

Self-Dual Cones in Euclidean Spaces

Dedicated to Olga Taussky Todd

George Philip Barker

James Foran Mathematics Department, University of Missouri-Kansas City Kansas City, Missouri

ABSTRACT

and

Self-dual convex cones arise, for example, in the study of copositive matrices and copositive quadratic forms. We begin by giving necessary and sufficient conditions for a cone to be the orthogonal transform of the positive orthant. Next we give a technique for constructing self-dual cones in E^n which produces for all $n \ge 3$ many self-dual cones and even polyhedral self-dual cones which are not similar to the nonnegative orthant. We examine the structure of self-dual cones in E^n which contain an n-1 dimensional self-dual cone. Finally we show that if K is a cone which is contained in its dual, then there is a self-dual cone containing K.

A cone K in Euclidean n-space is called self-dual provided each linear functional f is non-negative on K if and only if there exists $y \in K$ such that f(x) = (y,x), where (y,x) denotes the inner product. Self-dual cones arise in the study of copositive matrices and copositive quadratic forms (see [6]). In this paper we show that there are many such self-dual cones, provide a characterization of cones which are isometric to the non-negative orthant, and examine the structure of those self-dual cones in E^n which contain n-1 dimensional self-dual cones. The following definitions will be needed:

- (1) A cone K in E^n is a set such that for all $x, y \in K$, $a, b \ge 0$, $ax + by \in K$. Let K be a cone in E^n .
- (2) The partial order induced by K on E^n is obtained by defining $x \le y$ iff $y x \in K$.

LINEAR ALGEBRA AND ITS APPLICATIONS 13, 147–155 (1976)

147

[©] American Elsevier Publishing Company, Inc., 1976

- (3) K is closed if it is topologically closed in the usual topology of E^n , full if $K^0 \neq \emptyset$ ($K^0 = K$ interior).
 - (4) K is pointed if $x \in K$ and $-x \in K$ imply x = 0.
 - (5) The dual of K is the set

$$K^* = \{ y : (y, x) \ge 0 \text{ for all } x \in K \}.$$

(6) K is self-dual if $K = K^*$.

For various properties of K and K^* see [4], [5], or [9]. In particular, if $K = K^*$, then K is closed, pointed, and full. The usual cones which arise in extensions of Perron-Frobenius theory [1] are closed, pointed, and full, but not self-dual. Examples of self-dual cones are the non-negative orthant, which consists of all $x \in E^n$ with non-negative components; the n-dimensional ice cream cone [7], and the cone of positive semi-definite matrices in the real space of all Hermitian matrices (cf. [4]).

In the study of cones certain subsets, called *faces*, have proven to be quite useful. For more results on faces see [2, 3, 8].

DEFINITION Let K be a closed, pointed cone in E^n . A subset F of K is a face if F is a cone and

$$0 \le x \le y$$
 and $y \in F$ implies $x \in F$.

We write $F \leq K$.

REMARK If $S \subset K$, then the intersection of all faces of K containing S is a face called the *face generated by* S. It is denoted $\phi(S)$. If $S = \{x\}$, we write $\phi(x)$ for $\phi(\{x\})$. As is well known, the space spanned by a face F is F - F, and the dimension of this space is called the dimension of F. If $\phi(x)$ is of dimension one, then x is called an *extremal* of K. If K has only finitely many extremals, it is called *polyhedral*; if K has exactly K extremals, it is called *simplicial*.

DEFINITION Let K be a closed, pointed cone in E^n .

(1) If $F \triangleleft K$, then we put

$$F^{D} = \{ y : y \in K^* \text{ and } \forall x \in F, (y, x) = 0 \}.$$

This is the positive annihilator of F (or just annihilator if the use is clear).

- (2) We denote by F^V the dual of F in span F.
- p(3) The cone K is the *direct sum* of K_1 and K_2 , and we write $K = K_1 \oplus K_2$ iff the following hold:
 - (i) $\forall x \in K \quad \exists x_i \in K_i, \quad x = x_1 + x_2$
 - (ii) span $K_1 \cap \operatorname{span} K_2 = \{0\}.$

REMARK (3) is just decomposability in the sense of Loewy and Schneider [7]. It follows that if $K = K_1 \oplus K_2$, then $K_i \leq K$, i = 1, 2, and the decomposition $x = x_1 + x_2$, $x_i \in K_i$, is unique.

