

Prepared by Nasser Mohammadi Presented by Nicholaus Malone

SDI jitter defined by SMPTE

- SMPTE RP 184 applies to:
 - Receiver: jitter tolerance
 - Jitter source: SN65LVDS31
 - alignment, timing, transfer
- SMPTE RP 192 applies to:
 - Methods for measuring these requirement as outlined in SMPTE RP 184

SDI Analyzer

SMPTE RP 184 jitter tolerance

Minimum peak to peak amplitude of the sinusoidal jitter that causes bit error

SMPTE RP 184 jitter transfer

Normalized output jitter vs input jitter as a function of the frequency

SMPTE RP 184 alignment / timing jitter

Variation in position of a signal's transitions over a frequency band relative to the recovered clock

Input jitter tolerance template

Parameter	Unit	Description
f1	Hz	Low-frequency limit
f2	Hz	A1 Low-frequency jitter tolerance edge
f3	Hz	A2 High-frequency jitter tolerance edge
f4	Hz	High-frequency specification limit
A1	UI	Low-frequency jitter tolerance, f1 to f2
A2	UI	High-frequency jitter tolerance, f3 to f4
Error Criterion		Bit error criterion
Test Signal		Color bar or equivalent

Jitter transfer

Parameter	Unit	Description
f1	Hz	Low-frequency band edge
f2	Hz	High-frequency band edge
J	dB	Low-frequency normalized jitter
Test Signal		Color bar or equivalent

Timing and alignment jitter bypass filter

Parameter	Unit	Description
f1	Hz	Timing jitter lower band edge
f2	Hz	Alignment jitter lower band edge
f3	Hz	Timing jitter upper band edge
f4	Hz	Alignment jitter upper band edge
A1	UI	Timing jitter limit
A2	UI	Alignment jitter limit

Short quiz

- What is intrinsic jitter:
 - Output jitter with 1-m-75-ohm cable, color bar pattern, and no input jitter
 - Output jitter with no input jitter and 1-m-75-ohm cable
- What is jitter transfer:
 - Output jitter at the output of the device
 - Output jitter versus input jitter as a function of the frequency
- Input jitter tolerance is:
 - The minimum peak to peak jitter amplitude that causes bit error
 - Jitter amplitude that causes alignment jitter failure
- What is wander:
 - Jitter frequency below one tenth of the data rate
 - Jitter amplitude below 10Hz

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

Short quiz

- What is intrinsic jitter:
 - Output jitter with 1-m-75-ohm cable, color bar pattern, and no input jitter
 - Output jitter with no input jitter and 1-m-75-ohm cable
- What is jitter transfer:
 - Output jitter at the output of the device
 - Output jitter versus input jitter as a function of the frequency
- Input jitter tolerance is:
 - The minimum peak to peak jitter amplitude that causes bit error
 - Jitter amplitude that causes alignment jitter failure
- What is wander:
 - Jitter frequency below one tenth of the data rate
 - Jitter amplitude below 10Hz

1

Short quiz

- What is intrinsic jitter:
 - Output jitter with 1-m-75-ohm cable, color bar pattern, and no input jitter
 - Output jitter with no input jitter and 1-m-75-ohm cable
- What is jitter transfer:
 - Output jitter at the output of the device
 - Output jitter versus input jitter as a function of the frequency
- Input jitter tolerance is:
 - The minimum peak to peak jitter amplitude that causes bit error
 - Jitter amplitude that causes alignment jitter failure
- What is wander:
 - Jitter frequency below one tenth of the data rate
 - Jitter amplitude below 10Hz