Capa de enlace

Álvaro González Sotillo

22 de noviembre de 2018

Índice

1.	Introducción	1
2.	Tramas	2
3.	Control de flujo	2
4.	Acceso al medio	3
5.	Control de errores	4
6.	Corrección de errores	8
7.	Referencias	10

1. Introducción

1.1. La capa de enlace

- Es la capa 2 de la arquitectura OSI.
- Se encarga de conseguir que la comunicación de datos se produzca correctamente a través de un medio físico de transmisión.
- Para lograr que dos dispositivos adyacentes se comuniquen, se necesita un control del intercambio de datos: el control del enlace.
- La capa de enlace proporciona a la capa de Red un servicio de transporte de bits fiable (asegura que los bit se trasmiten correctamente por el medio físico).
- El bloque de datos transmitido se denomina TRAMA.

1.2. Funciones de la capa de enlace

- Sincronización a nivel de trama.
- Control de flujo: las estaciones deben ponerse de acuerdo en el ritmo de trasmisión de datos.
- Control de errores: los enlaces no son perfectos. Hay que controlar que no haya errores en la transmisión.

- Direccionamiento: si hay varios posibles destinos, es necesario identificar a quien va dirigida la trama.
- Gestión del enlace:
 - Inicio de la transmisión
 - Mantenimiento de la transmisión
 - Finalización de la transmisión

1.3. MAC y LLC

- En la arquitectura IEEE 802, el nivel de enlace se divide en dos subcapas:
 - LLC: se encarga de las funciones comunes de la capa independientemente del medio físico usado
 - o Control de errores
 - o Direccionamiento
 - o Sus funciones han sido definidas por el subgrupo 802.2.
 - MAC: se encarga del acceso al medio (gestión del enlace)

2. Tramas

- Una trama es un bloque de bits agrupados que son enviados por la línea.
- El tamaño de la trama depende del tipo de red.
- Agrupar los bits en tramas facilita:
 - la detección y corrección de errores
 - la compartición del medio.
- Una trama se compone de tres partes
 - Información sobre la trama
 - Datos.
 - Redundacia.

3. Control de flujo

- Veremos el control de flujo cuando estudiemos TCP
- Algunos protocolos de nivel 2 lo soportan. No es el caso de Ethernet.

4. Acceso al medio

4.1. Clasificación general

- Medio repartido
 - FDM: multiplexación en frecuencias
 - o Cada vez menos usado: se puede infrautilizar el ancho de banda
 - TDM: multiplexación en tiempo
- Medio compartido
 - Sin colisiones
 - Sondeo
 - o Paso de testigo (Token Bus)
 - Con colisiones
 - CSMA/CD (Ethernet)
 - o CSMA/CA (Wifi)

4.2. FDM

- Se multiplexa el canal por frecuencia
- Cada canal se asigna a un nodo de la red
- Usado en:
 - Red telefónica (analógica)
 - Radio FM/AM
 - DSL

4.3. TDM

- Se multiplexa el canal por tiempo (a la Round Robin)
- Cada canal se asigna a un nodo de la red
- Más común en transmisiones digitales
 - \bullet GSM
 - SONET

4.4. Paso de testigo

- Cada nodo debe esperar a tener el turno de emisión
- El turno se utiliza, y se cede al siguiente por un testigo
 - Un mensaje especial que indica que no se quiere emitir más
 - Y señala el siguiente equipo que emitirá
- Ejemplos:
 - Token Bus

4.5. CSMA/CD

- Carrier-sense multiple access with collision detection
- Multiple access: Cualquiera puede emitir usando el mismo medio
- Carrier-sense: Antes de emitir, se comprueba que nadie más esté emitiendo
- Collision detection:
 - Durante la transmisión, detecto si otro también emite
 - Si se produce una colisión, dejo de emitir
 - Y espero un tiempo aleatorio para volver a intentarlo

media/colision-ethernet-bus.gif

4.6. CSMA/CA

- $\blacksquare \ \ Carrier\text{-}sense \ multiple \ access \ with \ collision \ avoidance$
- Similar a CSMA/CD
- Collision avoidance para evitar los nodos ocultos:
 - Antes de emitir los datos se envía un RTS (request to send)
 - o Es un mensaje pequeño, con poca probalibilidad de colisión
 - Un nodo central recibe los RTS y determina quién recibe un CTS (clear to send)
 - El que recibe el CTS puede enviar sus datos sin problemas

