3 Komplexe Zahlen

Trigonometrische Tabelle:

Tangens

141190110				
X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Sinus/Cosinus

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	<u>5π</u> 6	π
sin(x)	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
cos(x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

Sinus/Cosinus

X	π	$\frac{I\pi}{6}$	<u>5π</u> 4	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{l\pi}{4}$	$\frac{11\pi}{6}$	2π
sin(x)	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos(x)	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Weitere Rechenregeln

$$\sqrt{z \cdot z^*} = |z|
\text{Re}(z) = \frac{z + z^*}{2}
\text{Im}(z) = \frac{z - z^*}{2j}
(z_1 + z_2)^* = z_1^* + z_2^*
(z_1 \cdot z_2)^* = z_1^* \cdot z_2^*$$

Wurzeln von komplexen Zahlen

$$z_k = \sqrt[n]{|a|} e^{j\frac{\varphi}{n} + j\frac{2\pi k}{n}}$$

kapazitiver Widerstand

$$\underline{Z}_C = \frac{1}{\omega C} e^{j(0-\pi/2)} = \frac{1}{j\omega C}.$$

induktiver Widerstand

$$\underline{Z}_L = \omega L e^{j(\pi/2 - 0)} = j\omega L.$$

 $(\pm 20)^2 = 400$

 $(\pm 30)^2 = 900$

4 Folgen und Reihen

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \approx 2.7182... \qquad e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

Rechenregeln:

$$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$$

$$\lim (a_n \cdot b_n) = a \cdot b$$

$$\lim_{n \to \infty} (c \cdot a_n) = c \cdot a \quad \text{mit } c \in \mathbb{C}$$

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b} \quad \text{falls } b \neq 0$$

$$\lim_{n \to \infty} (a_n)^c = a^c \quad \text{falls } a_n \ge 0 \text{ und } c \in \mathbb{C}$$

Addition von Summen gleicher Länge

$$\sum_{k=1}^{n} (a_k + b_k + c_k + \ldots) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k + \sum_{k=1}^{n} c_k + \ldots$$

Besteht die Funktion aus einer Summe (Differenz), müssen Klammern gesetzt werden.

Geometrische Reihe

$$s_n = \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

5 Differentialrechnung

Tangentengleichung

$$t(x) = f(x_0) + f'(x_0)(x - x_0)$$

Lineare Approximation

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Fehlerrechnung I

• absoluter Fehler

$$|\Delta y| = |y - y_0| = |f'(x_0)dx|$$

 $(\pm 10)^2 = 100$

• relativer Fehler

$$\left| \frac{\Delta y}{y_0} \right| = \left| \frac{f'(x_0)dx}{f(x_0)} \right|$$

- 1. Ableitung von f(x) berechnen
- 2. Messwert als x einsetzen
- 3. mit Δx multiplizieren \rightarrow absoluter Fehler
- 4. Ergebnis durch f(x) teilen (x = Messwert) \rightarrow relativer Fehler

Flächennormale ist
$$\begin{pmatrix} f_x(x_0; y_0) \\ f_y(x_0; y_0) \\ -1 \end{pmatrix}$$

Richtungsabieitung
$$\frac{\partial}{\partial \vec{v}} f(x_0, y_0) = \operatorname{grad} f(x_0, y_0) \cdot \frac{\vec{v}}{|\vec{v}|} = f_x \cdot \frac{v_1}{|\vec{v}|} + f_y \cdot \frac{v_2}{|\vec{v}|}.$$

implizite Differentiation (wenn F(x,y) = 0 gegeben)

$$\frac{d}{dx} y(x) = -\frac{F_x(x,y)}{F_y(x,y)}$$

Taylorreihe bei mehreren Veränderlichen

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + \dots$$

$$\frac{1}{2} \left(f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2 \right) + R_2.$$

Matrixschreibweise

$$f(x_0+h_1,y_0+h_2) = f(x_0,y_0) + (h_1,h_2) \cdot \operatorname{grad} f(x_0,y_0) + \frac{1}{2}(h_1,h_2) \cdot H(x_0,y_0) \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + R_2$$

6 Anwendung der Differentialrechnung

Reihenentwicklung wichtiger Funktionen:

