파라메러를 포함하는 리산해밀턴계에 대한 불변고리의 국부적유일성정리성립조건결수의 정량적평가

정 우 환

해밀턴계에 대한 불변고리의 존재성에 관한 리론(략칭 KAM리론)은 오늘날 립자가 속장치에서의 립자운동의 안정성보장문제[6], 핵융합반응에서의 자기마당에 의한 플라즈마의 가두어놓기문제[9], 저에네르기우주비행자리길설계문제[8]를 비롯한 첨단과학기술문제들에 광범히 응용되고있다.

선행연구[3, 4]에서는 일정한 섭동해밀턴계에서 섭동파라메터가 주어진 범위에 있을때 불변고리의 존재성문제를 연구하였다. 선행연구[1]에서는 비섭동형씸플렉트넘기기의불변고리에 대한 국부적유일성정리에서 성립조건결수의 정량적평가를, 선행연구[7]에서는 파라메터가 포함안된 경우와 파라메터가 포함된 경우 실해석적인 런속해밀턴계와 리산해밀턴계에서 불변고리의 국부적유일성을 증명하였다. 그리고 선행연구[5]에서는 실해석성의 가정을 약화시켜 C'급씸플렉트넘기기의 불변고리의 국부적유일성을, 선행연구[2]에서는 2차원고리구역을 그자체로 보내는 씸플렉트넘기기의 불변고리의 국부적유일성을 증명하였다.

그러나 선행연구[2, 5, 7]들에서의 불변고리의 국부적유일성존재정리의 정식화는 두 불 변고리의 거리가 충분히 작으면 그것들이 일치한다는 식으로 되여있을뿐 국부적유일성이 담보되는 두 불변고리들사이의 거리에 대한 정량적인 평가는 주지 않고있다.

론문에서는 파라메터를 포함하는 실해석적인 씸플렉트넘기기에 대한 불변고리의 국 부적유일성정리의 성립조건곁수의 크기한계에 대한 정량적인 평가를 얻는 문제를 연구하 였다.

 \mathbf{R}_+ 는 부아닌 실수전체의 모임, \mathbf{K} 는 \mathbf{R} 또는 \mathbf{C} 를 표시한다고 하자. $\mathbf{T}^n := \mathbf{R}^n/\mathbf{Z}^n$ 을 n차원고리라고 부른다. 위상공간 X의 부분모임 S가 조건 $\overline{\mathrm{int} S} \subset S$ 를 만족시킬 때 S를 위상공간 X의 표준모임이라고 부르고 이 사실을 $S \subset X$ 와 같이 표시한다. 또한 U가 위상공간 X의 열린모임이라는 사실을 $U \subset X$ 와 같이 표시한다.

n을 자연수라고 하자. n차원수공간 \mathbf{K}^n 의 원소 $x \in \mathbf{K}^n$ 의 최대노름을 $|x| = \max_{1 \le i \le n} |x_i|$ 로, n차원옹근수벡토르 $k = (k_1, \cdots, k_n) \in \mathbf{Z}^n$ 의 절대합노름 $\|k\| = \|k\| = |k_1| + \cdots + |k_n|$ 으로 정의한다. 또한 $u, v \in \mathbf{K}^n$ 에 대하여 $< u, v > = \sum_{i=1}^n u_i \overline{v}_i$ 를 n차원수공간 \mathbf{K}^n 의 스칼라적으로 정의한다. $\rho > 0$ 을 고정하고

$$U_{\rho} = \{\theta \in \mathbb{C}^n : |\operatorname{Im}\theta| < \rho\}, \overline{U}_{\rho} = \{\theta \in \mathbb{C}^n : |\operatorname{Im}\theta| \le \rho\}$$

라고 놓는다.

정의 1 $v = (v_1, \dots, v_n) \in \mathbf{R}^n$ 이라고 하자. 어떤 $\gamma > 0$ 과 $\sigma \ge n$ 에 대하여 조건

$$|l \cdot v - m| \ge \gamma ||l||^{-\sigma} (l \in \mathbf{Z}^n \setminus \{0\}, m \in \mathbf{Z})$$

$$\tag{1}$$

이 만족될 때 벡토르 v 는 리산형디오판투스조건을 만족시킨다고 말한다. 조건 (1)을 만족시키는 벡토르 $v \in \mathbf{R}^n$ 들의 모임을 $\mathcal{D}^n(\gamma, \sigma)$ 로 표시한다.

