Chi-squared Goodness of Fit

Ex: Diversity at Reed

In terms of ethnic diversity, how does the first year student body compare to the general population of Oregon?

Facts about Reed

BROUGHT TO YOU BY INSTITUTIONAL RESEARCH

Institutional Research

Home

Students

Alumni

Graduation Rates

Outcomes

Institutional

Faculty

Finance

Other Statistics

IR Grant Activities

Contact us

First-year Students Ethnicity–2019

	Asian	Black	Hispanic	Internat'i	Native Amer	Pacific Islander	White	Unknown	Total	Percent
Women	29	6	19	17	8	0	126	4	209	53%
Men	29	7	9	23	3	0	113	1	185	47%
Total	58	13	28	40	11	0	239	5	394	100%
Percent	15%	3%	7%	10%	3%	0%	61%	1%	100%	

Note: Updated September 23, 2019.

Oregon

	Want more? Browse data	a sets for Oregon
People QuickFacts	Oregon	USA
Population, 2014 estimate	3,970,239	318,857,056
Population, 2010 (April 1) estimates base	3,831,073	308,758,105
Population, percent change - April 1, 2010 to July 1, 2014	3.6%	3.3%
Population, 2010	3,831,074	308,745,538
Persons under 5 years, percent, 2014	5.8%	6.2%
Persons under 18 years, percent, 2014	21.6%	23.1%
Persons 65 years and over, percent, 2014	16.0%	14.5%
Female persons, percent, 2014	50.5%	50.8%
White alone, percent, 2014 (a)	87.9%	77.4%
Black or African American alone, percent, 2014 (a)	2.0%	13.2%
American Indian and Alaska Native alone, percent, 2014 (a)	1.8%	1.2%
Asian alone, percent, 2014 (a)	4.3%	5.4%
Native Hawaiian and Other Pacific Islander alone, percent, 2014 (a)	0.4%	0.2%
Two or More Races, percent, 2014	3.6%	2.5%
Hispanic or Latino, percent, 2014 (b)	12.5%	17.4%
White alone, not Hispanic or Latino, percent, 2014	77.0%	62.1%

The data

Ethnicity	Asian	Black	Hispanic	White	Other	Total
Reed count	58	13	28	239	51	394
Oregon %	.043	.02	.125	.77	.042	1

If the students at Reed were drawn from a population with these proportions, how many *counts* would we expect in each group?

exp. count =
$$n \times p_i$$

The data

Ethnicity	Asian	Black	Hispanic	White	Other	Total
Obs. count	58	13	28	239	51	394
Exp. count	16.94	7.88	49.25	303.38	16.548	394

• Some sampling variability is expected, but how far from expected is too far?

Simulating Oregonian Reedies

```
n < -354
p \leftarrow c(.043, .02, .125, .77, .042)
samp <- sample(c("asian", "black", "hispanic", "white", "other"),</pre>
                size = n,
                replace = TRUE,
                prob = p) %>%
  factor(levels = c("asian", "black", "hispanic", "white", "other")
table(samp)
## samp
      asian black hispanic white other
##
##
         20
                            39
                                    274
                                              12
obs \langle -c(58, 13, 28, 239, 51) \rangle
```

Simulating Oregonian Reedies, again

Simulating Oregonian Reedies, again again

```
samp <- sample(c("asian", "black", "hispanic", "white", "other"),</pre>
                size = n,
                replace = TRUE,
                prob = p) %>%
  factor(levels = c("asian", "black", "hispanic", "white", "other")
table(samp)
## samp
##
      asian black hispanic white
                                         other
         16
                           40
                                   271
                                              20
##
                   7
obs \langle -c(58, 13, 28, 239, 51) \rangle
```

Simulating Oregonian Reedies

```
## Response: ethnicity (factor)
## Null Hypothesis: point
## # A tibble: 4,248 x 2
## # Groups: replicate [12]
## ethnicity replicate
## <fct> <fct>
## 1 white
## 2 white
## 3 white
               1
## 4 asian
## 5 white
## 6 white
               1
## 7 white
## 8 black
               1
## 9 white
               1
## 10 white
```

Visualizing our Simulated Oregonian Reedies

```
sim_reedies %>%
  ggplot(aes(x = ethnicity)) +
  geom_bar() +
  facet_wrap(vars(replicate))
```

Visualizing our Simulated Oregonian Reedies

Visualizing our Simulated Oregonian Reedies

```
sim_reedies %>%
  ggplot(aes(x = ethnicity)) +
  geom_bar() +
  facet_wrap(vars(replicate)) + coord_flip()
```

Simulated vs Observed

Inference on many ps

We *could* do a tests/CIs on $p_{reed} - p_{oregon}$ for each group, however:

- We have the whole population of Oregon.
- Beware of multiple comparisons!

Sound familiar? Benford's Law!

^{6.} Formulate your own statistic to measure the distance between the observed proportions (obs_prop) and those expected by Benford's Law (ben_prop). There are many many possible choices, but some are more useful than others. Describe this statistic in words (or write out the formula for it if you are comfortable using LaTeX), then calculate it for this data.

Creating a statistic

Creating a statistic

For each of *k* categories:

- 1. Calculate the difference between observed and expected counts.
- 2. Scale each difference by an estimate of the SE ($\sqrt{(exp)}$).
- 3. Square the scaled difference to get rid of negatives.

Then add them all up.

$$\chi^2 = \sum_{i=1}^k rac{(obs - exp)^2}{exp}$$

Reed Data

Ethnicity	Asian	Black	Hispanic	White	Other	Total
Obs. count	49	10	34	206	55	354
Exp. count	15.22	7.08	44.25	272.58	14.87	354

$$egin{aligned} & 2_{asian} = (49-15.22)^2/15.22 = 74.97 \ & Z_{black}^2 = (10-7.08)^2/7.08 = 1.20 \ & Z_{hispanic}^2 = (34-51.5)^2/51.5 = 5.95 \ & Z_{white}^2 = (206-272.58)^2/272.58 = 16.26 \ & Z_{other}^2 = (55-14.87)^2/14.87 = 108.30 \end{aligned}$$

$$Z_{asian}^{2} + Z_{black}^{2} + Z_{hispanic}^{2} + Z_{white}^{2} + Z_{other}^{2} = 206.68 = \chi_{obs}^{2}$$

Simulating χ^2 under H_0

```
## # A tibble: 500 x 2
## replicate stat
## <fct> <dbl>
## 1 1
     8.26
## 2 2 5.66
## 3 3 1.41
## 4 4
           1.75
## 5 5
         1.37
## 6 6 1.90
## 7 7
           4.33
## 8 8 2.03
## 9 9
     5.53
## 10 10
      3.02
## # ... with 490 more rows
```

The null distribution

What is the probability of observing our data or more extreme ($\chi^2=206.68$) under the null hypothesis that Reedies share the same ethnicity proportions as Oregon?

About zero.

An alternate path to the null

If...

- 1. Independent observations
- 2. Each cell count has a count ≥ 5
- 3. $k \ge 3$

then our statistic can be well-approximated by the χ^2 distribution with k-1 degrees of freedom.

The null distribution

$$1 - pchisq(206.68, df = 4)$$

Postscript: Great Reed Bake-off 2020

