Nitin Sonkar Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

The real valued function $f(x) = \frac{\cos ec \ x}{\sqrt{x - [x]}}$, where [x] denotes the greatest integer less than or equal 30.

to x, is defined for all x belonging to

[JEE - Main 2021]

- (A) all reals except integers
- (B) all non-integers except the interval [-1, 1]
- (C) all integers except 0, −1, 1
- (D) all reals except the Interval [-1, 1]
- Consider the function $f(x) = x + \sqrt{1 x^2}$, then which of the following is/are CORRECT? 9.
 - (A) Range of f(x) is $[-1, \sqrt{2}]$.
 - (B) f is many one.
 - (C) f is either even or odd.
 - (D) Range of f(x) is identical to range of $g(x) = \sqrt{2}\cos\left(x \frac{\pi}{4}\right)$.
- The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$ is :-1.

[AIEEE 2011]

$$(A)(-\infty,0)$$

$$(B)$$
 $(-∞, ∞) - {0}$

(B)
$$(-\infty, \infty)$$
 - $\{0\}$ (C) $(-\infty, \infty)$ (D) $(0, \infty)$

- (a) Let $P(x) = x^6 + ax^5 + bx^4 + cx^3 + dx^2 + ex + f$ be a polynomial such that 1. P(1) = 1; P(2) = 2; P(3) = 3; P(4) = 4; P(5) = 5 and P(6) = 6 then find the value of P(7).
 - (b) Let a and b be real numbers and let f(x) = asin x + b ³√x + 4, ∀x ∈ R. If $f(\log_{10}(\log_3 10)) = 5$ then find the value of $f(\log_{10}(\log_{10} 3))$.
- If $F(n+1) = \frac{2F(H)+1}{2}$, $n = 2, \dots ... \cdot 8F(1) = 2$ then $\frac{F(101)}{26}$ equals 8.

Atomic Structure:

18.	Statement-1: Emitted radiations will fall in visible range when an electron jump from higher level to n = 2 in Li ⁺² ion. Statement-2: First for lines of Balmer series of H-atom belong to visible range. (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.			
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for			
	statement-1.			
	(C) Statement-1 is true, statement-2 is false.			
	(D) Statement-1 is false, statement-2 is true.			
Matcl	h the column :			
58.	The number of waves made by a Bohr electron in an orbit of maximum magnetic quantum			
	number + 2:			
	(A) 3	(B) 4	(C) 2	(D) 1
	S	chrödinger wave eq	uation and orbital con	cept
46.	An electron has kinetic energy 2.8×10^{-23} J. de-Broglie wavelength will be nearly :-			
	$(m_e = 9.1 \times 10^{-31} \text{ kg})$			
			(C) 9.28×10^{-8} m	(D) 9.28×10^{-10} m
51.	Isotope(s) of hydrogen which emits low energy β -particles with t_o value > 12 years is/are:			
	[JEE Main (April) 2021]			
	(A) Protium		Tritium	
Ans.	(C) Deuterium (D) Deuterium and Tritium B			
Alis.	D			
3.	The ratio of the energy of a photon of 2000 Å wavelength radiation to that of 4000 Å radiation is			
	(A) 1/4	(B) 4	(C) 1/2	(D) 2