

Teoria da Computação

Folha de Problemas # 3^1

Autómatos Finitos Não Determinísticos

Problema 1 Desenhe um AFND sobre o alfabeto $\Sigma = \{0, 1\}$, que aceita a linguagem cujas palavras contêm uma sequência de dois 1's seguida de uma corrida de dois 0's (1100).

Problema 2 Projecte um NFA que aceite as seguintes linguagens:

- a) $L = \{abbab^n, n \ge 1\} \cup \{aba^nb : n \ge 0\}$
- b) $L = \{abbab^n, n \ge 0\} \cup \{bba^n : n \ge 0\}$

Problema 3 Desenhe o grafo de um AFND que aceite a linguagem

$$L = \{a^n, n \ge 1\} \cup \{b^m a^k : m \ge 0, k \ge 0\}$$

Procure um autómato com um número mínimo de estados.

Problema 4 Seja L a linguagem aceite pelo AF da figura 3.1. Desenhe o grafo de um AFND que aceite $L \cup \{a^{2n-1}, n > 0\}$. O alfabeto de entrada é $\Sigma = \{a, b\}$.

Figura 3.1: Autómato Finito

Problema 5 Pode-se chamar AFD incompleto a um AF em que:

- a) não há transições- λ
- b) a função $\delta(q,a)$ contém no máximo um elemento e, portanto, não há escolhas possíveis (δ não é necessariamente uma função total).

Considere o grafo de um AFD incompleto dado na figura 3.2. Transformeo num AFD "normal" quando o alfabeto de entrada é:

- a) $\Sigma = \{a, b\}$
- b) $\Sigma = \{a, b, c\}$

Figura 3.2: Autómato Finito Incompleto

Problema 6 Converta os AFND das figuras 3.3 e 3.4 em AFD, para os casos, respectivamente:

- a) $\Sigma = \{0, 1\}$
- b) $\Sigma = \{a, b\}$

Figura 3.3: Primeiro Autómato

Figura 3.4: Segundo Autómato

Problema 7 Determine o AFD equivalente ao AFND do Problema 1.

Problema 8 Prove que se uma linguagem é regular então L^R também é regular.

Problema 9 Considere o AFND da figura 3.5.

Figura 3.5: Autómato Finito Não Determinístico

- a) Que linguagem aceita?
- b) Encontre o AFD equivalente.

Problema 10 Desenhe um AFND que aceite a seguinte linguagem: todas as cadeias em a,b que contêm algum par de a's separados por uma sub-cadeia de comprimento múltiplo de 3, com por exemplo abbabbababb.

Problema 11 Desenhe o grafo de um aceitador, do tipo AFND:

- a) da linguagem L=L(a*b*c*). Deduza o grafo do AFD equivalente.
- b) da linguagem $L = \{a^n b^m c^p, n, m, p \ge 0\}$
- c) da linguagem $L = \{a^n b^n c^n, n \ge 0\}$