SERVICE MANUAL

MODEL TX-710L COMES IN TWO VERSIONS DISTINGUISHED AS FOLLOWS:

Туре	Voltage	Remarks
HE	AC 220V and 240V (Switchable)	Europe model
нв	AC 220V and 240V (Switchable)	United Kingdom model

CONTENTS

1.	SPECIFICATIONS	2
2.	FRONT PANEL FACILITIES	2
3.	BLOCK DIAGRAM	4
4.	CIRCUIT DESCRIPTIONS	5
5.	PARTS LOCATION	11
6.	ADJUSTMENTS	12
7.	EXPLODED VIEWS	16
8.	SCHEMATIC DIAGRAM, P.C. BOARDS CONNECTION DIAGRAM AND	10
	PARTS LIST	
9.	PACKING	25

LINE VOLTAGE SELECTION

Line voltage can be changed as follows:

- 1. Disconnect the AC power cord.
- 2. Remove the bonnet case.
- 3. Take out the fuse from the P.C. board.
- 4. Re-install the fuse in the correct voltage indication.
- 5. Stick the line voltage label on the rear panel.

Description	Part No.
220V label	AAX-193
240V label	AAX-192

1. SPECIFICATIONS

FM Tuner Section Usable Sensitivity	Signal-to-Noise Ratio
MONO 16dBf (3.5μV) STEREO 38dBf (44μV) Signal-to-Noise Ratio (at 85dBf) 78dB MONO 75dB Signal-to-Noise Ratio (DIN) 71dB MONO 71dB STEREO 62dB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Distortion (at 65dBf) MONO 1kHz; 0.08% STEREO 1kHz; 0.15% Distortion (DIN) 1kHz; 0.08% MONO 1kHz; 0.15% Capture Ratio 1dB Alternate Channel Selectivity (400kHz) 60dB Stereo Separation 1kHz; 40dB Frequency Response 20Hz to 15kHz + 0.2 dB Spurious Response Ratio 65dB Image Response Ratio 45dB	Audio Section Output (Level) FM (100% MOD) 650mV AM (30% MOD) 150mV Miscellaneous Power Requirements HE model a.c. 220V, 50/60Hz HB model a.c. 240V, 50/60Hz Power Consumption 16W Dimensions 420(W) x 94(H) x 270(D)mm 16-9/16(W) x 3-11/16(H) x 10-5/8(D) in
IF Response Ratio	Weight (Without Package) 3.3kg (7lb 4oz) Furnished Parts FM T-type antenna
LW Tuner Section Sensitivity IHF, ferrite antenna $450\mu V/m$ IHF, external antenna $45\mu V/m$ Selectivity	Operating instructions

2. FRONT PANEL FACILITIES

1) POWER SWITCH

When this switch is set to the ON position, power is supplied to the tuner's main circuits. The unit's power switch is geared to selecting the transformer's secondary and so even at the STAND-BY position, the unit's circuitry will work as long as the power cord is connected to the power outlet. For this reason, the programmed broadcasting stations will not be erased.

Disconnect the power cord from the power outlet when you do not plan to use the unit for a long period of time. When it has been disconnected, the broadcasting stations remain programmed for about 3 days.

② POWER INDICATOR

This comes on as soon as the tuner's power switch is set to ON.

③ SIGNAL INDICATORS

These indicators "1" through "5" light up in accordance with the strength of the signal.

4 FM STEREO INDICATOR

This indicator lights up when the tuner is receiving a stereo program.

5 FREQUENCY DISPLAY

This indicates the tuned frequency.

6 FM MODE SWITCH

This is used to select the FM reception mode.

AUTO . . When an FM broadcast is being received in stereo, the unit will automatically set reception to mono in the event of an FM mono broadcast.

MONO . . If there is a great deal of noise or if the broadcasting station signals are weak during reception at the AUTO position, set the switch to this position.

7 FM LOCAL SWITCH

This selects the stop level with auto tuning.

When this switch is depressed to the LOCAL position, a broadcasting station with a relatively strong input level is chosen when the tuning switch is depressed and the frequency band is scanned, and the scanning operation stops.

When the switch is set to the OFF position (the indicator goes off), frequency scanning stops even with broadcasting stations with a weak input level, and the station's program can be received.

When the power switch is at the ON position, the FM LOCAL switch will always return to the OFF position.

8 MEMORY SWITCH

This is depressed when presetting a broadcasting station into one of the station call switches. For presetting, depress the memory switch and then depress the station call switch which will be used for presetting the station while the indicator above the memory switch remains lighted (about 5 seconds).

STATION CALL SWITCHES

These are depressed to call out preset broadcasting stations and to preset the stations.

To call out a station, first set the desired frequency band using the function switch and then depress the desired switch.

NOTE:

If the AM selector switch is set to a position which does not correspond to the broadcasting wave band with the preset station with AM station recall, the numbers on the frequency display will change but only interstation noise will be heard.

10 FUNCTION SWITCH

This switch is used to select the type of broadcasting waves.

FM For reception of FM broadcasting. AM For reception of AM broadcasting.

11 AM SELECTOR SWITCH

This switch is used to select the type of AM broad-casting waves.

MW For reception of MW broadcasting. LW For reception of LW broadcasting.

NOTE:

This switch can be operated only when the function switch is at AM position.

