Dr. Andrey Soldatenkov

# Übungen zur Einführung in die komplexe Analysis – Blatt 12

# **Aufgabe 71.** (Γ-Funktion, 4 Punkte)

Man finde einen Beweis für die Gleichung

$$\sqrt{\pi} \Gamma(2z) = 2^{2z-1} \Gamma(z) \Gamma\left(z + \frac{1}{2}\right)$$

mittels der Eulerschen Produktdarstellung  $\Gamma(z) = \lim_{n \to \infty} \frac{n! \, n^z}{z(z+1) \cdots (z+n)}$ .

# Aufgabe 72. (Dirichletsche Reihen, 3 Punkte)

Wir betrachten eine Folge  $(a_n)$  komplexer Zahlen und die dazu assoziierte Dirichletsche Reihe:

$$\sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

Wir setzen voraus, dass diese für ein gewisses  $s_0 \in \mathbb{C}$  konvergiert. Man beweise, dass sie dann lokal gleichmäßig auf der Halbebene  $\{s \mid \text{Re}(s) > \text{Re}(s_0)\}$  konvergiert.

#### Aufgabe 73. (Möbius-Funktion, 3 Punkte)

Es sei  $\mu(n)$  die Möbius-Funktion, also  $\mu(1)=1, \ \mu(p_1\cdot\dots\cdot p_k)=(-1)^k$  für paarweise verschiedene Primzahlen  $p_i$  und sonst  $\mu(n)=0$ . Man beweise für  $s\in\mathbb{C}$  mit  $\mathrm{Re}(s)>1$  die Formel

$$\zeta(s)^{-1} = \prod_{p \text{ PZ}} \left( 1 - \frac{1}{p^s} \right) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}.$$

Für die Mertens Funktion  $M(x) := \sum_{n \le x} \mu(n)$  wurde lange Zeit die Ungleichung  $|M(x)| < x^{1/2}$  für alle x vermutet. Die Mertensschen Vermutung würde die Riemannsche Vermutung beweisen und sie wurde für alle  $x < 10^{14}$  auch bewiesen. Allerdings stellte sie sich trotz der numerischen Evidenz im Endeffekt 1986 als falsch heraus (Odlyzko und Riele). Aber auch die schwächere Form  $M(x) = O(x^{1/2+\varepsilon})$  für alle  $\varepsilon > 0$  würde die Riemannsche Vermutung beweisen und diese ist weiterhin offen.

#### Aufgabe 74. (Kotangens und Zeta-Werte, 3 Punkte)

Man beweise die Formel

$$\pi z \cot(\pi z) = 1 - 2 \sum_{n=1}^{\infty} \zeta(2n) z^{2n}.$$

Hinweis: Man denke an die Produktdarstellung des Sinus. Dies kann erneut benutzt werden, um  $\zeta(2n)=(-1)^{n-1}\frac{(2\pi)^{2n}}{2(2n)!}B_{2n}$  zu zeigen. Es gilt auch die Gleichung

$$\log \Gamma(z) = -\gamma z + \frac{\zeta(2)}{2} z^2 - \frac{\zeta(3)}{3} z^3 + \frac{\zeta(4)}{4} z^4 \pm \cdots$$

für |z| < 1, die aber komplizierter zu beweisen ist.

Bitte wenden.

#### Wichtige Informationen:

- Die letzte Vorlesung findet am 13. Juli 2018 statt. Die Woche 16.7.-20.7 dient der Klausurvorbereitung. Tutorien finden in dieser Woche wie gewöhnlich statt.
- Die Klausur findet am 23. Juli 2018 im KHS und GHS statt. Beginn 9:00 (bitte 15 min früher dasein und Personalausweis und Studentenausweis mitbringen); Ende 11:00. Die Klausur wird noch am selben Tag korrigiert. Die Klausureinsicht ist für Montag den 13.8., 14:00 Uhr geplant. Der Raum wird rechtzeitig auf der Webseite der Vorlesung bekanntgegeben.
- Für die Klausur sind alle in der Vorlesung behandelten Themen relevant.

### Kurzweiliges zur Riemannschen Zetafunktion:

https://www.ams.org/notices/200303/fea-conrey-web.pdf

 $\verb|https://www.youtube.com/watch?v=rGo2hsoJSbo|\\$