This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

In my patents list | Print

Return to result list | Previous in result list 2/2

NONVOLATILE SEMICONDUCTOR MEMORY CELL AND METHOD FOR CONTROLLING DATA WRITE/READ AT NONVOLATILE SEMICONDUCTOR MEMORY CELL

INPADOC LEGAL status Bibliographic data Mosaics Original document Patent number: 2000-05-12 Publication date: Inventor: NAKAMURA AKIHIRO SONY CORP Applicant: Classification: -international: G11C16/04; G11C16/06 - european: Application number: JP19980308052 19981029 Priority number(s): View INPADOC patent family

Abstract of JP2000132984

PROBLEM TO BE SOLVED: To provide a nonvolatile semiconductor memory cell which can surely avoid problems such as deterioration of a disturb characteristic at the time of writing data or the like even when a memory element is increasingly micro miniaturized.

SOLUTION: In a NAND type nonvolatile semiconductor memory cell of a form boosting a potential of a channel formation area of a write inhibit memory element according to a self boost system, a booster electrode system or a CBC system, a bias-impressing means is further provided for impressing a bias to a base or source line when data stored in the memory element is read out. A density of impurities in the channel formation area is set to be 1x 1017 cm-3 or smaller in the case of the self boost system, 2x 1017 cm-3 or smaller in the case of the booster electrode system, and 1x 1018 cm-3 or smaller in the case of the CBC system.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-132984 (P2000-132984A)

(43)公開日 平成12年5月12日(2000.5.12)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

G11C 16/04 16/06 G11C 17/00

622E 5B025

632Z

635

審査請求 未請求 請求項の数14 OL (全 28 頁)

(21)出願番号

特願平10-308052

(71)出願人 000002185

ソニー株式会社

(22)出願日

平成10年10月29日(1998.10.29)

東京都品川区北品川6丁目7番35号

(72)発明者 中村 明弘

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100094363

弁理士 山本 孝久

Fターム(参考) 5B025 AA03 AB01 AC01 AD03 AD04

AD10 AE08

(54)【発明の名称】 不揮発性半導体メモリセル、並びに、不揮発性半導体メモリセルにおけるデータ書き込み・読み 出し制御方法

(57)【要約】

【課題】メモリ素子の微細化を進める場合にあっても、 データ書き込み時のディスターブ特性が劣化するといっ た問題を確実に回避することができる不揮発性半導体メ モリセルを提供する。

【解決手段】セルフ・ブースト方式、ブースター電極方 式あるいがCBC方式によって、書き込み禁止メモリ素 子のチャネル形成領域の電位を昇圧する形式の本発明の NAND型不揮発性半導体メモリセルは、メモリ素子に 記憶されたデータを読み出す際に基体又はソース線にバ イアスを印加するためのバイアス印加手段を更に備え、 チャネル形成領域の不純物濃度を、セルフ・ブースト方 式の場合1×10¹⁷ c m⁻³以下、ブースター電極方式の 場合2×10¹⁷ c m⁻³以下、CBC方式の場合1×10 18 c m-3以下とする。

[図1]

【特許請求の範囲】

【請求項1】(イ)基体に形成されたソース/ドレイン 領域及びチャネル形成領域、チャネル形成領域上に形成 された電荷蓄積部、並びに、電荷蓄積部上に形成された 制御電極を有する、電気的書き換えが可能なメモリ素子 が、複数、直列接続されたメモリ・ストリング、

- (ロ) 各制御電極に接続された複数のワード線、
- (ハ)メモリ・ストリングの一端のメモリ素子の一方の ソース/ドレイン領域に、第1の選択トランジスタを介 して接続されたビット線、
- (ニ)メモリ・ストリングの他端のメモリ素子の一方の ソース/ドレイン領域に、第2の選択トランジスタを介 して接続されたソース線、並びに、
- (ホ)ワード線にプログラム電位を印加するためのワード線制御回路、を具備し、

メモリ素子へのデータ書き込みに際し、ワード線制御回路の作動によりワード線にプログラム電位を印加し、データを書き込むべきメモリ素子とワード線を介して接続された他のメモリ・ストリングにおけるメモリ素子へのデータの書き込みを禁止する場合、データの書き込みが禁止された該メモリ素子において、少なくとも、制御電極と電荷蓄積部との容量結合、及び、電荷蓄積部とチャネル形成領域との容量結合に基づきチャネル形成領域を昇圧する不揮発性半導体メモリセルであって、

チャネル形成領域の不純物濃度は $1 \times 10^{17} \, \mathrm{cm}^{-3}$ 以下であり

メモリ素子に記憶されたデータを読み出す際に基体又は ソース線にバイアスを印加するためのバイアス印加手段 を更に備えていることを特徴とする不揮発性半導体メモ リセル。

【請求項2】(イ)基体に形成されたソース/ドレイン 領域及びチャネル形成領域、チャネル形成領域上に形成 された電荷蓄積部、並びに、電荷蓄積部上に形成された 制御電極を有する、電気的書き換えが可能なメモリ素子 が、複数、直列接続されたメモリ・ストリング、

- (ロ) 各制御電極に接続された複数のワード線、
- (ハ)メモリ・ストリングの一端のメモリ素子の一方の ソース/ドレイン領域に、第1の選択トランジスタを介 して接続されたビット線、
- (ニ)メモリ・ストリングの他端のメモリ素子の一方の ソース/ドレイン領域に、第2の選択トランジスタを介 して接続されたソース線、
- (ホ)ワード線に所定の電位を印加するためのワード線 制御回路、
- (へ)メモリ・ストリングを構成する各メモリ素子の制御電極、電荷蓄積部及びソース/ドレイン領域上を被覆する層間絶縁膜上に形成されたブースター電極、並びに、
- (ト)ブースター電極にブースト電位を印加するための ブースト電位印加手段、を具備し、

メモリ素子へのデータ書き込みに際し、ワード線制御回路の作動によりワード線に所定の電位を印加し、且つ、ブースト電位印加手段の動作によりブースター電極にブースト電位を印加し、データを書き込むべきメモリ素子とワード線を介して接続された他のメモリ・ストリングにおけるメモリ素子へのデータの書き込みを禁止する場合、データの書き込みが禁止された該メモリ素子において、少なくとも、制御電極と電荷蓄積部との容量結合、電荷蓄積部とチャネル形成領域との容量結合、及び、ブースター電極とソース/ドレイン領域領域との容量結合に基づきチャネル形成領域を昇圧する不揮発性半導体メモリセルであって、

チャネル形成領域の不純物濃度は $2\times10^{17}\,\mathrm{c}\,\mathrm{m}^{-3}$ 以下であり、

メモリ素子に記憶されたデータを読み出す際に基体又は ソース線にバイアスを印加するためのバイアス印加手段 を更に備えていることを特徴とする不揮発性半導体メモ リセル。

【請求項3】(イ)基体に形成されたソース/ドレイン 領域及びチャネル形成領域、チャネル形成領域上に形成 された電荷蓄積部、並びに、電荷蓄積部上に形成された 制御電極を有する、電気的書き換えが可能なメモリ素子 が、複数、直列接続されたメモリ・ストリング、

- (ロ) 各制御電極に接続された複数のワード線、
- (ハ)メモリ・ストリングの一端のメモリ素子の一方の ソース/ドレイン領域に、第1の選択トランジスタを介 して接続されたビット線、
- (ニ)メモリ・ストリングの他端のメモリ素子の一方の ソース/ドレイン領域に、第2の選択トランジスタを介 して接続されたソース線、
- (ホ) ワード線にプログラム電位を印加するためのワード線制御回路、並びに、
- (へ)メモリ・ストリングを構成する各メモリ素子の制御電極の少なくとも頂面の上方に層間絶縁膜を介して形成され、且つ、メモリ・ストリングを構成する1つのメモリ素子の一方のソース/ドレイン領域に接続された導電層、を具備し、

メモリ素子へのデータ書き込みに際し、ワード線制御回路の作動によりワード線にプログラム電位を印加し、データを書き込むべきメモリ素子とワード線を介して接続された他のメモリ・ストリングにおけるメモリ素子へのデータの書き込みを禁止する場合、データの書き込みが禁止された該メモリ素子において、少なくとも、制御電極と電荷蓄積部との容量結合、電荷蓄積部とチャネル形成領域との容量結合、及び、制御電極と導電層との容量結合に基づきチャネル形成領域を昇圧する不揮発性半導体メモリセルであって、

チャネル形成領域の不純物濃度は $1 \times 10^{18} \, \mathrm{cm}^{-3}$ 以下であり、

メモリ素子に記憶されたデータを読み出す際に基体又は

ソース線にバイアスを印加するためのバイアス印加手段 を更に備えていることを特徴とする不揮発性半導体メモ リセル。

【請求項4】電荷蓄積部は、チャネル形成領域上に形成されたトンネル絶縁膜、トンネル絶縁膜上に形成された浮遊電極、及び、浮遊電極と制御電極との間に形成された絶縁層から成ることを特徴とする請求項1乃至請求項3のいずれか1項に記載の不揮発性半導体メモリセル。

【請求項5】電荷蓄積部は、チャネル形成領域上に形成された第1の酸化膜、第1の酸化膜上に形成された窒化膜、及び、窒化膜と制御電極との間に形成された第2の酸化膜から成ることを特徴とする請求項1乃至請求項3のいずれか1項に記載の不揮発性半導体メモリセル。

【請求項6】電荷蓄積部は、チャネル形成領域上に形成された酸化膜、及び、酸化膜と制御電極との間に形成された窒化膜から成ることを特徴とする請求項1乃至請求項3のいずれか1項に記載の不揮発性半導体メモリセル。

【請求項7】電荷蓄積部は、チャネル形成領域上に形成されたトンネル絶縁膜、トンネル絶縁膜と制御電極との間に形成された絶縁層、及び、該絶縁層中に設けられた導電性微小結晶粒子から成ることを特徴とする請求項1 乃至請求項3のいずれか1項に記載の不揮発性半導体メモリセル。

【請求項8】(イ)基体に形成されたソース/ドレイン 領域及びチャネル形成領域、チャネル形成領域上に形成 された電荷蓄積部、並びに、電荷蓄積部上に形成された 制御電極を有する、電気的書き換えが可能なメモリ素子 が、複数、直列接続されたメモリ・ストリング、

- (ロ) 各制御電極に接続された複数のワード線、
- (ハ)メモリ・ストリングの一端のメモリ素子の一方のソース/ドレイン領域に、第1の選択トランジスタを介して接続されたビット線、
- (ニ)メモリ・ストリングの他端のメモリ素子の一方の ソース/ドレイン領域に、第2の選択トランジスタを介 して接続されたソース線、並びに、
- (ホ) ワード線にプログラム電位を印加するためのワード線制御回路、を具備し、

チャネル形成領域の不純物濃度は $1 \times 10^{17} \, \mathrm{cm}^{-3}$ 以下であり、

メモリ素子に記憶されたデータを読み出す際に基体又は ソース線にバイアスを印加するためのバイアス印加手段 を更に備えている不揮発性半導体メモリセルにおけるデ ータ書き込み・読み出し制御方法であって、

メモリ素子へのデータ書き込みに際し、ワード線制御回路の作動によりワード線にプログラム電位を印加し、データを書き込むべきメモリ素子とワード線を介して接続された他のメモリ・ストリングにおけるメモリ素子へのデータの書き込みを禁止する場合、データの書き込みが禁止された該メモリ素子において、少なくとも、制御電

極と電荷蓄積部との容量結合、及び、電荷蓄積部とチャネル形成領域との容量結合に基づきチャネル形成領域を 昇圧し

メモリ素子からのデータ読み出しに際して、バイアス印 加手段によって基体又はソース線にバイアスを印加する ことを特徴とする不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【請求項9】(イ)基体に形成されたソース/ドレイン 領域及びチャネル形成領域、チャネル形成領域上に形成 された電荷蓄積部、並びに、電荷蓄積部上に形成された 制御電極を有する、電気的書き換えが可能なメモリ素子 が、複数、直列接続されたメモリ・ストリング、

- (ロ) 各制御電極に接続された複数のワード線、
- (ハ)メモリ・ストリングの一端のメモリ素子の一方の ソース/ドレイン領域に、第1の選択トランジスタを介 して接続されたビット線、
- (ニ)メモリ・ストリングの他端のメモリ素子の一方の ソース/ドレイン領域に、第2の選択トランジスタを介 して接続されたソース線、
- (ホ)ワード線に所定の電位を印加するためのワード線 制御回路
- (へ)メモリ・ストリングを構成する各メモリ素子の制 御電極、電荷蓄積部及びソース/ドレイン領域上を被覆 する層間絶縁膜上に形成されたブースター電極、並び に、
- (ト)ブースター電極にブースト電位を印加するための ブースト電位印加手段、を具備し、

チャネル形成領域の不純物濃度は2×10¹⁷cm⁻³以下 であり、

メモリ素子に記憶されたデータを読み出す際に基体又は ソース線にバイアスを印加するためのバイアス印加手段 を更に備えている不揮発性半導体メモリセルにおけるデ ータ書き込み・読み出し制御方法であって、

メモリ素子へのデータ書き込みに際し、ワード線制御回路の作動によりワード線に所定の電位を印加し、且つ、ブースト電位印加手段の動作によりブースター電極にブースト電位を印加し、データを書き込むべきメモリ素子とワード線を介して接続された他のメモリ・ストリングにおけるメモリ素子へのデータの書き込みを禁止する場合、データの書き込みが禁止された該メモリ素子において、少なくとも、制御電極と電荷蓄積部との容量結合、電荷蓄積部とチャネル形成領域との容量結合、及び、ブースター電極とソース/ドレイン領域領域との容量結合に基づきチャネル形成領域を昇圧し、

メモリ索子からのデータ読み出しに際して、バイアス印 加手段によって基体又はソース線にバイアスを印加する ことを特徴とする不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【請求項10】(イ)基体に形成されたソース/ドレイン領域及びチャネル形成領域、チャネル形成領域に形

成された電荷蓄積部、並びに、電荷蓄積部上に形成された制御電極を有する、電気的書き換えが可能なメモリ素 子が、複数、直列接続されたメモリ・ストリング、

- (ロ) 各制御電極に接続された複数のワード線、
- (ハ)メモリ・ストリングの一端のメモリ素子の一方の ソース/ドレイン領域に、第1の選択トランジスタを介 して接続されたビット線、
- (二)メモリ・ストリングの他端のメモリ素子の一方の ソース/ドレイン領域に、第2の選択トランジスタを介 して接続されたソース線、
- (ホ)ワード線にプログラム電位を印加するためのワード線制御回路、並びに、

