# 编译原理与技术课程作业

----作业 1~9 合集

## Choimoe

https://github.com/Choimoe/SDUCompilerPrinciplesHomework SDU 编译原理与技术课程作业 2024.12.31

# Contents

| 1        | 作业  | <b>1</b>                                     |
|----------|-----|----------------------------------------------|
|          | 1.1 | 作业 1.1                                       |
|          |     | 1.1.1 题目描述                                   |
|          |     | 1.1.2 解答                                     |
|          | 1.2 | 作业 1.2                                       |
|          |     | 1.2.1 题目描述                                   |
|          |     | 1.2.2 解答                                     |
|          | 1.3 | 作业 1.3                                       |
|          | 1.0 | 1.3.1 题目描述                                   |
|          |     | 1.3.2 解答                                     |
|          |     | 1.0.2 加口                                     |
| 2        | 作业  | 2                                            |
|          | 2.1 | 作业 2.1                                       |
|          |     | 2.1.1 题目描述 7                                 |
|          |     | 2.1.2 解答                                     |
|          | 2.2 | 作业 2.2                                       |
|          |     | 2.2.1 题目描述                                   |
|          |     | 2.2.2 解答                                     |
|          | 2.3 | 作业 2.3 · · · · · · · · · · · · · · · · · · · |
|          | 2.0 | 2.3.1 题目描述                                   |
|          |     | 2.3.2 解答                                     |
|          |     | 2.3.2 件句                                     |
| 3        | 作业  | 3                                            |
|          | 3.1 | 作业 3.1                                       |
|          |     | 3.1.1 题目描述 10                                |
|          |     | 3.1.2 解答                                     |
|          |     | 701 H                                        |
| 4        | 作业  | 4 13                                         |
|          | 4.1 | 作业 4.1                                       |
|          |     | 4.1.1 题目描述                                   |
|          |     | 4.1.2 解答                                     |
|          | 4.2 | 作业 4.2                                       |
|          |     | 4.2.1 题目描述                                   |
|          |     | 4.2.2 解答                                     |
|          |     |                                              |
| <b>5</b> | 作业  | 5                                            |
|          | 5.1 | 作业 5.1                                       |
|          |     | 5.1.1 题目描述 15                                |
|          |     | 5.1.2 解答                                     |
|          |     |                                              |
| 6        | 作业  |                                              |
|          | 6.1 | 作业 6.1                                       |
|          | 6.2 | 作业 6.2                                       |
|          | 6.3 | 作业 6.3                                       |

| 7 | 作业  | 7          | <b>2</b> 4 |
|---|-----|------------|------------|
|   | 7.1 | 作业 7.1     | 24         |
|   |     | 7.1.1 题目描述 | 24         |
|   |     | 7.1.2 解答   | 24         |
|   | 7.2 | 作业 7.2     | 25         |
|   |     | 7.2.1 题目描述 | 25         |
|   |     | 7.2.2 解答   | 25         |
| 8 | 作业  | 8          | 27         |
|   | 8.1 | 作业 8.1     | 27         |
|   |     | 8.1.1 题目描述 | 27         |
|   |     | 8.1.2 解答   | 27         |
|   | 8.2 | 作业 8.2     | 28         |
|   |     | 8.2.1 题目描述 | 28         |
|   |     | 8.2.2 解答   | 28         |
| 9 | 作业  | 9          | 30         |
|   | 9.1 | 题目描述       | 30         |
|   |     | M答         |            |

## 1.1 作业 1.1

#### 1.1.1 题目描述

画图表示编译过程的各个阶段,并简要说明各阶段的功能。

## 1.1.2 解答



Figure 1: 编译过程的阶段

- 1. 词法分析器: 又称扫描器, 输入源程序, 进行词法分析, 输出单词符号。
- 2. **语法分析器**:又称扫描器,对单词符号串进行语法分析,识别出各类语法单位,最终判断输入串是否构成语法上正确的"程序"。
- 3. **语义分析与中间代码生成**:按照语义规则对语法分析器归约(或推导)出的语法单位进行语义分析, 并把它们翻译成一定形式的中间代码。
- 4. 中间代码优化器: 对中间代码进行优化处理。
- 5. 目标代码生成器: 把中间代码翻译成目标代码。
- 6. **错误处理**:发现各种错误、准确指出错误的性质和发生错误的地点、将错误所造成的影响限制在尽可能小的范围、自动校正错误(如果可能)。
- 7. 符号表: 用于登记源程序的各类信息和编译各阶段的进展状况。

## 1.2 作业 1.2

## 1.2.1 题目描述

求表达式 " $a \lor b \neq c + d \land a * b < f$ "的后缀式。

#### 1.2.2 解答

| 类别       | 算符    | 符号                     | 结合性  |
|----------|-------|------------------------|------|
| 位运算符     | 按位取反  | ~                      | 右结合  |
|          | 幂、负   | **,-(@)                | 右结合  |
| 算术算符     | 乘除、取余 | $*(\times),/(\div),\%$ | 左结合  |
|          | 加减    | +,-                    | 左结合  |
| 位运算符     | 左移、右移 | ≪,≫                    | 左结合  |
| <br>关系算符 | 大于小于  | <, ≤, >, ≥             | 不可结合 |
| 人不开门     | 等于不等  | =, ≠                   | 不可结合 |
|          | 按位与   | &                      | 左结合  |
| 位运算符     | 按位异或  | $\oplus$               | 左结合  |
|          | 按位或   |                        | 左结合  |
|          | 非     | ¬,!,或 not              | 右结合  |
| 逻辑算符     | 与     | ∧,&&, <b>或 and</b>     | 左结合  |
|          | 或     | ∨,  ,或 <b>or</b>       | 左结合  |
| 三目算符     | 三目算符  | ?:                     | 右结合  |
| 赋值算符     | 赋值等   | = 或:=                  | 右结合  |

## 按照算符优先级,有:

## 1.3 作业 1.3

## 1.3.1 题目描述

编写汇编程序:

- 1. 在静态数据区声明 3 个 32 位变量 a、b、c, 其中 a、b 初始化为 10 和 20, c 不初始化;
- 2. 在代码区编写代码,将 a+b 的结果保存到变量 c。

## 1.3.2 解答

使用在 1.3.6 传送指令与 1.3.7 基本运算指令中学到的指令:

## 指令集

```
add reg, imm/reg/mem;两个操作数相加,结果存入第一个操作数的寄存器。
mov mem, imm/reg;第一个操作数是目的操作数,第二个操作数是源操作数。
```

不难写出:

#### addition.s

```
1  section .data
2   a dd 10
3   b dd 20
4   c dd 0
5  section .text
6  global _start
7   _start:
8   mov eax, [a]
9   add eax, [b]
10   mov [c], eax
11   mov eax, 1
12   int 0x80
```

这里使用 sys\_exit 信号退出程序,可以使用 nasm 编译链接并执行:

#### bash

```
1 $ nasm -f elf64 -o addition.o addition.s
2 $ ld -o addition addition.o
3 $ ./addition
4 $
```

因为只有简单的相加所以没有输出,写输出程序有点麻烦,于是可以通过 gdb 来查看具体的值:

#### gdb

```
1 (gdb) break _start
2 Breakpoint 1 at 0x401000
3 (gdb) run
4 Starting program: /home/choimoe/Desktop/asm_learn/addition
5 Breakpoint 1, 0x0000000000401000 in _start ()
6 (gdb) stepi
7 0x0000000000401007 in _start ()
8 (gdb) stepi
9 0x000000000040100e in _start ()
10 (gdb) p (int)c
11 $1 = 0
12 (gdb) stepi
13 0x0000000000401015 in _start ()
14 (gdb) p (int)c
15 $2 = 30
```

## 2.1 作业 2.1

## 2.1.1 题目描述

令文法为

$$\begin{split} E &\to E \lor T \mid T \\ T &\to T \land F \mid F \\ F &\to \neg F \mid (E) \mid i \end{split}$$

- 1. 写出  $i \wedge (E)$  的最左推导和最右推导。
- 2. 画出  $i_1 \wedge \neg (i_2 \vee i_3)$  的语法树。
- 3. 写出  $i_1 \wedge \neg (i_2 \vee i_3)$  的所有短语、直接短语和句柄

#### 2.1.2 解答

题目 2.1.1 若推导过程中, 总是最先替换最右 (左) 的非终结符, 则称为最右 (左) 推导:

$$E \Rightarrow T \Rightarrow T \land F \Rightarrow F \land F \Rightarrow i \land F \Rightarrow i \land (E)$$
$$E \Rightarrow T \Rightarrow T \land F \Rightarrow T \land (E) \Rightarrow F \land (E) \Rightarrow i \land (E)$$

#### 题目 2.1.2 首先写出一个推导:

$$E \Rightarrow T \Rightarrow T \land F \Rightarrow F \land \neg F \Rightarrow i_1 \land \neg(E) \Rightarrow i_1 \land \neg(E \lor T) \stackrel{\dots}{\Longrightarrow} i_1 \land \neg(i_2 \lor i_3)$$

于是可以画出语法树:



## 题目 2.1.3 由于 (3) 与 (2) 的语句相同,于是可以看图说话:

1. 短语:  $i_1 \wedge \neg (i_2 \vee i_3)$ 、 $i_1$ 、 $\wedge$ 、 $\neg (i_2 \vee i_3)$ 、 $(i_2 \vee i_3)$ 、 $i_2 \vee i_3$ 、 $i_2$ 、 $\vee$ 、 $i_3$ ;

2. 直接短语:  $i_1$ 、 $i_2$ 、 $i_3$ ;

3. 句柄: i<sub>1</sub>。

## 2.2 作业 2.2

## 2.2.1 题目描述

证明下面的文法是二义的:  $S \rightarrow iSeS \mid iS \mid i$ 

#### 2.2.2 解答

和 if-else 长得差不多,类似课件中的上下文无关文法表示条件语句,可以采用两个 i 对应一个 e 的方式来构造,也就是 iiSeS 这种形式:

•  $S \Rightarrow iS \Rightarrow iiSeS$ ;

•  $S \Rightarrow iSeS \Rightarrow iiSeS$ .

