

Project-Based Internship Id/x Partners X Rakamin Academy

Muhammad Ifzal Asril

Table of contents

U1Introduction

About dataset and what tools will be used in the project

04

Feature Scaling and Transformation

One hot encoding, standardization

02

Data Preprocessing

Exploratory data analysis, data cleansing and feature engineering

05

Modeling

Modeling with different types of algorithms

03
Missing Values

Checking and handling missing values

06

Conclusion

The last part

O1 Introduction

Credit Risk Prediction

Tools

The tools that will be used are:

- Python
- Pandas
- Matplotlib
- Seaborn
- Google Colab

Dataset

data.shape

(466285, 74)

This dataset has 466.285 rows and 74 columns.

With several data types including

- 1. Float (46 columns)
- 2. Integer (6 columns)
- 3. Strings (22 columns)

And the target variable is the 'loan_status' column.

02

Data Preprocessing

Uni-variate Analysis

Individual Boxplot

Uni-variate Analysis

Individual Violinplot

Uni-variate Analysis

Histogram

Variable Target

loan_status

Current = current payment
Charged Off = payment is bad so it is written off
Late = late payment is made
In Grace Period = within the grace period
Fully Paid = payment in full
Default = bad payment

bad_flag

0 means good 1 means bad

03

Missing Values

	Total Null Values	Percentage	Data Type	NULL Values
mths_since_last_record	403647	86.566585	float64	403647
mths_since_last_delinq	250351	53.690554	float64	250351
tot_coll_amt	70276	15.071469	float64	70276
tot_cur_bal	70276	15.071469	float64	70276
emp_length_int	21008	4.505399	int64	21008
revol_util	340	0.072917	float64	340
collections_12_mths_ex_med	145	0.031097	float64	145
total_acc	29	0.006219	float64	29
pub_rec	29	0.006219	object	29
open_acc	29	0.006219	float64	29
acc_now_delinq	29	0.006219	float64	29
inq_last_6mths	29	0.006219	float64	29
mths_since_earliest_cr_line	29	0.006219	float64	29
delinq_2yrs	29	0.006219	float64	29
annual_inc	4	0.000858	float64	4

```
data['annual inc'].fillna(data['annual inc'].mean(), inplace=True)
data['mths since earliest cr line'].fillna(0, inplace=True)
data['acc now deling'].fillna(0, inplace=True)
data['total acc'].fillna(0, inplace=True)
data['pub_rec'].fillna(0, inplace=True)
data['open acc'].fillna(0, inplace=True)
data['inq_last_6mths'].fillna(0, inplace=True)
data['deling 2yrs'].fillna(0, inplace=True)
data['collections 12 mths ex med'].fillna(0, inplace=True)
data['revol util'].fillna(0, inplace=True)
data['emp length int'].fillna(0, inplace=True)
data['tot cur bal'].fillna(0, inplace=True)
data['tot coll amt'].fillna(0, inplace=True)
data['mths since last deling'].fillna(-1, inplace=True)
```

O4 Feature Scaling and Transformation

For categorical data types, one hot encoding method will be used.

One-hot encoding in machine learning is the conversion of categorical information into a format that may be fed into machine learning algorithms to improve prediction accuracy.

id	color		id	color_red	color_blue	color_green
1	red		1	1	Θ	Θ
2	blue	One Hot Encoding	2	0	1	0
3	green	ŕ	3	0	0	1
4	blue		4	0	1	0

Next will be shown what the result of the one hot encoding method look like

	grade_B	grade_C	grade_D grad	e_E grade	_F grade_G	home_ow	nership_MORTGAGE	home_ownership	_NONE ho	ome_ownership_OTHER	purpose_renewa	able_energy p	purpose_small_busin	ness purpose_va	acation purpose_v	vedding addr_s	state_AL addr_sta	ate_AR addr_sta	te_AZ addr_stat
0	1	0	0	0	0 0		0		0	0		0		0	0	0	0	0	1
1	0	1	0	0	0 0		0		0	0		0		0	0	0	0	0	0
2	0	1	0	0	0 0		0		0	0		0		1	0	0	0	0	0
3	0	1	0	0	0 0		0		0	0		0		0	0	0	0	0	0
4	1	0	0	0	0 0		0		0	0		0		0	0	0	0	0	0
home	_ownership	o_OWN h	ome_ownership_	RENT verif	ication_status_9 V	Source /erified ve	erification_status_Verifi	ied purpose_credi	t_card pur	pose_debt_consolidation	addr_state_NV	addr_state_	_NY addr_state_C	OH addr_state_	OK addr_state_	OR addr_state	e_PA addr_state	e_RI addr_stat	e_SC addr_stat
		0		1		0		1	1	0	0		0	0	0	0	0	0	0
		0		1		1		0	0	0	0		0	0	0	0	0	0	0
		0		1		0		0	0	0	0		0	0	0	0	0	0	0
		0		1		1		0	0	0	0		0	0	0	0	0	0	0
		0		1		1		0	0	0			0	0	0	1	0	0	0
pur	pose_educa	ational p	urpose_home_in	nprovement	: purpose_hou	ise purpo	se_major_purchase	purpose_medical	purpose_n	moving purpose_other	addr_state_TX	addr_state_U	JT addr_state_VA	addr_state_VT	addr_state_WA	addr_state_W	I addr_state_WV	addr_state_W	/ initial_list_stat
		0		0		0	0	0		0 0	0		0 0	0	0	() ())
		0		0		0	0	0		0 0	0		0 0	0	0	() ())
		0		0		0	0	0		0 0	0		0 0	0	0	() ())
		0		0		0	0	0		0 1	0		0 0	0	0	() ())
		0		0		0	0	0		0 1	0		0 0	0	0	() ())

For categorical data types, standardization method will be used.

Standardization entails scaling data to fit a standard normal distribution. A standard normal distribution is defined as a distribution with a mean of 0 and a standard deviation of 1.

Next will be shown what the result of the standardization method look like

index	loon	amnt	int	rata	ann	ual inc		dti	dali	ng 2yrs	ina la	st 6mths	mtha aine	e last deling
muex	loan_a	ammu	ınıç	_rate	ann	ual_inc		au	delli	iq_zyrs	ınq_ıa	ist_omins	muis_sinc	e_last_delinq
0	-1.1243923	356712422	-0.729587	71896779282	-0.89655	10588470832	1.32863	32303633231	-0.357011	17327421637	0.178919	71846721064	-0.70879	922647233157
1	-1.42608787	754457609	0.3306338	34473679663	-0.78738	72560523542	-2.0657	9097253051	-0.357011	17327421637	3.8433	27893698174	-0.70879	922647233157
2	-1.43815569	961950943	0.488978	35446818533	-1.11029	37847191625	-1.08249	0871517974	-0.357011	17327421637	1.09502	17622749514	-0.70879	922647233157
3	-0.52100131	192457448	-0.0778495	58410697172	-0.438063	08710922126	0.354248	31361790991	-0.357011	17327421637	0.178919	71846721064	0.8608	112361730155
4	-1.3657487	771699093	-0.261437	76420142836	0.122311	10057038769	0.0918649	4860321535	-0.357011	17327421637	-0.73718	23253405302	0.9916	115279143765
							-411	4-4-1				4-4-1	-4	
open_a	acc	pub_r	ec	revol_b	oai	revol_u	utii	total_a	ICC	out_pr	ncp	total_rec_	ate_ree	recoveri
41165537	74641578 -0	0.314289650	04323558	-0 124887581	71695738	1 1594983	71158884	-1 384557021	16026701	-0 693943730	09577768	-0 123464347	709371513	-0 1545487451

-1.9659798658018848 | -1.8155375684221375 | -0.6939437309577768 | -0.12346434709371513 | 0.0574699356338950

1.782070079194138 | -1.2983609122387767 | -0.6939437309577768 | -0.12346434709371513 | -0.1545487451411822

0.7645379542567519 -0.314	42896504323558 0.5587479165	5550886 -0.0940581761	0128982 1.11513014995	02408 -0.57326846472	54045 -0.123464347093	371513 -0.15454874514
	collections_12_mths_ex_med	acc_now_delinq	tot_coll_amt	tot_cur_bal	emp_length_int	
	-0.08360769477500803	-0.05830651637302818	-0.012088616232763732	-0.7926483414923741	1.1386054448594471	
	-0.08360769477500803	-0.05830651637302818	-0.012088616232763732	-0.7926483414923741	-1.523744478548263	
	-0.08360769477500803	-0.05830651637302818	-0.012088616232763732	-0.7926483414923741	1.1386054448594471	
	-0.08360769477500803	-0.05830651637302818	-0.012088616232763732	-0.7926483414923741	1.1386054448594471	
	-0.08360769477500803	-0.05830651637302818	-0.012088616232763732	-0.7926483414923741	-1.257509486207492	

-0.7033781508596487

-0.6420033049235168

-1.6411655374641578 -0.3142896504323558

-1.8416408284409005 -0.3142896504323558

-0.23783850062696055 | -0.3142896504323558

05 Modeling

Algorithms

Decision Tree

Naive Bayes

Adaboost

Decision Tree

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	1.000000	0.903000	0.097000
1	Precision	1.000000	0.555000	0.445000
2	Recall	1.000000	0.583000	0.417000
3	F1 Score	1.000000	0.569000	0.431000
4	F1 Score (crossval)	1.000000	0.571000	0.429000
5	ROC AUC	1.000000	0.763000	0.237000
6	ROC AUC (crossval)	1.000000	0.765000	0.235000

