INVERSE TRIGONOMETRIC FUNCTIONS

1. Principal Values & Domains of Inverse Trigonometric/Circular Functions:

	Function	Domain	Range
(i)	$y = \sin^{-1} x$ where	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
(ii)	$y = cos^{-1} x$ where	$-\ 1 \le x \le 1$	$0 \leq y \leq \pi$
(iii)	y = tan ⁻¹ x where	$x \in R$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
(iv)	$y = cosec^{-1} x$ where	$x \le -1 \text{ or } x \ge 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$
(v)	$y = sec^{-1} x$ where	$x \le -1$ or $x \ge 1$	$0 \le y \le \pi$; $y \ne \frac{\pi}{2}$
(vi)	$y = \cot^{-1} x$ where	$x \in R$	0 < y < π

(i)
$$\sin^{-1}(\sin x) = x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

(ii) $\cos^{-1}(\cos x) = x; 0 \le x \le \pi$

P - 2

P - 3

P - 5

(iv)

(ii)

(iii)

(iii)
$$\tan^{-1}(\tan x) = x; -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(iv) $\cot^{-1}(\cot x) = x; 0 < x < \pi$

(v)
$$\sec^{-1}(\sec x) = x; \quad 0 \le x \le \pi, \ x \ne \frac{\pi}{2}$$

(vi)
$$\csc^{-1}(\csc x) = x; \quad x \neq 0, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

 $\cot^{-1}(-x) = \pi - \cot^{-1}x, x \in \mathbb{R}$

(i)
$$\sin^{-1}(-x) = -\sin^{-1}x$$
, $-1 \le x \le 1$
(ii) $\tan^{-1}(-x) = -\tan^{-1}x$, $x \in \mathbb{R}$
(iii) $\cos^{-1}(-x) = \pi - \cos^{-1}x$, $-1 \le x \le 1$

(i)
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, -1 \le x \le 1$$

(iii)
$$\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2}, |x| \ge 1$$

 $tan^{-1}x + cot^{-1}x = \frac{\pi}{2}, x \in \mathbb{R}$

2. Identities of Addition and Substraction:

I - 1 (i)
$$\sin^{-1} x + \sin^{-1} y$$

= $\sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$, $x \ge 0$, $y \ge 0$ & $(x^2 + y^2) \le 1$

=
$$\pi - sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$
, $x \ge 0$, $y \ge 0$ & $x^2 + y^2 > 1$

(ii)
$$\cos^{-1} x + \cos^{-1} y = \cos^{-1} \left[x y - \sqrt{1 - x^2} \quad \sqrt{1 - y^2} \right], \quad x \ge 0, \ y \ge 0$$

(iii)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, x > 0, y > 0 \& xy < 1$$

= $\pi + \tan^{-1} \frac{x+y}{1-xy}, x > 0, y > 0 \& xy > 1$

$$=\frac{\pi}{2}$$
, x > 0, y > 0 & xy = 1

(i)
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2 - y} \sqrt{1 - x^2} \right], x \ge 0, y \ge 0$$

(ii)
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} \left[xy + \sqrt{1 - x^2} \sqrt{1 - y^2} \right],$$

$$x \ge 0, y \ge 0, x \le y$$

 $x - v$

I - 2

I - 3

(ii)

(iii)

(iii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, x \ge 0, y \ge 1$$

(iii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, x \ge 0, y \ge 0$$

(iii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{1}{1 + xy}, x \ge 0, y \ge 0$$

(i) $\sin^{-1} \left(2x\sqrt{1 - x^2}\right) = \begin{bmatrix} 2\sin^{-1} x & \text{if } |x| \le \frac{1}{\sqrt{2}} \\ \pi - 2\sin^{-1} x & \text{if } x > \frac{1}{\sqrt{2}} \\ -\left(\pi + 2\sin^{-1} x\right) & \text{if } x < -\frac{1}{\sqrt{2}} \end{bmatrix}$

 $\cos^{-1}(2 x^2 - 1)$

 $\tan^{-1}\frac{2x}{1-x^2}$

 $\sin^{-1}\frac{2x}{1+x^2}$

 $\cos^{-1}\frac{1-x^2}{1-x^2}$

0 & (xy + yz + zx) < 1

NOTE:

(i)

(ii)

(iii)

ii)
$$tan^{-1}x - tan^{-1}y = tan^{-1}\frac{x}{1+xy}, x \ge 0, y \ge 0$$

ii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, x \ge 0, y \ge 0$$

iii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, \ x \ge 0, \ y \ge 0$$

ii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, x \ge 0, y \ge 0$$

i)
$$x \ge 0, y \ge 0, x \le y$$

 $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{x}, x > 0, y > 0$

ii)
$$\cos^{-1} x - \cos^{-1} y = \cos^{-1} \left[xy + \sqrt{1 - x^2} \sqrt{1 - y^2} \right],$$

 $= \begin{bmatrix} 2\cos^{-1}x & \text{if } 0 \le x \le 1 \\ 2\pi - 2\cos^{-1}x & \text{if } -1 \le x < 0 \end{bmatrix}$

 $= \begin{vmatrix} 2 tan^{-1}x & \text{if } |x| < 1 \\ \pi + 2 tan^{-1}x & \text{if } x < -1 \\ -(\pi - 2 tan^{-1}x) & \text{if } x > 1 \end{vmatrix}$

 $= \begin{vmatrix} 2 \tan^{-1} x & \text{if } |x| \le 1 \\ \pi - 2 \tan^{-1} x & \text{if } x > 1 \\ -(\pi + 2 \tan^{-1} x) & \text{if } x < -1 \end{vmatrix}$

 $= \begin{vmatrix} 2\tan^{-1}x & \text{if } x \ge 0 \\ -2\tan^{-1}y & \text{if } y \ge 0 \end{vmatrix}$

If $tan^{-1}x + tan^{-1}y + tan^{-1}z = tan^{-1} \left[\frac{x + y + z - xyz}{1 - xv - vz - zx} \right] if, x > 0, y > 0, z > 0$

If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$ then x + y + z = xyz

If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \frac{\pi}{2}$ then xy + yz + zx = 1

 $tan^{-1} 1 + tan^{-1} 2 + tan^{-1} 3 = \pi$

(i)
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right], x \ge 0, y \ge 0$$

)
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right], x \ge 0, y \ge 0$$