Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техни	Факультет	ет Программно	ой Инженерии	ги Компью	терной Техни
--	-----------	---------------	--------------	-----------	--------------

Факультет программной инженерии и компьютерной техники
Лабораторная работа №2
Синтез помехоустойчивого кода
Вариант 66 (466468)
Выполнил:
Ларионов Владислав Васильевич
Группа Р3109
Проверил:
Рыбаков Степан Дмитриевич

Содержание

Задание		3
Основни	ые этапы вычислений	4
Часть	№1	4
1)	Задание №48	4
2)	Задание №85	5
3)	Задание №10	6
4)	Задание №67	7
Часть	№2	8
5)	Задание №66	8
Часть	№3	9
Ответ	ы	9
Дополни	тельное задание	.10
Вывод:.		.10
Источни	іки:	.10

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычислений

Часть №1

1) Задание №48

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4
0	1	0	1	0	1	1

Таблица 1.1 – Задание №48, исходное сообщение

	1	2	3	4	5	6	7	
2 ^x	r ₁	r ₂	iı	r ₃	i ₂	i ₃	i4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Таблица 1.2 – Задание №48, решение

$$S_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 1$$

$$S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$S_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$$

 $(S_3, S_2, S_1) = (1, 1, 1)$ – ошибка в бите i_4 , правильное сообщение:

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4
0	1	0	1	0	1	0

Таблица 1.3 – Задание №48, ответ

2) Задание №85

I	\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4
	0	0	0	0	1	1	0

Таблица 2.1 – Задание №85, исходное сообщение

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i_2	i ₃	i ₄	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S ₃

Таблица 2.2 – Задание №85, решение

$$S_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 1$$

$$S_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 1$$

$$S_3=r_3 \oplus i_2 \oplus i_3 \oplus i_4=0 \oplus 1 \oplus 1 \oplus 0=0$$

 $(S_3, S_2, S_1) = (0, 1, 1)$ – ошибка в бите i_1 , правильное сообщение:

r ₁	r ₂	i ₁	r ₃	i ₂	i 3	i 4
0	0	1	0	1	1	0

Таблица 2.3 – Задание №85, ответ

3) Задание №10

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4
1	0	1	0	0	0	0

Таблица 3.1 – Задание №10, исходное сообщение

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	iı	r ₃	i ₂	i ₃	i ₄	S
1	X		X		X		X	S_1
2		X	X			X	X	S ₂
4				X	X	X	X	S ₃

Таблица 3.2 – Задание №10, решение

$$S_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 0$$

$$S_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$$

$$S_3 = r_3 \, \bigoplus \, i_2 \bigoplus \, i_3 \bigoplus \, i_4 = 0 \, \bigoplus \, 0 \, \bigoplus \, 0 \, \bigoplus \, 0 = 0$$

 $(S_3, S_2, S_1) = (0, 1, 0)$ – ошибка в бите r_2 , правильное сообщение:

rı	r ₂	iı	r ₃	i ₂	i 3	i 4
1	1	1	0	0	0	0

Таблица 3.3 – Задание №10, ответ

4) Задание №67

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4
1	1	0	0	1	0	0

Таблица 4.1 – Задание №67, исходное сообщение

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	iı	r ₃	i ₂	i ₃	i ₄	S
1	X		X		X		X	S_1
2		X	X			X	X	S ₂
4				X	X	X	X	S ₃

Таблица 4.2 – Задание №67, решение

$$S_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 0$$

$$S_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1$$

$$S_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$$

 $(S_3, S_2, S_1) = (1, 1, 0)$ – ошибка в бите i_3 , правильное сообщение:

rı	r ₂	i ₁	r ₃	i ₂	i 3	i 4
1	1	0	0	1	1	0

Таблица 4.3 – Задание №67, ответ

Часть №2

5) Задание №66

\mathbf{r}_1	r ₂	i ₁	r ₃	i ₂	i ₃	i 4	r ₄	i 5	i 6	i ₇	i 8	i 9	i ₁₀	i ₁₁
0	0	1	1	1	0	0	0	0	1	0	0	1	0	0

Таблица 5.1 – Задание №66, исходное сообщение

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	r ₂	iı	r ₃	i ₂	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i9	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	S_1
2		X	X			X	X			X	X			X	X	S_2
4				X	X	X	X					X	X	X	X	S_3
8								X	X	X	X	X	X	X	X	S ₄

Таблица 5.2 – Задание №66, решение

$$\begin{split} S_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 1 \\ S_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0 \\ S_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 1 \\ S_4 &= r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0 \\ (S_4, S_3, S_2, S_1) &= (0, 1, 0, 1) - \text{ошибка в бите } i_2, \text{ правильное сообщение:} \end{split}$$

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4	r ₄	i 5	i ₆	i ₇	i ₈	i9	i ₁₀	i ₁₁
0	0	1	1	0	0	0	0	0	1	0	0	1	0	0

Таблица 5.3 – Задание №66, ответ

Часть №3

6)
$$(48 + 85 + 10 + 67 + 66) * 4 = 1104$$

1104 – число информационных разрядов в исходном сообщении.

Минимальное число контрольных разрядов r вычисляется по следующей форме:

 $2^r >= r + i + 1$, где r – число контрольных разрядов, i – число информационных битов.

 $2^{r} >= r + 1105$. Минимальное r, удовлетворяющее условию -r = 11.

Коэффициент избыточности к вычисляется по следующей формуле:

$$k = r / (r + i) = 11 / (11 + 1104) \approx 0,00986547$$

Otbet: r = 11, $k \approx 0.00986547$

Ответы

Задание 1 - I4

Задание 2 - I1

Задание 3 - R2

Задание 4 - ІЗ

Задание 5 - I2

Дополнительное задание

Было принято решение написать данную программу на языке программирования Python, так как он прост в реализации и с целью повторения его синтаксиса.

Изображение 1 – листинг программы

Вывод:

Во время выполнения данной лабораторной работы я научился работать с кодом Хэмминга, находить ошибки в передаваемых сообщениях, исправлять их. Также я попрактиковался в данной теме на примере написания программы на языке программирования Python, чтобы закрепить материал.

Источники:

- 1) Балакшин П.В., Соснин В.В. Информатика: методическое пособие. Санкт-Петербург: 2015. (дата обращения: 30.01.2024)
- 2) Орлов С. А., Цилькер Б. Я. Организация ЭВМ и систем: Учебник для вузов. 2-е изд. СПб.: Питер, 2011. 688 с.: ил. (дата обращения: 30.01.2024)
- 3) AGailov название YouTube канала, Код Хэмминга. Самоконтролирующийся и самокорректирующийся код. (https://www.youtube.com/watch?v=QsBYshN5idw) (дата обращения: 30.01.2024)