Lecture 28

Review

STAT 8010 Statistical Methods I October 28, 2019

> Whitney Huang Clemson University

Review	
CLEMS N	
NIVERSITY	

Inferences for One Population Mean

Goal: To infer $\mu = \mathbb{E}(X)$ from a random sample $\{X_1, X_2, \cdots, X_n\}$

Point estimation:

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$

- Interval Estimation: 100 \times (1 $-\alpha$)% Confidence Interval (CI)
 - $\sigma = \sqrt{\operatorname{Var}(X)}$ is known:

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

 \bullet σ is unknown:

$$\left(\bar{X}_n - t_{\alpha/2,df=n-1} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + t_{\alpha/2,df=n-1} \frac{\sigma}{\sqrt{n}}\right)$$

Notes

Notes

28.2

Margin of error & Sample Size Calculation

Margin of error:

$$\begin{split} &z_{\alpha/2}\frac{\sigma}{\sqrt{n}} & \text{if } \sigma \text{ known} \\ &t_{\alpha/2, \textit{df}=n-1}\frac{s}{\sqrt{n}} & \text{if } \sigma \text{ unknown} \end{split}$$

- \Rightarrow CI for $\mu = \bar{X}_n \pm$ margin of error
- Sample size determination:

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{margin of error}}\right),\,$$

if σ is given

Notes			

Hypothesis Testing for μ

State the null and alternative hypotheses:

$$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu > \text{ or } \neq \text{ or } < \mu_0$$

Ompute the test statistic:

$$z_{
m obs} = rac{ar{X}_n - \mu_0}{\sigma/\sqrt{n}}, \quad \sigma ext{ known; } t_{
m obs} = rac{ar{X}_n - \mu_0}{s/\sqrt{n}}, \quad \sigma ext{ unknown}$$

Make the decision of the test:

Rejection Region/ P-Value Methods

Oraw the conclusion of the test: We (do/do not) have enough statistical evidence to conclude that (H_a in words) at α % significant level.

Type I, II Error & Power

True State	Decision				
True State	Reject H ₀	Fail to reject H_0			
H ₀ is true	Type I error	Correct			
H₀ is false	Correct	Type II error			

- Type I error: $\mathbb{P}(\text{Reject } H_0 | H_0 \text{ is true}) = \alpha$
- Type II error: $\mathbb{P}(\text{Fail to reject } H_0|H_0 \text{ is false}) = \beta$
- The power (PWR): $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is false}) = 1 \beta.$

$$\Rightarrow \mathsf{PWR}(\mu_{a}) = 1 - \beta(\mu_{a}) = 1 - \mathbb{P}(z^{*} \leq z_{\alpha} - \frac{|\mu_{0} - \mu_{a}|}{\sigma/\sqrt{n}})$$

(see the figure in page 5, Lecture 20)

Notes

Notes

_				
_				
_				

Duality of Hypothesis Test with Confidence Interval

There is an interesting relationship between CIs and hypothesis tests. If H_0 is rejected with significance level α then the corresponding confidence interval does not contain the value $\mu_{\rm 0}$ targeted in the hypotheses with the confidence level $(1 - \alpha)$, and vice versa

Hypothesis testing at α level	(1-lpha)-level CI
$H_0: \mu = \mu_0$ vs. $H_a: \mu \neq \mu_0$	$ar{X} \pm t(lpha/2,n-1)s/\sqrt{n}$
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu > \mu_0$	$(\bar{X}-t(\alpha/2,n-1)s/\sqrt{n},\infty)$

 $H_0: \mu = \mu_0 \text{ vs. } H_a: \mu < \mu_0 \quad \Big| \quad (-\infty, \bar{X} + t(\alpha/2, n-1)s/\sqrt{n})\Big|$

Notes			

Statistical Inference for $\mu_1 - \mu_2$

- Point estimation: $\bar{X}_1 \bar{X}_2$
- Interval estimation:

$$\bar{X}_1 - \bar{X}_2 \pm \text{ margin of error},$$

where margin of error =

$$t_{\alpha/2,df^*}\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \quad df^* = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

When s_1 and s_2 "similar enoug", we replace $\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}$ by $s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$, where $s_p=\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}$

Notes

28.7

Hypothesis Testing for $\mu_1 - \mu_2$

- State the null and alternative hypotheses:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$
- Compute the test statistic:

$$t_{obs} = \frac{\frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad \sigma_1 = \sigma_2}{\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \quad \sigma_1 \neq \sigma_2}$$

• Make the decision of the test:

Rejection Region/ P-Value Methods

Draw the conclusion of the test

Notes

Paired T-Tests

- When to use: before/after study, pairing subjects, study on twins, etc
- $H_0: \mu_{diff} = 0$ vs. $H_a: \mu_{diff} > 0$ or $\mu_{diff} < 0$ or $\mu_{diff} \neq 0$, where μ_{diff} is the population mean of the paired difference
- Test statistic: $t_{obs} = \frac{\bar{X}_{diff} 0}{\frac{S}{\sqrt{f_0}}}$

	R	ev	ie	w			
J	E	N	18	3	ď	N	ľ

Notes

20.0

ANOVA and Overall F Test

Overall F-Test

• $H_0: \mu_1 = \mu_2 = \cdots = \mu_J$

Ha: At least one mean is different

ANOVA Table:

Source	df	SS	MS	F statistic
Treatment	<i>J</i> – 1	SSTr	$MSTr = \frac{SSTr}{J-1}$	$F = \frac{\text{MSTr}}{\text{MSE}}$
Error	N-J	SSE	$MSE = \frac{SSE}{\mathit{N-J}}$	
Total	N - 1	SSTo		

• Test Statistic: $F_{obs} = \frac{\text{MSTr}}{\text{MSE}}$. Under H_0 , $F^* \sim F_{df_1 = J-1, df_2 = N-J}$

Notes

28.10

Family-Wise Error Rate (FWER) and Mulitple Comparisons

- Family-Wise Error Rate (FWER) $\bar{\alpha}$: the probability of making 1 or more type I errors in a set of hypothesis tests
- Bonferroni Correction: Adjust the significant level for each of the m tests to be $\frac{\alpha}{m}$ to control the **FWER**
- Fisher's LSD and Tukey's HSD

Notes

Linear Contrasts

- **Definition**: Let c_1, c_2, \cdots, c_J are constants where $\sum_{j=1}^J c_j = 0$, then $L = \sum_{j=1}^J c_j \mu_j$ is called a **linear contrast** of the population means.
- Point Estimation:

$$\hat{L} = \sum_{j=1}^{J} c_j \bar{X}_j$$

Interval Estimation:

$$(\hat{L} - \textit{t}_{(\alpha/2,\textit{df}=N-J)}\hat{\textit{se}}_{\hat{L}}, \hat{L} + \textit{t}_{(\alpha/2,\textit{df}=N-J)}\hat{\textit{se}}_{\hat{L}}),$$

where
$$\hat{se}_{\hat{L}} = \sqrt{\mathsf{MSE}\left(rac{c_1^2}{n_1} + \dots + rac{c_J^2}{n_J}
ight)}$$

Hypothesis Testing for linear contrasts

Notes			