Part III Topics in Additive Combinatorics

Based on lectures by Prof W.T. Gowers

Michaelmas 2016 University of Cambridge

Contents

Discrete Fourier Analysis and Roth's Theorem
Bohr Sets and Boglyubov's Method
Phïnecke's Theorem and Related Results

1 Discrete Fourier Analysis and Roth's Theorem

Let $N \in \mathbb{N}$, $\omega = e^{\frac{2\pi i}{N}}$. Write \mathbb{Z}_N for the cyclic group of integers mod N. Use the notation $\mathbb{E}_x f(x)$ to stand for the average $N^{-1} \sum_{x \in \mathbb{Z}_N} f(x)$.

Definition (Discrete Fourier Transform). Given a function $f : \mathbb{Z}_N \to \mathbb{C}$, define its discrete Fourier transform \hat{f} by the formula

$$\hat{f}(r) = \mathbb{E}_x f(x) \omega^{-rx}$$

Definition (Convolution). We define the **convolution** f * g of f and g by

$$f * g(x) = \mathbb{E}_{y+z=x} f(y)g(z)$$

$$\hat{f} * \hat{g}(r) = \sum_{s+t=r} \hat{f}(s)\hat{g}(t)$$

We also define two inner products

$$\langle f, g \rangle = \mathbb{E}_x f(x) \overline{g(x)}$$

$$\langle \hat{f}, \hat{g} \rangle = \sum_{r} \hat{f}(r) \overline{\hat{g}(r)}$$

Have the following basic properties:

1. Parseval's Identity:

$$\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$$

for any $f, g: \mathbb{Z}_N \to \mathbb{C}$.

2. Convolution Law: for any $f, g: \mathbb{Z}_N \to \mathbb{C}, r \in \mathbb{Z}_N$

$$\widehat{f * g}(r) = \widehat{f}(r)\widehat{g}(r)$$

3. Inversion Formula: let $f: \mathbb{Z}_N \to \mathbb{C}$. Then

$$f(x) = \sum_{r} \hat{f}(r)\omega^{rx}$$

4. Dilation Rule: let a be invertible mod N and define $f_a(x)$ to be $f(a^{-1}x)$. Then

$$f_a(r) = \hat{f}(ar)$$

If $A \subset \mathbb{Z}_N$, we shall write A(x) for $\begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$. If $|A| = \alpha N$, then $\hat{A}(0) = \mathbb{E}_x A(x) = \alpha$.

We shall define $||f||_p$ to be $(\mathbb{E}_x |f(x)|^p)^{\frac{1}{p}}$ and $\left|\left|\hat{f}\right|\right|_p$ to be $\left(\sum_r \left|\hat{f}(x)\right|^p\right)^{\frac{1}{p}}$.

Then if $A \subset \mathbb{Z}_N, \ ||A||_2^2 = \langle A, A \rangle = \alpha$. By Parseval, we get

$$\sum_{r} \left| \hat{A}(r) \right|^2 = \alpha \ \left(= \left| \left| \hat{A} \right| \right|_2^2 \right)$$

Theorem 1 (Roth). For every $\delta > 0$ $\exists N$ s.t. every subset $A \subset [N]$ of size at least δN contains an arithmetic progression of length 3.

Broad strategy: a density increment argument.

The idea is to show that if A has density α and contains no 3-AP then there is a reasonably long AP P s.t. $\frac{|A \cap P|}{|P|}$ is significantly larger than α . There we

are either done or can pass to P and start again with a larger density. Then repeat, and eventually, since α can't exceed 1, we must get a 3-AP.

In order to use Fourier analysis, we want to think of A as a subset of \mathbb{Z}_n . For this purpose, define sets $B = C = A \cap \left[\frac{N}{3}, \frac{2N}{3}\right]$, and observe that if (x, y, z) is an AP in $A \times B \times C$ in \mathbb{Z}_N , then it also is in [N].

Let α be the density of A. Assume that N is odd. If $|B| < \frac{\alpha N}{5}$ then one of $\left|A \cap \left[1, \frac{N}{3}\right]\right|$ and $\left|A \cap \left[\frac{2N}{3}, N\right]\right|$ is at least $\frac{2\alpha N}{5}$, so we get an interval in which A has density at least $\frac{6\alpha}{5}$, which is a very healthy density increment.

Otherwise, $|B| = |C| > \frac{\alpha N}{5}$, so let's assume that.

