Álgebra

Equações. Classificação de equações. Resolução de problemas

Rever + Praticar – páginas 30 a 33

1.

- 1.1. Não é uma equação em x, uma vez que não tem incógnita.
- **1.2.** É uma equação em x, porque é uma igualdade entre expressões algébricas onde figura, pelo menos, uma incógnita.
- **1.3.** Não é uma equação em x, uma vez que se trata de uma desigualdade entre expressões.

2.

2.1. Incógnita: x

1° membro: 3x + 5

2º membro: 9

Termos independentes: 5 e 9

Termos com incógnita: 3x

1 não é solução da equação, uma vez que substituindo a incógnita por 1, obtemos uma igualdade falsa, $8 \neq 9$.

2.2. Incógnita: a

1º membro: -13

 2° membro: -6 + a

Termos independentes: -13 e -6

Termos com incógnita: a

1 não é solução da equação, uma vez que substituindo a incógnita por 1, obtemos uma igualdade falsa, -13 ≠ -5.

2.3. Incógnita: *y*

1.º membro: 3(y + 2)

2° membro: 7 + 2v

Termos independentes: 6 e 7

Termos com incógnita: 3y e 2y

1 é solução da equação, uma vez que substituindo a incógnita por 1, obtemos uma igualdade verdadeira:

$$3(1+2) = 7+2 \times 1$$

9 = 9

3. Duas equações são equivalentes, se tiverem o mesmo conjunto-solução. As equações não são equivalentes, uma vez que 7 é solução da equação x + 1 = 8 e 3 é solução da equação 3x = 9.

4.

4.1.
$$5x - 2 = 23 \Leftrightarrow 5x = 23 + 2 \Leftrightarrow 5x = 25$$

$$\Leftrightarrow x = \frac{25}{5} \Leftrightarrow x = 5$$

$$C.S. = \{5\}$$

4.2.
$$4x + 14 = -3x + 8 \Leftrightarrow 4x + 3x = 8 - 14$$

$$\Leftrightarrow 7x = -6 \Leftrightarrow x = -\frac{6}{7}$$

C.S. =
$$\left\{ -\frac{6}{7} \right\}$$

4.3.
$$2(x + 3) = 3x - 14 \Leftrightarrow 2x + 6 = 3x - 14$$

$$\Leftrightarrow 2x - 3x = -14 - 6 \Leftrightarrow -x = -20 \Leftrightarrow x = 20$$

$$C.S. = \{20\}$$

5. Como se trata de um guadrado, então os lados têm a mesma medida, ou seja:

$$x + 8 = 3x \Leftrightarrow x - 3x = -8 \Leftrightarrow -2x = -8 \Leftrightarrow x = \frac{-8}{-2}$$

$$\Leftrightarrow x = 4$$

$$C.S. = \{4\}$$

Assim, a medida do lado do quadrado é $3 \times 4 = 12$ e a área do quadrado é:

$$A = \ell^2 = 12 \times 12 = 144$$
 u.a.

6.1.
$$2x + 1 = 7 \Leftrightarrow 2x = 7 - 1 \Leftrightarrow 2x = 6 \Leftrightarrow x = \frac{6}{2}$$

$$\Leftrightarrow x = 3$$

$$C.S. = \{3\}$$

Equação possível determinada

6.2.
$$-4 = 11 - 3x \Leftrightarrow 3x = 11 + 4$$

$$\Leftrightarrow 3x = 15$$

$$\Leftrightarrow x = \frac{15}{3}$$

$$-x - \frac{1}{3}$$

$$\Leftrightarrow x = 5$$

 $C.S. = \{5\}$

Equação possível determinada

6.3.
$$-(6x - 12) = -2(3x - 6) \Leftrightarrow -6x + 12 = -6x + 12$$

$$\Leftrightarrow$$
 $-6x + 6x = 12 - 12$

$$\Leftrightarrow 0x = 0$$

$$\Leftrightarrow 0 = 0$$

Equação possível indeterminada

6.4.
$$3x - 2 = -(-3x + 5) \Leftrightarrow 3x - 2 = 3x - 5$$

$$\Leftrightarrow 3x - 3x = -5 + 2$$

$$\Leftrightarrow 0x = -3$$

$$\Leftrightarrow 0 = -3$$

 $C.S. = \{ \}$

Equação impossível

6.5.
$$-(6x + 12) = -3(2x + 6)$$
 ⇔ $-6x - 12 = -6x - 18$ ⇔ $-6x + 6x = -18 + 12$ ⇔ $0x = -6$ ⇔ $0 = -6$

$$C.S. = \{ \}$$

Equação impossível

6.6.
$$-(-2x + 11) = 4 + (-15 + 2x)$$

$$\Leftrightarrow 2x - 11 = 4 - 15 + 2x$$

$$\Leftrightarrow 2x - 2x = 4 - 15 + 11$$

$$\Leftrightarrow 0x = 0$$

$$\Leftrightarrow 0 = 0$$

Equação possível indeterminada

7. Para que o triângulo seja equilátero, o comprimento dos três lados tem que ser igual. Assim:

$$x + 60 = 100 e 2x + 100 = 100$$

Contudo:

$$x + 60 = 100 \Leftrightarrow x = 100 - 60 \Leftrightarrow x = 40$$

Por outro lado:

$$2x + 100 = 100 \Leftrightarrow 2x = 100 - 100$$
$$\Leftrightarrow 2x = 0$$
$$\Leftrightarrow x = 0$$

Logo, o triângulo não pode ser equilátero porque as equações x + 60 = 100 e 2x + 100 = 100 não têm o mesmo conjunto-solução.

8. Dois números inteiros consecutivos: x e x + 1

$$x + x + 1 = 37 \Leftrightarrow 2x = 37 - 1$$
$$\Leftrightarrow 2x = 36$$
$$\Leftrightarrow x = \frac{36}{2}$$
$$\Leftrightarrow x = 18$$

$$C.S. = \{18\}$$

Logo:

$$x = 18$$

$$x + 1 = 19$$

Os números são 18 e 19.

9. Como a soma das amplitudes dos ângulos internos de um triângulo é igual a 180°, então:

$$40 + 9x + 5 + 45 = 180 \Leftrightarrow 9x = 180 - 40 - 45 - 5$$

$$\Leftrightarrow 9x = 90$$

$$\Leftrightarrow x = \frac{90}{9}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

Logo,
$$x = 10$$
.

10. Como o perímetro do retângulo é igual a 5 cm,

$$x + x + x + 3 + x + 3 = 5$$
.

$$x + x + x + 3 + x + 3 = 5 \Leftrightarrow 4x + 6 = 5$$

 $\Leftrightarrow 4x = 5 - 6$

$$\Leftrightarrow 4x = -1$$

$$\Leftrightarrow x = -\frac{1}{4}$$

$$C.S. = \left\{ -\frac{1}{4} \right\}$$

Embora seja solução da equação, $-\frac{1}{4}$ não é solução

do problema, porque o valor do comprimento não pode ser negativo. Assim, o problema não tem solução, ou seja, não existe um retângulo nas condições do enunciado.

Praticar + – páginas 34 a 37

1.

1.1.
$$2x + 30$$

1.2.
$$2(x + 30)$$

1.3.
$$5 + 15x$$

1.4.
$$4x - 7$$

2.

2.1.
$$5x - 6 = x - 4 \Leftrightarrow 5x - x = -4 + 6$$

$$\Leftrightarrow 4x = 2$$

2.2.
$$2(x-6) = 3x - 1 \Leftrightarrow 2x - 12 = 3x - 1 \Leftrightarrow 2x - 3x = -1 + 12 \Leftrightarrow -x = 11$$

3.

3.1.
$$x + 7 = 5 \Leftrightarrow x = 5 - 7$$

$$\Leftrightarrow x = -2$$

$$C.S. = \{-2\}$$

3.2.
$$x - 11 = 12 \Leftrightarrow x = 12 + 11$$

$$\Leftrightarrow x = 23$$

$$C.S. = \{23\}$$

3.3.
$$2x - 1 = 2x + 3 \Leftrightarrow 2x - 2x = 3 + 1$$

$$\Leftrightarrow 0x = 4$$

C.S. = { } Equação impossível

3.4.
$$3x = 18 \Leftrightarrow x = \frac{18}{3}$$

$$\Leftrightarrow x = 6$$

$$C.S. = \{6\}$$

3.5.
$$\frac{2x-1}{5} = 2 \Leftrightarrow 2x-1 = 10$$
$$\Leftrightarrow 2x = 10+1$$
$$\Leftrightarrow 2x = 11$$
$$\Leftrightarrow x = \frac{11}{2}$$

$$C.S. = \left\{ \frac{11}{2} \right\}$$

3.6.
$$3x + 13 = 3(x + 5) - 2 \Leftrightarrow 3x + 13 = 3x + 15 - 2$$

 $\Leftrightarrow 3x - 3x = 13 - 13$
 $\Leftrightarrow 0 = 0$

$$C.S. = \mathbb{Q}$$

3.7.
$$2(x-5) = -x - 4 \Leftrightarrow 2x - 10 = -x - 4$$

 $\Leftrightarrow 2x + x = -4 + 10$
 $\Leftrightarrow 3x = 6$
 $\Leftrightarrow x = \frac{6}{3}$
 $\Leftrightarrow x = 2$

C.S. = {2}
3.8.
$$-(x-1) + 3 = \frac{x}{2} \Leftrightarrow -\frac{x}{1} + \frac{1}{1} + \frac{3}{1} = \frac{x}{2}$$

 $\Leftrightarrow -2x + 2 + 6 = x$
 $\Leftrightarrow -2x - x = -2 - 6$
 $\Leftrightarrow -3x = -8$
 $\Leftrightarrow x = \frac{8}{3}$

$$C.S. = \left\{ \frac{8}{3} \right\}$$

4. [A]
$$-3 \times (-3) + 4 = 9 + 4 = 13 \neq -13$$

[B]
$$-(-3) + 5 = 3 + 5 = 8 \neq 2$$

$$[C] 2(-3 + 4) = 2 \times 1 = 2$$

A afirmação é verdadeira.

[D]
$$11 + (-3) = 8 \neq 14$$

Logo, a opção correta é a [C].

5. Para verificar se 8 é solução de equação, basta substituir *x* por 8 e verificar a veracidade.

$$2(8-1) = \frac{8}{4} - (2 \times 8 - 4) \Leftrightarrow 2 \times 7 = 2 - (16 - 4)$$
$$\Leftrightarrow 14 = 2 - 12$$
$$\Leftrightarrow 14 = -10 \text{ (F)}$$

Então, 8 não é solução da equação.

6. Seja x a idade atual da Joana. Assim, x + 5 é a idade da Joana daqui a 5 anos e x - 5 é a idade da Joana há 5 anos.

$$x + 5 = 3(x - 5) \Leftrightarrow x + 5 = 3x - 15$$
$$\Leftrightarrow x - 3x = -15 - 5$$
$$\Leftrightarrow -2x = -20$$

$$\Leftrightarrow x = \frac{-20}{-2}$$
$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

A idade atual da Joana é 10 anos.

7. Seja *x* o peso de uma esfera.

7.1. Como o peso total é 13 kg, então

$$4 + x + 6 = 13 \Leftrightarrow x = 13 - 4 - 6$$
$$\Leftrightarrow x = 3$$

$$C.S. = \{3\}$$

A esfera pesa 3 kg.

7.2.
$$3x = x + 5 \Leftrightarrow 3x - x = 5$$

 $\Leftrightarrow 2x = 5$
 $\Leftrightarrow x = \frac{5}{2}$
 $\Leftrightarrow x = 2.5$

$$C.S. = \{2,5\}$$

Cada esfera pesa 2,5 kg.

7.3.
$$3x + 5 = 18 \Leftrightarrow 3x = 18 - 5$$

$$\Leftrightarrow 3x = 13$$

$$\Leftrightarrow x = \frac{13}{3}$$

$$C.S. = \left\{ \frac{13}{3} \right\}$$

Cada esfera pesa $\frac{13}{3}$ kg.

8.
$$P_{\text{pentágono}} = 3 \times P_{\text{triângulo}}$$

8.1.
$$5 \times 6 = 3 \times 3x \Leftrightarrow 9x = 30$$

8.2.
$$9x = 30 \Leftrightarrow x = \frac{30}{9}$$
 $\Leftrightarrow x = \frac{10}{3}$

$$C.S. = \left\{ \frac{10}{3} \right\}$$

Logo,
$$P = 3 \times \frac{10}{3} = 10$$
.

Assim, o perímetro do triângulo é 10 cm.

9.

9.1. O perímetro é igual à soma de todos os lados do polígono. Logo:

$$P = x + 2x + 2 + x + 8 + 3x - 1 =$$

$$= x + 2x + x + 3x + 2 + 8 - 1 =$$

$$= 7x + 9$$

9.2. Se
$$x = 3$$
:

$$P = 7 \times 3 + 9 = 30 \text{ cm}$$

Logo, a opção correta é a [B].

9.3.
$$P = 17.4$$

 $7x + 9 = 17.4 \Leftrightarrow 7x = 17.4 - 9$
 $\Leftrightarrow 7x = 8.4$
 $\Leftrightarrow \frac{7}{1}x = \frac{42}{5}$
 $\Leftrightarrow 35x = 42$
 $\Leftrightarrow x = \frac{42}{35}$
 $\Leftrightarrow x = \frac{6}{5}$
 $\Leftrightarrow x = 1.2$

10. Sejam n, n + 1 e n + 2 três números inteiros consecutivos. Assim:

$$n + n + 1 + n + 2 = 99 \Leftrightarrow n + n + n = 99 - 1 - 2$$

$$\Leftrightarrow 3n = 96$$

$$\Leftrightarrow n = \frac{96}{3}$$

$$\Leftrightarrow n = 32$$

C.S. =
$$\{32\}$$

Logo, $n = 32$; $n + 1 = 33$ e $n + 2 = 34$.

Os números são 32, 33 e 34.

11.

11.1.
$$1 - \frac{x-6}{3} = -(x-1) \Leftrightarrow \frac{1}{1} - \frac{x-6}{3} = -\frac{x}{1} + \frac{1}{1 \choose (x3)}$$
 $\Leftrightarrow 3 - x + 6 = -3x + 3$
 $\Leftrightarrow -x + 3x = 3 - 3 - 6$
 $\Leftrightarrow 2x = -6$
 $\Leftrightarrow x = -\frac{6}{2}$
 $\Leftrightarrow x = -3$

$$C.S. = \{-3\}$$

Equação possível determinada

11.2.
$$2x - 3(x - 4) - \frac{x - 6}{2} = -\frac{2}{3}$$

 $\Rightarrow \frac{2x}{1} - \frac{3x}{1} + \frac{12}{1} - \frac{x - 6}{2} = -\frac{2}{3}$
 $\Rightarrow 12x - 18x + 72 - 3x + 18 = -4$
 $\Rightarrow 12x - 18x - 3x = -4 - 72 - 18$
 $\Rightarrow -9x = -94$
 $\Rightarrow x = \frac{-94}{-9}$
 $\Rightarrow x = \frac{94}{9}$
C.S. $= \left\{\frac{94}{9}\right\}$

Equação possível determinada

11.3.
$$2(x-2) = 4(x-1) - 2x \Leftrightarrow 2x - 4 = 4x - 4 - 2x$$

 $\Leftrightarrow 2x - 4x + 2x = -4 + 4$
 $\Leftrightarrow 0x = 0$

$$C.S. = IR$$

Equação possível indeterminada

11.4.
$$4 - \frac{2x - 1}{3} = 10 \Leftrightarrow 12 - 2x + 1 = 30$$

$$(\times 3) \Leftrightarrow -2x = 30 - 12 - 1$$

$$\Leftrightarrow -2x = 17$$

$$\Leftrightarrow x = -\frac{17}{2}$$
C.S. $= \left\{-\frac{17}{2}\right\}$

Equação possível determinada

11.5.
$$2(3-x) - \frac{x}{3} = \frac{x-3}{2} \Leftrightarrow 6 - 2x - \frac{x}{3} = \frac{x-3}{2}$$

 $\Leftrightarrow 36 - 12x - 2x = 3x - 9$
 $\Leftrightarrow -12x - 2x - 3x = -9 - 36$
 $\Leftrightarrow -17x = -45$
 $\Leftrightarrow x = \frac{45}{17}$

C.S. =
$$\left\{ \frac{45}{17} \right\}$$

Equação possível determinada

11.6.
$$1 - \frac{x-1}{4} = \frac{3(x+1)}{2} \Leftrightarrow \frac{1}{1} - \frac{x-1}{4} = \frac{3x+3}{2}$$

$$\Leftrightarrow 4 - x + 1 = 6x + 6$$

$$\Leftrightarrow -x - 6x = 6 - 4 - 1$$

$$\Leftrightarrow -7x = 1$$

$$\Leftrightarrow x = -\frac{1}{7}$$

C.S. =
$$\left\{ -\frac{1}{7} \right\}$$

Equação possível determinada

12.
$$A_{\text{trap\'ezio}} = \frac{B+b}{2} \times h$$

$$A_{\text{trap\'ezio}} = \frac{x+4x-2}{2} \times 8 = \frac{5x-2}{2} \times 8 = \frac{40x-16}{2} = 20x-8$$

$$A_{\text{triângulo}} = \frac{b \times h}{2}$$

$$A_{\text{triângulo}} = \frac{(3x+1) \times 8}{2} = \frac{24x+8}{2} = 12x+4$$

Como os dois polígonos têm a mesma área, basta igualar as duas expressões 20x - 8 = 12x + 4. Resolvendo a equação em ordem a x, obtemos:

$$20x - 12x = 4 + 8 \Leftrightarrow 8x = 12 \Leftrightarrow x = \frac{12}{8}$$
$$\Leftrightarrow x = \frac{3}{2}$$
$$\Leftrightarrow x = 1.5$$

C.S. =
$$\{1,5\}$$

Assim, $x = 1,5$ cm.

.eYa EDUCAÇÃO

13. A opção [A] não é correta, porque

$$4 \times (-5) - 5 = 5(2 \times (-5) - 13) \Leftrightarrow -20 - 5 = 5(-10 - 13)$$

 $\Leftrightarrow -25 = 5 \times (-23)$ (Falso)

As equações são equivalentes se tiverem o mesmo conjunto-solução.

Resolvendo as duas equações, tem-se:

•
$$4x - 5 = 5(2x - 13) \Leftrightarrow 4x - 5 = 10x - 65$$

 $\Leftrightarrow 4x - 10x = -65 + 5$
 $\Leftrightarrow -6x = -60$
 $\Leftrightarrow x = \frac{-60}{-6}$
 $\Leftrightarrow x = 10$

$$C.S. = \{10\}$$

•
$$\frac{2(x+2)}{3} = 8 \Leftrightarrow \frac{2x+4}{3} = \frac{8}{1 \atop (\times 3)}$$

$$\Leftrightarrow 2x+4=24$$

$$\Leftrightarrow 2x=24-4$$

$$\Leftrightarrow 2x=20$$

$$\Leftrightarrow x = \frac{20}{2}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

Logo, as equações são equivalentes.

A opção [C] não é a correta, porque a equação é possível determinada, C.S. = {10}

A opção [D] não é a correta, porque a equação é possível determinada, C.S. = {10}

A opção correta é a [B].

14. Seja *x* a herança deixada à Teresa.

Assim, $x + 50\ 000$ representa a herança deixada à Ana. $x + x + 50\ 000 = 200\ 000 \Leftrightarrow 2x = 200\ 000 - 50\ 000$ $\Leftrightarrow 2x = 150\ 000$ $\Leftrightarrow x = \frac{150\ 000}{2}$ $\Leftrightarrow x = 75\ 000$

Logo, $x + 50\ 000 = 75\ 000 + 50\ 000 = 125\ 000$ A Ana recebeu de herança 125 000 €.

15. Seja x o dinheiro que a Leonor recebeu do avô. Então, $\frac{x}{4}$ representa a parte que a Leonor gastou numa mochila e $\frac{x}{3}$ representa a parte que gastou num *tablet*. Como sobraram 100 €, temos:

$$x = \frac{x}{4} + \frac{x}{3} + 100 \Leftrightarrow 12x = 3x + 4x + 1200
 (x12) (x3) (x4) (x12) \Leftrightarrow 12x - 3x - 4x = 1200
 \Leftrightarrow 5x = 1200$$

$$\Leftrightarrow x = \frac{1200}{5}$$
$$\Leftrightarrow x = 240$$

$$C.S. = \{240\}$$

A Leonor recebeu 240 € do seu avô.

