

ENABLING COMPUTATIONAL DYNAMICS IN DISTRIBUTED COMPUTING ENVIRONMENTS USING A HETEROGENEOUS COMPUTING TEMPLATE

Dan Negrut, David Gorsich, David Lamb, Toby Heyn, Andrew Seidl, Dan Melanz

maintaining the data needed, a including suggestions for redu	and completing and reviewing the scing this burden, to Washington s should be aware that notwithsta	e collection of information. Sen Headquarters Services, Directo	d comments regarding this rate for Information Operat	burden estimate or ar tions and Reports, 12	ions, searching existing data sources, gathering and ny other aspect of this collection of information, 15 Jefferson Davis Highway, Suite 1204, Arlington ing to comply with a collection of information if it				
1. REPORT DATE 01 AUG 2011				3. DATES COVERED					
4. TITLE AND SUBTITLE Enabling Computational Dynamics in Distributed Computing					5a. CONTRACT NUMBER W91INF-07-D-0001				
environments Using a Heterogeneous Computing Template					5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S) Dan Negrut; David Gorsich; David Lamb; Toby Heyn; Andrew Seidl; Dan Melanz				5d. PROJECT NUMBER					
				5e. TASK NUMBER					
Sciui, Dan Meianz					5f. WORK UNIT NUMBER				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA					8. PERFORMING ORGANIZATION REPORT NUMBER 22147RC				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI					10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC/RDECOM				
48397-5000, USA					11. SPONSOR/MONITOR'S REPORT NUMBER(S) 22147RC				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited									
13. SUPPLEMENTARY NOTES The original document contains color images.									
14. ABSTRACT									
15. SUBJECT TERMS									
16. SECURITY CLASSIFICATION OF: 17. LIM				18.	19a. NAME OF RESPONSIBLE PERSON				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	NUMBER OF PAGES 46					

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgements

People:

- Alessandro Tasora University of Parma, Italy
- Mihai Anitescu Argonne National Lab
- Lab Students:
 - Hammad Mazhar
 - Toby Heyn
 - Andrew Seidl
 - Arman Pazouki
 - Hamid Ansari

- Justin Madsen
- Naresh Khude
- Makarand Datar
- Dan Melanz
- Markus Schmid

Financial support

- National Science Foundation, Young Investigator Career Award
- US Army TARDEC
- FunctionBay, S. Korea
- NVIDIA
- Microsoft
- Caterpillar
- Jet Propulsion Laboratory

GOAL OF OUR WORK...

 Use High Performance Computing (HPC) to simulate the dynamics of real-life engineering mechanical systems at unprecedented levels of accuracy

- HPC hardware targeted:
 - Cluster of CPUs and GPUs (accelerators)
 - More than 100 CPU cores, tens of GPU cards, tens of thousands of GPU cores

Talk Overview

- Overview of the engineering problems of interest
- Large-scale Multibody Dynamics
 - Problem formulation, solution method, and parallel implementation
- Overview of Heterogeneous Computing Template (HCT)
- Numerical Experiments
- Conclusions

Computational Multibody Dynamics

MODELING AND SIMULATION, TESTING AND VALIDATION

Multi-Physics...

MSTV

Fluid-Solid Interaction: Navier-Stokes + Newton-Euler.

Computational Dynamics

- Wheeled/tracked vehicle mobility on granular terrain
- Also interested in scooping and loading granular material

Frictional Contact Simulation [Commercial Solution]

Model Parameters:

- Spheres: 60 mm diameter and mass 0.882 kg
- Forces: smoothing with stiffness of 1E5, force exponent of 2.2, damping coefficient of 10.0, and a penetration depth of 0.1
- Simulation length: 3 seconds

Frictional Contact: Two Different Approaches

- Discrete Element Method (DEM) draws on a "smoothing" (penalty) approach
 - Lots of heuristics
 - Slow
 - General purpose
 - Used in ADAMS
- DVI-based (Differential Variational Inequalities)
 - A set of differential equations combined with inequality constraints
 - Fast (stable for significantly larger integration step-sizes)
 - Less general purpose
 - Used widely in computer games

