CLAIMS

1. A compound of the following formula:

5 or the pharmaceutically acceptable salts thereof, wherein Y¹, Y², Y³ and Y⁴ are independently selected from N. CH or C(L);

R¹ is H, C $_{1-8}$ alkyl, C $_{2-8}$ alkenyl, C $_{2-8}$ alkynyl, C $_{3-7}$ cycloalkyl, C $_{1-8}$ alkoxy, halo-substituted C $_{1-8}$ alkoxy, C $_{1-8}$ alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C $_{1-8}$ alkyl)amino, C $_{1-4}$ alkyl-C(=O)-N(R³)- or C $_{1-4}$ alkyl-S(O)m-N(R³)-, wherein said C $_{1-8}$ alkyl, C $_{2-8}$ alkenyl and C $_{2-8}$ alkynyl are optionally substituted with halo, C $_{1-8}$ alkyl, hydroxy, oxo, C $_{1-4}$ alkoxy-, C $_{1-4}$ alkyl-S(O)m-, C $_{3-7}$ cycloalkyl-, cyano, indanyl, 1,2,3.4-tetrahydronaphtyl, 1,2-dihydronaphtyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-C, Q¹-S(O)m-, Q¹-C $_{1-4}$ alkyl-O-, Q¹-C $_{1-4}$ alkyl-S(O)m-, Q¹-C $_{1-4}$ alkyl-C(O)-N(R³)-, $_{1-6}$ 0-1,4-alkyl-N(R³)- or C $_{1-4}$ 1-4-alkyl-C(O)-N(R³)-;

- 15 Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkyly-O(O=)C-, alkylsulfonyl, aminosulfonyl, C₁₋₄alkyl-C(O=)C-, HO(O=)C-. C₁₋₄alkyl-O(O=)C-.
- 20 R³N(R⁴)C(=O)-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- or NH₂(HN=)C-; A is a 5-6 membered monocyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 3 substituents selected from halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxyl, C₁₋₄ alkoxyl, halo-substituted C₁₋₄ alkoxyl, C₁₋₄ alkoxyl,
- 25 di- $(C_{1.4}$ alkyl)amino, cyano, HO- $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy- $C_{1.4}$ alkyl, $C_{1.4}$ alkylsulfonyl, aminosulfonyl, acetyl, $R^3N(R^4)C(=0)$ -, HO(0=)C-, $C_{1.4}$ alkyl-O(0=)C-, $C_{1.4}$ alkylsulfonylamino, $C_{3.7}$ cycloalkyl, $R^3C(=0)N(R^4)$ and $NH_2(HN=)C$ -;

15

20

m is 0, 1 or 2;

B is halo-substituted C₁₋₆ alkylene, C₃₋₇ cycloalkylene, C₂₋₆ alkenylene, C₂₋₆ alkynylene, -O-C₁₋₅ alkylene, C₁₋₂ alkylene-O-C₁₋₂ alkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O, S, N-OR⁵ or a covalent bond;

5 R² is H, C₁₋₄ alkyl, OH or C₁₋₄ alkoxy;

Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₁₋₄ alkenyl, C₁₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkyx, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄alkyl-O(O=

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, NH₂(HN=)C-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

 R^3 and R^4 are independently selected from H and C_{1-4} alkyl;

 R^5 is H, C_{1-4} alkyl, C_{1-4} alkyl-(O=)C- or C_{1-4} alkyl-O-(O=)C-; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 5-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₁₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkyl-(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, C₁₋₄ alkyl-C(=O)N-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, C₁₋₄ alkyl-C(=O)NH- or NH₂(HN=)C-.

2. A compound according to Claim 1, wherein

25

Y¹, Y², Y³, and Y⁴ are independently selected from N, CH and C(L);

 R^1 is H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-7} cycloalkyl, C_{1-8} alkoxy, halo-substituted C_{1-8} alkoxy, C_{1-8} alkyl-S(O)m-, Q^1 -, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di- $(C_{1-8}$ alkyl)amino, C_{1-4} alkyl-C(=O)-N(R^3)-, or C_{1-4} alkyl-S(O)m-N(R^3)-, wherein said C_{1-8} alkyl, C_{2-8} alkenyl and C_{2-8} alkynyl are optionally substituted with halo, C_{1-3} alkyl, hydroxy, oxo, C_{1-4} alkoxy-, C_{1-4} alkyl-S(O)m-, C_{3-7} cycloalkyl-, cyano, indanyl, C_{1-8} alkyl-dronaphtyl, C_{1-8} pyrrolidinyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopyrolidinyl, oxopyrolidinyl, C_{1-8} alkyl-C(=O)-N(C_{1-8} al

- Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkyxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O)C-,
- R³N(R⁴)C(=O)-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- or NH₂(HN=)C-, A is a 5-6 membered monocyclic aromatic ring optionally containing up to 2 heteroatoms selected from O, N, and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 2 substituents selected from halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy and halo-substituted C₁₋₄ alkoxy;
- 20 B is C₃₋₇ cycloalkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl; W is NH, N-C₁₋₄ alkyl, O or N-OH;

R2 is H or C1_4 alkyl;

- Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C_{1-4} alkyl, halo-substituted C_{1-4} alkyl, C_{1-4} alkenyl, hydroxy, C_{1-4} alkoxy, nitro, amino, cyano, HO-C $_{1-4}$ alkyl, C_{1-4} alkylsulfonyl, aminosulfonyl, C_{1-4} alkyl-C(=0)-, $R^3C(=0)N(R^4)$ -, HO(O=)C-, C_{1-4} alkyl-O(=)-C-, C_{1-4} alkylsulfonylamino, C_{1-4} alkyl-O(=)-C-, O(=)-NH-, O(=)-C-, O(=
- 30 alkyl)amino, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl-O(0=)C-, C₁₋₄ alkyl-O(0=)C-, C₁₋₄ alkyl-O(0=)C-, C₁₋₄

alkylsulfonylamino, C_{3-7} cycloalkyl, $R^3C(=0)N(R^4)$ -, $R^3N(R^4)C(=0)$ -, $R^3N(R^4)S(0)m$ -, Q^2 -, Q^2 -C(=0)-, Q^2 -O-, Q^2 -O-, Q^2 -O-, Q^2 -O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

5 m is 0 or 2:

10

15

R3 and R4 are independently selected from H and C1-4 alkyl; and

 Q^2 is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 8-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C_{1-4} alkyl, halo-substituted C_{1-4} alkyl, C_{1-4} alkenyl, C_{1-4} alkynyl, hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkyl, C_{1-4} alkylthio, mono- or di- $(C_{1-4}$ alkyl)amino, cyano, HO- C_{1-4} alkyl, C_{1-4} alkyl- C_{1-4} alkyl, C_{1-4} alkyl- C_{1-4}

3. A compound according to Claim 2, wherein

Y1, Y2, Y3, and Y4 are independently selected from N. CH and C(L):

 $\rm R^{1}$ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁₋₈ alkyl)amino, wherein said C₁₋₈ alkyl is optionally substituted with halo, C¹⁻³ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₅

- 7 cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(O)-, Q¹-O-, Q¹-S-, Q¹-C_{1-\(\delta\)} alkyl-O-, or C_{1-\(\delta\)} alkyl-C(O)-N(R³)-;
 - Q^1 is a 5-12 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S, and is optionally substituted with halo, C_{1-4} alkyl, C_{1-4} alkylsulfonyl and C_{1-4} alkyl(C(=O)-;
- 25 A is 5-6 membered monocyclic aromatic ring optionally substituted with halo, C₁₋₄ alkyl or C₁₋₄ alky
 - B is C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3} alkyl; W is NH, N- C_{1-4} alkyl, O or N-OH;

R2 is H or C1-4 alkyl;

30 Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₁₋₄

alkenyl, C_{1-4} alkoxy, nitro, amino, cyano, $R^3C(=O)N(R^4)$ -, C_{1-4} alkyl-O(O=)C-, Q^2 -S(O)m-, Q^2 -O-, Q^2 -N(R^3)- or Q^2 -:

 $\label{eq:local_local$

aminosulfonyl, C_{1-4} alkylC(=0)-, HO(O=)C-, C_{1-4} alkyl-O(O=)C-, C_{1-4} alkylsulfonylamino, C_{3-7} cycloalkyl, $R^3C(=0)N(R^4)$ -, $R^3N(R^4)C(=0)$ -, $R^3N(R^4)S(O)$ m-, Q^2 -, Q^2 -, Q^2 -, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms:

10 m is 0 or 2:

 R^3 and R^4 are independently selected from H and C $_{1\text{--}4}$ alkyl; and

Q² is a 5 or 6 membered monocyclic aromatic ring, or a 8-12 membered tricyclic ring containing up to 3 heteroatoms selected from N and S, wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.

4. A compound according to Claim 3, wherein

Y1, Y2, Y3 and Y4 are independently selected from N, CH and C(L);

 $\rm R^1$ is H, $\rm C_{1-8}$ alkyl, $\rm C_{2-8}$ alkenyl, $\rm C_{2-8}$ alkynyl or $\rm C_{3-7}$ cycloalkyl, wherein said $\rm C_{1-8}$ alkyl is optionally substituted with halo, $\rm C_{1-3}$ alkyl, hydroxy, oxo, $\rm C_{1-4}$ alkoxy-, $\rm C_{1-4}$ alkyl-S(O)m-, $\rm C_{3-7}$ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, $\rm Q^{1-}$, $\rm Q^{1-}$

 $20 \qquad \text{C(=O)-, Q1-O-, Q1-S-, Q1-C$_{1-4}$ alkyl-O-, or C$_{\tilde{1}$-4}$ alkyl-C(O)-N(R3)-;}$

 ${\sf Q}^1$ is a 5 or 6 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S;

A is 5-6 membered monocyclic aromatic ring system optionally substituted with halo or C₁₋₄ alkvl:

25 B is or C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3}

W is NH, N-C1_4 alkyl, O or N-OH;

R2 is H or C1-4 alkyl;

Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₁₋₄ alkyl

Q2-O-, Q2-N(R3)- or Q2-;

L is halo, C_{1-4} alkyl, halo-substituted C_{1-4} alkyl , hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkoxy, cyano, HO- C_{1-4} alkyl, C_{1-4} alkylsulfonyl, aminosulfonyl, C_{1-4} alkyl(=0), HO(=0)- C_{1-4} alkyl-(=0)

R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;
m is 0 or 2.

