# Introduction to Data Science

DSA1101

Semester 1, 2018/2019 Week 8

# **Classification methods: Decision Trees**

- Recall the decision tree example from week 6 which concerns a bank that wants to market its term deposit products (such as Certificates of Deposit) to the appropriate customers.
- Given the demographics of clients and their reactions to previous campaign phone calls, the bank's goal is to predict which clients would subscribe to a term deposit.
- We will look into the decision tree algorithm in greater detail, including how the decision variables at each node are selected.

- The dataset 'bank-sample.csv' which has been posted to IVLE contains records of 2000 customers
- The variables include (1) job, (2) marital status, (3) education level, (4) if the credit is in default, (5) if there is a housing loan, (6) if the customer third has a personal loan, (7) contact type, (8) result of the previous marketing campaign contact (poutcome), and finally (9) if the client actually subscribed to the term deposit.

- Attributes (1) through (8) are the input variables or features
- (9) is considered the (binary) outcome: The outcome subscribed is either yes (meaning the customer will subscribe to the term deposit) or no (meaning the customer won't subscribe).
- All the variables listed earlier are categorical.

Preliminary look at the dataset

•

```
> bankdata = read.csv("bank-sample.csv", header=TRUE)
  > head(bankdata)
3
                 job marital education default balance
    age
     31
          management single tertiary
                                            no
     45 entrepreneur
                     married tertiary
                                                  1752
                                            nο
     46
            services divorced secondary
                                                  4329
                                            no
7 4 35
         management married tertiary
                                                 1108
     39
         management
                     married secondary
                                            no
                                                  1410
     31
                     single tertiary
                                                   499
          management
                                            no
```

#### Preliminary look at the dataset

0

```
housing loan
                  contact day month duration campaign
         ves
               no cellular
                                   apr
                                            185
         yes
              yes cellular
                                   nov
                                             56
               no cellular
                             21
                                            534
          nο
                                   nov
               no cellular
                                             52
         yes
                                   nov
6
         ves
                    unknown
                                   may
                                             55
                    unknown
                                            122
         ves
               nο
                                   jun
8
     pdays previous poutcome subscribed
                      unknown
10 2
                     unknown
                                       no
11 3
                   0 unknown
                                      ves
12 4
        -1
                   0 unknown
                                       nο
13 5
                    unknown
                                       nο
14 6
        -1
                      unknown
                                       nο
```

- In R, the package rpart contains functions for modeling decision trees
- The optional package rpart.plot enables the plotting of a tree.
- We will show how to use decision trees in R to predict which clients would subscribe to a term deposit.

•

```
install.packages("rpart")
install.packages("rpart.plot")
library("rpart")
library("rpart.plot")
```

- We will build a decision tree to predict subscribed based on the features: job, marital, education, default, housing, loan, contact and poutcome.
- We will study how the decision tree is fitted in more detail after the recess week

•

```
fit <- rpart(subscribed ~job + marital + education
2 + default + housing + loan + contact + poutcome,
3 method="class",
4 data=bankdata,
5 control=rpart.control(minsplit=1),
6 parms=list(split='information'))</pre>
```

We can visualize the resulting fitted decision tree using rpart.plot:

```
rpart.plot(fit, type=4, extra=2, clip.right.labs=
FALSE, varlen=0, faclen=0)
```



# Decision Tree algorithm

- Question: Why is the variable poutcome selected as the decision variable at the root node?
- Question: Traversing down the tree, how are the subsequent decision variables at each node selected?

#### Classification methods: Decision Trees



- The purity of a node is defined as its probability of the corresponding class
- For example, in the root node of the decision tree built earlier,

```
P(\text{subscribed} = 0) = \frac{1789}{2000} \approx 89.45\%
```

• Therefore, the root is 89.45% pure on the subscribed = 0 class and 10.55% pure on the subscribed = 1 class

# Decision Tree algorithm

- The first step in constructing a decision tree is to choose the most informative attribute.
- A common way to identify the most informative attribute is to use entropy-based methods, which are used by decision tree learning algorithms such as ID3 (or Iterative Dichotomiser 3) and C4.5.
- The entropy methods select the most informative attribute based on two basic measures:
- (i) Entropy, which measures the impurity of an attribute
- (ii) Information gain, which measures the purity of an attribute

• Given variable Y and and the set of possible categorical values it can take,  $(y_1, y_2, ..., y_K)$ , the entropy of Y is defined as

$$D_{Y} = -\sum_{j=1}^{K} P(Y = y_{j}) \log_{2} P(Y = y_{j})$$

where  $P(Y = y_j)$  denotes the purity or the probability of the class  $Y = y_j$ , and  $\sum_{j=1}^K P(Y = y_j) = 1$ .

