WHAT IS CLAIMED IS:

- 1. A diagnostic agent comprising a diagnostic metal and a compound, wherein the compound comprises:
- 5 i) 1-10 targeting moieties;
 - ii) a chelator; and

10

20

35

iii) 0-1 linking groups between the targeting moiety and chelator;

wherein the targeting moiety is a matrix metalloproteinase inhibitor; and

wherein the chelator is capable of conjugating to the diagnostic metal.

- 2. A diagnostic agent according to claim 1, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <1000 nM.
 - 3. A diagnostic agent according to claim 1, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <100 nM.
 - 4. A diagnostic agent according to claim 1, comprising 1-5 targeting moieties.
- 25 5. A diagnostic agent according to claim 1, comprising one targeting moiety.
- A diagnostic agent of claim 1, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases
 selected from the group consisting of MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14.
 - 7. A diagnostic agent of claim 6, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases selected from the group consisting of MMP-2, MMP-9, and MMP-14.

8. A diagnostic agent according to claim 1 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

R is independently OH or -CH₂SH;

5

 R^1 is independently selected at each occurrence from the group: 10 H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-20} alkyl;

15 X is independently C=O or SO_2 , provided when X is C=O, R^3 is

heterocycle substituted with 0-2 R6;

$$-N \mapsto \mathbb{R}^5$$
 , and when X is SO₂, \mathbb{R}^3 is independently selected from the group: aryl substituted with 0-2 \mathbb{R}^6 , and

- 20 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- R⁵ is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the chelator;

 R^6 is independently aryloxy substituted with 0-3 R^7 ;

30 R⁷ is independently halogen or methoxy;

or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3-O$ -phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the chelator;

or alternatively,

- R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to the linking group or a bond to the chelator; or
- R¹ and R² taken together with the nitrogen and carbon atom
 through which they are attached form a C_{5-7} atom saturated
 ring system substituted with one or more substituents
 selected from the group consisting of: a bond to Ln, a bond
 to Ch, and $-C(=0)-NR^{29}R^{30}$;
- 20 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to the linking group or a bond to the chelator, provided that when R^8 is phenyl, R^{10} is $C(=0)-CR^{12}-NH-CH(CH_3)-COOH;$
- 25 R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system substituted with R⁶ and optionally substituted with a bond to the linking group or a bond to the chelator;

- R¹⁰ and R¹¹ are independently H, or C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with 0-3 R²⁷, a bond to the linking group or a bond to the chelator;
- 10 or alternatively,

5

- R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with a bond to the linking group or a bond to the chelator; and
- R^{12} is independently C_{1-20} alkyl;
- 20 R²⁷ is =0, C1-4 alkyl, or phenyl substituted with R²⁸; R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups; R²⁹ and R³⁰ taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R³¹; and
 - 25 R^{31} is a benzyloxy group substituted with C1-4 alkyl.
 - 9. A diagnostic agent according to claim 8 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

R is OH;

R¹ is independently selected at each occurrence from the group:

H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and

heterocycle-S-CH₂-;

 \mathbb{R}^2 is independently \mathbb{C}_{1-6} alkyl;

10 X is C=O;

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

- 15 R⁵ is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the chelator;
- 20 R^6 is independently aryloxy substituted with 0-3 R^7 ;
 - R⁷ is independently halogen or methoxy;

or alternatively,

- R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the chelator;
- 30 or alternatively,
 - R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to the linking group or a bond to the chelator; or

 R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $-C(=0)-NR^{29}R^{30}$;

 R^8 is OH;

- 10 R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0± 1 heteroatoms selected from O, N, , said ring system optionally substituted with a bond to the linking group or a bond to the chelator;
- R¹⁰ and R¹¹ are independently H, or C₁₋₆ alkyl optionally

 substituted with a bond to the linking group or a bond to the chelator, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted

 with 0-3 R²⁷, a bond to the linking group or a bond to the chelator;

or alternatively,

30 R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system

optionally substituted with a bond to the linking group or a bond to the chelator; and

 R^{12} is independently C_{1-6} alkyl;

- R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups; R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and
- 10 R³¹ is a benzyloxy group substituted with C1-4 alkyl.
 - 10. A'diagnostic agent according to claim 8 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):
- 15 wherein:

$$R^2$$
 is C_{1-6} alkyl;

X is C=0;

$$\mathbb{R}^3$$
 is \mathbb{R}^4 \mathbb{R}^5

- 20 R^1 and R^4 are taken together to form a bridging group of formula $-(CH_2)_3-O-phenyl-CH_2-;$
 - ${\tt R}^{\tt 5}$ is NH(C1-6alkyl), substituted with a bond to the linking group or a bond to the chelator.
- 25 11. A diagnostic agent according to claim 8, wherein: R is -OH;

 R^9 is C_1 alkyl substituted with a bond to Ln;

 ${\bf R}^{10}$ and ${\bf R}^{11}$ taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right

30 system is substituted with 0-3 R^{27} ;

 \mathbb{R}^{27} is =0, C1-4 alkyl, or phenyl substituted with \mathbb{R}^{28} ; and

 R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups.

- 12. A diagnostic agent according to claim 8 wherein the R is -OH:
- 5 R¹ and R² taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and -C(=0) $NR^{29}R^{30}$;
- R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and R^{31} is a benzyloxy group substituted with C1-4 alkyl.
- 15 13. A diagnostic agent according to claim 1 wherein the linking group is of the formula:

$$(\,(\mathbb{W}^1)_{\,h^{-}}(\mathbb{C}\mathbb{R}^{13}\mathbb{R}^{14})_{\,g})_{\,x^{-}}(\mathbb{Z})_{\,k^{-}}(\,(\mathbb{C}\mathbb{R}^{13}\mathbb{a}\mathbb{R}^{14}\mathbb{a})_{\,g'\,^{-}}(\mathbb{W}^2)_{\,h'\,^{\prime}})_{\,x'\,;}$$

W¹ and W² are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, - (OCH₂CH₂)₇₆₋₈₄, (OCH₂CH₂)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂)_S", (CH₂CH₂CH₂O)_t, and (aa)_t;

aa is independently at each occurrence an amino acid;

25

Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} ;

- R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R^{16} , aryl substituted with 0-3 R^{16} , benzyl substituted with 0-3 R^{16} , and C₁-C₅ alkoxy substituted with 0-3 R^{16} , NHC(=O) R^{17} , C(=O)NH R^{17} , NHC(=O)NH R^{17} , NHC(=O)NH R^{17} , and a bond to the chelator;
- R¹⁶ is independently selected at each occurrence from the group:
 a bond to the chelator, COOR¹⁷, C(=0)NHR¹⁷, NHC(=0)R¹⁷, OH,

 NHR¹⁷, SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with

 0-3 R¹⁷, C₁₋₅ alkyl substituted with 0-1 R¹⁸, C₁₋₅ alkoxy

 substituted with 0-1 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently

 selected from N, S, and O and substituted with 0-3 R¹⁷;
- R¹⁷ is independently selected at each occurrence from the group:

 H, alkyl substituted with 0-1 R¹⁸, aryl substituted with

 0-1 R¹⁸, a 5-10 membered heterocyclic ring system

 containing 1-4 heteroatoms independently selected from N,

 S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀ cycloalkyl

 substituted with 0-1 R¹⁸, polyalkylene glycol substituted

 with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸,

 cyclodextrin substituted with 0-1 R¹⁸, amino acid

 substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with

 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide

 substituted with 0-1 R¹⁸, wherein the peptide is comprised

 of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl,

 bis(phosphonomethyl)glycine, and a bond to the chelator;
- 30 R^{18} is a bond to the chelator;

15

k is selected from 0, 1, and 2;

```
h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x' is selected from 0, 1, 2, 3, 4, and 5; and
```

