AOC 2021 Day 24

by Kamiel de Visser

Puzzle input

The puzzle input repeats the same piece of code 14 times, with slight alterations each time it's ran:

```
inp w
mul x 0
add x z
mod x 26
div z <DIVIDE>
add x <CHECK>
eql x w
eql x 0
mul y 0
add y 25
mul y x
add y 1
mul z y
mul z y
mul y 0
add y w
add y <OFFSET>
mul y x
add z y
```

Some things to note about this code:

- ■, and values can be 'forgotten' in between runs, as they are reassigned to (for and and a) or (for a) before using them in the 'INP-cycle'.
- values are the digits from the model number we have to input one by one to check the model number for validation.
- values change over the course of multiple runs, and eventually have to equal after the fourteenth run for there to be a valid model number.

- CDIVIDES, CCHECKS and COFFSETS contain different values between runs, all other instructions in this 'INP-cycle' repeat exactly as they are 14 times.
 - <DIVIDE> is:
 - 1 in cases where **CHECK>** is a positive number
 - 26 in cases where <CHECK> is a negative number
 - **CHECK** is always a digit larger than 9

Diving deeper

Lets split up the bit of code and look at what it's essentially doing:

The condition

```
inp w
mul x 0
add x z
mod x 26
div z <DIVIDE>
add x <CHECK>
eql x w
```

can be abbreviated to

```
w = input
x = ((z % 26) / <DIVIDE>) + <CHECK>
x = (((z % 26) / <DIVIDE>) + <CHECK>) == w ? 1 : 0
```

So this bit of code takes in an input , then checks to see if a condition (now named COND using that input is true:

```
COND: x = (((z \% 26) / <DIVIDE>) + <CHECK>) == w ? 1 : 0
```

It must be noted here that this condition can only become ⓐ if **CHECK** is a negative number. ⓐ is limited from a range of ⓐ to and including ⑤, but as we already found out in the first part, **CHECK** is always a digit *larger than* ⑤.

The double condition

Then follows the second bit of code:

```
eql x 0
```

This takes in the result from \bigcirc and checks whether it was false. If it was, it sets \bigcirc to \bigcirc and if it was met, it sets \bigcirc to \bigcirc . In short; it does: \bigcirc \bigcirc ?

The addition

Now for the final bit of code:

```
mul y 0
add y 25
mul y x
add y 1
mul z y
mul y 0
add y w
add y <OFFSET>
mul y x
add z y
```

Can be abbreviated to:

```
z = z * ((25 * x)+1)

z = z + ((w + <0FFSET>) * x)
```

Now considering that cond was met, so is so this can be further abbreviated to:

```
z = z * 1
z = z
```

Which essentially does nothing to **a**. (meaning we can skip the rest of the code entirely if **CHECK** is positive (since that results into **COND** never being met.))

If **COND** was not met however, **()** is **()** and we can see that we can abbreviate the code to:

```
z = 26 * z + w + <0FFSET>
```

The stack

We can now conclude the code essentially does this:

```
if (<CHECK> is positive): // <DIVIDE> = <CHECK> > 0 ? 26 : 1
    z = z / 1
    z = 26 * z + w + {OFFSET}
else:
    z = z / 26
    if (z + <CHECK> != w):
        z = 26 * z + w + {OFFSET}
```

Which looks earily close to either pushing or popping from a stack of base-26 numbers. If we think of it that way, we can simplify the code even more:

We need to get a value of at the end of the program to validate a model number. This means that the stack must be empty.

Here are the consecutive values for **CHECKS** and **COFFSETS** of my puzzle input respectively:

Run	1	2	3	4	5	6	7	8	9	10	11	12	13	14
<check></check>	14	14	14	12	15	-12	-12	12	-7	13	-8	-5	-10	-7
<offset></offset>	14	2	1	13	5	5	5	9	3	13	2	1	11	8

Notice how there are an equal amount of positive (green) to negative (blue) offsets, further supporting our theory that we are popping/pushing to a stack.

If we now run the above code for fourteen digits stored in an array digit, we will do:

```
stack.push(digit[0] + 14)
stack.push(digit[1] + 2)
```

```
stack.push(digit[2] + 1)
stack.push(digit[3] + 13)
stack.push(digit[4] + 5)
stack.pop() // digit[5] == stack.pop() - 12 must be true
stack.pop() // digit[6] == stack.pop() - 12 must be true
stack.push(digit[7] + 9)
stack.pop() // digit[8] == stack.pop() - 7 must be true
stack.push(digit[9] + 13)
stack.pop() // digit[10] == stack.pop() - 8 must be true
stack.pop() // digit[11] == stack.pop() - 5 must be true
stack.pop() // digit[12] == stack.pop() - 10 must be true
stack.pop() // digit[13] == stack.pop() - 7 must be true
```

Thus we can reverse engineer some requirements for all pops to pass the condition:

For every pop(), we look at the last value in the stack:

1. At our first pop(), our stack contains:

```
0: digit[0] + 14 // bottom of stack
1: digit[1] + 2
2: digit[2] + 1
3: digit[3] + 13
4: digit[4] + 5 // top of stack
```

So digit[5] must be a number that makes the condition digit[5] == digit[4] + 5 - 12 true.

2. At our second pop(), our stack contains:

```
0: digit[0] + 14 // bottom of stack
1: digit[1] + 2
2: digit[2] + 1
3: digit[3] + 13
```

So digit[6] must be a number that makes the condition digit[6] ==
digit[3] + 13 - 12 true.

3. At our third pop(), our stack contains:

```
0: digit[0] + 14 // bottom of stack
1: digit[1] + 2
2: digit[2] + 1
3: digit[7] + 9
```

So digit[8] must be a number that makes the condition digit[8] == digit[7] + 9 - 7 true.

Following this process for the entire program, we can find these rules:

Or simplified:

```
digit[5] = digit[4] - 7
digit[6] = digit[3] + 1
digit[8] = digit[7] + 2
digit[10] = digit[9] + 5
digit[11] = digit[2] - 4
digit[12] = digit[1] - 8
digit[13] = digit[0] + 7
```

The highest number a digit[i] can have is §, so we fill in values that satisfy the above conditions whilst maximizing the filled in digits. The key to doing this is filling in a § on the lefthand side if we are dealing with an addition, and § on the righthand side if we are dealing with a substraction:

```
digit[13] = digit[0] + 7  // 9 = 2 + 7

digit:
29989297949519
```

Likewise, we can find the smallest possible model number by minimizing the values, filling in 1 instead of 9, now first on the lefthand side when dealing with substraction, and the righthand side when dealing with addition, as the lowest digit[i] can be is 1: