Bond behavior of CFRP-to-concrete interface subjected to loading and elevated temperature

Analytical solution

Temperature-dependent bond-slip model

Finite element simulation

Experimental study

Bond behavior of CFRP-to-concrete interface subjected to loading and elevated temperature

Lattice discrete particle model (LDPM)

Static solution

Computational efficiency

Coupled mechanical and mass transport LDPM

LDPM for reinforced concrete

Bond behavior of CFRP-to-concrete interface subjected to loading and elevated temperature

SpatialConfiguration-Net

FEM spine modeling

Train and validation

Calibration and validation

Deformation Characteristics of Hangzhou Soft Soil under Cyclic Loading (2017)

Engineering problem

Elastic visco-plastic consolidation model and solution

$$\begin{cases} \frac{k_{vo}}{\gamma_w} \left(\frac{\sigma_o'}{\sigma_z'}\right)^{\frac{c_c}{c_k}} \left[\frac{\partial^2 u}{\partial z^2} + \frac{c_c}{c_k} \left(\frac{1}{\sigma_z'}\right) \left(\frac{\partial u}{\partial z}\right)^2\right] = -\frac{\partial \varepsilon_z}{\partial t} \\ \dot{\varepsilon}_z = \frac{\kappa}{V} \frac{\dot{\sigma}_z'}{\sigma_z'} + \frac{\psi}{Vt_0} \exp\left[-\left(\varepsilon_z - \varepsilon_{z0}^{ep}\right) \frac{V}{\psi}\right] \left(\frac{\sigma_z'}{\sigma_{z0}'}\right)^{\frac{\lambda}{\psi}} \\ u(0,t) = 0 \\ u(H,t) = 0 \\ u(z,0) = Initial\ excess\ pore\ water\ pressure \\ \varepsilon_z(z,0) = Initial\ strain \end{cases}$$
 Strain Time (min)

Calibration and Validation

Calcusettlement v2.0

