ชื่อ/นามสกุล	รหัส	เลขที่นั่งสอบ
# Car Po 144611 4 511111111111111111111111111111		

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

MEE 223	Thermodynamics
---------	----------------

20 May 2013

Time: 9:00 am -12:00 pm

Instructions:

- 1. There are 4 problems in this exam.
- 2. Write your answers clearly in the provided spaces.
- 3. Books and other documents including dictionaries are not allowed.
- 4. An authorized calculator is necessary to complete these exam questions

Asst. Prof. Wishsanuruk Wechsatol, Ph.D.

1. น้ำอุณหภูมิ 25°C ความคัน 100 kPa ถูกทำให้ร้อนขึ้นโดยการผสมกับไอน้ำที่มีความคัน 100 kPa อุณหภูมิ 200°C ในอุปกรณ์ทำน้ำอุ่น (mixing chamber) ถ้าน้ำที่ผสมแล้วใหลออกที่ความคัน 100 kPa อุณหภูมิ 50°C อัตราการ ใหลเข้าของน้ำเย็นเท่ากับ 2 kg/s การสูญเสียความร้อนผ่านผนังอุปกรณ์ทำน้ำอุ่นไปสู่บรรยากาศ 400 kJ/min โดย อุณหภูมิ บรรยากาศเป็น 28°C ให้คำนวณหาอัตราการใหลเข้าของไอน้ำ และ entropy generation rate ในระหว่าง กระบวนการผสม

(25 คะแนน)

Table A-4 Saturated water - Temperature table

Temp.	Sat. Press.,	Sat. Liquid, h,	Sat. Vapor, hg	Sat. Liquid, s,	Sat. Vapor, s		
T°C	P _{sat} kPa	kJ/kg	kJ/kg	kJ/kg K	kJ/kg K		
20	2.3392	83.915	2537.4	0.2965	8.6661		
25	3.1698	104.83	2546.5	0.3672	8.5567		
30	4.2469	125.74	2555.6	0.4368	8.4520		
40	7.3851	167.53	2573.5	0.5724	8.2556		
50	12.352	209.34	2591.3	0.7038	8.0748		

Table A-6 Superheated water

 $P = 0.10 \text{ MPa } (99.61^{\circ}\text{C})$

T, °C	v, m³/kg	u, kJ/kg	h, kJ/kg	s, kJ/kg K
100	1.6959	2506.2	2675.8	7.3611
200	2.1724	2658.2	2875.5	7.8356
300	2.6389	2810.7	3074.5	8.2172

2. จงเปรียบเทียบค่า COP และค่ากำลังของ compressor ของระบบทำความเย็นแบบ Ideal Vapor Compression Refrigeration ระหว่างระบบที่ใช้สารทำความเย็น R-12 เป็นสารทำงาน กับระบบที่ใช้ Ammonia (R-717) เป็นสารทำงาน โดยกำหนดให้ condensing temperature ของระบบทั้งสองมีอุณหภูมิเท่ากับ 50 องศาเซลเซียส และ evaporating temperature ของระบบทั้งสอง เท่ากับ 10 องศาเซลเซียส นอกจากนี้ยังกำหนดให้ภาระทำความเย็นของระบบทั้งสองเท่ากับ 10.5 กิโลวัตต์ จงแสดงการคำนวณพร้อมทั้งระบุวงจรการทำงานของระบบทั้งสองลงบน P-h diagram (25 คะแนน)

T C C C C C C C C C C C C C C C C C C C		! •
4 ,		
୩୭/ ୩ ମଧ୍ୟ ପ୍ରଥମୟ	ና የ <i>ያላ</i>	เลขที่นั่งสอบ
TI CT/ NO 164 641 [64		

