PROIECT TCAD "DETECTOR DE UMEZEALĂ"

FACULTATEA DE ELECTRONICĂ, TELECOMUNICAȚII ȘI TEHNOLOGIA INFORMAȚIEI

2024-2025

PROIECT REALIZAT DE CĂTRE:

DRAGOTONIU Ionuț-Constantin 423B

Profesor coordonator: Dr. Ing. Norocel Dragoș Codreanu

Date inițiale de proiectare

Descrierea Circuitului Detector de Umiditate cu Sondă de Rouă

Acest circuit simplu și economic de detectare a umezelii funcționează cu o alimentare de 5V c.c. Este proiectat pentru a detecta prezența rouăi (umezelii condensate) în interiorul dispozitivelor electronice sensibile, precum videorecordere (VTR), camere, copiatoare sau calculatoare. Circuitul utilizează un element senzor de rouă preconstruit, model HDP07 (fabricat de "Hokuriku").

Principiul de funcționare al senzorului se bazează pe modificarea rezistenței unui polimer conductor aplicat pe un substrat ceramic. Pe măsură ce polimerul intră în contact cu umezeala (între 90 și 95% umiditate relativă), rezistența sa crește drastic. Aceasta se datorează expansiunii polimerului, care mărește distanța dintre particulele conductive. Circuitul include o optocuplă pentru integrare ușoară cu alte sisteme.

Circuitul este ideal pentru detectarea umezelii în echipamente sensibile, prevenind defectarea acestora prin notificarea utilizatorului. Pragul de sensibilitate este ajustabil, iar mecanismul de detectare trebuie calibrat teoretic și empiric.

Proiectul PCB va fi realizat folosind numai doua straturi electrice si anume cele externe, TOP si BOTTOM. Toate componentele vor fi plasate pe stratul de TOP, traseele de semnal vor avea lățimea de 0,3mm, traseele de alimentare vor avea lățimea de 1,1mm, iar spațierea în toate cazurile va fi de 0,25mm. Placa va fi una pătrată, cu dimensiunea laturii de 60mm, se vor plasa trei găuri de prindere în colțuri, plasate în colțuri diferite la 1,5M distanță de colțul în dreptul căreia a fost plasată.

In continuare va fi prezentata o scurta descriere a circuitului, schema electrica echivalenta in programul OrCAD Capture, si layer-ele proiectului PCB. O propunere de proiectare mecanica a proiectului se afla in ANEXA 1. De asemenea, proiectul realizat in programul OrCAD se afla pe stick-ul usb inclus la sfarșit, in folder-ul "Proiect PCB". Foile de catalog pentru componentele utilizate si o serie de link-uri propuse pentru achizitionarea componentelor se afla in conținutul stick-ului propriu-zis.

Descriere a funcționării schemei proiectate

Această schemă electrică reprezintă un detector simplu și economic de rouă, alimentat la o tensiune de 5V DC. Este util pentru detectarea prezenței umezelii condensate în dispozitive electronice sensibile, precum camere video, calculatoare, copiatoare sau alte echipamente similare. Circuitul utilizează senzorul HDP-07, un element de detectare a rouăi produs de Hokuriku. Alternativ, pot fi utilizate și alte tipuri de senzori similari, preluați din echipamente vechi, fără a fi necesare modificări în circuit.

Senzorul HDP-07 funcționează pe baza unui polimer conductiv aplicat sub formă de peliculă subțire pe un substrat ceramic. Pe măsură ce umiditatea relativă crește (90-95%), rezistența polimerului se modifică semnificativ. În condiții de umiditate ridicată, polimerul se expandează, ceea ce determină o distanță mai mare între particulele conductoare, crescând astfel rezistența senzorului.

Circuitul include un regulator de tensiune LM78L05 (IC1), care stabilește tensiunea de alimentare la 5V. Alimentarea externă poate varia între 9V și 12V, iar circuitul acceptă o tensiune de intrare DC de până la 35V. În plus, un optocuplor PC817 este utilizat pentru a izola galvanic circuitul de detecție de alte unități de comandă sau control extern, cum ar fi alarmele sau releele. Ieșirea optocuplorului este de tip colector deschis, permițând integrarea facilă cu circuite analogice sau digitale.

