NAO Technical Note No 69

A Method for Predicting the First Sighting of the New Crescent Moon by BD Yallop

Summary

A single parameter method is obtained for predicting first sighting of the new crescent moon, based on the Indian method. Based on the method of Bruin, a simple rule is given that determines the time of best visibility in the twilight sky.

The six ranges of the single test parameter q are calibrated by applying the q-test to a standard set of 295 first sightings of the new crescent moon that cover the period 1859 to 1996.

The ranges of the parameter correspond to the following visibility types for the new crescent moon: (A) easily visible to the unaided eye; (B) visible under perfect atmospheric conditions; (C) may need optical aid to find the thin crescent moon before it can be seen with the unaided eye; (D) can only be seen with binoculars or a telescope; (E) below the normal limit for detection with a telescope; (F) not visible, below the Danjon limit.

1. Introduction.

Methods for predicting first sighting of the new crescent moon have been around since the time of the Babylonians and maybe before that. The earliest methods depended upon parameters such as the age of the Moon (Age) and the time from sunset to moonset (Lag). In Medieval times the methods became slightly more sophisticated, and they included more technical parameters such as ecliptic latitude and longitude.

In the twentieth century empirical methods have been developed based on functional relationships between the arc of light (ARCL), arc of vision (ARCV) and the relative azimuth (DAZ). In this note I examine three of the twentieth century methods, due to Maunder (1911), the Indians, The Indian Astronomical Ephemeris, (1996), and Bruin (1977). My method is an adaptation of these three methods.

2. The basic variables.

The angles ARCL, ARCV and DAZ, always in degrees, are defined as follows:

ARCL is the angle subtended at the centre of the Earth by the centre of the Sun and the centre of the Moon.

ARCV is the geocentric difference in altitude between the centre of the Sun and the centre of the Moon for a given latitude and longitude, ignoring the effects of refraction.

DAZ is the difference in azimuth between the Sun and the Moon at a given latitude and longitude, the difference is in the sense azimuth of the Sun minus azimuth of the Moon.

Angles ARCL, ARCV and DAZ satisfy the equation

$$\cos ARCL = \cos ARCV \cos DAZ \tag{2.1}$$

so only two of the angles are independent variables.

For angles less than about 22° this approximates to

$$ARCL^{2} = ARCV^{2} + DAZ^{2}$$
(2.2)

Although ARCL and ARCV are not directly observable, for historical reasons it is difficult to discontinue using them.

3. The basic data for three twentieth century methods.

This section gives the basic data for the method of (a) Maunder, (b) the Indians and (c) Bruin.

(a) The basic data for the Maunder method are given on page 359 of Maunder (1911), and are reproduced in Table 1:

		rable 1.	Maunaei		
DAZ	0°	5°	10°	15°	20°
ARCV	11.0	10.5	9.5	8.0	6.0

Table 1. Maundar

Table 1 gives ARCV as a function of DAZ, i.e. ARCV = f(DAZ). If ARCV > f(DAZ) then the crescent is visible. On the other hand if ARCV < f(DAZ) it is not visible. Thus in principle, the degree of

Tn69x.doc 1 of 14 2004/09/22 10:14 AM

visibility is equivalent to testing the value of a single parameter q, where q = ARCV - f(DAZ). In section 5 it is shown how q is calibrated for the Indian method using a standard data base of observations of lunar first sightings.

Fitting a quadratic polynomial in *DAZ* to *ARCV* using the data in Table 1 by the method of least squares, yields a perfect fit, which indicates that Maunder was using a quadratic to represent his data. The visibility criterion is that the crescent is visible if

$$ARCV > 11 - |DAZ| / 20 - DAZ^2 / 100$$
 (3.1)

(b) Since 1966, the basic data for the Indian method have been given in the Explanation to *The Indian Astronomical Ephemeris*, which is based on Schoch (1930). In the 1996 edition, for example, they are found on page 559 under the section "Heliacal rising and setting of planets". They give the data in a similar form to Maunder, i.e. a table of *ARCV* in terms of *DAZ*, which is reproduced here in Table 2.

		Table 2	ıble 2: Indian							
DAZ	0°	5°	10°	15°	20°					
ARCV	10.4	10.0	9.3	8.0	6.2					

In this case a quadratic polynomial in DAZ fitted to ARCV by the method of least squares produces the following criterion:

$$ARCV > 10.3743 - 0.0137 |DAZ| - 0.0097 DAZ^{2}$$
 (3.2)

(c) The basic data for the Bruin method are contained in figure 9, page 339 of Bruin (1977). This diagram yields ARCV as a function of W the width of the crescent moon, and they are reproduced in Table 3. Note that the entry for $W = 0'\cdot 3$ has been extrapolated, and that Bruin does not extend his curves beyond W = 3'.

In this case a cubic polynomial in W is fitted to ARCV by the method of least squares. A cubic polynomial is required because the curve has an inflexion. Moreover, since the coefficient of W^3 is negative, it guarantees that the test criteria is eventually satisfied, provided that W is large enough. The criterion is that the crescent is visible if

$$ARCV > 12.4023 - 9.4878 W + 3.9512 W^2 - 0.5632 W^3$$
 (3.3)

where W is the width of the crescent in minutes of arc and is given by

$$W = 15 (1 - \cos ARCL) = 15 (1 - \cos ARCV \cos DAZ)$$
 (3.4)

Notice that Bruin took the semi-diameter of the Moon to be a constant 15', and that W is a function of ARCV and DAZ.

The criterion for Maunder (3.1) and the Indian method (3.2), can also be expressed as a function of ARCV and W, as follows.

$$ARCV > 13.1783 - 9.0812 W + 2.0709 W^2 - 0.3360 W^3$$
 (3.5)

$$ARCV > 11.8371 - 6.3226 W + 0.7319 W^2 - 0.1018 W^3$$
 (3.6)

Note that an additional cubic term in W is required to maintain precision.

Finally for comparison I give the expression for Bruin in the alternative form ARCV as a polynomial in DAZ, although the precision is poor when DAZ exceeds about 20° .

$$ARCV > 10.136 + 0.14 |DAZ| - 0.03 DAZ^2$$
 (3.7)

The curves ARCV = f(DAZ) (i.e. q = 0) are drawn in Figure 1, for the three methods. As explained in section 3(a), visibility occurs when ARCV > f(DAZ) (i.e. q > 0). Note that the Indian and Bruin test are very similar between $DAZ = 0^{\circ}$ and $DAZ = 20^{\circ}$. For $DAZ > 20^{\circ}$ the Bruin curve behaves quite differently from the Indian curve and has a strong inflexion. At high latitudes, when the orbit of the Moon is almost parallel with the horizon, this shape of curve produces predictions of first sighting that are far too late. Experimental data are required in this region to improve predictions at high latitudes

From 1996 March, HM Nautical Almanac Office decided to abandon its test based on the Bruin method for one based on the Indian method, using the expression (3.6) since it produced more

sensible results for old moonage sightings at high latitudes, which occur at least once a year for latitudes around 55° . It also uses the topocentric width of the crescent W' in place of W, which is calculated as follows:

$$SD = 0.27245\pi \tag{3.8}$$

$$SD' = SD (1 + \sin h \sin \pi) \tag{3.9}$$

$$W'=SD'(1-\cos ARCL) \tag{3.10}$$

where a dash indicates that a co-ordinate is topocentric, SD is the semi-diameter of the Moon, π is the parallax of the Moon and h is the geocentric altitude of the Moon.

Figure 1: Comparison of Maunder, Indian and Bruin methods.

4. The concept of best time.

If the crescent moon is to be observed as early as possible it is important to know when is the best time for making the observation. If the observation is made too soon after sunset then the twilight sky may be too bright to pick out the faint crescent moon. The observer has to wait until the contrast between the crescent moon and the twilight sky has increased sufficiently for the Moon to be seen. Although the twilight sky becomes darker, the brightness of the crescent moon also diminishes due to atmospheric extinction as the altitude of the setting Moon decreases, so there is an optimum time for making the observation. In critical cases the observation is only possible within a short period of the best time.

Soon after sunset the observer will be using daylight vision to detect faint objects. Objects like stars are best found by looking straight at them. As the Sun sinks to about 5° below the horizon, night vision takes over. In this case much fainter objects can be seen, but it is necessary to use averted vision. Around this time first magnitude stars begin to pop out of the sky. In critical cases, with an elongation of say 8° and the Sun 5° below the horizon, and in the perfect geometrical situation with DAZ = 0, there is not much time left to observe the Moon before it sets in the murk on the horizon. It becomes increasingly more difficult to observe the crescent as the Danjon limit is approached simply due to these geometrical constraints.

Schaefer (1988), (see pages 519 and 520) calculates the best time from the logarithm of the actual total brightness of the Moon divided by the total brightness of the Moon needed for visibility for the given observing conditions. I have found it difficult to repeat his calculations exactly because the reference he quotes for his theoretical method, Schaefer (1990), is not readily available in most libraries. Furthermore, in his other papers that are relevant to the subject, he gives insufficient or conflicting information.

I have found a simple rule, however, based on Bruin (1977), which is sufficient for most purposes. Bruin (1977) gives a method for calculating the possibility of observing the Moon at any instant after sunset, and the results are given in figure 9 on page 339 of his paper. He plots a series of curves of visibility of h + s (arc of vision) against s for W = 0.5, 0.7, 1, 2 and 3, where $90^{\circ} - s$ is the geocentric altitude of the Sun, and h is the geocentric altitude of the Moon. Hence s is the depression of the Sun below the horizon and h + s = ARCV. Each of these curves has a minimum, which Bruin

Tn69x.doc 3 of 14 2004/09/22 10:14 AM

says is when the situation is at an optimum. On the curve for W = 0.5, he marks the minimum as point C. If a straight line is drawn through the origin (at $h + s = 0^{\circ}$ and $s = 0^{\circ}$) and through point C (at $h + s = 9^{\circ}$, and $s = 4^{\circ}$), it is found that this line passes directly through the minima of the series of curves for different W. Hence at the best time 4h = 5s. If T_s is the time of sunset and T_m is the time of moonset, then the best time T_h is given by

$$T_b = (5 T_s + 4 T_m)/9 = T_s + (4/9) Lag$$
 (4.1)

 $T_b = (5 T_s + 4 T_m)/9 = T_s + (4/9) Lag$ (4.1) Provided the derivation of the Bruin curves is sound, they yield, amongst other things, a very simple rule for determining the best time. It is therefore an important exercise to re-determine Bruin's figure 9 using modern theories for the brightness of the twilight sky as a function of s, (and azimuth of the Sun), the brightness of the Moon as a function of phase, the minimum contrast observable to the human eye for a thin crescent shape, various effects of the atmosphere, such as seeing and extinction, the effects of age of the observer, and other relevant effects.

