Stabbing Query

Interval Tree & Segment Tree

Nattee Niparnan

Stabbing Query

Green = reported

Stabbing Query

From stabbing query, the y-coordinates are irrelevant

- Point Search:
 - Given n interval and a point x
 - Which intervals contain the point?

The Problem

- There are several interval
 - $S_i = [a_i, b_i]$
 - Known, static
- We want to ask
 - Give x
 - Find every segment s_i such that $x \in S_i$
 - There are several x that we would like to ask

Interval

- $S = [3,10] \rightarrow \{x \mid 3 \le x \le 10\}$
 - Closed segment
- •S = (3,10) \rightarrow $\{x \mid 3 < x < 10\}$
 - Opened segment
- $S = [3,3] \rightarrow \{3\}$
 - Point

Interval, [ai,bi]

Output Sensitive

- What is the size of the output of stabbing query?
 - O(N)?
- So, stabbing query is O(N) ??

We says it's O(K)
Where K is the number of output

Interval Tree

Key Idea

- Using a tree, similar to a binary search tree
 - Each node is identified by x-coordinate
 - Each node stores several intervals
 - In another kind of data structure

Querying

- Start at the root node and traverse to a leaf
- For each visited node, check the stored intervals in the node contains the query x-coordinate
 - This is done efficiently by using the data structure stored in the node

Node

- Each node is associated with an a key X-value
 - The x-value at the root node should be the median of all endpoints
- If any interval intersect with the x-value of the node, that interval should be stored in the node
- If the right-end of an interval is to the left of the x-value, the interval should be stored in the left subtree
- If the left-end of an interval is to the right of the x-value, the interval should be stored in the left subtree

Example of an interval tree

Searching

- Start with the root node
- Let the query be x = q
- Report any interval in the node that intersect the query
 - Can be done by storing endpoints of interval (next slide)
- Recursively go to the child node
 - If q < x-value
 - Go to the left child
 - else
 - Go to the right child

Reporting intersecting interval in a node

- keep two lists on each node
 - One for left endpoints L_list
 - The other for right endpoints R_list
 - Both sorted by x
- Reporting intersecting interval is as simply as traverse the list from the one end
 - If q < x-value
 - Start from the leftmost endpoints of the L_list and traverse right until the x of endpoints is more than q, report any interval traverse
 - Else
 - Start from the rightmost endpoints of the R_list and traverse left until the x of endpoints is less than q, report any interval traverse

Conclusion

- Create an interval tree
 - O(n log n)
- Query Time
 - O(K + log n)
- Space
 - There are at most O(N) nodes
 - Each interval is stored in exactly one node
 - Space depends on the data structure that store the interval

Interval Tree

- Construction
 - Given int *a, int *b
- Operation
 - void create(int n,int *a, int *b);O(n log n)
 - void query(int x,int *ans,int &n);O(log n + K)

Segment Tree

Storage

- Data
 - A binary Tree
 - Each node contain a set of intervals
- It uses O(n log n) space

Example of segments

Example of queries

Answer = $\{2,5\}$

Example of queries

Answer = $\{3,4,5\}$

How it works

Answer (may) changes at the endpoints of segment only

Elementary Intervals (EI)

- e = array of 2N endpoints of {S_i}
 - eg, $S_1 = \{a_1, b_1\}$, $S_2 = \{a_2, b_2\}$, $S_3 = \{a_3, b_3\}$ $E = [a_1, b_1, a_2, b_2, a_3, b_3]$
- E* = Sorted E
 - eg, E* = $[a_1,a_2,b_1,a_3,b_2,b_3]$

- EI = every interval between each element of E*
 - And every point of E* itself (point is also an interval)
 - sorted
- Eg, EI = $(-\infty,a_1)$, $[a_1,a_1]$, (a_1,a_2) , $[a_2,a_2]$, (a_2,b_1) , $[b_1,b_1]...$

Segment Tree

Each leaf= elementary interval

Each internal node Union of child intervals

Internal Node Construction

- Construct internal node progressively from bottom to top
 - Pairing adjacent child
- Notice that
 - child does not intersect!
 - Interval of child is a subset of the interval of the root
- Hence, Each node in the tree corresponds to an interval
 - Let u be the node I(u) is our the interval associated with the node

Construction

Canonical List

Each node, additionally, store a list of *input* segment

- The segment is stored in the canonical list of node u only when I(u) is a subset of the segment
 - Do not store in the children if the parent has it

Canonical List

Tree Summary

- Given segments, we can construct tree
- Each leaves is the elementary interval
- Each internal node is the union of the leaves
 - i.e., each node is associated with an interval
- Each node stores canonical list, a list of segment that cover the interval
 - i.e., the interval is a subset of the segment
 - Do not store in the children

Answering Stabbing Query

- Start at root
- Recursively go through child that intersect the query
 - Report everything in canonical list of node in the path

 \bullet O(log n + K)

Construction of the Canonical List

- Construct a tree first, without any canonical list
- Insert every segment into the list
- Insertion each segment
- Start at root node
- Recursively process children that the segment intersect
 - If the interval of each node is a subset of the segment,
 store the segment into the canonical list

Construction Cost

- Each segment can be insert in O(log N)
- At each level in the tree, at most 4 nodes are considered
 - The considered node will form continuous coverage
 - Only left most and right-most node will recurs, the middle nodes will just store the segment
- Each segment might "appear" in the canonical list of at most 2 nodes per level
- O(N log N) space requirement

Tree Structure

- Use Heap style
- Because the structure of the tree does not change

Query Code

```
void query(node u,float x, int *ans, int &count) {
    append_canonical(u, ans, n);
    if u.isLeaf() == false
        if is_intersect(x, interval( u.left ) )
            query(u.left, x, ans, count);
    else
            query(u.right, x, ans, count);
}
```

Create

```
void create(int n, int *begin, int *end) {
    CreateTree(n, begin, end);
    for (int i = 0;i < n;i++) {
        insert(root, segment(begin[i], end[i]);
    }
}</pre>
```

Insert Code

```
void insert(node u, segment s) {
   if is_subset(interval(u), s)
      store_canonical(u, s)
   else {
      if is_intersect(s, interval( u.left ) )
            insert(u.left, s);
      if is_intersect(s, interval( u.right ) )
            insert(u.right, s);
   }
}
```

Comparison with Interval Tree

	Segment Tree	Interval Tree		
Key Idea	Node = coverage Node stores "answer"	Node = separation Node stores likely candidate		
Pre-process	O(n log n)	O(n log n)		
Query	O(log n + K)	O(log n + K)		
Space	O(n log n)	O(n)		
Higher Dimension?	Fairly simple	Complex		

Higher Dimension?

- Segment Tree
 - Node consider only y-value
 - The canonical list of each node is another segment tree
 - In the sub-segment tree, we consider the x-value
 - Just like range tree
- Interval Tree
 - Complex...

Range Minimum Query Problem

RMQ problem

- Given an array A of integer
- What is the minimal value in A[p] ... A[q]?

RMQ naïve

A[0] A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]
1 3	2	5	6	1	4	7	9	3

$$min(2,7) = a[5]$$

Preprocess =
$$O(N^2)$$

Query = $O(1)$

RMQ better

min(2,7) = min(M[1], Preprocess = O(N) A[2], Query = O(N^{0.5}) A[6], A[7])

RMQ segment Tree

Preprocess = O(N log N) Query = O(log N)

A segment tree for the interval [0, 9]