Математические основы анализа данных. Описательные статистики. Метод моментов. Доверительные интервалы

Солодушкин Святослав Игоревич

Кафедра вычислительной математики и компьютерных наук, УрФУ имени первого Президента России Б.Н. Ельцина

Март 2022

Оценки параметров распределения

Важной является задача оценивания параметров генеральной совокупности $X(\theta)$.

Что дано?

- Априорные сведения о виде распределения генеральной совокупности.
- **②** Выборка из генеральной совокупности x_1, x_2, \dots, x_n .

Что надо найти? Оценку $\hat{ heta}(x_1,x_2,\ldots,x_n)$ параметра heta.

Статистика — функция выборки

Пусть $X_1, X_2 \dots, X_n$ — случайная выборка из генеральной совокупонсти X. Распределение X известно с точность до числового параметра θ .

Статистикой называется произвольная измеримая функция выборки $T: X^n \to \mathbb{R}$, которая не зависит от неизвестных параметров распределения.

Условие измеримости статистики означает, что эта функция является случайной величиной, то есть определены вероятности ее попадания в интервалы.

От неизвестных параметров статистика не зависит, т. е. можно по имеющимся данным найти значение этой функции, а следовательно, основывать на этом значении оценки и прочие статистические выводы.

Точечная оценка параметра

Определение

Пусть X_1, X_2, \ldots, X_n — случайная выборка для распределения, зависящего от параметра $\theta \in \Theta$. Тогда статистику $\hat{\theta}(X_1, \ldots, X_n)$, принимающую значения в Θ , называют точечной оценкой параметра θ .

Формально статистика $\hat{\theta}$ может не иметь ничего общего с интересующим нас значением параметра θ . Ее полезность для получения практически приемлемых оценок вытекает из дополнительных свойств, которыми она обладает (или не обладает).

Пример. Случайная величина

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

назваемая выборочным средним, является точечной оценкой среднего в генеральной совокупности.

Свойства точечных оценок: несмещенность

Оценка $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ называется несмещенной, если ее математическое ожидание равно оцениваемому параметру генеральной совокупности:

$$\mathbb{E}_{\theta}\left[\hat{\theta}\right] = \theta, \quad \forall \theta \in \Theta,$$

где \mathbb{E}_{θ} обозначает математическое ожидание, θ — истинное значение параметра.

Пример. Выборочное среднее \bar{X} является несмещенной оценкой среднего m в генеральной совокупности

$$\mathbb{E}[\bar{X}] = \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}X_i = \frac{nm}{n} = m.$$

Пример смещенной оценки

Выборочная дисперсия — это случайная величина вида

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2,$$

Выборочная дисперсия является смещенной оценкой дисперсии D :

$$\mathbb{E}\left[S_n^2\right] = \mathbb{E}\left[\frac{\sum\limits_{i=1}^n\left((X_i - m) - (\bar{X} - m)\right)^2}{n}\right] = \frac{n}{n-1}D.$$

Эффективность оценки

Оценка $\hat{\theta}$ называется эффективной, если она обладает минимальной дисперсией среди всех возможных несмещенных точечных оценок.

То, что оценка обладает минимальной дисперсией, не означает, что эта дисперсия мала; и тем более не оозначает, что дисперсия уменьшается с увеличением объема выборки.

Состоятельность оценки

Оценка $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ называется состоятельной, если $\forall \theta \in \Theta$ она с увеличением объема выборки n стремится по вероятности к параметру генеральной совокупности

$$\hat{ heta}_n o heta$$
 по вероятности при $n o \infty$.

Как правило несостоятельные оценки не востребованы на практике.

Моменты случайной величины

Пусть X — случайная величина.

k-м начальным моментом случайной величины X, где $k\in\mathbb{N}$, называется величина

$$\nu_k = \mathbb{E}\left[X^k\right],$$

k-м центральным моментом случайной величины X называется величина

$$\mu_k = \mathbb{E}\left[(X - \mathbb{E}X)^k \right],$$

если математические ожидания $\mathbb{E}[\cdot]$ в правых частях этих равенств определены.

