Solución Examen 4 (temas 11, 12 y 13)

Ejercicio 1 (3 puntos)

a) **Solución:** Código de la derecha.

Criterio de valoración (1 punto): Cada instrucción evaluación binaria (bien o mal).

-0.25 puntos por cada instrucción mal (4 o más instrucciones mal se obtiene un 0).

b) Solución:

$$V: => Mem_{w}[0x0100] = 0x3917$$

$$L1: => Mem_{w}[0x0512] = 0x90E8$$

$$L4: => Mem_{w}[0x0528] = 0x81FA$$

Criterio de valoración (0,75 puntos):

-0,25 puntos por cada línea incorrecta.

Cada línea (dirección junto con su contenido) tiene evaluación binaria (correcta o incorrecta). Una excepción: si los contenidos de memoria son todos correctos pero no las direcciones, en vez de un 0 se obtendrá un 0,5 en el apartado.

c) Solución:

$$R3 = 998$$

Criterio de valoración (0,5 puntos)

Evaluación binaria; bien 0,5 puntos, mal 0 puntos.

d) Solución: .

$$| InstrucEjec = 6.009 \\ ; Tejec(V.Neumann) = 19.028.000 \; ; \qquad x = (1-12.018/19.028)100 = 36.8$$

Criterio de valoración (0,75 puntos):

- +0,25 puntos por el número de Instrucciones ejecutadas (InstrucEjec) correcto. Evaluación binaria. Si es incorrecto se tiene un 0 en todo el apartado c).
- +0,25 puntos por el tiempo de ejecución correctos del V,Neumann. Evaluación binaria.
- +0,25 puntos por el x% correcto, siempre que el tiempo de ejecución del V,Neumann lo sea (de 36 a 37 también se considera correcto). Si los dos sub-apartados anteriores son correctos y en este se ha indicado la expresión correcta se puntuará como

E4 (2 de junio de 2016) IC-15-16-Q2

Ejercicio 2 (1,25 puntos)

Solución:

	a) o		Palabra de Control																														
Apartado	Nodo/Estado (Mnemo Salida)	Instrucción en IR (en ensamblador)		@ <i>A</i>	١.		@B		Pc/Rx	Ry/N	OP		F		P/I/L/A		@	D	WrD	Wr-Out	Rd-In	Wr-Mem	Ldlr	LdPc	Byte	Alu/R@	R@/Pc		N (he)			ADDR-IO (hexa)	
a	D	STB 0x2C(R2),R7	0	1	0	1	1	1	1	0	0 0	1	0	0	X :	X	х х	X	0	0	0	0	0	0	X	X	X	F	F	D	8	E C	;
b	Bz	BZ R5,-61	1	0	1	0	1	1	0	X	1 0	0	0	0	X :	K	х х	X	0	0	0	0	X	1	X	0	X	X	Χ	X	X	C 3	
c	Addr	LD R6,-21(R2)	0	1	0	1	1	0	0	0	0 0	1	0	0	X :	K	х х	X	0	0	0	0	0	0	X	X	X	F	F	Е	В	АВ	•

Criterio de valoración (1,25 puntos):

Una casilla puede ser: un bit (1,0,0 x) de una señal binaria, como por ejemplo para la señal Ry/N, o los n bits de un bus, como son los 3 bits de @A.

Las tres filas correctas 1,25 puntos

- -0,25 puntos por cada fila con solo hay una casilla mal,
- -0,5 puntos por cada fila con 2 o más casillas mal

Nota mínima del ejercicio 0 puntos.

Ejercicio 3 (1,5 puntos)

Solución: (Se considera también correcto el valor x para Mx@D0 en la dirección 14 (Movhi))

Criterio de valoración (1,5 puntos):

Una casilla puede ser un bit (1,0,0 x) de una señal binaria, como por ejemplo para la señal Bnz o los n bits de un bus, como son los 2 bits de MxN (MxN1, MxN0). Un casilla está mal si lo está alguno de los bits que la forman. Sea k el mínimo número de filas y/o columnas que cubren todas las casillas que están mal. La nota de la pregunta es

@ROM	Bnz	Ldlr	R@/Pc	Alu/R@	Pc/Rx	Ry/N	MxN1	MxN0	MxF	Mx@D1	Mx@DC	
0	1	1	0	1	1	0	1	1	1	X	X	F
9	0	X	1	X	X	X	X	X	X	X	X	Stb
11	0	X	X	0	0	X	X	X	1	X	X	Bz
14	0	X	X	X	0	0	0	1	1	1	0	Movhi

Sea k el mínimo número de filas y/o columnas que cubren todas las casillas que están mal. La nota de este ejercicio es:

- Si k=0 => 1,5 puntos
- Si k=1 => 1,25 puntos
- Si k=2 => 0.75 puntos
- Si k=3 => 0.25 puntos
- Si $k=4 \Rightarrow 0$ puntos.