În stare de repaus, senzorul de rouă are o rezistență foarte mică, iar curentul de bază al tranzistorului T1 (2N2222) este deviat prin senzor, menținând tranzistorul în stare de blocare. Când umiditatea relativă depășește pragul de 90-95%, senzorul se comportă ca un component cu rezistență mare, ceea ce permite polarizarea tranzistorului T1. Acesta trece în conducție, activând astfel optocuplerul și emițând un semnal de detecție.

Ajustarea pragului de detecție se face cu ajutorul potențiometrului P1. Calibrarea este un proces sensibil și trebuie realizată folosind metode teoretice și empirice pentru a optimiza mecanismul de detectare.

Descriere a funcționării schemei proiectate

Design Rules Check (DRC
Checking Schematic: SCHEMATIC1
Checking Electrical Rules
Checking For Single Node Nets

Checking For Unconnected Bus Nets

Cross Reference (CR)

Cross Reference January 27,2025 20:54:19 Page1

Item Part Reference SchematicName Sheet Library

- 1 1K R1 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 2 1uF/16V C1 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB 17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 3 2N2222 T1 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\TRANSISTOR.OLB
- 4 100NF C2 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 5 100NF C3 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 6 100 R2 SCHEMATIC1/SCHEMA ELECTRICA 0
 C:\CADENCE\SPB 17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 7 220K P1 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 8 270 R3 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 9 CON2 J1 SCHEMATIC1/SCHEMA ELECTRICA 0
 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\CONNECTOR.OLB
- 10 CON2 J2 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\CONNECTOR.OLB
- 11 LM7805/TO IC1 SCHEMATIC1/SCHEMA ELECTRICA 0
 C:\USERS\DRAGO\DESKTOP\FACULTATE\PROIECT CAD\PROIECT CAD.DSN
- 12 OPTO ISOLATOR-A PC817/ISO1 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\CADENCE\SPB_17.2\TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB
- 13 SENSOR HDP-07 SCHEMATIC1/SCHEMA ELECTRICA 0 C:\USERS\DRAGO\DESKTOP\FACULTATE\PROIECT CAD\SENZORHDP007.OLB

BOM (Bill of Materials)

Nr.curent	Cantitate	Referinta	Componenta	Descriere	Montare	Capsula	Producator	Distribuitor	Cod Produs	Pret pe bucata (RON)	Cantitate minima	Pret comanda (RON)
1	1	C1	1μF/16V	Electrolytic Capacitor, 1 µF, 16 V, ± 20%, Radial Leaded, 2000 hours @ 85°C, Bi-Polar	ТНТ	CAP196	MULTICOMP PRO	ro.farnell.com	1236655	0,40 lei	5	2,00 lei
2	2	C2,C3	100nF	Ceramic Disc Capacitor, 0.1 µF, 1 kV, ± 20%, Z5U, 9.5 mm, Radial Leaded	ТНТ	CAPCK05	VISHAY	ro.farnell.com	3812276	29,87 lei	1	29,87 lei
3	1	HDP-007	CON2	HDP-07 Condensation sensor,0 °C ~+ 60 °C, 0.8V max(AC/DC)	THT	JUMPER2	XINKEY	www.alibaba.com	HDP-07	2,37 lei	1	2,37 lei
4	1	IC1	LM7805	Linear Voltage Regulator, Fixed, 10 V In, 5 V/1.5 A Out, TO-220-3, -40 °C to 125 °C	ТНТ	TO220AB	MULTICOMP PRO	ro.farnell.com	4472961	1,83 lei	1	1,83 lei
5	2	J1,J2	CON2	Wire-To-Board Terminal Block, 3.5 mm, 2 Ways, 1 mm², Screw	THT	JUMPER2	CAMDENBOSS	ro.farnell.com	3882615	2,80 lei	10	28,00 lei
6	1	PC817	OPTO ISOLATOR-A	Optocoupler, Transistor Output, 1 Channel, DIP, 4 Pins, 50 mA, 5 kV, 50 %	тнт	DIP4_3	SHARP	ro.farnell.com	9707719	2,78 lei	1	2,78 lei
7	1	P1	220kΩ	Trimmer, Single Turn, RuO2 Cermet, Top Adjust, 200 kohm, Surface Mount, 1 Turns	SMD	TRIM_BI_23AL	NIDEC COMPONENTS	ro.farnell.com	2980605	9,91 lei	1	9,91 lei
8	1	R1	1000Ω	Through Hole Resistor, 1 kohm, LR Series, 750 mW, +/- 1%, Axial Leaded, 350 V	ТНТ	RES400	NEOHM - TE CONNECTIVITY	ro.farnell.com	2330284	1,46 lei	10	14,60 lei
9	1	R2	100Ω	Through Hole Resistor, 100 ohm, SFR25 Series, 400 mW, ± 1%, Axial Leaded, 250 V	тнт	RES400	VISHAY	<u>ro.famell.com</u>	1652646	0,40 lei	10	4,00 lei
10	1	R3	270Ω	Through Hole Resistor, 270 ohm, LR Series, 600 mW, ± 1%, Axial Leaded, 350 V	THT	RES400	NEOHM - TE CONNECTIVITY	ro.farnell.com	2330081	0,24 lei	10	2,40 lei
11	1	Τı	2N2222	Bipolar (BJT) Single Transistor, NPN, 40 V, 600 mA, 625 mW, TO-92	ТНТ	TO92	DIOTEC	ro.farnell.com	4555427	0,15 lei	5	0,75 lei

