Série TD N°02 Statique des fluides

Exercice 6

Soit le manomètre différentiel à plusieurs tubes en U de la figure ci-contre.

Trouver la différence de pression (P_A-P_B).

Exercice 7

Soit le manomètre incliné de la figure ci-dessous. Déterminer la différence de pression (P_a - P_b) en fonction de D_1 , D_2 , θ , ρ et l'échelle R.

Exercice 8

On considère un récipient en forme de parallélépipède de largeur b=2m, ouvert à l'air libre et rempli jusqu'à une hauteur h=1.5 m avec du mercure de masse volumique ρ =13600 kg/m³. On désigne par G le centre de gravité de la surface mouillée S.

- 1) En appliquant la loi fondamentale de la statique entre un point M de la surface libre et le point G, calculer la pression P_G .
- 2) Déterminer l'intensité de la résultante \vec{R} des forces de pression agissant sur S.
- 3) Calculer le moment quadratique $I_{(G,Z)}$ de la surface S.
- 4) Calculer la position Y₀ du centre de poussée.

Exercice 9

On considère un aquarium géant utilisé dans les parcs d'attraction représenté par la figure suivante.

Il est rempli d'eau à une hauteur H= 6m et équipé d'une partie vitrée de forme rectangulaire de dimensions (2m×3m) qui permet de visualiser l'intérieur.

- 1) Représenter le champ de pression qui s'exerce sur la partie vitrée
- 2) Déterminer le module de la résultante \vec{R} des forces de pression.
- 3) Calculer la profondeur Z_R du centre de poussée.

4) Reprendre les questions 2 et 3, en changeant la forme rectangulaire de la partie vitrée par une forme circulaire de diamètre d = 2m.

Exercice 10

On considère un réservoir d'eau équipé au niveau de sa base d'une plaque rectangulaire qui peut tourner d'un angle $(\theta < 0)$ autour d'un axe (A, \vec{Z}) .

D'un côté, la plaque est soumise aux forces de pression de l'eau et de l'autre côté, elle est soumise à la pression atmosphérique (P_{atm}). Sous l'effet des forces de pression hydrostatique variables en fonction du niveau h, la plaque assure de façon naturelle la fermeture étanche ($\theta = 0$) ou l'ouverture ($\theta < 0$) du réservoir.

On donne: les dimensions de la plaque : a=0.75 m (selon l'axe \vec{Z}), b=1.5 m (selon l'axe \vec{Y}), la distance entre le centre de gravité G et l'axe de rotation (A, \vec{Z}) est d=50 mm et la pression au point O est $P_o=P_{atm}$.

- 1) En appliquant le principe fondamental de la statique, donner l'expression de la pression de l'eau P_G au centre de gravité G en fonction de la hauteur h.
- 2) Déterminer les expressions de la résultante \vec{R} et du moment \vec{M}_G associés au torseur des forces de pression hydrostatique dans le repère $(G, \vec{X}, \vec{Y}, \vec{Z})$.
- 3) En déduire l'expression du moment \vec{M}_A des forces de pression de l'eau, par rapport à l'axe de rotation (A, \vec{Z}) .
- 4) Donner l'expression du moment \vec{M}_A des forces de pression atmosphérique agissant sur la plaque, par rapport à l'axe de rotation (A, \vec{Z}) .
- 5) A partir de quelle valeur h_0 du niveau d'eau la plaque pivote $(\theta < 0)$?

Exercice 11

- 1) Trouver la masse minimale que doit avoir la plaque OA pour avoir équilibre. La plaque peut tourner autour de l'axe en O. La plaque est rectangulaire de longueur l.
- 2) En remplissant la partie de droite avec de l'eau jusqu'au point A, trouver la nouvelle masse en équilibre.

On donne : h = 1m, a = 3m, l = 1m, $\theta = 30^{\circ}$.

