Problem Set #3 Solutions

Introduction to Quantum Information Science Ryan Zhou (rz3974)

1. Local Evolution of Entangled States.

Let
$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $U^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Then
$$(U \otimes I) |\psi\rangle = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} a \\ c \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} b \\ d \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$$

$$= \frac{1}{\sqrt{2}} \left[\begin{pmatrix} a \\ 0 \\ c \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \\ 0 \\ d \end{pmatrix} \right]$$

$$= \frac{1}{\sqrt{2}} \left[\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} a \\ b \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ c \\ d \end{pmatrix} \right]$$

$$= \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} \right]$$

$$= (I \otimes U^T) |\psi\rangle.$$

2. Multi-qubit quantum circuits

a) Writing the circuit in terms of matrix multiplication, we have

Note that this final array is a reverse cX gate with the 2nd q-bit is used as the control.

- **b)** Let $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$. The answers to the questions are below:
 - 1. What is the state of the first qubit before the CNOT? $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\pi/4} \end{pmatrix}$.
 - 2. What is the state of the two qubits before the measurement? $\frac{1}{\sqrt{2}}\begin{pmatrix} \beta \\ \alpha e^{i\pi/4}i \\ \beta e^{i\pi/4} \\ \alpha i \end{pmatrix}$.
 - 3. What are the probabilities of measuring $|0\rangle$ or $|1\rangle$? $P[|0\rangle] = \frac{1}{2}(\beta^2 + \alpha^2) = \frac{1}{2}, P[|1\rangle] = \frac{1}{2}(\alpha^2 + \beta^2) = \frac{1}{2}$.
 - 4. What is the second qubit state $|\psi_{\text{out}}\rangle$ when the first qubit is measured as $|0\rangle$. How about when it's measured as $|1\rangle$? If the first qubit is $|0\rangle$, $|\psi_{\text{out}}\rangle = \beta |0\rangle + \alpha e^{i\pi/4}i |1\rangle$. If the first qubit is $|1\rangle$, $|\psi_{\text{out}}\rangle = \beta e^{i\pi/4} |0\rangle + \alpha i |1\rangle$.
- c) The circuit is below:

3. Quantum Money Attacks. If we expand all the tensor products, we get the giant vector

$$\begin{pmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ 0 \\ \frac{1}{\sqrt{12}} \\ 0 \\ \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \\ 0 \end{pmatrix}.$$

Then the probability of success for any given qubit state is $P(\text{success}) = (\frac{5}{6})(\frac{9}{10}) + (\frac{1}{6})(0) = \frac{3}{4}$. Note that each case is symmetric, thus the overall probability is $4(\frac{1}{4})(\frac{3}{4}) = \frac{3}{4} > \frac{5}{8}$.

4. SARG04 Quantum Key Distribution

- a) $a = 011001, b = 101011, |\psi\rangle = |+\rangle |1\rangle |-\rangle |0\rangle |+\rangle |-\rangle.$
- **b)** $b' = 100111, |\psi'\rangle = |+\rangle |1\rangle |0\rangle |-\rangle |+\rangle |-\rangle, a' = 010101.$
- c) Alice and Bob will discard indices 2 and 3, so a = a' = 0101.
- **d)** Assign $\{|0\rangle, |+\rangle\} = 00$, $\{|0\rangle, |-\rangle\} = 01$, $\{|1\rangle, |+\rangle\} = 10$ or $\{|1\rangle, |-\rangle\} = 11$. Then we can encode $|psi\rangle$ with the classical string 101111001001.
- e) Using a' from part b, we get a b' = 1?1111.
- f) Alice and Bob will discard indices 1 and 2, so a = 0001 and a' = 0101. I'm not sure if a, a' are supposed to match in this scheme. It seems like they should, but I didn't really understand the instructions we were given for SARG04.