12 AUTO TUNING DOWN SWITCH

When this switch is depressed lightly, the reception frequency automatically scans the frequencies below that on the frequency display. As soon as a station is received, the frequency display stops and the optimum tuned state is held by the AFC circuit.

NOTE:

If the switch is kept in the depressed position, scanning continues without automatically stopping even when there are broadcasting stations. When the lower limit of the frequency band is reached, scanning jumps to the highest frequency and then proceeds again down the band.

① AUTO TUNING UP SWITCH

When this switch is depressed lightly, the reception frequency automatically scans the frequencies above that on the frequency display. As soon as a station is received, the frequency displays stops and he optimum tuned state is held by the AFC circuit.

NOTE:

If the switch is kept in the depressed position, scanning continues without automatically stopping even when there are broadcasting stations. When the upper limitor the frequency band is reached, scanning jumps to he lowest frequency and then proceeds again up the band.

3. BLOCK DIAGRAM

4. CIRCUIT DESCRIPTIONS

The TX-710L tuner stage features an autotuning mechanism incorporating variable capacitor diodes (vari-caps) and voltage synthesizer IC circuitry. In addition, it is also possible to preset up to 7 different broadcasting stations in both the AM (MW & LW) and FM bands.

FM TUNER

Front-end

The FM front-end in the TX-710L consists of a J-FET equipped single-stage RF amplifier and a variable capacitor diode type tuning capacitor (equivalent to a normal 3-ganged tuning capacitor). The basic operation involves the conversion of digital codes to analog voltages by a D-A converter made of ladder resistor and an LSI-incorporated 10-bit up/down counter, and applying this voltage to the variable capacitor.

IF Amplifier and Detector

The FM IF amplifier includes 2 ceramic filters, a differential amplifier equipped IC (HA1201), and an FM IF system IC (PA3001-A). In addition to filter loss compensation, HA1201 also serves as a limiter. PA300-1 contains the IF amplifier, limiter, and detector (quadrature detector) stages.

FM Stereo Decoder

The FM stereo decoder is incorporated in the PLL MPX IC (PA4006-A) which has been designed to include the functions formerly handled by PA1001-A (FM stereo decoder IC) and PA1002-A (AF muting IC). This FM decoder features the "direct through & chopper system" for improved S/N ratio and reduced distortion.

AM TUNER

The AM tuner stage features an IC (HA1138) incorporating the RF amplifier, mixer, local OSC, IF amplifier and detector, AGC circuits. The tun-

Fig. 4-1 AM tuner block diagram

ing circuit consists of variable capacitor diodes equivalent to a conventional 2-ganged tuning capacitor. As in the FM tuner, a voltage obtained by D-A conversion (ladder resistor and LC7207 LSI) is applied to this variable capacitor diodes. In addition, the S-curve involved in fine tuning by the auto tuning system is detected by a special ratio detector circuit.

VOLTAGE SYNTHESIZER

The "heart" of the auto-tuning mechanism is served by the LC7207 LSI which contains the AFC circuit (where the S-curve characteristics are employed for fine tuning purposes) in addition to the preset, auto-search tuning, auto-stop, and last-memory functions for up to 7 separate broadcasting stations in each of the FM and AM bands.

COUNTER

During FM mode output signals from the local oscillator are passed via an FET buffer amplifier, divided by a 1/100 prescalar (M54459L), and applied to the counter IC (LC7258).

During AM mode local oscillator output signals are passed via another FET buffer amplifier, but are then applied directly to the counter IC.

The input signal is compared with a reference signal (4MHz) generated by an external oscillator (i.e. not incorporated in the LC7258 LSI), resulting in the tuned frequency being displayed in 50kHz steps during FM mode, and 1kHz steps during AM mode.

FLUORESCENT TUBE INDICATOR

The fluorescent tube indicator employed here is of the static drive type. In addition to the ned frequency, this display also includes "MHz" during FM mode, and "kHz" during MW and LW reception.

FM AUTO-STOP LEVEL CONTROL STAGE (FM LOCAL SWITCH)

During FM auto-search tuning mode, weak distant broadcasting stations are ignored. Only stations with an antenna input level above a certain fixed value will be tuned. However, if the FM LOCAL switch is pressed (ON position) and the corresponding indicator LED turned on, the frontend gain is reduced by the LC7207 L\$1. Then following auto-stop, the front-end gain is increased again back to the former level to ensure high sensitivity reception of the tuned broadcasting station. This function is turned on and off alternately by a flip-flop circuit in conjunction with the μ PD4011C IC every time the FM LOCAL

switch is pressed. Note, however, that it is always switched to the OFF position when the power supply is turned on.

POWER SUPPLY BACK-UP CIRCUIT

With the power switch in the TX-710L connected to the secondary coil of the power transformer, all frequencies stored in the STATION CALL channels, and also the frequency of the last-used channel, will be stored in the LC7207 LSI when the power switch is left in the STAND-BY position. And even if the power cord is unplugged from the AC mains socket (thereby cutting the power to the primary coil) the LSI memory will be retained for at least 3 days by charge stored in a capacitor in the LSI power supply circuit.

LSI (LC7207) Terminals and Functions

The functions of the various terminals of the voltage synthesizer (LC7207) are described in brief below.

