

KRAR

XR806 Datasheet

Wi-Fi + BLE5.0 Combo MCU

for Internet of Things Applications

Revision History

Revision	Date	Author	Description
1.0	October 12, 2020	AWA1091	Initial version
1.1	October 27, 2020	AWA1091	 Modify chapter 4.5, add chapter 4.5.2; Modify Figure 3-1 Figure 3-6 and Table 5-1; Modify some details description;

Contents

Revision History	i
Contents	ii
Figures	iv
Tables	ν
1 About This Document	6
1.1 Purpose and Scope	6
1.2 Intended Audience	6
1.3 Conventions and Terminology	6
1.3.1 Symbol Conventions	6
1.3.2 Table Content Conventions	6
1.3.3 Reset Value Conventions	6
1.3.4 Register Attributes	
1.3.5 Numerical System	7
2 Overview	
2.1 General Description	8
2.2 Features	
2.2.1 General System Features	
2.2.2 Wi-Fi Subsystem Features	
2.2.3 Bluetooth5.0 Subsystem Features	
2.2.4 Power Management	11
2.3 Applications	11
2.4 Block Diagram	
3 Function Description	
3.1 System Overview	
3.1.1 Power Management	13
3.1.2 Power State and Power Sequence	
3.1.3 Clock	17
3.1.4 Memory Mapping	18
3.1.5 CPU	18
3.1.6 NDMA	19
3.1.7 SDMA	
3.1.8 Crypto Engine	
3.1.9 Timer	
3.1.10 RTC	
3.2 Peripherals	21
3.2.1 GPIO	21
3.2.2 UART	23
3.2.3 SPI	24
3.2.4 TWI	24
3.2.5 PWM	
3.2.6 Audio PWM	25
3.2.7 CIR	26

3.2.8 GPADC	26
3.2.9 I2S	27
3.2.10 Smart Card	27
3.3 Wi-Fi Subsystem	28
3.3.1 Wi-Fi MAC	28
3.3.2 Wi-Fi Baseband	28
3.3.3 Wi-Fi Radio	29
3.3.4 Front End Module Control	29
3.4 Bluetooth Subsystem	30
4 Electrical Characteristics	31
4.1 Absolute Maximum Rating	31
4.2 Recommended Operating Conditions	31
4.3 Digital IO Characteristics	32
4.4 Bootstrap Modes and Pins	33
4.5 Frequency Reference Clock	33
4.5.1 High Frequency Reference Clock	33
4.5.1.1 Clock Source Detection	
4.5.1.2 External Clock Source	34
4.5.1.3 External XTAL and Built-in Oscillator	
4.5.2 Low Frequency Reference Clock	35
4.5.2.1 External XTAL and Built-in Oscillator	
4.5.2.2 Internal RCOSC Reference Clock Source	35
4.6 Wi-Fi 2.4G RF Receiver Specifications	36
4.7 Wi-Fi 2.4G RF Transmitter Specifications	37
4.8 Bluetooth RF Receiver Specifications	38
4.9 Bluetooth RF Transmitter Specifications	39
4.10 Power Consumptions with Wi-Fi	40
4.11 Power Consumptions with Bluetooth only	42
5 Package Specifications	
5.1 Pin Layout	44
5.2 Pin Descriptions	46
5.3 Package Information	48
5.4 Package Thermal Characteristics	48
6 Carrier Information	50
7 Reflow Profile	51

Figures

XR806 Functional Block Diagram	12
XR806 Power Architecture	14
Power-on Sequence	15
Wakeup from Standby	15
Wakeup from Hibernation	16
Shutdown Sequence	16
Clock Control.	17
XR806 Memory Mapping	18
SPI Phase 0 Transfer Format	24
SPI Phase 1 Transfer Format	24
FEM Control Application Diagram	30
XR806BF2L Pin Layout	44
XR806BM2I Pin Layout	45
QFN40 Package Outline Drawing	48
QFN32 Package Outline Drawing	48
Tape Dimension Drawing	50
Typical Reflow Profile	51
	XR806 Functional Block Diagram. XR806 Power Architecture. Power-on Sequence Wakeup from Standby Wakeup from Hibernation Shutdown Sequence Clock Control XR806 Memory Mapping SPI Phase 0 Transfer Format SPI Phase 1 Transfer Format FEM Control Application Diagram XR806BF2L Pin Layout XR806BM2I Pin Layout XR806AF2L Pin Layout QFN40 Package Outline Drawing QFN32 Package Outline Drawing Tape Dimension Drawing. Typical Reflow Profile.

Tables

Table 2-1	XR806 Features	9
Table 3-1	Power Management States	14
Table 3- 2	XR806B GPIO Multiplexing	22
Table 3-3	XR806AF2L GPIO Multiplexing	23
Table 4- 1	Absolute Maximum Rating	31
Table 4- 2	Recommended Operating Conditions	31
Table 4-3	DC Characteristics of VDD_IO=3.3V	32
Table 4-4	DC Characteristics of VDD_IO=1.8V	32
Table 4-5	DC Characteristics of VDD_IO_5V=5V	32
Table 4-6	Bootstrap pins	33
Table 4-7	External Reference Clock Specifications	33
Table 4-8	External Clock Requirements	34
Table 4-9	External High Frequency Crystal Characteristics Requirements	
Table 4- 10	External Low Frequency Crystal Characteristics Requirements	35
Table 4- 11	RF Receiver Specifications	
Table 4- 12	RF Transmitter Specifications.	37
Table 4- 13	RF Receiver Specifications	
Table 4- 14	RF Transmitter Specifications.	39
Table 4- 15	Power Consumption 1	40
Table 4- 16	Power Consumption 2	41
Table 4- 17	Power Consumption with Bluetooth	42
Table 5- 1	Pin Description	46
Table 5- 2	QFN40 Package Thermal Characteristics	48
Table 5-3	QFN32 Package Thermal Characteristics	49
Table 6-1	Reel Carrier Information	50
Table 6- 2	Reel Carrier Information	50
Table 6-3	Packing Quantity Information	50
Table 7-1	Reflow Profile Conditions	51

1 About This Document

1.1 Purpose and Scope

This document is XR806's technical specification. It provides the system features, power management, module functions, package specification and other information about XR806.

1.2 Intended Audience

The intended audience about this document are technical engineers, application engineers and FAE, etc.

ECA

1.3 Conventions and Terminology

1.3.1 Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description		
MARNING	Indicates potential risk of injury or death exists if the instructions are not obeyed.		
A CAUTION	Indicates potential risk of equipment damage, data loss, performance degradation, or unexpected results exists if the instructions are not obeyed.		
NOTE NOTE	Provides additional information to emphasize or supplement important points of the main text.		
©— [™] TIP	Indicates a tip that may help you solve a problem or save time.		

1.3.2 Table Content Conventions

The table content conventions that may be found in this document are defined as follows.

Symbol	Description
-	The cell is blank.

1.3.3 Reset Value Conventions

In the register definition tables:

If other column value in a bit or multiple bits row is "/", that this bit or these multiple bits are unused.

If the default value of a bit or multiple bits is "UDF", that the default value is undefined.

1.3.4 Register Attributes

The register attributes that may be found in this document are defined as follows.

Symbol	Description
R	Read Only
R/W	Read/Write
R/WAC	Read/Write-Automatic-Clear, clear the bit automatically when the operation of complete. Writing 0 has no effect
R/WC	Read/Write-Clear
R/W0C	Read/Write 0 to Clear. Writing 1 has no effect
R/W1C	Read/Write 1 to Clear. Writing 0 has no effect
R/W1S	Read/Write 1 to Set. Writing 0 has no effect
W	Write Only

1.3.5 Numerical System

The expressions of data capacity, frequency, and data rate are described as follows.

Туре	Symbol	Value
	1 K	1024
Data capacity	1 M	1,048,576
11/2	1 G	1,073,741,824
20 .	1 k	1000
Frequency, data rate	1 M	1,000,000
	1 G	1,000,000,000

The expressions of addresses and data are described as follows.

Symbol	Example	Description		
0x	0x0200, 0x79	Address or data in hexadecimal		
0b	0b010, 0b00 000 111	Data or sequence in binary (register description is excluded.)		
		In data expression, X indicates 0 or 1.		
Х	00X, XX1	For example, 00X indicates 000 or 001 and XX1 indicates 001,		
		011, 101 or 111.		

2 Overview

2.1 General Description

XR806 is a highly integrated low-power Wi-Fi and Bluetooth Low Energy(BLE) Micro-controller System-on-Chip (SoC) solution designed for Internet of Things (IoT), Machine-to-Machine (M2M), Smart Home, Cloud Connectivity and Smart Energy applications.

The XR806 application subsystem is powered by an ARMv8-M architecture MCU with Trustzone-M (named AR800A) that operates up to 160MHz. It supports an integrated 320KB SRAM and 160KB ROM, a SQPI interface to SIP up to 16MB Flash. Integrated CACHE enables Execute In Place (XIP) from flash and PSRAM. It also includes many peripherals, including UART, TWI, SPI, PWM, IrDA (T/R), and GPADC.

