Retificadores Monofasicos (Parte I)

Professor

Jorge Leonid Aching Samatelo <u>jlasam001@gmail.com</u>

Introdução a fontes CC

Introdução a fontes CC

Introdução a fontes CC

Introdução

- ☐ Na siguinte figura e mostrada uma fonte *CC*:
 - > com uma tensão de entrada CA: 120 V(rms) a 60Hz.
 - com uma tensão de saída CC: V_o (geralmente na faixa de 5 a 20V).

☐ Transformador de potência

Reduz a tensão de entrada segundo a relação

$$v_s = (N_2/N_1)v_{ac}$$
 (Volts rms)

 \triangleright Onde N_1 e N_2 são o número de enrolamentos no primario e no secundario do transformador.

- Introdução
- ☐ Na siguinte figura e mostrada uma fonte *cc*:
 - > com uma tensão de entrada CA: 120 V(rms) a 60Hz.
 - > com uma tensão de saída CC: V_o (geralmente na faixa de 5 a 20V).

■ Diodos retificadores

6

- Converte a tensão sinusoidal de entrada em uma tensão unipolar (unicamente tem ciclos positivos)
- ➤ Um parâmetro importante para um diodo de um circuito retificador é: ❖Tensão de Pico Inversa (PIV – Pick Inverse Voltage)
 - Tensão que deve soportar o diodo sem chegar a região de ruptura

Introdução a fontes CC

Introdução

 \square Na siguinte figura e mostrada uma fonte cc:

- > com uma tensão de entrada CA: 120 V(rms) a 60Hz.
- \triangleright com uma tensão de saída CC: V_o (geralmente na faixa de 5 a 20V).

☐ Filtro

- > Filtra a tensão retificada preservando:
 - ❖O componente *CC* da tensão retificada + ondulação

9

Introdução a fontes CC

Introdução

- ☐ Na siguinte figura e mostrada uma fonte *cc*:
 - > com uma tensão de entrada CA: 120 V(rms) a 60Hz.
 - ightharpoonup com uma tensão de saída CC: V_o (geralmente na faixa de 5 a 20V).

☐ Regulador

➤ Preserva o valor da tensão *CC* e atenua fortemente a ondulação.

Introdução a fontes CC

Introdução

- \square Na siguinte figura e mostrada uma fonte cc:
 - > com uma tensão de entrada CA: 120 V(rms) a 60Hz.
 - \triangleright com uma tensão de saída *CC*: V_o (geralmente na faixa de 5 a 20V).

☐ Carga

➤ A tensão *CC* é aplicada a carga.

Retificadores

10

Método de Analise

- ☐ Para determinar as características da tensão de saída gerada por um circuito retificador efetuaremos um analise em três passos:
 - ➤ Passo 1. Determinar a forma de onda de saída considerando o modelo de diodo ideal. Aqui é necessário ver:
 - \diamond que diodos estão ativos no semiciclo positivo [0,T/2].
 - \diamond que diodos estão ativos no semiciclo negativo [T/2,T].

3

Retificadores

Método de Analise

- ☐ Para determinar as características da tensão de saída gerada por um circuito retificador efetuaremos um analise em três passos:
 - ▶ Passo 2. Determinar o efeito de queda de tensão nos diodos (tensão térmica dos diodos), sendo necessário usar o o modelo de queda de tensão constante do diodo.

13

Retificadores

Método de Analise

- Para determinar as características da tensão de saída gerada por um circuito retificador efetuaremos um analise em três passos:
 - ➤ Passo 3. Determinar PIV (Tensão de Pico Inversa).

Retificadores

Retificador de Meia Onda

□ Objetivo

➤ Gera uma tensão unipolar usando unicamente os semiciclos positivos da senoíde de entrada.

Retificador de Meia Onda

☐ Forma de Onda de Saida

Considerando o modelo de diodo ideal

❖ Semiciclo positivo
$$[0, T/2]$$
: ⇒ $D_1 = ON$: $v_{D1} = 0$ e $i_{D1} > 0$

♦ Semiciclo negativo [T/2,T]: $\Rightarrow D_1 = OFF$: $i_{D1} = 0$ e $v_{D1} < 0$

Retificadores

Retificador de Meia Onda

☐ Forma de Onda de Saida

> Então a forma de onda da saída para um ciclo completo será:

Sinal retificada de meia onda

Retificadores

Retificador de Meia Onda

☐ Efeito da queda de tensão direta no diodo

 \triangleright Considerando o modelo de tensão direta V_T do diodo.