• Pin 1 (CR1)

An oscillator circuit is formed by connecting this terminal to an external RC time constant circuit. The signals generated serve as the basic clock signals for the LSI.

• Pin 2 (CR2)

A timer circuit is formed by connecting this terminal to an external RC time constant circuit. This timer is used to determine the pulse width of the MUTE output signals employed during band switching.

• Pin 3 (BUC)

When a low level signal is applied to this terminal (LSI internal memory back-up control), all functions apart from "memory protect" are cancelled.

• Pin 5 (FM)

The TX-710L is switched to FM mode when a low level input signal is applied to this terminal, this status being maintained even if the terminal is subsequently switched to high level (low level holding time: 5ms min).

• Pin 6 (MW)

Likewise, the TX-710L is switched to AM mode when a low level input signal is applied to this terminal, this status being maintained even if it is switched to high level soon afterwards (low level holding time: 5ms min).

• Pin 10 (CV out)

This is the analog switch output terminal where the output voltage applied to the variable capacitor appears.

• Pin 11 (CV in)

This is the analog switch input terminal to which the R-2R ladder output voltage is applied.

• Pin 13 (S-curve)

FM and AM S-curve voltages (representing the degree of change in detector DC level when tuning to and away from a station) are applied to this AFC (Automatic Frequency Control) control signal input terminal.

• Pin 14 (UP)

When a low level signal is applied to this autosearch tuning input terminal, UP search tuning is commenced. This tuning mode is stopped again following AFC operation when the S-curve voltage is applied to pin 13 (UP search low level holding time: 5ms min). If the low level signal is applied continually during the UP search tuning mode, the tuning operation will continue even if the S-curve voltage is applied to pin 13.

Fig. 4-2 Power supply back-up circuit

Fig. 4-3 LC7207 Top view

• Pin 15 (DOWN)

Likewise, the application of a low level signal to this auto-search tuning input terminal results in the start of DOWN search tuning. The DOWN tuning mode is also stopped after AFC operation following the application of the S-curve voltage to pin 13 (DOWN search low level holding time: 5ms min). In this case, too, the search tuning mode is maintained if the low level signal is applied continually, even if the S-curve voltage is applied to pin 13.

• Pin 17 (MEMO)

The preset memory input terminal. Memory enable status is maintained only while a low level signal is applied to this terminal.

• Pin 19 (DX-LO)

This output terminal is used in the control of the reception sensitivity during auto-search mode. It is switched to low level only during search mode, and reverted to high level at all other times.

• Pin 21 (V_{DD})

The LSI power supply terminal.

• Pin 22 (MUTE)

During auto-search tuning and preset tuning modes, and when switching from one band to another, the high level output signal appearing at this terminal is used as the muting control signal.

• Pin 23 (F-Tune)

The 8-step PWM (pulse width modulation) output signal appearing at this terminal is used in fine tuning operations. (At all other times, a 50% duty signal, T=1.5ms, is generated). The output signal is passed via an externally con-

nected low-pass filter to form the compensatory voltage for fine tuning purposes.

• Pin 24 (Vref)

Reference voltage (for D-A converter, wind comparator and reference comparator).

• Pin 25 - Pin 34 (B10 - B1)

Outputs for the 10-bit up/down counter. With the R-2R ladder resistor connection, output signals are D-A (digital analog) converted.

• Pin 35 (V_{SS})

The LSI ground terminal.

• Pin 36 - Pin 42 (CH1 - CH7)

The frequencies of broadcasting stations stored in the memory are tuned by the corresponding terminal being switched to low level. And when the MEMO terminal is switched to low level, the frequency of the station tuned at that time will be stored in the memory. (Low level holding time for tuning and memory: 20ms min).

• Pins 12 and 16

FM and AM tracking purposes.

NOTE:

All other pins not included in the above list are not employed in the TX-710L.

VOLTAGE SYNTHESIZER SYSTEM (LSI LC7207)

Auto-Tuning (Fig 4-4)

When either switch S8 (UP) or switch S7 (DOWN) is pressed, the corresponding LSI (LC7207) terminal pin 15 or pin 14 is connected

Fig. 4-4 Auto-tuning

to ground, resulting in the terminal being switched to low level. The control logic circuitry incorporated in the LSI is thereby activated, resulting in the start of either UP or DOWN search tuning operations. The subsequent sequence of events following the pressing of the UP switch (S8) is described below.

The 10-bit UP/DOWN counter (rough tuning) is activated by an instruction from the control logic circuit, resulting in the digital code outputs stored in the memory circuit being applied to pins 25 to 34. This 10-bit code is D-A converted (digital to analog conversion) by the R-2R ladder resistor, and then passed one step (1/1024) at a time as tuning voltage (V_T) .

This V_T is progressively increased one step at a time, resulting in the tuning frequency also being increased stepwise. And when the frequency of a broadcasting station is approached, the S-curve voltage passes the V_{SL} a point as shown in Fig. 4-4. With further increases in the V_T voltage, the S-curve voltage starts to decline again, passing through point V_{SL} b. Then with continued decrease, a counter voltage at V_{SH} c is encountered. After completing these 3 steps from a to c, the auto-search mode is halted (rough tuning).

A 3-bit U/D counter employed for fine tuning purposes is then activated by an instruction from the control logic incorporated in the LC7207 LSI, resulting in the AFC operation (fine tuning) being started up by the S-curve.