보조정리 1[7] $v\in\mathcal{D}^n(\gamma,\sigma)$ 이고 넘기기 $h:\mathbf{T}^n\to\mathbf{R}^{2n}$ 이 U_ρ 에서 실해석적이며 $< h>:=\int h(\theta)=0$ 을 만족시키면 임의의 $0<\delta<\rho$ 에 대하여 계차방정식 $u(\theta)-u(\theta+v)=h(\theta)$ 의 평 \mathbf{T}^n

균값 < u> 가 령인 유일한 풀이 $u: \mathbf{T}^n \to \mathbf{R}^{2n}$ 으로서 $U_{\rho-\delta}$ 우에서 실해석적인것이 존재한다. 나아가서 다음의 평가식이 성립한다.

$$\|u\|_{\rho-\delta} \le c_0 \gamma^{-1} \delta^{-\sigma} \|h\|_{\rho}$$

여기서 c_0 은 n과 σ 에 의존되는 상수이다.

정의 2 $v \in \mathcal{D}^n(\gamma, \sigma)$ 에 대하여 넘기기 $R_n : \mathbf{T}^n \to \mathbf{T}^n$ 을 $R_n(\theta) = \theta + v$ 로 정의한다.

정의 3 $X \subset \mathbf{C}^n$ 을 $X \overset{\bullet}{\subset} \mathbf{C}^n$ 이고 \overline{X} 가 콤팍트인 모임이라고 하자. X에서 련속이고 1 -주기적이며 $\operatorname{int} X$ 에서 실해석적인 넘기기 $K: X \to \mathbf{R}^{2n}$; $z \mapsto K(z)$ 들전체의 모임을 $\mathcal{P}(X, \mathbf{R}^{2n})$ 으로 표시한다. 이때 $\mathcal{P}(X, \mathbf{R}^{2n})$ 은 노름 $\|K\| = \sup_{z \in X} |K(\theta)|$ 에 관하여 바나흐광 간이 된다. $Y \subset \mathbf{R}^{2n}$ 일 때

$$\mathcal{P}(X, Y) = \{K \in \mathcal{P}(X, \mathbf{R}^{2n}) : K(X) \subset Y\}$$

라고 놓는다.

아래에서 간략기호 $\mathcal{P}(\rho) = \mathcal{P}(\overline{U}_{\rho}, \mathbf{R}^{2n})$ 을 사용한다.

 ${f U}^{2n}$ 을 ${f R}^n$ 의 열린모임 U와 ${f T}^n$ 의 직적 즉 ${f U}^{2n}={f T}^n imes U$ 와 같이 표시되는 모임이거나 ${f R}^{2n}$ 의 열린모임으로 주어지는 모임이라고 하자. 넘기기 $K:\overline{U}_{\rho}\to {f U}^{2n}$ 으로서 U_{ρ} 에서 실해석적이며 \overline{U}_{ρ} 의 경계우에서 련속이며

$$K(\theta + k) = K(\theta) + (k, 0) \quad (k \in \mathbf{Z}^n)$$
(2)

을 만족시키는 넘기기전체의 모임을 $\widetilde{\mathcal{P}}(
ho)$ 와 같이 표시한다.

 ω 를 다양체 \mathbf{U}^{2n} 우의 실해석적인 완전씸플렉트구조라고 한다. 이때 ω 는 임의의 $z\in\mathbf{U}$ 에 대하여 2중선형넘기기 $\omega_z:T_z\mathbf{U}^{2n}\times T_z\mathbf{U}^{2n}\to\mathbf{R}$ 를 정의한다. 이때 선형동형넘기기 $J(z):T_z\mathbf{U}^{2n}\to T_z\mathbf{U}^{2n}$ 이 유일하게 존재하여

$$\omega(u, w) = \langle u, J(z)w \rangle ((u, w) \in T_z \mathbf{U}^{2n} \times T_z \mathbf{U}^{2n})$$
 (3)

이 성립한다. ω 가 \mathbf{U}^{2n} 우의 완전씸플렉트구조이므로 \mathbf{U}^{2n} 우의 1차미분형식 α 가 있어서 $\omega=d\alpha$ 가 성립한다. \mathbf{U}^{2n} 우의 1차미분형식 α 에 대하여 어떤 실해석적넘기기 $a:\mathbf{U}^{2n}\to\mathbf{R}^{2n}$ 이 있어서

$$\alpha_z = a(z) \cdot dz = \sum_{i=1}^{2n} a_i(z) dz_i \quad (z \in \mathbf{U}^{2n})$$
(4)

가 성립한다.

