## CSE215 Foundations of Computer Science

**State University of New York, Korea** 

### Previous lectures

| Tru | ıth | table             |
|-----|-----|-------------------|
| p   | q   | $p \rightarrow q$ |
| Т   | Т   | Т                 |
| Т   | F   | F                 |
| F   | Т   | Т                 |
| F   | F   | Т                 |

#### **Equivalence laws**

| Laws              | Formula                                                  | Formula                                                 |
|-------------------|----------------------------------------------------------|---------------------------------------------------------|
| Commutative laws  | $p \wedge q \equiv q \wedge p$                           | $p \vee q \equiv q \vee p$                              |
| Associative laws  | $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$     | $(p \vee q) \vee r \equiv p \vee (q \vee r)$            |
| Distributive laws | $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ | $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ |

## Propositional logic: A formal language to express facts and argue about them

### Valid arguments

 $\begin{array}{c} \mathsf{Premise}_1 \\ \mathsf{Premise}_2 \\ \vdots \\ \mathsf{Premise}_m \\ \vdots \\ \mathsf{Conclusion} \end{array}$ 

#### Inference

| Name          | Rule                | Name         | Rule                 |                |
|---------------|---------------------|--------------|----------------------|----------------|
| Modus Ponens  | $p \to q$           | Elimination  | $p \vee q$           | $p \lor q$     |
|               | p                   |              | $\sim q$             | $\sim p$       |
|               | ∴ q                 |              | $\therefore p$       | $\therefore q$ |
| Modus Tollens | $p \to q$           | Transitivity | $p \to q$            |                |
|               | $\sim q$            |              | $q \rightarrow r$    |                |
|               | $\therefore \sim p$ |              | $\therefore p \to r$ |                |

### Plan

- Revision on using Inference rules for validity
- Predicate Logic, or propositions with Quantifiers
- Negation

# Revision on Using Inference Rules for Validity

In 41–44 a set of premises and a conclusion are given. Use the valid argument forms listed in Table 2.3.1 to deduce the conclusion from the premises, giving a reason for each step as in Example 2.3.8. Assume all variables are statement variables.

- **41.** a.  $\sim p \vee q \rightarrow r$ 
  - b.  $s \lor \sim q$
  - c.  $\sim t$
  - d.  $p \rightarrow t$
  - e.  $\sim p \land r \rightarrow \sim s$
  - f. ∴ ~*q*

- 42. a.  $p \vee q$ 
  - b.  $q \rightarrow r$
  - c.  $p \wedge s \rightarrow t$
  - d.  $\sim r$
  - e.  $\sim q \rightarrow u \wedge s$
  - f. .:. *t*

# Propositions with Quantifiers

## Why quantifiers? To express "for all" and "there exists"

- Everyone can make mistake
- Nobody is perfect
- Every lock has a key
- There is a key for every lock
- Every nonzero real number has a reciprocal

### CS example 1: Software security

Question: Could the program print "bad"?

```
#include <stdio.h>
 2
 3 * void f(int input) {
        char a[8];
 5
        int b = 0;
        a[input] = 1;
 6
 8
        if (b == 0)
 9
             printf("good\n");
10
        else
11
             printf("bad\n");
12
```

#### **Exisitential Statement**

: there exists an integer n, such that b !=0 at line 8 when executing f(n)

## CS example 2: Concurrency

Two persons are trying to deposit 1 dollar online into the same

bank account.



#### **Universal Statement:**

For all CPU schedule s, A should not read not read while B intends to write.

### Predicate

- A propositional function or predicate is a sentence that contains one or more variables
- A predicate is neither true nor false
- A predicate becomes a proposition when the variables are substituted with specific values
- The domain of a predicate variable is the set of all values that may be substituted for the variable

### Examples

| Symbol | Predicate  | Domain                               | Propositions                 |
|--------|------------|--------------------------------------|------------------------------|
| p(x)   | x > 5      | $x \in \mathbb{R}$                   | $p(6), p(-3.6), p(0), \dots$ |
| p(x,y) | x+y is odd | $x \in \mathbb{Z}, y \in \mathbb{Z}$ | $p(4,5), p(-4,-4), \dots$    |

### Universal statement

- Let p(x) be a predicate and D be the domain of x
- A universal statement is a statement of the form

$$\forall x \in D, p(x)$$

- Forms:
  - "p(x) is true for all values of x"
  - "For all x, p(x)"
  - "For each x, p(x)"
  - "For every x, p(x)"
  - "Given any x, p(x)"

