1. В работе использовался локальный тип подключения.

2. Скриншот ER-диаграммы из DBeaver'а согласно Вашего подключения.

3. Краткое описание БД - из каких таблиц и представлений состоит.

БД состоит из 8 таблиц:

- **Aircrafts** таблица описания самолетов.
- **Airports** таблица описания самолетов.
- **Boarding_passes** таблица посадочных талонов.
- **Bookings** таблица бронирования.
- **Flights** таблица рейсов.
- **Seats** таблица мест.
- Ticket_flights таблица перелетов.
- **Tickets** таблица билетов.

Также в БД есть представления:

- Представление "bookings.flights_v"
- Материализованное представление bookings.routes
- 4. Развернутый анализ БД описание таблиц, логики, связей и бизнес области (частично можно взять из описания базы данных, оформленной в виде анализа базы данных). Бизнес задачи, которые можно решить, используя БД.

Диаграмма схемы данных:

Основной сущностью является бронирование (bookings).

В одно бронирование можно включить несколько пассажиров, каждому из которых выписывается отдельный билет (tickets). Билет имеет уникальный номер и содержит информацию о пассажире. Как таковой пассажир не является отдельной сущностью. Как имя, так и номер документа пассажира могут меняться с течением

времени, так что невозможно однозначно найти все билеты одного человека; для простоты можно считать, что все пассажиры уникальны. Билет включает один или несколько перелетов (ticket flights). Несколько перелетов могут включаться в билет в случаях, когда нет нет прямого рейса, соединяющего пункты отправления и назначения (полет с пересадками), либо когда билет взят «туда и обратно». В схеме данных нет жесткого ограничения, но предполагается, что все билеты в одном бронировании имеют одинаковый набор перелетов. Каждый рейс (flights) следует из одного аэропорта (airports) в другой. Рейсы с одним номером имеют одинаковые пункты вылета и назначения, но будут отличаться датой отправления. При регистрации на рейс пассажиру выдается посадочный талон (boarding passes), в котором указано место в самолете. Пассажир может зарегистрироваться только на тот рейс, который есть у него в билете. Комбинация рейса и места в самолете должна быть уникальной, чтобы не допустить выдачу двух посадочных талонов на одно место. Количество мест (seats) в самолете и их распределение по классам обслуживания зависит от модели самолета (aircrafts), выполняющего рейс. Предполагается, что каждая модель самолета имеет только одну компоновку салона. Схема данных не контролирует, что места в посадочных талонах соответствуют имеющимся в самолете.

БД состоит из 8 таблиц:

• **Aircrafts** – таблица описания самолетов.

Каждая модель воздушного судна идентифицируется своим трехзначным кодом (aircraft_code). Указывается также название модели (model) и максимальная дальность полета в километрах (range).

```
Столбец | Тип | Модификаторы | Описание

aircraft_code | char(3) | NOT NULL | Код самолета, IATA

model | text | NOT NULL | Модель самолета
range | integer | NOT NULL | Максимальная дальность полета, км

Индексы:
    PRIMARY KEY, btree (aircraft_code)

Ограничения-проверки:
    CHECK (range > 0)

Ссылки извне:

TABLE "flights" FOREIGN KEY (aircraft_code)
    REFERENCES aircrafts(aircraft_code)
    REFERENCES aircrafts(aircraft_code)
    REFERENCES aircrafts(aircraft_code)
    REFERENCES aircrafts(aircraft_code) ON DELETE CASCADE
```

• **Airports** – таблица описания самолетов.

Аэропорт идентифицируется трехбуквенным кодом (airport_code) и имеет свое имя (airport_name). Для города не предусмотрено отдельной сущности, но название (city) указывается и может служить для того, чтобы определить аэропорты одного города. Также указывается широта (longitude), долгота (latitude) и часовой пояс (timezone).

```
Столбец
                    Тип
                           Модификаторы
                                                          Описание
                 char(3) | NOT NULL
airport code I
                                            | Код аэропорта
                                              Название аэропорта
                             NOT NULL
 airport_name
                  text
                             NOT NULL
city
longitude
                  text
                                              Город
                  float
                             NOT NULL
                                              Координаты аэропорта: долгота
Координаты аэропорта: широта
                  float
                           NOT NULL
 latitude
 timezone
               text
                           NOT NULL
                                            Временная зона аэропорта
    PRIMARY KEY, btree (airport_code)
Ссылки извне:
TABLE "flights" FOREIGN KEY (arrival_airport)
    REFERENCES airports(airport_code)
TABLE "flights" FOREIGN KEY (departure_airport)
          REFERENCES airports(airport_code)
```

• Boarding passes – таблица посадочных талонов.