To this end I first attempted to re-determine figure 9 in Bruin (1977) using his theories, with the aid of the computer package called MathCad. I wanted to extend his curves to a wider range of W, and confirm my result for determining best time. Unfortunately my attempts failed, because scaling factors have to be applied to make the transformations produce sensible results. In his paper Bruin says he has applied a "Gestalt" factor to obtain his results.

From the curves in Figure 1 it appears that for $DAZ < 20^{\circ}$ Bruin adjusted his results to agree with the Doggett and Schaefer (1994) have made some strong comments about Bruin's assumptions for his model, and they point out that some of his quantities are orders of magnitude out.

In spite of these difficulties Bruin's method is a very important approach to the problem because in principle it provides answers to many questions that the Maunder and Indian method cannot address. I am therefore making a fresh attempt to calculate Bruin's curves using the modern approach of

The problem of predicting heliacal rising and setting of stars is similar to the problem of predicting first sighting of the new crescent moon. Three relevant papers have been written by Schaefer (1985), (1986) and (1987) on this topic, and I have managed to reproduce his work, apart from some inconsistencies between the three papers, which still need sorting out. A fourth paper by Schaefer (1993a), repeats all the relevant formulae, but again there are inconsistencies. In this last paper he quotes the expression by Allen (1963) for the apparent magnitude of the Moon as a function of phase. This is the remaining piece of information that is needed in the calculation to predict first sighting of the new crescent moon.

In general, the magnitudes of the stars are fixed, and empirical rules are found for predicting heliacal rising and setting that depend upon magnitude and ARCV, Lockyer (1894). There is also some dependence upon DAZ, which is fixed for each star.

Unlike the stars, the Moon is always near to the Sun at first sighting. Moreover the apparent magnitude of the Moon depends upon ARCL, which in turn is a function of ARCV and DAZ, and therefore we would expect there to be an empirical rule that is a function of ARCV and DAZ for making the prediction. The problem reduces to finding an expression for that function. There is one difference in the calculation that is often overlooked in the literature, a star is a point source, whilst the Moon is a thin crescent.

I have to agree with Schaefer that his method is very short, taking only a few lines of programming. I can now produce theoretically the curves ARCV as a function of DAZ, and even predict what happens in daylight. I could produce and extend the curves of Bruin to find the best time using modern theories, although there are more logical ways of performing this calculation using a As Schaefer points out, using different extinction coefficients I find an enormous computer. difference between a site at high altitude with a clear dry atmosphere, and one at sea level with a humid or dusty atmosphere, so my empirical approach must be confined to a specific type of site where altitudes above sea level and extinction factors are confined to within narrow limits.

5. The basic data set of observations for calibrating first visibility parameters.

A list of 252 observations of first sighting has been published by Schaefer, (1988) and by Doggett, and Schaefer, (1994). The list was later extended to 295 observations by Schaefer (1996). The list

2004/09/22 10:14 AM Tn69x.doc 4 of 14

includes cases of both sightings as well as non-sightings. Even non-sightings provide relevant information for calibration purposes.

I have re-calculated these data using my simple rule for determining the best time, and displayed the set of 295 observations in order of decreasing q in Table 4. Columns numbered 1 to 18 have the following meaning:

- 1 Number from the original lists.
- 2, 3, 4 Date of observation in the form year, month, day.
- 5 Morning (M) or evening (E) observation.
- 6 Julian Date of astronomical new moon minus 2 400 000 days.
- 7, 8 Latitude and longitude of observation.
- 9, 10, 11 Arc of light (ARCL), arc of vision (ARCV) and relative azimuth (DAZ) at best time.
- 12 Age of the Moon (Age) in hours at best time.
- 13 Time in minutes from sunset to moonset (*Lag*).
- 14 Parallax of the Moon (π) in minutes of arc. Semi-diameter = 0.27245 π .
- 15 Topocentric width of the crescent W' in minutes of arc.
- 16 The test parameter (q), which is derived from the Indian method, and is defined in section 6.
- 17 Schaefer's coded description (BES) of how each observation was made. If the only character is a "V", then the Moon was visible to the unaided eye. An "I" means it was not seen with the unaided eye. If the first character is followed by (F) then optical aid was used to find the Moon, which was then spotted with the unaided eye. If the first character is followed by (B) or (T) it was visible with binoculars or a telescope, respectively. In the second and third papers, the rules were changed as follows: If the first character is followed by (I) it was invisible with either binoculars or a telescope. If the first character is followed by (V) it was visible with either binoculars or a telescope.
- 18 A prediction (BDY) of how the observation would be made, based on Schaefer's coded description in column 17, and derived from the value of the test parameter q at the best time of observation. The methods for setting the empirical limits on q are described in section 6.

I found it necessary to reproduce so much of the information concerning the 295 observations, because the original published tables contained so many errors. For example, in the original list of 252 observations, the column containing the Julian Date of the conjunction has the following errors:

Schaefer (1996) gives corrections for No. 44 and 117. He agrees with Loewinger (1995) that 44 is unreliable and should be deleted, and gives the correct conjunction time for 117. I still found errors in his list of 43 additional observations. For example the data for No. 285 is for the following day on 1991:05:16, and the following significant discrepancies were noticed in the conjunction times:

```
No 256 for 2445702·709 read 2445702·719
No 257 for 2445702·709 read 2445702·719
```

There are other differences in the columns for ARCL, ARCV, DAZ, and Age, some of which can be explained by a different estimate for the best time. Unfortunately Schaefer did not include his estimate for best time in the original list, and there is no simple way of finding out what it should be. There are also many errors in Lag, which are too frequent to report. See also the report by Loewinger (1995), for further comments on errors.

