<u>UNIT 5: Joint Probability Distributions and Markov Chain</u>

If X and Y are two discrete random variables, the joint probability function of X and Y is defined as,

$$P(X = x, Y = y) = f(x, y)$$

Where f(x, y) satisfy the conditions

i)
$$f(x, y) \ge 0$$
 and ii) $\sum_{x} \sum_{y} f(x, y) = 1$

Note:

Suppose $X = \{x_1, x_2, x_3, ..., x_m\}$ and $Y = \{y_1, y_2, y_3, ..., y_n\}$ then, $P(X = x_i, Y = y_j) = f(x_i, y_j)$ denoted by J_{ij} .

The set of values of the function $f(x_i, y_j)$ for $i = 1, 2, 3 \dots m$; $j = 1, 2, 3 \dots n$ is called the joint probability distribution of X and Y.

TWO WAY TABLE: JOINT PROBABICITY TABLE:

+ 1	9,	92	43	. ,	9,	Scene
R,	J,,	J, 2	J,3	(())	Jin	-8(2,7
R2	J2,	J22	J23		Jan	f(2)
73	52,	J32	Jss		J2n	f(23)
		-			-	*
a m	Jm,	Jm2	JM3		Jun	f(2m)
Sum	9(4,)	9(42)	3(4,)		3(4)	1

$$\frac{1}{100} = \frac{1}{100} + \frac{1$$

ssmate

A(so, $S(x_1) + S(x_2) + S(x_3) + \dots + S(x_m) = 1$ $g(y_1) + g(y_2) + g(y_3) + g(x_n) = 1$

Marginal Trobability Distribution

Escap, scap, scap,

5

Independent random variables

The random variables X and Y are said to be random variables if,

$$P(X = x_i, Y = y_j) = P(X = x_i). P(Y = y_j)$$

That is., If each entry J_{ij} is equal to the product of its marginal entries.

Expectation, Variance, Covariance and Correlation:

If X and Y are two discrete random variables having the joint probability function f(x, y) then,

$$\mu_X = E(X) = \sum_i x_i f(x_i)$$

$$\mu_{\mathcal{Y}} = E(Y) = \sum y_j g(y_j)$$

$$E(XY) = \sum_{i,j} x_i y_j J_{ij}$$

Covariance of X and Y

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

= $E(XY) - \mu_X \mu_Y$

Correlation of X and Y

$$\rho(X,Y) = \frac{COV(X,Y)}{\sigma_X \sigma_Y}$$

Note:

If X and Y are independent random variables then

$$1)E(XY) = E(X).E(Y)$$

2) Cov(X,Y) = 0 hence $\rho(X,Y) = 0$