(へ)メモリ・ストリングを構成する各メモリ素子の制御電極の少なくとも頂面の上方に層間絶縁膜を介して形成され、且つ、メモリ・ストリングを構成する1つのメモリ素子の一方のソース/ドレイン領域に接続された導電層、を具備し、

チャネル形成領域の不純物濃度は $1 \times 10^{18} \, \mathrm{cm}^{-3}$ 以下であり、

メモリ素子に記憶されたデータを読み出す際に基体又は ソース線にバイアスを印加するためのバイアス印加手段 を更に備えている不揮発性半導体メモリセルにおけるデ ータ書き込み・読み出し制御方法であって、

メモリ素子へのデータ書き込みに際し、ワード線制御回路によってワード線にプログラム電位を印加し、データを書き込むべきメモリ素子とワード線を介して接続された他のメモリ・ストリングにおけるメモリ素子へのデータの書き込みを禁止する場合、データの書き込みが禁止された該メモリ素子において、少なくとも、制御電極と電荷蓄積部との容量結合、電荷蓄積部とチャネル形成領域との容量結合、及び、制御電極と導電層との容量結合に基づきチャネル形成領域を昇圧し、

メモリ素子からのデータ読み出しに際して、バイアス印加手段によって基体又はソース線にバイアスを印加することを特徴とする不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【請求項11】電荷蓄積部は、チャネル形成領域上に形成されたトンネル絶縁膜、トンネル絶縁膜上に形成された浮遊電極、及び、浮遊電極と制御電極との間に形成された絶縁層から成ることを特徴とする請求項8乃至請求項10のいずれか1項に記載の不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【請求項12】電荷蓄積部は、チャネル形成領域上に形成された第1の酸化膜、第1の酸化膜上に形成された窒化膜、及び、窒化膜と制御電極との間に形成された第2の酸化膜から成ることを特徴とする請求項8乃至請求項10のいずれか1項に記載の不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【請求項13】電荷蓄積部は、チャネル形成領域上に形成された酸化膜、及び、酸化膜と制御電極との間に形成

された窒化膜から成ることを特徴とする請求項8乃至請求項10のいずれか1項に記載の不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【請求項14】電荷蓄積部は、チャネル形成領域上に形成されたトンネル絶縁膜、トンネル絶縁膜と制御電極との間に形成された絶縁層、及び、該絶縁層中に設けられた導電性微小結晶粒子から成ることを特徴とする請求項8乃至請求項10のいずれか1項に記載の不揮発性半導体メモリセルにおけるデータ書き込み制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、不揮発性半導体メモリセル、並びに、不揮発性半導体メモリセルにおける データ書き込み・読み出し制御方法に関する。

[0002]

【従来の技術】EEPROMとして知られている不揮発 性半導体メモリセルの一種に、高集積化が可能なNAN Dストリング型不揮発性半導体メモリセル (以下、NA NDストリング型メモリセルと呼ぶ)がある。浮遊電極 を有する従来のNANDストリング型メモリセルの模式 的な一部断面図を図2に示し、等価回路を図3に示す。 NANDストリング型メモリセルを構成する各メモリ素 子 $M_0 \sim M_7$ のそれぞれは、基体(より具体的には、例え ばp型ウエル11B内) に形成されたソース/ドレイン 領域13及びチャネル形成領域12、チャネル形成領域 12の上方にトンネル絶縁膜14を介して形成された浮 遊電極15(フローティングゲートあるいは電荷蓄積電 極とも呼ばれる)、並びに、浮遊電極15の上方に絶縁 層16を介して形成された制御電極17 (コントロール ゲートあるいは制御ゲートとも呼ばれる) から構成され ている。そして、NANDストリング型メモリセルにお いては、メモリ素子の一方のソース/ドレイン領域13 を、隣接するメモリ素子の他方のソース/ドレイン領域 13と共有化させることによって、複数のメモリ素子が 直列接続されている。尚、複数のメモリ素子がこのよう に直列接続されている形態をメモリ・ストリングと呼 ぶ。また、メモリ・ストリングの一端のメモリ素子Ma は、第1の選択トランジスタDSGを介してビット線B しに接続されており、メモリ・ストリングの他端のメモ リ素子M₇は、第2の選択トランジスタSSGを介して 共通ソース線に接続されている。尚、図3に示すよう に、複数のNANDストリング型メモリセルが列方向に 配設され、制御電極17は、行方向に配設されたワード 線に接続されている。ここで、参照番号10はn型シリ コン半導体基板を示し、参照番号11Aはn型ウエルを 示し、参照番号20は層間絶縁層を示す。

【0003】従来のNANDストリング型メモリセルにおけるメモリ素子へのデータ書き込み動作の概要を、以下、説明する。

【0004】NANDストリング型メモリセルにおい

て、データは、ビット線BLから最も離れた位置に位置 するメモリ素子M₂から順に書き込まれる。データ書き 込み動作においては、データを書き込むべきメモリ素子 (以下、便宜上、選択メモリ素子と呼ぶ)の制御電極1 7にプログラム電位Vprogram (例えば約20ボルト) を印加する。かかるメモリ素子以外のメモリ素子(以 下、便宜上、非選択メモリ素子と呼ぶ)の制御電極17 にはプログラム禁止電位 Vpass (パス電圧とも呼ばれ、 例えば約10ボルト)を印加する。一方、ビット線BL に、例えば0ボルトを印加する。そして、第1の選択ト ランジスタDSGを導通させ、第2の選択トランジスタ SSGを非導通状態にすると、ビット線BLの電位はメ モリ素子のソース/ドレイン領域13へと転送される。 そして、選択メモリ素子においては、制御電極17の電 位とチャネル形成領域12の電位との間の電位差に基づ き、ファウラー・ノルドハイム (Fowler-Nordheim)・ トンネル現象によって、チャネル形成領域12から浮遊 電極15への電子の注入が生じる。その結果、選択メモ リ素子の閾値電圧Vthが当初の負から正方向にシフト し、データが選択メモリ素子に書き込まれる。一方、非 選択メモリ素子においては、制御電極17とチャネル形 成領域12との間には大きな電位差が生ぜず、チャネル 形成領域12から浮遊電極15への電子の注入は生じな い。その結果、非選択メモリ素子の閾値電圧Vthは当初 の値から変化せず、当初のデータが非選択メモリ素子に 保持される。各メモリ素子の閾値電圧V_{th}の分布を図2 1に模式的に示す。

【0005】ワード線は他のNANDストリング型メモ リセルと共通化されている。従って、選択メモリ素子の 制御電極17に接続されたワード線に接続された他のN ANDストリング型メモリセルを構成するメモリ・スト リング(以下、このようなメモリ・ストリングを他のメ モリ・ストリングと呼ぶ)におけるメモリ素子(以下、 このようなメモリ素子を、他の選択メモリ素子と呼ぶり の制御電極17にも、プログラム電位Vprogramが印加 される。かかる他の選択メモリ素子にデータを書き込ん ではならない場合には、即ち、かかる他の選択メモリ素 子へのデータの書き込みが禁止されている場合には、他 のメモリ・ストリングに接続されているビット線BLに 中間電位V。(例えば約10ボルト)を印加する。これ によって、他の選択メモリ素子においては、制御電極1 7とチャネル形成領域12との間には大きな電位差が生 ぜず、チャネル形成領域12から浮遊電極15への電子 の注入が生じない。従って、他の選択メモリ素子にデー タが書き込まれず、当初のデータが保持される。

【0006】ビット線BLに中間電位V。を印加する従来の方法においては、各ビット線BL毎に設けられ、センスアンプ等から構成されたコラム回路とも呼ばれるビット線制御回路(図示せず)によってビット線BLに印加すべき中間電位V。を供給する必要があり、そのため

に、ビット線制御回路には高耐圧のトランジスタを用いなければならない。然るに、このような高耐圧のトランジスタを設けるためには広い面積が必要とされ、不揮発性半導体メモリセルの面積縮小化を図ることが困難である

【0007】このような問題を解決するための手段として、NANDストリング型メモリセルにおいて、制御電極17と浮遊電極15との容量結合、及び、浮遊電極15とチャネル形成領域12との容量結合に基づき、ワード線に印加された電位によって他のメモリ・ストリングにおける他の選択メモリ素子のチャネル形成領域12を昇圧させる方法が知られている。尚、このような方法をセルフ・ブースト方式と呼ぶ。セルフ・ブースト方式を採用することによって、他の選択メモリ素子において、制御電極17とチャネル形成領域12との間には大きな電位差が生ぜず、他の選択メモリ素子にはデータが書き込まれない。

【0008】具体的には、選択メモリ素子へのデータ書き込みに際しては、ワード線にプログラム電位Vprogram (例えば約20ボルト)を印加することによって制御電極の電位を約20ボルトとする。一方、非選択メモリ素子の制御電極にはプログラム禁止電位V

pass(約10ボルト)を印加する。また、予め、このメ モリ・ストリングに接続されたビット線BLには例えば Oボルトを印加し、第1の選択トランジスタDSGのゲ ート電極に電源電圧Vccを印加し、第2の選択トランジ スタSSGのゲート電極にはOボルトを印加する。これ によって、選択メモリ素子においては、プログラム電位 Vprogragicある制御電極の電位とチャネル形成領域の 電位との間の電位差(約20ボルト)に基づき、チャネ ル形成領域から浮遊電極への電子の注入が生じる結果、 データが選択メモリ素子に書き込まれる。一方、非選択 メモリ素子においては、プログラム禁止電位Vpassにあ る制御電極の電位とチャネル形成領域の電位との間には 大きな電位差が生ぜず(具体的には、約10ボルトの電 位差しか生ぜず)、チャネル形成領域から浮遊電極への 電子の注入は生じない。その結果、非選択メモリ素子の 閾値電圧は当初の値から変化せず、当初のデータが非選 択メモリ素子に保持される。

【0009】一方、他のメモリ・ストリングにおける他の選択メモリ素子の制御電極にはプログラム電位Vprogram(約20ボルト)が印加される。また、他のメモリ・ストリングにおける他の選択メモリ素子以外のメモリ素子(他のメモリ・ストリングにおける他の選択メモリ素子と呼ぶ)の制御電極にはプログラム禁止電位Vpass(約10ボルト)が印加される。そして、この他のメモリ・ストリングに接続されたビット線BLにVccを印加し、第1の選択トランジスタDSGのゲート電板

のメモリ・ストリングに接続されたビット線BLに V_{cc} を印加し、第1の選択トランジスタDSGのゲート電極に V_{cc} を印加し、第2の選択トランジスタSSGのゲート電極には0ボルトを印加する。これによって、他のメ

モリ・ストリングの各メモリ素子のチャネル形成領域が 8ボルト前後に昇圧される。そして、その結果、ほぼ同 時に、第1の選択トランジスタDSGは非導通状態とな り、チャネル形成領域の電位が保持される。これによっ て、チャネル形成領域から浮遊電極への電子の注入が生 ぜず、他の選択メモリ素子にデータが書き込まれず、当 初のデータが保持される。

【0010】他のメモリ・ストリングにおける各メモリ素子のチャネル形成領域の電位Vchは、以下の式(1)で表すことができる。尚、式(1)の右辺第3項は、他のメモリ・ストリングにおける他の選択メモリ素子に基づくチャネル形成領域の昇圧を示す。具体的には、他の選択メモリ素子における、制御電極と電荷蓄積部との容

量結合、及び、電荷蓄積部とチャネル形成領域との容量 結合に基づくチャネル形成領域の昇圧を示す。また、式 (1)の右辺第2項は、他のメモリ・ストリングにおけ る他の非選択メモリ素子に基づくチャネル形成領域の昇 圧を示す。具体的には、非選択メモリ素子における、制 御電極と電荷蓄積部との容量結合、及び、電荷蓄積部と チャネル形成領域との容量結合に基づくチャネル形成領 域の昇圧を示す。尚、セルフ・ブースト方式の等価回路 を図22に示す。更には、式(1)及び後述する各式中 の記号の定義を、以下の表1に示す。

[0011]

【数1】

 $V_{ch} = V_{chini} + C r_1 (V_{pros} - V_{chini}) + C r_2 (V_{prograp} - V_{ch} - V_{chini})$ (1)

[0012]

【表1】V_{chini}:ビット線を介してメモリ素子のチャネル形成領域に印加される電位

V_{th} :メモリ素子の閾値電圧

 $Cr_1 : (N-1) \times (C_{ins}/C_{total})$

 $Cr_2:C_{ins}/C_{total}$

 Cr_3 : $(N-1) \times (C_{boost}/C_{total})$ Cr_4 : $(N-1) \times (C_{cond}/C_{total})$

N : 1 つのメモリ・ストリングを構成するメモリ 素子の個数

 C_{ins} : 1 つのメモリ素子の容量であり、 $[C_{insul} \cdot C_{tun}/(C_{insul} + C_{tun})]$ 。ここで、 C_{insul} は制御電極と浮遊電極との間の結合容量であり、 C_{tun} は浮遊電極とチャネル形成領域との間の結合容量

C_{boost}:後述するブースター電極方式におけるブースター電極とソース/ドレイン領域との間の結合容量 C_{cond}:後述するCBC方式における導電層と浮遊電極との間の結合容量

 C_{total} : セルフ・ブースト方式においては、 $N \times C_{ins}$ + C_{ch} ; ブースター電極方式においては、 $N \times C_{ins}$ + C_{ch} + $N \times C_{boost}$; C B C 方式においては、 $N \times C_{ins}$ + C_{ch} + $N \times C_{cond}$

C_{ch}: 1つのメモリ・ストリングを構成するN個のメモリ素子のソース/ドレイン領域と基体 (例えばウエル)間のチャネル寄生容量

【0013】更に、セルフ・ブースト方式の一種である、ブースター電極と制御電極との容量結合に基づき制御電極を昇圧させる方法(ブースター電極方式)の一具体例を、文献 "A Novel Booster Plate Technology in High Density NAND Flash Memories for Voltage Scaling-Down and Zero Program Disturbance", J.D. Choi.et al., 1996 Symposium on VLSI Technology Digest of Technical Papers, pp238-239 を参照して、以下、説明する。

【0014】この文献に開示されたメモリ・ストリング

におけるメモリ素子は、半導体基板に形成されたソース /ドレイン領域及びチャネル形成領域、チャネル形成領域上に、トンネル絶縁膜、浮遊電極、絶縁層、制御電 極、層間絶縁膜、ブースター電極が順次、形成された構造を有する。

【0015】そして、選択メモリ素子へのデータ書き込 みに際しては、選択メモリ素子に接続されたワード線に プログラム電位Vprogram(12ボルト)を印加するこ とによって制御電極の電位をプログラム電位Vprogram (12ボルト)とする。一方、非選択メモリ素子の制御 電極には、ワード線からプログラム禁止電位Voass (例 えばVccボルト)を印加する。併せて、ブースター電極 にブースト電位Vboost (12ボルト)を印加する。ま た、予め、このメモリ・ストリングに接続されたビット 線BLには例えばOボルトを印加し、第1の選択トラン ジスタDSGのゲート電極に電源電圧Vccを印加し、第 2の選択トランジスタSSGのゲート電極には0ボルト を印加する。これによって、選択メモリ素子において は、プログラム電位Vprogramにある制御電極の電位と チャネル形成領域の電位との間の電位差(約12ボル ト) に基づき、チャネル形成領域から浮遊電極への電子 の注入が生じる結果、データが選択メモリ素子に書き込 まれる。一方、非選択メモリ素子においては、プログラ ム禁止電位 Vpass (例えば Vcc ボルト) にある制御電極 の電位とチャネル形成領域の電位との間には大きな電位 差が生ぜず、チャネル形成領域から浮遊電極への電子の 注入は生じない。その結果、非選択メモリ素子の閾値電 圧は当初の値から変化せず、当初のデータが非選択メモ リ素子に保持される。

【0016】一方、他のメモリ・ストリングにおける他の選択メモリ素子の制御電極にもプログラム電位 $V_{\rm program}$ (12ボルト)が印加され、他のメモリ・ストリングにおける他の非選択メモリ素子の制御電極にはプログラム禁止電位 $V_{\rm pass}$ (例えば $V_{\rm cc}$ ボルト)が印加され、併せて、ブースター電極にブースト電位 $V_{\rm cc}$

boost (12ボルト)が印加される。この他のメモリ・ ストリングに接続されたビット線BLにV。。を印加し、 第1の選択トランジスタDSGのゲート電極にV゚。。を印 加し、第2の選択トランジスタSSGのゲート電極には Oボルトを印加する。これによって、プログラム電位V programにある制御電極の電位とチャネル形成領域の電 位(Vcc-V'thであり、V'thは第1の選択トランジ スタDSGの閾値電圧である)との間の電位差等に基づ き、他のメモリ・ストリングの各メモリ素子のチャネル 形成領域が約8ボルトに昇圧される。そして、その結 果、ほぼ同時に、第1の選択トランジスタDSGは非導 通状態となり、チャネル形成領域の電位(約8ボルト) が保持される。これによって、チャネル形成領域から浮 遊電極への電子の注入が生ぜず、他の選択メモリ素子に データが書き込まれず、当初のデータが保持される。 【0017】上述の文献に開示されたメモリ・ストリン グにおいては、制御電極と電荷蓄積部との容量結合だけ でなく、ブースター電極と電荷蓄積部との容量結合によ って電荷蓄積部の昇圧を行うことができるので、従来よ りも低いプログラム電位Vprogram(12ボルト)を用 いても、メモリ素子にデータを書き込むことが可能とな

【0018】他のメモリ・ストリングにおける各メモリ 素子のチャネル形成領域の電位V_{ch}は、以下の式(2) で表すことができる。尚、式(2)の右辺第3項は、他 のメモリ・ストリングにおける他の選択メモリ素子に基 づくチャネル形成領域の昇圧を示す。具体的には、他の 選択メモリ素子における、制御電極と電荷蓄積部との容 量結合、及び、電荷蓄積部とチャネル形成領域との容量 結合に基づくチャネル形成領域の昇圧を示す。また、式 (2) の右辺第4項は、他のメモリ・ストリングの他の 非選択メモリ素子におけるブースター電極に基づくチャ ネル形成領域の昇圧を示す。具体的には、他の非選択メ モリ索子におけるプースター電極とソース/ドレイン領 域領域との容量結合に基づくチャネル形成領域の昇圧を 示す。更には、式(2)の右辺第2項は、他のメモリ・ ストリングにおける他の非選択メモリ素子に基づくチャ ネル形成領域の昇圧を示す。具体的には、他の非選択メ モリ素子における、制御電極と電荷蓄積部との容量結 合、及び、電荷蓄積部とチャネル形成領域との容量結合 に基づくチャネル形成領域の昇圧を示す。尚、従来のブ ースター電極方式の等価回路を図23に示す。

[0019]

【数2】

$$V_{ch} = V_{chiai} + C r_1 (V_{pers} - V_{th} - V_{chiai}) + C r_2 (V_{pregrad} - V_{th} - V_{chiai}) + C r_3 (V_{pers} - V_{th}) (2)$$

【0020】更に、上述の問題を解決するための手段として、他のNANDストリング型メモリセルにおいて、メモリ・ストリングを構成する各メモリ素子の制御電極

の少なくとも頂面の上方に層間絶縁膜を介して形成さ れ、且つ、メモリ・ストリングを構成する1つのメモリ 素子の一方のソース/ドレイン領域に接続された導電層 を備えた構造を有するメモリ・ストリングが、例えば、 文献 "A novel ChannelBoost Capacitance (CBC) Cell TEchnology with Low Program Disturbance Suitable f or FAst Programming 4Gbit NAND Flash Memories", S. SAto, et al., 1998 Symposium pn VLSI TEchnology Di gest of Technical Papers, pp. 108-109 から公知であ る。このメモリ・ストリングにおいては、メモリ素子へ のデータ書き込みに際し、ワード線制御回路によってワ ード線にプログラム電位Vprogramを印加する。そし て、データを書き込むべきメモリ素子とワード線を介し て接続された他のメモリ・ストリングにおける他の選択 メモリ素子へのデータの書き込みを禁止する場合、デー タの書き込みが禁止された他の選択メモリ素子におい て、少なくとも、プログラム電位V。このスティルにある制御 電極と電荷蓄積部との容量結合、電荷蓄積部とチャネル 形成領域との容量結合、及び、制御電極と導電層との容 量結合に基づきチャネル形成領域を昇圧する。尚、この ような方法をCBC方式と呼ぶ。CBC方式を採用する ことによって、他の選択メモリ素子において、制御電極 とチャネル形成領域との間には大きな電位差が生ぜず、 他の選択メモリ素子にはデータが書き込まれない。

【0021】他のメモリ・ストリングにおける各メモリ 素子のチャネル形成領域の電位V_{ch}は、以下の式(3) で表すことができる。尚、式(3)の右辺第3項は、他 のメモリ・ストリングにおける他の選択メモリ素子に基 づくチャネル形成領域の昇圧を示す。具体的には、他の 選択メモリ素子における、制御電極と電荷蓄積部との容 量結合、及び、電荷蓄積部とチャネル形成領域との容量 結合に基づくチャネル形成領域の昇圧を示す。また、式 (3)の右辺第2項は、他のメモリ・ストリングにおけ る他の非選択メモリ素子に基づくチャネル形成領域の昇 圧を示す。具体的には、他の非選択メモリ素子におけ る、制御電極と電荷蓄積部との容量結合、及び、電荷蓄 積部とチャネル形成領域との容量結合に基づくチャネル 形成領域の昇圧を示す。更に、式(3)の右辺第4項 は、制御電極と導電層との間の結合容量に基づくチャネ ル形成領域の昇圧を示す。尚、図24に、CBC方式の 等価回路を示す。

[0022]

【数3】

$$V_{ch} = V_{chiel} + C r_1 (V_{pers} - V_{th} - V_{chiel}) + C r_2 (V_{presen} - V_{th} - V_{chiel}) + C r_4 (V_{pers} - V_{th} - V_{chiel})$$
(3)

【発明が解決しようとする課題】メモリ素子の微細化を 進める場合には、ゲート長を短くする必要があり、その ために、通常、チャネル形成領域の不純物濃度を高める 必要がある。ところで、チャネル形成領域の不純物濃度 を高めると、1つのメモリ・ストリングを構成するN個 のメモリ素子のソース/ドレイン領域と基体(例えばウ エル)間のチャネル寄生容量Cchの値が大きくなる。従 って、式(1)、式(2)、式(3)における係数Cr 1, Cr₂, Cr₃, Cr₄の値が小さくなる結果、他のメ モリ・ストリングにおける各メモリ索子のチャネル形成 領域の電位Vcbが低下する。それ故、セルフ・ブースト 方式、ブースター電極方式あるいはCBC方式によって 他の選択メモリ素子のチャネル形成領域の電位Vchを昇 圧したとき、他の選択メモリ素子のチャネル形成領域の 電位 V chが十分には上昇せず (例えば、7ボルトに達せ ず)、他の選択メモリ素子において、制御電極の電位と チャネル形成領域の電位Vchの差が大きくなり、データ 書き込み時のディスターブ特性が劣化するといった問題 が生じる。即ち、他の選択メモリ素子に対するディスタ ーブ特性のマージンが無くなる可能性がある。

【0024】従って、本発明の目的は、メモリ素子の微細化を進める場合にあっても、データ書き込み時のディスターブ特性が劣化するといった問題を確実に回避することができる不揮発性半導体メモリセル、並びに、かかる不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法を提供することにある。

[0025]

【課題を解決するための手段】上記の目的を達成するた めの本発明の第1の態様に係る不揮発性半導体メモリセ ルは、セルフ・ブースト方式の不揮発性半導体メモリセ ルであり、(イ)基体に形成されたソース/ドレイン領 域及びチャネル形成領域、チャネル形成領域上に形成さ れた電荷蓄積部、並びに、電荷蓄積部上に形成された制 御電極を有する、電気的書き換えが可能なメモリ素子 が、複数、直列接続されたメモリ・ストリング、(ロ) 各制御電極に接続された複数のワード線、(ハ)メモリ ・ストリングの一端のメモリ素子の一方のソース/ドレ イン領域に、第1の選択トランジスタを介して接続され たビット線、(二)メモリ・ストリングの他端のメモリ 素子の一方のソース/ドレイン領域に、第2の選択トラ ンジスタを介して接続されたソース線、並びに、(ホ) ワード線にプログラム電位を印加するためのワード線制 御回路、を具備し、メモリ素子へのデータ書き込みに際 し、ワード線制御回路の作動によりワード線にプログラ ム電位を印加し、データを書き込むべきメモリ素子とワ ード線を介して接続された他のメモリ・ストリングにお けるメモリ素子へのデータの書き込みを禁止する場合、 データの書き込みが禁止された該メモリ素子において、 少なくとも、制御電極と電荷蓄積部との容量結合、及 び、電荷蓄積部とチャネル形成領域との容量結合に基づ きチャネル形成領域を昇圧する不揮発性半導体メモリセ ルであって、チャネル形成領域の不純物濃度は、1×1 017 c m-3以下であり、メモリ素子に記憶されたデータ

を読み出す際に基体又はソース線にバイアスを印加する ためのバイアス印加手段を更に備えていることを特徴と する。

【0026】上記の目的を達成するための本発明の第2 の態様に係る不揮発性半導体メモリセルは、ブースター 電極方式の不揮発性半導体メモリセルであり、(イ)基 体に形成されたソース/ドレイン領域及びチャネル形成 領域、チャネル形成領域上に形成された電荷蓄積部、並 びに、電荷蓄積部上に形成された制御電極を有する、電 気的書き換えが可能なメモリ素子が、複数、直列接続さ れたメモリ・ストリング、(ロ)各制御電極に接続され た複数のワード線、(ハ)メモリ・ストリングの一端の メモリ素子の一方のソース/ドレイン領域に、第1の選 択トランジスタを介して接続されたビット線、(二)メ モリ・ストリングの他端のメモリ素子の一方のソース/ ドレイン領域に、第2の選択トランジスタを介して接続 されたソース線、(ホ)ワード線に所定の電位を印加す るためのワード線制御回路、(へ)メモリ・ストリング を構成する各メモリ素子の制御電極、電荷蓄積部及びソ ース/ドレイン領域上を被覆する層間絶縁膜上に形成さ れたブースター電極、並びに、(ト)ブースター電極に ブースト電位を印加するためのブースト電位印加手段、 を具備し、メモリ素子へのデータ書き込みに際し、ワー ド線制御回路の作動によりワード線に所定の電位を印加 し、且つ、ブースト電位印加手段の動作によりブースタ 一電極にブースト電位を印加し、データを書き込むべき メモリ素子とワード線を介して接続された他のメモリ・ ストリングにおけるメモリ索子へのデータの書き込みを 禁止する場合、データの書き込みが禁止された該メモリ 素子において、少なくとも、制御電極と電荷蓄積部との 容量結合、電荷蓄積部とチャネル形成領域との容量結 合、及び、ブースター電極とソース/ドレイン領域領域 との容量結合に基づきチャネル形成領域を昇圧する不揮 発性半導体メモリセルであって、チャネル形成領域の不 純物濃度は2×10¹⁷ c m⁻³以下であり、メモリ素子に 記憶されたデータを読み出す際に基体又はソース線にバ イアスを印加するためのバイアス印加手段を更に備えて いることを特徴とする。

【0027】上記の目的を達成するための本発明の第3の態様に係る不揮発性半導体メモリセルは、CBC方式の不揮発性半導体メモリセルであり、(イ)基体に形成されたソース/ドレイン領域及びチャネル形成領域、チャネル形成領域上に形成された電荷蓄積部、並びに、電荷蓄積部上に形成された制御電極を有する、電気的書き換えが可能なメモリ素子が、複数、直列接続されたメモリ・ストリング、(ロ)各制御電極に接続された複数のワード線、(ハ)メモリ・ストリングの一端のメモリ素子の一方のソース/ドレイン領域に、第1の選択トランジスタを介して接続されたビット線、(ニ)メモリ・ストリングの他端のメモリ素子の一方のソース/ドレイン