Table 4: The 295 observations listed in order of decreasing q

No	Date		JD –	Lat	Long	ARCL	ARCV			Lag	π	W'	q		Vis
1	y m d 2 3 4	5	2 400 000 6	。 7	8	。 9	10	11	h 12	m 13	14	15	16	BES 17	BDY 18
2=	1000 000		1071 071	,		>+0.216			166 entr			2 (
37 73	1870 7 25 1879 7 22	M E	4271·971 7549·879	38·0 38·0	23·7 23·7	40·3 42·2	31·1 19·1	-26.1 37.8	-81·2 81·4	-1/3·/ 99·3	55·4 58·2	3·6 4·1	+3·730 +2·804	V V	V V
48	1879 / 22	M		38.0	23.7	29.3	29.2	-2.4		-148·4	54.8	1.9	+2.749	V	V
74	1879 12 11	M		38.0	23.7	32.5	25.2	-20.6		-145.6	60.9	2.6	+2.665	V	V
75	1879 12 11	E	7696.963	38.0	23.7	30.6	24.4	18.6	53.1	139.9	59.9	2.3	+2.433	v	V
274	1984 10 26	Е	45998.008	15.6	35.6	29.7	24.7	16.7	51.8	106.5	59.8	2.2	+2.409	v	v
72	1879 6 22	E	7520-347	38.0	23.7	34.2	21.8	26.5	70.4	120.7	56.5	2.7	+2.359	V	V
71	1879 5 23	Е	7490.744	38.0	23.7	28.3	24.1	14.9	60.8	138.2	55.0	1.8	+2.182	V	V
270	1984 8 28		45939-310	15.6	35.6	27.1	23.5	13.5	45.2	96.0	61.0	1.8	$+2 \cdot 143$	V	V
266	1984 6 1		45851-200	15.6	35.6	25.0	24.7	3.6	48.1	111.5	58.0	1.5	$+2 \cdot 100$	V	V
285	1991 5 16		48390.692	39.0	-76.8	26.1	23.1	12.3	44.6	133.6	60.8	1.7	+2.035	V	V
263	1984 4 3		45792.007	15.6	35.6	24.5	24.5	0.2	52.4	101.1	55.1	1.4	+2.016	V	V
9		Е	1023-425	38.0	23.7	38.9	13.7	36.5	67.1	68.2	60.4	3.7	+2.014	V	V
70	1878 11 26 1868 6 22	Е	7312.884	38.0	23.7	30.6	18.7	24.3	54.7	109.3	58.6	2.2	+1.846	V	V
35 19	1868 6 22 1864 3 9	E E	3504·115 1938·666	38·0 38·0	23·7 23·7	30·2 21·8	18·4 21·6	24·0 2·3	51·8 37·3	101·3 107·9	60·7 60·1	2·3 1·2	+1·827 +1·637	V V	V V
284	1991 3 17	Е	48331.841	39.0	-76.8	21.7	21.7	0.9	39.9	110.5	58.4	1.1	+1.617	V	V
261	1991 3 17	Е	45762.272	15.6	35.6	21.3	21.7	1.8	45.9	86.0	54.1	1.0	+1.511	V	V
26	1865 3 28	Е	2322.728	38.0	23.7	21.2	20.4	5.8	36.0	102.7	60.9	1.1	+1.496	v	V
245	1989 10 3		47799.407		-108.8	34.6	13.4	32.0	75.7	67.0	54.0	2.6	+1.485	v	V
65	1878 1 5	E	6988.086	38.0	23.7	23.6	19.7	13.1	50.1	109.8	54.7	1.2	+1.477	V	v
267	1984 6 30		45880.638	15.6	35.6	21.0	20.4	5.0	37.6	90.6	59.3	1.1	+1.461	V	V
276	1984 11 24	Е	46027-457	15.6	35.6	22.6	19.5	11.6	40.8	86.6	58.8	1.2	+1.450	V	V
21	1864 6 6	Е	2026.986	38.0	23.7	27.0	17.3	20.8	54.8	94.9	55.3	1.6	+1.438	V	V
4	1860 2 23	Е	462.318	38.0	23.7	20.7	20.6	2.0	45.3	103.0	54.1	1.0	+1.428	V	V
272	1984 9 26		45968.634	15.6	35.6	22.1	18.9	11.5	36.9	76.0	61.0	1.2	+1.385	V	V
254	1983 11 6	Е	45643.432	15.6	35.6	21.7	19.1	10.3	41.3	81.5	57.3	1.1	+1.351	V	V
11	1861 11 4	Е	1082.172	38.0	23.7	28.4	14.5	24.5	47.9	79.3	60.8	2.0	+1.318	V	V
17 32		E E	1879.824	38.0	23·7 23·7	19.8	19·2 18·2	5·0 9·9	32·4 34·6	102·8 93·0	61·2 61·2	1·0 1·1	+1·295 +1·245	V V	V V
66	1866 4 16 1878 6 2	Е	2706·795 7136·575	38·0 38·0	23.7	20·7 21·0	18.2	10.5	40.7	105.4	57·4	1.0	+1.243 +1.232	V	V
282	1990 11 19	Е	48212.878	39.0	-76.8	27.9	15.0	23.6	61.4	87.0	54.0	1.7	+1.231	V	V
244	1989 7 5	Е	47710.708		-121.6	24.3	16.5	17.9	47.2	89.4	56.6	1.4	+1.221	V	V
63	1877 11 7	E	6928.868	38.0	23.7	29.6	13.0	26.6	55.1	73.0	57·2	2.0	+1.189	v	V
207	1933 3 27	Ē	27157-639	48.6	7.7	19.2	18.6	4.9	39.4	112.6	55.1	0.84	+1.158	V	v
259	1984 2 3	Е	45732-491	15.6	35.6	19.0	18.6	4.0	40.4	77.9	54.0	0.80	+1.138	V	V
25	1865 1 28	Е	2263.897	38.0	23.7	18.5	18.3	2.3	30.9	94.3	60.6	0.85		V	V
57	1875 7 4	Е	6072.727	38.0	23.7	21.6	16.7	13.7	37.1	94.0	59.4	1.1	+1.129	V	V
61	1877 3 16	Е	6693.620	38.0	23.7	18.5	18.4	1.8	38.4	91.4	55.8	0.79	+1.120	V	V
76	1880 1 10			38.0	23.7	23.8		-18.4	-41.6	-87.0	60.6	1.4	+1.115		V
217	1935 4 4			48.2	5.1	18.2	17.9	3.6	30.8	109.7	59.6	0.82	+1.077		V
24	1864 11 1	Е	2175.144	38.0	23.7	23.7	15.2	18.2	48.6	79·6	56.4	1.3		V	V
264			45821.657	15.6	35.6	17.8	17.8	0.9	36.7	75.2	56.2	0.73	+1.024	V	V
210 50	1933 9 18 1872 10 4			48.6	7·7 23·7	19.3	17·1 14·3	-9.1 20.1	-37·9 49·1	-101·3 70·1	56·6 57·0	0·87 1·4		V	V V
8	1861 8 8	E E	5069·146 994·037	38·0 38·0	23.7	24·6 29·3	10.8	27.3	52.9	52.3	59·4	2.1		V V	V
168	1986 10 5	E	46707.288	40.8	-73.2	28.5	11.2	26.3	52.0	57·7	59.5	2.0	+0.979		V
12	1861 12 3	E	1111.596	38.0	$\frac{-73.2}{23.7}$	21.7	15.1	15.6	37.4	85.1	60.3	1.2	+0.976	V	V
206	1932 4 7		26803.556	50.0	36.2	18.2	17.2	6.1	39.7	110.0	54.0	0.74		v	v
60		Е	6456.704	38.0	23.7	22.0	14.2	16.9	37.4	73.9	60.5	1.2	+0.908	V	V
268			45909-994	15.6	35.6	17.3	16.5	5.1	28.8	69.7	60.4	0.75	+0.905	V	V
287	1992 3 5	Е	48686.057	39.0	-76.8	16.9	16.9	-0.5	34.3	84.4	55.2	0.65	+0.894	V	V
58	1876 2 26		6309.764	38.0	23.7	17.3	16.6	5.0	34.5	82.0	57.1	0.71	+0.889	V	V
110			37316-396		-118·3	16.9	16.3	4.4	28.2	81.3	61.3	0.72	+0.866	V	V
5	1860 6 20	Е	580.725	38.0	23.7	20.1	14.7	13.7	37.1	82.1	59.1	1.0	+0.851	V	V
68	1878 7 31	Е	7195.403	38.0	23.7	25.2	11.8	22.3	44.4	58.5	60.3	1.6		V	V
193	1987 5 29		46943.134		-105·5	17.4	16.2	6.4	35.8	96.3	54.5	0.68	+0.839		V
14	1862 3 31	Е	1229·823	38.0	23.7	16.4	16.4	0.1	33.6	82·4 ·	54.6	0.61	+0.818	V	V
			Table 4: Th	e 295 (observa	tions lis	ted in	order	of decr	easing q	, contir	ıued			

6 of 14 Tn69x.doc

No	Date	JD -	Lat	Long	ARCL	ARCV	DAZ	Age	Lag	π,	W'	q	Vis	
1	y m d 2 3 4	5 6	7	8	9	10	11	h 12	m 13	14	15	16	BES B 17	18
30	1865 10 21	E 2529·18		+0·216 23·7	21.7	166 d 13·6	entries 16·9	47.7	conti 68·7	inued 54·2	1.0	+0.770	V	V
55	1874 4 17	E 2529·18 E 5630·08		23.7	16.3	15.5	4.8	27.7	79.8	60.8	0.66	+0.762	V	V
51	1872 12 31	E 5157·77		23.7	19.8	13.6	14.5	33.2	77.3	61.0	1.0	+0.744	v	v
45	1872 6 7	E 4950·64		23.7	18.0	14.9	10.2	39.0	84.8	54.2	0.73	+0.734	V	V
235	1989 4 4	M 47622·64		-88.7	24.0	11.3	-21.2	-40.4	-56.3	61.1	1.4	+0.733	V	V
257	1984 1 4	E 45702·71	9 15.6	35.6	16.6	15.5	5.9	34.6	67.8	54.7	0.62	+0.732	V	V
23	1864 9 3	E 2115.75		23.7	27.0	10.3	24.9	59.1	49.2	54.3	1.6	+0.722	V	V
83	1909 2 21	E 18357.95		0.0	19.2	13.6	13.6	31.2	86.2	61.3	0.93	+0.713	V	V
53	1873 5 27	E 5304.89		23.7	16.9	15.1	7.7	32.9	85.3	56.5	0.66	+0.713	V	V
211	1934 3 16	E 27512·00		33.9	15.9	15.1	4.7	28.4	104.6	58.2	0.61	+0.690	V	V
62 283	1877 6 12 1990 12 18	E 6782·10 E 48242·68		23·7 -76·8	16·4 19·0	14·5 13·6	7·7 13·3	27·9 42·0	83·5 78·3	60·1 54·3	0·67 0·81	+0.658 +0.646	V V	V V
203 47	1872 9 4	E 48242.06		23.7	19.0	13.0	14.7	40.4	62.9	55·3	0.88	+0.635	V	V
42		E 4596.60		23.7	18.2	13.8	11.9	39.9	77.3	54·4	0.74	+0.629	V	V
34	1867 11 27			23.7	16.8	14.4	8.7	34.5	77.0	54.4	0.63	+0.628	v	v
84		E 19214·05		2.3	19.2	12.7	14.5	31.4	97.3	60.8	0.93	+0.616	V	V
82	1908 2 3	E 17973·85	9 56.0	-3.2	19.8	12.3	15.6	32.9	95.1	61.0	1.0	+0.603	V	V
64	1877 12 6	E 6958·42	0 38.0	23.7	21.2	12.0	17.5	41.5	68.5	56.1	1.0	+0.598	V	V
104	1922 4 28	E 23171·71	0 -33.9	18.5	17.6	13.6	-11.2	35.6	65.3	56.1	0.72	+0.596	V	V
218	1982 4 24	E 45083·35	4 37.2	$-84 \cdot 1$	16.8	13.7	9.7	28.3	68.5	60.4	0.70	+0.595	V	V
248	1990 4 25	E 48006.68	6 37.7	-121.5	14.6	14.5	0.5	22.9	76.8	61.3	0.54	+0.591	V	V
18	1864 2 8	E 1909·25		-2.3	14.9	14.4	4.1	23.6	97.4	61.3	0.56	+0.587	V	V
213	1934 5 14	E 27571·02		5.1	15.8	14.3	6.7	31.4	101.1	55.2	0.57	+0.587	V	V
117	1971 3 27	E 41037·30		0.0	14.7	14.4	2.9	23.7	90.1	61.0	0.54	+0.578	V	V
27	1865 4 26	E 2352.09		23.7	16.0	13.9	7.9	27.5	71.0	60.2	0.63	+0.576	V	V
273 216	1984 10 25 1935 2 4	E 45998·00 E 27837·18		35·6 5·1	16·0 15·0	13·6 13·9	8·3 5·5	27·4 24·9	55·4 85·0	60·5 61·3	0·64 0·57	+0·553 +0·547	I V	V V
89	1933 2 4	E 21665·32		5.1	14.3	14.2	1.6	22.4	85.4	61.3	0.52	+0.545	V	V
286	1991 9 7	M 48507.96		-4·4	17.1	13.0	-11.2	-30.0	-79.6	59.9	0.73		V(V)	v
43	1871 8 17			23.7	17.9	12.7	12.6	34.7	63.0	56.7	0.75	+0.527	V	v
236	1989 4 6	E 47622·64		-107.2	14.0	14.0	-1.2	22.5	66.3	61.1	0.50	+0.510	V	V
88	1916 4 3	E 20956·18		8.7	14.2	14.1	1.9	26.3	86.7	56.5	0.47	+0.507	V	V
69	1878 10 27	E 7283·45	8 38.0	23.7	24.4	8.8	22.8	40.9	45.0	60.4	1.5	+0.498	V	V
108	1953 4 14	E 34481·34		5.3	14.1	13.8	2.9	23.0	92.4	59.9	0.50	+0.497	V(F)	V
249	1990 5 23	M 48035.99		-110.5	15.1	13.2	-7.4	-24.0	-64.5	61.3	0.58	+0.481	V	V
111	1962 4 5	E 37759·32		-28.2	15.1	13.2	-7.3	24.4	55.7	60.6	0.57	+0.477	V(F)	V
277		E 46056-99		35.6	15.1	13.3	7.2	27.9	58.5	57·5	0.55	+0.472	V	V
29	1865 7 24			23.7	23.7	9.4	21.8	47.5	46.3	55.4	1.3	+0.467	V	V
101		E 23112·28		18.5	21.2		-18.2	47·0	48·7 99·6	54·1	1.0	+0.466		V V
212 291		E 27571·02 M 50103·03		36·2 -111·0	14·9 14·5	13·4 13·3	6·5 -5·8	29·4 -22·9	-64·4	55·2 61·3	0·51 0·53	+0·463 +0·463		V
112	1965 9 24			5.3	13.7	13.6	-3.6	-22.5	-84.0	60.2	0.47	+0.461	V	V
125		E 43133.58		-122.5	14.1	13.4	4.4	23.3	72.0	59.8	0.49	+0.457		v
165	1980 7 14			-70.7	20.9	10.7	18.0	41.9	58.5	55.9	1.0	+0.453		v
1	1859 7 1			23.7	16.4	12.3	10.9	27.6	67.1	61.1	0.68	+0.442		v
121		E 41746·50		-85.0	13.6	13.5	-1.0	24.0	67.4	58.3	0.44	+0.436		V
13		E 1141.08		22.9	14.6	13.1	6.4	25.9	70.9	59.3	0.52	+0.436	v	V
219	1983 7 9	M 45526·01	4 37.2	$-84 \cdot 1$	15.4	12.6	-8.9	-26.4	-68.5	60.5	0.59	+0.426	V	V
79	1899 3 12	E 14725·32		13.3	13.3	13.2	1.6	21.8	83.3	59.5	0.44	+0.402	V	V
214	1934 5 14	E 27571·02	1 55.6	33.9	15.2	12.7	8.4	30.1	117.4	55.2	0.53	+0.399	V	V
109	1954 3 5			-88.0	13.2	13.2	0.2	21.1	70.4	61.0	0.44	+0.396	V	V
118		E 41066.66		-88.2	13.2	13.2	0.3	21.1	71.0	60.1	0.43	+0.396		V
262		E 45792·00		35.6	13.4	13.3	1.9	28.1	52.5	54.7	0.41	+0.390		V
6	1861 3 12			23.7	13.4	13.3	-1.6	27.4	64.3	54.0	0.40	+0.386		V
90	1919 4 1	E 22049·37		-1.6	13.5	12.9	4.1	22.2	86.2	61.1	0.46	+0.380		V
114	1970 4 6	E 40682·67		−122·0	13.3	13.0	2.4	23.2	77·8	58.7	0.43	+0.378		V
85		E 19272.67		2.3	21.5	9.3	19.4	39.0	53.4	58·2	1.1	+0.366		V
269	1984 8 2/	E 45939·31		35.6	13·3	12·7	3.8	20·8	50·1	61·2	0·45	+0.354	1	V
		rable 4.	The 295	ooseiva	uons iis	icu iii	oruer (n uecre	tasing q	, contil	шеи			

