# Representations of Hecke Algebras and Markov Dualities for Interacting Particle Systems

Oleg Zaboronski and Roger Tribe

University of Warwick
o.v.zaboronski@warwick.ac.uk, r.p.tribe@warwick.ac.uk

Probability and Algebra: New Expressions in Mathematics 10-14.07.2023



# Lecture 1

## Set-up: continuous time Markov processes

- ► Configuration space:  $\Omega := \{0, 1\}^{\mathbb{Z}}$
- ► Configuration vector:  $\eta \in \Omega$ ;  $\eta_i = 1$  indicates a particle at  $i \in \mathbb{Z}$ ;  $\eta_i = 0$  indicates a hole at  $i \in \mathbb{Z}$
- The space of test functions:  $T(\Omega)$  functions depending on finitely many components of  $\eta$  (cylinder functions)
- ► The Markov process  $(\eta_t)_{t\geq 0}$  is characterised by its infinitesimal generator L
- ▶ Defining property of *L*: for any  $f \in T(\Omega)$

$$\frac{d}{dt}\mathbb{E}_{\eta_0}\left[f(\eta_t)\right] = \mathbb{E}_{\eta_0}\left[Lf(\eta_t)\right]$$

## The generator and transition rates. Examples

- ▶ Let  $R(\eta \to \eta')$  be the transition rate from  $\eta \in \Omega$  to  $\eta' \in \Omega$
- ▶ Claim.  $Lf(\eta) = \sum_{\eta' \in \Omega} R(\eta \to \eta') [f(\eta') f(\eta)]$
- Asymmetric RW on Z:

$$Lf(x) = r(f(x+1) + \ell f(x-1) - f(x)) := \Delta^{(\ell,r)} f(x)$$

► Annihilating random walks on Z ([ARW]):

$$Lf(\eta) = \sum_{\mathbf{x} \in \mathbb{Z}} \left[ rf(\ldots, \eta_{\mathbf{x}-1}, 0, \eta_{\mathbf{x}} \oplus \eta_{\mathbf{x}+1}, \eta_{\mathbf{x}+2}, \ldots) \right]$$

$$+\ell f(\ldots,\eta_{x-2},\eta_x\oplus\eta_{x-1},0,\eta_{x+1},\ldots)-f(\eta)$$

# Markov duality

- Set up:  $(X_t)_{t\geq 0}$ ,  $(Y_t)_{t\geq 0}$  Markov processes on  $\Omega^X$ ,  $\Omega^Y$  with infinitesimal generators  $L^X$ ,  $L^Y$ ;  $H: \Omega^X \times \Omega^Y \to \mathbb{R}$  bounded measurable function
- ▶ Definition: X, Y are called Markov dual w. r. t. H if  $\forall (x,y) \in \Omega^X \times \Omega^Y$ ,  $\forall t > 0$ ,

$$\mathbb{E}_{x}^{X}\left[H(X_{t},y)\right]=\mathbb{E}_{y}^{Y}\left[H(x,Y_{t})\right]$$

- Infinitesimal form:  $L^X H(x, y) = L^Y H(x, y)$
- ▶ Claim.  $\frac{d}{dt}\mathbb{E}_{x}^{X}\left[H(X_{t},y)\right] = L^{Y}\mathbb{E}_{x}^{X}\left[H(X_{t},y)\right]$

# Matrix representation for the generator

- ▶ Relevant generators:  $L = \sum_{n \in \mathbb{Z}} q_x$ , where  $q_x$  acts non-trivially on  $(\eta_x, \eta_{x+1})$  only
- ►  $T := \bigotimes_{n \in \mathbb{Z}} V_n$  infinite tensor product,  $v_n = (1, 1)^T := v$  for almost all n's
- $T \cong T(\Omega): \prod_{x=m}^n \mathbb{1}_{\alpha_x} \leftrightarrow \dots \lor \otimes \left( \otimes_{x=m}^n e_x^{(\alpha_x)} \right) \otimes \lor \dots$
- ▶  $L \leftrightarrow \sum_{n \in \mathbb{Z}} \hat{q}_n$ ,  $\hat{q}_n \in \text{End}(V_n \otimes V_{n+1})$  (hats will be dropped)
- Standard basis:  $(e^{(1)} \otimes e^{(1)}, e^{(1)} \otimes e^{(0)}, e^{(0)} \otimes e^{(1)}, e^{(0)} \otimes e^{(0)})$

