Homework Econometrics 2

工物 70 向杰 2017011842 2020/10/31

(1) 本小=乘法
$$H = \sum_{i=1}^{n} \hat{U}_{i} = 0 \sum_{i=1}^{n} (y_{i} - bX_{i})^{2}$$
, 一所称 $\frac{\partial H}{\partial b} = 0$. $-\sum_{i=1}^{n} 2X_{i} \cdot (y_{i} - \hat{\beta}X_{i}) = 0$

$$\sum_{i=1}^{n} X_{i} y_{i} = \sum_{i=1}^{n} \hat{\beta} X_{i}^{2}, \quad \hat{\beta} = \frac{\sum_{i=1}^{n} X_{i} y_{i}}{\sum_{i=1}^{n} X_{i}} \quad \text{即所求的估计量 } \hat{\beta}$$

(2) 考虑=3所性回归方程 yi=β,+β, xii+β, xii+μ, 根据OLS代数性质有 Σ, ûi=0, Σ, ûi xii=0, 将 xi xi xi和常数回归 xii=δ,+δ, xiz+n, 根据OLS同样有 Σ, ni=0, Σ, n, xiz=Σ, n, xii=0, ⇒ Σ, xin ûi= Σ, (δ,+δ, xiz+n)ûi=δ, Σ, ûi+δ, Σ, xizûi+Σ, n, ûi

$$= \sum_i \hat{F}_{i1} (Y_i - \hat{\beta}_i - \hat{\beta}_i X_{i1} - \hat{\beta}_i X_{i2}) = \sum_i \hat{F}_{i1} Y_i - \hat{\beta}_i \sum_i Y_{i1}^* = 0$$

由此可以解出日,可以看出第一条中得到的残差均值为的,所以是否包括常数不影响估计值(3)不是的,由一阶条件得到的是 叁 Xiûi=0,不能直接推断 瓮 lùi=0

(b)
$$\hat{\beta}_{i} = \frac{\sum_{i=1}^{n} (\chi_{i} - \bar{\chi})(\gamma_{i} - \bar{y})}{\sum_{i=1}^{n} (\chi_{i} - \bar{\chi})^{2}}, \quad \hat{\beta}_{o} = \bar{y} - \bar{\chi} \hat{\beta}_{i}, \quad M \hat{\beta}_{i} + \hat{\beta}_{o} \frac{\sum \chi_{i}}{\sum \chi_{i}^{2}} = \hat{\beta}_{i} + (\bar{y} - \bar{\chi} \hat{\beta}_{i}) \frac{\sum \chi_{i}}{\sum \chi_{i}^{2}}$$

$$\Rightarrow \frac{\bar{y} \sum \chi_{i}}{\sum \chi_{i}^{2}} + (I - \frac{\bar{\chi} \sum \chi_{i}}{\sum \chi_{i}^{2}}) \cdot \frac{\sum (\chi_{i} - \bar{\chi})(\gamma_{i} - \bar{y})}{\sum (\chi_{i} - \bar{\chi})^{2}} = \frac{\bar{y} \sum \chi_{i} \sum (\chi_{i} - \bar{\chi})^{2} + (\bar{\chi}_{i}^{2} \sum \chi_{i}^{2})}{\sum \chi_{i}^{2}} = \hat{\beta}_{i}, \quad \text{get} \quad \hat{\beta}_{i} = \hat{\beta}_{i}, \quad \text{Mf} \quad \hat{\beta}_{i} = \frac{\sum \chi_{i}}{\sum \chi_{i}^{2}} = 0, \quad \sum \chi_{i} = 0, \quad \sum \chi_{i}^{2} \geq 0, \quad \hat{\chi} \hat{\beta}_{i} = 0, \quad \hat{\lambda} \hat{\beta}_{i} = 0, \quad \hat{\lambda} \hat{\beta}_{i} = \hat{\lambda}_{i} = 0, \quad \hat{\lambda} \hat{\beta}_{i} = 0, \quad \hat{\lambda}$$

