MATHEMATICS - III UNIT-3- Complex Integration Two marks

1. Define Singular point

A point z = a at which a function f(z) fails to be analytic is called a *singular point* or *singularity* of f(z)

Ex: Consider
$$f(z) = \frac{1}{z-3}$$

Here $z = 3$ is a singular point of $f(z)$

2. Define Poles and Simple poles

- An analytic function f(z) with a singularity at z=a if $\lim_{z\to 2} f(z) = \infty$ then z=a is a **pole** of f(z).
- o Pole of order one is called a simple pole

Ex: Consider
$$f(z) = \frac{1}{(z-4)(z-3)^2(z-5)^3}$$
 Here $z = 4$ is a simple pole $z = 3$ is a pole of order 2 $z = 5$ is a pole of order 3

3. Define Removable singularity

A point z = a is called **removable singularity** of f(z) if,

i. z=a is a singular point

ii. $\lim_{z \to z} f(z)$ exists

Ex: Consider
$$f(z) = \frac{\tan z}{z}$$

Here $z = 0$ is a singular point
$$\lim_{z \to a} \frac{\tan z}{z} = 1$$

$$\therefore z = 0$$
 is an removable singularity.

4. Define Essential singularity

A point z = a is called *essential singularity* of f(z) if,

i. z=a is a singular point

ii. z=a should not be a pole or removable singularity

Ex: Consider
$$f(z) = e^{\frac{1}{z-2}}$$

At $z=2$, $f(z) = e^{\frac{1}{0}} = e^{\infty} = \infty$
 $\therefore z = 0$ is not a pole or removable singularity.
 $\therefore z = 0$ is an essential singularity.

5. Define Isolated Singularity

A point z = a is called *isolated singularity* of f(z) if,

i. f(z) is not analytic at z=a

ii. There exists a neighbourhood of z=a containing no other singularity.

Ex: Consider
$$f(z) = \frac{1}{z}$$

The function is analytic everywhere except at z=0

 $\therefore z = 0$ is an isolated singularity.

6. Expand $f(z) = \sin z$ in a Taylor series about origin

Taylor's series about z = 0 is,

$$f(z) = f(0) + \frac{(z)}{1!}f'(0) + \frac{(z)^2}{2!}f''(0) + \frac{(z)^3}{3!}f'''(0) + \dots$$
$$= 0 + \frac{(z)}{1!}(1) + \frac{(z)^2}{2!}(0) + \frac{(z)^3}{3!}(-1) + \dots$$
$$\left[\sin z\right]_{z=0} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$$

Function	Value @ z = 0
$f(z) = \sin z$ $f'(z) = \cos z$ $f''(z) = -\sin z$ $f'''(z) = -\cos z$	$f(0) = \sin 0 = 0$ $f'(0) = \cos 0 = 1$ $f''(0) = -\sin 0 = 0$ $f''''(0) = -\cos 0 = -1$

7. Find the Taylor series for $f(z) = \sin z$ about $z = \frac{\pi}{4}$

Taylor's series about $z = \frac{\pi}{4}$ is

$$f(z) = f\left(\frac{\pi}{4}\right) + \frac{\left(z - \frac{\pi}{4}\right)}{1!} f'\left(\frac{\pi}{4}\right) + \frac{\left(z - \frac{\pi}{4}\right)^2}{2!} f''\left(\frac{\pi}{4}\right) + \frac{\left(z - \frac{\pi}{4}\right)^3}{3!} f'''\left(\frac{\pi}{4}\right) + \dots$$

$$= \frac{1}{\sqrt{2}} + \frac{\left(z - \frac{\pi}{4}\right)}{1!} \frac{1}{\sqrt{2}} - \frac{\left(z - \frac{\pi}{4}\right)^2}{2!} \frac{1}{\sqrt{2}} - \frac{\left(z - \frac{\pi}{4}\right)^3}{3!} \frac{1}{\sqrt{2}} + \dots$$

$$\left[\sin z\right]_{z = \frac{\pi}{4}} = \frac{1}{\sqrt{2}} \left[1 + \frac{\left(z - \frac{\pi}{4}\right)}{1!} - \frac{\left(z - \frac{\pi}{4}\right)^2}{2!} - \frac{\left(z - \frac{\pi}{4}\right)^3}{3!} + \dots\right]$$