We now prove a theorem which gives necessary and sufficient conditions for a self-dual cone to be isometric to an orthant. The following lemma is needed for this purpose.

Lemma Let K be a closed, full, pointed cone. If $K = K_1 \oplus K_2$ and if $x \in K_1$, $y \in K_2$ implies (x, y) = 0, then $(K_1 \oplus K_2)^* = {K_1}^V \oplus {K_2}^V$.

Proof. This lemma is well known (cf. [4, p. 5]). We include a short proof for completeness. Under the hypotheses it is clear that $K_1{}^V \oplus K_2{}^V \subset (K_1 \oplus K_2)^*$. If $z \in (K_1 \oplus K_2)^*$, $x \in K_1$, and $y \in K_2$, put $z_1(x+y) = (z,x)$ and $z_2(x+y) = (z,y)$. This determines vectors z_1 and z_2 . Then $z_i \in K_i{}^V$, i = 1, 2, and for any $x = x_1 + x_2 \in K$,

$$\begin{split} (z,x) &= (z,x_1) + (z,x_2) = (z_1,x_1) + (z_2,x_2) \\ &= (z_1,x) + (z_2,x) = (z_1+z_2,x). \end{split}$$

Since K is full, $z = z_1 + z_2$ and the lemma is proved.

COROLLARY Under the conditions of the lemma, if K is self-dual, then $K_i^{\ V} = K_i$.

Proof. If $x \in K_1 \subset K = K^*$, then for any $y \in K_1 \subset K$, $(x, y) \ge 0$. So $x \in K_1^V$. If $y \in K_1^V \subset K^* = K$, then for any $x \in K_1^V \subset K^*$, $(x, y) \ge 0$, so $y \in (K_1^V)^V = K_1$. This latter follows because K is self-dual and so every face is closed, pointed, and full in its span. $K_2^V = K_2$ is the same.

THEOREM 1. If K is a self-dual polyhedral cone such that every proper maximal face is also self-dual, then K is the image of the non-negative orthant under an orthogonal transformation.

REMARK The converse is obvious.

Proof. It is easy to show that a self-dual simplicial cone is the image of the non-negative orthant under an orthogonal transformation. Thus it is enough to show that K is simplicial. We show first by induction that every face of K is self-dual in its span. For $\dim K = 2$ this is obvious. Suppose that for every self-dual polyhedral cone of dimension $\leq n-1$, if every proper maximal face is self-dual, then every face is self-dual (in its span). Let $\dim K = n$. Let K be an extremal of K, and put $K = [\phi(K)]^D$. Then K is a maximal proper face of K, $\dim K = n-1$, so K0 be a maximal face of K1. We claim that $K \oplus \phi(K)$ 1 is a face of K2. Suppose that $K \oplus \phi(K)$ 3 satisfies the hypotheses of the lemma. Hence

$$K = K^* \subset [F + \phi(x)]^* = F^V \oplus \phi(x)^V = F + \phi(x) \subset K.$$

Therefore, $K = F \oplus \phi(x)$ and $y = f_1 + b_1 x$ with $f_1 \in F$, $b_1 \ge 0$, and there is a $y_1 = f_2 + b_2 x$, $f_2 \in F$, $b_2 \ge 0$, such that

$$0 \le y + y_1 = g + ax = (f_1 + f_2) + (b_1 + b_2)x.$$

But because the representation is unique we have

$$g = f_1 + f_2 \ge f_1 \ge 0$$
,

whence $f_1 \in G$, since $G \triangle F$. The claim is established. Since $\dim [G \oplus \phi(x)] = n-1$, the face is maximal; hence $G \oplus \phi(x)$ is self-dual. Since $G \subset [\phi(x)]^D$, the conditions of the lemma are satisfied, and $G = G^V$. By the induction hypothesis every face of F is self-dual. Since every face of K is contained in a maximal face, every face of K is self-dual.