При регистрации на рейс, которая возможна за сутки до плановой даты отправления, пассажиру выдается посадочный талон. Он идентифицируется также, как и перелет — номером билета и номером рейса. Посадочным талонам присваиваются последовательные номера (boarding_no) в порядке регистрации пассажиров на рейс (этот номер будет уникальным только в пределах данного рейса). В посадочном талоне указывается номер места (seat_no).

```
| Модификаторы |
                                                                       0писание
 ticket no
                                                           Номер билета
                    integer
 flight id
                                       NOT NULL
                                                           Идентификатор рейса
 boarding_no | integer
                                            NULL
                                                           Номер посадочного талона
                   varchar(4) | NOT NULL
 seat no
                                                           Номер места
     PRIMARY KEY, btree (ticket_no, flight_id)
UNIQUE CONSTRAINT, btree (flight_id, boarding_no)
UNIQUE CONSTRAINT, btree (flight_id, seat_no)
Ограничения внешнего ключа:
     FOREIGN KEY (ticket_no, flight_id)
REFERENCES ticket_flights(ticket_no, flight_id)
```

• **Bookings** – таблица бронирования.

Пассажир заранее (book_date, максимум за месяц до рейса) бронирует билет себе и, возможно, нескольким другим пассажирам. Бронирование идентифицируется номером (book_ref, шестизначная комбинация букв и цифр). Поле total_amount хранит общую стоимость включенных в бронирование перелетов всех пассажиров.

```
Столбец | Тип | Модификаторы | Описание

book_ref | char(6) | NOT NULL | Номер бронирования
book_date | timestamptz | NOT NULL | Дата бронирования
total_amount | numeric(10,2) | NOT NULL | Полная сумма бронирования
Индексы:
PRIMARY KEY, btree (book_ref)
Ссылки извне:
TABLE "tickets" FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)
```

• **Flights** – таблица рейсов.

Естественный ключ таблицы рейсов состоит из двух полей — номера рейса (flight_no) и даты отправления (scheduled_departure). Чтобы сделать внешние ключи на эту таблицу компактнее, в качестве первичного используется суррогатный ключ (flight_id). Рейс всегда соединяет две точки — аэропорты вылета (departure_airport) и прибытия (arrival_airport). Такое понятие, как «рейс с пересадками» отсутствует: если из одного аэропорта до другого нет прямого рейса, в билет просто включаются несколько необходимых рейсов. У каждого рейса есть запланированные дата и время вылета (scheduled_departure) и прибытия (scheduled_arrival). Реальные время вылета (actual_departure) и прибытия (actual_arrival) могут отличаться: обычно не сильно, но иногда и на несколько часов, если рейс задержан.

```
Столбец | Тип | Модификаторы | Описание

flight_id | serial | NOT NULL | Идентификатор рейса | flight_no | char(6) | NOT NULL | Номер рейса | Scheduled_departure | timestamptz | NOT NULL | Время вылета по расписанию scheduled_arrival | timestamptz | NOT NULL | Время вылета по расписанию scheduled_arrival | timestamptz | NOT NULL | Время прилёта по расписанию departure_airport | char(3) | NOT NULL | Аэропорт прибытия | status | varchar(20) | NOT NULL | Аэропорт прибытия | status | varchar(20) | NOT NULL | Аэропорт прибытия | status | varchar(20) | NOT NULL | Код самолета, IATA | actual_departure | timestamptz | Фактическое время вылета | actual_arrival | timestamptz | Фактическое время прилёта | Индексы: PRINARY KEY, btree (flight_id) | UNIQUE CONSTRAINT, btree (flight_id) | UNIQUE CONSTRAINT, btree (flight_id) | UNIQUE CONSTRAINT, btree (flight_id) | OF ((actual_departure IS NOT NULL AND actual_arrival IS NOT NULL) | OR ((actual_arrival IS NOT NULL AND actual_arrival IS NOT NULL) | AND (actual_arrival IS NOT NULL) | OR ((actual_arrival IS NOT NULL) | OR ((actu
```

• Seats – таблица мест.

Места определяют схему салона каждой модели. Каждое место определяется своим номером (seat_no) и имеет закрепленный за ним класс обслуживания (fare_conditions) — Economy, Comfort или Business.

```
Столбец
                            Модификаторы
                                                   Описание
                            NOT NULL
                                           | Код самолета, ІАТА
aircraft_code | char(3)
                | varchar(4)
                             NOT NULL
                                            Номер места
 seat_no
 fare_conditions | varchar(10) | NOT NULL
                                            Класс обслуживания
Индексы:
   PRIMARY KEY, btree (aircraft_code, seat_no)
Ограничения-проверки:
   CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))
Ограничения внешнего ключа:
   FOREIGN KEY (aircraft_code)
       REFERENCES aircrafts(aircraft_code) ON DELETE CASCADE
```

• Ticket_flights - таблица перелетов.

Перелет соединяет билет с рейсом и идентифицируется их номерами. Для каждого перелета указываются его стоимость (amount) и класс обслуживания (fare conditions).

```
Столбец
                                    | Модификаторы |
                           Тип
                                                              Описание
 ticket_no | char(13) | NOT NULL | Номер билета
flight_id | integer | NOT NULL | Идентификатор рейса
                                    NOT NULL
 fare_conditions | varchar(10) | NOT NULL | Класс обслуживания amount | numeric(10,2) | NOT NULL | Стоимость перелета
Индексы:
    PRIMARY KEY, btree (ticket_no, flight_id)
Ограничения-проверки:
    CHECK (amount >= 0)
CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))
Ограничения внешнего ключа:
    FOREIGN KEY (flight_id) REFERENCES flights(flight_id)
    FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)
Ссылки извне:
    TABLE "boarding_passes" FOREIGN KEY (ticket_no, flight_id)
         REFERENCES ticket_flights(ticket_no, flight_id)
```

• **Tickets** – таблица билетов.

