Fisciano, 8/1/2015 - ore 12

Esercizio 1 (i) Probabilità che il numero 1 sia tra i 2 estratti:

$$P(U) = \frac{1}{N+1} + \frac{N}{N+1} \cdot \frac{1}{N} = \frac{2}{N+1};$$
 oppure: $P(U) = \frac{\binom{1}{1}\binom{N}{1}}{\binom{N+1}{2}} = \frac{2}{N+1}.$

(ii) Probabilità che tra i 2 numeri estratti vi sia il numero N sapendo che tra i 2 estratti vi è il numero 1:

$$P(B|U) = \frac{P(B \cap U)}{P(U)} = \frac{2}{N},$$

essendo

$$P(B \cap U) = \frac{\binom{1}{1}\binom{N-2}{0}\binom{2}{1}}{\binom{N+1}{2}} = \frac{4}{(N+1)N}.$$

(iii) Per $A = \{i \text{ 2 numeri estratti sono diversi}\}$ risulta

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{\binom{N-1}{0}\binom{2}{2}}{\binom{N+1}{2}} = 1 - \frac{2}{(N+1)N} = \frac{N^2 + N - 2}{(N+1)N} = \frac{(N-1)(N+2)}{(N+1)N}.$$

Per $B = \{almeno uno dei 2 numeri estratti è N\}$ si ha

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{\binom{N-1}{2}\binom{2}{0}}{\binom{N+1}{2}} = 1 - \frac{(N-1)(N-2)}{(N+1)N} = \frac{2(2N-1)}{(N+1)N}.$$

Per stabilire se gli eventi A e B sono indipendenti notiamo che:

$$P(A \cap B) = \frac{\binom{N-1}{1}\binom{2}{1}}{\binom{N+1}{2}} = \frac{4(N-1)}{(N+1)N},$$

da cui segue che $P(A \cap B) = P(A)P(B)$ per (N-1)(N+2)2(2N-1) = 4(N-1)(N+1)N, ossia per N=1 e N=2

(iv) Quando $N \to \infty$ si ha

$$\lim_{N\to\infty}P(U)=\lim_{N\to\infty}\frac{2}{N+1}=0,\qquad \lim_{N\to\infty}P(B|U)=\lim_{N\to\infty}\frac{2}{N}=0,$$

$$\lim_{N\to\infty}P(A\cap B)=0=\lim_{N\to\infty}P(A)P(B).$$

Esercizio 2 (i) La funzione di distribuzione: F(x) = 0 per x < 0; $F(x) = x^2/2$ per

Esercizio 2 (i) La funzione di distribuzione.
$$F(x) = 0$$
 per $x < 0$, $F(x) = x/2$ per $0 \le x < 1$; $F(x) = x/2$ per $1 \le x < 2$; $F(x) = 1$ per $x \ge 2$.
(ii) $E(X) = \int_0^1 x^2 dx + \int_1^2 (x/2) dx = (x^3/3)_0^1 + (x^2/4)_1^2 = 13/12 = 1,08\overline{3}$.
(iii) $P(X \le 3/2 \mid X > 1/2) = \frac{P(1/2 < X \le 3/2)}{P(X > 1/2)} = \frac{F(3/2) - F(1/2)}{1 - F(1/2)} = \frac{3/4 - 1/8}{1 - 1/8} = \frac{5}{7} = 0,7143$.

Esercizio 3 (i) $p(x,y) \ge 0 \Rightarrow c \ge 0$,

$$1 = \sum_{x=0}^{1} \sum_{y=0}^{1} p(x,y) = \sum_{x=0}^{1} \sum_{y=0}^{1} c\left(\frac{1}{2}\right)^{|x-y-1|} = c\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{4} + 1\right) = \frac{9}{4}c \implies c = \frac{4}{9}.$$

(ii)

$$p_X(x) = \sum_{y=0}^{1} p(x,y) = \frac{4}{9} \sum_{y=0}^{1} \left(\frac{1}{2}\right)^{|x-y-1|} = \begin{cases} \frac{1}{3}, & x = 0, \\ \frac{2}{3}, & x = 1. \end{cases}$$

$$p_Y(y) = \sum_{x=0}^{1} p(x,y) = \frac{4}{9} \sum_{x=0}^{1} \left(\frac{1}{2}\right)^{|x-y-1|} = \begin{cases} \frac{2}{3}, & y = 0, \\ \frac{1}{3}, & y = 1. \end{cases}$$

Quindi X e Y non sono identicamente distribuite, ma sono indipendenti in quanto

$$p(0,0) = \frac{2}{9} = p_X(0)p_Y(0) = \frac{2}{9},$$

$$p(0,1) = \frac{1}{9} = p_X(0)p_Y(1) = \frac{1}{9},$$

$$p(1,0) = \frac{4}{9} = p_X(1)p_Y(0) = \frac{4}{9},$$

$$p(1,1) = \frac{2}{9} = p_X(1)p_Y(1) = \frac{2}{9}.$$

- (iii) Poiché X e Y sono indipendenti, si ha $\rho(X,Y)=0$.
- (iv) Per calcolare E(X-Y) e Var(X-Y) notiamo che

$$E(X) = \frac{2}{3}, \qquad E(Y) = \frac{1}{3}, \qquad Var(X) = Var(Y) = \frac{2}{9},$$

e quindi, ricordando che X e Y sono indipendenti:

$$E(X - Y) = E(X) - E(Y) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}, \qquad Var(X - Y) = Var(X) + Var(Y) = \frac{4}{9}.$$

Fisciano, 22/1/2015

Esercizio 1 (i) Sia F l'evento che si realizza quando la linea usata è funzionante, e H_i l'evento che si realizza quando si usa la linea L_j , e quindi $P(F|H_j) = j/4$. Inoltre, se il risultato del lancio del dado è k, allora si usa la linea L_j , dove $j = \lfloor k/3 + 1 \rfloor$, secondo il seguente schema:

$$k = 1 \implies j = \lfloor 1/3 + 1 \rfloor = 1;$$
 $k = 2 \implies j = \lfloor 2/3 + 1 \rfloor = 1;$ $k = 3 \implies j = \lfloor 3/3 + 1 \rfloor = 2;$ $k = 4 \implies j = \lfloor 4/3 + 1 \rfloor = 2;$ $k = 6 \implies j = \lfloor 6/3 + 1 \rfloor = 3.$

e quindi

$$P(H_1) = \frac{1}{3}, \qquad P(H_2) = \frac{1}{2}, \qquad P(H_3) = \frac{1}{6}.$$

Si ha pertanto:

$$P(F) = \sum_{j=1}^{3} P(F|H_j)P(H_j) = \frac{1}{4} \cdot \frac{1}{3} + \frac{2}{4} \cdot \frac{1}{2} + \frac{3}{4} \cdot \frac{1}{6} = \frac{11}{24} = 0.458\overline{3}.$$

(ii) Per la formula di Bayes si ha

$$P(H_j|F) = \frac{P(F|H_j)P(H_j)}{P(F)} = \begin{cases} \frac{2}{11}, & j = 0, \\ \frac{6}{11}, & j = 1, \\ \frac{3}{11}, & j = 2. \end{cases}$$

(iii) Quindi

$$\sum_{j=1}^{3} P(H_j|F) = \frac{2}{11} + \frac{6}{11} + \frac{3}{11} = 1.$$

Esercizio 2 (i) $f(x) \ge 0 \implies c \ge 0$,

$$1 = \int_{-\infty}^{\infty} f(x)dx = c \int_{0}^{3} (x-1)^{2} dx = c \left[\frac{(x-1)^{3}}{3} \right]_{0}^{3} = c \frac{8+1}{3} = c 3 \implies c = \frac{1}{3}.$$

Funzione di distribuzione: F(x) = 0 per x < 0; $F(x) = \frac{1}{3} \int_0^x (t-1)^2 dt = \left[\frac{1}{9} (t-1)^3\right]_0^x = \frac{1}{9} (x-1)^3 + \frac{1}{9}$ per $0 \le x < 3$; F(x) = 1 per $x \ge 3$.

(ii)
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{3} x \frac{1}{3} (x - 1)^{2} dx = \frac{1}{3} \left[\frac{1}{4} x^{4} - \frac{2}{3} x^{3} + \frac{1}{2} x^{2} \right]_{0}^{3} = \frac{9}{4}.$$

(iii) $P(X > \xi) = 8/9 \iff P(X \le \xi) = 1/9 \iff F(\xi) = 1/9$
 $\Leftrightarrow \frac{1}{9} (\xi - 1)^{3} + \frac{1}{9} = \frac{1}{9} \iff (\xi - 1)^{3} = 0 \iff \xi - 1 = 0 \iff \xi = 1.$

(iii)
$$P(X > \xi) = 8/9 \iff P(X \le \xi) = 1/9 \iff F(\xi) = 1/9$$

$$\Leftrightarrow \frac{1}{9}(\xi - 1)^3 + \frac{1}{9} = \frac{1}{9} \Leftrightarrow (\xi - 1)^3 = 0 \Leftrightarrow \xi - 1 = 0 \Leftrightarrow \xi = 1.$$

Esercizio 3 (i)
$$p(x,y) \ge 0 \implies p \ge 0$$
; $1 = \sum_{i,j=0}^{2} p(x,y) = 8p \implies p = \frac{1}{8}$. Quindi

x y	0	1	2	$p_X(x)$
0	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
1	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{5}{16}$
2	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{7}{16}$
$p_Y(y)$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{7}{16}$	1

(ii) Segue che X e Y sono identicamente distribuite. Inoltre,

$$p(0,0) = \frac{1}{8} \neq p_X(0)p_Y(0) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16},$$

pertanto X e Y non sono indipendenti.

(iii) Si ha

$$E(X) = \sum_{x=0}^{2} x p_X(x) = \frac{19}{16} = 1,1875 = E(Y)$$

$$E(X^2) = \sum_{x=0}^{2} x^2 p_X(x) = \frac{33}{16} = 2,0625 = E(Y^2)$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{33}{16} - \left(\frac{19}{16}\right)^2 = \frac{167}{256} = 0,6523 = Var(Y)$$

$$E(XY) = \sum_{x,y=0}^{2} x y p(x,y) = \frac{13}{8} = 1,625$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{13}{8} - \frac{19}{16} \cdot \frac{19}{16} = \frac{55}{256} = 0,2148$$

$$E(X+Y) = E(X) + E(Y) = 2\frac{19}{16} = \frac{19}{8} = 2,375$$

$$Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) = 2\frac{167}{256} + 2\frac{55}{256} = \frac{111}{64} = 1,7344.$$

Fisciano, 17/2/2015

Esercizio 1 Lo spazio campionario è costituito da $\binom{5}{3} = 10$ sequenze, ognuna avente probabilità 1/10.

(i) Denotando con F_k l'evento che si realizza quando l'algoritmo si ferma al passo k-esimo, si ha:

$$F_1 = \emptyset, \qquad F_2 = \{11001, 11010, 11100\},\$$

$$F_3 = \{01101, 01110, 10101, 10110\}, \qquad F_4 = \{00111, 01011, 10011\},$$

e quindi $P(F_1) = 0$, $P(F_2) = 3/10$, $P(F_3) = 4/10$, $P(F_4) = 3/10$.

(ii) Ponendo $B = \{il \text{ bit successivo al secondo } 1 \text{ è pari a } 1\}, \text{ si ha}$

$$B = \{11100, 01110, 10110, 00111, 01011, 10011\}$$

e pertanto P(B) = 6/10 = 3/5.

