MAXIMUM POWER TRANSFER

Section 4.8

Md. Shafqat Talukder Rakin
Lecturer, Department of CSE,
United International University

Email id : shafqat@cse.uiu.ac.bd

OUR GOAL

- In many practical situations, a circuit is designed to provide power to a load
- There are applications in areas such as communications where it is desirable to maximize the power delivered to a load
- We need to find the equation to maximize power delivered to a load

POWER CALCULATION

Figure 4.48

The circuit used for maximum power transfer.

$$p = i^2 R_L = \left(\frac{V_{\rm Th}}{R_{\rm Th} + R_L}\right)^2 R_L$$

POWER CALCULATION

For a given circuit, V_{Th} and R_{Th} are fixed. By varying the load resistance R_L , the power delivered to the load varies as sketched in Fig. 4.49. We notice from Fig. 4.49 that the power is small for small or large values of R_L but maximum for some value of R_L between 0 and ∞ . We now want to show that this maximum power occurs when R_L is equal to R_{Th} . This is known as the *maximum power theorem*.

Figure 4.49 Power delivered to the load as a function of R_L .

MAXIMUM POWER TRANSFER

Maximum power is transferred to the load when the load resistance equals the Thevenin resistance as seen from the load ($R_L = R_{Th}$).

PROOF OF MAXIMUM POWER TRANSFER

To prove the maximum power transfer theorem, we differentiate p in Eq. (4.21) with respect to R_L and set the result equal to zero. We obtain

$$\frac{dp}{dR_L} = V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L)^2 - 2R_L(R_{\text{Th}} + R_L)}{(R_{\text{Th}} + R_L)^4} \right]$$
$$= V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L - 2R_L)}{(R_{\text{Th}} + R_L)^3} \right] = 0$$

This implies that

$$0 = (R_{\rm Th} + R_L - 2R_L) = (R_{\rm Th} - R_L)$$
 (4.22)

which yields

$$R_L = R_{\rm Th} \tag{4.23}$$

showing that the maximum power transfer takes place when the load resistance R_L equals the Thevenin resistance R_{Th} . We can readily confirm that Eq. (4.23) gives the maximum power by showing that $d^2p/dR_L^2 < 0$.

The maximum power transferred is obtained by substituting Eq. (4.23) into Eq. (4.21), for

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}} \tag{4.24}$$

Equation (4.24) applies only when $R_L = R_{Th}$. When $R_L \neq R_{Th}$, we compute the power delivered to the load using Eq. (4.21).

Find the value of R_L for maximum power transfer in the circuit of Fig. 4.50. Find the maximum power.

Figure 4.50

For Example 4.13.

Solution:

We need to find the Thevenin resistance $R_{\rm Th}$ and the Thevenin voltage $V_{\rm Th}$ across the terminals a-b. To get $R_{\rm Th}$, we use the circuit in Fig. 4.51(a) and obtain

$$R_{\text{Th}} = 2 + 3 + 6 \| 12 = 5 + \frac{6 \times 12}{18} = 9 \Omega$$

Figure 4.51

For Example 4.13: (a) finding R_{Th} , (b) finding V_{Th} .

To get V_{Th} , we consider the circuit in Fig. 4.51(b). Applying mesh analysis gives

$$-12 + 18i_1 - 12i_2 = 0$$
, $i_2 = -2$ A

Solving for i_1 , we get $i_1 = -2/3$. Applying KVL around the outer loop to get V_{Th} across terminals a-b, we obtain

$$-12 + 6i_1 + 3i_2 + 2(0) + V_{Th} = 0 \implies V_{Th} = 22 \text{ V}$$

For maximum power transfer,

$$R_L = R_{\rm Th} = 9 \Omega$$

and the maximum power is

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_L} = \frac{22^2}{4 \times 9} = 13.44 \text{ W}$$

- **4.67** The variable resistor *R* in Fig. 4.133 is adjusted until it absorbs the maximum power from the circuit.
 - (a) Calculate the value of R for maximum power.
 - (b) Determine the maximum power absorbed by R.

Figure 4.133

For Prob. 4.67.

We find V_{Th} using the circuit below. We apply mesh analysis.

Chapter 4, Solution 67.

