

Example 4

Multifactorial optimization of the refolding of Interleukin-4 derivative employing the TRIS-sulfuric acid based system

5

An attractive combination of aggregation suppressors is the TRIS-base/H₂SO₄-system. Therefore, this system was chosen for further optimization employing a multifactorial analysis.

10

The total final volume of the refolding solution was 50 mL (glass vials, Schott, Germany). The glass vials were capped with parafilm. Refolding was allowed to run to completion within 24-36 hours with stirring on a magnetic bar stirrer (100-200 rpm). At intervals, samples were withdrawn and analyzed by RP-HPLC (see Example 1).

15

The protein solution from Example 2, containing denatured, sulfitolysed protein, is diluted into refolding buffer to give a final protein concentration indicated in Table 3. The following aspects of refolding buffer composition were investigated: concentration of TRIS-base (0.5 to 3 [M]), H₂SO₄ (depending on TRIS-concentration; 0.4 to 20 1.4 [M]), residual guanidinium hydrochloride concentration (80-400 mM), L-cysteine concentration (0.4 to 4 [mM]), and initial protein concentration (50 to 1000 [mg/L]). The pH of the refolding buffer was adjusted to 7.5. All refolding mixtures contained 1 mM EDTA.

25

The experiments described in this example was designed to allow multifactorial statistical analysis of correctly folded Interleukin-4 derivative yield data in order to assess the importance of all single factors and all two-factor interactions. A partial cubic experimental design was generated and the resulting data were also analyzed employing a partial cubic model. The coefficients of the polynomials of the partial cubic model are given in Table 2.

- 18 -

Term	TRIS	CYS	Protein	Term	
0	0	0	0	CONSTANT	{
1	1	0	0	TRIS-H ₂ SO ₄ _[M]	
2	0	1	0	Cysteine_[mM]	
3	0	0	1	Protein_[mg/L]	
4	1	1	0	TRIS-H ₂ SO ₄ _[M]*Cysteine_[mM]	
5	1	0	1	TRIS-H ₂ SO ₄ _[M]*Protein_[mg/L]	
6	0	1	1	Cysteine_[mM]*Protein_[mg/L]	
7	2	0	0	TRIS-H ₂ SO ₄ _[M]^2	
8	0	2	0	Cysteine_[mM]^2	
9	0	0	2	Protein_[mg/L]^2	
10	1	2	0	TRIS-H ₂ SO ₄ _[M]*Cysteine_[mM]^2	
11	2	1	0	TRIS-H ₂ SO ₄ _[M]^2*Cysteine_[mM]	
12	1	0	2	TRIS-H ₂ SO ₄ _[M]*Protein_[mg/L]^2	
13	2	0	1	TRIS-H ₂ SO ₄ _[M]^2*Protein_[mg/L]	
14	0	1	2	Cysteine_[mM]*Protein_[mg/L]^2	
15	0	2	1	Cysteine_[mM]^2*Protein_[mg/L]	}

15

Table 2 Partial cubic model employed for the experimental design of the refolding optimization of Interleukin-4 R121D Y124D

20

Trial #	TRIS-base	Cysteine	Protein	Ref. Yield	Protein recovery	Overall refolding yield	Purity
				[mg/L]	[%]	[%]	[%]
1	3	4	50	9	81.3	18.00	22.1
2	3	0.4	1000	2.92	10.65	0.29	2.7
3	0.5	4	525	90.45	48.55	17.23	35.5
4	0.5	2.2	1000	137.7	46.34	13.77	29.7
5	1.75	4	1000	199.72	54.77	19.97	36.5
6	1.75	0.4	1000	25.05	27.23	2.50	9.2
7	3	2.2	50	11.3	60.79	22.60	37.2

