y = \mu x(1-x)$ e fare uso della geometria analitica.

Esercizio 2.1.3: (Punti stazionari di Mappe ricorsive)

Determinare gli stati stazionari delle seguenti mappe ricorsive:

1.

$$\begin{cases} x_{k+1} = x_k \\ y_{k+1} = x_k + y_k \end{cases}$$
 (2.1.5)

2.

$$\begin{cases} x_{k+1} = x_k^2 \\ y_{k+1} = x_k + y_k \end{cases}$$
 (2.1.6)

2.2Stabilità delle soluzioni

Esercizio 2.2.1: (Oscillatore armonico)

Dato il sistema dinamico a tempo continuo

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x \end{cases} \tag{2.2.1}$$

Dimostrare che $V_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ è stabile secondo Lyapunov e dire se tale soluzione è asintoticamente stabile.

Esercizio 2.2.2: (Stabilità soluzione)

Dato il SD $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \text{ con } \mathbf{x} \in \mathbb{R}^n \text{ e } F : \mathbb{R}^n \to \mathbb{R}^n.$ Assumiamo che $\exists \alpha, \beta \text{ con } (\beta > 0)$:

$$F(\boldsymbol{x}) \cdot \boldsymbol{x} \le \alpha \left| \boldsymbol{x} \right|^2 + \beta \tag{2.2.2}$$

- Dimostrare che le soluzioni sono globalmente definite.
- Dimostrare, nel caso $\alpha < 0$, che esiste r (raggio di una palla in \mathbb{R}^n) e T tali per cui se t > T allora |x(t)| < r.
- Determinare r.

2.3 Studio della stabilità mediante linearizzazione

Esercizio 2.3.1: (Calcolo di DF)

Presa la mappa:

$$F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2^2 \\ x_1 x_2 - x_2 \end{pmatrix} \tag{2.3.1}$$

Calcolare $DF(\mathbf{V}_0)$ nel punto $\mathbf{V}_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Esercizio 2.3.2: (Trovare la tabella di Routh)

Determinare la tabella di Routh corrispondente al seguente polinomio:

$$P(x) = x^3 + 6x^2 + 9x + 4 (2.3.2)$$

Verificare tramite il teorema di Routh-Hurwitz che tutte le radici hanno parte reale negativa. (Le radici sono -1, -4, -1).

2)

Come per il caso precedente analizzare il polinomio:

$$P(x) = x^4 - 4x^3 - 10x^2 + 28x - 15 (2.3.3)$$

Esercizio 2.3.3: (Sulla stabilità degli stati stazionari)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\delta y - \mu x - x^2 \end{cases}$$
 (2.3.4)

Supporre che $\delta, \mu \neq 0$.

- 1. Determinare gli stati stazionari e studiarne la stabilità mediante la linearizzazione del sistema dinamico nell'intorno dello stato stazionario.
- 2. Studiare la stabilità degli stati stazionari utilizzando il teorema di Routh-Hurwitz e confrontare con i risultati in 1.

2.4 Equazioni differenziali lineari a coeff. costanti

Esercizio 2.4.1: (Phase Portrait 3D)

Disegnare il Phase Portrait del seguente SD:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = x_1\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_2\\ \frac{\mathrm{d}x_3}{\mathrm{d}t} = -x_3 \end{cases}$$
 (2.4.1)

Esercizio 2.4.2: (Autovettori del sistema e base di autovettori)

Dato il sistema dinamico:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad A = \begin{pmatrix} 3 & 1\\ 0 & 3 \end{pmatrix} \tag{2.4.2}$$

- 1. Trovare autovalori ed autovettori.
- 2. Passare alla rappresentazione $y = P^{-1}x$.
- 3. Determinare x(t).

Esercizio 2.4.3: (Dinamica a partire dalla forma di Jordan)

Sia S dato dalla forma di Jordan

$$S = \begin{pmatrix} \Lambda & 0 \\ 0 & \mu \end{pmatrix} \tag{2.4.3}$$

Dimostrare che:

$$e^{St} = \begin{pmatrix} e^{\Lambda t} & 0\\ 0 & e^{\mu t} \end{pmatrix} \tag{2.4.4}$$

2.5 Soluzione generale dell'IVP di un sistema dinamico $\dot{x} = Ax$

Esercizio 2.5.1: (Applicazione delle forme di Jordan)

Dato il sistema dinamico

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad \boldsymbol{x} \in \mathbb{R}^2, A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$
 (2.5.1)

- Trovare la soluzione.
- Disegnare il Phase Portrait.

