Bellman-Ford: (i) single suc to all dest shortest path (edge wt) (i), DP based (Til) works on -ve edge wit (10) detects -ve wt rycle -> there is no meaning shortest padh -ve chose wt $0 \frac{-2}{3}$ $3 \frac{-4}{3}$ $3 \frac{-4}{3}$ 3


```
1 2 6 -ve wt (ycle
0 1 -2
3 0 3
2 3 -9
```



```
i) with iteration updates

any path[i]
```

```
for(int itr = 1; itr <= graph.length-1;itr++) {
  for(Edge edge : edges) {
    int u = edge.u;
    int v = edge.v;
    int wt = edge.wt;

    if(path[u] != Integer.MAX_VALUE && path[u] + wt < path[v]) {
        path[v] = path[u] + wt;
    }
}</pre>
```

--ve wt cycl

SYC -> 0

Floyd Warshall 🛚

- (i) all pairs shortest path
- (Ti) de based

path [u] [k] + path [k][v] < path[u][v]

	1	2	3	4
1	8	3	8	Н
2	%	8	2	8
3	5	8	8	۲)
Ч	5	80	8	8

no intermediates

Ao -> no intermediate

	1	2	3	Ч
1	8	3	8	7
2	8	8	2	15
3	5	8	8	۲)
Ч	5	5	8	8
	•			

1 as intermediate

ui, v

	1	2	3	4
1	8	3	5	7
2	8	8	2	15
3	5	8	8	7)
Ч	2	5	7	8

2 as intermediate

$$UV \longrightarrow 1,4$$

$$U_{1}V \longrightarrow 2,4$$

$$U_{12}V \longrightarrow 1,3$$

$$U_{11}i_{2}V \longrightarrow 4,3$$