DMA Přednáška – Kombinatorika

	bez opakování	s opakováním
s pořadím (variace)	$\frac{n!}{(n-k)!}$	n^k
bez pořadí (kombinace)	$\binom{n}{k}$	$\binom{n+k-1}{k}$

Věta. (Princip inkluze a exkluze)

Jsou-li A_i pro $i=1,2,\ldots,n$ konečné množiny, pak

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n-1} \left| \bigcap_{i=1}^{n} A_{i} \right|$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}|.$$

Dirichletův šuplíkový princip

- ullet Jestliže je alespo
ň k+1 objektů rozděleno do k krabiček, tak musí být krabička obsahující alespo
ň dva objekty.
- \bullet Nechť A,Bjsou konečné množiny. Jestliže |A|>|B|, pak pro každé zobrazení $T\colon\thinspace A\mapsto B$ existuje $b\in B$ takové, že $|T^{-1}[\{b\}]|>1.$
- \bullet Nechť $c,k\in\mathbb{N}.$ Je-li alespo
ňck+1objektů umístěno do k krabiček, pak existuje krabička, která má více ne
žcobjektů.
- \bullet Je-liNobjektů umístěno do k krabiček, pak existuje krabička, která má alespoň $\left\lceil \frac{N}{k}\right\rceil$ objektů.