If the variable Y is binary and only take on two values 0 or 1,
 the entropy of Y is

$$-\{P(Y=1)\log_2 P(Y=1)\} + P(Y=0)\log_2 P(Y=0)\}.$$

- For example, let Y denote the outcome of a coin toss, where Y=1 for head and Y=0 for tail.
- If the coin if a fair one, then  $P(Y=0)=P(Y=1)=\frac{1}{2}$ , so that the entropy is calculated as

$$-\left\{0.5\log_2 0.5 + 0.5\log_2 0.5\right\} = 1$$

• On the other hand, if the coin is biased, then suppose  $P(Y=0)=\frac{3}{4}$ ,  $P(Y=1)=\frac{1}{4}$ , so that the entropy is now

$$-\{0.25\log_2 0.25 + 0.75\log_2 0.75\} \approx 0.81$$

- Practically Less entropy, lower uncertainty.
- Heuristically, entropy is a measure of unpredictability
- When the coin is biased, we have less "uncertainty" in predicting the outcome of its next toss, so that the entropy is lower
- When the coin is fair, we are much more less able to predict the next toss, and so the entropy is at its highest value 1
- For a binary variable Y, we can plot in R its entropy:

```
p=seq(0,1,0.01)
D=-(p*log2(p)+(1-p)*log2(1-p))
plot(p,D,ylab="D", xlab="P(Y=1)", type="1")
```



#### Classification methods: Decision Trees



- For the bank marketing example, the output Y variable is subscribed
- The base entropy is defined as the entropy of the output variable at the root node
- $P(\text{subscribed} = 0) = \frac{1789}{2000} \approx 89.45\%$  and  $P(\text{subscribed} = 1) = 1 \frac{1789}{2000} \approx 10.55\%$

- Therefore, the base entropy is  $D_{\text{subscribed}} = -\{0.1055log_2(0.1055) + 0.8945log_2(0.8945)\} \approx 0.4862.$
- Ideally, we would like to reduce this base entropy by leveraging on feature variables X for prediction.
- Recall that lower entropy is associated with less "uncertainty" in predicting the outcome, which is something that we want.
- So we select the feature that reduces entropy the most.

- We consider binary tree algorithm
- Suppose we have a feature variable X and the split values  $(x_1, x_2)$ . The conditional entropy given feature X and the split points  $(x_1, x_2)$  is defined as

$$D_{Y|X} = \sum_{i=1}^{2} P(X = x_i) D(Y|X = x_i)$$

$$= -\sum_{i=1}^{2} \left\{ P(X = x_i) \sum_{j=1}^{K} P(Y = y_j|X = x_i) log_2[P(Y = y_j|X = x_i)] \right\}$$

We will illustrate with several examples shortly

- We will illustrate the calculation of conditional entropy for the decision variable in the root node, poutcome.
- Recall that the split categories are x<sub>1</sub>:
   failure, other, unknown and x<sub>2</sub>: success.



•

|              | poutcome $(X)$                     |                           |  |
|--------------|------------------------------------|---------------------------|--|
|              | $x_1$ : failure, other, unknown    | x <sub>2</sub> : success  |  |
| $P(X = x_i)$ | $\frac{210+79+1653}{2000} = 0.971$ | $\frac{58}{2000} = 0.029$ |  |

```
> x1=which(bankdata$poutcome!="success")
  > x2=which(bankdata$poutcome=="success")
  > table(bankdata$subscribed[x1])
    no
        ves
  1763
        179
  > table(bankdata$subscribed[x2])
8
                  failure + other + unknown = 1942
   no
      ves
   26
       32
10
                  P(Y=0)=1763/1942 given in the tree
```

```
P(Y=1)=(1942-1763)/1942
poutcome (X)
x_1: failure, other, unknown | x_2: success
P(X = x_i)| \frac{210+79+1653}{2000} = \frac{1942}{2000} = 0.971 | \frac{58}{2000} = 0.029
P(Y = 1|X = x_i)| \frac{179}{1942} \approx 0.092 | \frac{32}{58} \approx 0.552
P(Y = 0|X = x_i)| \frac{1763}{1942} \approx 0.908 | \frac{26}{58} \approx 0.448
```

• Therefore the conditional entropy for selecting poutcome as decision variable with the split at  $x_1$ :

failure, other, unknown and  $x_2$ : success is

$$D_{subscribed|poutcome}$$

$$= -\sum_{i=1}^{2} \left\{ P(X = x_i) \sum_{j=1}^{2} P(Y = y_j | X = x_i) log_2[P(Y = y_j | X = x_i)] \right\}$$

$$= -\left\{ 0.971 \times \left[ 0.092 log_2(0.092) + 0.908 log_2(0.908) \right] \right.$$

$$+0.029 \times \left[ 0.552 log_2(0.552) + 0.448 log_2(0.448) \right] \right\}$$

$$\approx 0.459$$

- Therefore, there is a reduction of about  $0.4862 0.459 \approx 0.027$  from the base entropy.
- This reduction in entropy is also known as information gain.