We first find the Thevenin equivalent. We find R_{Th} using the circuit below.

$$R_{Th} = 20 / /80 + 90 / /10 = 16 + 9 = 25 \Omega$$

$$(80 + 20)i_1 - 40 = 0$$
 \longrightarrow $i_1 = 0.4$
 $(10 + 90)i_2 + 40 = 0$ \longrightarrow $i_2 = -0.4$
 $-90i_2 - 20i_1 + V_{Th} = 0$ \longrightarrow $V_{Th} = -28 \text{ V}$

(a)
$$R = R_{Th} = 25 \Omega$$

(b)
$$P_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}} = \frac{(28)^2}{100} = \underline{7.84 \text{ W}}$$

*4.68 Compute the value of R that results in maximum power transfer to the 10- Ω resistor in Fig. 4.134. Find the maximum power.

Figure 4.134

For Prob. 4.68.

Chapter 4, Solution 68.

This is a challenging problem in that the load is already specified. This now becomes a "minimize losses" style problem. When a load is specified and internal losses can be adjusted, then the objective becomes, reduce R_{Thev} as much as possible, which will result in maximum power transfer to the load.

Removing the 10 ohm resistor and solving for the Thevenin Circuit results in:

$$R_{Th} \,=\, (Rx20/(R+20)) \,$$
 and a $V_{oc} = V_{Th} = \, 12x(20/(R+20)) + (-8)$

As R goes to zero, R_{Th} goes to zero and V_{Th} goes to 4 volts, which produces the maximum power delivered to the 10-ohm resistor.

$$P = vi = v^2/R = 4x4/10 = 1.6$$
 watts

Notice that if R=20 ohms which gives an $R_{Th}=10$ ohms, then V_{Th} becomes -2 volts and the power delivered to the load becomes 0.1 watts, much less that the 1.6 watts.

It is also interesting to note that the internal losses for the first case are $12^2/20 = 7.2$ watts and for the second case are = to 12 watts. This is a significant difference.

Fall 2023

ii) For any value of R_L , what will be the maximum power delivered to this resistance? iii) If R_L =1k Ω , then would maximum power be achieved? If not, then what should you do to achieve maximum power?

Fall 2023

For RTH,

So, 5KIL and 500 IL are in partallel.

$$R_{TH} = \left(\frac{1}{5000} + \frac{1}{500}\right)^{-1}$$

$$\frac{2) -30 - V_A}{5000} = \frac{V_A}{500} + 10 \times 10^{-3}$$

z)
$$V_A = \frac{-80}{11} V_A$$

$$V_{TH} = V_A - V_B$$

$$= -\frac{80}{11} - 80$$

$$= -87 \cdot 2727 \times 10^{-1}$$

Fall 2023

Summer 2023

- **ii)** For any resistance connected right to **A-B** terminal, what will be the maximum power delivered to the resistance?
- iii) If 10Ω resistance is connected between **A-B**, then would maximum power be achieved? If not then what should you do?

Summer 2023

For RTH

$$R_{TH} = 1 + (3+2) | 1 (4+5)$$

$$= 4.214 \int_{-2}^{2}$$

Fon VTH,

$$|4i_1| = 24 + 5 \times (-2)$$

$$|i_1| = 14$$

$$V_{TH} = 4i_1 + 5(i_1 - i_2)$$

$$= 4 \times 1 + 5(1 - (-2))$$

$$= 19 \vee$$

Summer 2023

ii) Max powers
$$P_{max} = \frac{V_{TH}^2}{4 R_{TH}} = \frac{13^2}{4 \times 4.214}$$

$$= 21.417 \text{ W}$$

SHORT CIRCUIT REFERENCE

- What is SHORT CIRCUIT Explained with Example | Basics of Electronics (youtube.com)
- What is Short Circuit? Easiest Explanation | TheElectricalGuy (youtube.com)
- The Concept of Short Circuit (youtube.com)

MATH TO PRACTICE FROM THE BOOK FOR EXAM

- Maximum Power Transfer theorem:
 - Example:
 - **4.13**
 - Problem:
 - **4.67**, 4.68
 - N:B: Please note that Circuits with Independent sources only, for Thevenin's theorem and maximum power transfer!

THANK YOU

