

MINISTRY IN CHARGE OF EMERGENCY MANAGEMENT (MINEMA)

DRAFT FINAL REPORT FOR FEASIBILITY STUDY; VOLUME 4- (DRAINAGE DESIGN SECTION) FOR KARONGI DISTRICT

BEZA CONSULTING ENGINEERS PLC
In Joint Venture with

ASTRIK INTERNATIONAL LTD

September, 2021G.C

TABLE OF CONTENTS

1.	INTRODUCTION	4
2. 2.1	THE DIAGNOSIS OF THE EXISTING HYDRAULIC STRUCTURES Drainage situation and recommended intervention	
3.	ESTIMATING MAXIMUM FLOW IN A WATERCOURSE	17
3.1	The Rational Method	17
3	.1.1 The Catchment Run-off Coefficient "C"	17
3	.1.2 Hydrological analysis: the intensity of the rainfall (mm/hour)	18
3.2	Design of hydraulic structures according to the pick discharge	23
4.	SELECTED STRUCTURES	26
5.	SIDE DITCHES	30
6.	OUTLET EROSION CONTROL	32

LIST OF FIGURES

Figure 1 : Runoff coefficient Values
Figure 2: Maximum daily rainfall
Figure 3 :Model for Exceedence Probability
Figure 4 :Typical delineated catchment
Figure 5: Headwater depth and capacity for concrete pipe culverts with inlet control 24
Figure 6 : Headwater depth and capacity for concrete box culverts with inlet control $\dots 25$
Figure 7 : Typical drawings of masonry ditches
Figure 8 : Outlet requirement to the valley.
LIST OF TABLES
Table 1 Sample Diagnosis of all the existing hydraulic structures of Kibuye-Gisovu-Uwisumo road
Table 2 :Sample Diagnosis of all the existing hydraulic structures of access Road to KIZIBA refugee camp
Table 3: Maximum daily rainfall at Rubengera Meteo station
Table 4: Rainfall intensity at 100, 50, 25, and 10 years return period
Table 5: Major catchment area for Kibuye-Gisovu -Uwisumo road
Table 6: Peak runoff flow results
$ {\it Table 7: List of Major Structures for Kibuye-Karongi-Rushishi-Gisovu-Wisumo\ Road$
Table 8: List of Diameter 80cm pipes
Table 9: List of Diameter 100cm pipes
Table 9: List of Reinforced Concrete Box Culvert
Table 11 : Dimensions of typical masonry channels
Table 12: Masonry ditches listing31

1. Introduction

This report covers the hydrological and hydraulic study prepared by the consultant for the rehabilitation and widening of Kibuye-Gisovu-Uwisumo with the spur to the refugee camp road (43 km). This report aims to:

- The diagnosis of the existing Hydraulic Structures: We distinguish between two types of Hydraulic Structures, that is Longitudinal Drainage Hydraulic Structures and Crossing Hydraulic Structures;
- The determination of flood flows for watersheds that discharge in the Road and for watersheds that are drained by natural flows crossing the Road of the Study area;
- Estimating the Hydraulic capacity of all Hydraulic Structures using the discharge obtained from the Catchment.

2. THE DIAGNOSIS OF THE EXISTING HYDRAULIC STRUCTURES

The existing transverse hydraulic structures are either single, circular reinforced concrete pipe culverts or masonry box culverts with timber decks.

Their conditions are generally NOT SATISFYING: some nozzles are partially or completely clogged, some others are partially or completely overgrown by vegetation, and some others have damaged Head Walls.

The types of deterioration of hydraulic structures have been diagnosed are:

- (i) Good Conditions: The hydraulic structure has a good structure that won't require a specific intervention;
- (ii) Obscuration: Accumulation of deposits and materials in the nozzle: The hydraulic structure is either completely clogged (than 100 %) or partially clogged (than: 10%, 20%, 30%, 50%.);
- (iii) Overgrown with vegetation: The hydraulic structure (mainly the downstream part) is surrounded by vegetation that will require cleaning and recalibration;
- (iv) Deterioration of the Headwalls: The upstream catch basin or the simple headwalls are partially or completely damaged.

The Longitudinal drainage structures that have been localized along the road are: The V-shaped ditches in concrete blocks and the uncoated ditches (earthen ditches) that are generally overgrown by vegetation or eroded;

Irrespective of the types and the levels of deterioration of drainage structures it is expected that they will be demolished (with possible usage) during the road widening.

Briefly, most existing structures (as listed in the diagnosis report) were silted. In addition, the structures which are of a width less than the new roadway width of 7 meters plus shoulders, with structures of the same width, allowing additional width for the placement of structure rails and/or headwalls were replaced. We give below a sample Diagnosis of the existing hydraulic structures of the road under study and the detailed diagnosis report is presented in Annex C.

