

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/44		A1	(11) International Publication Number: WO 96/12487
			(43) International Publication Date: 2 May 1996 (02.05.96)
(21) International Application Number: PCT/US95/13305		(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TI, TM, TT, UA, US, UZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).	
(22) International Filing Date: 17 October 1995 (17.10.95)			
(30) Priority Data: 327,171 21 October 1994 (21.10.94) US			
(60) Parent Application or Grant		Published	
(63) Related by Continuation US 327,171 (CON) Filed on 21 October 1994 (21.10.94)		With international search report.	
(71) Applicant (<i>for all designated States except US</i>): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).			
(72) Inventor; and			
(75) Inventor/Applicant (<i>for US only</i>): WALDSTREICHER, Joanne [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).			
(74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).			
(54) Title: COMBINATION METHOD FOR ACNE TREATMENT			
(57) Abstract			
Described is a combination method using selective inhibitors of 5 α -reductase 1 and/or 2 including 7 β -substituted 4-aza-5 α -cholestan-3-ones and related 4-aza-5 α -androstan-3-one compounds which are useful in the treatment of acne vulgaris in combination with a retinoid, e.g., tretinoin or isotretinoin, and at least one agent selected from an antibacterial, keratolytic, and/or an anti-inflammatory.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

- 1 -

TITLE OF THE INVENTION

COMBINATION METHOD FOR ACNE TREATMENT

BACKGROUND OF THE INVENTION

5 The present invention is directed to a combination method for treating acne using selective 5 α -reductase 1 inhibitors, 5 α -reductase 2 inhibitors, combinations thereof, or dual inhibitors, including but not limited to: 7 β -substituted-4-aza-5 α -cholestan-3-ones and related 4-aza-5 α -androstan-3-one compounds, together with a retinoid agent, e.g.,

10 tretinoin or isotretinoin, and at least one agent selected from an antibacterial, a keratolytic, an anti-inflammatory agent, or mixture thereof.

DESCRIPTION OF THE PRIOR ART

15 Acne vulgaris is the most common skin condition evaluated and managed by physicians in the United States. It is estimated that more than 17 million people have some degree of acne. While it is most prevalent in adolescents, nearly 85% of 12-24 year olds, 8% of 25-34 year olds, and 3% of 35-55 year olds have acne. In 1990, nearly 4.5 million patient visits to dermatologists were for acne-related problems; an additional 500,000 visits were to primary care providers.

Acne is basically an androgen dependent disorder. Its peak incidence is at age 18, and it is more prevalent in men than in women. In some cases, it can be severe enough to cause significant scarring that does not resolve. In many patients, its presence is psychologically distressing. While it is not a life-threatening condition, it can have significant psychosocial effects on those who suffer with it. Acne has also been shown to be associated with impaired academic and social functioning, as well as to affect employment status. Thus, the accurate assessment and appropriate management of acne can have important consequences on the overall well-being and quality of life of the patient with acne.

Sebum is one of the major factors, along with abnormal keratinization of the follicular epithelium, inflammation and colonization

- 2 -

by the bacterium *P. acnes*, that causes acne. Since all of these factors are inter-related, affecting just one, e.g., sebum production, can have a profound influence on acne.

The hormonal milieu plays an important role in modulating
5 sebum production in males and females. In children, onset of acne and sebum secretion occur coincident with the increasing androgens that accompany adrenarche and pubarche. Administration of androgens worsens acne and increases sebum production, while administration of estrogens decreases sebum production and is associated with an
10 improvement in acne. Antiandrogens, such as cyproterone and spironolactone, are sometimes used for the treatment of acne in women. Although these clinical observations provided convincing evidence that androgens modulate sebum production, it had been uncertain which of the androgens plays the most important role.

15 It is now known in the art that the principal mediator of androgenic activity in some target organs is 5 α -dihydrotestosterone (DHT), and that it is formed locally in the target organ by the action of testosterone-5 α -reductase. It is also known that inhibitors of testosterone-5 α -reductase will serve to prevent or lessen symptoms of
20 hyperandrogenic stimulation.

25 A number of 4-aza steroid compounds are known in the art. For example, See U.S. Patent Nos. 2,227,876, 3,239,417, 3,264,301 and 3,285,918; French Patent No. 1,465,544; Doorenbos and Solomons, *J. Pharm. Sci.*, 62, 4, pp. 638-640 (1973); Doorenbos and Brown, *J. Pharm. Sci.*, 60, 8, pp. 1234-1235 (1971); and Doorenbos and Kim, *J. Pharm. Sci.*, 63, 4, pp. 620-622 (1974).

30 In addition, U.S. Patent Nos. 4,377,584, 4,220,775, 4,859,681, 4,760,071 and the articles "J. Med. Chem." 27, p. 1690-1701 (1984) and "J. Med. Chem." 29, 2998-2315 (1986) of Rasmusson, *et al.*, U.S. Patent 4,845,104 to Carlin, *et al.*, and U.S. Patent 4,732,897 to Cainelli, *et al.* describe 4-aza-17 β -substituted-5 α -androstan-3-ones which are said to be useful in the treatment of DHT-related hyperandrogenic conditions.

- 3 -

However, despite the suggestion in the prior art that hyperandrogenetic diseases are the result of a single 5 α -reductase, there are reports regarding the presence of other 5 α -reductase isozymes in both rats and humans. For example, in human prostate, Bruchovsky, *et al.*

5 (See *J. Clin. Endocrinol. Metab.* 67, 806-816, 1988) and Hudson (see *J. Steroid Biochem.* 26, p 349-353, 1987) found different 5 α -reductase activities in the stromal and epithelial fractions. Additionally, Moore and Wilson described two distinct human reductases with peaks of activities at either pH 5.5 or pH 7-9. (See *J. Biol. Chem.* 251, 19, p. 5895-5900,

10 1976).

Recently, Andersson and Russell isolated a cDNA which encodes a rat liver 5 α -reductase (see *J. Biol. Chem.* 264 pp. 16249-55 (1989). They found a single mRNA which encodes both the liver and prostatic reductases of rats. The sequence of this rat gene was later used

15 to select a human prostatic cDNA encoding a 5 α -reductase termed "5 α -reductase 1". (See *Proc. Nat'l. Acad. Sci.* 87, p. 3640-3644, 1990).

More recently, a second, human prostatic reductase (5 α -reductase 2) has been cloned with properties identified with the more abundant form found in crude human prostatic extracts. (See *Nature*,
20 354, p. 159-161, 1991).

Further, "Syndromes of Androgen Resistance"- The Biology of Reproduction, Vol. 46, p. 168-173 (1992) by Jean O. Wilson indicates that the 5 α -reductase 1 enzyme may be associated with hair follicles.

Thus, the art supports the existence of at least two genes for
25 5 α -reductase and two distinct isozymes of 5 α -reductase in humans. The isozyme that principally interacts in certain skin tissues, e.g., skin or scalp, is conventionally designated as 5 α -reductase 1 (or 5 α -reductase type 1), while the isozyme that principally interacts within the prostatic tissues is designated as 5 α -reductase 2 (or 5 α -reductase type 2). See.
30 e.g., G. Harris, *et al.*, *Proc. Natl. Acad. Sci. USA*, Vol. 89, pp. 10787-10791 (Nov. 1992).

Local dihydrotestosterone (DHT) formation via 5 alpha reductase (5 alphaR) plays a major role in sebum production and the pathophysiology of acne since it is known that the sebaceous gland is rich

- 4 -

in 5 alpha reductase and that acne prone skin contains excessive 5 alphaR activity. On this basis, local DHT formation is responsible for increased sebum production in sebaceous follicles of acne prone tissue and 5 alpha R¹ or R² inhibition, or combination thereof, can be useful in the
5 treatment of acne.

As described above, acne is a disease with multifactorial pathogenesis including the factors of: (a) increased sebum production, (b) follicular keratinization, (c) *Propionibacterium acnes* proliferation and (d) inflammation. On this basis, we believe that its
10 effective management can best be brought about through combination therapy that concurrently addresses more than one of these pathogenic factors in a therapeutic protocol. In the treatment of acne vulgaris, it would be desirable to employ a 5 α -reductase 1 or 2 inhibitor, combination thereof, or a dual inhibitor, which decreases sebum
15 production, in combination with another agent to amplify the therapy against the other above-described pathogenic factors in the treatment.

Therefore it is an object of this invention to provide a combination method of agents that has sufficient activity in the inhibition of 5 α -reductase isozyme 1, 5 α -reductase isozyme 2,
20 combination thereof, or the use of a dual inhibitor, in combination with another agent that will enhance the effectiveness of the 5 α -reductase 1 or 2 inhibitor, or combination thereof, in the treatment of acne vulgaris.

25 SUMMARY OF THE INVENTION

By this invention there is provided a combination method involving the use of a 5 α -reductase 1 and/or 2 inhibitor, in combination with a retinoid agent, including but not limited to, e.g., tretinoïn (all-trans-retinoic acid, RETIN A) and isotretinoïn (13-cis-retinoic acid,
30 ACCUTANE), and at least one agent selected from: an antibacterial, an anti-inflammatory, and a keratolytic, or combination thereof, in the treatment of acne vulgaris by topical and/or systemic administration.

The 5 alpha reductase 1 or 2 inhibitor inhibits the production of sebum while concurrently: the retinoid normalizes desquamation of the

- 5 -

follicular epithelium, promotes drainage of preexisting comedones, inhibits the formation of new ones and can decrease the production of sebum, especially isotretinoin; the antibacterial improves both inflammatory and non-inflammatory lesions by reducing the population of *Propionibacterium acnes* and other Gram-negative and Gram-positive bacteria on the skin surface and within the follicles; the keratolytic, decreases follicular keratinization; and the anti-inflammatory decrease inflammation and can lead to a mild drying and peeling of the skin. This combination of agents leads to a more effective method of treatment than use of either agent alone.

The invention is still further concerned with pharmaceutical formulations comprising one or more inhibitors of 5 α -reductase 1 or 2, or combination thereof, or a dual inhibitor, in combination with a retinoid agent, e.g., tretinoin or isotretinoin, and at least one agent selected from an antibacterial, a keratolytic, and an anti-inflammatory, or combination thereof.

In one embodiment of this invention, is a method of treating acne employing 5 α reductase 1 inhibitors, i.e., 7 β -substituted-4-aza-5 α -cholestan-3-ones and 5 α -androstan-3-one compounds, which are selected from the group consisting of the generic Formulae (I.):

or a pharmaceutically acceptable salt or ester thereof,
wherein for Structure I:

25 R is selected from hydrogen, methyl, ethyl, -OH, -NH₂, and -SCH₃; the dashed lines "—" a and b independently represent a single bond or a double bond providing that when b is a double bond, the 5 α hydrogen, Ha, is absent;

- 6 -

=Z is selected from:

- 1) oxo,
- 2) α -hydrogen and a β -substituent selected from:
 - a) C₁-C₄ alkyl,
 - b) C₂-C₄ alkenyl,
 - c) CH₂COOH,
 - d) -OH,
 - e) -COOH,
 - f) -COO(C₁-C₄ alkyl),
 - g) -OCONR¹R² wherein R¹ and R² independently are selected from:
 - i) H,
 - ii) C₁-C₄ alkyl,
 - iii) phenyl, and
 - iv) benzyl, or
- 10 R¹ and R² together with the nitrogen atom to which they are attached represent a 5-6 membered saturated heterocycle, optionally containing one other heteratom selected from -O-, -S- and -N(R')- wherein R' is -H or methyl;
- 15 h) C₁-C₄ alkoxy,
- i) C₃-C₆ cycloalkoxy.
- j) -OC(O)-C₁-4 alkyl,
- k) halo,
- 20 l) hydroxy -C₁-C₂ alkyl,
- m) halo-C₁-C₂ alkyl,
- n) -CF₃, and
- 25 o) C₃-C₆ cycloalkyl;
- 3) =CHR³; wherein R³ is selected from -H and C₁-C₄ alkyl;
- 30 and
- 4) spirocyclopropane-R³ of structure:

- 7 -

(II.)

5 or a pharmaceutically acceptable salt or ester thereof
wherein:
the C1-C2 carbon-carbon bond may be a single bond, or a double
bond as indicated by the dashed line;

10 R⁴ is selected from the group consisting of hydrogen and C1-10 alkyl;
R⁵ is selected from the group consisting of hydrogen and C1-10 alkyl;
one of R⁶ and R⁷ is selected from the group consisting of hydrogen
and methyl, and the other is selected from the group consisting of:

- (a) amino;
- (b) cyano;
- 15 (c) fluoro;
- (d) methyl;
- (e) OH;
- (f) -C(O)NR_bR_c, where R_b and R_c are independently H,
C1-6 alkyl, aryl, or arylC1-6alkyl; wherein the alkyl
moiety can be substituted with 1-3 of: halo; C1-4alkoxy;
or trifluoromethyl; and the aryl moiety can be substituted
with 1-3 of: halo; C1-4alkyl; C1-4 alkoxy; or
trifluoromethyl;
- (g) C1-10 alkyl-X-;
- 20 (h) C2-10 alkenyl-X-;

25 wherein the C1-10 alkyl in (g) and C2-10 alkenyl in (h)
can be unsubstituted or substituted with one to three of:

- 8 -

- i) halo; hydroxy; cyano; nitro; mono-, di- or trihalomethyl; oxo; hydroxysulfonyl; carboxy;
 - ii) hydroxyC₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkylthio; C₁₋₆alkylsulfonyl; C₁₋₆alkyloxycarbonyl; in which the C₁₋₆ alkyl moiety can be further substituted with 1-3 of: halo; C₁₋₄ alkoxy; or trifluoromethyl;
 - iii) arylthio; aryl; aryloxy; arylsulfonyl; aryloxycarbonyl; in which the aryl moiety can be further substituted with 1-3 of: halo; C₁₋₄ alkyl; C₁₋₄ alkoxy; or trifluoromethyl;
 - iv) -C(O)NR_bR_c; -N(R_b)-C(O)-R_c; -NR_bR_c; where R_b and R_c are defined above;
- 5
 - (i) aryl-X-;
 - (j) heteroaryl-X-, wherein heteroaryl is a 5, 6 or 7 membered heteroaromatic ring containing at least one member selected from the group consisting of: one ring oxygen atom, one ring sulfur atom, 1-4 ring nitrogen atoms , or combinations thereof; in which the heteroaromatic ring can also be fused with one benzo or heteroaromatic ring;
10
wherein the aryl in (i) and heteroaryl in (j) can be unsubstituted or substituted with one to three of:
- 15
 - v) halo; hydroxy; cyano; nitro; mono-, di- or trihalomethyl; mono-, di- or trihalomethoxy; C₂₋₆ alkenyl; C₃₋₆ cycloalkyl; formyl; hydrosulfonyl; carboxy; ureido;
 - 20
vi) C₁₋₆ alkyl; hydroxy C₁₋₆ alkyl; C₁₋₆ alkyloxy; C₁₋₆ alkyloxy C₁₋₆alkyl; C₁₋₆ alkylcarbonyl; C₁₋₆ alkylsulfonyl; C₁₋₆ alkylthio; C₁₋₆ alkylsulfinyl; C₁₋₆ alkylsulfonamido; C₁₋₆ alkylarylsulfonamido; C₁₋₆ alkyloxy-carbonyl; C₁₋₆ alkyloxycarbonyl C₁₋₆alkyl; R_bR_cN-C(O)-C₁₋₆alkyl; C₁₋₆ alkanoylamino C₁₋₆ alkyl; aroylamino C₁₋₆ alkyl; wherein the C₁₋₆ 25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780

- 9 -

alkyl moiety can be substituted with 1-3 of:
halo; C₁-4alkoxy; or trifluoromethyl;

5 vii) aryl; aryloxy; arylcarbonyl; arylthio;
arylsulfonyl; arylsulfinyl; arylsulfonamido;
aryloxycarbonyl; wherein the aryl moiety can
be substituted with 1-3 of: halo; C₁-4alkyl; C₁-
4alkoxy; or trifluoromethyl;

10 viii) -C(O)NR_bR_c; -O-C(O)-NR_bR_c; -N(R_b)-C(O)-
R_c; -NR_bR_c; R_b-C(O)-N(R_c)-; where R_b and
R_c are defined in (f) above; and -N(R_b)-C(O)-
OR_g, wherein R_g is C₁-6alkyl or aryl, in which
the alkyl moiety can be substituted with 1-3 of:
halo; C₁-4alkoxy; or trifluoromethyl, and the
aryl moiety can be substituted with 1-3 of: halo;
C₁-4alkyl; C₁-4 alkoxy, or trifluoromethyl;
-N(R_b)-C(O) NR_cR_d, wherein R_d is selected
from H, C₁-6 alkyl, and aryl; in which said C₁-
6alkyl and aryl can be substituted as described
above in (f) for R_b and R_c;

15 ix) a heterocyclic group, which is a 5, 6 or 7
membered ring, containing at least one member
selected from the group consisting of: one ring
oxygen atom, one ring sulfur atom, 1-4 ring
nitrogen atoms, or combinations thereof; in
which the heterocyclic ring can be aromatic,
unsaturated, or saturated, wherein the
heterocyclic ring can be fused with a benzo
ring, and
wherein said heterocyclic ring can be
25 substituted with one to three substituents, as
defined above for v), vi), vii) and viii),
excluding ix) a heterocyclic group; and

30 (k) R⁶ and R⁷ taken together can be carbonyl oxygen;

- 10 -

(l) R⁶ and R⁷ taken together can be =CH-R_g, wherein R_g is defined in viii); and wherein:

X is selected from the group consisting of:

5 -O-; -S(O)_n-; -C(O)-; -CH(R_e)-; -C(O)-O-*; -C(O)-N(R_e)-*;
-N(R_e)-C(O)-O-*; -O-C(O)-N(R_e)-*; -N(R_e)C(O)-N(R_e)-;
-O-CH(R_e)-*; -N(R_e)-; wherein R_e is H, C₁₋₃ alkyl, aryl, aryl-C₁₋₃ alkyl, or unsubstituted or substituted heteroaryl, as defined above in (j);

10 wherein the asterisk (*) denotes the bond which is attached to the 16-position in Structure II; and n is zero, 1 or 2.

DETAILED DESCRIPTION OF THE INVENTION

The present invention has the objective of providing a combination method of treating the hyperandrogenic conditions of acne, which can be comedonal, papulopustular, nodular or cystic, including acne vulgaris, seborrhea, neonatal acne, infantile acne, adolescent acne, adult acne, postmenopausal acne, acne conglobata , hidradenitis suppurativa, acne mechanica, perioral dermatitis, acne fulminans, pyoderma faciale, acne excoriée des jeunes filles, acne tropicalis, acne estivalis, Favre-Racouchot Syndrome, or acne venenata. The method involves the oral, systemic, parenteral or topical administration of a therapeutically effective amount of one or more 5 alpha reductase 1 inhibitor compounds of Formula I or II, or a 5 α -reductase 2 inhibitor, or combination thereof, or a dual inhibitor, in combination with tretinoin or isotretinoin, and at least one agent selected from an antibacterial, a keratolytic, an anti-inflammatory, or mixture thereof.

By the term "5 α -reductase 1 inhibitor" as used herein, is meant a compound which selectively interferes with the physiological action of the enzyme 5 α -reductase 1 on human tissue. An example is 4,7 β -dimethyl-4-aza-5 α -cholestane-3-one, and related analogues, described herein.

- 11 -

By the term "5 α -reductase 2 inhibitor" as used herein, is meant a compound which selectively interferes with the physiological action of the enzyme 5 α -reductase 2 on human tissue. An example is finasteride, described in U.S. Patent 4,760,071 (to Merck & Co., Inc.) and 5 related analogues.

By the term "dual 5 α -reductase 1 and 2 inhibitor" as used herein, is meant a compound which interferes with the physiological action of the enzymes, 5 α -reductase 1 and 5 α -reductase 2, on human tissue. Examples of these type of compounds are the 6-azaandrost-4-en-10-3-ones, described in "J. Med Chem.", 1993, Vol 36, pages 4313-4315, and related analogues, and aryl esters in U.S. Patent 5,278,159.

In the treatment of acne, as described herein, the above described 5 α -reductase can be used individually or in combination with one or more of the others.

15

DISCUSSION OF FORMULA I (STRUCTURE I)

The 17-substituent cholestan side chain in Formula I is in the beta configuration. Combinations of substituents and/or variables are permissible only if such combinations result in stable 20 compounds.

The term "C₁-C₄ alkyl" as used herein, is meant to include methyl (Me), ethyl (Et), propyl (Pr), iso-propyl (i-Pr), n-butyl (n-Bu), sec-butyl (s-Bu), iso-butyl (i-Bu) and tert-butyl (t-Bu).

25 The term "C₂-C₄ alkenyl" as used herein is meant to include vinyl, allyl, 1-propen-1-yl, 1-propen-2-yl, 1-buten-1-yl, 1-buten-2-yl, and the like. Included in this invention are all E, Z diastereomers.

The term "C₃-C₆ cycloalkyl" as used herein is meant to include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

30 The term "halo" as used herein is meant to include fluoro, chloro, bromo, and iodo.

The term "OC₁-C₄ alkyl" or "C₁-C₄ alkoxy" as used herein is meant to include methoxy, ethoxy, propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, and tert-butoxy.

- 12 -

The term "OC₃-C₆ cycloalkyl" or "C₃-C₆ cycloalkoxy" as used herein is meant to include: cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, and cyclohexyloxy.

Representative examples of =Z are where the α -substituent (dashed lines) is hydrogen and the β -substituent (wedge) is e.g. methyl, ethyl, propyl, allyl, carboxymethyl, hydroxy, methoxy, ethoxy, cyclopropyloxy, cyclopentyloxy, acetoxy, fluoro, chloro, bromo, trifluoromethyl, fluoromethyl, chloromethyl, carboxy, N,N-dimethylcarbamate, hydroxymethyl, and the like.

5 Representative examples where =Z is an alkenyl substituent, =CH-R³, includes =CH₂, =CH-CH₃, =CH-CH₂CH₃, and the like.

10 Representative examples wherein =Z is the spirocyclopropyl substituent:

15 stereoisomers thereof and the like.

Representative examples wherein -NR¹R² represent a heterocycle include: N-piperidinyl, N-morpholinyl, N-piperazinyl, N-(4-methyl)piperazinyl, N-thiomorpholinyl, N-pyrrolidinyl, N-imidazolidinyl and the like.

20 Representative compounds of Formula I included in the invention wherein all of the 17-substituents are in the beta configuration are:

7 β -ethyl-4-methyl-4-aza-cholest-5-en-3-one,
7 β -ethyl-4-methyl-4-aza-cholestane-3-one,

25 7 β -ethyl-4-aza-cholest-5-en-3-one,
7 β -ethyl-4-aza-5 α -cholestane-3-one,
7 β -carboxymethyl-4-aza-cholest-5-en-3-one,
7 β -carboxymethyl-4-aza-cholestane-3-one,
7 β -propyl-4-methyl-4-aza-cholest-5-en-3-one,

- 13 -

7 β -propyl-4-methyl-4-aza-5 α -cholestan-3-one,
7 β -propyl-4-aza-cholest-5-en-3-one,
7 β -propyl-4-aza-5 α -cholestan-3-one,
7 β -methyl-4-aza-cholest-5-en-3-one,
5 7 β -methyl-4-aza-cholestan-3-one,
4,7 β -dimethyl-4-aza-cholest-5-en-3-one,
4,7 β -dimethyl-4-aza-5 α -cholestan-3-one,
4-methyl-4-aza-5 α -cholestan-3,7-dione,
7 β -acetoxy-4-methyl-4-aza-5 α -cholestan-3-one,
10 4-methyl-4-aza-cholest-5-en-3,7-dione,
7 β -hydroxy-4-methyl-4-aza-5 α -cholestane-3-one,
7 β -methoxy-4-methyl-4-aza-5 α -cholestane-3-one,
7 β -hydroxymethyl-4-aza-5 α -cholestane-3-one,
7 β -bromomethyl-4-aza-5 α -cholestane-3-one,
15 7 β -chloromethyl-4-aza-5 α -cholestane-3-one,
7 β -fluoromethyl-4-aza-5 α -cholestane-3-one,
7 β -carboxy-4-aza-5 α -cholestane-3-one,
7 β -trifluoromethyl-4-aza-cholest-5-en-3-one,
7,7-dimethoxy-4-methyl-4-aza-5 α -cholestane-3-one,
20 7 β -methoxy-4-methyl-4-aza-cholesta-5-en-3-one,
7 β -methoxy-4-methyl-4-aza-cholesta-6-en-3-one,
7 β -cyclopropyloxy-4-methyl-4-aza-5 α -cholestane-3-one,
7 β -cyclopropyloxy-4-methyl-4-aza-cholesta-5,7-dien-3-one,
7 β -propylidene-4-methyl-4-aza-5 α -cholestane-3-one,
25 7 β -(2-ethyl)spiroethylene-4-methyl-4-aza-5 α -cholestane-3-one,
7 β -methyl-4-aza-5 α -cholest-1-en-3-one,
7 β -methyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
7 β -ethyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
7 β -propyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
30 7 β -i-propyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
7 β -n-butyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
7 β -i-butyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
7 β -s-butyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,
7 β -t-butyl-5-oxo-A-nor-3,5-seco-cholestanoic acid,

- 14 -

7 β -n-pentyl-5-oxo-A-nor-3,5-seco-cholestanoic acid, and
7 β -n-hexyl-5-oxo-A-nor-3,5-seco-cholestanoic acid.

DISCUSSION OF FORMULA II (STRUCTURE II)

5 In one embodiment of the instant invention are compounds of Formula II wherein R⁴ is hydrogen or methyl and R⁵ is hydrogen or methyl.

A further embodiment of the instant invention are compounds of Formula II wherein:

10 one of R⁶ and R⁷ is selected from the group consisting of hydrogen and methyl, and the other is selected from the group consisting of:

- (b) cyano;
- (c) fluoro;
- (e) OH;

15 (g) C₁-10 alkyl-X-; or C₁-10 alkyl-X-, where alkyl can be substituted with aryl, and wherein aryl in turn can be substituted with 1-2 of halo or C₁-6alkyl;

- (h) C₂-10 alkenyl-X-;
- (i) aryl-X-;

20 (j) heteroaryl-X-, wherein heteroaryl is a 5 or 6 membered heteroaromatic ring containing 1-2 ring nitrogen atoms; wherein the aryl in (i) and heteroaryl in (j) can be unsubstituted or substituted with one to two of:

- x) halo; cyano; nitro; trihalomethyl; trihalomethoxy; C₁-6 alkyl; aryl; C₁-6 alkylsulfonyl; C₁-6 alkylarylsulfonamino;
- xi) -NR_bR_c; R_b-C(O)-N(R_c)-; wherein R_b and R_c are independently H, C₁-6 alkyl, aryl, or arylC₁-6alkyl; wherein the alkyl moiety can be substituted with 1-3 of: halo; C₁-4alkoxy; or trifluoromethyl; and the aryl moiety can be substituted with 1-3 of: halo; C₁-4alkyl; C₁-4 alkoxy; or trifluoromethyl;

25

30

- 15 -

xii) a heterocyclic group, which is a 5 membered aromatic ring, containing one ring nitrogen atom, or one ring oxygen and one ring nitrogen atom; and
5 (k) wherein R⁶ and R⁷ taken together can be carbonyl oxygen;
and wherein:

X is selected from the group consisting of:

-O-; -S(O)_n-; -CH(R_e)-; -C(O)-N(R_e)-*;
-O-C(O)-N(R_e)-*;

10 wherein R_e is H, C₁₋₃ alkyl, aryl, aryl C₁₋₃ alkyl;
wherein the asterisk (*) denotes the bond which is attached to
the 16-position in Structure II; and n is zero or 2.

Novel compounds of the present invention exemplified by
15 this embodiment include but are not limited to the following compounds:
4-aza-4,7 β -dimethyl-5 α -androstane-3,16-dione;
4-aza-4-methyl-5 α -androstan-3,16-dione;
3-oxo-4-aza-4-methyl-16 β -hydroxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(benzylaminocarbonyloxy)-5 α -androstane;
20 3-oxo-4-aza-4-methyl-16 β -benzoylamino-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -methoxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -allyloxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(n-propyloxy)-5 α -androstane;
3-oxo-4-aza-4-methyl-16 α -hydroxy-5 α -androstane;
25 3-oxo-4-aza-4-methyl-16 β -(phenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(phenoxy)-5 α -androst-1-ene;
3-oxo-4-aza-4-methyl-16 α -methoxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(4-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androst-1-ene;
30 3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androst-1-ene;
3-oxo-4-aza-7 β -methyl-16 β -[4-(1-pyrrolyl)phenoxy]-5 α -androst-1-ene;

- 16 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -methoxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -allyloxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3,3-dimethylallyloxy)-5 α -androstane;
5 3-oxo-4-aza-4,7 β -dimethyl-16 β -(n-propyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(iso-pentoxy)-5 α -androstane;
3-oxo-4-aza-4,16 α -dimethyl-16 β -hydroxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -ethyloxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -benzyloxy-5 α -androstane;
10 3-oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -methylthio-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(n-propylthio)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -fluoro-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -cyano-5 α -androstane;
15 3-oxo-4-aza-4-methyl-16 β -(1-hexyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(n-propyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -benzyl-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorobenzyl)-5 α -androstane;
3-oxo-4-aza-4,16 α -dimethyl-16 β -methoxy-5 α -androstane;
20 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-nitrophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(1-naphthyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chloro-4-methylphenoxy)-5 α -
25 androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(tert-butyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-methyl-1-butyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 α -(n-propyloxy)-5 α -androstane;
30 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethoxyphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -ethylthio-5 α -androstane;

- 17 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -ethylsulfonyl-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylsulfonylphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(4-tolylsulfonylamino)phenoxy]-5 α -
5 androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-pyridyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[(4-phenyl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-pyrazinyloxy)-5 α -androstane;
10 3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(5-oxazolyl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-pyrimidinyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(1-pyrryl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-aminophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-acetylaminophenoxy)-5 α -androstane;
15 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-benzoylaminophenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(phenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-chlorophenoxy)-5 α -androstane;
20 3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androst-1-ene;
3-oxo-4-aza-4,7 β -dimethyl-16-(4-chlorobenzylidene)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-benzylidene-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-(4-methylbenzylidene)-5 α -androstane;
25 3-oxo-4-aza-4,7 β -dimethyl-16-(4-chlorobenzyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-(4-methylbenzyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-(3-pyridylmethyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 α -methanesulfonyl-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -thiophenoxy-5 α -androstane;
30 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorothiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorothiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylthiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methoxythiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -phenylsulfinyl-5 α -androstane;

- 18 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -phenylsulfonyl-5 α -androstane;
3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -hydroxy-5 α -androstane;
5 3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -methoxy-5 α -androstane;
pharmaceutically acceptable salts thereof, and analogs of the above-
described compounds wherein the C₁-C₂ carbon-carbon bond is a double
bond, and/or R⁴ is -H, and/or R⁵ is -H or methyl, where appropriate.

In another embodiment of this invention are compounds of
10 Formula II further limited to those wherein the C₁-C₂ carbon-carbon
bond is a single bond, R⁴ is methyl, R⁵ is methyl, R⁷ is selected from
unsubstituted or substituted aryloxy, and R⁶ is hydrogen.

Some non-limiting examples of compounds within this
embodiment are:

15 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-nitrophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(1-naphthoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chloro-4-methylphenoxy)-5 α -
20 androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethoxyphenoxy)-5 α -
25 androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylsulfonylphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(4-tolylsulfonylamino)phenoxy]-5 α -
androstane;
30 3-oxo-4-aza-4,7 β -dimethyl-16 β -[(4-phenyl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(5-oxazolyl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(1-pyrryl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-aminophenoxy)-5 α -androstane;

- 19 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-acetylaminophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-benzoylaminophenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane;
5 3-oxo-4-aza-4,7 β -dimethyl-16 β -(phenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chlorophenoxy)-5 α -androstane;
and the pharmaceutically acceptable salts thereof.

A useful compound of the present invention is 3-oxo-4-aza-
10 4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane, or a
pharmaceutically acceptable salt thereof.

The following discussion applies to terms used in both
Formulae I and II.

15 As used herein "alkyl" is intended to include both branched-
and straight-chain saturated aliphatic hydrocarbon groups having the
specified number of carbon atoms, e.g., methyl (Me), ethyl (Et), propyl,
butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, iso-propyl (i-Pr), iso-
butyl (i-Bu), tert-butyl (t-Bu), sec-butyl (s-Bu), iso-pentyl, and the like.
20 "Alkyloxy" (or "alkoxy") represents an alkyl group having the indicated
number of carbon atoms attached through an oxygen bridge, e.g.,
methoxy, ethoxy, propyloxy, and the like. "Alkenyl" is intended to
include hydrocarbon groups of either a straight or branched configuration
with one or more carbon-carbon double bonds which may occur in any
25 stable point along the chain, such as ethenyl, propenyl or allyl, butenyl,
pentenyl, and the like. Included in this invention are all E, Z
diastereomers.

The alkyl and alkenyl groups can be unsubstituted or
substituted with one or more, and preferably 1-3,
30 i) halo; hydroxy; cyano; nitro; mono-, di- or trihalomethyl;
oxo; hydroxysulfonyl; carboxy;
ii) hydroxyC₁-6alkyl; C₁-6alkyloxy; C₁-6 alkylthio; C₁-
6alkylsulfonyl; C₁-6 alkylloxycarbonyl; in which the C₁-6 alkyl moiety

- 20 -

can be further substituted with 1-3 of: halo; C₁-4 alkoxy; or trifluoromethyl;

5 *iii)* arylthio; aryl; aryloxy; arylsulfonyl; aryloxycarbonyl; in which the aryl moiety can be further substituted with 1-3 of: halo; C₁-4 alkyl; C₁-4 alkoxy; or trifluoromethyl;
10 *iv)* -C(O)NR_bR_c; -N(R_b)-C(O)-R_c; -NR_bR_c; where R_b and R_c are defined above, and where halo is F, Cl, Br or I as used herein.

15 The term "oxo", as used herein, indicates an oxo radical which can occur in any stable point along the carbon chain resulting in a formyl group, if at the end of the chain, or an acyl or aroyl group at other points along the carbon chain.

As used herein the term "aryl" is intended to mean phenyl or naphthyl, including 1-naphthyl or 2-naphthyl, either unsubstituted or substituted as described below.

15 The term "heteroaryl" as used herein, is intended to include a 5, 6 or 7 membered heteroaromatic radical containing at least one member selected from the group consisting of: one ring oxygen atom, one ring sulfur atom, 1-4 ring nitrogen atoms, or combinations thereof; in which the heteroaryl ring can also be fused with one benzo or heteroaromatic ring. This category includes the following either unsubstituted or substituted heteroaromatic rings(as described below): pyridyl, furyl, pyrrolyl, thienyl, isothiazolyl, imidazolyl, benzimidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, quinazolinyl, isoquinolyl, benzofuryl, isobenzofuryl, benzothienyl, pyrazolyl, indolyl, isoindolyl, 20 purinyl, carbazolyl, isoxazolyl, thiazolyl, isothiazolyl, oxazolyl, benzthiazolyl, and benzoxazolyl. The heteroaryl ring may be attached within structural Formula II or substituted at any heteroatom or carbon atom in the ring. However, the attachment to -X- has to be through a ring atom which affords a stable structure. The heteroaryl ring can also be 25 fused to a benzo ring.

30 The one or more, preferably one to three, substituents which can be on the aryl and heteroaryl groups named above are independently selected from:

- 21 -

v) halo; hydroxy; cyano; nitro; mono-, di- or trihalomethyl; mono-, di- or trihalomethoxy; C₂-6 alkenyl; C₃-6 cycloalkyl; formyl; hydrosulfonyl; carboxy; ureido;

vi) C₁-6 alkyl; hydroxy C₁-6 alkyl; C₁-6 alkyloxy; C₁-6
5 alkyloxy C₁-6alkyl; C₁-6 alkylcarbonyl; C₁-6 alkylsulfonyl; C₁-6 alkylthio; C₁-6 alkylsulfinyl; C₁-6 alkylsulfonamido; C₁-6 alkylarylsulfonamido; C₁-6 alkyloxy-carbonyl; C₁-6 alkyloxycarbonyl C₁-6alkyl; R_bR_cN-C(O)-C₁-6alkyl; C₁-6 alkanoylamino C₁-6 alkyl; aroylamino C₁-6 alkyl; wherein the C₁-6 alkyl moiety can be substituted
10 with 1-3 of: halo; C₁-4alkoxy; or trifluoromethyl;

vii) aryl; aryloxy; arylcarbonyl; arylthio; arylsulfonyl; arylsulfinyl; arylsulfonamido; aryloxycarbonyl; wherein the aryl moiety can be substituted with 1-3 of: halo; C₁-4alkyl; C₁-4alkoxy; or trifluoromethyl;

15 viii) -C(O)NR_bR_c; -O-C(O)-NR_bR_c; -N(R_b)-C(O)-R_c; -NR_bR_c; R_b-C(O)-N(R_c)-; where R_b and R_c are defined in (f) above; and -N(R_b)-C(O)-OR_g, wherein R_g is C₁-6alkyl or aryl, in which the alkyl moiety can be substituted with 1-3 of: halo; C₁-4alkoxy; or trifluoromethyl, and the aryl moiety can be substituted with 1-3 of: halo; C₁-4alkyl; C₁-4
20 alkoxy, or trifluoromethyl; -N(R_b)-C(O) NR_cR_d, wherein R_d is selected from H, C₁-6 alkyl, and aryl; in which said C₁-6alkyl and aryl can be substituted as described above in (f) for R_b and R_c;

ix) a heterocyclic group, which is a 5, 6 or 7 membered ring, containing at least one member selected from the group consisting of:

25 one ring oxygen atom, one ring sulfur atom, 1-4 ring nitrogen atoms, or combinations thereof; in which the heterocyclic ring can be aromatic, unsaturated, or saturated, wherein the heterocyclic ring can be fused with a benzo ring, and
wherein said heterocyclic ring can be substituted with one to
30 three substituents, as defined above for v), vi), vii) and viii), excluding ix) a heterocyclic group.

The fused heteroaromatic ring systems include: purine, imidazoimidazole, imidazothiazole, pyridopyrimidine, pyridopyridazine.

- 22 -

pyrimidopyrimidine, imidazopyridazine, pyrrolopyridine, imidazopyridine, and the like.

The "heterocyclic" group includes the aromatic heteroaryl rings described above and also their respective dihydro, tetrahydro,

5 hexahydro and fully saturated ring systems. Examples include:
dihydroimidazolyl, dihydrooxazolyl, dihydropyridyl, tetrahydrofuryl,
dihydropyrryl, tetrahydrothienyl, dihydroisothiazolyl, 1,2-dihydrobenzimidazolyl, 1,2-dihydrotetrazolyl, 1,2-dihydropyrazinyl, 1,2-dihydropyrimidyl, 1,2-dihydroquinolyl, 1,2,3,4-tetrahydroisoquinolyl,
10 1,2,3,4-tetrahydrobenzofuryl, 1,2,3,4-tetrahydroisobenzofuryl, 1,2,3,4-tetrahydrobenzothienyl, 1,2,3,4-tetrahydropyrazolyl, 1,2,3,4-tetrahydroindolyl, 1,2,3,4-tetrahydroisoindolyl, 1,2,3,4-tetrahydropurinyl,
1,2,3,4-tetrahydrocarbazolyl, 1,2,3,4-tetrahydroisoxazolyl, 1,2,3,4-tetrahydrothiazolyl, 1,2,3,4-tetrahydrooxazolyl, 1,2,3,4-tetrahydrobenzthiazolyl, and 1,2,3,4-tetrahydrobenzoxazolyl and the like.

The heterocyclic group can be substituted in the same fashion as described above for heteraryl.

Whenever the terms "alkyl", "alkenyl", "alkyloxy (or alkoxy)", "aryl" or "heteroaryl", or one of their prefix roots, appear in a name of a substituent in Formula I and II, (e.g., aralkoxyaryloxy) they shall have the same definitions as those described above for "alkyl", "alkenyl", "alkyloxy (or alkoxy)", "aryl" and "heteroaryl", respectively. Designated numbers of carbon atoms (e.g., C₁-10) shall refer independently to the number of carbon atoms in an alkyl or alkenyl moiety or to the alkyl or alkenyl portion of a larger substituent in which alkyl or alkenyl appears as its prefix root.

Also included within the scope of this invention are pharmaceutically acceptable salts of the compounds of Formula I and II, where a basic or acidic group is present on the structure. When an acidic substituent is present, i.e., -COOH, there can be formed the ammonium, sodium, potassium, calcium salt, and the like, for use as the dosage form. Where a basic group is present, i.e., amino or a basic heteroaryl radical such as, e.g., 4-pyridyl, an acidic salt, i.e., hydrochloride, hydrobromide, acetate, pamoate, and the like, can be used as the dosage form.

- 23 -

Also, in the case of the -COOH group being present, pharmaceutically acceptable esters can be employed, e.g., acetate, maleate, pivaloyloxymethyl, and the like, and those esters known in the art for modifying solubility or hydrolysis characteristics for use as
5 sustained release or prodrug formulations.

Representative salts include the following salts:
acetate, lactobionate, benzenesulfonate, laurate, benzoate, malate, bicarbonate, maleate, bisulfate, mandelate, bitartrate, mesylate, borate, methylbromide, bromide, methylnitrate, calcium edetate, methylsulfate,
10 camsylate, mucate, carbonate, napsylate, chloride, nitrate, clavulanate, N-methylglucamine, citrate, ammonium salt, dihydrochloride, oleate, edetate, oxalate, edisylate, pamoate (embonate), estolate, palmitate, esylate, pantothenate, fumarate, phosphate/diphosphate, gluceptate, polygalacturonate, gluconate, salicylate, glutamate, stearate,
15 glycolylarsanilate, sulfate, hexylresorcinate, subacetate, hydrabamine, succinate, hydrobromide, tannate, hydrochloride, tartrate, hydroxynaphthoate, teoclinate, Iodide, tosylate, isothonate, triethiodide, lactate, and valerate.

In addition, some of the compounds of the instant invention
20 may form solvates with water or common organic solvents. Such solvates are encompassed within the scope of this invention.

The compounds of Formula I and II of the present invention have asymmetric centers and may occur as racemates, racemic mixtures and as individual enantiomers or diastereomers, with all isomeric forms
25 being included in the present invention as well as mixtures thereof. Furthermore, some of the crystalline forms for compounds of the present invention may exist as polymorphs and as such are intended to be included in the present invention.

The term "therapeutically effective amount" shall mean that
30 amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.

- 24 -

Formula I

The compounds of this invention can be made by procedures outlined in the following Flowsheets. All temperatures are in degrees Celsius.

5

GENERAL FLOWSHEET

- 25 -

GENERAL FLOWSHEET (CONT'D)

- 26 -

GENERAL FLOWSHEET (CONT'D)

- 27 -

7-Beta Alkyl Series

The compounds of the instant invention comprising Z as a 7 β alkyl group, e.g., methyl, ethyl, isopropyl, allyl, can be prepared by the procedure outlined in The General Flowsheet.

5 As seen in the Flowsheet, the starting 3-acetoxy-cholest-5-ene I (see Example 1 for synthesis) is oxidized to the corresponding 5-en-7-one II by treatment with hydrogen t-butyl peroxide and chromium hexacarbonyl in e.g., acetonitrile, at reflux. The C1-C4 alkyl group, designated Alk, e.g., methyl, can be introduced at this point by a

10 Grignard reaction using e.g., alkyl magnesium chloride in e.g., anhydrous tetrahydrofuran (THF) at 0-23°C to produce the 7-alkyl-7-hydroxy adduct III. This is then oxidized with e.g., aluminum isopropoxide and cyclohexanone (Oppenauer oxidation conditions) in refluxing toluene solvent to produce the 7-alkyl-4,6-dien-3-one IV. This in turn is reduced

15 via a e.g., metal-ammonia reduction, using lithium, liquid ammonia, THF and toluene at -78°C, quenching the reaction with dibromoethane and ammonium chloride, to selectively yield the 7-beta-alkyl-5-en-3-one V. In the next step the delta-5 double bond is isomerized to the 4-ene by use of DBU (1,8-diazabicyclo-[5.4.0]undec-7-ene) in, e.g., refluxing THF to

20 produce the 7-beta-alkyl 4-en-3-one, VI. The A Ring is next cleaved by treatment with e.g., potassium permanganate, sodium periodate in t-butyl alcohol at 80°C to produce the corresponding seco-acid VII. Treatment of the seco-acid with an appropriate amine e.g., methylamine hydrochloride and sodium acetate in ethylene glycol at 180°C, yields e.g.,

25 the 4-methyl-4-aza-cholest-5-en-3-one VIII. This in turn is selectively reduced with e.g., PtO₂ catalyst in a hydrogen atmosphere, to remove the 5-position double bond to produce the 5 α -hydrogen compound IX. The seco-acid VII can be similarly treated with ammonium acetate in acetic acid (HOAc) to produce the corresponding N-H compound, X, which can

30 then be analogously treated with PtO₂ in a catalytic hydrogenation to produce the corresponding 5 α -4N-H compound XI. Similarly, use of hydroxylamine or hydrazine for ring A closure of the seco acid will afford the corresponding delta-5-4N-X compounds where -X can be -OH or -NH₂, respectively. Reaction of the anion of saturated 4N-compound

- 28 -

(generated from the NH precursor by NaH treatment) with methylsulfenyl chloride can provide the corresponding 4N-X compound where -X is -SCH₃. Thus, R can also be -OH, -NH₂ or SCH₃ in the Formula.

5

FLOWSCHEET A

- 29 -

FLOWSCHEET A (CONT'D)

- 30 -

FLOWSCHEET B

- 31 -

FLOWSCHEET B (CONT'D)

- 32 -

7-Beta-Ethyl-Cholestane Analogues

The 7-ethyl substituent is introduced into the cholestane series as illustrated in Flowsheets C and D by the same analogous procedure as described in the General Flowsheets.

5 The starting cholesteryl acetate CA is available commercially (Aldrich). This is treated using the analogous chromium hexacarbonyl/hydrogen t-butylperoxide/acetonitrile oxidation procedure (described in *JCS Perkin Trans.* 1985, p. 267 by A. J. Pearson) to yield the 3-acetoxy-cholest-5-en-7-one 1. This can be reacted with an alkyl
10 10 Grignard reagent, e.g., ethyl magnesium chloride to form the adduct 2. This is oxidized under Oppenauer conditions to yield the dienone 3, which then can undergo metal-ammonia reduction to yield the 7 β -ethyl-5-en-3-one, 4. This is isomerized using DBU to the 4-en-3-one, 5, which is oxidized to open Ring A to yield the seco-acid 6. This can be treated
15 15 with amines, e.g. methylamine, to yield the A-ring closed 4-methyl-4-aza compound 7. This in turn can be catalytically hydrogenated to yield the 7-ethyl-5-alpha-4-methyl-4-aza-cholestane-3-one, 8.

Similarly, by treatment of the seco-acid 6 with ammonium acetate/acetic acid, the corresponding 4-NH analog 9, is produced which
20 20 can be catalytically hydrogenated to yield the 7-beta-ethyl-5 α -4-aza-cholestane-3-one, 10.

Following the same procedure but using phenylmagnesium chloride as the Grignard reagent, the corresponding compounds 50 and 51 are produced ("Ph" represents phenyl).

- 33 -

FLOWSCHEET C

- 34 -

FLOWSCHEET C (CONT'D)

- 35 -

7-Carboxymethyl-Cholestane Series

The 7-carboxy substituent is formed through the corresponding 7-allyl group. As seen in Flowsheet C, 7-oxo-cholesteryl acetate 1 is reacted with allyl Grignard reagent to form the adduct 11 which is oxidized to the dienone 12 by Oppenauer conditions. Metal-ammonia reduction affords the 5-ene analog 13, followed by DBU-catalyzed double bond isomerization to 14. This in turn can be oxidized in a key step to form the 7-carboxymethyl seco-acid 15. Treatment with amines, e.g., ammonia, forms the 4-aza derivative, 16 which is then reduced to the cholestane 17. Use of methylamine in place of ammonia can yield the corresponding 4-methyl analogs of 16 and 17.

5
10

- 36 -

FLOWSHEET D

- 37 -

FLOWSCHEET E

- 38 -

7-Propyl-Cholestane Series

The 7-propyl analogs are made starting with the 7-allyl-4-en-3-one 14, which is reduced by hydrogenation using Wilkinson's catalyst to the propyl derivative 18, oxidized to the seco-acid 19, then 5 condensed with amines, e.g., methylamine, to form the 4-methyl analog 20 and then reduced to the cholestane 21. Corresponding treatment with ammonia is shown in Flowsheet E shows the corresponding unsubstituted 4-aza 22 and cholestane 23 analogs.

- 39 -

FLOWSCHEET F

- 40 -

FLOWSCHEET F (CONT'D)

- 41 -

FLOWSHEET G

- 42 -

7-Beta Methyl Cholestane Series

The 7-beta methyl cholestane series is prepared by the analogously same route as described in Flowsheets A and B for the ethyl derivatives.

5 The methyl Grignard reagent is used to form the adduct 24, followed by Oppenauer oxidation to form 25, metal-ammonia reduction to form 26, double bond isomerization to form 27, seco-acid oxidation to form 28, and treatment by an ammonium salt to form 29, and reduction to form 30. Corresponding treatment with methylamine produces the
10 corresponding 4-methyl-4-aza compounds, 31 and by reduction, 32.

- 43 -

FLOWSCHEET H

5

FLOWSCHEET I

- 44 -

7-Beta Acetoxy Cholestane Series

The 7-beta acetoxy series is prepared by the oxidation of starting 33 to the 5-en-7-one 34 by the chromium hexacarbonyl procedure described for 1, or by pyridine-dichromate/t-butyl hydroperoxide 5 oxidation as described in the Examples. Subsequent noble metal, e.g., platinum, ruthenium, catalyzed reduction of 34 yields two products, the reduced 7-oxo compound 35, and 7-beta hydroxy compound 36. Acylation of 36 with acetic anhydride (Ac₂O) yields the 7-beta acetoxy compound 37. DMAP is dimethylaminopyridine; Py is pyridine; Ac is 10 acetyl.

FLOWSCHEET J

- 45 -

FLOWSCHEET J, CONTINUED

The 7-beta ethers in the cholestane series are prepared from
5 the 7-beta-ol (7-beta hydroxy derivative). As illustrated in Flowsheet J,
the 4-N-methyl-7-beta ol 36 can be reacted with e.g., methyl iodide and
sodium hydride in e.g., dimethylformamide, to produce the corresponding
methyl ether 37. The other C1-C4 ethers can be prepared in the same
manner.

10 The C3-C6 cycloalkyl ethers can be prepared according to
the analogous procedure of *Steroids*, 1972, vol. 19, pp. 639-647 by R.
Gardi, *et al.* For example, 36 can be reacted with 1,1-dimethoxy-
cyclohexane to produce the enol ether 38, which can be reduced to the
corresponding saturated compound by the use of palladium catalyzed
hydrogenation.

15

- 46 -

FLOWSCHEET K

- 47 -

FLOWSCHEET L

5

FLOWSCHEET M

- 48 -

FLOWSCHEET M, CONTINUED

5 The 7-haloalkyl series is made by the procedure illustrated in Flowsheet K.

10 Starting with the 7-beta-carboxy, 45, this can be treated under Hunsdiecker reaction conditions, i.e., bromination of a mercury metal salt, to yield the 7-bromo derivative 40. The chloro and iodo derivatives can be made in substantially the same fashion.

15 The haloethyl compounds can be made by starting with the 7-carboxymethyl analog 17 which can be reacted with a reducing agent, e.g., borane, to produce the primary alcohol 41. This in turn can be reacted with triphenylphosphine and carbon tetrabromide to produce the bromoethyl derivative 42.

20 The halomethyl compounds can be produced starting with the carboxymethyl derivative 17. This is treated with lead tetraacetate under oxidative decarboxylation/halogenation conditions, with a chloride, bromide or iodide salt to yield, e.g., the 7-chloromethyl analog 43. The carboxymethyl compound 17 can be treated with a fluorinating agent (XeF_2) to yield the 7-fluoromethyl analog 44.

The 7-trifluoromethyl derivative can be made from the 7-carboxy derivative 45, by conventional Dast halogenation conditions using SF_4 to yield the 7-trifluoromethyl analog 46.

- 49 -

FLOWSCHEET N

5 Flowsheet N illustrates the 7-methylene series. As seen, the
Wittig reaction, using e.g., Ph₃PCH(CH₂CH₃), carried out on the 7-oxo
compound 35, leads to the 7-(ethyl)methylene compound 47.

10 Subsequent treatment of 47 with the cyclopropyl forming
reagents, CH₂I₂ and zinc, produces the ethyl cyclopropyl spiro
compound 48, which is a mixture of stereoisomers.

- 50 -

FLOWSCHEET O

5 Flowsheet O illustrates the synthesis of the 1-ene 7-
 substituted analogs. For example compound 30 is stirred with DDQ,
 BSTFA (bis-trimethylsilyltrifluoroacetamide) and trifluoromethyl
 sulfonic acid in toluene at room temperature for 24 hours, methyl
 acetoacetate is added and the mixture relaxed for 24 hours and purified
 10 by preparative thin layer chromatography on silica gel using 3:1
 chloroform/acetone to yield 49.

Formula II

15 The compounds of Formula II useful in the present invention
 can be prepared readily according to the following reaction Schemes and
 Examples or modifications thereof using readily available starting

- 51 -

materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants which are themselves known to those of ordinary skill in this art, but are not mentioned in greater detail. Specific definitions of variables in the Schemes are

5 illustrative only, and are not intended to limit the procedures described. Some abbreviations used herein are as follows: Ph is phenyl; Ac is an acyl group; t-Bu is tert-butyl; Et is ethyl; Me is methyl; i-Am is iso-amyl; EtOAc is ethyl acetate.

The inhibitors described in Scheme 1 can be prepared as

10 follows. 4-Aza-4-methyl-5 α -androstan-3,17-dione (**A**) is first converted into the isomeric 3,16-dione (**52**) by the following sequence of reactions: (1) treatment of **A** with isoamyl nitrite in t-butanol in the presence of potassium t-butoxide to generate the intermediate 16-oximino-17-ketone; (2) reduction of the 17-keto group with hydrazine hydrate and potassium hydroxide in ethylene glycol at elevated temperatures to give 16-oxime (**B**); and (3) cleavage of the 16-oximino group in **B** either by hydrolysis with aqueous acetic acid at elevated temperatures or with sodium bisulfite followed by treatment with aqueous hydrochloric acid to afford (**52**). Reduction of the 16-ketone (**52**) to the 16 β -alcohol (**53**) is carried out

15 with a suitable hydride-based reducing agent, such as sodium borohydride in methanol or lithium tri-sec-butylborohydride in tetrahydrofuran (THF). Alcohol (**53**) is converted into its alkyl ether derivatives (**54**) and (**55**), by first generating the alkoxide anion with potassium hydride in N,N-dimethylformamide (DMF) or potassium hydroxide in dimethyl sulfoxide (DMSO) followed by addition of the appropriate alkyl bromide or iodide. The 16 β -(n-propyloxy) derivative

20 (**56**) is obtained from the precursor 16 β -(allyloxy) derivative (**55**) by catalytic hydrogenation.

25 The inhibitors described in Scheme 2 can be prepared as

30 follows. 16-Oxime (**B**) is converted into the 16 β -amine (**C**) by catalytic hydrogenation in the presence of a heterogeneous catalyst such as platinum oxide in aqueous acetic acid. Acylation of (**C**) is effected with the appropriate acid anhydride or acid chloride in the presence of an acid acceptor such as pyridine, triethylamine, and 4-dimethylaminopyridine

- 52 -

(DMAP). In this fashion are obtained Examples 6 and 7. Carbamates, such as (**59**) depicted in Scheme 3, are made by treatment of alcohol (**53**) with the appropriate isocyanate in the presence of an organic base, such as triethylamine, pyridine, and 4-dimethylaminopyridine.

5 The inhibitors described in Scheme 4 can be prepared as follows. The 16β -alcohol (**53**) is converted into the 16α -alcohol (**60**) by treatment with 4-nitro-benzoic acid in the presence of diethyl azadicarboxylate (DEAD) and triphenylphosphine to generate the intermediate 16α -(*p*-nitrobenzoate) ester (**D**) followed by hydrolysis in
10 aqueous base in an appropriate alcohol solvent. Alkylation of (**60**) is carried out in an analogous fashion as described above with alcohol (**53**) to yield the desired 16α -alkyl ethers, such as the 16α -methoxy derivative (Example 10) shown in Scheme 4.

15 The 7β -methyl inhibitors described in Scheme 5 are prepared in a similar manner as that described above for the examples in Scheme 1, but using instead as starting material, 4-aza-4, 7β -dimethyl-5 α -androstan-3,17-dione (**E**).

20 The 7β -methyl inhibitors described in Scheme 6 are prepared as follows. Compound (**71**) is prepared by treatment of alcohol (**63**) with t-butyl trichloroacetimidate in the presence of an organic sulfonic acid, such as trifluoromethanesulfonic acid. The 16β -aryloxy derivatives, such as Compounds **72-75**, are obtained by first generating the alkoxide anion from alcohol (**63**) with potassium or sodium hydride in tetrahydrofuran or N,N-dimethylformamide or potassium hydroxide in
25 dimethylsulfoxide and subsequent addition of the appropriately substituted fluorobenzene.

30 The 7β -methyl inhibitors described in Scheme 7 are prepared in a similar manner as that described above for the examples in Scheme 4, but using instead as starting material the 7β -methyl- 16β -ol intermediate (**63**). Inversion of configuration at the 16-position to form (**F**) is effected using a Mitsunobu-based transformation as shown in Scheme 7. O-Alkylation to generate 16α -ethers, such as (**77**), is performed as already described above.

