ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Scuola di Ingegneria e Architettura

Compression of Convolutional Neural Networks using Tensor Decomposition

Candidato:
Ali Alessio SALMAN

Relatore:

Prof. Stefano MATTOCCIA

Correlatori:

Dott. Matteo POGGI

Dott. Fabio TOSI

Convolutional Neural Networks (CNN)

Rete neurale con un'architettura particolarmente vantaggiosa per compiti di tipo visivo

Combina:

- Rete profonda
- Operazione di convoluzione

Stato dell'arte in:

- Classificazione
- Object Detection
- Riconoscimento facciale
- •

Perché comprimere una CNN?

- Numero di parametri elevatissimo (ad es. VGG-16 500MB)
- Notevoli capacità computazionali necessarie → training solo su GPU, lento
- Accelerazione difficile su dispositivi low-end (e.g. FPGA, ASIC, ...)
- Ampie possibilità di applicazione (Mobile devices, Drones, self-driving cars)

Tecniche di riduzione di dimensionalità

PRO:

- Velocità di training e d'inferenza
- Dimensioni molto ridotte

CONS:

Potenziale perdita di accuratezza

Convolutional Layer – Tensore 4D

Un layer di convoluzione può essere visto come tensore a 4 dimensioni:

$$W = [S \times T \times d \times d]$$

- S = numero di feature maps in ingresso
- T = numero di feature maps in uscita
- [d, d] è la dimensione del filtro di convoluzione quadrato
- ⇒ Decomposizione tensoriale può essere applicata a W

Obiettivo:

- 1) In ingresso una CNN classica con numero di parametri pari ad X
- 2) Applicazione di tecniche di decomposizione tensoriale
- 3) In uscita: CNN con Y parametri, con Y << X

CPD - layer di convoluzione

Micro-architettura TD Block: un nuovo design

Parametri iniziali = $S \times T \times d^2$

Parametri dopo la decomposizione

CPD	R(S+2d+T)
Tucker	$R_3 + R_3 R_4 d^2 + R_4 T$

$$C_r = \frac{STd^2}{R(S+2d+T)}$$

Pipeline di decomposizione di una CNN

Selezione layer da decomporre

Fine-tuning della rete

Stima rango R tensore layer X

Sostituzione layer con TD block

Decomposizione tensoriale layer X

TD Block: Model Design

LeNet 4 Conv layer + 2 FC
 Dataset: CIFAR10: 60K immagini a colori divise in 10 categorie

 CCNN - 7 Conv layer
 Dataset: KITTI 193 paia di immagini per algoritmi di matching stereo

TD Block: Model Compression

LeNet 3 Conv layer + 3 FC
 Dataset: CIFAR10

Network-In-Network: All Conv Dataset: CIFAR10

Risultati sperimentali

LAYER	METODO	ACCURACY	COMPRESSION RATIO
CONV1	CPD	80% (+6%)	4X
CONV2	CPD	82% (+8%)	31X
CONV3 R=85	CPD	80% (+6%)	25X
CONV3 R=39	CPD	77 (+3%)	52X (Improves Zhang et al.)
OVERALL	CPD	81% (+7%)	4.5X
CONV1	TUCKER	75% (+1%)	0.77X
CONV2	TUCKER	79% (+8%)	6.3X
CONV3	TUCKER	80% (+6%)	15X
CONV3 R3=6, R4=41	TUCKER	76% (+2%)	63X (Improves Zhang et al.)
OVERALL	TUCKER	80% (+6%)	3.5X

LeNet: Architettura TD Block

LAYER	CHARACTERISTICS
CONV	32 filters 3×3, padding=1, stride=1
ReLU	-
CONV	32 filters 3×3 , padding=0 stride=1
ReLU	-
POOL	pool size [2, 2] stride=2
Dropout	p=0.25
CONV	64 filters 3×3 , padding=1 stride=1
ReLU	-
CONV	64 filters 3×3 , padding=0 stride=1
ReLU	-
POOL	pool size [2, 2] stride=2
Dropout	p=0.25
FC	512 units
FC	#Classes (=10) units

LAYER	CHARACTERISTICS
TD-Block	$32 \times [1,1] + R \times 3 + 3 \times R + 32 \times [1,1]$
ReLU	-
TD-Block	$32 \times [1,1] + R \times 3 + 3 \times R + 32 \times [1,1]$
ReLU	-
POOL	pool size [2, 2] stride=2
Dropout	p=0.25
TD-Block	$64 \times [1,1] + R \times 3 + 3 \times R + 64 \times [1,1]$
ReLU	÷
TD-Block	$64 \times [1,1] + R \times 3 + 3 \times R + 64 \times [1,1]$
ReLU	-
POOL	pool size [2, 2] stride=2
Dropout	p=0.25
TD-Block	$64 \times [1,1] + R \times 6 + 6 \times R + 512 \times [1,1]$
TD-Block	$512 \times [1,1] + R \times 1 + 1 \times R + 10 \times [1,1]$

Confronto con l'originale

LeNet: Baseline vs. Compressed

Baseline: 74% **Compressed 45X: 82% (+8%)**

CCNN - Confidence CNN

Banco di prova interessante:

- Stato dell'arte
- Rete snella, solo
 128K parametri

M. Poggi, S. Mattoccia, "Learning from scratch a confidence measure", (BMVC 2016)

CCNN - Modelli Compressi

Sono stati proposti 2 modelli basati sul TD block a 4 layer:

- CCNN-36K: decomposti solo i layer di convoluzione
- CCNN-27K: decomposti anche i layer FC 1x1

Entrambi i modelli migliorano lo stato dell'arte.

Risultati – Compressed CCNN

RIEPILOGO

TD Block: model design

- LeNet 45X più piccola migliora l'accuratezza della baseline di 8%
- Migliorato lo stato dell'arte di CCNN con ¼ dei parametri, dataset diverso da quelli classici
- Testate diverse configurazioni del TD Block

TD Block: model compression

- Tucker e CPD sono efficaci
- Risultati consistenti su diversi modelli
- Compressione fino a ~50X
 senza perdita di accuratezza
- Pipeline di decomposizione END-to-END

Conclusioni e sviluppi futuri

- Decomposizione tensoriale risulta efficace
- Richiede diverse iterazioni per recuperare l'accuracy
- Tucker più conservativo e stabile
- CPD più aggressivo sulla compressione ma richiede più attenzione
- Applicazione su altre CNN per applicazioni in tempo reale come MonoDepth
- Metodi di compressione misti Tucker/CPD
- Nuovi design per il TD Block (e.g. residual learning)
- La decomposizione non tiene conto della ottimizzazione globale della rete
 - ⇒ servono metodi "learning to learn" per ottimizzare la decomposizione

Grazie per l'attenzione!

Approfondimenti: rango R di un tensore

- Problema NP-difficile
- Metodi iterativi per stimare il trade-off tra efficienza e precisione dell'approssimazione; Molto onerosi (8 ore per la stima del rango di un layer di convoluzione)
- Metodi probabilistici: VBMF ⇒ risolvono il problema riportandolo nel dominio delle matrici e poi risolvendolo con una soluzione globale analitica. Facilmente inseribili nella pipeline
- Altri: metodi basati sull'apprendimento: VAEs, Reinforcement Learning, ...