2.1 DRAINAGE SITUATION AND RECOMMENDED INTERVENTION

Table 1 Sample Diagnosis of all the existing hydraulic structures of Kibuye-Gisovu-Uwisumo road

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
9	2+980	PC	1	100	Right	 70 % of the pipe clogged with sediment. Channelization and protection work at the outlet required. Silt removal. 	06. July 2021 Picture taken by BEZA & ASTRIK7PK 2+980	Picture taken by BEZA & ASTRIK /PK 24980	To be replaced
10	3+370	PC	1	80	Right	 Jointing problem. Outlet protection required. Silt removal. 		96 July 2021 Pionire taken by BEZA & ASTRIK PK 3+370	To be replaced

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
11	3+680	PC	1	80	Right	 Vegetation removal. Jointing problem. Paved water way clearing. Pipe bed silt cleaning. Headwall failure. 	Obsuliy 2021 Platoré takeruby BEZA & ASTRIK PK-8-1-880		To be replaced
12	4+390	PC	1	80	Left	 The pipe is clogged with vegetation. Paved water way clearing. Pipe bed silt cleaning. 	06 July 2021 Picture taken by BEZA & ASTRIK PK-4+390	06 July 2020 Picture taken by BEZA & ASTRIK PK 6+480	• To be replaced

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
13	4+390	PC	1	100	Left	Vegetation removal. Paved water way clearing.	06 July 2021 Picture taken by BEZA, & ASTRIK PK-4+390	Picture taken by BEZA & ASTRIK PK 4+390	• To be replaced
14	4+710	PC	1	80	Left	 Vegetation removal. Paved water way clearing. Headwall failure. 	O6 July 2021 Picture taken by BEZA & ASTRIK PK 4+710	06 July 2021 Picture taken by BEZA & ASTRIK PK 4+710	• To be replaced

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
16	5+550	PC	1	80	Left	 outlet wall failure. Clogged up to 70% at the outlet. Silt removal. Outlet protection works required. 	Picture taken by BEZA & ASTRIK PK 5+550.	D6 July 2021 Picture taken by BEZA & ASTRIK PK 5+550	• To be replaced
17	5+110	PC	1	80	Left	 Jointing problem. Paved water way clearing. Pipe bed silt cleaning. Headwall failure. 	Picture taken by BEZA & ASTRIK PK 5-1-10	Picture taken by BEZA shasTRIK PAS-110	To be replaced

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
20	5+550	PC	1	80	Left	 Vegetation removal. Jointing problem. Paved water way clearing. 	(Pioture taken by BEZA & ASTRIK PK-5-520	O6 July 2021 Picture taken by BEZA & ASTRIK PK 5+550	• To be replaced
21	5+950	PC	1	80	Left	 Jointing problem. Paved water way clearing. Headwall failure. Outlet apron and cascade failure 	06 July 2021 Picture taken by BEZA & ASTRIK PK 5+950	06 July 2021 Picture taken by BEZA & ASTRIK PK 5+950.	• To be replaced

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
22	6+310	PC	1	80	Left	 The pipe is fully clogged. Outlet protection works required. 	Jun 19, 2021 13:46:21 Pk6+320 picture taken by BEZA&ASTRIK	06 July 2021 Picture taken by BEZA & ASTRIK PK 6+310	To be replaced
23	6+750	PC	1	80	Left	 The pipe is fully clogged. Outlet protection works required. Vegetation removal. Not functional Pipe bed silt cleaning. Headwall failure. 	Jun 19, 2021 14:01:56 Pk6+778 picture taken by BEZA&ASTRIK	Picture taken by BEZA & ASTRIK PK 6+750	To be replaced

Table 2 :Sample Diagnosis of all the existing hydraulic structures of access Road to KIZIBA refugee camp

0.	Station No. opening Opening Size(cm)	Remark	Inlet Photo	Outlet Photo	Remark
----	--------------------------------------	--------	-------------	--------------	--------

0.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Remark	Inlet Photo	Outlet Photo	Remark
1	0+330	TS	1	50*40	Right	 The drainage is fully clogged with sediments It is small in size Inlet construction required Outlet protection works required 	Dicture taken by BEZA&ASTRIK PK0+330 08 July 2021	picture taken by BEZA&ASTRIK PK0+330- 08 July 2021	To be replaced
2	0+375	PC	1	RCPC Dia 60	Right	 The pipe is clogged with debris at inlet. Outlet protection works required 	picture taken by BEZA&ASTRIK PK8+375 08 July 2021	Dicture taken by BEZASASTRIK PK0+375 08 July 2021	To be replaced

