Numerical Analysis

Lusine Poghosyan

AUA

September 28, 2018

Interpolating Polynomial: Newton Form

Suppose that we have succeeded in finding a polynomial P(x) that $P(x_i) = f(x_i)$ for $0 \le i \le k$.

We shall attempt to add to P(x) another term that will enable the new polynomial to take value $f(x_{k+1})$ at x_{k+1} .

$$P(x) + c(x - x_0)(x - x_1) \dots (x - x_k)$$

We will find c from the condition that

$$P(x_{k+1}) + c(x_{k+1} - x_0)(x_{k+1} - x_1) \dots (x_{k+1} - x_k) = f(x_{k+1}).$$

Using the Newton algorithm, find the interpolating polynomial for this table:

The Interpolating Polynomial will be

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1}),$$

where

$$\begin{cases} f(x_0) = a_0 \\ f(x_1) = a_0 + a_1(x_1 - x_0) \\ f(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) \\ etc. \end{cases}$$

In general, a_n depends on $f(x_0)$, $f(x_1)$, ... $f(x_n)$. In other words, a_n depends on the values of f at the nodes x_0 , x_1 , ..., x_n . The traditional notation is

$$a_n=f[x_0,x_1,\ldots,x_n].$$

The quantity $f[x_0, x_1, \dots, x_n]$ is called the divided difference of order n for f.

For the table

determine the quantities $f[x_0]$, $f[x_0, x_1]$, and $f[x_0, x_1, x_2]$.

Newton form of the interpolating polynomial

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Theorem

The divided differences obey the formula

$$f[x_0] = f(x_0)$$

and

$$f[x_0,x_1,\ldots x_k]=\frac{f[x_1,x_1,\ldots x_k]-f[x_0,x_1,\ldots,x_{k-1}]}{x_k-x_0}, \quad k>0.$$

Theorem

The divided differences obey the formula

$$f[x_0,x_1,\ldots x_n] = \sum_{k=0}^n \frac{f(x_k)}{(x_k-x_0)(x_k-x_1)\ldots(x_k-x_{k-1})(x_k-x_{k+1})\ldots(x_k-x_n)}.$$

Theorem

The divided difference $f[x_0, x_1, ..., x_n]$ is invariant under all permutations of the arguments $x_0, x_1, ..., x_n$.

Construct the interpolating polynomial of corresponding order for this table

by using Newton's form.

Calculate the divided difference f[1,3,-5,0] for the function f(x) = (x-1)(x-3)(x+5).