Øvingsforelesning 9

TDT4120 - Algoritmer og datastrukturer

Øving 8

Oppgave 2: Hvilken graf representerer følgende naboliste?

- $1 o \langle 3, 4 \rangle$
- $2 \rightarrow \langle 6 \rangle$
- $3 \rightarrow \langle 1, 4 \rangle$
- $4 \rightarrow \langle 1, 5 \rangle$
- $5 \to \langle 2, 3, 6 \rangle$
- $6 \to \langle 3, 5 \rangle$

Oppgave 2: Hvilken graf representerer følgende naboliste?

$$1 \rightarrow \langle 3, 4 \rangle$$

$$2 \rightarrow \langle 6 \rangle$$

$$3 \rightarrow \langle 1, 4 \rangle$$

$$4 \rightarrow \langle 1, 5 \rangle$$

$$5 \rightarrow \langle 2, 3, 6 \rangle$$

$$6 \to \langle 3, 5 \rangle$$

 $\widehat{1}$

(2)

6

3

(3)

(5)

(4)

Oppgave 2: Hvilken graf representerer følgende naboliste?

$$1 o \langle 3, 4 \rangle$$

$$2 \rightarrow \langle 6 \rangle$$

$$3 \rightarrow \langle 1, 4 \rangle$$

$$4 \to \langle 1, 5 \rangle$$

$$5 \rightarrow \langle 2, 3, 6 \rangle$$

$$6 \to \langle 3, 5 \rangle$$

Oppgave 2: Hvilken graf representerer følgende naboliste?

5

$$1 \rightarrow \langle 3, 4 \rangle$$

$$2 \rightarrow \langle 6 \rangle$$

$$3 \rightarrow \langle 1, 4 \rangle$$

$$4 \to \langle 1, 5 \rangle$$

$$5 \rightarrow \langle 2, 3, 6 \rangle$$

$$6 \to \langle 3, 5 \rangle$$

Oppgave 2: Hvilken graf representerer følgende naboliste?

6

$$1 o \langle 3, 4 \rangle$$

$$2 \rightarrow \langle 6 \rangle$$

$$3 \rightarrow \langle 1, 4 \rangle$$

$$4 \to \langle 1, 5 \rangle$$

$$5 \rightarrow \langle 2, 3, 6 \rangle$$

$$6 \to \langle 3, 5 \rangle$$

Oppgave 2: Hvilken graf representerer følgende naboliste?

$$1 \rightarrow \langle 3, 4 \rangle$$

$$2 \rightarrow \langle 6 \rangle$$

$$3 \rightarrow \langle 1, 4 \rangle$$

$$4 \to \langle 1, 5 \rangle$$

$$5 \rightarrow \langle 2, 3, 6 \rangle$$

$$6 \to \langle 3, 5 \rangle$$

Oppgave 3: Hva er nabomatrisen til følgende graf?

8

Oppgave 3: Hva er nabomatrisen til følgende graf?

9

	1	2	3	4	5	6
1	Γ0	0	0	0	0	0 0 0 0 0 0 0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Oppgave 3: Hva er nabomatrisen til følgende graf?

	1	2	3	4	5	6
1	Γ0	0	1	0	0	1 0 0 0 0 0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

Oppgave 3: Hva er nabomatrisen til følgende graf?

	1	2	3	4	5	6
1	Γ0	0	1	0	0	1 0 0 0 0 0
2	0	0	1	1	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0]

Oppgave 3: Hva er nabomatrisen til følgende graf?

	1		3			6
1	Γ0	0	1	0	0	1 7
2	0	0	1	1	0	0
3	1	1	0	1	1	0
4	0	1	1	0	1	1 0
5	0		1		0	0
6	L 1	0	0	1	0	0

Topologisk sortering

Oppgave 4: Hvilke alternativer er gyldige topologiske sorteringer av grafen?

⟨3,	4,	5,	6,	1,	2>
$\langle 4,$	5,	6,	1,	3,	$2\rangle$
$\langle 4,$	5,	1,	6,	3,	$2\rangle$
$\langle 3,$	4,	5,	1,	2,	6>
$\langle 4,$	3,	5,	1,	6,	$2\rangle$
$\langle 4,$	5,	6,	3,	2,	$1\rangle$
$\langle 3,$	1,	2,	4,	5,	$6\rangle$

Topologisk sortering

Oppgave 4: Hvilke alternativer er gyldige topologiske sorteringer av grafen?

14

 $\langle 3, 4, 5, 6, 1, 2 \rangle$ $\langle 4, 5, 6, 1, 3, 2 \rangle$ $\langle 4, 5, 1, 6, 3, 2 \rangle$ $\langle 3, 4, 5, 1, 2, 6 \rangle$ $\langle 4, 3, 5, 1, 6, 2 \rangle$ $\langle 4, 5, 6, 3, 2, 1 \rangle$ $\langle 3, 1, 2, 4, 5, 6 \rangle$

Bredde-først-søk

Oppgave 5: I hvilke rekkefølger kan nodene i denne grafen besøkes hvis man kjører BFS fra node 1 og nabolistene har tilfeldig rekkefølge?