0.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Remark	Inlet Photo	Outlet Photo	Remark
3	0+610	РС	1	RCPCDia 60	Right	 The pipe is clogged with sediments and vegetation both at inlet and outlet. Vegetation removal at both ends. Pipe bed silt cleaning. 	picture taken by BEZA&ASTRIK PK0+6 08 July 20	Dicture taken by BEZA&ASTRIK PK0+610 08 July 2027	• To be replaced
4	0+690	CS	1	100*40	Right	 The crossing ditch is clogged. Outlet protection works required. Vegetation removal at both ends. Paved water way clearing. 	picture taken by BEZA&ASTRIK PK0+690 08 July 2021	picture taken by BEZA&ASTRII	• To be replaced

0.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Remark	Inlet Photo	Outlet Photo	Remark
6	1+760	PC	1	60	Right	 The pipe is clogged at outlet Inlet and outlet protection works required 	picture taken by BEZA&ASTRJK PK1+760 08 July 2021	picture taken by BEZA&ASTRIK PK1+760 08 July 2021	To be replaced
7	1+880	PC	1	60	Right	 The pipe is clogged at outlet Inlet and outlet protection works required Wing walls & headwalls failure and improper construction. Silt deposited at outlet bed 	Jun 19, 2021 15.52 Pk1+850 picture taken by BEZA & AST	piziure iekanisiy Bezasa Shalkeaki -880 Qayuly 2021	To be replaced

0.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Remark	Inlet Photo	Outlet Photo	Remark
8	2+095	TS	1	50*40	Right	 Small in size Timber slabs failure The crossing ditch is clogged with debris and silt. Outlet protection works required. 	picture taken by BEZA&ASTRIK PK2+095 08 July 2021	picture taken by BEZA&ASTRIK PK2+095 08 July 2021	• To be replaced
9	2+140	PC	1	60	Right	 The pipe is clogged with silt and vegetation Outlet protection works required Water way clearing required 	picture taken by BEZA&ASTRIK PK2+140 08 July 2021	picture taken by BEZA&ASTRIK PK2+140 08 July 2021	• To be replaced

0.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Remark	Inlet Photo	Outlet Photo	Remark
10	2+350	TS	1	50*40	Right	 Small in size Timber slabs failure The crossing ditch is clogged with debris and silt. Outlet protection works required. 	picture and by BEZA&ASTRIK PK2+350 08 July 2021	picture taken by BEZARASTRIK PK2+250 08 July 2021	• To be replaced

No.	Station	Туре	No. opening	Opening Size(cm)	Flow Direction	Problem	Inlet Photo	Outlet Photo	Remark
11	2+420	MD	1	40*30		 Pavement failure Not covered Small in size which leads to overflow towards carriageway 	picture taken by BEZA&ASTRIK PK2+420 08 July 2021		To be replaced
12	2+450	CS	1	Not det.		 Small in size The crossing ditch is fully clogged with sediments Silt removal. 	Jun 19, 2021 16:09:11 Karongi Pk2+450picture taken by BEZA & ASTRIK		To be replaced
13	2+520	PC	1	60	Right	 Clogged up to 60% at the outlet. Silt removal. Outlet protection works required. 	July 8, 2021 - Picture taken by BEZA & ASTRIK/PK2+520		To be replaced

3. ESTIMATING MAXIMUM FLOW IN A WATERCOURSE

In determination of flood flows for watersheds that discharge in the Road and for watersheds that are drained by natural flows crossing the Road of the Study area, the Rational Method – for estimating peak discharges for small drainage areas up to about 100 hectares was used in combination with the Direct observation of the size of watercourse, erosion and debris on the banks, history and local knowledge; and replicating successful practice.

3.1 THE RATIONAL METHOD

The flow of water in a channel, $Q(m^3/s)$, is calculated using the following formula:

 $Q = 0.278 \times C \times I \times A$

Where:

C = the catchment run-off coefficient

I = the intensity of the rainfall (mm/hour) for the Tc (time of concentration of the catchment area)

A =the area of the catchment (km 2)

3.1.1 The Catchment Run-off Coefficient "C"

The Catchment Run-off Coefficient "C" is obtained from Table below:

Figure 1 : Runoff coefficient Values

C _T (slope-topogra	C _s (soils)		C _V (vegetation		
Very flat (<1%) 0.03		Sand and gravel	0.04	Forest	0.04
Undulating (1-5%) 0.08		Sandy clays	0.08	Farmland	0.11
Hilly (5-10%)	0.16	Clay and loam	0.16	Grassland	0.21
Mountainous (>10%)	Sheet rock	0.26	No vegetation	0.28	
Runoff coefficient $C = C_T + C_S + C_V$					

3.1.2 Hydrological analysis: the intensity of the rainfall (mm/hour)

3.1.2.1 Climate Regime of Rwanda

The climate study aims to analyse the climatic parameters that determine runoff and flood genesis of watersheds. Generally, weather conditions play an important role in the hydrological response of watersheds (or catchments). Indeed, rainfall acts directly in the hydrological behaviour of watersheds.

The climate is generally equatorial, which is extensively modified by the relief, hence a temperate climate with rains and moderate temperatures. Temperatures show little variation throughout the year. The rainfall year has two rainy seasons and two dry seasons:

- Great rainy season: from March to May, it concentrates 40% of the total annual rainfall over 3months;
- Great dry season: from June to September;
- Small rainy season: from mid-September to mid-December (27% of rainfall);
- Small dry season: from mid-December to February (scarce rainfall: rainfall decreases but does not disappear).

3.1.2.2 Insight into the factors that control the Rwandan Climate

The main factor that controls the rainy seasons of Rwanda is the ZICT (Inter tropical Convergence Zone). It is characterized by low pressure, the humidity and the maximum wind convergence. It crosses Rwanda twice a year and it determines two rainy seasons: from mid-September to mid - December and from March to May. The ZICT is in turn controlled by the position and intensity of the subtropical anticyclones such as Saint Helena, the Azores and back of Arabia.

- During the small rainy season from mid September to mid -December, the prevailing winds are from the Northeast and the contribution of moisture from the masses moistened by the Indian Ocean and Lake Victoria;
- The following dry season (mid- December to late February) is characterized by the penetration of the East African air masses dry and cold from the Dorsal Arabia. However, the moderating effect of Lake Victoria and the diversity of terrain Rwanda maintains some rainfall in the country;
- During the Great rainy season from March to May, Rwanda is influenced by a front located between the dry winds of the South -east and South-west winds that carry moisture from the South Atlantic via by the Congolese watershed;
- Finally, during the dry season from June to mid-September, the air masses of Southeast winds arriving in Rwanda are drained by the continental crossing Tanzania and having a divergence in the lower layers. These conditions are unfavourable for rainfall.

3.1.2.3 Rainfall analysis

3.1.2.3.1 Monthly Rainfall Data

Rainfall data concerning the study area are derived from Rubengera Metrological station, with coordinate: Latitude: -2.07, Longitude: 29.41 and elevation of 1700 m. This station will be used for the Hydrological Model of the watersheds. It is the closest and it has got daily rainfall data from the year 1981 up to year 2020 i.e., 40 years.

The first step in the analysis was to extract the maximum daily storm events for each year and the results are presented in the following table.

Table 3: Maximum daily rainfall at Rubengera Meteo station

Year	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Max daily rain fall (mm)	54	41	51	29	38	50	63	88	67	46	47	40	38	50
Year	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	
Max daily rain fall (mm)	87	77	130	123	80	88	144	63	98	85	47	76	98	
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
Max daily rain fall (mm)	128	90	57	52	51	55	44	49	55	38	89	53	64	

Plotting the above data and according with the related figure below, the minimum rainfall event occurred in 1984 with 29mm/day, and the maximum rainfall event occurred in 2001 with 144 mm/day.

Figure 2: Maximum daily rainfall

3.1.2.3.2 Frequency analysis and computation of design rainfall intensity

This analysis helps to relate the magnitude of extreme hydrological events with their number of occurrences such that their chance of occurrence with time can be predicted successfully.

Frequent and magnitude of an event are inversely related. This means that, in rainfall context,

low magnitude may lead to drought and higher magnitude may lead to flooding. Therefore,

the rainfall data could be assessed to relate the magnitude and frequency of an event through the use of probability distribution.

In this design, we have used the method of **Gumble extreme model since extreme rainfall is likely to cause floods**. This extreme annual rainfall analysis will determine the return period of rainfall event and the output from return period calculation will help to understand the "exceedance probability" of a given floods. The resulting model is mathematically presented here below.

Figure 3: Model for Exceedence Probability

The plotting position is plotted against the annual maximum daily rainfall and linear trend line is derived to get Y formula: Y= 0.0402 X -2.1947. Note: The model is reliable at 96.81% in estimating the rainfall event given a Return period.

Table 4: Rainfall intensity at 100, 50, 25, and 10 years return period

Return Period	Left side	Y (Plotting	Rainfall	Intensity
T=1/(1-PL)	probability (PL)	position)	event	(mm/h)
		Y=-LN(-LN (PL))	(mm/day)	
100	0.99	4.60	169.03	82.53
50	0.98	3.90	151.66	74.05
25	0.96	3.20	134.16	65.51
10	0.9	2.25	110.57	53.99

The recommended Design Frequency. The Desirable design storm frequencies are as follows:

Ditches and road surface 1 in 10 years
Pipe culverts 1 in 10 years
Box culverts 1 in 25 years
Bridges 1 in 50 years

