

王石嵘

September 1, 2019

Contents

2	Many-electron Wave Functions and Operators			2
	2.1	The E	Electronic Problem	2
		2.1.1	Atomic Units	2
		2.1.2	The B-O Approximation	2
		2.1.3	The Antisymmetry or Pauli Exclusion Principle	2
	2.2	Orbita	als, Slater Determinants, and Basis Functions	2
		2.2.1	Spin Orbitals and Spatial Orbitals	2
			Ex 2.1	2
		2.2.2	Hartree Products	2
			Ex 2.2	2
		2.2.3	Slater Determinants	2
			Ex 2.3	2
			Ex 2.4	2
			Ex 2.5	3
		2.2.4	The Hartree-Fock Approximation	3
		2.2.5	The Minimal Basis H ₂ Model	3
			Ex 2.6	3
		2.2.6	Excited Determinants	3
		2.2.7	Form of the Exact Wfn and CI	3
			Ex 2.7	3
	2.3	Opera	tors and Matrix Elements	3
		2.3.1	Minimal Basis H ₂ Matrix Elements	3
			Ex 2.8	3
			Ex 2.9	4

2 Many-electron Wave Functions and Operators

2.1 The Electronic Problem

- 2.1.1 Atomic Units
- 2.1.2 The B-O Approximation
- 2.1.3 The Antisymmetry or Pauli Exclusion Principle
- 2.2 Orbitals, Slater Determinants, and Basis Functions
- 2.2.1 Spin Orbitals and Spatial Orbitals
- Ex 2.1 Consider $\langle \chi_k | \chi_m \rangle$. If k = m,

$$\langle \chi_{2i-1} | \chi_{2i-1} \rangle = \langle \psi_i^{\alpha} | \psi_i^{\alpha} \rangle \langle \alpha | \alpha \rangle = 1 \tag{2.2.1}$$

$$\langle \chi_{2i} | \chi_{2i} \rangle = \left\langle \psi_i^{\beta} | \psi_i^{\beta} \right\rangle \langle \alpha | \alpha \rangle = 1$$
 (2.2.2)

thus

$$\langle \chi_k \, | \, \chi_k \rangle = 1 \tag{2.2.3}$$

If $k \neq m$, three cases may occur as below

$$\langle \chi_{2i-1} | \chi_{2j-1} \rangle = \langle \psi_i^{\alpha} | \psi_j^{\alpha} \rangle \langle \alpha | \alpha \rangle = 0 \cdot 1 = 0 \qquad (i \neq j)$$
 (2.2.4)

$$\langle \chi_{2i-1} | \chi_{2j} \rangle = \langle \psi_i^{\alpha} | \psi_j^{\beta} \rangle \langle \alpha | \beta \rangle = S_{ij} \cdot 0 = 0$$
 (2.2.5)

$$\langle \chi_{2i} | \chi_{2j} \rangle = \left\langle \psi_i^{\beta} | \psi_j^{\beta} \right\rangle \langle \beta | \beta \rangle = 0 \cdot 1 = 0 \qquad (i \neq j)$$
 (2.2.6)

thus

$$\langle \chi_k \, | \, \chi_m \rangle = 0 \qquad (k \neq m) \tag{2.2.7}$$

Overall,

$$\langle \chi_k \, | \, \chi_m \rangle = \delta_{km} \tag{2.2.8}$$

2.2.2 Hartree Products

Ex 2.2

$$\mathcal{H}\Psi^{HP} = \sum_{i=1}^{N} h(i)\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N})$$

$$= \varepsilon_{i}\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N}) + \chi_{i}(\mathbf{x}_{1})[\varepsilon_{j}\chi_{j}(\mathbf{x}_{2})]\cdots\chi_{k}(\mathbf{x}_{N}) + \cdots + \chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots[\varepsilon_{k}\chi_{k}(\mathbf{x}_{N})]$$

$$= (\varepsilon_{i} + \varepsilon_{j} + \cdots + \varepsilon_{k})\Psi^{HP}$$
(2.2.9)

2.2.3 Slater Determinants

Ex 2.3

$$\langle \Psi | \Psi \rangle = \frac{1}{2} (\langle \chi_i | \chi_i \rangle \langle \chi_j | \chi_j \rangle - \langle \chi_i | \chi_j \rangle \langle \chi_j | \chi_i \rangle - \langle \chi_j | \chi_i \rangle \langle \chi_i | \chi_j \rangle + \langle \chi_j | \chi_j \rangle \langle \chi_i | \chi_i \rangle)$$

$$= \frac{1}{2} (1 + 0 + 0 + 1) = 1$$
(2.2.10)

