# GroupReport

Akshayaswuroupikka Balasubramanian,yixuan xu March 1, 2016

#### Assignment 1: Computations with Metropolis-Hastings

Consider the following probability density function:

$$f(x) \propto x^5 e^{-x}, x > 0$$

You can see that the distribution is known up to some constant of proportionality.

#### 1.1

The Metropolis-Hastings algorithm is used to generate samples from the above given distribution by using proposal distribution as log-normal LN(Xt, 1) by taking starting point as 2.



The chain obtained is plotted as a time series plot. The chain is not converged. Sometimes it moves far apart or it stays at a same point. There is no burn in period as far as this is concerned.

## 1.2

We have to perform step 1 by using chi-square distribution  $X_2(floor(X_t + 1))$  as proposal distribution where floor(x) means integer part of x.



## 1.3

compared to step 1, step 2 has a plot which converges with a mean approximately equal to 6. Hence, when we are using chi-square distribution as proposal distribution it works better than norm-log distribution as proposal distribution. If a proposal distribution takes small steps, then the acceptance probability will be high, geting a higher rate at which we accept candidate points. When mixing slowly, it will take longer to get to the stationary distribution.

#### 1.4

```
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## [1,] 1 1
```

The convergence number should vary from 1.0-1.2.In this case we have a convergence number within that range.

## 1.5

Here we have to estimate  $\int_0^\infty Xf(x)dx$  using the samples from steps 1 and 2.

## [1] 2.490701

## [1] 5.956674

#### 1.6

The Gamma distribution is given by:

$$\frac{1}{\Gamma(\kappa)\theta^{\kappa}}x^{\kappa-1}e^{-\frac{x}{\theta}}$$

Hence,  $\theta = 1$ ,  $\kappa = 6$ . The expected value  $E[X] = \kappa \theta = 6$  This result is quite close to the result we obtained.

#### Assignment 2: Gibbs sampling

A concentration of a certain chemical was measured in a water sample, and the result was stored in the data chemical.RData having the following variables: X: day of the measurement Y: measured concentration of the chemical. The instrument used to measure the concentration had certain accuracy; this is why the measurements can be treated as noisy. Your purpose is to restore the expected concentration values.

#### 2.1.

The data is imported to R and the dependence of Y on X is plotted below:



From the plot, quadratic model could be used here.

#### 2.2.

A researcher has decided to use the following (random-walk) Bayesian model (n=number of observations,  $\mu = (\mu_1, ..., \mu_n)$  are unknown parameters):

$$Y_i \sim N(\mu_i, var = 0.2), i = 1, ..., n$$

where the prior is

$$p(\mu_1) = 1$$
  
$$\mu_{i+1} \sim N(\mu_i, 0.2), i = 1, ..., n - 1$$

Present the formulas showing the likelihood  $p(Y|\mu)$  and the prior  $p(\mu)$  (hint: a chain rule can be used here  $p(\mu) = p(\mu_1)p(\mu_2|\mu_1)p(\mu_3|\mu_2)...p(\mu_n|\mu_{n-1})$ )

Likelihood function:

$$P(Y|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sim N(\mu_i, \sigma^2 = 0.2)$$
$$= (0.4\pi)^{-\frac{n}{2}} e^{-\frac{1}{0.4} \sum_{i=1}^{n} (x_i - \mu_i)^2}$$

 $p(\mu)$  function:

$$p(\mu_1) = 1$$

$$p(\mu_2|\mu_1) = \frac{1}{\sqrt{0.4\pi}} e^{-\frac{(\mu_2 - \mu_1)^2}{0.4}}$$

$$\vdots$$

$$p(\mu_i|\mu_{i-1}) = \frac{1}{\sqrt{0.4\pi}} e^{-\frac{(\mu_i - \mu_{i-1})^2}{0.4}}$$

Since:

$$p(\mu) = p(\mu_1)p(\mu_2|\mu_1)p(\mu_3|\mu_2)...p(\mu_i|\mu_{i-1})$$
$$= (0.4\pi)^{-\frac{n-1}{2}}e^{-\frac{1}{0.4}\sum_{i=1}^{n}(\mu_i - \mu_{i-1})^2}$$

#### 2.3.

Use the Bayes theorem to get the posterior up to a constant of proportionality, and then find out the distributions for  $\mu_i|\mu_{-i}, Y$  where  $\mu_{-i}$  is a vector containing all  $\mu$  values except of  $\mu_i$ 

$$p(\mu|Y) = 0.4\pi^{2n-1}e^{-\frac{1}{0.4}(\sum_{i=1}^{n}(y_i - \mu_i)^2) + (\sum_{i=1}^{n}(\mu_i - \mu_{i-1})^2)}$$

$$p(\mu_i|\mu_{-i}) \propto e^{-\frac{1}{0.4}(y_i - \mu_i)^2 + (\mu_i - \mu_{i-1})^2 + (\mu_{i+1} - \mu_{i-1})^2}$$

$$= e^{-\frac{1}{0.4}(\mu_i - \frac{(\mu_{i+1} - \mu_{i-1} - y_i)}{3})^2}e^{-\frac{1}{0.4}\left[-\frac{1}{3}(\mu_{i+1}^2 + \mu_{i-1}^2 + y_i^2) - \frac{8}{9}(y_i\mu_{i+1} + y_i\mu_{i-1} + \mu_{i+1}\mu_i)\right]}$$

