Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences (1971-2014: Fachhochschule Frankfurt am Main) Fachbereich Informatik und Ingenieurwissenschaften christianbaun@fb2.fra-uas.de

Bitübertragungsschicht

- Aufgaben der Bitübertragungsschicht (Physical Layer):
 - Bitübertragung auf leitungsgebundenen oder leitungslosen Übertragungsstrecken
 - Bereitstellung von Vernetzungstechnologien
 - Übertragungsmedien
 - Rahmen der Sicherungsschicht werden mit Leitungscodes in Signale kodiert

- Geräte: Repeater, Hub (Multiport-Repeater)
- Protokolle: Ethernet, Token Ring, WLAN, Bluetooth,...

- ... und was aus Zeitgründen davon übrig bleibt...
 - Vernetzungstechnologien
 - Ethernet
 - Token Ring
 - Wireless LAN (WLAN)
 - Bluetooth
 - Übertragungsmedien
 - Koaxialkabel
 - Twisted-Pair-Kabel
 - Lichtwellenleiter
 - Geräte der Bitübertragungsschicht
 - Repeater und Hubs
 - Auswirkungen auf die Kollisionsdomäne
 - Kodierung von Daten mit Leitungscodes
 - NRZ, NRZI, MLT-3, RZ, Unipolares RZ, AMI, B8ZS, Manchester, Manchester II, Differentielles Manchester, 4B5B, 6B6B, 8B10B, 8B6T

Ethernet (IEEE 802.3)

- In den 1970er Jahren u.a. von Robert Metcalfe am Xerox Palo Alto. Research Center entwickelt
 - Diese erste Version des Ethernet arbeitete mit 2,94 Mbit/s
- 1983: IEEE-Standard mit 10 Mbit/s
- Seit den 1990er Jahren die meistverwendete LAN-Technik
 - Durch Ethernet wurden andere Standards wie Token Ring komplett verdrängt oder wie FDDI zu Nischenprodukten für Spezialanwendungen gemacht
- Es existieren zahlreiche Ethernet-Standards
 - Diese unterscheiden sich u.a. in der Übertragungsrate und dem Übertragungsmedium
 - Es existieren Versionen f
 ür Koaxialkabel. Twisted-Pair-Kabel und Glasfaser-Kabel bis maximal 10 Gbit/s
- Die Anschlussart an das Medium ist passiv
 - Das heißt das Netzwerkgeräte nur dann aktiv sind, wenn Sie selbst senden

Einige Ethernet-Varianten

• Alle diese Varianten sind Erweiterungen von Thick Ethernet (10BASE5)

Standard	MBit/s	Übertragungsmedium	
10BASE2/5	10	Koaxialkabel (50 Ohm Wellenwiderstand)	
10BROAD36	10	Koaxialkabel (75 Ohm Wellenwiderstand)	
10BASE-F	10	Glasfaserkabel	
10BASE-T	10	Twisted-Pair-Kabel	
100BASE-FX	100	Glasfaserkabel	
100BASE-T4	100	Twisted-Pair-Kabel (Cat 3)	
100BASE-TX	100	Twisted-Pair-Kabel (Cat 5)	
1000BASE-LX	1.000	Glasfaserkabel	
1000BASE-SX	1.000	Glasfaserkabel (Multimodefasern)	
1000BASE-ZX	1.000	Glasfaserkabel (Singlemodefasern)	
1000BASE-CX	1.000	Doppelt-twinaxiale Kupferkabel	
1000BASE-T	1.000	Twisted-Pair-Kabel (Cat 5)	
1000BASE-TX	1.000	Twisted-Pair-Kabel (Cat 6)	
10GBASE-SR	10.000	Glasfaserkabel (Multimodefasern)	
10GBASE-LR	10.000	Glasfaserkabel (Singlemodefasern)	
10GBASE-CX4	10.000	Doppelt-twinaxiale Kupferkabel	
10GBASE-T	10.000	Twisted-Pair-Kabel (Cat 6e)	

- 2 Übertragungsverfahren existieren:
 - Basisband (BASE)
 - Breitband (BROAD)

Namensschema

- 1.Teil: Übertragungsrate
- 2.Teil: Übertragungsverfahren (Basisband oder Breitband)
- 3.Teil: 100facher Faktor der maximalen Segmentlänge oder das Medium

10BASE5 z.B. bedeutet...

