Mathematical Logic

Assignment 3
Ari Feiglin

I adopted my notation from Wolfgang Rautenberg's A Concise Introduction to Mathematical Logic. This largely agrees with the notation we used in lecture, but he does also introduce notation we have not used.

- If \mathcal{A} is a structure, then $s^{\mathcal{A}}$ is the interpretation of the symbol s under the structure \mathcal{A} . If \mathcal{M} is a model whose structure is \mathcal{A} , $s^{\mathcal{M}}$ may be used as well.
- If $\sigma: \text{Var} \longrightarrow \mathcal{T}$ is a global substitution, and \mathcal{M} is a model, then \mathcal{M}^{σ} is model where $x^{\mathcal{M}^{\sigma}} = (x^{\sigma})^{\mathcal{M}}$. This trivially extends to terms. In the case of a simple substitution this may be written as \mathcal{M}_x^a ($\sigma(x) = a$ and $\sigma(y) = y$ for $y \neq x$).

Exercise 3.1:

Show that the following formulas are logically valid:

- (1) $(\forall x\varphi) \to (\exists x\varphi)$
- (2) $(\forall x(\varphi \to \psi)) \to ((\forall x\varphi) \to (\forall x\psi))$
- $(3) \quad (\forall x(\varphi \wedge \psi)) \leftrightarrow ((\forall x\varphi) \wedge (\forall x\psi))$
- $(4) \quad (\exists x \forall y \varphi) \to (\forall y \exists x \varphi)$
- (1) Suppose $\mathcal{M} = (\mathcal{A}, w)$ is a model (\mathcal{A} is a structure, and $w: A \longrightarrow Var$ is a valuation function), we must show that

$$\mathcal{M} \vDash (\forall x \varphi) \to (\exists x \varphi)$$

meaning that if $\mathcal{M} \vDash \forall x \varphi$ then $\mathcal{M} \vDash \exists x \varphi$. Since A is non-empty (structures are non-empty), let $a \in A$ then since $\mathcal{M} \vDash \forall x \varphi$ then by definition $\mathcal{M}_x^a \vDash \varphi$. Thus there exists an a such that $\mathcal{M}_x^a \vDash \varphi$ so $\mathcal{M} \vDash \exists x \varphi$ as required.

- (2) We must show that if $\mathcal{M} \models \forall x(\varphi \to \psi)$ then $\mathcal{M} \models (\forall x\varphi) \to (\forall x\psi)$. To show this, we must further suppose $\mathcal{M} \models \forall x\varphi$ and then show $\mathcal{M} \models \forall x\psi$. Let $a \in A$, then we have that $\mathcal{M}_x^a \models \varphi \to \psi$ and $\mathcal{M}_x^a \models \varphi$. Since $\mathcal{M}_x^a \models \varphi \to \psi$, by definition this means that when $\mathcal{M}_x^a \models \varphi$, $\mathcal{M}_x^a \models \psi$. Since $\mathcal{M}_x^a \models \varphi$ then we have $\mathcal{M}_x^a \models \psi$. Since this $a \in A$ was arbitrary this means $\mathcal{M} \models \forall x\psi$ as required.
- (3) We must show that $\mathcal{M} \models \forall x(\varphi \land \psi)$ if and only if $\mathcal{M} \models (\forall x\varphi) \land (\forall x\psi)$. We know that $\mathcal{M} \models \forall x(\varphi \land \psi)$ if and only if for every $a \in A$, $\mathcal{M}_x^a \models \varphi \land \psi$ if and only if $\mathcal{M}_x^a \models \varphi$ and $\mathcal{M}_x^a \models \psi$. This means that for every $a \in A$, $\mathcal{M}_x^a \models \varphi$ and every $b \in B$, $\mathcal{M}_x^b \models \psi$ (as the above a is arbitrary), and since a and b are arbitrary this means $\mathcal{M} \models (\forall x\varphi) \land (\forall x\psi)$.