- 14. A diagnostic agent according to claim 13 wherein

 W¹ and W² are independently selected at each occurrence from

 the group: O, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵,

 C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂,
 (CH₂CH₂O)₇₆₋₈₄₋, (OCH₂CH₂O)₈, (CH₂CH₂O)₈, (OCH₂CH₂CH₂O)₈,

 (CH₂CH₂CH₂O)_t, and (aa)_t;
- 20 aa is independently at each occurrence an amino acid;
- Z is selected from the group: aryl substituted with 0-1 R¹⁶,

 C3-10 cycloalkyl substituted with 0-1 R¹⁶, and a 5-10

 membered heterocyclic ring system containing 1-4

 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁶;
 - R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R¹⁶, aryl substituted with 0-1 R¹⁶, benzyl substituted with 0-1 R¹⁶, and C₁-C₅ alkoxy substituted with 0-1 R¹⁶, NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHC(=O)NHR¹⁷, and a bond to the chelator;

```
k is 0 or 1;
      s is selected from 0, 1, 2, 3, 4, and 5;
      s' is selected from 0, 1, 2, 3, 4, and 5;
      s" is selected from 0, 1, 2, 3, 4, and 5; and
      t is selected from 0, 1, 2, 3, 4, and 5.
           A diagnostic agent according to claim 13 wherein
      15
    wherein:
    W^{1} is C(=0)NR^{15}:
    h is 1;
 10
      q is 3;
      R^{13} and R^{14} are independently H;
     \dot{x} is 1;
  k is 0;
· 15
    g'is 0;
      h' is 1;
      W^2 is NH; and
      x' is 1.
 20
     16. A diagnostic agent according to claim 13 wherein
      x is 0;
      k is 1;
      Z is aryl substituted with 0-3 R^{16};
      g' is 1;
 25
      W^2 is NH;
      R^{13a} and R^{14a} are independently H;
      h' is 1; and
      x' is 1.
 30
      17. A diagnostic agent according to claim 13 wherein
      W^{1} is C(=0)NR<sup>15</sup>;
      h is 1;
      g is 2;
      R^{13} and R^{14} are independently H;
      x is 1;
 35
```

```
k is 0;
     g' is 1;
     {\tt R}^{13a} and {\tt R}^{14a} are independently H; or C1-5 alkyl substituted
    with 0-3 R^{16};
   R^{16} is SO_3H;
 5
     W^2 is NHC(=0) or NH;
     h' is 1; and
     x' is 2.
10
    18. A diagnostic agent according to claim 13 wherein
     W^1 is C(=0)NH;
     h is 1;
     g is 3;
    {\bf R}^{13} and {\bf R}^{14} are independently H;
    k is 0;
15
     g' is 0;
     x is 1;
    W^2 is -NH(C=0) - or -(OCH<sub>2</sub>CH<sub>2</sub>)<sub>76-84</sub>-;
     h' is 2; and
20
    x' is 1.
     19. A diagnostic agent according to claim 13 wherein
     x is 0;
    k is 0;
    g' is 3;
25
     h' is 1;
     W^2 is NH; and
     x' is 1.
30
     20. A diagnostic agent according to claim 13 wherein
     x is 0;
     Z is aryl substituted with 0-3 R^{16};
     k is 1;
     g' is 1;
```

 $R^{13}aR^{14}a$ are independently H; W^2 is NHC(=0) or -(OCH2CH2) $_{76-84}$ -; and x' is.1.

x' is 1.

- 5 21. A diagnostic agent according to claim 13 wherein W¹ is C=O; g is 2; R¹³ and R¹⁴ are independently H; k is 0; 10 g'is 0; h' is 1; W² is NH; and
- 15 22. A compound according to claim 1 wherein the linking group is absent.
- 23. A diagnostic agent according to claim 1 wherein the chelator is a metal bonding unit having a formula selected from the group:

$$E^{1}$$
 A^{2}
 A^{1}
 A^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{5}
 E^{5}
 A^{5}
 E^{6}
 A^{1}
 E^{1}
 A^{2}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
 E^{6}
 E^{6}
 E^{1}
 E^{2}
 E^{2}
 E^{3}
 E^{4}
 E^{5}
 E^{6}
 E^{6}
 E^{6}
 E^{7}
 E^{1}
 E^{2}
 E^{2}
 E^{3}
 E^{3}
 E^{4}

$$A^{1}$$
 E^{1}
 A^{2}
 E^{3}
 A^{5}
 A^{5}
 A^{6}
 A^{7}
 A^{6}
 A^{7}
 A^{7}
 A^{7}
 A^{7}
 A^{8}
 A^{8

- A¹, A², A³, A⁴, A⁵, A⁶, A⁷, and A⁸ are independently selected at each occurrence from the group: N, NR²⁶,NR¹⁹, NR¹⁹R²⁰, S, SH, -S(Pg), O, OH, PR^{19} , $PR^{19}R^{20}$, $-O-P(O)(R^{21})-O-$, $P(O)R^{21}R^{22}$, a bond to the targeting moiety and a bond to the linking group;
- 10 Pg is a thiol protecting group;
- E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₆ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ aryl-substituted with 0-3 R²³, and a 5-10 membered heterocyclic

ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

- R^{19} and R^{20} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, 5 hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{1-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered 10 heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C6-10 aryl-C1-10 alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ arylsubstituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected. from N, S, and O and substituted with 0-3 R^{23} , and an 15 electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;
- \mathbb{R}^{21} and \mathbb{R}^{22} are each independently selected from the group: 20 bond to the linking group, a bond to the targeting moiety, -OH, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein 25 the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N; S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with $^{\circ}$ 0-3 R 23 , C $_{1-10}$ alkyl-C $_{6-10}$ aryl- substituted with 0-3 R 23 , and a 5-10 membered heterocyclic ring system containing 1-4 30 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³:

- \mathbb{R}^{23} is independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, =0, F, Cl, Br, I, -CF₃, -CN, -CO₂R²⁴, -C(=0)R²⁴, $-C(=0)N(R^{24})_2$, -CHO, $-CH_2OR^{24}$, $-OC(=0)R^{24}$, $-OC(=0)OR^{24}a$, $-0R^{24}$, $-0C(=0)N(R^{24})_2$, $-NR^{25}C(=0)R^{24}$, $-NR^{25}C(=0)OR^{24}a$, $-NR^{25}C(=0)N(R^{24})_2$, $-NR^{25}SO_2N(R^{24})_2$, $-NR^{25}SO_2R^{24}a$, $-SO_3H$, $-SO_2R^{24a}$, $-SR^{24}$, $-S(=0)R^{24a}$, $-SO_2N(R^{24})_2$, $-N(R^{24})_2$, $-NHC(=S)NHR^{24}$, $=NOR^{24}$, NO_2 , $-C(=O)NHOR^{24}$, $-C(=O)NHNR^{24}R^{24a}$ -OCH₂CO₂H, 2-(1-morpholino)ethoxy, C₁-C₅ alkyl, C₂-C₄ alkenyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6 10 alkoxyalkyl, aryl substituted with $0-2 R^{24}$, and a 5-10membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O; and wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is a bond to the linking group or targeting moiety; 15 \mathbb{R}^{24} , \mathbb{R}^{24a} , and \mathbb{R}^{25} are independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, H, C₁-C₆ alkyl, phenyl, benzyl, C₁-C₆ alkoxy, halide, nitro, cyano, and trifluoromethyl; and R^{26} is a co-ordinate bond to a metal or a hydrazine protecting 20 group; or a pharmaceutically acceptable salt thereof.
 - 24. A diagnostic agent according to claim 23 wherein:
- 25 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: NR^{19} , $NR^{19}R^{20}$, S, SH, OH, a bond to the targeting moiety and a bond to the linking group;
- 30 E^1 , E^2 , E^3 , E^4 , E^5 , E^6 , E^7 , and E^8 are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl

substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

- wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 and R^{23} is a bond to the linking group or the targeting moiety;
- R¹⁹, and R²⁰ are each independently selected from the group: a bond to the targeting moiety, a bond to the linking group, hydrogen, C₁-C₁₀ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³, and an electron, provided that when one of R¹⁹ or R²⁰ is an electron, then the other is also an electron;
- R²³ is independently selected at each occurrence from the group: a bond to the targeting moiety, a bond to the linking group, =0, F, Cl, Br, I, -CF₃, -CN, -CO₂R²⁴, -C(=0)R²⁴, -C(=0)N(R²⁴)₂, -CH₂OR²⁴, -OC(=0)R²⁴, -OC(=0)OR²⁴a, -OR²⁴, -OC(=0)N(R²⁴)₂, -NR²⁵C(=0)R²⁴, -NR²⁵C(=0)OR²⁴a, -NR²⁵C(=0)N(R²⁴)₂, -NR²⁵SO₂R²⁴a, -SO₃H, -SO₂R²⁴a, -S(=0)R²⁴a, -SO₂N(R²⁴)₂, -N(R²⁴)₂, -NHC(=S)NHR²⁴, =NOR¹⁸, -C(=0)NHNR¹⁸R¹⁸a, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy; and
 - R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to the linking group, H, and C_1 - C_6 alkyl.
 - 25. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{3}
 A^{5}
 A^{6}
 E^{7}
 A^{7}
 A^{8}

