Machine Translation

Peerachet Porkaew, NECTEC

Outline

- Rule-based Machine Translation
- Statistical Machine Translation (SMT)

Rule-based Machine Translation

Rule-based Machine Translation (RBMT)

- Linguistic Knowledge
- Three sub-module:
 - Analysis
 - Transfer
 - Generation
- Template-based Translation

Rule-based MT

The Vauquois Triangle

Rule-based Machine Translation (RBMT)

- Limitations :
 - Not Automatic
 - Time consuming
 - Conflicts
 - Less Clarity

Rule-based MT

The Vauquois Triangle

Simple RBMT Demo

Noisy Channel Model

Noisy Channel Model

- Source sentence *t*, e.g. Thai
- Target sentence **e**, e.g. English
- Probabilistic formulation using Bayes rule $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

$$\hat{e} = \operatorname{argmax}_{\mathcal{C}} p(e|t)$$

 $\hat{e} = \operatorname{argmax}_{\mathcal{C}} p(t|e)p(e)$

Statistical Machine Translation (Cont.)

$$\hat{e} = \operatorname{argmax}_{e} p(t|e)p(e)$$

Statistical Decoder (Simplified version)

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this		go	the sea	with	friends
Yesterday			went to	sea	with	friend
Previous day		me	get to	ocean	with my friend	
เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this	l	go	the sea	with	friends
Yesterday			went to	sea	with	friend
Previous day		me	get to	ocean	with my friend	
เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this	I	go	the sea	with	friends
Yesterday		I	went to	sea	with	friend
Previous day		me	get to	ocean	with my friend	

Translation Model p(t|e)

Word-based Translation Model

$$p(t|e) = p(\mathrm{ld}|go) = 0.5$$

Phrase-based Translation Model

$$p(t_1t_2,...,t_n|e_1,e_2,...,e_m)$$
= $p(เมื่อวาน นี้| previous day) = 0.1$

• We do not have alignments. No problem we assume alignment are uniformly paired. p(t|e) = c (constant)

 But, we do not have alignment. No problem we assume alignment are uniformly paired. p(t|e) = c (constant)

Now, we can get the better alignment from previous knowledge.

Then, we can calculate p(t|e) again using these alignment information.

Expectation Maximization (EM)

Translation Model

Word-based Translation Model

$$p(t|e) = p(\mathrm{ld}|go) = 0.5$$

Phrase-based Translation Model

$$p(t_1t_2,...,t_n|e_1,e_2,...,e_m)=p(เมื่อวาน นี้| previous day)=0.1$$

Word-based Translation Model

Word-based Translation Model

Phrase-based Translation Model

$$p(t_1t_2,...,t_n|e_1,e_2,...,e_m)$$
= $p(เมื่อวาน นี้| previous day) = 0.1$

How we get the P(t|e) for phrases?

- Phrase Extraction Algorithm
 - Expanding single word alignment pairs to multiple-word alignment.

Fill missing alignment pairs

How we get the P(t|e) for phrases?

- Phrase Extraction Algorithm
 - Expanding single word alignment pairs to multiple-word alignment.

Fill missing alignment pairs

How we get the P(t|e) for phrases?

Phrase Pairs

$$p(t|e) = \frac{count(t,e)}{count(e)}$$

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

Image from: www.statmt.org

Statistical Decoder (with Translation model)

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this	I	go	the sea	with	friends
(0.5)	(1.0)	(8.0)	(0.6)	(0.7)	(8.0)	(0.6)
Yesterday		I	went to	sea	with	friend
(0.7)		(8.0)	(0.3)	(0.2)	(8.0)	(0.4)
Previous day		me	get to	ocean	with my friend	
(0.1)		(0.2)	(0.01)	(0.05)	(0.1)	

Language Model p_{LM}(e)

- Language Model of the target language.
- Calculate the "*fluency*" of sentences

 $p_{LM}(I \text{ went to the sea}) > p_{LM}(I \text{ went to ocean})$

How can we estimate p_{LM} ?

N-gram language model

How can we estimate P_{LM} ?

Maximum Likelihood Estimation (MLE)

p(I) = count("I") / N

• p(went|I) = count("I went") / count("I")

Smoothing

• if
$$p(x|y) = 0 ? \rightarrow P_{LM} = 0$$

We can use smoothing technique to overcome this situation.

