Plane Sweep Stereo Setting: Cameras are not Cameras are cal	Xc = (R t) Xu 3x1
Standard Stereo: For each pixel For each disparity compute match cost	Plane Sweep Stereo: For each depth For each pixel Compute match cost
Intuition: (1) "unproject" a pixel to a hypothesized depth of (2) "reproject" that 3D point back into the other camera (3) compute match score (3) D scene (4) (4) (7) (7) (8) (9) (9) (1) (1) (1) (2) (2) (3) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (5) (6) (7) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1	

1)etails:

Given: K2 KR (RIE) (RIE)

(1) "unproject":

- convert pixels to carmera coards

- move to depth of
- but in morly coards

Given: K2 KR (RIE) (RIE)

- World to carm
- can to pixel

Insight: "unproject-reproject" is a homography!

Strategy: (1) unproject if corners of Ling

(2) reproject into Ring

(3) Fit It to correspondences

(4) Herp L to R using H

(5) Campute NCC

$$\begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v} & \vec{v} & \vec{v} \\
\vec{v} & \vec{v}
\end{bmatrix} = \begin{bmatrix}
\vec{v$$

$$\begin{pmatrix}
\hat{R} & \hat{k} \\
\hat{Q} & \hat{r} \\
\hat{R} & \hat{r}$$

Projective Geometri:

Hanogeneous points (x)

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} x' \\ y' \\ u' \end{bmatrix} \rightarrow \begin{bmatrix} x'' \\ y'' \\ u' \end{bmatrix}$$
normalize

P

Homosereus Lives

[OD]
A pollyt in P2 corresponds to a ray through the origin in R3

A Live in P2 corresponds to a place through the origin in R?

$$\begin{array}{ccc}
7 & \overline{k} = \overline{n} = \begin{pmatrix} \overline{n} \\ b \\ c \end{pmatrix} \\
\times + y = 0 & 1 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 & 2 & 2 \\
1 &$$

HW#3 Y=-X

HW#4 y= -2x+400

Younk on lines; Lives Through points

If Point P is on the L, p.l=0

Conothe Gramany:

if his orthogonal top, p lies in The plane

Algebraic Argument:

$$\frac{a + b + c = 0}{ax + by + cu = 0}$$

Point-Line Duality

