Lab1. PyTorch Basics

TA: 李臻欣

23210240025@m.fudan.edu.cn

Outline

- Background: What is PyTorch?
- Tensors
- Training & Testing a Classification Model in Pytorch
 - Dataset & Dataloader
 - torch.nn: Models & Loss Functions
 - torch.optim: Optimization Process

Goals of this Lab

- Learn the basic concepts of PyTorch
- Tensors
 - Get proficient at handling PyTorch Tensors
- Training & Testing Models in PyTorch
 - Know how a Logistic Regression model is trained and evaluated
- Work with Kaggle Notebooks

Prerequisites

We assume you are already familiar with...

1. Python3

- if-else, loop, function, file IO, class, ...
- refs: <u>link1</u>, <u>link2</u>, <u>link3</u>

- Logistic Regression
- Loss / Optimization

Some knowledge of **NumPy** will also be useful!

What is PyTorch?

- An machine learning framework in Python.
- Two main features:
 - N-dimensional Tensor computation (like NumPy) on GPUs
 - Automatic differentiation for training deep neural networks

Tensors

High-dimensional matrices (arrays)

1-D tensor e.g. audio

2-D tensor e.g. black&white images

3-D tensor e.g. RGB images

Tensors – Shape of Tensors

Note: dim in PyTorch == axis in NumPy

Tensors – Creating Tensors

Directly from data (list or numpy.ndarray)

```
x = torch. tensor([[1, -1], [-1, 1]])
```

```
x = \text{torch. from\_numpy}(\text{np. array}([[1, -1], [-1, 1]]))
```

Tensor of constant zeros & ones

```
x = torch. zeros([2, 2])

x = torch. ones([1, 2, 5])

shape
```

```
tensor([[0., 0.], [0., 0.]])
```

```
tensor([[[1., 1., 1., 1., 1.], [1., 1., 1.]])
```

Common arithmetic functions are supported, such as:

Addition

$$z = x + y$$

Subtraction

$$z = x - y$$

Power

$$y = x. pow(2)$$

Summation

$$y = x. sum()$$

Mean

$$y = x. mean()$$

Transpose: transpose two specified dimensions

```
\rangle\rangle\rangle x = torch. zeros([2, 3])
\rangle\rangle\rangle x. shape
torch. Size([2, 3])
\rangle\rangle\rangle x = x. transpose(0, 1)
\rangle\rangle\rangle x. shape
torch. Size([3, 2])
```


• **Squeeze**: remove the specified dimension with length = 1

```
\rangle\rangle\rangle x = torch. zeros ([1,)2, 3])
\rangle\rangle\rangle x. shape
torch. Size (1, 2, 3]
\rangle\rangle\rangle x = x. squeeze(0)
                           (dim = 0)
\rangle\rangle\rangle x. shape
torch. Size([2, 3])
```


• Unsqueeze: expand a new dimension

```
\rangle\rangle\rangle x = torch. zeros([2, 3])
\rangle\rangle\rangle x. shape
torch. Size([2, 3])
\rangle\rangle\rangle x = x. unsqueeze(1)
                                        (dim = 1)
>>> x. shape
torch.Size([2,
```


X

У

• Cat: concatenate multiple tensors

$$\rangle\rangle\rangle$$
 x = torch. zeros([2, 1, 3])

$$\rangle\rangle\rangle$$
 y = torch. zeros([2, 3, 3])

$$\rangle\rangle\rangle$$
 z = torch. zeros([2, **2**, 3])

$$\rangle\rangle\rangle$$
 w = torch. cat([x, y, z], dim=1)

>>> w. shape

torch. Size([2, 6, 3])

more operators: https://pytorch.org/docs/stable/tensors.html

Tensors – Device

Tensors & modules will be computed with CPU by default

Use .to() to move tensors to appropriate devices.

CPU

$$x = x. to('cpu')$$

GPU

$$x = x. to('cuda')$$

Tensors – Device (GPU)

- Check if your computer has NVIDIA GPU
 - torch.cuda.is_available()
- Multiple GPUs: specify

```
'cuda:0', 'cuda:1', 'cuda:2', ...
```

- Why use GPUs?
 - Parallel computing with more cores for arithmetic calculations
 - See What is a GPU and do you need one in deep learning?

