Lezione 15 Analisi Reale

Federico De Sisti2025-04-16

0.1 Convergenze varie (alberto agostinelli)

Definizione 1 (Convergenza quasi uniforme)

 $f_n \to f$ quasi uniformemente se $\forall \delta > 0 \ \exists F_\delta \subseteq X, F_\delta$ misurabile $\mu(F_\delta) < \delta$ tale che $\sup_{X \setminus F_\delta} |f_n - f| \to 0 \ (f_n \to f \ uniformemente \ in \ X \setminus F_\delta)$

Proposizione 1

 $f_n \to f \text{ quasi uniformemente} \Leftrightarrow \forall \varepsilon > 0 \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \xrightarrow{k \to +\infty} 0$

Dimostrazione

 (\Rightarrow)

 $\forall \delta > 0 \exists F_{\delta} \subset X, \mu(F_s) < \delta \text{ tale che, } f_n \to f \text{ uniformemente in } X \setminus F_{\delta} \Leftrightarrow \forall \delta > 0 \exists F_{\delta} \subset X, \mu(F_{\delta}) < \delta$

tale che $\forall \varepsilon > 0 \exists k = k(\varepsilon, \delta) : |f_n(x) - f(x)| < \varepsilon \quad \forall n \ge k \quad \forall x \in XF_{\delta}$ $\Leftrightarrow \forall \delta > 0 \exists F_{\delta} \subset X, \mu(F_{\delta}) < \delta \text{ tale che } \forall \varepsilon > 0 \exists k = k(\delta, \varepsilon)$

$$X \setminus F_{\delta} \subseteq \bigcap_{n=k}^{+\infty} \{ |f_n - f| < \varepsilon \}.$$

 $\Leftrightarrow \forall \delta > 0 \quad \exists F_{\delta} \subset X \quad \mu(F_{\delta}) < \delta$ $tale \ che \ \forall \varepsilon > 0 \quad \exists k = k(\varepsilon, \delta)$

$$\left(\bigcap_{n=k}^{+\infty} \{f_n - f | < \varepsilon\}\right)^c = \bigcup_{n=k}^{+} \{f_n - f | \ge \varepsilon\} \subseteq F_{\delta}.$$

 $\Rightarrow \forall \delta > 0 \quad \forall \varepsilon > 0 \quad \exists k = k(\delta, \varepsilon)$

$$\mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) < \delta \Rightarrow \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \xrightarrow{k \to +\infty} 0.$$

 (\Leftarrow)

 $\varepsilon > 0 \quad \forall \delta > 0 \quad \exists k = k(\varepsilon, \delta) \ tale \ che$

$$\mu(\bigcup_{n=0}^{+\infty} \{|f_n - f| \ge \varepsilon\}) < \delta.$$

 $\forall j \in \mathbb{N} \ per \ \varepsilon = \frac{1}{j}, \ \delta = \frac{\nu}{2^j}, \nu > 0 \ fissato$

 $\Rightarrow \exists k_j = k_j(j,\nu)$ tale che $\mu(\bigcup_{n=k_j}^{+\infty} (\{f_n - f | \geq \frac{1}{j}\}) < \frac{\nu}{2^j}$

$$\Rightarrow \mu(\bigcup_{j=1}^{+\infty} \bigcup_{n=k_j}^{+\infty} \{|f_n - f| \ge \frac{1}{j}\}) \le \sum_{j=1}^{+\infty} \frac{\nu}{2^j} = \nu.$$

 $x \in X \setminus F_{\nu}$ (dove F_{ν} è l'argomento della misura precedente)

$$\Rightarrow x \in \bigcap_{j=1}^{+\infty} \bigcap_{n=k_j}^{+\infty} \{ |f_n - \tilde{f}| < \frac{1}{j} \}$$

$$\Rightarrow \forall j \quad \exists k_j \ tale \ che \ |f_n(x) - f(x)| < \frac{1}{i} \quad \forall n \geq k_j - \Rightarrow \sup_{X \setminus F_{\nu}} |f_n - f| \xrightarrow{n \to +\infty}$$

 $0 \Rightarrow f_n \rightarrow f$ uniformemente su $X \setminus F_{\nu}$

Abbiamo caratterizzato la convergenza quasi uniforme con la misura dei sopralivelli $\forall \varepsilon > 0$

conseguenza:

$$f_n \to f \ q.u. \Rightarrow \begin{cases} f_n \to f \ q.u. \\ f_n \to f \ in \ misura \end{cases}$$

$$\forall \varepsilon > 0 \ \mu \left(\bigcup_{n=k}^{+\infty} \{ |f_n - f| \ge e \} \right) \xrightarrow{k \to +\infty} 0.$$

ma allora

$$0 = \lim_{k \to +\infty} \mu(\bigcup_{n=k}^{+\infty} \{ |f_n - f| \ge \varepsilon \}) = \mu(\bigcap_{k=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{ |f_n - f| \} \ge \varepsilon \}).$$

$$\forall k \ \mu(\{f_k - f | \ge \varepsilon\} \le \mu(\bigcup_{n=k}^{+\infty} \{n - f | \ge \varepsilon\}) \to 0.$$

 $\Rightarrow f_n \to f$ in misura

Teorema 1 (Egorov)

Sia (X, μ) spazio di misura finita ($\mu(X) < +\infty$) Allora:

$$f_n \to f$$
 q.o. \Leftrightarrow $f_n \to f$ q.u..

