1 Lecture 0: Intro to Reaction Engineering

1. Reaction engineering

Understanding, modeling, designing, using, controlling, analyzing, improving anything in which chemical reactions happen.

- 1. Reaction engineering applications
 - (a) Traditional
 - i. Industrial chemical/petroleum processes
 - ii. Fine chemical/pharmaceutical processes
 - iii. Emerging, eg biorefinergy, shale gas, http://cistar.us
 - (b) Energy storage, batteries, fuel cells
 - (c) Environmental systems
 - i. Atmosphere, lake, bioreactor (water purification), catalytic convertor
 - (d) Biological systems
 - i. Cell, organ, body
 - (e) Laboratory reactors interrogate, quantify
 - (f) Research improved materials (catalysts), improved processes, understand limitations
 - i. Sabatier plot, https://doi.org/10.1038/nchem.121

2. Course structure

- (a) Quantifying chemical reactions
 - i. Stoichiometry
 - ii. Thermodynamics heat flow, direction, equilibrium
 - iii. Kinetics rates, mechanisms
- (b) Physical/chemical interactions
 - i. Transport, mixing, diffusion resistance, ...
- (c) Chemical reactors
 - i. Ideal 0 and 1-dimensional
 - ii. Non-ideal
 - iii. Non-isothermal
 - iv. Non-steady state
 - v. Multiphase
- (d) Chemical processes (beyond us)
- (e) Markets (beyond us)

2 Stoichiometry and reactions

- 1. Substances
- 2. Amounts
 - (a) mass, moles, volumes
 - (b) flow rates
- 3. compositions
 - (a) amount/total amount
- 4. Reactions and stoichiometric coefficients
 - (a) Advancements $n_j = \sum_i \nu_{ij} \xi_i$
 - (b) Limiting reagents

3 Chemical thermodynamics and equilibria

- 1. Chemical reactions $\sum_{j} \nu_{j} A_{j} = 0$
- 2. Thermodynamic potential differences
 - (a) Standard states
 - (b) Formation reactions
 - (c) Reaction enthalpy $\Delta H^{\circ}(T) = \sum_{j,j} H_{j}^{\circ}(T) = \sum_{j} \nu_{j} H_{f,j}^{\circ}(T)$
 - (d) Reaction entropy $\Delta S^{\circ}(T) = \sum_{i,j} S_{i}^{\circ}(T)$
- 3. Equilibrium-closed system
 - (a) Free energy vs reaction advancement, $G(\xi, T) = \sum_{j} n_{j} \mu_{j} = \sum_{j} (n_{j0} + \nu_{j} \xi) \left(\mu_{j}^{\circ}(T) + RT \ln a(\xi, T) \right)$
 - (b) Equilibrium $(\partial G/\partial \xi)_{T,P} = 0$
 - (c) Equilibrium constants and algebraic solutions
 - (d) Multiple reactions
- 4. Le'Chatlier principle system at equilibrium responds to oppose any perturbation
 - (a) Pressure, composition
 - (b) Temperature: Gibbs-Helmholtz and van't Hoff
- 5. Equilibrium-open system
 - (a) Reaction phase diagrams, see http://pubs.acs.org/doi/abs/10.1021/jacs.6b02651 for an example
 - (b) Electrochemical reactions
- 6. The molecular interpretation
- 7. Non-ideal activities
- 8. Surface adsorption
 - (a) Langmuir

4 Empirical kinetics

- 1. rates
- 2. reactor mass balance
- 3. rate expressions
- 4. rate orders
- 5. apparent orders
- 6. integrated rate expressions
- 7. temperature and Arrhenius expression

```
import numpy as np
                                        #this lets up handles arrays of data
    import matplotlib.pyplot as plt
    from scipy.integrate import odeint, solve_ivp
3
    def dCdt(C,t,k):
         dC_Adt = -k*C[0]*C[1]
                                     \# A + B -> C; r = k CA CB
6
         dC\_Bdt = -k*C[0]*C[1]
         dC_Cdt = k*C[0]*C[1]
8
         dCdt = [dC_Adt,dC_Bdt,dC_Cdt]
         return dCdt
10
11
    # initialize concentrations
12
    C_0 = [1., 1.5, 0.]
13
    # initialize k's
15
16
17
    # Range of time to solve over
18
19
    t = np.arange(0,10,0.1)
    t_{span} = (0., 10.)
20
22
    p = (k,) # turn parameters into a tuple
    # Solve two ODEs with odeint
23
    \#C = solve\_ivp(dCdt, t\_span, C\_0, p, method='LSODA')
    C = odeint(dCdt,C_0,t,p)
   C_A = C.transpose()[0] # Get C_A from C
27
    C_B = C.transpose()[1] # Get C_B from C
    C_C = C.transpose()[2]
29
    plt.figure()
30
    plt.plot(t,C_A,'-',label=r'$C_{\rm A}$')
   plt.plot(t,C_B,'-',label=r'$C_{\rm B}$')
plt.plot(t,C_C,'-',label=r'$C_{\rm C}$')
    plt.xlabel('Time (s)')
   plt.ylabel('Concentration (mol/L)')
   plt.legend()
    plt.savefig('./conc.png')
```