Ejercicio 4 (1,25 puntos)

Solución:

Instrucción a ejecutar	Cambios en	el estado del computador
STB -3(R3), R5	MEMb[0x6786]=0x89,	PC=0xF0FA
MOVI R7, 0x93	R7=0xFF93,	PC=0xF0FA
BNZ R2, 0x81		PC=0xEFFC

Criterio de valoración (1 punto): Cada fila (instrucción) evaluación binaria. Sea k el número de filas incorrectas:

- Si k=0 => 1,25 puntos
- Si k=1 => 0.75 puntos
- Si k=2 => 0,25 puntos
- Si $k=3 \Rightarrow 0$ puntos

E4 (2 de junio de 2016) IC-15-16-Q2

Ejercicio 5 (3 puntos)

a) Solución: 1111 aaa ddd 000001

Criterio de valoración (0,25 puntos): Valoración binaria

b) Solución:

Nodo/Estado		
Número	Mnem.	Acciones
0	F	IR ← MEMw[PC] // PC ← PC+2
1	D	$R@ \leftarrow PC+SE(N8)*2 // RX \leftarrow Ra // (RY \leftarrow Rb)$
17	Set1	R@ ← RX
18	Set2	RX ← Ra // Rd ← MEMb[R@]
19	Set3	$RX \leftarrow Rd // Ra \leftarrow RX + SE(N6)$
20	Set4	Rd ← RX && SE(N6)

El nuevo MUX con señal de selección Mx se usa para generar el campo/bit @ A...... de la palabra de control

Criterio de valoración (1.5 = 0.25 + 1 + 0.25 puntos):

- Arcos del grafo (0,25 puntos) Evaluación binaria.
- Tabla de salidas del grafo (Acciones) (1 punto)
 - -0,25 puntos por cada fila incorrecta. 4 o más filas incorrectas es un 0. Cada fila evaluación binaria (correcta o incorrecta).
- Campo de la palabra de control (0,25 puntos) Evaluación binaria.

E4 (2 de junio de 2016) IC-15-16-Q2

c) **Solución**: (en la dirección 19 la señal Mx@D0 puede ser también x, en vez de 0)

@ROM	Mx	Bnz	Bz	WrMem	RdIn	WrOut	WrD	Ldlr	Byte	R@/Pc	Alu/R@	Pc/Rx	Ry/N	P/I/L/A1	P/I/L/A0	0P1	OP0	MxN1	MxN0	MxF	F2	Æ	F0	Mx@D1	Mx@D0	
										:				:		:		:			:			:		
1	0	0	0	0	0	0	0	0	X	X	X	1	0	X	X	0	0	1	0	1	1	0	0	X	X	D
										:				:		:		:			:			:		
17	X	0	0	0	0	0	0	0	X	X	X	0	X	X	X	1	0	X	X	1	0	0	0	X	X	Set1
18	0	0	0	0	0	0	1	0	1	1	X	X	X	0	1	X	X	X	X	X	X	X	X	0	1	Set2
19	1	0	0	0	0	0	1	0	X	X	X	0	0	0	0	0	0	0	0	1	1	0	0	1	0	Set3
20	X	0	0	0	0	0	1	X	X	X	X	0	0	0	0	0	0	0	0	1	0	0	0	0	1	Set4

Criterio de valoración (1 punto):

Una casilla puede ser un bit (1,0,0 x) de una señal binaria, como por ejemplo para la señal RdIn o los n bits de un bus, como son los 3 bits de F (F2, F1, F0). Un casilla está mal si lo está alguno de los bits que la forman. Sea k el mínimo número de filas y/o columnas de casillas que cubren todas las casillas que están mal. La nota de la pregunta es

Sea k el mínimo número de filas y/o columnas que cubren todas las casillas que están mal. La nota de este ejercicio es el MAXIMO(1,25 - 0.25k, 0).

d) Solución: (Es igualmente correcto dar las direcciones y su contenido en hexadecimal, binario o decimal)

En la dirección 0x03E (en binario: 0000111110, en decimal 62) el contenido debe ser 0x11 (en binario: 10001, en decimal 17)

En la dirección 0x03F (en binario: 0000111111, en decimal 63) el contenido debe ser 0x11 (en binario: 10001, en decimal 17)

Criterio de valoración (0,25 puntos):

Evaluación binaria: 0,25 puntos si está todo correcto, 0 puntos en cualquier otro caso.