

稳恒磁场的教学要求

- 1.熟练掌握磁感应强度和磁通量的定义和计算: 掌握稳恒磁场的高斯定理; 毕奥一沙伐尔一拉普拉 斯定理:安培环路定律及其应用。
- 2.掌握磁场对运动电荷的作用(洛仑兹力);磁场对载 流导线的作用(安培定律); 磁场对载流线圈的作用 磁力矩:掌握磁力的功。
- 3.掌握物质的磁化; \vec{B} , \vec{H} , \vec{M} 三矢量之间的关系。

一、基本概念:

1. 磁感应强度 \vec{B} (描述磁场强弱及方向的物理量)

$$B = egin{cases} F_{max}/qv & ext{方向: } ec{F}_{max} imes ec{v} \ M_{max}/P_m & ext{方向: 稳定时磁矩的指向} \end{cases}$$

2. 磁通量的定义(描述通过某一面磁场强弱的物理量)

$$\Phi_m = \iint_S \vec{B} \cdot d\vec{S}$$

3. 安培力(磁场对载流导线的作用力)

$$\vec{F} = \int Id\vec{l} \times \vec{B}$$

4. 洛仑兹力(磁场对运动电荷的作用力)

$$\vec{f} = q\vec{v} \times \vec{B}$$

5. 磁力矩(匀强磁场 对载流线圈的作用力矩)

$$\vec{M} = \vec{P}_m \times \vec{B}$$

6. 载流导线、线圈在磁场运动时磁力对其作功

$$A = \int Id\varphi = I(\phi_{m2} - \phi_{m1})$$

7. 磁化强度(描述磁介质磁化强弱及方向的物理量)

$$\begin{cases} \text{顺磁质: } \vec{M} = \frac{\sum \vec{P}_m}{\Delta V} \\ \text{抗磁质: } \vec{M} = \frac{\sum \Delta \vec{P}_m}{\Delta V} \end{cases}$$

8. 磁化面电流强度、磁化面电流密度

$$\vec{j}_s = \vec{M} \times \vec{n}$$
 $\oint_L \vec{M} \cdot d\vec{l} = \sum I_s$

9. 磁场强度、磁化强度、磁感应强度之间的关系

$$\vec{M} = \chi_m \vec{H}$$
 $\mu_r = 1 + \chi_m$ $\vec{B} = \mu \vec{H}$ $\mu = \mu_0 \mu_r$

二、基本定理和定律:

1. 高斯定理:
$$\oint_{s} \vec{B} \cdot d\vec{S} = 0$$
 安培定理: $\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{i} I_{i}$

说明稳恒磁场是无源有旋场(即: 非保守力场)。

2. 毕-萨定律:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3}$$
 运动电荷的磁场: $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^3}$

三、基本运算:

- 1. 磁感应强度B的计算:
- 2. 磁感应强度 \overline{B} 通量的计算:
- 3. 载流导线、线圈、运动电荷在磁场中受到的作用:

$$d\vec{F} = Id\vec{l} \times \vec{B}$$

$$\vec{M} = \vec{P}_m \times \vec{B} \qquad \qquad \vec{f} = q\vec{v} \times \vec{B}$$

$$\vec{f} = q\vec{v} \times \vec{B}$$

- 4. 载流导线、线圈在磁场运动时磁力对其作功: $A = \int$
- 5. 其它物理量的计算

稳 恒 磁 场

$$ec{B}$$

磁感应强度
$$\vec{B}$$

$$\begin{cases} d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3} \\ \vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^3} \end{cases}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^3}$$

场的性质

-无源场
$$\iint_{s} \vec{B} \cdot d\vec{s} = 0$$

有旋场
$$\oint_{I} \vec{H} \cdot d\vec{l} = \sum_{i} I_{i}$$

场与物质 的作用

$$\vec{M} = \lim \frac{\sum \Delta \vec{P}_m}{\Delta V}$$

$$\vec{f} = q\vec{v} \times \vec{B} \qquad A = 0$$

$$A = 0$$

$$\begin{cases}
d\vec{F} = Id\vec{l} \times \vec{B} \\
\vec{M} = \vec{P}_m \times \vec{B}
\end{cases} A = \iint_S Id\phi_m$$

