ROYAUME DE BELGIQUE

BREVET D'INVENTION

MINISTERE DES AFFAIRES ECONOMIQUES

NUMERO DE PUBLICATION : 1011263A6

NUMERO DE DEPOT : 09900072

Classif. Internat. : G21G

Date de délivrance le : 01 Juin 1999

Le Ministre des Affaires Economiques,

Vu la loi du 28 Mars 1984 sur les brevets d'invention, notamment l'article 22; Vu l'arrêté royal du 2 Décembre 1986 relatif à la demande, à la délivrance et au maintien en vigueur des brevets d'invention, notamment l'article 28; Vu le procès verbal dressé le 03 Février 1999 à 14H40 à 1 'Office de la Propriété Industrielle

ARRETE:

ARTICLE 1.- Il est délivré à : ION BEAM APPLICATIONS Société Anonyme chemin du Cyclotron 3, B-1348 LOUVAIN-LA-NEUVE(BELGIQUE)

représenté(e)(s) par : VAN MALDEREN Joëlle, OFFICE VAN MALDEREN, Place Reine Fabiola 6/1 - B 1083 BRUXELLES.

un brevet d'invention d'une durée de 6 ans, sous réserve du paiement des taxes annuelles, pour : DISPOSITIF DESTINE À LA PRODUCTION DE RADIO-ISOTOPES.

ARTICLE 2.- Ce brevet est délivré sans examen préalable de la brevetabilité de l'invention, sans garantie du mérite de l'invention ou de l'exactitude de la description de celle-ci et aux risques et périls du(des) demandeurs(s).

Bruxelles, le 01 Juin 1999 PAR DELEGATION SPECIALE:

> L. WI MAS CONSTILL IN

5

DISPOSITIF DESTINE A LA PRODUCTION DE RADIO-ISOTOPES

10

Objet de l'invention

La présente invention se rapporte à un dispositif destiné à la production de radio-isotopes comme par exemple le fluor-18.

15

20

25

Arrière-plan technologique à la base de l'invention

Certains radio-isotopes qui ont une application en médecine nucléaire, dont l'exemple le plus connu est le fluor-18, sont produits par bombardement d'un faisceau de particules chargées, et plus particulièrement de protons, sur une cible qui est disposée dans une cavité. chargées de particules provient faisceau accélérateur comme par exemple un cyclotron. La cavité qui comprend la cible est "creusée" dans une pièce métallique. L'interaction des particules chargées provenant du faisceau avec la cible constituée par un isotope enrichi génère la réaction nucléaire destinée à la production du radioisotope.

En raison d'une demande toujours plus importante de radio-isotopes, ces cibles doivent toujours produire davantage de radio-isotopes. Cet accroissement de production peut se faire soit en modifiant l'énergie du faisceau de particules chargées, et dans ce cas on augmente la section efficace de la réaction nucléaire, soit en

modifiant l'intensité du faisceau de particules, et dans ce cas il s'agit d'une modification du nombre de particules accélérées heurtant la cible. Ces deux paramètres ne sont pas indépendants, et interagiront via une relation physique qui s'exprime au travers de la puissance dissipée dans la cible :

- P = puissance exprimée en watt
- - I = intensité du faisceau exprimée en μ A (micro Ampère).

Le facteur limitant la production dans une cible est donc la puissance qui y est dissipée. Diverses améliorations ont été proposées afin d'augmenter cette puissance.

Buts de l'invention

La présente invention vise à proposer un dispositif destiné à la production de radio-isotopes obtenus en bombardant une cible à l'aide de particules issues d'un faisceau de particules chargées provenant d'un accélérateur de particules tel qu'un cyclotron, qui présente en particulier des propriétés de refroidissement améliorées.

Eléments caractéristique de la présente invention

La présente invention se rapporte à un dispositif destiné à la production de radio-isotopes, comprenant une cavité dans laquelle est disposée la cible, caractérisé en ce que ladite cavité présente des parois externes de forme hémisphérique.

