

Understand the need for Deep Learning

Introduction to TensorFlow

Building a Model using TensorFlow

Using Keras with TensorFlow Classification in TensorFlow Keras

Understanding Deep Learning

Building Deep Neural Network Model Prediction in TensorFlow Keras

Working with

Machines

How do we make Computer do things?

Requirement

Area of a Rectangle

Area of a Rectangle

Area = L * W

Write down steps (Algorithm)

```
START

DISPLAY "Enter length of side one: "

GET side1

DISPLAY "Enter length of side two: "

GET side2

area = side1 * side2

DISPLAY area

END
```

Feed it to the Computer

Calculate Sales Tax

Algorithm

Write code!

☐ Get the **requirement**

- ☐ Get the **requirement**
- ☐ Build the **Logic**

- Get the **requirement**
- ☐ Build the **Logic**
- ☐ Convert logic into a **Program**

- Get the **requirement**
- ☐ Build the **Logic**
- ☐ Convert logic into a **Program**
- ☐ Give it to Computer

What do you see?

How about this?

Is it same?

This is very easy:)

Build the **Logic**

○ Convert logic into a **Program**

? □ Give it to Computer

How does our brain understand it?

Can a machine have

Vision?

Case Study: Google Photos

Can a machine understand Natural Language?

Case Study: Google Translate

Sometime even having logic ...

may not help

Possible moves in Chess

 10^{123}

Possible atoms in Observable Universe

10⁸⁰

In 1997, IBM's Deep Blue machine defeated Gary Kasparov

In 1997, IBM's Deep Blue machine defeated Gary Kasparov

...using huge computing capacity.

Possible moves in Go

10³⁶⁰

Possible moves in Go

10³⁶⁰

We can not apply brute computing capacity:(

In Mar 2016, Google's AlphaGo defeated Lee Sedol

In Mar 2016, Google's AlphaGo defeated Lee Sedol

...by 'learning' to play 'Go'

Recognize objects

Understand Language

Play complex games

Machine demonstrates an ability to...
Think, Reason

Artificial Intelligence

How do we build AI?

AI World

What is **Machine Learning?**

Machine learning (ML) allows computers to do things....

without our logic

Computer program themselves

Instead of writing code, we feed the data to the Generic algorithms

...and it builds its own logic based on the data.

How did we 'humans' learn to recognize Elephants? How Machine builds logic

Sq. Ft	Neighbourhood	Bedrooms	Price ('000)
2000	Gachibowli	3	180
1750	Jubilee Hills	3	210
1100	Kukatpally	2	55
900	Gachibowli	2	72
1245	КРНВ	3	60
		•••	
		•••	•••

Real-Estate Data

Requirement

Sq. Ft	Neighbourhood	Bedrooms	Price ('000)
1250	Gachibowli	3	???

Machine to build its own program

Price = W_1 * Sq. Ft. + W_2 * Bedrooms + W_3 * Neighbourhood

Price = W₁ * Sq. Ft. + W₂ * Bedrooms + W₃ * Neighbourhood

ML Terminology

 \square Weights : W₁, W₂, W₃

 \Box Features : x_1, x_2, x_3

☐ Target / Prediction / Output:y

Handling bias in Data

$$y = W_1 x_1 + W_2 x_2 + W_3 x_3 + b$$

How do I choose Weights and bias?

$$y = W_1 x_1 + W_2 x_2 + W_3 x_3 + b$$

Sq. Ft	Bedrooms	Neighbourhood	Actual Price	Machine Price	Loss
2000	3	Gachibowli	160	118	42
1750	3	Jubilee Hills	230	269	-39
1100	2	Kukatpally	55	67	-12
900	2	Gachibowli	92	83	9
1245	3	KPHB Colony	60	60	0
		Total			0

Is machine's logic good?

Another way to calculate Loss

$$Loss = \frac{\sum_{i=1}^{m} (Prediction_i - Actual_i)^2}{2 \times m}$$

 $m \rightarrow number of examples$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

More complex way :)

Sq. Ft	Bedrooms	Neighbourhood	Actual Price	Machine Price	Loss
2000	3	Gachibowli	160	118	(42) ²
1750	3	Jubilee Hills	230	269	(-39) ²
1100	2	Kukatpally	55	67	(-12) ²
900	2	Gachibowli	92	83	(9) ²
1245	3	KPHB Colony	60	60	(0)2
		Total			3510

Loss = 3510 / (2 * 5) = 351

What is the machine's goal?

The world of Gradient Descent

Usually it's not pretty

$$\frac{d}{dx} f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Derivative of a function

$$Loss = \frac{\sum_{i=1}^{m} (Prediction_i - Actual_i)^2}{2 \times m}$$

What function we want to minimize?

Visualizing a simple function

Derivative when X = 3

$$\frac{d}{dx}f(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h-1)^2 - (3-1)^2}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + 4h}{h}$$

$$= \lim_{h \to 0} h + 4 = 4$$

Derivative when X = 3

$$\frac{d}{dx}f(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h-1)^2 - (3-1)^2}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + 4h}{h}$$

$$= \lim_{h \to 0} h + 4 = 4$$

A **positive** derivative indicates that function f(x) is increasing.

Derivative when X = -1

$$\frac{d}{dx}f(-1) = \lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h}$$

$$= \lim_{h \to 0} \frac{(-1+h-1)^2 - (-1-1)^2}{h}$$

$$= \lim_{h \to 0} \frac{h^2 - 4h}{h}$$

$$= \lim_{h \to 0} h - 4 = -4$$

A **negative** derivative indicates that function f(x) is decreasing.

New value of X

$$x_{new} = x_{old} - \eta \frac{d}{dx} f(x_{old})$$

Example: Gradient Descent

New value of weight

$$w_{new} = w_{old} - \eta \frac{d}{dw} J(w_{old})$$
Loss function

Individual weights

$$w_{1(new)} = w_{1(old)} - \eta \frac{d}{dw_1} J(w_{1(old)})$$

$$w_{2(new)} = w_{2(old)} - \eta \frac{d}{dw_2} J(w_{2(old)})$$

$$w_{3(new)} = w_{3(old)} - \eta \frac{d}{dw_3} J(w_{3(old)})$$

$b_{new} = b_{old} - \eta \frac{d}{db} J(b_{old})$

Learning Rate

$$w_{new} = w_{old} - \eta \frac{d}{dw} J(w_{old})$$

What should be value of learning rate?

What's Next?

Update Weights

Do this multiple times...

Do this multiple times...

After lot of iterations...

$$y = 8369.175 * x_1 + 1.84732 * x_2 - 23.65543 * x_3 + 22.121977$$