Low Noise Amplifiers

Transceiver Performance

Typical GSM Receiver

- Minimum detectable signal ($P_{i,mds}$) of -102 dBm
- A min BER of 10⁻³
- BER of 10⁻³ corresponds to a SNR_{out} of about 9-12 dB (GMSK)

$$P_{i,mds} = -174 \text{ dBm} + 10 \log[\Delta f (Hz)] + F (dB) + SNR_{out,min} (dB), \Delta f = 1 \text{ MHz}$$

Required range for the noise figure of the receiver < 3 dB

Gain

- Gain large enough to minimize noise contribution of subsequent stages.
- This leads to compromise between NF and linearity. Higher gain will degrade linearity but improve NF.
- For heterodyne output of LNA matched to i/p of mixer (50 ohms). Here gain implies power gain.
- However where uniform matching across the chain cannot be done, voltage gain is used.

Input and Output Matching

- · Maximum gain occurs for simultaneous conjugate match at the input and output (if the device is stable).
- · Input matching: 50 ohms
 - Reflection coefficient $\Gamma_{\text{in}} = \frac{Z_{in} R_0}{Z_{in} + R_0}$
 - For $Z_{in} = R_0 + \Delta R$ we have $\Gamma_{in} = \frac{\Delta R}{2R_0 + \Delta R}$
 - For Γ_{in} of around -17 dB we need $\Delta R \approx 15$ ohms.
- ·Output matching: 50 ohms for heterodyne transceiver.

Stability

Stern Stability factor:

$$K = \frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{21}||S_{12}|} \quad \text{with } \Delta = S_{11}S_{22} - S_{12}S_{21}$$

If K > 1 and $\Delta < 1$ for all frequencies the circuit is unconditionally stable for all passive sources and loads.

Unconditional stability is not required if the source and load impedances Z_S and Z_L are known e.g. heterodyne receiver.

Stability is achieved if

$$\operatorname{Re}\left[Z_{in} + Z_{s}\right] > 0$$
 and $\operatorname{Re}\left[Z_{out} + Z_{L}\right] > 0$

In practice good grounding and power supply decoupling (using decoupling capacitors) is required to reduce the wire inductance and establish the AC grounding.

Linearity

Peak power may be 2 dB above average. Hence LNA should have high enough linearity to avoid spreading from Tx to Rx till -18 dBm i/p power. So say P_{1dB} of -15dBm can provide good compromise between spreading and Rx signal detection.

- With i/p power levels being lower than P_{1dB_1} usually linearity is not a problem.
- Wideband receivers like UWB, SDR and cognitive can pose a problem on linearity since a strong interferer in the presence of IM distortion can spread and affect the desired band.

Bandwidth

- BW should be large enough to accommodate band.
- Less than 1 dB variation over band.
- BW may be switched using various techniques like N path filtering, switching tank.

BJT equations

Table 4.2 SUMMARY OF THE BJT CURRENT-VOLTAGE RELATIONSHIPS IN THE ACTIVE MODE

$$i_{C} = I_{S} e^{\nu_{BE}/V_{T}}$$

$$i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right) e^{\nu_{BE}/V_{T}}$$

$$i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right) e^{\nu_{BE}/V_{T}}$$

Note: For the pnp transistor, replace v_{BE} with v_{EB} .

$$i_C = \alpha i_E$$
 $i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$
 $i_C = \beta i_B$ $i_E = (\beta + 1)i_B$
 $\beta = \frac{\alpha}{1 - \alpha}$ $\alpha = \frac{\beta}{\beta + 1}$

 V_T = thermal voltage = $\frac{kT}{q} \approx 25 \text{ mV}$ at room temperature

$$r_o = V_A / I_C$$

Fig. 4.15 (a) Conceptual circuit for measuring the i_{C} - v_{CE} characteristics of the BJT. (b) The i_{C} - v_{CE} characteristics of the BJT.

Table 4.3 RELATIONSHIPS BETWEEN THE SMALL-SIGNAL MODEL PARAMETERS OF THE BJT

Model Parameters in Terms of DC Bias Currents:

$$g_m = \frac{I_C}{V_T}$$
 $r_e = \frac{V_T}{I_E} = \alpha \left(\frac{V_T}{I_C}\right)$ $r_o = \frac{V_A}{I_C}$

In terms of g_m :

$$r_e = \frac{\alpha}{g_m} \left(r_m = \frac{\beta}{g_m} \right)$$

In terms of re:

$$g_m = \frac{\alpha}{r_e}$$
 $r_{\pi} = (\beta + 1)r_e$ $g_m + \frac{1}{r_{\pi}} = \frac{1}{r_e}$

