Resumen Bloque 3. Fundamentos de Hardware

1. Componentes de un Ordenador

1.1 Definiciones

- Ordenadores de Marca → Un único fabricante ensambla el ordenador (Lenovo, Dell, IBM, etc).
- Ordenadores Clónicos → Ensamblado por técnicos con diferentes fabricantes de componentes.
- Hardware → Partes físicas de un ordenador → Componentes eléctricos, electrónicos, electromecánicos y mecánicos.
- Firmware → Conjunto de órdenes que se almacenan en la electrónica del hardware.
- Software Componentes lógicos de un ordenador que permiten realizar tareas específicas.
 - o Software de Sistema
 - Software de Aplicación
- Driver → Software que le dice al SO cómo manejar un dispositivo hardware.

2. Caja o Carcasa

- Recipiente que contiene los diferentes componentes del ordenador → De ella depende la refrigeración y la capacidad de expansión.
- Sirve como estructura o soporte de los componentes.
- Protege los componentes del ordenador.

2.1 Materiales

- Acero → Más común por su durabilidad y protección.
- Aluminio → Alta gama por su ligereza y capacidad de disipar el calor.
- SPCC → Acero al carbono, más barato que el acero.
- Plástico → Combinación con acero o aluminio para paneles o partes exteriores → Estética.
- Vidrio Templado → Alta gama para la visión del interior del ordenador.

Suelen ser de color negro o blanco por su bajo coste de producir en masa.

2.2 Elementos de una Caja o Carcasa

- Bahías 5 ¼ → Slots para colocar lectores de CD, DVD, etc
- Bahías 3 ½ → Slots para colocar discos duros HDD (3,5") o SSD (2,5").
- Panel Frontal → Es la parte visible de la caja, donde se encuentran los botones de encendido, reinicio, los puertos USB, y las entradas/salidas de audio.
- Panel Lateral → Las tapas laterales que dan acceso al interior de la caja para instalar o modificar componentes. Suelen ser de vidrio templado o metal.
- Panel Trasero → Donde se conectan los periféricos (monitor, teclado, ratón, etc.) y la fuente de alimentación. Tiene las ranuras de expansión para tarjetas gráficas y otros componentes.
- Fuente de Alimentación (PSU) → Convierte la corriente alterna de la toma de corriente en corriente continua que los componentes del PC pueden usar. Suele estar en la parte inferior o superior de la caja.
- Placa Base → Es el componente central del PC, donde se conectan todos los demás componentes (CPU, RAM, tarjeta gráfica, etc.).
- CPU (Procesador) → El "cerebro" del PC, encargado de realizar los cálculos y ejecutar las instrucciones.

- Ventiladores → Ayudan a mantener la temperatura interna de la caja bajo control, extrayendo el aire caliente y/o introduciendo aire fresco.
- Filtros de Polvo → Evitan que el polvo entre en la caja y se acumule en los componentes.
- Panel Inferior → La base de la caja, donde a veces se instala la fuente de alimentación y puede tener filtros de polvo.
- Ranuras de expansión → Slots para poder expandir los componentes del PC.

2.3 Tipos de Caja

2.3.1 Tamaño

- Sobremesa → Horizontal y pocas ampliaciones.
- Torres → Vertical y posibilidades de ampliación según tipo:
 - Microtorre \rightarrow 25 32 cm.
 - Minitorre \rightarrow 32 37 cm.
 - Semitorre \rightarrow 37 45 cm.
 - \circ Torre → 45 55 cm.
 - Gran Torre \rightarrow 55 72 cm.
- Servidores → Altas prestaciones y altas posibilidades de expansión.
- Racks → Agrupación de máquinas muy potentes con un gran flujo de aire.

2.3.2 Factor forma

- ATX → Más común. → Placas ATX, MicroATX.
- MicroATX → Más pequeño → Placas MicroATX.
- Mini ITX → Más pequeño y compacto → Placas Mini ITX.
- $E ATX \rightarrow M$ ás grande $\rightarrow P$ lacas E ATX.

2.4 Flujo de Aire

- Flujo Horizontal → El aire fresco debe entrar por el frontal y ser expulsado por la parte trasera.
- Flujo Vertical → El aire fresco debe entrar por la parte inferior y salir por la parte superior.