磁感应强度 \bar{B} 的计算

1. 公式
$$\begin{cases} B = \frac{\mu_0 I}{4\pi a} (\cos \theta_1 - \cos \theta_2) \\ B = \frac{\mu_0 R^2 I}{2(R^2 + x^2)^{3/2}} \end{cases}$$

2. 各种形状导线: 利用上述公式计算

 $\vec{B} \rightarrow \langle$

3. 连续分布的载流导体

场无对称性
$$ar{B} = \int dar{B}$$
 运载电流 $egin{aligned} dI = rac{dq}{T} \ ar{B} = \int dar{B} \end{aligned}$

场有对称:利用安培定理(介质)

(补偿法)

磁感应强度 \bar{B} 的通量计算

$$\varphi_m = \iint_{S} \vec{B} \cdot d\vec{s}$$

- 1. 判断磁场的分布
- 2. 选坐标
- 3. 根据坐标找 $d\vec{s}$
- 4.计算通过 $d\vec{s}$ 的通量
- 5. 根据坐标,积分求通过s 面的通量

$$\varphi_m = \iint_{S} \vec{B} \cdot d\vec{s}$$

四、典型例题:

- 一、选择题:
- 1. 关于试验线圈,以下说法正确的是()
- A. 试验线圈是电流极小的线圈.
- B. 试验线圈是线圈所围面积极小的线圈.
- C. 试验线圈是电流足够小,以至于它不影响产生原磁场的电流分布,从而不影响原磁场;同时线圈所围面积足够小,以至于它所处的位置真正代表一点的线圈
- D. 试验线圈是电流极小,线圈所围面积极小的线圈.

2. 一平面试验线圈的磁矩的大小 $p_m=2\times10^{-8}$ Am²,把它放 入待测磁场中的A处,试验线圈如此之小,以致可以认为 它所占据的空间内磁场是均匀的。当 \vec{p}_m 与y轴平行时,线 圈所受磁力矩为零,当 p_{m}^{*} 指向z轴正方向时,线圈受到的磁 力矩的大小为 $M=7.00\times10^{-9}$ Nm,方向沿着x轴负方向,则空 间A点处的磁感应强度的大小为(

A. 0.10T B. 0.18T C. 0.25T D. 0.35T

3. 如图所示,两根长直载流导线垂直纸面放置,电流 I_1 =1A,方向垂直纸面向外;电流 I_2 =2A,方向垂直纸面向内,到P点的距离分别为d、2d,则点的磁感应强度B的方向与x轴的夹角为()

A. 30°

B. 60°

C. 120°

D. 210°

4. 载流的圆形线圈(半径 a_1)与正方形线圈(边长 a_2)通有相同电流I. 若两个线圈的中心、处的磁感强度大小相同,则半径 a_1 与边长 a_2 之比为()。

A. 1:1

B. $\sqrt{2}\pi$: 1

C. $\sqrt{2}\pi$: 4

D. $\sqrt{2}\pi$: 8

5. 如图所示,一个半径为R的均匀带电无限长直圆筒,面 电荷密度为 σ 。该筒以角速度 ω 绕其轴线匀速旋转,则圆筒 内离轴线为r 处的磁感应强度的大小为(

B. $\mu_0 \sigma R \omega$ **C.** $\mu_0 \sigma \frac{R}{r} \omega$ **D.** $\mu_0 \sigma \frac{r}{R} \omega$

- A. ex=2的直线上.
- B. ex > 2的区域.
- C. 在x < 1的区域.
- D. 不在oxy平面上.

A .

7. 均匀磁场的磁感强度垂直于半径为的圆面. 今以该圆周为边线, 作一半球面, 则通过面的磁通量的大小为

A. $2B\pi r^2$

 $\mathbf{C}.$ 0.

