	Utech
Name:	
Roll No.:	To Opening State State and Explana
Invigilator's Signature :	

ADVANCED SEPARATION PROCESS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- Rejection coefficient of a reverse osmosis membrane is given by
 - a) $B(\Delta P \Delta \Pi) / (1 + B(\Delta P \Delta \Pi))$
 - b) $B(\Delta P + \Delta \Pi) / (1 + B(\Delta P + \Delta \Pi))$
 - c) $B/(1+B(\Delta P-\Delta\Pi))$
 - d) $B(\Delta P \Delta \Pi)$

where symbols have their usual meanings.

- ii) Permeability coefficient can be defined as
 - a) Diffusivity × Selectivity
 - b) Diffusivity / Solubility
 - c) Diffusivity × Solubility
 - d) Selectivity × Solubility.

6436 Turn over

- a) $r(T/M_A)$
- b) $r(T/M_A)^{1/2}$
- c) $r \times T/M_A$
- d) $r(T/M_A)^{3/2}$.
- iv) The driving force for dialysis is
 - a) Electrical potential difference
 - b) Chemical potential
 - c) Pressure difference
 - d) Temperature difference.
- v) The interaction between retained components and membrane surface resulting in irreversible fouling is called
 - a) concentration polarization
 - b) pore blocking
 - c) pore diffusion
 - d) none of these.

6436 2

		CS/B.Tech,	'CHE/NI	EW/	SEM	-6/C		4A/20	13
vi)	The	membrane	process	us	ed	for	vapou		uid
	sepa	ration like etha	anol dehy	/drat	tion	d	A About O'Earn	luly trail Excellent	n
	a)	Ultrafiltration							
	b)	Microfiltration							
	c)	Pervaporation							
	d)	Reverse osmo	sis.						
vii)	How	does solute	e rejecti	on	chaı	nge	with	rise	in
	pres	sure?							
	a)	Decreases		b)	Inc	reas	es		
	c)	Remains same	e	d)	No	ne of	these	•	
viii)	Whic	ch of the follow	ring is no	t a c	collig	ative	prope	rty?	
	a)	Depression of	freezing	poir	nt				
	b)	Osmotic press	sure						
	c)	Lowering of va	apour pr	essu	re				
	d)	None of these	•						
6436			3				[7	Γurn o	ver

CS/B.Te	ch/C	HE/NEW/SEM-6/CHE	-604	A/2013			
ix)	Solu	utions having same osmotic pressure are called					
	a)	Isotonic solutions					
	b)	Dilute solutions					
	c)	Saturated solutions					
	d)	Ideal solutions.					
x)	Whi	ich type of membrane is	s use	d in dialysis ?			
	a)	Porous	b)	Micro-porous			
	c)	Semipermeable	d)	None of these.			
xi)	In r	everse osmosis the effe	ct of	temperature is			
	a)	significant	b)	negligible			
	c)	very large	d)	very small.			
xii)	In r	nembrane process, flux	k is p	proportional to pressure			
	as						
	a)	inversely	b)	directly			
	c)	square	d)	square – root.			

4

6436

- 2. Why is nanofiltration also known as loose RO?
- Deduce equation for mass transport of pervaporation for a pure liquid (ideal case).
- 4. Write short notes on the following:
 - i) Membrane module
 - ii) Isotropic membranes.
- 5. Discuss in brief the methodology of conducting SDS-PAGE Electrolysis.
- 6. Explain the phenomenon of extracorporeal haemodialysis. What type of membrane is used for dialysis? 4 + 1

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. What is liquid membrane? Explain different types of liquid membrane with example. Derive flux expression for facilitated transport liquid membrane. Give a flow diagram for the emulsion liquid membrane. 2 + 5 + 5 + 3

6436 5 [Turn over

- 9. An RO module is to be designed for production of 1000 cm ³/day of potable water containing 200 ppm salt from brackish water containing 34 g salt per litre. An asymmetric cellulose acetate membrane with an inherent salt rejection ability of 98% is to be used. The water permeation coefficient is 0.035 m ³/m ². day. atm. The recovery of feed water should be 45% and an operating pressure of 50 atm gauge is suggested. The permeate side may be assumed to be in atmospheric pressure. If spiral wound modules of 5 m ² effective membrane area each is used, how many modules in parallel are required? The osmotic pressure of 5% brine (linear in salt concentration) is 39.5 atm.
- 10. a) Discuss the detailed principles of iso-electric precipitation.
 - b) The solubility of a protein is $15~g/dm^3$ at ammonium sulphate concentration of 2.2~M and $0.25~g/dm^3$ at 3.0~M. Calculate the solubility of the protein at 3.8~M of the salt.

6436

- c) In a chromatographic separation column use for the adsorption of solute A onto an adsorbent solid *B*, the atmospheric isotherm is given by
 - $C_s = k_1 \ C_L^3 = f(\ C_L)$, where the C_s is mg solute adsorbed/mg adsorbent C_L is the solute concentration in liquid medium (mg solute/ml liquid) and k_1 is constant and $k_1 = 0.2$ (mg solute adsorbed/mg adsorbent)/(mg solute/ml liquid) 3 . The porosity (void fraction) of the packed column $\varepsilon = 0.35$. The cross-sectional area of the column is $10 \ \mathrm{cm}^2$ and M is 5 gm adsorbent per $100 \ \mathrm{ml}$ column volume. If the volume of the liquid added is $\Delta V = 250 \ \mathrm{ml}$,
 - i) determine the position (ΔX) of the solute band in the column when the solute concentration in the liquid phase at equilibrium is
 - $C_L = 5 \times 10^{-2} \text{ mg/ml}.$
 - ii) find the ratio of the travel distance of solute A (L_A) to that of solvent B in the column (Rf) when $C_L = 5 \times 10^{-2}$ mg/ml. 4 + 4 + 7
- 11. Write down a few applications of pervaporation process. What are the problems of pervaporation over other modern separation processes? Deduce the model equations for mass transport of pervaporation for a pure liquid (ideal case).

4 + 3 + 8

6436

7

[Turn over