Lógica Computacional Tarea Semanal 5

Rubí Rojas Tania Michelle Universidad Nacional Autónoma de México taniarubi@ciencias.unam.mx # cuenta: 315121719

10 de abril de 2019

Sea
$$\varphi = \{ \forall x \forall y \forall z (Pxy \land Pyz \rightarrow Rxz), \forall x \exists y Pxy, \neg \forall x Pxx \}$$

1. Obtener la Forma Normal Prenex de φ .

Solución:

Reescribimos a φ de la siguiente forma:

$$\varphi = \forall x \forall y \forall z (Pxy \land Pyz \rightarrow Rxz) \land \forall x \exists y Pxy \land \neg \forall x Pxx$$

Primero, rectificamos a φ .

$$rec(\varphi) = \forall x \forall y \forall z (Pxy \land Pyz \rightarrow Rxz) \land \forall u \exists v Puv \land \neg \forall w Pww$$
 \alpha -equivalencia

Ahora, usando $rec(\varphi)$ procedemos a encontrar $fnn(\varphi)$.

$$fnn(\varphi) = \forall x \forall y \forall z (\neg (Pxy \land Pyz) \lor Rxz) \land \forall u \exists v Puv \land \exists w \neg Pww$$
eqv. lógicas
$$= \forall x \forall y \forall z ((\neg Pxy \lor \neg Pyz) \lor Rxz) \land \forall u \exists v Puv \land \exists w \neg Pww$$
De Morgan

Finalmente, usando $fnn(\varphi)$, procedemos a encontrar $fnp(\varphi)$.

$$fnp(\varphi) = \forall x \forall y \forall z \forall u \exists v \exists w (\neg (Pxy \land Pyz) \lor Rxz \land Puv \land \neg Pww)$$
 eqv. lógicas

Por lo tanto, la Forma Normal Prenex de φ es

$$fnp(\varphi) = \forall x \forall y \forall z \forall u \exists v \exists w (\neg (Pxy \land Pyz) \lor Rxz \land Puv \land \neg Pww)$$

2. Obtener la Forma Normal de Skolem de φ . Solución: Usando $fnp(\varphi)$, procedemos a encontrar $fns(\varphi)$.

$$\begin{split} fns(\varphi) &= \forall x \forall y \forall z \forall u \exists w (\neg (Pxy \land Pyz) \lor Rxz \land Pufxyzu \land \neg Pww) \\ &= \forall x \forall y \forall z \forall u (\neg (Pxy \land Pyz) \lor Rxz \land Pufxyzu \land \neg Pgxyzugxyzu) \end{split}$$

Por lo tanto, la Forma Normal de Skolem de φ es

$$\forall x \forall y \forall z \forall u (\neg (Pxy \land Pyz) \lor Rxz \land Pufxyzu \land \neg Pgxyzugxyzu)$$