The Fundamental Theorem of Dynamical Systems

M. Nourbakhsh

Sharif University of Technology

May 6, 2024

Recurrence Behaviours of Dynamics - Fixed Points and Periodic Points

In all slides consider (X,d) as a compact metric space and a homeomorphism $f:X\to X$ as the dynamic.

- Fixed Points: $F.P.(X, f) := \{x \in X : f(x) = x\}$
- Periodic Points: $P.P.(X, f) := \{x \in X : \exists n \in \mathbb{N} \text{ s.t. } f^n(x) = x\}$

Definition. The ω -limit set of $x \in X$ is the set of all limit points of $\operatorname{orb}(x)$.

$$\omega(x) := \{ \bar{x} \in X : \exists \{n_i\}_{i \in \mathbb{N}} \text{ s.t. } \lim_{i \to \infty} f^{n_i} = \bar{x} \}$$

• Recurrent Points: $x \in X$ is a recurrent point if it's a limit point of it's own orbit.

Consider Irrational rotation on S^1 :

$$\forall x \in S^1 : \omega(x) = S^1 \Longrightarrow R.P.(S^1, R_\alpha) = S^1$$

Recurrence Behaviours of Dynamics - Non-Wandering Points

• Non-Wandering Points: $x \in X$ is a non-wandering point if every open neighbourhood of that come back to itself.

$$N.W.P.(X,f) := \{x \in X : \forall U_x \ni x, \exists n \in \mathbb{N}, f^n(U_x) \cap U_x \neq \emptyset\}$$

Consider The doubling map on S^1 : consider $x=\frac{1}{2}.$ x is not a recurrent point since $f^n(x)=0$ for all $n\geq 1$. But every open interval $I_x\ni x$ goes to an interval $f(I_x)$ with length $2\times (\operatorname{length}(I_x))$. Thus for some $n\in \mathbb{N}$, $f^n(I_x)$ cover the whole S^1 . Therefore x is a non-wandering point.

Definition. We called $\{x_n\}_{n\in\mathbb{N}}\subset X$ an ε -pseudo orbit of $x=x_0$ if

$$\forall n \in \mathbb{N} : d(x_n, f(x_{n-1})) < \varepsilon$$

We say there is an ε -pseudo orbit from x to y if there is an ε -pseudo orbit of x passing through y. If for every ε it's true, we write $x \curvearrowright y$

• Chain Recurrent Points: $x \in X$ is a chain recurrent point if there exists ε -chain from x to itself for all $\varepsilon > 0$.

$$\mathcal{R}(X,f) = \{x \in X : x \curvearrowright x\}$$

Figure: $f(\theta) = \theta + \alpha \cos^2 \theta$

Recurrence Behaviours of Dynamics

Conclusion:

$$F.P.(X, f) \subset P.P.(X, f) \subset R.P.(X, f) \subset N.W.P.(X, f) \subset \mathcal{R}(X, f)$$

Fundamental Theorem of Dynamical Systems

We want to see whether we can decompose the space X to the chain recurrent classes like what we did for finite dynamics using grand-orbits.

Notice that $\mathcal{R}(X, f)$ is a closed invariant set!

Fundamental Theorem of Dynamical Systems

Let define a relation:

$$x \sim y \longleftrightarrow (x \curvearrowright y \text{ and } y \curvearrowright x)$$

it's obvious that this is not an equivalence relation on X since necessarily we do not have $x \sim x$ for all $x \in X$.

Thus, let's work on $\mathcal{R}(X, f)$!

 \sim is an equivalence relation on $\mathcal{R}(X,f)$

Fundamental Theorem of Dynamical Systems

 \sim is an equivalence relation on $\mathcal{R}(X,f)$

Each equivalence classes are somehow like **Periodic-Orbits**.

Look at the induced dynamic of f in the space $\mathcal{R}(X,f)/\sim$:

Every point is a fixed point!

Complete Lyapunov Function

Definition. A complete Lyapunov function for the system (X, f) is a continuous function $g: X \to \mathbb{R}$ satisfying:

- (i) if $x \notin \mathcal{R}(X, f)$, then g(f(x)) < g(x)
- (ii) if $x, y \in \mathcal{R}(X, f)$, then g(x) = g(y) if and only if $x \sim y$.
- (iii) $g(\mathcal{R}(X,f))$ is a compact nowhere dense subset of \mathbb{R} .

The History

It's as simple as ABC:)

where ABC stand for Anosov, Bowen, and Conley!

Attractors & Repellers

A set $A \subset X$ is an attractor for f if

- (i) A is a nonempty compact invariant set.
- (ii) there exists a neighborhood U of A such that $f(U) \subset U$ and $\bigcap_{n \geq 0} f^n(\bar{U}) = A$. U is called an isolating neighbourhood for A.

Notice that $V:=X\setminus \bar U$ is an isolating neighbourhood of $A^*:=\bigcap_{n\geq 0}f^{-n}(\bar V)$ and A^* is an attractor for $(X,f^{-1}).$ We call A^* a repeller dual to $\bar A.$

Attractors & Repellers

Lemma. There are at most countable number of attractors and repellers.

Lemma. Let $\{A_n\}_{n\in\mathbb{N}}$ be the attractors of (X,f). Then

$$\mathcal{R}(X,f) = \bigcap_{n \in \mathbb{N}} \left(A_n \cup A_n^* \right)$$

Lemma. if $x,y\in\mathcal{R}(X,f)$, then $x\sim y$ if and only if there is no attractor A such that $x\in A$ and $y\in A^*$ or $x\in A^*$ and $y\in A$

The Conley's Theorem

Lemma. There is a continuous function $g: X \to [0,1]$ such that $g^{-1}(0) = A$, $g^{-1}(1) = A^*$ and g is strictly decreasing on orbits of points in $X \setminus (A \cup A^*)$.

The Conley's Fundamental Theorem of Dynamical systems

Theorem. There is a Complete Lyapunov Function for the system (X, f).

How Big the Recurrent Part is?

Poincare Recurrence Theorem Suppose μ is a finite Borel measure on X and $f:X\to X$ is a measure preserving transformation. If $E\subset X$ is measurable and $\mathcal N$ is the subset of E given by

$$\mathcal{N} := \{ x \in E : \#(\mathsf{orb}(x) \cap E) < \infty \}$$

Then \mathcal{N} is measurable and $\mu(\mathcal{N}) = 0$.

Corollaries of Poincare Recurrence Theorem

Corollary. Under the assumptions of Poincare Recurrence Theorem, the set of not-recurrence points are of measure zero.

Corollary. If you could find a finite f-invariant Borel measure μ such that $\mu(U)>0$ for all non-empty open sets $U\subset X$, then recurrent points are dense in X.

Corollary. If you could find a finite f-invariant Borel measure μ such that $\mu(U)>0$ for all non-empty open sets $U\subset X$, then if X is connected, for every $x,y\in X,\ x\curvearrowright y.$

References

• Franks, John. "Notes on chain recurrence and lyapunonv functions." arXiv preprint arXiv:1704.07264 (2017).

Norton, Douglas E. "The fundamental theorem of dynamical systems."
Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 585-597.

• McGEHEE, Richard "Charles C. Conley, 1933–1984." Ergodic Theory Dynamical Systems 8: 1-7.

Thank you!