右侧以 iiiei 为例子画出不同的语法树:



## 2.3 作业 2.3

#### 2.3.1 题目描述

类 Lisp 程序文法

$$G[E]: E \to (A, E, E) \mid i$$
$$A \to + \mid - \mid \times \mid \div$$

- 1. 任意变量与 i 匹配, $(\theta,a,b)$  表示  $a\theta b$  的结果,其中  $\theta$  为运算符,试写出  $a\times(b+c)\div d$  的类 Lisp 程 序形式;
- 2. 画出上述句子的语法树;
- 3. 写出上述句子的短语、直接短语和句柄。

## 2.3.2 解答

**题目 2.3.1** 首先不难画出  $a \times (b+c) \div d$  的表达式树:



于是可以写出类 Lisp 程序形式 (实际上是前序遍历的形式?) 为:  $(\div,(\times,a,(+,b,c)),d)$ 。

## 题目 2.3.2 根据上面的程序形式可以写出推导过程:

$$E \Rightarrow (A, E, E)$$

$$\Rightarrow (\div, (A, E, E), d)$$

$$\Rightarrow (\div, (\times, a, (A, E, E)), d)$$

$$\Rightarrow (\div, (\times, a, (+, b, c)), d)$$

## 不难画出语法树:



## 题目 2.3.3 根据上图看图写话:

- 1. 短语:  $(\div, (\times, a, (+, b, c)), d)$ 、 $(, \div, ,, (\times, a, (+, b, c)), d, )$ 、 $\times, a, (+, b, c), +, b, c;$
- 2. 直接短语:  $\div$ 、×、a、+、b、c、d;
- 3. 句柄: ÷。

## 3.1 作业 3.1

## 3.1.1 题目描述

C 风格变量声明的正规式:

$$(i|r)v(,v)^*;$$

其中i和r分别表示整型和实型数据类型,v表示变量名。

- 1. 构造 NFA, 并单符化。
- 2. 确定化。
- 3. 最小化。

## 3.1.2 解答

构造 NFA,并单符化。 按照给出的步骤,不难画出:



Figure 2: 正则  $r \Rightarrow NFA M$ 

**确定化**。 对于上面画出的 NFA,首先设字母表为  $\Sigma = \{i, r, ', ', v, '; '\}$ ,初态为 X,可以写出闭包:



| I                 | $I_r$     | $I_i$     | $I_v$             | $I_{,}$   | $I_{;}$ |
|-------------------|-----------|-----------|-------------------|-----------|---------|
| $\{X\}$           | $\{q_1\}$ | $\{q_1\}$ | $\Phi$            | Φ         | Φ       |
| $\{q_1\}$         | $\Phi$    | $\Phi$    | $\{q_2,q_3,q_5\}$ | $\Phi$    | $\Phi$  |
| $\{q_2,q_3,q_5\}$ | $\Phi$    | $\Phi$    | $\Phi$            | $\{q_4\}$ | $\{Y\}$ |
| $\{q_4\}$         | $\Phi$    | $\Phi$    | $\{q_3,q_5\}$     | $\Phi$    | $\Phi$  |
| $\{q_3,q_5\}$     | $\Phi$    | $\Phi$    | $\Phi$            | $\{q_4\}$ | $\{Y\}$ |
| $\{Y\}$           | $\Phi$    | Φ         | $\Phi$            | $\Phi$    | $\Phi$  |

Table 1:  $\delta'$ :  $S \times \Sigma \to S$ 

可以按次序编号为:

| I | $I_r$ | $I_i$ | $I_v$ | $I_{,}$ | $I_{;}$ |
|---|-------|-------|-------|---------|---------|
| S | 1     | 1     |       |         |         |
| 1 |       |       | 2     |         |         |
| 2 |       |       |       | 3       | T       |
| 3 |       |       | 4     |         |         |
| 4 |       |       |       | 3       | T       |
| T |       |       |       |         |         |

Table 2:  $\delta'$ :  $S \times \Sigma \to S$ 

根据  $\delta'$  可以画出:



最小化。 在上表中可以看出 2 与 4 对应的列完全相同,故其为等价状态,可以合并为:



此时将 2,4 编号为 2',编号表格为:

| I  | $I_r$ | $I_i$ | $I_v$ | $I_{,}$ | $I_{;}$ |
|----|-------|-------|-------|---------|---------|
| S  | 1     | 1     |       |         |         |
| 1  |       |       | 2'    |         |         |
| 2' |       |       |       | 3       | T       |
| 3  |       |       | 2'    |         |         |
| T  |       |       |       |         |         |

Table 3:  $\delta'$ :  $S \times \Sigma \to S$ 

可以看到 1 与 3 完全相同,记为 1',可以化简为:



此时编号表格为:



Table 4:  $\delta'$ :  $S \times \Sigma \to S$ 

每列有且仅有一种转移,是最小化的充分条件,故此时为最小化 DFA。

## 4.1 作业 4.1

#### 4.1.1 题目描述

将右线性文法  $G[S]: S \to xA \mid yB \mid \varepsilon$ ,  $A \to yA \mid y$ ,  $B \to xB \mid x$ , 转换为:

- 1. 有限自动机。
- 2. 正则式。

#### 4.1.2 解答

**有限自动机**。 令有限自动机  $M = (\{S, A, B, f\}, \{x, y\}, \delta, \{S\}, \{f\})$ ,其中 f 为添加的终态符号。 类似例题 3.15 的步骤,构造  $\delta$ :

- 1. 对于产生式  $S \rightarrow xA$ , 由 S 向 A 引 x 弧。
- 2. 对于产生式  $S \rightarrow yB$ , 由 S 向 B 引 y 弧。
- 3. 对于产生式  $S \to \varepsilon$ , 由 S 向 f 引  $\varepsilon$  弧。
- 4. ...

不难画出:



**正规式** 正规式可以直接与线性文法转换,于是就不借助有限自动机了(虽然这个题使用自动机转换也很简单)。

首先改写:

- 1.  $S \to xA \mid yB \mid \varepsilon$  不包含本身,直接写为:  $S \to (xA \mid yB \mid \varepsilon)$ ;
- 2.  $A \rightarrow yA \mid y$  改写为  $A \rightarrow (yA\mid y)$ , 也就是  $A \rightarrow y^*y$ , B 完全同理, 改写为  $B \rightarrow x^*x$ ;
- 3. 将第二步的结果代入第一步,得到  $S \to (xy^*y|yx^*x|\varepsilon)$ 。

最终得到正规式为  $(xy^*y|yx^*x|\varepsilon)$ ,如果允许使用 + 与 ?,可以简写为  $(xy^+|yx^+)$ ?。

## 4.2 作业 4.2

## 4.2.1 题目描述

给定右线性文法 G[S], 求其等价的左线性文法:

$$\begin{split} S &\to 0S \mid 1S \mid 1A \mid 0B \\ A &\to 1C \mid 1 \\ B &\to 0C \mid 0 \\ C &\to 0C \mid 1C \mid 0 \mid 1 \end{split}$$

## 4.2.2 解答

字符数较少,似乎用正则比较方便?,下面通过右线性文法转正规式,再将正规式转左线性文法来实现转换:

**转正规式** 与上题类似,首先改写: (下方便起见,记  $\Sigma = \{0,1\}$ )

- $S \rightarrow 0S \mid 1S \mid 1A \mid 0B$  首先写为  $S \rightarrow (\Sigma S \mid 1A \mid 0B)$ , 也就是  $S \rightarrow \Sigma^*(1A \mid 0B)$ ;
- *A* → 1*C* | 1 简写为 *A* → 1*C*?, *B* 同理简写为 0*C*?;
- $C \to 0C \mid 1C \mid 0 \mid 1$  首先写为  $C \to (\Sigma C \mid \Sigma)$ , 也就是  $\Sigma^+$ ;
- 依次代入上面式子,得到  $S \to \Sigma^*(11|00)\Sigma^+$ ?