정의 4 $d \in \mathbb{N}$, $B \stackrel{\bullet}{\subset} \mathbb{R}^d$ 라고 하고 $0 \in B$ 라고 가정한다. 넘기기 $f : \mathbb{U}^{2n} \times B \to \mathbb{U}^{2n}$ 이 주어졌다고 가정하고 매 $x \in \mathbb{U}$ 에 대하여 $f(x,\cdot)$ 가 C^2 급이고 매 $\lambda \in B$ 에 대하여 $f_{\lambda} := f(\cdot,\lambda)$: $\mathbb{U}^{2n} \to \mathbb{U}^{2n}$ 이 씸플렉트넘기기이며 실해석적이라고 가정하자. 이때 $\{f_{\lambda}, \lambda \in B\}$ 를 씸플렉트넘기기들의 λ - 파라메터족이라고 부른다.

 $\{f_{\lambda},\ \lambda\in B\}$ 를 씸플렉트넘기기들의 $\lambda-$ 파라메터족, $v\in \mathbf{R}^n$ 을 주어진 벡토르라고 할 때 $\lambda\in B$ 에 대하여 미지함수 $K:\mathbf{T}^n=\mathbf{R}^n/\mathbf{Z}^n\to \mathbf{U}^{2n}$ 에 관한 함수방정식

$$f_{\lambda} \circ K = K \circ R_n \tag{5}$$

를 연구한다. 식 (5)를 만족시키는 넘기기 $K: \mathbf{T}^n \to \mathbf{U}^{2n}$ 의 영상모임 $K(\mathbf{T}^n) \subset \mathbf{U}^{2n}$ 은 f_{λ} 에 관한 불변모임이 된다. 여기서 만일 $K: \mathbf{T}^n \to \mathbf{U}^{2n}$ 이 단일넣기이면 $T = K(\mathbf{T}^n)$ 는 f_{λ} 에 관하여 불변인 고리(불변고리)가 된다. 즉 $K: \mathbf{T}^n \to \mathbf{U}^{2n}$ 은 f_{λ} 의 불변고리 T의 파라메터화가 된다. 아래에서 I_n 으로 n차단위행렬을 표시한다.

정의 5 $\{f_{\lambda},\ \lambda\in B\}$ 를 셈플렉트넘기기들의 λ —파라메터족이라고 하고 $\hat{\lambda}\in B$ 및 $v\in\mathcal{D}^n(\gamma,\sigma)$ 라고 한다. 그리고 다음의 조건들이 만족된다고 가정한다.

① n 차행렬값함수 $N(\theta)$ $(\theta \in \mathbf{T}^n)$ 가 있어서

$$N(\theta)(DK(\theta)^{\mathsf{T}}DK(\theta)) = I_n \ (\theta \in \mathbf{T}^n)$$

이다.

② $P(\theta) = DK(\theta)N(\theta)$ 라고 놓고

$$T(\theta) = P(\theta)^{\mathsf{T}} [I_{2n} - J(K(\theta))^{-1} P(\theta) DK(\theta)^{\mathsf{T}} J(K(\theta))]$$
$$\Lambda(\theta) = \begin{pmatrix} T(\theta + v) \\ DK(\theta + v)^{\mathsf{T}} J(K(\theta + v)) \end{pmatrix} \left(\frac{\partial f_{\lambda}}{\partial \lambda} \Big|_{\lambda = \hat{\lambda}} (K(\theta)) \right)$$

라고 놓을 때 $2n \times 2n$ 행렬값함수 $<\Lambda>_{\theta}$ 는 2n 차원의 값구역을 가진다. 이때 쌍 $(f_{\hat{\lambda}},K)$ 는 불퇴화이다고 말한다. 이제 관계식

$$\xi(n, d, v, j_2) = 1 + 2nd^2v^2j_2, \ \eta(n, d, v, j_1, j_2) = 1 + 2nd^2vj_1j_2$$

$$\lambda(y_1, y_2, y_3, y_4) = 2^{16}3n^8(1|+f_{\lambda}|_{C^1, B_r})^2(1+\gamma)(1+\delta)(1+\delta^{\sigma})(1+\gamma\delta^{\sigma})^2.$$
(6)

$$\cdot (1 + \gamma^2 \delta^{2\sigma}) (1 + \gamma \delta^{(1+\sigma)}) (1 + |J|_{C^1, \mathcal{B}_r}) (1 + |J^{-1}|_{C^1, \mathcal{B}_r}) (1 + c_0)^3 (1 + 2ny_1^2 y_2) \cdot \tag{7}$$

$$\cdot (1+y_1)^{10} (1+y_2)^7 (1+y_3)^4 (1+y_4)^3$$

에 의하여 4변수다항식 ξ , 5변수다항식 η , 4변수다항식 $\lambda(y_1,\ y_2,\ y_3,\ y_4)$ 가 정의된다. 그리고

$$\rho_0 > 0$$
, $K_0 \in \mathcal{ND}(\rho_0)$, $\delta_0 = \min\{1, \rho_0/12\}$

