#Úvod

Disclaimer: Toto pdf neslouží jako 1:1 bezmyšlenkovitý návod na počítání limit. Pořád je důležité vědět, co děláte, jaké jsou předpoklady atd.

#Důkazy

Viz https://courses.fit.cvut.cz/BI-MA1/@master/textbook/index.html *Vzorný čtenář si jistě dokáže sám :)*

Dobře, pár definic si tu dáme.

Limita

- Limita posloupnosti: Mějme reálnou posloupnost $(a_n)_{n=1}^{\infty}$ a ta má limitu α , která je prvkem rozšířené reálné osy, tedy $\alpha \in \langle -\infty, +\infty \rangle$, právě tehdy když pro každé okolí bodu U_{α} bodu α lze nalézt $M \in N$ takové, že pro $\forall n \in N \geq M$ platí, že $a_n \in U_{\alpha}$.
- Neboli: α je limitou posloupnosti, právě když v každém jeho okolí od nějakého členu (to jeto naše M) leží všechny členy posloupnosti.
- Značíme $\lim_{n o \infty} a_n$
- Limita funkce: Mějme funkci $f:A\to R$, a hromadný bod množiny A a bod $b\to a,b\in R$. Funkce f ma v bodě a limitu rovnou b \Longleftrightarrow pro každé okolí U_b bodu b \exists okolí U_a bodu a takové, že pokud $x\in U_a\cup A$ a $x\ne a$ pak $f(x)\in U_b$.

Věty

#veta_o_limite_souctu/soucinu/podilu

- https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-derivace-ssp.html#thm-derivace-ssp
 - #veta_o_slozene_funkci
- https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-veta-o-limite-slozene-funkce.html#thm-limita-slozene-funkce
 #vybrana_posloupnost
- https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec_vybrane_posloupnosti.html#def-vybrana-posloupnost

#heine

 https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-vlastnosti-limit.html#thmheine

#podilove_kriterium

- https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-podilove-kriterium-pro-posloupnosti.html#thm-podilove-kriterium
 #veta_o_sevrene_funkci/posloupnosti
- https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-nerovnosti-alimity.html#thm-limita-sevrene-funkce
 #limity_a_asymptoticke_vztahy
- https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-limity-a-O.html#thmvztah-limity-a-O

Známé limity

• https://courses.fit.cvut.cz/BI-MA1/@master/textbook/sec-zname-limity.html

Tríčky

- #dosadit
- #vytknuti_nejrychlejsiho_clenu
- #odmocniny
- #doplneni_o_vhodnou_nulu
- #vynasobeni_vhodnou_jednickou
- #vyuziti_exponencialy
- #goniometricky_funkce

#dosadit

- Vždycky je dobré dosadit, neboli využít spojitosti. Je tím dobře vidět, které výrazy jsou problematické.
- Občas to i vyjde a rovnou nám to vyhodí výsledek.

$$\lim_{x\to 1}\frac{\sin(x)}{x}=\frac{\sin(1)}{1}=\sin(1)$$

#vytknuti_nejrychlejsiho_clenu

nejrychleji rostoucí

$$\lim_{n \to \infty} \frac{2^n + \pi^n + 3^n}{4^n - 2^n} = \lim_{n \to \infty} \frac{\pi^n}{4^n} \cdot \frac{\frac{2^n}{\pi^n} + 1 + \frac{3^n}{\pi^n}}{1 - \frac{2^n}{4^n}} = \lim_{n \to \infty} \left(\frac{\pi}{4}\right)^n \cdot \frac{\left(\frac{2}{\pi}\right)^n + 1 + \left(\frac{3}{\pi}\right)^n}{1 - \left(\frac{1}{2}\right)^n} = 0 \cdot \frac{0 + 1 + 0}{1 - 0} = 0$$

nejpomaleji klesající

$$\lim_{n\to\infty}\frac{2^{-n}+3^{-n}}{4^{-n}+9^{-n}}=\lim_{n\to\infty}\frac{2^{-n}}{4^{-n}}\cdot\frac{1+\frac{3^{-n}}{2^{-n}}}{1-\frac{9^{-n}}{4^{-n}}}=\lim_{n\to\infty}2^n\cdot\frac{1+(\frac{2}{3})^n}{1-(\frac{4}{9})^n}=+\infty\cdot\frac{1+0}{1-0}=+\infty$$

