

Kako se lepijo površine med seboj?

s povečanjem stične površine in izsesavanjem zraka

površina Post-it lepila

Kako se lepijo površine med seboj?

s povečanjem stične površine

okončina gecka

Kako se lepijo površine med seboj?

preko izločanja smol, sladkorjev, ...

okončina muhe

Osnovne sile

V molekularnem svetu prevladujejo interakcije na osnovi **elektrostatskih sil**.

Elektroni: nosilci elektrostatskih interakcij

• Elektroni imajo negativen naboj.

 V molekuli dveh različnih atomov prevzame eno jedro v povprečju več elektronov kot drugo ("elektronegativnost"). Razmakneta se težišči negativnega in pozitivnega naboja, nastane fiksen električni dipol.

• Težišča nabojev se razmaknejo tudi pod vplivom zunanjih električnih polj. Tako nastanejo *inducirani električni dipoli*, njihova jakost je odvisna od polarizabilnosti molekule (α).

Kako daleč sežejo elektrostatske interakcije?

Privlačne (W < 0) ali odbojne (W > 0)!

• (Coulombova) interakcija med dvema nabojema (e):

$$W = \frac{e_1 e_2}{4\pi \varepsilon \varepsilon_0 r}$$

• med nabojem in dipolom (u):

$$W = \frac{e_1 u_2}{4\pi\varepsilon\varepsilon_0 r^2} \cos(\varphi)$$
$$u_2 = e_2 d$$

 ε_0 ... influenčna konstanta (8,9 10^{-12} As/Vm)

ε ... dielektričnost snovi

(zrak: 1, organske snovi: 2-10, voda: 80)

Kako daleč sežejo elektrostatske interakcije?

Privlačne (W < 0) ali odbojne (W > 0)!

med dvema fiksnima dipoloma:

$$W \propto \frac{u_1 u_2}{r^3} \cos \dots$$

• Dipolne interakcije na osnovi polariziranih elektronskih oblakov

Dva dipola

$$W \propto -\frac{u_1^2 u_2^2}{r^6 kT}$$

• Dipol + induciran dipol

$$W \propto -\frac{u_1^2 \alpha}{r^6}$$

• Dva inducirana dipola

$$W \propto -\frac{\alpha^2}{r^6}$$

• Ne pozabimo vedno prisotnega odboja pri majhnih razdaljah! (*izključitveno načelo*: dva elektrona ne moreta biti na istem mestu ob istem času)

$$W \propto +\frac{1}{r^{12}}$$

Kvantno-mehanske interakcije

Kovalentna in koordinativna vez

- co-valence: atoma si delita elektronski par
- v vezni orbitali se nahajata dva elektrona z različnim spinom
- negativna elektrona vežeta pozitivni jedri
- kovalentna vez: vsak atom prispeva po en elektron
- koordinativna vez: en atom prispeva oba elektrona
- akceptorji koordinativne vezi pogosto prehodne kovine s prostimi *d* orbitalami

hemoglobin

Kvantno-mehanske interakcije

Vodikova vez

- pozitiven proton povezuje dva negativna elektronska para (vezni in nevezni)
- pogoji:
 - elektronegativnost donorja in akceptorja protona
 - kratke razdalje (0,2 nm)
 - tri jedra v ravni liniji (sicer odboj med el. oblaki)
- Zakaj T vrelišča H₂O najbolj odstopa od trenda?

Kvantno-mehanske interakcije

Vodikova vez

- pozitiven proton povezuje dva negativna elektronska para (vezni in nevezni)
- pogoji:
 - elektronegativnost donorja in akceptorja protona
 - kratke razdalje (0,2 nm)
 - tri jedra v ravni liniji (sicer odboj med el. oblaki)
- močno vpliva na strukturo vode, proteinov, DNA, polisaharidov ...

Kako močne so posamezne vezi?