16. Como $A = \frac{b \times h}{2}$ e a área é igual a 40 cm², então

$$40 = \frac{8 \times h}{2} \Leftrightarrow \frac{8h}{2} = 40 \Leftrightarrow 8h = 80$$
$$\Leftrightarrow h = \frac{80}{8}$$
$$\Leftrightarrow h = 10 \text{ cm}$$

A altura do triângulo relativamente a esse lado é 10 cm.

17. Como a soma das amplitudes dos ângulos internos de um triângulo é igual a 180°, então:

$$4x + 50 + 6x + x + 20 = 180$$

$$⇔ 4x + 6x + x = 180 - 50 - 20$$

$$⇔ 11x = 110$$

$$\Leftrightarrow x = \frac{110}{11}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

Como x = 10, então:

•
$$4x + 50 = 4 \times 10 + 50 = 90$$

•
$$6x = 6 \times 10 = 60$$

•
$$x + 20 = 10 + 20 = 30$$

Assim,
$$A\hat{C}B = 90^{\circ}$$
, $C\hat{B}A = 30^{\circ}$ e $B\hat{A}C = 60^{\circ}$.

O triângulo [ABC] é retângulo, porque um dos ângulos internos tem amplitude 90°.

18. Nos primeiros autocarros seguiam x alunos e no terceiro seguiam (x + 2) alunos. Como no total seguiam 146 alunos, então:

$$x + x + x + 2 = 146 \Leftrightarrow 3x = 146 - 2 \Leftrightarrow x = \frac{144}{3}$$
$$\Leftrightarrow x = 48$$

$$C.S. = \{48\}$$

$$x + 2 = 48 + 2 = 50$$

O autocarro mais cheio transportou 50 alunos.

19.
$$2(x-3) + 1 = k - 5x$$

19.1. $k = -2$:
 $2(x-3) + 1 = -2 - 5x \Leftrightarrow 2x - 6 + 1 = -2 - 5x$
 $\Leftrightarrow 2x + 5x = -2 + 6 - 1$
 $\Leftrightarrow 7x = 3$
 $\Leftrightarrow x = \frac{3}{7}$
C.S. $= \left\{ \frac{3}{7} \right\}$

19.2. x = 5:

$$2(5-3) + 1 = k - 5 \times 5 \Leftrightarrow 2 \times 2 + 1 = k - 25$$
$$\Leftrightarrow -k = -25 - 4 - 1$$
$$\Leftrightarrow -k = -30$$
$$\Leftrightarrow k = 30$$

20. Seja x o valor do aluguer de uma loja. Assim, x + 0.2x representa o aluguer da loja mais cara. Logo: $x + x + 0.2x = 35\ 200 \Leftrightarrow 2.2x = 35\ 200$

$$\Leftrightarrow \frac{22}{10}x = 35\ 200$$

$$\Leftrightarrow 22x = 352\ 000$$

$$\Leftrightarrow x = \frac{352\ 000}{22}$$

$$\Leftrightarrow x = 16\ 000$$

 $C.S. = \{16\ 000\}$

x = 16 000 €

$$x + 0.2x = 19\ 200 \in$$

A renda mensal de cada uma das lojas é 16 000 € e 19 200 €.

21. d = 100 cm

Se um dos quadrados tem mais 20 cm de perímetro, $x + x + 20 = 100 \Leftrightarrow 2x = 100 - 20 \Leftrightarrow 2x = 80$

$$\Leftrightarrow x = \frac{80}{2}$$
$$\Leftrightarrow x = 40$$

$$C.S. = \{40\}$$

Assim, x = 40 cm e x + 20 = 60 cm.

O fio de 100 cm foi dividido em dois fios com 40 cm e 60 cm.

22. Seja *x* o valor que o Pedro doou a instituições de caridade.

$$\frac{x}{2} + \frac{x}{3} + 1000 = x \Leftrightarrow 3x + 2x + 6000 = 6x$$

$$\Leftrightarrow 3x + 2x - 6x = -6000$$

$$\Leftrightarrow -x = -6000$$

$$\Leftrightarrow x = 6000$$

$$C.S. = \{6000\}$$

Seja y o valor que o Pedro recebeu.

Como pagou 23% de imposto, y - 0.23y = 6000.

Assim, $0.77y = 6000 \Leftrightarrow y \approx 7792.21$

O Pedro recebeu da venda dos relógios 7792,21 €.

23.

	Idade atual	Idade daqui a x anos
Filipa	18	18 + x
Ana	7	7 + x

$$18 + x = 2 \times (7 + x) \Leftrightarrow 18 + x = 14 + 2x$$
$$\Leftrightarrow x - 2x = 14 - 18$$
$$\Leftrightarrow -x = -4$$
$$\Leftrightarrow x = 4$$

$$C.S. = \{4\}$$

Daqui a quatro anos a Filipa terá o dobro da idade da Ana

24. 42 + x - i idade da mãe daqui a x anos

13 + x – idade do João daqui a x anos

15 + x - idade da Joana dagui a x anos

Traduzindo o problema por uma equação, temos:

$$42 + x = (13 + x) + (15 + x) \Leftrightarrow x - x - x = 13 + 15 - 42$$

 $\Leftrightarrow -x = -14$
 $\Leftrightarrow x = 14$

$$C.S. = \{14\}$$

Daqui a 14 anos a idade da mãe será igual à soma das idades dos filhos.

25.

25.1.
$$4x - 6 = 4x - k \Leftrightarrow 4x - 4x - 6 = -k$$

 $\Leftrightarrow -6 = -k$
 $\Leftrightarrow 6 = k$

Por exemplo, se k = 2 a equação é impossível $(6 \ne 2)$.

25.2. k = 6, pois:

$$4x - 6 = 4x - 6 \Leftrightarrow 0x = 0$$

25.3. A afirmação é verdadeira, porque os termos com incógnita anulam-se.

26. A média dos três números é dada pela expressão:

$$\frac{(x+9) + (7x-3) + 2x}{3} = \frac{x+7x+2x+9-3}{3} = \frac{10x+6}{3}$$

Como a média é igual a 4x, então:

$$\frac{10x + 6}{3} = 4x \Leftrightarrow 10x + 6 = 12x$$

$$\Leftrightarrow 10x - 12x = -6$$

$$\Leftrightarrow -2x = -6$$

$$\Leftrightarrow x = \frac{-6}{-2}$$

$$\Leftrightarrow x = 3$$

$$C.S. = \{3\}$$

- x + 9 = 3 + 9 = 12
- $7x 3 = 7 \times 3 3 = 18$
- $2x = 2 \times 3 = 6$

Os números são 6, 12 e 18.

27. Sejam x, x + 1 e x + 2 três números inteiros consecutivos.

$$x + x + 1 + x + 2 = 2(x + 2) - 6 \Leftrightarrow 3x + 3 = 2x + 4 - 6$$

 $\Leftrightarrow 3x - 2x = 4 - 6 - 3$
 $\Leftrightarrow x = -5$

$$C.S. = \{-5\}$$

$$x = -5$$
; $x + 1 = -4$ e $x + 2 = -3$.

Os números são -5, -4 e -3.

28. Seja x o valor que cada um recebeu. Assim, $\frac{6}{7}x$ é o valor que o João gastou e $\frac{1}{8}x$ é o valor com que o Filipe ficou.

Como o João gastou $\frac{6}{7}x$, então ficou $\frac{1}{7}x$.

$$\frac{1}{8}x + 1 = \frac{1}{7}x \Leftrightarrow 7x + 56 = 8x$$
$$\Leftrightarrow 7x - 8x = -56$$
$$\Leftrightarrow x = 56$$

$$C.S. = \{56\}$$

O avô deu a cada um dos netos 56 €.

Monómios. Polinómios. Casos notáveis da multiplicação. Equações de 2º grau Rever + Praticar – páginas 38 a 44

1.

1.1. Monómio A: coeficiente: -12; parte literal: x^3

Monómio *B***:** coeficiente: 4; parte literal: x^2y^3

1.2. Monómio A: grau 3

Monómio B: grau 5

- **1.3.** Dois monómios dizem-se semelhantes quando têm a mesma parte literal. Assim, por exemplo, $7x^3$ é um monómio semelhante a A.
- **1.4.** O monómio $-4x^2y^3$, já que $-4x^2y^3 + 4x^2y^3 = 0$, pois têm os coeficientes simétricos e a mesma parte literal.

2.

2.1. Monómio *A*: coeficiente: 3a; parte literal: x^2 **Monómio** *B*: coeficiente: -4; parte literal: y

2.2.
$$3ax^2 \times (-4y) = -12ayx^2$$

Este monómio tem grau 3(1 + 2).

3

3.1. Sabemos que a largura do retângulo é x e o comprimento é 2x. Assim, o perímetro é dado por: P = 2x + 2x + x + x = 4x + 2x = 6x

3.2. A área do retângulo é dada por:

$$A = c \times \ell = 2x \times x = 2x^2$$

4.

4.1.
$$p(x) = 2x^3 - x^2 + 5 + 4x^2 = 2x^3 + 3x^2 + 5$$

 $q(x) = -3x^4 + 2x^2 + 4x + 3x^4 = 2x^2 + 4x$

4.2. Polinómio *p***:** grau 3; termo independente: 5 **Polinómio** *q***:** grau 2

5. Seja *P* o polinómio que representa a área do triângulo. Então:

$$P(x) = \frac{5x \times (3x + 2)}{2} = \frac{15x^2 + 10x}{2} = \frac{15}{2}x^2 + 5x$$

6.

6.1.
$$A + B = 3x^3 + 4x^2 - 6 + (2x^3 - 3x) =$$

= $3x^3 + 4x^2 - 6 + 2x^3 - 3x =$
= $5x^3 + 4x^2 - 3x - 6$

6.2.
$$A - 2B = 3x^3 + 4x^2 - 6 - 2(2x^3 - 3x) =$$

= $3x^3 + 4x^2 - 6 - 4x^3 + 6x =$
= $-x^3 + 4x^2 + 6x - 6$

6.3.
$$A \times B = (3x^3 + 4x^2 - 6) \times (2x^3 - 3x) =$$

= $6x^6 - 9x^4 + 8x^5 - 12x^3 - 12x^3 + 18x =$
= $6x^6 + 8x^5 - 9x^4 - 24x^3 + 18x$

7.

7.1. Simétrico do polinómio *A*: -4x - 12Simétrico do polinómio *B*: $-3x^2 + 6x - 4$ Simétrico do polinómio *C*: $-2x + 3x^2 - 5$

7.2. a)
$$2A = 2 \times (4x + 12) = 8x + 24$$

b) $-(B + C) = -(3x^2 - 6x + 4 + 2x - 3x^2 + 5) =$
 $= -(-4x + 9) =$
 $= 4x - 9$

c)
$$A \times B = (4x + 12) \times (3x^2 - 6x + 4) =$$

= $12x^3 - 24x^2 + 16x + 36x^2 - 72x + 48 =$
= $12x^3 + 12x^2 - 56x + 48$

7.3. A afirmação é falsa. Por exemplo, considerando os polinómios $3x^3 + 2x^2 + 5$ e $-3x^3 + 3x$, cujo grau de ambos é 3, a sua soma $3x^3 + 2x^2 + 5 - 3x^3 + 3x = 2x^2 + 3x + 5$ é um polinómio de grau 2, ou seja, basta que os termos de grau n sejam simétricos.

8.

8.1.
$$(x-3)^2 = x^2 - 6x + 9$$

8.2.
$$(x-3) \times (x+3) = x^2 - 9$$

8.3.
$$(2x + 5)^2 = 4x^2 + 20x + 25$$

8.4.
$$(2x + 1) \times (2x - 1) = 4x^2 - 1$$

9.

9.1.
$$2x - 3x^2 = x(2 - 3x)$$

9.2.
$$2(x-7) + x(x-7) = (x-7)(2+x)$$

9.3.
$$x^2 - 49 = (x - 7)(x + 7)$$

9.4.
$$25 - 9x^2 = (5 - 3x)(5 + 3x)$$

10.
$$x^2 - 8x + 16 = (x - 4)^2$$

Sabemos que $\ell \times \ell = A$, em que ℓ representa o comprimento do lado do quadrado e A representa a sua área. A expressão que representa o comprimento dos lados desse quadrado é x-4.

11.

11.1.
$$3x^2 - 48 = 0 \Leftrightarrow 3x^2 = 48$$

$$\Leftrightarrow x^2 = \frac{48}{3}$$

$$\Leftrightarrow x^2 = 16$$

$$\Leftrightarrow x = \pm \sqrt{16}$$

$$C.S. = \{-4, 4\}$$

11.2.
$$x^2 - 2 = 12x - 2 \Leftrightarrow x^2 - 12x = 0$$

 $\Leftrightarrow x(x - 12) = 0$
 $\Leftrightarrow x = 0 \lor x = 12$

$$C.S. = \{0, 12\}$$

11.3.
$$(x + 4)^2 = 0 \Leftrightarrow x + 4 = 0$$

 $\Leftrightarrow x = -4$

$$C.S. = \{-4\}$$

11.4.
$$x^2 - 4x - 6 = 2(x - 3) \Leftrightarrow x^2 - 4x - 6 = 2x - 6$$

$$\Leftrightarrow x^2 - 4x - 2x - 6 + 6 = 0$$

$$\Leftrightarrow x^2 - 6x = 0$$

$$\Leftrightarrow x(x - 6) = 0$$

$$\Leftrightarrow x = 0 \lor x - 6 = 0$$

$$\Leftrightarrow x = 0 \lor x = 6$$

$$C.S. = \{0, 6\}$$

11.5.
$$x^2 - 10x + 25 = -3$$

$$\Leftrightarrow x^2 - 10x + 25 + 3 = 0$$

$$\Leftrightarrow x^2 - 10x + 28 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -10 e c = 28, tem-se:

$$\Leftrightarrow x = \frac{10 \pm \sqrt{100 - 4 \times 1 \times 128}}{2}$$

$$\Leftrightarrow x = \frac{10 \pm \sqrt{100 - 112}}{2}$$

$$\Leftrightarrow x = \frac{10 \pm \sqrt{-12}}{2}$$

equação impossível

$$C.S. = \{ \}$$

12. A área do triângulo é dada por:

$$A = \frac{(70 - 2x) \times (35 + x)}{2}$$

Como sabemos que a área é 1200, temos que:

$$1200 = \frac{(70 - 2x) \times (35 + x)}{2}$$

$$\Leftrightarrow 2400 = 2450 + 70x - 70x - 2x^2$$

$$\Leftrightarrow$$
 $-50 = -2x^2$

$$\Leftrightarrow x^2 = 25$$

$$\Leftrightarrow x = \pm 5$$

Como se trata de uma medida, temos que x = 5 e $5 \times 5 = 25$ e $70 - 2 \times 5 = 60$.

Assim, o perímetro do triângulo é:

$$P = 25 + 25 + 60 = 110$$
 u.c.

13.

13.1.
$$2x^2 - 20x + 50 = 0$$

Recorrendo à fórmula resolvente, com a = 2, b = -20 e c = 50, tem-se:

$$\Leftrightarrow x = \frac{20 \pm \sqrt{400 - 4 \times 2 \times 50}}{4}$$

$$\Leftrightarrow x = \frac{20 \pm \sqrt{400 - 400}}{4}$$

$$\Leftrightarrow x = 5$$

$$C.S. = \{5\}$$

13.2.
$$x^2 - 4x = 12 \Leftrightarrow x^2 - 4x - 12 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -4 e c = -12, tem-se:

-se:
$$\Leftrightarrow x = \frac{4 \pm \sqrt{16 - 4 \times 1 \times (-12)}}{2}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{16 + 48}}{2}$$

$$\Leftrightarrow x = \frac{4 \pm 8}{2}$$

$$\Leftrightarrow x = \frac{12}{2} \lor x = -\frac{4}{2}$$

$$\Leftrightarrow x = 6 \lor x = -2$$

$$C.S. = \{-2, 6\}$$

13.3.
$$x^2 - 6x + 13 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -6 e c = 13, tem-se:

$$\Leftrightarrow x = \frac{6 \pm \sqrt{36 - 4 \times 1 \times 13}}{2}$$

$$\Leftrightarrow x = \frac{6 \pm \sqrt{36 - 52}}{2}$$

$$\Leftrightarrow x = \frac{10 \pm \sqrt{-16}}{2}$$

equação impossível

$$C.S. = \{ \}$$

- **13.4.** $3(x-2)^2 2(x^2-4) = 0$
- \Leftrightarrow 3($x^2 4x + 4$) 2 $x^2 + 8 = 0$
- $\Rightarrow 3x^2 12x + 12 2x^2 + 8 = 0$
- $\Leftrightarrow x^2 12x + 20 = 0$

Recorrendo à fórmula resolvente, com a = 1, b = -12

- e c = 20, tem-se:
- $\Leftrightarrow x = \frac{12 \pm \sqrt{144 4 \times 1 \times 20}}{2}$
- $\Leftrightarrow x = \frac{12 \pm \sqrt{144 80}}{2}$
- $\Leftrightarrow x = \frac{12 \pm \sqrt{64}}{2}$
- $\Leftrightarrow x = \frac{12 \pm 8}{2}$
- $\Leftrightarrow x = \frac{20}{2} \lor x = \frac{4}{2}$
- $\Leftrightarrow x = 10 \lor x = 2$
- $C.S. = \{2, 10\}$

14.

14.1. A equação tem uma solução se $\Delta = 0$.

- $\Delta = 0 \Leftrightarrow 36 4 \times 3 \times (2 k) = 0$
 - \Leftrightarrow 36 24 + 12k = 0
 - \Leftrightarrow 12 + 12k = 0
 - $\Leftrightarrow 12k = -12$
 - $\Leftrightarrow k = -\frac{12}{12}$
 - $\Leftrightarrow k = -1$

14.2.
$$3x^2 - 6x + 3 = 0$$

Recorrendo à fórmula resolvente, com a = 3, b = -6

- e c = 3, tem-se:
- $\Leftrightarrow x = \frac{6 \pm \sqrt{36 4 \times 3 \times 3}}{6}$ $\Leftrightarrow x = \frac{6 \pm \sqrt{36 36}}{6}$
- $\Leftrightarrow x = 1$
- $C.S. = \{1\}$

Praticar + – páginas 45 a 53

- 1.
- 1.1. Parte numérica: 13

Parte literal: v^3

- Grau: 3
- 1.2. Parte numérica: 12

Parte literal: não tem

- Grau: 0
- **1.3.** Parte numérica: $17k^7$

Parte literal: x^2

Grau: 2

1.4. Parte numérica: $\frac{7a^5}{3}$

Parte literal: b^7

Grau: 7

- 2.
- **2.1.** $A = 5b \times 5b = 25b^2$
- **2.2.** $A = x^2y \times 2x^2y = 2x^4y^2$
- **2.3.** $A = \frac{5t \times 2t^2y}{2} = 5t^3y$
- 3.
- 3.1. a) A + 2B =
- $= 6x^3 3x + 2(-3x^3 + 2x^2 3x + 1) =$
- $= 6x^3 3x 6x^3 + 4x^2 6x + 2 =$
- $=4x^2-9x+2$
- **b)** B 2C =
- $=-3x^3+2x^2-3x+1-2(-x^2+2x)=$
- $=-3x^3+2x^2-3x+1+2x^2-4x=$
- $=-3x^3+4x^2-7x+1$
- c) -B + A =
- $=-(-3x^3+2x^2-3x+1)+6x^3-3x=$
- $=3x^3-2x^2+3x-1+6x^3-3x=$
- $= 9x^3 2x^2 1$
- **3.2.** O simétrico de *B* é:
- $-B = 3x^3 2x^2 + 3x 1$
- 3.3. Se x = -2:
- $B = -3 \times (-2)^3 + 2 \times (-2)^2 3 \times (-2) + 1 =$
- $= -3 \times (-8) + 2 \times 4 + 6 + 1 =$
- = 24 + 8 + 6 + 1 =
- = 39
- **4.1.** $(x + 1)^2 = x^2 + 2x + 1$
- **4.2.** $(x-1)^2 = x^2 2x + 1$
- **4.3.** $(x-2)^2 = x^2 4x + 4$
- **4.4.** $(x + 2)^2 = x^2 + 4x + 4$
- **4.5.** $(x-3)^2 = x^2 6x + 9$
- **4.6.** $(x + 5)^2 = x^2 + 10x + 25$
- **4.7.** $(x + 10)^2 = x^2 + 20x + 100$
- **4.8.** $(x-7)^2 = x^2 14x + 49$
- **5.**
- **5.1.** $x^2 1$
- 5.2. $x^2 4$
- 5.3. $x^2 25$
- **5.4.** $x^2 36$
- **5.5.** $x^2 100$
- **5.6.** $x^2 121$

6.