- 53 -

The inhibitors described in Scheme 8 are prepared as follows. Addition of methylmagnesium bromide in tetrahydrofuran to either ketone (52) or (62) affords the corresponding 16 α -methyl-16 β -alcohol (78) or (79). O-Alkylation or O-arylation is then carried out as described in the previous Schemes to afford the 16 α -methyl-16 β -ether derivatives, Compounds (80) and (81).

The inhibitors described in Scheme 9 are prepared as follows. The 7 β -methyl-16 α -alcohol (76) is converted into the 16 β -thiol (H) by treatment with thiolacetic acid in the presence of diisopropyl azodicarboxylate (DIAD) and triphenylphosphine to give the intermediate 16 β -thioacetate (G), which is then hydrolyzed under basic conditions to yield thiol (H). Alkylation is effected by generating the mercaptide anion with sodium hydride or potassium hydride in tetrahydrofuran or N,N-dimethylformamide followed by addition of the appropriate alkyl halide. In this fashion are prepared Compounds 82-84. The corresponding sulfones, such as Compound 85, are obtained by treatment of the precursor thioethers (82-84) with an oxidizing agent, such as organic peracid or potassium peroxymonosulfate (OXONE), the latter in aqueous methanol.

The inhibitors described in Scheme 10 are prepared by the following synthetic pathways. The p-nitrophenoxy derivative (101) is reduced with Pd on carbon at room temperature in a H₂ atmosphere to yield the p-amino-phenoxy derivative (102). The amine is then acylated with acetyl chloride in methylene chloride in the presence of pyridine to yield the p-acetylaminophenoxy derivative (103), or likewise treated with benzoyl chloride to yield the corresponding p-benzoylamino analog (104). Alternately, the amino compound (102) is treated with tosyl chloride to yield the p-tosylamino analog (105).

The inhibitors described in Scheme 11 are prepared as follows. The N-2,4-dimethoxybenzyl protected 16-alcohol (106) is treated with p-fluorochlorobenzene and potassium hydride in dimethylformamide to yield the p-chlorophenoxy derivative (107), which is then treated with trifluoroacetic acid in methylene chloride to remove the N-2,4-dimethoxybenzyl protecting group to yield (108). This

- 54 -

is treated with hydrogen gas and a palladium on carbon catalyst in methanol to dechlorinate the phenyl ring to yield the phenoxy derivative (**109**). This compound is treated with methyl iodide and sodium hydride in dimethylformamide to methylate the ring nitrogen to yield (**112**).
5 Alternately, (**109**) is treated with DDQ and BSTFA in toluene to introduce a double bond at the 1-position to yield (**110**). Utilizing the same reduction reaction scheme, the 1,2-dihydro androstane (**108**) yields the p-chloroandrost-1-ene (**111**). This is then methylated at the 1-position by treatment with methyl iodide, sodium hydride in
10 dimethylformamide to yield (**113**).
The inhibitors described in Scheme 12 are prepared via similar reaction pathways as described in Scheme 11. The N-2,4-dimethoxybenzyl protected 16-alcohol (**106**) is treated with 4-methyl-3-chlorofluorobenzene and potassium hydride in dimethylformamide to
15 yield the 4-methyl-3-chlorophenoxy derivative (**114**), which is then treated with trifluoroacetic acid in methylene chloride to remove the N-2,4-dimethoxybenzyl protecting group to yield (**115**). This is treated with hydrogen gas and a palladium on carbon catalyst in methanol to dechlorinate the phenyl ring to yield the p-methylphenoxy derivative
20 (**116**). This compound is treated with methyl iodide and sodium hydride in dimethylformamide to methylate the ring nitrogen to yield (**118**). Alternately, (**116**) is treated with DDQ and BSTFA in toluene to introduce a double bond at the 1-position to yield (**117**).
The inhibitors in Scheme 13 are prepared as follows.
25 The starting 16-alcohol (**76**) is treated with methanesulfonic acid in pyridine containing DMAP to yield the mesylate (**119**). This in turn is treated with an appropriate thiophenol in anhydrous THF containing sodium hydride to yield the thiophenoxy (**120**), 4-chlorothiophenoxy (**121**), 4-fluorothiophenoxy (**122**), 4-methylthiophenoxy (**127**) and the 4-methoxy-thiophenoxy (**124**) derivatives. Treatment of the thiophenoxy
30 (**120**) derivative with m-chloroperbenzoic acid in methylene chloride at 0°C for one hour yields the phenylsulfinyl derivative (**125**). Treatment of the phenylsulfinyl compound (**125**) under the same reaction conditions

- 55 -

prolonged however for three hours, yields the phenylsulfonyl derivative (**126**).

The inhibitors for Scheme 14 are prepared as follows. The 16-ketone (**62**) is treated with an appropriate arylmethyl diethyl-phosphonate under Wittig conditions using sodium hydride in DMF at 80-100°C to yield the corresponding 4-chlorobenzylidene (**128**), benzylidene (**127**) and 4-methylbenzylidene (**129**) analogs. These are reduced in ethanol under a hydrogen atmosphere using a 5% rhodium on carbon catalyst to yield the corresponding 4-chlorobenzyl (**130**) and 4-methylbenzyl (**131**) derivatives. The 3-pyridyl-methyl (**132**) analog is made in the same two step manner.

- 56 -

SCHEME 1

- 57 -

SCHEME 2

SCHEME 3

5

- 58 -

SCHEME 4

- 59 -

SCHEME 5

- 60 -

SCHEME 5, CONTINUED

- 61 -

Scheme 6

- 62 -

SCHEME 7

- 63 -

SCHEME 7, CONTINUED

5

SCHEME 8

- 64 -

SCHEME 9

- 65 -

SCHEME 10

- 66 -

SCHEME 11

- 67 -

SCHEME 12

- 68 -

SCHEME 13

- 69 -

SCHEME 14

- 70 -

In another embodiment of this invention there is provided a combination method involving the use of a 5 α -reductase 1 and/or 2 inhibitor, in combination with a retinoid agent, including but not limited to, e.g., tretinoin (all-trans-retinoic acid, RETIN A) and isotretinoin (13-cis-retinoic acid, ACCUTANE), and at least one agent selected from: an antibacterial, an anti-inflammatory, and a keratolytic, or combination thereof, in the prevention of acne vulgaris by topical and/or systemic administration.

The activity of the compounds as selective 5 α -reductase 1 or 10 2 inhibitors, or dual inhibitors, can be determined by the following Biological assays:

BIOLOGICAL ASSAYS

15 Preparation of Human prostatic and scalp 5 α -reductases

Samples of human tissue were pulverized using a freezer mill and homogenized in 40 mM potassium phosphate, pH 6.5, 5 mM magnesium sulfate, 25 mM potassium chloride, 1 mM phenylmethyl-sulfonyl fluoride, 1 mM dithiothreitol (DTT) containing 0.25 M sucrose 20 using a Potter-Elvehjem homogenizer. A crude nuclear pellet was prepared by centrifugation of the homogenate at 1,500xg for 15 min. The crude nuclear pellet was washed two times and resuspended in two volumes of buffer. Glycerol was added to the resuspended pellet to a final concentration of 20%. The enzyme suspension was frozen in 25 aliquots at -80°C. The prostatic and scalp reductases were stable for at least 4 months when stored under these conditions.

Cloned enzyme protocol:

For IC₅₀ determinations, the test 5 α -reductase 1 and 2 30 inhibitors were dissolved in ethanol and serially diluted to the appropriate concentration. The baculovirus-expressed recombinant type 1 5 α -reductase was preincubated with inhibitor (0.1-1,000 nM) in 40 mM sodium phosphate, pH 7.0, 500 μ M NADPH, 1mM DTT and 1 mg/ml BSA for 18 h at 4°C. The reaction was initiated by the addition of [7-

- 71 -

$^3\text{H}\text{T}$ (NEN, 20 Ci/mmol) and NADPH to a final concentration of 0.3 μM and NADPH and incubated at 37°C for 90 min. Similarly, baculovirus-expressed type 2 5α -reductase was preincubated with inhibitor (1-10,000 nM) in 40 mM sodium citrate, pH 5.5, 500 μM

5 NADPH, 1mM DTT and 1 mg/ml BSA for 18 h at 4°C. The reaction was initiated by the addition of [7- $^3\text{H}\text{T}$] (NEN, 20 Ci/mmol) and NADPH to a final concentration of 0.3 μM and 500 μM , respectively. The conversion of T to DHT was monitored using a radioflow detector following separation by reverse phase HPLC (Whatman RACII C18 column,

10 1ml/min 0.1% TFA in water:methanol (42:58); retention times T, 6.3 min, DHT, 9.7 min).

5α -reductase assay

The reaction mixture for the type 1 5α -reductase contained

15 40 mM potassium phosphate, pH 6.5, 5 μM [7- $^3\text{H}\text{T}$]-testosterone, 1 mM dithiothreitol and 500 μM NADPH in a final volume of 100 μl . The reaction mixture for the type 2 5α -reductase contained 40 mM sodium citrate, pH 5.5, 0.3 μM [7- $^3\text{H}\text{T}$]-testosterone, 1 mM dithiothreitol and 500 μM NADPH in a final volume of 100 μl . Typically, the assay was

20 initiated by the addition of 50-100 μg prostatic homogenate or 75-200 μg scalp homogenate and incubated at 37°C. After 10-50 min the reaction was quenched by extraction with 250 μl of a mixture of 70% cyclohexane: 30% ethyl acetate containing 10 μg each DHT and T. The aqueous and organic layers were separated by centrifugation at 14,000 rpm in an Eppendorf microfuge. The organic layer was subjected to normal phase HPLC (10 cm Whatman partisil 5 silica column equilibrated in 1 ml/min 70% cyclohexane: 30% ethyl acetate; retention times: DHT, 6.8-7.2 min; androstanediol, 7.6-8.0 min; T, 9.1-9.7 min). The HPLC system consisted of a Waters Model 680 Gradient System

25 equipped with a Hitachi Model 655A autosampler, Applied Biosystems Model 757 variable UV detector, and a Radiomatic Model A120 radioactivity analyzer. The conversion of T to DHT was monitored using the radioactivity flow detector by mixing the HPLC effluent with one volume of Flo Scint 1 (Radiomatic). Under the conditions described, the

30

- 72 -

production of DHT was linear for at least 25 min. The only steroids observed with the human prostate and scalp preparations were T, DHT and androstanediol.

5 Inhibition studies

Compounds were dissolved in 100% ethanol. IC₅₀ values represent the concentration of inhibitor required to decrease enzyme activity to 50% of the control. IC₅₀ values were determined using a 6 point titration where the concentration of the inhibitor was varied from 10 0.1 to 1000 nM.

A compound referred to herein as a 5 α -reductase 1 inhibitor is a compound that shows inhibition of the 5 α -reductase 1 isozyme in the above-described assay, having an IC₅₀ value of about or under 600 nM.

15 A compound referred to herein as a 5 α -reductase 2 inhibitor is a compound that shows inhibition of the 5 α -reductase 2 isozyme in the above-described assay, having an IC₅₀ value of about or under 600 nM.

20 A compound referred to herein as a dual 5 α -reductase 1 and 2 inhibitor is a compound that shows inhibition of both the 5 α -reductase 1 and 2 isozymes in the above-described assay, having an IC₅₀ value for each of type 1 and type 2 of about or under 600 nM, and preferably 100 nm.

Fuzzy Rat Acne Model

25 Adult fuzzy rats are a variety of rat that has stunted hair growth, brown colored seborrhea covering their entire back skin and abnormally increased sebum production after puberty that has been demonstrated to be due to circulating androgens. 0.1, 0.05 and 0.025% solutions of a selected 5 α -reductase inhibitor of interest are prepared in a vehicle of propylene glycol, isopropanol, isopropyl myristate and water 30 (50/30/2/18%), and is topically applied onto the backs of adult male fuzzy rats, 0.2 ml per animal daily for 4 weeks. Controls receive the vehicle alone and 5 of them are castrated. After 2 weeks seborrhea will be dose-dependently depleted and after 4 weeks bromodeoxyuridine (BrdU, 200 mg/kg) is intraperitoneally injected 2 hours before sacrifice.

- 73 -

The skin tissues are incubated with EDTA (20 mM) in phosphate buffer, 1.5 hours at 37°C. The pilo-sebaceous unit attached to the epidermis is striped from the dermis and fixed with formalin for immuno-staining of BrdU. DNA synthesis cells showing a BrdU-positive nucleus are located
5 in the outer glandular border. The number of S-phase cells per lobe is determined with a micro-image apparatus. Using formalin fixed skin, frozen serial sections are stained with 1% osmium and the size of the lobes is measured. A positive inhibitor of skin 5 α -reductase will induce suppression of sebum production by inhibiting the rate of glandular cell
10 turnover, and showing reduced lobular size.

Representative compounds of Formulas I and II were tested in the above described inhibition assay for 5 α -reductase type 1 and type 2 inhibition. For the inhibition of 5 α -reductase type 1, the compounds have IC₅₀ values lower than 600 nM, with the majority of compounds in
15 general having IC₅₀ values ranging from about 0.3 nM to about 200 nM. For the inhibition of 5 α -reductase type 2, the same compounds have IC₅₀ values greater than about 155 nM, with the majority of compounds having IC₅₀ values greater than 1000 nM. The compounds in general have at least a 2-fold greater selectivity for inhibition of 5 α -reductase
20 type 1 over type 2, with the majority of the compounds having a 10-fold or greater selectivity for inhibition of 5 α -reductase type 1 over type 2. These results demonstrate the utility of the compounds of the instant invention for the treatment of hyperandrogenic conditions.

A compound referred to herein as a 5 α -reductase 1 inhibitor
25 is a compound that shows inhibition of the 5 α -reductase 1 isozyme in the above-described assay.

A compound referred to herein as a 5 α -reductase 2 inhibitor is a compound that shows inhibition of the 5 α -reductase 2 isozyme in the above-described assay.

30

While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various changes, modifications and substitutions can be made therein without departing from the spirit and scope of the

- 74 -

invention. For example, effective dosages other than the particular dosages as set forth herein above may be applicable as a consequence of variations in the responsiveness of the mammal being treated for any of the indications for the compounds of the invention indicated above.

5 Likewise, the specific pharmacological responses observed may vary according to and depending upon the particular active compound selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance
10 with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.

15 Retinoid agents useful in the invention include; tretinoin (all trans retinoic acid, RETIN A), isotretinoin (13-cis retinoic acid, ACCUTANE), vitamin A derivatives, and the like. Retinoid agents are primarily involved in decreasing sebum production.

20 Antibacterials useful in the instant invention are active against various bacteria which are associated with acne and include Gram-positive and Gram-negative classes of bacteria. One particular bacteria which is associated with acne is *Propionibacterium acne*.

25 The antibacterial can be selected from the classes of aminoglycosides, amphenicols, ansamycins, beta-lactams including carbapenems, cephalosporins, cephemycins, monobactams, oxacephems, penicillins; lincosamides, macrolides, polypeptides, tetracyclines, 2,4,- diaminopyrimidines, nitrofurans, quinolones, sulfonamides, sulfones, and other structural types.

30 Specific antibacterials which are non-limiting are listed in *The Merck Index, Eleventh Edition*, 1989, (published by Merck & Co. Inc.) and include the following:

Aminoglycosides:

amikacin, apramycin, arbekacin, bambermycins, butirosin, dibekacin, dihydrostreptomycin, fortimicin(s), gentamicin, isepamicin, kanamycin, micromycin, neomycin, neomycin undecylenate,

- 75 -

netilmicin, paromomycin, ribostamycin, sisomicin, spectinomycin,
streptomycin, streptonicozid, tobramycin

Amphenicols:

5 azidamfenicol, chloramphenicol, chloramphenicol palmitate,
chloramphenicol pantothenate, florfenicol, thiampenicol

Ansamycins:

rifamide, rifampin, rifamycin SV, rifaximin

10

Beta-Lactams:

Carbapenems:

imipenem

15

Cephalosporins:

cefaclor, cefadroxil, cefamandole, cefatrizine, cefazedone,
cefazolin, cefixime, cefmenoxime, cefodizime, cefonicid, cefoperazone,
ceforanide, cefotaxime, cefotiam, cefpimizole, cefpiramide, cefpodoxime
20 proxetil, cefroxadine, cefsulodin, ceftazidime, cefteram, ceftezole,
ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuzonam, cephacetrile
sodium, cephalexin, cephaloglycin, cephaloridine, cephalosporin C,
cephalothin, cephapirin sodium, cephadrine, pivcefalexin

25

Cephamycins:

cefbuperazone, cefmetazole, cefminox, cefotetan, cefoxitin

Monbactams:

aztreonam, carumonam, tigemonam

30

Oxacephems:

flomoxef, moxolactam

- 76 -

Penicillins:

amidinocillin, amidinocillin pivoxil, amoxicillin, ampicillin,
apalcillin, aspoxicillin, azidocillin, azlocillin, bacampicillin,
benzylpenicillanic acid, benzylpenicillin sodium, carbenicillin, carfecillin
5 sodium, carindacillin, clometocillin, cloxacillin, cyclacillin, dicloxacillin,
diphenicillin sodium, epicillin, fenbenicillin, floxacillin, hetacillin,
lenampicillin, metampicillin, methicillin sodium, mezlocillin, nafcillin
sodium, oxacillin, penamecillin, penethamate hydriodide, penicillin G
benethamine, penicillin G benzathine, penicillin G benzhydrylamine,
10 penicillin G calcium, penicillin G hydrabamine, penicillin G potassium,
penicillin G procaine, penicillin N, penicillin O, penicillin V, penicillin V
benzathine, penicillin V hydrabamine, penimepicycline, phenethicillin
potassium, piperacillin, pivampicillin, propicillin, quinacillin,
sulbenicillin, talampicillin, temocillin, ticarcillin
15

Lincosamides:

clindamycin, lincomycin

Macrolides:

20 azithromycin, carbomycin, clarithromycin, erythromycin,
erythromycin acistrate, erythromycin estolate, erythromycin
glucoheptonate, erythromycin lactobionate, erythromycin propionate,
erythromycin stearate, josamycin, leucomycins, midecamycins,
miokamycin, oleandomycin, primycin, rokitamycin, rosaramycin,
25 roxithromycin, spiramycin, troleandomycin

Polypeptides:

amphomycin, bacitracin, capreomycin, colistin, enduracidin,
enviomycin, fusafungine, gramicidin(s), gramicidin S, mikamycin,
30 polymyxin, polymyxin B-methanesulfonic acid, pristinamycin, ristocetin,
teicoplanin, thiostrepton, tuberactinomycin, tyrocidine, tyrothricin,
vancomycin, viomycin, viomycin pantothenate, virginiamycin, zinc
bacitracin

- 77 -

Tetracyclines:

 apicycline, chlortetracycline, clomocycline, demeclocycline,
 doxycycline, guamecycline, lymecycline, mecloxycline, methacycline,
 minocycline, oxytetracycline, penimepicycline, pipacycline,

5 rolitetracycline, sancycline, senociclin, tetracycline

2,4-Diaminopyrimidines:

 brodimoprim, tetroxoprim, trimethoprim

10 Nitrofurans:

 furaltadone, furazolium chloride, nifuradene, nifuratel,
 nifurfoline, nifurpirinol, nifurprazine, nifurtoinol, nitrofurantoin

Quinolones:

15 amifloxacin, cinoxacin, ciprofloxacin, difloxacin, enoxacin,
 fleroxacin, flumequine, lomefloxacin, miloxacin, nalidixic acid,
 norfloxacin, ofloxacin, oxolinic acid, pefloxacin, pipemidic acid,
 piromidic acid, rosroxacin, temafloxacin, tosufloxacin, OPC 7251(Otsuka)
 a fluoroquinolone

20

Sulfonamides:

 acetyl sulfamethoxypyrazine, acetyl sulfisoxazole,
 azosulfamide, benzylsulfamide, chloramine-B, chloramine-T,
 dichloramine-T, formosulfathiazole, N-formylsulfisomidine, N-beta-D-
25 glucosylsulfanilamide, mafenide, 4'-(methylsulfamoyl)sulfanilanilide, p-
 nitrosulfathiazole, noprylsulfamide, phthalylsulfacetamide,
 phthalylsulfathiazole, salazosulfadimidine, succinylsulfathiazole,
 sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfachrysoidine,
 sulfacytine, sulfadiazine, sulfadicramide, sulfadimethoxine, sulfadoxine,
30 sulfaethidole, sulfaguanidine, sulfaguanol, sulfalene, sulfaloxic acid,
 sulfamerazine, sulfamereter, sulfamethazine, sulfamethizole,
 sulfamethomidine, sulfamethoxazole, sulfamethoxypyridazine,
 sulfametrole, sulfamidochrysoidine, sulfamoxole, sulfanilamide,
 sulfanilamidomethanesulfonic acid triethanolamine salt, 4-

- 78 -

sulfanilamidosalicylic acid, N-sulfanilylsulfanilamide, sulfanilylurea, N-sulfanilyl-3,4-xylamide, sulfanitran, sulfaperine, sulfaphenazole,
sulfaproxyline, sulfapyrazine, sulfapyridine, sulfasomizole,
sulfasymazine, sulfathiazole, sulfathiourea, sulfatolamide, sulfisomidine,
5 sulfisoxazole

Sulfones:

acedapsone, acediasulfone, acetosulfone sodium, dapsone,
diathymosulfone, glucosulfone sodium, solasulfone, succisulfone,
10 sulfanilic acid, p-sulfanilylbenzylamine, p,p'-sulfonyldianiline-N,N'-
digalactoside, sulfoxone sodium, thiazolsulfone

Others:

cycloserine, mupirocin, tuberin, clofoctol, hexidine,
15 methenamine, methenamine anhydromethylene-citrate, methenamine
hippurate, methenamine mandelate, methenamine sulfosalicylate,
nitroxoline, xibornol and benzoyl peroxide.

Very useful antibacterials in the invention method are the following: clindamycin, erythromycin, teracycline, benzoyl peroxide
20 mecloxycline, chloramphenicol, neomycin, metronidazole, and OPC 7251 (Otsuka).

Keratolytic agents useful in the instant invention in some instances are active as bactericidal agents that can be used for the treatment of mild acne, e.g., salicylic acid. By the term "keratolytic agent" as used herein is meant a compound that displays properties of a keratolytic and can in some instances also display properties of an antibacterial, e.g., benzoyl peroxide. Keratolytics act by improving inflammatory and/or noninflammatory acne lesions by reducing the population of *P. acnes* and facilitating a decrease in hyperkeratosis.
25
30

Specific keratolytics which are non-limiting are listed in The Merck Index, Eleventh Edition, 1989, (published by Merck & Co. Inc.) and include the following: algestone acetophenide, azelaic acid, cyoctl,

- 79 -

dichloroacetic acid, metronidazole, motretinide, resorcinol, salicylic acid, sulfur, tetroquinone, and alpha-hydroxy acids including glycolic acid.

Very useful keratolytics in the invention method are the following: azelaic acid, salicylic acid, and glycolic acid.

5 Anti-inflammatories useful in the instant invention are active against inflammation caused by various bacteria which are associated with acne and include Gram-positive and Gram-negative classes of bacteria. One particular bacteria which is associated with acne is *Propionibacterium acne*.

10 The anti-inflammatory can be steroidal or non-steroidal. The non-steroidal anti-inflammatory can be selected from the classes of aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, 15 thiazinecarboxamides, and other structural types.

Specific non-steroidal anti-inflammatories which are non-limiting are listed in The Merck Index, Eleventh Edition, 1989, (published by Merck & Co. Inc.) and include the following:

20 Aminoarylcarboxylic acid derivatives:

enfenamic acid, etofenamate, flufenamic acid, isonixin, meclofenamic acid, mefenamic acid, niflumic acid, talniflumate, terofenamate, tolfenamic acid

25 Arylacetic acid derivatives:

acetometacin, alclofenac, amfenac, bufexamac, cinmetacin, clopirac, diclofenac sodium, etodolac, felbinac, fenclofenac, fenclorac, fenclozic acid, fentiazac, glucametacin, ibufenac, indomethacin, isofezolac, isoxepac, lonazolac, metiazinic acid, oxametacine, 30 proglumetacin, sulindac, tiaramide, tolmetin, zomepirac

Arylbutyric acid derivatives:

bumadizon, butibufen, fenbufen, xenbucin

- 80 -

Arylcarboxylic acids:

clidanac, ketorolac, tinordidine

Arylpropionic acid derivatives:

5 alminoprofen, benoxaprofen, bucloxic acid, carprofen,
fenoprofen, flunoxaprofen, flurbiprofen, ibuprofen, ibuproxam,
indoprofen, ketoprofen, loxoprofen, miroprofen, naproxen, oxaprozin,
piketoprofen, pirprofen, pranoprofen, protizinic acid, suprofen,
tiaprofenic acid

10

Pyrazoles:

difenamizole, epirizole

Pyrazolones:

15 apazone, benzpiperylon, feprazone, mofebutazone,
morazone, oxyphenbutazone, phenylbutazone, pipebuzone,
propyphenazone, ramifеназоне, сукибузоне, thiazolinobutazone

Salicylic acid derivatives:

20 acetaminosalol, aspirin, benorylate, bromosaligenin, calcium
acetylsalicylate, diflunisal, etersalate, fendosal, gentisic acid, glycol
salicylate, imidazole salicylate, lysine acetylsalicylate, mesalamine,
morpholine salicylate, 1-naphthyl salicylate, olsalazine, parsalmide,
phenyl acetylsalicylate, phenyl salicylate, salacetamide, salicylamide O-
25 acetic acid, salicylsulfuric acid, salsalate, sulfasalazine

Thiazinecarboxamide derivatives:

droxicam, isoxicam, piroxicam, tenoxicam

30 Other Structural Types:

epsilon-acetamidocaproic acid, S-adenosylmethionine, 3-
amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine,
bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone,

- 81 -

nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, tenidap

Specific steroidal anti-inflammatories are listed in The
5 Merck Index, Eleventh Edition, 1989, (published by Merck & Co. Inc.)
and include the following:

Glucocorticoids:

21-acetoxypregnolone, alclometasone, algestone,
10 amcinonide, beclomethasone, betamethasone, budesonide,
chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol,
corticosterone, cortisone, cortivazol, deflazacort, desonide,
desoximetasone, dexamethasone, diflorasone, diflucortolone,
defluprednate, enoxolone, fluazacort, flucoronide, flumethasone,
15 flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl,
fluocortolone flujorometholone, fluperolone acetate, fluprednidene acetate,
fluprednisolone, flurandrenolide, formocortal, halcinonide, halometasone,
halopredone acetate, hydrocortamate, hydrocortisone, hydrocortisone
acetate, hydrocortisone phosphate, hydrocortisone 21-sodium succinate,
20 hydrocortisone tebutate, maziprednone, medrysone, meprednisone,
methylprednisonole, mometasone furoate, paramethasone prednicarbate,
prednisolone, prednisolone 21-diethylaminoacetate, prednisolone sodium
phosphate, prednisolone sodium succinate, prednisolone sodium 21-m-
sulfobenzoate, prednisolone 21-stearoylglycolate, prednisolone tebutate,
25 prednisolone 21-trimethylacetate, prednisone, prednival, prednylidene,
prednylidene 21-diethylaminoacetate, tixocotrol, triamcinolone,
triamcinolone acetonide, triamcinolone benetonide, triamcinolone
hexacetonide.

Very useful anti-inflammatories in the invention method are
30 the following: glucocorticoids, including prednisone, prednisolone and the
like.

The 5 alpha reductase 1 or 2 inhibitor, or mixture thereof,
retinoid agent, anti-inflammatory, keratolytic and anti-inflammatory can
each be administered orally, systemically or topically, as separate or

- 82 -

concurrent dosage forms, or together as one formulation. A useful protocol is the use of the anti-inflammatory, keratolytic and antibacterial topically and the use of the 5 alpha reductase 1 and/or 2 inhibitor orally. For combination treatment where the combination agents are in separate 5 dosage formulations, they can be administered concomitantly, or they each can be administered separately at staggered times.

For example, a compound of Formula I, e.g., 4,7-beta-dimethyl-4-aza-5-alpha-cholestan-3-one, and retinoid, i.e., tretinoin, can be administered together in a single topical dosage formulation, or each 10 active agent can be separately administered in a particular dosage formulation, e.g., as a separate oral (5 α -reductase inhibitor) and topical (retinoid) dosage formulations, or a topical dosage formulation of the retinoid in combination with an oral dosage formulation of a compound of Formula I. See, e.g., U.S. Patent No.'s 4,377,584 and 4,760,071 which 15 describe dosages and formulations for 5 α -reductase inhibitors.

One useful combination is tretinoin, erythromycin and a 5 α -reductase 1 inhibitor, e.g., 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane.