A¹ is a bond to the linking group;

5 A^2 , A^4 , and A^6 are each N;

 ${\tt A}^3$, ${\tt A}^5$, ${\tt A}^7$ and ${\tt A}^8$ are each OH;

 E^1 , E^2 , and E^4 are C2 alkyl;

 ${\tt E}^3,~{\tt E}^5,~{\tt E}^7,$ and ${\tt E}^8$ are ${\tt C}_2$ alkyl substituted with 0-1 ${\tt R}^{23};$

 R^{23} is =0.

15 26. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

C_h is

10

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{6}
 E^{7}
 A^{7}
 A^{3}
 A^{5}
 A^{8}

20 wherein:

A5 is a bond to Ln;

 ${\tt A}^{1}$, ${\tt A}^{3}$, ${\tt A}^{7}$ and ${\tt A}^{8}$ are each OH;

 ${\tt A}^2$, ${\tt A}^4$ and ${\tt A}^6$ are each NH;

 ${\rm E}^{1},~{\rm E}^{3},~{\rm E}^{5},~{\rm E}^{7},$ and ${\rm E}^{8}$ are ${\rm C}_{2}$ alkyl substituted with 0-1 ${\rm R}^{23};$

25 E^2 , and E^4 , are C_2 alkyl;

 R^{23} is =0.

27. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

$$A^{5}$$
 E^{5}
 A^{1}
 E^{1}
 A^{2}
 E^{6}
 A^{6}
 A^{8}
 E^{8}
 A^{4}
 E^{3}
 A^{7}
 A^{7}

 A^{1} , A^{2} , A^{3} and A^{4} are each N;

 A^5 , A^6 and A^8 are each OH;

 A^7 is a bond to L_n ;

 ${\tt E}^1,~{\tt E}^2,~{\tt E}^3,~{\tt E}^4$ are each independently C2 alkyl; and

 ${\rm E}^5$, ${\rm E}^6$, ${\rm E}^7$, ${\rm E}^8$ are each independently ${\rm C}_2$ alkyl substituted with 0-1 ${\rm R}^{23}$;

 R^{23} is =0.

5

10.

15

20

28. A diagnostic agent according to claim 23 wherein the

$$E^1 - A^2$$
 chelator is of the formula: A^1

 A^1 is NR^{26} ;

 R^{26} is a co-ordinate bond to a metal or a hydrazine protecting group;;

E¹ is a bond;

 A^2 is NHR¹⁹;

5

- \mathbb{R}^{19} is a heterocycle substituted with \mathbb{R}^{23} , the heterocycle being selected from pyridine and pyrimidine;
- R^{23} is selected from a bond to the linking group, $C(=0)NHR^{24}$ and $C(=0)R^{24}$; and

 R^{24} is a bond to the linking group.

29. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

wherein:

 A^1 and A^5 are each -S(Pg);

Pg is a thiol protecting group;

- 20 E^1 and E^4 are C_2 alkyl substituted with 0-1 R^{23} ;
 - R^{23} is =0;

 A^2 and A^4 are each -NH;

 E^2 is CH_2 ;

 E^3 is C_{1-3} alkyl substituted with 0-1 R^{23} ;

25 A^3 is a bond to Ln.

30. A diagnostic agent according to claim 23 wherein the chelator is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 A^{5}
 E^{6}

wherein:

A¹ is a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

5 A^2 is NH;

 E^2 is C_2 alkyl substituted with $0-1R^{23}$;

 A^3 is $-O-P(O)(R^{21})-O;$

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -O-;

10 E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0-1 R^{23} ;

E⁵ is C₁ alkyl;

 R^{21} is -OH; and

 R^{23} is =0.

15

31. A diagnostic agent according to claim 1 having the formula:

$$(Q)_{d}-L_{n}-C_{h}$$

. 20

wherein, Q is a compound of Formulae (Ia) or (Ib):

25 R is independently OH or -CH₂SH;

 R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

 \mathbb{R}^2 is independently \mathbb{C}_{1-20} alkyl;

X is independently C=O or SO_2 , provided when X is C=O, \mathbb{R}^3 is

-N

5

15

20

25

H $\ddot{0}$, and when X is SO_2 , R^3 is independently selected from the group: aryl substituted with 0-2 R^6 , and heterocycle substituted with 0-2 R^6 ;

 R^4 is independently selected at each occurrence from the group: 10 C_{1-6} alkyl, phenyl, and benzyl;

 R^5 is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n ;

 R^6 is independently aryloxy substituted with 0-3 R^7 ;

 ${\tt R}^7$ is independently halogen or methoxy;

or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)^3-O$ -phenyl- CH_2 -, optionally substituted with a bond to L_n ;

or alternatively,

 R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to L_n ; or

- R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and -C(=0) -NR²⁹R³⁰;
- R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to L_n , provided that when R^8 is phenyl, R^{10} is $-C(=O)-CR^{12}-NH-CH(CH_3)-COOH$;
- R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n ;
- R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} or a bond to L_n ;

or alternatively,

10

15

 ${
m R}^9$ and ${
m R}^{10}$ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, ${
m SO}_2$ and S, said ring system optionally substituted with a bond to ${
m L}_n$;

 R^{12} is independently C_{1-20} alkyl;

25

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

5 L_n is a linking group having the formula:

```
((W^1)_{h} - (CR^{13}R^{14})_{g})_{x} - (Z)_{k} - ((CR^{13}aR^{14}a)_{g'} - (W^2)_{h'})_{x'};
```

- W¹ and W² are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, $(OCH_2CH_2)_{76-84}$, $(OCH_2CH_2)_{8}$, $(CH_2CH_2O)_{8'}$, $(OCH_2CH_2O)_{8'}$, $(CH_2CH_2O)_{1}$, and $(aa)_{1}$;
- 15 aa is independently at each occurrence an amino acid;
 - Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} ;
 - R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R^{16} , aryl substituted with 0-3 R^{16} , benzyl substituted with 0-3 R^{16} , and C₁-C₅ alkoxy substituted with 0-3 R^{16} , NHC(=0) R^{17} , C(=0)NHR¹⁷, NHC(=0)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to Ch;
- 30 R^{16} is independently selected at each occurrence from the group: a bond to C_h , $COOR^{17}$, $C(=O)NHR^{17}$, $NHC(=O)R^{17}$, OH, NHR^{17} , SO_3H , PO_3H , $-OPO_3H_2$, $-OSO_3H$, aryl substituted with 0-3 R^{17} ,

 C_{1-5} alkyl substituted with 0-1 R^{18} , C_{1-5} alkoxy substituted with 0-1 R^{18} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;

5

15

R¹⁷ is independently selected at each occurrence from the group:

H, alkyl substituted with 0-1 R¹⁸, aryl substituted with

0-1 R¹⁸, a 5-10 membered heterocyclic ring system

containing 1-4 heteroatoms independently selected from N,

S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀ cycloalkyl

substituted with 0-1 R¹⁸, polyalkylene glycol substituted

with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸,

cyclodextrin substituted with 0-1 R¹⁸, amino acid

substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with

0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide

substituted with 0-1 R¹⁸, wherein the peptide is comprised

of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl,

bis(phosphonomethyl)glycine, and a bond to Ch;

20 R^{18} is a bond to C_h ;

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
x is selected from 0, 1, 2, 3, 4, and 5;
x' is selected from 0, 1, 2, 3, 4, and 5;

Ch is a metal bonding unit having a formula selected from the group:

10

5

A¹, A², A³, A⁴, A⁵, A⁶, A⁷, and A⁸ are independently selected at each occurrence from the group: N, NR²⁶, NR¹⁹, NR¹⁹R²⁰, S, SH, -S(Pg), O, OH, PR¹⁹, PR¹⁹R²⁰, -O-P(O)(R²¹)-O-,

 $P(0)R^{21}R^{22}$, a bond to the targeting moiety and a bond to the linking group;

Pg is a thiol protecting group;

5

10.

