1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura:	Óptica y Semiconductores
Carrera:	Ingeniería en Energías Renovables
Clave de la asignatura:	ERF-1022
SATCA ¹	3 - 2 - 5

2.- PRESENTACIÓN

Caracterización de la asignatura.

En esta asignatura se estudian los fenómenos físicos necesarios para producir energía eléctrica a partir de la luz mediante el efecto fotoeléctrico.

El conocimiento de cómo se producen pequeñas cantidades de electricidad a partir de la luz prepara al estudiante para comprender el funcionamiento las celdas solares y los sistemas fotovoltaicos.

Complementariamente se abordan las uniones p-n con la intención de proporcionar al estudiante nociones de las propiedades de los materiales semiconductores; este conocimiento será fundamental para comprender el funcionamiento de los dispositivos de conmutación controlados y no controlados.

Intención didáctica.

En la primera unidad se inicia con clasificación de los tipos de onda y se estudian las principales propiedades de las ondas periódicas.

La segunda unidad aborda la naturaleza de la luz así como los fenómenos de reflexión, refracción, dispersión, polarización, interferencia y difracción de la luz.

La unidad tres trata la reflexión y refracción en superficies planas y esféricas.

La unidad cuatro revisa las propiedades medibles de la luz así como algunos instrumentos de medición.

La unidad cinco estudia las propiedades, materiales y modelos matemáticos de los materiales semiconductores.

Finalmente la unidad seis aborda las uniones p-n así como sus propiedades para concluir con la clasificación de los dispositivos opto-electrónicos.

¹ Sistema de asignación y transferencia de créditos académicos

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas	Competencias genéricas
Analizar el efecto fotoeléctrico a través del cual se produce electricidad a partir de la luz.	Procesar e interpretar datos.

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)	
Instituto Tecnológico de Puebla, del 8 al 12 de junio de 2009.	Representantes de los Institutos Tecnológicos de: Celaya, Minatitlán, Saltillo, Toluca, Milpa Alta Veracruz y Villahermosa.	Contexto global y nacional en energía. Marco jurídico nacional e internacional. Justificación de la carrera	
Instituto Tecnológico de Puerto Vallarta, del 10 al 14 de Agosto de 2009.	Representantes de los Institutos Tecnológicos de Chihuahua, Chihuahua II, Chilpancingo, Durango, La Piedad, León, Mexicali, Milpa Alta, Minatitlán, Saltillo, Toluca, Villahermosa, Orizaba y La Laguna.	Reunión Nacional de Diseño curricular de la carrera, definiendo la retícula y los programas sintéticos.	
Instituto Tecnológico de Villahermosa del 24 al 28 de agosto de 2009	Representantes de los Institutos Tecnológicos de: Toluca, Saltillo, Minatitlán y Villahermosa.	Formulación de programas desarrollados para las materias de primer semestre.	
Instituto Tecnológico de la Milpa Alta del 28 de agosto del 2009 al 21 de mayo de 2010.	Representante del Instituto Tecnológico de Milpa Alta.	Formulación de propuesta de programa desarrollado por competencias.	
Instituto Tecnológico de Villahermosa del 24 al 28 de mayo de 2010	Representantes de los Institutos Tecnológicos de: Chihuahua, León, Mexicali, Minatitlán, Saltillo, Toluca, Veracruz, Villahermosa y Milpa Alta.	Reunión Nacional de Consolidación de la carrera de Ingeniería en energías renovables.	

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencia específica a desarrollar en el curso)

Analizar el efecto fotoeléctrico a través del cual se produce electricidad a partir de la luz.

6.- COMPETENCIAS PREVIAS

- Manejar operaciones algebraicas.
- Identificar funciones periódicas y sus propiedades.
- Resolver derivadas.
- Resolver integrales.
- Construir el concepto de distribución.
- Resolver sistemas de ecuaciones.
- Resolver ecuaciones diferenciales ordinarias de primer orden.

7.- TEMARIO

Unidad	Temas	Subtemas
1	Ondas.	1.1 Tipos de Ondas.
		1.2 Ondas periódicas.
		1.3 Modelo matemático de una onda periódica.
		1.4 Rapidez de una onda transversal.
		1.5 Energía del movimiento ondulatorio.
		1.6 Interferencia de ondas, condiciones de
		frontera y superposición.
		1.7 Ondas estacionarias.
2	Naturaleza y	2.1 La naturaleza de la luz.
	propagación de la luz.	2.2 Reflexión y refracción.
		2.3 Dispersión de la luz.
		2.4 Polarización.
		2.5 Principio de Huygens.
		2.6 Concepto de interferencia.
	6 6	2.7 Concepto de difracción.
3	Óptica Geométrica	3.1 Reflexión y refracción en una superficie
		plana.
		3.2 Reflexión en una superficie esférica.
		3.3 Refracción en una superficie esférica.
	NA - Park - Table I	3.4 Lentes delgadas.
4	Medición de la luz.	4.1 Angulo sólido.
		4.2 Cantidades radiométricas.
		4.3 Cantidades fotométricas.
		4.4 Fotómetros.

TEMARIO (continuación).

