LSI Logic

CoreWare reverse engineered Cells Library (used in derivative CW33300 PSXCPU at least)

(Such a primitive description so far. Also cells without any parameters like size, switching speed or parameters for SPICE. For our purposes this is not required)

Overview

CoreWare framework is based on standard cells.

Cells are built on CMOS technology. P and N channel transistors differ in size (P-doping is 1.3-1.5 times thicker). Diffusion is shown in yellow, and the polysilicon as purple. P-type diffusion is usually thickier rather diffusion of N-type, and is closer to the power supply. Accordingly, the diffusion of N-type is usually close to the ground.

Standard cells are placed by rows. Connections between cells are made using two layers of metal. (Channel Router).

Quite often automatic router place route directly on the area of the cell (via M1), if there exist free space for it:

port	type
а	input
X	output

Mini inverter.

port	type
а	input
X	output

x = ~a

Nothing special.

port	type
а	input
X	output

x = ~a

2 pairs of transistors

Topologically very similar to NAND2X:

So be very careful not to mess up. The NAND2X is shorter than the NOT2, and also the «legs» on the right side go at different angles.

port	type
а	input
X	output

x = ~a

3 pairs of transistors

port	type
а	input
X	output

x = ~a

4 pairs of transistors

port	type
а	input
X	output

x = ~a

8 pairs of transistors

These inverters are easy to spot by the rather impressive metal shield (this is the output):

port	type
а	input
Х	output

x = ~a

12 pairs of transistors

BUF2X

port	type
а	input
Х	output

x = a

BUF3X

port	type
а	input
X	output

x = a

BUF3X2

port	type
а	input
X	output

x = a

BUF4X

port	type
а	input
х	output

x = a

Double buffer.

The double buffer differs from the regular buffer in that it does out = not(not(in)))), while the regular buffer does just out = not(not(in)).

Hence the propagation delay of the double buffer will be longer than that of the regular buffer.

The top of this cell is very similar to NOR2X:

BUF5X

port	type
а	input
X	output

x = a

Double buffer, 4 pairs of transistors

BUF6X

port	type
а	input
X	output

x = a

AND1

port	type
а	input
b	input
Х	output

$$x = a \& b$$

AND

port	type
a	input
b	input
x	output

x = a & b

AND2X

port	type
а	input
b	input
X	output

$$x = a \& b$$

AND3X

port	type
a	input
b	input
x	output

$$x = a \& b$$

NAND

port	type
а	input
b	input
X	output

$$x = ^{\sim}(a \& b)$$

NAND2X

port	type
a	input
b	input
x	output

$$x = ^{\sim}(a \& b)$$

NAND3X

port	type
a	input
b	input
x	output

$$x = ^{\sim}(a \& b)$$

NAND4X

port	type
a	input
b	input
x	output

OR

port	type
а	input
b	input
X	output

x = a | b

OR2X

port	type
a	input
b	input
x	output

OR3X

port	type
a	input
b	input
X	output

OR4X

port	type
а	input
b	input
Х	output

NOR

port	type
а	input
b	input
X	output

NOR2X

port	type
a	input
b	input
X	output

NOR3X

port	type
а	input
b	input
Х	output

$$x = ^{\sim}(a \mid b)$$

NOR4X

port	type
a	input
b	input
X	output

$$x = ^{\sim}(a \mid b)$$

port	type
а	input
b	input
X	output

port	type
a	input
b	input
X	output

port	type
а	input
b	input
X	output

port	type
а	input
b	input
X	output

XOR

port	type
a	input
b	input
x	output

$$x = a \wedge b$$

XOR2

port	type
a	input
b	input
X	output

$$x = a \wedge b$$

XOR3

port	type
a	input
b	input
X	output

$$x = a \wedge b$$

3-AND

port	type
а	input
b	input
С	input
Х	output

x = a & b & c

3-AND2X

port	type
a	input
b	input
С	input
х	output

$$x = a \& b \& c$$

3-AND3X

port	type
а	input
b	input
С	input
Х	output

x = a & b & c

3-AND4X

port	type
а	input
b	input
С	input
Х	output

x = a & b & c

3-NAND

port	type
а	input
b	input
С	input
х	output

$$x = ^{\sim}(a \& b \& c)$$

3-NAND2X

port	type
а	input
b	input
С	input
Х	output

$$x = ^{\sim}(a \& b \& c)$$

3-NAND4X

port	type
a	input
b	input
С	input
х	output

$$x = ^{\sim}(a \& b \& c)$$

3-NAND5X

port	type
a	input
b	input
С	input
Х	output

$$x = ^{\sim}(a \& b \& c)$$

3-NOR

port	type
a	input
b	input
С	input
х	output

3-NOR2X

port	type
a	input
b	input
С	input
х	output

3-NOR4X

port	type
а	input
b	input
С	input
Х	output

3-NOR6X

port	type
a	input
b	input
С	input
Х	output

$$x = ^{\sim}(a \mid b \mid c)$$

3-0R

port	type
a	input
b	input
С	input
Х	output

x = a | b | c

3-OR2X

port	type
a	input
b	input
С	input
х	output

x = a | b | c

3-0R3X

port	type
a	input
b	input
С	input
х	output

3-0R4X

port	type
a	input
b	input
С	input
Х	output

3-XOR

port	type
a	input
b	input
С	input
x	output

4-NOR

port	type
а	input
b	input
С	input
d	input
Х	output

$$x = ^{\sim}(a | b | c | d)$$

4-NOR-3X

port	type
а	input
b	input
С	input
d	input
х	output

$$x = ^{\sim}(a \mid b \mid c \mid d)$$

5-NOR

port	type
а	input
b	input
С	input
d	input
е	input
х	output

$$x = ^{\sim}(a | b | c | d | e)$$

5-NAND

port	type
а	input
b	input
С	input
d	input
е	input
Х	output

 $x = ^{\sim}(a \& b \& c \& d \& e)$

5-NAND3X

port	type
а	input
b	input
С	input
d	input
е	input
Х	output

 $x = ^{\sim}(a \& b \& c \& d \& e)$

6-NOR

port	type
а	input
b	input
С	input
d	input
е	input
f	input
х	output

x = ~(a | b | c | d | e | f)