5. Control de errores

- Consiste en enviar algunos bits añadidos a los datos con información que permita detectar o corregir los errores.
- El porcentaje de redundancia se calcula como

$$\frac{bits decontrol}{bits totales} \times 100$$

- Los errores pueden
 - Detectarse
 - Adicionalmente, corregirse

5.1. Errores

- Un único bit
 - Más comunes en transmisión en paralelo
- Ráfagas de bits
 - Una interferencia actúa sobre los medios de transmisión
 - Perturban varios bits seguidos
 - Afectan más a comunicaciones en serie

Figura 1: Los nodos de los extremos están ocultos entre sí, aunque el central detecta a los dos

5.2. Detección de errores

- ECO
 - El receptor envía una copia exacta de la información recibida al emisor.
 - El emisor confirma con otra trama que la información es correcta
- Paridad lineal. Se añade un bit extra, indicando si el número de bits con valor a 1 es par o impar.
 - 100100, con paridad par, se envía como 100100 0
 - 100100, con paridad impar, se envía como 100100 1
 - Problema: ¿Qué pasa si cambia un número par de bits?

5.2.1. Paridad de bloque

- Paridad de bloque. Se distribuyen los datos en una tabla y se calcula paridad por cada línea y columna.
 - Mensaje: 1100101 0110110 1011010 1001111 0111001 1100111 1010000, con paridad par
 - Se envía 1100101 $\bf 0$ 0110110 $\bf 0$ 1011010 $\bf 0$ 1001111 $\bf 1$ 0111001 $\bf 0$ 1100111 $\bf 1$ 1010000 $\bf 0$ 1001000 $\bf 0$

	Datos	Paridad lineal
	1100101	0
	0110110	0
	1011010	0
	1001111	1
	0111001	0
	1100111	1
	1010000	0
Paridad de bloque	1001000	0
	Datos	Paridad lineal
	1100 0 01	0
	0110 1 10	0
	1011 0 10	0
	1001 1 11	1
	0111 0 01	0

	Datos	Paridad lineal
	1100 0 01	0
	$0110\ 1\ 10$	0
	1011 0 10	0
	1001 1 11	1
	$0111\ 0\ 01$	0
	1100 1 11	1
	$1010\ 0\ 00$	0
Paridad de bloque	0001 0 00	0

1100 1 11

1010 0 00

Paridad de bloque 1001 **0** 00

1

- Conclusión:
 - Si falla un bit, puedo arreglarlo
 - Si fallan dos bits, lo detecto
 - Si fallan más,
 - o Puedo no enterarme
 - o Puede parecer que ha fallado solo uno
 - $\circ\,$ Puedo detectar el error

5.3. Actividad

- Calcular la paridad bidimensional del siguiente mensaje:
 - 1001101, 1111010, 1100110, 1110001, 1101001, 1110111, 010111

5.4. Distancia de Hamming

- Cuando se produce un error, cambian algunos bits
- Según la codificación utilizada, no todas las combinaciones de 0s y 1s son posibles
 - Ejemplo: 4B/5B
- La distancia de Hamming de un código es la cantidad de bits que hay que cambiar en una combinación válida para llegar a otra combinación válida
- Cuanto mayor sea la distancia, más robusto es el código frente a errores
 - Si la distancia es d, se pueden detectar errores de hasta d-1 bits.
 - Si la distancia es d, se pueden corregir errores de hasta $\lfloor (d-1)/2 \rfloor$ bits.
- ¿Cuál es la distancia de Hamming de una transmisión con paridad?

5.5. CRC

- Al principio de la comunicación, emisor y receptor acuerdan un Polinomio Generador.
- Al iniciar la transmisión se añaden un número predeterminado de ceros a la información a enviar y se divide utilizando el polinomio generador.
- El receptor realiza nuevamente una división sobre los datos recibidos y si el resto es 0 indica que la trama se ha recibido sin errores.
- Finalmente se descartan los bits añadidos en el transmisor para quedarnos con el mensaje original.

5.5.1. ¿Por qué CRC?