6.1.
$$(x-5)^2 = x^2 - 10x + 25$$

6.2.
$$(x-7)^2 = x^2 - 14x + 49$$

6.3.
$$(x - 6)(x + 6) = x^2 - 36$$

6.4.
$$(2x-7)(2x+7)=4x^2-49$$

7.

7.1.
$$10x - 5 = 2 \times 5 \times x - 5 = 5(2x - 1)$$

7.2.
$$x^2 - 12x = x \times x - 12 \times x = x(x - 12)$$

7.3.
$$v^3 - 7v = v \times v^2 - v \times 7 = v(v^2 - 7)$$

7.4.
$$t^4 - t^5 = t^4 - t \times t^4 = t^4(1 - t)$$

7.5.
$$80abc - 7ab = ab(80c - 7)$$

7.6.
$$5(x-1) - x(x-1) = (x-1)(5-x)$$

8.

8.1.
$$x^2 - 16 = (x - 4)(x + 4)$$

8.2.
$$x^2 - 10x + 25 = (x - 5)^2 = (x - 5)(x - 5)$$

8.3.
$$a^2 - 36 = (a - 6)(a + 6)$$

8.4.
$$100 - x^2 = (10 - x)(10 + x)$$

8.5.
$$t^2 + 6t + 9 = (t + 3)^2 = (t + 3)(t + 3)$$

8.6.
$$4x^2 + 4x + 1 = (2x + 1)^2 = (2x + 1)(2x + 1)$$

9.

9.1.
$$2(x-3) = x^2 \Leftrightarrow 2x-6-x^2 = 0$$

$$\Leftrightarrow$$
 $-x^2 + 2x - 6 = 0$

9.2.
$$(x-5)^2 - 3x = -3 \Leftrightarrow x^2 - 10x + 25 - 3x + 3 = 0$$

$$\Leftrightarrow x^2 - 13x + 28 = 0$$

9.3.
$$2\left(\frac{x}{3}-2\right)\left(\frac{x}{3}+2\right) = -1 \Leftrightarrow 2\left(\frac{x^2}{9}-4\right)+1=0$$

$$\Leftrightarrow \frac{2}{9}x^2 - 8 + 1 = 0$$

$$\Leftrightarrow \frac{2}{9} x^2 - 7 = 0$$

$$\Leftrightarrow 2x^2 - 63 = 0$$

10.

10.1.
$$(x - 1)(x - 5) = 0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow x - 1 = 0 \lor x - 5 = 0$$

$$\Leftrightarrow x = 1 \lor x = 5$$

$$C.S. = \{1, 5\}$$

10.2.
$$\left(\frac{x}{2} - 3\right) \left(\frac{x}{5} - 1\right)$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow \frac{x}{2} - 3 = 0 \lor \frac{x}{5} - 1 = 0$$

$$\Leftrightarrow \frac{x}{2} = 3 \lor \frac{x}{5} = 1$$

$$\Leftrightarrow x = 6 \lor x = 5$$

$$C.S. = \{5, 6\}$$

10.3.
$$-(-5-x)\left(\frac{x}{3}+3\right)=0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow 5 + x = 0 \lor \frac{x}{3} + 3 = 0$$

$$\Leftrightarrow x = -5 \lor \frac{x}{3} = -3$$

$$\Leftrightarrow x = -5 \lor x = -9$$

$$C.S. = \{-9, -5\}$$

11.

11.1. Substituindo *x* por 0, obtém-se:

$$2 \times 0^2 - 32 = 0 \Leftrightarrow -32 = 0$$
 (F)

Assim, concluímos que 0 não é solução da equação.

11.2.
$$2x^2 - 32 = 2(x^2 - 16) = 2(x - 4)(x + 4) =$$

$$= (2x - 8)(x + 4)$$

11.3.
$$2x^2 - 32 = 0 \Leftrightarrow 2(x^2 - 16) = 0$$

 $\Leftrightarrow 2(x - 4)(x + 4) = 0$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow x - 4 = 0 \lor x + 4 = 0$$

$$\Leftrightarrow x = 4 \lor x = -4$$

$$C.S. = \{-4, 4\}$$

12. $A_{\Box} = b \times h \ e \ A_{\Box} = \ell^2$

Logo,
$$A_{\Box} = (x - y)(x + 2y)$$
 e $A_{\Box} = x^2$. Então:

$$A_{\text{azul}} = (x - y)(x + 2y) - x^2 =$$

$$= x^2 + 2xy - yx - 2y^2 - x^2 =$$

$$= xy - 2y^2$$

13. [A]
$$-4(x-7) = 0 \Leftrightarrow -4x + 28 = 0$$

Equação de 1º grau.

[B]
$$3(x^2 - 4x) = 2 + 3x^2 \Leftrightarrow 3x^2 - 12x - 2 - 3x^2 = 0$$

 $\Leftrightarrow -12x - 2 = 0$

Equação de 1º grau.

[C]
$$4^2 + 16 = 32$$

Não é uma equação.

[D]
$$x(x-4) = 7 \Leftrightarrow x^2 - 4x - 7 = 0$$

Equação de 2º grau.

Logo, a opção correta é a [D].

14.
$$x^2 - 4x + 8 = (x^2 - 4x) + 8 =$$

$$=(x^2-4x+4)+8-4=$$

$$=(x-2)^2+4$$

15.
$$(-x + 5)^2 = (-x)^2 + 2 \times (-x) \times 5 + 5^2 =$$

= $x^2 - 10x + 25 =$
= $(x - 5)^2$

Logo, a opção correta é a [D].

16. [A]
$$(-2)^2 + (-2) - 1 = 0 \Leftrightarrow 4 - 2 - 1 = 0 \Leftrightarrow 3 = 0$$
 (F)

$$-2$$
 não é solução da equação $x^2 + x - 1 = 0$.

[B]
$$(-2)^2 - 3 \times (-2) + 2 = 0 \Leftrightarrow 4 + 6 + 2 = 0$$
 (F)

$$-2$$
 não é solução da equação $x^2 - 3x + 2 = 0$.

[C]
$$(-2 + 2) (-2 - 1) = 0 \Leftrightarrow 0 \times (-3) = 0$$
 (V)

$$-2$$
 é solução da equação $(x + 2)(x - 1) = 0$.

$$(1 + 2) (1 - 1) = 0 \Leftrightarrow 3 \times 0 = 0 \text{ (V)}$$

1 é solução da equação
$$(x + 2)(x - 1) = 0$$

[D]
$$(-2-2)(-2+1) = 0 \Leftrightarrow -4 \times (-1) = 0$$
 (F)

$$-2$$
 não é solução da equação $(x - 2)(x + 1) = 0$

Logo, a opção correta é a [C].

17.

17.1.
$$x^2 + 4x + 3 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = 4 e c = 3, tem-se:

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times 3}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{16 - 12}}{2}$$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{4}}{2}$$

$$\Leftrightarrow x = \frac{-4 \pm 2}{2}$$

$$\Leftrightarrow x = \frac{-4 - 2}{2} \lor x = \frac{-4 + 2}{2}$$

$$\Leftrightarrow x = -\frac{6}{2} \lor x = -\frac{2}{2}$$

$$\Leftrightarrow x = -3 \lor x = -1$$

$$C.S. = \{-3, -1\}$$

17.2.
$$2k^2 - 50 = 0 \Leftrightarrow 2k^2 = 50$$

$$\Leftrightarrow k^2 = \frac{50}{2}$$

$$\Leftrightarrow k^2 = 25$$

$$\Leftrightarrow k = \pm 5$$

$$C.S. = \{-5, 5\}$$

17.3.
$$(3t + 1)(2t - 1) = 0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow 3t + 1 = 0 \lor 2t - 1 = 0$$

$$\Leftrightarrow$$
 3 $t = -1 \lor 2t = 1$

$$\Leftrightarrow t = -\frac{1}{3} \lor t = \frac{1}{2}$$

C.S. =
$$\left\{-\frac{1}{3}, \frac{1}{2}\right\}$$

17.4.
$$x^2 - 9x = 0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow x(x-9)=0$$

$$\Leftrightarrow x = 0 \lor x - 9 = 0$$

$$\Leftrightarrow x = 0 \lor x = 9$$

$$C.S. = \{0, 9\}$$

17.5.
$$2x^2 + 5x - 7 = 0$$

Recorrendo à fórmula resolvente, com a = 2, b = 5 e c = -7, tem-se:

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times (-7)}}{2 \times 2}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{25 + 56}}{4}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{81}}{4}$$

$$\Leftrightarrow x = \frac{-5 - 9}{4} \lor x = \frac{-5 + 9}{4}$$

$$\Leftrightarrow x = -\frac{14}{4} \lor x = \frac{4}{4}$$

$$\Leftrightarrow x = -\frac{7}{2} \lor x = 1$$

C.S. =
$$\left\{-\frac{7}{2}, 1\right\}$$

17.6.
$$x(x-1) = 6 - 2x - 4x^2$$

$$\Leftrightarrow x^2 - x - 6 + 2x + 4x^2 = 0$$

$$\Leftrightarrow$$
 $5x^2 + x - 6 = 0$

Recorrendo à fórmula resolvente, com a = 5, b = 1 e

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 5 \times (-6)}}{2 \times 5}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 120}}{10}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{121}}{10}$$

$$\Leftrightarrow x = \frac{-1 \pm 11}{10}$$

$$\Leftrightarrow x = -\frac{12}{10} \lor x = \frac{10}{10}$$

$$\Leftrightarrow x = -\frac{6}{5} \lor x = 1$$

C.S. =
$$\left\{-\frac{6}{5}, 1\right\}$$

18. Para determinar o número de soluções de uma equação de 2º grau, é necessário verificar o sinal do binómio discriminante $\Delta = b^2 - 4ac$.

18.1.
$$x^2 + 4x + 12 = 0$$
, $a = 1$, $b = 4$ e $c = 12$
 $\Delta = 4^2 - 4 \times 1 \times 12 = 16 - 48 =$

$$=-32$$

Como \triangle < 0, então a equação $x^2 + 4x + 12 = 0$ é impossível, logo não tem soluções.

18.2.
$$2x^2 - 3x - 8 = 0$$
, $a = 2$, $b = -3$ e $c = -8$
 $\Delta = (-3)^2 - 4 \times 2 \times (-8) = 9 + 64 = 73$

Como $\Delta > 0$, então a equação é possível e tem duas soluções distintas.

19. Duas equações são equivalentes se tiverem o mesmo conjunto-solução.

$$x^2 - x - 6 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -1e c = -6, tem-se:

$$\Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-6)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{1 + 24}}{2}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{1 \pm 5}{2}$$

$$\Leftrightarrow x = \frac{1-5}{2} \lor x = \frac{1+5}{2}$$

$$\Leftrightarrow x = -\frac{4}{2} \lor x = \frac{6}{2}$$

$$\Leftrightarrow x = -2 \lor x = 3$$

$$C.S. = \{-2, 3\}$$

[A]
$$x^2 + x - 6 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = 1 e c = -6, tem-se:

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-6)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 24}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm 5}{2}$$

$$\Leftrightarrow x = -\frac{6}{2} \lor x = \frac{4}{2}$$

$$\Leftrightarrow x = -3 \lor x = 2$$

C.S. =
$$\{-3, 2\}$$

A equação $x^2 + x - 6 = 0$ não é equivalente à equação dada.

[B]
$$x^2 - x + 6 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -1e c = 6, tem-se:

$$\Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times 6}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{1 - 24}}{2}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{-23}}{2}$$

equação impossível

$$C.S. = \{ \}$$

A equação $x^2 - x + 6 = 0$ não é equivalente à equação dada.

[C]
$$7(x-3)(x+2) = 0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \vee B = 0)$$
, tem-se:

$$\Leftrightarrow x - 3 = 0 \lor x + 2 = 0$$

$$\Leftrightarrow x = 3 \lor x = -2$$

$$C.S. = \{-2, 3\}$$

A equação 7(x-3)(x+2) = 0 é equivalente à equacão dada.

[D]
$$2(x + 3)(x - 2) = 0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow x + 3 = 0 \quad \forall \quad x - 2 = 0$$

$$\Leftrightarrow x = -3 \lor x = 2$$

$$C.S. = \{-3, 2\}$$

A equação 2(x + 3)(x - 2) = 0 não é equivalente à equação dada.

Logo, a opção correta é a [C].

20. Verificar se 4 é solução, é substituir na equação o x por 4:

$$2 \times 4^2 - 7 \times 4 + 3 = 0 \Leftrightarrow 2 \times 16 - 28 + 3 = 0$$

$$\Leftrightarrow$$
 7 = 0 (F)

Logo, 4 não é solução da equação $2x^2 - 7x + 3 = 0$.

21.
$$x^2 - 6x + k = 0$$

21.1. Se
$$k = 0$$
:

$$x^2 - 6x = 0$$

Aplicando a lei do anulamento do produto

$$(A \times B = 0 \Leftrightarrow A = 0 \lor B = 0)$$
, tem-se:

$$\Leftrightarrow x(x-6)=0$$

$$\Leftrightarrow x = 0 \lor x - 6 = 0$$

$$\Leftrightarrow x = 0 \lor x = 6$$

$$C.S. = \{0, 6\}$$

21.2. Se x = 5:

$$5^2 - 6 \times 5 + k = 0 \Leftrightarrow 25 - 30 + k = 0$$
$$\Leftrightarrow k = 5$$

$$C.S. = \{5\}$$

Substituindo *k* por 5, tem-se:

$$x^2 - 6x + 5 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -6 e c = 5, tem-se:

$$\Leftrightarrow x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 5}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{6 \pm \sqrt{36 - 20}}{2}$$

$$\Leftrightarrow x = \frac{6 \pm \sqrt{16}}{2}$$

$$\Leftrightarrow x = \frac{6 \pm 4}{2}$$

$$\Leftrightarrow x = \frac{2}{2} \lor x = \frac{10}{2}$$

$$\Leftrightarrow x = 1 \lor x = 5$$

$$C.S. = \{1, 5\}$$

A outra solução é 1.

22. A área do retângulo é dada por $A = b \times h$ ou seja, $A = (2x - 23) \times (x + 6)$.

A área do quadrado é dada por $A = \ell^2$, ou seja, $A = (x - 4)^2$.

Como os dois polígonos têm a mesma área, igualamos as duas expressões:

$$(2x-23)(x+6) = (x-4)^2$$

Resolvendo a equação, obtemos:

$$2x^2 + 12x - 23x - 138 = x^2 - 8x + 16$$

$$\Leftrightarrow 2x^2 - x^2 + 12x - 23x + 8x - 138 - 16 = 0$$

$$\Leftrightarrow x^2 - 3x - 154 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -3 e c = -154, tem-se:

$$\Leftrightarrow x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times (-154)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{3 \pm \sqrt{9 + 616}}{2}$$

$$\Leftrightarrow x = \frac{3 \pm \sqrt{625}}{2}$$

$$\Leftrightarrow x = \frac{3 - 25}{2} \lor x = \frac{3 + 25}{2}$$

$$\Leftrightarrow x = -\frac{22}{2} \lor x = \frac{28}{2}$$

$$\Leftrightarrow x = -11 \lor x = 14$$

Como 2x - 23 > 0, então $x > \frac{23}{2}$.

$$Logo, x = 14.$$

Assim,
$$x = 14$$
.

23. A equação que traduz o problema é:

$$2 \times (x^2 + 5) = 18$$

Resolvendo a equação, temos:

$$2(x^{2} + 5) = 18 \Leftrightarrow 2x^{2} + 10 = 18$$
$$\Leftrightarrow 2x^{2} = 18 - 10$$
$$\Leftrightarrow x^{2} = \frac{8}{2}$$
$$\Leftrightarrow x^{2} = 4$$
$$\Leftrightarrow x \pm \sqrt{4}$$

$$C.S. = \{-2, 2\}$$

Existem dois números nestas condições, -2 e 2.

 $\Leftrightarrow x = -2 \lor x = 2$

24. $a^2 + 2ab + b^2 = (a + b)^2$

Como a + b = 3, então $(a + b)^2 = 3^2 = 9$.

25. Sejam ℓ a largura do terreno e c o comprimento do terreno.

$$\ell = c - 160 \text{ e } A = 8000.$$

Então

$$\begin{cases} \ell = c - 160 \\ c \times \ell = 8000 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{c(c - 160)} = 8000 \\ c^2 - 160c - 8000 = 0 \end{cases}$$

Recorrendo à fórmula resolvente, com a = 1, b = -160 e c = -8000, tem-se:

$$\Leftrightarrow \begin{cases} \frac{160 \pm \sqrt{(160)^2 - 4 \times 1 \times (-8000)}}{2 \times 1} \end{cases}$$

$$\Leftrightarrow \begin{cases} c = \frac{160 \pm \sqrt{25\ 600 + 32\ 000}}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} c = \frac{160 \pm \sqrt{57600}}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{160 \pm 240}{c} & \Leftrightarrow \begin{cases} \frac{160 \pm 240}{c} & \end{cases} \Leftrightarrow \begin{cases} \frac{160 \pm 240}{c} & \Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} \ell = 200 - 160 \\ c = 200, c > 160 \end{cases} \Leftrightarrow \begin{cases} \ell = 40 \\ c = 200 \end{cases}$$

$$C.S. = \{(200, 40)\}$$

O terreno tem 40 metros de largura e 200 metros de comprimento.

26. Recorrendo ao sistema:

$$\begin{cases} x = 3y \\ x \times y = 48 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{3y \times y} = 48 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{y^2 = 16} \\ y = -\sqrt{16} \end{cases} \lor \begin{cases} \frac{1}{y} = \sqrt{16} \\ y = \sqrt{16} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 3 \times (-4) \\ y = -4 \end{cases} \lor \begin{cases} x = 3 \times 4 \\ y = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -12 \\ y = -4 \end{cases} \lor \begin{cases} x = 12 \\ y = 4 \end{cases}$$

C.S. =
$$\{(-12, -4), (12, 4)\}$$

Como os números são positivos, então são 12 e 4.

27. ? ×
$$4kw^2 = 16^2k^2w^3$$
, ou seja, $\frac{16k^2w^3}{4kw^2} = 4kw$.

28.

28.1. Monómios semelhantes são monómios com a mesma parte literal.

Por exemplo, $-3a^2b^3$ e $\frac{4}{5}$ a^2b^3 .

28.2. Se
$$a = -1$$
 e $b = 2$: $3 \times (-1)^2 \times 2^3 = 3 \times 8 = 24$

29.

29.1.
$$2 + (2x - 6) (2x + 6) - (x - 3)^2 =$$

= $2 + 4x^2 - 36 - (x^2 - 6x + 9) =$
= $2 + 4x^2 - 36 - x^2 + 6x - 9 =$
= $3x^2 + 6x - 43$
29.2. $(-x + 1)^2 - 3(x - 1)(x + 1) =$
= $x^2 - 2x + 1 - 3(x^2 - 1) =$
= $x^2 - 2x + 1 - 3x^2 + 3 =$
= $-2x^2 - 2x + 4$

30. Consideremos, por exemplo, os polinómios

$$x^3 - 2x^2 + x + 3$$
 e $x^3 - 2x^2 + 4x - 1$

A diferenca entre eles é:

$$x^{3} - 2x^{2} + x + 3 - (x^{3} - 2x^{2} + 4x - 1) =$$

$$x^{3} - 2x^{2} + x + 3 - x^{3} + 2x^{2} - 4x + 1 =$$

$$= x^{3} - x^{3} - 2x^{2} + 2x^{2} + x - 4x + 3 + 1 =$$

$$= -3x + 4$$

Ou seja, a diferença entre estes dois polinómios de grau 3 é um polinómio de 1º grau.

Nota: Basta que a parte numérica dos termos de grau 3 e de grau 2 seja igual nos dois polinómios.

