Topic 12 - Multicollinearity

STAT 525 - Fall 2013

STAT 525

Outline

- Multicollinearity
 - Effects
 - Remedies
- Polynomial Regression
- Interaction Models

Topic 12

STAT 525

Body fat Determination Page 256

- Twenty healthy female subjects
- \bullet Y is body fat via underwater weighing (gold standard)
- Underwater weighing expensive/difficult
- X_1 is triceps skinfold thickness
- X_2 is thigh circumference
- X_3 is midarm circumference

STAT 525

Full model output

		A	nalysis c	of Varianc	е					
			Sum of	M	ean					
Source		DF	Squares	s Squ	are	F Valu	ue	Pr > F	•	
Model		3	396.98461	132.32	820	21.5	52	<.0001	<u>.</u>	
Error		16	98.40489	6.15	031					
Corrected Tot	al	19	495.38950)						
							*	******	*****	***
Root MSE		2	.47998	R-Square		0.8014	2	Significa	nt F t	est
Dependent Mea	n	20	.19500	Adj R-Sq		0.7641	b	out no si	gnific	ant
Coeff Var		12	.28017				t	t tests		
							*	******	*****	***
		Pa	rameter E	Estimates						
		Param	eter	Standard						
Variable D	F	Esti	nate	Error	t V	alue	Pr	> t		
Intercept	1	117.0	8469	99.78240		1.17	C	0.2578		
skinfold	1	4.3	3409	3.01551		1.44	C	0.1699		
thigh	1	-2.8	5685	2.58202	-	1.11	C	0.2849		
midarm	1	-2.1	3606	1.59550	_	1.37	C	0.1896		

Topic 12

Multicollinearity

- Numerical analysis problem: The matrix **X'X** is almost singular (linear dependent columns no inverse exists)
- Previously calculation of inverse was difficult
- Now generally handled well with current algorithms
- <u>Statistical problem</u>: Very high correlation among the explanatory variables
- While the inverse exists, regression coefficients very unstable
 - Increased uncertainty / variance
 - Spurious coefficient estimates

Topic 12

• Consider a two predictor model

Example

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

- What is the estimate of β_1 ?
- Can show

$$b_1 = \frac{b_1' - \sqrt{\frac{s_Y^2}{s_{X_1}^2}} r_{12} r_{Y2}}{1 - r_{12}^2}$$

where b'_1 is the estimate fitting Y vs X_1

Topic 12

STAT 525

Example continued

- Extreme case #1: Consider X_1 and X_2 are uncorrelated
 - $-r_{12}=0$
 - $-b_1=b'_1$ (fitting Y vs X_1)
 - Estimator b_1 does not depend on X_2
 - Type I and Type II SS the same
 - In other words, the contribution of each predictor is the same regardless of whether or not the other predictor is in the model
- Extreme case #2: Consider $X_1 = a + bX_2$
 - $-r_{12}=\pm 1$
 - Estimator b_1 does not exist
 - Type II SS are zero
 - In other words, there is no contribution of the predictor if the other predictor is already in the model

STAT 525

Extreme Case #2 in SAS

• Consider the following data set

Case	X_1	X_2	Y
1	3	3	5
2	4	5	8
3	1	-1	7
4	6	9	15

- Notice $X_2 = 2X_1 3$
- Will generate 3-D plot and run regression proc g3d;

```
proc gsa;
scatter x2*x1=y / rotate=30;
run;
```

```
proc reg;
model y=x2 x1;
run;
```

Topic 12

Summary of extreme case #2

- For this example, no inverse exists so SAS dropped X_1 in order to obtain estimates
- Could have as easily dropped X_2
- Not a unique solution...this is what is meant by "B" in the SAS output
- In practice, concerned with cases less extreme
- General results still hold
 - Regression coefficients not well estimated (imprecise)
 - Regression coefficients may be meaningless (spurious)
 - Type I and II SS will differ substantially
 - $-R^2$ and predicted values usually ok

Regression output

		Sum or	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	55.59211	55.59211	96.02	0.0103
Error	2	1.15789	0.57895		
Commested Total	3	E6 7E000			

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of O or B means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables a linear combination of other variables as shown.

