行人重识别: PCB+RPP

提取部件信息的方法

• 1. 姿势估计模型

• 2. 统一分块

论文主要思路

- 1. Part-based Convolutional Baseline (PCB)
- 2. Refined Part Pooling (RPP)

PCB: A Part-based Convolutional Baseline

主干网络: ResNet50

输入图片: 384*128*3 p=6 T=(24*8*2048) g=(1*1*2048) h=(1*1*256)

Within-Part Inconsistency

RPP: Refined Part Pooling

$$P(P_i|f) = softmax(W_i^T f) = \frac{\exp(W_i^T f)}{\sum_{j=1}^{p} \exp(W_j^T f)}$$

训练步骤

Algorithm 1: Induced training for part classifier

- **Step 1.** A standard PCB is trained to convergence with uniform partition.
- **Step 2.** A p-category part classifier is appended on the tensor T.
- **Step 3.** All the pre-trained layers of PCB are fixed. Only the part classifier is trainable. The model is trained until convergence again.
- **Step 4.** The whole net is fine-tuned to convergence for overall optimization.

P的取值

实验结果

Models	Feature	dim	Market-1501			DukeMTMC-reID			CUHK03					
			R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP
IDE	pool5	2048	85.3	94.0	96.3	68.5	73.2	84.0	87.6	52.8	43.8	62.7	71.2	38.9
IDE	FC	256	83.8	93.1	95.8	67.7	72.4	83.0	87.1	51.6	43.3	62.5	71.0	38.3
Variant 1	G	12288	86.7	95.2	96.5	69.4	73.9	84.6	88.1	53.2	43.6	62.9	71.3	38.8
Variant 1	H	1536	85.6	94.3	96.3	68.3	72.8	83.3	87.2	52.5	44.1	63.0	71.5	39.1
Variant 2	G	12288	91.2	96.6	97.7	75.0	80.2	88.8	91.3	62.8	52.6	72.4	80.9	45.8
Variant 2	H	1536	91.0	96.6	97.6	75.3	80.0	88.1	90.4	62.6	54.0	73.7	81.4	47.2
PCB	G	12288	92.3	97.2	98.2	77.4	81.7	89.7	91.9	66.1	59.7	77.7	85.2	53.2
PCB	H	1536	92.4	97.0	97.9	77.3	81.9	89.4	91.6	65.3	61.3	78.6	85.6	54.2
PCB+RPP	G	12288	93.3	97.4	98.2	80.9	82.9	90.3	92.3	68.1	62.8	79.8	86.8	56.7
PCB+RPP	H	1536	92.8	97.1	98.1	80.1	82.6	89.8	91.8	67.4	63.7	80.6	86.9	57.5

实验结果

Methods	R-1	R-5	R-10	mAP
BoW+kissme [39]	44.4	63.9	72.2	20.8
WARCA[16]	45.2	68.1	76.0	-
KLFDA[17]	46.5	71.1	79.9	-
SOMAnet[1]	73.9	-	-	47.9
SVDNet[28]	82.3	92.3	95.2	62.1
PAN[42]	82.8	-	-	63.4
Transfer [10]	83.7	-	-	65.5
Triplet Loss [14]	84.9	94.2	-	69.1
DML [36]	87.7	-	-	68.8
MultiRegion [30]	66.4	85.0	90.2	41.2
HydraPlus [22]	76.9	91.3	94.5	-
PAR [37]	81.0	92.0	94.7	63.4
MultiLoss [19]	83.9	-	-	64.4
PDC* [27]	84.4	92.7	94.9	63.4
PartLoss [35]	88.2	-	-	69.3
MultiScale [3]	88.9	-	-	73.1
GLAD* [31]	89.9	-	-	73.9
PCB	92.3	97.2	98.2	77.4
PCB+RPP	93.3	97.4	98.2	80.9

Methods	DukeM'	TMC-reID	CUHK03		
Methods	rank-1	mAP	rank-1	mAP	
BoW+kissme [39]	25.1	12.2	6.4	6.4	
LOMO+XQDA [20]	30.8	17.0	12.8	11.5	
GAN [43]	67.7	47.1	-	-	
PAN [42]	71.6	51.5	36.3	34.0	
SVDNet [28]	76.7	56.8	41.5	37.3	
MultiScale [3]	79.2	60.6	40.7	37.0	
TriNet+Era [45]	73.0	56.6	55.5	50.7	
SVDNet+Era [45]	79.3	62.4	48.7	43.5	
PCB (UP)	81.8	66.1	61.3	54.2	
PCB (RPP)	82.9	68.1	63.7	57.5	

复现过程

代码地址: https://github.com/syfafterzy/PCB_RPP_for_relD

配置环境: python 2.7

pytorch 0.3+

数据集: ~/datasets/Market-1501/(DukeMTMC-reID)

训练PCB: python PCB.py -d market -a resnet50 -b 64 -j 4 --epochs 60 --log logs/market-1501/PCB/ --combine-trainval --feature 256 --height 384 --width 128 --step-size 40 --data-dir datasets/Market-1501

训练RPP+PCB: python PCB.py -d market -a resnet50 -b 64 -j 4 --epochs 60 --log logs/market-1501/PCB/ --combine-trainval --feature 256 --height 384 --width 128 --step-size 40 --data-dir datasets/Market-1501

复现过程

(tensorflow_gpuenv) C:\Users\Jd\Desktop\PCB_RPP_for_reID-master>cd C:\Users\Jd\Anaconda3\Tools\scripts

(tensorflow_gpuenv) C:\Users\Jd\Anaconda3\Tools\scripts>python 2to3.py At least one file or directory argument required. Use --help to show usage.

(tensorflow_gpuenv) C:\Users\Jd\Anaconda3\Tools\scripts>_

Market-1501(epoch=60)

	Rank-1	mAP
PCB	93.3%	77.8%
PCB+RPP	93.8%	81.7%