To show the other direction, suppose $\mathcal{M} \vDash (\forall x \varphi) \land (\forall x \psi)$, then for every $a, b \in A$, $\mathcal{M}_x^a \vDash \varphi$ and $\mathcal{M}_x^b \vDash \psi$ so if we take a = b we get \mathcal{M}_x^a models both φ and ψ , so $\mathcal{M} \vDash \forall x (\varphi \land \psi)$ as required.

(4) Suppose $\mathcal{M} \models \exists x \forall y \varphi$ then there exists an $a \in A$ such that $\mathcal{M}_x^a \models \forall y \varphi$, meaning there further exists a $b \in A$ such that $\mathcal{M}_{xy}^{ab} \models \varphi$. So there exists an $a \in A$ such that for every $b \in B$, $\mathcal{M}_{xy}^{ab} \models \varphi$.

To show $\mathcal{M} \models \forall y \exists x \varphi$, let $b' \in A$, we must show there exists an $a' \in A$ such that $\mathcal{M}_{yx}^{b'a'} \models \varphi$. Let a' = a then we know $\mathcal{M}_{xy}^{ab'} \models \varphi$. If $x \neq y$ then we know that $\mathcal{M}_{xy}^{ab'} = \mathcal{M}_{yx}^{b'a}$ since the valuation simply maps x to a and y to b' in both cases, so we have the desired result.

If x = y then this formula is still logically valid, since $\exists x \forall x \varphi \equiv \forall x \varphi$ and $\forall x \exists x \varphi \equiv \exists x \varphi$ (since x is not free in $\forall x \varphi$ and $\exists x \varphi$), and so this formula is equivalent to

$$(\forall x\varphi) \to (\exists x\varphi)$$

which we showed above is logically valid.

Exercise 3.2:

Produce counterexamples to show that the following formulas are not logically valid

$$(1) \quad \left(\left(\forall x, y, z \big(A(x, y) \land A(y, z) \to A(x, z) \big) \right) \land \left(\forall x \neg A(x, x) \right) \right) \to \left(\exists x \forall y \neg A(x, y) \right)$$

- $(2) \quad (\forall x \exists y A(x,y)) \to (\exists y A(y,y))$
- (3) $(\exists x \exists y A(x,y)) \rightarrow (\exists y A(y,y))$
- $(4) \quad ((\exists x A_1(x)) \leftrightarrow (\exists x A_2(x))) \rightarrow (\forall x (A_1(x) \leftrightarrow A_2(x)))$
- $(5) \quad (\exists x (A_1(x) \to A_2(x))) \to ((\exists x A_1(x)) \to (\exists x A_2(x)))$
- (1) In words this says that if A is a transitive, anti-reflexive relation then there exists a maximal element. This is false since if we take the domain to be \mathbb{Z} and A to be the strictly less than relation $(A(x,y) \Leftrightarrow x < y)$ then this does not model the formula. We know that $A(x,y) \wedge A(y,z) \to A(x,z)$ (< is transitive), and $\neg A(x,x)$ (since x is not less than itself), but there does not exists an x such that $\neg A(x,y)$ ($x \ge y$). This is because \mathbb{Z} is unbounded so for every x, x + 1 > x and so $\neg (x \ge x + 1)$.
- (2) We take the same model as above, \mathbb{Z} and A = <. We know that for every x there exists a y such that A(x, y) (for example y = x + 1 then $A(x, y) \equiv x < y = x + 1$ is true), but there does not exist a y such that $A(y, y) \equiv y < y$.
- (3) We again take the same model as above, \mathbb{Z} and A = <. Then we can take x = 0 and y = 1 then A(x, y) = 0 < 1 is true but there does not exist a y such that $A(y, y) \equiv y < y$.
- (4) Let the domain of our model be \mathbb{Z} and $A_1(x)$ be the predicate that $x \geq 0$ and $A_2(x)$ be the predicate that x < 0. Then $\exists x A_1(x)$ and $\exists x A_2(x)$ are both true $(A_1(1))$ and $A_2(-1)$ are true, so we can take x = 1 and x = -1), so $(\exists x A_1(x)) \leftrightarrow (\exists x A_2(x))$ is true in this model. But it is not true that $\forall x (A_1(x) \leftrightarrow A_2(x))$, in fact $A_1(x) \leftrightarrow A_2(x)$ is not true for any x (since $x \geq 0$ or x < 0, but never both).
- (5) Let the domain be \mathbb{Z} and $A_1(x)$ be the predicate that x = 0 and $A_2(x)$ be the predicate that $x \neq x$. Then it is true that $\exists x (A_1(x) \to A_2(x))$, take for example x = 1 then since $A_1(x)$ is false this subformula is true. It is also true that $\exists x A_1(x)$, take x = 0. But it is not true that $\exists x A_2(x)$, so this formula is false.

Exercise 3.3:

Introduce appropriate notation in order to write the following sentences as first order formulas, and determine if they are logically valid.

- (1) All men are animals. Some animals are carnivorous. Therefore, some men are carnivorous.
- (2) Any barber in Jonesville shaves exactly those men in Jonesville who do not shave themselves. Therefore there is no barber in Jonesville.
- (3) No student in the statistics class is smarter than every student in the logic class. Hence, some student in the logic class is smarter than every student in the statistics.
- (4) For every set x, there exists a set y such that the cardinality of y is greater than the cardinality of x.
- (5) If x is included in y, the cardinality of x is not greater than the cardinality of y.
- (6) Every set is included in V, therefore V is not a set.
- (1) Let M(x) be the predicate that x is a man, A(x) be that x is an animal, and C(x) be that x is carnivorous. Then this becomes

$$(\forall x (M(x) \to A(x))) \land (\exists x (A(x) \land C(x))) \to (\exists x (M(x) \land C(x)))$$

this is not logically valid. For instance, suppose our domain is {lion, vegan}, then vegan is a man, an animal, but not a carnivore. And lion is a carnivorous animal. So every man is an animal, and there exists a carnivorous animal, but no carnivorous man.

(2) Assuming that the fact someone is a man in Jonesville is inconsequential (perhaps everyone in Jonesville is a man?). Let J(x) mean that x is in Jonesville, B(x) mean that x is a barber, and S(x,y) mean that x shaves y. Then this becomes

$$\forall x \Big(B(x) \land J(x) \rightarrow \forall y \big(S(x,y) \longleftrightarrow (J(y) \land \neg S(y,y)) \big) \Big) \rightarrow \big(\neg \exists x (B(x) \land J(x)) \big)$$

This is logically valid. Suppose x were a barber in Jonesville, then x would shave a person in Jonesville y if and only if y did not shave himself. But if x = y this means $S(x, x) \leftrightarrow \neg S(x, x)$ which is false.

If there are women in Jonesville, then this is not logically valid. Then let the domain be {Adam, Eve}, where Eve is a barber and Adam is not. Suppose Eve shaves only Adam. Then Eve shaves precisely all the men who do not shave themselves, and there exists a barber in Jonesville. In order to properly write the sentence without assuming inconsequentiality of manhood, then we introduce another predicate M(x) meaning that x is a man. The sentence then becomes

$$\forall x \Big(B(x) \land J(x) \to \forall y \big(S(x,y) \longleftrightarrow (M(y) \land J(y) \land \neg S(y,y)) \big) \Big) \to \big(\neg \exists x (B(x) \land J(x)) \big)$$

Which, as explained above, is not logically valid.

(3) Let S(x) mean x is a student in the statistics class, L(x) mean x is a student in the logic class, and B(x,y) mean that x is smarter than y. Then this sentence becomes

$$\left(\neg\exists x \big(S(x) \land \forall y (L(y) \to B(x,y))\big)\right) \to \left(\exists x \big(L(x) \land \forall y (S(y) \to B(x,y))\big)\right)$$

This is not logically valid. Let the domain be {Alice, Bob} and suppose that Alice is in the statistics class and Bob is in the logic class, but both are of equal intelligence. Then there does not exist a person in the statistics class smarter than everyone in the logic class, and there does not exist a person in the logic class smarter than everyone in the statistics class. In this case $B = \emptyset$, since in the real world, it is very rare to be able to compare intelligence.

