Passzív alkatrészek vizsgálata

Nagy Dániel Zoltán (FZ1AU9) Mérőpartner: Puskin Artem Mérés ideje: 2019.03.18. 13:15-16:00

Mérés helye: Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar 1083 Budapest, Práter utca 50/a

nagy.daniel.zoltan@hallgato.ppke.hu

I. PASSZÍV ALKATRÉSZEK

A mérés során 2 darab ellenállást, tekercset és kondenzátort használtunk, valamint egy NI-Elvis mérőműszert. Az ellenállás, mint áramköri alkatrész feladata, hogy megfelelő mértékű elektromos ellenállást biztosítson egy áramkör adott részén. [1] A váltóáramnál az ellenállást mint mennyiséget impedanciának nevezzük, és ez egy komplex szám, a komplex feszültség és a komplex áramerősség hányadosa. [2] Ennek eredményeképp, mivel a mérés során váltóárammal dolgoztunk, használtuk az Elvis mérőműszer Impedence Analyser funkcióját.

A tekercs csavarmenet-szerűen tekeredő elektromos vezető. A menetek (és az egymásra feltekert rétegek) között szigetelés van. Felhasználása lehet ellenállásként vagy induktivitásként is. [3]

A kondenzátor pedig az az áramköri elem, amely villamos tér létrehozásával elektromos töltést képes tárolni. A legegyszerűbb kondenzátor legalább két, párhuzamos vezető anyagból (fegyverzet) és a közöttük lévő elektromosan szigetelő anyagból áll. [4]

A mérések során ezekből az alkatrészekből hoztunk létre egyszerű áramköröket, és mértük meg az egyes elemek ellenállását, kapacitását, induktivitását, valamint az Impedancia Analizátorral a magnitúdó, a fázisszög, rezisztencia és a reaktancia változásait a frekvencia függvényében.

II. A MÉRÉS MENETE

Először az ellenállásokat mértük meg. Az Elvis mérőműszer bekapcsolása és a számítógépen a szoftver indítása után a Digitális Multimétert futtattuk. Ezután két vezetéket használtunk, az egyiket a Current Hi bemenetbe, a másikat a Current LO bemenetbe csatlakoztattuk a mérőműszeren. A mérőműszert először le kellett nullázni, hogy a nullponti hibát kiküszöböljük. Ezt ellenállások esetében az áramkör rövidre zárásával tehettük meg. Majd megmértük először a zöld, majd a kék színű ellenállást, aztán sorba, illetve párhuzamosan kapcsoltuk őket, és így is elvégeztük a mérést. Az ellenállás méréseken kívül elvégeztük még a kapacitás és induktivitás méréseket is rajtuk, azonban ezek láthatóan hibás eredményeket adtak. A kapacitásnál az +over egy nagyon kicsi szám, amit a számítógép már nem tudott kiszámolni, az induktivitásnál pedig negatív értéket kaptunk, ami passzív alkatrészekből nem lehet, így itt is mérési hibát feltételezhetünk.

Hasonlóképpen megmértük a tekercseket és a kondenzátorokat is Digital Multiméterrel, egyesével, sorosan és párhuzamosan kapcsolva is. A tekercseknél szintén minden mérés előtt rövidre zártuk az áramkört, a hiba kiküszöbölése

1. ábra. párhuzamos kapcsolás mérése Digital Multimeterrel

végett. A kondenzátoroknál megszakított áramkörnél állítottuk be a nullpontot. A tekercseknél a kapacitásra, a kondenzátoroknál az ellenállásra és az induktivitásra megint csak mérési hibát kaptunk.