Trial #	TRIS-base	Cysteine	Protein	Ref. Yield	Protein recovery	Overall refolding yield	Purity
8	0.5	4	50	10.37	53.54	20.73	38.7
9	3	0.4	525	68.32	55.36	13.01	23.5
10	0.5	0.4	525	81.82	36.66	15.58	42.5
11	1.75	0.4	50	13.6	62.08	27.21	43.8
12	0.5	0.4	1000	15.8	18.89	1.58	8.4
13	3	4	1000	176.31	43.94	17.63	40.1
14	1.75	4	525	131.19	68.94	24.99	36.2
15	1.3333	1.6	366.667	93.63	68.21	25.54	37.4
16	2.1667	1.6	366.667	91.95	69.77	25.08	35.9
17	3	2.8	683.333	134.38	55.72	19.67	35.3
18	0.5	1.6	683.333	110.68	48.94	16.20	33.1
20	2.1667	2.8	50	12.49	71.59	24.98	34.9
1	3	4	50	9.38	52.32	18.76	35.9
2	3	0.4	1000	8.94	18.32	0.89	4.9
3	0.5	4	525	97.16	50.43	18.51	36.7
4	0.5	2.2	1000	140.29	45.63	14.03	30.7
5	1.75	4	1000	197.53	56.85	19.75	34.7
6	1.75	0.4	1000	19.75	27.61	1.97	7.2
7	3	2.2	50	15.08	72.5	30.15	41.6

Table 3 Effect of solution conditions (TRIS-H₂SO₄-system) on Interleukin-4 R121D Y124D refolding yield, recovery of soluble protein, overall refolding yield and purity

5

The yields obtained with selected combinations of these components are shown in Table 3. Inspection of these results shows that, under the experimental conditions employed, the following trends were apparent: (1) best refolding yields are obtained at high protein concentrations (750-1000 [mg/L]); (2) best overall refolding yields are obtained at 250 to 650 [mg/L] total protein concentration; (3) the optimal L-cysteine concentration range is 2.5 to 4 [mM]; (4) the optimal Tris-H₂SO₄-

10

- 20 -

concentration range is 1.4 to 2.4 [M]; (5) best protein recovery is obtained at low protein concentrations (50 to 250 [mg/L]), high Tris-H₂SO₄-concentrations (2-3 [M]) and 2 to 3.5 [mM] L-cysteine; (6) best purity is obtained at high protein concentrations (400-1000 [mg/L]), high L-cysteine concentrations (2.5-4 [mM]). The purity
5 is indepening on the Tris-H₂SO₄ concentration.

A compromise between optimal refolding yield, purity and protein recovery was identified employing the following settings: 500 mg/L total protein, 3.3 mM L-cysteine, 2 M Tris-H₂SO₄ and 1 mM EDTA.

10

Checkpoints employing these optimal conditions revealed that the predicted and measured response values fit reasonably well, indicating that the model is adequate.

	Overall refolding yield	Predicted: 24.9 [%] (± 1.84 StdErr)
15		Measured: 25.4 [%] (± 0.37 StdErr)
	Protein recovery	Predicted: 65.9 [%] (± 6.55 StdErr)
		Measured: 62.9 [%] (± 0.63 StdErr)
	Purity	Predicted: 38.6 [%] (± 3.63 StdErr)
		Measured: 40.4 [%] (± 0.45 StdErr)
20	Refolding yield	Predicted: 127 [mg/L] (± 14.5 StdErr)
		Measured: 126.9 [mg/L] (± 1.85 StdErr)

Example 5

25

Multifactorial optimization of the refolding of Interleukin-4 derivative employing the Triethanolamine-sulfuric acid based system

Another attractive combination of aggregation suppressors is the Triethanolamine (TEA) /H₂SO₄-system. Therefore, this system was chosen for further optimization
30 and scale-up of the protein concentration.

The total final volume of the refolding solution was 50 mL (glass vials, Schott, Germany). The glass vials were capped with parafilm. Refolding was allowed to run to completion within 24-36 hours with stirring on a magnetic bar stirrer (100-200 rpm). At intervals, samples were withdrawn and analyzed by RP-HPLC (see Example 1).

The protein solution from Example 2, containing denatured, sulfitolized protein, is diluted into refolding buffer to give a final protein concentration indicated in Table 5.

10 The following aspects of refolding buffer composition were investigated: concentration of TEA (1 to 2 [M]), H₂SO₄ (depending on TEA-concentration), residual guanidinium hydrochloride concentration (80-400 mM), L-cysteine concentration (0.4 to 10 [mM]), and initial protein concentration (50 to 1000 [mg/L]). The pH of the refolding buffer was adjusted to 7.5. All refolding mixtures contained 1 mM

15 EDTA.

The experiments described in this example was designed to allow multifactorial statistical analysis of correctly folded Interleukin-4 derivative yield data in order to assess the importance of all single factors and all two-factor interactions. A partial cubic experimental design was generated and the resulting data were also analyzed employing a partial cubic model. The coefficients of the polynoms of the partial cubic model are given in Table 4.

Term	TEA	CYS	Protein	Term	
0	0	0	0	CONSTANT	
1	1	0	0	TBA-H ₂ SO ₄ _[M]	
2	0	1	0	Cysteine_[mM]	
3	0	0	1	Protein_[mg/L]	
4	1	1	0	TBA-H ₂ SO ₄ _[M]*Cysteine_[mM]	
5	1	0	1	TBA-H ₂ SO ₄ _[M]*Protein_[mg/L]	
6	0	1	1	Cysteine_[mM]*Protein_[mg/L]	
7	2	0	0	TBA-H ₂ SO ₄ _[M]^2	
8	0	2	0	Cysteine_[mM]^2	
9	0	0	2	Protein_[mg/L]^2	
10	1	2	0	TBA-H ₂ SO ₄ _[M]*Cysteine_[mM]^2	
11	2	1	0	TBA-H ₂ SO ₄ _[M]^2*Cysteine_[mM]	
12	1	0	2	TBA-H ₂ SO ₄ _[M]*Protein_[mg/L]^2	
13	2	0	1	TBA-H ₂ SO ₄ _[M]^2*Protein_[mg/L]	
14	0	1	2	Cysteine_[mM]*Protein_[mg/L]^2	
15	0	2	1	Cysteine_[mM]^2*Protein_[mg/L]	

Linear terms
 Interaction terms
 Quadratic terms
 Partial cubic terms

Table 4 Partial cubic model employed for the experimental design of the refolding optimization of Interleukin-4 R121D Y124D

Trial #	TEA	Cysteine	Protein	Ref. Yield	Protein recovery	Overall refolding yield	Purity
[\cdot]	[M]	[mM]	[mg/L]	[mg/L]	[%]	[%]	[%]
1	2	10	0.1	5.91	138.09	5.9	4.3
2	2	0.4	1	135.12	49.49	13.5	27.3
3	0.5	10	0.55	15.23	16.92	2.8	16.4
4	0.5	5.2	1	70.06	19.28	7	36.3
5	1.25	10	1	49.37	18.06	4.9	27.3
6	0.5	5.2	0.1	9.64	66.78	9.6	14.4
7	1.25	0.4	1	167.96	42.5	16.8	39.5
8	2	5.2	0.1	13.66	103.17	13.7	13.2
9	0.5	10	0.1	3.56	76.7	3.6	4.6

Trial #	TEA	Cysteine	Protein	Ref. Yield	Protein recovery	Overall refolding yield	Purity
10	2	0.4	0.55	45.39	54.66	8.3	15.1
11	0.5	0.4	0.55	68.41	31.3	12.4	39.7
12	1.25	0.4	0.1	30.09	77.34	30.1	38.9
13	0.5	0.4	1	90.11	21.55	9	41.8
14	2	10	1	63.75	22.94	6.4	27.8
15	0.5	0.4	0.1	24.18	59.26	24.2	40.8
16	1.25	10	0.55	43.47	31.42	7.9	25.2
17	1	3.6	0.4	107.54	61.7	26.9	43.6
18	1.5	3.6	0.4	118.95	70.26	29.7	42.3
19	2	6.8	0.7	115.96	45.83	16.6	36.1
20	0.5	3.6	0.7	97.81	32.69	14	42.7
21	1.5	6.8	0.1	12.29	75.29	12.3	16.3
1	2	10	0.1	6.51	91.62	6.5	7.1
2	2	0.4	1	136.71	44.08	13.7	31.0
3	0.5	10	0.55	17.13	13.98	3.1	22.3
4	0.5	5.2	1	68.29	17.34	6.8	39.4
5	1.25	10	1	53.25	16.96	5.3	31.4
6	0.5	5.2	0.1	10.75	44.69	10.8	24.1
7	1.25	0.4	1	170.11	39.82	17	42.7
8	2	5.2	0.1	18.01	81.64	18	22.1
9	0.5	10	0.1	4.92	43.65	4.9	11.3

Table 5 Effect of solution conditions (TEA-H₂SO₄-system) on Interleukin-4 R121D Y124D refolding yield, recovery of soluble protein, overall refolding yield and purity

5

The yields obtained with selected combination of these components are shown in Table 5. Inspection of these results shows that, under the experimental conditions employed, the following trends were apparent: (1) best refolding yields are obtained at high protein concentrations (750-1000 [mg/L]); (2) best overall refolding yields are obtained at 100 to 550 [mg/L] total protein concentration; (3) the optimal L-

10

cysteine concentration range is 0.4 to 4 [mM]; (4) the optimal TEA-H₂SO₄-concentration range is 1 to 1.6 [M]; (5) best protein recovery is obtained at low protein concentrations (50 to 250 [mg/L]), high TEA-H₂SO₄-concentrations (1.5-2 [M]) and 4 to 10 [mM] L-cysteine; (6) best purity is obtained at high protein concentrations (600-1000 [mg/L]), L-cysteine concentrations ranging between 0.4 and 4 [mM]) and at the TEA-H₂SO₄ concentrations ranging between 0.8 and 1.5 [M]. A compromise between optimal refolding yield, purity and protein recovery was identified employing the following settings: 500 mg/L total protein, 0.8 mM L-cysteine, 1.4 M TEA-H₂SO₄ and 1 mM EDTA.

10

Checkpoints employing these optimal conditions revealed that the predicted and measured response values fit reasonably well, indicating that the model is adequate.

	Overall refolding yield	Predicted: 24.6 [%] (± 4.1 StdErr)
15		Measured: 24.3 [%] (± 0.8 StdErr)
	Protein recovery	Predicted: 52.8 [%] (± 10.5 StdErr)
		Measured: 58.2 [%] (± 4.5 StdErr)
	Purity	Predicted: 43.2 [%] (± 5.3 StdErr)
		Measured: 41.8 [%] (± 3.9 StdErr)
20	Refolding yield	Predicted: 106.8 [mg/L] (± 16.9 StdErr)
		Measured: 121.6 [mg/L] (± 2.0 StdErr)

Example 6

25 *Refolding of bovine pancreatic trypsin inhibitor (BPTI, aprotinin) employing the TRIS-sulfuric acid based system*

In order to demonstrate that the TRIS/H₂SO₄-system can also be employed for the refolding of other proteins than Interleukin-4 derivatives, the TRIS/H₂SO₄-system 30 was also optimized for BPTI.

The total final volume of the refolding solution was 50 mL (glass vials, Schott, Germany). The glass vials were capped with parafilm. Refolding was allowed to run to completion within 24-36 hours with stirring on a magnetic bar stirrer (100-
5 200 rpm). At intervals, samples were withdrawn and analyzed by RP-HPLC (see Example 1).

