Отчёта по лабораторной работе №4

Дисциплина: архитектура компьютера

Ицков Андрей Станиславович

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Теор	ретическое введение	6
4	Вып	олнение лабораторной работы	9
	4.1	Создание программы Hello world!	9
	4.2	Работа с транслятором NASM	9
	4.3	Работа с расширенным синтаксисом командной строки NASM	10
	4.4	Работа с компоновщиком LD	10
	4.5	Запуск исполняемого файла	11
	4.6	Выполнение заданий для самостоятельной работы	11
5	5 Выводы		14
6	б Список литературы		15

Список иллюстраций

4.1	Перемещение и создание файла	9
4.2	Открытие и заполнение файла	9
4.3	Транслирование текста программы	10
4.4	Компиляция текста программы	10
4.5	Передача объектного файла на обработку компоновщику LD	10
4.6	Передача объектного файла на обработку компоновщику	11
4.7	Запуск исполняемого файла	11
4.8	Копирование файла	11
4.9	Редактирование программы	11
4.10	Компиляция текста программы	12
4.11	Передача объектного файла на обработку компоновщику	12
4.12	Запуск исполняемого файла	12
4.13	Копирование файлов	12
4.14	Загрузка файлов на GitHub	13

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства: - арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; - устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; регистры — сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические

операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): - RAX, RCX, RDX, RBX, RSI, RDI — 64-битные - EAX, ECX, EDX, EBX, ESI, EDI — 32-битные - AX, CX, DX, BX, SI, DI — 16-битные - AH, AL, CH, CL, DH, DL, BH, BL — 8-битные

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ: - устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой.

В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем: 1. формирование адреса в памяти очередной команды; 2. считывание кода команды из памяти и её дешифрация; 3. выполнение команды; 4. переход к

следующей команде.

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции х86-64.

4 Выполнение лабораторной работы

4.1 Создание программы Hello world!

Перемещаюсь в нужный каталог и создаю в нем пустой файл hello.asm с помощью команд cd и touch (рис. 4.1).

```
root@vbox:~/work/arch-pc/lab04

Q 

root@vbox:/home/asitskov# cd ~/work/arch-pc/lab04
root@vbox:~/work/arch-pc/lab04# touch hello.asm
root@vbox:~/work/arch-pc/lab04#
```

Рис. 4.1: Перемещение и создание файла

Открываю созданынй файл и заполняю его данной программой (рис. 4.2).

Рис. 4.2: Открытие и заполнение файла

4.2 Работа с транслятором NASM

Транслирую текст программы в объектный код с помощью команды nasm -f elf hello.asm и проверяю правильность выполнения команды (рис. 4.3).

```
asitskov@vbox:~/work/arch-pc/lab04

asitskov@vbox:~$ mkdir -p ~/work/arch-pc/lab04
asitskov@vbox:~$ cd ~/work/arch-pc/lab04
asitskov@vbox:~/work/arch-pc/lab04$ ls
asitskov@vbox:~/work/arch-pc/lab04$ ls
hello.asm
asitskov@vbox:~/work/arch-pc/lab04$ nasm -f elf hello.asm
asitskov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.3: Транслирование текста программы

4.3 Работа с расширенным синтаксисом командной строки NASM

Компилирую файл hello.asm в файл obj.o, параллельно создавая файл листинга list.list, и проверяю правильность выполнения команды (рис. 4.4).

```
asitskov@vbox:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.list hello.a
sm
asitskov@vbox:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.list obj.o
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.4: Компиляция текста программы

4.4 Работа с компоновщиком LD

Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello и проверяю правильность выполнения команды (рис. 4.5).

```
asitskov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
asitskov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.list obj.o
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.5: Передача объектного файла на обработку компоновщику LD

Создаю исполняем файл с названием main с помощью компоновщика LD и ключа -о и проверяю правильность выполнения команды (рис. 4.6).

```
asitskov@vbox:~/work/arch-pc/lab04$ ld -m elf_i386 obj.o -o main
asitskov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.list main obj.o
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.6: Передача объектного файла на обработку компоновщику

4.5 Запуск исполняемого файла

Запускаю исполняемый файл hello (рис. 4.7).

```
asitskov@vbox:~/work/arch-pc/lab04$ ./hello
Hello world!
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.7: Запуск исполняемого файла

4.6 Выполнение заданий для самостоятельной работы.

Копирую файл hello.asm и называю его lab4.asm (рис. 4.8).

```
asitskov@vbox:~/work/arch-pc/lab04$ cp hello.asm lab5.asm
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.8: Копирование файла

Редактирую текст программы lab4.asm так, чтобы при запуске он выводил в терминал мое имя и фамилию (рис. 4.9).

Рис. 4.9: Редактирование программы

Компилирую текст программы в объектный файл и проверяю правильность выполнения команды (рис. 4.10).

```
asitskov@vbox:~/work/arch-pc/lab04$ gedit lab5.asm
asitskov@vbox:~/work/arch-pc/lab04$ nasm -f elf lab5.asm
asitskov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab5.asm lab5.o list.list main obj.o
```

Рис. 4.10: Компиляция текста программы

Передаю объектный файл lab4.o на обработку компоновщику LD, чтобы получить исполняемый файл lab4 и проверяю правильность выполнения команды (рис. 4.11).

```
asitskov@vbox:-/work/arch-pc/lab04$ ld -m elf_i386 lab5.o -o lab5
asitskov@vbox:-/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab5 lab5.asm lab5.o list.list main obj.o
asitskov@vbox:-/work/arch-pc/lab04$
```

Рис. 4.11: Передача объектного файла на обработку компоновщику

Запускаю исполняемый файл lab4 (рис. 4.12).

```
asitskov@vbox:-/work/arch-pc/lab04$ ./lab5
Andrei Itskov
asitskov@vbox:-/work/arch-pc/lab04$
```

Рис. 4.12: Запуск исполняемого файла

Копирую файлы hello.asm и lab4.asm в нужный каталог с помощью команды ср и проверяю наличие этих файлов с помощью команды ls (рис. 4.13).

```
saitskov@vbox:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab5 lab5.asm lab5.o list.list main obj.o
asitskov@vbox:~/work/arch-pc/lab04$ cp hello.asm ~/work/study/2024-2025/arch-pc/
arch-pc/lab8/lab04/
asitskov@vbox:~/work/arch-pc/lab04$ ^[[200~cp hello.asm ~/work/study/2024-2025/a
rch-pc/arch-pc/lab8/lab04/
bash: cp: команда не найдена...
asitskov@vbox:~/work/arch-pc/lab04$ cp lab5.asm ~/work/study/2024-2025/arch-pc/a
rch-pc/labs/lab04/
asitskov@vbox:~/work/arch-pc/lab04$ ls ~/work/study/2024-2025/arch-pc/lab8/lab04/
hello.asm lab5.asm presentation report
asitskov@vbox:~/work/arch-pc/lab04$
```

Рис. 4.13: Копирование файлов

Загружаю файлы на Github с помощью команд git add и git commit и отправляю их на сервер с помощью команды git push (рис. 4.14).

Рис. 4.14: Загрузка файлов на GitHub

5 Выводы

При выполнении данной лабораторной работы я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM.

6 Список литературы