# COMP S265F Lab 11: Minimum Spanning Tree: Kruskal's Algorithm

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

#### Overview

- Spanning tree
  - >Some simple facts on a spanning tree
- Minimum (weighted) Spanning Tree
  - >Kruskal's algorithm & sample run
  - > Proof of correctness: Transformation argument
- Implementing Kruskal's algorithm:
  - FindSet(a vertex), Union(set 1, set 2)
  - >Time complexity

# **Spanning Tree**

- A spanning tree T = (V, E') on an undirected graph
   G = (V, E) is a subgraph of G (i.e., E' ⊆ E) such that
  - For any two vertices u, v in V, there is a path in T connecting u, v; and
  - >T does not contain any cycle.



A spanning tree



Not connected



has cycle

Fact 1: For any two vertices u, v in T, there is a unique path in T between u and v.

#### **Proof:**

- By definition, T is connected and there is at least one path.
- We can prove that there is only one path by contradiction.
- Suppose there are two paths connecting u and v.



The first vertex the two paths split. It can be u, but cannot be v (otherwise, the two paths are identical).

The first vertex the two paths join together. This vertex must exist; the two paths will at least join at v.

**Fact 1:** For any two vertices **u**, **v** in T, there is a <u>unique path</u> in **T** between **u** and **v**.

#### **Proof:**

- By definition, T is connected and there is at least one path.
- We can prove that there is only one path by contradiction.
- Suppose there are two paths connecting u and v.



We find a cycle from these two paths

⇒ A contradiction because **T** does not have cycle.

Fact 2: Let n be the number of vertices, and m be the number of edges in T. Then, we always have m = n - 1.

#### **Proof:**

- By induction on n, the number of vertices.
- Basis step:  $\mathbf{n} = 1$ . A spanning tree with one vertex does not have any edge, i.e.,  $\mathbf{m} = 0 \Rightarrow \mathbf{m} = \mathbf{n} 1$ .
- Suppose the fact is true for all trees with fewer than n vertices.
- Consider a tree T with n vertices.



Move forward until hitting some dead end. This must happen eventually because there is no cycle, every step will hit a new vertex, and you can hit at most n-1 new vertices.

Fact 2: Let n be the number of vertices, and m be the number of edges in T. Then, we always have m = n - 1.

#### **Proof:**

- By induction on n, the number of vertices.
- Basis step:  $\mathbf{n} = 1$ . A spanning tree with one vertex does not have any edge, i.e.,  $\mathbf{m} = 0 \implies \mathbf{m} = \mathbf{n} 1$ .
- Suppose the fact is true for all trees with fewer than n vertices.
- Consider a tree T with n vertices.



Fact 2: Let n be the number of vertices, and m be the number of edges in T. Then, we always have m = n - 1.

#### **Proof:**

- By induction on n, the number of vertices.
- Basis step:  $\mathbf{n} = 1$ . A spanning tree with one vertex does not have any edge, i.e.,  $\mathbf{m} = 0 \Rightarrow \mathbf{m} = \mathbf{n} 1$ .
- Suppose the fact is true for all trees with fewer than n vertices.
- Consider a tree T with n vertices.



The remain part is a spanning tree with n-1 vertices. By the induction hypothesis, it has (n-1) -1 edges

⇒ The original tree has
(n-1) +1 vertices, and
m = (n-1) -1 +1 edges
⇒ i.e., m = n - 1.

Fact 3 (most important): Adding any edge to T will create a cycle. And if we remove some edge in this cycle, we will get another tree. **Proof:** 

Consider any edge (u,v). Adding (u,v) creates a cycle because



There is a path in T connecting u and v.

Fact 3 (most important): Adding any edge to T will create a cycle. And if we remove some edge in this cycle, we will get another tree. **Proof:** 

Deleting any edge (x,y) in the cycle produces another tree.



Now, the graph has no cycle, and the graph is still connected ⇒ it is a tree.

# Minimum (weighted) Spanning Tree

- Let G be a general <u>undirected</u> graph that is <u>connected</u>.
- Suppose that every edge (u, v) of G has a weight w(u,v).
- Define the weight of a spanning tree T of G, denoted as w(T), to be the sum of the weight of all edges in T, i.e.,

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

- We say that T is a minimum spanning tree of G if its weight is minimum among all spanning trees of G.
- Example:



# Kruskal's algorithm

- Kruskal has a greedy idea for constructing a spanning tree with minimum weight.
- 1. Try to construct the tree by adding to the tree one edge at a time, starting from the edge with the smallest weight, and the edge with the next smallest,..., until we finally get the whole spanning tree (i.e., get a tree with n-1 edges).
- 2. When try to add an edge to the solution, we have to make sure that it will not create a cycle.

