	Robust Linear Model	Robust Linear Model	Quantile Regression
	the focal model	excluding outliers	q = 50%
Intercept	2.19 (<i>p</i> < .001)	2.38 (p < .001)	2.35 (<i>p</i> < .001)
Gini index	$-2.93 \ (p < .001)$	$-3.04 \ (p < .001)$	$-2.95 \ (p < .001)$
Median Household Income	$.0098 \ (p = .007)$	$.0086 \ (p = .015)$	$.0078 \ (p = .008)$
Poverty Rate	$.69 \ (p = .298)$	$.52 \ (p = .424)$	$.57 \ (p = .275)$
Prosper Score	$044 \ (p = .016)$	$043 \ (p = .016)$	044 (p = .023)
Estimated Return	$-8.52 \ (p < .001)$	$-8.51 \ (p < .001)$	-7.64 (p < .001)
Logarithmic Loan Duration	$097 \ (p < .001)$	095 (p < .001)	084 (p < .001)
Gini Index * Prosper Score	$.047 \ (p = .224)$	$.045 \ (p = .235)$	$.053 \ (p = .203)$
Gini Index * Estimated Return	$22.92 \ (p < .001)$	$22.50 \ (p < .001)$	$19.83 \ (p < .001)$
	fixed time e	<u> </u>	15100 (F 1001)
month: January 2010*	./	,	
onth: February 2010	$0004 \ (p = .988)$	$015 \ (p = .9560)$	$0004 \ (p = .988)$
month: March 2010	$.012 \ (p = .605)$	$0035 \ (p = .884)$	$.012 \ (p = .605)$
month: April 2010	$.012 \ (p = .608)$	$0089 \ (p = .704)$	$.012 \ (p = .608)$
month: May 2010	$.026 \ (p = .271)$	$.0052 \ (p = .832)$	$.026 \ (p = .271)$
month: June 2010	$.073 \ (p = .001)$	$.049 \ (p = .040)$	$.073 \ (p = .001)$
month: July 2010	$.033 \ (p = .156)$	$.0031 \ (p = .899)$.033 (p = .156)
month: August 2010	$.0011 \ (p = .964)$	$017 \ (p = .497)$	$.0011 \ (p = .964)$
month: September 2010	$.029 \ (p = .234)$	$.0089 \ (p = .723)$	$.029 \ (p = .234)$
month: October 2010	$.057 \ (p = .013)$	$.029 \ (p = .224)$	$.057 \ (p = .013)$
month: November 2010	$.074 \ (p = .001)$	$.047 \ (p = .046)$	$.074 \ (p = .001)$
month: December 2010	.21 $(p < .001)$.17 (p < .001)	.21 (p < .001)
month: January, 2011	$.26 \ (p < .001)$.21 ($p < .001$)	.26 (p < .001)
month: February, 2011	$.28 \ (p < .001)$	$.23 \ (p < .001)$.28 (p < .001)
month: March 2011	.32 (p < .001)	$.28 \ (p < .001)$.32 (p < .001)
month: April 2011	.34 (p < .001)	.29 (<i>p</i> < .001)	.34 (p < .001)
month: May 2011	$.48 \ (p < .001)$.33 (p < .001)	$.48 \ (p < .001)$
month: June 2011	$.34 \ (p < .001)$	$.29 \ (p < .001)$	$.34 \ (p < .001)$
month: July 2011	$.48 \ (p < .001)$	$.43 \ (p < .001)$	$.48 \ (p < .001)$
month: August 2011	$.48 \ (p < .001)$	$.43 \ (p < .001)$	$.48 \ (p < .001)$
month: September 2011	$.49 \ (p < .001)$.44 (p < .001)	$.49 \ (p < .001)$
month: October 2011	$.48 \ (p < .001)$	$.43 \ (p < .001)$	$.48 \ (p < .001)$
month: November 2011	$.47 \ (p < .001)$	$.41 \ (p < .001)$	$.47 \ (p < .001)$
month: December 2011	$.57 \ (p < .001)$	$.50 \ (p < .001)$.57 (p < .001)
month: January, 2012	$.49 \ (p < .001)$	$.43 \ (p < .001)$	$.49 \ (p < .001)$
month: February, 2012 month: March 2012	.52 (p < .001) .46 (p < .001)	.45 (<i>p</i> < .001) .41 (<i>p</i> < .001)	.52 (<i>p</i> < .001) .46 (<i>p</i> < .001)
month: April 2012	$.48 \ (p < .001)$	$.41 \ (p < .001)$ $.43 \ (p < .001)$.48 (p < .001)