# (Type-A) Hecke algebras

- ▶ Let  $q \in (0,1]$ ,  $Q = (q + q^{-1})^{-2}$
- ▶  $\mathbb{H}_n(q)$  a unital associative algebra over  $\mathbb{R}$  generated by  $(s_i)_{i=1}^{n-1}$  subject to

$$\begin{cases} s_i s_j = s_j s_i & |i - j| \ge 2 \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} & 1 \le i \le n-2 \\ s_i^2 = 1 + (q - q^{-1}) s_i & 1 \le i \le n-1 \end{cases}$$

- ▶ Stochastic generators:  $\sigma_i = \frac{q s_i}{q + q^{-1}}$ ,  $1 \le i \le n 1$
- ▶ Markov generators:  $q_i = \sigma_i 1$ ,  $1 \le i \le n 1$
- $\qquad \qquad q_i^2 = -q_i, \, q_i q_{i+1} q_i Q q_i = q_{i+1} q_i q_{i+1} Q q_{i+1}$
- $\blacktriangleright \ \mathbb{H}_{\infty}(q) := \varinjlim \mathbb{H}_n(q) \ (= \amalg_{n \in \mathbb{N}} \mathbb{H}_n(q) / \sim)$



# Lecture 2

### The model

- ► The rates:  $(\eta_1, \eta_2) \stackrel{r}{\rightarrow} (0, \eta_1 \oplus \eta_2), (\eta_1, \eta_2) \stackrel{\ell}{\rightarrow} (\eta_1 \oplus \eta_2, 0)$
- ▶ Timescale:  $\ell + r = 1$
- ▶  $L = \sum_{n \in \mathbb{Z}} q_n = \sum_{n \in \mathbb{Z}} (\sigma_n + I), \, \sigma, q \in \text{End}(V \otimes V)$ :

$$q = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -r & r & 0 \\ 0 & \ell & -\ell & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \sigma = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & \ell & r & 0 \\ 0 & \ell & r & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- ▶  $\partial_t \mathbb{E}[\eta_t(0)] = -2\mathbb{E}[\eta_t(0)\eta_t(1)], \ \partial_t \mathbb{E}[\eta_t(0)\eta_t(1)] = 3$  point function, . . . (*T*-invariant BBGKY chain)
- ▶ Issue:  $\mathbb{E}[\eta_t(0)\eta_t(1)] \not\approx \mathbb{E}[\eta_t(0)^2]$  (Otherwise, BBGKY  $\implies \mathbb{E}[\eta_t] \sim C/t, \ t \to \infty$  whereas the true answer is  $\mathbb{E}[\eta_t] \sim C/\sqrt{t}, \ t \to \infty$ )



# Representation of $\sigma$ in $V \otimes V$

$$\sigma = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & \ell & r & 0 \\ 0 & \ell & r & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{rank}(\sigma) = 2, \sigma^2 = \sigma(\text{ check!}), \sum_{j=1}^4 \sigma_{ij} = 1$$

- $\triangleright$   $v := (1,1)^T \leftrightarrow 1$  ('vacuum vector'),  $w := (-1,1)^T \leftrightarrow (-1)^\eta$
- $ightharpoonup \sigma v \otimes v = v$ , ( $\Leftarrow$ stochasticity);  $\sigma w \otimes w = w$  (check!)
- Exercise:

$$\begin{cases}
\sigma \mathbf{v} \otimes \mathbf{w} = \ell \mathbf{v} \otimes \mathbf{v} + r\mathbf{w} \otimes \mathbf{w} \\
\sigma \mathbf{w} \otimes \mathbf{v} = \ell \mathbf{w} \otimes \mathbf{w} + r\mathbf{v} \otimes \mathbf{v}
\end{cases}$$

Conclusion: the action of q, σ preserves the order of v, w in the tensor product



# Representation of $\mathbb{A}$ in T

$$\begin{cases}
\sigma \mathbf{v} \otimes \mathbf{w} = \ell \mathbf{v} \otimes \mathbf{v} + r\mathbf{w} \otimes \mathbf{w} \\
\sigma \mathbf{w} \otimes \mathbf{v} = \ell \mathbf{w} \otimes \mathbf{w} + r\mathbf{v} \otimes \mathbf{v}
\end{cases}$$

- ▶ A acts in  $T_1 := \operatorname{span}_{\mathbb{R}}(f_x, x \in \mathbb{Z}); q_y f_x = \mathbb{1}_x(y) \Delta^{(r,l)} f_x$
- $f_{x_1,x_2,...,x_{2n}}^{(2n)} = ... (\otimes_{x_1+1 \leq j_1 \leq x_2} w_{j_1}) .. (\otimes_{x_{2n-1}+1 \leq j_n \leq x_{2n}} w_{j_n}) ... \in T$
- ►  $T_n := \operatorname{span}_{\mathbb{R}}(f_{x_1,...,x_{2n}}^{2n}, n \in \mathbb{N}_0, x_1 \leq x_2 \leq ... x_{2n})$
- ▶ Claim.  $\mathbb{A}T_{2n} \subset T_{2n}$ ,  $n \in \mathbb{N}$  (Lower- $\Delta$  representations)
- Exercise:  $\sigma_3 f_{34}^{(2)} = \ell f^{(0)} + r f_{24}^{(2)}$

# Markov duality

Claim.

$$\begin{cases} Lf_{x_1,\dots,x_{2n}}^{(2n)} = \sum_{k=1}^{2n} \Delta_k^{(r,l)} f_{x_1,\dots,x_{2n}}^{(2n)}, \ x_1 < x_2 < \dots < x_n, \ n \in \mathbb{N} \\ f_{x_1,\dots,x_i=x_{i+1},\dots,x_{2n}}^{(2n)} = f_{x_1,\dots,x_{i-1},x_{i+2},\dots,x_{2n}}^{(2n-2)}, \ 1 \le i \le 2n-1 \end{cases}$$

- ▶ Conclusion: For each  $n \in \mathbb{N}$ , [ARW] is  $f^{(2n)}$ -dual to ARW with at most 2n particles with right hopping rate  $\ell$  and left hopping rate r
- $w \leftrightarrow (-1)^{\eta} \implies f_{x_1,...,x_{2n}}^{(2n)} \leftrightarrow \prod_{k=1}^n (-1)^{\sum_{j_k=x_{2k-1}+1}^{x_{2k}} \eta(j_k)}$
- ▶ Define  $\Phi_t^{(2n)}(x_1, \dots, x_{2n}) := \mathbb{E}[f_{x_1, \dots, x_{2n}}^{(2n)}(\eta_t)]$



## From dualities to Pfaffians

$$\begin{cases} \left(\partial_t - \sum_{k=1}^{2n} \Delta_k^{(r,l)}\right) \Phi_t^{(2n)}(x_1, \dots, x_{2n}) = 0, t > 0, x_1 < \dots < x_{2n}, n \in \mathbb{N} \\ \Phi_t^{(2n)}(\dots x_i = x_{i+1} \dots) = \Phi_t^{(2n-2)}(\dots \hat{x}_{i-1}, \hat{x}_{i+2} \dots), \ 1 \le i \le 2n-1 \\ \Phi_0^{(2n)} = \text{det. initial condition} \end{cases}$$

(A non-trivial) exercise: The above system has a unique solution

$$\Phi_t^{(2n)}(x_1, \dots, x_{2n}) = \text{pfaff}[\Phi_t^{(2n)}(x_i, x_j), 1 \le i < j \le 2n],$$
  
 $t \ge 0, x_1 \le x_2 \le \dots \le x_{2n}, n \in \mathbb{N}.$  (F-Wick's theorem)

