

Joseph Cunningham

Contents

Ι	Quantum Mechanics	2
1	Postulates	3
II	Quantum Information and computation	4
1	Circuit model	5
2	Eigenpath traversal 2.1 Quantum Zeno effect	6 6 6 6
3	Variational quantum algorithms	7
4	Algorithms	8
	4.1 Grover's search algorithm 4.1.1 Circuit model	8 8 8 9 9
	4.1.3.1 Poisson projective measurement	11

Part I Quantum Mechanics

Postulates

Part II Quantum Information and computation

Circuit model

Eigenpath traversal

2.1 Quantum Zeno effect

Proposition II.1. Consider a path of states $|\psi(s)\rangle$ where $s \in [0,1]$. Assume that, for fixed d and all δ ,

$$|\langle \psi(s)|\psi(s+\delta\rangle|^2 \ge 1 - d^2\delta^2.$$

Then

2.2 Adiabatic quantum computation

2.3 Evolution through measurement

2.3.1 Phase randomisation

$$|\psi_0\rangle = |E_0(0)\rangle = \sum_i \alpha_i |E_i(s_1)\rangle$$

$$\rho(s_1) = \frac{1}{T} \int_0^T e^{-iH(s_1)t} |\psi_0\rangle \langle \psi_0| e^{iH(s_1)t} dt$$

$$= \sum_{i,j} \alpha_i \alpha_j^* \frac{1}{T} \left(\int_0^T e^{-i(E_i - E_j)t} dt \right) |E_i\rangle \langle E_j|$$

$$= \sum_{i,j} \alpha_i \alpha_j^* \left(\frac{i(e^{-i(E_i - E_j)T} - 1)}{T(E_i - E_j)} \right) |E_i\rangle \langle E_j|$$

Theorem II.2 (Randomised dephasing). Let $|\psi(s)\rangle$ be a nondegenerate eigenstate of H(s) and $\{\omega_j\}$ the energy differences to the other eigenstates $|\psi_j(s)\rangle$. Let T be a random variable. Then, for all states ρ , we have

$$\left\| (M_l - e^{-iH(s)T} \rho e^{-iH(s)T} \right\|_{tr} \le \epsilon = \sup_{\omega_j} |\Phi(\omega_j)|$$

Variational quantum algorithms

Algorithms

4.1 Grover's search algorithm

Suppose we have a set \mathcal{N} of N items, some of which are marked. WLOG we can take \mathcal{N} to be the set of bit strings of length ν . The marked items form a subset \mathcal{M} of size M. Suppose we have an oracle that tells us whether an object is marked or not:

$$f: \mathcal{N} \to \{0, 1\}: x \mapsto \begin{cases} 0 & (x \in \mathcal{M}) \\ 1 & (x \notin \mathcal{M}) \end{cases}$$

Now we want to find a marked item. Classically we need to check $\Theta(N/M)$ items on average.

4.1.1 Circuit model

Let $\{|n\rangle \mid n \in \mathcal{N}\}$ be a basis of a Hilbert space \mathcal{H}_N and let \mathcal{H}_2 be a qubit space.

4.1.1.1 The oracle

We would like to use the operator

$$U_f: \mathcal{H}_N \to \mathcal{H}_N: |n\rangle \mapsto (-1)^{f(n)} |n\rangle.$$

This can be constructed from the oracle

$$O_f: \mathcal{H}_N \otimes \mathcal{H}_2 \to \mathcal{H}_N \otimes \mathcal{H}_2: |n\rangle \otimes |q\rangle \mapsto |n\rangle \otimes |f(n) \oplus q\rangle$$

where \oplus is addition modulo 2, by preparing the qubit in the superposition $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$. Then

$$O_f\left(|n\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right) = |n\rangle \otimes \frac{1}{\sqrt{2}}(|f(n)\rangle - |f(n) \oplus 1\rangle)$$
$$= (-1)^{f(n)}|n\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

The operator U_f can also be written

$$U_f = \mathrm{id}_{\mathcal{H}_N} - 2 \sum_{m \in \mathcal{M}} |m\rangle\langle m|.$$