이라고 놓는다. 관계식

$$N_0(\theta) = (DK(\theta)^T DK(\theta))^{-1}, P_0(\theta) = DK_0(\theta)N_0(\theta)$$

$$S_0(\theta) = P_0(\theta + v)^{\mathrm{T}} [Df(K_0(\theta))J(K_0(\theta))^{-1}P_0(\theta) - J(K_0(\theta + v))^{-1}P_0(\theta + v)]$$

로 함수 $N_0(\theta)$, $P_0(\theta)$, $S_0(\theta)$ 들을 정의하고

$$d_0 = ||DK_0||_{\rho_0}, \quad \tau_0 = |(\langle S_0 \rangle)^{-1}|, \quad v_0 = ||N_0||_{\rho_0}$$

와 같이 놓는다. 또한

$$\beta = \gamma^2 \delta_0^{2\sigma - 1} 2^{-(4\sigma + 1)} (1 + 2^{4\sigma - 1}), \quad C = \lambda (d_0 + \beta, \ v_0 + \beta, \ \tau_0 + \beta)$$

라고 놓는다. 이때 다음의 정리가 성립한다.

정리 $\omega\in\mathcal{D}^n(\gamma,\,\sigma)$ 라고 가정한다. $\delta_0=\min(1,\,\rho_0/12)$ 라고 놓는다. $\{f_\lambda,\,\lambda\in B\}$ 를 실해 석적씸플렉트넘기기들의 2n- 파라메터족이라고 하고 $\{f_\lambda,\,\lambda\in\Lambda\}$ 가 어떤 r>0에 관하여 복소근방

$$\mathcal{B}_r = \{ z \in \mathbf{C}^{2n} : \inf_{\theta \in U_{\rho_0}} |z - K_0(\theta)| < r \}$$

까지 정칙적으로 연장가능하며 $|f_{\lambda}|_{C^2, \mathcal{B}_r} < \infty$ 를 만족시킨다고 가정한다. $K_1, K_2 \in \mathcal{P}(\rho)$ 이고 쌍 $(f_{\hat{\lambda}}, K)$ 및 $(f_{\hat{\lambda}}, K)$ 가 불퇴화라고 가정하자. 이때 만일 K_1, K_2 가 $K_1(U_{\rho}) \subset \mathcal{B}_r$ 및 $K_2(U_{\rho}) \subset \mathcal{B}_r$ 를 만족시키는

$$f_{\hat{\lambda}} \circ K = K \circ T_{\omega} \tag{8}$$

의 풀이들이라고 하면

$$n, \ \sigma, \ \gamma, \ \rho, \ \rho^{-1}, \ |f_{\hat{\lambda}}|_{C^2, \mathcal{B}_r}, \ |J|_{\mathcal{B}_r}, \ |J^{-1}|_{\mathcal{B}_r}$$
$$\|(\partial f_{\lambda}/\partial \lambda)|_{\lambda=0} \ K_2 \|_{\rho}, \ \|K_2\|_{C^2, \rho}, \ \|N_2\|_{\rho}, \ |\overline{\Lambda}_2^{-1}|$$

들에 의존하는 어떤 c>0이 있어서(여기서 N_2 와 Λ_2 들은 정의 3에서 K를 K_2 로 바꾼경우와 같다.) $\|K_1-K_2\|_{\rho}$ 가 $\gamma^{-2}\delta^{-2\sigma}c^*\|K_1-K_2\|_{\rho}<1$ 을 만족시키면(여기서 $\delta=\rho/8$) 어떤 초기위상 $\tau\in\mathbf{R}^n$ 이 있어서 $U_{\rho/2}$ 에서 $K_1\circ T_{\tau}=K_2$ 가 성립한다.

