

Universidad Tecnológica de la Mixteca

Clave DGP:

Doctorado en Inteligencia Artificial

. 00036

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
OPTIMIZACIÓN NUMÉRICA CON APLICACIONES GEOESPACIALES	

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer las técnicas básicas de optimización en problemas de aplicación geoespacial.

TEMAS Y SUBTEMAS

1. Introducción

- **1.1.** Optimización, definiciones.
- **1.2.** Tipos de problemas: dominios continuos y discretos, con y sin restricciones, mono y multiobjetivo, convexos y noconvexos.
- **1.3.** Problemas P y NP.

2. Problemas geoespaciales

- **2.1.** Clasificación de cobertura de suelo.
- 2.2. Geomorfología.
- **2.3.** Downscaling.
- **2.4.** Predicción de series de tiempo.
- **2.5.** Estimación de datos faltantes.

3. Algoritmos de optimización convexa

- **3.1.** Máximo descenso.
- **3.2.** Newton y quasi-newton.
- **3.3.** Simplex.
- **3.4.** Gradiente estocástico.

4. Algoritmos de optimización no-convexa

- **4.1.** Algoritmos evolutivos.
- **4.2.** Algoritmos de estimación de distribución.
- **4.3.** Gradiente estocástico.

5. Algoritmos de optimización convexa

- **5.1.** Máximo descenso.
- **5.2.** Newton y quasi-newton.
- **5.3.** Simplex.

6. 6. Aplicaciones a problemas geoespaciales

Universidad Tecnológica de la Mixteca

Doctorado en Inteligencia Artificial

·· 00037

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

Exposición en clase por parte del profesor, tareas y proyectos individuales.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

El Capítulo II, De las Evaluaciones, del Reglamento General de Posgrado establece que, Artículo 33, la calificación final del alumno se obtendrá de tres evaluaciones parciales (50%) y un examen ordinario (50%), Artículo 32. Para cada evaluación parcial se indicará al inicio de semestre la modalidad de evaluación a utilizar, Artículo 24.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Spatial analysis and geocomputation: selected essays. Fischer, M. M. Springer Science & Business Media, 2006. 1.
- Spatial evolutionary modeling. Krzanowski, R. M., y Raper, J. Oxford University Press, 2001.
- Spatial data science. Pebesma, E., y Bivand, R. Springer R series bestlessing book on Applied Spatial Data Analysis, 2019.
- Evolutionary algorithms in engineering applications. Dasgupta, D., y Michalewicz, Z. Int. J. Evol. Optim, 1(1), 93-94. 1999.

Consulta:

- Geocomputation with R. Lovelace, R., Nowosad, J., & Muenchow, J. Chapman and Hall/CRC, 2019.
- Applications of multi-objective evolutionary algorithms (Vol. 1). Coello, C. A. C., y Lamont, G. B. World Scientific, 2004.
- Pattern mining with evolutionary algorithms. Ventura, S., & Luna, J. M. (pp. 1-190). Berlin Springer, 2016.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Ciencias de la Computación, Matemáticas Aplicadas o área afin con conocimientos en Inteligencia Artificial.

Vo.Bo

DR. JOSÉ ANÍBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE LA DIVISIÓN DE ESTUDIOS

POSGRADO DE POSCHOOS AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICE-RECTORIA

ACADÉMICA