Mathematik (Master) für Informatik Skript

erstellt von Prof. Dr. Preisenberger transkribiert von Niklas Stich, Alexander Walk

SoSe~2021

Inhaltsverzeichnis

1	Kor	nplexe Zahl	en	u	nd	lk	O	m	pl	ex	w	eı	$^{\mathrm{rt}}$	ig	æ	F	u	nl	٤t	io	n	er	ı				1
	1.1	Historisches																									1

Komplexe Zahlen und komplexwertige Funk-1 tionen

Historisches 1.1

16. Jahrhundert: Lösung algebraischer Gleichungen Gegeben: $a_k \in \mathbb{Q}, \quad k = 0, \dots, n \in \mathbb{N}_0$

Satz 1.1

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, \quad a_n \neq 0$$
 (1)

$$\sum_{k=0}^{n} a_k^k = 0 \tag{2}$$

$$\sum_{k=0}^{n} a_k^k = 0$$

$$\underbrace{p(x)}_{Polynom \ n\text{-}ten \ Grades} = 0, \quad p \in \mathbb{Q}[x]$$

$$(3)$$

Gesucht: Lösung von (1.1) zunächst für $n \leq 3$ bekannt war:

(i)
$$n = 1$$
, $a_1 x + a_0 = 0$, $x = -\frac{a_0}{a_1}$

(ii)
$$n = 2$$
: $a_2 x^2 + a_1 x + a_0 = 0$
 $a_2 \neq 0$, $x^2 + \frac{a_1}{a_2} x + \frac{a_0}{a_2} = 0$
 $x^2 + 2 \frac{a_1}{2a_2} x = -\frac{a_0}{a_2}$
 $x^2 + 2 \frac{a_1}{2a_2} x + (\frac{a_1}{2a_2})^2 = (\frac{a_1}{2a_2})^2 - \frac{a_0}{a_2}$
 $(x + \frac{a_1}{2a_2})^2 = (\frac{a_1}{2a_2})^2 - \frac{a_0}{a_2}$
 $x + \frac{a_1}{2a_2} = \pm \sqrt{\frac{a_1^2}{4a_2^2} - \frac{4a_2a_0}{4a_2^2}}$
 $x_{1/2} = -\frac{a_1}{2a_2} \pm \frac{\sqrt{a_1^2 - 4a_0a_2}}{2a_2}$

 $\Delta = a_1^2 - 4a_0a_2 \quad <0 \quad \Rightarrow$ keine reelle Lösung

Falls Δ =0⇒ genau eine Lösung ⇒ genau zwei Lösungen > 0

Die Lösungen sind die Schnittpunkte einer Parabel mit der x-Achse. Die Schnittpunkte existieren für Parabeln mit $\Delta \geq 0$. Aber für $a_2 = 1$, a_0 , $a_0 = -2$

ergibt sich: $x_{1/2} = \pm \sqrt{2} \notin \mathbb{Q}$.

Folge: Erweiterung von \mathbb{Q} zu $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. $\mathbb{Q}(\sqrt{2})$ ist ein Körper, in dem wie in $\mathbb Q$ gerechnet werden kann und in dem die Lösungen von $x^2 = 2$ existieren.

(iii) Für Gleichungen 3. Grades keine allgemeine Lösungsformel, jedoch für spezielle Gleichungen

Carolano: [WTF???]

Für bestimmte Gleichungen 3. Grades können alle ihre reellen Lösungen mit Lösungen von $x^3=\alpha$ und $x^2=\beta=-1$ beschreiben, [... to be continued]