Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study

Anne-Francoise DONNEAU

Medical Informatics and Biostatistics School of Public Health University of Liège Promotor: Pr. A. Albert

14 September 2012

Outline of the presentation

- ▶ Introduction
- Methods for (incomplete) Non-Gaussian longitudinal data
 Generalized Estimating Equations (GEE)
 Multiple imputation based GEE (MI-GEE)
- ► Simulation plan
- ▶ Results
- ► Conclusions

Units: Subjects, objects $(i = 1, \dots, N)$

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \dots, \mathbf{x_{iT}})'$

Time, gender, age ...

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $X_i = (x_{i1}, \dots, x_{iT})'$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \dots, \mathbf{x_{iT}})^t$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Generalized estimating equations (GEE)

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$ Measurement:

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \cdots, \mathbf{x_{iT}})'$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Generalized estimating equations (GEE)

Problem: Missing data

Missingness

Missing data patterns:

- ► Drop out / attrition
- ► Non-monotone missingness

Missingness

Missing data patterns:

- ► Drop out / attrition
- ► Non-monotone missingness

Missing data mechanism (Little and Rubin, 1987)

- MCAR Missing completely at random
 - ▶ independent of (both observed and unobserved) measurements
- MAR Missing at random
 - conditional on observed measurements, independent of unobserved measurements
- MNAR Missing not at random
 - dependent on unobserved and (also possibly) observed measurements

GEE

► GEE - extension of Generalized Linear Models to longitudinal data

GEE

- ► GEE extension of Generalized Linear Models to longitudinal data
- ▶ Ordinal data (proportional odds model) needs some transformations

GEE

- ▶ GEE extension of Generalized Linear Models to longitudinal data
- ▶ Ordinal data (proportional odds model) needs some transformations
- \blacktriangleright Define of a (K-1) expanded vector of binary responses $\mathbf{Y}_{ij}^* = (Y_{ij1}^*, ..., Y_{ii,(K-1)}^*)'$ where $Y_{ijk}^* = 1$ if $Y_{ij} = k$ and 0 otherwise
- ▶ $logit[Pr(Y_{ij} \le k)] = logit[Pr(Y_{iik}^* = 1)] = \beta_{0k} + \mathbf{x}'_{ii}\beta$

GFF

- ▶ GEE extension of Generalized Linear Models to longitudinal data
- Ordinal data (proportional odds model) needs some transformations
- \blacktriangleright Define of a (K-1) expanded vector of binary responses $\mathbf{Y}_{ii}^* = (Y_{ii1}^*, ..., Y_{ii(K-1)}^*)'$ where $Y_{iik}^* = 1$ if $Y_{ii} = k$ and 0 otherwise
- ▶ $logit[Pr(Y_{ij} \le k)] = logit[Pr(Y_{iik}^* = 1)] = \beta_{0k} + \mathbf{x}'_{ii}\beta$

$$\sum_{i=1}^{N} \frac{\partial \pi_i'}{\partial \beta} \mathbf{W_i^{-1}} (\mathbf{Y_i^*} - \pi_i) = 0$$

where $\mathbf{Y}_{i}^{*} = (\mathbf{Y}_{i1}^{*}, ..., \mathbf{Y}_{iT}^{*})'$, $\pi_{i} = E(\mathbf{Y}_{i}^{*})$ and $\mathbf{W}_{i} = \mathbf{V}_{i}^{1/2} \mathbf{R}_{i} \mathbf{V}_{i}^{1/2}$ with \mathbf{V}_{i} the diagonal matrix of the variance of the element of \mathbf{Y}_{i}^{*} . The matrix \mathbf{R}_{i} is the 'working' correlation matrix that expresses the dependence among repeated observations over the subjects.

GEE - Large sample properties

$$\sqrt{N}(\hat{\beta} - \beta) N(0, I_0^{-1}I_1I_0^{-1})$$

- $lackbox{}\hat{eta}$ are consistent even if working correlation matrix is incorrect
- lacktriangle uncorrected specification of the correlation structure affects efficiency of \hat{eta}
- ► valid only under MCAR

GEE - Large sample properties

$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \ N(0, I_0^{-1}I_1I_0^{-1})$$

- $lackbox{}\hat{eta}$ are consistent even if working correlation matrix is incorrect
- lacktriangle uncorrected specification of the correlation structure affects efficiency of \hat{eta}
- ► valid only under MCAR
- ▶ What if not MCAR?