The protein solution from Example 2, containing denatured, sulfitolized protein, is diluted into refolding buffer to give a final protein concentration indicated in Table 7.
10 The following aspects of refolding buffer composition were investigated: concentration of TRIS (0 to 2 [M]), H₂SO₄ (depending on the concentration of TRIS-base), residual guanidinium hydrochloride concentration (80-400 mM), L-cysteine concentration (0.1 to 4 [mM]), and initial protein concentration (50 to 1000 [mg/L]). The pH of the refolding buffer was adjusted to 7.5. All refolding mixtures contained
15 1 mM EDTA.

The experiments described in this example was designed to allow multifactorial statistical analysis of correctly folded BPTI yield data in order to assess the importance of all single factors and all two-factor interactions. A partial cubic experimental design was generated and the resulting data were also analyzed employing a partial cubic model. The coefficients of the polynoms of the partial cubic model are given in Table 6.

Term	TRIS	CYS	Protein	Term	
0	0	0	0	CONSTANT	
1	1	0	0	TRIS-H ₂ SO ₄ _[M]	
2	0	1	0	Cysteine_[mM]	
3	0	0	1	Protein_[mg/L]	
4	1	1	0	TRIS-H ₂ SO ₄ _[M]*Cysteine_[mM]	
5	1	0	1	TRIS-H ₂ SO ₄ _[M]*Protein_[mg/L]	
6	0	1	1	Cysteine_[mM]*Protein_[mg/L]	
7	2	0	0	TRIS-H ₂ SO ₄ _[M]^2	
8	0	2	0	Cysteine_[mM]^2	
9	0	0	2	Protein_[mg/L]^2	
10	1	2	0	TRIS-H ₂ SO ₄ _[M]*Cysteine_[mM]^2	
11	2	1	0	TRIS-H ₂ SO ₄ _[M]^2*Cysteine_[mM]	
12	1	0	2	TRIS-H ₂ SO ₄ _[M]*Protein_[mg/L]^2	
13	2	0	1	TRIS-H ₂ SO ₄ _[M]^2*Protein_[mg/L]	
14	0	1	2	Cysteine_[mM]*Protein_[mg/L]^2	
15	0	2	1	Cysteine_[mM]^2*Protein_[mg/L]	

} Linear terms
 } Interaction terms
 } Quadratic terms
 } Partial cubic terms

Table 6 Partial cubic model employed for the experimental design of the refolding optimization of BPTI

Trial #	TRIS-base	Cysteine	Protein	Ref. Yield	Protein recovery	Overall refolding yield	Purity
[-1]	[M]	[mM]	[mg/L]	[mg/L]	[%]	[%]	[%]
1	2	4	50	20.43	85.69	40.86	47.7
2	2	0.1	1000	0	0	0	0
3	0	4	525	159.29	61.05	30.34095	49.7
4	0	2.05	1000	275.45	70.84	27.545	38.9
5	1	4	1000	256.9	71.75	25.69	35.8
6	0	2.05	50	35.67	136.48	71.34	52.3
7	1	0.1	1000	0	2.59	0	0
8	2	2.05	50	19.45	80.85	38.9	48.1
9	0	4	50	8.51	39.92	17.02	42.6
10	2	0.1	525	0	0	0	0
11	0	0.1	525	0	0.4	0	0
12	1	0.1	50	15.71	69.04	31.42	45.5

Trial #	TRIS-base	Cysteine	Protein	Ref. Yield	Protein recovery	Overall refolding yield	Purity
13	0	0.1	1000	0	1.05	0	0
14	2	4	1000	158.93	36.23	15.893	43.9
15	0	0.1	50	5.03	14.13	10.06	71.2
16	1	4	525	18.64	89.48	3.550476	4
17	0.6667	1.4	366.667	107.29	83.34	29.26088	35.1
18	1.3333	1.4	366.667	104.5	82.6	28.49997	34.5
19	2	2.7	683.333	97.4	41.66	14.25367	34.2
20	0	1.4	683.333	149.44	51.46	21.86928	42.5
21	1.3333	2.7	50	14.08	76.21	28.16	36.9
1	2	4	50	16.15	69.37	32.3	46.5
2	2	0.1	1000	1.47	3.44	0.147	4.3
3	0	4	525	162.49	58.91	30.95048	52.5
4	0	2.05	1000	273.77	68.91	27.377	39.7
5	1	4	1000	265.9	78.2	26.59	34
6	0	2.05	50	9.73	39.56	19.46	49.2
7	1	0.1	1000	0	0.94	0	0
8	2	2.05	50	19.18	77.88	38.36	49.3