• V molekularnem svetu primerjamo energije interakcij s termično energijo (kT):

pri $T = 310 \text{ K } (37\text{°C}) \text{ je } kT = 0.0267 \text{ eV} \sim 1/40 \text{ eV}$

interakcija	energija*		razmerje proti kT
	kJ/mol	eV	kT
kovalentna	200–900	2–9	80–350
ionska	400–800	4–8	150–300
van der Waalsova	2-velika	0.02-velika	1-veliko
vodikova	5–25	0.05–0.25	2–10

V: Doseg elektrostatskih interakcij

Na kakšni razdalji med ionoma postane elektrostatska energija zanemarljiva?

• Primerjaj to razdaljo s povprečno razdaljo med ioni v fiziološki raztopini.

Doseg elektrostatskih interakcij skrajša "senčenje"

Učinek električnega polja, ki ga ustvarjajo električni naboji (ali dipoli), se lahko zmanjša zaradi nasprotnega električnega polja drugih molekul, ki se zaradi prvega delno uredijo:

•

gibljivi dipoli v snovi (polarno topilo)

$$W = \frac{e_1 e_2}{4\pi \varepsilon \varepsilon_0 r}$$

gibljivi naboji (ioni v raztopini)

$$W = \frac{e_1 e_2}{4\pi \varepsilon \varepsilon_0 r} e^{-r/D}$$

D ... Debyeva razdalja $(1/\kappa)$ pri fizioloških pogojih ~0,7 nm

Hidrofobna "interakcija"

- nekatere vrste molekul se ne mešajo z vodo (npr. nepolarne alkilne verige lipidov), ker z molekulami vode ne tvorijo dovolj močnih privlačnih interakcij (elektrostatskih ali H-vezi)
- pri raztapljanju takih molekul bi morala voda pretrgati svojo mrežo H-vezi, kar je energijsko (in entropijsko) neugodno (~4 kT/nm²)
- molekule take snovi voda izrine skupaj, da zmanjša stično površino, npr.:
 - olje na vodi
 - lipidni dvosloj
 - zvijanje, porazdeljevanje in agregacija proteinov
 - agregacija nanodelcev ...

Agregacija proteinov v fibrile

Množica patofizioloških problemov povezanih z agregacijo

Vdor ogljikove nanocevke v membrano

Množica novih nanomaterialov z nepredvidljivimi vplivi

"Raztapljanje" polimernega nanodelca v membrani

Mikroskopija na atomsko silo (AFM) - slepi s paličico vidi

- konica tipala drsi po površini
- premike tipala spremljamo preko premikov laserskega žarka, odbitega od površine tipala
- za sliko potrebno vrstično skeniranje vzorca
- na ravni površini lahko doseže atomsko ločljivost

Kakšne so sile vezi med proteini in v proteinih?

- na tipalo je vezan ligand ali en konec proteina (funkcionalizacija), drugi na podlago
- tipalo odmikamo in spremljamo potrebno silo ("force spectroscopy")
- zlomi v krivulji predstavljajo raztrganje vezi med oz. v molekuli; sile 10–100 pN, premiki 1–10 nm

V: Lahko ocenimo energijo vezi?

Optična pinceta - slap nas ne pusti iz stržena

- če imajo delci različen lomni količnik kot okolica, se žarki pri prehodu skozi delec lomijo
- ker fotoni spremenijo smer (gibalno količino), delujejo na delec s silo v nasprotno smer
- delce vleče v gorišče žarka, kjer je tok fotonov največji
- omogoča sile do 100 pN, kar zadošča za premagovanje šibkih medmolekularnih vezi

miozin, aktin, ATP

- z optično pinceto lahko spremljamo drobne premike kroglic v pasti zaradi korakov posameznih molekularnih motorjev vzdolž vlakna
- določanje dolžine korakov (10 nm) in vlečne sile motorja (3 pN)

Kako se celice pritrjujejo na podlago?

- monocit na žilnem endoteliju
- pritrditev z množico šibkih vezi preseže silo optične pincete

