Kurven im \mathbb{R}^n

Reguläre Kurve:

Definition 2.1.1. Sei $I \subset \mathbb{R}$ ein Intervall. Eine *parametrisierte Kurve* ist eine unendlich oft differenzierbare Abbildung $c: I \to \mathbb{R}^n$. Eine parametrisierte Kurve heißt *regulär*, falls ihr Geschwindigkeitsvektor nirgends verschwindet, $\dot{c}(t) \neq 0$ für alle $t \in I$.

Parametertransformation & Umparametrisierung:

Definition 2.1.7. Sei $c: I \to \mathbb{R}^n$ eine parametrisierte Kurve. Eine *Parametertransformation* von c ist eine bijektive Abbildung $\varphi: J \to I$, wobei $J \subset \mathbb{R}$ ein weiteres Intervall ist, so dass sowohl φ als auch $\varphi^{-1}: I \to J$ unendlich oft differenzierbar sind. Die parametrisierte Kurve $\tilde{c} = c \circ \varphi: J \to \mathbb{R}^n$ heißt *Umparametrisierung* von c.

Orientierungserhaltend: $\varphi'(t) > 0$ Orientierungsumkehrend: $\varphi'(t) < 0$

Kurve:

Definition 2.1.9. Eine *Kurve* ist eine Äquivalenzklasse von regulären parametrisierten Kurven, wobei diese als äquivalent angesehen werden, wenn sie Umparametrisierungen voneinander sind.

Alle Parametrisierungen können somit zu einer Kurve zusammengefasst werden.

Orientierte Kurve:

Definition 2.1.10. Eine *orientierte Kurve* ist eine Äquivalenzklasse von parametrisierten Kurven, wobei diese als äquivalent angesehen werden, wenn sie durch *orientierungserhaltende* Parametertransformationen auseinander hervorgehen.

<u>Bemerkung:</u> Jede orientierte Kurve bestimmt genau 1 Kurve. Jede Kurve hat genau 2 verschiedene Orientierungen, das heißt es gibt immer 2 orientierte Kurven, die die Kurve bestimmen

Nach Bogenlänge parametrisierte Kurve:

Definition 2.1.11. Eine *nach Bogenlänge parametrisierte Kurve* ist eine reguläre parametrisierte Kurve $c: I \to \mathbb{R}^n$ mit $\|\dot{c}(t)\| = 1$ für alle $t \in I$.

Nach Bogenlänge parametrisierte Kurven haben also die Eigenschaft, ihr Bild mit konstanter Geschwindigkeit durchlaufen, und zwar genau mit Geschwindigkeit 1.

Länge von Kurven:

Definition 2.1.15. Sei $c:[a,b] \to \mathbb{R}^n$ eine parametrisierte Kurve. Dann heißt

$$L[c] := \int_{a}^{b} \|\dot{c}(t)\| dt$$

Länge von c.

Die Länge parametrisierter Kurven ändert sich nicht bei Umparametrisieren!

Polygone:

Definition 2.1.17. Ein *Polygon* im \mathbb{R}^n ist ein Tupel $P = (a_0, \dots, a_k)$ von Vektoren $a_i \in \mathbb{R}^n$, so dass $a_{i+1} \neq a_i$ für alle $i = 0, \dots, k-1$.

Polygon entlang einer Kurve:

Periodizität:

Definition 2.1.19. Eine parametrisierte Kurve $c: \mathbb{R} \to \mathbb{R}^n$ heißt *periodisch mit Periode L*, falls für alle $t \in \mathbb{R}$ gilt c(t+L) = c(t), L > 0, und es kein 0 < L' < L gibt, so dass ebenfalls c(t+L') = c(t) für alle $t \in \mathbb{R}$. Eine Kurve heißt *geschlossen*, falls sie eine periodische reguläre Parametrisierung besitzt.

Geschlossene Kurven:

Definition 2.1.20. Eine geschlossene Kurve heisst *einfach geschlossen*, falls sie eine periodische reguläre Parametrisierung c mit Periode L hat, so dass $c|_{[0,L)}$ injektiv ist.

Literatur:

Bär, C. (2010). Elementare Differentialgeometrie. (2. Auflage). Berlin/New York: De Gruyter