This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int Cl.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

4 attachment

- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE TR
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988
- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Mizoguchi, Hiroshi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

- Ando, Selko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochlai, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shl, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4
 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

Descripti n

20

35

55

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

15 [0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as Escherichia coli, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

25

30

40

45

50

55

[0009] An object of the present invention is to provide a phynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

15 BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result f th hybridizati n.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the econd polynucleotides, at least two if the third polynucleotides, or at least two if the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The p lypeptide according to (16) r (17), where in at least one amine acid is deleted, r placed, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, inserti n radditi n.

- (19) A polypeptide comprising an amino acid sequence having a horn logy of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information into a using report in the results of the

(ii) at least temporarily storing said information;

5

10

15

20

25

30

35

40

45

50

55

- (iii) comparing the at least one amino acid sequence inf mation selected from SEQ ID NOS:3502 to 7001 with the target sequence r target structure motif information; and
- (iv) screening and analyzing amino acid sequince information which is coincident with or analogous tilthe target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
 - (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
 - (31) The system according to any one of (23), (25), (27) and (29), wherein a corynific meta-cordinate a micro-creation according to any one of (23), (25), (27) and (29), wherein a corynific meta-cordinate are correctly according to any one of (23), (25), (27) and (29), wherein a corynific meta-cordinate are correctly according to any one of (23), (25), (27) and (29), wherein a corynific meta-cordinate are correctly according to any one of (23), (25), (27) and (29), wherein a corynific meta-correctly accordinate are correctly according to any one of (23), (25), (27) and (29), wherein a corynific meta-correctly according to any one of (23), (25), (27) and (29), wherein a corynific meta-correctly accordinate according to any one of (23), (25), (27) and (29), (27)

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The method according to any on f (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
- (37) The recording medium or storage device according to

10

15

20

25

30

35

40

45

50

55

- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homosenine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and
 - recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) xamining productivity by the fermentation method of the comp und selected in (i) of the coryneform

2.

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according t (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a seccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a corynetorm bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a corynef rm bact rium of any one of (60) to (62) in a m dium to produce and accumulat at least

ne compound selected from an amin acid, a nucleic acid, a vitamin, a saccharide, an rganic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(I) preparing

10

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

15

20

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

*2*5

30

35

45

50

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

[0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.

- 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium flavum ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of corynef rm bact ria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the lik which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmoV Tris hydrochloride, 25 mmoV tethylenediaminetetraecetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

20

35

55

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning, A laboratory Manual,* Second Edition (1989) (hereinafter referred to as "*Molecular Cloning,* 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 μl of the ligation solution. Examples of the transformation method include the electrop ration method using ELECTRO MAX DHIOB

(manufactured by Lif Technologies) for Escherichia coli. The lectroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread in a suitable selection medium containing agar, fir example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-B-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time

5 (3) Production of cosmid library

20

35

45

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with SauSAI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) t amplify the inserted fragments.

[0059] The excessiv prim is and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as thi template in thi sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the templat can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

5

15

30

35

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 µl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

50 [0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both inds if the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of the compared with the contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of the compared with the contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of the compared with the contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of the compared with the contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of the compared with the contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of the cosmids are compared with known physical maps to map the cosmids are compared with known physical maps to map the cosmids are compared with known physical maps to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the cosmids are compared with known physical map to map the c

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

25

30

35

45

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the xpression of a sequence of the EMF. Examples of the EMF include a promoter, an operator, an

enhancer, a sil noer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In corynef m bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is als possiblit determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software in comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA*, 85: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

20

30

50

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym.*, 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBanknr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF inf rmation derived from corynef rm bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed.

r th lik. Specifically, an oligonucleotide having a nucleotide sequence adjacent tithe ORF is synthesized, and th ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

10

50

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analog us ligonucleotides in which a phosphodiester

bond in an ligonucleotide is convirted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an ligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an iligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiaz luracil, analogous iligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polypucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

15

20

30

35

50

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants if coryn if im bacteria which ar suitable for the production of us full substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improv the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a hysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which profine at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.
[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the tysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the tysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the tysine-producing B-6 strain was returned to a wild type amino acid sequence, the tysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of tysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

10

15

20

30

35

50

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as falling to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maint nance, and the like, and, in its

turn, levating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a tysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables tysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and tysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to tysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

15

20

35

45

55

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a selid support to the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a selid support to the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a selid support to the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a selid support to the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a selid support to the nucleotide sequence of the polynucleotide is adhered; and the nucleotide sequence of the polynucleotide is adhered; and the nucleotide sequence of the nucl

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any on of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continu us bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention includ substrates known in the art, uch as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polytysine or the like has been adhered (*Nat. Genet., 21*: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

25

30

45

50

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

 (a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amin acid, a nucl ic acid, a vitamin, a saccharide, an rganic acid, or the lik can be identified and the gene

expression am unt and the xpression profile thereof can be analyzed.

20

40

45

50

[0167] The nucleic acid melecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like, mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

[0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending in the type of the recording medium.

and the access device utilized. Also, various data processing programs, software, comparator and filmats are used for recording and utilizing the polynucleotide sequence information or the liking of this present invention in the recording medium. This information can be expressed in the firm of a binary file, a text file in an ASCII file formatted with committee and accessing the sequence information is available and known to one of indinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

9. System based on a computer using the recording medium of the present invention which is readable by a computer

20 [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

[0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;

25

50

55

- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, to fix a conyneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteom analysis. The term "homologs" as used herein includes both of orth logs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

10

20

25

45

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{trp}), *lac* promoter, P_L promoter, P_R promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{trp} \times 2$), *tac* promoter, *lac*T7 promoter *left* promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] On f rdinary skill in the art will appreciate that the codons of the ab ve-described lem nts may be opti-

mized, in a known manner, depending on the host cells and nvironmental conditi ns utilized.

10

25

30

[0207] Examples of the host cell include microorganisms bell nging to the genus Escherichia, the genus Serratia, the genus Becillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blu., Escherichia coli XL2-Blu., Escherichia coli XL2-Blu., Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

50 [0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)), the method described in Virology, 52: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors*, *A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacur virus ar simultaneously insert d into insect cells

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus texpress the pelypeptide.

[0220] Examples of the gen introducing vector used in the method include pBlueBac4.5, pVL1392; pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.

[0222] Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

[0224] When plant cells are used as the host cells, examples of expression vector include a TI plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

20

35

40

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as Escherichia coli or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] When a micr rganism transf rmed with a recombinant vector containing an inducible prom ter is cultured,

an inducer can be added to the medium, if necessary.

20

[0240] For example, isopropyl-β-D-thiogalactopyranosid (IPTG) or the like can be added to the medium when a microorganism transf rmed with a recombinant vector containing *lac* promoter is cultured, r indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transfermed with an expression vector containing *trp* prometer is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

15 [0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by brieding a transgenic nonhuman animal to which the DNA encoding the pilipeptide of this present invention has been inserted to private and accumulate the polypeptide in the animal, and recovering the polypeptide from this animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unixamined Patint Application No. 309192/88), eggiand the like of the animal. Any promoter can be used, along as it can be expressed in the animal. Suitable examples include an occase in promoter, a (β -case in promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15: 45* (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

10

20

30

[0262] The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. In vitro translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] Th polypeptide obtained by the ab ve m thod is within the scope of the polyp ptide of th pres nt inv nti n,

·:

and examples includ a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any ne of SEQ ID NOS:3502 to 6931.

replaced, inserted in the amino acid sequence if the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10: 6487 (1982), Proc. Natl. Acad. Sci. USA, 79: 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

15

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, r the like.

[0280] Also, the polypeptide of the present invintion can be produced by a chemical synthesis method, such as Frnoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyl xycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, P rSeptive, Shimadzu Corporation, or tholia.

[0281] The transfermant of the present invention can be used for bjects the rithan the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector *et al.*, *Cells/a laboratory manual*, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

10

20

25

30

40

45

55

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used fir the immunization, and the sirum is is lated and purified to obtain a polyclonal antibody.

[0293] Examples f th method f r the isolati n and purification includ centrifugation, salting out by 40-50% saturated ammonium ulfat , caprylic acid precipitati n (Antibodies, A Laboratory manual, Cold Spring Harbor Laborat ry (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- r G-column, a gel filtrati n column, and the like, all n r in combination thereof, by m thick show to those of rdinary skill in the art.

(2) Production of monoclonal antibody

5

30

- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the

spleen is excised.

[0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

[0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.

(b) Preparation of myeloma cells

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10⁻⁵ mol/l 2-mercaptoethanol, 10 µg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 µg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10⁻⁴ mol/l hypoxanthine, 1.5×10⁻⁵ mol/l thymidine and 4×10⁻⁷ mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like. [0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present in its selected as a hybridoma capable of producing a monoclonal antibedy of the present

invention.

5

10

30

40

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a menoclonal antibody of the present inventien.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10⁶ to 20×10⁶ cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

5 [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

[0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Engage (1985); Engage (1985); Engage (1985); Engage (1986); Engage (

Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

- 12. Production and use of polypeptide array
- (1) Production of polypeptide array

(3317) A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth. Enzym.*, 34 (1974); *Advances in Experimental Medicine and Biology*, 42 (1974); U.S. Patent 4;681,870; U.S. Patent

4,282,287; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invintion tith solid support at a high density, though a high fixation density is not always necessary.

(2) Use f polypeptid array

10

15

25

30

35

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array term which the polypeptides of the present invention have been adhered to the array can be identified using the polypeptide array term which the polypeptides of the present invention have been adhered to the array can be identified using the polypeptide array term to polypeptides of the present invention have been adhered to the array can be identified using the polypeptide array term to polypeptides of the present invention have been adhered to the array can be identified using the polypeptide array term to polypeptides of the present invention have been adhered to the array can be identified using the polypeptide array term to polypeptides of the present invention have been adhered to the array can be identified using the polypeptide array term to polypep

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of co-
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

- [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.
- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensinal electrophoresis means an electrophor tic method which is pinformed by combining two

electroph retic procedures having different principles. For example, polypeptides are separated depending in milectular wight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information if the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

Example 1

20

25

30

40

45

55

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chl r form wer carried out successively in the sam manner as th above. Th genom DNA was subjected to iso-

ì

propanol precipitation. The thus formed genom DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer t giv a gen m DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

30

35

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrytamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

25 (3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with Sau3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the *Bam*HI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into *Escherichia coli* XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The *Escherichia coli* was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

45 [0347] The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino *et al.* (*DNA Research*, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucl tide sequences w r determined using a double-strand d DNA plasmid as a templat .

[0352] The double-stranded DNA plasmid as the templat was obtained by the following method.

[0353] The clon derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2x YT medium (16 g/l bact trypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

10

20

25

30

45

5 [0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.

[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective and of the inserted fragment in two contigs was identified, the full nucleotide sequence

f the inserted fragment of this clon was determined, and thus the nucleotide sequence of the gap part was determined. When n shotgun library clone r cosmid clon covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a templat or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

10

15

20

30

35

40

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

EP 1 108 790 A2

	Function	replication initiation protein DneA		DNA polymerase III beta chain	ONA replication protein (recF protein)	hypothetical protein	ONA topoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524		390	392	174	704					422			854	112	329	268		265	155	117
	Similarity (%)	9.66		81.8	79.9	58.1	6.88					50.7			198.1	9.69	63.5	62.3		57.4	64.5	70.1
	identity (%)	99.8		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
Table 1	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobader capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		Sp:DP3B_MYCSM	sp:RECF_MYCSM	\$p:YREG_STRCO	pir:S44198					sp:YV11_MYCTU			\$P:GYRA_MYCTU	pir.E70698	Sp:YEIH_ECOLI	gp:A8042619_1		gp:AF156103_2	pir:A49232	pir.F70664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	4 14	1071	281	248	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8798	10071	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2522	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ SO G. S. S. C.	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO.	2	3	4	2	6	^	8	65	은	Ξ	5	13	4	15	5	17	₽	19	2	21	22

5

EP 1 108 790 A2

					-	 1			$\overline{}$		— т						اء	_	4	\neg
5		Function	hypothelical membrane protein	2,5-diketo-D-gluconic acid reductase	5-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) diclirate transport ATP. biding protein	sugar ABC trensporter, periplesmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
15		Matched length (a.a.)	321	28	198	270	51	139	217		449	311	266	222	283	312	238	347	169	228
20		Similarity (%)	8.03	88.5	56.1	58.7	72.6	79.9	80.8		54.1	63.7	74.1	70.3	56.5	68.3	78.7	44.4	6.69	53.1
		Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		28.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
25	ntinued)	gene	96	. ATCC	icus nutA	urans	latum ORF1	estris	dans recG		evislae. 11	pathiae	enes SF370	2 fecE	a MSB8	2 rbsC	rbsA	8	ae H37RV	yagP
30	Table 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae. S288C YIR019C sta1	Erysipelothrix rhuslopathlae ewlA	Streptococcus pyogenes SF370 misC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yqgP
40		db Match	gp:MLCB1788_6 N	pir.140838	Sp:5NTD_VIBPA		prf.2513302C	prt.2413353A	SP. RECG_THIFE		SP.AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp.FECE_ECOLI	pir:A72417	prf. 1207243B	sp.RBSA_BACSU	pir.151116	sp:CYPA_MYCTU	sp:YQGP_BACSU
		ORF (bp)	993	180	528	1238	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	687
45		Terminal (nt)	21065	21074	22124	23399	23815	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
50		Initial (nt)	20073	21253	21597	22164	23778	24295	26297	26338	28099	29117	29965	29995	30697	31677	32699	34280	34339	34982
		SEQ NO (a.e.)		3524	3525	3528	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
55		SEQ NO.	23	24	25	26	27	28	23	8	3.	32	33	34	35	98	37	38	39	용

EP 1 108 790 A2

	_									_												
5		Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprolein phosphatase	hypothetical protein	hypothelical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
15		Matched length (a.a.)	332 fe		253 A	260 V	95 h	648 \$	486	492 p	375	469 p	155 h	528 h					117 p	490 d	242 h	282 h
20		Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	9 59	70.8	66.5	38.8					63.3	78.2	57.0	64.1
		identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.8					29.9	46.7	27.3	29.0
25	Table 1 (continued)	eueb sr	12 fepG		ပ္ခ	O6-24 viuB	berculosis	prae pknB	licolor pksC	eus pbpA	38 spoVE	berculosis	berculosis	berculosis					ineum ATCC	12 gabD	Ť	snnaschii
30	Table 1 (c	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae vluC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 48490	Escherichla coll K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschil MJ0441
35				-								ΣI	ΣI	≥ I							\vdash	
40		db Match	sp:FEPG_ECOL		gp:VCU52150_9	sp:ViUB_VIBVU	sp:YO11_MYCTU	SP. PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	sp:SP5E_BACSU	pir:H70699	plr.A70700	plr:870700					sp:PH2M_TRICU	sp:GABD_ECOLI	SP.YRKH_BACSU	sp:Y441_METJA
		ORF (bp)	978	966	111	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
45		Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43928	45347	46669	48024	48505	49455	49897	50754	99609	54008	51626	55546	55629
50		Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
		SEQ NO.	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
55		SEQ NO.		42	43	44	45	46	47	48	49	20	51	52	53	54	55	58	57	88.	59	9

EP 1 108 790 A2

Table 1 (continued)			_													_	_					
SEG Initial Terminal ORF Charlet Continued Table 1 (continued) Terminal ORF Charlet Char		Function	hypothetical protein	sypothetical protein	nypothetical protein		hypothetical protein			magnesium and cobait transport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-Isomer specific 2-hydroxyacid dehydrogenase
SEC Initial Terminal ORF db Match Homologous gene (4chilly NO (int) (int) (bp) Sec	15		寸				\exists					\neg						497	563		229	293
SEO Initial Terminal ORF Gb Match Teable 1 (continued)	20	Similarity (%)	74.3	70.4	83.9		20.7			59.5		64.8	53.1	0.09				88.8	80.8		63.3	73.7
SEC Initial Terminal ORF db Match Homologous gene (nt) (Identity (%)	40.5	36.3	53 2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
SEQ Initial Terminal ORF db Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	_			803	sis		=			osis		4 clcb	punc	siso					8		~	mooir
SEO Initial Terminal ORF db Match (a.s.) (nt) (nt) (nt) (bp) (dp) 3561 56676 56386 291 sp.YRKF_BACSU 3562 57270 56680 591 sp.YC61_SYNY3 3563 57478 57651 174 pir.G70988 3564 58087 58930 840 gp.LMFL4768_11 3565 59952 60862 711 pir.G70988 3576 64080 62321 1653 3569 64040 63594 447 3570 64190 65458 1269 gp.AF179611_12 3571 66197 65508 690 sp.PHOL_MYCTU 3572 66851 67972 1122 sp.PHOL_MYCTU 3573 68170 68301 132 3574 66834 68251 384 3575 69060 69824 765 3576 70186 68720 1467 sp.CITM_BACSU 3577 70506 72158 1653 sp.DPIB_ECOLI 3578 72043 71474 570 3580 73728 72817 912 gp.AF134895_1		Homologous gene	Bacillus subtills yrkF	Synechocystis sp. PCC6i str1261	Mycobacterium tuberculo H37Rv Rv1766		Leishmania major L4768			Mycobacterium tuberculd H37Rv Rv1239c corA		Zymomonas mobilis ZMA	Salmonella typhimurium	Mycobacterium tuberculo H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpi		Escherichia coll K12 crlF	Corynebacterium glutam unkdh
SEQ Initial Terminal Condition (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt		db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11						Sp:PNUC_SALTY	sp:PHOL_MYCTU					1		sp:DPIA_ECOLI	
SEQ Initial Termina (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	291	591	174	855	840	711	1653	1118	447	1269	980	1122	132	384	765	1467	1653	570	654	912
SEQ NO	15	Terminal (nt)	56386	56680	57651	58941	59930	60662	62321	62390	63594	65458	62208	67972	68301	68251	69824	68720	72158	71474	72814	72817
	50	initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	1	1	66851	68170	68634	09069	!	70506	72043		<u> </u>
SEON NO. (ONA) N		SEQ NO Sec	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
	55	SEQ NO.	6	62	63	8	65	99	67	88	69	2	7	72	73	74	75	92	11	28	2	80

																_					
	Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacyiglycerol lipase	triacyiglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit	
	Matched length (a.a.)	127	334	43	85		42	84	507	394			279	251	262		171	100	162	570	
	Similarity (%)	76.4	99.7	79.1	63.5		75.0	98.0	59.0	8.66			50.2	29.0	58.1		84.7	100.0	100.0	100.0	
	Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bloB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chiamydia muidarum Nigg TC0129	Chlamydla pneumonipe	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC	
	db Match	gp:SCM2_3	sp:BIOB_CORGL	pir:H70542	sp:YKI4_YEAST		PIR:F81737	GSP:Y35814	prf.2512333A	gp D38505_1			sp:HST2_YEAST	prf.2316378A	prf 2316378A		gp:AB029154_1	gp:A8029154_2	gp:CGL251883_2	gp.CGL251883_3	
	ORF (bp)	429	1002	237	339	117	141	273	1449	1245	306	815	924	972	006	888	513	300	486	1710	
	Terminat (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85038	85863	87241	87561	88545	90445	90461	91473	91988	93701	
	Initial (nt)	73844	74490	75508	75697	76353	80753	81274	83568	84935	85403	86277	86318	88532	89444	89558	90973	91174	91503	91992	
	SEQ NO.	3581	3582	3583	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599]
	SEQ		82	83	84	85		87		1	1	91		83	ī	1	96	97	9.6	66	

EP 1 108 790 A2

	Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/PSC dehydrogenase		aryl-alcohol dehydrogenese (NADP+)	pump protein (transport)	Indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
	Matched length (a.a.)	157	226	205	283	279		347			898	481		196		1297		338	513	352		106	 - -
	Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
	identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	38.5	23.0		35.9	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vimF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhlmurium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobactor agglomerans		Escherichia coli K12 yidH	
	db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf:2318328B		gp:AF148322_1			sp:HTPG_ECOLI	sp:AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		Sp: AAD_PHACH	sp:YDAH_ECOLI	pri:2422424A		sp:YIDH_ECOLI	
	ORF (bp)	471	678	615	849	111	609	1152	675	2775	1824	1418	579	552	999	3458	114	945	1614	1332	669	366	315
	Terminal (nt)	94199	94879	95513	96365	89896	98189	97319	100493	80886	101812	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
	Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	108392	107289	107435	111161	111374	112470	114147	115262	115578	115949
	SEQ NO.	3600	3801	3602	3603	3604	3605	3606	3607	3808	6090	3610	3811	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
	SEQ NO. (DNA)	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121

EP 1 108 790 A2

Secondary Seco
Second Initial Terminal ORF Continued Table 1 (continued) Terminal ORF Continued C
Secondary Seco
SEQ Initial Terminal ORF db Malch Homologous gene (a.a.) (int) (int)
SEC Initial Terminal ORF db Match (a.s.) 3623 119589 116548 2052 3624 120021 120413 510 sp. ACCR_AGRTU (a.s.) 3624 120021 120413 510 sp. ACCR_AGRTU (a.s.) 3626 122459 120951 1509 prt.2309180A (a.s.) 3626 122459 120951 1509 prt.2309180A (a.s.) 3627 123841 122507 1335 prt.2309180A (a.s.) 3628 12459 126350 1419 sp. XYLB_STRRU (a.s.) 3629 124130 124966 837 sp. GATR_ECOLI (a.s.) 3639 124130 124966 837 sp. GGPAN_1 (a.s.) 3631 127171 127992 822 (a.s.) 3631 137188 132424 627 (a.s.) 3638 131798 132971 1143 sp. XYLR_BACSU (a.s.) 3631 13578 132971 1143 sp. XYLR_BACSU (a.s.) 3641 135478 134207 1272 gp. LLLPK214_12
SEC Initial Terminal ORF db Match (a.s.) 3623 119589 116548 2052 3624 120021 120413 510 sp. ACCR_AGRTU (a.s.) 3624 120021 120413 510 sp. ACCR_AGRTU (a.s.) 3626 122459 120951 1509 prt.2309180A (a.s.) 3626 122459 120951 1509 prt.2309180A (a.s.) 3627 123841 122507 1335 prt.2309180A (a.s.) 3628 12459 126350 1419 sp. XYLB_STRRU (a.s.) 3629 124130 124966 837 sp. GATR_ECOLI (a.s.) 3639 124130 124966 837 sp. GGPAN_1 (a.s.) 3631 127171 127992 822 (a.s.) 3631 137188 132424 627 (a.s.) 3638 131798 132971 1143 sp. XYLR_BACSU (a.s.) 3631 13578 132971 1143 sp. XYLR_BACSU (a.s.) 3641 135478 134207 1272 gp. LLLPK214_12
SEC Initial Terminal ORF db Match (a.s.) 3623 119589 116548 2052 3624 120021 120413 510 sp. ACCR_AGRTU (a.s.) 3624 120021 120413 510 sp. ACCR_AGRTU (a.s.) 3626 122459 120951 1509 prt.2309180A (a.s.) 3626 122459 120951 1509 prt.2309180A (a.s.) 3627 123841 122507 1335 prt.2309180A (a.s.) 3628 12459 126350 1419 sp. XYLB_STRRU (a.s.) 3629 124130 124966 837 sp. GATR_ECOLI (a.s.) 3639 124130 124966 837 sp. GGPAN_1 (a.s.) 3631 127171 127992 822 (a.s.) 3631 137188 132424 627 (a.s.) 3638 131798 132971 1143 sp. XYLR_BACSU (a.s.) 3631 13578 132971 1143 sp. XYLR_BACSU (a.s.) 3641 135478 134207 1272 gp. LLLPK214_12
SEO Initial Terminal ORF (a.e.) (nt) (nt) (nt) (bp) (a.e.) (nt) (nt) (bp) (bp) (a.e.) (nt) (nt) (bp) (bp) (a.e.) (nt) (nt) (bp) (a.e.)
SEO Initial Terminal (nt) 3622 118599 116548 3623 119589 116548 3624 120021 120410 3625 120922 120413 3626 122459 120951 3627 123841 122507 3628 123842 124030 3629 124130 124968 3630 124932 126350 3631 127171 127992 3633 128004 127192 3634 129049 128099 3635 130118 129489 3635 130148 132921 3636 131738 130815 3636 131738 132971 3641 135478 135518
SEO Initial NO. (nt) (a.s.) (nt) (a.s.) (nt) 3622 118589 3623 119589 3624 120021 3626 120459 3627 123841 3629 124130 3639 124130 3639 127189 3635 130118 3635 130145 3631 131738 3641 131738 3641 131738 3641 1318565
SEO NO. (DNA) 122 123 124 125 125 130 130 131 131 131 131 131 131 131 131

EP 1 108 790 A2

	Function				cellulose synthase	hypothetical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threanine efflux protein	hypothetical protein	doxorubicin blosynthesis enzyme
•	Matched length (a.a.)				420	593				303	198			381	248			829		188	219	166	217	55	284
	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	60.7	65.1	61.3	72.7	52.1
	Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Table 1 (conlinued)	Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarO	Escherichia coli K12 yadS			Escherichia coll K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. vicias plasmid pRL1J1 nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
	db Match				pir:139714	sp:HKR1_YEAST				sp.RARD_PSEAE	Sp. YADS_ECOLI			Sp. ABRB_ECOLI	sp:YFCA_ECOLI			sp.HRPB_ECOL!		SP. NODL_RHILV	SP. ALKB_ECOLI	SP.3MG1 ECOLI	SP.RHTC ECOLI	Sp:YAAA BACSU	prt 2510326B
	ORF (bp)	1941	1539	636	1461	1731	621	1065	758	879	717	333	1659	1137	798	624	405	2388	315	675	9	525	678	291	852
	Terminal (nt)	138744	140329	139226	141789	143528	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	
	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614			
	SEO NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
	SEQ NO.	144	145	146	147	148	149	150	151	152	153	154	155	158	157	158	159	160	161	162	163	164	165	166	167

EP 1 108 790 A2

ſ	1			_	7	- 1					$\overline{}$													Į
	Function	methyltransferase				ribonuciease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dahydrogenase	myo-inositol catabolism	myo-inositoi catabolism	rhizopine catabolism protein	myo-inosital 2-dehydrogenese	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase		
	Matched length (a.e.)	104				118			722		238	332	296	498	268	286	280	335	287	457		354		
	Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	86.1	58.2	8.69	51.0	72.2	72.1	61.5		65.5		
	Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1		
Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Nelsseria meningitidis MC58 NMB0662			Mus musculus ni1		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis lofB	Bacillus subtilis iotD	Rhizobium mellioti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tomA		Bacillus subtills yvaA		
	db Match	gp:SPAC1250_3		·		gp:AE002420_13			gp:AF176569_1		Sp.FARR_ECOLI	pir.T14544	gp:SC8F11_3	prf.2204281A	sp:IOLB_BACSU	sp:IOLD_BACSU	Sp:MOCC_RHIME	sp:MI2D_BACSU	sp:IOLH_BACSU	sp:TCMA_STRGA		sp:YVAA_BACSU		
	ORF (bp)	342	930	657	933	405	639	741	2087	983	259	1017	921	1512	888	1728	954	1011	970	1374	621	1023	426	
	Terminal (nt)	160370	161360	162352	161363	162867	163603	186457	163689	167419	167837	189991	170916	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297	
	Initial (nl)	160029	160431	161696	162295	162463	162965	165717	165755	168457	168595	168975	169996	170933	172468	173548	175319	178308	177334	178285	179081	179689	180842	
	SEQ NO.	3668	3669	3670	3671	3672	3673	3674	3675	3678	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	
	NO NO	168	69	5	171	172	173	174	175	178	177	178	179	180	181	182	183	184	185	186	187	188	189	i

EP 1 108 790 A2

										01850								386	=	=			
	Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyitransferase		glucose-resistance amylase regulator regulator			D-xylose proton symporter		transposese (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate eminotransferase small subunit		hypothetical protein	
	Matched length (a.a.)		331	442	303		64			134		338			458		401	145	1510	909		88	
	Similarity (%)		61.9	52.5	64.7		92.2			58.2		62.1			70.5		100.0	60.7	100 0	9.66		72.8	
	Identity (%)		32.0	24.4	33.7		70.3			30.6		28.7			38.0		100.0	27.8	90.9	99.4		44.6	_
Table 1 (continued)	us gene		culi cebR	3R234 y4hM	E		elicolor A3(2)				-	срА			vis xylT		glutamicum	iti fixL	ı glutamicum	ı glutamicum		uberculosis	
Table 1 (Homologous gene		Streptomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Bacillus subtilis yfiH		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixt	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698	
	db Match		gp:SRE9798_1	SP Y4HM_RHISN	SP YFIH_BACSU		sp.CSP_ARTGO			prf.2113413A		sp.ccPA_BACSU			sp:XYLT_LACBR		gp:AF189147_1	SP:FIXL_RHIME	gp:AB024708_1	gp:AB024708_2		pir:C70793	
	ORF (bp)	384	993	1233	1011	429	201	534	308	414	426	066	402	240	1473	300	1203	435	4530	1518	240	1485	369
	Terminal (nt)	181647	181687	184051	185087	185642	186708	187302	187807	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	205956
	Initial (nt)	181264	182679	182819	184077	185214	186508	186769	187302	187687	188725	189736	189920	190628	192175	193248	193262	195038	195240	199772	201580	203244	205588
	SEQ NO (a a)	3690	3691	3692	3693	3694	3695	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
	SEO NO.	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	509	210	211

EP 1 108 790 A2

	Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase	uctase				proteaphosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigan export system permesse protein	hypothetical protein	NADPH quinone oxidoreductase
	_		arabinos	hypothet	acetoace	oxidoreductase				proteopt	hypothel		hypothe	rhamnos	-	hypothe	O-antigen expo binding protein	O-antige protein	hypothe	NADPH
	Matched tength (a.a.)		1122	651	223	464				350	124		208	302		214	236	282	416	302
	Similarity (%)		70.6	66.1	56.5	85.1				57.4	83.9		73.8	79.1		55.1	78.4	75.0	63.0	71.5
	Identity (%)		39.8	35.0	31.4	0.89				24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1
Table 1 (continued)	Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rbE		Agrobacterium tumefaciens plasmid pTI-SAKURA tion100	Yersinla enterocolitica rfbE	Yersinla enterocolitica rfbD	Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
	db Match		prf:2224383C	plr.D70697	prf:2504279B	pir:B70697				gp:LMA243459_1	sp:Y0GN_MYCTU		pir:H70666	plr.B70696	-	gp:AB016260_100	SP.RFBE_YEREN	SP.RFBD_YEREN	pir.F70695	gp:AF010309_1
	ORF (bp)	318	3471	1983	759	1464	234	202	453	1002	398	402	633	939	342	297	789	804	1173	954
	Terminal (nt)	206385	203541	207007	209210	208882	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
	Initial (nt)	206068	207011	208989	209968	211455	211768	211777	212283	212656	213712	214121	214527	216100	216264	216712	217929	218746	218979	221107
	SEQ NO (3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
	SEQ NO.	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230

EP 1 108 790 A2

	_					_									\neg					\neg
5		Function		probable electron transfer protein	er protein		motybdopterin biosynthesis protein moeB (suffurylase)	ynthase, large	molybdenum cofactor biosynthesis protein CB	sis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	ng periplesmic	molybdopterin converting factor subunit 1	irt protein	hypothetical membrane protein	hate se			
10		Ē		probable electro	amino acid carrier protein		molybdopterin bios moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum co protein CB	co-factor synthesis protein	molybdopterin c protein	hypothetical me	molybdate-binding periplesmic protein	molybdopterin c subunit 1	maltose transport protein	hypothetical me	histidinol-phosphate aminofransferase			
15	į	Matched length (a.a.)		78	475		368	150	158	154	377	227	258	96	365	121	330			
20		Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.8	80.8	76.9	65.8			
		Identity (%)		35.0	48.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
25	Table 1 (continued)	us gene		berculosis	sT		p. PCC 7942	inovorans	p. PCC 7942	linovorans	inovorans	linovorans	linovorans	berculosis	oralis mafK	elicolor A3(2)	ilis hisC			
30	Table 1 (c	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotlnovorans moaC	Arthrobacter nicolinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
35		db Match		PIR:A70606	sp.ALST_BACSU		gp:SYPCCMOEB_	prf 2403296D	SP:MOCB_SYNP7	prf:2403296C	gp:ANY10817_2	prf.2403296F	prf.2403296E	pir:D70816	prt.2518354A	sp:YPT3_STRCO	sp:HIS8_ZYMMO			
		ORF (bp)	582	297 P	1476 \$	606	1083	456	471 8	468	1185 g	723	804	321	912	420 \$	1023 \$	906	294	120
45		Terminal (nt)	221131	222207	222210	225244	225242	226312	226760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
50		Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842		233282	233913	235203	235290
		SEO SO (e.	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
		S S S	23	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

EP 1 108 790 A2

														_				_					_
5	Function	transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductese	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosytransferase	hypothetical membrane protein			ABC transporter	glutamyi-tRNA synthetase		transposase		
15	Matched length (a.a.)	252 tr	335 B	451 p	444 TT		267 N	317 0	ח 160	144 n			ה 799	400 q	203 h			526	316 g		380 tı		
20	Similarity (%)	57.1	0.89	38.1	68.5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
	identity (%)	29.4	34.0	21.5	30.9		33.2	46.1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
% Sable 1 (continued)	s gene	xyR	mophilus	ond su	ri mgtE			berculosis	berculosis	ponicum			berculosis mpL2	lis	ДÞ			scescens strW	×		Ingae tnpA		
8 Table 1 (c	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterlum tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtills ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35 4 0	db Match	gp:BAU81286_1 E	sp.ADH2_BACST	sp:PUO_MICRU	pri:2305239A		prf.2320140A	pir.C70800	pir:B70800	gp:RHBNFXP_1			sp.YV34_MYCTU	Sp.TGT_ZYMMO	sp:YPDP_BACSU			pir.S65588	sp.SYE_BACSU		gp:PSESTBCBAD_		
	ORF (bp)	762 91	1017	801	1350 p	174	1530 p	1020 p	522 p	417 g	201	351	2403 8	1283 s	738 s	1080	648	1437 p	8 678	066	1110 9	303	138
4 5	Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	258204
50	Initial (nt)	238212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256067
	SEO NO (*	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
55	SEQ NO.	249	250	251	252	253	254	255	256	257	258	259	260	761	262	263	264	282	266	267	. 268	269	270

EP 1 108 790 A2

extracytoplasmic function alternative sigma factor

189

63.5

31.2

Mycobacterium smegmatis sigE

prf.2312309A

579

273542

274120

3784

284

282

281

275871

vegetative catalase

76.4

52.9

Bacillus subtilis katA

276232

274366

3785

285

branched-chain amino acid transport

leucine-responsive regulatory protein

203

72.0

37.1

Klebsiella pneumoniae irp Bacilius subtilis 1A1 azIC

30.5

462 SP.LRP_KLEPN
753 SP.AZLC_BACSU

277581

275957

288

3787 276247

287

5		Function	aspartate transaminase		ONA polymerase III holoenzyme subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsilon chal	hypothelical membrane protein	sspartate kinase alpha chain			and the section of the section of the section of
15		Matched length (a.a.)	432		642		101	214	248	444	348	270	421			
20		Similarity (%)	100.0		53.1		74.3	72.4	61.7	60.6	55.2	100.0	99.8			i_
		Identity (%)	98.6		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			
25	Table 1 (continued)	Homologous gene	Brevibacterium lactofermentum aspC		ophilus dnaX		yaaK	recR	obilis cobQ	obilis murC	tuberculosis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha			
30	Table 1	Homolo	Brevibacterium aspC		Thermus thermophilus dnaX		Bacillus subtills yaak	Bacillus subtilis recR	Heliobacillus mobilis cobQ	Heliobacillus mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacteriu (Bravibacteriun 13032 orfX	Corynebacteriu lysC-alpha			
40		db Match	gsp:W69554		2325 gp. AF025391_1		Sp:YAAK_BACSU	sp:RECR_BACSU	prf:2503462B	pri.2503462C	1080 pir.H70794	867 sp:YLEU_CORGL	1283 sp.AKAB_CORGL			
		ORF (bp)	1296	630	2325 8	717	309	854	750		1080	198	1263	1053	1434	
45		Terminal (nt)	257894	258529	260875	258596	281295	262055	262546	263298	264599	268258	270633	269524	273194	
50		Initial (nt)	258599	257900	258551	259312	260987	261402			265678	269124	269371	270576	271781	
		SEO SO SO SO SO SO SO SO SO SO SO SO SO SO	3771	3772	3773	3774	3775	3776	3777	3778	3779	3780	3781	3782	3783	
																•

SEQ NO.

