Unsolvable Problems

The Turing Machine

- · Motivating idea
 - Build a theoretical a "human computer"
 - Likened to a human with a paper and pencil that can solve problems in an algorithmic way
 - The theoretical machine provides a means to determine:
 - If an algorithm or procedure exists for a given problem
 - · What that algorithm or procedure looks like
 - · How long would it take to run this algorithm or procedure.

The Church-Turing Thesis (1936)

- Any algorithmic procedure that can be carried out by a human or group of humans can be carried out by some Turing Machine"
 - Equating <u>algorithm</u> with <u>running on a TM</u>
 - Turing Machine is still a valid computational model for most modern computers.

Undecidability

- Informally, a problem is called <u>unsolvable</u> or <u>undecidable</u> if there no algorithm exists that solves the problem.
- · Algorithm
 - Implies a TM that computes a solution for the problem
- Solves
 - Implies will always give an answer

Decision Problem

- · Let's formalize this a bit
 - A decision problem is a problem that has a yes/no answer
 - Example:
 - Is a given string x a palindrome (Is $x \in pal$?)
 - Is a given context free language empty?

Decision Problems

- For regular languages
 - 1. Is the language empty?
 - 2. Is the language finite?
 - 3. Is a given string in the language?
 - 4. Given 2 languages, are there strings that are in both?
 - 5. Is the language a subset of another regular language?
 - 6. Is the language the same as another regular language?

Decision Problems

- For Context Free Languages
 - 1. Is a given string in the language?
 - 2. Is the language empty?
 - 3. Is the language finite?

Decision Problems

- For recursively enumerable languages
 - 1. Is the language accepted by a TM empty?
 - 2. Is the language accepted by a TM finite?
 - 3. Is the language accepted by a TM regular?
 - 4. Is the language accepted by a TM context free?
 - 5. Is the language accepted by 1 TM a subset of or equal to the language accepted by another?

Decision Problem

- Running a decision problem on a TM.
 - The problem must first be encoded
 - Example:
 - Is a given string x a palindrome (Is $x \in pal$?)
 - x is an instance of the probkem
 - Is a given context free language empty?
 - Instance of a problem is a CFG...must be encoded.

Decision Problem

- Running a decision problem on a TM.
 - Once encoded, the encoded instance in provided as input to a TM.
 - The TM must then
 - Determine if the input is a valid encoding
 - · Run, halt,
 - Place 1 on the tape if the answer for the input is yes
 - Place 0 on the tape if the answer for the input is no
 - If such a TM exists for a given decision problem, the problem is <u>decidable</u> or <u>solvable</u>. Otherwise the problem is called <u>undecidable</u> or <u>unsolvable</u>.

Solvability

- In other words, a problem is solvable if the language of all of its encoded "yes" instances is recursive.
 - There is a TM that recognizes the language.

Universal Language

- Universal Language (L₁₁)
 - Set of all strings w_i such that $w_i \in L(M_i)$
 - All strings w that <u>are</u> accepted by the TM with w as it's encoding.
 - All encodings for TMs that <u>do</u> accept their encoding when input
- We showed that L_u is not recursive.

An unsolvable problem

- L_u corresponds to the "yes encodings" of the decision problem:
- Given a Turing Machine M, does it accept it's own encoding. (Self-accepting)
- Since L_u is not recursive, this problem is unsolvable.

Reducing one language to another

- One method of showing whether a given decision problem is unsolvable is to convert the encoding of the problem into another that we know to be either solvable or unsolvable.
- This is called <u>reducing</u> one language to another.

Reducing one language to another

- Formally,
 - Let L_1 and L_2 be languages over Σ_1 and Σ_2
 - We say L_1 is reducible to L_2 ($L_1 \le L_2$) if
 - · There exists a Turning computable function
 - f: $\Sigma_1^* \to \Sigma_2^*$ such that
 - $x \in L_1$ iff $f(x) \in L_2$

Reducing one language to another

- Informally,
 - We can take any encoded instance of one problem
 - Use a TM to compute a corresponding encoded instance of another problem.
 - If this other problem has a TM that recognizes the set of "yes encodings", we can run that TM to solve the first problem.

Reducing one language to another

- Key facts:
 - If L₁ ≤ L₂ then
 - If L₂ is recursive then L₁ is also recursive
 - If L_1 is not recursive then L_2 is not recursive.
 - If P_1 and P_2 are decision problems with L_1 and L_2 the languages of "yes encodings" respectively and if $L_1 \le L_2$ then
 - If P2 is solvable then P1 is also solvable
 - If P₁ is unsolvable then P₂ is also unsolvable

The halting problem

- Let's consider a more general problem about TMs.
 - Given a TM, M, and a string w, is $w \in T(M)$?
 - We simply cannot just run the string on the TM since if w ∉ L(M), M might go into an infinite loop.

