Problem Statement:

Stage 1:

Domain- Machine Learning.

Stage 2:

The requirement is clear. So Supervised Learning.

Stage 3:

Output is Numeric. So Regression

Single Linear Regression not suitable in this case due to the presence of multiple inputs.

Dataset Basic Information:

Number of rows - 1338 Number of columns - 6

Categorical Column - sex, smoker (Ordinal data)

Multi Linear Regression:

R2 Value = 0.7894790349867009

Support Vector Machine:

Parameters:

Kernel = linear,rbf,poly,sigmoid Penalty=0.01,0.1,1,10,100,1000,10000

S.No	PENALTY	LINEAR	RBF	POLY	SIGMOID
1.	C=0.01	-0.088831334 39168489	-0.089645537 39867864	-0.089568284 87671076	-0.089565015 9341983
2.	C=0.1	-0.080959968 427891	-0.089074515 21042731	-0.088302376 55410711	-0.088269914 50485111
3.	C=1	-0.010102665 316081394	-0.032273293 90671052	-0.075699655 70860893	-0.075429242 81107188

4.	C=10	0.4624684142 33968	-0.032273293 90671052	0.0387162227 60231456	0.0393071437 8274347
5.	C=100	0.6288792857 320358	0.3200317832 050831	0.6179569624 059795	0.5276103546 510404
6.	C=1000	0.7649311738 596382	0.8102064851 758545	0.8566487675 946569	0.2874706948 6976207
7.	C=10000	0.741423013 2428099	0.8779952426 221569	0.8591715079 473912	-34.15153597 8496256

Decision Tree:

Parameters:

Criterion = mse,friedman_mse Max_features = auto,sqrt,log2 splitter=best,random

S.No	CRITERION	MAX_FEATURES	SPLITTER	R VALUE
1.	mse	auto	best	0.6865135066676138
2.	mse	sqrt	best	0.7214915079989148
3.	mse	log2	best	0.5703192759372698
4.	mse	auto	random	0.7526860936060862
5.	mse	sqrt	random	0.7526860936060862
6.	mse	log2	random	0.6441143372730915
7.	friedman_mse	auto	best	0.6859327560813799

8.	friedman_mse	sqrt	best	0.7567691431298412
9.	friedman_mse	log2	best	0.7257206732374384
10.	friedman_mse	auto	random	0.7257206732374384
11.	friedman_mse	sqrt	random	0.7257206732374384
12.	friedman_mse	log2	random	0.6810998006488564

Random Forest

Parameters:

Criterion = mse Max_features = auto,sqrt,log2 n_estimaters=10,50,100

S.No	CRITERION	MAX_FEATURES	N_ESTIMATERS	R_VALUE
1.	Mse	auto	10	0.8365429576618842
2.	Mse	sqrt	10	0.8626676857364539
3.	Mse	log2	10	0.8578674146472178
4.	Mse	auto	50	0.8578674146472178
5.	Mse	sqrt	50	0.8578674146472178
6.	Mse	log2	50	0.8578674146472178
7.	Mse	auto	100	0.8719799546274639
8.	Mse	sqrt	100	0.8719799546274639
9.	Mse	log2	100	0.8578674146472178

The final best model has been chosen.

Random Forest, r2 value = 0.8719799546274639