OCT 1 7 2007 W 7 7 ADEMA 10 >

SEQUENCE LISTING

Chuntharapai, Anan Grewal, Iqbal Kim, Kyung Jin Yan, Minhong

- <120> TACI Antibodies and Uses Thereof
- <130> 50474/017002
- <140> US 10/626,914
- <141> 2003-07-25
- <150> US 60/398,530
- <151> 2002-07-25
- <160> 17
- <170> PatentIn version 3.3
- <210> 1
- <211> 1377
- <212> DNA
- <213> Homo sapiens

<400> 1

60 agcatectga gtaatgagtg geetgggeeg gageaggega ggtggeegga geegtgtgga 120 ccaggaggag cgctttccac agggcctgtg gacgggggtg gctatgagat cctgccccga agagcagtac tgggatcctc tgctgggtac ctgcatgtcc tgcaaaacca tttgcaacca 180 tcagagccag cgcacctgtg cagccttctg caggtcactc agctgccgca aggagcaagg 240 caagttctat gaccatctcc tgagggactg catcagctgt gcctccatct gtggacagca 300 ccctaagcaa tgtgcatact tctgtgagaa caagctcagg agcccagtga accttccacc 360 agagctcagg agacagcgga gtggagaagt tgaaaacaat tcagacaact cgggaaggta 420 ccaaggattg gagcacagag gctcagaagc aagtccagct ctcccggggc tgaagctgag 480 tgcagatcag gtggccctgg tctacagcac gctggggctc tgcctgtgtg ccgtcctctg 540 ctgcttcctg gtggcggtgg cctgcttcct caagaagagg ggggatccct gctcctgcca 600 gccccgctca aggccccgtc aaagtccggc caagtcttcc caggatcacg cgatggaagc 660 cggcagccct gtgagcacat cccccgagcc agtggagacc tgcagcttct gcttccctga 720 780 gtgcagggcg cccacgcagg agagcgcagt cacgcctggg acccccgacc ccacttgtgc 840 tggaaggtgg gggtgccaca ccaggaccac agtcctgcag ccttgcccac acatcccaga cagtggcctt ggcattgtgt gtgtgcctgc ccaggagggg ggcccaggtg cataaatggg 900

960 ggtcagggag ggaaaggagg agggagagag atggagagga ggggagagag aaagagaggt 1020 ggggagaggg gagagagata tgaggagaga gagacagagg aggcagaaag ggagagaaac 1080 1140 gagagggaaa gaggcagaga aggaaagaga caggcagaga aggagagag cagagaggga 1200 1260 gagcaggagg tcggggcact ctgagtccca gttcccagtg cagctgtagg tcgtcatcac ctaaccacac gtgcaataaa gtcctcgtgc ctgctgctca cagcccccga gagcccctcc 1320 1377

<210> 2

<211> 1377

<212> DNA

<213> Homo sapiens

<400> 2

ttttttttt tttttttt gaggaagggc agctgccaaa ggttttattc tccaggagga 60 120 ggggctctcg ggggctgtga gcagcaggca cgaggacttt attgcacgtg tggttaggtg atgacgacct acagctgcac tgggaactgg gactcagagt gccccgacct cctgctctat 180 ctctctctgt ccctctctcc ctctctgtct ctctgcctct ctccctctct gcctctctcc 240 300 ctctctgcct ctctccttct ctgcctgtct ctttccttct ctgcctcttt ccctctctgc 360 tetetecett tetgeeteet etgtetetet etecteatat eteteteece tetececaee 420 480 tototttoto totococtoo totocatoto totocotoot cotttocoto cotgaccoco atttatgcac ctgggccccc ctcctgggca ggcacacaca caatgccaag gccactgtct 540 gggatgtgtg ggcaaggctg caggactgtg gtcctggtgt ggcaccccca ccttccagca 600 caagtggggt cgggggtccc aggcgtgact gcgctctcct gcgtgggcgc cctgcactca 660 720 gggaagcaga agctgcaggt ctccactggc tcgggggatg tgctcacagg gctgccggct 780 tccatcqcqt qatcctggga agacttggcc ggactttgac ggggccttga gcggggctgg caggagcagg gatccccct cttcttgagg aagcaggcca ccgccaccag gaagcagcag 840 900 aggacggcac acaggcagag ccccagcgtg ctgtagacca gggccacctg atctgcactc agetteagee eegggagage tggaettget tetgageete tgtgeteeaa teettggtae 960 cttcccgagt tgtctgaatt gttttcaact tctccactcc gctgtctcct gagctctggt 1020