領域に、第2の選択トランジスタを介して接続されたソ ース線、(ホ)ワード線にプログラム電位を印加するた めのワード線制御回路、並びに、(へ)メモリ・ストリ ングを構成する各メモリ素子の制御電極の少なくとも頂 面の上方に層間絶縁膜を介して形成され、且つ、メモリ ・ストリングを構成する1つのメモリ素子の一方のソー ス/ドレイン領域に接続された導電層、を具備し、メモ リ素子へのデータ書き込みに際し、ワード線制御回路の 作動によりワード線にプログラム電位を印加し、データ を書き込むべきメモリ素子とワード線を介して接続され た他のメモリ・ストリングにおけるメモリ素子へのデー タの書き込みを禁止する場合、データの書き込みが禁止 された該メモリ素子において、少なくとも、制御電極と 電荷蓄積部との容量結合、電荷蓄積部とチャネル形成領 域との容量結合、及び、制御電極と導電層との容量結合 に基づきチャネル形成領域を昇圧する不揮発性半導体メ モリセルであって、チャネル形成領域の不純物濃度は、 1×10¹⁸ c m⁻³以下であり、メモリ素子に記憶された データを読み出す際に基体又はソース線にバイアスを印 加するためのバイアス印加手段を更に備えていることを

【0028】上記の目的を達成するための本発明の第1 の態様に係る不揮発性半導体メモリセルにおけるデータ 書き込み・読み出し制御方法は、(イ)基体に形成され たソース/ドレイン領域及びチャネル形成領域、チャネ ル形成領域上に形成された電荷蓄積部、並びに、電荷蓄 積部上に形成された制御電極を有する、電気的書き換え が可能なメモリ素子が、複数、直列接続されたメモリ・ ストリング、(ロ)各制御電極に接続された複数のワー ド線、(ハ)メモリ・ストリングの一端のメモリ素子の 一方のソース/ドレイン領域に、第1の選択トランジス タを介して接続されたビット線、(二)メモリ・ストリ ングの他端のメモリ素子の一方のソース/ドレイン領域 に、第2の選択トランジスタを介して接続されたソース 線、並びに、(ホ)ワード線にプログラム電位を印加す るためのワード線制御回路、を具備し、チャネル形成領 域の不純物濃度は、1×10¹⁷ c m⁻³以下 c m⁻³以下で あり、メモリ素子に記憶されたデータを読み出す際に基 体又はソース線にバイアスを印加するためのバイアス印 加手段を更に備えている、セルフ・ブースト方式の不揮 発性半導体メモリセルにおけるデータ書き込み・読み出 し制御方法であって、メモリ素子へのデータ書き込みに 際し、ワード線制御回路の作動によりワード線にプログ ラム電位を印加し、データを書き込むべきメモリ素子と ワード線を介して接続された他のメモリ・ストリングに おけるメモリ素子へのデータの書き込みを禁止する場 合、データの書き込みが禁止された該メモリ素子におい て、少なくとも、制御電極と電荷蓄積部との容量結合、 及び、電荷蓄積部とチャネル形成領域との容量結合に基 づきチャネル形成領域を昇圧し、メモリ素子からのデー 夕読み出しに際して、バイアス印加手段によって基体又 はソース線にバイアスを印加することを特徴とする。 【0029】上記の目的を達成するための本発明の第2 の態様に係る不揮発性半導体メモリセルにおけるデータ 書き込み・読み出し制御方法は、(イ)基体に形成され たソース/ドレイン領域及びチャネル形成領域、チャネ ル形成領域上に形成された電荷蓄積部、並びに、電荷蓄 積部上に形成された制御電極を有する、電気的書き換え が可能なメモリ素子が、複数、直列接続されたメモリ・ ストリング、(ロ)各制御電極に接続された複数のワー ド線、(ハ)メモリ・ストリングの一端のメモリ素子の 一方のソース/ドレイン領域に、第1の選択トランジス 夕を介して接続されたビット線、(ニ)メモリ・ストリ ングの他端のメモリ素子の一方のソース/ドレイン領域 に、第2の選択トランジスタを介して接続されたソース 線、(ホ)ワード線に所定の電位を印加するためのワー ド線制御回路、(へ)メモリ・ストリングを構成する各 メモリ素子の制御電極、電荷蓄積部及びソース/ドレイ ン領域上を被覆する層間絶縁膜上に形成されたブースタ 一電極、並びに、(ト)ブースター電極にブースト電位 を印加するためのブースト電位印加手段、を具備し、チ ャネル形成領域の不純物濃度は2×10¹⁷ c m⁻³以下で あり、メモリ素子に記憶されたデータを読み出す際に基 体又はソース線にバイアスを印加するためのバイアス印 加手段を更に備えている不揮発性半導体メモリセルにお けるデータ書き込み・読み出し制御方法であって、メモ リ素子へのデータ書き込みに際し、ワード線制御回路の 作動によりワード線に所定の電位を印加し、且つ、ブー スト電位印加手段の動作によりブーター電極にブースト 電位を印加し、データを書き込むべきメモリ素子とワー ド線を介して接続された他のメモリ・ストリングにおけ るメモリ素子へのデータの書き込みを禁止する場合、デ ータの書き込みが禁止された該メモリ素子において、少 なくとも、制御電極と電荷蓄積部との容量結合、電荷蓄 積部とチャネル形成領域との容量結合、及び、ブースタ 一電極とソース/ドレイン領域領域との容量結合に基づ きチャネル形成領域を昇圧し、メモリ素子からのデータ 読み出しに際して、バイアス印加手段によって基体又は ソース線にバイアスを印加することを特徴とする。

【0030】上記の目的を達成するための本発明の第3の態様に係る不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法は、(イ)基体に形成されたソース/ドレイン領域及びチャネル形成領域、チャネル形成領域上に形成された電荷蓄積部、並びに、電荷蓄積部上に形成された制御電極を有する、電気的書き換えが可能なメモリ素子が、複数、直列接続されたメモリ・ストリング、(ロ)各制御電極に接続された複数のワード線、(ハ)メモリ・ストリングの一端のメモリ素子の一方のソース/ドレイン領域に、第1の選択トランジスタを介して接続されたビット線、(ニ)メモリ・ストリ

ングの他端のメモリ素子の一方のソース/ドレイン領域 に、第2の選択トランジスタを介して接続されたソース 線、(ホ)ワード線にプログラム電位を印加するための ワード線制御回路、並びに、(へ)メモリ・ストリング を構成する各メモリ素子の制御電極の少なくとも頂面の 上方に層間絶縁膜を介して形成され、且つ、メモリ・ス トリングを構成する1つのメモリ素子の一方のソース/ ドレイン領域に接続された導電層、を具備し、チャネル 形成領域の不純物濃度は、1×10¹⁸ c m⁻³以下以下で あり、メモリ素子に記憶されたデータを読み出す際に基 体又はソース線にバイアスを印加するためのバイアス印 加手段を更に備えている、CBC方式の不揮発性半導体 メモリセルにおけるデータ書き込み・読み出し制御方法 であって、メモリ素子へのデータ書き込みに際し、ワー ド線制御回路によってワード線にプログラム電位を印加 し、データを書き込むべきメモリ素子とワード線を介し て接続された他のメモリ・ストリングにおけるメモリ素 子へのデータの書き込みを禁止する場合、データの書き 込みが禁止された該メモリ素子において、少なくとも、 制御電極と電荷蓄積部との容量結合、電荷蓄積部とチャ ネル形成領域との容量結合、及び、制御電極と導電層と の容量結合に基づきチャネル形成領域を昇圧し、メモリ 素子からのデータ読み出しに際して、バイアス印加手段 によって基体又はソース線にバイアスを印加することを 特徴とする。

【0031】本発明の第2の態様に係る不揮発性半導体 メモリセル、あるいは、本発明の第2の態様に係る不揮 発性半導体メモリセルにおけるデータ書き込み・読み出 し制御方法においては、メモリ・ストリング全体を層間 絶縁膜を介してブースター電極で被覆し、隣接するメモ リ・ストリング全体をも連続して層間絶縁膜を介してブ ースター電極で被覆してもよく、例えば多数のメモリ・ ストリングで構成されたブロックを単位として、かかる 1ブロック分の多数のメモリ・ストリングを層間絶縁膜 を介してブースター電極で被覆する構成としてもよい。 ブースター電極は、ブロック毎に独立させることが好ま しい。ブースター電極にブースト電位を印加するための ブースト電位印加手段は、ワード線制御回路内に設けて もよく、あるいは又、ビット線制御回路内に設けてもよ く、更には、ワード線制御回路で代用してもよい。ワー ド線に印加する所定の電位とブースター電極に印加する ブースト電位とは、同一であっても異なっていてもよ 11

【0032】本発明の第3の態様に係る不揮発性半導体メモリセル、あるいは、本発明の第3の態様に係る不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法においては、導電層は、メモリ・ストリングを構成する各メモリ素子の制御電極の側壁の上方まで延在するように層間絶縁膜を介して形成されていることが好ましい。尚、導電層は、メモリ・ストリング毎に設け

ることが好ましい。

【0033】本発明の不揮発性半導体メモリセル、並び に、不揮発性半導体メモリセルにおけるデータ書き込み ・読み出し制御方法においては、電荷蓄積部を、チャネ ル形成領域上に形成されたトンネル絶縁膜、トンネル絶 縁膜上に形成された浮遊電極、及び、浮遊電極と制御電 極との間に形成された絶縁層から成る構成とすることが できる。即ち、各メモリ素子を、所謂、浮遊電極型メモ リ素子とすることができる。この場合、電荷蓄積部を構 成するトンネル絶縁膜は、半導体基板の表面を例えば熱 酸化処理、あるいは熱酸化処理及び窒化処理することに よって形成することができ、SiO₂、SiO₂/Si N、SiON、SiO₂/SiON等から構成すること ができる。浮遊電極は、例えば、不純物を含有するポリ シリコンから構成することができる。浮遊電極と制御電 極との間に形成された絶縁層は、ONO膜、ON膜、S iO₂膜、SiN膜、SiON膜等から構成することが できる。

【0034】あるいは又、本発明の不揮発性半導体メモリセル、並びに、不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法においては、電荷蓄積部を、チャネル形成領域上に形成された第1の酸化膜、第1の酸化膜上に形成された窒化膜、及び、窒化膜と制御電極との間に形成された第2の酸化膜から成る構成とすることができる。即ち、各メモリ素子を、所謂、MONOS型メモリ素子とすることができる。この場合、電荷蓄積部を構成する第1及び第2の酸化膜をSiO₂膜とし、窒化膜をSiN膜とすることができる。即ち、電荷蓄積部をONO膜から構成することができる。

【0035】更には、本発明の不揮発性半導体メモリセル、並びに、不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法においては、電荷蓄積部を、チャネル形成領域上に形成された酸化膜、及び、酸化膜と制御電極との間に形成された窒化膜から成る構成とすることができる。即ち、各メモリ素子を、所謂、MNOS型メモリ素子とすることができる。この場合、電荷蓄積部を構成する酸化膜をSiOz膜とし、窒化膜をSiN膜とすることができる。即ち、電荷蓄積部をON膜から構成することができる。

【0036】あるいは又、本発明の不揮発性半導体メモリセル、並びに、不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法においては、電荷蓄積部を、チャネル形成領域上に形成されたトンネル絶縁膜、トンネル絶縁膜と制御電極との間に形成された絶縁層、及び、該絶縁層中に設けられた導電性微小結晶粒子から成る構成とすることができる。即ち、各メモリ素子を、所謂、ナノクリスタル型メモリ素子とすることができる。尚、トンネル絶縁膜上に導電性微小結晶粒子を形成し、導電性微小結晶粒子と制御電極との間に絶縁層を形成する形態もナノクリスタル型メモリ素子に包含され

る。これらの場合、トンネル絶縁膜は、半導体基板の表面を例えば熱酸化処理、あるいは熱酸化処理及び窒化処理することによって形成することができ、 SiO_2 、 SiO_2 /SiN、SiON、 SiO_2 /SiON等から構成することができる。また、導電性微小結晶粒子は、シリコンやゲルマニウムから構成することができる。更には、導電性微小結晶粒子と制御電極との間に形成された絶縁層は、ONO膜、ON度、 SiO_2 度、SiN度、SiON度等から構成することができる。

【0037】本発明における基体としては、p型半導体 基板、若しくは、p型ウエルを挙げることができる。 尚、p型ウエルは、n型半導体基板内に形成されていて もよいし、p型半導体基板内に形成されたn型ウエル内 に形成されていてもよい。また、不揮発性半導体メモリ セルの全てが1つのp型ウエル内に形成されていてもよ いし、複数のp型ウエル内に複数の不揮発性半導体メモ リセルを形成してもよい。制御電極は、例えば、不純物 を含有するポリシリコン層、不純物を含有するポリシリ コン層とタングステンシリサイド等のシリサイド層の積 層構造(ポリサイド構造)、タングステン等の高融点金 属材料層や、シリサイド層から構成することができる。 ワード線は、制御電極と一体に、ワード線から延在する ように形成することができる。ブースター電極や導電層 も、例えば、不純物を含有するポリシリコン層、不純物 を含有するポリシリコン層とタングステンシリサイド等 のシリサイド層の積層構造(ポリサイド構造)、タング ステン等の高融点金属材料層や、シリサイド層から構成 することができる。層間絶縁膜を構成する材料として、 BPSG、PSG、BSG、AsSG、PbSG、Sb SG, NSG, SOG, LTO (Low Temperature Oxid e、低温CVD-SiO2)、HTO (High Temperature Oxide、高温CVD-SiO₂)、SiN、SiON、 あるいは、これらの材料の積層構造 [例えばONO膜 (SiO₂膜/SiN膜/SiO₂膜)、ON膜(SiO 2膜/SiN膜)]を挙げることができる。

【0038】第1の選択トランジスタ及び第2の選択トランジスタは、例えば、通常のnチャネル型MOS FETから構成することができる。また、ワード線制御回路、ブースト電位印加手段、バイアス印加手段は、周知の回路構成とすればよい。

【0039】尚、本発明の不揮発性半導体メモリセル、並びに、不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法においては、浮遊電極への電子の注入、浮遊電極からの電子の引き抜きにより、データの書き込み、消去が行われ、データ書き込み動作及び消去動作はファウラー・ノルドハイム(Fowler-Nordheim)・トンネル現象に基づき行われる。ここで、データ消去動作とは、複数のメモリ素子の閾値電圧をブロック毎に一括して所定の状態に変えることを意味し、データ書き込み動作とは、ページ単位で選択メモリ素子の閾値

