Natural Language Processing

Problem Set 2: Analytical

Linan Qiu (lq2137)

October 5, 2014

1. PCFG Transformation to Chomsky Normal Form

a. Transformation Algorithm

The following recursive algorithm reduces rules with more than 2 non-terminals to rules with 2 non-terminals (Chomsky Normal Form)

- Let rule $A \to B_1B_2B_3...B_n$
 - If n = 2 (e.g. $A \rightarrow B_1B_2$), leave it as it is
 - If n > 2,
 - * Delete rule $A \to B_1...B_n$
 - * Create new rule $A \to B_1C$ where C is a newly created non-terminal. Set $P(A \to B_1C) = P(A \to B_1B_2B_3...B_n)$
 - * Create new rule $C \to B_2...B_n$. Set $P(C \to B_2...B_n) = 1$ since we are sure that this newly created rule goes only to the subsequence originally on the right
 - * Apply this algorithm on rule $C \to B_2...B_n$ until n = 2
- Set $P(A \to B_1B_2B_3...B_n) = P(A \to B_1C_1)P(C_1 \to B_2C_2)...P(C_{n-2} \to B_{n-1}B_n)$

b. Transforming G'

There are 3 rules we need to expand

- $S \rightarrow NP NP VP$
 - S \rightarrow NP NP-VP, P = 0.3

$$-$$
 NP-VP \rightarrow NP VP, $P=1$

- $VP \rightarrow Vt NP PP$
 - VP \rightarrow Vt NP-PP, P=0.2
 - NP-PP \rightarrow NP PP, P=1
- NP \rightarrow DT NN NN
 - NP \rightarrow DT NN-NN, P=0.3
 - NN-NN \rightarrow NN NN, P=1

Hence the resulting non-terminal rules for grammar ${\cal G}$ is

	Probability			
S	\rightarrow	NP	VP	0.7
\mathbf{S}	\rightarrow	NP	NP-VP	0.3
NP-VP	\rightarrow	NP	VP	1
VP	\rightarrow	Vt	NP	0.8
VP	\rightarrow	Vt	NP-PP	0.2
NP-PP	\rightarrow	NP	PP	1
NP	\rightarrow	DT	NN-NN	0.3
NN-NN	\rightarrow	NN	NN	1
NP	\rightarrow	NP	PP	0.7
PP	\rightarrow	IN	NP	1.0

Table 1: Non-Terminal Rules

The terminal rules are unchanged.

2. Treebank

a. PCFG

		Rule		Probability
S	\rightarrow	NP	VP	1
SBAR	\rightarrow	COMP	S	1
VP	\rightarrow	V1	SBAR	$\frac{1}{3}$
VP	\rightarrow	V2		$\frac{1}{3}$
VP	\rightarrow	VP	ADVP	$\frac{1}{3}$
V1	\rightarrow	said		$\frac{1}{3}$
V1	\rightarrow	declared	$\frac{1}{3}$	
V1	\rightarrow	pronounced	$\frac{1}{3}$	
V2	\rightarrow	snored	$\frac{1}{3}$	
V2	\rightarrow	ran	$\frac{1}{3}$	
V2	\rightarrow	swarm	$\frac{1}{3}$	
ADVP	\rightarrow	loudly		$\frac{1}{3}$
ADVP	\rightarrow	quickly		$\frac{1}{3}$
ADVP	\rightarrow	elegantly		$\frac{1}{3}$
COMP	\rightarrow	that		1
NP	\rightarrow	John		$\frac{1}{6}$
NP	\rightarrow	Sally		$\frac{1}{3}$
NP	\rightarrow	Bill		$\frac{1}{6}$
NP	\rightarrow	Fred		$\frac{1}{6}$
NP	\rightarrow	Jeff		$\frac{1}{6}$

Table 2: PCFG for Treebank

b. Parse Trees

Figure 1: Parse Tree 1: Jeff accusing Fred of snoring loudly.