- ► Conclusion:  $\eta_t$  is a Pfaffian PP for any fixed t > 0 and all deterministic IC's
- Benefits:  $\rho_t^{(n)}(x) \sim C_n |\Delta(x)| t^{-n/2-n(n-1)/4}$ ; persistence exponent (1/4); the distribution of the rightmost particle (Rider-Sinclair's distribution)

## **Duality and Hecke relations**

- Basic ingredients of the solution:
  - 1.  $\exists (v, w)$  basis of  $V: \sigma v \otimes v = v \otimes v, \sigma w \otimes w = w \otimes w$
  - 2.  $\sigma$ -action preserves the order of v and w in T
- ▶ Check:  $q_i q_{i+1} q_i Q q_i = q_{i+1} q_i q_{i+1} Q q_{i+1}, i \in \mathbb{Z}, Q = r\ell$
- ▶ Conclusion:  $\mathbb{A}$  is a quotient of  $\mathbb{H}_{\infty}$
- ▶ **Theorem.** Let  $(\sigma_n)_{n\in\mathbb{Z}}$  be stochastic generators of  $\mathbb{H}_{\infty}$ : rank $(\sigma I) = 2$  and the above condition 1. is satisfied. Then EITHER

$$\left\{ \begin{array}{l} \sigma v \otimes w = 0 w \otimes v + \dots \\ \sigma w \otimes v = 0 v \otimes w \dots \end{array} \right. \text{OR} \left\{ \begin{array}{l} \sigma v \otimes w = \alpha w \otimes v + \beta v \otimes w \\ \sigma w \otimes v = \gamma v \otimes w + \delta w \otimes v \end{array} \right.$$

The second possiiblity corresponds to duality functions of product moment type ([SEP], voter models, etc.)



# Lecture 3

## The classification theorem

- ▶  $\rho \in \text{End}(V \otimes V)$ :  $\rho(a \otimes b) := b \otimes a$  (reflection)
- $\qquad \qquad \tau \in \mathsf{End}(V \otimes V) \colon \tau(e^{(\alpha)} \otimes e^{\beta}) := e^{(1-\alpha)} \otimes e^{(1-\beta)} \ (0 \leftrightarrow 1)$
- Consider a continuous time Markov process on  $\Omega = \{0,1\}^{\mathbb{Z}}$ , characterised by the generator

$$L = \sum_{n \in \mathbb{Z}} (\sigma_n - I), \ \sigma_n \in \text{End}(V_n \otimes V_{n+1}), \sigma_n^2 = \sigma_n, \ n \in \mathbb{Z}$$

Assume the reflective symmetry of the chain,

$$\rho_n \circ \sigma_n = \sigma_n \circ \rho_n, n \in \mathbb{Z}. \tag{1}$$

Up to the particle-hole conjugation  $(\sigma \to \tau \sigma \tau)$  there are **nine** such Markov processes with generator *L* s. t.  $\sigma \neq I$ .



## "The nine-fold way"

#### Hecke class

- 1.1 Symmetric exclusion process [SEP]
- 1.2 Biased voter model [BVM] $_{\theta}$
- 1.3 Symmetric anti-voter model [SAVM]
- 1.4 Annihilating coalescing random walk [ACSRW] $_{\theta}$
- 1.5 Colaescing symmetric random walk with branching  $[CSRWB]_{\theta}$
- 1.6 Annihilating random walk with pairwise immigration  $[\mathsf{ASRWPI}]_{\theta}$

#### Exceptional models

- 2.1 Stationary annihilation coalescence model [SCAM] $_{\theta}$
- 2.2 Dimer model  $[DM]_{\theta}$
- 2.3 Reshuffle model [RM] $_{\theta_1,\theta_2,\theta_3}$

**Lemma.** For each model of Hecke class, the two-site generators obey the braid relation  $\sigma_i \sigma_{i+1} \sigma_i - Q \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} - Q \sigma_{i+1}$ , where Q can depend on the parameter  $\theta$  of the model