(iii) Per calcolare $P(F_k|B)$ si fa uso della formula di Bayes:

$$P(F_k|B) = \frac{P(B|F_k)P(F_k)}{P(B)} \qquad (1 \le k \le 4)$$

da cui segue:

$$P(F_1|B) = 0, \quad P(F_2|B) = \frac{P(B|F_2)P(F_2)}{P(B)} = \frac{(1/3)(3/10)}{6/10} = \frac{1}{6},$$

$$P(F_3|B) = \frac{P(B|F_3)P(F_3)}{P(B)} = \frac{(1/2)(4/10)}{6/10} = \frac{1}{3}, \quad P(F_4|B) = \frac{P(B|F_4)P(F_4)}{P(B)} = \frac{(1)(3/10)}{6/10} = \frac{1}{2}.$$

(iv) Si ha quindi:

$$P(F_1|B) + P(F_2|B) + P(F_3|B) + P(F_4|B) = 0 + \frac{1}{6} + \frac{1}{3} + \frac{1}{2} = 1.$$

Esercizio 2 (i) Poiché X è una variabile aleatoria normale di media $\mu = -1$ e varianza $\sigma^2 = 4$, la variabile

$$Z = \frac{X - \mu}{\sigma} = \frac{X + 1}{2}$$

è normale standard. Quindi risulta:

$$P(A) = P(X > -2) = P\left(\frac{X+1}{2} > \frac{-2+1}{2}\right) = P(Z > -0.5) = 1 - \Phi(-0.5) = \Phi(0.5) = 0.6915$$

$$P(B) = P(X < 2) = P\left(\frac{X+1}{2} < \frac{2+1}{2}\right) = P(Z < 1.5) = \Phi(1.5) = 0.9332$$

$$P(A \cap B) = P(-2 < X < 2) = P(-0.5 < Z < 1.5) = \Phi(1.5) - \Phi(-0.5)$$

$$= \Phi(1.5) - [1 - \Phi(0.5)] = 0.9332 - 1 + 0.6915 = 0.6247.$$

Segue che

$$P(A) \cdot P(B) = 0.6915 \cdot 0.9332 = 0.6453 > 0.6247 = P(A \cap B),$$

ossia P(A|B) < P(A); pertanto A e B sono correlati negativamente.

(ii) Posto Y = 1 - 2X, si ha

$$Cov(X,Y) = E(XY) - E(X)E(Y) = E[X(1-2X)] - E(X)E(1-2X)$$
$$= E(X) - 2E(X^{2}) - E(X)[1-2E(X)] = -2[E(X^{2}) - \{E(X)\}^{2}] = -2\sigma^{2} = -8.$$

Esercizio 3 (i) Risulta

ω	X	Y	ω	X	Y
ccc	0	3	tcc	1	2
cct	1	2	tct	2	1
ctc	1	1	ttc	2	2
ctt	2	2	ttt	3	3

Quindi la distribuzione congiunta di (X,Y) e le distribuzioni marginali di X e Y sono

$x \setminus y$	1	2	3	$p_X(x)$
0	0	0	$\frac{1}{8}$	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{2}{8}$	0	3 8 3 8
2	$\frac{1}{8}$	$\frac{2}{8}$	0	
3	0	0	$\frac{1}{8}$	$\frac{1}{8}$
$p_Y(y)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1

(ii) Il coefficiente di correlazione di (X,Y) è nullo poiché

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 3 - (1.5)(2) = 0,$$

essendo

$$E(X) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1,5 \qquad E(Y) = 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} + 3 \cdot \frac{1}{4} = 2$$
$$E(XY) = 1 \cdot 1 \cdot \frac{1}{8} + 1 \cdot 2 \cdot \frac{2}{8} + 2 \cdot 1 \cdot \frac{1}{8} + 2 \cdot 2 \cdot \frac{2}{8} + 3 \cdot 3 \cdot \frac{1}{8} = \frac{24}{8} = 3.$$

(iii) X e Y non sono indipendenti, essendo

$$p(0,1) = 0 \neq p_X(0) \cdot p_Y(1) = \frac{1}{8} \cdot \frac{1}{4}.$$

(iv) Si ha

$$P(X = Y) = \sum_{x=1}^{3} p(x, x) = \frac{1}{2},$$

$$P(X \le 2, Y > 1) = \sum_{x=1}^{2} \sum_{y=2}^{3} p(x, y) = \frac{5}{8}.$$

Fisciano, 16/4/2015

Esercizio 1 (i) Lo spazio campionario S è costituito dalle sequenze di n bit casuali, con assumono stesso valore $\}$, si vede facilmente che $A \cup B \neq S$, e quindi A e B non sono eventi necessari. Infatti, $A \cup B$ non contiene le sequenze del tipo $(\mathbf{0}, \mathbf{0}, \mathbf{0}, b_4, b_5, \dots, b_{n-1}, \mathbf{1})$. (ii) Notiamo che \overline{A} si realizza quando i primi 3 bit hanno valore $\mathbf{0}$; quindi si ha

$$P(A) = 1 - P(\overline{A}) = 1 - \left(\frac{1}{2}\right)^3 = 1 - \frac{1}{8} = \frac{7}{8} = 0.875.$$

L'evento B contiene le sequenze del tipo $(\mathbf{0}, b_2, b_3, \dots, b_{n-1}, \mathbf{0})$ e $(\mathbf{1}, b_2, b_3, \dots, b_{n-1}, \mathbf{1})$, e pertanto

$$P(B) = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} = 0.5.$$

Inoltre,

$$P(A \cap B) = \left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^4 = \frac{1}{4} + \frac{3}{16} = \frac{7}{16} = 0,4375$$

poiché $A \cap B$ contiene le sequenze del tipo $(1, b_2, b_3, \dots, b_{n-1}, 1)$ ed anche quelle del tipo $(\mathbf{0}, \mathbf{0}, \mathbf{1}, b_4, b_5, \dots, b_{n-1}, \mathbf{0}), (\mathbf{0}, \mathbf{1}, \mathbf{0}, b_4, b_5, \dots, b_{n-1}, \mathbf{0}) \in (\mathbf{0}, \mathbf{1}, \mathbf{1}, b_4, b_5, \dots, b_{n-1}, \mathbf{0}).$ Si ricava che gli eventi A e B sono indipendenti, essendo $P(A \cap B) = P(A) P(B)$.

