Propriétés des événements associés à une variable aléatoire

Soit (Ω, P) un espace probabilisé fini.

Soit E un ensemble.

Soit $X: \Omega \longrightarrow E$ une variable aléatoire.

Soient $A, B \subset E$ et soit $(A_i)_{i \in I}$ une famille de parties de E.

Unions

•
$$(X \in A \cap B) = (X \in A) \cap (X \in B)$$

•
$$\left(X \in \bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} \left(X \in A_i\right)$$

Intersections

•
$$(X \in A \cup B) = (X \in A) \cup (X \in B)$$

•
$$\left(X \in \bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} \left(X \in A_i\right)$$

Unions disjointes

•
$$(X \in A \sqcup B) = (X \in A) \sqcup (X \in B)$$

$$\bullet \quad \rhd \left(X \in \bigsqcup_{i \in I} A_i\right) = \bigsqcup_{i \in I} \left(X \in A_i\right)$$

 \triangleright Donc, si I est fini, on a

$$\mathbf{P}\bigg(X\in\bigsqcup_{i\in I}A_i\bigg)=\sum_{i\in I}\mathbf{P}\Big(X\in A_i\Big).$$

Systèmes complets d'événements

$$\bullet \ \Big(X \in A\Big) = \bigsqcup_{a \in A} \Big(X = a\Big)$$

• \triangleright Si I est fini, alors

$$(A_i)_{i\in I}$$
 partition de $E\implies \left(\left(X\in A_i\right)\right)_{i\in I}$ système complet d'événements.

$$\,\rhd\,$$
 En particulier, $\bigg(\bigg(X=a\bigg)\bigg)_{a\in\operatorname{im} X}$ est un système complet d'événements.

Restriction à l'arrivée

•
$$(X \in E) = \Omega$$
 et $(X \in \emptyset) = \emptyset$

$$\bullet \ \left(X \notin A \right) = \overline{\left(X \in A \right)}$$

•
$$(X \in \operatorname{im} X) = \Omega$$

•
$$> (X \in A) = (X \in A \cap \operatorname{im} X)$$

ightharpoonup Plus généralement, si E' contient l'image de X, ie si im $X \subset E' \subset E$, $\Big(X \in A\Big) = \Big(X \in A \cap E'\Big)$

Avec la variable aléatoire image

Soit $f: E \longrightarrow F$ une application.

On considère la variable aléatoire image $f(X): \Omega \longrightarrow F$.

Soit $B \subset F$.

•
$$(f(X) \in B) = (X \in f^{-1}(B))$$

• Si
$$y \in F$$
, $\left(f(X) = y\right) = \left(X \in f^{-1}(\{y\})\right) = \bigsqcup_{x \in E/f(x) = y} \left(X = x\right)$