The Wi-Fi subsystem contains the 802.11b/g/n baseband, MAC and radio with integrated PA, LNA, Switch and harmonic filter, which is design to meet both the low power, high integration and high performance network application. A novel digital RF transmitter is design using XRADIOTECH's MPDTM technology to deliver higher output power and maintain higher efficiency, and also to keep the chip not sensitive to antenna mismatch but always have good EVM at different VSWR.

The Bluetooth subsystem contains full feature bluetooth 5.0 standard, including RF, modem, baseband and profiles. Which is optimized for long range and low power application, especially smart home mesh connections. High performance and larger SRAM allow for simple mesh gateway design with integrated Wi-Fi system to connected to internet directly.

The SoC is designed for networked low-power embedded applications. It has an integrated network processor with a large set of TCP/IP with IPv4/IPv6 based services. These services can be accessed via a serial UART/SPI link connected to an external host CPU.

2.2 Features

2.2.1 General System Features

Table 2-1 XR806 Features

Chip List	ip List Description		XR806BF2L	XR806BM2I
Doolsogo	Trave and tank in week	4x4mm^2	5x5mm^2	5x5mm^2
Package	Trays and tape-in-reel	QFN32	QFN40	QFN40
Consultana	Power supply from system		1.8~5.5V	•
Supply voltage	5V IO		Yes	
PMU	LDO for external device (EXT LDO)		Yes	
	External HOSC	2	24/26/32/40MH	Z
Clock	External LOSC	46	32.768KHz	
Clock	Internal RCOSC	77	30~60KHz	
	Internal RCOSC Calibration		YES	
MCII Como	Core Type	Cortex M33	Star (Armv8-M	Architecture)
MCU Core	Core clock maximum frequency	160MHz	160MHz	up to 240MHz
	Internal ROM	160КВ		
	Internal RAM	up to 320KB		
Memory	Internal Flash with XIP	2MB	2MB	-
10	External Flash with XIP	Max. 16MB		
S 12	Internal PSRAM	-	-	2MB
Backup register	Backup register for power save	16B		
Secure boot	-	Yes		
Trustzone-M	Default size: 28KB	Yes		
Crypto Engine	AES, DES, 3DES, SHA-1, MD5, TRNG, CRC32/16, SHA256	Yes		
TRNG	Provide random number seed	Yes		
WDG reset	Protect specified peripherals been reset	Yes		
protection	by watchdog reset	163		
BOR	BOR Detection	Yes		
Wi-Fi	802.11 b/g/n	Yes		
Bluetooth	BLE 5.0	Yes		
Didetootii	BLE Configure	Yes		

Chip List	Description		XR806AF2L	XR806BF2L	XR806BM2I
	BLE Mesh		Yes	Yes	Yes
	1.8/3.3/5V GPIO	General Purpose	4	4	4
	1.8/3.3 GPIO	General Purpose	14	22	22
	WAKEUP IO	From RTC wake-up	8	10	10
	UART	Max.3Mbps	3	3	3
	SPI	Master and slave	1	1	1
	I2C	Max.400Kbps	2	2	2
	IR	TX and RX	1	1	1
	DAudio	IIS/PCM	1	1	1
	Audio PWM	Playback Channel	1	1	1
Dowinhowal	PWM	Output Channel	8	8	8
Peripheral	KEYSCAN	8*16	-	YES	YES
	Smart Card	ISO7816	13	1	1
	GPADC	VBAT channel	1	1	1
		Normal channel	3	7	7
	NDMA	8 Channel	YES	YES	YES
	SDMA	2 Channel	YES	YES	YES
	Timer	RTC timer	1	1	1
4		Watchdog timer	1	1	1
		Normal timer	2	2	2
10 18		Wakeup timer	1	1	1

2.2.2 Wi-Fi Subsystem Features

- IEEE 802.11b/g/n, 1x1 SISO 2.4GHz
- Integrated MAC, BB, RF and Embedded TCP/IP Stack
- Integrated T/R switch, harmonic filter, PA and LNA
- Antenna diversity
- Station, AP Modes
- Smart-Configure Technology for Autonomous and Fast Wi-Fi Connections
- Security Supports for WEP, WPA/WPA2/WPA3 personal, WPS2.0
- Industry-Standard BSD Socket Application Programming Interfaces (APIs)

2.2.3 Bluetooth 5.0 Subsystem Features

- Bluetooth5.0 Radio, Protocol stack and application profiles
- Backwards-compatible to v4.0/4.1/4.2 devices
- Supports Central and Peripherals Roles
- Supports secure connections
- Supports data packet length extension
- Supports LE 2M PHY with Bluetooth 5 Compatibility

2.2.4 Power Management

- Integrate highly flexibility power management unit by several LDOs and internal DC-DC controller
- Wide range power supply: 1.8~5.5V
- Industry leading Low-Power Wi-Fi mode (at DC-DC mode)
- Integrates 1Kbit eFuse to store device specific information and RF calibration data

2.3 Applications

- Security Systems
- Smart Energy
- Internet Gateway
- Smart Home

- Access Control
- Cloud Connectivity
- Industrial Control
- IP Network Sensor Nodes

2.4 Block Diagram

Figure 2-1 XR806 Functional Block Diagram

3 Function Description

3.1 System Overview

3.1.1 Power Management

A single 1.8~5.5V power supply is required for the XR806. It could be from an AC-DC converter, USB to supply to 5V or a DC-DC converter to convert higher voltage supply to 3.3V or even lower. It could be from a battery directly too, no matter it is lithium, single 3V button or 2 serial NI-MH battery.

The Power Management Unit (PMU) contains a DC-DC, several Low Drop-out Regulators (LDOs), and a reference band-gap circuit. The circuits are optimized for low quiescent current, low drop-out voltage, load regulation, high ripple rejection, and low output noise. The PMU integrates several LDOs for different circuits: EXT LDO, DIG LDO, RTC LDO, DC-DC, TOP LDO, as shown in Figure 3-1. They have different operating conditions and features:

- EXT LDO is a main power supply for external device in application, and also can be provide to VDDIO, GPADC. It has maximum 150mA load current. The output voltage is limited to 3.3/3.1/2.8/2.5V (by register configure setting), when VBAT is lower than the value, it will automatically switch to bypass mode to let output voltage follow VBAT.
- **DIG LDO** is the main supply for whole chip digital circuit with programmable voltage from 0.6V to 1.35V to let DVFS operate effectively.
- RTC LDO is the main supply only for RTC domain to optimize power consumption at HIBERNATION state.
- DC-DC provide programmable voltage from 1.0V to 2.5V with maximum 300mA load current, for DIG LDO、EFUSE program、VDD_ANA(RFIP).
- TOP LDO provide programmable voltage from 0.9V to 2.4V with maximum 10mA load current, for STANDBY and HIBERNATION state, also DIG LDO input at STANDBY state. Normally, make sure VBAT voltage is higher than this programmable output voltage setting.

There are four power domains in the system: RTC domain, OA domain, Digital Core domain and Wi-Fi domain. They mainly used for different scenario to maintain ultra-low power application. We define XR806 into **ACTIVE, STANDBY, HIBERNATION** and **SHUTDOWN** power management states, as shown in Table 3-1.

Table 3-1 Power Management States

POWER MODE	APP CPU	Wi-Fi	EXT LDO	RTC LDO	TOP LDO	DIG LDO	DCXO /DPLL	Description
ACTIVE	ACTIVE	ACTIVE	ON	ON	ON	ON	ON	All CPU active
ACTIVE	ACTIVE	OFF	ON	ON	ON	ON	ON/OFF	APP CPU active
	SLEEP	ACTIVE	ON	ON	ON	ON	ON	APP CPU goes to sleep,
STANDBY	SLEEP	SLEEP	ON	ON	LP	LP	OFF	Wi-Fi DTIMx state
317111251	SLEEP	OFF	ON	ON	LP	LP	OFF	APP CPU goes to sleep, Wi-Fi power off
HIBERNATE	OFF	OFF	ON/OFF	ON	OFF /LP	OFF	OFF	Only RTC on, waiting for timer or wake-up IO to interrupt
SHUTDOWN	OFF	OFF	OFF	OFF	OFF	OFF	OFF	CHIP_PWD pin keep low level

Figure 3-1 XR806 Power Architecture

The green arrow indicates the power supply from the chip to the pin or from the pin to the chip;

3.1.2 Power State and Power Sequence

Figure 3-2 Power-on Sequence

Figure 3-3 Wakeup from Standby

Figure 3-4 Wakeup from Hibernation

Figure 3-5 Shutdown Sequence

3.1.3 Clock

The clock management system can source the system clocks from a range of internal or external high and low frequency oscillators and distribute them to modules based up a module's individual requirements. The system depends on, and generates two different clocks: a high frequency clock *HFCLK* and a low frequency clock *LFCLK*.

The system supports three LFCLK clock sources, the 32.768 KHz crystal oscillator, the 30~60KHz RC oscillator and the RC oscillator calibration. The 32.768 KHz crystal oscillator requires an external AT-cut quartz crystal to be connected to the LXTAL1 and LXTAL2 pins. The LFCLK clock and all of the available LFCLK sources are switched off by default when the system is powered up. The LFCLK clock can be started by selecting the preferred clock source in PRCM register. It is used for each subsystem to achieve lower current consumption for different running mode. In addition, the LFCLK is also used in RTC circuit to achieve accuracy timing.