ggaaggttca	ctgggctcct	gagcttgttc	tcacagaagt	atgcacattg	cttagggtgc	1080
tgtccacaga	tggaggcaca	gctgatgcag	tccctcagga	gatggtcata	gaacttgcct	1140
tgctccttgc	ggcagctgag	tgacctgcag	aaggctgcac	aggtgcgctg	gctctgatgg	1200
ttgcaaatgg	ttttgcagga	catgcaggta	cccagcagag	gatcccagta	ctgctcttcg	1260
gggcaggatc	tcatagccac	ccccgtccac	aggccctgtg	gaaagcgctc	ctcctggtcc	1320
acacggctcc	ggccacctcg	cctgctccgg	cccaggccac	tcattactca	ggatgct	1377

<210> 3

<211> 293

<212> PRT

<213> Homo sapiens

<400> 3

Met Ser Gly Leu Gly Arg Ser Arg Gly Gly Arg Ser Arg Val Asp 1 5 10 15

Gln Glu Glu Arg Phe Pro Gln Gly Leu Trp Thr Gly Val Ala Met Arg
20 25 30

Ser Cys Pro Glu Glu Gln Tyr Trp Asp Pro Leu Leu Gly Thr Cys Met 35 40 45

Ser Cys Lys Thr Ile Cys Asn His Gln Ser Gln Arg Thr Cys Ala Ala 50 55 60

Phe Cys Arg Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe Tyr Asp 65 70 75 80

His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys Gly Gln His 85 90 95

Pro Lys Gln Cys Ala Tyr Phe Cys Glu Asn Lys Leu Arg Ser Pro Val

Asn Leu Pro Pro Glu Leu Arg Arg Gln Arg Ser Gly Glu Val Glu Asn 115 120 125

Asn Ser Asp Asn Ser Gly Arg Tyr Gln Gly Leu Glu His Arg Gly Ser 130 135 140

Glu Ala Ser Pro Ala Leu Pro Gly Leu Lys Leu Ser Ala Asp Gln Val

145 150 155 160	
Ala Leu Val Tyr Ser Thr Leu Gly Leu Cys Leu Cys Ala Val Leu Cys 165 170 175	
Cys Phe Leu Val Ala Val Ala Cys Phe Leu Lys Lys Arg Gly Asp Pro 180 185 190	
Cys Ser Cys Gln Pro Arg Ser Arg Pro Arg Gln Ser Pro Ala Lys Ser 195 200 205	
Ser Gln Asp His Ala Met Glu Ala Gly Ser Pro Val Ser Thr Ser Pro 210 220	
Glu Pro Val Glu Thr Cys Ser Phe Cys Phe Pro Glu Cys Arg Ala Pro 225 230 235 240	
Thr Gln Glu Ser Ala Val Thr Pro Gly Thr Pro Asp Pro Thr Cys Ala 245 250 255	
Gly Arg Trp Gly Cys His Thr Arg Thr Thr Val Leu Gln Pro Cys Pro 260 265 270	
His Ile Pro Asp Ser Gly Leu Gly Ile Val Cys Val Pro Ala Gln Glu 275 280 285	
Gly Gly Pro Gly Ala 290	
<210> 4 <211> 995 <212> DNA <213> Homo sapiens	
<400> 4 aagactcaaa cttagaaact tgaattagat gtggtattca aatccttacg tgccgcgaag	60
acacagacag cccccgtaag aacccacgaa gcaggcgaag ttcattgttc tcaacattct	120
agetgetett getgeatttg etetggaatt ettgtagaga tattaettgt eetteeagge	180
tgttctttct gtagctccct tgttttcttt ttgtgatcat gttgcagatg gctgggcagt	240
gctcccaaaa tgaatatttt gacagtttgt tgcatgcttg cataccttgt caacttcgat	300
gttcttctaa tactcctcct ctaacatgtc agcgttattg taatgcaagt gtgaccaatt	360

