Let r_n be the sequence defined by the recurrence $r_1 = 1$ and for $n \ge 2$, $r_n = r_{n-1} + 1/r_{n-1}$. Prove that for all $n \ge 1$, $r_n \ge \sqrt{2n-1}$.

Proof: We must show for all $n \geq 1, r_n \geq \sqrt{2n-1}$. By the principle of mathematical induction for all $k \in \mathbb{N}$ if k > n then $r_k \geq \sqrt{2k-1}$. We now have two cases:

- Assume n = 1. Then since $r_1 = 1$, we have $r_1 = 1 = \sqrt{1} = \sqrt{2 * 1 1}$.
- Assume n > 1. Since n 1 < 1 by the induction hypothesis we have $r_{n-1} = \sqrt{2n 3}$. By the definition of r_n we have $r_n = r_{n-1} + 1/r_{n-1}$. Therefore by proposition 10.16 we have $r_{n-1} + 1/r_{n-1} \ge \sqrt{2n 3} + 1/\sqrt{2n 3}$. Therefore:

$$r_n \ge \sqrt{2n-3} + 1/\sqrt{2n-3}$$

 $r_n^2 \ge (\sqrt{2n-3} + 1/\sqrt{2n-3})^2$
 $= 2n-1+1/(2n-3)$
 $\ge 2n-1$
 $r_n \ge \sqrt{2n-1}$.