2. ábra. kapacitás mérés

3. ábra. induktivitás mérés

	ellenállás	kapacitás	induktivitás
kék ellenállás	75 Ω	+over	\sim - 6 μH
zöld ellenállás	51 Ω	+over	\sim - 3 μH
4R7 tekercs	0 Ω	+over	\sim 5 μH
100 tekercs	0 Ω	+over	\sim 10 μH
1NG100 kondenzátor	+over	1010 pF	+over
22nM100 kondenzátor	+over	23180 pF	+over

III. A MÉRÉSI EREDMÉNYEK

Az ellenállások helyességét a színkódokkal ellenőriztük. Mindkét ellenállás 5 csíkos volt, és ezek színkódjait leolvasva a mért eredményeket kaptuk.

soros kapcsolás	ellenállás	kapacitás	induktivitás
ellenállások	126 Ω	+over	\sim - 6 μH
tekercsek	0 Ω	+over	\sim 1,5 μH
kondenzátorok	+over	958 pF	+over

A soros kapcsolások eredményeinek helyessége is igazolható a következő képletekkel:

Ellenállások:

$$R_e = R_1 + R_2$$

 $126 = 75 + 51$

Tekercsek:

$$L_e = L_1 + L_2$$

$$15 = 5 + 10$$

Kondenzátorok:

$$\frac{1}{C_e} = \frac{1}{C_1} + \frac{1}{C_2}$$
$$\frac{1}{958} \approx \frac{1}{1010} + \frac{1}{23180}$$

párhuzamos kapcsolás	ellenállás	kapacitás	induktivitás
ellenállások	30 Ω	+over	\sim -1 μH
tekercsek	0 Ω	+over	\sim 3,3 μH
kondenzátorok	+over	24190 pF	over

Szintén a megfelelő képletekbe behelyettesítve:

Ellenállások:

$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{30} \approx \frac{1}{75} + \frac{1}{51}$$

Tekercsek:

$$\frac{1}{L_e} = \frac{1}{L_1} + \frac{1}{L_2}$$
$$\frac{1}{3.3} \approx \frac{1}{5} + \frac{1}{10}$$

Kondenzátorok:

$$C_e = C_1 + C_2$$
$$24190 = 1010 + 23180$$

Közelítőleg az összes mérésre az elméleti értékeket kaptuk, vagyis feltételezhetjük, hogy a méréseink helyesek. Az induktivitás eredmények szórása $\pm 0.3 \mu \mathrm{F}$ volt, ugyhogy azoknál számolni kell kerekítési hibával.

IV. VIZSGÁLATOK IMPEDANCIA ANALIZÁTORRAL

Ellenállás	Magnitúdó	Fázisszög	Rezisztencia	Reaktancia
	ohm	fok	ohm	ohm
1000 Hz				
kék	77,40	0,17	77, 40	0,05-0,23
zöld	53,36	0,19	53,39	0,17512
soros	128,02	0,14	128,02	0,32165
párhuzamos	32,92	0,24	32,92	0,13984
10000 Hz				
kék	77,35	1,17	77,33	1,57
zöld	53,40	1,76	53,35	1,65
soros	127,72	0,74	127,70	1,65
párhuzamos	32,97	0,86	32,93	1,64
20000 Hz	•			
kék	77,16	2,89	77,10	3,89
zöld	53,75	3,95	53,56	3,70
soros	127,87	1,93	127,80	4,31
párhuzamos	32,84	6,27	32,64	3,99
30000 Hz	•			
kék	76,13	3,36	76,01	4,48
zöld	52,96	5,92	52,76	4,63
soros	126,62	1,96	126,54	4,33
párhuzamos	38,11	8,24	32,78	4,74

4. ábra. Ellenállás mérés

Ha megvizsgáljuk a táblázatok eredményeit, látható, hogy melyik áramköri elemet milyen tulajdonságok jellemzik frekvencia függvényében. A mérőműszerünkből az adatokat 4 frekvencia érték alapján gyűjtöttük össze: egyet 1000 Hzről, hogy lássuk milyen eredményeket kapunk alacsonyabb frekvencia esetén, és hármat 10 ezertől 30 ezerig, ezáltal pedig látjuk, hogy arányos hogyan változnak az eredményeink.