month: May 2012	$.49 \ (p < .001)$	$.43 \ (p < .001)$ $.44 \ (p < .001)$	$.49 \ (p < .001)$
month: June 2012	$.49 \ (p < .001)$ $.49 \ (p < .001)$	$.44 \ (p < .001)$ $.44 \ (p < .001)$	$.49 \ (p < .001)$
month: July 2012	$.47 \ (p < .001)$ $.47 \ (p < .001)$	$.44 \ (p < .001)$ $.42 \ (p < .001)$	$.47 \ (p < .001)$
month: August 2012	$.47 \ (p < .001)$ $.49 \ (p < .001)$	$.42 \ (p < .001)$ $.45 \ (p < .001)$	$.47 \ (p < .001)$ $.49 \ (p < .001)$
month: September 2012	$.55 \ (p < .001)$	$.49 \ (p < .001)$	$.55 \ (p < .001)$
month: October 2012	$.39 \ (p < .001)$	$.34 \ (p < .001)$	$.39 \ (p < .001)$
month: November 2012	$.37 \ (p < .001)$ $.31 \ (p < .001)$	$.26 \ (p < .001)$	$.31 \ (p < .001)$
month: December 2012	$.27 \ (p < .001)$	$.20 \ (p < .001)$ $.23 \ (p < .001)$	$.27 \ (p < .001)$
month: January, 2013	$.27 \ (p < .001)$ $.20 \ (p < .001)$	$.23 \ (p < .001)$ $.16 \ (p < .001)$	$.27 \ (p < .001)$
month: February, 2013	$.20 \ (p < .001)$ $.31 \ (p < .001)$	$.26 \ (p < .001)$	$.20 \ (p < .001)$
month: March 2013	$.31 \ (p < .001)$ $.39 \ (p < .001)$	$.20 \ (p < .001)$ $.31 \ (p < .001)$	$.31 \ (p < .001)$
month: April 2013	$.35 \ (p < .001)$ $.35 \ (p < .001)$	$.29 \ (p < .001)$	$.35 \ (p < .001)$
month: May 2013	$.39 \ (p < .001)$	$.29 \ (p < .001)$ $.34 \ (p < .001)$	$.39 \ (p < .001)$
	$.38 \ (p < .001)$	$.34 \ (p < .001)$ $.33 \ (p < .001)$	$.39 \ (p < .001)$
month: lune 2013			
month: June 2013 month: July 2013	$.56 \ (p < .001)$ $.51 \ (p < .001)$	$.46 \ (p < .001)$	$.50 \ \varphi < .001$

1 0 . 1 . 2042	55 (: 4 004)	50 (: 1 004)	57 (004)
month: September 2013	$.57 \ (p < .001)$	$.52 \ (p < .001)$.57 (p < .001)
month: October 2013	$.57 \ (p < .001)$	$.52 \ (p < .001)$	$.57 \ (p < .001)$
month: November 2013	$.70 \ (p < .001)$	$.63 \ (p < .001)$	$.70 \ (p < .001)$
month: December 2013	.75 (p < .001)	.67 (p < .001)	.75 (p < .001)
month: January, 2014	$.78 \ (p < .001)$	$.64 \ (p < .001)$	$.78 \ (p < .001)$
month: February, 2014	$.48 \ (p < .001)$.42 (p < .001)	$.48 \ (p < .001)$
month: March, 2014	.43 (p < .001) fixed state effects	.38 (p < .001)	.43 (p < .001)
state: AK-Alaska*	jixea siaie ejjeiis		
state: AL-Alabama	$.20 \ (p = .045)$	$.20 \ (p = .037)$	$.20 \ (p = .045)$
state: AR-Arkansas	$.25 \ (p = .020)$	$.25 \ (p = .017)$	$.25 \ (p = .020)$
state: AZ-Arizona	$.15 \ (p = .062)$	$.16 \ (p = .048)$	$.15 \ (p = .062)$
state: CA-California	$.058 \ (p = .355)$	$.080 \ (p = .191)$	$.058 \ (p = .355)$
state: CO-Colorado	$.13 \ (p = .021)$	$.13 \ (p = .015)$	$.13 \ (p = .021)$
state: CT-Connecticut	$.068 \ (p = .261)$	$.093 \ (p = .119)$	$.068 \ (p = .261)$
state: DC-D. C. Washington	$.043 \ (p = .622)$	$.073 \ (p = .397)$	$.043 \ (p = .622)$
state: DE-Delaware	$.048 \ (p = .379)$.052 (p = .346)	$.048 \ (p = .379)$
state: FL-Florida	$.15 \ (p = .103)$	$.16 \ (p = .080)$	$.15 \ (p = .103)$
