CS146 Data Structures and Algorithms

Chapter 22: Elementary Graph Algorithm

Graphs

- *Graph* G = (V, E)
 - V = set of vertices
 - $E = \text{set of edges} \subseteq (V \times V)$
- · Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as u → v. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function w: E → R.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| << |V|^2$.
- $|E| = O(|V/^2)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected.
 - Not necessarily so if G is directed.
- If *G* is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1$.
 - Furthermore, if |E| = |V| 1, then G is a tree.
- Other definitions in Appendix B (B.4 and B.5) as needed.

Representation of Graphs₁

- Two standard ways.
 - Adjacency Lists.

Adjacency Matrix.

Representation of Graphs₂

• Undirected graph

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with S vertices and T edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Representation of Graphs₃

• Directed Graph

Figure 2.2.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Adjacency Lists

- Consists of an array Adj of |V| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner
- A is then given by: $A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$

	1	2	3	4
1	0	1	1	1
2	0	1 0 0 0	1	0
3	0	0	0	1
4	0	0	0	0

 $A = A^T$ for undirected graphs.

Graph-searching Algorithms

- · Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- · Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

- Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V.
- Output:
 - d[v] = distance (smallest # of edges, or shortest path) from s to v, for all v ∈ V. d[v] = ∞ if v is not reachable from s.
 - π[v] = u such that (u, v) is last edge on shortest path s[∞] v.
 o u is v's predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:

Path between vertices u and v: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u=v_1$ and $v=v_k$, and $(v_i, v_{i+1}) \in E$, for all $1 \le i \le k-1$. Length of the path: Number of edges in the path. Path is simple if no vertex is repeated.

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
                \mathbf{do}\ color[u] \leftarrow \text{white}
                      d[u] \leftarrow \infty
                      \pi[u] \leftarrow \text{nil}
5 \operatorname{color}[s] \leftarrow \operatorname{gray}
6 d[s] ← 0
     \pi[s] \leftarrow \text{nil}

\begin{array}{ccc}
8 & Q \leftarrow \Phi \\
9 & \text{enqueue}(Q, s)
\end{array}

10 while Q ≠ Φ
11
                \mathbf{do} \ \mathbf{u} \leftarrow \mathrm{dequeue}(\mathbf{Q})
12
                                 for each v in Adj[u]
13
                                                  do if color[v] = white
14
                                                                   then color[v] \leftarrow gray
15
                                                                            d[v] \leftarrow d[u] + 1
16
                                                                             \pi[v] \leftarrow u
17
                                                                             enqueue(Q, v)
18
                                  color[u] \leftarrow black
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v π[u]: predecessor of v

Example (BFS)

Example (BFS)

BF Tree

Analysis of BFS

- Initialization takes O(V).
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V)
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\mathcal{O}(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.