(iii) Notiamo che

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{7}{8} + \frac{1}{2} - \frac{7}{16} = \frac{15}{16}.$$

Inoltre, per l'indipendenza di $A \in B$, si ha

$$P(\overline{B} \mid A) = P(\overline{B}) = \frac{1}{2}.$$

Ne segue che la relazione $P(A \cup B) - P(\overline{B} \mid A) < 1/2$ è vera.

(iv) Per la legge di De Morgan e per l'indipendenza di A e B si ha

$$P(\overline{A} \cap \overline{B}) + P(\overline{A} \mid B) = 1 - P(A \cup B) + P(\overline{A}) = 1 - \frac{15}{16} + \frac{1}{8} = \frac{3}{16}$$

quindi la relazione $P(\overline{A} \cap \overline{B}) + P(\overline{A} \mid B) < 1/2$ è vera.

(i) Derivando la funzione di distribuzione si ha la densità di probabilità di X:

$$f(x) = \begin{cases} 1, & 0 < x < \frac{1}{2} \\ \frac{1}{2}, & 1 < x < 2 \\ 0, & \text{altrimenti.} \end{cases}$$

(ii) Si ha

$$\mu = E(X) = \int_0^{1/2} x dx + \int_1^2 \frac{x}{2} dx = \frac{x^2}{2} \Big|_0^{1/2} + \frac{x^2}{4} \Big|_1^2 = \frac{1}{2} \left(\frac{1}{4} + \frac{3}{2} \right) = \frac{7}{8},$$

$$E(X^2) = \int_0^{1/2} x^2 dx + \int_1^2 \frac{x^2}{2} dx = \frac{x^3}{3} \Big|_0^{1/2} + \frac{x^3}{6} \Big|_1^2 = \frac{1}{24} + \frac{7}{6} = \frac{29}{24},$$

$$\sigma^2 = Var(X) = E(X^2) - \mu^2 = \frac{29}{24} - \frac{49}{64} = \frac{85}{192} = 0,4427.$$

(iii) Per ricavare il valore di h tale che $P(|X - \mu| < h) = 5/8$ notiamo che

$$P(|X - \mu| < h) = P\left(\frac{7}{8} - h < X < \frac{7}{8} + h\right) = F\left(\frac{7}{8} + h\right) - F\left(\frac{7}{8} - h\right) = \frac{7}{16} + \frac{h}{2} - \frac{7}{8} + h,$$

quindi

$$\frac{7}{16} + \frac{h}{2} - \frac{7}{8} + h = \frac{5}{8} \implies \frac{3}{2}h = \frac{17}{16} \implies h = \frac{17}{24} = 0,7083.$$

Esercizio 3 (i) Risulta

ω	X	Y									
0000	4	0	0100	3	0	1000	2	0	1100	1	1
0001	1	0	0101	2	1	1001	1	1	1101	2	1
0010	2	0	0110	1	1	1010	2	1	1110	1	1
0011	1	1	0111	2	1	1011	3	1	1111	4	1

Quindi la distribuzione congiunta di (X,Y) e le distribuzioni marginali di X e Y sono

$x \setminus y$	0	1	$p_X(x)$
1	1/16	5/16	3/8
2	2/16	4/16	3/8
3	1/16	1/16	1/8
4	1/16	1/16	1/8
$p_Y(y)$	5/16	11/16	1

(i) Risulta $p(1,0) = 1/16 \neq p_X(1) \cdot p_Y(0) = (3/8) \cdot (5/16) = 15/128$, quindi X e Y non sono indipendenti. Si ha che X e Y sono negativamente correlate, essendo

$$E(X) = \frac{3}{8} + \frac{6}{8} + \frac{3}{8} + \frac{4}{8} = 2,$$
 $E(Y) = \frac{11}{16},$ $E(XY) = \frac{5}{16} + \frac{8}{16} + \frac{3}{16} + \frac{4}{16} = \frac{20}{16} = \frac{5}{4},$

e quindi $Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{5}{4} - 2 \cdot \frac{11}{16} = -\frac{1}{8} < 0.$

(ii) Si trae infine

$$P(X = Y) = p(1, 1) = \frac{5}{16}, \qquad P(X \ge 2, Y \ge 1) = \frac{6}{16} = \frac{3}{8},$$
$$P(X \ge 2, Y \ge 1 \mid X \ne Y) = \frac{6/16}{11/16} = \frac{6}{11}.$$

Fisciano, 25/6/2015

Esercizio 1 (i) Poniamo, per k = 1, 2, 3,

 $A_k = \{ \text{si verifica un errore di tipo A nel trasmettere il bit } k\text{-esimo} \},$

 $B_k = \{ \text{si verifica un errore di tipo B nel trasmettere il bit } k\text{-esimo} \},$

 $E_k = \{ \text{si verifica un errore di tipo qualsiasi nel trasmettere il bit } k\text{-esimo} \}.$

Risulta: $P(A_1) = P(A_2) = P(A_3) = 0.2$. Inoltre: $P(B_1) = P(B_2) = 0.1$ e $P(B_3) = 0.2$.

