

空间曲线的切线与法平面

主讲人: 张文龙

大连理工大学数学科学学院

平面曲线的切线与法线

平面光滑曲线 y = f(x) 在点 (x_0, y_0) 处

切线方程: $y-y_0=f'(x_0)(x-x_0)$

法线方程: $y-y_0=-\frac{1}{f'(x_0)}(x-x_0)$

设 M_0 为空间曲线 Γ 上一定点,M为曲线 Γ 上另一点。

割线: 过 M_0M 的直线, 称为曲线 Γ 的割线;

切线: 当M 沿曲线 Γ 趋于 M_0 时,割线 M_0M 的极限位置 M_0T ,称为曲线 Γ 的切线;

法平面: 过 M_0 且与切线 M_0T 垂直的平面 Π ,称为曲线 Γ 在 M_0 点的法平面。

空间曲线的切线与法平面:

y

1. 曲线方程为参数方程

设曲线
$$\Gamma$$
的参数方程为:
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \quad (\alpha \le t \le \beta) \\ z = \omega(t) \end{cases}$$

其中 $\varphi(t)$, $\psi(t)$, $\omega(t)$ 可导, 且导数不全为0。

设:
$$t = t_0$$
 对应 $M_0(x_0, y_0, z_0)$
$$t = t_0 + \Delta t$$
 对应 $M(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z)$

割线
$$M_0 M$$
 的方程为: $\frac{x-x_0}{\Delta x} = \frac{y-y_0}{\Delta y} = \frac{z-z_0}{\Delta z}$

割线 $M_0 M$ 的方程为: $\frac{x-x_0}{\Delta x} = \frac{y-y_0}{\Delta y} = \frac{z-z_0}{\Delta z}$

在上述方程的分母同除以 Δt , 即: $\frac{x-x_0}{\Delta x/\Delta t} = \frac{y-y_0}{\Delta y/\Delta t} = \frac{z-z_0}{\Delta z/\Delta t}$

当 M 沿曲线 Γ 趋于 M_0 时,相应有 $\Delta t \rightarrow 0$,则有:

切线 M_0T 的方程为: $\frac{x-x_0}{\varphi'(t_0)} = \frac{y-y_0}{\psi'(t_0)} = \frac{z-z_0}{\omega'(t_0)}$ (分母为 0 时, 对应分子也为 0)

切线的方向向量称为切向量, 记作 s

即: $\vec{s} = (\varphi'(t_0), \psi'(t_0), \omega'(t_0))$ (法平面的法向量)

法平面方程: $\varphi'(t_0)(x-x_0) + \psi'(t_0)(y-y_0) + \omega'(t_0)(z-z_0) = 0$

例1: 求螺旋线 $x = a\cos\theta$, $y = a\sin\theta$, $z = b\theta$ 在 $\theta = \frac{\pi}{2}$ 对应点处的切线与法平面方程。

解: 由
$$x'(\theta) = -a \sin \theta$$
, $y'(\theta) = a \cos \theta$, $z'(\theta) = b$

对应
$$\theta = \frac{\pi}{2}$$
 的点 M_0 为 $\left(0, a, \frac{\pi}{2}b\right)$, 切向量: $\vec{s} = (-a, 0, b)$

切线方程为:
$$\frac{x}{-a} = \frac{y-a}{0} = \frac{z-\frac{\pi}{2}b}{b}$$
 即:
$$\begin{cases} bx + az = \frac{\pi}{2}ab \\ y = a \end{cases}$$

法平面方程为:
$$-ax + b\left(z - \frac{\pi}{2}b\right) = 0$$
 即: $ax - bz + \frac{\pi}{2}b^2 = 0$

注: 若曲线 Γ 的参数方程为:

$$\begin{cases} y = y(x) \\ z = z(x) \end{cases} (a \le x \le b) \longrightarrow \begin{cases} x = x \\ y = y(x) \\ z = z(x) \end{cases} (a \le x \le b)$$

若
$$y = y(x)$$
, $z = z(x)$ 在 x_0 可导,则切向量 $\vec{s} = (1, y'(x_0), z'(x_0))$

切线方程:
$$\frac{x-x_0}{1} = \frac{y-y_0}{y'(x_0)} = \frac{z-z_0}{z'(x_0)}$$

法平面方程:
$$(x-x_0) + y'(x_0)(y-y_0) + z'(x_0)(z-z_0) = 0$$

空间曲线的切线与法平面:

2. 曲线方程为一般方程

设光滑曲线 Γ 的方程为: $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

 $M_0(x_0, y_0, z_0)$ 为曲线 Γ 上一点, 若函数 F, G 在 M_0 点满足隐函

数存在定理的条件(1, ..., 2, ..., 3, ...)