得到正规式为  $(0|1)*(11|00)(((1|0)(1|0)*)|\varepsilon)$ 。

## 左线性文法 类似上文,进行逐步拆解:

- 1.  $\Sigma^*(11|00)\Sigma^+$ ? 替换为  $S \to S_1\Sigma^+$ ?、 $S_1 \to S_21|S_30$ 、 $S_2 \to S_41$ 、 $S_3 \to S_40$ 、 $S_4 \to \Sigma^*$ ;
- 2.  $S \to S_1\Sigma^+$ ? 可写为  $S \to S_10 \mid S_11 \mid S0 \mid S1$ ;
- 3.  $S_4 \to \Sigma^*$  可写为  $S_4 \to S_40 \mid S_41 \mid 0 \mid 1 \mid \varepsilon$ ;

总伤,该正规式  $\Sigma^*$ (11|00) $\Sigma^+$ ?,也就是给出的右线性文法对应的左线性文法为:

$$S \to S_{2}1 \mid S_{3}0 \mid S_{1}0 \mid S_{1}1 \mid S0 \mid S1$$

$$S_{1} \to S_{2}1 \mid S_{3}0$$

$$S_{2} \to S_{4}1$$

$$S_{3} \to S_{4}0$$

$$S_{4} \to S_{4}0 \mid S_{4}1 \mid 0 \mid 1 \mid \varepsilon$$

## 5.1 作业 5.1

#### 5.1.1 题目描述

C 风格声明语句文法为  $G[L]=(\{L,D,T\},\{;,,,\mathrm{id},\mathrm{int},\mathrm{double}\},P,L)$ ,产生式如下:  $L\to L;D$   $L\to D$   $D\to T$  id  $D\to D,id$   $T\to \mathrm{int}$   $T\to \mathrm{double}$ 

- 1. 消除文法产生式的左递归;
- 2. 构造所有非终结符号的首符集 First;
- 3. 构造所有非终结符号的后继符集 Follow;
- 4. 构造 LL(1) 分析表;
- 5. 给出句子 int i; double x, y 的分析过程。

#### 5.1.2 解答

## 消除文法产生式的左递归 转为右递归文法:

 $L \to L; D$   $L \to D$  替换为:

- $L \to DL'$
- $L' \rightarrow ; DL' \mid \varepsilon$

 $D \to T id$   $D \to D, id$  替换为:

- $D \rightarrow T id D'$
- $D' \rightarrow ,id D' \mid \varepsilon$

## First 可以直接写出:

#### First

```
1 First(T)={int, double}
2 First(D)={, , ε}
3 First(D')={int, double}
4 First(L')={; , ε}
5 First(L)={int, double}
```

Follow 由于不存在隐式左递归,可以整理为:

- $L \to DL'$
- $L' \rightarrow ; DL' \mid \varepsilon$
- $D \rightarrow T id D'$
- $D' \rightarrow , id D' \mid \varepsilon$

## • $T \rightarrow \text{int} \mid \text{double}$

#### Follow

1 First(T)={id, #}
2 First(D)={; , #}
3 First(D')={; , #}
4 First(L')={#}
5 First(L)={#}

## LL(1) 分析表 不难画出:

Table 5: LL(1) 分析表

|    |                   | 10010 01           | <b>DD</b> (1) | 77 1/1/12            |                       |                        |
|----|-------------------|--------------------|---------------|----------------------|-----------------------|------------------------|
|    | ,                 | ;                  | id            | int                  | double                | #                      |
| L  |                   |                    |               | $\#L \to DL'$        | $\#L \to DL'$         |                        |
| L' |                   | $\#L' \to ;DL'$    |               |                      |                       | $\#L' \to \varepsilon$ |
| D  |                   |                    |               | $D \to T \ id \ D'$  | $D \to T \ id \ D'$   |                        |
| D' | $D' \to, id \ D'$ | $D'\to\varepsilon$ |               |                      |                       | $D' \to \varepsilon$   |
| T  |                   |                    |               | $T \to \mathrm{int}$ | $T \to \text{double}$ |                        |

## int i; double x,y 分析过程: 可以写出:

| 1  | #E                | int $i$ ; double $x, y \#$ |
|----|-------------------|----------------------------|
| 2  | #L'D'             | int $i$ ; double $x, y\#$  |
| 3  | $\#L'D' \ id \ T$ | int $i$ ; double $x, y\#$  |
| 4  | #L'D' id int      | int $i$ ; double $x, y\#$  |
| 5  | #L'D' id          | i; double $x, y #$         |
| 6  | #L'D'             | ; double $x, y\#$          |
| 7  | #L'               | ; double $x, y \#$         |
| 8  | #L'D;             | ; double $x, y \#$         |
| 9  | #L'D              | double $x, y \#$           |
| 10 | #L'D' id $T$      | double $x, y \#$           |
| 11 | #L'D' id double   | double $x, y \#$           |
| 12 | #L'D' id          | x,y#                       |
| 13 | #L'D'             | ,y#                        |
| 14 | #L'D' $id$ ,      | ,y#                        |
| 15 | #L'D' id          | y#                         |
| 16 | #L'D'             | #                          |
| 17 | #L'               | #                          |
| 18 | #                 | #                          |

文法  $G[E]: E \to E \circ E \mid EE \mid E* \mid (E) \mid i$  是生成正规式的二义文法,为了避免与文法元语言符号 "|" 冲突,或运算用符号 o 表示;连接运算则省略;\* 为闭包运算;i 表示单词,既任何表示单词的终结符号均可与之匹配:

- 1. 构造 LR(1) 项目集规范族;
- 2. 构造 LR(1) 分析表,如有冲突,请根据正规式的运算规则消除之;
- 3. 用 LR(1) 分析表分析有两个连续 a 或两个连续 b 的句子:  $(a \circ b) * (aa \circ bb)(a \circ b) *$ 。

## 6.1 作业 6.1

首先拓广文法,加入 $S \to E$ ,不难写出 First 与 Follow:

- E: First= $\{(, i), \text{ Follow} = \{\#, o, (, i, *)\}$
- S: First= $\{(, i), Follow=\{ \# \}$

首先尝试直接转换:

| State | Items                                                                | Lookaheads                            | Transitions         |
|-------|----------------------------------------------------------------------|---------------------------------------|---------------------|
| 0     | $S \to . E$                                                          | { # }                                 | $E \rightarrow 1$   |
|       | $\mathrm{E} \rightarrow . \; \mathrm{E} \; \mathrm{o} \; \mathrm{E}$ | { #, o, (, i, * }                     | $(\rightarrow 2$    |
|       | $\mathrm{E}  ightarrow . \ \mathrm{E} \ \mathrm{E}$                  | { #, o, (, i, * }                     | $i \to 3$           |
|       | $\mathrm{E}  ightarrow . \; \mathrm{E} \; *$                         | $\{ \#, o, (, i, *) \}$               |                     |
|       | $E \rightarrow . (E)$                                                | $\{ \#, o, (, i, *) \}$               |                     |
|       | $E \rightarrow . i$                                                  | $\{ \#, o, (, i, *) \}$               |                     |
| 1     | $S \to E$ .                                                          | { # }                                 | $(\rightarrow 2$    |
|       | $\mathrm{E} \to \mathrm{E}$ . o $\mathrm{E}$                         | $\{ \#, o, (, i, *) \}$               | $i \to 3$           |
|       | $\mathrm{E}  ightarrow \mathrm{E} \ . \ \mathrm{E}$                  | $\{ \#, o, (, i, *) \}$               | $E \to 14$          |
|       | $\mathrm{E} 	o \mathrm{E}$ . *                                       | $\{ \#, o, (, i, *) \}$               | $^* \rightarrow 15$ |
|       | $\to$ . E o E                                                        |                                       | $o \rightarrow 16$  |
|       | $\mathrm{E} \to . \; \mathrm{E} \; \mathrm{E}$                       | $\{ \#, o, (, i, *) \}$               |                     |
|       | $\mathrm{E} 	o . \; \mathrm{E} *$                                    | $\{ \#, o, (, i, *) \}$               |                     |
|       | $E \rightarrow . (E)$                                                | $\{ \#, o, (, i, *) \}$               |                     |
|       | $\mathrm{E} \rightarrow . i$                                         | $\{ \#, o, (, i, *) \}$               |                     |
| 2     | $E \rightarrow (E)$                                                  |                                       | $E \to 4$           |
|       |                                                                      | $\{ \ ),  \mathrm{o},  (,  i,  *  \}$ | $(\rightarrow 5)$   |
|       | $E \rightarrow . E E$                                                | $\{ \ ),  \mathrm{o},  (,  i,  *  \}$ | $i \to 6$           |
|       | $E \rightarrow . E *$                                                | $\{ \ ), o, (, i, * \}$               |                     |
|       |                                                                      | $\{ \ ), o, (, i, * \}$               |                     |
|       |                                                                      | $\{ \ ), o, (, i, * \}$               |                     |
| 3     | $\mathrm{E} \to i$ .                                                 | $\{ \#, o, (, i, *) \}$               |                     |
| 4     | $E \rightarrow (E.)$                                                 | $\{ \#, o, (, i, *) \}$               | $(\rightarrow 5)$   |
|       | $\mathrm{E} \to \mathrm{E}$ . o $\mathrm{E}$                         | $\{\ )$ , o, $(,i,{}^*\ \}$           | $i \to 6$           |
|       | $\mid E \to E \cdot E$                                               | $\{ \ ),  \mathrm{o},  (,  i,  *  \}$ | $E \to 9$           |

