

BitCoin and Blockchain

The rise of cryptocurrencies

■ Bitcoin Price (USD) – Source : coinbase.com

- Bitcoin sparked research into multiple challenging areas and applications
 - more than 2000+ cryptocurrency startups according to angel.co

Properties of Bitcoin

- Decentralization
 - no central authority that controls the entire network
- Non-repudiation
 - participants in the bitcoin network cannot deny their transactions
- Immutability
 - once a transaction is written into the ledger (i.e., blockchain), it cannot be altered
- Pseudonymous
 - no association between bitcoin participants and realworld identities

A centralized ledger

- E-ledger (list of transactions)
 - a ledger in bitcoin is to trace the transaction-history of a coin
 - No balance of a person/account appears anywhere
 - but, a ledger in a bank maintains the current balance all the time

Non-repudiation: sign transactions

- Digital coin == chain of digital signatures
- Ownership transfer of a coin:
 - Each person is identified by his public key in the cyber world
 - A transfers a coin to B: A signs the trans. using its private key
 - Sign(Prev trans + New owner's public key) // '+': concatenate 2 msgs
- Anyone can verify the transfer from the (n-1)th owner to the nth
- But, who is responsible to keep the history of transactions in a decentralized system?

A decentralized ledger

- Challenges in decentralized systems:
 - no authority keeps the transaction history
 - people may fake a transaction or double spend a coin by taking advantages of network delay
- To prevent fraud and double-spending:
 - each transaction is broadcast to all nodes

• a transaction is confirmed only after verification (by

whom?)

- Nodes receive different sets of trans at any time-point due to different network delays
- How to organize and verify the transactions to make a consistent distributed ledger?

- Blockchain, a chain of blocks, is a distributed ledger, recording all trans in the system
 - each block contains of a set of verified trans
- Each node (mining node) selects a set of trans from its local pool, verifies them, generates a new block, and links the new block to the chain
- Other nodes, upon receiving this new block, will accept the new block by further linking their new blocks to it
 - by "accept a block", it means to verify the trans again in the block to prevent the creator of the block from making any fraud trans

4

Transaction flow

- The coin was created for Goofy by the *Coinbase transaction* (discussed later) and Goofy is the owner
- Transactions over a coin are chained up

A coin's owner can spend/transfer it

Chain of transaction flow

The recipient can pass on the coin again

Full transaction chain: A ledger

- The full chain is a complete ledger/ history of all trans
 - the input of the current trans points to the output of an earlier trans, indicating the source of the trans
- The history of the full blockchain reveals the state/ ownership of all bitcoins (BTC)
- The ledger is structured in terms of transactions
 - no explicit "account balance"

Trans-based ledger: without in/out pointer

Create 25 coins and credit to Alice Asserted by miners

Transfer 17 coins from Alice to Bob Signed(Alice)

Transfer 8 coins from Bob to Carol Signed(Bob)

Transfer 5 coins from Carol to Alice Signed(Carol)

Transfer 15 coins from Alice to David Signed(Alice)

might need to scan the entire history until genesis!

Is this valid?

。oC

Trans-based ledger with in/out pointer (Bitcoin)

- Each trans has inputs /outputs
 - inputs specifies source of coins; outputs the recipients of coins
- Easy to check if a transaction is valid (owner has sufficient coins?)

Input/output link of transactions

we implement this with hash pointers

SIMPLIFICATION: only one transaction per block

A transaction with change:

input value > transfer-value

- Alice has 9 coins and transfers 6 to Carol, and Alice still has 3 coins left
- The transaction has two outputs: one for transferring to Carol and the other for transferring back to Alice
- The total inputs always equal to the total outputs of a trans

4

Joint payment

- *inputs* can come from multiple sources
 - the transaction needs to be signed by all input owners

4

Merge multiple outputs

- Merge outputs of multi-trans for the same owner
 - simplify the input of future trans, and
 - make it easy to verify balance of an owner
- The system can do auto-merge

Transaction syntax

```
(transID)
                              "hash": "5a42590fbe0a90ee8e...b8b6b",
metadata
                              "size":404,
                              "in":[
                              {"prev_out":{
                                                      (prev. transID)
                              "hash": "3be4ac9728a0823ca...80260",
 input(s)
                              "n":0}
                              "scriptSig":"30440..."}(signature - script)
                              ],
                              "out":[
                              "value":"10.12287097", (output value)
                              "scriptPubKey":"OP_DUP OP_HASH160
output(s)
                              69e02e18b5705a05dd6b28ed51776c
                              OP_EQUALVERIFY OP_CHECKSIG"}
                                          (public key of recipient - script)
```


Coinbase transaction

```
"hash": "5a42590fbe0a90ee8e...b8b6b",
metadata
                             "size":404,
                             "in":[
                                             (null transID)
                             {"prev_out":{
                             "hash":"00000000000...000000",
 input(s)
                             "n": 4294967295}
                             "coinbase":"..." | (arbitrary)
                             ],
                             "out":[
                                             (block reward + trans fees)
                             "value":"12.52287097",
                             "scriptPubKey":"OP_DUP OP_HASH160
output(s)
                              69e02e18b5705a05dd6b28ed51776c
                              OP_EQUALVERIFY OP_CHECKSIG"}
```


Demo at https://www.blockchain.com/explorer

Data structure of block: Chain of blocks

Each block contains a set of verified transactions

Bitcoin block syntax

```
(blockID)
                                  "hash":"0000000000000001aad2...",
                                  "ver":2,
                                                (prev. blockID)
                                  "prev_block":"00000000000000003043...",
                                  "time":1391279636,
                                  "bits":419558700,
   block header
                                  "nonce":459459841,
                                  "mrkl_root":"89776...",
                                  "n tx":354,
                                  "size":181520,
                                  "tx":[
                                  "mrkl_tree":[
                                                      (set of transactions)
transaction data
                                  "6bd5eb25...",
```


- Impossible to alter any transactions in the blockchain:
 - each node keeps a copy of the chain locally and all copies are consistent
 - each transaction is signed and verified

Inconsistency of trans pools at nodes

- Each transaction is broadcast to all nodes and nodes have different sets of trans due to network delay
- Each node selects a subset of trans from its local pool, verifies them and competes with other nodes to solve PoW
 - A node broadcasts a new block if it successfully solves PoW before others
- A new block is accepted by a node if it builds the next block upon this block

Distributed consensus: Block mining

- Each miner (i.e., node) has a set of outstanding transactions it has received
- All miners execute a computationally—intensive process to decide which block to be extended

Block mining: Proof-of-Work (PoW)

Mining a new block: verify transactions and PoW

- Each miner picks a set of trans from its local pool & verifies them
- Computes the PoW and if successful:
 - link the block to the local chain, and
 - broadcast the block to the network

Example: miners generate a new block

Each attempt has 16⁻³ chance of success

$$Z = 0x000***...$$
Hash(Block 3 | ... | 0xb9824) = 0x000c3f...

What if a miner loses the competition?

What if two miners succeed simultaneously?

Distributed consensus: Longest chain rule

- Two or more nodes may find a correct block simultaneously
 - a node that receives two or more new independent blocks will keep both blocks
 - The chain may temporarily have forks
 - it always works on (follow) a longer chain if there are multiple forks
 - Ties break arbitrarily
 - ~6 blocks ahead to confirm a transaction

Convergence to the same chain

- With the longest chain rule, all nodes eventually agree on the same blockchain
- Transactions of shorter blocks are put back to the pool
- How to reverse a trans that was already committed?
 - Do I see money credited to my account but later disappeared?

When can a trans be confirmed in blockchain?

- There is no balance even written in the blockchain
 - The ledger is recorded as the history of transactions
 - When the trans of a lost block falls back to the pool, those trans are no longer in the chain
 - Fall-back trans take no effect, as if nothing happened
- When there are 6 (or more) new blocks grown after this trans, the trans can be regarded as "confirmed"
 - The funds in this transaction are then "committed"

Impossible to fake a trans in blockchain

- Suppose a node made a fraud transaction and included in a block successfully
- This node has to continuously and successfully mine the next several blocks to make his faked block in the longest chain (even others can check out the fraud)
- But, the probability is very low:
 - suppose the node has p% of the total computing power...

What happens if a miner finds a faked trans?

