

SEQUENCE LISTING

<110> Bayer HealthCare AG
 Golz, Stefan
 Brüggemeier, Ulf
 Geerts, Andreas

<120> Diagnostics and Therapeutics for Diseases Associated with G-Protein Coupled Receptor ADIPOR2 (ADIPOR2)

<130> LeA 36 902

<150> PCT/EP2004/010383
 <151> 2004-09-16

<150> EP03021898.6
 <151> 2003-09-27

<160> 5

<170> PatentIn version 3.3

<210> 1
 <211> 3500
 <212> DNA
 <213> Homo sapiens

<400> 1		
agaatttgtt tgtaaggat gggaaaggctg gtggcgagtg atccctcatg atgtactacc	60	
agactggctc aaggataatg acttcctctt gcatggacac cggccctcta tgccttcttt	120	
ccgggcctgt tttaagagca ttttcagaat acacacagaa acaggcaaca tttggacaca	180	
tctcttaggt tgtgtatcct tcctgtgcct gggatcttt tatatgtttc gcccaaataat	240	
ctcctttgtg gcccctctgc aagagaaggt ggtctttgga ttattttct taggagccat	300	
tctctgcctt tcttttcat ggcttcca cacagtctac tgccacttag agggggtctc	360	
tcggcttttc tctaaactgg attactctgg tattgctctt ctgattatgg gaagttttgt	420	
tccttggttt tattattctt tctactgtaa tccacaacct tgcttcatct acttgattgt	480	
catctgtgtg ctggcatttgc cagccattat agtctcccag tggacatgt ttgccaccccc	540	
tcagtatcgg ggagtaagag caggagtgtt tttggcccta ggcctgagtg gaatcattcc	600	
taccttgac tatgtcatct cggaggggtt ccttaaggcc gccaccatag ggcagatagg	660	
ctgggttcatg ctgatggcca gcctctacat cacaggagct gccctgtatg ctgcccggat	720	
ccccgaacgc ttttccctg gcaaatgtga catctggttt cactctcatc agctgtttca	780	
tatctttgtg gttgctggag cttttgttca cttccatggt gtctcaaacc tccaggagtt	840	
tcgtttcatg atcggcgggg gctgcagtga agaggatgca ctgtgataacc taccagtctc	900	
cagggactat gaccctaaac cagggcctgc ggcacttgcg ggcctccctg ctggctactg	960	
atgccagtagc cagaggagcc cccaaacttt gacagcctcg tggctttgt gacggcccag	1020	
gggctctgcg tggcacatga ctgagaagag aaaaacaaaa ataaatcata cctcaaagga	1080	
tggagtgcac caattggag aaaaggagac atagccaaa ccctggctta ttcttggat	1140	
ctactgatttgc cgggctctgc aagacccttg gcaaactggc ttctgatcca tatcatattt	1200	
attttagaa gatggcgaaa cagtttagct ggtggttctt tcttccct ttctctctct	1260	

ctatgacaat aatacaaacc aatttaagtg aacatttata tccgataagg ggtggagtg	1320
tgattttaaa tgctctttg ggagaacaaa gaaattaatg taaaataagat ttctaactgt	1380
ttaaataaga ctttatataa atgtttaaaa catagggta agggagggag ggagaatttt	1440
tgtatagaat gaaacatgca agtaccacac actgtttgaa tttgcacaa aaagtgactg	1500
taggatcagg tgatagcccc ggaatgtaca gtgtcttgg gcaccaagat gccttctaaa	1560
ggctgacata ccttggaccc taatgggca gagagtatag ccctagccca gtggtgacat	1620
gaccactccc ttggggaggc ctgaggtaga ggggagtggt atgttttc tcagtggaaag	1680
cagcacatga gtgggtgaca ggtatgtaga taaaggctct agttagggtg tcattgtcat	1740
ttgagagact gacacactcc tagcagctgg taaaggggtg ctggaggcca tggaggagct	1800
ctagaaacat tagcatggc tgatctgatt acttcctggc atcccgctca cctttatggg	1860
aagtcttatt agagggatgg gacagtttc catatccttgc tggtggagct ctggAACACT	1920
ctctaaattt ccctcttatta aaaatcactg ccctaactat acttcctcct tgagggata	1980
gaaatggacc tttctctgac atagttcttgc gcatggagc cagccacaaa tgagattctg	2040
acgtgtccag gtttctcctg agctcatcta catagattgg tagacccttc ctttggatta	2100
ggaaagatga gtttacctc tggtacactg tcttgtaag cctggatgtg acagacacct	2160
cggctctcct tgaataagaa agccagcaga actcttaaag ccagttgtac tggtggatgg	2220
tcagcactca ctgaacctca ctttacaggg ataagagtgg tgtggcattt taaatacat	2280
ggtatgttat tgccagggag tgaggtacaa gacgatggct catgtcacag gcctacctga	2340
tacggtgtca gagaaagtgg tggggaaagg atctggttca tggaaattctg atcttggccc	2400
ataggtgaac cacaaaata gtgctcgagt cttaggttac tgtcatcaaa gacttggat	2460
gactccattt tatcctgggg ttgtgggtat tagaactaaa tatggaggc tcgagcatgg	2520
ggactgggtgt cctcagtagg tggttggaa tatgggaagg gtctcctatt tattcaatag	2580
agttttctca gttatTTCC tccctcgccc ttgcaatctc cagaaaaagg tggatctag	2640
gaagaaagaa tccagtgtac aagttgagaa gaacttgaac gtttgggttc tggataaggt	2700
cactgtccta ggtgcttaggt ggaccgagca aaagactcag tggatgaact ggtgcagtgc	2760
ctgacagaat aaagaacagt attaatccct ttgagaaagc atagtcacaggcaggatgg	2820
ccatttggac agaagccac ttagttctt gggagcaaca gcacgtatca gaagccagac	2880
ttgctcttcg gtcatgcact ttgggataca gcgtataggt gcagccctgt cacaacacca	2940
acagaagtag cagcctctgg gtgcagtac ccacacccca aagctggaaag gatctggttc	3000
aacatagcac aaacccttag gaaaaatgaa attaacatca ctgatgtgtaa atccagtaaa	3060
atctcccttt ttcgggtgtg tatgtggca tggccatt tctatgtgtg tgtctacgtg	3120
cagctacta ccaacagcct catgtgcact tgacctgaca gtgctcgctg agaactctca	3180
ccaggttggc gcctgaatgc cttactctca gcagtcagag gcttgcttgc tctgtgcaga	3240
tttttaattt tcttttttgg ccctaggctg gttgggaccc ctacagcttc attcttcac	3300

