Question 3:

The question only requires a "brief explanation" and not a "proof" so we can be a little less formal than on homework. After the inner for loop, $m = \prod_{j=1}^i j^2 = \left(\prod_{j=1}^i j\right)^2 = (i!)^2$. After the rth iteration of the inner while loop, $k = 2^{2^r}$. (If this were a "proof" I might do a quick induction to show this). So the inner while loop ends about when $2^{2^r} = (i!)^2$. Taking the log (base 2) of both sides we get $2^r = 2\log(i!) = 2\Theta(i\log(i))$. Taking the log again we get $r = \log(2\Theta(i\log(i))) = \log(2) + \Theta(\log(i) + \log(\log(i))) = \Theta(\log(i))$. So each iteration F is called $\Theta(\log(i))$ times. So in total F is called $\sum_{i=1}^n \Theta(\log(i))$ times. This is $O(n\log(n))$ since $\sum_{i=1}^n \Theta(\log(i)) \leq \sum_{i=1}^n \Theta(\log(n)) = \Theta(n\log(n))$. Therefore F is called in total $\Theta(n\log(n))$ times.

Question 10:

(on scratch paper: T(1) = 1, T(2) = 5, T(3) = 17, T(4) = 53 compared to $3^1 = 3$, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$.)

We claim, and will show by induction, that $T(n) < \frac{2}{3}3^n$ for all $n \ge 1$.

Base case: At n = 1 we are given that T(1) = 1 < 2.

Inductive hypothesis: $T(n-1) < 3^{n-1}$ for some $n \ge 2$ Inductive step: By the recurrence, $T(n) = 3T(n-1) + 2 < 2 \cdot 3^{n-1} + 2 = \frac{2}{3}3^n + 2 \le 3^n - \frac{1}{3}3^2 + 2 < 3^n$.

Thus by induction, $T(n) \le \frac{2}{3}3^n$ for all $n \ge 1$. This shows that $T(n) = O(3^n)$ for $n \ge 1$.

Question 15:

- 1. Let OPT(i) be the value of the optimal solution on elements A[1] to A[i]. If i < 2, then we can't pick any pairs and OPT(i) = 0. Otherwise, we have a choice to make: we can either include A[i-1], A[i] as a pair, or not. If we do, then we'll get A[i-1] + A[i] value, but we won't be able to include A[i-2] in any pairs. So our total value in this case will be A[i-1] + A[i] + OPT(i-3). If we don't, then we can't include A[i] in any pair, so our total value will be just OPT(i-1). Taking these options together, we get a recurrence of $OPT(i) = \max(A[i-1] + A[i] + OPT(i-3), OPT(i-1))$.
- 2. Given the prior values of OPT, computing OPT(i) takes O(1) time; we're just adding and comparing a constant number of things. We need to compute OPT(i) for i = 2, 3, ... n to compute OPT(n), so in total we need O(n) time to compute OPT(n).

The maximum value for array A is 22.