DT228/2, DT282/2 Databases I Getting Started with SQL

Objectives

The objectives of this lab are to:

- To understand the link between ERD creation and creating data structures
- To allow you to become more familiar with using SQL to create tables and insert data
- To allow you to become familiar with including value constraints in your create statements.

Contents

Objectives	1
1.Build an ERD	2
2.Create Tables and Populate them In SQL Developer	3
3. Inserting Data	3
4. Testing your implementation	3
5.Reverse Engineering a Data Model from SQL	

1. Build an ERD

You are building a simple database to allow the storage of a number of events scheduled in a sports competition and the competitors competing in these competitions.

Below is a simple grid outlining the enrolment in a number of sporting events:

Sport Details		Event Details						
Code	Names	EventCode	Name	Date	CompetitorNo	CompetitorName	CompetitorEmail	FinishingPosition
1	Athletics	1	Mens 100m Final	14/08/2016	1	Usain Bolt	UB@jam.com	1
					2	Justin Gatlin	JG@usa.com	2
					3	Andre De Grasse	ADG@can.com	3
1	Athletics	2	Womens 100m Final	13/08/2016	4	Elaine Thompson	ET@jam.com	1
					5	Tori Bowie	TB@usa.com	2
					6	Shelly-Ann Fraser-Price	SAFP@jam.com	3
2	Swimming	3	Mens 100m Freestyle Final	10/08/2016	7	Kyle Chambers	KC@aus.com	1
					8	Peter Timmers	PT@bel.com	2
					9	Nathan Adrian	NA@usa.com	3

- Build the logical-physical ERD
 - o Hint: You should end up with 4 tables in your final physical design.
 - You need a composite key for one entity/table (competitors participating in events).

2. Create Tables and Populate them In SQL Developer

- 1. Work out the drop and create statements needed to create your basic table structures with primary keys included.
- 2. Include you foreign key constraints;
- 3. Add not null constraints to all relevant columns;
- 4. Include the following value constraints:
 - a. Sport, event and competitor names cannot be null
 - b. Sport name must be unique
 - c. All email addresses must contain the @ symbol and end with .com
 - d. All email addresses must be unique
 - e. Finishing position must be between 1 and 8 (we are only interested in storing the top 8 finishers)
- 1. To save your work

Use either the File menu or the Save icon to save.

Create a directory on your U drive which you will use to store the work for this module. Save the script in there.

3. Inserting Data

Insert the data provided above

4. Testing your implementation

- 1. Find the details of all events.
- 2. Find the names of all competitors.
- 3. Find the Competitor no of all competitors who finished in position 1 or position 3 in their events include the position in the output.
- 4. Find the names of all competitors with usa in their email address. Include the email in the output.

5. Reverse Engineering a Data Model from SQL

- 1. Save your SQL to create the tables for Peters Pets as a .sql file.
- 2. Open ERWIN and create a logical/physical model.
- 3. Change your view to Physical/
- 4. From the Actions menu choose Reverse Engineer, choose logical/physical from the first dialog. The following screen will appear

- 5. Click on the Script File Radio button and then click Browse. Navigate to where you have saved the SQL file and select it.
- 6. Click Next and ERwin will generate a data model from your Create sql.