

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра высшей математики

Свойства решений стохастических дифференциальных уравнений, управляемых многомерными дробными броуновскими движениями с различными показателями Харста

Качан Илья Вадимович

Научный руководитель: кандидат физико-математических наук, доцент Васьковский Максим Михайлович

Минск, 2019

Введение

Стохастическое дифференциальное уравнение

$$dX(t,\omega) = f(t,\omega,X(t,\omega))dt + g(t,\omega,X(t,\omega))dB(t,\omega),$$

где $B(t,\omega)$ — стандартное или дробное броуновское движение.

Интегральный критерий

Траектори процесса B(t) недифференцируемы, поэтому уравнение понимают в интегральном смысле:

$$X(t,\omega) = X(s,\omega) + \int_{s}^{t} f(\tau,\omega,X(\tau,\omega))d\tau + \int_{s}^{t} g(\tau,\omega,X(\tau,\omega))dB(\tau,\omega).$$

Интегралы по дробному броуновскому движению

- Потраекторные интегралы (Янга, Губинелли).
- Стохастические интегралы (Ито, Стратоновича, θ и μ -интегралы) для стандартного броуновского движения.
- Интегралы Вика-Ито-Скорохода.

Введение: приложения

Уравнения с дробными броуновскими движениями

Некоторые сферы применения: физика, финансовая математика.

- М. Клепцына, А. Ле Бретон и М.-К. Рубо (2000): описание сигнальных процессов в фильтрационных системах.
- М. Сале (1998), П. Черидито (2001): моделирование движения цен акций и облигаций.

Моногрфии: Ю.С. Мишура (2008).

Уравнения со стандартным броуновским движением

Некоторые сферы применения: обобщение задач математической физики, фильтрации, нейрофизиологии, генетики популяции, финансовой математики.

Монографии: Дж. Да Прато, Е. Забзик (1992), Б. Оксендаль (2003).

Глава 2: объект исследования

Обозначения

Рассмотрим вероятностное пространство $(\Omega,\mathcal{F},\mathsf{P})$, на котором определены независимые одномерные дробные броуновские движения $B_t^{(1)},\dots,B_t^{(d)}$ с индексами Харста $H_1,\dots,H_d\in(1/3,1)$. Введем обозначение $B_t=(B_t^{(0)},\dots,B_t^{(d)})^\top$ для (d+1)-мерного дробного броуновского движения, в котором $B_t^{(0)}=t$. Пусть также $H_0=1$. Пусть H_{\min} — значение наименьшего из индексов Харста $H_i,\ i=0,\dots,d$.

Выберем и зафиксируем некоторое $H \in (1/3, 1/2]$ такое, что $H < H_{\min}$.

<u>Объект исслед</u>ования

Стохастическое дифференциальное уравнение

$$dX_t = f(X_t)dB_t, \ t \in [0, T], \tag{1}$$

в котором f-(n imes(d+1))-матрица, столбцами которой являются векторы $f_i:\mathbb{R}^n o\mathbb{R}^n,\ i=0,\dots,d.$

Глава 2: существование решений

Пусть $U,\ V$ — конечномерные банаховы пространства. Через $C_b^k(V,U)$ будем обозначать пространство функций $\varphi\colon V \to U,$ имеющих непрерывные и ограниченные производные до порядка k включительно с нормой $\|\varphi\|_{C_b^k} = \sum_{j=0}^k \|D^j\varphi\|_{\infty}$, где $\|D^j\varphi\|_{\infty} = \max_{x\in V} |D^j\varphi(x)|.$

Теорема 2.1.

Если $f\in C_b^2(\mathbb{R}^n,\mathbb{R}^{n imes(d+1)})$, то для любого $x\in\mathbb{R}^n$ уравнение (1) имеет единственное решение с начальным условием $X_0=x$, причем X'=f(X), $(f(X),(f(X))')\in\mathcal{D}^{2H}_{\mathcal{B}}([0,T],\mathbb{R}^{n imes(d+1)})$ п.н. Более того, если $H_i>H^*\geq 1/2$ для всех $i=0,\ldots,d$, то справедливо включение $X\in C^{H^*}([0,T],\mathbb{R}^n)$ п.н. и интеграл в определении решения уравнения (1) является потраекторным интегралом Янга.