420 cagtgaaagg aacgaatgcg attctctgga cctgtttggg actgagctta ataatttctt 480 tggcagtttt cgtgctaatg tttttgctaa ggaagataag ctctgaacca ttaaaggacg 540 agtttaaaaa cacaggatca ggtctcctgg gcatggctaa cattgacctg gaaaagagca 600 ggactggtga tgaaattatt cttccgagag gcctcgagta cacggtggaa gaatgcacct 660 gtgaagactg catcaagagc aaaccgaagg tcgactctga ccattgcttt ccactcccag 720 ctatggagga aggcgcaacc attcttgtca ccacgaaaac gaatgactat tgcaagagcc 780 tgccagctgc tttgagtgct acggagatag agaaatcaat ttctgctagg taattaacca tttcgactcg agcagtgcca ctttaaaaaat cttttgtcag aatagatgat gtgtcagatc 840 900 tctttaggat gactgtattt ttcagttgcc gatacagctt tttgtcctct aactgtggaa acticttatg tragatatat trictcraggt tactgriggg agctraatgg tagaaacttc 960 cttggtttca tgattaaagt ctttttttt cctga 995

<210> 5

<211> 995

<212> DNA

<213> Homo sapiens

<400> 5

60 tcaggaaaaa aaaagacttt aatcatgaaa ccaaggaagt ttctaccatt aagctcccaa 120 cagtaaccta gagaaatata tctaacataa agagtttcca cagttagagg acaaaaagct 180 gtatcggcaa ctgaaaaata cagtcatcct aaagagatct gacacatcat ctattctgac 240 aaaagatttt taaagtggca ctgctcgagt cgaaatggtt aattacctag cagaaattga 300 tttctctatc tccgtagcac tcaaagcagc tggcaggctc ttgcaatagt cattcgtttt cgtggtgaca agaatggttg cgccttcctc catagctggg agtggaaagc aatggtcaga 360 gtegacette ggtttgetet tgatgeagte tteacaggtg cattetteca cegtgtacte 420 gaggeetete ggaagaataa ttteateace agteetgete tttteeaggt caatgttage 480 540 catgcccagg agacctgatc ctgtgttttt aaactcgtcc tttaatggtt cagagcttat 600 cttccttagc aaaaacatta gcacgaaaac tgccaaagaa attattaagc tcagtcccaa acaggtccag agaatcgcat tcgttccttt cactgaattg gtcacacttg cattacaata 660 720 acgctgacat gttagaggag gagtattaga agaacatcga agttgacaag gtatgcaagc atgcaacaaa ctgtcaaaat attcattttg ggagcactgc ccagccatct gcaacatgat 780 cacaaaaaga aaacaaggga gctacagaaa gaacagcctg gaaggacaag taatatctct 840

acaa	ıgaa	ttc (cagag	gcaaa	at go	cagca	agag	r cag	jctac	gaat	gttg	gagaa	ıca	atgaa	cttcg
ccts	gctt	cgt q	gggtt	ctta	ac go	1999	tgto	tgt:	gtct	tcg	cgg	cacgt	aa	ggatt	tgaat
acca	cat	cta a	attca	aagtt	t ct	aagt	ttga	gto	ctt						
<210 <211 <212 <213	L> ?>	6 184 PRT Homo	sapi	iens											
<400)>	6													
Met 1	Leu	Gln	Met	Ala 5	Gly	Gln	Cys	Ser	Gln 10	Asn	Glu	Tyr	Phe	Asp 15	Ser
Leu	Leu	His	Ala 20	Cys	Ile	Pro	Cys	Gln 25	Leu	Arg	Cys	Ser	Ser 30	Asn	Thr
Pro	Pro	Leu 35	Thr	Cys	Gln	Arg	Tyr 40	Cys	Asn	Ala	Ser	Val 45	Thr	Asn	Ser
Val	Lys 50	Gly	Thr	Asn	Ala	Ile 55	Leu	Trp	Thr	Cys	Leu 60	Gly	Leu	Ser	Leu
Ile 65	Ile	Ser	Leu	Ala	Val 70	Phe	Val	Leu	Met	Phe 75	Leu	Leu	Arg	Lys	Ile 80
Ser	Ser	Glu	Pro	Leu 85	Lys	Asp	Glu	Phe	Lys 90	Asn	Thr	Gly	Ser	Gly 95	Leu
Leu	Gly		Ala 100	Asn	Ile	_	Leu		_	Ser	Arg	Thr	Gly 110	Asp	Glu
Ile	Ile	Leu 115	Pro	Arg	Gly	Leu	Glu 120	Tyr	Thr	Val	Glu	Glu 125	Cys	Thr	Cys
Glu	Asp 130		Ile	Lys	Ser	Lys 135	Pro	Lys	Val	Asp	Ser 140	Asp	His	Cys	Phe
Pro 145	Leu	Pro	Ala	Met	Glu 150	Glu	Gly	Ala	Thr	Ile 155	Leu	Val	Thr	Thr	Lys 160
Thr	Asn	. Asp	Tyr	Cys 165	Lys	Ser	Leu	Pro	Ala 170	Ala	Leu	Ser	Ala	Thr 175	Glu

