Prof. Vinícius de Oliveira

- Uma das aplicações da visão computacional moderna (Deep Learning);
- Um aspecto impressionante desta técnica é que nenhum novo treinamento de rede é necessário - pesos pré-treinados, como os do ImageNet, funcionam muito bem [2].

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822

Transferência de Aprendizado:

Redes pré-treinadas famosas:

- VGG16;
- VGG19;
- Resnet;
- AlexNet, etc;

		FC 1000
	Softmax	FC 4096
fc8	FC 1000	FC 4096
fc7	FC 4096	Pool
fc6	FC 4096	3×3 conv, 512
	Pool	$3 \times 3 conv, 512$
conv5-3	3×3 conv, 512	$3 \times 3 conv, 512$
conv5-2	3×3 conv, 512	$3 \times 3 conv, 512$
conv5-1	3×3 conv, 512	Pool
	Pool	$3 \times 3 conv, 512$
conv4-3	3 × 3 conv, 512	$3 \times 3 conv, 512$
conv4-2	3×3 conv, 512	$3 \times 3 conv, 512$
conv4-1	3×3 conv, 512	$3 \times 3 conv, 512$
	Pool	Pool
conv3-2	3×3 conv, 256	3×3 conv, 256
conv3-1	3×3 conv, 256	3×3 conv, 256
	Pool	Pool
conv2-2	3 × 3 conv, 128	3×3 conv, 128
conv2-1	3×3 conv, 128	3×3 conv, 128
	Pool	Pool
conv1-2	3 × 3 conv, 64	$3 \times 3 conv, 64$
conv1-1	3 × 3 conv, 64	3×3 conv, 64
	Input	Input

VGG16 VGG19

Softmax

- Imagem de conteúdo: chamaremos de *p*;
- Imagem de estilo: chamremos de a;

Imagem de saída (gerada): Inicializaremos com valores RGB aleatórios e chamaremos de x;

https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa4 4b216

Loss de conteúdo (Content loss)

 Basicamente é a função do erro médio quadrático (mse) entre as representações de features da imagem de conteúdo p e a gerada x em uma dada camada da rede neural l.

$$\mathcal{L}_c(p, x, l) = \frac{1}{2} \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$

Loss de estilo (Style loss)

- ullet Gram matrix: $G^l=F^l(F^l)^T$
- ullet Contribuição da *loss* pela camada *l*: $E_l = rac{1}{4N_l^2M_l^2}\sum_{i,j}(G_{ij}^l-A_{ij}^l)^2$.
- À medida em que a rede neural convolucional vai aprofundando, os campos receptivos ficam cada vez maiores. Com o crescimento do campo receptivo, mais características de grande escala da imagem de entrada são preservadas. Por conta disso, várias camadas devem ser selecionadas para "estilo" para incorporar qualidades estilísticas locais e globais.
- Assim, nós podemos atribuir um peso *w* para cada camada e definir a *loss* de estilo total como:

$$\mathcal{L}_s(a, x, l) = \sum_{l}^{L} w_l E_l$$

Loss de Variância total

- Adicionar uma perda de variância total pode ajudar a aliviar ruídos na imagem final gerada.
- Loss de Variância total:

$$V(y) = \sum_{i,j} \sqrt{\left|y_{i+1,j} - y_{i,j}
ight|^2 + \left|y_{i,j+1} - y_{i,j}
ight|^2}$$

$$\mathrm{E}(x,y) = rac{1}{n} \sum_n (x_n - y_n)^2$$

$$\min_y [\mathrm{E}(x,y) + \lambda V(y)]$$

Loss total

$$\mathcal{L}(p, a, x, l) = \alpha \mathcal{L}_c(p, x, l) + \beta \mathcal{L}_s(a, x, l) + \min_y [\mathrm{E}(x, y) + \lambda V(y)]$$

Exemplo Notebook!

Fim!

Referências

[1] GATYS, Leon A.; ECKER, Alexander S.; BETHGE, Matthias. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576, 2015..

[2]https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8 bb5fa44b216

[3] https://en.wikipedia.org/wiki/Total_variation_denoising