- Übertragungsrate: 10 MBit/s
- Übertragungsverfahren: Basisband
- Maximale Segmentlänge: 5 * 100m = 500m

- Fast alle Ethernet-Standards verwenden das Basisband-Übertragungsverfahren (BASE)
 - Einzige Ausnahme: 10BROAD36
- Basisbandsysteme haben keine Trägerfrequenzen
 - Das heißt die Daten werden direkt (im Basisband) auf dem Übertragungsmedium übertragen
- Digitale Signale werden direkt als Impulse in das Kabel oder den Lichtwellenleiter eingespeist und belegen die komplette Bandbreite des Kabels oder einen Teil davon
 - Ungenutzte Bandbreite kann nicht für andere Dienste genutzt werden

Kurz gesagt...

Basisbandsysteme bieten nur einen Kanal

- Die Daten werden auf eine Trägerfrequenz aufmoduliert
 - Dadurch können mehrere Signale gleichzeitig in unterschiedlichen Frequenzbereichen (Trägern) übertragen werden
- Ausschließlich 10BROAD36 verwendet das Breitbandverfahren
 - Wegen hoher Hardwarekosten für die Modulation war das System wirtschaftlich kein Erfolg
- Das Breitbandkonzept konnte sich bei Ethernet nicht durchsetzen, wird aber heute in viele Bereichen der Nachrichtenübermittlung und Telekommunik. verwendet

Beispiele für Anwendungsbereiche des Breitbandkonzepts

- Das Kabelfernsehnetz, in dem verschiedene Fernsehkanäle, und mit unterschiedlichen Trägerfrequenzen auch Radiokanäle, Telefon und Internet zur Verfügung stehen
- Das Elektrizitätsnetz, über das auch Netzwerkverbindungen aufgebaut werden können (⇒ Powerline Communication)

- Es existieren verschiedene Übertragungsmedien für Computernetze
- Leitungsgebundene Übertragungsmedien
 - **Elektrischer Leiter**: Daten werden über Twisted-Pair-Kabel (verdrillte Kabel) oder Koaxialkabel in Form elektrischer Impulse übertragen
 - Lichtwellenleiter: Daten werden als Lichtimpulse übertragen
- Nicht-leitungsgebundene Übertragung (drahtlose Übertragung)
 - Gerichtet:
 - Funktechnik: Daten werden als elektromagnetische Wellen (Radiowellen) im Radiofrequenzbereich übertragen. Beispiele sind WLAN und Satelliten-Direktfunk
 - Infrarot: Daten werden als elektromagnetische Wellen im Bereich des unsichtbaren Spektrums übertragen. Ein Beispiel ist IrDA
 - Laser: Daten werden via Laser-Bridge als Lichtimpulse übertragen
 - Ungerichtet:
 - Ungerichtete Übertragung basiert immer auf Funktechnik.
 Anwendungsbeispiele sind Mobilfunk, LTE, terrestrischer Rundfunk und Satelliten-Rundfunk

Koaxialkabel (Koaxkabel)

- Zweipolige Kabel mit konzentrischem (koaxialem) Aufbau
- Der innere Leiter (Seele) führt das Signal
- Der äußere Leiter liegt auf Masse (Grundpotential) und umhüllt den inneren vollständig
 - Die Abschirmung des signalführenden Leiters durch die Umhüllung mit der Masse reduziert elektromagnetische Störungen

- Die Adern von Twisted-Pair-Kabeln sind paarweise miteinander verdrillt
- Verdrillte Adernpaare bieten besseren Schutz gegen magnetischen Wechselfelder und elektrostatische Beeinflussungen von außen als Adern, die nur parallel geführt sind
- Alle Varianten des Ethernet-Standards, bei denen Twisted-Pair-Kabel das Übertragungsmedium sind, verwenden Stecker und Buchsen nach dem Standard 8P8C, die meist RJ45 genannt werden

Geräte der Bitübertragungsschicht

Bildquelle: Google Bildersuche

- Seit den 1990er Jahren sind Twisted-Pair-Kabel, sowie RJ45-Stecker und -Buchsen Standard für kupferbasierte IT-Vernetzung
- Ethernet 10BASE-T und Fast-Ethernet 100BASE-TX verwenden von den 4 Adernpaaren nur 2 Paare zum Senden und Empfangen

Warum 2 Paare zum Senden und Empfangen?

