Mecânica Quântica Avançada Lista 2

Lucas Froguel IFT

List of Exercises

Exercise 1 (6.5.1 - Independence of the tensor product from the choice of basis). Verify that the definition (6.3) of the tensor product of two vectors is independent of the choice of basis in \mathcal{H}_1 and \mathcal{H}_2 .

Answer. Let $|n'\rangle$ and $|m'\rangle$ be two other basis of the Hilbert spaces one and two, respectively. Then, it is true that

$$|n\rangle = \sum a_{n'} |n'\rangle |m\rangle = \sum b_{m'} |m'\rangle$$
(1)

Thus, we can write

$$|\varphi\rangle \otimes |\chi\rangle = \sum_{n,m} c_n d_m |n\rangle \otimes |m\rangle$$

$$= \sum_{n,m} c_n d_m \left(\sum_{n'} a_{n'} |n'\rangle \right) \otimes \left(\sum_{m'} b_{m'} |m'\rangle \right)$$

$$= \sum_{n',m'} a_{n'} b_{m'} \left(\sum_{n} c_n \right) \left(\sum_{m} d_m \right) |n'\rangle \otimes |m'\rangle$$

$$= \sum_{n',m'} e_{n'} f_{m'} |n'\rangle \otimes |m'\rangle$$

This shows that the tensor product does not depend on the choice of basis.

Exercise 2 (2 - Representação matricial de produtos tensoriais). Calculate the tensor products of two-level systems.

Answer. We can calculate the tensor products of $|+\rangle$ and $|-\rangle$ as follows:

$$|+\rangle \otimes |-\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
$$0 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$|-\rangle \otimes |+\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \begin{pmatrix} 1 \\ 0 \\ 1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$|-\rangle \otimes |-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \\ 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Now for the three dimension qubits, we will write the answers directly:

$$|+++\rangle = \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \quad |++-\rangle = \begin{bmatrix} 0\\1\\0\\0\\0\\0\\0\\0 \end{bmatrix}$$

$$|+-+\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \quad |+--\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$$

$$|--++\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \quad |---\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$$

Exercise 3 (6.5.2). Write down explicitly the 4×4 matrix $A\otimes B$, the tensor product of the 2×2 matrices A and B:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \tag{2}$$

Answer. It is very easy do perform this calculation:

$$A \otimes B = \begin{pmatrix} a\alpha & a\beta & b\alpha & b\beta \\ a\gamma & a\delta & b\gamma & b\delta \\ c\alpha & c\beta & d\alpha & d\beta \\ c\gamma & c\delta & d\gamma & d\delta \end{pmatrix}.$$

$$(3)$$

We just multiply each element of the first matrix by the whole second matrix.

Exercise 4 (6.5.3 - Properties of state operators). Part 1. Show that $\rho_{ii} \geq 0$, $\rho_{jj} \geq 0$, and $\det A \geq 0$, from which $|\rho_{ij}|^2 \leq \rho_{ii}\rho_{jj}$. Also deduce that if $\rho_{ii} = 0$, then $\rho_{ij} = \rho_{ji}^* = 0$. Answer. We can always write

$$\rho = \sum a_n |\phi_n\rangle \langle \phi_n| \tag{4}$$

for some states $|\phi_n\rangle$ and $a_n\geq 0$. Thus, the diagonal matrix elements are

$$\rho_{ii} = \langle \phi_i | \left(\sum a_n | \phi_n \rangle \langle \phi_n | \right) | \phi_i \rangle$$
$$= a_i$$

Hence, $\rho_{ii} \geq 0$. We also note that

$$\det A = \rho_{ii}\rho_{jj} - |\rho_{ij}|^2 \tag{5}$$

where we used the fact that A is hermitian. This implies that

$$\det A \ge 0 \iff |\rho_{ij}|^2 \le \rho_{ii}\rho_{jj} \tag{6}$$

Using this inequality, if $\rho_i i = 0$, then

$$0 \le \rho_{ij}\rho_{ji} \le 0 \tag{7}$$

Obviously, $\rho_{ij} = 0$ or $\rho_{ji} = 0$, but is does not matter, because they are the complex conjugate of each other, so if one is zero, the other is zero as well.

Part 2. Show that if there exists a maximal test giving 100% probability for the quantum state described by a state operator ρ , then this state is a pure state. Also show that if ρ describes a pure state, and if it can be written as

$$\rho = \lambda \rho' + (1 - \lambda)\rho'', 0 \le \lambda \le 1 \tag{8}$$

then $\rho = \rho' = \rho''$. Hint: first demonstrate that if ρ' and ρ'' are generic state operators, then ρ is a state operator. The state operators form a convex subset of Hermitian operators. **Answer.**