On the other hand, when S7 (DOWN) is pressed, the procedure described above occurs in the reverse order. And when the frequency of a broadcasting station is approached, the S-curve voltage passes via the V_{SH} A and B S-curve voltage points and encounters V_{SL} at C. The search is stopped automatically, resulting in the start of the AFC operation.

AFC Operation (Fig. 4-5)

The AFC operation makes use of the S-curve characteristics (voltage) of the detector circuit during both FM and AM reception. In the AM circuit, a ratio detector S-curve generator circuit is used, an output being obtained with a sufficiently high enough gain from the DC amplifier (see Fig. 4-4).

If for some reason, the tuned frequency is displaced to the high side of the broadcasting frequency, the S-curve voltage will generate a minus potential. $V_{\rm SL}$ and $V_{\rm SH}$ represent the upper and lower threshold levels of the LC7207 comparator shown in Fig. 4-5. Once the minus potential drops below the V_{SH} threshold, an instruction from the control logic is passed to the 10-bit U/D counter (for rough tuning) and the 3-bit U/D counter (for fine tuning). This results in control of the variable capacitor, leading to change in the tuning voltage (V_T) in order to recover the precise tuning position. If, on the other hand, the frequency is displaced on the low side, the control logic circuit is again activated (but due to a positive potential exceeding the $V_{\rm SL}$ threshold) resulting in the retention of the precise tuning point.

• S-Curve Detector Circuit (Fig. 4-6)

When a broadcasting station is tuned by autotuning, the exact tuning position is attained by AFC operation. The S-curve required for this AFC operation is detected in the following way.

The IF output signal is obtained from pin 7 of Q7 (PA3001-A) during FM reception, and from pin 11 of Q9 (HA1138) during AM reception. This IF is amplified by a differential amplifier circuit, and the S-curve subsequently detected by the ratio detector. S-curve displacement (i.e. shift in the center voltage of the S-curve) in both FM and AM mode is compared with a reference voltage

Fig. 4-5 S-Curve characteristics

Fig. 4-6 S-Curve detector circuit

(LC7207 $V_{ref})$ in Q12 ($\mu PC4558C),$ and the consequent error then applied to pin 13 of Q13 as the AFC operation control signal.

IC · Q19 (μ PD4011C) Functions

The NAND gate IC incorporated in Q19 forms a one-shot flip-flop which operates in combination with several other external circuit components for FM LOCAL and MEMORY control purposes.

FM Local

(Note that FM LOCAL and FM MUTING involve the same type of operation).

Pin 3 of Q19 is switched to low level at the same time that the POWER switch is turned on. Q17 is thus turned on and the Q1 gate is dropped to 0V potential (normal bias), thereby resulting in normal front-end operation. In addition, switching pin 3 of Q19 to low level also keeps Q22 and D43 turned off.

If the FM LOCAL switch (S5) is then turned on, pins 6 and 1 of Q19 are also switched to low level, resulting in the pin 3 output being inverted to high level, and Q17 being turned off. The -B line voltage is thus applied to Q1 via R528 and R23 as reverse bias, thereby reducing the Q1 gain, and subsequently the sensitivity of the front-end. Any

broadcasting frequencies below a certain fixed level will not, therefore, be received.

Pin 19 of Q13 is normally at high level, being switched to low level only during auto-search tuning mode. Once a broadcasting station is tuned and the auto-search mode is stopped, the pin 19 output is switched back to high level, and Q27 consequently turned on. This results in Q17 being turned on, thereby cancelling the reverse bias applied to Q1. With Q1 operating normally again, the broadcasting frequency will be received at high sensitivity.

MEMORY and STATION CALL

Frequencies of tuned broadcasting stations are stored in the memory by the following procedure.

As can be seen in Fig. 4-7, this circuit is also formed by a flip-flop. When the MEMORY switch S6 is turned on, pin 8 of Q19 is switched to low level, resulting in the output of Q19 pin 10 being switched to high level for a fixed period of time (determined by the C504/R510 time constant—memory enable period: approx. 5 seconds). This results in Q23 being turned on and pin 17 of Q13 being switched to low level, thereby enabling tuned frequencies to be stored in the memory block

Fig. 4-7 FM local, memory and station call circuit

inside the LSI.

If the STATION CALL switch (preset switch) S9 is then pressed, +B will be connected to ground via R512, D28, D47 and D59, resulting in pin 13 of Q19 being switched to low level, and pin 10 being reset to high level. Q23 will thus be turned on and pin 17 of Q13 switched to low level (and the tuned broadcasting frequency will thus be stored in the memory).

Pins 36 to 42 of Q13 are the preset input terminals. When the S9 switch is pressed, the V_{DD} voltage (IC reference voltage) is passed to ground via R428, S9 and D59, resulting in a drop in the voltage being applied to pin 39 of Q13. Pin 39 is thus switched to low level, and the tuned broadcasting station is thereby stored in CH1.

Station Calling

The frequencies of preset broadcasting stations are retrieved in the following way.

When a STATION CALL switch (S9-S15) is pressed, pin 17 of Q13 is switched to low level. An instruction is thus issued from the LSI (LC7207) control logic, resulting in the activation of the 10-bit U/D counter in accordance to the frequency data stored in the memory block. Then the memory stored frequency is hunted by ladder resistance, and the U/D counter again activated for AFC operation and fine tuning purposes.