55

272 272 273 274

e tau

49

277

280

EP 1 108 790 A2

5

			_					_			_		_	_	_			_	_		
	Function			metalloregulatory protein	arsenic oxyanion-translocation pump membrane subunit	arsenate reductase				Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ entiporter	Na+/H+ antiporter or multiple resistance and pH regulation related protein A				transcriptional activator	two-component system sensor histidine kinase	aikaline phosphatase		phosphoesterase	hypothetical protein
	Matched length (e.g.)			06	341	119				203	119	824				223	521	180		307	149
	Similarity (%)			68.9	84.2	6.89				70.4	70.6	64.3				70.4	58.8	60.0		54.7	71.8
	Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.8	28.7	28.3		28.1	37.6
Table 1 (continued)	Homologous gene			Sinorhizobium sp. As4 arsR	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD	Staphylococcus aureus mnhC	Bacillus firmus OF4 mrpA			-	Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1383 apl		Bacillus subtilis ykuE	Bacillus subtilis yqeY
	db Match			gp:AF178758_1	gp:AF178758_2	sp.ARSC_STAXY				gp.AF097740_4	prf.2504285D	gp:AF097740_1			•	sp:czck_ALCEU	prf.2214304B	SP:APL_LACLA		pir:869865	sp:YQEY_BACSU
	ORF (bp)	324	315	345	1080	387	318	270	453	1530	381	2886	1485	603	864	999	1467	603	561	915	453
	Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949	281404	282937	283317	287857	287059	287966	289131	289777	292417	291273	292597	293991
	Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933	283317	286202	286373	199/87	288829		291243	291815	291833	293511	293539
	SEQ NO (e.e.)	3790	3791	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807	3808	3809
	SEQ NO.	280	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309

						Table 1 (continued)				
S O S	SEQ.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
_	3810	296388	294004	2385	prf.2209359A	Mycobacterium leprae pon1	48.3	77.1	782	class A penicillin-binding protein(PBP1)
11.	3811	297064	297402	339	pir:S20912	Streptomyces coalicolor A3(2) whiB	40.9	63.4	7.1	regulatory protein
2	3812	297431	297622	192						
313	3813	297631	297783	153	gp:SCH17_10	Streptomyces coelicolor A3(2) SCH17.10c	84.0	96.0	50	hypothetical protein
314	3814	297792	298250	459	pir:G70790	Mycobacterium tuberculosis H37Rv Rv3678c	65.1	89.9	149	transcriptional regulator
315	3815	299684	298332	1353	Sp.SHIA_ECOLI	Escherichia coli K12 shiA	37.3	68.9	440	shikimate transport protein
316	3816	300087	300695	609						
317	3817	301261	299726	1538	sp.LCFA_BACSU	Bacillus subtilis IcfA	31.1	59.9	534	long-chain-fatty-acid-CoA ligase
318	3818	302038	301512	525	gp:SCJ4_28	Streptomyces coelicolor A3(2) SCJ4.28c	33.9	65.4	127	transcriptional regulator
319	3819	302167	303099	933	sp:FABG_BACSU	Bacillus subtilis fabG	41.0	72.5	251	3-oxoacyl-(acyl-carrier-protein) reductase
320	3820	303133	304074	942	SP.FLUG_EMEN	Emericella nidulans fluG	27.2	52.0	254	glutamine synthetase
321	3821	304070	305283	1194	prf:2512388A	Arabidopsis thallana atg6	38.8	66.5	394	short-chain acyl CoA oxidase
322	3822	↓	305758	471	SP. NODN_RHILV	Rhizobium leguminosarum nodN	45.8	72.6	153	nodulation protein
323	3823	305858	306700	843	pir.F70790	Mycobacterium tuberculosis H37Rv Rv3877c	41.2	72.4	272	hydrolase
324	3824	306367	305195	1173						
325	3825	306800	307504	705						
376	3826	307462	306782	681	prf:2323348A	Vibrio cholerae crp	30.8	65.7	202	cAMP receptor protein
327	3827	307918	307727	192						
328	3828	307955	308734	78	Sp:UVEN_MICLU	Micrococcus luteus pdg	57.5	77.1	240	ultraviolet N-glycosylase/AP lyase
329	3829	308745	309302	558	plr:870790	Mycobacterium tuberculosis H37Rv Rv3673c	34.6	58.3	211	cytochrome c biogenesis protein
				j						

EP 1 108 790 A2

				_					Т	 -		1	Т	Т	П	Т		\neg		_
5	tlon				rane protein	sphatase	_	eglon protein		orene protein	c	c				NA helicase			1 06	
10	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protaln				ATP-dependent RNA helicase	cold shock protein		DNA topolsomerase	
15	Matched length (a.a.)	192	398	280	156	287	349	319		262	201	59				764	67		977	
20	Similarity (%)	56.3	71.0	52.1	17.6	65.5	60.2	66.5		63.7	64.2	84.8				68.1	88.1		81.6	
	identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5	_			33.8	68.7		61.7	_
25 (Den Li	ene	ваВ	ulosis	C12 cEH	sicolosis	- 6	ulosis	1		culosis	cutosts	sisono					nis SI55		culosis	
& Table 1 (continued)	Hamologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv367:c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis. H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SIS5 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
40	db Match	Sp. YEAB_ECOLI E	Pir:H70789	pri:2411250A	pir:F70789	pir.S72914	pir.E70788	pir.C44020		pir.C70798	pir.B70788	pir.A70788				sp: YPRA_BACSU	sp:CSP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	818	546	198	318	414	345	2355	201	225	2988	711
45	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318898	318958	318991	321690	322007	322216	322910	325904
	SEO NO (a. a.)		3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
55	SEQ.	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large aubunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent tormsidehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,8-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase	
	Matched length (a.a.)	263	423		144	172	314	558	101	362		160	251	415	320	108	230		280	586	
	Similarity (%)	62.4	52.7		29.0	63.4	0.58	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	88.5		57.3	54.4	
	identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	79.7	
Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacilius subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum Irakense salB	Amycolatopsis methanolica		Rhodacoccus erythropalls ort5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yefJ	Salmonella typhimurium ushA	
	db Match	SP.CYAB_STIAU	sp:DP3X_BACSU		gp. AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	SP. BGLX_ERWCH	gp: AF090429_2	Sp. FADH_AMYME		Sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir:A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	sp.USHA_SALTY	
	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338788	339725	340195	340569	342375	343451	345717	345814
	Initial (nt)	327735	328283	329748	329033	330973	331552	332919	332965	335009	335805			337539	-	340569	341327	341347	342417	343636	345975
	SEO NO (e.e.)	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
	SEQ NO.		350	351	352	353	354	355	358	357	358	359	360	361	362	363	364	385	366	367	368

EP 1 108 790 A2

0

	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide blosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase
	Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	90	394
	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	76.8	57.2	68.6		65.7	51.0	68.3
	identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
Table 1 (conlinued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A 19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter Johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus avreus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
	db Match		sp:ADH_MYCTU	SP:RFBA_SALAN	gp:D78182_5	SP.RMLB_STRMU	Sp:NOX_THETH	prf:2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A		gp:SCF43_2	gsp:W56155	prf:2404346B	prf:2404346A		sp:CAPD_STAAU	PRF:2109288X	prf.2423410L
	ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	803	984	1812	942	1155
	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
	Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355908	357228	359354	380334	361905	363151	363824	365250	365855	366832	368642	368647
	SEO NO.	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
	SEO NO.	369	370	37.1	372	373	374	375	376	1	378	379	380	381	382	383	384	385	386	387	388

EP 1 108 790 A2

	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis/ export protein	UDP-N-acetyiglucosamine 1- carboxyvinyitransferase	UDP-N- acetylenolpyruvoylglucasamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetical protein	acelyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferasa	
	Matched length (a.a.)	196	380	504	427	273	356	53		02		404	354	65	388			243	221	
	Similarity (%)	75.0	69.2	8.69	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	
	identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	80.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
Table 1 (continued)	Homologous gene	Neisseria meningitidis pgiB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wonA	Escherichia coli 0157 wbhH	
	db Match	gp:AF014804_1	sp:CAPM_STAAU	pir:S87859	SP MURA_ENTCL	1005 sp:MURB_BACSU	gp:VCLPSS_9	prf 2211295A		pir.S43613		pir.G70539	gsp.W37352	PIR: \$60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	278	1170	883	231	1181	273	1209	822	645	195
	Terminal (nt)	370405	371773	373419	374813	375837	378876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
	Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	385195	386556	387657
	SEQ NO.	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905		3907
	SEQ NO.	389	390	391	392	393	394	395	396	397	398	399	6 6	401	402	403	Ş	405	90	407

EP 1 108 790 A2

0

								,	_				_	,			_			
	Function	dihydrolipoamide dehydrogenese	UTP-glucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycln C transcription repressor		transporter
	Matched length (a.a.)	469	295	153	477	230	809	258						259	431			197		499
	Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	58.2						49.8	64.3			53.8		74.6
	Identity (%)	99.6	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			28.4		36.1
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ipd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicalor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolar SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR		Streptomyces fradiae T#2717 urdJ
	db Match	gp:CGLPD_1	pir.JC4985	9p.PAU49666_2	pir.E70828	gp:SCM10_12	pir:A27763	9P.BMSDHCAB_4						\$_87558.qg	sp:YJIN_ECOLI			sp:TCMR_STRGA		1647 gp:AF164961_8
	ORF (bp)	1407	921	498	1422	771	1875	837	338	261	630	96	339	975	1251	420	303	678	204	1647
	Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402798
	Initial (nt)	387692	389248	390233	392208	392705	393639	395428	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
	SEQ NO (a.b.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
	SEQ NO DNA)	408	409	410	411	412	413	414	415	416	417	418	419	420		422	423	424	425	426

	Function	transporter	formylletrahydrofolate deformylese	deoxyribose-phosphate aidolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase B		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			
	Matched length (a.a.)	208	286	208			280	82		748		626	348	330	254	268	258			
	Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	81.8			
	identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
Table 1 (continued)	Hamologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avlum GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190	_	Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtherlae hmuT	Corynebacterium diphtherlae hmuU	Corynebacterium diphtherlae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A.17c			
	db Match	gp.AF164961_8	sp:PURU_CORSP	sp.DEOC_BACSU			prf.2413441K	pir.A70907		sp:CTPB_MYCLE		sp:AMYH_YEAST	9p:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
	ORF (bp)	1632	912	999	150	897	867	300	909	2265	450	1863	1077	1068	813	957	637	810	813	501
;	Terminal (nt)	404430	404508	408145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
	Initial (nt)	402799	405419	405480	408310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354		419757
	SEO NO (a a)	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
	SEQ NO.	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

5

EP 1 108 790 A2

5 10	Function	UDP-N-acetylpyruvoylglucosamine reductasa				long-chain-fatty-scid-CoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	суюстоте Р450	exapolyphosphatase	hypothetical membrane protain	pyrroline-5-carboxylate reductase	membrans glycoprotein	hypothetical protein	
15	Matched length (a.a.)	356				558	418	246	417	231		921	289	306	302	269	394	55	
20	Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.08		60.7	68.9	87.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	70.7	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
Table 1 (continued)	Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolar SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis sen X3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
35		Escher				Bacillu	Streptomy SC2G5.06	 	Мусор	Mycob regX3		Streptomy SCE25.30	Mycob H37Rv	Pseud	Mycob H37Rv		Equine	Mycob 82168	
40	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp:SC2G5_6	sp.PMGY_STRCO	prf 2404434A	pri.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp:D88733_1	pir:S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
45	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432128	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434936	435940	436321
	SEQ NO.	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55	SEO	446	447	448	449	1	451	452	453	454	455	456	457	458	459	460	461	462	463

EP 1 108 790 A2

5	Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-IRNA reductase	hydroxymethylbitane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshiklmate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-lii C-methyliransferase	
15	Matched length	29			296	74		455	308		321	417	309	282		363		878		347	486	
20	Similarity (%)	100.0			77.4	66.2		74.3	75.3		57.6	72.2	57.9	98.6		9.89		55.2		59.9	71.8	
	Identity (%)	89.7			51.0	40.5		44.4	20.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
25 30	Homologous gene	oelicolor			leprae C. serB	tuberculosis		leprae hemA	leprae hem3b		alcoaceticus ·	K12 shiA	ssa qa4	m glutamicum		K12 potG		cens sfuB		Brachyspira hyodysenteriae bitA	leprae cysG	
30 S	Homolog	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyo	Mycobacterium leprae cysG	
40	db Match	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU		Sp:HEM1_MYCLE	pir.S72887		sp.CATM_ACICA	Sp.SHIA_ECOLI	Sp.3SHD_NEUCR	9p:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
	ORF (bp)	-i	192	818	1065	248	528	1389	908	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
45	Terminal	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50	Initial	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	448538	447670	449179	449714	450826	450849	451895	452661	454450
		3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
55	SEO	464 464	465	466	467	468	469	470	471	472	473	474	475	478	477	478	479	480	481	482	483	484

	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type blogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
	Matched length (a.a.)	337			828		364	464	425	161	208	245	533	338		144	06		82	301
	Similarity (%)	83.1			58.5		7.97	6'69	83.5	62.7	71.2	85.3	76.0	8.77		69.4	72.2		1.87	61.5
	Identity (%)	80.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	2.03	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtills hem?	Mycobaderium leprae hemt	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	sp:PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir.A70545	pir:B70545	plr:C70545	pir:D70545		pir:G70790	pri:2420312A		pir.F70545	sp.MENA_ECOLI
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	108	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456841	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO.	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEQ NO.	485	486	487	488	489	1	5	492	493	494	495	496	497	498	409	200	5	505	503

421 malonyl-CoA-decarbox	421	25.4 51.5	25.4	Rhizobium trifolii matB	473814 1323 prf:2423270B	1323	473814	5136
238 glycosyl transferase	238	32.4 62.6	32.4	Bacteroldes fragilis wcgB	473811 864 gp:AF125164_6	984	473811	2948
Function	Matched length (a.a.)	Identity Similarity Matched (%) (%) (a.a.)	Identity (%)	Homologous gene	db Match	ORF (bp)	nitial Terminal ORF (nt) (bp)	nitial (nt)
				Table 1 (continued)				

	_	τ-	_			·	,	_	_	_	_	7		_	_	$\overline{}$		_	
Function	glycosyl transferase	maionyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphata transporter			naphthoate synthase	peplidase E	pterin-4a-carbinolamine dehydratase	muconste cyclolsomerase
Matched tength (a.a.)	238	421	139	220	303	293	94		267				410			293	202	11	335
Similarity (%)	62.6	51.5	65.5	78.0	75.6	66.2	64.9		54.7				83.2			70.3	82.7	88.8	78.7
Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				90.0			48.5	57.9	37.7	54.0
Homologous gene	Bacteroldes fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yqiF	Pseudomonas putida	Pseudomonas putida KDGDH	Becillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB128 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacilius subtilis menB	Deinococcus radiodurans DR1070	Aquifex agolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOU	plr:S27612	sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:B70547		gp:SSP277295_9				pir.D70547	-		sp:MENB_BACSU	gp:AE001957_12	pir.C70304	1014 pir.D70548
ORF (bp)	964	1323	411	1580	948	879	315	444	750	417	378	261	1275	222	308	957	603	309	1014
Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485988	485077	487014
Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
SEQ NO (e.e)	4004	4005	4008	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
SEQ NO.	504	505	909	207	508	209	510	511	512	513	514	515	516	517	518	519	920	521	522

2-oxoglutarate decarboxylase and 2preprotein translocase SecE subunit transcriptional antiterminator protein heptaprenyl diphosphate synthase component II 4-aminobutyrate aminotransferase ubiquinone/menaquinone biosynthesis methytransferase hypothetical membrane protein succinyl-8-hydroxy-2,4-cyclohexadiene-1-cerboxylate synthase monomannoside transferase aipha-D-mannosa-aipha(1-6)phosphatidyi myo-inositoi D-serine/D-alanine/glydne transporter 50S ribosomal protein L11 50S ribosomal protein L1 Function regulatory protein oxidoreductase Matched length 909 **48** 408 447 237 412 316 318 145 Ξ 236 443 564 Similarity 100.0 54.0 100.0 64.0 54.2 89.9 78.7 100.0 100.0 86.7 67.1 82.4 £ 50.2 Identity 100.0 100.0 1000 100.0 29.4 37.2 22.8 66.2 49.0 £ 37.1 60.5 39.2 23.1 Corynebacterium glutamicum ATCC 13032 secE Corynebacterium glutamicum ATCC 13032 nusG Corynebacterium glutamicum ATCC 13032 rpiK Corynebacterium glutemicum ATCC 13032 rplA Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv0556 Mycobacterium tuberculosis H37Rv pimB Mycobacterium tuberculosis H37Rv Rv0561c Mycobacterium tuberculosis H37Rv RV2589 gabT Bacillus stearothermophilus ATCC 10149 hepT Homologous gene Escherichia coli K12 cycA Escherichia coli K12 ubiE Streptomyces coelicalor SC5H4.02 Bacillus subtilis menD 30 35 1629 sp:MEND_BACSU Sp.GABT_MYCTU SP:CYCA_ECOLI SP.HEP2_BACST Sp. UBIE_ECOLI gp:AF130462_2 gp:AF130462_3 gp:AF130462_5 db Match gp:AF130462 gp:SC5H4_2 plr:G70548 pir:H70548 pir.D70549 40 1239 1359 1272 1050 90 유 연 4 1512 1344 333 683 954 435 708 Terminal 488658 490447 495110 45 489100 491938 492855 499032 499925 502920 493583 492645 497142 498327 499869 E 489209 490580 496810 487028 488660 492915 491968 493916 494061 498598 501435 501577 497374 499162 fritial (at) 4023 4024 (8.8.) 4025 4030 SEQ 4028 4028 4036 4027 4029 4032 4033 4034 4035 4031 SEQ (DNA) 523 528 530 525 526 529 531 532 534 533 538 527

62

は は 一丁 丁 野関ラ

5

10

15

20

25

50

							_			_					_		
5 ·	Function	aldehyde (NAD(P)+)	novel two-component regulatory system	lyrosine-specific transport protein	cation-transporting ATPase G	otein or		protein L10	protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	otein		otein	xein
10	u.	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-com	tyrosine-specifi	cation-transpor	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical me	DNA-directed R chain	DNA-directed R chain	hypothetical protein		DNA-binding protein	hypothetical protein
15	Matched length (a.a.)	481	150	447	615	468		170	130		283	1180	1332	169		232	215
20	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	2.88	52.0		63.8	57.7
	identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
25 Table 1 (continued)	Homologous gene	K12 gabD	sllense carR	K12 0341#7	uberculosis ctpG	idans P49		iseus N2-3-11	uberculosis rplL		uberculosis	uberculosis rpoB	uberculosis poC	uberculosis		elicolor A3(2)	uberculosis
Table 1	Homolog	Escherichia coli K12 gabD	Azospirilium brasilense cerR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0867 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A, 15c	Mycobacterium tubercutosis H37Rv RV2908C
35	db Match	sp.GABD_ECOLI	GP:ABCARRA_2	SP:TYRP_ECOLI	sp.CTPG_MYCTU	sp.P49_STRLI		SP RL10_STRGR	SP RL7_MYCTU		pir:A70962	sp:RPOB_MYCTU	SP:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	SP:YT08_MYCTU
40	щ о						3			8	$\overline{}$		9 sp:RF		0		
	ORF (tg)	1359	468	1191	1950	1413	803	513	384	138	972	3495	3999	582	180	780	798
45	Terminal (nt)	504283	503272	505569	507647	509081	969609	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
50	initial (nt)	502925	503739	504379	505698	507669	509094	508998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO (a.8.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
55	SEQ NO.	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

EP 1 108 790 A2

5	5	In 812	in S7							ansport ATP-	ensport protein	ansport protein	coenzyme A	In S10	in L3		in L4	in L23		in L2	in 819	
10	Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lpoprotein			ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyn/-CoA acetate coenzyme A transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein 819	
15	Matched length (a.a.)	121	154	902			44			258	328	335	145	101	212		212	88		280	92	
20	Similarity (%)	87.5	94.8	6.88			78.0			83.7	8.77	90.6	79.3	0.66	99.6		90.1	90.6		92.9	98.9	
	Identity (%)	90.9	81.8	71.7			58.0			58.2	45.6	48.1	58.6	84.2	66.5		71.2	74.0		80.7	87.0	
25 (panulino	s gene	racellulare	egmatis	s fusA			natis			12 fepC	12 fepG	12 fepD	terium Icum actA	a ATCC	wis BCG rplC		Ms BCG rpiD	vis BCG rpM		ivis BCG rplB	berculosis SS	
8 Table 1 (continued)	Homologous gene	Mycobacterium Intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 lepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterlum bowls BCG rpiD	Mycobacterium bovis BCG rpIW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
35							Ö						_									
40	db Match	SP.RS12_MYCIT	sp:RS7_MYCSM	SP.EFG_MICLU			GSP:Y37841			sp.FEPC_ECOLI	sp:FEPG_ECOLI	sp. FEPD_ECOLI	gp:CTACTAGEN_1	SP.RS10_PLARO	sp:RL3_MYCBO		Sp.RL4_MYCBO	sp:RL23_MYCBO		Sp:RL2_MYCLE	sp:RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	199	854	303	327	840	278	285
45	Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	89/825	62825	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50	Initial (nt)	522694	523069	523898	526070	526156	527121	527759	528040	529570	530628	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
i	SEQ NO.	4053	4054	4055	4056	4057	4058	4059	4060	4061	4082	4063	4084	4065	4066	4067	4068	4069	4070	4071	4072	4073
55	SEQ NO.	553	554	555	929	557	558	559	260	561	582	583	564	565	266	567	568	569	570	571	572	573

CH			<u> </u>			Table 1 (continued)			Matched		
(nt)		5 -	_	ORF (bp)	db Match	Homologous gene	identity (%)	Similaria (%)	length (a.a.)	Function	
4074 536217 53		נים	536578	380	sp.RL22_MYCTU	Mycobacterium tuberculosis H37Rv Rv0708 rpiV	74.3	91.7	109	50S ribosomel protein L22	
4075 536579 5	!		537322	744	SP:RS3_MYCBO	Mycobacterium bovis BCG rpsC	77.4	91.2	239	30S ribosomal protein S3	
4076 537328 5	├		537741	414	Sp.RL16_MYCBO	Mycobacterium bovis BCG rpIP	69.3	88.3	137	50S ribosomal protein L18	
4077 537744	<u> </u>	I IO	537971	228	Sp:RL29_MYCBO	Mycobacterium bows BCG rpmC	65.7	1.88	87	50S ribosomal protein L29	
4078 537977	-	S	538252	278	SP.RS17_MYCBO	Mycobacterium bovis BCG rpsQ	69.5	0.68	82	30S ribosomal protein S17	
4079 538267	267	ĺω	537974	294							
4080 538698	88	l ₂	538381	318							
4081 539413	i	ای	538718	969							
539741	,	ري ز	540106	366	sp:RL14_MYCTU	Mycobacterium tuberculosis H37Rv Rv0714 rpiN	83.6	1.26	122	50S ribosomal protein L14	
4083 540112	112	ູ່	540423	312	sp:RL24_MYCTU	Mycobacterium tuberculosis H37Rv Rv0715 rplX	78.2	91.4	105	50S ribosomal protein L24	
4084 540426	428	ام	540998	573	Sp:RL5_MICLU	Micrococcus luteus rpIE	73.6	92.3	183	50S ribosomal protein L5	
4085 541048	88	٦	542079	1032							
4088 542896	396	2	542090	807	sp:2DKG_CORSP	Corynebacterium sp.	52.3	74.2	260	2,5-diketo-O-gluconic acid reductase	
4087 543412	412	<u></u>	542921	492							
4088 544329	329	5	543415	915	SP: FDHD_WOLSU	Wolinella succinogenes fdhD	28.9	28.7	298	formate dehydrogenese chain D	
4089 544670	370	_ r.	544335	338	gp:SCGD3_29	Streptomyces coelicolor A3(2) SCGD3.29c	37.2	68.1	84	molybdopterin-guanine dinucleotide biosynthesis protein	
4090 546889	389		544757	2133	Sp:FDHF_ECOU	Escherichla coll fdfF	24.3	53.4	758	formate dehydrogenase H or alpha chain	
4091 547329	329	2	548084	756							
4092 548990	8	2	548187	804							
4093 550651	551	۳,	548990	1662	sp:YC81_MYCTU	Mycobacterium tuberculosis H37Rv Rv1281c oppD	26.9	52.8	624	ABC transporter ATP-binding protein	
4094 551844	344	٣	550899	1148							
4095 552927	927	ι co	551854	1074							
				i							

EP 1 108 790 A2

					\neg																			-
5		Function	otein	oteln	protein S8	protein L6	protein L18	protein S5	protein L30	protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase				xin	p-cumic alcohol dehydrogenase	rotein	phosphoenolpyruvate synthetasa	phosphoenolpyruvate synthetase	450
10			hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic a		novel two-com system	aldehyde dehydrogenase aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcoho	hypothetical protein	phosphoenolp	phosphoenolp	cytochrome P450
15		Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	20	628	378	422
20		Similarity (%)	50.4	66.7	97.7	1.78	6.06	88.3	78.4	87.4		68.8		52.0	71.5			71.8	66.4	70.8	58.0	45.0	66.7	65.2
		Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
25	Table 1 (continued)	us gene	ligidus AF1398	odurans	30	sr	us rpIR	us rpsE	(12 rpmJ	us rplO		elicolor msdA		Hense carR	odochrous d5			p. redA2	sulatus fdxE	utide cymB	x K1 APE0029	sus Vc1 DSM	sus Vc1 DSM	thropolis thcB
30	Table 1 (Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus tuteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rpIO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus funosus Vc1 DSM 3838 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
35						_																		
40		db Match	pir.E69424	gp:AE001931_13	pir. S29885	plr.S29886	sp:RL18_MICLU	SP:RSS_MICLU	Sp:RL30_ECOLI	SP:RL15_MICLU		prf.2204281A		GP.ABCARRA_2	prt.2518398E		٠	prt:2411257B	prf:2313248B	9p:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	1290 prf.2104333G
		ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
4 5		Terminal (nt)	552948	554452	555728	556282	256690	557366	557555	558008	556860	558197	558607	560280	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
50		Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560834	561368	562632	562633	562963	563736	563871	565471	566759	568088
		SEO NO	4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
		SEO NO.	596	597	598	599	009	601	602	603	604	605	909	607	809	609	610	611	612	613	614	615	616	617

	Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyt-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		22	122	134	132	311		122	265	786			485	202	423	100
	Similarity (%)	86.0	81.0		74.7		96.0	91.0	93.3	83.9	77.8		77.1	61.1	51.2			53.8	50.9	56.0	29.0
Į	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacilius subtills 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.08. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis theliena CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
	db Malch	pri:2512309A	Sp:KAD_MICLU		SP: AMPM_BACSU		pir.F69644	prf.2505353B	sp.RS11_STRCO	pri.2211287F	sp:RPOA_BACSU		sp:RL17_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	Sp.DIM_ARATH	sp.CFA_ECOU	gp:SCL2_30
	ORF (bp)	804	543	812	792	828	216	366	402	603	1014	156	489	198	2397	456	303	1257	1545	1353	426
	Terminal (nt)	568272	571318	570758	572267	573176	573822	574181	574588	575217	576351	575211	576898	577923	580429	580438	580919	582862	584228	585620	586248
ļ	Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	578410	577057	578033	580891	581221	581406	562684	584268	585823
	SEO NO Se	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
	SEQ NO.	818	619	620	621	622	623	624	625	929	627	628	629	630.4	631	632	633	634	635	636	637

	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT-8 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothelical protein	alanine racemase	hypothelical protein
	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
	Similarity (%)	58.0	50.6	38.4				69.9	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
į	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.8	49.2	48.9		29.3			44.0	41.6	48.7
Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus		Synechocystis sp. PCC6803 sir1753			Mycobaderium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C air	Mycobacterium tuberculosis H37Rv Rv3422c
	db Match	SP.ELYA_BACAO	pir.T10930	pir:E70977				pir.C70977	prf.2111376A	sp:RL13_STRCO	sp:RS9_STRCO	pri:2320260A		pir.S75138	•		pir.S73000	sp.ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	006	324	288	441	546	1341	303	1509	573	234	855	1083	495
	Terminal (nt)	586399	587645	592862	589590	589898	593781	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEO NO B	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
	SEQ NO.			640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

EP 1 108 790 A2

	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetytransferase	O-statoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
	Matched length (a.a.)	550	411	207	132	319	571			90	537	78	138	26	174		118	504	148
	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		8.69	93.9	53.0
	identity (%)	28.0	51.3	52.2	30.3	46.1	38.4			78.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichla coli K12 rimi	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	GP:MSGTCWPA_1 Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmatis whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshli PH0308
	db Match	sp:YIDE_ECOLI	gp:PSJ00161_1	sp:Y098_MYCTU	SP:RIMI_ECOLI	sp.GCP_PASHA	sp.Y115_MYCTU			*P:CH10_MYCTU	SP:CH61_MYCLE	GP.MSGTCWPA_1	GP:MSGTCWPA_3	gp:AF073300_1	sp.Y09F_MYCTU		Sp:Y09H_MYCLE	gp.AB003154_1	PIR:F71456
	ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	627
	Terminal (nt)	604409	605708	606392	606898	607938	609879	810175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	615605
	Initial (nt)	602811	604470	605718	606392	806908	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
	SEQ NO.	4156	4157	$\dot{-}$	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
	SEQ. NO.		657		659	099	961	299	683	864	999	999	299	868	699	670	671	672	673

EP 1 108 790 A2

20.

	Function	IMP dehydrogenase	hypothetical membrane protein	giutemate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothelical protein		hypothetical protein	hypothetical membrane protein	
	Matched length (a.a.)	381	274	262	517				513	411	218				201	583		275	288	
	Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	70.9	38.0	29.0	81.8				20.5	26.8	33.5				30.0	37.5		33.8	27.8	
Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
	db Match	gp:AB003154_2	Sp: YBIF_ECOLI	рл.1516239А	sp:GUAA_CORAM				gp:SCD63_22	gp:SC6E10_15	sp.DEGU_BACSU			٠	pir:870975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
	ORF (bp)	1122	921	606	1569	683	441	189	1178	1140	069	324	489	963	825	1590	999	198	961	390
	Terminal (nt)	618094	618093	619994	621572	620284	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
	Initial (nt)	616973	619013	619086	620004	620926	621717	62229	623635	623800	624985	625877	626558	627539	627727	628551	630810	630949	632684	633079
	SEQ NO.	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
	SEQ NO.	674	675	676	677	678	679	980	681		683	684	685	686	289	688	689	069	169	692

5

_	—г			Т			1			— Т					\neg	1	7			
	Function	hypothetical membrana protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipopratein	DNA polymerase III	hypothetical protein
	Matched length (a.e.)	95	524	288	722	367	188	145	462	497	205	897	223		506		346	268	1101	159
	Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	87.2	57.5	62.3
	Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
Table 1 (continued)	Homalogous gene	Mycobacterlum marinum	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A.29c	Brevibacterium linens cnE	Brevibacterium linens	Citrobacter freundii bic OS60 bic	Brevibacterium linens	Brevibacterlum linens ATCC 9175 cpd1	Streptococcus suls cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hipA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
	db Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF139916_11	gp:AF139916_14	Sp.BLC_CITFR	gp:AF139916_1	gp:AF138916_5	gp:AF155804_7	gp:SCE25_30	prf.2420410P		prf.2320284D		sp:ABC_ECOLI	SP.HLPA_HAEIN	pd:2517386A	gp:SCE128_11
	ORF (bp)	396	1644	912	2190	1146	585	648	1425	\$	753	2415	717	153	999	846	1080	897	3012	447
	Terminal (nt)	633079	633532	635178	636089	638317	640208	840232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
	Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644028	647590	648309	648467	649105	649342	850193	651288	651601	654676
	SEQ NO.	4193	4194	4195	4196	4197	4198	4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
	SEO NO NO		 	695	969	269	898	669	1	20	702	703	704	705	$\overline{}$	707	708	709	710	711

EP 1 108 790 A2

EP 1 108 790 A2

	Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		hypothetical protein		L-maiste dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
	Matched length (a.a.)	317	281	380		53		338	226	 	284	269	339	330	356	395	303	219	
	Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
	Identity (%)	71.0	41.6	56.1		34.0		37.6	28.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
Table 1 (conlinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 ynaC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-8 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae Irp1D	Corynebacterium diphiheriae Irp1C	Corynebacterium diphtheriae Irp1B	Corynebacterium diphtheriae Irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus Influenzae Rd Hi1240	
	db Match	pir C70539	prf. 1902224A	sp:CISY_MYCSM		sp:YNEC_ECOLI		sp:MOH_METFE	prf.2514353L		sp.VIUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02817_1	pri:2202262A	pri:2222220B	sp:YICG_HAEIN	
	ORF (bp)	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
	Terminal (nt)	672653	673578	674756	872710	674799	675848	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
	Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	686435	687351	688141
ļ	SEO NO. (a.a.)	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
	SEQ NO.	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748

EP 1 108 790 A2

	Function		ferichrome ABC transporter	hemin permease	tryptophanyl-IRNA synthetase	hypothetical protein		peniciilin-binding protein 68 precursor	hypothetical protein	hypothetical protein			uracii phosphoribosyltransferase	bacterial regulatory protein, faci family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (a.a.)		244	348	331	278		301	417	323			209	77	385	561	468	1140	263	127
	Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	53.8	65.0	100.0	1.09	6.99
	identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.8	51.4	22.1	31.6	100.0	28.2	30.7
Table 1 (continued)	Homalogous gene		Corynebacterium diphtherlae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
	db Match		gp:AF109162_3	pir.S54438	sp:SYW_ECOLI	sp:YHJD_ECOLI		sp:DACD_SALTY	plr.F70842	gp:SC6G10_8			sp:UPP_LACLA	gp:SC1A2_11	pir:H70841	SP. MANB_MYCPI	sp:DLDH_HALVO	pri:2415454A	sp:YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	780	1017	1035	1083	903	1137	1227	858	195	321	633	384	1182	1725	1407	3420	870	486
	Terminal (nt)	688916	689917	690706	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278
	Initiat (nt)	068689	969069	691722	691882	83028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
	SEQ.	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4284	4265	4266	4267
	SEQ NO ONA	749	750	751	1	753	754	755	756	757	758		1	761	762	763	764	765	766	792

	_	_		η		- 1												
Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothelical protein	detergent sensitivity rescuer or carboxyl transferase	defergent sensitivity rescuer or carboxyl transferase
Matched length (a.a.)	381	305	521	278	96	383		458			225	352	133	718	192	63	537	543
Similarity (%)	0.69	59.3	49.5	74.5	47.0	78.9		72.8			100.0	79.8	7.97	63.4	96.2	69.8	100.0	100.0
Identity (%)	44.6	24.6	24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	89.8	93.6
Homologous gene	Bacillus subtills 168 yciC	Bacillus subtilis 1858 txB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gitA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1585c	Escherichla coll K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium giutamicum AJ11080 dtsR1
db Match	pir:869760	sp:TRXB_BACSU	Sp:PRPO_SALTY	prf: 1902224A	PIR:E72779	SP.CISY_MYCSM		pir:B70539			sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	sp:YCEF_ECOLI	prf.2323383CF	gp:AB018531_2	1629 pir.JC4991
ORF (bp)	1086	924	1494	888	378	1182	375	1323	248	1359	£06	1065	414	2148	591	246	1611	1629
Terminat (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
tnitial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
SEQ NO. (a a.)	4268	4269	4270	4271	4272	4273	4274	4275	4278	4277	4278	4279	4280	4281	4282	4283	4284	4285
SEQ NO. (DNA)	768		770	17.1	772	773	774	775	776	177	778		,	781	782	783	784	785
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched Institute Institut	SEQ Initial Cas.) Terminal (nt) (nt) (bp) db Match (as.) Homologous gene (ga.) Identity (%) Similarity length (as.) Matched (sa.) 4268 711605 710520 1086 pir.B69760 Bacillus subtilis 168 yciC 44.6 69.0 381 hypothetical pothetical p	SEQ (nt) (nt) (nt) (nt) (b) (b) (b) (a.s.) db Match (b) (b) (b) (a.s.) Homologous gene (go) (go) (go) (go) (go) (go) (go) (go)	SEQ Initial No. (nt) Terminal (bp) db Match Homologous gene (96) Identity (96) Imilarity length (16) Matched (16)	SEQ (nt) (nt) (nt) (nt) (bp) (bp) (bp) (bp) db Match Homologous gene (96) Identity (96) Similarity (16) Matched (16) (a a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ Initial NO. (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%)	SEQ Initial NO. (nt) Terminal (bp) db Match Homologous gene (96) Identity (96) Similarity (16) Matched (16) NO. (nt) (nt)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matched	SEQ NO. Initial (nt) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matched	SEQ NO. Intitlal (nt) TermInal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ (ntital) (nt) Terminal (nt) ORF (bp) db Match (pp) Homologous gene (96) Identity (96) Imminishing length (96) Matched (96) (96) (96) (8a) (aa) AOS (abs) 711024 710520 1086 pir.B69760 Bacillus subtilis 168 ycic 44.6 69.0 381 4269 711024 712647 924 sp.TRXB_BACSU Bacillus subtilis 1688 irxB 24.6 59.3 305 4270 712736 714231 1494 sp.TRXB_BACSU Bacillus subtilis 1688 irxB 24.6 59.3 305 4271 714268 715145 888 prf.1902224A Streptomyces hygroscopicus 42.5 74.5 27.8 4272 714757 714380 378 PIR.E72779 Aeropyrum pernix K1 APE0223 39.0 47.0 96 4274 716680 716283 1182 sp.CISY_MYCSM Mycobacterium tuberculosis 40.8 72.6 456 4275 718009 718350 246 4358 72.6 456	SEQ (Initial) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ 1471114 Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (bp) (bp) (bp) db Match (bp) Homologous gene (sp.) Identity (sp.) (sp	SEQ (ntitial) Initial (nt) (PP) db Match Homologous gene (%) Identity (%) Rimilarity (%) Amiltant (%) Imagh (%) Ima	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (at) (at) (bp) Ab Match Homologous gene (sp.) (SEQ (nt) (nt) (

5

r			1			- -		1				\neg		1			$\neg \neg$	
	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- Imidasol carboxylase	K+-uptake protein			5'-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protain		hypothetical protein	hypothetical protein	
	Matched length (a.a.)	293	165	394	628			147	152	255	426	303	258	96		175	142	
	Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	84.8	88.8		66.3	76.8	
	Identity (%)	28.7	23.0	69.0	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
Table 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium smmoniagenes ATCC 6872 purK	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
	db Match	sp.BIRA_ECOLI	pir.G70979	1161 sp.PURK_CORAM	Sp: KUP_ECOLI			sp.PUR6_CORAM	gp:APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69428	sp:DHG2_BACME	pir.A72258		sp: YWJB_BACSU	gp:SCJ9A_21	
	ORF (bp)	884	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	567	420	222
	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	738351	737204	737218	738673	740228	741765	742195	741818	742828	742831
	Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
	SEO NO SEO	4286	4287	4288	4289	4290	4291	4292	4293	4294	4295	4298	4297	4298	4299	4300	4301	4302
	NO ON O		787	788	789	790	791	792	793	794	795	796	797	798	799	800	901	802

EP 1 108 790 A2

	Function	trehalose/maltose-binding protein	trehaiose/mattose-binding protein		trehalose/mattose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or celloblose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
	Matched length (a.m.)	271	308		417		332		1783			240	720	707					2033	888	873
	Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1				_	45.8	53.2	48.6
	Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reliculi msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Hellcobacter pylori J99 jhp0462	Escherichia coli K12 uvrD	-				Streptomyces coelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	prf 2406355C	prf.2406355B		prf.2406355A		996 : prf.2308356A		plr. B75633			pir.E70978	plr:C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp. HEPA_ECOLI
	ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)	743067	743900	745048	745622	748442	747031	748814	748886	757434	753697	757830	758364	760906	782853	763122	762582	767367	763237	769547	774150
	Initial (nt)	743900	744931	745513	746893	748020	748028	748446	753685	757063	757395	758262	760796		782497	762730	762977	768191	769443	774142	777035
	SEO NO S	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4318	4317	4318	4319	4320	4321	4322
	SEQ NO DNA		ī	1	1	807	808	809	810	811	812	813	814	815	818	817	818	819	820	821	822

											_			_			_	
	Function	hypothetical protein	dTDP-Rha:a-D-GicNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanylylitansferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosy-L-homocysteine hydrolase			thymidylate kinase
	Matched length (a.a.)	527	289	353	98	139	136	460	327	420			180		476		j	209
	Similarity (%)	71.4	9.77	6.99	81.9	74.8	71.3	86.3	56.3	66.2			57.8		83.0			56.0
	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	38.9			35.6		29.0			25.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3258c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0081
	db Match	plr:D70978	gp:AF187550_1	sp:MPG1_YEAST	gp:AF164439_1	pir:B70847	gp:SCE34_11	SP:MANB_SALMO	plr:870594	sp:MANA_ECOLI			prl:1804279K		SP. SAHH_TRIVA			sp:KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	458	390	1374	1005	1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	788896	787624	787733	788196	788672	789426	789721	790096
	SEQ.	4323	4324	4325	4326	4327	4328	4328	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
	SEQ NO (DNA)	<u>. </u>	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

EP 1 108 790 A2

	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloropiast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvytshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvyishikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
	Matched length (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
ļ	Similarity (%)	90.8		78.9	65.6	72.8		9.19	9.66		78.8	82.9	0.68	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	99.0	38.3	100.0	21.8	61.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c lpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3228c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
	db Match	prf.2214304A		prf.2214304B	pir.F70592	pir:070592		sp.RR30_SPIOL	gsp:R74093		plr.A70591	plr.F70590	gp:AF114233_1	pir:D70590	GP:AF114233_1	pir.G70506	pri:2515333D
	ORF (bp)	678	684	1497	1704	588	158	663	2535	672	504	987	1413	480	123	1110	618
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	799691	800200	800208	801190	803128	802585	803131	805025
	Initial (nt)	790732	791421	791512	793008	794714	795447	795448	796250	799020	799697	801194	802802	802649	802687	804240	804408
	SEQ.	4340	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
	SEO NO.	840	148	842	843	844	845	846	847	848	849	850	851	852	853	854	855