Tensors – Gradient Calculation

- $\begin{pmatrix} 1 \end{pmatrix} >>> x = torch. tensor([[1., 0.], [-1., 1.]], requires_grad=True)$
- (2) >>> z = x. pow(2). sum()
- $(3) \gg z$. backward()
- 4 >>> x. grad
 tensor([[2., 0.],
 [-2., 2.]])

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

See <u>here</u> to learn about gradient calculation.

Training a Model

Training & Testing Models

Training & Testing Models

Dataset & Dataloader

- Dataset: stores data samples and expected values
- Dataloader: groups data in batches, enables multiprocessing
- dataset = MyDataset(file)
- dataloader = DataLoader(dataset, batch_size, shuffle=True)

Training: True Testing: False

More info about batches and shuffling here.

Dataset & Dataloader

```
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
   def init (self, file):
                                       Read data & preprocess
       self.data = ...
  def getitem (self, index):
      return self.data[index]
                                       Returns one sample at a time
   def___len__(self):
                                       Returns the size of the dataset
      return len(self.data)
```

Dataset & Dataloader

```
dataset = MyDataset(file)
```

dataloader = **DataLoader**(dataset, batch_size=5, shuffle=False)

Training & Testing Models

torch.nn – Network Layers

Linear Layer (Fully-connected Layer)

```
nn.Linear(in_features, out_features)
```

 We use this for our Logistic Regression Model

can be any shape (but last dimension must be 32) e.g. (10, 32), (10, 5, 32), (1, 1, 3, 32), ...

torch.nn - Network Layers

Linear Layer (Fully-connected Layer)

ref: <u>last year's lecture video</u>

torch.nn - Network Layers

• Linear Layer (Fully-connected Layer)

torch.nn – Network Parameters

Linear Layer (Fully-connected Layer)

```
>>> layer = torch.nn.Linear(32, 64)
>>> layer.weight.shape
torch.Size([64, 32])
>>> layer.bias.shape
torch.Size([64])
```


torch.nn - Non-Linear Activation Functions

- These are for more complex Neural Networks, which will be introduced in the future lessons.
- Sigmoid Activation

nn. Sigmoid()

ReLU Activation

nn. ReLU()

See <u>here</u> to learn about why we need activation functions.

Training & Testing Models

torch.nn – Loss Functions

Mean Squared Error (for regression tasks)

```
criterion = nn. MSELoss()
```

 Cross Entropy (for classification tasks, a Multi-class Version of Logistic Regression)

```
criterion = nn. CrossEntropyLoss()
```

loss = criterion(model_output, expected_value)

Logistic Regression – For 2 classes (binary classification)

逻辑回归

margin $(\mathbf{w} \cdot \phi(x))y$

逻辑回归的另外一个角度

Logistic Regression, Softmax, Cross Entropy

- Logistic Regression
- $\operatorname{softmax}(\boldsymbol{v}) = \frac{1}{\sum_{k=1}^{K} e^{v_k}} \begin{bmatrix} e^{v_1} \\ e^{v_2} \\ \vdots \\ e^{v_K} \end{bmatrix}.$

Softmax

Equivalent to the multi-class version of Log. Func.

Softmax

Logistic: $\frac{1}{1+e^{-z}}$

• Cross Entropy Loss – the multi-class version of Log. Reg. $H(P, Q) = -\sum_{i=1}^{K} p_i \log(q_i)$,

loss = nn. CrossEntropyLoss(model_output, expected_value)

model_output: (2.0, 3.0, 0.0)

Calculate H(P, Q)

P: one-hot ground truth labels like (0, 1, 0)

Consider 3 classes

Q: (0.26, 0.71, 0.04)

For Detailed Explanation: <u>here</u>

Training & Testing Models

torch.optim

 Gradient-based optimization algorithms that adjust network parameters to reduce error. (See <u>Adaptive Learning Rate</u> lecture video)

• E.g. Stochastic Gradient Descent (SGD)

```
torch. optim. SGD (model. parameters (), 1r, momentum = 0)
```

torch.optim

```
optimizer = torch.optim.SGD(model.parameters(), 1r, momentum = 0)
```

- For every batch of data:
 - 1. Call optimizer. zero_grad() to reset gradients of model parameters.
 - 2. Call loss. backward() to backpropagate gradients of prediction loss.
 - 3. Call optimizer. step() to adjust model parameters.

