Region Select Game Walkthrough

using Knot Theory

Index

- 1. Region Select Game?
- 2. Main Theorem
- 3. Use Algorithm
- 4. Knot theory

1. Region Select Game?

Do it!

Do it!

Do it!

Question.

어떤 상태로 시작하든 모든 전구를 다 킬 수 있을까?

어떤 전구를 하나만 킬 수 있는 알고리즘이 있을까?

2. Main Theorem

Theorem 1.1. Let D be a knot diagram, and c a crossing point of D. Let D' be the diagram obtained from D by the crossing change at c. Then, there exist region crossing changes which transform D into D'.

1 knot diagram,

So what is a knot?

2. crossing point

Knot diagram

3. $crossing\ change\ at\ c$

4. region crossing changes

5. Reduced, reducible

Reduced diagram

Corollary 1. 색칠한 곳에 전구를 다 켜도 원래 상태로 돌아온다.

Checkerboard coloring

Corollary 2. 색칠한 곳에 전구를 일부분 킨 것과 나머지 부분을 킨 것의 상태와 같다.

Step 1.

Step 2.

Step 3.

Step 4. Choose one component and checkerboard coloring.

Checkerboard coloring

Step 5. Change crossing in shaded regions.

4. Use Algorithm!

5. Knot Theory

Are they same?

5. Knot Theory

https://knotinfo.math.indiana.edu/diagram_display.php?10_9

Source

- https://www.sci.osaka-cu.ac.jp/math/OCAMI/news/gamehp/etop/gametop.html
- Ayaka SHIMIZU. "Region crossing change is an unknotting operation."
 "J. Math. Soc. Japan 66 (3) 693 708, July, 2014. https://doi.org/10.2969/jmsj/06630693