Pesquisa e Publicação de Informação Modelos de Pesquisa de Informação, Avaliação de Sistemas de PI

Nuno D. Mendes

Licenciatura em Sistemas e Tecnologias de Informação

20 Abr 2012 ISEGI – UNL

Parte I

Modelo Probabilístico

Definição

 $\blacktriangleright \ w_{ij} \in \{0,1\}$

- $\blacktriangleright \ \textit{w}_{\textit{ij}} \in \{0,1\}$
- $q \in Q$ é um conjunto de termos (i.e. $q \in 2^K$)

- ▶ $w_{ij} \in \{0,1\}$
- ▶ $q \in Q$ é um conjunto de termos (i.e. $q \in 2^K$)
- ▶ $A_q \subseteq D$ é um conjunto de objectos informacionais tidos como relevantes para q e \bar{A}_q é o seu complemento $(A_q \cup \bar{A}_q = D)$.

- $\blacktriangleright \ w_{ij} \in \{0,1\}$
- ▶ $q \in Q$ é um conjunto de termos (*i.e.* $q \in 2^K$)
- ▶ $A_q \subseteq D$ é um conjunto de objectos informacionais tidos como relevantes para q e \bar{A}_q é o seu complemento $(A_q \cup \bar{A}_q = D)$.
- ► Seja $P(A_q|\vec{d}_j)$ a probabilidade do objecto d_j ser relevante para a query q e $P(\bar{A}_q|\vec{d}_j)$ a probabilidade de que d_j não é relevante para a query q.

- ▶ $w_{ij} \in \{0, 1\}$
- $q \in Q$ é um conjunto de termos (i.e. $q \in 2^K$)
- ▶ $A_q \subseteq D$ é um conjunto de objectos informacionais tidos como relevantes para q e \bar{A}_q é o seu complemento $(A_q \cup \bar{A}_q = D)$.
- ► Seja $P(A_q | \vec{d_j})$ a probabilidade do objecto d_j ser relevante para a query q e $P(\bar{A}_q | \vec{d_j})$ a probabilidade de que d_j não é relevante para a query q.
- ightharpoonup A semelhança entre a query q e o objecto d_j é dada por

$$\sigma(d_j, q) = \frac{P(A_q | d_j)}{P(\bar{A}_q | d_j)}$$

Definição

- ▶ $w_{ij} \in \{0,1\}$
- ▶ $q \in Q$ é um conjunto de termos (i.e. $q \in 2^K$)
- ▶ $A_q \subseteq D$ é um conjunto de objectos informacionais tidos como relevantes para q e \bar{A}_q é o seu complemento $(A_q \cup \bar{A}_q = D)$.
- ▶ Seja $P(A_q|\vec{d_j})$ a probabilidade do objecto d_j ser relevante para a query q e $P(\bar{A_q}|\vec{d_i})$ a probabilidade de que d_i não é relevante para a query q.
- \blacktriangleright A semelhança entre a query q e o objecto d_i é dada por

$$\sigma(d_j,q) = rac{P(A_q | \vec{d}_j)}{P(\bar{A}_q | \vec{d}_j)}$$

► Pela regra de Bayes

$$\sigma(d_j, q) = \frac{P(\vec{d}_j | A_q) P(A_q)}{P(\vec{d}_i | \bar{A}_q) P(\bar{A}_q)}$$

onde $P(\vec{d}_j|A_q)$ representa a probabilidade de escolher aleatoriamente um objecto d_j de entre o conjunto de relevantes (resp. irrelevantes) e $P(A_q)$ designa a probabilidade de observar um documento relevante em D (resp. irrelevante).

Definição

► Temos que

$$\sigma(d_j,q) = \frac{P(\vec{d}_j|A_q)P(A_q)}{P(\vec{d}_j|\bar{A}_q)P(\bar{A}_q)}$$

Definição

► Temos que

$$\sigma(d_j, q) = \frac{P(\vec{d}_j | A_q) P(A_q)}{P(\vec{d}_j | \bar{A}_q) P(\bar{A}_q)}$$

► Como $P(A_q)$ e $P(\bar{A}_q)$ são iguais para todos os documentos, escrevemos

$$\sigma(d_j,q) \propto rac{P(ec{d}_j|A_q)}{P(ec{d}_j|ar{A}_q)}$$

Definição

► Temos que

$$\sigma(d_j, q) = \frac{P(\vec{d}_j | A_q) P(A_q)}{P(\vec{d}_j | \bar{A}_q) P(\bar{A}_q)}$$

► Como $P(A_q)$ e $P(\bar{A}_q)$ são iguais para todos os documentos, escrevemos

$$\sigma(d_j,q) \propto \frac{P(\vec{d}_j|A_q)}{P(\vec{d}_i|\bar{A}_q)}$$

Assumindo a independência dos termos

$$\sigma(d_j,q) \propto \frac{\left(\prod_{g_i(\vec{d}_j)=1} P(k_i|A_q)\right) \left(\prod_{g_i(\vec{d}_j)=0} P(\bar{k}_i|A_q)\right)}{\left(\prod_{g_i(\vec{d}_i)=1} P(k_i|\bar{A}_q)\right) \left(\prod_{g_i(\vec{d}_i)=0} P(\bar{k}_i|\bar{A}_q)\right)}$$

onde $P(k_i|A_q)$ denota a probabilidade do termo k_i estar presente num objecto aleatoriamente escolhido dentro os documentos do conjunto A_q e $P(\bar{k}_i|A_q)$ a probabilidade do termo k_i não estar presente num objecto escolhido do mesmo conjunto.

Definição

▶ Lembrando que $P(k_i|A_q) + P(\bar{k}_i|A_q) = 1$ e ignorando factores constantes para todos os objectos e para a mesma query q_i temos que

$$\sigma(d_j,q) \propto \sum_{i=1}^t \hat{w}_i w_{ij} \left(\log \frac{P(k_i|A_q)}{1 - P(k_i|A_q)} + \log \frac{1 - P(k_i|\bar{A}_q)}{P(k_i|\bar{A}_q)} \right)$$

Definição

▶ Lembrando que $P(k_i|A_q) + P(\bar{k}_i|A_q) = 1$ e ignorando factores constantes para todos os objectos e para a mesma query q, temos que

$$\sigma(d_j,q) \propto \sum_{i=1}^t \hat{w}_i w_{ij} \left(\log \frac{P(k_i|A_q)}{1 - P(k_i|A_q)} + \log \frac{1 - P(k_i|\bar{A}_q)}{P(k_i|\bar{A}_q)} \right)$$

- Na primeira iteração do modelo, assume-se que
 - ▶ $P(k_i|A_q)$ é constante para todos os termos k_i (tipicamente 0.5)
 - A distribuição de termos nos documentos irrelevantes pode ser aproximada pela distribuição de termos em D
 - Assim temos que:

$$P(k_i|A_q) = 0.5$$

$$P(k_i|\bar{A}_q) = \frac{n_i}{N}$$

onde n_i é o número de documentos que contêm o termo k_i e N o número total de documentos

Definição

- ▶ Para as iterações seguintes do modelo definimos dois conjuntos:
 - ▶ V como os r documentos mais relevantes segundo a estimativa da iteração anterior
 - ▶ $V_i \subseteq V$ o conjunto de documentos em V que contêm o termo k_i
- Seja v e v_i o número de elementos de V e V_i, respectivamente, então podemos fazer as seguintes aproximações na iteração corrente

$$P(k_i|A_q)=\frac{v_i}{v}$$

$$P(k_i|\bar{A}_q) = \frac{n_i - v_i}{N - v}$$

▶ Para evitar problemas nos casos degenerados ($e.g \ v = 1 \ e \ V_i = \emptyset$), introduzimos um factor de ajustamento tal que

$$P(k_i|A_q) = \frac{v_i + \frac{n_i}{N}}{v+1}$$

$$P(k_i|\bar{A}_q) = \frac{n_i - v_i + \frac{n_i}{N}}{N - v + 1}$$

Vantagens/Desvantagens

 Oferece uma função de ranking baseada na probabilidade do documento ser relevante, mas

