Week 3:

Practice Problems

- 1. Prove (using the formal definition of a limit) the following
 - (a) $\lim_{n\to\infty} \ln(n+10) = \infty$
 - (b) $\lim_{n \to \infty} 1 2^n = -\infty$
- 2. Determine if the following statements are true or false. If true, argue your case mathematically, if false, provide a counterexample.
 - (a) If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \infty$ then $\lim_{n\to\infty} (a_n + b_n) = \infty$
 - (b) If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \infty$ then $\lim_{n\to\infty} (a_n b_n) = 0$
 - (c) If $a_n \le b_n \le c_n$ for all n, $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = M$, then $\lim_{n \to \infty} b_n = K$ with $L \le K \le M$.
- 3. Prove (using the formal definition of a limit) that if $a_n > 0$ for all n and $\lim_{n \to \infty} a_n = L$, then $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{L}$. [Hint: Consider the cases L = 0 and $L \neq 0$ separately.]
- 4. Let $\{a_n\}$ be a sequence such that $\lim_{n\to\infty} a_n = \infty$. Which of the following must be true?
 - (a) Every term of $\{a_n\}$ is positive.
 - (b) No subsequence of $\{a_n\}$ converges.
 - (c) $\lim_{n\to\infty} 3n^2 a_n = \infty$
 - (d) $\lim_{n\to\infty} \frac{a_n}{n} = \infty$
 - (e) $\lim_{n\to\infty} -a_n = -\infty$
 - (f) None of the above
- 5. Which cutoff values of N will guarantee that $a_n = 2 + n^2$ is greater than M, assuming M > 5 (select all that apply):
 - (a) $N = \sqrt{M}$
 - (b) $N = \sqrt{M 5}$
 - (c) $N = \frac{1}{M}$
 - (d) N = M
 - (e) $N = M^2 + 2$
 - (f) None of the above

6. Assuming $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=0$ where $a_n\geq 0$ and $b_n\geq 0$, determine

$$\lim_{n\to\infty} \left(a_n \sin(n) + b_n \cos(n)\right).$$

- 7. Let's examine how absolute values and limits interact.
 - (a) The statement

If
$$\lim_{n\to\infty} |a_n| = |L|$$
 then $\lim_{n\to\infty} a_n = L$

is false in general. Provide a counter-example.

(b) The statement

If
$$\lim_{n\to\infty} a_n = L$$
 then $\lim_{n\to\infty} |a_n| = |L|$

is true. Show this using the definition of limits. Hint: $||a| - |b|| \le |a - b|$.

(Even though it is not necessary for this question, you should be able to show that the hint is true.)

(c) Is the statement

If
$$\lim_{n\to\infty} |a_n| = 0$$
 then $\lim_{n\to\infty} a_n = 0$

true? If so, argue why, if not, provide a counterexample.

8. Compute the following limits using any method.

(a)
$$\lim_{n \to \infty} \frac{\sin(n^2)}{n^2}$$

(b)
$$\lim_{n \to \infty} \frac{3n - (-1)^n}{n}$$

(c)
$$\lim_{n\to\infty} \frac{n!}{n^n} \left[\text{Hint: Write } n! = 1 \cdot 2 \cdot 3 \dots n \text{ and } n^n = n \cdot n \cdot n \dots n \text{ and use the fact that } 0 < \frac{n!}{n^n} . \right]$$

(d)
$$\lim_{n \to \infty} \frac{3n^3 + 2n^2 - n - 1}{n^3 + n + 3}$$

(e)
$$\lim_{n \to \infty} \frac{n^2 + n + n}{n^2 + 2n - 6}$$

- 9. Consider the sequence $\{a_n\}$ defined by $a_n = 3 \frac{2}{n}$ when $n \ge 1$. Which of the following are true?
 - (a) 4 is an upper bound of $\{a_n\}$.
 - (b) 2.99 is an upper bound of $\{a_n\}$.
 - (c) $\{a_n\}$ is a decreasing sequence.
 - (d) 1 is a lower bound of $\{a_n\}$.
 - (e) 1 is the greatest lower bound of $\{a_n\}$.
 - (f) $\frac{14}{5}$ is the greatest lower bound for some tail of $\{a_n\}$.
 - (g) None of the above.

- 10. Which of the following sequences are monotone?
 - (a) $\{(-1)^n + 3^n\}$
 - (b) $\{n^2 4n\}$
 - (c) $\left\{\sin\left(\frac{\pi}{4n}\right)\right\}$
 - (d) $\left\{\frac{1}{n} + \frac{1}{2n+2}\right\}$
 - (e) None of the above.
- 11. Define a sequence $\{a_n\}$ by $a_1 = 1$ and $a_{n+1} = \frac{7 + a_n}{6}$ for $n \ge 1$.
 - (a) By induction, show that $\{a_n\}$ is an increasing sequence that is bounded above by 2.
 - (b) Prove that this sequence is convergent and find $\lim_{n\to\infty} a_n$.
- 12. Define a sequence $\{a_n\}$ by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$.
 - (a) By induction, show that $\{a_n\}$ is an increasing sequence that is bounded above by 3.
 - (b) Prove that this sequence is convergent and find $\lim_{n\to\infty} a_n$.