Ex 2.4 According to Ex. 2.2, we know that $\chi_i(\mathbf{x}_1)\chi_j(\mathbf{x}_2)$ are an eigenfunction of \mathcal{H} and has the eigenvalue $\varepsilon_i\varepsilon_j$. Similarly, we have the same conclusion for $\chi_i(\mathbf{x}_2)\chi_j(\mathbf{x}_1)$. For the antisymmetrized wave function,

$$\langle \Psi | \mathcal{H} | \Psi \rangle = \frac{1}{2} \left(\langle \chi_{i}(\mathbf{x}_{1}) \chi_{j}(\mathbf{x}_{2}) | \mathcal{H} | \chi_{i}(\mathbf{x}_{1}) \chi_{j}(\mathbf{x}_{2}) \rangle - \langle \chi_{i}(\mathbf{x}_{1}) \chi_{j}(\mathbf{x}_{2}) | \mathcal{H} | \chi_{j}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{2}) \rangle - \langle \chi_{i}(\mathbf{x}_{1}) \chi_{j}(\mathbf{x}_{2}) | \mathcal{H} | \chi_{j}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{2}) \rangle - \langle \chi_{j}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{2}) | \mathcal{H} | \chi_{j}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{2}) \rangle$$

$$= \frac{1}{2} (\varepsilon_{i} + \varepsilon_{j} - 0 - 0 + \varepsilon_{i} + \varepsilon_{j})$$

$$= \varepsilon_{i} + \varepsilon_{j}$$

$$(2.2.11)$$

Ex 2.5

$$\langle K | L \rangle = \frac{1}{2} \langle \chi_{i}(\mathbf{x}_{1}) \chi_{j}(\mathbf{x}_{2}) - \chi_{j}(\mathbf{x}_{1}) \chi_{i}(\mathbf{x}_{2}) | \chi_{k}(\mathbf{x}_{1}) \chi_{l}(\mathbf{x}_{2}) - \chi_{l}(\mathbf{x}_{1}) \chi_{k}(\mathbf{x}_{2}) \rangle$$

$$= \frac{1}{2} (\langle \chi_{i} | \chi_{k} \rangle \langle \chi_{j} | \chi_{l} \rangle - \langle \chi_{i} | \chi_{l} \rangle \langle \chi_{j} | \chi_{k} \rangle - \langle \chi_{j} | \chi_{k} \rangle \langle \chi_{i} | \chi_{l} \rangle + \langle \chi_{j} | \chi_{l} \rangle \langle \chi_{i} | \chi_{k} \rangle)$$

$$= \frac{1}{2} (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} - \delta_{jk} \delta_{il} + \delta_{jl} \delta_{ik})$$

$$= \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}$$

$$(2.2.12)$$

2.2.4 The Hartree-Fock Approximation

2.2.5 The Minimal Basis H_2 Model

Ex 2.6

$$\langle \psi_1 | \psi_1 \rangle = \frac{1}{2(1 + S_{12})} (\langle \phi_1 | \phi_1 \rangle + 2 \langle \phi_1 | \phi_2 \rangle + \langle \phi_2 | \phi_2 \rangle) = \frac{2 + 2S_{12}}{2(1 + S_{12})} = 1$$
 (2.2.13)

$$\langle \psi_2 | \psi_2 \rangle = \frac{1}{2(1 - S_{12})} (\langle \phi_1 | \phi_1 \rangle - 2 \langle \phi_1 | \phi_2 \rangle + \langle \phi_2 | \phi_2 \rangle) = \frac{2 - 2S_{12}}{2(1 - S_{12})} = 1$$
 (2.2.14)

$$\langle \psi_1 | \psi_2 \rangle = \frac{1}{2\sqrt{1 + S_{12}}\sqrt{1 - S_{12}}} (\langle \phi_1 | \phi_1 \rangle - \langle \phi_2 | \phi_2 \rangle) = 0$$
 (2.2.15)

2.2.6 Excited Determinants

2.2.7 Form of the Exact Wfn and CI

Ex 2.7 Size of full CI matrix

$$C_{72}^{42} = 164307576757973059488 \approx 1.64 \times 10^{20}$$
 (2.2.16)