Vantagens/Desvantagens

- Oferece uma função de ranking baseada na probabilidade do documento ser relevante, mas
- ▶ Requer uma estimação inicial de documentos relevantes vs não-relevantes

Vantagens/Desvantagens

- Oferece uma função de ranking baseada na probabilidade do documento ser relevante, mas
- ▶ Requer uma estimação inicial de documentos relevantes vs não-relevantes
- O modelo não leva em conta a frequência dos termos num dado documento (todos os pesos são binários)

Vantagens/Desvantagens

- Oferece uma função de ranking baseada na probabilidade do documento ser relevante, mas
- Requer uma estimação inicial de documentos relevantes vs não-relevantes
- O modelo não leva em conta a frequência dos termos num dado documento (todos os pesos são binários)
- ► Os termos são tidos como independentes

Parte II

Avaliação de Sistemas de Pesquisa de Informação

Noções Básicas

▶ Considere um conjunto I de pedidos de informação e um conjunto indexado de conjuntos $\{R_q\}_{q\in I}$ de documentos relevantes

Noções Básicas

- ▶ Considere um conjunto I de pedidos de informação e um conjunto indexado de conjuntos $\{R_q\}_{q\in I}$ de documentos relevantes
- Para cada query $q \in I$ o sistema de PI em avaliação produz um conjunto resposta, A_q , de documentos relevantes (ou dos melhores documentos em termos do *ranking* de relevância)

Noções Básicas

- ▶ Considere um conjunto I de pedidos de informação e um conjunto indexado de conjuntos $\{R_q\}_{q\in I}$ de documentos relevantes
- Para cada query $q \in I$ o sistema de PI em avaliação produz um conjunto resposta, A_q , de documentos relevantes (ou dos melhores documentos em termos do *ranking* de relevância)
- ► Podemos definir duas medidas básicas de avaliação do sistema:

Noções Básicas

- ▶ Considere um conjunto I de pedidos de informação e um conjunto indexado de conjuntos $\{R_q\}_{q\in I}$ de documentos relevantes
- ▶ Para cada query $q \in I$ o sistema de PI em avaliação produz um conjunto resposta, A_q , de documentos relevantes (ou dos melhores documentos em termos do *ranking* de relevância)
- ► Podemos definir duas medidas básicas de avaliação do sistema:
 - Recall ou Sensibilidade, mede a fracção de documentos relevantes que foram recuperados

$$Recall = \frac{|R_q \cap A_q|}{|R_q|}$$

Noções Básicas

- ▶ Considere um conjunto I de pedidos de informação e um conjunto indexado de conjuntos $\{R_q\}_{q\in I}$ de documentos relevantes
- Para cada query $q \in I$ o sistema de PI em avaliação produz um conjunto resposta, A_q , de documentos relevantes (ou dos melhores documentos em termos do *ranking* de relevância)
- ► Podemos definir duas medidas básicas de avaliação do sistema:
 - Recall ou Sensibilidade, mede a fracção de documentos relevantes que foram recuperados

$$Recall = \frac{|R_q \cap A_q|}{|R_q|}$$

▶ Precisão, mede a fracção de documentos recuperados que são relevantes

$$\mathsf{Precision} = \frac{|R_q \cap A_q|}{|A_q|}$$

a

Curvas de Precisão/Recall

► Tendo em conta que os documentos em Aq estão ordenados por relevância, pode ser importante perceber a evolução das medidas de avaliação ao longo do *ranking*