In the methods described above, the daily dosage of the 5 20 alpha reductase 1 inhibitor compounds of Formula I and II may be varied over a wide range from 0.1 mg to 1,000 mg per adult human/per day. An effective amount of one of the novel compounds of this invention is ordinarily from about 0.002 mgs/kg to 50 mgs./kg of body weight per day, and more particularly the range is from about 0.01 mgs/kg to 7 25 mgs/kg of body weight per day.

The daily dosage of the tretinoin is topically administered in a 0.025% to 0.1% by weight cream or gel.

The daily dosage of the isotretinoin is systemically from about 0.01 mg/kg to 2 mg/kg per adult human/per day.

30 The daily dosage of the keratolytic is topically administered in a 0.025% to 0.1% by weight cream or gel.

The daily dosage of the antibacterial systemically is from about one mg to 2000 mg per adult human/per day, and more particularly from about 200 mg to 1000 mg per adult human/per day. The daily

- 83 -

amount of antibacterial is from 1 mgs/kg to 50 mgs/kg of human body weight daily.

The daily dosage of the anti-inflammatory topically or systemically is from about 0.01 mg to 2000 mg per adult human/per day.

5 and more particularly from about one mg to 1000 mg per adult human/per day. The daily amount of anti-inflammatory is from 0.02 mgs/kg to 40 mgs/kg of human body weight daily.

For mild to moderate acne, topical daily therapy is generally indicated to avoid the side effects of the more rigorous systemic therapy

10 with its attendant side effects. For moderate to severe acne, systemic therapy is generally used, which can also be combined with topical therapy, where warranted. Duration of therapy, depending on the severity, can last for 3-6 months, and in some cases, for several years.

Advantageously, the combination of the present invention

15 may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. The combination for the present invention can also be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well

20 known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

For the treatment of acne vulgaris, the compounds of the

25 instant invention can also be combined with a therapeutically effective amount of a 5 α -reductase 2 inhibitor, such as finasteride, in a single oral, systemic, or parenteral pharmaceutical dosage formulation. Also, for the skin and scalp related disorders of acne vulgaris, the compounds of the instant invention and a 5 α -reductase 2 inhibitor can be formulated for

30 topical administration. Alternatively, a combined therapy can be employed wherein the compound of Formula I and the 5 α -reductase 2 inhibitor are administered in separate oral, systemic, parenteral or topical dosage formulations. For example, a compound of Formula I and finasteride can be administered in a single oral or topical dosage

- 84 -

formulation, or each active agent can be administered in a separate dosage formulation, e.g., in separate oral dosage formulations, or an oral dosage formulation of finasteride in combination with a topical dosage formulation of a compound of Formula I. See, e.g., U.S. Patent No.'s 5 4,377,584 and 4,760,071 which describe dosages and formulations for 5 α -reductase inhibitors. Where the active agents are in separate dosage formulations, they can be administered concomitantly, or they each can be administered at separately staggered times.

Other 5 α -reductase 2 inhibitors, both steroidal and non-10 steroidal, which can be employed in the instant invention include (listed by company of development and publications/patents containing the pertinent disclosure):

STEROIDAL:

15 SmithKline Beecham (SKB) -Epristeride (SK&F 105657) described in PCT applications: WO91/13550, WO 93/19758; 4-aza-unsat'd-steroid-17-acyl derivatives which are described in WO 94/00121; 17-acyl-3-carboxyestranes which are described in WO 94/00125; 17-(ar)alkylacyl 20 analogs as dual inhibitors and described in WO94/11386; 17 α -acyl-3-carboxysteroids which are described in WO 94/11385;

25 Sankyo - Japanese Patent J05/170789, which describes 11-oxygenated 4-aza-17-(benzhydrylcarbamoyl) steroids; J05/213987, which describes B-noranalogs; EP 0484094 which discloses 17-N-(benzhydryl; benzyl carbamoyl) analogs as SKB type inhibitors;

30 Glaxo - WO93/13124 and US 5,528,589 which describe 4,6-cyclo-6-aza derivatives; WO 94/14833, which describes 6-aza-17-aryl X compounds, including e.g., anilides;

35 Farmitalia -Turosteride, US 5,155,107 contains the azasteroid disclosure and WO 92/20700 discloses SKB analogs; WO 94/03475 discloses fluorinated amide side-chains; WO 94/03474 and WO 94/03476 disclose 17-carboxamides of α -aminoketones and fluorinated acyl ureas; Great

- 85 -

Britain Patent 2,273,096 describes azasteroidal 16,17-piperidinone derivatives;

5 Ciba-Geigy - EP 0538192, which discloses 4-azasteroidal 17-acyls with cyano substitution;

Richter Gedeon - WO 94/07909, which discloses piperidino/pyrrolidino 4azasteroidal 17carboxamides;

10 Merrill-Dow - US 5,143,909, US 5,120,840 and US 5,130,424, which disclose 4-amino-3-oxo-4-ene steroids; EP 435321, which discloses A-nor-3-carboxysteroids;

NON-STEROIDAL:

15 Fujisawa - J05/178856, which discloses indolidine-butyric acids; WO 93/05019, which discloses 3,4-disubstd indole derivatives; EP 0519353, which discloses indolizines; WO 93/16996, which discloses 1,3-disubstituted indoles;

20 Ono - J05140062,which discloses nitro substituents on oxybutric bearing ring;

25 Kyowa Hakko Kogyo KK - EP 511477, which discloses a 5-substituted indole on an Ono like structure, particularly KF-18678 (Also described by T. Kumazawa, Pharmac. Soc. Japan, 114th Mtg, Abstract 30);

Pfizer - WO 93/02050, which discloses 1,3-disubstituted indole Ono-Fujisawa type compounds;

30 Yamanouchi - WO 13828, which discloses Ono-like compounds with reversed amide linkages; WO 93/24442 and JP 05331059 which disclose p-substituted benzoic acids;

- 86 -

Mitsubishi Kasei - EP 579223, which discloses benzamide derivatives of 1-amino-6-carboxydecalines; JP 06025211, which discloses flavone-2-benzoic acids; JP 06025277, which discloses 16-ring dilactone tetraenes (Snow Brand Milk Prod Co Ltd.);

5

Lilly - EP 0532190, 0591582, 0591583) which disclose azaphenanthrenes;

Indena SpA - Extracts of Curcubita seeds disclosed in FR2698791.

10

The dosage regimen utilizing the compounds of the present invention is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound thereof employed. A physician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter, arrest or reverse the progress of the condition. Optimal precision in achieving concentration of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug.

In the methods of the present invention, the combination of 5 alpha reductase 1 and/or 2 inhibitor, a retinoid, e.g., tretionoin/isotretinoin, antibacterial, keratolytic and anti-inflammatory, herein described in detail, are typically administered in admixture with suitable pharmaceutical diluents, excipients or carriers (collectively referred to herein as "carrier" materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

Oral administration can be conducted in the form of a tablet or capsule, the combination drug components can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol,

- 87 -

glycerol, water and the like. Capsules containing the combination agents of this invention can be prepared by mixing combination agents of the present invention with lactose and magnesium stearate, calcium stearate, starch, talc, or other carriers, and placing the mixture in gelatin capsule.

5 Tablets may be prepared by mixing the combination ingredients with conventional tabletting ingredients such as calcium phosphate, lactose, corn starch or magnesium stearate. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture. Suitable binders include

10 starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate,

15 sodium chloride and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like. The oral compositions can be provided in the form of scored or unscored tablets containing 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, and 100.0 milligrams of the active ingredients, the 5 alpha reductase 1 inhibitor,

20 tretinoin/isotretinoin, anti-inflammatory, keratolytic, antibacterial, for the symptomatic adjustment of the dosage to the patient to be treated.

Topical pharmaceutical compositions may be, e.g., in the form of a solution, cream, ointment, gel, lotion, shampoo or aerosol formulation adapted for application to the skin. Topical pharmaceutical compositions useful in the method of treatment of the present invention may include about 0.001% to 15% by weight each of 5 alpha reductase 1 inhibitor compound, anti-inflammatory, keratolytic, antibacterial in admixture with a pharmaceutically acceptable carrier. Topical preparations containing the combination active drug components can be admixed with a variety of carrier materials well known in the art, such as, e.g., alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, PPG2 myristyl propionate, and the like, to form, e.g., alcoholic solutions, topical cleansers, cleansing creams, skin gels, skin

- 88 -

lotions, and shampoos in cream or gel formulations. See, e.g., EP 0 285 382.

Liquid forms of the combination can also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous, 5 topical with or without occlusion, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts. The liquid forms can contain suitably flavored suspending or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methyl-cellulose and the like. Other dispersing agents which may 10 be employed include glycerin and the like. For parenteral administration, sterile suspensions and solutions are desired. Isotonic preparations which generally contain suitable preservatives are employed when intravenous administration is desired.

The combination agents of the present invention can also be 15 administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.

Compounds of Structures I and II, of the present invention, 20 can also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled. The compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinyl-pyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidephenol, 25 polyhydroxyethylaspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyortho-esters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amphipathic block copolymers of hydrogels.

The following examples are provided to further illustrate details for the preparation of the compounds of the present invention. The examples are not intended to be limitations on the scope of the

- 89 -

instant invention in any way, and they should not be so construed. Furthermore, the compounds described in the following examples are not to be construed as forming the only genus that is considered as the invention, and any combination of the compounds or their moieties may 5 itself form a genus. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds. All temperatures are in degrees Celsius unless noted otherwise.

10 The Rf values cited were carried out on standard thin layer chromatographic Si gel plates. The elution solvent system used is given in the parentheses following the Rf value.

15 The fast atom bombardment (FAB) mass spectral values are reported as (M+1) molecular ion peaks, being the molecular weight plus one atomic mass unit. The electron impact (EI) mass spectrum values are reported as molecular ion peaks and are indicated in parentheses, either being (M) or (M+2), the molecular weight, MW, or the MW plus two atomic units.

20 The nuclear magnetic resonance data was taken at 400 MHz in CDCl₃ and is tabulated for unique proton values of each compound at the end of the Examples. The coupling constant J is given in Hertz, Hz.

EXAMPLE 1

Synthesis of 7-Oxo-Cholesterol-3-acetate, (1)

25 Cholesteryl acetate (CA) is known in the art and can be oxidized to the known 7-oxo-derivative 1 by the analogous procedure described in the JCS Perkins article by Pearson, "supra".

EXAMPLE 2

30

Synthesis of 7-Ethyl-7-Hydroxy-cholesterol, (2)

To a solution of 1 from Example 1, being 5.0 g (11.32 mmol) in dry tetrahydrofuran at 0°C was added dropwise 56.6 ml ethyl magnesium bromide (1M) over 5-10 minutes. The reaction mixture was

- 90 -

then allowed to stir at room temperature for 24 hours, then poured into saturated aqueous ammonium chloride. The THF solvent was removed under vacuum and the aqueous phase extracted with ethyl acetate. The organic layer was washed with brine, dried, concentrated to yield a
5 yellowish-white foam. The Rf value was 0.2 (30% EtOAc/hexane). Proton NMR confirmed the assigned structure of the title compound 2 which was used in the next step without further purification.

EXAMPLE 3

10

Synthesis of 7-Ethyl-Cholest-4,6-Dien-3-one, (3)

The above Grignard product 2, 5.13 g (11.9 mmol) was dissolved in 50 ml toluene and cyclohexanone and about 40 ml of solvent distilled off under vacuum. To this was added 7.2 g aluminum
15 isopropoxide and the reaction mixture refluxed overnight for 15 hours. The mixture was cooled, diluted with ethyl acetate, washed with sodium potassium tartarate, brine, and the organic layer was concentrated under vacuum and the residue steam distilled. The residue was extracted with ethyl acetate, the ethyl acetate layer, washed with brine, dried and
20 purified by column chromatography on silica gel, eluting with 5% EtOAc/hexane to yield the title compound 3. Rf=0.58 (20% EtOAc/hexane). Mass spec: 412(M=1) by FAB, Calc'd. 411.9.

EXAMPLE 4

25

Synthesis of 7 β -ethyl-cholest-5-en-3-one, (4)

To a solution of 3.1 g of 3, from Example 3, in 46 ml ammonia, 10 ml THF, 10 milliliters toluene, was added 449 mg of metallic lithium in small pieces. After stirring the blue solution for 2
30 hours at -78°C, a solution of 1,2-dibromomethane in 2 ml THF was added. After stirring the solution at -78°C for 10 minutes, 2.1 g of ammonium chloride was added and the mixture stirred for 10 minutes. The excess ammonia was removed by evaporation under a nitrogen stream. The reaction mixture was diluted with brine, extracted with ethyl acetate. The

- 91 -

organic layer was washed with brine, dried and concentrated to yield crude brown viscous liquid 4 which was used as such in Example 5. Rf=0.70 (20% EtOAc/hexane). Mass Spec. 412 (EI); calculated MW 412.70.

5

EXAMPLE 5

Synthesis of 7 β -ethyl-cholest-4-en-3-one, (5)

To a solution of 4, from Example 4, being 3.1 g in 30 ml

10 THF was added 1.1 ml DBU (1,8-diazabicyclo[5.4.0]undec-7-ene under nitrogen with stirring. The mixture was refluxed for 1.5 hours, then cooled and diluted with NH4Cl. Then THF solvent was removed under vacuum and the residue extracted with ethyl acetate. The organic layer was then washed with water, brine, dried and concentrated under reduced pressure to yield a crude viscous oil. The titled product 5 was purified by

15 chromatography on silica gel using 10% EtOAc/hexane as eluant. Mass Spec 412 (EI), calc'd MW 412.70. Rf=0.6 (20% EtOAc/hexane).

EXAMPLE 6

20

Synthesis of 7-ethyl-17 β -(6-methyl-2-heptyl)-5-oxo-A-nor-3,5-secoandrostan-3-oic acid, (6)

To a solution of 1.0 g of 5 in 18 ml t-butyl alcohol at 80°C

was added 300 mg sodium carbonate in 1.8 ml water followed by a

25 dropwise addition over 15-20 minutes of a mixture of 2.74 g sodium periodate with 20.3 mg potassium permanganate in 15 ml water. The reaction mixture was heated at 80°C for 2 hours, cooled, filtered, the residue washed with water, and then the filtrate concentrated under vacuum, acidified with aqueous HCl, extracted with ethyl acetate and the

30 organic layer washed with aqueous NaHSO3, brine, dried and concentrated to yield crude 6. The proton NMR confirmed the assigned structure. Fast atom bombardment yielded an m/z molecular ion of 434(m+2); calculated 432.69.

- 92 -

EXAMPLE 7

Synthesis of 7-Ethyl-4-methyl-4-aza-cholest-5-en-3-one, (7)

To a solution of 6, 500 mg in 10 ml ethylene glycol was
5 added 1.3 g sodium acetate and 1.0 g methylamine hydrochloride. After
stirring the reaction mixture 4 hours at 180°C, the mixture was cooled,
diluted with water, extracted with ethyl acetate, dried and concentrated to
afford crude title compound 7. Proton NMR confirmed the assigned
structure. R_f=0.70 (20% EtOAc/hexane).
10 Mass Spectral m/z ion (FAB) showed 429
(M+2), calculated, 427.72.
Analysis: Calc. for C₂₉H₄₉ NO
Calcd: C, 81.44; H, 11.55; N, 3.27
Found: C, 82.19; H, 10.92; N, 3.11
15

EXAMPLE 8

Synthesis of 7-Ethyl-4-methyl-4-Aza-Cholestan-3-one, (8)

To a solution of 7 from Example 7, being 180 mg in 5 ml
20 acetic acid was added 54 mg platinum dioxide and the resulting mixture
was evacuated and flushed with hydrogen. The reaction was shaken
overnight at room temperature under hydrogen. Filtered, washed solid
with EtOAc, combined EtOAc layers were washed with aqueous
NaHCO₃, brine, dried, concentrated to yield the title compound 8.
25 Mass spectral analysis by FAB yielded m/z ion of 431 (m+2), calculated
429.74.
Analysis for C₂₉ H₅₁ NO
Calcd: C, 81.06; H, 11.96, N, 3.26
Found: C, 81.42; H, 12.24; N, 3.16
30

- 93 -

EXAMPLE 9

Synthesis of 7-Ethyl-4-Aza-Cholest-5-en-3-one, (9)

The seco acid 6, 0.5 g. and ammonium acetate, 0.5 g, in 3.5 ml acetic acid were refluxed for 3 hours. The reaction mixture was cooled, water added and then extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated to yield a residue which was eluted on a silica gel column with 10% EtOAc/hexane to give pure title compound 9, mp. 147-149°C.

Mass Spec. 414 (M⁺). Calc'd; 413.69.
R_f=0.45 (30% EtOAc/hexane).
Analysis for C₂₈H₄₉NO, MW 413.69
Calcd: C, 81.30; H, 11.45; N, 3.39
Found: C, 81.30; H, 11.87; N, 3.45

15

EXAMPLE 10

Synthesis of 7β-Ethyl-4-aza-5α-cholestan-3-one, (10)

Following the general analogous procedure described in Example 8, 9 was catalytically hydrogenated to yield the titled compound, 10. Chromatography on silica gel with 50% EtOAc:hexane eluant yielded pure product, mp. 169-170°C.
Analysis for C₂₈H₄₉NO, MW=415.17.
Calcd: C; 80.90; H, 11.88; N, 3.37
Found: C; 81.02; H, 12.57; N, 3.47
Mass Spec.: 416 (M⁺)
R_f=0.30 (30% EtOAc/hexane).

EXAMPLE 11

30

Synthesis of 7-Allyl-3,7-dihydroxy-cholest-5-ene, (11)

Following the analogous general Grignard procedure of Example 2, allyl magnesium bromide was reacted with Compound 1 in

- 94 -

dry THF to yield the titled product 11. Proton NMR confirmed the assigned structure.

Mass Spec. 441 (M+1). Calc'd. 440.71.

Rf=0.25 (30% EtOAc/hexane).

5

EXAMPLE 12

Synthesis of 7-allyl-cholest-4,6-dien-3-one, (12)

Following the analogous general Oppenauer oxidation procedure of Example 3, compound 11 was oxidized to yield the titled compound 12. Proton NMR confirmed the assigned structure as well the (FAB) mass spec. 423 (M+1) Calc'd. 422.35.
Rf=0.78 (30% EtOAc/hexane).

15

EXAMPLE 13

Synthesis of 7-Allyl-cholest-5-en-3-one, (13)

Compound 12, was subjected to the analogous metal-ammonia reduction conditions of Example 4 to yield the title compound 13.
Rf=0.5 (5% EtOAc/hexane).

EXAMPLE 14

25 Synthesis of 7-Allyl-Cholest-4-en-3-one, (14)

Following the general DBU catalyzed isomerization conditions of Example 5, compound 13 was analogously treated to yield the title compound 14.

Mass Spec. 425 (M+1) by FAB. Calc'd.: 424.37

30 Rf=0.45 (5% EtOAc/hexane).

- 95 -

EXAMPLE 15

Synthesis of 7-Propyl-cholest-4-en-3-one, (18)

1.0 g of the 7-allyl-enone 14, 5 ml EtOAc and 50 mg 5 triphenylphosphine rhodium chloride (Wilkinson's catalyst) were allowed to stir two hours (under H₂ atmosphere). The reaction products were filtered through 25 ml silica gel, and evaporated to dryness to yield fairly pure title product, 18, as confirmed by proton NMR.
Mass Spec. 427 (M+1) Calc'd.: 426.39
10 Rf=0.15 (5% EtOAc/hexane).

EXAMPLE 16

Synthesis of 7-Propyl-5-oxo-A-nor-3,5-seco-cholestanoic acid, (19)

15 Following the general procedure of Example 6 for the oxidative Ring A cleavage, compound 18 (7-propyl analogue) was analogously treated to yield the above-titled seco-acid 19. The assigned structure was confirmed by proton NMR.
Mass Spec.: 447 (M+1) (FAB) Calc'd.: 446.38
20 Rf=0.1 (20% EtOAc/hexane).

EXAMPLE 17

Synthesis of 7-Propyl-4-methyl-4-aza-cholest-5-en-3-one, (20)

25 Following the general procedure of Example 7, compound 19, was analogously treated with methylamine hydrochloride and sodium acetate in ethylene glycol to yield the above-titled liquid product 20. The assigned structure was confirmed by proton NMR.
Mass Spec. 442 (M+1) (FAB), Calc'd.: 441.74 C,H,N
30 analysis for C H N O as 0.2 H₂O, MW=441.74;
Calcd: C, 80.91; H, 11.63; N, 3.15
Found: C, 81.00; H, 12.06; N, 2.93
Rf=0.3 (20% EtOAc/hexane).

- 96 -

EXAMPLE 18

Synthesis of 7-Propyl-4-methyl-4-aza-5 α -cholestan-3-one, (21)

Following the analogous general procedure of Example 8,
5 compound 20 was catalytically hydrogenated in HOAc to yield the title
liquid compound 21. Proton NMR confirmed the assigned structure.
Mass spec. 444 (M+1) (FAB), C,H,N analysis for C H N;
Calcd: C, 81.19; H, 12.05; N, 3.16 MW=443.41.
Found: C, 80.78; H, 12.06; N, 3.22
10 Rf=0.17 (20% EtOAc/hexane).

EXAMPLE 19

Synthesis of 7-Propyl-4-aza-cholest-5-en-3-one, (22)

15 Following the analogous procedure of Example 9,
compound 19 was treated with ammonium acetate in acetic acid to yield
the titled compound, 22. Recrystallized from EtOAc/Et₂O to yield a
white crystalline solid, mp. 91-94°C, C,H,N analysis as the 0.25 H₂O
hydrate: Calc'd MW 427.39
20 Calcd: C, 80.59; H, 11.54; N, 3.24
Found: C, 80.59; H, 11.69; N, 3.36
Mass Spec. 428 (M+1).

EXAMPLE 20

25

Synthesis of 7-Propyl-4-aza-5 α -cholestan-3-one, (23)

Following the analogous procedure described in Example 8,
compound 22 was catalytically hydrogenated to yield the title compound
23, mp. 65-68°C.
30 Analysis for C,H,N, calc'd as 0.25 H₂O hydrate:
Calcd: C, 80.21; H, 11.95; N, 3.23
Found: C, 80.20; H, 12.14; N, 3.07
Mass Spec. = 430 (M+1) calc'd MW 429.40.
Rf=0.12 (20% EtOAc/hexane).

- 97 -

EXAMPLE 21

Synthesis of 7-Methyl-7-Hydroxy-cholesterol, (24)

5 Following the analogous Grignard procedure of Example 1, cholesteryl acetate-7-one 1 was reacted with methyl magnesium bromide under standard Grignard conditions to yield title compound 24, a solid. NMR confirmed the assigned structure and mass spectral analysis confirmed the molecular weight.

10

EXAMPLE 22

Synthesis of 7-Methyl-Cholest-4,6-Dien-3-one, (25)

15 Following the analogous procedure of Example 2, the above Grignard product 24, was subjected to Oppenauer oxidation conditions to yield the title compound, 7β -methyl-cholest-4,6-dien-3-one, 25.

EXAMPLE 23

20 Synthesis of 7β -methyl-cholest-5-en-3-one, (26)

Following the analogous procedure of Example 4 for the metal-ammonia reduction, 25 was similarly treated with lithium in ammonia/THF/toluene to yield title compound 26.

25

EXAMPLE 24

Synthesis of 7β -methyl-cholest-4-en-3-one, (27)

30 Following the general isomerization procedure of Example 5 using DBU in THF, 26 was analogously treated to yield the title compound 27.

- 98 -

EXAMPLE 25

Synthesis of 7-methyl-17 β -(2,6-Dimethylhexyl)-5-oxo-A-nor-3,5-secoandrostan-3-oic acid, (28)

5 Following the general procedure of Example 6 for the oxidative Ring A cleavage, compound 27 was analogous treated to yield the above titled seco-acid 28. The proton NMR confirmed the assigned structure.

10 EXAMPLE 26

Synthesis of 7-Methyl-4-aza-cholest-5-en-3-one, (29)

15 Following the general procedure of Example 9, compound 28 was analogously treated with ammonium chloride in acetic acid to yield the above-titled product 29.

Mass Spectral m/z ion (FB) showed 400.2 (M+1) (M+2).calculated, 399.

EXAMPLE 27

20

Synthesis of 7-Methyl-4-Aza-Cholestan-3-one, (30)

Following the analogous general procedure of Example 8, compound 29 was catalytically hydrogenated in HOAc to yield the title compound 30.

25 Mass spectral analysis by EI yielded m/z ion of 401 calculated 401.

EXAMPLE 28

Synthesis of 7-Methyl-4-methyl-4-Aza-Cholest-5-en-3-one, (31)

30 The seco acid 28, was treated analogously as in Example 7 to give pure title compound 31.

Mass Spec. 414 (m+1) by FAB, calc'd., 413.

- 99 -

EXAMPLE 29

Synthesis of 7 β -Methyl-4-methyl-4-aza-5 α -cholestan-3-one, (32)

Following the general analogous procedure described in
5 Example 8, 31 was catalytically hydrogenated to yield the titled compound, 32. Chromatography on silica gel with 30% EtOAc/hexane, eluant yielded pure product.
Mass Spec. (EI) 415, calc'd., 415.

10

EXAMPLE 30

Synthesis of 4-methyl-4-aza-cholest-5-en-3,7-dione, (34)

An oxidation procedure is carried out on 4-methyl-4-aza-cholest-5-en-3-one 33 to yield the title compound, 34. (See USP 3,264,301 by Doorenboos and *J. Org. Chem.* 1961, Vol. 26, p. 4548.)
15 The compound 33 was heated at 70°C with a mixture of pyridinium dichromate/t-butyl hydroperoxide in benzene over a 3-4 hour period to produce 34.

20

EXAMPLE 31

Synthesis of 7 β -Acetoxy-4-methyl-4-aza-5 α -cholestan-3-one, (37)

Compound 34 is hydrogenated by the analogous procedure of Example 8 to produce the 7-H analog 35, and the 7 β -ol, 36. Acylation of 36 with acetic anhydride, in the presence of pyridine, 4-dimethylaminopyridine in methylene chloride at 23°C for 24 hrs. produces the title compound 37.

EXAMPLE 32

30

Synthesis of 7-Beta Methyl-4-aza-5 α -cholest-1-en-3-one, (49)

To a solution of 280 mg (0.698 mmol) of 30 in 4 milliliters toluene, was added 178.8 mg DDQ, 0.7186 mg BSTFA and 8.163 mg triflic acid and the reaction contents allowed to stir at room temperature

- 100 -

for 24 hours. Methyl acetoacetate, 8.1 mg, was added and the reaction refluxed for 24 hours. The contents were cooled, diluted with ethyl acetate, washed with aqueous sodium carbonate, aqueous sodium bisulfite, brine, dried over magnesium sulfate and concentrated to yield
5 an oil. The crude compound was purified by preparative TLC on silica gel, eluting with 3:1 CHCl₃/acetone to yield pure 49, whose proton NMR confirmed the assigned structure.

The following Table lists the unique proton NMR values (400 MHz in CDCl₃) for each compound. The data are reported as: s = singlet, d = doublet, m = multiplet, J = coupling constant. The absorption values are given in delta (δ) scale with a reference point signal from tetramethylsilane, and are illustrated for the C-18, C-19 and C-21 angular ring methyl protons and protons associated with unique portions of the molecule.
10

15 The numbering of the 4-aza steroid is given by the following structure:

- 101 -

TABLE

Compound No.	18-CH ₃	19-CH ₃	21-CH ₃	Others
2	s 0.660 0.662	s 1.030 1.060	d 0.940 J=7	6H s 6.120 (values given for second isomer)
3	s 0.755	s 1.061	d 0.915 J=7	4H and 6H s 5.61, 5.97
4	s 0.720	s 1.110	d 0.930 J=7	4 CH ₂ m 2.83 - 3.28
5	s 0.730	s 1.12	d 0.930 J=7	4H s 5.74
6	s 0.66	s 0.963	d 0.894 J=7	
7	s 0.692	s 0.977	d 0.908 J=7	N-CH ₃ s 3.153
8	s 0.690	s 0.830	d 0.900 J=7	N-CH ₃ s 2.93
9	s 0.653	s 0.991	d 0.903 J=7	6H d 4.91 J=4
10	s 0.675	s 0.808	d 0.893 J=7	5H, m, 2.97 - 3.13
11	s 0.66	s 0.90	d 0.915 J=7	allylic H m(5.8- 5.94)

- 102 -

Compound No.	18-CH ₃	19-CH ₃	21-CH ₃	Others
12	s 0.78	s 1.07	d 0.96 J=7	allylic H m(5.73-5.85)
13	s 0.70	s 1.08	d 0.90 J=7	6H, s (5.23)
14	s 0.73	s 1.13	d 0.93 J=7	4H s 5.72
18	s 0.71	s 1.13	d 0.93 J=7	4H s 5.71
19	s 0.65	s 0.963	d 0.91 J=7	
20	s 0.691	s 0.974	d 0.902 J=7	(6H) - d, 4.92 (J=4) (N-CH ₃) s 3.16
21	s 0.665	s 0.795	d 0.883 J=7	(N-CH ₃) s 2.92 5H m (2.96-3.00)
22	s 0.680	s 1.01	d 0.890 J=7	(6H) d 4.86 J=4
23	s 0.680	s 0.808	d 0.884 J=7	5H m (3.0-3.1)
24	s, 0.68, 0.69	s, 0.94, 1.04	d 0.91 J=7	6H, s, 5.19, 5.21

- 103 -

Compound No.	18-CH ₃	19-CH ₃	21-CH ₃	Others
25	s, 0.76	s, 1.07	d 0.92 J=7	4H, 6H 5.59, 5.92
27	s, 0.70	s, 1.15	d 0.92 J=7	7-CH ₃ , d, 1.04, J=6.5 4H, s, 5.71
28	s, 0.69	s, 1.12	d 0.92 J=7	7-CH ₃ , d, 0.96, J=6.5
29	s, 0.69	s, 1.04	d 0.91 J=7	7-CH ₃ , d, 0.97, J=6.5 6H, d, 4.59, J=3.0
30	s, 0.67	s, 0.835	d 0.91 J=7	7-CH ₃ , d, 1.00, J=6.5 5H, dd, J=3.3, 12.63
31	s, 0.69	s, 1.00	d 0.95 J=7	7-CH ₃ , d, 1.05, J=6.5 6H, d, J=3.0
32	s, 0.68	s, 0.825	d 0.91, J=7H	7-CH ₃ , d, 1.05, J=6.5 4-CH ₃ , s, 3.92
33	s, 0.69	s, 1.23	d 0.91 J=7	C6 - s, 5.42 N-CH ₃ , s, 3.14 Mass Spec (EI)=413

- 104 -

Compound No.	18-CH ₃	19-CH ₃	21-CH ₃	Others
49	s, 0.69	s, 0.90	d 0.915 J=7	C-7CH ₃ , 1.02, d, J=6, C-2, 1H, 5.79, dd J=2.5 J=9.1
50	s, 0.62	s, 1.01	d 0.86 J=7	C-5, 1H, 3.08, dd J= 3.87 J=12.9 C-7Ph, 5H, m, 7.1-7.3
51	s, 0.63	s, 1.02	d 0.8 J=7	C-5, 1-H, 3.2, dd J= 5.88 J=10.5 C-7Ph, 5H, m, 7.08-7.3

Examples for Formula II

The starting material 4-aza-4-methyl-5 α -androstan-3,17-dione (Compound A in Scheme 1 above, for Formula II) can be made according to the methods described in Rasmusson, *et al.*, *J. Med. Chem.*, 27, p. 1690-1701 (1984). The starting material 4-aza-4,7 β -dimethyl-5 α -androstan-3,17-dione can be synthesized according to the procedure described in Example 33, below.

- 105 -

EXAMPLE 33

4-Aza-4-methyl-5 α -androstan-3,16-dione

5 Step 1: 4-aza-4-methyl-5 α -androstan-3,17-dione-16-oxime

To 2-methyl-2-propanol (14 mL) in a round-bottom flask under a stream of nitrogen gas was added potassium *tert*-butoxide (740 mg, 6.59 mmol). After complete solution was achieved, 4-aza-4-methyl-5 α -androstan-3,17-dione (1.0 g, 3.30 mmol) was added and stirring was continued for 1 hour affording a gold-colored solution. To the reaction mixture was added dropwise with stirring isoamyl nitrite (0.884 mL, 6.58 mmol), and stirring was continued overnight at room temperature affording a deep-orange solution. The mixture was then diluted with an equal volume of water and acidified to pH ~2 with 2 N hydrochloric acid. Diethyl ether was added, and the solid that formed was filtered, washed with ether, and dried *in vacuo*, to yield the title compound.

Step 2: 4-aza-4-methyl-5 α -androstan-3-one-16-oxime (B)

To a mixture of 4-aza-4-methyl-5 α -androstan-3,17-dione-16-oxime (596 mg, 1.79 mmol) in ethylene glycol (5 mL) were added 98% hydrazine (57 μ L, 1.74 mmol) and powdered potassium hydroxide (568 mg, 10.12 mmol). The mixture was heated for 16 h at 140°, cooled, and neutralized with 2N hydrochloric acid. The resulting solid was filtered, washed with water, and dried *in vacuo* to yield the title compound; mass spectrum: m/z 318(M).

Step 3: 4-aza-4-methyl-5 α -androstan-3,16-dione (152)

A mixture of 4-aza-4-methyl-5 α -androstan-3-one-16-oxime (218 mg, 0.684 mmol) and sodium bisulfite (249 mg, 23.9 mmol) in 50% aqueous ethanol (10 mL) was heated for 3 h at reflux temperature. Dilute hydrochloric acid (0.5 N, 33 mL) and methylene chloride (50 mL) were added, and the mixture was vigorously agitated for several minutes. The organic layer was separated and washed with sodium hydrogencarbonate solution, saturated brine solution, dried (Na_2SO_4), and evaporated. The

- 106 -

desired product was purified by flash silica gel chromatography using 15% acetone/methylene chloride as eluant to yield the title compound; FAB mass spectrum: m/z 304 (M+1).

400 MHz ^1H NMR (CDCl_3): δ 0.89 (s, 3H); 0.91 (s, 3H); 2.90 (s, 3H); 5 and 3.05 (dd, 1H).

EXAMPLE 34

3-Oxo-4-aza-4-methyl-16 β -hydroxy-5 α -androstane (53)

10 A solution of 4-aza-4-methyl-5 α -androstan-3,16-dione (100 mg, 0.330 mmol) in methanol (2 mL) was cooled in an ice bath and treated with sodium borohydride (38 mg, 0.989 mmol) for 1 h. The reaction mixture was diluted with water and extracted with methylene chloride (2 x 20 mL). The combined organic extracts were washed with 15 saturated brine solution, dried (Na_2SO_4), and evaporated. The desired product was purified by flash silica gel chromatography using 10% acetone/methylene chloride as eluant to yield the title compound; FAB mass spectrum: m/z 306 (M+1).

20 400 MHz ^1H NMR (CDCl_3): δ 0.88 (s, 3H); 0.95 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); and 4.39 (m, 1H).

EXAMPLE 35

3-Oxo-4-aza-4-methyl-16 β -methoxy-5 α -androstane (54)

25 To a solution of 3-oxo-4-aza-4-methyl-16 β -hydroxy-5 α -androstane (35 mg, 0.115 mmol) in dimethyl sulfoxide (1.0 mL) was added powdered potassium hydroxide (32 mg, 0.575 mmol). After stirring for 15 min at room temperature under an nitrogen atmosphere, iodomethane (36 μl , 0.575 mmol) was added and stirring was continued 30 for a further 4 hours. The mixture was diluted with diethyl ether (30 mL), which was washed with water, saturated brine solution, dried (Na_2SO_4), and evaporated. The desired product was purified by flash silica gel chromatography using 10% acetone/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 391 (M).

- 107 -

400 MHz ^1H NMR (CDCl_3): δ 0.88 (s, 6H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.21 (s, 3H); and 3.83 (m, 1H).

EXAMPLE 36

5

3-Oxo-4-aza-4-methyl-16 β -allyloxy-5 α -androstane (55)

This compound was prepared in a similar fashion as Example 35, but substituting allyl bromide in place of iodomethane to yield the title compound; mass spectrum: m/z 345 (M).

10 400 MHz ^1H NMR (CDCl_3): δ 0.88 (s, 3H); 0.90 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.90 (m, 2H); 3.99, (m, 1H); 5.11-5.27 (m, 2H); and 5.83-5.93 (m, 1H).

EXAMPLE 37

15

3-Oxo-4-aza-4-methyl-16 β -(n-propyloxy)-5 α -androstane (56)

A solution of 3-oxo-4-aza-4-methyl-16 β -allyloxy-5 α -androstane in ethyl acetate (0.85 mL) was hydrogenated at atmospheric pressure in the presence of platinum oxide (4 mg) for 30 min at room temperature. The catalyst was removed by filtration through a Millex-HV 0.45 μm Filter Unit. Purification was achieved by flash silica gel chromatography using 10% acetone/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 348 (M+1).
20 400 MHz NMR (CDCl_3): δ 0.88 (s, 3H); 0.89 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.28 (t, 2H); and 3.92 (m, 1H).

EXAMPLE 38

30

3-Oxo-4-aza-4-methyl-16 β -(acetamido)-5 α -androstane (57)

Step 1: 3-Oxo-4-aza-4-methyl-16 β -(amino)-5 α -androstane (C)

A solution of 4-aza-4-methyl-5 α -androstan-3-one-16-oxime (150 mg, 0.471 mmol) in ethanol (15 mL) - acetic acid (7 mL) was hydrogenated at atmospheric pressure in the presence of platinum oxide

- 108 -

(50 mg) overnight at room temperature. The catalyst was removed by filtration through a Millex-HV 0.45 μ m Filter Unit, and the filtrate was evaporated. The residue was dissolved in methylene chloride (50 mL), and the solution was washed with saturated sodium hydrogencarbonate solution, saturated brine solution, dried (Na_2SO_4), and evaporated to afford the desired amine.

5 Step 2: 3-Oxo-4-aza-4-methyl-16 β -(acetamido)-5 α -androstane (57)
10 The amine from Step 1 (56 mg, 0.184 mmol) was dissolved in methylene chloride (1.0 mL) and treated with pyridine (0.6 mL), 4-dimethylaminopyridine (5 mg), and acetic anhydride (0.3 mL) for 2 h at room temperature. The mixture was diluted with methylene chloride (50 mL), and the solution was washed with water, 1N hydrochloric acid, saturated sodium hydrogencarbonate solution, saturated brine solution, dried (Na_2SO_4), and evaporated. The product was purified by flash silica gel chromatography using 2% methanol/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 346 (M).
15 400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.87 (s, 3H); 1.93 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 4.28 (m, 1H); and 5.54 (d, 1H).

20

EXAMPLE 39

3-Oxo-4-aza-4-methyl-16 β -(benzamido)-5 α -androstane (58)
This compound was prepared in a similar fashion as
25 Example 38, but substituting benzoyl chloride in place of acetic anhydride to yield the title compound; mass spectrum: m/z 408 (M).
400 MHz ^1H NMR (CDCl_3): δ 0.89 (s, 3H); 0.90 (s, 3H); 2.90 (s, 3H); 3.01 (dd, 1H); 4.48 (m, 1H); and 6.12 (d, 1H).

- 109 -

EXAMPLE 40

3-Oxo-4-aza-4-methyl-16 β -(benzylaminocarbonyloxy)-5 α -androstane (59)

5 To a solution of 3-oxo-4-aza-4-methyl-16 β -hydroxy-5 α -androstane (40 mg, 0.131 mmol) in methylene chloride (2 mL) were added triethylamine (67 μ L, 0.481 mmol), 4-dimethylaminopyridine (2 mg), and benzyl isocyanate (50 μ L, 0.405 mmol). The reaction mixture was stirred for 48 h at room temperature, evaporated, and then subjected
10 to flash silica gel chromatography using 15% acetone/methylene chloride as eluant to yield the title compound; FAB mass spectrum: m/z 439 (M+1).
400 MHz 1 H NMR (CDCl₃): δ 0.87 (s, 6H); 2.90 (s, 3H); 3.00 (dd, 1H); 4.33 (m, 2H); 4.90 (m, 1H) and 5.11 (m, 1H).

15

EXAMPLE 41

3-Oxo-4-aza-4-methyl-16 α -hydroxy-5 α -androstane (60)

20 Step 1: 3-Oxo-4-aza-4-methyl-16 α -(4-nitrobenzoyloxy)-5 α -androstane (D)

To a solution of 3-oxo-4-aza-4-methyl-16 β -hydroxy-5 α -androstane (34 mg, 0.0111 mmol) in dry benzene (1.5 mL) were added triphenylphosphine (35 mg, 0.134 mmol), 4-nitrobenzoic acid (22 mg, 0.134 mmol), and diethyl azodicarboxylate (21 μ L, 0.134 mmol). The reaction mixture was heated for one hour at 80° (oil bath temperature)
25 under a nitrogen atmosphere. After removal of the benzene by evaporation under diminished pressure, the crude product mixture was subjected to flash silica gel chromatography using 2% methanol/
30 methylene chloride as eluant to give desired product contaminated with some triphenylphosphine (97 mg) which was saponified as described in Step 2.

- 110 -

Step 2: 3-Oxo-4-aza-4-methyl-16 α -hydroxy-5 α -androstane (60)

The crude product from Step 1 (97 mg) was suspended in ethanol (0.5 mL) and treated with 0.4 N sodium hydroxide (0.36 mL, 0.144 mmol). After stirring 90 min at room temperature, the reaction
5 mixture was neutralized with several drops of glacial acetic acid, extracted with ethyl acetate (2 x 20 mL), washed with water (20 mL), saturated brine solution, dried (sodium sulfate), and evaporated. The product was obtained pure by flash silica gel chromatography using 20% acetone/methylene chloride as eluant; mass spectrum: m/z 305 M.
10 400 MHz 1 H NMR (CDCl₃): δ 0.70 (s, 3H); 0.85 (s, 3H); 2.90 (s, 3H); 3.02 (dd, 1H); and 4.47 (m, 1H).

EXAMPLE 42

15 3-Oxo-4-aza-4-methyl-16 α -methoxy-5 α -androstane (61)

To a solution of 3-oxo-4-aza-4-methyl-16 α -hydroxy-5 α -androstane (20 mg, 0.065 mmol) in dimethyl sulfoxide (0.6 mL) was added powdered potassium hydroxide (18 mg, 0.325 mmol). After stirring for 15 min at room temperature under an nitrogen atmosphere,
20 iodomethane (20 μ L, 0.325 mmol) was added and stirring was continued overnight at room temperature. The mixture was diluted with diethyl ether (25 mL), which was washed with water (2 x 10 mL), dried (Na₂SO₄), and evaporated. The desired product was purified by flash silica gel chromatography using 10% acetone/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 319 (M).
25 400 MHz 1 H NMR (CDCl₃): δ 0.70 (s, 3H); 0.87 (s, 3H); 2.90 (s, 3H); 3.01 (dd, 1H); 3.22 (s, 3H); and 3.92 (m, 1H).

- 111 -

EXAMPLE 43

4-Aza-4,7 β -dimethyl-5 α -androstan-3,16-dione (62)

5 Step 1: 4-aza-4,7 β -dimethyl-5 α -androstan-3,17-dione-16-oxime
To 2-methyl-2-propanol (28 mL) in a round-bottom flask under a stream of nitrogen gas was added potassium *tert*-butoxide (1.35 g, 12.1 mmol). After complete solution was achieved, 4-aza-4,7 β -dimethyl-5 α -androstan-3,17-dione (1.92 g, 6.0 mmol) was added and
10 stirring was continued for 1 hour affording a gold-colored solution. To the reaction mixture was added dropwise with stirring isoamyl nitrite (1.63 mL, 12.1 mmol), and stirring was continued overnight at room temperature affording a deep-orange solution. The mixture was then diluted with an equal volume of water, acidified to pH ~2 with 2 N
15 hydrochloric acid, and extracted with diethyl ether (3 x 50 mL). The combined ether extracts were washed with saturated brine solution, dried (sodium sulfate), and evaporated. The crude product was subjected to flash silica gel chromatography using 5% methanol/methylene chloride as eluant to yield the title compound.
20

Step 2: 4-aza-4,7 β -dimethyl-5 α -androstan-3-one-16-oxime
To a mixture of 4-aza-4,7 β -dimethyl-5 α -androstan-3,17-dione-16-oxime (2.7 g, 7.79 mmol) in ethylene glycol (30 mL) were added 98% hydrazine (0.27 mL, 8.57 mmol) and powdered potassium hydroxide (2.62 g, 46.8 mmol). The mixture was heated for 3 h at 140°, cooled, diluted with water (100 mL), neutralized with concentrated hydrochloric acid to give a tan precipitate that was filtered and dried (1.7 g). Flash silica gel chromatography of this material using initially 2% methanol/methylene chloride and subsequently 5% methanol/methylene chloride as eluant gave pure product.

Step 3: 4-aza-4,7 β -dimethyl-5 α -androstan-3,16-dione (62)

A mixture of 4-aza-4,7 β -dimethyl-5 α -androstan-3-one-16-oxime (0.55 g, 1.65 mmol) in 60% acetic acid (20 mL) was heated at

- 112 -

reflux temperature for 48 hours. The cooled mixture was diluted with water (25 mL) and extracted with methylene chloride (3 x 50 mL). The combined extracts were washed with saturated sodium hydrogen-carbonate solution, dried (sodium sulfate), and evaporated. Flash silica gel chromatography using 2% methanol/methylene chloride afforded pure product; mass spectrum: m/z 317 (M).

5 400 MHz ^1H NMR (CDCl_3): δ 0.88 (s, 3H); 0.89 (s, 3H); 1.00 (d, 3H); 2.90 (s, 3H); and 3.07 (dd, 1H).

10

EXAMPLE 44

3-Oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane (63)

A solution of 4-aza-4,7 β -dimethyl-5 α -androstan-3,16-dione (390 mg, 1.23 mmol) in methanol (8 mL) was cooled in an ice bath and treated with sodium borohydride (140 mg, 3.68 mmol) for 30 min. The reaction mixture was diluted with water and extracted with methylene chloride (3 x 50 mL). The combined organic extracts were washed with saturated brine solution, dried (Na_2SO_4), and evaporated. The desired product was purified by flash silica gel chromatography using initially 10% acetone/methylene chloride and subsequently 20% acetone/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 391(M).

15 20 400 MHz ^1H NMR (CDCl_3): δ 0.83 (s, 3H); 0.96 (s, 3H); 1.03 (d, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); and 4.36 (m, 1H).

25

EXAMPLE 45

3-Oxo-4-aza-4,7 β -dimethyl-16 β -methoxy-5 α -androstane (64)

To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane (20 mg, 0.0063 mmol) in dimethyl sulfoxide (0.5 mL) was added powdered potassium hydroxide (18 mg, 0.313 mmol). After stirring for 15 min at room temperature under an nitrogen atmosphere, iodomethane (20 μl , 0.313 mmol) was added and stirring was continued overnight at room temperature. The mixture was diluted with diethyl

30

- 113 -

ether (25 mL), which was washed with water, saturated brine solution, dried (Na₂SO₄), and evaporated. The desired product was purified by flash silica gel chromatography using 1.5% methanol/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 334 (M+1).

5 400 MHz ¹H NMR (CDCl₃): δ 0.83 (s, 3H); 0.89 (s, 3H); 1.03 (d, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.24 (s, 3H); and 3.80 (m, 1H).

EXAMPLE 46

10 3-Oxo-4-aza-4,7β-dimethyl-16β-ethyloxy-5α-androstane (65)

This compound was prepared in a similar fashion as Example 45, but substituting iodoethane in place of iodomethane and potassium hydride in N,N-dimethylformamide in place of potassium hydroxide in dimethyl sulfoxide; mass spectrum: m/z 347 (M).

15 400 MHz ¹H NMR (CDCl₃): δ 0.83 (s, 3H); 0.90 (s, 3H); 1.03 (d, 3H); 1.18 (t, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.39 (m, 2H); and 4.40 (m, 1H).

EXAMPLE 47

20 3-Oxo-4-aza-4,7β-dimethyl-16β-allyloxy-5α-androstane (66)

This compound was prepared in a similar fashion as Example 45, but substituting allyl bromide in place of iodomethane; mass spectrum: m/z 359 (M).

25 400 MHz ¹H NMR (CDCl₃): δ 0.83 (s, 3H); 0.91 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.90 (m, 2H); 3.96 (m, 1H); 5.11-5.29 (m, 2H); and 5.85-5.93 (m, 1H).

EXAMPLE 48

30 3-Oxo-4-aza-4,7β-dimethyl-16β-benzyloxy-5α-androstane (67)

This compound was prepared in a similar fashion as Example 46, but substituting benzyl bromide in place of iodoethane; mass spectrum: m/z 409 (M).

- 114 -

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.95 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 4.01 (m, 1H); 4.43 (q, 2H); and 7.31 (m, 5H).

EXAMPLE 49

5

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(3,3-dimethylallyloxy)-5 α -androstane (68)

This compound was prepared in a similar fashion as Example 45 but substituting 3,3-dimethylallyl bromide in place of iodomethane;

10 400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.90 (s, 3H); 1.02 (d, 3H); 1.67 (s, 3H); 1.71 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.93 (m, 1H); and 5.31 (m, 1H).

15

EXAMPLE 50

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(n-propyloxy)-5 α -androstane (69)

A solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -allyloxy-5 α -androstane (13.0 mg, 0.036 mmol) in ethyl acetate (0.5 mL) was hydrogenated at atmospheric pressure in the presence of platinum oxide (4 mg) for 30 min at room temperature. The catalyst was removed by filtration through a Millex-HV 0.45 μm Filter Unit. Purification was achieved by flash silica gel chromatography using 1% methanol/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 361 (M).

25 400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.89 (s, 3H); 0.89 (t, 3H); 1.05 (d, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.29 (t, 2H); and 3.89 (m, 1H).

EXAMPLE 51

30 3-Oxo-4-aza-4,7 β -dimethyl-16 β -(3-methyl-1-butyloxy)-5 α -androstane (70)

A solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -(3,3-dimethylallyloxy)-5 α -androstane (12 mg) in ethyl acetate (0.5 mL) was hydrogenated at atmospheric pressure in the presence of 10% palladium-on-

- 115 -

charcoal (3 mg) for 30 min at room temperature. The catalyst was removed by filtration through a Millex-HV 0.45 μ m Filter Unit.

Purification was achieved by flash silica gel chromatography using 2% methanol/methylene chloride as eluant to yield the title compound; mass

5 spectrum: m/z 389 M.

400 MHz 1 H NMR (CDCl₃): δ 0.82 (s, 3H); 0.88 (s, 3H); 1.03 (d, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); 3.33 (m, 2H); and 3.88 (m, 1H).

EXAMPLE 52

10

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(t-butoxy)-5 α -androstane (71)

To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane (20 mg, 0.063 mmol) in methylene chloride (0.5 mL) cooled in an ice-bath were added t-butyl trichloroacetimidate (23 μ L, 0.126 mmol) and trifluoromethanesulfonic acid (0.56 μ L, 0.0063 mmol). The reaction mixture was allowed to reach room temperature, and after one hour additional amounts of t-butyl trichloroacetimidate (23 μ L) and trifluoromethanesulfonic acid (0.56 μ L) were added. After one hour, a third addition of each reagent was made, and the reaction mixture was stirred for 5 h at room temperature. The mixture was diluted with diethyl ether (50 mL), washed with 1N aqueous sodium hydroxide (10 mL), 1N hydrochloric acid (10 mL), saturated sodium hydrogencarbonate solution, dried (sodium sulfate), and evaporated. The crude product was purified by flash silica gel chromatography using 10% acetone/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 375 (M). 400 MHz 1 H NMR (CDCl₃): δ 0.82 (s, 3H); 0.90 (s, 3H); 1.03 (d, 3H); 1.11 (s, 9H); 2.90 (s, 3H); 3.00 (dd, 1H); and 4.00 (m, 1H).

EXAMPLE 53

30

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(4-cyanophenoxy)-5 α -androstane (72)

To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane (20 mg, 0.063 mmol) in N,N-dimethylformamide (0.5 mL) was added powdered potassium hydride (35 weight%) (15 mg, 0.126

- 116 -

mmol). After stirring for 15 min at room temperature under an nitrogen atmosphere, 4-fluorobenzonitrile (38 mg, 0.315 mmol) was added and stirring was continued for 2 hours at room temperature. The mixture was diluted with methylene chloride (25 mL) and quenched in ice-water. The 5 aqueous layer was extracted with methylene chloride (3 x 25 mL) and the combined organic layers were washed with saturated brine solution, dried (sodium sulfate) and evaporated. The desired product was purified by flash silica gel chromatography using initially 1.5% methanol/methylene chloride and subsequently 2% methanol/methylene chloride as eluant to 10 yield the title compound; mass spectrum: m/z 420 (M).
400 MHz ^1H NMR (CDCl_3): δ 0.86 (s, 3H); 0.92 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H); 3.02 (dd, 1H); 4.76 (m, 1H); 6.87 (m, 2H); and 7.53 (m, 2H).

15

EXAMPLE 54

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -androstane (73)

This compound was prepared in a similar fashion as
20 Example 53, but substituting 4-fluorobenzotrifluoride in place of 4-fluorobenzonitrile; mass spectrum: m/z 463 (M).
400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.93 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H); 3.02 (dd, 1H); 4.76 (m, 1H); 6.88 (d, 2H); and 7.50 (d, 2H).

25

EXAMPLE 55

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane (74)

This compound was prepared in a similar fashion as
Example 53, but substituting 1-chloro-4-fluorobenzene in place of 4-fluorobenzonitrile; mass spectrum: m/z 430 (M+1).
30 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.93 (s, 3H); 1.03 (d, 3H); 2.90 (s, 3H); 3.02 (dd, 1H); 5.28 (m, 1H); 6.74 (d, 2H); and 7.19 (d, 2H).

- 117 -

EXAMPLE 56

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorophenoxy)-5 α -androstane (75)

This compound was prepared in a similar fashion as

5 Example 53, but substituting 1,4-difluorobenzene in place of 4-fluorobenzonitrile; mass spectrum: m/z 414 (M+1).
400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.94 (s, 3H); 1.04 (d, 3H); 2.91 (s, 3H); 3.02 (dd, 1H); 4.65 (m, 1H); 6.75 (m, 2H); and 6.92 (m, 2H).

10

EXAMPLE 57

3-Oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane

15 Step 1: 3-Oxo-4-aza-4,7 β -dimethyl-16 α -(4-nitrobenzoyloxy)-5 α -androstane (F)
To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane (178 mg, 0.560 mmol) in dry benzene (10 mL) were added triphenylphosphine (294 mg, 1.12 mmol), 4-nitrobenzoic acid (187 mg, 1.12 mmol), and diethyl azodicarboxylate (176 μL , 1.12 mmol). The reaction mixture was heated for one hour at 80° (oil bath temperature) under a nitrogen atmosphere. After removal of the benzene by evaporation under diminished pressure, the crude product mixture was subjected to flash silica gel chromatography using 2% methanol/methylene chloride as eluant to give desired product contaminated with some triphenylphosphine (404 mg) which was saponified as described in Step 2.
400 MHz ^1H NMR (CDCl_3): δ 0.80 (s, 3H); 0.88 (s, 3H); 1.03 (d, 3H); 2.90 (s, 3H); 3.05 (dd, 1H); and 5.48 (m, 1H).

30

Step 2: 3-Oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane (76)

The crude product from Step 1 (404 mg) was suspended in ethanol (5 mL) and treated with 0.4 N sodium hydroxide (1.82 mL, 0.728

- 118 -

mmol). After stirring 90 min at room temperature, the reaction mixture was neutralized with several drops of glacial acetic acid, extracted with ethyl acetate (100 mL), washed with water (2 x 25 mL), saturated brine solution, dried (sodium sulfate), and evaporated. The product was
5 obtained pure by flash silica gel chromatography using 20% acetone/methylene chloride as eluant; mass spectrum: m/z 319 (M).
400 MHz ^1H NMR (CDCl_3): δ 0.71 (s, 3H); 0.82 (s, 3H); 1.02 (d, 3H); 2.90 (s, 3H); 3.03 (dd, 1H); and 4.42 (m, 1H).

10

EXAMPLE 58

3-Oxo-4-aza-4,7 β -dimethyl-16 α -(n-propyloxy)-5 α -androstane (77)

To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane (20 mg, 0.063 mmol) in N,N-dimethylformamide (0.65mL) was added potassium hydride (35 weight%) (15 mg, 0.126 mmol). After stirring for 15 min at room temperature under a nitrogen atmosphere, allyl bromide (27 μl , 0.315 mmol) was added and stirring was continued for 2 h. Additional amounts of potassium hydride (15 mg) and allyl bromide (27 μl) were added, and stirring was continued
15 overnight. The mixture was diluted with diethyl ether (50 mL) and water (10 mL). The organic layer was washed with 1 N hydrochloric acid (10 mL), water (10 mL), saturated brine solution, dried (Na_2SO_4), and evaporated. The desired product was purified by flash silica gel chromatography using 2% methanol/methylene chloride as eluant. This
20 material was hydrogenated in ethyl acetate (0.5 mL) in the presence of 10% palladium-on-charcoal for 2 hours. The catalyst was removed by filtration through a Millex-HV 0.45 μm Filter Unit. Purification was achieved by flash silica gel chromatography using 10% isopropanol/hexane as eluant to yield the title compound; mass spectrum: m/z 361 (M).
25
30
400 MHz ^1H NMR (CDCl_3): δ 0.76 (s, 3H); 0.82 (s, 3H); 0.90 (t, 3H); 1.02 (d, 3H); 2.90 (s, 3H); 3.02 (dd, 1H); 3.29 (t, 2H); and 3.98 (m, 1H).

