Course Title: Pattern Recognition 02-24-03203 Department: Intelligent Systems (2nd year)

Adult Dataset - UCI Machine Learning Repository Assignment

• مروان طارق امبابي رزق ابراهيم 22011615

Importing libraries and dataset

We start by loading a dataset from the UCI Machine Learning Repository using the *ucimlrepo* library. We print its metadata and variable information, extract features and target variable, and combine them into a Pandas DataFrame called data. This DataFrame is now ready for further analysis or machine learning modeling.

[45]:		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	income
	0	39	State-gov	77516	Bachelors		Never- married	Adm-clerical	Not-in- family	White	Male	2174		40	United- States	<=50K
			Self-emp- not-inc	83311	Bachelors		Married- civ-spouse	Exec- managerial	Husband	White	Male				United- States	<=50K
	2	38	Private	215646	HS-grad		Divorced	Handlers- cleaners	Not-in- family	White	Male			40	United- States	<=50K
	3		Private	234721	11th		Married- civ-spouse	Handlers- cleaners	Husband	Black	Male			40	United- States	<=50K
	4	28	Private	338409	Bachelors		Married- civ-spouse	Prof- specialty	Wife	Black	Female			40	Cuba	<=50K
	48837	39	Private	215419	Bachelors		Divorced	Prof- specialty	Not-in- family	White	Female			36	United- States	<=50K.
	48838	64	NaN	321403	HS-grad		Widowed	NaN	Other- relative	Black	Male			40	United- States	<=50K.
	48839	38	Private	374983	Bachelors		Married- civ-spouse	Prof- specialty	Husband	White	Male				United- States	<=50K.
	48840	44	Private	83891	Bachelors		Divorced	Adm-clerical	Own-child	Asian-Pac- Islander	Male	5455		40	United- States	<=50K.
	48841		Self-emp- inc	182148	Bachelors		Married- civ-spouse	Exec- managerial	Husband	White	Male			60	United- States	>50K.
	48842 ro	ws × 1	15 columns													

Course Title: Pattern Recognition 02-24-03203 Department: Intelligent Systems (2nd year)

Pre-processing

		- Prof-specialty	6172		
workclass		Craft-repair	6112	native-country United-States	43832
Private	33906	Exec-managerial Adm-clerical	6086 5611	Monico	951
Self-emp-not-inc	3862	Sales	5504	?	583
Local-gov	3136	Other-service Machine-op-inspct	4923 3022	Philippines Germany	295 206
State-gov	1981	Transport-moving	2355	Puerto-Rico	184
?	1836	Handlers-cleaners	2072	Canada	182
Self-emp-inc	1695	? Farming-fishing	1843 1490	El-Salvador India	155 151
Federal-gov	1432	Tech-support	1446	Cuba	138
Without-pay	21	Protective-serv Priv-house-serv	983 242	England	127
Never-worked	10	Armed-Forces	15	China South	122 115

occupation

Here we can see that in this dataset we have both null (NaN) values and missing values denoted by "?", we deal with both of these issues separately by deleting the rows containing them

	Null Values	after deletion
[51]:	print(data.isnull	.().sum())
	age	0
	workclass	0
	fnlwgt	0
	education	0
	education-num	0
	marital-status	0
	occupation	0
	relationship	0
	race	0
	sex	0
	capital-gain	0
	capital-loss	0
	hours-per-week	0
	native-country	0
	income	0
	dtype: int64	

Course Title: Pattern Recognition 02-24-03203 Department: Intelligent Systems (2nd year)

```
"?" values
data.isin(['?']).any()
                   False
age
workclass
                    True
 fnlwgt
                   False
 education
                   False
 education-num
                   False
 marital-status
                   False
 occupation
                    True
 relationship
                   False
                   False
 race
                   False
 sex
 capital-gain
                   False
 capital-loss
                   False
 hours-per-week
                   False
 native-country
                    True
 income
                   False
 dtype: bool
```

	After Deleti	on
[54]:	data.isin(['?']).	any()
[54]:	workclass fnlwgt education education-num marital-status occupation relationship race sex capital-gain capital-loss	False

Duplicate Values:

Here we print the number of duplicate rows in the DataFrame data before and after dropping duplicates.

```
Duplicate Values Before Deletion:
28
Duplicate Values After Deletion:
0
```

We remove duplicate rows from the DataFrame using the drop_duplicates() method and assigns the result back to data. Then we print the count of duplicate rows after removal.

Course Title: Pattern Recognition 02-24-03203 Department: Intelligent Systems (2nd year)

Fixing mistyped (incorrect) values in the target column

First, we print the count of unique values in the 'income' column using 'value_counts()' method, which counts occurrences of each unique value. Then, we replace any occurrences of '<=50K.' with '<=50K' and '>50K.' with '<50K' using the

```
Fix incorrect income values
print(data['income'].value_counts().to_string())
income
<=50K
          22633
<=50K.
          11355
>50K
           7506
>50K.
           3700
data['income'].replace('<=50K.', '<=50K', inplace=True)</pre>
data['income'].replace('>50K.', '>50K', inplace=True)
print(data['income'].value_counts().to_string())
income
<=50K
         33988
>50K
         11206
```

`replace()` method, making the values consistent. After replacement, we verify the changes.

