Semigrupos y grupos

Matemáticas Discretas Matemáticas Aplicadas y Computación 2016-I

1. Grupos

1.1. Primeros pasos

Definición 1.1. Sea G un conjunto y · una operación binaria en G. La estructura (G, \cdot) se dice un grupo si,

1. Para cada x, y y z en G,

$$(x \cdot y) \cdot z = x \cdot (y \cdot z).$$

2. Existe un elemento $e \in G$ tal que para todo x en G,

$$x \cdot e = e \cdot x = x$$
.

3. Para cada x en G existe un elemento y en G tal que

$$x \cdot y = y \cdot e$$
.

Lema 1.1. Si f es un elemento tal que $x \cdot f = f \cdot x = x$, entonces f = e. En ese caso

Demostración. Por las definiciones, tenemos

$$e = e \cdot f = f$$
.

Lema 1.2. Dados a y b en un grupo G, entonces las ecuaciones $a \cdot x = b$ y $y \cdot a = b$ tienen soluciones únicas en G

Demostración. Al ser G un grupo basta tomar $x=a^{-1}\cdot b$ y $y=b\cdot a^{-1}$. Supongagmos que x' es otro elemento de G tal que $a\cdot x'=b$, entonces

$$x = a^{-1} \cdot b$$

$$= a^{-1} \cdot (a \cdot x')$$

$$= (a^{-1} \cdot a) \cdot x'$$

$$= e \cdot x'$$

$$= x'.$$

De manera análoga podemos probar lo mismo para y. Esto concluye la prueba.

Corolario 1.3. En un grupo G, son válidas las leyes de cancelación:

$$a \cdot x = a \cdot y \text{ implica } x = y.$$

y

$$x \cdot a = y \cdot b \text{ implica } x = y.$$

Corolario 1.4. Sean a, b y b' elementos de G tales que, $a \cdot b = e$ y $a \cdot b' = e$, entonces b = b'.

Corolario 1.5. Sean a, b y b' elementos de G tales que, $b \cdot a = e$ y $b' \cdot a = e$, entonces b = b'.

De estos resultados anteriores podemos concluir que la identidad el elemento descrito en los axiomas de grupo es único y lo llamaremos la identidad del grupo, mientras que los elementos de la propiedad también son únicos y para cada a, denotaremos por a^{-1} , el inverso de a, al único elemento $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Definición 1.2. Para un elemento a de un grupo G definimos

1.
$$a^0 = e \vee a^{n+1} = a^n \cdot a$$
.

2.
$$a^{-n} = (a^n)^{-1}$$

Lema 1.6. Para cualquier a en un grupo G,

$$(a^{-1})^{-1} = a.$$

Demostración. Tenemos

$$a^{-1} \cdot (a^{-1})^{-1} = e = a^{-1} \cdot a,$$

usando las leyes de cancelación podemos concluir que $a=(a^{-1})^{-1}$.

Lema 1.7. Para cualesquiera a y b en un grupo G, tenemos

$$(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}.$$

Demostración. Basta notar,

$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = ((a \cdot b) \cdot b^{-1}) \cdot a^{-1}$$

$$= (a \cdot (b \cdot b^{-1})) \cdot a^{-1}$$

$$= (a \cdot e) \cdot a^{-1}$$

$$= a \cdot a^{-1}$$

$$= e.$$

Como $(a \cdot b) \cdot (a \cdot b)^{-1} = e$, entonces el resultado que buscamos sigue.

1.2. Subgrupos

Definición 1.3. Un subconjunto H no vacío de un grupo G se dice subgrupo de G si

- 1. Para todo x y y en H, $x \cdot y$ está también en H.
- 2. Para todo x en H, x^{-1} está en H.

Teorema 1.8. Cualquier subgrupo H de un grupo G, es un grupo.

Demostración. Lo único que se debe probar es que H contiene a la identidad, pues por definición es cerrado y contiene a todos los inversos. Como un subgrupo H es no vacío, sea $x \in H$. Entonces $x^{-1} \in H$ y en consecuencia $x \cdot x^{-1} \in H$, pero $x \cdot x^{-1} = e$. De esto sigue el resultado.

Lema 1.9. Sea H un subconjunto finito y no vacío de un grupo G. Si H es cerrado bajo la operación de G, entonces H es un subgrupo de G.

Demostración. Como H es no vacío, sea $a \in H$. Como es cerrado bajo la operación de G, todos los elementos

$$a, a^2, \dots a^n \dots$$

están en H. Ahora, H por lo que la anterior secuencia no puede continuar indefinidamente, esto quiere decir que deben existir naturales r>s>0 tales que $a^r=a^s$. Esto quiere decir que $e\cdot a^s=a^r$, por lo que $a^{r-s}=e$ como r-s>0 entonces $e\in H$. Además,

$$a \cdot a^{r-s-1} = a^{r-s} = e,$$

por lo que $a^{-1}=a^{r-s-1}$ y como $r-s-1\geq 0$, entonces $a^{-1}\in H$. Por la definición sigue la afirmación.

Definición 1.4. Sea H un subgrupo de G. Si $x \cdot y^{-1} \in H$, decimos que x es congruente con y módulo H, en símbolos

$$x \equiv y \mod H$$
.

Lema 1.10. La relación $\mod H$ es una relación de equivalencia en G.

Demostración. Se deben mostrar tres cosas:

- 1. Para todo $a \in G$, $a \equiv a \mod H$.
- 2. Si $a \equiv b \mod H$, entonces $b \equiv a \mod H$.
- 3. Si $a \equiv b \mod H$ y $b \equiv c \mod H$, entonces $a \equiv c \mod H$.

Para probar 1., basta notar que para cualquier $a \in G$, entonces $aa^{-1} = e \in H$ al ser H un subgrupo por lo que $a \equiv a \mod H$.

Para probar 2., tomaremos $a \equiv b \mod H$, esto quiere decir que $ab^{-1} \in H$, en ese caso $ba^{-1} = (ab^{-1})^{-1} \in H$ al ser H un subgrupo, por lo que $b \equiv a \mod H$.

Para probar 3., tomaremos $a \equiv b \mod H$ y $b \equiv c \mod H$; en ese caso $ab^{-1} \in H$ y también $bc^{-1} \in H$, entonces $ac^{-1} = a(b^{-1}b)c^{-1} = (ab^{-1})(bc^{-1}) \in H$ al ser H un subgrupo. Esto implica que $a \equiv c \mod H$.

Definición 1.5. Sea G un grupo y sea H un subgrupo de G. Para un elemento $a \in G$ definimos una clase lateral derecha de H en G, como $Ha = \{ha \mid h \in H\}$.

Teorema 1.11. Para cualquier $a \in G$, tenemos que

$$Ha = \{x \mid x \equiv a \mod H\}.$$

Demostración. Sea $[a] = \{x \mid x \equiv a \mod H\}$. Queremos probar que Ha = [a], para conseguirlo probaremos dos contenciones. Primero, $Ha \subset [a]$; en efecto, si $ha \in Ha$, como $h \in H$, entonces $h^{-1} \in H$, pero

$$a(ha)^{-1} = aa^{-1}h^{-1} = h^{-1}$$

por lo que $a(ha)^{-1} \in H$. Esto quiere decir que $a \equiv ha \mod H$ por lo que $ha \in [a]$.

Afirmamos ahora $[a] \subset Ha$. Si $x \in [a]$, entonces $x \equiv a \mod H$ por lo que $xa^{-1} \in H$. Sea $xa^{-1} = h$ con $h \in H$, en ese caso $x = ha \in Ha$, en ese caso $[a] \subset Ha$, como afirmamos. Con las dos contenciones mostradas esto termina la prueba.

Lema 1.12. Sean a y b elementos del grupos G. Entonces existe una biyección entre Ha y Hb.

Demostración. Definimos $f: Ha \to Hb$ como $f(x) = xa^{-1}b$; lo primero que debemos notar es que está bien definida, pues

$$f(ha) = (ha)a^{-1}b = hb \in Hb.$$

Probaremos primero que es inyectiva; en efecto, si f(x) = f(y), entonces $x(a^{-1}b) = y(a^{-1}b)$ y por las leyes de cancelación x = y.

Supongamos ahora que $y \in Hb$, podemos proponer elemento $x = yb^{-1}a$. Entonces,

$$f(x) = (yb^{-1}a)(a^{-1}b) = y.$$

Con esto hemos probado que f es sobreyectiva, y junto con el argumento en el párrafo anterior f es biyectiva. Esto concluye la prueba.

Este lema es de especial interés cuando G es un grupo finito. Al resultado presentado a continuación se le conoce como el teorema de Lagrange, un importante teorema en álgebra moderna.

Teorema 1.13. Si G es un grupo finito y H es un subgrupo de G, entonces |H| divide a |G|.

Demostración. Sean

$$H_1,\ldots,H_k$$

las distintas clases laterales derechas de H en G, como estás coinciden con las clases de equivalencia, entonces si $i \neq j$ $H_i \cup H_j = \emptyset$, además

$$G = H_1 \cup \cdots \cup H_k$$
.

No sólo eso, como H = He H es una clase lateral derecha de H en G y como todas las clases laterales son biyectivas y H debe ser un conjunto finito, entonces

$$|H|=|H_1|=\cdots=|H_k|.$$

En ese caso

$$|G| = \sum_{i=1}^{k} |H_k| = k|H|.$$

Esto es precisamente lo que afirma el teorema que |H| divide a |G|.

Definición 1.6. Si G es un grupo y $a \in G$, entonces o(a) es el mínimo entero positivo m tal que $a^m = e$, en ese caso decimos que a tiene orden m. Si dicho número no existe, entonces decimos que el orden de a es infinito.

Corolario 1.14. Si G es un grupo finito y $a \in G$, entonces o(a) divide a |G|.

Demostraci'on. Aplicaremos el teorema de Lagrange a un subgrupo que tenga orden |a|. Consideremos el conjunto

$$H = \{a^n \mid n \in \mathbb{N}\};$$

como H es finito, basta comprobar que es cerrado bajo el producto, lo cual es cierto por la definición de exponentes en un grupo. Como $a^{o(a)}=e$ por definición entonces $|H|\leq o(a)$. Si |H|< o(a) entonces podríamos encontrar $0\leq i< j< o(a)$ tal que $a^i=a^j$ por lo que $a^{j-i}=e$ de forma 0< j-i< o(a) lo que es imposible al ser o(a) el mínimo entero positivo con dicha propiedad. En ese caso debemos tener que |H|=o(a) y en consecuencia o(a) divide a |G| como buscábamos.

Corolario 1.15. Si G es un grupo finito, entonces $a^{|G|} = e$.

Demostración. Es un resultado del lema anterior, sea $|G| = k \cdot o(a)$

$$a^{|G|} = a^{k \cdot o(a)}$$

$$= (a^{o(a)})^k$$

$$= e^k$$

$$= e.$$

Esto es lo que se quería probar.

Definición 1.7. Sea G un grupo y sea $a \in G$. Definimos el grupo cíclico generado por a como el subgrupo

$$(a) = \{a^k \mid k \in \mathbb{N}\}.$$

Decimos que G es cíclico, si G = (a) para algún $a \in G$.

Corolario 1.16. Si G es un grupo finito cuyo orden es un número primo p, entonces G es un grupo cíclico.

Demostración. Supongamos que H es un subgrupo de G, de acuerdo con el teorema de Lagrange, |H| divide a p, pero p sólo admite como divisores a 1 y p por lo que |H| = 1 o |H| = p. En el primer caso H = (e) en el segundo H = G.

Ahora, como el orden G es primo, $|G| \leq 2$ por lo que existe $a \in G$ de forma que $a \neq e$. En ese caso $|(a)| \neq 1$ por lo que |(a)| = p y en ese caso G = (a). De aquí, G es un grupo cíclico.

1.3. Un poco de teoría de números

Vamos a explorar una aplicación del teorema de Lagrange a la teoría de números donde derivaremos un par de famosos teoremas como corolarios del teorema de Lagrange. Para esto, vamos a introducir algunos conceptos.

Definición 1.8. Sean x, y y m enteros cualesquiera. Definimos $x \equiv y \mod n$ si x-y es múltiplo de n.

Proposición 1.17. La relación mód n es una relación de equivalencia.

En ese caso podemos definir

$$\mathbb{Z}/n\mathbb{Z} = \{ [x]_n \mid x \in \mathbb{Z} \}$$

y además podemos definir una suma y producto en este conjunto.

$$[x]_n + [y]_n = [x+y]_n$$

у

$$[x]_n \cdot [y]_n = [x \cdot y]_n.$$

2. Semigrupos

Definición 2.1.

1++;

Referencias

- [BM70] Birkohff, Garrett y Mac Lane, Saunders: Álgebra Moderna. Vicensvives, $4^{\underline{a}}$ edición, 1970.
- [Fra87] Fraleigh, John B.: Álgebra abstracta: primer curso. Addison Wesley, 1987.

Comentario. Las notas anteriores juegan algunas veces a ser un simple resumen de lo que otros autores han presentado, otras menos a reinterpretarlo y en una cantidad ínfima de ocasiones intentan pobremente aumentalo. El único objectivo al que sirven, es preparar el curso de Matemáticas Discretas impartido en la carrera de Matemáticas Aplicadas y Computación de la FES Acatlán. Su versión es, en consecuencia, susceptible a errores gramaticales, imprecisiones técnicas y cambios constantes.

El contenido original que aparezca en estas notas (si es que lo hay), se distribuye bajo la Licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0). ©Eduardo Antonio Gomezcaña Alanis.