電圧をもう1つの所定の状態に変えることを意味する。 【0040】本発明においては、セルフ・ブースト方 式、ブースター電極方式及びCBC方式に依存して、チ ャネル形成領域の不純物濃度の上限が規定されている。 その結果、選択メモリ素子へのデータ書き込みに際し て、データ書き込みが禁止された他のメモリ・ストリン グにおける他の選択メモリ素子においては、基体又はソ ース線にバイアスを印加せず、ソース/ドレイン領域又 はチャネル形成領域から空乏層を延ばし、チャネル寄生 容量Cchやソース/ドレイン寄生容量を低減させること ができる。その結果、式(1)、式(2)、式(3)に おける係数Cr₁, Cr₂, Cr₃, Cr₄の値が小さくな ることを抑制でき、他のメモリ・ストリングにおける各 メモリ素子のチャネル形成領域の電位Vchを、例えば7 ボルト以上に上昇させることができる。それ故、他の選 択メモリ素子において、制御電極の電位とチャネル形成 領域の電位Vchの差が大きくなり、データ書き込み時の ディスターブ特性が劣化するといった問題を確実に回避 することができる。尚、チャネル形成領域の不純物濃度 に依っては、データの書き込み時、メモリ素子にパンチ スルー現象が発生する場合もあるが、問題は生じない。 本発明においては、メモリ素子からのデータ読み出しに 際して、バイアス印加手段によって基体又はソース線に バイアスを印加する。これによって、パンチスルー現象 が発生しているメモリ素子においても、パンチスルー電 流の発生を防止することができ、メモリ素子は正常にオ ン・オフ動作する。

[0041]

【発明の実施の形態】以下、図面を参照して、発明の実施の形態(以下、実施の形態と略称する)に基づき本発明を説明する。

【0042】(実施の形態1)実施の形態1は、本発明の第1の態様に係る不揮発性半導体メモリセル、並びに、本発明の第1の態様に係る不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法に関する。実施の形態1における不揮発性半導体メモリセルは、セルフ・ブースト方式の不揮発性半導体メモリセルであり、各メモリ素子は、浮遊電極型メモリ素子である。実施の形態1のメモリ・ストリング等の模式的な一部断面図を図2に示し、等価回路を図3に示す。また、制御電極と電荷蓄積部との容量結合や、電荷蓄積部とチャネル形成領域との容量結合等の等価回路を、図22に示す。

【0043】実施の形態1のメモリ・ストリングは、電気的書き換えが可能なメモリ素子(浮遊電極型メモリ素子)が、複数、直列接続されている。図に示したメモリ・ストリングにおいては、8つのメモリ素子M₀~M₇が直列接続されているが、メモリ・ストリングを構成するメモリ素子の数は8に限定されない。各メモリ素子は、基体に相当するp型ウエル11Bに形成されたソース/

ドレイン領域13及びチャネル形成領域12、チャネル 形成領域12上に形成された電荷蓄積部14,15,1 6、並びに、電荷蓄積部上に形成された制御電極17か ら構成されている。p型ウエル11Bはn型ウエル11 A内に形成され、n型ウエル11Aはp型シリコン半導 体基板10内に形成されている。制御電極17は、例え ば、不純物を含有するポリシリコン層から構成されてい る。また、制御電極17のそれぞれには、ワード線が接 続されている。具体的には、制御電極17とワード線と は一体に形成されている。実施の形態1のNANDスト リング型メモリセルは、また、メモリ・ストリングの一 端のメモリ素子Moに接続された第1の選択トランジス タDSG、及びメモリ・ストリングの他端のメモリ素子 M₇に接続された第2の選択トランジスタSSGから構 成されている。そして、メモリ・ストリングの一端のメ モリ素子M₀の一方のソース/ドレイン領域13は、第 1の選択トランジスタDSG、コンタクトプラグ21を 介してビット線BLに接続されている。一方、メモリ・ ストリングの他端のメモリ素子M7の一方のソース/ド レイン領域13は、第2の選択トランジスタSSGを介 して共通ソース線に接続されている。層間絶縁層20上 「に形成されたビット線BLは、図示しないビット線制御 回路に接続されている。実施の形態1におけるビット線 制御回路は、ビット線毎に設けられたCMOSフリップ フロップとアドレスレコーダを主体に構成された周知の 回路とすればよい。ワード線制御回路は、図4に示すよ うに、ブロックアドレスレコーダと電圧変換回路とCM OSトランジスタによる電圧転送回路とドライバー (駆 動回路)から構成された周知の回路とすればよい。ま た、メモリ素子に記憶されたデータを読み出す際に基体 であるp型ウエル11Bにバイアスを印加するためのバ イアス印加手段(図示せず)が備えられている。

【0044】実施の形態1においては、電荷蓄積部は、チャネル形成領域12上に形成されたトンネル絶縁膜14、トンネル絶縁膜14上に形成された浮遊電極15、及び、浮遊電極15と制御電極17との間に形成された絶縁層16から成る。尚、トンネル絶縁膜14はSiO₂から成り、浮遊電極15は不純物を含有するポリシリコン層から構成されており、絶縁層16は○N○膜から構成されている。

【0045】ワード線制御回路を示す図4、各メモリ素子に印加される電位(電圧)の値を例示した図表である図5、データ書き込み動作及びデータ読み出し動作における信号波形を示す図6を参照して、以下、実施の形態1のNANDストリング型メモリセルのデータ書き込み動作、データ読み出し動作及びデータ消去動作を説明する。尚、図5、図6、図11、図12、図15及び図16においては、プログラム電位をVpgmと表記する。

【0046】尚、メモリ・ストリングを構成するメモリ素子 $M_0 \sim M_7$ の内のメモリ素子 M_1 にデータを書き込む

場合を想定する。即ち、メモリ素子M₁を選択メモリ素 子とし、メモリ素子 M_0 , $M_2 \sim M_7$ を非選択メモリ素子 とする。この選択メモリ素子M、を含むメモリ・ストリ ングを、便宜上、選択メモリ・ストリングと呼ぶ。ま た、選択メモリ素子M₁に接続されたワード線を選択ワ ード線と呼び、非選択メモリ素子 M_0 , $M_2 \sim M_7$ に接続 されたワード線を非選択ワード線と呼ぶ。更には、選択 ワード線に接続された他のNANDストリング型メモリ セルにおける他の選択メモリ素子をM'1で表す。この 他の選択メモリ素子M'1においては、データの書き込 みが禁止される。即ち、この他の選択メモリ素子M', にデータが書き込まれず、当初のデータが保持される。 他の選択メモリ素子M'」を含むメモリ・ストリング を、便宜上、非選択メモリ・ストリングと呼ぶ。また、 第1の選択トランジスタDSGのゲート電極はメモリ・ ストリング選択線1に接続されており、第2の選択トラ ンジスタSSGのゲート電極はメモリ・ストリング選択 線2に接続されている。以上の構成は、以下の実施の形 態2、実施の形態3及び実施の形態4においても同様と する。

【0047】書き込み動作の開始前の書き込みセットアップにおいては、先ず、ビット線制御回路のビット線毎に設けられたCMOSフリップフロップに書き込みデータをラッチする。そして、選択メモリ・ストリングに接続されたビット線の電位 V_{BL} 「0」を0ボルトとし、非選択メモリ・ストリングに接続されたビット線の電位 V_{BL} 「1」を V_{cc} とする。また、共通ソース線の電位($=\phi_s$)及びシリコン半導体基板10の電位を0ボルトとする。即ち、バイアス印加手段は動作させない。

【0048】書き込み動作の開始において、ブロックアドレスレコーダの出力信号は選択ブロックにおいては「H」となり、電圧変換回路の V_{pp} RWが V_{cc} からプログラム電位 $V_{program}$ に昇圧される。また、DSGドライバーは V_{cc} (= ϕ SG₁)を、SSGドライバーは0ボルト(= ϕ SG₂)を、CG0ドライバー、CG2ドライバー~CG7ドライバーはプログラム禁止電位 V_{pass} (図6において、「 ϕ WL₁以外」で表す)を、それぞれ、出力する。また、CG1ドライバーはプログラム電位 $V_{program}$ (ϕ WL₁)を出力する。

【0049】選択メモリ・ストリングにおいては、ビット線BLの電位が0ボルトであり、メモリ・ストリング選択線1の電位が V_{cc} であるが故に、第1の選択トランジスタDSGが導通し、メモリ・ストリング選択線2の電位が0ボルトであるが故に、第2の選択トランジスタSSGは非導通状態となる。そして、ビット線BLの電位がメモリ素子のソース/ドレイン領域13へと転送される。選択メモリ素子 M_1 においては、選択ワード線の電位(ϕ WL $_1$)がプログラム電位 $V_{program}$ であるため、制御電極17の電位もプログラム電位 $V_{program}$ となる。以上の結果、制御電極17とチャネル形成領域1

【0050】一方、非選択メモリ・ストリングにおいて は、ビット線BLの電位がVccであり、第1の選択トラ ンジスタDSGは導通状態にある。そして、他の選択メ モリ素子M',においても、選択ワード線の電位(φW L₁)がプログラム電位 V_{program}であるため、他の選択 メモリ素子M'1の制御電極17の電位もプログラム電 位V、、、、のは、このは果、他の選択メモリ素子 の制御電極17の電位の昇圧による制御電極17と浮遊 電極15との容量結合、及び、浮遊電極15とチャネル 形成領域12との容量結合に基づき、他の選択メモリ素 子M'」のチャネル形成領域12が例えば7ボルト程度 に昇圧され、ほぼ同時に、第1の選択トランジスタDS Gのソース領域側の電位が上昇する結果、第1の選択ト ランジスタDSGは非導通状態となり、チャネル形成領 域12の電位が保持される。その結果、チャネル形成領 域12から浮遊電極15への電子の注入が生ぜず、他の 選択メモリ素子にデータが書き込まれず、当初のデータ が保持される。

【0051】データ読み出し動作においては、バイアス 印加手段(図示せず)によって基体であるp型ウエル1 1 BにバイアスVbiasを印加する。バイアスVbiasの電 位は、パンチスルー現象が発生しているメモリ素子にお いて、パンチスルー電流の発生を防止することができ、 メモリ素子が正常にオン・オフ動作するような電位とす ればよい。そして、ビット線BLに例えば1.5ボルト $_1$) 及びメモリ・ストリング選択線 2の電位 (ϕ SG₂) を V_{cc} とし、第1の選択トランジスタDSG及び第2の 選択トランジスタSSGを導通状態とする。また、選択 ワード線にOボルトを印加し、非選択ワード線にはVcc を印加する。これによって、非選択メモリ素子M。, M。 ~M7は導通状態となる。一方、選択メモリ素子M1の閾 値電圧 V_{th} に依存して、選択メモリ素子 M_1 は導通状態 あるいは非導通状態となる。即ち、選択メモリ素子にデ ータ「O」が保持されている場合には、選択メモリ素子 M₁は非導通状態となり、ビット線BLの電位は1.5 ボルトを保持する。また、選択メモリ素子にデータ 「1」が保持されている場合には、選択メモリ素子My

は導通状態となり、ビット線BLの電位は1.5ボルトよりも低下する。このビット線の電位をビット線制御回路によって検出することにより、選択メモリ素子 M_0 にデータ「0」あるいは「1」が保持されていることを読み出すことができる。

【0052】データ消去動作においては、ビット線BL、メモリ・ストリング選択線1、メモリ・ストリング選択線2、共通ソース線の全てをフローティング状態とし、シリコン半導体基板10にVerase(例えば20ボルト)を印加し、選択ブロックのワード線電位を0ボルトとする。また、非選択ブロックのワード線をフローティング状態とする。これによって、選択ブロックにおいては、浮遊電極からの電子の引き抜きによりデータが消去される。

【0053】 ONO膜から構成された絶縁層16の厚さ を15nm、トンネル絶縁膜14の厚さを8nm、浮遊 電極15の面積をチャネル形成領域12の面積の3倍と し、1つのメモリ・ストリングを構成するメモリ素子の 個数Nを16とした。尚、以下に説明する実施の形態2 及び実施の形態4においても、同様の値を用いた。ま た、ビット線BLを介してメモリ素子のチャネル形成領 域12に印加される電位 V_{chini} を1.5ボルト、プロ グラム電位Vprogramを18ボルト、プログラム禁止電 位V_{pass}を10ボルト、メモリ素子の閾値電圧V_{th}を1 ボルトとした。そして、チャネル形成領域12の不純物 濃度を変化させたときの、チャネル形成領域の電位 Vch を式(1)に基づき計算にて求めた結果を図1に黒四角 にて示す。一般に、他の選択メモリ素子M'」のチャネ ル形成領域12の電位V_{ch}が7ボルト以上であれば、チ ャネル形成領域12から浮遊電極15への電子の注入が 生ぜず、他の選択メモリ素子にデータが書き込まれず、 当初のデータが保持される。図1から明らかなように、 チャネル形成領域12の不純物濃度が1×10¹⁷ c m⁻³ 以下であれば、チャネル形成領域12の電位 Vcbが7ボ ルト以上となる。尚、因みに、チャネル形成領域12の 不純物濃度が3×10¹⁷ c m⁻³の場合、チャネル形成領 域12の電位Vchは6.2ボルトとなる。

【0054】尚、デザイン・ルールが0.35 μ mのメモリ素子において、通常の動作(即ち、パンチスルー現象が発生しないこと)を保証するために要求されるチャネル形成領域12の不純物濃度の下限値は、 1×10^{17} cm-3である。従って、デザイン・ルールが0.35 μ mを下回るスケーリングを進める場合、チャネル形成領域12の不純物濃度を 1×10^{17} cm-3を越える値にする必要がある。例えば、デザイン・ルールが0.18 μ mのメモリ素子において、通常の動作を保証するために要求されるチャネル形成領域12の不純物濃度の下限値は、 2×10^{17} cm-3である。従って、デザイン・ルールが0.18 μ mあるいはそれ以下のメモリ素子において、チャネル形成領域12の不純物濃度の上限値を $1\times$

1017 c m⁻³とすると、メモリ素子にはパンチスルー現象が発生する。しかしながら、メモリ素子へのデータの書き込みに、問題は生じない。メモリ素子からのデータ読み出しに際しては、バイアス印加手段によって基体にバイアスを印加するので、パンチスルー現象が発生しているメモリ素子においても、パンチスルー電流の発生を防止することができ、メモリ素子は正常にオン・オフ動作する。

