Spatial LDA in Spark

Khoa Doan Ang Li

Introduction

- Latent Dirchlet Allocation
 - * Topic modeling, for text data
 - * Bag of words: easily groups co-occuring topics together
- Spatial Latent Dirichlet Allocation
 - Model spatial distance between pixels (or words)
 - * Gibbs Sampling (non-biased, but slow), Variational Inference (faster!)
- Hadoop/MapReduce
 - * Gibbs Sampling is ok. Variational Inference is **better**
- * Apache Spark: the most anticipated parallel framework
 - * All the bests of Hadoop.
 - * And solve: multi-staged computation, more flexible high-level operators

Examples

Preprocessing

- Many Small Images
 - * Combine them into bigger key-value files.
- Transformation from images to documents
 - Pixels -> Group of pixels (Patches)
 - * Grid the image, each grid cell is a patch
 - * Patch -> Vector, where each component describe something about the patch.
 - * Texton features
 - Vectors -> Groups -> Words
 - * K-means clustering