Funktion $f(x)$	Taylorreihe	Konvergenzbereich
$\frac{1}{1+x}$	$\sum_{k=0}^{\infty} (-1)^k x^k$	x < 1
e^x	$\sum_{k=0}^{\infty} \frac{1}{k!} x^k$	$x \in \mathbb{R}$
ln(1+x)	$\sim (-1)^{n-1}$	x < 1
sin(x)	$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$	$x \in \mathbb{R}$
$\cos(x)$	$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$	$x \in \mathbb{R}$
$\sqrt{1+x}$	$\sum_{k=0}^{\infty} \frac{(-1)^k (2k)!}{(1-2k)(k!)^2 4^k} x^k$	x < 1
$(1+x)^{\alpha}$	$\sum_{k=0}^{\infty} \left(\begin{array}{c} \alpha \\ k \end{array} \right) x^k$	x < 1

$$e^{j \cdot x} = \sum_{k=0}^{\infty} \frac{(jx)^k}{k!} = \sum_{k=0}^{\infty} (j)^{2k} \frac{x^{2k}}{(2k)!} + \sum_{k=0}^{\infty} (j)^{2k+1} \frac{x^{2k+1}}{(2k+1)!}$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} + j \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = \cos(x) + j \sin(x)$$

Aufg 9 (a)
$$\cos(x^2) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{4k}}{(2k)!}$$
 für $|x| < \infty$

(b)
$$\ln(1+x^4) = x^4 \sum_{k=0}^{\infty} (-1)^k \frac{x^{4k}}{k+1}$$
 für $|x| \le 1$

(c)
$$\frac{1}{\sqrt[3]{8-x^2}} = \frac{1}{2} \sum_{k=0}^{\infty} {\binom{-1/3}{k}} (-1)^k \frac{x^{2k}}{8^k}$$
 für $|x| < 2\sqrt{2}$

Kurven: Geradengleichung g der Tangente

$$g: \vec{r} + \lambda \cdot \dot{\vec{r}}(t)$$

Umrechnung Parameterform in kartesische Form: eine Gleichung nach t auflösen und in die andere einsetzen

Steigung Kurve berechnen:

Parameterform: Implizite Form: x(t) und y(t) ableiten 1. nach x ableiten Steigung: $m_T = \frac{\dot{y}(t)}{x(t)}$ 2. nach y ableiten 2. 3. Tangentensteigung/Steigung: $y'(x) = -\frac{F_X(x,y)}{F_Y(x,y)}$ waagrechte Tangenten: $\dot{y}(t) = 0$ und $\dot{x}(t) \neq 0$ 3. t berechnen 4. Wenn Steigung in best. Punkt gefragt: in x(t) und y(t) einsetzen Dessen x- und y-Werte in y'(x) einsetzen Punkte mit waagrechten Tangenten definieren P (x_1,y_1) etc. waagrechte Tangente bei $-F_x(x, y) = 0$ senkrechte Tangenten: $\dot{x}(t) = 0$ und $\dot{y}(t) \neq 0$ 4. a. anschließend nach y auflösen und in F(x,y)

- wie bei waagrechten Tangenten
- 5. Spitzen: $\dot{y}(t) = 0$ und $\dot{x}(t) = 0$
- Tangentengleichung in bestimmtem Punkt:

$$g = \vec{r}(t) + \lambda \cdot \dot{\vec{r}}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} + \lambda \cdot \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix}$$

- → t-Wert einsetzen (Berechnung t: Überlegen für welches t x(t) und y(t) den Punkt ergeben)
- → Umwandlung in LGS:

$$x = x(t) + \lambda \cdot \dot{x}(t)$$
 und $y = y(t) + \lambda \cdot \dot{y}(t)$

- \rightarrow erste Gleichung nach λ auflösen und in andere einsetzen
- → Darstellung der Tangentengleichung als Funktion

- einsetzen -> Punkte können berech. werden
- 6. senkrechte Tangente bei $-F_{\nu}(x,y)=0$
 - a. anschließend nach y auflösen und in F(x,y) einsetzen -> Punkte können berech. werden
- 7. Tangentengleichung im Punkt $P(x_0, y_0)$: $t(x) = y_0 + y'(x_0) \cdot (x - x_0)$

7 Integralrechnung

Flächeninhalt zwischen zwei Kurven wenn diese sich im untersuchten Intervall schneiden:

$$A = \left| \int_{a}^{x_{1}} (f(x) - g(x)) dx \right| + \left| \int_{x_{1}}^{x_{2}} (f(x) - g(x)) dx \right| + \ldots + \left| \int_{x_{n}}^{b} (f(x) - g(x)) dx \right|$$

Schnittpunkte berechnen!!