attaaatagt gaccttttc agtatttcc ctctccct ttataaatta tgctaaagcc 3360
acaaagcaca ttttgggga tcatagaagg ttggggttcc agaaaggcat ctgtgtgatg 3420
gttccattga tgtgggattt ccctacttgc tgtattctca gtttctaata aaaagaacca 3480
aatgaaaaaaaaaaaaaaa 3500

<210> 2
<211> 258
<212> PRT
<213> Homo sapiens

<400> 2

Met Pro Ser Phe Arg Ala Cys Phe Lys Ser Ile Phe Arg Ile His Thr
1 5 10 15

Glu Thr Gly Asn Ile Trp Thr His Leu Leu Gly Cys Val Phe Phe Leu
20 25 30

Cys Leu Gly Ile Phe Tyr Met Phe Arg Pro Asn Ile Ser Phe Val Ala
35 40 45

Pro Leu Gln Glu Lys Val Val Phe Gly Leu Phe Phe Leu Gly Ala Ile
50 55 60

Leu Cys Leu Ser Phe Ser Trp Leu Phe His Thr Val Tyr Cys His Ser
65 70 75 80

Glu Gly Val Ser Arg Leu Phe Ser Lys Leu Asp Tyr Ser Gly Ile Ala
85 90 95

Leu Leu Ile Met Gly Ser Phe Val Pro Trp Leu Tyr Tyr Ser Phe Tyr
100 105 110

Cys Asn Pro Gln Pro Cys Phe Ile Tyr Leu Ile Val Ile Cys Val Leu
115 120 125

Gly Ile Ala Ala Ile Ile Val Ser Gln Trp Asp Met Phe Ala Thr Pro
130 135 140

Gln Tyr Arg Gly Val Arg Ala Gly Val Phe Leu Gly Leu Gly Leu Ser
145 150 155 160

Gly Ile Ile Pro Thr Leu His Tyr Val Ile Ser Glu Gly Phe Leu Lys
165 170 175

Ala Ala Thr Ile Gly Gln Ile Gly Trp Leu Met Leu Met Ala Ser Leu
180 185 190

Tyr Ile Thr Gly Ala Ala Leu Tyr Ala Ala Arg Ile Pro Glu Arg Phe
195 200 205

Phe Pro Gly Lys Cys Asp Ile Trp Phe His Ser His Gln Leu Phe His
Page 3

210

215

220

Ile Phe Val Val Ala Gly Ala Phe Val His Phe His Gly Val Ser Asn
225 230 235 240

Leu Gln Glu Phe Arg Phe Met Ile Gly Gly Gly Cys Ser Glu Glu Asp
245 250 255

Ala Leu

<210> 3
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer1 (forward primer)

<400> 3
catggtgtct caaacctcca

20

<210> 4
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer2 (reverse primer)

<400> 4
cagtgcattc tcttcactgc

20

<210> 5
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Probe1

<400> 5
agtttgcgtt catgatcgcc ggg

23