Relationships between α and β :

$$\beta = \frac{\alpha}{1-\alpha}$$
 $\alpha = \frac{\beta}{\beta+1}$ $\beta+1 = \frac{1}{1-\alpha}$

More generally, $|z| = \frac{\beta_{complex}}{|z|}$

 g_m

r_b 100 ohms g_m 40 mA/V C_μ 12 fF C_π 1fF r_o 100 Kohms r_c low	Parameter	Typical values
C_{μ} 12 fF C_{π} 1fF r_{o} 100 Kohms	r_b	100 ohms
C_{π} 1fF r_o 100 Kohms	g_m	40 mA/V
r_o 100 Kohms	C_{μ}	12 fF
0	C_{π}	1fF
r_c low	r_o	100 Kohms
	r_c	low
r_{π} 1 Kohms	r_{π}	1 Kohms

$$\overline{i_{b,n}^2} = 2qI_B \Delta f$$
 , $\overline{i_{c,n}^2} = 2qI_C \Delta f = 2kTg_m \Delta f$,

 $q \Rightarrow$ charge of electron (absolute value) = 1.6 x 10⁻¹⁹ Coulomb

Equivalent noise current

When I/P is open,

$$\overline{i_n^2} = \left(\overline{i_{c,n}^2} + \beta_{complex}^2 \overline{i_{b,n}^2}\right) / \beta_{complex}^2 = \overline{i_{b,n}^2} + \frac{\overline{i_{c,n}^2}}{\beta_{complex}^2} \approx \overline{i_{b,n}^2} = 2qI_b = \frac{2qI_c}{\beta_{complex}} = \frac{2kTg_m}{\beta_{complex}}$$

When I/P is shorted

$$\overline{i_o^2} \approx g_m^2 \overline{v_n^2} \left| \frac{Z_\pi}{Z_\pi + r_b} \right|^2 = \frac{\overline{v_n^2}}{\left| Z_\pi + r_b \right|^2} \left| g_m Z_\pi \right|^2 = \frac{\beta_{complex}^2 \overline{v_{r,b}^2}}{\left| Z_\pi + r_b \right|^2} + \overline{i_{c,n}^2} \qquad Ignoring \ r_b$$

$$\Rightarrow \overline{v_n^2} = \overline{v_{r,b}^2} + \left(\overline{i_{c,n}^2} \right) \frac{\left| Z_\pi + r_b \right|^2}{\beta_{complex}^2} \approx \overline{v_{r,b}^2} + \left(\overline{i_{c,n}^2} \right) \frac{\left| Z_\pi \right|^2}{\beta_{complex}^2} = 4kTr_b + \frac{2kT}{g_m}$$

BJT Noise Figure

$$F = \frac{SNR_{in}}{SNR_{out}} = \frac{S_i / N_i}{S_{out} / N_{out}} = \frac{1}{G_A} \frac{G_A N_i + N_a}{N_i} = 1 + \frac{N_a / G_A}{N_i} = 1 + \frac{\overline{v_n^2 + R_s^2 \overline{i_n^2}}}{\overline{v_s^2}}$$

At lower frequencies, $\beta_{complex} = \beta$

$$F = 1 + \frac{\overline{v_n^2 + R_s^2 \overline{i_n^2}}}{\overline{v_s^2}} = 1 + \frac{4kTr_b + \frac{2kT}{g_m}}{4kTR_s} + \frac{R_s^2 2qI_c}{\beta 4kTR_s}$$

$$F = 1 + \frac{r_b}{R_s} + \frac{1}{2g_m R_s} + \frac{g_m R_s}{2\beta}$$
, Taking $2kTg_m = 2qI_c$, $g_m = \frac{I_c}{V_T} = \frac{I_c q}{kT}$

At higher frequencies,

$$F \approx 1 + \frac{r_b}{R_s} + \frac{1}{2g_m R_s} + \frac{g_m R_s}{2\beta_{complex}} \approx 1 + \frac{r_b}{R_s} + \frac{1}{2g_m R_s} + \frac{g_m R_s \beta}{2\beta_{complex}^2}$$

$$= 1 + \frac{r_b}{R_s} + \frac{1}{2g_m R_s} + \frac{g_m R_s}{2\beta} \left[1 + \omega^2 r_\pi^2 C_\pi^2 \right]$$

Input referred o/p noise

Optimal Source Impedance

We had earlier seen that, $F(Y_s)$

$$=F_{\min}+\frac{R_n}{G_s}\left|Y_{opt}-Y_s\right|^2=F_{\min}+\frac{4R_n\left|\Gamma_s-\Gamma_{opt}\right|^2}{\left(1-\left|\Gamma_s\right|^2\right)\left|1+\Gamma_{opt}\right|^2}$$