Training & Testing Models

Training Setup – Linear Regression

```
X (input): 1, 2, ..., 10
                        Y (output): 2, 4, ..., 20
dataset = MyDataset(file)
tr_set = DataLoader(dataset, batch_size=2, shuffle=True)put dataset into Dataloader
model = MyModel().to(device)
criterion = nn. MSELoss()
optimizer = torch. optim. SGD (model. parameters (), 0.1)
```

Linear(1, 1): w & b Give model an x, output is wX+b read data via MyDataset

set loss function

set optimizer

construct model and move to device (cpu/cuda)

Training Loop – Linear Regression

• for epoch in range (n_epochs): • model.train() for x, y in tr_set: wX + boptimizer.zero_grad() x, y = x. to(device), y. to(device) $||wX + b - Y||_2$ pred = model(x)We use MSELoss here loss = criterion(pred, y) for regression. loss. backward() optimizer.step()

```
iterate n epochs
set model to train mode
iterate through the dataloader
set gradient to zero
move data to device (cpu/cuda)
forward pass (compute output)
compute loss
compute gradient (backpropagation)
update model with optimizer
```

Training Loop – Linear Regression

• After training, we get the model: w=1.92, b=0.31

Validation / Testing Loop

model.eval() preds = | for x in tt set: x = x. to (device) with torch.no_grad(): pred = model(x)preds. append (pred. cpu()) 1.92X + 0.31Preds is [11.8, 13.8, 15.7, 17.6, 19.5]

Yis

 $\lceil 12, \rceil$

14,

16,

set model to evaluation mode

iterate through the dataloader

move data to device (cpu/cuda)

disable gradient calculation

forward pass (compute output)

collect prediction

18,

20]

Notice - model.eval(), torch.no_grad()

model.eval()

Changes behaviour of some model layers, such as dropout and batch normalization.

with torch.no_grad()

Prevents calculations from being added into gradient computation graph.

Usually used to prevent accidental training on validation/testing data.

Save / Load Trained Models

Save

```
torch. save (model. state_dict(), path)
```

Load

```
ckpt = torch. load(path)
model. load_state_dict(ckpt)
```

More About PyTorch

- Additional packages
 - torchvision for Computer Vision
 - torchaudio for Audio
- Useful github repositories using PyTorch
 - Huggingface Transformers (transformer models: BERT, GPT, ...)
 - <u>Fairseq</u> (sequence modeling for NLP & speech)
 - <u>ESPnet</u> (speech recognition, translation, synthesis, ...)
 - Most implementations of recent deep learning papers
 - 0 ...

- Two parts:
- Ctrl + 点击访问链接
 - PyTorch Tensors: <u>kaggle link</u>
 - PyTorch Logistic Regression: kaggle link

Use Kaggle – 1. Login and Copy the two notebooks to your own account

Use Kaggle – 1. Login and Copy the two notebooks to your own account

Use Kaggle – 2. Notebook provides a Python environment, where Kaggle installs the PyTorch package for us by default.

Use Kaggle – 2. Notebook

输入:可以存放notebook所 技载的数据集, 供模型的训练 推理使用。

Use Kaggle – 2. Notebook

为什么需要张量?

为了回答这个问题,我们将PyTorch张量和Python列表、NumPy数组做了一个简单的对比。同时我们比较使用GPU加速的PyTorch张量计算和仅用CPU计算的情况。下面这段代码同学们可以不用运行,结果已经给出。

- Use Kaggle 3. Running a code block in Notebook
- 点击箭头运行
- 代码块可以修改

- 同一个notebook中, 命名空间共享:
 - 我在前一个代码块中做了import torch的操作,并 运行该代码块。该notebook下的import操作就完 成了,那么下一个代码块中即使不显式地再次 import,也可以调用torch.xxx。
 - 前一个代码块声明变量a=1,并运行。那么在下一个代码块中我依然能访问到变量a。

- 阅读两个notebook中的教程
- 运行教程里的代码块,观察输出
- 完成PyTorch Tensor部分练习

作业有五道题,完成四题即可满分(25*4),多做不加分(做错了也不扣分),填入空缺代码并通过测试用例。

提交:

- DDL: 3.31, 23:59; 晚交一天扣10分
- 完成PyTorch Tensor练习。完成后,先运行你所完成练习的代码块,再下载 (File -> Download Notebook).ipynb文件 (如果不运行,ipynb文件中无法看到你的代码块输出)
- 把ipynb文件命名为学号_姓名.ipynb, 上传到elearning。
- 禁止抄袭, 鼓励大家在各自的小组助教群提问

Thanks!

Any questions?