The number of singly excited determinants

$$42 \times 30 = 1260 \tag{2.2.17}$$

The number of doubly excited determinants

$$C_{42}^2 C_{30}^2 = 374535 (2.2.18)$$

2.3 Operators and Matrix Elements

2.3.1 Minimal Basis H_2 Matrix Elements

Ex 2.8

$$\langle \Psi_{12}^{34} | h(1) | \Psi_{12}^{34} \rangle = \frac{1}{2} \langle \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) | h(1) | \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) \rangle$$

$$= \frac{1}{2} (\langle \chi_{3} | h(1) | \chi_{3} \rangle - 0 - 0 + \langle \chi_{4} | h(1) | \chi_{4} \rangle)$$

$$= \frac{1}{2} (\langle \chi_{3} | h(1) | \chi_{3} \rangle + \langle \chi_{4} | h(1) | \chi_{4} \rangle)$$
(2.3.1)

thus

$$\langle \Psi_{12}^{34} | \mathcal{O}_1 | \Psi_{12}^{34} \rangle = \langle 3 | h | 3 \rangle + \langle 4 | h | 4 \rangle$$
 (2.3.2)

$$\langle \Psi_0 \mid h(1) \mid \Psi_{12}^{34} \rangle = \frac{1}{2} \langle \chi_1(\mathbf{x}_1) \chi_2(\mathbf{x}_2) - \chi_2(\mathbf{x}_2) \chi_1(\mathbf{x}_1) \mid h(1) \mid \chi_3(\mathbf{x}_1) \chi_4(\mathbf{x}_2) - \chi_3(\mathbf{x}_2) \chi_4(\mathbf{x}_1) \rangle$$

$$= \frac{1}{2} (0 - 0 - 0 + 0)$$

$$= 0$$
(2.3.3)

thus

$$\langle \Psi_0 \mid \mathcal{O}_1 \mid \Psi_{12}^{34} \rangle = 0 \tag{2.3.4}$$

Similarly, we get

$$\left\langle \Psi_{12}^{34} \left| \mathcal{O}_1 \right| \Psi_0 \right\rangle = 0 \tag{2.3.5}$$

Ex 2.9 From Eq. (2.92) in textbook, we get

$$\langle \Psi_0 | \mathcal{H} | \Psi_0 \rangle = \langle 1 | h | 1 \rangle + \langle 2 | h | 2 \rangle + \langle 12 | 12 \rangle + \langle 12 | 21 \rangle \tag{2.3.6}$$

From Ex 2.8, we get

$$\langle \Psi_0 | \mathcal{O}_1 | \Psi_{12}^{34} \rangle = \langle \Psi_{12}^{34} | \mathcal{O}_1 | \Psi_0 \rangle = 0$$
 (2.3.7)

thus

$$\langle \Psi_0 \mid \mathcal{H} \mid \Psi_{12}^{34} \rangle = \langle \Psi_0 \mid \mathcal{O}_2 \mid \Psi_{12}^{34} \rangle$$

$$= \frac{1}{2} \left\langle \chi_1(\mathbf{x}_1) \chi_2(\mathbf{x}_2) - \chi_1(\mathbf{x}_2) \chi_2(\mathbf{x}_1) \mid \frac{1}{r_{12}} \mid \chi_3(\mathbf{x}_1) \chi_4(\mathbf{x}_2) - \chi_3(\mathbf{x}_2) \chi_4(\mathbf{x}_1) \right\rangle$$

$$= \langle 12 \mid 34 \rangle - \langle 12 \mid 43 \rangle$$
(2.3.8)

$$\langle \Psi_{12}^{34} | \mathcal{H} | \Psi_{0} \rangle = \langle \Psi_{12}^{34} | \mathcal{O}_{2} | \Psi_{0} \rangle$$

$$= \frac{1}{2} \left\langle \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) \left| \frac{1}{r_{12}} \right| \chi_{1}(\mathbf{x}_{1}) \chi_{2}(\mathbf{x}_{2}) - \chi_{2}(\mathbf{x}_{2}) \chi_{1}(\mathbf{x}_{1}) \right\rangle$$

$$= \langle 34 | 12 \rangle - \langle 34 | 21 \rangle$$

$$(2.3.9)$$

$$\langle \Psi_{12}^{34} | \mathcal{H} | \Psi_{12}^{34} \rangle = \left\langle \Psi_{12}^{34} | h(1) + h(2) + \frac{1}{r_{12}} | \Psi_{12}^{34} \right\rangle
= 2 \times \frac{1}{2} \left\langle \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) | h(1) | \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) \right\rangle
+ \frac{1}{2} \left\langle \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) | \frac{1}{r_{12}} | \chi_{3}(\mathbf{x}_{1}) \chi_{4}(\mathbf{x}_{2}) - \chi_{3}(\mathbf{x}_{2}) \chi_{4}(\mathbf{x}_{1}) \right\rangle
= \langle 3 | h | 3 \rangle + \langle 4 | h | 4 \rangle + \langle 34 | 34 \rangle - \langle 34 | 43 \rangle$$
(2.3.10)

- 2.3.2 Notations for 1- and 2-Electron Integrals
- 2.3.3 General Rules for Matrix Elements