# Intro to Probability Chapter 2

Kevin Lutz PhD Candidate of Statistics Monday, August 22, 2022

Department of Mathematical Sciences The University of Texas at Dallas



#### Table of Contents

- 1 Introduction
- 2 Union
- 3 Axioms of Probability
- 4 Complement
- 5 Intersection
- 6 Difference

00000000000

# Probability and Statistics

There's an 80% chance of 0.1 to 0.3 inches of rain today between 2 PM and 4 PM

- Probability: 80%
- Statistics:
  - 0.1-0.3 inches of rain
  - 2 PM to 4 PM when rain may occur
- Probability and statistics are not separate topics.
  - Probability measures the uncertainty of our estimates, which also estimates the likelihood of the event itself.
  - Statistics are numerical summaries that estimate a random event such as weather.
  - Estimates have variability because the true outcome is usually unknown.

00000000000

# Basics: What is Probability?

#### Definition: Probability

The measure of the likelihood or chance of a random event.

- Random events are denoted using capital letters such as A, B, C. D. E. ...
- The probability of event E is denoted as P(E)
- In general,

$$P(E) = \frac{\text{number of ways E can occur}}{\text{number of possible outcomes}}$$

00000000000

Given a 6-sided die, what is the probability of rolling a number less than 3?

$$P(<3) = \frac{2}{6} = \frac{1}{3}$$

Given that I toss a fair coin once, what is the probability of tails?

$$P(tails) = \frac{1}{2}$$

00000000000

■ From a survey of 4776 college students who were asked "How often do you wear a seatbelt?"

| Response         | Frequency |
|------------------|-----------|
| Never            | 125       |
| Rarely           | 324       |
| Sometimes        | 552       |
| Most of the time | 1257      |
| Always           | 2518      |

What is the probability that a randomly select student always wears a seatbelt?

$$P(always) = \frac{2518}{4776} \approx 0.527$$

000000000000

Note, we can convert this table of observed responses from the survey to a probability distribution by dividing each frequency by the total number of students:

| Response         | Probability |
|------------------|-------------|
| Never            | 0.026       |
| Rarely           | 0.068       |
| Sometimes        | 0.116       |
| Most of the time | 0.263       |
| Always           | 0.527       |

# Sample Space

000000000000

#### Definition: Sample Space

The sample space (denoted by  $\Omega$ ) is the collection of all possible outcomes of an experiment.

- $lackbr{\blacksquare} N(\Omega) = \text{the number of possible outcomes in } \Omega.$
- Then, the probability of event E can be rewritten as

$$P(E) = \frac{N(E)}{N(\Omega)}$$

 $P(\Omega) = 1$ . In this case, the event  $E = \Omega$ 

$$\implies P(E) = \frac{N(E)}{N(\Omega)} = \frac{N(\Omega)}{N(\Omega)} = 1$$

000000000000

A six-sided die:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

One coin:

$$\Omega = \{H, T\}$$

Two coins:

$$\Omega = \{(H, H), (H, T), (T, H), (T, T)\}\$$

COVID test results:

 $\Omega = \{ \text{True positive, false positive, true negative, false negative} \}$ 

# Empty Set

000000000000

#### Definition: Empty Set

The empty or null set (denoted as  $\varnothing$ ) indicates that an event E is impossible.

- If E is impossible, we write  $E = \{\emptyset\}$ .
- The probability of an impossible event (the empty set) is zero:

$$P(E) = P(\varnothing) = 0$$

Example: You roll a six-sided die. What is the probability of rolling a 7?

$$P(7) = P(\emptyset) = 0$$

# Classifying Probability

Probability can be classified based on its value. Generally,

| =0 Imposs                                                                                            | ihle                |
|------------------------------------------------------------------------------------------------------|---------------------|
| <0.05 Unusual Between 0.05 and 0.50 Less like $=0.50$ Fair Between 0.50 and 1 More lief $=1$ Certain | al<br>kely<br>ikely |

00000000000

# Types of Probability: Empirical vs. Theoretical

- Empirical probability (EP)
  - What is observed
  - Data collection
  - Estimation of some unknown truth
- Theoretical probability (TP)
  - What is expected
  - Calculated using mathematical reasoning or computation



# Law of Large Numbers

00000000000

If I collect a sufficient amount of data, then the observed should be a reasonable estimate of the expected. In other words,

$$EP \to TP$$
 as  $n \to \infty$ 

where n is the number of data points.

Coin Toss Simulator



- 1 Introduction
- 2 Union
- 3 Axioms of Probability
- 4 Complement
- 5 Intersection
- 6 Difference

#### Union of Joint Events

#### Definition 1: Union of Joint Events

The union of two joint events A and B (denoted as  $A \cup B$ ) is the event that occurs if either A or B or both occur on a single measurement.



- $\blacksquare A \cup B$  is everything shaded in green.
- $A \cup B = "A \text{ or } B".$
- Two events are joint if they intersect or overlap. The intersection represents the occurrence of both A and B on a single measurement.

# Union of Disjoint Events

#### Definition 2: Union of Disjoint Events

The union of two disjoint events A and B is the event that occurs if either A or B occur on a single measurement.



- $\blacksquare A \cup B$  is everything shaded in red and blue.
- Two events are disjoint if they do not intersect or overlap. So, A and B cannot both occur on a single measurement.
- Disjoint events are also called "mutually exclusive" events
- In general for unions,  $E_1$  or  $E_2$  or ... or  $E_n$  is equivalent to  $E_1 \cup E_2 \cup \ldots \cup E_n$ .