If we assume that B is a total order, then this is logically valid (assuming classes are finite). Since B is a total order and the statistics class is finite, let x be the statistician with the maximum intelligence. Then since $\neg(\forall y(L(y) \to B(x,y)))$, there exists a y such that L(y) and $\neg B(x,y)$, meaning there exists a logician y such that x is not smarter than y. Since B is a total order, this means y is smarter than x. And since x is the smartest statistician, this means y is smarter than every statistician.

(4) We use |x| < |y| to mean the cardinality of x is less than that of y's. Then we have

$$\forall x \exists y (|x| < |y|)$$

this is logically valid (in the theory of ZF).

This is because the powerset of x has cardinality larger than that of x, so we can take $y=2^x$.

(5) We can use

$$\forall x \forall y ((\forall z (z \in x \to z \in y)) \to \neg(|x| > |y|))$$

or

$$\forall x \forall y \big(x \subseteq y \to \neg(|x| > |y|) \big)$$

which are equivalent since \subseteq is a relation definable by the subformula in the first formula above.

This is logically valid (in ZF), since if |x| > |y| then there exists an injection $y \hookrightarrow x$, and since $x \subseteq y$, the inclusion mapping provides an injection $x \hookrightarrow y$. By Cantor-Bernstein, this means that |x| = |y|, but this contradicts |x| > |y|, so $\neg(|x| > |y|)$ as required.

(6) If we use the predicate V(x) to mean that x is a set, then in NBG we could phrase this as

$$\forall V (\forall x (V(x) \to x \subseteq V) \to \neg V(V))$$

where $x \subseteq y$ is defined to mean $\forall z (z \in x \to z \in y)$. This is logically valid since if V is a set then so is its power set 2^V , and this means that $2^V \subseteq V$. But since $V \in 2^V$, this would mean $V \in V$ which is a contradiction to the axiom of regularity.

Exercise 3.4:

Prove that

$$\forall x_1 \forall x_2 \forall y_1 \forall y_2 ((x_1, y_1) = (x_2, y_2) \rightarrow (x_1 = x_2 \land y_1 = y_2))$$

Recall that by the definition of an ordered pair:

$$(x_1, y_1) = (x_2, y_2) \iff \{\{x_1\}, \{x_1, y_1\}\} = \{\{x_2\}, \{x_2, y_2\}\}\$$

We start by claiming that if $\{a,b\} = \{c,d\}$ then a=c and b=d or a=d and b=c. This is true since $a,b \in \{c,d\}$ so if a=c then if $b \neq d$ then b=a=c but $d \in \{a,b\}$ so d=a, but this means d=b in contradiction. And if a=d, this holds by symmetry.

So we start off with two cases:

- $\{x_1\} = \{x_2\}$ and $\{x_1, y_1\} = \{x_2, y_2\}$. The first equality means $x_1 = x_2$ since the sets both contain one element and are equal, so they contain the same elements. The second equality means either $x_1 = x_2$ and $y_1 = y_2$ (as required), or $x_1 = y_2$ and $y_1 = x_2$, since $x_1 = x_2$ this means $x_1 = x_2 = y_1 = y_2$, which still satisfies the condition.
- $\{x_1\} = \{x_2, y_2\}$ and $\{x_1, y_1\} = \{x_2\}$. The first equality means that x_2 and y_2 are in $\{x_1\}$, so $x_2 = y_2 = x_1$. The second equality similarly means $x_2 = y_1 = x_1$, and so we have $x_1 = x_2 = y_1 = y_2$, which satisfies the condition.

Exercise 3.5:

Prove the following lemma: For any chain $x_1 \ni x_2 \ni x_3 \ni \cdots$, there exists an $n \in \mathbb{N}$ such that $x_n = \emptyset$.

Suppose that for every n, $x_n \neq \emptyset$, so for every n there exists an $x_{n+1} \in x_n$. We can then define a set $y = \{x_1, x_2, \dots\}$ using the axiom of replacement. We can define the following first order formula:

$$\varphi(\alpha, z, u) = (x_{\alpha} = z)$$

then we claim that by the axiom of replacement, y is the set obtained with the "function" φ over the set $u = \omega$. φ satisfies the condition that $\forall \alpha \exists ! z \varphi(\alpha, z, \omega)$ since there is obviously only one z such that $x_{\alpha} = z$ And this means that $\varphi[\omega] = y$ exists (since y is literally the image of mapping finite ordinals to x_{α}).

