Homework 8

Collaborators: Jay Hou, Thomas Weng, David Marcano

Will Childs-Klein

wdc22

April 23, 2015

Problem 1

Algorithm

3CG-Min-Cost-Approx

Complexity

Theorem 8.1

3CG-Min-Cost-Approx is of complexity $O(n + n \log n)$

Proof of Complexity

lorem ipsum dolor sit amet

Correctness

Theorem 8.2

 ${\tt 3CG-Min-Cost-Approx}$ will also ys find a color assignment c whose total cost is at most

$$\frac{1}{3} \left(\sum_{(u,v) \in E} w(u,v) \right)$$

Proof of Theorem 8.1

Problem 2

Algorithm

3CG-Min-Cost-Randomized

Complexity

Correctness

- markov's inequality
- C = 4

wdc22 PROBLEM 4

Problem 3

Problem 4

Recall 3SAT

$$X = \{x_1, ..., x_n\}$$

$$C = \{C_1, ..., C_k\}$$

$$C_i = (x_j^i \lor x_h^i \lor x_l^i)$$

Where X is a list of n boolean variables, C is a list of k conjoined clauses of disjoint $x \in X$, and $1 \le j, h, l \le k$. In other words, each clause consists of at least 1 and at most 3 unique $x \in X$.

Integer Linear Program for 3SAT

When constructing our Integer Linear Program (ILP) to solve 3SAT, we can think of the process as similar to reducing a suspected NP-Complete problem to a known NP-Complete problem. Specifically, we will transform the inputs to 3SAT into inputs for our ILP, which we will call 3SAT-ILP, such that the total number of clauses satisfied (by assignments for X found by 3SAT-ILP) is maximized.

Let us refer to X^* as the assignment found by 3SAT-ILP which is optimal in maximizing the number of clauses satisfied. The challenge in finding this "reduction" is twofold:

- 1. map 3SAT clause primitives $(x_i, \overline{x}_i, OR)$ to linear combinations of
- 2. maximize the number of clauses satisfied

We will satisfy (1.) by representing OR as addition, x_i as x_i , and \overline{x}_i as $(1-x_i)$ in our linear combination to feed into 3SAT-ILP. We will satisfy (2.) by adding a constraint vector c (lower-case, distinct from upper case C list of clauses) where $c = \{c_1, ..., c_k\}$. In other words, we will add a term c_j $(1 \le j \le k)$ to each equation in 3SAT-ILP's linear system constraint. The linear system constraint will be comprised of k distinct equations (one for each $C_j \in C$), each of four terms: 3 representing each $x \in X$ invoked in C_j , and the fourth being our c_j constraint. This c_j is what we will seek to minimize in our objective function. Take for example a 3SAT instance where n = 4, k = 3, and

$$C_1 = (x_1 \lor x_2 \lor \overline{x}_3)$$
$$C_2 = (x_1 \lor \overline{x}_2 \lor x_4)$$

$$C_3 = (x_2 \vee x_3 \vee \overline{x}_4)$$

Given this instance, we will construct ${\tt 3SAT-ILP}$'s linear inequality constraint system as follows:

$$x_1 + x_2 + (1 - x_3) + c_1 \ge 1$$

 $x_1 + (1 - x_2) + x_4 + c_2 \ge 1$
 $x_2 + x_3 + (1 - x_4) + c_3 \ge 1$

through some simple algebra, we rearrange the above equations before inputting them into ${\tt 3SAT-ILP}$ as follows:

$$c_1 \ge 1 - x_1 - x_2 - (1 - x_3) \Leftrightarrow -x_1 - x_2 + x_3 \le c_1$$

$$c_2 \ge 1 - x_1 - (1 - x_2) - x_4 \Leftrightarrow -x_1 + x_2 - x_4 \le c_2$$

$$c_3 \ge 1 - x_2 - x_3 - (1 - x_4) \Leftrightarrow -x_2 - x_3 + x_4 \le c_3$$

<NAME>

 1
 input:

 2
 init:

 3
 begin

 4
 end