Az ellenállások esetében azt kaptuk, hogy a magnitúdó nem függ a frekvenciától, mert mindegyik mérésnél kis eltéréssel azonos értékeket kaptunk. A fázisszög csupán kis mértékben mozdult el. A rezisztencia is frekvenciától függetlenül stagnált, és némi mérési hibától eltekintve az ellenállások előzőekben mért értékét adták.

	Magnitúdó	Fázisszög	Rezisztencia	Reaktancia			
Tekercs	-						
	ohm	fok	ohm	ohm			
1000 Hz	1000 Hz						
4R7	2,73	2,53	2,73	0,12821			
100	2,74	3,17	2,73	0,15117			
soros	2,77	3,77	2,76	0,18198			
párhuzamos	2,71	2,25	2,76	0,10602			
10000 Hz							
4R7	3,51	32,81	2,95	1,91			
100	3,77	36,17	3,04	2,22			
soros	3,99	39,43	3,08	2,54			
párhuzamos	3,49	31,34	2,98	1,81			
20000 Hz	20000 Hz						
4R7	4,78	53,31	2,85	3,82			
100	5,30	56,81	2,90	4,43			
soros	5,87	59,35	2,99	5,05			
párhuzamos	4,60	51,34	2,84	3,62			
30000 Hz							
4R7	6,50	61,81	3,07	5,73			
100	7,38	64,54	3,17	6,66			
soros	8,25	66,70	3,26	7,58			
párhuzamos	6,23	60,50	3,07	5,42			

	Impedance (Z)
5,0 4,0 3,0	Magnitude 3,48 Ohms
2,0	Phase (Deg) 31,28
	Resistance (R) 2,97 Ohms
XXXX	Reactance (X)

5. ábra. Tekercs mérés

A tekercsnél az volt megfigyelhető, hogy a fázisszög a frekvencia növelésével látványosan növekedett. A rezisztencia és reaktancia az ellenállásoknál mérthez analóg módon viselkedett, hasonló módon növekedett.

Végül a kondenzátorokat mértük meg. Ezeknél a magnitúdók értékei voltak szembetűnők, ugyanis az eddigiekhez képest nagy adatokat kaptunk. Emellett a megfigyelhető volt ahogyan a frekvencia emelésével az értékek jelentősen csökkentek. Valamint az eddigiektől eltérően a fázisszögek negatív értékeket vettek föl, és a frekvenciától függetlenül nagyjából ugyanakkora volt az értékük. A rezisztencia és a reaktancia is fokozatosan csökkent.

Kondenzátor	Magnitúdó	Fázisszög	Rezisztencia	Reaktancia		
	ohm	fok	ohm	ohm		
1000 Hz						
1NG100	149530	-85,35	12130	-149040		
22nM100	6610	-87,37	303,53	-6600		
soros	156170	-86,48	9600	-155870		
párhuzamos	6330	-87,43	283,59	-6320		
10000 Hz						
1NG100	15500	-85,39	1240	-15450		
22nM100	635,17	-86,26	42,59	-651,78		
soros	16170	-85,39	1300	-16120		
párhuzamos	650,02	-88,27	19,63	-649,72		
20000 Hz						
1NG100	7820	-80,39	1310	-7710		
22nM100	333,33	-87,92	12,10	-333,11		
soros	8160	-80,38	1360	-8400		
párhuzamos	319,24	-87,92	11,57	-319,03		
30000 Hz						
1NG100	5020	-81,73	722,79	-4970		
22nM100	220,69	-89,08	3,54	-220,66		
soros	5250	-81,56	770,31	-5190		
párhuzamos	221,27	-89,04	3,53	-221,24		

6. ábra. Kondenzátor mérés

HIVATKOZÁSOK

- [1] https://hu.wikipedia.org/wiki/Ellenállás_(áramköri_alkatrész)
- [2] https://hu.wikipedia.org/wiki/Impedancia
- [3] https://hu.wikipedia.org/wiki/Tekercs_(áramköri_alkatrész)
- [4] https://hu.wikipedia.org/wiki/Kondenzátor_(áramköri_alkatrész)