【0055】(実施の形態2)実施の形態2は、本発明 の第2の態様に係る不揮発性半導体メモリセル、並び に、本発明の第2の態様に係る不揮発性半導体メモリセ ルにおけるデータ書き込み・読み出し制御方法に関す る。実施の形態2における不揮発性半導体メモリセル は、ブースター電極方式の不揮発性半導体メモリセルで あり、各メモリ素子は、浮遊電極型メモリ素子である。 実施の形態2のメモリ・ストリング等の模式的な一部断 面図を図7に示し、等価回路を図9に示す。また、制御 電極と電荷蓄積部との容量結合や電荷蓄積部とチャネル 形成領域との容量結合等の等価回路を、図23に示す。 図7の矢印A-Aに沿った隣接する複数のメモリ・スト リング等の模式的な一部断面図を図8の(A)に示す。 即ち、図7は、ビット線と平行な垂直面でメモリ素子の チャネル形成領域やソース/ドレイン領域を切断したと きの図であり、図8の(A)は、ワード線と平行な垂直 面でメモリ素子のチャネル形成領域を切断したときの図 である。更に、1つのメモリ素子の模式的な断面図を図 8の(B)に示す。

【0056】実施の形態2のメモリ・ストリングは、電気的書き換えが可能なメモリ素子(浮遊電極型メモリ素子)が、複数、直列接続されている。図に示したメモリ・ストリングにおいては、8つのメモリ素子M₀~M₇が直列接続されているが、メモリ・ストリングを構成するメモリ素子の数は8に限定されない。メモリ・ストリング及び各メモリ素子の基本的な構造は、実施の形態1にて説明したメモリ・ストリング及びメモリ素子と同様であるので、詳細な説明は省略し、実施の形態1と相違する点を、以下に説明する。

【0057】実施の形態2においては、メモリ・ストリングを構成する各メモリ素子 $M_0 \sim M_7$ の制御電極17の頂面及び側面、電荷蓄積部14,15,16の側面、並びに、ソース/ドレイン領域13は、層間絶縁膜18によって被覆されている。更には、ブースター電極19が、層間絶縁膜18上に形成され、且つ、メモリ・ストリングを構成する各メモリ素子 $M_0 \sim M_7$ の制御電極17の頂面の上方から制御電極17の側面の上方及び電荷蓄積部14,15,16の側面の上方を経由してソース/ドレイン領域16の上方へと延在している。即ち、ブースター電極19は、層間絶縁膜18を介してメモリ・ストリング全体を被覆している。更には、例えば512個のメモリ・ストリングで構成されたブロックを単位とし

て、かかる1ブロック分の512×8個のメモリ素子が 層間絶縁膜18を介してブースター電極19で被覆され ている。尚、1ブロック内のメモリ素子の個数はかかる 個数に限定されない。層間絶縁膜18はSiO₂から構 成されており、ブースター電極19は、不純物を含有す るポリシリコン層とタングステンシリサイド層の2層構 成(ポリサイド構造)である。

【0058】実施の形態2においては、このように、ブ ースター電極19は、層間絶縁膜18上に形成され、且 つ、メモリ・ストリングを構成する各メモリ素子の制御 電極17の頂面の上方から制御電極17の側面の上方及 び電荷蓄積部14,15,16の側面の上方を経由して ソース/ドレイン領域13の上方へと延在する。これに よって、ブースター電極19と制御電極17との容量結 合が、制御電極17の頂面だけでなく側面とにも基づき 形成される。しかも、ブースター電板19と電荷蓄積部 14,15,16との容量結合、並びにブースター電極 19とソース/ドレイン領域13との容量結合を得るこ とができるので、他のメモリ・ストリングにおけるデー 夕書き込みが禁止された他の選択メモリ素子のチャネル 形成領域の昇圧を確実に行うことができ、ディスターブ 特性が劣化するといった問題の発生を確実に回避するこ とができる。

【0059】尚、ブースター電極19の構造はこれに限定するものではなく、メモリ・ストリングを構成する各メモリ素子の制御電極17の頂面の上方にのみ形成してもよいし、制御電極17の頂面及び側面の上方にのみ形成してもよいし、制御電極17の頂面から側面の上方を経由して電荷蓄積部14,15,16の側面の上方まで延在するように形成してもよい。

【0060】ワード線制御回路は、図10に示すように、実施の形態1にて説明したと同様、ブロックアドレスレコーダと電圧変換回路とCMOSトランジスタによる電圧転送回路とドライバー(駆動回路)から構成された周知の回路とすればよいが、このワード線制御回路には、ブースター電極19にブースト電位Vboostを印加するためのブースト電位印加手段が組み込まれている。このブースト電位印加手段は、ブースト電位Vboostを出力するPLドライバーとMOSトランジスタから構成されている。

【0061】実施の形態2においては、nチャネル型MOS FETから構成されたスイッチ用トランジスタWC $_0$ ~WC $_7$ (図9及び図10参照)が、ワード線制御回路と各ワード線との間に設けられている。そして、メモリ素子 M_0 ~ M_7 へのデータ書き込みに際して、スイッチ用トランジスタWC $_0$ ~WC $_7$ を非導通状態とすることによって、各ワード線をワード線制御回路から電気的に切り離すことができる。

【0062】ワード線制御回路及びブースト電位印加手段を示す図10、各メモリ素子に印加される電位(電

圧)の値を例示した図表である図11、データ書き込み動作及びデータ読み出し動作における信号波形を示す図12を参照して、以下、実施の形態2のNANDストリング型メモリセルのデータ書き込み動作、データ読み出し動作及びデータ消去動作を説明する。

【0063】書き込み動作の開始前の書き込みセットアップにおいては、先ず、ビット線制御回路のビット線毎に設けられたСMOSフリップフロップに書き込みデータをラッチする。そして、選択メモリ・ストリングに接続されたビット線の電位 V_{BL} 「0」を0ボルトとし、非選択メモリ・ストリングに接続されたビット線の電位 V_{BL} 「1」を V_{cc} とする。また、共通ソース線の電位($=\phi_s$)及びシリコン半導体基板10の電位を0ボルトとする。即ち、バイアス印加手段は動作させない。

【0064】書き込み動作の開始において、ブロックアドレスレコーダの出力信号は選択ブロックにおいては「H」となり、電圧変換回路の V_{pp} RWが V_{cc} から所定の電位であるプログラム電位 $V_{program}$ に昇圧される。また、DSGドライバーは V_{cc} ($=\phi$ SG $_1$)を、SSGドライバーは0 ボルト ($=\phi$ SG $_2$)を、CGOドライバー、CG2ドライバー~CG7ドライバーは例えば V_{cc} ボルトのプログラム禁止電位 V_{pass} (図11において、「 ϕ WL $_1$ 以外」で表す)を、それぞれ、出力する。また、CG1ドライバーはプログラム電位 $V_{program}$ (ϕ WL $_1$)(例えば、12ボルト)を出力する。更には、PLドライバーはブースト電位(ϕ_{boost})を出力する。

【0065】選択メモリ・ストリングにおいては、ビット線BLの電位が0ボルトであり、メモリ・ストリング選択線1の電位が V_{cc} であるが故に、第1の選択トランジスタDSGが導通し、メモリ・ストリング選択線2の電位が0ボルトであるが故に、第2の選択トランジスタSSGは非導通状態となる。そして、ビット線BLの電位がメモリ素子のソース/ドレイン領域13へと転送される。選択メモリ素子 M_1 においては、選択ワード線の電位(ϕ WL $_1$)がプログラム電位 $V_{program}$ であるため、制御電極17の電位もプログラム電位 $V_{program}$ となる。

【0066】同時に、ブースター電極19にブースト電位印加手段からブースト電位 V_{boost} (例えば、12ボルト)を印加する。以上の結果、制御電極17とチャネル形成領域12をの間の電位差に基づき、チャネル形成領域12から浮遊電極15への電子の注入が生じ、選択メモリ素子 M_1 の閾値電圧 V_{th} が当初の負から正方向にシフトし、データが選択メモリ素子 M_0 、 M_2 ~ M_7 においては、非選択ワード線の電位(ϕ W L_1 以外)が例えば V_{cc} ボルトのプログラム禁止電位 V_{pass} であるため、制御電極17とチャネル形成領域12から浮遊電極15へ

の電子の注入は生じない。その結果、非選択メモリ素子の閾値電圧は当初の値から変化せず、当初のデータが非選択メモリ素子 M_0 , $M_2 \sim M_7$ に保持される。

【0067】一方、非選択メモリ・ストリングにおいて は、ビット線BLの電位がVccであり、第1の選択トラ ンジスタDSGは導通状態にある。そして、他の選択メ モリ素子M'」においても、選択ワード線の電位(φW L₁)がV_{program}であるため、他の選択メモリ素子M' 1の制御電極17の電位もVprogramとなる。そして、ブ ースター電極19にブースト電位印加手段からブースト 電位Vboostが印加される。以上の結果、他の選択メモ リ素子の制御電極17の電位の昇圧による制御電極17 と浮遊電極15との容量結合、及び、浮遊電極15とチ ャネル形成領域12との容量結合に基づき、更には、ブ ースター電極19と浮遊電極15との容量結合、及び、 ブースター電極19とソース/ドレイン領域13との容 量結合に基づき、他の選択メモリ素子M'1のチャネル 形成領域12が例えば7ボルト程度に昇圧され、ほぼ同 時に、第1の選択トランジスタDSGのソース領域側の 電位が上昇する結果、第1の選択トランジスタDSGは 非導通状態となり、チャネル形成領域12の電位が保持 される。その結果、チャネル形成領域12から浮遊電極 15への電子の注入が生ぜず、他の選択メモリ素子にデ ータが書き込まれず、当初のデータが保持される。

【0068】データ読み出し動作においては、バイアス 印加手段(図示せず)によって基体であるp型ウエル1 1 BにバイアスV_{bias}を印加する。バイアスV_{bias}の電 位は、パンチスルー現象が発生しているメモリ素子にお いて、パンチスルー電流の発生を防止することができ、 メモリ素子が正常にオン・オフ動作するような電位とす ればよい。そして、ビット線BLに例えば1.5ボルト を印加し、メモリ・ストリング選択線1の電位(øSG $_1$)及びメモリ・ストリング選択線2の電位(ϕ SG $_2$) をV.、とし、第1の選択トランジスタDSG及び第2の 選択トランジスタSSGを導通状態とする。ブースター 電極19には0ボルト又はV。。を印加する。また、選択 ワード線にOボルトを印加し、非選択ワード線には例え ばVccボルトを印加する。これによって、非選択メモリ 素子M₀, M₂~M₁は導通状態となる。一方、選択メモ リ素子 M_1 の閾値電圧 V_{th} に依存して、選択メモリ素子 M1は導通状態あるいは非導通状態となる。即ち、選択 メモリ素子にデータ「〇」が保持されている場合には、 選択メモリ素子M」は非導通状態となり、ビット線BL の電位は1.5ボルトを保持する。また、選択メモリ素 子にデータ「1」が保持されている場合には、選択メモ リ素子Miは導通状態となり、ビット線BLの電位は 1. 5ボルトよりも低下する。このビット線の電位をビ ット線制御回路によって検出することにより、選択メモ リ素子Moにデータ「0」あるいは「1」が保持されて いることを読み出すことができる。

【0069】データ消去動作においては、ビット線BL、メモリ・ストリング選択線1、メモリ・ストリング選択線2、ブースター電極19、共通ソース線の全てをフローティング状態とし、シリコン半導体基板10にVerase (例えば20ボルト)を印加し、選択ブロックのワード線電位を0ボルトとする。また、非選択ブロックのワード線をフローティング状態とする。これによって、選択ブロックにおいては、浮遊電極からの電子の引き抜きによりデータが消去される。

【0070】他のメモリ・ストリングにおける各メモリ素子のチャネル形成領域の電位 V_{ch} は、前述の式(2)で表すことができる。

【0071】ビット線BLを介してメモリ素子のチャネ ル形成領域12に印加される電位Vchiniを1.5ボル ト、所定の電位であるプログラム電位V_{program}を12 ボルト、ブースト電位Vboostを12ボルト、プログラ ム禁止電位 V_{pass} を V_{cc} ボルト、メモリ素子の閾値電圧 V_{th}を1ボルトとした。そして、チャネル形成領域12 の不純物濃度を変化させたときの、チャネル形成領域の 電位 V ch を式(2)に基づき計算にて求めた結果を図1 に黒菱形にて示す。一般に、他の選択メモリ素子M'1 のチャネル形成領域12の電位V。か7ボルト以上であ れば、チャネル形成領域12から浮遊電極15への電子 の注入が生ぜず、他の選択メモリ素子にデータが書き込 まれず、当初のデータが保持される。図1から明らかな ように、チャネル形成領域12の不純物濃度が2×10 17 c m-3 以下であれば、チャネル形成領域12の電位V chが7ボルト以上となる。尚、因みに、チャネル形成領 域12の不純物濃度が3×10¹⁷ c m⁻³の場合、チャネ ル形成領域12の電位V_{ch}は7ボルト未満となる。

【0072】尚、デザイン・ルールが0.13 umのメ モリ素子において、通常の動作(即ち、パンチスルー現 象が発生しないこと)を保証するために要求されるチャ ネル形成領域12の不純物濃度の下限値は、3×10¹⁷ cm^{-3} である。従って、デザイン・ルールが 0.13μ mあるいはそれを下回るスケーリングを進める場合、チ ャネル形成領域12の不純物濃度を3×10¹⁷ c m⁻³を 越える値とする必要がある。従って、デザイン・ルール が0.13μmあるいはそれ以下のメモリ素子におい て、チャネル形成領域12の不純物濃度の上限値を2× 10¹⁷ c m⁻³とすると、メモリ素子にはパンチスルー現 象が発生する。しかしながら、メモリ素子へのデータの 書き込みに、問題は生じない。メモリ素子からのデータ 読み出しに際して、バイアス印加手段によって基体にバ イアスを印加するので、パンチスルー現象が発生してい るメモリ素子においても、パンチスルー電流の発生を防 止することができ、メモリ素子は正常にオン・オフ動作 する。

【0073】(実施の形態3)実施の形態3は、実施の一形態2の変形である。実施の形態3における不揮発性半

導体メモリセルも、ブースター電極方式の不揮発性半導体メモリセルであり、各メモリ素子は、浮遊電極型メモリ素子である。実施の形態3のメモリ・ストリング等の模式的な一部断面図は図7及び図8と同様であり、制御電極と電荷蓄積部との容量結合や電荷蓄積部とチャネル形成領域との容量結合等の等価回路も、図23と同様である。尚、等価回路を図13に示す。

