Noisy Overparameterization of Quantum Systems

Matthew Duschenes*, Juan Carrasquilla, Raymond Laflamme University of Waterloo, Institute for Quantum Computing, & Vector Institute

May 18, 2023

IQC Graduate Student Conference

What Are We Able To Do With Current Quantum Systems?

What Are We Able To Do With Current Quantum Systems?

i.e) Unitary compilation, State preparation, with infidelity $\mathcal{L}_{\theta\gamma} \to 0$

$$H_{\theta}^{(t)} = \sum_{i} \theta_{i}^{x(t)} X_{i} + \sum_{i} \theta_{i}^{y(t)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i < j} J_{ij} Z_{i} Z_{j}$$
 (1)

How Do Circuit Depth And Noise Affect Our Capabilities?

How does the amount of noise γ and the evolution depth M of a constrained system affect its classical simulation and optimization, and resulting infidelities

$$\mathcal{L}_{\theta^*\gamma}$$
?

How Do Circuit Depth And Noise Affect Our Capabilities?

How can we leverage approaches from quantum optimal control and learning theory to describe these relationships?

Noisy Optimization

• Haar random state preparation for N=4 qubits, with independent dephasing

(a) Trained Noisy Infidelity, and Tested Infidelity of Noisy Parameters in Noiseless Ansatz

(b) Piecewise Fit of Noise Induced Critical Depth for Infidelity

Noise Induced Critical Depth

Noise induces a critical depth (Fontana et al. PRA 104 (2021))

$$M_{\gamma} \sim \log 1/\gamma$$
 , (2)

meaning the minimum infidelity is linear-quadratic ($1 \le \alpha \le 2$) in noise

$$\mathcal{L}_{\theta^*\gamma|M_{\gamma}} \sim \gamma^{\alpha} , \qquad (3)$$

and parameterized noise channels can therefore *mitigate* approximately

$$\bar{M}_{\gamma} \sim \gamma \log 1/\gamma \quad \text{errors} \ . \tag{4}$$

Is it possible to derive the M, γ scaling of the optimal $\mathcal{L}_{\theta^*\gamma}$ analytically?