







CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture: Linear regression



CS 422 vgurbani@iit.edu



- A statistical process for estimating the relationship among variables.
  - The response variable (dependent variable, Y)
  - The predictor(s) variable(s) (independent variable(s), X)
- Used widely for predicting and forecasting.
- We will study method of least squares estimation technique.
  - Many other estimation techniques.

• The simple linear regression equation:  $Y \approx \beta_0 + \beta_1 X$ 

• The simple linear regression equation:  $Y \approx \beta_0 + \beta_1 X$ 

$$Y \approx \beta_0 + \beta_1 X$$
  
Intercept Slope

- $\beta_0$  and  $\beta_1$  are also called model *coefficients* or *parameters*, or *weights*.
- We use the dataset we have to produce estimates of  $\hat{\beta}_0$   $\hat{\beta}_1$  for prediction on new values of X:  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

- Because  $\beta_0$  and  $\beta_1$  are *estimates*, there will some error in the observed response ( $\hat{y_i}$ ) and predicted response ( $\hat{y_i}$ ).
  - This error (hopefully small) is called the *residual*, (ε), or  $\epsilon_i = y_i \hat{y}_i = (\beta_0 + \beta_1 x_i) (\hat{\beta}_0 + \hat{\beta}_1 x_i) \ \forall i$
  - $\hat{\beta}_0$   $\hat{\beta}_1$  are chosen to minimize the sum of residuals (RSS, or residual sum of squares):

$$RSS = \epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_n^2$$

- In other words, we set up the following optimization problem:  $\min_{\hat{\beta}_0,\hat{\beta}_1} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$ .

• Turns out that  $\hat{\beta}_1$  can be derived analytically from the RSS using some calculus.

$$\hat{\beta}_{1} = \frac{\sum (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

- Once you have  $\hat{\beta}_0$   $\hat{\beta}_1$ , prediction follows the linear equation just derived:  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_{1}x$  for values of X.
- In reality, the relationship is shown below, where  $\varepsilon$  is the catch-all (error) for what is missed by the model:  $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon$

Geometric interpretation



Geometric interpretation



Geometric interpretation



#### Geometric interpretation



Which is the best regression line?

The one that minimizes the sum of squared residuals.



 So far, we have seen uni-variate regression with the following equation:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 Multi-variate regression can be generalized by the following equation:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \varepsilon$$

## Linear regression: Example

 Empirical example: Advertising data consisting of 200x4 data frame.

| •  | <b>TV</b> \$ | radio <sup>‡</sup> | newspaper <sup>‡</sup> | sales ‡ |
|----|--------------|--------------------|------------------------|---------|
| 1  | 230.1        | 37.8               | 69.2                   | 22.1    |
| 2  | 44.5         | 39.3               | 45.1                   | 10.4    |
| 3  | 17.2         | 45.9               | 69.3                   | 9.3     |
| 4  | 151.5        | 41.3               | 58.5                   | 18.5    |
| 5  | 180.8        | 10.8               | 58.4                   | 12.9    |
| 6  | 8.7          | 48.9               | 75.0                   | 7.2     |
| 7  | 57.5         | 32.8               | 23.5                   | 11.8    |
| 8  | 120.2        | 19.6               | 11.6                   | 13.2    |
| 9  | 8.6          | 2.1                | 1.0                    | 4.8     |
| 10 | 199.8        | 2.6                | 21.2                   | 10.6    |

sales is the response variable (Y) (units are in thousands of some product)

TV, radio and newspaper are the predictors (X) (units in thousands of \$)

## Linear regression: Example

 Let's check the effect of radio advertising on the sales through linear regression:

```
> model.radio <- lm(sales ~ radio, data=df)
> summary(model.radio)
Call:
lm(formula = sales ~ radio, data = df)
Residuals:
    Min
              10 Median
                                30
                                        Max
-15.7305 -2.1324
                   0.7707 2.7775
                                     8.1810
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.31164
                       0.56290 16.542 <2e-16 ***
                                9.921
                                       <2e-16 ***
radio
            0.20250
                       0.02041
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.275 on 198 degrees of freedom
                              Adjusted R-squared: 0.3287
Multiple R-squared: 0.332,
F-statistic: 98.42 on 1 and 198 DF, p-value: < 2.2e-16
```

• Regression equation: sales =  $\beta_0$  +  $\beta_1$ \*radio = 9.312 + 0.203\*radio