SM4A

4-Bit Microcomputer (LCD Driver)

Description

The SM4A is a CMOS 4-bit microcomputer which integrates a 4-bit parallel processing function, a 2,268-byte ROM, a 96-word RAM, a 15-stage divider, and a 68-segment LCD driver circuit in a single chip.

This microcomputer is applicable to the system having multiple LCD segment, with low power consumption.

Features

- 1. CMOS process
- 2. ROM capacity: $2,268 \times 8$ bits
- 3. RAM capacity: 96×4 bits
- 4. Instruction set: 54
- 5. Subroutine nesting: 1 level
- 6. Instruction cycle: $61 \mu s$ (TYP.)
- 7. Input/output ports

I/O ports: 4

Input ports: 6

Output ports: 4

LCD output ports: 34 for segment

2 for common

- 8. On-chip clock divider
- 9. On-chip crystal oscillator
- 10. External RAM access
- 11. LCD driver circuit

(68-segment, 1/2 bias, 1/2 duty)

- 12. Standby function
- 13. Single power supply: -3V (TYP.)
- 14. 60-pin QFP (QFP60-P-1414)

Pin Connections

Block Diagram

Pin Description

Symbol	I/O	Circuit type	Function	
K ₁ -K ₄	I	Pull down	Acc←K ₁ -K ₄	
α	I .	Pull down	Set by 1, reset after test instruction execution	
β	I	Pull down	Input signal is held for 1 instruction cycle, test possible	
DIO ₁ -DIO ₄	I/O	3-state output	$Acc \longleftrightarrow DIO_1 - DIO_4$	
R_1 - R_4	О	Complementary	$R_1-R_4\leftarrow Acc$	
O ₁₁ -O ₄₈ OS ₁ ,OS ₂	0		W and W' registers output: used for LCD segment output	
H_1 , H_2	0	,	3-state level output possible, used for LCD common output	
ВЛ	I	Pull up	For test the input signal of High or Low	
T_1 , T_2	I		For test (Connected to V _{DD} normally)	
ACL	I		Auto clear	
OSC _{IN} , OSC _{OUT}			For clock oscillation	
V_{M}			Power supply for LCD driver	
GND, V_{DD}			Power supply for logic circuit	

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
	V_{DD}	-3.5 to +0.3	V	
Pin voltage	V _M	-3.5 to +0.3	V	1
	V _{IN}	$V_{\rm DD} - 0.3 \text{ to } + 0.3$	V	1
Operating temperature	Topr	-5 to +55	°C	
Storage temperature	Tstg	-55 to +150	c	

Note 1: The maximum applicable voltage on any pin with respect to GND.

Recommended Operating Conditions

Parameter	Symbol Rating		Unit
C 1	V_{DD}	-3.2 to -2.6	V
Supply voltage	V _M	$V_{DD}/2$ (TYP.)	V
Oscillator frequency	fosc	32.768 (TYP.)	kHz

 $(V_{DD} = -3.2 \text{ to } -2.6\text{V}, Ta = 25^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note	
	V _{IH1}	·	-0.6			V	1	
	V_{IL1}				$V_{DD} + 0.6$	V	1	
Input voltage	V_{IH2}		-0.3			V	2	
	V_{IL2}				$V_{\rm DD} + 0.3$	V		
	V _{OH1}	$I_{OUT} = 50 \mu A \text{ to } V_{DD}$	-0.5			V	3	
	V_{OL1}	$I_{OUT} = 5 \mu A \text{ to GND}$			$V_{\rm DD} + 0.5$	V] 3	
	V_{OH2}	$I_{OUT} = 50 \mu A \text{ to } V_{DD}$	-0.5			V	4	
	V_{OL2}	$I_{OUT} = 30 \mu A \text{ to GND}$			$V_{DD} + 0.5$	V		
Output voltage	V _{OH3}	$I_{OUT} = 50 \mu A \text{ to } V_{DD}$	-0.5			V	5	
	V_{OL3}	$I_{OUT} = 50 \mu A \text{ to GND}$			$V_{\rm DD} + 0.5$	V ·	Э	
	V _{OA}	No load	-0.3			V		
•	V_{OB}	$V_{DD} = -3.0V$		-1.5		V	6	
	V _{oc}	$V_{M} = -1.5V$			-2.7	V		
Output oument	I_{SO}	$V_{OUT} = -0.2V$	100			μΑ	7	
Output current	I _{SIN}	$V_{\text{OUT}} = V_{\text{DD}} + 0.2V$	100			μΑ	7 /	
C	I_{DA}	During full-range operation		50	100	μΑ		
Supply current	I_{DS}	When system clock is stationary		10	20	μΑ		

Note 1: Applied to pins K_1 , K_2 , K_3 , K_4 , α , β

Note 2: Applied to pin ACL

Note 3: Applied to pins O_{48} - O_{11} , O_{S1} , O_{S2}

Note 4: Applied to pins DIO₁-DIO₄

Note 5: Applied to pins R₂, R₃, R₄ Note 6: Applied to pins H₁, H₂

Note 7: Applied to pin R₁

Pin Functions

(1) K_1-K_4 (Inputs)

The input ports K_1 - K_4 are connected to the accumulator Acc. The contents of the K_1 - K_4 are loaded into the Acc.