Inoltre $E_k = A_k \cup B_k$. Quindi, trasmettendo la sequenza binaria **001**, la probabilità che si verifichi un solo errore, di tipo A, è

$$P(I_A) = P(A_1 \overline{E_2} \overline{E_3}) + P(\overline{E_1} A_2 \overline{E_3}) + P(\overline{E_1} \overline{E_2} A_3) = 0.2 \cdot 0.7 \cdot 0.6 + 0.7 \cdot 0.2 \cdot 0.6 + 0.7 \cdot 0.7 \cdot 0.2 = 0.266$$

avendo usato l'indipendenza degli eventi. Analogamente, trasmettendo la sequenza binaria **001**, la probabilità che si verifichi un solo errore, di tipo B, è

$$P(I_B) = P(B_1 \overline{E_2} \overline{E_3}) + P(\overline{E_1} B_2 \overline{E_3}) + P(\overline{E_1} \overline{E_2} B_3) = 0.1 \cdot 0.7 \cdot 0.6 + 0.7 \cdot 0.1 \cdot 0.6 + 0.7 \cdot 0.7 \cdot 0.2 = 0.182$$

pertanto la probabilità che si verifichi un solo errore, di tipo qualsiasi, è dato dalla somma delle probabilità precedenti, trattandosi di eventi incompatibili, quindi:

$$P(I_A \cup I_B) = P(I_A) + P(I_B) = 0.266 + 0.182 = 0.448$$

(ii) Se nel trasmettere la sequenza **001** si è verificato un solo errore, di tipo qualsiasi, la probabilità che l'errore si sia verificato nella trasmissione del terzo bit si ottiene usando la formula di Bayes:

$$P(\overline{E_1}\,\overline{E_2}\,E_3|I_A\cup I_B) = \frac{P(\overline{E_1}\,\overline{E_2}\,E_3)}{P(I_A\cup I_B)} = \frac{0.7\cdot 0.7\cdot 0.4}{0.448} = \frac{0.196}{0.448} = 0.4375.$$

Esercizio 2 Se X è una variabile aleatoria avente valore medio e varianza

$$E(X) = 3.5$$
 $Var(X) = 6.25$

posto Y = X - 1, si ha

(i)
$$\mu = E(Y) = E(X - 1) = E(X) - 1 = 2.5$$

$$\sigma^2 = Var(Y) = Var(X - 1) = Var(X) = 6.25$$

e quindi $\sigma = \sqrt{6,25} = 2,5$.

(ii) Nel caso in cui Y ha distribuzione esponenziale, di parametro λ , poiché $\mu=E(Y)=1/\lambda$, si ha $\lambda=1/\mu=1/2,5=0,4$. Pertanto risulta

$$P(|Y - \mu| < \sigma) = P(\mu - \sigma < Y < \mu + \sigma) = P(0 < Y < 5) = 1 - e^{-\lambda \cdot 5} = 1 - e^{-2} = 0.8647$$

е

$$P(Y > \sigma) = P(Y > 2.5) = e^{-\lambda \cdot 2.5} = e^{-1} = 0.3679$$

Se Y ha distribuzione normale, ponendo $Z = (Y - \mu)/\sigma$ (con Z normale standard) si ha

$$P(|Y - \mu| < \sigma) = P(\mu - \sigma < Y < \mu + \sigma) = P(\frac{\mu - \sigma - \mu}{\sigma} < Z < \frac{\mu + \sigma - \mu}{\sigma}) = P(-1 < Z < 1)$$
$$= \Phi(1) - \Phi(-1) = \Phi(1) - [1 - \Phi(1)] = 2\Phi(1) - 1 = 2 \cdot 0.8413 = 0.6826$$

Infine:

$$P(Y > \sigma) = P(\frac{Y - \mu}{\sigma} > \frac{\sigma - \mu}{\sigma}) = P(Z > 0) = 1 - \Phi(0) = 0.5$$

Esercizio 3

ω	$X(\omega)$	$Y(\omega)$	ω	$X(\omega)$	$Y(\omega)$
cccc	0	0	tccc	1	0
ccct	1	0	tcct	2	3
cctc	1	0	tctc	2	2
cctt	2	1	tctt	3	0
ctcc	1	0	ttcc	2	1
ctct	2	2	ttct	3	0
cttc	2	3	tttc	3	0
cttt	3	0	tttt	4	0

(i) Pertanto densità discreta congiunta di (X,Y) e densità marginali sono:

$x \backslash y$	0	1	2	3	$p_X(x)$
0	$\frac{1}{16}$	0	0	0	$\frac{1}{16}$
1	$\frac{4}{16}$	0	0	0	$\frac{4}{16}$
2	0	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{6}{16}$
3	$\frac{4}{16}$	0	0	0	$\frac{4}{16}$
4	$\frac{1}{16}$	0	0	0	$\frac{1}{16}$
$p_Y(y)$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	1

(ii) Si ha (notiamo che X è binomiale)

$$E(X) = 2, \qquad E(Y) = \frac{1}{8} + \frac{2}{8} + \frac{3}{8} = \frac{3}{4}, \qquad E(X \cdot Y) = \frac{2}{8} + \frac{4}{8} + \frac{6}{8} = \frac{3}{2},$$
$$Cov(X, Y) = E(X \cdot Y) + E(X)E(Y) = \frac{3}{2} - 2 \cdot \frac{3}{4} = 0$$

e pertanto il coefficiente di correlazione di (X,Y) è nullo.

(iii) Si ricava facilmente che X e Y non sono indipendenti, essendo:

$$p(0,0) = \frac{1}{16} \neq p_X(0)p_Y(0) = \frac{1}{16} \cdot \frac{5}{8}$$

(iv) Infine si ha

$$P(X \neq Y) = 1 - P(X = Y) = 1 - \frac{3}{16} = \frac{13}{16}, \qquad P(X \ge 2, Y < 2) = \frac{7}{16}.$$

Fisciano, 14/7/2015

Esercizio 1 Indichiamo con A_k^i l'evento che si realizza quando dalla *i*-esima cartella si estraggono k file riservati, con i = 1, 2 e k = 0, 1, 2. Notiamo che risulta

$$P(A_k^i) = \frac{\binom{2}{k}\binom{6}{2-k}}{\binom{8}{2}} \quad \Rightarrow \quad P(A_0^i) = \frac{15}{28} \qquad P(A_1^i) = \frac{12}{28} \qquad P(A_2^i) = \frac{1}{28},$$

e che gli eventi A_k^1 e A_h^2 sono indipendenti.

