PROCESSOS Prof. Maicon A. Sartin

Cenários em Sistemas Multitarefas

- Um usuário pode executar diversas atividades simultâneas
 - Música
 - □ Editoração de texto
 - Navegar na Internet
- □ Servidor pode ter vários usuários conectados
 - Acesso remoto
 - □ Servidor de e-mails

Introdução

- Processo
 - Entidade Ativa, ao contrário do programa, que é uma entidade passiva
 - □ Um ambiente onde se executa um programa
- O SO gerencia os processos por SC que podem realizar diversas operações:
 - □ Criar, eliminar, sincronizar, suspender,...
- □ Um algoritmo/sistema operacional é preemptivo quando:
 - Um processo entra e pode ser retirado da CPU, antes do término da sua execução

Introdução

- Cada processo tem sua própria CPU virtual
 - Trazendo a visão de exclusividade ao usuário
- A CPU física é compartilhada por vários processos
 - Multiprogramação
 - Tempo Compartilhado
- O Escalonador seleciona qual processo deve usar a CPU a cada momento e por quanto tempo

Estrutura dos Processos

- Contexto de Software
 - Na criação do processo são definidas características diretamente relacionadas a execução do programa, como:
 - Número máximo de arquivos abertos simultaneamente
 - Possui três grupos de informações: identificação, Quotas e privilégios
 - Identificação
 - Cada processo possui uma identificação única através de números PID (Process Identification)
 - Cada processo possui identificação do usuário(UID) ou processo que o criou

Estrutura dos Processos

- □ Contexto de Software
 - Quotas
 - Limites de cada recurso do sistema que um processo pode alocar
 - Se for ultrapassado o limite o processo pode executar lentamente ou não executar
 - Ex.:
 - Número máximo de arquivos abertos simultaneamente
 - Número máximo de operações de E/S pendentes
 - Número máximo de processos e subprocessos a serem criados
 - Tamanho máximo do buffer para operações de E/S
 Tamanho máximo da memória a ser alocada
 - Iamanho maximo da memoria a ser alo
 - Privilégios
 - Define o que o processo pode fazer em relação ao sistema e a outros processos

Estrutura dos Processos Espaço de endereçamento De fa área da memória do processo onde o programa será executado e deve ser protegido dos demais processos nome processos nome registradores gerals Tegistrador PC Tegistrador PC Tegistrador PC Tegistrador PC Tegistrador SP Tegistrador SP

Estados do Processo

- Em um sistema multiprogramável um processo não é executado todo tempo pelo processador
- Desde a criação do processo até o seu término ele passa por uma série de estados
- Existem três tipos de estados: Execução, Pronto e Espera

Estados do Processo

- Execução (running)
 - O processo está sendo processado pela UCP
 - Quando há apenas um processador, somente um processo pode estar sendo executado em um dado instante de tempo
 - E quando há vários processadores?
 - O SO determina a utilização do processador através de políticas de escalonamento
- Pronto (ready)
 - Aguarda uma oportunidade para executar, dependendo do SO para a alocação da UCP

Estados do Processo

- □ Espera (wait)
- Aguarda um evento externo ou algum recurso para poder prosseguir seu processamento
- Ex.: Término de Operação de E/S
- Bloqueado(Blocked) Em alguns sistemas
 - Espera x Bloqueado
 - Um processo em estado de bloqueado
 - espera ser autorizado para utilizar o recurso
 - Um processo em estado de espera
 - Agurada pela conclusão de uma operação em um recurso que já foi garantido

Estados do Processo

- Um processo muda de estado diversas vezes, durante seu processamento, em função de eventos originados por ele próprio¹ ou pelo SO²
 - 1. Eventos voluntários
 - Eventos involuntários

Estados do Processo

- Existem quatro mudanças de estado:
- □ Pronto → Execução
 - Na criação do processo ele é colocado em uma lista de processos no estado pronto, onde aguarda uma oportunidade para ser executado
- Execução → Espera
- Por eventos gerados pelo próprio processo.
- □ Ex.: Operação de E/S
- Espera → Pronto
 - Quando a operação solicitada é atendida ou o recurso esperado é concedido
- Execução → Pronto
- Por eventos gerados pelo sistema
- Ex. Fim da fatia de tempo que o processo possui para sua execução

Mudanças de Estados do Processo Estado de Execução Estado de Espera Estado de Pronto

Controle do Processo O SO materializa o processo através de uma estrutura chamada bloco de controle do processo (PCB) Através do PCB o SO mantém todas as informações sobre o processo ponteiros Estado do processo Nome do processo Prioridade do processo Registradores Lista de arquivos abertos

Controle do Processo Pode haver vários processos em estados de pronto ou de espera O SO gerencia os processos através de listas encadeadas, onde cada PCB tem um ponteiro para seu sucessor Lista de processos em estado de pronto de espera

Thread (Processo leve) Processo agrupamento de recursos + fluxo de execução Thread fluxo de execução Thread = subconjunto das informações pertinentes a um processo É possível ter várias threads independentes dentro de um mesmo processo

Tipos de Processos

- Os processos podem ser classificados quanto ao tipo de processamento que realizam em:
- CPU-Bound
 - Passam a maior parte do tempo no estado de execução
 - Realiza poucas operações de E/S e muitos cálculos
 - Ex.: Aplicações matemáticas e científicas
- □ I/O-Bound
 - □ Passam a maior parte do tempo no estado de espera
 - Realiza um elevado número de E/S
 - Ex.: Aplicações comercias e processos interativos

Referências

MACHADO, F. B. "Arquitetura de sistemas operacionais". LTC, 1997.

LAUREANO, Marcos. "Sistemas Operacionais". Curitiba: Universidade Federal Paraná, 2009.

GUALEVE, J. A. F. "Sistemas Operacionais". Brasília: Universidade Católica de Brasília, 2006.