Tn69x.doc 7 of 14 2004/09/22 10:14 AM

Long ARCL ARCV DAZ Age Lag

Vis

No

Date

JD – Lat

1	y m d 2 3 4	5	2 400 000	。 7	° 8	。 9	° 10	。 11	h 12	m 13	, 14	15	16	BES 1	BDY 18
			(A)	q >	+0.216		166 e	entries		conti	nued				
208			27216-921	55.6	33.9	15.7	12.1	10.0	32.9	121.0	53.9	0.55		V	V
192	1987 4 28		46913.566		-122.0	13.1	13.0	1.6	25.8	67.0	55.7	0.39		V	V
146	1978 1 9		43517.667	29.7	−98·1	12.8	12.8	0.0	20.3	60.1	61.0	0.42		V	V
97	1921 8 4		22905.346	-33.9	18.5	12.8	12.8	0.4	20.3	60.9	61.3	0.42	+0.351	V	V
67	1878 7 1 1990 4 25	Е	7166.022	38.0	23.7	16.1	11.6	11.1	29.8	63.1	58.8	0.63	+0.350	V	V
247 22	1990 4 23	E E	48006·686 2086·106	41·6 38·0	-73.7 23.7	12·8 23·8	12·8 8·3	0·7 22·3	19·8 51·3	71·5 39·7	61·3 54·0	0·42 1·3	+0·350 +0·347		V V
124	1976 12 21		43133.589	29.9	-81.3	12.8	12.7	1.7	20.8	60.5	59.9	0.41			V
167	1985 1 21		46086.603		−155·0	13.8	12.4	6.1	26.0	53.3	56.0	0.44		v	V
80	1900 5 29		15168-119	38.7	-0.7	15.3	11.7	10.0	28.9	63.8	57.7	0.56	+0.316	v	v
145	1978 1 9		43517.667	30.0	-90.2	12.6	12.6	0.0	19.7	58.8	61.0	0.40	+0.312	V	V
144	1978 1 9		43517-667	30.0	-90.2	12.6	12.6	0.0	19.7	58.8	61.0	0.40	+0.312	V(F)	V
221	1983 12 5	Е	45673.018	37.2	$-84 \cdot 1$	17.0	11.0	12.9	34.3	60.0	55.9	0.66	+0.310	I(V)	V
143	1978 1 9	Е	43517-667	30.9	-90.2	12.5	12.5	0.2	19.7	59.4	61.0	0.40	+0.310	V(F)	V
191	1987 4 28	Е	46913.566	40.7	-111.9	12.8	12.6	2.4	25.3	69.0	55.8	0.38	+0.305	V	V
215	1934 6 13		27600.591	55.6	33.9	19.0	10.1	16.1	41.0	97.1	54.2	0.81	+0.299	V	V
38	1871 2 20	Е	4478.076	38.0	23.7	14.5	11.8	8.5	26.7	57.9	56.8	0.49		V	V
139	1978 1 9 1983 12 5		43517.667	27.7	-82.7	12.3	12.3	-0.7	19.3	56.1	61.0	0.38		V(F)	V
255 16	1983 12 3	E	45673·018 1348·378	15·6 38·0	35·6 23·7	13·4 22·3	12·1 8·2	5·8 20·8	27·0 44·9	51·8 39·0	56·1 56·2	0·42 1·1	+0·276 +0·275	I I	V V
115	1970 6 4		40741.598	26.3	-98.2	12.4	12.4	0.5	23.4	59.6	55.6	0.36		V	V
189	1987 4 28		46913.566		-104.0	12.4	12.4	-0.1	24.4	58.3	55.8	0.35	+0.272	V(F)	V
190	1987 4 28		46913.566		-104.0	12.4	12.4	-0.1	24.4	58.3	55.8	0.35	+0.272	V	v
129	1977 12 11		43488.233	47.8	20.0	13.9	11.6	7.7	21.8	76.2	61.4	0.49	+0.272	V	v
137	1978 1 9		43517-667	33.9	-84.3	12.3	12.2	0.8	19.2	60.2	61.0	0.38	+0.271	V(F)	V
56	1875 6 4	Е	6043.432	51.5	-2.6	14.2	11.5	8.4	22.7	96.3	60.8	0.51	+0.270	V	V
116	1970 6 4	Е	40741.598	28.0	-97.0	12.4	12.4	0.9	23.4	60.6	55.6	0.35	+0.270	V	V
243	1989 6 4	Е	47681.330	50.8	-1.0	14.5	11.5	8.8	25.0	92.6	58.8	0.51	+0.270	V	V
130	1978 1 9		43517.667	41.6	-93.6	12.4	12.2	2.7	19.5	67.8	61.0	0.39	+0.269	V	V
141	1978 1 9		43517-667	29.9	-81.3	12.2	12.2	-0.2	19.1	57.1	61.0	0.38	+0.268	V	V
140	1978 1 9		43517-667	29.9	-81.3	12.2	12.2	-0.2	19.1	57.1	61.0	0.38	+0.268	V	V
123	1976 12 21		43133.589	42.0	-91.6	12.9	12.0	4.7	21.0	69.2	59.9	0.41	+0.267	V(F)	V
94	1921 2 8		22728.526		-118.0	12.4	12.3	-1.0	25.3	57.9	54·5	0.35	+0.262	V(F)	V
223	1984 3 3		45762-272	37.2	-84.1	14.2	11.7	8.0	29.4	55·9	54.0	0.45	+0.258	I(V)	V
135 136	1978 1 9 1978 1 9		43517·667 43517·667	34·0 34·0	$-81 \cdot 1$ $-81 \cdot 1$	12·1 12·1	12·1 12·1	0·7 0·7	19·0 19·0	59·7 59·7	61·0 61·0	0·37 0·37	+0.255	V(F) V(F)	V V
265	1978 1 9		45851.200	15.6	35.6	12.1	12.1	0.7	23.7	52·2	57.5	0.37	+0·255 +0·246	V(г) I	V
	1987 4 28				<i>-</i> 97·7	12.2	12.2	-0.2	23.9	57·0	55.8	0.34	+0.244		V
134			43517.667		−79·8	12.1	12.0	1.1	18.8	60.8	61.0	0.37	+0.240		V
142			43517.667		-89.8	12.3	11.9	2.9	19.2	68.3	61.0	0.38	+0.240	. ,	v
132			43517-667	36.0		12.1	12.0	1.1	18.8	60.8	61.0	0.37	+0.240		V
133			43517-667		-79.8	12.1	12.0	1.1	18.8	60.8	61.0	0.37	+0.240		V
59	1876 6 22	Е	6427.429	38.0	23.7	12.9	11.7	5.4	20.1	66.2	61.3	0.42	+0.239	I	V
138	1978 1 9	Е	43517.667	41.9	-87.6	12.2	11.9	2.6	19.1	66.9	61.0	0.38	+0.239	V	V
92	1921 2 8		22728.526		-111.7	12.2	12.2	-0.9	24.8	57.8	54.5	0.34	+0.238		V
187	1987 4 28				-93.7	12.2	12.0	2.4	24.1	66.6	55.8	0.35	+0.228		V
93			22728.526		-110.0	12.2	12.1	-1.5	24.8	55.2	54.5	0.33	+0.228		V
81	1901 4 19			50.7	-2.8	13.1	11.5	6.4	22.1	73.7	61.3	0.44	+0.227		V
126	1976 12 21				−87·7	12.7	11.7	5.0	20.7	69.8	59.9	0.40	+0.227		V
113	1970 4 6	Е	40682.674	44.5	-88.0	12.0	11.9	1.0	20.7	65.6	58.8	0.35	+0.222	V(F)	V
		_		(B)		$16 \ge q$				entries					
	1978 1 9				−76·9	11.9	11.8	1.7	18.5	62.4	61.0	0.36	+0.211		
233	1988 6 13			37.2	-84.1	12.8	11.6	-5·4	-23.5	-64·5	56.8	0.39	+0.211		
40	1871 5 20		4566.948	38.0	23.7	14·2	11.0	8.7	31.2	59·7	54·0	0.45	+0.211		V(V)
186 185	1987 4 28 1987 4 28		46913·566	30.0	-90.1 -87.7	11·9 12·0	11·9 11·8	-0.4 2.1	23·4 23·6	55·5 64·6	55·8 55·8	0·33 0·33	+0·210 +0·205		V(V)
	1987 4 28				-87.7 -87.4	11.9	11.8	0.3	23.3	57·4	55·8	0.33	+0.203		V(V) V(V)
104	1701 4 20	Ľ	Table 4: Th										0 204	1 \	· (*)
											, conti				
No	Date		JD –	Lat	Long	ARCL	ARCV	DAZ	Age	Lag	π	W'	q	V	'is

