Turbulence Navier Stokes and Symmetries

Alexandros ALEXAKIS alexakis@phys.ens.fr Dep. Physique ENS Ulm

- Symmetry in fields and in equations
- Symmetries of the Navier Stokes
- Breaking of symmetries

Flow behind a cylinder

Symmetries of Fields

We will say that a field $\mathbf{u}(\mathbf{x},t)$ is invariant under a transformation \mathcal{T} or that it has a \mathcal{T} -symmetry if under the act of the transformation it remains the same:

$$\mathcal{T}[\mathbf{u}] = \mathbf{u}$$

Space translations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x} + \hat{\mathbf{e}}_i \ell, t)$$

Example:

 $\bullet \ \mathbf{u}(\mathbf{x},t) = (0,\sin(z),\cos(y))$

- ullet continuous symmetry in x: $\mathbf{u}(x,y,z)=\mathbf{u}(x+\ell_x,y,z,t)$
- discrete symmetry in $y,z,: \mathbf{u}(x,y,z) = \mathbf{u}(x,y+2n_y\pi,z+2n_z\pi,t)$

Time translations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x},t+T)$$

Example:

- Time periodic flows have discrete symmetries
- Constant in time flows have continuous symmetries

Reflections

$$\mathcal{T}[(u_x(x, y, z, t), u_y(x, y, z, t), u_z(x, y, z, t))] = (-u_x(-x, y, z, t), u_y(-x, y, z, t), u_z(-x, y, z, t))$$

Example:

• $\mathbf{u}(\mathbf{x},t) = (\sin(x)\cos(y), -\cos(x)\sin(y), 0)$

Rotations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathcal{R}\mathbf{u}(\mathcal{R}^{-1}\mathbf{x},t) + \mathbf{c}$$

Where \mathcal{R} is the rotation matrix **Example:**

• $\mathbf{u}(\mathbf{x}, t) = (y, -x, 0)$

Galilean Transformations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x} + \mathbf{c}t,t) + \mathbf{c}$$

Example:

 $\mathbf{u}(\mathbf{x},t) = -x/t$

Scalling Transformations

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \lambda^{\alpha} \mathbf{u}(\lambda \mathbf{x},t)$$

Example:

• $\mathbf{u}(\mathbf{x},t) = (y, -x, 0)(x^2 + y^2)^{\alpha/2 - 1}$

Symmetries of equations

We will say that an equation (e.g. the Navier-Stokes) is invariant under a transformation \mathcal{T} or that it has a \mathcal{T} -symmetry if for any solution $\mathbf{u}(\mathbf{x},t)$ of this equation $\mathcal{T}[\mathbf{u}(\mathbf{x},t)]$ is also a solution.

Note that $\mathbf{u}(\mathbf{x},t)$ does not have to be a symmetric field.

Symmetries of equations

Lemma: If the initial conditions $\mathbf{u}(\mathbf{x},0)$ has one of the spatial symmetries of the Navier-Stokes

$$\mathcal{T}[\mathbf{u}(\mathbf{x},0)] = \mathbf{u}(\mathbf{x},0),$$

then if $\mathbf{u}(\mathbf{x},t)$ remains smooth it retains this symmetry for all times.

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x},t)$$

Proof: If $\mathbf{u}(\mathbf{x},t)$ is a solution then (since \mathcal{T} is one of the symmetries of the Navier-Stokes) $\mathcal{T}[\mathbf{u}(\mathbf{x},t)]$ is also a solution that has the same intitial conditions as $\mathbf{u}(\mathbf{x},t)$ ($\mathcal{T}[\mathbf{u}(\mathbf{x},0)] = \mathbf{u}(\mathbf{x},0)$). Thus either there is non-uniqueness of solutions or

$$\mathcal{T}[\mathbf{u}(\mathbf{x},t)] = \mathbf{u}(\mathbf{x},t).$$

(Non-uniqueness occurs only for non-smooth $\mathbf{u}(\mathbf{x},t)$).

- Space translations: $x' = x + \ell$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}+\ell,t)$ is also a solution."
 - $\partial_x \mathbf{u}(\mathbf{x} + \ell, t) = \frac{\partial x'}{\partial x} \partial_{x'} \mathbf{u}(\mathbf{x}', t) = \partial_{x'} \mathbf{u}(\mathbf{x}', t)$

$$\begin{split} &\partial_t \mathbf{u}(x+\ell,t) + \mathbf{u}(x+\ell,t) \cdot \nabla \mathbf{u}(x+\ell,t) = -\nabla P + \nu \nabla^2 \mathbf{u}(x+\ell,t) + \mathbf{f}(\mathbf{x},t) \\ &\partial_t \mathbf{u}(x',t) + \mathbf{u}(x',t) \cdot \nabla' \mathbf{u}(x',t) = -\nabla' P + \nu \nabla'^2 \mathbf{u}(x',t) + \mathbf{f}(\mathbf{x}'-\ell,t) \end{split}$$

which is the original Navier Stokes (if $\mathbf{f}(\mathbf{x},t) = \mathbf{f}(\mathbf{x}+\ell,t)$)