R3 and R4 are independently selected from H and C1_A alkyl; and

- 10 Q² is 5 or 6 membered monocyclic aromatic ring or a 8-12 membered tricyclic ring optionally containing 1 sulfur atom wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.
 - 5. A compound according to Claim 4, wherein
 - Y1, Y2, Y3 and Y4 are independently selected from N, CH and C(L);
- 15 R¹ is C₁₋₅ alkyl or C₃₋₇ cycloalkyl, wherein said C₁₋₅ alkyl is optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, or C₁₋₄alkyl-C(O)-N(H)-:
 - Q¹ is 5-12 membered monocyclic aromatic ring system optionally containing up to 2 heteroatoms selected from N and S,
- 20 A is 5-6 membered monocyclic aromatic ring system;
 B is C₁₋₃ alkylene optionally substituted with C₁₋₃ alkyl;

W is NH, N-C1-2 alkyl or O;

R² is H:

- Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, nitro, R³C(=0)N(R⁴)- or Q²-;
 - L is halo, $C_{1.4}$ alkyl, halo-substituted $C_{1.4}$ alkyl , hydroxy, $C_{1.4}$ alkoxy, halo-substituted $C_{1.4}$ alkoxy, cyano, HO- $C_{1.4}$ alkyl, acetyl, $R^3N(R^4)C(=0)$ -, $R^3N(R^4)S(O)m$ -, Q^2 -, Q^2 -C(=O)-, or two adiacent L groups are joined together to form a methylenedioxy group;
 - R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and
 - Q2 is 5 or 6 membered monocyclic aromatic ring system.
 - 6. A compound according to Claim 5, wherein
 - y1, y2, y3 and y4 are independently selected from N, CH and C-L;

 R^1 is C_{1-5} alkyl optionally substituted with C_{1-3} alkyl, hydroxy, oxo, 5 or 6 membered monocyclic aromatic ring, wherein said 5 or 6 membered monocyclic aromatic ring is containing 1 or 2 heteroatoms selected from N and S, or C_{1-4} alkyl-C(O)- $N(R^3)$ -;

A is phenyl;

5 B is C₁₋₂ alkylene optionally substituted with methyl;

W is NH. N-CH₃ or O:

R² is H:

10

1.5

25

30

Z is 5-10 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-10 membered monocyclic aromatic ring is optionally substituted with chloro, bromo, methyl, nitro, CH₃C(=O)NH-, tBuC(=O)NH- or phenyl; and

L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH2, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.

7. A compound according to Claim 6, wherein

Y¹, Y², Y³ and Y⁴ are independently selected from N, CH and C-L;

 R^1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

20 B is ethylene or propylene;

W is NH, N-CH3 or O;

R2 is H:

Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and

L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=0)NH₂, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are ioined together to form a methylenedioxy group.

8. A compound according to Claim 7, wherein

Y1, Y2, Y3 and Y4 are selected from the group consisting of

- a) Y1 and Y3 are C(L), Y2 is CH and Y4 is N;
- b) Y^1 is CH, Y^2 and Y^3 are C(L) and Y^4 is N:
- c) Y1, Y2 and Y3 are C(L) and Y4 is N;

- d) Y1 and Y3 are C(L), Y2 is N and Y4 is CH;
- e) Y1 is C(L) and Y2, Y3 and Y4 are CH;
- f) Y1, Y3and Y4 are CH, and Y2 is C(L);
- g) Y1, Y2 and Y3 are CH, and Y4 is C(L);
- h) Y¹ and Y² are C(L), and Y³ and Y⁴ are CH;
 - i) Y1 and Y3 are C(L), and Y2 and Y4 are CH;
 - j) Y1 and Y4 are CH, and Y2 and Y3 are C(L);
 - k) Y1 and Y2 are CH, Y3 is C(L) and Y4 is N;
 - I) Y1 and Y3 are CH, Y2 is C(L) and Y4 is N;
- 10 m) Y¹, Y², Y³ and Y⁴ are CH:
 - n) Y^1 and Y^2 are C(L), Y^3 is CH and Y^4 is N;
 - o) Y1, Y2 and Y4 are CH, and Y3 is C(L);
 - p) Y^1 and Y^2 are C(L), Y^3 is N and Y^4 is CH;
 - g) Y1 and Y3 are C(L), and Y2 and Y4 are N:
 - 5 r) Y¹ is C(L), Y² and Y³ are CH, and Y⁴ is N; and
 - s) Y2 is C(L), Y1 and Y3 are CH, and Y4 is N;
 - R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

 A is phenyl:
- 20 B is ethylene or propylene;
 - W is NH, N-CH3 or O;
 - R² is H;
- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiadiazolyl, and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and ohenyl; and
 - L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 9. A compound according to Claim 8, wherein
 - Y¹, Y², Y³ and Y⁴ are selected from the group consisting of
 - a) Y^1 and Y^3 are C(L), Y^2 is CH and Y^4 is N;
 - b) Y^1 is CH, Y^2 and Y^3 are C(L) and Y^4 is N;

