4.3.7d Establish the following divisibility criteria, an integer is divisible by 5 if and only if its units digit is 0 or 5

Proof. Let $N = a_m 10^m + \dots a_1 10 + a_0, x, m \in \mathbb{Z}$. Notice $10 \equiv 0 \pmod{5}$. Then, for some $j \in \mathbb{Z}^+ 10^j \equiv 0 \pmod{5}$.

$$N \equiv a_m 0^m + \dots a_1 x 0 + a_0 \qquad a_0 \pmod{5}$$

Therefore, N is divisible by 5 if its last digit is 0 or 5

4.3.11 Assuming 495 divides 273x49y5, obtain the digits x and y. Notice $495 = 11 \cdot 9 \cdot 5$. Thus, $495 \equiv 0 \pmod{9}$ and as 495 divides $273x49y, 273x49y \equiv 0 \pmod{9}$. Then $(2+7+3+x+4+9+y+5) = 30+x+y \equiv 3+x+y \pmod{9}$. Thus, $x+y \equiv 0 \pmod{9}$ or $x+y \equiv 15 \pmod{9}$.

Notice $495 \equiv 0 \pmod{11}$. As $495 \text{ divides } 273x49y, 273x49y \equiv 0 \pmod{11}$.

$$5 - y + 9 - 4 + x - 3 + 7 - 2 = x - y + 12 \equiv 0 \pmod{11}$$

 $x - y \equiv -1 \pmod{11}$ or $y - x \equiv 1 \pmod{11}$

Then as x + y = 15 and y - x = 1, we result in 2y = 16.

Therefore, y = 8 and x = 7

4.3.16 Show that 2^n divides an integer N if and only if 2^n divides the number made of the last n digits of N.

Proof. Let $N = a_{n+j}10^{n+j} + \cdots + a_n10^n + a_{n-1}10^{n-1} + \cdots + a_110 + a_0$ be the decimal representation for $N, n \ge 1, j \ge 0$ Assume 2^n divides the last n digits of N. Then, $2^n | (a_{n-1}10^{n-1} + \cdots + a_110 + a_0)$ Thus,

$$a_{n+j}10^{n+j} + \dots + a_n10^n = 10^n (a_{n+j}10^j + \dots + a_n) = 2^n 5^n (a_{n+j}10^j + \dots + a_n)$$

So, $2^n | (a_{n+j} + 10^{n+j} + \cdots + a_n 10^n)$. From the previous statement and that fact of $2^n | (a_{n-1} 10^{n-1} + \cdots + a_1 10 + a_0)$

$$2^{n}|(a_{n+j}10^{n+j}+\cdots+a_{n}10^{n}+a_{n-1}10^{n-1}+\cdots+a_{o}).$$

Therefore $2^n|N$

Suppose $2^n | N$ As $2^n | 2^n 5^n$, then $2^n | 10^n (a_{n+j} 10^j + \cdots + a_n)$.

Thus, $2^n | (a_{n+i} 10^{n+j} + \cdots + a_n 10^n) |$

Then,
$$2^{n}|N - (a_{n+j}10^{n+j} + \dots + a_n10^n) \Rightarrow 2^{n}|(a_{n-1}10^{n-1} + \dots + a_110 + a_0)$$

Therefore, 2^n divides the last n digits of N.

4.3.28 When printing the ISBN $a_1a_2\cdots a_9$, two unequal digits were transposed. Show that the check digits detected this errors.

 $N = a_1 a_2 \cdots a_k a_{k+1} \cdots a_9, M = a_1 a_2 \cdots a_{k+1} a_k \cdots a_9$ Check digits of N is

$$N[a_{10}] \equiv a_1 + 2a_2 + \dots + ka_k + (k+1)a_{k+1} + \dots + 9a_9 \pmod{11}$$

Check digits of M is

$$M[a_{10}] \equiv a_1 + 2a_2 + \dots + ka_{k+1} + (k+1)a_k + \dots + 9a_9 \pmod{11}$$

Let $N[a_{10}] = M[a_{10}]$, then

$$a_1 + 2a_2 + \dots + ka_k + (k+1)a_{k+1} + \dots + 9a_9 \equiv a_1 + 2a_2 + \dots + ka_{k+1} + (k+1)a_k + \dots + 0a_9 \pmod{11}$$

$$\Rightarrow ka_k + (k+1)a_{k+1} \equiv ka_{k+1} + (k+1)a_k \pmod{11}$$

$$\Rightarrow ka_k + ka_{k+1} + a_{k+1} \equiv ka_{k+1} + ka_k + a_k \pmod{11}$$

$$\Rightarrow a_{k+1} \equiv a_k \pmod{11}$$

Therefore, $11|a_{k+1}-a_k\Rightarrow a_{k+1}-a_k=0\Rightarrow a_{k+1}=a_k$ since $a_k,a_{k+1}\leq 9$