Глава 2: основные результаты

Теорема 2.2. [5].

Пусть $f \in C_b^3(\mathbb{R}^n, \mathbb{R}^{n \times (d+1)})$, $g \in C_b^3(\mathbb{R}^n, \mathbb{R})$. Тогда для любых $s, t \in [0, T]$ п.н. справедлива следующая формула замены переменных:

$$g(X_t) = g(X_s) + \int_s^t Dg(X_r)f(X_r)dB_r, \qquad s, t \in [0, T],$$
 (2)

где X_t — решение уравнения (1).

Наряду с уравнением (1) рассмотрим аналогичное уравнение с возмущенной правой частью

$$d\widetilde{X}_{t} = \widetilde{f}(\widetilde{X}_{t})dB_{t}, \quad t \in [0, T], \tag{3}$$

в котором $\widetilde{f}-(n\times(d+1))$ -матрица, столбцами которой являются векторы $\widetilde{f}_i\colon\mathbb{R}^n\to\mathbb{R}^n,\ i=0,\ldots,d.$

Глава 2: основные результаты

Теорема 2.3. [3].

Пусть $f,\widetilde{f}\in C^3_b(\mathbb{R}^n,\mathbb{R}^{n imes(d+1)})$, причем функция \widetilde{f} такова, что $\|f-\widetilde{f}\|_{C^2_b}\leq 1$.

Обозначим через X_t , X_t решения уравнений (1), (3) с начальными условиями $X_0 = \mathcal{E}$, $\widetilde{X}_0 = \widetilde{\mathcal{E}}$ соответственно. Тогда:

1) почти наверное справедлива следующая оценка

$$||X - \widetilde{X}||_{H} \le C \left(|\xi - \widetilde{\xi}| + ||f - \widetilde{f}||_{C_b^2} \right)$$

$$\tag{4}$$

для некоторой случайной величины $C = C(H,T,\|f\|_{\mathcal{C}^3_b},\|B\|_H,\|\mathbb{B}\|_{2H}).$

Причем C может быть выбрана не зависящей от T, если $T\in(0,1];$

2) имеет место следующее неравенство

$$\mathbb{E}\left(\ln \|X - \widetilde{X}\|_{H}\right) \le C + \ln\left(\mathbb{E}|\xi - \widetilde{\xi}| + \|f - \widetilde{f}\|_{C_{b}^{2}}\right),\tag{5}$$

где $C=C(H,H_1,\ldots,H_d,T,\|f\|_{C^3_b})\in\mathbb{R}$ — константа, вообще говоря, зависящая от $H,\,H_1,\ldots,H_d,\,T,\,\|f\|_{C^3_b}$.

Глава 3: объект исследования и обозначения

Объект исследования

Стохастическое дифференциальное уравнение (1).

Обозначения

Через X_t^{\times} будем обозначать решение уравнения (1) с начальным условием $X_0=x\in\mathbb{R}^n.$

$$\Delta^{k}[0,t] = \{(t_{1},\ldots,t_{k}) \in [0,t]^{k} : 0 \leq t_{1} < \ldots < t_{k} \leq t\}$$
 (6)

$$\int_{\Delta^{k}[0,t]} dB^{(I_{k})} = \int_{0}^{t} \int_{0}^{t_{k}} \dots \int_{0}^{t_{2}} dB_{t_{1}}^{(i_{1})} \dots dB_{t_{k-1}}^{(i_{k-1})} dB_{t_{k}}^{(i_{k})}, \tag{7}$$

$$I_k = (i_1, \dots, i_k) \in \mathbb{N}_d^k := \{0, \dots, d\}^k,$$
 (8)

$$D_f^{(i)} = \sum_{i=1}^n f_{ji}(x) \frac{\partial}{\partial x_j}, \ i \in \{0, \dots, d\} \qquad D_f^{(l_k)} = D_f^{(i_1)} \dots D_f^{(i_k)}, \qquad (9)$$

$$\mathbf{P}_t g(x) = \mathbb{E} g(X_t^x), \quad t \ge 0. \tag{10}$$

Глава 3: основной результат

Теорема 3.1. [4, 5].