EP 1 108 790 A2

5

Initial Terminal	Terminal		1 11 -	db Match	Table 1 (continued) Homologous gene	Identity	Similarity	Matched	Function
(at) (bp)	(at) (bp)			1	and the soulce is	(R)	ĺĝ.	(8.8)	
4356 805792 805535 258 pir.D70596 H37RV H37RV	805535 258 pir.D70596	258 pir.D70596	pir.D70596	Mycoba H37Rv	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	78.6	96.4	84	regulatory protein
4357 808318 808737 420 pir.B70596 H37Rv H	806737 420 pir.B70596	420 pir.870596	pir.B70596	Mycoba H37Rv	Mycobacterium tuberculosis H37Rv Rv3217c	33.3	65.1	129	hypothetical protein
4358 807839 806740 1200 pir.E70595 H37Rv	806740 1200 pir.E70595	1200 pir.E70595	pir.E70595	Mycob H37Rv	Mycobacterium tuberculosis H37Rv Rv3212	29.6	62.2	415	hypothelical protein
4359 809217 807946 1272 sp.DEAD_KLEPN Klebsic	807946 1272 sp.DEAD_KLEPN	1272 SP: DEAD_KLEPN	sp:DEAD_KLEPN	Klebsie deaD	Klebsiella pneumoniae CG43 deaD	37.3	64.0	458	DEAD box ATP-dependent RNA helicase
4360 809286 809510 225	809510	\vdash							
4361 809549 810394 846 plr.H70594 H37Rv H37Rv	810394 846 pir.H70594	846 plr.H70594	plr.H70594	Mycoba H37Rv	Mycobacterium tuberculosis H37Rv Rv3207c	48.4	83.8	291	hypothetical protein
4352 810405 811163 759 pir.F70594 H37Rv Rv3205c	811163 759 pir.F70594	759 pir:F70594	pir:F70594	Mycobac H37Rv F	Mycobacterium tuberculosis H37Rv Rv3205c	37.0	62.9	249	hypothetical protein
4363 811170 814217 3048 pir.G70951 Mycobar	814217 3048 pir.G70951	3048 pir.G70951	pir.G70951	Mycoba H37Rv F	Mycobacterium tuberculosis H37Rv Rv3201c	23.9	48.9	1155	ATP-dependent DNA helicase
4364 812165 811386 780	811386								
817422 3219 pir.G70951	817422 3219 pir.G70951	3219 pir:G70951	pir:G70951	Mycob H37Rv	Mycobacterium tuberculosis H37Rv Rv3201c	41.4	65.7	1128	ATP-dependent ONA helicase
4366 815541 814210 1332	814210		2						
817519 818523 1005 sp:Y138_METJA	818523 1005 sp:Y13B_METJA	1005 sp:Y13B_METJA	sp:Y138_METJA	Methan 1 MJ01	Methanococcus jannaschil JAL- 1 MJ0138.1.	28.2	64.2	302	potessium channel
4368 818523 819236 714 pir.E70951 Mycoba	819236 714 pir.E70951	714 pir.E70951	pir.E70951	Mycoba H37Rv	Mycobacterium tuberculosis H37Rv Rv3199c	30.4	58.3	230	hypothetical protein
4369 819254 821287 2034 sp:UVRD_ECOLI Escheric	821287 2034 sp:UVRD_ECOLI	2034 sp:UVRD_ECOLI	sp:UVRD_ECOLI	Escheric	Escherichia coli K12 uvrD	32.6	58.8	089	DNA helicase II
4370 822079 822689 591	822689	H							
4371 822105 821290 816 pir:B70951 Mycob	821290 816 pir.B70951	816 pir:870951	pir:870951	Mycob H37Rv	Mycobacterium tuberculosis H37Rv Rv3196	26.8	49.3	280	hypothetical protein
4372 822789 823391 603	823391	-	3						

						Table 1 (continued)				
NO NO NO NO	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
873	4373	824125	822680	1446	plr.A70951	Mycobacterium tuberculosis H37Rv Rv3195	42.8	76.4	474	hypothetical protein
874	4374	824190	825239	1050	pir:H70950	Mycobacterium tuberculosis H37Rv Rv3194	43.4	74.9	350	hypothetical protein
875	4375	825918	825242	675						
876	4376	826517	825998	522						
877	4377	826616	829570	2955	pir.G70950	Mycobacterium tuberculosis H37Rv Rv3193c	47.2	73.5	1023	hypothetical protein
878	4378	830985	829627	1359	gp:AE001938_5	Deinococcus radiodurans DR0840	34.3	57.7	483	regulatory protein
879	4379	831021	831971	951	sp:ER1_HEVBR	Hevea brasiliensis laticifer er1	67.4	89.0	301	ethylene-inducible protein
880	4380	831922	831578	345	PIR:F72782	Aeropyrum pernix K1 APE0247	49.0	53.0	26	hypothetical protein
881	4381	831971	832570	600	sp:YAAE_BACSU	Bacillus subtilis 168 yaaE	40.8	73.6	201	hypothetical protein
882	4382	833157	832795	363						
883	4383	833572	834633	1062	pir.TRYX84	Lysobacter enzymogenes ATCC 29487	28.7	44.4	408	alpha-lytic proteinase precursor
884	4384	834888	835388	501						
985	4385	835253	835837	585	pir.S03722	Neurospora Intermedia LaBelle- 1b mitochondrion plasmid	25.0	51.4	208	DNA-directed DNA polymerase
986	4386	837312	838892	1581	sp.CSP1_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	27.0	51.5	363	major secreted protein PS1 protein precursor
887	4387	838925	839353	429						
888	4388	839630	840139	510						
88	4389	840431	840210	222						
89	4390	840745	840437	308						
168	4391	842296	841517	780	рл.2207273Н	Streptomyces alboniger pur3	51.8	74.9	255	monophosphatese

EP 1 108 790 A2

_					_			Т		_			-					
	Function	myo-inasitol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
	Matched length (a.a.)	243	359	228	72	301	145	118				272	318	191	325	313	312	250
	Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
	identity (%)	33.7	089.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yctN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yciP
	db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp:SMPB_ECOLI	Sp:YEAO_ECOLI				sp:VIUB_VIBCH	prf.2510361A	gp MLCB1243_5	sp:FATB_VIBAN	pir 869763	pir.C69763	pir.D69763
	ORF (bp)	819	1104	687	264	900	492	351	537	300	405	825	918	588	1014	666	942	753
	Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846289	848026	847718	848499	849328	850412	852364	853616	854724	855476
	initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122		850243	850999	851351	852618	853783	854724
	SEO NO 1	4392	4393	4394	4395	4396	4397	4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	4408
	SEO		893	894	895	1	168	868	_	Ť	$\overline{}$	905	903	904	905	906	907	908

EP 1 108 790 A2

						Table 1 (continued)				
N O S	SEQ NO (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Identity Similarity (%)	Matched length (a.a.)	Function
	4409	860224	860078	147	PIR:F81737	Chlamydia muridarum Nigg TC0129	66.0	72.0	48	hypothelical protein
12	4410	860745	860473	273	GSP: Y35814	Chlamydia pneumoniae	61.0	66.0	84	hypothetical protein
7	4411	861544	862752	1209	pir.S66270	Rattus norvegicus (Rat)	33.5	64.9	442	kynurenine aminotransterase/giutamine transaminase K
12	4412	863391	862753	639						
	4413	865068	863396	1671	sp.RA25_YEAST	Saccharomyces cerevisiae S288C YIL143C RAD25	30.7	62.3	613	DNA repair helicase
14	4414	867317	865119	2199	pir F70815	Mycobacterium tuberculosis H37Rv Rv0862c	36.1	65.2	764	hypothetical protein
915	4415	867353	867571	219	pir G70815	Mycobacterium tuberculosis H37Rv Rv0863	44.0	62.0	57	hypothetical protein
916	4416	867788	868630	843						
1	4417	1	867803	597	prt.2420502A	Micrococcus luteus rpf	39.4	64.7	198	resuscitation-promoting factor
$\overline{}$	4418		869318	381	prt.2320271A	Lactococcus lactis cspB	42.6	75.4	5	cold shock protein
919	4419	869903	869379	525	gp:MLCB57_11	Mycobacterium leprae MLCB57.27c	28.3	58.5	159	hypothetical protein
920	4420	870691	869918	774	gp. AE001874_1	Deinococcus radiodurans DR0112	41.8	87.8	273	glutamine cyclotransferase
921	4421	871419	870721	699						
922	4422	871523	871680	138						
923	4423	871738	873210	1473	9p:SC6C5_9	Streptomyces coelicolor A3(2) SC6C5.09	43.6	79.3	477	permease
924	4424	872927	872018	912						
925	4425	873213	874040	828	sp.TSNR_STRAZ	Streptomyces azureus tsnR	27.9	51.7	319	rRNA(adenosine-2'-0-)- methyltransferase
926	4426	874944	874069	876						

EP 1 108 790 A2

	Function	hypothelical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothelical protein	sodium/proline symporter	•	hypothetical protein	fetty-acid synthase			homoserine O-acetytransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formsmidopyrimidine-DNA glycosidase
	Matched length (a.a.)	316	374	236	103	549		243	3026			335			82	171	281	202	1715	298
	identity Similarity (%)	55.1	529	69.5	9'08	58.1	i	77.4	83.4			59.7			72.6	62.0	88.8	56.4	68.1	51.0
	Identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
Table 1 (continued)	Homalogous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Delnococcus radiodurans DR2085	Mycobacterium avium folA	Escherichla coll K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.18c	Synechococcus elongatus naegell mutM
	db Malch	sp:YZ11_MYCTU	pir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382	,	pir.A70657	plr:S55505			prf:2317335B			gp:AE002044_8	prt:2408256A	Sp:TYSY_ECOLI	SP.CYSQ_ECOLI	9p:SC7C7_16	sp:FPG_SYNEN
	ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	428	287	237	456	798	758	4560	768
	Terminat (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895598	896719	69268	897727	897979	898434	899253	904602	905382
	Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	800006	900043	904615
	SEQ NO (8	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
	SEQ NO.	927	928	926	930	931	932	933	934	935	936	937	938	939	940	941	945	943	944	945

	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-8-phosphate Isomesse	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5'-phosphoribosylglycinamide formyttransferase	5'-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128	198	403		557	195		78	763	885	217		236	434		189	525	217
	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	8.09		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	48.1	21.8	43.8		43.8	31.1		84.8	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SC128.08c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tubarculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	plr:F70816	sp:APL_LACLA	pir:T36776		pir.NUEC	pir.G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf.2420410P		pir:D70716	UTOYM_81TY;qs		gp.AB003159_2	gp:AB003159_3	gp:CGL133719_3
	ORF (bp)	408	900	1173	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1560	818
	Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
	initial (nt)	905389	906391	907731	908612	909378	910698	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
	SEO NO (4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
	SEO NO.	946	947	948	949	950	951	952	953	954	958	926	957	958	959	960	- 361	962	963

											_										_
	Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
	Matched length (a.a.)	222	109		29	100	49	11	529	80	78	55		227	484	406	188		131	210	191
	Similarity (%)	100.0	100.0		78.1	80.0	83.7	81.8	71.1	77.5	65.4	78.2		73.6	60.1	59.9	54.3		77.1	80.0	59.7
	Identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	90.0		48.0	24.4	33.3	27.7		50.4	28.6	25.1
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyl rpmE	Streptomyces coelicolor A3(2) SCF51A, 14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thallana CV cnx1		Mycobacterium tuberculosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
	db Match	gp:CGL133719_2	gp:CGL133719_1		Sp:RR18_CYAPA	sp:RS14_ECOLI	sp:RL33_ECOLI	pir:RSEC28	pir:B70033	prf:2420312A	EP:RL31_HAEDU	gp:SC51A_14		sp:COPR_PSESM	Sp. BAES_ECOLI	pir.S45229	sp.CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
	ОЯР (ф)	999	327	321	249	303	162	234	1611	312	264	12	447	898	1365	1239	585	198	405	651	570
	Terminal (nt)	922398	923138	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	933733
	Initial (nt)	923061	923464	923661	924407	924727	924895	925134	926935	927242	927474	927752	927785	928117	928884	930410	931708	932290	932974	933710	934302
	SEQ NO.	4464	4465	4466	4487	4468	4469	4470	4471	4472	4473	4474	4475	4476	4477	4478	4479	4480	4481	4482	4483
	N SEO	984	965	986	-296	996	696	970	971	972	973	974	975	976	776	978	979	980	186	982	983

EP 1 108 790 A2

0

														$\overline{}$		$\overline{}$		\neg
	Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin blosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothelical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothelical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
	Matched length (a.a.)	298	390	193	367	380		137	225	444	488	272	815	741	210	363		98
	Similarity (%)	689	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	86.7	49.0	53.3	59.0		59.8
	Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	28.2	27.6	30.0		33.0
Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H1602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
	db Match	pir.JC4985	prt.2403296B	sp:RIMJ_ECOLI	pir:G70601	SP.CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	SP:CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	sp.SYM_METTH	prf. 1306383A	pir.B69206	Sp. YXAG_BACSU		gp:AF029727_1
	ORF (bp)	897	1257	999	1020	1200	1419	405	714	1187	1560	825	1830	2049	633	1158	531	294
	Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	<u> </u>	952991	953573	953973
	SEO	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	
		984	985	986	987	1	686	066	166	992	993	994	995	966	166	966	666	1000

EP 1 108 790 A2

	Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific ONA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl manophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
	Matched length (a.a.)	139 t	112 [585	231			139	16	205		263	362	265	315		478	242	159	108
	Similarity (%)	67.6	88.4		75.6	62.8		59.6	67.6	84.6	66.8		7.07	63.5	65.3	67.0		82.8	67.4	58.5	78.7
	Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		48.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coll did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tubercutosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
	db Match	plr:TQEC13	1.25		prf.2014253AE	sp:MTK1_KLEPN		gp AF029727_1	pir TQEC13	sp:YJ94_MYCTU	pri.2514367A		pir C70603	pir.D70603	Sp.KSGA_ECOLI	pir F70603		pir.S47441	SP PDXK_ECOLI	sp YX05_MYCTU	gp:SCF1_2
	ORF (bp)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
	Terminal (nt)	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
	Initial (nt)	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629			963864	964974	965852	966591	966828	988667	969940	970029
	SEO	450.	4502	4503	4504	4505	4508	4507	4508	4509	4510	4511	4512	4513	4514	4515	4516	4517	4518		1020 4520
	SEO		_	-	1004		1006	-	1008		1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020

EP 1 108 790 A2

_								_					_					
	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport profein	S-adenosylmethionine:2- demethylmenaquinone methylitansferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
	Matched length (a.a.)	107	261	276	337				440	100	802	157		121	482		548	404
	Similarity (%)	69.2	1.88	59.1	70.9				56.8	70.0	70.0	75.8		63.8	48.3		68.0	72.8
	identity (%)	35.5	84.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87,17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
	db Match	gp:SCF1_2	9p:SCJ1_15	sp:YXEH_BACSU	pir:E70893				1386 sp:CSP1_CORGL	gp:SCF58_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA6Z2491_21	pir.A70539		pir:159305	prf.2406311A
	ORF (bp)	321	960	792	1017	654	777	1212	1386	579	2373	864	999	381	1551	936	1647	1269
	Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
	SEQ NO.	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
	SEQ NO (ONA)	1021	1022	1023	1024	1025	1028	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

		a
		nee
		Table 1 (continued
		-
		äbe
		۳

	Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-ntropropane dioxygenase	giyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyi-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathlone lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetyglucosamine pyrophosphorylase		sufi protein precursor	nodulation ATP-binding protein i
	Matched iength (a.a.)	77	234	253	238	187	361	342	51	174	194	143	208	316	452		206	310
	Similarity (%)	61.0	68.0	0.07	69.1	9.02	54.0	72.8	61.0	63.2	65.0	546	62.5	79.1	71.9		61.7	64.8
	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.8	44.0	42.0		30.8	35.8
lable 1 (continued)	Homologous gene	Mathylophilus methylotrophus fmdE	Mathylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakil IFO 0895	Streptomyces roseofulvus gap	Neisserla meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufi	Rhizobium sp. N33 nodl
	db Match	prf:2406311B	prf:2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	Sp.PTH_ECOLI	SP:2NPD_WILMR	sp:G3P_ZYMMO	GSP:Y75094	SP:PTH_ECOLI	pir.B70622	sp:LGUL_SALTY	prt:2516401BW	sp:KPRS_BACCL	pir.S66080		1533 sp.SUFI_ECOLI	918 sp:NODI_RHIS3
	ORF (bp)	882	1077	726	669	612	1023	1065	369	531	800	428	624	975	1455	1227		
	Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000018	1002864	1003930
	Initial (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
	SEQ NO 8	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
	SEQ NO.		1039	1040	1041	1042	1043		1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

EP 1 108 790 A2

		otein	1 5 0£	je u		otein				98 89					ent	9				et R.	ng protein	
	Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamyltranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236			_ _ _	183	1217	
	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
	identity (%)	30.2	24.8	36.6		31.5	28.6		44.0	32.4					64.0	9.6				23.0	38.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucelius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coll tetR	Escherichia coli mfd	
	db Match	pir.JN0850	sp:UHPB_ECOLI	prf.2107255A		gp:SCF15_7	pir.S65587		pir.T14180	sp.GGT_ECOLI					GPU.AF164956_23	gp:AF121000_8				sp:TETC_ECOLI	sp:MFD_ECOLI	
	ORF (bp)	83.1		609	202	1155	1440	153	1734	1965	249	519	192	606	243	708	462	297	312	651	3627	
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015118	1016560	1015450	1015145	1017018	1017274	1018393	1019068	1022716	1
	Initial (nt)	1003953	1004829	1006089	1006937	1006998	1008622	1008886	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	
	SEO	-i		4557	4558	4559	4560	4561	4562	4563	4584	4565	4568	4567	4568	4569	4570	4571	4572	4573	4574	
	SEO			1057	1058	+	1060	1061	1062		1084	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	

EP 1 108 790 A2

	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			IpqU protein	enolsse (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothetical protein	hypothelical protein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
	Matched length (a.a.)	76	632	574	368		183			241	422	41	191	153	329		314	
	Similarity (%)	0.69	62.7	81.9	100.0		57.4			689	0.88	58.0	55.0	77 8	55.0		64.7	
	identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	68.0	31.9	59.5	25.2		30.3	
Table 1 (continued)	Homologous gene	Neisserla gonorrhoeae	Escherichia coli mdl8	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutemicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 IpqU	Bacillus subtills eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coll gppA		Escherichia coli tdcB	
	db Match	GSP:Y75301	1968 Sp:MDLB_ECOLI	sp:YC73_MYCTU	sp:YLI3_CORGL		SP.YABN_BACSU			pir:A70623	sp.ENO_BACSU	PIR:872477	pir:C70623	pir.D70623	sp:GPPA_ECCLI		sp:THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	428	378	786	1275	144	540	546	963	984	930	195
	Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032780	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
	Initial (nt)	1021305	1024666	1026396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159	1036316	1036900	1037448	1037481	1039650	1039783
	SEQ NO.	 	4577	4578	4579	4580	4581	4582	4583	4584	4585	4586	4587	4588	4589	4590	4591	4592
	SEO		1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

EP 1 108 790 A2

	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothelical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomych-production		3-deoxy-D-arabino-haptulosonate-7- phosphate synthase		hypothatical protein or undecaprenyl pyrophosphate synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a.a.)		58	242	282		140	143	140	300		367		97	28			308	434	969	
	Similarity (%)		74.1	55.8	1.08		57.1	1.09	72.1	56.3		99.5		97.3	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.8	
Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coil greA	Mycobacterium tuberaulosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Bravibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match		pir:872287	Sp.RHAR_ECOLI	pir:F70893		gp:SCF55_39	sp.GREA_ECOL!	pir.G70894	pir:S44952		sp:AROG_CORGL		sp.YARF_CORGL	SP:YARF_CORGL			Sp.COAA_ECOLI	gsp:R97745	sp.PABS_STRGR	
	ORF (bp)	330	189	993	818	387	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	1046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	1053880
	SEQ NO.	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	1604		4606	4607	4608	4609	4610	4611	4612
	SEQ NO (DNA)	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	=	1112

EP 1 108 790 A2

											_		_				_	_					_	_
5		Function			phosphinothricin resistance protin	hypothetical protein		hypothetical protain	lactam utilization protein	hypothetical membrane protein			transcriptional regulator		fumarate hydratase precursor	NADH-dependent FMN oxydoreductase			reductase	dibenzothlophene desulfurization enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurtation enzyme C (DBT sulfur dioxygenase)	,	
			4	-	튑	ř	\dashv	È	<u>s</u>	È	\dashv	-	٤	4	틧	₹ <u>\$</u>	\dashv	\dashv	- E	dib		₽ €	\dashv	\dashv
15		Matched length (a.a.)			55	g		225	278	£			204		456	159			184	443	372	391		
20		Similarity (%)			58.8	59.0		57.8	52.2	81.2			63.2		79.4	65.4			81.0	67.7	51.3	61.6		
		Identity (%)			30.3	30.3		37.8	30.8	40.6			26.0		52.0	32.7			55.4	39.1	25.8	28.9		
25	ned)				~				8						fumH	.g			r A3(2)	8 soxA	8 soxC	8 soxC		
30	Table 1 (continued)	Homologous gene			Alcaligenes faecalis ptcR	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus enythropolis IGTSB dszD			Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	Rhodococcus sp. IGTS8 soxC		
35		-			-					•										 	1			
40		db Match			gp:A01504_1	Sp:YBGK_ECOL!		sp:YBGJ_ECOLI	Sp:LAMB_EMENI	sp:YCSH_BACSU			Sp.YDHC_BACSU		SP.FUMH_RAT	gp:AF048979_1			9p:SCAH10_16	sp:SOXA_RHOSO	sp.SOXC_RHOSO	sp:SOXC_RHOSO		
		ORF (bp)	864	393	537	879	1056	699	756	591	672	603	189	1278	1419	489	281	447	564	1488	1080	1197	780	9
45		Terminal (nt)	1055722	1054640	1056319	1056322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754	1065304	1067570	1068649	1069845	1068913	1069119
50		Initial (nt)	1054859	1055032	1055783	1057200	1057573	1057888	1058598	1059214	1059218	4622 1059360	1060112	1060869	1063629	1063936	1064738	1065200	1065867	1086083	1067570	1068649	1069692	1069808
		SEO NO	4613	4614	4615	4616	4617	4618	4619	4820	4621	4622	4623	4624	4625	4626	4627	4628	4629	4630	4631	4632	4633	4634
55		SEQ NO.	_	-	1115	1116	1117	118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134

EP 1 108 790 A2

10	Function	FMNH2-dependent eliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicilin tolerance	polypeptides predicted to be useful antigens for vaccines and disgnostics		permesse		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	omithine carbamoyitransferase	hypothetical protein
15	Matched length (a.a.)	397	325	211	227		82	62	468	311	131		338		552	412	361	75	301	143
20	Similarity (%)	73.1	75.7	56.4	1.89		78.1	67.7	55.8	78.8	47.0		63.9		61.4	60.0	88.6	90.0	58.8	6.69
:	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
୫ ଓ Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichla coli K12 MG1655 xseA	Escherichia coli K12 lyt8	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
بت عة	위	Escherich	Escherich	Mycobacterium H37Rv Rv1100	Bacillus si		Streptomy SCH24.37	Escherich xseB	Escherich xseA	Escherich	Neisseria		Escherich		Rattus no ntpR	Corynebact (Brevibacter 17965 csp1	Bacillus su	Dicheloba	Pseudomo	Bacillus su
40	db Match	gp:ECO237695_3	sp:GLPX_ECOLI	pir:B70897	pir:H70082		gp:SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOLI	sp:LYTB_ECOLI	GSP:Y75421		Sp:PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	sp:YYAF_BACSU	sp.VAPI_BACNO	sp.OTCA_PSEAE	sp:YKKB_BACSU
	ORF (bp)	1178	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
45	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080788	1080972	1082951	1085462	1086087	1088917	1087044
50	Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079148	1080540	1080965	1082708	1084183	1084380	1085791	1086096	4653 1087544
	SEQ NO.	4635	4636	4637	4638	4639	4840	4641	4642	4643		4645	4646	4647	4648	4649	4650	4651	4652	4653
55	SEQ NO (DNA)	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

EP 1 108 790 A2

	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyina-6- dehydrogenase (naloxone reductase)	4-carboxymuconolacione decarboxiyase			frenolicin gene cluster protein involved in frenolicin blosynthetic
	Matched length (ø.a.)	198	396	1153	259			97	125	48				264	108			148
	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
Table 1 (continued)	Homalogous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
	db Match	gp:AF013288_1	1208 sp:YIS1_STRCO	sp:YEGE_ECOLI	Sp:NODC_RHIME			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp.DC4C_ACICA			gp:AF058302_19
	ORF (bp)	630	1208	3042	765	219	333	291	375	144	141	386	498	843	321	983	195	654
	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099089	1099209	4670 1099768
	SEQ NO (a.a.)	4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4684	4665	4668	4667	4668	4689	
	SEQ NO.		1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

EP 1 108 790 A2

_				_		_	_									$\overline{}$		
	Function	biolin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3.PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothelical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
	Matched length (a.a.)	563			Ì			655	329	160	282	248	593	136	111	134	367	438
	Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
	identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
Table 1 (continued)	Homologous gene	Synechacoccus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF 1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1855 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
	db Match	gp:SPU59234_3						sp:YT15_MYCTU	Sp:BCHI_RHOSH	gp:AMU73808_1	plr:A70577	gp:STMBCPA_1	sp:TLRC_STRFR	sp:Y06C_MYCTU	sp:PHNA_ECOLI	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
	ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
	Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
	Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
	SEQ NO.	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	1187 4687
	SEQ NO.	11711	1172	1173	1174	1175	1176	1177	1178	1179	1180	11811	1182	1183	1184	1185	1186	1187

EP 1 108 790 A2

_									$\overline{}$							T			$\overline{}$
	Function	cysteine desulphurase	nicolinate-nucleotide pyrophosphorytase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein Ilgase A	alkyiphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrana protein
	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
	Similarity (%)	73.4	68.9	77.6	6.09	54.7	68.4	74.1	60.7	80.8	64.3	9.89	9 69	47.8	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	48.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 IpIA	Escherichla coll K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
	db Match	gp:RFAJ3152_2	sp:NADC_MYCTU	pir.E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	gp:AAA21740_1	sp PHNB_ECOLI	sp.PCAK_PSEPU	Sp.PHHY_PSEAE	pir.A69859	Sp:YJJK_ECOLI	pir.G69858		Sp.CHAA_ECOLI	pir:C75001	sp: YWAF_BACSU
	ORF (bp)	1074	837	1182	642	009	909	342	789		1293	1185	588	1338	753	53.1	1050	708	723
	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129832	1130704	1131428	1131401
	Initial (nt)	1116905	1117744	1118932		1120205	1121432	1121809	1122606		1124826	1126020	1126422	1127013	1128350	1129102	1129655	1130721	4705 1132123
	SEQ NO.	4688	4689	4690	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702	4703	4704	
	SEQ NO ONA)		1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205

EP 1 108 790 A2

						Table 1 (continued)				
g o ₹	SEQ NO ®	Initial (nt)	Terminal (nt)	ORF (bp)	db Match.	Homologous gene	Identity (%)	dentity Similarity (%)	Matched length (a.a.)	Function
8	4706	1134472	1132133	2340	Sp:UVRA_THETH	Thermus thermophilus unrA	35.5	58.7	946	excinuclease ABC subunit A
202	4707	1134581	1135055	495	sp:TPX_MYCTU	Mycobacterium tuberculosis H37Rv tpx	57.3	81.7	164	thioredoxin peroxidase
8	4708	1135476	1135691	218						
62	4709	1136833	1135058	1778						
5	4710	1137891	1136938	954	sp:YEDI_ECOLI	Escherichia coil yedL	39.9	72.0	318	hypothetical membrana protein
211	4711	1137960	1138859	900	gp:SCF76_2	Streptomyces coelicalor A3(2)	34.0	49.0	282	oxidoreductase or thlamin biosynthesis protein
212	4712	1138880	1139245	368						٠
213	4713	1139196	1139492	297						
214	4714	1139357	1139617	261		-				
215	4715	1140021	1139635	387						
218	4718	1140861	1140028	834	sp:CTR2_PENVA	Penaeus vannamei	28.8	51.3	271	chymotrypsin Bil
217	4717	1141245	1140901	345	sp:ARC2_ECOLI	Escherichia coli	43.2	72.1	111	arsenale reductase (arsenical pump modifier)
218	4718	1141273	1142472	1200	sp:YYAD_BACSU	Bacillus subtilis yyaD	23.5	82.4	340	hypothetical membrane protein
219	4719	1143015	1142479	537	plr:F70559	Mycobacterium tuberculosis H37Rv Rv1632c	43.5	71.4	147	hypothetical protein
220	4720	1143739	1143026	714	pir.F70555	Mycobacterium tuberculosis H37Rv Rv1157c	35.8	62.9	221	hypothetical protein
221	4721	1144118	1146028	1811	sp:TYPA_ECOLI	Escherichia coll K12 typA	46.3	76.7	614	GTP-binding protein (tyrosine phsphorylated protein A)
222	4722	1146097	1147602	1506	pir.F70874	Mycobacterium tuberculosis H37Rv Rv1188	27.9	54.9	508	hypothetical protein
223	4723	1147592	1148461	870	plr:870875	Mycobacterium tuberculosis H37Rv Rví170	38.7	81.9	315	hypothetical protein
224	4724	1148445	1148882	438						•
225	4725	1148953	1149267	315	sp.FER_STRGR	Streptomyces griseus fer	78.6	91.3	103	ferredoxin [4Fe-4S]

-									_						. 1			\neg
	Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6- dicarboxylate		hypothetical protein	dihydropteroate synthese	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mychamich-resistence gene	sucrose-6-phosphate hydrolase	ADPglucose-starch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
	Matched length (a.a.)	397			229		211	273	245	88	47	286	524	433	400	93	194	
	Similarity (%)	52.9			100.0		100.0	69.0	73.1	67.7	91.5	87.8	51.0	51.3	81.8	62.4	57.2	
	identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
Table 1 (continued)	Homologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicolor A3(2) dhpS	Mycobacterium leprae u1756i	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scr8	Escherichia coll K12 MG1655 gigA	Streptomyces coelicalar A3(2) glgC	Streptomyces mycarofaclens MdmC	Escherichia coli rpoE	
	db Match	sp:AAT_BACSP			gp:CGAJ4934_1		pir:S60064	gp:SCP8_4	gp.MLU15180_14	pir:G70609	gsp:W32443	sp:MYRA_MICGR	SP.SCRB_PEDPE	sp:GLGA_ECOLI	sp:GLGC_STRCO	Sp:MDMC_STRMY	sp:RPOE_ECOLI	
	ORF (bp)	1501	621	1185	891	663	768	831	729	306	165	984	1494	1227	1215	639	639	492
	Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379	1164918	1164974	1166384	1167067
	initial (nt)	1149279	1150408	1151186	1153263	1158537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	1163605	1163702	1165612	1165748	1166576
	SEQ	4726	4727	4728	4729	4730	4731	4732	4733	4734	4735	4736	4737	4738	4739	4740	4741	4742
	SEQ NO.		1227	1228		1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242

EP 1 108 790 A2

	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or muttidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenese	para-nitrobanzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	64.7				61.4	84.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichla coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterlum tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tomA	
	db Match	pir:C70508	SP:MRP_ECOLI	pir:870509	pir.C70509	pir.A70952			prf.2306367A	3741 sp.MDR2_CRIGR	pir.H70953	Sp. AROE_ECOLI	SP PNBA_BACSU				sp:TCR1_ECOLI	1347 sp.TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	518	999	594	3771	3741	717	804	1811	651	876	525	1215	1347	795
	Terminal (nt)	1187577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183807	1184280	1185742	1185825	1187043	1189822
	SEQ NO.	-	4744		4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
	SEO		1244		1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

EP 1 108 790 A2

																_		_	
5		Function	5- methyltetrahydropteroyltriglutamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatese)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		proline-specific permease
			유민	_	흘	_	_		_		¥B.	¥ A	o cyt	Š, Š	ž.		E % & 5		pro
15		Matched length (a.a.)	774		444						929	551	333	512	402		86		433
20		Similarity (%)	72.2		79.5						63.5	58.4	93.0	89.0	55.0		65.8		85.0
		identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
25	Table 1 (continued)	Homologous gene	seus metE		Nocardia asteroides strain KGB1						K12 MG1655	K12 MG1655	Corynebacterium glutamicum (Brevibacterium iactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	K12 MG1655		s mulT		imurium proY
<i>30</i>	Table 1	Нотою	Catharanthus roseus metE		Nocardia astero						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentu cydB	Corynebacterium glutamicum (Brevibacterium lactofermentu cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgans mutT		Salmonella typhimurium proY
<i>35</i>		db Match	pir.S57636		gsp:Y29930						sp.CYDC_ECOL!	sp.cypp_ECOLI	gp:AB035086_2	gp:AB035086_1	sp.YEJH_ECOLI		sp:MUTT_PROVU		1404 SP PROY_SALTY
																			Sp.
		OR (9	2235	458	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	
45		Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212
50		Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	1209615
		SEQ NO (a b)		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
55		SEQ NO.		1282	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274		1276	1277

EP 1 108 790 A2

_				_	\top	Τ	. T				Т	Т		\neg	Т	T	T	T	T		\neg	\neg
	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nifrate) reduction regulatory protein	mercuric transort protain periplasmic component pracursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductasa gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase aipha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	181	605	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	69.7	56.6			57.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.8			95.0			45.0	30.3	9.99	36.0	36.0	46.9	32.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysantherni recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzn	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis nari	Bacillus subtilis narJ	Bacillus subtills narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	Sp.ATOE_ECOL!	Sp. PECS_ERWCH			sp:FNR_ECOLI	Sp:MERP_SHEPU	1875 sp.ATZN_ECOLI	sp:RELA_VIBSS	gsp: R80504			GSP:P61449			Sp.NARI_BACSU	SP:NARJ_BACSU		PIR:D72603	PIR B72603	SP.NARG BACSU	1350 SP.NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	9	111	732	1593	594	273	-	
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232838	1234881	1235612	1238545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	1247199	1250444	125181		
	(nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	1243821	1245201	4808 1245532	1248498	1247239	1248791	1249851		1252537	1315 4815 1253906
	SEO NO.		4796		4798	4799	4800	4801	4802	4803	4804	4805	4808	4807		4809	4810	_	_			4815
	SEQ NO.		1296	+	1298		1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1 2 5	1314	1315

0

5

	Function	malybdopterin biosynthesis cnx1 protein (molybdenum cofector biosynthesis enzyme cnx1)	extracellular serine protesse precurosor		hypothelical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin blosynthsisi prolein Moybdenume (mosybdenum cofastor blosythesis enzyme)	edlum-chain fatty acid-CoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undeceprenyl-phosphate alpha-N- acetylglucosaminyltransferase
	Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	322
	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7			_	41.9	31.1		62.3	31.1
Table 1 (continued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rle
	db Match	SP:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	1401 sp:Y0D2_MYCTU	gp:PPU242852_2	1209 sp.MOEA_ECOLI	1131 SP.CNX2_ARATH	SP. ALKK_PSEOL	Sp.RHO_MICLU				sp:RF1_ECOU	Sp.HEMK_ECOLI		sp.YD01_MYCTU	1146 sp.RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	581	1209	1131	1725	2286	603	969	1023	1074	837	774	648	
	Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1268267	1265611	1265427	1268503	1289343	1288267	1270043	1271192
	Initial (nt)	1254146	1256802	1257067	1257858	1259265	1259989	1281201	1262818	1264610	1285142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
	SEO SEO	4816	4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
	SEQ NO.		1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+transporting ATP synthese delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamme chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		90	245	71	151	574	516	320	483	122	132	230	92	134	101	301
	Similarity (%)		99.0	56.7	85.9	68.9	67.2	88.4	76.8	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.89	46.3	93.8	41.0	38.6	70.0	45.0	35.0	54.5	37.9
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	sp:ATP8_ECOLI	sp:ATPL_STRLI	SP.ATPF_STRUI	sp:ATPD_STRL!	SP.ATPA_STRUI	sp:ATPG_STRLI	sp:ATPB_CORGL	SP:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP.SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	584	813	1674	975	1449	372	471	9	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEO (.	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	1349 4849
	SEQ NO ONA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

EP 1 108 790 A2

						Table 1 (continued)				,
SEQ	SEO NO 18.9	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
1350	4850	1283324	1284466	1143	gp ECO237695_3	Escherichla coli K12 ssuD	50.3	74.3	366	FMNH2-dependent aliphatic sulfonate monooxygenase
1351	4851	1284517	1285284	768	sp:SSUC_ECOLI	Escherichia coli K12 ssuC	40.8	75.8	240	alphatic sulfonates transport permease protein
1352	4852	1285302	1286030	729	sp:SSUB_ECOLI	Escherichia coli K12 ssuB	50.4	72.8	228	alphatic sulfonates transport permease protein
1353	4853	1286043	1286999	957	Sp:SSUA_ECOLI	Escherichia coli K12 ssuA	35.1	62.1	311	sulfonate binding protein precursor
1354	4854	1289473	1287281	2193		Mycobacterium tuberculosis H37Rv Rv1326c gigB	46.1	72.7	710	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)
1355	4855	1291007	1289514	1494	sp:AMY3_DICTH	Dictyoglomus thermophilum amyC	22.9	50.5	467	alpha-amylase
1356	4856	1291026	1291373	348						
1357	4857		1292577	879	sp.FEPC_ECOL!	Escherichia coli K12 lepC	31.8	87.6	211	ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein
1358	4858	1293222	1294025	804	pir C70860	Mycobacterium tuberculosis H37Rv Rv3040c	39.6	68.5	260	hypothetical protein
1359	4859	1284151	1295206	1058	pir.H70859	Mycobacterium tuberculosis H37Rv Rv3037c	43.1	70.0	367	hypothetical protein
1360	4860	1295047	1294436	612						
1361	4861	1295435	1296220	786	SP.FIXA_RHIME	Rhizobium meliloti fixA	31.2	64.8	244	electron fransfer flavoprotein beta- subunit
1362	4862	1296253	1297203	951	sp.FIXB_RHIME	Rhizobium meliloti fixB	33.1	61.8	335	electron transfer flavoprotein alpha subunit for various dehydrogenases
1363	4863	1296479	1297093	615						
1364	4864	1297212	1298339	1128	sp:NIFS_AZOVI	Azotobacter vinelandii nifS	35.2	67.7	375	nitrogenase cofactor sythesis protein
1365	4865	1298653	1298342	312						
1366		4866 1300145	1299000	1146	sp:Y4ME_RHISN	Rhizobium sp. NGR234 plasmid pNGR234a y4mE	29.5	55.7	397	hypothetical protein

EP 1 108 790 A2

	Function	transcriptional regulator	acetyltransferase				IRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-IRNA(Gln) amidotransferase subunit C	glutamyl-IRNA(Gin) amidotransferase subunit A	vibrlobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphate-fructose 6- phosphate 1-phosphotransrefase
	Matched length (a a.)	59	181				361		332	200		677	220	97	484	283	96	358
	Similarity (%)	76.3	55.3				80.9		0.99	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	Identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
Table 1 (continued)	Homologous gene	Rhizoblum sp. NGR234 plasmid pNGR234a Y4mF	Escherichla coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	sp:Y4MF_RHISN	sp.YHBS_ECOLI				pir.C70858		pir.B70857	sp:TCMA_STRGA		sp:DNLJ_RHOMR	pir:H70856	sp:GATC_STRCO	sp.GATA_MYCTU	P.VIUB_VIBVU	gp:SCE6_24	1071 SP PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	86	1461	735	2040	663	297	1491	849	98	
	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	1300552	1301929	1303123	1303299	4872 1303829	1304536	1304932	1307384	1308196	1308330	1311097	1311320	4880 1311625	1313270	1314775	1315013
	SEQ NO (8.8)	4867	4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
	SEQ NO (DNA)		1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

