

· (10).	Plat	~p	2019	9->r	A	
, par					000	_
					· ·	minte m

Debbie

- Let $A = (\neg p \land q) \leftrightarrow (q \rightarrow r)$
 - Construct a truth table for A and determine whether A is a tautology, contradiction or (i) (6 marks) contingency.
 - Write the Principal Disjunctive Normal Form and the Principal Conjunctive Normal PDNF of $A = nim^{\frac{1}{2}}$ Form of the statement A and $A = nim^{\frac{1}{2}}$ PCNF of $A = nim^{\frac{1}{2}}$ PCNF of $A = nim^{\frac{1}{2}}$

р	▼ q	→ r	▼ [~] p	~ ~p^	q 🔽 q>	∘r 🔽 (~p∧q) <> (q^r) 🔽
	0	0	0	1	0	1.	0
	0	0	1	1	0	1.	0
	0	1	0	1	1.	0 ′	0
	0	1	1	1	1	1	1
	1	0	0	0	0	1	0
	1	0	1	0	0	1	0
	1	1)	0	O	0	0	1
	1	1	1	0	0	1	0
	,						
		1 /					1/

PDNF
$$\sim$$
A = p'q'r' + p'q'r + p'qr' + pq'r' + pq'r + pq'r

PCNF
$$^{\sim}$$
A = (p+q'+r') * (p'+q'+r)

Obile	٦ ۾	_ A
PDNF	01	/ \
l Vin	995	ŧe
v	ν,	
PCNF	어	<i>^</i> \

Using the Laws of Logical Equivalence, simplify the following statement.
 ~(p → (q ∨ r)) → ((~r ∧ q) → ~p)
 (6 marks)

c) Design a circuit for $(P \downarrow \sim Q) \land (Q \lor R)$

(5 marks)

Question 2

KL

Let the set of all integers be the universe of discourse and let

 \checkmark B(x): x is even,

 \checkmark C(x): x is divisible by 5.

Rewrite the following statements formally using quantifiers, variables and connectives. Then determine their truth values. For each false statement, provide a counterexample.

There exists a non-negative integer that is even.

(2 marks)

(ii) If x is even, then it is divisible by 5.

(3 marks)

X=2 > hor-regative >

State and determine the truth value for the negation, converse, inverse and contrapositive of the

following statement.

For all real numbers x and y, if
$$(x^2 < y^2)$$
, then $(x < y)$

= PA~9

Negation: Some of the real numbers x and y, such that $x^2 < y^2$, and x > y. (False)

Inverse: For all real numbers x and y, if $x^2 \ge y^2$, then $x \ge y^2$ (T) $x^3 \ge y^2$, $x \ge y$ (T) $x^3 \ge y^2$, $x \ge y$ (A) $x \ge y^2$ (A) $x \ge y^2$ (A) $x \ge y^2$ (B) $x \ge y^2$ (A) $x \ge y^2$ (B) $x \ge y^2$ (B) x

Converse: For all real numbers x and y, if x < y, then $x^2 < y^2$ (False) $x^2 < y^2$ (False) $x^2 < y^2$

Contrapositive: For all real numbers x and y, if $x \ge y$, then $x^2 \ge y^2 \cdot (True) \times y$, $x^2 > y^3 - 1$

HX c) Determine the validity of the following argument using diagrams.

All mathematicians are smart. Major premise
Danny is smart. Minor premise
Therefore, Danny is a mathematicians. Conclusion

Notes: Students may use the following notations.

Let S: Set of people who are smart.

M: Set of people who are mathematicians.

D: Danny

Show that if n is an odd integer, then n² + 1 is even.

(5 marks)

By I definition of land, n = 2m+1, m & I
Then $n^2 + 1 = (2m+1)^2 + 1$ = $4m^2 + 4m + 1 + 1$
$= 4m^{2} + 4m + 2$ $= 2(2m^{2} + 2m + 1)$
= 2 k / = 2 tegers is an integer
Since the sum of products of integers is an integer, 2m2+2m+1 is an integer. By definition of even integer, 2(2m2+2m+1) is an even integer.
Therefore, if n is an odd integer, then not is
even.

b) Use the Euclidean algorithm to find the greatest common divisor of 120 and 32. Write the greatest common divisor in the form of s120 + t32, s,t ∈Z. Hence, find the least common multiple of 120 and 32.
(6 marks)

$$a=120$$
 $b=32$
 $120=32(5)+244$
 $32=24(1)+8$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-24$
 $2=32-2$

Let A = {2, 4, 6, 8, 10} and R be the relation on A whose matrix is given below.

Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive. Give a counterexample if the answer is "No". (5 marks)

optional

R is not reflexive since (4,4), (6,6), $(10,10) \notin \mathbb{R}$ R is not irreflexive since $(2,2) \in \mathbb{R}$ R is not symmetric since $(2,4) \in \mathbb{R}$ but $(4,2) \notin \mathbb{R}$ R is not asymmetric since $(2,2) \in \mathbb{R}$ Since $2 \notin 2$

R is antisymmetric <

R is transitive

Let $A = \{a,b,c,d\}$ and R and S be the relation on A described by the matrices.

$$M_{R} = \begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}$$
and
$$M_{S} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1
\end{bmatrix}$$

- Compute $M_{\overline{R}}$, $M_{S:R}$ and $M_{(S:R)^{-1}}$. (i) (4 marks)
- (ii) Use Warshall's algorithm to compute the transitive closure matrix of R. (5 marks)

complement of R, interchanging of

transpose the

Question 4 De

Let $A = \{p, q, r, s\}$, $B = \{10, 20, 30\}$ and let $f = \{(p, 0), (q, 0), (r, 10), (s, 0)\}$ be a function from A to B. Find the domain and range of the function f. Hence, determine whether the function is everywhere defined and onto. Explain your answers.

4)
$$f: A \rightarrow B = \{(\gamma, 10), (q, 20), (r, 10), (s, 20)\}$$
 Range (f) $\neq B$ (codom Ain).

dom (f) = A / range (f) = B { 10,20}

:- Hence Function is everywhere defined as each every element is being mapped from the domain. / Since Dom(f)= A

Function is not onto as no there is an element that is not mapped to . / Since 30 & Range(f).

b) Let
$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 4 & 6 & 1 & 3 \end{pmatrix}$$
 be a permutation of the set A={1, 2, 3, 4, 5, 6}.

- (i) Write ρ as a product of disjoint cycles. (2 marks)
- (ii) Write ρ as a product of transpositions.(2 marks)
- (iii) Determine whether ρ is even or odd. (2 marks)

b) $p = \begin{pmatrix} 1 & 2 & 3 & + 5 & 6 \\ 2 & 5 & 4 & 6 & 1 & 3 \end{pmatrix}$	
i) disjoint cycles	
= (1,2,5) (3,4,6)	
ii) trans position	
= (1,2) o (1,5) o (3,4) o (3,6) (1,5) o (1,2) o (3,6) o (3,4)	
iii) It is even since there are 4 transpositions.	

The Hasse diagram for a poset, P is given below. Find, if exist(s): c)

Nicholas

- the maximal element(s) of P; (1 mark) (i)
- the minimal element(s) of P; (ii) (3 marks)
- the greatest and the least element(s); (iii) (2 marks)
- the least upper bound of {2, 3}; (1 mark) (iv)
- the greatest lower bound of {2, 3}. (v) (1 mark)

i) Maximal = {60}

- ii) Minimal = {2,3,5}
- iii) Greatest = {60} / least = none, more than one minimal
- iv) Least upper bound of {2,3} = {6} / | upper bound = {6,30,60} v) Greatest lower bound of {2,3} = none exists | lower bound = Ø

d) Let $f(x,y,z) = (x' \land y \land z') \lor (x' \land y \land z) \lor (x \land y \land z') \lor (x \land y \land z) \lor (x \land y \land z)$. Construct a Karnaugh map in the form of

and hence simplify f(x,y,z) to the simplest form.

(6 marks)

$$x'$$
 y'
 y
 y
 y
 x'
 z'
 z
 z
 z
 z'

$$f(x,y,z) = y + xz$$

Q1. (a) For the statement $p \rightarrow \sim (q \land \sim r)$, write its contrapositive, converse and inverse. Then write your final answer without the connective ' \rightarrow ' and apply De Morgan's law where necessary. (6 marks)

- (b) Let $A \equiv (p \leftrightarrow q) \vee (\neg q \rightarrow r)$.
 - Construct a truth table for the expression A.
 - (ii) Write the Principal Disjunctive Normal Form (PDNF) and Principal Conjunctive Normal Form (PCNF) of A. Hence deduce the PDNF and PCNF of ~A. (6 marks)

(3 marks)

				13	ame is 1		TUNKU ARDRI BARMAN UNIVERSITY COLLEGE BEYOND EDUCATION
17	19	Ir	~9.	1009	ハタファ	A	
1	0	0	1	110	0	11	PDNF
0	0	1	1	111	-1	0	IN PURILLE STATE
0	1	0	0	0	1	1	PONF
0	1	1	ø	0	1		PONF
1	0	0	1	0	0	0	
1	0	1	1	0	1	1	PONF
1	1	0	0	1111	-17	0	
1	1	1	0	1	-	0	7
						11116	
		11		or gri	dust	1661	
PDI	NF	4	A =	Par-	+ pg = -	+ Dar	+ par
PDI	NF	4	VA =	tart	Dak +	od -	t oak
PCNF of A = (pfatille+atille+atille+atille+atille)							
36	1 70		_	4.1.	CTT97	10	19+1 (p+q+r)
	(b) 60001111 PDOCN	PDNF	PDNF 4 CNF &	(b) te:) f q r ~q 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 PDNF A A = CNF A A = CNF A A =	B) P 9	PDNF A = pgr + pgr + PDNF A A = pgr + pgr + PNF A A = pgr + pqr + PNF A A = pgr + pqr + PNF A A = pqr PNF A A A A A A A A A A A A A A A A A A A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$