Пусть $f \in C_b^{N+2}(\mathbb{R}^n,\mathbb{R}^{n \times (d+1)})$, $g \in C_b^{N+3}(\mathbb{R}^n,\mathbb{R})$, $N \in \mathbb{N}$. Тогда для любого фиксированного $H \in (1/3,1/2]$ такого, что $H < H_{min} = \min_{i=0,...d} H_i$ справедливо следующее асимптотическое разложение:

$$\mathsf{P}_{t}g(x) = g(x) + \sum_{k=1}^{N} \sum_{I_{k} \in \{0, \dots, d\}^{k}} t^{|H_{I_{k}}|} \cdot (D_{f}^{(I_{k})}g)(x) \mathbb{E}\left(\int_{\Delta^{k}[0, 1]} dB^{(I_{k})}\right) + O(t^{(N+1)H}),$$
(11)

при $t \to 0$, где $|H_{l_k}| = H_{i_1} + H_{i_2} + \ldots + H_{i_k}$ — сумма индексов Харста дробных броуновских движений $B^{(i_1)}, B^{(i_2)}, \ldots, B^{(i_k)}$.

Глава 3: пример

Рассмотрим следующее одномерное уравнение:

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t^H,$$

в котором B_t^H — одномерное дробное броуновское движение с индексом Харста $H \in (1/2,1),\ b,\ \sigma\colon \mathbb{R} \to \mathbb{R}$ — функции класса C_b^4 .

Применение теоремы 3.1

Пусть $g\in C^5_b(\mathbb{R},\mathbb{R})$, тогда справедливо асимптотическое разложение следующего вида:

$$P_{t}g(x) = g(x) + t b(x)Dg(x) + \frac{1}{2}t^{2} \left(b(x)Db(x)Dg(x) + b^{2}(x)D^{2}g(x)\right) + \frac{1}{2}t^{2H} \left(\sigma(x)D\sigma(x)Dg(x) + \sigma^{2}(x)D^{2}g(x)\right) + O\left(t^{3H}\right).$$

Глава 4: объект исседования

Пусть на вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$ заданы d-мерное стандартное броуновское движение W(t) и d-мерное дробное броуновское движение B(t) с показателем Харста $H \in (1/2,1)$.

Объект исследования

Стохастическое дифференциальное уравнение смешанного типа

$$dx(t) = f(t,x(t))dt + g(t,x(t))dW(t) + \sigma(t,x(t))dB(t), \quad t \ge 0, \quad (12)$$

где $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $\sigma: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ — детерминированные функции.

Глава 4: основные результаты

Простейшее уравнение

Будем рассматривать одномерное уравнение (12), считая, что d=1.

Вместе с ним рассмотрим простейшее уравнение

$$dy(t) = u(t)dt + v(t)dW(t) + b(t)dB(t), \quad t \ge 0.$$
(13)

Решение простейшего уравнения

Решение уравнения (13) выражается следующей формулой:

$$y(t)=y(0)+\int_0^t u(\tau)d au+\int_0^t v(\tau)dW(au)+\int_0^t b(au)dB(au),\quad t\geq 0.$$

Глава 4: основные результаты

Предположим, что существуют некоторые функции r(t),q(t) такие, что

$$g(t,x)\left(\frac{g'_t(t,x)}{g^2(t,x)} + \left(\frac{f(t,x)}{g(t,x)}\right)'_x + \frac{1}{2}g''_{x^2}(t,x)\right) = r(t), \tag{14}$$

$$\frac{\sigma(t,x)}{g(t,x)} = q(t). \tag{15}$$

Теорема 4.1. [6].

Уравнение (12) с функцией $g(t,x)\neq 0$ приводимо к уравнению (13) с помощью некоторого дважды непрерывно дифференцируемого и обратимого относительно x преобразования y=F(t,x) тогда и только тогда, когда найдутся функции q(t),r(t) такие, что оказываются выполненными соотношения (14), (15).

