

Probability and Statistics: To p, or not to p?

Module Leader: Dr James Abdey

5.6 Proportions: confidence intervals and hypothesis testing

Recall the (approximate) sampling distribution of the sample proportion from Section 5.5:

$$ar{X} = P
ightarrow N\left(\mu,\,rac{\sigma^2}{n}
ight) = N\left(\pi,\,rac{\pi\,(1-\pi)}{n}
ight)$$

as $n \to \infty$.

We will now use this result to conduct statistical inference for proportions.

Confidence intervals

In Section 4.6 we viewed a confidence interval for a mean as:

best guess \pm margin of error.

As the sample proportion is a special case of the sample mean, this construct continues to hold. Here, the:

point estimate =
$$p$$

where p is the observed sample proportion, and the:

margin of error = confidence coefficient \times standard error.

The confidence coefficient continues to be a z-value such that:

- for 90% confidence, use the confidence coefficient z = 1.645
- for 95% confidence, use the confidence coefficient z = 1.960
- for 99% confidence, use the confidence coefficient z = 2.576.

while the (estimated) standard error¹ is:

$$\sqrt{\frac{p\left(1-p\right)}{n}}$$

Therefore, a confidence interval for a proportion is given by:

$$p \pm z \times \sqrt{\frac{p(1-p)}{n}}.$$

Example

In opinion polling, sample sizes of about 1000 are used as this leads to a margin of error of approximately three percentage points — deemed an acceptable tolerance on the estimation error by most political scientists. Suppose 630 out of 1000 voters in a random sample said they would vote 'Yes' in a binary referendum. The sample proprotion is:

$$p = \frac{630}{1000} = 0.63$$

and a 95% confidence interval for π , the true proportion who would vote 'Yes' in the electoral population, is:

$$0.63 \pm 1.96 \times \sqrt{\frac{0.63 \times 0.37}{1000}} = 0.63 \pm 0.03 \implies (0.60, 0.66) \text{ or } (60\%, 66\%)$$

demonstrating the three percentage-point margin of error.

Hypothesis testing

Suppose we wish to test:

$$H_0: \pi = 0.4$$
 vs. $H_1: \pi \neq 0.4$

and a random sample of n = 1000 returned a sample proportion of p = 0.44. To undertake this test, we follow a similar approach to that outlined in Section 5.4.

We proceed by standardising P such that:

$$Z = \frac{P - \pi}{\sqrt{\pi (1 - \pi)/n}} \sim N(0, 1)$$

approximately for large n, which is satisfied here since n = 1000. Note the test statistic includes the effect size, $P - \pi$, as well as the sample size, n.

¹The true standard error of the sample proportion is $\pi (1 - \pi)/n$. However, π is unknown (which is why we are estimating it via a confidence interval), hence we intuitively use the estimated standard error which estimates π with p.

Using our sample data, we now obtain the test statistic value (noting the **influence of both** the effect size and the sample size, and hence ultimately the influence on the *p*-value):

$$\frac{0.44 - 0.4}{\sqrt{0.4 \times (1 - 0.4)/1000}} = 2.58.$$

The p-value is the probability of our test statistic value or a more extreme value conditional on H_0 . Noting that $H_1: \pi \neq 0.4$, 'more extreme' here means a z-score > 2.58 and < -2.58. Due to the symmetry of the standard normal distribution about zero, this can be expressed as:

$$p$$
-value = $P(Z \ge |2.58|) = 0.0099$.

Note this value can easily be obtained using Microsoft Excel, say, as:

where the function NORM.S.DIST(z) returns $P(Z \le z)$ for $Z \sim N(0, 1)$.

Recall the **p-value decision rule**, shown below for $\alpha = 0.05$:

Therefore, since 0.0099 < 0.05 we reject H_0 and conclude that the result is 'statistically significant' at the 5% significance level (and also, just, at the 1% significance level). Hence there is (strong) evidence that $\pi \neq 0.4$. Since $p > \pi$ we might go further and suppose that $\pi > 0.4$.

Finally, recall the possible decision space:

		Decision made	
		H_0 not rejected	H_0 rejected
True state	H_0 true	Correct decision	Type I error
of nature	H_1 true	Type II error	Correct decision

As we have rejected H_0 this means one of two things:

- we have correctly rejected H₀
- we have committed a Type I error.

Although the p-value is very small, indicating it is $highly \ unlikely$ that this is a Type I error, unfortunately we cannot be certain which outcome has actually occurred!