Kalman Filter

The KF algorithm updades the extinate of the state of a system as shown:

$$\chi_{(n)}$$
 $\chi_{(n)}$ $\chi_{(n)}$ $\chi_{(n)}$

The system has a state X(n) and an observation/output.

$$V(n)$$
 at time $n=0,1,\ldots$ awarding to:
$$X(n+1)=AX(n)+V(n)\quad ;\quad n\geq 0$$
 stalke-space equs
$$Y(n)=CX(n)+W(n)\quad ;\quad n\geq 0$$

The RVs $\{X(0),\{V(n),W(n)\}_{n>0}\}$ are all cothogonal & zero-mean. $Cov(V_n)=\sum_v \; |\; lov(W_n)=\sum_w$

Objective of the KF: Extinate $\hat{X}(n) = L[X(n) | y(0), ..., y(n)]; \ n \ge 0$

Theorem: Kalman Filter

- (1) $\hat{\chi}_{n|n} = A \hat{\chi}_{n-1|n-1} + k_n (y_n CA \hat{\chi}_{n-1|n-1})$
- (2) $K_{n} = \sum_{n \mid n-1} C^{T} \left[\left(\sum_{n \mid n-1} C^{T} + \sum_{w} \right)^{-1} \right]$
- (3) $\sum_{n|n-1} = A \sum_{n-1|n-1} + \sum_{v}$
- (4) ∑nin = (I KnC) ∑nin-1

Note: Zw=lov(Wn)

 $\sum_{V} = Cov(V_{K})$

 $\sum_{n|n-1} = (bv(x_n - A\hat{x}_{n-1|n-1}))$

 $\sum_{n \in \mathbb{N}} = Cov(\widehat{\chi}_n - \widehat{\hat{\chi}}_{n \in \mathbb{N}})$

Notation:

$$\widehat{X}_{B|B}$$
 = L[Xn| Y1,..., Yn] = LLSE of Xn at time n
extinate of based on all observations up

 $\Delta_{\text{NIN}} = X_{\text{N}} - \widehat{X}_{\text{NIN}} = \text{extimated error of } X_{\text{N}} \text{ at time } n$

Orthogranal Updates

Norm-up: Updating LLSE

Theorem: y x, y, z are zero-mean and E(yz) = 0 $(y \pm z)$, then L[x|y,z] = L[x|y] + L[x|z].

L[X|Y,Z] = L[X|Y] + L[X|Z] is equivolent to $P\bar{y},\bar{z}\;\bar{X} = P\bar{y}\;\bar{X} + P\bar{z}\bar{X}$ if $\vec{y} \perp L\bar{Z}$

 \vec{y}, \vec{z} not orthogonal, run Gram-Schmidt:

 $L[X|Y,Z] = L[X|Y] + L[X|\widetilde{Z}]$ where $\widetilde{Z} = Z - P_YZ = Z - L[Z|Y]$

KF: recursive many of updating entimates based on prediction & update (after observing new sample point) one oil a time;

useful for real-time trouking renarios

Seatimate Xh given Yⁿ by first finding/predicting L[Xn|Y1,...,Yn] at time N-1, and then updating the extinate based on new observation.
Yh at time N

$$\begin{split} L[X_{n}|\ y_{1},...,y_{n}] &= L[X_{n}|\ y_{1},...,y_{n-1}] + L[X_{n}|\ \widehat{y_{n}}] \\ \text{where} \quad \widehat{y_{n}} &= y_{n} - L[y_{n}|\ y_{1},...,y_{n-1}] \end{split}$$

Scalar Kalman Filter

State spous egn:
$$Xn = aXn-1 + Vn$$
 (state dynamics)

-goal/ 2stimule X_n given $y^n = \{y_1, ..., y_n\}$ in an online fashion (real-time).

