F6-TEK4040 30.09.2020

Eulers symmetrical parameter representation of the DCM

Definisjon A.12 Eulers symmetriske parametre

Vha vinkel-akse representasjonen kan vi definere en 4-parameter representasjon på følgende måte

$$\underbrace{R}_{\varepsilon_{1}} = \begin{bmatrix} \varepsilon_{1} & \sin(\theta/2) & \varepsilon_{3} & \varepsilon_{3} & \sin(\theta/2) \\ \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \sin(\theta/2) & \varepsilon_{0} & \cos(\theta/2) \end{bmatrix}}_{\varepsilon_{2} = k_{2} \sin(\theta/2)} \Rightarrow \underbrace{\varepsilon_{0}^{2} + \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + \varepsilon_{3}^{2} = 1}_{\varepsilon_{1}} (A-45)$$

$$\underbrace{Sin(\frac{\theta}{2})}_{\varepsilon_{2}} \underbrace{\left(\underbrace{k_{1}^{2} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}}_{\varepsilon_{1}} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}_{\varepsilon_{2}} \right) + \underbrace{cos(\frac{\theta}{2})}_{\varepsilon_{2}} = \underbrace{\left(\underbrace{k_{1}^{2} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}}_{\varepsilon_{1}} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}_{\varepsilon_{2}} \right)}_{\varepsilon_{1}} + \underbrace{cos(\frac{\theta}{2})}_{\varepsilon_{2}} = \underbrace{\left(\underbrace{k_{1}^{2} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}}_{\varepsilon_{1}} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}_{\varepsilon_{2}} \right)}_{\varepsilon_{2}} + \underbrace{\left(\underbrace{k_{1}^{2} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2}}_{3}}}_{\varepsilon_{2}} + \underbrace{k_{3}^{2} + \underbrace{k_{3}^{2} + \underbrace{k_{3}^{2} + \underbrace{k_{3}^{2}}_{3}}}_{\varepsilon_{2}} \right)}_{\varepsilon_{2}} + \underbrace{\left(\underbrace{k_{1}^{2} + \underbrace{k_{2}^{2} + \underbrace{k_{3}^{2} + \underbrace{k_{3}^{2}$$

Quaternion representation of the DCM

A quaternion (thouse with unit length) can represent the DCM Rp it it is defined using Enters symmetrical parameters in the following way:

F6-TEK4040 30.09.2020

$$\mathcal{E}_{p}^{q} = \mathcal{E}_{o} + \mathcal{E}_{i} i + \mathcal{E}_{z} j + \mathcal{E}_{3} k$$

$$\left| \mathcal{E}_{p}^{q} \right| = \left(\frac{3}{2} \mathcal{E}_{i}^{z} \right)^{2} = 1$$

$$\left\| \mathcal{E}_{p}^{2} \right\| = \left(\sum_{i=0}^{3} \mathcal{E}_{i}^{2} \right)^{1/2} = 1$$

$$||i|| = |j|| = |k|k| = -1$$

$$||i|| = -j|i| = |k|$$

$$||i|| = -j|i|$$

$$||i|| = -j|$$

$$||i||$$

Renormalization of \mathcal{E}_p^4 is much simpler than renormalization of \mathbb{R}_p^4 ($|\mathbb{R}_p^4|=1$, $\mathbb{P}_1^4 \perp \mathbb{P}_2^4 \perp \mathbb{P}_3^4$)

F6-TEK4040 30.09.2020

Calculation rules for quaternions.

$$R_{c}^{a} = R_{b}^{a} R_{c}^{b} \iff \mathcal{E}_{c}^{a} = \mathcal{E}_{c}^{b} \mathcal{E}_{b}^{a}$$

$$R_{b}^{a} C^{b} \iff (\mathcal{E}_{b}^{a})^{*} \Gamma^{b} \mathcal{E}_{b}^{a}$$

F6-TEK4040 30.09.2020

Parametrisering	Notasjon	Fordel	Ulempe	Vanilige anvendelser
RKM	$C_p^q \left(\begin{array}{c} \P \\ Q \end{array} \right)$	Ingen singulariteter, ingen trigonometriske funk- sjoner, enkel produktregel for suksesive rotasjoner	Seks redundante parametre	I analysen, for å transformere vektorer fra et k.s. til et annet
Eulervinkler	$arphi, heta,\psi$	Ingen redundante parametre, klar fysisk tolkning	Trigonometriske funksjoner, singulariteter for visse vinkler, ingen enkel produktregel for suksessive rotasjoner	Analytiske studier, 3-akset stillingskontrol av legemer
Vinkel-akse	\underline{k}, θ	Klar fysisk tolkning	En redundant parameter, aksen er udefinert når $\sin \theta = 0$, trigonometriske funksjoner	Reorienteringsmanøvre (slew)
Kvaternioner	ε	Ingen singulariteter, ingen trigonometriske funk- sjoner, enkel produktregel for suksessive rotasjoner	En redundant parameter, ingen klar fysisk tolkning	Treghetsnavigasjonsberegninger

.A.3. _AHine_ spce.

