Definición del Alcance y Planificación de Proyectos de de Machine Learning y NLP

El ciclo completo

Cada fase es clave para el éxito y la entrega de valor, formando un ciclo integral.

¿Por qué definir el alcance final es clave?

Evita desviaciones

Previene el malgasto de recursos valiosos en proyectos ML/NLP que pueden desviarse fácilmente sin límites claros

Límites claros

Establece fronteras precisas para entregables y criterios de éxito, facilitando la toma de decisiones

Comunicación efectiva

Mejora la comunicación entre stakeholders técnicos y de negocio, alineando expectativas desde el inicio

Metodología Design Thinking aplicada al alcance

01

Definir

02

03

Empatizar

Comprender las necesidades reales del usuario final y los objetivos estratégicos del negocio a través de entrevistas y observación

Delimitar problemas específicos y establecer objetivos concretos, medibles y alcanzables para el proyecto de ML/NLP

Idear

Generar múltiples soluciones creativas y priorizar funcionalidades que aporten mayor valor al usuario

04

05

Prototipar

Crear versiones simplificadas del modelo para validar hipótesis rápidamente antes de invertir en desarrollo completo

Testear

Validar prototipos con usuarios reales y ajustar el alcance basándose en feedback concreto y medible

Los artefactos clave incluyen mapas de empatía, customer journey maps y prototipos de baja fidelidad que guían decisiones informadas

Backlog del Producto

Crear lista priorizada

Desarrollar funcionalidades y tareas específicas relacionadas con ML/NLP, desde preparación de datos hasta deployment del modelo.

Desglosar en historias

Convertir requisitos en historias de usuario claras, medibles y testeable con criterios de aceptación específicos.

Refinar continuamente

Mantener el backlog actualizado con feedback de usuarios, métricas del modelo y cambios en requisitos del negocio.

Resultado: Backlog vivo que guía el desarrollo iterativo y permite adaptación rápida a cambios en el proyecto de ML/NLP.

Cronograma del Sprint

Elegir elementos del backlog que se puedan completar realísticamente en el sprint, priorizando valor de negocio.

Resultado: Cronograma realista y flexible que facilita iteraciones rápidas y entrega de valor continuo en proyectos de inteligencia artificial.

Presupuesto para el Sprint

Recursos humanos

- Data scientists senior y junior
- ML engineers y DevOps
- Product owner y Scrum master

Infraestructura técnica

- Instancias GPU para entrenamiento
- Almacenamiento de datos y modelos
- APIs y servicios cloud especializados

Herramientas y licencias

- Plataformas ML (AWS SageMaker, Azure ML)
- APIs de NLP (OpenAI, Hugging Face)
- Herramientas de monitoreo y MLOps

Resultado: Presupuesto detallado y alineado con el alcance del sprint, incluyendo estimaciones realistas de costos por recurso y tiempo invertido.

Plan de Validación y Prototipado

Crear prototipo funcional

Desarrollar MVP del modelo ML o interfaz NLP para validar hipótesis principales con usuarios reales rápidamente.

Planificar pruebas

Diseñar experimentos controlados con usuarios o stakeholders para validar efectividad y usabilidad del modelo.

Recoger feedback

Capturar insights cualitativos y cuantitativos para iterar y ajustar el producto según necesidades reales.

Resultado: Validación temprana que reduce significativamente riesgos técnicos y de producto, mejorando las probabilidades de éxito del proyecto de ML/NLP.

Gestión de Riesgos y Contingencias

Riesgos técnicos

- Datos insuficientes o de baja calidad
- Sesgos en algoritmos de ML
- Problemas de escalabilidad del modelo
- Overfitting o underfitting

Riesgos de negocio

- Cambios en requisitos del usuario
- Limitaciones presupuestarias
- Competencia en el mercado
- Regulaciones de privacidad de datos

Plan de mitigación

- Estrategias de data augmentation
- Técnicas de fairness en ML
- Arquitecturas escalables y modularidad
- Validación cruzada rigurosa

Resultado: Mayor resiliencia del proyecto con capacidad de adaptación rápida ante desafíos técnicos y cambios del entorno.