Глава 4: примеры

Линейное однородное уравнение

$$\begin{split} dx(t) &= \alpha(t)x(t)dt + \beta(t)x(t)dW(t) + \gamma(t)x(t)dB(t), \quad t \geq 0, \\ x(t) &= x(0)\exp\left(\int_0^t \left(\alpha(\tau) - \frac{1}{2}\beta^2(\tau)\right)d\tau + \int_0^t \beta(\tau)dW(\tau) + \int_0^t \gamma(\tau)dB(\tau)\right). \end{split}$$

<u>Линейное неодно</u>родное уравнение

$$dx(t) = (\alpha_1(t)x(t) + \alpha_2(t))dt + (\beta_1(t)x(t) + \beta_2(t))dW(t) + (\gamma_1(t)x(t) + \gamma_2(t))dB(t), \quad t \ge 0,$$

$$x(t) = x_0(t)\left(x(0) + \int_0^t \frac{\alpha_2(\tau) - \beta_1(\tau)\beta_2(\tau)}{x_0(\tau)}d\tau + \int_0^t \frac{\beta_2(\tau)}{x_0(\tau)}dW(\tau) + \int_0^t \frac{\gamma_2(\tau)}{x_0(\tau)}dB(\tau)\right),$$

где $x_0(t)$ — решение соответствующего линейного однородного уравнения с начальным условием $x_0(0) = 1$.

Глава 4: пример

Линейное однородное уравнение

Рассмотрим линейное однородное уравнение

$$dx(t) = -2t \cdot x(t)dt + t^{1-H}x(t)dB(t), \quad t \ge 0,$$

Его решение выражается формулой

$$x(t) = x(0) \exp\left(-t^2 + \int_0^t \tau^{1-H} dB(\tau)\right).$$

Устойчивость по вероятности нулевого решения

Нулевое решение рассматриваемого уравнения устойчиво по вероятности, то есть для любых $arepsilon_1, arepsilon_2 > 0$ найдется

$$\delta=\delta(arepsilon_1,arepsilon_2)=arepsilon_1\exp\left(-rac{C^2\,\mathbb{E}\,\|B\|_H^2}{4arepsilon_2}
ight)>0,\; C=\zeta(1+1/H)$$
, такая, что для любого решения с начальным значением $x(0)$ таким, что $|x(0)|<\delta$ п.н., выполнено неравенство $\mathsf{P}\{\sup_{t\geq 0}|x(t)|>arepsilon_1\}$

Глава 4: основные результаты

Линейное неоднородное уравнение

Далее рассмотрим одномерное автономное уравнение

$$dx(t) = f(x(t))dt + g(x(t))dW(t) + \sigma(x(t))dB(t), \quad t \ge 0,$$
 (16)

и будем исследовать наличие автономной замены y = F(x), приводящей указанное уравнение к линейному неоднородному уравнению

$$dy(t) = (\alpha_1 y(t) + \alpha_2) dt + (\beta_1 y(t) + \beta_2) dW(t) + (\gamma_1 y(t) + \gamma_2) dB(t), \ t \ge 0 \ (17)$$

с постоянными коэффициентами $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \in \mathbb{R}$.

Глава 4: основные результаты

Предположим, что существуют некоторые постоянные $c_1,c_2\in\mathbb{R}$ такие, что

$$A(x) = \frac{f(x)}{g(x)} - \frac{g'(x)}{2},\tag{18}$$

$$\frac{(g(x)A'(x))'}{A'(x)} = c_1, \tag{19}$$

$$\frac{\sigma(x)}{g(x)} = c_2,\tag{20}$$

Теорема 4.2. [6].

Уравнение (16) с функциями $g(x) \neq 0$, $A'(x) \neq 0$ приводимо к уравнению (17) с помощью некоторого дважды непрерывно дифференцируемого и обратимого относительно x преобразования y=F(x) тогда и только тогда, когда найдутся постоянные c_1,c_2 такие, что оказываются выполненными соотношения (18), (19), (20).

Глава 4: пример

Предложение 4.3

Уравнение бернуллиевского типа

$$dx(t) = (\alpha x^{n}(t) + \beta x(t))dt + \gamma x(t)dW(t) + \delta x(t)dB(t)$$

приводится к линейному неоднородному уравнению.

Замена
$$y = F(x) = \frac{1}{1-n}x^{1-n}$$
.