# Kruskal's algorithm: Sample run

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



### Kruskal's algorithm: Sample run (Step 1)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



### Kruskal's algorithm: Sample run (Step 2)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



### Kruskal's algorithm: Sample run (Step 3)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



### Kruskal's algorithm: Sample run (Step 4)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



### Kruskal's algorithm: Sample run (Step 5)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



### Kruskal's algorithm: Sample run (Step 6)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



#### Kruskal's algorithm: Sample run (Step 7)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



(h,i) cannot be in the solution because it forms a cycle with the previously selected edges.

### Kruskal's algorithm: Sample run (Step 8)

| (h,g) | 1  |
|-------|----|
| (i,c) | 2  |
| (g,f) | 2  |
| (a,b) | 4  |
| (c,f) | 4  |
| (c,d) | 7  |
| (h,i) | 7  |
| (b,c) | 8  |
| (a,h) | 8  |
| (d,e) | 9  |
| (f,e) | 10 |
| (b,h) | 11 |
| (d,f) | 14 |



#### Kruskal's algorithm: Sample run (Step 9)

| (h,g)            | 1  |
|------------------|----|
| (i,c)            | 2  |
| (g,f)            | 2  |
| (a,b)            | 4  |
| (c,f)            | 4  |
| (c,d)            | 7  |
| (h,i)            | 7  |
| (b,c)            | 8  |
| <del>(a,h)</del> | 8  |
| (d,e)            | 9  |
| (f,e)            | 10 |
| (b,h)            | 11 |
| (d,f)            | 14 |



(a,h) cannot be in the solution because it forms a cycle with the previously selected edges.

### Kruskal's algorithm: Sample run (Step 10)

| (h,g)            | 1  |
|------------------|----|
| (i,c)            | 2  |
| (g,f)            | 2  |
| (a,b)            | 4  |
| (c,f)            | 4  |
| (c,d)            | 7  |
| (h,i)            | 7  |
| (b,c)            | 8  |
| <del>(a,h)</del> | 8  |
| (d,e)            | 9  |
| (f,e)            | 10 |
| (b,h)            | 11 |
| (d,f)            | 14 |



#### Kruskal's algorithm: Sample run (Step 11)

| (h,g)            | 1  |
|------------------|----|
| (i,c)            | 2  |
| (g,f)            | 2  |
| (a,b)            | 4  |
| (c,f)            | 4  |
| (c,d)            | 7  |
| (h,i)            | 7  |
| (b,c)            | 8  |
| <del>(a,h)</del> | 8  |
| (d,e)            | 9  |
| (f,e)            | 10 |
| (b,h)            | 11 |
| (d,f)            | 14 |



(f,e) cannot be in the solution because it forms a cycle with the previously selected edges.

#### Kruskal's algorithm: Sample run (Step 12)

| (h,g)             | 1  |
|-------------------|----|
| (i,c)             | 2  |
| (g,f)             | 2  |
| (a,b)             | 4  |
| (c,f)             | 4  |
| (c,d)             | 7  |
| (h,i)             | 7  |
| (b,c)             | 8  |
| <del>(a,h)</del>  | 8  |
| (d,e)             | 9  |
| (f,e)             | 10 |
| ( <del>b,h)</del> | 11 |
| (d,f)             | 14 |



(b,h) cannot be in the solution because it forms a cycle with the previously selected edges.

#### Kruskal's algorithm: Sample run (Step 13)

| (h,g)             | 1  |
|-------------------|----|
| (i,c)             | 2  |
| (g,f)             | 2  |
| (a,b)             | 4  |
| (c,f)             | 4  |
| (c,d)             | 7  |
| (h,i)             | 7  |
| (b,c)             | 8  |
| (a,h)             | 8  |
| (d,e)             | 9  |
| (f,e)             | 10 |
| ( <del>b,h)</del> | 11 |
| ( <del>d,f)</del> | 14 |



$$w(T) = 37$$

#### Proof of correctness

The algorithm always returns a spanning tree because

- the output has no cycle, and
- the output is connected.
  - >Why?

# Proof of correctness (cont')

The algorithm always returns a spanning tree because

- the output has no cycle, and
- the output is connected.
  - >Why? Suppose the output is not connected. That is,



Pick two vertices in two different components

# Proof of correctness (cont')

The algorithm always returns a spanning tree because

- the output has no cycle, and
- the output is connected.
  - >Why? Suppose the output is not connected. That is,



Since the input graph is connected, there must be a path connecting these two vertices.

When the execution checks this edge, it will not delete it as there is no cycle ⇒ contradiction

# Proof of correctness: Minimum weight

Kruskal's algorithm always return the minimum spanning tree.

**Idea:** The framework of the proof is exactly the same as the one we use in proving the optimality of the Huffman code.



# Proof of correctness: Minimum weight

Kruskal's algorithm always return the minimum spanning tree.

**Idea:** The framework of the proof is exactly the same as the one we use in proving the optimality of the Huffman code.



we construct a  $T_1$  such that  $w(T_0) = w(T_1)$  and  $T_1$  is "more similar" to K

# Proof of correctness: Minimum weight

Kruskal's algorithm always return the minimum spanning tree.

Idea: The framework of the proof is exactly the same as the one we use in proving the optimality of the Huffman code.