We now show, again by induction, that K is simplicial. For $\dim K = 2$ the result is trivial. So suppose that whenever $\dim K \le n-1$ and every maximal face is self-dual, K is simplicial. Let $\dim K = n$. Since every maximal face is self-dual, every face is self-dual. Let x be an extremal of K and let $F = [\phi(x)]^D$. Then F is a simplicial cone of dimension n-1. We claim that $F \oplus \phi(x) = K$. Let $K_1 = F \oplus \phi(x)$. Then by the lemma K_1 is self-dual. But $K_1 \subset K$ and K is self-dual; so $K_1 = K_1^* \supset K^* = K$, and thus $K_1 = K$, and the theorem is proved.

Theorem 2 provides a method for constructing n-dimensional self-dual cones from (n-1)-dimensional ones. The method permits the construction of polyhedral cones of any dimension greater than 2 which are not isometric to orthants.

THEOREM 2. Let K_0 be a closed, pointed cone in E^n such that $K_0 = K_0^V$ and $\dim K_0 = n-1$. Let K_+ be a closed, pointed, full cone which has no points in one of the open half spaces determined by $H = \operatorname{span} K_0$. Suppose further that $K_0 \subset K_+ \subset (K_+)^*$. Then there is a self-dual cone K such that $K_+ \subset K$ and such that $K \setminus K_+$ has no points in the half space containing K_+ .

REMARK That the cone K satisfying the conditions of this theorem is unique follows from (i) \Rightarrow (iii) of Theorem 4.

Proof. We may without loss of generality assume that H is the subspace of E^n consisting of all vectors with nth coordinate zero. In addition, if $e=(0,\ldots,0,1)$ then we may assume that for all $y\in K_+$, $(y,e)\geqslant 0$. Set $K=\{x:x\in (K_+)^* \text{ and } (e,x)\leqslant 0\}\cup K_+$. In addition, we let $H_+=\{y:(y,e)\geqslant 0\}$ and define H_- analogously. We claim that $K=K^*$. From this it is obvious that K is a closed, pointed, full cone. Let $u\in K$. We show $u\in K^*$. So let $v\in K$.

- (i) If $u \in K_+$, $v \in K_+$, then $(u, v) \ge 0$, since $K_+ \subset (K_+)^*$.
- (ii) If $u \in K_+$, $v \in K \cap H_-$ or if $u \in K \cap H_-$, $v \in K_+$, then $(u, v) \ge 0$, since $K \cap H_- = (K_+)^* \cap H_-$.
- (iii) If $u,v\in K\cap H_-$, we let $\overline{u}=u-(e,u)e,\ \overline{v}=v-(e,v)e$. Then it is easy to check that $\overline{u},\overline{v}\in K_0^*\cap H=K_0$. Thus $(\overline{u},\overline{v})\geqslant 0$. But $(\overline{u},\overline{v})=(u,v)-(u,e)(v,e)\geqslant 0$, so $(u,v)\geqslant (u,e)(v,e)\geqslant 0$. Thus $u\in K^*$ and $K\subset K^*$.

To show that $K^* \subset K$ take $z \in K^*$.

- (i) If $z \in H_-$, then since $K^* \subset (K_+)^*$ we have $z \in (K_+)^* \cap H_- \subset K$.
- (ii) If $z \in H$, then since $K^* \subset K_0^*$ we have $z \in K_0^* \cap H = K_0 \subset K$.
- (iii) If $z \in H_+$, but $z \not\in K$, then there is a $w \in K^*$ such that (w,z) < 0 and $(w,x) \ge 0$ for all $x \in K$. Applying the previous cases to w, we see that $w \in H_+$ as well. Let

$$\bar{z} = z - (e, z)e, \quad \overline{w} = w - (e, w)e.$$

Clearly (e,z) > 0, (e,w) > 0. Also

$$\bar{z}, \bar{w} \in K^* \cap H = K_0 = K_0^V$$

so $(\bar{z}, \overline{w}) \ge 0$. Thus, $(z, w) = (\bar{z}, \overline{w}) + (e, z)(e, w) > 0$, a contradiction. Therefore $z \in K$ and $K^* \subset K$.