Соответствующее линейное неоднородное уравнение:

$$\begin{split} dy(t) &= \left(\alpha + (n-1)\left(-\beta + \frac{\gamma^2 n}{2}\right)y(t)\right)dt + \\ &+ \gamma(1-n)y(t)dW(t) + \delta(1-n)y(t)dB(t), \end{split}$$

Глава 4: основные результаты

Уравнение Стратоновича

Вернемся к уравнению (12) в пространстве \mathbb{R}^d и вместе с ним рассмотрим соответствующее уравнение Стратоновича

$$dx(t) = (f(t,x(t))-c(t,x(t)))dt+g(t,x(t))\circ dW(t)+\sigma(t,x(t))dB(t), \quad t\geq 0,$$
(21)

в котором $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $\sigma: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$.

$$c\colon \mathbb{R}^+ imes \mathbb{R}^d o \mathbb{R}^d$$
 и

$$c_i(t,x) = \frac{1}{2} \sum_{i,k=1}^d \frac{\partial g_{ij}(t,x)}{\partial x_k} g_{kj}(t,x), \quad i = 1,\ldots,d.$$

Теорема 4.3. [6].

Процесс x(t) является решением уравнения (12) тогда и только тогда, когда процесс x(t) является решением уравнения Стратоновича (21)

Глава 4: пример

Для уравнения

$$dx(t) = x^{3}(t)dt + x^{2}(t)dW(t) + x^{2}(t)dB(t), x(0) = x_{0},$$

соответствующее уравнение Стратоновича имеет вид

$$dx(t) = x^{2}(t) \circ dW(t) + x^{2}(t)dB(t).$$

Последнее уравнение имеет решение

$$x(t) = \frac{x_0}{1 - x_0(W(t) + B(t))},$$

которое является решением и исходного уравнения.

Глава 5, раздел 5.2: объект исследования

Объект исследования

Стохастическое дифференциальное уравнение в конечномерном гильбертовом пространстве \mathbb{R}^d с выделенной линейной частью вида:

$$dX(t) = (A(t)X(t) + f(t, X(t)))dt + g(t, X(t))dW(t), \quad t \ge 0.$$
 (22)

где W(t) — стандартное d-мерное броуновское движение,

 $A\colon \mathbb{R}^+ o \mathbb{R}^{d imes d}$ — кусочно непрерывная функция, $\sup_{t\geq 0}|A(t)|\leq M$,

 $f\colon \mathbb{R}^+{ imes}\mathbb{R}^d{ o}\mathbb{R}^d$, $g\colon \mathbb{R}^+{ imes}\mathbb{R}^d{ o}\mathbb{R}^d{ imes}d$ — измеримые по Борелю функции такие, что:

- 1) f(t,0) = 0 и g(t,0) = 0 при всех $t \in \mathbb{R}^+$
- 2) существует постоянная C такая, что для любых $t \in \mathbb{R}^+$, $x \in \mathbb{R}^d$, выполняется неравенство $|f(t,x)| + |g(t,x)| \le C(1+|x|)$ (выполнено условие линейного порядка роста по x).

Детерминированное линейное приближение

$$dX(t) = A(t)X(t)dt, \quad t \ge 0, \tag{23}$$

Обозначим через $X^{(s,x)}(t)$ решение уравнения (23), такое, что $X^{(s,x)}(s)=x$.

Глава 5, раздел 5.2: основной результат

Определение 5.4.

Будем говорить, что уравнение (23) имеет равномерно экспоненциально устойчивое нулевое решение, если существуют константы $\Lambda, \lambda > 0$, не зависящие от s, x, такие, что для любых $s \in \mathbb{R}^+$, $x \in \mathbb{R}^d$ и $t \geq s$ выполняется неравенство

$$|X^{(s,x)}(t)|^2 \leq \Lambda |x|^2 e^{-\lambda(t-s)}$$
.

Теорема 5.3. [1].

Предположим, что функции f(t,x) и g(t,x) таковы, что при достаточно малом $\varepsilon>0$ найдется $\delta_{\varepsilon}>0$ такое, что выполняются неравенства

$$|f(t,x)| \le \varepsilon |x|, \qquad |g(t,x)| \le \varepsilon |x|,$$
 (24)

для любых $x, |x| \leq \delta_{\varepsilon}, t \in \mathbb{R}^+$, а система (23) имеет равномерно экспоненциально устойчивое нулевое решение. Тогда система (22) имеет асимптотически устойчивое по вероятности нулевое решение.