Ile Glu Lys Ser Ile Ser Ala Arg

<210> / <211> 858 <212> DNA						
<213> Homo	sapiens					
<400> 7 atggatgact	ccacagaaag	ggagcagtca	cgccttactt	cttgccttaa	gaaaagagaa	60
gaaatgaaac	tgaaggagtg	tgtttccatc	ctcccacgga	aggaaagccc	ctctgtccga	120
tcctccaaag	acggaaagct	gctggctgca	accttgctgc	tggcactgct	gtcttgctgc	180
ctcacggtgg	tgtctttcta	ccaggtggcc	gccctgcaag	gggacctggc	cagcctccgg	240
gcagagctgc	agggccacca	cgcggagaag	ctgccagcag	gagcaggagc	ccccaaggcc	300
ggcttggagg	aagctccagc	tgtcaccgcg	ggactgaaaa	tctttgaacc	accagctcca	360
ggagaaggca	actccagtca	gaacagcaga	aataagcgtg	ccgttcaggg	tccagaagaa	420
acagtcactc	aagactgctt	gcaactgatt	gcagacagtg	aaacaccaac	tatacaaaaa	480
ggatcttaca	catttgttcc	atggcttctc	agctttaaaa	ggggaagtgc	cctagaagaa	540
aaagagaata	aaatattggt	caaagaaact	ggttactttt	ttatatatgg	tcaggtttta	600
tatactgata	agacctacgc	catgggacat	ctaattcaga	ggaagaaggt	ccatgtcttt	660
ggggatgaat	tgagtctggt	gactttgttt	cgatgtattc	aaaatatgcc	tgaaacacta	720
cccaataatt	cctgctattc	agctggcatt	gcaaaactgg	aagaaggaga	tgaactccaa	780
cttgcaatac	caagagaaaa	tgcacaaata	tcactggatg	gagatgtcac	attttttggt	840
gcattgaaac	tgctgtga					858
<210> 8 <211> 858 <212> DNA <213> Homo	o sapiens					
<400> 8 tcacagcagt	ttcaatgcac	caaaaaatgt	gacatctcca	tccagtgata	tttgtgcatt	60
ttctcttggt	attgcaagtt	ggagttcatc	tccttcttcc	agttttgcaa	tgccagctga	120
atagcaggaa	ttattgggta	gtgtttcagg	catattttga	atacatcgaa	acaaagtcac	180
cagactcaat	tcatccccaa	agacatggac	cttcttcctc	tgaattagat	gtcccatggc	240
gtaggtctta	tcagtatata	aaacctgacc	atatataaaa	aagtaaccag	tttctttgac	300

caatatttta ttctcttttt cttctagggc acttcccctt ttaaagctga gaagccatgg 360 aacaaatgtg taagatcctt tttgtatagt tggtgtttca ctgtctgcaa tcagttgcaa 420 gcagtcttga gtgactgttt cttctggacc ctgaacggca cgcttatttc tgctgttctg 480 540 actggagttg ccttctcctg gagctggtgg ttcaaagatt ttcagtcccg cggtgacagc tggagettee tecaageegg cettggggge teetgeteet getggeaget teteegegtg 600 gtggccctgc agctctgccc ggaggctggc caggtcccct tgcagggcgg ccacctggta 660 qaaaqacacc accgtgaggc agcaagacag cagtgccagc agcaaggttg cagccagcag 720 780 ctttccgtct ttggaggatc ggacagaggg gctttccttc cgtgggagga tggaaacaca ctccttcagt ttcatttctt ctcttttctt aaggcaagaa gtaaggcgtg actgctccct 840 858 ttctgtggag tcatccat