|               | l                                                                    |                                                                                                                          |                        |
|---------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|
|               | $\mathrm{E} 	o \mathrm{E} \cdot ^*$                                  |                                                                                                                          | $* \rightarrow 10$     |
|               | $\mathrm{E} \rightarrow . \; \mathrm{E} \; \mathrm{o} \; \mathrm{E}$ |                                                                                                                          | $o \rightarrow 11$     |
|               | $\mathrm{E} \rightarrow . \; \mathrm{E} \; \mathrm{E}$               | { ), o, (, i, * }                                                                                                        | $) \rightarrow 13$     |
|               | $E \rightarrow . E *$                                                | { ), o, (, i, * }                                                                                                        |                        |
|               |                                                                      | $\{\ ), o, (, i, * \}$                                                                                                   |                        |
|               | $E \rightarrow . i$                                                  | $\{\ ), o, (, i, * \}$                                                                                                   |                        |
| 5             |                                                                      | { ), o, (, i, * }                                                                                                        | $(\rightarrow 5$       |
|               |                                                                      | { ), o, (, i, * }                                                                                                        | $i \rightarrow 6$      |
|               | $\mathrm{E} \rightarrow . \; \mathrm{E} \; \mathrm{E}$               | $\{\ ), o, (, i, * \}$                                                                                                   | $\mathrm{E} 	o 7$      |
|               | $E \rightarrow . E^*$                                                | { ), o, (, i, * }                                                                                                        |                        |
|               |                                                                      | { ), o, (, i, * }                                                                                                        |                        |
|               | $E \rightarrow . i$                                                  | $\{\ ), o, (, i, * \}$                                                                                                   |                        |
| 6             | $E \rightarrow i$ .                                                  | { ), o, (, i, * }                                                                                                        |                        |
| 7             | $E \to (E.)$                                                         | { ), o, (, i, * }                                                                                                        | $(\rightarrow 5$       |
|               | $E \to E \cdot o E$                                                  | { ), o, (, i, * }                                                                                                        | $i \rightarrow 6$      |
|               | $\mathrm{E} \to \mathrm{E} \cdot \mathrm{E}$                         | { ), o, (, i, * }                                                                                                        | $) \rightarrow 8$      |
|               | $E \rightarrow E . *$                                                | $\{\ ), o, (, i, * \}$                                                                                                   | $E \rightarrow 9$      |
|               |                                                                      | { ), o, (, i, * }                                                                                                        | $* \rightarrow 10$     |
|               | $E \rightarrow . E E$                                                | $\{\ ), o, (, i, * \}$                                                                                                   | o → 11                 |
|               | $E \rightarrow . E^*$                                                |                                                                                                                          |                        |
|               |                                                                      | $\{\ ), o, (, i, * \}$                                                                                                   |                        |
|               | $E \rightarrow . i$                                                  | $\{\ ), o, (, i, * \}$                                                                                                   |                        |
| $\frac{8}{9}$ | $E \to (E).$                                                         | { ), o, (, i, * }                                                                                                        | ( ) 5                  |
| 9             |                                                                      | { ), o, (, i, * }                                                                                                        | $( \to 5 \\ i \to 6$   |
|               | $\begin{bmatrix} E \to E & o & E \\ E \to E & E \end{bmatrix}$       | $\{\ ), o, (, i, * \}$<br>$\{\ ), o, (, i, * \}$                                                                         | $t \to 0$<br>E $\to 9$ |
|               | $E \rightarrow E \cdot E$ $E \rightarrow E \cdot *$                  | $\{\ ), o, (, i, *) $                                                                                                    | $* \rightarrow 10$     |
|               |                                                                      | $\{\ ), o, (, i, *) $                                                                                                    | $o \rightarrow 11$     |
|               | $E \rightarrow . E E$                                                | $\{\ ), o, (, i, *) $                                                                                                    | 0 / 11                 |
|               |                                                                      | { ), o, (, i, * }                                                                                                        |                        |
|               | l .                                                                  | $\{\ ), o, (, i, *) \}$                                                                                                  |                        |
|               |                                                                      |                                                                                                                          |                        |
| 10            | $E \rightarrow E *$ .                                                | $\{ ), o, (, i, * \}$<br>$\{ ), o, (, i, * \}$                                                                           |                        |
| 11            | $E \rightarrow E o . E$                                              | { ), o, (, i, * }                                                                                                        | $(\rightarrow 5$       |
|               |                                                                      | { ), o, (, i, * }                                                                                                        |                        |
|               |                                                                      | { ), o, (, i, * }                                                                                                        |                        |
|               |                                                                      | { ), o, (, i, * }                                                                                                        |                        |
|               |                                                                      | { ), o, (, i, * }                                                                                                        |                        |
|               |                                                                      |                                                                                                                          |                        |
| 12            | $E \to E \circ E$ .                                                  | $ \begin{array}{c} \{\ ),  \mathbf{o},  (,  i,  ^*  \} \\ \hline \\ \{\ ),  \mathbf{o},  (,  i,  ^*  \} \\ \end{array} $ | $(\rightarrow 5$       |
|               | $\mathrm{E}  ightarrow \mathrm{E}$ . o $\mathrm{E}$                  | $\{ \ ),  \mathrm{o},  (,  i,  *  \}$                                                                                    | $i \to 6$              |
|               |                                                                      | $\{\ ),  \mathrm{o},  (,  i,  *  \}$                                                                                     |                        |
|               | $E \rightarrow E *$                                                  | $\{\ \}$                                                                                                                 | $* \rightarrow 10$     |
|               | $\mid E \rightarrow . E \circ E$                                     | { ), o, (, i, * }                                                                                                        | $o \rightarrow 11$     |
|               | $\mid E \rightarrow . E E$                                           | $\{\ ), {\bf o}, (, i, {}^*\ \}$                                                                                         |                        |
|               |                                                                      |                                                                                                                          |                        |

|    | $\to$ . E *                                                          | $\{ \ ),  \mathrm{o},  (,  i,  *  \}$ |                     |
|----|----------------------------------------------------------------------|---------------------------------------|---------------------|
|    | $E \rightarrow . (E)$                                                | $\{ \ ), o, (, i, * \}$               |                     |
|    |                                                                      | $\{\ )$ , o, $(, i, * \}$             |                     |
| 13 | $E \rightarrow (E)$ .                                                | { #, o, (, i, * }                     |                     |
| 14 | $\mathrm{E} \to \mathrm{E} \; \mathrm{E} \; .$                       | { #, o, (, i, * }                     | $(\rightarrow 2$    |
|    | $\mathrm{E} \to \mathrm{E}$ . o $\mathrm{E}$                         | $\{ \#, o, (, i, *) \}$               | $i \to 3$           |
|    | $\mathrm{E}  ightarrow \mathrm{E}$ . $\mathrm{E}$                    | $\{ \#, o, (, i, *) \}$               | $E \to 14$          |
|    | $\mathrm{E} 	o \mathrm{E}$ . *                                       | $\{ \#, o, (, i, *) \}$               | $^* \rightarrow 15$ |
|    | $\mathrm{E}  ightarrow . \ \mathrm{E} \ \mathrm{o} \ \mathrm{E}$     | $\{ \#, o, (, i, *) \}$               | $o \rightarrow 16$  |
|    | $\mathrm{E}  ightarrow . \ \mathrm{E} \ \mathrm{E}$                  | $\{ \#, o, (, i, *) \}$               |                     |
|    | $\mathrm{E}  ightarrow . \; \mathrm{E} \; *$                         | $\{ \#, o, (, i, *) \}$               |                     |
|    | $E \rightarrow . (E)$                                                | $\{ \#, o, (, i, *) \}$               |                     |
|    | $\mathrm{E}  ightarrow . i$                                          | $\{ \#, o, (, i, *) \}$               |                     |
| 15 | $\mathrm{E}  ightarrow \mathrm{E} *$ .                               | { #, o, (, i, * }                     |                     |
| 16 |                                                                      | { #, o, (, i, * }                     | $(\rightarrow 2$    |
|    | $\mathrm{E} \rightarrow . \; \mathrm{E} \; \mathrm{o} \; \mathrm{E}$ | $\{ \#, o, (, i, *) \}$               | $i \to 3$           |
|    | $\mathrm{E}  ightarrow . \ \mathrm{E} \ \mathrm{E}$                  | $\{ \#, o, (, i, *) \}$               | $E \to 17$          |
|    | $\mathrm{E}  ightarrow . \; \mathrm{E} \; *$                         | $\{ \#, o, (, i, *) \}$               |                     |
|    | $E \rightarrow . (E)$                                                | $\{ \#, o, (, i, *) \}$               |                     |
|    | $E \rightarrow . i$                                                  | $\{ \#, o, (, i, *) \}$               |                     |
| 17 | $E \to E \circ E$ .                                                  | $\{ \#, o, (, i, *) \}$               | $(\rightarrow 2$    |
|    | $\mathrm{E} \to \mathrm{E}$ . o $\mathrm{E}$                         | $\{ \#, o, (, i, *) \}$               | $i \to 3$           |
|    | $\mathrm{E}  ightarrow \mathrm{E}$ . $\mathrm{E}$                    | $\{ \#, o, (, i, *) \}$               | $E \to 14$          |
|    | $\mathrm{E} 	o \mathrm{E}$ . *                                       | $\{ \#, o, (, i, *) \}$               | $* \rightarrow 15$  |
|    | $\mathrm{E} \rightarrow . \; \mathrm{E} \; \mathrm{o} \; \mathrm{E}$ | $\{ \#, o, (, i, *) \}$               | $o \rightarrow 16$  |
|    | $\mathrm{E}  ightarrow . \ \mathrm{E} \ \mathrm{E}$                  | $\{ \#, o, (, i, *) \}$               |                     |
|    | $\to$ . E *                                                          | $\{ \#, o, (, i, *) \}$               |                     |
|    | $\to . (E)$                                                          | $\{ \#, o, (, i, *) \}$               |                     |
| -  | $E \to i$                                                            | $\{ \#, o, (, i, *) \}$               |                     |

直接这样转换会在状态 9 处会因为 o 的冲突无法进行,需要计算闭包:(由于横向空间紧张导致排版 困难,Transitions 放在每个 Lookaheads 后的括号内)

| State | CORE Items   | CORE Lookaheads           | CLOSURE Items | CLOSURE Lookaheads                 |
|-------|--------------|---------------------------|---------------|------------------------------------|
| 1     | S -> . E     | {#} (2)                   | E -> . E o E  | $\overline{\{i, (, o, *, #)\}(2)}$ |
|       |              |                           | E -> . EE     | $\{i, (, o, *, #) \} (2)$          |
|       |              |                           | E -> . E*     | $\{i, (, o, *, #) \} (2)$          |
|       |              |                           | E -> . (E)    | $\{i, (, o, *, #) \} (3)$          |
|       |              |                           | E -> . i      | $\{i, (, o, *, #) (4)$             |
| 2     | S -> E .     | {#} (-)                   | E -> . E o E  | $\{i, (, o, *) (6)$                |
|       | E -> E . o E | $\{i, (, o, *, #) (5)$    | E -> . EE     | $\{i, (, o, *) \} (6)$             |
|       | E -> E . E   | $\{i, (, o, *, #) \} (6)$ | E -> . E *    | $\{i, (, o, *) \} (6)$             |
|       | E -> E . *   | $\{i, (, o, *, #) \} (7)$ | E -> . (E)    | $\{i, (, o, *)\} (8)$              |

|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . i                                                                                                                                                                                                                                                | $\{i, (, o, *) (9)$                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 3              | E -> ( . E)                                                                                                            | { i, (, o, *, # } (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E->. E o E                                                                                                                                                                                                                                              | $\frac{(i, (, i, ), o, *)}{(i, (, ), o, *)}$ (10)                       |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . EE                                                                                                                                                                                                                                               | $\{i, (,), o, *\} (10)$                                                 |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . E*                                                                                                                                                                                                                                               | $\{i, (,), o, *\} (10)$                                                 |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . (E)                                                                                                                                                                                                                                              | $\{i, (,), o, *\} (11)$                                                 |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . i                                                                                                                                                                                                                                                | $\{i, (,), o, *\}$ (12)                                                 |
| 4              | $E \rightarrow i$ .                                                                                                    | { i , ( , o , * , # } (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |                                                                         |
| 5              | E -> E o . E                                                                                                           | { i, (, o, *, # } (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E->. E o E                                                                                                                                                                                                                                              | $\{i, (, o, *\} (13)$                                                   |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . EE                                                                                                                                                                                                                                               | $\{i, (, o, *) (13)$                                                    |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . E*                                                                                                                                                                                                                                               | $\{i, (, o, *\} (13)$                                                   |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . (E)                                                                                                                                                                                                                                              | $\{i, (, o, *\} (8)$                                                    |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . i                                                                                                                                                                                                                                                | $\{i, (, o, *) (9)$                                                     |
| 6              | $E \rightarrow EE$ .                                                                                                   | $\{i, (, o, *, #) (-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E -> . E o E                                                                                                                                                                                                                                            | $\{i, (, o, *) (15)$                                                    |
|                |                                                                                                                        | $\{i, (, o, *) (14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E -> . EE                                                                                                                                                                                                                                               | $\{i, (, o, *) (15)$                                                    |
|                | E -> E . E                                                                                                             | $\{i, (, o, *) (15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E -> . E*                                                                                                                                                                                                                                               | $\{i, (, o, *\} (15)$                                                   |
|                | E -> E . *                                                                                                             | $\{i, (, o, *) (16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E -> . (E)                                                                                                                                                                                                                                              | $\{i, (, o, *\} (8)$                                                    |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . i                                                                                                                                                                                                                                                | $\{i, (, o, *) (9)$                                                     |
| 7              | E -> E* .                                                                                                              | $\{i, (, o, *, #\} (-)\}$<br>$\{i, (, o, *\} (17)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |                                                                         |
| 8              | E -> ( . E)                                                                                                            | $\{i, (, o, *) (17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E -> . E o E                                                                                                                                                                                                                                            | $\{i, (, o, *) (17) \}$                                                 |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . EE                                                                                                                                                                                                                                               | { i , ( , o , *} (17)                                                   |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . E*                                                                                                                                                                                                                                               | $\{i, (, o, *) (17) \}$                                                 |
|                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -> . (E)                                                                                                                                                                                                                                              | $\{i, (, o, *) (11)$                                                    |
|                | D · ·                                                                                                                  | (· / +) /)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E -> . i                                                                                                                                                                                                                                                | $\{i, (, o, *) (12)$                                                    |
| •              |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                         |
| $\frac{9}{10}$ | $E \rightarrow i$ .                                                                                                    | $\{i, (, o, *) (-)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         | (; ( ° *) (30)                                                          |
| $\frac{9}{10}$ | E -> (E . )                                                                                                            | $\{i, (, o, *, #) (18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E->. E o E                                                                                                                                                                                                                                              | { i , ( , o , *} (20)                                                   |
|                | E -> (E . )<br>E -> E . o E                                                                                            | $\{i, (, o, *, #) (18) \}$<br>$\{i, (, o, *) (19) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E -> . EE                                                                                                                                                                                                                                               | $\{i, (, o, *) (20)$                                                    |
|                | E -> (E . ) E -> E . o E E -> E . E                                                                                    | { i , ( , o , * , # } (18)<br>{ i , ( , o , * } (19)<br>{ i , ( , o , * } (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E -> . EE<br>E -> . E*                                                                                                                                                                                                                                  | $ \{ i, (, o, *) (20) \\ \{ i, (, o, *) (20) \} $                       |
|                | E -> (E . )<br>E -> E . o E                                                                                            | $\{i, (, o, *, #) (18) \}$<br>$\{i, (, o, *) (19) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E -> . EE<br>E -> . E*<br>E -> . (E)                                                                                                                                                                                                                    | $ \{ i, (, o, *) (20) \\ \{ i, (, o, *) (20) \\ \{ i, (, o, *) (8) \} $ |
| 10             | E -> (E . ) E -> E . o E E -> E . E E -> E . *                                                                         | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . <i>i</i>                                                                                                                                                                                                 |                                                                         |
|                | E -> (E . ) E -> E . o E E -> E . E E -> E . *                                                                         | { i , ( , o , * , # } (18)<br>{ i , ( , o , * } (19)<br>{ i , ( , o , * } (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E                                                                                                                                                                                        |                                                                         |
| 10             | E -> (E . ) E -> E . o E E -> E . E E -> E . *                                                                         | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE                                                                                                                                                                           |                                                                         |
| 10             | E -> (E . ) E -> E . o E E -> E . E E -> E . *                                                                         | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE<br>E -> . E*                                                                                                                                                              |                                                                         |
| 10             | E -> (E . ) E -> E . o E E -> E . E E -> E . *                                                                         | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE                                                                                                                                                                           |                                                                         |
| 10             | E -> (E . ) E -> E . o E E -> E . E E -> E . *                                                                         | $ \{ i, (, o, *, #) (18) $ $ \{ i, (, o, *) (19) $ $ \{ i, (, o, *) (20) $ $ \{ i, (, o, *) (21) $ $ \{ i, (, ), o, *) (22) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE<br>E -> . E*<br>E -> . (E)                                                                                                                                                |                                                                         |
| 10             | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)                                                            | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE<br>E -> . E*<br>E -> . (E)                                                                                                                                                |                                                                         |
| 11 12          | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)                                                            | $ \left\{ \begin{array}{l} i \; , \left( \; , \; o \; , \; * \; \; ; \; \# \; \right) \; (18) \\ \left\{ \begin{array}{l} i \; , \left( \; , \; o \; , \; \; * \; \right) \; (20) \\ \left\{ \; i \; , \left( \; , \; o \; , \; \; \; \right) \; (21) \end{array} \right. \\ \\ \left\{ \begin{array}{l} i \; , \left( \; , \; \right) \; , \; o \; , \; \; \; * \; \right\} \; (22) \end{array} \right. \\ \\ \left\{ \begin{array}{l} \left\{ \; i \; , \left( \; , \; \right) \; , \; o \; , \; \; \; \; \right\} \; (-) \end{array} \right. \end{array} $                                                                                                                                                                                  | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE<br>E -> . (E)<br>E -> . (E)<br>E -> . i                                                                                                                                   |                                                                         |
| 11 12          | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)  E -> i .  E -> E o E . E -> E . o E                       | $ \left\{ \begin{array}{l} i \; , \left( \; , \; o \; , \; * \; \; , \; \# \; \right) \; (18) \\ \left\{ \begin{array}{l} i \; , \left( \; , \; o \; , \; \; * \; \right) \; (20) \\ \left\{ \; i \; , \; \left( \; , \; o \; , \; \; \; \right) \; (21) \end{array} \right. \\ \left\{ \begin{array}{l} i \; , \; \left( \; , \; \right) \; , \; o \; , \; \; * \; \right) \; (22) \\ \end{array} \\ \left\{ \begin{array}{l} \left\{ \; i \; , \; \left( \; , \; \right) \; , \; o \; , \; \; \; * \; \right\} \; (-) \\ \left\{ \left. i \; , \; \left( \; , \; o \; , \; \; \; \; , \; \; \# \; \right\} \; (-) \end{array} \right. \end{array} \right. $                                                                                  | E -> . EE E -> . E* E -> . (E) E -> . i  E -> . E o E E -> . EE E -> . E* E -> . (E) E -> . (E)                                                                                                                                                         |                                                                         |
| 11 12          | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)  E -> i . E -> E . o E E -> E . E                          | $ \left\{ \begin{array}{l} i \; , \left( \; , \; o \; , \; * \; \; , \; \# \; \right) \; (18) \\ \left\{ \begin{array}{l} i \; , \left( \; , \; o \; , \; \; * \; \right) \; (20) \\ \left\{ \; i \; , \left( \; , \; o \; , \; \; \; \right) \; (21) \end{array} \right. \\ \\ \left\{ \begin{array}{l} i \; , \left( \; , \; \right) \; , \; o \; , \; \; \; * \; \right) \; (22) \\ \end{array} \right. \\ \\ \left\{ \begin{array}{l} \left\{ \; i \; , \left( \; , \; \right) \; , \; o \; , \; \; \; \; \right\} \; (-) \\ \left\{ \; i \; , \left( \; , \; o \; , \; \; \; \; \; \; \; \; \right\} \; (-) \\ \left\{ \; i \; , \left( \; , \; o \; , \; \; \; \; \; \; \; \; \right\} \; (14) \end{array} \right. \end{array} \right. $ | E -> . EE<br>E -> . E*<br>E -> . (E)<br>E -> . i<br>E -> . E o E<br>E -> . EE<br>E -> . (E)<br>E -> . (E)<br>E -> . i                                                                                                                                   |                                                                         |
| 11 12          | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)  E -> i .  E -> E o E . E -> E . o E E -> E . E E -> E . E | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)<br>{ i, (, ), o, * } (22)<br>{ i, (, ), o, * } (-)<br>{ i, (, o, *, # } (-)<br>{ i, (, o, * } (14)<br>{ i, (, o, * } (15)<br>{ i, (, o, * } (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E -> . EE E -> . E* E -> . (E) E -> . i  E -> . E o E E -> . EE E -> . (E)                                                                                                                                  |                                                                         |
| 11 12          | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)  E -> i .  E -> E o E . E -> E . o E E -> E . E E -> E . E | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)<br>{ i, (, ), o, * } (22)<br>{ i, (, ), o, * } (-)<br>{ i, (, o, *, # } (-)<br>{ i, (, o, * } (14)<br>{ i, (, o, * } (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E -> . EE E -> . E* E -> . (E) E -> . i  E -> . E o E E -> . EE E -> . (E) E -> . E  E -> . (E) E -> . (E) E -> . i                                                                                                                                     |                                                                         |
|                | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)  E -> i .  E -> E o E . E -> E . o E E -> E . E E -> E . E | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)<br>{ i, (, ), o, * } (22)<br>{ i, (, ), o, * } (-)<br>{ i, (, o, *, # } (-)<br>{ i, (, o, * } (14)<br>{ i, (, o, * } (15)<br>{ i, (, o, * } (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E -> . EE E -> . E* E -> . (E) E -> . i  E -> . E o E E -> . EE E -> . (E) E -> . (E) E -> . (E) E -> . i   E -> . E o E E -> . i  E -> . E o E |                                                                         |
|                | E -> (E . ) E -> E . o E E -> E . E E -> E . *  E -> ( . E)  E -> i .  E -> E o E . E -> E . o E E -> E . E E -> E . E | { i, (, o, *, # } (18)<br>{ i, (, o, * } (19)<br>{ i, (, o, * } (20)<br>{ i, (, o, * } (21)<br>{ i, (, ), o, * } (22)<br>{ i, (, ), o, * } (-)<br>{ i, (, o, *, # } (-)<br>{ i, (, o, * } (14)<br>{ i, (, o, * } (15)<br>{ i, (, o, * } (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E -> . EE E -> . E* E -> . (E) E -> . i  E -> . E o E E -> . EE E -> . (E) E -> . i  E -> . (E) E -> . i  E -> . (E) E -> . i  E -> . E o E     |                                                                         |

|                 |                             |                                                    | E -> . <i>i</i>        | $\{i, (, o, *) (9)$                         |
|-----------------|-----------------------------|----------------------------------------------------|------------------------|---------------------------------------------|
| 15              | E -> EE .                   | { i , ( , o , * } (-)                              | E -> . E o E           | { i, (, o, *} (15)                          |
|                 | E-> E. o E                  | { i, (, o, * } (14)                                | E -> . EE              | $\{i, (, o, *) (15)$                        |
|                 | E -> E . E                  | $\{i, (, o, *) (15)$                               | E -> . E*              | $\{i, (, o, *) (15)$                        |
|                 | E -> E . *                  | $\{i, (, o, *) (16)$                               | E -> . (E)             | $\{i, (, o, *) (8)$                         |
|                 |                             |                                                    | $E \rightarrow . i$    | $\{i, (, o, *\} (9)$                        |
| 16              | E -> E* .                   | { i , ( , o , * } (-)                              |                        |                                             |
| 17              | E -> (E . )                 | { i , ( , o , * } (24)                             | E -> . E o E           | $\{i, (, o, *\} (20)$                       |
|                 | E -> E . o E                | $\{i, (,), o, *\} (19)$                            | E -> . EE              | $\{i, (, o, *) (20)$                        |
|                 | E -> E . E                  | $\{i, (,), o, *\}$ (20)                            | E -> . E*              | $\{i, (, o, *) (20)$                        |
|                 | E -> E . *                  | $\{i, (,), o, *\}$ (21)                            | E -> . (E)             | $\{i, (, o, *) (8)$                         |
|                 |                             |                                                    | E -> . i               | $\{i, (, o, *\} (9)$                        |
| 18              | E -> (E) .                  | $\{i, (, o, *, #) (-)\}$                           |                        |                                             |
| 19              | E -> E o . E                | $\{i, (,), o, *\}$ (26)                            | E -> . E o E           | $\{i, (, o, *) (26)\}$                      |
|                 |                             |                                                    | E -> . EE              | $\{i, (, o, *) (26)\}$                      |
|                 |                             |                                                    | E -> . E*              | $\{i, (, o, *) (26)\}$                      |
|                 |                             |                                                    | E -> . (E)             | $\{i, (, o, *) (8)$                         |
|                 | D . DD                      | ( · ( ) + ) ( )                                    | E -> . i               | $\{i, (, o, *) (9)\}$                       |
| 20              | E -> EE .                   | $\{i, (,), o, *\} (-)$                             | E -> . E o E           | $\{i, (, o, *) (15)\}$                      |
|                 | E -> E . o E                | $\{i, (, o, *) (14)$                               | E -> . EE<br>E -> . E* | $\{i, (, o, *) (15)$                        |
|                 | E -> E . E<br>E -> E . *    | $\{i, (, o, *) (15) \}$<br>$\{i, (, o, *) (16) \}$ | E -> . (E)             | $\{i, (, o, *) (15) \}$                     |
|                 |                             | $\{t, (0, 0, 1)\}$                                 | E -> . (E)<br>E -> . i | $\{i, (, o, *) (8) \\ \{i, (, o, *) (9) \}$ |
| 21              | E -> E* .                   | { i , ( , ) , o , * } (-)                          |                        |                                             |
| $\frac{21}{22}$ | E -> (E . )                 | $\{i, (,), o, *\}$ (25)                            | E -> . E o E           | $\{i, (, o, *) (20)\}$                      |
| 22              | $E \rightarrow E \cdot o E$ | $\{i, (,), o, *\} (19)$                            | E -> . EE              | $\{i, (, o, *) (20) \}$                     |
|                 | E -> E . E                  | $\{i, (,), o, *\} (20)$                            | E -> . E*              | $\{i, (, o, *) (20)\}$                      |
|                 | E -> E . *                  | $\{i, (,), o, *\}$ (21)                            | E -> . (E)             | $\{i, (, o, *)\} (8)$                       |
|                 |                             |                                                    | E -> . i               | { i , ( , o , *} (9)                        |
| 23              | E -> E o E .                | { i , ( , o , * } (-)                              | E -> . E o E           | { i, (, o, *} (15)                          |
|                 | E -> E . o E                | $\{i, (, o, *) (14)$                               | E -> . EE              | $\{i, (, o, *\} (15)$                       |
|                 | E -> E . E                  | $\{i, (, o, *) (15)$                               | E -> . E*              | $\{i, (, o, *\} (15)$                       |
|                 | E -> E . *                  | $\{i, (, o, *) (16)$                               | E -> . (E)             | $\{i, (, o, *) (8)$                         |
|                 |                             |                                                    | $E \rightarrow . i$    | $\{i, (, o, *) (9)$                         |
| 24              | E -> (E).                   | $\{i, (, o, *) (-)$                                |                        |                                             |
| 25              | E -> (E) .                  | $\{i, (,), o, *\} (-)$                             |                        |                                             |
| 26              | $E \rightarrow E \circ E$ . |                                                    | E -> . E o E           | $\{i, (, o, *\} (15)$                       |
|                 |                             | $\{i, (, o, *) (14)$                               | E -> . EE              | $\{i, (, o, *\} (15)$                       |
|                 |                             | $\{i, (, o, *) (15)$                               | E -> . E*              | $\{i, (, o, *) (15)$                        |
|                 | E -> E . *                  | $\{i, (, o, *) (16)$                               | E -> . (E)             | $\{i, (, o, *) (8)$                         |
|                 |                             |                                                    | E -> . i               | $\{i, (, o, *) (9)$                         |

