PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

I3 MAT1203 - Algebra Lineal Noviembre 7, 2013

1. a) [3 pts.] Use la Regla de Cramer para determinar los valores de a, b para los cuales el sistema de ecuaciones

$$ax + y + z = 2$$

$$bx + y - z = 0$$

$$2x + y = 0$$

tiene una solución única con x = 1, z = 2

- b) [3 pts.] Sean \mathcal{B} y \mathcal{C} bases de un espacio vectorial V y $P = \begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix}$ la matriz de cambio de coordenadas tal que $[v]_{\mathcal{C}} = P[v]_{\mathcal{B}}$ para $v \in V$.
 - i) Demuestre que el conjunto $W=\{\ v\in V:\ [v]_{\mathcal{C}}=2[v]_{\mathcal{B}}\ \}$ es un subespacio de V.
 - ii) Si $\mathcal{B} = \{v_1, v_2\}$ determine una base para W en términos de la base \mathcal{B} .

Solución:

a) La regla de Cramer aplica para sistemas que tienen una matriz de coeficientes invertible. Puesto que se pide que la solución sea única se puede aplicar Cramer y no es necesario analizar la posibilidad de existencia de soluciones con $x_1 = 1$, $x_3 = 3$, pero con A no invertible.

Puesto que |A| = a + b - 4 [**0.6 pts.**], aplicando Cramer obtenemos

$$x_{3} = \frac{\begin{vmatrix} a & 1 & 2 \\ b & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix}}{\begin{vmatrix} a & 1 & 1 \\ b & 1 & -1 \\ 2 & 1 & 0 \end{vmatrix}} [\mathbf{0,6pts.}] = \frac{2b-4}{a+b-4} = 2 [\mathbf{0,4pts.}]$$

Resolviendo el sistema para las incógnitas a,b se obtiene $a=2,\,b=4$ [${\bf 0.4}$ ${\bf pts.}$] .

- b) 1
bi) $W=\{\ v\in V:\ [v]_{\mathcal C}=2[v]_{\mathcal B}\ \}.$ Para demostrar que W es subespacio debemos demostrar que
 - $(*) \ \vec{0}_V \in W,$
 - (**) $u, v \in W, \alpha, \beta \in \mathbb{R}$ implica $\alpha u + \beta v \in W$.

Puesto que $[\vec{0}_V]_{\mathcal{C}} = \vec{0}$ y $2[\vec{0}_V]_{\mathcal{B}} = 2\vec{0} = \vec{0}$, tenemos que $[\vec{0}_V]_{\mathcal{C}} = 2[\vec{0}_V]_{\mathcal{B}} = \vec{0}$, y por lo tanto $\vec{0}_V \in W$. [**0.5 pts.**]

Para demostrar (**) usamos que $[\alpha u + \beta v] = \alpha[u] + \beta[v]$.

Sean $u, v \in W$ entonces $[v]_{\mathcal{C}} = 2[v]_{\mathcal{B}}$ y $[u]_{\mathcal{C}} = 2[u]_{\mathcal{B}}$. Por lo tanto $[\alpha u + \beta v]_{\mathcal{C}} = \alpha[u]_{\mathcal{C}} + \beta[u]_{\mathcal{C}} = \alpha(2[u]_{\mathcal{B}}) + \beta(2[u]_{\mathcal{C}})2(\alpha[u]_{\mathcal{B}} + \beta[v]_{\mathcal{C}}) = 2([\alpha u + \beta v]_{\mathcal{B}})$ y por lo tanto $\alpha u + \beta v \in W$. [**1.0 pts.**]

Por (*) y (**) W es subespacio

1bii) Debemos encontrar un conjunto li que genera a W. Sea $v = x_1v_1 + x_2v_2 \in W$ y $x = [x_1, x_2]^T = [v]$. Entonces $[v]_{\mathcal{C}} = 2[v]_{\mathcal{B}}$ implica 2x = Px y por lo tanto (P-2I)x = 0 [**0.5 pts.**] . Resolviendo el sistema se obtiene $2x_1 = x_2$ [**0.3 pts.**] y por lo tanto $v = 2x_1v_1 + x_2v_2 = x_2(2v_1 + v_2)$. Entonces $W = \langle 2v_1 + v_2 \rangle$. Como $2v_1 + v_2 \neq \vec{0}$, pues sus vector coordenadas es un vector distinto de cero, obtenemos que una base de W es $\mathcal{B}_W = \{2v_1 + v_2\}$ [**0.7 pts.**]

