Introduction to Deep Learning

AAG Hawai meeting April 18, 2024

Benoit Parmentier
University of Mary Washington, VA
benoit.parmentier@gmail.com
https://www.benoitparmentier.org/
https://github.com/bparment1

Deep Learning

- Artificial Intelligence
- Machine Learning
- Deep Learning

Image from wikipedia

Deep Learning Key moments

- 1967: multi layers perceptron model published
- 1986: Rumelhart Hinton and Williams popularized backpropagation in a paper.
- 1989 backpropagation to learn kernels in CNN for handwritten zip code recognition
- 1998: Lenet5 architecture inspiration for many later CNNs (7 layers).
- 2006: Hinton et al. introduce methods to train NN with many hidden layers (deep networks).
- 2012: Alexnet wins the Imagenet competition, data augmentation is introduced
- 2013: R- CNN published for object detection
- 2015: Unet Architecture for semantic segmentation

TYPES OF DATA AND INPUTS IN DEEP LEARNING NETWORK

structured (tabular):

in the form of a table/data frame with column corresponding to the features/covariates

text:

string of characters with words and sentence. Although, it is sometime called unstructured, word association and sequences contain pattern and structure.

• images:

matrix of width and height, also called unstructured data but contains spatial configuration that can be leveraged in deep learning networks.

networks:

matrix of width and height, also called unstructured data but contains spatial configuration that can be leveraged in deep learning networks.

sound:

matrix of width and height, also called unstructured data but contains spatial configuration that can be leveraged in deep learning networks.

others:

biochemistry, biology etc.

Deep Learning Key Players

Yann Lecun:

French computer scientist, contributed to CNN with learned kernels. Famous for the Lenet network for digit classification.

Geoffrey Hinton:

based at the University of Toronto Computer Science department, early pioneer. Contributed to many incremental improvements that led to the Deep Learning revolution. One of the author of Alexenet.

Yoshua Bengio:

based at Montreal Institute of Machine Learning, early contributor via Theano library.

Ian Goodfellow:

Inventor of GAN (Generative Adversarial Network) now works at Google.

Key Terminology in relation to Earth Observation/RS

- **Image classification** Assigning a label to a whole image (not at a pixel level).
- **Object localization** Assigning an Image Label and bounding box for an object (e.g. cat). This assumes that there is only one object of one class present in the image.
- Object Detection: assigning labels and bounding boxes to many objects in images.
- Semantic Segmentation: assigning a class to every pixel in an image.
- Instance Segmentation: assigning a class an item number to object (e.g. car1, car2, bike1, bike2)

Key Terminology in relation to Earth Observation/RS

- height: number of rows
- width number of columns
- channels: RS bands
- samples: number of images

https://livebook.manning.com/concept/deep-learning/shape

DNN FOR CLASSIFICATION/REGRESSION

- Input layer has a number of nodes equal to features
- Hidden layers are the layers between input and output.
- Output layer has the number of nodes equal to the number of classes in classification or dimensions in regression.

DNN FOR CLASSIFICATION ON IMAGES

- For multi-class classification, the final activation layer is softmax. Scores sum to 1 and can be interpreted as probabilities.
- Note that the categorical cross entropy is used as a loss. This is the case for multi-class classification.

CONVOLUTIONAL LAYER

https://miro.medium.com/max/2880/0*QS1ArBEUJjjySXhE.png

- A layer that uses kernel and generates feature maps.
- The weights in the kernel are learned by the network.
- It reduces greatly the number of parameters compared to a Dense layer and leverage spatial information/structure.
- https://noloclub.github.io/cnn-explainer/

CNN EXPLAINER

CONVOLUTIONAL LAYER PARAMETERS

- kernel size: Height x Width typically 3x3 or 5x5.
- stride: steps between sliding of the kernels. Typically 1. If greater than
 one the size of the image may decrease more.
- padding: padding added when modeler wants to keep the input size of the image.
- filter: in keras, it is the number of feature maps (generated by the equivalent number of kernels)

CNN FOR CLASSIFICATION

- A typical sequence in a CNN: Convolutional 2D followed by max pooling.
- The network head is a dense neural network (fully connected).

CNN FOR CLASSIFICATION

```
num classes =10
model cnn = Sequential()
## CNN part
#Block 1
model cnn.add(Conv2D(32, (3, 3), padding='same',
                 activation='relu',
                 input shape=x train.shape[1:]))
model cnn.add(Conv2D(32,(3,3),padding='same', activation='relu'))
model cnn.add(MaxPooling2D(pool size=(2,2)))
#Block 2
model cnn.add(Conv2D(64,(3,3),padding='same',activation='relu'))
model cnn.add(Conv2D(64,(3,3),padding='same',activation='relu'))
model cnn.add(MaxPooling2D(pool size=(2,2)))
#Block 3:
model cnn.add(Conv2D(128,(3,3),padding='same',activation='relu'))
model cnn.add(Conv2D(128,(3,3),padding='same',activation='relu'))
model cnn.add(MaxPooling2D(pool size=(2,2))) #becomes 4x4 image
## DNN part
model cnn.add(Flatten())
model cnn.add(Dropout(0.2))
model cnn.add(Dense(1024,activation='relu',kernel constraint=maxnorm(3)))
model cnn.add(Dropout(0.2))
model cnn.add(Dense(num classes, activation='softmax'))
```

UNET FOR SEMANTIC SEGMENTATION

- Encoder-Decoder structure
- Output is an image of the same size with probabilities for every pixel.

