DISCIPLINE SPECIFIC CORE COURSE – 3: CALCULUS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	Credit distribution of the course			Eligibility	Pre-requisite
title &		Lecture	Tutorial	Practical/	criteria	of the course
Code				Practice		(if any)
Calculus					Class XII	NIL
	4	3	0	1	pass with	
					Mathematics	

Learning Objectives

The Learning Objectives of this course are as follows:

- To familiarize students with the basic mathematical tools.
- It helps students to understand the other statistical concepts.

Learning Outcomes

The Learning Outcomes of this course are as follows:

- 2 Understand to solve applied problems using differentiation and integration.
- 2 Understand to solve applied problems under integral sign and changes of order of integration.

SYLLABUS OF DSC - 3

Theory

Unit - 1 (15 hours)

Differential Calculus

Review of limits, continuity and differentiability, partial differentiation and total differentiation. Indeterminate forms: L-Hospital's rule, Leibnitz rule for successive differentiation. Euler's theorem on homogeneous functions.

$$Unit - 2 (15 hours)$$

Integral Calculus

Review of integration and definite integral. Differentiation under integral sign, double integral, changes of order of integration. Beta and Gamma functions: Properties and relationship between them.

$$Unit - 3 (15 hours)$$

Differential Equations

Exact differential equations. Differential equations of first order and first degree. Higher Order Differential Equations: Linear differential equations of order n, Homogeneous and non-homogeneous linear differential equations of order n with constant coefficients, Different forms of particular integrals. The Cauchy-Euler's equation of order n. Formation and solution of a partial differential equations. Equations easily integrable. Linear partial differential equations of first order. Homogeneous linear partial differential equations with constant coefficients. Different cases for complimentary functions and particular integrals.

Practical - 30 Hours

List of Practicals:

- 1) Verification of Euler's Theorem.
- 2) Applications of differentiation
 - a. Calculate income and price elasticity of demand.
 - b. Determination of price and quantity for which total revenue is maximum.
 - c. Find the level of output for which the average cost is minimum.
 - d. Solve profit maximization problems.
 - e. Evaluate first and second order partial derivatives of functions of the form ZZ = ff(xx, yy).
 - f. Examine a function of two variables for relative maxima and relative minima.
 - g. Find the nature of the commodities by using the concept of partial marginal demand functions.
 - h. Find four partial elasticities for a demand function of two variables.
- 3) Applications of Integration
 - a) Derive total cost function from given marginal cost function.
 - b) Derive total revenue function and demand function form a given marginal revenue function.
 - c) Calculate the maximum profit if marginal revenue and marginal cost are given.
 - d) Find the demand function when the price elasticity of demand is given.
- 4) Applications of Differential Equations
 - a) Application on growth and decay.
 - b) Application of the form $dd_{2yy} = ff(xx)$ and $dd_{2yy} = ff(yy)$ to physical problems
 - c) Application on coordinate geometry.
- 5) Verify that the area under the curve is unity under the given p.d.f. and also calculate
 - a) Arithmetic Mean
 - b) Median
 - c) Mode
 - d) Standard Deviation

Essential Reading

- Prasad, G. (2017). Differential Calculus, 19th Ed. (Revised), Pothishala Pvt. Ltd., Allahabad.
- Prasad, G. (2017). Integral Calculus, 17th Ed. (Revised), Pothishala Pvt. Ltd., Allahabad.
- Ahsan, Z. (2004). Differential Equations and their Applications, 2nd Ed., PHI, Pvt. Ltd., New Delhi.
- Shanti Narayan and P K Mittal (2018). Differential Calculus. 15th Ed (Revised)., S Chand Publication, New Delhi
- Shanti Narayan and P K Mittal (2016). Integral Calculus. 11th Ed (Revised), S Chand Publication, New Delhi.
- Business Mathematics Theory and Applications, V. K. Kapoor (2012), Sultan Chand & Sons.

Suggestive Reading

- R. S. Soni (2000) Business Mathematics with applications in Business and Economics, 3rd ed., Pitamber Publishing Company (P) Ltd.
- Brahma Nand, B. S. Tyagi and B. D. Sharma, Integral Calculus, Kedar Nath Ram Nath.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.