B. $B\pi r^2$

D. 无法确定的量.

8. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上. 图A. \sim D. () 曲线表示B-x的关系?

(B)

 (\mathbf{D})

- 9.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布()。
- A. 不能用安培环路定理来计算.
- B. 可以直接用安培环路定理求出.
- C. 只能用毕奥一萨伐尔定律求出.
- D. 可以用安培环路定理和磁感强度的叠加原理求出.

10. 如图所示,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中是正确的

$$\mathbf{A.} \quad \oint_{L_1} \vec{H} \cdot d\vec{l} = 2I$$

$$\mathbf{C}. \qquad \oint_{L_3} \vec{H} \cdot d\vec{l} = -I$$

$$\mathbf{B.} \quad \oint_{L_2} \vec{H} \cdot \mathrm{d}\vec{l} = I$$

$$\mathbf{D.} \quad \oint_{L_4} \vec{H} \cdot \mathrm{d}\vec{l} = -I$$

哈尔滨工程大学 Harbin Engineering University

勤于思考 悟物穷理

11.如图,两根直导线ab和沿cd半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感强度沿图中闭合路径L的积分等于()。

$$\mathbf{A}. \quad \mu_0 \mathbf{I}$$

$$C = \mu_0 I/4$$

B.
$$\frac{1}{3}\mu_0 I$$

D.
$$2\mu_0 I/3$$

- A. 悬线上的拉力将变小
- B. 悬线上的拉力将不变
- C. 磁铁对桌面压力将不变
- D. 磁铁对桌面压力将变小

13. 三条无限长直导线等距地并排安放,导线I、II、III分别 载有1A,2A,3A同方向的电流.由于磁相互作用的结果, 导线I,II,III单位长度上分别受力 F_1 、 F_2 和 F_3 , 如图所示,则 F_1 与 F_2 的比值是

A. 7/16 B. 5/8

C. 7/8

D. 5/4

14. 如图所示,通有电流I的正方形线圈MNOP,边长为a放置在均匀磁场中,已知磁感应强度B沿z轴方向,则线圈所受的磁力矩M为

A. Ia^2B ,沿y负方向

C. Ia ${}^{2}B$, 沿y方向

B. IBa²/2,沿z方向

D. Ia ²B/2, 沿y方向

15. 载电流为I,磁矩为 \vec{p}_m 的线圈,置于磁感应强度为 \vec{B} 的 均匀磁场中。若 \vec{p}_m 与 \vec{B} 方向相同,则通过线圈的磁通量 φ_m 与 线圈所受的磁力矩M的大小为

$$\mathbf{A}. \quad \varphi_m = IBp_m, M = 0$$

$$\mathbf{B.} \quad \varphi_m = \frac{Bp_m}{I}, M = 0$$

$$\mathbf{C.} \quad \varphi_m = IBp_m, M = Bp_m$$

C.
$$\varphi_m = IBp_m, M = Bp_m$$
 D. $\varphi_m = \frac{Bp_m}{I}, M = Bp_m$

16. 两个同心圆线圈,大圆半径为R,通有电流 I_1 ; 小圆半径为r,通有电流 I_2 ,方向如图所示. 若 r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为

$$\mathbf{A.} \quad \frac{\mu_0 \pi I_1 I_2 r^2}{2R}$$

$$\mathbf{C.} \quad \frac{\mu_0 \pi I_1 I_2 R^2}{2r}$$

$$\mathbf{B.} \quad \frac{\mu_0 I_1 I_2 r^2}{2R}$$

17. 两个在同一平面内的同心圆线圈,大圈半径为R ,通有电流 I_1 ,小圈半径为r ,通有电流 I_2 ,电流方向均为顺时针,如图所示,且 r << rR那么,在小线圈从图示位置转到两线圈相互垂直位置的过程中,磁力矩所作的功为