Define the **3-AP-density** of (A, B, C) to be $\mathbb{E}_{x+z=2y}A(x)B(y)C(z)$. This is the probability that a random (x, y, z) with x + z = 2y lies in $A \times B \times C$.

$$\mathbb{E}_{x+z=2y}A(x)B(y)C(z) = \mathbb{E}_{u} \left(\mathbb{E}_{x+z=u}A(x)C(z)\right)B(u/2)$$

$$= \mathbb{E}_{u}A * C(u)B_{2}(u)$$

$$= \langle A * C, B_{2} \rangle$$

$$= \langle \widehat{A} * \widehat{C}, \widehat{B}_{2} \rangle$$

$$= \langle \widehat{A}\widehat{C}, \widehat{B}_{2} \rangle$$

$$= \sum_{r} \widehat{A}(r)\widehat{C}(r)\overline{\widehat{B}_{2}(r)}$$

$$= \sum_{r} \widehat{A}(r)\widehat{C}(r)\widehat{B}(-2r)$$

$$= \alpha\beta\gamma + \sum_{r \neq 0} \widehat{A}(r)\widehat{C}(r)\widehat{B}(-2r)$$

where $\beta = \gamma = \text{density of } B \text{ (or } C)$. Now

$$\left| \sum_{r \neq 0} \hat{A}(r) \hat{B}(-2r) \hat{C}(r) \right| \leq \max_{r \neq 0} \left| \hat{A}(r) \right| \sum_{r} \hat{B}(-2r) \hat{C}(r)$$

$$\leq \max_{r \neq 0} \left| \hat{A}(r) \right| \left| \left| \hat{B} \right| \right|_{2} \left| \left| \hat{C} \right| \right|_{2} \text{ (Cauchy-Schwarz)}$$

$$= \beta^{\frac{1}{2}} \gamma^{\frac{1}{2}} \max_{r \neq 0} \left| \hat{A}(r) \right|$$

Therefore, if $\max_{r\neq 0} \left| \hat{A}(r) \right| \beta^{\frac{1}{2}} \gamma^{\frac{1}{2}} \leq \frac{\alpha\beta\gamma}{2}$, i.e. $\max_{r\neq 0} \left| \hat{A}(r) \right| \leq \frac{1}{2}\alpha(\beta\gamma)^{\frac{1}{2}}$ then the 3-AP-density of (A,B,C) is at least $\frac{\alpha\beta\gamma}{2}$. Since $\beta\gamma \geq \frac{\alpha^2}{25}$, this tells us that we get 3-APs provided $\max_{r\neq 0} \left| \hat{A}(r) \right| \leq \frac{\alpha^2}{10}$ and $\frac{\alpha^3}{50} > \frac{1}{N}$ (ensures that the progression is non-trivial). So we may assume that $\exists r \text{ s.t. } \left| \hat{A}(r) \right| \geq \frac{\alpha^2}{10}$.

Lemma 2. Let $\epsilon > 0$ and let $r \in \mathbb{Z}_N$. Then the set [N] can be partitioned into arithmetic progressions of length at least $\frac{\epsilon}{8\pi}N^{\frac{1}{2}}$ on each of which the function $x \mapsto \omega^{rx}$ varies by at most ϵ .

Proof. Let $m = \lfloor N^{\frac{1}{2}} \rfloor$. Of the numbers $1, \omega^r, \ldots, \omega^{mr}$ there must be two, say ω^{ur} and ω^{vr} with u < v, that differ by at most $\frac{2\pi}{m}$.

Let t = v - u and note that $|\omega^{ur} - \omega^{vr}| = |1 - \omega^{tr}|$, so $|1 - \omega^{tr}| \le \frac{2\pi}{m}$.

Note also that if a < b, then

$$\left|\omega^{btr} - \omega^{atr}\right| \le \sum_{j=1}^{b-a} \left|\omega^{(a+j)tr} - \omega^{(a+j-1)tr}\right|$$
$$\le (b-a)\frac{2\pi}{m}$$

by the triangle inquality.

Now partition [N] into congruence classes mod t, and partition each congruence class into 'intervals' of length at most $\frac{\epsilon m}{2\pi}$ and at least $\frac{\epsilon m}{4\pi}$. This is possible, since $t \leq m \leq \sqrt{N}$ (exercise). These progressions do the job, since $\frac{\epsilon m}{4\pi} \geq \frac{\epsilon N^{\frac{1}{2}}}{8\pi}$.

The **balanced function** f of A is defined by $f(x) = A(x) - \alpha$. Note that $\mathbb{E}_x f(x) = 0$ and $\hat{f}(r) = \hat{A}(r)$ when $r \neq 0$.