## 6.2 作业 6.2

修正冲突后的分析表如下:

|    | Action             |                    |                    |                    |                     | G                  | oto          |              |
|----|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------|--------------|
| 状态 | i                  | (                  | )                  | 0                  | *                   | #                  | $\mathbf{S}$ | $\mathbf{E}$ |
| 1  | s4                 | s3                 |                    |                    |                     |                    |              | 2            |
| 2  | s9                 | s8                 |                    | s5                 | s7                  | acc                |              | 6            |
| 3  | s12                | s11                |                    |                    |                     |                    |              | 10           |
| 4  | $E \rightarrow i$  | $E \rightarrow i$  |                    | $E \rightarrow i$  | $E \rightarrow i$   | $E \rightarrow i$  |              |              |
| 5  | s9                 | s8                 |                    |                    |                     |                    |              | 13           |
| 6  | $E{ ightarrow}EE$  | $E{ ightarrow}EE$  |                    | $E{ ightarrow}EE$  | s16                 | $E \rightarrow EE$ |              |              |
| 7  | E→E*               | E→E*               |                    | E→E*               | E→E*                | E→E*               |              |              |
| 8  | s12                | s11                |                    |                    |                     |                    |              | 17           |
| 9  | $E \rightarrow i$  | $E \rightarrow i$  |                    | $E \rightarrow i$  | $E \rightarrow i$   |                    |              |              |
| 10 | s9                 | s8                 | s18                | s19                | s21                 |                    |              | 20           |
| 11 | s12                | s11                |                    |                    |                     |                    |              | 22           |
| 12 | $E \rightarrow i$   |                    |              |              |
| 13 | s9                 | s8                 |                    | Е→Е о Е            | s16                 | Е→Е о Е            |              | 15           |
| 14 | s9                 | s8                 |                    |                    |                     |                    |              | 23           |
| 15 | $E{ ightarrow}EE$  | $E{ ightarrow}EE$  |                    | $E{ ightarrow}EE$  | s16                 |                    |              | 15           |
| 16 | E→E*               | E→E*               |                    | E→E*               | E→E*                |                    |              |              |
| 17 | s9                 | s8                 | s24                | s19                | s21                 |                    |              | 20           |
| 18 | $E\rightarrow (E)$ | E→(E)              |                    | $E\rightarrow (E)$ | $E \rightarrow (E)$ | E→(E)              |              |              |
| 19 | s9                 | s8                 |                    |                    |                     |                    |              | 26           |
| 20 | $E{ ightarrow}EE$  | $E{ ightarrow}EE$  | $E \rightarrow EE$ | $E{ ightarrow}EE$  | s16                 |                    |              | 15           |
| 21 | $E{ ightarrow}E*$  | E→E*               | E→E*               | E→E*               | E→E*                |                    |              |              |
| 22 | s9                 | s8                 | s25                | s19                | s21                 |                    |              | 20           |
| 23 | s9                 | s8                 |                    | Е→Е о Е            | s16                 |                    |              | 15           |
| 24 | $E\rightarrow (E)$ | $E\rightarrow (E)$ |                    | $E\rightarrow (E)$ | $E \rightarrow (E)$ |                    |              |              |
| 25 | $E\rightarrow (E)$ | E→(E)              | $E\rightarrow (E)$ | E→(E)              | $E \rightarrow (E)$ |                    |              |              |
| 26 | s9                 | s8                 | Е→Е о Е            | Е→Е о Е            | s16                 |                    |              | 15           |

## 6.3 作业 6.3

分析  $(a \circ b) * (aa \circ bb)(a \circ b)*$  的过程为:

|   | 符号栈     | 输入串                                     |
|---|---------|-----------------------------------------|
| 1 | #       | ( a o b ) * ( a a o b b ) ( a o b ) * # |
| 2 | # (     | a o b ) * ( a a o b b ) ( a o b ) * #   |
| 3 | # ( a   | ob)*(aaobb)(aob)*#                      |
| 4 | # ( a o | b)*(aaobb)(aob)*#                       |

| 5    | # ( a o b     | ) * ( a a o b b ) ( a o b ) * #    |
|------|---------------|------------------------------------|
| 6    | # ( E         | ) * ( a a o b b ) ( a o b ) * $\#$ |
| 7    | #(E)          | * ( a a o b b ) ( a o b ) * #      |
| 8    | # E           | * ( a a o b b ) ( a o b ) * #      |
| 9    | # E *         | ( a a o b b ) ( a o b ) * #        |
| 10   | # E (         | a a o b b ) ( a o b ) * #          |
| 11   | # E ( a       | a o b b ) ( a o b ) * #            |
| 12   | # E ( a a     | o b b ) ( a o b ) * #              |
| 13   | # E ( E       | o b b ) ( a o b ) * #              |
| 14   | # E ( E o     | b b ) ( a o b ) * #                |
| 15   | # E ( E o b   | b)(aob)*#                          |
| 16   | # E ( E o b b | ) ( a o b ) * #                    |
| 17   | # E ( E o E   | ) ( a o b ) * #                    |
| 18   | # E ( E       | ) ( a o b ) * #                    |
| 19   | # E ( E )     | ( a o b ) * #                      |
| _20  | # E E         | ( a o b ) * #                      |
| _21_ | # E           | # ( a o b ) * #_                   |
| _22  | # E (         | a o b ) * #_                       |
| _23  | # E ( a       | o b ) * #_                         |
| _24  | # E ( a o     | b)*#_                              |
| 25   | # E ( a o b   | ) * #_                             |
| _26  | # E ( E       | ) * #_                             |
| _27  | # E ( E )     | * #_                               |
| _28  | # E E         | * #_                               |
| _29  | # E           | * #                                |
| 30   | # E *         | #_                                 |
| 31   | # E           | #_                                 |
| 32   | acc           |                                    |
| _    |               |                                    |

## 7.1 作业 7.1

## 7.1.1 题目描述

本章中,关系式  $i^{(1)} < i^{(2)}$  被翻译成相继的两个四元式:

$$i^{(1)} < i^{(2)}$$

```
1 (j <, i^{(1)}, i^{(2)}, -) // 真出口
2 (j, -, -, -) // 假出口
```

这种翻译常常浪费一个四元式。如果我们翻译成如下四元式:

 $(j \ge, i^{(1)}, i^{(2)}, -)$  // 假出口跳转, 真出口自动滑到下一个四元式

那么, 在  $i^{(1)} < i^{(2)}$  的情况下就不发生跳转(自动滑下来)。但若这个关系后有一个或运算,则另一个无条件转移指令是不可省的,例如:

if 
$$A < B \lor C < D$$
 then  $x = y$ 

```
1 100: (j \ge A, B, 102)

2 101: (j, -, -, 103) // 或运算前的无条件跳转不能省略

3 102: (j \ge C, D, 104)

4 103: (=, y, -, x)
```