15

 $\langle 1, 2, 5, 3, 4, 6 \rangle$ $\langle 1, 2, 5, 3, 6, 4 \rangle$ $\langle 1, 2, 3, 4, 5, 6 \rangle$ $\langle 1, 5, 2, 3, 6, 4 \rangle$ $\langle 1, 3, 2, 5, 6, 4 \rangle$ $\langle 1, 3, 5, 2, 4, 6 \rangle$ $\langle 1, 5, 3, 2, 4, 6 \rangle$

Bredde-først-søk

Oppgave 5: I hvilke rekkefølger kan nodene i denne grafen besøkes hvis man kjører BFS fra node 1 og nabolistene har tilfeldig rekkefølge?

16

 $\langle 1, 2, 5, 3, 4, 6 \rangle$ $\langle 1, 2, 5, 3, 6, 4 \rangle$ $\langle 1, 2, 3, 4, 5, 6 \rangle$ $\langle 1, 5, 2, 3, 6, 4 \rangle$ $\langle 1, 3, 2, 5, 6, 4 \rangle$ $\langle 1, 3, 5, 2, 4, 6 \rangle$ $\langle 1, 5, 3, 2, 4, 6 \rangle$

Kompatible donorer - Programmering

Oppgave 6: Gitt et sett med donorer og mottakere skal vi lage nabolister. Et donor-mottaker-par har en kant mellom seg hvis de har minst k like attributter på samme plass.

17

Kompatible donorer - Programmering

Oppgave 6: Gitt et sett med donorer og mottakere skal vi lage nabolister. Et donor-mottaker-par har en kant mellom seg hvis de har minst k like attributter på samme plass.

```
COMPATIBILITY-GRAPH(donors, recipients, k)
    let donor-edges be an array of donors.length empty arrays
 2 for i = 1 to donors.length
 3
         for j = 1 to recipients.length
              attrs = 0
 5
              \ell = 1
 6
              while \ell \leq donors[i].length and k < attrs
                   if donors[i][\ell] == recipients[i][\ell]
 8
                         attrs = attrs + 1
 9
                   \ell = \ell + 1
              if k == attrs
10
11
                   add i to donor-edges[i]
    return donor-edges
```

Prioritetskøer i BFS og DFS

Oppgave 7: Hvilke typer prioritetskøer bruker vi i BFS og DFS til å holde styr på rekkefølgen vi skal besøke noder vi har sett men ennå ikke besøkt?

Prioritetskøer i BFS og DFS

Oppgave 7: Hvilke typer prioritetskøer bruker vi i BFS og DFS til å holde styr på rekkefølgen vi skal besøke noder vi har sett men ennå ikke besøkt?

Oppgave 8: Hva skjer hvis vi benytter en stakk som prioritetskø i BFS?

Pakkesystem - Programmering

Oppgave 9: Skriv kode som installerer en pakke. For å installere pakken må alle avhengigheter være installert først.

Pakkesystem - Programmering

Oppgave 9: Skriv kode som installerer en pakke. For å installere pakken må alle avhengigheter være installert først.

```
RESOLVE-AND-INSTALL(package)

1 for p ∈ package.dependencies

2 if not p.is-installed

3 RESOLVE-AND-INSTALL(p)

4 INSTALL(package)
```

Oppgave 10: Hva er minnekompleksiteten til en graf representert med henholdsvis nabolister og nabomatrise?

Oppgave 11: Hva er tidskompleksiteten for å sjekke om en kant (u, v) eksisterer i en graf med disse representasjonene?

Oppgave 10: Hva er minnekompleksiteten til en graf representert med henholdsvis nabolister og nabomatrise?

Oppgave 11: Hva er tidskompleksiteten for å sjekke om en kant (u, v) eksisterer i en graf med disse representasjonene?

Nabolister: En liste for hver node med naboene til noden (kanter).

Nabomatrise: En $n \times n$ matrise med en verdi per nodepar.

Oppgave 10: Hva er minnekompleksiteten til en graf representert med henholdsvis nabolister og nabomatrise?

Oppgave 11: Hva er tidskompleksiteten for å sjekke om en kant (u, v) eksisterer i en graf med disse representasjonene?

Nabolister: En liste for hver node med naboene til noden (kanter).

Nabomatrise: En $n \times n$ matrise med en verdi per nodepar.

Nabolister: $\Theta(V + E)$ minne Nabomatrise: $\Theta(V^2)$ minne

Oppgave 10: Hva er minnekompleksiteten til en graf representert med henholdsvis nabolister og nabomatrise?