Wire List (WR)

<<< Component List >>>				
1uF/16V	C1	CAP196		
100nF	C2	CAPCK05		
100nF	C3	CAPCK05		
SENSOR	HDP-07	JUMPER2		
LM7805/TO	IC1	TO220AB		
CON2	J1	JUMPER2		
CON2	J2	JUMPER2		
220K	P1	TRIM_BI_23AL		
OPTO ISOLATOR-A	PC817/ISO	DIP4_3		
1K	R1	RES400		
100	R2	RES400		
270	R3	RES400		
2N2222	T1	TO92		

<<< Wire List >>>

NODE REFERENCE	PIN#	PIN NAME	PIN TYPE	PART VALUE
[00001] 9-18V				
C2	4	4	Danaina	100-5
C3	1	1	Passive	100nF
J1	1	1	Passive	CON2
IC1	1	VIN	Input	LM7805/TO
[00002] GND				
C1	2	2	Passive	1uF/16V
C2	2	2	Passive	100nF
C3	2	2	Passive	100nF
J1	2	2	Passive	CON2

PC817/ISO	2	CATHODE	Passive	OPTO ISOLATOR-A
HDP-07	2	2	Passive	SENSOR
IC1	2	GND	Power	LM7805/TO
[00003] N00055				
R1	1	1	Passive	1K
P1	3	B	Passive	220K
[00004] N00092				
R1	2	2	Passive	1K
R2	1	1	Passive	100R
HDP-07	1	1	Passive	SENSOR
[00005] N00205				
R2	2	2	Passive	100R
C1	1	1	Passive	1uF/16V
T1	2	BASE	Input	2N2222
[00006] N00261				
T1	1	EMITTER	Passive	2N2222
R3	1	1	Passive	270R
[00007] N00298				
R3	2	2	Passive	270R
PC817/ISO	1	ANODE	Passive	OPTO ISOLATOR-A
[00008] N00947				
T1	3	COLLECTOR	Passive	2N2222
P1	1	A	Passive	220K
P1	2	WIPER	Passive	220K
C2	1	1	Passive	100nF
IC1	3	VOUT	Output	LM7805/TO
[00009] N02719				
J2	1	1	Passive	CON2
PC817/ISO	4	COLLECTOR	Passive	OPTO ISOLATOR-A
[00010] N02728				
J2	2	2	Passive	CON2
PC817/ISO		EMITTER	Passive	OPTO ISOLATOR-A