Proof:

Let,
$$\overline{v_s^2} = 4 kTR_s$$
, $v_n^2 = 4kTR_n$, $i_n^2 = 4kTG_n$

$$F = 1 + \frac{N_a / G_A}{N_i} = 1 + \frac{v_n^2 + i_n^2 R_s^2}{\overline{v_s^2}} = 1 + \frac{R_n + G_n R_s^2}{R_s} = 1 + \frac{R_n}{R_s} + G_n R_s$$

For optimum value of R_s , $\frac{dF}{dR_s} = 0$, from which the optimum value of Rs is given by, \Rightarrow

$$R_{s,opt} = \sqrt{\frac{R_n}{G_n}} = \sqrt{\frac{\overline{v_n^2}}{\overline{i_n^2}}}$$

$$\Rightarrow F_{\min} = 1 + G_n R_{s,opt} + \frac{R_n}{R_{s,opt}} = 1 + 2\sqrt{R_n G_n}$$

$$\Rightarrow F - F_{\min} = \frac{R_n}{R_s} + G_n R_s - 2\sqrt{R_n G_n} = \frac{R_n}{R_s} \left[1 + \left(\frac{R_s}{R_{opt}} \right)^2 - 2\frac{R_s}{R_{opt}} \right] = \frac{R_n}{R_s} \left| \frac{R_s}{R_{opt}} - 1 \right|^2 = R_n R_s \left| G_{opt} - G_s \right|^2$$

$$\Rightarrow F = F_{\min} + R_n R_s |G_{opt} - G_s|^2$$

More generally
$$F(Y_s) = F_{\min} + \frac{R_n}{G_s} |Y_{opt} - Y_s|^2$$

Optimal R_s for a BJT

$$\overline{v_n^2} = 4kTR_n = 2kT\left[2r_b + \frac{1}{g_m}\right] \Rightarrow R_n = \frac{1}{2}\left[2r_b + \frac{1}{g_m}\right]$$

$$\overline{i_n^2} = 4kTG_n = \frac{2kTg_m}{\beta_{complex}} \Rightarrow G_n = \frac{g_m}{2\beta_{complex}}$$

$$R_{s,opt} = \sqrt{\frac{R_n}{G_n}} = \frac{\sqrt{\beta_{complex}(1 + 2g_m r_b)}}{g_m}, NF_{min} = 1 + 2\sqrt{R_n G_n} = 1 + \sqrt{(1 + 2g_m r_b)/\beta_{complex}}$$

To decrease NF_{min} we need to:

- 1. Decrease r_b (increase transistor size)
- 2. Decrease g_m (decrease I_C)
- 3. Increase β (very little scope)

Conjugate Matching and Noise Matching

- Noise matching does not yield the maximum gain (conjugate match)
- Ideal Target:
 - o $R_{S,opt} = Z_{in}^* = 50$ ohms for simultaneous conjugate, noise and 50 ohm impedance match.
- Methods:
 - o Adjust transistor size and bias to obtain $R_{S,opt}$ = 50 ohms (noise match)as much as possible.
 - o If no further improvement can be done, then simply match i/p so that $Z_{in}=50$ ohm

CE BJT linearity

$$I_C \simeq I_S \exp\left(\frac{V_{BE0} + V_{in}}{V_T}\right)$$

$$= I_S \exp\frac{V_{BEO}}{V_T} \left[1 + \frac{V_{in}}{V_T} + \frac{1}{2} \left(\frac{V_{in}}{V_T}\right)^2 + \frac{1}{6} \left(\frac{V_{in}}{V_T}\right)^3 + \cdots\right]$$

We identify the non-linear coefficients:

$$\alpha_1 = I_S \exp \frac{V_{BEO}}{V_T} \frac{1}{V_T}$$

$$\alpha_3 = I_S \exp \frac{V_{BEO}}{V_T} \frac{1}{6} \left(\frac{1}{V_T}\right)^3$$

It results that we have:

$$A_{IP3} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1}{\alpha_3} \right|} = 2\sqrt{2}V_T$$

This voltage corresponds to -23 dBV or -10 dBm across 50 ohms. Additional linearization is required for larger IIP3.