The halting problem

- The halting problem is unsolvable
- Proof:
 - We can use an argument similar to that used to show that T_{ij} is not recursive.
 - Instead, let's use reduction

The halting problem

- If $L_1 \le L_2$ then
 - If L2 is recursive then L1 is also recursive
 - If L₁ is not recursive then L₂ is not recursive.
- Let's show that Self-Accepting can be reduced to the halting problem.

The halting problem

- Let's show that Self-Accepting can be reduced to the halting problem.
 - For an encoding of an instance of SA, I, we can define a function
 - f(I) = I
 - Such that I' is an encoding of an instance of Halt and
 - I will be self-accepting iff I' halts.

The halting problem

- Instance of SA = (T) an encoded TM, T
- <u>Instance of halt</u> = (T', w) an encoded TM T' and encoded string w to run on the TM
- We want T to accept e(T) iff T' accepts w
- Let T'=T and w = e(T)
 - f(x) = (x, e(x))

The halting problem

- f(x) = (x, e(x))
 - If x is an encoding for a TM that self-accepts,
 - Then x will certainly accept e(x) as specified by f.
 - If x is not an encoding for a TM that self-accepts then either:
 - · x is a bogus encoding or
 - x is an encoding for a TM that will not accept it's own encoding.
 - In either case (x, e(x)) will not be in halt.

The halting problem

- We showed that $L_1 \le L_2$ where
 - L₁ is the set of encodings for "yes instances" of the self-accepting problem
 - L₂ is the set of encodings for "yes instances" of the halting problem.
 - We know that the self-accepting problem is unsolvable, thus, the halting problem is unsolvable.

The halting problem

- Practical considerations:
 - Since the halting problem is unsolvable, there is no algorithm to determine:
 - · Given a computer program
 - Will this program always finish?
 - Alternately will it ever enter an infinite loop.

Reducing one language to another

- Important observations
 - Reduction operates on strings from languages
 - Reducing encodings of different problems
 - If L_1 ≤ L_2 then
 - If L₂ is recursive then L₁ is also recursive
 - If L₁ is not recursive then L₂ is not recursive.
 - Ouestions?

To show a problem is unsolvable

- Find a problem known to be unsolvable
- Reduce this known unsolvable problem to the problem you wish to show is unsolvable.
- Only need one to start the ball rolling
 - Self-accepting fits the bill.

Decision Problems

- For recursively enumerable languages
 - 1. Is the language accepted by a TM empty?
 - 2. Is the language accepted by a TM finite?
 - 3. Is the language accepted by a TM regular?
 - 4. Is the language accepted by a TM context free?
 - 5. Is the language accepted by 1 TM a subset of or equal to the language accepted by another?

Rice's Theorem

- The Self-Accepting problem can be reduced to each one of these decision problems.
- · Rice's Theorem
 - Every non-trivial property of recursively enumerable languages is unsolvable.
 - Where a non-trivial property is a property satisfied by any non-null subset of the set of recursively enumerable languages.

Decision Problems

- For recursively enumerable languages
- All unsolvable.
 - 1. Is the language accepted by a TM empty?
 - 2. Is the language accepted by a TM finite?
 - 3. Is the language accepted by a TM regular?
 - 4. Is the language accepted by a TM context free?
 - 5. Is the language accepted by 1 TM a subset of or equal to the language accepted by another?

Questions?

• Let's look at some more unsolvable problems:

Post Correspondence Problem

- Given 2 lists of strings (each list with the same number of elements) can one pick a sequence of corresponding strings from the two lists and form the same string by concatenation. (PCP)
 - Attributed to Emil Post (1946).

Post Correspondence Problem

• Example:

List 1 List 2

10	01	0	100	1	0
101	100	10	0	010	00

- Choose a sequence of indicies: 1,3,4

• List1: 10 0 100 List 2: 101 10 0

Post Correspondence Problem

• Is there a set of indices such that both lists produce the same string

List 1 10 01 0 100 1 0 1 1 0 List 2 101 100 10 0 010 00

• Try 1, 4, 6

• List 1: 101000 List 2:101000

Post Correspondence Problem

- There is a Modified version of the Post Correspondence Problem (MPCP)
 - Requires that the index 1 appears as the first index in any solution.
 - This can be shown to be unsolvable by reducing the halting problem to MPCP
 - HALTING ≤ MPCP
 - MPCP can be reduced to PCP
 - HALTING ≤ MPCP ≤ PCP
 - Since halting is unsolvable
 - MPCP is unsolvable
 - PCP is unsolvable.