DISPLAY CIRCUIT

This LSI controls the display of tuned FM frequencies (5 digit display to the nearest 50kHz) and tuned AM frequencies (4 digit display to the nearest 1kHz).

During FM reception, the FM LOCAL signal (the actual tuned frequency + IF frequency) divided by 100 in the prescalar IC (M54459L) is applied to pin 6 of Q25 (LS7258). A reference frequency (4MHz) is generated on pins 19 and 20 of Q25 by a crystal oscillator. This reference

Fig. 4-8 Display circuit

frequency is then divided by the LSI counter to a frequency which permits direct comparison with the input signal applied to pin 6.

Upon comparison with the pin 6 input signal, the output is passed to the frequency counter. A latch circuit stores each signal temporarily for a brief period while waiting for the previous frequency display to be completed. The signal from the frequency counter is then displayed as the tuned frequency in the fluorescent display tube by command from the segment driver circuit.

Frequency display discrepancies (in 50kHz units in the FM band, and 1kHz units in the AM band) caused by drift in the IF circuit are corrected by the IF frequency fine tuning circuit where frequency shifts are converted to voltage levels in the VR connected to pins 13 and 14. In other words, frequency drift is corrected by voltage adjustment in the pin 13/14 VR.

Fig. 4-9 LC7258 Block diagram

5. PARTS LOCATION

Front Panel View

 The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Rear Panel View

Front Panel with Panel Removed

Top View with Top Plate Removed

6. ADJUSTMENTS

FM Tuner

- Connect the FM SG (FM signal generator) to the FM ANTENNA 300 Ω terminal via 300 Ω dummy antenna.
- Set the FUNCTION switch to the FM position, FM LOCAL switch to the OFF position.
- Connect a terminal no. 14 on the tuner assembly to the ground.
- Apply a DC voltage [0.7V \sim V. REF (8.6V)] across no.16 and ground of tuner assembly

	FM SG (400Hz	, 75kHz DEV)	Frequency	Adjustment	
Step	Frequency	Level	on the display	- spoint	Adjustment method
1	Apply a DC 0	.7V across termina	l no. 16 and ground		
2	87MHz	80 dB		ТЗ	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
3	Apply a DC 8	.6V across termina			
4	109MHz	80dB		тсз	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
5	Repeat steps 1	to 4 until both re	quirements are satis	fied.	
6	106MHz	80dB			
7	Adjust the app	olied voltage to ma	ximum level at pin 1	3 of IC (PA300	1-A).
8	106MHz	00.10	106MHz	TC1	Increase the voltage at pin 13 of IC (PA3001-A) to
9	TOOMINZ	20dB	(± 200kHz)	TC2	maximum level.
10	90MHz	80dB			
11	Adjust the app	olied voltage to max	kimum level at pin 1	3 of IC (PA300	1-A).
12	90MHz	20.40	90MHz	T1	Increase the voltage at pin 13 of IC (PA3001-A) to
13	90IVII 12	20dB	(± 200kHz)	T2	maximum level.
14	Repeat steps 6	to 13 both require	ements are statisfied		
15	98MHz	20dB	98MHz (±200kHz)	Т4	Increase the voltage at pin 13 of IC (PA3001-A) to maximum level.
16	No sig	gnal			
17	Adjust the app	lied voltage to max	imum level at pin 1	3 of IC (PA3001	I-A).
18	No si	gnal		T5 (A)	Obtain reading of DC 0V between terminals no. 30 and 31.
19	98МНz	20dB			
20	Adjust the app	lied voltage to min	imum level at pin 13	of IC (PA3001	-A).
21	98MHz	60dB	98MHz (±200kHz)	T5 (B)	Obtain minimum distortion in the demodulated output (OUTPUT).
22	Repeat steps 10	6 to 21 until both i	equirements are sat	sfied.	
23	No sig	nal			
24	Adjust the appl	ied voltage to max	imum level at pin 1:	3 of IC (PA3001	-A).
25	No sig	jnal		VR2	Obtain a reading of DC 4.75V (within ±200mV) between terminal no. 15 and ground.

FM Multiplex Decoder circuit

- Connect the MPX SG (FM multiplex signal generator) to the FM SG external modulator terminal.
- Set the FM SG output to 98MHz and 66dB (modulation mode to external), and tune the TX-710L to 98MHz.

Step	FM MPX SG	Adjustment point	Adjustment method		
1	No signal (unmodulated)	VR3	Obtain a 76kHz (within ± 250Hz) signal at terminal No.17.		
2	Pilot signal only 19kHz ±7.5kHz DEV.	VR4	Obtain minimum leakage of the 19kHz pilot signal at the OUTPUT terminal.		
3	Main: 1kHz, L+R, ±67.5kHz DEV. Pilot: 19kHz, ±7.5kHz DEV.	T4 (by up to 90° in either direction)	Reduce distortion in the output terminal to a minimum.		

Fig. 6-1 Adjustment of AM and FM tuner

AM Tuner MW Band

- Connect the AM SG (AM signal generator) to the AM ANTENNA terminal via $1k\Omega$ resistor.
- Set the FUNCTION selector to the MW position.
- Connect a terminal no.14 on the tuner assembly to the ground.
- Apply a DC voltage $[0.7V \sim V. REF (8.6V)]$ across no. 16 and ground of tuner assembly.