GEE - Large sample properties

$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \ N(0, I_0^{-1}I_1I_0^{-1})$$

- $lackbox{}\hat{eta}$ are consistent even if working correlation matrix is incorrect
- lacktriangle uncorrected specification of the correlation structure affects efficiency of \hat{eta}
- ▶ valid only under MCAR
- ▶ What if not MCAR?
- ► Solution: Use Multiple Imputation (MI) as a preliminary step

Multiple imputation

Idea Replace each missing value by a set of M>1 plausible values drawn from conditional distribution of unobserved values given observed ones

Multiple imputation

Idea Replace each missing value by a set of M>1 plausible values drawn from conditional distribution of unobserved values given observed ones

How

- 1. Imputation stage $Y_{ij}^{missing} \Rightarrow Y_{ij}^{1}, \cdots, Y_{ij}^{M}$
- 2. Analysis stage Analyze the M completed datasets using GEE

$$\left(\hat{eta}^{m}, \hat{var}(\hat{eta}^{m})\right), m=1,\cdots,M$$

3. Pooling stage - Combination of the M results

$$\hat{\boldsymbol{\beta}}^* = \frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_m \quad \mathbf{T} = \mathbf{W} + \left(1 + \frac{1}{M}\right) \mathbf{B}$$

where $\mathbf{W} = \frac{1}{M} \sum_{m=1}^{M} v \hat{a} r(\hat{\beta}^m)$ and $\mathbf{B} = \frac{1}{M-1} \sum_{m=1}^{M} (\hat{\beta}_m - \hat{\beta}^*) (\hat{\beta}_m - \hat{\beta}^*)'$

Multiple imputation

Idea Replace each missing value by a set of M>1 plausible values drawn from conditional distribution of unobserved values given observed ones

How

- 1. Imputation stage $Y_{ij}^{missing} \Rightarrow Y_{ij}^{1}, \cdots, Y_{ij}^{M}$
- 2. Analysis stage Analyze the M completed datasets using GEE

$$\left(\hat{eta}^{m}, \hat{var}(\hat{eta}^{m})\right), m=1,\cdots,M$$

3. Pooling stage - Combination of the M results

$$\hat{\boldsymbol{\beta}}^* = \frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_m \quad \mathbf{T} = \mathbf{W} + \left(1 + \frac{1}{M}\right) \mathbf{B}$$

where $\mathbf{W} = \frac{1}{M} \sum_{m=1}^{M} v \hat{a} r(\hat{\beta}^m)$ and $\mathbf{B} = \frac{1}{M-1} \sum_{m=1}^{M} (\hat{\beta}_m - \hat{\beta}^*) (\hat{\beta}_m - \hat{\beta}^*)'$

Any monotone response pattern can be written as $\mathbf{Y} = (\mathbf{Y}^o, \mathbf{Y}^{missing})$. Let $\boldsymbol{\theta}$ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^o,\boldsymbol{\theta})$.

Any monotone response pattern can be written as $\mathbf{Y} = (\mathbf{Y}^o, \mathbf{Y}^{missing})$. Let $\boldsymbol{\theta}$ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^o, \hat{\boldsymbol{\theta}})$.

Any monotone response pattern can be written as $\mathbf{Y} = (\mathbf{Y}^o, \mathbf{Y}^{missing})$. Let $\boldsymbol{\theta}$ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^o, \hat{\boldsymbol{\theta}})$.

Imputation mechanisms based on :

Any monotone response pattern can be written as $\mathbf{Y} = (\mathbf{Y}^o, \mathbf{Y}^{missing})$. Let $\boldsymbol{\theta}$ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{missing}|\mathbf{Y}^o, \hat{\boldsymbol{\theta}})$.

Imputation mechanisms based on :

- Markov chain Monte Carlo (MCMC)
- Stochastic regression (ordinal logistic regression (OIM))

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative imputation method based on MCMC (Schafer, 1997).

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative imputation method based on MCMC (Schafer, 1997).

- 1. **I-step** Given starting values for θ , $\theta_{(0)}$, values for $\mathbf{Y}^{missing}$ are simulated by randomly drawing a value from $f(\mathbf{Y}^{missing}|\mathbf{Y}^{o},\theta_{(0)})$.
- 2. **P-step** New value for θ , $\theta_{(j)}$, is drawn from a transition distribution, considering the previous value $\theta_{(j)} \approx h_s(\theta_{(j-1)})$.

Both steps are iterated long enough to provide a stationary Markov chain $(\mathbf{Y}_{(1)}^{missing}, \boldsymbol{\theta}_{(1)}), (\mathbf{Y}_{(2)}^{missing}, \boldsymbol{\theta}_{(2)}), \cdots$ and last iteration is used to impute $\mathbf{Y}^{missing}$ in the dataset.

Repeat to obtain M sets of imputed values.

Imputation methods - MCMC

Assuming data arise from a multivariate Normal distribution, use an iterative imputation method based on MCMC (Schafer, 1997).