- 119 -

EXAMPLE 59

3-Oxo-4-aza-4,16 α -dimethyl-16 β -hydroxy-5 α -androstane (78)

To a solution of 4-aza-4-methyl-5 α -androstan-3,16-dione (50 mg, 0.165 mmol) cooled to -40° was added dropwise with stirring methylmagnesium bromide (3.0 M solution in diethyl ether) (275 μ L, 0.825 mmol). The reaction mixture was allowed to reach room temperature and stirred for 2 h under a nitrogen atmosphere. The reaction was quenched with saturated ammonium chloride solution (25 mL) and extracted with methylene chloride (2 x 50 mL). The combined organic extracts were washed with saturated brine solution, dried (sodium sulfate) and evaporated. The desired product was obtained pure by flash silica gel chromatography using 2% methanol/methylene chloride as eluant; mass spectrum: m/z 319 (M).

15 400 MHz 1 H NMR (CDCl₃): δ 0.88 (s, 3H); 0.98 (s, 3H); 1.31 (s, 3H); 2.90 (s, 3H); and 3.00 (dd, 1H).

EXAMPLE 60

20 3-Oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -hydroxy-5 α -androstane (79)

This compound was prepared in a similar fashion as Example 59, but substituting 4-aza-4,7 β -dimethyl-5 α -androstan-3,16-dione in place of 4-aza-4-methyl-5 α -androstan-3,16-dione as starting material; mass spectrum: m/z 333 (M).

25 400 MHz 1 H NMR (CDCl₃): δ 0.82 (s, 3H); 0.98 (s, 3H); 1.01 (d, 3H); 1.30 (s, 3H); 2.90 (s, 3H); and 3.00 (dd, 1H).

EXAMPLE 61

30 3-Oxo-4-aza-4,16 α -dimethyl-16 β -methoxy-5 α -androstane (80)

To a solution of 3-oxo-4-aza-4,16 α -dimethyl-16 β -hydroxy-5 α -androstane (31 mg, 0.097 mmol) in N,N-dimethylformamide (0.5 mL) was added potassium hydride (35 weight%) (23 mg, 0.194 mmol). After stirring for 15 min at room temperature, iodomethane (32 μ L, 0.485

- 120 -

mmol) was added, and stirring was continued overnight at room temperature. The reaction mixture was diluted with diethyl ether, washed with 2N hydrochloric acid (10 mL), water (10 mL), saturated brine solution, dried (sodium sulfate), and evaporated. The desired product
5 was obtained pure by flash silica gel chromatography using 2% methanol/methylene chloride as eluant; mass spectrum: m/z 333 (M).
400 MHz ^1H NMR (CDCl_3): δ 0.88 (s, 3H); 0.90 (s, 3H); 1.22 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); and 3.17 (s, 3H).

10

EXAMPLE 62

3-Oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -methoxy-5 α -androstane (81)

This compound was prepared in a similar fashion as Example 61, but substituting 3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -hydroxy-5 α -androstane in place of 3-oxo-4-aza-4,16 α -dimethyl-16 β -hydroxy-5 α -androstane as starting material; mass spectrum: m/z 347 (M).
15 400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.90 (s, 3H); 1.02 (d, 3H); 1.22 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); and 3.18 (s, 3H).

20

EXAMPLE 63

3-Oxo-4-aza-4,7 β -dimethyl-16 β -methanethio-5 α -androstane (82)

25 Step 1: 3-Oxo-4-aza-4,7 β -dimethyl-16 β -(acetylthio)-5 α -androstane (G)

A 25-mL round-bottom flask was charged with dry tetrahydrofuran (4 mL) and triphenylphosphine (177 mg, 0.676 mmol) under a nitrogen atmosphere. The flask was cooled in an ice-bath and
30 diisopropyl azodicarboxylate (133 μL , 0.676 mmol) was added, and the mixture was stirred for 30 min at 0°. To the reaction mixture was added a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane (108 mg, 0.338 mmol) and thiolacetic acid (49 μL , 0.676 mmol) in tetrahydrofuran (2.0 mL). The reaction mixture was stirred for 1 h at 0°

- 121 -

and then an additional hour at room temperature. The mixture was evaporated and subjected to flash chromatography on silica gel using 10% acetone/methylene chloride as eluant to give the desired product contaminated with some triphenylphosphine. The mixture was used
5 without further purification in Step 2.
400 MHz ^1H NMR (CDCl_3): δ 0.80 (s, 3H); 0.82 (s, 3H); 1.00 (d, 3H);
2.28 (s, 3H); 2.90 (s, 3H); 3.00 (dd, 1H); and 3.80 (m, 1H).

10 Step 2: **3-Oxo-4-aza-4,7 β -dimethyl-16 β -(mercapto)-5 α -androstan e (H)**
To a solution of product mixture from Step 1 (208 mg) in ethanol (4.0 mL) was added 0.4N sodium hydroxide (1.8 mL, 0.716 mmol) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h, neutralized with several drops of acetic acid,
15 diluted with ethyl acetate (100 mL), washed with water (2 x 10 mL), saturated brine solution, dried (sodium sulfate), and evaporated. Pure 16-mercaptopan was obtained by flash silica gel chromatography using 20% acetone/hexane as eluant.
400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.93 (s, 3H); 1.02 (d, 3H);
20 2.90 (s, 3H); 3.00 (dd, 1H); and 3.28 (m, 1H).

25 Step 3: **3-Oxo-4-aza-4,7 β -dimethyl-16 β -(methanethio)-5 α -androstan e (82)**
To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -(mercapto)-
5 α -androstan e (18 mg, 0.054 mmol) in dry tetrahydrofuran (0.5 mL) was added sodium hydride (80% dispersion in mineral oil) (3.2 mg, 0.108 mmol) under a nitrogen atmosphere. After stirring 15 min at room temperature, iodomethane (17 μL , 0.270 mmol) was added, and stirring was continued for 3 h at room temperature. The reaction mixture was
30 diluted with methylene chloride (50 mL), washed with water (10 mL), saturated brine solution, dried (sodium sulfate), and evaporated. Flash silica gel chromatography using 10% isopropanol/hexane as eluant afforded pure desired product; mass spectrum: m/z 349 (M).

- 122 -

400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.91 (s, 3H); 1.04 (d, 3H); 2.10 (s, 3H); 2.90 (s, 3H); 3.01 (dd, 1H); and 3.08 (m, 1H).

EXAMPLE 64

5

3-Oxo-4-aza-4,7 β -dimethyl-16 β -ethanethio-5 α -androstane (83)

This compound was prepared in a similar fashion as Example 53, but substituting iodoethane in place of iodomethane in Step 3; mass spectrum: m/z 363 (M).

10 400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.91 (s, 3H); 1.03 (d, 3H); 1.24 (t, 3H); 2.57 (q, 2H); 2.90 (s, 3H); 3.00 (dd, 1H); and 3.18 (m, 1H).

EXAMPLE 65

15 3-Oxo-4-aza-4,7 β -dimethyl-16 β -(1-propanethio)-5 α -androstane (84)

This compound was prepared in a similar fashion as Example 53, but substituting 1-iodopropane in place of iodomethane in Step 3; mass spectrum: m/z 377 (M).

20 400 MHz ^1H NMR (CDCl_3): δ 0.82 (s, 3H); 0.90 (s, 3H); 0.98 (t, 3H); 1.03 (d, 3H); 2.51 (t, 2H); 2.90 (s, 3H); 3.01 (dd, 1H); and 3.13 (m, 1H).

EXAMPLE 66

3-Oxo-4-aza-4,7 β -dimethyl-16 β -ethanesulfonyl-5 α -androstane (85)

25 To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -ethanethio-5 α -androstane (17 mg, 0.047 mmol) in methanol (1.0 mL) was added a solution of OXONE, monopersulfate compound (19 mg) in water (1 mL). After stirring 2 h at room temperature, an additional amount of OXONE (19 mg) in water (0.5 mL) was added, and stirring was continued for 10 min. The reaction mixture was diluted with water (25 mL) and extracted with methylene chloride (3 x 50 mL). The combined organic extracts were washed with saturated brine solution, dried (sodium sulfate), and evaporated. Flash silica gel chromatography using 2% methanol/

- 123 -

methylene chloride as eluant afforded pure desired product; mass spectrum; m/z 395 (M).

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.92 (s, 3H); 1.03 (d, 3H); 1.39 (t, 3H); 2.91 (s, 3H); 2.99 (q, 2H); 3.00 (dd, 1H); and 3.41 (m, 1H).

5

EXAMPLE 67

3-Oxo-4-aza-4,7 β -dimethyl-16 β -fluoro-5 α -androstane

To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane (18 mg, 0.056 mmol) in methylene chloride (0.5 mL) at room temperature diethylaminosulfur trifluoride (19 μL , 0.144 mmol). After stirring one hour at room temperature, the reaction mixture was diluted with methylene chloride (25 mL), washed with water (25 mL), saturated sodium hydrogen carbonate solution (10 mL), saturated brine solution (10 mL), dried (sodium sulfate), and evaporated. The product was purified by flash silica gel chromatography using 10% acetone/methylene chloride as eluant to yield the title compound; mass spectrum: m/z 321 (M).

400 MHz ^1H NMR spectrum (CDCl_3): δ 0.87 (s, 3H); 0.92 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H); 3.01 (dd, 1H); and 5.12 (dm, 1H).

EXAMPLE 68

Preparation of 4-aza-4,7 β -dimethyl-5 α -androstan-3,17-dione (Compound E in Scheme 5 above)

Step 1: Synthesis of 3-Acetoxy-Androst-5-en-17-ol

To a solution of 100 mg (0.303 mmol) of 3-acetoxy-androst-5-en-17-one in 3 ml EtOH at -10°C, was added 22.9 mg (0.606 mmol) of sodium borohydride with stirring. After the reaction mixture was stirred for one and 1/2 hours, the mixture was diluted with 10 ml water, the ethanol solvent removed under vacuum, and the residue extracted with ethyl acetate. The organic layer was washed with aqueous Na_2CO_3 , brine, dried over sodium sulfate and concentrated to leave a residue of crude title compound. Proton NMR confirmed the assigned structure.

- 124 -

Step 2: Synthesis of 3-Acetoxy-Androst-5-en-17-ol, 17-t-butyl-dimethylsilyl ether

To a solution of the androstan-17-ol, from the previous synthesis, being 4.5 g (13.55 mmol) in 50 ml. dimethylformamide at 23°C was added 2.76 g (40-65 mmol) imidazole followed by 3.063 g (20.32 mmol) of t-butyldimethylsilyl chloride. The reaction mixture was stirred and a solid began to precipitate. Twenty additional ml of DMF were added and the mixture further stirred overnight. The mixture was poured into 1 liter water, the solid filtered and washed with water. The solid was dissolved in ethylacetate, the organic layer washed with brine and dried over sodium sulfate, concentrated to yield the silyl protected 17-ol title compound. The proton NMR confirmed the assigned structure.

15

Step 3: 7-one-17 β -ol, 17-t-butyldimethylsilyl ether

To a solution of the TBMS protected 17-ol from the previous synthesis, being 5.6 g (12.55 mmol) in 100 ml acetonitrile at 23°C was added 90% t-butyl hydrogen peroxide, 3.958 g (43.92 mol), and 138 mg chromium hexacarbonyl. After refluxing the mixture under nitrogen for 24 hours, the reaction mixture was poured into one liter water, solid was filtered, the residue washed with 500 ml water and the residue dissolved in 350 ml methylene chloride. The organic layer was washed with brine, dried over sodium sulfate and concentrated to yield crude material. Thin layer chromatography (3:1 hexane/ethyl acetate on silica gel) showed the presence of starting material. The solid was purified by column chromatography over silica gel by elution with 7% ethyl acetate/hexane to yield the title compound. Proton NMR confirmed the assigned structure.

25
30

- 125 -

Step 4: Synthesis of 3,7-dihydroxy-7-methyl-androst-5-en-17 β -ol,
17-t-butyldimethylsilyl ether

To a solution of the product from the previous synthesis, being 440 mg (0.956 mmol) in dry tetrahydrofuran at 0°C was added 5 dropwise methyl magnesium chloride over 5-10 minutes. The reaction mixture was then allowed to stir at room temperature for 24 hours, then poured into saturated aqueous ammonium chloride. The THF solvent was removed under vacuum and the aqueous phase extracted with ethyl acetate. The organic layer was washed with brine, dried, concentrated to 10 yield crude product. Proton NMR confirmed the assigned structure of the title compound which was used in the next step without further purification.

Step 5: Synthesis of 7-methyl-androst-4,6-dien-3-one-17 β -ol, 17-t-
butyldimethylsilyl ether

The above Grignard product, 3.5 g (7.142 mmol) was dissolved in 50 ml toluene/50 ml. cyclohexanone and 20 ml of solvent distilled off under vacuum. To this was added 4.54 g aluminum isopropoxide and the reaction mixture refluxed overnight for 15 hours. 20 The mixture was cooled, diluted with ethyl acetate, washed with sodium potassium tartarate, brine, and the organic layer was concentrated under vacuum and the residue steam distilled. The residue was extracted with ethyl acetate, washed with brine, dried and purified by column chromatography on silica gel, eluting with 5% EtOAc/hexane to yield the 25 title compound.

Step 6: Synthesis of 7 β -methyl-androst-5-en-3-one-17 β -ol, t-
butyldimethylsilyl ether

To a solution of 370 mg of the product of the previous 30 synthesis, in 5.5 ml ammonia, 1 ml THF, 1 ml toluene, was added 50 mg of metallic lithium in small pieces. After stirring the blue solution for 2 hours, a solution of 1,2-dibromomethane in 2 ml THF was added. After stirring the solution at -78°C for 10 minutes, 250 mg of ammonium chloride was added and the mixture stirred for 10 minutes. The excess

- 126 -

ammonia was removed by evaporation under a nitrogen steam. The reaction mixture was diluted with brine, extracted with ethyl acetate. The organic layer was washed with brine, dried and concentrated to yield crude material which was used as such in the next synthesis.

5

Step 7: Synthesis of 7 β -methyl-androst-4-en-3-on-17 β -ol, t-butylidemethylsilyl ether

To a solution of the product of the previous synthesis, being 432 mg in 4 ml THF was added 150 microliters DBU (1,8-diaza-10 bicyclo[5.4.0] undec-7-ene under nitrogen with stirring. The mixture was refluxed for 1.5 hours, then cooled, diluted with NH₄Cl solution. The solvent THF was removed under vacuum and the residue extracted with ethyl acetate. The organic layer was washed with brine, dried and concentrated under reduced pressure to yield crude material. The titled 15 product was purified by chromatography on silica gel using 10% EtOAc/hexane as eluant.

20 Step 8: Synthesis of 17 β -(t-butylidemethylsilyloxy)-7 β -methyl-5-oxo-A-nor-3,5-secoandrostan-3-oic acid

To a solution of 884 mg of the product of the previous synthesis in 15 ml. t-butyl alcohol at 80°C was added 248 mg sodium carbonate in 1.5 ml water followed by a dropwise addition over 15-20 minutes of a mixture of 2.273 g sodium periodate with 16.8 mg potassium permanganate in 8 ml. water. The reaction mixture was heated at 80°C for 2 hours, cooled, filtered, the residue washed with water, and then the extract L-concentrated under vaccum. The extract was acidified with aqueous HCl, extracted with ethyl acetate and the organic layer washed with aqueous NaHSO₃, brine, dried and concentrated to yield 25 crude 9. The proton NMR confirmed the assigned structure.

30

Step 9: Synthesis of 4,7 β -dimethyl-4-aza-androst-5-en-3-one-17 β -ol, t-butylidemethylsilyl ether

To a solution of the product of the previous synthesis, 840 mg in 5 ml ethylene glycol, was added 1.5 g sodium acetate and 737 mg.

- 127 -

methylamine hydrochloride. After stirring the reaction mixture 4 hours at 180°C, the mixture was cooled, diluted with water, extracted with ethyl acetate, dried and concentrated to afford crude title compound. Proton NMR confirmed the assigned structure.

5

Step 10: Synthesis of 4,7β-dimethyl-4-aza-androst-5-en-3-one-17β-ol

To a solution of 700 mg of the product of the previous example, in 20 ml of acetonitrile at 0°C, was added 500 microliters.

10 aqueous HF. After stirring the reaction mixture for one hour, the HF was neutralized with aqueous sodium carbonate, diluted with water, acetonitrile removed under vacuum, and the residue extracted with ethyl acetate. The organic layer was dried, concentrated to give crude title compound which was further purified by preparative chromatography on
15 silica gel using 3:1 chloroform/acetone.

Step 11: Synthesis of 4,7β-dimethyl-4-aza-androstan-3-one-17β-ol

To a solution of the product of the previous synthesis, being 350 mg in 10 ml acetic acid was added 100 mg platinum dioxide and the
20 resulting mixture was evacuated and flushed with hydrogen. The reaction was shaken overnight at room temperature under 40 Psig hydrogen pressure. The solution was filtered concentrated. The residue was worked up with ethyl acetate, the organic layer was then concentrated under vacuum, diluted with ethyl acetate, washed with
25 aqueous NaHCO₃, brine, dried, concentrated to yield the title compound.
Mass Spec: 320 (M+1).

Step 12: Synthesis of 4-aza-4,7β-dimethyl-5α-androstan-3,17-dione

The product of the previous synthesis, 1.013 g (3.176 mmol)
30 was placed with 6 ml methylene chloride into a dry flask. Powdered molecular 4Å sieves, 1.6 g, and 0.558 g (4.76 mmol) of N-methyl-morpholine-N-oxide (NMO) and then tetrapropyl-ammonium perruthanate (TPAP), 55 mg (0.159 mmol) were added. The reaction was stirred for 2 hours, diluted with 150 ml ethyl acetate and filtered. The

- 128 -

filtrate was evaporated to dryness to yield crude product which was recrystallized from EtOAc to yield pure product, mp 135-138°C.

Elemental Analysis Calc'd for C₂₀H₃₁NO₂, mw=317.48

Calc'd: C, 75.67; H, 9.84; N, 4.41

5 Found: C, 75.16; H, 10.22; N, 4.13

Mass Spec. 318 (M+1).

The following Examples (69 to 117) are prepared in a similar fashion as Example 53, but substituting the appropriate 4-fluoro derivatives in place of 4-fluorobenzonitrile.

10

EXAMPLE 69

3-Oxo-4-aza-4,7β-dimethyl-16β-(4-methylsulfonylphenoxy)-5α-androstane

15 Mass spectrum: m/z 474 (M+1).

400 MHz ¹H NMR (CDCl₃): δ 0.85 (s, 3H); 0.93 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H); 3.00 (s, 3H); 4.80 (m, 1H); 6.92 (d, 2H); 7.81 (d, 2H).

EXAMPLE 70

20

3-Oxo-4-aza-4,7β-dimethyl-16β-(3-pyridyloxy)-5α-androstane

Mass spectrum: m/z 397 (M+1).

400 MHz ¹H NMR (CDCl₃): δ 0.85 (s, 3H); 0.94 (s, 3H); 1.04 (d, 3H); 2.91 (s, 3H); 3.02 (dd, 1H); 4.75 (m, 1H); 7.21 (m, 2H); 8.22 (m, 2H).

25

EXAMPLE 71

3-Oxo-4-aza-4,7β-dimethyl-16β-(4-phenylphenoxy)-5α-androstane

Mass spectrum: m/z 472 (M+1).

30 400 MHz ¹H NMR (CDCl₃): δ 0.85 (s, 3H); 0.96 (s, 3H); 1.05 (d, 3H); 2.91 (s, 3H); 3.02 (dd, 1H); 4.76 (m, 1H); 6.9 (d, 2H); 7.26 (m, 1H); 7.43 (m, 2H); 7.52 (m, 4H).

- 129 -

EXAMPLE 72

3-Oxo- 4-aza- 4,7 β - dimethyl-16 β -(3-chlorophenoxy)-5 α -androstane

Mass spectrum: m/z 431(M+1).

5 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.93 (s, 3H); 1.05 (d, 3H);
2.90 (s, 3H); 4.68 (m, 1H); 6.71 (m, 1H); 6.80 (m, 1H); 6.88 (m, 1H);
7.13 (m, 1H).

EXAMPLE 73

10 3-Oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethoxyphenoxy)-5 α -androstane

Mass spectrum: m/z 480(M+1).

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.94 (s, 3H); 1.04 (d, 3H);
2.91 (s, 3H); 3.02 (dd, 1H); 4.69 (m, 1H); 6.78 (m, 2H); 7.09 (m, 2H).

15

EXAMPLE 74

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(2-chlorophenoxy)-5 α -androstane

Mass spectrum: m/z 431 (M+1).

20 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.99 (s, 3H); 1.04 (d, 3H);
2.91 (s, 3H); 3.03 (dd, 1H); 4.80 (m, 1H); 6.81 (m, 2H); 7.24 (m, 1H);
7.32 (m, 2H).

EXAMPLE 75

25

3-Oxo- 4-aza-4,7 β -dimethyl-16 β -(2-pyrazinyloxy)-5 α -androstane

Mass spectrum: m/z 398 (M+1).

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.95 (s, 3H); 1.04 (d, 3H);
2.90 (s, 3H); 3.02 (dd, 1H); 5.34 (m, 1H); 8.04 (d, 2H); 8.15 (1H).

30

EXAMPLE 76

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(2-pyrimidinyloxy)-5 α -androstane

Mass spectrum: m/z 398 (M+1).

- 130 -

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.95 (s, 3H); 1.04 (d, 3H);
2.90 (s, 3H); 3.02 (dd, 1H); 5.35 (m, 1H); 6.89 (m, 1H); 8.15 (d, 2H);

EXAMPLE 77

5

3-Oxo-4-aza-4,7 β -dimethyl-16 β -[4-(1-pyrryl)-phenoxy]-5 α -androstane

Mass spectrum: m/z 461 (M+1).

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.95 (s, 3H); 1.05 (d, 3H);
2.91 (s, 3H); 4.73 (m, 1H); 6.30 (m, 2H); 6.84 (m, 2H); 6.96 (m, 2H);
10 7.25 (m, 2H).

EXAMPLE 78

3-Oxo- 4-aza-4,7 β -dimethyl-16 β -(3-cyanophenoxy)-5 α -androstane

15 Mass spectrum: m/z 420 (M).

400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.93 (s, 3H); 1.04 (d, 3H);
2.91 (s, 3H); 3.02 (dd, 1H); 4.71 (m, 1H); 7.05 (m, 2H); 7.22 (m, 1H);
7.32 (m, 1H).

20

EXAMPLE 79

3-Oxo-4-aza-4,7 β -dimethyl-16 β -(1-naphthoxy)-5 α -androstane

Mass spectrum: m/z 445 (M).

400 MHz ^1H NMR (CDCl_3): δ 0.86 (s, 3H); 1.03 (s, 3H); 1.07 (d, 3H);
25 2.92 (s, 3H); 3.02 (dd, 1H); 6.70 (d, 1H); 7.32 (m, 2H); 7.44 (m, 2H);
7.78 (m, 1H); 8.24 (1H).

EXAMPLE 80

30 3-Oxo-4-aza-4,7 β -dimethyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane

Mass spectrum: m/z 445(M+1).

- 131 -

400 MHz ^1H NMR (CDCl_3): δ 0.84 (s, 3H); 0.92 (s, 3H); 1.04 (d, 2H); 2.26 (s, 3H); 2.92 (s, 3H); 4.76 (m, 1H); 6.62 (m, 1H); 6.81 (m, 1H); 7.12 (d, 1H).

5

EXAMPLE 81

3-Oxo-4-aza-4,7 β -dimethyl-16 β -[4-(5-oxazolyl)phenoxy]-5 α -androstane

Mass spectrum: m/z 463(M+1).

10 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.95 (s, 3H); 1.05 (d, 3H); 2.91 (s, 3H); 4.76 (m, 1H); 6.86 (d, 2H); 7.21 (s, 1H); 7.53 (d, 2H); 7.84 (s, 1H).

EXAMPLE 82

15 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-nitrophenoxy)-5 α -androstane (101)

This compound was prepared in a similar fashion as Example 53, but substituting 1-fluoro-4-nitrobenzene in place of 4-fluorobenzonitrile; 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.94 (s, 3H); 1.05 (d, 3H); 2.92 (s, 3H); 3.03 (dd, 1H); 4.81 (q, 1H); 6.87 (d, 2H); 20 8.17 (d, 2H).

EXAMPLE 83

25 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-aminophenoxy)-5 α -androstane (102)

To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-amino-phenoxy)-5 α -androstane (163 mg, 0.36 mmol) in ethylacetate (8 mL) and methanol (8 mL) was added 10% Pd on carbon (25 mg, 0.23 mmol). It was then stirred for four hours under a hydrogen atmosphere at room temperature. It was then filtered through celite and evaporated to afford 30 148 mg of the title compound. No purification was needed. Mass spectrum: m/z 411 (M+1). 400 MHz ^1H NMR (CDCl_3): δ 0.84 (s, 3H); 0.94 (s, 3H); 1.37 (d, 3H); 2.90 (s, 3H); 3.03 (dd, 1H); 4.64 (q, 1H); 6.70 (d, 2H); 6.78 (d, 2H).

- 132 -

EXAMPLE 84

3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-acetylaminophenoxy)-5 α -androstane (103)

5 To a solution of 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-amino-phenoxy)-5 α -androstane (48 mg, 0.116 mmol) in methylene chloride (1 mL) and pyridine (0.037 mL, 0.46 mmol) was added acetic anhydride (0.022 mL, 0.23 mmol) and DMAP (5 mg, 0.04 mmol). The reaction was stirred overnight at room temperature under a nitrogen atmosphere. It
10 was then diluted with methylene chloride (50 mL), washed with water (50 mL) and brine (50 mL). The organic phase was then dried over sodium sulfate and evaporated. The crude product was purified by preparative TLC (silica gel, 1000 microns) using 5% methanol/methylene chloride to give 51 mg of the title compound. Mass spectrum: m/z 453
15 (M+1). 400 MHz 1 H NMR (CDCl₃): δ 0.84 (s, 3H); 0.93 (s, 3H); 1.04 (d, 3H); 2.13 (s, 3H); 2.92 (s, 3H); 3.03 (dd, 1H); 4.68 (q, 1H); 6.76 (d, 2H); 7.11 (s, 1H); 7.33 (d, 2H).

EXAMPLE 85

20 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-benzoylaminophenoxy)-5 α -androstane (104)

25 This compound was prepared in a similar fashion as Example 84, but substituting benzoyl chloride in place of acetic anhydride, triethylamine in place of pyridine and DMAP was not used; mass spectrum: m/z 515 (M+1). 400 MHz 1 H NMR (CDCl₃): δ 0.84 (s, 3H); 0.94 (s, 3H); 1.05 (d, 3H); 2.92 (s, 3H); 3.04 (dd, 1H); 4.73 (q, 1H); 6.82 (d, 2H); 7.49 (m, 5H); 7.72 (s, 1H); 7.84 (d, 2H).

- 133 -

EXAMPLE 86

3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylsulfonamidophenoxy)-5 α -androstan e (105)

5 This compound was prepared in a similar fashion as Example 84, but substituting tosyl chloride in place of acetic anhydride; mass spectrum: m/z 565 (M+1). 400 MHz ^1H NMR (CDCl_3): δ 0.84 (s, 3H); 0.93 (s, 3H); 1.03 (d, 3H); 2.37 (s, 3H); 2.92 (s, 3H); 3.02 (dd, 1H); 4.63 (q, 1H); 6.34 (s, 1H); 6.67 (d, 2H); 6.91 (d, 2H); 10 7.19 (d, 2H); 7.56 (d, 2H).

EXAMPLE 87

3-oxo-4-aza-4-(2,4-dimethoxybenzyl)-7 β -methyl-16 β -hydroxy-5 α -androstan e (106)

15 This compound was prepared in a similar fashion as compound 63 described in the Scheme 5, except that the corresponding benzyl analog of (Compound E in Scheme 5) was made via similar synthesis of Example 68, except 2,4-dimethoxy-benzylamine was used in 20 place of methylamine in Step 9.

EXAMPLE 88

3-oxo-4-aza-4-(2,4-dimethoxybenzyl)-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstan e (107)

25 This compound was prepared in a similar fashion as Example 55, but substituting 3-oxo-4-aza-4-(2,4-dimethoxy benzyl)-7 β -methyl-16 β -hydroxy-5 α -androstan e in place of 3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstan e. No purification was done prior to 30 the next reaction.

