서상우

- AAAI 2019
- Self-attention의 변형 모델
- Neural Machine Translation Task
- WMT (Conference on Machine Translation)
 - WMT14 English⇒German
 - WMT17 Chinese⇒English

```
Baosong Yang¹ Jian Li² Derek F. Wong¹ Lidia S. Chao¹ Xing Wang³ Zhaopeng Tu³*

^1NLP²CT Lab, Department of Computer and Information Science, University of Macau

nlp²ct.baosong@gmail.com, {derekfw,lidiasc}@umac.mo

²The Chinese University of Hong Kong

jianli@cse.cuhk.edu.hk {brightxwang,zptu}@tencent.com
```


Seq2Seq

- 가장 기본적인 NMT task 모델
- Encoder Input으로 Source Sentence,
- Decoder Output으로 Target Sentence, Input은 shifted right 한 거

$$\mathbf{h}_{\langle t \rangle} = f\left(\mathbf{h}_{\langle t-1 \rangle}, x_t\right),$$

$$\mathbf{h}_{\langle t \rangle} = f\left(\mathbf{h}_{\langle t-1 \rangle}, y_{t-1}, \mathbf{c}\right),$$

$$P(y_t|y_{t-1},y_{t-2},\ldots,y_1,\mathbf{c})=g\left(\mathbf{h}_{\langle t\rangle},y_{t-1},\mathbf{c}\right).$$

Attention mechanism

decoder

encoder

$$s_i = f(s_{i-1}, y_{i-1}, c_i).$$

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x})=g(y_{i-1},s_i,c_i),$$

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j.$$

최종 Encoder output c 대신 Input 전체를 의미하는 x

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})},$$

$$e_{ij} = a(s_{i-1}, h_j)$$

$$e_{ij} = s_{i-1}h_j^I$$
(dot product attention)

- Attention is All You Need (NIPS 2017)에서 제안
- Transformer 블록
 - Self attention
 - Layer normalization
 - Residual network
- CNN, RNN 없이 NMT task의 SOTA
- Seq2Seq 모델의 단점 해결 병렬처리가 불가능 속도 느림

 - Long Term Dependency를 잡을 수 없음 (CNN도 마찬가지)

Transformer block

Figure 1: The Transformer - model architecture.

Scaled Dot-Product Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

• encoder-decoder attention의 경우,

Q: 디코더의 이전 레이어 hidden state

K : 인코더의 output state

V: 인코더의 output state

• self-attention의 경우, Q=K=V: 인코더의 output state (입력 Sentence)

단어 간의 유사도 matrix가 나온다

embedding size

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Dot product하면 값이 상당히 커진다.

Dot product한 값과 V 값의 스케일을 맞추어 주기 위해 $\sqrt{d_k}$ 를 나누어 준다.

- Multi-Head Attention은 selfattention을 여러 개 사용
- 문장 내의 여러 의미를 파악하기 위해 self-attention을 여러 개를 준다.
- 헤드에는 서로 다른 Linear가 곱해져서 들어가기 때문에 여러 의미를 파악 가능

Figure 1: The Transformer - model architecture.

Self attention review

$$\begin{bmatrix} \mathbf{Q} \\ \mathbf{K} \\ \mathbf{V} \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mathbf{W}_Q \\ \mathbf{W}_K \\ \mathbf{W}_V \end{bmatrix},$$

$$\mathbf{O} = \operatorname{ATT}(\mathbf{Q}, \mathbf{K}) \mathbf{V},$$

$$ATT(\mathbf{Q}, \mathbf{K}) = softmax(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}}),$$

$$\mathbf{Q}\mathbf{K}^T = (\mathbf{H}\mathbf{W}_Q)(\mathbf{H}\mathbf{W}_K)^T = \mathbf{H}(\mathbf{W}_Q\mathbf{W}_K^T)\mathbf{H}^T,$$

해당 식에는 두 단어 간의 유사도만 구할 뿐 Context를 반영하지 않는다 => Self attention의 문제점

기존의 Q,K 에 C라는 context vectore 더한다!