- Hay versiones de CRC para diferentes longitudes de polinomio: CRC16, CRC32,...
- Los errores se producen típicamente a ráfagas
- \blacksquare Para un CRC de n bits
 - ullet Se detectan todos los errores de ráfagas de menos de n bits incorrectos
 - Se detecta una fracción de las ráfagas más largas $(1-2^{-n})$

Longitud de crc	Porcentaje de detección de ráfagas mayores
8	99.609375
16	99.998474
32	99.999999767169

6. Corrección de errores

- La detección de errores es el primer paso
- Una vez detectado:
 - Se puede ignorar (las capas más altas deben arreglar el error)
 - Se puede corregir
- Ethernet no corrige errores, pero veremos algunas técnicas que pueden usar otras capas 2

6.1. Retransmisión

- Es el método de corrección más sencillo.
- Se detecta el error y se pide al emisor que vuelva a enviar la trama.
- Se tienen que memorizar las tramas enviadas hasta la recepción de un ACK que confirme que el envío de información fue exitosa.

6.2. Corrección: Código Hamming

- Codificación que permite la detección y la corrección de un bit
 - Tienen distancia 3
- Se inluyen bits de paridad de la siguiente forma:
 - Los bits de las posiciones $s = 2^{p-1}$ son de paridad: 1, 2, 4, 8...
 - El resto son de datos
 - ullet El bit de la posición s se incluye en el bit de paridad p si la expresión de s en binario tiene a 1 el bit p

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11
p1	X		X		X		X		X		x
p2		X	X			X	X			X	X
p3				X	X	X	X				
p4								X	X	X	X

6.2.1. Clasificación de códigos de Hamming

- La tabla anterior se puede hacer para cualquier longitud
- El ejemplo tiene 11 bits en total, 7 son de datos: Hamming(11,7)
- \blacksquare También es común el Hamming(7,4)

Cuadro 1: Código Hamming(7,4) completo

Datos	Hamming
0000	0000000
1000	1110000
0100	1001100
1100	0111100
0010	0101010
1010	1011010
0110	1100110
1110	0010110
0001	1101001
1001	0011001
0101	0100101
1101	1010101
0011	1000011
1011	0110011
0111	0001111
1111	1111111

6.2.2. Ejemplo Hamming(11,7)

■ Para transmitir 0110101

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11
Datos			0		1	1	0		1	0	1
p1			0		1		0		1		1
p2			0			1	0			0	1
p3					1	1	0				
p4									1	0	1

- Para transmitir 0110101
- Se transmite 10001100101

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11
Datos			0		1	1	0		1	0	1
p1	1		0		1		0		1		1
p2		0	0			1	0			0	1
p3				0	1	1	0				
p4								0	1	0	1
Datos (con paridad):	1	0	0	0	1	1	0	0	1	0	1

6.2.3. Detección de un error con Hamming

■ Se recibe 11001100101

	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7	Paridad
	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11	
Recibida:	1	1	0	0	1	1	0	0	1	0	1	
p1	1		0		1		0		1		1	0
p2		1	0			1	0			0	1	1 (error)
p3				0	1	1	0					0
p4								0	1	0	1	0

■ Hay un error, y se localiza en la posición 0010: s2 (p2)

6.2.4. Ejercicio

- Decide si las siguientes palabras de código Hamming son correctas. Si no son correctas, corrígelas.
 - 10001100101
 - 00100110010
 - 01110111001

6.2.5. ¿Y si hay más de 1 error?

- Su distancia de Hamming es 3, así que no se puede detectar
- En Hamming extendido se añade un bit de paridad adicional
 - Permite detectar errores de dos bits, pero no corregirlos

6.3. Ejercicio

- Calcula el porcentaje de redundancia de:
 - Tramas de 1000 bytes con crc32
 - Tramas de 100 bytes con crc16
 - Hamming (7,4)
 - Hamming (11,7)
 - Hamming (11,7) extendido
 - Paridad lineal: un bit de paridad cada 7 de datos
 - Paridad de bloque: un bit de paridad lineal cada 7 de datos, bloques de 49 bits de datos

7. Referencias

- Formatos:
 - Transparencias
 - PDF

- \blacksquare Creado con:
 - Emacs
 - org-reveal
 - Latex