5-8 System Design Applications

Let's summarize the entire chapter now by working through two complete design problems. The following examples illustrate practical applications of a K-map to ensure that when we implement the circuit using an AOI, we will have the simplest possible solution.

NOTE: The construction of digital circuits with higher complexity than those of these examples will be more practically suited for implementation using PLDs, which are discussed in Section 5-9.

The LSB (variable A) is always HIGH for an odd number. Why can't we just say, 'odd number = A^{**} ?

noiseussion

SYSTEM DESIGN 5-1

Design a circuit that can be built using an AOI and inverters that will output a HIGH (1) whenever the 4-bit hexadecimal input is an odd number from 0 to 9.

	Odd Numbers" from 0 to 9				
Used to Determine the Equation for					

	6		0	0	Ţ
$\leftarrow VBCD$	8	0	0	0	I
\underline{a}	L	Ţ	Ţ	l I	0
	9	0	l O	l T	0
\overline{a}	5	,	0	i	0
angy →	٤	i	Ī	0	0
\overline{a} \overline{a} \overline{a} \overline{a}	5	0	1	0	0
\overline{a}	® €	1	0	0	0
	0	0	0	0	- 0
	DEC	- V	8	2	a
		17	01 0 111011	STORIUM	T DDO

Figure 5-76 (a) Simplified equation derived from a Kamaugh map;