Лабораторная работа №4

Предобработка неискажённых данных

Цель: Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

Импорт библиотек

```
In [40]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn import preprocessing
   import copy
```

Задание А. Загрузка данных

1. Загрузить датасет из прилагаемого файла (Данные представлены в виде csv таблицы). Можно скачать отсюда https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data.

```
In [3]: | df = pd.read_csv('data/heart_failure_clinical_records_dataset.csv')
         df.head()
Out[3]:
            age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure
                                                                                                     platelets serum_creatinine serum_sodium sex s
                                                                                                 1 265000.00
         0 75.0
                        0
                                                582
                                                           0
                                                                           20
                                                                                                                            1.9
                                                                                                                                          130
                                                                                                                                                 1
            55.0
                                              7861
                                                                           38
                                                                                                 0 263358.03
                                                                                                                            1.1
                                                                                                                                          136
         2 65.0
                                                                                                   162000.00
                                                                                                                                          129
                                                146
                                                           0
                                                                           20
                                                                                                                            1.3
                                                                                                                                                 1
         3 50.0
                                                111
                                                           0
                                                                           20
                                                                                                 0 210000.00
                                                                                                                            1.9
                                                                                                                                          137
                                                                                                 0 327000.00
                                                                           20
                                                                                                                            2.7
                                                                                                                                          116
                                                                                                                                                 0
         4 65.0
                        1
                                                160
                                                           1
```

Загрузили датасет, вывели первые записи для проверки корректности импорта

2. Создать Python скрипт. Загрузить датасет в датафрейм, и исключить бинарные признаки и признак времени. Вывести датафрейм на консоль (простой print(df)).

Вместо скрипта python работу я выполняю в jupyter notebook. Датасет загружен. осталось очистить датасет.

75.0	582	20	265000.00	1.9	130
55.0	7861	38	263358.03	1.1	136
65.0	146	20	162000.00	1.3	129
50.0	111	20	210000.00	1.9	137
65.0	160	20	327000.00	2.7	116
	55.0 65.0 50.0	55.0 7861 65.0 146 50.0 111	55.0 7861 38 65.0 146 20 50.0 111 20	55.0 7861 38 263358.03 65.0 146 20 162000.00 50.0 111 20 210000.00	55.0 7861 38 263358.03 1.1 65.0 146 20 162000.00 1.3 50.0 111 20 210000.00 1.9

Видно, что очищены бинарные признаки: anaemia, diabetes, high_blood_pressure, smoking, DEATH_EVENT. Видно, что очищен временной признак time

3. Построить гистограммы признаков

```
In [8]: n_bins = 20

fig, axs = plt.subplots(2,3, figsize=(15, 15))

axs[0, 0].hist(df['age'].values, bins = n_bins)
axs[0, 0].set_title('age')

axs[0, 1].hist(df['creatinine_phosphokinase'].values, bins = n_bins)
axs[0, 1].set_title('creatinine_phosphokinase')

axs[0, 2].hist(df['ejection_fraction'].values, bins = n_bins)
axs[0, 2].set_title('ejection_fraction')

axs[1, 0].hist(df['platelets'].values, bins = n_bins)
axs[1, 1].hist(df['serum_creatinine'].values, bins = n_bins)
axs[1, 1].set_title('serum_creatinine')

axs[1, 2].hist(df['serum_sodium'].values, bins = n_bins)
axs[1, 2].set_title('serum_sodium')
```

plt.show()

- 4. На основании гистограмм определите диапазоны значений для каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.
- 1. Age: диапазон значений от 40 до 95, наибольшее количество наблюдений лежит около 60.
- 2. creatinine_phosphokinase: диапазон значений от 0 до 8000, наибольшее количество наблюдений лежит около 500.
- 3. ejection_fraction: диапазон значений от 5 до 80, наибольшее количество наблюдений лежит около 37.
- 4. platelets: диапазон значений от 0 до 900 000, наибольшее количество наблюдений лежит около 250 000.
- 5. serum_creatinine: диапазон значений от 0 до 10, наибольшее количество наблюдений лежит около 1.
- 6. serum_sodium: диапазон значений от 0 до 150, наибольшее количество наблюдений лежит около 137.
- 5. Так как библиотека Sklearn работает с NumPy массива, то преобразуйте датафрейм к двумерному массиву NumPy, где строка соответствует наблюдению, а столбец признаку

```
In [13]: data = df.to_numpy(dtype='float')
    print(type(data))
```