(2) α , β (Inputs)

The input ports α and β can be independently tested. The α input latches the α F/F at the rising edge of the input, and can be tested by the TA instruction. The α F/F is reset after the test. The β is used to put the input signal into the β F/F for the interval of one instruction, and can be tested by the TB instruction.

(3) DIO₁-DIO₄ (I/O ports)

The DIO₁-DIO₄ pins normally output the contents of the F_1 - F_4 F/F. The F_1 - F_4 F/F data can be changed on transferring the accumulator Acc by the ATF instruction. Connecting the DIO₁-DIO₄ with the Acc allows the data transfer between the Acc and an external RAM by the READ and WRITE instructions. The output buffer of the F_1 - F_4 F/F is designed to be a three-state output, and it is kept high impedance when the DIO input is loaded into the Acc by the READ instruction.

(4) R₁-R₄ (Outputs)

Connecting the DIO_1 - DIO_4 with the Acc outputs the contents of the Acc. And selecting the programmable logic array PLA generates a sound output, and allows a segment output on pins O_{S3} and O_{S4} .

(5) O_{ij} (i=1 to 4, j=1 to 8), O_{S1} , O_{S2} (Outputs)

34-bits of output ports $O_{ij},\,O_{S1}$ and O_{S2} are used to output the contents of the static shift register $W'_{in},\,W_{in}$ (i=1 to 4, n=0 to 8). The output signal can be used as a segment signal for a 1/2 duty scheme, and a strobe signal for the key-scan, according to the display mode. These ports output the address of the external RAM upon execution of the READ or WRITE instruction.

(6) H₁, H₂ (Output)

The H_1 and H_2 are used to output the common signal of an LCD with 1/2 bias, 1/2 duty scheme in a three output level inculding V_{DD} , GND and V_{M} .

(7) BA (Inputs)

The BA pin is used to test the input level of High or Low by instructions.

Hardware Cnfiguration

(1) Program memory (ROM)

The on-chip ROM has a 2,268 byte organized as 36 pages \times 63 steps \times 8 bits. The program counter consists of 1-bit registers C_X and C_A , a 4-bit register P_U , and a 6-bit polynomial counter P_L . The P_L is used to specify the steps, the P_U specify the pages, and the C_A specify the fields. The C_X register is only used to specify the subroutine pages.

		→Field	
	$C_{\mathbf{x}}$	$C_{X}=1$	
	$C_A = 0$	$C_A = 1$	
	0	16	32
	1	17	33
	2	18	34
	3	19	35
1	4	20	
Page←	5	21	
Pa	6	22	
	7	23	
	8	24	
	9	25	
	10	26	
	11	27	
	12	28	
,	13	29	
	14	30	
	15	31	
			-

Fig. 1 ROM configuration (fields and pages)

(2) Data memory (RAM)

Data memory has a 6×16 word $\times4$ -bit configuration, and is addressed by a 4-bit B_L and a 4-bit B_M .

(3) Oscillator circuit

An on-chip crystal oscillator allows the oscillation with the external circuit shown in Fig. 3.

(4) Divider

A 15-stage resettable divider outputs a 1 Hz signal at the lowest stage when a 32.768kHz crystal oscillator is used. The output on each stage can be loaded into the accumulator Acc on an 4-bit basis.

(5) Reset function (ACL)

An on-chip reset circuit may sometimes require a capacitor between the ACL pin and GND pin. It takes 1 sec on an internal timer from the beginning of oscillation to clear the ACL mode when power on.

BM_3			()			1
BM_2		0	0	1	1		
BN		0	1	0	1	0	1
	0				,		
	1						
	.2						
	3						
	4						
	5						
	6						
B_L	7			,			
	8						
	9						
	10						
	11					-	
	12						
	13						
	14						
	15						
		X	Y	Z	M	U	T