3.1.2.4 Delineation of catchment areas (A)

The catchment areas were delineated using a digital elevation model (DEM) and the Arc GIS Spatial Analyst Extension. Briefly, the delineation was carried into the following steps:

- Fill the DEM to remove all the sinks. When a sink is filled, the boundaries of the filled area create new sinks that need to be filled.
- Flow direction: to determine the slope direction at each pixel
- Flow accumulation: to determine the number of up gradient pixels that slope toward each point in the DEM grid.
- Add a point that represents the outlet of the watershed
- Under hydrology in the Spatial Analyst Tools, select Watershed. You will get new layer that is the shape of the watershed
- Finally convert this layer of watershed to a polygon and this will enable you to visualize the catchment areas

From our case study, the obtained typical catchment area is presented in the figure below:

Figure 4: Typical delineated catchment

Almost all catchments areas are small (10 hectares or less), and the flow can be handled using pipe culverts. This is because the road follows a ridgeline alignment for most of its alignment. Table below gives the major catchment areas for Kibuye-Gisovu -Uwisumo road.

Table 5: Major catchment area for Kibuye-Gisovu -Uwisumo road

ID	Chainage	Area_Ha
1	0+280	18.312547
2	0+780	23.087176
3	2+940	33.182233
4	3+780	30.060383
5	6+240	13.252517
6	7+210	24.129873
7	0+150 (Spur to refugee camp)	29.276406
8	18+185	13.18881 <i>7</i>
9	13+570	17.467941
10	16+840	21.356465
11	17+310	12.667956
12	21+100	21.612863
13	22+560	27.305398
17	24+820	390.67921
18	25+300	12.007604
19	27+110	64.051006
20	28+790	21.861007
21	33+950	26.806867
23	40+085	260.17853
24	41+450	53.645277

3.1.2.5 Major Runoff flow of the Project Road

The peak runoff flow results obtained for measurable catchments are presented in Table below.

Table 6: Peak runoff flow results

ID	Chainage	Q (m ³ /s)
1	0+280	2.44
2	0+780	3.07
3	2+940	4.42
4	3+780	4
5	6+240	1.76
6	7+210	3.21
7	0+150 (Spur to refugee camp)	3.9
8	18+185	1.76
9	13+570	2.32
10	16+840	2.84
11	17+310	1.69
12	21+100	2.88
13	22+560	3.63
17	24+820	51.99

18	25+300	1.6
19	27+110	8.52
20	28+790	2.91
21	33+950	3.57
23	40+085	34.62
24	41+450	7.14

According to the above table, there are two important catchments having a **highest discharge above 34 cum/s**.

3.2 Design of hydraulic structures according to the pick discharge

The consultant selected Reinforced Concrete Pipe and Box Culverts.

The required size of a culvert opening is estimated using the **monographs** in Figure 5 for concrete pipes and Figure 6 for concrete box culverts. These figures apply to culverts with inlet control where there is no restriction to the downstream flow of the water.

The monographs are used by identifying the value for the flow of water generated by the design storm on the middle scale and drawing a line from that point across to the left-hand scale of the three scales on the right labelled H/D. These scales are for the three types of inlets shown on the monographs. H/D is the ratio of the maximum head of water to the diameter of the culvert opening that is required to discharge the design flow through the culvert. In general, risks are reduced if the maximum flow does not cause the culvert to run at maximum capacity except for the design storm. Finally, the line is extended to the left to intersect the line labelled "Diameter of Culvert (D) in metres". The culvert size obtained from the monograph will probably not be one of the standard sizes that are available, in this case the next higher available size were chosen or the nearest available size if the difference is small (<10 % in diameter).

A pipe culvert should have a minimum cover from the top of the culvert to the finish grade line of 500mm, inclusive of embankment and wearing course.

For example, in developing the data required as shown in Figure 4, assume a pipe culvert is needed to accommodate a Q_{10} peak flood flow of $4.4 \, \text{m}^3/\text{s}$. A 1000mm dia. pipe culvert is initially selected. While the minimum cover over the pipe is 500mm to the road surface, it is advisable to keep the wearing course from being saturated. The thickness of the pipe wall is $114 \, \text{mm}$, so the maximum headwater is $114 \, \text{mm} + 500 \, \text{mm}$, or $614 \, \text{mm}$. This gives a HW/D of (614+1000)/1000, or 1.61. If the entrance is a square end with a headwall, the pipe can accommodate a flood flow of $2.2 \, \text{m}^3/\text{s}$, and a double-barreled pipe culvert can handle the flood flow of $4.4 \, \text{m}^3/\text{s}$.

Figure 5: Headwater depth and capacity for concrete pipe culverts with inlet control

Figure 6: Headwater depth and capacity for concrete box culverts with inlet control

To minimize the effect of potential silting and deposition of debris in the culvert, the slope/fall should be 3%-5%.