- 2. Sea $T: \mathbb{P}_2 \longrightarrow \mathbb{P}_2$ una transformación lineal y $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ la matriz que representa a T con respecto a la base $\mathcal{B} = \{1, x+1, x^2+1\}$ de \mathbb{P}_2 .
 - a) [3 pts.] Determine el polinomonio $T(1+x-x^2)$ y decida justificadamente si T es 1-1 y/o sobre.
 - b) [3 pts.] Determine la matriz que representa a T con respecto a la base canónica $C = \{1, x, x^2\}$ de \mathbb{P}_2 (en dominio y recorrido).

Solución:

a)

$$1 + x - x^2 = \alpha \cdot 1 + \beta \cdot (1 + x) + \gamma \cdot (x^2 + 1)$$
$$= (\alpha + \beta + \gamma + \beta x + \gamma x^2)$$

implica

$$\alpha + \beta + \gamma = 1$$
$$\beta = 1$$
$$\gamma = -1$$

Por lo tanto $\alpha=1,\beta=1,\gamma=-1.$ Entonces el vector coordenado de $1+x-x^2$ con respecto a la base $\mathcal{B}=\{1,x+1,x^2+1\}$ es

$$[1+x-x^2]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$
 [0,5pts.]

Por lo tanto

$$[T(1+x-x^2)]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} [\mathbf{1},\mathbf{0pts}.]$$

Finalmente,

$$T(1+x-x^2) = 0 \cdot 1 + (1) \cdot (x+1) + (-1) \cdot (x^2+1) = x-x^2$$
 [0.5pts.]

T es 1-1 y/o sobre sii A es 1-1 y/o sobre. Puesto que det(A)=1, A tiene inversa y entonces es 1-1 y sobre y por lo tanto T es 1-1 y sobre [${\bf 1.0 \ pts.}$] .

b) Usando la notación del texto Lay, sea

$$C = \{1, x, x^2\}, \quad \mathcal{B} = \{1, x+1, x^2+1\}$$

entonces la matriz de cambio de coordenadas de $\mathcal B$ a $\mathcal C$ es

$$P = P_{\mathcal{C} \leftarrow \mathcal{B}} = [[1]_{\mathcal{C}} [x+1]_{\mathcal{C}} [x^2+1]_{\mathcal{C}}] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad [\mathbf{1pts}.]$$

La matriz que presenta a T con respecto $\mathcal C$ es $B=PAP^{-1}$ [$\mathbf 1.0$ $\mathbf pts.$] Puesto que

$$P^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad [\mathbf{0.5pts.}]$$

tenemos

$$B = PAP^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 2 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix} [\mathbf{0.5pts.}]$$

Otro método alternativo consiste en decir que $B = [[T(1)] [T(x+1)] T(x^2+1)]$ y calcular los vectores coordenados. Asignar [1.5 pts.] por el método correcto y [0.5 pts.] por cada columna correcta.

- 3. a) [**3 pts.**] Diagonalice $A = \begin{bmatrix} -1 & -2 & 2 \\ 0 & -1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ y diagonalice $B = A^{10} + A I$
 - b) [3 pts.] Sean A, B matrices invertibles de $n \times n$. Demuestre que AB y BA tienen los mismos valores propios y que si AB es diagonalizable entonces BA es también diagonalizable

Solución:

a)

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & -2 & 2 \\ 0 & -1 - \lambda & 0 \\ 0 & -2 & 1 - \lambda \end{vmatrix} = (\lambda + 1)^{2} (1 - \lambda) = 0$$

Entonces los valores propios de A son $\lambda=1$ con multiplicidad algebraica 1, $\lambda=-1$ con multiplicada algebraica 2 [**0.3 pts.**] .