 $ie,~{f u}(x+\ell,t)$ satisfies the same equations as ${f u}(x,t)$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x},t+T)$ is also a solution."
 - $\partial_t \mathbf{u}(\mathbf{x}, t+T) = \frac{\partial t'}{\partial t} \partial_{t'} \mathbf{u}(\mathbf{x}, t') = \partial_{t'} \mathbf{u}(\mathbf{x}, t')$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathbf{u}(\mathbf{x}-\mathbf{c}t,t)+\mathbf{c}$ is also a solution."

•
$$\partial_t (\mathbf{u}(\mathbf{x} - \mathbf{c}t, t) + \mathbf{c}) = \left(\frac{\partial t'}{\partial t}\right) \partial_{t'} \mathbf{u}(\mathbf{x}', t') + \left(\frac{\partial \mathbf{x}'}{\partial t}\right) \nabla_{\mathbf{x}'} \mathbf{u}(\mathbf{x}', t')$$

- $\partial_t \mathbf{u}(\mathbf{x}', t') = \partial_{t'} \mathbf{u}(\mathbf{x}', t') \mathbf{c} \nabla' \mathbf{u}(\mathbf{x}', t')$
- $\bullet \ (\mathbf{u} + \mathbf{c}) \cdot \nabla (\mathbf{u} + \mathbf{c}) = \mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{c} \cdot \nabla \mathbf{u}$

$$\begin{split} \partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' &= -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f} \\ \partial_t' \mathbf{u}' - \mathbf{c} - \nabla' \mathbf{u} + \mathbf{u} \cdot \nabla' \mathbf{u} + \mathbf{c} - \nabla' \mathbf{u} &= -\nabla' P + \nu \nabla'^2 \mathbf{u} + \mathbf{f} \\ \text{if } \mathbf{f}(\mathbf{x},t) &= \mathbf{f}(\mathbf{x} - \mathbf{c}t,t) \end{split}$$

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\mathcal{R}\mathbf{u}(\mathcal{R}^{-1}\mathbf{x},t)$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}$, $\mathbf{x}' = -\mathbf{x}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $-\mathbf{u}(-\mathbf{x},t)$ is also a solution."

- Space translations: $x' = x + \ell$
- Time translations: t' = t + T
- Galilean transformations: $\mathbf{x}' = \mathbf{x} \mathbf{c}t$, t' = t, $\mathbf{u}' = \mathbf{u} + \mathbf{c}$
- Rotations $\mathbf{u}' = \mathcal{R}\mathbf{u}, \ \mathbf{x}' = \mathcal{R}^{-1}\mathbf{x}$
- Parity (reflections): $\mathbf{u}' = -\mathbf{u}$, $\mathbf{x}' = -\mathbf{x}$
- Scaling $\mathbf{x}' = \mathbf{x}/\lambda$, $t' = t/\lambda^{\alpha}$, $\mathbf{u}' = \lambda^{\beta}\mathbf{u}$
 - "if $\mathbf{u}(\mathbf{x},t)$ is a solution $\lambda^{\beta}\mathbf{u}(\mathbf{x}/\lambda,t/\lambda^{\alpha})$ is also a solution."

$$\partial_t \mathbf{u}' + \mathbf{u}' \cdot \nabla \mathbf{u}' = -\nabla P + \nu \nabla^2 \mathbf{u}' + \mathbf{f}$$
$$\lambda^{\beta - \alpha} \partial_t \mathbf{u} + \lambda^{2\beta - 1} \mathbf{u} \cdot \nabla' \mathbf{u} = -\lambda^{2\beta - 1} \nabla P + \nu \lambda^{\beta - 2} \nabla^2 \mathbf{u} + \mathbf{f}$$

Is a solution if $\beta-\alpha=2\beta-1$ and $2\beta-1=\beta-2$ $\beta=-1$ and $\alpha=2$

In the absence of viscosity there is a scaling symmetry for any β and $\alpha=1-\beta$

- If $\mathbf{u}(\mathbf{x},0)$ has one of the spatial symmetries of the Navier Stokes equations then $\mathbf{u}(\mathbf{x},t)$ will retain this symmetry at all times
- Most of the symmetries of the Navier Stokes equations break down when non-constant forcing is considered
- Most of the symmetries of the Navier Stokes equations break down when non-infinite domain sizes are considered

