

Computer Performance

Dr. Heng Yu

AY2023-24, Spring Semester
COMP1047: Systems and Architecture
Week 1

Outline

Timing Performance

Other Performance Metrics

Response Time and Throughput

- Response time (execution time)
 - The total time for the computer to complete a task
- Throughput (bandwidth)
 - The number of tasks completed per unit time
- How are response time and throughput affected?
 - Replacing the processor with a faster version?
 - Improves both response time and throughput
 - Adding more processors?
 - Improves throughput

Measuring Performance

Response time

- Total time to complete a task, including all aspects:
- · Disk accesses, memory accesses, I/O activities, CPU time, etc.
- CPU execution time (CPU time)
 - The actual time the CPU spends computing a specific task
 - Does not include time spent waiting for I/O or running other programs
 - Can be further divided into
 - User CPU time: the CPU time spent in a program itself
 - System CPU time: the CPU time spent in the OS performing tasks on behalf of the program

Relative Performance

• To maximize performance, we want to minimize execution time, then we can relate performance and execution time for a computer X as

• Computer X is n times faster than computer Y, then their relative performance n is

• Question: If Computer A runs a program in 10 secs and Computer B runs the same program in 15 secs, which one is faster? And by how much?

Relative Performance

• To maximize performance, we want to minimize execution time, then we can relate performance and execution time for a computer X as

• Computer X is n times faster than computer Y, then their relative performance n is

- Question: If Computer A runs a program in 10 secs and Computer B runs the same program in 15 secs, which one is faster? And by how much?
- Computer A is 1.5 times as fast as Computer B
 - Or say "A is 50% faster than B"

CPU Clocking

- Computers are constructed using a clock that determines when events take place in hardware
- The clock signal is produced by an external oscillator circuit that generates a consistent number of pulses each second in the form of a periodic square wave
- One clock cycle (clock tick): the unit of the CPU clock. It must be constant as CPU clock runs.
- Clock period: the time spend to run one clock cycle.

CPU Clocking

- One clock cycle (clock tick): the unit of the CPU clock. It must be constant as CPU clock runs.
 - e.g. $250ps = 0.25ns = 250 \times 10^{-12}s$ (ps: picosecond)
- Clock rate (clock frequency): cycles per second, which is the inverse of the clock period
 - e.g. $4.0 \text{GHz} = 4000 \text{MHz} = 4.0 \times 10^9 \text{Hz}$
 - Clock frequency = 1/Clock period

• A simple formula relates CPU clock cycles and CPU clock period to CPU time

CPU Time = #CPU Clock Cycles × Clock Period
=
$$\frac{\text{#CPU Clock Cycles}}{\text{Clock Rate}}$$

- The performance can be improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - But they can not be altered arbitrarily needs to adhere to circuit limitations.

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time to run a program.
- Build Computer B
 - Aim for 6s CPU time to run the same program
 - Can do a faster clock, but it requires 1.2 times as many clock cycles as computer A (Clock Cycles_B = 1.2 x Clock Cycles_A)
- Question: What clock rate should we tell the designer to target on Computer B?

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time to run a program.
- Build Computer B
 - Aim for 6s CPU time to run the same program
 - Can do a faster clock, but it requires 1.2 times as many clock cycles as computer A
 (Clock Cycles_B = 1.2 x Clock Cycles_A)
- Question: What clock rate should we tell the designer to target on Computer B?

Clock Rate_B =
$$\frac{\text{Clock Cycles}_B}{\text{CPU Time}_B}$$

Clock Cycles_A = CPU Time_A × Clock Rate_A
= $10s \times 2GHz = 20 \times 10^9$
Clock Rate_B = $\frac{1.2 \times 20 \times 10^9}{6s} = \frac{24 \times 10^9}{6s} = 4GHz$

Instruction Performance

- The computer needs to execute the instructions to run the program, and the execution time should depend on the number of instructions in a program
- Clock cycles per instruction (CPI): the average number of clock cycles each instruction takes to execute
- The number of clock cycles required for a program is

```
CPU Clock Cycles = Instruction Count \times CPI
```

- The instruction count for a program
 - Determined by program, compiler, etc.
- CPI
 - Determined by how you design the CPU

```
hanoi: addi $a0, $a0, -1
bne $a0, $zero, hanoi_1
addi $v0, $zero, 1
j return
hanoi_1: jal hanoi
sll $v0, $v0, 1
addi $v0, $v0, 1
return: jr $ra
```


The Classic CPU Performance Equation

CPU Time = CPU Clock Cycles
$$\times$$
 Clock Period
= $\frac{\text{CPU Clock Cycles}}{\text{Clock Rate}}$

CPU Clock Cycles = Instruction Count \times CPI

Use Instruction Count, CPI, Clock Period or Clock Rate to describe the CPU Time

CPU Time = Instruction Count
$$\times$$
 CPI \times Clock Period =
$$\frac{Instruction Count \times CPI}{Clock Rate}$$

CPI Example

- Two computers
 - Computer A: Clock Period = 250ps, CPI = 2.0
 - Computer B: Clock Period = 500ps, CPI = 1.2
 - · Same program X
- Which computer is faster to run X, and by how much?

CPI In More Details

• Typically different instruction classes take different numbers of cycles

$$Clock Cycles = \sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

Average CPI

$$CPI = \frac{Clock Cycles}{Instruction Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction Count_i}{Instruction Count} \right)$$

Exercise

• A compiler designer is trying to decide between two instruction sequences for a particular computer. The CPI for each instruction class and the instruction counts (IC) for each instruction class are given as

Class	Α	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

Question: What is the average CPI for each sequence?

Exercise

• A compiler designer is trying to decide between two instruction sequences for a particular computer. The CPI for each instruction class and the instruction counts (IC) for each instruction class are given as

Class	А	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- · Question: What is the average CPI for each sequence?
- Sequence 1: instruction count = 5
 - Clock Cycles
 = 1×2 + 2×1 + 3×2
 = 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: instruction count = 6
 - Clock Cycles= 1×4 + 2×1 + 3×1= 9
 - Avg. CPI = 9/6 = 1.5

Performance Summary

• The basic components of performance and how each is measured

Components of performance	Units of measure
CPU execution time for a program	Seconds
Instruction count	Instructions executed for the program
Clock cycles per instruction (CPI)	Average number of clock cycles per instruction
Clock cycle time (period)	Seconds per clock cycle

• The big picture

CPU Time = Instruction Count \times CPI \times Clock Period

Other Important Metrics

Power & Energy

- Dynamic power: P=0.5*CV²f
 - C: effective capacitance
 - V: voltage
 - f: frequency, usually linear with V
- Doubling the clock frequency consumes more power than a quadcore processor!
- Static/Leakage power becomes the dominant factor in the most advanced process

technologies.

- Power is the direct contributor of "heat"
 - Packaging of the chip
 - Heat dissipation cost
- Dynamic energy = P * t
 - Battery life is related to energy
 - · Lower power does not necessarily mean better battery life

Other Important Metrics

Bandwidth

- The amount of work (or data) during a period of time
 - Network or Disks: MB/sec, GB/sec, Gbps, Mbps
 - Game or Video: Frames per second
- Also called "throughput", but with subtle differences
- "Work done" / "execution time"

Reliability

- Mean time to failure (MTTF)
 - Average time before a system stops working
 - Very complicated to calculate for complex systems
- · Hardware can fail because of
 - Electromigration
 - Temperature
 - High-energy particle strikes

Summary

- Concepts of and basic factors that affect response time and bandwidth.
- Relative performance that is used to compare performance of different computers.
- Concepts and calculation of CPU time related factors.
- Concepts and calculation of CPI related factors.
- Knowledge of other performance metrics.

Stay Tuned.