Mantelfläche in Parameterform: $M_x = 2\pi \int_{t_1}^{t_2} |y(t)| \sqrt{\dot{x}^2 + \dot{y}^2} dt$

Verschiedene Integrale

$$\int \frac{1}{1+2x^2} dx = \frac{1}{\sqrt{2}} \arctan\left(\sqrt{2} x\right) + C$$

 $\int \arctan x \, dx = x \cdot \arctan x - \frac{1}{2} \ln(1 + x^2) + C \text{ (erst partielle Integration, im zweiten Schritt Substitution u = 1+x^2)}$

b) $I = \int_0^{\pi} e^x \sin(4x) dx$:

zweimalige partielle Integration $\int_a^b u'(x)v(x) dx = [u(x)v(x)]_{x=a}^{x=b} - \int_a^b u(x)v'(x) dx$ mit $u'(x) = e^x$ und $v(x) = \sin(4x)$ bzw. $v(x) = \cos(4x)$ \Rightarrow

$$I = \underbrace{\left[e^{x} \sin(4x)\right]_{0}^{\pi}}_{0} - \int_{0}^{\pi} e^{x} (4\cos(4x)) dx$$
$$= -4 \left[e^{x} \cos(4x)\right]_{0}^{\pi} + \underbrace{4 \int_{0}^{\pi} e^{x} (-4\sin(4x)) dx}_{-16I}$$

b) |z + 1 + i| = 2|z + 1 - 2i|:

 $a = -1 - i, b = -1 + 2i, s = 2 \quad \Leftrightarrow \quad \text{Kreis}$

explizite Form durch Setzen von z = x + iyQuadrieren der Betragsgleichung \leadsto

$$(x+1)^2 + (y+1)^2 = 4((x+1)^2 + (y-2)^2)$$

Umformen und quadratische Ergänzung ~

$$x^{2} + 2x + y^{2} - 6y = -6 \Leftrightarrow (x+1)^{2} + (y-3)^{2} = 4$$

Mittelpunkt: c = -1 + 3i = (-1, 3)

Radius: r = 2

 $\textstyle \times$ Aufgabe 2. Bestimmen Sie die Geradengleichung $y=m\cdot x+b,$ die durch

|z-3+j|=|z|

mit z=x+jy gegeben ist. Berechnen Sie explizit die Werte von m und b und zeichnen Sie die Gerade auch in der Gaußschen Zahlenebene.

Skizzieren Sie die Mengen in der Gaußschen Zahlenebene, die durch

$$a) \quad |z| - \operatorname{Im} z = 1$$

b) $|z| \le 2 \operatorname{Re} z$

beschrieben werden.

Verweise: Gaußsche Zahlenebene

Lösungsskizze

Umwandlung in Koordinatenform

$$z \to x + iy$$
, $x = \text{Re } z$, $y = \text{Im } z$

a) |z| - Im z = 1:

Definition des Betrags und des Imaginärteils, Quadrieren ~

$$\sqrt{x^2 + y^2} = 1 + y \quad \Leftrightarrow \quad x^2 = 1 + 2y$$

 \rightarrow Parabel mit Scheitel bei (0, -1/2)

b) $|z| \le 2 \operatorname{Re} z$:

Definition des Betrags und des Realteils

$$\sqrt{x^2 + y^2} \le 2x$$

bzw. nach Quadrieren

$$y^2 < 3x^2 \quad \land \quad x > 0$$

Sektor, begrenzt durch die Halbgeraden $y = \pm \sqrt{3} x$, x > 0

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad z = f(x, y) = x^2 + 4y^2$$

und der Punkt P(3;2).