Table 7 Effect of solution conditions on BPTI refolding yield, recovery of soluble protein and overall refolding yield

The yields obtained with selected combination of these components are shown in Table 7. Inspection of these results shows that, under the experimental conditions employed, the following trends were apparent: (1) best refolding yields are obtained at high protein concentrations (750-1000 [mg/L]); (2) best overall refolding yields are obtained at 500 to 1000 [mg/L] total protein concentration; (3) the optimal L-cysteine concentration range is 2.5 to 4 [mM]; (4) the optimal TRIS-H₂SO₄-concentration range is 0.2 to 1.0 [M]; (5) best protein recovery is obtained at low protein concentrations (50 to 100 [mg/L]), moderate TRIS-H₂SO₄-concentrations

- 28 -

(0.9-1.4[M]) and 1.8 to 3.3 [mM] L-cysteine; (6) best purity is obtained at low protein concentrations (50-100 [mg/L]), L-cysteine concentrations ranging between 0.1 and 0.4 [mM]) and at the TRIS-H₂SO₄ concentrations ranging between 0.1 and 0.5 [M].

5

A compromise between optimal refolding yield, purity and protein recovery was identified employing the following settings: 700 mg/L total protein, 3.3 mM L-cysteine, 0.3 M TRIS-H₂SO₄ and 1 mM EDTA.

10

Claims

1. A method for renaturation of proteins comprising adding to a solution of denatured, chemically modified or reduced proteins a refolding buffer containing a primary, secondary or tertiary amine.
5
2. The method of claim 1 characterised in that the amine has the formula

10

wherein R₁ and R₂ can be any combination of the ligands H, O=C-NH₂, (CH₂)₄-NH₂, (CH₂)₃-COOH, (CH₂)₂-CHOH-CH₃, CH₂-CH₂-OH, CH₂-CH₃, CH₃, NH₂

15

and R₃ can be C(NH₂)=NH, C(CH₂OH)₃, CH₂-CH₂-OH or H

20

3. The method of any one of claims 1 or 2 wherein the buffer further contains a solubility enhancer.
4. The method of claims 3 wherein solubility enhancer is an ion.
5. The method of claims 3 wherein solubility enhancer is chloride or sulfate.
6. The method of claims 1 to 5 wherein the protein is an interleukin
25
7. The method of claims 1 to 5 wherein the protein is interleukin 4
8. The method of claims 1 to 5 wherein the protein is a mutein of interleukin 4.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/12607

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07K14/54 C07K14/81 C07K1/113

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 01 87925 A (COX GEORGE N ; BOLDER BIOTECHNOLOGY INC (US); DOHERTY DANIEL H (US)) 22 November 2001 (2001-11-22) * claims 1,17,22,24,27; examples 1-3,5,8,12,14,19,22,23 *	1-8
X	WO 89 01046 A (SCHERING BIOTECH CORP) 9 February 1989 (1989-02-09) example 2	1-8 ---- ----

