### Cadenas

Isabel Pita.

Facultad de Informática - UCM

11 de noviembre de 2022

#### Cadenas

- Una cadena es una secuencia de caracteres. Las cadenas pueden ser muy largas...
- Tipos de datos para leer las cadenas:
  - string,
  - char t [MAX]. Carácter de finalización '\0'.
- Para transformar un string al tipo char\* utilizar el método c\_str().
- Importante conocer las funciones de la librería para el tratamiento de cadenas. Estas funciones suelen tener complejidad del orden de la longitud de la cadena.
- Tratamiento de cadenas con programación dinámica.
- Diccionarios: Tries.
- String matching. Algoritmo KMP, o Suffix Array.
- Longest Repeated String, Longest Common Substring: Suffix Array.

### Trie

- Estructura de datos eficiente como diccionario.
- Permite determinar si una palabra P, de longitud m pertenece a un diccionario ya creado en  $\mathcal{O}(m)$ .

- Cada nodo del árbol tiene tres atributos:
  - Número de prefijos de los que forma parte este nodo, prefixes.
  - Número de cadenas que terminan en este nodo, words.
  - Vector de punteros a nodos con tantas posiciones como letras del alfabeto, child.

# Trie



#### Trie

Se proporciona el método add que permite crear el Trie. Los métodos para recorrer el Trie son particulares de cada problema y se deben añadir en cada caso a la estructura.

```
const int MAXN = 26;
class Trie {
    int prefixes;
    int words;
    std::vector<Trie *> child;
public:
  Trie():prefixes(0), words(0), child(MAXN, nullptr) {}
  ~Trie() {
    for (int i = 0; i < MAXN; ++i)</pre>
      delete child[i];
```

```
void add(const char *s) {
    if (*s == ' \setminus 0') ++words;
    else {
      Trie * t;
       if (\text{child}[\star s - 'a'] == \text{nullptr})  {
         t = child[*s - 'a'] = new Trie();
         t->prefixes = 1;
       } else {
         t = child[*s - 'a'];
         t->prefixes++;
      t->add(s+1);
};
```

### String matching

Problema: Dada una cadena T de longitud n y un patrón P de longitud m, encontrar las apariciones del patrón en el texto.

P = ab

T = aaabcaabacbaabbbcaabca

El algoritmo de fuerza bruta comprueba para cada posición de T si encaja el patrón. Tiene complejidad en el caso peor  $\mathcal{O}(n*m)$ . Si el tamaño del patrón y del texto no son muy grandes el coste es aceptable.

P = aaaaaaaaab

# Algoritmo KMP (Knuth-Morris-Pratt)

El algoritmo utiliza la información que se obtiene al comparar el patrón con el texto, para no comparar dos veces un carácter en T que haya unificado con un carácter en P.

Tabla que nos indica la posición del patrón a la que debemos retroceder. (El texto no retrocede nunca)

# Algoritmo KMP (Knuth-Morris-Pratt)

```
std::string T,P;
std::vector<int> b; // back table
int n, m; // n = length of T, m = length of P
void kmpPreprocess() { // before calling kmpSearch
     int i = 0, j = -1; b[0] = -1;
     while (i < m) {
           while (i >= 0 \&\& P[i] != P[i]) i = b[i];
           ++i; ++j;
          b[i] = i;
Complejidad \mathcal{O}(m)
              egin{array}{llll} P &=& a & b & c & a & b & d \\ b &=& -1 & 0 & 0 & 0 & 1 & 2 & 0 \\ & & 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{array}
```

# Algoritmo KMP (Knuth-Morris-Pratt)

T = a b c a b c a b d

```
void kmpSearch() {
    int i = 0, j = 0;
    while (i < n) {
        while (j >= 0 && T[i] != P[j])
            j = b[j]; // different reset j using b
        ++i; ++j; // same, advance both pointers
        if ( j == m) {
            printf("P is found at index %d in T\n",i-j);
            i = b[i];
Complejidad \mathcal{O}(n) (+ \mathcal{O}(m) del preprocesado)
 P = a b c a b d
        0 1 2 3 4 5 6 7 8
```

# Otras aplicaciones del algoritmo KMP

Dada una cadena encontrar la longitud mínima de una subcadena que se repite N veces para formar la cadena.