Verificarea net-urilor

Layer Copper TOP (2:1) Rotație 0

Layer Copper BOTTOM (2:1) Rotație 0

Layer Silkscreen_TOP (2:1) Rotație 0

Layer Fabrication (2:1) Rotație 0

Layer Soldermask_TOP (2:1) Rotație 0

Layer Soldermask_BOTTOM (2:1) Rotație 0

Layer AssemblyDrawing_Top (2:1) Rotație 0

Concluzii

Pentru proiectarea unui PCB destinat unui modul electronic este esențial să se acorde o atenție deosebită detaliilor, inclusiv în cazul schemelor electrice mai simple. Instrumentele software actuale permit verificarea și simularea schemelor de la zero sau a celor deja existente, sporind semnificativ șansele de funcționare corectă în momentul în care placa este fabricată și componentele sunt montate. Greșelile, fie ele de proiectare sau neatenție, pot duce la diverse defecte, multe dintre acestea fiind dificil de observat înainte de finalizarea procesului. Aceste erori se pot traduce prin plasarea incorectă a componentelor, funcționarea inadecvată a circuitului sau chiar imposibilitatea acestuia de a funcționa. Astfel de probleme pot genera costuri suplimentare și pierderi de timp, însă pot fi prevenite prin experiența proiectantului și printr-o înțelegere clară a schemelor utilizate.

Pentru lucrarea de față s-a utilizat programul OrCAD 17.2 Lite, care dispune de instrumente necesare atât pentru proiecte complexe, cât și pentru cele mai simple. Deși lucrarea actuală este una de bază, aceasta respectă principiile fundamentale aplicabile în orice tip de proiect, oferind o perspectivă de ansamblu esențială în realizarea PCB-urilor și a modulelor electronice.

Bibliografie

- https://www.cetti.ro/v2/tehnicicad.php
- https://drive.google.com/drive/folders/0B7fpav7MwqmnU2RLRVZTVnhrMTg?resourcekey=0-uE6tpvdgbSWfZL99xl5qOg
- https://ro.farnell.com/
- https://www.electroschematics.com/6082/dew-detector-probe/
- https://www.youtube.com/watch?v=KLWT8ZX78oA
- https://www.youtube.com/watch?v=WoEepRPtSm8
- https://www.youtube.com/watch?v=l6EH3sdLasA

Anexe

This simple and economical Dew Detector Probe circuit works on 5V dc supply. It is useful for checking the presence of dew (condensed moisture) inside sensitive electronic devices like VTR, Camera, Copier, Computer etc. The circuit utilises a readymade dew sensor element HDP-07 (from "Hokuriku"). However, you can use any other type (carefully lifted from a discarded VTR or similar equipment) without any circuit modification.

The principle of the ready made dew sensor element is based on the change in resistance of a conductive polymer in a thin film on a small ceramic substrate. As the sensing polymer wet (90 to 95% Relative Humidity), its resistance will increase drastically because the polymer expands and therefore causes a larger distance between the conductive particles. After successful construction, enclose the whole unit in a small aluminium tube as shown in the figure.

This circuit has an on-board voltage regulator wired around LM78L05 (IC1). Although we can safely feed dc supply upto +35 V to this circuit, dc input in +9 to 12 V range is recommended. Similarly an opto-coupler PC817 (OC1) is used to isolate the detector circuit from the rest of the external switch/control unit. As you may noticed, this is an open-collector output which can be easily interfaced to any analogue or digital switch/control circuits like relay switches, alarm units etc.

In idle state resistance of the dew sensor element is very low and thus most of the base current of transistor T1 (2N2222) finds an alternative path via dew sensor and T1 remains in cut off. Condition. When Relative Humidity (RH) exceeds and touches the 90-95% level, dew sensor element behaves almost like an open component (very high resistance), T1 is forward biased and the opto-coupler is energised. Note that the adjustment of threshold set preset pot P1 is very critical. Use theoritical & empirical methods to calibrate the detection mechanism.

