Prof. Rodrigo Richard Gomes

- Na busca em uma árvore binária, a quantidade máxima de nós percorridos é dada pela quantidade de níveis dessa árvore
- Logo, quanto menos níveis uma árvore tiver, menor a quantidade de nós que deverão ser percorridos durante a pesquisa

 Problema: quando as chaves inseridas estão, em sua maioria, em uma determinada ordem, ocorre um desbalanceamento progressivo

- Solução: usar um dos algoritmos de balanceamento
 - 0 2-3
 - 0 2-3-4
 - Red-black
 - LLRB
 - o AVL
- AVL : proposto em 1962 pelos russos Adelson-Velski e Landis

- Uma árvore AVL é uma Árvore Binária de Pesquisa (ABP) construída de modo que, para cada nó, a altura de suas subárvores esquerda e direita difira em no máximo um nível
- Para cada nó deve ser calculado um fator de balanceamento

FB = altura da subárvore esquerda - altura da subárvore direita

- Em uma árvore AVL, os fatores de balanceamento permitidos para cada nó são -1, 0 e +1
- Assim, se qualquer nó apresentar fator de balanceamento diferente dos permitidos, a árvore está desbalanceada e deve sofrer uma operação de rotação

Curiosidade:

 Um fator de balanceamento positivo indica que a subárvore esquerda é maior (ou mais pesada) que a direita

 Um fator de balanceamento negativo indica que a subárvore direita é maior (ou mais pesada) que a esquerda

Não balanceada

Não balanceada

Balanceada

Não balanceada

Balanceada

Balanceada

Identifique quais árvores estão balanceadas

Não balanceada

8 12 20

Balanceada

Balanceada

Não balanceada

Não balanceada

Não balanceada

Balanceada

Balanceada

Balanceada

Não balanceada

Não balanceada

Balanceada

Balanceada

Balanceada

Não balanceada

- Para manter uma árvore balanceada, toda vez que a árvore desbalancear, deve-se aplicar uma das operações de rotação:
 - Rotação simples à direita (RSD)
 - Rotação simples à esquerda (RSE)
 - Rotação dupla à direita (RDD)
 - Rotação dupla à esquerda (RDE)

- Rotação simples à direita (RSD)
 - Toda vez que um nó desbalanceado tiver fator de balanceamento (FB) positivo e o nó raiz de sua subárvore esquerda também tiver FB positivo (ou nulo), deve-se aplicar uma RSD

- Rotação simples à esquerda (RSE)
 - Toda vez que um nó desbalanceado tiver FB negativo e o nó raiz de sua subárvore direita também tiver FB negativo (ou nulo), deve-se aplicar uma RSE

- Rotação dupla à direita (RDD)
 - Toda vez que um nó desbalanceado tiver FB positivo e o nó raiz de sua subárvore esquerda tiver FB negativo, deve-se aplicar uma RDD

- Rotação dupla à esquerda (RDE)
 - Toda vez que um nó desbalanceado tiver FB negativo e o nó raiz de sua subárvore esquerda tiver FB positivo, deve-se aplicar uma RDE

FB nó desbalanceado	FB Filho	Aparência	Ação
+	+	+/0	RSD
	-	·	RDD 10 passo RSE 20 passo RSD
	-	-/0	RSE
-	+	(+)	RDE 10 passo RSD 20 passo RSE