计算方法上机实习二

实习内容二 插值及最小二乘拟合

1、根据计算出来的行星轨道的 20 个位置 (下表),用不同方法进行函数近似。

x	0.99	0.95	0.87	0.77	0.67	0.56	0.44	0.30	0.16	0.01
у	0.39	0.32	0.27	0.22	0.18	0.15	0.13	0.12	0.13	0.15
x	0.93	0.85	0.73	0.59	0.42	0.29	0.16	0.05	-0.11	-0.2
у	0.40	0.41	0.42	0.43	0.42	0.41	0.40	0.36	0.32	0.22

- a) 用**分段三次样条插值**获得行星运行轨道,由于行星轨道为周期函数(曲线首 尾相连),所以可设周期边界条件进行计算;
- b) 在笛卡尔坐标(x,y)下可以用下列方程来表示行星运行轨道,

$$b_0 + b_1 x + b_2 y + b_3 x y + b_4 y^2 = x^2$$

用**最小二乘法**来拟合 4 个参数: b_0 , b_1 , b_2 , b_3 , b_4 , 构造出拟合曲线,并计算误差的平方和 Q,评估拟合效果。

c) 在同一幅图上画出插值曲线和拟合曲线,简述比较两种方法结果的差异。

实习要求及实习报告

要求按以上过程完成实习内容,完成实习报告。实习报告包括:分析报告(包括图形),编程流程图,源代码,运行结果(屏幕截图)。