Organisation

Arbeitspunkt

- Kennlinie:
 - Strom y der bei einer Spannung x durch Bauteil(e) fließt
- Lastgerade
 - Gerade durch Werte bei minimaler/maximal Spannung
 - Strom dazu berechnen
 - Alternativ: Gerade mit Steigung m = $1/R_v$
 - R_v ist der Widerstand durch den die Spannung sonst abfällt
- Arbeitspunkt = X-Wert des Schnittpunkts der beiden Linien

Netzwerkanalyse

- Analyse von komplexeren Netzen
- Trotzdem: Reihen-/Parallelschaltung schneller und einfacher
- Schaltnetz vorher vereinfachen
 - Überbrückte Widerstände
 - Eindeutige Reihen-/Parallelschaltung zusammenfassen
- **k** Knoten = Anzahl an echten Abzweigungen

Stromrichtung

- Stromrichtung kann beliebig festgelegt werden
 - Gibt nur ein Vorzeichen an
- Bekommt i.d.R. gleichen Index wie der/die Verbraucher
- 1 Strompfeil pro Kabel

Spannungsrichtung

- Bei Quellen bereits angegeben
- Spannung an den Widerständen
 - Am Besten konstant in oder gegen die Stromrichtung

Netzwerkgraph

- Topologie ("Kabel") eines Schaltnetzes
- Keine Verbraucher
- Ströme und Spannungen (+ deren Richtungen)
- Knoten nummerieren

Schaltnetz → Baum

- Minimale Verbindung der aller Knoten
 - Keine Zykel
 - Besteht aus k-1 Verbindungen
- Ohne Widerstände/Spannungsquellen
- Meist nicht eindeutig
- Baum angeben, da Lösungsweg!

Baum + Zweige

- Sehne = Verbindungen die nicht im Baum enthalten sind
- Baum + Zweige ergeben alle Verbindungen
- Bei m Verbindungen gibt es z = m (k 1)Verbindungszweige

Maschen

- Ein vollständiger Umlauf im Netzwerk
- Bildung einer Masche
 - Der Zykel der durch eine Sehne und dem Baum entsteht
- Zählrichtung und Maschenindex angeben

1. Kirchhoffsches Gesetze

- "Knotenregel"
- Die Gesamtheit der Ströme in den Knoten ist 0
- Richtung beachten
 - Zum Knoten → +
 - Vom Knoten weg → -
- Z.B. $I_1 I_2 + I_3 = 0A$

2. Kirchhoffsches Gesetz

- "Maschenregel"
- Summe der Spannungen pro Maschendurchlauf = 0V
- Richtung beachten
 - In Umlaufrichtung → +
 - Gegen Umlaufrichtung → -
- Z.B. $U_1 + U_{00} + U_2 = 0V$

Netzanalyse

- m Ströme unbekannt → LGS mit m Unbekannten
- (k 1) Knotengleichung
 - Bei k nicht mehr linear unabhängig
- z = m (k 1) Maschengleichungen
 - Strom? URI!
- LGS Lösen für Ströme

Beispiel:

Knotengleichungen

• 3 von ...

- K1: I_1 I_4 I_{q0} = 0A
- K2: $I_1 I_2 I_4 = 0A$
- K3: $I_2 I_3 + I_4 = 0A$
- $K4: I_3 + I_4 + I_{q0} = 0A$

Baum + Sehnen

Maschengleichungen

• M1:
$$U_1 + U_2 + U_3 = -U_{q0}$$

= $I_1 * R_1 + I_2 * R_2 + I_3 * R_3 = -U_{q0}$

• M2:
$$U_1 + U_5 = -U_{q0}$$

= $I_1 * R_1 + I_5 * R_5 = -U_{q0}$

• M3:
$$U_1 + U_2 + U_4 = 0$$

= $I_1 * R_1 + I_2 * R_2 - I_4 * R_4 = 0$

LGS Lösen

•
$$I_1 - I_4 - I_{q0} = 0$$

•
$$I_1 - I_2 - I_4 = 0$$

•
$$I_2 - I_3 + I_4 = 0$$

•
$$I_1 * 1\Omega + I_2 * 2\Omega + I_3 * 3\Omega = -5V$$

•
$$I_1 * 1\Omega + I_5 * 2\Omega = -5V$$

•
$$I_1 * 1\Omega + I_2 * 2\Omega - I_4 * 4\Omega = 0$$

 R_i eingesetzt und $U_{q0} = 5V$