CO 250: Introduction to Optimization

Module 4: Duality Theory (Geometric Optimality)

©University of Waterloo 1/20

Recap: Strong Duality

$$\max c^T x \qquad \qquad \text{(P)} \qquad \qquad \min b^T y \qquad \qquad \text{(D)}$$
 s.t. $Ax \leq b$ s.t. $A^T y = c$ $y \geq 0$

Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P) has an optimal solution, then (D) has one and their objective values equal.

©University of Waterloo 2/2

Recap: The Geometry of an LP

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

Today we will investigate these certificates using geometry.

©University of Waterloo 3/:

Revisiting Weak Duality

We can rewrite (P) using slack variables s:

$$\begin{aligned} \max \, c^T x & \text{(P')} \\ \text{s.t. } Ax + s &= b \\ s &\geq \mathbb{0} \end{aligned}$$

Note:

- (x,s) feasible for $(P') \longrightarrow x$ feasible for (P)
- x feasible for (P) \longrightarrow (x, b Ax) feasible for (P')

$$\max c^T x \tag{P}$$

s.t.
$$Ax \leq b$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq 0 & & \end{aligned}$$

Revisiting Weak Duality

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow \ (\bar{x},\underbrace{b-A\bar{x}}_{\bar{s}}b-A\bar{x}) \text{ feasible for (P')}$$

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$

$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$

$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

Strong Duality tells us that:

$$\bar{x}, \ \bar{y} \ \text{both optimal} \ \iff c^T \bar{x} = \bar{y}^T b \\ \iff \bar{y}^T \bar{s} = 0$$

$$\max c^T x \qquad (P)$$
s.t. $Ax < b$

$$\max c^T x$$
s.t. $Ax + s = b$

$$s \ge 0$$
(P')

$$\min b^T y$$
 (D)
$$\text{s.t. } A^T y = c$$

$$y \ge 0$$

Revisiting Weak Duality

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A \bar{x} + \bar{s})$$

$$= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s}$$

$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility, $\bar{x} \geq 0$ and $\bar{s} \geq 0$ and hence

(*) holds if and only if $\bar{y}_i = 0$ or $\bar{s}_i = 0$,

for every $1 \le i \le m$.

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax < b$

$$\max c^T x \qquad \qquad (\mathsf{P'})$$
 s.t. $Ax + s = b$ $s \ge 0$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

©University of Waterloo 6/

Revisiting Weak Duality - Recap

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define:
$$\bar{s} = b - A\bar{x}$$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal } \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all $1 \le i \le m$. We can rephrase (\star) equivalently as

$$\bar{y}_i = 0$$
 or *i*th primal constraint is tight.

$$\max c^T x$$
 (P) s.t. $Ax \le b$

$$\max c^T x$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\min b^T y$$
 (D)
$$\text{s.t. } A^T y = c$$

$$y \ge 0$$

©University of Waterloo 7/

Complementary Slackness – Special Case

Let \bar{x} and \bar{y} be feasible for (P) and (D).

Then \bar{x} and \bar{y} are optimal if and only if

- (i) $\bar{y}_i = 0$, or
- (ii) the ith constraint of (P) is tight for \bar{x} , for every row index i.

$$\max c^T x \qquad \qquad \text{(P)}$$
 s.t. $Ax < b$

$$\max c^T x \qquad (P')$$
s.t. $Ax + s = b$

s > 0

$$\min b^T y$$
 (D) s.t. $A^T y = c$

 $y \ge 0$

©University of Waterloo 8 /

Complementary Slackness Conditions – Example

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y > 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i = 0$ or the ith primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i)
$$\bar{y}_1 = 0$$
 or $(1, 2, -1)\bar{x} = 2$

(ii)
$$\bar{y}_2 = 0$$
 or $(3, 1, 2)\bar{x} = 4$

(iii)
$$\bar{y}_3 = 0$$
 or $(-1, 1, 1)\bar{x} = -1$

 $\longrightarrow \bar{x}$ and \bar{y} are optimal!

General Complementary Slackness

	(P _{max})			(P _{min})	
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{ op}y$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		-

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 \bar{x} and \bar{y} satisfy the complementary slackness conditions if ...

for all variables x_i of (P_{max}) :

- (i) $\bar{x}_i = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) ith constraint of (P_{max}) is satisfied with equality for \bar{x}

©University of Waterloo 10 / 20

General Complementary Slackness

\bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_i of (P_{max}):

- (i) $\bar{x}_i = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

Note: The two or's above are inclusive!

