Uge 4

Opgave 2.a

Et kort bevis for Lemma 3.26.

$$e^z = w$$

Omskriv w til polær form $(p \in \mathbb{Z})$,

$$\updownarrow e^z = |w|e^{i\cdot(\arg(w)+2p\pi)}$$

$$\updownarrow e^z = e^{\ln|w|}e^{i\cdot(\arg(w)+2p\pi)}$$

$$\updownarrow e^z = e^{\ln|w|+i\cdot(\arg(w)+2p\pi)}$$

Derved kan vi se fra eksponenterne, at

$$|z=\ln |w|+i\cdot (rg(w)+2p\pi),\ p\in \mathbb{Z}$$

Opgave 2.b

Svaret er

$$\{i2p\pi\mid p\in\mathbb{Z}\}\cup\left\{i\left(rac{\pi}{2}+2p\pi
ight)\mid p\in\mathbb{Z}
ight\}$$

Opgave 2.c

Hvis

$$z=a+bi,\ a,b\in\mathbb{R}$$

så

$$e^z = e^a \cdot (cos(b) + i \cdot sin(b))$$

Derfor $e^z = 0$ hvis og kun hvis $e^a = 0$ eller cos(b) + isin(b) = 0 (ifølge <u>nulreglen</u>) I udsagnslogik kan den godt skrives som,

$$e^z = 0 \leftrightarrow e^a = 0 \ \lor \ cos(b) + i \cdot sin(b) = 0$$

- $\forall a \in \mathbb{R} \ e^a > 0$ (" \forall " betyder "for alle").
- Udtrykket $cos(b)+i\cdot sin(b)$ kan hellere ikke være 0, da der findes ikke $b\in\mathbb{R}$ som opfylder

$$cos(b) = 0 \ \land \ sin(b) = 0$$

Opgave 5.a

Theorem 4.6 siger,

Rødderne til polynomiet

$$p(z) = az^2 + bz + c, \ a \neq 0$$

er

$$rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

I opgaven har vi

Derfor,

$$a = 1, b = 0, c = r$$

Insæt disse værdier i $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, får vi nemlig,

$$egin{aligned} & rac{-0\pm\sqrt{0^2-4\cdot 1\cdot r}}{2\cdot 1} \ & =\pmrac{\sqrt{-4r}}{2} \ & =\pmrac{2i\sqrt{r}}{2} \ & =\pm i\sqrt{r} \end{aligned}$$

Opgave 5.b

$$z=\sqrt[n]{|w|}e^{i(rac{arg(w)}{n}+prac{2\pi}{n})},\ p\in\{0,\ldots,n-1\}$$

Da $n=2, \ |w|=r, \ \mathrm{arg}(w)=\pi.$

$$z=\sqrt{r}e^{i(rac{\pi}{2}+p\pi)},\;p\in\{0,\ldots,n-1\}$$

På den komplekse talplan kan vi se, at

$$e^{i(rac{\pi}{2}+p\pi)}=\pm i,\;p\in\{0,\ldots,n-1\}$$

Derfor

$$z=\pm\sqrt{r}\cdot i$$

Opgave 6.b

Lemma 4.12:

$$p(\lambda)=0 o p(\overline{\lambda})=0$$

dvs. for polynomiet **med reelle koefficienter**, hvis vi finder λ som er rod til $p(\lambda)$, så den komplekst konjugerede er også rod.

Den anden rod i opgaven er 1-2i

Opgave 7.a

Et kort bevis for Theorem 4.13.

$$z^n = w$$

Omskriv w til polær form $(p \in \mathbb{Z})$,

$$\mathop{\updownarrow} z^n = |w|e^{i\cdot(rg(w)+2p\pi)} \ \mathop{\updownarrow} z = \sqrt[n]{|w|}e^{i(rac{rg(w)}{n}+prac{2\pi}{n})}$$

Opgave 8.a

$$-1+\sqrt{3}i=2e^{i\frac{2\pi}{3}}$$

$$egin{aligned} &(-1+\sqrt{3}i)^{10} \ =&(-1+\sqrt{3}i)^9\cdot(-1+\sqrt{3}i) \ =&\left(2e^{irac{2\pi}{3}}
ight)^9\cdot(-1+\sqrt{3}i) \ =&2\cdot(-1+\sqrt{3}i) \end{aligned}$$

Opgave 9.a

$$z=rac{a}{c}+rac{b}{c}i$$
 $|z|=\sqrt{\left(rac{a}{c}
ight)^2+\left(rac{b}{c}
ight)^2}=\sqrt{rac{a^2+b^2}{c^2}}=1$

$$\operatorname{Re}(z) = \frac{a}{c}, \ \operatorname{Im}(z) = \frac{b}{c}$$
 $a > b, \ c > 0$
 $\Rightarrow \frac{a}{c} > \frac{b}{c}$

Så

Opgave 9.b

Nogenlunde det samme som Opgave 9.a, bare kør bevis "baglæns".

Opgave 9.c

$$z = \frac{4}{5} + \frac{3}{5}i$$

Betragt

$$z^2=rac{7}{25}+rac{24}{25}i$$

Vi har $|z^2|=1$, men vi er ikke sikker, at $\frac{7}{25}>\frac{24}{25}$.

Derfor konstruere vi

$$i\overline{z^2}=rac{24}{25}+rac{7}{25}i$$

 $i\overline{z^2}$ opfylder kravene (længden er 1, og den reelle del er større end den imaginære del), så jævnfør Opgave 9.b kan vi finde (7,24,25) som Pythagoræiske tripler.

Note

Meningen er at transformere z til andre komplekse tal, men samtidigt skal den nye komplekse tal opfylde to betingelser, nemlig længden skal være 1, og den reelle del skal være større end den imaginære del.