- 1. **I-step** Given starting values for θ , $\theta_{(0)}$, values for $\mathbf{Y}^{missing}$ are simulated by randomly drawing a value from $f(\mathbf{Y}^{missing}|\mathbf{Y}^{o},\theta_{(0)})$.
- 2. **P-step** New value for θ , $\theta_{(j)}$, is drawn from a transition distribution, considering the previous value $\theta_{(j)} \approx h_s(\theta_{(j-1)})$.

Both steps are iterated long enough to provide a stationary Markov chain $(\mathbf{Y}_{(1)}^{missing}, \boldsymbol{\theta}_{(1)}), (\mathbf{Y}_{(2)}^{missing}, \boldsymbol{\theta}_{(2)}), \cdots$ and last iteration is used to impute $\mathbf{Y}^{missing}$ in the dataset.

Repeat to obtain M sets of imputed values.

Problem when applied to ordinal data

- ► Normality assumption fails
- lacktriangle Imputed values are no longer integers between 1 and K o rounding

Ordinal imputation model:

$$logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}}=(\gamma_0',\gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}'_{hi}\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{m{\Gamma}}=(\gamma_0',\gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}'_{hi}\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

2. For each missing observation, $Y_{ij}^{missing}$, compute the expected probabilities $\pi_k = P[Y_{ij}^{missing} = k | \mathbf{x}_{ij}^*]$ (k = 1, ..., K), using (Eq. 1)

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}} = (\gamma_0', \gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}'_{hi}\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

- 2. For each missing observation, $Y_{ij}^{missing}$, compute the expected probabilities $\pi_k = P[Y_{ii}^{missing} = k | \mathbf{x}_{ii}^*]$ (k = 1, ..., K), using (Eq. 1)
- 3. Draw a random variate from a multinomial distribution with probabilities derived in step 2.

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}} = (\gamma_0', \gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}'_{hi}\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

- 2. For each missing observation, $Y_{ij}^{missing}$, compute the expected probabilities $\pi_k = P[Y_{ii}^{missing} = k | \mathbf{x}_{ii}^*]$ (k = 1, ..., K), using (Eq. 1)
- 3. Draw a random variate from a multinomial distribution with probabilities derived in step 2.
- 4. Repeat steps 1 to 3 to obtain M sets of imputed values.

Simulation plan

Longitudinal ordinal data model:

$$\mathsf{logit}[\mathsf{Pr}(\mathit{Y_{ij}} \leq \mathit{k}|\mathit{x_i},\mathit{t_j})] = \beta_{0\mathit{k}} + \beta_{\mathit{x}}\mathit{x_i} + \beta_{\mathit{t}}\mathit{t_j} + \beta_{\mathit{tx}}\mathit{x_i}\mathit{t_j} \quad (\mathit{k} = 1, \cdots \mathit{K} - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

Simulation plan

Longitudinal ordinal data model:

$$\mathsf{logit}[\mathsf{Pr}(Y_{ij} \leq k | x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \cdots K - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation:

logit[Pr(
$$D_i = j | x_i, Y_{i,(j-1)}$$
)] = $\psi_0 + \psi_x x_i + \psi_{prev} Y_{i,(j-1)}$

Simulation plan

Longitudinal ordinal data model:

$$logit[Pr(Y_{ij} \le k|x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \dots K - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation:

logit[Pr(
$$D_i = j | x_i, Y_{i,(j-1)}$$
)] = $\psi_0 + \psi_x x_i + \psi_{prev} Y_{i,(j-1)}$

Model simulation parameters (Well-balanced data):

K = 2, 3, 4, 5 and 7

T = 3, 5

N = 100, 300, 500

Missingness = 10%, 30%, 50%

 \rightarrow 90 different combination patterns. For each pattern, 500 random samples were generated.

Simulation results

Relative bias (%)

Relative bias (Mean \pm SD)

	,	,	
	MCMC	OIM	Difference
β_{x}	89.4 ± 13.1	99.5 ± 15.5	-10.1 ± 8.91
β_t	84.6 ± 10.4	100.9 ± 8.95	-16.4 ± 9.58
β_{tx}	90.6 ± 5.73	99.7 ± 5.37	-9.10 ± 4.60

Simulation results

Relative bias (%)

Relative bias (Mean \pm SD)

	`	,	
	MCMC	OIM	Difference
β_{x}	89.4 ± 13.1	99.5 ± 15.5	-10.1 ± 8.91
β_t	84.6 ± 10.4	100.9 ± 8.95	-16.4 ± 9.58
β_{tx}	90.6 ± 5.73	99.7 ± 5.37	-9.10 ± 4.60

Mean square error (MSE): similar for MCMC and OIM.