♦ Semiciclo positivo
$$[0,T/2]$$
: $\Rightarrow D_1 = ON$: $v_{D1} = 0$ $e i_{D1} > 0$

❖ Aplicando a lei de malhas de *Kirchhoff* no circuito, optemos:

$$-v_s + V_T + Ri_{D1} = 0 \Rightarrow i_{D1} = \frac{v_s - V_T}{R} \underset{i_{D1} > 0}{\Rightarrow} v_s > V_T$$

❖No circuito também podemos observar que:

$$v_o = v_s - V_T$$

❖Por tanto:

$$v_o = v_s - V_T \ ; \ v_s > V_T \tag{1}$$

Retificadores

Retificador de Meia Onda

☐ Efeito da queda de tensão direta no diodo

 \triangleright Considerando o modelo de tensão direta V_T do diodo.

♦ Semiciclo negativo [T/2,T]: $\Rightarrow D_1 = OFF$: $i_{D1} = 0$ e $v_{D1} < 0$

❖ Aplicando a lei de malhas de *Kirchhoff* no circuito, optemos:

$$-v_s + v_{D1} + V_T = 0 \Rightarrow v_{D1} = v_s - V_T \underset{v_{D1} < 0}{\Longrightarrow} v_s < V_T$$

❖No circuito também podemos observar que:

$$v_o = R \underline{i_{D1}} = 0 \text{ V}$$

❖Por tanto:

$$v_o = 0 ; v_v < V_T$$
 (2)

Retificador de Meia Onda

☐ Efeito da queda de tensão direta no diodo

 \triangleright De (1) e (2) podemos obter a curva característica v_i - v_o do retificador de meia onda:

$$v_o = \begin{cases} v_s - V_T & v_s > V_T \\ 0 & v_s < V_T \end{cases}$$

Curva de transferencia do retificador de meia onda

Efeito de V_T no sinal retificada de meia onda

21

Efeito de V_T no sinal retificada de meia onda

Passo 1. Aplicamos a tensão de entrada no eixo das abcissas.

Efeito de V_T no sinal retificada de meia onda

Passo 2. Projetamos linhas correspondentes aos pontos relacionados com:

- 1. As tensões de pico do sinal de entrada
- 2. O ponto de ruptura da curva v_i - v_o .

 $v_s = V_s \sin(wt)$

 $v_s = V_s \sin(wt)$

Efeito de V_T no sinal retificada de meia onda

Retificadores

Retificador de Meia Onda

☐ Calculo do PIV

 \triangleright Considerando Semiciclo negativo [T/2,T]:

$$\Delta D_1 = OFF: i_{D1} = 0 \ e \ v_{D1} < 0$$

❖ Aplicando a lei de malhas de Kirchhoff no circuito, determinamos a tensão inversa no diodo $D_1(v_{D1})$.

$$-v_s + v_{D1} + Ri_{D1} = 0 \Longrightarrow_{i_{D1}=0} v_{D1} = v_s$$

Retificadores

Retificador de Meia Onda

☐ Calculo do PIV

- > Calculamos o PIV tomando em conta que é o maior valor na tensão inversa no diodo D_1 .
 - ightharpoonupPrimeiro, calculamos o valor absoluto de v_{D1} .

$$|v_{D1}| = |v_s|$$

- **\$**Segundo, graficamos | v_{D1} | e visualmente determinamos sua amplitude maxima.
 - Graficando $|v_{D1}|$

■ Podemos ver que, o valor maximo de $|v_{D1}|$ é V_s , portanto:

$$PIV = \max\{|v_{D1}|\} = \max\{|v_s|\} = V_s$$

Retificadores

Retificador de Onda Completa

□ Objetivo

> Gera uma tensão unipolar usando tanto os semiciclos positivos como negativos da senoíde de entrada.

Transformador com derivação central

Configuração tipo ponte

Retificador de Onda Completa usando um transformador com derivação central

☐ Forma de Onda de Saida

> A forma de onda da saída para um ciclo completo será:

Sinal retificada de onda completa

36

Efeito de V_T no sinal retificada de onda completa

Retificadores

Retificador de Onda Completa usando um transformador com derivação central

☐ Calculo do PIV

 \triangleright Considerando Semiciclo positivo [0,T/2]:

$$\Delta D_1 = ON: v_{D1} = 0 \ e \ i_{D1} > 0$$

$$D_2 = OFF: i_{D2} = 0 \ e \ v_{D2} < 0$$

❖ Aplicando a lei de malhas de Kirchhoff na malha superior e inferior, determinamos a tensão inversa no diodo $D_2(v_{D2})$.

$$-v_{s} - v_{s} + V_{T} - v_{D2} = 0$$
$$v_{D2} = -(2v_{s} - V_{T})$$

Retificadores

Retificador de Onda Completa usando um transformador com derivação central

☐ Calculo do PIV

- Calculamos o PIV tomando em conta que é o maior valor na tensão inversa no diodo D_2 .
 - Primeiro, calculamos o valor absoluto de v_{D2} .

$$|v_{D2}| = |-(2v_s - V_T)| = |2v_s - V_T|$$

- ❖ Segundo, graficamos $|v_{D2}|$ e visualmente determinamos sua amplitude maxima.
 - Graficando $|v_{D2}|$
 - Podemos ver que, o valor maximo de $|v_{D2}|$ é $2V_s V_T$, portanto:

$$PIV = \max\{|v_{D2}|\} = \max\{|2v_s - V_T|\} = 2V_s - V_T$$

Retificador de Onda Completa usando uma configuração tipo ponte

☐ Forma de Onda de Saida

> A forma de onda da saída para um ciclo completo será:

Sinal retificada de onda completa

46

Retificadores

Retificador de Onda Completa usando uma configuração tipo ponte

☐ Efeito da queda de tensão direta no diodo

> De (1) e (2) podemos obter a curva de transferência do retificador de meia

Curva de transferencia do retificador de meia onda

Retificadores

Retificador de Onda Completa usando uma configuração tipo ponte

☐ Calculo do PIV

 \triangleright Considerando Semiciclo positivo [0,T/2]:

 $D_1 = D_4 = OFF: i_{D1} = 0 \ e \ v_{D1} < 0 \ ; v_{D4} = 0 \ e \ i_{D4} > 0$

• $D_2 = D_3 = ON$: $v_{D2} = 0$ e $i_{D2} > 0$; $v_{D3} = 0$ e $i_{D3} > 0$

❖ Aplicando a lei de malhas de Kirchhoff na malha inferior, determinamos a tensão inversa no diodo $D_1(v_{D1})$.

Retificador de Onda Completa usando uma configuração tipo ponte

☐ Calculo do PIV

 \triangleright Considerando Semiciclo positivo [0,T/2]:

$$D_1 = D_4 = OFF$$
: $i_{D1} = 0$ e $v_{D1} < 0$; $v_{D4} = 0$ e $i_{D4} > 0$

•
$$D_2 = D_3 = ON$$
: $v_{D2} = 0$ e $i_{D2} > 0$; $v_{D3} = 0$ e $i_{D3} > 0$

❖ Aplicando a lei de malhas de *Kirchhoff* na malha inferior, determinamos a tensão inversa no diodo $D_1(v_{D1})$.

$$-v_s - v_{D1} + V_T = 0$$
$$v_{D1} = -(v_s - V_T)$$

52

Retificadores

Retificador de Onda Completa usando uma configuração tipo ponte

☐ Calculo do PIV

- \triangleright Calculamos o PIV tomando em conta que é o maior valor na tensão inversa no diodo D_1 .
 - \bullet Primeiro, calculamos o valor absoluto de v_{D1} .

$$|v_{D1}| = |-(v_s - V_T)| = |v_s - V_T|$$

- **\$** Segundo, graficamos | v_{D2} | e visualmente determinamos sua amplitude maxima.
 - Graficando | v_{D1} |

■ Podemos ver que, o valor maximo de $|v_{D1}|$ é V_s – V_T , portanto:

$$PIV = \max\{|v_{D1}|\} = \max\{|v_s - V_T|\} = V_s - V_T$$

53

Retificadores

Comparação de PIV para os configurações de onda completa

Transformador com derivação central

Configuração tipo ponte

$$PIV = 2V_s - V_T$$

 $PIV = V_s - V_T$

Dado que, normalmente escolhemos um diodo que suporte 50% a mais do valor esperado para PIV, a configuração tipo ponte precisara de diodos com um menor valor de PIV que a configuração transformador com derivação central.

Retificadores

Características das Sinais ca

Valor Médio de um Sinal Periódico

- \square É um valor de tensão constante que num dado intervalo de tempo T corresponde à componente continua (cc) da sinal v(t). Matematicamente:
 - $V_{cc} = \frac{1}{T} \int_{0}^{T} v(t) dt$
- ☐ Para um sinal de meia onda:

$$V_{cc} = \frac{1}{T} \int_{0}^{T} v(t) dt = \frac{1}{T} \int_{0}^{T/2} V_{p} \sin(wt) dt = \frac{V_{p}}{\pi}$$

☐ Para um sinal de onda completa:

$$V_{cc} = \frac{1}{T} \int_{0}^{T} v(t)dt = \frac{1}{T} \left(2 \int_{0}^{T/2} V_{p} \sin(wt)dt \right) = \frac{2V_{p}}{\pi}$$

Significado do valor Médio

- \square Consideremos que a tensão v(t) é um sinal peridico de periodo T.
- \square Então, podemos representar v(t) como uma serie de Fourier:

Valor Constante

Harmônicos de ordem superior

Calculando o valor V_o : $v(t) = V_o + \sum_{k=1}^{\infty} A_k \sin(kw_o t) + \sum_{k=1}^{\infty} B_k \cos(kw_o t)$ $\int_0^T v(t)dt = \int_0^T V_o dt + \sum_{k=1}^{\infty} A_k \underbrace{\int_0^T \sin(kw_o t)dt}_{=0} + \sum_{k=1}^{\infty} B_k \underbrace{\int_0^T \cos(kw_o t)dt}_{=0}$ $\int_0^T v(t)dt = V_o T$ $\underbrace{\frac{1}{T} \int_0^T v(t)dt}_{=0} = V_o$ O valor constante da serie de Fourier é igual ao valor Médio.

Retificadores

Características das Sinais ca

Valor Eficaz de um Sinal Periódico

☐ Representa o valor de uma tensão continua que produz a mesma DISSIPAÇÃO de potencia que uma tensão periódica. Matematicamente:

$$V_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) dt}$$

☐ Para um sinal de meia onda:

☐ Para um sinal de onda completa:

$$V_{p} = \sqrt{\frac{1}{T} \int_{0}^{T} v(t)dt} = \sqrt{\frac{1}{T} \left(2 \int_{0}^{T/2} (V_{p} \sin(wt))^{2} dt \right)} = \frac{V_{p}}{\sqrt{2}}$$
58

Dedução do valor eficaz

 \square Pense em um resistor R que esquenta agua, ele esta conectado via *switchs*, já seja, a uma fonte CA ou a uma fonte CC ajustável, como se ilustra:

- □ Casos
 - Fechamos o *Switch* 2 e abrimos o *Switch* 1. O resistor é alimentado pela fonte *CA*. Neste caso, a leitura da temperatura (que é um indicativo da potência) pode nos parecer constante; más isso é uma falsa impressão. O que se observa é apenas a temperatura média produzida pela tensão média do sinal *CA*.
 - > Formalizando
 - ❖a potencia instantanea disipada pelo resistor será:

$$p(t) = vi = v^2 / R$$

❖e a potencia media será:

$$P_{ca} = \frac{1}{T} \int_0^T p(t)dt = \frac{1}{T} \int_0^T \frac{v^2}{R} dt = \frac{1}{R} \left(\frac{1}{T} \int_0^T v^2 dt \right)$$
 (1)

Dedução do valor eficaz

 \square Pense em um resistor R que esquenta agua, ele esta conectado via *switchs*, já seja, a uma fonte CA ou a uma fonte CC ajustável, como se ilustra:

- □ Casos
 - Fechamos o *Switch* 1 e abrimos o *Switch* 2. O resistor é alimentado pela fonte *CC*. Neste caso, a leitura da temperatura é realmente constante porque a corrente é constante.
 - ➤ Formalizando
 - ❖a potencia constante disipada pelo resistor será:

$$P_{dc} = \frac{V_{rms}^2}{R} \tag{2}$$

Dedução do valor eficaz

☐ Pense em um resistor R que esquenta agua, ele esta conectado via switchs, já seja, a uma fonte *CA* ou a uma fonte *CC* ajustável, como se ilustra:

☐ Obviamente podemos ajustar o valor da tensão da fonte CC de modo que a temperatura para ambos casos seja igual. Quando isso acontecer, a fonte CC estará fornecendo uma tensão que se equipara ao valor eficaz da tensão fornecida pela fonte CA.

➤ Formalizando

 \diamond Suponhamos que a potência média P_{ca} é gerada por uma tensão constante V_{rsm} , então, igualando (1) e (2) obtemos a definição de valor eficaz: $P_{dc} = P_{ca}$

$$\frac{V_{rms}^2}{R} = \frac{1}{R} \left(\frac{1}{T} \int_0^T v^2 dt \right)$$

 $V_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2 dt}$

Observação

61

- ☐ O multímetro como voltímetro na escala CA indica o valor eficaz da tensão medida.
- O multímetro como voltímetro na escala CC indica o valor médio da tensão medida.

Retificadores

Resumo (considerando o modelo ideal do diodo):

Retificador de meia onda

Retificador de onda completa

Bibliografia

66

Bibliografia

Boylestad, Robert L.; Nashelsky, Louis. Dispositivos Eletrônicos e Teoria de Circuitos (11va Edição). Pearson, Prentice Hall, São Paulo, 2013.

- ☐ Estudar a parte de:
 - > Retificadores
 - ➤ Filtro com Capacitor
 - > Regulador de Tensão
- ☐ Disponível no acervo:

4

☐ Número de chamada:

621.38 B792d 11.ed.

Bibliografia

Sedra, Adel S; Smith, Kenneth C. *Microeletrônica* (5^{ta} Edição). Pearson Prentice Hall, São Paulo, 2007.

- ☐ Estudar a parte de:
 - > Retificadores
 - > Filtro com Capacitor
 - Regulador de Tensão
- ☐ Disponível no acervo:

20

☐ Número de chamada:

621.3.049.77 S449m 5.ed.

