

# **DYNASTY:**

DYNAMICS-AWARE THEORY OF DEEP LEARNING

#### Umut Şimşekli

Host institution: INRIA

ERC Starting Grant Interviews
October 8th, 2021

### PRINCIPAL INVESTIGATOR: UMUT SIMSEKLI

#### **Carrier Path:**

■ 2020 - Present: Research Faculty INRIA - Ecole Normale Supérieure, France

■ 2019 – 2020: Visiting Faculty Member University of Oxford, UK

■ 2016 - 2020: Associate Professor Telecom ParisTech, France

■ 2010 – 2015: PhD. in Computer Engineering Bogaziçi University, Turkey

#### **Updates: 8 new papers** (since the proposal submission)

#### • ICML 2021:

3 new papers (1 long oral presentation) – 2 preliminary studies to this project

#### NeurlPS 2021:

5 new papers (1 spotlight presentation) – 4 preliminary studies to this project

### **CONTEXT: DEEP LEARNING**

Machine Learning: transformed many domains: industrial & academic

Raw data 
$$\rightarrow$$
 ML algorithm  $\rightarrow$  "Knowledge"  $f(x,y)$   $f(w,x) \approx y$   $f(w^*,\cdot)$  (Image, Label) (f: linear, w: parameter) " $\approx$ "  $\rightarrow$  optimization

Last decade has witnessed a big increase in:

(Number of Data Points + Computation Power)

**More and More Complicated Models** 

lacktriangle Deep Learning (Neural Networks): very complicated  $f(oldsymbol{w},x)pprox y$ 

Optimization Problem 
$$\min_{w \in \mathbb{R}^d} \left\{ L(w) \triangleq \frac{1}{n} \sum_{i=1}^n \ell \big( f(w, x_i), y_i \big) \right\}$$
 cost function



Optimization Algorithm (Training)

$$w_{k+1} = w_k - \eta \nabla \tilde{L}_k(w_k)$$
 step-size stochastic (learning rate) gradient

### **MOTIVATION**

Deep Learning Theory -> Understand the "Error on Unseen Test Data"



State of the art upper bounds on "test error":

#### **Shortcoming 1**

Becomes vacuous with increasing number of parameters

(Neyshabur et al., NeurIPS 2017)

#### **Shortcoming 2**

Cannot capture the **interaction** between

- data
- model architecture
- optimization algorithm
- algorithm hyperparameters

(Zhang et al., NeurIPS 2020; Zhou et al., NeurIPS 2020)



Large Gap Between Theory and Practice



#### **Current Deep Learning Systems:**

Poorly understood / black box

#### **Designing New Methods:**

- Trial&Error, ad-hoc, heuristic
- Time/energy consuming

#### DYNASTY — GOALS & VISION

- **Ultimate Goals** 
  - ★ Mathematically sound & practically relevant DL theory
  - ★ Software library/practical tools for DL practitioners
- New Perspective: "Dynamical Systems Theory" (Pesin, 2008)

Iterative Optimization -> Training Trajectories -> Stochastic Dynamical System

- Choice of the optimization algorithm
- Algorithm **hyperparameters**
- Training data
- Model architecture
- Four Main Challenges



## CHALLENGE 1: COMPLEXITY METRICS

• Which mathematical properties of the dynamics ⇒ Performance ? Hypothesis:

The performance is linked to the "complexity" of the dynamics

e.g., Fractal Dimension

(Falconer, 2014)



- Expected Result: novel notions of complexity → error bounds
   → reflects practice
- Preliminary Studies: [NeurlPS2020], [NeurlPS2021a], [NeurlPS2021b], [arXiv:2108.00781]

### CHALLENGE 2: INTERACTION

#### The choices of

- Network architecture
- Training data
- Optimization algorithm
- Algorithm hyperparameters

Complexity of Dynamics Performance

Interact in a nontrivial way

#### **Hypothesis:**

Affect the performance through a common complexity metric

- Expected Result: rigorously link these elements to the complexity metrics
- Preliminary Studies: [ICML2021a], [ICML2021b], [NeurlPS2021a]

## CHALLENGE 3: NOVEL ALGORITHMS

■ Task 1: New optimization algorithms → exploit developed theory

Improve the performance  $\rightarrow$  explicitly incorporate the complexity metrics

Task 2: New compression algorithms
Hypothesis:

The complexity metrics will be precisely linked to **compressibility** 



- Expected Result: improved performance & reduced storage complexity
- Preliminary Studies: [ICML2020], [NeurlPS2021c]

## CHALLENGE 4: DISSEMINATION

Proactive dissemination strategy

Practical & Open-Source software libraries

Evaluation  $\rightarrow$  predictive performance and complexity

**Domains:** Computer Vision, Audio/Music/Natural Language Processing

- **Expected Result:** software library  $\rightarrow$  exploit **all previous outcomes**

→ automatic model selection will help liberate the trial/error design process

#### DYNASTY AT A GLANCE

Fluency in stochastic dynamical systems, non-convex optimization,
 high dimensional statistics, applications

My background lies at the intersection

- Scientific impact on disciplines using Deep Learning
- Industrial impact on e.g., automotive, marketing, entertainment
- Team & Resources:
  - PI, 3 PhD students, 2 postdocs, 1 engineer
  - Local support: learning theory/optimization/applications
  - Network of international academic (Oxford, Stanford, Berkeley) and industrial (Google, Facebook, Intel) collaborators