Tn69x.doc 8 of 14 2004/09/22 10:14 AM

	y m		2 400 000	0	٥	٥	٥	0	h	m	,	,		BES BDY
1	2 3	4 5		7	8	9	10	11	12	13	14	15	16	17 18
161	1050 1 6				q > -0.0		11.5		ntries	50.0	conti		. 0. 201	**************************************
			E 43901·764		-122.4	11.9	11.7	2.3	19.6	58.8	61.4	0.36		V(F)V(V)
155 203			E 43576·609		-119·3 3·1	12.7	11·5 10·7	5·4 10·2	23·8 27·7	67·6	58·1 57·1	0·39 0·51		V V(V)
181			E 18062·149 E 46913·566	44·1 33·7	-84·4	14·7 11·8	11.8	0.4	23.1	60·1 57·5	55.8	0.31	+0·193 +0·192	` '
100			E 23082·492	-33.9	18.5	19.5		-17.4	42.4	40.5	54.0	0.85	+0.191	
77		0 I		51.5	-2.6	11.8	11.7	1.6	20.7	73.1	57.8	0.33	+0.189	` /
183			E 46913·566	42.7	-84.5	12.0	11.7	2.5	23.5	66.1	55.8	0.33		V V(V)
182	1987 4 2		E 46913·566	42.7	-84.5	12.0	11.7	2.5	23.5	66.1	55.8	0.33		V V(V)
177	1987 4 2		E 46913·566		-81.7	11.8	11.7	1.0	23.0	59.1	55.8	0.32		V(F)V(V)
178	1987 4 2	8 I	E 46913·566	36.2	-81.7	11.8	11.7	1.0	23.0	59.1	55.8	0.32	+0.183	V V(V)
176	1987 4 2	8 I	E 46913·566	36.2	-81.7	11.8	11.7	1.0	23.0	59.1	55.8	0.32	+0.183	I V(V)
105			E 23201·253	-33.9	18.5	12.3	11.4	-4.5	22.1	56.4	57.3	0.36		V V(V)
107			E 30701·584	40.7	-74.0	12.6	11.1	5.8	19.9	61.9	61.2	0.40	+0.172	V(F)V(V)
180	1987 4 2		E 46913·566	28.0	-82.5	11.7	11.6	-0.8	22.8	52.8	55.8	0.31	+0.171	` /
179			E 46913·566	26.7	-81.8	11.6	11.6	$-1 \cdot 1$	22.8	51.8	55.8	0.31		V(F)V(V)
173	1987 4 2		E 46913·566	38.9	−77·1	11.7	11.6	1.5	22.8	60.8	55.8	0.31	+0.163	` /
174	1987 4 2		E 46913·566		−77·1	11.7	11.6	1.5	22.8	60.8	55.8	0.31		V(F)V(V)
175	1987 4 2		E 46913·566	38.9	−77·1	11.7	11.6	1.5	22.8	60.8	55.8	0.31		V(F)V(V)
170			E 46913·566		−77·0	11.6	11.5	1.5	22.8	60.8	55·8	0.31		V(F)V(V)
171 172	1987 4 2		E 46913·566 E 46913·566	38·9 38·9	–77·1 –77·1	11·7 11·7	11·6 11·6	1·5 1·5	22·8 22·8	60·8 60·8	55·8 55·8	0·31 0·31	+0·163 +0·163	` ,
209			M 27305·741	48.6	7.7	12.6	11.0	-5·6	-25.8	-70·0	55·5	0.36	+0.163	I(B) V(V) V V(V)
28	1865 6 2			38.0	23.7	18.6	8.7	16.4	34.2	44.8	57.1	0.81	+0.161	` '
99			E 23052·735	-33.9	18.5	18.0		-15.5	36.7	44.1	54.7	0.73	+0.155	` '
204			E 19066·906	51.0	-0.9	16.4	9.7	13.3	31.6	65.2	56.6	0.63	+0.154	
152			E 43576·609	41.6	-93.6	11.8	11.3	3.3	22.1	56.9	58.1	0.33	+0.153	
153			E 43576·609	41.6	-93.6	11.8	11.3	3.3	22.1	56.9	58.1	0.33	+0.153	
151	1978 3	9 I	E 43576·609	40.5	-89.0	11.6	11.2	3.0	21.7	55.4	58.2	0.33	+0.139	
154	1978 3	9 I	E 43576·609	40.5	-89.0	11.6	11.2	3.0	21.7	55.4	58.2	0.33	+0.139	V V(V)
202		7 I		50.6	5.7	13.5	10.7	8.3	26.8	75.3	54.6	0.41	+0.136	` '
205			E 22433·405	43.5	7.0	11.9	10.9	4.8	21.0	59.5	60.2	0.36	+0.126	` '
163			E 43901·764		-122·3	11.7	10.9	4.2	19.2	65.5	61.4	0.35		V(F)V(V)
2 87	1859 10 2			38.0	23.7	21.4	6.8	20.3	39.2	33.3	57·5	1.1	+0.109	
31	1915 3 1 1866 1 1		E 20572·321 E 2618·359	49·4 38·0	8·7 23·7	11·2 11·0	11·0 11·0	1·7 0·5	22·3 19·3	63·9 56·3	55·2 57·6	0·29 0·29	+0·094 +0·093	` '
91			E 22728·526	42.3	-71·1	11.0	11.0	0.1	21.9	57·6	54.5	0.27	+0.081	
78			M 11329·573	50.9	4.2	11.5	10.6		-19.1		60.0	0.33		V V(V)
			E 49896·534		• -	10.9	10.9	-0.2	21.5	51.5	54.2	0.27		V V(V)
33	1867 2			38.0	23.7	11.0	10.8	1.6	22.0	53.6	56.1	0.28	+0.071	
128			M 43458·800	30.7	-104.0	10.7	10.7	-0.7	-18.3	-48.4	60.4	0.29		V(F)V(V)
156	1978 3	9 I	E 43576·609	41.3	-72.9	11.0	10.7	2.9	20.6	52.9	58.2	0.29	+0.062	V(F)V(V)
149			E 43576·609	41.3	-72.9	11.0	10.7	2.9	20.6	52.9	58.2	0.29	+0.062	V V(V)
150			E 43576·609		-73.8	11.1	10.6	3.2	20.7	53.9	58.2	0.30		V V(V)
			E 43576·609		−73·8	11.1	10.6	3.2	20.7	53.9	58.2	0.30		V(F)V(V)
127			E 43192·651		−83·6	10.7	10.7	0.4	20.0	55·5	56.7	0.27		V(F)V(V)
201			E 46972·733		-122.0	11.3	10.6	4.0	22.4	58.8	54.0	0.29		V V(V)
200			E 46972·733		-112·1	11.0	10.6	2.9	21.5	55·3	54.0	0.27		V V(V)
161			E 43901·764		-90·3	10.6	10.5	1.9	17.3	52.9	61.4	0.29		V(B)V(V)
			E 43901.764		-82·4	10.7	10.4	0.1	17·1	46.9	61.4	0.28		V(B)V(V)
162 158			E 43901·764 E 43901·764		-93·6 -81·3	10·7 10·4	10·4 10·4	2·6 0·1	17·5 17·0	55·5 46·8	61·4 61·4	0·29 0·28		V V(V)
			E 43901·764		-81.3 -91.7	10·4 10·6	10.4	2.5	17.0	55·2	61.4	0.28		V V(V) V(B)V(V)
			E 46972·733		$-91^{\circ}/$ $-100\cdot0$	10.6	10.3	1.8	20.5	51.6	54.0	0.25		I V(V)
106			M 26567·352	48.6	7·7	10.5	10.3	-2.0	-16.6	-66.4	60.1	0.27		V(T)V(V)
230			E 47179·727		-111.0	12.2	9.7	-2 0 7·4	19.6	46.3	61.3	0.38		I(V)V(V)
			E 45762·272	15.6	35.6	10.9	10.3	3.6	21.5	39.9	54.0	0.27		I V(V)
			Table 4: T											()
M-	Dot-												~	Via
No	Date y m		JD – 2 400 000	Lat °	Long	AKCL o	ARCV °	$_{\circ}^{DAZ}$	<i>Age</i> h	<i>Lag</i> m	π,	W'	q	Vis BES BDY
	,													·