## Existential statement

- ullet Let p(x) be a predicate and D be the domain of x
- · An existential statement is a statement of the form

$$\exists x \in D, p(x)$$

- Forms:
  - "There exists an x such that p(x)"
  - "For some x, p(x)"
  - "We can find an x, such that p(x)"
  - "There is some x such that p(x)"
  - "There is at least one x such that p(x)"

### **Examples**

| Universal st.s                         | Domain            |
|----------------------------------------|-------------------|
| $\exists x \in D, x^2 \geq x$          | $D = \{1, 2, 3\}$ |
| $\exists x \in \mathbb{R}, x^2 \geq x$ | $\mathbb{R}$      |

$$\forall x \in D, \exists y \in E, \text{ such that } p(x, y)$$

Every lock has a key.

$$\exists x \in D, \forall y \in E, \text{ such that } p(x, y)$$

There is a key for every lock.

$$\forall x \in D, \forall y \in E, \text{ such that } p(x, y)$$

"Give me a place to stand, and a lever long enough, and I will move the Earth."

$$\exists x \in D, \exists y \in E, \text{ such that } p(x, y)$$

"There is someone in a park sitting on a bench".

## Four Notes

## Note 1: the order of quantifiers matter

- Every lock has a key
- For any lock L, there exists a key K, such that K can unlock L.
- There is a key for every lock
- There exists a key K, such that for any lock L, K can unlock L.

# Note 2: A commonly used notational equivalence

$$\forall x \in D, p(x)$$

**Equivalen to** 

$$\forall x, x \in D \rightarrow p(x)$$

# Example: All doctors wear glasses

- for all d, if d is a doctor, then d wears glasses
- Formally, if we define
  - D to be the set of doctors,
  - wear\_glass to be a function that takes a person x as an input, and returns true if x wears glasses
- then the following two statements are considered the same

$$\forall d \in D, \mathtt{wear\_glass}(d).$$
  $\forall d, d \in D \rightarrow \mathtt{wear\_glass}(d)$ 

## Note 3: Universal conditional statement

A universal conditional statement is of the form

 $\forall x$ , if p(x) then q(x)

### Examples

- $\bullet$   $\forall x \in \mathbb{R}$ , if x > 2 then  $x^2 > 4$
- ullet real number x, if x is an integer then x is rational  $\forall$  integer x, x is rational
- $\forall x$ , if x is a square then x is a rectangle  $\forall$  square x, x is a rectangle

## Note 4: Implicit quantifiers

### **Examples**

- If a number is an integer, then it is a rational number Implicit meaning:  $\forall$  number x, if x is an integer, x is rational
- The number 10 can be written as a sum of two prime numbers Implicit meaning:  $\exists$  prime numbers p and q such that 10 = p+q
- If x>2, then  $x^2>4$  Implicit meaning:  $\forall$  real x, if x>2, then  $x^2>4$

### Definition

• Let p(x) and q(x) be predicates and D be the common domain of x. Then implicit quant. symbols  $\Rightarrow$ ,  $\Leftrightarrow$  are defined as:

$$p(x) \Rightarrow q(x) \equiv \forall x, p(x) \rightarrow q(x)$$

$$p(x) \Leftrightarrow q(x) \equiv \forall x, p(x) \leftrightarrow q(x)$$

## Exercises

Everyone can make mistake

Nobody is perfect

Every lock has a key

There is a key for every lock

Every nonzero real number has a reciprocal

The reciprocal of 4 is 1/4 (namely 0.25)

### Solution

- Everyone can make mistake
  - (ok) for any person p, p can make mistake
  - (better) for any person p, there exists t in p's life time, make\_mistake(p, t)
- Nobody is perfect
  - (ok) there does not exist p, such that p is perfect
  - (better) for every person p, p is not perfect
- Every lock has a key
  - for every lock I, there is a key k such that k can unlock I
- There is a key for every lock
  - there is a key k, such that for every lock l, k can unlock l
- Every nonzero real number has a reciprocal
  - for any nonzero real number r, there exists a real number s, such that r \* s = 1

- Given:
  - S: set of students
  - P(s): s passed the exam.
  - W(s): s worked hard.
  - C(s): s is in Professor Cho's class.
- Every student in Professor Cho's class passed the exam

- Given:
  - S: set of students
  - P(s): s passed the exam.
  - W(s): s worked hard.
  - C(s): s is in Professor Cho's class.
- Some students studied hard but did not pass the exam

- Given:
  - S: set of students
  - P(s): s passed the exam.
  - W(s): s worked hard.
  - C(s): s is in Professor Cho's class.
- There are students who did not study hard but passed the exam

- Given:
  - S: set of students
  - P(s): s passed the exam.
  - W(s): s worked hard.
  - C(s): s is in Professor Cho's class.
- All students who studied hard passed the exam.

