Math 3100 Lab 5

Zachary A. Hampton Fall 2024

Contents

1	Prol	Problem 1	
	1.1	Introductory Material	
	1.2	Final Draft	

1 Problem 1

1.1 Introductory Material

Definition (Even). An integer a is an **even integer** provided that there exists an integer n such that a = 2n. [1, pg 16]

Definition (Odd). An integer a is an **odd integer** provided there exists an integer n such that a = 2n + 1. [1, pg 16]

1.2 Final Draft

Theorem. Let x and y be integers. If x is even and y is odd, then xy is even.

Proof. First, we assume x is an even integer and y is an odd integer, and we will prove that the product xy is an even integer. By the definition of even, there exists an integer k such that x = 2k. And, by the definition of odd, there exists an integer k such that

y = 2j + 1. Then, substituting for x and y we get,

$$xy = (2k)(2j + 1)$$

$$= 2k(2j + 1)$$

$$= 2(k(2j + 1))$$

$$= 2q.$$

Since integers are closed under multiplication and addition, k(2j+1) is an integer. Since xy=2q for some integer q, then xy is an even integer. Therefore, we have proven that assuming x is even and y is odd, then the product xy is even.

References

- [1] Sundstrom, T., *Mathematical Reasoning: Writing and Proof*, Version 3, Creative Commons, 2020.
- [2] The work on this problem is the result of a class collaboration in which I was an active participant.