Метод моментов

Метод моментов — метод оценки неизвестных параметров распределений в математической статистике. Идея метода заключается в замене истинных соотношений выборочными аналогами.

Метод моментов: оценка одного параметра

Пусть задан вид плотности распределения $f(x,\theta)$, определяемый одним неизвестным параметром θ . Требуется найти точечную оценку параметра θ .

Для оценки одного параметра достаточно иметь одно уравнение относительно этого параметра. Следуя методу моментов, приравняем начальный теоретический момент первого порядка начальному эмпирическому моменту первого порядка.

Метод моментов: оценка одного параметра

Учитывая, что $u_1 = \mathbb{E}(X)$, а эмпирический начальный момент первого порядка равен \bar{x} , получим

$$\mathbb{E}(X) = \bar{x} \qquad (*)$$

Математическое ожидание $\mathbb{E}(X)$

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x, \theta) \, dx = \phi(\theta)$$

есть функция от θ , поэтому (*) можно рассматривать как уравнение с одним неизвестным θ .

Решив это уравнение относительно параметра θ , найдем его точечную оценку $\hat{\theta}$, которая является функцией от выборочной средней.

Кстати, в данном случае выборочная средняя является *достаточной статистикой*.

Метод моментов: оценка одного параметра

Найти методом моментов по выборке x_1, x_2, \ldots, x_n точечную оценку неизвестного параметра λ показательного распределения, плотность распределения которого $f(x) = \lambda e^{-\lambda x}, \ x \ge 0$.

$$\mathbb{E}[X] = \frac{1}{\lambda} = \bar{x}.$$

Метод моментов: оценка двух параметров

Пусть задан вид плотности распределения $f(x,\theta_1,\theta_2)$, определяемый двумя неизвестными параметрами θ_1,θ_2 . Требуется найти точечные оценки параметров θ_1,θ_2 .

Для оценки двух параметров достаточно иметь два уравнения относительно этих параметров. Следуя методу моментов, приравняем

- начальный теоретический момент первого порядка начальному эмпирическому моменту первого порядка,
- центральный теоретический момент второго порядка центральному эмпирическому моменту второго порядка.

Метод моментов: оценка двух параметров

Найти методом моментов по выборке x_1, x_2, \ldots, x_n точечную оценку неизвестных параметров a и σ нормального распределения, плотность распределения которого

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-a)^2/(2\sigma^2)}.$$

Учитывая, что $\nu_1 = \mathbb{E}(X)$, а эмпирический начальный момент первого порядка равен \bar{x} , получим

$$\mathbb{E}(X) = \bar{x} \qquad (*)$$

Учитывая, что $\mu_2 = D(X)$, а эмпирический центральный момент второго порядка равен $D_{\text{выб}}$, получим

$$D(X) = D_{\mathsf{Bbl}}(X)$$

Математическое ожидание $\mathbb{E}(X)=a$. Дисперсия $D(X)=\sigma^2$.

Интервальная оценка

Это почти очевидно, что (в случае непрерывного распределения) точечная оценка не будет совпадать с истинным неизвестным значением параметра.

Решение состоит в том, чтобы вместо точечной оценки построить интервал, который покрывает неизвестный параметр. Но... на самом деле, даже в этом случае мы не можем гарантировать, что интервал обязательно покроет неизвестный параметр.

Действительно, границы интервала, будучи функциями от случайной выборки, сами являются случайными величинами, а потому факт накрытия истинного параметра является случайным событием.

