EXERCICE 3 (4 points)

Cet exercice porte sur les représentations binaires et les protocoles de routage.

- 1. Une adresse IPv4 est représentée sous la forme de 4 nombres séparés par des points. Chacun de ces 4 nombres peut être représenté sur un octet.
 - **a.** Donner en écriture décimale l'adresse IPv4 correspondant à l'écriture binaire : 11000000.10101000.10000000.100000011
 - **b.** Tous les ordinateurs du réseau A ont une adresse IPv4 de la forme : 192.168.128.___ , où seul le dernier octet (représenté par ___) diffère. Donner le nombre d'adresses différentes possibles du réseau A.
- 2. On rappelle que le protocole RIP cherche à minimiser le nombre de routeurs traversés (qui correspond à la métrique). On donne les tables de routage d'un réseau informatique composé de 5 routeurs (appelés A, B, C, D et E), chacun associé directement à un réseau du même nom obtenues avec le protocole RIP :

Routeur A

Destination	Métrique
Α	0
В	1
С	1
D	1
Е	2

Routeur B

Destination	Métrique
Α	1
В	0
С	2
D	1
E	2

Routeur C

Destination	Métrique
Α	1
В	2
С	0
D	1
E	2

Routeur D

Destination	Métrique
Α	1
В	1
С	1
D	0
Е	1

Routeur E

Destination	Métrique
Α	2
В	2
С	2
D	1
Е	0

22-NSIJ1ME1 Page : 7/14

- **a.** Donner la liste des routeurs avec lesquels le routeur A est directement relié.
- **b.** Représenter graphiquement et de manière sommaire les 5 routeurs ainsi que les liaisons existantes entre ceux-ci.
- **3.** Le protocole OSPF est un protocole de routage qui cherche à minimiser la somme des métriques des liaisons entre routeurs.

Dans le protocole de routage OSPF le débit des liaisons entre routeurs agit sur la métrique via la relation : $m\acute{e}trique = \frac{10^8}{d\acute{e}bit}$ dans laquelle le débit est exprimé en bit par seconde (bps).

On rappelle qu'un kbps est égal à 10^3 bps et qu'un Mbps est égal à 10^6 bps. Recopier sur votre copie et compléter le tableau suivant :

Débit	100 kbps	500 kbps	?	100 Mbps
Métrique associée	1 000	?	10	1

4. Voici la représentation d'un réseau et la table de routage incomplète du routeur F obtenue avec le protocole OSPF :

Routeur	F

Destination	Métrique
F	0
G	8
Н	5
I	
J	
K	
L	

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

- a. Indiquer le chemin emprunté par un message d'un ordinateur du réseau F à destination d'un ordinateur du réseau I.
 Justifier votre réponse.
- **b.** Recopier et compléter la table de routage du routeur F.
- **c.** Citer une unique panne qui suffirait à ce que toutes les données des échanges de tout autre réseau à destination du réseau F transitent par le routeur G. Expliquer en détail votre réponse.

22-NSIJ1ME1 Page : 8/14