Глава 5, раздел 5.2: пример

Рассмотрим систему стохастических дифференциальных уравнений

$$dx(t) = ((-20 - 0.1\sin t)x(t) + 0.1\cos t \ y(t) + \sin^2 x(t))dt,$$

$$dy(t) = (-0.1\cos t \ x(t) - (20 + 0.1\sin t)y(t))dt + \sin^2 y(t)\operatorname{sgn}(x(t))dw(t),$$
(25)

при $t\geq 0$ с начальными условиями $x(0)=x_0,\,y(0)=y_0,$ где $x_0,y_0\in\mathbb{R},$ w(t) — одномерное броуновское движение.

Применение теоремы 5.3

Нулевое решение линеаризованной системы

$$dx(t) = ((-20 - 0.1\sin t)x(t) + 0.1\cos t \ y(t))dt,$$

$$dy(t) = (-0.1\cos t \ x(t) - (20 + 0.1\sin t)y(t))dt,$$

является равномерно экспоненциально устойчивым, и следовательно, по теореме 5.3. нулевое решение системы (25) асимптотически устойчиво по вероятности.

Глава 5, раздел 5.3: объект исследования

<u>Об</u>означения

Пусть H и K — сепарабельные гильбертовы пространства,

 $\mathfrak{L}_2(K,H)$ — пространство операторов Гильберта-Шмидта, действующих из K в H.

Q — ядерный симметрический положительно определенный оператор на пространстве K,

 $W(t,\omega)-Q$ -броуновское движение со значениями в K и ковариационным оператором Q.

Глава 5, раздел 5.3: объект исследования

Объект исследования

Эволюционное функциональное уравнение в пространстве H следующего вида:

$$dX(t,\omega) = AX(t,\omega)dt + f(t,X(t,\omega))dt + g(t,X(t,\omega))dW(t,\omega), (t,\omega) \in \mathbb{R}^+ \times \Omega$$
(26)

относительно $X \in H$ с начальным условием

$$X(0,\omega) = \xi(\omega), \quad \omega \in \Omega,$$
 (27)

где $f\colon \mathbb{R}^+ \times H \to H$, $g\colon \mathbb{R}^+ \times H \to \mathfrak{L}_2(K,H)$ — измеримые, непрерывные по X (при любом фиксированном $t\in \mathbb{R}^+$) функции,

A — линейный оператор, определенный на всюду плотном в H множестве $\mathcal{D}(A)$ и порождающий C_0 -полугруппу S(t) на H,

 $\xi:\Omega \to \mathcal{D}(A)-\mathcal{F}_0$ -измеримая случайная величина, имеющая конечный момент $\mathbb{E}\,\|\xi\|^p<\infty$ порядка p>2.

Глава 5, раздел 5.3: объект исследования

Условия на коэффициенты f, g

Относительно функций f(t,X) и g(t,X) будем предполагать, что выполнены два условия:

① Локальное условие Липшица. Для любого a>0 существует постоянная q_a такая, что для всех $t\in[0,a]$ и любых $\varphi,\psi\in H$, таких, что $\|\varphi\|\leq a$, $\|\psi\|\leq a$, выполняются неравенства

$$\|f(t,\varphi)-f(t,\psi)\| \leq q_a\|\varphi-\psi\|, \quad \|g(t,\varphi)-g(t,\psi)\| \leq q_a\|\varphi-\psi\|.$$

② Условие линейного порядка роста. Существует непрерывная функция $k\colon \mathbb{R}^+ \to \mathbb{R}^+$ такая, что для всех $t\in \mathbb{R}^+$ и любого $\eta\in H$ выполняются неравенства

$$||f(t,\eta)|| \le k(t)(1+||\eta||), \quad ||g(t,\eta)|| \le k(t)(1+||\eta||).$$

Глава 5, раздел 5.3: притяжение к нулю

Определение 5.8.