- We can calculate the reduction for other feature variables and /or split points and show that they are all less than the entropy reduction of approximately 0.027.
- For example, using the same feature variable poutcome, let us instead calculate the conditional entropy for splitting at the values  $x_1$ : other, success, unknown and  $x_2$ : failure
- We shall show why this split is not the one in the decision tree built earlier, in terms of entropy reduction



```
1 > length(bankdata$poutcome)
2 [1] 2000
3 > table(bankdata$poutcome)
4 
5 failure other success unknown
6 210 79 58 1653
```

•

|              | poutcome(X)                       |                            |  |
|--------------|-----------------------------------|----------------------------|--|
|              | $x_1$ : success, other, unknown   | $x_2$ : failure            |  |
| $P(X = x_i)$ | $\frac{58+79+1653}{2000} = 0.895$ | $\frac{210}{2000} = 0.105$ |  |

```
1 > x1=which(bankdata$poutcome!="failure")
2 > x2=which(bankdata$poutcome=="failure")
3 > table(bankdata$subscribed[x1])
4
5    no    yes
6  1600    190
7 > table(bankdata$subscribed[x2])
8
9    no    yes
10  189  21
```

 Therefore the conditional entropy for selecting poutcome as decision variable with the split at x<sub>1</sub>: success, other, unknown and x<sub>2</sub>: failure is

 $D_{subscribed|poutcome}$ 

$$= -\sum_{i=1}^{2} \left\{ P(X = x_i) \sum_{j=1}^{2} P(Y = y_j | X = x_i) log_2[P(Y = y_j | X = x_i)] \right\}$$

$$= -\left\{ 0.895 \times [0.106 log_2(0.106) + 0.894 log_2(0.894)] + 0.105 \times [0.10 log_2(0.10) + 0.90 log_2(0.90)] \right\}$$

$$\approx 0.486$$

- Therefore, there is a reduction of about  $0.4862 0.486 \approx 0.0002$  from the base entropy.
- This information gain is far less than splitting at x<sub>1</sub>: failure, other, unknown and x<sub>2</sub>: success

- We can calculate the reduction for other feature variables and /or split points and show that they are all less than the entropy reduction of approximately 0.027.
- For example, instead of the feature variable poutcome, let us calculate the conditional entropy for choosing feature variable education at the split points  $x_1$ : tertiary and  $x_2$ : secondary, primary, unknown
- We shall show why education is not the decision variable for the root node.

0

|              | education(X)               |                                     |  |
|--------------|----------------------------|-------------------------------------|--|
|              | $x_1$ : tertiary           | $x_2$ : secondary, primary, unknown |  |
| $P(X = x_i)$ | $\frac{564}{2000} = 0.282$ | $\frac{335+1010+91}{2000} = 0.718$  |  |

```
1 > x1=which(bankdata$education=="tertiary")
2 > x2=which(bankdata$education!="tertiary")
3 > table(bankdata$subscribed[x1])
4
5 no yes
6 494 70
7 > table(bankdata$subscribed[x2])
8
9 no yes
10 1295 141
```

|                | education(X)                    |                                                        |
|----------------|---------------------------------|--------------------------------------------------------|
|                | $x_1$ : tertiary                | $x_2$ : secondary, primary, unknown                    |
| $P(X = x_i)$   | $\frac{564}{2000} = 0.282$      | $\frac{335+1010+91}{2000} = \frac{1436}{2000} = 0.718$ |
| $P(Y=1 X=x_i)$ | $\frac{70}{564} \approx 0.124$  | $\frac{141}{1436} = 0.098$                             |
| $P(Y=0 X=x_i)$ | $\frac{494}{564} \approx 0.876$ | $\frac{1295}{1436} = 0.902$                            |

 Therefore the conditional entropy for selecting education as decision variable with the split at x<sub>1</sub>: tertiary and x<sub>2</sub>: secondary, primary, unknown is

D<sub>subscribed</sub>|<sub>poutcome</sub>

$$= -\sum_{i=1}^{2} \left\{ P(X = x_i) \sum_{j=1}^{2} P(Y = y_j | X = x_i) log_2[P(Y = y_j | X = x_i)] \right\}$$

$$= -\left\{ 0.282 \times [0.124 log_2(0.124) + 0.876 log_2(0.876)] + 0.718 \times [0.098 log_2(0.098) + 0.902 log_2(0.902)] \right\}$$

$$\approx 0.485$$

- Therefore, there is a reduction of about  $0.4862 0.485 \approx 0.0012$  from the base entropy.
- This information gain is far less than selecting poutcome as decision variable splitting at x<sub>1</sub>: failure, other, unknown and x<sub>2</sub>: success

