Отчёт по лабораторной работе 3

дисциплина: Математическое моделирование

Бурба Анна Владимировна, НПИбд-02-18

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	12

List of Tables

List of Figures

3.1	Выполнение работы 01												8
3.2	Выполнение работы 02												8
3.3	Выполнение работы 03												9
3.4	Выполнение работы 04												9
3.5	Выполнение работы 05												10
3.6	Выполнение работы 06												10
3.7	Выполнение работы 07												11

1 Цель работы

Построить упрощенную модель боевых действий с помощью Python.

2 Задание

Вариант 49 Между страной и страной идет война. Численности состава войск исчисляются от начала войны и являются временными функциями x(t) и y(t). В начальный момент времени страна имеет армию численностью 36 800 человек, а в распоряжении страны армия численностью в 41 700 человек. Для упрощения модели считаем, что коэффициенты a,b,c,h постоянны. Также считаем P(t) и Q(t) непрерывными функциями.

Постройте графики изменения численности войск армии и армии для следующих случаев:

1. Модель боевых действий между регулярными войсками

$$\frac{\partial x}{\partial t} = -0.35x(t) - 0.776y(t) + \sin(5.5t) + 1$$

$$\frac{\partial y}{\partial t} = -0.519x(t) - 0.573y(t) + \cos(2.5t) + 1$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\frac{\partial x}{\partial t} = -0,342x(t)-0,615y(t)+|\sin(2t)|$$

$$\frac{\partial y}{\partial t} = -0,443x(t)y(t) - 0,4y(t) + |\cos(13t)|$$

3 Выполнение лабораторной работы

Боевые действия между регулярными войсками

Изучила начальные условия. Коэффициент смертности, не связанный с боевыми действиями, у первой армии 0,35, а у второй – 0,573. Коэффициент эффективности первой и второй армии 0,519 и 0,776 соответственно. Функция, описывающая подход подкрепление первой армии, $P(t)=\sin(5,5t)\ +1$, подкрепление второй армии описывается функцией $Q(t)=\cos(2,5t)\ +1$. $x_0=36800$ – численность 1-ой армии, $y_0=41700$ – численность 2-ой армии.

Боевые действия с участием регулярных войск и партизанских отрядов

Изучила начальные условия. Коэффициент смертности, не связанный с боевыми действиями, у первой армии 0,342, а у второй – 0,4. Коэффициент эффективности первой и второй армии 0,443 и 0,615 соответственно. Функция, описывающая подход подкрепление первой армии, $P(t)=|\sin(2t)|$, подкрепление второй армии описывается функцией $Q(t)=|\cos(13t)|$. $x_0=36800$ – численность 1-ой армии, $y_0=41700$ – численность 2-ой армии.

1. Оформила начальные условия в код на Python:

```
import math
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
```

```
x0 = 36800
y0 = 41700
a1 = 0.35
b1 = 0.776
c1 = 0.519
h1 = 0.573
a2 = 0.342
b2 = 0.615
c2 = 0.443
h2 = 0.4
```

Figure 3.1: Выполнение работы 01

2. Добавила в программу условия, описывающие время:

```
t0 = 0
tmax = 1
dt = 0.05
t = np.arange(t0, tmax, dt)
```

Figure 3.2: Выполнение работы 02

3. Запрограммировала заданную систему дифференциальных уравнений, описывающих изменение численности армий:

```
def P1(t):
    p1 = (np.sin(5.5*t)+1)
    return p1

def Q1(t):
    q1 = (np.cos(2.5*t)+1)
    return q1

def P2(t):
    p2 = np.fabs(np.sin(2*t))
    return p2

def Q2(t):
    q2 = np.fabs(np.cos(13*t))
    return q2
```

Figure 3.3: Выполнение работы 03

```
def FUNK1(f,t):
    funk1 = -a1*f[0] - b1*f[1] + P1(t)
    funk2 = -c1*f[0] - h1*f[1] + Q1(t)
    return funk1, funk2

def FUNK2(f,t):
    funk3 = -a2*f[0] - b2*f[1] + P2(t)
    funk4 = -c2*f[0]*f[1] - h2*f[1] + Q2(t)
    return funk3, funk4
```

Figure 3.4: Выполнение работы 04

4. Создала вектор начальной численности армий:

```
g = np.array([x0, y0])
i1 = odeint(FUNK1, g, t)
i2 = odeint(FUNK2, g, t)
```

Figure 3.5: Выполнение работы 05

5. Запрограммировала решение системы уравнений; Описала построение графика изменения численности армий:

plt.plot(t, i1)

0.0

0.2

```
plt.ylabel('Kolichestvo|')
plt.xlabel('Vremya')
plt.legend(['X','Y'])

<matplotlib.legend.Legend at 0x1dc875abee0>

40000

35000

25000

15000

10000
```

Figure 3.6: Выполнение работы 06

0.4

Vremya

0.6

0.8

```
plt.plot(t, i2)
plt.ylabel('Kolichestvo')
plt.xlabel('Vremya')
plt.legend(['X','Y'])
```

<matplotlib.legend.Legend at 0x1dc879a6580>

Figure 3.7: Выполнение работы 07

4 Выводы

Построила упрощенную модель боевых действий с помощью Python.

В боевых действиях между регулярными войсками победит армия Y, причем ей на это потребуется довольно много времени и как мы можем заметить, сражение происходило достаточно долго (видим по графику, что численность армии X будет на исходе практический в предельный момент времени).

В боевых действиях с участием регулярных войск и партизанских отрядов победит армия X, причем длстаточно быстро (видим по графику, что армия Y потеряла всех бойцов практически сразу после начала войны).