Пусть положительная функция $\lambda(t)$ определена для достаточно больших t>0, скажем, $t\geq T>0$. Предположим, что

- $\lim_{t\to\infty}\lambda(t)=\infty.$
- 2 $\ln \lambda(t)$ равномерно непрерывна по t > T.
- f O Существует константа $au \geq 0$ такая, что $\lim_{t o \infty} \sup rac{\ln \ln t}{\ln \lambda(t)} \leq au.$

Будем говорить, что слабое решение задачи (26), (27) притягивается к нулю со скоростью $\lambda(t)$, если найдется $\gamma>0$ такое, что п.н. выполняется неравенство

$$\lim_{t\to\infty}\sup\frac{\ln\|X(t)\|}{\ln\lambda(t)}\leq -\gamma.$$

Глава 5, раздел 5.3: основной результат

Обозначения

Введем операторы L, B, действующие на функционал $V(t,x)\in C^{1,2}(\mathbb{R}^+{ imes} H,\mathbb{R}^+)$ следующим образом:

$$LV(t,x) = V'_{t}(t,x) + \langle V'_{x}(t,x), Ax + f(t,x) \rangle_{H} +$$

$$+ \frac{1}{2} \text{tr}[V''_{xx}(t,x)(g(t,x)Q^{1/2})(g(t,x)Q^{1/2})^{*}], \quad (t,x) \in \mathbb{R}^{+} \times \mathcal{D}(A), \qquad (28)$$

$$BV(t,x) = \text{tr}[V''_{xx}(t,x) \otimes V''_{xx}(t,x)(g(t,x)Q^{1/2})(g(t,x)Q^{1/2})^{*}], \qquad (t,x) \in \mathbb{R}^{+} \times H. \qquad (29)$$

Глава 5, раздел 5.3: основной результат

Теорема 5.4. [2].

Пусть задан функционал $V(t,x)\in C^{1,2}(\mathbb{R}^+\times H,\mathbb{R}^+)$ и две неотрицательные непрерывные функции $\psi_1(t)$, $\psi_2(t)$. Предположим, что существуют постоянные r>0, $m\geq 0$, постоянные $\mu,\nu,\theta\in\mathbb{R}$ и невозрастающая положительная функция $\zeta(t)$ такие, что $\frac{m-(\max\{\nu,\mu+\tau\}+\theta)}{r}>0$ и выполнены следующие условия:

- $lacksymbol{0} \|x\|^r (\lambda(t))^m \leq V(t,x)$ для всех $(t,x) \in \mathbb{R}^+ { imes} H.$
- **2** $LV(t,x) + \zeta(t)BV(t,x) \le \psi_1(t) + \psi_2(t)V(t,x)$ для всех $(t,x) \in \mathbb{R}^+ \times \mathcal{D}(A)$.
- $\begin{array}{ll} \bullet & \lim_{t \to +\infty} \sup \frac{\ln \left(\int_0^t \psi_1(s) \, ds\right)}{\ln \lambda(t)} \leq \nu, \qquad \lim_{t \to +\infty} \sup \frac{\int_0^t \psi_2(s) \, ds}{\ln \lambda(t)} \leq \theta, \\ \lim_{t \to +\infty} \inf \frac{\ln \zeta(t)}{\ln \lambda(t)} \geq -\mu. \end{array}$

Тогда слабое решение задачи (26), (27) притягивается к нулю со скоростью $\lambda(t)$.

Глава 5, раздел 5.3: пример

$$\begin{split} dX_t(x) &= \left(\frac{d^2}{dx^2}X_t(x) + \alpha \sin\left(X_t(x) + e^{-\frac{mt}{2}}\cos X_t^1\right)\right)dt + \alpha e^{-\frac{mt}{2}}X_t(x)dW_t,\\ dX_t^1 &= \left(\alpha X_t^1\sin X_t^1 + \left(\int_0^{\pi}X_t(x)^2dx\right)^{1/2}\right)dt + \alpha e^{-\frac{mt}{2}}\left(\int_0^{\pi}X_t(x)^2dx\right)^{1/2}dW_t. \end{split}$$