<class 'numpy.ndarray'>

Теперь у нас есть данные в виде двухмерного массива numpy

Задание В. Стандартизация данных

1. Подключите модуль Sklearn. Настройте стандартизацию на основе первых 150 наблюдений используя StandardScaler

```
In [14]: scaler = preprocessing.StandardScaler().fit(data[:150,:])
```

2. Стандартизуйте все данные

In [15]: data_scaled = scaler.transform(data)

3. Постройте гистограммы стандартизированных данных

```
In [30]: def build_hist(data):
             fig, axs = plt.subplots(2,3, figsize=(15, 15))
             axs[0, 0].hist(data[:,0], bins = n_bins)
             axs[0, 0].set_title('age')
             axs[0, 1].hist(data[:,1], bins = n_bins)
             axs[0, 1].set_title('creatinine_phosphokinase')
             axs[0, 2].hist(data[:,2], bins = n_bins)
             axs[0, 2].set_title('ejection_fraction')
             axs[1, 0].hist(data[:,3], bins = n_bins)
             axs[1, 0].set_title('platelets')
             axs[1, 1].hist(data[:,4], bins = n_bins)
             axs[1, 1].set_title('serum_creatinine')
             axs[1, 2].hist(data[:,5], bins = n_bins)
             axs[1, 2].set_title('serum_sodium')
             plt.show()
         build_hist(data_scaled)
                                                                creatinine_phosphokinase
                                                                                                                   ejection_fraction
                            age
```

80

4. Сравните данные до и после стандартизации. Опишите, что изменилось и почему.

Теперь большая часть значений сконцентрированы около нуля по каждому признаку. Также заметно уменьшилась дисперсия по каждому признаку.

5. Рассчитайте мат. ожидание и СКО до и после стандартизации. На основании этих значений выведите для каждого признака формулы по которым они стандартизировались.

```
In [22]: print("До стандартизации")
   print("Математическое ожидание по столбцам:", *[round(i, 2) for i in np.mean(data, axis=0)])
   print("Дисперсия по столбцам:", *[round(i, 2) for i in np.var(data, axis=0)])
   print()
```

```
print("После стандартизации")
 print("Математическое ожидание по столбцам:", *[round(i, 2) for i in np.mean(data_scaled, axis=0)])
 print("Дисперсия по столбцам:", *[round(i, 2) for i in np.var(data_scaled, axis=0)])
До стандартизации
Математическое ожидание по столбцам: 60.83 581.84 38.08 263358.03 1.39 136.63
Дисперсия по столбцам: 141.01 938309.88 139.6 9533676546.27 1.07 19.4
После стандартизации
Математическое ожидание по столбцам: -0.17 -0.02 0.01 -0.04 -0.11 0.04
Дисперсия по столбцам: 0.91 0.66 0.82 1.03 0.78 0.94
 Формула стандартизации:
                                                              X_{si} = rac{X_i - \mathsf{X}}{\sigma_X}
 Где:
 X_{si} - стандартизированное значение i-го элемента из X
 {
m X} - среднее арифметическое X
 \sigma_X - среднеквадратическое отклонение X
 Для каждого признака здесь будут среднее значение и среднеквадратическое отклонение по этому признаку соответственно.
```

6. Сравните значений из формул с полями mean_ и var_ объекта scaler

```
In [24]: |print("scaler.mean_: ", *[round(i, 2) for i in scaler.mean_])
         print("scaler.var_: ", *[round(i, 2) for i in scaler.var_])
        scaler.mean_: 62.95 607.15 37.95 266746.75 1.52 136.45
        scaler.var_: 155.0 1415488.82 170.02 9252860499.08 1.36 20.61
```

Эти значения достаточно близки к средним значениям и среднеквадратическим отклонениям по столбцам, однако немного отличаются. Вероятно, отличие возникло из-за того, что данные характеристики вычислены по первым 150 записям, а не по всем записям.

