МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 2.2.3

Определение теплопроводности газов при атмосферном давлении

Милославов Глеб Евгеньевич Б04-105

1 Введение

Цель работы: Определение коэффициента теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

В работе используются: Прибор для опредления теплопроводности газов; форвакуумный насос; газгольдер с газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр B7-78/1; источник питания.

2 Теоретическая часть

Основной характеристикой теплопроводности служит коэффициент \varkappa , являющийся коэффициентом пропорциональности между плотностью потока тепла q и градиентом температуры dT/dr в направлении распространения этого потока

$$q = -\varkappa \frac{dT}{dr}. (1)$$

В цилиндрически симметричной установке, в которой тепловой поток направлен к стенкам цилиндра от нити, полынй поток тепла Q=qS через каждую цилиндрическую поверхность радиуса r должен в стационарном состоянии быть неизменен (как в пространстве, так и во времени). Тогда

$$Q = -2\pi r L \varkappa \frac{dT}{dr} = const, \tag{2}$$

откуда получаем формулу

$$T_1 - T_2 = \frac{Q}{2\pi L \varkappa} \ln \frac{r_2}{r_1}.$$
 (3)

Здесь r_1 и T_1 – радиус и температура нити, r_2 и T_2 – радиус и температура цилиндра.

3 Экспериментальная установка

Тонкая молибденовая нить натянута по оси длинной вертикально стоящей медной трубки. Через штуцер трубка заполняется исследуемым газом. Нить нагревается электрическим током, а её температура T_1 определяется по изменению электрического сопротивления. Трубка находится в кожухе, через которой пропускается вода из термостата. Температура воды T_2 измеряется термометром, помещенным в термостат. Количество теплоты, протекающей через газ, равно, если принебречь утечками тепла через торцы, количеству теплоты, выделяемому током в нити, и может быть найдено по закону Джоуля-Ленца. При этом ток в нити определяется по напряжению на включенном последовательно с ней эталонном сопротивлении $R_0 = (10,00 \pm 0,01)$ Ом.

Электрическая часть схемы состоит из источника питания и подключенных к нему последовательно соединенных нити, эталонного сопротивления и магазина сопротивлений R, служащего для точной установки тока через нить. Цифровой вольтметр может подключаться как к нити, так и к эталонному сопротивлению, измеряя таким образом напряжение на нити и ток через неё.

4 Ход работы

4.1 Снятие показаний

Проведём серию опытов при температурах в диапазоне $20-60\,^{\circ}C$, выставляя сопротивление магазина таким образом, чтобы не привысить допустимую мощность тока в нити $Q_{max}=120$ мВт. Полученные данные, а также параметры установки, запишем в таблицы:

	t = 20°C						
R, Om	U1, B	U2, B	I, A	Q, мВт			
14,716	0,720	1,060	0,072	76,35			
14,697	0,684	1,005	0,068	68,72			
14,662	0,641	0,939	0,064	60,15			
14,632	0,594	0,868	0,059	51,54			
14,613	0,561	0,819	0,056	45,92			
14,593	0,518	0,755	0,052	39,08			
14,563	0,459	0,668	0,046	30,64			
14,534	0,396	0,575	0,040	22,76			
14,520	0,345	0,501	0,034	17,27			

_					_	_
Рис.	1.	+	_	20	0	,
I VIC.				~\\	١.	

t = 30°C							
R, Om	U1, B	U2, B	I, A	Q, мВт			
15,265	0,831	1,269	0,083	105,49			
15,222	0,783	1,193	0,078	93,42			
15,188	0,741	1,125	0,074	83,33			
15,144	0,679	1,028	0,068	69,78			
15,105	0,626	0,946	0,063	59,25			
15,070	0,557	0,840	0,056	46,79			
15,027	0,490	0,736	0,049	36,02			
14,975	0,394	0,590	0,039	23,25			
14,942	0,283	0,423	0,028	11,98			

Рис. 2: $t = 30 \, ^{\circ}C$

	t = 40°C							
R, Om	U1, B	U2, B	I, A	Q, MBT				
15,737	0,873	1,374	0,087	119,96				
15,695	0,821	1,288	0,082	105,66				
15,658	0,777	1,216	0,078	94,48				
15,614	0,721	1,127	0,072	81,27				
15,573	0,663	1,032	0,066	68,40				
15,524	0,586	0,910	0,059	53,31				
15,482	0,512	0,792	0,051	40,55				
15,438	0,421	0,650	0,042	27,36				
15,393	0,297	0,457	0,030	13,57				

Рис. 3: $t = 40 \, ^{\circ}C$

t = 50°C							
R, Om	U1, B	U2, B	I, A	Q, MBT			
16,181	0,850	1,376	0,085	117,00			
16,138	0,800	1,292	0,080	103,37			
16,102	0,756	1,217	0,076	91,97			
16,056	0,704	1,130	0,070	79,47			
16,014	0,637	1,020	0,064	65,01			
15,972	0,574	0,917	0,057	52,60			
15,929	0,496	0,791	0,050	39,24			
15,887	0,406	0,645	0,041	26,23			
15,844	0,289	0,459	0,029	13,28			

Рис. 4: $t = 50 \, ^{\circ}C$

2.00		t = 60°C							
D 0		t = 60°C							
R, OM	U1, B	U2, B	I, A	Q, MBT					
16,619	0,825	1,372	0,083	113,19					
16,575	0,778	1,290	0,078	100,32					
16,540	0,736	1,217	0,074	89,55					
16,498	0,675	1,113	0,067	75,10					
16,462	0,623	1,025	0,062	63,86					
16,421	0,555	0,911	0,055	50,49					
16,443	0,486	0,799	0,049	38,81					
16,341	0,397	0,648	0,040	25,69					
16,299	0,281	0,457	0,028	12,82					