Simulation results

Relative bias (%)

Relative bias (Mean \pm SD)

	`	,	
	MCMC	OIM	Difference
β_x	89.4 ± 13.1	99.5 ± 15.5	-10.1 ± 8.91
β_t	84.6 ± 10.4	100.9 ± 8.95	-16.4 ± 9.58
$\beta_{\sf tx}$	90.6 ± 5.73	99.7 ± 5.37	-9.10 ± 4.60

Mean square error (MSE): similar for MCMC and OIM.

Number of levels *K*

K	MCMC	OIM	Difference
2	92.9 ± 5.18	101.2 ± 2.93	-8.35 ± 4.29
3	94.1 ± 2.98	103.4 ± 4.23	-9.35 ± 4.34
4	88.0 ± 6.71	99.1 ± 6.05	-11.1 \pm 4.66
5	89.1 ± 5.36	99.5 ± 3.09	-10.4 ± 4.70
7	88.7 ± 5.56	95.0 ± 6.12	-6.34 ± 3.87
	< 0.0001	< 0.0001	0.034

Number of levels K

K	MCMC	OIM	Difference
2	92.9 ± 5.18	101.2 ± 2.93	-8.35 ± 4.29
3	94.1 ± 2.98	103.4 ± 4.23	-9.35 ± 4.34
4	88.0 ± 6.71	99.1 ± 6.05	-11.1 ± 4.66
5	89.1 ± 5.36	99.5 ± 3.09	-10.4 ± 4.70
7	88.7 ± 5.56	95.0 ± 6.12	-6.34 ± 3.87
	< 0.0001	< 0.0001	0.034

Number of time points T

T	MCMC	OIM	Difference
3	91.7 ± 5.82	100.9 ± 5.34	-9.26 ± 4.73
5	89.4 ± 5.47	98.4 ± 5.14	-8.94 ± 4.51
	0.007	0.009	0.61

Sample size

N	MCMC	OIM	Difference
100	90.5 ± 6.60	97.7 ± 6.73	-7.22 ± 4.18
300	90.9 ± 5.37	100.8 ± 4.77	-9.88 ± 4.48
500	90.2 ± 5.29	100.4 ± 3.85	-10.2 ± 4.67
	0.74	0.027	0.0002

Sample size

N	MCMC	OIM	Difference
100	90.5 ± 6.60	97.7 ± 6.73	-7.22 ± 4.18
300	90.9 ± 5.37	100.8 ± 4.77	-9.88 ± 4.48
500	90.2 ± 5.29	100.4 ± 3.85	-10.2 ± 4.67
	0.74	0.027	0.0002

Rate of missingness

Missingness	MCMC	OIM	Difference
10%	95.4 ± 2.65	100.1 ± 2.47	-4.64 ± 0.94
30%	89.9 ± 3.23	99.9 ± 3.57	-9.94 ± 2.21
50%	86.3 ± 6.29	99.0 ± 8.31	-12.7 ± 4.92
	< 0.0001	0.37	< 0.0001

Conclusions

Relative bias

- ► MCMC yields highly underestimated model parameters
- ▶ The estimates derived under the OIM method are almost unbiased.

Conclusions

Relative bias

- ► MCMC yields highly underestimated model parameters
- ► The estimates derived under the OIM method are almost unbiased.

			K	Ν	T	Missingness
	β_x	MCMC OIM	↑	\downarrow	†	
>	eta_t	MCMC OIM	†	\downarrow	†	†
	β_{tx}	MCMC OIM	↑ ↑	\downarrow	†	↑

- ↑ Absolute bias increases
- ↓ Absolute bias decreases

Conclusions

Relative bias

- ► MCMC yields highly underestimated model parameters
- ▶ The estimates derived under the OIM method are almost unbiased.

			K	Ν	Τ	Missingness
	β_x	MCMC			\uparrow	
		OIM	\uparrow	\downarrow	\uparrow	
	β_t	MCMC	\uparrow			†
>		OIM	†	\downarrow	\uparrow	
	$\beta_{\sf tx}$	МСМС	↑		↑	†
		OIM	1	\downarrow	†	
	A A I					

- ↑ Absolute bias increases
- ↓ Absolute bias decreases

MSE

► MCMC and OIM were similar

Conclusion - General

MCMC is not really recommended to impute longitudinal ordinal data.

Conclusion - General

MCMC is not really recommended to impute longitudinal ordinal data.

Advisable to impute missing ordinal data using appropriate method.

Thank you.

No relationship between the OIM relative bias and the modeling parameters MCMC relative bias increased with K (p=0.0002) and the rate of missingness (p=0.0005)

Figure: Relative bias (%) of β_{tx} according to the number of categories and the rate of missingness (MCMC= shaded boxplot - OIM=empty boxplot)