- E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C_1 - C_{16} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl-substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;
- R^{19} and R^{20} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, 20 hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{1-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered. 125 heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C6-10 aryl-C1-10 alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} arylsubstituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with $0-3\ R^{23}$, and an 30 electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

 R^{21} and R^{22} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, -OH, C_1-C_{10} alkyl substituted with 0-3 R^{23} , C_1-C_{10} alkyl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

15

10

5

is independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, =0, F, Cl, Br, I, $-CF_3$, -CN, $-CO_2R^{24}$, $-C(=0)R^{24}$, $-C(=0)N(R^{24})_2$, $-CH_0$, $-CH_2OR^{24}$, $-OC(=0)R^{24}$, $-OC(=0)OR^{24}$ a, $-OR^{24}$, $-OC(=0)N(R^{24})_2$, $-NR^{25}C(=0)R^{24}$, $-NR^{25}C(=0)OR^{24}a$, $-NR^{25}C(=0)N(R^{24})_2$, $-NR^{25}SO_2N(R^{24})_2$, $-NR^{25}SO_2R^{24}a$, $-SO_3H$, $-SO_2R^{24a}$, $-SR^{24}$, $-S(=0)R^{24a}$, $-SO_2N(R^{24})_2$, $-N(R^{24})_2$, $-NHC(=S)NHR^{24}$, $=NOR^{24}$, NO_2 , $-C(=O)NHOR^{24}$, $-C(=O)NHNR^{24}R^{24}a$, -OCH₂CO₂H, 2-(1-morpholino)ethoxy, C₁-C₅ alkyl, C₂-C₄ alkenyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6 25 alkoxyalkyl, aryl substituted with 0-2 R^{24} , and a 5-10membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O; and wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is 30 a bond to the linking group or targeting moiety; R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to the linking group, a bond to the

targeting moiety, H, C1-C6 alkyl, phenyl, benzyl, C1-C6 alkoxy, halide, nitro, cyano, and trifluoromethyl; and R²⁶ is a co-ordinate bond to a metal or a hydrazine protecting group; or a pharmaceutically acceptable salt thereof. 32. A diagnostic agent according to Claim 31, wherein: h' is 1; W^2 is NH; and x' is 1. 33. A diagnostic agent according to Claim 31, wherein: x is 0; Z is aryl substituted with 0-3 R^{16} ; k is 1; q' is 1; R^{13a}R^{14a} are independently H; W^2 is NHC(=0) or -(OCH2CH2)₇₆₋₈₄-; and x' is 1. 34. A diagnostic agent according to Claim 31, wherein: W^1 is C=O; g is 2; R^{13} and R^{14} are independently H; k is 0; g'is 0;

15

20

25

3.0

h' is 1;

x' is 1.

 W^2 is NH; and

35. A diagnostic agent according to Claim 31, wherein: 2-{[5-(3-{2-[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-

```
amino]-acetylamino}-propylcarbamoyl)-pyridin-2-yl]-
    hydrazonomethyl } - benzenesulfonic acid;
    2-{[5-(4-{[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-
    bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-
    amino]-methyl}-benzylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-
    benzenesulfonic acid;
    2-[7-({N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-4]})})
10
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
    1(15),12(16),13-trien-3-
    yl]carbonylamino}acetylamino)propyl]carbamoyl}methyl)-1,4,7,10-
    tetraaza-4,10-bis(carboxymethyl)cyclododecyl]acetic acid;
    15
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
    1(15),12(16),13-trien-3-yl]-
    carbonylamino methyl) phenyl] methyl carbamoyl) methyl] -1,4,7,10-
    tetraaza-4,10-bis(carboxymethyl)cyclododecyl}acetic acid;
20
    2-(7-\{[N-(1-\{N-[3-(2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-
    (2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
   -1(15),12(16),13-trien-3-
    yl]carbonylamino}acetylamino)propyl]carbamoyl}-2-
25
    sulfoethyl)carbamoyl]methyl}-1,4,7,10-tetraaza-4,10-
    bis(carboxymethyl)cyclododecyl)acetic_acid;
    2-[7-(N-[1-(N-{[4-({[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-}
    (2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
30
    1(15),12(16),13-trien-3-yl]-
    carbonylamino}methyl)phenyl]methyl}carbamoyl)-2-
    sulfoethyl]carbamoyl}methyl)-1,4,7,10-tetraaza-4,10-
    bis(carboxymethyl)cyclododecyl]acetic acid;
35
    2-({2-[({N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-
    methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
```

```
1(15),12(16),13-trien-3-
          yl]carbonylamino}acetylamino)propyl]carbamoyl}methyl)(carboxymet
          hyl) amino}ethyl) {2-[bis(carboxymethyl) amino]ethyl}amino]acetic
          acid;
  5
          methylpropyl) -11-oxa-5-oxobicyclo[10.2.2] hexadeca-
          1(15),12(16),13-trien-3-yl]-
          carbonylamino}methyl)phenyl]methyl}carbamoyl)methyl](carboxymeth
         yl)amino}ethyl){2-[bis(carboxymethyl)amino]ethyl}amino]acetic
          acid;
         N - [3 - (2 - \{ [7 - (N - hydroxycarbamoy1) (3S, 6R, 7S) - 4 - aza - 6 - (2 - Aza - (2 - Aza - 6 - (2 - Aza - (2 - Aza - 6 - (2 - Aza - (2 - Aza - 6 - (2 - Aza - (2 - Aza - 6 - (2 - (2 - Aza - 6 - (2 - Aza - (2 - Aza - 6 - (2 - A
          methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
15 : 1(15), 12(16), 13-trien-3-yl]carbonylamino}acetylamino)propyl]-
          4,5-bis[2-(ethoxyethylthio)acetylamino]pentanamide;
         N-\{[4-(\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-K)\}]\}\}
          methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
20
          1(15),12(16),13-trien-3-yl]carbonylamino}methyl)-phenyl]methyl}-
          4;5-bis[2-(ethoxyethylthio)acetylamino]-pentanamide;
          1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha,\omega-
          dicarbonylPEG3400-2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-
          (2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
          1(15),12(16),13-trien-3-yl]carbonylamino}-N-(3-
          aminopropyl)acetamide;
          1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha,\omega-
30
          dicarbonylPEG3400-[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-
          methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-
          1(15), 12(16), 13-trien-3-yl]-N-{[4-
           (aminomethyl) phenyl] methyl carboxamide conjugate;
35
          2-[2-({5-[N-(5-(N-hydroxycarbamoyl)(5R)-5-{3-[4-(3,4-
          dimethoxyphenoxy) phenyl] -3-methyl-2-
```

oxopyrrolidinyl}pentyl)carbamoyl](2-pyridyl)}amino)(1Z)-2azavinyl]benzenesulfonic acid;

methylphenyl) methoxy] piperidyl } carbonyl) piperidyl] -3-5 oxopropyl carbamoyl) (2-pyridyl) amino (1Z) -2azavinyl)benzenesulfonic acid; and

10

A diagnostic agent according to claim 1 wherein the diagnostic metal is selected from the group consisting of: a paramagnetic metal, a ferromagnetic metal, a gamma-emitting radioisotope, or an x-ray absorber.

15

37. A diagnostic agent according to claim 36 wherein the diagnostic metal is radioisotope selected from the group consisting of 99mTc, 95Tc, 111In, 62Cu, 64Cu, 67Ga, and 68Ga.

20

A diagnostic agent according to claim 37 further comprising a first ancillary ligand and a second ancillary ligand capable of stabilizing the radioisotope.

A diagnostic agent according to Claim 37, wherein the 39. radioisotope is 99mTc.

25

A diagnostic agent according to Claim 37, wherein the radioisotope is ¹¹¹In.

- 41. A diagnostic agent according to claim 36 wherein the paramagnetic metal ion is selected from the group consisting of Gd(III), Dy(III), Fe(III), and Mn(II).
- 5 42. A diagnostic agent according to claim 36 wherein the x-ray absorber is a metal is selected from the group consisting of: Re, Sm, Ho, Lu, Pm, Y, Bi, Pd, Gd, La, Au, Au, Yb, Dy, Cu, Rh, Ag, and Ir.
- 10 43. A diagnostic composition comprising a compound according to claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 44. A kit comprising a compound of Claim 1, or a pharmaceutically acceptable salt form thereof and a pharmaceutically acceptable carrier.
 - 45. A kit according to Claim 44, wherein the kit further comprises one or more ancillary ligands and a reducing agent.
 - 46. A kit according to Claim 45, wherein the ancillary ligands are tricine and TPPTS.
- 47 A kit according to Claim 45, wherein the reducing agent is tin(II).
 - 48. A diagnostic agent comprising an echogenic gas and a compound, wherein the compound comprises:
 - i) 1-10 targeting moieties;
- 30 ii) a surfactant (Sf); and

20

iii) 0-1 linking groups between the targeting moiety and surfactant;

wherein the targeting moiety is a matrix metalloproteinase inhibitor; and

wherein the surfactant is capable of forming an echogenic gas filled lipid sphere or microbubble.

- 49. A diagnostic agent according to claim 48, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <1000 nM.
- 50. A diagnostic agent according to claim 48, wherein the targeting moiety is a matrix metalloproteinase inhibitor having an inhibitory constant K_i of <100 nM.
- 10 51. A diagnostic agent according to claim 48, comprising 1-5 targeting moieties.
 - 52. A diagnostic agent according to claim 48, comprising one targeting moiety.
- 53. A diagnostic agent according to claim 48, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases selected from the group consisting of MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14.
 - 54. A diagnostic agent according to claim 48, wherein the targeting moiety is an inhibitor of one or more matrix metalloproteinases selected from the group consisting of MMP-2, MMP-9, and MMP-14.
 - 55. A diagnostic agent according to claim 48, wherein the targeting moiety is of the formulae (Ia) or (Ib):

R is independently OH or -CH₂SH;

5

15

20

25

- R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;
- 5 R^2 is independently C_{1-20} alkyl;

X is independently C=O or SO_2 , provided when X is C=O, R^3 is

$$R^{4}$$

 $^{\text{H}}$ $^{\text{O}}$, and when X is SO_2 , R^3 is independently selected from the group: aryl substituted with 0-2 R^6 , and heterocycle substituted with 0-2 R^6 ;

- R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- 15 R^5 is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the surfactant;

20

10

 R^6 is independently aryloxy substituted with 0-3 R^7 ;

R⁷ is independently halogen or methoxy;

25 or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the surfactant;

30

or alternatively,

- R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3-NH-$, optionally substituted with a bond to the linking group or a bond to the surfactant; or
- 5 R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

10

 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to the linking group or a bond to the surfactant, provided that when R^8 is phenyl, R^{10} is - C(=O)- CR^{12} -NH-CH(CH_3)-COOH;

15

R⁹ and R⁹' are independently H, C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the carbon atom to which R⁹ and R⁹' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system substituted with R⁶ and optionally substituted with a bond to the linking group or a bond to the surfactant;

25

30

20

R¹⁰ and R¹¹ are independently H, or C₁₋₆ alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with 0-3 R²⁷, a bond to the linking group or a bond to the surfactant;

or alternatively,

5

- R^9 and R^{10} are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with a bond to the linking group or a bond to the surfactant; and
- 10 R¹² is independently C₁₋₂₀ alkyl;

 R²⁷ is =0, C1-4 alkyl, or phenyl substituted with R²⁸;

 R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups;

 R²⁹ and R³⁰ taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system

 15 substituted with R³¹; and

 R³¹ is a benzyloxy group substituted with C1-4 alkyl.
- 56. A diagnostic agent according to claim 55 wherein
 20 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

25 R is OH;

30

 R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-6} alkyl;

X is C=0;

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

5

- R^5 is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the surfactant;
- R^6 is independently aryloxy substituted with 0-3 R^7 ;
- R⁷ is independently halogen or methoxy;

15

20

30

10

- or alternatively,
- R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the surfactant;

or alternatively,

- R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to the linking group or a bond to the surfactant; or
 - R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

 R^8 is OH:

 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the carbon atom to which R^9 and $R^{9'}$ are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted with a bond to the linking group or a bond to the surfactant;

10

- R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the surfactant, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted with 0-3 R^{27} , a bond to the linking group or a bond to the surfactant;
- 20 or alternatively,
 - R⁹ and R¹⁰ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O, N, , said ring system optionally substituted with a bond to the linking group or a bond to the surfactant; and
 - R^{12} is independently C_{1-6} alkyl;
- R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups; R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and

 \mathbb{R}^{31} is a benzyloxy group substituted with C1-4 alkyl.

A diagnostic agent according to claim 55 wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

wherein:

R is -OH;

 \mathbb{R}^2 is \mathbb{C}_{1-6} alkyl;

10 X is C=0;

25

30

 \mathbb{R}^1 and \mathbb{R}^4 are taken together to form a bridging group of formula -(CH₂)₃-O-phenyl-CH₂-;

R⁵ is NH(C1-6alkyl), substituted with a bond to the linking group or a bond to the surfactant. 15

58. A diagnostic agent according to claim 55 wherein: R is -OH;

 R^9 is C_1 alkyl substituted with a bond to Ln;

 ${\tt R}^{10}$ and ${\tt R}^{11}$ taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right system is substituted with $0-3 R^{27}$;

 \mathbb{R}^{27} is =0, C1-4 alkyl, or phenyl substituted with \mathbb{R}^{28} ; and \mathbb{R}^{28} is a phenoxy group substituted with 0-2 OCH₃ groups.

A diagnostic agent according to claim 55 wherein the R is -OH;

 ${\tt R}^1$ and ${\tt R}^2$ taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from

the group consisting of: a bond to Ln, a bond to Sf, and -C(=0) - $NR^{29}R^{30}$;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and

 \mathbb{R}^{31} is a benzyloxy group substituted with C1-4 alkyl.