Siehe "Komplementärsignal" auf Folie 14

• Fast-Ethernet 100BASE-T4 und Gigabit-Ethernet 1000BASE-T verwenden jeweils alle 4 Adernpaare zum Senden und zum Empfangen

Pinbelegung

- T568A und T568B sind Standards für die Pinbelegung der RJ45-Stecker und -Buchsen und werden bei Ethernet 10BASE-T, Fast-Ethernet 100BASE-TX und Gigabit-Ethernet 1000BASE-T verwendet
 - Unterschied: Die Aderpaare 2 und 3 (grün und orange) sind vertauscht
 - In einem Computernetz dürfen T568A und T568B nicht gemischt werden

Das ist T568B

Bei 10BASE-T sind 4 PINs belegt – die übrigen Adernpaare werden nicht verwendet

- TD+ und TD- (Trancieve Data) sind das Signalpaar für den Datenausgang
- RD+ und RD- (Recieve Data) das Signalpaar f
 ür den Dateneingang

Crossover-Kabel und Patch-Kabel

Bildquelle: utilizewindows.com

- 2 Endgeräte direkt verbindet man via Crossover-Kabel
 - Es verbindet die Dateneingänge und -ausgänge von Geräten miteinander
- > 2 Netzwerkgeräte vernetzt man mit Patch-Kabeln (1:1-Kabeln)
 - In diesem Fall benötigt man einen Hub oder Switch

- Manche Hubs und Switches haben einen
 Uplink-Port zur Verbindung mit einem weiteren
 Hub oder Switch
 - Der Uplink-Port ist intern gekreuzt

Auto-MDIX ermöglicht die beliebige Verwendung von Crossover-Kabeln und 1:1-Kabeln

- Moderne Netzwerkgeräte erkennen selbstständig die Sende- und Empfangsleitungen verbundener Netzwerkgeräte
- Alle Netzwerkgeräte, die Gigabit-Ethernet 1000BASE-T oder schneller beherrschen, unterstützen Auto-MDIX

Komplementärsignal

Quelle: Jörg Rech. Ethernet. Heise. 2008 und Wikipedia

- Über das Adernpaar wird jeweils ein Komplementärsignal gesendet (auf einer Ader 0 V bis +2.8 V und auf der anderen Ader 0 V bis -2.8 V)
 - So kann der Empfänger Leitungsstörungen herausfiltern
 - Zudem wird die elektromagnetische Abstrahlung reduziert

- Signalamplitude von Leitung A=Nutzsignal+Störsignal
- \bullet Signalamplitude von Leitung B=-Nutzsignal+Störsignal
- $\hbox{$\bullet$ Differenz der Signalamplitude von Leitung A und von Leitung B beim Empfänger: } \\ [+Nutzsignal+Störsignal] [-Nutzsignal+Störsignal] = 2*Nutzsignal \\ }$
- Ergebnis: Doppelte Signalamplitude beim Empfänger und das Störsignal ist weg

Schirmung bei unterschiedlichen Twisted-Pair-Kabeln

 Ein elektrisch leitender Schirm bietet zusätzlich Schutz gegen äußere elektromagnetische Felder

Bezeichnung	Name	Gesamtschirm	Paarschirm
UUTP	Unshielded Twisted Pair	keiner	keiner
UFTP	Foiled Twisted Pair	keiner	Folie
USTP	Shielded Twisted Pair	keiner	Drahtgeflecht
SUTP	Screened Unshielded Twisted Pair	Drahtgeflecht	keiner
SFTP	Screened Foiled Twisted Pair	Drahtgeflecht	Folie
SSTP	Screened Shielded Twisted Pair	Drahtgeflecht	Drahtgeflecht
FUTP	Foiled Unshielded Twisted Pair	Folie	keiner
FFTP	Foiled Foiled Twisted Pair	Folie	Folie
FSTP	Foiled Shielded Twisted Pair	Folie	Drahtgeflecht
SFUTP	Screened Foiled Unshielded Twisted Pair	Folie und Drahtgeflecht	keiner
SFFTP	Screened Foiled Foiled Twisted Pair	Folie und Drahtgeflecht	Folie

- Das Bezeichnungsschema hat die Form XXYZZ
 - XX steht für die Gesamtschirmung
 - ullet U = ungeschirmt, F = Folie , S = Drahtgeflecht, SF = Drahtgeflecht und Folie
 - Y steht für die Adernpaarschirmung
 - U = ungeschirmt, F = Folie , S = Drahtgeflecht
 - ZZ steht für Twisted Pair (TP)

Twisted-Pair-Kabel – Beispiele

Bildquelle: Google Bildersuche

• Beispiel 1: SFTP

• Beispiel 2: UTP

• Beispiel 3: FUTP

Schirm oder nicht Schirm?