But y does not satisfy the axiom of regularity since for every every $x \in y$, there exists an $x' \in x$ such that $x' \in y$ (namely, if $x = x_n$ then $x' = x_{n+1}$), which means that $x' \in x \cap y$, so for every $x \in y$, $x \cap y \neq \emptyset$, in contradiction.

Exercise 3.6:

Suppose P is a property such that if P(y) holds for all $y \in x$ then P(x) holds. Show that P(x) holds for all sets x.

Suppose that P(x) does not hold, then let $x_1 = x$. There must exist an $x_2 \in x_1$ such that $P(x_1)$ does not hold, as otherwise P(y) holds for all $y \in x_1$, meaning P(x) holds. Inductively, for every n there exists an $x_{n+1} \in x_n$ such that $P(x_{n+1})$ does not hold. But we showed above that this chain must terminate in the empty set, which is contradictory (since this chain must be infinite, or since $P(\emptyset)$ holds vaccuously).

So P(x) holds for all sets x.

Exercise 3.7:

Show that the existence of an ordinal ω is guaranteed by the axioms of ZF.

The definition of ω is the smallest ordinal such that if $x \in \omega$ then $x + 1 = x \cup \{x\} \in \omega$. By the axiom of infinity, there exists a set I such that $\emptyset \in I$ and if $x \in I$ then $x \cup \{x\} \in I$. Since we know that intuitively, ω is the set of all finite ordinals, and by definition I must contain all finite ordinals (since it contains \emptyset and is closed under successors), ω must be a subset of I. So we need to come up with a first order formula to extract the finite ordinals from I and then

using the axiom of separation, we should have ω .

Firstly, intuitively, a finite ordinal is an ordinal which is not greater than any non-trivial limit ordinals. Meaning that α is a finite ordinal if and only if $\forall \beta \in \alpha$, there exists a $\gamma \in \alpha$ such that β is the successor γ . Or in first order terms

$$\varphi(\alpha) = (\alpha = \varnothing) \lor \Big(\alpha \in \operatorname{Ord} \land \forall \beta \in \alpha \big(\beta = \varnothing \lor \exists \gamma \in \alpha (\beta = \gamma \cup \{\gamma\})\big)\Big)$$

where $\alpha \in \text{Ord}$ is a shorthand for saying α is an ordinal (which is definable in ZF). So then we claim

$$\omega = \{ \alpha \in I \mid \varphi(\alpha) \}$$

is the smallest ordinal closed under successors.

Notice that if $\alpha \in \omega$ then $\alpha + 1 = \alpha \cup \{\alpha\}$ is also in ω since if $\beta \in \alpha + 1$ then either $\beta \in \alpha$ (and so it satisfies the condition), or $\beta = \alpha$, in which case let γ be the maximum in α , then we claim $\alpha = \gamma + 1$. This is because otherwise $\gamma + 1 < \alpha$ and so $\gamma + 1 \in \alpha$, meaning γ is not the maximum in α , in contradiction. So ω is closed under successors.

We must show that ω is in fact an ordinal. Since ω is a set of ordinals, it is well-ordered by \in . Now suppose $\alpha \in \omega$, then we must show $\alpha \subseteq \omega$. Let $\beta \in \alpha$, then if $\beta = \emptyset$, this is trivial since $\emptyset \in \omega$. Then for every $\gamma < \beta$, since $\gamma < \alpha$, γ is a successor ordinal, so $\beta \in \omega$. Therefore $\alpha \subseteq \omega$ as required.

Now suppose $\omega' \neq \omega$ is another ordinal which is closed under successors, then we know $\omega < \omega'$ or $\omega' < \omega$. If the latter, then $\omega' \in \omega$, meaning that by definition there exists a $\beta \in \omega'$ such that $\beta + 1 = \omega'$. But then since ω' is closed under successors, this would mean $\beta + 1 = \omega' \in \omega'$, which is a contradiction. So $\omega < \omega'$, meaning ω is the smallest ordinal closed under successors, as required.

