1

2

1

2

3

1

2

3

WHAT IS CLAIMED IS:

1	$1_{f r}$ A transistor for an integrated circuit,
2	comprising:
3	a source region in a substrate;
4	a drain region in the substrate;
5	a charnel region between the source and drain
6	regions, wherein the source and drain regions are separated by
7	a channel length; and
8	a plurality of pocket implants extending into the
9	channel region between the source region and the drain region
10	to cause a reverse short channel effect for the transistor

- 2. The transistor of claim 1, wherein the plurality of pocket implants merge in the channel region.
- 3. The transistor of claim 1, wherein the plurality of pocket implants merge at a midpoint in the channel length in the channel region.
 - 4. The transistor of claim 1, wherein the pocket implants are doped with a dopant of opposite polarity from that used for the source and drain regions.
- 5. The transistor of claim 4, wherein the source and drain regions are n-type, and the pocket implants are p-type.
- 1 6. The transistor of claim 5, wherein the p-type 2 pocket implants are formed with a boron dopant.
- 7. The transistor of claim 6, wherein the pocket implants are further doped with a blanket boron implant.
- 8. The transistor of claim 7, wherein a dosage of the blanket boron implant is about 10^{11} cm⁻².

	y. The clansistor of claim 4, wherein the source
2	and drain regions are a p-type material, and the pocket
3	implants are an n-type material.
1	10. The transistor of claim 9, wherein the n-type
2	pocket implants are formed with a phosphorus dopant.
1	11. The transistor of claim 1, wherein due to the
2	reverse short channel effect, the transistor has a higher
3	punch-through voltage.
1	12. The t ransistor of claim 1, wherein the
2	transistor is a native transistor.
1	13. The transistor of claim 12 where in an
2	enhancement implant is absent from the channel region.
1	14. The transistor of claim 1 wherein the
2	transistor has a channel length about equal to a channel
3	length of a logic transistor in the same substrate.
1	15. The transistor of claim 1 wherein the pocket
2	implants are formed by implantation at an angle.
1	16. A circuit in an integrated circuit, comprising:
2	first and second transistors coupled in series, each
3	of the transistors comprising:
4	a source region in\a substrate;
5	a drain region in the substrate;
6	a channel region between the source and drain
7	regions, wherein the source and drain regions are
8	separated by a channel length; and
9	a plurality of pocket implants extending into
10	the channel region between the source region and the
11	drain region to cause a reverse short channel effect

for the transistor.

15 The method of claim 21, further comprising the step of implanting a pocket implant to improve a punch-through 3 immunity. The method of claim 21 further comprising the 1 26. 2 step of: 3 depositing two pocket implants; and merging the pocket implants together by lateral 4 diffusion, whereby a channel doping profile from the pocket 5 6 implant diffusion exhibits reverse-short-channel effect.

ADD D4>