Билет имеет уникальный номер (ticket_no), состоящий из 13 цифр. Билет содержит идентификатор пассажира (passenger_id) — номер документа, удостоверяющего личность, — его фамилию и имя (passenger_name) и контактную информацию (contact_date). Ни идентификатор пассажира, ни имя не являются постоянными (можно поменять паспорт, можно сменить фамилию), поэтому однозначно найти все билеты одного и того же пассажира невозможно.

Столоец	ТИП	Модификаторы	Описание			
ticket_no book_ref passenger_id passenger_name contact_data	char(13) char(6) varchar(20) text jsonb	NOT NULL NOT NULL NOT NULL NOT NULL	Номер билета Номер бронирования Идентификатор пассажира Имя пассажира Контактные данные пассажира			
Индексы: PRIMARY KEY, btree (ticket_no) Ограничения внешнего ключа: FOREIGN KEY (book_ref) REFERENCES bookings(book_ref) Ссылки извне: TABLE "ticket_flights" FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)						

Также в БД есть представления:

• Представление "bookings.flights v"

Над таблицей flights создано представление flights_v, содержащее дополнительную информацию:

• расшифровку данных об аэропорте вылета (departure_airport, departure_airport_name, departure_city),

- расшифровку данных об аэропорте прибытия (arrival_airport, arrival_airport_name, arrival_city),
- местное время вылета (scheduled_departure_local, actual_departure_local),
- местное время прибытия (scheduled_arrival_local, actual_arrival_local),
- продолжительность полета (scheduled_duration, actual_duration).

Столбец	Тип	Описание
flight_id	integer	Идентификатор рейса
flight no	char(6)	Номер рейса
scheduled_departure	timestamptz	
scheduled_departure_local	timestamp	Время вылета по расписанию,
		местное время в пункте отправления
scheduled_arrival	timestamptz	Время прилёта по расписанию
scheduled_arrival_local	timestamp	Время прилёта по расписанию,
		местное время в пункте прибытия
scheduled_duration	interval	Планируемая продолжительность полета
departure_airport	char(3)	Код аэропорта отправления
departure_airport_name	text	Название аэропорта отправления
departure_city	text	Город отправления
arrival_airport	char(3)	Код аэропорта прибытия
arrival_airport_name	text	Название аэропорта прибытия
arrival_city	text	Город прибытия
status	varchar(20)	Статус рейса
aircraft_code	char(3)	Код самолета, ІАТА
actual_departure	timestamptz	Фактическое время вылета
actual_departure_local	timestamp	Фактическое время вылета,
		местное время в пункте отправления
actual_arrival	timestamptz	Фактическое время прилёта
actual_arrival_local	timestamp	Фактическое время прилёта,
		местное время в пункте прибытия
actual_duration	interval	Фактическая продолжительность полета

• Материализованное представление bookings.routes

Таблица рейсов содержит избыточность: из нее можно было бы выделить информацию о маршруте (номер рейса, аэропорты отправления и назначения), которая не зависит от конкретных дат рейсов. Именно такая информация и составляет материализованное представление routes.

Столбец	Тип	Описание
flight_no departure_airport departure_airport_name departure_city arrival_airport arrival_airport_name arrival_city aircraft_code duration days_of_week	char(6) char(3) text text char(3) text text char(3) interval integer[]	Номер рейса Код аэропорта отправления Название аэропорта отправления Город отправления Код аэропорта прибытия Название аэропорта прибытия Город прибытия Код самолета, IATA Продолжительность полета Дни недели, когда выполняются рейсы

Данная база данных может помочь решить следующие бизнес-задачи:

- Определить максимально нагруженные направления полетов (рейсы). Информация может помочь авиакомпаниям при постановке на рейс определенного типа самолетов, а также в выборе интервалов полетов
- Определить, в каких аэропортах чаще всего происходят задержки вылетов. Определив такие аэропорты необходимо произвести проверки, чтобы определить причины задержек.
- Определить наиболее труднодоступные направления (между которыми нет прямых рейсов) Если большое кол-во пассажиров летит по определенному направлению с пересадками, возможно, следует, при наличии возможности, пустить прямой рейс между этими пунктами
- Процентное соотношение заполняемости бизнес и эконом класса на рейсах. Салоны самолетов могут быть модифицированы. Если на рейсах наблюдается малая заполняемость бизнес-класса, возможно стоит уменьшить кол-во таких мест в пользу эконома. И также в обратном случае.
- 5. Список SQL запросов из приложения с описанием логики их выполнения представлен в приложенном .sql файле