(i) La probabilità che i 4 file estratti siano tutti pubblici (ossia nessuno sia riservato) è

$$P(A_0^1 \cap A_0^2) = P(A_0^1)P(A_0^2) = \left(\frac{15}{28}\right)^2 = 0.287.$$

(ii) La probabilità che almeno uno dei 4 file estratti sia riservato è

$$P(\overline{A_0^1 \cap A_0^2}) = 1 - P(A_0^1 \cap A_0^2) = 1 - 0.287 = 0.713.$$

(iii) La probabilità che tra i 4 file estratti vi sia un solo file riservato è

$$P(R) := P(A_0^1 \cap A_1^2) + P(A_1^1 \cap A_0^2) = P(A_0^1)P(A_1^2) + P(A_1^1)P(A_0^2) = 2\frac{15}{28}\frac{12}{28} = \frac{45}{98} = 0,4592.$$

(iv) La probabilità che tra i 4 file estratti vi sia un solo file riservato, sapendo che almeno uno dei 4 file estratti è riservato, è

$$P(R \mid \overline{A_0^1 \cap A_0^2}) = \frac{P(R \cap (\overline{A_0^1 \cap A_0^2}))}{P(\overline{A_0^1 \cap A_0^2})} = \frac{P(R)}{P(\overline{A_0^1 \cap A_0^2})} = \frac{0.4592}{0.713} = 0.644.$$

Esercizio 2 Posto p(k) = P(X = k), risulta

$$p(0) = \frac{4}{5} \frac{3}{4} = \frac{3}{5} = 0.6 \qquad p(1) = \frac{1}{5} \frac{3}{4} + \frac{4}{5} \frac{1}{4} = \frac{7}{20} = 0.35 \qquad p(2) = \frac{1}{5} \frac{1}{4} = \frac{1}{20} = 0.05.$$

- (i) Quindi la funzione di distribuzione $F(x) = P(X \le x)$ è:
- F(x) = 0 per x < 0,
- $-F(x) = 0.6 \text{ per } 0 \le x < 1,$
- $-F(x) = 0.95 \text{ per } 1 \le x < 2.$
- $F(x) = 1 \text{ per } x \ge 2.$
- (ii) Il valore medio μ e la deviazione standard σ di X sono

$$\mu = E(X) = \sum_{k=0}^{2} k \, p(k) = \frac{9}{20} = 0.45$$
 $E(X^2) = \sum_{k=0}^{2} k^2 \, p(k) = \frac{11}{20} = 0.55$

$$\sigma^2 = Var(X) = E(X^2) - (E(X))^2 = 0.55 - (0.45)^2 = 0.3475$$
 $\sigma = \sqrt{0.3475} = 0.5895$

(iii) Si ha

$$P(|X - \mu| > \sigma) = P(X < \mu - \sigma) + P(X > \mu + \sigma) = P(X < -0.1395) + P(X > 1.0395)$$
$$= F(-0.1395) + 1 - F(1.0395) = 0 + 1 - 0.95 = 0.05.$$

Esercizio 3 (i) Essendo p(x, y) = c|x - y|, per x = 0, 1, 2 e y = 0, 1, 2 si ha

$$\sum_{i,j=1}^{2} p(x,y) = 8c = 1 \quad \Rightarrow \quad c = \frac{1}{8}.$$

Quindi

			_	()
x y	U	1	2	$p_X(x)$
0	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$
1	$\frac{1}{8}$	0	$\frac{1}{8}$	$\frac{1}{4}$
2	$\frac{1}{4}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$p_Y(y)$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	1

(ii) $X \in Y$ non sono indipendenti, essendo $p(0,0) = 0 \neq p_X(0) p_Y(0) = (3/8)^2$.

(iii) Per calcolare il coefficiente di correlazione di (X,Y) notiamo che X e Y sono identicamente distribuite, con

$$\begin{split} E(X) &= \frac{1}{4} + \frac{3}{4} = 1 = E(Y), \quad E(X^2) = \frac{1}{4} + \frac{3}{2} = \frac{7}{4}, \quad Var(X) = \frac{7}{4} - 1 = \frac{3}{4} = Var(Y) \\ E(X \cdot Y) &= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}, \quad Cov(X, Y) = \frac{1}{2} - 1 = -\frac{1}{2} \\ \rho(X, Y) &= \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}} = \frac{-\frac{1}{2}}{\frac{3}{4}} = -\frac{2}{3}. \end{split}$$

(iv) Si ha

$$E(X - Y) = E(X) - E(Y) = 0,$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y) = 2\frac{3}{4} - 2\left(-\frac{1}{2}\right) = \frac{5}{2}.$$

Fisciano, 4/9/2015

Esercizio 1 (i) Dalla rete

si trae che i 5 possibili percorsi da n_1 a n_6 sono

$$\pi_{1} = [n_{1}, n_{2}, n_{4}, n_{6}]; \qquad P(\pi_{1}) = \frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{4}$$

$$\pi_{2} = [n_{1}, n_{2}, n_{5}, n_{4}, n_{6}]; \qquad P(\pi_{2}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{8}$$

$$\pi_{3} = [n_{1}, n_{2}, n_{5}, n_{6}]; \qquad P(\pi_{3}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$\pi_{4} = [n_{1}, n_{3}, n_{5}, n_{4}, n_{6}]; \qquad P(\pi_{4}) = \frac{1}{2} \cdot 1 \cdot \frac{1}{2} \cdot 1 = \frac{1}{4}$$

$$\pi_{5} = [n_{1}, n_{3}, n_{5}, n_{6}]; \qquad P(\pi_{5}) = \frac{1}{2} \cdot 1 \cdot \frac{1}{2} = \frac{1}{4}$$

(ii) Per $k=1,\ldots,5$ si ha $P(N_k)=\sum_{i:\,N_k\in\pi_i}P(\pi_i),$ e quindi si ricava facilmente:

$$P(N_1) = 1$$
, $P(N_2) = \frac{1}{2}$, $P(N_3) = \frac{1}{2}$, $P(N_4) = \frac{5}{8}$, $P(N_5) = \frac{3}{4}$, $(P(N_6) = 1)$.

