2.1.7 0 que é histerese em uma célula de íon-lítio e como modelá-la

Até agora, nosso processo de desenvolvimento de um modelo de circuito equivalente tem sido incremental, adicionando componentes para representar cada vez melhor a dinâmica de uma célula de bateria física. O modelo que temos até agora é bastante bom, mas ainda falha em descrever um comportamento crucial observado em células de íon-lítio.

O modelo atual prevê que, se uma célula for deixada em repouso por tempo suficiente, suas tensões de difusão decairão a zero e sua tensão terminal se estabilizará exatamente na Tensão de Circuito Aberto (OCV) para seu estado de carga (SOC) atual. No entanto, dados de laboratório mostram que isso não é verdade. Em vez disso, para cada SOC, existe uma *faixa* de possíveis tensões finais estáveis, dependendo do histórico recente da célula. Esse fenômeno, onde o estado de um sistema depende de seu histórico, é conhecido como **histerese**.

Como visto no gráfico de um teste de carga/descarga muito lento (taxa C/30), a curva de tensão durante a descarga é consistentemente mais baixa do que a curva de tensão durante a carga, mesmo em condições de quase equilíbrio. Ignorar essa histerese pode levar a erros massivos na estimativa do SOC, pois uma única medição de tensão poderia corresponder a uma ampla faixa de possíveis estados de carga.

Distinguindo Histerese de Tensões de Difusão

É fundamental entender a diferença entre a histerese e as tensões de difusão que modelamos anteriormente com pares RC.

- Tensões de Difusão: São fenômenos transientes. Elas surgem quando a corrente flui e sempre decaem para zero ao longo do tempo quando a célula está em repouso. A variável independente que rege sua mudança é o tempo.
- Tensão de Histerese: É um efeito de estado estacionário e dependente do caminho. Ela não decai com o tempo quando a célula está em repouso. A tensão de histerese só muda quando o Estado de Carga (SOC) muda.

Como são dois fenômenos fundamentalmente diferentes, precisamos de equações diferentes para modelá-los.

Desenvolvendo um Modelo para a Histerese Dinâmica

Ao subtrair a OCV dos dados do teste, podemos isolar e examinar a forma da tensão de histerese. Observamos que a histerese "decai" em direção a um valor máximo (positivo para carga, negativo para descarga), mas essa decadência ocorre em função da mudança no SOC, não no tempo. Isso sugere uma equação diferencial.

Uma Equação Diferencial em Estado de Carga

Um modelo simples para capturar esse comportamento pode ser proposto da seguinte forma, onde h é o estado da histerese e γ é um parâmetro de taxa:

$$rac{dh(z,t)}{dz} = \gamma \cdot ext{sgn}(\dot{z}) \cdot (M(z,\dot{z}) - h(z,t))$$

Neste modelo, o termo $(M(z,\dot{z})-h(z,t))$ faz com que a taxa de mudança da histerese seja proporcional à sua distância do valor máximo M, criando uma forma de decaimento exponencial em relação à mudança de SOC.

Conversão para uma Equação Diferencial no Tempo

Para integrar este novo estado ao nosso modelo baseado no tempo, usamos a regra da cadeia, multiplicando ambos os lados por $\frac{dz}{dt}$ (ou \dot{z}). O lado esquerdo se torna $\frac{dh}{dt}$ (ou \dot{h}), e o lado direito é simplificado usando a identidade $\dot{z} \cdot \mathrm{sgn}(\dot{z}) = |\dot{z}|$. Ao substituir a equação de estado para \dot{z} , obtemos uma EDO para a histerese em função do tempo:

$$\dot{h}(t) = -|rac{\eta(t)i(t)\gamma}{Q}|h(t) + |rac{\eta(t)i(t)\gamma}{Q}|M(z,\dot{z})$$

O Modelo Final em Tempo Discreto

Esta EDO linear (embora variante no tempo) pode ser convertida para tempo discreto usando o método anterior. Para uma forma simples do valor, $M(z,\dot{z})=M\cdot \mathrm{sgn}(i[k])$, onde M é uma magnitude constante em volts, obtemos o modelo de histerese dinâmico em tempo discreto.

Para facilitar a otimização dos parâmetros do modelo posteriormente, é útil reformular a equação para que o estado da histerese, h[k], seja uma variável **adimensional** que varia entre -1 e 1. A magnitude M é movida da equação de estado para a equação de saída.

Equação de Estado (adimensional):

$$h[k+1] = \exp(-|rac{\eta[k]i[k]\gamma\Delta t}{Q}|)h[k] - (1-\exp(-|rac{\eta[k]i[k]\gamma\Delta t}{Q}|)) ext{sgn}(i[k])$$

• Componente de Tensão de Saída:

$$v_{h,din\hat{a}mico}[k] = Mh[k]$$

Incorporando a Histerese Instantânea

Uma análise mais detalhada dos dados do laboratório revela que, além da mudança dinâmica (lenta), há também uma mudança **instantânea** na histerese sempre que o sinal da corrente de entrada muda (de carga para descarga ou vice-versa).

Podemos modelar este componente adicionando um termo de histerese instantânea. Definimos uma variável de sinal, s[k], que mantém a memória da direção mais recente da corrente (seja +1 para descarga ou -1 para carga), ignorando os períodos de repouso.

- **Histerese Instantânea:** $h_i[k] = M_0 s[k]$, onde M_0 é a magnitude da histerese instantânea.
- Tensão de Histerese Total: A tensão de histerese total é a soma dos componentes instantâneo e dinâmico:

$$v_{h,total}[k] = M_0 s[k] + M h[k]$$

Este modelo combinado captura tanto as transições verticais acentuadas quanto as curvas de decaimento lento vistas nos dados experimentais, proporcionando uma aproximação muito melhor do comportamento real da célula.

Um Resumo da Modelagem da Histerese

Em resumo, a histerese é uma tensão dependente do histórico que, ao contrário das tensões de difusão, **não decai para zero quando a célula repousa**. As evidências de laboratório indicam a presença de elementos tanto **instantâneos** quanto **dinâmicos** na histerese.

desenvolvemos um modelo simples, porém eficaz, para capturar ambos os efeitos. Embora existam modelos de histerese mais avançados. A precisão deste modelo pode ser ainda mais aprimorada, se necessário, tornando os parâmetros do modelo $(\gamma,\ M,\ e\ M_0)$ dependentes do estado de carga, em vez de constantes. Neste ponto, descrevemos todos os elementos do modelo de circuito equivalente que usaremos.