Homework #10

(due Friday, November 30, by 3:00 p.m.)

1. Given the time series

31 34 33 28 26 28 30

calculate r_1 and r_2 .

(Note: In practice reliable autocorrelation estimates are only obtained from series consisting of approximately 50 observations or more.)

$$\overline{y} = \frac{31 + 34 + 33 + 28 + 26 + 28 + 30}{7} = 30.$$

	1	I	1	1
y_t	$y_t - \overline{y}$	$(y_t - \overline{y})^2$	$(y_t - \overline{y})(y_{t+1} - \overline{y})$	$(y_t - \overline{y})(y_{t+2} - \overline{y})$
31	1	1	4	3
34	4	16	12	-8
33	3	9	-6	-12
28	-2	4	8	4
26	-4	16	8	0
28	-2	4	0	
30	0	0		
		50	26	-13

$$r_1 = \frac{\sum_{t=1}^{N-1} (y_t - \overline{y})(y_{t+1} - \overline{y})}{\sum_{t=1}^{N} (y_t - \overline{y})^2} = \frac{26}{50} = \mathbf{0.52}.$$

$$r_2 = \frac{\sum_{t=1}^{N-2} (y_t - \overline{y})(y_{t+2} - \overline{y})}{\sum_{t=1}^{N} (y_t - \overline{y})^2} = \frac{-13}{50} = -0.26.$$

2. Suppose you are fitting the model

$$(Y_t - \mu) = \phi(Y_{t-1} - \mu) + e_t$$

to a time series whose first 8 values are

Obtain the (approximate) least squares estimates of ϕ and μ .

$$\hat{\mu} \approx \overline{y} = \frac{25 + 21 + 26 + 23 + 29 + 25 + 28 + 23}{8} = 25.$$

y_t	$y_t - \overline{y}$	$(y_t - \overline{y})^2$	$(y_t - \overline{y})(y_{t+1} - \overline{y})$
25	0	0	0
21	-4	16	-4
26	1	1	-2
23	-2	4	-8
29	4	16	0
25	0	0	0
28	3	9	-6
23	-2	4	

$$\hat{\phi} \approx r_1 = \frac{\sum_{t=1}^{N-1} (y_t - \overline{y})(y_{t+1} - \overline{y})}{\sum_{t=1}^{N} (y_t - \overline{y})^2} = \frac{-20}{50} = -\mathbf{0.4}.$$

3. The model

$$(Y_t - \mu) = \phi(Y_{t-1} - \mu) + e_t$$

has been fitted to a time series giving $\hat{\phi} = 0.6$, $\hat{\mu} = 40$, and $\hat{\sigma}_e^2 = 9$. The last five values of the series are

Using the time corresponding to the last observation as the forecast origin, calculate the forecasts and approximate 95-percent probability limits for the next **four** observations.

$$\hat{y}_{N+1} = \hat{\mu} + \hat{\phi} (y_N - \hat{\mu}) = 40 + 0.6 (46 - 40) = 43.6.$$

95% probability limits:

$$\hat{y}_{N+1} \pm 2\hat{\sigma}_{e}$$
 43.6 \pm 6

$$\hat{y}_{N+2} = \hat{\mu} + \hat{\phi} (\hat{y}_{N+1} - \hat{\mu}) = 40 + 0.6 (43.6 - 40) = 42.16.$$

95% probability limits:

$$\hat{y}_{N+2} \pm 2\sqrt{1+\hat{\phi}^2} \,\hat{\sigma}_e$$
 42.16 ± 6.997

$$\hat{y}_{N+3} = \hat{\mu} + \hat{\phi} (\hat{y}_{N+2} - \hat{\mu}) = 40 + 0.6 (42.16 - 40) = 41.296.$$

95% probability limits:

$$\hat{y}_{N+3} \pm 2\sqrt{1+\hat{\phi}^2+\hat{\phi}^4} \hat{\sigma}_e$$
 41.296 ± 7.323

$$\hat{y}_{N+4} = \hat{\mu} + \hat{\phi} (\hat{y}_{N+3} - \hat{\mu}) = 40 + 0.6 (41.296 - 40) = 40.7776.$$

95% probability limits:

$$\hat{y}_{N+4} \pm 2\sqrt{1+\hat{\phi}^2+\hat{\phi}^4+\hat{\phi}^6} \hat{\sigma}_e$$
 40.7776 ± 7.43675