Scalar Kalman Equations:

(1)
$$\hat{\chi}_{n|n} = \hat{\chi}_{n|n-1} + K_n \hat{y}_n$$

(b)
$$\hat{V}_n = V_n - \hat{X}_{n|n-1}$$

(b)
$$\hat{y}_n = y_n - \hat{\chi}_{n|n-1}$$

(2) $k_n = \frac{\sigma^2_{n|n-1}}{\sigma^2_{n|n-1} + \sigma_n^2}$

(3)
$$\int_{n|n-1}^{2} = \alpha^{2} \int_{n-1|n-1}^{2} + 0 \sqrt{n^{2}}$$

Remarks

1/At iteration n, the alg inputs $\hat{X}_{n-1|n-1}$, $\sigma_{n-1|n-1}^2$ (and new observation y_n) & outputs $\hat{X}_{n|n}$, $\sigma_{n|n}^2$.

2/ The Kalman gain kn and the errors onin-1 & onin can be prewinguited.

(Only Inn needs to be computed online.)

3/ Eary to implement.

4/ $\sqrt{\ }$ Vn & Wn are $\mathcal{N}(0,*)$, then we have MMSE extincte.

Proof of (1a):

$$= \alpha L \underbrace{\left[\begin{array}{c} X_{N-1} \mid y_1 \dots y_{N-1} \end{array} \right] + L \left[\begin{array}{c} V_N \mid y_1 \dots y_{N-1} \end{array} \right]}_{0}$$

1. Place O, Xn

2. Plane Ânin-1 s.t. Ânin-1 II Xn-Ânin-1

3. Place ŷn s.t. ŷn. Ll Înin-1

4. Place Knyn as the IL proj of Xn on yn

10hin-11 IWnI || Knŷrll (I-Kn) ŷn

Proof of (2), (4):

A BEG & BGF are similar:

$$\frac{\|K_{n}\widehat{y}_{n}\|}{\|\Delta_{n}\|_{1}} \simeq \frac{\|\Delta_{n}\|_{1}}{\|\widehat{y}_{n}\|}$$

(2)
$$K_{N} = \frac{\|\Delta n_{1} n_{-1}\|^{2}}{\|\Delta n_{1} n_{-1}\|^{2} + \|Wal|^{2}} = \frac{\int_{n_{1}}^{2} n_{-1}}{\int_{n_{1}}^{2} n_{1} + \int_{n_{2}}^{2} n_{1}^{2}}$$

△ BGE, GEF, BGF are similar

$$\frac{\|\triangle_{\text{MAN-II}}\|}{\|\triangle_{\text{MAN-II}}\|} = \frac{\|-K_{\text{KD}}\|\|\widehat{y}_{\text{A}}\|}{\|W_{\text{MAI}}\|} = \frac{\|W_{\text{MAI}}\|}{\|\widehat{y}_{\text{A}}\|} = \text{Sing}$$

$$A = B = C \Rightarrow A^2 = BC$$

(4)
$$\frac{\|\Delta_{\mathbf{N}|\mathbf{n}}\|^{2}}{\|\Delta_{\mathbf{N}|\mathbf{n}-1}\|^{2}} = (|-|\mathbf{k}_{\mathbf{n}}|) = \frac{|\mathbf{r}_{\mathbf{n}|\mathbf{n}}|^{2}}{|\mathbf{r}_{\mathbf{n}}|^{2}}$$

$$\Delta_{n|n-1} = \chi_n - \hat{\chi}_{n|n-1}$$

$$\begin{split} &= \left(\underset{\Delta}{(\chi_{N-1} + \gamma_{h})} - \underset{\Delta}{(\chi_{N-1}|_{N-1})} + \gamma_{h} \right) \\ &= \underset{\Delta}{(\chi_{N-1} - \hat{\chi}_{N-1}|_{N-1})} + \gamma_{h} \end{split}$$

(3)
$$G_{N|N-1}^2 = Q^2 G_{N-1|N-1}^2 + G_V^2$$