Final Presentation

WIP: Parkinson's wearing-off Detection: Forecasting, App Design, and Behavior Feedback

KANIA GUPTA

Kyushu Institute of Technology Internship Student

Research Background

Parkinson's Disease (PD)

PD is a slowly progressive disorder of the nervous system due to loss of dopamine-producing brain cells.

J. Massano and K. P. Bhatia, 'Clinical Approach to Parkinson's Disease: Features, Diagnosis, and Principles of Management', Cold Spring Harb Perspect Med, vol. 2, no. 6, Jun. 2012, doi: 10.1101/cshperspect.a008870.
S. Sveinbjornsdottir, 'The clinical symptoms of Parkinson's disease', Journal of Neurochemistry, vol. 139, no. S1, pp. 318–324, 2016, doi: 10.1111/jnc.13691.

Research Background

Wearing-Off Phenomenon (WO)

Patients undergo Levodopa treatment (L-dopa) to alleviate the symptoms.

Wearing-off needs to be monitored & reported by PD patients to readjust the treatment plan.

- A. Antonini *et al.*, 'Wearing-off scales in Parkinson's disease: Critique and recommendations: Scales to Assess Wearing-Off in PD', *Mov. Disord.*, vol. 26, no. 12, pp. 2169–2175, Oct. 2011, doi: 10.1002/mds.23875.
- D. Colombo *et al.*, 'The "Gender Factor" in Wearing-Off among Patients with Parkinson's Disease: A Post Hoc Analysis of DEEP Study', *The Scientific World Journal*, Jan. 20, 2015. https://www.hindawi.com/journals/tswj/2015/787451/

Victorino, John Noel, et al. "Understanding wearing-off symptoms in Parkinson's disease patients using wrist-worn fitness tracker and a smartphone." *Procedia Computer Science* 196 (2022): 684-691.

Victorino, John Noel, et al. "Predicting wearing-off of Parkinson's disease patients using a wrist-worn fitness tracker and a smartphone: A case study." *Applied Sciences* 11.16 (2021): 7354.

Research Objectives

1. Improve Existing Models

Refine and re-evaluate previously developed ML models for higher prediction accuracy.

2. Expand Algorithm Scope

Implement and compare additional machine learning and deep learning models.

3. Customized-Time Model Deployment

Deploy the best-performing model on a server to enable real-time, customized wearing-off prediction.

4. Application Enhancement

Improve the WoForecastProto app for intuitive visualization of prediction results.

5. Integrate Behavioral Feedback

Designed and embedded post-prediction questions in FonLog to collect user responses and enhance future model performance.

Related Search

1. Victorino et al. (2021)

Predicting Parkinson's Wearing-Off Using Wearables

- Used Garmin + FonLog data
- Achieved up to 76.9% balanced accuracy
- Personalized ML models for real-life prediction
- •[Applied Sciences, 2021]

2. Victorino et al. (2022)

Understanding Wearing-Off Symptoms via Smart Devices

- •Analyzed sleep, steps, drug timing as key indicators
- Showed feasibility of commercial trackers
- •[Procedia Computer Science, 2022]

Previously Collected Data Process

- PD patients who are aware of wearing-off
- PD participants were asked to contribute 30 days' worth of data from 23rd February'21 to 24th March'21
 - Wear fitness tracker
 - Report wearing-off period and drug intake period using a smartphone app

Victorino, John Noel, et al. "Understanding wearing-off symptoms in Parkinson's disease patients using wrist-worn fitness tracker and a smartphone." *Procedia Computer Science* 196 (2022): 684-691.

Victorino, John Noel, et al. "Predicting wearing-off of Parkinson's disease patients using a wrist-worn fitness tracker and a smartphone: A case study." *Applied Sciences* 11.16 (2021): 7354.

Data Processing for ML+DL

Model Development for ML

Model Development for DL

Experiments

Garmin vivosmart4 Datasets

Data Type	Granularity	Description
Heart rate	15-second interval	Beats per minute (bpm)
Steps	15-minute interval	Cumulative count per interval (minimum: 0)
Stress score	3-minute interval	Estimated stress score (0 – 100) • 0 – 25: Resting state • 26 – 50: Low stress • 51 – 75: Medium stress • 76 – 100: High stress • -1: not enough data to detect stress • -2: too much motion
Sleep classification & Sleep period	Per calendar date	 Start and end time per sleep classification Light sleep Rapid eye movement (REM) sleep Deep sleep Awake

Garmin, 'vivosmart 4 - Heart Rate Variability and Stress Level', *Heart Rate Variability and Stress Level*. Oct. 2020. Accessed: Apr. 06, 2021. [Online]. Available: https://www8.garmin.com/manuals/webhelp/vivosmart4/EN-US/GUID-9282196F-D969-404D-B678-F48A13D8D0CB.html

Experiments

Smartphone Application Dataset

- Data collection tool to record experienced symptoms (using Japanese Wearing-Off Questionnaire or WoQ-9)
 - Tremors
 - Slowing down of movement
 - Change in mood / Depression
 - Rigidity of muscles
 - Sharp pain / Prolonged dull pain
 - Impairment of complex movement of hands & fingers
 - Difficulty integrating thoughts / slowing down of thought
 - Anxiety / Panic attacks
 - Muscle spasm
- Drug intake and its effects were also part of WoQ-9
- Age, Gender, Hoehn and Yahr PD Stage, PDQ-8 QoL response (one time)

Experiments

Participant Demographics

	Participant 1	Participant 2
Age	43	38
Gender	Female	Female
H&Y	2: Bilateral or midline involvement without impairment of balance	3: Bilateral disease: mild to moderate disability with impaired postural reflexes; physically independent
JCLD	1: Little assistance is needed in daily life and outpatient visits	2: Partial assistance is required for daily life and outpatient visits
PDQ-8	37.5%	65.63%

Best hyperparameter configuration performance on the validation set among all ML models

Participant1_15mins

Participant1_15secs

	•		
	Balanced Accuracy	F1 Score	Precision
Initial Pipeline	0.5680	0.4995	0.5908
Feature Selection	0.5713	0.4438	0.6791
Class Imbalance	0.5712	0.5325	0.5840
Feature Selection + Class Imbalance	0.5714	0.4688	0.6104

	Balanced Accuracy	F1 Score	Precision
Initial Pipeline	0.5559	0.4852	0.5292
Feature Selection	0.5683	0.4510	0.6133
Class Imbalance	0.5700 [0.5173	0.5395
Feature Selection + Class Imbalance	0.5629	0.4346	0.6080

Participant2_15mins

FS+CI

	Balanced Accuracy	F1 Score	Precision
Initial Pipeline	0.6726	0.1128	0.0610
Feature Selection	0.6794	0.1416	0.0832
Class Imbalance	0.7351	0.1843	0.1393
Feature Selection + Class Imbalance	0.7505	0.1583	0.0887

	Balanced Accuracy	F1 Score	Precision
Initial Pipeline	0.6843	0.0855	0.0449
Feature Selection	0.7001	0.1086	0.0605
Class Imbalance	0.7321	0.1019	0.0541
Feature Selection + Class Imbalance	0.7529	0.1303	0.0725

Comparison of ML algorithms performance on the validation set using the FS+CI best pipeline

Participant1_15mins

Participant1_15secs

	Balanced Accuracy	F1 Score	Precision			Balanced Accuracy	F1 Score	Precision
LR	0.5367	0.4074	0.6230		LR	0.5294	0.3877	0.5642
DT Classifier	0.5595	0.4525	0.5970		DT Classifier	0.5325	0.4545	0.5005
Linear SVC	0.5180	0.3821	0.5977		Linear SVC	0.5253	0.4014	0.5547
RF Classifier	0.5287	0.4445	0.5332		RF Classifier	0.5227	0.4430	0.4846
GB Classifier	0.5596	0.5130	0.5645		GB Classifier	0.5365	0.4702	0.5045
LGBMC	0.5549	0.5066	0.5587		LGBMC	0.5587	0.5054	0.5267
	Participant	2_15mins	G	BC		Participant:	2_15secs	
	Balanced	F1 Score	Precision			Balanced	F1 Score	Precision
	Accuracy					Accuracy		
LR	0.6291	0.0918	0.0486		LR	0.6385	0.0760	0.0398
DT Classifier	0.7146	0.1342	0.0742		DT Classifier	0.7228	0.1074	0.0584
Linear SVC	0.6328	0.1022	0.0552		Linear SVC	0.6480	0.0772	0.0404
RF Classifier	0.7348	0.1454	0.0809		RF Classifier	0.7109	0.1094	0.0598
GB Classifier	0.7348	0.1286	0.0693		GB Classifier	0.6926	0.0911	0.0482
LGBMC	0.7151	0.1255	0.0681		LGBMC	0.7326	0.1496	0.1406

14

Comparison of DL algorithms performance on the test set using keras except for MLP

Participant1_15mins

	F1 score	Recall	Precision
1D CNN	0.6955	0.6960	0.6965
LSTM	0.7413	0.7415	0.7440
MLP	0.6465	0.6465	0.6465

Participant1_15secs

	F1 score	Recall	Precision
1D CNN	0.8045	0.8020	0.8131
LSTM	0.9222	0.9224	0.9220
MLP	0.7800	0.7782	0.7852

LSTM

Participant2_15mins

	F1 score	Recall	Precision
1D CNN	0.6723	0.7004	0.6521
LSTM	0.6271	0.5821	0.8425
MLP	0.4911	0.5000	0.4826

	F1 score	Recall	Precision
1D CNN	0.5936	0.5567	0.8792
LSTM	0.6946	0.6320	0.8935
MLP	0.6832	0.5624	0.8443

Average performance of best ML model on the test set using the FS+CI best pipeline + GB best ML model using final Pipeline

Participant1_15mins

+	+	++
	mean	std
	}	+
Bal. Acc.	0.4852	0.0896
F1 Score	0.4878	0.1022
Acc.	0.4850	0.0893
Precision	0.4767	0.0841
Recall / Sn	0.5039	0.1309
<u>Sp</u>	0.4666	0.0896
AUC	0.4852	0.0896
+	+	++

Participant2_15mins

	mean	std
Bal. Acc.	0.6650	0.1628
F1 Score	0.2527	0.3366
Acc.	0.7161	0.2971
Precision	0.2424	0.3802
Recall / Sn	0.6100	0.4247
Sp	0.7201	0.3175
AUC	0.6650	0.1628
+	·	++

Participant1_15secs

•		
+	+	+
1	mean	std
	.	+
Bal. Acc.	0.4692	0.0803
F1 Score	0.4302	0.0998
Acc.	0.4712	0.0791
Precision	0.4206	0.0771
Recall / Sn	0.4472	0.1283
Sp	0.4913	0.1050
AUC	0.4692	0.0803
+	+	++

+	mean	++ std
Bal. Acc. F1 Score Acc. Precision Recall / Sn Sp AUC	0.7002 0.1339 0.6785 0.0771 0.7231 0.6773 0.7002	0.1706 0.0573 0.2449 0.0327 0.2742 0.2525 0.1706
+	+	++

Training vs Validation curves for best DL model

Participant2_15mins

Participant1_15secs

Permutation feature importance for the FS+Cl best pipeline + GB best model using final pipeline

Participant1 15mins Participant1 15secs

	Values
	0.3242
	0.2377 0.1276
	0.1034 0.0869
 	0.0699 0.0286
	0.0159 0.0039
 	0.0020 0.0000
 <u>-</u>	0.0000 ·

Participant2_15mins

+	++
Features	Values
	+
time from last drug taken	0.8102
light	0.0914
heart rate	0.0579
awake	0.0204
non rem total	0.0055
total	0.0042
deep	0.0041
sleep efficiency	0.0032
non rem percentage	0.0027
stress score	0.0003
steps	0.0000
rem	0.0000
+	++

time from last drug taken

Features

heart rate

stress score

non rem percentage

sleep efficiency

steps

deep

total

light

awake

Participant2_15secs

Values

0.2828

0.1460

0.1294

0.0885

0.0783

0.0540

0.0409

0.0377

0.0346

0.0530

±	L
Features	Values
	+
time from last drug taken	0.9115
light	0.0788
heart rate	0.0095
steps	0.0000
awake	0.0000
stress score	0.0000
rem	0.0000
deep	0.0000
non rem total	0.0000
total	0.0000
non rem percentage	0.0000
sleep efficiency	0.0000
+	++

Permutation feature importance by the best DL model

Participant1_15mins

Participant2_15mins

Participant1 15secs

CONFUSION MATRIXs by best ML case Participant1_15mins

Participant2_15mins

Participant1_15secs

CONFUSION MATRIXs by best DL case

Participant1_15mins

Participant2_15mins

Participant1_15secs

Cutomized-Time Deployment on Garmin server for Wearing-Off Predic

Application Enhancement-WoForecastProto (Intervention App) Demo

On-Off Case

Error Case

Post-Prediction Behavioral Questionnaire

Summary

Best Models Identified

GBC was the top ML model; **LSTM** outperformed all and was selected as the overall best.

Algorithm Expansion

Evaluated and compared various ML and DL models to enhance prediction accuracy.

Customized Real-Time Deployment

Deployed the LSTM model on a server for **instant predictions** with **user-defined forecast intervals** (e.g., 15–60 mins).

App Enhancement

Improved the **WoForecastProto** app with intuitive, real-time prediction visualization.

Behavioral Feedback Integration

Embedded follow-up questions in **FonLog** to collect patient input and **continuously improve model performance**.

Future Prospectives

Research Future Work

Analyzing the results with more experiments with the support of PD patients

THANK YOU

Models Considered

Current Time Models:

- Input: current time step (t = 0)
- Output: next hour (t = 1)

- Shown as hourly interval
- Data is in every 15-minute interval (1 hour = 4 rows)

 $y_{t+1} = f(X_t, y_t), X_t = \{x_1, x_2, \dots, x_{14}\}$

Models Considered

1 Day Models:

- Input: from the last day (t = 0...24)
- Output: next hour (t = 1)

$$y_{t+1} = f(M(X, y, w)), M = \begin{bmatrix} X_t & y_t \\ X_{t-1} & y_{t-1} \\ \vdots & \vdots \\ X_{t-w} & y_{t-w} \end{bmatrix}$$

LSTM Model

Participants' Demographics

Participants

H&Y Score

2 = bilateral involvement without impairment of balance,

JCLD

assistance
2 = Partial
assistance

PDQ-8

Higher score means worse QoL

Can a wrist-worn fitness tracker datasets be used to forecast wearing-off in the next hour?

■ Baseline ■ Linear ■ Single time-step Dense Model

Current Time Models

- Single time-step Dense model
- Balanced Accuracy:
 79.05% ± 7.09%
- AUC: 69.14% ± 10.60%

Can a wrist-worn fitness tracker datasets be used to forecast wearing-off in the next hour?

Which among the six deep learning architectures performed well in forecasting wearing-off in the next hour?

Architectures	Bal. Acc.	AUC	Precision	Recall
Baseline	79.05% ± 07.09%	50.20% ± 05.68%	07.81% ± 10.16%	07.59% ± 09.66%
Linear	79.05% ± 07.09%	64.71% ± 16.25%	05.08% ± 06.34%	28.73% ± 33.58%
Single time-step Dense	79.05% ± 07.09%	69.14% ± 10.60%	06.25% ± 13.50%	06.15% ± 15.83%
Multi time-step Dense	80.64% ± 10.36%	60.23% ± 28.33%	18.55% ± 32.29%	36.17% ± 42.24%
CNN	80.64% ± 10.36%	60.52% ± 30.26%	18.61% ± 31.98%	25.06% ± 39.10%
LSTM	50.00% ± 00.00%	57.83% ± 17.13%	03.20% ± 05.17%	08.10% ± 14.78%

- Multi time-step Dense & CNN had high scores in Bal. Acc. Precision, & Recall
- Single time-step Dense had the highest AUC

Discussion

- Multi time-step Dense & CNN models still had a recall score lower than 50%
 - Low recall score = Missed wearing-off forecast