3. อากาศที่อุณหภูมิ 25°C และความขึ้นสัมพัทธ์ 60% ใหลเข้าสู่ใคร์เป่าผม ด้วยอัตราการ ใหลเท่ากับ 30 ลูกบาศก์เมตรต่อ นาที โดยที่อุณหภูมิของอากาศที่ทางออกของใคร์เป่าผม มีค่าเท่ากับ 45 °C จงหาค่าความขึ้นสัมพัทธ์ของอากาศที่ทางออกของใคร์เป่าผม เมื่อไม่ทำการพิจารณาความร้อนสูญเสีย พร้อมทั้งแสดงกระบวนการให้ความร้อนแก่อากาศของใคร์เป่าผมดังกล่าวลงบน psychometric chart (25 คะแนน)

ad .	v .	ط ا
ชื่อ/นามสกุล	วหัส	เลขทนงสอบ

ASHRAE Psychrometric Chart No. 1 Normal Temperature Barometric Pressure: 101.325 kPa

ชื่อ/นามสกุล......เลขที่นั่งสอบ......รหัส......เลขที่นั่งสอบ......

4. พิจารณาผังการทำงานของโรงไฟฟ้าพลังไอน้ำที่มีทำงานแบบ Ideal Regenerative Rankine cycle โดยมีอุปกรณ์ feedwater heater จำนวน 1 ตัวคังผังการทำงาน โดย stream turbine รับไอน้ำที่ 15 MPa และอุณหภูมิ 600 องศาเซลเซียสจาก boiler ไอน้ำเกิดการขยายตัวใน stream turbine จนมีความคันเท่ากับ 10 kPa ก่อนถูกส่งต่อไปยังคอนเคนเซอร์เพื่อให้เกิดการ กลั่นตัวของไอน้ำภายในคอนเคนเซอร์ที่ความคัน 10 kPa ไอน้ำบางส่วนถูกแบ่งจาก stream turbine ที่ความคัน 1.2 MPa เพื่อ ส่งไปยัง feedwater heater คังรูป จงพิจารณาอัตราส่วนของไอน้ำที่ถูกแบ่งที่ความคัน 1.2 MPa และประสิทธิภาพของระบบ คังกล่าว รวมทั้งให้สเกต T-s diagram ที่ระบุสภาวะของไอน้ำในระบบที่ตำแหน่งต่างๆ คังรูป (25 คะแนน)

รูปที่ 1 ผังการทำงานของโรงไฟฟ้าแบบ Ideal regenerative Rankine Cycle

ตารางที่ 1 Vapor Superheat Table

<i>T</i> ℃	v m³/kg	u kJ/kg	h kJ/kg	s kj/kg · K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	v m ⁱ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K
	P = 1.00 MPa (179.91°C)					1.20 MP	a (187.99	9°C)	P 15.0 MPa (342.24°C)			
Sat. 200 250 300 350 400 500 600 700 800	0.19444 0.2060 0.2327 0.2579 0.2825 0.3066 0.3541 0.4011 0.4478 0.4943	2583.6 2621.9 2709.9 2793.2 2875.2 2957.3 3124.4 3296.8 3475.3 3660.4	2778.1 2827.9 2942.6 3051.2 3157.7 3263.9 3478.5 3697.9 3923.1 4154.7	6.5865 6.6940 6.9247 7.1229 7.3011 7.4651 7.7622 8.0290 8.2731 8.4996	0.16333 0.16930 0.19234 0.2138 0.2345 0.2548 0.2946 0.3339 0.3729	2588.8 2612.8 2704.2 2789.2 2872.2 2954.9 3122.8 3295.6 3474.4 3659.7	3045.8 3153.6 3260.7 3476.3 3696.3 3922.0 4153.8	6.5233 6.5898 6.8294 7.0317 7.2121 7.3774 7.6759 7.9435 8.1881 8.4148	0.010337 0.011470 0.015649 0.018449 0.02080 0.02293 0.02491 0.02680 0.02861	2520 2740 2879 2996 3104 3208 3310 3410 3610	0.4 2692 0.7 2975 0.5 3156 6.6 3308 1.7 3448 3.6 3582 0.3 3712 0.9 4092	2.5 5.3098 2.4 5.4421 2.5 5.8811 3.2 6.1404 3.6 6.3443 3.6 6.5199 2.3 6.6776 2.1 6.9572 2.4 7.2040 3.8 7.4279
900 1000 1100 1200 1300	0.5407 0.5871 0.6335 0.6798 0.7261	3852.2 4050.5 4255.1 4465.6 4681.3	4392.9 4637.6 4888.6 5145.4 5407.4	8.7118 8.9119 9.1017 9.2822 9,4543	0.4505 0.4892 0.5278 0.5665 0.6051	3851.6 4050.0 4254.6 4465.1 4680.9	4392.2 4637.0 4888.0 5144.9 5407.0	8.6272 8.8274 9.0172 9.1977 9.3698	0.03546 0.03875 0.04200 0.04523 0.04845	3811 4015 4222 4433 4649	5.4 4596 2.6 4852 3.8 5112	5.6 7.6348 2.6 7.8283 2.3 8.0108 5.0 8.1840