Specificaţii şi valori pentru proiect (anexa 2)

Echipa	2.3 2.4 2.5		2.5	3.1, 3.2: forma și dimensiunile plăcii [mm]			
'	[mm]	[mm]	[mm]	& info cu privire la găurile de prindere (g.p.)			
1	0,2	1,2	0,40	Dreptunghi, 70x50, cu 3 g.p. în 3 colţuri, plasate la 2 M distanţă de colţuri*			
2	0,3	1,1	0,35	Dreptunghi, 70x55, cu 4 g.p. în cele 4 colţuri, plasate la 1,5 M distanţă de colţuri*			
3	0,4	1,0	0,25	Dreptunghi, 70x60, cu 2 g.p. în 2 colţuri pe diagonală, plasate la 1,5 M distanţă de colţuri*			
4	0,5	0,9	0,40	Pătrat, 65x65, cu 4 g.p. în cele 4 colţuri, plasate la 2 M distanţă de colţuri*			
5	0,2	1,2	0,35	Pătrat, 50x50, cu 2 g.p. în 2 colţuri pe diagonală, plasate la 2 M distanţă de colţuri*			
6	0,3	1,1	0,25	Pătrat, 60x60, cu 3 g.p. în 3 colţuri, plasate la 1,5 M distanţă de colţuri*			
7	0,4	1,0	0,40	Dreptunghi, 65x55, cu 4 g.p. în cele 4 colţuri, plasate la 1,5 M distanţă de colţuri*			
8	0,5	0,9	0,35	Dreptunghi, 75x45, cu 3 g.p. în 3 colţuri, plasate la 2 M distanţă de colţuri*			
9	0,2	1,2	0,25	Dreptunghi, 70x55, cu 2 g.p. în 2 colţuri pe diagonală, plasate la 2 M distanţă de colţuri*			
10	0,3	1,1	0,40	Pătrat, 70x70, cu 3 g.p. în 3 colţuri, plasate la 2 M distanţă de colţuri*			
11	0,4	1,0	0,35	Pătrat, 55x55, cu 4 g.p. în cele 4 colţuri, plasate la 1,5 M distanţă de colţuri*			
12	0,5	0,9	0,25	Pătrat, 65x65, cu 2 g.p. în 2 colţuri pe diagonală, plasate la 1,5 M distanţă de colţuri*			
13	0,2	1,1	0,40	Dreptunghi, 75x45, cu 2 g.p. în 2 colţuri pe diagonală, plasate la 2 M distanţă de colţuri*			
14	0,25	1,2	0,35	Dreptunghi, 75x60, cu 4 g.p. în colţuri, plasate la 2 M distanţă de colţuri*			
15	0,35	1,0	0,3	Pătrat, 75X75, cu 3 g.p. în 3 colţuri, plasate la 1,5 M distanţă de colţuri*			

^{*} OBS: Distanța față de colț (de fapt, orice distanță în electronică) se calculează pe principiul "centru la centru"; deci, în acest caz, "colț la centrul găurii de prindere".

Link-uri pentru componente:

Componenta	Link
C1	https://ro.farnell.com/multicomp-pro/mcnp16v105m5x11/cap-1-f-16v-20/dp/1236655
C2,C3	https://ro.farnell.com/vishay/565r10gap10/disc-capacitor-0-1uf-1kv-radial/dp/3812276
	https://www.alibaba.com/product-detail/HDP-07-Condensation-sensor-for-
HDP-007	video_1600974758694.html?spm=a2700.galleryofferlist.normal_offer.d_title.59ed13a0fRsroT
IC1	https://ro.farnell.com/multicomp-pro/lm7805/v-reg-linear-fixed-5v-to-220-3/dp/4472961
J1,J2	https://ro.farnell.com/camdenboss/ctb3051-2bk/terminal-block-wire-to-brd-2pos/dp/3882615
PC817	https://ro.farnell.com/sharp/pc817x3j000f/optocoupler-transistor-o-p/dp/9707719
P1	https://ro.farnell.com/nidec-copal-electronics/st-4eta204/trimmer-200k-0-25w-1turns/dp/2980605
R1	https://ro.farnell.com/neohm-te-connectivity/lr2f1k0/res-1k-1-0-75w-axial-metal-film/dp/2330284
R2	https://ro.farnell.com/vishay/sfr2500001000fa500/res-100r-1-400mw-axial-metal-film/dp/1652646
R3	https://ro.farnell.com/te-connectivity/lr1f270r/res-270r-1-600mw-axial-metal-film/dp/2330081
T1	https://ro.farnell.com/diotec/2n2222a/transistor-npn-40v-0-6a-to-92/dp/4555427

Fişierul pentru BOM, cât și cel cu link-urile pentru toate componentele se găsește in fisierul ${\tt "BOM_E6B.xlsx"}$.