• AUC metric had been considered to parametric true positive rate (recall) & false positive rate

Discussion

Need to adjust the threshold value for the forecast probability

Related Works: Detecting Wearing-Off

Study	Goal	Data Used	Result
Hoff et al, 2004	Detection: wearing-off, dyskinesia	Accelerometer	Sensitivity: 60% - 71% Specificity: 66% - 76%
Keijsers, 2006	Detection: wearing-off, bradykinesia, hypokinesia, tremor	Accelerometer	Sensitivity: 97% Specificity: 97%
Hssayeni, 2019	Detection: wearing-off	Accelerometer, Gyroscope	Accuracy: 90.5% Sensitivity: 94.2% Specificity: 85.4%
Aich, 2020	Detection: Wearing-off, Gait features	Accelerometer	Random Forest: 96.72% accuracy

- Focused on using motion data
- Generalized models for the participants (except for Hssayeni, 2019)
- Detection of wearing-off rather than prediction

J. I. Hoff, V. van der Meer, and J. J. van Hilten, 'Accuracy of Objective Ambulatory Accelerometry in Detecting Motor Complications in Patients With Parkinson Disease', Clinical Neuropharmacology, vol. 27, no. 2, pp. 53–57, Apr. 2004.

N. L. W. Keijsers, M. W. I. M. Horstink, and S. C. A. M. Gielen, 'Ambulatory motor assessment in Parkinson's disease', *Movement Disorders*, vol. 21, no. 1, pp. 34–44, 2006, doi: https://doi.org/10.1002/mds.20633.

M. D. Hssayeni, M. A. Burack, J. Jimenez-Shahed, and B. Ghoraani, 'Assessment of response to medication in individuals with Parkinson's disease', *Med Eng Phys*, vol. 67, pp. 33–43, May 2019, doi: 10.1016/j.medengphy.2019.03.002.

S. Aich et al., 'A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson's Disease Using Wearable Based Gait Signals', Diagnostics, vol. 10, no. 6, p. 421, Jun. 2020, doi: 10.3390/diagnostics10060421.

Related Works: Non-Motor Aspect of PD & WO

Heart Rate

- PD patients' blood pressure & heart rate were studied during WO.
 - There's statistical difference in blood pressure change

Stress

- · Highly sensitive to the effects of stress with clinical evidence
 - Worsen tremors, freezing of gait (FoG) and dyskinesia

Sleep & Sleep Stages

 Rapid eye movement sleep behavior disorder, sleep disturbances affect PD patients.

V. Pursiainen, J. T. Korpelainen, T. H. Haapaniemi, K. A. Sotaniemi, and V. V. Myllylä, 'Blood pressure and heart rate in parkinsonian patients with and without wearing-off', European Journal of Neurology, vol. 14, no. 4, pp. 373–378, 2007, doi: 10.1111/j.1468-1331.2007.01672.x.

M. Salsone *et al.*, 'Cardiac sympathetic index identifies patients with Parkinson's disease and REM behavior disorder.', *Parkinsonism & related disorders*, 2016, doi: 10.1016/j.parkreldis.2016.03.004.

J.-E. Lee, J.-S. Kim, D.-W. Ryu, Y.-S. Oh, I. R. Yoo, and K.-S. Lee, 'Cardiac Sympathetic Denervation Can Predict the Wearing-off Phenomenon in Patients with Parkinson Disease', *J Nucl Med*, vol. 59, no. 11, pp. 1728–1733, Nov. 2018, doi: 10.2967/jnumed.118.208686.

A. van der Heide, M. J. Meinders, A. E. M. Speckens, T. F. Peerbolte, B. R. Bloem, and R. C. Helmich, 'Stress and Mindfulness in Parkinson's Disease: Clinical Effects and Potential Underlying Mechanisms', *Movement Disorders*, vol. 36, no. 1, pp. 64–70, 2021, doi: 10.1002/mds.28345.