(iii) Sapendo che il messaggio è passato per n_4 qual è la probabilità che sia passato per n_3 è

$$P(N_3|N_4) = \frac{P(N_3 \cap N_4)}{P(N_4)} = \frac{P(\pi_4)}{5/8} = \frac{1/4}{5/8} = \frac{2}{5} = 0.4$$

(iv) Gli eventi N_3 e N_4 non sono indipendenti, essendo $P(N_3|N_4) \neq P(N_3)$.

Esercizio 2 (i) Per la variabile aleatoria X risulta

$$f(x) = \begin{cases} x/100, & 0 \le x < 10, \\ 1/10, & 10 \le x < 15, \\ 0, & \text{altrimenti.} \end{cases} \Rightarrow F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0, & x < 0, \\ x^{2}/200, & 0 \le x < 10, \\ x/10 - 1/2, & 10 \le x < 15, \\ 1, & \text{altrimenti.} \end{cases}$$

(ii) Il valore atteso di X è

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{10} \frac{x^2}{100} dx + \int_{10}^{15} \frac{x}{10} dx = \frac{x^3}{300} \Big|_{0}^{10} + \frac{x^2}{20} \Big|_{10}^{15} = \frac{10}{3} + \frac{25}{4} = \frac{115}{12} = 9,58\overline{3}.$$

(iii) Se il task non è stato completato nei primi 6 minuti, la probabilità che si completi nei successivi 6 minuti è

$$P(6 < X \le 12 \mid X > 6) = \frac{P(6 < X \le 12)}{P(X > 6)} = \frac{F(12) - F(6)}{1 - F(6)} = \frac{26}{41} = 0,6341$$

essendo F(6) = 36/200 = 9/50 e F(12) = 7/10.

Esercizio 3 Lanciando una moneta 4 volte, se X descrive il numero di volte che esce testa e Y descrive il numero di variazioni nei risultati riscontrati, si ha

ω	$X(\omega)$	$Y(\omega)$	ω	$X(\omega)$	$Y(\omega)$
cccc	0	0	tccc	1	1
ccct	1	1	tcct	2	2
cctc	1	2	tctc	2	3
cctt	2	1	tctt	3	2
ctcc	1	2	ttcc	2	1
ctct	2	3	ttct	3	2
cttc	2	2	tttc	3	1
cttt	3	1	tttt	4	0

(i) Quindi la distribuzione congiunta di (X,Y) e le distribuzioni marginali sono

$x \backslash y$	0	1	2	3	$p_X(x)$
0	$\frac{1}{16}$	0	0	0	$\frac{1}{16}$
1	0	$\frac{2}{16}$	$\frac{2}{16}$	0	$\frac{4}{16}$
2	0	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{6}{16}$
3	0	$\frac{2}{16}$	$\frac{2}{16}$	0	$\frac{4}{16}$
4	$\frac{1}{16}$	0	0	0	$\frac{1}{16}$
$p_Y(y)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

- (ii) Risulta, ad esempio, $p(0,0) \neq p_X(0)p_Y(0)$ e pertanto X e Y non sono indipendenti.
- (iii) La covarianza di (X, Y) è

$$Cov(X, Y) = E(X \cdot Y) - E(X)E(Y) = 3 - 2 \cdot \frac{3}{2} = 0$$

essendo
$$E(X)=2, \ E(Y)=\frac{3}{2}, \ E(X\cdot Y)=\frac{1}{16}(2+4+4+8+12+6+12)=3.$$
 Infine, si ha $P(Y>1\,|\,X>1,Y>0)=\frac{P(X>1,Y>1)}{P(X>1,Y>0)}=\frac{6/16}{10/16}=3/5.$

Fisciano, 6/11/2015

Esercizio 1 Da un'urna contenente 90 biglie se ne estraggono due senza reinserimento.

(i) Posto $A = \{ \text{la biglia numero } 90 \text{ non } \text{è tra le due estratte} \}, \text{ si ha}$

$$P(A) = \frac{\binom{1}{0}\binom{89}{2}}{\binom{90}{2}} = \frac{89 \cdot 88/2}{90 \cdot 89/2} = \frac{44}{45} = 0.9\overline{7}.$$

(ii) Sia $B = \{$ la biglia numero 1 è tra le due estratte $\}$; allora risulta

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\binom{1}{1}\binom{1}{0}\binom{88}{1}/\binom{90}{2}}{\binom{1}{1}\binom{89}{1}/\binom{90}{2}} = \frac{88}{89} = 0,9888.$$

(iii) Se le estrazioni sono con reinserimento si ha

$$P(A) = P(A_1 \cap A_2) = P(A_1)P(A_2) = \left(\frac{89}{90}\right)^2 = 0.9779$$

essendo $A_i = \{\text{nella } i\text{-esima estrazione non esce la biglia numero }90\}, i = 1, 2, con <math>A_1$ e A_2 eventi indipendenti. Inoltre, in tal caso risulta

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2\frac{1}{90}\frac{88}{90}}{2\frac{1}{90}\frac{89}{90}} = \frac{88}{89} = 0.9888.$$

Esercizio 2 Notiamo che

$$P(X > 3 \mid X > 2) = \frac{P(\{X > 3\} \cap \{X > 2\})}{P(X > 2)} = \frac{P(X > 3)}{P(X > 2)}.$$

