ECSE 446/546

IMAGE SYNTHESIS

RADIOMETRY

Prof. Derek Nowrouzezahrai

derek@cim.mcgill.ca

Today's Menu

How do we quantify light?

How does light interact with surfaces?

Quantifying Light

Radiometry studies the measurement of electromagnetic radiation, including visible light

Visible Light is any radiation that is capable of directly causing visual sensation

[International Lighting Vocabulary [CIE 1987]]

Assume light consists of photons with:

- Position X
- Direction of travel $\vec{\omega}$
- Wavelength λ

Each photon has an energy of: $\frac{hc}{\lambda}$

- Planck's constant $h \approx 6.63 \cdot 10^{-34} \text{ m}^2 \cdot \text{kg/s}$
- speed of light in vacuum $\,c=299,792,458~\mathrm{m/s}$
- Unit of energy, Joule: $[J = kg \cdot m^2/s^2]$

How do we measure the energy flow?

Measuring energy means "counting photons"

Basic quantities (depend on wavelength*)

- flux Φ
- irradiance *E*
- radiosity B
- intensity I
- radiance L

will be the most important quantity for us

Flux (Radiant Flux, Power)

The total amount of radiant energy passing through surface or space per unit time

$$\Phi(A) \qquad \qquad \left\lceil \frac{J}{s} = W \right\rceil$$

examples:

- number of photons hitting a wall per second
- number of photons leaving a lightbulb per second

Irradiance

The area density of flux

- flux per unit area arriving at a surface

$$E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})} \left[\frac{W}{m^2} \right]$$

example:

- number of photons **hitting** a small* patch of a wall per second, *divided* by the patch's size

Radiosity (Radiant Exitance)

Also measured as area density of flux

- flux per unit area leaving a surface

$$B(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})} \left[\frac{W}{m^2} \right]$$

example:

- number of photons reflecting off a small patch of a wall per second, divided by size of patch

Solid Angle

Angle

- circle: 2π radians

$$heta = rac{l}{r}$$

- Solid angle
- sphere: 4π steradians

$$\Omega = \frac{A}{r^2}$$

Subtended Angle

Length of object's projection onto a unit circle

Subtended Solid Angle

Area of object's projection onto a unit sphere

Differential Solid Angle

Differential area on the unit sphere around direction $\vec{\omega}$

$$dA = (rd\theta)(r\sin\theta d\phi)$$

$$d\vec{\omega} = \frac{dA}{r^2} = \sin\theta d\theta d\phi$$

$$\Omega = \int_{\mathbb{S}^2} d\vec{\omega} = \int_0^{2\pi} \int_0^{\pi} \sin\theta d\theta d\phi = 4\pi$$

The flux density per unit solid angle, per perpendicular unit area

$$L(\mathbf{x}, \vec{\omega}) = \frac{d^2 \Phi(A)}{d\vec{\omega} dA^{\perp}(\mathbf{x}, \vec{\omega})} \left[\frac{W}{m^2 sr} \right]$$
$$= \frac{d^2 \Phi(A)}{d\vec{\omega} dA(\mathbf{x}) \cos \theta}$$

The fundamental quantity for ray tracing

- remains constant along a ray (in vacuum only!)
- incident radiance L_i at one point can be expressed as outgoing radiance L_o at another point

How to express *irradiance* in terms of radiance:

$$L(\mathbf{x}, \vec{\omega}) = \frac{d^2 \Phi(A)}{\cos \theta dA(\mathbf{x}) d\vec{\omega}} \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$
$$L(\mathbf{x}, \vec{\omega}) = \frac{dE(\mathbf{x})}{\cos \theta d\vec{\omega}}$$
$$L(\mathbf{x}, \vec{\omega}) \cos \theta d\vec{\omega} = dE(\mathbf{x})$$
$$\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta d\vec{\omega} = E(\mathbf{x})$$

Integrate radiance over

hemisphere

How to express *flux* in terms of radiance:

$$\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x}) \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$
$$\int_{A} E(\mathbf{x}) \, dA(\mathbf{x}) = \Phi(A)$$
$$\int_{A} \int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} dA(\mathbf{x}) = \Phi(A)$$

Integrate radiance over

hemisphere and area

Overview of Quantities

• flux:

$$\Phi(A)$$

$$\left[\frac{J}{s} = W\right]$$

• irradiance:
$$E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$

$$\left\lceil \frac{W}{m^2} \right\rceil$$

• radiosity:
$$B(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$

$$\left[rac{W}{m^2}
ight]$$

• radiance:
$$L(\mathbf{x}, \vec{\omega}) = \frac{d^2\Phi(A)}{\cos\theta dA(\mathbf{x})d\vec{\omega}} \left[\frac{W}{m^2sr}\right]$$

Light-Material Interactions

Light-Material Interactions

BRDF

Bidirectional **R**eflectance **D**istribution **F**unction

- ratio of differential reflected radiance to differential incident irradiance

BRDF

Bidirectional **R**eflectance **D**istribution **F**unction

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{dE_i(\mathbf{x}, \vec{\omega}_i)} = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i} \quad [1/sr]$$

Reflection Equation

The BRDF relates the incident radiance and (differential) reflected radiance at a point

- from this we can derive the **Reflection Equation**:

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i}$$
$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i = \frac{dL_r(\mathbf{x}, \vec{\omega}_r)}{d\vec{\omega}_i}$$
$$\int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i = L_r(\mathbf{x}, \vec{\omega}_r)$$

Reflection Equation

The Reflection Equation describes a local illumination model

- what's the <u>reflected radiance</u> at a shade point, given the incident illumination arriving from every direction around it

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

BRDFs Properties

Real/physically-plausible BRDFs obey:

- Helmholtz reciprocity

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{x}, \vec{\omega}_r, \vec{\omega}_i)$$

- Energy conservation

$$\int_{H^2} f_r(\vec{\omega}_i, \vec{\omega}_r) \cos \theta_i \, d\omega_i \le 1, \quad \forall \ \vec{\omega}_r$$