Контрольная работа по численному дифференцированию

Держапольский Юрий Витальевич Группа Б9121-01.03.02сп

Задача

$$f'(x_2) = \frac{1}{6h}(y_0 - 6y_1 + 3y_2 + 2y_3) + R(x)$$

Вывести формулу погрешности аппроксимации $R(x) = \frac{h^m}{C_2} f^{(q)}(\xi)$.

Решение

Для вывода воспользуемся рядом Тейлора функции f(x) в точке x_2 :

$$f(x) = f(x_2) + f'(x_2)(x - x_2) + \frac{f''(x_2)}{2!}(x - x_2)^2 + \frac{f'''(x_2)}{3!}(x - x_2)^3 + \dots$$

Отметим, что для вычисления нас интересуют только коэффициенты C_n у каждого слагаемого $\frac{f^{(n)}(x_2)}{n!}$, поскольку мы будем складывать соответствующие слагаемые:

$$f(x) = C_0 f(x_2) + C_1 f'(x_2) + C_2 \frac{f''(x_2)}{2!} + C_3 \frac{f'''(x_2)}{3!} + \dots$$

Поэтому для краткости будем записывать в таком виде: $[C_0, C_1, C_2, \ldots]$.

Изначально имеем $[(x-x_2)^0, (x-x_2), (x-x_2)^2, \dots].$

$$y_0 = f(x_0) \implies [1, -2h, 4h^2, -8h^3, 16h^4, -32h^5, \dots]$$

 $y_1 = f(x_1) \implies [1, -h, h^2, -h^3, h^4, -h^5, \dots]$
 $y_2 = f(x_2) \implies [1, 0, 0, \dots]$
 $y_3 = f(x_3) \implies [1, h, h^2, h^3, h^4, h^5, \dots]$

Согласно формуле умножим каждый ряд на соответствующий множитель:

$$y_0:$$
 [1, -2h, $4h^2$, -8h³, $16h^4$, -32h⁵, ...]
-6 · $y_1:$ [-6, 6h, -6h², 6h³, -6h⁴, 6h⁵, ...]
3 · $y_2:$ [3, 0, 0, ...]
2 · $y_3:$ [2, 2h, 2h², 2h³, 2h⁴, 2h⁵, ...]

Сложим ряды и умножим на $\frac{1}{6h}$:

$$[0,6h,0,0,12h^4,-24h^5,\dots] \implies [0,1,0,0,2h^3,-4h^4,\dots]$$

Запишем в явном виде:

$$f'(x_2) = f'(x_2) + 2h^3 \cdot \frac{f^{(4)}(x_2)}{4!} - 4h^4 \cdot \frac{f^{(5)}(x_2)}{5!} + \dots + R(x)$$

Отсюда:

$$R(x) = -2h^{3} \cdot \frac{f^{(4)}(x_{2})}{4!} + 4h^{4} \cdot \frac{f^{(5)}(x_{2})}{5!} + \dots = -\frac{h^{3}}{12}f^{(4)}(\xi) + O(h^{4})$$

Получили: m = 3, $C_2 = -12$, q = 4.