2. (1)用 Stata 计算得到各个年龄组的平均日吸烟量和样本数如下表:

N	mean	agegrp
283	7.674912	0
280	10.775	1
199	8.693467	2
45	2.022222	3
807	8.686493	Total

从以上统计结果不能看出吸烟数和年龄有线性关系,或者推断得到线性关系的可信度很低。

(2) 回归结果和 Stata 截屏如下,

根据回归结果,在控制了教育水平和禁烟政策之后,44.2805 的人群吸烟数目最多 $cigs = 0.1521 + 0.8223age - 0.00959age^2 - 0.4504educ - 2.7464restaurn$

> 7	Source	SS	df	MS	Numb	er of obs	=	80
_	Ì				F(4,	802)	=	10.7
> 8	Model	7739.48459	4	1934.8711	- Prob	E		0.000
> 0	riodel	7755.46455	- 3	1934.0/11.	, 1100		_	0.000
	Residual	144014.198	802	179.568826	6 R-sc	uared	=	0.051
> 0	1				V44	R-squared		0.046
> 3					Adj	K-Squareu	-	0.040
	Total	151753.683	806	188.280003	Root	MSE	=	13.
> 4								
> -	1		225700 027775	100			00120	2 1/2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
>]	cigs	Coet.	Std. Err.	t	P> t	[95% Co	ont.	Interval
> -	j							175
	age	.822327	.1541866	5.33	0.000	.5196	57	1.12498
> 4	2	0005000	0046770	F 74	0.000	042000		00520
> 5	agesq	0095886	.0016779	-5.71	0.000	012882	22	00629
taces o i	educ	4504	.1614857	-2.79	0.005	767384	15	133415
> 6	19000							
. 7	restaurn	-2.746372	1.09685	-2.50	0.012	-4.89946	86	593336
> 7	cons	.1521404	3.503322	0.04	0.965	-6.72462	23	7.02890
			7444 THE RESERVE				1.0	

(3) H_0 : β1 = 0, β2 = 0, β3 = 0; H_1 : β1, β2, β3 不全为零;

检验思路:确定一个显著性水平 α ,计算 p 值,若有 $p < \alpha$ 拒绝原假设。

在 1%和 5%的显著性水平下均可以拒绝原假设,因为三个数值 P均小于 1%

(4)在其他条件一样的情况下,是否实施禁烟政策对每天抽烟数的影响。

 H_0 : $\beta 4 = 0$; H_1 : $\beta 1 \neq 0$;

在 1%的显著性水平下不可以拒绝原假设,但在 5%的显著性水平下可以,因为 1%<P<5% (5)回归结果如下所示:

. reg cigs age agesq restaurn educ i.restaurn#c.edu

Source	SS	df	MS	Number of ob	s =	807
	100 - 0		B A (1/2)	F(5, 801)	=	8.61
Model	7740.79264	5 1	548.15853	Prob > F	=	0.0000
Residual	144012.89	801 1	79.791373	R-squared	=	0.0510
	2011/2/2011/2011/2010			Adj R-square	ed =	0.0451
Total	151753.683	806 1	88.280003	Root MSE	=	13.409
cig	Coef.	Std. Err	. t	P> t [9	5% Conf.	Interval]
age	.8225172	.1542982	5.33	0.000 .5	196405	1.125394
ageso	0095893	.001679	-5.71	0.0000	128849	0062936
restaurr	-2.357973	4.68395	-0.50	0.615 -11	.55224	6.836294
educ	4426885	.1851587	-2.39	0.0178	061421	0792349
restaurn#c.educ						
1	0306016	.3587693	-0.09	0.9327	348406	.6736375
_cons	.0502483	3.703441	0.01	0.989 -7.	219348	7.319844

偏效应表达式为 $\beta_4 + \beta_5$ ·educ, 教育对抽样数的偏效应在是否禁烟样本的不同。