There is only one clock source for HFCLK, the 24MHz, 26Mhz, 40MHz, 32MHz crystal oscillator. The HFCLK is enabled automatically when the system is powered up and can be switched off when all subsystems won't use it anymore in some low power modes.

The HFCLK is used to generate the clock source for Digital PLL, which is used to generate the clock sources for Cortex-AR800A core, Wi-Fi and peripherals.

The following figure shows the clock control block diagram.

Figure 3-6 Clock Control

3.1.4 Memory Mapping

Figure 3-7 XR806 Memory Mapping

3.1.5 CPU

XR806 features an ARM Cortex M33 Star processor, which is the most energy efficient ARM processor available. It supports the clock rates from 32KHz up to 160MHz. The processor provides a low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption.

The Cortex M33 Star core has low-latency interrupt processing with the following features:

- Mainline profile of Armv8-M including the 16 and 32-bit Thumb instruction set
- Supports for the Armv8-M Security Extension
- FPv5 hardware single precision floating Point Unit (FPU) to support DSP related function
- DSP Extension instruction set
- NVIC supporting up to 64 external interrupts with up to 256 priority levels
- MPU supporting up to 16 regions for secure and non-secure applications
- SAU supporting up to 8 memory regions as secure or non-secure
- Harvard 32-bit AMBA 5 AHB bus architecture supporting exclusive transactions and security state
- Bit-band support for memory and select peripheral that include atomic bit-band write and read operations
- Wake-up Interrupt Controller (WIC) providing ultra-low power sleep mode Supports

3.1.6 NDMA

There are 8 AHB DMA channels for this NDMA controller. Only one channel can be active and the sequence is according to the priority level.

The NDMA controller can support 8-bit/16-bit/32-bit data width. The data width of Source and Destination can be different, but the address should be aligned. Although the increase mode of NDMA should be address aligned, but its byte counter should not be multiple. The DMA Source Address, Destination Address, Byte Counter Registers can be modified even if the DMA is started.

3.1.7 SDMA

There are 2 AHB DMA channels for this SDMA controller. Only one channel can be active and the sequence is according to the priority level.

The SDMA controller can support 8-bit/16-bit/32-bit data width. The data width of Source and Destination can be different, but the address should be aligned. Although the increase mode of SDMA should be address aligned, but its byte counter should not be multiple. The SDMA Source Address, Destination Address, Byte Counter Registers can be modified even if the SDMA is started.

3.1.8 Crypto Engine

The Crypto Engine (CE) is one encrypt/decrypt algorithms accelerator. It is suitable for a variety of applications.

Features:

- Supports AES, DES, 3DES, SHA-1, MD5, CRC32/16, SHA256, TRNG
- Supports ECB, CBC, CTR modes for AES/DES/3DES
- Supports 128-bits, 192-bits and 256-bit key size for AES
- Supports 160-bits hardware PRNG with 192-bits seed
- 32-word RX FIFO and 32-word TX FIFO for high speed applications
- CPU mode and DMA mode are supported

The TRNG(True Random Number Generator) generates random numbers from the ring oscillator (RCO) outputs. Various types of RCOs are adopted, including Hybrid Fibonacci Ring Oscillator (H-FIRO), Hybrid Ring Oscillator (H-RO) and Hybrid Galois Ring Oscillator (H-GARO). IRQ will be issued once the random data is successfully generated.

3.1.9 Timer

Timer 0 and 1 can take their inputs from internal RC oscillator, external 32768Hz crystal or OSC. They provide the operating system's scheduler interrupt. It is designed to offer maximum accuracy and efficient management, even for systems with long or short response time. They provide 24-bit programmable overflow counter and work in auto-reload mode or no-reload mode.

The watch-dog is used to resume the controller operation when it had been disturbed by malfunctions such as noise and system errors. It features a down counter that allows a watchdog period of up to 16 seconds. It can generate a general reset or an interrupt request.

3.1.10 RTC

The real time clock (RTC) is for calendar usage. It is built around a 30-bit counter and used to count elapsed time in YY-MM-DD and HH-MM-SS. The unit can be operated by the backup battery while the system power is off. It has a built-in leap year generator.

The alarm generates an alarm signal at a specified time in the power-off mode or normal operation mode. In normal operation mode, both the alarm interrupt and the power management wake-up are activated. In power-off mode, the power management wake-up signal is activated. In this section, there are two kinds of alarm. Alarm 0 is a general alarm; its counter is based on second. Alarm 1 is a weekly alarm; its counter is based on the real time.

3.2 Peripherals

3.2.1 **GPIO**

The XR806 GPIO unit provides as many as 26 GPIO (General Purpose IO) pins. All ports are brought out of the device using alternate function multiplexing. The GPIO function can be multiplexed on a multi-function I/O pin by selecting the GPIO alternate function in the GPIO Controller registers.

There are two types of GPIO designs in XR806: GPIO and AGPIO. Each GPIO can be configured with the following options:

- Input / Output / Floating(Hi-Z) mode
- Input mode: Pull-up or Pull-down
- Output mode: Active driving
- Pull-up/down control: the pull-up and pull-down resistance is 90KΩ with ±30% variation over PVT condition
- External Interrupt IO with 5 trigger modes: high-level, low-level, rising edge, falling edge, double edge
- 14 WAKEUP IOs can be set to wake system by external interrupt at HIBERNATION state (RTC on only)
- All IOs can be set to wake system by external interrupt at STANDBY mode (RTC and AO domain on)

The digital IO AGPIO function is equivalent to GPIO as shown above. A dedicated internal control signal is used to select between the digital and analog functions. These IOs are multiplexed with 8 channels ADC (channel 8 is internal connected to measure VBAT voltage).

GPIO PA23 has a special function which is used to enter test mode at first pup when it is high at start up. So we need to keep it without pull high (floating or tie low) to have whole chip power up correctly.

Table 3- 2 XR806B GPIO Multiplexing

GPIO	FUNC2	FUNC3	FUNC4	FUNC5	FUNC8	FUNC9
PA00	FEM_CTRL1	AUDIO_PWMP	TWI1_SCL	IR_RX	KEY_Y0	PWM5/ECT5
PA01	FEM_CTRL2	AUDIO_PWMN	TWI1_SDA	FLASH_CS1	KEY_Y1	PWM6/ECT6
PA10/WUPIO0	ADC_CH0	SPI0_MOSI	-	UART1_RX	KEY_Y2	IR_TX
PA11/WUPIO1	ADC_CH1	SPI0_MISO	I2S_MCLK	UART1_TX	KEY_Y3	IR_RX
PA12/WUPIO2	ADC_CH2	PWM4/ECT4	I2S_BCLK	IR_TX	KEY_Y4	TWI0_SCL
PA13/WUPIO3	ADC_CH3	PWM5/ECT5	I2S_DI	UART2_TX	KEY_Y5	TWI0_SDA
PA14/WUPIO4	ADC_CH4	PWM6/ECT6	I2S_DO	UART2_RX	KEY_Y6	-
PA15/WUPIO5	ADC_CH5	SPIO_CSO	I2S_LRCLK	UART2_CTS	KEY_Y7	TWI1_SCL
PA16/WUPIO6	ADC_CH6	SPIO_CLK	-	UART2_RTS	KEY_X0	TWI1_SDA
PA17/WUPIO7	TWI0_SCL	AUDIO_PWMP	32KOSCO	IR_TX	KEY_X1	-
PA18/WUPIO8	TWI0_SDA	AUDIO_PWMN	FEM_CTRL2	FLASH_CS1	KEY_X2	-
PA19/WUPIO9	UART2_RTS	CARD_DATA	PWM0/ECT0	SPI0_MOSI	KEY_X3	AUDIO_PWMP
PA20/WUPIO10	UART2_CTS	CARD_CLK	PWM1/ECT1	SPI0_MISO	KEY_X4	AUDIO_PWMN
PA21/WUPIO11	UART2_RX	CARD_RST	PWM2/ECT2	SPIO_CSO	KEY_X5	I2S_DO
PA22/WUPIO12	UART2_TX	CARD_DETECT	PWM3/ECT3	SPIO_CLK	KEY_X6	I2S_LRCLK
PA23/WUPIO13/TEST	DCXO_PUP_OUT	IR_RX	FEM_CTRL1	FEM_CTRL2	KEY_X7	I2S_MCLK
PB00 ¹	UARTO_TX	JTAG_TMS	PWM4/ECT4	SWD_TMS	KEY_Y8	-
PB01 ¹	UARTO_RX	JTAG_TCK	PWM5/ECT5	SWD_TCK	KEY_Y9	-
PB02	UARTO_CTS	JTAG_TDO	PWM6/ECT6	FLASH_WP/IO2	KEY_Y1	SWD_TMS
PB03	UARTO_RTS	JTAG_TDI	PWM7/ECT7	FLASH_HOLD/IO3	KEY_Y1	SWD_TCK
PB04	SPI0_MOSI	PWM0/ECT0	UART1_RTS	FLASH_MOSI/IO0	KEY_Y1	I2S_BCLK
PB05	SPI0_MISO	PWM1/ECT1	UART1_CTS	FLASH_MISO/IO1	KEY_Y1	I2S_DI
PB06	SPIO_CSO	PWM2/ECT2	UART1_RX	FLASH_CS0	KEY_Y1	I2S_DO
PB07	SPIO_CLK	PWM3/ECT3	UART1_TX	FLASH_CLK	KEY_Y1	I2S_LRCLK
PB14 ¹	UART1_TX	UART2_TX	TWI1_SCL	UARTO_CTS	KEY_Y0	PWM5/ECT5
PB15 ¹	UART1_RX	UART2_RX	TWI1_SDA	UARTO_RTS	KEY_Y1	PWM6/ECT6

