

REAL-TIME HIGH PERFORMANCE DISPLACEMENT SENSING IN HANDHELD INSTRUMENT FOR MICROSURGERY

YAN NAING AYE

SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

2016

REAL-TIME HIGH PERFORMANCE DISPLACEMENT SENSING IN HANDHELD INSTRUMENT FOR MICROSURGERY

YAN NAING AYE

SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Abstract

The main focus of this research is ...

Acknowledgments

I would like to express my first and foremost gratitude to my thesis adviser

Contents

A	cknowledgment	i								
Table of Contents										
Li	st of Figures	iv								
Li	st of Tables	\mathbf{v}								
Li	st of Symbols and Abbreviations	vi								
1	Introduction	1								
	1.1 Background	1								
	1.2 Organization	1								
2	Literature Review	2								
3	Design of the Sensing System	3								
	3.1 System Overview	3								
4	Conclusion	4								
\mathbf{A}	Error Calculation	5								
	A 1 Error Between Two Sinusoidal Signals	5								

CONTENTS	iii
References	6

List of Figures

3.1	ITrem2	schematic													;

List of Tables

List of Symbols and Abbreviations

 $\mathbf{A}_i = \begin{bmatrix} a_{ix} & a_{iy} & a_{iz} \end{bmatrix}^T$ Vector representing acceleration at location {i}

BMFLC..... Band-limited multiple Fourier linear combiner

Introduction

1.1 Background

Physiological tremor is the most common involuntary motion affecting micromanipulation [1].

1.2 Organization

Chapter 1 defines the problem and objectives of this report.

Literature Review

Design of the Sensing System

3.1 System Overview

The *ITrem2* sensing system consists of two sub-systems, the inertial measurement system and the vision system.

Figure 3.1: ITrem2 schematic

Conclusion

Appendix A

Error Calculation

A.1 Error Between Two Sinusoidal Signals

The motion equation of an assumed sinusoidal tremor with amplitude, X_1 , and angular frequency, ω , is represented by

$$x_1(t) = X_1 \cos \omega t. \tag{A.1}$$

References

[1] Y. N. Aye, S. Zhao, C. Y. Shee, and W. T. Ang, "Vision aided active error canceling in hand-held microsurgical instrument," in 2012 International Symposium on Robotics and Intelligent Sensors (IRIS2012), (Kuching, Sarawak, Malaysia), Sept. 2012.