

EM506 - RESISTÊNCIA DOS MATERIAIS II 1º Semestre de 2014 – Turma B TESTE III - 16/04/2014

NOME DO ALUNO:	RA:	Assinatura:	
NOME DO ALUNO:	RA:	Assinatura:	

QUESTÕES:

- 1) Um suporte conectado por pinos ABC é composto de duas barras do mesmo material com seções transversais idênticas. O ângulo entre as duas barras é de 90° e o ângulo entre a barra AB e a horizontal é β . Um carregamento P é aplicado na junta em um ângulo θ com prolongação da linha AB. O ângulo θ deve variar de 0 a 90° .
 - a) Assumindo que a falha ocorra por flambagem de Euler das barras, obtenha uma fórmula para o ângulo θ (em termos de β) de tal forma que o carregamento P tenha seu maior valor.
 - b) A partir da fórmula, calcule θ para um suporte de $\beta = 60^{\circ}$.

Figura da questão 1.

2) Para o estado de tensão descrito abaixo, determine as tensões principais e suas direções.

$$\sigma_x = -18 \text{ MPa}$$
 $\sigma_y = -30 \text{ MPa}$ $\sigma_z = 12 \text{ MPa}$

3) Calcule o momento de um tubo horizontal, imerso em fluido, no ponto a. Este tubo está engastado na parede do tanque. O fluido possui densidade ρ_f e o tubo ρ_s . Considere os efeitos da força de pressão nas paredes interna e externa do tubo, assim como, os efeitos da força de pressão na extremidade aberta do tubo.

Figura da questão 3.