Classificazione delle superfici quadriche

Forma canonica metrica	Forma canonica affine	Tipo affine	Centro
$\alpha_1 x_1^2 + \alpha_2 x_2^2 + \alpha_3 x_3^2 + 1 = 0$	$\alpha_1, \alpha_2, \alpha_3 > 0$ $x_1^2 + x_2^2 + x_3^2 + 1 = 0$	\emptyset (ellissoide immaginario)	si
	$\alpha_1, \alpha_2, \alpha_3 < 0$ $x_1^2 + x_2^2 + x_3^2 - 1 = 0$	ellissoide	si
	$\alpha_1, \alpha_2 > 0, \alpha_3 < 0$ $x_1^2 + x_2^2 - x_3^2 + 1 = 0$	iperboloide ellittico (a due falde)	si
	$\alpha_1 > 0, \alpha_2, \alpha_3 < 0$ $x_1^2 - x_2^2 - x_3^2 + 1 = 0$	iperboloide iperbolico (a una falda)	si
$\alpha_1 x_1^2 + \alpha_2 x_2^2 + \alpha_2 x_3^2 = 0$	$\alpha_1, \alpha_2, \alpha_3 > 0$ $x_1^2 + x_2^2 + x_3^2 = 0$	punto $(0,0,0)$ (cono immaginario)	si
	$\alpha_1, \alpha_2 > 0, \alpha_3 < 0$ $x_1^2 + x_2^2 - x_3^2 = 0$	cono ellittico	si
$\alpha_1 x_1^2 + \alpha_2 x_2^2 + 1 = 0$	$\alpha_1, \alpha_2 > 0 \qquad x_1^2 + x_2^2 + 1 = 0$	\emptyset (cilindro immaginario)	si
	$\alpha_1, \alpha_2 < 0 \qquad x_1^2 + x_2^2 - 1 = 0$	cilindro ellittico	si
	$\alpha_1 > 0, \alpha_2 < 0$ $x_1^2 - x_2^2 + 1 = 0$	cilindro iperbolico	si

Forma canonica metrica	Forma canonica affine	Tipo affine	Centro
$\alpha_1 x_1^2 + \alpha_2 x_2^2 = 0$	$\alpha_1 \alpha_2 > 0 \qquad x_1^2 + x_2^2 = 0$	retta $x_1 = x_2 = 0$ (piani immaginari incidenti $x_1 = \pm ix_2$)	si
	$\alpha_1 \alpha_2 < 0 \qquad x_1^2 - x_2^2 = 0$	$\mathbf{piani\ inci} denti\ x_1 = \pm x_2$	si
$\alpha_1 x_1^2 + 1 = 0$	$\alpha_1 > 0 \qquad x_1^2 + 1 = 0$	\emptyset (piani immaginari paralleli $x_1 = \pm i$)	si
	$\alpha_1 < 0 \qquad x_1^2 - 1 = 0$	piani paralleli $x_1=\pm 1$	si
$x_1^2 = 0$	$x_1^2 = 0$	$\frac{\text{piano } x_1}{\text{piano doppio}} = 0 \text{ (piano doppio)}$	si
$\alpha_1 x_1^2 + \alpha_2 x_2^2 + 2\beta x_3 = 0$	$\alpha_1 \alpha_2 > 0 \qquad x_1^2 + x_2^2 + 2x_3 = 0$	paraboloide ellittico	no
	$\alpha_1 \alpha_2 < 0 \qquad x_1^2 - x_2^2 + 2x_3 = 0$	paraboloide iperbolico	no
$\alpha_1 x_1^2 + 2\beta x_2 = 0$	$x_1^2 + 2x_2 = 0$	cilindro parabolico	no

Immagini di ciascun tipo di quadrica (irriducibile) sono disponibili su questa pagina.

Classificazione delle coniche

Forma canonica metrica	Forma canonica affine	Tipo affine	Centro
$\alpha_1 x_1^2 + \alpha_2 x_2^2 + 1 = 0$	$\alpha_1, \alpha_2 > 0$ $x_1^2 + x_2^2 + 1 = 0$	\emptyset (ellisse immaginaria)	si
	$\alpha_1, \alpha_2 < 0 \qquad x_1^2 + x_2^2 - 1 = 0$	ellisse	si
	$\alpha_1 > 0, \alpha_2 < 0$ $x_1^2 - x_2^2 + 1 = 0$	iperbole	si
$\alpha_1 x_1^2 + \alpha_2 x_2^2 = 0$	$\alpha_1 \alpha_2 > 0 \qquad x_1^2 + x_2^2 = 0$	punto $(0,0)$ (rette immaginarie incidenti $x_1 = \pm ix_2$)	si
	$\alpha_1 \alpha_2 < 0 \qquad x_1^2 - x_2^2 = 0$	rette incidenti $x_1 = \pm x_2$	si
$\alpha_1 x_1^2 + 1 = 0$	$\alpha_1 > 0 \qquad x_1^2 + 1 = 0$	\emptyset (rette immaginarie parallele $x_1 = \pm i$)	si
	$\alpha_1 < 0 \qquad x_1^2 - 1 = 0$	rette parallele $x_1 = \pm 1$	si
$x_1^2 = 0$	$x_1^2 = 0$	retta $x_1 = 0$ (retta doppia)	si
$\alpha_1 x_1^2 + 2\beta x_2 = 0$	$x_1^2 + 2x_2 = 0$	parabola	no

Immagini di ciascun tipo di conica (non degenere) sono disponibili su questa pagina.