- c) Y1, Y2 and Y3 are C(L) and Y4 is N;
- d) Y1 and Y3 are C(L), Y2 is N and Y4 is CH:
- e) Y1 is C(L) and Y2, Y3 and Y4 are CH;
- f) Y1, Y3 and Y4 are CH, and Y2 is C(L):
- 5 g) Y¹, Y² and Y³ are CH, and Y⁴ is C(L);
 - h) Y1 and Y2 are C(L), and Y3 and Y4 are CH;
 - i) Y1 and Y3 are C(L), and Y2 and Y4 are CH; and
 - i) Y1 and Y4 are CH, and Y2 and Y3 are C(L):
 - R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl:
 - A is phenyl:

- B is ethylene or propylene;
- W is NH, N-CH3 or O;
- R² is H:
- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
 - L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH2,
- 20 trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
 - 10. A compound according to Claim 1 selected from
 - 3-(4-{2-[([(5-chloro-1,3-dimethyl-1h-pyrazol-4-yl)sulfonyl]amino)carbonyl)amino]ethyl)phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- $25 \quad 3-(4-\{2-\{([\{(2,4-dimethyl-1,3-thiazol-5-yl)sulfonyl]amino\}carbonyl)amino]ethyl)phenyl)-2-ethyl-5,7-dimethyl-3<math>H$ -imidazo[4,5-D]pyridine;
 - N-[5-([[(2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl}amino)carbonyl] amino}sulfonyl)-1,3,4-thiadiazol-2-ylacetamide:
 - 6-ethyl-5- (4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-5H-
- 30 [1,3]dioxolo[4,5-f]benzimidazole;
 - $6-chloro-5-cyano-2-ethyl-1-(4-\{2-[\{\{[(4-methylphenylsulfonyl]amino\}carbonyl)amino]ethyl)phenyl)-1$H-benzimidazole;$
 - 2-ethyl-5,7-dimethyl-3-(4-{2-[methyl({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 35 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]

- propyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]-1-methylethyl (4-methylphenyl)sulfonylcarbamate;
- 5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-propyl-
- 5 3H-imidazo[4,5-b]pyridine;
 - 2-isopropyl-5,7-dimethyl-3-(4-(2-[([(4-methylphenyl)sulfonyl]amino)carbonyl)amino] ethyl)phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
 - 2-butyl-5,7-dimethyl-3-(4-[2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 10 2-isobutyl-5,7-dimethyl-3-(4-{2-[(([(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl)phenyl)-3H-imidazo[4,5-b]pyridine;
 - 5,7-dimethyl-3-(4-[2-[([(4-methylphenyl)sulfonyl]amino]carbonyl)amino]ethyl}phenyl}-2-neopentyl-3*H*-imidazo[4,5-*b*]pyridine;
- 5,7-dimethyl-3-(4-[2-[([[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-[2-(1,3-thiazol-2-yl)ethyl]-3H-imidazo[4,5-b]pyridine;
 - 3-{4-[2-{{[(4-biphenylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
 - $2-ethyl-5, 7-dimethyl-3-(4-[2-([(1-naphthylsulfonyl)amino]carbonyl)amino)ethyl]phenyl)-3 \emph{H-imidazo}[4,5-\emph{b}]pyridine;$
- 20 2-ethyl-5,7-dimethyl-3-{4-[2-{{[(2-naphthylsulfonyl)amino]carbonyl}amino)ethyl]phenyl]-3H-imidazo[4,5-b]pyridine;
 - 2-ethyl-5, 7-dimethyl-3-(4-[2-[([(2-thienyl)sulfonyl]amino]carbonyl)amino]ethyl)phenyl)-3 H-imidazo[4,5-b]pyridine;
 - $3-(4-\{2-[(\{[(5-chloro-2-thienyl]sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-inches a sulfative and the sul$
- 25 dimethyl-3H-imidazo[4,5-b]pyridine;
 - $3-(4-\{2-[([[(4,5-dichloro-2-thienyt])sulfonyt]amino\}carbonyt])amino]ethyt])+2-ethyt-5,7-dimethyt-3$H-imidazo[4,5-b]pyridine;$
 - 3-(4-[2-([[(1-benzothien-2-ylsulfonyl)amino]carbonyl]amino)ethyl]phenyl]-2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridine;
- 30 3-(4-(2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridine;
 - 2-ethyl-5,6-dimethyl-3-(4-[2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 5,6-dichloro-2-ethyl-3-(4-[2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-35 3H-imidazo[4,5-b]pyridine;
- 5-chloro-2-ethyl-7-methyl-3-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-3*H*-imidazo[4,5-b]pyridine;