- 1. Supports 1.8V/3.3V/5V IO type; Others only support 1.8V/3.3V IO type;
- 2. refer to document of 'XR806 PIN MUX.pdf' for other functions;

Table 3-3 XR806AF2L GPIO Multiplexing

GPIO	FUNC2	FUNC3	FUNC4	FUNC5	FUNC6
PA11/WUPIO1	ADC_CH1	SPI0_MISO	I2S_MCLK	UART1_TX	EINTA11
PA12/WUPIO2	ADC_CH2	PWM4/ECT4	I2S_BCLK	IR_TX	EINTA12
PA13/WUPIO3	ADC_CH3	PWM5/ECT5	I2S_DI	UART2_TX	EINTA13
PA19/WUPIO9	UART2_RTS	CARD_DATA	PWM0/ECT0	SPI0_MOSI	EINTA19
PA20/WUPIO10	UART2_CTS	CARD_CLK	PWM1/ECT1	SPI0_MISO	EINTA20
PA21/WUPIO11	UART2_RX	CARD_RST	PWM2/ECT2	SPIO_CSO	EINTA21
PA22/WUPIO12	UART2_TX	CARD_DETECT	PWM3/ECT3	SPIO_CLK	EINTA22
PA23/WUPIO13/TES	DCXO_PUP_O	IR_RX	FEM_CTRL1	FEM_CTRL2	EINTA23
PB00 ¹	UARTO_TX	JTAG_TMS	PWM4/ECT4	SWD_TMS	EINTB0
PB01 ¹	UARTO_RX	JTAG_TCK	PWM5/ECT5	SWD_TCK	EINTB1
PB02	UARTO_CTS	JTAG_TDO	PWM6/ECT6	FLASH_WP/IO2	EINTB2
PB03	UARTO_RTS	JTAG_TDI	PWM7/ECT7	FLASH_HOLD/IO3	EINTB3
PB04	SPI0_MOSI	PWM0/ECT0	UART1_RTS	FLASH_MOSI/IO0	EINTB4
PB05	SPI0_MISO	PWM1/ECT1	UART1_CTS	FLASH_MISO/IO1	EINTB5
PB06	SPIO_CSO	PWM2/ECT2	UART1_RX	FLASH_CS0	EINTB6
PB07	SPIO_CLK	PWM3/ECT3	UART1_TX	FLASH_CLK	EINTB7
PB14 ¹	UART1_TX	UART2_TX	TWI1_SCL	UARTO_CTS	EINTB14
PB15 ¹	UART1_RX	UART2_RX	TWI1_SDA	UARTO_RTS	EINTB15

- 1. Supports 1.8V/3.3V/5V IO type; Others only support 1.8V/3.3V IO type;
- 2. refer to Table 3-2 or document of 'XR806 PIN MUX.pdf' for other functions;

3.2.2 **UART**

The XR806 provides 3 UART controllers: one is used for debug and two with auto-flow control are used for communication with external devices. The UART has 16450 and 16550 modes of operation, which are compatible with a range of standard software drivers. In 16550 mode, transmit and receive operations are both buffered by FIFOs. In 16450 mode, these FIFOs are disabled.

Features:

- Compatible with industry-standard 16550 UARTs
- 64-Bytes Transmit and receive data FIFOs
- Supports DMA controller interface
- Supports Software/ Hardware Flow Control
- Supports IrDA 1.0 SIR

- Supports RS-485 mode
- Supports configurable baud rate from 9600, 19200, 38400, 115200 and 921600 etc.
- Supports baud rate detection

3.2.3 SPI

The XR806 features one SPI controller which can be configured to a SPI master or a SPI slave. It is used as an extension interface to control the peripheral devices. And it supports two options of clock polarity (CPOL) and two options of initial clock phase (CPHA).

Figure 3-8 SPI Phase 0 Transfer Format

Phase 0

Figure 3-9 SPI Phase 1 Transfer Format

Phase 1

3.2.4 TWI

The XR806 features two TWI serial interfaces. They can be configured as master and salve mode. Each TWI controller supports three IO mapping. The TWI controllers can be operated in standard mode (100K bps) or fast-mode, supporting data rate up to 400Kbps. Multiple Masters and 10-bit addressing Mode are supported for this specified application. General Call Addressing is also supported in Slave mode.

Features:

- Compatible with IIC protocol and SCCB protocol
- Software-programmable for Slave or Master
- Supports Repeated START signal
- Multi-master systems are supported
- Allows 10-bit addressing with TWI bus
- Performs arbitration and clock synchronization
- Own address and General Call address detection
- Interrupt on address detection
- Supports speeds up to 400Kbits/s ('fast mode')
- Allows operation from a wide range of input clock frequencies

3.2.5 PWM

XR806 features 8 PWMs to generate pulse sequences with programmable frequency a duration for LCD, vibrators and other devices. The PWM controller provides 8 PWM channels, which are divided into four pairs of PWM pair, each is composed of three parts: a clock controller, two timer modules, a programmable dead-zone generator. The PWM channel logic can be configured as input capture function. The capturer detects the rising edge and the falling edge of the signal and calculates the high-level and the low-level duration with a 16-bit counter.

Features:

- 8 PWM channels, divided into 4 PWM pairs
- Supports pulse, period and complementary pair outputs
- Supports input capture
- Programmable dead-zone generator
- Configurable output frequency, 0%-100% duty adjustable

3.2.6 Audio PWM

XR806 features a Digital Differential PWM driver to drive external Class-D audio amplifier. The DPWM driver works by up-sampling and modulating a PCM input to a differential signal drive the AUDIO_PWMP and AUDIO_PWMN pins. The output amplitude of the DPWM driver is controlled by VDD_IO voltage.

Features:

One Mono Digital Audio PWM Driver

- \triangleright SNR ≥ 95dB (A-Weighting).
- ➤ THD+N ≤ -80dB (A-Weighting).
- Supports playback sample rates from 8KHz to 48KHz.
- One 64x18-bits FIFO for playback data transmit.
- Programmable FIFO thresholds.
- DMA and Interrupt support.

3.2.7 CIR

XR806 features an infrared remote transmitter and a receiver controller. Through the process control pulse waveform, the remote controller can support a variety of infrared protocol.

rech

The IR receiver controller features:

- Full physical layer implementation
- Supports IR for remote control
- 64x8 bits FIFO for data buffer

The IR transmitter controller features:

- Full physical layer implementation
- 128 bytes FIFO for data buffer
- Configurable carrier frequency
- Interrupt and DMA support

3.2.8 **GPADC**

XR806 features one GPADC function. The ADC function contains a 8-channel analog switch, a single end input asynchronous 12-bit SAR (Successive Approximation Register) ADC. The channels 0 to 6 are used to detect the voltage of the external input and the channel 8 is dedicated to detect the voltage of the VBAT.

Features:

- 12-bit Resolution and 10-bit effective SAR type A/D converter
- 8-channel multiplexer, 7 normal channel and 1 VBAT voltage detection channel
- 64 FIFO depth of data register
- DMA supports
- Power supply 1.8~3.6V, internal analog circuit generate 1.4V or 2.5V to Vref

- Maximum Sampling frequency: 1 MHz
- Supports wake-up from standby mode
- Supports self-calibration
- Supports data compare and interrupt
- Supports operation mode: Continuous conversion mode, Outbreak conversion mode

3.2.9 I2S

XR806 features one DAI(Digital Audio Interface) Controller function. The controller supports standard I2S format, Left-justified Mode format, Right-justified Mode format, PCM Mode format and TDM Mode format.

Features:

- Compliant with standard Philips Inter-IC sound (I2S) bus specification
- Supports full-duplex synchronous work mode
- Compliant with Left-justified, Right-justified, PCM mode, and TDM (Time Division Multiplexing) format
- Supports Master / Slave mode
- Supports adjustable audio sample resolution from 8-bit to 32-bit
- Supports up to 8 slots which has adjustable width from 8-bit to 32-bit
- Supports sample rate from 8KHz to 192KHz
- Supports 8-bits u-law and 8-bits A-law companding sample
- One 128 depth x 32-bit width FIFO for data transmit, one 64 depth x 32-bit width FIFO for data receive
- Supports programmable PCM frame width: 1 BCLK width (short frame) and 2 BCLKs width (long frame)

3.2.10 Smart Card

The Smart Card Reader (SCR) is a communication controller that transmits data between the system and Smart Card. The controller can perform a complete smart card session, including card activation, card deactivation. Cold/warm reset, Answer to Reset (ATR) response reception, data transfers, etc.

