Seat No.:	Enrolment No.
3cut 110	Emoment 10.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - WINTER 2015

	•	Code:130702 Date:02/01/201	16
Ti	me: 2 tructio		70
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	What does abstract data type means? Briefly explain linear and non linear data structures.	07
	(b)	Given a two dimensional array A1(1:8, 7:14) stored in row-major order with base address 100 and size of each element is 4 bytes, find address of the element A1(4, 12).	07
Q.2	(a)	Write an algorithm to implement PUSH and POP Operations on Stack.	07
	(b)	Write an algorithm for evaluation of postfix expression and evaluate the following expression showing every status of stack in tabular form. • 5 6 2 - * 4 9 3 / + *	07
	(I.)	OR	07
	(b)	Enlist difference between recursive and iterative algorithms. Write any one recursive function showing the stack contents while function call and return.	07
Q.3	(a) (b)	Write a program to perform insert and delete routines on a queue. Write advantages and disadvantages of linked list, doubly linked list and circular linked list with example.	07 07
Q.3	(a)	OR Explain priority queue and dequeue. Write an algorithm/program for insert	07
Ų.J	(a)	routine in input restricted dequeues.	U1
	(b)	Write a program to search an element in a linked list.	07
Q.4	(a)	Create a Binary Search Tree for the following data and do in-order, Preorder and Post-order traversal of the tree. 40, 60, 15, 4, 30, 70, 65, 10, 95, 25, 34	07
	(b)	Define the following with example : • Strictly binary tree • Complete binary tree	07
0.4	(e)	OR What is Binary Search Tree? Write recursive algorithm/program to implement	07
Q.4	(a)	in-order traversal of the Binary Search Tree.	U/

	(b)	Define height balanced tree. Construct a height balanced binary tree (AVL tree) for the following data	07
		32,16,44,52,78,40,12,22,02,23	
Q.5	(a)	What is hashing? Briefly explain various methods of hashing.	07
	(b)	Explain with example DFS and BFS traversal of graph.	07
		OR	
Q.5	(a)	What is File Structure? Explain any one File Structure in detail.	07
-	(b)	Show how graph can be represented using example? How path matrix can be found out using adjacency matrix.	07
