Groupwork 5

Cisco J. Hadden

Seth R. Lupo Emmanuel Flores Abhi Mummaneni

October 25, 2024

Problem 1 Let X be a topological space, D a dense subset of X, and Y be a Hausdorff topological space. Suppose f and g are two continuous functions from X to Y such that f(x) = g(x) for all $x \in D$. Prove that f(x) = g(x) for all $x \in X$.

Proof 1 Let $f: X \to Y$ and $g: X \to Y$ be two continuous functions, where X is a topological space and Y is a Hausdorff topological space, and let's suppose that f(x) = g(x) for all $x \in D$, where $D \subset X$ is dense.

Let's prove that f(x) = g(x) for all $x \in X$, and let's proceed by contradiction, let's assume that there exists $x \in X$ such that $f(x) \neq g(x)$.

Because Y is Hausdorff, it follows that there exist open sets $U\ni f(x)$ and $V\ni g(x)$ subsets of Y such that

$$U \cap V = \emptyset$$
.

Now, on the other hand, we know that both f and g are continuous, which implies that $f^{-1}(U)$ is open in X, and $g^{-1}(V)$ is open also in X, and even more,

$$x \in f^{-1}(U)$$
 and $x \in g^{-1}(V)$.

Now, let's consider the open set $W=f^{-1}(U)\cap g^{-1}(V)$, it's clear that $x\in W$, thus W is an open set that contains x, i.e., is a neighborhood of x. But D is dense in X which implies that W must contain some point $d\in D$, thus,

$$d \in W \implies d \in f^{-1}(U) \cap g^{-1}(V),$$

thus

$$f(d) \in U$$
 and $f(d) \in U$,

but because $d \in D$ it follows that f(d) = g(d), but this contradicts the fact that $U \cap V = \emptyset$, therefore f(x) = g(x) for all $x \in X$