- (a) Berechnen Sie den Gradienten dieser Funktion f im Punkt P.
- (b) Berechnen Sie die Höhen-/Isolinie dieser Funktion f, die durch den Punkt Pverläuft, und fertigen Sie eine Skizze an.
- (c) Zeigen Sie, dass der Gradient von (a) senkrecht steht auf der Tangente an die Höhenlinie von (b), und zeichnen Sie ihn in Ihre Skizze ein.
- (d) Bestimmen Sie die Gleichung der Tangentialebene an die Funktion f(x,y) im Punkt P(a,b). Wie müssen die Werte a und b gewählt werden, damit die Tangentialebene parallel zu der Ebene z = 2x + y - 23 ist?

Lösung: (a) Gradient als Vektor der partiellen Ableitungen ist

$$\operatorname{grad} f(3;2) = \begin{pmatrix} f_x(3;2) \\ f_y(3;2) \end{pmatrix} = \begin{pmatrix} 6 \\ 16 \end{pmatrix}.$$

- (b) Höhenlinie durch P(3;2) ist $F(x;y)=x^2+4$ $y^2-25=0$. Dies ist eine Ellipse mit $-5 \le x \le 5 \text{ und } -2.5 \le y \le 2.5.$
- (c) Steigung der Ellipse in P ist $y' = -F_x/F_y = -3/8$. Gradient und Tangentenvektor

$$\begin{pmatrix} 6 \\ 16 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3/8 \end{pmatrix} = 0$$

also orthogonal.

(d) $f(a,b) = a^2 + 4b^2$, $f_x(a,b) = 2a$ und $f_y(a,b) = 8b$.

Tangebtialebene: $z = a^2 + 4b^2 + 2a(x - a) + 8b(y - b)$

Tangentialebene parallel zu der Ebene z=2x+y-23 heißt $2a=2 \Rightarrow a=1$ und

ET1-1 Aufgabe 1: Graphen skizzieren

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SMON OHM

GETI-Ü

Gruppe: Sven Pflager

ET1-1 Aufgabe 1: Graphen skizzieren

TECHNISCHE HOCHSCHULE NÜRWBE GECHG SMCN OHN GETHÜ Gruppe: Sven Pfleg

Potenzfunktion

ET1-1 Aufgabe 1: Graphen skizzieren

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SINCK CHM

7 Trigonometrische Funktion

ET1-1 Aufgabe 1: Graphen skizzieren

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SINON OHN GETI-Ö Gruppe: Sven Pflager

	C	-4	
А	1110		
	4-5	_	

	0									
A	В	$A \Rightarrow B$	$B \Rightarrow A$	$\neg A$	$\neg A \vee B$	$A \wedge B$	$\neg (A \land B)$	$\neg B$	$\neg A \vee \neg B$	
W	W	W	W	f	W	w	f	f	f	1
\mathbf{w}	f	f	w	f	\mathbf{f}	f	w	w	w	
f	W	W	f	W	W	f	w	f	W	
f	f	W	w	w	W	f	W	w	W	

Aufg 22 Berechnen Sie den komplexen Widerstand der Reihenschaltung aus ohmschen Widerstand $R = 100\Omega$, Kapazität $C = 20\mu F$ und Induktivität L = 0, 2H bei der Kreisfrequenz $\omega = 10^6 s^{-1}$.

Aufg 22
$$\underline{Z} = R + j \left(\omega L - \frac{1}{\omega C}\right) = 100\Omega + j199999, 95\Omega.$$

Aufg 23 Berechnen Sie den komplexen Widerstand und den komplexen Stromzeiger I der Parallelschaltung aus ohmschen Widerstand $R = 100\Omega$ und Induktivität L = 0.5H bei Kreisfrequenz $\omega = 500s^{-1}$ und Spannung U = 100V.

Tipp: Berechnen Sie zunächst den komplexen Leitwert und beachten Sie, dass sich bei Parallelschaltung die (komplexen) Einzelleitwerte addieren.