- 6-cyano-2-ethyl-5,7-dimethyl-3-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl)phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-4,6-dimethyl-1-(4-[2-[([[(4-methylphenyl)sulfonyl]amino)carbonyl)amino]ethyl}phenyl)-1H-imidazo[4,5-c|pyridine;
- 5 4-methyl-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl)phenyl)benzimidazole;
 - 7-chloro-2-ethyl-3-(4-{2-[([[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
 - 5-methoxy-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]
- 10 ethyl}phenyl)benzimidazole;
 - 5-acetyl-2-ethyl-3-(4-{2-[(([(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
 - 5-cyano-2-ethyl-1-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1*H*-benzimidazole;
- 15 2-ethyl-5-hydroxy-1-(4-[2-[([[(4-methylphenyl)sulfonyl]amino)carbonyl)amino]ethyl)phenyl)-1H-benzimidazole;
 - 2-ethyl-4,5-dimethyl-1-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1H-benzimidazole;
 - $4,6-dimethyl-2-ethyl-3-(4-\{2-[(\{[(4-methylphenyl)sulfonyl]amino\}carbonyl)amino]\\$
 - ethyl}phenyl)benzimidazole;
 - 5,6-dimethyl-1-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1*H*-benzimidazole:
 - 5,6-dichloro-2-ethyl-1-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1H-benzimidazole;
- 25 2-[4-(5,6-dichloro-2-ethyl-1*H*-benzimidazol-1-yl)phenyl]ethyl-(4
 - methylphenyl)sulfonylcarbamate;
 - 6-chloro-5-trifluoromethyl-1-(4-[2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-benzimidazole;
 - 4-(6-chloro-2-ethyl-5-trifluoromethyl-1H-benzimidazol-1-yl)phenethyl-(4-
- 30 methylphenyl)sulfonylcarbamate;
 - $\label{lem:condition} 5-\text{chloro-6-methyl-1-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl)}-1$-$henzimidazole;$
 - 6-chloro-2-ethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1H-benzimidazole-5-carboxamide;
- 35 2-ethyl-3-(4-[2-([((3-[nydroxy(oxido)amino]phenyl)sulfonyl)amino] carbonyl)amino)ethyl]phenyl}-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine; 3-(4-(2-[(([(4-chlorophenyl)sulfonyl]amino)carbonyl)amino]ethyl}-2-ethyl-5,7-dimethyl-

- 3H-imidazo[4,5-b]pyridine;
- $n-[4-(\{[(\{2-[4-(2-ethyl-5,7-dimethyl-3\mathit{H}-imidazo[4,5-b]pyridin-3-yl)phenyl]ethyl\}amino)]$ carbonyl]amino}sulfonyl)phenyl]-2,2-dimethylpropanamide;
- 3-(4-{2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-
- 3H-imidazo[4,5-b]pyridine;
 - $3-(4-\{2-[(\{[(3-chlorophenyl]sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-dimethyl-2-ethyl-6,7-dimethyl-6,7-dime$ 3H-imidazo[4,5-b]pyridine;
 - 3-(4-{2-[({[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7dimethyl-3H-imidazo[4,5-b]pyridine;
- 10 3-(4-{2-[([(5-bromo-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7dimethyl-3H-imidazo[4,5-b]pyridine;
 - 3-(4-{2-[({[(2-bromophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridine;
 - 3-{4-[2-({[({4-chloro-3-nitrophenyl}sulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7-
- 15 dimethyl-3H-imidazo[4,5-b]pyridine;
 - 2-[4-(2-ethyl-4,6-dimethyl-1H-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4methylphenyl)sulfonylcarbamate;
 - 2-{4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-b]pyridin-3-yl]phenyl}ethyl (4methylphenyl)sulfonylcarbamate;
 - N-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-b]pyridin-3
 - yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
 - $N-\{[(2-\{4-[2-ethyl-5-(1-hydroxy-1-methylethyl)-1H-benzimidazol-1-methylethyl)-1H-benzimidazol-1-methylethyl)-1H-benzimidazol-1-methylethyl$
 - yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
 - 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-
- 25 1H-benzimidazole-5-carboxamide;
 - 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl (2chlorophenyl)sulfonylcarbamate;
 - 2-{5-[6-chloro-2-ethyl-5-(trifluoromethyl)-1H-benzimidazol-1-yl]-2-pyridinyl}ethyl (4methylphenyl)sulfonylcarbamate;
- 30 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl (5-methyl-2pyridinyl)sulfonylcarbamate;
 - 2-{4-[6-chloro-2-(1H-pyrazol-3-yl)-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl (4methylphenyl)sulfonylcarbamate;
 - 2-{4-[6-chloro-2-(4-pyridinyl)-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl (4-
- methylphenyl)sulfonylcarbamate; 2-{4-[5-(aminocarbonyl)-6-chloro-2-ethyl-1H-benzimidazol-1-yl]phenyl}ethyl (4methylphenyl)sulfonylcarbamate;

