Suchmaschinen

Bachelor Informationsmanagement Modul Digitale Bibliothek (SS 2014)

Dr. Jakob Voß

2014-03-31

Eingangsfrage: Wie funktioniert Google?

Modul Information Retrieval aus dem Internet (2. Semester)

Eingangsfrage: Wie funktioniert Google?

- ► Google kocht auch nur mit Wasser
- Information Retrieval
- Etablierte Konzepte und Verfahren, versteckt hinter Optimierung, Marketing & Desinteresse

Eingangsfrage: Wie funktioniert Google?

http://research.google.com/

- ► Google kocht auch nur mit Wasser, allerdings mit
 - Hochdruckkochtöpfen
 - Meerwasserentsalzunganlagen
 - Schwerwasser-Kernfusionsreaktoren
 - **.**..

Kernbestandteile einer Suchmaschine

- Datenquellen/-bestand
- Index
- Anfragesprache
- Suchoberfläche

Beispiel: GBV-Zentral Index

http://www.gbv.de/wikis/cls/findex.gbv.de

- Suchmaschinenindex aller bibliographischen Daten des GBV
- Über 110 Millionen Datensätze
 - ca. 40 Millionen Datensätze des GBV Gesamtkatalog
 - ca. 43 Millionen Artikeldaten Online Contents
 - ca. 23 Millionen Artikeldaten der Nationallizenzen
 - Weitere Inhalte, z.B. DOAJ
- Serviceangebot der VZG für GBV-Bibliotheken zur Verwendung in Discovery-Interfaces (VuFind u.A.)

Beispiel: Google-Anfragesyntax

https://support.google.com/websearch/answer/136861

- Wortgruppen in Anführungszeichen ("Äpfel und Birnen")
- Oder-Verknüpfung (Äpfel OR Birnen)
- Negation (Äpfel -Birnen)
- Platzhalter (Äpfel und * vergleichen)
- Zahlenbreiche (11...13 Uhr)
- Domain-Beschränkung (site:hs-hannover.de)
- Mit Link auf eine andere Seite (link:hs-hannover.de)
- Ahnliche Seiten, Info und Cache (related:, info:,cache:)

Funktionsweise eine Suche (indexbasiert)

- 1. Interpretation der Anfrage
- 2. Ermittlung & Ranking oder Ergebnisse
- 3. Darstellung der Ergebnisse

Ermittlung & Ranking der Ergebnisse

- Boolesche Algebra und Relationen
- Ähnlichkeitsfunktion

Zwei verschiedene Suchparadigmen

Paradigma

- Vorherrschende Denkweise und Denkmuster
- akzeptierte / nicht hinterfragte Grundannahmen
- ► Mentales Modell¹

Menschliche Sichtweisen ändern sich langsam. Sehr langsam.

¹vgl. @Christensen2012 zu bibliothekarischen mentalen Modellen (OPAC)

vs. Nutzer-Modellen (Discovery-Interface)

Zwei verschiedene Suchparadigmen

- "Datenbank" (z.B. OPAC, Wikidata..)
- "Discovery-Interface" (z.B. VuFind, Google...)

Achtung: Suche \neq Datenbestand!

Zwei verschiedene Suchparadigmen

Boolesche Anfrage	Ranking
präzise Suchanfrage in spezieller Syntax	beliebige, einfache Suchanfragen
Erlernen notwendig	intuitiv benutzbar
exakte Treffer	möglichst passende Treffer
geringe Fehlertoleranz ("0 Treffer")	fehlertolerant aber falsch-positive
Treffer unsortiert oder nach klarem Kriterium	Sortiert nach "Relevanz"
Szenario: "bekannte" Dokumente finden	Szenario: Dokumente "entdecken"
Mathematik sichtbar (Boolesche Algebra)	Mathematik versteht (Vektorraum)

Kernbestandteile einer Suchmaschine

- Datenquellen/-bestand
- Index
- Anfragesprache
- Suchoberfläche

Siehe dazu auch die Einheiten zur Aggregation von Metadaten und zu Crawling & Scraping.

Arten von Suchmaschinen (nach Datenbestand & Index)

- Indexbasierte Suchmaschine
- Föderierte Suchmaschine
- Metasuchmaschine

Kernbestandteile einer Suchmaschine

- Datenquellen/-bestand
- Index
- Anfragesprache
- Suchoberfläche

Index

- Erstellung aus dem Datenbestand (Dokumenten)
 - Manuelle Erstellung von Metadaten (siehe Einheit zu Tagging & Erschließung)
 - Automatische Indexierung
- Speicherung in Indexstrukturen zur schnellen Abfrage

Indexarten

Volltextindex Verarbeitung natürlicher Sprache Feldbasierter Index vorhandene Daten (z.B. Jahreszahl) Objekt-Index Datenmodell (z.B. Bilder, Koordinaten...)

Ein gesamter Suchindex enthält meist verschiedene Teilindizes.