5

Ļ					Table 1 (continued)			Matched	
(a.a.)		Terminal (nt)	(g)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
4884 1315954		1315325	630	:					
4885 1316338		1317444	1107	sp.ccPA_BACME	Bacillus megaterium ccpA	31.4	31.4	328	glucose-resistance amylase regulator (catabolite control protein)
4886 1317434		1319005	1572	sp:RBSA_ECOLI	Escherichia coli K12 rbsA	44.7	78.2	499	ripose transport ATP-binding protein
4887 1319005	2	1319976	972	sp.RBSC_ECOLI	Escherichia coli K12 MG1655 rbsC	45.6	78.9	328	high affinity ribose transport protein
4888 1320001	=	1320942	942	sp:RBSB_ECOU	Escherichia coli K12 MG1655 rbs8	45.9	77.7	305	periplasmic ribose-binding protein
4889 1320952	22	1321320	369	sp.RBSD_ECOLI	Escherichia coli K12 MG1655 rbsD	41.7	68.4	139	high affinity ribose transport protein
4890 1321476	9,	1322111	636	sp:YIW2_YEAST	Saccharomyces cerevisiae YIR042c	31.0	58.0	200	hypothetical protein
4891 1322393	93	1323406	1014	gp:SCF34_13	Streptomyces coelicolor SCF34 13c	31.4	60.2	354	iron-siderophore binding lipoprotein
4892 1323533	33	1324537	1005	sp.NTCI_RAT	Rattus norvegicus (Rat) NTC!	35.8	61.9	268	Na-dependent bile acid transporter
4893 1324778	78	1326256	1479	gsp:W61467	Staphylococcus aureus WHU 29 ratB	43.1	71.8	485	RNA-dependent emidotransferese B
4894 1326378	78	1327049	672	sp.F4RE_METJA	Methanococcus jannaschil MJ1501 f4re	32.6	61.1	172	putative F420-dependent NADH reductase
4895 1330967	387	1329891	1077	sp.YaJG_ECOLI	Escherichia coli K12 yqlG	39.8	66.9	317	hypothetical protein
4896 1331102	102	1331875	774	pir.A70672	Mycobacterium tuberculosis H37Rv Rv2972c	39.3	62.4	234	hypothetical protein
4897 1331953	53	1333008	1056	pir.H70855	Mycobacterium tuberculosis H37Rv Rv3005c	27.4	52.6	325	hypothetical membrane protein
4898 1333424	24	1333188	237						
4899 1335280	80	1333442	1839	gp:AJ012293_1	Corynebacterium glutamicum ATCC 13032 ilvD	99.2	99.4	613	dihydroxy-acid dehydratase
4900 1335975	75	1335412	564	pir.G70855	Mycobacterium tuberculosis H37Rv Rv3004	33.3	68.6	105	hypothetical protein

EP 1 108 790 A2

	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	mallose/mallodextrin transport ATP-binding protein	nitrate fransporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical sering-rich protein			hypothetical protein	
	Matched length (a.a.)	62	66		167	87	324			142	304			642		530	105			620	
	Similarity (%)	100.0	92.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		99.8	29.0			32.9	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. ndD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Raistonia eutropha czcD		,	Methanococcus Jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
	db Match	sp:YILV_CORGL	GP:SSU18930_26 3		sp NRTD_SYNP7	SP:MALK_ENTAE	SP.NRTA_ANASP			Sp.DIM6_STRCO	spiczeb_Auceu			sp:Y686_METJA	-	gsp:Y22646	SP:YEN1_SCHPO			pir.T03476	
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1868	402
	Terminal (nt)	1336095	1338379	1342877	1341980	1342461	1342794	1344484	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1348331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1356452
	SEQ NO.	4901	4902	4903	4904	4905	4906	4907	4908	4909	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
	SEQ NO.	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

5

	Function		homoprotocatechluate catabolism bitunctional isomerase/decarboxylase (includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(thdd isomerase); 5- carboxymethyl-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-C- methyltransferase	isochorismate synthase	glutamy-IRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
	Matched length (e.a.)		228	192	371	485	97	-							_					288
	Similarity (%)		59.2	55.7	70.4	69.7	90.0													81.0
ļ	Identity (%)		33.3	23.4	38.0	37.3	77.0	_												65.1
Table 1 (continued)	Homologous gene		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis gftX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
	db Match		804 SP:HPCE_ECOLI	618 sp.UBIG_ECOLI	1128 Sp. DHBC_BACSU	1488 sp.SYE_BACSU	gp:SCJ33_10													7 1761 sp.THIC_BACSU
	ORF (bp)	654	804	618	1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1384340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
	Initial (nt)	1357557	1422 4922 1358259	1359052	1361295	1361361	1363138	1363657	1364253	1364915	1364960	1365180	1365396	1365808	1367293	1366070	1368078	1368400	1369551	1371637
	SEQ NO (4921	4922	4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	4939
	SEQ NO.	1421	1422	1423	1424	1425	1428	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

人名 27 人名阿蒙克斯 人名英斯特人

_													_							
	Function			llpoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3,5'-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-Isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ({7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)M-dependent dihydroxyscetone phosphate reductase	D-alanine-D-alanine ligase
	Matched length (a.a.)			44		787			299	256		178	257	473	195		294		331	374
	Similarity (%)			74.0		74.0			52.8	64.8		60.1	60.7	87.5	89.2		71.4		72.2	67.4
	identity (%)			61.0		44.2			25.4	25.4		29.8	28.1	68.1	67.7		45.9		45.0	40.4
Table 1 (continued)	Homologous gene			Chiamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iciR	Actinopianes teichomyceticus leu2	Salmonella typhimurlum		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddlA
	db Malch			GSP:Y37857		sp:PHS1_RAT			1407 Sp.YRKH_BACSU	sp:Y441_METJA		sp:SPOT_ECOU	Sp.ICLR_ECOLI	sp:LEU2_ACTTI	sp:LEUD_SALTY		gp:MLCB637_35		sp:GPDA_BACSU	1080 Sp. DDLA_ECOLI
	ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	
	Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1378149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
	Initial (nt)	1372326	1372601	1373798	1374558	1375776	1375987	1378088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
	SEO SO (e.e.)	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
	SEQ NO.	1440	1441	1442	1443	1444	1445	1448	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis protein		Neisserial polypepildes predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline fransport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
	Matched length (a.a.)		335	245	568	683	108	67	187	155		65	252	220	234		322		223
	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	83.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	58.4	32.7	27.4		28.6		28.9
Table 1 (confinued)	Homologous gene		Escherichia coli K12 thiL	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Nelsserla meningitidis	Proplonibacierium freudenreichli subsp. Shermanii	Escharichia coli K12 yhhF	Escherichia coli K12 MG1655 kdlB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 ginH		Methanobacterium thermoautotrophicum MTH485		Bacteriophage L54a vinT
	db Match		sp:THIL_ECOLI	Sp.UNG_MOUSE	sp:Y389_MYCGE	sp:RECG_ECOLI	GSP:Y75303	sp:BCCP_PROFR	Sp:YHHF_ECOLI	sp:KDTB_ECOLI		GSP:Y75358	sp:GLNQ_BACST	SP:NOCM_AGRTS	SP:GLNH_ECOLI		pir:H69160		sp.VINT_BPL54
,	ORF (bp)	978	993	762	1581	2121	324	213	582	490	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	Initial (nt)	1387270	1387332	1388312	1389208	1390796	4964 1391961	1392939	1393154	1393742	1394854	1394894	1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEQ NO.	4959	4960	4961	4962	4963		4965	4968	4967	4968	4969	4970	4971	4972	4973	4974	4975	4976
	SEQ NO.	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476

EP 1 108 790 A2

	Function						insertion element (IS3 related)		hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
	Matched length (a.a.)						28		37										988	456	283	284	
	Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
	Identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum	-									Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicotor A3(2) SCJ9A, 15c	Pseudomonas putida morA	
	db Match						pir:S60890		PIR:S60890		1								2715 sp.DPO1_MYCTU	SP.CMCT_NOCLA	gp:SCJ9A_15	Sp.MORA_PSEPU	
	ORF (bp)	744	432	204	864	219	192	855	11	389	315	321	375	948	306	564	222	291	2715	1422	808	873	159
	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
	Initial (nt)	1401333	4978 1402272	1402874	1403128	4981 1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	4990 1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	4998 1420036
	SEQ NO (8.8)	4977		4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	1995	4996	4997	4998
	SEQ NO.	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

5

_	
_	
77	
=	
w	
3	
=	
_	
ᆂ	
_	
(continued	
~	
-	
a,	
م	
휽	

0

							_	-	· ·		_	_					_		_	_		
	Function	hypothetical protein	30S ribosomal protein S1		hypothelical protein					Inosine-undine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuctease ABC subunit B	hypothetical protein	hypothatical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
100000	Matched length (a.a.)	163	451		195					310	215	293	337		671	152	121	279		839	150	214
	Similarity (%)	58.3	71.4		93.9					81.0	53.8	87.8	9:59		83.3	59.2	80.2	77.1		47.2	0.88	58.4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
(2001)	Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichla coli K12 rpsA		Brevibacterium iactofermentum ATCC 13869 yacE					Crithidia fasdculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yttH	Escherichia coll K12 yt/G		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
	db Match	sp:YAFE_ECOLI	Sp.RS1_ECOLI		SP:YACE_BRELA					SP:IUNH_CRIFA	SP. QACA_STAAU	Sp. RBSK_ECOL!	sp. ASCG_ECOL!		sp UVRB_STRPN	sp:Y531_METJA	SP:YTFH_ECOLI	sp:YTFG_ECOLI		pir:H70040	gp:SC9H11_26	sp:YCBL_ECOLI
	ORF (bp)	654	1458	1476	8	1098	582	248	957	936	1449	921	1038	798	2097	441	381	846	984	2349	912	900
	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429248	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440028	1438212	1440675	1441793
-	initial (nt)	1420724	1421099	1422571	1425279	1428257	1427957	1428049	1428290	5007 1429159	1430642	1431579	1432812	1432750	1434105	1436335	1437249		1439343	1440560	1441586	1442392
	SEQ NO (e.e.)		2000		2005	5003	5004	5005	5008		5008	5009	5010	5011	5012	5013	5014		5018	5017	5018	5019
ı	SEQ NO.		1500	-	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514		1516	1517	1518	1519

EP 1 108 790 A2

_						_		_		_	_								
	Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothelical protein 1246 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	IRNA(guanosine-2'-0-)- methlytransferase	phenylalanyi-tRNA synthetase alpha chain
	Matched length (a.a.)	952	100	142			179	09	117			282	270	436	393	74	244	153	
	Similarity (%)	80.6	0.72	47.0			78.2	7.97	92.7			71.6	70.4	9'29	71.3	56.0	50.0	71.2	
	Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	28.2	34.0	
Table 1 (continued)	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coll K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Baciltus subtills glpQ	Escherichia coli K12 MG1855 (rmH	Bacillus subtilis 168 syfA
	db Match	Sp:UVRA_ECOLI	PIR:JQ0406	PIR:JQ0406			Sp.IF3_RHOSH	SP. RL35_MYCFE	sp.RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	1314 Sp.UGPB_ECOLI	sp:UGPC_ECOLI	PIR:E72756	sp.GLPQ_BACSU	SP.TRMH_ECOL!	1020 sp:SYFA_BACSU
	ORF (bp)	2847	306	450	717	2124	567	192	381	822	267	903	834	1314	1224	249	717	594	
	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
	initial (nt)	1442487	1444115	1445393	1446158	1447448	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	1456068	1456355	5037 1457047
	SEO NO Se	5020	5021	5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	5037
	SEQ NO.	1520		1522	1523		1525	1526		1528	1529	1530	1531	1532	1533	1534	1535	1536	1537

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
	10 15 20 25 30 40

	Function	phenylalanyl-tRNA synthetase bata chain		esterase	macrolide 3-0-acytransferase		N-acetyiglutamate-5-semialdehyde dehydrogenase	giutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinale synthetase		argininosuccinate iyase				hypathetical protein	lyrosyl-tRNA synthase (tyrosine-tRNA ligase)	hypothetical protein		hypothetical protein
	Matched length (a.a.)	343		363	423		347	388	391	401		478				20	417	149		42
	Similarity (%)	71.7		55.1	56.3		99.1	99.7	89.2	89.5		0.06				72.0	79.8	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	89.5	99.0	99.5		83.3				48.0	48.4	26.9		71.0
Table 1 (continued)	Homologous gene	Escherichia coil K12 MG1855 syfB		Streptomyces scables estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coll K12 ycaR	Bacilius subfilis syy1	Methanococcus jannaschil MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	sp.SYFB_ECOLI		sp:ESTA_STRSC	sp:MDMB_STRMY		gp:AF005242_1	sp.ARGJ_CORGL	sp:ARGD_CORGL	1203 sp.ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484	111	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	86	14
	Terminal (nt)	1460816	1458198	1462128	1463518	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
	Initial (nt)	1458133	1458966	1461157	1462134	1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
	SEQ NO.	5038	5039	5040		5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5058
	SEO NO (DNA)		1539			1542		1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

EP 1 108 790 A2

_											_			_			_	_		
	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter	Territoria de Canadamento de Canadam	hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoste hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (a a.)	220	435			232	499	602		257		499			130	210	805	132	234	133
	Similarity (%)	73 6	74.0	İ		67.2	60 1	58.3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
Table 1 (continued)	Homologous gene	Bacilius subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium strietum M828 tet8	1	Escherichia coli K12 ygiE		Bacilius subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
	db Match	sp.KCY_BACSU	sp.YPHC_BACSU			sp:YX42_MYCTU	1554 pri.2513302B	prf.2513302A		sp:YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir.C69334	sp:SECA_BACSU	9p:AF173844_2	sp:Y0DF_MYCTU	sp.YODE_MYCTU
	ORF (bp)	9	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1184	2289	429	756	633
	Terminal (nt)	1504945	1508573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514893	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
	Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	1520957
	SEQ NO.	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	2090	5091	5092	5093	5094
	SEQ NO ONA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1589	1589	1590	1591	1592	1593	1594

EP 1 108 790 A2

5	Function .	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	8-phosphogluconate dehydrogenase	thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protain	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
15	Matched length (a.a.)	178 h					342 h	65 h		374 C	245 A	492 6	121		235 r	232	277	281	268	250		
20	Similarity (%)	84.3					69.0	65.5		89.5	66.1	99.2	67.8		68.1	76.3	63.9	63.4	62.3	72.0		
	Identity (%)	71.4					33.9	31.4		412	34.3	99.0	39.7		39.6	43.1	26.7	29.9	27.2	44.8		
25 (benulinos) t electron	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nodl	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
35							_			_		Brevib	Mycob H37R			Mycob H37R						
40	db Match	sp:YODE_MYCTU					SP:YHDP_BACSU	SP:YHDT_BACSU		gp TTHERAGEN_1	sp YD48_MYCTU	gsp:W27813	pir G70664		SP:NODI_RHIS3	pir E70501	SP. YFHH_ECOLI	SP:PHNE_ECOL!	Sp.PHNE_ECOL!	sp PHNC_ECO⊔		
	ORF (bp)	573	510	1449	009	930	1082	1380	219	1344	735	1478	462	875	741	741	873	846	. 80	804	210	1050
45	Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
50	Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330	1529486	1531816	1531933	1532322	1533041	1533781	1535401	1536227	1537030	1537833	1538759	1538919
	SEQ.	5095	5096	5097	5098	5099	5100	5101	5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	5115
55	SEQ		1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

	_							_	-		$\overline{}$		\neg		- I		- 1		- T	_ 1	- 1	- 1	្រ	
5		Function		phosphomethylpyrimidine Kinase	hydoxyethytthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosytransferase	ıl protein	arsenic oxyanion-translocation pump membrane subunit		al protein	mease	al protein					al protein	dolichol phosphate mannose synthese	apolipoprotein N-acyltransferase		pase	
				phosphome	hydoxyethy	cyclopropar synthase	sugar trans phthalate/p	purine pho	hypothetical protein	arsenic oxyanion-tr membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dollchol ph synthase	apolipopro		secretory lipase	
15		Matched length (a.a.)		262	248	451	468	156	206	381		222	469	6					110	217	527		392	
20		Similarity (%)		70.2	77.5	55.0	6.99	59.0	68.5	54.6		83.8	83.6	20.0					87.3	71.0	55.6		55.6	
		identity (%)		47.3	46.8	28.6	32.5	36.5	39.6	23.3		62.2	51.8	39.0		_			71.8	39.2	25.1		23.7	
25	Table 1 (continued)	us gene		nurlum thiD	nurium LT2	berculosis	acia Pc701	(T-62 gpt	(12 yebN	. As4 arsB		elicolor A3(2)	RB ORFA	. R9 ORFG		ļ			uberculosis	nyces pombe	K12 Int		s lip1	
30	Table 1 (Homologous gene		Salmonella typhimurium thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701 mop8	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp.	Pseudomonas sp. R9 ORFG					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1	
35		db Metch		SP:THID_SALTY S	SP.THIM_SALTY (pir.H70830	pri.2223339B	prf 2120352B	3			gp:SCI7_33	gp:PSTRTETC1_8	<u></u>					pir:A70945	prf.2317488A	Sp.LNT_ECOLI		gp:AF188894_1	1
		ORF (bp)	702	1584 sp	804 sp	1314 pir	1386 pri	474 DI	-		483	+	1455 gr	426 G	615	207	189	750	396 pi	810 pr	1635 S	741	1224 g	-
45		Terminal (nt)	1538983	1539820 1	1542119	1546289	1546307	1547987	349	398	1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555088	1556771	1557014	1557859	1559497	1560437 1224	_
50		Initial (nt)	1539664	1541403	1542922	1544978	1547692	1548440	1548651	1549403	1550489		1552518	1553722	1554684	1554861	1555079	1555835	1558376	1557823	1559483	1580237		
		SEQ NO.	+	5117	5118	5119	5120	5121	\rightarrow	5123	5124		5126	5127	5128	5129	5130	5131	5132	5133	5134	5135		
55		SEQ NO.	-	1817	1618	1619	1620	1631	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	

EP 1 108 790 A2

	Function	precorrin 2 methyltransferase	precorrin-8Y C5, 15- methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical protein	hypothelical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.e.)	291	411			244	382		1030	268	98	216	324	487		61	516	159
	Similarity (%)	56.7	80.8			75.4	61.3		2.23	62.7	69.4	61.2	64.8	77.3		£.08	74.2	20.0
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobL			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533,25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	pir.C70764	sp:coar_psede			sp:YY12_MYCTU	gp:AF014460_1		sp:MTR4_YEAST	sp:TATC_ECOLI	Sp:YY34_MYCLE	sp:YY35_MYCTU	Sp:YY38_MYCLE	1425 sp:YY37_MYCTU		pir:870512	pir:C70512	PIR:H72504
	ORF (bp)	774	1278	386	246	738	1137	636	2787	1002	315	981	972	1425	249	192	1542	480
	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	1567106	1567117	1569932	1571068	1571508	1572492	1573491	1575205	1574945	1575406	1577806
	Initial (nt)	1561780	1563802	1563872	1584237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO (a.e)	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
	SEQ NO. (DNA)	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

EP 1 108 790 A2

_													- I	į.			- 1	
	Function	AAA tamily ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl eminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	espartate ammonia-lyase	ATP phospharibosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetase
	Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	8.66	87.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	99.8	96.8	30.8	31.6		22.4	33.0	32.6	47.2		35.9
Table 1 (continued)	Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Ното sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Bravibacterium flavum) MJ233 8spA	Corynebacterium glutamicum ASO 19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coll K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
	db Match	prf 24223820	pir.S72844	qp:AF005050_1		sp:VAPI_BACNO	prf:2513299A	1578 sp.ASPA_CORGL	gp:AF050188_1	plr:H72277	sp:METH_ECOL!		SP. AHPF_XANCH	1176 sp.ACR3_YEAST	sp.ARSC_STAAU	pir G70964		sp SYC_ECOLI
	ORF (bp)	1581	834	1323		264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
	Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	┷
	Initial (nt)	1 5	+-	-+-	+	1581851	1583481		1586445	1587504	1591235	_1		1593337	1594532	1595030	1596221	
	SEO NO	(8.8.)				5158	5159		5161	5162	5163	5184	5165	5166	5167	5168	5169	_
		(DNA)		-		1658	1659		1661	1662	1663	1664	1665	1666	1667	168	1669	1670

EP 1 108 790 A2

	Function	bacttracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromych N-acetyftransferase	LAO(lysine, erginine, and ornithine)/AO (erginine and ornithine)transport system kinase	methylmslonyl-CoA mutese siphs subunit
	Matched length (a.a.)	255	326	359	334			380		152	198		287		535		28	338	741
	Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		58.4	72.3	87.5
	Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		38.8		32.4	43.1	72.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe segerits ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M828 tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces clnnamonensis A3823.5 mutB
	db Match	SP.BACA_ECOLI	prf.2214302F	pir.F70577	Sp.PYRD_AGRAE			gp.PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		pri:2513302B		pir.JU0052	sp.ARGK_ECOLI	2211 SP.MUTB_STRCM
	ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	
	Terminal (nt)	1597745	1599614	1600877	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1612234
	Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	5180 1605961	1607646	1607657	1609087	1609247	1610192	1610236	1612238	1614444
	SEO NO Seo		5172	5173	5174	5175	5176	5177	5178	5179		5181	5182	5183	5184	5185	5186	5187	5188
	SEQ NO.			1673	1874	1675	1676	1677	1878	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

5

	Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	Invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	98		448
	Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	58.5		85.9	81.6	51.9	62.0	80.2		96.1
	identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
Table 1 (continued)	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichil subsp. Shermanii hemH	Streptococcus faacium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschil MJ1575 guaA	Streptomyces coalicolor A3(2) SCD82.04c	Methanococcus Jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
	db Match	SP:MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir.B70711	gp SCC77_24		SP. HEMZ_PROFR	sp:P54_ENTFC		pir:F70873 .	pir.E70873	pir:F64498	gp:SCO82_4	pir.E64494		gp:AE002515_9
	ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	758	663	267	383	1392
	Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1830667	1631926	1631353	1633324
	Initial (nt)	1616298	1616578	1617398	1619616	1620108	1621009	1621056		1624826	1625925		1629298	1629913	1631329	1531660	1631745	1631933
	SEQ NO.		5190	5191		5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	
	SEQ.	\rightarrow	1690	1691		1693	1694	1685	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

のでは、1 mm をおかって、 一般のあることが

EP 1 108 790 A2

5

5

	Function	antigenic protein	antigenic protein	O d d d d d d d d d d d d d d d d d d d	cation-transponing Air ase r		hypothetical protein					host cell surface-exposed (Ipoprotein	Integrase	ABC transporter ATP-binding protein			stalidese	(ransposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
	Matched length (a.e.)	113	152		883		120					107	15	497			387	238	37	88		107	148
	Similarity (%)	90.0	0.09	23	73.2		58.3					73.8	60.4	1 2 2	5		72.4	100.0	72.0	43.0		70.1	85.2
	Identity (%)	54.0	0	39.0	42.8		35.8				_	43.0	34.4	3.5	2,75		51.9	9.66	64.0	32.0		32.7	63.8
Table 1 (continued)	Hamologous gene	DE24	Verseeria gonormodes de la company	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sli1614 pms1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus	141 140 and 111 111	Corynephage South III.	Escherichia coli X12 yjjn		Micromonospore vindifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum			Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
	db Match			GSP:Y38838	SP.ATA1_SYNY3		gp:SC3D11_2			i		prf:2408488H		prf.2510481A	Sp:YJJK_ECOLI		SP:NANH_MICVI	gp:AF121000_8	GPU: AF164956_23	GP-NT1TNIS 5		plr B75015	pir S72754
	ORF	-+	480	458	2678	783	489	1362	357	158	162	375		458	1629	1478	1182	708	243	284	3 8	+	447
	Terminal	1	1632109	1632682	1636241	1633781	1636244	1638442	1838778	1639520	1639817	1640155		1641001	1641048	1642743	1644318	1646368	1646063	1945801	3	9 5	1847651
	1_	(111)	1632588	1633137	-	1634563	1636732	1637081	CF10132	1619165	1639656	•		1640546	1642674	1644218	1645499	1645661	1645821			1647634	
	SEO	(8.9.)	5206	5207		5209		5211				3 5	6176	5216	5217	5218	5219	5220	5221	_		5223	5225
	SEO NO	-	902	_	-	1709	_	15		2 5		_	C	1716	1717	1718	1719	1720	12.5		1/22	1723	1725

	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly fector / heme O synthase	transketolase	transaidolase	
	Matched tength (a.m.)	52	411	252	377	493	217	518	317	268	291		418	323	295	675	358	
	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	87.8	77.3	74.8	74.6		51.0	70.9	68.8	100.0	85.2	
	identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1482	Synechocystis sp. PCC6803 str0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL538.31 abc2	Mycobacterium leprae MLCL538.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coll K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tai	
	db Match	PIR:C72506	ptr.S72781	gp:SCC22_4	plr.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir:F70871	pir:S72783	pir:S72778	pir.C70871		pir.C71156	Sp. GOR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	1080 SP.TAL_MYCLE	
	ORF (bp)	162	1283	758	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	301 1164
	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655871	1658700	1657515	1658675	1659140	1661136	1662552	1662630	1668502	1667752	1666601
	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1857677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
	SEO NO.	5226	5227	5228	5229	9230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
	SEQ NO.		1727	_	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	+	1740	1741	1742

	Function	glucose-6-phosphale dehydrogenase	oxpocycle protein (glucose 6- phosphate dehydrogenase assembly protein)	8-phosphogluconolactonase	sarcosine oxidase	transposase (IS1876)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclesse ABC subunit C	
	Matched length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	308	281	701	
	Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4	82.5	78.2	61.5	
	identity (%)	8.68	40.6	28.7	35.2	24.8	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4	
Table 1 (continued)	Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1448c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS018 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocystis sp. PCC6803	
	db Match	dsp:W27612		sp.SOL3_YEAST	SD:SAOX BACSN	gp.AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP.YCQ3_YEAST	sp. PGK_CORGL	sp:G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp.UVRC_PSEFL	
	ORF (bp)	1 0		705	405	1401	840	174	687	186	111	408	1215	1002	981	1023	927	2088	
	Terminal (nt)	5	375	1671099	1871273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1884117	1685110	1686152	1687103	
	Initial	5		1670395	1671877	1671723	1674105	1677211	1678756	1679148		1681263	1682404		1685097		1687078	1689190	_
	SEO	(9.9.)		5245	276			5249	5250	5251	5252	5253	5254		5258	_+_	5258	5259	
	SEO	- -	1744	1745		1740		1740	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	:

	Function	hypothetical protein	6,7-dimethyl-8-tibityllumazine synthase	polypeptide encoded by rib operon	riboflavin blosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	ribofiavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n°	S-adenosylmethionine synthetese	DNA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
	Matched length (a.a.)	150	154	72	212	106	404	211	365	234	448	308	150	725	407	409	16	186	103
i	Similarity (%)	68.7	72.1	68.0	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	87.7	74.7	80.3
	Identity (%)	32.7	43.5	59.0	28.0	44.0	65.8	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	90.8
Table 1 (continued)	Homologous gune	Mycobacterium tuberculosis	Escherichia coli K12	Racillus subtilis	Racilius subtills	Bacillus subtills	Mycobacterium tuberculosis ribA	Actinobacillus	Escherichia coli K12 ribD	Saccharomyces cerevisiae	Escherichia coli K12 sun	Deeudomonas aeruginosa fmt	Racillus subtilis 188 def	Escherichia coli priA	Brevibacterlum flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
	db Match	SP.YR35_MYCTU	sp:RISB_ECOLI	Oct. V83273	GSP. 183273	GSP. 163273	1266 gp:AF001929_1	Sp. RISA_ACTPL	en RIBD FCOLL	Sp.RPE_YEAST			Spring - 13CAC	_		sp.DFP_MYCTU	SP.YD90_MYCTU	pir:KIBYGU	
	ORF (bp)	579	- i	-+∵	87	326	1266	633	084	657	1332	_	2 2	308A	2 2		28	627	
	Terminal (nt)	1889201	1689869			745400	1690380	1691639	3666004	1693262	1693987		1	1090400	1800177	1700508	1702032	1702411	=
	initial (nt)	1889779		-+	1690694	R0/0691	1691625	1692271	90000	1693918					1889147		1702322	1703037	
	SEO	(a a)					5264	5266		526/ 5268	£360	_	_			5274	5275	87.63	
		ONA)		\rightarrow	_	_	1764	1768		1767 1768	726	60/-	5	آغ	11/12	1774	1775	4778	111

_																	
	Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotasa	asparlate carbamoytransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance profein B (regulation of rRNA blosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific leader peptidase
	Matched length (a.e.)	276	1122	381	402	311	178	297				137	187	217	381	166	142
	Similarity (%)	73.6	77.5	70.1	67.7	78.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
	identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	89.5	98.6	100.0	35.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 cerA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolylicus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
	db Match	SP:DCOP_MYCTU	pir.SYECCP	Sp.CARA_PSEAE	sp:PYRC_BACCL	SP.PYRB_PSEAE	Sp.PYRR_BACCL	Sp:Y00R_MYCTU				sp:NUSB_BACSU	sp:EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp:AF124600_2	sp.LEP3_AERHY
	ORF (bp)	834	3339	1179	1341	8	578	1164	477	482	210	681	581	1089	1095	492	411
	Terminal (nt)	1703517	1704359	1707706	1709011	1710413	1711352	1713759	1714308	1714780	1714950	1715382	1716132	1716780	1717938	1719107	1720971
	Initial (mt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714299	1714741	1716062	1716692	1717868	1719032	1719598	5293 1721381
	SEQ NO	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	+
	SEQ NO.		1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

のまでは 日本語

						Table 1 (continued)					
	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Identity Similarity (%)	Matched length (a.a.)	Function	
1794	-i	1721725	1721423	303	gp:SC1A2_22	Streptomyces coelicolor A3(2) SC1A2.22	45.8	68.7	83	bacterial regulatory protein, ersR family	
1795	5295	1721780	1722853	1074	gp:AF109162_2	Corynebacterium diphtheriae hmuU	35.9	73.2	340	ABC transporter	
1798	5296	1722807	1722202	98						4	
1797		1722870	1723828	957	pir.A75169	Pyrococcus abyssi Orsay PAB0349	23.6	50.7	373	iron(III) ABC transporter, periplesmic-binding protein	
1798	5298	1723826	1724578	753	sp:FHUC_BACSU	Bacilius subtilis 168 fluc	38.3	7.17	230	ferrichrome transport ATP-binding protein	
1799	5299	1725439	1724612	828	pir.D70660	Mycobacterium tuberculosis H37Rv aroE	50.0	90.0	259	shikimate 5-dehydrogenase	
1800	5300	1728625	1725459	1167	pir.E70660	Mycobacterium tubercutosis H37Rv Rv2553c	41.8	70.1	395	hypothetical protein	
1801	5301	1727170	1726625	548	pir:F70660	Mycobacterium tuberculosis H37Rv Rv2554c	52.8	9.69	161	hypothetical protein	
1802	5302	1730048	1727385	2664	2664 sp.SYA_THIFE	Thiobacilius ferrooxidans ATCC 33020 alaS	43.3	71.8	894	alanyi-tRNA synthelasa	
1803	5303	1731542	1730168	1377	sp:Y0A9_MYCTU	Mycobacterium tuberculosis H37Rv Rv2559c	65.4	84.8	454	hypothetical protein	· ·
1804	5304	1732822	1731599	1224							
1805	5305	1734811	-	1824	SP.SYD_MYCLE	Mycobacterium leprae aspS	71.1	89.2	591	aspartyl-tRNA synthetese	\neg
1806	5306		1735946	891	sp:Y0BQ_MYCTU	Mycobacterium tuberculosis H37Rv Rv2575	46.1	74.1	297	hypothetical protein	
1807	5307	1738679	1736004	2878	2878 SP. AMYH_YEAST	Saccharomyces cerevisiae S288C YIR019C sta1	26.1	53.6	839	glucan 1,4-alpha-glucosidase	
1808	5308	1740569	1738713	-	1857 SP:YHGE_BACSU	Bacillus subtills yhgE	23.1	54.0	742	phage Infection protein	$-\tau$
1809	5309	1741219	1740572	648							
1810	5310	5310 1741313	1741906	584	gp:SCE68_13	Streptomyces coelicotor A3(2) SCE68.13	29.2	62.0	192	transcriptional regulator	
				1							

	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		sipha-glycerolphosphate oxidase	histidy-tRNA synthetase	hydrolese	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
; ,	Matched length (a.a.)		37.1		118	462		298	421	211	175		128		092	185	49	855	332	
,	Similarity (%)		1.88		77.6	71.4		53.9	72.2	62.1	61.1		100.0		86.8	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6.68	99.5	98.0	30.7	25.9	
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 sifA	Escherichia coli K12 sdaA		Enterococcus cassellflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter Jejuni NCTC11168 Cj0809c	Streptomyces chrysomalius sccypB	,	Corynebacterium giutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rei	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 ddAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
5 5	db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		pri:2423362A	sp:SYH_STAAU	gp:CJ11168X3_12 7	pri:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp Y08G_MYCTU	sp SECF_ECOLI	
	ORF (bp)	714	1113	128	485	1347	861	1686	1287	638	507	237	555	342	2280	555	150	1743	1209	630
5	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750833	1751200	1752051	1752527	1752815	1754925	1755599	1755486	1757589	1760336
,	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	1759707
	SEO NO SO SO	5311	5312	5313	5314	5315	5316	2317	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	5329
_	SEQ NO (DNA)	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

_								_							_		_	_	
	Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosylltensferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyttransferase	CDP-diacyiglycerol-glycerol-3- phosphate phosphatidyftransferase	histidine thad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
	Matched length (a.z.)	616	108	331	210	180	250	283	111	170	414	295	78	194	647	400			
	Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	68.6	61.3	61.2	49.3	87.8	78.0	78.4	68.9	61.8			
	Identity (%)	24.4	39.6	55.3	45.2	35.8	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichla coli K12 ruvC	Escherichia coli K12 ORF248 yebC	Escherichia coll K12 tesB	Streptomyces coelicator A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2 16c	Mycobacterium tuberculosis H37Rv Rv2812c pgsA	Mycobacterium tuberculosis H37Rv Rv2813c	Bacillus subtills thrZ	Bacillus subtilis ywbN			
	db Match	prf.2313285A	Sp:Y08D_MYCLE	Sp:RUVB_ECOLI	Sp.RUVA_MYCLE	sp:RUVC_ECOLI	sp:YEBC_ECOLI	sp.TESB_ECOLI	gp.SC10A5_9	pir:H70570	1083 EP.GPI3_YEAST	gp:SCL2_18	plr:C70571	pir.D70571	SP:SYT2_BACSU	SP: YWBN_BACSU			
	ORF (bp)	1932	363	1080	818	663	753	846	474	462	1083	963	657	980	2058	1208	564	546	735
	Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1783990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
	initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
	SEO NO 6.	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5348	5347
	SEQ NO DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

EP 1 108 790 A2

	_							_												_						
5		Function						yltransferase											ferric transport ATP-binding protein					abolism		
10		Fun						puromycin N-acetyltransferase				-							ferric transport AT					pantothenata metabolism flavoprotein		
15		Matched length (a.a.)						190											202					129		
20		Similarity (%)						84.2											28.7					68.7		
		identity (%)						36.3											28.7					27.1		
25	Intinued)	gene						itus pac											afuC					djb 1		
<i>30</i>	Table 1 (conlinued)	Homologous gene						Straptomyces anulatus pac											Actinobacilius pleuropneumoniae afuC					Zymomonas mobilis díp		
40		db Match						Sp.PUAC_STRLP											Sp. AFUC_ACTPL					gp:AF088896_20		
		ORF (bp)	378	594	1407	815	380	287	1086	1101	669	2580	1113	1923	483	189	312	429	597	666	159	1107	420	591	864	420
4 5		Terminal (nt)	1777648	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1788907	1789562	1789768	1790057	1790461	1792438	1793426	1793498	1794820	1795621	1796181	1797049	1797789
50		Initial (nt)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1788844	1788829	1789080	1789580	1789746	1790889	1791842	1792428	1793654	1793714	1795202	1795591	1796188	1797350
		SEQ NO.	5348	5349	5350	5351	5352	5353	5354	5355	5358	5357	5358	5359	5360	5361	5362	5363	5384	5365	5366	5367	5368	5369	5370	5371
		a 2	8	9	0		2	3	4	5	8	7	8	9	0	-	2	3	4	5	9	7	8	6	0	-

EP 1 108 790 A2

		İ	\neg	Ī																					
5	Function																			1 resolvase			phosphatase	-	
10	Fu																			transposon TN21 resolvase			protein-tyrosine phosphatase		
15	Matched length (e.a.)																			186			184		
20	Similarity (%)																			78.0			51.8		
	Identity (%)																			51.1			29.3		
<i>25</i>																							30		
% Sample 1 (continued)	Homologous gene										•									Escherichia coll tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
40	db Match																			sp:TNP2_ECOLI			sp.PVH1_YEAST		
	OR (94)	120	735	225	894	156	474	153	423	687	429	465	237	189	096	480	681	282	375	812	1005	375	477	726	423
45	Terminal (nt)	1797850	1798023	1799408	1800368	1800449	1801307	1802098	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807398	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50	Inital (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
	SEQ.	5372	5373	5374	5375	5378	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
55	SEO NO DNA)	1872	1873	1874	1875	1876		1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

EP 1 108 790 A2

						_					_		_							_	_		_	
5			on factor															related)	related)			specific		
10		Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	Insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15		Matched length (a.a.)	218									545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			50.6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	Table 1 (continued)	euaß sn	ilicolor A3(2)									lima MS88					glutamicum	glutamicum	glutamicum			emi reവ		age phi-O1205
30 ·	Table 1 (Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSBB TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891 (pir.S60890	pir.S80889			SP.RECJ_ERWCH		pir.T13302
		ORF (bp)	738 [789	456	186	672	417	315	369	207	2202	1748	219	144	429	534	894	294	213	1299	1878	780	1850
4 5		Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819168	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836875
		SEO NO (s.s.)	5396	5397	5398	2399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEQ NO.	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

EP 1 108 790 A2

										i															• ATP-
5	Function							in gp57										tein with SH3					g protein		Cip proteinas
10	J.H.					helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Cip proteinase ATP-binding subunit
15	Matched length	(aa)				620		109										422					347		630
20	Similarity (%)					44.7		64.2							_			49.8					52.5		61.0
	Identity (%)					22.1		36.7										28.7					23.6		30.2
25 General English	sgene					noniae ATCC		gene57										rces pombe					icolor		2 clpA
SS Table 1 (continued)	Homologous gene					Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SCSC7.14		Escherichia coli K12 clpA
. 40	db Match					sp:Y018_MYCPN N		pir.T13144 B										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
	# a		68		4	1839 sp:Y	375	336 pir.T	366	618	537	528	198	186	372	438	976		25	1395	594	180	1257 gp:S	1854	1965 sp:C
	- ORF	\neg	• -	1 447	534			\vdash	\vdash				_	\vdash	Ь	Н	_	1221	4 852	_	-	\vdash			
45	Terminal		1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50	Initial		1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
	SEO	(8.8)	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	_	5432	5433	5434	5435	5438	5437	5438	5439	5440
55			_	1919	1920		1922	1923	1924	1925	1926	1927	1928	1929	_		1932	1933	1934	1935	1938	1937	1938	1939	1940

