SNR-DEPENDENT WAVEFORM PROCESSING FOR IMPROVING THE ROBUSTNESS OF ASR FRONT-END

Author: Dusan Macho & Yan Ming

Cheng

Professor: 陳嘉平

Reporter: 楊治鏞

Outline

- Introduction
- Basic idea
- Algorithm description
- Experiment

Introduction(1/2)

- Noise reduction
 - Spectral Subtraction
 - Wiener Filtering
- Thus, the assumption of good speech/noise detector is the fundamental weakness of these techniques.

Introduction(2/2)

In this paper, we explore a time domain based method as a complementary approach to the spectrum based speech enhancement techniques

Basic idea

- Waveform
- SNR
- SNR-dependent Waveform Processing (SWP)

м

Algorithm description

Smoothed energy contour

Teager energy operator

$$E_{Teag}(n) = |s_{nr_of}^2(n) - s_{nr_of}(n-1) \times s_{nr_of}(n+1)|, \quad 1 \le n < N_{in} - 1$$

$$E_{Teag}(0) = |s_{nr_of}^2(0) - s_{nr_of}(0) \times s_{nr_of}(1)|$$

$$E_{Teag}(N_{in}-1) = |s_{nr_of}^2(N_{in}-1) - s_{nr_of}(N_{in}-2) \times s_{nr_of}(N_{in}-1)|$$

Smoothed energy contour

The energy contour is smoothed by using a simple FIR filter of 9 like

$$E_{Teag_Smooth}(n) = \frac{1}{9} \sum_{i=-4}^{4} E_{Teag}(n+i)$$

Peak picking

- A windowing function w(n) is constructed for each frame in such a way that a rectangular unit window of width W is placed between each two adjacent maxima found within the frame.
- Each maximum is expected to be between 25 and 80 samples away from its neighbor.

м

Waveform SNR weighting

- $\mathbf{w}(n)$
- \blacksquare W

$$\langle [pos_{MAX}(n_{MAX})-4],$$

$$[pos_{MAX}(n_{MAX})-4]+0.8\times[pos_{MAX}(n_{MAX}+1)-pos_{MAX}(n_{MAX})]\rangle$$

$$0 \le n_{MAX} < N_{MAX}$$

м

Waveform SNR weighting

$$\begin{aligned} s_{swp}(n) &= f(\varepsilon) \cdot s_{highSNR}(n) + \varepsilon \cdot s_{lowSNR}(n) \\ &= f(\varepsilon) \cdot w(n) s(n) + \varepsilon \cdot (1 - w(n)) s(n) \end{aligned}$$

$$f(\varepsilon) = \sqrt{\frac{\sum_{n} |s(n)|^2 - \varepsilon^2 \cdot \sum_{n} |(1 - w(n))s(n)|^2}{\sum_{n} |w(n)s(n)|^2}}$$

$$0 < \varepsilon \le 1$$
 $f(\varepsilon) \ge 1$

Waveform SNR weighting

- An important advantage of the SWP is that it does not need a speech/non-speech detector.
- SWP is applied after 2MWF, which would have already enhanced the SNR to the adequate level.

Experiment

- AURORA 2 database
- Multi-condition training (MCT)
- Clean speech training (CST)
- Testing: A, B, C
- Error reduction percentages

Table 1

Technique and parameter set	Multi-	Condition Tr	aining	Clean Speech Training			
	A	В	С	A	В	C	
2MWF (baseline)	26.37	21.54	33.81	47.03	53.76	37.04	
2MWF+SWP, <i>W</i> =0.8, <i>ε</i> =0.9	27.71	24.57	35.09	50.86	55.43	43.86	
2MWF+SWP, <i>W</i> =0.8, ε=0.8	29.18	25.15	35.38	52.16	55.11	45.89	
2MWF+SWP, <i>W</i> =0.8, <i>ε</i> =0.7	26.62	23.47	33.89	52.92	54.94	47.17	
2MWF+SWP, <i>W</i> =0.5, <i>ε</i> =0.9	27.78	25.20	34.52	50.72	55.59	44.16	
2MWF+SWP, <i>W</i> =0.5, <i>ε</i> =0.8	27.81	24.95	33.64	51.81	55.52	46.13	

Experiment

SWP not only improves noise robustness but also increases the contrast between voiced and unvoiced speech that may help in clean speech recognition.

Technique and parameter set	Multi-Condition Training	Clean Speech Training		
	Clean Speech	Clean Speech		
2MWF (baseline)	17.23	6.38		
2MWF+SWP, W=0.8, ε=0.8	32.43	13.01		

Experiment

- High SNR : W=0.8
- Low SNR: W=0.5
- Spectral subtraction

Table 3

Technique and parameter set	Multi-	Condition Ti	raining	Clean Speech Training		
rechnique and parameter set	A	В	C	A	В	C
2MWF, baseline	26.37	21.54	33.81	47.03	53.76	37.04
2MWF+SWP, ε=0.8, W=0.8	29.18	25.15	35.38	52.16	55.11	45.89
2MWF+SWP, ε=0.8, W _{SNR} =0.5-0.8	28.86	24.93	34.37	54.34	57.18	46.77
2MWF+SWP+SS, ε=0.8, W _{SNR} =0.5-0.8	27.26	23.78	33.25	55.98	58.82	47.80