

Ribonucleicprime Acid

(2 detik, 256 MB)

Deskripsi

COVID-19 saja belum berakhir, namun kali ini wilayah PotatoLand dihadapkan lagi dengan virus baru yaitu "DIVOC-21". Berbeda dengan COVID-19 yang merupakan virus RNA dimana memiliki RNA (ribonucleic acid) sebagai material genetiknya, DIVOC-19 merupakan virus RNPA (ribonucleicprime acid) yang sebenarnya bisa juga dikatakan mirip RNA namun memiliki karakteristik yang unik dimana dari namanya saja terlihat memiliki hubungan dengan bilangan prima.

Almond merupakan seorang peniliti *nub* yang sedang bekerja di Find Institute of Technology. Untuk mencegah penyebaran wabah DIVOC-19 agar tetap dapat terkendali, Almond kali ini sedang meneliti tentang sintesis protein pada RNPA (ribonucleicprime acid). Sama halnya dengan RNA standar, RNPA terdiri dari 2 macam jenis yaitu mRNPA (messenger-RNPA) dan tRNPA (transfer-RNPA). Tahap pertama dalam sintesis protein adalah proses transkripsi. Pada proses ini, mRPNA akan menuju nukleus dan menempel pada template strand DNA kemudian melakukan elongasi pada template strand DNA. Saat melakukan elongasi, DNA akan melakukan encodeing kemudian enkripsi pada template strand tersebut hingga mencapai ujung dari gen hingga terminasi dan mRNPA dilepas dari DNA. Dari sini terlihat perbedaan antara RNA dan RNPA dimana pada RNA biasa hanya dilakukan encoding, namun pada RNPA juga akan dilakukan enkripsi pesan protein oleh DNA sehingga menghasilkan sebuah tahapantahapan dengan ketentuan sebagai berikut.

- 1. mRNPA terdiri dari grup-grup yang disebut kodon sejumlah **n**.
- 2. DNA akan melakukan transkripsi protein yang diinginkan pada tiap kodon yang terbentuk pada mRNPA.
- 3. Protein yang ingin disintesis oleh DNA merupakan sebuah string protein yang diencode berdasarkan ascinya membentuk sebuah bilangan bulat M_i dimana M_i merupakan hasil encode pada kodon ke-i. Sebagai contoh pada kodon ke-i DNA ingin melakukan sintesis protein "AB" yang memiliki nilai hexadecimal 4142 sehingga nilai M_i adalah 16706.
- 4. Untuk tiap-tiap kodon, Enkripsi yang dilakukan mengikuti aturan $C_i = M_i^{65537} \mod N_i$.
- 5. Untuk setiap i, nilai M_i dipastikan lebih kecil dari N_i.
- 6. Terdapat aturan pada kodon ke-i bahwa N_i merupakan perkalian 2 buah bilangan prima p_i dan q_i dimana selisih antara p_i dan q_i kurang dari akar p_i. Karena proses transkripsi ini membentuk sebuah rantai mRNPA maka nilai p_{i+1} memiliki nilai yang sama dengan qi.

Setelah proses transkripsi berhasil, mRNPA akan meninggalkan nukleus menuju sitoplasma dimana akan mencari ribosom. Proses inilah yang disebut translasi. Bila pada mRNPA memiliki grup-grup yang disebut kodon, tRNPA juga memiliki grup-grup yang disebut antikodon. Untuk setiap kodon yang terdapat pada mRNPA akan saling berpasangan dengan antikodon pada tRNPA yang isinya merupakan pesan protein apasaja yang diminta oleh DNA. Sebagai seorang peneliti nub, Almond telah melakukan ekstraksi pada mRNPA kemudian mencatat nilai-nilai kodon pada mRNPA tersebut beserta nilai N-nya. Tugas utama Almond setelah mendapatkan nilai-nilai tersebut adalah mencari nilai anti-kodonnya. Namun, karena masih *nub* ia belum bisa menerjemahkan protein apa saja yang akan disintesis oleh DNA. Karena kamu bukanlah peneliti *nub* maka Almond meminta bantuanmu agar penelitiannya sukses.

Format Masukan

Masukan terdiri dari tiga baris. Baris pertama diberikan sebuah bilangan bulat positif **n** yang merupakan banyak kodon berhasil diekstrak oleh Almond. Untuk setiap baris selanjutnya terdiri dari n buah bilangan dimana pada baris kedua merupakan nilai kodon yang berhasil diekstrak dan pada baris ketiga merupakan nilai N dari tiap-tiap kodon.

Format Keluaran

Untuk setiap kodon yang berhasil diekstrak, keluarkanlah string yang merupakan nilai dari anti-kodon nya.

Batasan

$$1 \le n \le 10$$

 $1 < p_i, q_i < 2^{512}$
 $|p_i - q_i| < \sqrt{p_i}$
 $p_i, q_i \ne 65537$

