

Computer Vision

Class 3
Spectral clustering

Graph cuts with only pair-wise costs

Minimum cut (→ Image Processing, class 9):

$$E(u) = \sum_{i} D(u_i) + \sum_{i,j \in \mathcal{N}(i)} w_{ij} \delta(u_i \neq u_j)$$

When removing the unary term (the t-links), the optimal solution will assign all nodes to either source or target (no costs)
 → trivial solution

- This is also known as the shrinking bias of the minimum cut.
- To avoid the shrinking bias, the volume/connectivity within the resulting region must be considered
 - → ratio cut, average cut, normalized cut
- Ratio cut: $\frac{\operatorname{cut}(A,\Omega-A)}{|A|}$

Examples for problems without unary costs

Motion segmentation based on point trajectories

- Hard to build a motion model (unary cost) for each object
- Easy to define pairwise cost between point trajectories

3D surface reconstruction

- Hard to build a model for the interior of the object volume
- Easy to define costs for potential surface positions (pairwise costs)

Agglomerative clustering

- Compute pairwise distances d_{ij} between all data points (or neighboring data points)
- Greedy heuristic:
 - Merge the two points/clusters with the smallest distance to a single cluster
 - Recompute the affected distances
 - Iterate until remaining distances reach a certain threshold
- Early decisions cannot be corrected
 does not optimize a global criterion
- Very sensitive to chosen thresholds

Author: P. Felzenszwalb

- Like agglomerative clustering based on pair-wise distances d_{ij}^2
- Turned into pair-wise affinities $w_{ij} = \exp\left(-\lambda d_{ij}^2\right)$ with a parameter $\lambda > 0$
- Symmetric $N \times N$ affinity matrix W (N: number of data points/pixels)
- ullet Affinity matrix can also be regarded as a fully connected graph with N nodes
- Groups of points with strong internal connections generate clusters
- Find cut(s) of the graph such that each part is strongly connected (normalized cut vs. minimum cut)

Affinities become edge weights; weakest edges not shown here

Towards the normalized cut: random walk

- Related segmentation approach for supervised segmentation
- Given a graph and some seed nodes with cluster labels
- At each seed let a particle start and move randomly through the graph.
- Where does it end after infinite time? Repeat the experiment and measure for each node the probability of each particle ending there
- Assign to each node the label with the largest probability (rounding)
- Can be formulated as weighted linear diffusion on the graph (→ efficient computation)

Author: Leo Grady

Formal writing as a multi-label optimization problem

- Introduce K labeling vectors \mathbf{u}^k . Each vector has N components (= number of nodes in the graph)
- Integer problem with $u_i^k \in \{0, 1\}$ Relaxed version with $u_i^k \in [0, 1]$ (actual random walk)
- Minimize

$$E(\mathbf{u}) = \sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} w_{ij} (u_i^k - u_j^k)^2$$
 (gradient descent leads to linear diffusion with diffusivity w_{ij})

subject to

$$u_i^k = 1 \ \forall i \in \mathcal{S}^k$$

(keep seed labels S^k untouched)

$$\sum_{k} u_i^k = 1 \ \forall i$$

(labels must sum to 1)

Random walk example

Video Annotation Tool (Live Demo)

Nagaraja et al. 2015

Case without any seeds

- Back to the original problem, where we wanted to optimally separate the graph into parts that are themselves well connected
- Two cluster case for the beginning
- Imagine we put a seed at an arbitrary node in the graph
- Running diffusion leads to the equilibrium:
 all nodes get the seed value → trivial solution
- No surprise: this is the global optimum of

$$E(\mathbf{u}) = \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} w_{ij} (u_i - u_j)^2$$

Do not give up too early....

Computer

Vision

What is the global optimum that is different from the trivial solution?

$$E(\mathbf{u}) = \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} w_{ij} (u_i - u_j)^2 \qquad \mathbf{u}^{\top} \mathbf{1} = 0$$

maximally smooth

Orthogonal to the trivial solution

- We get a non-trivial solution
- To make this solution independent of the choice of the seed value, enforce a unit length vector:

$$|\mathbf{u}| = 1$$

- Soft separation of the graph
- Can be formulated as an eigenvalue problem

• Define a diagonal matrix D, where

$$d_i = \sum_j w_{ij}$$

(the sum of all edge weights connected to node i)

- Graph Laplacian D-W
- Eigenvalue problem on the Laplacian:

$$\mathbf{u}^* = \operatorname{argmin}_{\mathbf{u}} \frac{\mathbf{u}^\top (D - W) \mathbf{u}}{\mathbf{u}^\top \mathbf{u}}$$

Corresponds to minimizing

$$E(\mathbf{u}) = \sum_{i=1}^{N} \sum_{j} w_{ij} (u_i - u_j)^2$$

subject to $\|\mathbf{u}\| = 1$

Eigendecomposition of the Graph Laplacian

Eigenvalue problem:

$$\mathbf{u}^* = \mathrm{argmin}_{\mathbf{u}} \frac{\mathbf{u}^\top (D - W) \mathbf{u}}{\mathbf{u}^\top \mathbf{u}}$$

- Minimum value is the smallest eigenvalue of D-W
- Corresponding argument is the corresponding eigenvector
- Trivial solution: constant vector with unit length leads to the minimum 0
- More interesting: eigenvector corresponding to the <u>second smallest</u> eigenvalue (by definition orthogonal to the first eigenvector)
- "The smoothest u that is orthogonal to the constant vector"