Let  $A=\mbox{vehicle}$  with two doors,  $B=\mbox{red}$  vehicle,  $C=\mbox{pickup}$  truck,  $D=\mbox{sports}$  car

- $\blacksquare A \cup B$ 
  - 1 The event that a vehicle has two doors or is red
  - f 2 Can the vehicle be both A and B? Yes.
  - f B A and B are joint.
- $C \cup D$ 
  - 1 The event that a vehicle is a pickup truck or a sports car.
  - f Z Can the vehicle be both C and D? No.
  - $oldsymbol{\mathbb{B}}$  C and D are disjoint.

#### Table of Contents

- 1 Introduction
- 2 Union
- 3 Axioms of Probability
- 4 Complement
- 5 Intersection
- 6 Difference

# Defining a Probability Measure

For any event  $E \in \Omega$ , the following are the Axioms of Probability:

Probability is non-negative.

$$0 \le P(E) \le 1$$

- **2** The probability of the sample space is  $P(\Omega) = 1$ .
- For any n disjoint events,  $P(E_1 \cup E_2 \cup \ldots \cup E_n) = P(E_1) + P(E_2) + \ldots + P(E_n)$  which can be condensed as

$$P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$$

In a large bag of M&M's, the observed proportion of colors is given in the table below.

| Color  | Proportion |
|--------|------------|
| Brown  | 0.13       |
| Yellow | 0.14       |
| Red    | 0.13       |
| Blue   | 0.24       |
| Orange | 0.20       |
| Green  | 0.16       |

Table: M&M's

- Axiom #1: All probabilities are contained in [0,1].
- **2** Axiom #2: The sum of all probabilities is 0.13+0.14+0.13+0.24+0.20+0.16=1, so  $P(\Omega)=1$ .
- Axiom #3: The M&M colors are disjoint. So then

$$P(Brown \cup Yellow \cup \ldots \cup Green)$$

can be written as

$$P(Brown) + P(Yellow) + \ldots + P(Green)$$

#### Table of Contents

- 1 Introduction
- 2 Union
- 3 Axioms of Probability
- 4 Complement
- 5 Intersection
- 6 Difference

# Complement of an Event

#### Definition: Complement Rule

The complement of event E (denoted as  $E^C$  or  $\overline{E}$ ) is the event that occurs when E does not occur.

Ω



- $\blacksquare$  E and  $E^C$  are disjoint.
- 2 E and  $E^C$  partition  $\Omega$  into 2 parts so that  $E \cup E^C = \Omega$  which gives

$$P(E \cup E^C) = P(E) + P(E^C) = 1$$

Two useful equations result:

$$P(E) = 1 - P(E^C)$$

$$P(E^C) = 1 - P(E)$$

- In On a six-sided die, suppose E is the event "rolling a 6" or  $E = \{6\}$ .
  - $\vec{E}^C = \{1, 2, 3, 4, 5\}$
  - $E \cup E^C = \{1, 2, 3, 4, 5, 6\} = \Omega$
- 2 The complement of "none" is "at least 1".
  - Suppose a computer code has no errors with probability of 0.45. Let E be the number of errors in the computer code.
    - (a) What is  $\Omega$ ?  $\Omega = \{0, 1, 2, \dots, \infty\}$
    - (b) What is the probability of at least one error?

$$E(\text{at least 1 error}) = \{1, 2, \dots, \infty\}$$

$$E^C(\mathsf{none}) = \{0\}$$

$$P(none) = 1 - P(\text{at least 1})$$
  
 $P(E^{C}) = 1 - P(E)$   
 $P(E^{C}) = 1 - 0.45 = 0.55$ 

- 5 Intersection

#### Intersection of Events

#### Definition: Intersection

The intersection of two events (denoted  $A \cap B$ ) is the set of all events that are in both A and B.



- The intersection is shaded in blue.
- $A \cap B = "A \text{ and } B"$ .
- In general,  $E_1$  and  $E_2$  and ... and  $E_n$  is equivalent to  $E_1 \cap E_2 \cap \ldots \cap E_n$ .
- $\blacksquare$  If A and B are disjoint, then  $A \cap B = \emptyset$ .

■ Let  $E_1 = \{1, 2, 3, 4\}$  and  $E_2 = \{3, 4, 5, 6\}$ .

$$E_1 \cap E_2 = \{3,4\}$$



 $\blacksquare$  A standard deck of 52 cards. Let A= "draw a card with hearts" and B = "draw an odd number". What is  $A \cap B$ ?



Solution: any card that has both hearts and odd numbers.



#### Table of Contents

- 1 Introduction
- 2 Union
- 3 Axioms of Probability
- 4 Complement
- 5 Intersection
- 6 Difference

#### Difference of Two Events

#### Definition: Difference of Two Events

The difference of events A and B (denoted as  $A \setminus B$ ) is any event in A that is not an event in B where

$$A \setminus B = A - B$$





$$A \setminus B = A - A \cap B$$

$$P(A \setminus B) = P(A) - P(A \cap B)$$

$$P(B \setminus A) = P(B) - P(A \cap B)$$

#### Difference of Two Events

- When A and B are joint events, they intersect each other.
- $\blacksquare$  A is partitioned into two disjoint events:
  - $\blacksquare$  The part of A that intersects B.
  - **2** The part of A that does not intersect B.
- Likewise for B.
- $A \setminus B \neq B \setminus A$



Let 
$$E_1 = \{1, 2, 3, 4\}$$
 and  $E_2 = \{3, 4, 5, 6\}$ .

- $E_1 \cap E_2 = \{3,4\}$
- **2**  $E_1 \setminus E_2$ ?

$$= E_1 - E_1 \cap E_2$$
  
=  $\{1, 2, 3, 4\} - \{3, 4\}$   
=  $\{1, 2\}$ 

$$E_2 \setminus E_1$$
?

$$= E_2 - E_1 \cap E_2$$
$$= \{3, 4, 5, 6\} - \{3, 4\}$$
$$= \{5, 6\}$$