Quarto Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

6 de setembro de 2022

Sumário

- 1 Introdução
- 2 Analise do circuito
- 3 Medições no laboratório

3.1	Valores	d	e '	Γ	he	V	en:	ın	р	ar	a	di	[V]	ISC	or	de	2
	tensão																
3.2	MMEQ																

4 Conclusões

1 Introdução

Neste relatório vamos discutir novamente o Amp Op. Desta vez em uma configuração que teremos um circuito que seja um *buffer de corrente*.

Ou seja. Que a tensão de saída seja igual a tensão de entrada.

Todos arquivos utilizados para criar este relatório, é o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

2 Analise do circuito

Podemos fazer a seguinte análise no nosso circuito:

$$V_{n} = V_{0}$$

$$V_{p} = V_{s}$$

$$\frac{V_{0} - A * (V_{p} - V_{n})}{R_{0} - Il} = 0$$
(1)

Que nos da:

$$V_0 = \left(\frac{AV_s + IlR_0}{A+1}\right)$$

$$V_n = \left(\frac{AV_s + IlR_0}{A+1}\right) = V_s$$

$$V_n = V_s$$
(2)

Fazendo agora $Il = \frac{V_0}{R_l}$, temos:

$$\lim_{A \to \infty} \frac{AV_s + \frac{R_0 V_0}{R_l}}{(A+1)V_s} = 1 \tag{3}$$

Podemos então observar que o ganho de $A_v=rac{V_0}{V_s}$ quando $A o \infty$ é igual a 1.

3 Medições no laboratório

Divisor de Tensão sem o Buffer

$R_L(teorico)$	$R_L(real)$	$V_0(teorico)$	$V_0(real)$
220Ω	217Ω	0.87V	0.86V
470Ω	470Ω	1.63V	1.64V
$1k\Omega$	$1k\Omega$	2.73V	2.71V
$3.3k\Omega$	3.26Ω	4.68V	4.69V
$6.8k\Omega$	6.67Ω	5.58V	5.59V

Sistema com o Buffer

$R_L(ideal)$	$R_L(real)$	$V_0(teorico)$
220Ω	217Ω	6.8V
470Ω	470Ω	6.7V
$1k\Omega$	$1k\Omega$	6.7V
$3.3k\Omega$	3.26Ω	6.8V
$6.8k\Omega$	6.67Ω	6.7V

Atividades pós laboratoriais

3.1 Valores de Thevenin para divisor de tensão

Vamos ter que V_{th} teórico será 6.8V. Já o medido sem o Buffer foi de 6.84V e com o buffer 6.81V

É importante mencionar que a tensão de thévenin na saída do buffer de corrente e na saída do divisor de tensão é a mesma.

Para R_1 e R_2 2.2k e 4.7k respectivamente teremos $R_{th}=1.5k\Omega$ sem Buffer e $1.6k\Omega$ com o Buffer.

3.2 MMEQ

Com o método de MMEQ, obtivemos $V_{th} = 6.85$ e $R_t h = 1507$.

Os valores estão próximos ao esperado.

4 Conclusões

Os resultados foram dentro do esperado. O buffer de tensão manteve a tensão de saída igual a tensão de entrada.

Algo que fiquei em dúvida foi sobre a resistência de Thévenin do buffer.

A minha ideia eh montando o circuito com o buffer da seguinte maneira:

Teríamos que a tensão em R_L é igual a tensão da fonte. Isto quer dizer que a resistência de thévenin do buffer é 0?