Machine Learning

V. Adamchik

CSCI 567

Fall 2019

Discussion Set 3

University of Southern California

Linear Regression

Minimize the total absolute error (L_1 norm) of linear regression when D = 0:

$$\min_{w_0} \sum_{n} |w_0 - y_n|$$

Suppose A is a square matrix. Then A is singular if and only if $\lambda = 0$ is an eigenvalue of A. Prove this statement.

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Prove that $1/\lambda$ is an eigenvalue of the matrix A^{-1} .

Find eigenvalues and eigenvectors for

$$A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$$

Find an eigendecomposition for A.

The eigenvectors of a symmetric matrix A corresponding to different eigenvalues are orthogonal to each other. Prove this statement.

Every positive semidefinite matrix has eigenvalues ≥ 0

Let $u, x \in \mathbb{R}^n$ are column vectors, A is (nxn) matrix.

Task 1. Compute
$$\frac{\partial}{\partial x}u^{\mathrm{T}}x$$
 and $\frac{\partial}{\partial x}x^{\mathrm{T}}u$

Task 2. Compute
$$\frac{\partial}{\partial x} \|x\|_2^2$$

Task 3. Compute
$$\frac{\partial}{\partial x} x^{\mathrm{T}} A x$$