2.4.1 Refrigeración por Aire

- Componentes → Disipadores de calor y ventiladores.
- Funcionamiento → El calor va desde el componente hasta el disipador hasta el ventilador.
- Fácil Instalación → Requiere menos mantenimiento.
- Costo → Más económico.

2.4.2 Refrigeración Líquida

- Componentes → Bloque de refrigerante, tubos, bomba, ventilador y radiador.
- Funcionamiento → El calor se absorbe por el bloque de agua y se el líquido se transporta por los tubos hacia el radiador y los ventiladores disipan el calor.
- Eficiencia Térmica → Más eficiente que la refrigeración por aire.
- Complejidad y Mantenimiento → Necesidad de mantenimiento periódico.

3. Fuente de Alimentación

- Se encarga de suministrar energía a todos los dispositivos del ordenador.
- Garantiza energía constante, estable y carente de ruido con la potencia necesaria transformando la corriente alterna en continua.
- Elimina el calor generado en el interior de la caja.

3.1 Características

3.1.1 Tensiones que suministra

- Power Good → Señal de habilitación emitida por la fuente cuando las tensiones son correctas y estables.
- Suministran una tensión de 5V a la placa → +5VSB → Stand By.

3.1.2 Potencia

• Se mide en W \rightarrow Entre 600W y 1200W.

3.1.3 Factor de Corrección de Potencia (PFC)

- Relación entre la potencia real y la aparente
- PFC Activo → Circuitos a base de ciertos elementos que permiten reducir los armónicos y ajustar el índice de entrada a la fuente de poder → Más eficiente → 95% de la potencia indicada.
- PFC Pasivo → Usa elementos pasivos para corregir la fase de voltaje y corriente. Son elementos sencillos de implementar → Más barato → 75% de la potencia indicada.

3.2 Certificaciones

- RoHS → Restricción de sustancias peligrosas en aparatos eléctricos → 2006.
- CE → Legislación europea para ser comercializado en Europa.
- 80 PLUS → Mayor eficiencia energética → + 80%.

3.3 MTBF

• Tiempo medio entre averías → Se indican en horas.

3.4 Raíles

• Son los caminos o canales de que dispone una fuente de alimentación para hacer llegar la electricidad a los componentes.

Raíl	+12V1	+12V2	+5V	+3.3V	-5V	-12V	+5VSB
Potencia	18A	18A	30A	28A	0.8A	0.8A	2A

3.5 Tipos

- Modulares → Los cables están separados de la fuente de alimentación.
- No modulares → Los cables están directamente conectados a la fuente de alimentación.

3.6 Formato de Fuentes

- ATX → Más usado → 150mm de ancho y 86mm de alto.
- SFX → Segundo más utilizado → 125mm de ancho y 63,5mm de alto.
- TFX → Alargada y reducida.

3.7 Conectores

3.7.1 Conector de Alimentación

Suele estar compuesto por un conector principal de 20 pines y uno secundario de 4 pines.

- Power OK → Pin8 → Color gris.
- Power Supply On → Pin14 → Color verde → Encendido de la fuente → Con negro → Se enciende.
- Stand By \rightarrow Pin9 \rightarrow Color plateado.

3.7.2 Conector de Alimentación +12v

• Conector de 4 + 4 pines o sólo 4 pines.

3.7.3 PCIe

- Proporciona alimentación a las tarjetas gráficas cuando requiere más de 75W.
- Tiene 6 + 2 pines.

3.7.4 Molex 4 pines

• Ya en desuso → Discos duros, lectores, etc

3.7.5 Sata

• Sustituto del molex → Conectores de discos duros.

4. Placa Base

Es una tarjeta de circuito impreso a la que se conectan las demás partes del ordenador → Mantiene comunicados entre sí a los componentes hardware conectados.

