Prof. G. de Cesare Ingegneria Informatica/Automatica 2014

1) Dato il circuito di figura, in cui v_{IN} è un generatore di tensione, determinare il valore della resistenza R_3 per avere un guadagno di tensione v_{OUT}/v_{IN} pari a 25. Considerare l'amplificatore operazionale ideale.

 $\mathbfilde{R}_1 = 2\mathrm{k}\Omega; \qquad \mathbfilde{R}_2 = 18\mathrm{k}\Omega; \quad \mathbfilde{R}_3 = ?; \qquad \qquad \mathbfilde{R}_4 = 1\mathrm{k}\Omega; \qquad \mathbfilde{R}_5 = 6\mathrm{k}\Omega; \qquad \mathbfilde{R}_6 = 2\mathrm{k}\Omega$

1) Dato il circuito seguente, determinare R_S per avere una tensione di uscita in continua pari a 0V (V_{OUT} = 0V). Con il valore R_S calcolato, determinare il guadagno di tensione per piccoli segnali $A_v = v_{out} / v_s$.

$${\bf Q_1}$$
: $V_T = 1 \text{ V}$; $K_I = 0.125 \text{ mA/V}^2$; $C_{gs} = C_{gd} = \text{trascurabili}$; $\lambda = 0$, $\chi = 0$
 $V_{DD} = |V_{SS}| = 5 \text{ V}$ $R_D = 10 \text{ k}\Omega$ $R_S = ?$

Considerare l'amplificatore operazionale ideale con $L^+ = |L^-| = 10 \text{ V}$.

1) Dato il circuito di figura, considerando l'op-amp ideale con $L^+ = |L^-| = 10 \text{ V}$, calcolare l'andamento nel tempo della tensione di uscita in risposta ad un gradino ideale di ampiezza 2V applicato al tempo t=0.

 $R_1 = 100 k\Omega$, $R_2 = 200 k\Omega$, $R_3 = 100 k\Omega$, C = 10 nF

1) Del circuito seguente, determinare e tracciare il grafico dell'andamento nel tempo della corrente I_L che scorre sulla resistenza di carico R_L , considerando in ingresso il segnale a gradino di tensione (0-5 V) riportato in figura.

Q:
$$V_T = 2 \text{ V}$$
; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$, $\chi = 0$

Amplificatori Operazionali ideali con $L^+ = -L^- = 12 \text{ V}$

$$V_{DD} = 10 \text{V};$$

 $R_L = 2 \text{ k}\Omega;$ $R_D = 2 \text{ k}\Omega;$ $R_S = 0.5 \text{ k}\Omega;$ $R_I = 2 \text{ k}\Omega;$ $R_Z = 10 \text{ k}\Omega;$

1) Del circuito seguente, in presenza in ingresso dell'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e degli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita in risposta al segnale mostrato in figura. $[V_C(0)=0V]$.

Amplificatore Operazionale ideale con $L^+ = -L^- = 12V$

C = 100 nF

 $R_1 = 10 \text{ k}\Omega$ $R_2 = 1 \text{ k}\Omega$ $R_3 = 20 \text{ k}\Omega$

1) Del circuito seguente, calcolare lo stato di polarizzazione del transistore Q_I (V_{GS} ; I_D ; V_{DS}), e l'amplificazione di transresistenza $A_v = v_{out}/i_{in}$ per piccoli segnali.

Q₁: $V_T = 2 \text{ V};$ $K_I = 0.5 \text{ mA/V}^2;$ $\lambda = 0, \chi = 0$

 I_1 =2mA V_{DD} = 10 V; $C = \infty$ R_G = 30 Ω ; R_D = 5 k Ω ; R_S = 1 k Ω ; R_L = 5 k Ω ; Dato il circuito di figura, determinare il valore della resistenza R_L in modo che il valore della tensione di uscita v_o sia pari a 3V.

Supporre l'op. amp. ideale, con tensione di saturazione pari a ± 10 V.

1) Del circuito seguente, determinare il valore della resistenza R_S in modo tale che il guadagno di tensione a centro banda $A_v=v_{out}/v_{in}$ sia pari a -5.

$$Q_1; Q_2 \equiv [V_T = 1 \text{ V}; K = 0.5 \text{ mA/V}^2; \lambda = 0, \chi = 0]$$

$$R_S = ? R_D = 5 \text{ k}\Omega; R_L = 5 \text{ k}\Omega; V_{DD} = 10 \text{ V}; C = \infty$$

1) Dato il circuito di figura, in presenza di due generatori di tensione V_1 e V_2 con la forma riportata nei grafici relativi, determinare il e graficare l'andamento nel tempo della corrente I_L sulla resistenza di carico R_L .

 $R_1 = 1 \text{ k}\Omega;$ $R_2 = 2 \text{ k}\Omega;$ $R_3 = 3 \text{ k}\Omega;$ $R_L = 12 \text{ k}\Omega;$ Amplificatori Operazionali ideali con $L^+ = -L^- = 12 \text{V}$

1) Del circuito seguente, con in ingresso una tensione continua $V_I = 3$ V, determinare i valori delle tre correnti I_{L1} , I_{L2} , I_{LD} , che scorrono rispettivamente nelle tre resistenze di carico R_{L1} , R_{L2} e R_{LD} .

Amplificatori Operazionali ideali con $L^+ = -L^- = 12V$

$$Q_I$$
: [$V_T = 1 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$]

$$R_D = 6 \text{ k}\Omega;$$
 $R_S = 2 \text{ k}\Omega;$ $R_1 = 3 \text{ k}\Omega;$ $R_2 = R_3 = 2 \text{ k}\Omega;$

$$R_{LD} = R_{L1} = R_{L2} = 2 \text{ k}\Omega;$$

$$V_{DD} = 10 \text{ V};$$