# How to construct $T_1$ ?



# How to construct $T_1$ ? (cont')



This case is not possible. Adding (a,b) will not form any cycle; otherwise the optimal solution is not a tree.

This implies Kruskal will also choose (a,b).

# How to construct $T_1$ ? (cont')





add the edge (a,b) to  $T_o$ , and we form a cycle, which must contain some edge (c,d) not in  $S\cup(a,b)$  (otherwise, Kruskal will not choose (a,b)).

# How to construct $T_1$ ? (cont')



# How to construct $T_1$ ? (cont')



## How to construct $T_1$ ? (cont')



# How to construct $T_1$ ? (cont')





has one more edge same as K.

## Proof of correctness: Minimum weight

 Repeat the process, we will eventually push the pink line to the rightmost end.



Thus,  $\mathbf{K} = \mathbf{T}_{j}$ , and we have  $w(\mathbf{T}_{0}) = w(\mathbf{T}_{j}) = w(\mathbf{K})$ . This follows that  $\mathbf{K}$  has also the minimum weight; it is a minimum spanning tree (MST).

## Implementing Kruskal's algorithm

- How to determine whether adding an edge will cause a cycle?
- Observation: During the execution of the algorithm, the set of edges in the solution (red edges) forms a set of disjoint trees.



Four "subtrees"

### Implementing Kruskal's algorithm (cont')

- Observation: During the execution of the algorithm, the set of edges in the solution (red edges) forms a set of disjoint trees.
- Case 1: Adding (u,v) where u and v are in the same subtree
   ⇒ cycle and thus not add to solution.



### Implementing Kruskal's algorithm (cont')

- Observation: During the execution of the algorithm, the set of edges in the solution (red edges) forms a set of disjoint trees.
- Case 2: Adding (u,v) where u and v are in the different subtrees
   ⇒ add to solution to form a larger subtree



### Implementing Kruskal's algorithm (cont')

• Idea: Remember the sets of vertices of the subtrees. (We agree that isolated vertex is also a subtree.)



### Find-Set(vertex)

- Case 1: Adding edge (d,f). Since Find-Şet(d) = Find-Set(f),
  - ⇒ d, f are in the same set and hence are in the same tree
  - ⇒ cycle and don't add (d,f) to the current solution set.



return the set which the argument belongs in the current forest.

The "forest" (i.e., set of subtrees): {a}, {b}, {i,c}, {h,g}, {d,e,f}

## Union(set 1, set 2)

- Case 2: Adding edge (i,h). Since Find-Set(i) ≠ Find-Set(h),
  - $\Rightarrow$  i, h are in different sets, and hence in different trees.
  - ⇒ no cycle and add (i,h) to the solution set, and
  - ⇒ "merge" the two subtrees by Union(Find-Set(i), Find-Set(h)).



The "forest" (i.e., set of subtrees): {a}, {b}, {i,c}, {h,g}, {d,e,f}

## Union(set 1, set 2) (cont')

- Case 2: Adding edge (i,h). Since Find-Set(i) ≠ Find-Set(h),
  - $\Rightarrow$  i, h are in different sets, and hence in different trees.
  - ⇒ no cycle and add (i,h) to the solution set, and
  - ⇒ "merge" the two subtrees by Union(Find-Set(i), Find-Set(h)).



The "forest" (i.e., set of subtrees):

## Kruskal's algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

- No. of Make-Set = |V|, No. of Find-Set = 2 |E|, No. of Union = |V| 1
- Union-Find Disjoint Sets take O(V log V) time for all unions.
- Sorting of edges has a time complexity of O(E log E)
- $\Rightarrow$  Total time complexity = O(E log E + 2E + V log V)
- = O(E log  $V^2$  + E log V) [a tree has |V| 1 edges, so  $|E| \ge |V|$  1]
- $= O(2E \log V + E \log V) = O(E \log V).$

### Kruskal's algorithm: Sample run (Step 1)



{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

### Kruskal's algorithm: Sample run (Step 2)



{a}, {b}, {c}, {d}, {e}, {f}, {g,h}, {i}

### Kruskal's algorithm: Sample run (Step 3)



{a}, {b}, {c,i}, {d}, {e}, {f}, {h,g}

### Kruskal's algorithm: Sample run (Step 4)



{a}, {b}, {c,i}, {d}, {e}, {f,h,g}

### Kruskal's algorithm: Sample run (Step 5)



{a,b}, {c,i}, {d}, {e}, {f,h,g}

### Kruskal's algorithm: Sample run (Step 6)



{a,b}, {c,i,f,h,g}, {d}, {e}

### Kruskal's algorithm: Sample run (Step 7)



 $\{a,b\}, \{c,i,f,h,g,d\}, \{e\}$ 

### Kruskal's algorithm: Sample run (Step 8)



 ${a,b,c,i,f,h,g,d}, {e}$ 

### Kruskal's algorithm: Sample run (Step 9)



 $\{a,b,c,i,f,h,g,d,e\}$