ตารางที่ 2 Saturated water table

Saturated water-Pressure table

		Specific volume		Internal energy.			Enthalpy			Entropy		
			'/kg	kjing			KING			MAR N		
	Sat	Sat.	Sat.	Sat.	_	Sat	Sat.	_	Sat.	Sat.	_	Sat.
Press.,	temp.,	liquid.	vapor.	liquid.	Evap	vapor,	figuid.	Evap.	vapor.	liquia.	Evap.	vapor.
P kPa	<i>T</i> _{>} , ℃	٧.	v _š	υ	u _{'g}	u _s	ħ.	h.,	h _g	\$.	54	S _é
0.6113	0.01	0.001000	206.14	0.00	2375.3	2375 3	0.01	2501 3	2501.4	0.0000	9.1562	9.1562
1.0	6.98	0.001000	129.21	29 30	2355.7	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756
15	13.03	0.001001	87.98	54.71	2338.6	2393.3	54 71	2470 6	2525.3	0.1957	8.6322	8.8279
2.0	17.50	0.001001	67.00	73.48	2326 0	2399 5	73 48	2460 0	2533 5	0 2607	8.4629	8.7237
2.5	21 08	0.001002	54.25	88.48	2315. 9	2404 4	88.49	2451.6	2540.0	0.3120	8.3311	8.6432
3 0	24.08	0.001003	45.67	101.04	2307.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776
4.0	28.96	0.001004	34.80	121 45	2293.7	24152	121 46	2432 9	2554.4	0 4226	8.0520	8 4746
5.0	32. 88	0.001005	28.19	137.81	2282.7	2420 5	137 82	2423.7	2561 5	0.4764	7.9187	8.3951
7.5	40.29	0.001008	19.24	168.78	2261.7	2430.5	168 79	2406 0	2574 8	0.5764	7.6750	8.2515
10	45.81	0.001010	14.67	191.82	2246.1	2437 9	191.83	23928	2584.7	0.6493	7.5009	8.1502
15	53.97	0.001014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0 7549	7.2536	8.0085
20	60.06	0.001017	7.649	251.38	2205.4	2456.7	251 40	2358.3	2609.7	0.8320	7.0766	7.9085
25	64.97	0.001020	6.204	271.90 289.20	2191 2 2179 2	2463.1 2468.4	271 93 2 8 9 23	2346 3	2618.2 2625.3	0 8931	6.9383	7 8314
30	69 10	0.001022	5.22 9 3.993	317.53	21/9/2	2477.0	317.58	2336.1 2319.2	2636.8	0.9439	6.8247 6.6441	7.7 68 6 7.6700
40	75.87 81.33	0.001027	3.240	340.44	2143.4	2483.9	340.49	2305.4	2645.9	1.0233	6.5029	7.5939
50 75	91.78	0.001030	2.217	384.31	2112 4	2496.7	384.39	2278 6	2663 0	1.2130	6.3029	7.4564
-	31.70	0.001037	2.217	304.31	2,112 4	,	304.57	22700	200.70	1.2150	0 2 4 3 4	7.4304
Press MPa												
0.100	99.63	0.001043	1 6940	417.36	2088.7	2506 1	417.46	2258.0	2675.5	1.3026	6.0568	7.3594
0.125	105.99	0.001048	1.3749	444 19	2069.3	2513.5	444.32	2241 0	2685 4	1.3740	5.9104	7 2844
0.150	111 37	0.001053	1.1593	466.94	2052.7	2519 7	467 11	2226.5	2693.6	1.4336	5.7897	7.2233