Every two dimensional self-dual cone is isometric with the two dimensional orthant. Some examples of three dimensional, polyhedral, self-dual cones are:

(1) The cone K with extremals $\phi(v_i)$, where

$$v_0 = (1, 1, 1),$$
 $v_1 = (0, 1, 1),$ $v_2 = (-1, 0, 1),$ $v_3 = (0, -1, 1),$ and $v_4 = (1, -1, 1).$

It is readily determined that $(v_i, v_j) \ge 0$ and that $\phi(v_i)^D = \phi(v_p, v_q)$, where $p \equiv i + 2 \mod 5$, $q \equiv i + 3 \mod 5$. From this it follows that $\forall x \in K$, $\exists i \ni (x, v_i) < 0$ and thus $K = K^*$.

(2) If a cone K_n is formed over the regular (2n+1)-sided polygon, so that each extremal is perpendicular to the face determined by the opposite side of the polygon, then K_n is self-dual. In particular, let K_n be determined by $\phi(v_i)$, where $r = (2n+1)^{-1}$ and for $j = 0, 1, \ldots, 2n$,

$$v_i = (\cos 2\pi j r, \sin 2\pi j r, \sqrt{-\cos 2\pi n r}).$$

Again it is readily determined that $(v_i, v_j) \ge 0$ and that $\phi(v_i)^D = \phi(v_p, v_q)$, where $p = j + n \mod 2n + 1$, $q = j + n + 1 \mod 2n + 1$; from this it follows that $K_n = K_n^*$.

The examples in (2) above show that there are polyhedral, self-dual cones in E_3 with any odd number of extremals. Conversely, we have the following:

Theorem 3. Every self-dual, polyhedral cone in E^3 has an odd number of extremals.

Proof. Let K be a polyhedral, self-dual cone in E^3 . It is readily seen that there are two extremals of K, $\phi(v_0)$ and $\phi(v_1)$, such that $(v_0,v_1)=0$. Suppose v_0 and v_1 are selected so that $(v_0,v_0)=(v_1,v_1)=1$. Let H be the plane determined by v_0 , v_1 , and 0. Then $\phi(v_0)^D$ and $\phi(v_1)^D$ are faces of K which lie on the same side of H. To see this, let $F_1=\phi(v_0)^D=\phi(v_1,w_1)$ and $F_2=\phi(v_1)^D=\phi(v_0,w_0)$. Let $e=w_1-(w_1,v_1)v_1$. Then $(e,v_0)=(e,v_1)=0$ and e is perpendicular to H. But $(e,w_1)\geqslant 0$ and $(e,w_0)=(w_1,w_0)\geqslant 0$, so that w_0 and w_1 lie on the same side of H.

Let u_i , i=1,...,k, be the extremals of K satisfying $(u_i,e)<0$. (In the event that there are no u_i , the cone is an orthant.) Each u_i determines a face $\phi(u_i)^D$, and these faces lie on the e-side of H. To see this, let $\overline{w}=w-(w,v_0)$

 $v_0-(w,v_1)v_1$, where $w\in K$ and w is perpendicular to a particular $u_i=u$. Then $(\overline{w},v_0)=(\overline{w},v_1)=0$, and \overline{w} is perpendicular to H. But $(u,\overline{w})=(u,w)-(w,v_0)(u,v_0)-(w,v_1)(u,v_1)$, and since (u,w)=0, $(u,\overline{w})\leqslant 0$. Since $(e,w)=(e,\overline{w})$, it follows that w and u are on opposite sides of H.

Since $\phi(v_0)^D$, $\phi(v_1)^D$, $\phi(u_i)^D$, $i=1,\ldots,k$, are the faces of K on the e-side of H, it follows that there are exactly k+1 extremals at the successive intersections of these k+2 faces. Thus K has k extremals u_i , 2 extremals v_0 and v_1 , and k+1 extremals on the e-side of H; i.e., K has 2k+3 extremals. Theorem 3 is thus proved.

