Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра информатики

Отчет по лабораторной работе №4

Решение систем нелинейных уравнений

Выполнил: студент гр. 953506 Рябый Д.Н.

Руководитель: доцент Анисимов В. Я.

Содержание

Цель выполнения задания	2
Краткие теоретические сведения	3
Программная реализация	7
Выводы	9

Цель задания: изучить численное решение систем нелинейных уравнений методами простых итераций и Ньютона. Провести отделение решений, построить и запрограммировать алгоритмы методов, численно решить тестовое задание, сравнить трудоемкость методов.

Краткие теоретические сведения

Краткие теоретические сведения. Пусть дана система нелинейных уравнений (система не линейна, если хотя бы одно из входящих в нее уравнений не линейно):

$$\begin{cases} f_1(x_1,...,x_n) = 0 \\ f_2(x_1,...,x_n) = 0 \\ \\ f_n(x_1,...,x_n) = 0 \end{cases}$$

Мы можем записать систему в более компактной векторной форме

$$f(x) = 0,$$
 (4.1)
где $f = (f, ..., f), x = (x, ..., x)^T.$

Для решения системы (4.1) иногда можно применить метод последовательного исключения неизвестных, который приводит решение системы к решению одного уравнения с одним неизвестным. Однако в подавляющем большинстве случаев систему уравнений (4.1) решают итерационными методами. Для решения системы (4.1) существует набор методов, из которых рассмотрим простейшие методы: метод простых итераций, базирующийся на принципе сжимающих отображений и метод Ньютона (многомерный аналог метода касательных).

Метод простых итераций. Чтобы воспользоваться методом простых итераций, необходимо предварительно привести систему к следующему виду:

$$\begin{cases} x_1 = \varphi_1(x_1, ..., x_n) \\ x_2 = \varphi_2(x_1, ..., x_n) \\ ... \\ x_n = \varphi_{n1}(x_1, ..., x_n) \end{cases}$$

Или в векторной форме

$$\bar{x} = \varphi(\bar{x}) \tag{4.2}$$

где $\vec{\varphi} = (\varphi_1, \varphi_2, \dots, \varphi_n).$

Исходя из некоторого начального приближения $\overset{-0}{x}$, построим итерационную последовательность точек

$$\bar{x}^{-k} = \varphi(\bar{x}^{-k-1}), k=1,2,....$$

Пусть точка $\overset{-0}{x}$ есть некоторое начальное приближение к решению. Рассмотрим δ -окрестность $U_{\delta}(\overset{-}{x})$ этой точки. В силу принципа сжимающих отображений итерационная последовательность

$$\bar{x}^{k} = \varphi(\bar{x}^{k-1}), k=1,2,...$$

будет сходиться, если существует число q<1 такое, что

выполнено условие:

$$\|\varphi(\bar{x}^{1}) - \varphi(\bar{x}^{2})\| \le q \|\bar{x}^{1} - \bar{x}^{2}\|, \quad \forall \bar{x}^{1}, \bar{x}^{2} \in U_{\delta}(\bar{x}^{0}),$$
 (4.3)

называемое условием сжатия для отображения ф. В частности, это условие всегда выполняется, если векторная функция ф непрерывно дифференцируема и норма матрицы производных функции ф удовлетворяет неравенству:

$$\left\| \frac{\partial \varphi}{\partial x} (\bar{x}) \right\| \le q$$

во всех точках x из δ -окрестности $U_{\delta}(x)$ точки x.

Следующая теорема дает условие сходимости и оценку скорости сходимости метода простых итераций.

Теорема. Пусть отображение φ является сжатием в $U_{\delta}(\overline{x^0})$ и пусть

$$\|\varphi(x^{-0}) - x^{-0}\| < \delta(1-q).$$

Тогда итерационная последовательность:

$$x^{-k} = \varphi(x^{-k-1})$$

с начальной точкой $\stackrel{-0}{X}$, сходится к решению $\stackrel{-*}{X}$ системы (1). При этом справедлива следующая оценка погрешности:

$$\left\| x^{-k} - x^{-*} \right\| \le \frac{q^k}{1-q} \left\| \varphi(x^{-0}) - x^{-0} \right\|.$$

Отметим, что начальное приближение x выбирают экспериментально. (Например, на основе грубого графического решения системы, если порядок системы не высок. По точкам строят график первого уравнения, потом второго и ищут приблизительно точку их пересечения).

Метод Ньютона.

Пусть дана система нелинейных уравнений:

$$\begin{cases} f_1(x_1,...,x_n) = 0 \\ f_2(x_1,...,x_n) = 0 \\ \\ f_n(x_1,...,x_n) = 0 \end{cases}$$

Запишем ее в векторной форме:

$$f(x) = 0 \tag{4.1}$$

Найдем начальное приближение x^{-0}

Будем предполагать, что векторная функция f непрерывна дифференцируема в некоторой окрестности начального приближения. Вместо системы (4.1) будем искать решение соответствующей ей линеаризованной системы

$$f(\bar{x}^0) + \frac{\partial f}{\partial x}(\bar{x}^0)(\bar{x} - \bar{x}^0) = 0 \Rightarrow f(\bar{x}^0) + J(\bar{x}^0)(\bar{x} - \bar{x}^0) = 0$$

где через $J(x^{-0})$ обозначена для удобства записи матрица производных векторной функции f в точке x^{-0} (матрица Якоби системы (4.1) в этой точке).