31.
$$P = \frac{b \times h}{2}$$

Assim:

$$P = \frac{4x \times (2x+5)}{2} = 2x(2x+5) = 4x^2 + 10x$$

32. $V_{\text{paralelepípedo}} = c \times \ell \times h$

Logo:

$$V_{\text{caixa}} = (2x - 4) \times 2x \times x = (2x - 4) \times 2x^2 = 4x^3 - 8x^2$$

33.
$$A_{[ABCD]} = \overline{BC} \times \overline{AB} = (x + 3 + x) \times (x + 2 + x + 2) =$$

= $(2x + 3)(2x + 4) =$
= $4x^2 + 8x + 6x + 12 =$
= $4x^2 + 14x + 12$

$$A_{[BGFE]} = \overline{BG} \times \overline{BE} =$$

= $(x + 3) \times (x + 2) = x^2 + 2x + 3x + 6 =$
= $x^2 + 5x + 6$

Logo:

$$A_{\text{verde}} = A_{[ABCD]} - A_{[BGFE]} =$$

$$= 4x^{2} + 14x + 12 - (x^{2} + 5x + 6) =$$

$$= 4x^{2} + 14x + 12 - x^{2} - 5x - 6 =$$

$$= 4x^{2} - x^{2} + 14x - 5x + 12 - 6 =$$

$$= 3x^{2} + 9x + 6$$

34.

34.1. Como o polinómio não tem termo independente: $a^2 - 4 = 0 \Leftrightarrow a^2 = 4 \Leftrightarrow a = -2 \lor a = 2$

$$C.S. = \{-2, 2\}$$

Para ser um polinómio de 3º grau, $a-2 \neq 0 \Leftrightarrow a \neq 2$. Assim, a=-2.

34.2. Para ser um polinómio de 2º grau, a - 2 = 0 $\Leftrightarrow a = 2$. Mas se a = 2, o polinómio não tem termo independente.

Impossível, não existe nenhum valor de *a* nas condições pedidas.

35. [A]
$$x^2 - 16 = (x - 4)(x + 4)$$

[B]
$$3x - 9x^2 = 3x(1 - 3x)$$

[C]
$$(x-7)(x+7) = x^2 - 49$$

[D]
$$2x^2 - 8x + 8 = 2(x^2 - 4x + 4) = 2(x - 2)^2$$

Logo, a opção correta é a [D].

36.
$$3x^2 + 12x - 1 = (3x^2 + 12x) - 1 =$$

= $3(x^2 + 4x) - 1 =$
= $3(x^2 + 4x + 4) - 1 - 12 =$
= $3(x + 2)^2 - 13$

37. Como $A_{\text{sombreado}} = A_{[ACEF]} - A_{[BCDG]}$, então:

$$A_{[ACEF]} = x \times x = x^2 \text{ cm}^2$$

$$A_{[BCDG]} = 10^2 = 100 \text{ cm}^2$$

$$A_{[ACEF]} - A_{[BCDG]} = x^2 - 100$$

Como a área da região a sombreado é igual a 156 cm², então:

$$x^{2} - 100 = 156 \Leftrightarrow x^{2} = 156 + 100$$
$$\Leftrightarrow x^{2} = 256$$
$$\Leftrightarrow x = \pm \sqrt{256}$$
$$\Leftrightarrow x = -16 \lor x = 16$$

Como x > 10, então x = 16.

38.

38.1. Por exemplo, $4x^4 - 3x = 3x^4 + 2x + 1$.

38.2. Por exemplo, $3x^4 + 3x^3 + x = 3x^4 + 2x + 5$.

38.3. Por exemplo, $2x^4 + 3x^2 + 7$ e $2x^4 + 3x^2 + 2x$.

39.

39.1. a) Se t = 0, então:

$$h(0) = -(0-2)^2 + 10 \Leftrightarrow h(0) = -4 + 10$$

 $\Leftrightarrow h(0) = 6$

A altura do projétil é 6 m.

b) Se t = 1, então:

$$h(1) = -(1-2)^2 + 10 \Leftrightarrow h(1) = -1 + 10$$

 $\Leftrightarrow h(1) = 9$

A altura do projétil é 9 m.

39.2. O projétil atinge o solo quando h é zero, ou seja, quando h(t) = 0.

$$-(t-2)^{2} + 10 = 0 \Leftrightarrow -(t-2)^{2} = -10$$

$$\Leftrightarrow (t-2)^{2} = 10$$

$$\Leftrightarrow t - 2 = -\sqrt{10} \lor t - 2 = \sqrt{10}$$

$$\Leftrightarrow t = -\sqrt{10} + 2 \lor t = \sqrt{10} + 2$$

$$< 0$$

Logo, $t \approx 5.2$ s.

40.
$$A = \frac{9}{2}$$

Como a área é igual a $\frac{b \times h}{2}$, então:

$$\frac{(x-4)\times(x+4)}{2} = \frac{9}{2} \Leftrightarrow (x-4)(x+4) = 9$$
$$\Leftrightarrow x^2 - 16 - 9 = 0$$
$$\Leftrightarrow x^2 - 25 = 0$$
$$\Leftrightarrow (x-5)(x+5) = 0$$
$$\Leftrightarrow x = 5 \lor x = -5$$

$$C.S. = \{-5, 5\}$$

Como x > 4, então x = 5 cm.

O cateto maior mede 9 cm (x + 4 = 5 + 4 = 9).

41. Como $A = 900 \text{ cm}^2$, então:

$$\overline{OA}^2 = 900 \Leftrightarrow (a - 30)^2 = 900$$

 $\Leftrightarrow (a - 30)^2 - 30^2 = 0$
 $\Leftrightarrow (a - 30 - 30) (a - 30 + 30) = 0$
 $\Leftrightarrow a - 60 = 0 \lor a = 0$
 $\Leftrightarrow a = 60 \lor a = 0$

a > 30 porque é a medida do lado do quadrado.

$$\Leftrightarrow a = 60$$

Assim, a = 60 m.

42. Como $x = -2 \lor x = 5$, então:

$$x + 2 = 0 \lor x - 5 = 0 \Leftrightarrow (x + 2)(x - 5) = 0$$

Simplificando a equação, temos:

$$x^2 - 5x + 2x - 10 = 0 \Leftrightarrow x^2 - 3x - 10 = 0$$

43. Como a equação admite duas soluções distintas, então $\Delta > 0$, com a = 2, b = 3 e c = -k.

$$\Delta = 3^2 - 4 \times 2 \times (-k) = 9 + 8k$$

Então:

$$9 + 8k > 0 \Leftrightarrow 8k > -9 \Leftrightarrow k > -\frac{9}{8}$$
$$k \in \left[-\frac{9}{8}, +\infty \right]$$

Por exemplo, k = 1.

44.

44.1.
$$9x^2 + 16 = 24x \Leftrightarrow 9x^2 - 24x + 16 = 0$$

$$\Leftrightarrow (3x - 4)^2 = 0$$

$$\Leftrightarrow (3x - 4)(3x - 4) = 0$$

$$\Leftrightarrow 3x - 4 = 0$$

$$\Leftrightarrow 3x = 4$$

$$\Leftrightarrow x = \frac{4}{3}$$
C.S. $= \left\{\frac{4}{3}\right\}$

44.2.
$$21x^2 = 7x \Leftrightarrow 21x^2 - 7x = 0$$

 $\Leftrightarrow 7x(3x - 1) = 0$
 $\Leftrightarrow 7x = 0 \lor 3x - 1 = 0$
 $\Leftrightarrow x = 0 \lor 3x = 1$
 $\Leftrightarrow x = 0 \lor x = \frac{1}{3}$
C.S. $= \left\{0, \frac{1}{3}\right\}$

44.3.
$$4x^2 - 36 = 0 \Leftrightarrow (2x - 6)(2x + 6) = 0$$

 $\Leftrightarrow 2x - 6 = 0 \lor 2x + 6 = 0$
 $\Leftrightarrow 2x = 6 \lor 2x = -6$
 $\Leftrightarrow x = \frac{6}{2} \lor x = -\frac{6}{2}$
 $\Leftrightarrow x = 3 \lor x = -3$

44.4.
$$49 - 9x^2 = 0 \Leftrightarrow -9x^2 = -49$$

$$\Leftrightarrow x^2 = \frac{49}{9}$$

$$\Leftrightarrow x = \pm \sqrt{\frac{49}{9}}$$

$$\Leftrightarrow x = -\frac{7}{3} \lor x = \frac{7}{3}$$
C.S. $= \left\{-\frac{7}{3}, \frac{7}{3}\right\}$

45. Seja *x* o comprimento do lado do quadrado menor e 2x o comprimento do lado do quadrado maior. Assim:

$$(2x)^{2} - x^{2} = 27 \Leftrightarrow 4x^{2} - x^{2} = 27$$

$$\Leftrightarrow 3x^{2} = 27$$

$$\Leftrightarrow x^{2} = \frac{27}{3}$$

$$\Leftrightarrow x^{2} = 9$$

$$\Leftrightarrow x = \pm 3$$

 $C.S. = \{-3, 3\}$

Como x > 0, então x = 3 cm.

46.1. $2x^2 + 20x - 1 = (2x^2 + 20) - 1 =$

Logo, o quadrado maior tem 6 cm de lado $(2 \times 3 = 6)$, e o seu perímetro é igual a 24 cm ($6 \times 4 = 24$).

$$= 2(x^{2} + 10) - 1 =$$

$$= 2(x^{2} + 10x + 25) - 1 - 50 =$$

$$= 2(x + 5)^{2} - 51$$
46.2. $-x^{2} - 4x - 20 = (-x^{2} - 4x) - 20 =$

$$= -(x^{2} + 4x) - 20 =$$

$$= -(x^{2} + 4x + 4) - 20 + 4 =$$

$$= -(x + 2)^{2} - 16$$

47.
$$(x-2)(x+2) + 16 = 7x + 2(x-3)^2$$

⇔ $x^2 - 4 + 16 = 7x + 2(x^2 - 6x + 9)$
⇔ $x^2 - 4 + 16 = 7x + 2x^2 - 12x + 18$
⇔ $x^2 - 2x^2 - 7x + 12x - 4 + 16 - 18 = 0$
⇔ $-x^2 + 5x - 6 = 0$
Recorrendo à fórmula resolvente, com $a = -1$, $b = 5$

e c = -6, tem-se:

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-1) \times (-6)}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{25 - 24}}{-2}$$

$$\Leftrightarrow x = \frac{-5 \pm 1}{-2}$$

$$\Leftrightarrow x = \frac{-6}{-2} \lor x = \frac{-4}{-2}$$

$$\Leftrightarrow x = 3 \lor x = 2$$

48.1.
$$(x - 4)^2 = 25$$

 $⇔ x - 4 = -\sqrt{25} \lor x - 4 = \sqrt{25}$
 $⇔ x = -5 + 4 \lor x = 5 + 4$
 $⇔ x = -1 \lor x = 9$
C.S. = {-1, 9}
48.2. $x^2 + 8x - 9 = 0$
 $⇔ x^2 + 8x = 9$
 $⇔ x^2 + 8x + 16 = 9 + 16$
 $⇔ (x + 4)^2 = 25$
 $⇔ x + 4 = -\sqrt{25} \lor x + 4 = \sqrt{25}$
 $⇔ x = -5 - 4 \lor x = 5 - 4$
 $⇔ x = -9 \lor x = 1$
C.S. = {-9, 1}
48.3. $x^2 = 4(x + 3)$
 $⇔ x^2 = 4x + 12$
 $⇔ x - 4x + 4 = 12 + 4$
 $⇔ (x - 2)^2 = 16$
 $⇔ x - 2 = -\sqrt{16} \lor x - 2 = \sqrt{16}$
 $⇔ x = -4 + 2 \lor x = 4 + 2$
 $⇔ x = -2 \lor x = 6$
C.S. = {-2, 6}
48.4. $3x^2 - 30x + 75 = 0$
 $⇔ 3(x^2 - 10x) + 75 = 0$
 $⇔ 3(x^2 - 10x) + 75 = 0$
 $⇔ (x - 5)^2 = 0$
 $⇔ x = 5$
C.S. = {5}

$$\Leftrightarrow -2x^2 + 2x + 4 = 0$$
Recorrendo à fórmula resolvente, com $a = -2$, $b = 2$
e $c = 4$, tem-se:
$$\Leftrightarrow x = \frac{-2 \pm \sqrt{2^2 - 4 \times (-2) \times 4}}{2 \times (-2)}$$

$$\Leftrightarrow x = \frac{-2 \pm \sqrt{4 + 32}}{-4}$$

$$\Leftrightarrow x = \frac{-2 \pm \sqrt{36}}{-4}$$

$$\Leftrightarrow x = \frac{-2 \pm 6}{-4}$$

$$\Leftrightarrow x = \frac{4}{-4} \lor x = \frac{-8}{-4}$$

49.1. $(x + 2)^2 = 3x\left(x + \frac{2}{3}\right)$

 $\Leftrightarrow x^2 + 4x + 4 = 3x^2 + 2x$

 $\Leftrightarrow x = -1 \lor x = 2$

 $C.S. = \{-1, 2\}$

 $\Leftrightarrow x^2 - 3x^2 + 4x - 2x + 4 = 0$

 $C.S. = \{2, 3\}$

49.2.
$$(x + 3)^2 + 2 = 2x^2 + x + 5$$

$$\Leftrightarrow x^2 + 6x + 9 + 2 - 2x^2 - x - 5 = 0$$

$$\Leftrightarrow$$
 $-x^2 + 5x + 6 = 0$

Recorrendo à fórmula resolvente, com a = -1, b = 5e c = 6, tem-se:

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-1) \times 6}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{25 + 24}}{-2}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{49}}{-2}$$

$$\Leftrightarrow x = \frac{-5 \pm 7}{-2}$$

$$\Leftrightarrow x = \frac{-12}{-2} \lor x = \frac{2}{-2}$$

$$\Leftrightarrow x = 6 \lor x = -1$$

$$C.S. = \{-1, 6\}$$

50.

50.1. A equação tem uma solução dupla se $\Delta = 0$. Como $\Delta = b^2 - 4ac$, temos $b^2 - 4ac = 0$. Como a = 2, b = -1 e c = k, tem-se:

$$(-1)^2 - 4 \times 2 \times k = 0 \Leftrightarrow 1 - 8k = 0$$

$$\Leftrightarrow$$
 $-8k = -1$

$$\Leftrightarrow k = \frac{1}{8}$$

$$C.S. = \left\{ \frac{1}{8} \right\}$$

Assim,
$$k = \frac{1}{8}$$
.

50.2. A equação admite duas soluções distintas se $\Delta > 0$, ou seja:

$$-8k + 1 > 0 \Leftrightarrow -8k > -1 \Leftrightarrow 8k < 1$$

$$\Leftrightarrow k < \frac{1}{8}$$

C.S. =
$$\left] -\infty, \frac{1}{8} \right[$$

Assim,
$$k \in \left] -\infty, \frac{1}{8} \right[$$
.

50.3. A equação é impossível se Δ < 0, ou seja:

$$-8k + 1 < 0 \Leftrightarrow -8k < -1 \Leftrightarrow k > \frac{1}{9}$$

C.S. =
$$\left| \frac{1}{8}, +\infty \right|$$

Assim,
$$k \in \left[\frac{1}{8}, +\infty \right]$$
.

50.4. Se -5 é solução da equação, então:

$$2\times (-5)^2 - (-5) + k = 0 \Leftrightarrow 2\times 25 + 5 + k = 0$$

$$\Leftrightarrow k = -55$$

$$C.S. = \{-55\}$$

Assim,
$$k = -55$$
.

51. Como 4 é solução da equação, basta substituir x por 4:

$$-k \times 4^2 + 4(4+4) = 0 \Leftrightarrow -16k + 32 = 0$$

$$\Leftrightarrow$$
 $-16k = -32$

$$\Leftrightarrow k = \frac{-32}{16}$$

$$\Leftrightarrow k = 2$$

$$C.S. = \{2\}$$

Substituindo k por 2 na equação $-kx^2 + 4(x + 4) = 0$, obtemos:

$$-2x^2 + 4x + 16 = 0$$

Recorrendo à fórmula resolvente, com a = -2, b = 4e c = 16, tem-se:

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{4^2 - 4 \times (-2) \times (16)}}{2 \times (-2)}$$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{16 + 128}}{-4}$$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{144}}{4}$$

$$\Rightarrow x = \frac{-4 - 12}{-4} \lor x = \frac{-4 + 12}{-4}$$

$$\Leftrightarrow x = \frac{-16}{-4} \lor x = \frac{8}{-4}$$

$$\Leftrightarrow x = 4 \lor x = -2$$

$$C.S. = \{-2, 4\}$$

A outra solução da equação é -2.

52. 1º processo

Considerando x e y as dimensões do terreno e sabendo que o terreno tem área 3200 m², obtemos a equação $x \times y = 3200 \Leftrightarrow y = \frac{3200}{x}, x > 0, y > 0.$

Como foi utilizado 220 metros de rede e o perímetro do terreno, sem a porta, é igual a

$$2x + y + y - 20 = 0$$
, obtemos:

$$2x + y + y - 20 = 220 \Leftrightarrow 2x + 2y = 240$$

$$\Leftrightarrow x + y = 120$$

$$\Leftrightarrow x + \frac{3200}{r} = 120$$

$$\Leftrightarrow x^2 + 3200 = 120x$$

$$\Leftrightarrow x^2 - 120x + 3200 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = -120 e c = 3200, tem-se:

$$\Leftrightarrow x = \frac{-(-120) \pm \sqrt{(-120)^2 - 4 \times 1 \times 3200}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{120 \pm \sqrt{14400 - 12800}}{2}$$

$$\Leftrightarrow x = \frac{120 \pm \sqrt{1600}}{2}$$

$$\Leftrightarrow x = \frac{120 \pm 40}{2}$$

$$\Leftrightarrow x = 40 \lor x = 80$$

$$C.S. = \{40, 80\}$$

Se
$$x = 40$$
, então $y = \frac{3200}{40} = 80$.

Se
$$x = 80$$
, então $y = \frac{3200}{80} = 40$.

As dimensões do terreno são 40 metros de largura e 80 metros de comprimento.

2º processo

Considerando x e y as dimensões do terreno e sabendo que o terreno tem área 3200 m², obtemos a equação $x \times y = 3200, x > 0, y > 0.$

Como foi utilizado 220 metros de rede e o perímetro do terreno, sem a porta, é igual a 2x + y + y - 20, obtemos:

$$2x + y + y - 20 = 220 \Leftrightarrow 2x + 2y = 240$$

 $\Leftrightarrow x + y = 120$

Escrevendo o sistema:

$$\begin{cases} x \times y = 3200 \\ x + y = 120 \end{cases}$$

Para obter o valor de x e o valor de y, resolvemos o sistema pelo método de substituição:

$$\begin{cases} x \times y = 3200 \\ x + y = 120 \end{cases} \Leftrightarrow \begin{cases} (120 - y) \times y = 3200 \\ x = 120 - y \end{cases}$$

$$\Leftrightarrow \begin{cases} 120y - y^2 = 3200 \\ ---- \end{cases}$$

$$\Leftrightarrow \begin{cases} 120y - y^2 = 3200 \\ \hline \end{cases} \Leftrightarrow \begin{cases} y^2 - 120y + 3200 = 0 \\ \hline \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{-(-120) \pm \sqrt{(-120)^2 - 4 \times 1 \times 3200}}{2 \times 1} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{120 \pm \sqrt{14400 - 12800}}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{120 \pm \sqrt{1600}}{2} & \Leftrightarrow \begin{cases} y = \frac{120 \pm 40}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{80}{2} \\ ---- \end{cases} \lor \begin{cases} y = \frac{160}{2} \\ ---- \end{cases} \Leftrightarrow \begin{cases} y = 40 \\ x = 80 \end{cases} \lor \begin{cases} y = 80 \\ x = 40 \end{cases}$$

$$C.S. = \{(80, 40); (40, 80)\}$$

As dimensões do terreno são 40 metros de largura e 80 metros de comprimento.

53. A área atual do parque é 700 m², ou seja, $20 \times y = 700$.

O novo parque terá área 1750 m², ou seja:

$$(x + 20) \times (x + y) = 1750$$

Como 20 × y = 700, então y = 35.

Substituindo o y por 35 na equação

$$(x + 20) \times (x + y) = 1750$$
, obtemos:

$$(x + 20) \times (x + 35) = 1750$$

$$\Leftrightarrow x^2 + 35x + 20x + 700 - 1750 = 0$$

$$\Leftrightarrow x^2 + 55x - 1050 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = 55e c = -1050, tem-se:

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{55^2 - 4 \times 1 \times (-1050)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{3025 + 4200}}{2}$$

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{3025 + 4200}}{2}$$

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{7225}}{2}$$

$$\Leftrightarrow x = \frac{-55 \pm 85}{2}$$

$$\Leftrightarrow x = -70 \lor x = 15$$

$$C.S. = \{-70, 15\}$$

Como x > 0, então x = 15.

$$x + 20 = 15 + 20 = 35 e y + x = 35 + 15 = 50$$

As dimensões do novo parque de estacionamento são 35 metros de largura e 50 metros de comprimento.

54.
$$a^2 + 2 \times a \times b + b^2 = 16$$

$$\Leftrightarrow (a+b)^2 = 16$$

$$\Leftrightarrow a + b = -\sqrt{16} \lor a + b = \sqrt{16}$$

$$\Leftrightarrow a + b = -4 \lor a + b = 4$$

$$\Leftrightarrow$$
 3(a + b) = -4 × 3 × 3(a + b) = 4 × 3

$$\Rightarrow 3a + 3b = -12 \lor 3a + 3b = 12$$

Logo, a opção correta é a [C].

55.

55.1. P é um polinómio de 2º grau se e só se k-3=0 $e k - 2 \neq 0$, ou seja, $k = 3 e k \neq 2$.

Assim, k = 3.

55.2. Se
$$k = 3$$
 e $k - 2 = 0 \Leftrightarrow k = 2$

Não é possível porque, se k = 3, o polinómio é de 2º grau e, se k = 2, o polinómio é de 4º grau.

56.

56.1.
$$5(x-3)^2 = 125 \Leftrightarrow (x-3)^2 = \frac{125}{5}$$

 $\Leftrightarrow (x-3)^2 = 25$
 $\Leftrightarrow x-3 = -5 \lor x-3 = 5$

$$\Leftrightarrow x = -5 + 3 \lor x = 5 + 3$$

$$\Leftrightarrow x = -2 \lor x = 8$$

$$C.S. = \{-2, 8\}$$

56.2.
$$2(x-3)^2 = 19 + (x-1)(x+1)$$

$$\Leftrightarrow 2(x^2 - 6x + 9) = 19 + x^2 - 1$$

$$\Leftrightarrow 2x^2 - 12x + 18 - 19 - x^2 + 1 = 0$$

$$\Leftrightarrow x^2 - 12x = 0$$

$$\Leftrightarrow x(x-12)=0$$

$$\Leftrightarrow x = 0 \lor x - 12 = 0$$

$$\Leftrightarrow x = 0 \lor x = 12$$

$$C.S. = \{0, 12\}$$

57.
$$(3x - n)^2 = 9x^2 - 42x + n^2$$

$$2 \times 3 \times x \times (-n) = -6xn$$

$$-42x = -6xn \Leftrightarrow -42x + 6xn = 0$$

$$\Leftrightarrow$$
 6x (-7 + n) = 0

$$\Leftrightarrow 6x = 0 \lor -7 + n = 0$$

$$\Leftrightarrow n = 7$$

Logo, a opção correta é a [D].

58.
$$A_{[ABCD]} - A_{[FFGH]} = g^2 - h^2 = (g - h)(g + h)$$

59.
$$2(x^2 - 25) + 7(x - 5) = 2(x - 5)(x + 5) + 7(x - 5) =$$

= $(x - 5)(2x + 10 + 7) =$
= $(x - 5)(2x + 17)$

60.

60.1. As dimensões do paralelepípedo II são x - y, y e y. Então, o volume é igual a:

$$V = (x - y) \times y \times y = xy^2 - y^3$$

60.2.
$$V_{\text{III}} = (x - y) \times y \times (x - y) = (x - y)^2 \times y = (x^2 - 2xy + y^2)y = x^2y - 2xy^2 + y^3$$

$$V_{\text{IV}} = (x - y) (x - y) \times y = (x - y)^2 \times y =$$

= $(x^2 - 2x + y^2)y =$
= $x^2y - 2xy^2 + y^3$

60.3.
$$V_{\text{cubo}} - V_{\text{I}} - V_{\text{II}} - V_{\text{III}} - V_{\text{IV}} =$$

$$= x^{3} - y^{3} - (xy^{2} - y^{3}) - 2 \times (x^{2}y - 2xy^{2} + y^{3}) =$$

$$= x^{3} - y^{3} - xy^{2} + y^{3} - 2x^{2}y + 4xy^{2} + 2y^{3} =$$

$$= x^{3} + 3xy^{2} - 2x^{2}y - 2y^{3} =$$

$$= x^3 - y (2x^2 - 3xy + 2y^2)$$

61.1. Substituindo na equação *k* por 2, obtemos:

$$-2x^2 - 2x + 4 = 0$$

Recorrendo à fórmula resolvente, com a = -2, b = -2 e c = 4, tem-se:

$$\Leftrightarrow x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times (-2) \times 4}}{2 \times (-2)}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{4 + 32}}{-4}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{36}}{-4}$$

$$\Leftrightarrow x = \frac{2 \pm 6}{-4}$$

$$\Leftrightarrow x = \frac{-4}{-4} \lor x = \frac{8}{-4}$$

$$\Leftrightarrow x = 1 \lor x = -2$$

$$C.S. = \{-2, 1\}$$

61.2. Uma equação de 2º grau admite duas soluções distintas se $\Delta > 0$. Então:

$$b^2 - 4ac = (-k)^2 - 4 \times (-2) \times 4 = k^2 + 32$$

 $k^2 + 32$ é sempre maior que zero.

62.

62.1. A área do quadrado de lado [AP] é igual a $3^2 = 9$ u.a.

62.2.
$$\overline{PB} = \overline{AB} - \overline{AP}$$

$$\overline{PB} = 12 - x$$

Então, a área do quadrado de lado [*PB*] é igual a $(12 - x)^2$.

Logo,
$$A = (12 - x)^2$$
.

62.3. A área do quadrado de lado [*PB*] é igual a $(12 - x)^2$.

A área do quadrado de lado [AP] é igual a x^2 .

Então,
$$(12 - x)^2 = 25 \times x^2$$
.

Para determinar o valor de x, basta resolver a equação anterior.

$$144 - 24x + x^2 - 25x^2 = 0$$

$$\Leftrightarrow$$
 $-24x^2 - 24x + 144 = 0$

$$\Leftrightarrow x^2 + x - 6 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = 1 e c = -6, tem-se:

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-6)}}{2 \times 1} \Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 24}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm 5}{2}$$

$$\Leftrightarrow x = -3 \lor x = 2$$

$$C.S. = \{-3, 2\}$$

Como 0 < x < 12, então x = 2.

63.

63.1. *C*

Como os triângulos são semelhantes, então:

$$\frac{h}{4} = \frac{3 - \frac{x}{2}}{3} \Leftrightarrow 3h = 12 - 4 \frac{x}{2}$$
$$\Leftrightarrow h = \frac{12 - 2x}{3}$$
$$\Leftrightarrow h = 4 - \frac{2}{3} x$$

63.2.
$$A_{\text{total}} = A_{[ABC]} = \frac{b \times h}{2}$$

$$A_{[ABC]} = \frac{6 \times 4}{2} = \frac{24}{2} = 12 \text{ u.a.}$$

A área ocupada pelo preçário é dada por $A_{\square} = b \times h$.

$$x \times h = x \times \left(4 - \frac{2}{3} x\right) = 4x - \frac{2}{3} x^2$$

A área destinada às fotografias é igual à diferença entre a área total e a área do preçário. Então,

$$12 - \left(4x - \frac{2}{3}x^2\right) = \frac{2}{3}x^2 - 4x + 12$$

63.3. Como a expressão da área do preçário é igual a $4x - \frac{2}{3}x^2$, então:

$$4x - \frac{2}{3}x^2 = 6 \Leftrightarrow -\frac{2}{3}x^2 + 4x - 6 = 0$$
$$\Leftrightarrow -2x^2 + 12x - 18 = 0$$

Recorrendo à fórmula resolvente, com a = -2, b = 12 e c = -18, tem-se:

$$\Rightarrow x = \frac{-12 \pm \sqrt{12^2 - 4 \times (-2) \times (-18)}}{2 \times (-2)}$$

$$\Rightarrow x = \frac{-12 \pm \sqrt{144 - 144}}{-4}$$

$$\Rightarrow x = \frac{12}{4}$$

$$\Rightarrow x = 3$$

$$C.S. = \{3\}$$

Assim, x = 3 u.c.

64. A caixa tem volume 588 cm³ e os quadrados cortados têm área 9 cm².

 $\sqrt{9}$ = 3 cm, lado do quadrado recortado x – 6, lado da base da caixa

$$V = 588$$

$$(x-6)(x-6) \times 3 = 588$$

$$\Leftrightarrow$$
 3 × (x^2 – 12 x + 36) – 588 = 0

$$\Leftrightarrow 3x^2 - 36x + 108 - 588 = 0$$

$$\Leftrightarrow 3x^2 - 36x - 480 = 0$$

Recorrendo à fórmula resolvente, com a = 3, b = -36 e c = -480, tem-se:

$$\Leftrightarrow x = \frac{36 \pm \sqrt{(-36)^2 - 4 \times 3 \times (-480)}}{2 \times 3}$$

$$\Leftrightarrow x = \frac{36 \pm \sqrt{1296 + 5760}}{6}$$

$$\Leftrightarrow x = \frac{36 \pm \sqrt{7056}}{6}$$

$$\Leftrightarrow x = \frac{36 \pm 84}{6}$$

$$\Leftrightarrow x = -8 \lor x = 20$$

Como x > 0, então x = 20 cm.

A folha de papel tinha 20 cm de lado.

65.

65.1. Para determinar a altura do 2º poste, basta substituir x por 30 na expressão $\frac{1}{40} (x - 10)^2 + 5$, ou seja:

$$\frac{1}{40} (30 - 10)^2 + 5 = \frac{1}{40} \times 20^2 + 5 =$$
$$= \frac{400}{40} + 5 = 15$$

O 2º poste tem 15 metros de altura.

65.2. Se o ponto se situa a 5 metros de altura, basta igualar a expressão $\frac{1}{40} (x - 10)^2 + 5$ a 5, e resolver a equação:

$$\frac{1}{40} (x - 10)^2 + 5 = 5 \Leftrightarrow \frac{1}{40} (x - 10)^2 = 0$$
$$\Leftrightarrow (x - 10)^2 = 0$$
$$\Leftrightarrow x - 10 = 0$$
$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

O ponto situa-se a 10 metros de distância do 1º poste.

Equações literais. Sistemas de duas equações Rever + Praticar - páginas 54 a 56

1. Para (-1, 3) ser solução da equação, quando substituímos na equação a variável x por -1 e a variável y por 3, teremos de obter uma proposição verdadeira: 5x - y = -8 \Rightarrow $5 \times (-1) - 3 = -8 \Leftrightarrow -8 = -8$ (x, y) = (-1, 3)

Logo, (-1, 3) é solução da equação.

2. Para encontrar um par ordenado que seja solução da equação, basta atribuir um valor a uma das variáveis, determinando o valor da outra variável através da resolução da equação resultante dessa substituição.

Assim:

• para
$$x = -1$$
: $3 \times (-1) - y = 4 \Leftrightarrow -3 - y = 4$
 $\Leftrightarrow -y = 7$
 $\Leftrightarrow y = -7$

• para
$$x = 2$$
: $3 \times 2 - y = 4 \Leftrightarrow 6 - y = 4$
 $\Leftrightarrow -y = -2$
 $\Leftrightarrow y = 2$

• para
$$x = 3$$
: $3 \times 3 - y = 4 \Leftrightarrow 9 - y = 4$
 $\Leftrightarrow -y = -5$
 $\Leftrightarrow y = 5$

Logo, (-1, -7), (2, 2) e (3, 5) são soluções da equação.

3.

3.1. Seja *P* o perímetro do retângulo.

Assim:

$$P = x + x + y + y \Leftrightarrow 20 = 2x + 2y$$
$$\Leftrightarrow -2x = 2y - 20$$
$$\Leftrightarrow x = -y + 10$$

3.2. Se x = 6, então, substituindo na equação anterior, obtém-se:

$$6 = -y + 1 \ 0 \Leftrightarrow y = 4$$

A medida da largura do retângulo é 4 cm.

4. Vejamos se o par ordenado (–1, 1) é solução das duas equações.

Por um lado, $1 + 1 = 2 \Leftrightarrow 2 = 2$, que é verdadeira. Logo, (-1, 1) é solução da equação -x + y = 2.

Por outro lado, $2 \times (-1) + 1 = 1 \Leftrightarrow -1 = 1$, que é falsa. (-1, 1) não é solução da equação 2x + 1 = y, logo não é solução do sistema.

5. Como as duas retas se intersetam no ponto de coordenadas (2, 1), este ponto é solução do sistema.

6.

6.1. Sistema A

$$x + 2y = 4 \Leftrightarrow 2y = 4 - x \Leftrightarrow y = 2 - \frac{1}{2}x$$

x	$y = 2 - \frac{1}{2}x$	Ponto
0	2	(0, 2)
1	$\frac{3}{2}$	$\left(1,\frac{3}{2}\right)$

$$x + 3y = 3 \Leftrightarrow 3y = 3 - x \Leftrightarrow y = 1 - \frac{1}{3}x$$

x	$y = 1 - \frac{1}{3}x$	Ponto
0	1	(0, 1)
3	0	(3, 0)

Sistema possível determinado

C.S. =
$$\{(6, -1)\}$$

Sistema B

$$2x + 2y = 8 \Leftrightarrow 2y = 8 - 2x \Leftrightarrow y = 4 - x$$

x	y = 4 - x	Ponto
0	4	(0, 4)
1	3	(1, 3)

$$x + 5 = -y \Leftrightarrow y = -x - 5$$

x	y = -x - 5	Ponto
0	-5	(0, -5)
1	-6	(1, -6)

Sistema impossível

$$C.S. = \{ \}$$

6.2. Sistema A

$$\begin{cases} x + 2y = 4 \\ x + 3y = 3 \end{cases} \Leftrightarrow \begin{cases} x = 4 - 2y \\ 4 - 2y + 3y = 3 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{y} = -1 \\ \frac{1}{y} = -1 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 4 - 2 \times (-1) \\ \frac{1}{y} = -1 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = -1 \end{cases}$$

$$C.S = \{(6, -1)\}$$

Sistema B

7. Sejam x e y os dois números procurados.

Suponhamos que x > y.

Sabemos que:

$$\begin{cases} x + y = 3 \\ 2x - 3y = 11 \end{cases} \Leftrightarrow \begin{cases} x = 3 - y \\ 2(3 - y) - 3y = 11 \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{1}{-5y = 5} \end{cases} \Leftrightarrow \begin{cases} x = 4 \\ y = -1 \end{cases}$$

C.S. =
$$\{(4, -1)\}$$

Os dois números procurados são o -1 e o 4.

Praticar + – páginas 57 a 61

1.
$$5x - 3y = -20$$
, se $x = -1$ e $y = 5$
 $5 \times (-1) - 3 \times 5 = -20 \Leftrightarrow -5 - 15 = -20$
 $\Leftrightarrow -20 = -20$ (V)
 $(-1, 5)$ é solução da equação $5x - 3y = -20$.

2.

2.1.
$$x - 5y - 7 = 0 \Leftrightarrow x = 5y + 7$$

2.2. $2x - 8y = 10 \Leftrightarrow 2x = 8y + 10$

$$\Leftrightarrow x = \frac{8y + 10}{2}$$

$$\Leftrightarrow x = 4y + 5$$

2.3.
$$3y = 5x - 11 \Leftrightarrow 5x - 11 = 3y$$

$$\Leftrightarrow 5x = 3y + 11$$

$$\Leftrightarrow x = \frac{3}{5}y + \frac{11}{5}$$

3. Verificar se (2, 4) é solução do sistema, é verificar se é solução das duas equações.

$$\begin{cases} 2 \times 2 - 4 \times 4 = 12 \\ -2 + 4 = 2 \end{cases} \begin{cases} 4 - 16 = 12 \\ 2 = 2 \text{ (V)} \end{cases} -12 = 12 \text{ (F)}$$

Concluímos que (2, 4) não é solução do sistema porque não é solução de uma das equações.

$$\begin{cases} 8-2=7 \\ -2\times8+5\times2=-5 \end{cases} \Leftrightarrow \begin{cases} 6=7 \text{ (F)} \end{cases}$$

$$\begin{cases} 10 - 3 = 7 & \Rightarrow \\ -2 \times 10 + 5 \times 3 = -5 & -20 + 15 = -5 \end{cases} \begin{cases} 7 = 7 & \text{(V)} \\ -5 = -5 & \text{(V)} \end{cases}$$

Logo (10, 3) é solução do sistema.

$$\begin{cases} 2 - 8 = 7 \\ -2 \times 2 + 5 \times 8 = -5 \end{cases} \Leftrightarrow \begin{cases} -6 = 7 \text{ (F)} \\ - 6 = 7 \text{ (F)} \end{cases}$$

Logo, (2, 8) não é solução do sistema.

[D] (3, 10)

Logo, (3, 10) não é solução do sistema.

A opção correta é a [B].

5.1. O sistema já está escrito na forma canónica:

$$C.S. = \{(12, 3)\}$$

5.2. O sistema já está escrito na forma canónica:

$$\begin{cases} x + y = 1 \\ y - x = 9 \end{cases} \Leftrightarrow \begin{cases} y = 1 - x \\ 1 - x - x = 9 \end{cases} \Leftrightarrow \begin{cases} -2x = 9 - 1 \\ x = -4 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{\sqrt{2x}} & \Leftrightarrow \begin{cases} y = 1 - (-4) \\ x = -4 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{\sqrt{2x}} & \Leftrightarrow \begin{cases} \frac{1}{\sqrt{2x}} & \Leftrightarrow \begin{cases} \frac{1}{\sqrt{2x}} & \Leftrightarrow \begin{cases} \frac{1}{\sqrt{2x}} & \Leftrightarrow \\ \frac{1}{\sqrt{2x}} & \Leftrightarrow \end{cases} \end{cases} \end{cases}$$

$$C.S. = \{(-4, 5)\}$$

5.3. O sistema já está escrito na forma canónica:

porque não é solução de uma das equações.

C.S. = {(-7, 4)}

5.4. O sistema já está escrito na forma canónica:

$$\begin{cases}
2y - x = 7 \\
-y + x = -1
\end{cases}$$

$$\begin{cases}
-x + 2y = 7 \\
x - y = -1
\end{cases}$$

$$\begin{cases}
-(-1 + y) + 2y = 7
\end{cases}$$

$$\begin{cases}
-(-1 + y) + 2y = 7
\end{cases}$$

$$\begin{cases}
-(-1 + y) + 2y = 7
\end{cases}$$

$$\begin{cases}
-y + x = -1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7 - 1
\end{cases}$$

$$\begin{cases}
-y + 2y = 7
\end{cases}$$

5.5. O sistema já está escrito na forma canónica:

$$\begin{cases} 2x + y = 2 \\ -7y - 3x = -3 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 2 \\ -3x - 7y = -3 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 2 - 2x \\ -3x - 7(2 - 2x) = -3 \end{cases} \Leftrightarrow \begin{cases} -3x - 14 + 14x = -3 \\ -3x + 14x = -3 + 14 \end{cases} \Leftrightarrow \begin{cases} -3x + 14x = -3 + 14 \\ -3x + 14x = -3 + 14 \end{cases} \Leftrightarrow \begin{cases} y = 2 - 2 \\ x = 1 \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ x = 1 \end{cases}$$

 $C.S. = \{(1, 0)\}\$

5.6. O sistema já está escrito na forma canónica:

6.1. Por exemplo, (0, 4) porque

$$3 \times 0 + 2 \times 4 = 8 \Leftrightarrow 8 = 8 \text{ (V)}$$

$$e \ 4 = 2 \times 0 - 3 \Leftrightarrow 4 = -3$$
 (F)

6.2. Por exemplo, (3, 3) porque

$$3 = 2 \times 3 - 3 \Leftrightarrow 3 = 3$$
 (V)

$$e \ 3 \times 3 + 2 \times 3 = 8 \Leftrightarrow 9 + 6 = 8 \ (F)$$

- **6.3.** A solução do sistema é o par ordenado (2, 1). É o ponto de interseção das duas retas.
- 6.4. Resolvendo o sistema pelo método de substituição:

$$\begin{cases} 3x + 2y = 8 \\ y = 2x - 3 \end{cases} \Leftrightarrow \begin{cases} 3x + 2(2x - 3) = 8 \\ \hline - \\ \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 4x - 6 = 8 \\ \hline - \\ \end{cases} \Leftrightarrow \begin{cases} 3x + 4x = 8 + 6 \\ \hline - \\ \end{cases}$$

$$\Leftrightarrow \begin{cases} 7x = 14 \\ \hline - \\ \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = -3 + 2 \times 2 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 1 \end{cases}$$

$$C.S. = \{(2, 1)\}$$

7. Como o perímetro é igual a 100 cm,

$$P = 100$$

$$2 \times (2x + y) + 2 \times (3x + 2y) = 100$$

$$\Leftrightarrow 4x + 2y + 6x + 4y = 100$$

$$\Leftrightarrow 10x + 6y = 100$$

$$\Leftrightarrow 5x + 3y = 50$$

7.1. Se
$$x = 4$$
:

$$5 \times 4 + 3y = 50 \Leftrightarrow 20 + 3y = 50$$

$$\Leftrightarrow 3y = 50 - 20$$

$$\Leftrightarrow 3y = 30$$

$$\Leftrightarrow y = \frac{30}{3}$$

7.2. Se
$$y = 5$$
:

$$5x + 3 \times 5 = 50 \Leftrightarrow 5x + 15 = 50$$

$$\Leftrightarrow 5x = 50 - 15$$

$$\Leftrightarrow 5x = 35$$

$$\Leftrightarrow x = \frac{35}{5}$$

$$A = (3x + 2y) \times (2x + y)$$
, ou seja:
 $A = (3 \times 7 + 2 \times 5) \times (2 \times 7 + 5) =$
 $= (21 + 10) \times (14 + 5) =$
 $= 31 \times 19 =$
 $= 589$

A área do retângulo é 589 cm².