Function	Value @ z = 0
$f(z) = \sin z$	$f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$
$f'(z) = \cos z$	$f'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$
$f''(z) = -\sin z$	$f''\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$
$f'''(z) = -\cos z$	$f'''\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$

8. Evaluate $\oint_c \frac{e^z}{z-1} dz$ if C is |z| = 2

Let
$$f(z) = e^z$$

By Cauchy's integral formula,

$$\int_{c}^{c} \frac{f(z)}{z - a} dz = 2\pi i \times f(a)$$

$$\therefore \int_{c}^{c} \frac{e^{z}}{z - 1} dz = 2\pi i \times f(1)$$

$$= 2\pi i \times e$$

$$= 2\pi i (e)$$

PointsOrderLies
$$Z = 1$$
1inside

9. Evaluate
$$\int \frac{z \, dz}{(z-1)(z-2)}$$
 where C is the circle $|z| = \frac{1}{2}$

Let
$$f(z) = \frac{z}{(z-1)(z-2)}$$

Here the points both lies outside the given circle $|z| = \frac{1}{2}$

By Cauchy's integral theorem,

$$\int_{c} f(z) dz = 0$$

$$\therefore \int_{c} \frac{z}{(z-1)(z-2)} dz = 0$$

$$f(z) = e^{z}$$
$$f(1) = e^{1} = e$$

Points	Order	Lies
Z= 1	1	outside
Z= 2	1	outside

10. Evaluate
$$\int_{c} \frac{z+4}{z^2+2z} dz$$
 where C is the circle $\left|z-\frac{1}{2}\right| = \frac{1}{3}$

Let
$$f(z) = \frac{z+4}{z(z+2)}$$

Here the points both lies outside the given circle $\left|z - \frac{1}{2}\right| = \frac{1}{3}$

$$\int_{c} f(z) dz = 0$$

$$\therefore \int_{c} \frac{z+4}{z^{2}+2z} dz = 0$$

11. Evaluate
$$\int_{c} \left[\frac{3z^2 + 7z + 1}{z + 1} \right] dz$$
 where C is $|z| = \frac{1}{2}$
Let $f(z) = \frac{3z^2 + 7z + 1}{z + 1}$

Here z=-1 lies outside the given circle $|z| = \frac{1}{2}$

By Cauchy's integral theorem,

$$\int_{c} f(z)dz = 0$$

$$\int_{c} \left[\frac{3z^{2} + 7z + 1}{z + 1} \right] dz = 0$$

12. Using Cauchy's Integral formula, evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z+1)(z+2)} dz$ where C is $|z| = \frac{1}{2}$

Let
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z+1)(z+2)}$$

Here the points both lies outside the given circle $|z| = \frac{1}{2}$

By Cauchy's integral theorem,

$$\int_{c} f(z) dz = 0$$

$$\therefore \int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z+1)(z+2)} dz = 0$$

Points	Order	Lies
Z= 0	1	outside
Z= -2	1	outside

Order

Points

Lies

outside

Points	Order	Lies
Z= -1	1	outside
7 0	- 1	. • •

13. Identify the type of singularities of the following function: $f(z) = e^{\frac{1}{z-1}}$

$$f(z) = e^{\frac{1}{z-1}}$$

Here z = 1 is a singular point.

At z = 1 we get, $f(z) = e^{\frac{1}{0}} = \infty$ which is not defined.

Also z = 1 is not a pole or removable singularity.

 \Rightarrow z = 1 is an essential singularity.

14. State Cauchy's Integral formula for derivative

If a function f(z) is analytic within and on a simple closed curve C and a is any point lying in it,

then
$$\int_{C} \frac{f(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} \times f^{(n)}(a)$$

15. If
$$f(z) = \frac{-1}{z-1} - 2[1 + (z-1) + (z-1)^2 + ...]$$
, find the residue of $f(z)$ at $z = 1$
Given $f(z) = (-1)\frac{1}{z-1} - 2[1 + (z-1) + (z-1)^2 + ...]$

Res
$$[f(z): z=1]$$
 = Coefficient of $\frac{1}{z-1}$ in Laurents series of $f(z)$ = -1

