BLP Simulation

Nutcha Wattanachit
12/2/2019

Ensemble/pooling Methods

TLP

Traditional linear pool finds optimal weights that maximmizes the likelihood of $f(y) = \sum_{i=1}^{k} w_i f_i(y)$.

BLP

BLP finds α , β , and weights that maximize the likelihood of

$$g_{\alpha,\beta} = (\sum_{i=1}^k w_i f_i(y)) b_{\alpha,\beta} (\sum_{i=1}^k w_i F_i(y)).$$

BLP Example: To obtain α , β , and the weights for all component models, train the BLP model on half of the data. Then, use α , β , and the weights from training to apply to the data held out for testing.

Bias-corrected TLP (bcTLP)

Bias-corrected BLP (bcBLP)

BLP with Non-central Parameter(nBLP)

nBLP finds α , β , non-central parameter λ , and weights that maximize the likelihood of

$$g_{\alpha,\beta,\lambda} = (\sum_{i=1}^k w_i f_i(y)) b_{\alpha,\beta} (\sum_{i=1}^k w_i F_i(y)).$$

nBLP process: To obtain α , β , λ , and the weights for all component models, train the nBLP model on half of the data. Then, use α , β , λ , and the weights from training to apply to the data held out for testing.

Component-wise BLP (cBLP)

This is the extension of the traditional BLP. We beta-transform each of the cumulative distribution functions of the component models. This is done by finding α and β that maximize the likelihood of

$$G_{i,\alpha_i,\beta_i} = B_{\alpha_i,\beta_i}[F_i(y)]$$

$$g_{i,\alpha_i,\beta_i} = f_i(y) \times b_{\alpha_i,\beta_i}[F_i(y)]$$

Then, to obtain α , β , and the weights for 21 models, we apply BLP on the beta-transformed components:

$$G_{\alpha,\beta} = B_{\alpha,\beta} \left[\sum_{i=1}^k w_i B_{\alpha_i,\beta_i}(F_i(y)) \right]$$

$$g_{\alpha,\beta} = \left(\sum_{i=1}^k w_i b_{i,\alpha_i,\beta_i}(F_i(y)) f_i(y) \right) b_{\alpha,\beta} \left(\sum_{i=1}^k w_i B_{i,\alpha_i,\beta_i}(F_i(y)) \right)$$

cBLP - Part 1: For each component model, train over all observations to get α_i and β_i . Then, apply α_i and β_i to beta-transform the CDF. This ends the component-wise part.

cBLP Part 2: Apply the usual BLP process on the beta-transformed component models to get the BLP ensemble.

Componentwise Bias-Corrected & Componentwise Recalibrated BLP (cbcBLP)

Simulation studies

Scenario 1: calibrated components (Baseline scenario).

Table 1: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.271	0.264	0.465	NA	NA	NA	f1	-1.998	-2.004
BLP	0.301	0.295	0.404	1.465	1.469	NA	f2	-1.999	-2.006
bcTLP	0.272	0.264	0.464	NA	NA	NA	f3	-1.965	-1.969
bcBLP	0.301	0.296	0.403	1.477	1.477	NA	TLP	-1.907	-1.912
nBLP	0.301	0.295	0.404	1.452	1.483	0.076	BLP	-1.864	-1.872
cBLP	0.300	0.296	0.405	1.459	1.460	NA	bcTLP	-1.906	-1.911
cbcBLP	0.301	0.296	0.403	1.469	1.469	NA	bcBLP	-1.861	-1.870
							nBLP	-1.864	-1.872
							cBLP	-1.864	-1.872
							cbcBLP	-1.862	-1.870

Scenario 2: Biased forecast scenario

Table 2: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.184	0.292	0.524	NA	NA	NA	f1	-2.040	-2.042
BLP	0.295	0.287	0.419	1.403	1.549	NA	f2	-2.005	-2.002
bcTLP	0.269	0.245	0.486	NA	NA	NA	f3	-1.962	-1.965
bcBLP	0.299	0.283	0.418	1.466	1.466	NA	TLP	-1.912	-1.912
nBLP	0.295	0.287	0.419	1.403	1.549	0.001	BLP	-1.867	-1.866
$_{\mathrm{cBLP}}$	0.290	0.296	0.415	1.455	1.458	NA	bcTLP	-1.907	-1.907
cbcBLP	0.299	0.286	0.415	1.460	1.461	NA	bcBLP	-1.864	-1.864
							nBLP	-1.867	-1.866
							cBLP	-1.872	-1.871
							cbcBLP	-1.865	-1.864

Scenario 3: "incorrect" (high/increasing/decreasing) variance forecast scenario

Table 3: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.012	0.391	0.597	NA	NA	NA	f1	-2.051	-2.052
BLP	0.333	0.272	0.395	1.656	1.667	NA	f2	-2.005	-2.002
bcTLP	0.013	0.391	0.596	NA	NA	NA	f3	-1.962	-1.965
bcBLP	0.334	0.270	0.396	1.668	1.667	NA	TLP	-1.919	-1.918
nBLP	0.333	0.272	0.395	1.654	1.668	0.009	BLP	-1.865	-1.865
cBLP	0.207	0.343	0.449	1.441	1.442	NA	bcTLP	-1.918	-1.918
cbcBLP	0.209	0.342	0.449	1.446	1.447	NA	bcBLP	-1.864	-1.864
							nBLP	-1.865	-1.865
							cBLP	-1.868	-1.867
							cbcBLP	-1.867	-1.866

Scenario 4 Biased + "incorrect" variance forecast scenario

Table 4: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.320	0.032	0.648	NA	NA	NA	f1	-2.040	-2.042
BLP	0.281	0.321	0.397	1.593	1.748	NA	f2	-2.054	-2.052
bcTLP	0.407	0.005	0.588	NA	NA	NA	f3	-1.962	-1.965
bcBLP	0.287	0.317	0.397	1.657	1.656	NA	TLP	-1.925	-1.926
nBLP	0.281	0.321	0.397	1.593	1.748	0	BLP	-1.866	-1.866
cBLP	0.339	0.209	0.451	1.441	1.444	NA	bcTLP	-1.917	-1.918
cbcBLP	0.353	0.198	0.448	1.445	1.446	NA	bcBLP	-1.864	-1.864
							nBLP	-1.866	-1.866
							cBLP	-1.874	-1.874
							cbcBLP	-1.865	-1.865