The Modeling Component

Equations of Motion Multibody Dynamics

term

Traditional Discretization Scheme

MODELING AND SIMULATION, TESTING AND VALIDATIO

$$\mathbf{q}^{(l+1)} = \mathbf{q}^{(l)} + h\mathbf{L}(\mathbf{q}^{(l)})\mathbf{v}^{(l+1)}$$

$$\mathbf{Mass Mat.}$$

$$\mathbf{positions}$$

$$\mathbf{Mass Mat.}$$

$$\mathbf{positions}$$

$$\mathbf{po$$

$$i \in \mathcal{A}(q^{(l)}, \delta): \quad 0 \quad \leq \underbrace{\frac{1}{h}\Phi_i(\mathbf{q}^{(l)})}_{h} + \mathbf{D}_{i,n}^T \mathbf{v}^{(l+1)} \underbrace{\perp}_{\gamma_n^i} \geq 0,$$

$$(\gamma_{i,u}, \gamma_{i,w}) \quad = \quad \underset{\mu_i \gamma_{i,n} \geq \sqrt{\gamma_{i,u}^2 + \gamma_{i,w}^2}}{\operatorname{argmin}} \quad \mathbf{v}^T \left(\gamma_{i,u} \, \mathbf{D}_{i,u} + \gamma_{i,w} \, \mathbf{D}_{i,w}\right).$$
 Stabilization
$$(\gamma_{i,u}, \gamma_{i,w}) \quad = \quad \underset{\mu_i \gamma_{i,n} \geq \sqrt{\gamma_{i,u}^2 + \gamma_{i,w}^2}}{\operatorname{Coulomb 3D fricion}} \quad \underset{\text{model}}{\text{Coulomb 3D fricion}}_{\text{model}}$$

(Stewart & Trinkle, 1996)

Relaxed Discretization Scheme

$$\mathbf{q}^{(l+1)} = \mathbf{q}^{(l)} + h\mathbf{L}(\mathbf{q}^{(l)})\mathbf{v}^{(l+1)}$$

$$\mathbf{M}(\mathbf{v}^{(l+1)} - \mathbf{v}^{l}) = h\mathbf{f}(t^{(l)}, \mathbf{q}^{(l)}, \mathbf{v}^{(l)}) + \sum_{i \in \mathcal{A}(q^{(l)}, \delta)} (\gamma_{i,n} \, \mathbf{D}_{i,n} + \gamma_{i,u} \, \mathbf{D}_{i,u} + \gamma_{i,w} \, \mathbf{D}_{i,w})$$

$$i \in \mathcal{A}(q^{(l)}, \delta): \quad 0 \quad \leq \frac{1}{h} \Phi_i(\mathbf{q}^{(l)}) + \mathbf{D}_{i,n}^T \mathbf{v}^{(l+1)} - \underbrace{\mu^i \sqrt{(\mathbf{v}^T \mathbf{D}_{i,u})^2 + \mathbf{v}^T \mathbf{D}_{i,w})^2}}_{\text{Relaxation Term}} \bot \gamma_n^i \geq 0,$$

 $(\gamma_{i,u}, \gamma_{i,w}) = \underset{\mu_i \gamma_{i,n} \geq \sqrt{\gamma_{i,u}^2 + \gamma_{i,w}^2}}{\operatorname{argmin}} \mathbf{v}^T (\gamma_{i,u} \mathbf{D}_{i,u} + \gamma_{i,w} \mathbf{D}_{i,w}).$

(Anitescu & Tasora, 2008)

The Cone Complementarity Problem 15 [CCP]

- Overall approach assume the form of a Cone Complementarity Problem (CCP)
- Introduce the convex hypercone...

$$\Upsilon = \left(igoplus_{i \in \mathcal{A}(\mathbf{q}^l, \epsilon)} \mathcal{F} \mathcal{C}^i
ight)$$