1	2 3 4	5	6	7 8	9	10	11	12	13	14	15	16	17	18
			(B) $+0$	$216 \ge q > -$	0.014		68 e	ntries		conti	nued			
199	1987 6 26	Е		40.7 –111.		10.2	4.6	21.9	60.3	54.0	0.28	+0.003	V(B))V(V)
147	1978 3 9			45.1 -64.	2 10.7	10.2	3.5	20.0	53.5	58.2	0.28	+0.002	V	V(V)
86	1913 11 28	Е	20099-570	-33.9 18.	5 10.3	10.3	0.0	16.4	53.1	58.7	0.26	-0.001		V(V)
198	1987 6 26	Е	46972.733	39.8 -105.	0 10.9	10.1	4.2	21.4	58.8	54.0	0.27	-0.010		V(V)
251	1990 5 24	Е	48035-993	34.2 -118.	1 10.1	10.1	0.7	15.4	51.9	61.2	0.26	-0.014		
252	1990 5 24	Е	48035-993	34.2 -118.	1 10.1	10.1	0.7	15.4	51.9	61.2	0.26	-0.014	V(V)V(V)
				(C) -0	$014 \ge q$	> -0.1	60	26 e	ntries					
36	1869 5 12	Е	3829-172	38.0 23.	_	9.1	10.0	25.6	45.8	56.4	0.42	-0.018	I	V(F)
220	1983 11 5	Е	45643.432	37.2 -84.	1 13.1	8.9	9.6	24.5	43.6	57.8	0.41	-0.041	I(V)	` '
246	1990 4 24	M	48006.686	41.6 -73.		9.1	-7.9	-18.8	-46.0	61.1	0.37	-0.048	. ,	. ,
10	1861 10 5	Е	1052.791	38.0 23.	7 20.2	5.5	19.4	33.2	24.4	61.1	1.0	-0.048		V(F)
46	1872 7 6	Е	4980-267	38.0 23.	7 11.4	9.6	6.1	23.8	51.9	53.9	0.29	-0.049		V(F)
238	1989 5 5	Е	47651-993	39.7 -105.	5 9.8	9.8	-0.6	14.6	53.0	60.4	0.24	-0.053		
228	1987 6 26	Е	46972.733	37.2 -84.	1 10.3	9.8	3.1	19.8	54.3	54.0	0.24	-0.054	I(V)	V(F)
250	1990 5 24	Е	48035-993	31.6 –110.	5 9.8	9.8	0.0	14.8	48.2	61.2	0.24	-0.054	I(V)	V(F)
49	1872 10 3	Е	5069·146	38.0 23.	7 12.8	9.0	9.1	24.9	41.5	56.5	0.38	-0.056	I	V(F)
196	1987 6 26	Е	46972.733	42.7 -84.	5 10.5	9.5	4.4	20.2	58.8	54.0	0.24	-0.083	V(B))V(F)
157	1979 1 27	M	43901.764	35.2 –111.	7 10.4	9.2	-4.8	-16.2	-44.2	61.4	0.27	-0.093	V(B))V(F)
52	1873 4 27	Е	5275.447	38.0 23.	7 10.2	9.2	4.4	18.8	45.7	58.5	0.25	-0.106	I	V(F)
120	1972 3 15	Е	41391-983	35.5 –117.		9.3	-2.6	14.7	42.0	60.8	0.23	-0.110		
119	1972 3 15	Е	41391-983	35.5 –117.	6 9.6	9.3	-2.6	14.7	42.0	60.8	0.23	-0.110	V(B))V(F)
225	1984 11 23	Е	46027.457	34.0 -84.	0 13.3	8.0	10.7	23.8	38.9	59.3	0.44	-0.123	I(V)	V(F)
237	1989 5 5			43.0 -85	7 9.2	9.2	-0.3	13.4	52.8	60.4	0.21	-0.128		
239	1989 5 5	Е	47651.993	42.7 -84.	8 9.2	9.2	-0.4	13.3	52.2	60.4	0.21	-0.133		
240			47651-993	42.7 -84.		9.2	-0.4	13.3	52.2	60.4	0.21	-0.133	I(I)	V(F)
96	1921 2 8		22728.526	38.8 –9.		9.2	-1.3	17.8	44.9	54.4	0.20	-0.141		V(F)
234			47326.885	37.2 -84.		9.2	1.6	16.1	50.6	55.9	0.20			
241			47651-993	30.3 –97.		9.0	-2.5	13.6	41.7	60.4	0.22	-0.146		
224			45821.657	37.2 -84.		8.8	5.1	21.0	43.3	55.8	0.24	-0.153		
289			49718-956	33.0 –106.		9.0	-0.3	13.5	43.2	60.2	0.20	-0.153		
95			22728.526	36.5 -6.		9.1	-1.7	17.7	42.8	54.4	0.19	-0.155		V(F)
122			41863.987	-44·0 170·		8.5	-6.3	17.9	50.5	61.1	0.28	-0.156		
102	1922 3 29	Е	23142.043	-33·9 18·			-10.2	28.0	34.7	54.7	0.38	-0.157	I	V(F)
				` /	$160 \ge q$				ntries					
44			4685.298	38.0 23.		8.9	2.6	-15.4	-42.2	57.1	0.21	-0.163		I(V)
281	1990 5 24		48035-993	35.6 -83.		8.9	0.2	13.2	46.2	61.2	0.20	-0.164		
39	1871 4 20		4537.295	38.0 23.		8.4	7.2	22.3	40.1	54.4	0.28	-0.175		I(V)
	1983 11 5			15.6 35.		8.8	3.0	17.0	34.4	58.0	0.21	-0.178		I(V)
294	1996 1 20			34.1 –118.		8.8	-1.6	12.6	41.0	61.2	0.20	-0.184		
	1996 1 20			34.1 –118.		8.8	-1.6	12.6	41.0	61.2	0.20	-0.184		
15	1862 4 29			38.0 23.		8.9	0.2	18.1	44.6	54.1	0.18	-0.189		I(V)
166	1981 7 30			42.3 -71.		8.3	-5.8	-18.6	-45·2	59.0	0.25	-0.205		I(V)
293	1996 1 20			32.8 –113.		8.6	-1.8	12.3	39.2	61.2	0.19	-0.208		
98	1921 10 31			-33·9 18·		8.3	−5·3	17.9	37.8	58.1	0.23	-0.213		I(V)
292	1996 1 20			32.4 –111.		8.5	-1.9	12.2	38.6	61.2	0.19	-0·219		
280 278	1990 2 25 1990 2 25			35·6 -83· 35·6 -83·		8·5 8·5	-0.6	14·8 14·8	38·3 38·3	59·4 59·4	0·18 0·18	-0.222 -0.222		
	1990 2 23													
279	1330 2 23	E	4/34/0/2	35·6 -83·		8·5	-0·6	14.8	38·3	59.4	0.18	-0.222	1(V)	1()
271	1004 0 25	-	45060 624	` '	$0.232 \ge q$				ntries	(1.4	0.10	0.240		T(T)
	1984 9 25			15.6 35.		8.2	1.7	12.5	30.5	61.4		-0.248		I(I)
20	1864 5 6			39.6 26.		7·8	4.7	17.3	39.5	57·6		-0·283		I(I)
288	1992 4 2			19.8 –155.		8·1	-0·7	-13.0		55·7	0.15	-0.284		I(I)
226	1985 4 20	E	401/3:/24	37.2 -84.	1 8.7	7.9	3.6	19.2	37.5	54.0	0.17	-0.287	1(1)	I(I)

Tn69x.doc 10 of 14 2004/09/22 10:14 AM

Table 4: The 295 observations listed in order of decreasing q, continued

No	Date	;		JD -	Lat	Long	ARCL	ARCV	DAZ	Age	Lag	π	W'	q	Vi	S
	y m	d		2 400 000	0	0	0	0	0	h	m	,	,	_	BES E	BDY
1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
					(]	F) –(0.293≥	q	1	7 entri	ies					
275	1984 11 2	23	Е	46027.457	15.6	35.6	9.2	7.6	5.2	16.3	30.4	59.5	0.21	-0.296	I	I
7	1861 8	7	E	994.037	38.0	23.7	16.0	5.0	15.2	28.7	21.4	59.0	0.63	-0.316	I	I
231	1988 4 1	16	E	47268.001	37.2	$-84 \cdot 1$	7.7	7.6	-1.2	12.4	35.9	59.2	0.15	-0.330	I(I)	I
258	1984 2	2	Е	45732.491	15.6	35.6	8.6	7.4	4.5	16.0	29.0	54.1	0.17	-0.340	I	I
169	1986 12 3	31	Е	46795.633	39.0	-77.0	12.4	6.0	10.8	19.0	31.7	61.3	0.39	-0.348	I(B)	I
232	1988 5 1	15	M	47297-425	37.2	$-84 \cdot 1$	7.7	7.1	-2.8	-12.0	-34.8	58.2	0.14	-0.383	I(I)	I
54	1873 12 2	20	Е	5512.285	38.0	23.7	11.6	5.4	10.3	20.5	27.4	58.3	0.33	-0.447	I	I
3	1860 1 2	23	Е	432.512	38.0	23.7	7.1	6.3	3.2	15.6	30.6	54.2	0.11	-0.482	I	I
242	1989 6	3	Е	47681.330	19.8	−155·5	7.0	6.3	-3.1	9.2	25.8	59.2	0.12	-0.484	I(I)	I
222	1984 1	3	Е	45702.719	37.2	$-84 \cdot 1$	8.7	5.1	7.1	17.4	24.9	54.9	0.17	-0.565	I(I)	I
227	1987 4 2	27	M	46913.566	37.2	$-84 \cdot 1$	7.6	5.3	-5.5	-15.0	-22.8	56.6	0.14	-0.573	I(I)	I
41	1871 6 1	18	Е	4596.604	38.0	23.7	7.1	5.4	4.5	15.5	26.9	54.1	0.11	-0.574	I	I
103	1922 4 2	27	Е	23171.710	-33.9	18.5	6.1	5.5	-2.6	11.3	23.4	55.6	0.09	-0.576	I	I
229	1987 9 2	23	Е	47061.630	37.2	$-84 \cdot 1$	9.9	4.2	9.0	20.5	16.7	55.9	0.23	-0.620	I(I)	I
194	1987 6 2	25	M	46972.733	-30.1	-71.0	9.6	4.2	8.6	-18.1	-18.1	54.3	0.21	-0.632	I(B)	I
195	1987 6 2	26	Е	46972.733	-30.1	-71.0	9.0	4.0	-8.0	16.4	16.8	54.0	0.18	-0.671	I(B)	I
256	1984 1	3	E	45702.719	15.6	35.6	5.5	4.2	3.6	10.2	15.3	55.0	0.07	-0.720	I	I

6. Derivation of the *q*-test.

The visibility test parameter q is based on the Indian method, which is defined discretely by Table 2 and continuously by inequality (3.6). The parameter q is calculated at the best time from the equation

$$q = (ARCV - (11.8371 - 6.3226 W' + 0.7319 W'^{2} - 0.1018 W'^{3})) / 10$$

$$(6.1)$$

where W' is the topocentric width of the crescent, and q has been scaled by a factor of 10 to confine it roughly to the range -1 to +1. (Note the use of the topocentric width of the crescent.)