Para
$$\lambda = 1$$
 tenemos $Ker(A-I) = \langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \rangle$ [**0.5 pts.**] y para $\lambda = -1$ tenemos

$$Ker(A+I) = \langle \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \rangle$$
 [**0.5 pts.**] . Entonces las multiplicidades

algebraicas de los valores propios son iguales a las multiplicidades geométricas y A es diagonalizable, con

$$A = PDP^{-1} \quad P = \begin{bmatrix} 1 & 11 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} [\mathbf{0.7pts.}]$$

Ahora, $A^{10} + A - I = P(D^{10} + D - I)P^{-1} = PD_2P^{-1}$ donde $D_2 = D^10 + D - I = D$, por lo tanto $A^{10} + A - I$ se diagonaliza con P y D.

b)

$$|AB - \lambda I| = |AB - \lambda AA^{-1}| = |A(B - \lambda A^{-1})| = |A| |B - \lambda A^{-1}| = |(B - \lambda A^{-1})A| = |BA - \lambda I| [\mathbf{1}, \mathbf{5pts}.]$$

Entonces los polinomios característicos de AB y BA son iguales y por lo tanto AB y BA tienen los mismos valores propios [0.5 pts.].

Si AB es diagonalizable entonces $AB = PDP^{-1}$ y por lo tanto $B = A^{-1}PDP^{-1}$ y $BA = A^{-1}PDP^{-1}A = QDQ^{-1}$, donde $Q = A^{-1}P$. Por lo tanto AB diagonalizable y A invertible implican que BA es diagnalizable. [**1.0 pts.**]

Otra posible solución es la siguiente: si E = AB y F = BA entonces $A^{-1}EA = A^{-1}ABA = BA = F$. Entonces AB y BA son similares y por lo tanto tienen los mismos valores propios y E = AB es diagonalizable sii F = BA es diagonalizable [3 pts.].

- 4. Determine si la afirmación es VERDADERA o FALSA y justifique su respuesta.
 - a) [1.5 pts.] Si A es de 3×3 con dim(Ker(A)) = 2 y $\lambda = 1$ es valor propio de A entonces A es diagonalizable.
 - b) [1.5 pts.] Si A de 2×2 es invertible entonces $Adj(A^2) = (Adj(A))^2$
 - c) [$\mathbf{1.5}$ $\mathbf{pts.}$] Si A y B son similares y v es vector propio de A entonces v es también vector propio de B.
 - d) [1.5 pts.] El espacio fila de AB es subespacio del espacio fila de B.
 - a) Es verdadera.

dim(Ker(A)) = 2 implica que $\lambda = 0$ es valor propio con multiplicidad geométrica 2 [**0.7 pts.**] y por enunciado $\lambda = 1$ es un valor propio con multiplicidad geométrica ≥ 1 [**0.3 pts.**] . Como A es de 3×3 y A tiene 3 vectores propios li, dos asociados a $\lambda = 0$ y uno asociado a $\lambda = 1$, tenemos que A es diagonalizable [**0.5 pts.**]

b) Es verdadera.

$$A^{-1} = \frac{A}{|A|} \Rightarrow Adj(A) = |A|A^{-1}[\mathbf{0.5pts.}]$$

Por lo tanto

$$Adj(A^2) = |A^2|(A^{-1})^2 = (|A|A^{-1}) \ (|A|A^{-1}) = Adj(A) \ Adj(A) = (Adj(A))^2 [\mathbf{1}, \mathbf{0pts}.]$$

- c) Es Falso. Un contraejemplo basta [$\mathbf{1.5}$ $\mathbf{pts.}$] . También se puede argumentar que si A y B son similares entonces $B = P^{-1}AP$ y $Ax = \lambda x$ es equivalente a $Bv = \lambda v$, donde $v = P^{-1}x$. Entonces los vectores propios de B no son vectores propios de A a menos ue P = I [$\mathbf{1.5}$ $\mathbf{pts.}$]
- d) Verdadero.

$$C = AB \Rightarrow C^T = B^T A^T \Rightarrow Im(C^T) \subset Im(B^T),$$

de donde, $Fila(C) \subset Fila(B)$. [1.5 pts.]