- Given:
  - S: set of students
  - P(s): s passed the exam.
  - W(s): s worked hard.
  - C(s): s is in Professor Cho's class.
- No student in Professor Cho's class failed the exam.

- Given:
  - S: set of students
  - P(s): s passed the exam.
  - W(s): s worked hard.
  - C(s): s is in Professor Cho's class.
- There are no students in Professor Cho's class who did not study hard but still passed the exam.

# Exercise: Translate to formal logic

- Given:
  - L: set of locks
  - K set of keys
  - unlock (k,l): k can unlock l
- Some keys cannot unlock any lock.

## Negation

## Negation of a universal statement

$$\sim (\forall x \in D, p(x)) \equiv \exists x \in D, \sim p(x)$$

Example: "All swans are white."

Negation: "There exists at least one swan that is not white."

Negate "Every phone on the table is turned off."

## Negation of an existential statement

$$\sim (\exists x \in D, p(x)) \equiv \forall x \in D, \sim p(x)$$

Example: "There is a car in the parking lot that is electric."

Negation: "No car in the parking lot is electric", or "For every car c in the parking lot, c is not electric"

 Negate "There is a person in the village who speaks Italian."

## Summary

$$\sim (\forall x \in D, p(x)) \equiv \exists x \in D, \sim p(x)$$
$$\sim (\exists x \in D, p(x)) \equiv \forall x \in D, \sim p(x)$$

Negation of a universal statement ("all are") is logically equivalent to an existential statement ("there is at least one that is not")

Negation of an existential statement ("some are") is logically equivalent to a universal statement ("all are not")

ullet  $\forall$  primes p, p is odd

ullet  $\exists$  triangle T, sum of angles of T equals  $200^\circ$ 

No child is left behind

### Common mistakes

### Examples

All mathematicians wear glasses
 Negation (incorrect): No mathematician wears glasses

Negation (correct): There is at least one mathematician who does not wear glasses

Some snowflakes are the same

Negation (incorrect):: Some snowflakes are different

Negation (correct):: All snowflakes are different

### Negation of universal conditional statements

#### Definition

Formally,

$$\sim (\forall x, p(x) \to q(x)) \equiv \exists x, \sim (p(x) \to q(x))$$
$$\equiv \exists x, (p(x) \land \sim q(x))$$

### Negation of universal conditional statements

#### Definition

Formally,

$$\sim (\forall x, p(x) \to q(x)) \equiv \exists x, \sim (p(x) \to q(x))$$
$$\equiv \exists x, (p(x) \land \sim q(x))$$

### Examples

- $\forall$  real x, if x > 10, then  $x^2 > 100$ . Negation:  $\exists$  real x such that x > 10 and  $x^2 \le 100$ .
- If a computer program has more than 100,000 lines, then it contains a bug.

Negation: There is at least one computer program that has more than 100,000 lines and does not contain a bug.

## Negation of propositions with multiple quantifiers

```
\sim (\forall x \text{ in } D, \ \exists y \text{ in } E \text{ such that } P(x,y)) \\ \equiv \exists x \text{ in } D \text{ such that } \sim (\exists y \text{ in } E \text{ such that } P(x,y)) \\ \equiv \exists x \text{ in } D \text{ such that } \forall y \text{ in } E, \sim P(x,y)
```

```
\sim (\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x,y))

\equiv \forall x \text{ in } D, \sim (\forall y \text{ in } E, P(x,y))

\equiv \forall x \text{ in } D, \exists y \text{ in } E \text{ such that } \sim P(x,y)
```

- Do some research: Formal definition of continuity of a real-valued function f on a point x
- Give a formal definition of f being discontinuous on x

- Given:
  - P(x): x is a person.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- All people are busy.

- Given:
  - P(x): x is a person.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- Some people are not busy.

- Given:
  - P(x): x is a person.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- Every person likes themselves.

- Given:
  - P(x): x is a person.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- There's someone who doesn't like themselves.

- Given:
  - P(x): x is a person.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- There's at least one person that everyone likes.

- Given:
  - P(x): x is a person.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- Everyone likes at least one person.

- Given:
  - P(x): x is a doctor.
  - Q(x): x is busy.
  - R(x, y): x likes y.
- Some people don't like themselves.