Fizica III – Electromagnetism

Aplicații # 5

Circuite electrice cu parametri distribuiți

Prof.dr.ing. Gabriela Ciuprina gabriela@lmn.pub.ro

As.dr.ing. Mihai Popescu mihai p@lmn.pub.ro

S.I..dr.ing. Sorin Lup sorin@lmn.pub.ro

Transmiterea de date prin comunicație serială în standard RS485

- 1. Standardul RS-485 pe scurt
 - 1. Caracteristici principale.
 - 2. Topologia unei rețele în standard RS-485
 - 3. Comunicație prin semnal diferențial
 - 4. Caracteristicile electrice ale cablurilor destinate comunicație RS-485
- 2/ Simularea comunicației RS-485 în LTSpice
 - Driver pentru standardul RS-485.
 - 2. Parametrii utilizați pentru simularea liniei lungi fără pierderi
 - 3. Valoarea și locul de montare a rezistențelor de adaptare la impedanța liniei.
 - 4. Simularea unei comunicații "half-duplex" cu linie adaptată.
 - 5. Simularea unei comunicații "half-duplex" cu linie neadaptată.
 - 6. Simularea unei comunicații "half-duplex" cu drivere conectate incorect.

- 3. Montaj experimental comunicație RS-485
 - 1. Schema și principiul montajului experimental.
 - 2. Experiment 1: comunicație "halfduplex" cu linie adaptată.
 - 3. Experiment 2: comunicație "half-duplex" cu linie neadaptată.
 - 4. Experiment 3: comunicație "half-duplex" cu drivere conectate incorect.

Standardul RS-485

Caracteristici principale

- Autorizat din 1983
- Cel mai utilizat standard de comunicație în rețele cu echipamente industriale, medicale, pentru mijloace de transport (avion, tren, vapor)
- Caracteristici esențiale:
 - Comunicație prin semnal diferențial asigură o bună imunitate la ,,zgomotele" electromagnetice tipice mediilor industriale
 - Permite atât comunicație ,,half duplex", cât și ,,full duplex"
 - Toate drivere-le de interfață pot fi alimentate dintr-o unică sursă de 5Vcc
 - Permite conectarea a maxim 32 de drivere pe acelaşi canal de comunicaţie;
 - Viteza maximă de comunicație este de 10Mbps pentru o lungime de cablu de maxim 12m
 - Viteza tipică de comunicație este de 100kbps, pentru o lungime de cablu de maxim
 1200m

https://en.wikipedia.org/wiki/RS-485

https://en.wikipedia.org/wiki/Balanced line

https://en.wikipedia.org/wiki/Duplex_(telecommunications)

4 Standardul RS-485

Topologia rețelei

- Rețea cu topologie liniară la care drivere-le sunt conectate în sistem ,,daisy chain". Nu este recomandată cablarea driverelor la trunchiul principal al rețelei prin conexiuni mai mari de 0,5m
- Comunicația poate fi "full-duplex" emisie-recepție simultană (stânga), sau "half-duplex" (dreapta)

https://www.ti.com/lit/an/slla272d/slla272d.pdf?ts=1670066756387&ref_url=https%253A%252F%252F www.ti.com%252Fsitesearch%252Fen-us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Drs-485%2526nr%253D9624

F3-EM, 2022-2023 12/5/2022

Standardul RS-485

Comunicație prin semnal diferențial

- Semnalul de ieşire este dat de diferenţa dintre potenţialele ieşirilor A (V_A) şi B (V_B). Fiecare potențial este considerat în raport cu potențialul de referință local al circuitului driver.
- Potențialele ieșirilor A și B din driver sunt simetrice față de un potențial comun V_{OS} stabilit de driver ca $U_{CC}/2$ (U_{cc} este tensiunea de alimentare – tipic 5V).