Graph theoretic interpretation

• Computing the eigenvector corresponding to the second smallest eigenvalue of D-W is a relaxed minimization of the average cut

$$\frac{\operatorname{cut}(A,\Omega-A)}{|A|} + \frac{\operatorname{cut}(A,\Omega-A)}{|\Omega-A|}$$

which is a symmetrized version of the ratio cut

$$\frac{\mathsf{cut}(A,\Omega-A)}{|A|}$$

- In contrast to the minimum cut, the average cut has a non-trivial global minimum
- This is thanks to the normalization by the size of the emerging regions A and ΩA

Normalized graph Laplacian and the normalized cut

The graph Laplacian is often normalized

$$D - W \rightarrow D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$$

(weights divided by the geometric mean of the row and column sums)

$$w_{ij} \rightarrow \frac{w_{ij}}{\sqrt{d_i d_j}}$$

• The eigenvector **z** of the normalized problem must be rescaled:

$$\mathbf{u} = D^{-\frac{1}{2}}\mathbf{z}$$
 (see Shi-Malik 2000 for details)

This leads to the normalized cut

$$\frac{\operatorname{cut}(A,\Omega-A)}{\operatorname{assoc}(A,\Omega)} + \frac{\operatorname{cut}(A,\Omega-A)}{\operatorname{assoc}(\Omega-A,\Omega)}$$

Measures the removed edges (cut) relative to the total edge weight originating in each region (assoc)

Minimizing the normalized cut is equivalent to maximizing the normalized association

$$\frac{\operatorname{assoc}(A,A)}{\operatorname{assoc}(A,\Omega)} + \frac{\operatorname{assoc}(\Omega - A,\Omega - A)}{\operatorname{assoc}(\Omega - A,\Omega)}$$

- Advantage I: Limiting case where looking for similarities is the same as looking for differences
- Advantage II: Can separate areas with higher connectivity from areas with lower connectivity

Eigensolver

- In many applications, the affinity matrix is large
 → usual numerical methods for computing eigenvalues with cubic complexity O(N³) are prohibitively slow
- Some graphs may not be fully connected
 → matrix will be <u>sparse</u> (many zero entries)
- 2. We just require the <u>smallest</u> eigenvalues and their corresponding eigenvectors, not <u>all</u> of them
- Can we exploit this to have a faster solver?
- Indeed there is the **Lanczos method**, which efficiently computes just the smallest (or largest) eigenvalues of a matrix in $\mathcal{O}(N^2)$
- Available via the ARPACK numerical library (wrapped by SciPy via "eigs")

- Recall: We solve the real-valued relaxed problem (spectral relaxation)
 generally no clear cut of the graph, just soft indicators
- We get an approximate solution of the binary segmentation problem (average cut or normalized cut) by thresholding the eigenvector (rounding)

Input image

2nd Eigenvector

After thresholding

Average cut and normalized cut are NP hard problems

More than two clusters, Laplacian eigenmaps

- The concept can be extended to more than two clusters
- The eigenvector to the third smallest eigenvalue indicates an alternative partitioning of the graph
- In the general case we compute the K smallest eigenvalues
- The corresponding eigenvectors span a K- dimensional subspace
 - Each node (data point) maps to a
 K-dimensional vector
 - Mapping is called Laplacian eigenmap
- We can run standard clustering techniques (k-means) to convert the real-valued vectors into integer labels
 - → spectral clustering

Mappings from a graph to its eigenspace, clustering in the eigenspace

Balancing property of spectral clustering

 The balancing property of the average and normalized cut transfers to spectral clustering, too.

$$\frac{\operatorname{cut}(A,\Omega-A)}{|A|} + \frac{\operatorname{cut}(A,\Omega-A)}{|\Omega-A|}$$
 (average cut)

- Consequence: When affinities are not informative, spectral clustering tends to create equally sized regions
- With constant affinities, the eigenvectors corresponding to the smallest eigenvalues yield the Fourier basis
- Consider balancing when applying spectral clustering on non-uniform grids

Eigenvectors of constant affinity matrix

Finding coherent subsets

 Another graph based technique is to find the most connected subset among the nodes:

$$\max_{A} \left(\frac{\mathsf{assoc}(A, A)}{|A|} \right)$$

- Can be used to find outliers in a dataset
- Relaxed problem: find the largest eigenvector of the affinity matrix W
- Nodes of the most connected subset obtain non-zero values
- Largest eigenvector can be found also by **power iteration** if $\lambda_1 > \lambda_2$ $v^{k+1} = \frac{Wv^k}{\|Wv^k\|}$ (very simple algorithm)
- Major part of the PageRank algorithm that initiated Google's success

References

- L. Grady: Random walks for image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1768-1783, 2006.
- J. Shi, J. Malik: Normalized cuts and image segmentation, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(8):888-905, 2000.
- F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.
- A. Ng, M. Jordan, Y. Weiss: On spectral clustering: analysis and an algorithm, Advances in Neural Information Processing Systems (NIPS), 2001.
- P. Perona, W. Freeman: A factorization approach to grouping, *European Conference on Computer Vision*, pp. 655-670,1998.