

Linear Models for Classification

- Discriminant Functions
- Least square classification
- · Fishers Linear Discriminant
- Perceptron

Introduction

- The goal in classification is to take an input vector x and to assign it to one of K discrete classes C_k where k = 1,..., K.
- In the most common scenario, the classes are taken to be disjoint, so that each input is assigned to one and only one class.
- The input space is thereby divided into decision regions whose boundaries are called decision boundaries or decision surfaces.

- We will consider linear models for classification, by which we mean that the decision surfaces are linear functions of the input vector x and hence are defined by (D - 1) -dimensional hyperplanes within the Ddimensional input space.
- Datasets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable.

- For regression problems, the target variable t was simply the vector of real numbers whose values we wish to predict.
- In the case of classification, there are various ways of using target values to represent class labels.
- For probabilistic models, the most convenient, in the case of two-class problems –
 - Binary representation in which there is a single target variable t∈ {0,1} such that t = 1 represents class C₁ and t = 0 represents class C₂.
 - We can interpret the value of t as the probability that the class is
 C₁, with the values of probability taking only the extreme values
 of 0 and 1.

- For K > 2 classes, it is convenient to use a 1 of K coding scheme in which t is a vector of length K such that if the class is C_j, then all elements t_k of t are zero except element t_j, which takes the value 1.
- For instance, if we have K = 5 classes, then a pattern from class 2 would be given the target vector

$$\mathbf{t} = (0, 1, 0, 0, 0)^{\mathrm{T}}.$$

Generalized linear models

- In the linear regression models considered, the model prediction y(x, w) was given by a linear function of the parameters w.
- In the simplest case, the model is also linear in the input variables and therefore takes the form y(x) = w^Tx + w₀, so that y is a real number.
- For classification problems, however, we wish to predict discrete class labels, or more generally posterior probabilities that lie in the range (0, 1).

 To achieve this, we consider a generalization of this model in which we transform the linear function of w using a nonlinear function

$$y(\mathbf{x}) = f(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$
 .

- In the machine learning literature, f(·) is known as an activation function, whereas its inverse is called a link function in the statistics literature.
- The decision surfaces correspond to y(x) = constant, so that w^Tx + w₀ = constant and hence the decision surfaces are linear functions of x, even if the function f(·) is nonlinear.
- For this reason, this class of models are called generalized linear models

$$w_0 + \mathbf{w}^T \mathbf{x} = 0$$

All are linear boundaries

- Three distinct approaches to the classification problem.
 - The simplest involves constructing a discriminant function that directly assigns each vector x to a specific class.
 - A more powerful approach, however, models the conditional probability distribution p(C_k|x) in an inference stage, and then subsequently uses this distribution to make optimal decisions.

 There are two different approaches to determining the conditional probabilities p(C_k|x).

- There are two different approaches to determining the conditional probabilities p(C_k|x).
 - One technique is to model them directly, for example by representing them as parametric models and then optimizing the parameters using a training set
 - Alternatively, we can adopt a generative approach in which we model the class-conditional densities given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then we compute the required posterior probabilities using Bayes' theorem.

	Discriminative model	Generative model
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Regressions, SVMs	GDA, Naive Bayes

Discriminant Functions

A discriminant is a function that takes an input vector x
and assigns it to one of K classes, denoted C_k.

Discriminant functions learn direct mapping between feature vector \mathbf{x} and label y.

- An input vector x is assigned to class C₁ if y(x) >= 0 and to class C₂ otherwise.
- The corresponding decision boundary is therefore defined by the relation y(x) = 0, which corresponds to a (D-1)-dimensional hyperplane within the D-dimensional input space.

 The simplest representation of a linear discriminant function is obtained by taking a linear function of the input vector so that

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

where w is the weight vector and w_0 is a bias.

- An input vector x is assigned to class C_1 if y(x) >= 0 and to class C_2 otherwise.
- The corresponding decision boundary is therefore defined by the relation y(x) = 0, which corresponds to a (D-1)-dimensional hyperplane within the D-dimensional input space.