... and its polar hypercone:

$$\Upsilon^{\circ} = \left(igoplus_{i \in \mathcal{A}(\mathbf{q}^l, \epsilon)} \mathcal{F} \mathcal{C}^{i \circ}
ight)$$

 $\mathcal{FC}^i \in \mathbb{R}^3$ represents friction cone associated with i^{th} contact

CCP assumes following form: Find such that

$$\gamma \in \Upsilon \perp -(\mathbf{N}\gamma + \mathbf{d}) \in \Upsilon^{\circ}$$

Large Scale Granular Dynamics

CPU vs. GPU – Flop Rate [GFlop/Sec]

Single Precision

CPU vs. GPU- Memory Bandwidth [GB/sec]

MODELING AND SIMULATION, TESTING AND VALIDATION

Mixing 40,000 Spheres on the GPU MSTV

300K Spheres in Tank [parallel on the GPU]

1.1 Million Rigid Spheres [parallel on the GPU]

Computational dynamics Tracked vehicle mobility

Simulation Setup:

• Driving speed: 1.0 rad/sec

• Length: 12 seconds

• Time step: 0.005 sec

• Computation time: 18.5 hours

• Particle radius: .027273 m

• Terrain: 284,715 particles

Track Simulation

Parameters:

• Driving speed: 1.0 rad/sec

• Length: 10 seconds

• Time step: 0.005 sec

• Computation time: 17.8 hours

• Particle radius: .025±.0025 m

• Terrain: 467,100 particles

Track Footprint

A Heterogeneous Computing Template for Computational Dynamics

Heterogeneous Cluster

Gigabit Ethernet Switch

Second fastest cluster at University of Wisconsin-Madison

Computation Using Multiple CPUs MSTV [DEM solution]

Computation Using Multiple CPUs MCTV [DEM solution]

Computation Using Multiple CPUs [DEM solution]

Computation Using Multiple CPUs [DEM solution]

Simulation of MRAP impacted by debris

Heterogeneous Computing Template MSTV Five Major Components MODELING MODEL

- Computational Dynamics requires
 - Domain decomposition
- Proximity computation
 - Inter-domain data exchange
- Numerical algorithm support
 - Post-processing (visualization)

 HCT represents the library support and associated API that capture this five component abstraction

Searching for Better Methods

- Frictionless case (bound constraints in place)
 - Gauss-Jacobi (CE)
 - Projected conjugate gradient (ProjCG)
 - Gradient projected conjugate gradient (GPCG)
 - Gradient projected MINRES (GPMINRES)
- Friction case (cone constraints ongoing)
 - Newton's Method for large bound-constrained problems
 - Uses re-parameterization to handle friction cones (replace with bound constraints)

Numerical Experiments

- Test Problem: 40,000 bodies → 157,520 contacts
- Frictionless

Test Problem (MATLAB)

Method	Iterations	Final Residual Norm	$\gamma_{\rm min}$	γ_{max}	Time [sec]
CE	1000	6.11 x 10 ⁻²	0.0	2.0598	1849.5
ProjCG	1002	5.6344 x 10 ⁻⁴	0.0	2.2286	1235.6
GPCG	1600	1.0675 x 10 ⁻⁴	0.0	2.6349	382.3644
GPMinres	1100	9.5239 x 10 ⁻⁵	0.0	2.3090	238.0744
PCG	1000	2.4053 x 10 ⁻⁴	-1.1116	2.5254	27.9686
GMRES	1000	4.5315 x 10 ⁻⁵	-1.1635	2.5227	736.3007
MINRES	1000	1.6979 x 10 ⁻⁵	-1.1316	2.5253	41.5790

Proximity Computation

GPU Collision Detection (CD)

- 30,000 feet perspective:
 - Carry out spatial partitioning of the volume occupied by the bodies
 - Place bodies in bins (cubes, for instance)
 - Follow up by brute force search for all bodies touching each bin
 - Embarrassingly parallel