8. x – idade do Fernando

y – idade da filha mais velha do Fernando

•
$$x + y = 42$$

x + 5 – idade do Fernando daqui a 5 anos

y + 5 – idade da filha mais velha do Fernando daqui a 5 anos

• $x + 5 = 3 \times (y + 5)$

Resolvendo, pelo método de substituição, o sistema com as duas equações:

$$\begin{cases} x + y = 42 \\ x + 5 = 3(y + 5) \end{cases} \Leftrightarrow \begin{cases} x + y = 42 \\ x + 5 = 3y + 15 \end{cases}$$
$$\Leftrightarrow \begin{cases} x + y = 42 \\ x - 3y = 15 - 5 \end{cases}$$

Escrevendo na forma canónica, tem-se:

$$\begin{cases} x + y = 42 \\ x - 3y = 10 \end{cases} \Leftrightarrow \begin{cases} x = 42 - y \\ 42 - y - 3y = 10 \end{cases} \Leftrightarrow \begin{cases} -4y = -32 \\ y = 8 \end{cases}$$

 $C.S. = \{(34, 8)\}$

O Fernando tem atualmente 34 anos.

9.

9.1. Como as retas são estritamente paralelas, o sistema é impossível.

$$C.S. = \{ \}$$

9.2.	x	y = -x + 6
	0	-0 + 6 = 6
	2	-2 + 6 = 4

Logo, a reta contém os pontos (0, 6) e (2, 4).

9.3. a) Por exemplo:

$$\begin{cases} y = -x + 6 \\ y = 2x + 1 \end{cases}$$
 porque são retas concorrentes.

b) Por exemplo:

$$\begin{cases} y = 2x - 1 \\ y = 2x - 1 \end{cases}$$
 porque são retas coincidentes.

10. Sejam x o preço de cada martelo e y o preço de cada chave inglesa.

Como cada martelo custa $5 \in$, cinco martelos custam $5 \times 5 = 25 \in$ e cada chave inglesa custa $7 \in$. Então, cinco martelos e uma chave inglesa custarão $32 \in (25 + 7 = 32)$.

O novo pack custará 32 €.

11. [A]
$$(2, -8)$$

$$\begin{cases} 2 \times 2 - (-8) = 4 \\ \frac{2 \times 2 + (-8)}{3} = 2 \times 2 \end{cases} \iff \begin{cases} 4 + 8 = 4 \text{ (F)} \\ -\frac{4}{3} = 4 \text{ (F)} \end{cases}$$

(2, -8) não é solução do sistema porque não é solução das equações do sistema.

[B] (-2, -8)

$$\begin{cases} 2 \times (-2) - (-8) = 4 \\ \frac{2 \times (-2) + (-8)}{3} = 2 \times (-2) \end{cases} \Leftrightarrow \begin{cases} -4 + 8 = 4 \text{ (V)} \\ \frac{-4 - 8}{3} = -4 \text{ (V)} \end{cases}$$

(-2, -8) é solução do sistema porque é solução das duas equações do sistema.

[C] (-2, 8)

$$\begin{cases} 2 \times (-2) - 8 = 4 \\ \frac{2 \times (-2) + 8}{3} = 2 \times (-2) \end{cases} \Leftrightarrow \begin{cases} -4 - 8 = 4 \text{ (F)} \\ -\frac{4 + 8}{3} = -4 \text{ (F)} \end{cases}$$

(-2, 8) não é solução do sistema porque não é solução das equações do sistema.

[D] (2, 8)

$$\begin{cases} 2 \times 2 - 8 = 4 \\ \frac{2 \times 2 + 8}{3} = 2 \times 2 \end{cases} \iff \begin{cases} 4 - 8 = 4 \text{ (F)} \\ \frac{4 + 8}{3} = 4 \text{ (V)} \end{cases}$$

(2, 8) não é solução do sistema porque não é solução de uma das equações do sistema.

Logo, a opção correta é a [B].

12.

12.1. Como as retas r e s são paralelas, então têm o mesmo declive.

Sendo r: y = 25 + 10x, então s: y = 10x + b.

A reta s interseta o eixo Oy no ponto (0, 40).

Logo, a ordenada na origem é 40.

$$s: y = 10x + 40$$

12.2. A abcissa do ponto $A \notin 2$ e $A \notin$ um ponto da reta r. Logo:

$$y = 25 + 10 \times 2 \Leftrightarrow y = 25 + 20 \Leftrightarrow y = 45$$

Então, $A(2, 45)$.

12.3. O sistema é impossível porque as retas são estritamente paralelas.

13.

13.1. Se
$$x = 3$$
:
 $y - \frac{2}{3}x = 4 \Leftrightarrow y - \frac{2}{3} \times 3 = 4 \Leftrightarrow y = 4 + 2 \Leftrightarrow y = 6$

Se
$$x = 6$$
: $y - \frac{2}{3}x = 4 \Leftrightarrow y - \frac{2}{3} \times 6 = 4 \Leftrightarrow y = 4 + 4$
 $\Leftrightarrow y = 8$
Se $y = 10$: $y - \frac{2}{3}x = 4 \Leftrightarrow 10 - \frac{2}{3}x = 4$
(×3)

$$\Rightarrow 30 - 2x = 12$$

$$\Rightarrow -2x = 12 - 30$$

$$\Rightarrow -2x = -18$$

$$\Rightarrow x = \frac{-18}{-2}$$

$$\Rightarrow x = 9$$

Então:

x	0	3	6	9
у	4	6	8	10

13.2. Marcar no referencial dois pontos da reta r, por exemplo, os pontos (0, 4) e (3, 6) e traçar a reta que contém esses pontos.

- 13.3. A solução do sistema é (3, 6), ponto de interseção das duas retas.
- **13.4.** Por exemplo, y = -2x. Basta que as duas retas tenham o mesmo declive, ou seja, -2.

Como as retas são estritamente paralelas, o sistema é impossível.

14.

14.1. O sistema III, porque está escrito na forma

$$\begin{cases} ax + bx = c \\ a'x + b'y = c' \end{cases}$$

$$\begin{cases} 2x - \frac{1}{2}(y - 3) = -2 \\ \frac{x}{2} - \frac{y}{3} = -3 \\ {}_{(\times 3)} {}_{(\times 2)} {}_{(\times 2)} {}_{(\times 6)} \end{cases} \Leftrightarrow \begin{cases} 2x - \frac{1}{2}y + \frac{3}{2} = -2 \\ {}_{(\times 2)} {}_{(\times 2)} {}_{(\times 2)} \\ 3x - 2y = -18 \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x - y = -7 \\ 3x - 2y = -18 \end{cases}$$
 (Forma canónica)

14.3. [A] (1, 5)

$$\begin{cases} \frac{1}{5} \times 1 = -1 + 2 \times 5 \\ 1 - 3 \times 5 = 2 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{5} = 9 \text{ (F)} \end{cases}$$

Logo, (1, 5) não é solução do sistema II porque não é solução da 1ª equação do sistema.

[B](-1, -1)

$$\begin{cases} \frac{1}{5} \times (-1) = -1 + 2 \times (-1) \\ -1 - 3 \times (-1) = 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{5} = -3 \text{ (F)} \\ 2 = 2 \text{ (V)} \end{cases}$$

Logo, (-1, -1) não é solução do sistema II porque não é solução da 1ª equação do sistema.

[C] (5, 1)

$$\begin{cases} \frac{1}{5} \times 5 = -1 + 2 \times 1 \\ 5 - 3 \times 1 = 2 \end{cases} \Leftrightarrow \begin{cases} 1 = 1 \text{ (V)} \\ 2 = 2 \text{ (V)} \end{cases}$$

Logo, (5, 1) é solução do sistema II porque é solução das duas equações do sistema.

[D] (1, 1)

$$\begin{cases} \frac{1}{5} \times 1 = -1 + 2 \times 1 \\ 1 - 3 \times 1 = 2 \end{cases} \iff \begin{cases} \frac{1}{5} = 1 & (F) \\ -2 = 2 & (F) \end{cases}$$

Logo, (1, 1) não é solução do sistema porque não é solução das duas equações.

Assim, a opção correta é a [C].

14.4. Escrevendo o sistema na forma canónica, obtemos:

$$\begin{cases} \frac{1}{5}x = -1 + 2y \\ x - 3y = 2 \end{cases} \Leftrightarrow \begin{cases} x = -5 + 10y \\ x - 3y = 2 \end{cases} \Leftrightarrow \begin{cases} x - 10y = -5 \\ x - 3y = 2 \end{cases}$$

Resolvendo as duas equações em ordem a y:

$$\begin{cases} -10y = -5 - x \\ -3y = 2 - x \end{cases} \Leftrightarrow \begin{cases} y = \frac{-5 - x}{-10} \\ y = \frac{2 - x}{-3} \end{cases}$$
$$\Leftrightarrow \begin{cases} y = \frac{1}{2} + \frac{x}{10} \\ y = -\frac{2}{3} + \frac{x}{3} \end{cases}$$

x	$y = \frac{1}{2} + \frac{x}{10}$
5	$\frac{1}{2} + \frac{5}{10} = \frac{1}{2} + \frac{1}{2} = 1$
-5	$\frac{1}{2} - \frac{5}{10} = \frac{1}{2} - \frac{1}{2} = 0$

x	$y = -\frac{2}{3} + \frac{x}{3}$
2	$-\frac{2}{3} + \frac{2}{3} = 0$
-1	$-\frac{2}{3} - \frac{1}{3} = -1$

Sistema possível determinado.

$$C.S. = \{(5, 1)\}$$

14.5.

$$\begin{cases} 2x - 5y = 4 \\ -3x + y = -2 \end{cases} \Leftrightarrow \begin{cases} 2x - 5(-2 + 3x) = 4 \\ y = -2 + 3x \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + 10 - 15x = 4 \end{cases}$$

$$\begin{cases} 2x + 10 - 15x = 4 \\ ---- \end{cases} \Leftrightarrow \begin{cases} 2x - 15x = 4 - 10 \\ ---- \end{cases}$$

$$\Leftrightarrow \begin{cases} -13x = -6 \\ \longrightarrow \end{cases} \begin{cases} x = \frac{6}{13} \\ y = -2 + 3 \times \frac{6}{13} \end{cases} \Leftrightarrow \begin{cases} x = \frac{6}{13} \\ y = -2 + \frac{18}{13} \end{cases}$$

$$\Leftrightarrow \begin{cases} -\frac{13}{x} \\ y = -\frac{26}{13} + \frac{18}{13} \end{cases} \Leftrightarrow \begin{cases} x = \frac{6}{13} \\ y = -\frac{8}{13} \end{cases}$$

C.S. =
$$\left\{ \left(\frac{6}{13}, -\frac{8}{13} \right) \right\}$$

15. O sistema I é impossível porque as retas r e ssão estritamente paralelas.

O sistema II é possível indeterminado porque as retas *r* e *s* são coincidentes.

Os sistemas III e IV são possíveis determinados porque as retas r e s são concorrentes.

16. Sendo x, y e z os comprimentos dos lados do triângulo escaleno e x < y < z.

$$\frac{z}{x}$$
 = 2; $x + y = z + 2$ e $x + y + z = 24$

Como
$$\frac{z}{x} = 2 \Leftrightarrow z = 2x$$
.

Substituindo z por 2x nas expressões, obtemos:

•
$$x + y = z + 2 \Leftrightarrow x + y = 2x + 2$$

$$\Leftrightarrow x - 2x + y = 2$$

$$\Leftrightarrow$$
 $-x + y = 2$

•
$$x + y + z = 24 \Leftrightarrow x + y + 2x = 24$$

$$\Leftrightarrow$$
 $3x + y = 24$

Resolvendo o sistema de equações:

Resolvented of sistering decembers:
$$\begin{cases}
-x + y = 2 \\
3x + y = 24
\end{cases} \Rightarrow \begin{cases}
y = 2 + x \\
3x + 2 + x = 24
\end{cases} \Rightarrow \begin{cases}
\frac{1}{3x + x} = 24 - 2
\end{cases} \Rightarrow \begin{cases}
\frac{1}{4x = 22}
\end{cases} \Rightarrow \begin{cases}
\frac{1}{2} = \frac{22}{4}
\end{cases} \Rightarrow \begin{cases}
y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{11}{2}
\end{cases} \Rightarrow \begin{cases} y = \frac{$$

$$\Leftrightarrow \begin{cases} x = \frac{11}{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{11}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 7.5 \\ x = 5.5 \end{cases}$$

$$C.S. = \{(5,5; 7,5)\}$$

O comprimento do lado maior é z, então

z = 2x, ou seja, $z = 2 \times 5.5 = 11$.

O lado maior tem comprimento 11 cm.

17. Como o aluguer da caravana custa D euros por dia, então, em 17 dias, custa 17D.

Como cada quilómetro percorrido custa K cêntimos, então percorrendo 5300 km custa 5300K, ou seja, 53*K* euros.

Assim, no total, pagará 17D + 53K cêntimos. Logo, a opção correta é a [B].

18. Sejam x a idade do João e y a idade do Filipe.

18.1. x + 5 representa a idade do João daqui a 5 anos e y + 5 representa a idade do Filipe daqui a 5 anos.

$$\begin{cases} x + y = 42 \\ x + 5 + y + 5 = 52 \end{cases}$$

$$\begin{cases} x + y = 42 \\ x + y = 52 - 10 \end{cases} \Leftrightarrow \begin{cases} x + y = 42 \\ x + y = 42 \end{cases}$$

Como as equações são equivalentes, o sistema é possível indeterminado, o que significa que o sistema tem uma infinidade de soluções.

18.3. Por exemplo, (10, 32), (15, 27), (20, 22) e (21, 21).

19. Sejam x o número de notas de 20 € e y o número de notas de 100 €.

$$\Leftrightarrow \begin{cases} y = \frac{480}{80} \\ ---- \end{cases} \Leftrightarrow \begin{cases} y = 6 \\ x = 26 - 6 \end{cases} \Leftrightarrow \begin{cases} y = 6 \\ x = 20 \end{cases}$$

$$C.S. = \{(20, 6)\}$$

O Pedro tem 20 notas de $20 \in e$ 6 notas de $100 \in e$. Em notas de $20 \in$, o Pedro tem $20 \times 20 = 400 \in$, ou seja, a quantia é inferior a 419,99 €.

O Pedro não consegue comprar a bicicleta, apenas com as notas de 20 €.

20. Para determinar as coordenadas de A, basta resolver o sistema.

C.S. =
$$\left\{ \left(\frac{11}{2}, 14 \right) \right\}$$

Logo, $A = \left(\frac{11}{2}, 14 \right)$

O ponto B é um ponto do eixo Ox, ou seja, tem ordenada zero. A abcissa de B é igual à abcissa de

$$A, \frac{11}{2}.$$

Logo, B tem coordenadas $\left(\frac{11}{2}, 0\right)$. $A_{[OBA]} = \frac{b \times h}{2}$

$$A_{[OBA]} = \frac{\frac{11}{2} \times 14}{\frac{2}{3}} = \frac{154}{4} = 38,5 \text{ u.a.}$$

21.

21.1. Como a 1ª equação, y = ax + 2, tem ordenada na origem 2, corresponde à reta vermelha.

Determinando o declive, o valor de a:

a reta contém por exemplo, o ponto (3, -2), então

$$-2 = a \times 3 + 2 \Leftrightarrow 3a = -2 - 2$$
$$\Leftrightarrow 3a = -4$$
$$\Leftrightarrow a = -\frac{4}{3}$$

$$y = -\frac{4}{3}x + 2$$

Os pontos (3, -2) e (6, 0) pertencem à reta de equação bx + cy = d e -4 é a ordenada na origem, então $bx + cy = d \Leftrightarrow y = -\frac{b}{c}x + \frac{d}{c}e\frac{d}{c} = -4.$

Assim,
$$y = -\frac{b}{6}x - 4$$

Utilizando, por exemplo, os pontos (3, -2) e (6, 0), podemos determinar o seu declive.

$$\frac{0-(-2)}{6-3}=\frac{2}{3}$$
, ou seja, $-\frac{b}{c}=\frac{2}{3}$.

Escrevendo a equação $y = \frac{2}{3} x - 4$ na forma bx + cy = d, temos:

$$y = \frac{2}{3}x - 4 \Leftrightarrow -\frac{2}{3}x + 3y = -4 \Leftrightarrow -2x + 3y = -12$$

 $a = -\frac{4}{3}$ e, por exemplo, $b = -2$, $c = 3$ e $d = -12$.

21.2. O sistema é possível determinado porque as retas são concorrentes. Como as retas se intersetam no ponto de coordenadas (3, -2), a solução do sistema é (3, -2), ou seja, C.S. = $\{(3, -2)\}$.

21.3. Como $a = -\frac{4}{3}$ (por 21.1.), pretendemos representar a reta de equação $y = -\frac{4}{3}x - 2$.

x	у	Ponto
0	-2	(0, -2)
-3	2	(-3, 2)

21.4. O sistema é impossível porque as retas de equações y = ax + 2 (a vermelho) e y = ax - 2(a verde) são paralelas (alínea 21.3.).

22. [A]
$$-4 \times \frac{1}{2} + (-3) = 5 \Leftrightarrow -2 - 3 = 5 \Leftrightarrow -5 = 5$$
 (F)

 $\left(\frac{1}{2}, -3\right)$ não é solução da equação.

[B]
$$6 \times \frac{1}{2} + (-3) = 2 \Leftrightarrow 3 - 3 = 2$$
 (F)

 $\left(\frac{1}{2}, -3\right)$ não é solução da equação.

[C]
$$-2 \times \frac{1}{2} - (-3) = 20 \Leftrightarrow -1 + 3 = 20$$
 (F)

 $\left(\frac{1}{2}, -3\right)$ não é solução da equação.

[D]
$$\frac{1}{2} + \frac{(-3)}{2} = -1 \Leftrightarrow -\frac{2}{2} = -1$$
 (V)

Assim, a outra equação é $x + \frac{y}{2} = -1$ e a opção correta é a [D].

23.
$$A = \pi \times r^2 \Leftrightarrow r^2 = \frac{A}{\pi} \Leftrightarrow r = \sqrt{\frac{A}{\pi}}$$

Logo, a opção correta é a [B].

24. Sejam *x* o número de adultos e *y* o número de crianças.

$$\begin{cases} x + y = 300 \\ 10x + 3y = 2440 \end{cases} \Leftrightarrow \begin{cases} x = 300 - y \\ 10(300 - y) + 3y = 2440 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{3000 - 10y + 3y} = 2440 \\ \frac{1}{3000 - 10y} = \frac{1}{3000 - 10y} \end{cases} \Leftrightarrow \begin{cases} \frac{1}{3000 - y} = \frac{1}{3000 - y} =$$

$$C.S. = \{(220, 80)\}$$

Assistiram à peça 80 crianças.