Feature:

- Supports the ISO/IEC 7816-3:1997(E) and EMV2000 (4.0) Specifications
- Performs functions needed for complete smart card sessions, including:

- Card activation and deactivation
- Cold/warm reset
- Answer to Reset (ATR) response reception
- Data transfers to and from the card
- Supports adjustable clock rate and bit rate
- Configurable automatic byte repetition
- Supports commonly used communication protocols:
 - > T=0 for asynchronous half-duplex character transmission
 - > T=1 for asynchronous half-duplex block transmission
- 128bits FIFO for data transmit & receive.
- Supports FIFOs for receive and transmit buffers (up to 128 bits) with threshold
- Supports configurable timing functions:
 - Smart card activation time
 - Smart card reset time
 - Guard time
 - Timeout timers
- Supports synchronous and any other non-ISO 7816 and non-EMV cards

3.3 Wi-Fi Subsystem

3.3.1 Wi-Fi MAC

Supports MAC enhancements including:

- 802.11d Regulatory domain operation
- 802.11e QoS including WMM
- 802.11h Transmit power control dynamic and frequency selection
- 802.11i Security including WPA2 compliance
- 802.11r Roaming

3.3.2 Wi-Fi Baseband

Features:

- Compatible with IEEE 802.11 b/g/n standard
- 802.11n MCS0-7 with data rate up to 72.2Mbps (BPSK, r=1/2 through 64QAM, r=5/6)
- 6M~54M data rate for 802.11g
- DSSS, CCK modulation with long and short preamble
- Short Guard Interval
- Long Guard Interval
- RX antenna Diversity

3.3.3 Wi-Fi Radio

Features:

- Integrated 2.4GHz PA, LNA, and T/R switch
- Internal impedance matching network and harmonic filter allow chip to connect to antenna directly
- High Power Amplifier with 1.4~3.3V full range directly Supports XRADIOTECH's MPDTM technology ensure linearity tracking automatically to always keep EVM and mask within specifications
- Special Architecture and Device design to keep the reliability of PA up to 3.3V high voltage and also deliver high output power (>25dBm)

3.3.4 Front End Module Control

For applications that use external front-end components, the XR806 provides the ability to control them with two antenna switch control outputs named:

- FEM_CTRL1: TX_EN
- FEM_CTRL2: RX_EN

FEM_CTRL1 and FEM_CTRL2 are used to control TX and RX signal path separately. It is very useful when customer want to use XR806 to extend range coverage by add addition high output power RF PA. The typical extend application is below:

Figure 3- 10 FEM Control Application Diagram

Bluetooth Subsystem 3.4

Features:

- Complies with Bluetooth V5.0 LE features
- Data rates support: 125Kbps, 500Kbps, 1Mbps, 2Mbps
- Long range feature supports
- TRNG generator
- AES-128 data encryption with ECB and CCM mode
- **Advertising Extension supports**
- Packet Assembly and Disassembly
- Data Whitening and De-whitening
- Data CRC generation and checking
- Packet filtering based on filter policies (white and resolving lists)
- Private address generation and Accelerate address resolution
- Access address generation and matching
- Frequency hopping and channel mapping
- **RSSI** Reporting to host

4 Electrical Characteristics

4.1 Absolute Maximum Rating

Table 4-1 Absolute Maximum Rating

Symbol	Parameter	Maximum rating	Unit
1/0	In/Out current for input and output	-35 to 35	mA
VBAT	1.8~5.5V Power supply	-0.3 to 6.0	V
CHIP_PWD	RESET pin for chip	-0.3 to 6.0	V
VDD_TX	Power supply	-0.3 to 3.0	V
VDD_DIG	Power supply	-0.3 to 1.5	V
VDD_EXT	Power supply	-0.3 to 4.0	V
VDD_IO	Power supply	-0.3 to 4.0	V
VDD_IO_5V	Power supply	-0.3 to 6.0	V
T _{opr}	Operating Temperature	-40 to 105	°C
T _{junction}	Junction Temperature	-40 to 125	°C
T _{stg}	Storage Temperature	-55 to 125	°C
VESD	НВМ	-2000/+2000	V
VESD	CDM	-500/+500	V

4.2 Recommended Operating Conditions

Table 4-2 Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Ta	Ambient Operating Temperature	-40	-	105	°C
VBAT	Power supply of chip input	1.8	3.3	5.5	٧
CHIP_PWD	RESET	1.8	3.3	5.5	V
VDD_ANA	Power supply of analog/RF input	1.4	1.6	2.5	V
VDD_PA	Power supply of PA	1.4	3.3	3.6	V
VDD_DIG	Power supply of digital input	0.6	1.1	1.35	V
VDD_EXT	Power supply of external device input	2.5	3.3	3.5	V
VDD_IO	Power supply of GPIO input	1.8	3.3	3.6	V

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD_IO_5V	Power supply of GPIO 5V input	1.8	3.3	5.5	V

4.3 Digital IO Characteristics

Table 4- 3 DC Characteristics of VDD_IO=3.3V

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{IL}	Input Low Voltage	VDD_IO=3.3V	-0.3	1.32	V
V _{IH}	Input High Voltage	VDD_IO=3.3V	2.06	3.6	V
V _{OL}	Output Low Voltage	I _{OL} = 7.5~50 mA	-0.3	0.4	V
V _{OH}	Output High Voltage	I _{OH} = 7.5~50 mA	2.9	3.6	٧
R _{PU}	Input Pull-up Resistance	PU=high, PD=low	35	95	ΚΩ
R _{PD}	Input Pull-down Resistance	PU=high, PD=low	35	95	ΚΩ

Table 4- 4 DC Characteristics of VDD_IO=1.8V

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{IL}	Input Low Voltage	VDD_IO=1.8V	-0.3	0.65	V
V _{IH}	Input High Voltage	VDD_IO=1.8V	1.18	1.98	V
V _{OL}	Output Low Voltage	I _{OL} = 2.25~15 mA	-0.3	0.4	V
V _{OH}	Output High Voltage	I _{OH} = 2.25~15 mA	1.44	2.0	V
R _{PU}	Input Pull-up Resistance	PU=high, PD=low	63	190	ΚΩ
R _{PD}	Input Pull-down Resistance	PU=high, PD=low	63	190	ΚΩ

Table 4- 5 DC Characteristics of VDD_IO_5V=5V

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{IL}	Input Low Voltage	VDD_IO_5V=5V	-0.3	0.81	V
V _{IH}	Input High Voltage	VDD_IO_5V=5V	1.3	5.5	V
V _{OL}	Output Low Voltage	I _{OL} = 5~47 mA	-0.3	0.5	V
V _{OH}	Output High Voltage	I _{OH} = 5~47 mA	4.5	5.0	V
R _{PU}	Input Pull-up Resistance	PU=high, PD=low	63	150	ΚΩ
R _{PD}	Input Pull-down Resistance	PU=high, PD=low	63	150	ΚΩ

Bootstrap Modes and Pins 4.4

Table 4-6 Bootstrap pins

Symbol	Bootstrap Function Name	Value	Description				
		0	Normal operation mode				
PA23	Test Mode	0 Normal operation mode 1 Enter into test/debug mode who CHIP_PWD when releasing CHIP_PWD will going to firmware update mode 1 Internal normal boot	Enter into test/debug mode when releasing CHIP_PWD				
PB02	PB02 Boot Mode		when releasing CHIP_PWD will cause the system going to firmware update mode.				
		1	Internal normal boot				
Frequenc	Frequency Reference Clock						
High Freque	High Frequency Reference Clock						
Table 4- 7 Exte	Table 4- 7 External Reference Clock Specifications						

Frequency Reference Clock 4.5

4.5.1 **High Frequency Reference Clock**

Table 4-7 External Reference Clock Specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
_	Clock input frequency list using an external clock source	-	24,26,32,40	-	MHz
Fin	Clock input frequency list using a XTAL and the built-in oscillator	- 24,26,32,40	-	MHz	
FINTOL	Tolerance on input frequency without trimming	-20	-	+20	ppm
T _{stable}	Clock stabilization time	-	-	10	ms
I _{LEAK}	Input leakage current, both for analog and digital	-	-	1	uA

4.5.1.1 Clock Source Detection

An integrated automatic detection mechanism detects the clock source from the connections of the HXTAL1 and HXTAL2 pins:

- When an external reference clock source is used, the clock input pin is HXTAL2. The XR806 supports both an analog and digital source. An analog source shall be AC coupled to HXTAL2 while a digital source shall be DC coupled to HXTAL2. In both cases, HXTAL1 shall be DC grounded.
- When a XTAL and the built-in oscillator are used, the XTAL shall be DC coupled to HXTAL1 and HXTAL2.

