

Exercice 1 Un grand constructeur automobile propose une nouvelle gamme de véhicules électriques équipés de batteries au nickel-cadmium. On s'intéresse à l'autonomie en kilomètres de cette nouvelle gamme de véhicules.

Soit X la variable aléatoire qui à un véhicule tiré au hasard associe son autonomie en km

On suppose que X suit la loi normale de moyenne $\mu = 109$ et d'écart type $\sigma = 1$ On arrondira les résultats à 10^{-2} près.

On considère qu'un véhicule est conforme lorsque son autonomie est comprise entre 107 et 111 km

- 1. Déterminer la probabilité que le véhicule soit déclaré conforme.
- 2. Quelle est la durée moyenne d'une batterie?
- 3. Quelle est la probabilité que la batterie dure plus de 108 km
- 4. Quelle est la probabilité que la batterie dure au moins 111 km
- **5.** Quelle est la probabilité que la batterie dure au plus 107 km

Exercice 2 *Un test de connaissance est organisé pour intégrer une formation.*

Ce test se compose de 40 questions n'ayant aucun lien entre elles : c'est comme si on avait un tirage avec remise

Chaque question est construite de façon identique : une affirmation avec quatre propositions dont une seule est juste.

Une bonne réponse rapporte un point, une mauvaise réponse ne rapporte aucun point mais n'en enlève pas.

On appelle X la variable aléatoire qui compte le nombre de point à la fin du test quand on a répondu au hasard.

On intègre cette école si son score dépasse 33.

- 1. Quelle est la loi suivie par X?
- 2. Calculer la probabilité d'intégrer cette école en répondant au hasard.
- **3.** Calculer la probabilité d'avoir au plus 7 bonnes réponses sur 40 en répondant au hasard.
- **4.** Calculer la probabilité d'avoir exactement 7 bonnes réponses sur 40 en répondant au hasard.
- 5. Calculer la probabilité d'avoir au moins 7 bonnes réponses sur 40 en répondant au hasard.
- **6.** Calculer la probabilité d'avoir entre 6 et 15 bonnes réponses sur 40 en répondant au hasard.

Exercice 3 Une population comporte en moyenne une personne de plus de 1m90 sur 83

Soit X la variable aléatoire qui, à une population de 83 personnes, associe le nombre de personnes mesurant plus de 1 m90.

- **1.** On suppose que X suit une loi de poisson. Quelle est la valeur de λ ?
- **2.** Quelle est la probabilité qu'il y ait plus de 2 personnes mesurant plus de 1 m90 parmi ces personnes?
- **3.** Quelle est la probabilité qu'il y moins de 3 personnes mesurant plus de 1m90 parmi ces personnes?