

15. 对于具有如图 7.75 所示输入的下降沿触发的 J-K 触发器,给出和时钟相关联的 Q 的输出 波形。 设 Q 输出初始时为低电平。



如图 7.76 所示,下面的串行数据通过与门加在触发器上。确定在 Q 输出上所得到的串行数据。每个回间都有一个时钟脉冲。假设 Q 输出初始为 0,并且  $\overline{PRE}$  和  $\overline{CLR}$  输入都是高电平。最右边的位首先加入  $J_1$ : 1010011;  $J_2$ : 0111010;  $J_3$ : 1111000;  $K_1$ : 0001110;  $K_2$ : 1101100;  $K_3$ : 1010101



4. 门控 S-R 锁存器的输入如图 7.64 所示,确定输出 Q 和  $\overline{Q}$  。给出它们和使能输入的正确关系。则初始时为低电平。



5./对于图 7.65 输入,确定门控 D 锁存器的输出。



7. 观察到的门控 D 锁存器的输入波形如图 7.67 所示。如果锁存器的初始状态为复位,请绘制时序图,指出所期望看到的 Q 的输出波形。



## 7.2 节 边沿触发器

8. 两个边沿触发的 J-K 触发器如图 7.68 所示。如果输入如图所示的那样,请绘制出和时钟关联的每个触发器的 Q 输出,并解释两者之间的区别。触发器的初始状态为复位。



9. 边沿触发的 D 触发器和时钟相关联的 Q 输出如图 7.69 所示。确定产生这个输出所需要的 D 输入上



10. 对于具有如图 7.70 所示输入的 D 触发器, 绘制出和时钟相关联的 Q 输出。假设为上升沿触发并且 Q 输出初始时为低电平。



11. 对于如图 7.71 所示的输入,给出习题 10 的解。

0001100:00

00041-00

9004

14. 如果图 7.74 中的信号加在 J-K 触发器的输入上,请确定和时钟相关联的 Q 的输出波形。假设 出初始时为低电平。



15. 对于具有如图 7.75 所示输入的下降沿触发的 J-K 触发器,给出和时钟相关联的 Q 的输出波形设 Q 输出初始时光低电平

17. 对于图 7.76 中的电路,完成图 7.77 的时序图, 画出 Q(初始时为低电平)的输出波形。假设  $\overline{PRE}$  和  $\overline{CLR}$  输入保持为高电平。



18. 使用习题 17 中的 J 和 K 输入,但是  $\overline{PRE}$  和  $\overline{CLR}$  输入和时钟的关系如图 7.78 所示,给出习题 17 的解。



## 7.3 节 触发器运算符性 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000 10.5000

- 19. 触发器的功率损耗由什么因素决定?
- 20. 通常,生产商的数据表指定和触发器相关的4种不同的传输延迟时间。给出每一种时间的名称并加以描述。
- 21. 某个触发器的数据表指定时钟脉冲的最小高电平时间为 30 ns,最小低电平时间为 37 ns。那么最大运行频率是多少?
- 22 如图 7.79 所示的触发器的初始状态为复位。给出 Q 输出和时钟脉冲之间的关系,假设传输延迟  $t_{PLH}$ (时钟脉冲到 Q)是 8 ns。



23. 运行在+5 V 直流电源上的一个特定触发器所需要的直流电流为 10 mA。某个数字设备使用 15 个这样的触发器。确定+5 V 直流电源所需要的电流容量及该系统的总功率损耗。

32. see book. 5 times 33. See book 7m= 43MHZ 2. tw= 0.7 x3.3 x 2000 = 4620 ns

28. tw=0.32 Rc(1+R), R=0.32C-0.7 = 5000 -0.7 =0.862k.D

29. tw=1.1 RIC1= 250000MS

29. tw=1.1R1C1=0.25 x 10 ns, R1C1 = Z,27x 108

let  $R_1 = 1 k\Omega$ ,  $C_1 = 2.27 \times 10^8 PF$ 



$$\frac{3|.\frac{R_{1}+R_{2}}{R_{1}+2R_{2}}=0.75}{\frac{|.44}{(R_{1}+2R_{2})C}=20kHZ}$$

$$\frac{R_{1}+R_{2}}{R_{2}+2R_{2}}=0.75$$

$$\frac{|.44}{(R_{1}+2R_{2})C}=20kHZ$$

$$R_{1}=1.8k\Omega$$