Example: Ellipsoid-Ellipsoid CD

MODELING AND SIMULATION, TESTING AND VALIDATIO

$$\frac{\partial \mathbf{d}}{\partial_{i}} = \frac{\partial \mathbf{P}_{1}}{\partial_{i}} - \frac{\partial \mathbf{P}_{2}}{\partial_{i}} \quad , \quad \frac{\partial^{2} \mathbf{d}}{\partial_{i} \partial_{j}} = \frac{\partial^{2} \mathbf{P}_{1}}{\partial_{i} \partial_{j}} - \frac{\partial^{2} \mathbf{P}_{2}}{\partial_{i} \partial_{j}}$$

$$\frac{\partial \mathbf{P}}{\partial_{i}} = \left(\frac{1}{2}\mathbf{M} - \frac{1}{8^{-3}}\mathbf{M}\mathbf{c}\mathbf{c}^{T}\mathbf{M}\right)\frac{\partial \mathbf{c}}{\partial_{i}}$$

$$\frac{\partial^{2} \mathbf{P}}{\partial_{i} \partial_{j}} = \left(-\frac{1}{8} \mathbf{M} + \frac{3}{32} \mathbf{M} \mathbf{c} \mathbf{c}^{T} \mathbf{M}\right) \mathbf{c}^{T} \mathbf{M} \frac{\partial \mathbf{c}}{\partial_{j}} \frac{\partial \mathbf{c}}{\partial_{i}}$$
$$-\frac{1}{8} \left[(\mathbf{c}^{T} \mathbf{M} \frac{\partial \mathbf{c}}{\partial_{i}}) \mathbf{M} + \mathbf{M} \mathbf{c} (\frac{\partial \mathbf{c}}{\partial_{i}})^{T} \mathbf{M} \right] \frac{\partial \mathbf{c}}{\partial_{j}}$$
$$+ \left(\frac{1}{2} \mathbf{M} - \frac{1}{8} \mathbf{M} \mathbf{c} \mathbf{c}^{T} \mathbf{M}\right) \frac{\partial^{2} \mathbf{c}}{\partial_{i} \partial_{j}}$$

$$\varepsilon$$
: $\frac{x^2}{r_1^2} + \frac{y^2}{r_2^2} + \frac{z^2}{r_3^2} = 1$

A: Rotation Matrix

$$\mathbf{M} = \mathbf{A}\mathbf{R}^2\mathbf{A}^T$$

$$\mathbf{R} = diag(r_1, r_2, r_3)$$

b: Translation of ellipsoids center

$$^{2} = \frac{1}{4} \mathbf{n}^{T} \mathbf{M} \mathbf{n}$$

$$\mathbf{d} = \mathbf{P}_1 - \mathbf{P}_2$$

$$\min_{\alpha_1,\alpha_2} \left\| d(\alpha_1,\alpha_2) \right\|^2$$

Ellipsoid-Ellipsoid CD: Results

Speedup GPU vs. CPU (sequential Bullet) [results reported are for spheres]

Parallel Implementation: Number of Contacts vs. Detection Time [results reported are for spheres] MODELING RIO SIMULATION, TESTING RIO VALIDATION

Multiple-GPU Collision Detection

Assembled Quad GPU Machine

Processor: AMD Phenom II X4 940 Black

Memory: 16GB DDR2

Graphics: 4x NVIDIA Tesla C1060

Power supply 1: 1000W

Power supply 2: 750W

SW/HW Setup

Results – Contacts vs. Time

Conclusions

- HPC will soon enable simulation of billion-body problems
 - Tremendous advances in compute power over the last five years

- Our work: Heterogeneous Computing Template (HCT)
 - HCT draws on symbiosis of CPU + GPU computing

- Accomplishments to date
 - Billion body parallel collision detection
 - Large scale parallel solution of cone complementarity problem
 - Early validation results encouraging

Ongoing/Future Work

- Validation efforts: at CAT, US Army, and JPL
- Massively parallel linear algebra for solution of CCP problem
 - Preconditioned gradient projected Krylov method
- Parallel collision detection for complex geometries
- Multiphysics:
 - Fluid-solid interaction
 - Cohesion
 - Electrostatics

Thank You.