Inductive Degeneration

$$\frac{v_e}{L_e s} = \frac{v_b - i_{in} \left(r_b + \frac{1}{sC_{\pi}} \right)}{L_e s} = i_{in} + g_m v_{b'e} = i_{in} \left(1 + \frac{g_m}{sC_{\pi}} \right)$$

$$Z_{in} = \frac{v_b}{i_{in}} = r_b + \frac{1}{sC_{\pi}} + sL_e + g_m \frac{L_e}{C_{\pi}}$$

with proper choice of L_e , g_m and C_π we can select:

$$sL_e + \frac{1}{sC_{\pi}} = 0$$

$$Z_{in} = r_b + g_m \frac{L_e}{C_{\pi}} = 50 \,\Omega$$

$$G_m = i_c/v_{in}$$
 can be made dependent only on L_e (Prove it)

Hence linearity is improved

Neutralization and Cascoding

- K indicates that stability improves as $|S_{12}|$ or $(|z_{12}|$ or $|y_{12}|)$ decreases.
- This can be accomplished by neutralizing the input-output capacitance path:

 L_1 is selected to resonate with C_{μ} at the frequency of interest Problem: In RFIC the floating inductor introduces parasitic capacitances loading the input and output nodes.

Reduced feedback can be achieved with the cascode configuration.

18

Cascode BJT LNA

- Current fed to both transistor by the same bias line.
- Low distortion due to the inductance L_e.
- Stability improves (since back propagation of of signal is minimized).
- Slight degradation in Noise Figure.

MOSFET characteristics

Model as given in the book by Johns and Martin

Saturation region

Active (or Pinch-Off) Region (
$$V_{GS} > V_{tn}, V_{DS} \ge V_{eff}$$
)

$$\begin{split} I_D &= \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{tn})^2 [1 + \lambda (V_{DS} - V_{eff})] \\ \lambda &\approx \frac{1}{L \sqrt{V_{DS} - V_{eff}} + \Phi_0} \\ \end{split} V_{tn} &= V_{tn-0} + \gamma (\sqrt{V_{SB} + 2\varphi_F} - \sqrt{2\varphi_F}) \\ V_{eff} &= V_{GS} - V_{tn} \\ &= \sqrt{\frac{2I_D}{\mu_n C_{ox} W/L}} \end{split}$$

Small-Signal Model (Active Region)

$g_m = \mu_n C_{ox} \left(\frac{W}{L}\right) V_{eff}$	$g_{\text{m}} = \sqrt{2\mu_{\text{n}}C_{\text{ox}}(\text{W/L})I_{\text{D}}}$
$g_m = \frac{2l_D}{V_{eff}}$	$g_s = \frac{\gamma g_m}{2\sqrt{V_{SB} + 2\phi_F }}$
$r_{ds} = \frac{1}{\lambda I_{D}}$	$g_s \equiv 0.2g_m$
$\lambda = \frac{k_{\text{rds}}}{2L\sqrt{V_{DS} - V_{\text{eff}} + \Phi_0}}$	$k_{rds} = \sqrt{\frac{2K_s\epsilon_0}{qN_A}}$
$C_{gs} = \frac{2}{3}WLC_{ox} + WL_{ov}C_{ox}$	$C_{gd} = WL_{ov}C_{ox}$
$C_{sb} = (A_s + WL)C_{js} + P_sC_{j-sw}$	$C_{js} = \frac{C_{j0}}{\sqrt{1 + V_{SB}/\Phi_0}}$
$C_{db} = A_d C_{jd} + P_d C_{j-sw}$	$C_{jd} = \frac{C_{j0}}{\sqrt{1 + V_{DB}/\Phi_0}}$

Typical Values for a 0.8-µm Process

$V_{tn} = 0.8 \text{ V}$	$V_{tp} = -0.9 \text{ V}$
$\mu_n C_{ox} = 90 \mu A/V^2$	$\mu_{\rm p}C_{\rm ox}=30~\mu{\rm A/V}^2$

Model as given in the book by Johns and Martin

$C_{ox} = 1.9 \times 10^{-3} \text{ pF/(\mu m)}^2$	$C_j = 2.4 \times 10^{-4} \text{ pF/(}\mu\text{)}$
$C_{j-sw} = 2.0 \times 10^{-4} \text{ pF/}\mu\text{m}$	$C_{gs(overlap)} = 2.0 \times 10^{-4} \text{ pF/}\mu\text{m}$
$\phi_{F} = 0.34 \text{ V}$	$\Phi_0 = 0.9 \text{ V}$
$\gamma = 0.5 \text{ V}^{1/2}$	$t_{ox} = 0.02 \mu m$

$$g_m \approx 0.42 \text{ mS for W/L} = 10, I_D = 100 \text{ }\mu\text{A}, \mu_n C_{ox} = 90 \text{ }\mu\text{A/V}^2$$

$$r_{ds} = r_o = \frac{1}{\lambda I_D} = \frac{1}{0.02 \times 100 \times 10^{-6}} = 500 \text{ Kohms}$$