Definisjon A.14 Affint rom

La A være en ikke-tom mengde av punkter, og la V være et vektorrom over skalarkroppen K. Anta at for vilkårlige punkt $P \in A$ og $\vec{a} \in V$ er det definert en addisjon $P + \vec{a} \in A$ som tilfredstiller følgende betingelser :

- 1. $P + \vec{0} = P (\vec{0} \text{ er nullvektoren } i \mathcal{V})$
- 2. $(P + \vec{a}) + \vec{b} = P + (\vec{a} + \vec{b})$ for $\forall \vec{a}, \vec{b} \in \mathcal{V}$
- 3. For enhver $Q \in A$ eksisterer en entydig vektor $\vec{a} \in V$ slik at $Q = P + \vec{a}$ Da er A et affint rom.

Civen the pame $J_a = \{O_a, \vec{a}_1, \vec{a}_2, \vec{a}_3\}$ There is a clear relation between $P, \vec{r}, \underline{r}^a$

A3.2 Coordinate systems and trames

Definisjon A.15 Affine koordinater

La \mathcal{A} være et n-dimensjonalt affint rom og la $\mathcal{F}^e = (O_e; \vec{e}_1, \vec{e}_2, \dots, \vec{e}_n)$ være en ramme, hvor O_e , kallt origo, er et punkt i \mathcal{A} , og vektorene $\{\vec{e}_i\}$ er et sett basisvektorer for for det tilhørende vektorrom \mathcal{V} . Da er de inhomogene **koordinatene** til et vilkårlig punkt $P \in \mathcal{A}$ med hensyn til ramma \mathcal{F}^e gitt av n-tuppelet $\{p_1^e, p_2^e, \dots, p_n^e\}$ (vi vil sette disse sammen til en algebraisk vektor, \underline{p}^e), hvor $P = O_e + \sum_{i=1}^n p_i^e \vec{e}_i$. Dersom \mathcal{A} også har strukturen til et Euclidsk rom (se nedefor) og vi lar ramma $\mathcal{F}^e = (O_e; \vec{e}_1, \vec{e}_2, \dots, \vec{e}_n)$ bestå av ortogonale basisvektorer sier vi at vi har et rektangulært koordinatsystem (eller ortogonalt k.s.), dersom basisvektorer har lengde 1, $\langle \vec{e}_i, \vec{e}_j \rangle = \delta_{ij}$,kalles k.s. for $ramma (\vec{e}_i, \vec{e}_j) = c_{ij}$ og vi sier vi har et $ramma (\vec{e}_i, \vec{e}_i) = c_{ij}$ og vi sier vi har et $ramma (\vec{e}_i, \vec{e}_i) = c_{ij}$ og vi sier vi har et $ramma (\vec{e}_i, \vec{e}_i) = c_{ij}$ og vi sier vi har et $ramma (\vec{e}_i, \vec{e}_i) = c_{ij}$ er vinkelen mellom basisvektoren gitt av $ramma (\vec{e}_i, \vec{e}_i) = c_{ij}$ og $ramma (\vec{e}_i, \vec{e}_i)$ og $ramma (\vec{$

A.3.3 Matrix representation of points and vectors. In homogenuos representation.

Def. A. 17 Position vector

チ^P

Geometrical eghation:

Algebraic equation

$$P = O_q + \vec{r} = O_p + \vec{p}$$

$$\vec{r} - \vec{p} = O_p - O_q = \vec{r}_{qp}$$

$$\vec{\Gamma} = \vec{\Gamma}_{fP} + \vec{\beta}$$

We see that when representing points in two different frames the coordinates transform as:

But vectors in vector space Lansform as:

Homogenous representation of : 4 dim. matris Define: rep. of the point P $\tilde{q}_{p}^{p} = [p_{p}^{o}; 1]$

F6-TEK4040

30.09.2020

For normal vectors (not matrix rep. of points) we have:

$$\underline{\nabla}^{q} = R_{p}^{q} \underline{\nabla}^{p}$$
 (2a)

Define:

$$\tilde{\mathcal{L}}_b = [\tilde{\mathcal{L}}_b; 0]$$

$$\tilde{\mathcal{L}}_b = [\tilde{\mathcal{L}}_b; 0]$$

There vectors transform as:

