Name:

Research Design & Analysis I

Exploratory Data Analysis

Unit 1 Assignment

Please complete the following exercises. Feel free to work with classmates, but each student must turn in **UNIQUE** work, not photocopies or identical replicates. When applicable, use **APA format** in communicating your results in text. **Show your work!** If any question involves any math at all, show your work. When it doubt, write it out. Always show more than you think you need.

1) WRITE-UP - Textbook Problems							
Cohen Chap		Chap	Exercises	Pts	Off		
	A		1	1			
	2	С	2, 3, 4 (no output, tables, or plots need to be included)	2			
	3	Α	*1, 2, 3, 4, *5	5			
-		Α	*1, 2, 4, 9a, 10a, 11, *12, 13, *14	11			
	4	В	3, 4, 5, 6, 7	5			

2) SUMMARY – Your Journal Article							
	Do NOT re-submit your HW 0 article!						
	Half Page	Re-read your article you selected for Unit 0 HW (do not re-submit it). Summarize any mention or use of the concepts in the above chapters.	10				

3) F	3) R SYNTAX - Section C: Ihno's data set - add to the skeleton R notebook and knit to .pdf & upload									
	Cohe	n Chap	Exercises	Pts	Off					
	2	С	1, 2, 3, 4, 6, 9, 10	8						
	3	С	1, 2, 3, 4, 5, 6	6						
	4	С	1,	2						

Gra	ding		Earned	Possible
	CORRECTNESS	a subset of spot-checked items: must show work, especially items from back of book or done in class		50
-	COMPLETENESS	more than one item is missing or skipped: 25/50 roughly half the assignment is completed: 10/50		50
•				100

2 A 1. Histograms	2	Α	1.	His	too	rams
---------------------	---	---	----	-----	-----	------

A psychotherapist has rated all 20 of her patients in terms of their progress in therapy, using a 7-point scale. The results are shown in the following table: (please use TWO decimal places)

	F	rf	cf	crf	cpf
Greatly improved	5				
Moderately improved	4				
Slightly improved	6				
Unchanged	2				
Slightly worse	2				
Moderately worse	1				
Greatly worse	0				

To answer the questions below, fill out the columns in the table above, such that:

- rf = relative frequency
- cf= cumulative frequency
- crf = cumulative relative frequency
- cpf = cumulative percentage frequency
- a) Draw a bar graph to represent the above results.

- b) What **proportion** of the patients was grealy improved?
- c) How many patients did not improve?
- d) What is the **percentile rank** of a patient who improved slightly?

e) Which category of improvement corresponds to the third quartile?

Which **category** of improvement corresponds to the first quartile?

se?	
?	

2 C	2. Distributions & Bar Plots						
Request a f	frequency distribution and a bar chart for the <i>prevmath</i> and <i>phobia</i> variables.						
	write code in R syntax file						
	(no output, tables, or plots need to be included)						
	nake sense to request a histogram instead of a bar chart for <i>phobia</i> ?						
Discuss.							
		□ yes □ no					
2 C	3. Distributions & Bar Plots						
	frequency distribution and a histogram for the <i>statquiz</i> variables.						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						
Request a f	frequency distribution and a histogram for the <i>statquiz</i> variables. write code in R syntax file (no output, tables, or plots need to be included)						

3	Α	*1.	Measures	of o	central	. te	endency				
	Select the measure of central tendency that would be most appropriate for describing each of the following hypothetical sets of data:										
a.	a. Religious preferences of delegates to the United Nations										
b.		t rates bics cla	for a group of	wome	en before	they	y start their	first	□ Mean	■ Median	□ Mode
c.	Туре	s of ph	nobias exhibite	d by p	atients att	tend	ding a phob	a clinic	☐ Mean	■ Median	□ Mode
d.			f time participa	•		_	_		□ Mean	■ Median	□ Mode
e.	Heig	ht in ir	nches for a grou	ıp of b	oys in the	e firs	st grade		□ Mean	□ Median	□ Mode
3	Α	2.	Distribut:	ion o	descrip	tiv	ves				
Describ			situation in whic		would expe	ect to	o obtain eac	h of the fo	llowing:		
a)	A neg	gatively	skewed distribu	ition							
b)	A pos	itively	skewed distribu	tion							
c)	A bin	nodal	distribution								
3	Α	*3.	Distribut	tion	descri	pti	ives				
A midt	erm ex	am wa	s given in a large	intro	ductory psy	ycho	ology class. Tl	ne media n	score was 8	5, the mean w	as 81, and
the m c	A midterm exam was given in a large introductory psychology class. The median score was 85, the mean was 81, and the mode was 87.										
What k	What kind of distribution would you expect from these exam scores?										

43 4 0 43					
retrievers treated in her clinic. The ages were 12 , 9 , 11 , 10 , 8 , 14 , 12 , 1 , 9 , 12 . a) Calculate the mean, median, and mode of life span:					
Mode					
dog that had died at 1 year was killed by a					
data. Mode					
ompared to the values originally calculated Mode					

3

Α

4.