MOSFET noise (CS configuration)

Saturation region small signal model

$$\overline{i_d^2} = 4kT\gamma g_m$$

Gate induced thermal noise

$$v_{r,g}^2 = 4kTR_g$$
, $R_g \approx \frac{1}{5g_{d0}}$ (Typical value 20 ohms), (where g_{d0} is the

drain - source conductance at zero $V_{\rm DS}$) is not a real resistor, It only responds to noise currents and voltages but not to deterministic signals.

$$\overline{\boldsymbol{v}_{n}^{2}} = \frac{\overline{\boldsymbol{i}_{d}^{2}} + \left(\overline{\boldsymbol{v}_{r,g}^{2}}\right)\boldsymbol{g}_{m}^{2}}{\boldsymbol{g}_{m}^{2}}, \, \boldsymbol{g}_{m}^{2}\overline{\boldsymbol{i}_{n}^{2}}|\boldsymbol{Z}_{in}|^{2} = \overline{\boldsymbol{i}_{d}^{2}} \Rightarrow \overline{\boldsymbol{i}_{n}^{2}} = \overline{\boldsymbol{i}_{d}^{2}} / \left(\boldsymbol{g}_{m}^{2}|\boldsymbol{Z}_{in}|^{2}\right)$$

$$\Rightarrow F = 1 + \frac{\overline{v_{n}^{2}} + \overline{i_{n}^{2}} (R_{s} + R_{g})^{2}}{\overline{v_{s}^{2}}} = 1 + \frac{\overline{v_{r,g}^{2}}}{\overline{v_{s}^{2}}} + \frac{\overline{i_{d}^{2}}}{g_{m}^{2} \overline{v_{s}^{2}}} + \frac{(R_{s} + R_{g})^{2} i_{n}^{2}}{\overline{v_{s}^{2}}} = 1 + \frac{R_{g}}{R_{s}} + \frac{4kT\gamma g_{m}}{4kTR_{s}g_{m}^{2}} + \frac{(R_{s} + R_{g})^{2} 4kT\gamma g_{m}}{4kTR_{s}g_{m}^{2} |Z_{in}|^{2}}$$

$$\approx 1 + \frac{R_{g}}{R_{s}} + \frac{\gamma}{R_{s}g_{m}} + \frac{(R_{s} + R_{g})^{2} \gamma}{R_{s}g_{m} |Z_{in}|^{2}}$$

At dc
$$|Z_{in}| = \infty \Rightarrow F = 1 + \frac{R_g}{R_s} + \frac{\gamma}{R_s g_m}$$
, If gate induced thermal noise is ignored, $F = 1 + \frac{\gamma}{R_s g_m}$

At higher frequencies we consider
$$|Z_{in}| = \frac{1}{\omega C_{gs}}$$
, $F = 1 + \frac{R_g}{R_s} + \frac{\gamma}{R_s g_m} + \frac{\gamma \left(R_s + R_g\right)^2 \omega^2 C_{gs}^2}{R_s g_m} = 1 + \frac{R_g}{R_s} + \frac{\gamma}{R_s g_m} \left[1 + \omega^2 \left(R_s + R_g\right)^2 C_{gs}^2\right]$

Alternate Derivation

$$I_{out} = g_{m}v_{gs} + i_{d} \qquad ---- (1)$$

$$V_{s} = \left(R_{s} + R_{g}\right) \times v_{gs} \times sC_{gs} + v_{gs} = v_{gs} \left[sC_{gs}(R_{s} + R_{g}) + 1\right]$$

Now substituti ng v_{gs} from eqn (1) above we get,

$$V_{s} = \frac{\left(I_{out} - i_{d}\right)}{g_{m}} \left[sC_{gs}(R_{s} + R_{g}) + 1\right]$$

When $i_{d} = 0$ (noiseless case)

$$\frac{I_{out}}{V_s} = \frac{g_m}{sC_{gs}(R_s + R_g) + 1} = \frac{g_m}{1 + j\omega C_{gs}(R_s + R_g)} = G_m \text{ (say!)}$$

Contd

 G_m represents the overall transcond uctance between i/p voltage and output current.