## **BUDGET**

■ Total requested grant: €1.5M

| <ul><li>Principal Investigator (70%)</li></ul> | €330K |
|------------------------------------------------|-------|
| — 3 PhD Students                               | €360K |
| <ul><li>2 Postdocs (2 years each)</li></ul>    | €230K |
| — 1 Research Engineer                          | €103K |

Travel (including invited researchers) €88K
 Scientific Meetings €50K
 Equipment €30K

# **WORK PACKAGES**

#### Overall organization

|                               | C1               | C2             | C3         | C4              |
|-------------------------------|------------------|----------------|------------|-----------------|
|                               | Complexity       | Quantification | Improved   | Deployment      |
|                               | & generalization | of interaction | algorithms | & dissemination |
| WP1 - Empirical investigation |                  |                |            |                 |
| WP2 - Error bounds            |                  |                |            |                 |
| WP3 - Algorithm development   |                  |                |            |                 |
| WP4 - Benchmarks              |                  |                |            |                 |

#### High-level roadmap



# ORGANIZATION

- Initial fast pace → emphasis on theory
- Followed by the methodological developments

|                                                               | Year 1                    | Year 2 | Year 3        | Yea                             | r 4            | Year 5      |
|---------------------------------------------------------------|---------------------------|--------|---------------|---------------------------------|----------------|-------------|
| PhD Student 1                                                 | Testre 1.1. 0.1. 0.0 M/D4 |        |               |                                 |                |             |
| Fractal Dim. 与 Heavy Tails 与 Kolmogorov Cpx. 与 Generalization | Tasks 1.1, 2.1, 2.2, WP4  |        |               |                                 |                |             |
| PhD Student 2                                                 | Tasks 1.2, 2.3, WP4       |        |               |                                 |                |             |
| Data, Algorithm, Parameters ≒ Heavy Tails ≒ Fractal Dim       |                           |        |               |                                 |                |             |
| PhD Student 3                                                 |                           |        |               | Task 3.2, WP4                   |                |             |
| Novel Optimization Algorithms                                 |                           |        |               |                                 |                |             |
| Postdoc 1                                                     | Tasks 2.1, 2.2, 3.3, WP4  |        |               |                                 |                |             |
| Shannon Compression 与 Heavy Tails 与 Generalization            |                           |        |               |                                 |                |             |
| Postdoc 2                                                     |                           |        | Task 2.4, WP4 |                                 |                |             |
| Optimization Bounds 与 Heavy Tails                             |                           | IdSK Z |               | . <del></del> , vvi <del></del> |                |             |
| Research Engineer                                             |                           |        |               |                                 | Tag            | sk 3.1, WP4 |
| Model Selection Algorithm, Open Source Dissemination          |                           |        |               |                                 | 185K J. 1, WF4 |             |

### REFERENCES

- K. Falconer. Fractal Geometry: "Mathematical Foundations and Applications". John Wiley & Sons, 2004.
- **B. Neyshabur**, S. Bhojanapalli, D. McAllester, and N. Srebro. "Exploring generalization in deep learning". In: Advances in Neural Information Processing Systems (NIPS). 2017
- Y. B. Pesin. "Dimension Theory in Dynamical Systems: Contemporary Views and Applications". University of Chicago Press, 2008.
- J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, S. Kumar, and S. Sra. "Why are Adaptive Methods Good for Attention Models?" In: Advances in Neural Information Processing Systems (NeurIPS). 2020.
- P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi, et al. "Towards Theoretically Understanding Why SGD Generalizes Better Than ADAM in Deep Learning". In: Advances in Neural Information Processing Systems (NeurIPS). (2020).

### PERSONAL REFERENCES

- [NeurlPS2021a] A. Camuto, G. Deligiannidis, M. A. Erdogdu, M. Gürbüzbalaban, U. Şimşekli & L. Zhu (2021). "Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms". In: Advances in Neural Information Processing Systems (NeurlPS). 2021.
- [NeurlPS2021b] H. Wang, M. Gürbüzbalaban, L. Zhu, U. Şimşekli, & M. A. Erdogdu (2021). "Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance". In: Advances in Neural Information Processing Systems (NeurlPS). 2021.
- [NeurlPS2021c] M. Barsbey, M. Sefidgaran, M. A. Erdogdu, G. Richard & U. Şimşekli (2021). "Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks". In: Advances in Neural Information Processing Systems (NeurlPS). 2021.
- [ICML2021a] M. Gurbuzbalaban, U. Simsekli, and L. Zhu. "The Heavy-Tail Phenomenon in SGD", In: International Conference on Machine Learning (ICML) (2021)
- [ICML2021b] A. Camuto, X. Wang, L. Zhu, C. Holmes, M. Gurbuzbalaban, and U. Simsekli. "Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections", In: International Conference on Machine Learning (ICML) (2021)
- [NeurlP\$2020] U. Simsekli, O. Sener, G. Deligiannidis, and M. A. Erdogdu. "Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks". In: Advances in Neural Information Processing Systems (NeurlP\$). 2020.
- [ICML2020] U. Simsekli, L. Zhu, Y. W. Teh, and M. Gurbuzbalaban. "Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise". In: International Conference on Machine Learning (ICML) (2020)
- [arXiv:2108.00781] L. Hodgkinson, U. Şimşekli, R. Khanna, & M. W. Mahoney. (2021). "Generalization Properties of Stochastic Optimizers via Trajectory Analysis". arXiv preprint.