Órgãos de Máquinas Engrenagens – Aula TP 5

Carlos M. C. G. Fernandes

1 Interferência de corte

1.1 Número mínimo de dentes para uma roda dentada não corrigida

A Figura 1 representa a condição limite de interferência de corte por buril cremalheira para uma roda dentada sem correção com um número de dentes z'.

Figura 1: Condição limite de interferência de corte

A condição limite de interferência de corte pode ser representada pela equação (1).

$$\overline{OT} \cdot \cos \alpha + m = \overline{OI} \tag{1}$$

Notando que os segmentos $\overline{OT} = r_b$ e $\overline{OI} = r$, podemos escrever a condição limite de interferência de corte por cremalheira segundo a equação (2).

$$r_h \cdot \cos \alpha + m = r \tag{2}$$

O raio de base r_b pode ser escrito como $r \cdot \cos \alpha$, tal como apresentado nas equações (3) e (4).

$$r \cdot \cos \alpha \cdot \cos \alpha + m = r \tag{3}$$

$$r \cdot \cos^2 \alpha + m = r \tag{4}$$

O raio primitivo r da roda com um número mínimo de dentes z' é $\frac{z' \cdot m}{2}$, e escrevemos assim a equação (6).

$$\frac{z' \cdot m}{2} \cdot \cos^2 \alpha + m = \frac{z' \cdot m}{2} \tag{5}$$

Simplificando o módulo *m* por pertencer a todos os termos da equação (6), vem:

$$\frac{z'}{2} \cdot \left(\cos^2 \alpha - 1\right) = -1\tag{6}$$

Como $\cos^2\alpha - 1 = -\sin^2\alpha$, escrevemos o valor do número mínimo de dentes z' como sendo apenas função do ângulo de pressão bo buril cremalheira, equação (7).

$$z' = \frac{2}{\sin^2 \alpha} \tag{7}$$

Se considerarmos o ângulo de pressão habitual de $\alpha=20^\circ$, o valor teórico do número mínimo de dentes será $z'\approx17$.

1.2 Correção necessária para evitar a interferência de corte

Quando existe interferência de corte, a linha que delimita a altura de cabeça do flanco da cremalheira (reta a vermelho na Figura 2) é interior ao círculo de base de raio r_b .

Figura 2: Interferência de corte

Para se evitar a interferência de corte, teremos de afastar o buril cremalheira do centro O da roda a cortar, até ao momento em que se verifique novamente o limite de interferência de corte como descrito na Figura 3. Ao processo de afastar a cremalheira do centro da roda, damos o nome de correção positiva. O valor da correção é $x \cdot m$, sendo o produto do fator adimensional de correção x e do módulo da roda dentada m.

Escrevemos novamente a condição limite de interferência de corte, mas incluímos a correção de dentado na equação (8). de notar que a correção positiva afasta a reta de referência, diminuindo a distância da reta limite de interferência ao primitivo de corte. Neste caso a distância passa de m para $m - x \cdot m$.

$$\overline{OT} \cdot \cos \alpha + m - x \cdot m = \overline{OI} \tag{8}$$

Notando que os segmentos $\overline{OT} = r_b$ e $\overline{OI} = r$, podemos escrever a condição limite de interferência de corte por cremalheira segundo a equação (9).

$$r_b \cdot \cos \alpha + m - x \cdot m = r \tag{9}$$

Como já visto, o raio de base r_b pode ser escrito como $r \cdot \cos \alpha$, tal como apresentado nas equações (10) e (11).

$$r \cdot \cos \alpha \cdot \cos \alpha + m - x \cdot m = r \tag{10}$$

Figura 3: Correção positiva para evitar a interferência de corte

$$r \cdot \cos^2 \alpha + m - x \cdot m = r \tag{11}$$

O raio primitivo r da roda a cortar por buril cremalheira é $\frac{z \cdot m}{2}$:

$$\frac{z \cdot m}{2} \cdot \cos^2 \alpha + m - x \cdot m = \frac{z \cdot m}{2} \tag{12}$$

$$\frac{z}{2} \cdot \left(\cos^2 \alpha - 1\right) = x - 1 \tag{13}$$

Usando a identidade $\cos^2 \alpha - 1 = -\sin^2 \alpha$ escrevemos a equação (14).

$$\frac{z}{2} \cdot \left(-\sin^2 \alpha\right) = x - 1 \tag{14}$$

$$z \cdot \frac{\sin^2 \alpha}{2} = 1 - x \tag{15}$$

Como já foi visto, $\frac{2}{\sin^2 \alpha}$ é o valor do número mínimo de dentes que pode ser cortado sem interferência z' e podemos escrever:

$$\frac{z}{z'} = 1 - x \tag{16}$$

Finalmente, podemos escrever o valor da correção mínima necessária para evitar a interferência de uma roda com um número de dentes z < z':

$$x = \frac{z' - z}{z'} \tag{17}$$

2 Correção de dentado para um entre-eixo imposto

2.1 Entre-eixo imposto

Quando o entre-eixo é imposto, a' é conhecido. Podemos então usar o sistema de equações (18) para determinar o somatório das correções de dentado $\sum x = x_1 + x_2$ e o ângulo de pressão de funcionamento.