Hence total o/p referred noise current due to $\overline{v_{r,g}^2}$ and $\overline{v_s^2}$ is given by,

$$4kT(R_s + R_g) \times |G_m|^2$$

Hence,
$$NF = \frac{4kT(R_s + R_g) \times |G_m|^2 + i_d^2}{4kTR_s \times |G_m|^2}$$

$$= 1 + \frac{R_g}{R_s} + \frac{\gamma}{R_s g_m} \left[1 + \omega^2 C_{gs}^2 (R_s + R_g)^2 \right]$$

CS MOSFET

- Higher Linearity using inductive degeneration.
- Wideband matching difficult.

CG Noise

Input impedance is low:

$$Z_{in} = \frac{1}{g_m + g_{mb} + sC_{gs}}$$
 (prove it)

$$F = 1 + \frac{\overline{v_n^2} + \overline{i_n^2} R_s^2}{\overline{v_s^2}} = 1 + \frac{\overline{i_n^2} R_s^2}{4kTR_s} = 1 + \frac{\overline{i_d^2} R_s^2}{4kTR_s}$$

$$=1 + \frac{4\gamma \frac{kTg_m}{4kTG_s}}{4kTG_s} = 1 + \frac{\gamma g_m}{G_s} > 1 + \gamma = \frac{2.2 dB \text{ (for } \gamma = 2/3)}{g_s}$$

- ·Short channel MOSFETs have larger value of γ .
- · Parasitics and other noise sources will add additional noise.
- · Easier 50 ohms matching over wideband. However resistive matching will add 3 dB noise.

Scaling Rules

In classical noise theory the noise figure is a function of the source admittance Y_s and can be written as,

$$F(Y_s) = F_{\min} + \frac{R_n}{G_s} |Y_s - Y_{opt}|^2$$

$$g_m = \sqrt{2\mu_n C_{ox}(\frac{W}{L}) I_D} = \frac{2I_D}{V_{GS} - V_{Tn}}$$

$$F_{\min} \approx 1 + \frac{f}{f_T} \sqrt{\gamma \delta(1 - |c|^2)} \qquad f_T = \frac{1}{2\pi} \frac{g_m}{C_{gs}}$$

$$\gamma = 2/3$$
, $\delta = 4/3$, $c = j0.395$ (Typical values) (see book by Thomas Lee)

These expressions indicate that F_{\min} is minimized for large $f_T \Rightarrow$ large g_m . This indicates that we should:

- · Select the shortest gate length available.
- · Use the largest current allowable by the power budget.
- · Use the largest width allowable within power budget.

Conjugate Matching and Noise Matching

- Noise matching does not yield the maximum gain (conjugate match)
- Ideal Target:
 - o $Z_{S,opt} = Z_{in}^* = 50$ ohms for simultaneous conjugate, noise and 50 ohm impedance match.
- Methods:
 - o Adjust transistor size and bias to obtain $Z_{S,opt} = 50$ ohms (noise and conjugate match) as much as possible.
 - o If no further improvement can be done, then simply match i/p so that Z_{in} =50 ohm (impedance match)

Common Source Input Matching with feedback capacitor

Starting from:
$$v_{dg}sC_F + v_{ds}\left(\frac{1}{R_L} + sC_L\right) + g_m v_{gs} = 0, v_{dg} = v_{ds} - v_{gs}$$

and rearranging: $v_{gs}(sC_F - g_m) = v_{ds}(sC_F + \frac{1}{R_L} + sC_L)$

$$i_{in} = v_{gs} s C_{gs} + v_{gd} s C_F = v_{gs} \left(s C_{gs} + s C_F - \frac{v_{ds}}{v_{gs}} s C_F \right) = Y_{in} v_{gs}$$

results in the impedance Y_{in} - sC_{gs} being:

$$Y_{in}^{'} = Y_{in} - sC_{gs} = sC_F \frac{1 + sC_LR_L + g_mR_L}{1 + s(C_L + C_F)R_L}$$

...Contd

$$\operatorname{Re}[Y_{in}] = R_L C_F \omega^2 \frac{C_F + g_m R_L (C_L + C_F)}{1 + R_L^2 (C_L + C_F)^2 \omega^2}$$

$$\operatorname{Im}[Y_{in}] = C_F \omega \frac{R_L^2 C_L (C_L + C_F) \omega^2 + 1 + g_m R_L}{1 + R_L^2 (C_L + C_F)^2 \omega^2}$$

If $g_m R_L >> 1$, $C_L >> C_F$ and $\omega \approx 1/(R_L C_L)$, the expression reduces to:

$$\operatorname{Re}[Y_{in}] = \frac{g_m}{2} \frac{C_F}{C_I} = \operatorname{Re}[Y_{in}]$$
 \rightarrow Need to make this equal to 1/50 ohms⁻¹

Alternatively a resistance in series/parallel can be added but that will increase NF.

$$\operatorname{Im}[Y_{in}] = C_F \omega \left(1 + \frac{g_m R_L}{2} \right) \Rightarrow \operatorname{Im}[Y_{in}] = \omega \left[C_F \left(1 + \frac{g_m R_L}{2} \right) + C_{GS} \right] \rightarrow \operatorname{Need to design} L_g \text{ such}$$

that this value is canceled.