	AM SG (400Hz	, 30% MOD)	Frequency Adjustment			
Step	Frequency	Level	on the display	point	Adjustment method	
1	Apply a DC 0	.7V across termina	I no. 16 and ground.			
2	510kHz	100dB		Т7	Increase the voltage at pin 9 of IC (HA1138) to maximum level.	
. 3	Apply a DC 8	.6V across termina	l no. 16 and ground.			
4	1650kHz	100dB		TC7	Increase the voltage at pin 9 of IC (HA1138) to maximum level.	
5	Repeat steps	to 4 until both re	equirments are satisfi	ed.		
6	1400kHz	100dB				
7	Adjust the applied voltage to maximum level at pin 9 of IC (HA1138).					
8	1400kHz	40dB	1400kHz (±3kHz)	TC5	Increase the voltage at pin 9 of IC (HA1138) to maximum level.	
9	600kHz	100dB				
10	Adjust the app	olied voltage to ma	ximum level at pin 9	of IC (HA1138)		
11	60 0 kHz	40 dB	600kHz (±3kHz)	T102 (Bar-ANT)	Increase the voltage at pin 9 of IC (HA1138) to maximum level.	
12	Repeat steps 6	to 11 until both	equirements satisfied	J.		
13	1000kHz	40dB			Fine tuning (1000kHz)	
14	Connect the te	erminals no.23 to r	no.27 tuner assembly			
15	No sign	al		VR1	Obtain a reading of DC 4.75V (within ±200mV) between terminal no.15 and ground.	
16	Adjust the app	olied voltage to ma	ximum level at pin 9	of IC (HA1138)		
17	1000kHz	40dB	1000kHz (±3kHz)	TA8(A)	Obtain a reading of DC 4.75V (within ±200mV) between terminal no.15 and ground.	

Fig. 6-2 Adjustment of counter

AM Tuner LW Band

- Connect the AM SG (AM signal generator) to the AM ANTENNA terminal via $1k\Omega$ resistor.
- Set the FUNCTION selector to the LW position.
- Connect a terminal no.14 on the tuner assembly to the ground.
- Apply a DC voltage $[0.7V \sim V. REF (8.6V)]$ across no.16 and ground of tuner assembly.

	AM SG (400Hz,	30% MOD)	Frequency	Adjustment	
Step	Frequency	Level	on the display	point	Adjustment method
1	Apply a DC 0.	7V across termina	I no. 16 and ground.		
2	140kHz	100dB		Т6	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
3	Apply a DC 8.	6V across termina	I no. 16 and ground.		
4	380kHz	100dB	• • • • •	TC6	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
5	Repeat steps 1	to 4 until both re	quirements are satisf	ied.	
6	350kHz	100dB			
7	Adjust the app	lied voltage to ma	ximum level at pin 9	of IC (HA1138)	•
8	350kHz	40dB	350kHz (±3kHz)	TC4	Increase the voltage at pin 9 of IC (HA1138) to maximum level.
9	150kHz	100dB	,		
10	Adjust the app	lied voltage to ma	ximum level at pin 9	of IC (HA1138)	
11	150kHz	40dB	150kHz (±3kHz)	T102 (Bar-ANT)	Increase the voltage at pin 9 IC (HA1138) to maximum level.
12	Repeat steps 6	to 11 until both	requirements satisfied	d.	

Counter

FM

- Connect the FM SG (FM signal generator) to the FM ANTENNA 300Ω terminal via 300Ω dummy.
- Set the FUNCTION selector the FM position, FM LOCAL switch to the OFF position.
- Connect an $12k\Omega$ resistor between 34 pin and ground.

	FM SG (400Hz,	, ±75kHz DEV)	Frequency	Adjustment	A discourant and a d	
Step	Frequency	Level	on the display	point	.Adjustment method	
1	98MHz	60dB	98MHz (±200Hz)	VR5	 Tune by auto-search tuning. Then adjust VR5 so that the 100kHz unit in the digit: display (98.00MHz) stops brinking on and off upon auto-stop. 	

AM

- Connect the AM SG (AM signal generator) to the AM ANTENNA terminal via 1kΩ resistor.
- Set the FUNCTION selector to the AM (MW) position.
- Connect an $33k\Omega$ resistor between 34 pin and AM + B TP.

Step	AM SG (400Hz	, 30% MOD)	Frequency	Adjustment	A dissaturant mathed	
Step	Frequency	Level	on the display	point	Adjustment method	
1	1000kHz	60dB	1000kHz	VR6	Tune by auto-search tuning. Then adjust VR6 so that the 1kHz unit in the digital ₲s-play (1000kHz) stops brinking on and off upon auto-trop.	