Teorema 2 (Vitali)

Sia (X, μ) uno spazio di misura finita e siano $f_n, f \in L^1(X)$ tale che $f_n \to f$ quasi ovunque quasi ovunque

allora $f_n \to f$ in $L^1 \Leftrightarrow \{f_n\}$ equi-assolutamente integrabili $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ tale \ che$

$$\int_{E} |F_{n}| d\mu < \varepsilon \text{ se } E \in M \quad \forall n, \mu(E) < \delta.$$

Dimostrazione

 (\Rightarrow) già visto

 (\Leftarrow)

 $f_n \to f$ quasi ovunque $+ \mu(X) < +\infty$

 \Rightarrow (per Eqorov)

 $\forall \delta > 0 \exists f_{\delta} \in M, \mu(F_{\delta}) < \delta \text{ tale che } f_n \to f \text{ uniformemente in } X \setminus f_{\delta}$

 $Sia \varepsilon > 0$ fissato

 \Rightarrow sia = $\delta(\varepsilon)$ dato dall'ipotesi di equi-assoluta integrabilità e sia $f_{\delta} \in M$ dato dal teorema di Egorov

$$\Rightarrow \int_{X} |f_{n} - f| d\mu = \int_{X \setminus F_{\delta}} |f_{n} - f| d\mu + \int_{F_{\delta}} |f_{n} - f| d\mu.$$

$$\leq \sup_{X \setminus F_{\delta}} |f_{n} - f| \mu(X \setminus F_{\delta}) + \int_{F_{\delta}} |f_{n}| d\mu + \int_{F_{\delta}} |f| d\mu.$$

$$\leq (\sup_{X \setminus F_{\delta}} |f_{n} - f|) \mu(X) + \varepsilon + \varepsilon \quad (dato \ che \ \mu(F_{\delta}) < \delta).$$

$$\Rightarrow \lim_{n \to +\infty} \int_{X} |f_{n} - f| d\mu \leq 2\varepsilon \quad \forall \varepsilon > 0.$$

$$\Rightarrow \int_{X} |f_{n} - f| d\mu \to 0.$$

 $f: \mathbb{R} \to \mathbb{R} \ (\mathbb{R}, m)$

f continua $\Rightarrow f$ misurabile

f continua quasi ovunque $\Rightarrow f$ misurabile

MANCA UNA PARTE

$$D_f = \{x \in \mathbb{R} \mid f \text{ è discontinua in } X\}.$$

 $m\mu(D_f) = 0$ f è misurabile, infatti:

$$\forall t \in \mathbb{R} \ \{f > t\} = \{f > t\} \cap D_f \cup \{f > t\} \setminus D_f.$$

 \Rightarrow ha misura nulla \Rightarrow è misurabile

$$x \in \{f > t\} \setminus D_f$$

$$\lim_{y\to x} f(y) \Longrightarrow f(x) > t \text{ e } f \text{ è continua in } X$$

$$\Rightarrow \exists \delta_x > 0 : f(y) > t \quad \forall y \in (x - \delta_x, x + \delta_x)$$

$$\Rightarrow \{f > t\} \setminus D_f = \bigcup_{x \in \{f > t\} \setminus D_f} (x - \delta_x, x + \delta_x) \setminus D_f = \bigcup_{x \in \{f > t\} \setminus D_f} (x - \delta_x, x + \delta_x)$$

 $\delta_x)D_f$ aperto è misurabile

$$f: \mathbb{R} \to \mathbb{R}$$

se
$$\exists g \in C(\mathbb{R})$$

tale che f = g quasi ovunque $\Rightarrow f$ misurabile

$$\exists N \subset \mathbb{R}, m(N) = 0$$

tale che
$$f = g$$
 in $\mathbb{R} \setminus N$

$$\forall t \in \mathbb{R} \ \{f > t\} = \{f > t\} \setminus N \cup \{f > t\} \setminus N \text{ è misurabile}$$

 $f = \chi_{\mathbb{O}} = 0$ quasi ovunque

f = g quasi ovunque $\exists N, \mu(N)$ f = g in $\mathbb{R} \setminus N$

$$x \in \mathbb{R} \setminus N \quad \lim_{y \to x} f(y)$$

 $f=\chi_{[}0,1]$ è continua quasi ovunque ma non può essere ugguale quasi ovunque ad una funzione continua

Teorema 3

Sia $f: \mathbb{R} \to R$ misurabile $\Rightarrow \forall \delta > 0$ $\exists g_{\delta} \in C(\mathbb{R})$ tale che $m(\{f \neq g\}) < \delta$ $e \sup_{\mathbb{R}} |g_{\delta}| \leq \sup_{\mathbb{R}} |f|$