<210> 9

<211> 285

<212> PRT

<213> Homo sapiens

<400> 9

Met Asp Asp Ser Thr Glu Arg Glu Gln Ser Arg Leu Thr Ser Cys Leu 1 5 10 15

Lys Lys Arg Glu Glu Met Lys Leu Lys Glu Cys Val Ser Ile Leu Pro 20 25 30

Arg Lys Glu Ser Pro Ser Val Arg Ser Ser Lys Asp Gly Lys Leu Leu 35 40 45

Ala Ala Thr Leu Leu Leu Ala Leu Leu Ser Cys Cys Leu Thr Val Val 50 60

Ser Phe Tyr Gln Val Ala Ala Leu Gln Gly Asp Leu Ala Ser Leu Arg 70 75 80

Ala Glu Leu Gln Gly His His Ala Glu Lys Leu Pro Ala Gly Ala Gly 85 90 95

Ala Pro Lys Ala Gly Leu Glu Glu Ala Pro Ala Val Thr Ala Gly Leu
100 105 110

Lys I		Phe 115	Glu	Pro	Pro	Ala	Pro 120	Gly	Glu	Gly	Asn	Ser 125	Ser	Gln	Asn	
Ser An	rg 30	Asn	Lys	Arg	Ala	Val 135	Gln	Gly	Pro	Glu	Glu 140	Thr	Val	Thr	Gln	
Asp Cy	ys	Leu	Gln	Leu	Ile 150	Ala	Asp	Ser	Glu	Thr 155	Pro	Thr	Ile	Gln	Lys 160	
Gly Se	er	Tyr	Thr	Phe 165	Val	Pro	Trp	Leu	Leu 170	Ser	Phe	Lys	Arg	Gly 175	Ser	
Ala Le	eu	Glu	Glu 180	Lys	Glu	Asn	Lys	Ile 185	Leu	Val	Lys	Glu	Thr 190	Gly	Tyr	
Phe Pl		Ile 195	Tyr	Gly	Gln	Val	Leu 200	Tyr	Thr	Asp	Lys	Thr 205	Tyr	Ala	Met	
Gly H	is 10	Leu	Ile	Gln	Arg	Lys 215	Lys	Val	His	Val	Phe 220	Gly	Asp	Glu	Leu	
Ser Lo 225	eu	Val	Thr	Leu	Phe 230	Arg	Cys	Ile	Gln	Asn 235	Met	Pro	Glu	Thr	Leu 240	
Pro A	.sn	Asn	Ser	Cys 245	Tyr	Ser	Ala	Gly	Ile 250	Ala	Lys	Leu	Glu	Glu 255	Gly	
Asp G	lu	Leu	Gln 260	Leu	Ala	Ile	Pro	Arg 265	Glu	Asn	Ala	Gln	Ile 270	Ser	Leu	
Asp G	ly	Asp 275	Val	Thr	Phe	Phe	Gly 280	Ala	Leu	Lys	Leu	Leu 285				
<210><211><211><212><213>	1 D	.0 .348 NA Iomo	sap	iens	·											
<400>		.0	-+ 001		~~ ~·	act o	7220	a ta	a++ <i>a</i> :	t cct	a a a	acta:	aaa .	a a a a	ataasa	60
															gtggag	120
															gtaaca	180
_															tgctac	240
accet		(-yca	cc a	-cyc	y-		a	LLLY		-9-00			- 3	2.10

cccactcttg	aaaccacagc	tgttggcagg	gtccccagct	catgccagcc	tcatctcctt	300
tcttgctagc	ccccaaaggg	cctccaggca	acatgggggg	cccagtcaga	gagccggcac	360
tctcagttgc	cctctggttg	agttgggggg	cagctctggg	ggccgtggct	tgtgccatgg	420
ctctgctgac	ccaacaaaca	gagctgcaga	gcctcaggag	agaggtgagc	cggctgcagg	480
ggacaggagg	cccctcccag	aatggggaag	ggtatccctg	gcagagtctc	ccggagcaga	540
gttccgatgc	cctggaagcc	tgggagaatg	gggagagatc	ccggaaaagg	agagcagtgc	600
tcacccaaaa	acagaagaag	cagcactctg	tcctgcacct	ggttcccatt	aacgccacct	660
ccaaggatga	ctccgatgtg	acagaggtga	tgtggcaacc	agctcttagg	cgtgggagag	720
gcctacaggc	ccaaggatat	ggtgtccgaa	tccaggatgc	tggagtttat	ctgctgtata	780
gccaggtcct	gtttcaagac	gtgactttca	ccatgggtca	ggtggtgtct	cgagaaggcc	840
aaggaaggca	ggagactcta	ttccgatgta	taagaagtat	gccctcccac	ccggaccggg	900
cctacaacag	ctgctatagc	gcaggtgtct	tccatttaca	ccaaggggat	attctgagtg	960
tcataattcc	ccgggcaagg	gcgaaactta	acctctctcc	acatggaacc	ttcctggggt	1020
ttgtgaaact	gtgattgtgt	tataaaaagt	ggctcccagc	ttggaagacc	agggtgggta	1080
catactggag	acagccaaga	gctgagtata	taaaggagag	ggaatgtgca	ggaacagagg	1140
catcttcctg	ggtttggctc	cccgttcctc	acttttccct	tttcattccc	accccctaga	1200
ctttgatttt	acggatatct	tgcttctgtt	ccccatggag	ctccgaattc	ttgcgtgtgt	1260
gtagatgagg	ggcgggggac	gggcgccagg	cattgttcag	acctggtcgg	ggcccactgg	1320
aagcatccag	aacagcacca	ccatctta				1348