증명 우선 방정식

$$< T(\theta)[K_1 \circ T_{\tau_1} - K_2](\theta) >= 0$$
 (9)

의 풀이 $\tau_1 \in \mathbf{R}^n$ 을 구하자.

$$T(\theta)DK_2(\theta) = I_n \tag{10}$$

이 성립한다. 여기서 $T(\theta)$ 는

$$T(\theta) = P(\theta)^{T} [I_{2n} - J(K(\theta))^{-1} P(\theta) DK((\theta))^{T} J(K(\theta))]$$

에서 $K 를 K_2$ 로 바꾸어놓아 정의되는 함수이다. 이때 $x \in \mathbf{R}^n$ 에 대하여

$$T(\theta)[K_1(\theta+x)-K_2(\theta)] = T(\theta)[K_1(\theta+x)-K_2(\theta)] - T(\theta)DK_2(\theta)x + x$$

가 성립한다. 이 사실은 식 (10)으로부터 나온다. 그러므로 식 (9)의 어떤 풀이 au_1 은 함수

$$\Psi(x) = -\langle T(\theta)[K_1(\theta + x) - K_2(\theta)] - T(\theta)DK_2(\theta)x \rangle$$

의 부동점이다. 몇가지 계산을 진행하면 임의의 $|x|,|y|<\|K_1-K_2\|_{\rho}$ 에 대하여(따라서 $x,y\in\Theta$) 다음의 식이 성립한다:

$$|\Psi(y) - \Psi(x)| \le \int_{\mathbf{T}^n} |T(\theta)[K_1(\theta + y) - K_1(\theta + x)] - T(\theta)DK_2(\theta)(y - x)| d\theta \le$$

$$\le ||T||_{\rho} \int_{\mathbf{T}^n} |K_1(\theta + y) - K_1(\theta + x) - DK_2(\theta)(y - x)| d\theta$$

인데 여기서 적분형테일리공식

$$K_1(\theta+y) = K_1(\theta+x) + DK_1(\theta+x)(y-x) + \int_0^1 D^2 K_1(\theta+x+t(y-x))(1-t)(y-x)^2 dt$$

를 적용하면

$$\begin{split} &|\Psi(y) - \Psi(x)| \leq \\ &\leq ||T||_{\rho} \int_{\mathbf{T}^{n}} |DK_{1}(\theta + x)(y - x) - DK_{2}(\theta)(y - x)| \, d\theta + ||T||_{\rho} ||D^{2}K_{1}||_{\rho} ||y - x||^{2} \leq \\ &\leq ||T||_{\rho} \int_{\mathbf{T}^{n}} |DK_{1}(\theta)(y - x) - DK_{2}(\theta)(y - x)| \, d\theta + \\ &+ ||T||_{\rho} \int_{\mathbf{T}^{n}} |DK_{1}(\theta + x)(y - x) - DK_{1}(\theta)(y - x)| \, d\theta + \\ &+ ||T||_{\rho} ||D^{2}K_{1}||_{\rho} ||y - x||^{2} \leq ||T||_{\rho} (2\pi)^{n} ||D(K_{1} - K_{2})||_{\rho} ||y - x|| + \\ &+ ||D^{2}K_{1}||_{\rho} (2\pi)^{n} ||x|||y - x|| + ||T||_{\rho} ||D^{2}K_{1}||_{\rho} ||y - x||^{2} \leq \\ &\leq (2\pi)^{n} ||T||_{\rho} (||D(K_{1} - K_{2})||_{\rho} ||y - x|| + ||D^{2}K_{1}||_{\rho} ||x|| + ||D^{2}K_{1}||_{\rho} ||y - x|| + ||D^{2}K_{1}||_{\rho} ||x - K_{2}||_{\rho} ||x - K_{2}||x - K_$$

이다. 이제

$$\widetilde{c} := 2n(2\pi)^n \|DK_2\|_{\rho} \|N_2\|_{\rho} (2n\rho^{-1} + 3\|D^2K_1\|_{\rho})$$

라고 정의하자. 이때 $\widetilde{c} \parallel K_1 - K_2 \parallel_{
ho} < 1$ 이면 넘기기 $\Psi:\Theta \to \Theta$ 는 축소넘기기이다. O로 n차 령행렬을 표시할 때

$$\mid \tau_{1} \mid < \parallel K_{1} - K_{2} \parallel_{\rho} \nearrow \ \ < T(\theta) [K_{1} \circ R_{\tau_{1}} - K_{2}](\theta) > = O$$