Risk Management

Mitigation Agnacement

Risks	Likelliooldy	Impact	Mitigation
1/			

Etapas

- Etapa 1: Definición del Alcance y Objetivos
- Etapa 2: Recolección y Preparación de Datos
- Etapa 3: Exploración y Análisis de Datos (EDA)
- Etapa 4: Ingeniería de Características y Selección
- Etapa 5: Entrenamiento, Evaluación y Selección del Modelo
- Etapa 6: Despliegue y Monitoreo en Producción

Etapa 1: Definición del alcance y objetivos

Identificación del problema problema

Por ejemplo, la detección automática de anomalías en sistemas de radar de entidades de armada.

Objetivos claros

Definición de objetivos estratégicos y métricas de éxito como precisión y tiempo de respuesta.

Alineación con Stakeholders

Colaboración con personal militar y técnicos para establecer expectativas y asegurar recursos adecuados.

Esta etapa es fundamental para sentar las bases del proyecto, garantizando que el esfuerzo de ML se alinee con las necesidades operativas y estratégicas, optimizando la asignación de recursos y mitigando riesgos desde el inicio.

Etapa 2: Recolección y Preparación de Datos

01

Obtención de datos

Recopilación de datos históricos de sensores, radares y registros operativos, asegurando la diversidad y volumen necesarios.

02

Limpieza y normalización

Proceso crítico para eliminar ruido, inconsistencias y datos faltantes, preparando el conjunto para el modelado.

03

Ejemplo práctico

Filtrado de señales erróneas y etiquetado preciso de eventos relevantes (como firmas de embarcaciones) para el entrenamiento del modelo de detección de anomalías.

Etapa 3: Exploración y Análisis de Datos (EDA)

Análisis estadístico y visual

Profundización en los datos para descubrir patrones ocultos, correlaciones y anomalías iniciales. Identificación de características clave

Determinación de las variables más influyentes (como la frecuencia o intensidad de señales de radar) que impactarán directamente el rendimiento del modelo.

Detección de tendencias

Uso de herramientas de visualización avanzadas para identificar tendencias temporales, distribuciones y posibles sesgos en los datos del radar.

El EDA permite a los equipos comprender a fondo el conjunto de datos, informando decisiones críticas sobre la ingeniería de características y la selección del modelo, lo que conduce a resultados más precisos y significativos.

Etapa 4: Ingeniería de características y selección

Creación de nuevas variables

Desarrollo de variables derivadas que capturen información relevante, como la tasa de cambio de la señal de un radar a lo largo del tiempo o la interacción entre diferentes sensores.

Selección de características

Identificación de las características más relevantes y predictivas, eliminando las redundantes o menos informativas para mejorar el rendimiento y la eficiencia del modelo.

Análisis de importancia de variables

Aplicación de técnicas avanzadas para priorizar señales críticas, como la contribución de la frecuencia de pulso o la potencia de eco en la detección de objetivos.

La ingeniería de características es un arte y una ciencia que transforma datos brutos en información de alto valor, permitiendo que los modelos de ML capturen mejor la complejidad subyacente del problema.

Etapa 5: Entrenamiento, evaluación y selección del modelo

- Entrenamiento con algoritmos avanzados: Implementación de modelos como redes neuronales convolucionales para el procesamiento de señales de radar o árboles de decisión para la clasificación de amenazas.
- Evaluación con métricas específicas: Medición del rendimiento utilizando métricas críticas como el recall (sensibilidad) para asegurar la detección de todas las posibles amenazas, o la precisión para minimizar falsas alarmas.
- Optimización iterativa: Ajuste continuo de hiperparámetros y arquitectura del modelo para evitar el sobreajuste y mejorar la generalización en nuevos datos. Se realizan múltiples iteraciones para encontrar el equilibrio perfecto.

Etapa 6: Despliegue y Monitoreo en Producción

Integración del Modelo

Implementación fluida del modelo de detección de anomalías directamente en los sistemas operativos y la infraestructura de la armada, garantizando compatibilidad y rendimiento en tiempo real.

Monitoreo Continuo

Establecimiento de un sistema de vigilancia constante para detectar cualquier degradación en el rendimiento del modelo debido a cambios en los datos o el entorno operativo, como nuevas firmas de radar.

Sistema de Alerta en Tiempo Real Real

Configuración de alertas automáticas para notificar a los operadores sobre posibles amenazas detectadas, permitiendo una respuesta inmediata y coordinada.

El despliegue no es el final, sino el inicio de una fase crítica donde el modelo demuestra su valor. El monitoreo proactivo asegura su vigencia y eficacia a largo plazo en un entorno dinámico.

Estructuración del Plan de Trabajo: Sprint Plan para ML y NLP

Características del Sprint en ML/NLP

- **Duración:** Ciclos cortos de 1 semana con objetivos claros y entregables específicos
- Fases iterativas: Recolección de datos, limpieza, ingeniería de features, modelado, evaluación y despliegue
- Herramientas: Tableros Kanban o metodología Scrum para seguimiento continuo y adaptación ágil
- Flexibilidad: Capacidad de pivote basada en resultados de cada sprint
 - Sprint Ejemplo: Sprint 1 Dataset curado y análisis exploratorio completo; Sprint 2 Desarrollo de modelos base y evaluación inicial de rendimiento

Criterios de éxito y entregables en proyectos ML/NLP

1

Métricas cuantificables

Definir indicadores precisos como accuracy, precision, recall, F1-score, AUC-ROC para clasificación, y RMSE, MAE para regresión

2

Entregables tangibles

Datasets limpios y documentados, modelos entrenados y versionados, reportes de resultados detallados, código reproducible con documentación

3

Validación con usuarios

Pruebas con stakeholders y usuarios finales para asegurar que el modelo genera valor real y cumple expectativas de negocio

4

Documentación técnica

Crear documentación clara y completa que facilite el mantenimiento, actualizaciones futuras y escalabilidad del proyecto

Artefactos Design Thinking en el sprint plan

Mapa de empatía

Herramienta visual para comprender profundamente a los usuarios finales y sus necesidades específicas de datos y funcionalidades

Storyboards

Visualización del flujo completo de trabajo que identifica puntos críticos, cuellos de botella y oportunidades de optimización

Prototipos simples

Modelos de baja complejidad que permiten validar hipótesis clave rápidamente antes de invertir en desarrollo completo

Loops de feedback

Ciclos integrados de retroalimentación que permiten iterar, aprender y mejorar continuamente el plan de trabajo

Recomendaciones para un plan de trabajo exitoso

1 Definición clara del problema

Establecer desde el inicio objetivos específicos, medibles y alineados con la estrategia de negocio para evitar desviaciones costosas

2 Calidad sobre cantidad

Priorizar la limpieza, consistencia y representatividad de los datos por encima del volumen, ya que modelos requieren datos de alta calidad

3 Iteración rápida

Implementar ciclos cortos de prototipado y validación frecuente que permitan aprender rápido y ajustar la dirección según sea necesario

4 Documentación continua

Mantener documentación detallada de cada etapa para facilitar colaboración en equipo, transferencia de conocimiento y escalabilidad futura

Plan estructurado

Reduce riesgos

La claridad en alcance y planificación estratégica minimiza riesgos técnicos y mejora significativamente los resultados finales

Potencia alineación

Integrar Design Thinking fortalece la alineación entre necesidades reales de usuarios y objetivos estratégicos de negocio

Acelera el éxito

La selección cuidadosa de datos y metodología sprint estructurada acelera el camino hacia resultados de valor