<400> 11

taagatggtg gtgctgttct ggatgcttcc agtgggcccc gaccaggtct gaacaatgcc 60
tggcgcccgt cccccgcccc tcatctacac acacgcaaga attcggagct ccatggggaa 120
cagaagcaag atatccgtaa aatcaaagtc tagggggtgg gaatgaaaag ggaaaagtga 180
ggaacgggga gccaaaccca ggaagatgcc tctgttcctg cacattccct ctcctttata 240
tactcagctc ttggctgtct ccagtatgta cccaccctgg tcttccaagc tgggagccac 300
tttttataac acaatcacag tttcacaaac cccaggaagg ttccatgtgg agagaggtta 360

<210> 11

<211> 1348

<212> DNA

<213> Homo sapiens

agtttcqccc ttqcccgqgg aattatgaca ctcagaatat ccccttggtg taaatggaag 420 acacctqcqc tataqcaqct gttgtaggcc cggtccgggt gggagggcat acttcttata 480 categgaata gagteteetg cetteettgg cettetegag acaceacetg acceatggtg 540 aaagtcacgt cttgaaacag gacctggcta tacagcagat aaactccagc atcctggatt 600 eggacaccat atcettggge etgtaggeet etcecaegee taagagetgg ttgecacate 660 acctctqtca catcqqaqtc atccttqqaq qtqqcqttaa tqqqaaccaq qtqcaqqaca 720 780 qaqtqctqct tcttctqttt ttqggtqagc actgctctcc ttttccggga tctctcccca 840 ttctcccagg cttccagggc atcggaactc tgctccggga gactctgcca gggataccct tecceattet gggagggge teetgteee tgeageegge teacetetet cetgaggete 900 tqcaqctctq tttqttqqqt caqcaqaqcc atggcacaag ccacggcccc cagagctgcc 960 ccccaactca accagagggc aactgagagt gccggctctc tgactgggcc ccccatgttg 1020 cctggaggcc ctttgggggc tagcaagaaa ggagatgagg ctggcatgag ctggggaccc 1080 1140 tgccaacagc tgtggtttca agagtggggt agcaaggagg tggcggggcg ggtaagggta cgggcagtgg tgcagaaggg aagaaggttg ttacgcaagg agaaataaaa aggaacttga 1200 aaataaaaag gagggaggag gaaagcaagc taagggtact gttagtgctc ctggcactcc 1260 qtcqtqqqqc cagcqttqcc ttgagaccct ccaccctccc tcagcctcag gagaattagg 1320 1348 ttccaqtccc tctaqqaaqc ctcqtacc

<210> 12

<211> 250

<212> PRT

<213> Homo sapiens

<400> 12

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro Gly
1 5 10 15

Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala Leu Trp 20 25 30

Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala Met Ala Leu 35 40 45

Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg Glu Val Ser Arg 50 55 60

Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly Glu Gly Tyr Pro Trp 65 70 75 80

Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala Leu Glu Ala Trp Glu Asn 85 90 95

Gly Glu Arg Ser Arg Lys Arg Arg Ala Val Leu Thr Gln Lys 100 105 110

Lys Gln His Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser Lys 115 120 125

Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg Arg 130 135 140

Gly Arg Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp Ala 145 150 155 160

Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe Gln Asp Val Thr Phe 165 170 175

Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu Thr
180 185 190

Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala Tyr
195 200 205

Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp Ile 210 215 220

Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser Pro 225 230 235 240

His Gly Thr Phe Leu Gly Phe Val Lys Leu 245 250

<210> 13

<211> 1239

<212> DNA

<213> Homo sapiens

<400> 13

agcatcctga gtaatgagtg gcctgggccg gagcaggcga ggtggccgga gccgtgtgga

ccaqqaqqaq cgctqqtcac tcagctgccg caaggagcaa ggcaagttct atgaccatct 120 180 cctgagggac tgcatcagct gtgcctccat ctgtggacag caccctaagc aatgtgcata 240 cttctgtgag aacaagctca ggagcccagt gaaccttcca ccagagctca ggagacagcg 300 gagtggagaa gttgaaaaca attcagacaa ctcgggaagg taccaaggat tggagcacag 360 aggeteagaa geaagteeag eteteeeggg getgaagetg agtgeagate aggtggeeet 420 ggtctacage acgetgggge tetgcetgtg tgccgtcctc tgctgcttcc tggtggcggt ggcctgcttc ctcaagaaga ggggggatcc ctgctcctgc cagccccgct caaggccccg 480 tcaaagtccg gccaagtctt cccaggatca cgcgatggaa gccggcagcc ctgtgagcac 540 atcccccqaq ccaqtqqaqa cctqcaqctt ctgcttccct gagtgcaggg cgcccacgca 600 660 ggagagegea gteaegeetg ggaeeeeega eeceaettgt getggaaggt gggggtgeea 720 caccaggacc acagtectge ageettgeec acacatecea gacagtggee ttggeattgt 780 gtgtgtgcct gcccaggagg ggggcccagg tgcataaatg ggggtcaggg agggaaagga 840 900 tatgaggaga gagagacaga ggaggcagaa agggagagaa acagaggaga cagagaggga 960 gagagagaca gagggagaga gagacagagg ggaagagagg cagagaggga aagaggcaga 1020 gaaggaaaga gacaggcaga gaaggagaga ggcagagagg gagagaggca gagagggaga 1080 ctctgagtcc cagttcccag tgcagctgta ggtcgtcatc acctaaccac acgtgcaata 1140 aaqteetegt geetgetget cacageeeee gagageeeet eeteetggag aataaaacet 1200 1239 ttggcagctg cccttcctca aaaaaaaaaa aaaaaaaaa

Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg Val Asp
1 10 15

Gln Glu Glu Arg Trp Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe 20 25 30

<210> 14

<211> 247

<212> PRT

<213> Homo sapiens

<400> 14

Tyr Asp His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys Gly 40 · Gln His Pro Lys Gln Cys Ala Tyr Phe Cys Glu Asn Lys Leu Arg Ser Pro Val Asn Leu Pro Pro Glu Leu Arg Arg Gln Arg Ser Gly Glu Val Glu Asn Asn Ser Asp Asn Ser Gly Arg Tyr Gln Gly Leu Glu His Arg Gly Ser Glu Ala Ser Pro Ala Leu Pro Gly Leu Lys Leu Ser Ala Asp Gln Val Ala Leu Val Tyr Ser Thr Leu Gly Leu Cys Leu Cys Ala Val Leu Cys Cys Phe Leu Val Ala Val Ala Cys Phe Leu Lys Lys Arg Gly Asp Pro Cys Ser Cys Gln Pro Arg Ser Arg Pro Arg Gln Ser Pro Ala Lys Ser Ser Gln Asp His Ala Met Glu Ala Gly Ser Pro Val Ser Thr Ser Pro Glu Pro Val Glu Thr Cys Ser Phe Cys Phe Pro Glu Cys Arg Ala Pro Thr Gln Glu Ser Ala Val Thr Pro Gly Thr Pro Asp Pro Thr Cys Ala Gly Arg Trp Gly Cys His Thr Arg Thr Thr Val Leu Gln Pro Cys Pro His Ile Pro Asp Ser Gly Leu Gly Ile Val Cys Val Pro Ala Gln Glu Gly Gly Pro Gly Ala

<210> 15

- <211> 595
- <212> DNA
- <213> Homo sapiens

<400> 15

cgtcggcacc	atgaggcgag	ggccccggag	cctgcggggc	agggacgcgc	cagcccccac	60
gccctgcgtc	ccggccgagt	gcttcgacct	gctggtccgc	cactgcgtgg	cctgcgggct	120
cctgcgcacg	ccgcggccga	aaccggccgg	ggccagcagc	cctgcgccca	ggacggcgct	180
gcagccgcag	gagtcggtgg	gcgcgggggc	cggcgaggcg	gcgctgcccc	tgcccgggct	240
gctctttggc	gcccccgcgc	tgctgggcct	ggcactggtc	ctggcgctgg	tcctggtggg	300
tctggtgagc	tggaggcggc	gacagcggcg	gcttcgcggc	gcgtcctccg	cagaggcccc	360
cgacggagac	aaggacgccc	cagageceet	ggacaaggtc	atcattctgt	ctccgggaat	420
ctctgatgcc	acageteetg	cctggcctcc	tcctggggaa	gacccaggaa	ccaccccacc	480
tggccacagt	gtccctgtgc	cagccacaga	gctgggctcc	actgaactgg	tgaccaccaa	540
gacggccggc	cctgagcaac	aatagcaggg	agccggcagg	aggtggcccc	tgccc	595