4.5.1.2 External Clock Source

Table 4-8 External Clock Requirements

Symbol	Parameter	Min.	Тур.	Max.	Unit				
AC coupled sig	AC coupled signal								
F _{IN}	Frequency	-	24,26,32,40	-	MHz				
V _{PP}	Peak-to-peak voltage range of the AC coupled analog input	0.6	1.0	1.5	V				
N _H	Total harmonic content of the input signal	-	-	-25	dBc				
DC coupled sig	gnal								
V _{IL}	input low voltage on HXTAL2	0	-	0.3*1.5	٧				
V _{IH}	input high voltage on HXTAL2	0.7*1.5	-	1.5	٧				
Tr/T _f	10%-90% rise and fall time	-	- 4	5	ns				
Duty Cycle	Cycle-to-cycle	40	50	60	%				
Both analog a	nd digital signals								
Phase Noise	Ref clock @ 24 MHz, 2.4 GHz 802.11b/g/n operation								
	@1 kHz	-	_	-123	dBc/Hz				
	@10 kHz			-133	abajiiz				
	@100 kHz			-138					
	@1 MHz			-138					

4.5.1.3 External XTAL and Built-in Oscillator

Table 4-9 External High Frequency Crystal Characteristics Requirements

Symbol	Conditions	Min.	Тур.	Max.	Unit
Frequency Range		-	24,26,32,40	-	MHz
ESR		-	-	60	Ω
Cin_xtal ¹	Single-ended	0	3.5	15	pF
Load Capacitance ¹		-	16	27	pF
Oscillator Tuning Range ²		+/-20	+/-50	+/-70	ppm
Crystal Frequency Accuracy at Nominal Temp.	25 °C	-10	-	+10	ppm
Crystal Drift Due to Temperature	-20 to +85 °C	-10	-	+10	ppm
Crystal Pull Ability		10	-	150	ppm/pF

Symbol	Conditions	Min.	Тур.	Max.	Unit
·			• •		

- 1. The load capacitance value (C_{load}) and shunt capacitance value(C_{shunt}) depends on XTAL model, XTAL1 and XTAL2 pin have inside capacitance (C_{in_xtal}), so external added load capacitance value (PCB Welding Capacitance) $C_{load_ext} = C_{load} * 2 C_{in_xtal} C_{pcb} C_{shunt} * 2$, C_{pcb} is PCB parasitic capacitance(single-ended). C_{in_xtal} has tuning range about 25.4pF, which is controlled by software.
- 2. Tuning range depends on XTAL load capacitance requirement, typical case is based on 24MHz XTAL, 16pF Cload.

4.5.2 Low Frequency Reference Clock

XR806 use low frequency reference clock, it can either use an external low frequency crystal and a built-in oscillator, or internal RCOSC. The external crystal and a built-in oscillator is used during power save modes.

4.5.2.1 External XTAL and Built-in Oscillator

Table 4-10 External Low Frequency Crystal Characteristics Requirements

Symbol	Conditions	Min.	Тур.	Max.	Unit
Nominal Frequency	+	-	32.768	-	KHz
Load Capacitance ¹	-	-	-	-	pF
C _{shunt} ¹	-	-	2	-	pF

1. The load capacitance value (C_{load}) and shunt capacitance value(C_{shunt}) depends on LXTAL model, external added load capacitance value (PCB Welding Capacitance) $C_{load_ext} = C_{load} * 2 - C_{pcb} - C_{shunt} * 2$, C_{pcb} is PCB parasitic capacitance(single-ended).

4.5.2.2 Internal RCOSC Reference Clock Source

XR806 have an integrated RC oscillator low frequency reference clock source inside. This clock is calibrated by CPU clock source from high frequency reference. RCOSC takes effect automatically when there is no external crystal.

4.6 Wi-Fi 2.4G RF Receiver Specifications

Table 4-11 RF Receiver Specifications

Condition: VBAT=3.3V, VDD_ANA=1.5V, Temperature=25°C

Ch al	Description		Performan	ice	
Symbol	Description	Min.	Тур.	Max.	Unit
Frequency Range	Center channel frequency	2412	-	2484	MHz
RX Sensitivity	1Mbps DSSS	-96.8	-98.8	-	dBm
(802.11b)	2Mbps DSSS	-93.7	-95.7	-	dBm
	5.5Mbps CCK	-92.0	-94.0	-	dBm
	11Mbps CCK	-89.0	-91.0	1-7	dBm
RX Sensitivity	6Mbps OFDM	-91.8	-93.8	-	dBm
(802.11g)	9Mbps OFDM	-91.0	-93.0	-	dBm
	12Mbps OFDM	-90.0	-92.0	-	dBm
	18Mbps OFDM	-87.0	-89.0	-	dBm
	24Mbps OFDM	-84.5	-86.5	-	dBm
	36Mbps OFDM	-81.0	-83.0	-	dBm
	48Mbps OFDM	-77.0	-79.0	-	dBm
	54Mbps OFDM	-75.3	-77.3	-	dBm
RX Sensitivity	MCS 0	-91.0	-93.0	-	dBm
(802.11n, 20MHz)	MCS 1	-88.0	-90.0	-	dBm
20	MCS 2	-86.0	-88.0	-	dBm
	MCS 3	-83.0	-85.0	-	dBm
	MCS 4	-79.7	-81.7	-	dBm
	MCS 5	-75.5	-77.5	-	dBm
	MCS 6	-73.8	-75.8	-	dBm
	MCS 7	-72.0	-74.0	-	dBm
Maximum Receive	6 Mbps OFDM	-10.0	5.0	-	dBm
Level	54 Mbps OFDM	-10.0	-5.0	-	dBm
	MCS0	-10.0	5.0	-	dBm
	MCS7	-20.0	-6.7	-	dBm
Receive Adjacent	1 Mbps CCK	40.0	-	-	dBc
Channel Rejection	11 Mbps CCK	35.0	-	-	dBc

Symbol	Description	Performance					
Symbol	Description	Min.	Тур.	Max.	Unit		
	BPSK rate 1/2, 6 Mbps OFDM	30.2	-	-	dBc		
	64QAM rate 3/4, 54 Mbps OFDM	12.7	-	-	dBc		
	HT20, MCS 0, BPSK rate 1/2	27.3	-	-	dBc		
	HT20, MCS 7, 64QAM rate 5/6	8.2	-	-	dBc		

The minimum limit considers the variation of process, voltage and temperature.

4.7 Wi-Fi 2.4G RF Transmitter Specifications

Table 4-12 RF Transmitter Specifications

Condition1: VBAT=3.3V, VDD_PA=3.3V, VDD_ANA=1.5V, Temperature=25°C

Complete	Description		Perfo	rmance	
Symbol	Description	Min.	Тур.	Max.	Unit
Frequency Range	Center channel frequency	2412	-	2484	MHz
TX output Power	1Mbps DSSS	-	19.5	-	dBm
with mask and EVM compliance ¹	11Mbps CCK	_	19.6	-	dBm
EVIVI compliance	6Mbps OFDM	-	16.1	-	dBm
Als.	54Mbps OFDM	_	15.9	-	dBm
	HT20, MCS 0	-	16.1	-	dBm
	HT20, MCS 7	-	15.1	-	dBm
TX EVM	1Mbps DSSS	-	-17.0	-9.1	dB
	11Mbps CCK	-	-16.5	-9.1	dB
	6Mbps OFDM	-	-30.7	-5.0	dB
	54Mbps OFDM	-	-29.6	-25.0	dB
	HT20, MCS 0	-	-30.5	-5.0	dB
	HT20, MCS 7	-	-31.8	-28.0	dB
Carrier Suppression		-	-	-30.0	dBc
Accuracy of Power Control	Closed-loop control across all temperature ranges and channels	-1.5	-	1.5	dB

Symbol	Description	Performance					
	Description	Min.	Тур.	Max.	Unit		
Harmonic Output	2nd Harmonic	-	-	-30.0	dBm/MHz		
Power	3rd Harmonic	-	-	-30.0	dBm/MHz		

- 1. Refer to IEEE 802.11 specification for Tx spectrum limits:
- 802.11b mask (18.4.7.3)
- 802.11g mask (19.5.4)
- -802.11g EVM (17.3.9.6.3)
- 802.11n HT20 mask (20.3.21.1)
- 802.11n HT20 EVM (20.3.21.7.3)
- 2. The minimum limit considers the variation of process, voltage and temperature.

4.8 Bluetooth RF Receiver Specifications

Table 4-13 RF Receiver Specifications

Condition: VBAT=3.3V, VDD_ANA=1.5V, Temperature=25°C

Sh al	December 1	Performance						
Symbol	Description	Min.	Тур.	Max.	Unit			
Frequency Range	Center channel frequency	2400	-	2484	MHz			
RX Sensitivity	BLE Sensitivity at 1Mbps, PER≤30.8%	-	TBD	-	dBm			
	BLE Sensitivity at 2Mbps, PER≤30.8%	-	TBD	-	dBm			
	BLE Sensitivity at 1Mbps, PER≤30.8%, S=2	-	TBD	-	dBm			
	BLE Sensitivity at 1Mbps, PER≤30.8%, S=8	-	TBD	-	dBm			
Maximum Receiving Power	-	-	TBD	-	dBm			
BLE Selectivity	Co-channel	-	TBD	-	dB			
(1Mbps)	1MHz offset	-	TBD	-	dB			

Complete	Description.	Performance					
Symbol	Description	Min.	Тур.	Max.	Unit		
	2MHz offset	-	TBD	-	dB		
	>=3MHz offset	-	TBD	-	dB		
	Image	-	TBD	-	dB		
	Image +/-1MHz	-	TBD	-	dB		
BLE Selectivity	Co-channel	-	TBD	-	dB		
(2Mbps)	1MHz offset	-	TBD	-	dB		
	2MHz offset	-	TBD	-	dB		
	>=3MHz offset	-	TBD	-	dB		
	Image	-	TBD	-	dB		
	Image +/-1MHz	-	TBD	- 1	dB		
Intermodulation Power	Tested as per BLE standard requirements	-	TBD		dBm		
Blockers (1Mbps)	30MHz-2000MHz	-> 9	TBD	-	dBm		
	2003MHz-2399MHz	-	TBD	-	dBm		
	2.484GHz-2.997GHz	- /	TBD	-	dBm		
	3.0GHz-12.75GHz	_	TBD	-	dBm		

The minimum limit considers the variation of process, voltage and temperature.