4.1.1.2 The algorithm

We construct the an initial state which is a superposition of all possible solutions

$$|\mathcal{N}\rangle = \frac{1}{\sqrt{N}} \sum_{n \in \mathcal{N}} |n\rangle.$$

This can be prepared by applying a Hadamard gate W to each qubit in the register. We also define the state

$$|\mathcal{M}\rangle = \frac{1}{\sqrt{M}} \sum_{m \in \mathcal{M}} |m\rangle.$$

We define the operation

$$U_0 = W^{\otimes \nu}(\mathrm{id} - 2|0\rangle\langle 0|)W^{\otimes \nu} = \mathrm{id} - 2|\mathcal{N}\rangle\langle \mathcal{N}|.$$

Now both U_0 and U_f leave span $\{\}$

4.1.2 Analogue Grover

Why does analogue Grover work?

4.1.3 Adiabatic Grover

$$H_0 = \mathbf{1} - |\mathcal{N}\rangle\langle\mathcal{N}| = \mathbb{1} - \mathbb{J}/N$$

$$H_f = \mathbf{1} - \sum_{m \in \mathcal{M}} |m\rangle\langle m| = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix}.$$

Then

$$H(s)=(1-s)H_0+sH_f=\begin{pmatrix} (1-s)\mathbb{1}+\frac{s-1}{N}\mathbb{J} & \frac{s-1}{N}\mathbb{J} \\ \frac{s-1}{N}\mathbb{J} & \mathbb{1}+\frac{s-1}{N}\mathbb{J} \end{pmatrix}=\begin{pmatrix} (1-s)\mathbb{1}_M & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix}+\frac{s-1}{N}\mathbb{J}.$$

Then, setting
$$A=\begin{pmatrix} (1-s-\lambda)\mathbb{1}_M & 0 \\ 0 & (1-\lambda)\mathbb{1}_{N-M} \end{pmatrix}$$

$$\begin{split} \det(H(s)-\lambda) &= \det\left(A + \frac{s-1}{N}\mathbb{J}^{n\times 1}\mathbb{J}^{1\times n}\right) \\ &= \det(A) \det\left(\mathbbm{1}_N + \frac{s-1}{N}A^{-1}\mathbb{J}^{n\times 1}\mathbb{J}^{1\times n}\right) \\ &= \det(A) \det\left(1 + \frac{s-1}{N}\mathbb{J}^{1\times n}A^{-1}\mathbb{J}^{n\times 1}\right) \\ &= (1-s-\lambda)^M(1-\lambda)^{N-M}\left(1 + \frac{M(s-1)}{(1-s-\lambda)N} + \frac{(N-M)(s-1)}{(1-\lambda)N}\right) \\ &= (1-s-\lambda)^{M-1}(1-\lambda)^{N-M-1}\left(\lambda^2 - \lambda + s(1-s)\frac{N-M}{N}\right), \end{split}$$

where we have used the matrix determinant lemma to simplify the calculation.

We see that there are four distinct eigenvalues:

$$\lambda_{0,1} = \frac{1}{2} \left(1 \pm \frac{\sqrt{N + 4(Ns^2 - Ns - Ms^2 + Ms)}}{\sqrt{N}} \right)$$
 with multiplicity 1
$$\lambda_2 = 1 - s$$
 with multiplicity $M - 1$

$$\lambda_3 = 1$$
 with multiplicity $N - M - 1$.

Next we are interested in the eigen vectors associated to $\lambda_{0,1}$. Let Q_1 be a unitary transfor-

mation that maps
$$\mathbb{J}^{M\times 1}$$
 to $\begin{pmatrix} \sqrt{M} \\ 0 \\ 0 \\ \vdots \end{pmatrix} \in \mathbb{C}^{M}$. Similarly let Q_2 be a unitary transformation that $\begin{pmatrix} \sqrt{N-M} \\ 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{C}^{(N-M)}$ and define $Q = \begin{pmatrix} Q_1 & 0 \\ 0 & Q_2 \end{pmatrix}$, which is also unitary.