#### Ejemplos:

abababab - Longitud mínima 2 aaaa - Longitud mínima 1 abcde - Longitud mínima 5.

#### Algoritmo:

- Calcular el vector b del preprocesado de la cadena.
- Si alguna cadena se repite su longitud debe ser:
  - $l={\it longitud}$  de la cadena último valor de la tabla
- Si (longitud de la cadena %l==0) es la cadena que queremos, en otro caso la longitud mínima es la longitud de la cadena.

- Estructura de datos que permite resolver eficientemente los problemas :
  - String matching
  - Longest Repeated Substring. Subcadena más larga que se repite en una cadena.
  - Longest Common Substring. Subcadena más larga que se repite en varias cadenas.
- Un Suffix Array es un vector de enteros que almacena los índices de los sufijos de una cadena ordenados lexicográficamente.
- Debe añadirse un carácter al final de la cadena cuyo valor en el código ASCII sea menor que el de las letras de la cadena.

| i  | Suffix       |  |
|----|--------------|--|
| 0  | moviesemos\$ |  |
| 1  | oviesemos\$  |  |
| 2  | viesemos\$   |  |
| 3  | iesemos\$    |  |
| 4  | esemos\$     |  |
| 5  | semos\$      |  |
| 6  | emos\$       |  |
| 7  | mos\$        |  |
| 8  | os\$         |  |
| 9  | s\$          |  |
| 10 | \$           |  |

| i   | SA[i] | Suffix       |
|-----|-------|--------------|
| 0   | 10    | \$           |
| 1   | 6     | emos\$       |
| 2 3 | 4     | esemos\$     |
| 3   | 3     | iesemos\$    |
| 4   | 7     | mos\$        |
| 5   | 0     | moviesemos\$ |
| 6   | 8     | os\$         |
| 7   | 1     | oviesemos\$  |
| 8   | 9     | s\$          |
| 9   | 5     | semos\$      |
| 10  | 2     | viesemos\$   |

- Ordenar el vector con las funciones de la librería (sort) es muy costoso, porque cada comparación de cadenas tiene coste lineal respecto a la longitud n de la cadena. El coste de ordenar esta en  $\mathcal{O}(n^2 \log n)$ .
- Para mejorar el coste realizamos  $\log n$  veces la ordenación, pero cada vez ordenamos únicamente según el prefijo de longitud  $k=1,2,4,8,\ldots$  de cada sufijo.
- Cómo el rango de los valores a ordenar no es  $muy\ grande$ , utilizamos el método de ordenación  $Radix\ sort$ , que llama al método CountingSort para ordenar en tiempo  $\mathcal{O}(n)$ .
- El tiempo total de realizar las  $\log n$  ordenaciones es  $\mathcal{O}(n \log n)$ .

```
#define MAX N 100010
std::string T;
int n;
int RA[MAX N], tempRA[MAX N];
int SA[MAX N], tempSA[MAX N];
int c[MAX N];
void countingSort(int k) {
 int i, sum, maxi = std::max(300,n); // up to 255 ASCII
 memset(c,0,sizeof c);
 for (i = 0; i < n; ++i)
   ++c[i+k< n ? RA[i+k] : 0];
 for (i = sum = 0; i < maxi; ++i) {</pre>
   int t = c[i]; c[i] = sum; sum += t;}
 for (i = 0; i < n; ++i)
   tempSA[c[SA[i]+k < n ? RA[SA[i]+k] : 0]++] = SA[i];
 for (i = 0; i < n; ++i)
   SA[i] = tempSA[i];
```

```
// Construccion del suffix array
void constructSA() {
 int i, k, r;
 for (i = 0; i < n; ++i) RA[i] = T[i];
 for (i = 0; i < n; ++i) SA[i] = i;
 for (k = 1; k < n; k <<= 1)
   countingSort(k);
   countingSort(0);
   tempRA[SA[0]] = r = 0;
   for (i = 1; i < n; ++i)
     tempRA[SA[i]] =
        (RA[SA[i]] == RA[SA[i-1]] \&\&
        RA[SA[i]+k] == RA[SA[i-1]+k])?
        r : ++r;
   for (i = 0; i < n; ++i)
     RA[i] = tempRA[i];
   if (RA[SA[n-1]] == n-1) break;
```

