Algoritmusok II. gyakorlat

9. gyakorlat, április 13.

Konvex-burok: A legkisebb P konvex poligon, amelyre tartalmazza a Q ponthalmaz minden pontját. Jelölése: CH(Q).

Probléma: Adott Q ponthalmaz konvex burkának meghatározása.

Graham pásztázás

- ullet Legyen p_0 a minimális y-koordinátájú Q-beli pont, vagy egyezés esetén a bal szélső ilyen pont.
- Legyen p_1, p_2, \ldots, p_m a többi Q-beli pont, p_0 körül poláris szög szerint az óramutató járásával ellenkező sorrendben (ha több mint egy pontnak ugyanaz a szöge, távolítsuk el mindet, a p_0 -tól legtávolabbi kivételével).

- A megmaradt pontokat az óramutató járásával ellentétes irányban haladva tároljuk.
- Legyen p_0 , p_1 , p_2 , p_3 ,..., p_m $(m \le n)$ a pontok rendezett listája.
- •Legyen S egy verem, amelyben a szóba jöhető konvex burok pontokat tároljuk.

```
• Kezdetben S = p_0 p_1 p_2. Az algoritmus további lépései: for i \leftarrow 3 to m

do while ( a Next_to_top(S), top(S), és p_i pontok szöge nem fordul balra)

POP(S)

PUSH(S, p_i)

return S
```

Jarvis menetelés

Az ajándékcsomagolás elve módszert használja.

Módszer:

- Legyen p_0 a legalsó pont (holtverseny esetén a leginkább balra lévő).
- A konvex burok következő p_1 csúcsa az a pont, amelynek a legkisebb a p_0 körüli poláris szöge.
 - Az óramutató járásával ellenkező irányban haladunk
 - Holtverseny esetén a legtávolabbi pontot vesszük
- A p_2 , p_3 ,..., p_k csúcsokat hasonlóan kapjuk, ahol p_k a legmagasabban lévő pont.
- $-Ap_0, p_1, p_2, p_3, ..., p_k$ sorozat a CH(Q) jobb lánca.

- A bal lánc kiszámítását p_k-val kezdjük.
- Válasszuk p_{k+1} -nek azt a pontot, amelynek a negatív x-tengelytől mérve legkisebb a poláris szöge p_k körül, az óramutató járásával ellenkező irányban haladva, holtverseny esetén a legtávolabbi pontot választva.
- Hasonló módon kapjuk $p_{k+2},..., p_t = p_0$ -t.


```
Jarvis-menetelés (Q)
P<sub>0</sub> = minimális y-koordinátájú Q-beli pont (több ilyen
esetén válasszuk az x-koordináta szerint is minimálisat)
P = P_0
S = \emptyset
do
  R = next(P)
   for i=0 to m do
      fir = Forgásirány(P, P_i, R)
      if (fir > 0) vagy ((fir = 0) és (R P és P_i között van)) then
        R = P_{i}
   P = R
   S.add(P)
while P != P_0
return S
```

Határozzuk meg a (1,2), (1,4), (3,3), (4,6), (5,0), (5,3), (5,5), (7,5) pontok konvex burkát Graham-féle pásztázással, illetve Jarvis meneteléssel!

Graham pásztázás

- I. lépés: csúcsok polárszög szerinti rendezése:
- E(5,0),H(7,5),G(5,5),D(4,6),C(3,3),B(1,4),A(1,2)
- II. lépés: a konvex burok csúcsait tároló verem kezelése:
- 1. $S_0 = [E, H, G]$
- 2. Forgásirány(H,G,D) Forgásirány(E,H,D) S₂=[E,H,D]
- 3. ForgásIrány(H,D,C) S₃=[E,H,D,C]
- ForgásIrány(D,C,B) ForgásIrány(H,D,B) S₄=[E,H,D,B]
- 5. ForgásIrány(D,B,A) S₅=[E,H,D,B,A]

Jarvis menetelés

1. iteráció	2. iteráció	3. iteráció	4. iteráció	5. iteráció
FI(E,A,F)=-12	FI(H,A,A)=0	FI(D,A,E)=22	FI(B,A,C)=4	FI(A,A,B)=0
FI(E,B,F)=-12	FI(H,B,A)=12	FI(D,B,A)=6	FI(B,B,A)=0	FI(A,B,B)=0
FI(E,C,F)=-6	FI(H,C,B)=-8	FI(D,C,B)=-7	FI(B,C,A)=-4	FI(A,C,B)=4
FI(E,D,F)=-3	FI(H,D,B)=9	FI(D,D,B)=0	FI(B,D,A)=-6	FI(A,D,C)=-5
FI(E,E,F)=0	FI(H,E,D)=-17	FI(D,E,B)=-20	FI(B,E,A)=-8	FI(A,E,C)=8
FI(E,F,F)=0	FI(H,F,D)=-8	FI(D,F,B)=-11	FI(B,F,A)=-8	FI(A,F,E)=-12
FI(E,G,F)=0	FI(H,G,D)=-2	FI(D,G,B)=-5	FI(B,G,A)=-8	FI(A,G,E)=-20
FI(E,H,G)=10	FI(H,H,D)=0	FI(D,H,B)=-9	FI(B,H,A)=-12	FI(A,H,E)=-24
$H \in CH(Q)$	$D \in CH(Q)$	$B \in CH(Q)$	$A \in CH(Q)$	$E \in CH(Q)$

Vizualizáció:

https://medium.com/dev-genius/grahams-scan-visually-explained-be54b712e2ba

https://www.youtube.com/watch?v=Ps1idzOx6LA

Szorgalmi feladat:

Határozzuk meg a (0, 3), (1, 1), (2, 2), (4, 4),(0, 0), (1, 2), (3, 1), (3, 3) pontok konvex burkát Graham-féle pásztázással, illetve Jarvis meneteléssel!