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

7 March 2003

20/03/2003

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fausti, S

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/12607

C/(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CREIGHTON T.E. ET AL.: "On the biosynthesis of Bovine Pancreatic Trypsin Inhibitor (BPTI): Structure, Processing, Folding, and Disulphide bond formation of the Precursor in Vitro and in Microsomes" J. MOL. BIOL., vol. 232, 1993, pages 1176-1196, XP001058004 * page 1180, left-hand column, 2nd paragraph *	1,3-5
X	WO 96 40784 A (HALLENBECK ROBERT F ;ARVE BO H (US); BILD GARY S (US); CHEN BAO LIU) 19 December 1996 (1996-12-19) * abstract; page 9, line 18; examples 1,9,10 *	1-5
X	US 5 453 363 A (RUDOLPH RAINER ET AL) 26 September 1995 (1995-09-26) cited in the application * examples 1c,1d,3-5,6.7,6.8,7,8.6,8.7 *	1-5
X	WO 99 33988 A (CHONG KUN DANG CORP ;KIM CHANG KYU (KR); KIM YONG IN (KR); OH SUNG) 8 July 1999 (1999-07-08) * page 7, lines 15-30; examples 8-12 *	1-5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/12607

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0187925	A	22-11-2001	AU 7485301 A EP 1284987 A2 WO 0187925 A2	26-11-2001 26-02-2003 22-11-2001
WO 8901046	A	09-02-1989	AU 2257488 A EP 0301835 A1 WO 8901046 A1 ZA 8805540 A	01-03-1989 01-02-1989 09-02-1989 26-04-1989
WO 9640784	A	19-12-1996	AU 713338 B2 AU 6477096 A CA 2223745 A1 EP 0837883 A2 JP 11514334 T WO 9640784 A2 US 6319896 B1 US 5888968 A US 6323326 B1 US 2002137884 A1	02-12-1999 30-12-1996 19-12-1996 29-04-1998 07-12-1999 19-12-1996 20-11-2001 30-03-1999 27-11-2001 26-09-2002
US 5453363	A	26-09-1995	DE 3537708 A1 US 5593865 A AT 98648 T AT 131489 T AU 607083 B2 AU 4132189 A AU 590029 B2 AU 6599386 A CA 1329157 A1 CZ 8607526 A3 DE 3650449 D1 DE 3689404 D1 DK 320387 A DK 200001897 A WO 8702673 A2 EP 0219874 A2 EP 0253823 A1 EP 0393725 A1 ES 2061434 T3 ES 2020498 T3 FI 872753 A ,B, FI 933868 A ,B, GR 92300062 T1 GR 3018410 T3 HK 153496 A HK 153596 A HR 921075 A1 HU 204855 B HU 43643 A2 IE 62634 B1 IL 80325 A JP 2117325 C JP 4218387 A JP 8024594 B JP 7028745 B JP 62502895 T KR 9009139 B1 LV 5289 A3	23-04-1987 14-01-1997 15-01-1994 15-12-1995 21-02-1991 04-01-1990 26-10-1989 19-05-1987 03-05-1994 17-01-1996 25-01-1996 27-01-1994 23-06-1987 18-12-2000 07-05-1987 29-04-1987 27-01-1988 24-10-1990 16-12-1994 01-04-1996 22-06-1987 03-09-1993 31-08-1992 31-03-1996 16-08-1996 16-08-1996 30-06-1995 28-02-1992 30-11-1987 22-02-1995 21-06-1992 06-12-1996 07-08-1992 13-03-1996 05-04-1995 19-11-1987 22-12-1990 10-10-1993

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/12607

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
US 5453363	A		PT 83609 A ,B SI 8611796 A ,B SK 752686 A3 SU 1607689 A3 YU 179686 A1 ZA 8608012 A		01-11-1986 31-10-1996 01-10-1996 15-11-1990 30-06-1988 24-06-1987
WO 9933988	A 08-07-1999	KR AU AU BR CA CN EP JP WO US	253916 B1 735480 B2 1694199 A 9814526 A 2315750 A1 1290299 T 1042479 A1 2002500013 T 9933988 A1 5952461 A		01-05-2000 12-07-2001 19-07-1999 17-10-2000 08-07-1999 04-04-2001 11-10-2000 08-01-2002 08-07-1999 14-09-1999