CSC 348 Homework #1

Astrid Augusta Yu

2020 April 16

- 1. (a) It is a simple graph because there are no self-loops, and all edges only occur once.
 - (b) $V = \{v_0, v_1, v_2, v_3\}$ $E = \{(v_0, v_1), (v_1, v_2), (v_2, v_3), (v_3, v_0), (v_0, v_2), (v_1, v_3)\}$
- 2. (a) No, it is not a simple graph. v_2 has a self-loop.
 - (b) $V = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ $E = \{(v_0, v_1), (v_1, v_2), (v_1, v_4), (v_2, v_2), (v_2, v_4), (v_4, v_3), (v_3, v_0), (v_5, v_7), (v_5, v_8), (v_7, v_8), (v_7, v_6)\}$
- 3. (a) $\{0,5\}$
 - (b) {∅}
 - (c) $\{\emptyset, 3, 2, 9, "m"\}$
 - (d) Ø
- 4. (a) T by definition
 - (b) F because natural numbers cannot be negative by definition
 - (c) $-\frac{4}{2} = -2$, and $-2 \in \mathbb{Z}$ because $-(-2) \in \mathbb{N}$. Therefore, $-\frac{4}{2} \in \mathbb{N} \equiv T$.
 - (d) $-\frac{2}{4} = \frac{p}{q}$ for p = -1, q = 2. p and q are both in \mathbb{Z} and they share no common factors except 1. Therefore, $\frac{p}{q} = -\frac{2}{4} \in \mathbb{Q}$ and the statement is equivalent to T.
 - (e) $\pi \in \mathbb{R} \equiv T$ by definition.
 - (f) -4i has an imaginary component, so $-4i \in \mathbb{R} \equiv F$ by definition.
- 5. (a) Yes
 - (b) Yes
 - (c) No, because we don't know what x is.
 - (d) No, because it is a question.
 - (e) Yes
 - (f) Yes
 - (g) No, because it is a command.

- 6. (a) Logic is not important or proofs are not important.
 - (b) There are not 30 problems in this homework.
 - (c) There are quizzes in this class.
 - (d) 6 is a prime number.
- 7. (a) $p \wedge q$
 - (b) $p \land \neg q$
 - (c) $p \rightarrow q$
 - (d) $\neg p \lor q$

 $\mathbf{F} \mid \mathbf{F} \mid \mathbf{F} \mid$

		p	q	r	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
		Т	Т	Т	Т	Т
		\mathbf{T}	T	F	${ m T}$	T
		\mathbf{T}	F	Т	${ m T}$	T
9.	(a)	\mathbf{T}	F	F	\mathbf{F}	F
		\mathbf{F}	Т	Т	\mathbf{F}	F
		\mathbf{F}	Т	F	\mathbf{F}	F
		\mathbf{F}	F	Т	F	F

F

10. (a) The two columns differ at
$$(p,q,r)\equiv (F,T,F)$$
 and $(p,q,r)\equiv (F,F,F)$

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \to r$	$p \to (q \to r)$
\overline{T}	Т	Т	Т	Т	T	T
\mathbf{T}	Т	F	Т	F	F	F
\mathbf{T}	F	Т	F	Т	${ m T}$	${ m T}$
${ m T}$	F	F	F	Т	${ m T}$	${ m T}$
\mathbf{F}	Т	Т	Т	Т	${ m T}$	${ m T}$
\mathbf{F}	Т	F	Т	F	F	m T
\mathbf{F}	F	Т	Т	Т	${ m T}$	m T
\mathbf{F}	F	F	Т	Т	\mathbf{F}	T

(b) The proof is as follows:

i.
$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

ii.
$$\neg (p \land q) \lor r \equiv (\neg p \lor r) \land (\neg q \lor r)$$
 (CDE)

iii.
$$\neg (p \land q) \lor r \equiv (\neg p \land \neg q) \lor r$$
 (Distributive)

iv.
$$\neg (p \land q) \lor r \lor \neg r) \equiv (\neg p \land \neg q) \lor r \lor \neg r \text{ (OR both sides with } \neg r)$$

v.
$$\neg (p \land q) \equiv \neg p \land \neg q$$
 (Idempotence, $a \lor \neg a \equiv T$)

vi.
$$\neg(p \land q) \equiv \neg(p \lor q)$$
 (DeMorgan's)

vii.
$$\neg \neg (p \land q) \equiv \neg \neg (p \lor q)$$
 (Negate both sides)

viii.
$$p \wedge q \equiv p \vee q$$
 (Double Negative)

ix. This statement is false by the following truth table. r does not matter.

p	q	$p \wedge q$	$p \lor q$
\overline{T}	Т	Τ	T
\mathbf{T}	F	\mathbf{F}	Γ
\mathbf{F}	Τ	F	T
F	F	\mathbf{F}	F

11. (a) $p \leftrightarrow q$

$$\equiv (p \to q) \land (q \to p) \text{ (BDE)}$$

$$\equiv (\neg p \lor q) \land (\neg q \lor p) \text{ (CDE)}$$

$$\equiv (\neg p \lor q) \land (p \lor \neg q)$$
 (Associativity)

(b) $\neg q \rightarrow \neg p$

$$\equiv \neg \neg q \lor \neg p \text{ (CDE)}$$

$$\equiv q \vee \neg p$$
 (Double Negative)

$$\equiv \neg(\neg q \land \neg \neg p) \text{ (DeMorgan's)}$$

$$\equiv \neg(\neg q \land p)$$
 (Double Negative)

(c) $p \to (q \land r)$

$$\equiv \neg p \lor (q \land r) \text{ (CDE)}$$

$$\equiv (\neg p \lor q) \land (\neg p \lor r)$$
 (Distributive)

$$\equiv (p \to q) \land (p \to r) \text{ (CDE)}$$