Лабораторная работа №7

Научное программирование

Таубер Кирилл Олегович

Содержание

1	Цель работы	4
2	Теоретическое введение	!
3	Выполнение лабораторной работы	7
4	Вывод	16
Сп	исок литературы	17

Список иллюстраций

3.1	График трех периодов циклоиды радиуса 2	7
3.2	Улитка Паскаля	8
3.3	Улитка Паскаля в полярных осях	9
3.4	График кривой $-x^2 - xy + x + y^2 - y = 1$	10
3.5	График окружности $(x-2)^2+y^2=25$ и касательной к нему в	
	точке $(-1,4)$	11
3.6	Арифметические операции с комплексными числами	12
3.7	График в комплексной плоскости	12
3.8	Кубический корень из отрицательного числа	13
3.9	Гамма-функция и факториал	14
	Гамма-функция и факториал (более точный график)	15

1 Цель работы

Изучить в Octave методы построения различных графиков и работы с комплексными числами и специальными функциями.

2 Теоретическое введение

Основной функцией для построения **двумерных графиков** в Octave служит функция plot. У функции несколько вариантов вызова:

- plot(X, Y) в данном случае будет построен график зависимости у(x). Значения у и x берутся из матриц Y и X, которые могут быть либо векторомстолбцом, либо вектором-строкой одинаковой размерности;
- plot(Xl,Yl,...,Xn,Yn) будут одновременно построены несколько функциональных зависимостей у(x), при этом параметры линий на графике будут выбраны Octave самостоятельно;
- plot(X,Y,LineSpec), plot(Xl,Yl,LineSpecl,...,Xn,Yn,LineSpecn) наиболее полный вариант вызова функции построения двумерных графиков с заданием параметров графических линий. LineSpec это шаблон, с помощью которого определяется цвет линии, ее толщина, вид маркеров и другие параметры. Шаблон представляет собой взятое в апострофы название параметра, отделенное запятой от его значения.

Один из способов построения **трехмерных графиков** связан с использованием функции surf. Наиболее часто функция вызывается в формате surf(X,Y,Z) или в surf(X,Y,Z,C). Х и Y - векторы-строки, определяющие значения абсцисс и ординат. Z - матрица с размерностью, равной произведению размерностей матриц X и Y, задающая значения координаты z для соответствующих пар x и y. Параметр C определяет способ отображения трехмерной картинки (цвет, режим отображения кромок и т. д.).

Гамма функция находит очень широкое применение в прикладном анализе. С гамма-функцией связаны функции Бесселя используемые при синтезе фильтров и спектральном анализе, а также другие специальные функции: бета-функция, К-функции, G-функции. В статистике широко используется гамма-распределение, частными случаями которого являются экспоненциальное распределение и распределение хи-квадрат.

Данная функция не выражается через элементарные функции, но может быть представлена как интеграл вида:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t.$$

Для натуральных значений аргумента гамма-функция совпадает со значением факториала:

$$\Gamma(n) = (n-1)!, n = 1, 2, 3, 4, \dots$$

При этом для любых комплексных значений z справедливо равенство:

$$\Gamma(z+1) = z\Gamma(z).$$

Более подробно см. в [@Octave 1:bash] и [@Octave 2:bash].

3 Выполнение лабораторной работы

Параметрические уравнения для циклоиды:

$$x = r(t - sin(t)), y = r(1 - cos(t)).$$

Построим график трех периодов циклоиды радиуса 2 (рис. fig. 3.1).

Рис. 3.1: График трех периодов циклоиды радиуса 2

Графики в полярных координатах строятся аналогично. Для функции

$$r = f(\theta)$$

начинаем с определения независимой переменной θ , далее вычисляем r. Чтобы построить график, вычислим x и y, используя стандартное преобразование координат

$$x = rcos(\theta), y = rsin(\theta),$$

затем строим график в осях xy. Построим улитку Паскаля

$$r = 1 - 2sin(\theta)$$

(рис. fig. 3.2).

Рис. 3.2: Улитка Паскаля

Построим функцию

$$r = f(\theta)$$

в полярных осях, используя команду polar (рис. fig. 3.3).

Рис. 3.3: Улитка Паскаля в полярных осях

Теперь необходимо построить функцию, неявно определенную уравнением вида

$$f(x,y)=0.$$

Для этого применяется команда ezplot. Построим кривую, определяемую уравнением

$$-x^2 - xy + x + y^2 - y = 1.$$

Чтобы определить функцию в виде f(x,y)=0, вычтем 1 из обеих частей уравнения. Зададим функцию в виде λ -функции и построим график (рис. fig. 3.4).

Рис. 3.4: График кривой $-x^2 - xy + x + y^2 - y = 1$

Найдем уравнение касательной к графику окружности

$$(x-2)^2 + y^2 = 25$$

в точке (-1,4) и построим график окружности и касательной. Для начала определим круг как функцию вида f(x,y)=0 и зададим функцию в виде λ -функции. Центр круга находится в точке (2,0), а радиус равен 5. Задаем оси нашего графика так, чтобы они несколько превосходили окружность. Используя правило дифференцирования неявной функции, найдем

$$y' = \frac{2-x}{y}.$$

В точке (-1,4) имеем

$$y'|_{(-1,4)} = \frac{2-(-1)}{4} = \frac{3}{4}.$$

Таким образом, уравнение касательной линии будет иметь вид:

$$y = \frac{3}{4}x + \frac{19}{4}.$$

Построим график (рис. fig. 3.5).

Рис. 3.5: График окружности $(x-2)^2+y^2=25$ и касательной к нему в точке (-1,4)

Пусть $z_1=1+2i, z_2=2-3i.$ Выведем основные арифметические операции с этими комплексными числами (рис. fig. 3.6).

Рис. 3.6: Арифметические операции с комплексными числами

Построим график в комплексной плоскости, используя команду compass. Пусть $z_1=1+2i, z_2=2-3i.$ Построим графики $z_1,z_2,z_1+z_2,z_1+z_2+2$ (рис. fig. 3.7).

Рис. 3.7: График в комплексной плоскости

Вычислим $\sqrt[3]{-8}$ и проверим ответ. Чтобы вывести просто действительный корень, воспользуемся командой nthroot (рис. fig. 3.8).

Рис. 3.8: Кубический корень из отрицательного числа

Гамма-функция определяется как

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t.$$

Это расширение факториала, так как для натуральных чисел n гамма-функция удовлетворяет соотношению

$$\Gamma(n) = (n-1)!.$$

Построим функции $\Gamma(x+1)$ и n! на одном графике (рис. fig. 3.9).

Рис. 3.9: Гамма-функция и факториал

Поскольку вертикальные асимптоты на полученном графике в районе отрицательных чисел не являются истинной частью графика, а являются артефактами вычисления, то для их устранения разделим область значений на отдельные интервалы, что даст более точный график (рис. fig. 3.10).

Рис. 3.10: Гамма-функция и факториал (более точный график)

4 Вывод

В ходе выполнения данной лабораторной работы я изучила в Octave методы построения различных графиков и работы с комплексными числами и специальными функциями.

Список литературы