JUSTIFIQUEU TOTES LES RESPOSTES

- 1. (a) Doneu la definició d'arbre i 3 caracteritzacions.
 - (b) Demostreu que en tot graf d'ordre $n \geq 2$ hi ha almenys dos vèrtexs del mateix grau.
- 2. Sigui $k \geq 3$. Considereu un graf G_k que té exactament dos components connexos: un és isomorf a $K_{1,k-1}$ i l'altre al graf trajecte T_k .
 - a) Calculeu el mínim nombre d'arestes que cal afegir al graf G_k per a obtenir un graf G que sigui eulerià.
 - b) És el graf G de l'apartat anterior hamiltonià? Si no ho és, quin és el mínim nombre d'arestes que cal afegir a G per a fer-ho hamiltonià? (no cal que segueixi sent eulerià).
- 3. Sigui $K_{n,n}$, $n \ge 2$, el graf bipartit complet on els vèrtexs d'una part estable estan etiquetats de 1 a n, i els vèrtexs de l'altra part estable estan etiquetats de n + 1 a 2n.
 - (a) Apliqueu els algorismes DFS i BFS a $K_{n,n}$ començant pel vèrtex 1 i seguint l'ordre numèric dels vèrtexs. Doneu una representació gràfica dels arbres obtinguts sense que es tallin les arestes.
 - (b) Per a cada un dels dos arbres generadors de $K_{n,n}$ obtinguts a l'apartat anterior doneu el radi, el diàmetre i el conjunt dels vèrtexs centrals.
- 4. Sigui $r \ge 1$ un enter. Sigui $H_r = (V_r, A_r)$ el graf tal que V_r és el conjunt de les paraules de longitud r amb l'alfabet $\Sigma = \{0, 1, 2\}$ i A_r està definit d'acord a la regla següent: dos paraules són adjacents si i sols si difereixen en una única posició. Per exemple, per a r = 2 el conjunt de vèrtexs és $V_2 = \{00, 01, 02, 10, 11, 12, 20, 21, 22\}$ i el conjunt de vèrtexs adjacents al vèrtex 00 és $\{01, 02, 10, 20\}$.
 - a) Calculeu l'ordre, la sequència de graus i la mida del graf H_r .
 - b) És H_r un graf bipartit per a algun valor de r?

Informacions

- Durada de l'examen: 1h 45m
- Tots els problemes valen el mateix
- S'ha de respondre amb tinta blava o negra.
- Cal lliurar els 4 problemes per separat.
- Sense llibres, ni apunts, ni calculadores
- Publicació de les notes: 13/11/2018. Revisió de l'examen: 14/11/2018 a les 12:15 (s'informarà del lloc al racó).