CCGtown: Alat Anotasi Combinatory Categorial Grammar (CCG) Semi-otomatis Berbasis Web

Proposal Tugas Akhir

Kelas TA NLP

Wisnu Adi Nurcahyo NIM: 1301160479

Program Studi Sarjana Informatika
Fakultas Informatika
Universitas Telkom
Bandung
2020

Lembar Persetujuan

CCGtown: Alat Anotasi Combinatory Categorial Grammar (CCG) Semi-otomatis Berbasis Web

CCGtown: A Web-based Semi-automatic Combinatory Categorial Grammar (CCG) Annotation Tool

> Wisnu Adi Nurcahyo NIM: 1301160479

Proposal ini diajukan sebagai usulan pembuatan tugas akhir pada Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom

> Bandung, 13 November 2020 Menyetujui

Calon Pembimbing 1

Calon Pembimbing 2

Dr. Ade Romadhony, S.T., M.T.

NIP: 06840042

Said Al Faraby, S.T., M.Sc.

NIP: 15890019

Abstrak

TBA.

 $\bf Kata~Kunci:$ natural language processing, combinatory categorial grammar, annotation tool

Daftar Isi

Abstrak							
Da	aftar	Isi	ii				
Ι	Pen	dahuluan	1				
	1.1	Latar Belakang	1				
	1.2	Perumusan Masalah	2				
	1.3	Tujuan	2				
	1.4	Rencana Kegiatan	2				
II	Kaj	ian Pustaka	3				
	2.1	Categorial Grammar	3				
	2.2	Combinatory Categorial Grammar	4				
	2.3	Lambda Calculus	5				
	2.4		6				
II	Per	ancangan Sistem	7				
Da	aftar	Pustaka	8				
Lampiran							

Bab I

Pendahuluan

1.1 Latar Belakang

Riset pemrosesan bahasa alami untuk bahasa Indonesia saat ini masih terbilang sedikit. Bahkan, masih banyak area riset yang belum tersentuh seperti contohnya combinatory categorial grammar (CCG). Sementara itu, riset mengenai CCG untuk bahasa Inggris sudah cukup matang. Adapun untuk bahasa lainnya (seperti bahasa Vietnam) sudah mulai menggunakan CCG di dalam penelitiannya [4]. Agar dapat menerapkan CCG di dalam aplikasi yang dibangun, tools seperti CCG parser dan CCG supertagger harus tersedia terlebih dahulu. Masing-masing dari tools tersebut memerlukan dataset agar dapat memberikan hasil yang akurat.

Umumnya terdapat dua cara yang paling sering digunakan untuk mengembangkan CCG supertagger maupun CCG parser bahasa lokal yaitu (1) membangun dataset CCG supertag secara manual maupun semi-otomatis atau (2) melakukan transfer dataset dari CCGbank (atau dari sumber lainnya) ke dalam bahasa lokal dengan cara melakukan alih bahasa dan bila perlu melakukan penyesuaian untuk supertag-nya [2]. Proses pembangunan dataset umumnya menggunakan bantuan annotation tool agar proses anotasinya menjadi lebih mudah. Salah satu annotation tool yang dapat digunakan adalah CCGweb [1].

Tugas akhir dengan judul " CCGtown: Alat Anotasi Combinatory Categorial Grammar (CCG) Semi-otomatis Berbasis Web " berusaha untuk membangun alat anotasi CCG baru dengan UI/UX yang lebih baik dari CCGweb. Selain itu, dengan bantuan NLTK alat anotasi ini dapat melakukan generate untuk CCG derivation-nya kemudian pengguna dapat mengubah derivation-nya apabila diperlukan. Tujuan dari dibangunnya alat anotasi CCG ini adalah untuk mempermudah proses anotasi yang repetitif. Selanjutnya, dataset CCG pertama untuk bahasa Indonesia diharapkan dapat dipublikasikan.

1.2 Perumusan Masalah

Rumusan masalah yang akan diangkat yaitu:

- 1. Bagaimana proses pembangunan alat anotasi untuk CCG?
- 2. Apakah CCGtown dapat digunakan dengan mudah?

1.3 Tujuan

Tujuan yang diharapkan dapat tercapai oleh tugas akhir ini yaitu:

- 1. Membangun dan merilis alat anotasi CCG semi-otomatis.
- 2. Dapat digunakan untuk membangun dataset CCG.