For example, Add-one smoothing (Laplace Smoothing)

$$P_{\text{Laplace}}^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{\sum_{w} (C(w_{n-1}w) + 1)} = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

Smoothing

Back-off

if
$$p(w_i|w_{i-1}) = 0$$
 then $\hat{p}(w_i|w_{i-1}) = p(w_i)$

Interpolation

$$\hat{p}(w_i|w_{i-1}) = \lambda_1 p(w_i) + \lambda_2 p(w_i|w_{i-1}) \lambda_1 + \lambda_2 = 1$$

Statistical Decoder

$$\hat{e} = \operatorname{argmax}_{e} p(t|e)p(e)$$

Decoding

Decoding with Translation Model and Language Model

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this	I	go	the sea	with	friends
(0.5)	(1.0)	(8.0)	(0.6)	(0.7)	(8.0)	(0.6)
Yesterday		I	went to	sea	with	friend
(0.7)		(8.0)	(0.3)	(0.2)	(8.0)	(0.4)
Previous day		me	get to	ocean	with my friend	
(0.1)		(0.2)	(0.01)	(0.05)	(0.1)	

Score =
$$0.7 \times 0.8 \times 0.6 \times 0.7 \times 0.8 \times 0.6 \times P_{LM}$$
 ("Yesterday I go the sea with friends")

Decoding

Decoding with Translation Model and Language Model

เมื่อวาน	นื้	ฉัน	ไป	ทะเล	กับ	เพื่อน
Yesterday	this		go	the sea	with	friends
(0.5)	(1.0)	(8.0)	(0.6)	(0.7)	(8.0)	(0.6)
Yesterday		I	went to	sea	with	friend
(0.7)		(8.0)	(0.3)	(0.2)	(8.0)	(0.4)
Previous day		me	get to	ocean	with my friend	
(0.1)		(0.2)	(0.01)	(0.05)	(0.1)	

Score = $0.1 \times 0.2 \times 0.3 \times 0.05 \times 0.1x$ P_{LM} ("Previous day me went to ocean with my friend")

Beam Search

The Beam Search is a tree search algorithm but the data are filtered and sorted using a heuristic function.

Left-to-Right Beam Search

Beam Search

Beam Search in Statistical Decoder

SMT using **NLTK** Library

```
Cet Started
                   main_smt.py M X
tmapi > tmapi > @ main_smt.py > \(\overline{\Omega}\) test_smt
        from nltk.translate import PhraseTable, StackDecoder
        from collections import defaultdict
       from math import log
        def test_smt():
            phrase table = PhraseTable()
            phrase_table.add(('book',), ('หนังสือ',), log(0.1))
            phrase_table.add(('this','book',), ('หนังสือ','เล่ม','นี้',), log(0.8))
            phrase_table.add(('this',), ('\vec{u}',), log(0.8))
            phrase_table.add(('costs',), ('snen',), log(0.1))
  10
            phrase_table.add(('300',), ('300',), log(0.1))
  11
            phrase_table.add(('300',), ('สาม','ร้อย',), log(0.5))
  12
            phrase_table.add(('baht',), ('บาท',), log(0.8))
  13
            language_prob = defaultdict(lambda: -999.0)
            language_prob[('i \dot{a} \dot{a} i',)] = log(0.5)
            language_prob[('หนังสือ',)] = log(0.4)
            language_prob[('หนังสือ', 'เล่ม', 'นี้')] = log(0.7)
            language_prob[('บาท',)] = log(0.1)
            language_prob[('สาม', 'ร้อย',)] = log(0.7)
  20
            language_model = type('',(object,),
  21
  22
                            {'probability_change': lambda self, context, phrase: language_prob[ph
  23
                             'probability': lambda self, phrase: language_prob[phrase]})()
  24
  25
            stack_decoder = StackDecoder(phrase_table, language_model)
  27
            out = stack_decoder.translate("this book costs 300 baht".split())
  28
            print(out)
 PROBLEMS
             OUTPUT
                       DEBUG CONSOLE
                                         TERMINAL
 [ 'หนังสือ ', 'เล่ม ', 'นี้ ', 'ราคา ', 'สาม ', 'ร้อย ', 'บาท ']
```

REF: https://www.nltk.org/api/nltk.translate.stack_decoder.html

Summary

- Statistical Machine Translation
- Translation Model
- Language Model

SMT Demo