 $\mathbf{A}. \ \mathbf{0}$

$$\mathbf{C.} \quad \frac{\mu_0 I_1 I_2}{2R} \pi r^2$$

B.
$$-\frac{\mu_0 I_1 I_2}{2R} \pi r^2$$

D.
$$-\frac{\mu_0 I_1 I_2}{2R} \pi R^2$$

18. 有一磁矩为 p_m 的载流线圈,置于磁感应强度为 \vec{B} 的均匀磁场中,设 \vec{p}_m 与 \vec{B} 之间的夹角为 φ ,则当线圈 φ = θ 由转到 φ = π 时,外力矩必须做功为

A.
$$A = 0$$

$$\mathbf{B}. \quad A = p_{m}B$$

$$\mathbf{C}$$
, $A = 2p_m B$

$$\mathbf{D.} \quad A = -p_m B$$

19. 一束电子流沿水平面自西向东运动,在电子流的正上方一点P,由于电子运动产生的磁场在P点的方向上为

A. 竖直向上;

B. 竖直向下;

C. 水平向南;

D. 水平向北。

示.则下述情况将会发生

A. 在铜条上a,b两点产生一小电势差,且 $U_a > U_b$

B. 在铜条上a, b两点产生一小电势差,且 $U_a < U_b$

C. 在铜条上产生涡流

D. 电子受到洛伦兹力而减速

二、填空题:

21. 一弯曲的载流导线在同一平面内,电流强度为I,如图所示(O点是半径 R_1 为 R_2 和的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O点磁感应强度 \overline{B} 的大小是

$$B_0 = \frac{\mu_0 I}{4R_1} + \frac{\mu_0 I}{4R_2} - \frac{\mu_0 I}{4\pi R_2}$$

22.如图所示,在宽度为的导体薄片上有电流I沿此导体长度方向流过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P点的磁感强度的大小为 .

 $\mu_0 I/(2d)$

23. 如图所示,一半径为R的带电塑料圆盘,其中半径为r的 阴影部分均匀带正电荷,面电荷密度为+ σ ,其余部分均匀带负电荷,面电荷密度为- σ 当圆盘以角速度 ω 旋转时,测得圆盘中心O点的磁感强度为零,则 R/r=_____.

24.如图,在无限长直载流导线的右侧有面积为 S_1 和 S_2 的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为 S_1 的矩形回路的磁通量与通过面积为 S_2 的矩形回路的磁通量之比为_____.

25. 如图所示,有一半径为a,流过稳恒电流为I的1/4圆弧形载流导线bc,置于均匀外磁场 \overrightarrow{B} 中,则该载流导线所受的安培力大小为

aIB

26. 如图所示,均匀磁场 \vec{B} 中放一均匀带正电荷的圆环,其线电荷密度为 λ ,圆环可绕通过环心O与环面垂直的转轴旋转. 当圆环以角速度 ω 转动时,圆环受到的磁力矩

M =_____.

27.如图所示,一通有电流 I_1 的长直导线,旁边有一个与它共面通有电流 I_2 每边长为的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为 3a/2,在维持它们的电流不变和保证共面的条件下,将它们的距离从 3a/2 变为 5a/2 ,则磁场对正方形线圈所做的 A=

$$\frac{\mu_0 a I_1 I_2}{2\pi} (2 \ln 2 - \ln 3)$$

28. 质量m,电荷q的粒子具有动能E,垂直磁感线方向飞入磁感强度为 \vec{B} 的匀强磁场中. 当该粒子越出磁场时,运动方向恰与进入时的方向相反,那么沿粒子飞入的方向上磁场的最小宽度L=____.

29. 如图所示,均匀磁场的磁感应强度 \vec{B} 沿y 轴正向,欲要使电量为Q的正离子沿x轴正向作匀速直线运动,则必须加一个均匀电场,其大小和方向为 .

E = Bv z轴负向.

30. 如图所示,截面积为S,截面形状为矩形的直的金属条中通有电流I. 金属条放在磁感强度为B的匀强磁场中,B的方向垂直于金属条的左、右侧面. 则载流子所受的洛伦兹力 f_m =_____.

(已知金属中单位体积内载流子数为n)

IB/nS