Уравнение относительно $\bar{X}_t = (X_t(\cdot), X_t^1)^\top$, t>0, в пространстве $H\times \mathbb{R}$ с начальным условием $\bar{X}_0 = (X_0(x), X_0^1)^\top = (x_0(x), x_0^1), x\in (0,\pi)$, $K=\mathbb{R}$, $H=L_2[0,\pi]$ в компактной форме примет вид

$$d\bar{X}_{t} = (\bar{A}\bar{X}_{t} + f(t, \bar{X}_{t}))dt + g(t, \bar{X}_{t})dW_{t},$$

$$f(t, \bar{X}_{t}) = \alpha \left(\sin(X_{t}(x) + e^{-\frac{mt}{2}}\cos X_{t}^{1}), X_{t}^{1}\sin X_{t}^{1} + \|X_{t}(x)\|_{H}\right)^{\top},$$

$$g(t, \bar{X}_{t}) = \alpha e^{-\frac{mt}{2}} \left(X_{t}(x), \left(\int_{0}^{\pi} X_{t}(x)^{2}dx\right)^{1/2}\right)^{\top}, \ \bar{A} = \begin{pmatrix} A & 0\\ 0 & 0 \end{pmatrix},$$

$$A = \frac{d^{2}}{dx^{2}}, \quad \mathcal{D}(A) = \{u \in C_{2}[0, \pi] : u(0) = u(\pi) = 0\}$$
(30)

Глава 5, раздел 5.3: пример

Применение теоремы 5.4

Положим $V(t, \bar{u}) = V(t, u) = \mathrm{e}^{mt} \|u\|^2$, $u \in H$, $\lambda(t) = \mathrm{e}^t$, $\psi_1(t) \equiv \alpha \pi$, $\psi_2(t) \equiv \theta$, $\tau = \mu = \nu = 0$.

В статье [2] показано, что при таком выборе, достаточно малом α и достаточно большом m, условия теоремы 5.4 будут выполнены, т.е. имеет место притяжение решений к нулю.

При этом функция g удовлетворяет глобальному условию Липшица, а функция f удовлетворяет локальному, но не удовлетворяет глобальному условию Липшица.

Положения, выносимые на защиту

- Формула замены переменных и теорема о непрерывной зависимости от начальных данных решений стохастических дифференциальных уравнений, управляемых дробными броуновскими движениями с различными показателями Харста (теоремы 2.2, 2.3).
- Асимптотические разложения в окрестности нуля для математических ожиданий функционалов от решений стохастических дифференциальных уравнений, управляемых дробными броуновскими движениями с различными показателями Харста (теорема 3.1).
- Методы точного интегрирования стохастических дифференциальных уравнений с дробными броуновскими движениями смешанного типа (теоремы 4.1, 4.2, 4.3).
- Теорема об асимптотической устойчивости системы нелинейных стохастических дифференциальных уравнений Ито с разрывными коэффициентами по нестационарному линейному приближению. Достаточные условия притяжения к нулю слабых решений нелинейного стохастического дифференциального уравнения в гильбертовом пространстве с нелипшициевыми коэффициентами (теоремы 5.3, 5.4).

Список основных публикаций соискателя

1. Васьковский, М.М. Исследование устойчивости решений неавтономных стохастических дифференциальных уравнений с разрывными коэффициентами с помощью метода функций Ляпунова / М.М. Васьковский, Я.Б. Задворный, И.В. Качан // Вестн. Белорус. ун-та. Сер. 1 : физ., мат., информ. — 2015. — №3. — С. 117—125.

2. Васьковский, М.М. Устойчивость решений стохастических дифференциально-функциональных уравнений в гильбертовых пространствах с локально липшициевыми коэффициентами / М.М. Васьковский, И.В. Качан // Дифференциальные уравнения. — 2018. — Т. 54, № 7. — С. 866–880.

3. *Качан, И.В.* Непрерывная зависимость от начальных данных решений стохастических дифференциальных уравнений с дробными броуновскими движениями / И.В. Качан // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. — 2018. — Т. 54, № 2. — С. 193–209.

Список основных публикаций соискателя

4. Васьковский, М.М. Асимптотические разложения решений стохастических дифференциальных уравнений с дробными броуновскими движениями / М.М. Васьковский, И.В. Качан // Доклады Нац. акад. наук Беларуси. — 2018. — Т. 62, $\mathbb N$ 4. — С. 398–405.

5. Vaskouski, M. Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3 / M. Vaskouski, I. Kachan // Stochastic Analysis and Applications. — 2018. — Vol. 36, № 6. — P. 909–931.

6. *Васьковский, М.М.* Методы интегрирования стохастических дифференциальных уравнений смешанного типа, управляемых дробными броуновскими движениями / Васьковский М.М., Качан И.В. // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. — 2019. — Т. 55, № 2. — С. 135—151.