Exercice 1

- 1) Déterminer une valeur approchée de f(1) et de f(0).
- 2) Déterminer graphiquement le ou les antécédents de 0,5 ; de 2 et de -1.
- 3) Déterminer l'ensemble de définition de f.

Exercice 2

- 1) Résoudre graphiquement $f(x) \ge 2$.
- 2) Résoudre graphiquement f(x) < -2.
- 3) Donner le tableau de signes de la fonction f.

Exercice 3

On appelle f la fonction définie par la courbe ci-contre.

A l'aide du graphique, répondre aux questions suivantes en expliquant votre méthode.

- 1. Quel est l'ensemble de définition de f?
- 2. Quel est le minimum de f?
- 3. Quelle est l'image de -1?
- 4. Trouver un nombre ayant 3 antécédents et un nombre n'ayant pas d'antécédent.
- 5. Résoudre l'équation f(x) = 3.
- 6. Résoudre l'inéquation f(x) > 1
- 7. Discuter suivant les valeurs du réel m, le nombre de solutions de l'équation : f(x)=m

Exercice 4

On considère la fonction f dont l'expression est définie par la relation : $f(x) = 2x^2 - 3x + 2$

Parmi les points ci-dessous, quels sont ceux qui appartiennent à la courbe \mathscr{C}_f représentative de la fonction f:

$$A(1;2)$$
 ; $B(4;22)$; $C(-1;9)$; $D(0;3)$

Justifier vos réponses

On considère la fonction f définie pour tout nombre x par: $f(x) = 3x^2 + 4x - 1$

et on note \mathscr{C}_f la courbe représentative de cette fonction dans le plan muni d'un repère.

Parmi les points ci-desssous lequel ou lesquels appartiennent à la courbe \mathscr{C}_f :

$$(-2;-21)$$
; $(-1;-2)$; $(0;6)$; $(1;12)$; $(2;19)$

On justifiera ses réponses.

Exercice 6

On considère la fonction f définie sur [-2;2] par $f(x)=rac{x^2}{x+5}.$ Les points suivants sont-ils sur la courbe représentative de f?

$$O(0;0) \mathbin{;} A\left(1;\frac{1}{6}\right) \mathbin{;} B\left(3;\frac{1}{4}\right) \mathbin{;} C\left(-2;\frac{4}{7}\right) \mathbin{;} D\left(-3;\frac{9}{2}\right)$$

Exercice 7 Donner dans chaque cas l'ensemble de définition de la fonction f.

a)
$$f(x) = 2x^2 + 1$$

b)
$$f(x) = \frac{1}{2x} + 3x$$

c)
$$f(x) = \frac{1}{x-1}$$

d)
$$f(x) = 2\sqrt{x} + 1$$

e)
$$f(x) = \frac{1}{(x-4)(x+1)}$$

f)
$$f(x) = \frac{x}{(x-1)^2}$$

a)
$$f(x) = 2x^2 + 1$$

b) $f(x) = \frac{1}{2x} + 3x$
c) $f(x) = \frac{1}{x - 1}$
d) $f(x) = 2\sqrt{x} + 1$
e) $f(x) = \frac{1}{(x - 4)(x + 1)}$
f) $f(x) = \frac{x}{(x - 1)^2}$
g) $f(x) = \frac{1}{\sqrt{x^2 + 1}}$
h) $f(x) = \frac{\sqrt{x}}{x^2 - 1}$

h)
$$f(x) = \frac{\sqrt{x}}{x^2 - 1}$$

Exercice 8 On sait que la fonction f dont la courbe est tracée ci-dessous a une expression de la forme $f(x) = ax^3 + bx^2 + cx + d$ où a, b, c et d sont des réels. A l'aide la courbe, déterminer ces 4 réels.

