Machine Learning 03 Tuning a hyperparameter of a decision tree

Claudio Sartori

©Claudio Sartori - Module: Machine Learning - Classification

1 Classification with hyperparameter tuning

1.0.1 aim:

Show classification with different strategies for the tuning and evaluation of the classifier 1. simple **holdout** 2. **holdout with validation** train and validate repeatedly changing a hyperparameter, to find the value giving the best score, then test for the final score 4. **cross validation** on training set, then score on test set 5. **bagging** it is an *ensemble* method made available in scikit-learn

1.0.2 Workflow

- download the data
- drop the useless data
- separe the predicting attributes X from the class attribute y
- split X and y into training and test
- part 1 single run with default parameters
 - initialise an estimator with the chosen model generator
 - fit the estimator with the training part of X
 - show the tree structure
 - part 1.1
 - * predict the y values with the fitted estimator and the train data
 - · compare the predicted values with the true ones and compute the accuracy on the training set
 - part 1.2
 - * predict the y values with the fitted estimator and the test data
 - · compare the predicted values with the true ones and compute the accuracy on the test set
- part 2 multiple runs changing a parameter
 - prepare the structure to hold the accuracy data for the multiple runs
 - repeat for all the values of the parameter
 - * initialise an estimator with the current parameter value
 - * fit the estimator with the training part
 - * predict the class for the test part

- * compute the accuracy and store the value
- find the parameter value for the top accuracy
- part 3 compute accuracy with cross validation
 - prepare the structure to hold the accuracy data for the multiple runs
 - repeat for all the values of the parameter
 - * initialise an estimator with the current parameter value
 - * compute the accuracy with cross validation and store the value
 - find the parameter value for the top accuracy
 - fit the estimator with the entire X
 - show the resulting tree and classification report

The data are already in your folder, use the relative path $./uci_breast_tissue_data/BreastTissue.csv$

Shape of the input data (1599, 12)

Have a quick look to the data. - use the .shape attribute to see the size - use the .head() function to see column names and some data - use the .hist() method for an histogram of the columns - use the .unique method to see the class values

[2]: 0 1 2 3 4	fixed ac	idity vo 7.4 7.8 7.8 11.2 7.4	latile a	0.70 0.88 0.76 0.28 0.70	0. 0. 0.	id resid 00 00 04 56 00	ual su	2.6 2.3 1.9	0.076 0.098 0.092 0.075 0.076	\
4		7.4		0.70	0.	00		1.9	0.076	
	free sul	fur dioxi	de tota	l sulfur	dioxide	density	рН	sulphate	es \	
0	11.0				34.0	0.9978	3.51	0.5	56	
1	25.0				67.0	0.9968	3.20	0.6	88	
2		15	5.0		54.0	0.9970	3.26	0.6	35	
3		17	.0		60.0	0.9980	3.16	0.5	58	
4		11	.0		34.0	0.9978	3.51	0.5	56	
	alcohol	quality								
0	9.4	5								
1	9.8	5								
2	9.8	5								
3	9.8	6								
4	9.4	5								

Use the hist method of the DataFrame to show the histograms of the attributes

NB: a semicolon at the end of a statement suppresses the Out[]

Print the unique class labels (hint: use the unique method of pandas Series

[3 4 5 6 7 8]

Split the data into the predicting values X and the class y Drop also the columns which are not relevant for training a classifier, if any

The method "drop" of dataframes allows to drop either rows or columns - the "axis" parameter chooses between dropping rows (axis=0) or columns (axis=1)

Another quick look to data

[6]:	fixed acidity vo	olatile acidity o	citric acid	residual	sugar	chlorides	\
0	7.4	0.70	0.00		1.9	0.076	
1	7.8	0.88	0.00		2.6	0.098	
2	7.8	0.76	0.04		2.3	0.092	
3	11.2	0.28	0.56		1.9	0.075	
4	7.4	0.70	0.00		1.9	0.076	
	free sulfur dioxi	ide total sulfur	dioxide de	ensity	pH sul	phates \	
0	11	1.0	34.0).9978 3.	51	0.56	
1	25	5.0	67.0).9968 3.	20	0.68	
2	15	5.0	54.0).9970 3.	26	0.65	
3	17	7.0	60.0).9980 3.	16	0.58	
4	11	1.0	34.0).9978 3.	51	0.56	

```
alcohol
     0
             9.4
     1
             9.8
     2
             9.8
     3
             9.8
             9.4
[7]: 0
           5
     1
           5
     2
           5
     3
           6
     4
     Name: quality, dtype: int64
```