16. Find the residue of the function
$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$
 at its simple pole

By Cauchy's Residue Theorem,

Res
$$[f(z): z = -2] = \lim_{z \to -2} (z+2) f(z)$$

$$= \lim_{z \to -2} (z+2) \frac{z^2}{(z-1)^2 (z+2)}$$

$$= \lim_{z \to -2} \frac{z^2}{(z-1)^2}$$

$$= \frac{4}{9}$$

Points	Order
Z = 1	2
Z = -2 Simple pole	1

17. Find the residue of the function $f(z) = \frac{4}{z^3(z-2)}$ at a simple pole

By Cauchy's ResidueTheorem,

Res
$$[f(z): z=2]$$
 = $\lim_{z\to 2} (z-2) f(z)$
= $\lim_{z\to 2} (z-2) \frac{4}{z^3(z-2)}$
= $\lim_{z\to 2} \frac{4}{z^3}$
= $\frac{4}{8} = \frac{1}{2}$

Points	Order
Z = 0	3
Z = 2	1
Simple pole	

18. Calculate the residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ at its poles.

By Cauchy's ResidueTheorem,

Res
$$[f(z): z = -1] = \lim_{z \to -1} \frac{d}{dz} (z+1)^2 f(z)$$

$$= \lim_{z \to -1} \frac{d}{dz} (z+1)^2 \frac{e^{2z}}{(z+1)^2}$$

$$= \lim_{z \to -1} \frac{d}{dz} e^{2z}$$

$$= \lim_{z \to -1} 2e^{2z}$$

$$= 2e^{-2}$$

$$= \frac{2}{e^2}$$

Points	Order
Z = -1	2

19. Find the residue of $f(z) = \frac{1 - e^{-z}}{z^2}$ at z = 0

By Cauchy's ResidueTheorem,

saucity is recircular the orein,
Re $s[f(z): z=0] = \frac{1}{1!} \lim_{z\to 0} \frac{d}{dz} (z-0)^2 f(z)$
$= \lim_{z \to 0} \frac{d}{dz} (z)^2 \frac{1 - e^{-z}}{z^2}$
$= \lim_{z \to 0} \frac{d}{dz} \left(1 - e^{-z} \right)$
$= \lim_{z \to 0} \left(e^{-z}\right)$
$= e^0$
_1

Points	Order
Z = 0	2

20. Find the residue of $f(z) = \frac{1 - e^{2z}}{z^3}$ at z = 0

By Cauchy's ResidueTheorem,

$$\operatorname{Re} s \left[f(z) : z = 0 \right] = \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} (z - 0)^3 f(z)$$

$$= \frac{1}{2} \lim_{z \to 0} \frac{d^2}{dz^2} (z)^3 \frac{1 - e^{2z}}{z^3}$$

$$= \frac{1}{2} \lim_{z \to 0} \frac{d^2}{dz^2} (1 - e^{2z})$$

$$= \frac{1}{2} \lim_{z \to 0} \frac{d}{dz} (-2e^{2z})$$

$$= \frac{1}{2} \lim_{z \to 0} (-4e^{2z})$$

$$= -2$$

Points	Order
Z = 0	3

21. Evaluate $\int_{c} \tan z \ dz$ where C is |z| = 2

$$\int_{c} \tan z \, dz = \int_{c} \frac{\sin z}{\cos z} \, dz = \int_{c} \frac{P(z)}{Q(z)} \, dz \qquad where, P(z) = \sin z$$

$$Q(z) = \cos z$$

Poles: $\cos z = 0$

$$z = (2n+1)\frac{\pi}{2}, \quad n = 0, \pm 1, \pm 2, \dots$$
$$z = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$$

 \Rightarrow Out of these poles only $z = \frac{\pi}{2}$ lies inside |z| = 2

$$\operatorname{Res}\left[f(z):z=\frac{\pi}{2}\right] = \frac{P(a)}{Q'(a)}$$

$$= \frac{P\left(\frac{\pi}{2}\right)}{Q'\left(\frac{\pi}{2}\right)} = \frac{1}{-1}$$

$$= -1$$

$$P(z) = \sin z \qquad Q(z) = \cos z$$

$$P\left(\frac{\pi}{2}\right) = \sin \frac{\pi}{2} = 1 \qquad Q'(z) = -\sin z$$

$$Q'\left(\frac{\pi}{2}\right) = -\sin \frac{\pi}{2} = -1$$

By CRT,

$$\int_{c} f(z) dz = 2\pi i \times [S.O.R]$$

$$= 2\pi i \times [-1]$$

$$\int_{c} \tan z dz = -2\pi i$$