

Program Semantics, Specification, and Verification

Innopolis, November 3th-4th, 2023

Disambiguation of Regular Expressions with Backreferences via Term Rewriting

Daria Ismagilova armi.din1902@qmail.com

Antonina Nepeivoda a_nevod@mail.ru

Terminological Clash

Academic regexes

- |, ·, * (sometimes +, ?) operations;
- define regular languages;
- studied in university courses (compilers & formal languages)

REGEX (extended regexes)

- lookaheads, backreferences, etc;
- define non-context-free languages;
- used in practice (PCRE2 standart).

 Almost identical names are used for completely different (although related) notions.

Regex Processing Problem

Even for "academic" case...

Given a regex ρ , whether it is «bad» or «good» for matching?

- For Thompson NFA-based matching algorithm,
 (([A − Z]*) | ([1 − 9]*))* is bad.
- For classical regex \Rightarrow DFA conversion, $*a(.\{n\})$ is bad.
- For RE2 library, both .*a(.{n}) and (([A Z]*) | ([1 9]*))* are good.

Uses mixed NFA+DFA approach, based on regex structure and its algebraic properties

Constructing "the best" regex?

Regex

Worst-case exponential in DFA size

State elimination

Worst-case exponential in regex size

Determinization

Regex heavily depends on state order in elimination procedure

(Conway & Krob)

The results of state elimination method are equivalent modulo:

• $x(yx)^* = (xy)^*x$

(sliding rule)

• $x^*(yx^*)^* = (x \mid y)^*$

(denesting rule)

• $\varepsilon \mid xx^* = x^*, \varepsilon \mid x^*x = x^*$

(star folding rule)

• $x(y \mid z) = xy \mid xz, (y \mid z)x = yx \mid zx$

(distributivity)

Other Rewriting Techniques

- Subexpression simplification wrt equivalence rules
 - Star-Normal Form (A. Bruggemann)
 - Harmful Patterns Elimination and heuristic-based rewriting for reducing matching complexity
- Utilizing full power of Kleene algebra for regex shortening

Kleene Algebra

A semiring $\langle \Sigma, (+, \varepsilon), (\cdot, \varnothing), * \rangle$, idempotent wrt + and satisfying the following star axioms:

•
$$\varepsilon + x \cdot x^* = \varepsilon + x^*x = x^*$$
 (unfolding rule)
• $a \cdot x + b + x = x \Rightarrow a^*b + x = x$ (Kozen's axioms)

•
$$x \cdot a + b + x = x \Rightarrow b \cdot a^* + x = x$$
 (Kozen's axioms)

What is a "regex" Nowadays?

Extensions

Regular

Lookaheads & Lookbehinds Negative Lookaheads (not in PCRE, but...) Async. Composition

Brute force solutions EXP-harder (but polynomial if a "natural" NFA model is deterministic) Non-Regular Backreferences

Even wider language class with lookaheads or negations

Glushkov Automaton

1960s-1980s

Introduced by V.M. Glushkov in 1961. Till 1990s, mainly of theoretical interest.

1990s •

Formalisation of SGML unambiguity notion in terms of Glushkov NFA (Wood&Bruggemann).

00s

Glushkov NFA is proved to generate (or be generated by) well-known NFA models by equivalence or simulation relations. Breaking fast implementation of Glushkov-NFA-based approach in RE2 library (still $20\times$ faster than DFA-based Go regex library)

Glushkov Automaton

1990s

Formalisation of SGML unambiguity notion in terms of Glushkov NFA (Wood&Bruggemann).

00s

Glushkov NFA is proved to generate (or be generated by) well-known NFA models by equivalence or simulation relations. Breaking fast implementation of Glushkov-NFA-based approach in RE2 library (still 20× faster than DFA-based Go regex library)

10-20s

"The Mother of All Automata" (Broda, 2017)
Development of Glushkov models for extended set of regex operations.

Glushkov Automaton

10-20s

"The Mother of All Automata" (Broda, 2017)
Development of Glushkov models for extended set of regex operations.

Construction for Academic Regexes

- Linearize regex: $\tau = (.+)^*$. becomes $\tau' = (._1^+)^*._2$;
- Compute First(τ'), Follow(τ'), Last(τ'):
 - $s_i \in \text{First}(\tau') \Leftrightarrow s_i \text{ can begin a string recognized by } \tau';$
 - $s_i \in \text{Last}(\tau') \Leftrightarrow s_i \text{ can end a string recognized by } \tau'$;
 - $\langle s_i, s_j \rangle \in \text{Follow}(\tau') \Leftrightarrow s_i s_j \text{ can occur in } w \in \mathcal{L}(\tau').$
- States of Glushkov NFA letters of τ'. Transitions are determined by First(τ') and Follow(τ'); final states — by Last(τ').