$$\begin{cases} a' \cdot \cos \alpha' = a \cdot \cos \alpha \\ \operatorname{inv} \alpha' = \operatorname{inv} \alpha + 2 \cdot \tan \alpha \cdot \frac{\sum x}{z_1 + z_2} \end{cases}$$
 (18)

Depois de conhecido o somatório $\sum x = x_1 + x_2$, torna-se necessário aplicar um critério para determinar x_1 e x_2 . É comum aplicar-se o critério ISO/TR 4467.

2.2 Critério ISO/TR 4467 [1]

O critério ISO/TR 4467 preconiza a utilização do sistema de equações (19) para determinar a repartição de $\sum x$ por x_1 e x_2 .

$$\begin{cases} x_1 = \lambda \cdot \frac{u-1}{u+1} + \frac{\sum x}{u+1} \\ x_2 = \sum x - x_1 \end{cases}$$
 (19)

Conhecido z_1 e z_2 , podemos calcular a razão de transmissão pela equação (20).

$$u = \frac{z_2}{z_1} \tag{20}$$

Para o caso de u > 5, usar u = 5.

Para aplicar o critério ISO/TR 4467 precisamos de definir o valor de λ a usar. Para engrenagens redutoras, i.e. u > 1, usar: $0.5 \le \lambda \le 0.75$. Um valor mais elevado permite obter engrenagens redutoras mais eficientes.

Para engrenagens multiplicadoras, i.e. u < 1, usar: $0.0 \le \lambda \le 0.5$. Henriot recomenda o uso de $\lambda = 0$ para obter engrenagens multiplicadoras mais eficientes.

2.3 Aplicação numérica

Considere a engrenagem normal (sem correção de dentado), com os dados da Tabela 1 e propriedades geométricas da Tabela 2.

Sabendo que o entre-eixo de corte é a=61 mm, determine as correções de dentado necessárias para um entre-eixo imposto de a'=62 mm aplicando o critério ISO. Verifique se os escorregamentos específicos máximos são similares para o pinhão e roda.

Tabela 1: Dados da Engrenagem

z_1	20
z_2	41
m	2 mm
α	20°
b	20 mm

Tabela 2: Valores Calculados (mm)

p	6.283		
p_b	5.904		
r	20.000	41.000	
r_a	22.000	43.000	
r_d	17.500	38.500	
r_b	18.794	38.527	
а	61.000		
k	3	5	
W_k	15.3209	27.7176	

Impondo *a'* no sistema de equações (21):

$$\begin{cases}
62.000 \cdot \cos \alpha' = 61.000 \cdot \cos \left(\frac{\pi}{9}\right) \\
\operatorname{inv} \alpha' = \operatorname{inv}\left(\frac{\pi}{9}\right) + 2 \cdot \tan \left(\frac{\pi}{9}\right) \cdot \frac{\sum x}{20 + 41}
\end{cases}$$
(21)

Do sistema de equações anterior resulta $\alpha' = 0.39098$ rad e $\sum x = 0.5293$. Podemos agora determinar o valor de x_1 e x_2 através do sistema de equações (22). Uma vez que a engrenagem é redutora u = 2.05, foi considerado $\lambda = 0.75$ para obter uma engrenagem mais eficiente.

$$\begin{cases} x_1 = 0.75 \cdot \frac{2.05 - 1}{2.05 + 1} + \frac{0.5293}{2.05 + 1} \\ x_2 = 0.5293 - x_1 \end{cases}$$
 (22)

Sendo $x_1 = 0.4317$ e $x_2 = 0.0976$. Os escorregamentos máximos são respetivamente $g_{s1,max} = 1.326$ e $g_{s2,max} = 1.516$.

O segmento de engrenamento da engrenagem normal era $\overline{AB}=9.669$ sendo a razão de condução $\epsilon_{\alpha}=1.638$.

A engrenagem corrigida com entre-eixo imposto de $a'=62\,\mathrm{mm}$ tem um segmento de engrenamento $\overline{AB}=8.9235$ sendo a razão de condução $\epsilon_{\alpha}=1.511$.

Referências

[1] Almacinha, José A. S. e Jorge H. O. Seabra: A correcção de dentado em rodas cilíndricas de engrenagens exteriores redutoras e multiplicadoras. Tecnometal, 1991.