Modeling Stability of Magnetic Fields in Magnetars

Sam Frederick

Background

Neutron Stars - Remnant core of massive star

- Composed almost completely of neutrons
- → Core densities ~ 10¹⁵ g cm⁻³

Pulsars - Rotating neutron star with radio beam and B-field

- → B-field ~ 10¹² 10¹³ gauss
- → Average rotational period: ~ 0.7 s

Magnetars - Highly magnetic pulsars

- B-field ~ 10¹⁵ gauss, strongest in universe
- Fields alter structure of star via Lorentz force.

Image credit: ESO

Image credit: Ohio State University

Image credit: NRAO

Why Study Magnetars?

- → Rapidly growing field: Rate of detection dramatically increased following launch of Swift and Fermi space telescopes.
 - ◆ First detection in 1979.
- → Potential sources of gravitational waves (GWs):
 - If the magnetic axis is not aligned with the rotational axis, deformation due to B-field will not rotate symmetrically, causing a time-varying quadrupole, forming GWs.
- → Detection of GWs from Magnetars would inform, set boundaries for models of neutron star composition.

Swift Space Telescope: Launched November, 2004

NASA E/PO, Sonoma State University/Aurore Simonnet

Fermi Gamma-ray Space Telescope: Launched June, 2008

NASA E/PO, Sonoma State University/Aurore Simonnet

Research Goals

- Model stellar structure:
 - Describe how state variables such as pressure vary
 - Achieve stable equilibrium between stellar pressure and force of gravity
- Model magnetic field structure:
 - Verify stability of particular model configurations
 - Show stability is maintained through evolution in time
- Verify that additional phenomena within simulations have physical justifications.

Stellar Model: Structural Equations

- \rightarrow Hydrostatic Equilibrium: $\frac{dP}{dr} = -G\frac{M_r\rho}{r^2}$
- \rightarrow Polytropic equation of state (EOS): $P(\rho) = K \rho^{\gamma}$
 - Determine γ via choice of polytropic index 'n' via the relationship: $\gamma = \frac{n+1}{n}$
- \rightarrow The choice of n = 1 suits density profile of neutron stars well.

Based on our choice of EOS, we can completely describe stellar structure via the following equations

$$P_{n=1}(r) = K\rho(r)^2$$

$$\rho(r) = \rho_c \frac{\sin(\pi r/R)R}{r\pi}$$

$$r < R$$
 $ho_{
m c}$ is core density ~ 10 $^{15}\,{
m g~cm}^{-3}$

^{*} M_r, known as the *interior mass*, is the mass interior to the sphere of radius r

Stellar Model: Gravitational Potential

 Hydrostatic equilibrium requires a balancing force opposing gravity. We seek solutions to the spherically symmetric form of Poisson's equation for gravitational potential energy:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) = 4\pi G \rho$$

• $\varphi(r)$ in three equations:

$$\circ \quad \varphi(r = 0)$$

•
$$\varphi(r)$$
 for 0 < r < 1.0

○
$$\varphi$$
(r) for r ≥ 1.0

• We require $\varphi(r)$ to be piecewise continuous across the computational domain:

Magnetic Field Structure

- Flowers & Ruderman (1977):
 Stable field configurations require poloidal and toroidal field components.
 - Poloidal and Toroidal components act in tandem; when one wanes the other strengthens, allowing dynamic stability despite perturbations.
- Toroidal component is non-zero only interior to r = R_{star}, Poloidal component exists everywhere.

Unstable poloidal configuration*

Poloidal component stabilized by toroidal field*

Magnetic Field Model

- Via Haskell et al. 2008, specific to the n = 1 polytrope model
- Stable as mixed poloidal-toroidal field

Methods

Software:

- → PLUTO Computational package for evolving computation
- → VisIt Open source visualization and graphical analysis software

The Computational Domain:

- Spherical domain for evolving simulations.
- 100 equally spaced points for 0 ≤ r ≤
 1.0, 30 equally spaced points for 1.0 < r
 ≤ 2.0
- 20 equally spaced points in both the domains of Θ and φ.

A hemisphere of the computational domain

Variable: Velocity Vector Field

Verification and Validation

- Verify model in hydrostatic equilibrium:
 - Gravitational potential balances pressure gradient.
 - Mass does is not spontaneously ejected from stellar surface.
- Confirm stability of magnetic field model:
 - Poloidal and toroidal field components self-regulate, evolve with stability under time.
- Velocity vector field suggests over time, velocity perturbations settle near equatorial plane of star.
 - This plane is also referred to as the neutral line, where the magnetic field is minimized.
 - This behavior is validated given the Lorentz force in this region is also minimized

Future Work: Improving our Model

- Relativistic Equation of State:
 - Tolman-Oppenheimer-Volkoff (TOV) equation (replaces newtonian formulation of hydrostatic equilibrium:

$$\frac{dP}{dr} = -\frac{Gm(r)}{r^2} \rho \left(1 + \frac{P}{\rho c^2} \right) \left(1 + \frac{4\pi r^3 P}{m(r)c^2} \right) \left(1 - \frac{2Gm(r)}{rc^2} \right)^{-1}$$

EOS as a function of many variables:

$$P = P(\rho, T, x_p, ...)$$

- As we change our EOS, we must choose a new magnetic field model:
 - Fujisawa & Kisaka (Sept. 2014) via SLy EOS.

Acknowledgements

- I wish to extend appreciation and thanks to my co-mentors Dr. Michelle Kuchera and Dr. Kristen Thompson.
- I also thank former Duke undergraduate-student Emily Kuhn for providing an important starting point in informing my research.

Additional Photo Credits

- Slide 2
 - Neutron star structure: http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit3/extreme.htm
 - Pulsar schematic: https://www.cv.nrao.edu/course/astr534/Pulsars.htmll
 - Artists rendition of magnetar: http://www.eso.org/public/images/eso1527a/
- Slide 3
 - Swift Telescope: http://swift.sonoma.edu/resources/multimedia/images/
 - Fermi Telescope: https://science.nasa.gov/toolkits/spacecraft-icons

Requirements & Assumptions

 Our assumption of a polytropic EOS neglects the influence of temperature and composition on pressure, and a more realistic EOS will be a function of many variables:

$$P = P(\rho, T, x_p, ...)$$

- Temperature plays an important role in young neutron stars, adding a buoyancy force. Additionally, young neutron stars develop separate superfluids for neutrons and protons, which can be accounted for by proton fraction x_p dependence in the EOS.
- Our polytropic EOS follows from the ideal gas thermal EOS given we require an adiabatic relationship between pressure and density.
- Model does not account for rotation, justified by relatively slow rotation of magnetars:
 mean rotational period of known magnetars ~ 6.7 s