Fig. 2 RAM configuration

Instruction Set

Mnemonic	Machine code	Operation			
Willemonic	I_8 I_7 I_6 I_5 I_4 I_3 I_2 I_1				
SBM	02	$1 \rightarrow B_{M3}$ ($B_{M3} = 1$ for next step only)			
LB	40-4F	$I_4, I_3 \rightarrow B_{L2}, B_{L1} I_2, I_1 - B_{M2}, B_{M1}$			
5.0		$I_8 - I_5 \rightarrow B_{M4} - B_{M1} I_4 - I_1 \rightarrow B_{L4} - B_{L1}$			
INCB	64	$B_L + 1 \rightarrow B_L$ if $B_L = a$; skip			
DECB	6C	$B_L - 1 \rightarrow B_L$ if $B_L = b$; skip			
RM	04-07	$0 \rightarrow Mi \ (i = I_2 \ I_1)$			
SM	0C-0F	$1 \rightarrow Mi \ (i = I_2 \ I_1)$			
ATPL	03	$Acc \rightarrow P_{L4} - P_{L1}$			
ADD	08	Acc+M→Acc			
ADD11	09	$Acc+M+C\rightarrow Acc$ $C_4\rightarrow C$ if $C_4=1$; skip			
COMA	0A	Acc→Acc			
EXBLA	0B	Acc↔B _L			
EXC	10-13	$Acc \leftrightarrow M B_{M2}, B_{M1} \oplus I_2, I_1 \rightarrow B_{M2}, B_{M1}$			
EXCI	14-17	$Acc \rightarrow M$ B_{M2} , $B_{M1} \oplus I_2$, $I_1 \rightarrow B_{M2}$, B_{M1} $B_L + 1 \rightarrow B_L$ if $B_L = a$; skip			
EXCD	1C-1F	Acc \rightarrow M B _{M2} , B _{M1} \oplus I ₂ , I ₁ \rightarrow B _{M2} , B _{M1} B _L -1 \rightarrow B _L if B _L =b; skip			
LDA 18-1B LAX 20-2F		$M \rightarrow Acc B_{M2}, B_{M1} \oplus I_2, I_1 \rightarrow B_{M2}, B_{M1}$			
		I_4 - I_1 \rightarrow Acc			
ADX	30-3F	$I_4-I_1+Acc\rightarrow Acc$ if $C_4=1$; skip			
DC	3A	10+Acc→Acc			
DTA	5E	DIV→Acc			
DIA	04-07				
ROT	6B	$C \rightarrow A_4 \rightarrow A_3 \rightarrow A_2 \rightarrow A_1 \rightarrow C$			
ATBP	01	Acc→Bp			
ATW	5D	Acc \rightarrow W' _{i8} (i=1 to 4) W'in Right Shift (i=1 to 4, n=7 to 0			
PATW	00	$Acc \rightarrow W'_{i8} W'_{i8} \rightarrow W'_{i7} \ (i=1 \text{ to } 4)$			
ATF	60	Acc→F			
ATR	. 61	Acc→R			
READ	68	DIO→Acc			
WRITE	69	Acc→DIO			
KTA	6A	K _i →Acc			
RC	66	0→C			
SC	67	1→C			

	Machine code	Operation		
Mnemonic	I ₈ I ₇ I ₆ I ₅ I ₄ I ₃ I ₂ I ₁			
TW	5C	$W'_{in} \rightarrow W_{in}$ (i=1 to 4, n=8 to 0)		
PTW	59	$W'_{in} \rightarrow W_{in} \ (i=1 \text{ to } 4, n=8,7)$		
· WR	62	0→W' ₄₈ W _{in} Right Shift		
WS	63	1→W' ₄₈ W _{in} Right Shift		
IDIV	65	0→DIV		
TA	50	if $\alpha = 1$; skip		
ТВ	51	if $\beta = 1$; skip		
TC	52	if C=0; skip		
TAM	53	if Acc=M; skip		
TM	54-57	if $Mi=1$ ($i=I_2$ I_1); skip		
TA0	5A	if Acc=0; skip		
TABL	5B	if $Acc = B_L$; skip		
TIS	58	if 1S=0; skip		
② TAL	5E	if BA=1; skip		
	02	II DA-1, skip		
② CEND	5E	Cleak stop		
,	00	Clock stop		
② ST	5E	1→T		
	03			
COMCB	6D	$\overline{C_B} \rightarrow C_B$		
SSR	70-7F	$I_4-I_1 \rightarrow S_{U4}-S_{U1} 1 \rightarrow E \text{ (next step only)}$		
TR0	80-BF	if $R = 0$; $I_6 - I_1 \rightarrow P_{L6} - P_{L1}$ $S_U \rightarrow P_U$ $C_B \rightarrow C_A$		
	00 Bi	if $R=1$; $I_6-I_1 \rightarrow P_{L6}-P_{L1}$		
		if $R=0$, $E=0$; $\int_{16}^{16} I_1 \rightarrow P_{L6} - P_{L1} 0 \rightarrow P_U \rightarrow S_U P_L + 1 \rightarrow S_L$		
1		$ (1 \rightarrow R 1 \rightarrow C_A \rightarrow C_S 1 \rightarrow D $		
TR1	C0-FF	if $R=0$, $E=1$; $I_6-I_1 \rightarrow P_{L6}-P_{L1}$ $P_U \leftrightarrow S_U$ $P_L+1 \rightarrow S_L$		
		$(C_B \rightarrow C_A \rightarrow C_S 1 \rightarrow R$		
		if $R=1$; I_6 , $I_5 \rightarrow P_{U2}$, P_{U1} $I_4 - I_1 \rightarrow P_{L4} - P_{L1}$		
RTN0	6E	$C_S \rightarrow C_A S_U \rightarrow P_U S_L \rightarrow P_L 0 \rightarrow R$		
RTN1	6F	$C_S \rightarrow C_A$ $S_U \rightarrow P_U$ $S_L \rightarrow P_L$ $0 \rightarrow R$ skip next step		
JUMP	00-FF	if $D=1$ $I_8-I_6 \rightarrow P_{U4}$, P_{U3} , P_{U1} $I_5-I_1 \rightarrow P_{L5}-P_{L1}$		

System Configuration Example (Radio PLL controller)