Thus we have constructed ω , the smallest ordinal closed under successors, and by doing so have shown its existence.

Exercise 3.8:

Show that the set of countable ordinals is uncountable.

Let Ω be the set of all countable ordinals. If we assume that Ω is countable, then $A = \bigcup \Omega$ is a countable union of countable sets, and is therefore countable. A is also an ordinal since it is a set of ordinals (and therefore well-ordered by \in), and if $\alpha \in A$ then there exists a $\beta \in \Omega$ such that $\alpha \in \beta$, and so $\alpha \subseteq \beta$, and since $\beta \in \Omega$, $\beta \subseteq A$ which means $\alpha \subseteq A$. So is indeed an ordinal, and it is countable so $A \in \Omega$.

But then $A+1 \in \Omega$ since $A+1=A \cup \{A\}$ which is countable (a+1=a for infinite cardinals a), so $A+1 \subseteq A$, which means that $A \in A$ which is a contradiction.

Exercise 3.9:

- (1) Show that for any infinite cardinal number $a, \aleph_0 \leq a$.
- (2) Show that $\aleph_0 + \aleph_0 = \aleph_0$.
- (3) Show that $\aleph_0 \cdot \aleph_0 = \aleph_0$.
- (1) We haven't defined what an infinite cardinal (or ordinal) is, so I will use the same definition I used in a previous exercise. An ordinal α is finite if for every $\beta < \alpha$, β is a successor ordinal or empty. An infinite ordinal is a non-finite ordinal (there exists an ordinal $\beta < \alpha$ which is a non-trivial limit ordinal).
 - It is sufficient to show that for every infinite ordinal α , $\alpha \ge \omega$. This is because if a is an infinite cardinal, it is an infinite ordinal, and so $a \ge \omega$ and since $\aleph_0 = \omega$ (since ω is an initial ordinal), this is sufficient.
 - Suppose α is an ordinal such that $\alpha < \omega$. Then by definition, for every $\beta < \alpha$, β is a successor ordinal or empty, and therefore α is finite (this is due to the definition of ω in a previous exercise). So if $\alpha < \omega$, α is finite, and therefore if α is infinite $\alpha \geq \omega$ as required.
- (2) We will show that $2\mathbb{N}$ (the even numbers, or 2ω the even cardinals) and $2\mathbb{N}+1$ have cardinality \aleph_0 . This is because we can define a bijection \mathbb{N} to $2\mathbb{N}$ by mapping $n\mapsto 2n$. This is trivially surjective and injective, and therefore a bijection. And $n\mapsto 2n+1$ is similarly a bijection from \mathbb{N} to $2\mathbb{N}+1$. So $2\mathbb{N}$ and $2\mathbb{N}+1$ have cardinality \aleph_0 .

And since $2\mathbb{N} \cup (2\mathbb{N}+1) = \mathbb{N}$, we have $|2\mathbb{N}| + |2\mathbb{N}+1| = |\mathbb{N}|$, meaning $\aleph_0 + \aleph_0 = \aleph_0$ as required.

(3) We know that $\aleph_0 \leq \aleph_0 \cdot \aleph_0$ since we can create an injection from $\mathbb{N} \hookrightarrow \mathbb{N} \times \mathbb{N}$ by mapping n to (n,1). And we can create an injection from $\mathbb{N} \cdot \mathbb{N} \hookrightarrow \mathbb{N}$ by mapping (n,m) to $2^n 3^m$. This is an injection by the prime factorization theorem. Thus we have injection $\mathbb{N} \hookrightarrow \mathbb{N} \times \mathbb{N} \hookrightarrow \mathbb{N}$, so by Cantor-Bernstein there exists a bijection $\mathbb{N} \hookrightarrow \mathbb{N} \times \mathbb{N}$. Therefore

$$\aleph_0 = |\mathbb{N}| = |\mathbb{N}| \times |\mathbb{N}| = \aleph_0 \cdot \aleph_0$$

as required.