$$D = 1_{LOGIC} : \begin{cases} V_A = V_{OS} + \frac{V_D}{2} \\ V_B = V_{OS} - \frac{V_D}{2} \end{cases} \Rightarrow V_A - V_B = V_D$$

$$D = 1_{LOGIC} : \begin{cases} V_A = V_{OS} + \frac{V_D}{2} \\ V_B = V_{OS} - \frac{V_D}{2} \end{cases} \Rightarrow V_A - V_B = V_D$$

$$D = 0_{LOGIC} : \begin{cases} V_A = V_{OS} - \frac{V_D}{2} \\ V_B = V_{OS} + \frac{V_D}{2} \end{cases} \Rightarrow V_A - V_B = -V_D$$

https://www.ti.com/lit/wp/slla545/slla545.pdf?ts=1670015994091

Standardul RS-485

Comunicație robustă prin semnal diferențial

- Orice perturbație de natură electromagnetică va influența tensiunea comună V_{OS}, de care semnalul diferențial nu depinde.
- Tensiunea comună poate diferi de la un driver la altul datorită diferenței de potențial ce poate exista între nodurile de referință ale fiecăruia dintre acestea; limita admisă de standard este suficient de mare (7V) pentru a acoperi majoritatea perturbațiilor ce pot apărea într-o zonă poluată electromagnetic.
- Dacă pentru toate driverele U_{cc} =5V, atunci $V_A V_B \in [-7, 12][V]$

https://www.ti.com/lit/wp/slla545/slla545.pdf?ts=1670015994091

Standardul RS-485

https://www.ti.com/lit/an/slla272d/slla272d.pdf?ts= 1670066756387&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fen-

us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253Drs-485%2526nr%253D9624

Caracteristicile cablului pentru comunicația RS-485

- Pentru "full duplex" mănunchi de 4 perechi UTP
- Impedanța caracteristică pentru fiecare pereche UTP este de 120 Ω
- Capacitate lineică tipică 52pF/m
- Inductivitate lineică tipică 750nH/m
- Rezistență în c.c. tipic 0,18Ω/m

1FT = 0.3m

F3-EM, 2022-2023

12/5/2022

https://www.analog.com/media/en/technical-documentation/product-selector-card/rs485fe.pdf

8

Simulare cu LTSpice

Principiul schemei de test folosite pentru simulare

https://www.analog.com/media/en/technical-documentation/data-sheets/ltc2862a.pdf

Driver pentru comunicația RS-485 – de la Analog Devices – seria LTC2862

- Driver "half duplex" ce poate transfera până la 20Mbps
- Alimentare 3,3V 5V
- Admite, între potențialele de referință ale modulelor conectate la aceeași rețea, diferențe de 25V (față de standardul minimal de 7V)
- Întârziere semnal de la intrare la ieşire: 25 50ns

Terminale utilizate

- Modulul din stânga emiţător (DI -> A/B):
 - Intrare DI1
 - Selector de mod: $DE1 = 1_{Logic}$
- Modulul din dreapta receptor (A/B -> RO)
 - leşire RO2
 - Selector de mod: $\overline{RE2} = 0_{Logic}$

Conceptul schemei de test l_1 U1 R_{t2} TX1 l_3 U2 -RX2 F3-EM, 2022-2023 12/5/2022

Descrierea cablului de interconectare

- \blacksquare Impedanța caracteristică Z₀=120Ω
- $L_0 = 748 \text{nH/m}$
- $C_0 = 52 pF/m$
- $td_0 = 3.3 \, ns/m$
- Lungimea trunchiului rețelei: $l_1 + l_2$
- Driverul U1 este folosit ca emiţător
- La distanța l_1 de driverul U1 se află conectat receptorul U2 printr-o linie de lungime l_3
- La cele două capete ale trunchiului rețelei se află câte un rezistor de adaptare $R_{t1}=R_{t2}=120\Omega$

10

Simulare cu LTSpice

Schema de test folosită pentru simulare

Descrierea cablului de interconectare

- \blacksquare Impedanța caracteristică Z₀=120Ω
- L₀ = 748nH/m
- C₀ = 52pF/m
- $-td_0 = \frac{1}{c} = 3.3 \text{ ns/m}$
- Lungimea trunchiului rețelei: $l_1 + l_2 = 34 + 66 = 100$ [m]
- Driver-ul U1 este folosit ca emiţător
- La distanța l_1 de driverul U1 se află conectat receptorul U2 printr-o linie l_3 de 0,5m
- La cele două capete ale trunchiului rețelei se află câte un rezistor de adaptare $R_{t1}=R_{t2}=120\Omega$

Simularea unei comunicații "halfduplex" cu linie adaptată.