NETWORK ARCHITECTURES

Deep Learning Key Software Libraries

- Theano: one of the early Deep Learning library created by MILA (University of Montreal) by team led by Yoshua Bengio.
- Tensorflow: created a google for internal research in AI, was open sourced in 2015. It is now one of the main library used in industry and in research.
- Keras: created in 2015 as a high level API sitting on top of Theano, Tensorflow and CNTK. It is now one of most popular Deep Learning libraries.
- **pytorch:** created by facebook AI, now one of the main library used in industry and research.
- fastai: high level libraries that sits on top of pytorch with the goal of making Deep Learning accessible to all. Developed at the University of San Francisco.

Training a deep learning model

Compiling model

```
#NOTE INPUT SHOULD BE THE NUMBER OF VAR
#### Test with less number of input nodes: pruning
model dnn = Sequential()
model dnn.add(Dense(4, input dim=3, activation='relu'))
model dnn.add(Dense(10, activation='relu'))
model dnn.add(Dense(10, activation='relu'))
model dnn.add(Dense(1)) #scalar regression, end DNN without activation function as we are predicting continuous values
model dnn.compile(optimizer="adam",
                  loss="mse",
                  metrics=["mae"])
model dnn.summary()
Model: "sequential"
                              Output Shape
                                                         Param #
Layer (type)
dense (Dense)
                              (None, 4)
                                                         16
dense 1 (Dense)
                              (None, 10)
                                                         50
dense 2 (Dense)
                              (None, 10)
                                                        110
dense 3 (Dense)
                              (None, 1)
Total params: 187
Trainable params: 187
Non-trainable params: 0
```

 Once a model is created, you need to compile the model and select the optimizer, loss function and metrics.

Loss Function

A loss function is an error function that is optimized in the model.

It is function of the weights and it is used to find weight values to update.

- Gradient descent is used to find the minimum of the loss function and the optimal weights.
- Loss function types varies in function of input data: continuous (e.g. MSE) or categorical (e.g. binary cross entropy).

Loss Function

- MSE: Mean Square Error is used as loss function for neural networks with a continuous target (regression).
- Binary cross entropy is used for binary classification or multilabel cases.
- Categorical cross-entropy is used for multi class cases (mutually exclusive classes).

$$L_{\text{CE}} = -\sum_{i=1}^{n} t_i \log(p_i)$$
, for n classes,

where t_i is the truth label and p_i is the Softmax probability for the i^{th} class.

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e

Optimizer

- It is the method used to update the weights so that we decrease the loss (error).
- It is usually a variation of the the gradient descent method to reach the minimum of the loss function.
- There are many optimizers. Some common ones are SGD, RMSprop and Adam.

Optimizers

- SGD: gradient descent that is updated by batch (mini-batch gradient descent).
- **SGD with momentum**: consider previous gradient values to carry out current weight update.
- **SGD with scheduled learning rate**: pre-defined decrease in rate of learning.
- Adagrad: scheduled learning called Adaptive learning rates for each input features based on update frequency for each input features.
- Rmsprop: improvement of Adagrad with better update of learning rates.
- Adams: consider both scheduled learning rate and momentum trying to combine all the improvements together in one algorithm.

The importance of Labeling

- Deep Learning requires a large amount of labeled data training.
- These are usually hand-labeled datasets that are expensive and time consuming to generate: https://www.bbc.com/news/technology-56414491
- There are softwares to help.
- New paradigm: weak learning.

LABELING BY HUMAN

AI: Ghost workers demand to be seen and heard

By Jane Wakefield Technology reporter

4 days ago

Artificial intelligence and machine learning exist on the back of a lot of hard work from humans.

Alongside the scientists, there are thousands of low-paid workers whose job it is to classify and label data - the lifeblood of such systems.

But increasingly there are questions about whether these so-called ghost workers are being exploited.

The importance of Labeling

Transfer Learning and Pre-training

- Use model trained on another related task to predict on the task at hand.
- Can leverage networks that were trained on a large training dataset.
- Often requires removing the 'head' of the model to use the 'base'.
- This method has proven very successful in many instances.

Introduction to Deep Learning

AAG Hawai meeting April 18, 2024

Benoit Parmentier
University of Mary Washington, VA
benoit.parmentier@gmail.com
https://www.benoitparmentier.org/
https://github.com/bparment1

Introduction to Deep Learning

University of Mary and Washington April 11, 2024

Benoit Parmentier
University of Mary Washington, VA
benoit.parmentier@gmail.com
https://www.benoitparmentier.org/
https://github.com/bparment1

References

- https://ai.facebook.com/blog/billion-scale-semisupervised-learning/
- https://www.azavea.com/blog/2020/03/24/labe ling-satellite-imagery-for-machine-learning/
- http://ai.stanford.edu/blog/weak-supervision/
- https://www.d2l.ai/chapter_preface/index.html

30