Oppgave 11: Hva er tidskompleksiteten for å sjekke om en kant (u, v) eksisterer i en graf med disse representasjonene?

Nabolister: En liste for hver node med naboene til noden (kanter).

Nabomatrise: En $n \times n$ matrise med en verdi per nodepar.

Nabolister: $\Theta(V + E)$ minne - O(E) tid Nabomatrise: $\Theta(V^2)$ minne $- \Theta(1)$ tid

3×3 -spill

Oppgave 12: Du har et 3×3 -spill hvor en brikke mangler. Du kan skyve andre brikker inn i den tomme plassen og ønsker å gjøre minst mulig slike flyttinger for å få plassert alle brikkene på riktig plass. Hvilken algoritme ville du brukt for å finne ut av dette?

2	3	6
5	8	
1	4	7

1	2	3
4	5	6
7	8	

3×3 -spill

Oppgave 12: Du har et 3×3 -spill hvor en brikke mangler. Du kan skyve andre brikker inn i den tomme plassen og ønsker å gjøre minst mulig slike flyttinger for å få plassert alle brikkene på riktig plass. Hvilken algoritme ville du brukt for å finne ut av dette?

2	3	6
5	8	
1	4	7

1	2	3
4	5	6
7	8	

Mulig algoritme:

- Representer som en graf ved å la nodene være alle mulig tilstander og kantene være tilstander man kan gå mellom ved å skyve en brikke.
- Bruk BFS fra starttilstanden til å finne stien med lavest antall kanter til sluttilstanden.

Emnerekkefølge

Oppgave 13: Ønsker å ta et sett med emner i riktig rekkefølge, slik at du oppfyller forkunnskapskravene i hvert emne før du tar det. Hvilken algoritme ville du brukt for å finne en slik rekkefølge?

29

Emnerekkefølge

Oppgave 13: Ønsker å ta et sett med emner i riktig rekkefølge, slik at du oppfyller forkunnskapskravene i hvert emne før du tar det. Hvilken algoritme ville du brukt for å finne en slik rekkefølge?

Mulig algoritme:

1. Lag en graf bestående av emnene med kanter fra et emne til et annet hvis det er et forkunnskapskrav.

30

2. Bruk TOPOLOGICAL-SORT.

Internasjonalt konglomerat

Oppgave 14: Du har et tre bestående av alle de ansatte i et konglomerat. Du ønsker å lage en datastruktur hvor man i konstant tid kan sjekke om en ansatt er underordnet en annen ansatt. Datastrukturen kan bruke O(n) minne. Hvilken algoritme ville du brukt for å finne ut av dette?

31

Internasjonalt konglomerat

Oppgave 14: Du har et tre bestående av alle de ansatte i et konglomerat. Du ønsker å lage en datastruktur hvor man i konstant tid kan sjekke om en ansatt er underordnet en annen ansatt. Datastrukturen kan bruke O(n) minne. Hvilken algoritme ville du brukt for å finne ut av dette?

Kan bruke DFS.

Underordnet u og overordnet v tilsier at v.d < u.d og v.f > u.f.

32

Oppgave 15: Hva er sant om BFS?

- Kan brukes til å finne korteste vei fra en node til en annen dersom alle kantvektene er like og ikke-negative.
- Man er garantert at alle nodene blir besøkt i traverseringen
- Fungerer ikke om grafen har sykler.

Oppgave 15: Hva er sant om BFS?

- Kan brukes til å finne korteste vei fra en node til en annen dersom alle kantvektene er like og ikke-negative.
- Man er garantert at alle nodene blir besøkt i traverseringen
- Fungerer ikke om grafen har sykler.

Oppgave 15: Hva er sant om BFS?

- Kan brukes til å finne korteste vei fra en node til en annen dersom alle kantvektene er like og ikke-negative.
- Man er garantert at alle nodene blir besøkt i traverseringen
- Fungerer ikke om grafen har sykler.

Oppgave 15: Hva er sant om BFS?

Oppgave 16: Hva er sant om DFS?

- Man er garantert at alle nodene blir besøkt i traversingen.
- Kan brukes til kantklassifisering.
- Kan brukes til å finne kortest vei fra en node til en annen dersom alle kantvektene er like og ikke-negative.
- Fungerer ikke om grafen har sykler.

BFS og DFS

Oppgave 15: Hva er sant om BFS?

Oppgave 16: Hva er sant om DFS?

- Man er garantert at alle nodene blir besøkt i traversingen.
- Kan brukes til kantklassifisering.
- Kan brukes til å finne kortest vei fra en node til en annen dersom alle kantvektene er like og ikke-negative.
- Fungerer ikke om grafen har sykler.

BFS og DFS

Oppgave 15: Hva er sant om BFS?