1.5 * Intercept + 0.5 * x2

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	В	-0.65789	1.03271	-0.64	0.5893
x2	В	1.71053	0.17456	9.80	0.0103
x1	0	0			

Topic 12

STAT 525

Topic 12

Pairwise Correlations

- Good to assess but don't always detect the issue
- Consider our body fat example

```
proc reg data=a1 corr;
   model fat=skinfold thigh midarm;
   model midarm = skinfold thigh;
run;
```

- -r(skinfold, thigh) = 0.9218
- -r(skinfold, midarm) = 0.4578
- r(thigh, midarm) = 0.0847
- None of these are too troublesome
- Consider all three together $\rightarrow r = \sqrt{0.9904} = .995$
- Will describe alternative methods to detect issue soon

Example of issue on coefficient estimation

• Page 284 summarizes coefficients in this example

Model	b_1	b_2
X_1	0.8572	-
X_2	-	0.8565
X_1, X_2	0.2224	0.6594
X_1, X_2, X_3	4.3340	-2.857

- X_1 and X_2 contain similar information
- Coeffs change when both in but not too dramatically
- Very dramatic change when X_3 added (negative estimate for b_2)
- Dramatic change reflected in std errors too

Topic 12

Polynomial Regression

- Multiple regression using powers of X (e.g., X^2 , X^3) as additional predictors
- Fitting of such models can often lead to a multicollinearity problem unless original variable is **centered**
- Centering

$$X_i' = X_i - \overline{X}$$

Topic 12

STAT 525

Topic 12

Example Page 300

- Response variable is the life (in cycles) of a power cell
- Explanatory variables are
 - Charge rate (3 levels)
 - Temperature (3 levels)
- This is a designed experiment
- Notice $\sum (X_{i1} \overline{X}_1)(X_{i2} \overline{X}_2) = 0 \to r(X_1, X_2) = 0$
- Coded values are standardized $(x_{ij} = 0, \pm 1)$
 - Notice $\sum x_{i1}x_{i2} = 0 \to r(x_1, x_2) = 0$
 - Notice $\sum x_{i1}x_{i1}^2 = 0 \rightarrow r(x_1, x_1^2) = 0$
 - Notice $\sum x_{i2}x_{i2}^2 = 0 \to r(x_2, x_2^2) = 0$

STAT 525

SAS CODE

Creating New Variables in SAS

```
data a1;
  infile 'U:\.www\datasets525\Ch07ta09.txt';
  input cycles chrate temp;

data a1; set a1;
  chrate2=chrate*chrate;
  temp2=temp*temp;
  ct=chrate*temp;

proc reg data=a1;
  model cycles=chrate temp chrate2 temp2 ct;
run;

proc corr data=a1;
  var chrate temp chrate2 temp2 ct;
run;
```

Output

	_		
Analysis	οf	Vari	ance

		Sum o	of Mea	n	
Source	DF	Square	es Squar	e F Value	Pr > F
Model	5	5536	66 1107	3 10.57	0.0109
Error	5	5240.438	60 1048.0877	2	
Corrected Total	10	6060	06		

Root MSE	3	2.37418	R-Square	0.9135	Significant F test
Dependent Mean	17	2.00000	Adj R-Sq	0.8271	no significant
Coeff Var	1	8.82220			t tests

ī	arame	ter St	andard		

		rarameter	Stalldard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	337.72149	149.96163	2.25	0.0741
chrate	1	-539.51754	268.86033	-2.01	0.1011
temp	1	8.91711	9.18249	0.97	0.3761
chrate2	1	171.21711	127.12550	1.35	0.2359
temp2	1	-0.10605	0.20340	-0.52	0.6244
ct	1	2.87500	4.04677	0.71	0.5092

Topic 12

Topic 12

STAT 525

SAS CODE

Standardizing (centering) in SAS

```
data a2; set a1;
    schrate=chrate; stemp=temp;
    keep cycles schrate stemp;

proc standard data=a2 out=a3 mean=0 std=1;
    var schrate stemp;

proc print data=a3;    ***Centering most important here***
run;

data a3; set a3;
    schrate2=schrate*schrate; stemp2=stemp*stemp; sct=schrate*stemp;

proc reg data=a3;
    model cycles=schrate stemp schrate2 stemp2 sct;
run;
```

Correlation matrix

Pearson Correlation Coefficients, \mathbb{N} = 11

		Prob > r	under HO:	Rho=0	
	chrate	temp	chrate2	temp2	ct
chrate	1.00000	0.00000	0.99103	0.00000	0.60532
		1.0000	<.0001	1.0000	0.0485
temp	0.00000	1.00000	0.00000	0.98609	0.75665
	1.0000		1.0000	<.0001	0.0070
chrate2	0.99103	0.00000	1.00000	0.00592	0.59989
	<.0001	1.0000		0.9862	0.0511
temp2	0.00000	0.98609	0.00592	1.00000	0.74613
	1.0000	<.0001	0.9862		0.0084
ct	0.60532	0.75665	0.59989	0.74613	1.00000