Let $r \neq 0$ be such that $|\hat{f}(r)| \geq \frac{\alpha^2}{10}$. Then

$$\frac{a^2}{10} \le \left| \hat{f}(r) \right|$$

$$= \left| \mathbb{E}_x f(x) \omega^{-rx} \right|$$

$$= N^{-1} \left| \sum_x f(x) \omega^{-rx} \right|$$

Now let $\epsilon = \frac{\alpha^2}{20}$ and let P_1, \dots, P_m be given by Lemma 2.

$$N^{-1} \left| \sum_{x} f(x) \omega^{-rx} \right| \leq N^{-1} \sum_{i} \left| \sum_{x \in P_{i}} f(x) \omega^{-rx} \right|$$

$$\leq N^{-1} \sum_{i} \left| \sum_{x \in P_{i}} f(x) (\omega^{-rx} - \omega^{-rx_{i}}) \right| + N^{-1} \sum_{i} \left| \sum_{x \in P_{i}} f(x) \omega^{-rx_{i}} \right|$$
where $x_{i} \in P_{i}$ is arbitrary
$$\leq \frac{\alpha^{2}}{20} + N^{-1} \sum_{i} \left| \sum_{x \in P_{i}} f(x) \right|$$

So we may conclude that $\sum_i \left| \sum_{x \in P_i} f(x) \right| \ge \frac{\alpha^2}{20} N$. Also, $\sum_i \sum_{x \in P_i} f(x) = 0$. Therefore, $\sum_i \left(\left| \sum_{x \in P_i} f(x) \right| + \sum_{x \in P_i} f(x) \right) \ge \frac{\alpha^2}{20} N$.

So $\exists i$ s.t. $\left|\sum_{x\in P_i} f(x)\right| + \sum_{x\in P_i} f(x) \ge \frac{\alpha^2|P_i|}{20}$, which implies that

$$\sum_{x \in P_i} f(x) \ge \frac{\alpha^2}{40} |P_i|$$

Or equivalently, $|A \cap P_i| \ge \left(\alpha + \frac{\alpha^2}{40}\right) |P_i|$.

Back of envelope calculation: each time we iterate, α goes to at least $\alpha + \frac{\alpha^2}{40}$, so after $\frac{40}{\alpha}$ iterations, the density at least doubles. So the total number of iterations (before we get a 3-AP) is at most $\frac{40}{\alpha} + \frac{40}{2\alpha} + \frac{40}{4\alpha} + \cdots = \frac{80}{\alpha}$.

Each time we iterate, N goes to $\frac{\alpha^2}{20} \frac{N^{\frac{1}{2}}}{8\pi}$, so as long as $N \geq ??$ this is at least $N^{\frac{1}{3}}$. So all the iterative processes have that the new N is at least $N^{(\frac{1}{3})^{\frac{80}{\alpha}}}$, which we need to be greater than $\frac{50}{\alpha^3}$.

To solve $N^{(\frac{1}{3})^{\frac{80}{\alpha}}} > \frac{50}{\alpha^3}$ take logs twice.

$$\left(\frac{1}{3}\right)^{\frac{80}{\alpha}}\log N > \log 50 + \log(\alpha^{-3})$$

$$\implies \frac{80}{\alpha}\log(\frac{1}{3}) + \log\log N > \log(\log 50 + \log(\alpha^{-3}))$$

So for an appropriate constant C, we are done if

$$\log \log N \ge \frac{C}{\alpha}$$
, or $\alpha \ge \frac{C}{\log \log N}$

Theorem 3 (Behrend, 1947). For every N there exists a subset $A \subset [N]$ of size $\frac{N}{e^{c\sqrt{\log N}}}$ that contains no 3-AP.

Proof. For this proof let [N] mean $\{0, 1, ..., N-1\}$.

Let m,d be positive integers and consider the grid $[m]^d$. Note that in \mathbb{R}^d , no sphere $\{x: x_1^2 + \cdots + x_d^2 = t\}$ contains three distinct points x, y, z with x + z = 2y.

But on $[m]^d$, $x_1^2 + \cdots + x_d^2$ takes at most dm^2 different values. Therefore, we can find a sphere that intersects $[m]^d$ in at least $\frac{m^d}{m^2d}$ points.

Let
$$\phi : [m]^d \to [(2m)^d]$$
 be defined by
$$\phi(x) = x_1 + 2mx_2 + (2m)^2x_3 + \dots + (2m)^{d-1}x_d$$

So ϕ sends (x_1, \ldots, x_d) to the integer with base-2m representation $x_d x_{d-1} \ldots x_1$.