- La cele două capete ale trunchiului rețelei se află câte un rezistor de adaptare $R_{t1}=R_{t2}=120\Omega$
- Semnalul de intrare în U2 este între -3,3V și +3,3V; el este întârziat față de semnalul de ieșire din U1 cu $l_1 \cdot td_0 + l_3 \cdot td_0 = 112,2 + 1,65 \approx 113,5ns$ intervalul reprezentând timpul de propagare a semnalului pe liniile l_1 și l_3 .
- Semnalul de ieşire din U2, este o replică fidelă a semnalului de intrare, dar pe nivel logic 5V în loc de 3,3V, datorită tensiunii de alimentare folosite pentru U2

Simularea unei comunicații "halfduplex" cu linie lăsată la capăt în gol.

- ightharpoonup Impedanța caracteristică Z₀=120Ω
- $L_0 = 748 \, \text{nH/m}$
- $C_0 = 52 pF/m$
- $td_0 = \frac{1}{c} = 3.3 \ ns/m$
- Lungimea trunchiului rețelei: $l_1 + l_2 = 34 + 66 = 100$ [m]
- Driver-ul U1 este folosit ca emiţător
- La distanța l_1 de driverul U1 se află conectat receptorul U3 printr-o linie l_3 de 0,5m
- La capătul dinspre emițător se află un rezistor de adaptare $R_{t1}=120\Omega$
- Capătul terminal al trunchiului rețelei este lăsat în gol.

Simularea unei comunicații "halfduplex" cu linie lăsată la capăt în gol – lungime trunchi rețea – 100m

- Capătul terminal al trunchiului rețelei este lăsat în gol.
- Semnalul de intrare în U2 este între -10V şi +10V fiind puternic deformat față de cel original, dar și față de cel de ieșire din U1; se pot observa efectul reflexiilor pe cablu datorate lipsei de adaptare la capăt a liniei;
- Semnalul de ieşire din U2, este deformat şi el în sensul că el nu mai nu mai reflectă corect semnalul de intrare în U1

Simularea unei comunicații "halfduplex" cu linie lăsată la capăt în gol.

- Impedanţa caracteristică Z₀=120Ω
- $L_0 = 748 \, \text{nH/m}$
- $C_0 = 52 pF/m$
- $td_0 = \frac{1}{c} = 3.3 \ ns/m$
- Lungimea trunchiului rețelei: $l_1 + l_2 = 34 + 366 = 400$ [m]
- Driver-ul U1 este folosit ca emiţător
- La distanța l_1 de driverul U1 se află conectat receptorul U3 printr-o linie l_3 de 0,5m
- La capătul dinspre emițător se află un rezistor de adaptare $R_{t1}=120\Omega$
- Capătul terminal al trunchiului rețelei este lăsat în gol.

Simularea unei comunicații "halfduplex" cu linie lăsată la capăt în gol – lungime trunchi rețea – 400m

- Capătul terminal al trunchiului rețelei este lăsat în gol.
- Semnalul de intrare în U2 este între -10V și +10V fiind puternic deformat față de cel original; se pot observa efectul reflexiilor pe cablu datorate lipsei de adaptare la capăt a liniei; acest efect este mult mai vizibil în cazul liniei l2 de aproape 5,5 ori mai lungă decât în cazul precedent
- Semnalul de ieşire din U2, este deformat şi el în sensul că semnalul de ieşire nu mai reflect correct semnalul de intrare.

