Book: https://nms.kcl.ac.uk/osvaldo.simeone/bert.pdf

Chapter: 2.1 (Optimization over a Convex Set)

Problem 1

2.1.3 (Kepler's Planimetric Problem)

Among all rectangles contained in a given circle show that the one that has maximal area is a square.

Problem 2

2.1.6

Consider the problem

maximize
$$x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$$
 subject to $\sum_{i=1}^n x_i=1, \qquad x_i\geq 0, \quad i=1,\ldots,n,$

where a_i are given positive scalars. Find a global maximum and show that it is unique.

Problem 3

2.1.7

Let Q be a positive definite symmetric matrix. State and prove a generalization of the projection theorem that involves the cost function (z-x)'Q(z-x) in place of $||z-x||^2$. Hint: Use a transformation of variables.

Problem 4

2.1.12 (Projection on a Simplex)

- (a) Develop an algorithm to find the projection of a vector z on a simplex. This algorithm should be almost as simple as a closed form solution.
- (b) Modify the algorithm of part (a) so that it finds the minimum of the cost function

$$f(x) = \sum_{i=1}^{n} \left(\alpha_i x_i + \frac{1}{2} \beta_i x_i^2 \right)$$

over a simplex, where α_i and β_i are given scalars with $\beta_i > 0$. Consider also the case where β_i may be zero for some indices i.

Problem 5

2.1.17 (Fractional Programming)

Consider the problem

minimize
$$\frac{f(x)}{g(x)}$$

subject to
$$x \in X$$
,

where $f: \Re^n \to \Re$ and $g: \Re^n \to \Re$ are given functions, and X is a given subset such that g(x) > 0 for all $x \in X$. For $\lambda \in \Re$, define

$$Q(\lambda) = \min_{x \in X} \bigl\{ f(x) - \lambda g(x) \bigr\},$$

and suppose that a scalar λ^* and a vector $x^* \in X$ satisfy $Q(\lambda^*) = 0$ and

$$x^* = \arg\min_{x \in X} \big\{ f(x) - \lambda^* g(x) \big\}.$$

Show that x^* is an optimal solution of the original problem. Use this observation to suggest a solution method that does not require dealing with fractions of functions.