【0074】実施の形態3においては、実施の形態2と異なり、nチャネル型MOS FETから構成されたスイッチ用トランジスタ WC_0 ~ WC_7 (図13及び図14参照)が、ワード線制御回路と各ワード線との間に設けられている。そして、メモリ素子 M_0 ~ M_7 へのデータ書き込みに際して、スイッチ用トランジスタ WC_0 ~ WC_7 を非導通状態とすることによって、各ワード線をワード線制御回路から電気的に切り離すことができる。

【0075】実施の形態3においては、メモリ素子への データ書き込みに際し、スイッチ用トランジスタWC。 ~WC₇を導通状態として、ワード線制御回路の作動に よりワード線に所定の電位Vprchを印加することによっ て制御電極17を所定の電位とした後、ブースト電位印 加手段によってブースター電極19にブースト電位を印 加することで層間絶縁膜18を介したブースター電極1 9と制御電極17との容量結合に基づき制御電極17の 電位をプログラム電位Vprogramまで昇圧させ、且つ、 スイッチ用トランジスタWCo~WCzを非導通状態とす ることによりワード線をワード線制御回路から電気的に 切り離し、データを書き込むべきメモリ素子とワード線 を介して接続された他のメモリ・ストリングにおけるメ モリ素子へのデータの書き込みを禁止する場合、データ の書き込みが禁止された該メモリ素子において、ブース ター電極19と制御電極17との容量結合、制御電極1 7と電荷蓄積部14,15,16との容量結合、電荷蓄 積部14,15,16とチャネル形成領域12との容量 結合、ブースター電極19とソース/ドレイン領域13 との容量結合に基づきチャネル形成領域12を昇圧す

【0076】実施の形態3においても、ブースター電極19は、層間絶縁膜18上に形成され、且つ、メモリ・ストリングを構成する各メモリ素子の制御電極17の頂面の上方から制御電極17の側面の上方及び電荷蓄積部14,15,16の側面の上方を経由してソース/ドレイン領域13の上方へと延在する。これによって、ブースター電極19と制御電極17との容量結合が、制御電極17の頂面だけでなく側面とにも基づき形成される。従って、ブースター電極19と制御電極17との容量結合を増加させることができる。それ故、ブースター電極19にブースト電位Vboostを印加することによって層間絶縁膜18を介したブースター電極19と制御電極17との容量結合に基づき制御電極17の電位を昇圧するとき、所定の電位であるプリチャージ電圧Vprchやブー

スト電位 V_{boost}の低電圧化を図ることができる。しかも、ブースター電極19と電荷蓄積部14,15,16 との容量結合、並びにブースター電極19とソース/ドレイン領域13との容量結合を得ることができるので、他のメモリ・ストリングにおけるデータ書き込みが禁止された他の選択メモリ素子のチャネル形成領域の昇圧を確実に行うことができ、ディスターブ特性が劣化するといった問題の発生を確実に回避することができる。

【0077】また、ワード線制御回路は、図14に示すように、ブロックアドレスレコーダと電圧変換回路とnチャネル型MOSトランジスタによる電圧転送回路とドライバー(駆動回路)から構成された周知の回路とすればよいが、このワード線制御回路には、ブースター電極19にブースト電位 V_{boost} を印加するためのブースト電位印加手段が組み込まれている。このブースト電位印加手段は、ブースト電位 V_{boost} を出力するPLドライバーと V_{boost} とがる。

【0078】ワード線制御回路及びブースト電位印加手段を示す図14、各メモリ素子に印加される電位(電圧)の値を例示した図表である図15、データ書き込み動作及びデータ読み出し動作における信号波形を示す図16、並びに、選択メモリ素子等の制御電極の電位を模式的に示す図17を参照して、以下、実施の形態3のNANDストリング型メモリセルのデータ書き込み動作、データ読み出し動作及びデータ消去動作を説明する。【0079】書き込み動作の開始前の書き込みセットアップにおいては、先輩、ビット線制御回路のビット線毎

ップにおいては、先ず、ビット線制御回路のビット線毎に設けられたCMOSフリップフロップに書き込みデータをラッチする。そして、選択メモリ・ストリングに接続されたビット線の電位 V_{BL} 「0」を0ボルトとし、非選択メモリ・ストリングに接続されたビット線の電位 V_{BL} 「1」を V_{cc} とする。また、共通ソース線の電位 ($=\phi_s$)及びシリコン半導体基板 10の電位を0ボルトとする。即ち、バイアス印加手段は動作させない。また、スイッチ用トランジスタWC $_0$ ~WC $_7$ のゲート電極には電位 ϕ_{W0} ~ ϕ_{W7} ($=V_{prch}$)を印加し、導通状態とする。

【0080】書き込み動作の開始において、ブロックアドレスレコーダの出力信号は選択ブロックにおいては「H」となり、電圧変換回路の V_{pp} RWが V_{cc} から所定の電位であるプリチャージ電圧 V_{prch} に昇圧される。また、DSGドライバーは V_{cc} ($=\phi$ SG₁)を、SSGドライバーは0ボルト($=\phi$ SG₂)を、CG0ドライバー、CG2ドライバー~CG7ドライバーは V_{cc} ~(V_{prch} -2)ボルト程度のプログラム禁止電位 V_{pass} (図16において、「 ϕ WL₁以外」で表す)を、それぞれ、出力する。また、CG1ドライバーはプリチャージ電圧 V_{prch} (ϕ WL₁)(例えば、9~11ボルト)を出力する。更には、PLドライバーは、後に、ブースト電位(ϕ boost)を出力する。

【0081】選択メモリ・ストリングにおいては、ビット線BLの電位が0ボルトであり、メモリ・ストリング選択線1の電位が V_{cc} であるが故に、第1の選択トランジスタDSGが導通し、メモリ・ストリング選択線2の電位が0ボルトであるが故に、第2の選択トランジスタSSGは非導通状態となる。そして、ビット線BLの電位がメモリ索子のソース/ドレイン領域13へと転送される。選択メモリ索子 M_1 においては、選択ワード線の電位(ϕ WL $_1$)がプリチャージ電圧 V_{prch} であるため、制御電極17の電位もプリチャージ電圧 V_{prch} となる。

【0082】次に、ブースター電極19にブースト電位 印加手段からブースト電位 V_{boost} (例えば、9 \sim 11 ボルト)を印加する。これによって、層間絶縁膜18を 介したプースター電極19と制御電極17との容量結合 に基づき制御電極17の電位が昇圧され、制御電極17 の電位はプログラム電位Vprogram (例えば18ボル ト)となる。しかも、スイッチ用トランジスタWC₁の ソース領域側の電位が上昇する結果、スイッチ用トラン ジスタWC1は非導通状態となり、ワード線がワード線 制御回路から電気的に切り離される。以上の結果、制御 電極17とチャネル形成領域12との間の電位差に基づ き、チャネル形成領域12から浮遊電極15への電子の 注入が生じ、選択メモリ素子M₁の閾値電圧V_{th}が当初 の負から正方向にシフトし、データが選択メモリ素子M $_1$ に書き込まれる。一方、非選択メモリ素子 M_0 , M_2 \sim M_7 においては、スイッチ用トランジスタWC₀, WC₂ \sim WC₇は導通状態であり、非選択ワード線の電位(ϕ WL_1 以外)が V_{cc} ~(V_{prch} - 2)ボルト程度のプロ グラム禁止電位Voassであるため、制御電極17とチャ ネル形成領域12との間には大きな電位差が生ぜず、チ ャネル形成領域12から浮遊電極15への電子の注入は 生じない。その結果、非選択メモリ素子の閾値電圧は当 初の値から変化せず、当初のデータが非選択メモリ素子 M_0 , $M_2 \sim M_7$ に保持される。

【0083】一方、非選択メモリ・ストリングにおいては、ビット線BLの電位が V_{cc} であり、第1の選択トランジスタDSGは導通状態にある。そして、他の選択メモリ素子 M'_1 においても、選択ワード線の電位(ϕ W L_1)が V_{prch} であるため、他の選択メモリ素子 M'_1 の制御電極17の電位も V_{prch} となる。次に、ブースター電極19にブースト電位印加手段からブースト電位 V_{boost} が印加される。その結果、層間絶縁膜18を介したブースター電極19と制御電極17との容量結合に基づき、制御電極17の電位が昇圧され、制御電極17の電位はプログラム電位 $V_{program}$ (例えば18ボルト)となる。しかも、スイッチ用トランジスタWC1のソース領域側の電位が上昇する結果、スイッチ用トランジスタWC1は非導通状態となり、ワード線がワード線制御回路から電気的に切り離される。以上の結果、他の選択

メモリ素子の制御電極17の電位の昇圧による制御電極17と浮遊電極15との容量結合、及び、浮遊電極15とチャネル形成領域12との容量結合に基づき、更には、ブースター電極19と浮遊電極15との容量結合、及び、ブースター電極19とソース/ドレイン領域13との容量結合に基づき、他の選択メモリ素子M'1のチャネル形成領域12が例えば7ボルト程度に昇圧され、ほぼ同時に、第1の選択トランジスタDSGのソース領域側の電位が上昇する結果、第1の選択トランジスタDSGは非導通状態となり、チャネル形成領域12の電位が保持される。その結果、チャネル形成領域12から浮遊電極15への電子の注入が生ぜず、他の選択メモリ素子にデータが書き込まれず、当初のデータが保持される。

【0084】データ読み出し動作においては、バイアス 印加手段(図示せず)によって基体であるp型ウエル1 1 BにバイアスV_{bias}を印加する。バイアスV_{bias}の電 位は、パンチスルー現象が発生しているメモリ素子にお いて、パンチスルー電流の発生を防止することができ、 メモリ素子が正常にオン・オフ動作するような電位とす ればよい。そして、ビット線BLに例えば1.5ボルト を印加し、メモリ・ストリング選択線1の電位(φSG $_1$)及びメモリ・ストリング選択線 2の電位(ϕ SG $_2$) をVccとし、第1の選択トランジスタDSG及び第2の 選択トランジスタSSGを導通状態とする。ブースター 電極19には0ボルト又はVccを印加する。また、選択 ワード線にOボルトを印加し、非選択ワード線にはVcc ~(Vprch-2)ボルト程度を印加する。これによっ て、非選択メモリ素子 M_0 , $M_2 \sim M_7$ は導通状態とな る。一方、選択メモリ素子M₁の閾値電圧V_{th}に依存し て、選択メモリ素子M」は導通状態あるいは非導通状態 となる。即ち、選択メモリ素子にデータ「〇」が保持さ れている場合には、選択メモリ素子M1は非導通状態と なり、ビット線BLの電位は1.5ボルトを保持する。 また、選択メモリ素子にデータ「1」が保持されている 場合には、選択メモリ素子M1は導通状態となり、ビッ ト線BLの電位は1.5ボルトよりも低下する。このビ ット線の電位をビット線制御回路によって検出すること により、選択メモリ素子Maにデータ「O」あるいは 「1」が保持されていることを読み出すことができる。 【0085】データ消去動作においては、ビット線B し、メモリ・ストリング選択線1、メモリ・ストリング 選択線2、ブースター電極19、共通ソース線の全てを フローティング状態とし、シリコン半導体基板10にV erase (例えば20ボルト)を印加し、選択ブロックの ワード線電位をOボルトとする。また、非選択ブロック のワード線をフローティング状態とする。これによっ て、選択ブロックにおいては、浮遊電極からの電子の引 き抜きによりデータが消去される。

【0086】(実施の形態4)実施の形態4は、本発明

の第3の態様に係る不揮発性半導体メモリセル、並びに、本発明の第3の態様に係る不揮発性半導体メモリセルにおけるデータ書き込み・読み出し制御方法に関する。実施の形態4における不揮発性半導体メモリセルは、CBC方式の不揮発性半導体メモリセルであり、各メモリ素子は、浮遊電極型メモリ素子である。実施の形態4のメモリ・ストリング等の模式的な一部断面図を図18に示し、等価回路を図19に示す。また、制御電極と電荷蓄積部との容量結合や電荷蓄積部とチャネル形成領域との容量結合等の等価回路を、図24に示す。

【0087】実施の形態4のメモリ・ストリングは、電気的書き換えが可能なメモリ素子(浮遊電極型メモリ素子)が、複数、直列接続されている。図に示したメモリ・ストリングにおいては、8つのメモリ素子M₀〜M₇が直列接続されているが、メモリ・ストリングを構成するメモリ素子の数は8に限定されない。メモリ・ストリング及び各メモリ素子の基本的な構造は、実施の形態1にて説明したメモリ・ストリング及びメモリ素子と同様であるので、詳細な説明は省略し、実施の形態1と相違する点を、以下に説明する。

【0088】実施の形態4においては、メモリ・ストリングを構成する各メモリ素子 $M_0 \sim M_7$ の制御電極17の頂面上方に、導電層22が層間絶縁膜18を介して設けられている。この導電層22は、メモリ・ストリングを構成する1つのメモリ素子(例えば、 M_7)の一方のソース/ドレイン領域に接続されている。層間絶縁膜18は SiO_2 から構成されており、導電層22は、不純物を含有するポリシリコン層とタングステンシリサイド層の2層構成(ポリサイド構造)である。尚、導電層22を、メモリ・ストリングを構成する各メモリ素子 $M_0 \sim M_7$ の制御電極17の頂面上方及び側面上方に、層間絶縁膜18を介して設けてもよい。

【0089】ワード線制御回路は、図4に示した実施の形態1におけるワード線制御回路と同様とすればよい。【0090】実施の形態4のNANDストリング型メモリセルのデータ書き込み動作、データ読み出し動作及びデータ消去動作は、ワード線制御回路を示す図4、各メモリ素子に印加される電位(電圧)の値を例示した図表である図5、データ書き込み動作及びデータ読み出し動作における信号波形を示す図6を参照して説明した、実施の形態1のNANDストリング型メモリセルのデータ書き込み動作、データ読み出し動作及びデータ消去動作と、基本的には同様である。以下、実施の形態1との相違点を説明する。

【0091】書き込み動作において、非選択メモリ・ストリングにあっては、ビット線BLの電位が V_{cc} であり、第1の選択トランジスタDSGは導通状態にある。そして、他の選択メモリ素子 M'_1 においても、選択ワード線の電位(ϕ WL $_1$)がプログラム電位 $V_{program}$ であるため、他の選択メモリ素子 M'_1 の制御電極17の