Decision Tree

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	1.000000	0.903000	0.097000
1	Precision	1.000000	0.555000	0.445000
2	Recall	1.000000	0.583000	0.417000
3	F1 Score	1.000000	0.569000	0.431000
4	F1 Score (crossval)	1.000000	0.571000	0.429000
5	ROC AUC	1.000000	0.763000	0.237000
6	ROC AUC (crossval)	1.000000	0.765000	0.235000

Decision Tree

Training Accuracy: 100.0 % Testing Accuracy: 90.34 %

Precision

Train = 1.0 Test = 0.55 Recall

Train = 1.0 Test = 0.58 F-Score

Train = 1.0 Test = 0.56

Naive Bayes

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	0.859000	0.859000	0.000000
1	Precision	0.403000	0.404000	-0.001000
2	Recall	0.606000	0.610000	-0.004000
3	F1 Score	0.484000	0.486000	-0.002000
4	F1 Score (crossval)	0.529000	0.529000	0.000000
5	ROC AUC	0.811000	0.810000	0.001000
6	ROC AUC (crossval)	0.810000	0.809000	0.001000

Naive Bayes

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	0.859000	0.859000	0.000000
1	Precision	0.403000	0.404000	-0.001000
2	Recall	0.606000	0.610000	-0.004000
3	F1 Score	0.484000	0.486000	-0.002000
4	F1 Score (crossval)	0.529000	0.529000	0.000000
5	ROC AUC	0.811000	0.810000	0.001000
6	ROC AUC (crossval)	0.810000	0.809000	0.001000

Naive Bayes

Training Accuracy: 85.86 % Test Accuracy: 85.92 %

Precision

Recall

F-Score

Train =
$$0.403$$

Test = 0.404

Logistic Regression

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	0.939000	0.940000	-0.001000
1	Precision	0.980000	0.981000	-0.001000
2	Recall	0.455000	0.456000	-0.001000
3	F1 Score	0.621000	0.623000	-0.002000
4	F1 Score (crossval)	0.623000	0.623000	0.000000
5	ROC AUC	0.855000	0.856000	-0.001000
6	ROC AUC (crossval)	0.856000	0.855000	0.001000

Logistic Regression

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	0.939000	0.940000	-0.001000
1	Precision	0.980000	0.981000	-0.001000
2	Recall	0.455000	0.456000	-0.001000
3	F1 Score	0.621000	0.623000	-0.002000
4	F1 Score (crossval)	0.623000	0.623000	0.000000
5	ROC AUC	0.855000	0.856000	-0.001000
6	ROC AUC (crossval)	0.856000	0.855000	0.001000

Logistic Regression

Training Accuracy: 93.94 % Test Accuracy: 93.96 %

Precision

Recall

F-Score

Train = 0.980Test = 0.981

Train = 0.455 Test = 0.456 Train = 0.621Test = 0.623

Adaboost

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	0.943000	0.944000	-0.001000
1	Precision	0.975000	0.982000	-0.007000
2	Recall	0.495000	0.496000	-0.001000
3	F1 Score	0.656000	0.659000	-0.003000
4	F1 Score (crossval)	0.657000	0.657000	0.000000
5	ROC AUC	0.876000	0.874000	0.002000
6	ROC AUC (crossval)	0.876000	0.875000	0.001000

Adaboost

	Evaluation Metrics	Train	Test	Diff Range
0	Accuracy	0.943000	0.944000	-0.001000
1	Precision	0.975000	0.982000	-0.007000
2	Recall	0.495000	0.496000	-0.001000
3	F1 Score	0.656000	0.659000	-0.003000
4	F1 Score (crossval)	0.657000	0.657000	0.000000
5	ROC AUC	0.876000	0.874000	0.002000
6	ROC AUC (crossval)	0.876000	0.875000	0.001000

Adaboost

Training Accuracy: 94.34 % Test Accuracy: 94.4 %

Precision

Train = 0.97Test = 0.98 Recall

Train =
$$0.495$$

Test = 0.496

F-Score

Train = 0.656 Test = 0.659

O5Conclusion

	Models	Precision (Train)	Precision (Test)	Recall (Train)	Recall (Test)	F1 Score (Train)	F1 Score (Test)
0	Adaboost Classifier	0.975000	0.982000	0.495000	0.496000	0.656000	0.659000
1	Logistic Regression	0.980000	0.981000	0.455000	0.456000	0.621000	0.623000
2	Decision Tree	1.000000	0.555000	1.000000	0.583000	1.000000	0.569000
3	Naive Bayes	0.403000	0.404000	0.606000	0.610000	0.484000	0.486000