A regex is deterministic $\Leftrightarrow s_i, t_j \in \text{First}(\tau') \Rightarrow s \neq t$ and $\langle r_k, s_i \rangle, \langle r_k, t_j \rangle \in \text{Follow}(\tau') \Rightarrow s \neq t$

RE2 Matching Algorithm

RE2 library deals successfully with regexes like $(.^+)^*.^+$. How to deal with $(.^+)^*\setminus 1$? (more determined from the end) Maybe reverse it to $(.^+?)\setminus 1.^*$ and parse backwards?

Research Questions

- Is it possible to partly simulate RE2 implementing clever regex structure analysis and rewriting rules in presence of backreferences?
- At least, find deterministic and backwards-deterministic cases leading to "natural" linear-time matching?

- Appeared much later than implementations of backref-regexes.
- Some almost repeated PCRE (Perl) backref-regexes.

```
Campeanu–Salomaa-Yu (CSY) formalisation: \begin{cases} (\tau) & \text{(anonymous capturing)} \\ \backslash k & \text{(reading memory cell from k-th group)} \end{cases} Example: (a^+)(\backslash 1)^+ defines \{a^n \mid n \text{ is not prime}\}
```

- Any capture group is initialized exactly once.
- Any reference must be preceded by the capture group textually.

Gains

Define practical languages No cyclic memory problem **Problems**

Algebraic properties are ruined: x(yz) initializes \1 by yz, while (xy)z — by xy

- Second try: regularly-bounded patterns.
- Regular restrictions (possibly w/some other variables) are imposed on variables.

Gains

Define practical languages No cyclic memory problem Reversal is possible Problems -

Star unfolding requires introduction of fresh variables (unrestricted alphabet growth)

• Last try: only named capture groups.

```
Backref-regex (ref-words, by Shmid) operations: \begin{cases} [_k\tau]_k & \text{(named capturing)} \\ \&k & \text{(reading memory cell)} \end{cases}Example: [_1a^*]_1a^+b\&1 defines \{a^mba^n \mid m>n\}
```

- ε -semantics (Shmid) uninitialized reference recognizes $\{\varepsilon\}$;
- Ø-semantics (regex engines) uninitialized reference recognizes Ø.

No impact on language properties.

- Possibly unbalanced and nested (but not self-nested) capturing.
- References on *k*-th memory cell cannot occur inside a capturing group for *k*.
- Consequence: extended Glushkov automaton construction.

Memory Finite Automaton

Bottleneck: Memory Loops

 Ref-words equivalence problem is harder, as compared to one for CSY regexes or reg-patterns (e.g., no pumping lemma is proven).

Issues with Cyclic Memories

 Loose extension of practical regexes, increasing expressibility of ref-words.

None of more than 3000 backref-regexes from StackOverflow contains recursive memoisation.

- Non-trivial to detect "by eye":
 - ref-word $([_1\&2]_1[_2a\&1]_2[_1a^*]_1)^*$ is cyclic,
 - ref-word $([_1\&2]_1[_1a^*]_1[_2a\&1]_2)^*$ is not.

Semantics-Preserving Renaming

Initial regex	$[_1a^*]_1 \\ \mapsto [_3a^*]_3$	$[_1\&2]_1$ $\mapsto [_3\&2]_3$	Cycles after subst
$ \begin{pmatrix} ([_1\&2]_1[_2a\&1]_2[_1a^*]_1)^* \\ ([_1\&2]_1[_1a^*]_1[_2a\&1]_2)^* \end{pmatrix} $	✓ X	×	×

- Memory-safe regex can be consistently renamed to an acyclic regex.
- Memory-cyclic regex can only be consistently renamed to a memory-cyclic regex.

Dependent Memory Chains

- A dependent memory chain is $[i_1 \& i_2]_{i_1} [i_2 \& i_3]_{i_2} \dots [i_{n-1} \& i_n]_{i_{n-1}}$.
- $\omega \in \Sigma_{\mathcal{M}}^*$ contains a dependent memory chain $C \Leftrightarrow C$ occurs in ω as a scattered subword, and no memory brackets $[i_j]_{i_j}$ are used outside of the chain in ω preceding usage of $\&i_j$ in the chain after initialization of i_j .