電位もプログラム電位Vprogramとなる。以上の結果、他の選択メモリ素子の制御電極17の電位の昇圧による制御電極17と浮遊電極15との容量結合、浮遊電極15とチャネル形成領域12との容量結合、及び、制御電極17と導電層22との容量結合に基づき、他の選択メモリ素子M'1のチャネル形成領域12が例えば7ボルト程度に昇圧され、ほぼ同時に、第1の選択トランジスタDSGのソース領域側の電位が上昇する結果、第1の選択トランジスタDSGは非導通状態となり、チャネル形成領域12の電位が保持される。その結果、チャネル形成領域12から浮遊電極15への電子の注入が生ぜず、他の選択メモリ素子にデータが書き込まれず、当初のデータが保持される。

【0092】ビット線BLを介してメモリ素子のチャネル形成領域12に印加される電位 V_{chini} を1.5ボルト、プログラム電位 $V_{prograa}$ を18ボルト、プログラム禁止電位 V_{pass} を10ボルト、メモリ素子の閾値電圧 V_{th} を1ボルトとした。そして、チャネル形成領域12の不純物濃度を変化させたときの、チャネル形成領域の電位 V_{ch} を式(3)に基づき計算にて求めた結果を図1に黒丸にて示す。一般に、他の選択メモリ素子 M_1 のチャネル形成領域12の電位 V_{ch} が7ボルト以上であれば、チャネル形成領域12から浮遊電極15への電子の注入が生ぜず、他の選択メモリ素子にデータが書き込まれず、当初のデータが保持される。図1から明らかなように、チャネル形成領域12の不純物濃度が1×1018cm-3以下であれば、チャネル形成領域12の電位 V_{ch} が7ボルト以上となる。

【0093】尚、デザイン・ルールが0.03μmのメ モリ素子において、通常の動作(即ち、パンチスルー現 象が発生しないこと)を保証するために要求されるチャ ネル形成領域12の不純物濃度の下限値は、1×10¹⁸ c m⁻³である。従って、デザイン・ルールが0.03μ m未満へとスケーリングを進める場合、チャネル形成領 域12の不純物濃度を1×1018 c m-3を越える値とす る必要がある。従って、デザイン・ルールが0.03μ m未満のメモリ素子において、チャネル形成領域12の 不純物濃度の上限値を1×1018cm-3とすると、メモ リ素子にはパンチスルー現象が発生する。しかしなが ら、メモリ素子へのデータの書き込みに、問題は生じな い。メモリ素子からのデータ読み出しに際して、バイア ス印加手段によって基体にバイアスを印加するので、パ ンチスルー現象が発生しているメモリ素子においても、 パンチスルー電流の発生を防止することができ、メモリ 索子は正常にオン・オフ動作する。

【0094】(実施の形態5)実施の形態5は、実施の 形態1~実施の形態4の変形であり、メモリ素子がMO NOS型メモリ素子である点がこれらの実施の形態と相 違している。NANDストリング型メモリセルのその他 の構造は、実施の形態1と同様とすることができる。図 20の(A)に、MONOS型メモリ素子の模式的な断面図を示す。実施の形態5においては、電荷蓄積部は、チャネル形成領域12上に形成された第1の酸化膜(SiO₂膜)31、第1の酸化膜31上に形成された窒化膜(SiN膜)32、及び、窒化膜32と制御電極17との間に形成された第2の酸化膜(SiO₂膜)から成る。即ち、電荷蓄積部はONO膜構造を有する。これらの膜は、周知のCVD法にて成膜すればよい。

【0095】(実施の形態6)実施の形態6も、実施の形態1~実施の形態4の変形であり、メモリ素子がMNOS型メモリ素子である点がこれらの実施の形態と相違している。NANDストリング型メモリセルのその他の構造は、実施の形態1と同様とすることができる。図20の(B)に、MNOS型メモリ素子の模式的な断面図を示す。実施の形態6においては、電荷蓄積部は、チャネル形成領域12上に形成された酸化膜(SiOz膜)41、及び、酸化膜41と制御電極17との間に形成された窒化膜(SiN膜)42から成る。即ち、電荷蓄積部はON膜構造を有する。これらの膜は、周知のCVD法にて成膜すればよい。

【0096】(実施の形態7)実施の形態7も、実施の 形態1~実施の形態4の変形であり、メモリ素子がナノ クリスタル型メモリ素子である点がこれらの実施の形態 と相違している。NANDストリング型メモリセルのそ の他の構造は、実施の形態1と同様とすることができ る。 図20の(C)にナノクリスタル型メモリ素子の模 式的な断面図を示す。実施の形態7においては、電荷蓄 積部は、チャネル形成領域12上に形成されたトンネル 絶縁膜51、トンネル絶縁膜51上に形成された導電性 微小結晶粒子52、及び、導電性微小結晶粒子52と制 御電極17との間に形成された絶縁層53から成る。 導 電性微小結晶粒子52はSiから構成されており、半球 状である。ナノクリスタル型メモリ素子の詳細に関して は、例えば、文献 "Volatileand Non-Volatile Memorie s in Silicon with Nano-Crystal Storage", SandipTiw ari, et al., IEDM 95, pp521-524 (20.4.1-20.4.4), あるいは、文献 ""Fast and Long Retention-Time Nano -Crystal Memory", H.I. Hanafi, et al., IEEE TRANSA CTIONS ON ELECTRON DEVICES, Vol. 43, No. 9, Septem ber 1996, pp1554-1558 を参照されたい。

【0097】以上、本発明を、発明の実施の形態に基づき説明したが、本発明はこれらに限定されるものではない。発明の実施の形態にて説明した不揮発性半導体メモリセルにおける使用材料は例示であり、また、不揮発性半導体メモリセルの構造も例示であり、適宜、変更することができる。また、発明の実施の形態においては、

「0」及び「1」の2値を記憶する不揮発性半導体メモリセルを例にとり説明を行ったが、1つのメモリ素子に2ビットあるいはそれ以上の、即ち、3値以上の多値データを記憶する不揮発性半導体メモリセルに本発明を適

用することもできる。発明の実施の形態においては、メモリ素子に記憶されたデータを読み出す際に基体にバイアスを印加するためのバイアス印加手段を設けたが、その代わりに、ソース線にバイアスを印加するためのバイアス印加手段を設けてもよく、このような構造によっても、パンチスルー現象が発生しているメモリ素子におけるパンチスルー電流の発生を防止することができ、メモリ素子に記憶されたデータを読み出す際のメモリ素子の正常なオン・オフ動作を保証することができる。

[0098]

【発明の効果】本発明においては、セルフ・ブースト方式、ブースター電極方式及びCBC方式に依存して、チャネル形成領域の不純物濃度の上限を規定する。これによって、他の選択メモリ素子のチャネル形成領域の電位V_{ch}を、例えば7ボルト以上に確実に上昇させることができ、不揮発性半導体メモリセルの微細化が進んでも、データ書き込み時のディスターブ特性が劣化するといった問題を、確実に回避することができる。また、メモリ素子からのデータ読み出しに際して、バイアス印加手段によって基体又はソース線にバイアスを印加するので、メモリ素子を正常にオン・オフ動作させることができる。

【図面の簡単な説明】

- 【図1】チャネル形成領域の不純物濃度を変化させたと きの、チャネル形成領域の電位V_{cb}を式(1)、式
- (2)及び式(3)に基づき計算にて求めた結果を示す図である。
- 【図2】発明の実施の形態1あるいは従来の不揮発性半 導体メモリセルの模式的な一部断面図である。
- 【図3】発明の実施の形態1あるいは従来の不揮発性半 導体メモリセルの等価回路図である。
- 【図4】ワード線制御回路の回路図である。
- 【図5】発明の実施の形態1の不揮発性半導体メモリセルの各メモリ素子に印加される電位(電圧)の値を例示した図表である。
- 【図6】発明の実施の形態1の不揮発性半導体メモリセルにおいて、データ書き込み動作及びデータ読み出し動作における信号波形を示す図である。
- 【図7】発明の実施の形態2の不揮発性半導体メモリセルの模式的な一部断面図である。
- 【図8】図7とは別の角度から眺めた発明の実施の形態 2の不揮発性半導体メモリセルの模式的な一部断面図、 及び1つのメモリ素子を拡大した模式的な断面図である。
- 【図9】発明の実施の形態2の不揮発性半導体メモリセルの等価回路図である。
- 【図10】発明の実施の形態2の不揮発性半導体メモリセルにおけるブースト電位印加手段及びワード線制御回路の回路図である。

- 【図11】発明の実施の形態2の不揮発性半導体メモリセルの各メモリ素子に印加される電位(電圧)の値を例示した図表である。
- 【図12】発明の実施の形態2の不揮発性半導体メモリ セルにおいて、データ書き込み動作及びデータ読み出し 動作における信号波形を示す図である。
- 【図13】発明の実施の形態3の不揮発性半導体メモリセルの等価回路図である。
- 【図14】発明の実施の形態3の不揮発性半導体メモリセルにおけるブースト電位印加手段及びワード線制御回路の回路図である。
- 【図15】発明の実施の形態3の不揮発性半導体メモリセルの各メモリ素子に印加される電位(電圧)の値を例示した図表である。
- 【図16】発明の実施の形態3の不揮発性半導体メモリセルにおいて、データ書き込み動作及びデータ読み出し動作における信号波形を示す図である。
- 【図17】発明の実施の形態3の不揮発性半導体メモリセルにおいて、選択メモリ素子等の制御電極等の電位を 模式的に示す図である。
- 【図18】発明の実施の形態4の不揮発性半導体メモリセルの模式的な一部断面図である。
- 【図19】発明の実施の形態4の不揮発性半導体メモリセルの等価回路図である。
- 【図20】発明の実施の形態5、発明の実施の形態6、 及び、発明の実施の形態7におけるメモリ素子の模式的 な断面図である。
- 【図21】NANDストリング型不揮発性半導体メモリセルの各メモリ素子の閾値電圧 $V_{\rm th}$ の分布を模式的に示す図である。
- 【図22】セルフ・ブースト方式の等価回路を示す図で ある。
- 【図23】ブースター電極方式の等価回路を示す図である。
- 【図24】CBC方式の等価回路を示す図である。 【符号の説明】
- 10・・・p型シリコン半導体基板、11A・・・n型ウエル、11B・・・p型ウエル、12・・・チャネル形成領域、13・・・ソース/ドレイン領域、14・・・トンネル絶縁膜、15・・・浮遊電極、16・・・絶縁層、17・・・制御電極、18・・・層間絶縁膜、19・・・ブースター電極、20・・・層間絶縁層、21・・・コンタクトプラグ、22・・・導電層、31・・・第1の酸化膜、32・・・窒化膜、33・・・第2の酸化膜、41・・・酸化膜、42・・・窒化膜、51・・・トンネル絶縁膜、52・・・導電性微小結晶粒子、53・・・絶縁層、M₀~M₇・・・メモリ素子、DSG
- ・・・第1の選択トランジスタ、SSG・・・第2の選択トランジスタ、BL・・・ビット線

【図1】

【図2】

【図4】 【図3】 【図4】 [23] [セルフ・ブースト方式] CMOS電圧転送回路 ピット線 ピット線 ピット線 DSG DSG DSG Mo Модг Mog ワード線 M₁ M_{1,ur} M_{1,n} M₂ M₂ M₂ Мз M₃ Ma M₄ M4₀ M₄_{ur} ERASE M₅ M₅ M₅ Мв Me MB M₇ M7 M7 $V_{pp}RW$ SSG SSG ssg_ DSGドライバー CG0 ドライバー **CG7 ドライバー** 電圧変換回路 SSGF7-//-

【図5】

	(単位:ポルト)				位:ポルト)
	書き込み時		読み出し時	消 去 時	
電 位	[0]	[1]		選択プロック	非選択ブロック
ピット線	0	Vœ	1. 5	フローティング	フローティング
メモリ・ストリング 選択線1	Vœ.	Vœ	Vcc	フローティング	フローティング
選択ワード線	Vpgm	Vpgm	0	0	
非選択ワード線	Vpasa	V _{pass}	Vœ		フローティング
メモリ・ストリング 遊択線2	0	0	Vœ	フローティング	フローティング
共通ソース線	0又は V∞	0.又は V∞	0	フローティング	フローティング
基体	0	0	Vbiss	Verese	Verase

【図21】

【図7】

【図11】

				(単	位:ポルト)	Ī
	書き込み時		読み出し時	消 去 時]:
電位	[0]	[1]		選択プロック	非選択ブロック	1
ピット線	0	Vœ	1. 5	フローティング	フローティング	1
メモリ・ストリング 選択線 1	Vœ	Vœ	Vcc	フローティング	フローティング	1
ブースター電極	V _{boost}	V _{boost}	V。。 又は 0	フローティング	フローティング	1
選択ワード線	Vprg	Vprg	0	0		1
非選択ワード線	V∞	V∞	V _∞		フローティング	1
メモリ・ストリング 選択線 2	0	0	Vœ	フローティング	フローティング	1
共通ソース線	0又は V∞	0又は V _∞	0	フローティング	フローティング	1
基体	0	0	Vbiss	Verase	Versee	1

【図10】 【図13】 【図10】 【図13】 [プースター電極方式] CMOS電圧転送回路 ブースター DSG DSG DSG МеЛ DSGドライバー 能圧変換回路 SSG SSG SSG SSGF74/F ソース線 ソース線

【図14】

【図19】

【図15】

				(単位:ポルト)	
	書き込み時		読み出し時	消去時	
電位 位	רסו	۲1 _J		選択ブロック	非選択ブロック
ピット線	0	Vœ	1, 5	フローティング	フローティング
メモリ・ストリング 選択線1	Vœ	Vœ	Vcc	フローティング	フローティング
ブースター電極	V _{boost}	V _{boost}	V _{cc} 又は 0	フローティング	フローティング
選択ワード線	Vprch	Vprch	0	0	
非選択ワード線	V∞~ V _{prch} -2	V∞~ V _{prch} -2	V∞∼ V _{prdf} −2		フローティング
メモリ・ストリング 選択線2	0	0	Vœ	フローティング	フローティング
共通ソース線	0叉は V _∞	0又は V∞	0	フローティング	フローティング
基 体	0	0	Vbies	Verase	Versee

【図16】

【図17】

【図18】

【図20】

【図23】

[図23]

【図24】

[图24]

