TABLE OF CONTENTS

BACK TO LIMITS!

$$\lim_{x \to \infty} \frac{x^2}{5}$$

$$\lim_{x\to\infty} \frac{5}{x^2}$$

$$\lim_{x \to 0} \frac{x^2}{5}$$

$$\lim_{x \to 0} \frac{5}{x}$$

Indeterminate Forms – Definition 3.7.1

Suppose $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. Then the limit

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

is an indeterminate form of the type $\frac{0}{0}$.

Suppose $\lim_{x\to a} F(x) = \lim_{x\to a} G(x) = \infty$ (or $-\infty$). Then the limit

$$\lim_{x \to a} \frac{F(x)}{G(x)}$$

is an indeterminate form of the type $\frac{\infty}{\infty}$.

When you see an indeterminate form, you need to do more work.

-3.7: L'Hôpital's Rule and Indeterminate Forms

BACK TO CLASSITS: $\lim_{n\to\infty}\frac{d^2}{n^2}=\lim_{n\to\infty}\frac{5}{n^2}=\lim_{n\to\infty}\frac{d^2}{n^2}=\lim_{n\to\infty}\frac{5}{n^2}$ Suppose $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}f(n)=0$. Suppose $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}\frac{f(n)}{g(n)}$ is an information of the type 1. Suppose $\lim_{n\to\infty}f(n)=\lim_{n\to$

Back to Limits!

Often students misinterpret the phrase "indeterminate" as "unknowable," so I like to emphasize the "more work needed" part. This is one of two common mistakes, the other being the assumption that n/n = 1 even when n = 0 or n = 1 is not a number.

$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5}$$

indeterminate form of the type $\frac{0}{0}$

$$\lim_{x \to \infty} \frac{3x^2 - 4x + 2}{8x^2 - 5}$$

indeterminate form of the type $\frac{\infty}{\infty}$

INDETERMINATE FORMS AND THE DERIVATIVE

$$\lim_{x \to 0} \frac{3\sin x - x^4}{x^2 + \cos x - e^x}$$

indeterminate form of the type $\frac{0}{0}$

L'Hôpital's Rule: First Part – Theorem 3.7.2

Let *f* and *g* be functions such that $\lim_{x\to a} f(x) = 0 = \lim_{x\to a} g(x)$.

If
$$f'(a)$$
 and $g'(a)$ exist and $g'(a) \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

If f and g are differentiable on an open interval containing a, and if $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

This works even for $a = \pm \infty$.

Extremely Important Note: L'Hôpital's Rule only works on indeterminate forms.

L'Hôpital's Rule: Second Part – Theorem 3.7.2

Let *f* and *g* be functions such that $\lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x)$.

If
$$f'(a)$$
 and $g'(a)$ exist and $g'(a) \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

If f and g are differentiable on an open interval containing a, and if $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

This works even for $a = \pm \infty$.

Extremely Important Note: L'Hôpital's Rule only works on indeterminate forms.

Evaluate:

$$\lim_{x\to 2} \ \frac{3x\tan(x-2)}{x-2}$$

LITTLE HARDER

$$\lim_{x \to 0} \frac{x^4}{e^x - \cos x - x}$$

indeterminate form of the type $\frac{0}{0}$

Evaluate:

$$\lim_{x \to \infty} \frac{\log x}{\sqrt{x}}$$

OTHER INDETERMINATE FORMS

$$\lim_{x\to\infty}\,e^{-x}\log x$$

form $0 \cdot \infty$

VOTE VOTE VOTE

Which of the following can you <u>immediately</u> apply L'Hôpital's rule to?

A.
$$\frac{e^x}{2e^x + 1}$$

B.
$$\lim_{x \to 0} \frac{e^x}{2e^x + 1}$$

C.
$$\lim_{x\to\infty} \frac{e^x}{2e^x+1}$$

D.
$$\lim_{x \to \infty} e^{-x} (2e^x + 1)$$

E.
$$\lim_{x\to 0} \frac{e^x}{x^2}$$

VOTEY MCVOTEFACE

Suppose you want to use L'Hôpital's rule to evaluate $\lim_{x\to a} \frac{f(x)}{g(x)}$, which has the form $\frac{0}{0}$. How does the quotient rule fit into this problem?

- A. You should use the quotient rule because the function you are differentiating is a quotient.
- B. You will not use the quotient rule because you differentiate the numerator and the denominator separately
- C. You may use the quotient rule because perhaps f(x) or g(x) is itself in the form of a quotient
- D. You will not use L'Hôpital's rule because $\frac{0}{0}$ is not an appropriate indeterminate form
- E. You will not use L'Hôpital's rule because, since the top has limit zero, the whole function has limit 0

More Questions

Which of the following is NOT an indeterminate form?

A.
$$\frac{\infty}{\infty}$$
 for example, $\lim_{x \to \infty} \frac{e^x}{x^2}$

B.
$$\frac{0}{0}$$
 for example, $\lim_{x\to 0} \frac{e^x - 1}{x}$

C.
$$\frac{0}{\infty}$$
 for example, $\lim_{x\to 0^+} \frac{x}{\log x}$

D.
$$0 \cdot \infty$$
 for example, $\lim_{x \to \infty} x(\arctan(x) - \pi/2)$

E. all of the above are indeterminate forms

I HAVE SO MANY QUESTIONS

Which of the following is NOT an indeterminate form?

A.
$$1^{\infty}$$
 for example, $\lim_{x \to \infty} \left(\frac{x+1}{x} \right)^x$

B.
$$0^{\infty}$$
 for example, $\lim_{x \to \infty} \left(\frac{1}{x}\right)^x$

C.
$$\infty^0$$
 for example, $\lim_{x \to \infty} x^{\frac{1}{x}}$

D.
$$0^0$$
 for example, $\lim_{x\to 0^+} x^x$

E. all of the above are indeterminate forms

F. none of the above are indeterminate forms

3.7: L'Hôpital's Rule and Indeterminate Forms

└─I have so many questions

HAVE SO MANY QUESTIONS

Which of the following is NOT an indeterminate term?

A 1" for example, $\lim_{t\to\infty} \left(\frac{t+1}{x}\right)^t$ B 0" for example, $\lim_{t\to\infty} \left(\frac{t}{x}\right)^t$ C \sim^2 for example, $\lim_{t\to\infty} t^t$ D 0" for example, $\lim_{t\to\infty} t^t$ E all of the above are indeterminate force:

E all of the above are indeterminate forces.

 1^{∞} definitely takes some explaining

EXPONENTIAL INDETERMINATE FORMS

$$\lim_{x\to\infty}\,x^{1/x}$$

EXPONENTIAL INDETERMINATE FORMS

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{3x}$$

Evaluate:

$$\lim_{x\to\infty} \; \frac{\log x}{\log \sqrt{x}}$$

$$\lim_{x\to\infty}\ (\log x)^{\sqrt{x}}$$

$$\lim_{x\to 0} \frac{\arcsin x}{x}$$

MORE EXAMPLES

$$\lim_{x\to\infty}\sqrt{2x^2+1}-\sqrt{x^2+x}$$

$$\lim_{x\to 0} \sqrt[x^2]{\sin^2 x}$$

$$\lim_{x\to 0} \sqrt[x^2]{\cos x}$$

Sketch the graph of $f(x) = x \log x$.

Note: when you want to know $\lim_{x\to 0} f(x)$, you'll need to use L'Hôpital.

Evaluate
$$\lim_{x\to 0^+} (\csc x)^x$$