FICHE DE COURS 9

Dynamique du point

Ce que je dois être capable de faire après avoir appris mon cours

u	Définir les notions de force et de système isolé ou pseudo-isolé.
	Définir la notion d'inertie.
	Définir la notion de référentiel galiléen.
	Énoncer précisément les trois lois de Newton de la dynamique.
	Déterminer une position d'équilibre à partir de la nullité du vecteur-accélération ou de la résultante des forces.
	Représenter, donner la définition et énoncer les propriétés de la force d'interaction gravitationnelle.
	Représenter, donner la définition et énoncer les propriétés de la force d'interaction électrostatique.
	Donner l'expression de la force de Lorentz.
	Représenter, donner la définition et énoncer les propriétés du poids.
	Représenter, donner la définition et énoncer les propriétés de la force de rappel élastique.
	Représenter, donner la définition et énoncer les propriétés de la force de tension d'un fil idéal éventuellement engagé dans un poulie parfaite.
	Représenter, donner la définition et énoncer les propriétés de la force de frottements solides dans les cas de glissement et de non-glissement.
	Représenter, donner la définition et énoncer les propriétés de la force de frottements fluides dans les cas linéaire et quadratique.
	Énoncer la loi d'Archimède en indiquant les situations où il est nécessaire d'en tenir compte.
	Établir l'équation différentielle d'un pendule simple et la solution associée à un jeu donné de conditions initiales.
	Obtenir l'intégrale première du mouvement d'un pendule simple à partir de l'équation différentielle.
	Représenter ou interpréter le portrait de phase d'un pendule simple dans l'approximation linéaire (harmonique).
	Prédire grâce à l'adimensionnement de l'équation différentielle les expressions des paramètres caractéristiques d'un problème de mécanique.
	Connaître les correspondances formelles entre les grandeurs mécaniques et électriques en s'appuyant sur un oscillateur harmonique amorti : masse-ressort avec frottement linéaires, circuit RLC série.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Loi de la quantité de mouvement :

$$\boxed{ \frac{\mathrm{d}\overrightarrow{p}(M)_{/\mathcal{R}_g}}{\mathrm{d}t} = \sum_{i} \overrightarrow{F}_i } \text{ ou si } m = cte } \boxed{ m\overrightarrow{a}(M)_{/\mathcal{R}_g} = \sum_{i} \overrightarrow{F}_i }$$

 $\hfill \square$ Loi des actions réciproques :

$$\overrightarrow{F}_{B/A} = -\overrightarrow{F}_{A/B}$$
 et $\overrightarrow{F}_{B/A}$ colinéaire à \overrightarrow{AB}

☐ Position d'équilibre :

$$\overrightarrow{a}(M=M_{\mathrm{\acute{e}q}})=\overrightarrow{0}$$
 (Cinématique) ou
$$\sum_{i}\overrightarrow{F}_{i}(M=M_{\mathrm{\acute{e}q}})=\overrightarrow{0}$$
 (Dynamique)

 $\hfill \square$ Force gravitationnelle et électrostatique :

$$\vec{F}_{grav_{A/B}} = -\mathcal{G} rac{m_A m_B}{r^2} \vec{u}_r$$
 et $\vec{F}_{\'elec}(M_1/M_2) = rac{1}{4\pi\epsilon_0} rac{q_1 q_2}{r^2} \overrightarrow{u_r}$

 \square Force de Lorentz :

$$\overrightarrow{F}_{Lorentz} = q \left(\overrightarrow{E} + \overrightarrow{v} \wedge \overrightarrow{B} \right)$$

☐ Poids :

$$\overrightarrow{P} = m\overrightarrow{g}$$

☐ Tension d'un fil :

$$\overrightarrow{T} = T\overrightarrow{u_{\mathrm{int}}}$$
 avec $T \ge 0$ et $\|\overrightarrow{T}_{\mathrm{fil} \to A}\| = \|\overrightarrow{T}_{\mathrm{fil} \to B}\|$

☐ Force de rappel élastique :

$$\overrightarrow{F_{\text{élas}}} = -k(\ell(t) - \ell_0) \overrightarrow{u_{ext}}$$
 avec $k > 0$

 $\hfill \square$ Réaction d'un support :

$$||\overrightarrow{R}_T|| \le \mu_s ||\overrightarrow{R}_N||$$
 (pas de glissement)

et

$$\overrightarrow{R}_T = -\mu_c ||\overrightarrow{R}_N||\overrightarrow{u}_v \qquad \text{(glissement)}$$

☐ Frottements fluides :

Si la vitesse est faible
$$\overrightarrow{F} = -\alpha \overrightarrow{v}, \quad \alpha > 0$$
 et si la vitesse est élevée $\overrightarrow{F} = -\beta ||\overrightarrow{v}||\overrightarrow{v}, \quad \beta > 0$

☐ Poussé d'Archimède :

$$\overrightarrow{\Pi} = -m_f \overrightarrow{g} = -\rho_f V \overrightarrow{g}$$