6-NOR3X

port	type
а	input
b	input
С	input
d	input
е	input
f	input
х	output

6-NAND

port	type
а	input
b	input
С	input
d	input
е	input
f	input
Х	output

x = ~(a & b & c & d & e & f)

6-NAND3X

port	type
а	input
b	input
С	input
d	input
е	input
f	input
Х	output

x = ~(a & b & c & d & e & f)

12-A0I

port	type
a	input
b	input
С	input
х	output

12-0AI

port	type
a	input
b	input
С	input
х	output

12-0AI3X

port	type
a	input
b	input
С	input
х	output

21-A0I3X

port	type
a	input
b	input
С	input
Х	output

22-A0I

port	type
a	input
b	input
С	input
Х	output

22-A0I3X

port	type
a	input
b	input
С	input
Х	output

22-0AI

port	type
a	input
b	input
С	input
Х	output

31-A0I

port	type
а	input
b	input
С	input
Х	output

222-A0I

port	type
а	input
b	input
С	input
Х	output

NOR_NAND

port	type
а	input
b	input
С	input
Х	output

NAND_NOR

port	type
а	input
b	input
С	input
Х	output

NAND_XOR

port	type
а	input
b	input
С	input
Х	output

NOR_AND

port	type
a	input
b	input
С	input
х	output

DEMUX

port	type
a	input
b	input
С	input
х	output

MUX

port	type
а	input
b	input
С	input
Х	output

MUX1

port	type
a	input
b	input
С	input
х	output

MUX2X

port	type
а	input
b	input
С	input
Х	output

MUX3X

port	type
а	input
b	input
С	input
Х	output

IMUX1

port	type
a	input
b	input
С	input
Х	output

IMUX

port	type
a	input
b	input
С	input
х	output

IMUX2X

port	type
а	input
b	input
С	input
Х	output

IMUX3X

port	type
a	input
b	input
С	input
Х	output

IMUXR1

port	type
a	input
b	input
С	input
Х	output

IMUXR2

port	type
a	input
b	input
С	input
Х	output

3-MUX

port	type
а	input
b	input
С	input
х	output

3-MUX3X

port	type
a	input
b	input
С	input
х	output

4-MUX

port	type
a	input
b	input
С	input
Х	output

4-MUX3X

port	type
a	input
b	input
С	input
Х	output

8-MUX

port	type
а	input
b	input
С	input
Х	output

8-MUX3X

port	type
a	input
b	input
С	input
Х	output

DFF

port	type
a	input
b	input
С	input
Х	output

NDFF

port	type
а	input
b	input
С	input
Х	output

DFF3X

port	type
a	input
b	input
С	input
х	output

DFFR

port	type
a	input
b	input
С	input
х	output

NDFFR

port	type
a	input
b	input
С	input
Х	output

DFFR3X

port	type
а	input
b	input
С	input
х	output

DFFS

port	type
а	input
b	input
С	input
Х	output

DFFS3X

port	type
а	input
b	input
С	input
Х	output

DFFRS3X

port	type
a	input
b	input
С	input
Х	output

DFF_MUX

port	type
a	input
b	input
С	input
Х	output

DFFR_MUX

port	type
a	input
b	input
С	input
Х	output

DLATCH

port	type
a	input
b	input
С	input
х	output

NDLATCH

port	type
a	input
b	input
С	input
Х	output

DLATCH4X

port	type
а	input
b	input
С	input
х	output

NDLATCH4X

port	type
a	input
b	input
С	input
Х	output

DLATCHR2X

port	type
a	input
b	input
С	input
Х	output

DLATCHR4X

port	type
a	input
b	input
С	input
Х	output

NDLATCHR2X

port	type
a	input
b	input
С	input
Х	output

NDLATCHR4X

port	type
a	input
b	input
С	input
Х	output

HA

port	type
а	input
b	input
С	input
Х	output

HA2

port	type
a	input
b	input
С	input
х	output

port	type
a	input
b	input
sum	output
cout	output

This cell is similar to Full Adder in functionality, except that its Carry In always equals 1.

WS1

port	type
in1	input
in2	input
in3	input
in4	input
in5	input
out1	output
out2	output
out3	output

WS2

port	type
in1	input
in2	input
in3	input
in4	input
in5	input
out1	output
out2	output
out3	output

port	type
а	input
b	input
С	input
Х	output

FA2

port	type
a	input
b	input
С	input
х	output

MUX_ARRAY

port	type
а	input
c1	input
c2	input
d1	input
d2	input
х	output

FILLER

port	type
x0	output
x1	output

This cell was previously identified as a filler, but is most likely a 0/1 constant generator, but not connected (not used). It is present in a single instance.

TRISTATE2

port	type
a	input
b	input
С	input
х	output

TRISTATE3

port	type
a	input
b	input
С	input
Х	output

BUS_KEEPER

port	type
d	input / output

BUS keeper is to keep last state on the bus, basically, it's flip-flop constructed by two inverter, but its output drive ability is limited. Its output is connected on bus. in normal operation, it take no effect on normal logic level, but when bus is into tristate, the last logic level is kept by bus keeper to prevent bus from floating.

CELL_NAME

port	type
а	input
b	input
С	input
х	output

Description.

<picture1> <picture2>