STAT 513/413: Lecture 12 Classical Monte Carlo

(probabilistic theorems)

Assignment Project Exam Help

https://powcoder.com

Recall: classical Monte Carlo

Classical Monte Carlo deals with the estimation of expected values, with probabilities also falling under this case. This particular problem allows for more than merely intuitive approach: it is possible to assess the precision more rigorously via existing mathematical theorems.

Notation: we are still after quantity ϑ Assignment Project Exam Help we still compute its estimate T_N

And the subscript N stttping/pateschdermony random numbers were used in the computation of T_N : the higher N, the more numbers Add WeChat powcoder used

But now we have $\vartheta = \mathsf{E}(\mathsf{T}_{\mathsf{N}})$

Or even more precisely: we are after $\vartheta = \mathsf{E}(\mathsf{X})$ where X has the same distribution as random numbers X_1, X_2, \ldots, X_N ; that is

$$\vartheta = \mathsf{E}(\mathsf{X}_1) = \mathsf{E}(\mathsf{X}_2) = \ldots = \mathsf{E}(\mathsf{X}_\mathsf{N})$$

This particular case covers quite a lot of instances; in particular...

Probabilities come as a special case of this scheme

We are interested in p = P(E), the probability of some event E

We define an indicator random variable Y to be

$$Y = \begin{cases} 1 & \text{if event E happens} \\ 0 & \text{if event E does not happen} \end{cases}$$

The expected values of mient Project Exam Help

$$E(Y) = 1P[Y = 1] + 0P[Y = 0] = P[Y = 1] = p$$
https://powcoder.com

Clear?

We estimate expected values by averages

(or means by means - but this formulation may confuse some)

We make (that is, generate) N replications of X

$$X_1, X_2, \ldots, X_N$$

are considered independent and having the same distribution as X

Then

Assignment Project Exam Help

$$\vartheta = \mathsf{E}(\mathsf{X}_1) = \mathsf{E}(\mathsf{X}_2) = \dots = \mathsf{E}(\mathsf{X}_\mathsf{N}) \\ \mathsf{https://powcoder.com}$$

and

$$T_N = \bar{X} = \frac{1}{N} \sum_{i=1}^{N} Add WeChat powcoder$$

Note that then T_N is an unbiased estimator of ϑ

$$\mathsf{E}(\mathsf{T}_\mathsf{N}) = \mathsf{E}(\bar{\mathsf{X}}) = \frac{1}{\mathsf{N}} \sum_{i=1}^\mathsf{n} \mathsf{E}(\mathsf{X}_i) = \frac{1}{\mathsf{N}}(\mathsf{N}\vartheta) = \vartheta$$

Why does Monte Carlo work in this case? A classical result:

Jacob Bernoulli (1655-1705), Ars Conjectandi (1713)

Law of large numbers (in the version proved later by Kolmogorov)

If $X_1, X_2, ..., X_N$ are independent random variables with the same distribution, such that the expected value of all of them (or of one: same distribution!) [exists and] is finite

$$\mu = E(X_1) = E(X_2) = \dots$$

then the average $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ https://poweoder.com

converges to the mean μ for $n \to \infty$, in probability:

for every
$$\varepsilon > 0$$
, Add We Chat powcoder in $N \to \infty$

If our estimated value is $\vartheta=\mu$ and its estimate is $T_N=\bar{X}$, then this establishes consistency, right?