Simularea unei comunicații "halfduplex" adaptată, dar cu un driver conectat la distanță prea mare de trunchiul principal

- Impedanţa caracteristică Z₀=120Ω
- L₀ = 748nH/m
- C₀ = 52pF/m
- $-td_0 = \sqrt{L_0C_0} = 6.2ns/m$
- Lungimea trunchiului rețelei: $l_1 + l_2 = 34 + 66 = 100 [m]$
- Driver-ul U1 este folosit ca emiţător
- La distanța $m{l}_1$ de driverul U1 se află conectat receptorul U2 printr-o linie $m{l}_3$ de 10m
- La cele două capete ale trunchiului rețelei se află câte un rezistor de adaptare $R_{t1}=R_{t2}=120\Omega$

17

Simulare cu LTSpice

Simularea unei comunicații "halfduplex" adaptată, dar cu un driver conectat la distanță prea mare de trunchiul principal

- La distanța l_1 de driverul U1 se află conectat receptorul U2 printr-o linie l_3 de 10m
- La cele două capete ale trunchiului rețelei se află câte un rezistor de adaptare $R_{t1}=R_{t2}=120\Omega$
- Semnalul de intrare în U2 este între -6V și +6V fiind afectat de oscilații pe fiecare palier logic; timpul de propagare de la ieșirea U1 la intrarea U2 este de 146ns
- Semnalul de ieşire din U2, este o replică bună a semnalului de intrare numai datorită caracteristicilor bune ale driverului LTC2862-1 și a lipsei oricărie alte perturbații exterioare

Montaj experimental – comunicație RS-485

Schema folosită pentru testare practică este cea folosită pentru simulare în LTSpice, cu excepția drivere-lor care sunt MAX-485 de la Texas Instruments

Descrierea cablului de interconectare

- Impedanţa caracteristică Z₀=120Ω
- L₀ = 748nH/m
- C₀ = 52pF/m
- $-td_0 = \frac{1}{c} = 3.3 \ ns/m$
- Lungimea trunchiului rețelei: $l_1 + l_2 = 34 + 66 = 100 [m]$
- Driver-ul U1 este folosit ca emiţător
- La distanța l_1 de driverul U1 se află conectat receptorul U2 printr-o linie l_3 de 0,5m
- La cele două capete ale trunchiului rețelei se află câte un rezistor de adaptare $R_{t1}=R_{t2}=120\Omega$

Montaj experimental – comunicație RS-485

Montaj folosit pentru testare practică

Baterii alimentare (9V)

Sursă 5V

Generator semnal și osciloscop – 2 canale .

Rx - MAX485 converter TTL-RS-485-U2

Tx - MAX485 converter TTL-RS-485-U1

Montaj experimental –comunicație RS-485

Linie adaptată – jos semnalul diferențial la intrarea în U2, sus semnalul de ieșire din U1 (750kHz/50%)

Montaj experimental –comunicație RS-485

Linie în gol – jos semnalul diferențial la intrarea în U2, sus semnalul de ieșire din U1 (750kHz/50%)

Montaj experimental –comunicație RS-485

Linie adaptată, modul Rx conectat la 10m de trunchi – jos semnalul diferențial la intrarea U2, sus semnalul de ieșire U1 (750kHz/50%)

CONCLUZIE

Parametrii lineici determina

- intarzierea si perturbarea semnalului transmis pe linie, deci si
- frecventa maxima la care poate fi folosit un cablu pentru transmiterea datelor digitale.

Adaptarea inseamna asigurarea **egalitatii dintre impedanta sarcinii si impedanta liniei**. Ea trebuie realizata la **ambele capete** ale unei linii pe care se transmit semnale.

F3-EM, 2022-2023 12/5/2022

Notare

Rezolvati quiz-ul P4.

- Pentru bonus (pana in saptamana 14)
 - crearea unor figuri/animatii proprii illustrative pentru cursul de EM, folosind coduri proprii si instrumente software mai performante, de exemplu https://vtk.org/,
 https://www.paraview.org/
 - realizarea unor experimente virtuale/reale care sa ilustreze conceptele discutate.