- Consider two points x_A and x_B both of which lie on the decision surface.
- Because y(x_A) = y(x_B) = 0, we have w^T(x_A x_B) = 0 and hence the vector w is orthogonal to every vector lying within the decision surface, and so w determines the orientation of the decision surface.
- Similarly, if x is a point on the decision surface, then y(x) = 0, and so the normal distance from the origin to the decision surface is given by

$$\frac{\mathbf{w}^{\mathrm{T}}\mathbf{x}}{\|\mathbf{w}\|} = -\frac{w_0}{\|\mathbf{w}\|}.$$

Respons class. 1

Region: class 0

- Value of y(x) gives a signed measure of the perpendicular distance r of the point x from the decision surface.
- Consider an arbitrary point x and let x be its orthogonal projection onto the decision surface, so that

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{\|\mathbf{w}\|}.$$

Multiplying both sides of this result by w^T and adding w₀, and making use of y(x) =
 w^Tx + w₀ and y(x₁) = w^Tx₁ + w₀ = 0, we have

$$r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$

- w₀ determines the location of the decision surface.
- · w determines the orientation of the decision surface.
- y gives signed measure of perpendicular distance of the point x from the decision surface.
- Decision surface divides feature space into two regions.

- Value of y(x) gives a signed measure of the perpendicular distance r of the point x from the decision surface.
- Consider an arbitrary point x and let x be its orthogonal projection onto the decision surface, so that

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{\|\mathbf{w}\|}.$$

Multiplying both sides of this result by w^T and adding w₀, and making use of y(x) =
 w^Tx + w₀ and y(x₁) = w^Tx₁ + w₀ = 0, we have

$$r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}.$$

- w₀ determines the location of the decision surface.
- w determines the orientation of the decision surface.
- y gives signed measure of perpendicular distance of the point x from the decision surface.
- Decision surface divides feature space into two regions.

determines the location of the decision surface.

- determines the orientation of the decision surface.
- perpendicular distance of the point x from the decision surface.
- Decision surface divides feature space into two regions.

Multiple Classes

 Assuming the number of classes to be K>2, the discriminant functions can be build in two ways by combining a number of two-class discriminant functions

- One vs rest build K-1 discriminant functions. Each discriminant function solves a two class classification problem.
- One vs one one discriminant function per pair of classes.
 Each point is then classified according to a majority vote amongst the discriminant functions.

Issues with one-vs-rest

Issues with one-vs-one

Issues with one-vs-rest

Considering a single K-class discriminant comprising K linear functions of the form

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

and then assigning a point x to class C_k if $y_k(x) > y_j(x)$ for all $j \neq k$.

• The decision boundary between class C_k and class C_j is therefore given by $y_k(x) = y_j(x)$ and hence corresponds to a (D-1)-dimensional hyperplane defined by

$$(\mathbf{w}_k - \mathbf{w}_j)^{\mathrm{T}} \mathbf{x} + (w_{k0} - w_{j0}) = 0.$$

- Three approaches to learning the parameters of linear discriminant functions, based on
 - Least Squares
 - Fisher's Linear Discriminant
 - Perceptron Algorithm

- Consider a classification problem with K classes, with a 1-of-K binary coding scheme for the target vector t.
- Each class C_k has its own linear model.
- Each class C_k is described by its own linear model so that

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}}$$

where , $\widetilde{\boldsymbol{W}}$ is a matrix whose k^{th} column comprises the D + 1-dimensional vector $\widetilde{\boldsymbol{w}}_k = (w_{k0}, \boldsymbol{w}_k^T)^{\text{T}}$ and $\widetilde{\boldsymbol{x}}$ is the corresponding augmented input vector $(1, \boldsymbol{x}^T)^T$ with a dummy input $x_0 = 1$. $\widetilde{\boldsymbol{w}} = \begin{bmatrix} w_1^0 & \dots & w_K^0 \\ \vdots & \vdots & \vdots & \vdots \\ w_P^D & \vdots & w_P^D \end{bmatrix}$

 A new input x is then assigned to the class for which the output y_k = w

_k^T x is largest.

Least square classification

- Consider a classification problem with K classes, with a 1-of-K binary coding scheme for the target vector t.
- Each class C_k has its own linear model.
- Each class C_k is described by its own linear model so that

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{\widehat{W}}^{\mathrm{T}} \mathbf{\widehat{x}}$$

where , $\widetilde{\boldsymbol{W}}$ is a matrix whose k^{th} column comprises the D + 1-dimensional vector $\widetilde{\boldsymbol{w}}_k = (w_{k0}, \boldsymbol{w}_k^T)^{\text{T}}$ and $\widetilde{\boldsymbol{x}}$ is the corresponding augmented input vector $(1, \boldsymbol{x}^T)^T$ with a dummy input $x_0 = 1$. $\widetilde{\boldsymbol{w}} = \begin{bmatrix} w_1^0 & \dots & w_k^0 \\ \vdots & \vdots & \vdots \\ w_p^D & \dots & w_p^D \end{bmatrix}$

 A new input x is then assigned to the class for which the output y_k = w

_k^T x is largest.