当雅可比行列式
$$J = \frac{\partial(F,G)}{\partial(y,z)} \neq 0$$
 时,曲线 Γ 可表示为
$$\begin{cases} y = \varphi(x) \\ z = \psi(x) \end{cases}$$

且有求导公式

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathcal{J}} \frac{\partial(F,G)}{\partial(z,x)}, \qquad \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{\mathcal{J}} \frac{\partial(F,G)}{\partial(x,y)}$$

曲线上一点 $M_0(x_0, y_0, z_0)$ 处的切向量为

$$\vec{s} = \left(1, \varphi'(x_0), \psi'(x_0)\right) = \left(1, \frac{1}{\mathcal{J}} \frac{\partial(F, G)}{\partial(z, x)} \Big|_{M_0}, \frac{1}{\mathcal{J}} \frac{\partial(F, G)}{\partial(x, y)} \Big|_{M_0}\right)$$

或改写为:

$$\vec{s} = \left(\frac{\partial(F,G)}{\partial(y,z)}\bigg|_{M_0}, \frac{\partial(F,G)}{\partial(z,x)}\bigg|_{M_0}, \frac{\partial(F,G)}{\partial(x,y)}\bigg|_{M_0}\right)$$

则在 $M_0(x_0, y_0, z_0)$ 点有

场线方程:
$$\frac{x-x_0}{\frac{\partial(F,G)}{\partial(y,z)}\Big|_{M_0}} = \frac{y-y_0}{\frac{\partial(F,G)}{\partial(z,x)}\Big|_{M_0}} = \frac{z-z_0}{\frac{\partial(F,G)}{\partial(x,y)}\Big|_{M_0}}$$

法平面方程:

$$\left. \frac{\partial(F,G)}{\partial(y,z)} \right|_{M_0} (x-x_0) + \left. \frac{\partial(F,G)}{\partial(z,x)} \right|_{M_0} (y-y_0) + \left. \frac{\partial(F,G)}{\partial(x,y)} \right|_{M_0} (z-z_0) = 0$$

该方程也可表示为:

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ F_{\chi}(M_0) & F_{\chi}(M_0) & F_{\chi}(M_0) \\ G_{\chi}(M_0) & G_{\chi}(M_0) & G_{\chi}(M_0) \end{vmatrix} = 0$$

例2: 求球面 $x^2 + y^2 + z^2 = 4$ 与圆柱面 $x^2 + y^2 = 2x$ 的交线 Γ 在点 $P_0(1,1,\sqrt{2})$ 处的切线与法平面方程。

解: 由曲线 Γ 的方程为:

$$\begin{cases} x^2 + y^2 + z^2 - 4 = 0 \\ x^2 + y^2 - 2x = 0 \end{cases}$$

刚:
$$\frac{\partial(F,G)}{\partial(y,z)}\Big|_{P_0} = \begin{vmatrix} 2y & 2z \\ 2y & 0 \end{vmatrix}\Big|_{P_0} = -4yz\Big|_{P_0} = -4\sqrt{2}$$

同理:

$$\left. \frac{\partial(F,G)}{\partial(z,x)} \right|_{P_0} = 0; \quad \left. \frac{\partial(F,G)}{\partial(x,y)} \right|_{P_0} = 4$$

故: 切向量 $\vec{s} = (-4\sqrt{2}, 0, 4)$ (平行于向量 $\vec{s} = (\sqrt{2}, 0, -1)$)

切线方程:
$$\frac{x-1}{\sqrt{2}} = \frac{y-1}{0} = \frac{z-\sqrt{2}}{-1}$$
 即: $\begin{cases} x+\sqrt{2}z=3\\ y=1 \end{cases}$

法平面方程: $\sqrt{2}(x-1) - (z-\sqrt{2}) = 0$ 即: $\sqrt{2}x - z = 0$

解法二: 曲线 [的方程为:

$$\begin{cases} x^2 + y^2 + z^2 - 4 = 0 \\ x^2 + y^2 - 2x = 0 \end{cases}$$

对方程组两端关于 x 求导,则有

$$\begin{cases} 2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} + 2z \frac{\mathrm{d}z}{\mathrm{d}x} = 0\\ 2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} - 2 = 0 \end{cases}$$

代入点
$$P_0(1,1,\sqrt{2})$$
,解得: $\frac{dy}{dx} = 0, \frac{dz}{dx} = -\frac{1}{\sqrt{2}}$

故: 切向量
$$\vec{s} = (1, 0, -\frac{1}{\sqrt{2}})$$
 (平行于向量 $\vec{s} = (\sqrt{2}, 0, -1)$)

空间曲线 Γ 在曲线上一点 $M_0(x_0, y_0, z_0)$ 处的切线与法平面:

曲线
$$\Gamma$$
的参数方程为:
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) & (\alpha \le t \le \beta) \\ z = \omega(t) \end{cases}$$

曲线
$$\Gamma$$
 的参数方程为:
$$\begin{cases} y = y(x) \\ (a \le x \le b) \end{cases}$$

曲线
$$\Gamma$$
的一般方程为:
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$