## Sterowanie adaptacyjne i estymacja

Maciej Cebula Kajetan Piertusa Daniel Rubak

Kraków, 2017

# Spis treści

| 1 | Wst  | tęp                                    | 2 |
|---|------|----------------------------------------|---|
|   | 1.1  | Cel zajęć                              | 2 |
| 2 | Idor | ntyfikacja                             | 1 |
| 4 |      |                                        | 4 |
|   | 2.1  | Model obiektu                          | 4 |
|   | 2.2  | Optymalizacja nastaw regulatora        | 4 |
|   |      | 2.2.1 Zestawy parametrów               | 4 |
|   |      | 2.2.2 Optymalizacja nastaw regulatorów | 4 |

### ${f Wstep}$

### 1.1 Cel zajęć

Celem niniejszej pracy była analiza oraz dobór parametrów systemu adaptacyjnego w zależności od występujących w systemie zakłóceń oraz transmitancji obiektu, którym sterowano. Przyjęty model przedstawiono na rysunku 1.1.



Rys. 1.1: Model układu sterowania

Poszczególne regulatory znajdujące się na schemacie opisano następującymi wzorami:

$$PD_1 = \alpha_1 + \beta_1 \cdot s \tag{1.1}$$

$$PD_2 = \alpha_2 + \beta_2 \cdot s \tag{1.2}$$

$$PI = \gamma + \frac{\delta}{s} \tag{1.3}$$

Element wykonawczy jest opisany za pomocą zależności:

$$\frac{K_{w2}}{T_w s + T} \tag{1.4}$$

Wartości parametrów  $K_{w1}$ ,  $K_{w2}$ ,  $T_w$ ,  $K_0$  potraktowano jako zadane. Przyjęto, iż testy zostaną przeprowadzone dla wartości zadanej r dla pięciu różnych poziomów zmieniających się w zakresie  $5-70^{\circ}C$ . Zakłóceniem  $z_1$  był niemierzalny skok 1(t), natomiast  $z_2$  było mierzalnym skokiem 1(t).

W ramach projektu należało przeprowadzić optymalizację poszczególnych parametrów podanych powyżej regulatorów, tj.  $\alpha_1$ ,  $\beta_1$ ,  $\alpha_2$ ,  $\beta_2$ ,  $\gamma$ ,  $\delta$ . Wskaźnikiem jakości, na mocy którego optymalizowano działanie całego układu, była całka z modułu uchybu:

$$J = \int |r - y| dt \tag{1.5}$$

. Ponadto przyjęto, iż oczekiwanym efektem optymalizacji będzie takie zachowanie układu, by bez względu na wartości zakłóceń  $z_1$  i  $z_2$ , efekt nadążania i stabilizacji będzie najlepszy.

## Identyfikacja

#### 2.1 Model obiektu

Obiektem sterowania był model Strejca opisany transmitancją:

$$G(s) = \frac{K_0}{(T_0 \cdot s + 1)^n} \cdot e^{-\tau \cdot s}$$
 (2.1)

Na potrzeby niniejszej pracy ograniczono się do obserwacji zachowania modeli rzędu pierwszego, drugiego oraz trzeciego.

### 2.2 Optymalizacja nastaw regulatora

Do optymalizacji nastaw regulatorów wykorzystana została funkcja *fmincon* z pakietu MATALB. Badania przeprowadzone zostały dla jednego zestawu parametrów z jednoczesną zmianą rzędu obiektu, którym sterowano.

#### 2.2.1 Zestawy parametrów

W tabeli 2.1 zamieszczono przyjęte wartości parametrów.

#### 2.2.2 Optymalizacja nastaw regulatorów

Dla kolejnych zestawów parametrów opisujących system przeprowadzano procedurę optymalizacji nastaw regulatorów minimalizując wskaźnik jakości opisany zależnością 1.5. Proces

Tabela 2.1: Zestawy parametrów dla których przeprowadzano optymalizację nastaw regulatorów.

| Parametr | Wartość |
|----------|---------|
| $K_{w1}$ | 10      |
| $K_{w2}$ | 5       |
| $T_{w2}$ | 0.1     |
| $T_0$    | 1       |
| $K_0$    | 10      |
| au       | 1       |

optymalizacji przeprowadzany był dla różnych wartości zadanych w obecności znanego zakłócenia  $z_2$  (zakłócenie skokowo zmieniające swoją wartość) oraz nieznanego zakłócenia  $z_1$ . Przebiegi owych zakłóceń przedstawiono na rysunku 2.1.



Rys. 2.1: Zakłócenia.

