Contact: rapeti.sa@northeastern.edu | +1 (857) 398-7739 | LinkedIn

EDUCATION

Northeastern University, Boston, MA

Dec 2025

Candidate for Master of Science in Data Analytics Engineering

GPA: 3.67

Coursework: Data Mining in Engineering, Data Management for Analytics, Computation and Visualization, Foundations of Data Analytics, Story Telling with Data, Natural Language Processing, Neural Networks and Deep Learning, Operations Research.

Vellore Institute of Technology, India

May 2023

Bachelor of Technology in Computer Science and Engineering

GPA: 3.5

Coursework: Data Warehousing and Data Mining, Database Management System, Probability and Statistics, Problem Solving using Java.

SKILLS & CERTIFIC ATIONS

Program & Analytics: Python, SQL, R, Java, AMPL, Mongo DB, Git. Analytics & ML: NumPy, Pandas, TensorFlow, Scikit-learn, Keras, Jira, ETL.

Visualization Tools: Tableau, Flourish, Power Bi, Matplotlib

Software: MS Office 360(Excel, Word, PowerPoint, Outlook, Publisher), MATLAB, Cloud (AWS, Google Cloud, Azure), Agile Processing & Analytics: Geospatial Analysis, Business Intelligence, Financial Analytics & Problem Solving, Data pipelines, ETL.

Certifications: Goldman Sachs: Operations, JPMorgan Chase & Co. - Quantitative Research, McKinsey Forward

PROFESSIONAL EXPERIENCE

New England Investment Consulting Group LLC Quantitative Research

Jan 2025 - May 2025

Boston, MA

- Developing and implementing algorithmic trading strategies to enhance returns and minimize market risks.
- Training large language models (LLMs) & curating specialized financial datasets to enhance model performance.
- Continuously explore & refine quantitative models to improve trading and investment strategies, keeping abreast of market trends.
- Collaborating with the risk management team to identify and mitigate financial risks in quantitative strategies.

Code Facts Pvt Ltd

Sep 2022 - Dec 2023

Data Analyst

- Conducted predictive **analytics and statistical modeling** using pandas and scikit-learn to solve workforce planning challenges, performing regression analysis that optimized resource allocation strategies.
- Developed machine learning-based **candidate scoring algorithms** to streamline recruitment inefficiencies, implementing weighted scoring models that achieved 35% improvement in placement success rates.
- Built interactive dashboards and data visualizations in **Tableau/Power BI** by integrating multiple data sources, creating self-service analytics tools that improved stakeholder data accessibility by 40%.

Hochschule Kemptem University of Applied Sciences

Jan 2022 - Aug 2022

Data Science Assistant

Germany

- Analyzed complex talent market trends using **SQL** and **Python**, providing insights, and identifying patterns for over 50 global clients, enhancing decision-making and increasing client satisfaction by 15%.
- Enhanced labor market forecasting by developing predictive models in **R** and implementing ML algorithms with **Python's scikit-learn**. Improved model accuracy by 20%, enabling data-driven workforce planning decisions.

PROJECTS

Deep Learning Model for Land Use

Oct 2024

Northeastern University, Boston, MA

- Analyzed satellite imagery with deep learning to classify land use, using Python for data processing and model training.
- Developed expertise in neural networks, image processing, and large-scale data management, boosting analytical capabilities.
- Achieved up to 50% reduction in manual classification time, accelerating data-driven decisions and optimizing resource allocation.

Urban Spatial Order: Street Network Clustering Analysis

Nov 2023

Northeastern University, Boston, MA

- Conducted preprocessing and normalization of global urban spatial datasets to enable effective clustering analysis, utilizing Python for data scaling and transformation.
- Applied K-means and hierarchical clustering to categorize cities by street networks, using the elbow method for optimal clusters.
- Analyzed street orientation and configurations to uncover urban design variations, enhancing understanding of regional planning.
- Visualized clustering results with dendrograms to clearly convey complex urban patterns and support strategic planning.

Accelerometer-Based Alcohol Consumption Detection

April 2024

Northeastern University, Boston, MA

- Used accelerometer data to detect instances of heavy drinking, achieving a data integration success rate of over 95% by merging accelerometer readings with transdermal alcohol content (TAC) across multiple data formats.
- Engineered preprocessing workflows that improved dataset quality by 80%, enabling reliable pattern recognition.
- Implemented ML algorithms using permutation entropy and complexity methods, improving heavy drinking episode detection by 30% over traditional approaches.