Context Free Languages and Push Down Automata

- Context-free languages are both under **Union** operation
 - \circ If L_1 and L_2 are CFLs, then $L_1 \cup L_2$ is a CFL
- Context-free languages are closed under **Concatenation** operation
 - If L_1 and L_2 are CFLs, then L_1L_2 is a CFL
- Context-free languages are not closed under **Intersection**
 - \circ If L_1 and L_2 are CFLs, then $L_1 \cap L_2$ may not be a CFL
- If G is a CFG and w is a string of length 1 in L(G), then the derivation of w in G, if G is in Chomsky Normal Form will have 2n-1 steps
- Context-free languages are closed under Kleen Star
 - \circ If $m{L_1}$ is CFL, then $m{L_1^*}$ is a CFL
- $L = \{a^n b^n a^n | n \ge 0\}$ is not a CFL
- Context-free languages are not closed under Compliment
 - \circ If $m{L_1}$ is a CFL, then $m{ar{L_1}}$ may not be a CFL
 - This does not mean that the compliment of a CFL is never a CFL
- The **intersection** of a CFL and a Regular Language is a CFL
 - \circ If L_1 is a CFL and L_2 is Regular, then $L_1 \cap L_2$ is a CFL
- There is no algorithm to check if a grammar is ambiguous It is an **Undecidable Problem**
- Inherently ambiguous A language where it is not possible to elimate ambiguity

•