${\rm Quiz}\ 2$

You will have 20 minutes \circ Calculators are allowed \circ Show all work for credit \circ Don't cheat \circ attempts at a problem may count for partial credit.

1. The volume of a cell increases at a rate of 10 $\mu\mathrm{m}^3$ per hour.

(a) [2 pts] Express this statement as a differential equation.

(b) [2 pts] Find the solution to this equation assuming the volume of the cell was initially $500 \mu \text{m}^3$.

2. [4 pts] Find the solution to the following differential equation:

$$\frac{dy}{dt} = 2 + e^{-t}, \qquad y(0) = 1.$$

3. [3 pts] Suppose that $f(x) = 2x^2 + 7$.

(a) What differential equation does f(x) solve?

(b) What is the initial condition?

4. Below is the graph of $\frac{dy}{dt}$ as a function of time.

- (a) [1 pts] On which interval(s) is y(t) increasing?
- (b) [1 pts] On which interval(s) is y(t) decreasing?
- (c) [2 pts] Sketch a graph of y(t) assuming an initial condition of y(0) = 0.