1.1 Prepare a simple model selection: holdout method

- Split X and y in train and test
- Show the number of samples in train and test, show the number of features

```
There are 1199 samples in the training dataset
There are 400 samples in the testing dataset
Each sample has 11 features
```

1.2 Part 1

- Initialize an estimator with the required model generator tree.DecisionTreeClassifier(criterion="entropy")
- Fit the estimator on the train data and target

Look at the tree structure - the feature names are used to show the tests in the nodes - they are the column names in the X - the class names - the attribute <code>estimator.classes_</code> contains the array of classes detected in the target; if the classes are numbers they have to be transformed in strings with <code>str()</code> - the dept of the visualization can be limited with the parameter <code>max_depth</code>

```
plt.figure(figsize = (20,20)) tree.plot_tree(estimator , filled=True
, feature_names = X.columns , class_names = str(estimator.classes_)
, rounded = True , proportion = True , max_depth = 1
);
```


1.2.1 Part 1.1

Let's see how it works on training data - predict the target using the fitted estimator on the training data - compute the accuracy on the training set using accuracy_score(<target>,,,,predicted_target) * 100

The accuracy on training set is 100.0%

1.2.2 Part 1.2

That's more significant: how it works on test data - use the fitted estimator to predict using the test features - compute the accuracy and store it on a variable for the final summary - store the maximum depth of the tree, for later use - fitted_max_depth = estimator.tree_.max_depth - store the range of the parameter which will be used for tuning - parameter_values =

range(1,fitted_max_depth+1) - print the accuracy on the test set and the maximum depth of
the tree

```
The accuracy on test set is 55.8%
The maximum depth of the fitted tree is 17
```

1.3 Part 2

Optimising the tree: limit the maximum tree depth. We will use the three way splitting: train, validation, test. For simplicity, since we already splitted in *train* and *test*, we will furtherly split the *train* - split the training set into two parts: **train_t** and **val** - max_depth - pruning the tree cutting the branches which exceed max_depth - the experiment is repeated varying the parameter from 1 to the depth of the unpruned tree - the scores for the various values are collected and plotted

```
There are 899 samples in the training dataset
There are 300 samples in the validation dataset
```

1.3.1 Loop for computing the score varying the hyperparameter

- initialise a list to contain the scores
- loop varying par in parameter_values
 - initialize an estimator with a DecisionTreeClassifier, using par as maximum depth and entropy as criterion
 - fit the estimator on the train_t part of the features and the target
 - predict with the estimator using the validation features
 - compute the score comparing the prediction with the validation target and append it to the end of the list

1.3.2 Plot the results

Plot using the parameter_values and the list of scores

1.3.3 Fit the tree after validation and print summary

- store the parameter value giving the best score with np.argmax(scores)
- initialize an estimator as a DecisionTreeClassifier, using the best parameter value computed above as maximum depth and entropy as criterion
- fit the estimator using the train part
- use the fitted estimator to predict using the test features
- compute the accuracy on the test and store it on a variable for the final summary
- print the accuracy on the test set and the best parameter value

The top accuracy is 56.5%

Obtained with max_depth = 3

1.4 Part 3 - Tuning with Cross Validation

Optimisation of the hyperparameter with **cross validation** (cv suffix in the variable names). Now we will tune the hyperparameter looping on cross validation with the **training set**, then we will fit the estimator on the training set and evaluate the performance on the **test set**

- initialize an empty list for the scores
- loop varying par in parameter_values
 - initialize an estimator with a DecisionTreeClassifier, using par as maximum depth and entropy as criterion
 - compute the score using the estimator on the train part of the features and the target using