String matching. Encontrar las veces que se repite un patrón P de longitud m en un texto T de longitud n.

- Utilizar búsqueda binaria para localizar la aparición más a la izquierda de P en el vector SA.
- Utilizar búsqueda binaria para localizar la aparición más a la derecha de P en el vector SA.
- El número de veces que se repite el patrón es la diferencia entre los índices obtenidos en las búsquedas.
- Complejidad una vez construido SA:  $\mathcal{O}(m \log n)$ .

Longest Common Prefix. Calcular la máxima longitud de un prefijo común a dos sufijos del vector SA.

- El prefijo común debe estar en posiciones consecutivas del vector SA.
- Comparar directamente los prefijos tiene un coste  $\mathcal{O}(n^2)$ , siendo n la longitud de la palabra.
- Se puede calcular en  $\mathcal{O}(n)$ , utilizando la posición inicial de los sufijos en lugar del vector SA.

# Longest Common Prefix

```
int LCP[MAX N];
void computeLCP() {
 int Phi[MAX N];
 int PLCP[MAX N];
 int i, L;
Phi[SA[0]] = -1;
 for (i = 1; i < n; ++i)
 Phi[SA[i]] = SA[i-1];
 for (i = L = 0; i < n; ++i) {
  if (Phi[i] == -1) {PLCP[i] = 0; continue;}
 while (T[i+L] == T[Phi[i] + L]) ++L;
 PLCP[i] = L;
 L = std::max(L-1,0);
  for (i = 0; i < n; ++i)
   LCP[i] = PLCP[SA[i]];
```

Longest Repeated Substring. Subcadena más larga que aparece al menos dos veces en la cadena

• El valor de LRP es el máximo del vector LCP.

| i  | SA[i] | LCP | Suffix       |
|----|-------|-----|--------------|
| 0  | 10    | 0   | \$           |
| 1  | 6     | 0   | emos\$       |
| 2  | 4     | 1   | esemos\$     |
| 3  | 3     | 0   | iesemos\$    |
| 4  | 7     | 0   | mos\$        |
| 5  | 0     | 2   | moviesemos\$ |
| 6  | 8     | 0   | os\$         |
| 7  | 1     | 1   | oviesemos\$  |
| 8  | 9     | 0   | s\$          |
| 9  | 5     | 1   | semos\$      |
| 10 | 2     | 0   | viesemos\$   |

Longest Common Substring. Subcadena más larga que aparece en varias cadenas.

#### Para dos cadenas:

- Concatenar las dos subcadenas, utilizando diferentes caracteres para controlar el final de cada una. Los caracteres utilizados deben ser anteriores a los caracteres de la cadena en el código ASCII.
- Calcular el SA y LCP de la cadena concatenada.
- Calcular el LCP máximo de los sufijos tales que un sufijo pertenece a una cadena y el siguiente a la otra.
- Para comprobar si un sufijo pertenece a una cadena se comprueba si su SA[i] esta en el rango que corresponde a la cadena en la cadena concatenada. Por ejemplo un sufijo está en la primera cadena si su SA[i] es menor que la longitud de la cadena