EP 1 108 790 A2

			_			_	_		_	_	_	$\overline{}$	- T	$\overline{}$	- 1		T				\neg	Т		1
5		c						286						nophosphate						donuciease				
10		Function						ATP-dependent helicase					hypothetical protein	deoxynucleotide monophasphate kinase				1	type II 5-cytosome methyltransferase	type II restriction endonuclease			hypothetical protein	
15	-	Matched length (a.a.)						693					224	208					363	358			58	
20		Similarity (%)						45.9					47.8	61.5					99.7	89.7			45.8	
		Identity (%)						21.4					25.9	31.7					99.2	99.7		_	24.6	
25 G	1050/	9						SA20				_	or A3(2)	1 gp52					amicum	amicum			lor A3(2)	
38 Confinery Leider	INDO I BIORI	Hamalagans gene						Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phl-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgttM	Corynebacterium glutamicum ATCC 13032 cgilR			Streptomyces coelicolor A3(2) SC1A2.16c	
40		db Match						SP.PCRA_STAAU					gp:SCH17_7	prf.2514444Y					prf.2403350A	pir A55225			gp:SC1A2_16	
		ORF (bp)	474		B	324	312	2355 s	558	378	465	264	111	702	225	2166	273	6507	1089	1074	1521	117	1818	186
45		Terminal (nt)	1881225	2	18014/3	1881519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220		1887590
50		Initial (nt)	1050752	-		1861842	1862088	1862945	1865265	1865842		1866832	1867098	1867886	1868895		1871373			1879412	1863990		1885230	1887405
		SEQ NO	+-	_	5442		5444	5445	5446	5447	_			5451	5,05,2		5454		 -	5457	5458	5459		5461
55		NO NO NO			1942		1944	1945	1946	+-	_		1950	1951	1057	1953	1954	1955	1956	1957	1958	1959	1960	1961

EP 1 108 790 A2

							$\overline{}$													${f r}$	_	$\overline{}$	_			$\overline{}$
5		Function	case-related	uj.		ain				lp ATP-binding							operatus protein									
10		Fur	SNF2/Rad54 helicase-related protein	hypothetical protain		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15		Matched length (a.a.)	06	163		265				724							1004									
20		Similarity (%)	70.0	56.4		47.9				52.5							49.1									
		identity (%)	46.7	33.1		20.7				25.3							20.1									
25	(panul	928	ans	hl-gle		2-16									-											
<i>30</i>	Table 1 (continued)	Homologous gene	Delnococcus radiodurans DR1258	Lactobacillus phage phl-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coll cipB			-				Homo sapiens numA									
35 40		db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp:CLPB_ECOLI							plr.S23647									
		ORF (bp)	351	864	330	1680	1208	1293	2493	1785	621	1113	846	981	879	198	2766	600	1251	696	714	1008	1659	1488	389	1509
45		Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50		Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900918	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
		SEQ NO.	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5478	5477	5478	5479	5480	5481	5482	5483	5484	5485
55		SEQ NO (DNA)	1962	1963	1984	1965	1988	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

EP 1 108 790 A2

<u>----</u>

																			_	_						
5		Function										omicia			ethylase					otein			rtein			
10		-										submaxillary anomircia			modification methylase					hypothetical protein			hypothetical protein			
15		Matched length										1408			61					114			328			
20		Similarity (%)										49.2			65.6					58.8			54.6			
		identity (%)	-	L	-	ļ 		-				23.2			42.6		_		_	38.6		-	27.1			
25	lable 1 (continued)	eueß sr										ica			oR1					erculosis			ınaschii			
30) l appe 1	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterlum tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
35 40		db Match										pir: T03099			sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA			
		ORF (bp)	360	222	312	645	759	549	930	306	357	4464 pir	579	945	171 sp:	375	1821	201	468	381 pir.	507	837	942 sp:	624	210	534
45		Terminal (nt)	1916733	1917165	1917329	1917584	1918703	1919646	1920347	1925695	1926038	1921547 4	1926259	1927245	1928381	1928908	1929059 1	1930990 2	1931421 4	1931935 3	1932373 5	1933522 8	1934971 8	1936849 6	1937411 2	1937486 5
50		Initial (nt)	1916374	1916944	1917840	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	Ė	SEQ NO	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5498	5497	5498	5499		_	5502	5503	5504	5205	5508	5507	5508	5509
55		SEQ NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1998	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

EP 1 108 790 A2

5	Function										surface protein				major secreted protein PS1 protein precursor			DNA topolsomerase III					major secreted protein PS1 protein precursor	
15	Matched length (a.a.)										304				270			265					344	
20	Similarity (%)								<u>i</u> 		44.1				54.4			6.03					54.7	
	Identity (%)										23.0				30.7			23.8					29.7	
8 % Z	Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17865 csp1	
Tab	타										Enterococcu				Corynebacti (Brevibacter 17965 csp1			Escherichia coli topB					Corynebacte (Brevibacter 17965 csp1	
40	db Match										prf:2509434A				sp:CSP1_CORGL			sp:TOP3_ECOLI					sp.CSP1_CORGL	
	ORF (bp)	1191	534	588	444	753	303	216	308	588	828 p	287	381	429	1581	2430	967	2277 s	2085	168	432	744	1887 s	291
45	Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952548	1956203	1958450	1959765	1960371	1961114	1963139
50	Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
	SEQ NO.	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5255	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
55	SEQ NO DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

																							_		_		_
5	tion														A-binding protein								-				
10	Function				thermonuclesse										single stranded UNA-binding protein								serine protesse				
15	Matched length (a.a.)				227										225								248				
20	Similarity (%)				57.7										58.1								52.6				_
	identky (%)				30.4										24.9	1	-			-		1	25.7		_	1	
<i>25</i> (panu	906				S nuc						-												ASP24D				
& Samulan Reported Samulan Sam	Homologous gane				Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				
40	db Match				SP.NUC_STAAU				:						pri:2313347B								sp:S24D_ANOGA				
	ORF (bp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	398	237	624	579	462	507	588	333	558	570	912	693	386	747	5
45	Terminal (nt)	1963514	1964727	1865911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1873737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979808	1980885	1981657	1982028	1982817	1981912
50	Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	5540 1969745	1970254	1971672	1973147	1973809 1974204	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
	SEO NO.	5533	5534		5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5558
55	SEQ NO.		2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058

EP 1 108 790 A2

Matched length (a.a.) (a.a.) 406 integrase (divided) 117 transposase (divided) 117 transposase (divided) 31 transposition repressor 43 insertion element (IS3 related) 270 transposase		153 major secreted protein PS1 protein precursor 223 integrase	7
aitched (a.a.) 31 117 117 124 43 31 270		153	677
		l I	-1
Similarity (%) (%) (%) 84.4 84.6 88.4 88.4 88.4 88.4		37.0	90
196) 196) 29.6 83.9 70.9 74.4 31.1		25.0	7.07
s gene s gene s gene tofermentum cofermentum cofermentum		glutamicum avum) ATCC	hage L5 Int
Table 1 (continued) Homologous gene Homologous gene Homologous gene Mycobacterium phage L5 Int Brevibacterium lactofermentum CGL2005 ISAB1 CGL2005 ISAB1 Corynebacterium glutamicum orf1 Streptomyces coelicolor A3(2) SCJ11.12		Coryrebacterium glutamicum (Brevibacterium flavum) ATCC 17985 csp1	Mycobacterium phage L5 Int
95. R23011 95. R23011 97. R23011 98. R23011 98. R23011			sp:VINT_BPML5
ORF (bp) 363 273 273 273 273 273 273 1149 1149 1149 1149 1149 115 115 115 115 115 115 115 115 115 11	432		687
100 000 000 000 000 000 000 000 000 000	1991189	1881	1994608
1983186 1983186 1983186 1983811 1984217 1984217 1984217 198590 1988383 198888483 19888884 1989805 19900667			1995294
SEQ NO. NO. S559 5559 5559 5559 5561 5561 5561 5561 5		5577	5578
	2075	2077	2078

| | | | | | | | |

 | | |
 | |
 | • | | | | |
 | | | | | |
|-----------------------------|--|--|--|--|---|---|--
--
--|---|--
--
--|--|--|--|---|---
--|---|---|--|---------------------|--|---|---------|
| Function | sodium-dependent trensporter | | hypothetical protein | | | | riboflavin biosynthesis protein | potential membrane protein

 | methionine sulfoxide reductase | | hypothetical protein
 | | hypothetical protein
 | ribonuclease D | 1-deaxy-D-xylulose-5-phosphate | synthese | RNA methyltransferase | | hypothetical protein
 | deoxyuridine 5'-friphosphate | nucleotidohydrolase | hypothetical protein | • | |
| Matched
length
(a.a.) | g d | 3 | 95 | | | | 233 | 384

 | 128 | | 232
 | | ğ
 | 37.1 | 9 | | 472 | | 268
 | ! | 2 | 150 | | |
| Similarity
(%) | , 97 | 9. | 81.5 | | | | 64.4 | 71.9

 | 67.5 | | 77.2
 | | 78.6
 | 52.8 | ; | 6.5 | 52.3 | | 62.7
 | | 85.1 | 70.7 | | |
| Identity
(%) | 1 8 | 38.8 | 48.9 | | | | 33.5 | 42.5

 | 41.3 | | 55.2
 | | 55.7
 | 25.9 | | 55.3 | 25.4 | | 38.1
 | | 92.0 | 46.0 | | |
| Homologous gane | John Parler Pylori 28895 | HP0214 | Spelling cubilis was | מכוות מיינים ו | | | Mycabacterium tuberculosis
H37Rv Rv2871 ribD | Mycobacterium tuberculosis
H37Rv Rv2673

 | Streptococcus gordonii msrA | | Mycobacterium tuberculosis
 | H3/KV KV20/90 | Mycobacterium tuberculosis
H37Rv Rv2680
 | Haemophilus influenzae Rd | | Streptomyces sp. CL190 dxs | Thermotoga maritima MSB8
TM1094 | | Mycobacterium tuberculosis
 | H3/RV RVZ080C | SC2E9.09 dut | Mycabacterium tuberculosis
H37Rv Rv2698 | | |
| db Match | | _ | T | Т | | | | pir:E70968

 | Π | | pir.H70988
 | | plr:C70528
 | SD:RND HAEIN | | gp:AB026631_1 | pir.E72298 | | oir C70530
 | | sp.DUT_STRCO | pir:E70530 | | |
| A PE | | | $\overline{}$ | | 345 | 338 | 969 | 1254

 | 408 | Ş | 898
 | 3 | 624
 | 1283 | | 1908 | 1238 | 282 | i g
 | 3 | 447 | 548 | - | 3 |
| 20 | 1 | 83 | 1 | 2 | 1997112 | 1997503 | 1998240 | 1999542

 | 1999949 | 10000 | 2000521
 | 360007 | 2002112
 | 2003334 | | 2003402 | 2005462 | 200000 | 20002
 | 7,0002 | 2007738 | | | 2008876 |
| | | | - + | _ | | _ | | 1998289

 | 1000542 | 30000 | 2000132
 | 0121002 | 2001489
 | | | 2005309 | 2006697 | 9099000 | 200000
 | | 2008184 | | | 2009082 |
| ã õ | 3 | | <u>-</u> | | - | | |

 | | |
 | | 5588
 | 0000 | 2008 | 5590 | 5591 | | | | |
 | _ | 5594 | | | 9659 |
| | • • • • | | | | + | _ | |

 | _ | |
 | _ |
 | | | 2090 | 2091 | | 2092
 | 2093 | 2094 | 2095 | | 2096 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (a.a.) | SEQ Initial Terminal ORF db Match Homologous gene (%) (M) (nt) (bp) (bp) (bp) (control of the control of the co | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (a.a.) (a.a.) (a.a.) | SEQ Initial Terminal ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ (nt) Initial (nt) Terminal (bp) QPR (bp) db Match Homologous gene (ps. 1) Identity (ps. 1) Matched (ps. 2) (a.a.) (nt) (nt) (nt) (nt) (ps. 2) (ps. 2) | SEQ (nt) Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene (cm) Identity (cm) Matched (cm) Matched (cm) Homologous gene (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (| SEQ (nt) Initial (nt) Terminal (bp) Ab Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matche | SEQ (nt) Initial (nt) Terminal (bp) ABACH (bp) Homologous gene (bc) Identity (bc) Matched (bc) (n t) (nt) (nt) (nt) (ht) (ht) <td>SEQ (nt) Initial (nt) Terminal (bp) Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)<</td> <td>SEQ (nt) (nt) (nt) Terminal (bp) Ab Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <</td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (se) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <t< td=""><td>SEQ (nt) (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (se.a.) Identity (smilerity (se.a.)) Matched (se.a.) 6.a.b. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (se.a.) (se.</td><td>SEQ Initial Terminal ORF db Match Homologous gene identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length Matched (%) Matched</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) <t< td=""><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEO Initial Terminal ORF db Match Homologous gene Identity Similarily Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s)<</td><td> 18EQ Initial Terminal ORF 4b Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td> SEG</td><td> SEQ</td><td> SEG Initial Terminal ORF db Match</td><td> SEG</td></t<></td></t<></td> | SEQ (nt) Initial (nt) Terminal (bp) Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)< | SEQ (nt) (nt) (nt) Terminal (bp) Ab Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) < | SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (se) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <t< td=""><td>SEQ (nt) (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (se.a.) Identity (smilerity (se.a.)) Matched (se.a.) 6.a.b. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (se.a.) (se.</td><td>SEQ Initial Terminal ORF db Match Homologous gene identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length Matched (%) Matched</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) <t< td=""><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEO Initial Terminal ORF db Match Homologous gene Identity Similarily Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s)<</td><td> 18EQ Initial Terminal ORF 4b Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td> SEG</td><td> SEQ</td><td> SEG Initial Terminal ORF db Match</td><td> SEG</td></t<></td></t<> | SEQ (nt) (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (se.a.) Identity (smilerity (se.a.)) Matched (se.a.) 6.a.b. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (se.a.) (se. | SEQ Initial Terminal ORF db Match Homologous gene identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) | SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length Matched (%) Matched | SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) | SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%) | SEC Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) <t< td=""><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEO Initial Terminal ORF db Match Homologous gene Identity Similarily Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s)<</td><td> 18EQ Initial Terminal ORF 4b Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td> SEG</td><td> SEQ</td><td> SEG Initial Terminal ORF db Match</td><td> SEG</td></t<> | SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEO Initial Terminal ORF db Match Homologous gene Identity Similarily Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s)< | 18EQ Initial Terminal ORF 4b Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) | SEG | SEQ | SEG Initial Terminal ORF db Match | SEG |

	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheris toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
	Matched length (a.e.)	100	198	248	200	422		578	127	92	523	144	228	77	329		305	98
	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	8.66	04.0	99.1		79.0	50.7
	identity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtills yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dbcR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterlum Iactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae
	db Match	plr.F70530	SP.SUHB_ECOLI	Sp:PPGK_MYCTU	prf.2204286A	Sp.YRKO_BACSU		1710 sp:Y065_MYCTU	pir.H70531	plr:G70531	gp.SCH5_8	prf.2204286C	pir.140339	GP. AF010134_1	Sp.GALE_BRELA		pir.E70532	2550 sp.MTR4_YEAST
	ORF (bp)	291	818	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020278	2020724	2022949	2022313	2023945	2023948	2026	2029043
	Initial (nt)	2009570	2010539	+	2011863	2015496	_	2017988	2018119	2018202	2018744	2020293	5608 2022268	2022546	2022959	2025270		2026494
	SEO		5598		2600	5601	5602		5604	5805	5606	5607	5608	5609		5611		5613
	SEO SEO		208		2100	2101	τ	2103	2104	2105	2108	2107	2108	2109	2110	2111	2112	2113

	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regutatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphete regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uradi permesse	ATP/GTP-binding protein			diaminopimelate epimerase
	Matched length (a.a.)	299		1298	145		222	245	320	285	262	345	548	20		407	419			269
	Similarity (%)	65.6		78.2	86.2		71.8	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	90.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	4.2			33.5
Table 1 (continued)	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coll K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
	db Match	SP.OXYR_ECOLI		Sp.HRPA_ECOLI	gp:SCAJ4870_3		sp.LEXA_BACSU	Sp.GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	Sp.PTFB_ECOLI	sp.PTHP_BACST		SP:PYRP BACCL	gp:AF145049_B			sp:DAPF_HAEIN
	ORF (bp)	186	1089	3906	450	420	969	777	960	1704	792	066	1836	287	582	1287	1458	788	537	831
	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051108	2051842	2051845
	Initial (nt)	2029177	2031365	5818 2031478	2035880	5618 2036409	2036812	5620 2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295			2050321	2051306	2052675
	SEO		5615	5818	5617	5618	5619	5620	5621	5622	5823	5624	5625	5626	5627	5628	5629	5630	5631	$\overline{}$
	SEO		2115		2117		2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

-	·					_												
	Function	tRNA delta-2. isopantenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Nelsserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched length (a.a.)	300		445			190	494	242	71	225	273	142	29		197	223	228
	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	98.8	66.9	71.8		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	98.8	0.99	100.0	89.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coll K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisserla gonorrhosae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp:MIAA_ECOLI		pir:870508			pir.C70508	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	ร _{ุค:} GLUC_CORGL	sp:GLUD_CORGL	Sp:RECX_MYCLE	pir:A70878		Sp:BIOY_BACSH	sp:POTG_ECOLI	pir:F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	265	234	738	576	669	609
	Terminal (nt)	2052684	2053609	2055781	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065867	2087141	2067866	2088474
j	Initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	5641 2060414	2061629	5643 2062441	2063894	2065627	2066404	2066566	2067168	5649 2067866
	SEQ NO.	5633	5834	5635	5838	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
	SEQ NO (DNA)	2133	2134	2135	2138	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

						Table 1 (continued)			Matched	
	-	<u> </u>	Terminal	AR AR	db Match	Homologous gene	Identity S	Similarity (%)	length (a.a.)	Function
_	9	(jr)	<u>-</u>	(pp)	Ì	eja eji e e	41.7	78.5	228	hypothetical protein
	-	2008703	2089392	89	pir.860176	Mycobacterium tuberculosis			1	(135kD grotein)
_	0000		208856	+	NCTU	Mycobacterium tuberculosis H37Rv RV2744C	72.5	89.6	569	hypothetical protein technical
C 1612				$\overline{}$	1	Mycobacterium tuberculosis	54.2	78.3	83	regulator (DNA-binding protein)
2152 5	5652 20	2069936	2089618	128		Streptococcus pneumoniae R6X	41.8	68.5	185	competence damage induced proteins
2153	5653 2	2070512	206997	516	SP.CINA_STRPN	clnA			į	phosphotidyfglycerophosphate
24.54	5654 2	2071121	2070519	8	prt.2421334D	Streptococcus pyogenes pgsA	38.8	72.5	B	synthase
 -		3,000	2071500	285	plr: T10888	Arabidopsis thallana	24.8	52.1	117	hypothetical protein
2155	2695	5655 2071313	2001.02			Streptococcus pneumoniae	90.0	70.0	8	surface protein (Peumococcai surface protein A)
2156	2656	2071624	2071740	117	gp.AF071810_1	OBLS pspA				
$\overline{}$		9000	A72670	813				18	32	tallurita resistance protein
2157	5657	20/7/02	3	-+-	142110205D	Escherichia coli terC	31.0	20.00	3	in anathon protein E
2158	5658	2072905	2	-		Dacillus subtills 168 spolliE	38.0	64.6	845	Stage III sporting in agests
2159	5659	2076056	2073294	2763	sp.SP3E_BACSU	Streptomyces coelicolor A3(2)	33.3	61.0	216	hypothetical protein
2160	5660	2077024	2076392	633	gp:SC4G6_14	SC4G6.14	3		<u> </u>	
		7,007,00	2077122	2154	sp.YOR4_CORGL	Corynebacterium glutamicum ATCC 13032 orf4	99.1	4.00	645	hypothetical protein
2181	1990	2013210				Corynebacterium glutamicum	98 2	9.66	250	hypothetical protein
2162	5662	2081136	2080387	750	Sp:YDAP_BRELA	(Brevibactenum lactorellmenum) ATCC 13869 orf2	_+	1		
		37700	2002013	1 60			1	1	-	
2163	5663	C112802	3	+					1	in the state of th
2164	5664	2082368	8 2082105	264	-i-	land attitude and	85.4	85.3	742	guanosine pentaphospitate
2165	5995	2085190	0 2082932	2 2259	9 prf:2217311A	Streptoriyes american	;	+	la 	30S ribosomal protein S15
	_			787	7 plr F89700	Bacillus subtilis rpsO	2.5	+	+	Т
2166		2085702	2 2065430	-		r eighmania malor	35.1	63.3	318	חומת של היים היים היים היים היים היים היים היי
2167	2667	5667 2086826	6 2085879	9 948	8 pri 2518305A					

	Function	Albania disagnata linese	bifunctional protein (noonavin wirese and FAD synthetase)	B eschipting explines And		hypothetical protein		hypothetical protein	phosphoesterase	DNA demeged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2		hypothetical protein	n-utilization substance protein	(transcriptional termination factor)			nypounaileal protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC-	transporter ATP-binding protein
			blunction and FAD	A A I A G	S VNN	hypothe		hypothe		ī			T	Т						\neg				•	
	Matched length	0 0	328	1	2	47		237	273	433	308	108	10		83	_	352		-	-	534	337	282	53	\dashv
	Similarity	(m)	79.0		61.7	73.0		62.5	68.9	78.8	70.8	70.4	2 6	06.3	68.3		71.0			65.5	60.9	69.4	69.2	╀	-
	dentity	Ř.	56.2		32.7	65.0		42.2	46.9	51.0	36.7	3,5	4	;	44.6		42.3			34.6	25.3	37.7	38.4	1	97.0
Table 1 (continued)	Homologous gene		Corynebacterium	ammoniagenes ATCC 68/2 ribr	Bacillus subtilis 168 truB	Corynebacterium	ammonlagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2838c dinF	Mycobacterium tuberculosis	DISTANTANTANTANTANTANTANTANTANTANTANTANTANT	Bacillus subtilis 188 rorA	Stigmatella aurantiaca DW4 infB	Streptomyces coelicolor A3(2)	9C9U4.63	Bacillus subtilis 168 nusA			Mycobacterium tugercurosis H37Rv Rv2842c	Bacillus subtilis 169 dppE	Fechalchia coli K12 dooB	Carlo entre	Macinia sociiis apocio	H37Rv Rv3663c dppD
	4-4-14	IDIBM OD	1	Sp:Ribr_CORAM	en TRUB BACSU	1	PIR:PC400/	gp:SC5A7_23	pir:870885	1305 plr:G70693	olr.H70693		SP:RBFA_BACSU	Sp:IF2_STIAU	op SC5H4 29		sp:NUSA_BACSU.			pir:E70588	LECTOR BACSI		sp.urra_ccoci	prf.1709239C	1731 pir.H70788
	ORF.	(<u>G</u>		1023 8	i g	_	88	951	804	1305	86		447	3012	338	3	966	_	1254	534	+	+	924	666	
	Terminal		- I	2086919	680000	2000007	2087954	2089218	2089861	2090751	100000	007807	2093055	2093712	2006844	**************************************	2097380		2099815	2098412		2	2102946	2103973	2105703
	1911		 -	2087941	-	208/8/3	2088181	2089868	2090664	2092055	2003046	200207	2093501	2008723		8717802	5678 2098375		2098562	2098945		2100240	5682 2102023	2102975	5684 2103973
	SEO	ğ	(9.9)	5668 2		2669 2	5870	5671				26/4	5875	87.02	9,00	2677	5678		5679	5680		5681		5683	
		Š		2168 5	_	2169	2170	17.2				21/4	2175	_		2177	2178		2179	2180		2181	2182	2183	2184

EP 1 108 790 A2

	Function	prolyl-IRNA synthetase	hypothetical protein	magnesium-chelatase subunit	and a separate subounit	iliagilesioni cioca	uroporphyrinogen III		hypothetical protein	hypothetical protein		nypoinetical protein	glutathione reductase					methionine aminopeptidase	T	Τ			Т	hypothetical membrane protein
40-0-64	Matcheo length (a.a.)	978	243	37	150	2	237		488	151	1	338	466		_	-	-	252	A 25	3	218	424	+	380
	Similarity (%)	84.6	65.0	60.7		69.6	73.8		68.7	62.3		65.7	76.8					75.8	2 3	20.0	72.2	4 87	\dashv	58.1
	identity (%)	07.0	39.5	32.4		46.5	49.0		41.2	35.1		37.6	53.0		-		-	13.3	+	2/.3	44.0	1 8		24.4
	Homologous gene	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2)	Shodobacter sphaeroides ATCC	17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii	cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2)	10C	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100	200					Escherichia coll K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtherlae	Correspondentian diphtheriae	chrS	Deinococcus radiodurans
	db Match	SESYP MYCTU	# UE J. J. S. M.	-	SP BCHD_RHOSH	AACAACAACAA	pn.z505462/m	prf:2108318B	sp:YPLC_CLOPE	op.SC5H1 10	-	pir.A70590	Sp.GSHR_BURCE						SP. AMPM ECOLI	prf.2224268A	prf-2518330B	\rightarrow	prf:2518330A	70 PBB3 70
	ORF (bg)			_	759		_	750	1422	Ş	8	1014	1395	-	942	474	357	729	789	1886	68	-+	1149	5
	Terminal	2105801		7108388	2108389		2109155	2110434	2112659	7110717	11 /71 17	2116774	2118310		2117015	2119080	2119495	2120356	2120359	+-	3	7 7	2123848	3,000
	Initial	13	!-	2407652	2109147	1	2110255	2111183	2111238		21136115	2115781			2117956	2118607	5696 2119139	5697 2119628	5698 2121147	5699 2123161	9,000	2123848	2124996	
	S S		C	5686	2687		5688	5689	2690		5691	5692		_	5694	5695			 -			2700	1075	-
	SEO			2188	2187	$\overline{}$	2188	2189	2190		2191	2192	3	2133	2194	2195	2196	2197	2108	1 6	6617	2200	2201	

	Function	ABC transporter		hypothetical protein (gcpE protein)			hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachometie	1-deoxy-O-xylulose-5-phosphate reductoisomerse					ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinese		elongation factor Ts	30S ribosomal protein S2
Podoto	Matched length (a.a.)	225		350	\top		405	147	312					245	356	46	294	185	<u>6</u>		280	254
	Similarity (%)	71.1		73.0	2.0		73.6	43.0	42.0					75.1	78.0	74.5	56.5	84.3	43.1		78.8	83.5
	Identity (%)	37.3			5.4		43.0	36.0	22.8					37.1	0.99	41.5	33.3	47.0	28.4		49.6	54.7
Table 1 (continued)	Homologous gene	Bacillus subfilis 168 vvrO			Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr					Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2)	Sac all the sac and sac all the sac all th
	db Match	90170070	pri 2420410F		1134 SP.GCPE_ECOLI		pir:G70886	GSP:Y37145	1176 SP.DXR_ECOLI					pir:B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	_			SP:EFTS_STRCO	
	OR G		069	162	1134	812	1212	645			441	480	1578	855	1098	258	855	555			+	
	Terminal (nt)		2128753	2126928	2127350	2129461	2128669	2130950	2129903		2131/62	2131247	2131825	2133406	2134454	2136141	2136235	2437286	243	213	213	<u>:</u>
	Initial	-+	2126064	2127087	2128483		2129880		2131078		2131322	2131726				2135884	2137089	0.070	7136640	2138004		
	SEO		5703	5704	5705				5709	3	5710	5711	5712			5715	57 18			2,10		
		_	2203	+	2205	_	_	2208	3208		2210	2211	2212	2213	2214	2215	2216		221/	22.18	2220	

EP 1 108 790 A2

									-		$\overline{}$	T					\neg	
Function	hypothetical protein	site-specific recombinase	hypothelical protein	Mg(2+) chelatese family protein	hypothelical protein	hypothetical protein	ribonuclease Hil		signal peptidase	Fe-regulated protein		Sus ribosomes protein L.1.3	pyrophosphorylese	oxidoreductase	thlamine biosynthetic enzyme thiS (thiG1) protein	thismine biosynthetic enzyme thiG protein	motybdopterin blosynthesis protein	
Matched length (a.a.)	120	297	395	504	118	101	190		285	323			225	378	95	251	437	
Similarity (%)	58.0	68.7	8.89	75.8	72.3	98.0	69.5		61.1	59.1		88.3	6.09	64.1	74.2	76.9	58.8	
Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.8		32.3	25.4	\perp	2	28.4	34.0	37.1	48.2	30.2	
Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2801c	Haemophilus influenzae Rd H1059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rpiS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF	
db Match	p:YS91_MYCTU	orf:2417318A	sp:YX27_MYCTU	FP:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp:RNH2_HAEIN		рл.2514288Н	prf.2510361A		sp:RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOU	Sp:THIG_ECOLI	orf 2417383A	
ORF (bp)	504	924	1182	1521	386	303	627	792	786	936	213	339	683	90	195	780	_	∹
Terminal (nt)	2141760	2141783	2	2144068	2145576	2146264	2146566	2148022	2147281	2149166	2149359	2148634	2150997	2152118		2153113	2154	
initial (nt)	141257				2145941	2146566	2147192	2147231	2148048	2148231	2149571	2149972	2150335	2151039	2152135	2152334		
O O			5724 2	5725						5731	5732	5733	5734	5735			97.73	2.5
1		_+		2225	2226	7222	2228	$\overline{}$			2232	-	2234	2235	2236	2237	9000	2230
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (ht) (bp) (bp) (bp)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length len	SEQ (a.s.) Initial (nt) Terminal (bp) Ab Match Homologous gene (3s) Identity (3s) Matched (3s) Hength (a.s.) (a.s.) (nt) (nt) (bp) (bp) (bp) (a.s.) (a.s.) 5722 2141257 2141760 504 sp:YS91_MYCTU Mycobacterium tuberculosis 48.0 58.0 120 hypothetical protection 5723 2142686 2141763 924 pri:Z417318A Proteus mirabilis xerD 40.1 68.7 297 site-specific respecific	SEO (a.a.) Initial (nt) Terminal (bp) CAD Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Mat	SEO (nt) (nt) (nt) (hp) Terminal (hp) Ab Match (hp) (hp) Homologous gene (hp) (hp) (hp) Identity (hp) (hp) (hp) (hp) (hp) Matched (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp)	SEQ (nt) (nt) (nt) (bp) CARD Match (a.a.) Homologous gene (%) (%) (%) Malched (%)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEC (in) (in) (in) (in) (in) (in) (in) (in)	SEO (nt) (nt) (nt) (nt) (bp) db Match Homologous gene (%) Identity (%) Matched (%) (%)	SEO Initial Terminal ORF db Match Homologous gene Identity Smillarily length (a a.) (nt) (nt) (bp) Ab Match Homologous gene (%)<	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) (a.b.) (nt) (bp) (bp) (bp) Abatch (bp) (bp) (bp) (bp) Homologous gene (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp)	SEC Initial Terminal ORF db Match Homologous gene (%) (%) (%) (m) SEO (nt) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	SEG	SEO Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	

EP 1 108 790 A2

	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cls, cls-muconate cycloisomerase				IRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
	Matched length (aa)	776	334	456	92	350				273	210	172	69	83	196	258	318	559				505
	Similarity (%)	7.87	65.3	78.3	80.0	€.99				64.8	57.8	72.1	68.7	79.5	61.7	69.1	83.8	78.2				66.1
	Identity (%)	58.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	28.8	35.5	58.7				37.0
Table 1 (continued)	Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhi	Spinacia oleracea chloroplast	Pseudomonas putida pcaB			-	Escherichia coll K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agaiactiae cylB	Pyrococcus harlkoshii OT3 mtrA	Bacillus subtilis 188 ffh				Escherichia coli K12 ftsY
	db Match	sp.TEX_BORPE	pir:A36940	pir:H72105	prf.2108268A	Sp:PCAB_PSEPU				SP.TRMD_ECOLI	gp:SCF81_27	SP.RIMM_MYCLE	pir.B71881	pir:C47154	pir.T14151	prf.2512328G	prl:2220349C	sp:SR54_BACSU				sp:FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	069	819	648	513	348	495	576	867	876	1641	633	417	699	1530
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
	Initial (nt)	2158733	2157721	2159181	2159237	2160537	2160670	2161503	2162196	2163014	2163098	2164260	5750 2164390	5751 2165309	2165523	2166990	2167865	5755 2169584	2170426	2171715	2172209	2175288
	SEQ NO. (a.a.)	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755	5756	5757	5758	
	SEQ NO (DNA)	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	$\overline{}$				_	2.258	2257	2258	2259 5759

	Function			duran 1 4-alpha-olucosidase of	glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA	glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
	Matched length (a.a.)				1144		1206	95		305	257			188		582	221	176	238	559	541	386	
	Similarity (%)				48.2		72.6	73.9		0.09	73.5			78.8		68.7	78.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)				22.4		48.3	51.1		23.9	39.3			46.8		38.1	40.3	35.8	20.0	28.3	28.6	35.3	
Table 1 (continued)	Hamologous gene				Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Gen susobon sepondodaio	Old Blooding Table	Escherichia coii N.1.2 muim di fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match				3393 SP. AMYH_YEAST		SP:Y06B_MYCTU	SP.ACYP_MYCTU		Sp. YFER ECOLI	pir:S72748			C C L C	BD:DNININEG ?	Sp:FPG_ECOLI	plr:869693	sp.Y06F_MYCTU	sp:Y08G_MYCTU	ort:2104280G			
	ORF (bp)	9	2 2	702	3393	983	3465	282	1854	858	831	183	14.7	;	35	828	741	+	789	1644	+	+	4
	Terminal (nt)	2175000	21/3000	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	60,0	7/017	2187692	2188313	2189166	21899	2190540	2193165	2.94	2198	2198007
	fuitial (nt)	9,000	-	2176402	2179502	2180918		2183391	2185258	2186208	2186299	6789 2187180		57/0 218/6/9	5771 2188306	2189170	2180908		2191328	2101522	_		2198447
	SEO	(3.8.)		5761	5762	5783		5765	57AB	5767	5768	<u> </u>			5771	5772	5773		5775	87.22			5779
		_	$\overline{}$	1922		2282		2285	2288	2367	2268	2260	6077	2270	2271	2272	2273	2274	2275	37.00	2277	2278	2279

The second secon

									_			1					l	ı	_ l		
	Function	hypothetical protein		peptidase	sucrose transport protein		/ eselvolus obosoboriese	glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl	india-3-diversi-phosphate	synthase / anthranilate synthase component II	hypothetical membrane protein		phosphoribosyl-AMP cyclohydrolase	cyclase	inositoi monophosphate phosphatase	phosphoribosyformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloremphenical resistance protein	or transmembrane transport protein
	Matched length (a B.)	405		353	133			814	295	264		169	228		8	258	241	245	210	1	405
	Similarity (%)	43.7		64.3	51.9			67.4	66.4	65.5		62.1	58.8		79.8	7.78	94.0	97.6	92.4		54.0
	Identity (%)	21.0	1	32.9	27.1			36.1	33.8	31.4		29.6	29.4		52.8	97.3	94.0	95.9	88 7		25.6
Table 1 (continued)	Homologous gine	Thermotoga maritima MSB8	TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Recilling subtills 168 vffE	Staphylococcus aureus FDA 485	lgt	Emericella nidulans trpC	Mycobacterium tuberculosis	H37Rv Rv1610	Rhodobacter sphaeroldes ATCC 17023 his!	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum AS019 his A	Corynebacterium glutamicum	AS019 hisH	Streptomyces lividans 66 cmIR
	db Match	20001	pir.A/2322	sp:HIPO_CAMJE	pir:S38197			prf.2513410A			8p:LG1_81.440	sp:TRPG_EMENI	0	pir:H/U550	SP.HIS3_RHOSH	sp.HIS6_CORG			_	gp:AF060558_1	1266 sp.CMLR_STRLI
	ORF (bg)	_	1284	1263	336	135	278	2550	1		948	5	-	65/	354	17	825		-	- 633	128
	Terminal		2199758	2201070	2201073	2201450	2201594	2201992		2204591	2207302	2208367		2209232	2209920	2210273		2211		2212841	2214321
	Initial		2188475	2199808		<u> </u>		-		2205490	2208249	2209167		2209888	2210273	2211048				2213273	2215586
	SEO	<u> </u>	5780	5781		5783	5784			5786	5787	5788		5789	5790	5701		5793		5794	5795
	SEQ	2	2280	2281					6077	2286	2287	2288		2289	2290	200		257		2294	2295

Function		osphate						hatase						ressor	fing				
		Imidazolegiycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenese	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
Similarity (%)		81.8	79.3	85.7	54.4			59.7	8.09	75.5	78.0	55.2	6.09	84.4	68.3	71.1	0.89	67.6	73.5
Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	20.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli piasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2822	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtills 168 yvrC	Escherichia coli K12 ytiH
db Match								prf:2321269A	pir.RPECR1	prt:2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	Sp.GALR_ECOLI	sp:FHUC_BACSU	prf:2423441E	pir.G70048	pir:G70046	Sp:YTFH_ECOLI
ORF (pp)	225	909	1098	1326	1200	851	309	842	561	2508	108	774	1011	966	798	1038	348	594	441
Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	2222528	2225149	2226763	2227779	2227906	2229896	2230937	2231294	2231932	5814 2232456
SEO NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5808	5807	5808	5809		5811	5812	5913	5814
SEQ NO.	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%)	SEO NO. Initial (a) (nt) Terminal (bp) db Match (bp) Homologous gene (c) Identity (c) Similarity (c) (a) (a) (a) (a) (b) (a) (b) (a) (b) (a) (b) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ (nitial NO) Terminal (NF) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nl) (nl) (nl) (nl) (hp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (bp) Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)<	SEO Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologous gene (9%) Identity (9%) Similarity (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%) Matched (9%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (se a) Identity (%) Similarity (%) Matched (%) Matched (SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEC Initial Tarminal ORF db Match Homologous gane Identity Similarity Matched (%) Similarity Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEC NO. Initial (nl) Terminal (nl) ORF (pp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Homologous gene Identity (%) Similarity (%) Matched (%) Homologous gene Identity (%) Similarity (%) Matched (%) Homologous gene Identity (%) Similarity (%) Homologous gene Identity (%) Similarity (%) Homologous gene Identity (%) Identity (%) Homologous gene Identity (%) Homologous gene Identity (%) Homologous gene Identity (%) Homologous gene Identity (%) Ide	SEO Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <td>SED Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) <t< td=""><td>SEG Initial Tarminal ORF db Match Homologous gene (%) (%) Matched (%) NO Initial (III) (bp) (bp) Abatch Thomologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td>SEO Initial Terminal (hb) ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matche</td><td>SEO Initial Tarminal ORF db Match Homologous gene (146) (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74)</td><td>SEG Initial Tarminal (hb) ORF db Match Homologous gene (fs) (fs) Matched (sp) Matched (sp)</td></t<></td>	SED Initial Terminal ORF db Match Homologous gene Identity Similarity length Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) <t< td=""><td>SEG Initial Tarminal ORF db Match Homologous gene (%) (%) Matched (%) NO Initial (III) (bp) (bp) Abatch Thomologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td>SEO Initial Terminal (hb) ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matche</td><td>SEO Initial Tarminal ORF db Match Homologous gene (146) (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74)</td><td>SEG Initial Tarminal (hb) ORF db Match Homologous gene (fs) (fs) Matched (sp) Matched (sp)</td></t<>	SEG Initial Tarminal ORF db Match Homologous gene (%) (%) Matched (%) NO Initial (III) (bp) (bp) Abatch Thomologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEO Initial Terminal (hb) ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matche	SEO Initial Tarminal ORF db Match Homologous gene (146) (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74) Matched (74)	SEG Initial Tarminal (hb) ORF db Match Homologous gene (fs) (fs) Matched (sp) Matched (sp)

	Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenese alpha chain	hypothetical protein		maltooligosyttrehatose trehatohydrolase	hypothetical protein	threonine dehydratese			Corynebacterium glutamicum AS019	ONA polymerase III	chloramphanicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
	Matched length (a.a.)	355		814	322					375	120		268	214	438			415	1183	279	149	198
	Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
	Identity (%)	23.4		42.0	27.8					20.5	58.3		46.3	36.5	99.3			22.7	53.3	37.8	21.5	22.7
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinocaccus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2). SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichla coli K12 rarD	Campylobacter Jejuni 0272 hisJ	Archaeoglobus fulgidus AF2388
	db Match	gp:SCI8_12		pir:S85789	gp:AE002006_4					sp:UXA1_PHOLU	gp:SC7H2_5		plr:S85770	SP:YVYE_BACSU	sp:THD1_CORGL			pir:S57636	prf 2508371A	sp:RARD_ECOLI	sp:HISJ_CAMJE	pir.D69548
	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	202	156	1203	3582	940	468	918
	Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247008	2248358	2252856	2253659	2254642
	Initial (nt)	2232928	2234158	2234852	2237331	2239092	5820 2240042	5821 2240246	5822 2240563	5823 2240881	2242115	2242359	5826 2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	5835 2253725
	SEQ NO.	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825		5827	5828	5829	5830	5831	5832	5833	5834	
	SEQ NO (DNA)	2315	2316	2317		2319	2320	2321	2322	2323	2324	2325	2328	2327	2328	2329	2330	2331	2332	2333	2334	2335

EP 1 108 790 A2

_					_			_		-т	Т	_	-т	-					\neg	\neg
	Function	short chain dehydrogenase or general stress protein	dlaminoplmelate (DAP) decarboxylase	cysteine synthase		ribosomat large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	ONA-damage-Inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucy-IRNA synthetase		
	Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334		212	1066		
ļ	Similarity (%)	0.08	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
	Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		38.7	31.2	31.8	31.5	44.3		42.0	38.5		
Table 1 (conlinued)	Homologous gene	Becillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 lspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis or117	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.08		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
	db Match	sp.GS39_BACSU	sp.DCDA_PSEAE	SP:CYSM_ALCEU		sp:RLUD_ECOLI	SP.LSPA_PSEFL		pir.S67863		prt.2422382P	sp:ASPG_BACLI	SP:DINP_ECOL!	SP:YBIF_ECOLI	gp.SCF51_8		gp:SCF51_5	sp:SYIC_YEAST		
	ORF (pg)	976	1287	951	579	930	534	1002	1850	333	800	975	1401	858	1002	132	627	3162	216	1095
	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689		2265298	22645	2266394	-	2268388	2269260	2270435	2270258	2270988	2274473	2274767
	Initial (nt)	225558	2257024	2259312	2259999		2261467	2261688	2262850	2264996	5845 2285108	5846 2265420	5847 2268297	2269245	2270261	2270304	2270884	2274149	2274688	5854 2275881
	SEO	-	5837	5838	5839	5840	5841	5842	5843	5844	5845			5848	5849	5850	5851	5852	5853	5854
	SEO		2337	2338	2339		2341	2347	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

.30

											$\neg \neg$	$\overline{}$		T	$ \tau$		
	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramate-alenine ligase	UDP-N-ecetyglucosamine-N- acetylmuramyi-(pentapeptide) pyrophosphoryi-undecaprenol N- acetylglucosamine pyrophosphoryi- undecaprenol N-acetyglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- giutamate ligase			phospho-n-acetylmuramoyi- pentapeptide	UDP-N-ecetyimuramoylalanyl-D- glutamyl-2,8-dlaminopimelate-D- alanyl-D-alanyl ilgase	
	Matched length (a.a.)	82	152	221	248	117	442	222	486	372	490	110			385	494	
	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	83.8	99.5	96.6	99.1			63.8	64.2	
	identity (%)	46.3	99.3	7.78	99.2	39.0	98.8	89.6	98.4	98.8 8.9	99.4	1.08			38.6	35.0	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2148c	Brevibacterium lactofermentum orf6	Conynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum fts.2	Corynebacterium glutamicum	Corynebacterium glutamicum murC	Brevibaclerium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coil K12 murf	
	db Match	plr:F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL		GP.AB02868_1	sp:FTSZ_BRELA	gsp:W70502	gp.AB015023_1	gp:BLA242846_3	1650 gp:BLA242646_2	gp:BL/\242646_1			1098 SPIMRAY_ECOLI	1542 sp:MURF_ECOLI	,
	ORF (bp)	285	458	883	738	488	1326	988	1458	1116	1650	468	384	333	1098		
	Terminal (nt)	2276353	2276881	2277418	2278122	2279840	8	2280470	2281168	2282661	2283782	2285437	2286655	2286831	2286882	2287969	
	initial (nt)	2276637		2278078		2279155	2280215	2281135	2282823	2283776	2285431	2285904	2286272	2286499		2289510	
	SEO	-1 .0		5857		5859	2860	5861	5862	5863	5864	5865	5866	5867	5868	5869	
	SEO			_		2359		2361	2362	 -	2364	2365	2366		2368	2369	_

5

5

					_				_			- T	- 1	T			Т	
	Function	UDP-N-acetylmuramoytalenyl-D- glutamyl-2,8-dlaminopimelata-D- alanyl-D-alanyl ligase	penicilin binding protein	peniciliin-binding protein		hypothetical prolein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallytranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched length (a.a.)	491	57	650		323	143	137		190	303	328	484		125	684		11
	Similarity (%)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	70.8	62.0	9.69		88.8	62.4		58.4
	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.8	30.1	35.7	_	43.2	34.2	_	30.7
Table 1 (continued)	Homologous gene	Bacillus subtills 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterlum tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
	db Match	sp:MURE_BACSU	GSP:Y33117	pir:S54872		plr:A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	SP.METF_STRL!	pir:S32168	gp:MLCB268_16		pir:A70936	gp:AB019394_1		5 gp:MLCB268_21
	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	=	1470	507	369	2148	651	1236
	Terminal (nt)	23	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	
	Initial (nt)	2	2291197	2293164	+	<u></u>	2205804	2296898	2207653		2299428	2299524	2300706	2302179		2302833	2303690	
	SEO	5870 2	5871	5872			5875	5878	15		5879	5880	5881	5882	5883	5884	5885	5886
		(DNA) (2371		_	 -	2375		 -	2378			2381	2382	2383	2384	2385	2386

	Function	hypothetical membrane profein	S. The best lesses 1.7.	3-deoxy-D-srapino-neptulosorieres	hypothetical protein	hypothetical membrane protein	nietora PS1 protein	major secreted protein not protein precursor				hypothetical memorane protein	acytransferase	olycosyl transferase		protein P60 precursor (invasion- associated-protein)	protein P80 precursor (invasion-	association-process	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase	Iron-sulfur protein cyoB	ubiquinol-cytochrome c reductase	
	Matched length (a.a.)	434		462	166	428		440				248	245	383		586	<u>ē</u>		201	56	3	278	-
	Similarity (%)	82.0		87.9	77.7	64.5		57.1			-	160.0	100.0	75.7	2	90.0	6.5		64.7			83.1	
	identity (%)	30.4		6.99	58.4	35.1		28.2				100.0	100.0	3	20.	26.4	3	3	34.3		8. 8.	58.6	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv2181	Amycolatopsis mediterranel	Mycobacterium leprae	Mycobacterium tuberculosis	H3/RV RV2101	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum	Streetomyces coelicolor A3(2)	SC6G10.05c	Listeria ivanovii lap		Listeria grayi iap	Heliobacilius mobilis petB		Streptomyces lividans qcrA	Mycobacterium tuberculosis	H37Rv Rv2194 qcrC
	db Match		pir.G70936	gp:AF280581_2	op.MLCB268 20			1449 sp.CSP1_CORGL				gp:AF096280_3	ap:AF098280 2		gp:SC6G10_5	sp. P60 LISIV		sp:P60_LISGR	prt.2503462K		gp:AF107888_1	LITOVA SOOV	sp. ruus_micio
	ORF		1308	1386	504			1449	20.6		177	1188	735		1143	1047		627	1602	-	672		682
	is in		2307621	2307697	2300173	2 2	;	2313808	924402B	2314030	2313916	2314236	2315678		2317633	2318804	2000167	2319968	2321472		2323088		2324311
	<u> </u>		2306314 7		-		creans?	2312380	1	2313833	2314092	2315423	2246412	2110102	2318775	03.00	7319830	2320594	2723073		2323759		2325195
	SEO	(3.8)	5887 2				70689	5891		2885	5893		_		5896	1	7887	5898	0000	6600	2900		5901
	SEOS	<u> </u>	2387 5				2380	2391		2392	2393			C857	2396		2397	2398	900	6867	2400		2401

EP 1 108 790 A2

		~			_				_		_							_	
	Function	cytochrome c oxidese subunit III		hypothetical membrane protein	cytochrame c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothelical membrane protein	cobinamide kinase	nicatinate-nucleotide- dimethylbenzimidazole phosphoribosytransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aidehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydroliposmide acetytransfersse		lipoyitransferese
	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	483	18	169		210
:	Similarity (%)	70.7		71.0	53.9	99.8	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	67.0	68.5		85.7
	Identity (%)	36.7		38.6	28.7	2.88	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		38.7
Table 1 (confinned)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 IIsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae, · MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seculensis pdhB		Arabidopsis thallana
	db Match	SP.COX3_SYNVU		sp:Y00A_MYCTU	sp:COX2_RHOSH	1920 gp:AB028550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	1089 sp.COBU_PSEDE	sp:COBV_PSEDE		pri:2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf.2110282A	gp:AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	768	522		921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330588	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333815	2334717	2335741	2337051	2337235	2339140	2339269	2340804	5919 2341412 2342
	SE SO SE	5902	5903	5904	5905	5906	5907	5908	5909	5910	5911	5912	5913	5914	5915	5918	5917	5918	5919
	SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

EP 1 108 790 A2

5			- 1	- 1	1	- 1	- 1						_								
10		Function	lipoic acid synthetese	hypothetical membrane protein	hypothetical membrane protein	(ransposase (ISCg2)		hypothelical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacetate permesse	transmembrane transport protein	transmembrane transport protein		
15		Matched length (a.a.)	285		559	401		157		145	128		220	111			433	158	118		
20		Similarity (%)	9.02	76.7	87.8	100.0		63.7		44.0	65.6		60.9	73.0			53.4	72.8	66.1		
		Identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
25	ntinued)	gene	cus GRA BD	arculosis	? yidE	utamicum		color A3(2)	-		na MSB8			na MSB8			×e	color A3(2)	color A3(2)		
30	Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD 1 IIpA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotogs maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicofor A3(2) SCGD3.10c		
40		db Match	sp.LIPA_PELCA	SP. YOOU_MYCTU	sp.YIDE_ECOLI	gp.AF189147_1		gp:SC5F7_34			pir.872308		sp:LUXA_VIBHA	pir.A72404			pri:2203345H	gp:SCGD3_10	gp:SCGD3_10		
		ORF (bp)	1044	780	1617	1203	300	471	213	975	388	900	849	393	243	261	1323	561	444	195	405
45		Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351896	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
50		Initial (nl)	2342304	2343479	2344431	2347491	2347505	2348548	2350620	2351022	2351310	2351909		2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357728
		SEO NO	5920	5921	5922	5923	5924	5925	5926	5927	5928	5929		5931	5932	5933	5934	5635	5936	5937	5938
55		SEQ NO.		2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

			_			$\overline{}$;	- 1	J			- 1	ł		į.	- 1		ı	ı	
	Function			heme oxygenase	glutamate-ammonia-ligase adenylyttransferase	glutemine synthetese	hypothetical protein	hypothetical protein	hypothetical protein	galactokinasa	virulence-associated protein		bifunctional protein (ribonuclease H	and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	tow molecular weight protein- tyrosine-phosphatase	hypothetical protein	Insertion element (IS402)	
	Matched length (a.a.)			214	809	441	382	109	54	374	358			382		249	378	204	158	281	128	
	Similarity (%)			78.0	67.0	73.0	54.1	58.2	55.6	63.7	54.5			75.1		58.6	76.2	54.4	83.5	65.5	56.8	
	Identity (%)			57.9	43.4	43.5	28.8	33.4	38.9	24.9	27.1			54.7		26.5	49.2	28.0	48.2	40.9	32.6	
Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) gine	Thermotoge maritims MSB8	Streptomyces coelicolor A3(2) SCEB.38c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sepiens delK1	Bringlia shortus vacB			Mycobactenum tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv RV2228c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia	
	db Match			Sp:HMUO_CORDI	gp:SCY17736_4	SP.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	NAMI IL MAN		Sport Code		Sp:Y019_MYCTU		717 sp:Y01A_MYCTU	SP:Y01B_MYCTU	SOUGHH ECOLI	SP:PTPA_STRCO	sp:Y01G_MYCTU	Sp. YI21 BURCE	
	ORF E		543	645	3135	1338	5	1827	180	500,	287		8	1146	729	↓	1140	854	471	954	393	
	Terminal	1	2358153	2358772	2359814	2362818	2365455	2367413	2367473		2368083	2309110	2370908	2371412	2373289	2372	2373323	-	2375	2376720	2378998	2
	Initial	-	2358695	2359418	2362748	2364155	2364352	2365587	2367652			23/0381	2370423	2372557	2372581		2374462		2375214	2375767	0017710	201100
	SEO	_	5939			5942	5943	5944	5945		5948	5947	5948	5949	5050		5952	_	5954 5954	5955	9969	2000
	SEO	_	2439	_				2444	2445		2448	2447	2448	2449	2460	2451	2452		2453	2455	9,70	7420

EP 1 108 790 A2

5	Function		transcriptional regulator		hypothetical protein		pyruvate dehydrogenase component		ABC transporter or glutamine transport ATP-binding protein		ribose transport system permease protein	hypothetical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-8-phosphate deacetylase	hypothetical protein	
15	Matched length (a.a.)		135		134		910		28.1		283	286	125		352	75	253	289	
20	Similarity (%)		57.8		77.6		78.9		62.8		58.7	62.9	55.2		55.7	80.0	75.5	65.7	- -
	Identity (%)		30.4		55.2		55.9		33.7		25.4	26.2	41.8		29.6	42.7	43.9	33.6	_
25 (Continued) 1 Sable 1 (Continued)	Homologous gene		Streptomyces caelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seculensis pdhA		Escherichia coll K12 glnQ		Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E RP367	Dictyostelium discoldeum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Delnococcus radiodurans DR1192	
40	db Match		gp:SC8F4_22		Sp:Y01K_MYCTU		gp:AF047034_4		sp:GLNQ_ECOLI		sp:RBSC_BACSU	pir.H71693	sp:CBPA_DICDI		gp:SC6G4_24	sp.ACP_MYXXA	\$p:NAGD_ECOLI	gp:AE001968_4	
	ORF (bp)	243		198	428	345	2712	1478	789	963	888	939	810	372	1014	291	925	1032	471
4 5	Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380785	2382827	2385426	2383622	2384509	2386580	2385913	2386614	2387957	2388821	2389869	2390434
50	initial (nt)	2377726	2377899	2378292	2379312	5961 2379426	2380033	2382240	2383615	2384464		2385447	2385771	2386284	2387627	2387667	2387997	2388838	2390904
	SEO	+		5959		5961	5962			5985		5967	5968	5969		5971	5972	5973	5974
55	SEQ NO.	2457	2458	2459	2460	2461	2462	2463	2464	2485	2466	2467	2468	2469	2470	2471	2472	2473	2474

EP 1 108 790 A2

	Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutemine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
	Matched length (a.a.)	27.1						530		594	68		633	98			636			414	121
	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			78.3	59.7
	identity (%)	52.4						34.2		4.4	41.2		59.1	49.0			59.1			54.6	30.4
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
	db Match	gp:SC4A7_8						SP:PPBD_BACSU		gp:SCI51_17	pir.G70661		pri:2413330B	gp:XXU39467_1			gp:AF058788_1			prf.2413330A	gp:NMA1Z2491_23
:	ORF (bp)	825	492	171	548	465	342	1560	714	1836	240	675	1899	482	243	636	1869	324	1152	1272	675
	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2408262
	Initial (nt)	2392008	2392566	2393349	2393425	2394437	5980 2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	5994 2406936
	SEQ NO.	5975	9269	5977	5978	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989	5990	5991	2669	5993	5994
	SEQ NO (DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2482	2493	2494

5

5	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetese	bacterial regulatory protein, ersR family	ferric uptake regulation protein	hypothetical protein (conserved in C.glutamicum?)	hypothelical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothelical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	Matched length (a.a.)	692	138		80%	68	132	529	224	233	245	298	432	157	85	344	248	
20	Similarity (%)	63.6	54.4		6.69	73.0	70.5	48.7	67.0	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.8	24.8	40.8	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
se Santaned)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HBB	Mycobacterium tuberculosis H37Rv RV2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2382c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2368	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicalor A3(2) SCC77.19c.	
35	Ī	Mycobacterium H37Rv Rv2345	Drosophi CG10592		Thermus	Mycobac H37Rv R	Escheric	Mycobacterium t H37Rv Rv1128c	Streptor h3u	Microco	Mycoba H37Rv F	Streptoc	Mycoba H37Rv F	Mycoba H37Rv F	Neisser		Streptor SCC77.	
40	db Match	pir.B70662	gp:AE003565_26		plr:S58522	pir:E70585	SP FUR_ECOLI	pir.A70539	gp:AF162938_1	Sp:UPPS_MICLU	pir.A70586	gp:AF072811_1	sp:Y1DE_MYCTU	sp:YN67_MYCTU	GSP:Y75650	sp:PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	728	915	1320	588	264	1050	723	942
45	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2418371	2417222	2417989	2418990	2420313	2421238	2420900	2421975	2423791
50	initial (nt)	2406993	2410264	2410861	2412338		2412992		2416089	2417099	2417947	6005 2418883	2420309	2420900	2420973	2421949	2422897	6011 2422850
	SEO S	5995	5998	5997	5998	5999	0009		8002	6003				6007	8009	6009	6010	6011
55	S S S		2498	2497	-	+	2500		2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

Table 1 (continued) Continued Contin									_		_		_			-	7	Τ_	$\overline{}$	Τ		\neg	
Table 1 (continued) Terminal ORF Cab Match Homologous gene (46) (Function	heat shock protein dnaJ	heat-inducible transcriptional	repressor (groEL repressor)	coproporphyrinogen III oxidese	aggiutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance	protein Neisserial nolvoentides predicted to	be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and	diagnostics		a seption of the sept	population	Cal DOXY IGNORATION OF THE CALL OF THE CAL	glycosyl nydrotase of trensiose synthase	hypothetical protein	
Table 1 (continued) SEC Initial Terminal ORF db Maich Homologous gene (%) (1%	•	Matched length (a.a.)	Π	T		$\neg \tau$	134			611	738	98		89	107			009	2	200	594	449	
Table 1 (continued) Terminal ORF Table 1 (continued)		Similarity (%)	77.4		79.6	64.1	64.9			75.1	55.4	84.4		51.0	53.0			18	3	<u>.</u>	84.8	58.8	
SEQ Initial Terminal ORF db Match (18 a.) (bp) (bp) db Match (11) (bp) (bp) db Match (11) (bp) db Match (11) (bp) db Match (12) 2423845 2422700 1146 ptf.24213428 S6013 2424937 2424965 990 prf.23182564 B015 2427868 2426899 519 sp.AGA1_YEAST 6016 2427468 2426776 693 db MAtch ECOLI 6019 2430296 2432413 2118 sp.MAtch ECOLI 6019 2430296 2432413 2118 sp.MAtch ECOLI 6020 2432508 2434370 1863 gp.AB005752_1 6021 2433868 2433875 333 GSP.Y74829 6022 2434819 2434573 204 6022 2434878 2434805 2034 sp.OCP_SALTY 6025 2436838 2434805 2034 sp.OCP_SALTY 6025 2436831 2439906 1799 pir.H70983 6028 2439906 2440994 1089 pir.H70983		Identity (%)	47.1		48.2	33.1	36.6			48.0	28.3	20.5		44.0	67.0			١	50.3	24.1	65.2	32.1	
SEG Initial Terminal ORF db Match (18 a.) (nt) (nt) (bp) (bp) db Match (10) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	Table 1 (continued)	Homalogous gene	Clean other day	Streptomyces alous unest	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Cecherichia coli K12 malo	Lactobacillus bravis plasmid	horA	Neisseria gonorrhoeae		Neissena mempancis			Salmonella typhimurium dcp	Anisoptaromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0128	Mycobacterium tuberculosis	
SEQ Initial Terminal ORF (nt) (nt) (hp) (bp) (nt) (nt) (ht) (ht) (bp) (nt) (nt) (bp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt		db Match	T							gp:SC6G10_4	1 000	SP.MALG ECOLI	gp:AB005752_1	GSP:Y74827		GSP:Y74829						pir:H70983	
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bg)		_			+	693	378					255		333	180	204	2034	1179	1794		ڶ
SEQ Initial NO (nl) (a.a.) (nl) (a.a.) (nl) (a.a.) (nl) (a.a.) (a			-+	_	10	2424965	2426699		2427807	2428184		2432413	2434370	2433614		2433875	2434440	2434573	2434805	24380	2439		_
025000000000000000000000000000000000000	,		+					-	+-			2430296	2432508	2433868		2434207	2434619	2434776	2436838	2436871	2438113	2439906	
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		200	<u>.</u>										6020	6021		6022	6023	6024	6025	3026	6027		
	5		_	2512 E	2513	_		2518			_					2522	2523	2524	2525	2526	2527	2528	! !

5	on	hate Delta-						radation of	ino acid transport iin (isoleucine	nase alpha chain		5	ubunit	letor				in A precursor protein)	ansporter	system	ort ATP-binding
10	Function	isopenienyl-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (Isoleucine uptake)	sikansi monooxygenase aipha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permasse protein	oligopeptide transport ATP-binding protein
15	Matched length (a.a.)	189						325	428	343		324	483	203		467		546	315	27.1	372
20	Similarity (%)	57.7						100.0	100.0	49.0		60.5	55.1	92.0		57.8		55.5	73.3	74.5	98.4
	identity (%)	31.8						99.4	89.8	21.8		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
88 88 Page 189 Page 1	Homologous gene	reinhardtii ipi1						n glutamicum cD	n glutamicum DO	χ		neliloti mdcF	K12 glcD	K12 ydfH		Imurium ygiK		luenzae Rd	168 appB	K12 dppC	K12 oppD
Table 1	Нотово	Chiamydomonas reinhardiii ipi1						Corynebacterium glutamicum ATCC 13032 secD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coll K12 dppC	Escherichia coli K12 oppD
35	db Match	pir. T07979						gp:CORCSLYS_1	sp.BRNQ_CORGL	Sp.LUXA_VIBHA		gp:AF155772_2	INODECOLI	Sp:YDFH_ECOLI		EP.YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp:DPPC_ECOLI	pri 2308258MR
	ORF (bp)	585 p	222	438	1755	999	519	975 g	1278 \$	978	525	927 g	2844 \$	711	282	1347 8	423	1509	s 996	828	1437
45	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
50	Initial (nt)	2441589	6030 2441669	6031 2442355	2443356	2444015	2444551	2444735	2445716	2447021	2450844	6039 2451785	6040 2454637	6041 2454725	2455733	2457066	2457759	2457863	2459371	2480340	2461163
	SEQ NO.	6059	8030		6032	6033	6034	6035	6036	6037	8038	-		6041	6042	6043	6044	6045	6046	6047	6048
55	SEQ	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

													_						$\overline{}$
c				ne protein		ansporter or lotter family	protein C		s protein x		porter				arboxylate protein	arboxylate protein	ding recursor		
Functio	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membra		sodium-dependent tr. odium Bile ecid symp	apospory-associated		thiamine biosynthesi	hypothetical protein	glycine betaine trans				large integral C4-dica	small integral C4-dic membrane transport	C4-dicarboxylate-bin periplasmic protein p	extensin i	GTP-binding protein
Matched length (a.a.)	106	157	90	466		284	295		133	197	109				448	118	227	46	603
Similarity (%)	44.0	58.0	65.0	84.6		61.6	51.2		100.0	65.5	7.17				71.9	73.7	59.0	73.0	83.6
identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
gene	APE1580	BQ_768		ilor A3(2)			hardtii		tamlcum	D29 68	tamicum				stus dctM	se dctQ	atus B10	ntum	lepA
Homologous	eropyrum pernix K1	quifex aeolicus VF5	hizoblum etli rbsK	freptomyces coelico CM2:18c	•	lomo saplens	:hlamydomonas reir		corynebacterium glu NTCC 13032 thiX	Aycobacteriophage	corynebacterium glu LTCC 13032 betP				Nodobacter capsula	(lebsiella pneumoni	Nodobacter capsula	ycopersicon escule tomato)	Bacillus subtills 168 lepA
db Match	PIR: G72536 A	plr:D70367 A	prf.2514301A R	gp:SCM2_16 S		SP:NTCI_HUMAN H	gp:AF195243_1 C		SP:THIX_CORGL A	Sp:VG66_BPMD N	sp:BETP_CORGL				pri.2320266C	gp:AF186091_1 k	sp.DCTP_RHOCA	PRF:1806416A	sp:LEPA_BACSU
ORF (bp)	507	549	903	1425	303	972	848	386	570	588	1890	966	1608	384	1311	480	747	243	1845
Terminal (nt)	2481543	2462602	2464143	2465768	2485465	2466038	2487922	2470878	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
Initial (nt)	2462049	2463150	2463241		2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
SEO NO	8049	6050	6051		6053	6054	8055	6056	6057	8028		909	6061						6067
SEQ NO.	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity NO. (nt) (nt) (bp) (bp) (%)	SEQ (nit)al (nt) Terminal (nt) ORF (bp) db Match Homologous gene (se.a.) Identity (%) Similarity length length length (%) Matched (%) Matched (%) (%	SEQ (nt) 10 Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) Initial (nt) CRF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) </td <td>SEQ (nt) (nt) Initial (nt) TermInal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)</td> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ NO. (n1) Initial (n1) Terminal (n1) ORF (n1) db Match (n1) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Maiched (%) (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (n1) (n1) (n1) (n1) (n1) (n2) (n3) (n3) (n4) (n3) NO. (n1) (n1) (n1) (n1) (n2) (n3) (n3) (n3) (n4) (n6) (na) 8059 2462049 2461543 507 PIR:G72536 Aeropyrum pernix K1 APE1580 35.0 44.0 106 60.0 8051 2463150 2462602 549 PIR:G72514301A Rhizoblum etil rbsK 41.0 65.0 30.0 6052 246314 2465465 303 PIR:Z514301A Rhizoblum etil rbsK 41.0 65.0 30.0 6053 2467009 2466038 972 sp:NTCI_HUMAN Homo seplens 31.3 61.6 486 6054 2470678 366 sp:NTCI_HUMAN Homo seplens 31.3 61.6 28.5 13.3</td> <td>SED Initial Terminal ORF db Match Homologous gene Identity Similarity leap. Matchad Matchad Matchad Identity Similarity Matchad (%) <t< td=""><td>SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)<td>SEC NO. Initial (Ph) Terminal (Ph) ORF (Ph) db Match (Ph) Homologous gene (Ph) Identity (Ph) (Ph) Similarity (Ph) (Ph) (Ph) Matched (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph)</td><td> National</td><td> National Terminal Chr</td></td></t<></td>	SEQ (nt) (nt) Initial (nt) TermInal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (n1) Initial (n1) Terminal (n1) ORF (n1) db Match (n1) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Maiched (%) (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (n1) (n1) (n1) (n1) (n1) (n2) (n3) (n3) (n4) (n3) NO. (n1) (n1) (n1) (n1) (n2) (n3) (n3) (n3) (n4) (n6) (na) 8059 2462049 2461543 507 PIR:G72536 Aeropyrum pernix K1 APE1580 35.0 44.0 106 60.0 8051 2463150 2462602 549 PIR:G72514301A Rhizoblum etil rbsK 41.0 65.0 30.0 6052 246314 2465465 303 PIR:Z514301A Rhizoblum etil rbsK 41.0 65.0 30.0 6053 2467009 2466038 972 sp:NTCI_HUMAN Homo seplens 31.3 61.6 486 6054 2470678 366 sp:NTCI_HUMAN Homo seplens 31.3 61.6 28.5 13.3	SED Initial Terminal ORF db Match Homologous gene Identity Similarity leap. Matchad Matchad Matchad Identity Similarity Matchad (%) <t< td=""><td>SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%)<td>SEC NO. Initial (Ph) Terminal (Ph) ORF (Ph) db Match (Ph) Homologous gene (Ph) Identity (Ph) (Ph) Similarity (Ph) (Ph) (Ph) Matched (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph)</td><td> National</td><td> National Terminal Chr</td></td></t<>	SEG Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) <td>SEC NO. Initial (Ph) Terminal (Ph) ORF (Ph) db Match (Ph) Homologous gene (Ph) Identity (Ph) (Ph) Similarity (Ph) (Ph) (Ph) Matched (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph)</td> <td> National</td> <td> National Terminal Chr</td>	SEC NO. Initial (Ph) Terminal (Ph) ORF (Ph) db Match (Ph) Homologous gene (Ph) Identity (Ph) (Ph) Similarity (Ph) (Ph) (Ph) Matched (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph) (Ph)	National	National Terminal Chr

5	Function	hypothetical protein	30S ribosomal protein S20	threonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothelicel protein	phosphoglycerate mutase	hypotheticei protein	hypothetical protein		gamma-glutamyi phosphate reductase or glutamate-5- semisldehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
15	Matched length (a.a.)	185	58	210	129	313	222	195		273	235	117	197		432	304		487
20	Similarity (%)	69.7	72.9	67.1	80.8	74.1	49.7	63.6		66.3	66.4	86.3	85.3		88.8	100.0		78.2
	identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.6	68.0		99.1	99.3		58.9
SS Sapple 1 (continued)	ous gene	uberculosis	K12 rpsT	K12 rhtC	elicolor A3(2)	uberculosis	168 comEC	IGB comEA		elicolor A3(2)	uberculosis	uberculosis	elicolor A3(2)		n glutamicum A	n glutamicum kdh		elicolor A3(2)
Table 8	Homologous gene	Mycobacterium tuberculosts H37Rv Rv2405	Escherichia coil K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC 123 07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
35	db Match	pir.H70683	ECOLI	Sp.RHTC_ECOLI	gp:SC6D7_25	pir.H70684	sp.CME3_BACSU	sp.CME1_BACSU		gp:SCC123_7	pir:F70885	pir:G70885	gp:SCC123_17		sp:PROA_CORGL	SP:YPRA_CORGL		gp:D87915_1
40		 	1 sp.RS20						_					9			1	
	ORG (bg)	609	281	699	405	975	1539	582	822	822	708	471	878	1023	1296	912	1 711	1503
45	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495698	2497513	2498009
50	Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
	SEO NO (* *)	9909	6909	6070	6071	6072	6073	6074	6075	8076	6077	6078	6009	6080	6081	6082	6083	6084
55	SEO NO (DNA)	2588	2569	2570	2571	2572	2573	2574	2575	2578	2577	2578	2579	2580	2581	2582	2583	2584

EP 1 108 790 A2

5

	Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protain	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.e.)	422	278	-		81	101	886				185	436	117	143	134		82	112	118
	Similarity (%)	77.3	81.9			92.6	82.2	9.99				82.6	100.0	76.9	87.8	89.6		67.4	64.3	88.8
	identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	89.1	51.3	37.8	70.9		34.8	38.8	33.9
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne	-			Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2448c
	db Match	sp:PBUX_BACSU	plr:140838			sp:RL27_STRGR	prf:2304263A	SP:RNE_ECOLI				gp:SCF76_8	pir:S43813	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		9p:AE002024_10	pir:H70515	pir.E70863
	ORF (bp)	1887	843	621	396	284	303	2268	549	573	747	609	1308	378	450	408	360	342	465	423
	Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
	Initial (nt)	2499783	2502577	2502735	2503870	2504247	2504602	2507098	2507115	2507138	2508094	2508922	2510830	2511046	2511427	2512358	2512768	2512803	2513618	2514114
	SEQ NO (e e.)	6085	9809	6087	6088	6909	0609	6091	6092	6093	8094	9099	9609	6097	8609	6609	6100	6101	6102	2803 6103
	SEQ NO.	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2092	2603

_				_	_	_								1				7		
	Function	folyi-polyglutamate synthetase				valyi-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	maiate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	maionate transporter	class-III heat-shock protein or ATP-dependent protesse	hypothetical protein	succinyl CoA: 3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA
	Matched length (a.a.)	451				915	521	508	170	319	207	208	357	338	444	288	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	78.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	28.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtills 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Kiebsiella pneumoniae mdcF	Bacillus subtilis cipX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	prf.2410252B				sp:SYV_BACSU		SP. DNAK BACSU	gp:ECU89166_1	Sp.MDH_THEFL	gp:SC4A10_33	ap AF065442 1	+	gp.FSU12290_2	prf.2513416G	_	prf.2303274A	gp:SCF55_28	gp.AF109386_2	n. AF109388 1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	111	578	1128	975	1425	88	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526	2527	2528559	1	2529	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089			2520209		2523248	2523561	2524915		2526233	2527135			2530891	2532601	2000000
	SEO NO.	6104	6105	6108	6107	6108	6109	6110	6111	6112	6113	8114			6117	_	$\overline{}$	6120	6121	
	O S S		2605		7092	+		2610	2611	2812	2613	2614	2615	2616	2617	2618	2619	2620	2621	

5	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolacione decarboxylase		3-carboxy-cis, cis-muconata cycloisomerase	protocatechuate dloxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dloxygenase		toluate 1,2 dioxygenase subunit
15	Matched length (a.a.)	251	406		256	. 825	115		437	214	217	273	92		372		285		437
20	Similarity (%)	82.5	71.9		76.6	43.0	89.6		63.4	70.6	91.2	48.7	91.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	<u>2</u>		80.8		72.3		62.2
28 (Continued)	Homologous gene	Rhodococcus opacus 1CP pcaR	opha bktB		opacus pcal	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal.		Rhodocaccus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0338	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
Table 98	Homol	Rhodococcus	Raistonia eutropha bktB		Rhodococcus opacus pcal	Streptomyces SCM1.10	Rhodococcus		Rhodocaccus	Rhodococcus	Rhodococcus	Mycobacterium H37Rv Rv0338	Mycobacteriu catC		Rhodococcus		Rhodococcus		Pseudomona pDK1 xylX
35	db Match	prf:2408324F	prf:2411305D		prf:2408324E	gp:SCM1_10	prf:2408324E		prf.2408324D	prf:2408324C	pri.2408324B	plr:G70506	prf.2515333B		Sp.CATB_RHOOP		prf:2503218A		gp:AF134348_1
	ORF (bp)	792	1224	912	753	2081	366	878	1118	812	069	1164	291	171	1119	909	855	141	1470
45	Terminal (nt)	2534182	2535424	2534257	2536182	2538258	2538248	2540230	2538818	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50	Initial (nt)	2533391	2534201	2535168	2535430	2536198	6128 2538613	2539553		2540320	2541024	2542350	2542802	6135 2543043	6136 2543936	6137 2544262	2544876	2545068	2545315
	SEO	6123	6124	8125	6126	6127		6129		6131	6132	6133	6134	+		+	6138	6139	6140
55	SEQ.	2623	2624	2825		2627	2628	2828	2630	2631	2632	2633	2634	2635	2836	2637	2638	2639	2640

ション・ 一 環

transmembrane transport protein or 4-hydroxybenzoate transporter regulator of LuxR family with ATP-binding site 1,2-dihydroxycyclohexa-3,5-dlene carboxylate dehydrogenase toluate 1,2 dioxygenase subunit toluste 1,2 dloxygenase subunit trigger factor (prolyl isomerase) (chaperone protein) benzoale membrane transport protein ATP-dependent Clp protease ATP-dependent Cip protease 5 penicillin-binding protein Function proteolytic subunit 2 hypothelical protein proteolytic subunit 1 hypothetical protein hypothetical protein hypothetical protain 10 transposase transposase Matched 15 142 length 115 198 8 338 35 75 342 435 388 197 417 277 979 42 8.8 161 Similarity 82.9 7.8.7 58.3 73.2 85.9 71.4 88.3 83.2 81.0 61.4 46.6 64.4 88.4 £ 83.1 8 8 20 Identity 57.1 31.3 29.9 69.5 42.9 32.5 25.3 27.8 54.2 50.7 51.5 23.3 32.1 60.3 £ 30.7 62 Corynebacterium striatum ORF1 Corynebacterlum striatum ORF1 Corynebacterium striatum ORF1 Rhodococcus erythropolis thcG 25 Streptomyces coelicolor M145 clpP2 Streptomyces coelicolor M145 clpP1 Nocardia lactamdurans LC411 pbp Sulfolobus islandicus ORF154 Streptomyces coelicolor A3(2) SCD25.17 Pseudomonas putida plasmid pDK1 xylY Pseudomonas putida plasmid pDK1 xylZ Pseudomonas putida piasmid pDK1 xylL Fable 1 (continued) Acinetobacter calcoaceticus pcaK Acinetobacter calcoaceticus benE Homologous gene Bacillus subtills 168 tig Mus musculus Moa1 30 35 \$P:PBP4_NOCLA sp:PCAK_ACICA Sp.BENE_ACICA gp:REU95170_1 gp:AF071885_2 gp:AF134348_2 gp:AF134348_3 sp:TIG_BACSU gp:AF134348_4 gp:AF071885_1 gp:SIS243537 gp:SCD25_17 prf. 2513302C 6158 2562341 2562078 264 prf.2513302C db Match prf:2301342A prf.2513302C 40 438 126 1536 2885 1380 1242 624 150 1347 975 456 828 603 495 150 249 유 (현 492 2556748 6155 | 2561920 | 2561483 2556760 2560586 8154 2591115 2561363 2562093 2562242 2562115 2581990 2555978 2559103 6152 2559157 2560131 2553942 2555287 2552455 2555317 2547318 2548868 2549695 Terminal 45 Ξ 6153 2560131 2554026 6147 2555940 2556580 6149 2556599 6150 2558106 6151 2558609 2547333 2552563 2549771 2548868 2546827 E 50 8142 6145 6148 6156 6157 6143 6141 6144 6146 SEQ. • 2653 2654 2655 2656 2649 2657 2641 2650 2652 2643 2651 2642 2644