# Steps of the proof of the classification theorem.

## Lemma (1)

Let  $\sigma \in End(V \otimes V)$  be a stochastic matrix:  $\sigma^2 = \sigma$ ,  $\rho \circ \sigma = \sigma \circ \rho$ . Then either (i) there is  $w \in V$ , linearly independent of  $v : \sigma w \otimes w = w \otimes w$  or (ii)  $\sigma$  corresponds to [SAVM],  $[BVM]_{\theta=1/2}$  or [RM]

## Lemma (2)

Let  $\sigma \in End(V \otimes V)$  be a stochastic idempotent matrix s. t.  $\rho \sigma = \sigma \rho.$  Assume  $\exists w \in V$  lin. indep. of v s. t.  $\sigma w \otimes w = w \otimes w.$  Then, after possibly a particle hole conjugation there are seven non-trivial matrices  $\sigma \neq I$  corresponding to [SEP], [BVM] $_{\theta \neq 1/2}$ , [ACSRW], [CSRWB], [ASRWPI], [SCAM], [DM]

## Probabilistic discussion

- BVM and [SAVM] models are equivalent to ARW's via the domain-walls map
- ACSRW , [CSRWB] and [ASRWPI] are Pfaffian point processes for any deterministic initial condition. Their analysis is identicall using the corresp. (v, w) system
  - SCAM is solvable via dualites. If  $\eta_0 \equiv 1$ ,  $\eta_t$  is a renewal process with explicit kernel for any t>0
    - RM is exactly solvable for any one-dependent  $\eta_0$ .  $\eta_t$  is a determinantal point process for any t > 0.
    - DM is equivalent to an inhomogeneous [SEP]

## Algebraic discussion

Consider [ARW] on  $\mathbb{Z}_N$  with  $L_N = \sum_{k=1}^{N-1} q_k$ . Then  $\mathbb{A}_N := <1, \sigma_i, 1 \leq i \leq N-1 > \text{has irreps of dimensions}$   $\binom{N-1}{k}^{(2)}, 0 \leq k \leq N-1$ . The spaces of these irreps are

 $\frac{\operatorname{span}_{\mathbb{R}}(\operatorname{Duality functions with at most } k \operatorname{ jumps})}{\operatorname{span}_{\mathbb{R}}(\operatorname{Duality functions with at most}(k-1)\operatorname{ jumps})}$ 

- ▶ Interpreting duality functions as intertwiners, can construct the following coordinate representations of  $\mathbb{H}$ : for  $Q = r\ell$ ,
  - 1.  $(\mathbb{1}_x \Delta^{(r,\ell)})_{x \in \mathbb{Z}}$  is a representation of Temperley-Lieb algebra in  $L_2(\mathbb{Z})$  with param. Q
  - 2.  $(\sum_{k=1}^n \mathbb{1}_x^{(k)} \Delta^{(r,\ell)})_{x \in \mathbb{Z}}$  is a representation of  $\mathbb{H}_{\infty}(Q)$  in  $L_2(W^n)$ ;  $\mathbb{1}_x^{(k)}(y) = \mathbb{1}_x(y_k)$

# Baxterisation: [CSRWB]

## Theorem (V. Jones, 1990)

If  $(s_n)_{n=1}^M$  are canonical generators of  $\mathbb{H}_{M+1}(q)$ , then  $R_n(x) := s_n - x s_n^{-1}$ ,  $1 \le n \le M$ ,  $x \in \mathbb{C}$ , solves the YBE,

$$R_{n-1}(x)R_n(xy)R_n(y) = R_{n-1}(y)R_n(xy)R_{n-1}(x)$$

#### Example.

$$R(x) = \begin{pmatrix} q^{-1} + x(q - 2q^{-1}) & -(1 - x)q^{-1} & -(1 - x)q^{-1} & 0 \\ -(1 - x)(q - q^{-1}) & q - q^{-1} & -(1 - x)q^{-1} & 0 \\ -(1 - x)(q - q^{-1}) & -(1 - x)q^{-1} & q - q^{-1} & 0 \\ 0 & 0 & -q^{-1} + qx \end{pmatrix},$$

where 
$$x \in C$$
,  $Q = \theta(1 - \theta)$ ,  $q + q^{-1} = \frac{1}{\sqrt{Q}}$