4.1 Factor Forma

Formato	Ancho x alto (mm)	Ranuras máximas	
ATX	244 x 305	7	
MicroATX	244 x 244	4	
Mini - ITX	170 x 170	1	
E - ATX	305 x 330	+10	

4.2 Conectores

Conector	Características	
Alimentación	20/24 pines	
Ventiladores CPU_FAN	4 pines	
Ventiladores SYS_FAN	3 pines	
Panel Frontal	1/2/4 pines	
USB Interno	Máx 19 pines	
IDE	40 pines	
FDD (Floppy)	34 pines	
Sata	5 alimentación – 7 datos – 2 tierra pines	
Socket M.2	Ranura	
HDD	64MB/s	
SDD	550MB/s	
M.2	7000-9000MB/s	
USB 1.0	12 Mbps	
USB 2.0	400 Mbps	
USB 3.0/1/2 Gen 1	5 Gbps	
USB 3.1/2 Gen 2	10 Gbps	
USB 3.2 Gen 2x2	20 Gbps	
TPM	19 pines	
HDMI	Pantalla	
Ethernet	Internet	
PCIe	X16 / x1	
Socket Procesador	Procesador	
Socket DIMM DDR	RAM	

4.3 Zócalos

AMD	Intel	
AM2, AM2+	LGA 115x	
AM3, AM3+	LGA 1200	
FM1, FM2, FM2+, AM1	LGA 1700	
AM4, AM4+	LGA 2011	
AM5	LGA 2066	

4.4 Chipset

- Uno o más circuitos electrónicos → Gestiona las transferencias de datos entre los diferentes componentes del ordenador
- Chipset = Southbridge (Control dispositivos lentos) + Northbridge (Control dispositivos rápidos) → Desactualizado
- PCH → Southbridge + funciones del Northbridge que desaparece → Audio, SATA, USB, PCIe, Ethernet.

5. Micro Procesador

- Circuito integrado que funciona como unidad central de procesamiento del ordenador.
- Ejecuta instrucciones de programas almacenados en la memoria y realiza operaciones aritméticas y lógicas.
- Apareció en 1978.

5.1 Características

- Frecuencia del Reloj → Se mide en Hz o GHz → Operaciones que puede realizar.
- Número de Núcleos → Más eficiente con más núcleos.
- Hyper-Threading → Núcleo físico actúa como 2 núcleos lógicos → Más eficiente con múltiple tareas.
- Caché → Memoria de acceso rápido que almacena datos e instrucciones.
- L1 → 32 64KB → Uso más frecuente de CPU.
- L2 \rightarrow 256 512KB \rightarrow Respaldo de la L1.
- L3 \rightarrow 4 6MB \rightarrow Respaldo de L1 y L2.
- Tecnología Fabricación → Proceso de fabricación → Menor nm = mayor eficiencia y rendimiento.
- TDP → Cantidad máxima de energía térmica que debe disipar → Se mide en W.
- Arquitectura \rightarrow Define compatibilidad y eficiencia \rightarrow x86, x86-64, etc.
- Instrucciones y extensiones → Instrucciones adicionales que pueden mejorar el rendimiento de algunas tareas.
- SSE → Mejora el rendimiento multimedia, juegos, criptografía, etc.
- AVX → Mejora el rendimiento de una gran carga de trabajo.
- Integración GPU → Se integra una GPU en el mismo chip.
- Compatibilidad y características → Virtualización, overclocking, etc.

5.2 Evolución

- Intel → 14900K → 14 Generación | 900 SKU | K Suffix.
- AMD → 2990WX → 2 Generación | 90 Núcleos | WX Alto Rendimiento
 - \circ 00 \rightarrow 8 núcleos.
 - \circ 20 \rightarrow 12 núcleos.
 - \circ 50 → 16 núcleos.
 - \circ 70 \rightarrow 24 núcleos.
 - \circ 90 \rightarrow 32 núcleos.

6. Memoria RAM

- Memoria de acceso rápido → Una palabra se encuentra de forma directa → Almacena datos y programas → Rendimiento global del ordenador.
- Es una memoria volátil que al apagarse el ordenador, la información se pierde.

6.1 Parámetros Característicos

- Capacidad → Cantidad de información que puede almacenar → GB o TB.
- Tipo de Memoria → Indica el estándar al que pertenece la memoria.
- Frecuencia → Número de operaciones que puede realizar por segundo → Hz.
- Ancho del Bus → Número de bits con los que puede trabajar de forma simultánea → 64 bits.
- Velocidad de Transferencia \rightarrow Cantidad de información transferida \rightarrow MB/s \rightarrow V=MHz x bytes
- Latencia CAS → Tiempo de espera entre el acceso a un dato y el comienzo de la transferencia → Ciclos de Reloj → Cuanto menor sea el CL, más rápido procesa.
- Voltaje → Tensión que requiere la memoria para funcionar.
- ECC → Detectan v corrigen los errores de bits.
- Buffered → Más estables, más lentas y más caras que las unbuffered.
- Perfil XMP → Permite configuración de overclocking.

