Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных технологий и моделирования

Современные вычислительные технологии

Отчёт по заданию N21

Работу выполнила: Симакова И.В. Группа: 403

Москва 2021

Содержание

1.	Постановка задачи	3
2.	Метод дискретизации уравнения, расчетные формулы	3
3.	Результаты	5

1. Постановка задачи

Рассматривается стационарное уравнение диффузии:

$$\nabla \cdot (\mathbb{D}\nabla u) = f, \qquad (x,y) \in \Omega = (0;1)^2$$

Тензор диффуции имеет вид:

$$\mathbb{D} = \left(\begin{array}{cc} 1 & 0 \\ 0 & \epsilon \end{array}\right) = \left(\begin{array}{cc} dx & 0 \\ 0 & dy \end{array}\right)$$

Известно решение данной дифференциальной задачи (вариант 3):

$$u = \cos(\pi x) \cdot \cos(\pi y)$$

и вид граничных условий:

$$u|_{\Gamma_D} = g_D$$
$$(-\mathbb{D}\frac{\partial u}{\partial n})|_{\Gamma_N} = g_N$$

Используя данное в условии решение необходимо получить правую часть уравнения и граничные условия:

$$f(x,y) = -11\pi^2 \cos(\pi x) \cos(\pi y)$$
$$(-\mathbb{D}\frac{\partial u}{\partial n})|_{\Gamma_N} = (\mathbb{D}gradu, n) = ([-\pi \sin(\pi x) \cos(\pi y), 10\pi \cos(\pi x) \sin(\pi y)]^T, n)$$

2. Метод дискретизации уравнения, расчетные формулы

Рассматриваем структурированную квадратную сетку с шагом h=1/N. Дискретизация проводится методом конечных объёмов (МКО). В данном методе ищем приближенное решение u_h в центрах ячеек, это решение является кусочно-постоянным в ячейках. Введем вспомогательную переменную $q=-\mathbb{D}\nabla u$ - плотность диффузионного потока. Перепишем уравнение в виде системы:

$$\nabla q = f, \qquad q = -\mathbb{D}\nabla u$$

Проинтегрируем первое уравнение по ячейке Е:

$$\int_{E} (\nabla q) dV = \int_{E} f dV$$

Далее применяем теорему Остроградского-Гаусса (с учетом того, что граница ячейки состоит из конечного числа граней):

$$\int_{\delta E} (n \cdot q) dS = \sum_{e \in \partial E} \int_{e} (n \cdot q) dS = \int_{E} f dV$$

$$\sum_{e \in \partial E} \int_{e} (n \cdot q) dS = (q_{right} - q_{left} + q_{top} - q_{bottom}) h = (q_{i,i+1}^{j} - q_{i-1,i}^{j}) h + (q_{i}^{j,j+1} - q_{i}^{j-1,j}) h$$

где $q_{i,i+1}^j$ - аппроксимация плотности диффузионного потока от ячейки e_i^j к ячейке e_{i-1}^j через их общую грань в направлении нормали, внешней по отношению к e_i^j .

$$q_{top} = -d_y \frac{u_{ij+1} - u_{ij}}{h}$$

$$q_{bottom} = -d_y \frac{u_{ij} - u_{ij-1}}{h}$$

$$q_{right} = -d_x \frac{u_{i+1j} - u_{ij}}{h}$$

$$q_{left} = -d_x \frac{u_{ij} - u_{i-1j}}{h}$$

На границе области (Нейман):

$$q_{bottom} = 1/h \int_{(i-1)h}^{ih} 10\pi \cos(\pi x) \sin(\pi y) dx = 0 \qquad (y = 0)$$
$$q_{left} = 1/h \int_{(i-1)h}^{ih} -\pi \sin(\pi x) \cos(\pi y) dy = 0 \qquad (x = 0)$$

На границе области (Дирихле):

$$q_{top} = -d_y \frac{u_{\gamma} - u_{ij}}{h/2}$$

$$u_{\gamma} = 1/h \int_{\gamma} g_D dl = 1/h \int_{ih}^{(i+1)h} \cos(\pi x) \cos(\pi y) dx = 1/h \int_{ih}^{(i+1)h} -\cos(\pi x) dx \qquad (y = 1)$$

$$q_{right} = -d_x \frac{u_{\gamma} - u_{ij}}{h/2}$$

$$u_{\gamma} = 1/h \int_{\gamma} g_D dl = 1/h \int_{ih}^{(i+1)h} \cos(\pi x) \cos(\pi y) dy = 1/h \int_{ih}^{(i+1)h} -\pi \cos(\pi y) dy \qquad (x = 1)$$

Получаем матрицу коэффициентов A и вектор b:

$$A[.]_{ij} = u_{ij}$$

$$b_{ij} = \int_{ih}^{(i+1)h} \int_{jh}^{(j+1)h} f(x,y) dx dy (2d_x u_{\gamma,right} + 2d_y u_{\gamma,top} - q_{bottom} - q_{left}) =$$

$$= \int_{ih}^{(i+1)h} \int_{jh}^{(j+1)h} f(x,y) dx dy (2d_x u_{\gamma,right} + 2d_y u_{\gamma,top})$$

3. Результаты

$\epsilon=1$:

h	C_h - норма	$L_{2,h}$ - норма
1/32	0.001199	0.020053
1/64	0.000301	0.010021
1/128	7.526955e-05	0.005010

$\epsilon=10$:

h	C_h - норма	$L_{2,h}$ - норма
1/32	0.001198	0.020052
1/64	0.000300	0.010021
1/128	7.525915e-05	0.005010

$\epsilon = 100$:

h	C_h - норма	$L_{2,h}$ - норма
1/32	0.001202	0.020051
1/64	0.000301	0.010021
1/128	7.528312e-05	0.005010

Выводы об аппроксимационных свойствах вычислительной схемы: Получаем, что порядок аппроксимации данной схемы МКО равен $O(h^2)$.