60. A diagnostic agent according to claim 48 wherein the linking group is of the formula:

 $((W^1)_{h} - (CR^{13}R^{14})_{g})_{x} - (Z)_{k} - ((CR^{13}R^{14})_{g'} - (W^2)_{h'})_{x'};$

10

15

20

30

W¹ and W² are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, - (OCH₂CH₂)₇₆₋₈₄, (OCH₂CH₂)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂)_S", (CH₂CH₂CH₂O)_t, and (aa)_t;

aa is independently at each occurrence an amino acid;

- Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} ;
- R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R¹⁶, aryl substituted with 0-3 R¹⁶, benzyl substituted with 0-3 R¹⁶, and C₁-C₅ alkoxy substituted with 0-3 R¹⁶, NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHC(=O)NHR¹⁷, and a bond to the surfactant;

- R^{16} is independently selected at each occurrence from the group: a bond to the surfactant, $COOR^{17}$, $C(=O)NHR^{17}$, $NHC(=O)R^{17}$, OH, NHR^{17} , SO_3H , PO_3H , $-OPO_3H_2$, $-OSO_3H$, aryl substituted with 0-3 R^{17} , C_{1-5} alkyl substituted with 0-1 R^{18} , C_{1-5} alkoxy substituted with 0-1 R^{18} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;
- R¹⁷ is independently selected at each occurrence from the group: 10 H, alkyl substituted with 0-1 R¹⁸, aryl substituted with 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{18} , C_{3-10} cycloalkyl substituted with 0-1 R18, polyalkylene glycol substituted 15 with $0-1 R^{18}$, carbohydrate substituted with $0-1 R^{18}$, cyclodextrin substituted with 0-1 R¹⁸, amino acid substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with 0-1 R^{18} , polyazaalkyl substituted with 0-1 R^{18} , peptide substituted with 0-1 R^{18} , wherein the peptide is comprised 20 of 2-10 amino acids, 3,6-0-disulfo-B-D-galactopyranosyl, . bis (phosphonomethyl) glycine, and a bond to the surfactant;

 R^{18} is a bond to the surfactant;

5

25

k is selected from 0, 1, and 2;
h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; x is selected from 0, 1, 2, 3, 4, and 5; and x' is selected from 0, 1, 2, 3, 4, and 5.

5

10

61. A diagnostic agent according to claim 60 wherein W^1 and W^2 are independently selected at each occurrence from the group: O, NH, NHC(=O), C(=O)NH, NR 15 C(=O), C(=O)NR 15 , C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, - (CH₂CH₂O)₇₆₋₈₄-, (OCH₂CH₂O)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂O)_S, (CH₂CH₂O)_S, and (aa)_t,

aa is independently at each occurrence an amino acid;

15 Z is selected from the group: aryl substituted with 0-1 R^{16} , C_{3-10} cycloalkyl substituted with 0-1 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{16} ;

20

25

 R^{13} , R^{13} a, R^{14} , R^{14} a, and R^{15} are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R^{16} , aryl substituted with 0-1 R^{16} , benzyl substituted with 0-1 R^{16} , and C₁-C₅ alkoxy substituted with 0-1 R^{16} , NHC(=0) R^{17} , C(=0)NHR¹⁷, NHC(=0)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to the surfactant;

k is 0 or 1;

s is selected from 0, 1, 2, 3, 4, and 5;
30 s' is selected from 0, 1, 2, 3, 4, and 5;
s" is selected from 0, 1, 2, 3, 4, and 5; and
t is selected from 0, 1, 2, 3, 4, and 5.

62. A diagnostic agent according to claim 60

```
wherein:
    W^1 is C(=0)NR^{15};
    h is 1;
    g is 3;
   R^{13} and R^{14} are independently H;
    x is 1;
    k is 0;
    g'is 0;
    h' is 1;
    W^2 is NH; and
10
    x' is 1.
    63. A diagnostic agent according to claim 60
    x is 0;
15
   k is 1;
    Z is aryl substituted with 0-3 R^{16};
    g' is 1;
    W^2 is NH;
    {\tt R}^{13a} and {\tt R}^{14a} are independently H;
    h' is 1; and
20
    x' is 1.
    64. A diagnostic agent according to claim 60
    W^{1} is C(=0)NR^{15};
   h is 1;
25
    g is 2;
    R^{13} and R^{14} are independently H;
    x is 1;
    k is 0;
    g' is 1;
30
    {\bf R}^{13a} and {\bf R}^{14a} are independently H; or C1-5 alkyl substituted
     with 0-3 R^{16};
    R^{16} is SO_3H;
     W^2 is NHC(=0) or NH;
```

```
h' is 1; and
    x' is 2.
    65. A diagnostic agent according to claim 60
   W^1 is C(=0)NH;
    h is 1;
    g is 3;
    R^{13} and R^{14} are independently H;
    k is 0;
    g' is 0;
10
    x is 1;
    W^2 is -NH(C=0) - or -(OCH_2CH_2)_{76-84}-;
    h' is 2; and
    x' is 1.
15
    66. A diagnostic agent according to claim 60
    x is 0;
    k is 0;
    g' is 3;
20
    h' is 1;
    W^2 is NH; and
    x' is 1.
    67. A diagnostic agent according to claim 60
   x is 0;
25
    Z is aryl substituted with 0-3 R<sup>16</sup>;
    k is 1;
    g' is 1;
    R<sup>13a</sup>R<sup>14a</sup> are independently H;
   W^2 is NHC(=0) or -(OCH2CH2)_{76}^{2}_{84}-; and
30
x' is 1.
    68. A diagnostic agent according to claim 60
    W^1 is C=0;
35
    g is 2;
```

```
R^{13} and R^{14} are independently H;
k is 0;
g'is 0;
h' is 1;
W<sup>2</sup> is NH; and
x' is 1.
```

- 69. A diagnostic agent according to claim 48 wherein the linking group is present.
- 70. A diagnostic agent according to claim 48 wherein

 Sf is a surfactant which is a lipid or a compound of the

 A^9 is selected from the group: OH and OR^{32} ;

 A^{10} is OR^{32} :

 R^{32} is $C(=0)C_{1-20}$ alkyl;

20

 E^9 is C_{1-10} alkylene substituted with 1-3 R^{33} ;

- 25 R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=O)R^{34}, -C(=O)N(R^{34})_2,$ $-CH_2OR^{34}, -OR^{34}, -N(R^{34})_2, C_1-C_5 \text{ alkyl, and } C_2-C_4 \text{ alkenyl;}$
- R^{34} is independently selected at each occurrence from the group: R^{35} , H, C₁-C₆ alkyl, phenyl, benzyl, and trifluoromethyl;

 \mathbb{R}^{35} is a bond to L_n ;

and a pharmaceutically acceptable salt thereof.

5 71. A diagnostic agent according to claim 48 wherein the surfactant is a lipid or a compound of the

formula: A^9

10 A^9 is OR^{32} ;

 A^{10} is OR^{32} ;

 R^{32} is $C(=0)C_{1-15}$ alkyl;

15

 E^9 is C_{1-4} alkylene substituted with 1-3 R^{33} ;

- R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=O)R^{34}, -CH_2OR^{34}, -OR^{34},$ and C_1-C_5 alkyl;
 - R^{34} is independently selected at each occurrence from the group: $R^{35}, \ H, \ C_1\text{-}C_6 \ \text{alkyl}, \ \text{phenyl}, \ \text{and} \ \text{benzyl}; \ \text{and}$
- 25 R^{35} is a bond to L_n .
 - 72. A diagnostic agent according to claim 48, wherein

PH-7108

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 A^{5}
 E^{6}

wherein:

A¹ ia a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

5 A^2 is NH;

 E^2 is C_2 alkyl sunsttuted wth $0-1R^{23}$;

 A^3 is $-O-P(O)(R^{21})-O;$

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -O-;

10 E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0- $1R^{23}$;

 E^5 is C_1 alkyl;

A⁵ is -O-;

 R^{21} is -OH; and

15 R^{23} is =0.

25

73. A diagnostic agent according to claim 48 wherein the compound is of the formula:

20 $(Q)_{d}-L_{n}-S_{f}$

wherein, Q is a compound of Formulae (Ia) or (Ib):

$$RHN \xrightarrow{R^1} X \xrightarrow{R^3} R^8 \xrightarrow{N} H \xrightarrow{NR^{10}R^{11}} R^{11}$$
wherein,

R is independently OH or -CH₂SH;