Then we have

$$\begin{split} QH(s)Q^{-1} &= \begin{pmatrix} (1-s)\mathbb{1}_M & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix} + \frac{s-1}{N}Q\mathbb{J}^{N\times 1}(\mathbb{J}^{N\times 1})^*Q^* \\ &= \begin{pmatrix} (1-s)\mathbb{1}_M & 0 \\ 0 & \mathbb{1}_{N-M} \end{pmatrix} + \frac{s-1}{N}\begin{pmatrix} \sqrt{M} \\ 0 \\ \vdots \\ 0 \\ \sqrt{N-M} \\ 0 \\ \vdots \end{pmatrix} \begin{pmatrix} \sqrt{M} \\ 0 \\ \vdots \\ 0 \\ \sqrt{N-M} \\ 0 \\ \vdots \end{pmatrix}. \end{split}$$

All but two of the eigenvectors are just elements of \mathcal{N} . To study the other two we can simplify by "removing the zeros". Now the eigenvalue problem becomes

$$\left(\begin{pmatrix} 1 - s - \lambda_{0,1} & 0 \\ 0 & 1 - \lambda_{0,1} \end{pmatrix} + \frac{s - 1}{N} \begin{pmatrix} \sqrt{M} \\ \sqrt{N - M} \end{pmatrix} \begin{pmatrix} \sqrt{M} \\ \sqrt{N - M} \end{pmatrix}^* \right) \mathbf{v} = 0.$$

Setting $\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ gives us the equations

$$0 = (1 - s - \lambda_{0,1})x_1 + \frac{s - 1}{N}(Mx_1 + \sqrt{M}\sqrt{N - M}x_2)0 = (1 - \lambda_{0,1})x_2 + \frac{s - 1}{N}(\sqrt{M}\sqrt{N - M}x_1 + (N - M)x_2)$$

reshuffling and dividing these equations gives

$$\frac{(1-s-\lambda_{0,1})x_1}{(1-s-\lambda_{0,1})x_2} = \frac{-\frac{s-1}{N}(Mx_1+\sqrt{M}\sqrt{N-M}x_2)}{-\frac{s-1}{N}(\sqrt{M}\sqrt{N-M}x_1+(N-M)x_2)} = \frac{\sqrt{M}(\sqrt{M}x_1+\sqrt{M}\sqrt{N-M}x_2)}{\sqrt{N-M}(\sqrt{M}x_1+\sqrt{N-M}x_2)} = \frac{\sqrt{M}}{\sqrt{N-M}}.$$

So we have eigenvectors $\mathbf{v}_{0,1} = (\sqrt{M}(1-\lambda_{0,1}), \sqrt{N-M}(1-s-\lambda_{0,1}))^{\mathrm{T}}$ of $QH(s)Q^{-1}$. The corresponding eigenvectors of H(s) are then given by

$$Q^*\mathbf{v}_{0,1} = \begin{pmatrix} (1 - \lambda_{0,1}) \mathbb{J}^{M \times 1} \\ (1 - s - \lambda_{0,1}) \mathbb{J}^{(N-M) \times 1} \end{pmatrix}.$$

For computational ease we will keep on working with the eigenvectors $\mathbf{v}_{0,1}$ of $QH(s)Q^{-1}$. We denote by $|0\rangle$ and $|1\rangle$ the normalisation of $\mathbf{v}_{0,1}$.

4.1.3.1 Poisson projective measurement

The dynamics of the system is governed by the differential equation

$$\frac{\mathrm{d}\rho}{\mathrm{d}s} = \Lambda(|0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1| - \rho).$$