1.4 Rencana Kegiatan

Rencana kegiatan yang akan dilakukan adalah sebagai berikut:

- Studi literatur
- Studi tools yang tersedia
- Studi bahasa pemrograman yang akan digunakan
- Perancangan sistem annotation tool CCGtown
- \bullet Membangun $annotation\ tool\ CCGtown$
- Menguji kemudahan dalam menggunakan CCGtown

Bab II

Kajian Pustaka

2.1 Categorial Grammar

Categorial Grammar (CG) merupakan sebuah istilah yang mencakup beberapa formalisme terkait yang diajukan untuk sintaks dan semantik dari bahasa alami serta untuk bahasa logis dan matematis [6]. Karakteristik yang paling terlihat dari CG adalah bentuk ekstrim dari leksikalismenya di mana beban utama (atau bahkan seluruh beban) sintaksisnya ditanggung oleh leksikon. Konstituen tata bahasa dalam categorial grammar dan khususnya semua leksikal diasosiasikan dengan suatu type atau "category" (dalam category theory) yang mendefinisikan potensi mereka untuk dikombinasikan dengan konstituen lain untuk menghasilkan konstituen majemuk. Category tersebut adalah salah satu dari sejumlah kecil category dasar (seperti NP) atau functor (dalam category theory). Dalam hal ini, category dapat diartikan sebagai syntactic type dari suatu kata.

Secara formal, syntactic type didefinisikan sebagai himpunan bagian dari suatu semigroup M yang tunduk pada tiga operasi yaitu 2.1, 2.2, dan 2.3 dimana A, B, dan C merupakan himpunan bagian dari M [3]. Adapun $A \cdot B$ dibaca A times B, C/B dibaca C over B, dan $A \setminus C$ dibaca A under C. Selanjutnya, dapat dilihat bahwasannya untuk semua $A, B, C \subseteq M$ sehingga kita dapatkan 2.4 dan 2.5. Terakhir, persamaan 2.6 dapat diabaikan apabila dihadapkan dengan multiplicative system yang tidak asosiatif. Sementara itu, apabila semigroup-nya merupakan sebuah monoid dengan identitas 1 maka kita dapatkan 2.7 dimana $I = \{1\}$.

$$A \cdot B = \{ x \cdot y \in M \mid x \in A \land y \in B \}$$
 (2.1)

$$C/B = \{ x \in M \mid \forall_{y \in B} x \cdot y \in C \}$$
 (2.2)

$$A \setminus C = \{ y \in M \mid \forall_{x \in A} x \cdot y \in C \}$$
 (2.3)

$$A \cdot B \subseteq C$$
 jika dan hanya jika $A \subseteq C/B$ (2.4)

$$A \cdot B \subseteq C$$
 jika dan hanya jika $B \subseteq A \setminus C$ (2.5)

Pamungkas \vdash NP: pamungkas'Setyo \vdash NP: setyo' $dan \vdash$ CONJ: $\lambda x.\lambda y.\lambda f.$ $(f \ x) \land (f \ y)$ menyukai \vdash (S\NP)/NP: $\lambda x.\lambda y.$ suka(y,x)rendang \vdash NP: rendang'

Gambar 2.1: Kamus yang memetakan token kata ke bentuk CCG lexicon-nya.

$$(A \cdot B) \cdot C = A \cdot (B \cdot C) \tag{2.6}$$

$$I \cdot A = A = A \cdot I \tag{2.7}$$

Ada beberapa notasi berbeda untuk category dalam merepresentasikan directional-nya. Notasi yang paling umum digunakan adalah "slash notation" yang dipelopori oleh Bar-Hilel, Lambek, dan kemudian dimodifikasi dalam kelompok teori yang dibedakan sebagai tata bahasa "combinatory" categorial grammar (CCG). Sebagai contoh, category (S\NP)/NP merupakan suatu functor yang memiliki dua buah notasi slash yaitu \ dan /. Masing-masing notasi slash tersebut merepresentasikan directionality yang berbeda. Notasi forward slash, /, mengindikasikan bahwa argumen dari suatu functor X/Y ada di bagian kanan atau dengan kata lain Y. Adapun backward slash, \, mengindikasikan bahwa argumen dari suatu functor X\Y ada di bagian kiri atau dengan kata lain X. Demikian itu, penggunaan notasi slash yang tepat sangat penting dikarenakan hal ini dapat mempengaruhi konstituen dari hasil "kombinasi" category-nya.

2.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) merupakan salah satu formalisme tata bahasa yang gaya aturannya diturunkan dari categorial grammar dengan beberapa penambahan aturan dan istilah baru [7]. Di CCG, category dapat dipasangkan dengan semantic representation. Dalam hal ini, semantic representation yang dimaksud adalah abstraksi fungsi lambda (dalam lambda calculus, lambda function). Sebagai contoh, category (S\NP)/NP dapat dipasangkan dengan fungsi lambda $\lambda x.fx$ sehingga dapat ditulis menjadi (S\NP)/NP: $\lambda x.fx$. Adapun pemetaan dari suatu token kata ke category-nya menggunakan notasi \vdash . Sebagai contoh, anggap saja kita memiliki kamus pemetaan seperti pada Gambar 2.1. Apabila kita memiliki kalimat "Pamungkas dan Setyo menyukai rendang", maka kita dapatkan:

Pamungkas	dan	Setyo	menyukai	rendang
NP	CONJ	NP	(S\NP)/NP	NP
: pamungkas'	: $\lambda x.\lambda y.\lambda f. (f x) \wedge (f y)$: setyo'	: $\lambda x.\lambda y. suka(y,x)$: rendang'

Ada beberapa operasi yang dapat dilakukan dalam CCG. Operand dari operasi yang dimaksud adalah category. Berdasarkan contoh di atas, akan ada tiga operasi yang dijalankan yaitu coordination, forward application, dan type rising. Untuk mendapatkan hasil yang diinginkan, kita lakukan type rising sebelum forward application di akhir. Sehingga, kita dapatkan:

Berdasarkan hasil evaluasi tersebut, kita dapatkan query 2.8 yang diperoleh dari kalimat "Pamungkas dan Setyo menyukai rendang". Demikian itu, komputer dapat melakukan komputasi berdasarkan query yang telah diperoleh. Kegiatan tersebut merupakan apa yang disebut dengan CCG parsing. Untuk dapat melakukan parsing, CCG lexicon diperlukan. Untuk mendapatkan CCG lexicon kita dapat menggunakan CCG supertagger yang akan melakukan pelabelan suatu token kata ke CCG lexicon berdasarkan pemetaannya.

$$suka(pamungkas', rendang') \land suka(setyo', rendang')$$
 (2.8)

2.3 Lambda Calculus

Lambda calculus (λ -calculus) merupakan sebuah formalisme yang dikembangkan oleh Alonzo Church sebagai alat yang digunakan untuk memahami konsep komputasi yang efektif [5]. Formalisme λ -calculus cukup populer dan bahkan dijadikan sebagai pondasi teori bagi paradigma pemrograman functional programming. Konsep utama dari λ -calculus adalah apa yang disebut dengan expression. Suatu expression dalam λ -calculus terdiri dari tiga bagian yaitu lambda notation (λ), argument (seperti a, b, c, x, dan lain-lain), dan body yang dipisahkan dengan tanda titik. Sebagai contoh, fungsi lambda

 $\lambda x.x$ merupakan sebuah fungsi identitas yang mengambil argumen x kemudian mengembalikan nilai x itu sendiri. Dalam hal ini, terlihat bahwa notasi λ merupakan sebuah penanda bagi suatu fungsi lambda. Kemudian, pengubah x setelah notasi λ merupakan argumen dari fungsi tersebut. Selanjutnya, tanda titik merupakan pemisah antara head dan body fungsi lambda. Terakhir, setelah tanda titik adalah body dari suatu fungsi lambda yang mana berupa expression.

Untuk mempermudah pemahaman, λ -calculus dapat diperlakukan seperti fungsi tanpa nama. Sebagai contoh, fungsi lambda $(\lambda x.x+5)$ apabila diberikan nilai 2 sehingga menjadi $(\lambda x.x+5)$ 2 akan dievaluasi menjadi $\lambda(2).(2)+5$. Demikian itu, nilai yang dikembalikan oleh fungsi tersebut adalah 7. Sama seperti fungsi pada umumnya, konsep ini bernama substition (substitusi). Memahami λ -calculus dirasa perlu berhubung dalam tugas akhir ini λ -calculus digunakan sebagai bentuk formal di category dalam konteks CCG lexicon. Meskipun λ -calculus tidak sesederhana yang dijelaskan sebelumnya, setidaknya memahami λ -calculus seperti ini sudah cukup untuk dapat membangun supertagger yang ada di tugas akhir ini.

2.4 CCGweb

TBA.

Bab III Perancangan Sistem

TBA.

Daftar Pustaka

- [1] Kilian Evang, Lasha Abzianidze, and Johan Bos. CCGweb: a new annotation tool and a first quadrilingual CCG treebank. In *Proceedings of the 13th Linguistic Annotation Workshop*, pages 37–42, Florence, Italy, August 2019. Association for Computational Linguistics.
- [2] Julia Hockenmaier and Mark Steedman. CCGbank: A corpus of CCG derivations and dependency structures extracted from the Penn treebank. *Computational Linguistics*, 33(3):355–396, 2007.
- [3] J. Lambek. Categorial and Categorical Grammars, pages 297–317. Springer Netherlands, Dordrecht, 1988.
- [4] Kiet Van Nguyen and Ngan Luu-Thuy Nguyen. Vietnamese transition-based dependency parsing with supertag features, 2019.
- [5] Raul Rojas. A tutorial introduction to the lambda calculus. CoRR, abs/1503.09060, 2015.
- [6] Mark Steedman. Categorial grammar. Technical report, 1992.
- [7] Mark Steedman. A very short introduction to ccg. Technical report, 1996.

Lampiran