(i) Se X ha distribuzione esponenziale e Var(X)=1, allora ricordando che $E(X)=1/\lambda$, si ha $\lambda=1$ e quindi $F(x)=P(X\leq x)=1-e^{-x}, x\geq 0$, da cui segue

$$P(X > 3 \mid X > 2) = \frac{P(X > 3)}{P(X > 2)} = \frac{e^{-3}}{e^{-2}} = e^{-1} = 0.3679.$$

Si perviene a tale risultato anche usando la proprietà di assenza di memoria:

$$P(X > 3 \mid X > 2) = P(X > 3 - 2) = P(X > 1) = e^{-1} = 0.3679.$$

(ii) Se X ha distribuzione normale, con E(X)=1 e Var(X)=1, allora Z=X-1 ha distribuzione normale standard; pertanto $P(X>x)=P(Z>x-1)=1-\Phi(x-1)$ e quindi

$$P(X>3 \mid X>2) = \frac{P(X>3)}{P(X>2)} = \frac{1-\Phi(2)}{1-\Phi(1)} = \frac{1-\Phi(2)}{1-\Phi(1)} = \frac{1-0.9772}{1-0.8413} = \frac{0.0228}{0.1587} = 0.1437.$$

(iii) Se X è uniformemente distribuita nell'intervallo (0,b), e si ha Var(X)=1, allora ricordando che $Var(X)=(b-a)^2/12=b^2/12$, si ha $b^2=12$ ossia $b=2\sqrt{3}$. Pertanto si ha $P(X\leq x)=\frac{x}{2\sqrt{3}},\,0\leq x\leq 2\sqrt{3}$, da cui segue

$$P(X > 3 \mid X > 2) = \frac{P(X > 3)}{P(X > 2)} = \frac{1 - \frac{3}{2\sqrt{3}}}{1 - \frac{2}{2\sqrt{3}}} = \frac{1 - \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{3}} = \frac{1 - 0,866}{1 - 0,577} = \frac{0,134}{0,423} = 0,317.$$

(iv) Se X ha distribuzione binomiale di parametri n=4 e $p\in(0,1)$, con Var(X)=1, ricordando che Var(X)=np(1-p) si ha 4p(1-p)=1, ossia $4p^2-4p+1=0$, da cui segue $(2p-1)^2=0$ e dunque p=1/2. Se segue $P(X=x)=\binom{4}{x}\frac{1}{2^4}$ per $0\leq x\leq 4$ e quindi

$$P(X > 3 \mid X > 2) = \frac{P(X > 3)}{P(X > 2)} = \frac{P(X = 4)}{P(X = 3) + P(X = 4)} = \frac{\binom{4}{4} \frac{1}{2^4}}{\binom{4}{3} \frac{1}{2^4} + \binom{4}{4} \frac{1}{2^4}} = \frac{1}{5} = 0.2.$$

Esercizio 3 Si scelgono a caso 2 nodi del seguente grafo.

Consideriamo le variabili aleatorie $X = \alpha + \beta$ e $Y = |\alpha - \beta|$, con α e β i gradi dei nodi scelti.

						,			′ '		_			
nodi	α	β	X	Y	nodi	α	β	X	Y	nodi	α	β	X	Y
$n_1 - n_2$	2	3	5	1	$n_2 - n_3$	3	3	6	0	$n_3 - n_5$	3	2	5	1
$ n_1 - n_3 $	2	3	5	1	$n_2 - n_4$	3	3	6	0	$n_3 - n_6$	3	3	6	0
$ n_1 - n_4 $	2	3	5	1	$\mid n_2 - n_5 \mid$	3	2	5	1	$n_4 - n_5$	3	2	5	1
$n_1 - n_5$	2	2	4	0	$n_2 - n_6$	3	3	6	0	$n_4 - n_6$	3	3	6	0
$n_1 - n_6$	2	3	5	1	$n_3 - n_4$	3	3	6	0	$n_5 - n_6$	2	3	5	1

(i) La distribuzione congiunta di (X,Y) e le distribuzioni marginali sono:

$x \setminus y$	0	1	$p_X(x)$
4	$\frac{1}{15}$	0	$\frac{1}{15}$
5	0	$\frac{8}{15}$	
6	$\frac{6}{15}$	0	$ \begin{array}{r} 8\\15\\6\\15\end{array} $
$p_Y(y)$	$\frac{7}{15}$	$\frac{8}{15}$	1

- (ii) X e Y non sono indipendenti, essendo $p(4,1) = 0 \neq p_X(4)p_y(1)$.
- (iii) Il coefficiente di correlazione è $\rho(X,Y) = -\sqrt{5/14} = -0.5976$ essendo:

$$\begin{split} E(X) &= 4 \cdot \frac{1}{15} + 5 \cdot \frac{8}{15} + 6 \cdot \frac{6}{15} = \frac{80}{15} = \frac{16}{3}, \qquad E(Y) = \frac{8}{15}, \qquad E(X \cdot Y) = 5 \cdot \frac{8}{15} = \frac{8}{3}, \\ E(X^2) &= 16 \cdot \frac{1}{15} + 25 \cdot \frac{8}{15} + 36 \cdot \frac{6}{15} = \frac{432}{15} = \frac{144}{5}, \qquad E(Y^2) = \frac{8}{15}, \\ Var(X) &= E(X^2) - [E(X)]^2 = \frac{144}{5} - \left(\frac{16}{3}\right)^2 = \frac{16}{45}, \\ Var(Y) &= E(Y^2) - [E(Y)]^2 = \frac{8}{15} - \left(\frac{8}{15}\right)^2 = \frac{56}{225}, \\ Cov(X, Y) &= E(X \cdot Y) - E(X)E(Y) = \frac{8}{3} - \frac{16}{3} \cdot \frac{8}{15} = -\frac{8}{45}. \end{split}$$