4.9 Bluetooth RF Transmitter Specifications

Table 4-14 RF Transmitter Specifications

 $Condition 1: VBAT=3.3V, VDD_PA=3.3V, VDD_ANA=1.5V, Temperature=25^{\circ}C$

Symbol	Description	Performance					
	Description	Min.	Тур.	Max.	Unit		
Frequency Range	Center channel frequency	2400	-	2484	MHz		
FSK Data Rate	-	-	1.0	-	Mbps		
Modulation	BLE@1Mbps	225	250	275	KHz		
Deviation	BLE@2Mbps	450	500	550	KHz		
Output Power	LP mode	-20	-	13	dBm		

Comphal	Description	Performance						
Symbol	Description	Min.	Тур.	Max.	Unit			
Range	HP mode	10	-	20	dBm			
TX RF Output Steps	-	-	2	-	dB			
TX Power Variation vs. Temp	-40~125oC	-	+/-1	-	dB			
TX Power Variation vs. Frequency	-40~125oC	-	+/-1	-	dB			
In Band Spurious	Frequency offset=2MHz	-	-38.5	-	dBm			
Emissions (1Mbps)	Frequency offset=3MHz	-	-39.8	-	dBm			
In Band Spurious	Frequency offset=4MHz	-	-45.2	-	dBm			
Emissions (2Mbps)	Frequency offset=5MHz	-	-45.6	-	dBm			
	Frequency offset=6MHz	-	-46.9	2	dBm			
Out of Band Spurious Emissions (at 6dBm)	Frequencies<2.4GHz	-	8	-50	dBm			
Out of Band Spurious Emissions (at 20dBm)	2.48-12GHz, including harmonics	-	_	-40	dBm			

The minimum limit considers the variation of process, voltage and temperature.

4.10 Power Consumptions with Wi-Fi

Table 4- 15 Power Consumption 1

Temp=25°C, VBAT=3.3V, VDD_ANA=1.5V, internal DC-DC 90% efficiency, MCU 160MHz

Completel	MCU	Wi-Fi	TX/	Test Condition (Signaling Mode)		Performance			
Symbol	State	State	RX			Min.	Тур.	Max.	Unit
ACTIVE	ACTIVE	ACTIVE	TX ¹	1M DSSS	17dBm	-	189.0	-	mA
				11M CCK	17dBm	-	190.0	-	mA
				6M OFDM	16dBm	-	188.0	-	mA
				54M OFDM	16dBm	-	192.0	-	mA
				HT20, MCS0	16dBm	-	188.0	-	mA
				HT20, MCS7	15dBm	-	181.0	-	mA

Complete	MCU	Wi-Fi	TX/	Test Cond	ition		Perforn	nance	
Symbol	State	State	RX	(Signaling N	Mode)	Min.	Тур.	Max.	Unit
			RX	1M DSSS	-	-	38.5	-	mA
				11M CCK	-	-	39.0	-	mA
				6M OFDM	-	-	40.0	-	mA
				54M OFDM	-	-	41.5	-	mA
				HT20, MCS0	-	-	40.0	-	mA
				HT20, MCS7	-	-	41.0	-	mA
STANDBY	SLEEP	ACTIVE	TX ¹	1M DSSS, null frame	17dBm	-	189.0	-	mA
			RX	RX listen	-	-	34.1	-	mA
				1M DSSS	-	-	29.4	-	mA
		PS	RX	DTIM1	-	-	838.0	-	uA
		Mode ²		DTIM3	-	-6	372.0	-	uA
				DTIM8	- 7	- 6	179.0	-	uA
				DTIM10	-	-	161.0	-	uA
		OFF	1	-	7	-	54.0	-	uA
HIBERNATION ³	OFF	OFF	M		-	-	5.8	-	uA
SHUTDOWN ⁴	OFF	OFF	-	-	-	-	0.3	-	uA

NOTE

- 1. Data is captured at TX continues mode on the duration of transmitting;
- 2. Use XR806 by external 32K XTAL, Beacon length 1.8ms;
- 3. RTC and wake up timer on only;
- 4. CHIP_PWD keeps at low level;

Table 4-16 Power Consumption 2

Temp=25°C, VBAT=3.3V, VDD_ANA=1.5V, LDO supply, MCU 160MHz

Chal	MCU	Wi-Fi	TX/	Test Condition (Signaling Mode)			Perforn	nance	
Symbol	State	State	RX			Min.	Тур.	Max.	Unit
ACTIVE	ACTIVE	ACTIVE	TX ¹	1M DSSS	17dBm	-	236.0	-	mA
				11M CCK	17dBm	-	238.0	-	mA
				6M OFDM	16dBm	-	260.0	-	mA
				54M OFDM	16dBm	-	267.0	-	mA

Complete	MCU	Wi-Fi	TX/	Test Condi	tion		Perforn	nance	
Symbol	State	State State RX (Signaling Mode)				Min.	Тур.	Max.	Unit
				HT20, MCS0	16dBm	-	261.0	-	mA
				HT20, MCS7	15dBm	-	252.0	-	mA
			RX	1M DSSS	-	-	73.0	-	mA
				11M CCK	-	-	74.0	-	mA
				6M OFDM	-	-	77.0	-	mA
				54M OFDM	-	-	78.0	-	mA
				HT20, MCS0	-	-	77.0	-	mA
				HT20, MCS7	-	-	79.0	-	mA
STANDBY	SLEEP	ACTIVE	TX ¹	1M DSSS, null	19dBm	-	236.0	-	mA
				frame			447		
			RX	RX listen	-	-	66.0	-	mA
				1M DSSS	-	(5)	54.0	-	mA
		PS	RX	DTIM1	-	- 5	1330.0	-	uA
		Mode ²		DTIM3	3 7	-	584.0	-	uA
				DTIM8	F	-	356.0	-	uA
			M	DTIM10	-	-	258.0	-	uA
		OFF	-	-	-	-	55.0	-	uA
HIBERNATION ³	OFF	OFF		-	-	-	6.0	-	uA
SHUTDOWN ⁴	OFF	OFF	-	-	-	-	0.3	-	uA

NOTE

- 1. Data is captured at TX continues mode on the duration of transmitting;
- 2. Use XR806 by RCOSC, Beacon length 1.8ms;
- 3. RTC and wake up timer on only;
- 4. CHIP_PWD keeps at low level;

4.11 Power Consumptions with Bluetooth only

Table 4-17 Power Consumption with Bluetooth

Temp=25°C, VBAT=3.3V, VDD_ANA=1.5V, external DC-DC 90% efficiency, MCU 160MHz

Symbol	мси	Wi-Fi	TX/	Test Condition		Perforn	nance	
Зупівої	State	State	RX	rest Condition	Min.	Тур.	Max.	Unit
ACTIVE	ACTIVE	ACTIVE	TX ¹	0dBm	-	TBD	-	mA
				6dBm	-	TBD	-	mA
				10dBm	-	TBD	-	mA
				20dBm	-	TBD	-	mA
			RX	Low Power	-	TBD	-	mA
				High Performance	-	TBD	-	mA
HIBERNATION ²	OFF	OFF	-	-	-	TBD	-	uA
SHUTDOWN ³	OFF	OFF	-	-	-	TBD	-	uA

- 1. Data is captured at TX continues mode on the duration of transmitting;
- 2. RTC and wake up timer on only;
- 3. CHIP_PWD keeps at low level;

KRAR

5 Package Specifications

5.1 Pin Layout

XR806 uses 5mm x 5mm QFN40 package and 4mm x 4mm QFN32 package for different feature lists.