- $$N-{((2-(4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1H-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl)-4-methylbenzenesulfonamide; $2-(4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1H-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate; $$$
- 5 N-[((2-[4-(2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-3-yl)phenyl]ethyl}amino)carbonyl]-2-thiophenesulfonamide;
 - 2-[4-(4,6-dimethyl-2-phenyl-1*H*-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
 - 2-[4-(2-butyl-4,6-dimethyl-1H-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4-
- 10 methylphenyl)sulfonylcarbamate;
 - 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (5-chloro-1,3-dimethyl-1*H*-pyrazol-4-yl)sulfonylcarbamate;
 - 2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-c]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 15 2-[4-(6-chloro-2-(2-pyridinyl)-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
 - $\label{eq:condition} (1S)-2-(4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl)-1-methylethyl (4-methylphenyl)sulfonylcarbamate;$
 - 2-{6-[6-chloro-2-ethyl-5-(trifluoromethyl)-1H-benzimidazol-1-yl]-3-pyridinyl)ethyl (4-methylphenyl)sulfonylcarbamate;
 - N-[[(2-{4-[6-chloro-2-(1-hydroxy-1-methylethyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl]ethyl]amino]carbonyl]-4-methylbenzenesulfonamide;
 N-[[(2-{4-[5,7-dimethyl-2-(1*H*-pyrazol-3-yl)-3*H*-imidazo[4,5-b]pyridin-3-yl]phenyl]ethyl]amino]carbonyl]-4-methylbenzenesulfonamide;
- 25 2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-c]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
 - 2-{4-[2-[1-(acetylamino)-1-methylethyl]-6-chloro-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 6-chloro-2-ethyl-1-(4-(2-[methyl({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] 30 ethyl]phenyl)-1*H*-benzimidazole-5-carboxamide; and selts thereof.
 - 11. A compound according to Claim 1 selected from
 - 6-ethyl-5-(4-(2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-5*H*-[1,3]dioxolo[4,5-f]benzimidazole;
- 35 6-chloro-5-cyano-2-ethyl-1-(4-{2-[([[(4-methylphenylsulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1H-benzimidazole;
 - 2-[4-(2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-3-yl)phenyl]-1-methylethyl (4-

methylphenyl)sulfonylcarbamate;

- 5,7-dimethyl-3-(4-{2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-[2-(1,3-thiazol-2-yl)ethyl]-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-
- 5 imidazo[4,5-b]pyridine;
 - 3-(4-(2-[([(2-chlorophenyl)sulfonyl]amino]carbonyl)amino]ethyl]phenyl)-2-ethyl-5,7-dimethyl-3 H-imidazo[4,5-b]pyridine;
 - 2-ethyl-5,6-dimethyl-3-(4-(2-[([(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 10 5,6-dichloro-2-ethyl-3-(4-[2-[([(4-methylphenyl)sulfonyl]amino)carbonyl)amino]ethyl)phenyl)-3H-imidazo[4,5-b]pyridine;
 - 2-ethyl-4,6-dimethyl-1-(4-(2-[(([(4-methylphenyl)sulfonyl]amino)carbonyl)amino]ethyl}phenyl)1H-imidazo[4,5-c]pyridine;
 - 5-methoxy-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]
- 15 ethyl}phenyl)benzimidazole;
 - 5-acetyl-2-ethyl-3-(4-{2-[(([(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)benzimidazole;
 - 5-cyano-2-ethyl-1-(4-[2-[([[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1H-benzimidazole;
- 20 2-ethyl-5-hydroxy-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1H-benzimidazole;
 - 2-ethyl-4,5-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1*H*-benzimidazole;
 - 4-(6-chloro-2-ethyl-5-trifluoromethyl-1H-benzimidazol-1-yl)phenethyl-(4-
- 25 methylphenyl)sulfonylcarbamate;
 - $\label{lem:condition} 6-chloro-2-ethyl-1-(4-(2-[(\{[(4-methylphenyl)sulfonyl]amino\}carbonyl)amino]ethyl)phenyl)-1 \textit{H-benzimidazole-5-carboxamide};$
 - 2-[4-(2-ethyl-4,6-dimethyl-1*H*-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 30 2-(4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-b]pyridin-3-yl]phenyl)ethyl (4-methylphenyl)sulfonylcarbamate;
 - N-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-b]pyridin-3-
 - yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
 - N-{[(2-{4-[2-ethyl-5-(1-hydroxy-1-methylethyl)-1H-benzimidazol-1-
- 35 yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
 - 2-ethyl-4.6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1*H*-benzimidazole-5-carboxamide:

- 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (2-chlorophenyl)sulfonylcarbamate:
- $2-\{5-[6-chloro-2-ethyl-5-(trifluoromethyl)-1\\ H-benzimidazol-1-yl]-2-pyridinyl\}ethyl\ (4-methylphenyl)sulfonylcarbamate;$
- 5 2-(4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl)ethyl (5-methyl-2-pyridinyl)sulfonylcarbamate;
 - 2-(4-[6-chloro-2-(1*H*-pyrazol-3-yl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[6-chloro-2-(4-pyridinyl)-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl (4-
- 10 methylphenyl)sulfonylcarbamate;
 - 2-{4-[5-(aminocarbonyl)-6-chloro-2-ethyl-1H-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
 - N-{[(2-{4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1H-benzimidazol-1-
 - yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 15 2-(4-[6-chloro-2-ethyl-5-(methylsulfonyl)-1H-benzimidazol-1-yl]phenyl)ethyl (4-methylphenyl)sulfonylcarbamate;
 - $\label{eq:N-loss} $$N-[(2-[4-(2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-3-yl)phenyl]ethyl} amino) carbonyl]-2-thiophenesulfonamide;$
 - 2-[4-(4,6-dimethyl-2-phenyl-1H-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4-
- 20 methylphenyl)sulfonylcarbamate;
 - 2-[4-(2-butyl-4,6-dimethyl-1*H*-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate:
 - 2-{4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl)ethyl (5-chloro-1,3-dimethyl-1*H*-pyrazol-4-yl)sulfonylcarbamate;
- 25 2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-c]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
 - 2-{4-[6-chloro-2-(2-pyridinyl)-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
 - $(1S)-2-(4-[6-chloro-2-ethyl-5-(trifluoromethyl)-1\\ H-benzimidazol-1-yl]phenyl]-1-methylethyl (4-methylphenyl)sulfonylcarbamate;$
 - 2-{6-[6-chloro-2-ethyl-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]-3-pyridinyl}ethyl (4-methylphenyl)sulfonylcarbamate;
 - $N-\{[(2-\{4-[6-chloro-2-(1-hydroxy-1-methylethyl)-5-(trifluoromethyl)-1H-benzimidazol-1-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;$
- 35 N-{[(2-{4-[5,7-dimethyl-2-(1H-pyrazol-3-yl)-3H-imidazo[4,5-b]pyridin-3-yl]phenyl]ethyl)amino]carbonyl]-4-methylbenzenesulfonamide;
 2-{4-[2-(1,1-dimethylethyl)-4,8-dimethyl-1H-imidazo[4,5-c]pyridin-1-yl]phenyl]ethyl (4-

15

20

25

methylphenyl)sulfonylcarbamate:

2-{4-[2-[1-(acetylamino)-1-methylethyl]-6-chloro-5-(trifluoromethyl)-1*H*-benzimidazol-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;

6-chloro-2-ethyl-1-(4-[2-[methyl([[(4-methylphenyl)sulfonyl]amino]carbonyl)amino] 5 ethyl)phenyl)-1*H*-benzimidazole-5-carboxamide; and salts thereof.

- 12. A pharmaceutical composition for the treatment of a disorder or condition mediated by prostaglandin in a mammal including a human, which comprises an effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 13. A method for the treatment of a medical condition in which prostaglandins are implicated as pathogens, in a mammalian subject including a human, comprising administering to a mammal in need of such treatment an effective amount of a compound of. Claim 1 and a pharmaceutically acceptable carrier.
- 14. A pharmaceutical formulation comprising a compound of Claim 1, a pharmaceutically acceptable carrier and, optionally, one or more other pharmacologically active ingredients.
 - 15. A compound of the following formula:

or salts thereof

wherein Y¹, Y², Y³ and Y⁴ are independently selected from N, CH or C(L);

R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, halo-substituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m-, Q¹-, amino, mono- or di-(C₁₋₈ alkyl)amino, C₁₋₄alkyl-C(=O)-N(\mathbb{R}^3)- or C₁₋₄alkyl-S(O)m-N(\mathbb{R}^3)-, wherein said C₁₋₈ alkyl, C₂₋₈ alkenyl and C₂₋₈ alkynyl are optionally substituted with halo, C₁₋₃ alkyl, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S(O)m-, Q¹-C₁₋₄alkyl-O-, Q¹-C₁₋₄alkyl-S(O)m-, Q¹-C₁₋₄alkyl-C(O)-N(\mathbb{R}^3)-, Q¹-C₁₋₄alkyl-C(O)-N(\mathbb{R}^3)-;

30 Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁₋₄ alkyl,

halo-substituted C $_{1-4}$ alkyl, hydroxy, C $_{1-4}$ alkoxy, halo-substituted C $_{1-4}$ alkoxy, C $_{1-4}$ alkylthio, nitro, amino, mono- or di-(C $_{1-4}$ alkyl)amino, cyano, HO-C $_{1-4}$ alkyl, C $_{1-4}$ alkoy, C $_{1-4}$ alkyl, C $_{1-4}$ alkyloulfonyl, aminosulfonyl, C $_{1-4}$ alkylC(=O)-, HO(O=)C-, C $_{1-4}$ alkyl-O(O=)C-,

 $R^3N(R^4)C(=0)$ -, C_{1-4} alkylsulfonylamino, C_{3-7} cycloalkyl, $R^3C(=0)N(R^4)$ - or $NH_2(HN=)C$ -;

- A is a benzene ring optionally substituted with up to 3 substituents or pyridine ring optionally substituted with up to 3 substitutents, wherein said substituents selected from halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkyl, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, acetyl, R³N(R⁴)C(=O)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄
- alkylsulfonylamino, C_{3-7} cycloalkyl, $R^3C(=0)N(R^4)$ and $NH_2(HN=)C$ -;

 B is C_{2-6} alkylene, C_{3-7} cycloalkylene, C_{2-6} alkenylene, or C_{2-6} alkynylene optionally substituted with C_{1-3} alkyl;

W is NH or O:

5

P is H, a protecting group, or Q3-OC(=O)-;

- 15 Q³ is a 6-10 membered monocyclic or bicyclic aromatic ring optionally substituted with halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, cyano, C₁₋₄ alkylsulfonyl, C₁₋₄alkylC(=O)-, HO(O=)C-, or C₁₋₄alkyl-O(O=)C-;
 - L is halo, C_{1-4} alkyl, halo-substituted C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkoxy, C_{1-4} alkylthio, nitro, amino, mono- or di- $(C_{1-4}$ alkyl)amino, cyano, $HO-C_{1-4}$ alkyl, C_{1-4} alkyl, $C_{$
- 4 alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkylC(=0)-, HO(0=)C-, C₁₋₄alkyl-O(0=)C-, C₁₋₄alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=0)N(R⁴)-, NH₂(HN=)C-, R³N(R⁴)C(=0)- or R³N(R⁴)S(O)m-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;
- 25 m is 0, 1 or 2; and

R3 and R4 are independently selected from H and C₁₋₄ alkyl.

