Name: Devansh Kansara Student Id: 21112551

Q1)

- (a) Basically, in the given program, there is two conditional paths that are present. So, 4 different execution paths will be there for Prog1. They are:
 - 1, 2, 3, 4, 9, 11, 12, 13,17 ... (I) \rightarrow Both the conditions are true.
 - 1, 2, 5, 6, 7, 9, 11, 14, 15, 16, 17.... (II) \rightarrow Both the conditions are false.
 - 1, 2, 3, 4, 9, 11, 14, 15, 16, 17 ... (III) \rightarrow First condition is true and second is false.
 - 1, 2, 5, 6, 7, 9, 11, 12, 13, 17 ... (IV) \rightarrow First condition is false and second is true.

(b)

Symbolic execution of path—I:

Edge	Symbolic State (PV)	Path Condition (PC)
1) 2	$x \rightarrow X_0, y \rightarrow Y_0$	true
2) 3	$x \rightarrow X_0, y \rightarrow Y_0$	$X_0 + Y_0 > 15$
3 → 4	$x \rightarrow X_0 + 7, y \rightarrow Y_0$	$X_0 + Y_0 > 15$
4 → 9	$x \rightarrow X_0+7, y \rightarrow Y_0-12$	$X_0 + Y_0 > 15$
9 → 11	$x \rightarrow X_0+9, y \rightarrow Y_0-12$	$X_0 + Y_0 > 15$
11 > 12	$x \to X_0 + 9, y \to Y_0 - 12$	$X_0 + Y_0 > 15 \& 2*(X_0 + Y_0 - 3 > 21)$
12 > 13	$x \to 3*(X_0+9), y \to Y_0-12$	$X_0 + Y_0 > 15 \& 2*(X_0 + Y_0 - 3 > 21)$
13 → 17	$x \rightarrow 3^*(X_0+9), y \rightarrow 2^*(Y_0-12)$	$X_0 + Y_0 > 15 \& 2*(X_0 + Y_0 - 3 > 21)$

Symbolic execution of path -II:

Edge	Symbolic State (PV)	Path Condition (PC)
1 > 2	$x \rightarrow X_0, y \rightarrow Y_0$	True
2 > 5	$x \rightarrow X_0, y \rightarrow Y_0$	$X_0 + Y_0 \le 15$
5 > 6	$x \rightarrow X_0, y \rightarrow Y_0$	$X_0 + Y_0 \le 15$
6 > 7	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15$
7 > 9	$x \rightarrow X_0-2, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15$
9 -> 11	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15$
11 > 14	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 \le 21)$
14 > 15	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 \le 21)$
15 → 16	$x \to 4^*X_0, y \to Y_0+10$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 \le 21)$
16 > 17	$x \rightarrow 4*X_0, y \rightarrow 3*(Y_0+10) + 4*X_0$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 \le 21)$

Symbolic execution for path – III:

Edge	Symbolic State (PV)	Path Condition (PC)
1) 2	$x \rightarrow X_0, y \rightarrow Y_0$	true
2 > 3	$x \rightarrow X_0, y \rightarrow Y_0$	$X_0 + Y_0 > 15$
3 → 4	$x \rightarrow X_0+7, y \rightarrow Y_0$	$X_0 + Y_0 > 15$
4 → 9	$x \rightarrow X_0+7, y \rightarrow Y_0-12$	$X_0 + Y_0 > 15$
9 → 11	$x \rightarrow X_0+9, y \rightarrow Y_0-12$	$X_0 + Y_0 > 15$
11 > 14	$x \rightarrow X_0+9, y \rightarrow Y_0-12$	$X_0 + Y_0 > 15 & 2*(X_0 + Y_0 - 3 \le 21)$
14 > 15	$x \rightarrow 3^*(X_0+9), y \rightarrow Y_0-12$	$X_0 + Y_0 > 15 & 2*(X_0 + Y_0 - 3 \le 21)$
15 → 16	$x \to 4^*(X_0+9), y \to Y_0-12$	$X_0 + Y_0 > 15 & 2*(X_0 + Y_0 - 3 \le 21)$
16 → 17	$x \rightarrow 4^*(X_0+9), y \rightarrow 3^*(Y_0-12) + 4^*(X_0+9)$	$X_0 + Y_0 > 15 \& 2*(X_0 + Y_0 - 3 \le 21)$

Symbolic execution of path – IV:

Edge	Symbolic State (PV)	Path Condition (PC)
1) 2	$x \rightarrow X_0, y \rightarrow Y_0$	true
2 > 5	$x \rightarrow X_0, y \rightarrow Y_0$	$X_0 + Y_0 \le 15$
5 → 6	$x \rightarrow X_0, y \rightarrow Y_0$	$X_0 + Y_0 \le 15$
6 > 7	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15$
7 > 9	$x \rightarrow X_0-2, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15$
9 → 11	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15$
11) 12	$x \rightarrow X_0, y \rightarrow Y_0+10$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 > 21)$
12 > 13	$x \to 3*X_0, y \to Y_0+10$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 > 21)$
13 > 17	$x \to 3*X_0, y \to 2*(Y_0+10)$	$X_0 + Y_0 \le 15 \& 2*(X_0 + Y_0 + 10 > 21)$

(c)

Path 1 is feasible: $X_0=10$, $Y_0=6$ Path 2 is feasible: $X_0=0$, $Y_0=-10$

Path 3 is infeasible

Path 4 is feasible: $X_0=4$, $Y_0=5$

(a)

$$(a) (-a_1 \vee -a_2) \wedge (-a_1 \vee -a_3) \wedge (-a_1 \vee -a_4) \wedge .$$

$$(-a_2 \vee -a_3) \wedge (-a_2 \vee -a_4) \wedge (-a_3 \vee -a_4).$$

(b)

```
(b) The given FOL is valid.
 * Eiset, we prove,
           Vn Jy (P(n) VQ(y)) => (Vn P(n)) V (Jy Q(y)
   We assume that the left-han
  one y such that P(x) v Q(y) is for this we have to prove that hand side is also true.
Thus, we can say that irrespective
  Ty Q(yo) is true and the right
   (ASE(b):
  Noue, are assume that there doesn't exist a y for which O(y) is the Nove as 2 the left - Thand 125 ide holder 2 will 2 can
```

Say that Yn P(n) is true. Thus, the in both the cases the right true when the left hand side true. prone assune that the left-han true (ASE (a): true, choose ay. that true ASP 636 true, then for som side -OL sentence is valid

The solution that I have given below is inspired by Will Klieber, Gihwon Kwon.

Suppose that we have a set of propositional variables $X = \{x_1, ..., x_n\}$, and we desire exactly one of them to be true. In the naïve encoding, each variable must 'talk' with every other variable. That is, each variable must appear in a clause with every other variable. We can formalize this with the following functions that return a set of clauses:

$$Na\"{i}veAtLeastOne(X) = \bigvee_{i=1}^{n} x_{i}$$

$$Na\"{i}veAtMostOne(X) = \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} (\neg x_{i} \lor \neg x_{j})$$

$$Na\"{i}veExactlyOne(X) = Na\"{i}veAtLeastOne(X) \land Na\"{i}veAtMostOne(X)$$

To reduce the number of clauses, we can divide the variables into groups. We assign a new variable, called "a commander variable", to each group. This commander variable is to be true if (at least) one of the variables in its group is true; otherwise, it is to be false. In the commander-variable method, the original variables do not need to 'talk' directly to any other variables that are not in the same group; instead, the commander variables act as proxies between original variables in different groups. To describe the commander-variable encoding more precisely, let us introduce additional notation. Let the set of propositional variables $X = \{x_1, ..., x_n\}$ be divided into m disjoint subsets G_1 through G_m . The commander node of group G_i is labeled " C_i ". Using this notation, the logic for the commander method can be encoded in CNF form as follows:

1. At most one variable in a group can be true: For each group G_i, we encode the following clauses:

$$\bigwedge_{x_j \in G_i} \bigwedge_{x_k \in G_i, k < j} (\neg x_j \lor \neg x_k)$$

2. If the commander variable of a group is false, then none of the variables in the group can be true: For each group G_i, we encode the following clauses:

$$\bigwedge_{x_j \in G_i} (c_i \vee \neg x_j)$$

3. **Exactly one of the commander variables is true:** This can be encoded either by the pairwise method or by a recursive application of the commander method.

Let's consider how many clauses are required for each group. Note that Constraint 1 above requires n*(n-1)/2, where n is the number of variables in the group. Constraint 2 requires 1 clause. Thus, the total number of clauses per group is (n*(n+1)/2) + 1.

However, to analyze the performance of the commander approach (in terms of many clauses and extra variables are required), let us consider a grouping method wherein the variables are, at each stage of the hierarchy, divided into groups of k variables. For example, k=2, we get binary tree shown in Fig. 1. From the diagram, it is clear that the number of groups, in the asymptotic limit of a large number of variables n, is:

$$\sum_{i=1}^{\infty} (n/k) = (n/k) + (n/k^2) + (n/k^3) + \cdots$$

$$= (1/k + 1/k^2 + n/k^3 + \cdots)n$$

$$= \left(\frac{1}{1 - 1/k} - 1\right)n$$

$$= \left(\frac{1/k}{1 - 1/k}\right)n$$

Figure 1: Binary tree of groups

The number of additional variables is equal to the number of groups. To get the number of clauses, we multiply this by the number of clauses per group, getting a result of:

$$\left(\frac{(k+1)/2+(1/k)}{1-1/k}\right)n$$

We find that k = 3 is the best choice for reducing the number of clauses. In this case, there are n/2 more variables in addition to the total of 3n clauses. This encoding therefore employs a maximum of O(n) clauses and variables.

(a)

(068-297) WK 10 MARCH
(Q-3)
8 The state of the
(D) Let I(n) be a predicate that returns true if n is an integer and false
true if n is an integer and false
otherwise.
Market Continue of the Continu
To expres quantifier free constraints: in Fol:
(180 8) has the Company of the
met in (M. The A took destrone deline gold
Q C = Q C
$\frac{1 \leq k_1, k_2, c_1, c_2 \leq n}{1 \leq k_1, k_2, c_1, c_2 \leq n} \rho_{k_1, c_1} \neq \rho_{k_2, c_2}.$
hitha of Citca
(ME) ST COUNTY (ME) AND BE (SM)
LEN MALLER S DID HER WILLIAM AND A
In the state of th
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A CONTRACTOR OF THE STATE OF TH
1 2 pro < n Dognes of Maria
50 1 1 58, C 5n
Cx xx x x x x x x x x x x x x x x x x x
$\sum_{n=1}^{\infty} \left(\sum_{n=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{1}{n} \right) \right)$
$1 \leq 2 \leq n \leq 1 \leq 1 \leq n \leq 2$
12001
$\sum a_{1} = n^{2} (n^{2} + 1)$
15C SN 1516M
2
A 0 (2) 2
1 < 1 < N = 2018

Q4)

(d)

sym.py:322 is not covered because we did not execute the file as the main program.

sym.py: 132 is not covered because WHILE only has <= / < / = / >= / > relational operators only.

sym.py: 151 is not covered because WHILE only has not | and | or logical operators only.

sym.py: 173 is not covered because WHILE only has + | - | * | / arithmetic operators only.

(e)

The symbolic execution engine diverges for the following program:

havoc x, y; while x > 0 do {while y > x do {y: = y / 2 - 1}; x: = x / 2 - 1}