- It simply doesn't follow the block for growing a new block
 - no reporting mechanism
 - note: no law-enforcement nor central-authority to catch the offenders in blockchain
- The owner of faked trans won't be able to keep up with the pace to generate subsequent new blocks
 - the block containing faked trans will be eventually discarded and the faked trans will never take effect in blockchain
- The counter-fraud in blockchain relies on the PoW and is based on the fact: nobody controls over 50% of the total computing power in the world

Why PoW is essential?

- Spread out the time of nodes competing for generating new blocks in a wider range and with higher randomness
 - The probability for two miners to generate new blocks simultaneously is slim
 - Longer time for PoW makes network delays insignificant in winning out the competition among nodes
- Security reason
 - Prevent Sybil attacks
- Is it possibly to develop a decentralized consensus protocol without using PoW?
 - BFT (Byzantine Fault Tolerance) protocol
 - Proof-of-Stake

Incentives for miners

- Block Rewards:
 - creator of a new block gets to include a special *coinbase* transaction in the block
 - The creator (typically itself) can choose a recipient address of this trans
- Transaction Fees:
 - a transaction's output value can be made less than the input value, leaving a transaction fee for the block creator
 - purely voluntary, like a tip
 - transaction fee becomes increasingly important, as block rewards start running out
- Where is Nakamoto's said 1M coins coming from?

Maximum number of coins

- Coins are only generated through block mining
- The block reward is cut in half every four years
- Originally, 50 BTC/block; but today, 12.5 BTC/block

Total number of coins is capped by 21M

The number of blocks per 4 year cycle:

```
6 blocks per hour *
24 hours per day *
365 days per year *
4 years per cycle = 210,240 ~= 210,000
```

Sum the block rewards for all years ...

```
210,000*(50 + 25 + 12.5 + 6.25 + 3.125 + ...)

210,000*50(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ...)

210,000*50*2 = 21 \text{ million}
```

4

Throughput of transactions

- Average time between blocks ≈ 10 minutes
 - nodes automatically re-calculate the difficulty of PoW every 2016 blocks (about every two weeks)
 - adjust difficulty to meet 10-minute goal
- Blocksize is limited to 1M bytes/block
 - at least 250 bytes/trans
 - $\sim 3,500 4,000 \text{ trans/block}$
 - ~7 trans/s
- Compare to VISA (2,000-10,000 trans/s), and PayPal (50-100 trans/s)
- How to increase the throughput of Bitcoin?

Bitcoin wallets

- You don't need to mine or run a full node to use Bitcoin
- Wallet are applications that permit easy management of Bitcoins
- Bitcoin wallet stores, protects, and allows use of *private* key to make transactions

Bitcoin payment

Bitcoin exchange

- There are sites like *bitcoincharts.com* that show the exchange rate with various currencies
- Another option is to meet people to trade bitcoins in real life, such as *localbitcoins.com*

Bitcoincharts								•		923233068449 887736944047 in 1 blks					7983858.406 Thash/s 7.25 / 497 s		
Но	me Bitcoi	n Ma rl	kets C	harts About											May 6, 2019		03:43:32 (UTC)
								Advertise	on Bitcoind	harts							
Overview		Currencies All Ma		rkets													
All	I KRW	NMC	IDR	RON	MYR	NGN	VND	GAU	PKR	VEF	ARS	AUD	BGN	BRL	втс	CLP	CNY
CZI SGI		EUR THB	GBP UAH	HKD USD	HUF XRP	ILS ZAR	INR CHF	JPY CAD	LTC VES	MXN	NOK	NZD	PEN	PLN	RUB	SAR	SEK
361	Symb		Latest		30 days		/erage		ume	L	ow/High	ı	Bid	Ask	24	h Avg.	Volume
▼ p2pb2b		5699.87 3 min ago		لمرية	5287.56 412.31 7.80%		324,651.61 1,716,614,688.26 USD		1 5900		5	5460		5763.1 -63.31 -1.1		12,309.84 70,943,871.41 USE	
	BitStamp bitstampUSD	5632.68 0 min ago		المحالا	5279.20 353.48 6.70%		237,095.75 1,251,676,434.34 USD		4900 5846.13		56	5632.68		5634.42 56 -59.		6,166.80 35,101,055.67 USD	
	Kraken krakenUSD	5632 0 min ago		اللابية	5298.53 333.47 6.29%		167,600.06 888,033,854.26 USD		4357.1 5840		5632		303Z.T		6 92.24 .24 -1.06%	3,898.76 22,192,664.39 USE	
	Coinsbit coinsbitioUSD		5905.20000001 0 min ago		5356.28 548.92 10.25%			148,090.72 793,215,269.96 USD		4912.00000001 6115.9		01 _{5898.3}		6018.5		9 75.79 0.59 -1.18%	5,533.64 33,067,871.35 USD
	Kraken krakenEUR		503 0 min		المريا		7 18.17 .03 6.72%		39.02 51.66 EUR		4364.7 5228	50	33.7	5035.6		0 90.85 .65 -1.09%	2,605.66 13,265,048.73 EUF