Sleep Features

Total non-REM duration = Deep sleep duration + Light sleep duration

Total sleep duration = Total non-REM duration + REM sleep duration

$$\label{eq:Total non-REM percentage} \text{Total non-REM duration} \\ \frac{\text{Total sleep duration}}{\text{Total sleep duration}}$$

$$\label{eq:Sleep} \text{Sleep efficiency} = \frac{\text{Total sleep duration}}{\text{Total sleep duration} + \text{Total awake duration}}$$

Conclusion

Can wrist-worn fitness tracker datasets be used to forecast wearing-off in the next hour?

YES, forecasting wearing-off using commercial wrist-worn fitness tracker datasets was feasible.

- With current time data
- With 1-day's worth of data

Which among the DL architectures performed well in forecasting wearing-off in the next hour?

Single time-step Dense

Multi time-step Dense

CNN

Highest AUC: 69.14% ± 10.60%

Highest balanced accuracy: 80.64% ± 10.36%

Detecting & forecasting earing-off was feasible within a certain limit, even with only commercial fitness tracker features.

Detection & Forecasting models can be used in PD management

Current Landscape in Detecting PD symptoms or wearing-off

In-Clinic Data Collection

Subjective Assessment **UPDRS**

MDS-UPDRS

Parkinson's Disease Diary

WoQ

Motor Aspect

Keijsers, 2006 Jeon, 2017 Sama, 2017 Aich, 2018 & 2020 Steinmetzer, 2019 Hssayeni, 2019

Griffiths, 2012,
Farzanehfar, 2018 &
other clinical studies
that use Parkinson's
Kinetigraph (PKG)

Non-Motor Aspect

Pursiainen, 2007 Salsone, 2016 Lee, 2018 van der Heide, 2021

& other clinical research

Victorino, 2021: Detection of Wearing-off

Forecasting
Wearing-off

Objective Assessment

Continuous Home Data Collection

Executive Summary

Can wrist-worn fitness tracker datasets be used to forecast wearing-off in the next hour?

YES, forecasting wearing-off using commercial wrist-worn fitness tracker datasets was feasible.

- With current time data
- With 1-day's worth of data

Which among the DL architectures performed well in forecasting wearing-off in the next hour?

Multi time-step Dense

CNN

Single time-step Dense

Highest balanced accuracy: 80.64% ± 10.36%

Highest AUC: 69.14% ± 10.60%

Forecasting wearing-off was feasible within a certain limit, even with only commercial fitness tracker features.

Forecasting models can be used in PD management

Garmin vivosmart4

- Chosen due to sleek, lightweight; waterproof
- Weight: 16.5g 17.1g
- Dimensions: 15 x 10.5 x 197 mm
- Communicates with Garmin Health API via Garmin Connect smartphone app

FonLog Smartphone Application Dataset

Data	Description
WoQ-9	Symptoms onset and drug intake time
Basic Information	Age, Gender
Hoehn and Yahr Scale (H&Y), Japan Ministry of Health, Labor, and Welfare's classification of living dysfunction	Participant's PD stage
(JCLD)	
Parkinson's Disease Questionnaire (PDQ-8)	Participant's QoL measurement specific to PD 0 – 100%, with 100% showing worst QoL

Model Development

- Developed personalized models
- Data split
 - Training Set: 60%
 - Validation & Test Sets: 20%

Metrics

- Balanced Accuracy
- AUC
- Other metrics:
 - Accuracy, F1 Score, Precision, Recall

Features Used

 x_1 : Heartrate (HR)

 x_2 : Number of steps (Step)

 x_3 : Stress score (Stress)

 X_{Δ} : Awake duration (Awake)

 x_5 : Deep sleep duration (Deep)

 x_6 : Light sleep duration (Light)

 x_7 : REM sleep duration (REM)

 x_8 : Total non-REM sleep duration (NonREMTotal)

 x_9 : Total sleep duration (Total)

 x_{10} : Time non-REM sleep percentage

(NonREMPercentage)

 x_{11} : Sleep efficiency (SleepEfficiency)

 x_{12} : Day of the week (TimestampDayofWeek)

 x_{13} : Sine value of Hour of the day

(TimestampHourSin)

 x_{14} : Cosine value of hour of the day (TimestampHourCos)