Esercizio 2.5.2: (Dimostrazione esistenza di matrice di trasformazione)

Sia A una matrice 2×2 reale. Supponiamo che A abbia 2 autovalori complessi coniugati:

$$\Lambda_1, \Lambda_2 = a \pm ib \quad b \neq 0 \tag{2.5.2}$$

Dimostrare che esiste una matrice invertibile P tale che:

$$P^{-1}AP = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \tag{2.5.3}$$

2.7 Sistemi lineari in dimensione n

Esercizio 2.7.1: (Base di autovettori generalizzati)

Sia data

$$A = \begin{pmatrix} 6 & 2 & 1 \\ -7 & -3 & -1 \\ -11 & -7 & 0 \end{pmatrix}. \tag{2.7.1}$$

Determinare una base di autovettori generalizzati di A.

Esercizio 2.7.2: (Soluzione sistema in \mathbb{R}^4 (1))

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x}, \qquad \boldsymbol{x}(0) = \boldsymbol{x}_0 \in R^4, \quad A = \begin{pmatrix} 0 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{2.7.2}$$

Esercizio 2.7.3: (Soluzione di sistema in \mathbb{R}^4 (2))

Risolvere il seguente IVP:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \qquad A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{pmatrix}. \tag{2.7.3}$$

Esercizio 2.7.4: (Autovettori generalizzati ed autovalori)

Dato l'IVP in \mathbb{R}^4 :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = Ax. \tag{2.7.4}$$

con

$$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{pmatrix}. \tag{2.7.5}$$

Trovare gli autovettori generalizzati e gli autovalori.

2.8 Manifold lineari, stabile, instabile e centro

Esercizio 2.8.1: (Richiamo della stabilità secondo Lyapunov)

Dimostrare che ogni stato stazionario dell'esercizio

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad \boldsymbol{x} \in \mathbb{R}^2 \quad A = \begin{pmatrix} 0 & 1 \\ 0 & -4 \end{pmatrix}. \tag{2.8.1}$$

Che abbiamo dimostrato essere della forma: $x_p = \begin{pmatrix} x_s \\ 0 \end{pmatrix}$ è stabile secondo Lyapunov (non bisogna usare gli autovalori, utilizzare la tecnologia della definizione di Lyapunov).

Soluzione Dobbiamo dimostrare che il sistema dinamico dell'esercizio, descritto anche dal seguente sistema di equazioni differenziali:

$$\begin{cases} \dot{x} = y\\ \dot{y} = -4y \end{cases} \tag{2.8.2}$$

rispetta la seguente:

Se
$$||\boldsymbol{x}(0) - \boldsymbol{x}_p(0)|| < \delta(\epsilon) \implies ||\boldsymbol{x}(t) - \boldsymbol{x}_p(t)|| < \epsilon \quad \forall t > 0.$$
 (2.8.3)

La soluzione analitica si trova risolvento prima per y e poi sostiuento ed integrando per x:

$$\begin{cases} x(t) = x_0 + \frac{y_0}{4} (1 - e^{-4t}) \\ y(t) = y_0 e^{-4t} \end{cases}$$
 (2.8.4)

Possiamo subito notare che entrambe le soluzioni sono limitate superiormente:

$$\begin{cases} x(t) < x_0 + \frac{y_0}{4} \equiv k_0 \\ y(t) < y_0 \end{cases}$$
 (2.8.5)

Quindi abbiamo che

$$\sqrt{(x(t) - x_s)^2 + y^2(t)} \le \sqrt{(k_0 - x_s)^2 + y_0^2} \equiv \gamma_0.$$
(2.8.6)

Quindi essendo questa norma limitata basta scegliere arbitrariamente $\delta(\epsilon) = \epsilon$ per ottenere che la soluzione in questione è stabile secondo Lyapunov.

Esercizio 2.8.2: (Ricerca dei sottospazi generalizzati)

Dato il sistema dinamico con matrice A:

$$A = \begin{pmatrix} -2 & -1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}. \tag{2.8.7}$$

Oppure

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \tag{2.8.8}$$

Determinare E^s, E^u, E^c .

Soluzione Vedere l'esempio svolto a lezione per entrambi i casi.