- R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;
- 5 R^2 is independently C_{1-20} alkyl;
 - X is independently C=O or SO_2 , provided when X is C=O, R^3 is
 - -N $\stackrel{R^4}{\longrightarrow}$ $\stackrel{R^5}{\longrightarrow}$, and when X is SO₂, R³ is independently selected from the group: aryl substituted with 0-2 R⁶, and heterocycle substituted with 0-2 R⁶;
 - R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;
- 15 R^5 is independently at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n ;
- 20 R⁶ is independently aryloxy substituted with 0-3 R⁷;
 - ${\tt R}^7$ is independently halogen or methoxy;
 - or alternatively,

- R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to L_n ;
- 30 or alternatively,

- ${\rm R}^1$ and ${\rm R}^2$ may be taken together to form a bridging group of the formula -(CH2)_3-NH-, optionally substituted with a bond to $L_n;$ or
- 5 R^1 and R^2 taken together with the nitrogen and carbon atom through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and $-C(=0)-NR^{29}R^{30}$;

- R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to $L_n,$ provided that when R^8 is phenyl, R^{10} is $-C\,(=O)\,-CR^{12}\,-NH\,\div\,CH\,(CH_3)\,-COOH\,;$
- 15 R^9 and $R^{9'}$ are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n ;
 - ${
 m R}^{10}$ and ${
 m R}^{11}$ are independently H, or ${
 m C}_{1-6}$ alkyl optionally substituted with a bond to ${
 m L}_{n}$, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO₂ and S, said ring system optionally substituted with 0-3 ${
 m R}^{27}$ or a bond to ${
 m L}_{n}$;

30

25

or alternatively,

 ${\bf R}^9$ and ${\bf R}^{10}$ are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially

unsaturated or aromatic ring system containing 0-3 heteroatoms selected from 0, N, SO_2 and S, said ring system optionally substituted with a bond to L_n ;

5 R^{12} is independently C_{1-20} alkyl;

10

20

25

30

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

Ln is a linking group having the formula:

 $((W^{1})_{h} - (CR^{13}R^{14})_{g})_{x} - (Z)_{k} - ((CR^{13}aR^{14}a)_{g}, -(W^{2})_{h}, x';$

W¹ and W² are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, - $(OCH_2CH_2)_{76-84}$, $(OCH_2CH_2)_{8}$, $(CH_2CH_2O)_{8'}$, $(OCH_2CH_2CH_2)_{8''}$, $(CH_2CH_2CH_2O)_{1}$, and $(aa)_{1}$;

aa is independently at each occurrence an amino acid;

- Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} ;
- R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R¹⁶, aryl substituted with 0-3 R¹⁶, benzyl substituted with 0-3 R¹⁶, and C₁-C₅ alkoxy substituted with 0-3 R¹⁶, NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to Sf;

- R¹⁶ is independently selected at each occurrence from the group: a bond to Sf, COOR¹⁷, C(=O)NHR¹⁷, NHC(=O)R¹⁷, OH, NHR¹⁷, SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with 0-3 R¹⁷, C₁₋₅ alkyl substituted with 0-1 R¹⁸, C₁₋₅ alkoxy substituted with 0-1 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;
- R^{17} is independently selected at each occurrence from the group: H, alkyl substituted with 0-1 R^{18} , aryl substituted with 10 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{18} , C_{3-10} cycloalkyl substituted with 0-1 R¹⁸, polyalkylene glycol substituted with $0-1 R^{18}$, carbohydrate substituted with $0-1 R^{18}$, 15 cyclodextrin substituted with 0-1 R¹⁸, amino acid substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide substituted with $0-1 R^{18}$, wherein the peptide is comprised of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl, 20 bis(phosphonomethyl)glycine, and a bond to Sf;

 R^{18} is a bond to Sf;

5

k is selected from 0, 1, and 2;
h is selected from 0, 1, and 2;
h' is selected from 0, 1, and 2;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; x is selected from 0, 1, 2, 3, 4, and 5; x' is selected from 0, 1, 2, 3, 4, and 5;

5 Sf is a surfactant which is a lipid or a compound of the

$$E^9$$
— A^{10} formula: A^9

 A^9 is selected from the group: OH and OR^{32} ;

 A^{10} is OR^{32} ;

10

20

25

 R^{32} is $C(=0)C_{1-20}$ alkyl;

15 E^9 is C_{1-10} alkylene substituted with 1-3 R^{33} ;

 $\rm R^{33}$ is independently selected at each occurrence from the group: $\rm R^{35},\ -PO_3H-R^{35},\ =O,\ -CO_2R^{34},\ -C(=O)\,R^{34},\ -C(=O)\,N(R^{34})_2,$ $\rm -CH_2OR^{34},\ -OR^{34},\ -N(R^{34})_2,\ C_1-C_5\ alkyl,\ and\ C_2-C_4\ alkenyl;$

 R^{34} is independently selected at each occurrence from the group: R^{35} , H, C_1 - C_6 alkyl, phenyl, benzyl, and trifluoromethyl;

 \mathbb{R}^{35} is a bond to \mathbb{L}_n ; or

Sf is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 A^{5}
 E^{6}

```
wherein:
```

A¹ ia a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

 A^2 is NH;

5 E^2 is C_2 alkyl sunsttuted wth $0-1R^{23}$;

 A^3 is $-O-P(O)(R^{21})-O;$

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -O-;

 E^4 and E^6 are each independently $C_{1\text{--}16}$ alkyl substituted with 0- $1R^{23}$:

 E^5 is C_1 alkyl;

A⁵ is -O-:

10

 R^{21} is -OH; and

 R^{23} is =0; or

a pharmaceutically acceptable salt thereof.

74. A diagnostic agent according to Claim 73, wherein:

R is -OH;

 R^2 is C1-6 alkyl;

20 X is C=O;

$$-N + R^{5}$$

 R^1 and R^4 are taken together to form a bridging group of formula $-(CH_2)_3-O$ -phenyl- $CH_2-;$

R⁵ is NH(C1-6alkyl), substituted with a bond to the linking group or a bond to the surfactant.

75. A diagnostic agent according to Claim 73, wherein:

R is -OH;

 R^9 is C_1 alkyl substituted with a bond to Ln;

30 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right system is substituted with 0-3 R^{27} ;

 \mathbb{R}^{27} is =0, C1-4 alkyl, or phenyl substituted with \mathbb{R}^{28} ; and

 R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups;

Sf is a surfactant which is a lipid or a compound of the

E⁹—A¹⁰
5 formula: A⁹

 A^9 is OR^{32} ;

 A^{10} is OR^{32} ;

10

 R^{32} is $C(=0)C_{1-15}$ alkyl;

 E^9 is C_{1-4} alkylene substituted with 1-3 R^{33} ;

- 15 R^{33} is independently selected at each occurrence from the group: $R^{35}, -PO_3H-R^{35}, =0, -CO_2R^{34}, -C(=0)R^{34}, -CH_2OR^{34}, -OR^{34},$ and C_1-C_5 alkyl;
- R^{34} is independently selected at each occurrence from the group: 20 R^{35} , H, C₁-C₆ alkyl, phenyl, and benzyl; and

 \mathbb{R}^{35} is a bond to \mathbb{L}_n .

76. A diagnostic agent according to Claim 73, wherein:

25 R is -OH;

 R^9 is C_1 alkyl substituted with a bond to Ln;

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, said right system is substituted with 0-3 R^{27} ;

30 R^{27} is =0, C1-4 alkyl, or phenyl substituted with R^{28} ; and R^{28} is a phenoxy group substituted with 0-2 OCH₃ groups;

Sf is a surfactant which is a lipid or a compound of the of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 E^{6}

5 wherein:

A¹ ia a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

 A^2 is NH;

 E^2 is C_2 alkyl sunsttuted wth $0-1R^{23}$;

10 A^3 is $-O-P(O)(R^{21})-O$;

 E^3 is C_1 alkyl;

 A^4 and A^5 are each -O-;

 E^4 and E^6 are each independently $C_{1\text{--}16}$ alkyl substituted with 0-1 R^{23} ;

15 E^5 is C_1 alkyl;

 A^5 is -O-;

 R^{21} is -OH; and

 R^{23} is =0.

