Задачи анализа спектров тандемной масс-спектрометрии

Иванова Елизавета Владимировна, гр. 15.М03-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Коробейников А.И. Рецензент: разработчик ПО Тарасов А.Л.

Санкт-Петербург 2017 г.

Базовые определения

- Масс-спектрометрия техника, которую используют для определения химического состава веществ.
- Масс-спектр сигнал, представляющий зависимость количества ионов вещества (интенсивность) от m/z.

Рис. : Пример масс-спектра.

Задача фильтрации спектров

Свойства эмпирических спектров

- Имеются лишние (шумовые) пики, а интенсивности могут быть искажены трендом.
- Некоторые пики могут сливаться или разделяться на несколько пиков.

Рис. : Пример масс-спектра с выраженным трендом.

Фильтрация пиков

- Фильтрация является важной процедурой, так как лишние пики и артефакты влияют на результаты дальнейшего анализа.
- Задача фильтрации хорошо изучена, так как масс-спектры используются в различных областях знаний.

Нас будет интересовать задача фильтрации в контексте потоковой обработки большого количества спектров.

Фильтрация масс-спектров в Дерепликаторе

В работе был рассмотрен случай **Дерепликатора** (H. Mohimani *et al*, 2016), одного из алгоритмов идентификации пептидов.

Его процедура фильтрации имеет ряд недостатов, самый важный из них — добавление новых пиков.

Рис. : Пример обработки спектра с помощью фильтрации в Дерепликатор.

Постановка задачи

Задача:

- Изучить методы фильтрации пиков.
- Выбрать наиболее подходящий согласно критериям:
 - Наличие небольшого количества настраиваемых параметров;
 - Параметры легко интерпретировать.
- Интегрировать решение в Дерепликатор.

Методы фильтрации пиков

- Большинство методов состоят из трех шагов сглаживание, выделение тренда и определение пиков.
- Были рассмотрены два алгоритма:
 - PROcess (X. Li et al., 2005) из Bioconductor;
 - MassSpecWavelet (P. Du et al., 2006) из Bioconductor.
- Оба алгоритма оценивают сигнал и шум в каждой точке спектра, а затем отбираются пики, для которых частное оценок больше некоторого порога.

O MassSpecWavelet

- ullet $\psi(t)$ материнский вейвлет, $\psi_{a,b}(t)\!=\!rac{1}{\sqrt{a}}\psiig(rac{t-b}{a}ig)$ вейвлеты.
- Модель эмпирического масс-спектра: $Y(t) = S(t) + B(t) + E(t) \text{, где } S(t) \text{ искомый спектр,} \\ B(t) \text{тренд, } E(t) \text{шум с нулевым средним;}$
- ullet Коэффициенты вейвлет-преобразования для Y(t):

$$C(a,b) = \int_{\mathbb{R}} \psi_{a,b}(t)Y(t)dt$$
$$= \int_{\mathbb{R}} \psi_{a,b}(t)S(t)dt + \int_{\mathbb{R}} \psi_{a,b}(t)B(t)dt + \int_{\mathbb{R}} \psi_{a,b}(t)E(t)dt.$$

• Идея метода основана на предположении

$$\int_{\mathbb{R}} \psi_{a,b} Y dt \approx \int_{\mathbb{R}} \psi_{a,b} S dt.$$

Замечания

- MassSpecWavelet неявно использует предположение о равноотстоящих отсчетах в спектре.
- Существует модификация MassSpecWavelet (French *et al*, 2015), подходящая для неравноотстоящих m/z.
- В этой работе модификация была улучшена:
 - Новый алгоритм корректно обрабатывает короткие спектры;
 - Параметры адаптированы под обработку спектров любой длины.

Сравнение алгоритмов

- 1) Эксперимент с длинными масс-спектрами, для которых неизвестны пептиды. Длины спектров от 8000 до 15000.
 - Назовем пик сомнительным, если в его окрестности находится пик с большей интенсивностью.
 - Дерепликатор: 38% сомнительных пиков. Предлагаемый алгоритм: 21% сомнительных пиков.
- 2) Эксперимент с масс-спектрами, для которых известны пептиды. Длины спектров от 600 до 700.

	Точность*	Полнота*
Дерепликатор	0.31	0.58
Предлагаемый алгоритм	0.37	0.62

^{*}Усреднено по спектрам.

Задача кластеризации спектров

Идентификация пептидов

- Масс-спектрометрия является основным инструментом определения пептидов.
- Большинство методов идентификации пептидов по масс-спектру используют базу данных пептидов. Для пептида из базы данных строится ожидаемый спектр и сравнивается с наблюдаемым.

Ожидаемый спектр

- \mathcal{A} алфавит аминокислот;
- ullet $m(p): \mathcal{A} o (0, +\infty)$ масса аминокислоты;
- ullet $P=p_0p_1\ldots,p_{n-1}$ строка в алфавите ${\mathcal A}$, пептид.

Ожидаемый спектр — это набор масс

$$b(P,k) = \sum_{i=0}^{k-1} m(p_i), \ y(P,k) = \sum_{i=k}^{n-1} m(p_i), \ k = 1, \dots, n.$$

Рис. : Пример эмпирического масс-спектра. Синим и красным цветами отмечены пики, относящиеся к ожидаемому спектру.

Ускорение процедуры идентификации пептидов

- Для идентификации пептида по масс-спектру требуется перебрать все ожидаемые спектры, построенные по базе данных.
- Если N размер базы данных, а M количество эмпирических спектров, то общее время работы O(MN).

Идея ускорения процедуры — кластеризовать ожидаемые спектры.

Постановка задачи

Задача:

Научиться кластеризовать ожидаемые спектры, в том числе:

- Выбрать расстояние между пептидами как строками.
- Подобрать подходящее векторное представление спектра.
- Выбрать меру близости между спектрами, которая вычислялась бы за разумное время.

Мера близости биологических последовательностей

- Будем измерять близость пептидов как оценку выравнивания с матрицой замены BLOSUM62 (Henikoff *et al*, 1992).
- Векторное представление спектров гистограмма с определенной шириной столбцов.

Рис. : Пример гистограмм с шириной столбца bin length.

Расстояние между спектрами

Пусть $R=(r_0,\dots,r_{n-1})$ и $Q=(q_0,\dots,q_{n-1})$ — гистограммы, m — суммарное число их ненулевых столбцов.

Рассмотренные расстояния:

- 1) Синус угла между векторами, временная сложность O(n);
- 2) Модификация Earth Mover's Distance (Pele and Werman, 2008), временная сложность $O(m^2)$;
- 3) Quadratic-Chi Histogram Distance Family (Pele and Werman, 2010), временная сложность $O(m^2)$.

Вычислительные эксперименты

- Данные 17000 пептидов. Из них построено K непересекающихся подвыборок.
- Для каждой подвыборки
 - вычислялись матрицы расстояний;
 - запускалась иерархическая кластеризация с динамическим обрезанием дерева (Langfelder, 2007).
- Подсчитывались различные статистики полученного разбиения и усреднялись по выборкам.

Пример

Параметры: число выборок K=8.

Рис. : Зависимость доли правильно кластеризованных пептидов от ширины столбца bin length у гистограмм.

Результаты

Предложен алгоритм кластеризации ожидаемых спектров, в том числе:

- Выбрано векторное представление ожидаемых спектров в виде гистограммы с регулируемой шириной столбца;
- Изучены три варианта расстояний между спектрами, выбран наилучший, исходя из вычислительных экспериментов;
- Проведены вычислительные эксперименты, подтверждающие корректность предложенной процедуры.