- <210> 16
- <211> 184
- <212> PRT
- <213> Homo sapiens

<400> 16

Met Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala Pro 1 5 10 15

Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg His Cys
20 25 30

Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro Ala Gly Ala 35 40 45

Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro Gln Glu Ser Val Gly 50 60

Ala Gly Ala Gly Glu Ala Ala Leu Pro Leu Pro Gly Leu Leu Phe Gly 65 70 75 80

Ala Pro Ala Leu Leu Gly Leu Ala Leu Val Leu Ala Leu Val Leu Val 85 90 95

Gly Leu Val Ser Trp Arg Arg Arg Gln Arg Arg Leu Arg Gly Ala Ser 100 105 Ser Ala Glu Ala Pro Asp Gly Asp Lys Asp Ala Pro Glu Pro Leu Asp 120 125 115 Lys Val Ile Ile Leu Ser Pro Gly Ile Ser Asp Ala Thr Ala Pro Ala 130 135 Trp Pro Pro Pro Gly Glu Asp Pro Gly Thr Thr Pro Pro Gly His Ser 150 155 160 145 Val Pro Val Pro Ala Thr Glu Leu Gly Ser Thr Glu Leu Val Thr Thr 170 Lys Thr Ala Gly Pro Glu Gln Gln 180 <210> 17 <211> 265 <212> PRT <213> Homo sapiens <400> 17 Met Ser Gly Leu Gly Arg Ser Arg Arg Gly Gly Arg Ser Arg Val Asp Gln Glu Glu Arg Phe Pro Gln Gly Leu Trp Thr Gly Val Ala Met Arg 20 25 30 Ser Cys Pro Glu Glu Gln Tyr Trp Asp Pro Leu Leu Gly Thr Cys Met 35 40 Ser Cys Lys Thr Ile Cys Asn His Gln Ser Gln Arg Thr Cys Ala Ala 50 55 Phe Cys Arg Ser Leu Ser Cys Arg Lys Glu Gln Gly Lys Phe Tyr Asp 75 65 70 His Leu Leu Arg Asp Cys Ile Ser Cys Ala Ser Ile Cys Gly Gln His 85

Pro Lys Gln Cys Ala Tyr Phe Cys Glu Asn Lys Leu Arg Ser Pro Val

105

100

Asn	Leu	Pro 115	Pro	Glu	Leu	Arg	Arg 120	Gln	Arg	Ser	Gly	Glu 125	Val	Glu	Asn
Asn	Ser 130	Asp	Asn	Ser	Gly	Arg 135	Tyr	Gln	Gly	Leu	Glu 140	His	Arg	Gly	Ser
Glu 145	Ala	Ser	Pro	Ala	Leu 150	Pro	Gly	Leu	Lys	Leu 155	Ser	Ala	Asp	Gln	Val 160
Ala	Leu	Val	Tyr	Ser 165	Thr	Leu	Gly	Leu	Cys 170	Leu	Cys	Ala	Val	Leu 175	Cys
Cys	Phe	Leu	Val 180	Ala	Val	Ala	Cys	Phe 185	Leu	Lys	Lys	Arg	Gly 190	Asp	Pro
Cys	Ser	Cys 195	Gln	Pro	Arg	Ser	Arg 200	Pro	Arg	Gln	Ser	Pro 205	Ala	Lys	Ser
Ser	Gln 210	Asp	His	Ala	Met	Glu 215	Ala	Gly	Ser	Pro	Val 220	Ser	Thr	Ser	Pro
Glu 225	Pro	Val	Glu	Thr	Cys 230	Ser	Phe	Cys	Phe	Pro 235	Glu	Cys	Arg	Ala	Pro 240
Thr	Gln	Glu	Ser	Ala 245	Val	Thr	Pro	Gly	Thr 250	Pro	Asp	Pro	Thr	Cys 255	Ala
Gly	Arg	Thr	Ala 260	Pro	Pro	Arg	Glu	Gly 265							