제4장 RIPv2 라우팅 프로토콜 (시험에 안나옴)

1. RIPv2(Routing Information Protocol Version 2)

- Distance Vector
- Classless Routing Protocol (바뀐점)
- auto-summary -> no auto-summary
- IGP

1) RIPv2 라우팅 프로토콜 설정방법

'network' 명령어를 이용하여 로컬 네트워크 서브넷을 다음과 같이 원본 클래스 이름으로 설정한다.

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#no auto-summary

Router(config-router)#network A.0.0.0

Router(config-router)#network B.B.0.0

Router(config-router)#network C.C.C.0

Router(config-router)#end

- version 2
- no auto-summary
- 이것만 바뀌었다.

2. Classless Routing Protocol

서브넷 마스크를 이용하여 네트워크를 서브넷으로 처리하며 라우팅 업데이트시 서브넷 마스크가 포함된다. VLSM 환경에서 라우팅 업데이트가 가능하며, CIDR 기능을 지원한다.

4. 라우팅 업데이트 방식

라우팅 업데이트시 목적지 IP 주소를 멀티케스트(224.0.0.3)로 설정하여 30 초마다 주기적으로 라우팅 업데이트를 실시한다. 그렇기 때문에 RIPv2 라우팅 업데이트가 전송될 필요 없는 내부 네트워크 인터페이스는 'passive-interface' 명령어를 이용하여 전송되지 않도록 차단하는 것을 권장한다.

R1#conf t

R1(config)#service timestamps debug datetime msec

R1(config)#router rip

R1(config-router)#passive-interface fa0/0

R1(config-router)#end

R1#

5, 균등 로드 분산

- 이 경우 두 경로 다 넥스트홉이 2개이다.'
- 메트릭이 동일하다.

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
Gateway of last resort is not set
      13.0.0.0/24 is subnetted, 6 subnets
         13.13.12.0 is directly connected, Serial1/1
         13.13.14.0 [120/1] via 13.13.12.1, 00:00:01, Serial1/1
C
         13.13.20.0 is directly connected, FastEthernet0/0
         13.13.23.0 is directly connected, Serial1/0
R
         13.13.34.0 [120/1] via 13.13.23.3, 00:00:28, Serial1/0
          13.13.40.0 [120/2] via 13.13.23.3, 00:00:28, Serial1/0
R
                       [120/2] via 13.13.12.1, 00:00:01, Serial1/1
```

이 경우 둘다 등록되며, 패킷을 보낼때 반반씩 보낸다. (분산처리로 보낸다) - load distribution

7. RIP 컨버전스

1) 루트 포이즌(Route Poison)

장애가 발생한 RIP 네트워크 정보에 대해서 Hop=16 정보를 업데이트하는 동작이다. Hop=16 인 RIP 네트워크는 더 이상 도달이 불가능한 네트워크를 의미한다.

2) 리버스 포이즌(Reverse Poison)

루트 포이즌에 대한 응답이다.

Hop=16 에 대한 응답이며, 네트워크 도달 불가능한 정보를 역으로 업데이트하는 동작이다.

8. RIP 라우팅 업데이트 방지

1) Split-Horizon

RIP 라우팅 업데이트 루프를 방지하는 기능이다. 라우팅 정보를 수신한 인터페이스로 라우팅 업데이트가 나가는 것을 차단한다.

R3#show ip int s1/1

~ 중간 생략 ~

Local Proxy ARP is disabled

Security level is default

Split horizon is enabled

2) Hop Count Limit

Hop 범위를 0~16으로 제한하는 기능이다.

라우팅 업데이트 루프가 발생하여, Hop=16 으로 된 RIP 경로를 라우팅 테이블에 삭제한다.

- Split Horizon이 있기 때문에 안쓴다.