0.0070

0.0485

Topic 12

0.0511 0.0084

STAT 525

Standardized Values

0bs	cycles	schrate	stemp
1	150	-1.29099	-1.29099
2	86	0.00000	-1.29099
3	49	1.29099	-1.29099
4	288	-1.29099	0.00000
5	157	0.00000	0.00000
6	131	0.00000	0.00000
7	184	0.00000	0.00000
8	109	1.29099	0.00000
9	279	-1.29099	1.29099
10	235	0.00000	1.29099
11	224	1.29099	1.29099

^{**}As anticipated, high correlation between X_1 and X_1^2 as well as X_2 and X_2^2

Output after Centering

Analysis of Variance

		Sum or	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	5	55366	11073	10.57	0.0109
Error	5	5240.43860	1048.08772		

Corrected Total 10 60606

		Parameter	Standard	
Variable	DF	Estimate	Error t Value	Pr > t
Intercept	1	162.84211	16.60761 9.81	0.0002
schrate	1	-43.24831	10.23762 -4.22	0.0083
stemp	1	58.48205	10.23762 5.71	0.0023
schrate2	1	16.43684	12.20405 1.35	0.2359
stemp2	1	-6.36316	12.20405 -0.52	0.6244
sct	1	6.90000	9.71225 0.71	0.5092

***Notice that this is the same overall F test but now the two "main" effects are significant. A linear model appears reasonable. Could do a general linear test (test schrate, stemp2, sct;). Notice also that the P-values here are the same for the coded variable analysis but the coefficients are different.

Topic 12 21

Interaction Models

- With several explanatory variables, we need to consider the possibility that the effect of one variable depends on the value of another variable
- Model this relationship as the product of predictors
- Special Cases:
 - One binary (Y/N) and one continuous
 - Two continuous predictors

Topic 12

STAT 525

Special Case #1

- $X_1 = 0$ or 1 identifying two groups
- X_2 is a continuous variable

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

• When $X_1 = 0$ (Group 1)

$$Y_i = \beta_0 + \beta_2 X_{i2} + \varepsilon_i$$

• When $X_1 = 1$ (Group 2)

$$Y_i = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)X_{i2} + \varepsilon_i$$

STAT 525

Special Case #1

- Results in two regression lines
- β_2 is the slope for Group 1
- $\beta_2 + \beta_3$ is the slope for Group 2
- Similar relationship for the intercepts
- Three Hypotheses of Interest
 - $H_0: \beta_1 = \beta_3 = 0:$ regression lines are the same
 - $H_0: \beta_1 = 0:$ intercepts are the same
 - $H_0: \beta_3 = 0:$ slopes are the same

Topic 12

23

Example Page 314

- Y is the number of months for an insurance company to adopt an innovation
- X_1 is the size of the firm
- X_2 is the type of firm
 - $-X_2 = 0 \rightarrow \text{mutual fund firm}$
 - $-X_2 = 1 \rightarrow \text{stock firm}$
- Do stock firms adopt innovation faster? Is this true regardless of size?

Topic 12

infile 'U:\.www\datasets525\Ch8ta02.txt'; input months size stock; symbol1 v=M i=sm70 c=black l=1; symbol2 v=S i=sm70 c=black l=3; proc sort data=a1; by stock size; proc gplot data=a1; plot months*size=stock/frame; run; data a1; set a1; sizestoc=size*stock; proc reg data=a1; model months=size stock sizestoc; test stock, sizestock; run;

Topic 12

SAS code

STAT 525

Topic 12

STAT 525

Output

					_						
			Sum	of		Mean					
Source		DF	Squa	res	Sq	uare	F	Value	${\tt Pr}$	> F	
Model		3	1504.41	904	501.4	7301		45.49	<.0	0001	
Error		16	176.38	096	11.0	2381					
Corrected '	Total	19	1680.80	000							
		Pa	rameter	Sta	andard						
Variable	DF	Е	stimate		Error	t Va	lue	Pr >	t		
Intercept	1	3	3.83837	2.	44065	13	.86	<.00	001		
size	1	-	0.10153	0.	01305	-7	.78	<.00	01		
stock	1		8.13125	3.	65405	2	. 23	0.04	80	**Diff	intercept
sizestoc	1	-0.0	0041714	0.	01833	-0	.02	0.98	321	**Same	slope
Test 1 Results for Dependent Variable months Mean											
Source	DF		Mean Square	г	Value	D∽	>]	2			
Numerator	2		.12584	r	14.34			· 3 ***Not	t.he	e same 1	ine
Denominato	_		.02381		-1.01	٠.٠			. 0110	June 1	

```
STAT 525
```