2.9 Teorema di Hartman-Grobman

Esercizio 2.9.1: (Sul teorema di Hartman-Grobman)

Dato il sistema dinamico

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad \boldsymbol{x} \in \mathbb{R}^2 \quad A = \begin{pmatrix} -1 & -3 \\ -3 & -1 \end{pmatrix}. \tag{2.9.1}$$

Sia $H: \mathbb{R}^2 \to \mathbb{R}^2$ tale che:

$$\forall \boldsymbol{v} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2: \ \boldsymbol{v} \to H\boldsymbol{v}. \tag{2.9.2}$$

Con:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix}. \tag{2.9.3}$$

Determinare come viene trasformato il SD attraverso H.

2.10 Teorema di Lyapunov

Esercizio 2.10.1: (Ripasso sul gradiente)

Presa

$$z = S(x, y) \in C^1$$
 $S \ge 0.$ (2.10.1)

E preso l'insieme E tale che $c \in \mathbb{R}^+$:

$$E = \{(x,y)|S(x,y) = c\}. \tag{2.10.2}$$

Preso quindi il gradiente: $\nabla(S(x,y)-c)=(s_x,s_y)$ DImostrare che se si prende $P=(x_0,y_0)\in E$ tale per cui:

$$\left. \frac{\partial S}{\partial y} \right|_{x_0, y_0}$$
 (2.10.3)

Allora (s_x, s_y) è ortogonale alla tangente in P.

Esercizio 2.10.2: (Utilizzo del teorema di Lyapunov)

Sia dato il sistema dinamico a tempo continuo

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t} + \epsilon x^2 \frac{\mathrm{d}x}{\mathrm{d}t} + x = 0. \tag{2.10.4}$$

Dimostrare che $V_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ è stabile secondo Lyapunov.

Soluzione Definiamo dapprima la quantità $y = \frac{dx}{dt}$ in modo da rendere il sistema un SD in \mathbb{R}^2 del primo ordine a tempo continuo.

Utilizziamo il teorema di Lyapunov con il seguente funzionale:

$$V(x,y): \mathbb{R}^2 \to \mathbb{R}^2; \qquad V(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2.$$
 (2.10.5)

Tale quantità rispetta le ipotesi del teorema, la derivata orbitale infatti vale:

$$\frac{\mathrm{d}}{\mathrm{d}t}V(\boldsymbol{x}) = \nabla V \cdot \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = (x,y) \cdot (y, -\epsilon x^2 y - x) = -\epsilon x^2 y^2. \tag{2.10.6}$$

Si vede immediatamente che per $\epsilon>0$ il sistema è stabile secondo Lyapunov, viceversa tale stato stazionario è instabile.

Esercizio 2.10.3: (Sul teorema di Krasovskii)

Prendiamo le equazioni di Lorenz:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 6(y - x) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = rx - y - xz \\ \frac{\mathrm{d}z}{\mathrm{d}t} = xy - bz \end{cases}$$
 (2.10.7)

Con i parametri: $\sigma>0, r>0, b>0$ (I parametri utilizzati da Lorenz per mostrare il caos deterministico sono $\sigma=10, r=28, b=\frac{8}{3}$).

- 1. Trovare gli stati stazionari (ce ne sono 3).
- 2. Determinare le proprietà di stabilità di questi stati stazionari. Trovare gli stati stazionari (ce ne sono 3).
- 3. Determinare le proprietà di stabilità di $\boldsymbol{V}_{s_1} = \boldsymbol{0}$ al variare di r.
- 4. Mostrare che per r=1 \boldsymbol{V}_{s_1} è non iperbolico.
- 5. Utilizzando la seguente funzione di Lyapunov:

$$V(x,y,z) = \frac{1}{2} \left(\frac{x^2}{\delta} + y^2 + z^2 \right). \tag{2.10.8}$$

Mostrare che \boldsymbol{V}_{s_1} è stabile secondo Lyapunov.

Esercizio 2.10.4: ()

Dato il SD a tempo continuo:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -x_2^3\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_1^3 \end{cases}$$
(2.10.9)

- 1. Determinare gli stati stazionari.
- 2. Determinare le proprietà di stabilità degli stati stazionari.
- 3. Dimostrare, utilizzando il teorema di Lyapunov che l'origine è stabile secondo Lyapunov.
- 4. Determinare la superficie dove giacciono tutte le orbite del sistema dinamico.