XGBoost Regression & SVR

September 13, 2025

```
import numpy as np
     import pandas as pd
[2]: df = pd.read_csv('kc_house_data.csv')
[2]:
                                                                          sqft_living \
                                 date
                                           price
                                                   bedrooms
                                                              bathrooms
                          10/13/2014
     0
             7129300520
                                        221900.0
                                                           3
                                                                    1.00
                                                                                  1180
     1
             6414100192
                           12/9/2014
                                        538000.0
                                                           3
                                                                    2.25
                                                                                  2570
                                                           2
     2
             5631500400
                           2/25/2015
                                        180000.0
                                                                    1.00
                                                                                   770
     3
                           12/9/2014
                                                           4
             2487200875
                                        604000.0
                                                                    3.00
                                                                                  1960
     4
                                                           3
             1954400510
                           2/18/2015
                                        510000.0
                                                                    2.00
                                                                                  1680
                                                         . . .
                                                                     . . .
                                                                                   . . .
              263000018
                           5/21/2014
                                        360000.0
                                                           3
     21592
                                                                    2.50
                                                                                  1530
                                                           4
     21593
             6600060120
                           2/23/2015
                                        400000.0
                                                                    2.50
                                                                                  2310
                                                           2
     21594
             1523300141
                           6/23/2014
                                        402101.0
                                                                    0.75
                                                                                  1020
     21595
                                                           3
              291310100
                           1/16/2015
                                        400000.0
                                                                    2.50
                                                                                  1600
     21596
             1523300157
                          10/15/2014
                                        325000.0
                                                           2
                                                                    0.75
                                                                                  1020
             sqft_lot
                        floors
                                 waterfront
                                               view
                                                           grade
                                                                   sqft_above
     0
                 5650
                           1.0
                                                  0
                                                                         1180
                                                               7
     1
                 7242
                           2.0
                                           0
                                                  0
                                                                         2170
                                                     . . .
     2
                10000
                           1.0
                                                     . . .
                                                               6
                                                                          770
     3
                 5000
                           1.0
                                           0
                                                  0
                                                               7
                                                                         1050
     4
                 8080
                           1.0
                                           0
                                                  0
                                                               8
                                                                         1680
     21592
                                           0
                                                  0
                  1131
                           3.0
                                                               8
                                                                         1530
     21593
                 5813
                           2.0
                                           0
                                                  0
                                                                         2310
     21594
                           2.0
                                           0
                                                  0
                  1350
                                                                         1020
                                           0
     21595
                  2388
                           2.0
                                                     . . .
                                                                         1600
     21596
                  1076
                           2.0
                                                                         1020
                             yr_built
                                        yr_renovated zipcode
             sqft_basement
                                                                       lat
                                                                                long
     0
                          0
                                  1955
                                                           98178
                                                                  47.5112 -122.257
     1
                        400
                                  1951
                                                  1991
                                                           98125
                                                                   47.7210 -122.319
     2
                          0
                                  1933
                                                     0
                                                           98028
                                                                   47.7379 -122.233
     3
                        910
                                  1965
                                                     0
                                                           98136
                                                                   47.5208 -122.393
                          0
                                  1987
                                                           98074 47.6168 -122.045
```

	• • •	• • •			• • •	
21592	0	2009	0	98103	47.6993 -122.	346
21593	0	2014	0	98146	47.5107 -122.	362
21594	0	2009	0	98144	47.5944 -122.	299
21595	0	2004	0	98027	47.5345 -122.	069
21596	0	2008	0	98144	47.5941 -122.	299
	C. 3 45	C. 7 .45				
	sqft_living15	sqit_lot15				
0	1340	5650				
1	1690	7639				
2	2720	8062				
3	1360	5000				
4	1800	7503				
21592	1530	1509				
21593	1830	7200				
21594	1020	2007				
21595	1410	1287				
21596	1020	1357				

[21597 rows x 21 columns]

[4]: df.describe()

[4]:		id	price	bedrooms	bathrooms	sqft_living	\
[4].	count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	`
		4.580474e+09					
	mean		5.402966e+05	3.373200	2.115826	2080.321850	
	std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	
	min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	
	25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	
	50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	
	75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	
	max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	
		$sqft_lot$	floors	waterfront	view	condition	\
	count	2.159700e+04	21597.000000	21597.000000	21597.000000	21597.000000	
	mean	1.509941e+04	1.494096	0.007547	0.234292	3.409825	
	std	4.141264e+04	0.539683	0.086549	0.766390	0.650546	
	min	5.200000e+02	1.000000	0.000000	0.000000	1.000000	
	25%	5.040000e+03	1.000000	0.000000	0.000000	3.000000	
	50%	7.618000e+03	1.500000	0.000000	0.000000	3.000000	
	75%	1.068500e+04	2.000000	0.000000	0.000000	4.000000	
	max	1.651359e+06	3.500000	1.000000	4.000000	5.000000	
		grade	sqft_above	sqft_basement	<pre>yr_built</pre>	<pre>yr_renovated</pre>	\
	count	21597.000000	21597.000000	21597.000000	21597.000000	21597.000000	
	mean	7.657915	1788.596842	291.725008	1970.999676	84.464787	

std	1.173200	827.759761	442.667800	29.375234	401.821438
min	3.000000	370.000000	0.000000	1900.000000	0.000000
25%	7.000000	1190.000000	0.000000	1951.000000	0.000000
50%	7.000000	1560.000000	0.000000	1975.000000	0.000000
75%	8.000000	2210.000000	560.000000	1997.000000	0.000000
max	13.000000	9410.000000	4820.000000	2015.000000	2015.000000
	zipcode	lat	long	sqft_living15	sqft_lot15
count	21597.000000	21597.000000	21597.000000	21597.000000	21597.000000
mean	98077.951845	47.560093	-122.213982	1986.620318	12758.283512
std	53.513072	0.138552	0.140724	685.230472	27274.441950
min	98001.000000	47.155900	-122.519000	399.000000	651.000000
25%	98033.000000	47.471100	-122.328000	1490.000000	5100.000000
50%					
50%	98065.000000	47.571800	-122.231000	1840.000000	7620.000000
50% 75%	98065.000000 98118.000000		-122.231000 -122.125000	1840.000000 2360.000000	7620.000000 10083.000000

[5]: df.hist(figsize= (20,12));

First of all we usually should do preprocessing operation like null values or misunderstanding values. For e.g, we see the df['yr_renovated] that shows the year of renewing the building. here 0 means that this building had no renovation (It does not mean the year). There are some solutions: 1. if the df['yr_renovated] = 0, so we can put df['yr_built] instead. 2. or we can make them 0 or 1 to show that the house is renovated or not.

```
But we skip here.
 [6]: import xgboost as xgb
 [7]: x = df.iloc[:, 3:].values
      y = df['price'].values
 [9]: np.shape(x)
 [9]: (21597, 18)
[10]: np.shape(y)
[10]: (21597,)
[11]: from sklearn.model_selection import train_test_split
      x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 123)
[12]: xgb_reg = xgb.XGBRegressor(colsample_bytree = 0.8, learning_rate = 0.1,
       →max_depth = 6, n_estimators = 1000, verbosity = 3)
[14]: xgb_reg.fit(x_train, y_train)
     p = xgb_reg.predict(x_test)
     [18:35:50] ======= Monitor (0): HostSketchContainer =======
     [18:35:50] AllReduce: 0.001281s, 1 calls @ 1281us
     [18:35:50] MakeCuts: 0.001342s, 1 calls @ 1342us
     [18:35:50] INFO: C:\actions-
     runner\_work\xgboost\src\data\iterative_dmatrix.cc:53: Finished
     constructing the `IterativeDMatrix`: (16197, 18, 291546).
     [18:35:50] DEBUG: C:\actions-runner\_work\xgboost\xrc\gbm\gbtree.cc:131:
     Using tree method: 0
     [18:35:51] ======= Monitor (0): GBTree =======
     [18:35:51] BoostNewTrees: 0.884339s, 1000 calls @ 884339us
     [18:35:51] CommitModel: 0.000409s, 1000 calls @ 409us
     [18:35:51] ======= Monitor (0): HistUpdater =======
     [18:35:51] BuildHistogram: 0.266365s, 5000 calls @ 266365us
     [18:35:51] EvaluateSplits: 0.248679s, 6000 calls @ 248679us
     [18:35:51] InitData: 0.0159s, 1000 calls @ 15900us
     [18:35:51] InitRoot: 0.11689s, 1000 calls @ 116890us
     [18:35:51] LeafPartition: 0.000123s, 1000 calls @ 123us
```

```
[18:35:51] UpdatePosition: 0.160456s, 6000 calls @ 160456us

[18:35:51] UpdatePredictionCache: 0.022868s, 1000 calls @ 22868us

[18:35:51] UpdateTree: 0.855876s, 1000 calls @ 855876us

[18:35:51] DEBUG: C:\actions-runner\_work\xgboost\xgboost\src\gbm\gbtree.cc:131:
Using tree method: 0
```

```
[15]: from sklearn.metrics import mean_absolute_error
```

