Read-Only Memory

ROM

ROM

Can be used:

- to implement any arbitrary combinational circuit
- as a memory

Consists of:

- an n-to-2ⁿ decoder that produces ALL minterms
- a set of programmable OR gates that produce SoP's

Is usually described in terms of:

- size of its decoder output (number of memory rows)
- number of OR gates (memory width)
- i.e., 2ⁿ x w, e.g., 8x4, 1024x8, etc.

ROM: Example 1

- A 4-to-16 decoder
- Three OR gates
- Implemented three Boolean functions
- Has an "enable" input to control the output
- Can be viewed as a 16 x 3 memory
- Memory content?

ROM: Example 2

- A 3-to-8 decoder
- Four OR gates
- Can implement four Boolean functions
- Can be viewed as a 8 x 4 memory
- No "enable" input
- Memory content?

ROM vs. PLA/PAL

General Logic Implementation

Given a 2^kxn ROM, we can implement ANY combinational circuit with <u>at most</u> k inputs and <u>at most</u> n outputs.

Why?

- k-to-2^k decoder will generate all 2^k possible minterms
- Each of the OR gates can implement a ∑m()
- \succ Each \sum m() can be programmed to represent one function

Example

Find a ROM-based circuit implementation for:

- \rightarrow f(a,b,c) = a'b' + abc
- \rightarrow g(a,b,c) = a'b'c' + ab + bc
- \rightarrow h(a,b,c) = a'b' + c

Solution:

- 1. Determine the required ROM size
- 2. Express f(), g(), and h() in $\sum m()$ format (use truth tables)
- 3. Program the ROM, based on the 3 Σ m()'s

Example (Continued)

- 1. There are 3 inputs and 3 outputs, thus we need an 8x3 ROM block.
- 2. Prepare the minterm lists:
 - $f = \sum m(0, 1, 7)$
 - $g = \sum m(0, 3, 6, 7)$
 - $h = \sum m(0, 1, 3, 5, 7)$
- 3. Program the ROM

ROM as a Memory

- ROM's can be viewed as memory with the inputs as address lines, and outputs as the stored data
- Usually have:
 - N input lines,
 - M output lines,
 - Provide 2^N x M bits of memory

ROM as Memory (Example)

- •Read Example: For input $(A_2, A_1, A_0) = 011$, output is $(F_3, F_2, F_1, F_0) = 0010$.
- •What are functions F_3 , F_2 , F_1 and F_0 in terms of (A_2, A_1, A_0) ?

ROM as a Memory

History:

- ROM: the first generation, used as a memory but preprogrammed at the time of manufacturing
- PROM: Programmable ROM, the second generation, able to be programmed at the time of usage
- EPROM: Erasable PROM, able to be erased by UV, and reprogrammed
- EEPROM: Electronically EPROM, able to be erased electronically and reprogrammed

(Memories)

Volatile:

- Random Access Memory (RAM):
 - SRAM: "static"
 - DRAM: "dynamic"

Non-Volatile:

- > ROM
- > PROM
- EPROM
- EEPROM
- FLASH memory: similar to EEPROM with programmer integrated on chip

Design by ROM: Example

BCD to 7-Segment Display Controller (Decoder)

ABCD	C0 C1 C2 C3 C4 C5 C6
ABCD 0000 0001 0010 0011 0100 0101 0111 1000 1011 1010 1011 1100	C0 C1 C2 C3 C4 C5 C6 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1
0 1 1 1	

Reminder:

$$\frac{C_{5} / \frac{C_{0}}{C_{6}} / C_{1}}{/ \frac{C_{4}}{C_{3}} / C_{2}}$$

Need a ROM with at least 4 address lines and 7 bits of output

Design by ROM: Example Continued

- There are some standard devices such as 2764
- Vpp and PGM are used when programming
- Chip Select (CS) and Output Enable (OE) inputs are used to control the chip
- ➤ 13 address lines provide 2¹³ (=8192=8K) memory bytes of 8 bits
- Extra address lines grounded
- Extra output line not connected

2764 EPROM 8K x 8

ROM vs. PLA/PAL

ROM approach advantageous when

- (1) design time is short (no need to minimize output functions)
- (2) little sharing of product terms among output functions

ROM problem:

- (1) Size doubles for each additional input,
- (2) Can't use don't cares

PLA approach advantageous when

- (1) a design tool (like espresso) is available
- (2) many minterms are shared among the output functions

PLA problem:

Too much programmability for ordinary applications => too expensive

• PAL problem:

Constrained fan-ins on OR planes

ROM vs. PLA

ROM

- Cheap (high-volume component)
- Medium speed

PLA

- > Expensive
 - Complex design;need moresophisticated tools
- > Slow
 - Two programmable planes