Measures of central tendency

3	Α	5. Measures of Variability						
Which	of the	three most popular measures of variability would you choose in ea	ach of the followi	ng situations	?			
a.	The distribution is badly skewed with a few extreme outliers in one direction.							
b.	b. You are planning to perform advanced statistical procedures (e.g., draw inferences about population parameters). □ Range □ SIQ range □ SD							
C.	c. You need to know the maximum width taken up by the distribution.							
d.	d. You need a statistic that takes into account every score in the population.							
e.	e. The highest score in the distribution is "more than 10."							
4	Α	*1. Z-scores						
-	If you convert each score in a set of scores to a z score , which of the following will be true about the resulting set of z scores?							
a.	The r	nean will equal 1.		□ т	RUE			
b.	The v	ariance will equal 1.		□т	RUE			
c.	The o	istribution will be normal in shape.		□т	RUE			
d.	All of	the above.		□ TI	RUE			
e.	None	of the above.		□т	RUE			
4	Α	2. Z-scores						
The distribution of body weights for adults is somewhat positively skewed — there is much more room for people to be above average than below.								
If you take the mean weights for random groups of 10 adults each and form a new distribution, how will this new distribution compare to the distribution of individuals?								
a.	a. The new distribution will be more symmetrical than the distribution of individuals.							
b.	The r	ew distribution will more closely resemble the normal distribution	l	□ TI	RUE			
C.		ew distribution will be narrower (i.e., have a smaller standard devibution of individuals.	ation) than the	п т	RUE			
d.	All of	the above.		□т	RUE			
e.	None	of the above.		□т	RUE			

4	Α	4.	Z-scores	
a)	Calc	ulate µ	and σ for the fo	llowing set of scores and then convert each score to a z score: 64, 45, 58, 51, 53, 60, 52, 49.
		Mean	: u	Standard Deviation: σ
		Wicari	· m	Standard Deviation:
			μ=	σ =
				z-scores:
		\neg	<u> </u>	
	6.1	<u> </u>		
b)	Caic		,	ndard deviation of these z scores.
		Mean	: μ	Standard Deviation: σ
		(
		l	μ=	σ=
		ain the	e values you expe	ected?
Explai	n.			□ yes □ no
				□ yes □ no

4 A	4	*9a. Z-scores & the z-table		
a) Use Ta	ible i	e A.1 to find the area of the normal distribution between the mean and z , when z equals 0.18		
4 A	1	10a. Z-scores & the z-table		
a) Use Ta	ible i	e A.1 to find the area of the normal distribution beyond z , when z equals when z equals 0.09		
4 A	1	11. Z-scores & the z-table		
А	ssum	ming that IQ is normally distributed with a mean of 100 and a standard devia	ation of 15	
9	describe completely the sampling distribution of the mean for a sample size (n) equal to 20.			
4 A	¥	*12. Standard error for the mean		
If the popu		lion standard deviation (σ) for some variable equals 17.5, what is the value of the st	andard error of the	
a. N:	= 5		SE _μ =	
b. N :	= 25	5	SE _µ =	
c. N :	= 125	25	$SE_{\mu} =$	
d. N :	625	25	$SE_{\mu} =$	
If the sample size is cut in half, what happens to the standard error of the mean for a particular variable?				

4	Α	13.	Standa	ard	error	for	the	mean	
a)	won	ders h	ow much	thes	e classes	are li	kely t	ys contain exactly 20 students . An Englis o vary in terms of their verbal scores on (i.e., standard error) of class means on t	the SAT. What
									SE _µ =
b)	aver	age we	eights of a	all po	ssible sh	uttle	crews	nsists of seven people , and we are interest. If the standard deviation for weight is a weights of shuttle crews (i.e., the stand	30 pounds,
									SE _μ =
4	Α	*14	. Stand	daro	d erro	r fo	r th	e mean	
	-		sampling o					we know that the standard error is 4.6 , a	and we also
									n =

4 B 4. Area under a normal curve

Assume that the resting heart rate in humans is normally distributed with μ = 72 bpm (i.e., beats per minute) and σ = 8 bpm.

a) **Above** what heart rate do you find the upper 25% of the people? (That is, what heart rate is at the 75th percentile, or third quartile?)

b) **Below** what heart rate do you find the lowest 15% of the people? (That is, what heart rate is at the 15th percentile?)

c) **Between** which two heart rates do you find the middle 75% of the people?

4 B *5. Area under a normal curve

A new preparation course for the math SAT is open to those who have already taken the test once and scored in the **middle 90**% of the population.

In what **range** must a testtaker's previous score have fallen for the test-taker to be eligible for the new course?

4 B	6. Area	under	a normal curve	
	ninks her class ation mean is		unusually high IQ, because her 36 students have an average σ = 15.	IQ (X) of 108.
a) Wh	at is the z sco i	e for this	s class?	
b) What percentage of classes (n = 36, randomly selected) would be even higher on IQ?				
4 B	*7. Area	under	a normal curve	
			his class has an unusually low resting heart rate. If μ = 72 b s a mean heart rate (X) of 66,	pm and $\sigma = 8$
a) Wha	t is the z score	for the ae	erobics class?	

b) What is the **probability** of randomly selecting a group of 14 people with a mean resting heart rate **lower** than the mean for the aerobics class?

АРА	Your HW-Unit 0 article revisited
	Re-read your article you selected for Unit 0 HW (do not re-submit it). Summarize any mention or use of the concepts in the above chapters.
()	you may choose to type this summary and include a printed copy here instead of hand writing OR upload a typed document to CANVAS)