Data Exploration Part 1

Lesson 1

Inter Quartile Range and Probability Density Functions

Data Exploration (Descriptive Statistics)

- > What is it?
 - > First look at your data
 - > Summary Statistics
- > Purpose: To gain a clear understanding of your data
 - What are the dimensions?
 - What columns are of interest?
 - Missing data?
 - Outliers?
 - Patterns?
 - Need to reformat?
 - Data types

Inter Quartile Range (Q3 – Q1)

- > "Middle 50%" = 75% 25th percentile
- > Measures variability
- > Identifies outliers
 - > below Q1 1.5 IQR or above Q3 + 1.5 IQR

Cumulative Distribution Function

Probability that some random variable X will be less than or equal to a certain value:

- > Probability, so 0 < x < 1
- > Continuous and discrete variables
- > PMF can only be used on discrete
 - > Takes as input x, returns vector from [0,1] of probabilities "p"
 - > Form of a staircase
- > Jumps at each x(k)

$$F(x)=P(X \le x)$$

 $F(x)=P(X \le x)$
 $F(x)=P(X \le x)$

Quantiles of Numerical Vectors

- Quantiles are inverse values of the CDF (cumulative distribution function).
- Inverse tells you what value of x would make F(x) return a value "p"
- Standard Normal: (shown in figure)
 - Quantile(0.5) = 0, means at x=0, 50% of the distribution lies to the left. (This is also the median)
 - Quantile(0.95) = 1.65

Visualizing IQR: Boxplots

Zestimate Error Distribution by Price Quantile

Visualizing Densities/CDFs

Covariance

- Expected value of the differences between x and y and their corresponding mean.
- E.g. if x is above it's mean when y is also above it's mean, then they will have a high covariance.
- Highly interpretable, but not bounded.
- Measures strength and direction of relationship

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X}) * (Y_i - \overline{Y})}{n}$$

Xi = some element in the sample X Xbar = sample mean for x N = number of elements in both samples

Correlation

- > Correlations (pearsons) = scaled covariance
 - Bounded between 0 and 1.
 - Not as interpretable.

$$r = r_{xy} = \frac{\text{Cov}(x, y)}{S_X \times S_y}$$

$$Sx = std dev$$

Visualizing Relationships: Scatterplots

Frequency: Counts

- > Numerical and categorical variables
- > Number of occurrences for an event in a fixed period
 - > Ex. Number of times a gene is expressed after a medical treatment
- > Modeled using Poisson distribution
 - > Assume events are random and uniformly distributed

Poisson Distribution Formula

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

where

$$x = 0, 1, 2, 3, ...$$

 λ = mean number of occurrences in the interval e = Euler's constant ≈ 2.71828

Visualizing Counts

Histogram:
Number of values in bin
Histogram of rnorm(1000)

Bar Plot: Count of Categorical Variables

Skew

Skew

Median

Mean

Right-Skewed (Positive Skewness)

Data Exploration Lab

Introduce Homework

https://canvas.uw.edu/courses/1247402/assig nments/4548604?module item id=8995174