16. A compound of the following formula:

(III)

or salts thereof

wherein Y1, Y2, Y3 and Y4 are independently selected from N, CH or C(L);

 $\rm R^1~is~H,~C_{1-8}~alkyl,~C_{2-8}~alkenyl,~C_{2-8}~alkynyl,~C_{3-7}~cycloalkyl,~C_{1-8}~alkoxy,~halo-substituted$

 C_{1-R} alkoxy, C_{1-R} alkyl-S(O)m-, Q^1 -, amino, mono- or di-(C_{1-R} alkyl)amino, C_{1-A} alkyl-C(=O)-

 $N(R^3)$ - or C_{1-4} alkyl-S(O)m- $N(R^3)$ -, wherein said C_{1-8} alkyl, C_{2-8} alkenyl and C_{2-8} alkynyl are

optionally substituted with halo, C₁₋₃ alkyl, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-,

cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, Q1-, Q1-C(=O)-, Q1-O-, Q1-

 $S(O)m-, \ Q^1-C_{1-4}alkyl-O-, \ Q^1-C_{1-4}alkyl-S(O)m-, \ Q^1-C_{1-4}alkyl-C(O)-N(R^3)-, \ Q^1-$

10

 $N(R^3)$ - or C_{1-4} alkyl-C(O)- $N(R^3)$ -;

Q1 is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4

heteroatoms selected from O, N and S, and is optionally substituted with halo, C1-4 alkyl, ${\it halo-substituted} \ C_{1-4} \ {\it alkyl}, \ {\it hydroxy}, \ C_{1-4} \ {\it alkoxy}, \ {\it halo-substituted} \ C_{1-4} \ {\it alkoxy}, \ C_{1-4} \ {\it alkylthio}, \ {\it hydroxy}, \ {\it column 1-4} \ {\it alkoxy}, \ {\it column 1-4} \ {\it column 1$

nitro, amino, mono- or di-(C1-4alkyl)amino, cyano, HO-C1-4 alkyl, C1-4 alkoxy-C1-4alkyl, C1-1 alkyl, C1-4 alkoxy-C1-4alkyl, C1-1 alkyl, C

alkylsulfonyl, aminosulfonyl, $C_{1-4}alkylC(=O)-$, HO(O=)C-, $C_{1-4}alkyl-O(O=)C-$,

 $R^3N(R^4)C(=0)$ -, C_{1-4} alkylsulfonylamino, C_{3-7} cycloalkyl, $R^3C(=0)N(R^4)$ - or $NH_2(HN=)C$ -;

A is a benzene ring optionally substituted with up to 3 substituents or pyridine ring optionally

substituted with up to 3 substituents, wherein said substituents selected from halo, C₁₋₄ alkyl, halo-substituted C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkoxy, C_{1-4} alkylthio,

20 nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋

₄ alkylsulfonyl, aminosulfonyl, acetyl, R³N(R⁴)C(=O)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄

alkylsulfonylamino, C3.7 cycloalkyl, R3C(=0)N(R4)- and NH2(HN=)C-; B is C_{2-6} alkylene, C_{3-7} cycloalkylene, C_{2-6} alkenylene, or C_{2-6} alkynylene optionally substituted with C1-3 alkyl;

25 W is NH or O:

30

P is H, a protecting group, or Z-S(O)2-N(R2)-C(=O)-;

Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C1-4 alkyl, halo-substituted C1-4 alkyl, C1-4 alkenyl, C₁₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro,

amino, mono- or di-(C1-4 alkyl)amino, cyano, HO-C1-4 alkyl, C1-4 alkoxy-C1-4alkyl, C1-4

-365-

alkylsulfonyl, aminosulfonyl, $C_{1.4}$ alkyl(C=O)-, $R^3C=O)N(R^4)$ -, HO(O=)C-, $C_{1.4}$ alkyl-O(O=)C-, $C_{1.4}$ alkylsulfonylamino, $C_{3.7}$ cycloalkyl, $NH_2(HN=)C$ -, Q^2 -S(O)m-, Q^2 -O-, Q^2 - $N(R^3)$ - or Q^2 -;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄

3 alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄

4 alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkylC(=O)-, HO(O=)C-, C₁₋₄alkyl
O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, NH₂(HN=)C-,

R³N(R⁴)C(=O)- or R³N(R⁴)S(O)m-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon of atoms are optionally replaced by oxygen atoms;

10 atoms are optionally replaced by oxygen atom is 0, 1 or 2; and

R², R³, and R⁴ are independently selected from H and C₁₋₄ alkyl.