GRAVITATIONAL IMPACT OF THE DEATH STAR ON ENDOR AND EARTH-LIKE PLANETS

A Scientific Exploration Using Newtonian Mechanics

BY: SIMON TEBECK, PRANAV GUPTA

TEAM NAME: THE SKYWALKERS

PI: PROF. OLIVER BECKSTEIN

HTTPS://GITHUB.COM/PY4PHY/FINAL-2024-THE-SKYWALKERS

Background

- Problem Statement: Investigate the gravitational impact of the Death Star on nearby celestial bodies like Earth and Endor.
- Equations Used:

Newton's Law of Universal Gravitation: F= GMm/r^2 Equations of Motion for Circular Orbits: F = ma Velocity Verlet

 Motivation: Understanding these effects is crucial for predicting potential real-world outcomes in similar massive body interactions within a planetary system.

Methods

- Algorithms: Velocity Verlet Integration for accurate motion simulation.
- Main Libraries Used:
 NumPy for numerical operations
 Matplotlib for plotting and animations
 Moviepy for creating videos
- Objectives:
 - 1. Collection of data
 - 2. Calculation of orbits
 - 3. Surface impacts
 - 4. Implication of sudden disappearance or crash

Results - Task 1: Data Collection

Collected the required information form fan pages, reddit and publicly available data for Masses, distances,

Radius (km)

Mass(kg)

7.52E+23

5.97E+24

7.35E+22

1.60E+22

1.37E+24

2.01E+27

2.80E+23

1.99E+30

Endor

Earth

Moon

Star Killer Base

Big Brother

Death Star 1

Death Star 2

Sun

Death Star 1-2

Star Killer Base-2

	Distances
	Earth
	Earth
	Endor
	Endor

2450

6357

1737

330

415

60

80

100

696000

74000

Rotation period (hours) Orbital period (days) Population

18

24

28

655.7

1.49E+08

3.84E+05

2.50E+04

1.25E+07

Refernce links

https://starwars.f

https://en.wikiped

Moon (nasa.gov)

https://www.redd

https://starwars.f

the der https://fictionomic

6.2e32 https://www.tdgu

Made u https://starwars.f

Sun

3.00E+07

8.10E+09

2.47E+06

402

365

27.3

0

Moon

Death Star

Big Brother

Surface Gravity Extra

8.35

9.81

1.62

275

Control Orbits

Control Orbits

Results – Task 2: Orbits Orbits with the light Death Star

Orbits with the light Death Star

Orbits with the heavy Death Star

Angular Velocity Impacts

Results – Task 2: Orbits Orbits for Endor

Angular Velocities for Endor

Period Deviations

	Earth	Moon	Endor
Period [days] Normal conditions	365.37	27.44	8.82
Period [days] DS_A impact	365.37	27.44	8.82
Period [days] DS_B impact	365.34	25.24	9.00
Deviation of DS_B impact to normal	0.009%	8.00%	2.04%

Results – Task 3: Surface Impacts

Reduction of local gravitational acceleration

- The gravitational pull of Death Star
 (B) reduces the local gravitational acceleration on Earth
- Value can go as low as 9.756 m/s²
- Pull is three orders of magnitude stronger than Moon's

Results – Task 3: Surface Impacts

Reduction of local gravitational acceleration

Results – Task 3: Surface Impacts

Tidal effects

- Estimation of tidal effects based on the gravitational differential
- The mass and proximity of the Death Star create huge tidal forces which are four orders of magnitude bigger than Moon's (for DS_B)
- We have to expect waves on the ocean with heights of around 3.7 km, even higher ones on the coast

	Tidal effect [m/s²]
Moon	1.873e-06
Sun	1.063e-6
DS_A	1.245e-7
DS_B	3.486e-2

Results - Task 4 (Sudden Disappearance)

Implications of Death Star's Sudden Disappearance

 The sudden removal of the Death Star leads to a destabilization of Endor's and Earth's orbit, demonstrating the significant gravitational influence exerted by the Death Star.

Simulation of Death Star Impact on Earth Results - Task 4 (Sudden Crash)

 The sudden crash of the Death Star leads to a significant reduction in Earth's distance from the Sun with higher angular and orbital velocity.

Conclusions

- The simulation showed significant gravitational effects of the Death Star, especially the heavy estimation, on nearby planets, altering their trajectories and potentially causing orbital destabilization.
- Period times change because of the Death Star, slightly for big objects like Earth, but significantly for smaller objects like the Moon or Endor
- On Earth, the heavy Death Star would create monstrous tides and kilometer-high waves on the ocean
- Demonstrated how the sudden removal of a massive body affects planetary systems.
- The simulation confirmed that the Death Star's crash would lead to substantial modifications in Earth's orbital and kinetic energy.

Future Work

- Could include more bodies or consider noncircular orbits for further complexity and realism.
- Make more sophisticated tides calculation

Acknowledgement

1. For animation code and template for the report:

Department of SC/Physics. "L01 PHYS 2030". PHYS 2030 3.0 Computational Methods for Physicists and Engineers Course Lecture slides Winter 2023. York University 2023.

References

- 1. Values for mass, distances extracted from https://starwars.fandom.com/wiki/Endor
- 2. https://en.wikipedia.org/wiki/Orbit_of_the_Moon
- 3. https://en.wikipedia.org/wiki/Earth%27s_orbit
- 4. https://phys.org/news/2014-11-earth-orbit-sun.html
- 5. https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
- 6. https://science.nasa.gov/moon/tides/
- 7. https://www.physicsforums.com/threads/solar-vs-lunar-tides-explaining-the-difference.535403/

References

- https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
- 2. https://moviepy.readthedocs.io/en/latest/getting_started/working_with_matplotlib. html
- 3. https://austides.com/wp-content/uploads/2014/06/Kowalik_Luick_2011.pdf
- 4. https://www.youtube.com/watch?v=pwChk4S99i4&t=423s
- 5. https://matplotlib.org/stable/gallery/mplot3d/surface3d_2.html#sphx-glr-gallery-mplot3d-surface3d-2-py
- 6. https://en.wikipedia.org/wiki/Tidal_range#/media/File:M2_tidal_constituent.jpg

MAY THE

$$F = \frac{dp}{dt}$$

BE WITH YOU

From: