# Ch 9.1: Maximum Margin Classifier

Lecture 27 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Mon, Nov 13, 2023

#### Announcements

#### Last time:

• Ch 8: Random Forests

#### This lecture:

- Maximal Margin Classifier
- No jupyter notebook for this class

#### **Announcements:**

- HW #7....
- No class (virtual OH only) Weds, Nov 22

| Status    | Lec# | Date |        |                                                   | Reading      | Homeworks |
|-----------|------|------|--------|---------------------------------------------------|--------------|-----------|
|           |      | Mon  | Oct 23 | No class - Fall break                             |              |           |
|           |      | Wed  | Oct 25 | Midterm #2                                        |              |           |
| Done      | 20   | Fri  | Oct 27 | Dimension Reduction                               | 6.3          |           |
| Done      | 21   | Mon  | Oct 30 | More dimension reduction; High<br>dimensions      | 6.4          |           |
| Done      | 22   | Wed  | Nov 1  | Polynomial & Step Functions                       | 7.1,7.2      |           |
| Pushed    | 23   | Fri  | Nov 3  | Step Functions; Basis functions;<br>Start Splines | 7.2 - 7.4    |           |
|           | 24   | Mon  | Nov 6  | Regression Splines                                | 7.4          | HW #6 Due |
|           | 25   | Wed  | Nov 8  | Decision Trees                                    | 8.1          | HW #6 Due |
|           | 26   | Fri  | Nov 10 | Random Forests                                    | 8.2.1, 8.2.2 |           |
| Done Done | 27   | Mon  | Nov 13 | Maximal Margin Classifier                         | 9.1          |           |
|           | 28   | Wed  | Nov 15 | SVC                                               | 9.2          |           |
|           | 29   | Fri  | Nov 17 | SVM                                               | 9.3, 9.4     |           |
|           | 30   | Mon  | Nov 20 | Single layer NN                                   | 10.1         |           |
|           | 31   | Wed  | Nov 22 | Virtual: Project office hours                     |              |           |
|           |      | Fri  | Nov 24 | No class - Thanksgiving                           |              |           |
|           |      | Mon  | Nov 27 | Review                                            |              |           |

Dr. Munch (MSU-CMSE)

#### Section 1

Maximal Margin Classifier

# The goal



What is a hyperplane?

Or. Munch (MSU-CMSE) Mon, Nov 13, 2023

### Mathematical definition of a hyperplane

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p = 0$$

## Hyperplane for p = 2



## There are two sides to every hyperplane

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p < 0$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p > 0$$



Dr. Munch (MSU-CMSE)

## Classification Setup

Data matrix:

$$X = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ & \vdots \\ - & x_n^T & - \end{pmatrix}_{n \times p}$$

$$x_1 = \begin{pmatrix} x_{11} \\ \vdots \\ x_{1p} \end{pmatrix}, \cdots, x_n = \begin{pmatrix} x_{n1} \\ \vdots \\ x_{np} \end{pmatrix}$$

Observations in one of two classes,  $y_i \in \{-1, 1\}$ 

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Separate out a test observation

$$x^* = (x_1^* \cdots x_p^*)^T$$

## Separating Hyperplane

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} > 0 \text{ if } y_i = 1$$
  
 $eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} < 0 \text{ if } y_i = -1$ 



## Another way to say it

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} > 0 \text{ if } y_i = 1$$
  
 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} < 0 \text{ if } y_i = -1$ 

For all *i*:

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$

## Separating hyperplane becomes a classifier

If you have a separating hyperplane:

Check

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^*$$

- If positive, assign  $\hat{y} = 1$
- If negative, assign  $\hat{y} = -1$



Dr. Munch (MSU-CMSE

# How do we pick?



## Distance from an observation to a hyperplane





14 / 27

r. Munch (MSU-CMSE) Mon, Nov 13, 2023

## Maximal margin classifier



### Example



- Sketch the maximal margin hyperplane.
- What is the equation of this line in the form  $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$ ?
- Circle the support vectors. What is their distance from the line?