Curvas de Precisão/Recall

- ► Tendo em conta que os documentos em Aq estão ordenados por relevância, pode ser importante perceber a evolução das medidas de avaliação ao longo do *ranking*
- ▶ Por outro lado, a avaliação do sistema deve ser feita em relação a um conjunto de queries *I*, captando o comportamento médio para as gueries utilizadas

Curvas de Precisão/Recall

- ► Tendo em conta que os documentos em Aq estão ordenados por relevância, pode ser importante perceber a evolução das medidas de avaliação ao longo do *ranking*
- ▶ Por outro lado, a avaliação do sistema deve ser feita em relação a um conjunto de queries *I*, captando o comportamento médio para as queries utilizadas
- ► Tipicamente, assumem-se 11 níveis de recall (0%, 10%, 20%, . . . , 100%) e calcula-se a precisão média a cada um dos níveis

$$\hat{P}(r) = \sum_{q \in I} \frac{P_q(r)}{|I|}$$

em que $\hat{P}(r)$ é a precisão média ao nível de recall r, e $P_q(r)$ é a precisão para a query q ao nível de recall r.

Curvas de Precisão/Recall

- ► Tendo em conta que os documentos em Aq estão ordenados por relevância, pode ser importante perceber a evolução das medidas de avaliação ao longo do *ranking*
- ▶ Por outro lado, a avaliação do sistema deve ser feita em relação a um conjunto de queries *I*, captando o comportamento médio para as queries utilizadas
- ► Tipicamente, assumem-se 11 níveis de recall (0%, 10%, 20%, . . . , 100%) e calcula-se a precisão média a cada um dos níveis

$$\hat{P}(r) = \sum_{q \in I} \frac{P_q(r)}{|I|}$$

em que $\hat{P}(r)$ é a precisão média ao nível de recall r, e $P_q(r)$ é a precisão para a query q ao nível de recall r.

Como o cálculo do recall ao longo de A_q raramente corresponde aos níveis pré-definidos, usa-se um procedimento de interpolação.
 Seja r_j com j ∈ {0, 10, 20, ..., 100}, cada um dos níveis de recall utilizados, e seja r o nível de recall calculado em A_q, temos que:

$$P(r_j) = \max_{r_j \le r \le r_{j+10}} P(r)$$

Medidas Unitárias

▶ Por vezes é útil ter apenas uma medida de avaliação de um sistema de PI

Medidas Unitárias

- ▶ Por vezes é útil ter apenas uma medida de avaliação de um sistema de PI
- ▶ R-precision Corresponde, para uma query $q \in I$, a calcular a precisão de entre os primeiros $|R_q|$ elementos de A_q
- Média Harmónica (F-measure)

$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

em que r(j) (resp. P(j)) é a recall (resp. precisão) para o j-ésimo documento do ranking. Pode obter-se uma sumarização fazendo $F = \max_{j=1,\dots,|A_q|} F(j)$.

Medidas Unitárias

- ▶ Por vezes é útil ter apenas uma medida de avaliação de um sistema de PI
- ▶ R-precision Corresponde, para uma query $q \in I$, a calcular a precisão de entre os primeiros $|R_q|$ elementos de A_q
- Média Harmónica (F-measure)

$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

em que r(j) (resp. P(j)) é a recall (resp. precisão) para o j-ésimo documento do ranking. Pode obter-se uma sumarização fazendo $F = \max_{j=1,\ldots,|A_{R}|} F(j)$.

► E-measure

$$E(j) = 1 - \frac{1 + b^2}{\frac{b^2}{r(j)} + \frac{1}{P(j)}}$$

semelhante à F-measure, mas o parâmetro b permite dar mais ou menos importância à recall/precisão. Para b=1 a E-measure é o complemento da F-measure. Para b>1, a precisão é mais importante do que a recall e com b<1 a recall é mais importante.