7주차 2차시 아날로그 신호

[학습목표]

- 1. 아날로그 신호의 특징에 대해 설명할 수 있다.
- 2. 주파수 스펙트럼 및 채널 용량에 대해 설명할 수 있다.

학습내용1: 아날로그 신호의 특징

1. 아날로그 신호의 특징

- 신호의 크기가 일반적으로 시간에 따라 큰 범위로 계속 변화
- 신호를 취급함에 있어서 크기가 매우 작은 신호는 잡음에 묻혀 버리기 쉬움
- 큰 신호는 포화되기 쉬우며, 또한 중간 크기의 신호라도 찌그러지기 쉬움

2. 아날로그 신호의 종류

- 단순 아날로그 신호
- 반복적인 정현파
- 연속적으로 변화하는 신호

3. 복합 아날로그 신호

- 여러 개의 정현파가 합쳐진 복합적인 신호
- 푸리에 분석(Fourie Analysis) 을 이용하여 분해 가능

4. [표] 아날로그 신호

구분	아날로그 신호	
정의	빛, 소리 등과 같이 연속적으로 변하는 신호	
그래프 형태	직복 0 시시간 시간 시간 시간 작선과 같이 연속적인 형태	

구분	아날로그 신호	
예	· 온도 변화에 따른 알코올 온도계의 눈금 변화	
	• 지진에 따른 지진계 바늘의 위치 변화	
장점	세밀한 표현이 가능함	
단점	신호를 전달할 때마다 신호가 변형될 수 있음	

학습내용2: 주파수 스펙트럼

- 일반적으로 빛이 프리즘(prism)을 통과할 때 파장별 굴절률의 차이로 분산되어 파장에 따라 순차적으로 배열되는 것
- 데이터 통신에서의 주파수 스펙트럼은 다양한 주파수가 섞여 있는 주어진 신호를 푸리에 분석했을 때 나온 구성요소들을 주파수에 따라 늘어놓은 것을 의미

[그림] 주파수 스펙트럼의 모형

1. 대역폭

- 통신 선로 상에서 운반되는 전송 주파수의 범위(스펙트럼의 폭)
- 대역폭(Hz) = 최고 주파수 최저 주파수
- 채널의 용량(비트율)과 직접적인 관계
- 최고 주파수에서 최저 주파수를 뺀 것

[그림] 대역폭

[세부설명]

대역폭은 어떤 신호에 대하여, 그 신호의 주파수 스펙트럼상의 최고 주파수와 최저 주파수를 뺀 차이 값을 말한다. 신호 자체에 대해서 뿐만 아니라, 건송매체와 관련해서 자주 거론되며, 건송매체의 대역폭(Hz)이 결정되면 그것으로부터 건송용량(bps)이 계산될 수 있기 때문이다.

2. 음성대역의 주파수 스펙트럼

차단 주파수(cutoff frequency)의 상단과 하단의 신호 세기는 너무 낮아 쓸모가 없는 부분 높은 주파수 영역에서 넓은 대역폭이 얻어지므로 전송 용량이 큰 통신 시스템은 모두 높은 주파수를 사용

[그림] 음성대역의 주파수 스펙트럼

3. 무선통신영역

[표] 무선통신의 영역

저파종류	주파수영역	틀징
L 1011		7 0

VLF	3KHz~30KHz	■ 전송 중 많은 감쇠가 일어나지는 않음 ■ 대기잡음(전기와 열)에 민감
LF	30KHz~300KHz	■ 장애물에 의한 전파의 흡수로 낮에 감쇠현상 이 더 큼
MF	300KHz~3MHz	■ 낯에 신호의 흡수가 증가하기 때문에 흡수 문제 방지 ■ 전송 제어를 편하게 하기 위해 가시선 안테나에 의지
HF	3MHz~30MHz	■ 밀도차 때문에 신호를 지상으로 반사하게 되는 전리층으로 이동
VHF	30MHz~300MHz	■ 안테나에서 안테나로 직선상으로 직접전송 ■ 안테나는 지구곡률에 영향 받지 않을 정도로 충분히 높거나 서로 가까워야 함
UHF	300MHz~3GHz	■ 항상 가시거리 전파를 사용하여 통신
SHF	3GHz~30GHz	■ 초고주파의 대부분은 가시거리 전파를 이용하고 일부는 우주공간 전파 이용
EHF	30GHz~300GHz	■ 주로 과학용으로 사용

[표] 무선통신의 전파방식

[—] LOL=1	[프] 구선중선의 선찍증가					
전파방식	전파종류	특징				
지표면 전파	VLF	■ 가장 낮은 주파수들이 사용하는 방식으로 지표의 굴곡을 따라 퍼짐 ■ 전파거리는 신호의 전력량에 비례				
	LF					
대류권 전파	MF	■ 안테나끼리 직접 전파되거나, 지구표면으로 반사되어 오게끔 대류권 상층을 향해 전송				
전리층 전파	HF	■ 대류권과 전리층의 밀도차를 이용하여 낮은 출력으로 원거리 전파와 무선파의 속도를 높이는 방식				
가시거리 전파	VHF	■ 무선전송이 완벽하게 한점으로 모아지지 않기 때문에 까다로운 방식 ■ 지표면이나 대기에 반사된 반사파는 직접 전송된 것보다 수신 나에 늦게 도착해서 수신된 신호 망침				
	UHF					
우주공간 전파	SHF	■ 대기의 굴절을 이용하지 않고 위성에 의한 중계이용				
	EHF					

학습내용3: 채널 용량

- 데이터의 전송 속도가 높아질수록 잡음에 의한 데이터의 손실률도 커지게 됨
- 신호의 세기를 증가시킴으로써 데이터의 성공적인 수신율을 높일 수 있음
- 정보가 에러 없이 그 채널을 통해 보낼 수 있는 최대율
- 채널의 대역폭에 비례

[세부설명]

채널 용량(Channel capacity)은 어떤 곳에서 다른 곳으로 정보를 보내기 위해 사용되는 물리적인 통로인 채널(Channel)에서 정보가 에러를 발생시키지 않고 보내질 수 있는 최대의 속도를 말한다. 또한 전송에 쓰이는 매체가 수용할 수 있는 정보의 전송 능력이라고도 할 수 있으며 채널을 통해 보내지는 데이터의 양은 그 채널의 대역폭(Bandwidth)에 비례한다.

1. 데시벨(Decibel)

- 통신에서의 신호의 세기를 나타내는 단위
- 두 신호의 세기 비를 대수적으로 나타내는 상대적인 단위
- 데시벨 = 10log10(P1/P2) (P1, P2 : 신호전력)
- 전송 과정에서 이득과 감쇠를 나타내는데 매우 유효

2. 신호 대 잡음비 (Signal-to-Noise Ratio)

- 전송 시스템을 평가하는 중요 변수로 수신측에서 측정되며 데시벨로 표현
- 디지털 데이터 전송의 경우 데이터 전송률의 상한선을 결정하는 요인.

3. 샤논(Shannon)의 법칙

 $C = W \cdot log 2(1+S/N)$

C: bps로 나타낸 채널의 용량.

W : 채널의 대역폭(Hz).

S : 수신 신호 전력

N : 잡음 전력

【학습정리】

- 1. 대역폭는 통신 선로 상에서 운반되는 전송 주파수의 범위(스펙트럼의 폭)를 말한다.
- 2. EHF는 주로 과학용으로 사용되는 주파수이다.
- 3. 스펙트럼(Spectrum)은 신호가 포함하는 주파수의 범위를 말한다.