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

©University of Waterloo 11/

General CS Conditions – Example

(P _{max})			(P _{min})		
		\leq constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		≥ constraint	\leq 0 variable	subject to	
	Ax? b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		

Consider the following LP...

$$\max (-2, -1, 0)x \qquad (P)$$

$$\text{s.t. } \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

$$x_1 \leq 0, x_2 \geq 0$$

... and its dual LP:

min
$$(5,7)y$$
 (D)
s.t. $\begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \ge \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 $y_1 < 0, y_2 > 0$

©University of Waterloo 12/2

General CS Conditions – Example

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$

$$\text{s.t. } \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$y_1 \leq 0, y_2 \geq 0$$

Check: $\bar{x} = (-1,0,3)^T$ and $\bar{y} = (-1,1)^T$ are feasible for (P) and (D). Are they also optimal?

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

©University of Waterloo

General CS Conditions – Example

$$\max (-2, -1, 0)x \qquad (P)$$
s.t.
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

$$x_1 \leq 0, x_2 \geq 0$$

$$\min (5,7)y \qquad (D)$$
s.t.
$$\begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$y_1 \leq 0, y_2 \geq 0$$

Claim

$$\bar{x} = (-1,0,3)^T$$
 and $\bar{y} = (-1,1)^T$ are optimal

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

Dual conditions:

- (i) $\bar{y}_1 = 0$ or the first (P) constraint is tight for \bar{x} .
- (ii) $\bar{y}_2 = 0$ or the second (P) constraint is tight for \bar{x} .

©University of Waterloo 14/2

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!

© University of Waterloo 15 / 2

Geometry – Cones of Vectors

Definition

Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \dots + \lambda_k a^{(k)} : \lambda \ge 0\}$$

Example: The cone generated by $a^{(1)}, a^{(2)}$ and $a^{(3)}$ is the blue-shaded area.

© University of Waterloo 16 / 2d

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider:
$$\bar{x} = (2,1)^T$$

- (i) $\bar{x} \in P \longrightarrow \mathsf{Check}!$
- (ii) Tight constraints:

$$\operatorname{row}_1(A)\bar{x} = b_1 \longrightarrow (1,0)\bar{x} = 2$$

 $\operatorname{row}_2(A)\bar{x} = b_2 \longrightarrow (1,1)\bar{x} = 3$

Cone of tight constraints:

Cone generated by rows of tight constraints

©University of Waterloo 17 /

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x : Ax \le b\}$$

and a feasible solution \bar{x} .

The cone of tight constraints at \bar{x} is defined by the rows of A corresponding to tight constraints at \bar{x} .

©University of Waterloo 18 / 26

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\}$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

$$P = \{x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}$$

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Note: $(3/2,1/2)^T$ in cone of tight constraints as

$$\begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$P = \{x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}$$

©University of Waterloo 20 / 2

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3 \tag{2}$$

Note: $(3/2,1/2)^T$ is in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of (\star) , and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

The above theorem follows from CS Theorem!

©University of Waterloo 21/2

Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad \qquad (\star)$$
s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (\star) as:

$$\min (2,3,2)y \qquad (\diamondsuit)$$
s.t.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$$

$$y \ge 0$$

We know that:

$$\begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions? —> they always hold as all constraints in the dual are equality constraints!

CS Theorem \longrightarrow (\bar{x}, \bar{y}) optimal!

©University of Waterloo 22 / 2

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$\mathsf{row}_i(A)\bar{x} = b_i$$

for $i \in J(\bar{x})$ and

$$row_i(A)\bar{x} < b_i$$

for $i \notin J(\bar{x})$.

Suppose c is in the cone of tight constraints at \bar{x} , and thus

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$

for some $\lambda \geq 0$.

$$\max c^T x$$
 (P) s.t. $Ax < b$

$$\min b^T y$$
s.t. $A^T y = c$

$$y \ge 0$$

(x,y) satisfy CS Conditions if

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda > 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i row_i(A)^T$$
$$= A^T \bar{y}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i : i \in J(\bar{x}) \\ 0 : \text{ otherwise} \end{cases}$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note:
$$\bar{y}_i > 0$$
 only if $\operatorname{row}_i(A)\bar{x} = b_i$ \longrightarrow CS conditions (\star) hold!

$$\max c^T x$$
 (P) s.t. $Ax < b$

$$\min b^T y$$
s.t. $A^T y = c$

$$y > 0$$

(x,y) satisfy CS Conditions if

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Hence: (\bar{x}, \bar{y}) are optimal!

Wrapping up...

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x \,:\, Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{y} that, together with \bar{x} , satisfies CS conditions.

We can use CS conditions and \bar{y} to show that c lies in cone of tight constraints for \bar{x} . This is an exercise!

©University of Waterloo 25 /

Recap

Given a feasible solution \bar{x} to

$$\max\{c^T x : Ax \le b\}$$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

This provides a nice geometric view of optimality certificates

$$\max (3/2, 1/2)x \tag{P}$$
s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

©University of Waterloo 26 / 26