If we add $\phi(x)$ and $\phi(y)$ then no carrying takes place base-2m since all digits are < m. So if $\phi(x) + \phi(z) = 2\phi(y)$ it follows that x + z = 2y, i.e. no new 3-APs are created.

So (ignoring divisibility etc.) we can find a subset of $[(2m)^d]$ of size $\frac{m^d}{m^2d}$ that contains no 3-AP. If we let $N=(2m)^d$, then $m=\frac{N^{\frac{1}{d}}}{2}$ and $\frac{m^d}{m^2d}=\frac{4N}{2^dN^{\frac{2}{d}}d}$. So we'd like to minimise $2^dN^{\frac{2}{d}}d$.

Take logs: $d \log 2 + \frac{2}{d} \log N + \log d$, so $d = \sqrt{\log N}$ is a pretty good choice. So we get

$$\frac{N}{2^{\sqrt{\log N}}e^{2\sqrt{\log N}}\sqrt{\log N}} \geq \frac{N}{e^{c\sqrt{\log N}}}$$

2 Bohr Sets and Boglyubov's Method

Definition (Bohr set). Let $K \subset \mathbb{Z}_N$ and let $\epsilon > 0$. The **Bohr set** $B(K, \epsilon)$ is defined to be

$$\{x \in \mathbb{Z}_N \mid |1 - \omega^{rx}| \le \epsilon \ \forall r \in K\}$$

Definition (Sumset). Let A be a subset of an abelian group G. The **sumset** A+A is $\{x+y \mid x,y \in A\}$. The **difference set** A-A is $\{x-y \mid x,y \in A\}$. More generally, $\pm A_1 \pm A_2 \pm \cdots \pm A_k = \{\pm x_1 \pm \cdots \pm x_k \mid x_i \in A_i\}$. We write rA for $A+A+\cdots +A$ (r times).

Lemma 1 (Boglyubov's method). Let $A \in \mathbb{Z}_N$ be a subset of density α . Then 2A - 2A contains a Bohr set $B(K, \sqrt{2})$ with $|K| \leq \alpha^{-2}$.

Proof. Let $K = \left\{ r : \left| \hat{A}(r) \right| \ge \alpha^{\frac{3}{2}} \right\}$. Observe that $x \in 2A - 2A \iff A * A * (-A) * (-A)(x) \ne 0$ (i.e. $\mathbb{E}_{a+b-c-d=x}A(a)A(b)A(c)A(d) \ne 0$).

But

$$A*A*(-A)*(-A)(x) = \sum_{r} A*A*(-\widehat{A})*(-A)(r)\omega^{rx} \text{ (inversion)}$$

$$= \sum_{r} \left| \widehat{A}(r) \right|^{4} \omega^{rx} \text{ (convolution)}$$

$$= \alpha^{4} + \sum_{r \in K, r \neq 0} \left| \widehat{A}(r) \right|^{4} \omega^{rx} + \sum_{r \notin K} \left| \widehat{A}(r) \right|^{4} \omega^{rx}$$

for each $x \in B(K, \sqrt{2})$ and each $r \in K$, $\Re(\omega^{rx}) \ge 0$. So if $x \in B(K, \sqrt{2})$, then the second term has real part ≥ 0 .

Also,

$$\left| \sum_{r \notin K} \left| \hat{A}(r) \right|^4 \omega^{rx} \right| \leq \sum_{r \notin K} \left| \hat{A}(r) \right|^4$$

$$\leq \max_{r \notin K} \left| \hat{A}(r) \right|^2 \sum_{r \notin K} \left| \hat{A}(r) \right|^2$$

$$< \alpha^3 \cdot \alpha = \alpha^4$$

It follows that the sum is not 0. So $B(Km\sqrt{2})$ does the job. Note also that $\alpha^3 |K| \leq \sum_r \left| \hat{A}(r) \right|^2 = \alpha$, so $|K| \leq \alpha^{-2}$, as claimed.

Lemma 2. Writing $B[K, \delta]$ for $\{x \in \mathbb{Z}_N \mid \forall r \in K, rx \in [-\delta N, \delta N] \mod N\}$, we have that $B[K, \delta]$ has density at least δ^k , where k = |K|.

Proof. Let $K = \{r_1, \ldots, r_k\}$ and assume (wlog) that $0 \notin K$. Define $\phi : \mathbb{Z}_N \to \mathbb{Z}_N^k$ by $\phi : x \mapsto (r_1 x, \ldots, r_k x)$.