For fun:
$$\hat{y}_{N+5} = \hat{\mu} + \hat{\phi} (\hat{y}_{N+4} - \hat{\mu}) = 40 + 0.6 (40.7776 - 40) = 40.46656.$$
95% probability limits:

$$\hat{y}_{N+5} \pm 2\sqrt{1+\hat{\phi}^2+\hat{\phi}^4+\hat{\phi}^6+\hat{\phi}^8} \hat{\sigma}_a \qquad \textbf{40.46656} \pm \textbf{7.47729}$$

4. Assume the following 10 observations:

$$2, -1, -4, 0, 2, 3, 1, -2, -1, 1$$

were generated by a first-order autoregressive process that can be described by a model of the form (note that $\mu = 0$)

$$Y_t = \phi Y_{t-1} + e_t$$

Obtain the least squares estimate of ϕ .

Hint: Consider
$$S*(\phi) = \sum_{t=2}^{N} (y_t - \phi y_{t-1})^2$$
.

First, derive the expression for the least squares estimator $\hat{\phi}$.

That is, find ϕ that minimizes $S*(\phi)$.

$$S*(\phi) = \sum_{t=2}^{N} (y_t - \phi y_{t-1})^2$$

$$\frac{\partial S * (\phi)}{\partial \phi} = -2 \cdot \sum_{t=2}^{N} (y_t - \phi y_{t-1}) \cdot y_{t-1}$$
$$= -2 \cdot (\sum_{t=2}^{N} y_t \cdot y_{t-1} - \phi \cdot \sum_{t=2}^{N} y_{t-1}^2) = 0.$$

$$\Rightarrow \hat{\phi} = \frac{\sum_{t=2}^{N} y_t \cdot y_{t-1}}{\sum_{t=2}^{N} y_{t-1}^2} = \frac{\sum_{t=2}^{N} y_t \cdot y_{t-1}}{\sum_{t=1}^{N-1} y_t^2} = \frac{\sum_{t=1}^{N-1} y_{t+1} \cdot y_t}{\sum_{t=1}^{N-1} y_t^2}$$

$$= \frac{-2+4+0+0+6+3-2+2-1}{4+1+16+0+4+9+1+4+1} = \frac{10}{40} = 0.25.$$

5. Consider the AR(2) processes

$$\dot{Y}_{t} - 0.3 \ \dot{Y}_{t-1} - 0.1 \ \dot{Y}_{t-2} = e_{t}$$

where $\{e_t\}$ is zero-mean white noise (i.i.d. $N(0, \sigma_e^2)$), $\dot{Y}_t = Y_t - \mu$.

a) Determine whether this model would produce a stationary process. That is, find the roots of $1 - 0.3 z - 0.1 z^2 = 0$ and check whether they are outside of the unit circle on the complex plane.

$$\Phi(B) = 1 - \phi_1 B - \phi_2 B^2 = 1 - 0.3 B - 0.1 B^2 = (1 - 0.5 B) (1 + 0.2 B)$$

The roots of $\Phi(z) = 0$ are $z_1 = 2$ and $z_2 = -5$.

All roots of $\Phi(z) = 0$ are outside the unit circle.

- \Rightarrow This process is stationary.
- b) Use Yule-Walker equations to find ρ_1 and ρ_2 .

Then find ρ_3 and ρ_4 .

The Yule-Walker equations for an AR(2) process:

$$\rho_1 = \phi_1 + \phi_2 \rho_1$$

$$\rho_2 = \phi_1 \rho_1 + \phi_2$$

$$\rho_1 = \phi_1 + \phi_2 \rho_1$$
 $\Rightarrow \rho_1 = \frac{\phi_1}{1 - \phi_2} = \frac{0.3}{1 - 0.1} = \frac{1}{3}$

$$\Rightarrow$$
 $\rho_2 = \phi_1 \rho_1 + \phi_2 = 0.3 \cdot \frac{1}{3} + 0.1 = 0.20.$

$$k \ge 2$$
 $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$

$$\rho_3 = \phi_1 \rho_2 + \phi_2 \rho_1 = 0.3 \cdot 0.20 + 0.1 \cdot \frac{1}{3} = \frac{28}{300} = \frac{7}{75} \approx 0.09333.$$

$$\rho_4 = \phi_1 \rho_3 + \phi_2 \rho_2 = 0.3 \cdot \frac{7}{75} + 0.1 \cdot 0.20 = 0.048.$$