- · Matching is narrowband
- $\cdot C_L$ can change o/p loading.

Inductive Degeneration

$$\frac{v_s}{L_s s} = \frac{v_g - i_{in}(1/C_{gs}s)}{L_s s} = i_{in} + g_m v_{gs} = i_{in} \left(1 + \frac{g_m}{C_{gs}s}\right)$$

$$Z_{in} = \frac{v_g}{i_{in}} = \frac{1}{C_{gs}s} + L_s s + g_m \frac{L_s}{C_{gs}}$$

With proper choice of L_s , g_m and C_{gs} we can select:

$$L_s s + \frac{1}{C_{gs} s} = 0$$

$$Z_{in} = g_m \frac{L_s}{C_{gs}} = 50 \,\Omega$$
 or add a resistance in series to match i/p to 50 ohms

$$G_{m} = \frac{i_{D}}{v_{in}} = \frac{g_{m}}{(1 - \omega^{2}C_{gs}L_{s}) + j\omega g_{m}L_{s}} = \frac{1}{j\omega_{r}L_{s}} \text{ for } \omega_{r}L_{s} = \frac{1}{\omega_{r}C_{gs}}$$

- · Improves linearity (due to negative feedback).
- $\cdot \, Matching \, does \, not \, lead \, to \, increase \, in \, \, NF \, since \, components are \, reactive.$
- Try to derive the NF of the inductively degenerated CS LNA.

Linearity of degenerated CS stage

 $I_D = \alpha_1 V_{in} + \alpha_2 V_{in}^2 + \alpha_3 V_{in}^3$ Here V_{in} refers to the ac component

$$\alpha_{1} = \frac{\partial I_{D}}{\partial V_{in}}\Big|_{V_{in0}}, \alpha_{2} = \frac{1}{2} \frac{\partial^{2} I_{D}}{\partial V_{in}^{2}}\Big|_{V_{in0}}, \alpha_{3} = \frac{1}{6} \frac{\partial^{2} I_{D}}{\partial V_{in}^{2}}\Big|_{V_{in0}}$$

$$I_D = K(V_{GS} - V_{TH})^2$$
, $g_m = \frac{\partial I_D}{\partial V_{GS}}\Big|_{V_{in0}} = 2K(V_{GS0} - V_{TH}) = 2K(V_{in0} - R_S I_{D0} - V_{TH})$

$$V_{GS} = V_{in} - R_S I_D \Rightarrow I_D = K (V_{in} - R_S I_D - V_{TH})^2$$

where
$$V_{in0}$$
 and I_{D0} are the dc bias values
$$V_{GS} = V_{in} - R_S I_D \Rightarrow I_D = K(V_{in} - R_S I_D - V_{TH})^2$$

$$\Rightarrow \frac{\partial I_D}{\partial V_{in}} = \frac{2}{2}K(V_{in} - R_S I_D - V_{TH}) \left(1 - R_S \frac{\partial I_D}{\partial V_{in}} \right) \Rightarrow \frac{\partial I_D}{\partial V_{in}} \Big|_{V_{in0}} = \frac{2}{2}K(V_{in0} - R_S I_{D0} - V_{TH}) \left(1 - R_S \frac{\partial I_D}{\partial V_{in}} \right|_{V_{in0}}$$

$$\Rightarrow \alpha_1 = \frac{\partial I_D}{\partial V_{in}}\Big|_{V} = \frac{g_m}{1 + g_m R_S},$$

$$\alpha_{2} = \frac{1}{2} \frac{\partial^{2} I_{D}}{\partial V_{in}^{2}} \bigg|_{V_{in}} = \frac{K}{\left(1 + g_{m} R_{S}\right)^{3}}, \alpha_{3} = \frac{1}{6} \frac{\partial^{3} I_{D}}{\partial V_{in}^{3}} \bigg|_{V_{in}} = \frac{-2K^{2} R_{S}}{\left(1 + g_{m} R_{S}\right)^{5}}$$

From these equations, IIP3 and IIP2 can be obtained as

$$A_{IIP3} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1}{\alpha_3} \right|} = \frac{(1 + g_m R_S)^2}{K} \sqrt{\frac{2}{3} \frac{g_m}{R_S}}, \quad A_{IIP2} = \frac{\alpha_1}{\alpha_2} = \frac{g_m}{K} (1 + g_m R_S)$$

MOSFET Cascode LNA

- Cascode noise does not appear at o/p so noise analysis same as inductor degenerated CS stage.
- Cascode device is unilateral so stability improves
- Linearity improved by L_s .