5 Analyzing reactor data

- 1. Differential methods
 - (a) Measuring rates
- 2. Integral methods
- 3. Half-lives

```
import numpy as np
                                      #this lets up handles arrays of data
    import matplotlib.pyplot as plt
    from scipy.optimize import curve_fit
3
    def differential(x, k, alpha):
        return k*x**alpha
7
    def integral(t, a, b):
8
        return (2*a/(2+a*b*t))**2
9
10
    t = np.array([0.00, 2.25, 4.50, 6.33, 8.00, 10.25, 12.00, 13.50, 15.60, 17.85, 19.60, 27.00, 30.00, 38.00, 41.00, 45.00, 47.00,
11
12
    C_Br2 = np.array([0.3335, 0.2965, 0.2660, 0.2450, 0.2255, 0.2050, 0.1910, 0.1794, 0.1632, 0.1500, 0.1429, 0.1160, 0.1053, 0.0830
13
14
    plt.figure()
15
    plt.plot(t,C_Br2,'o')
    plt.xlabel('Time (s)')
17
    plt.ylabel('Concentration (mol/L)')
    plt.legend()
19
    plt.savefig('./xylene-conc.png')
```

```
^{21}
    delta_t = np.ediff1d(t)
                                     # finite difference between adjacent points
22
23
    delta_C = np.ediff1d(C_Br2)
24
    grad_t = np.gradient(t)
grad_C = np.gradient(C_Br2)
                                          # second order approximation to gradient, allowing for unequal step size
25
26
    rate = -np.divide(grad_C,grad_t)
27
28
29
    plt.figure()
30
    plt.plot(C_Br2,rate,'o')
    plt.xlabel('Concentration (mol/L)')
31
    plt.ylabel('Rate (mol/L/x)')
32
    plt.legend()
34
35
    popt, pcov = curve_fit(differential, C_Br2, rate )
36
37
    print('k = {0:f}, alpha={1:f}'.format(popt[0],popt[1]))
38
    model = differential(C_Br2,popt[0],popt[1])
39
40
    plt.plot(C_Br2,model,'-')
41
    plt.savefig('./xylene-rate.png')
42
^{43}
    difference_array = np. subtract(rate, model)
44
45
    squared_array = np. square(difference_array)
    mse = squared_array. mean()
46
    print(mse)
47
48
    # Suggests order of 1.5
49
    popt1, pcov1 = curve_fit(integral, t, C_Br2)
50
    print('k = {0:f}'.format(popt[1]))
51
    model1 = integral(t, popt1[0], popt1[1])
53
54
    plt.figure()
55
    plt.plot(t,C_Br2,'o')
56
   plt.plot(t,model1,'-')
   plt.xlabel('Time (s)')
58
59
    plt.ylabel('Concentration (mol/L)')
60
    plt.legend()
    plt.savefig('./xylene-int-model.png')
61
```

September 15, 2021

k = 0.085277, alpha=1.450860

2.4942019231742367e-07

k = 1.450860

6 Molecular basis

- 1. reaction pathway, detailed balance
- 2. bimolecular, collision theory, TST
- 3. unimolecular reactions

7 Mechanisms

- 1. simple reaction network
- 2. free energy surface
- 3. QSSA
- 4. Pre-equilibrium
- 5. Selectivity
- 6. Rate control

Table 1: Equilibrium and Rate Constants

Equilibrium Constants $a A + b B \rightleftharpoons c C + d D$

$$K_{eq}(T) = e^{\Delta S^{\circ}(T,V)/k_{B}} e^{-\Delta H^{\circ}(T,V)/k_{B}T}$$

$$K_{c}(T) = \left(\frac{1}{c^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

$$K_{p}(T) = \left(\frac{k_{B}T}{P^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

Unimolecular Reaction $[A] \rightleftharpoons [A]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{\bar{q}_{\ddagger}(T)/V}{q_A(T)/V} e^{-\Delta E^{\ddagger}(0)\beta}$$

$$E_a = \Delta H^{\circ \ddagger} + k_B T$$
 $A = e^1 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$

Bimolecular Reaction $A + B \rightleftharpoons [AB]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{q_{\ddagger}(T)/V}{(q_A(T)/V)(q_B(T)/V)} \left(\frac{1}{c^{\circ}}\right)^{-1} e^{-\Delta E^{\ddagger}(0)\beta}$$
$$E_a = \Delta H^{\circ \ddagger} + 2k_B T \quad A = e^2 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$$

8 Heterogeneous reactions

- 1. adsorption, L-H
- 2. TPD
- 3. catalysis
- 4. Sabatier analysis

9 Liquid-phase reactions