Topic 12

Additional SAS code

```
proc reg data=a1;
   model months=size stock;
                                 ***Same slope but different intercepts***
run;
symbol1 v=M i=rl c=black;
symbol2 v=S i=rl c=black;
proc gplot data=a1;
   plot months*size=stock/frame;
```

Topic 12

Output

Analysis of Variance												
				Sum of	1	Mean						
	Source		DF	Squares	S	quare	F Value	Pr >	F			
	Model		2 150	4.41333	752.	20667	72.50	<.000)1			
	Error		17 17	6.38667	10.	37569						
	Corrected	Total	19 168	0.80000								
	Root MSE		3.22	113 R	Squa	re	0.8951					
	Dependent	Mean	19.40	000 A	dj R-	Sq	0.8827					
	Coeff Var		16.60	377								
Parameter Estimates												
			Parameter	Standa	rd							
	Variable	DF	Estimate	Err	or t	Value	Pr >	t				
	Intercept	1	33.87407	1.813	86	18.68	<.0	001				
	size	1	-0.10174	0.008	89	-11.44	<.0	001				
	stock	1	8.05547	1.459	11	5.52	<.0	001				

Topic 12

months 200 size иии 0 <u>s s s</u>

STAT 525

STAT 525

Further Investigations

- When we fit both models together, we can allow for different slopes and/or intercepts but what do we assume is the same?
- Can use mixed model to assess if this is reasonable
- Compare fits of models where
 - Error variances are considered constant (OLS)
 - Error variances vary across stock type (Mixed)

Additional SAS code

```
***Standard model***;
proc mixed data=a1;
 class stock;
 model months = size stock / solution:
run;
***Two residual variance model;
proc mixed data=a1;
 class stock:
 model months = size stock / solution;
 repeated / group=stock;
run;
```

Topic 12

Output - Standard Model

Covariance Parameter Estimates

Cov Parm Estimate ****Variance estimate same as Residual 10.3757 with OLS. Parameter and t tests also the same ****

Fit Statistics

-2 Res Log Likelihood 104.4 AIC (smaller is better) 106.4 AICC (smaller is better) 106.7 BIC (smaller is better) 107.2

Solution for Fixed Effects

Standard Error Effect t Value Pr > |t| stock Estimate 2.0101 Intercept 41.9295 20.86 <.0001 -0.1017 0.008891 -11.44 <.0001 size stock 0 -8.0555 1.4591 17 -5.52 <.0001 stock

Topic 12

STAT 525

Output - Different Variances Model

Covariance Parameter Estimates

Cov Parm Group Estimate Residual stock 0 12.8735 Residual stock 1 7.8006

Fit Statistics

-2 Res Log Likelihood 103.8 AIC (smaller is better) 107.8 AICC (smaller is better) 108.7

BIC (smaller is better) 109.8 **Other model appears better

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq **Performs a likelihood test of 0.56 1 0.4556 the two models

Other model parameters are only slightly different in this case

STAT 525

Topic 12

Special Case #2

• X_1 and X_2 are continuous variables

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

• Can be written

$$Y_i = \beta_0 + (\beta_1 + \beta_3 X_{i2}) X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{i1} + (\beta_2 + \beta_3 X_{i1}) X_{i2} + \varepsilon_i$$

- The coefficient of one explanatory variable depends on the value of the other explanatory variable
- Cannot discuss each predictor individually

Constrained Regression

- At times may want to put constraints on regression coefficients
 - $-\beta_1 = 5$
 - $-\beta_1=\beta_2$
- Can do this in SAS by redefining explanatory variables
 - Page 268, wants to assess $\beta_1=5$ and $\beta_3=5$. Redefine so reduced model is $Y^{'}$ vs X_2
- Can also use restrict statement
 - Restrict $X_1=5$
 - Restrict $X_1 = X_2$

Background Reading

- KNNL Sections 7.4-7.9, Chapter 8
- \bullet knnl281.sas, knnl300.sas, knnl314.sas
- KNNL Chapter 9

Topic 12 38

Topic 12 37