For ω high, C_{gs} acts as a short. Hence noise current will be shorted.

For ω medium, C_{gs} acts as low impedance

$$v_{gs} = -(i_d + g_m v_{gs}) \frac{1}{j\omega C_{gs}} \Rightarrow v_{gs} = \frac{-i_d}{g_m + j\omega C_{gs}}$$

$$g_{m}v_{gs} = \frac{-i_{d}}{1 + \frac{j\omega C_{gs}}{g_{m}}} = \frac{-i_{d}}{1 + \frac{j\omega}{\omega_{T}}} \approx -i_{d}$$

Hence the drain noise current does not pass through r_a .

For ω low, C_{gs} acts as high impedance,

$$v_{gs} = -(i_d + g_m v_{gs}) r_o \Rightarrow v_{gs} = \frac{-i_d r_o}{1 + g_m r_o}$$

$$g_m v_{gs} = \frac{-i_d g_m r_o}{1 + g_m r_o} \approx -i_d$$

Hence again the drain noise current does not pass through r_o .

Common Source with Resistive Feedback

$$I_{X} = g_{m}V_{X}$$

$$\Rightarrow \frac{V_{X}}{I_{X}} = \frac{1}{g_{m}} = R_{in}, \text{ For input matching, } R_{S} = R_{in} \Rightarrow R_{S} = \frac{1}{g_{m}}$$

$$\text{Also, } V_{out} = V_{X} - I_{X}R_{F} = V_{X} - g_{m}V_{X}R_{F}$$

$$\Rightarrow \frac{V_{out}}{V_{X}} = 1 - \frac{R_{F}}{R_{S}} \qquad (1)$$

$$\text{Further, } V_{X} = \frac{V_{in}R_{in}}{R_{in} + R_{S}} \Rightarrow \frac{V_{X}}{V_{in}} = \frac{R_{in}}{R_{in} + R_{S}} \qquad (2)$$

From (1) and (2),

$$\frac{\mathbf{A}_{v}}{\mathbf{V}_{in}} = \left(1 - \frac{R_{F}}{R_{S}}\right) \left(\frac{\mathbf{R}_{in}}{\mathbf{R}_{in} + \mathbf{R}_{S}}\right) = \frac{1}{2} \left(1 - \frac{R_{F}}{R_{S}}\right)$$

Common Source with Resistive Feedback (Noise analysis)

$$R_{out} = \frac{1}{2} (R_F + R_S) \text{(Prove it !)}$$

$$\overline{V_{n,out,M_1}^2} = \overline{I_d^2} R_{out}^2 = 4kTg_m \frac{(R_F + R_S)^2}{4},$$

$$\overline{V_{n,in,R_F}^2} = \frac{4kT}{R_F} R_S^2, \ \overline{V_{n,out,R_F}^2} = \overline{V_{n,in,R_F}^2} A_v^2 = \frac{4kT}{R_F} R_S^2 \frac{1}{4} \left(1 - \frac{R_F}{R_S} \right)^2 = \frac{kTR_S^2}{R_F} \left(1 - \frac{R_F}{R_S} \right)^2$$

Hence,

$$NF = 1 + \frac{\overline{V_{n,out,M_1}^2} + \overline{V_{n,out,R_F}^2}}{A_v^2 (4kTR_S)} = 1 + \frac{4kT\gamma g_m \frac{(R_F + R_S)^2}{4} + \frac{kTR_S^2}{R_F} \left(1 - \frac{R_F}{R_S}\right)^2}{\left(1 - \frac{R_F}{R_S}\right)^2 (kTR_S)}$$

$$=1+\gamma g_m R_S \left(\frac{R_S+R_F}{R_S-R_F}\right)^2 + \left(\frac{R_S}{R_F}\right)$$

$$=\infty$$
 [For $R_S = R_F = 50 \Omega$]

$$=1+\gamma$$
 [For R_F high]

For, $\gamma = 2/3$, and R_E high, the NF is equal to 2.2 dB

Some other topologies

Noise cancelling LNA

 A_1 is the gain of noise voltage of M_1 at the o/p. It can be shown that the noise voltage of auxillary amplifier can be used to cancel the noise of M_1 .

Current reuse LNA