Now we can rewrite $\frac{d\rho}{dt}$ in the basis $|0\rangle$, $|1\rangle$: let $i, j, k, l = 0, 1 \mod 2$ with implicit summation

$$\begin{split} \frac{\mathrm{d}\rho}{\mathrm{d}s} &= \frac{\mathrm{d}}{\mathrm{d}s} \left(|i\rangle\langle i|\rho|j\rangle\langle j| \right) \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) |i\rangle\langle j| + \langle i|\rho|j\rangle \frac{\mathrm{d}}{\mathrm{d}s} \left(|i\rangle\langle j| \right) \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) |i\rangle\langle j| + \langle i|\rho|j\rangle |k\rangle\langle k| \frac{\mathrm{d}}{\mathrm{d}s} |i\rangle\langle j| - \langle i|\rho|j\rangle |i\rangle\langle j| \frac{\mathrm{d}}{\mathrm{d}s} |l\rangle\langle l| \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) |i\rangle\langle j| + \langle i|\rho|j\rangle |i+1\rangle\langle i+1| \frac{\mathrm{d}}{\mathrm{d}s} |i\rangle\langle j| - \langle i|\rho|j\rangle |i\rangle\langle j| \frac{\mathrm{d}}{\mathrm{d}s} |j+1\rangle\langle j+1| \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}s} \left(\langle i|\rho|j\rangle \right) + \langle i+1|\rho|j\rangle\langle i| \frac{\mathrm{d}}{\mathrm{d}s} |i+1\rangle - \langle i|\rho|j+1\rangle\langle j+1| \frac{\mathrm{d}}{\mathrm{d}s} |j\rangle \right) |i\rangle\langle j|. \end{split}$$

For each $|i\rangle\langle j|$ we get an equation, four in total. One of these is redundant by the zero trace requirement. Writing $y_{i,j} := \langle i|\rho|j\rangle$ and $\omega_{ij} := \langle i|\frac{\mathrm{d}}{\mathrm{d}s}|j\rangle$ the three remaining equations are

$$\begin{aligned} \frac{\mathrm{d}\rho_{00}}{\mathrm{d}s} &= -\rho_{10}\omega_{01} + \rho_{01}\omega_{10} \\ \frac{\mathrm{d}\rho_{01}}{\mathrm{d}s} &= -\Lambda\rho_{01} - (1 - \rho_{00})\omega_{01} + \rho_{00}\omega_{01} \\ \frac{\mathrm{d}\rho_{10}}{\mathrm{d}s} &= -\Lambda\rho_{10} - \rho_{00}\omega_{10} + (1 - \rho_{00})\omega_{10} \end{aligned}$$

Setting $\omega = \omega_{10} = -\omega_{01}$ and $y = \rho_{00} - 1/2$ we obtain the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}s^2} = \left(\frac{\frac{\mathrm{d}\omega}{\mathrm{d}s}}{\omega} - \Lambda\right) \frac{\mathrm{d}y}{\mathrm{d}s} - 4\omega^2 y.$$

Setting $\mathbf{y} = \begin{pmatrix} y \\ y' \end{pmatrix}$ this second order differential equation is equivalent to the first order system

$$\begin{pmatrix} y \\ y' \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -4 & -\Lambda/\omega \end{pmatrix},$$

which is in the form $\mathbf{y}' = A\mathbf{y}$. Now A is similar to $\begin{pmatrix} \omega/\Lambda & 0 \\ -4 & -\Lambda/\omega \end{pmatrix}$, so it is bounded if both Λ and Λ^{-1} are bounded functions.

Then by the Picard-Lindelöf theorem the initial value problem has a unique solution on [0,1]. In addition let y_1 be the solution obtained using Λ_1 and y_2 using Λ_2 . Then

$$\Lambda_1 \leq \Lambda_2 \implies y_1 \leq y_2.$$

To see this, we may first remark that

$$\{t \in [0,1] \mid y_1(t) \le y_2(t) \land y_1'(t) \le y_2'(t)\} = (y_2 - y_1)^{-1} [[0,+\infty[]] \cap (y_2' - y_1')^{-1} [[0,+\infty[]]] + [0,+\infty[]] + [0,+\infty[]]$$

is a closed and bounded set that contains 0. Let t_1 be its supremum. This means that $y_1(t_1) \le y_2(t_1)$ and $y_1'(t_1) \le y_2'(t_1)$, but $y_1(t) > y_2(t)$ or $y_1'(t) > y_2'(t)$ on some open set $[t_1, t_1 + \delta[$.