- Die Schirme müssen auf beiden Seiten des Kabels geerdet sein
 - Einseitige Erdung führt zu Antennenwirkung

- Es kommt zum Ausgleichsstrom zwischen den Systemen $(I = \frac{U}{R})$
 - Die Existenz dieses Ausgleichsstrom führt zu Störungen im Betrieb oder gar zur Zerstörung von Netzwerkgeräten
- Schirmung ist also nur dann sinnvoll, wenn beide Seiten auf dem selben Erdungspotenzial liegen und darum sollten Kabel mit Schirmung niemals zwischen Gebäuden verlegt werden
 - Lösungsmöglichkeiten sind das Verlegen von Lichtwellenleitern zwischen Gebäuden, Laser-Bridges oder Funknetze

Kategorien von Twisted-Pair-Kabeln (1/3)

- Es gibt TP-Kabel unterschiedlicher Leistungsfähigkeit (Kategorie)
- Die Leistungsfähigkeit einer Netzwerkverbindung wird von der Komponente mit der der geringsten Kategorie bestimmt
 - Beispiel: Cat-6-fähige Geräte sind über ein Cat-5-Kabel verbunden
 - Das reduziert die Leistungsfähigkeit der Verbindung auf Kategorie 5
- Kategorie 1/2/3/4
 - Kaum noch verbreitet (außer für Telefonkabel)
- Kategorie 5/5e
 - 100 MHz maximale Betriebsfrequenz
 - Für Fast- (100BASE-TX) und Gigabit-Ethernet (1000BASE-T) geeignet
 - 1000BASE-T verwendet alle 4 Adernpaare
 - Cat-5e sind garantiert Gigabit-Ethernet-tauglich
 - Sie erfüllen strengere Prüfstandards als Cat-5-Kabel
 - Häufigste Verkabelung für Ethernet-Computernetze

Bildquelle: Reddit

Vategorien von Twisteu-Fan-Nabelli (2/3)

- Kategorie 6/6a/6e
 - Cat-6: 250 MHz maximale Betriebsfrequenz
 - Ebenfalls geeignet für Gigabit-Ethernet (1000BASE-T)
 - Cat-6a: 625 MHz maximale Betriebsfrequenz
 - Geeignet für 10 GBit/s Ethernet (10GBASE-T) mit 100 m Segmentlänge
 - Ist kein Standard und wird selten verwendet, weil es neue Stecker erfordert
 - Cat-6e: 500 MHz maximale Betriebsfrequenz
 - Geeignet für 10 GBit/s Ethernet (10GBASE-T) mit 55 m Segmentlänge

Kategorien von Twisted-Pair-Kabeln (3/3)

Bildquelle: Google Bildersuche

- Kategorie 7/7a
 - Cat-7: 600 MHz maximale Betriebsfrequenz
 - Cat-7a: 1000 MHz maximale Betriebsfrequenz
 - Cat-7a-Kabel sind besser Abgeschirmt als Cat-7-Kabel
 - Cat-7 und Cat-7a sind noch keine Standards
 - Cat-7-Installationen mit RJ45-Steckern und -Buchsen sind Cat-6 und nicht Cat-7
 - Cat-7 und Cat-7a sind für Ethernet mit 10 GBit/s (10GBASE-T) geeignet
 - Über Cat-7 und Cat-7a kann man Gigabit-Ethernet (1000BASE-T), diverse Fernsehkanäle und Telefon gleichzeitig betreiben

- Weil bei allen Übertragungsmedien das Problem der Dämpfung (Signalabschwächung) besteht, ist die maximale Reichweite begrenzt
- **Repeater** (englisch: *Wiederholer*) sind Signalverstärker bzw. -aufbereiter
- Verstärken empfangene elektrische oder optische Signale und reinigen sie vom vom Rauschen und von Jitter (Genauigkeitsschwankungen im Übertragungstakt)
- Repeater leiten Signale nur weiter
 - Untersuchen nicht deren Bedeutung und Korrektheit
- Repeater haben nur 2 Schnittstellen (Ports)

Medium Medium

- **Hubs** sind Repeater mit > 2 Schnittstellen
- Leiten einkommende Signale zu allen Ports weiter
- Repeater und Hubs haben weder physische noch logische Netzadressen
 - Grund: Sie leider empfangene Signale nur weiter
 - Sie arbeiten transparent und kommunizieren nur auf der Bitübertragungsschicht

(Repeater) (Hub)