При этом при применении метода Ньютона предполагается, что $\det J(x^{-0}) \neq 0$ в окрестности точки x^{-0} .

Тогда из линеаризованной системы, которая линейна относительно переменных x, можно найти первое приближение

$$\bar{x}^{k} = \bar{x}^{k-1} - J^{-1}(\bar{x}^{k-1})f(\bar{x}^{k-1}), k = 1,...$$

Рассматривая линеаризованную систему в точках при k=1,2,.... , найдем к-ое приближение

$$\bar{x}^{-k} = \bar{x}^{-k-1} - J^{-1}(\bar{x}^{-k-1}) f(\bar{x}^{-k-1}), k = 1,...$$

Построенная таким способом рекуррентная последовательность Ньютона сходится при определенных дополнительных условиях к решению системы (4.1). Легко видеть, что рассматриваемый метод совпадает с методом касательных в случае n=1, т.е. является многомерным вариантом метода касательных.

На практике обратную матрицу не считают, а на каждом шаге решают

На практике обратную матрицу не считают, а на каждом шаге решают линеаризованную систему:

$$f(\bar{x}^{-k-1}) + J(\bar{x}^{-k-1})(\bar{x} - \bar{x}^{-k-1}) = 0 \Rightarrow \bar{x} = \bar{x}^{-k}$$

Теорема. При сделанных выше предположениях, последовательность

Ньютона сходится к решению системы (4.1), если начальное приближение выбрано достаточно близко к решению.

Отметим в заключение, что метод Ньютона сходится достаточно быстро (скорость сходимости квадратичная), если начальное приближение выбрано удачно. На практике итерационный процесс заканчивают, когда норма разности двух последовательных приближений меньше заданной точности вычисления решения.

Программная реализацияВариант 4

ЗАДАНИЕ. Решить систему нелинейных уравнений:

$$tg(xy + m) = x$$

 $ax^2 + 2y^2 = 1$, где x>0, y>0,

с точностью до 0,0001 методами простых итераций и Ньютона, принимая для номера варианта k значения параметров а и m из таблицы:

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14
m	0,0	0,1	0,1	0,2	0,2	0,3	0,3	0,4	0,4	0,1	0,2	0,3	0,2	0,2
a	0,5	0,6	0,7	0,8	0,9	1,0	0,5	0,6	0,7	0,8	0,9	1,0	0,7	0,5

Начальные приближения найти графически. Сравнить скорость сходимости методов.

```
import numpy as np
import sympy as sp
from sympy.plotting import plot import math
 x, y, z = sp.symbols('x y z')
m = 0.2
a = 0.8
 f = []
f.append(lambda _x, _y : math.tan(_x*_y+m) - _x)
f.append(lambda _x, _y : a*_x**2 + 2*_y**2 - 1)
g = []
g.append(lambda x, y: math.tan(x*y + m))
g.append(lambda x, y: math.sqrt(0.5*(1 - a*x**2)))
def simple_iterations(vec, entry_x, entry_y, accuracy):
    size = len(vec)
    counter = 0
       counter = 0

_X_ = np.array([entry_x, entry_y])

_x_temp_ = _X_ + np.array([10*accuracy, 10*accuracy])

while np.linalg.norm(_X_ - _x_temp_) > accuracy:
              _x_temp_ = _X_
_X_ = np.array([vec[i](_X_[0], _X_[1]) for i in range(size)])
        counter += 1
return _X_, counter
def calculate_jacobian(jacobian, X):
    size = len(jacobian)
    res_jac = []
    for i in range(size):
        grad = []
        for j in range(size):
            grad.append(jacobian[i][j](X[0], X[1]))
    res_iac_angend(jacob)
              res_jac.append(grad)
return res_jac
def calculate_vect_func(vec, X):
    size = len(vec)
    res = []
    for func in vec:
       res.append(func(X[0], X[1]))
    return res
 def newton(entry_x, entry_y, accuracy):
        jacobian = [
    [lambda x, y : y/(math.cos(x*y+0.2))**2 - 1, lambda x, y : x/(math.cos(x*y+0.2))**2],
    [lambda x, y : 1.8*x, lambda x, y : 4*y]
        vect_func = f
counter = 0
        counter = 0

_X_ = np.array([entry_x, entry_y])

_x_temp_ = _X_ + np.array([10*accuracy, 10*accuracy])

while np.linalg.norm(_X_ - _x_temp_) > accuracy:
              _x_temp_ = _X_

_x_temp_ = _X_

_X_ = _x_ - (np.linalg.inv(calculate_jacobian(jacobian, _X_))@calculate_vect_func(vect_func, _X_))

counter += 1
        return _X_, counter
 #0.5, 0.5 — начальное приближение, место старта print(simple_iterations(g, 0.5, 0.5, 1e-5)) print(newton(0.5, 0.5, 1e-5))
 p1.show()
```


Выводы

Таким образом, в ходе выполнения лабораторной работы были применены метод простых итераций и метод Ньютона для решения систем нелинейных уравнений, составлены алгоритмы и созданы реализации соответствующих программ на языке Python для решения поставленной задачи.