7. Проведите настройку стандартизации на всех данных и сравните с результатами настройки на основании 150 наблюдений

```
In [25]: all scaler = preprocessing.StandardScaler().fit(data)
         data_all_scaled = all_scaler.transform(data)
         print("После стандартизации на 150 строках")
         print("Mateмatuческое ожидание по столбцам:", *[round(i, 2) for i in np.mean(data_scaled, axis=0)])
         print("Дисперсия по столбцам:", *[round(i, 2) for i in np.var(data_scaled, axis=0)])
         print()
         print("После стандартизации на всех строках")
         print("Математическое ожидание по столбцам:", *[round(i, 2) for i in np.mean(data_all_scaled, axis=0)])
         print("Дисперсия по столбцам:", *[round(i, 2) for i in np.var(data_all_scaled, axis=0)])
       После стандартизации на 150 строках
       Математическое ожидание по столбцам: -0.17 -0.02 0.01 -0.04 -0.11 0.04
       Дисперсия по столбцам: 0.91 0.66 0.82 1.03 0.78 0.94
       После стандартизации на всех строках
       Математическое ожидание по столбцам: 0.0 0.0 -0.0 0.0 0.0 -0.0
       Дисперсия по столбцам: 1.0 1.0 1.0 1.0 1.0
         После стандартизации на всех строках математическое ожидание ушло в точный ноль, а дисперсия в точную 1.
```

```
In [29]: print("Исходные данные")
         print("mean: ", *[round(i, 2) for i in np.mean(data, axis=0)])
         print("var: ", *[round(i, 2) for i in np.var(data, axis=0)])
         print()
         print("Стандартизация на 150 строках")
         print("scaler.mean_: ", *[round(i, 2) for i in scaler.mean_])
         print("scaler.var_: ", *[round(i, 2) for i in scaler.var_])
         print()
         print("Стандартизация на всех строках")
         print("scaler.mean_: ", *[round(i, 2) for i in all_scaler.mean_])
         print("scaler.var_: ", *[round(i, 2) for i in all_scaler.var_])
        Исходные данные
        mean: 60.83 581.84 38.08 263358.03 1.39 136.63
        var: 141.01 938309.88 139.6 9533676546.27 1.07 19.4
```

Стандартизация на 150 строках scaler.mean_: 62.95 607.15 37.95 266746.75 1.52 136.45 scaler.var_: 155.0 1415488.82 170.02 9252860499.08 1.36 20.61 Стандартизация на всех строках scaler.mean_: 60.83 581.84 38.08 263358.03 1.39 136.63 scaler.var_: 141.01 938309.88 139.6 9533676546.27 1.07 19.4

Видно, что параметры mean_ и var_ объекта scaler определяются как среднее значение и среднеквадратическое отклонение исходных данных по столбцам соответственно.

```
In [32]: min_max_scaler = preprocessing.MinMaxScaler().fit(data)
data_min_max_scaled = min_max_scaler.transform(data)
```

2. Постройте гистограммы и сравните с исходными данными

In [33]: build_hist(data_min_max_scaled)

Видно, что данные спроецированы (масштабированы) на отрезок от 0 до 1.

3. Через параметры MinMaxScaler определите минимальное и максимальное значение в данных для каждого признака

```
In [37]: print("min_max_scaler.data_min_: ", *[round(i, 2) for i in min_max_scaler.data_min_])
print("min_max_scaler.data_min_: ", *[round(i, 2) for i in min_max_scaler.data_max_])
```

min_max_scaler.data_min_: 40.0 23.0 14.0 25100.0 0.5 113.0 min_max_scaler.data_min_: 95.0 7861.0 80.0 850000.0 9.4 148.0

Минимальные и максимальные значения примерно совпадают с моими оценками минимальных и максимальных оценок по гистограммам в задании А.

4. Напишите функцию, которая приводит все данные к диапазону [-5 10]. Примените её и постройте гистограммы полученных данных.

Чтобы спроецировать данные на отрезок [a, b], воспользуемся формулой

$$X_{ni} = rac{X_i - min(X)}{max(X) - min(X)} * (b-a) + a$$

```
In [55]: def minimax(data, a=0, b=1):
    new_data = copy.deepcopy(data)
    n = new_data.shape[0]
```

```
m = new_data.shape[1]
for i in range(m):
    minn = np.min(new_data[:, i])
    maxx = np.max(new_data[:, i])
    new_data[:, i] = (new_data[:, i] - np.full(n, minn))/(maxx - minn)*(b-a) + np.full(n, a)
    return new_data

build_hist(minimax(data, -5, 10))
```


Функцию можно реализовать разными способами, например используя два вложенных цикла. Но такой подход заметно медленнее векторных операций numpy т.к. в векторных операциях numpy используется распараллеливание вычислений. Поэтому я использовал векторные операции.