请按上述要求改写翻译布尔表达式的语义动作。

#### 7.1.2 解答

| $E \to A \vee M E_1$     | { | backpatch(A.falselist, M.quad);                      |   |
|--------------------------|---|------------------------------------------------------|---|
|                          |   | $E.truelist = merge(A.truelist, E_1.truelist);$      |   |
|                          |   | $E.falselist = E_1.falselist;$                       | } |
| $E \to E_1 \wedge M E_2$ | { | backpatch(E.truelist, M.quad);                       |   |
|                          |   | $A.falselist = merge(E_1.falselist, E_2.falselist);$ |   |
|                          |   | $E.truelist = E_2.truelist;$                         | } |
| $M \to \varepsilon$      | { | M.quad = nextquad;                                   | } |
| $E \rightarrow 7 E$      | { | $E.truelist = E_1.falselist$                         |   |
|                          |   | $E.falselist = E_1.falselist$                        | } |
| $E \to (E_1)$            | { | $E.truelist = E_1.truelist$                          |   |
|                          |   | $E.falselist = E_1.falselist$                        | } |
| $A \to A_1 \vee M A_2$   | { | backpatch(A.falselist, M.quad);                      |   |
|                          |   | $A.truelist = merge(A_1.truelist, A_2.truelist);$    |   |
|                          |   | $A_1$ .falselist = $A_2$ .falselist;                 | } |
| $A \to E \wedge M A_1$   | { | backpatch(E.truelist, M.quad);                       |   |
|                          |   | $A.falselist = merge(E.falselist,A_1.falselist);$    | } |
| $A \rightarrow 7 A_1$    | { | $A.truelist = A_1.truelist;$                         |   |
|                          |   | $A.falselist = A_1.falselist;$                       | } |
|                          |   |                                                      |   |

| $A \to (A)$              | { | $A.truelist = A_1.truelist;$                        |   |
|--------------------------|---|-----------------------------------------------------|---|
|                          |   | $A.falselist = A_1.falselist;$                      | } |
| $E \to id_1 \theta id_2$ | { | E.truelist = makelist();                            |   |
|                          |   | E.falselist = makelist(nextquad);                   |   |
|                          |   | gen( $j\theta$ , $id_1$ .name, $id_2$ .name, 0);    | } |
| $A \to id_1 \theta id_2$ | { | A.truelist = makelist(nextquad + 1);                |   |
|                          |   | A.falselist = makelist(nextquad);                   |   |
|                          |   | gen( $j\theta$ , $id_1$ .name, $id_2$ .name, $0$ ); |   |
|                          |   | gen(j, -, -, 0);                                    | } |

## 7.2 作业 7.2

## 7.2.1 题目描述

根据本章所述翻译模式,将如下声明语句填符号表(名字、类型、偏移量三项),其他语句翻译为四元式。

## 四元式翻译

#### 7.2.2 解答

可以写出符号表:

| i | int   | 0  |
|---|-------|----|
| j | int   | 4  |
| X | real  | 8  |
| У | real  | 12 |
| a | array | 16 |
|   |       |    |

Table 11: 符号表

不难翻译出:

## 四元式翻译

```
1 100: (=,1,-,T0_i)
2 101: (=,TO_i,-,TBO)
3 102: (=,1,-,T1_i)
4 103: (=,T1_i,-,TB1)
5 104: (=,9,-,T2_i)
6 105: (j<=,TB0,T2_i,107)
7 106: (j,-,-,120)
8 107: (=,9,-,T3_i)
9 108: (j<=,TB1,T3_i,110)
10 109: (j,-,-,116)
11 110: (*,TB0,TB1,T4_i)
12 111: (=,T4_i,-,TB2)
13 112: (=,1,-,T5_i)
14 113: (+,TB1,T5_i,T6_i)
15 114: (=,T6_i,-,TB1)
16 115: (j,-,-,107)
17 116: (=,1,-,T7_i)
18 117: (+,TB0,T7_i,T8_i)
19 118: (=,T8_i,-,TB0)
20 119: (j,-,-,104)
21 120: (End,-,-,-)
```

## 8.1 作业 8.1

## 8.1.1 题目描述

# 【作业8-1】

对如下代码:

| 100.(proc,fun,-,-)       | 109.(=,1,-,j)            | 118.(+, sum1, j, \$4) |
|--------------------------|--------------------------|-----------------------|
| 101.(=,0,-,sum1)         | $110.(j \le, j, i, 115)$ | 119.(=,\$4,-,sum1)    |
| 102.(=,0,-,sum2)         | 111.(j, -, -, 106)       | 120.(j,-,-,112)       |
| 103.(=,1,-,i)            | 112.(+, j, 1, \$2)       | 121.(+,sum2,j,\$5)    |
| $104.(j \le, i, n, 109)$ | 113.(=,\$2,-,j)          | 122.(=,\$5,-,sum2)    |
| 105.(j, -, -, 124)       | 114.(j, -, -, 110)       | 123.(j,-,-,112)       |
| 106.(+, i, 1, \$1)       | 115.(%, j, 2, \$3)       | 124.(*,sum1,sum2,\$6) |
| 107.(=,\$1,-,i)          | 116.(j =, \$3, 0, 118)   | 125.(ret,\$6,-,-)     |
| 108.(j, -, -, 104)       | 117.(j, -, -, 121)       | 126.(endp,fun,-,-)    |

- (1) 划分基本块;
- (4) 识别回边;

(2) 构造流图;

- (5) 识别循环;
- (3) 计算各基本块支配结点集;
- (6) 计算各循环层次;
- (7) 构造支配树。

Figure 3: 作业 8.1——题目

## 8.1.2 解答

求出基本块入口:

| 100.(proc,fun,-,-)       | 109.(=,1,-,j)            | 118.(+, sum1, j, \$4)    |
|--------------------------|--------------------------|--------------------------|
| 101.(=,0,-,sum1)         | $110.(j \le, j, i, 115)$ | 119.(=,\$4,-,sum1)       |
| 102.(=,0,-,sum2)         | 111.(j, -, -, 106)       | 120.(j, -, -, 112)       |
| 103.(=,1,-,i)            | 112.(+, j, 1, \$2)       | 121.(+, sum 2, j, \$5)   |
| $104.(j \le, i, n, 109)$ | 113.(=,\$2,-,j)          | 122.(=,\$5,-,sum2)       |
| 105.(j, -, -, 124)       | 114.(j, -, -, 110)       | 123.(j,-,-,112)          |
| 106.(+,i,1,\$1)          | 115.(%, j, 2, \$3)       | 124.(*, sum1, sum2, \$6) |
| 107.(=,\$1,-,i)          | 116.(j =, \$3, 0, 118)   | 125.(ret,\$6,-,-)        |
| 108.(j, -, -, 104)       | 117.(j, -, -, 121)       | 126.(endp, fun, -, -)    |

Figure 4: 作业 8.1——基本块入口

## 划分基本块:



Figure 5: 作业 8.1——基本块

#### 构造流图:



## 8.2 作业 8.2

#### 8.2.1 题目描述

## 【作业8-2】

对如下代码进行 DAG 优化:

| 100.(+, x, y, \$1) | 103.(+, x, y, \$3) | 106.(+,\$1,u,v)      |
|--------------------|--------------------|----------------------|
| 101.(-, x, y, \$2) | 104.(-,x,y,\$4)    | 107.(+, \$2, v, u)   |
| 102.(*,\$1,\$2,u)  | 105.(*,\$3,\$4,v)  | 108.(*, \$3, \$4, u) |

Figure 6: 作业 8.2——题目

#### 8.2.2 解答

使用 DAG 优化:



## 9.1 题目描述

## 【作业9-1】有如下基本块代码:

(1)(+,x,y,\$1) (2)(-,x,y,\$2) (3)(\*,\$1,\$2,u) (4)(-,x,y,\$1) (5)(+,x,y,\$2) (6)(\*,x,y,\$3) (7)(\*,\$2,\$1,\$1) (8)(\*,\$1,\$3,v)

- (1) 构造DAG图;
- (2) 写出优化后的代码;
- (3) 写出DAG目标代码优化后的中间代码;
- (4) 假设所有局部变量在基本块出口处都不活跃,所有非局部变量在基本块出口处都活跃;有两个寄存器 $R_0$ 和 $R_1$ ,写出目标代码。

Figure 7: 作业 9.1——题目

## 9.2 解答

**构造 DAG 图、写出优化后的代码** 注意到两次计算 x + y 与 x - y, 分别赋给 \$1、\$2 与 \$2、\$1, 可以 重排 DAG 节点,同时不难对照 DAG 图写出代码:



- $(1) \quad (+, x, y, \$1)$
- $(2) \quad (-, x, y, \$2)$
- (3) (\*, \$1, \$2, u)
- (4) (\*, x, y, \$3)
- $(5) \quad (*, u, \$3, v)$

#### 写出 DAG 目标代码优化后的中间代码 可以写出:

- $(1) \quad (*, x, y, \$3)$
- (2) (+, x, y, \$2)
- $(3) \quad (-, x, y, \$\$1)$
- (4) (\*, \$2, \$\$1, u)
- $(5) \quad (*,\$3,u,v)$

#### 写出目标代码 可以写出:

| (1) | (*, x, y, \$3)     | MOV RO [ebp- $\hat{\delta}_x$ ]     |
|-----|--------------------|-------------------------------------|
|     |                    | IMUL RO [ebp- $\hat{\delta}_y$ ]    |
| (2) | (+, x, y, \$2)     | MOV R1 [ebp- $\hat{\delta}_x$ ]     |
|     |                    | ADD R1 [ebp- $\hat{\delta}_y$ ]     |
| (3) | (-, x, y, \$\$1)   | MOV [ebp- $\hat{\delta}_{\$3}$ ] RO |
|     |                    | MOV RO [ebp- $\hat{\delta}_x$ ]     |
|     |                    | SUB RO [ebp- $\hat{\delta}_y$ ]     |
| (4) | (*, \$2, \$\$1, u) | IMUL RO R1                          |
| (5) | (*,\$3,u,v)        | MOV [ebp- $\hat{\delta}_{\$3}$ ] R1 |
|     |                    | MOV [ebp- $\hat{\delta}_u$ ] R1     |
|     |                    | IMUL RO R1                          |
|     |                    | MOV [ebp- $\hat{\delta}_v$ ] RO     |