C와 Q,K 간의 크기를 맞추기 위해 weight matrix U_Q , U_K 를 곱한다!

 λ_Q, λ_K 는 Q,K와 C 중 어떠한 것을 더 사용할 지를 결정하는 gating parameter

 λ_Q, λ_K 또한 trainable하게 주어지는 파라미터로 뉴럴 네트워크가 contex와 원래의 <u>값 중에서 어디를 더 치중할</u> 지를 결정

$$\begin{bmatrix} \widehat{\mathbf{Q}} \\ \widehat{\mathbf{K}} \end{bmatrix} = (1 - \begin{bmatrix} \lambda_Q \\ \lambda_K \end{bmatrix}) \begin{bmatrix} \mathbf{Q} \\ \mathbf{K} \end{bmatrix} + \begin{bmatrix} \lambda_Q \\ \lambda_K \end{bmatrix} (\mathbf{C} \begin{bmatrix} \mathbf{U}_Q \\ \mathbf{U}_K \end{bmatrix})$$

$$\begin{bmatrix} \lambda_Q \\ \lambda_K \end{bmatrix} = \sigma(\begin{bmatrix} \mathbf{Q} \\ \mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{V}_Q^H \\ \mathbf{V}_K^H \end{bmatrix} + \mathbf{C} \begin{bmatrix} \mathbf{U}_Q \\ \mathbf{U}_K \end{bmatrix} \begin{bmatrix} \mathbf{V}_Q^C \\ \mathbf{V}_K^C \end{bmatrix}),$$

What is context?

- Global context
 - Hidden의 평균

$$\mathbf{c}=\overline{H}$$

- Deep context
 - 모든 이전의 hidden

$$\mathbf{C} = [\mathbf{H}^1, \dots, \mathbf{H}^{l-1}]$$

- Deep-Global context
 - 모든 이전의 context

$$\mathbf{c} = [\mathbf{c}^1, \dots, \mathbf{c}^l]$$

Experiments WMT14 (En⇒De)

#	Model	Applied to	Context Vectors	# Para.	Train	Decode	BLEU
1	BASE	n/a	n/a	88.0M	1.28	1.52	27.31
2	Ours	encoder	global context	91.0M	1.26	1.50	27.96
3			deep-global context	99.0M	1.25	1.48	28.15
4			deep context	95.9M	1.18	1.38	28.01
5			deep-global context + deep context	106.9M	1.16	1.36	28.26
6		decoder	deep-global context	99.0M	1.23	1.44	27.94
7			deep-global context + deep context	106.9M	1.15	1.35	28.02
8		both	5 + 7	125.8M	1.04	1.20	28.16

Experiments WMT17 (Zh⇒En)

System	Architecture	Zh ⇒En		En⇒De							
	Arcintecture	# Para.	Train	BLEU	# Para.	Train	BLEU				
Existing NMT systems											
(Vaswani et al. 2017)	Transformer-Base	n/a	n/a	n/a	65M	n/a	27.30				
(vaswaiii et al. 2017)	Transformer-Big	n/a	n/a	n/a	213M	n/a	28.40				
(Hassan et al. 2018)	TRANSFORMER-BIG	n/a	n/a_		n/a	n/a	n/a				
Our NMT systems											
	TRANSFORMER-BASE	107.9M	1.21	24.13	88.0M	1.28	27.31				
this work	+ Context-Aware SANs	126.8M	1.10	24.67^{\uparrow}	106.9M	1.16	28.26^{\uparrow}				
inis work	TRANSFORMER-BIG	303.9M	0.58	24.56	264.1M	0.61	28.58				
	+ Context-Aware SANs	379.4M	0.41	25.15 [↑]	339.6M	0.44	28.89				

Avg weight Experiments

