Факультет компьютерных технологий и прикладной математики Кафедра математического моделирования 02.03.02

Модели интеллектуальных систем Практическое занятие № 1. Алгоритмы работы с числами

- 1. Реализовать предикат Мах(X,Y,Z), где Z максимальное из чисел X и Y
- 2. Реализовать предикат Max(X,Y,U,Z), где Z максимальное из чисел X и Y
- 3. Реализовать предикат fact(N,X), где X это факториал первого аргумента.(рекурсия вверх и вниз)
- 4. Реализовать предикат fib(N,X), где X число Фибоначчи с номером N, причем 1 и 2 элемент равны 1.
- 5. Построить предикат Pr(X), который проверяет число на простоту.
- 6. Следующая итерационная последовательность определена для набора натуральных чисел:

$$n \rightarrow n/2$$
 (n четное) $n \rightarrow 3 n+1$ (n нечетное)

Используя приведенное выше правило и начиная с 13, мы генерируем следующую последовательность:

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Можно видеть, что эта последовательность (начиная с 13 и заканчивая 1) содержит 10 членов. Хотя это еще не доказано (проблема Коллатца), считается, что все начальные числа заканчиваются на 1.

Какой стартовый номер, менее одного миллиона, дает самую длинную цепочку?

ПРИМЕЧАНИЕ. После запуска цепочки условия могут превышать миллион.

- 7. Найти сумму цифр числа.
- 8. Найти наибольший простой делитель числа.
- 9. Найти НОД двух чисел.
- 10. Найти функцию Эйлера двух чисел.

Факультет компьютерных технологий и прикладной математики Кафедра математического моделирования 02.03.02

Модели интеллектуальных систем Практическое занятие № 1. Алгоритмы работы с числами

- 1. Реализовать предикат Мах(X,Y,Z), где Z максимальное из чисел X и Y
- 2. Реализовать предикат Max(X,Y,U,Z), где Z максимальное из чисел X и Y
- 3. Реализовать предикат fact(N,X), где X это факториал первого аргумента. (рекурсия вверх и вниз)
- 4. Реализовать предикат fib(N,X), где X число Фибоначчи с номером N, причем 1 и 2 элемент равны 1.
- 5. Построить предикат Pr(X), который проверяет число на простоту.
- 6. Следующая итерационная последовательность определена для набора натуральных чисел:

$$n \rightarrow n/2$$
 (n четное) $n \rightarrow 3 n+1$ (n нечетное)

Используя приведенное выше правило и начиная с 13, мы генерируем следующую последовательность:

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Можно видеть, что эта последовательность (начиная с 13 и заканчивая 1) содержит 10 членов. Хотя это еще не доказано (проблема Коллатца), считается, что все начальные числа заканчиваются на 1.

Какой стартовый номер, менее одного миллиона, дает самую длинную цепочку?

ПРИМЕЧАНИЕ. После запуска цепочки условия могут превышать миллион.

- 7. Найти сумму цифр числа.
- 8. Найти наибольший простой делитель числа.
- 9. Найти НОД двух чисел.
- 10. Найти функцию Эйлера двух чисел.