# Evaluating High-Energy Physics Data Queries Using DuckDB

Nahid Jahanian nahid.jahanian@gmail.com

December 8, 2024

### Introduction

DuckDB is a lightweight, in-process analytical database management system (DBMS) designed for online analytical processing (OLAP) workloads. Inspired by the VLDB paper, "Evaluating Query Languages and Systems for High-Energy Physics Data", this report explores the execution of high-energy physics queries using DuckDB. Its ease of setup, minimal hardware requirements, and performance for OLAP workloads position it as a strong candidate for local data analysis. The source codes and scripts used for this evaluation are hosted in my GitHub repository:https://github.com/Nahidnj/DuckDB.git.

### Hardware and Software Environment

The benchmarks were performed on the following hardware and software configuration:

• Machine: MacBook Air (2022, Model Identifier: Mac14,2)

• Processor: Apple M2 Chip with 8 Cores (4 Performance + 4 Efficiency)

• Memory: 8 GB Unified RAM

• Operating System: macOS Ventura 13.0.1

This setup represents a lightweight, portable environment suitable for running embedded databases like DuckDB. Unlike the high-performance clusters used in the VLDB paper for distributed systems like Presto or BigQuery, this setup emphasizes ease of use and local execution capabilities.

## **Data Preparation**

The original VLDB paper used datasets with sizes of approximately **17 GB** and **2 TB** to evaluate query performance across different systems. Since running such large datasets locally is impractical, I downloaded smaller versions of the datasets. The datasets I used are:

• Run2012B\_SingleMu\_1000.parquet (1,000 events),

• Run2012B\_SingleMu\_4000.parquet (4,000 events).

These smaller datasets allowed me to run benchmarks efficiently while maintaining compatibility with the high-energy physics queries described in the paper.

#### Results

The execution times (in seconds) and result counts for each query on the two datasets are summarized in Table 1. A visualization of execution times is shown in Figure 1.

Table 1: Query Performance on DuckDB

| Query ID | Dataset     | Execution Time (s) | Result Count |
|----------|-------------|--------------------|--------------|
| Q1       | 1000 Events | 0.0048             | 1,000        |
| Q2       | 1000 Events | 0.0018             | 1,699        |
| Q3       | 1000 Events | 0.0031             | 680          |
| Q4       | 1000 Events | 0.0026             | 1,000        |
| Q5       | 1000 Events | 0.0351             | 100,000      |
| Q6a      | 1000 Events | 0.0118             | 1,000        |
| Q6b      | 1000 Events | 0.0028             | 1            |
| Q7       | 1000 Events | 0.0605             | 1,000        |
| Q8       | 1000 Events | 0.1742             | 200,000      |
| Q1       | 4000 Events | 0.0027             | 4,000        |
| Q2       | 4000 Events | 0.0057             | $6,\!387$    |
| Q3       | 4000 Events | 0.0096             | 2,523        |
| Q4       | 4000 Events | 0.0076             | 4,000        |
| Q5       | 4000 Events | 0.0312             | 100,000      |
| Q6a      | 4000 Events | 0.0795             | 4,000        |
| Q6b      | 4000 Events | 0.0065             | 1            |
| Q7       | 4000 Events | 0.6577             | 4,000        |
| Q8       | 4000 Events | 0.1287             | 200,000      |

## Discussion of Results

#### **Execution Times**

Execution times for queries on the smaller dataset (Run2012B\_SingleMu\_1000.parquet) were significantly faster, as expected. Computationally intensive queries like Q7 and Q8 showed notable increases on the larger dataset.

#### **Result Counts**

Result counts scaled linearly with dataset size for most queries. Queries involving aggregations (Q5, Q8) consistently returned the same number of results.



Figure 1: Execution Times for Queries on DuckDB

# Conclusion

DuckDB demonstrated excellent performance for executing high-energy physics queries on small datasets, showcasing its capabilities for local analytical workloads. Its lightweight nature and strong OLAP optimizations make it a versatile tool for data analysis. However, its scalability may be limited for very large datasets compared to distributed database systems.