We pose the following questions:

- (1) What number of extremals are possible for a self-dual, polyhedral cone in E^n , n > 3?
- (2) Does every *n*-dimensional, self dual cone K contain an (n-1)-dimensional cone $K_0 = K_0^{V}$?

The answer to the second question is clearly yes for n=3. The following theorem characterizes the relationship which holds between such cones K and K_0 .

THEOREM 4. Let H be a hyperplane determined by a vector e, where (e,e)=1. Let K be a self-dual cone, $H_+=\{x:(x,e)\geqslant 0\},\ H_-=\{x:(x,e)\leqslant 0\},\ K_+=K\cap H_+,\ K_-=K\cap H_-,\ K_0=K_+\cap K_-.$ Define $K_H=\{z\in K:z-(z,e)\ e\in K\}.$ Then K_H is a cone, and the following are equivalent:

- $(i) \quad K_0 = K_0^V,$
- (ii) $K_H = K$,
- (iii) $(K_+)^* \cap H_- = K_-$ and $(K_-)^* \cap H_+ = K_+$.

Proof. K_H is a cone. Let $u,v \in K_H$; $a,b \ge 0$. Then $u-(u,e)e \in K$ and $v-(v,e)e \in K$. Consequently, $au-a(u,e)e+bv-b(v,e)e \in K$. That is, $(au+bv)-(au+bv,e)e \in K$, and K_H is a cone.

(i) implies (ii). Let $z \in K$, $\bar{z} = z - (z, e)e$; then $\bar{z} \in H$. Let $y \in K_0$. Then (y, e) = 0 and hence $(y, \bar{z}) = (y, z) \ge 0$. Since $y \in K_0$ is arbitrary, $\bar{z} \in K_0^*$; hence,

$$\tilde{z} \in K_0^* \cap H = K_0^{\mathsf{V}} = K_0 \subseteq K$$
.

Since z is arbitrary, $K \subset K_H$. However, $K_H \subset K$ by the definition of K_H . Thus $K_H = K$.

(ii) implies (iii). Let $x \in (K_+)^* \cap H_-$; then $\forall y \in K_+$, $(y,x) \ge 0$. Suppose $y \in K_-$ and $\bar{y} \in H$, $\bar{y} = y - (e,y)e$. By hypothesis, $\bar{y} \in K$. Since $\bar{y} \in H$, $\bar{y} \in K_+$, and thus $(\bar{y},x) \ge 0$. But $(e,y) \le 0$, $(e,x) \le 0$, so that

$$(y,x) = (\bar{y},\bar{x}) + (e,y)(e,x) \ge 0$$

and $x \in K^* = K$. Since $x \in H_-$, $x \in K_-$, and because x was an arbitrary element in $(K_+)^* \cap H_-$, it follows that $(K_+)^* \cap H_- \subset K_-$. However, $K_- \subset K^* \cap H_- \subset (K_+)^* \cap H_-$. The other half of condition (iii) follows from the parallel proof which exchanges the roles of H_+ and H_- .

(iii) implies (i). First note that

$$K_0^V = K_0^* \cap H = (K_+ \cap K_-)^* \cap H \supset [(K_+)^* + (K_-)^*] \cap H \supset K \cap H = K_0.$$

But also

$$K_0^V \subset (K_+)^* \cap H_- = K_-,$$

and

$$K_0^V \subset (K_-)^* \cap H_+ = K_+,$$

so that
$$K_0^V \subset K_- \cap K_+ = K_0$$
. Thus $K_0^V = K_0$.