77. A diagnostic agent according to Claim 73, wherein: wherein

R is -OH;

 ${
m R}^1$ and ${
m R}^2$ taken together with the nitrogen and carbon atom through which they are attached form a ${
m C}_{5-7}$ atom saturated ring

system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Sf, and -C(=0) - $NR^{29}R^{30}$;

 \mbox{R}^{29} and \mbox{R}^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system

30 substituted with R^{31} ; and

```
R<sup>31</sup> is a benzyloxy group substituted with C1-4 alkyl.
d is selected from 1, 2, 3, 4, and 5;
```

- 5 W is independently selected at each occurrence from the group: O, NH, NHC(=0), C(=0)NH, NR 15 C(=0), C(=0)NR 15 , C(=0), C(=0)O, OC(=0), NHC(=S)NH, NHC(=0)NH, SO₂, (OCH₂CH₂)_S, (CH₂CH₂O)_S, (OCH₂CH₂CH₂O)_S, and (aa)_t,;
- 10 aa is independently at each occurrence an amino acid;
 - Z is selected from the group: aryl substituted with 0-1 R^{16} , C_{3-10} cycloalkyl substituted with 0-1 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{16} ;
- R¹³, R^{13a}, R¹⁴, R^{14a}, and R¹⁵ are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R¹⁶, aryl substituted with 0-1 R¹⁶, benzyl substituted with 0-1 R¹⁶, and C₁-C₅ alkoxy substituted with 0-1 R¹⁶, NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHC(=O)NHR¹⁷, and a bond to Sf;
- 25 k is 0 or 1;
 s is selected from 0, 1, 2, 3, 4, and 5;
 s' is selected from 0, 1, 2, 3, 4, and 5;
 s" is selected from 0, 1, 2, 3, 4, and 5; and
 t is selected from 0, 1, 2, 3, 4, and 5.

30

```
g is 3;
    R^{13} and R^{14} are independently H;
    x is 1;
    k is 0;
   g'is 0;
    h' is 1;
    W^2 is NH; and
    x' is 1.
10
    79. A diagnostic agent according to Claim 73, wherein:
    x is 0;
    k is 1;
     Z is aryl substituted with 0-3 R^{16};
    g' is 1;
    W^2 is NH;
15
    R^{13a} and R^{14a} are independently.H;
    h' is 1; and
    x' is 1.
20
   80. A diagnostic agent according to Claim 73, wherein:
    W^{1} is C(=0)NR^{15};
    h is 1;
     g is 2;
    {\tt R}^{13} and {\tt R}^{14} are independently H;
    x is 1;
25
     k is 0;
     g' is 1;
     {\rm R}^{13a} and {\rm R}^{14a} are independently H; or C1-5 alkyl substituted
     with 0-3 R^{16};
   R^{16} is SO_3H;
30
     W^2 is NHC(=0) or NH;
     h' is 1; and
     x' is 2.
```

```
81. A diagnostic agent according to Claim 73, wherein:
     W^1 is C(=0)NH:
     h is 1;
     g is 3;
   {\tt R}^{13} and {\tt R}^{14} are independently H;
     k is 0;
     g' is 0;
     x is 1;
     W^2 is -NH(C=0) - or -(OCH<sub>2</sub>CH<sub>2</sub>)<sub>76-84</sub>-;
    h' is 2; and
10
     x' is 1.
     82. A diagnostic agent according to Claim 73, wherein:
     x is 0;
15
    k is 0;
     g' is 3;
     h' is 1;
     W^2 is NH; and
     x' is 1.
20
     83. A diagnostic agent according to Claim 73, wherein:
     x is 0;
     Z is aryl substituted with 0-3 R^{16};
     k is 1;
25
     g' is 1;
     R^{13}aR^{14}a are independently H;
     \rm W^2 is NHC(=O) or -(OCH2CH2)_{76-84}; and
     x' is 1.
30
     84. A diagnostic agent according to Claim 73, wherein:
     W^1 is C=O;
     g is 2;
     R^{13} and R^{14} are independently H;
     k is 0;
```

g' is 0; h' is 1; W^2 is NH; and x' is 1.

5

85. A diagnostic agent according to Claim 1, wherein the compound is selected from the group consisting of:

10

84. A diagnostic agent according to Claim 48, wherein:wherein the echogenic gas is a perfluorocarbon gas or sulfur hexafluoride.

15

87. A diagnostic agent according to claim 86 wherein said perfluorocarbon is selected from the group consisting of perfluoromethane, perfluoroethane, perfluoropropane, perfluorobutane, perfluorocyclobutane, perfluoropentane, and perfluorohexane.

20

88. A diagnostic composition comprising a compound according to claim 48 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

25

89. A diagnostic composition comprising a compound according to claim 48 or a pharmaceutically acceptable salt form

thereof, an echogenic gas and a pharmaceutically acceptable carrier.

90. A diagnostic composition comprising a compound according to claim 48 further comprising: 1,2-dipalmitoyl-sn-glycero-3-phosphotidic acid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, and N-(methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine.

10

15

- 91. A method of detecting, imaging or monitoring the presence of matrix metalloproteinase in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent of claim 1; and
 - b) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.
- 92. A method of detecting, imaging or monitoring the presence of matrix metalloproteinase in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent of claim 48; and
- 25 c) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.
- 93. A method of detecting, imaging or monitoring a pathological disorder associated with matrix metalloproteinase activity in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent of claim 1: and
 - b) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.

- 94. A method of detecting, imaging or monitoring a pathological disorder associated with matrix metalloproteinase activity in a patient comprising the steps of:
 - a) administering to said patient a diagnostic agent according to claim 48; and
 - c) acquiring an image of a site of concentration of said diagnostic agent in the patient by a diagnostic imaging technique.

25

- 95. A method of detecting, imaging or monitoring atherosclerosis in a patient comprising the steps of:
 - a) administering a diagnostic agent according to claim 1;
 and
- b) acquiring an image of a site of concentration of said diagnostic agent in the body by a diagnostic imaging technique.
- 96. A method of detecting, imaging or monitoring
 20 atherosclerosis in a patient comprising the steps of:
 - c) administering a diagnostic agent according to claim 48; and
 - d) acquiring an image of a site of concentration of said diagnostic agent in the body by a diagnostic imaging technique.
 - 97. A method according to claim 95, wherein the atherosclerosis is coronory atherosclerosis or cerebrovascular atherosclerosis.
- 30 98. A method according to claim 96, wherein the atherosclerosis is coronory atherosclerosis or cerebrovascular atherosclerosis.
- 99. A method of identifying a patient at high risk for transient ischemic attacks or stroke by determining the degree of active atherosclerosis in a patient comprising carrying out the method of claim 96.

100. A method of identifying a patient at high risk for transient ischemic attacks or stroke by determining the degree of active atherosclerosis in a patient comprising carrying out the method of claim 97.

5

10

15

- 101. A method of identifying a patient at high risk for acute cardiac ischemia, myocardial infarction or cardiac death by determining the degree of active atherosclerosis by imaging the patient by the method of claim 96.
- 102. A method of identifying a patient at high risk for acute cardiac ischemia, myocardial infarction or cardiac death by determining the degree of active atherosclerosis by imaging the patient by the method of claim 97.
- 103. A method of simultaneous imaging of cardiac perfusion and extracellular matrix degradation in a patient comprising the steps of:
- a) administering a diagnostic agent according to claim 1, wherein the diagnostic metal is a gamma-emitting radioisotope; and
 - (b) administering a cardiac perfusion compound, wherein the compound is radiolabeled with a gamma-emitting radioisotope which exhibits a gamma emission energy that is spectrally separable from the gamma emission energy of the diagnostic metal conjugated to the targeting moiety in step (a); and
- (c) acquiring, by a diagnostic imaging technique,
 simultaneous images of the sites of concentration of the
 spectrally separable gamma-emission energies of the
 compounds administered in steps (a) and (b).