Description: This week you all will be working in pairs to build a model for the kaggle house price competition. Each pair will consist of an experienced programmer along with a less experienced programmer who will work through the entire ml development pipeline. At next Sunday's meeting, you all will present your models and your results.

Dataset link: https://www.kaggle.com/c/house-prices-advanced-regression-techniques
Download train.csv only

Requirements:

- build at least one ANN with pytorch
 - you may use sklearn or other libraries to build generic ml models as well to see how it fares, but the ANN is the bare minimum
- practice using software style guidelines
- use mse loss to train and evaluate your models
- Make slideshow presenting model pipeline and results
 - talk about preprocessing steps
 - data visualization
 - feature extraction
 - model architecture

Results Evaluation:

- To ensure people don't luck out, folder with train and test csv files will be provided in the github in a folder called houseprice_data
- Two factors will be considered in deciding the winner
 - the test set rmse
 - o the number of features used for the model
- The score formula log(10 * features used / 79) * (test set rmse loss)
- lower score is better

BCI Competition: For those who are more advanced, you will be working with the BCI competition 4 2a dataset that I used for the NN_sample_pipeline tutorial notebook. https://www.kaggle.com/datasets/aymanmostafa11/eeg-motor-imagery-bciciv-2a

Requirements:

- Build a CNN or RNN with pytorch
- practice using software style guidelines
- use cross entropy loss or binary cross entropy to train and evaluate models
- Do two class classification (left hand and right hand)
- Make slideshow presenting model pipeline and results
 - talk about preprocessing steps
 - data visualization
 - feature extraction
 - o model architecture

Results Evaluation:

- To ensure people don't luck out, two folders with train and test npy files called MI_train and MI_test will be provided in the github
 - o npy arrays are of shape (9, 22, N), where 9 represents the number of patients, 22 is the channels, and N is the sequence length
- Two factors will be considered in deciding the winner
 - the test set accuracy
 - o the number of channels used for the model
- The score formula log(220 / channels used) * (test set accuracy)
- higher score is better