6.2 Tipos de Memoria

6.2.1 Semiconductoras

- Dinámica → Necesitan información refrescada cada cierto tiempo.
- Estática → No necesitan de refresco.
- Síncrona → Requiere que un reloj marque las pautas de lectura y escritura.
- Asíncrona → No requiere un reloj para las pautas de lectura y escritura.

6.2.2 Formato Físico

- SIMM → Contactos en una sola cara → 30 pines → 72 pines.
- RIMM \rightarrow 168 y 184 pines \rightarrow 64 bits.
- DIMM → Bus 64 bits → Longitud 13,3 cm.
 - DDR \rightarrow 184 pines.
 - \circ DDR2 \rightarrow 240 pines.
 - \circ DDR3 → 240 pines.
 - \circ DDR4 → 288 pines.
 - \circ DDR5 \rightarrow 288 pines.

Características	DDR4	DDR5
Velocidad	1600 – 3200 MHz	4800 – 6400 MHz
Voltaje	1,2V	1,1V
Tamaño módulos	8 – 16 GB	16 – 64 GB
Canales	1	2
Tamaño ráfaga datos	BC4, BL8	BC8, BL16
Gestión energética	Placa base	Módulo DIMM

6.3 Dual Channel

- Tecnología que permite el incremento del rendimiento con dos módulos de memoria.
- Misma capacidad, velocidad, frecuencia, latencia y fabricante.

6.4 Triple Channel

- Tecnología que permite el incremento del rendimiento con tres módulos de memoria.
- Misma capacidad, velocidad, frecuencia, latencia y fabricante.

7. Periféricos

 Conjunto de dispositivos que sin pertenecer al núcleo del ordenador, permiten realizar operaciones de entrada y saluda complementarias al que realiza la CPU

7.1 Tipos

Tipo	Características	Dispositivos
Entrada	Introducen datos al pc	Teclado, ratón, micrófono, etc
Salida	Extraen datos del pc	Monitor, altavoz, etc
Entrada/Salida	Introducen y extraen datos	Tarjeta red, pantalla táctil, etc
Almacenamiento	Almacenan datos e información	Pendrive, disco duro, etc

8. Panel Frontal

 Se encuentran las luces LED de actividad del disco duro, botón encendido, reset, altavoz, etc.

Los conectores son los siguientes:

- Speaker → Altavoz → 4 pines → Rojo / Negro
- HDD Led → Led disco duro → 2 pines → Rojo / Blanco
- PowerLed → Led de encendido → 3 pines → Verde / Blanco
- Reset SW → Botón de reset → 2 pines → Azul / Blanco
- Power SW → Botón de encendido → 2 pines → Gris / Blanco
- La mayoría de los conectores tiene una flecha hacia abajo ↓ que sindica el pin 1.

9. La BIOS

- Basic Input Output System → Sistema Básico de Entrada y Salida
- Software que se encarga de realizar las funciones básicas de manejo y configuración del sistema.
 - Inicia los componentes hardware.
 - Inicia el arranque del Sistema Operativo.
- Se almacena en un chip de memora ROM (no volátil).

• Accede a la CMOS → Alimentada con la Pila para que no se pierda la información → Almacena información importante → Fecha, Secuencia de arranque, etc → Si la pila se agotase → CMOS Checksum Error.

9.1 Diferencias entre UEFI y BIOS

Características	UEFI	BIOS	
Interfaz	Fácil, renovada, gráfica	Anticuada y compleja	
Velocidad	Rápida	Lenta	
Compatibilidad	GPT / MBR	MBR	
Compatibilidad x64	Si	Depende	
Secure Boot	Si	No	

- BIOS → MBR → Boot Loader → Kernel → Sistema Operativo
- UEFI → GPT + EFI + Boot Leader → Kernel → Sistema Operativo