西安交通大学 软件学院

操作系统原理

Operating System Principle

田丽华

2-1 计算机硬件

Computer-System Architecture

计算机系统体系结构

计算机系统操作

- ➤ I/O devices and the CPU can execute concurrently. I/O 设备与CPU可并行运行
- ➤ Each device controller is in charge of a particular device type. 每一设备控制器负责一个设备类型
- ➤ Each device controller has a local buffer. 每一设备控制器有一局部缓存
- ➤ CPU moves data from/to main memory to/from local buffers CPU 通过局部缓存与主存交换数据
- ➤ I/O is from the device to local buffer of controller. I/O从设备到设备控制器的局部缓存
- ➤ Device controller informs CPU that it has finished its operation by causing an interrupt. 设备控制器通过引起中断通知CPU操作已完成

计算机系统操作

中断机制

中断定义

hardware interrupt 硬件中断

device controller informs CPU that it has finished its operation by causing an *interrupt* disk, timer, etc.

software interrupt (<mark>trap</mark>) 软件中断(陷阱) ✓ a trap (or an exception 异常)
division by zero, invalid memory access

a system call 系统调用(also called a monitor call) read(), write()

计算机系统操作

Why the interrupt?

make the system more efficient and meanwhile more responsive

计算机系统操作

a modern operating system is *interrupt driven* 现代操作系统是中断驱动的

interrupt transfers control to the interrupt service routine (*interrupt handler*) generally

中断将控制权转移到中断服务程序

- separate segments of code determine what action should be taken for each type of interrupt
 - a generic routine to examine the interrupt information, and in turn call the specific handler
 - through the *interrupt vector*, which contains the addresses of all the service routines

计算机系统操作

计算机系统操作

I/O Structure

peripheral device(s) attached to device controller 设备与设备控制器相连

device driver, usually a software program embedded into an OS 设备驱动程序

3

a device controller (hardware)

- local buffer storage 本地缓冲器
- a set of registers
 - 一组寄存器

Computer-System Operation 计算机系统操作

I/O Interrupts

Synchronous 同步 two ways of an I/O operation
两种I/O操作

Asynchronous 异步

- synchronous I/O mode: after I/O starts, control returns to user program only upon I/O completion
 - *asynchronous I/O mode*: after I/O starts, control returns to user program without waiting for I/O completion

the user program will be notified about the I/O completion on a later time

• Windows *message*, or *call back function*

计算机系统操作

asynchrounous