Dla przedstawionych powyżej przebiegów zakłóceń przeprowadzono optymalizację a otrzymane nastawy dla poszczególnych obiektów zamieszczono w tabelach 2.2 - 2.4.

Tabela 2.2: Parametry regulatorów dla obiektu pierwszego rzędu.

| Parametr regulatora\ Wart. zadana | <i>P</i> 1 | D1      | P2     | D2       | P3     | I3     | Kr     |
|-----------------------------------|------------|---------|--------|----------|--------|--------|--------|
| 5                                 | 0,1583     | 0,0000  | 0,3902 | 503,9885 | 0,0565 | 0,0393 | 1,3697 |
| 10                                | 0,0875     | 0,0245  | 0,2230 | 0,3092   | 0,0454 | 0,0000 | 0,5617 |
| 20                                | 0,1037     | 45,9950 | 0,4478 | 310,6393 | 0,0336 | 0,0000 | 0,5367 |
| 50                                | 0,0800     | 12,6157 | 0,0000 | 4,8505   | 0,0326 | 0,0164 | 0,5671 |
| 70                                | 0,0571     | 3,3536  | 0,0000 | 213,3236 | 0,0496 | 0,0331 | 0,5549 |

Tabela 2.3: Parametry regulatorów dla obiektu drugiego rzędu.

| Parametr regulatora\ Wart. zadana | P1     | D1       | P2     | D2      | P3     | I3     | Kr     |
|-----------------------------------|--------|----------|--------|---------|--------|--------|--------|
| 5                                 | 0,1036 | 0,3042   | 0,5315 | 73,9744 | 0,0442 | 0,0000 | 0,5367 |
| 10                                | 0,1037 | 0,7795   | 0,5391 | 1,5989  | 0,0353 | 0,0000 | 0,5367 |
| 20                                | 0,1031 | 17,033   | 0,5250 | 0,2906  | 0,0238 | 0,0000 | 0,5390 |
| 50                                | 0,0800 | 0,1205   | 0,3564 | 37,7697 | 0,0509 | 0,0112 | 0,5420 |
| 70                                | 0,0571 | 728,1221 | 0,2330 | 18,4368 | 0,0475 | 0,0222 | 0,5378 |

Tabela 2.4: Parametry regulatorów dla obiektu trzeciego rzędu.

| Parametr regulatora\ | <i>P</i> 1 | D1         | P2        | Do        | P3     | I3     | Kr     |
|----------------------|------------|------------|-----------|-----------|--------|--------|--------|
| Wart. zadana         | <i>P</i> 1 | $D_1$      |           | D2        | РЭ     | 15     | ΛT     |
| 5                    | 0,1800     | 0,1319     | 1106,0058 | 0,4266    | 0,0143 | 0,0000 | 1,2768 |
| 10                   | 0,1017     | 0,9193     | 0,4593    | 0,1072    | 0,0345 | 0,0000 | 0,5416 |
| 20                   | 0,1026     | 3,2520     | 0,4596    | 123,9292  | 0,0283 | 0,0000 | 0,5438 |
| 50                   | 0,0800     | 7164,0578  | 0,3120    | 6756,3846 | 0,0303 | 0,0084 | 0,5445 |
| 70                   | 0,0571     | 29629,2945 | 0,1710    | 400,4956  | 0,0414 | 0,0153 | 0,5448 |

W tabeli 2.5 przedstawiono wartości wskaźnika jakości dla wszystkich przeprowadzonych symulacji.

Tabela 2.5: Wartości wskaźnika jakości dla różnych wartości zadanych i różnych zestawów parametrów opisujących system.

| Nr zestawu\ Wart. zadana | 1        | 2        | 3        |
|--------------------------|----------|----------|----------|
| 5                        | 33,0087  | 43,1130  | 54,9063  |
| 10                       | 38,7111  | 52,7556  | 70,6049  |
| 20                       | 64,0122  | 71,5313  | 100,7350 |
| 50                       | 94,3375  | 158,9382 | 195,2509 |
| 70                       | 131,8947 | 198,0144 | 272,9748 |

Na rysunkach 2.2 - 2.5 przedstawiono przykładowe przebiegi zawierające odpowiedzi obiektów dla różnych wartości zadanych.



Rys. 2.2: Odpowiedź obiektu drugiego rzędu, r=20



Rys. 2.3: Odpowiedź obiektu drugiego rzędu, r=70



Rys. 2.4: Odpowiedź obiektu trzeciego rzędu, r=20



Rys. 2.5: Odpowiedź obiektu trzeciego rzędu, r=70

# Bibliografia

[1] Witold Byrski, Obserwacja i sterowanie w systemach dynamicznych. Wydawnictwa AGH, Kraków, 2007.