Unidad	Temas	Subtemas
5	Fundamentos de	5.1 Cristales y su estructura.
	semiconductores	5.2 Materiales semiconductores.
		 5.3 Materiales intrínsecos y materiales extrínsecos.
		5.4 Modelos de bandas de energía.
		5.5 Distribución de Fermi-Dirac y distribución de
		Maxwell-Boltzman.
		5.6 Nivel de Fermi en materiales intrínsecos y
		extrínsecos.
		5.7 Efecto fotoeléctrico.
		 5.8 Conductividad, movilidad y proceso de difusión.
6	Unión p-n y dispositivos-	6.1 Materiales tipo n.
	opto-electrónicos	6.2 Materiales tipo p.
		6.3 Propiedades de la unión p-n en el estado de equilibrio.
		6.4 Polarización directa y polarización inversa.
		6.5 Dispositivos opto-electrónicos.

8.- SUGERENCIAS DIDÁCTICAS (desarrollo de competencias genéricas)

- Solucionar problemas para reforzar los conceptos.
- Desarrollar prácticas para que los estudiantes apliquen los conocimientos adquiridos y los relacionen con su carrera.
- Discutir en grupos para intercambiar ideas argumentadas así como analizar conceptos y definiciones.
- Desarrollar la inducción, deducción, síntesis y análisis para fomentar las cualidades de investigación.

9.- SUGERENCIAS DE EVALUACIÓN

- Evidencias de aprendizaje: Reportes escritos, solución de ejercicios extra clase, actividades de investigación, elaboración de modelos o prototipos, análisis y discusión grupal.
- Ejercicios en clase.
- Exámenes escritos y verbales para comprobar el manejo de aspectos teóricos y declarativos.

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Ondas.

Competencia espe desarrollar	ecífica a	Actividades de Aprendizaje
Identificar las características de periódicas.	principales las ondas	•

Unidad 2: Naturaleza y propagación de la luz.

Competencia desarrollar	específica	а	Actividades de Aprendizaje
Analizar las luz.	propiedades de	la	 Comprender la naturaleza compleja de luz. Calcular el índice de reflexión de un haz de luz al pasar de un medio a otro. Calcular el índice de refracción de un haz de luz al pasar a través de dos o más medios diferentes. Construir el principio de Huygens. Realizar una práctica donde se observe la polarización de luz. Realizar una práctica donde se observe la difracción de luz con diferentes aberturas y bordes.

Unidad 3: Óptica geométrica.

Competencia específica a desarrollar	Actividades de Aprendizaje
Comparar los principios de reflexión y refracción en superficies planas y esféricas que determinan el comportamiento de la luz al pasar a través de diversas lentes.	 Comparar imágenes en espejos planos y esféricos y en lentes convergentes y divergentes.

Unidad 4: Medición de la luz.

Competencia específica a desarrollar	Actividades de Aprendizaje
Seleccionar las propiedades de la luz medibles.	 Construir el concepto de ángulo sólido. Identificar las cantidades radiométricas. Identificar las cantidades fotométricas. Realizar una práctica donde se utilice algún tipo de fotómetro para medir el flujo luminoso a una fuente de luz.

Unidad 5: Fundamentos de semiconductores.

Competencia específica a desarrollar	Actividades de Aprendizaje
Explicar las propiedades de los materiales semiconductores que permiten el efecto fotoeléctrico.	materiales conductores, no conductores y

Unidad 6: Unión p-n y dispositivos opto-electrónicos.

Competencia específica a desarrollar	Actividades de Aprendizaje
Clasificar los dispositivos opto- electrónicos.	 Explicar el comportamiento eléctrico de la unión por medio de diagramas de bandas de energía. Construir el concepto de polarización directa. Construir el concepto de polarización inversa. Realizar una práctica donde se observen los fenómenos de polarización directa e inversa en un material semiconductor. Identificar el principio de funcionamiento los dispositivos opto-electrónicos más comunes.

11.- FUENTES DE INFORMACIÓN

- 1. Serway R. A., Beichner R. J., *Física para Ciencias e Ingeniería*, Tomo II, Ed. Mc Graw Hill.
- 2. Serway R. A., Moses Clement J., Moyer Curt A., *Física moderna*, 3^a Edición, Ed. Thomson, México, 2006.
- 3. Resnick Robert, Holliday & Krane, Física Vol.2, 5ª Edición, Ed. CECSA, México 2004.
- 4. Tippens Paul E., *Física, conceptos y aplicaciones*, 7ª Edición, Ed. Mc Graw Hill, México, 2007.
- 5. Boylestad R., Nashelsky L., Electrónica Teoría de Circuitos, Prentice Hall.
- 6. Jasprit Sing, Dispositivos semiconductores, Mc Graw Hill.

12.- PRÁCTICAS PROPUESTAS

Unidad 1

 Realizar una práctica donde se observe el fenómeno de superposición de ondas.

Unidad 2

- Realizar una práctica donde se observe la polarización de luz.
- Realizar una práctica donde se observe la difracción de luz con diferentes aberturas y bordes.

Unidad 3

 Realizar una práctica donde se observe como la reflexión y refracción en diferentes superficies.

Unidad 4

 Realizar una práctica donde se utilice algún tipo de fotómetro para medir el flujo luminoso a una fuente de luz.

Unidad 5

Realizar una práctica donde se observe el efecto fotoeléctrico.

Unidad 6

 Realizar una práctica donde se observen los fenómenos de polarización directa e inversa en un material semiconductor.