

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

LTL - Semantics and Model Checking

29-11-2018 Sundar B. CS&IS, BITS Pilani 0

LTL - Model Checking: Input Simplification

- Before we look at the model checking algorithm, we simplify the syntax of the input formulas by using an adequate set of operators:
 - [Propositional:] ∧ and ¬
 - [Temporal:] X , G, and U.
- Propositional operators such as \(\times \) and --> can be eliminated:
 - \wedge and \neg form an adequate set.
- What about the other temporal operators?
 - e.g. They can be rewritten using U.

LTL - Automating Evaluation of Formulas

- Should the evaluation algorithm *generate one path at a time* and *evaluate the formula in that path*?
- i.e.
 - repeat
 - generate a path π and evaluate ϕ in π
 - until (there are no more paths)
- This won't work
 - because each path is infinite and evaluating in one path may not terminate!

LTL - Automating Evaluation of Formulas

- But as it turns out:
 - we can traverse the state machine (i.e. the graph) while evaluating the formula!
- This is achieved by a marking or a labeling algorithm:
 - traverse the graph that is the state machine:
 - mark (or label) each state s with the (sub-)formulas that are satisfied in s.
- Will this terminate?
 - Note that there is only a finite number of states!

LTL - Model Checking Algorithm

- Thus we end up with a model-checking algorithm which
 - takes as inputs
 - i. a model (i.e. a state machine) $M = (S, \rightarrow, L)$ and
 - ii. an LTL formula φ
 - and outputs:
 - the set of states in **S** that satisfy ϕ .
- i.e. the signature of this procedure is:
 - SetOfStates MC(Model M, Formula φ)
- From this output, we can
 - decide M,s $|= \phi$ by
 - verifying $s \in MC(M, \phi)$

LTL - Model Checking - Marking Algorithm

- Given S, \rightarrow , L, and ϕ the marking algorithm
 - 1. recursively decomposes ϕ into sub-formulas
 - 2. marks each s in S with sub-formulas that are satisfied in s and
 - 3. propagates this information to predecessor(s) of a state as necessary.
- Note that we are working with a <u>finite state machine</u> and therefore the graph has a <u>finite number of vertices</u>.
 - But our <u>paths are infinite</u> because there are <u>cycles in the</u> <u>graph</u>.
 - How does information propagate (step 3) along cycles?

LTL – Marking Algorithm: Information Propagation

- How does information propagate along paths?
 - For instance, say, we need to verify whether $\mathbf{G} \boldsymbol{\phi}$ is satisfied in a state, say, $\mathbf{s_1}$ in this model \mathbf{M} :

- Then we can evaluate $M_1s_1 = G \phi$
- by evaluating

$$(M,s_1|=\phi) \text{ AND}$$

 $(M,s_2|=G\phi) \text{ AND } (M,s_3|=G\phi) \text{ AND } (M,s_4|=G\phi)$

LTL - Marking Algorithm: Recursive Evaluation

- Evaluation is <u>recursive</u> on the <u>given formula</u> and the <u>given</u> <u>model</u>:
 - i.e. the result is an <u>aggregate of the results</u> of
 - evaluating the <u>formula or its subformulas</u> on the <u>given state and its successors</u>.
- Computing whether $M,s = \phi$ is done recursively on ϕ and M
 - where the latter is an <u>aggregation of recursive evaluation</u> on paths starting from s

LTL – Marking Algorithm: Recursive on ϕ and M

- Computing whether $M,s = \phi$ is done recursively on ϕ and M
 - The given formula is finite:
 - i.e. the recursion on ϕ would terminate
 - But <u>recursion on paths</u> starting from s <u>may not terminate</u>:
 - because, a path may be cyclic.

Marking: Information Propagation Along a Cycle

- For instance, given this model M,
- computing $M,s_1 = G \phi$ could require
 - computing $M,s_3|=G \phi$ which in turn could require
 - computing $M,s_5|=G \phi$ which in turn could require
 - computing $\mathbf{M}, \mathbf{s}_6 = \mathbf{G} \phi$ which in turn could require
 - computing $M,s_1 = G \phi$

- In general, we have the following question:
 - Given an equation of the form

$$MC(M, s, \phi) = \{ ... MC(M, s, \phi) ... \}$$

how do you compute a solution?

Marking: Solving Recursive Equations

- Fix-point Theorem (w/o proof):
 - The solution to a recursive equation of the form:

$$f(X) = \{ ... f(X) ... \}$$

is the *(least) fixed point* of **f** for all monotonic **f**

- A fixed point of a function f, is a value X, such that f(X) = X
 - i.e. computationally, we can iterate over values of X,
 - until we find the least value X such that f(X) = X
 - and that value would be a solution to the recursive equation.
- What is the f in our algorithm?

LTL - Marking Algorithm: Termination

- Thus our $marking \ algorithm$ would evaluate a formula ϕ at a state s in model M by
 - (basis): evaluating sub-formulas of ϕ at s
 - (step): evaluating ϕ or its sub-formulas at successors of s and aggregating the results
- The evaluation will proceed by marking
 - i.e. updating in each state, the set of satisfied sub-formulas
 - until evaluation does not change:
 - i.e. sets of satisfied sub-formulas <u>remain as in</u> <u>previous iteration.</u>

LTL - Model Checking: Marking Algorithm

- MC(St, \rightarrow , L, ϕ , s) // marking algorithm
 - if ϕ is:
 - FALSE: done /* no state satisfies FALSE */
 - TRUE: done /* all states implicitly marked TRUE */
 - **p** for some atomic proposition **p**:
 - mark state s with p, if p is in L(s)

$MC(St, \rightarrow, L, \phi, s)$ // marking algorithm

- if ϕ is:
 - $\psi_1 \wedge \psi_2$:
 - if s is marked with ψ_1 and ψ_2 then mark it with $\psi_1 \wedge \psi_2$
 - $\underline{\neg \psi}$: Recursive calls: **MC**
 - if s is not marked with ψ then mark it with $\neg \psi$

$MC(St, \rightarrow, L, \phi, s)$ // marking algorithm

[contd.]

- if **φ** is:
 - <u>G ψ</u>:
 - repeat {
 mark state s with G ψ if
 s is marked with ψ and
 all its successors are marked with G ψ
 } until no change
 Recursive calls: MC
 - $X \psi$: ?? /* complete this! */

$MC(St, \rightarrow, L, \phi, s)$ // marking algorithm

[contd.]

- if ϕ is:
 - $\psi_1 \cup \psi_2$:
 - if s is marked with ψ_2 then mark it with $\psi_1 \cup \psi_2$
 - else repeat {
 - mark a state **s** with $\psi_1 U \psi_2$
 - if it is marked with ψ_1 and
 - all of its successors are marked with $\psi_1 U \psi_2$
 - } until (<u>no change</u>)

LTL Model Checking – Recursion and Fix-Point Computation

- Notes on the marking algorithm:
 - The <u>no change</u> condition in the two repeat loops (for the G case and the U case)
 - is essentially a <u>test for the fix-point</u>:
 - $MC(M,\phi,s)$ is computed iteratively on the states in M
 - until its value (i.e. the set of satisfied sub-formulas in s) <u>remains unchanged</u>!

LTL Model Checking - Time Taken

- Notes on the marking algorithm:
 - The time taken by mark(S, \rightarrow , L, ϕ) is
 - $C * |\phi| * |S| * |\rightarrow|$ steps
 - where $|\phi|$ denotes the number of operators in ϕ
 - and |S| denotes the number of states
 - and |→| denotes the number of edges, which is (upper-)bounded by |S| * |S|
 - and C is a constant