Как видно на гистограммах, данные спроецировались на нужный отрезок [-5, 10]

Задание D. Нелинейные преобразования

1. Приведите данные к равномерному распределению используя QuantileTransformer

```
In [58]: quantile_transformer = preprocessing.QuantileTransformer(n_quantiles = 100, random_state=0).fit(data)
data_quantile_scaled = quantile_transformer.transform(data)
```

2. Постройте гистограммы и сравните с исходными данными

```
In [59]: build_hist(data_quantile_scaled)
```


Распределения сильно поменялись, а принцип, по которому это произошло, неочевиден, исходя из гистограмм. Заметно, что теперь все значения принадлежат отрезку [0, 1]

3. Определите, как и на что влияет значение параметра n_quantiles

Согласно документации https://scikit-learn.org/dev/modules/generated/sklearn.preprocessing.QuantileTransformer.html

n_quantiles - Количество квантилей для вычисления. Оно соответствует количеству ориентиров, используемых для дискретизации кумулятивной функции распределения. Если n_quantiles больше размера выборки, n_quantiles устанавливается равным размера выборки, поскольку большее количество квантилей не дает лучшего приближения оценки кумулятивной функции распределения.

Иными словами чем ближе значение n_quantiles к размеру выборки, тем ближе полученное распределение будет ближе к равномерному. При n_quantiles == 2 полученное распределение почти не будет отличатся от исходного, за исключением проекции на отрезок [0, 1].

4. Приведите данные к нормальному распределению передав в QuantileTransformer параметр output_distribution='normal'

In [67]: quantile_transformer = preprocessing.QuantileTransformer(n_quantiles = 100, random_state=0, output_distribution='normal').fit(data)
data_quantile_scaled = quantile_transformer.transform(data)

5. Постройте гистограммы и сравните с исходными данными

In [66]: build_hist(data_quantile_scaled)

Теперь распределение каждого признака близко к нормальному распределение с мат. ожиданием равным нулю.

6. Самостоятельно приведите данные к нормальному распределению используя PowerTransformer. Приведите скрипт операции и гистограммы полученных данных.

In [68]: transformed_data = preprocessing.PowerTransformer().fit_transform(data)
build_hist(transformed_data)

Теперь данные тоже приведены к нормальному распределению, но, на мой взгляд, в предыдущий раз распределения получились более близки к нормальным.

Задание Е. Дискретизация признаков

```
    Проведите дискретизацию признаков, используя KBinsDiscretizer, на следующее количество диапазонов: age - 5
creatinine_phosphokinase - 4
ejection_fraction - 6
platelets - 10
serum_creatinine - 7
serum_sodium - 4
```

```
In [83]: bins = [5, 4, 6, 10, 7, 4]
    new_data = []
    for i in range(data.shape[1]):
        discretizer = preprocessing.KBinsDiscretizer(n_bins=bins[i], encode='ordinal', strategy='uniform')
        feature = discretizer.fit_transform(data[:, i].reshape(-1, 1))
        new_data.append(feature)
    new_data = np.hstack(new_data)
```

По-отдельности преодразовали каждый признак используя KBinsDiscretizer

2. Постройте гистограммы. Объясните полученные результаты

```
In [84]: build_hist(new_data)
```


Тут признаки дискретизировались по бинам. Если у нас есть признак X и мы хотим его разбить на b интервалов (бины), то:

$$k = rac{max(X) - min(X)}{b} \ X_b i = X_i / / k$$

Где k - длинна бина.

Признак ejection_fraction: [14. 25. 36. 47. 58. 69. 80.]

```
In [89]: print("Диапазоны признаков\n")
for i in range(data.shape[1]):
    discretizer = preprocessing.KBinsDiscretizer(n_bins=bins[i], encode='ordinal', strategy='uniform')
    feature = discretizer.fit_transform(data[:, i].reshape(-1, 1))
    print(f"Признак {df.columns[i]}:", *discretizer.bin_edges_)

Диапазоны признаков

Признак age: [40. 51. 62. 73. 84. 95.]
Признак creatinine_phosphokinase: [ 23. 1982.5 3942. 5901.5 7861. ]
```

1.77142857 3.04285714 4.31428571 5.58571429 6.85714286

Признак serum_sodium: [113. 121.75 130.5 139.25 148.]

Дискретизация признаков полезна, если мы хотим работать с числовым признаков, как с категориальным.

Признак platelets: [25100. 107590. 190080. 272570. 355060. 437550. 520040. 602530. 685020.

Вывод

767510. 850000.]

8.12857143 9.4

Признак serum creatinine: [0.5

Я ознакомился с методами предобработки данных из библиотеки Scikit Learn, изучил математические формулы, которые за ними стоят, документацию этих методов, а также реализовал некоторые из методов предобработки с помощью библиотеки numpy.