UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Laboratorio de Cálculo Diferencial

Nombre del Alumno	Diego Joel Zúñiga Fragoso	Grupo	511
Fecha de la Práctica	06/09/2022	No. Práctica	5
Nombre de la Práctica	Funciones inversas		
Unidad	Funciones		

OBJETIVOS

Reforzar el concepto de función inversa.

EQUIPO Y MATERIALES

Computadora con Office y algún software que grafique funciones como: Graph, Scientific Workplace

DESARROLLO

En las siguientes funciones determina lo que se pide

Función	Indica los conjuntos en los	Función inversa	Composición de
	espacios	$f^{-1}(x)$:	funciones
		_	$f^{-1} \circ f$ y $f \circ f^{-1}$
$1. f(x) = \sqrt{2 + 5x}$	$Domf: \left[-\frac{2}{\pi}, \infty\right)$	$f(x) = \sqrt[2]{2+5x}$	$f(f^{-1}(x)) = f(\frac{x^2-2}{5})$
	$f(x): \longrightarrow \begin{array}{c} Dom f: [-\frac{2}{5}, \infty) \\ Img f: [0, \infty) \end{array}$	$y = \sqrt[3]{2 + 5x}$ $y^2 = 2 + 5x$	$= \sqrt[3]{2 + 5\left(\frac{x^2 - 2}{5}\right)} = \sqrt[3]{2 + x^2 - 2} = \sqrt[3]{x^2} = x$
		$y = 2 + 3x$ $x = \frac{y^2 - 2}{5}$	$f^{-1}(f(x)) = f^{-1}(\sqrt[3]{2+5x})$
	$f - 1(x)$, $Dom f : [0, \infty)$	Se intercambia la x por la y	$= \frac{\left(\frac{2\sqrt{2+5x}}{5}\right)^2 - 2}{5} = \frac{2+5x-2}{5} = \frac{5x}{5} = x$
	$f^{-1}(x): \rightarrow \begin{array}{c} Domf: [0, \infty) \\ Imgf: [-\frac{2}{5}, \infty) \end{array}$	$y = \frac{x^2 - 2}{5}$ $g^{-1}(x) = \frac{x^2 - 2}{5}$	$f^{-1}(f(x)) = f^{-1}(\sqrt[3]{2+5x})$
		$g^{-1}(x) = \frac{x^2 - 2}{5}$	$= \frac{(\sqrt[2]{2+5x})^2 - 2}{5} = \frac{2+5x-2}{5}$
Gráfica de la función, su inversa	$g^{-1}(x) = \frac{x}{5}$ $= \frac{(\sqrt{2+3x})^{2-2}}{5} = \frac{2+3x-2}{5}$ $= \frac{5x}{5} = x$		

Función $2. g(x) = \frac{x-2}{x+2}$	Indica los conjuntos en los espacios $g(x): \rightarrow$ $Domf(x) = (-\infty, -2) \cup (-2, \infty)$ $Imgf(x) = (-\infty, 1) \cup (1, \infty)$ $g^{-1}(x): \rightarrow$ $domf(x) = (-\infty, 1) \cup (1, \infty)$ $imgf(x) = (-\infty, -2) \cup (-2, \infty)$	Función inversa $g^{-1}(x)$ $g(x) = \frac{x-2}{x+2}$ $y = \frac{x-2}{x+2}$ Intercambiamos x por y $x = \frac{y-2}{y+2}$ $x(y+2) = y-2$ $xy+2x = y-2$ $2x+2 = y-xy$ $2x+2 = y(1-x)$ $y = \frac{2x+2}{1-x}$	Composición de funciones $g^{-1} \circ g \ y \ g \circ g^{-1}$ $g^{-1}(g(x)) = g^{-1}(\frac{x-2}{x+2})$ $= \frac{2(\frac{x-2}{x+2})+2}{1-(\frac{x-2}{x+2})} = \frac{\frac{2x-4+2x+4}{x+2}}{\frac{x+2}{x+2}}$ $= \frac{\frac{4x}{x+2}}{\frac{4x+2}{x+2}} = \frac{4x(x+2)}{\frac{4(x+2)}{x+2}} = \frac{4x}{4} = x$ $g(g^{-1}(x)) = g(\frac{2x+2}{1-x})$ $= \frac{(\frac{2x+2}{1-x})-2}{(\frac{2x+2}{1-x})+2} = \frac{\frac{2x+2-2x+2}{1-x}}{\frac{2x+2-2x+2}{1-x}} = \frac{\frac{4x}{1-x}}{\frac{4}{1-x}}$ $= \frac{4x(1-x)}{4(1-x)} = \frac{4x}{4} = x$			
		$g^{-1}(x) = \frac{2x+2}{1-x}$				
Gráfica de la función, su inversa y la función identidad en el mismo cuadro						
Statica de la Tulicion, su inversa y la Tulicion Identidad en el mismo cuadro 20 15 20 15 15 15 16 10 15 20 20 20 20 20 20 20 20 20 20 20 20 20						
Función	Indica los conjuntos en los espacios	Función inversa $h^{-1}(x)$	Composición de funciones $h^{-1} \circ h \ y \ h \circ h^{-1}$			
3. $h(x) = \frac{1}{x^2}, x > 0$	$h(x)$: $\rightarrow \frac{domf = (0, \infty)}{imgf = (0, \infty)^{^{\circ}}}$	$h^{-1}(x) = \sqrt[2]{\frac{1}{x}}$	$h^{-1}(h(x)) = h^{-1}(\frac{1}{x^2})$ $= \sqrt[2]{\frac{1}{x^2}} = \sqrt[2]{x^2} = x$			
	$h^{-1}(x): \rightarrow \frac{domf = (0, \infty)}{imgf = (0, \infty)}$		$h(h^{-1}(x)) = h\left(\sqrt[2]{\frac{1}{x}}\right)$ $= \frac{1}{(\sqrt[2]{\frac{1}{x}})^2} = \frac{1}{x^{-1}} = x$			

Gráfica de la función, su inversa y la función identidad en el mismo cuadro de texto

¿Cómo es la simetría de la función respecto a su inversa

Son simétricas respecto a la función identidad.

Si la función y su inversa se intersectan, ¿en dónde ocurre?

Si se llegan a intersectar, es en la función identidad.

¿Qué relación hay entre el dominio y la imagen de la función con el dominio y la imagen de la inversa?

Se intercambian el dominio y la imagen de la función normal, con respecto a la de su inversa.

¿Es conmutativa la composición de la función y su inversa? ¿Qué se obtiene en todos los casos?

Si es conmutativa porque se obtiene el mismo resultado, y se obtiene x.

CONCLUSIONES.

Esta práctica fue la más sencilla de hacerhasta ahora, y me ayudó mucho a reforzar el método para obtener una función inversa, que vi en la clase de cálculo. Concluyo que, aunque sentí que fue la practica mas sencilla de hacer, también fue en la que más aprendí.

EVALUACIÓN DE LA PRÁCTICA

Se evaluará el documento con los datos solicitados, las gráficas y conclusiones enviado al siguientes correo electrónico: