Using Predictive Analytics to Design Investment Strategies for Fintech Lending

Constantin Romanescu (500762092)

https://github.com/cromanes/Ryerson-Capstone

LendingClub

- founded in 2007, in San Francisco;
- the largest Peer-to-Peer (P2P) lending institution;
- first P2P IPO in December 2014;
- more than 41 billion USD in loan issuance (09/2018);
- makes its loan data publicly available.

Data analytics pipeline

Cross-Industry Standard Process for Data Mining (CRISP – DM)*

(Chapman et al. (2000). CRISP-DM 1.0. Step-by-step data mining guide. Chicago, Il.)

Tools:

- R, SQL;
- Cloud computing (Azure ML, h2o.ai)

Gaining Insights from Data

- Loan defaults and prepayment lead to a decrease in investor earnings.
- There is a slight increase in the prepayment rate.

Gaining Insights from Data

- Both loan prepayments and loan defaults peak at approximately 12 months;
- Borrowers with high grade loans (low interest rate) are more likely to prepay;
- Borrowers with lower grade loans are more likely to default on their loans.

Data preparation

Impute missing values

Feature Selection based on correlation between independent features (Pearson, χ^2 tests)

Feature Selection based on correlation between loan_status and the independent features (Wilcox, χ^2 tests)

Data transformation of the numerical variables using basic transformations (log, sqrt, 1/sqrt) to reduce skew

Feature Engineering

Apply all transformations to the validation, test and new datasets

Modelling Approach

$$\begin{split} ROI &= \frac{total_payment - loan_amount}{loan_amount} \times \frac{12}{36} \\ ROI_i &= P_i(loan_{status} = charged_off) * roi_i(loan_{status} = charged_off) \\ &+ P_i(loan_{status} = fully_paid) * roi_i(loan_{status} = fully_paid) \end{split}$$

Binomial Classification - Approach

Binomial Classification - Results

	Naive		Logistic													
	Bayes		Regression		RF		ANN		rpart		MARS		xgbtree		LDA	
	Test	New	Test	New	Test	New	Test	New	Test	New	Test	New	Test	New	Test	New
Accuracy	0.82	0.82	0.85	0.84	0.85	0.84	0.85	0.85	0.85	0.84	0.85	0.84	0.85	0.85	0.85	0.84
Sensitivity	0.15	0.14	0.00	0.00	0.00	0.00	0	0	0.02	0.03	0.00	0.00	0	0	0.01	0.02
Specificity	0.93	0.94	1	1	1	1	1	1	0.99	0.99	1	1	1	1	1	1
Precision	0.29	0.33	0.48	0.51	0.44	0.42	NA	NA	0.33	0.35	0.39	0.48	NA	NA	0.43	0.47
F1	0.2	0.20	0.00	0.02	0.01	0.01	NA	NA	0.04	0.06	0.00	0.01	NA	NA	0.02	0.04
AUC	0.66	0.69	0.67	0.70	0.66	0.68	0.66	0.7	0.62	0.62	0.67	0.69	0.67	0.70	0.68	0.7
Brier score	0.13	0.13	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.12	0.12	0.12	0.12	0.12	0.12

- Default is the positive class (except for the AUC calculations);
- Most algorithms fail to identify a single default case;
- AUC and Brier coefficient calculations indicate a rather good separation between default and non-default cases;
- Needs to look more closely at the ROC.

Binomial Classification - Results

Dealing with unbalanced data

False positive rate

Threshold True False Accuracy Penalty negatives negatives 0.5 0.853 0.6 98 0.853 1.42 132 0.7 889 1760 0.842 1.98 0.8 4597 13149 0.745 2.86 0.9 9996 44650 0.416 4.47 Inf 1.0 11635 67678 0

Naïve Model Evaluation

- All three models outperform the random model by ~ 60 %;
- There are no statistically significant differences between the proposed models;
- There is plenty of room for model improvement.

Model Deployment

	PAR	RAMETERS	PREDICTED VALUES			
_rate	grade	sub_grade	purpose	ScoredLabels		
16.99	D	D3	debt_consolidation	0.0058		
14.65	С	C5	credit_card	0.0079		
12.29	С	C1	credit_card	0.0168		
13.99	С	C4	debt_consolidation	0.0151		
15.61	D	D1	other	0.0261		
16.99	D	D3	credit_card	0.0043		
13.99	С	C4	other	0.0242		
13.99	С	C4	debt_consolidation	0.0155		
17.86	D	D5	moving	0.0107		
19.99	EFG	E4	debt_consolidation	0.0117		

Conclusions

- used statistical and graphical methods using R and Azure ML to gain insights on the loans offered by Lending Club;
- used a wide range of machine learning algorithms to identify loans likely to default;
- designed and tested investment models that yield better annualized returns on investment;
- classification results are consistent with results from peer-reviewed publications;
- created a deployable model using Azure ML.

2M+

Mainstream Consumers¹

600-850

\$62K

FICO Range²

Median Income²

Investors

180K+

60+

Self-directed Individuals

Managed Accounts

40+

70+

Banks

Institutions

LendingClub