4. SELECTED STRUCTURES

The selection of the size of the structure was governed not only by the flow, but by other considerations including proximity to the flood plain; ease of access for driveways and connecting roads and earthwork quantities.

For instance, a single-barreled box culvert with dimensions of 3m width by 3m height might be capable of handling the flow at a particular location, but would entail a high embankment fill and may present difficulties with access for adjoining roads and driveways. If it is deemed better to set the height at a workable 1.5 meters; this would necessitate the construction of a multi-barreled structure: eg- a triple-barreled 1.8mW x 1.5mH box culvert.

As this road follows a ridgeline alignment for most of its alignment, almost all catchment areas are small (8 hectares or less) and the flow can be handled through the use of pipe culverts. For catchment areas with Q_{10} flows of less than 3 m^3/s , a single barreled 1000 mmØ pipe culvert can handle the flow. Flows of up to 6 m^3/s are addressed by installing more than one pipe cross drain dividing the flow into smaller areas, especially at intervals down a gradient.

However, the following text addresses only those larger flow structures where the flow could not be addressed by a single pipe culverts of 1000 mm dia:

Table 7: List of Major Structures for Kibuye-Karongi-Rushishi-Gisovu-Wisumo Road

ID	Chainage	Structures
1	0+280	1000 Dia_RCPC
2	0+780	1000 Dia_RCPC
3	2+940	2*800 Dia*RCPC
4	3+780	2*80Dia*RCPC
5	6+240	1000 Dia_RCPC
6	7+210	2*800 Dia*RCPC
7	0+150 (Spur)	2*1000Dia*RCPC
8	18+185	1000 Dia_RCPC
9	13+570	1000 Dia_RCPC
10	16+840	2*1000 DiasRCPC
11	17+310	1000 Dia_RCPC
12	21+100	1000 Dia_RCPC
13	22+560	2*80Dia*RCPC
1 <i>7</i>	24+820	1RCBC_2.5mW*3.25mH
18	25+300	1000 Dia_RCPC
19	27+110	1RCPC_1.5W*2H
20	28+790	1000 Dia_RCPC
21	33+950	1000 Dia_RCPC
23	40+085	1RCBC_2.5mW*3.25mH
24	41+450	RCBC_1.5W*2H

RCBC: Reinforced concrete Box culvert

RCPC: Reinforced pipe culvert

Most existing structures (as listed in the diagnosis report) were silted. In all instances, we were also concerned with replacing structures which were of a width less than the new roadway width of 7 meters, with structures of the same width, allowing an additional width for the placement of structure rails and/or headwalls.

Verification of Stream Channel Peak Flow Using Manning's Equation: It is generally advisable to check the flood flow values obtained through the use of the Rational Method against flood flow values obtained from historic flood height observations obtained from local residents and used in Manning's Equation to obtain flood flows. Before the selection of the structures, a factor of safety of 1.3 was applied to the obtain flood flows to ensure that the actual drainage structures discharge capacity is greater than the Stream Channel Peak Flow obtained using Manning's Equation. The verified list of cross drainages structures are presented here below:

Table 8: List of Diameter 80cm pipes

FOR	LOCATION OF 80DIA RCPC FOR KIBUYE GISOVU- UWISUMO ROAD							
ID	Chainage							
1	PK 18+350							
2	PK 18+550							
3	PK 18+780							
4	PK 19+070							
5	PK 19+280							
6	PK 19+700							
7	PK 20+100							
8	PK 20+800							
9	PK 20+980							
10	PK 21+150							
11	PK 21+250							
12	PK 21+300							
13	PK 21+290							
14	PK 21+850							
15	PK 22+000							
16	PK 22+350							
17	PK 22+700 (Double)							
18	PK 22+950							
19	PK 23+180							
20	PK 23+540							
21	PK 23+890							

RCP GISC	LOCATION OF 80DIA RCPC FOR KIBUYE GISOVU-UWISUMO ROAD					
ID	Chainage					
22	PK 23+980					
23	PK 24+100					
24	PK 24+500					
25	PK 24+990					
26	PK 25+210					
27	PK 25+580					
28	PK 26+140					
29	PK 26+370					
30	PK 26+410					
31	PK 26+580					
32	PK 26+820					
33	PK 26+960					
34	PK 27+040					
35	PK 27+310					
36	PK 27+400					
37	PK 27+270					
38	PK 27+660					
39	PK 28+080					
40	PK 28+330					
41	PK 28+540					
42	PK 28+750					
43	PK 28+890					

LOCATION OF 80DIA RCPC FOR KIBUYE GISOVU-UWISUMO ROAD		
ID	Chainage	
44	PK 28+960	
45	PK 29+020	
46	PK 29+130	
47	PK 29+290	
48	PK 29+380	
49	PK 29+580	
50	PK 29+740	
51	PK 29+860	
52	PK 30+000	
53	PK 30+195	
54	PK 30+300	
55	PK 30+430	
56	PK 30+670	
57	PK 30+810	
58	PK 31+095	
59	PK 31+195	
60	PK 31+430	
61	PK 31+595	
62	PK 31+960	
63	PK 32+200	
64	PK 32+340	
65	PK 32+450	

LOCATION OF 80DIA RCPC FOR KIBUYE GISOVU-UWISUMO ROAD Chainage PK 32+800 66 67 PK 33+080 68 PK 33+130 69 PK 33+370 70 PK 33+480 71 PK 33+595 72 PK 33+660 73 PK 33+880 PK 33+990 74 75 PK 34+140 76 PK 35+500 77 PK 36+060 78 PK 37+220 79 PK 37+450 PK 37+800 80 81 PK 38+600 82 PK 39+060 83 PK39+250

LOCATION OF 80DIA RCPC FOR KIBUYE GISOVU-UWISUMO ROAD				
1	ACCESS ROAD TO KIZIBA REFUGEE CAMP			
ID	Chainage			
84	PK 0+150 (Double)			
85	PK 0+330			
86	PK 0+610			
87	PK 0+690			
88	PK 1+300			
89	PK 1+760			
90	PK 1+880			
91	PK 2+095			
92	PK 2+140			
93	PK 2+350			
94	PK 2+520			
JUN	JUNCTION TO GISOVU TEA FACTORY			
95	PK 0+200			
96	PK 0+300			
97	PK 0+600			
98	PK 0+ 750			

Table 9: List of Diameter 100cm pipes

LOCATION OF 100 DIA RCPC FOR KIBUYE GISOVU-UWISUMO ROAD			
ID	CHAINAGE		
1	PK 0+000		
2	PK 0+150		
3	PK 0+460		
4	PK 0+640		
5	PK 0+710		
6	PK 0+800		
7	PK 1+050		
8	PK 1+450		
9	PK 1+550		
10	PK 1+780		
11	PK 2+060		
12	PK 2+172		
13	PK 2+300		
14	PK 2+760		
15	PK 2+980 (Double)		
16	PK 3+180		
17	PK 3+370 (Double)		
18	PK 3+580		
19	PK 3+680		
20	PK 4+ 390		
21	PK 4+ 710		
22	PK 4+850		
23	PK 5+110		
24	PK 5+260		
25	PK 5+520		
26	PK 5+550		
27	PK 5+730		
28	PK 5+950		

LOCATION OF 100 DIA RCPC FOR KIBUYE GISOVU-UWISUMO ROAD			
ID	CHAINAGE		
29	PK 6+115		
30	PK 6+310		
31	PK 6+750		
32	PK 6+890		
33	PK 7+050		
34	PK 7+240 (Double)		
35	PK 7+400		
36	PK 7+700		
37	PK 7+800		
38	PK 8+360		
39	PK 8+890		
40	PK 9+020		
41	PK 9+110		
42	PK 9+415		
43	PK 9+505		
44	PK 9+730		
45	PK 9+990		
46	PK 10+110		
47	PK 10+260		
48	PK 10 +410		
49	PK 10+605		
50	PK 10+720		
51	PK 10+900		
52	PK 11+030		
53	PK 11+330		
54	PK 11+430		
55	PK 11+770		
56	PK 11+885		

LOCATION OF 100 DIA RCPC FOR KIBUYE GISOVU-UWISUMO				
ROAD				
ID_	CHAINAGE			
57	PK 12+ 200			
58	PK 12+280			
59	PK 12+ 510			
60	PK 12+750			
61	PK 12+920			
62	PK 13+250			
63	PK 13+380			
64	PK 13+550			
65	PK 13+780			
66	PK 14+260			
67	PK 14+520			
68	PK 14+710			
69	PK 14+880			
70	PK 15+220			
71	PK 15+400			
72	PK 15+710			
73	PK 15+870			
74	PK 16+040			
75	PK 16+210			
76	PK 16+430			
77	PK 16+600			
78	PK 16+725			
79	PK 16+910			
80	PK 17+090			
81	PK 17+200			
82	PK 17+380			
83	PK 17+650			

Table 10: List of Reinforced Concrete Box Culvert

LOCATION OF RCBC FOR KIBUYE GISOVU-UWISUMO ROAD				
ID	Chainage	Dimensions		
1	24+820	SINGLE BARREL 1RCBC_2.5mW*3.25mH		
2	27+110	SINGLE BARREL 1RCBC_1.5W*2H		
3	40+085	SINGLE BARREL 1RCBC_2.5mW*3.25mH		

4 41+450 SINGLE BARREL RCBC_1.5W*2H

RCBC: Reinforced concrete Box culvert

RCPC: Reinforced pipe culvert

5. SIDE DITCHES

Existing masonry ditches: Irrespective of the conditions of existing masonry ditches (good to poor condition) conditions, they will be demolished in order to achieve the required paved way width of 7 m and shoulders (min 3 m) and new longitudinal drainages will be constructed.