(A fine point: mere T_N being unbiased could not be enough, we still need something more... and there are also another fine points for math enthusiasts)

For math enthusiasts

Assignment Project Exam Help

https://powcoder.com

Probabilities are again a special case

We are interested in p = P(E), the probability of some event E We define indicator random variables to be

$$Y_i = \begin{cases} 1 & \text{if event E happens in the i-th repetition (trial)} \\ 0 & \text{if event E does not happen in the i-th repetition} \end{cases}$$

If the repetitions Assignation to the repetitions of the repetitions are independent to the repetitions of the repetition of the re

and their common mean is //powcoder.com
$$E(Y_i) = 1P[Y_i = 1] + 0P[Y_i = 0] = P[Y_i = 1] = p$$

Add WeChat powcoder So, then we calculate
$$\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{\text{card}\{i: Y_i = 1\}}{N}$$

to estimate (that is, compute) p

The consistency follows from the Law of large numbers

Let us try it on toy examples

Recall: what is the probability of obtaining 2 or less heads in 3 coin tosses? (Answer: 0.875)

A problem for expected values proper (not probabilities): what is the expected value of heads in 3 coin tosses?

(Well, everybody Assignment Project Examelle pimple problem to start with.)

https://powcoder.com

First: it works for estimating a probability

(We should have kept the seed. Just in case.) > mean(apply(replicate(1000,rbinom(3,1,0.5)),2,sum) <= 2)</pre> [1] 0.858 > mean(apply(replicate(1000,rbinom(3,1,0.5)),2,sum) <= 2)</pre> [1] 0.854 > mean(apply(replicate(1000,rbinom(3,1,0.5)),2,sum) <= 2)</pre> [1] 0.888 Assignment Project Exam Help > mean(apply(replicate(10000,rbinom(3,1,0.5)),2,sum) <= 2) [1] 0.8806 https://powcoder.com
> mean(apply(replicate(10000,rbinom(3,1,0.5)),2,sum) <= 2) [1] 0.8761 Add WeChat powcoder > mean(apply(replicate(1000000,rbinom(3,1,0.5)),2,sum) <= 2) [1] 0.875105 > mean(apply(replicate(1000000,rbinom(3,1,0.5)),2,sum) <= 2)</pre> [1] 0.874815 > mean(apply(replicate(1000000,rbinom(3,1,0.5)),2,sum) <= 2)</pre> [1] 0.875326 > mean(apply(replicate(10000000,rbinom(3,1,0.5)),2,sum) <= 2)</pre> [1] 0.8748622

Works for the expected values as well

Assignment Project Exam Help

https://powcoder.com

The evaluation of precision

Classical Monte Carlo has one big advantage over the intuitive approach: we can evaluate the precision in an exact way

For starters, let us - tentatively! - measure it once again by the mean squared error

 $\mathsf{E}[(\mathsf{T}_{\mathsf{N}}-\vartheta)^2]$

(Why? Because it is quite reasonable and we are able to handle the mathematics - compared to other possible choices.)

An important case is when $E(T_N) = \vartheta$ for all ϑ under consideration Recall: such established

For unbiased estimator, the mean squared error is equal to their

variance
$$E[(T_N - \vartheta)^2] = E[(T_N - E(T_N))^2] = Var(T_N)$$

Sometimes, we may also look at the square root of variance standard deviation $\sqrt{\text{Var}(T_N)}$

Performance guarantees II: precision via variance

Variance has direct consequences for the precision via the Chebyshev(-Bienaymé) inequality, which in its general form says that for any random variable Z with both E(Z) and Var(Z) finite

$$P[|Z - E(Z)| \ge \varepsilon] \le \frac{Var(Z)}{\varepsilon^2}$$

Assignment Project Exam Help Thus, if T_N is an unbiased estimator of ϑ , then for every $\varepsilon > 0$,

$$\begin{array}{c} \text{https://powcoder.com} \\ P\left[|\mathsf{T_N} - \vartheta| \geqslant \varepsilon\right] \leqslant \frac{1}{2} \end{array}$$

 $\begin{array}{c} & \text{https://powcoder.com} \\ & \text{P}\left[|T_N-\vartheta|\geqslant\epsilon\right]\leqslant\frac{}{\varepsilon^2} \end{array}$ So, the variance (or its square root, standard deviation) is an important indicator of the precision of the estimate T_N of ϑ

And it is evaluated *explicitly* via Chebyshev inequality, so *no mean* square error anymore! We can do better here!

A side product: if T_N is unbiased and we can show mathematically that $Var(T_N) \to 0$ for $N \to \infty$, , then consistency for T_N immediately follows

So, again the canonical case

Let X_1, X_2, \ldots, X_N be random variables with the same distribution they (all) have (the same) expected value μ and they also have the same variance σ^2

$$\text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{N}\sum_{i=1}^{N} X_i^{\text{dd}}\right) = \frac{\text{WeChat powcoder}}{N^2} \text{Var}(X_i) = \frac{1}{N^2} N \sigma^2 = \frac{\sigma^2}{N}$$

This may serve as the measure of precision

- only we need to know σ^2 (which we may not, however)

Performance guarantees II: \bar{X} via Chebyshev

Once we know σ^2 , we have a bound on the probability that our results deviates from μ by more than ϵ :

Knowing that $E(\bar{X}) = \vartheta$, we apply the Chebyshev inequality to \bar{X}

$$P[|\bar{X} - \vartheta| \ge \varepsilon] \le \frac{Var(\bar{X})}{Assignment} = \frac{\sigma^2}{Project}$$
 Exam Help

This gives us a lucid expression of precision (as long as we know $\sigma^2)$ https://powcoder.com
Also, note that, as $\frac{\sigma^2}{N A^2 dd} \xrightarrow{0} 0$ with $N \to \infty$ (whatever σ^2 is) $\frac{1}{N A^2 dd} \xrightarrow{N} \frac{1}{N} \frac{1}{N}$

we have automatically consistency here

Return to precision: what if σ^2 is not known (as is often the case)?

An upper bound can help

First, recall "the other formula" for the variance: this yields

$$Var(Z) = E(Z^2) - (E(Z))^2 \le E(Z^2)$$

Note: as E(Z) is usually finite (we are estimating E(Z), so if it would not be properly defined, it would be hopeless), the crux is in $E(Z^2)$

And geeks know: $E(Z) < \infty$ implies not only $Var(Z) < \infty$, but also that $E(|Z|) < \infty$, that is, E(Z) exists and is finite https://powcoder.com

then
$$E(U) \leqslant E(Y)$$

In particular, if $X^2 \leq Y^2$ (with probability one)

then
$$E(X^2) \leqslant E(Y^2)$$

(Beware: nothing like that necessarily follows for variances)

A very often used upper bound on variance

If a random variable Z has values in [a, b] (with probability one)

then
$$Var(Z) \leqslant \frac{(b-\alpha)^2}{4}$$
 (try to prove that!)

Combined with the Chebyshev inequality for \bar{X} , we get Assignment Project Exam Help

$$P[|\bar{X} - \vartheta| \ge \varepsilon] = \frac{Var(\bar{X})}{https2/powcoder.com}$$

whenever $\vartheta = \mathsf{E}(\bar{X})$ and X_i chall by X color values in $[\mathfrak{a},\mathfrak{b}]$ (with probability one)

Probabilities are a special case

In particular, for probabilities:

we define Y_i with values 0 and 1 as above these Y_i happen to have expected value equal to p and

$$\label{eq:Var} \begin{aligned} \text{Var}(Y_i) &= (1-p)(0-p)^2 + p(1-p)^2 = p(1-p)^2 - p^2(1-p) = p(1-p) \\ &\quad \text{Assignment Project Exam Help} \end{aligned}$$

Given that p is in [0,1], we have an inequality $p(1-p) \le 1/4$

 $\begin{array}{c} \text{https://powcoder.com} \\ \text{And therefore } \text{Var}(\bar{Y}) = \frac{p(1-p)}{\text{Add WeChat}} \leqslant \frac{1}{\text{Powcoder}} \end{array}$

So, for 0-1 Y_i , we get now from the Chebyshev inequality

$$P[|\bar{Y} - \mu| \geqslant \epsilon] \leqslant \frac{\sigma^2}{N\epsilon^2} \leqslant \frac{1}{4N\epsilon^2}$$

Return to precision: how is this used?

We first select ε to express precision we would like to achieve for instance, if we want 2 decimal digits, then $\varepsilon=0.005$ (or slightly less)

Then, we select "margin of error" δ : if we are to be outside the bounds with some probability, what probability we would tolerate

for instances ignment Project Exam Help

We are interested in N that will guarantee us chosen ϵ and δ https://powcoder.com
The Chebyshev inequality says that it will be equal to or larger than

N satisfying
$$\frac{\text{Add}}{N \varepsilon^2} \underline{\underline{W}}$$
 eChat power $N = \frac{\sigma^2}{\delta \varepsilon^2}$

if estimating a probability we need $N\geqslant \frac{1}{4\delta\,\epsilon^2}=1000000$

Note: to increase precision by one decimal digit

we have to divide ϵ by 10, hence multiply N by 100 and to decrease "margin of error" by one decimal digit

we have to divide δ by 10, hence multiply N by 100

Performance guarantees II: \bar{X} for bounded X_i

Hoeffding inequality. Suppose that $X_1, X_2, ..., X_N$ are independent random variables, each X_i bounded by an interval $[a_i, b_i]$ (that is, X_i takes values in $[a_i, b_i]$ with probability one).

If
$$\vartheta = \mathsf{E}(\bar{X})$$
, then

$$P[|\bar{X} - \vartheta|] Assignment Project Exam Help$$

In particular, if all [aihbtps://powcotten.com

$$P[|\bar{X} - \vartheta| \ge \varepsilon] \le A^{2n\varepsilon^{2}} W^{2n\varepsilon^{2}}$$
 Chat powcoder

And then, if [a, b] = [0, 1],

$$P[|\bar{X} - \vartheta| \geqslant \varepsilon] \leqslant 2e^{-2N\varepsilon^2}$$

(the latter case is also known as the Chernoff bound)

The use of this one

Suppose that we have $[\alpha_i,b_i]=[\alpha,b]$ — and as before we want precision ϵ and the "margin of error" δ

To have N guaranteeing this, it has to be equal or greater than

the one satisfying
$$N = -\frac{(b-a)^2}{2\epsilon^2}\log\left(\frac{\delta}{2}\right)$$

for indicates signment Project Exam Help $\left(\frac{\delta}{2}\right)$

So, for $\delta = 0.01$ and $\epsilon = 0.05$ we get $N \geqslant 105967$

Note: to increase precision by Chatge image of the we have to divide ϵ by 10, hence multiply N by 100 this is the same of the Chebyshev

But, decreasing "margin of error" by one decimal digit: dividing δ by 10 means adding $\frac{\log 10}{2 \epsilon^2} \approx \frac{1.1513}{\epsilon^2}$ to N

That looks cheaper...

Some remarks

Note first:

All the mentioned inequalities bound some probability from above thus, to be nontrivial, the bound has to be < 1

Some examples now:

For $\delta=0.01$ and $\varepsilon=0.005$ we get N $\geqslant 105967$ by the Hoeffding In the same situation Projooto and Projooto and Help 0.005, Hoeffding says we $\delta\leqslant 3.8575\times 10^{-22}$

https://powcoder.com Great, this is way much we hoped for, but nonetheless fine... Can we expect also better precision here maybe with slightly higher probability of error?

If we try $\varepsilon=0.0005$, still with N=1000000, we actually obtain the bound $\delta\leqslant 1.213$ - which does not say anything nontrivial: it is a bound on a probability which is always <1

To achieve $\delta = 0.01$ for $\varepsilon = 0.0005$, we need N $\geqslant 10596634$

And also: Hoeffding works for bounded X_i

but in that case we also have an upper bound on variance!

Chebyshev strikes back

If X_i is within [a, b] (with probability one)

then Chebyshev and the inequality on variance together yield

$$P[|\bar{X} - \vartheta| \geqslant \varepsilon] \leqslant \frac{Var(\bar{X})}{\varepsilon^2} \leqslant \frac{(b - a)^2}{4N\varepsilon^2}$$

and Hoeffding inequality gives

So, the bounds are resting wooder con and $2e^{-\frac{1}{2\delta}}$

Analyzing this, we figured Weshat powers $\delta \approx 0.2322026$

However, we are interested in small δ

and in such situation is Hoeffding better

Finally: for given precision ε , we decrease the "margin of error" by increasing N - but we may also do it by decreasing $(b - a)^2$ or σ^2

A pictorial comparison of bounds

The comparison of the required N's

For a given precision ε , the required N is greater or equal than

$$\frac{(b-\alpha)^2}{4\delta \varepsilon^2} = \frac{(b-\alpha)^2}{2\varepsilon^2} \left(\frac{1}{2\delta}\right)$$
 by the Chebyshev and bound

$$-\frac{(b-a)^2}{2\varepsilon^2}\log\left(\frac{\delta}{2}\right)$$
 by the Hoeffding Assignment Project Exam Help

Once ε is given, then $(b-a)^2/(2\varepsilon^2)$ is given as well https://powcoder.com and we can compare $\frac{1}{\text{Add}}$ and $-\log\left(\frac{\delta}{2}\right)$ Add WeChat powcoder

Again, they are equal for $\delta \approx 0.2322026$ and then for smaller δ Hoeffding gives smaller N in fact, *much* smaller for very small δ

The comparison of required N for probabilities

Sometimes, however, σ^2 can only be estimated

The well-known estimate of σ^2 is $s^2 = \frac{1}{N-1} \sum_{i=1}^n (X_i - \bar{X})^2$

and $\operatorname{Var} \bar{X}$ is then estimated by $\frac{s^2}{\text{Assignment Project Exam HelpN}} = \frac{\frac{1}{N-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}{\text{Exam HelpN}}$

(compare textbook, pp. 151-152 and also pp. 52-53)

The reason is that - in the present context - N is usually large...

...so
$$\frac{1}{N}$$
 differs very little from $\frac{1}{N-1}$

In fact, it may work that way for probabilities

Suppose again that Y_1,Y_2,\ldots,Y_N are independent random variables such that $P[Y_1=1]=p$ and $P[Y_1=0]=1-p$ We know that $\vartheta=p=\mathsf{E}(Y_i)$ and also that $\sigma^2=\mathsf{Var}(Y_i)=p(1-p)$

We estimate
$$\vartheta$$
 by $Y = \frac{Assignment Project Exam Help}{N}$ https://powcoder.com

So we could perhaps also estimate $\text{Var}(\bar{Y})$ by $\bar{Y}(1-\bar{Y})$ Add WeChat powcoder

but we could do it also by
$$\frac{1}{N-1}\sum_{i=1}^{N}(Y_i-\bar{Y})^2$$

and perhaps also by
$$\frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

Are those related in some way?

Let us do a computational experiment first

```
> tosses = floor(2*runif(20)); tosses
 [1] 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0
> mean(tosses)*(1-mean(tosses))
[1] 0.25
> var(tosses)
[1] 0.2631579
> var(tosses)*19/20
              Assignment Project Exam Help
\lceil 1 \rceil \quad 0.25
Maybe only a coincidences: // Powengther one:
> tosses = floor(2*runif(30))
                   Add WeChat powcoder
> tosses
 > mean(tosses)*(1-mean(tosses))
[1] 0.24
> var(tosses)
[1] 0.2482759
> var(tosses)*29/30
[1] 0.24
So, a rule here?
```

Your theory for that:

Assignment Project Exam Help

https://powcoder.com