NOTES:

- Parts without part number cannot be supplied.
 The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

Parts List

Key No.	Part No.	Description	Key No.	Part No.	Description
1.	VBZ30P060FMC	Screw	6.	ANE-291	Bonnet case
2.	ANB-908	Front panel assembly	7.		Bottom plate
3,	FBT40P080FZK	Screw	8.	ABA-246	Screw
4.	AAD-200	Lever knob	9.	AEC-609	Foot assembly
5.		Acrylic plate A			

8. SCHEMATIC DIAGRAM, P.C. BOARDS CONNECTION DIAGRAM AND PARTS LIST

External Appearance of Transistors and ICs

2SC461 2SC535

HA1138 PA3001

B C E

2SC1384

LC7207 LC7258

2SD836A

PA4006-A

2SK61

M54459L

2SK168

LB1416

Interior Components

Parts List

Key No.	Part No.	Description	Key No.	Part No.	Description
1.		Side frame L	21.	AKP-016	Coaxial socket
2.		Panel stay	22.		Rear panel
3.		LED socket	∱ 23.	ADG-039	AC power cord (HE type)
4.	VBZ30P060FMC	Screw	<u>^</u> 23.	ADG-051	AC power cord (HB type)
5.	PMZ30P060FMC	Screw	24.	ATX-019	Bar-antenna assembly
			25.	ADE-033	Connection cord
<u> </u>	AEK-402	Fuse T1A (FU1)			
<u> </u>	GWX-503	Fuse assembly	26.	AEC-327	Strain relief
. 8.	VBZ30P080FMC	Screw	27.	BBT30P080FZK	Screw
<u> </u>	ATT-708	Power transformer	28.	PMT30P060FZK	Screw
1 0.	VBZ40P080FZK	Screw	29.	VBZ30P100FZK	Screw
			30.		FL cover
11.	GWX-504	FL assembly			
12.	GWS-241	Switch assembly B	31.		Felt A
1 3.	AEC-510	Nylon rivet	32.		Felt B
14.	GWS-240	Switch assembly A	33.		P.C. board
1 5.		PCB holder A	34.	ABE-061	Washer
16.	AEL-320	LED D1			
17.	GWE-136	Tuner assembly			
18.		Side frame R			
19.					
2 0.		PCB holder B			

8.3 PARTS LIST

NOTES:

- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J = 5%, and K = 10%). 56 x 10¹ 561 RD¼PS ⑤⑥①J 47 x 10³ 473 RD¼PS ④⑦③J $47k\Omega$
- 0R5 RN2H 🖸 🖪 🖯 K 1Ω Ex. 2 When there are 3 effective digits (such as in high precision metal film resis-
- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

 $5.62k\Omega$ 562×10^{1} 5621....RN4SR 5621 F

Miscel	laneous	Parts
--------	---------	-------

art No.	Symbol & Description	
GWE-136	Tuner assembly	
GWS-240	Switch assembly (A)	
GWS-241	Switch assembly (B)	
GWX-503	Fuse assembly	
GWX-504	FL assembly	

OTHERS

Part No.	Symbol & Description	
≜ AEK-402	FU1	Fuse T1A
≜ ADG-039		AC power cord (HE type)
<u></u> ADG-051		AC power cond (HB type)
<u> </u>	T101	Power transformer
AKP-016		Coaxial socket
ATX-019		Bar-antenna
ADG-033		Connection cord

TUNER ASSEMBLY (GWE-136)

Parts List

TRANSFORMERS COILS

S, COILS		CKDYB 221K 50	C313
		CKDYB 472K 50	C401
Symbol &	Description		
		CKDYB 682K 50	C407
T1	FM antenna coil	CKDYF 103Z 50	C2, C3, C5, C8, C9, C12, C15, C21-C22
T2	FM high frequency coil		C27-C30, C107, C113, C114,
Т3	FM OSC coil		C305-C307, C309, C318, C321, C510,
T4	FM IFT		C511, C507
T5	FM DET, transformer		,
		CKDYF 223Z 50	C101, C102, C105, C315,
T6	LW OSC coil:		C402-C405, C513, C508, C509
T7	AM OSC coil	CKDYF 473Z 50	C104, C112, C316, C409-C111, C103
T8	AM DET, transformer	CKDYX 473M 25	C201, C311
		CQMA 683K 50	C310
F1, F2	FM ceramic filter	CQMA 332J 50	C203, C204
F3	AM ceramic filter	CQSH 101K 50	C301
F4, F5	Low pass filter	CEA 010M 50L	C211-C213, C207, C208, C109, C323
-	T1 T2 T3 T4 T5 T6 T7 T8 F1, F2 F3	T1 FM antenna coil T2 FM high frequency coil T3 FM OSC coil T4 FM IFT T5 FM DET. transformer T6 LW OSC coil T7 AM OSC coil T8 AM DET. transformer F1, F2 FM ceramic filter F3 AM ceramic filter	Symbol & Description

Part No.

Part No.

