

HAUTE ÉCOLE DE NAMUR-LIÈGE-LUXEMBOURG

UE-IG226-Modélisation de l'évènementiel

Programmation linéaire

Utilisation du solveur d'Excel pour résoudre un problème de programmation linéaire

Exemple du chocolatier :

$$x_{1}, x_{2} \ge 0$$

$$\begin{cases} x_{1} + 3x_{2} \le 18 \\ x_{1} + x_{2} \le 8 \\ 2x_{1} + x_{2} \le 14 \end{cases}$$

$$max(x_{1} + 1.5x_{2})$$

Remarque:

La fonction économique a été divisée par 50 par rapport au syllabus.

Ceci ne change rien à la résolution du problème, il suffit de multiplier la valeur finale de la fonction économique par 50.

Créer une feuille Excel et y introduire les formules de cette manière :

	SOMME	•		=C3+3*C4	
1	Α	В	С	D	Е
1					
2	Variables				
3		x1			
4		x2			
5					
6	Contraintes	1ère	=C3+3*C4		
7		2ème		Ī	
8		3ème			
9					
10	FE				
11					

Donner une valeur initiale nulle à chacune des variables.

Cliquer sur le menu « Formules » puis « vérification des formules » puis « Afficher les formules » et l'affichage doit être :

D10 ▼ (f _x							
1	Α	В	С	D			
1							
2	Variables						
3		x1	0				
4		x2	0				
5		0					
6	Contraintes	1ère	=C3+3*C4	18			
7		2ème	=C3+C4	8			
8		3ème	=2*C3+C4	14			
9							
10	FE		=C3+1,5*C4				
11							

Définir le PL à l'aide du Solveur : Menu « Données », « Solveur ».

- Objectif à définir : c'est la fonction économique
- Elle doit être maximale
- Cellules variables : les valeurs de x_1 et x_2
- Cocher la case 'Rendre les variables sans contrainte non négatives' afin d'éviter d'introduire les contraintes de signe
- Sélectionner la méthode de résolution du simplexe

- Ajouter les contraintes, une par une :
 - o Cliquer sur le bouton « Ajouter »
 - o Remplir les champs de cellules et cliquer sur « Ajouter »

Lorsque tous les champs sont remplis, on a :

Il ne reste plus qu'à cliquer sur le bouton « Résoudre ».

Solutions : $x_1 = 3$ et $x_2 = 5$

Pour obtenir la valeur de la fonction économique, il suffit d'annuler l'affichage des formules (menu « Formules »).

Le maximum vaut 10.5.