16 / 27

desmos.com/calculator/lqms253gfq

Dr. Munch (MSU-CMSE) Mon, Nov 13, 2023

## Extra work space



desmos.com/calculator/lqms253gfq

Or. Munch (MSU-CMSE) Mon, Nov 13, 2023

#### Mathematical Formulation

$$\begin{aligned} & \underset{\beta_0,\beta_1,\dots,\beta_p,M}{\text{maximize}} \, M \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \geq M \ \, \forall \, i = 1,\dots,n \end{aligned}$$

#### First constraint



#### Second constraint



- Blue circles:  $y_i = -1$
- Red Xs:  $y_i = 1$

$$-2\sqrt{2} + \frac{\sqrt{2}}{2}X_1 + \frac{\sqrt{2}}{2}X_1 = 0$$

 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}) \ge M$ 

Dr. Munch (MSU-CMSE)

## An example with a bad choice of hyperplane



What is  $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2})$  for the point  $x_i = (0,3)$ ?

• Blue circles:  $y_i = -1$ 

• Red Xs:  $y_i = 1$ 

 $-\frac{4}{\sqrt{5}} + \frac{1}{\sqrt{5}}X_1 + \frac{2}{\sqrt{5}}X_1 = 0$ 

## Second constraint extra space



• Blue circles:  $y_i = -1$ 

• Red Xs:  $y_i = 1$ 

$$-2\sqrt{2} + \frac{\sqrt{2}}{2}X_1 + \frac{\sqrt{2}}{2}X_1 = 0$$

 $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}) \ge M$ 

Dr. Munch (MSU-CMSE)

#### Mathematical Formulation

$$\begin{aligned} & \underset{\beta_0,\beta_1,\dots,\beta_p,M}{\text{maximize}} \, M \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \geq M \ \, \forall \, i = 1,\dots,n \end{aligned}$$

#### Section 2

Issues with Maximal Margin Classifier

r. Munch (MSU-CMSE) Mon, Nov 13, 2023

#### But what if....



### Sensitivity to new points





#### Next time

| Status | Lec# | Date |        |                                                   | Reading      | Homeworks   |
|--------|------|------|--------|---------------------------------------------------|--------------|-------------|
|        |      | Mon  | Oct 23 | No class - Fall break                             |              |             |
|        |      | Wed  | Oct 25 | Midterm #2                                        |              |             |
| Done   | 20   | Fri  | Oct 27 | Dimension Reduction                               | 6.3          |             |
| Done   | 21   | Mon  | Oct 30 | More dimension reduction; High dimensions         | 6.4          |             |
| Done   | 22   | Wed  | Nov 1  | Polynomial & Step Functions                       | 7.1,7.2      |             |
| Pushed | 23   | Fri  | Nov 3  | Step Functions; Basis functions;<br>Start Splines | 7.2 - 7.4    |             |
|        | 24   | Mon  | Nov 6  | Regression Splines                                | 7.4          | HW #6 Due   |
|        | 25   | Wed  | Nov 8  | Decision Trees                                    | 8.1          | HW #6 Due   |
|        | 26   | Fri  | Nov 10 | Random Forests                                    | 8.2.1, 8.2.2 |             |
|        | 27   | Mon  | Nov 13 | Maximal Margin Classifier                         | 9.1          |             |
|        | 28   | Wed  | Nov 15 | SVC                                               | 9.2          |             |
|        | 29   | Fri  | Nov 17 | SVM                                               | 9.3, 9.4     |             |
|        | 30   | Mon  | Nov 20 | Single layer NN                                   | 10.1         |             |
|        | 31   | Wed  | Nov 22 | Virtual: Project office hours                     |              |             |
|        |      | Fri  | Nov 24 | No class - Thanksgiving                           |              |             |
|        |      | Mon  | Nov 27 | Review                                            |              |             |
|        |      | Wed  | Nov 29 | Midterm #3                                        |              |             |
|        | 32   | Fri  | Dec 1  | Multi Layer NN                                    | 10.2         |             |
|        | 33   | Mon  | Dec 4  | CNN                                               | 10.3         |             |
|        | 34   | Wed  | Dec 6  | Unsupervised Learning & Clustering                | 12.1, 12.4   |             |
|        | 35   | Fri  | Dec 8  | Virtual: Project office hours                     |              | Project due |

Dr. Munch (MSU-CMSE) Mon, Nov 13, 2023