Dimensions of new Ditches. The intent is for ditches at all gradients to be paved at bottom using concrete to limit the existing erosion problem. The longitudinal ditches are provided on one side for the cut slope side, on both sides in centers or as the terrains dictates where they will be covered, and serve as walkways.

Figure 7: Typical drawings of masonry ditches

Table 11: Dimensions of typical masonry channels

Types of ditch costion				t(m)
Types of ditch section	B (m)	b(m)	h(m)	
Trapezoidal TYPE 1	0.80	0.40	0.60	0.3
Trapezoidal TYPE 2	0.80	0.50	0.60	0.3
Trapezoidal TYPE 3	0.80	0.50	0.70	0.3
Rectangular TYPE 1	0.70	-	0.70	0.4
Rectangular TYPE 2	0.80	-	0.80	0.4
Rectangular TYPE 3	0.80	_	0.80	0.4
Rectangular TYPE 4	1.00	-	1.00	0.4

The road follows a ridgeline alignment for most of its alignment which is confirmed by very small sub-catchments that resulted into Sides ditches TYPE1 80*60*40 for one side of the road. Table below gives the chainages for Kibuye-Gisovu-Uwisumo road where masonry ditches will

be provided on both sides of the road. The designed masonry ditches corresponding to the runoff flow of the sub-catchments is presented here below.

Table 12: Masonry ditches listing

SECTIONS WITH MASONRY DITCHES ON BOTH SIDES			
ID	Chainage	Length (m)	Ditch dimensions
1	PK 8+890-9+560	670	TYPE 3 80*70*50
2	PK 11+885-12+280	395	TYPE3 80*70*50
3	PK 12+280-12+510	230	TYPE3 80*70*50
4	PK 12+510-12+920	410	TYPE3 80*70*50
1	PK 14+000-14+200	200	TYPE1 80*60*40
2	PK 15+400-12+710	2,690	TYPE1 80*60*40
4	PK 16+430-16+600	170	TYPE1 80*60*40
5	PK 16+910- 17+200	290	TYPE1 80*60*40
7	PK 17+760-17+830	70	TYPE1 80*60*40
5	PK 17+900- 18+550	650	TYPE3 80*70*50
8	PK 18+960-19+130	170	TYPE1 80*60*40
7	PK 19+900-22+650	2,750	TYPE3 80*70*50
8	PK 22+780-23+050	270	TYPE3 80*70*50
9	PK 23+180-23+490	310	TYPE3 80*70*50
10	PK 23+750-24+100	350	TYPE3 80*70*50
11	PK 24+900-25+210	310	TYPE3 80*70*50
12	PK 25+210-25+580	370	TYPE3 80*70*50
11	PK 26+480-26+630	150	TYPE1 80*60*40
12	PK 27+400-27+590	190	TYPE1 80*60*40
13	PK 27+660-27+880	220	TYPE1 80*60*40
14	PK 28+000-28+150	150	TYPE1 80*60*40
15	PK 28+200-28+330	130	TYPE1 80*60*40
13	PK 29+100-30+000	900	TYPE3 80*70*50
16	PK 30+000-30+120	120	TYPE1 80*60*40
17	PK 30+430-30+660	230	TYPE1 80*60*40
18	PK 30+810-31+000	190	TYPE1 80*60*40
14	PK 31+000-31+900	900	TYPE3 80*70*50
19	PK 34+010-34+700	690	TYPE1 80*60*40
16	PK 37+450-37+650	200	TYPE3 80*70*50
17	PK 38+000-38+250	250	TYPE3 80*70*50
18	PK 38+420-39+060	640	TYPE3 80*70*50

6. Outlet Erosion Control

As per the detail drawings, all pipe culverts include a stone masonry apron at both the inlet and outlet for a length of approx. 1.5 meters. Similarly, all box culverts have an apron at inlets and outlets of 15-20 meters in length, depending on the height of the box.

Figure 8 : Outlet requirement to the valley.

Exception: Mahama
Refugee camp, a
rectangular outlet of
1m*1 m was designed
to discharge the water
from the camp and
from the road to a
safer downstream
place for a length of
325 m.

The Consultant has noted that for most of the cross-drainage

structures, there is no present evidence of significant erosion, and therefore a decision was made in the interests of economy to not uniformly spend scarce resources on further armoring culvert outlets when the necessity for such armoring has not been readily established.