- * cross_val_score(estimator, X_train, y_train, scoring='accuracy', cv = 5)
- * the result is list of scores
- compute the average of the scores and append it to the end of the list
- print the scores

 $\begin{bmatrix} 0.5719425034423883, & 0.5719425034423883, & 0.5567881329436533, & 0.5609721472724145, \\ 0.5684801424047305, & 0.5719328293004885, & 0.5426980949754188, & 0.5686105170310605, \\ 0.5669506744322675, & 0.5745110660595276, & 0.5877682351914538, & 0.5794380948559146, \\ 0.581133010110152, & 0.569440387077933, & 0.5794840742673417, & 0.5794453947231194, \\ 0.5853841873757648 \end{bmatrix}$

Plot using the parameter_values and the list of scores

1.4.1 Fit the tree after cross validation and print summary

- store the parameter value giving the best score with np.argmax(scores)
- initialize an estimator as a DecisionTreeClassifier, using the best parameter value computed above as maximum depth and entropy as criterion
- fit the estimator using the train part
- use the fitted estimator to predict using the test features
- compute the accuracy on the test and store it on a variable for the final summary
- print the accuracy on the test set and the best parameter value

The accuracy on test set tuned with cross_validation is 57.8% with depth 11 print(classification_report(y_test, y_predicted))

	precision	recall	f1-score	support
3	0.20	0.25	0.22	4
4	0.15	0.13	0.14	15
5	0.60	0.74	0.66	143
6	0.68	0.53	0.59	179
7	0.45	0.51	0.48	55
8	0.00	0.00	0.00	4
accuracy			0.58	400
macro avg	0.35	0.36	0.35	400
weighted avg	0.59	0.58	0.57	400

- micro: Calculate metrics globally by counting the total true positives, false negatives and false positives.
- macro: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- **weighted**: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall.

print(confusion_matrix(y_test, y_predicted))

```
0
                         0]
        1
            1
        2
            5
                4
                         01
        8 106
              22
                     6
                         07
                         2]
        1 57
               94
                   25
 Γ
        1
            7
               17
                    28
                         21
                         0]]
                1
```

2 4. Tuning with an ensemble method

We will use the **bagging** method, made available by scikit-learn, for documentation see the pdf file provided, or the online documentation. - initialize an empty list for the scores - loop varying par in parameter_values - initialize an estimator with a BaggingClassifier applied to a DecisionTreeClassifier, using par as maximum depth and entropy as criterion (see below the statement) - fit the estimator on the train part - compute the score using the score method of the estimator on the train part of the features and the target, append the score to the end of the list - print the scores

```
estimator_bagging = BaggingClassifier(tree.DecisionTreeClassifier(criterion="entropy", max_depth = par) , max_samples=0.5, max_features=0.5)

[0.5771476230191827, 0.5771476230191827, 0.6288573811509591, 0.6605504587155964, 0.6855713094245204, 0.7147623019182652, 0.7823185988323603, 0.8240200166805671, 0.8432026688907422, 0.8623853211009175, 0.8732276897414513, 0.8974145120934112, 0.9099249374478732, 0.8949124270225187, 0.9032527105921602, 0.9057547956630525, 0.8999165971643036]
```

Plot the scores, as done in the previous cases

2.0.1 Fit the tree after bagging and print summary

- store the parameter value giving the best score with np.argmax(scores)
- initialize an estimator as above, using the best parameter value computed above as maximum depth and entropy as criterion
- fit the estimator using the train part
- use the fitted estimator to predict using the test features
- compute the accuracy on the test and store it on a variable for the final summary
- print the accuracy on the test set and the best parameter value

The accuracy on test set tuned with bagging is 59.8% Obtained with max_depth = 13

Print a summary of the four experiments

		${ t Accuracy}$	Hyperparameter
Simple HoldOut and full tree	:	55.8%	17
HoldOut and tuning on validation	set:	56.5%	3
CrossValidation and tuning	:	57.8%	11
Ensemble Bagging and tuning	:	59.8%	13

The scikit-learn version is 0.21.3.

2.0.2 Suggested exercises

- try other datasets
- try to optimise the parameters "min_impurity_decrease" "min_samples_leaf" and "min_samples_split"