Рис. 5: $t = 60 \, ^{\circ}C$

2r1, mm	0,055 ± 0,005
2r2, mm	10,0 ± 0,1
L, mm	365 ± 2
Rэ, Ом	10,0 ± 0,1

Рис. 6: Параметры установки

Абсолютныая погрешность вольтмера равна $\pm (0,0035\% \cdot [\text{измерение}] + 0,0005\% \cdot [\text{предел измерений}])$. Для наших данных она будет лежать в пределах $(51-55) \cdot 10^{-5}$ В. Значения Q и R, а так же их погредности, были посчитаны следующим образом:

$$Q = U_{\rm H} \frac{U_{\rm 9}}{R_{\rm 9}}, \quad \sigma_Q = Q \sqrt{\left(\frac{\sigma_{U_{\rm H}}}{U_{\rm H}}\right)^2 + \left(\frac{\sigma_{U_{\rm 9}}}{U_{\rm 9}}\right)^2 + \left(\frac{\sigma_{R_{\rm 9}}}{R_{\rm 9}}\right)^2}$$

$$R_{\scriptscriptstyle \rm H} = R_{\scriptscriptstyle \rm B} \frac{U_{\scriptscriptstyle \rm B}}{U_{\scriptscriptstyle \rm H}}, \quad \sigma_{R_{\scriptscriptstyle \rm H}} = R_{\scriptscriptstyle \rm H} \; \sqrt{\left(\frac{\sigma_{U_{\scriptscriptstyle \rm H}}}{U_{\scriptscriptstyle \rm H}}\right)^2 + \left(\frac{\sigma_{U_{\scriptscriptstyle \rm B}}}{U_{\scriptscriptstyle \rm B}}\right)^2 + \left(\frac{\sigma_{R_{\scriptscriptstyle \rm B}}}{R_{\scriptscriptstyle \rm B}}\right)^2}$$

Таким образом относительные погрешности Q и $R_{\rm H}$ равны $\overline{\varepsilon_Q}\approx 1\%$ и $\overline{\varepsilon_{R_{\rm H}}}\approx 1\%$ Построим графики нагрузочных кривых R(Q) для разных температур:

Рис. 7: Линейная аппроксимация с помощью МНК графиков R(Q)

Экстраполируем наилучшие прямые к значению Q=0 мВТ. Запишем R_0 и угол наклона кривых dR/dQ в таблицу:

t, °C	20	30	40	50	60
R_0 , Om	14,459	14,900	15,349	15,801	16,277
σ_{R_0} , Om	0,002	0,003	0,001	0,001	0,015
dR/dQ Ом/Вт	3,39	3,47	3,25	3,25	3,00
$\sigma_{dR/dQ}~{ m Om/BT}$	0,05	0,04	0,01	0,01	0,22

Таблица 1: Результаты линейной аппроксимации по МНК

Построим график $R_0(t)$ и аппроксимируем его по МНК:

Рис. 8: Линейная аппроксимация с помощью МНК графика $R_0(t)$

В результате получили:

$$dR/dT = 0,0449 \pm 0,0002 \frac{\text{Om}}{\text{K}}$$
 ($\varepsilon = 0,3\%$)

Используя полученные данные и формулу (3) посчитаем телопроводность воздуха при разных температурах:

$$\kappa = \frac{\ln \frac{r^2}{r^1}}{2\pi L} \frac{dR}{dT} \frac{dQ}{dR}, \quad \sigma_{\kappa} = \sqrt{\left(\frac{\partial \kappa}{\partial \frac{r^2}{r^1}} \sigma_{\frac{r^2}{r^1}}\right)^2 + \left(\frac{\partial \kappa}{\partial L} \sigma_L\right)^2 + \left(\frac{\partial \kappa}{\partial (dR/dT)} \sigma_{dR/dT}\right)^2 + \left(\frac{\partial \kappa}{\partial (dR/dQ)} \sigma_{dR/dQ}\right)^2}$$

Занесём полученные данные в таблицу:

t, °C	20	30	40	50	60
dR/dQ, Om/Bt	3,39	3,47	3,25	3,25	3,00
dR/dT, Om/K	0,0449	0,0449	0,0449	0,0449	0,0449
$\kappa, \operatorname{Bt/(M*K)}$	0,0300	0,0293	0,0313	0,0313	0,0339
$\sigma_{\kappa}, \operatorname{Bt/(M}*K)$	0,0005	0,0004	0,0002	0,0002	0,0024

Таблица 2: Результаты линейной аппроксимации по МНК

Построим график $\kappa(t)$:

Рис. 9: График к(t) и его наилучшая прямая

Сравним полученные значения с табличными:

t, °C	20	30	40	50	60
$\kappa, \operatorname{Bt/(M}*K)$	0,0300	0,0293	0,0313	0,0313	0,0339
$\sigma_{\kappa}, \operatorname{Bt}/(M*K)$	0,0005	0,0004	0,0002	0,0002	0,0024
$\kappa_{ ext{табл}}, \operatorname{Bt/(M}*K)$	0,0259	0,0267	0,0276	0,0283	0,0291
ε	13%	10%	13%	11%	16%

Таблица 3: Результаты косвенных измерений

Так как к $\sim T^{\beta}$, то из графика $\ln(\kappa)(\ln(T))$ можно найти степень β :

Рис. 10: График $\ln(\kappa)(\ln(T))$, аппроксимация по МНК

Получили $\beta=0,606\pm0,287,$ что говорит о возможной корневой зависимости $\kappa(T)$