# DIIT Departamento de Ingeniería rivestigaciones Tecnológica

#### LIGADURAS

Los problemas marcados con (\*) tienen alguna dificultad adicional, no dude en consultar.

## 1. Máquina de Atwood simple

Obtenga a partir de la ecuación de Euler-Lagrange la aceleración que presentan las pesas de masas  $m_1$  y  $m_2$  que cuelgan de una cuerda de longitud  $\ell$  que pasa por sobre una polea de radio  $R_p$  y masa  $m_p$ .

- a) La cuerda es inextensible, por lo que establece una relación entre  $y_1$  e  $y_2$ . Escriba esta función de vínculo.
- b) De asumirse que la cuerda desliza sin rozamiento sobre la polea, esta última no se mueve. Así que basta con usar la única función de vínculo allada en el punto anterior para obtener la ecuación de Euler-Lagrange en función  $y_1$ .



d) La energía cinética de rotación es función del momento de inercia y la velocidad angular, que a través de la función de vínculo del punto anterior, debe relacionarse con la velocidad de las pesas. Modelándo la polea como un cilindro homogéneo, su momento de inercia ante rotaciones en torno a su eje de simetría longitudinal es  $(m/2)R^2$ .



## 2. Péndulo de pesas desilzantes y acopladas

Dos pesas de masa  $m_1$  y  $m_2$  están unidas por una barra rígida inextensible de longitud  $\ell$  y masa despreciable frente a las anteriores. La de  $m_1$  puede deslizar sin rozamiento sobre un eje horizontal y la de  $m_2$  en uno vertical. Las coordenadas que definen sus posiciones son x e y, respectivamente. La barra establece entonces un vínculo entre estas coordenadas.



- a) Use la función de vínculo para expresar las posiciones solo en función de y.
- b) Calcule la aceleración de la pesa de  $m_2$ .

Resultado: 
$$\ddot{y} = \frac{-\ell^2 m_1 y \dot{y}^2 + g m_2 \left(\ell^2 - y^2\right)^2}{\ell^4 m_2 + \ell^2 m_1 y^2 - 2\ell^2 m_2 y^2 - m_1 y^4 + m_2 y^4}$$

#### 3. Aro y polea

Una pesa de masa  $m_{pesa}$  pende de sección de cuerda que sobresale a la derecha de una polea de radio  $R_{polea}$  y masa  $m_{polea}$ . Tal cuerda, que gira solidaria con la polea, tiene un longitud total  $\ell$  y su masa es despreciable. Su otro extremo se ata con un nudo de masa m a un aro de masa  $m_{aro}$ , enrollándose en un arco  $\theta$  en torno a éste. El centro de la polea está a una altura  $h_{polea}$  por sobre el del aro de radio  $R_{aro}$  que como puede rotar libremente presenta un momento de inercia  $m_{aro}R_{aro}^2$ .

Quedan el apartamiento con la horizontal de la pesa,  $y_{pesa}$  y la extensión del arco enrollado,  $\theta$ , como las coordenadas generalizadas que estarán ligadas por la cuerda de longitud  $\ell$ .



# Mecánica Analítica Computacional



- a) Escriba la posición de las partículas con masa en función de las coordenadas generalizas variables un sistema de referncia con origen en el centro del aro.
- b) Describa la función de ligadura y utilícela para expresar las posiciones en función de  $\theta$ . Verifique su solución revisando que una variación de heta "hacia su cero" implique que la pesa "baja".
- c) Obtenga la ecuación de Euler-Lagrange para la dinámica sin olvidar los momentos involucrados.  $\text{Resultado: } R_{aro}^2 m \ddot{\theta} + R_{aro}^2 m_{aro} \ddot{\theta} + R_{aro} g m \cos{(\theta)} + R_{polea}^2 m_{pesa} \ddot{\theta} + \frac{R_{polea}^2 m_{polea} \ddot{\theta}}{2} - R_{polea} g m_{pesa} = 0$
- 4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]
  - a) Escriba la posición de las tres pesas y de la polea inferior en función de las cuatro coordenadas generalizadas indicadas en la figura:  $y_i$  con i = 1, 2, 3, p.



- c) Use las funciones de ligadura para expresar todas las posiciones en función de  $y_1$  e  $y_2$ .
- d) Las cuerdas no deslizan sobre las poleas, por lo que la longitud de cuerda que se desplaza en una polea es igual a la que se desplaza en la otra. Este es otro vínculo que debe modelar la relación entre las  $y_i$  y las  $\theta_i$ .
- e) Calcule energías potenciales y cinéticas contemplando los momentos de inercia de las poleas. Recuerde la relación entre el perímetro (circunferencia) de un círculo y su radio para escribir la velocidad angular en función del  $\dot{y}_i$  correspondiente.
- f) Obtenga las dos ecuaciones de Euler-Lagrange. Resultados:

$$-gm_1+gm_2+gm_3+gm_p+m_1\ddot{y}_1+m_2\ddot{y}_1-m_2\ddot{y}_2+m_3\ddot{y}_1+m_3\ddot{y}_2+\frac{3m_p\ddot{y}_1}{2}=0\\ -gm_2+gm_3-m_2\ddot{y}_1+m_2\ddot{y}_2+m_3\ddot{y}_1+m_3\ddot{y}_2+\frac{m_p\ddot{y}_2}{2}=0$$

g) Resuelva este sistema de ecuaciones para obtener las dos correspondientes aceleraciones generalizadas y con estas escribir las aceleraciones de los cuatro cuerpos en cuestión.

Resultados: 
$$\ddot{y}_1 = \frac{4gm_1m_2 + 4gm_1m_3 + 2gm_1m_p - 16gm_2m_3 - 6gm_2m_p - 6gm_3m_p - 2gm_p^2}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

$$\ddot{y}_2 = \frac{8gm_1m_2 - 8gm_1m_3 + 2gm_2m_p - 2gm_3m_p}{4m_1m_2 + 4m_1m_3 + 2m_1m_p + 16m_2m_3 + 8m_2m_p + 8m_3m_p + 3m_p^2}$$