$$P_{\tau_{1}} = [P(S \rightarrow NP \ VP) * P(VP \rightarrow V1 \ SBAR) * P(SBAR \rightarrow COMP \ S) * P(S \rightarrow NP \ VP)$$

$$* P(VP \rightarrow VP \ ADVP) * P(VP \rightarrow V2)$$

$$* P(NP \rightarrow Jeff) * P(V1 \rightarrow pronounced) * P(COMP \rightarrow that) * P(NP \rightarrow Fred)$$

$$* P(V2 \rightarrow snored) * P(ADVP \rightarrow loudly)]$$

$$= \left[1 * \frac{1}{3} * 1 * 1 * \frac{1}{3} * \frac{1}{3} * \frac{1}{6} * \frac{1}{3} * 1 * \frac{1}{6} * \frac{1}{3} * \frac{1}{3}\right]$$

$$= \frac{1}{26244}$$

Figure 2: Parse Tree 2: Jeff saying loudly that Fred snored.

$$\begin{split} P_{\tau_1} &= [P(\mathbf{S} \to \mathbf{NP} \ \mathbf{VP}) * P(\mathbf{VP} \to \mathbf{VP} \ \mathbf{ADVP}) * P(\mathbf{VP} \to \mathbf{V1} \ \mathbf{SBAR}) * P(\mathbf{SBAR} \to \mathbf{COMP} \ \mathbf{S}) \\ &* P(\mathbf{S} \to \mathbf{NP} \ \mathbf{VP}) * P(\mathbf{VP} \to \mathbf{V2}) \\ &* P(\mathbf{NP} \to \mathbf{Jeff}) * P(\mathbf{V1} \to \mathbf{pronounced}) * P(\mathbf{COMP} \to \mathbf{that}) * P(\mathbf{NP} \to \mathbf{Fred}) \\ &* P(\mathbf{V2} \to \mathbf{snored}) * P(\mathbf{ADVP} \to \mathbf{loudly})] \\ &= \left[1 * \frac{1}{3} * 1 * 1 * \frac{1}{3} * \frac{1}{3} * \frac{1}{6} * \frac{1}{3} * 1 * \frac{1}{6} * \frac{1}{3} * \frac{1}{3}\right] \\ &= \frac{1}{26244} \end{split}$$

c. Modifying Non-Terminals

Modify rule VP \rightarrow VP ADVP to VP \rightarrow V2 ADVP such that it is impossible for ADVP to follow a verb phrase (and only follows single verbs, hence eliminating "high" attachments.)

This will allow the first parse tree in Figure 1 to retain its probability since the ADVP portion of the parse tree will simply be modified to $VP \rightarrow V2$ ADVP. However, the second parse tree in Figure 2 will have a probability of 0 since $VP \rightarrow VP$ ADVP does not exist anymore, hence the ADVP loudly cannot possibly refer to the entire VP "pronounced that Fred snored".

3. CKY Algorithm

Since the tree is balanced and since sentences are only of length $n = 2^x$, then instead of searching over all s, we can just divide the sentence length into half each time. Hence, the algorithm can be

• Base Case: for all i = 1...n, for all $X \in N$

$$\pi(i, i, X) = \begin{cases} q(X \to x_i), & \text{if } X \to x_i \in R\\ 0, & \text{otherwise} \end{cases}$$

- Recursive Case:
 - For all $X \in \mathbb{N}$, calculate

$$\pi(i, j, X) = \max_{X \to YZ \in R} *\pi\left(i, \frac{j}{2}, Y\right) *\pi\left(\frac{j}{2} + 1, j, Z\right)$$

• Return:

$$\pi(1, n, S) = \max_{t \in \tau_G(s)} p(t)$$

This speeds up the algorithm significantly, giving it a complexity of $O(\log n|N|^3)$ (please don't kill me if I get the complexity wrong).