를 만족시킨다고 가정하면 $K_1 \circ R_{ au_1}$ 은 식 (5)의 풀이이며

$$\Delta(\theta) = M(\theta)^{-1} (K_1 \circ R_{\tau_1} - K_2)(\theta), \ \delta_1 = \rho/8$$

로 놓을 때 $\|\Delta\|_{\rho-2\delta} \le c\gamma^{-2}\delta_1^{-2\sigma} \|K_1 - K_2\|_{\rho}^2$ 가 성립한다. 그러므로

$$\hat{c} := \parallel DK_2 \parallel_{\rho} (1 + |J^{-1}|_{C^2 \mathcal{B}_r} \parallel N_2 \parallel_{\rho}) c \tag{11}$$

로 놓으면

$$||K_1 \circ R_{\tau_1} - K_2||_{\rho - 2\delta} \le ||M||_{\rho} ||\Delta||_{\rho - 2\delta} \le \hat{c} \gamma^{-2} \delta_1^{-2\sigma} ||K_1 - K_2||_{\rho}^2$$

을 얻는다. 이때 $K_1\circ R_{\tau_1}$ 도 역시 식 (9)의 풀이이기때문에 풀이 $K_1\circ R_{\tau_1}$ 과 K_2 에 우와 같은 절차를 다시 반복할수 있다. 그리므로 렬 $\{\tau_m\}_{m\geq 1}$ 이 있어서

$$|\tau_m - \tau_{m-1}| \le ||K_1 \circ R_{\tau_{m-1}} - K_2||_{\rho_{m-1}}$$

및

$$\begin{split} & \parallel K_{1} \circ R_{\tau_{m}} - K_{2} \parallel_{\rho_{m}} \leq c \gamma^{-2} \delta_{m}^{-2\sigma} \parallel K_{1} \circ R_{\tau_{m-1}} - K_{2} \parallel_{\rho_{m-1}}^{2} \leq \cdots \leq \\ & \leq (\hat{c} \gamma^{-2})^{2^{m}} [\delta_{m}^{-2\sigma} \delta_{m-1}^{-2^{2}\sigma} \delta_{m-2}^{-2^{3}\sigma} \cdots \delta_{1}^{-2^{m+1}\sigma}] \parallel K_{1} - K_{2} \parallel_{\rho}^{2^{m+1}} \leq (\hat{c} \gamma^{-2} \delta_{1}^{-2\sigma} 2^{2\sigma} \parallel K_{1} - K_{2} \parallel_{\rho})^{2^{m+1}\sigma} \end{split}$$

이 성립한다. 여기서 $\delta_{m+1}=\delta_m/2$ 이며 $m\geq 1$ 에 대하여 $\rho_m=\rho-\sum_{j=1}^m\delta_j$ 이다.

또한 $c^* \le \max\{\hat{c}, \tilde{c}\}$ 이므로 만일

$$\gamma^{-2}\delta_1^{-2\sigma}c^* \| K_1 - K_2 \|_{\rho} < 1$$

을 만족시키면 렬 $\{\tau_m\}$ 은 수렴하며 그 극한 τ_∞ 는 $\|K_1 \circ R_{\tau_n} - K_2\|_{\rho/2} = 0$ 을 만족시킨다.(증명끝)

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 63, 7, 8, 주체106(2017).
- [2] C. Carminati et al.; arXiv:1104.2979v2 [math DS], 2011.
- [3] A. Celletti et al.; Nonlinearity, 13, 2, 97, 2000.
- [4] A. Celletti et al.; Z. Angew. Math. Phys., 57, 33, 2006.
- [5] A. González et al.; J. Diff. Eq., 245, 1243, 2008.
- [6] R. H. G. Helleman et al.; Nonlinear Dynamics Aspects of Modern Storage Rings, Springer, 64 ~76, 1986.
- [7] R de la Llave et al.; Nonlinearity, 18, 855, 2005.
- [8] J. E. Marsden et al.; The Breadth of Symplectic and Poisson Geometry, Birkhäuser, 363~422, 2004.
- [9] T. Nakajima et al.; J. Plasma Fusion Res., 88, 3, 153, 2012.

주체108(2019)년 3월 15일 접수

Explicit Estimation for Realization Condition Coefficients in Local Uniqueness Theorem of Invariant Torus for Discrete Hamiltonian Systems with Parameters

Jong U Hwan

We obtained an explicit estimation for the realization condition coefficients in local uniqueness theorem of invariant torus for discrete Hamiltonian systems with parameters.

Key words: parameter, Hamiltonian system, invariant torus, local uniqueness