Tutorial -4

Kulmeet 51rgh 13-F 2016827

Q1, Solve using Masker's Theorem:
1) $t(n) = 3 t(n/2) + n^2$ $t(n) = 3 \cdot a t(n/2) + f(n)$ where n = 1, h = 1On Comparing, $n = 3, h = 2, f(n) = n^2$

New, c=log, a h.1, log_3 h.p., 1.38 x

and n' i.e. n' .58 + < n^2 i. $f(n) > n^2$ i. $f(n) = 0(n^2)$

2) $T(n) = 4 T(n/2) + n^2$ $a \ge 1, b > 1$ and $a \ge 4, b = 2$, $A(n) = n^2$ $C = \log_2 4$ i.e. 2

 $h'=n^2=>f_0(n)=n^2$ (1) $T(n)=o(n^2\log n)$

3) $t(x) = T(n/2) + 2^h$ $a = 1, h = 2, f(n) = 2^h$ $C = \log_{h} a \Rightarrow \log_{2} 1$ i.e. 0

[T(n)=o(2n)] Nov, n'(1,1,1)=>1 and f(n)=n'

+)
$$T(n) = 2^h T(n/2) + n^h$$

$$a = 2^h, h = 2, f(n) = n^h$$

$$(= \log_2 2^h) = 7 h \text{ and } h = h^h$$

$$f(n) = h^h$$

$$T(n) = b \ln^2 h = h$$

05,
$$t(a) = 16T(n/4) + n$$
 $a = 16$ $b = 4$, $f(n) = n$
 $(= \log_4 16 =) \log_2 4(4)^2 (.e., 2\log_4 4 (.e., 2))$

Now, $n = n^2$ and $f(n) < n^2$
 $f(n) = 0(n^2)$

ab,
$$t(n) = 2T(n/e) + n\log n$$

act, $h = 2$, $f(n) = n\log n$
 $c = \log_2 2 \cdot e$, l and $n = n = n$
 $since$, $n\log n > n$ i. l , $f(n) > n$
 $since$, $n\log n > n$ i. l , $f(n) > n$

R7.
$$t(n) = 2T(n/2) + \frac{n}{\log n}$$

So $8 = 2$, $b = 2$, $b(n) = \frac{n}{\log n}$
 $C = \log_2 2$ $i, o, 1$ and $n = n$

Since
$$n < n$$
 is $\beta(n) < n$

8)
$$T(n) = 2 + (n/4) + n^{0.51}$$
 $a = 2, t = 4, f(n) = n^{0.51}$
 $c = \log_{p} a \quad i.o., \log_{p} 2 \quad i.d. o.s.$

and $n = n^{0.5}$

So, $n^{0.5} < n^{0.51} \quad i.d., f(n) > n^{0.51}$
 $f(n) = a(n^{0.51})$

4) T(a) = 0.5 T(n/2) + 1/n a = 0.5, b = 2, f(n) = 1/nSince, according to Maderia theorem, $a \ge 1$ but here $a \le 0.5$ to we can't apply Masters theorem,

10) T(n) = 1bT(n/4) + n! a = 1b, b = 4, f(n) = n! $(= log_{+} 1b, i.e., 2)$

Now, $n'=n^2$ $2n > n^2$ T(n) = O(n!)

11)
$$4 T(n/2) + \log n$$

$$0 < 4, k = 2, f(n) = \log n$$

$$0 < \log_2 4 \text{ i.e. } 2 \qquad \text{Now, } n < = n^2$$

$$\text{Since lag } n < n^2$$

$$\text{i.f.} f(n) < n^2$$

$$\text{i.f.} f(n) = O(n^2)$$

(2)
$$T(n) = pqrt(n) T(n/2) + log n$$
 $a = \sqrt{n}, h = 2, h(n) = log n$

Now, $c = log_2 \sqrt{n}$ (.e. $\frac{1}{2} log_2 n$

Now, $\frac{1}{2} log_2 n < n log n$ (i $f(n) < n < 1$

So, $f(n) = o(f(n)) \in P$, $o(log(n))$

13)
$$T(n) = 3T(n/2) + n$$
 $a = 3, h = 2, f(n) = n$

Now,

 $C = \log_2 3, h = 1.5849$

Now,

 $n = n^{1.5849}$
 $s = n < n^{1.5849}$
 $s = n < n^{1.5849}$
 $s = n < n^{1.5849}$