Oppgave 16: Hva er sant om DFS?

- Man er garantert at alle nodene blir besøkt i traversingen.
- Kan brukes til kantklassifisering.
- Kan brukes til å finne kortest vei fra en node til en annen dersom alle kantvektene er like og ikke-negative.
- Fungerer ikke om grafen har sykler.

Oppgave 17: Hvilke typer kanter kan du ende opp med ved kantklassifisering av et tre?

Oppgave 18: Hvilke typer kanter kan du ende opp med ved kantklassifisering av en asyklisk graf?

Oppgave 17: Hvilke typer kanter kan du ende opp med ved kantklassifisering av et tre?

Oppgave 18: Hvilke typer kanter kan du ende opp med ved kantklassifisering av en asyklisk graf?

Tre-kant: Kant som ble brukt første gangen en node ble oppdaget.

Bakoverkant: Kant som går til en forgjenger.

Foroverkant: Ikke-tre-kant som går til en etterkommer.

Krysskant: Alle andre kanter.

Oppgave 17: Hvilke typer kanter kan du ende opp med ved kantklassifisering av et tre?

Oppgave 18: Hvilke typer kanter kan du ende opp med ved kantklassifisering av en asyklisk graf?

Tre-kant: Kant som ble brukt første gangen en node ble oppdaget.

41

Bakoverkant: Kant som går til en forgjenger.

Foroverkant: Ikke-tre-kant som går til en etterkommer.

Krysskant: Alle andre kanter.

Tre: kun tre-kanter.

Oppgave 17: Hvilke typer kanter kan du ende opp med ved kantklassifisering av et tre?

Oppgave 18: Hvilke typer kanter kan du ende opp med ved kantklassifisering av en asyklisk graf?

Tre-kant: Kant som ble brukt første gangen en node ble oppdaget.

Bakoverkant: Kant som går til en forgjenger.

Foroverkant: Ikke-tre-kant som går til en etterkommer.

Krysskant: Alle andre kanter.

Tre: kun tre-kanter.

DAG: tre-kanter, foroverkanter og krysskanter.

Veibygging - Programmering

Oppgave 19: Gitt et rutenett over hvor det er mulig å bygge vei ønsker vi å finne korteste mulige vei som kan bygges mellom to steder i rutenettet, hvis mulig. Skriv kode som gjøre dette.

43

Veibygging - Programmering

Oppgave 19: Gitt et rutenett over hvor det er mulig å bygge vei ønsker vi å finne korteste mulige vei som kan bygges mellom to steder i rutenettet, hvis mulig. Skriv kode som gjøre dette.

Mulig algoritme:

- 1. Lag en graf hvor alle nodene er ruter det er mulig å bygge i, og kantene er ruter som ligger inntil hverandre.
- 2. Bruk et bredde-først-søk fra start til slutt.

Topologisk sortering med tabell

Oppgave 20: Vil kjøretiden endre seg hvis vi bruker en dynamisk tabell i stedet for en lenket liste i TOPOLOGICAL-SORT? Kan vi i så fall unngå endringen i tidskompleksitet?

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to computer finishing times v.f for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list

45

3 **return** the linked list of vertices

Topologisk sortering med tabell

Oppgave 20: Vil kjøretiden endre seg hvis vi bruker en dynamisk tabell i stedet for en lenket liste i TOPOLOGICAL-SORT? Kan vi i så fall unngå endringen i tidskompleksitet?

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to computer finishing times v.f for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list

46

3 return the linked list of vertices

Innsettelse på starten av en dynamisk tabell tar $\Theta(n)$ tid.

Topologisk sortering med tabell

Oppgave 20: Vil kjøretiden endre seg hvis vi bruker en dynamisk tabell i stedet for en lenket liste i TOPOLOGICAL-SORT? Kan vi i så fall unngå endringen i tidskompleksitet?

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to computer finishing times v.f for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list

47

3 return the linked list of vertices

Innsettelse på starten av en dynamisk tabell tar $\Theta(n)$ tid. Kjøretid på $\Theta(V^2+E)$

Traversering - minprioritetskø

Oppgave 21: Vil u.d være den korteste avstanden fra s til u etter å ha kjørt Traverse(s)? Hva må vi eventuelt anta for at dette skal stemme?

```
Traverse(G, s)
 1 let Q be an empty min-priority queue of vertices with u.d as priority
 2 for each vertex \mu \in G.V
         u.d = \infty
 4 s.d = 0
 5 INSERT(Q, s)
 6 while Q \neq \emptyset
         u = \text{Extract-Min}(Q)
         for v \in G.adj[u]
 8
               if v.d = \infty
10
                    INSERT(Q, v)
11
               v.d = \min(v.d, u.d + \text{weight of edge between } u \text{ and } v)
12
               Decrease-Key(Q, v, v.d)
```

48