Bitcoin's dark side

- Bitcoin has stimulated
 - Money laundering
 - Illegal marketplaces and dark web (e.g., Silk Road)
 - Ransomware
 - Theft of Bitcoin wallets
 - Rogue mining
 - E.g., ZeroAccess botnet

Bitcoin's dark side

Tor + Bitcoin = End-to-end anonymity for commercial transactions

4

Summary

- Bitcoin is a native application of blockchain technology
- The blockchain is maintained by a P2P network
 - each transaction is broadcast to the P2P network
 - miners verify transactions and generate new blocks to link to the chain
- The P2P network maintains the consistency of the blockchain via the longest chain rule
 - distributed consensus is enforced via PoW
- Blockchain technology can be applied to P2P environment where there is no central authority and no trust among the peers
 - Financial/banking sectors, insurance services, real-estate transactions, medical data sharing, etc

References

- Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and Edward W. Felten. "SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies", in Proc. of IEEE S&P 2015.
- Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder. "Bitcoin and Cryptocurrency Technologies", in Princeton University Press, 2016
- Satoshi Nakamoto. "Bitcoin: A PeertoPeer Electronic Cash System"
- Bitcoin Wiki, online at https://en.bitcoin.it/wiki/Main_Page
- Maurice Herlihy. "Blockchains from a Distributed Computing Perspective", 2018

Exercises

- 1) Why is it impossible to make a fraud transaction in blockchain?
- 2) PoW costs a massive amount of resources. Why is it essential in blockchain? Can you replace the PoW by a protocol without heavy computational cost?
- 3) Why the max number of Bitcoins is capped by 21M?
- 4) The throughput current bitcoin system is around 7 trans/s, too small. Think about some ways to increase the throughput of bitcoin transactions, and discuss their pros and cons.
- 5) Think about an application that can use blockchain technology.

Case Study: a P2P storage system using blockchain

- Explosive growth of digital data
 - fuelled up by e-health, e-commerce, smart cities, IoT, ...
- Mismatch between supply and demand of data storage
 - a vast amount of under-used storages scattered all over the world
 - high demand from users looking for storage space
- P2P storage system:
 - utilize the unused storage space to form a huge global storage system

Framework of blockchain-based P2P storage system

P2P storage system

A secure and fair platform for people to lease computing resources and for users to receive services

Framework of a blockchain-based P2P storage system

- Blockchain P2P network consists of storage servers and peers
 - storage servers can be peers
- Data owners/users interact with storage servers via transactions
 - data owners bind with servers via smart contracts
 - data and search indexes are stored off-chain at storage servers
 - all operations between owner/user and server are via transactions
 - contract transactions, data search/update transactions, etc
- Peers verify correctness of transactions and generate new blocks to the blockchain

Signing a storage contract

record it in the chain

Search transaction

Search result verification

on-chain checklist

Generating new blocks to the blockchain

A new consensus protocol

- Verification of a search result transaction includes:
 - verifying the search results, and
 - auditing the integrity of the stored file
- Peers compete with each other to generate new blocks

Mr(Tx): the Merkle-tree root of validated transactions in the new block

 $H(\pi)$: the hash value of validated file-proofs

B_{stc}: the peer's stake (amount of deposit it has in the system)

A hybrid method of proof-of-stake and proof-of-work

- Proof-of-stake gives more advantage to peers with higher stake, reducing the average time for generating a new block
 - a trade-off between randomness and deterministic in block mining
 - increase the throughput of generating new blocks
- Peers perform data auditing as a useful PoW
- The longest chain rule still holds the global consensus among the peers