

Welcome to The Hardware Lab!

Fall 2019

Lab 6: Peripheral Components:

VGA, Mouse, and Dual FPGA

Prof. Chun-Yi Lee

Department of Computer Science
National Tsing Hua University

Agenda

- Lab 6 Outline
- Lab 6 Basic Questions
- Lab 6 Advanced Questions

Lab 6 Outline

- Basic questions (2%)
 - Individual assignment
 - Due on 11/28/2018. Demonstration on your FPGA board (In class)
 - Only demonstration is necessary. Nothing to submit.
- Advanced questions (5%)
 - Group assignment
 - ILMS submission due on 12/12/2018. 23:59:59.
 - Demonstration on your FPGA board (In class)
 - Assignment submission (Submit to ILMS)
 - Source codes and testbenches
 - Lab report in PDF

Lab 6 Rules

- You can use ANY modeling techniques
- If not specifically mentioned, we assume the following SPEC
 - CLK is positive edge triggered
 - Synchronously reset the Flip-Flops when **RESET == 1'b0**

Lab 6 Submission Requirements

- Source codes and testbenches
 - Please follow the templates EXACTLY
 - We will test your codes by TAs' testbenches
- Lab 6 report
 - Please submit your report in a single PDF file
 - Please draw the block diagrams and state transition diagrams of your designs
 - Please explain your designs in detail
 - Please list the contributions of each team member clearly
 - Please explain how you test your design
 - What you have learned from Lab 6

Agenda

- Lab 6 Outline
- Lab 6 Basic Questions
- Lab 6 Advanced Questions

Basic Questions

- Individual assignment
- FPGA demonstration (due on 11/28/2018. In class.)
 - VGA sample code
 - Mouse sample code
- Demonstrate your work by FPGA

Basic FPGA Demonstration 1

■ VGA sample codes

Please implement the keyboard sample codes 1 & 2 released on ILMS

■ Mouse sample codes

 Please implement the mouse sample code released on ILMS

Agenda

- Lab 6 Outline
- Lab 6 Basic Questions
- Lab 6 Advanced Questions

KEEP
CALM
AND
AND
DO YOUR
HOMEWORK

Advanced Questions

- Group assignment
- FPGA demonstration (due on 12/12/2018. In class.)
 - Mixing keyboard and VGA together
 - Dual FPGA communication

Mixing Keyboard and VGA

- Use the keyboard to control your VGA display
- Control the image displayed on the screen according to the following commands
- If you press P right after Reset, the image starts scrolling up

1	Image scrolling up	Р	Pause scrolling / Start scrolling
•	Image scrolling down	V	Flip vertically
+	Image scrolling left	Н	Flip horizontally
→	Image scrolling right	Mid-Button	Reset 1. Stop scrolling (Pause) 2. Image sets back to origin (No flip)

Dual FPGA Communication Requirements

- Please design a simple FPGA-to-FPGA communication protocol
- The protocol is required to fulfill the following requirements:
 - Use the Handshaking protocol described below to send a number from a Master FPGA to a Slave FPGA
 - [Master -> Slave] Request
 - [Slave -> Master] ACK
 - [Master -> Slave] Send data (number)
 - Your design should be demonstrable in an observable speed so that TAs can know whether your design is correct or not
 - Your design should be stable and should avoid signal loss.

Dual FPGA Communication Data Representation

- For the Master FPGA, please use switches to represent numbers in one-hot form
- For the Slave FPGA, please display the numbers on your 7-segment displays
- Please illuminate LED[0] for at least 1 second when FPGA receive a request or an ACK
- Below are input and the corresponding 7-segment display

Dual FPGA Communication Button Control

- The UP button is for reset, and the MIDDLE button is for sending request
- The communication starts only after the send request button on Master FPGA is pressed
- When the Master FPGA resets, it stop communicate with the Slave FPGA until the next send request button is pressed
- When the **Slave FPGA** resets, the 7-segment display 0 until next request
- The reset action of the two FPGA is independent of each other

Dual FPGA Communication Communication Process

The whole communicate process is designed as below:

The display on the Slave FPGA should be hold until the data of next request is received.