Beispiel Volltextindexierung

- ▶ Worthäufigkeiten und inverse Dokumentenhäufigkeit
 - ▶ tf Wort häufig im Text: relevant für Text
 - ▶ idf Wort häufig in Texten: wenig relevant
- Verbesserung durch Textlinguistische Verfahren: Natural Language Processing (NLP)
 - ► Flexion ("Äpfel" ⇒ "Apfel")
 - Analyse von Dokument- und Satzstruktur etc.
 - Named-Entity Recognition

Aufbau eines Index

- Invertierte Datei
- Beispiel: Indexansicht bei PSI (GBV-Kataloge) http://gso.gbv.de/DB=2.1/PPNSET?PPN= 640209335&PRS=PP%7F

Beispiel: GBV-Zentral Index

http://www.gbv.de/wikis/cls/findex.gbv.de

- Basierend auf der Suchmaschinen-Software Solr
- Läuft als "Cloud" auf mehreren Rechnern
- Konfiguration siehe https://github.com/gbv/findex-config/blob/master/ SolrCloud/solrmarc_config/VZG_index.properties

Ubung

Datensatz an der HS Hannover (ISIL DE-960), z.B. Thomas S. Kuhn's "Die Struktur wissenschaftlicher Revolutionen"

- Im OPAC http://opac.tib.uni-hannover.de/DB=4/
- ▶ In VuFind https://katalog.bib.hs-hannover.de/
- MARC-Datensatz (per unAPI oder VuFind-Internformat-Ansicht)
- Analyse der Solr-Konfiguration (siehe findex-config)
- Eingrenzung Suche nach Autor und Publikationsdatum

Rankingverfahren

- Vektorraummodell
- ▶ tf-idf
- PageRank (Links zwischen Dokumenten)
- **.**..

Möglichkeiten zur Beeinflussung des Rankings

- Indexanreicherung (Strategie SEO)
- Anfrageexpansion (Strategie Werbung)

Möglichkeiten zur Beinflussing des Rankings

- Möglichst viele verschiedene Dokumenteigenschaften
 - ▶ Inhalt, Herkunft, Bewertung, ...
 - Reichhaltige Metadaten und Volltexte
- Möglichst verschiedene Eigenschaften der Anfrage
 - Unterschiedliche Interpretationen an spezielle Suchmaschinen
 - Personalisierung (Account, Standort u.v.a.m.)

Google bezieht nach eigenen Angaben mehr als 200 Faktoren ins Ranking ein 2

http://www.google.de/insidesearch/howsearchworks/thestory/

²Siehe "So funktioniert die Suche"

Kernbestandteile einer Suchmaschine

- Datenquellen/-bestand
- ► Index
- Anfragesprache
- Suchoberfläche

Anfragesprache

- Discovery-Interface:Anfrage zum Zusammenklicken und Expandieren
- Datenbank: Boolesche Anfrage

Kombinationen möglich!

Boolesche Anfragen: Beispiele

- ► Operatoren auf Ergebnismennegen (AND, OR, NOT)
- ► Ggf. weitere Verknüpfungen durch Relationen
- Ggf. Sortierung nach Kriterium (ORDER BY)
- Beispiele
 - SQL
 - Suchanfrage im OPAC
 - Wikidata-Query

Beispiel eine Booleschen Anfragesprache: WikiData-Query

- ▶ author (P50): Thomas Kuhn (Q184980) claim[50:184980]
- Komplexere Beispiele siehe http://wdq.wmflabs.org/api_documentation.html

Beispiel: Solr-Suchsyntax

Publikationen von Thomas S. Kuhn seit 1980
author:[Thomas S. Kuhn] AND publishDate:[1980 TO *]

Kernbestandteile einer Suchmaschine

- Datenquellen/-bestand
- ► Index
- Anfragesprache
- Suchoberfläche

Suchoberfläche

STUFFTHATHAPPENS.COM BY ERIC BURKE

Suchoberfläche

- Prinzipiell freie Gestaltung
 - Sucheingabe
 - Präsentation von Ergebnissen
- Usability durch User Experience (UX)
- "So einfach wie möglich, so kompliziert wie nötig"
- Nutzertests!

Suchoberfläche: Facettierung/Drill-Down

- Prinzipiell gute Idee
 - wenn die Datengrundlage es hergibt
 - wenn es richtig umgesetzt wird

Beispiel: VuFind-Prototyp der UB Magdeburg

http://ubfind.ovgu.de/

Suchmaschinen-Software

- Komponenten für einzelne Bestandteile
 - Crawler
 - Datenintegration/aggregation
 - Suchindex
 - Discovery-Interface

Suchmaschinen-Software

Lucene Suchindex
Solr Server und HTTP-API für Lucene

ElasticSearch Alternativer Server für Lucene, etwas einfacher
VuFind Solr-Index-Suchoberfläche für Bibliotheken
Blacklight Alternatives Solr-Discovery-Interface für Bibliotheken
YaCy P2P-Suchmaschine
Beispielanwendung http://sciencenet.kit.edu/

Literatur & Quellen

Vergleich der Suchparadigmen frei nach Till Kinstler.

Dirk Lewandowski (Hrsg.): Handbuch Internetsuchmaschinen (bisher drei Ausgaben)