- 134 -

EXAMPLE 89

3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstane (108)

To a solution of 3-oxo-4-aza-4-(2,4-dimethoxy benzyl)-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstane (130 mg, 0.23 mmol) in methylene chloride (1 mL) was added trifluoroacetic acid (1 mL). The reaction was stirred overnight at room temperature. Then the solvent was evaporated and the residue taken up in methylene chloride. The organic phase was washed with saturated sodium bicarbonate and brine. It was then dried over sodium sulfate and evaporated. The crude compound was purified by preparative TLC (silica gel, 1000 microns) using 20% acetone/methylene chloride to yield the title compound. 400 MHz ^1H NMR (CDCl_3): δ 0.86 (s, 3H); 0.93 (s, 3H); 1.01 (d, 3H); 3.07 (dd, 1H); 4.67 (q, 1H); 5.49 (s, 1H); 6.73 (d, 2H); 7.18 (d, 2H).

15

EXAMPLE 90

3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane (109)

To a solution of 3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstane in methanol was added 20% Pd on carbon. This solution was shaken under a hydrogen atmosphere at 48 psig for one day. It was then filtered through celite and evaporated. The crude compound was then purified by flash silica gel chromatography using 20% acetone/methylene chloride to elute the title compound. 400 MHz ^1H NMR (CDCl_3): δ 0.86 (s, 3H); 0.95 (s, 3H); 1.01 (d, 2H); 3.08 (dd, 1H); 4.71 (q, 1H); 5.48 (s, 1H); 6.81 (d, 2H); 6.89 (t, 1H); 7.24 (t, 2H).

30

EXAMPLE 91

3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androst-1-ene (110)

To a solution of 3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane (145 mg, 0.35 mmol) in toluene (3 mL) was added DDQ (95 mg, 0.42 mmol), BSTFA (360 mg, 1.4 mmol) and triflic acid (4.04 mg,

- 135 -

0.027 mmol). This solution was stirred overnight at room temperature under a nitrogen atmosphere. Then methylacetooacetate (4.06 mg, 0.035 mmol) was added and the solution was stirred. After one hour, the reaction was refluxed overnight. It was then poured into water (75 mL) 5 containing sodium carbonate (160 mg) and sodium bisulfite (120 mg). The aqueous phase was then extracted with methylene chloride (40 mL) (3x) and the organic phases were combined. The organic phase was washed with water (50 mL) and brine (50 mL). It was dried over sodium sulfate and evaporated. The crude compound was purified by flash silica 10 gel chromatography using 15% acetone/methylene chloride to elute the title compound. 400 MHz ^1H NMR (CDCl_3): δ 0.92 (s, 3H); 0.96 (s, 3H); 1.02 (d, 3H); 3.34 (dd, 1H); 4.72 (q, 1H); 5.31 (s, 1H); 5.80 (d, 1H); 6.80 (d, 1H); 6.82 (d, 2H); 6.89 (t, 1H); 7.24 (t, 2H).

15

EXAMPLE 92

3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androst-1-ene (111)

This compound was prepared in a similar fashion as Example 91, but substituting 3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstane in place of 3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane. 400 MHz ^1H NMR (CDCl_3): δ 0.92 (s, 3H); 20 0.95 (s, 3H); 1.02 (d, 2H); 3.34 (dd, 1H); 4.67 (q, 1H); 5.27 (s, 1H); 5.80 (d, 1H); 6.73 (d, 2H); 6.78 (d, 1H); 7.18 (d, 2H).

25

EXAMPLE 93

3-oxo-4-aza-4,7 β -dimethyl-16 β -phenoxy-5 α -androstane (112)

To a solution of 3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane (60 mg, 0.16 mmol) in N,N-dimethylformamide (1 mL) was 30 added sodium hydride (8 mg, 0.21 mmol), a 60% dispersion in mineral oil. After stirring for 30 min at room temperature under a nitrogen atmosphere, methyl iodide (40 mg, 0.28 mmol) was added. The reaction was stirred overnight. It was diluted with ethylacetate (50 mL) and washed with 1N hydrochloric acid (50 mL), water (50 mL) and brine (50

- 136 -

mL). The organic phase was dried over sodium sulfate and evaporated. The crude product was purified by flash silica gel chromatography using 10% acetone/methylene chloride to elute the title compound. 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.95 (s, 3H); 1.05 (d, 3H); 2.91 (s, 5 H); 3.02 (dd, 1H); 4.72 (q, 1H); 6.81 (d, 2H); 6.89 (t, 1H); 7.24 (t, 2H).

EXAMPLE 94

10 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androst-1-ene (113)

This compound was prepared in a similar fashion as Example 93, but substituting 3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstan-1-ene in place of 3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane. 400 MHz ^1H NMR (CDCl_3): δ 0.87 (s, 3H); 0.95 (s, 3H); 1.07 (d, 2H); 2.93 (s, 1H); 3.34 (dd, 1H); 4.68 (q, 1H); 5.84 (d, 1H); 6.69 (d, 1H); 6.73 (d, 2H); 7.18 (d, 2H).

EXAMPLE 95

20 3-oxo-4-aza-4-(2,4-dimethoxybenzyl)-7 β -methyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane (114)

This compound was prepared in a similar fashion as Example 88, but substituting 2-chloro-4-fluorotoluene in place of 1-chloro-4-fluorobenzene. No purification was done prior to the next 25 reaction.

EXAMPLE 96

30 3-oxo-4-aza-7 β -methyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane (115)

This compound was prepared in a similar fashion as Example 89, but substituting 3-oxo-4-aza-4-(2,4-dimethoxy benzyl)-7 β -methyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane in place of 3-oxo-4-aza-4-(2,4-dimethoxy benzyl)-7 β -methyl-16 β -(4-chlorophenoxy)-

- 137 -

5 α -androstane. 400 MHz ^1H NMR (CDCl_3): δ 0.86 (s, 3H); 0.93 (s, 3H); 1.01 (d, 3H); 2.26 (s, 3H); 3.08 (dd, 1H); 4.66 (q, 1H); 5.59 (s, 1H); 6.62 (m, 1H); 6.81 (d, 1H); 7.06 (d, 1H).

5

EXAMPLE 97

3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androstane (116)

This compound was prepared in a similar fashion as Example 90, but substituting 3-oxo-4-aza-7 β -methyl-16 β -(3-chloro-4-methyl-phenoxy)-5 α -androstane in place of 3-oxo-4-aza-7 β -methyl-16 β -(4-chloro-phenoxy)-5 α -androstane. 400 MHz ^1H NMR (CDCl_3): δ 0.86 (s, 3H); 0.94 (s, 3H); 1.03 (d, 3H); 2.25 (s, 3H); 4.69 (q, 1H); 6.71 (d, 2H); 7.03 (d, 2H).

15

EXAMPLE 98

3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androst-1-ene (117)

This compound was prepared in a similar fashion as Example 91, but substituting 3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androstane in place of 3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane. 400 MHz ^1H NMR (CDCl_3): δ 0.92 (s, 3H); 0.96 (s, 3H); 1.03 (d, 3H); 2.25 (s, 3H); 3.34 (dd, 1H); 4.68 (q, 1H); 5.35 (s, 1H); 5.81 (d, 1H); 6.71 (d, 2H); 6.79 (d, 1H); 7.03 (d, 2H).

25

EXAMPLE 99

3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androstane (118)

This compound was prepared in a similar fashion as Example 93, but substituting 3-oxo-4-aza-7 β -methyl-16 β -(4-methyl-phenoxy)-5 α -androstane in place of 3-oxo-4-aza-7 β -methyl-16 β -phenoxy-5 α -androstane. 400 MHz ^1H NMR (CDCl_3): δ 0.85 (s, 3H); 0.94 (s, 3H); 1.04 (d, 3H); 2.25 (s, 3H); 2.91 (s, 3H); 3.05 (dd, 1H); 4.69 (q, 1H); 6.71 (d, 2H); 7.04 (d, 2H).

- 138 -

EXAMPLE 100

3-Oxo-4-aza-4,7 β -dimethyl-16 β -fluoro-5 α -androstane

This compound was prepared by treatment of intermediate 5 (12) (Scheme 5) with diethylaminosulfur trifluoride in methylene chloride at room temperature followed by chromatography on silica gel; 64% yield; m/z 321 (M); 400 MHz ^1H NMR spectrum (CDCl_3): 0.87 (s, 3H); 0.92 (s, 3H); 1.04 (d, 3H); 2.90 (s, 3H), 5.12 (m, H).

10

EXAMPLE 101

3-Oxo-4-aza-4,7 β -dimethyl-16 β -cyano-5 α -androstane

This compound is obtained by conversion of intermediate 15 (25) (Scheme 7) to its methansulfonate derivative by treatment with methanesulfonyl chloride or methanesulfonic anhydride in methylene chloride in the presence of an organic base, such as pyridine and triethylamine, and 4-dimethylaminopyridine (DMAP). Displacement of the methanesulfonate group is effected by heating in an appropriate solvent, such as N,N-dimethylformamide or dimethylsulfoxide, in the 20 presence of sodium or potassium cyanide.

EXAMPLE 102

3-Oxo-4-aza-4-methyl-16 β -(1-hexyl)-5 α -androstane

25

Step 1: 3-Oxo-4-aza-4-methyl-16 β -(1-hexenyl)-5 α -androstane

To a 50-mL round-bottom flask under nitrogen was added 1-hexyl-triphenylphosphonium bromide (141 mg, 0.33 mmol) followed by freshly distilled tetrahydrofuran (1 mL). The mixture was cooled to 0°C, and butyllithium (2.5M solution in hexanes, 132 mL, 0.33 mmol) 30 affording a bright orange solution. The solution was stirred at 0°C for 10 min., and was charged with a solution of 4-aza-4-methyl-5 α -androstan-3,16-dione (50 mg, 0.165 mmol) in tetrahydrofuran (0.5 mL). The reaction mixture was allowed to reach room temperature and stirred 35 overnight. The mixture was then partitioned between water (10 mL) and

- 139 -

ethyl acetate (20 mL), the organic layer separated, washed with 0.5N hydrochloric acid (2 x 10 mL), saturated brine solution, dried (Na_2SO_4), and evaporated. The title compound was purified by flash silica gel chromatography using 1% methanol/methylene chloride as eluant. This material (29.6 mg) was used without further purification in Step 2.

Step 2: 3-Oxo-4-aza-4-methyl-16 β -(1-hexyl)-5 α -androstane

A solution of the product obtained in Step 1 (22 mg) in ethyl acetate (0.5 mL) was hydrogenated in the presence of platinum oxide (5 mg) under a balloon atmosphere of hydrogen gas for 1 hour at room temperature. The catalyst was removed by filtration through a Millex-HV disposable filter, and the filtrate was evaporated. The title compound was purified by flash silica gel chromatography using 20% acetone/hexane as eluant; yield 5.2 mg. Mass spectrum: m/z 374 (M+1). ^1H NMR (CDCl_3): δ 2.42 (dd, 2H), 2.90 (s, 3H), and 3.00 (dd, 1H).

EXAMPLE 103

20 4-aza-4,7 β -dimethyl-16 β -(4-chlorobenzylidene)-5 α -androstan-3-one (128)

Following Reaction Scheme 14, solution of 4-aza-4,7 β -dimethyl-5 α -androstan-3,17-dione (32 mg, 0.1 mmol), sodium hydride (5 mg, 1.02 eq), diethyl 4-chlorobenzylphosphonate (27 mg, 1.02 eq) and DMF (0.5mL) were heated to 80°C for 1 hour. The reaction was cooled, diluted with dichloromethane and washed with water (x2), brine, dried over anhydrous magnesium sulfate, filtered and concentrated. The desired product was purified by silica gel chromatography (hexanes:isopropanol 4:1) t1.5:1 mixture of E/Z isomers: m/z=389 ^1H NMR(500 MHz, CDCl_3): 0.75 (s, 3H); 0.82 (s, 3H); 0.90 (d, 3H); 2.96 (s, 3H); 3.08 (dd, 1H); 6.34 (s, 0.4H); 6.41 (s, 0.6H); 7.18-7.38 (m, 5H).

- 140 -

EXAMPLE 104

4-aza-4,7 β -dimethyl-16-benzylidene-5 α -androstan-3-one (127)

This example was prepared in a similar fashion as 4-aza-
5 4,7 β -dimethyl-16-(4-chlorobenzylidene)-5 α -androstan-3-one but
substituting diethyl benzylphosphonate for diethyl 4-chlorobenzyl-
phosphonate: m/z= 390
1H NMR(500 MHz, CDCl₃): 0.75 (s, 3H); 0.88 (s, 3H); 1.05 (d, 3H);
2.94 (s, 3H); 3.08 (dd, 1H); 6.28 (s, 0.4H); 6.35 (s, 0.6H); 7.15-7.35(m,
10 5H).

EXAMPLE 105

4-aza-4,7 β -dimethyl-16-(4-methylbenzylidene)-5 α -androstan-3- one (129)

This example was prepared in a similar fashion as 4-aza-
4,7 β -dimethyl-16-(4-chlorobenzylidene)-5 α -androstan-3-one but
substituting diethyl 4-methylphosphonate for diethyl 4-chlorobenzyl-
phosphonate: m/z= 404
20 1H NMR (500 MHz, CDCl₃): 0.78 (s, 3H); 0.85 (s, 3H); 1.1 (d, 3H);
2.32 (s, 3H); 2.94 (s, 3H); 3.08 (dd, 1H); 6.30 (s, 0.4H); 6.38 (s, 0.6H);
7.10-7.24 (m, 5H).

EXAMPLE 106

4-aza-4,7 β -dimethyl-16-(4-chlorobenzyl)-5 α -androstan-3-one (130)

To a solution of 4-aza-4,7 β -dimethyl-16-(4-chloro-
benzylidene)-5 α -androstan-3-one (33 mg) in ethanol (4 mL) was added
5% Rh/C and the black suspension stirred under a hydrogen balloon.
30 After 2 hours the mixture was filtered to remove catalyst, concentrated
and purified on silica gel (hexanes:acetone 3:1) to give the desired
product as a 3:1 mixture of isomers: m/z 427

- 141 -

¹H NMR (500 MHz, CDCl₃): 0.84 (s, 3H); 0.86 (s, 3H); 1.02 (d, 3H); 2.92 (bs, 2.7H); 2.93 (bs, 1.3H); 2.98 (s, 3H); 3.02 (dd, 1H); 7.10 (d, 2H), 7.25 (d, 2H).

5

EXAMPLE 107

4-aza-4,7β-dimethyl-16-(4-methylbenzyl)-5α-androstan-3-one (131)

This example was prepared similarly to the procedure used for 4-aza-4,7β-dimethyl-16-(4-chlorobenzyl)-5α-androstan-3-one: m/z=

10 408

¹H NMR (500 MHz, CDCl₃): 0.86 (s, 6H); 1.04 (d, 3H); 2.33 (s, 3H); 2.95 (s, 2H); 2.96 (s, 1H); 3.05 (dd, 1H); 7.06-7.11 (m, 4H).

15

EXAMPLE 108

4-aza-4,7β-dimethyl-16-(3-pyridylmethyl)-5α-androstan-3-one (132)

This example was prepared similarly to the procedure used for 4-aza-4,7β-dimethyl-16-(4-chlorobenzyl)-5α-androstan-3-one except 3-pyridylmethyl-dimethylphosphonate was used:

20 m/z= 395

¹H NMR (500 MHz, CDCl₃): 0.89 (s, 3H); 0.88 (s, 3H); 1.03 (d, 3H); 2.93 (bs, 2H); 2.94 (bs, 1H); 2.98 (s, 3H); 3.04 (dd, 1H); 7.10 (d, 2H), 7.25 (d, 2H); 7.58 (s, 1H); 8.55 (s, 2H).

25

EXAMPLE 109

4-aza-4,7β-dimethyl-16α-methanesulfonyl-5α-androstan-3-one (119)

Following Reaction Scheme 13, to a solution of 4-aza-4,7β-dimethyl-16α-hydroxy-5α-androstan-3-one (65 mg, 0.2 mmol) in

30 anhydrous dichloromethane was added a catalytic amount of DMAP followed with methanesulfonic anhydride (45 mg, 1.1 eq). After 15 min, the reaction was diluted with dichloromethane, washed with 1M HCl (x3), 1M sodium bicarbonate, water and brine, dried over anhydrous

- 142 -

magnesium sulfate filtered and concentrated to yield the desired compound of sufficient purity: m/z=398

¹H NMR (500 MHz, CDCl₃): 0.78 (s, 3H); 0.85 (s, 3H); 1.02 (d, 3H); 2.95 (s, 3H); 3.1 (dd, 2H); 5.18 (m, 1H);

5

EXAMPLE 110

4-aza-4,7β-dimethyl-16β-thiophenoxy-5α-androstan-3-one (120)

To a solution of thiophenol (50 μL, 2.5 eq) in anhydrous THF was added sodium hydride (20 mg, 2.6 eq). After stirring 20 min, a THF solution of 4-aza-4,7β-dimethyl-16α-methanesulfonyl-5α-androstan-3-one (65 mg, 0.2 mmol) was added and the mixture stirred 20 hours at ambient temperature. The reaction was quenched with 1M ammonium chloride and diluted with ethyl acetate, washed with water and brine, dried over anhydrous magnesium sulfate filtered and concentrated. The desired compound was purified by silica gel chromatography (hexanes:isopropanol 9:1): m/z=412
¹H NMR (500 MHz, CDCl₃): 0.86 (s, 3H); 0.96 (s, 3H); 1.06 (d, 3H); 2.94 (s, 3H); 3.06 (dd, 2H); 3.65 (m, 1H); 7.26-7.70 (m, 5H).

20

EXAMPLE 111

4-aza-4,7β-dimethyl-16β-(4-chlorothiophenoxy)-5α-androstan-3-one (121)

This compound was prepared in a similar fashion as 4-aza-4,7β-dimethyl-16β-thiophenoxy-5α-androstan-3-one but substituting 4-chlorothiophenol in place of thiophenol: m/z=446
¹H NMR (500 MHz, CDCl₃): 0.85 (s, 3H); 0.96 (s, 3H); 1.04 (d, 3H); 2.94 (s, 3H); 3.02 (dd, 2H); 3.61 (m, 1H); 7.22 (d, 2H); 7.32 (d, 2H).

30

- 143 -

EXAMPLE 112

4-aza-4,7 β -dimethyl-16 β -(4-fluorothiophenoxy)-5 α -androstan-3-one (122)

5 This compound was prepared in a similar fashion as 4-aza-4,7 β -dimethyl-16 β -thiophenoxy-5 α -androstan-3-one but substituting 4-fluorothiophenol in place of thiophenol: m/z=431
1H NMR (500 MHz, CDCl₃): 0.85 (s, 3H); 0.96 (s, 3H); 1.05 (d, 3H); 2.92 (s, 3H); 3.03 (dd, 2H); 3.51 (m, 1H); 6.99 (d, 2H); 7.35 (d, 2H).

10

EXAMPLE 113

4-aza-4,7 β -dimethyl-16 β -(4-methylthiophenoxy)-5 α -androstan-3-one (123)

15 This compound was prepared in a similar fashion as 4-aza-4,7 β -dimethyl-16 β -thiophenoxy-5 α -androstan-3-one but substituting 4-methylthiophenol in place of thiophenol:m/z=426
1H NMR(500 MHz, CDCl₃): 0.75 (s, 3H); 0.95 (s, 3H); 1.1 (d, 3H); 2.31 (s, 3H); 2.94 (s, 3H); 3.02 (dd, 2H); 3.59 (m, 1H); 7.09 (d, 2H); 7.22 (d, 2H).

20

EXAMPLE 114

4-aza-4,7 β -dimethyl-16 β -(4-methoxythiophenoxy)-5 α -androstan-3-one (124)

25 This compound was prepared in a similar fashion as 4-aza-4,7 β -dimethyl-16 β -thiophenoxy-5 α -androstan-3-one but substituting 4-methoxythiophenol in place of thiophenol: m/z= 443
1H NMR (500 MHz, CDCl₃): 0.81 (s,3H); 0.93 (s,3H); 1.18 (d,3H); 2.93 (s,3H); 3.02 (dd,2H); 3.50 (m,1H); 3.81 (s,3H); 7.45 (d,2H); 7.67 (d,2H).

30

- 144 -

EXAMPLE 115

4-aza-4,7 β -dimethyl-16 β -phenylsulfinyl-5 α -androstan-3-one (125)

To a solution of 4-aza-4,7 β -dimethyl-16 β -thiophenoxy-5 α -androstan-3-one (20 mg, 0.05 mmol) in dichloromethane at 0°C was added mCPBA (11 mg, 1 eq) and the solution stirred 1 hour. The reaction was diluted with dichloromethane and washed with 1M sodium bicarbonate, water, brine and dried over anhydrous sodium sulfate. The desired compound was purified by silica gel chromatography to yield a 4.6:1 mixture of diastereomers: m/z=428
 1 H NMR(500 MHz, CDCl₃): 0.83 (s, 3H); 0.92 (s, 3H); 1.01 (d, 3H); 2.92 (s, 3H); 3.01 (dd, 2H); 3.19 (m, 0.85H); 3.55 (m, 0.15H); 7.5-7.70 (m, 5H).

EXAMPLE 116

4-aza-4,7 β -dimethyl-16 β -phenylsulfonyl-5 α -androstan-3-one (126)
A solution of 4-aza-4,7 β -dimethyl-16 β -phenylsulfinyl-5 α -androstan-3-one 912 mg, 0.03 mmol) in dichloromethane was treated with mCPBA (9 mg, 1.5 eq) for 3 hours. The reaction was diluted with dichloromethane and washed with 1M sodium bicarbonate, water, brine and dried over anhydrous sodium sulfate. The desired compound was purified by silica gel chromatography (hexanes:isopropanol 7:3): m/z=444
 1 H NMR (500 MHz, CDCl₃): 0.85 (s, 3H); 0.91 (s, 3H); 1.0 (d, 3H); 2.95 (s, 3H); 3.05 (dd, 2H); 3.55 (m, 0.15H); 7.41 (t, 1H); 7.55 (t, 2H); 7.90 (d, 1H), 7.90 (d, 1H)

EXAMPLE 117

3-Oxo-4-aza-4,16 β -dimethyl-5 α -androstane

This compound is made by converting the readily available 4-aza-4,16 β -dimethyl-androstan-3,17-dione to the 17-triflate. Reduction of the 17-triflate through conventional methods yields the titled 16- β methyl analog.

- 145 -

Mass spectrum: m/z 304 (M+1)
400 MHz NMR (CDCl₃): δ 0.76 (s, 3H); 0.85 (s, 3H); 1.04 (d, 3H); 2.90
(s, 3H); 3.01 (dd, 1H).

- 146 -

WHAT IS CLAIMED IS:

1. A method of treating acne comprising the step of administering to a person in need thereof a therapeutically effective amount of a 5α -reductase inhibitor and a retinoid agent and at least one member selected from the group consisting of an antibacterial agent, a keratolytic agent and an anti-inflammatory agent.

5 2. The method of Claim 1 wherein said 5α -reductase inhibitor is a 5α -reductase 1 inhibitor.

10 3. The method of Claim 2 further comprising a 5α -reductase 2 inhibitor.

15 4. The method of Claim 3 wherein said 5α -reductase 2 inhibitor is finasteride, epristeride or turosteride.

5. The method of Claim 2 wherein said 5α -reductase 1 inhibitor is selected from the group consisting of (I.):

20

or a pharmaceutically acceptable salt or ester thereof,
wherein for Structure I:
R is selected from hydrogen, methyl, ethyl, -OH, -NH₂, and -SCH₃;
the dashed lines "—" a and b independently represent a single bond or
a double bond providing that when b is a double bond, the 5α
hydrogen, Ha, is absent;
=Z is selected from:

- 147 -

- 1) oxo,
- 2) α -hydrogen and a β -substituent selected from:
 - a) C₁-C₄ alkyl,
 - b) C₂-C₄ alkenyl,
 - c) CH₂COOH,
 - d) -OH,
 - e) -COOH,
 - f) -COO(C₁-C₄ alkyl),
 - g) -OC(O)NR¹R² wherein R¹ and R² independently are selected from:
 - i) H,
 - ii) C₁-C₄ alkyl,
 - iii) phenyl, and
 - iv) benzyl, or
- 15 R¹ and R² together with the nitrogen atom to which they are attached represent a 5-6 membered saturated heterocycle, optionally containing one other heteratom selected from -O-, -S- and -N(R')- wherein R' is -H or methyl;
- 20 h) C₁-C₄ alkoxy,
- i) C₃-C₆ cycloalkoxy,
- j) -OC(O)-C₁-4 alkyl,
- k) halo,
- l) hydroxy -C₁-C₂ alkyl,
- 25 m) halo-C₁-C₂ alkyl,
- n) -CF₃, and
- o) C₃-C₆ cycloalkyl;
- 3) =CHR³; wherein R³ is selected from -H and C₁-C₄ alkyl; and
- 30 4) spirocyclopropane-R³ of structure:

- 148 -

(II.)

5 or a pharmaceutically acceptable salt or ester thereof
wherein:
the C₁-C₂ carbon-carbon bond may be a single bond, or a double
bond as indicated by the dashed line;
R⁴ is selected from the group consisting of hydrogen and C₁-10 alkyl;
10 R⁵ is selected from the group consisting of hydrogen and C₁-10 alkyl;
one of R⁶ and R⁷ is selected from the group consisting of hydrogen
and methyl, and the other is selected from the group consisting of:
 (a) amino;
 (b) cyano;
 15 (c) fluoro;
 (d) methyl;
 (e) OH;
 (f) -C(O)NR_bR_c, where R_b and R_c are independently H,
C₁-6 alkyl, aryl, or arylC₁-6alkyl; wherein the alkyl
moiety can be substituted with 1-3 of: halo; C₁-4alkoxy;
20 or trifluoromethyl; and the aryl moiety can be substituted
with 1-3 of: halo; C₁-4alkyl; C₁-4 alkoxy; or
trifluoromethyl;
 (g) C₁-10 alkyl-X-;
 25 (h) C₂-10 alkenyl-X-;
wherein the C₁-10 alkyl in (g) and C₂-10 alkenyl in (h)
can be unsubstituted or substituted with one to three of:

- 149 -

i) halo; hydroxy; cyano; nitro; mono-, di- or trihalomethyl; oxo; hydroxysulfonyl; carboxy;

ii) hydroxyC₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkylthio; C₁₋₆alkylsulfonyl; C₁₋₆alkyloxycarbonyl; in which the C₁₋₆ alkyl moiety can be further substituted with 1-3 of:

halo; C₁₋₄ alkoxy; or trifluoromethyl;

iii) arylthio; aryl; aryloxy; arylsulfonyl; aryloxycarbonyl; in which the aryl moiety can be further substituted with 1-3 of: halo; C₁₋₄ alkyl; C₁₋₄ alkoxy; or trifluoromethyl;

iv) -C(O)NR_bR_c; -N(R_b)-C(O)-R_c; -NR_bR_c; where R_b and R_c are defined above;

(i) aryl-X-;

15 (j) heteroaryl-X-, wherein heteroaryl is a 5, 6 or 7 membered heteroaromatic ring containing at least one member selected from the group consisting of: one ring oxygen atom, one ring sulfur atom, 1-4 ring nitrogen atoms , or combinations thereof; in which the heteroaromatic ring can also be fused with one benzo or heteroaromatic ring; wherein the aryl in (i) and heteroaryl in (j) can be unsubstituted or substituted with one to three of:

v) halo; hydroxy; cyano; nitro; mono-, di- or trihalomethyl; mono-, di- or trihalomethoxy; C₂₋₆ alkenyl; C₃₋₆ cycloalkyl; formyl; hydrosulfonyl; carboxy; ureido;

25 vi) C₁₋₆ alkyl; hydroxy C₁₋₆ alkyl; C₁₋₆ alkyloxy; C₁₋₆ alkyloxy C₁₋₆alkyl; C₁₋₆ alkylcarbonyl; C₁₋₆ alkylsulfonyl; C₁₋₆ alkylthio; C₁₋₆ alkylsulfinyl; C₁₋₆ alkylsulfonamido; C₁₋₆ alkylarylsulfonamido; C₁₋₆ alkyloxy-carbonyl; C₁₋₆ alkyloxycarbonyl C₁₋₆alkyl; R_bR_cN-C(O)-C₁₋₆alkyl; C₁₋₆ alkanoylamino C₁₋₆ alkyl; aroylamino C₁₋₆ alkyl; wherein the C₁₋₆

- 150 -

alkyl moiety can be substituted with 1-3 of:
halo; C₁-4alkoxy; or trifluoromethyl;

5 *vii)* aryl; aryloxy; arylcarbonyl; arylthio;
arylsulfonyl; arylsulfinyl; arylsulfonamido;
aryloxycarbonyl; wherein the aryl moiety can
be substituted with 1-3 of: halo; C₁-4alkyl; C₁-
4alkoxy; or trifluoromethyl;

10 *viii)* -C(O)NR_bR_c; -O-C(O)-NR_bR_c; -N(R_b)-C(O)-
R_c; -NR_bR_c; R_b-C(O)-N(R_c)-; where R_b and
R_c are defined in (f) above; and -N(R_b)-C(O)-
OR_g, wherein R_g is C₁-6alkyl or aryl, in which
the alkyl moiety can be substituted with 1-3 of:
halo; C₁-4alkoxy; or trifluoromethyl, and the
aryl moiety can be substituted with 1-3 of: halo;
C₁-4alkyl; C₁-4 alkoxy, or trifluoromethyl;
-N(R_b)-C(O) NR_cR_d, wherein R_d is selected
from H, C₁-6 alkyl, and aryl; in which said C₁-
6alkyl and aryl can be substituted as described
above in (f) for R_b and R_c;

15 *ix)* a heterocyclic group, which is a 5, 6 or 7
membered ring, containing at least one member
selected from the group consisting of: one ring
oxygen atom, one ring sulfur atom, 1-4 ring
nitrogen atoms, or combinations thereof; in
which the heterocyclic ring can be aromatic,
unsaturated, or saturated, wherein the
heterocyclic ring can be fused with a benzo
ring, and
wherein said heterocyclic ring can be
substituted with one to three substituents, as
defined above for *v)*, *vi)*, *vii)* and *viii)*,
excluding *ix)* a heterocyclic group; and

20 (k) R⁶ and R⁷ taken together can be carbonyl oxygen;

25

30

- 151 -

(l) R⁶ and R⁷ taken together can be =CH-R_g, wherein R_g is defined in viii); and wherein:

X is selected from the group consisting of:

5 -O-; -S(O)_n-; -C(O)-; -CH(R_e)-; -C(O)-O-*; -C(O)-N(R_e)-*;
-N(R_e)-C(O)-O-*; -O-C(O)-N(R_e)-*; -N(R_e)C(O)-N(R_e)-;
-O-CH(R_e)-*; -N(R_e)-; wherein R_e is H, C₁₋₃ alkyl, aryl, aryl-C₁₋₃ alkyl, or unsubstituted or substituted heteroaryl, as defined above in (j);
10 wherein the asterisk (*) denotes the bond which is attached to the 16-position in Structure II; and n is zero, 1 or 2.