Least square classification

- Consider a classification problem with K classes, with a 1-of-K binary coding scheme for the target vector t.
- Each class C_k has its own linear model.
- Each class C_k is described by its own linear model so that

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{\widehat{W}}^{\mathrm{T}} \mathbf{\widehat{x}}$$

where , $\widetilde{\boldsymbol{W}}$ is a matrix whose k^{th} column comprises the D + 1-dimensional vector $\widetilde{\boldsymbol{w}}_k = (w_{k0}, \boldsymbol{w}_k^T)^{\text{T}}$ and $\widetilde{\boldsymbol{x}}$ is the corresponding augmented input vector $(1, \boldsymbol{x}^T)^T$ with a dummy input $x_0 = 1$. $\widetilde{\boldsymbol{w}} = \begin{bmatrix} w_1^0 & \dots & w_k^0 \\ \vdots & \vdots & \vdots & \vdots \\ w_p^D & \dots & w_p^D \end{bmatrix}$

• A new input x is then assigned to the class for which the output $y_k = \widetilde{w}_k^T \widetilde{x}$ is largest.

• Consider a training data set $\{x_n, t_n\}$ where $n = 1, \ldots, N$, and define a matrix T whose n^{th} row is the vector t_n^T , together with a matrix X whose n^{th} row is x_n^T

$$T = \begin{bmatrix} t_1^1 & \dots & t_1^K \\ \vdots & \vdots & \vdots \\ t_N^1 & \dots & t_N^K \end{bmatrix}, \tilde{X} = \begin{bmatrix} x_1^0 & \dots & x_1^D \\ \vdots & \vdots & \vdots \\ x_N^0 & \dots & x_N^D \end{bmatrix}$$

The sum-of-squares error function can then be written as

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \text{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\text{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}.$$

Least square classification

- Consider a classification problem with K classes, with a 1-of-K binary coding scheme for the target vector t.
- Each class C_k has its own linear model.
- Each class C_k is described by its own linear model so that

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{\widehat{W}}^{\mathrm{T}} \mathbf{\widehat{s}}$$

where , $\widetilde{\boldsymbol{W}}$ is a matrix whose k^{th} column comprises the D + 1-dimensional vector $\widetilde{\boldsymbol{w}}_k = (w_{k0}, \boldsymbol{w}_k^T)^{\text{T}}$ and $\widetilde{\boldsymbol{x}}$ is the corresponding augmented input vector $(1, \boldsymbol{x}^T)^T$ with a dummy input $x_0 = 1$.

• A new input x is then assigned to the class for which the output $y_k = \widetilde{w}_k^T \widetilde{x}$ is largest.

- minimizing a sum-of-squares error function
- Consider a training data set {x_n, t_n} where n = 1, ..., N, and define a matrix T whose n^{th} row is the vector t_n^T , together with a matrix X whose n^{th} row is x_n^T

The sum-of-squares error function can then be written as

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \operatorname{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}.$$

$$\mathbf{y}(\mathbf{x}) = \mathbf{\widehat{W}}^{\mathrm{T}} \mathbf{\widehat{s}}$$

where , \widetilde{W} is a matrix whose k^{th} column comprises the D + 1-dimensional vector $\widetilde{w}_k = (w_{k0}, w_k^T)^{\text{T}}$ and \widetilde{x} is the corresponding augmented input vector $(1, x^T)^T$ with a dummy input $x_0 = 1$.

• A new input x is then assigned to the class for which the output $y_k = \widetilde{w}_k^T \widetilde{x}$ is largest.

$$\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$$

(D+1) × K matrix whose kth column comprises of D+1 dimensional vector:

$$\tilde{\mathbf{w}}_k = (w_{k0}, \mathbf{w}_k^T)^T.$$

corresponding augmented input vector:

$$\tilde{\mathbf{x}} = (1, \mathbf{x}^T)^T$$
.

$$\tilde{\mathbf{W}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{T}$$

Optimal weights

 $N \times (D+1)$ input matrix whose nth row is $\tilde{\mathbf{x}}_n^T$.

N × K target matrix whose nth row is \mathbf{t}_n^T . Least-squares solutions lack robustness to outliers and can give poor results.

Fisher's linear discriminant

- One way to view a linear classification model is in terms of dimensionality reduction.
- Suppose we take a D-dim input vector and project it down to one dimension using $y = w^T x$
- Main Idea: Find the projection that maximizes the class separation.

Projection of data from two classes onto various lines