5	
10	
15	
20	
25	
30	
35	
40	
45	
.5	
50	

	Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthese	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permaase protein	nickel transport system permease protein	
	Matched length (a.a.)			140	248	199	068	358				104			381	290	392		538	286	316	
	Similarity (%)			71.4	58.1	80.9	2.07	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
Table 1 (continued)	Homologous gene			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2486c	Streptomyces lividans pepN	Borrella burgdorferi BB0852				Brevibacterium linens ATCC 9175 cttl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes IIIB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
	db Match			sp:LACB_STAAU	Sp:YAMY_BACAD	pir.A70868	SP. AMPN_STRLI	pir:B70206				gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir.S47696	
	ORF (bp)	380	882	471	969	609	2601	1083	1152	999	158	327	171	378	1206	878	1119	1233	1841	882	838	1707
	Terminal (nt)	2562387	2563847	2583932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
	Indial (nt)	2562778	2562963	2564402	2565245	6163 2566231	2568345	6165 2569211	8166 2571460	2571510	2572193	2572677	2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	6:79 2582417
	SEQ NO.	6115	9160	6161	8162	6163	6184	6165	8188	6167	6168	6169	6170	6171	6172	6173	6174	6175	6178	6177	6178	6.19
	SEO NO.	2659	2860		2862	2663	2684	2665	2868	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

						Table 1 (continued)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
2680	6180	2582564	2584504	1941						
2681	6181	2584613	2585928	1314	sp:ARGD_CORGL	Corynebacterium glutamicum ATCC 13032 argD	31.4	63.5	411	acetylornithine aminotransferase
2682	6182	2586180	2587763	1584	pir.A70539	Mycobacterium tuberculosis H37Rv Rv1128c	25.1	47.9	482	hypothetical protein
2683	6183	2587976	2588722	747	sp:YA26_MYCTU	Mycobacterium tuberculosis H37Rv Rv0364	49.1	79.4	218	hypothetical membrane protein
2684	6184	2589432	2588725	708 80	Sp.PHBB_CHRVI	Chromatium vinosum D phbB	28.1	0.08	235	acetoacetyl CoA reductase
2685	8185	2589565	2590302	738	pir.A40046	Streptomyces coelicolor actil	26.7	55.0	240	transcriptional regulator, TetR family
2686	6186	2590697	2591137	441	GSP:Y74375	Neisseria meningitidis	38.0	47.0	94	polypeptides predicted to be useful entigens for vaccines and diagnostics
2687	6187	2592365	2591574	792	gp:AF106002_1	Pseudomonas putida GM73 ttg2A	31.1	65.1	238	ABC transporter ATP-binding protein
2688	6188	2592402	2592794	383	gp:MLCB1610_9	Mycobacterium leprae MLCB1810.14c	53.2	77.0	128	globin
2689	6189	2592838	2593965	1128	sp.CHRA_PSEAE	Pseudomonas aeruginosa Plasmid pUM505 chrA	27.3	60.4	396	chromate transport protein
2690	6190	2594594	2593988	627	pir.A70867	Mycobacterium tuberculosis H37Rv Rv2474c	37.8	6.89	186	hypothetical protein
2691	6191	2595061	2594597	465	gp:SC6D10_19	Streptomyces coelicolor A3(2) SC6D10.19c	36.2	61.4	127	hypothetical protein
2692	6192	2595808	2595188	621						
2893	6193	2595983	2595822	162	pir.B72589	Aeropyrum pernix K1 APE1182	36.4	90.0	55	hypothetical protein
2694	6194		-	1688	sp:YJJK_ECOLI	Escherichia coli K12 yijK	52.8	79.6	583	ABC trensporter ATP-binding protein
2695	6195	2598483	2597869	815	pir.E70867	Mycobacterium tuberculosis H37Rv Rv2478c	31.4	62.2	172	hypothetical protein
2696	6196	2600764	2598662	2103	Sp:Y05L_MYCLE	Mycobacterium leprae o659	28.0	20.7	8	hypothetical membrane protein
2697	6197	2697 6197 2601461		1419	2602879 1419 pir.C69676	Bacillus subtilis phoB	28.0	52.6	536	alkaline phosphatase

5
10
15
20
25
30
35
40
45
50

ſ		\top	T			T	\neg		<u>5</u> (c)						T		\sqcap		
	Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maitose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or celloblose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
	Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
	Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
	Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.8		35.0	41.2	40.0	48.0
Table 1 (continued)	Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuii msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
	db Metch			SP:MSMG_STRMU	SP.MSMF_STRMU		prt.2206392C		prt.2308358A		prf.2317488A		prt.2516398E	prf.2513418A		pir:A72312	\$p:GIP_ECOLI	pir.E70781	SP.ORN_ECOL!
	0 (gd)	930	939		843	1674	1329	1242	1128	750	684	980	789	762	345	1182	750	798	657
	Terminal (nt)	2605502	2603945	<u>6</u>	2605527	2608117	2606561	2608185	2609512	2812272	2610848	2613151	2614500	2615410	2615795	2615939	2817995		2619538
	Initial (nt)	2604573	2804583	2605520	2606369	2606444	2607889	2809428		2811523		2612462	2613712	2614649	2615451		2617246		6215 2618882
	SEQ NO.		6199	6200	6201	6202		8204		ROOR		6208		6210	6211	6212	6213	6214	
	SEO			2700	2701	2702		2704		270A	2707	2708	2709	2710	2711	2712	2713	2714	2715

	/
500	
4	3

													_	_					_	
	Function	ferric enterochelin esterase	lipoprolein				transposase (IS1207)			transcriptional regulator	gluteminase	sporulation-specific degradation regulator protein		uronate Isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comignatory protein	bacterial regulatory protein, tetR family
	Matched length (a a)	454	398				436			131	358	26		335		291	185	75	141	114
	Similarity (%)	50.9	71.9				93.8			63.4	69.3	72.2		60.9		45.0	74.8	80.0	73.8	61.4
	Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		28.0		32.0	48.1	42.7	46.8	32.5
ושחוב ו (בסווווווסבם)	Hamplogous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv RV2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacilius subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennisi teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coll K12 bcp	Streptomyces coelicolor A3(2) SCI11.01c
	db Match	prf.2409378A	1209 pir:C70870				1308 gp:SCU53587_1			gp:AF085239_1	sp.GLSK_RAT	pir.A36940		Sp:UXAC_ECOL!	•	prf.1814452C	prf:2324444A	plr:E70870	sp.BCP_ECOLI	gp.SCI11_1
	ORF (bp)	1188	1209	845	150	246		207	639	453	1629	477	555	1554	501	1197	558	273	465	636
	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628378	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633148	2634064	2634751
	Initial (nt)	2820728	2622181	2622961	2623770	÷	6221 2625358	6222 2625600	6223 2626447	6224 2627924	2628121	2628376	2628878	_	2630638	2631270	2632543	2833418	2633600	6234 2634116
	SEO.	6216		8218	6219	6220	6221		6223	6224	6225	8228	6227	6228	6229	6230	6231	6232	6233	
	SEQ	27.16		2718	2719	2720	2721	2722	2723	2724	2725	2726	7272	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

5	Function	phosphopantethlana protein transferase	ilncomycln resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposese (IS1628)		arylsufatase
15	Matched length (a.a.)	145	473	113		3029	404	230	112	113	202	238		<u>.</u>		428	175		250
20	Similarity (%)	75.9	85.8	54.0		83.6	55.2	60.9	67.9	69.0	78.7	81.4				58.2	97.2		74.4
	identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
25 (panuji	900	: 6871 ppt1	amicum	C6803			or A3(2)	culosis	culosis		sulosis	nosa				ulosis	amicum 11 tnp8		ats
8 Sapple 1 (conlinued)	Homologous gone	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum Imr8	Synechocystis sp. PCC8803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7, 14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A8.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
40	db Match	gp:BAY15081_1	gp:AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	plr:D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	SP:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8		SP:Y030_MYCLE
	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	818	735	246	693	582	1362	534	999	765
45	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	20803	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
50	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656238	2656452	2657633	6252 2658500
	SEQ NO.	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
55	SEQ NO (DNA)	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

						-													
5	tlon	1350		r protein, marR	rane protein		hexanoste	c	c		c		slicase	orane protein	u	osphatase		ase chain l	
10	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-eminohexanoste oligomer hydrotase	hypothetical protein	hypothetical protein		hypothatical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain	
15	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
20	Similarity (%)	89.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
25 8		mn:		(2)(5)	sis			sis	sis		sis			sis	(3(5)			sis	
s s Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 muri		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tubarculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coeticolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
40	db Match	prf:2516259A		gp:SCE22_22	sp:Y03M_MYCTU		pir.A47039	sp:Y03H_MYCTU	Sp:Y03G_MYCTU		sp.Y03F_MYCTU		prf: 1816252A	sp:Y0A8_MYCTU	pir.T34684	SP. SERB_ECOLI		pir.D45335	
	ORF (bp)	852	636	492	747	891	960	537	300	624	1338	306	1740	168	723	1017	1596	1743	306
45	Terminal (nt)	2658608	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2662992	2667854	2667870	2668839	2669557	2872721	2671063	2673255
50	Initial (nt)	2659457	2659496	6255 2660638	6256 2661417	2661565	2862378	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2770 6270 2672950
	SEQ NO (e e)	6253	6254			6257	6258	6229	6260	6261	6262	6263	6264	6265	9929	6287	6268	6289	6270
55	SEO NO (DNA)	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

EP 1 108 790 A2

_			_				$-\tau$		$\neg \tau$		_ 1	- 1		4	i		= 1	- Ł			i
5	Function	ribonucleolide reductase bela-chain		sporulation transcription factor	t repressor or repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleolide reductase alpha- chain		I protein L36	NH3-dependent NAD(+) synthetase			ırotein	rotein	Irogenase	Bacilius subtilis mmg (for mother cell metabolic genes)	orotein		omutase	
10	u.	ribonucleotide	ferritin	sporulation tra	iron dependent repressor diptheria toxin repressor	cold shock pro	hypothetical m	ribonucleotide chain		50S ribosomal protein L36	NH3-depende			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis n metabolic genes)	hypothetical protein		phosphoglucomutase	
15	Matched length (a.a.)	334	159	258	225	124	20	707		41	279			257	96	337	459	284		228	
20	Similarity (%)	99.7	64.2	60.2	60.4	62.1	96.0	100.0		79.0	78.1			58.4	68.8	52.8	56.0	66.2		80.6	
	Identity (%)	99.7	31.5	32.8	27.6	24.2	20.0	6.99		58.0	55.6			30.7	41.7	26.1	27.0	33.8		61.7	
25 (panujiuo	s gene	lutamicum	2 ftnA	icolor A3(2)	lutamicum	erevislae C TIR2	gidus AF0251	giutamicum		ekii	38 nadE			PCC6803	berculosis	rmophilus	58 mmgE	na T6K22.50		(12 pgm	
Se Salan (Confined)	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium giutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtills 168 nadE			Synechocystis sp. PCC6803 slr1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm	
35 40	db Match	gp:AF112536_1	SP:FTNA_ECOLI	gp:SCA32WHIH_4	pir:140339	sp:TIR2_YEAST	oir C69281	35_3		SP.RL38 RICPR	SP:NADE_BACSU			pir.S76790	plr:G70922	sp.ADH2_BACST	sp:MMGE_BACSU	plr 105174		SO PGMU ECOLI	Sp. T Giving Locker
	ORF (bp)	1002	486	750	099	438	278	-	315	_	+	93	498	747	288	1020	1371	A34	+-	+-	_;
45	Terminal (nt)	2673338	2675289	2676240	2676243	7167737	2878918	2677478	2680784	2681223	2682376	2681464	2683616	2682379	2683131	2683827	2686289	2687148	3 8		
50	initial (n)		2674804		2676902	2676940	2677103	2679598	2680470				2683119	2683125	2683418	2684646	2684919	26 26 2 1 6		200000	6289 2690050
	SEO	6271	6272		6274	6275	9700	6277	8778		_	6281	6282	6283	6284	6285	6286	7000			
55		(DNA)	27.72		2774	2775	27.70	2777	27.70	2770	2780	2781	2782	2783	2784	2785	2786	1	278A	2 6	2789

10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1876)		proton/sodium-glutamate symport protein		ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothelical protein		oxidoreductase or dehydrogenase
Matched length (a.a.)	84	122	254	486	355				200		438		873		218	84	42		196
Similarity (%)	64.3	61.5	79.1	48.8	49.6				46.6		66.2		0.69		79.8	67.0	75.0		54.1
 Identity (%)	41.7	25.4	51.2	24.2	24.8				24.8		30.8		33.0		45.4	80.0	71.0		28.1
Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yesl	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17985 csp1				Rhodocaccus erythropolis	-	Bacillus subtilis 168		Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia mwidarum Nigg TC0129		Streptomyces collinus Tu 1892 ans G
db Match	pir.F70650	pir:D71843	Sp.YCSI_BACSU	gp:AF126281_1	1620 sp. CSP1_CORGL				gp.AF126281_1		1338 sp.GLTT_BACCA		gp:SCE25_30	-	gp:SAU18641_2	PIR:F81516	PIR:F81737		prf:2509388L
ORF (bp)	288	324	792	1385	1620	354	165	447	1401	768	1338	693	2541	991	708	273	141	678	672
Terminal (nt)	2690437	2690760	2691564	2693053	2694918.	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
Initial (nt)	2690150	2690437	2690773	2691689	6294 2693299	2694926	2695554	2695766	2695812	2698150	2699531	2700920	2702466	2702466	2703194	2704314	2704835	2709878	6308 2710637
SEQ NO.	6290	6291	8292	6293	6294	6295	6296	6297	6298	6539	8300	6301	8302	6303	6304	6305	6306	6307	6308
SEQ NO. (DNA)	2790	2791	2792	2783	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808

	_									Т	\neg	$\neg \tau$		\neg	$\neg \tau$		Т	т	Т			
5		Function	methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acetylglucosamine 1- carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthese	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain		frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator	
15		hed 3th	$\neg \neg$			1	417 UD	190 hyp	281 trai		305 cy	172 0-	83 hy	291 su	75 hy	400 su		213 fre		501 Sra	321 tre	
		Matched length (a.a.)	205	2	42		4	<u>ٽ</u>	7		3			2		4	_	7	_		(*)	
20		Similarity (%)	51.2	96.0	75.0		75.3	. 84.2	0.69		84.8	79.7	65.1	79.4	43.0	73.0		2.8		77.8	68.5	
		identity (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6	
25	(pen		siso		66		icus	osis	A3(2)		¥	ysE2	ns R1	ile Ph I	PE1069	၁		/us frnE		1 cat1	ATCC	
30	Table 1 (conlinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chiamydia pneumoniae	Chiamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Becilius subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph I sucD	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 sucC		Streptomyces raseofulvus frnE		Clastridium kluyveri cat1 cat1	Azospirillum brasilense ATCC 29145 ntrC	
35		db Match	SP.Y089_MYCTU N	GSP: Y35814 C	PIR:F81737		SP:MURA_ACICA	Sp.Y02Y_MYCTU	gp:SC2G5_15		SP.CYSK BACSU	†	₽,	sp.Sucp_coxBu	PIR F72708	ACSU		gp:AF058302_5		Sp.CAT1_CLOKL	1143 sp.NIR3_AZOBR	
40			Sp:Ya	GSP	PRF		Sp.M	S Y	gp:S(<u>်</u>	p4.2	B B	S:ds	PR	<u> </u>		gp:A	_		N:ds	
		ORF (bp)	525	273	141	195	1254	570	843	804	924	546	288	885	225	1194	88	735	919	1539		
45		Terminal (nt)	2712374	2713453	2713842	2717993	2718438	2720319	2720385	2721295	2722857	2723609	2723770	2724478	2725843	2725384	2726786	2727399	2728207	2729378	2732518	
50		Initial (nt)	2711850	2713181		2718187	!	2719750	7221272	2771702	2721934	2723064	2724057	2725359	2725619		2727145	2728133	2729025		2731376	
		SEO		6310		8312		6314	8315	8118	317	8318	8319	6320	6321	6322	6323	6324	6325	6326	6327	
		P S S	_	910		812	_	814	815		2 7		_	2820	156		$\overline{}$		_		2827	آ

	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminofransferasa	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synihelase	amidophosphoribosyl transferase
	Matched length (a.a.)		213	255	282	325	696	315		344	225	528	352	89	347	482
	Similarity (%)		81.7	82.8	82.2	78.5	26.0	0.09		2:59	74.2	98.0	79.0	91.0	94.2	89.0
	Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacilius subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purf
	db Match		pir:E70810	pir.S68595	gp:MTPSTA1_1	pir:A70584	pir.H70583	gp:SCD84_18		PP:BMRU_BACSU	plr:E70809	gp:AF193846_1	gp:AB003158_6	60802B.jid	gp:A8003158_5	gp:AB003158_4
	ORF (bp)	807	732	897	921	1014	1125	928	783	1095	687	942	1101	213	1074	1482
	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739558	2741358	2741638	2743785	2744222	2744881	2746083
	Initial (nt)	2732230	2732638	2734351	2735184	2736215	2737538	2738711	2738771	6336 2740650	2740670	2742577	2742685	2744010	2745954	2747564
	SEQ NO.	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
	SEO NO. (DNA)	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

5	Function	hypothetical protein	hypothelical protein	hypothetical membrane protein	hypothetical protein	5-phosphoribosyl-N- formylglychamidine synthetase		5:-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15	Matched length (a.a.)	124	315	217	42	783		223	79		158	965		211	414	697
20	Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		77.9	51.5		68.7	81.8	70.6
	Identity (%)	57.3	75.9	67.7	64.0	77.8		80.3	91.0		46.2	28.0		37.4	49.0	41.8
% % % % % % % % % % % % % % % % % % %	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammonlagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Suifolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
<i>35</i>		£.₹					_				Lac	Aeron		My H3		Ps
40	db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prt:2420329A	prf.2216389A		pir.C70709	sp.DCTA_SALTY	prf:2408266A
	ORF (bp)	375	1017	147	186	2286	720	699	243	522	477	2748	278	687	1338	2118
45	Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757883	2759532
50	Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
	SEQ NO	6343	6344	6345	6346	6347	6348	6349	6350	6351	6352	6353	6354	6355	6356	6357
55	SEQ NO.		2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857

ıï.

0			
5			
10			
5			
ю			
15			
ю	٠		
15			
50			

	Function		5-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino iyase	aspartate aminotransferase	5'-phosphoribosylglycinsmide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-Aripeptide transpoter	adenosylmathionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethioblotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr eldolase	
	Matched length (a.a.)		294	477	395	425	138		243	469	423	224	335	231	249	382	
	Similarity (%)		1.88	95.0	62.3	88.4	80.2		56.4	67.6	98.8	98.6	70.5	72.7	69.5	53.9	
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9	
Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammonlagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosardna barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bloD	Lactococcus lactis M71plasmid pND308	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38	
	db Match		gp.AB003161_3	gp:AB003161_2	sp:AAT_SULSO	gp:AB003161_1	SP:YHIT_MYCLE		pir:S62195	sp:DTPT_LACLA	1269 Sp.BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prt.2222216A	SP.TIPA_STRUI	pri.2419350A	
	ORF (bp)	624	891	1428	1158	1283	414	435	753	1356		672	1455	705	753	1140	
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740	
	initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2769095	2770511	6367 2770714	2771989	2774098	2774814	2775689	2776879	
	SEQ NO	6358	6329	6360	6361	6362	6363	6364	6365	6366	6367	6368	6369	6370	6371	6372	
	SEO NO.		2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872	

5

5

														_		_			
	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrana protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	trenscription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake aystem protein
	Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
	Similarity (%)	75.8	6.99	68.5	78.4		62.1	99.0	52.9	55.0		50.7	64.0	50.3	7.99		57.8	80.2	46.7
	Identity (%)	46.3	33.3	30.4	45.8		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
Table 1 (continued)	Homologous gene	Escherichia coll K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c IpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coll K12 otsB	Bacillus megaterlum ccpA	Haemophilus influenzae Rd HI0119 znuA
	db Match	gp:ECOPOXB8G_	pri.2212334B	Sp. YCDC_ECOLI	pir.D70551		gp:AF096929_2	SP. ALSR_BACSU	plr.C70882	pir.C69862		pir.A45264	pir.B70798	pir:S41307	sp.TPS1_SCHPO		SP.OTSB ECOLI	Sp:CCPA_BACME	942 sp.ZNUA_HAEIN
	ORF (bp)	1737	1482	531	1320	2142	960	705	813	813	459	399	1503	327	1455	513	768	1074	942
	Terminal (nt)	2776768	2780448	2780959	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795837	2795676	2797808
	Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300	2794870		6390 2796865
	SEO NO Se.	6373	6374	6375	8376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6386	6387	6388	6388	 _
	SEO NO ON SO SO ON SO So ON So ON So ON So ON So ON So ON So ON So ON So ON So ON So So On So So On On On On On On On On On On On On On		2874	2875		2877		2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890

10
15
20
25
30
35
40
45
50

	Function	ABC trensporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide blosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-nositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase	cysteinyt-tRNA synthetase	PTS system, enzyme il sucrose protein (sucrose-specific IIABC component)	sucrose 8-phosphate hydrolase or sucrase	glucosamine-6-phosphata isomerase	N-acetylglucosamine-6-phosphata deacetylase
	Matched length (a.a.)	223	135	303		561		204	128	282	130	212	334	464	899	473	248	388
	Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	98 9	77.0	6.93	69.4	60.3
	Identity (%)	31.4	90.0	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
Table 1 (continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSBB bpIA	Bacillus subtills 168 idh or lolG	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET58	Escherichia coll K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
	db Metch	gp:AF121672_2	pir:E70507	pir:A69426		gp:AF096929_2		plr:872359	sp:MI2D_BACSU	SP.SHIA_ECOLI	SPISHIA_ECOLI	gp:SC5A7_19	sp:PT56_YEAST	Sp:SYC_ECOL!	prf 2511335C	gp:AF205034_4	sp.NAGB_ECOLI	1152 sp:NAGA_VIBFU
	ORF (bp)	069	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2806018	2806599	2807426	2808399	2809824	2811960	2813279	2814081
	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	2805987	6400 2806441	2807252	2808364	2809778	6404 2811808	2813258	2814037	2815232
	SEQ NO (a.a.)	6391	6392	6393	6394	8385	9629	6397	6398	6669	6400	8401	6402	6403	6404	6405	6406	6407
;	SEQ NO.	2891	2892	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2908	2907

	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-8-phosphate epimerase		stalidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permesse protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lectone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a a)	298	321	220		439	222	095	342	314	258	193	142		152	235	157
	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		88.2	71.5	91.1
	identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c gik	Clostridium perfringens NCTC 8798 nanE		Micromonospora vindifaciens ATCC 31146 nadA	Rhizobium etil ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhíB	Bradyrhizobium Japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp. DAPA_ECOLI	sp:GLK_STRCO	prt.2516292A		SP:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	SP:OPPF_LACLA	sp:RHTB_ECOLI	pri:2309303A		pir.C70607	sp:Y18T_MYCTU	pir:H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	818	621	483	380	480	788	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	6409 2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
	SEO NO (8.8)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO.		2809	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

5	Function
15	Matched length (a a)
20	identity Similarity length (%) (%)
25	identity (%)
30 35	Table 1 (conlinued) Homologous gene
40	db Match
	ORF (bp)
45	SEO Initial Terminal ORF (nt) (nt) (bp)
50	Initial (nt)
	SEQ NO.

				_		_			_			_	_							
	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase bets	AG-specific adenine glycosylase			L-2.3-butanediol dehydrogenase				hypothelical protein	virulence factor	virulance factor
	Matched length (a a)	223	341		483	345	231	471		210	283			258				97	66	72
	Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		66.2	70.7			99.6				99.1	63.0	65.0
	identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7	48.4			99.2				48.5	57.0	54.0
,	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3248c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtills 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudamonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU 3720 mulY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match	prl:2214304A	sp:BAES_ECOLI		Sp. RADA_ECOLI	SP. YACK_BACSU	pir:070804	gp.PPU96338_1		pir:T08204	gp:AF121797_1			gp:AB009078_1				plr:E70552	GSP:Y29188	GSP:Y29193
	ORF (bp)	723	1116	582	1392	1098	687	1452	147	621	879	1155	308	774	324	741	312	291	420	213
	Terminat (nt)	2830779	2831894	2832668	2834181	2835285	2835283	2836048	2837591	2837858	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
	Initiat (nt)	2830057	2830779	2832085	2832790	2834188	2835969	2837499	2837737		2838643	2839562	2841063	2841075	2842130	2842493	2843405	2843722	2845139	2845889
	SEO		6425	6426	6427		6429	6430	6431	6432	6433	6434	6435	6436	6437		6439	6440	6441	6442
	SEO		2925	2926	-	_		2930	2931		2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

), i

	Function	virulence factor	CIPC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-manooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pentoste-beta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-8- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
	Matched length (a.a.)	55	832	469	316	980					481	240	511	268			138	158	118	288
	Similarity (%)	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6			9.69	68.0	69.5	75.0
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtills 168 mecB	Bacillus cereus ts-4 impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490			-		Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacilius subtilis 168 folB	Mycobacterium leprae folP
	db Match	GSP:Y29193	SP. MECB_BACSU	gp:AB035643_1	plr.JC8117	sp:PH2M_TRICU					gp:AF237667_1	pir:G70807	gp.AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	8p.HPPK_METEX	Sp.FOLB_BACSU	gp:AB028656_1
	ORF (bp)	321	2775	1431	101	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	390	837
	Terminal (nt)	2846508	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857813	2859195	2860505	2862132	2862929	2883824	2864384	2864867	2865346	2865731
	Initial (nt)	2846186	6444 2848940	2847229	2848769	2850031	2852017	2853769	2855795	2859044	2859055	2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	2866567
	SEO SO 0	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	6457	6458	6459	6460	8461
	SEQ NO.		2944	2945	2948	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	2960	2961

Table 1 (continued)
ed) Identity Similarity Matched (%) (%) (%) (aa.) 60.6 86.2 188 60.6 86.2 188 56.0 69.0 782 58.0 69.0 782 sis 41.0 66.6 310 68.4 132 sis 56.0 80.7 507 sis 38.4 60.1 173 sis 38.4 60.1 173 dD 38.0 69.6 411 A3(2) 46.4 73.2 87 el ORF 26.7 59.3 135
ed) Identity Similarity Matched (%) (%) (%) (aa.) 60.6 86.2 188 60.6 86.2 188 56.0 69.0 782 58.0 69.0 782 sis 41.0 66.6 310 68.4 132 sis 56.0 80.7 507 sis 38.4 60.1 173 sis 38.4 60.1 173 dD 38.0 69.6 411 A3(2) 46.4 73.2 87 el ORF 26.7 59.3 135
ed) [46] [46] [46] [46] [46] [46] [46] [46]
6d)
Continued) Sus gene BB mtrA BB mtrA Murium GP660 Wherculosis
(Continue (Continue Continue GB mtrA Murium Continue Cuberculo Cub
Table 1 (continued) Homologous gene Bacillus subtilis 168 mtrA Salmonella typhimurium GP68 hprt Mycobacterium tuberculosis H37Rv Rv3625c Actinomadura sp. R39 dac Escherichia coli K12 ppa Mycobacterium tuberculosis H37Rv Rv2600 Mycobacterium tuberculosis H37Rv Rv2599 Mycobacterium tuberculosis H37Rv Rv2599 Mycobacterium tuberculosis H37Rv Rv2597 Streptomyces coelicolor A3(2) ScH69.09c Burkholderia pseudomaliel OR
S A Metch tp://dchi_BACSU sp:/dchi_BACSU
ORF (bp) 588 915 2580 582 1233 1733 1733 1739 1539 411 411 411 411 411 411 411 411 444
Terminal (nt) (nt) (nt) (286586 2867169 2867169 2877445 2873393 2873905 2875434 28756280 2877595 2877595 2877595 2870597 2877595 2877595 2870597 2877595 2870597 2877595 2870597 2877595 2870597 2877595 2870597 2877595 2870597 2877595 2877595 2870597 2877595 2870597 2870597 2870597 2870597 2870597 2870597 2880255 2880255 2880987 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 28800087 2880087 2880087 2880087 2880087 2880087 2880087 2880087 2880
8 (n!) (n!) (n!) 2867173 2867173 286744 2872677 2872677 2872677 287543 287543 2877703 2877858 2877703 2877858 2879965 28789965 28789965 28789965 28789965 28789965 28789965 28789965 287858 288858 288
SEQ NO NO (8.8) 6462 646462 64664 6465 64664 64667 64667 6470 6470 6477 6477 6
SEQ NO. (DNA) 2962 2963 2964 2965 2966 2967 2967 2977 2977 2977 2977 2977

EP 1 108 790 A2

5		Function	peptide synthase		phenylacetaldehyda dehydrogenasa	hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein			peptidese			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
15		Matched length (aa)	1241 p		488 p	241 h	54 h	31 1	548 h							1236			447			797
20		Similarity (%)	51.6		63.7	7.67	63.0	90.0	100.0							42.3			68.0			68.3
		Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5							21.7			37.1			35.6
25 30 35	Table 1 (continued)	Homologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	GP:MSGTCWPA_1 Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo saplens MUC5B			Mycobacterium tuberculosis H37Rv RV2522c			Staphylococcus aureus mnhA
40		db Match	prf.2413335A			gp:CJ11168X2_25	GP: MSGTCWPA_1	GP.MSGTCWPA_1	gsp:R94368							prf:2309326A			pir:G70870			3057 prf.2504285B
		ORF (bp)	3885	1461	1563	918	162	177	1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579	800	3057
45		Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890830	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	2913228
50		Initial (nt)	2880998	2883304	2888497	2887833	2890185	2890377	2890540	2890930	2892138	2893100	2895085	2897525	2900328	2903920	2906738	2907250	2907515	2909210	2909830	2910172
		SEQ.	6480	6481	6482	8483	6484	6485	6486	6487	6488	6489	6490	6491	6492	6493	6494	6495	6496	6497	6498	6499
55		SEQ NO ONA)	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2897	2998	2999

- 4:3

5	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or callon transport system protein	Na+/H+ antiporter or muttiple resistence and pH regulation related protein D	Na+/H+ anthorter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Ne+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylese	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
15	Matched length (a.a.)	104	523	161	11	121	178	334		184	71	338			31	513
20	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		60.9	70.4	54.2			58.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.8	24.7	27.0		37.5	47.8	31.3			30.8	27.9
S S Table 1 (continued)	Homologous gene	Bacilius firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv llpV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhlmurium LT2 xthA	Bacilius firmus OF4 cls
40	db Match	gp:AF097740_3	9p.AF097740_4	gp.AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		SP.DEF_BACSU	pir:D70831	pir:870631			gp:AF108767_1	gp.BFU88888_2
	ORF (bp)	489	1668	44	273	378	594	1128	683	579	252	1005	699	930	789	1500
45	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920250	2922108	2923617
50	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917817	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO 1	6500	6501	6502	6503	6504	8505	6506	8507	6508	6203	6510	6511	6512	6513	6514
55	SEQ NO (DNA)	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

			_														_		_
Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylgiycinemide formyltransferese	
Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
Similarity (%)		67.2	68.9	56.4		80.8	66.3	68.5	70.2	64.8	63.5		87.8	60.3				82.8	
Identity (%)		31.6	28.5	38.8		24.3	36.9	47.8	35.0	31.5	41.2		37.2	34.0				59.1	
Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30-84 phzC		Streptomyces coelicator A3(2) SCE8.18c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 ginH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coll K12 elaA				Bacillus subtilis 168 purT	
db Match		sp:BCR_ECOLI	gp:VCAJ10968_1	Sp.PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACI.I	plr:C70629	pir.B70629	sp:GLNH_BACST	pir.H70628		sp. ADRO_BOVIN	Sp.ELAA_ECOLI				sp:PURT_BACSU	
ORF (bp)	654	1194	1164	840	633	768	936	201	1386	1032	2253	747	1365	546	1062	1029	399	1194	888
Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929258	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
Initial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	6533 2946526
SEO NO (*)			6517	6518	6519	6520	6521	6522	8523		6525	6526	6527	6528	-	6530	6531	6532	_
SEQ NO DNA)			_	3018	3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (h) (bp)	SEQ Initial Terminal (%) ORF (bp) db Match Homologous gene Identity (%) Similarity length length length (%) Matched (%) (a.a.) (nt) (nt) (bp) (a.a.) (a.a.) (a.a.)	SEQ Initial NO (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (nt) (pp) (%) (%) (%) (%) (%) (a.a.) 6515 2924191 2924844 654 Escherichia coli K12 bcr 31.6 67.2 393	SEQ Initial NO. (nl) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ initial NO. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96) Matched (96)	SEQ NO. Initial (nl) Terminal (nl) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial NO. (nl) (nl) (nl) (nl) (nl) (nl) (nl) (nl)	SEQ Initial NO. Initial (nl) (nl) (nl) (nl) (nl) (nl) (nl) (nl	SEQ Initial NO. (nl) Terminal (DRF (bp)) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ NO. (n1) Initial (n1) Terminal (n1) ORF (n1) db Match (b) Homologous gene (96) Identity (96) Similarity (96) Matched (96) Matc	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity length (a.s.) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <td>SEQ NO. Initial (It) Terminal (It) ORF (It) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Similarity (%) Matched (%) 65.15 2924191 2924844 654 Echelchia coli K12 bcr 31.6 67.2 393 65.16 2925147 2923954 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.17 292541 2927674 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.17 2927676 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.19 2927676 1164 gp.PHZC_PSEAR Pseudomonas aureofaciens 30- 84 phzC 38.8 56.4 289 65.10 2927676 63.3 38.0 Scell Relative incherae JS1569 nptA 38.8 56.4 289 65.20 2928318 2927651 76.8 gp.SCEB_16 Scell Relative incherae JS1569 nptA 38.9 68.3 309 65.21</td> <td> Name</td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene Identity (%) Smillarity (%) Matched (%) Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene (%) Smillarity length length NO. (nl) (nl) (hl) (bp) Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>SEG Initial Terminal ORF db Match Homologous gene (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO (n1) (n1) (n1) (pp) Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%</td> <td>SEQ NO. Initial (III) Terminal (III) ORF (PA) db Match (PA) Homologous gene (PA) Identity (PA) Matched (PA) Matched (</td> <td>SEO Initial Terminal ORF db Malch Homologous gene Identity (%) Similarity (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%)</td>	SEQ NO. Initial (It) Terminal (It) ORF (It) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Similarity (%) Matched (%) 65.15 2924191 2924844 654 Echelchia coli K12 bcr 31.6 67.2 393 65.16 2925147 2923954 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.17 292541 2927674 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.17 2927676 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.19 2927676 1164 gp.PHZC_PSEAR Pseudomonas aureofaciens 30- 84 phzC 38.8 56.4 289 65.10 2927676 63.3 38.0 Scell Relative incherae JS1569 nptA 38.8 56.4 289 65.20 2928318 2927651 76.8 gp.SCEB_16 Scell Relative incherae JS1569 nptA 38.9 68.3 309 65.21	Name	SEQ (nt) Initial (nt) Terminal (nt) ORF (pp) db Match Homologous gene Identity (%) Smillarity (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene (%) Smillarity length length NO. (nl) (nl) (hl) (bp) Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEG Initial Terminal ORF db Match Homologous gene (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO (n1) (n1) (n1) (pp) Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	SEQ NO. Initial (III) Terminal (III) ORF (PA) db Match (PA) Homologous gene (PA) Identity (PA) Matched (PA) Matched (SEO Initial Terminal ORF db Malch Homologous gene Identity (%) Similarity (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%) Malched (%)

	⊢					Table 1 (continued)	Ld Stitte	Similarity	Matched	
NO. (nt) (nt) (bp) db Match (8.a.)	Terminal ORF (nt) (bp)	(bp)		db Match		Homologous gene	(%)	(%)	(a.a.)	Function
6534 2947591 2946698 894 pir.S60890	2946698 894	8 894		pir.S60890		Corynebacterium glutamicum ort2	77.8	90.9	295	insertion element (IS3 related)
6535 2947886 2947620 267 pir.S60889	2947620 267	267		pir S60889		Corynebacterium glutamicum orf1	67.4	84.3	66	insertion element (IS3 related)
6538 2949188 2948049 1140 gp:AB018841_1	2948049 1140	9 1140				Streptomyces thermoviolaceus opc-520 chiS	22.4	51.3	349	two-component system sensor histidine kinase
6537 2949882 2949265 618 sp.DEGU_BACBR (2949265 618 sp.DEGU_BACBR	35 618 sp.DEGU_BACBR	sp.DEGU_BACBR	\vdash	-	Bacillus brevis ALK36 degU	31.7	65.6	218	transcriptional regulator
6538 2950207 2950431 225	2950431	٣	225							
6539 2951723 2950434 1290 gp:AB003160_1 8	2950434 1290 gp:AB003160_1	34 1290 gp.AB003160_1	gp:AB003160_1	gp:AB003160_1	0 8	Corynebacterlum ammoniagenes purA	89.7	95.3	427	adenylosuccinate synthetase
6540 2951933 2952691 759 pir.G70575 H3	2952691 759 pir.G70575	759 pir.G70575	pir.G70575		ΣÏ	Mycobacterium tuberculosis H37Rv Rv0358	34.3	59.3	204	hypothetical protein
6541 2952709 2952972 264	2952972	┼	264							
2954141 2952975 1167 sp. YFDA_CORGL	2952975 1167 sp.YFDA_CORGL	1167 sp. YFDA_CORGL	1167 sp. YFDA_CORGL	sp:YFDA_CORGL	AS	Corynebacterium glutamicum AS019 ATCC 13059 ORF3	100.0	100.0	359	hypothetical membrane protein
6543 2955272 2954241 1032 plr.509283 Co	2954241 1032 pir.S09283	1032 pir: \$08283	1032 pir: \$08283	pir:S09283	Co	Corynebacterium glutamicum AS019 ATCC 13059 fda	99.7	100.0	344	fructose-bisphosphate aidolase
6544 2856473 2955523 951 gp:CGFDA_1 A	2955523 951 gp:CGFDA_1	2955523 951 gp:CGFDA_1	gp:CGFDA_1		OA	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	100.0	100.0	304	hypothetical protein
6545 2957447 2958830 618 plr.G70833	2958830 618 plr:G70833	618 plr:G70833	618 plr:G70833	plr:G70833	21	Mycobacterium tuberculosis H37Rv Rv0380c	78.9	91.2	182	methytransferase
6546 2958036 2957485 552 gp:AF058713_1 F	2958036 2957485 552 gp:AF058713_1	2957485 552 gp:AF058713_1	552 gp:AF058713_1	gp:AF058713_1	-	Pyrococcus abyssi pyrE	38	65.5	174	orotate phosphoribosyltransferase
6547 2959110 2958139 972 plr.B70834	2958139 972 plr:B70834	2958139 972 plr:B70834	972 plr:B70834	plr:B70834		Mycobacterium tuberculosis H37Rv Rv0383c	27.6	90.0	250	hypothetical protein
6548 2960371 2959520 852 sp.THTM_HUMAN H	2960371 2959520 852 sp.THTM_HUMAN	20 852 SP.THTM_HUMAN	852 SP.THTM_HUMAN	SP.THTM_HUMAN		Homo sapiens mpsT	29.6	56.1	284	3-mercaptopyruvate sulfurtransferase
6549 2961187 2960468 720	2961187 2960468	2960468	\vdash		- i					
6550 2963008 2962730 279	2963008 2982730	2962730	i				\downarrow			
3051 6551 2963596 2963198 399	2963198	2963198	-							