Pick a random translate $\boldsymbol{u} + [\delta N]^k$ of $[\delta N]^k$. On average, this contains at least $\delta^k N$ points of $\operatorname{Im} \phi$.

It follows that there is some translate $\boldsymbol{u} + [\delta N]^k$ that contains at least $\delta^k N$ points of Im ϕ . But if $\phi(x), \phi(y) \in \boldsymbol{u} + [\delta N]^k$, then $\phi(x-y) = \phi(x) - \phi(y) \in [-\delta N, \delta N]^k$.

 $\implies x-y \in B[K,\delta]$. There are at least $\delta^k N$ distinct such x-y.

Corollary 3. The Bohr set $B[K, \delta]$ contains an AP (mod N) of length at least $\delta N^{\frac{1}{|K|}}$

Proof. By Lemma 2, $|B[K, \theta]| \ge \theta^{|K|} N$, so if $\theta > N^{-\frac{1}{|K|}}$ then $|B[K, \theta]| > 1$. By compactness there is some non-zero $x \in B[K, N^{-\frac{1}{|K|}}]$. Then for any m we have that $mx \in B[K, |m| N^{-\frac{1}{|K|}}]$, so $mx \in B[K, \delta]$ whenever $|m| \le \delta N^{\frac{1}{|K|}}$, which proves the result.

Definition. Let A and B be subsets of abelian groups. A map $\phi: A \to B$ is a Freiman homomorphism of order k if

$$a_1 + a_2 + \dots + a_k = a_{k+1} + \dots + a_{2k} \ (all \ a_i \in A)$$

$$\implies \phi(a_1) + \phi(a_2) + \dots + \phi(a_k) = \phi(a_{k+1}) + \dots + \phi(a_{2k})$$

It is a **Freiman isomorphism of order** k if it is a bijection and its inverse is also a Freiman homomorphism of order k (that is, the implication can be reversed).

The case k=2 is particularly important. It says

$$x + y = z + w \implies \phi(x) + \phi(y) = \phi(z) = \phi(w)$$

or equivalently

$$x - y = z - w \implies \phi(x) - \phi(y) = \phi(z) - \phi(w)$$

Freiman homomorphisms preserve 'additive structure'. Note in particular that Freiman isomorphisms preserve arithmetic progressions.

Definition. A lattice of dimension k is a discrete subgroup of \mathbb{R}^k that spans \mathbb{R}^k in the vector space sense. Equivalently, it is the subgroup generated by some basis u_1, \ldots, u_k of \mathbb{R}^k .

Proposition 4. Let N be an odd prime, and let $\delta \leq \frac{1}{4}$. Then for every $K \subset \mathbb{Z}_N$, $0 \notin K$, the Bohr set $B[K, \delta]$ is Freiman isomorphic of order 2 to a lattice convex body, that is, the intersection of a convex body with a lattice, of dimension |K|

3 Phinecke's Theorem and Related Results

If A is a set of integers and $|A + A| \le C|A|$, how big can |rA - sA| be?

Lemma 1. Let A_0 and B be subsets of an abelian group G and suppose that $|A_0 + B| = K_0 |A_0|$. Then there exists $A \subset A_0$ and $K \leq K_0$ s.t. $|A + B + C| \leq K |A + C|$ for every $C \subset G$.

Proof. Let $A \subset A_0$ be a non-empty subset that minimises the ratio $K := \frac{|A+B|}{|A|}$. Then $|A'+B| \ge K |A'|$ for every $A' \subset A$.

We now prove that $|A+B+C| \leq K|A+C|$ by induction on |C|. When $C=\emptyset$ we're done by hypothesis. So suppose we have the result for C. We would like to show that if $x \notin C$, then

$$|A + B + (C \cup x)| \le K |A + (C \cup x)|$$

but

$$A + (C \cup x) = (A + C) \cup (A + x)$$
$$= (A + C) \cup (A' + x)$$

where $A' = \{a \in A \mid a + x \notin A + C\}.$

Since this is a disjoint union, $|A + (C \cup x)| = |A + C| + |A'|$

Also,
$$A + B + (C \cup x) = (A + B + C) \cup (A + B + x)$$
. So

$$|A + B + (C \cup x)| = |A + B + C| + |A + B + x| - |(A + B + C) \cap (A + B + x)|$$

$$\leq |A + B + C| + |A + B| - |(A')^c + B + x|$$

$$\leq K |A + C| + K |A| - K |(A')^c|$$

$$= K |A + C| + K |A'|$$

$$= K |A + (C \cup x)|$$