Figure 5- 1 XR806BF2L Pin Layout

Figure 5- 2 XR806BM2I Pin Layout

Figure 5-3 XR806AF2L Pin Layout

5.2 Pin Descriptions

Table 5-1 Pin Description

Pin Name	1/0	XR806B	XR806A	Pin Description
Power, Reset	and Clocks			
VDD_PA	Input	1	2	PA power supply
VDD_TX	Input	2	3	RF power supply
LXTAL1	Analog	5 ¹	5 ¹	32KHz crystal
LXTAL2	Analog	6 ²	6 ²	32KHz crystal
VDD_IO	Input	17	12	GPIO 3.3V/1.8V power supply
VDD_IO_5V	Input	18	13	GPIO 5V/3.3V/1.8V power supply
VDD_DIG	Output	19	14	Dig Core 1.1V power supply
CHIP_PWD	Input	20	15	Chip Power Down/System Reset
VBAT	Input	21	16	1.8~5.5V power supply
VDD_EXT	output	22	17	external device power supply
VDD_LX	Input	23	18	BUCK power supply
VDD_SENSE	Output	24	19	BUCK output

Pin Name	I/O	XR806B	XR806A	Pin Description
HXTAL1	Analog	37	30	24/26/32/40MHz crystal
HXTAL2	Analog	38	31	24/26/32/40MHz crystal
VDD_ANA	Input	39	32	Analog power supply
Programmab	le I/O			
PA10	In/Out	3	-	Programmable input/output, wakeup io, gpadc in
PA11	In/Out	4	4	Programmable input/output, wakeup io, gpadc in
PA14	In/Out	7	-	Programmable input/output, wakeup io, gpadc in
PA15	In/Out	8	-	Programmable input/output, wakeup io, gpadc in
PA16	In/Out	9	-	Programmable input/output, wakeup io, gpadc in
PA17	In/Out	10	-	Programmable input/output, wakeup io, gpadc in
PA18	In/Out	11	-	Programmable input/output, wakeup io, gpadc in
PA19	In/Out	12	7	Programmable input/output, wakeup io
PA20	In/Out	13	8	Programmable input/output, wakeup io
PA21	In/Out	14	9	Programmable input/output, wakeup io
PA22	In/Out	15	10	Programmable input/output, wakeup io
PA23	In/Out	16	11	Programmable input/output, wakeup io, test strap pin
PB06	In/Out	25	20	Programmable input/output
PB05	In/Out	26	21	Programmable input/output
PB04	In/Out	27	22	Programmable input/output
PB07	In/Out	28	23	Programmable input/output
PB03	In/Out	29	24	Programmable input/output
PB02	In/Out	30	25	Programmable input/output
PA01	In/Out	31	- 1/	Programmable input/output
PA00	In/Out	32	-	Programmable input/output
PB15	In/Out	33	26	Programmable input/output
PB14	In/Out	34	27	Programmable input/output
PB01	In/Out	35	28	Programmable input/output
PB00	In/Out	36	29	Programmable input/output
Wi-Fi Radio II	nterface			
ANT	Analog	40	1	RF Antenna

MOTE NOTE

- 1. LXTAL1 is reused as PA12 which is a programble input/output IO ,wakeup io or gpadc in;
- 2. LXTAL2 is reused as PA13 which is a programble input/output IO ,wakeup io or gpadc in;

5.3 Package Information

Figure 5-4 QFN40 Package Outline Drawing

SYMBOL	MI	LLIMET	ER	
STMBOL	MIN	NOM	MAX	
	0.70	0.75	0.80	
A	0.80	0.85	0.90	3
	0.85	0. 90	0.95	4
A1	_	0. 02	0.05	
ь	0. 15	0. 20	0. 25	
С	0.18	0.20	0.25	
D	4. 90	5. 00	5. 10	
D2	3. 30	3. 40	3. 50	
е	(0. 40BSC		
Nd	3	. 60BSC		
E	4. 90	5. 00	5. 10	
E2	3. 30	3. 40	3. 50	
Ne	3	. 60BSC		
L	0.35	0. 40	0. 45	
K	0. 20			
h	0.30	0. 35	0.40	
L/F载体尺寸 (mil)		150*15)	

Figure 5-5 QFN32 Package Outline Drawing

SYMBOL	М	ILLIMETE	ER
SYMBOL	MIN	NOM	MAX
	0. 70	0.75	0.80
Α	0. 80	0.85	0. 90
	0. 85	0.90	0. 95
A1	0	0.02	0.05
b	0. 15	0.20	0.25
b1		0.14REF	
С	0. 18	0.20	0. 25
D	3.90	4. 00	4.10
D2	2. 70	2.80	2.90
e	0	. 40BSC	
Ne	2	2. 80BSC	
Nd	2	2. 80BSC	
Е	3.90	4. 00	4.10
E2	2. 70	2.80	2.90
L	0. 25	0.30	0.35
h	0. 30	0. 35	0.40
L/F载体尺寸		122X122	

5.4 Package Thermal Characteristics

Table 5-2 QFN40 Package Thermal Characteristics

Symbol	Parameter	Conditions	Тур.	Unit
ΘЈΑ	Junction-to-Ambient	JESD51 76.2 x 114.3mm, 4-layer(2s2p) PCB No air flow	28	°C /W
Θ _{ЈВ}	Junction-to-Board	JESD51 76.2 x 114.3mm, 4-layer(2s2p) PCB No air flow	8.5	°C /W
Θ _{JC}	Junction-to-Case	JESD51	9.2	°C /W

Symbol	Parameter	Conditions	Тур.	Unit
		76.2 x 114.3mm, 4-layer(2s2p) PCB		
		No air flow		

Table 5-3 QFN32 Package Thermal Characteristics

Symbol	Parameter	Conditions	Тур.	Unit
Θ _{JA}	Junction-to-Ambient	JESD51 76.2 x 114.3mm, 4-layer(2s2p) PCB No air flow	32.1	°C /W
ΘЈВ	Junction-to-Board	JESD51 76.2 x 114.3mm, 4-layer(2s2p) PCB No air flow	10.0	°C /W
Θ _{JC}	Junction-to-Case	JESD51 76.2 x 114.3mm, 4-layer(2s2p) PCB No air flow	12.5	°C /W

6 Carrier Information

Table 6-1 Reel Carrier Information

Item	Color	Size
Reel	Blue	13 inches
Aluminum foil bags	Silvery white	450mm x 375mm x 0.14mm
Inside Box	White	336mm x 336mm x 48mm
Outside Box	White	423mm x 358mm x 365mm

Figure 6-1 Tape Dimension Drawing

Table 6-2 Reel Carrier Information

Device	W(mm)	A0(mm)	B0(mm)	K0(mm)	P0(mm)	P1(mm)
XR806B	12±0.30	5.30±0.1	5.30±0.1	$0.85^{+0.01}_{-0.05}$	4.0±0.1	8.00±0.1
XR806A	12±0.30	4.30±0.1	4.30±0.1	$1.10^{+0.05}_{-0.00}$	4.0±0.1	8.00±0.1
Device	P2(mm)	F(mm)	E(mm)	D0(mm)	D1(mm)	T(mm)
Device XR806B	P2(mm) 2.0±0.1	F(mm) 7.5±0.1	E(mm) 1.75±0.1	D0(mm) 1.5 ^{+0.10} _{-0.00}	D1(mm) 1.5 ^{+0.10} _{-0.00}	T(mm) 0.3±0.05

Table 6-3 Packing Quantity Information

Туре	Quantity	Part Number
Tape Reel	3000pcs	XR806B
Tape Reel	3000pcs	XR806A

7 Reflow Profile

The reflow profile recommended in this document is a lead-free reflow profile that is suitable for pure lead-free technology of lead-free solder paste.

Figure 7-1 shows the typical reflow profile of XR806 device sample.

Figure 7-1 Typical Reflow Profile

Reflow profile conditions of XR806 device sample is given in Table 7-1.

Table 7-1 Reflow Profile Conditions

	QTI typical SMT reflow profile conditions (for re	ference only)
	Step	Reflow condition
Environment	N2 purge reflow usage (yes/no)	Yes, N2 purge used
Liiviioiiiieiit	If yes, O2 ppm level	O2 < 1500 ppm
Α	Preheat ramp up temperature range	25 °C-> 150 °C
В	Preheat ramp up rate	1.5~2.5 °C /sec
C	Soak temperature range	150 °C-> 190 °C
D	Soak time	80~110 sec
E	Liquidus temperature	217 °C
F	Time above liquidus	60-90 sec
G	Peak temperature	240-250 °C
Н	Cool down temperature rate	≤ 4 °C/sec

Copyright©Xradio Technology Co.,Ltd. All Rights Reserved.

This documentation is the original work and copyrighted property of Xradio Technology Co.,Ltd ("Xradio"). No part of this document may be reproduced, modify, publish or transmitted in any form or by any means without prior written consent of Xradio.

Trademarks and Permissions

Xradio and the Xradio logo (incomplete enumeration) are trademarks of Xradio Technology Co.,Ltd. All other trademarks, trade names, product or service names mentioned in this document are the property of their respective owners.

Important Notice and Disclaimer

The purchased products, services and features are stipulated by the contract made between Xradio Technology Co.,Ltd ("Xradio") and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Please read the terms and conditions of the contract and relevant instructions carefully before using, and follow the instructions in this documentation strictly. Xradio assumes no responsibility for the consequences of improper use (including but not limited to overvoltage, overclock, or excessive temperature).

The information in this document is provided just as a reference or typical applications, and is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents. Xradio is not responsible for any damage (including but not limited to indirect, incidental or special loss) or any infringement of third party rights arising from the use of this document. All statements, information, and recommendations in this document do not constitute a warranty or commitment of any kind, express or implied.

No license is granted by Xradio herein express or implied or otherwise to any patent or intellectual property of Xradio. Third party licences may be required to implement the solution/product. Customers shall be solely responsible to obtain all appropriately required third party licences. Xradio shall not be liable for any licence fee or royalty due in respect of any required third party licence. Xradio shall have no warranty, indemnity or other obligations with respect to third party licences.