What is mean_absolute_error? It is a regression metric used to evaluate how well a model is predicting continuous numerical values. It measures the average absolute difference between actual and predicted values.

Interpretation:

Lower MAE means better predictions.

It is in the same unit as the target variable (e.g., dollars, meters).

[20]: RMSE = np.sqrt(metrics.mean_squared_error(y_test, p))

Unlike MSE, MAE doesn't square the errors, so it's more robust to outliers.

```
[16]: from sklearn import metrics print(metrics.mean_absolute_error(y_test, p))
```

63091.339743923614

As above, we can not use classification_report or confusion_matrix. because they are related to classification.

```
the above unit equals to our target unit. Target unit is dollar, so the error is 63091$.

[17]: df['price'].mean()

[18]: df['price'].std()

[18]: 367368.1401013936

[19]: MSE = metrics.mean_squared_error(y_test, p)

MSE

[19]: 14744813931.751701
```

[20]: 121428.22543277037

RMSE

```
[21]: metrics.r2_score(y_test, p)
```

[21]: 0.8889036036305592

This calculates the R^2 score (coefficient of determination) between the actual values y_test and the predicted values p.

Interpretation:

 $R^2 = 1 \rightarrow Perfect prediction$

 $R^2 = 0 \rightarrow Model$ does no better than predicting the mean

 $\mathbb{R}^2 < 0 \to \text{Model performs worse than the mean}$

[22]: xgb.plot_importance(xgb_reg);


```
Each f are features of tables of x. f14 means the 14th col of x. Lets see the columns.

[27]: x_table = df.iloc[:, 3 :] x_table.columns
```

```
[27]: Index(['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
             'waterfront', 'view', 'condition', 'grade', 'sqft_above',
             'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
             'sqft_living15', 'sqft_lot15'],
            dtype='object')
[28]: print(x_table.columns[14])
      print(x_table.columns[3])
      print(x_table.columns[2])
      print(x_table.columns[15])
      print(x_table.columns[16])
     lat
     sqft_lot
     sqft_living
     long
     sqft_living15
     0.0.1 Lets predict with SVR:
```

```
[29]: from sklearn.svm import SVR
    svr_reg = SVR()
    svr_reg.fit(x_train, y_train)
    p = svr_reg.predict(x_test)

[30]: metrics.mean_absolute_error(y_test, p)
```

[30]: 219941.48670598533

SVR is Support Vector Regression.

As result XGBR predicts better than SVR. Thats better to use hyperparameters to improve the prediction.