Disciplina de Compiladores Lista de Exercícios 1*

Prof. Marcelo Borghetti Soares Primeiro semestre de 2008

- 1. Explique as funções do analisador léxico e do analisador sintático e como ambos se relacionam no processo de compilação. Seja conciso, porém não seja breve em suas explicações.
- 2. Determine tokens e lexemas apropriados para o trecho de código mostrado abaixo:

- 3. Expresse as linguagens a seguir utilizando operações sobre conjuntos finitos de palavras de {0,1}*. Operações permitidas: união, interseção, diferença, concatenação e fecho de Kleene, mas só use interseção e/ou diferença se não conseguir sem usar. O alfabeto é {0,1} para todas.
 - (a) O conjunto das palavras que contêm 00 ou 11 ou ambas.
 - (b) O conjunto das palavras que contêm 00, mas não 11.
 - (c) O conjunto das palavras que contêm 00 ou 11, mas não ambas.
 - (d) O conjunto das palavras que contêm 00 e 11.
 - (e) O conjunto das palavras que não contêm 00, nem 11.
 - (f) O conjunto das palavras com número par de 0s e ímpar de 1s.
 - (g) O conjunto das palavras em que as posições pares só contêm 0s. Exemplos: λ , 0, 1, 00, 10, 000, 001, 100, 101 etc.

Procure ser bem conciso.

4. Que linguagens são geradas pelas gramáticas a seguir?

(a)
$$G_1 = (\{S, A, B\}, \{a, b\}, R_1, S).$$
 $R_1: S \to aA \mid \lambda$
 $A \to bB$
 $B \to aS$
(b) $G_2 = (\{S, A, B, C\}, \{a, b\}, R_2, S).$
 $R_2: S \to Aa \mid aCa$
 $A \to B \mid a$
 $B \to Aa \mid aC$
(c) $G_3 = (\{K\}, \{a, b\}, R_3, K).$
 $R_3: K \to aKb \mid bKa \mid \lambda$

^{*}exercícios extraídos do curso ministrado pelo professor Newton Vieira da Universidade Federal de Minas Gerais, do livro citado na bibliografia e criados pelo professor.

- 5. Construa autômatos finitos determinísticos (AFDs) para:
 - (a) $\{101\}^*\{010\}^*$.
 - (b) $\{w \in \{0,1\}^* \mid w \text{ não contém 000 nem 111}\}.$
 - (c) $\{w \in \{0,1\}^* \mid 000 \text{ não é sufixo de } w\}.$
 - (d) Conjunto das palavras de $\{0,1\}^*$ que contêm um número par de 0s ou no máximo três 0s.
- 6. Construa autômatos finitos não determinísticos (AFNs) para cada uma das seguintes linguagens, procurando utilizar o menor número de estados possível:
 - (a) $\{a\} \cup \{b\}^+$. O AFN deve ter apenas um estado final.
 - (b) $\{w \in \{a, b, c\}^* \mid \text{ o último símbolo de } w \text{ tenha ocorrido antes}\}.$
 - (c) $\{w \in \{a, b, c\}^* \mid \text{ o último símbolo de } w \text{ não tenha ocorrido antes}\}.$
- 7. Obtenha AFDs equivalentes aos AFNs dos dois primeiros itens da questão anterior, usando o método visto no curso.
- 8. Construa AFDs que reconheçam as linguagens denotadas por:
 - (a) (aa + b)*baab.
 - (b) $((aa + bb)^*cc)^*$.
- 9. Seja o AFD:

- (a) Obtenha uma ER que denote a linguagem reconhecida.
- (b) Descreva a linguagem em português.
- 10. Obtenha ERs para as seguintes linguagens, a partir de um AFD para as mesmas, usando o método visto em aula:
 - (a) $\{w \in \{0,1\}^* \mid w \text{ não contém 001}\}.$
 - (b) $\{w \in \{0,1\}^* \mid \eta(w) \mod 3 = 0\}.$