REMARK If K is self-dual, it is always possible to find an H such that $(K_+)^* \cap H_- \supset K_-$ and $(K_-)^* \cap H_+ \supset K_+$. For let

$$A = \left\{ e \in E^n \setminus \{0\} : (K_{e^+}) \cap H_{e^-} \supseteq K_{e^-} \right\}$$

and

$$B = \left\{ e \in E^n \setminus \{0\} : (K_{e^-}) [\cap H_{e^+} \supseteq K_{e^+}] \right\}.$$

Either there exists an $e_0\in A^c\cap B^c$, or $A\cup B=E^n\setminus\{0\}$. However, $A^c=\{e\in E^n\setminus\{0\}: (K_{e+})^*\cap H_{e-}=K_{e-}\}$ and $B^c=\{e\in E^n\setminus\{0\}: (K_{e-})^*\cap H_{e+}=K_{e+}\}$. For such an e_0 , $(K_+)^*\cap H_-=K_-$ and $(K_-)^*\cap H_+=K_+$. Because A^c and B^c are closed, we have in the latter case $E^n\setminus\{0\}$ is the union of two open sets, and since $E^n\setminus\{0\}$ is connected, there is a point $e^1\in A\cap B$ and e_1 provides an H for which $(K_+)^*\cap H_-\supseteq K_-$ and $(K_-)^*\cap H_+\supseteq K_+$.

We conclude with the following theorem, which shows that a cone which is contained in its dual is always contained in a self-dual cone.

THEOREM 5. If K is a cone and $K \subset K^* \subset E^n$, then there exists a cone K_D such that $K \subset K_D = K_D^* \subset K^*$.

Proof. Let $K_1 = K$ and let $\{x_i\}$ be an enumeration of a countable dense subset of E^n . Define K_i , i = 2, 3, ... inductively as follows:

If
$$x_i \in K_i$$
 or $x_i \not\in K_i^*$, let $K_{i+1} = K_i$
If $x_i \in K_i^* \setminus K_i$, let $K_{i+1} = K_i \oplus tx_i$, $t \ge 0$.

Then if $u, v \in K_i$ and $a, b \ge 0$ and $K_{i+1} = K_i \oplus tx_i$, it follows that $(u + ax_i, v + bx_i) \ge 0$. Consequently, $K_{i+1} \subset K_{i+1}^*$. Hence $\forall i, K_i \subset K_{i+1} \subset K_{i+1}^* \subset K_i^*$. Let $K_A = \bigcup K_i$. K_A is clearly a cone, and

$$y \in K_A^* \Leftrightarrow$$

$$\forall x \in K_A, \quad (x,y) \geqslant 0 \quad \Leftrightarrow \quad \forall n, \quad y \in K_n^* \quad \Leftrightarrow \quad y \in \cap K_i^*.$$

Thus $K_A \subset K_A^* = \cap K_i^*$. Let K_D be the closure of K_A . Since $\forall x, y \in K_D$, $(x,y) \ge 0$, it follows that $K_D \subset K_D^*$. However, if $K_D \ne K_D^*$, then by observing that $K_D^* \setminus K_D$ has non-empty interior and thus contains some point x_i , a contradiction to the method of construction of K_D is obtained.

REFERENCES

- G. P. Barker, On matrices having an invariant cone, Czech. J. Math. 22 (1967), 49-68.
- G. P. Barker, The lattice of faces of a finite dimensional cone, *Linear Algebra Appl.* 7 (1973), 71–82.
- G. P. Barker and H. Schneider, Algebraic Perron-Frobenius theory, *Linear Algebra Appl.* 11 (1975), 219–233.
- 4 A. Berman, Cones, Matrices, and Mathematical Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 79, Springer, New York, Berlin, Heidelber, 1973.
- 5 I. M. Glazman and Ju. I. Ljubič, Finite-Dimensional Linear Analysis, M.I.T. Press, Cambridge, Mass., London, 1974.
- 6 E. Haynsworth and A. J. Hoffman, Two remarks on copositive matrices, *Linear Algebra Appl.* 2 (1969), 387–392.
- 7 R. Loewy and H. Schneider, Positive operators on the n-dimensional ice-cream cone, MRC Tech. Rept. 1346, Sept. 1973; J. Math. Anal. Appl., 49 (1975), 375–392.
- R. Loewy and H. Schneider, Indecomposable cones, MRC Tech. Rept. 1397, March 1974. Linear Algebra Appl. 11 (1975), pp. 235–245.
- 9 J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I, Springer, New York, Heidelberg, Berlin, 1970.