35 / 47

### Decision Tree algorithm: entropy

- Therefore, the decision tree algorithm proceeds at the root node by calculating the conditional entropy for (i) each feature variable X and (ii) its different split points
- Then, the decision variable and its split points are selected based on the largest information gain (or decrease from base entropy)

### Decision Tree algorithm: entropy

- At internal nodes, the decision tree algorithm proceeds similarly by calculating the conditional entropy for (i) each feature variable *X* and (ii) its different split points.
- However, the sample for calculating the base and conditional entropies is restricted to the one at the node.
- The tree is built recursively until a criteria is met, for example
- (i) All the leaf nodes in the tree satisfy the minimum purity threshold.
- (ii) The tree cannot be further split with the preset minimum purity threshold.
- (iii) Any other stopping criterion is satisfied (such as the maximum depth of the tree).

#### **Decision Trees**



- Another commonly used criteria for selecting decision variable and split points is the Gini index
- Given variable Y and and the set of possible categorical values it can take,  $(y_1, y_2, ..., y_K)$ , the Gini index of Y is defined as

$$G_Y = \sum_{j=1}^K P(Y = y_j)[1 - P(Y = y_j)],$$

where  $P(Y = y_j)$  denotes the purity or the probability of the class  $Y = y_j$ , and  $\sum_{j=1}^K P(Y = y_j) = 1$ .



- Wines were grown in the same region in Italy but derived from 3 different cultivars.
- The task is to predict wine origin based on 13 attributes having continuous values

- The 13 features (X) of the dataset are:
- 1 Alcohol
- 2 Malic acid
- 3 Ash
- 4 Alkalinity of ash
- 5 Magnesium
- 6 Total phenols
- 7 Flavanoids
- 8 Nonflavonoids phenols
- 9 Proanthocyanins
- 10 Color intensity
- 11 Hue
- 12 OD280/OD315 of diluted wines
- 13 Proline

- The data set is available from https://archive.ics.uci. edu/ml/machine-learning-databases/wine/wine.data
- The CSV file wine.csv has also been posted to IVLE
- Task is to predict label Y of origin: 1,2 or 3

•

```
wine_df <- read.csv("wine.csv", header = TRUE)</pre>
```

| •  |   |        |          |             |         |        |       |          |
|----|---|--------|----------|-------------|---------|--------|-------|----------|
| 1  | > | head(  | wine_df) | )           |         |        |       |          |
| 2  |   | Wine . | Alcohol  | Malic.acid  | Ash     | Acl    | Mg    | Phenols  |
| 3  | 1 | 1      |          | 1.71        |         |        |       |          |
| 4  | 2 | 1      | 13.20    | 1.78        | 2.14    | 11.2   | 100   | 2.65     |
| 5  | 3 | 1      | 13.16    | 2.36        | 2.67    | 18.6   | 101   | 2.80     |
| 6  | 4 | 1      | 14.37    | 1.95        | 2.50    | 16.8   | 113   | 3.85     |
| 7  | 5 | 1      | 13.24    | 2.59        | 2.87    | 21.0   | 118   | 2.80     |
| 8  | 6 | 1      | 14.20    | 1.76        | 2.45    | 15.2   | 112   | 3.27     |
| 9  |   | Flava  | noids No | onflavanoid | . pheno | ols Pi | coant | h Color. |
|    |   | in     | t Hue    |             |         |        |       |          |
| 10 | 1 |        | 3.06     |             | 0       | . 28   | 2.2   | 9        |
|    |   | 5.64   | 1.04     |             |         |        |       |          |
| 11 | 2 |        | 2.76     |             | 0       | . 26   | 1.2   | 8        |
|    |   | 4.38   | 1.05     |             |         |        |       |          |
| 12 | 3 |        | 3.24     |             | 0       | . 30   | 2.8   | 1        |
|    |   | 5.68   | 1.03     |             |         |        |       |          |
| 13 | 4 |        | 3.49     |             | 0       | . 24   | 2.1   | 8        |
|    |   | 7.80   | 0.86     |             |         |        |       |          |
| 14 | 5 |        | 2.69     |             | 0       | . 39   | 1.8   | 2        |
|    |   | 4.32   | 1.04     |             |         |        |       |          |
| 15 | 6 |        | 3 30     |             | ٥       | 3.4    | 1 0   | 7        |

• We will build a classification tree for wine origin using the entropy criteria, with a maximum depth of 4.

•



• We can build another classification tree for wine origin using the Gini index criteria, with a maximum depth of 4.

•