25.

$$\begin{cases} \frac{3x-1}{3} + y = 2 \\ -\frac{x-1}{3} = 2y - (2x-1) \end{cases} \Leftrightarrow \begin{cases} \frac{3x-1}{3} + \frac{y}{1} = \frac{2}{1} \\ -\frac{x-1}{3} = \frac{2y}{1} - \frac{2x}{1} + \frac{1}{1} \\ -x+1 = 6y - 6x + 3 \end{cases} \Leftrightarrow \begin{cases} 3x + 3y = 6 + 1 \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x + 3y = 7 \\ 5x - 6y = 2 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6y = 3 - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 6x - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 1 \end{cases} \Leftrightarrow \begin{cases} 3x = 7 - 3y \\ -x + 6x - 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{7}{3} - \frac{29}{33} \\ \frac{(\times 11)}{(\times 11)} \end{cases} \Leftrightarrow \begin{cases} x = \frac{77}{33} - \frac{29}{33} \\ \frac{(\times 11)}{33} \end{cases} \Leftrightarrow \begin{cases} x = \frac{48}{33} \\ \frac{(\times 11)}{33} \\ \frac{(\times 1$$

C.S. =
$$\left\{ \left(\frac{16}{11}, \frac{29}{33} \right) \right\}$$

26. Como $\frac{x+4y}{3} = x - 2y = 6$, podemos escrever: $\frac{x+4y}{3} = 6 \land x-2y = 6$, ou seja:

$$\begin{cases} \frac{x+4y}{3} = 6 \\ x-2y = 6 \end{cases} \Leftrightarrow \begin{cases} x+4y = 18 \\ x = 6+2y \end{cases} \Leftrightarrow \begin{cases} 6+2y+4y = 18 \\ ----- \end{cases}$$
$$\Leftrightarrow \begin{cases} 6y = 12 \\ ----- \end{cases} \Leftrightarrow \begin{cases} y=2 \\ x=6+2 \times 2 \end{cases} \Leftrightarrow \begin{cases} y=2 \\ x=10 \end{cases}$$
C.S. = \{(10, 2)\}
Assim, $x = 10$ e $y = 2$.

27. Seja $\frac{x}{y}$ a fração pedida.

$$\begin{cases} \frac{x-6}{y} = \frac{1}{4} \\ \frac{x}{y+2} = \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} 4x-24=y \\ 2x=y+2 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{2x-4x-24+2} \\ -2x=-22 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{4\times 11-24=y}{x=11} \\ \text{C.S.} = \{(11,20)\} \end{cases}$$
A fração é $\frac{11}{20}$.

28. Num triângulo, a lados de maior comprimento opõem-se ângulos de maior amplitude, logo $B\hat{A}C > C\hat{B}A$.

$$x + \frac{y}{2} = 3y - \frac{x}{5} + 2 + 6$$

$$\Leftrightarrow x + \frac{x}{5} + \frac{y}{2} - 3y = 8$$

$$(\times 10) \quad (\times 2) \quad (\times 10) \quad (\times 10)$$

$$\Leftrightarrow 10x + 2x + 5y - 30y = 80$$

$$\Leftrightarrow 12x - 25y = 80$$

Como a soma dos ângulos internos de um triângulo é igual a 180° e o triângulo é retângulo, ou seja, um dos ângulos tem de amplitude 90°, temos:

$$\begin{cases} x + \frac{y}{2} + 3y - \frac{x}{5} + 2 + 90 = 180 \\ 12x - 25y = 80 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - \frac{x}{5} + \frac{y}{2} + 3y = 88 \\ (\times 10) & (\times 2) & (\times 5) & (\times 10) & (\times 10) \end{cases}$$

$$12x - 25y = 80$$

$$\Leftrightarrow \begin{cases} 10x - 2x + 5y + 30y = 880 \\ (\times 10) & (\times 2) & (\times 5) & (\times 10) & (\times 10) \end{cases}$$

$$\Leftrightarrow \begin{cases} 8x + 35y = 880 \\ x = \frac{80 + 25y}{12} \end{cases} \Leftrightarrow \begin{cases} 8\left(\frac{80 + 25y}{12}\right) + 35y = 880 \\ (\times 12) & (\times 12) \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{640}{12} + \frac{200}{12}y + 35y = 880 \\ (\times 12) & (\times 12) \end{cases}$$

$$\Leftrightarrow \begin{cases} 640 + 200y + 420y = 10560 \\ (\times 12) & (\times 12) \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 16 \\ x = \frac{80 + 25 \times 16}{12} \end{cases} \Leftrightarrow \begin{cases} y = 16 \\ x = 40 \end{cases}$$

$$C.S. = \{(40, 16)\}$$

29. Sejam x o número de cachorros "simples" e y o número de cachorros "com tudo".

Como foram vendidos 25 cachorros, então x + y = 25. Como o António faturou 59,5 €, então

$$2x + 3.5y = 69.5$$
.

Assim, x = 40 e y = 16.

Obtém-se o sistema de equações:

$$\begin{cases} x + y = 25 \\ 2x + 3.5y = 69.5 \end{cases} \Leftrightarrow \begin{cases} x = 25 - y \\ 20x + 35y = 695 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 25 - y \\ 20(25 - y) + 35y = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{15y} = 195 \end{cases}$$

$$\Leftrightarrow \begin{cases} -\frac{195}{15} \end{cases} \Leftrightarrow \begin{cases} x = 25 - 13 \\ y = 13 \end{cases} \Leftrightarrow \begin{cases} x = 12 \\ y = 13 \end{cases}$$

 $C.S. = \{(12, 13)\}\$

O António vendeu 13 cachorros "com tudo".

30. Como foram necessários três autocarros de 50 lugares, significa que foram 150 pessoas $(50 \times 3 = 150).$

Sejam x o número de alunos e y o número de professores.

$$\begin{cases} x + y = 150 \\ 8x + 15y = 1410 \end{cases} \Leftrightarrow \begin{cases} x = 150 - y \\ 8(150 - y) + 15y = 1410 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{1200 - 8y + 15y} = 1410 \\ y = 210 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{1200 - 30} \\ y = 30 \end{cases} \Leftrightarrow \begin{cases} x = 120 \\ y = 30 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 150 - 30 \\ y = 30 \end{cases} \Leftrightarrow \begin{cases} x = 120 \\ y = 30 \end{cases}$$

 $C.S. = \{(120, 30)\}$

Acompanharam o grupo 30 professores.

Relações de ordem em IR. Intervalos de números reais. Inequações de 1º grau

Rever + Praticar – páginas 62 a 65

1.1. Como x > 12, então:

$$x + 7 > 12 + 7 \Leftrightarrow x + 7 > 19$$

1.2. Sabendo que x > 12, então:

$$2x > 12 \times 2 \Leftrightarrow 2x > 24$$

1.3. Como x > 12, então:

$$3x > 12 \times 3 \Leftrightarrow 3x > 36$$

 $\Leftrightarrow 3x + 4 > 36 + 4$
 $\Leftrightarrow 3x + 4 > 40$

2.1. Sabendo que k < 13, então:

$$k - 15 < 13 - 15 \Leftrightarrow k - 15 < -2$$

2.2. Sabendo que *k* < 13, então:

$$3k < 3 \times 13 \Leftrightarrow 3k < 39$$

 $\Leftrightarrow -3k > -39$

2.3. Sabendo que k < 13, então:

$$-k > -13 \Leftrightarrow -k + 4 > -13 + 4$$

$$\Leftrightarrow$$
 $-k + 4 > -9$

3. Sejam x o número em que a Filipa pensou e y o número em que a Catarina pensou.

Sabemos que
$$x < 12$$
 e $y < 15$.

Então, podemos ter, por exemplo, x = -20 e y = -10. Assim, a Cidália não tem razão porque

 $x \times y = -20 \times (-10) = 200$ e 200 não é menor que 180.

4. Comecemos por representar graficamente os conjuntos *A* e *B* na reta real:

4.1.
$$A \cap B = \{ \}$$

4.2.
$$A \cup B =]-4, 15]$$

4.3.
$$A \cap \mathbb{R} = A$$

4.4.
$$B \cup \mathbb{R} = \mathbb{R}$$

5.

5.1. Ao intervalo [-3, 0] pertencem os números inteiros -3, -2, -1 e 0.

Ao intervalo [-1, 2] pertencem os números inteiros -1, 0, 1 e 2.

Ao conjunto A pertencem os números inteiros que pertencem ao intervalo [-3, 0] ou ao intervalo [1, 2], ou seja, pertencem os números inteiros -3, -2, -1, 0, 1 e 2.

5.2. Ao intervalo $[3, +\infty[$ pertencem todos os números inteiros maiores que 3 e o próprio 3.

Ao intervalo $]-\infty$, 5[pertencem todos os números inteiros menores que 5.

Ao conjunto B pertencem os números inteiros que pertencem, simultaneamente, ao intervalo $[3, +\infty[$ e ao intervalo $]-\infty$, 5[, ou seja, os números inteiros 3 e 4.

6.1.
$$d + 12 < 16 \Leftrightarrow d < 16 - 12 \Leftrightarrow d < 4$$

C.S. =
$$]-\infty$$
, 4[

6.2.
$$3 \le -g + 5 \Leftrightarrow 3 - 5 \le -g$$

 $\Leftrightarrow -2 \le -g$
 $\Leftrightarrow -g \ge -2$
 $\Leftrightarrow g \le 2$

C.S. =
$$]-\infty$$
, 2]

6.3.
$$4c - 12 > 5c - 12 \Leftrightarrow 4c > 5c - 12 + 12$$

 $\Leftrightarrow 4c > 5c$
 $\Leftrightarrow 4c - 5c > 0$
 $\Leftrightarrow -c > 0$
 $\Leftrightarrow c < 0$

C.S. =
$$]-\infty$$
, 0[

6.4.
$$x + 5 ≥ 8 \Leftrightarrow x ≥ 8 - 5$$

$$\Leftrightarrow x \ge 3$$

$$C.S. = [3, +\infty[$$

6.5.
$$3b + 4 < -5b + 9 \Leftrightarrow 3b + 5b < 9 - 4$$

 $\Leftrightarrow 8b < 5$
 $\Leftrightarrow b < \frac{5}{8}$

$$C.S. = \left] -\infty, \frac{5}{8} \right[$$

6.6.
$$-12 + 3a \le -6a \Leftrightarrow 3a + 6a \le 12$$

 $\Leftrightarrow 9a \le 12$
 $\Leftrightarrow a \le \frac{12}{9}$
 $\Leftrightarrow a \le \frac{4}{3}$
C.S. $= \left] -\infty, \frac{4}{3} \right]$

7.

7.1. Uma equação de 2º grau com duas soluções reais distintas garante que o binómio discriminante seja positivo.

Assim:

$$\Delta = b^2 - 4ac$$

$$a = 1, b = -6, c = k$$

$$(-6)^2 - 4 \times 1 \times k > 0 \Leftrightarrow 36 - 4k > 0$$

$$\Leftrightarrow -4k > -36$$

$$\Leftrightarrow 4k < 36$$

$$\Leftrightarrow k < \frac{36}{4}$$

$$\Leftrightarrow k < 9$$

C.S. = $]-\infty$, 9[

7.2. Escrevendo a equação na forma canónica, fica $k^2 - 5x + 3 = 0$.

Uma equação de 2º grau impossível em R garante que o binómio discriminante seja negativo.

Assim:

$$\triangle = b^2 - 4ac$$

$$a = k, b = -5, c = 3$$

$$(-5)^2 - 4 \times k \times 3 < 0 \Leftrightarrow 25 - 12k < 0$$

$$\Leftrightarrow -12k < -25$$

$$\Leftrightarrow 12k > 25$$

$$\Leftrightarrow k > \frac{25}{12}$$
C.S. = $\left|\frac{25}{12}\right| + \infty$

7.3. Escrevendo a equação na forma canónica, fica $-x^2 + 6x + 3k = 0$.

Uma equação de 2º grau sem soluções é impossível em IR, por isso devemos garantir que o binómio discriminante seja negativo. Assim:

$$\Delta = b^2 - 4ac$$

$$a = -1, b = 6, c = 3k$$

$$6^2 - 4 \times (-1) \times 3k < 0 \Leftrightarrow 36 + 12k < 0$$

$$\Leftrightarrow 12k < -36$$

$$\Leftrightarrow k < -\frac{36}{12}$$

$$\Leftrightarrow k < -3$$

C.S. =
$$]-\infty, -3[$$

8.

8.1.
$$x$$
 ≥ 8 ∧ x ≤ −5

$$C.S. =]-\infty, -5] \cap [8, +\infty[= \emptyset]$$

8.2.
$$3x - 12 \le 0 \land -2x < -16 \Leftrightarrow 3x \le 12 \land 2x > 16$$

$$\Leftrightarrow x \le \frac{12}{3} \ \land \ x > \frac{16}{2}$$

$$\Leftrightarrow x \le 4 \land x > 8$$

C.S. =
$$]-\infty$$
, 4] \cap]8, $+\infty$ [= \emptyset

8.3.
$$-3x - \frac{x}{3} \le -2 \land x - (3x - 4) \ge 0$$

$$\Leftrightarrow -9x - x \le -6 \land x - 3x + 4 \ge 0$$

$$\Leftrightarrow -10x \le -6 \land -2x \ge -4$$

$$\Leftrightarrow 10x \ge 6 \land 2x \le 4$$

$$\Leftrightarrow x \ge \frac{6}{10} \ \land \ x \le \frac{4}{2}$$

$$\Leftrightarrow x \ge \frac{3}{5} \land x \le 2$$

C.S. =
$$]-\infty$$
, 2] $\cap \left[\frac{3}{5}, +\infty\right[= \left[\frac{3}{5}, 2\right]$

8.4.
$$\frac{2x-10}{3} \le 0 \land \frac{-3(x-6)}{2} > -4(x-1)$$

$$\Leftrightarrow 2x - 10 \le 0 \ \land \ -\frac{-3x + 18}{2} > -\frac{4x}{1} + \frac{4}{1 \atop (\times 2)}$$

$$\Leftrightarrow 2x \le 10 \ \land \ -3x + 18 > -8x + 8$$

$$\Leftrightarrow x \le \frac{10}{2} \land -3x + 8x > 8 - 18$$

$$\Leftrightarrow x \le 5 \land 5x > -10$$

$$\Leftrightarrow x \le 5 \land x > -\frac{10}{5}$$

$$\Leftrightarrow x \le 5 \land x > -2$$

C.S. =
$$]-\infty$$
, 5] \cap]-2, $+\infty$ [=]-2, 5]

8.5.
$$x \ge 10 \lor 2x \le -40 \Leftrightarrow x \ge 10 \lor x \le -\frac{40}{2}$$

$$C.S. =]-\infty, -20] \cup [10, +\infty[$$

8.6.
$$3x - 4 \le 0 \lor x \ge 0 \Leftrightarrow 3x \le 4 \lor x \ge 0$$

$$\Leftrightarrow x \le \frac{4}{3} \lor x \ge 0$$

C.S. =
$$\left[-\infty, \frac{4}{3}\right] \cup [0, +\infty[= \mathbb{R}]$$

8.7.
$$\frac{5x-10}{2} > -3 \lor -3(x-2) \ge 0$$

$$\Leftrightarrow 5x - 10 > -6 \lor -3x + 6 \ge 0$$

$$\Leftrightarrow 5x > -6 + 10 \lor -3x \ge -6$$

$$\Leftrightarrow 5x > 4 \lor x \le \frac{6}{3}$$

$$\Leftrightarrow x > \frac{4}{5} \lor x \le 2$$

C.S. =
$$\left[\frac{4}{5}, +\infty\right] \cup \left[-\infty, 2\right] = \mathbb{R}$$

8.8.
$$\frac{3x}{2} - 5 \le -x \lor 2(x - 4) - x \ge -3$$

$$\Leftrightarrow 3x + 2x \le 10 \lor 2x - x \ge -3 + 8$$

$$\Leftrightarrow 5x \le 10 \lor x \ge 5$$

$$\Leftrightarrow x \le \frac{10}{5} \lor x \ge 5$$

$$\Leftrightarrow x \le 2 \lor x \ge 5$$

$$C.S. =]-\infty, 2] \cup [5, +\infty[$$

9. Determinemos uma expressão para a área, A, do triângulo:

$$A = \frac{(3x-4)\times 3}{2} = \frac{9x-12}{2}$$

Pretende-se que a área do triângulo seja inferior a 50 cm². Sendo assim, $\frac{9x-12}{2}$ < 50. Por outro lado, sabe-se que 3x - 4 > 0, pois 3x - 4 corresponde à medida do comprimento de um dos lados do triângulo. Assim, temos:

$$\frac{9x - 12}{2} < 50 \land 3x - 4 > 0$$

$$\Leftrightarrow 9x - 12 < 100 \land 3x - 4 > 0$$

$$\Leftrightarrow 9x < 112 \land 3x > 4$$

$$\Leftrightarrow x < \frac{112}{9} \land x > \frac{4}{3}$$

Podemos, então, concluir que a área do triângulo da figura é inferior a 50 cm² quando $x \in \left[\frac{4}{3}, \frac{112}{9}\right]$

Praticar + – páginas 66 a 70

1.

- **1.1.** Se y < 11, então $y + 4 < 11 + 4 \Leftrightarrow y + 4 < 15$.
- **1.2.** Se y < 11, então $y < 11 \times 2 \Leftrightarrow 2y < 22$.
- **1.3.** Se y < 11, então:

$$5y < 11 \times 5 \Leftrightarrow 5y < 55 \Leftrightarrow 5y - 10 < 55 - 10$$

 $\Leftrightarrow 5y - 10 < 45$

2.

2.1. $-5 < x < 10 \Leftrightarrow -5 - 3 < x - 3 < 10 - 3$

$$\Leftrightarrow$$
 $-8 < x - 3 < 7$

2.2. $-5 < x < 10 \Leftrightarrow -5 \times 2 < 2x < 10 \times 2$

⇔
$$-10 < 2x < 20$$

2.3. $-5 < x < 10 \Leftrightarrow -5 \times 4 < 4x < 10 \times 4$

$$\Leftrightarrow$$
 -20 < 4*x* < 40

$$\Leftrightarrow$$
 $-20 - 1 < 4x - 1 < 40 - 1$

$$\Leftrightarrow$$
 $-21 < 4x - 1 < 39$

3.

3.1. O perímetro é igual à soma de todos os lados.

$$P = 1 + 1 + \sqrt{2} = (2 + \sqrt{2})$$
 u.c.

3.2. Se 1,414 <
$$\sqrt{2}$$
 < 1,415, então:

$$2 + 1,414 < 2 + \sqrt{2} < 2 + 1,415$$

$$\Leftrightarrow$$
 3,414 < 2 + $\sqrt{2}$ < 3,415

4.

- **4.1.** $a > b \Leftrightarrow 2 \times a > 2 \times b$
- **4.2.** $a > b \Leftrightarrow 3a > 3b \Leftrightarrow -3a < -3b$

4.3.
$$a > b \Leftrightarrow -a < -b \Leftrightarrow -a + 5 < -b + 5$$

- **4.4.** $a > b \Leftrightarrow 3a > 3b \Leftrightarrow 3a 2 > 3b 2$
- **5.** A opção [A] não é a correta porque $\pi \notin A$, uma vez que $\pi > \sqrt{2}$.

Como $\sqrt{2} \notin A$, as opções [B] e [C] não são corretas. Logo, a opção correta é a [D].

6.
$$-3x \ge 9 \Leftrightarrow 3x \le -9 \Leftrightarrow x \le -\frac{9}{3}$$

$$\Leftrightarrow x \le -3$$

Logo, a opção correta é a [D].

7.

7.1. [2, 6]

7.2. [-4, 2]

7.3. [-4, 2]

7.4.]–3, 3[

7.5.]–5, 6]

7.6. [–2, 1]

8.

8.1.
$$x > -3 \land x \le 1 \Leftrightarrow -3 < x \le 1$$

$$]-3, 1] e -3 < x \le 1$$

8.2.
$$]-7$$
, $+\infty[ex > -7]$

8.3.
$$]-\infty$$
, 3] e $x \le 3$

9.

- 9.2.
- **10.** $C = [-2, \sqrt{10}[, \sqrt{10} \approx 3, 16]]$
- **10.1.** São todos os números inteiros compreendidos entre –2 e 3, ou seja, –2, –1, 0, 1, 2 e 3.
- **10.2.** $C = \{x \in \mathbb{R}: -2 \le x < \sqrt{10}\}$
- 11. Representando graficamente:

- [A] $]-\infty$, 10] \cap [4, $+\infty$ [= [4, 10]
- [B] $]-\infty$, 4] \cap [-10, +\infty[= [-10, 4]
- [C]] $-\infty$, 10] \cup [4, $+\infty$ [= |R
- [D] $]-\infty$, 4] \cup [-10, $+\infty$ [= |R

Logo, a opção correta é a [B].

- **12.**
- **12.1.** Geometricamente:

12.2. Geometricamente:

Na forma de intervalo:]-1, 7]

12.3. Geometricamente:

Na forma de intervalo: [-3, 11[

12.4. Geometricamente:

Na forma de intervalo:]-∞, 17]

12.5. Geometricamente:

Na forma de intervalo:]0, 8[

12.6. Geometricamente:

Na forma de intervalo: $]-\infty$, 22]

13.

13.1.
$$2x - 3 \ge 3 \Leftrightarrow 2x \ge 3 + 3 \Leftrightarrow 2x \ge 6$$

 $\Leftrightarrow x \ge \frac{6}{2}$
 $\Leftrightarrow x \ge 3$

C.S. =
$$[3, +\infty[$$

13.2.
$$5g + 2 > 14 - g \Leftrightarrow 5g + g > 14 - 2$$

 $\Leftrightarrow 6g > 12$
 $\Leftrightarrow g > \frac{12}{6}$
 $\Leftrightarrow g > 2$

C.S. =
$$]2, +\infty[$$

13.3.
$$4x - 10 \ge 2x + 16 \Leftrightarrow 4x - 2x \ge 16 + 10$$

 $\Leftrightarrow 2x \ge 26$
 $\Leftrightarrow x \ge \frac{26}{2}$
 $\Leftrightarrow x \ge 13$

C.S. =
$$[13, +\infty[$$

13.4.
$$3a - 2 < 19 + 4a \Leftrightarrow 3a - 4a < 19 + 2$$

 $⇔ -a < 21$
 $⇔ a > -21$

C.S. =
$$]-21, +\infty[$$

13.5.
$$3a - 1 \ge a + 4 \Leftrightarrow 3a - a \ge 4 + 1$$

 $\Leftrightarrow 2a \ge 5$
 $\Leftrightarrow a \ge \frac{5}{2}$
C.S. $= \left[\frac{5}{2}, +\infty\right[$
13.6. $-3(a - 1) < a + 2 \Leftrightarrow -3a + 3 < a + 2$
 $\Leftrightarrow -3a - a < 2 - 3$

13.6.
$$-3(a-1) < a+2 \Leftrightarrow -3a+3 < a+2$$

 $\Leftrightarrow -3a-a < 2-3$
 $\Leftrightarrow -4a < -1$
 $\Leftrightarrow 4a > 1$
 $\Leftrightarrow a > \frac{1}{4}$
C.S. = $\frac{1}{4}$, +∞

14.1.
$$2(x-6) > -(-x+4) \Leftrightarrow 2x-12 > x-4$$

 $\Leftrightarrow 2x-x > -4+12$
 $\Leftrightarrow x > 8$

C.S. =
$$]8, +\infty[$$

14.2. 8 não é solução da inequação porque o intervalo do conjunto-solução é aberto em 8. Logo, 8 não é elemento desse conjunto.

14.3. O menor número inteiro é 9, porque é o menor número inteiro maior que 8.

15.

15.1.
$$3(x-5) < -15 \lor 2x \ge x-3$$

$$\Leftrightarrow 3x - 15 < -15 \quad \lor \quad 2x - x \ge -3$$

$$\Leftrightarrow 3x < -15 + 15 \lor x \ge -3$$

$$\Leftrightarrow 3x < 0 \lor x \ge -3$$

$$\Leftrightarrow x < 0 \lor x \ge -3$$

$$]-\infty,\,0[\,\cup\,[-3,\,+\infty[\,=\,]-\infty,\,+\infty[\,=\,|\mathsf{R}$$

$$C.S. = IR$$

15.2.
$$-2x - 4 < -8 \land 2(x - 3) \le 4$$

$$\Leftrightarrow$$
 $-2x < -8 + 4 \land 2x - 6 \le 4$

$$\Leftrightarrow$$
 $-2x < -4 \land 2x \le 4 + 6$

$$\Leftrightarrow 2x > 4 \land 2x \le 10$$

$$\Leftrightarrow x > \frac{4}{2} \ \land \ x \le \frac{10}{2}$$

$$\Leftrightarrow x > 2 \land x \le 5$$

$$]2, +\infty[\cap]-\infty, 5] =]2, 5]$$

C.S. = $]2, 5]$

16.
$$P = x + x + 2x + 6 + x + 4$$

Simplificando a expressão, tem-se P = 5x + 10. Como o perímetro é inferior a 25, P < 25.

$$5x + 10 < 25 \Leftrightarrow 5x < 25 - 10 \Leftrightarrow 5x < 15$$

$$\Leftrightarrow x < \frac{15}{5}$$

C.S. =
$$]-\infty$$
, 3[

Como x > 0, então $x \in [0, 3[$.

17. Se $a \le b$ e $b \le a$, então a = b.

18. [A]
$$a - 3 \le b - 3 \Leftrightarrow a \le b$$
 (V)

[B]
$$-c \le -d \Leftrightarrow c \ge d$$
 (F, porque $c \le d$.)

[C]
$$a + c \le b + d$$
 (V)

[D]
$$6a \le 6b \Leftrightarrow a \le b$$
 (V)

Logo, a opção correta é a [B].

19.
$$-0.002x < 0.04 \Leftrightarrow -\frac{2}{1000}x < \frac{4}{100}$$

 $\Leftrightarrow -2x < 40$
 $\Leftrightarrow 2x > -40$
 $\Leftrightarrow x > -\frac{40}{2}$

C.S. =
$$]-20, +\infty[$$

20. Representando graficamentre o conjunto *A*:

 $\Leftrightarrow x > -20$

20.2.
$$]\sqrt{2}, \pi[\cap A =]\sqrt{2}, \pi[\cap] -\infty, 6] =]\sqrt{2}, \pi[$$

21.

21.1.
$$\{x \in \mathbb{R}: -3 \le x < 17\} = [-3, 17]$$

21.2.
$$\{x \in \mathbb{N}: x < 5\} = \{1, 2, 3, 4\}$$

22.
$$A_{\text{trapézio}} = \frac{B+b}{2} \times h$$
, ou seja, $\frac{2x+1+5x}{2} \times 3$.

Simplificando a expressão, obtemos:

$$\frac{7x+1}{2} \times 3 = \frac{21}{2} x + \frac{3}{2}$$

Como a área é inferior a 19, temos:

$$\frac{21}{2}x + \frac{3}{2} < 19 \Leftrightarrow 21x + 3 < 38 \Leftrightarrow 21x < 38 - 3$$

 $\Leftrightarrow 21x < 35$

$$\Leftrightarrow x < \frac{35}{21}$$

$$\Leftrightarrow x < \frac{5}{3}$$

C.S. =
$$\left[-\infty, \frac{5}{3}\right]$$

Como x > 0, então $x \in \left[0, \frac{5}{3}\right]$.

23.

23.1. Se o valor da expressão pertence ao intervalo [–3, +∞[, então é superior ou igual a –3. Assim:

$$4(-d+6) - 5 \ge -3 \Leftrightarrow -4d + 24 - 5 \ge -3$$
$$\Leftrightarrow -4d + 19 \ge -3$$

$$\Leftrightarrow$$
 $-4d \ge -3 - 19$

$$\Leftrightarrow -4d \ge -22$$
$$\Leftrightarrow 4d \le 22$$

$$\Leftrightarrow d \leq \frac{22}{4}$$

$$\Leftrightarrow d \leq \frac{11}{2}$$

C.S. =
$$\left] -\infty, \frac{11}{2} \right]$$

 $d \in \left[-\infty, \frac{11}{2} \right]$

23.2. Se a expressão assume um valor positivo, então -4d + 19 > 0.

Se a expressão é menor que 10, então:

$$-4d + 19 < 10$$

Então, obtemos a conjunção:

$$-4d + 19 > 0 \land -4d + 19 < 10$$

$$\Leftrightarrow$$
 -4*d* > -19 \land -4*d* < 10 - 19

$$\Leftrightarrow 4d < 19 \land -4d < -9$$

$$\Leftrightarrow d < \frac{19}{4} \land 4d > 9$$

$$\Leftrightarrow d < \frac{19}{4} \land d > \frac{9}{4}$$

C.S. =
$$\left| \frac{9}{4}, \frac{19}{4} \right|$$

Logo,
$$d \in \left[\frac{9}{4}, \frac{19}{4} \right]$$
.

24. Representando graficamente os conjuntos *A* e *B*:

24.1. $A \cap B =]-\infty$, $5[\cap [-4, 6] = [-4, 5[$

Logo, a opção correta é a [C].

24.2. a) $A \cap \mathbb{R} =]-\infty$, $5[\cap \mathbb{R} =]-\infty$, 5[

b)
$$A \cup B =]-\infty, 5[\cup [-4, 6] =]-\infty, 6]$$

c)
$$B \cap \mathbb{R}^+ = [-4, 6] \cap \mathbb{R}^+ = [0, 6]$$

25. [A] $\sqrt{3} \notin [0, \sqrt{3}[$, porque o intervalo é aberto em $\sqrt{3}$.

[B]
$$\sqrt{3} \in [\sqrt{2}, 7[$$
, porque $\sqrt{3} > \sqrt{2} e \sqrt{3} < 7.$

[C]
$$\sqrt{3} \notin {\{\sqrt{2}, 7\}}$$

[D]
$$\sqrt{3} \notin \{\sqrt{2} + 1\}$$

Logo, a opção correta é a [B].

26. 1.
$$2 - \frac{x-6}{3} \ge -(x-3) \Leftrightarrow 2 - \frac{x-6}{3} \ge -x+3$$

 $\Leftrightarrow 6-x+6 \ge -3x+9$
 $\Leftrightarrow -x+3x \ge 9-6-6$
 $\Leftrightarrow 2x \ge -3$
 $\Leftrightarrow x \ge -\frac{3}{2}$

$$C.S. = \left[-\frac{3}{2}, +\infty \right]$$

II.
$$2(-x+4) < \frac{x}{2} - 1 \Leftrightarrow -2x + 8 < \frac{x}{2} - 1$$

 $\Leftrightarrow -4x + 16 < x - 2$
 $\Leftrightarrow -4x - x < -2 - 16$
 $\Leftrightarrow -5x < -18$
 $\Leftrightarrow 5x > 18$
 $\Leftrightarrow x > \frac{18}{5}$

$$C.S. = \left] \frac{18}{5}, +\infty \right[$$

III.
$$3 - \frac{x-1}{2} \le -3(2-x) + 1$$

$$\Leftrightarrow 3 - \frac{x-1}{2} \le -6 + 3x + 1$$

$$\Leftrightarrow 6 - x + 1 \le -12 + 6x + 2$$

$$\Leftrightarrow -x - 6x \le -12 + 2 - 6 - 1$$

$$\Leftrightarrow -7x \leq -17$$

$$\Leftrightarrow 7x \ge 17$$

$$\Leftrightarrow x \ge \frac{17}{7}$$

C.S. =
$$\left[\frac{17}{7}, +\infty\right]$$

27. Seja *x* o peso de cada esfera.

$$3x + 10 < x + 17 \Leftrightarrow 3x - x < 17 - 10 \Leftrightarrow 2x < 7$$

$$\Leftrightarrow x < \frac{7}{2}$$

C.S. =
$$\left] -\infty; \frac{7}{2} \right[$$

Cada esfera pesa menos do que 3,5 kg.

Então, k = 3.

Logo, a opção correta é a [C].

28. O perímetro do triângulo é dado pela expressão 2x + 2x + 3 + x + 1 = 5x + 4.

O perímetro do hexágono é dado pela expressão $x \times 6 = 6x$. Então:

$$5x + 4 > 6x \Leftrightarrow 5x - 6x > -4$$
$$\Leftrightarrow -x > -4$$

$$\Leftrightarrow x < 4$$

C.S. =
$$]-\infty$$
, 4[

Como x > 0, então $x \in]0, 4[$.

29. [A] A afirmação é falsa. Se a < b, então $a \ne b$.

[B] A afirmação é verdadeira.

[C] A afirmação é falsa porque $-a < -b \Leftrightarrow a > b$.

[D] A afirmação é falsa porque

$$-3 + a > -3 + b \Leftrightarrow a > b$$
.

Logo, a opção correta é a [B].

30. Sejam x o preço dos sapatos e o y o preço da blusa. Como os sapatos custam mais 20 € do que a blusa, então x = 20 + y.

A Margarida pretende comprar uns sapatos e uma blusa, sem gastar mais de 200 €, então $x + y \le 200$. Como x = 20 + y, temos:

$$20 + y + y \le 200 \Leftrightarrow 2y \le 200 - 20 \Leftrightarrow 2y \le 180$$

$$\Leftrightarrow y \le \frac{180}{2}$$

C.S. =
$$]-\infty$$
, 90]

A blusa pode custar, no máximo, 90 €.

31.1.
$$\{x \in \mathbb{R}: 2x - 4 \ge 12\} \cap [x \in \mathbb{R}: 2(x - 5) - 3 < 7\}$$

$$2x \ge 12 + 4 \land 2x - 10 - 3 < 7$$

$$\Leftrightarrow 2x \ge 16 \land 2x < 7 + 10 + 3$$

$$\Leftrightarrow x \ge \frac{16}{2} \land 2x < 20$$

$$\Leftrightarrow x \ge 8 \land x < \frac{20}{2}$$

$$\Leftrightarrow x \ge 8 \land x < 10$$

$$[8, +\infty[\cap]-\infty, 10[= [8, 10[$$

$$C.S. = [8, 10]$$

31.2. $\{x \in \mathbb{Z}: x \ge 11\} \cap [x \in \mathbb{R}: x < 15\}$

 $\{11,\,12,\,13,\,\ldots\} \ \land \ x<15 \Leftrightarrow 11 \leq x<15,\,x\in\mathbb{Z}$

$$C.S. = \{11, 12, 13, 14\}$$

31.3.
$$\{x \in \mathbb{N}: -2(x+3) \ge -14\} \cup \{-3, -2, -1\}$$

$$-2x - 6 \ge -14 \Leftrightarrow -2x \ge -14 + 6$$

$$\Leftrightarrow -2x \ge -8$$

$$\Leftrightarrow 2x \le 8$$

$$\Leftrightarrow x \le \frac{8}{2}$$

 $\Leftrightarrow x \le 4, x \in \mathbb{N}$

$$\{1, 2, 3, 4\} \cup \{-3, -2, -1\} = \{-3, -2, -1, 1, 2, 3, 4\}$$

C.S. = $\{-3, -2, -1, 1, 2, 3, 4\}$

32. 2x + 1, 2x + 3 e 2x + 5, sendo x um número natural, são três números ímpares consecutivos.

$$2x + 1 + 2x + 3 + 2x + 5 > 53 \land$$

$$\wedge$$
 2x + 1 + 2x + 3 + 2x + 5 < 60

$$\Leftrightarrow 6x > 53 - 1 - 3 - 5 \land 6x < 60 - 1 - 3 - 5$$

$$\Leftrightarrow$$
 6 $x > 44 \land 6x < 51$

$$\Leftrightarrow x > \frac{44}{6} \land x < \frac{51}{6}$$

$$\Leftrightarrow x > \frac{22}{3} \land x < \frac{17}{2}$$

C.S. =
$$\left] \frac{22}{3}, \frac{17}{2} \right[$$

Como $\frac{22}{3} \approx 7$,(3), $\frac{17}{2} = 8.5$ e x é um número natural,

então x = 8 e os três números são:

$$2 \times 8 + 1 = 17$$

$$2 \times 8 + 3 = 19$$

$$2 \times 8 + 5 = 21$$

Os números são 17, 19 e 21.

33.
$$B =]-\sqrt{8}, \pi[e -\sqrt{8} \approx -2.8 e \pi \approx 3.14]$$

$$B \cap \mathbb{N} =] -\sqrt{8}, \pi[\cap \{1, 2, 3, 4, 5, ...\} = \{1, 2, 3\}]$$

Os elementos comuns aos dois conjuntos são 1, 2 e 3.

34. Começando por resolver a inequação, temos:

$$-2(x-4) - 3 < 11 \Leftrightarrow -2x + 8 - 3 < 11$$

$$\Leftrightarrow -2x < 11 - 8 + 3$$

$$\Leftrightarrow$$
 $-2x < 6$

$$\Leftrightarrow 2x > -6$$

$$\Leftrightarrow x > -\frac{6}{3}$$

$$\Leftrightarrow x > -3$$

$$]-3, +\infty[\cap \mathbb{Z}^- = \{-2, -1\}]$$

 $(\mathbb{Z}^- - números inteiros negativos)$

Logo, há dois números inteiros negativos, -2 e -1, que satisfazem a condição -2(x-4)-3<11.

35

35.1.
$$3x < 3x \Leftrightarrow 3x - 3x < 0$$

$$\Leftrightarrow 0 < 0$$

Inequação impossível.

$$C.S. = \{ \}$$

35.2.
$$x \ge x \Leftrightarrow x - x \ge 0$$

$$\Leftrightarrow 0x \ge 0$$

$$C.S. = IR$$

35.3.
$$5x - 1 < 5x \Leftrightarrow 5x - 5x < 1$$

$$\Leftrightarrow 0x < 1$$

$$C.S. = IR$$

36. Como $\pi \approx 3,1415...$

[A] $\pi \notin]-\infty$; 3,14] porque $\pi > 3,14$.

[B] π ∉]0, π [porque o intervalo é aberto em π .

[C] $\pi \in]3,14; +\infty[$, porque $\pi > 3,14$.

[D] π ∉] π , +∞[, porque o intervalo é aberto em π .

Logo, a opção correta é a [C].

37. [A] $I \cap A = [\sqrt{2} - 1, +\infty[\cap] -1, 4] = [\sqrt{2} - 1, 4]$

[B]
$$I \cap A =]\sqrt{2} - 1$$
, 8[\cap]-1, 4] = $]\sqrt{2} - 1$, 4]

[C]
$$I \cap A = [\sqrt{2} - 1, 4[\cap] - 1, 4] = [\sqrt{2} - 1, 4[$$

[D]
$$I \cap A =]\sqrt{2} - 1$$
, $4[\cap]-1$, $4] =]\sqrt{2} - 1$, $4[$

Logo, a opção correta é a [B].

38. Sejam c o comprimento e ℓ a largura do retângulo.

Sabemos que $c = 7 + \ell$ e $P = 2\ell + 2c$.

Então:

$$P = 2\ell + 2(7 + \ell) = 2\ell + 14 + 2\ell =$$

$$= 4\ell + 14$$

Como
$$P \ge 54$$
, temos:

$$4\ell + 14 \ge 54 \Leftrightarrow 4\ell \ge 54 - 14$$

$$\Leftrightarrow 4\ell \ge 40$$

$$\Leftrightarrow \ell \ge \frac{40}{4}$$

 $\ell \in [10, +\infty[$

A largura tem, no mínimo, 10 cm.

$$c = 7 + \ell \Leftrightarrow c = 7 + 10$$

$$\Leftrightarrow c = 17 \text{ cm}$$

As dimensões mínimas do retângulo são 10 cm de largura e 17 cm de comprimento.

39. A média dos três valores é dada pela expressão:

$$\frac{8,11+8,42+x}{3} = \frac{1}{3}x + 5,51$$

Como a média deve ser inferior a 8,6 e superior a 8,3, então:

$$\frac{1}{3}x + 5.51 > 8.3 \land \frac{1}{3}x + 5.51 < 8.6$$

$$\Leftrightarrow \frac{1}{3} x > 2,79 \wedge \frac{1}{3} x < 3,09$$

$$\Leftrightarrow x > 8,37 \land x < 9,27$$

$$C.S. = [8,37; 9,27[$$

Na última medição, o valor de PH poderá estar entre 8,37 e 9,27.