The values of q have been calculated for the 295 observations referred to in section 5, and the results are listed in Table 4 in order of decreasing q. Table 4 has also been partitioned into six ranges of q. These ranges in the q-test have been calibrated empirically by comparing the visibility code Schaefer used for the 295 observational records, with a similar code derived from the calculated value of q. It has also been found necessary to use theoretical arguments to obtain some of the limiting values for q. Table 5 lists the six criteria by type, A to F, by range in q and by visibility code.

Table 5: The *q*-test criteria.

Criterion	Range	Remarks	Visibility Code
(A)	q > +0.216	Easily visible $(ARCL \ge 12^{\circ})$	V
(B)	$+0.216 \ge q > -0.014$	Visible under perfect conditions	V(V)
(C)	$-0.014 \ge q > -0.160$	May need optical aid to find crescent	V(F)
(D)	$-0.160 \ge q > -0.232$	Will need optical aid to find crescent	I(V)
(E)	$-0.232 \ge q > -0.293$	Not visible with a telescope $ARCL \le 8.5^{\circ}$	I(I)
(F)	$-0.293 \ge q$	Not visible, below Danjon limit, $ARCL \le 8^{\circ}$	I

The limiting values of q were chosen for the six criteria A to F for the following reasons:

- (A) A lower limit is required to separate observations that are trivial from those that have some element of difficulty. After some experimentation, it was found that the ideal situation $ARCL = 12^{\circ}$ and $DAZ = 0^{\circ}$ produces a sensible cut-off point, for which q = +0.216. To avoid ambiguities, the constant geocentric quantity W defined by equation (3.4), that was adopted by Bruin for the crescent width, was used to calculate q from equation (6.1) instead of W'.
 - There are 166 examples in Table 4 when q exceeds this value, and in general it should be very easy to see the Moon in these cases, provided there is no obscuring cloud in the sky.
- (B) From observers reports it has been found that, in general, q = 0 is close to the lower limit for first visibility under perfect atmospheric conditions at sea level, without requiring optical aid. Table 4 is used to set this lower limit for visibility more precisely. From inspection of Table 4,

- the significance of q = 0 can be seen, but q = -0.014 is another possible cut-off value. There are 68 cases in Table 4 with q in this range.
- (C) Table 4 was used to find the cut-off point when optical aid is always needed to find the crescent moon by matching the q-test visibility code with Schaefer's code. The rounded value of q = -0.160 was chosen for the cut-off criterion. Entry number 44, the first entry in the next group, was ignored because it is false. In Table 4 there are 26 cases that satisfy this criterion.
- (D) In this case Table 4 has too few entries from which to estimate a lower limit for q. The situation is made worse by the fact that where there is an entry, in most cases, the Moon was not seen even with optical aid. In fact it is rare for the crescent to be observed below an apparent elongation of about $7^{\circ}.5$, see Fatoohi et al (1998). Table 4 has 17 cases. This is the current limit below which it is not possible to see the thin crescent moon with a telescope. Allowing 1° for horizontal parallax of the Moon, and ignoring the effect of refraction, for an apparent elongation of $7^{\circ}.5$, $ARCL = 8^{\circ}.5$. If $DAZ = 0^{\circ}$ this corresponds to a lower limit of q = -0.232. Without good finding telescopes and positional information, observers are unlikely to see the crescent below this limit. The only sighting that was seen both optically and visually near this limit was No. 278 for which q = -0.222. It is an important observation because it is the observation with the smallest elongation, see Table 6. If the Moon were observed near this elongation and it was also at or near perigee, Age would be about 12 hours.
- (E)There is a theoretical cut-off point when the apparent elongation of the Moon from the Sun is 7° , known as the Danjon limit. This limit is obtained by extrapolating observations made at larger elongations. Allowing 1° for horizontal parallax of the Moon, and ignoring the effect of refraction, an apparent elongation of 7° is equivalent to $ARCL = 8^{\circ}$. With $ARCL = 8^{\circ}$ and $DAZ = 0^{\circ}$ the corresponding lower limit on q is -0.293.
- (F) In Table 4 there are only 17 cases in this range of q, but three of them (169, 194 and 195) contradict the q-test, in particular, 194 and 195 are anomalous observations. The main reason for the discrepancy must be due to the extremely clear atmosphere experienced on high altitude mountain sites. The elongations, however, are well above the Danjon limit, and since ARCV is about 4°, the observations were probably made using daylight vision. These observations show that the curve q = 0 needs modifying for high altitude observations. No 169 was made at $ARCL = 12^{\circ} \cdot 4$, and width $W' = 0! \cdot 39$, which are both large. Since $ARCV = 6^{\circ}$, it should have been possible to make the observation. This observation shows also that the curve q = 0 needs modifying when the atmospheric conditions are so perfect.

Earliest sightings are mentioned in the literature, by Schaefer et al (1993b). For example, No. 252 is type B and Nos. 239, 237 and 241 are type C. None of these observations were made at such a small elongation as No. 278 of type D, for which $W' = 0' \cdot 18$. Table 6 lists the first fifty of the 295 observations in order of increasing crescent width, W', which is correlated with increasing elongation. Note that the fifteenth observation No. 278 is the first observation designated type V(V) according to Schaefer's coding. Observation No. 195 is thirteenth on the list, so based on the small crescent width, it was a very sharp observation indeed.

Many people assume that the place of earliest sighting of the the new crescent moon, given some criterion such as Lag = 50 minutes, will be the most easterly place that the observation can be made from. This assumption is fallacious. In an ideal situation, earliest sighting occurs at a place where a first sighting parameter such as Lag or q takes a specific value and in addition DAZ = 0. It is easy to show that in general the place on the parabolic curve on the surface of the Earth where the parameter is a constant will **not** be the most easterly point on the curve. At the place of earliest sighting the line of constant altitude of the Sun is tangential to the parabolic curve (because DAZ = 0), which leaves the most easterly point in daylight, except in rare cases when the declination of the Sun is zero and the tangent will then be at the most easterly point.

The list of 295 observations in Table 4 shows bias. For example there is a concentration on early sightings, which occur when $DAZ \approx 0^{\circ}$ and $ARCL \approx ARCV$. Cases when $ARCL \approx DAZ$ and ARCV is small, which regularly occur at high latitudes, and the Moon is first seen in daylight, are rare. In other words the list of 295 observations concentrates on young moonage sightings at low latitudes, and ignores old moonage sightings at high latitudes.

In fact there are only nine cases for latitude $> 50^{\circ}$ where ARCL/ARCV > 1.2. Three of these 82, 204 and 215, have ratios larger than 1.6, which makes them more interesting. There are no contradictory cases, but the sample is too small to be helpful for calibration purposes.