state: GA-Georgia	$.12 \ (p = .154)$	$.14 \ (p = .111)$.12 (p = .154)
state: HI-Hawaii	$0016 \ (p = .970)$	$.015 \ (p = .718)$	$0016 \ (p = .970)$
state: ID-Idaho	$.22 \ (p = .014)$	$.21 \ (p = .016)$	$.22 \ (p = .014)$
state: IL-Illinois	$.13 \ (p = .040)$	$.14 \ (p = .023)$	$.13 \ (p = .040)$
state: IN-Indiana	$.16\ (p = .049)$	$.16 \ (p = .041)$.16 (p = .049)
state: KS-Kansas	$.17 \ (p = .019)$.17 (p = .016)	.17 (p = .019)
state: KY-Kentucky	$.22 \ (p = .026)$.22 (p = .023)	.22 (p = .026)
state: LA-Louisiana	$.17 \stackrel{\checkmark}{(p} = .094)$	$.17\ (p = .074)$.17 (p = .094)
state: MA-Massachusetts	$.065 \ (p = .227)$	$.081 \ (p = .123)$	$.065 \stackrel{\checkmark}{(p} = .227)$
state: MD-Maryland	$.0090\ (p = .827)$.025 (p = .537)	$.0090\ (p = .827)$
state: MI-Michigan	$.17\ (p = .034)$	$.18 \ (p = .028)$	$.17 \stackrel{\checkmark}{(p} = .034)$
state: MN-Minnesota	$.10\ (p = .039)$	$.11 \ (p = .023)$	$.10\ (p = .039)$
state: MO-Missouri	$.19\ (p = .024)$	$.19 \ (p = .021)$	$.19\ (p = .024)$
state: MS-Mississippi	$.23\ (p = .058)$	$.23\ (p = .051)$	$.23\ (p = .058)$
state: MT-Montana	.22 (p = .015)	$.21\ (p = .018)$.22(p = .015)
state: NC-North Carolina	$.15 \ (p = .086)$	$.16 \ (p = .073)$	$.15 \ (p = .086)$
state: NE-Nebraska	$.14 \ (p = .050)$.14 (p = .046)	$.14 \ (p = .050)$
state: NH-New Hampshire	$.074 \ (p = .112)$	$.070 \ (p = .127)$	$.074 \ (p = .112)$
state: NJ-New Jersey	.035 (p = .480)	.055 (p = .258)	.035 (p = .480)
state: NM-New Mexico	$.19 \ (p = .064)$	$.20 \ (p = .045)$	$.19 \ (p = .064)$
state: NV-Nevada	$.13 \ (p = .075)$	$.14 \ (p = .051)$	$.13 \ (p = .075)$
state: NY-New York	$.13 \ (p = .069)$	$.15 \ (p = .031)$	$.13 \ (p = .069)$
state: OH-Ohio	$.19 \ (p = .023)$	$.19 \ (p = .019)$	$.19 \ (p = .023)$
state: OK-Oklahoma	$.18 \ (p = .051)$	$.18 \ (p = .043)$	$.18 \ (p = .051)$
state: OR-Oregon	.13 ($p = .088$)	$.14 \ (p = .068)$	$.13 \ (p = .088)$
state: PA-Pennsylvania	$.16 \ (p = .028)$	$.16 \ (p = .021)$	$.16 \ (p = .028)$
state: RI-Rhode Island	$.12 \ (p = .080)$	$.12 \ (p = .065)$.12 (p = .080)
state: SC-South Carolina	$.16 \ (p = .102)$	$.16 \ (p = .090)$	$.16 \ (p = .102)$
state: SD-South Dakota	$.17 \ (p = .041)$	$.16 \ (p = .040)$	$.17 \ (p = .041)$
state: TN-Tennessee	$.21 \ (p = .029)$	$.21 \ (p = .024)$	$.21 \ (p = .029)$
state: TX-Texas	.14 (p = .058)	.15 (p = .040)	.14 $(p = .058)$
state: UT-Utah	.062 (p = .234)	.068 (p = .193)	.062 (p = .234)
state: VA-Virginia	$.097 \ (p = .049)$	$.11 \ (p = .022)$.097 (p = .049)
state: VT-Vermont	$.20 \ (p = .008)$.19 (p = .010)	$.20 \ (p = .008)$
state: WA-Washington	$.057 \ (p = .281)$.069 (p = .182)	.057 (p = .281)
state: WI-Wisconsin	$.15 \ (p = .028)$	$.15 \ (p = .028)$.15 (p = .028)
state: WV-West Virginia	$.18 \ (p = .089)$	$.18 \ (p = .081)$	$.18 \ (p = .089)$
state: WY-Wyoming	$.041 \ (p = .531)$	$.052 \ (p = .420)$	$.0041 \ (p = .531)$