0.175	116.06	0.001057	1.0036	486.80	2038.1	2524.9	486.99	2213.6	2700.6	1.4849	5.6868	7.1717
0.200	120.23	0.001061	0.8857	504.49	2025.0	2529 5	504 70	2201 9	2706.7	1.5301	5.5970	7.1271
0.225	124 00	0.001064	0.7933	520.47	2013.1	2533.6	520 72	2191.3	2712.1	1.5706	5.5173	7.0878
0.250	127.44	0.001067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.0527
0.275	130.60	0.001070	0.6573	548 59	1991.9	2540 5	548.89	2172 4	2721.3	1.6408	5.3801	7.0209
0.300	133.55	0.001073	0.6058	561.15	1982 4	2543 6	561 47	21638	2725.3	1.6718	5.3201	6.9919
0.325	136 30	0.001076	0 5620	572.90	1973.5	2546.4	573.25	2155.8	2729.0	1.7006	5.2646	6.9652
0.350	138 88	0.001079	0.5243	583.95	1 96 5 0	2548.9	584.33	2148 1	2732.4	1.7275	5.2130	6.9405
0.375	141.32	0.001081	0.4914	594 40	1956 9	2551.3	594 81	21408	2735 6	1 7528	5.1647	6.9175
0.40	143.63	0.001084	0.4625	604.31	1949.3	2553.6	604 74	2133.8	2738.6	1.7766	5.1193	6.8959
0.45	147.93	0.001088	0.4140	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.8565
0.50	151.86	0.001093	0 3749	639 68	1921.6	2561 2	640.23	2108.5	2748.7	1 8607	4.9606	6.8213
0.55	155.48	0.001097	0.3427	655.32	1909 2	2564.5	665.93	2097.0	2753 0 2756.8	1.8973 1.9312	4.8920 4.8288	6.7893 6.7600
0.60	158.85	0.001101	0.3157	669.90	1897 5	2567.4	670.56	2086.3		1.9627	4.6266	
0.65	162.01	0.001104	0 2927	683.56	1886 5	2570.1 2572.5	684.28 697.22	2075.0 2066.3	2760.3 2763 5	1.9922	4.7758	6.7331 6.7080
0.70	164.97	0.001108	0 2729	696.44 708.64	1876 1 1 8 66.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.6847
0.75	167.78	0 001112	0.2556		1856.6	2576.8	709.47	2048 0	2769.1	2.0462	4.6166	6.6628
0.80	170.43 172.96	0.001115	0.24 04 0.2270	720.22 731.27	1847.4	2578 7	732 22	2039.4	2771.6	2.0462	4.5711	6.6421
0. 8 5 0. 9 0	172.96	0.001121	0 2270	741.83	1838.6	2580.5	742.83	2039.4	2771.6	2.0946	4 5280	6.6226
0.95	177.69	0.001121	0.2042	751.95	1830.2	25 8 2.1	753.02	2023 1	2776.1	2.1172	4.4869	6 6041
1.00	179.91	0.001124	0.2042	761.68	1822.0	2583 6	762.81	2015 3	2778.1	2.1387	4.4478	6 5865
1.10	184.09	0.001127	0.17753	780.09	1806 3	2586.4	781 34	2000 4	2871 7	2.1792	4.3744	6.5536
1.20	187.99	0.001139	0.16333	797.29	1791.5	2588.8	798 65	1986.2	2784.8	2.2166	4.3067	5.5233
1.30	191.64	0.001144	0 15125	813.44	1777 5	2591.0	814.93	1972.7	2787.6	2 2515	4.2438	6.4953
1.50	171.04	5.661144				200010						