6. The method of Claim 5 wherein said 5 α -reductase inhibitor is of the structural formula:

15

where R is H or CH₃.

20 7. The method of Claim 5 wherein said 5 α -reductase is of the structural formula:

- 152 -

8. The method of Claim 5 wherein said 5 α -reductase inhibitor is of the structural formula:

5

9. The method of Claim 5 wherein Z is α -hydrogen and the β -substituent is C₁-C₄alkyl, or C₂-C₄alkenyl.

10. The method of Claim 5 wherein said 5 α reductase inhibitor compound of Formula II, R⁴ is hydrogen or methyl and R⁵ is hydrogen or methyl.

11. The method of Claim 5 wherein said 5 α reductase inhibitor compound of Formula II, R⁶ and R⁷ are selected from unsubstituted or substituted aryloxy, C₁-10 alkyloxy or C₁-10 alkylthio.

12. The method of Claim 5 wherein Formula II, the C₁-C₂ carbon-carbon bond is a single bond, R⁴ is methyl, R⁵ is methyl, R⁷ is selected from unsubstituted or substituted aryloxy, and R⁶ is hydrogen.

- 153 -

13. The method of Claim 5 wherein said Formula II: one of R⁶ and R⁷ is selected from the group consisting of hydrogen and methyl, and the other is selected from the group consisting of:

5 (b) cyano;
 (c) fluoro;
 (e) OH;
 (g) C₁-10 alkyl-X-; or C₁-10 alkyl-X-, where alkyl can be substituted with aryl, and wherein aryl in turn can be substituted with 1-2 of halo or C₁-6alkyl;

10 (h) C₂-10 alkenyl-X-;
 (i) aryl-X-;
 (j) heteroaryl-X-, wherein heteroaryl is a 5 or 6 membered heteroaromatic ring containing 1-2 ring nitrogen atoms; wherein the aryl in (i) and heteroaryl in (j) can be unsubstituted or substituted with one to two of:
 (x) halo; cyano; nitro; trihalomethyl; trihalomethoxy; C₁-6 alkyl; aryl; C₁-6 alkylsulfonyl; C₁-6 alkyl-arylsulfonamino;
 (xi) -NR_bR_c; R_b-C(O)-N(R_c)-; wherein R_b and R_c are independently H, C₁-6 alkyl, aryl, or arylC₁-6alkyl; wherein the alkyl moiety can be substituted with 1-3 of: halo; C₁-4alkoxy; or trifluoromethyl; and the aryl moiety can be substituted with 1-3 of: halo; C₁-4alkyl; C₁-4 alkoxy; or trifluoromethyl;

15 (xii) a heterocyclic group, which is a 5 membered aromatic ring, containing one ring nitrogen atom, or one ring oxygen and one ring nitrogen atom; and
 (k) wherein R⁶ and R⁷ taken together can be carbonyl oxygen; and wherein:

20 30 X is selected from the group consisting of:
 -O-; -S(O)_n-; -CH(R_e)-; -C(O)-N(R_e)-*;
 -O-C(O)-N(R_e)-*;
 wherein R_e is H, C₁-3 alkyl, aryl, aryl C₁-3 alkyl;

X is selected from the group consisting of:

-O-; -S(O)_n-; -CH(R_e)-; -C(O)-N(R_e)-*;

-O-C(O)-N(R_e)-*;

wherein R_e is H, C₁-3 alkyl, aryl, aryl C₁-3 alkyl;

- 154 -

wherein the asterisk (*) denotes the bond which is attached to the 16-position in Structure II; and n is zero or 2.

14. The method of Claim 5 wherein said compound is
5 selected from the group consisting of:
7 β -ethyl-4-methyl-4-aza-cholest-5-en-3-one;
7 β -ethyl-4-methyl-4-aza-cholestane-3-one;
7 β -ethyl-4-aza-5 α -cholestan-3-one;
7 β -carboxymethyl-4-aza-cholest-5-en-3-one;
10 7 β -carboxymethyl-4-aza-cholestan-3-one;
7 β -propyl-4-methyl-4-aza-cholest-5-en-3-one;
7 β -propyl-4-methyl-4-aza-5 α -cholestan-3-one;
7 β -propyl-4-aza-5 α -cholestan-3-one;
7 β -methyl-4-aza-cholest-5-en-3-one;
15 7 β -methyl-4-aza-cholestan-3-one;
4,7 β -dimethyl-4-aza-cholest-5-en-3-one;
4,7 β -dimethyl-4-aza-5 α -cholestan-3-one;
4-methyl-4-aza-5 α -cholestan-3,7-dione;
7 β -acetoxy-4-methyl-4-aza-5 α -cholestan-3-one;
20 7 β -hydroxy-4-methyl-4-aza-5 α -cholestane-3-one;
7 β -methoxy-4-methyl-4-aza-5 α -cholestane-3-one;
7 β -hydroxymethyl-4-aza-5 α -cholestane-3-one;
7 β -bromomethyl-4-aza-5 α -cholestane-3-one;
7 β -chloromethyl-4-aza-5 α -cholestane-3-one;
25 7 β -fluoromethyl-4-aza-5 α -cholestane-3-one;
7 β -carboxy-4-aza-5 α -cholestane-3-one;
7 β -trifluoromethyl-4-aza-cholest-5-en-3-one;
7 β -methoxy-4-methyl-4-aza-cholesta-5-en-3-one;
7 β -cyclopropyloxy-4-methyl-4-aza-5 α -cholestane-3-one;
30 7 β -propylidene-4-methyl-4-aza-5 α -cholestane-3-one;
7 β -(2-ethyl)spiroethylene-4-methyl-4-aza-5 α -cholestane-3-one;
7 β -methyl-4-aza-5 α -cholest-1-en-3-one;
4-aza-4,7 β -dimethyl-5 α -androstane-3,16-dione;
4-aza-4-methyl-5 α -androstan-3,16-dione;

- 155 -

3-oxo-4-aza-4-methyl-16 β -hydroxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(benzylaminocarbonyloxy)-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -benzoylamino-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -methoxy-5 α -androstane;
5 3-oxo-4-aza-4-methyl-16 β -allyloxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(n-propyloxy)-5 α -androstane;
3-oxo-4-aza-4-methyl-16 α -hydroxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(phenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(phenoxy)-5 α -androst-1-ene;
10 3-oxo-4-aza-4-methyl-16 α -methoxy-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(4-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androst-1-ene;
3-oxo-4-aza-7 β -methyl-16 β -(4-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane;
15 3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-7 β -methyl-16 β -(4-methylphenoxy)-5 α -androst-1-ene;
3-oxo-4-aza-7 β -methyl-16 β -[4-(1-pyrrolyl)phenoxy]-5 α -androst-1-ene;
3-oxo-4-aza-4,7 β -dimethyl-16 β -hydroxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -methoxy-5 α -androstane;
20 3-oxo-4-aza-4,7 β -dimethyl-16 β -allyloxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3,3-dimethylallyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(n-propyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(iso-pentoxyl)-5 α -androstane;
3-oxo-4-aza-4,16 α -dimethyl-16 β -hydroxy-5 α -androstane;
25 3-oxo-4-aza-4,7 β -dimethyl-16 β -ethyloxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -benzyloxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 α -hydroxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -methylthio-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(n-propylthio)-5 α -androstane;
30 3-oxo-4-aza-4,7 β -dimethyl-16 β -fluoro-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -cyano-5 α -androstane;
3-oxo-4-aza-4-methyl-16 β -(1-hexyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(n-propyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -benzyl-5 α -androstane;

- 156 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorobenzyl)-5 α -androstane;
3-oxo-4-aza-4,16 α -dimethyl-16 β -methoxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-cyanophenoxy)-5 α -androstane;
5 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-nitrophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(1-naphthylloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chloro-4-methylphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylphenoxy)-5 α -androstane;
10 3-oxo-4-aza-4,7 β -dimethyl-16 β -(tert-butyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-methyl-1-butyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 α -(n-propyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -
androstane;
15 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethoxyphenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -ethylthio-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -ethylsulfonyl-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylsulfonylphenoxy)-5 α -
20 androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(4-tolylsulfonylamino)phenoxy]-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-pyridyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[(4-phenyl)phenoxy]-5 α -androstane;
25 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-pyrazinyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(5-oxazolyl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-pyrimidinyloxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(1-pyrryl)phenoxy]-5 α -androstane;
30 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-aminophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-acetylaminophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-benzoylaminophenoxy)-5 α -
androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane;

- 157 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -(phenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androst-1-ene;

5 3-oxo-4-aza-4,7 β -dimethyl-16-(4-chlorobenzylidene)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-benzylidene-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-(4-methylbenzylidene)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-(4-chlorobenzyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16-(4-methylbenzyl)-5 α -androstane;

10 3-oxo-4-aza-4,7 β -dimethyl-16-(3-pyridylmethyl)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 α -methanesulfonyl-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -thiophenoxy-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorothiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorothiophenoxy)-5 α -androstane;

15 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylthiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methoxythiophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -phenylsulfinyl-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -phenylsulfonyl-5 α -androstane;
3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -

20 androstane;
3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -hydroxy-5 α -androstane;
3-oxo-4-aza-4,7 β ,16 α -trimethyl-16 β -methoxy-5 α -androstane;
pharmaceutically acceptable salts thereof.

25 15. The method of Claim 14 wherein said 5 α reductase inhibitor compound is selected from the group consisting of:
7 β -ethyl-4-methyl-4-azacholestan-3-one;
7 β -propyl-4-methyl-4-aza-5 α -cholestan-3-one;
4,7 β -dimethyl-4-aza-5 α -cholestan-3-one;

30 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-cyanophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-nitrophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(1-naphthyloxy)-5 α -androstane;

- 158 -

3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chloro-4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylphenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethylphenoxy)-5 α -androstane;
5 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-trifluoromethoxyphenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-methylsulfonylphenoxy)-5 α -androstane;
10 3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(4-tolylsulfonylamino)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[(4-phenyl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-fluorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(5-oxazolyl)phenoxy]-5 α -androstane;
15 3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(1-pyrryl)phenoxy]-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-aminophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-acetylaminophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-benzoylaminophenoxy)-5 α -androstane;
20 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(phenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(2-chlorophenoxy)-5 α -androstane;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(3-chlorophenoxy)-5 α -androstane;
and the pharmaceutically acceptable salts thereof.
25
16. The method of Claim 15 wherein said 5 α reductase inhibitor compound is selected from:
4,7 β -dimethyl-4-aza-5 α -cholestane-3-one;
3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy)-5 α -androstane, 3-
30 3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-(1-pyrryl)phenoxy]-5 α -androstane,
or a pharmaceutically acceptable salt thereof.

17. The method of Claim 1 wherein said retinoid agent is tretinoin or isotretinoin.

- 159 -

18. The method of Claim 1 wherein said antibacterial is selected from the group consisting of: aminoglycosides, amphenicols, ansamycins, beta-lactams, lincosamides, macrolides, polypeptides, tetracyclines, 2,4,-diaminopyrimidines, nitrofurans, quinolones,
5 sulfonamides, and sulfones, or mixture thereof.

19. The method of Claim 1 wherein said antibacterial is selected from the group consisting of:
(a) aminoglycosides, including amikacin, apramycin, arbekacin,
10 bambermycins, butirosin, dibekacin, dihydrostreptomycin, fortimicin(s), gentamicin, isepamicin, kanamycin, micronomicin, neomycin, neomycin undecylenate, netilmicin, paromomycin, ribostamycin, sisomicin, spectinomycin, streptomycin, streptonicozid, tobramycin;
(b) amphenicols, including azidamfenicol, chloramphenicol,
15 chloramphenicol palmitate, chloramphenicol pantothenate, florfenicol, thiamphenicol;
(c) ansamycins, including rifamide, rifampin, rifamycin SV, rifaximin;
(d) beta-lactams, including imipenem, cefaclor, cefadroxil, cefamandole,
20 cefatrizine, cefazedone, cefazolin, cefixime, cefmenoxime, cefodizime, cefonicid, cefoperazone, ceforanide, cefotaxime, cefotiam, cefpimizole, cefpiramide, cefpodoxime proxetil, cefroxadine, cefsulodin, ceftazidime, cefteram, ceftezole, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, cefuzonam, cephacetrile sodium, cephalexin, cephaloglycin, cephaloridine, cephalosporin C, cephalothin, cephapirin sodium,
25 cephadrine, pivcefalexin, cefbuperazone, cefmetazole, cefminox, cefotetan, cefoxitin, aztreonam, carumonam, tigemonam, flomoxef, moxolactam, amidinocillin, amidinocillin pivoxil, amoxicillin, ampicillin, apalcillin, aspoxicillin, azidocillin, azlocillin, bacampicillin, benzylpenicillin acid, benzylpenicillin sodium, carbenicillin, carfecillin
30 sodium, carindacillin, clometocillin, cloxacillin, cyclacillin, dicloxacillin, diphenicillin sodium, epicillin, fenbenicillin, floxacillin, hetacillin, lenampicillin, metampicillin, methicillin sodium, mezlocillin, nafcillin sodium, oxacillin, penamecillin, penethamate hydriodide, penicillin G benethamine, penicillin G benzathine, penicillin G benzhydrylamine,

- 160 -

penicillin G calcium, penicillin G hydrabamine, penicillin G potassium, penicillin G procaine, penicillin N, penicillin O, penicillin V, ,penicillin V benzathine, penicillin V hydrabamine, penimepicycline, phenethicillin potassium, piperacillin, pivampicillin, propicillin, quinacillin,
5 sulbenicillin, talampicillin, temocillin, ticarcillin;
(e) lincosamides, including clindamycin, lincomycin;
(f) macrolides, including azithromycin, carbomycin, clarithromycin, erythromycin, erythromycin acistrate, erythromycin estolate, erythromycin glucoheptonate, erythromycin lactobionate, erythromycin
10 propionate, erythromycin stearate, josamycin, leucomycins, midecamycins, miokamycin, oleandomycin, primycin, rokitamycin, rosaramycin, roxithromycin, spiramycin, troleandomycin;
(g) polypeptides, including amphotericin, bacitracin, capreomycin, colistin, enduracidin, enviomycin, fusafungine, gramicidin(s), gramicidin
15 S, mikamycin, polymyxin, polymyxin B-methanesulfonic acid, pristinamycin, ristocetin, teicoplanin, thiostrepton, tuberactinomycin, tyrocidine, tyrothricin, vancomycin, viomycin, viomycin pantothenate, virginiamycin, zinc bacitracin;
(h) tetracyclines, including apicycline, chlortetracycline, clomocycline, demeclocycline, doxycycline, guamecycline, lymecycline, mecloxycline, methacycline, minocycline, oxytetracycline, penimepicycline, pipacycline, rolitetracycline, sancycline, senociclin, tetracycline;
20 (i) 2,4-diaminopyrimidines, including brodimoprim, tetroxoprim, trimethoprim;
(j) nitrofurans, including furaltadone, furazolium chloride, nifuradene, nifuratel, nifurfoline, nifurpirinol, nifurprazine, nifurtoinol, nitrofurantoin;
(k) quinolones, including amifloxacin, cinoxacin, ciprofloxacin, difloxacin, enoxacin, fleroxacin, flumequine, lomefloxacin, miloxacin,
30 nalidixic acid, norfloxacin, ofloxacin, oxolinic acid, pefloxacin, pipemidic acid, piromidic acid, rosoxacin, temafloxacin, tosufloxacin, OPC 7251 fluoroquinolone (Otsuka);
(l) sulfonamides, including acetyl sulfamethoxypyrazine, acetyl sulfisoxazole, azosulfamide, benzylsulfamide, chloramine-B, chloramine-

- 161 -

T, dichloramine-T, formosulfathiazole, N-formylsulfisomidine, N-beta-D-glucosylsulfanilamide, mafenide, 4'-(methylsulfamoyl)sulfanilanilide, p-nitrosulfathiazole, nopyrlsulfamide, phthalylsulfacetamide, phthalylsulfathiazole, salazosulfadimidine, succinylsulfathiazole,

5 sulfabenzamide, sulfacetamide, sulfachlorpyridazine, sulfachrysoidine, sulfacytine, sulfadiazine, sulfadicramide, sulfadimethoxine, sulfadoxine, sulfathidole, sulfaguanidine, sulfaguanol, sulfalene, sulfaloxic acid, sulfamerazine, sulfameter, sulfamethazine, sulfamethizole, sulfamethomidine, sulfamethoxazole, sulfamethoxypyridazine,

10 sulfametrole, sulfamidochrysoidine, sulfamoxole, sulfanilamide, sulfanilamidomethanesulfonic acid triethanolamine salt, 4-sulfanilamidosalicylic acid, N-sulfanilylsulfanilamide, sulfanilylurea, N-sulfanilyl-3,4-xylamide, sulfanitran, sulfaperine, sulfaphenazole, sulfaproxyline, sulfapyrazine, sulfapyridine, sulfasomizole,

15 sulfasymazine, sulfathiazole, sulfathiourea, sulfatolamide, sulfisomidine, sulfisoxazole;

(m) sulfones, including acedapsone, acediasulfone, acetosulfone sodium, dapsone, diathymosulfone, glucosulfone sodium, solasulfone, succisulfone, sulfanilic acid, p-sulfanilylbenzylamine, p,p'-

20 sulfonyldianiline-N,N'-digalactoside, sulfoxone sodium, thiazolsulfone; and (n) the group consisting of:cycloserine, mupirocin, tuberin, clofoctol, hexidine, methenamine, methenamine anhydromethylene-citrate, methenamine hippurate, methenamine mandelate, methenamine sulfosalicylate, nitroxoline, xibornol, benzoyl peroxide, or mixtures

25 thereof.

20. The method of Claim 19 wherein said antibacterial is clindamycin, OPC 7251(Otsuka) fluoroquinolone or erythromycin.

30 21. The method of Claim 1 wherein said keratolytic agent is selected from the group consisting of algestone acetophenide, azelaic acid, benzoyl peroxide, benzoyl peroxide/erythromycin, cyoctol, dichloroacetic acid, metronidazole, motretinide, resorcinol, salicylic acid,

- 162 -

sulfur, tetroquinone, alpha-hydroxy acids, glycolic acid, and mixtures thereof.

22. The method of Claim 21 wherein said keratolytic
5 agent is benzoyl peroxide, benzoyl peroxide/erythromycin, or salicylic acid.

23. The method of Claim 1 wherein said anti-inflammatory is selected from the group consisting of:
10 aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, glucocorticoids or mixture thereof.

15 24. The method of Claim 1 wherein said anti-inflammatory is selected from the group consisting of: (a) aminoarylcarboxylic acid derivatives, including enfenamic acid, etofenamate, flufenamic acid, isonixin, meclofenamic acid, mefenamic acid, niflumic acid, talniflumate, terofenamate, tolfenamic acid;
20 (b) arylacetic acid derivatives, including acemetacin, alclofenac, amfenac, bufexamac, cinmetacin, clopirac, diclofenac sodium, etodolac, felbinac, fenclofenac, fenclorac, fenclozic acid, fentiazac, glucametacin, ibufenac, indomethacin, isofezolac, isoxepac, lonazolac, metiazinic acid, oxametacine, proglumetacin, sulindac, tiaramide, tolmetin, zomepirac;
25 (c) arylbutyric acid derivatives, including bumadizon, butibufen, fenbufen, xenbucin;
(d) arylcarboxylic acids, including clidanac, ketorolac, tinordidine;
(e) arylpropionic acid derivatives, including alminoprofen, benoxaprofen, bucloxic acid, carprofen, fenoprofen, flunoxaprofen, flurbiprofen,
30 ibuprofen, ibuproxam, indoprofen, ketoprofen, loxoprofen, miroprofen, naproxen, oxaprozin, piketoprofen, pirprofen, pranoprofen, protizinic acid, suprofen, tiaprofenic acid;
(f) pyrazoles, including difenamizole, epirizole;

- 163 -

(g) pyrazolones, including apazone, benzpiperylon, feprazone, mofebutazone, morazone, oxyphenbutazone, phenylbutazone, pipebuzone, propyphenazone, ramifenazone, suxibuzone, thiazolinobutazone;

5 (h) salicylic acid derivatives, including acetaminosalol, aspirin, benorylate, bromosaligenin, calcium acetylsalicylate, diflunisal, etersalate, fendosal, gentisic acid, glycol salicylate, imidazole salicylate, lysine acetylsalicylate, mesalamine, morpholine salicylate, 1-naphthyl salicylate, olsalazine, parsalmide, phenyl acetylsalicylate, phenyl

10 salicylate, salacetamide, salicylamide O-acetic acid, salicylsulfuric acid, salsalate, sulfasalazine;

(i) one member selected from the group consisting of: epsilon-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide,

15 ditazol, emorfazole, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, tenidap;

(j) glucocorticoids, including 21-acetoxypregnенolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide,

20 chloroprednisone, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, defluprednate, enoxolone, fluazacort, flucoronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl,

25 fluocortolone flujorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone, flurandrenolide, formocortal, halcinonide, halometasone, halopredone acetate, hydrocortamate, hydrocortisone, hydrocortisone acetate, hydrocortisone phosphate, hydrocortisone 21-sodium succinate, hydrocortisone tebutate, maziprednone, medrysone, meprednisone,

30 methylprednisonole, mometasone furoate, paramethasone prednicarbate, prednisolone, prednisolone 21-diethylaminoacetate, prednisolone sodium phosphate, prednisolone sodium succinate, prednisolone sodium 21-m-sulfobenzoate, prednisolone 21-stearoylglycolate, prednisolone tebutate, prednisolone 21-trimethylacetate, prednisone, prednival, prednylidene,

- 164 -

prednylidene 21-diethylaminoacetate, tixocotrol, triamcinolone, triamcinolone acetonide, triamcinolone benetonide, triamcinolone hexacetonide, or mixture thereof.

5 25. The method of Claim 22 wherein said anti-inflammatory is prednisone.

10 26. A method of inhibiting acne-related 5 α -reductase or the isozymes thereof, comprising the step of administering to a person in need of such inhibition a therapeutically effective amount each of the 5 α -reductase inhibitor, retinoid agent and one member selected from an antibacterial, keratolytic and anti-inflammatory agent.

15 27. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a 5 α -reductase inhibitor, retinoid agent and one member selected from an antibacterial, keratolytic and anti-inflammatory agent.

20 28. The pharmaceutical composition of Claim 27 wherein said 5 α -reductase inhibitor is a 5 α -reductase 1 inhibitor.

25 29. The pharmaceutical composition of Claim 27 wherein said 5 α -reductase inhibitor is a 5 α -reductase 2 inhibitor.

30 30. The pharmaceutical composition of Claim 27 wherein said 5 α -reductase inhibitor is a mixture of 5 α -reductase 1 and 2 inhibitors.

35 31. The pharmaceutical composition of Claim 28 wherein the 5 α -reductase 1 inhibitor is selected from the group consisting of: 4,7- β -dimethyl-4-aza-5 α -cholestane-3-one; 3-oxo-4-aza-4,7 β -dimethyl-16 β -(4-chlorophenoxy]-5 α -androstane, 3-oxo-4-aza-4,7 β -dimethyl-16 β -[4-[1-pyrryl]phenoxy]-5 α -androstane, or a pharmaceutically acceptable salt thereof.

- 165 -

32. The pharmaceutical composition of Claim 27 wherein said retinoid agent is tretinoin or isotretinoin.

33. A pharmaceutical composition comprising a
5 pharmaceutically acceptable carrier and a therapeutically effective amount of a 5 α -reductase 1 inhibitor, as defined in Claim 3, a retinoid agent and at least one member selected from an antibacterial, keratolytic and anti-inflammatory agent.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/13305

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : A61K 31/44

US CL : 514/284

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/284

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y, P	Chemical Abstracts, Volume 122, issued 1995, P.L. Durette et al., "Preparation of substituted 4-aza-5a-androstanones as 5-a-reductase inhibitors", page 1222, column 2, abstract number 56297g, WO 93/23,029 issued 25 November 1993, see entire abstract.	1-20, 26-33
Y	US, A, 4,727,088 (SCOTT ET AL) 23 February 1988, see abstract.	1-20, 26-33
A	Chemical Abstracts, Volume 116, issued 1992, T. Yanagisawa et al, "Testosterone 5-a-inhibitors containing benzopyrans or benzofurans for acne treatment", page 46308, column 1, abstract number 46302s, JP 03-68,518 issued 25 March 1991, see entire abstract.	1-20, 26-33

 Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"
"E"	earlier document published on or after the international filing date	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"
"O"	document referring to an oral disclosure, use, exhibition or other means	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"P"	document published prior to the international filing date but later than the priority date claimed	"&"
		document member of the same patent family

Date of the actual completion of the international search
21 JANUARY 1996

Date of mailing of the international search report

13 FEB 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230Authorized officer
BARBARA FRAZIER
Telephone No. (703) 308-1235

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/13305

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Chemical Abstracts, Volume 115, issued 1991, H. Komazaki, "Hair tonics and acne-controlling topical preparations containing testosterone 5- α -reductase inhibitors", abstract number 214528v, JP 03-188,019 issued 16 August 1991, see entire abstract.	1-20, 26-33
Y	Chemical Abstracts, Volume 110, issued 1988, J.P. Laugier et al, "Stabilized erythromycin-based composition for treatment of acne", abstract number 121427t, BE 1,000,513 issued 31 May 1988, see entire abstract.	1-20, 26-33
Y	Chemical Abstracts, Volume 111, issued 1989, A. Kasprowicz et al, "Erythromycin and penetrating agents-containing ointment in acne vulgaris therapy", page 375, column 1, abstract number 45130u, Pol. J. Pharmacol. Pharm. 40(5), pages 465-469, see entire abstract.	1-20, 26-33
Y	Chemical Abstracts, Volume 108, issued 1987, B. Renault et al, "Topical pharmaceutical containing erythromycin and propylene glycol or dipropylene glycol for the treatment of acne", abstract number 192779d, DE 3,712,758 issued 22 October 1987, see entire abstract.	1-20, 26-33
Y	Chemical Abstracts, Volume 89, issued 1978, C. Grupper, "Composition containing erythromycin for treating acne", abstract number 152731q, Ger. Offen. 2,802,924 issued 27 July 1978, see entire abstract.	1-20, 26-33

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/13305

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.:**
because they relate to subject matter not required to be searched by this Authority, namely:

2. **Claims Nos.:**
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.:**
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-20, 26-33

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/13305

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-20 and 26-33, drawn to a method of treating acne comprising the step of administering to a person in need thereof a therapeutically effective amount of a 5-alpha-reductase inhibitor, a retinoid agent, and an antibacterial agent.

Group II, claims 1-17, 21, 22, and 26-33, drawn to a method of treating acne comprising the step of administering to a person in need thereof a therapeutically effective amount of a 5-alpha-reductase inhibitor, a retinoid agent, and a keratolytic agent.

Group III, claims 1-17 and 23-33, drawn to a method of treating acne comprising the step of administering to a person in need thereof a therapeutically effective amount of a 5-alpha-reductase inhibitor, a retinoid agent, and an anti-inflammatory agent.

The inventions listed as Groups I-III do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: each group is drawn to separate and distinct classes of therapeutic agents (i.e., antibacterial, keratolytic, and anti-inflammatory agents), which are each known to treat different conditions by different mechanisms.