CG1111: Engineering Principles and Practice I

CG1111: Engineering Principles and Practice I

Operational Amplifier

Operational Amplifier (Op-Amp)

 An operational amplifier (op-amp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output

Input Terminals

Output Terminal

Op-Amp Terminals

Positive Power Supply (Positive Rail) $+V_{CC}$ Non-Inverting **Input Terminal** Vout **Output Terminal Inverting Input Terminal** $-V_{CC}/V_{EE}$ **Negative Power Supply** (Negative Rail)

Op-Amp Equivalent Circuit

- A is the open loop voltage gain
 - —The open-loop gain, A, is very large, approaching infinity
- R_i is the input impedance & R_{out} is the output impedance

Typical Op Amp Parameters

Parameter	Variable	Typical Ranges	Ideal Values
Voltage Gain	А	10 ⁵ to 10 ⁸	∞
Input Resistance	R _{in}	10^5 to 10^8 Ω	∞ Ω
Output Resistance	R _{out}	10 to 100 Ω	0 Ω
Supply Voltage	V _{cc} /V ⁻	5 to 30 V -30 to 0 V	N/A N/A

Op-amp Golden Rules

- Rule 1: The output attempts to do whatever is necessary to make the voltage difference between the inputs zero
 - The voltage gain of a real op-amp is so high that a fraction of a millivolt input will swing the output over its full range
- Rule 2: The inputs draw no current
 - The ideal op-amp has an infinite input resistance (R_{in}). Thus, the current drawn at the two terminals is zero

Inverting Amplifier

 For an ideal op-amp, the inverting amplifier gain is given simply by

$$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$$

Non-Inverting Amplifier

 For an ideal op-amp, the inverting amplifier gain is given simply by

$$\frac{V_{out}}{V_{in}} = 1 + \frac{R_f}{R_i}$$

Single Supply Vs Dual Supply

- An op-amp can be powered either by a Single Power Supply or a Dual Power Supply
- Single Supply: Provide a positive voltage to the V+ terminal of the op-amp and connect the ground to the V- terminal of the op-amp
- Dual Supply: Provide a positive voltage to the V⁺ terminal of the op-amp and provide a negative voltage to the V⁻ terminal of the op-amp

Dual Supply

- Create a dual supply with a positive and negative voltage by connecting two power sources as below
- Connect the negative terminal of first source to the positive terminal of the second source
- The positive terminal of the first source gives a positive voltage
- The negative terminal of the second source gives a negative voltage

Op-Amp Bias

- Bias, in an electronic circuit, describes the steady state operating characteristics with no input signal
- In an op-amp circuit, the operating characteristic we are concerned with is the output voltage of our op-amp
- If an op-amp is biased to 2.5V, it means that, for no incoming signal, the output voltage will rest at 2.5V
- Bias is strictly a DC value. Once an AC signal is applied, the output will then begin to move about the bias point.

THANK YOU