东南大学数字逻辑电路

实 验 报 告

学号: 04022212

姓名: __ 钟 源___

2023年12月10日

实验名称:实验7集成器件时序逻辑电路设计

实验类型:综合性

成绩:

一、实验内容提要

使用 74194 构成不少于 3 位的自启动环形计数器和扭环计数器:

- 1.熟悉 74194 芯片
- 2.列出状态转移真值表和转换图
- 3.给出电路实现方案
- 4.调试电路, 实现环形计数器和扭环计数器
- 5.检查自启动

二、实验仪器与元器件

1.ADALM2000 1台

2.面包板 1 块

3.集成芯片:

1) SN74HC138N 1片

2) SN74HC151N 2片

3) SN74HC194N 1片

4.杜邦线 8 条, 导线若干。

三、设计过程及步骤

1. 自定义控制信号 X=0 时, 实现 4 位扭环计数器:

利用 74194 的右移功能实现扭环计数器,则主循环状态转移如下:

	Q_0^n	Q_1^n	Q_2^n	Q_3^n	D _{SR}	Q_0^{n+1}	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}
	0	0	0	0	1	1	0	0	0
	1	0	0	0	1	1	1	0	0
主	1	1	0	0	1	1	1	1	0
土	1	1	1	0	1	1	1	1	1
环	1	1	1	1	0	0	1	1	1
环	0	1	1	1	0	0	0	1	1
	0	0	1	1	0	0	0	0	1
	0	0	0	1	0	0	0	0	0

设计逻辑表达式如下:

$$D_{SR} = \overline{Q_3}$$

但当 Q₃Q₂Q₁Q₀为 0101 时,有 0101—>0010—>1001—>0100—>1010—>1101—>0110

一>1011一>0101 无法进入主循环, 实现自启动。

考虑到自启动,设计逻辑表达式如下:

$$D_{SR} = \overline{Q_3} * \overline{Q_2} + Q_0 * Q_1 * \overline{Q_3}$$

则完整的状态转移真值表如下:

	Q_0^n	Q_1^n	Q_2^n	Q_3^n	D _{SR}	Q_0^{n+1}	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}
	0	0	0	0	1	1	0	0	0
	1	0	0	0	1	1	1	0	0
+	1	1	0	0	1	1	1	1	0
主循	1	1	1	0	1	1	1	1	1
环	1	1	1	1	0	0	1	1	1
1 /\	0	1	1	1	0	0	0	1	1
	0	0	1	1	0	0	0	0	1
	0	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	0	1	0
	0	0	1	0	0	0	0	0	1
	1	0	0	1	0	0	1	0	0
副	0	1	0	0	1	1	0	1	0
循	1	0	1	0	0	0	1	0	1
环	1	1	0	1	0	0	1	1	0
	0	1	1	0	0	0	0	1	1
	1	0	1	1	0	0	1	0	1

检查整个真值表,发现无论从何种状态开始,最终都能进入主循环,实现了自启动。 状态转移图如下:

2. 自定义控制信号 X=1 时,实现 4 位环形计数器:

利用 74194 的左移功能实现 4 位环形计数器,则主循环状态转移如下:

	Q_3^n	Q_2^n	Q_1^n	Q_0^n	D _{SL}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
_	1	0	0	0	0	0	1	0	0
主	0	1	0	0	0	0	0	1	0
循	0	0	1	0	0	0	0	0	1
Δľ	0	0	0	1	1	1	0	0	0

考虑到自启动,得到卡诺图并设计逻辑表达式如下:

$$D_{SL}=Q_0$$

但当 $Q_3Q_2Q_1Q_0$ 为 0101 时,有 0101—>1010—>0101,无法进入主循环,实现自启动。

考虑到自启动,修改的逻辑表达式和完整的状态转移真值表如下:

$$D_{SL} = \overline{Q_3} * \overline{Q_2} * \overline{Q_1}$$

	Q_3^n	Q_2^n	Q_1^n	Q_0^n	D _{SL}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
主	1	0	0	0	0	0	1	0	0
	0	1	0	0	0	0	0	1	0
循环	0	0	1	0	0	0	0	0	1
DI.	0	0	0	1	1	1	0	0	0
	0	0	0	0	1	1	0	0	0
	1	0	0	1	0	0	1	0	0
	0	0	1	1	0	0	0	0	1
	0	1	1	0	0	0	0	1	1
副	1	1	0	1	0	0	1	1	0
循	1	1	0	0	0	0	1	1	0
环	0	1	1	1	0	0	0	1	1
-1	1	1	1	1	0	0	1	1	1
	1	1	1	0	0	0	1	1	1
	0	1	0	1	0	0	0	1	0
	1	0	1	0	0	0	1	0	1
	1	0	1	1	0	0	1	0	1

状态转移图如下:

3.电路设计图:

4.实现方法:

1) 使用 SN74HC194N:

得到相应的 Q_3 , Q_2 , Q_1 , Q_0 ,具体接法如下引脚图所示:

2) 使用 SN74HC138N:

由译码器的功能表,得到相应的 So, S1, 具体接法如下引脚图所示:

3) 使用第一片 SN74HC151N:

由数据选择器的功能表,得到相应的 DsL, 具体接法如下引脚图所示:

4) 使用第二片 SN74HC151N:

由数据选择器的功能表,得到相应的 DsR, 具体接法如下引脚图所示:

5.电路照片:

原图:

注解:

注: 接线中红线接高电平, 蓝线接地。

四、结果分析

原图:

1) X=0, 实现扭环计数器:

2) X=1, 实现环形计数器:

注解:

1) X=0, 实现扭环计数器:

2) X=1, 实现环形计数器:

得到实验结论:

输出结果与实验要求真值一致:

X=0 时, $Q_0Q_1Q_2Q_3$ 实现 4 位扭环计数器,且能实现自启动;

X=1 时, $Q_3Q_2Q_1Q_0$ 实现 4 位环形计数器,且能实现自启动。