T24-028

CAPACITORS

ACM-008

ACM-006

ACM-010

ACM-009

CCDRH 080D 50

CGB R47K 500 CCDCH 020C 50

CCDCH 100D 50

CCDCH 150J 50

CCDCH 220J 50

CCDCH 330J 50

CCDPH 120J 50

CCDTH 330J 50

CCDUJ 120J 50

CCDTH 050C 50

CCDSL 101J 50

CKDYB 102K 50

Symbol & Description

Symbol & Description

TC3

TC5

C1, C4, C13

C7, C17

C317

C16

C24

C14

C11

C303

C322

C304

C18, C20

C6, C106, C502, C503

TC1, TC2 Film trimer

RF coil

Ceramic trimer

Film trimer capacitor

TC4, TC6, TC7 Film trimer capacitor

Part No.	Symbol & Description	
CEA 100M 50L	C210, C308, C411, C506, C512, C505	
CEA 101M 10L	C19, C23, C202, C501	
CEA 101M 25L	C26, C215	
CEA 2R2M 50L	C25, C205, C206, C408, C412	
CEA 220M 25L	C209, C319	
CEA 330M 16L	C504	
CEA 470M 10L	C110, C314	
CEA 472M 10L	C406	
CQSH 431K 50	C302	
CEA 4R7M 50L	C807	
ACG-018	C214 Ceramic capacitor	
Note:	When ordering resistors, convert the	
	resistance value into code form, and	
RESISTORS	then rewrite the part no. as before.	
Part No.	Symbol & Description	
RD%PM 🗆 🗆 J	R1-R24, R101-R118, R201-R218,	
	R220, R301–R304, R306–R315,	
	R401–R431, R433–R436, R501,	
	R503—R507, R509—R532, R221	
RD%VM 102J	R437	
110/4 9 191 1023	11437	

R219

R432

VR3

VR4

Radder resistor

Semi-fixed

Semi-fixed

VR1, VR2 Semi-fixed

SEMICONDUCTORS

RN%PQ DDDD F

ACN-120

ACP-078

C92-049

ACP-086

Part No.	Symbol & Description
2SK61-Y	Q1
2SC535	Q2
2SC461	Q3, Q10, Q11
(2SC710	Q10, Q11)
2SK168	Q4, Q8
HA1201	Q5
2SA733A	Q6, Q15, Q17
PA3001-A	Q7
HA1138	Q9
μPC4558C	Q12
(NJM4558DV)	
LC7207	Q13
PA4006-A	Q14
2SC945-A	Q16, Q27
2SC1384	Q18
μPD4011C	Q19
(MB84011M)	
M54459L	Q26
1SV68-08	D1, D2, D5
KZL-61	D3
1\$2076	D4, D7, D8, D12–D15, D19–D26, D28, D60–D64
(1S2473)	
(1S1555)	

Part No.	Symbol & Description	
MZ-047	D6	
KV1226-Y	D10	
KZL083	D27, D65	

SWITCHES AND OTHER

Part No.	Symbol	Symbol & Description	
ASK-174	s2	Lever switch	
ASX-142	S4	Slide switch	
A\$X-140		Remote switch	
AKA-016		Terminal (ANTENNA)	

SWITCH ASSEMBLY A (GWS-240)

Parts List

CAPACITORS

Part No.	Symbol & Description	
CEA 101M 25L	C601, C602, C609, C610	
CEA 101M 10L	C606, C607	
CEA 101M 35L	C604	
CEA 102M 25L	C608	
CEA 470M 25L	C605	
CEA 470M 50L	C603	
CQMA 104K 50	C611	
Note:	When ordering resistors, convert the resistance value into code form, and	
RESISTORS	then rewrite the part no. as before.	
Part No.	Symbol & Description	
RD¼PM □□□ J	R601, R602, R604-R607	
RD%PS 331.I	R603	

SEMICONDUCTORS

art No.	Symbol & Description		
<u></u> 2SD836A	Q20		
2SC1384	Q21		
1S2076	D29-D32		
(1\$2473)			
(181555)			
K Z L072	D33		
KZL140	D34		
∆ 10E2	D35, D36, D38-D41		
MZ-270	D37		
KZL083	D42		

SWITCHES AND OTHER

Part No.	Symbol & Description		
≜ ASK-179	S1	Lever switch	
ASK-172	S 3	Lever switch	
VBZ30P060FMC		Screw	

SWITCH ASSEMBLY B (GWS-241)

Parts List

RESISTORS AND SWITCHES

Part No.	Symbol & Description	
RD¼PM □□□ J ASG-163	R701-R705 S5, S6	Tact switch

SEMICONDUCTORS

Part No.	Symbol & Description	
2SC945A AEL-343 1S2076 (1S2473) (1S1555)	Q22, Q23 D43, D44 D45	

FL ASSEMBLY (GWX-504)

Parts List

CAPACITORS

Part No.	Symbol & Description
CEB 100P 16	C801
CEB 010P 50	C802
CKDYX 473M 25	C803, C804
CCDCH 270J 50	C805, C806

Note: When ordering resistors, convert the resistance value into code form, and

RESISTORS then rewrite the part no. as before.

Part No. Symbol & Description

ACP-036 VR5, VR6 Semi-fixed 10kΩ RD¼PM □□□ J R801-R831

SEMICONDUCTORS

Part No.	Symbol & Description	
LB1416 LC7258 AEĽ-343 AEL-337 1S2076 (1S2473)	Q24 Q25 D47-D53 D54D58 D59	LED
(1S1555)		
AEL-334	D46	LED (STEREO IND)

SWITCHES AND OTHERS

Part No.	Symbol & Description	
ASG-163 ASS-013 AAV-011 VBZ30P100FZK ABE-061	\$7\$14 X1 V1	Tact switch Crystal resonator Fluorescent indicator tube Screw Washer

9. PACKING

Parts List

Parts L	ist		2
Key No.	Part No.	Description	
1, 2, 3, 4, 5,	AHD-788 AHA-234 ADH-004 ARB-376 ARD-150	Packing case Side pad FM antenna Operating instructions (English) Operating instructions (German)French for HE type only)	4,5