 $[1\&2]_1[2\&1]_2[1\&2]_1$ is a memory chain

 $[1\&2]_1[2\&1]_2[1\&2]_1$ is not a memory chain

Dependent Memory Chains

Checking dependencies

Dependency finite automaton (DepFA) for a ref-word ρ is an NFA for the linearized academic regex $h(\rho)$, where $h(\gamma) = \varepsilon$ for all γ in input alphabet Σ .

Observing dependent memory chains in $\mathscr{L}(DepFA) \Rightarrow more$ semantically-based definition of acyclic memory use.

ACREG formalization

Acyclic regexes

A ref-word ρ is acyclic if language of its DepFA does not contain a dependent memory chain starting and ending with the same indexed subexpression $[i,t_1 \& j_{t_2}]_{i,t_3}$.

- Reinitialization is finitely bounded
- Capture groups memory operators
- Closed under semantics-preserving renaming

ACREG is an idempotent semiring satisfying sliding, denesting and star folding rules

Last initializations

- For binding, only the last memory initialization on the path makes sense.
- Less possible bindings ⇒ more memory determinism (easier to analyse).

If $\tau \in ACREG$, then every reference in τ can have only a finitely presented set of last-initializations.

• Still, the representation is context-sensitive.

Example

Let $\tau = [1ba^*]_1[2ca^*]_2([1\&2ab\&2]_1 \mid [2bb^*]_2)^*$.

- $last_{2:init}r = \{ca^*, bb^*\}.$
- $last_{1:init}r = \{ba^*, [2ca^*]_2ab\&2, [2bb^*]_2ab\&2\}.$

Backref-Normal Form and Conway-Krob transformations

•
$$x^* \longrightarrow \varepsilon \mid xx^*$$
 (U)

$$\bullet (x \mid y)^* \longrightarrow x^* (yx^*)^* \tag{N}$$

•
$$x(y \mid z) \longrightarrow xy \mid xz, (y \mid z)x \longrightarrow yx \mid zx$$
 (D)

- τ is deterministic wrt the last initializations $\Rightarrow \tau'$ resulting from UND is also deterministic.
- Cardinality of the set of last-initializations wrt *k*-th memory cell can be stepwise reduced by UND compositions.

semi-BNF

If for every subexpression ρ ending with &i, $|\text{last}_{i:\text{init}}\rho| = 1$.

BNF

Last usage of a reference before its re-initialization or the end of the regex is explicit

Reversing Ref-Words

• Backreferences are 'binded' to the initializations, thus the initializations and references can be swapped.

```
([_{1}a^{*}]_{1}(bb | \&1)bb\&1 | [_{1}b^{*}]_{1}a\&1) \Rightarrow 
([_{1}b^{*}]_{1}a\&1 | [_{1}a^{*}]_{1}bb(\&1 | bb)\&1)
```

Generic ref-words are not closed under reversal. Counterexample: $[_1a]_1b([_2\&1\&1]_2b[_1\&2\&2]_1)^*$

 Complication: special case of dependent memory chains under an iteration, when a reference precedes the bounded initialization ((&2[2&1b*]2[1a*]1)*). Requires introduction of additional memory cells (polynomial in the cardinality of memory).

Experimental Algorithm

Backref-Regexes "in the wild"

>3000 regexes collected from StackOverflow.

- No recursive memory dependencies;
- 60 non-trivial memory dependencies, but none of them in RW-blocks (i.e. introduce new memory cells in reversed regex);
- Most (>80%) memory structures are patterns.

Similar observations: regexes from RegexLib (collection of "best practices"); but much smaller dataset.

Experimental Results

- Test dataset 75 backref-regexes with various refs-iterations dependencies (most — imitating regexes from StackOverflow).
- Model input language (non-sugared academic regexes + memory operations).
- To estimate asymptotic growth: used series of words, following "pumping lemma" structure.

Comparable matching time	60% (45 cases)	50% — reversal+ 40% — init+ 10% — symmetrical	
Reversed++	23% (17)		
Init++	17% (13)		

Experimental Results

Future Work

- Optimised algorithm for dependent memory checking.
- Reversal preserving matching order (take in account greedy and lazy quantifiers).
- Implementing notion of deterministic ref-word and refining the experimental algorithm.

Discussion

Why the language is model?

- Real regex syntax is heavily sugared;
- To avoid redundant work: first explore the properties, second
 — implement all the sugared constructions. We are still on the
 first step.

Certified implementation for a model?

- Interesting! But requires a lot of labour, doing all memory operations from scratch...
- Basic theory of backref-regexes is not implemented in libraries of theorem provers.