Итак, мы должны поставить задачу: построить интервал

$$[\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n); \ \hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n)],$$

покрывающий неизвестный параметр с заданной вероятностью (надежностью) $\gamma.$

Интервальная оценка

Необходимо на основании выборки найти статистики $\hat{\theta}_1 = \hat{\theta}_1(X_1,\ldots,X_n)$ и $\hat{\theta}_2 = \hat{\theta}_2(X_1,\ldots,X_n)$, которые с достоверностью γ удовлетворяют неравенству

$$\mathsf{P}(\hat{\theta}_1 < \theta < \hat{\theta}_2) = \gamma.$$

Обозначим вероятность того, что интервал не покроет истинный параметр, как $\alpha = 1 - \gamma$.

$$P(\theta \notin [\hat{\theta}_1; \hat{\theta}_2]) = 1 - \gamma = \alpha.$$

Интервал $[\hat{\theta}_1;\hat{\theta}_2]$ называется доверительным интервалом, покрывающим неизвестный параметр θ с заданной достоверностью γ .

Пусть X_1,\ldots,X_n — случайная выборка из нормально распределенной генеральной совокупности $X\sim \mathrm{N}(m,\sigma^2)$, где σ^2 — известная дисперсия.

Определим произвольное $\gamma \in (0,1)$ и построим доверительный интервал для неизвестного среднего m.

Случайная величина

$$Z = \frac{\bar{X} - m}{\sigma / \sqrt{n}}$$

имеет стандартное нормальное распределение N(0,1).

Пусть $z_{\frac{1+\gamma}{2}}$ — это $\frac{1+\gamma}{2}$ -квантиль стандартного нормального распределения, тогда в силу симметрии имеем:

$$\mathsf{P}\left(-z_{\frac{1+\gamma}{2}} \le Z \le z_{\frac{1+\gamma}{2}}\right) = \gamma.$$

После подстановки выражения для Z получаем:

$$\mathsf{P}\left(\bar{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}} \le m \le \bar{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right) = \gamma.$$

Пусть X_1, \ldots, X_n — случайная выборка из нормально распределенной генералной совокупности $X \sim \mathrm{N}(m, \sigma^2)$, где m, σ^2 — неизвестные константы.

Определим произвольное $\gamma \in (0,1)$ и построим доверительный интервал для неизвестного среднего m.

Случайная величина

$$T = \frac{\bar{X} - m}{S / \sqrt{n}}$$

имеет распределение Стьюдента с n-1 степенями свободы ${\rm t}(n-1)$, где S — несмещенное выборочное стандартное отклонение.

Пусть $t_{\frac{1+\gamma}{2},n-1}$ — это $\frac{1+\gamma}{2}$ -квантиль распределения Стьюдента, тогда в силу симметрии имеем:

$$P\left(-t_{\frac{1+\gamma}{2},n-1} \leq T \leq t_{\frac{1+\gamma}{2},n-1}\right) = \gamma.$$

После подстановки выражения для T получаем:

$$\mathsf{P}\left(\bar{X} - t_{\frac{1+\gamma}{2}, n-1} \frac{S}{\sqrt{n}} \leq m \leq \bar{X} + t_{\frac{1+\gamma}{2}, n-1} \frac{S}{\sqrt{n}}\right) = \gamma.$$

Квантиль

Квантиль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью.

Например, фраза «90-й процентиль массы тела у новорожденных мальчиков составляет 4 кг» означает, что 90% мальчиков рождаются с весом, меньшим либо равным 4 кг, а 10% мальчиков рождаются с весом, большим либо равным 4 кг.

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, на котором задана случайная величина X. Пусть фиксировано $\alpha \in (0, 1)$. Тогда α -квантилем (или квантилем уровня α) распределения \mathbb{P}^X называется число $x_{\alpha} \in \mathbb{R}$, такое что

$$\mathbb{P}(X \leqslant x_{\alpha}) \leqslant \alpha,$$

$$\mathbb{P}(X \geqslant x_{\alpha}) \geqslant 1 - \alpha.$$

Задания

Из нормально распределенной генеральной совокупности с неизвестным мат. ожиданием и известной дисперсией извлекли выборку. По этой выборке построили 95% доверительный интервал для мат. ожидания. Во сколько раз надо увеличить объем выборки, чтобы 95% доверительный интервал стал в два раза уже?