Dataset after preprocessing:

[59]:		age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	income
	0	39	State-gov	77516	Bachelors		Never- married	Adm-clerical	Not-in- family	White	Male	2174		40	United- States	<=50K
		50	Self-emp- not-inc	83311	Bachelors		Married- civ-spouse	Exec- managerial	Husband	White	Male				United- States	<=50K
	2	38	Private	215646	HS-grad		Divorced	Handlers- cleaners	Not-in- family	White	Male			40	United- States	<=50K
	3		Private	234721	11th		Married- civ-spouse	Handlers- cleaners	Husband	Black	Male			40	United- States	<=50K
	4	28	Private	338409	Bachelors		Married- civ-spouse	Prof- specialty	Wife	Black	Female			40	Cuba	<=50K
	48836		Private	245211	Bachelors		Never- married	Prof- specialty	Own-child	White	Male			40	United- States	<=50K
	48837		Private	215419	Bachelors		Divorced	Prof- specialty	Not-in- family	White	Female			36	United- States	<=50K
	48839	38	Private	374983	Bachelors		Married- civ-spouse	Prof- specialty	Husband	White	Male			50	United- States	<=50K
	48840	44	Private	83891	Bachelors		Divorced	Adm-clerical	Own-child	Asian-Pac- Islander	Male	5455		40	United- States	<=50K
	48841		Self-emp- inc	182148	Bachelors		Married- civ-spouse	Exec- managerial	Husband	White	Male			60	United- States	>50K
	45194 r	ows × 1	15 columns		·											

Course Title: Pattern Recognition 02-24-03203 Department: Intelligent Systems (2nd year) **Encoding Categorical Values:**

[61]:		age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	income	workclass_Local- gov	workclass_Private	workclass_Self- emp-inc	 native- country_Portugal	native- country_Puerto- Rico	n country_Sca
	0	39	77516		2174		40	<=50K	False	False	False	False	False	
			83311					<=50K	False	False	False	False	False	
	2	38	215646				40	<=50K	False	True	False	False	False	
	3		234721				40	<=50K	False	True	False	False	False	
	4	28	338409				40	<=50K	False	True	False	False	False	
	48836		245211				40	<=50K	False	True	False	False	False	
	48837		215419				36	<=50K	False	True	False	False	False	
	48839	38	374983				50	<=50K	False	True	False	False	False	
	48840	44	83891		5455		40	<=50K	False	True	False	False	False	
	48841		182148				60	>50K	False	False	True	False	False	
	45194 ro	ws ×	97 colum	nns										

Here, we prepare categorical columns in the DataFrame `data` for machine learning by converting them into dummy variables through one-hot encoding. Initially, we assign the name of the target column, 'income', to `target_column`. Then, we generate a list of categorical columns (`categorical_columns`) excluding the target column and with data type 'object'. We apply one-hot encoding to these categorical columns, creating dummy variables while dropping the first level to prevent multicollinearity.

Splitting:

```
Divide Dataset into Features and Target

[62]: X=data.drop(columns=[target_column])
    y=data[target_column]

## Split Dataset using train_test_split

[64]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

[65]: print("X_train shape:", X_train.shape)
    print("y_train shape:", y_train.shape)

X_train shape: (31635, 96)
    y_train shape: (31635,)
```

We first divide the dataset into features and target vector (income) and then using sklearn's train_test_split we split the dataset's rows in a 70/30 ratio into a training set and a testing set.

Course Title: Pattern Recognition 02-24-03203

Department: Intelligent Systems (2nd year)

Using Gaussian Naive-Bayes Classifier to train dataset and predict target [66]: from sklearn.naive_bayes import GaussianNB # Classifier = GaussianNB() classifier.fit(X_train, y_train) # Prediction y_pred = classifier.predict(X_test) y_test_array = y_test.values [67]: print(len(y_test_array)) print(len(y_pred)) 13559 43559

This code uses the Gaussian Naive Bayes classifier from sklearn. It initializes the classifier, fits it to the training data, predicts labels for the test data and converts the test labels to a NumPy array.

```
Calculating Evaluation Metrics from Confusion Matrix

[68]: 

def calculate_metrics(y_true, y_pred):
    TP = np. sum((y_true == '>50K') & (y_pred == '>50K'))
    TN = np. sum((y_true == '<50K') & (y_pred == '>50K'))
    FP = np. sum((y_true == '<50K') & (y_pred == '>50K'))
    FN = np. sum((y_true == '>50K') & (y_pred == '>50K'))
    accuracy = (TP + TN) / (TP + TN + FP + FN)
    sensitivity = TP / (TP + FN)
    sensitivity = TP / (TP + FN)
    specificity = TN / (TN + FP)

    return accuracy, sensitivity, specificity

Accuracy, Sensitivity and Specificity

[69]: print(f*Accuracy: (calculate_metrics(y_test, y_pred)[0])\nSensitivity: (calculate_metrics(y_test, y_pred)[1])\nSpecificity: (calculate_metrics(y_test
```

Using this function we can calculate the confusion matrix and its resulting metrics (Accuracy, Sensitivity, Specificity).

```
Calculating the posterior probabilities of making over 50k a year

[70]: probabilities = classifier.predict_proba(X_test)

[71]: prob_over_50k = probabilities[:, 1]
prob_over_50k

[71]: array([0.0143046 , 0.03193122, 0.00278249, ..., 0.02371454, 0.01353673, 0.01025875])
```

We can find the posterior probabilities of the class being ">50k" by using the predict_proba() function from the classifier we trained previously.

Course Title: Pattern Recognition 02-24-03203 Department: Intelligent Systems (2nd year)

This code calculates the Maximum A Posteriori (MAP) estimates for each instance in the dataset. It first predicts the classes for the test data and then calculates the maximum posterior probability (MAP) for each instance. Using these probabilities and predicted classes, it computes the MAP estimates and prints them.