Aufg 23 Wegen
$$\frac{1}{j\omega L} = -j\frac{1}{\omega L}$$
 ist $\underline{Y} = \frac{1}{R} - j\frac{1}{\omega L} = 0,01S - j0,004S = 0.0108 \cdot e^{-0.3805 \cdot j}$ S und $\underline{Z} = \frac{1}{\underline{Y}} = 92.8477 \cdot e^{0.3805 \cdot j}$ Ω .

$$I = Y \cdot U = 0.0108 \cdot e^{-0.3805 \cdot j} S \cdot 100 \cdot e^{0.3805 \cdot j} V = 1.08A$$

Aufg 24 Berechnen bzw. zeichnen Sie die Ortskurven des komplexen Widerstandes und des komplexen Leitwertes bei Parallelschaltung aus festem ohmschen Widerstand R und Induktivität L bei variabler Kreisfrequenz ω .

Tipp: Bei Parallelschaltung addieren sich die (komplexen) Einzelleitwerte.

Aufg 24 Wegen
$$\frac{1}{j\omega L} = -j\frac{1}{\omega L}$$
 ist $\underline{Y} = \frac{1}{R} - j\frac{1}{\omega L}$. Zeichnen!

Aufg 25 Beschreiben Sie das Bild des Kreises $(x-1)^2 + (y-2)^2 = 1$ in der Gauß'schen Zahlenebene unter der komplexen Inversion $z = x + j \cdot y \longrightarrow 1/z = w = u + j \cdot v$.

Aufg 25 Man hat
$$x=\frac{u}{u^2+v^2}$$
 und $y=\frac{-v}{u^2+v^2}$ und $x^2+y^2=\frac{1}{u^2+v^2}$
Ausmultiplizieren der Kreisgleichung in der (x,y) -Ebene: $x^2-2x+y^2-4y=-4$
Einsetzen der obigen Gleichungen: $\frac{1}{u^2+v^2}-\frac{2u}{u^2+v^2}+\frac{4v}{u^2+v^2}=-4$
Erweitern mit u^2+v^2 und Kürzen durch 4: $u^2-\frac{1}{2}u+v^2+v=-\frac{1}{4}$

Einsetzen der obigen Gleichungen:
$$\frac{1}{u^2 + v^2} - \frac{2u}{u^2 + v^2} + \frac{4v}{u^2 + v^2} = -4$$

Erweitern mit
$$u^2 + v^2$$
 und Kürzen durch 4: $u^2 - \frac{1}{2}u + v^2 + v = -\frac{1}{4}u + v = -$

Quadratische Ergänzung:
$$(u - 1/4)^2 + (v + 1/2)^2 = 1/16$$
,

dh. Kreis mit Radius 1/4 um (1/4, -1/2) in der (u,v) -Ebene.

Aufg 26 Berechnen Sie den komplexen Widerstand Z der Reihenschaltung aus Spule mit Induktivität L_1 mit $\omega L_1=3,2\Omega$; ohmschen Widerstand $R_1=3\Omega$; Spule mit Induktivität L_2 mit $\omega L_2 = 0,5 \ t \ \Omega$ und ohmschen Widerstand $R_2 = 2 \ t \ \Omega \ (t > 0)$.

Stellen Sie die Ortskurve Z(t) in der Gaußschen Zahlenebene dar.

Aufg 26 Wegen Reihenschaltung addiere:

$$\underline{Z} = (3+2t)\Omega + j \cdot (3.2+0.5t)\Omega$$

Nun Umordnen nach Termen mit
$$t$$
 und ohne t :

$$\underline{Z} == \underbrace{(3+3.2\ j)\Omega}_{\underline{a}} + \underbrace{(2+0.5\ j)\Omega}_{\underline{b}} \cdot t = \underline{a} + t \cdot \underline{b}$$

Das ist Gerade durch a mit Richtungszeiger b:

a ist eine feste komplexe Zahl = Vektor = Aufpunkt der Gerade

 \underline{b} ist eine feste komplexe Zahl = Vektor = Richtungsvektor der Geraden

- 13. Ein Bierfass ist 8dm hoch, sein Durchmesser beträgt in der Mitte 8dm und am Rand 6dm. Die Fassdauben haben die Form einer Parabel.
 - (a) Zeichnen Sie das Fass und ermitteln Sie die Funktionsgleichung der Parabel (quadratische Funktion).
- (b) 340dm²

13. (a) $4 - x^2/16$

(b) Wie groß ist das Volumen des Fasses?