Table 6: The first fifty entries of Table 5 listed in order of increasing W' Long ARCL ARCV DAZ Vis No Date JD -AgeLat Lag qBES BDY y m d2 400 000 3 4 5 7 8 9 10 11 12 13 14 15 16 18 17 6 256 1984 1 3 Е 45702.719 15.6 35.6 5.5 4.2 3.6 10.215.3 55.0 0.07-0.720I 103 1922 4 27 Е 23171.710 -33.9 18.5 6.1 5.5 -2.611.3 23.4 55.6 0.09 -0.576I 3 1860 1 23 Е 432.512 38.0 23.7 7.1 6.3 3.2 15.6 30.6 54.2 0.11-0.482I 41 1871 6 18 Е 4596.604 38.0 23.7 7.1 5.4 4.5 15.5 26.9 54.1 0.11-0.574Ι 242 1989 6 3 Е 47681.330 19.8 -155.5 7.0 6.3 -3.19.2 25.8 59.2 0.12-0.484I(I) 227 1987 4 27 M 46913·566 37.2 $-84 \cdot 1$ 7.6 5.3 -5.5-15.0-22.8 56.6 0.14 -0.573I(I) 232 1988 5 15 M 47297·425 37.2 $-84 \cdot 1$ 7.7 7.1 -2.8-12.0-34.858.2 0.14 -0.383I(I) 231 1988 4 16 Е 47268.001 37.2 $-84 \cdot 1$ 7.7 7.6 -1.212.4 35.9 59.2 0.15 -0.330I(I) 288 1992 4 2 M 48715.710 19.8 - 155.58.1 8.1 -0.7-13.0-30.9 55.7 0.15-0.284I(I) I(I) 222 1984 1 3 Е 45702.719 37.2 $-84 \cdot 1$ 8.7 5.1 7.1 17.424.954.9 0.17-0.565I(I) 258 1984 2 2 Е 45732.491 15.6 35.6 8.6 7.4 4.5 16.029.0 54.1 0.17-0.340I I 226 1985 4 20 Е 46175.724 37.2 $-84 \cdot 1$ 8.7 7.9 3.6 19.2 37.5 54.0 0.17-0.287I(I)I(I)195 1987 6 26 Е 46972.733 -30.1 -71.09.0 4.0 -8.016.4 16.8 54.0 0.18-0.671I(B) 271 1984 9 25 Е 45968.634 15.6 35.6 8.4 8.2 1.7 12.5 30.5 61.4 0.18-0.248I **I(I)** 278 1990 2 25 Е 47947.872 35.6 -83.5 8.5 8.5 -0.614.8 38.3 59.4 0.18-0.222V(V)I(V)279 1990 2 25 Е 47947.872 35.6 -83.58.5 8.5 -0.614.8 38.3 59.4 0.18-0.222I(V) I(V) 280 1990 2 25 Е 47947.872 35.6 -83.58.5 8.5 -0.614.8 38.3 59.4 0.18-0.222I(I)I(V) 15 1862 4 29 Е 1259.477 38.0 23.7 8.9 8.9 0.218.1 44.6 54.1 0.18-0.189I I(V) 95 1921 2 8 Е 22728.526 36.5 -6.29.2 9.1 -1.717.7 42.8 54.4 0.19-0.155I V(F) 292 1996 1 20 Ε 50103.036 32.4 - 111.08.7 8.5 -1.912.2 38.6 61.2 0.19-0.219I(V) I(V)293 1996 1 20 Ε 50103.036 32.8 - 113.28.7 8.6 -1.812.3 39.2 61.2 0.19-0.208I(V) I(V)281 1990 5 24 Ε 48035.993 35.6 -83.58.9 8.9 0.213.2 46.2 61.2 0.20-0.164I(V) I(V) 2.0 1864 5 6 Ε 1997.510 39.6 26.2 9.1 7.8 4.7 17.3 39.5 57.6 0.20-0.283I 289 1995 1 1 Е 49718-956 33.0 - 106.09.1 9.0 -0.313.5 43.2 60.20.20-0.153I(V) V(F) 234 1988 6 14 Ε 47326.885 37.2 $-84 \cdot 1$ 9.3 9.2 1.6 16.1 50.6 55.9 0.20-0.141I(I) V(F) 96 1921 2 8 Ε 22728.526 38.8 -9.19.3 9.2 -1.317.8 44.9 54.4 0.20-0.141Ι 294 1996 1 20 Ε 50103.036 34.1 - 118.38.9 8.8 -1.612.6 41.061.20.20-0.184I(V) I(V)295 1996 1 20 Е 50103.036 34.1 - 118.38.9 8.8 -1.612.6 41.061.20.20-0.184I(I) I(V) 44 1871 9 14 M 4685.298 38.0 23.7 9.3 8.9 2.6 -15.4 -42.257.1 0.21-0.163V I(V) 237 1989 5 5 Е 47651.993 43.0 -85.7 9.2 9.2 -0.313.4 52.8 60.40.21-0.128I(V) V(F) 239 1989 5 5 Е 47651.993 42.7 -84.89.2 9.2 -0.413.3 52.2 60.40.21-0.133I(V) V(F) 275 1984 11 23 Ε 46027.457 15.6 35.6 9.2 7.6 5.2 16.3 30.4 59.5 0.21-0.296I 240 1989 5 5 Е 47651.993 42.7 -84.8 9.2 9.2 -0.413.3 52.2 60.40.21-0.133I(I) V(F) 194 1987 6 25 M 46972·733 -30.1 -71.09.6 4.2 8.6 -18.1-18-1 54.3 0.21-0.632I(B) 253 1983 11 5 Е 45643.432 15.6 35.6 9.3 8.8 3.0 17.0 34.4 58.0 0.21-0.178Ι 241 1989 5 5 Е 47651.993 30.3 -97.09.4 9.0 -2.513.6 41.7 60.40.22-0.146I(V) V(F)9.0 229 1987 9 23 Е 47061.630 37.2 $-84 \cdot 1$ 9.9 4.2 20.516.7 55.9 0.23-0.620I(I)120 1972 3 15 Е 41391.983 35.5 - 117.69.6 9.3 -2.614.7 42.060.8 0.23-0.110I(B) V(F) 98 1921 10 31 Е 22993.485 -33.9 18.5 9.8 8.3 -5.317.9 37.8 58.1 0.23-0.213I I(V) 119 1972 3 15 Е 41391.983 35.5 -117.6 9.6 9.3 -2.614.742.0 60.80.23-0.110V(B)V(F) 228 1987 6 26 Е 46972.733 37.2 $-84 \cdot 1$ 10.3 9.8 3.1 19.8 54.3 54.0 0.24-0.054I(V) V(F) 196 1987 6 26 Е 46972.733 42.7-84.510.5 9.5 4.4 20.258.8 54.0 0.24-0.083V(B)V(F) 224 1984 5 1 Е 45821.657 37.2 $-84 \cdot 1$ 10.2 8.8 5.1 21.043.3 55.8 0.24-0.153I(I) V(F)238 1989 5 5 Е 47651.993 39.7 - 105.59.8 9.8 -0.614.653.0 60.4 0.24-0.053**I(V) V(F)** 250 1990 5 24 Е 48035.993 31.6 - 110.59.8 9.8 0.014.8 48.2 61.20.24-0.054**I(V) V(F)** 52 1873 4 27 Е 5275.447 38.0 23.7 10.2 9.2 4.4 18.8 45.7 58.50.25-0.106I V(F) 197 1987 6 26 Е 46972.733 30.0 -100.0 10.6 10.4 1.8 20.551.6 54.0 0.25+0.014I V(V) 166 1981 7 30 M 44816·662 42.3 -71.310.1 8.3 -5.8-18-6 -45.2 59.0 0.25-0.205I I(V) 1913 11 28 Е 20099.570 -33.918.5 10.3 10.3 0.016.453.1 58.7 0.26-0.001V V(V) 251 1990 5 24 E 48035·993 34.2 - 118.110.1 10.1 0.715.4 51.9 61.20.26-0.014 I(V)V(V)

7. A few conclusions

In this note I have pointed out that there is too much emphasis on making record breaking observations of first sighting of the new crescent moon. The majority of cases are not critical ones and what we need are more observations of first sighting at latitudes above 50° when the Moon is several days old, including observations made in daylight. Northern Europe would be an ideal place to organise another moonwatch program to solve this problem.

I have given a simple method for determining the time of best visibility, which is based on the method of Bruin. His method has many other applications to problems concerning first visibility. It would be useful to update Bruin's calculations using modern theories.

8. Acknowledgements

I would especially like to thank Mr Yaacov Loewinger for encouraging me since 1992 to continue with this project, and for checking my work so thoroughly and making useful suggestions for improving this technical note. It was he who first made me consider expressing the Bruin test as a continuous function in the form of a quadratic polynomial in W. He also helped me to appreciate the value of the original list of 252 observations of first sighting for checking and calibrating other theories.

I am also indebted to Miss Catherine Hohenkerk, who kindly TeXed this technical note for me. She amended the NAO computer program for calculating first sighting to use the method given in this note, and together we updated Astronomical Information Sheet (AIS) No. 6. An example of the computer output is given in Appendix A, and further details concerning the output will be found in AIS No. 6.

I am grateful to Fatoohi et al for producing a paper that gave me fresh insight to the problem.

I would also like to thank Dr Monzur Ahmed for advice on updating my *q*-test, and broadcasting recent changes on the internet, see http://www.starlight.demon.co.uk/ildl/jan98.htm.

9. References

Lockyer, J.N., (1894), Dawn of astronomy, Cassells, London.

Maunder, E.W., (1911), On the smallest visible phase of the Moon, *Journal of the British Astronomical Association*, **21**, 355–362.

Schoch, C., (1930), Ergaenzungsheft zu den Astronomischen Nachrichten, 8, No. 2, B17, Tafel für Neulicht.

Allen, C.W., (1963), Astrophysical Quantities, Athlone Press, 145.

Bruin, F., (1977), The first visibility of the lunar crescent, *Vistas in Astronomy*, **21**, 331–358.

India Meteorological Department, New Delhi, *The Indian Astronomical Ephemeris*, (1996), 559.

Schaefer, B.E., (1985), Predicting heliacal risings and settings, Sky and Telescope, 70, 261–263.

Schaefer, B.E., (1986), Atmospheric extinction effects on stellar alignments, *Archaeoastronomy*, No 10, Supplement to the Journal of the History of Astronomy, S32–S42.

Schaefer, B.E., (1987), Heliacal rise phenomena, *Archaeoastronomy*, No 11, Supplement to the Journal of the History of Astronomy, S19–S33.

Schaefer, B.E., (1988), Visibility of the lunar crescent, *Quarterly Journal of the Royal Astronomical Society*, **29**, 511–523.

Schaefer, B.E., (1990), *LunarCal*, Western Research Company, Inc., 2127 E. Speedway, Suite 209, Tucson, AZ 85719.

Schaefer, B.E., (1991), Length of the lunar crescent, *Quarterly Journal of the Royal Astronomical Society*, **32**, 265–277.

Schaefer, B.E., (1993a), Astronomy and the limits of vision, *Vistas in Astronomy*, **36**, Part 4, 311–361.

Schaefer, B.E., Ahmad, I.A. and Doggett, L.E., (1993b), Records for young Moon sighting, *Quarterly Journal of the Royal Astronomical Society*, **34**, 53–56.

Doggett, L.E., and Schaefer, B.E., (1994), Lunar crescent visibility, *Icarus*, 107, 388–403.

Loewinger, Y., (1995), Some Comments on, *Quarterly Journal of the Royal Astronomical Society*, **36**, 449–452.

Schaefer, B.E., (1996), Lunar Crescent Visibility, *Quarterly Journal of the Royal Astronomical Society*, **37**, 759–768.

Fatoohi, L.J., Stephenson, F.R., Al-Dargazelli, S.S., (1998), The Danjon limit of first visibility of the lunar crescent, *Observatory*, **118**, 65–72.

Tn69x.doc 15 of 14 2004/09/22 10:14 AM