同济大学课程考核试卷 (B卷)

2006-2007 学年第二学期

命题教师签名:

审核教师签名:

课号: 122010 课名: 线性代数 (3 学分) 考试考查: 考试

此卷选为:期中考试()、期终考试()、重考(✓)试卷

年级	€亚		学号					
题号		=	Ξ	四	五	六	七	总分
—— 得分								

(注意: 本试卷共7大题, 3大张, 满分100分. 考试时间为120分钟. 要求写出解题过程, 否则不予计分)

 插容	(30	44)	

- 1、如果三阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 的行列式的值为3,则矩阵 $B = (\alpha_1, 2\alpha_1 + 2\alpha_2, 3\alpha_2 + 3\alpha_3)$ 的行列 式的值为: _____.
- 2、如果矩阵 $A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & x \\ 4 & 0 & 5 \end{pmatrix}$ 可对角化, $x = \underline{\qquad}$
- 3、设T 是线性空间V 上的线性变换,T 在V 的两组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 和 $\beta_1, \beta_2, \cdots, \beta_n$ 下的矩阵分别为 A和B,则A和B间的关系是:
- 5、如果非齐次线性方程组 $A_{m,n}X = \beta$ 解向量组的秩为 $r(r \ge 1)$,则系数矩阵A的秩为______

- 8、设三阶方阵 A 的特征值为-1,2,4,则|A*|=______.
- 9、设矩阵 A, B 满足 AB = E, 下面说法正确的是: ______
- (A) 矩阵 A 可逆: (B) 矩阵 A 的行向量组线性无关:
- (C) 矩阵 A 的列向量组线性无关; (D) 以上说法都不正确.

10、如果 ξ_1,ξ_2,ξ_3 是向量组(A)的最大线性无关组,则: _____也是向量组(A)的最大线性无关组.

(A)
$$\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_1$$
; (B) $\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + 2\xi_2 + \xi_1$;

(C)
$$\xi_1 + \xi_2, \xi_1 + \xi_3, \xi_3 + 2\xi_2 + 3\xi_1$$
; (D) $\xi_1 + \xi_3, \xi_2 + \xi_3, 3\xi_3 + 2\xi_2 + \xi_1$.

二、(10分) 计算行列式:
$$D_4 = \begin{vmatrix} a+b & 1 & 0 & 0 \\ ab & a+b & 1 & 0 \\ 0 & ab & a+b & 1 \\ 0 & 0 & ab & a+b \end{vmatrix}$$
.

三、(10 分) 求向量组 α_1 =(1, 0, 2, 1), α_2 =(1, 2, 0, 1), α_3 =(2, 1, 3, 0), α_4 =(2, 5, -1, 4), α_5 =(1, -1, 3, -1)的秩及其一个极大线性无关组,并用该极大线性无关组表示其余向量.

四、(15 分) 设
$$A = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$
, 求正交矩阵 P 使得 $P^{-1}(A^2 - E)P$ 为对角阵,并写出此对角阵.

五、(15 分) 讨论
$$\lambda$$
、 μ 取何值时,线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 4 \\ x_1 + \mu x_2 + x_3 = 3 \end{cases}$$
 有解,求其解
$$x_1 + 2\mu x_2 + x_3 = 4$$

六、(15 分)设V 为全部二阶实方阵所构成的线性空间. 对任意 $A \in V$,定义: $P(A) = \frac{1}{2}(A - A^T)$,

其中 A^T 表示转置矩阵.

- (1) 证明: P为线性变换;
- (2) 求 P 在基 $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ 下的矩阵;
- (3) 求P的核及像空间:

七、 $(5 \, f)$ 一个 $m \times n$ 矩阵 A 称为有右逆,如果存在一个 $n \times m$ 矩阵 B ,使得 $AB = E_m$,其中 E_m 为 m 阶单位矩阵。证明:实矩阵 A 有右逆的充分必要条件是矩阵 A 的行向量组线性无关。