#odmocniny

- Zde je důležité si uvědomit, zdali nám tato úprava o *vynásobení vhodnou jedničkou* pomůže. Většinou to jsou právě ty případy, kdy nám po dosazení vznikne výraz typu: $+\infty (+\infty)$.
- pro druhou odmocninu: $\frac{a-b}{a^2+b^2}$

$$\lim_{n o\infty}\sqrt[2]{a+b}-\sqrt[2]{c+b} o \lim_{n o\infty}rac{(a+b)-(c+b)}{\sqrt[2]{a+b}+\sqrt[2]{c+b}}$$

• pro třetí odmocninu: $\frac{a-b}{a^2+ab+b^2}$

$$\lim_{n o\infty}\sqrt[3]{a+b}-\sqrt[3]{c+b} o \lim_{n o\infty}rac{(a+b)-(c+b)}{\sqrt[3]{(a+b)^2}+\sqrt[3]{a+b}\cdot\sqrt[3]{c+b}+\sqrt[3]{c+b}}$$

#doplneni_o_vhodnou_nulu

 motivace u těchto následujících metod je získání známých limit → viz sekce známé limity.

$$\lim_{x o 1} rac{e^x - e}{x - 1} = \lim_{x o 1} rac{e^{x + 1 - 1} - e}{x - 1} = \lim_{x o 1} e \cdot rac{e^{x - 1} - 1}{x - 1} o e$$

#vynasobeni_vhodnou_jednickou

$$\lim_{x o 0} \ln(1+2x) = \lim_{x o 0} \ln(1+2x) \cdot rac{2x}{2x} = \lim_{x o 0} rac{\ln(1+2x)}{2x} 2x = +\infty$$

#vyuziti_exponencialy

$$\lim_{n o\infty}\left(1+rac{2}{x}
ight)^{rac{1}{x^2}}=\lim_{n o\infty}e^{rac{1}{x^2}\cdot\ln\left(1+rac{2}{x}
ight)}, exponent:\lim_{n o\infty}rac{1}{x^2}\cdot\ln\left(1+rac{2}{x}
ight)\dots0 o e^0$$

 to jde kvůli tomu, že exponenciála je spojitá funkce, tak se můžeme dívat jen na to, jak se chová exponent.

#goniometricky_funkce

- následující vztahy jsou odvozeny ze součtových vzorců.
- $\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$
- $\cos(x) = -\sin\left(x \frac{\pi}{2}\right)$

•
$$\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$$

•
$$\sin(x) = -\cos\left(x + \frac{\pi}{2}\right)$$

•
$$\cos(x) = \cos(-x)$$

•
$$\sin(-x) = -\sin(x)$$

•
$$\lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}$$

$$\lim_{x o rac{\pi}{2}} rac{1-\sin x}{\left(rac{\pi}{2}-x
ight)^2} = \lim_{x o rac{\pi}{2}} rac{1-\sin x}{\left(rac{\pi}{2}-x
ight)^2} \cdot rac{1+\sin x}{1+\sin x} = \lim_{x o rac{\pi}{2}} rac{\cos^2(x)}{\left(rac{\pi}{2}-x
ight)^2} \cdot rac{1}{1+\sin x}$$

$$\lim_{x o rac{\pi}{2}}rac{\cos^2\left(x+rac{\pi}{2}-rac{\pi}{2}
ight)}{\left(rac{\pi}{2}-x
ight)^2}\cdotrac{1}{1+\sin x}=\lim_{x o rac{\pi}{2}}\left(rac{\sin\left(rac{\pi}{2}-x
ight)}{\left(rac{\pi}{2}-x
ight)}
ight)^2\cdotrac{1}{1+\sin x}=rac{1}{2}$$

- sevření gon. funkcí, omezit $\sin(x)/\cos(x)$ jejich oborem hodnot. $\to -1 \le \cos/\sin \le 1$

$$\lim_{n o\infty}rac{n}{2+\sin(n)} \ rac{n}{2+1} o\infty \leq rac{n}{2+\sin(n)} \leq rac{n}{2-1} o\infty$$

zde je důležité ukázat platnost použitých nerovností.

#credits

moje psychické zdraví při počítání limit a techání → @Jace