I =]42,41, +∞[.
3. Règle de décision : on prélève un échantillon de 36 pièces, on calcule la charge moyenne de rupture μ_e,

2. Au seuil de 5 % la région critique est l'intervalle :

si $\mu_{\rm e}$ < 42,41, on accepte H_0 au seuil de 5 %, sinon on rejette H_0 et on accepte H_1 . **4.** 42,8 > 42,41 donc au seuil de 5 % on rejette H_0 et on accepte H_1 : μ > 42.

1. a) Avec la calculatrice, on obtient $\overline{x_1} = 12$ et

 $s_1 = 0.1187$. **b)** Une estimation ponctuelle de la moyenne μ est $\widehat{m_1} = 12$, une estimation ponctuelle de l'écart-type σ_1 est $\widehat{s_1} = \sqrt{\frac{n}{n-1}} \times s_1$; $\widehat{s_1} = 0.119$.

2. a) $\widehat{m_2} = 11.96, \, \widehat{s_2} = 0.125 \times \sqrt{\frac{100}{99}} \approx 0.126.$

b) Sous l'hypothèse H_0 , \overline{Y} suit la loi normale de moyenne 0 et d'écart type $\sigma = \sqrt{\frac{\widehat{\sigma_1^2} + \widehat{\sigma_2^2}}{100}}$; $\sigma \approx 0.0174$.

 $P(-h < \overline{Y} < h) = 0.95$ équivaut à : P(Y < h) = 0.975, avec la calculatrice on obtient $h \approx 0.033$.

On a $\widehat{m}_1 = 12$ et $\widehat{m}_2 = 11,96$ $\widehat{m}_1 - \widehat{m}_2 = 12 - 11,96 = 0,04$. La région d'acceptation du test est l'intervalle I = [-0,033;0,033]. $0,04 \in I$ donc on rejette H_0 .

Au seuil de risque de 5 %, la différence des moyennes observées entre les dates t_1 et t_2 est significative.

46

1. a) $H_1: p_S \neq p_N$.

b) I = [-0.063; 0.063].

c) On prend un échantillon dans chaque population. Si la différence des proportions est dans l'intervalle I on assente H. sinon on rejette H.

on accepte H_0 , sinon on rejette H_0 . **2.** 0.63 - 0.67 = -0.04. $-0.04 \in I$; il n'y a pas de différence significative

 $-0.04 \in I$; il n'y a pas de différence significative au seuil de 5 % entre les deux populations.