Since  $e^{-\frac{1}{0.4}\left[-\frac{1}{3}(\mu_{i+1}^2+\mu_{i-1}^2+y_i^2)-\frac{8}{9}(y_i\mu_{i+1}+y_i\mu_{i-1}+\mu_{i+1}\mu_{i-1})\right]}$  is a constant, thus the  $\mu_i|\mu_{-i},Y$  distribution is  $N(\frac{y_i+\mu_{i+1}+\mu_{i-1}}{3},\sqrt{\frac{1}{15}})$ . For the first term, the distribution is  $N(\frac{\mu_2+y_1}{2},\sqrt{0.1})$  For the last term, the distribution is  $N(\frac{\mu_4+y_{50}}{2},\sqrt{0.1})$ 



From the plot, it is easy to see that most of the noise has been removed, the line from the  $\mu$  has less scale than the line from Y. And the expected value of  $\mu$  has catched the true underlying dependence, because the line passes through almost all of the points.

## 2.5

A trace plot for  $\mu_{50}$  is given below:



There is a burn-in period of 2% of the whole points from the start point. And this plot shows the chain is convergence.

## contribution

The first part of the assignment is contributed by akshaya and the second part by Yixuan xu.

## Appendix - R-code

```
## ----echo=FALSE-----
dist<-function(x){
    a=x^5*exp(-x)
    return(a)
}
algo<-function(n,start){
    x <- NULL
    if(is.null(start)){
        x[1] <- runif(1,0,1)
    }else{
    x[1]<- start
    }
    for(i in 2 : n){</pre>
```

```
y<- rlnorm(1, x[i-1], 1)
   u <- runif(1,0,1)
   frac<- dist(y)*dlnorm(x[i-1],y,1)/(dist(x)*dlnorm(y,x[i-1],1))</pre>
   alp=min(1,frac)
   if(u \le alp){
     x[i] \leftarrow y
   }else{
     x[i] \leftarrow x[i-1]
   }
 return(x)
}
plot(algo(5000,2),type='1')
## --- echo=FALSE------
algo1<-function(n,start){</pre>
 x <- NULL
 if(is.null(start)){
   x[1] \leftarrow runif(1,0,1)
 }else{
 x[1] \leftarrow start
 for(i in 2:n){
   y<- rchisq(1, floor(x[i-1]+ 1))
   u <- runif(1,0,1)
   frac < -dist(y) * dchisq(x[i-1], floor(y+1))/(dist(x[i-1]) * dchisq(y, floor(x[i-1]+1)))
   alp=min(1,frac)
   if(u \le alp){
     x[i] <- y
   }else{
     x[i] \leftarrow x[i-1]
   }
 }
 return(x)
plot(algo1(5000,2),type='l')
## ---echo=FALSE-----
library(coda)
mc<-matrix(NA,5000,10)
for(i in 1:10){
 mc[,i] <-algo1(5000,i)
mc1=mcmc.list()
for(i in 1:10){
 mc1[[i]] = as.mcmc(mc[,i])
gelman.diag(mc1)
## ----echo=FALSE-----
```

```
int_LN<- mean(algo(5000,2))</pre>
int_LN
int_chisq<-mean(algo1(5000,2))</pre>
int_chisq
## --- echo=FALSE-----
load("chemical.RData")
plot(X,Y)
## --- echo=FALSE-----
mu <- matrix(NA, nrow=1001, ncol=50)</pre>
mu[1,] <- 0
for(i in 2 : 1001){
 for(j in 1 : 50){
   if(j == 1){
     mu[i,j] \leftarrow rnorm(1,(mu[(i-1),(j+1)]+Y[j])/2, sqrt(0.1))
   else if(j == 50){
     mu[i,j] \leftarrow rnorm(1,(mu[i,(j-1)]+Y[j])/2, sqrt(0.1))
   }else{
     mu[i,j] \leftarrow rnorm(1,(mu[i,(j-1)]+mu[(i-1),(j+1)]+Y[j])/3,sqrt(1/15))
 }
}
mumatrix <- mu[2:1001,]</pre>
mu1 <- colMeans(mumatrix)</pre>
plot(y=Y,x=X, type = "1")
points(mu1, col="red", type = "1")
## ---- echo=FALSE-----
plot(mu[,50],type="1")
## ----code=readLines(knitr::purl("GroupReport.Rmd", documentation = 1)), eval = FALSE----
## NA
```