5

5 10	Function	factor	l factor	l factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmlum)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lysse	bacterial regulatory protein, laci family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
15		virulence factor	virulence factor	virulence factor	sodium/g protein	cadmiun	cation efflux sys (zinc/cadmlum)	monoox or sterol	aikanal		cystathi	bacteria family	rifempln	rifampin	hypothe	hypothe	
	Matched length (a.a.)	29	200	132	489	2	283	478	388		375	184	28	85	381	204	388
20	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	97.5	58.2	64.7	80.8
	Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	48.4	73.2	30.5	33.8	31.9
<i>2</i> 5	9	osa	0\$8	880	56803	s cadC	ay	rous	i symbiont		netB	or A3(2)	or A3(2)	or A3(2)	ulosis	culosis	cutosis
os Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechacystis sp. PCC6803 sin0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coeliculor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
40	db Match	GSP: Y29188	GSP Y29182	GSP: Y29193	pir.S76683	Sp.CADF STAAU	—	gp:AB010439_1	sp.LUXA_KRYAS		Sp. METB_ECOLI	gp:SC1A2_11	gp SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir:D70834
	ORF (bp)	177	762	396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
45	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
50	Initial (nt)	2964258	2985078	2965188	2987804	2968403	2968951	2989834	2971017	2972099	2973205		2973961	2974200	2974467	2975629	2976596
	SEO	6552	6553	6554	8555	6556	6557	6558	6559	6560	8581	6562	6563	6564	6565	6566	/959
55	SEO		3053	3054	3055	3056		3058	3059	3060	3081	3062	3063	3064	3065	3066	3067

5	Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	noval two-component regulatory system	aldahyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	S-methylthloadenosine nucleosidase adenosylhomocystelne nucleosidase			chromosome segregation protein			alcohol dehydrogenase
15	Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334
20	Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	68.5	83.68	79.0	90 0			48.4			81.7
	Identity (%)	32.0		28.0	38.0	69.6	47.4	26.7	38.7	8.66	42.8	27.2			18.9			20.0
25 (panuj	lene	Delta H		ilor A3(2)	se carR	polis thcA	S hspR	culosis	olor grpE	m MJ-233	olor A3(2)	IP0089 mtn			es pombe			ophilus
% & Table 1 (continued)	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirilium brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
40	db Match	pir.B69109		gp:SC4A7_3	GP:ABCARRA_2	prf:2104333D	2	5	sp.GRPE_STRCO	gsp.R94587	gp:SCF6_8	sp.PFS_HELPY			sp.CUT3_SCHPO			sp. ADH2_BACST
	ORF (bp)	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	938	1485	1035
45	Terminal (nt)	2977847	2878979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
50	Initial (nt)	2978644	2978737	2978982	2980887	2981698			2984522	2986397	2986833	2988846	2990045	2991718	6581 2993286	2993921	2995405	2996781
	S S S	6568	6959	6570	1759	6572	6573	6574	6575	6576	8577	8278	6579	6580	<u></u>	8582	-	6584
55	SEQ.	3068	3069	3070	3071	3072	3073	3074	3075	3076	7202	3078	3079	3080	3081	3082	3083	3084

	Function					hypothetical membrane protein	hypothetical protein		suifate adenyfyltransferase, subunit 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate reductase	ferredoxin-nitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin Interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothetical protein	emmonia monooxygenese		
	Matched length (a.a.)					301	252		414	308	212	202	487	144			142	90	181		
	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	28.7			59.9	66.3	78.4		
	identity (%)					43.5	32.5		47.3	48.1	38.2	34.5	30.8	32.6			26.8	20.0	39.1		
Table 1 (continued)	Hamologous gene					Bacillus subtills ytnM	Streptomyces coelicolor A3(2) SC7A8.10c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo saplens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
	db Match					pir.F69997	gp:SC7A8_10		Sp.CYSN_ECOL!	sp:cysp_Ecoli	sp:CYH1_BACSU	SP.NIR_SYNP7	sp:ADRO_YEAST	prf.2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	216	207	189	261	927	723	915	1299	912	693	1683	1371	1083	237	534	414	366	525	321	486
	Terminal (nt)	2997388	2997481	2997876	2997963	2998528	2999478	3002428	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
	Initial (nt)	2997151	2997687	2997688	299823	6589 2999454	6590 3000200	3001512	3001539	3002453	3003145	3005162	3005545	3007294	6598 3008689	6599 3008770	6600 3009162	3009242	3010231	6603 3010659	3010926
	SEO NO (8.8)	6585	6586		6588	6889	6590	6591	6592	6593	6594	6595		6597	-			9601	2099		
	SEQ NO.	3085	3088	_	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3160	3101	3102	3103	3104

ed)	1
ntinu	
1 (0	
Table	

_								_	_									1				_
	Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelale desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP-binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	Secretain
	Matched length (a a)	88		337	199	211	416			466				114	373		179	231	216	8/2	179	907
	Similarity (%)	58.0		57.8	64.8	73.0	87.8			48.5				46.0	50.1		67.6	71.4	59.3	59.4	8.82	A3 A
	Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	22.6
	Homologous gene	Agrobacterium vills ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata lunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichla coli K12 tag	Alexicones outcontine 1148 (hr
	db Match	SP:YTZ3_AGRVI		sp:YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	plr:A69778			sp:DAPE_ECOLI				GPU.DCA297422_ 1	Sp:MALK_ECOL!		gp:AF036485_8	Sp.FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	SP:3MG1_ECOLI	1100
	ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	818	816	903	975	588	
	Terminal (nt)	3011273	3011242	3011808	3013108	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	_
	Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	8615 3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	6624 3025552	0001000
	SEQ NO (a.e.)	6605	9099	6607	8608	6099	6810	6611	6612	6613	6614	6615	9199	6617	6618	6619	6620	6621	6622	6623	6624	
i	SEQ NO.	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121		3123	3124	2000

Table 1 (continued)	Homologous gene (%) (%) (aa) Function		Streptomyces coelicotor A3(2) 34.8 63.8 210 oxidoreductase mmyQ		Escherichia coli K12 bgiC 28.1 69.3 192 glucoside positive regulatory protein		Clostridium longisporum B6405 43.7 59.9 187 6-phospho-beta-glucosidase		Clostridium longisporum B6405 43.9 78.8 66 8-phospho-bets-glucosidase abgA	Methylobacillus flagellatus aat 53.7 80.9 402 aspartate sminotransferase		Corynebacterium glutamicum 100.0 100.0 401 transposase (ISCg2)	Streptomyces coelicolor A3(2) 33.8 70.2 399 hypothetical membrane protein SCQ11.10c		Sinorhizobium mellioti rkpK 40.5 72.2 442 UDP-glucose dehydrogenase	Escherichia coli K12 dcd 43.6 72.3 188 deaminase		Streptomyces coelicolor A3(2) 30.6 59.4 229 hypothetical protein SCC75A.18c		Streptomyces thermoviolaceus 28.5 CR 1 hets. N. Aretvioluces aminidas
	db Malch		gp:SC0276673_19		sp:BGLG_ECOL! Esc		sp:ABGA_CLOLO abgA		sp:ABGA_CLOLO abgA	gp:L78665_2 Me		gp:AF189147_1 Co	gp.SCQ11_10 SC		prf.2422381B Sin	sp:DCD_ECOL! Est		gp:SCC75A_16 SC		Str
	ORF (bp)	603	624	158	591	279	380	381	240	1257	30	1203	1257	183	1317	267	237	177	1689	1
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	
	Initial (nt)	3027581	3028268	3028878	3029474	3029504	3030061	3030155	6633 3030340	8834 3030723	3032647	1	3034181	3034287	3036756	3037411	3037675	3038172	3040681	
	SEQ NO (a.e.)	6626	6627	8299		6630	6631	6632	6633	8834	6635	6636	6637	6638	6639	6640	6641	6642	6843	
	SEQ NO (DNA)	3126	•	3128	3129	3130	3131	3132	3133	3134	3135	3138	3137	3138	3139	3140	3141	3142	3143	i

mebrane transport protein

768

72.3

42.3

Mycobacterium tuberculosis H37Rv Rv0208c mmpL3

3161

5		Function			hypothetical protein			hypothelical membrane protein	acytransferase or macrolide 3-O-acytransferase		hypothelical membrane protein		hexosyliransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	
15		Matched length (a.a.)			1416			363	408		529		369	251	601	332	241	207	
20		Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	
		Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	
<i>25</i>	IIIuuea)	gene			8			80	/A	, , , , , , ,	9		culosis	culosis	lis pepck	rsay	YBBH	culosis	
·	Table 1 (continued)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04::		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocaliimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichla coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	
40		db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pirG70961	pir:F70961	SP. PPCK_NEOFR	plr.E75125	SP. YGGH_ECOLI	pir:E70959	
		ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699	1137	177	1830	101	785	705	
45		Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049458	3051964	3052062	3055769	3056831	3057317	
50		Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047148	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	
		SEO NO 8 e)	6645	6646	6647	6648	6649	8650	6651	6652	6653	6654	6655	9999	299	8599	6889	0999	
55		SEQ NO (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	L

EP 1 108 790 A2

٠								_	T		7							$\overline{}$
	Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor			antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase
	Matched length (a.a.)	364	108	523	1747	592	319		657			331	667	295	168	656		170
	Similarity (%)	62.9	89.4	78.9	54.2	62.3	87.4	 _ _	99.5			62.5	61.2	51.5	75.0	74.7		58.5
	identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coalicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamitum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizoblum caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacilus licheniformis ATCC 9945A bcrC
	db Match	pir.A70839	pir.H70833	gp:AF113605_1	sp:ERY1_SACER	prf:2310345A	pir:F70887		sp.CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp.NOEC_AZOCA	pir.C70888	pir:D70888		sp:BCRC_BACL!
	ORF (bp)	1083	363	1548	4830	1788	927	498	1971	1401	219	1023	2058	986	504	1968	1494	477
	Terminal (nt)	3060733	3061095	3061380	3062951	3068143	3070214	3071147	3071650	3075447	3073857		3076715	3078853	3079848	3080344	3083960	3083935
	Initial (nt)	3059651	3060733	3062927	3067780		3071140	3071644	3073620	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
	SEQ NO 0 0	6999	6664	999	9999	6667	8999	6999	6670	6671	6672	6673	6674	6675	9299	6677	8878	6299
	SEQ NO (DNA)		3164	3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

EP 1 108 790 A2

						Table 1 (continued)				
SEO NO.	SEO NO E	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a a)	Function
3180		3085200	3084424	777						
3181	1899	3085727	3085218	510						
3182	6682	3085747	3087048	1302	1302 sp:FMO1_PIG	Sus scrofa fmo1	24.4	50.4	377	dimethylaniline monooxygenase (Nooxide-forming)
3183	6683	3087665	3088276	612						
3184	6684	3088303	3087101	1203	sp:GLF_ECOLI	Escherichla coil K12 gif	43.2	72.9	377	UDP-galactopyranose mutase
3185	6685	3088616	3090664	2049	plr:G70520	Mycobacterium tuberculosis H37Rv Rv3811 csp	29.6	47.8	629	hypothetical protein
3186	9899	3092286	3090760	1527	Sp:GLPK_PSEAE	Pseudomonas aeruginosa ATCC 15692 glpK	51.7	78.8	489	glycerol kinase
3187	6687	3093175	3092342	834	pir.A70521	Mycobacterium tuberculosis H37Rv Rv3813c	41.8	70.3	279	hypothetical protein
3188	6688	3094050	3093175	878	pir.D70521	Mycobacterium tuberculosis H37Rv Rv3816c	48.7	72.0	281	acytransferase
3189	6899	3095343	3094078	1266	gsp:W28465	Mycobacterium tuberculosis H37Rv	70.2	97.6	419	seryi-IRNA synthetaso
3190	999	3095574	3096287	714	sp:FARR_ECOLI	Escherichia coli K12 ferR	27.7	61.7	235	transcriptional regulator, GntR family or fatty acyl-responsive regulator
3191	6691	3096311	3097423	1113	pir.H70652	Mycobacterium tuberculosis H37Rv Rv3835	32.6	61.2	356	hypothelical protein
3192	6692	3097423	3097764	342	pir.A70653	Mycobacterium tuberculosis H37Rv Rv3836	46.0	79.7	113	hypothelical protein
3193	6693	3097878	3097780	8						
3194		3098572	3097904	699	gp:AMU73808_1	Amycolatopsis methanolica pgm	37.2	62.8	218	2,3-PDG dependent phosphoglycerate mulase
3195	6695	3098825	3099454	630						
3196	6696	3099556	3100698	1143	prf:2501285A	Mycobacterium smegmatis pzaA	27.4	60.9	480	nicotinamidase or pyrazinemidase
3197	2699	3100698	3101426	729						

422 shikimate transport protein

74.4

37.9

Escherichia coli K12 shiA

5	Function	transcriptional regulator				hypothetical protein	giucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvale kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase
15	Matched length (a.a.)	380				107	432		259	456			491	314	528	224	188	221	255
20	Similarity (%)	57.1				81.3	55.3		54.1	71.9			47.7	99.7	64.8	58.5	67.6	57.0	68.6
	Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8
Se Table 1 (continued)	อนอธิ รณ	elicolor A3(2)				/endulae	cerevisiae sta1		Ddlf	JntP			n glutamicum	lavum IctA	uberculosis	elicolor A3(2)	inens ORF1	K12 MG1655	uberculosis
32 ED	Homologous gane	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Becilius subtilis glpQ	Bacillus subtills gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterlum flavum IctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c
40	db Match	gp:SC6G4_33				pir.B26872	SP.AMYH_YEAST		sp. GLPQ_BACSU	sp.GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:B70885
	ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786
45	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121
50	Initial (nt)	3101734	3101863	3102830	3102894	3103928	3104408	3106970	3107769	3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336
	SEO NO	8699	6699	6700	6701	6702	6703	6704	6705	8706	6707	6708	8709	6710	6711	8712	6713	6714	6715
55	SEQ		3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215

5

													_		_				_		
	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		Immunky repressor protein			phosphatase or reverse transcriptese (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
ļ	Matched length (a.a.)	376		55			999		122		210	164	292	384				216	447	137	212
	Similarity (%)	68.9		80.0			51.3		63.1		69.1	92.7	65.8	49.0				64 8	59.3	65.0	75.5
	Identity (%)	40.4		45.5			29.5		38.9		47.8	82.3	32.5	23.4				33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabdilis elegans Y51811A.1		Arabidopsis thaliana ill1		Escherichia coil 8 msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gitC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
	db Match	prf.2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		Sp:ILL1_ARATH		sp.PMSR_ECOLI	pir.140858	sp.GLTC_BACSU	gp:AF121000_10				pir.G70654	pri:2508244AB	sp:YXAD_BACSU	prf 2518330B
	ORF (bp)	1215	405	312	138	711	1817	546	402	150	651	909	924	1134	1811	111	1521	633	1491	458	636
	Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135858
	Initial (n1)	3119665	3120909	3121598	3122129	3123222	3124172	3124886	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	SEO NO	8717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
	SEO NO DNA)	3217	3218		3220	3221		3223	3224	3225	3228	3227	3228	3229	3230	3231	3232	3233	3234	3235	3236

5	Function			No-component system sensor	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthese	hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or gic operon franscriptional activator	hypothetical protein	hypothetical protein
15	Matched length (a.a.)	1	Ť	408	84	277	265	192	97	296	314	334	2	42		109	488	267
20	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	89.8	73.9	51.2	66.0	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	9.0	71.0		30.3	28.0	48.3
8 S Table 1 (continued)	Homologous gene			Corynebacterium diphtherlae chrS	Streptomyces coelicolor A3(2) SCH69,22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spottiJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv RV2005c	Escherichia coll K12 MG1655 yhbW	Chloroblum vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escharichia coli K12 MG1855 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
32 G	Hom			Corynebact chrS	Streptomyci SCH69.22c	Streptomyc SCH69.20c	Bacillus sul	Mycobacterium t H37Rv Rv3173c	Escherichia tag1	Mycobacte H37Rv RV	Escherichia yhbW	Chloroblun	Chlamydia	Chlamydia TC0129		Escherichi glcC	Streptomyce SC4G6.31c	Mycobacterium t H37Rv Rv2744c
40	db Match			pri.2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir.C70948	sp:TAG1_ECOLI	Sp:YW12_MYCTU	Sp.YHBW_ECOLI	SP:YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp.GLCC_ECOL!	gp:SC4G6_31	sp.35KD_MYCTU
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	987	988	273	=	207	363	1416	873
45	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
50	Initial (nt)	3136920	3137884	3137903	6740 3138630	3139455	3139651		3141969	3143358	3144482	3144661	3146569	3147090	3151575		3152413	3154788
	SEQ NO.	6737	6738	6739		6741	6742		6744	6745	6746	8747	6748	6749	6750		6752	6753
55	SEO NO (DNA)	3237	3238	3239	3240	3241	3242	3243	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253

EP 1 108 790 A2

5

	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
	Matched length (a.a.)						217	241				58		29	22	12	46		96	180	111	
	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35,11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	GPU:AF164956_23 Corynebacterium glutamicum		Pyracoccus woesel gap	Synechocystis sp. PCC6803 sil0788	Archaeoglobus fulgidus AF0152	
	db Match						gp:SCD35_11	Sp:NO21_SOYBN				sp.TNP5_PSEAE		SP:FER_SACER	gp SC031_14	GPU:AF164956_8	GPU:AF164958_23		sp:G3P_PYRWO	pir.S77018	pir.H69268	
	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	218	483	321	333	Ξ	162	1038	128	99	2217	171
	Terminal (nt)	3154969	3155248	3156306	3157223	3157479	3158834	3159081		3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	6763 3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEQ NO.	6754	6755	6756	6757	6758	6229	09/9	6761	8762	8783	6764	6765	6766	2929	6768	6949	6770	6771	6772	6773	6774
!	SEQ NO.	3254	3255	3256	3257	3258	3259	3280	3261	3262	3263	3264	3265	3268 6768	3267	3268	3269	3270	3271	3272	3273	3274

EP 1 108 790 A2

5

															_	_		
	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		630	101	322		78			606	72		73	70
	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	77.0
	identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			38.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtills phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium Japonicum IIpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coll K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp 1673	Corynebacterium glutamicum Tnp1673
	db Match		sp:BAES_ECOL!		sp:PHOP_BACSU		sp.COPA_PSESM	sp:TLPA_BRAJA	sp.QOR_MOUSE		sp:ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	202	1875	330	308	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171816	3171819	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	initial (nt)	3166978	6776 3167646	3167739	3168401	3168669	3169414	3171254	3172538	3172995	3173624	3174088	3174990	3175027	3175643	3177174	3177304	3177565
	SEO NO.	6775	6776	7778	8778	6779	6780	6781	6782	6783	6784	6785	6786	6787	6788	62.89	6790	6791
	SEQ NO.	3275		3277		3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

EP 1 108 790 A2

_													_		_								
	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicitiin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	100		421		508	481		154	229	82		480		647	107	137	296		1,1	298	433
	Similarity (%)	98.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqji	Escherichia coli K12 dnaB		Escherichia coll K12 RL9	Escherichia coll K12 ssb	Escherichla coll K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtills ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yoff		Bacillus subtills yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp:AF121000_8	sp:THI2_ECOL!		sp:PCAK_PSEPU		sp:Yqui_Ecoti	sp:DNAB_ECOLI		Sp:RLB_ECOLI	Sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		Sp:PBPA_BACSU	Sp:YOHC_MYCTU	plr:870912	SP:YOFF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	1263 sp:YBJZ_ECOLI
	ORF (bp)	159	447	264	1344	159	576	1530	516	450	875	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185538	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192286	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184861	3184985	3185538	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
	SEQ NO.	6792	6793	6794	6795	6796	6787	8228	6229	6800	6801	6802	6803	6804	6805	6806	6807	6808	6089	6810	6811	6812	6813
į	SEQ NO. (DNA)	3292	3293		3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

10	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNA-protein-cysteine S-methyltransferese	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase (NAD) (malic enzyme)	gluconokinase or gluconate kinase	telcoplanin resistance protein	telcoplanin resistance protein
15	Matched length (a.a.)	221	237	360			154	288	404			166	231		398	392	460	169	159
20	Similarity (%)	80.1	42.0	90.0			64.9	55.6	98.6			63.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	17.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
55 (Continued)	ous gene	K12 MG1855	ejuni Cj0608	uberculosis			K12 dps	K12 mutM or	K12 rtcB			ngmT	Cavia porcellus (Guinea pig) qor		tuberculosis ydeA	n melassecota Im glutamicum) alE	gntK	secium vanZ	secium vanZ
·	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter Jejuni Cj0608	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmī	Cavla percellus		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium giutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium van Z	Enterococcus faecium vanZ
40	db Match	sp:YBJZ_ECOLI	pir.E81408	plr:F70912			sp:DPS_ECOU	sp.FPG_ECOLI	sp.RTCB_ECOLI			SP:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOL!	gp:AF234535_1	SP.GNTK_BACSU	SP:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	Ξ	1176	1176	1482	591	525
45	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3208758	3208024	3209454	3209705	3211246	3211904
50	Initial (nt)	3185203	3197186	3197412	3199187	3200686		3201900	3202952	3204067	3204156	3205204	3206232	3206646	3206849	3208279	3211186	3211836	3331 6831 3212428
	SEQ NO.		6815	6816	6817	8818		6820	6821	6822	6823	6824	6825	6826	6827	6828	6829		6831
55	SEQ	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

5	ا		ogenase small				980			926	ane protein	protein			ate catabolism ylase) (2- ene-1,7-dicate rboxymethyl-2- loste	ienase or 1- ite dloxygenase	protein, laci radation	sport protein or transporter
10	Function	mercury(II) reductase	O-amino acid dehydrogenase small subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	viruience-associated protein		hypothelical protein	bifunctional protein (homoprotocalechuate catabolism bifunctional Isomerase/decarboxylase) (2- hydroxyhepta-2,4-dlene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dloate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, laci family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoale transporter
15	Matched length (a.a.)	448	444				194			943	104	88		247	298	339	228	454
20	Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	80.6
	Identity (%)	29.8	27.3				25.8			47.7	40.4	55.8		31.8	28.5	34.2	25.3	27.5
39 Table 1 (confinued)	us gene	iureus merA	(12 dadA				philus nox			, yt	<12	dosus vapl		elicotar	K12 hpcE	Icaliganes xinE	chrysanthemi	utida pcaK
Table 1	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xinE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
35 40	db Match	SP. MERA_STAAU					SP:NOX_THETH			sp:SYL_BACSU	Sp. YBAN_ECOLI	Sp.VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOL!	gp:AF173167_1	SP.KDGR_ERWCH	sp.PCAK_PSEPU
	ORF (bp)	1344 sp	1230 sp	1503	330	321	809	924	1452	2856 si	429 s ₁	357 8	774	723 g	837 8	1125 9	780 s	1356 \$
45	Terminal (nt)	3213931	3213934	3215257	3218888	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
50	initial (nt)	3212588	3215183	3216759	3217215	6838 3217777	6837 3217993	6838 3218777	3221044	3222633	3222722	3223445	3224601	3224714	3225554	3226687	3227689	3227724
	SEO NO.	+	6833	6834	6835				6839	6840	6841	8842	6843	6844	6845	6846	6847	6848
55	SEO	3332	3333	3334	3335	3338	3337	3338	3339	3340	3341	3342	3343	3344	3345	3345	3347	3348

	_															
	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permesse	anthranilate synthase component I		anthranilate synthase component II	anthranilate phosphoribosyltransferase	Indole-3-glycerol phosphate synthase (IGPS) and N.(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophen synthase siphs chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
	Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	305	547
	Similarity (%)	48.4	54.4	99.4	98.8		100.0	99.4	ය ස		97.9	98.5	88.8	71.7	63.6	57.2
	identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
Table 1 (continued)	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trp8	Bravibacterium lactofermentum trpA	Streptomyces coelicalor A3(2) SCJ21,17c	Escherichia coli K12 plxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
	db Match	prf.1706191A	SP:EAT2_HUMAN	pir.JC2328	SP.TRPE_BRELA		TRPG_BRELA	SP. TRPD_CORGL	1422 SP.TRPC_BRELA		SP.TRPB_BRELA	Sp TRPA_BRELA	gp:SCJ21_17	sp.PTXA_ECOLI	SP:NOSF_PSEST	gp:SCH10_12
	ORF (bp)	1326	1251	510	1554	171	624	1044	1422	969	1251	940	1539	810	908	1584
	Terminal (nt)	3230444	3231054	3233105	3234958	3233250	3235579	3236645	3238082	3236518	3239332	3240171	3240313	3241879	3243759	3245342
	Initial (nt)	3229119	3232304	3232596	6852 3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	6861 3242688	3242854	6863 3243759
	S S S	+-		6851	6852	6853	6854	6855	6856	6857	6858	6889	6860	6861	6862	
	SEQ NO.	3349		3351	3352	3353	3354	3355	3358	3357	_	3359	3360	3361	3362	3363

5	Function	cytchrome b8-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, srsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-Aripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinoi 1,2-dioxygenase
15	Matched length (a.e.)	305	336	328	262	102	347	228					238	58	469		188	246
20	Similarity (%)	63.6	64.3	74.7	54.8	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		28.1	31.7
% S S S S S S S S S S S S S S S S S S S	Homologous gene	Chlorobium limicola petC	Thermosnaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO				-	Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coll K12 acrR	Acinetobacter calcoaceticus catA
35		Chlorobi	Thermo	Escheric	Streptor SCI11.3	Streptor SCP1 m	Thermo	Saccha ymyO					Klebsiel	Mycoba H37Rv	Lactoco dtpT		Escheri	Acineto catA
40	db Match	Sp:UCRI_CHLLT	sp:NADO_THEBR	SP. YFEH ECOLI	gp:SCI11_38	pir.A29606	sp:NADO_THEBR	sp:YMY0_YEAST					*p:BUDC_KLETE	\$p:YY34_MYCTU	SP.DTPT_LACLA		SP. ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
45	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251468	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	SEO	6864	8865	9989	6867	6969	6989	6870	6871	6872	6873	6874	6875	6876	7789	9878	6839	6890
55	SEQ NO DNA)		3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3378	3377	3378	3379	3380

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

_		_			_		_		_		_			_				_		
	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or scetate operon repressor	oxidoreductasa	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogensse or myo-inositol 2- dehydrogensse or streptomycin biosynthesis protein	phosphoesterase				stometin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metel-associated domain containing protein	ectoine/proline uptake protein
	Matched length (a.m.)	351	513	280	357	270	332	343	1242				208		1660	141		125	67	297
	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	identity (%)	43.0	31.4	25.7	27.2	25.9	28.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium IcIR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizoblum meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB		-		Ceenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2288k		Bacillus subtilis thiD	Bacillus subtills yvgY	Corynebacterium glutamicum proP
	db Match	sp. TCBF_PSESQ	1524 sp.XYLE_ECOLI	sp:ICLR_SALTY	sp: YDGJ_ECOLI	gsp:W61761	1005 Sp.:MI2D_BACSU	1083 sp.STRI_STRGR	plr:C70044				Sp:UNC1_CAEEL		gp:MBO18605_3	prt.2323383AAM		sp:THID_BACSU	pir.F70041	prf.2501295A
	ORF (bp)	1089	1524	198	1077	879	1005	1083	4032	845	918	1086	744	696	4929	507	360	909	243	837
	Terminal (nt)	3257403	3258561	3261989	3263221	3264115	3285148	3266266	3271093	3287913	3268618	3272477	3274488	3275602	3276671	3281868	3283101	3282347	3283383	3283473
	Initial (nt)	3258491	3260084	3261129	3262145	3263237	3284142	3265184	3287082	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ NO.	6881		6883	6884	6885	6886	6887	6888	6989	0689	6891	6892	6893	6894	6895	6896	2689	6898	6889
	SEQ NO.			3383	3384		3388	7	3388	_	3390		3392	3393	3394	3395	3396	3397	3398	3399

	Function	Iron(III) dictrate-binding periplesmic protein precursor or Iron(III) dictrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
	Matched length (a.a.)	270	324		<u> </u>	248		67	102	212	169	471	234		858	1201		189	308
	Similarity (%)	9.09	58.0			75.5	! 	70.1	65.7	0.78	58.2	51.8	69.2		54.3	1.09		60.9	82.5
	Identity (%)	29.4	27.2			46.2		41.8	38.3	32.1	23.7	28.8	43.6		25.8	35.7		30.2	80.4
Table 1 (continued)	Homologous gene	Escherichla coll K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtills yvgY	Bacillus subtills aziD	Bacillus subtilis aziD	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
	db Match	sp.FECB_ECOLI	1122 SP.MRF1_SCHPO			sp.THID_BACSU		plr.F70041	SP.AZLD_BACSU	Sp. AZLC_BACSU	sp:Yage_Ecoli	1320 SP.CCA_ECOLI	pir.E70800		plr:F70600	pir:G70600		SP.RPSH_PSEAE	SP.TRXB_STRCL
	ORF (bp)	957	1122	384	219	798	345	201	345	73	287	1320	998	273	2511	3249	723	803	951
	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292810	3296007	3299404	3298428	3300263	3301321
	Initial (nt)	3285355	3285455	3286622	3287297	3288190	6905 3288265	3288685	6907 3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706		3300371
	SEO	0069	6901	6902	6903	6904	6905		6907	8069	6069	6910	6911	8912	6913	6914	6915		6917
	SEO		3401	3402	_	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

5		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-aipha-decarboxylase precursor	2-isopropylmalate synthese	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15		P € €																			
		Matched length (a.a.)		119	196			212	367	272	153	313	123	47		_	138	616	85	344	149
20		Similarity (%)		78.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	38.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25	ontinued)	s gene		einhardtii thi2	13			erculosis	da ygi2	erculosis	12'gidB	erculosis	Υc	ium rpmH			jutamicum	jlutamicum	Jutamicum Ivum) ATCC	Jutamicum	Jutamicum
3 <i>0</i>	Table 1 (continued)	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3918c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12'gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
40		· db Match		Sp:THI2_CHLRE	sp.CWLB_BACSU			pir:D70851	Sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp:GIDB_ECOLI	plr:A70852	SP:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
		ORF (bp)	1185	372	1242	777	1041	618	1152	837	689	951	399	336	294	222		1848	255	1032	447
4 5		Terminal (nt)	3300119	3301729	3302998	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
50		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3308532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
		SEQ NO.	6918	6919	6920	6921	6922	6923	6924	6925	8928	8927	6928	6929	6930	6931	6932	6933	6934	6935	6936
		SEQ NO.	3418	3419	3420	3421	3422	3423	3424	3425	3428	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

EP 1 108 790 A2

	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinetedecarboxylese)	acyl-CoA carboxylase or blotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyt cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelale desuccinylase	proline transport system	arginyi-tRNA synthetase
	Matched length (a.a.)	396 e	440 p	738	591 B	437 C	118	595	428	105	463 a	316	369	524 p	550
	Similarity (%)	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutemicum (Brevibacterium flavum) MJ233 secY	Carynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gitA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 ort2	Corynebacterium glutamicum ATCC 13032 lysi	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 ort3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
	db Match	sp.EFTU_CORGL	sp SECY_CORGL	sp:IDH_CORGL	prf.2223173A	Sp. CISY_CORGL	sp:FKBP_CORGL	sp.BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp.AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	1650 SP.SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	
	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029008	1030369	1153295	1154729	1156837	1218031	1239923
	Initial (nt)	526376	569452	680044	720352	877838	879278	944998	1030283	1031871	6946 1154683	1155676	1155731	1219602	6950 1238274
	SEQ NO •	6937	6938	6633	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	6950
	SEQ NO (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	lon channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropyimalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyitransferase	arginine repressor
	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (confinued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutemicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium giutamicum R127 orf3	Corynebacterium giutamicum R127 iysE	Corynebacterium giutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 IIvN	Corynebacterium giutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
	db Match	1335 sp.DCDA_CORGL	SP: DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	Sp:ILVB_CORGL	pir:848648	plr:C48648	sp.LEU3_CORGL	2049 prf.2014259A	\$p:ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1
	ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020		882	957	513
	Terminal (nt)	1241263	1243841	1244781	1328243	1328248	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468585	1469528
	SEQ NO. (8.8.)	6951	6952	6953	6954	6955	9569	1569	6958	6989	0969	6961	2969	6963	6964
	SEQ NO. (DNA)	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

5
10
15
20
25
<i>30</i>
35
40
45
50

	Function	NADH dehydrogenase	phosphoribosyt-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonlum uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-maiate dehydrogenase (acceptor)
,	Matched length (a.a.)	467	87	362	452	11	919	410	632	331	295	376	301	248	200
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
l	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cglilR	Corynebacterium glutamicum ATCC 13869 sig8	Corynebacterium glutarnicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13889 dapB	Corynebacterium glutamicum R127 mgo
	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	gp:AF124600_1	pir:855225	prt.2204286D	sp.GLUB_CORGL	1128 SP.RECA_CORGL	sp:DAPA_BRELA	sp.DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	1401	281	1086	1356	231	2757	1230	1896	993	885		903	744	1500
	Terminal (nt)	1543154	1588465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	initial (nt)	1544554	1586725	1875208	1676823	1677279	1680143	1720898	1880490	2020854	2080620	2065116	2080183	2081934	2115363
	SEO SEO SEO	6965	9969	1969	6969	6969	6970	6971	6972	6973	6974	6975	6976	6977	6978
	SEO NO.	3465	3468	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

5

	Function	uridiiyiyitansferase, uridiiyiyi- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutemate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betains carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	gluaredoxin
	Matched length (a.a.)	692 Ur	112 ni	438 ar	447	475 p	323 g	477	481	615 °	739 m	432 li	369	386	148	77
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 met8	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	plr:S32227	Sp:KPYK_CORGL	gp:AF096280_1	prf:2322244A	sp:THRC_CORGL	prf:2501295B	pir:140715	pir:140713	sp: PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2078	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
	Terminal (nt)	2169666	2171751	2172154	2194742	2205688	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
	Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	S S S S	6269	0869	1869	6982	6983	6984	6985	9869	6987	8869	6869	0669	6991	6992	6993
	SEQ NO.		3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

5

_									
	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	397	328	459	852	315	504
	identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY 10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
	db Match	Sp:DDH_CORGL	gp:CGL238703_1	1191 sp.ACKA_CORGL	prf.2516394A	1377 prf:2309322A	2983606 2556 sp.CLPB_CORGL	945 prf.1210266A	3272563 1512 prf.2501295A
	ORF (bp)	096	135	1181	786	1377	2556	945	1512
	Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2983606	3098578	3272563
	Initial (nt)	8994 2787715	2888078	2936505	2937494	2961342	2966161	3099522	7001 3274074
	SEQ NO.	8994	6995	9669	6997	8669	6669	7000	7007
	SEQ NO (BNA)		3495	3496	3497	3498	3499	3500	3501

Examp! 2

10

25

50

Determination of effective mutation sit

5 (1) Identification of mutation site based on the comparison of the gen nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and hysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in hysE, hysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in horn, lysC, pyc, zwl, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanarnycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BarnHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragm nt was concentrated by xtraction with phenol/chl rof rm and precipitation with ethan I, and all wed

to react in the presence of Taq polymerase (manufactured by Roch Diagnostics) and dTTP at 70°C for 2 he urs so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Salt et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *horn* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

10

20

25

35

45

50

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Becilius subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Salto et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gin and pyc geni, respectively.

(3) Lysin production test f HD-1 and N . 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain btained by incorporating the mutation, Pro458Ser, in the pyc gene int th lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined. [0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

20

30

35

50

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in horn, a mutation, Thr311lle, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as flective mutations relating to the production of lysin. Breeding to reconstitut the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method hown below.

(2) Construction of plasmid for gene replacement having mutated gene

15

30

45

50

[0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated hysC and zwf were produced as described below.

[0390] The *lysC* and *zwl* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwl* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwl* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

- (3) Introduction of mutation, Thr311 lle, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in zwi was introduced into the AHP-3 strain using the pCzwi458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the sam mann ras in Example 2(2). As a r sult of the fact that the nucleotide sequences represented by SEQ ID NOS:

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a few unpoint mutant having the mutated zwl gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test n HD-1, AHD-2, AHP-3 and APZ-4 trains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained abov were subjected to a culture test in a 5 l jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

*3*0

35

45

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/Vh, the APZ-4 strain showing a high productivity of 3.0 g/Vh is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

	Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/Vh)
Į	32	86	3.0
	40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based in 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using siftware and the nucleotide sequence if rabbit globin gen (GenBank Accession N. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

45 [0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification if the DNA having the nucleotide sequence of the rabbit globin gen.

as th respective primer set.

[0431] Th PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached tith TaKaRa Ex-Taq reagent. In the case 1th rabbit globin gen, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 µl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 µl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 µl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 µl.

(3) Hybridization

55

[0433] UltraHyb (110 μl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Суз/Су5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Суз/Су5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology*, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

20

25

30

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with th *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosin deaminase activity and thus has no activity of converting adenosine into inosin.

(2) Search of glycine cleavage enzyme

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

15

20

25

30

45

55

Proteome analysis of proteins derived from Corynebacterium glutamicum

50 (1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 51 jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmo/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCI, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4 $^{\circ}$ C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

5

15

30

40

45

50

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmo/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmo/l Tris-HCl, pH 6.8, 6 mo/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmo/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant v Itage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

15

20

25

40

45

- 5 [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) fir the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.
 - [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.
 - (4) In-gel digestion of detected protein spot
 - [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a hysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation in vacuo to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmo// Angiotensin II, 300 nmo// Neurotensin, 150 nmo// ACTHclip 18-39, 2.3 μmo// bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
 - [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

 [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glycerald hyde-3-phosphat d hydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amine acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- 5 [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
- [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
 - [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
- [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) id ntifying a gene homolog us t a g n derived from a coryn f rm bact rium,

said method comprising:

5

10

20

25

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any on of SEQ ID NOS:1 to 3501, second polynucleotides which hybridiz with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a corynetorm bacterium, a labeled polynucleotide derived from a mutant of the corynetorm bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus
 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 40 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method f r producing a polypeptide, comprising:

culturing the transf_rmant of claim 13 in a medium to produce and accumulate a polypeptide incoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from this medium.

- 5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an rganic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

50

- at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 22. A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence information; and

- (iv) screening and analyzing nucleotide sequince information which is coincident with or analogous to the target sequence in ranget structure motif information.
- 25. A syst m based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

10

15

20

25

30

35

45

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 40 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (f) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

- (ii) a data storing device for at least temporarily storing the input inf mation;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous tempolypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

25

30

35

45

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lliium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

=0 a :

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residu at th 458th position in the amino acid sequence if pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residu other than a Pro residu.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 15 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

45

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 50 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) d leting a mutati n point from a corynef rm bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS 2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - 61. The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- 40 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lillum, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - 63. A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;
 - recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been ubjected to mutation breeding by a fermentation process so as t produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

10

20

25

30

35

40

45

50

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 15 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

the state of the state of

FIG. 4

Requested Patent

EP1108790A2

Title:

NOVEL POLYNUCLEOTIDES;

Abstracted Patent

EP1108790;

Publication Date:

2001-06-20;

Inventor(s):

MIZOGUCHI HIROSHI (JP); SENOH AKIHIRO (JP); ANDO SEIKO (JP); HAYASHI MIKIRO (JP); IKEDA MASATO (JP); OCHIAI KEIKO (JP); OZAKI AKIO (JP); TATEISHI NAOKO (JP); YOKOI HARUHIKO (JP); NAKAGAWA SATOCHI (JP) ;

Applicant(s):

KYOWA HAKKO KOGYO KK (JP);

Application Number.

EP20000127688 20001218;

Priority Number(s):

JP19990377484 19991216; JP20000159162 20000407; JP20000280988 20000803;

IPC Classification:

C12Q1/68; C07H21/04; C12N15/63; C07K14/34; C12R1/15; G06F17/00;

C12R1/13; G01N33/50;

Equivalents:

ABSTRACT:

Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.