Recall: Parse trees

Same string, 2 derivations

CFG Ambiguity

- A CFG is said to be <u>ambiguous</u> if there is at least 1 string in L(G) having two or more distinct derivations.
- We said many weeks ago that there is no algorithm to determine if a given CFG is ambiguous.
 - Now we shall prove it

CFG Ambiguity

- Given a CFG, the problem of whether this grammar is ambiguous is unsolvable.
 - Reduce PCP to Ambiguity.
 - Meaning:
 - Take an instance of PCP and convert it to a CGF G such that:
 - G is ambiguous iff the instance of PCP has a solution.

CFG Ambiguity

- · Instance of PCP
 - 2 Lists of strings A & B, all strings ∈ Σ*
 - $A = (w_1, w_2, ..., w_n)$
 - B = $(x_1, x_2, ..., x_n)$
- · Build a CFG, G with
 - Terminal set that includes Σ plus special symbols $\{a_1, a_2, ... a_n\}$ which represent indicies into lists A & B

CFG Ambiguity

- · Instance of PCP
 - 2 Lists of strings A & B, all strings $\in \Sigma^*$
 - $A = (w_1, w_2, ..., w_n)$
 - $B = (x_1, x_2, ..., x_n)$
- · Productions of G
 - $-A \rightarrow w_1Aa_1 \mid w_2Aa_2 \mid ... \mid w_nAa_n$
 - $\ A \mathop{\rightarrow} w_1 a_1 \mid w_2 a_2 \mid \ldots \mid w_n a_n$
 - $-B \rightarrow x_1Ba_1 \mid x_2Ba_2 \mid \dots \mid x_nBa_n$
 - $\ B \mathop{\rightarrow}\nolimits x_1 a_1 \mid x_2 a_2 \mid \ldots \mid x_n a_n$
 - $-S \rightarrow A \mid B$

CFG Ambiguity

- Must show that G is ambiguous iff PCP instance has a solution.
 - Assume PCP has a solution (i1,i2, ...,im)
 - Consider the derivations
 - $S \Rightarrow w_{i1} Aa_{i1} \Rightarrow w_{i1} w_{i2} Aa_{i2} a_{i1} \Rightarrow ... \Rightarrow$
 - $w_{i1}\,w_{i2}\ldots\,w_{im}\,A\,\,a_{im}\,\ldots a_{i2}a_{i1} \Rightarrow w_{i1}\,w_{i2}\ldots\,w_{im}a_{im}\ldots a_{i2}a_{i1}$
 - $S \Rightarrow x_{i1} Ba_{i1} \Rightarrow x_{i1} x_{i2} Aa_{i2} a_{i1} \Rightarrow ... \Rightarrow$
 - $x_{i1} x_{i2} \dots x_{im} A a_{im} \dots a_{i2} a_{i1} \Rightarrow x_{i1} x_{i2} \dots x_{im} a_{im} \dots a_{i2} a_{i1}$
 - Since (i1,i2, ...,im) is a solution to PCP, $w_{i1}w_{i2}...w_{im}$ will be the same as $x_{i1}x_{i2}...x_{im}$, thus we have 2 separate derivations for the same string
- · G is ambiguous.

CFG Ambiguity

- Must show that G is ambiguous iff PCP instance has a solution.
 - Assume G is ambiguous
 - A given string could have only 1 derivation starting from A and 1 starting from B
 - · If there are 2 derivations, one must derive from A and the other
 - The string with 2 derivations will have the tail:

 - $a_{i1}a_{i2} \dots a_{im} \text{ for some } m \ge 1$ On the A derivation the head will be $w_{i1}w_{i2} \dots w_{im}$
 - On the B derivation the head will be $x_{i1}x_{i2}...x_{im}$

 - $\begin{array}{l} -\ w_{i1}w_{i2}...w_{im} = x_{i1}x_{i2}...x_{im} \\ -\ (i1,\ i2,\ ...im)\ is\ a\ solution\ to\ the\ PCP \end{array}$

CFG Ambiguity

- Finally,
 - Since PCP is unsolvable, so too is the problem of ambiguity.
 - SA ≤ HALTING ≤ MPCP ≤ PCP ≤ ambiguity

Summary

- Solvable vs Unsolvable problems
- An unsolvable problem
 - Self-accepting
- Reducing one language to another
 - Rice's Theorem
 - Post Correspondence Problem
 - Ambiguity of CFGs.
- Questions?

The Turing Machine

- · Motivating idea
 - Build a theoretical a "human computer"
 - Likened to a human with a paper and pencil that can solve problems in an algorithmic way
 - The theoretical machine provides a means to determine:
 - If an algorithm or procedure exists for a given problem
 - What that algorithm or procedure looks like
 - How long would it take to run this algorithm or procedure.

Next Time

• Computational Complexity and Intractability.