De préférence, ce dispositif comprend un insert dans lequel on a réalisé la cavité comprenant des parois externes dont la forme s'adapte à celle d'un diffuseur de manière à créer un chenal dans lequel se déplace un fluide de refroidissement.

De manière particulièrement avantageuse, la forme du chenal créé entre le diffuseur et les parois externes de la cavité est également hémisphérique.

10 Brève description des figures

La figure 1 représente une vue en coupe selon un axe longitudinal d'une cible utilisée selon la présente invention.

La figure 2 représente une vue éclatée des différents éléments mécaniques destinés à réaliser la cible telle que décrite à la figure 1.

Description détaillée d'une forme d'exécution préférée de l'invention

Les figures 1 et 2 représentent une cible utilisée pour la création de radio-isotopes qui seront utilisés en médecine nucléaire, en particulier le fluor-18 qui sera produit par la réaction ¹⁸0 (p,n) ¹⁸F.

'En vue de produire cette réaction, on envoie un faisceau de particules chargées sur une cible qui est présente dans une cavité 1. La réaction qui s'ensuit permettra d'obtenir le radio-isotope voulu. Cette cible peut être une cible liquide ou gazeuse ou encore même solide. De manière classique, la cible est maintenue dans une cavité ou chambre sous vide.

Il est impératif de refroidir la cavité contenant la cible. Habituellement, le refroidissement se

fait grâce à un échangeur de chaleur dans lequel circule de l'eau.

Selon la présente invention, on a proposé de forcer un fluide de refroidissement, et généralement simplement de l'eau, le long de la surface externe 4 de la cavité irradiée afin d'en favoriser l'échange thermique.

Dans ce but, on a adjoint une pièce appelée "diffuseur" 3, qui prévoit de réaliser un chenal 2 parallèle aux parois de la cavité 1. Le diffuseur permet 10 d'obtenir un écoulement du fluide de refroidissement en augmentant la surface d'échange thermique.

Les parois de la cavité 1 sont réalisées à l'aide d'un insert 8 en argent massif ou en titane, alors que le diffuseur 3 est réalisé en un matériau de préférence conducteur tel que le cuivre.

15

20

25

30

Ainsi que représenté à la figure 1, on observe que le fluide de refroidissement est introduit dans l'élément cible par l'arrivée 10. Ce fluide de refroidissement est immédiatement amené en contact avec les parois externes 4 de la cavité à irradier 1 afin de favoriser l'échange thermique entre cette cavité 1 et le fluide.

L'insert 8 est dessiné de manière à créer un chenal 2 entre les parois externes de la cavité 1 et le diffuseur 3, la forme de ce chenal étant de préférence hémisphérique. La forme de l'insert 8 doit en outre être dessinée de manière à permettre un chemin 7 pour le fluide de refroidissement vers une sortie 20. L'ensemble des pièces insert 8, diffuseur 3 et des différentes pièces permettant de créer l'arrivée et la sortie du fluide de refroidissement est maintenu dans un corps de cible 15, de préférence en laiton.

De manière particulièrement avantageuse, on prévoit également que la cavité 1 dans laquelle est

disposée la cible présente une forme hémisphérique, de manière à adapter le profil de distribution énergétique du faisceau.

REVENDICATIONS

- Dispositif destiné à la production de radio-isotopes, comprenant une cavité (1) dans laquelle est disposée la cible, caractérisé en ce que ladite cavité (1) présente des parois internes de forme hémisphérique.
 - 2. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend un insert (8) dans lequel on a réalisé la cavité (1) comprenant des parois externes (4) dont la forme s'adapte à celle d'un diffuseur (3) de manière à créer un chenal (2) dans lequel se déplace un fluide de refroidissement.

10

Dispositif selon la revendication 2, caractérisé en ce que la forme du chenal (2) créé entre le diffuseur (3) et les parois externes (4) de la cavité (1)
est hémisphérique.

FIG. 1

DERWENT-ACC-NO: 1999-358280

DERWENT-WEEK: 200027

COPYRIGHT 2009 DERWENT INFORMATION LTD

TITLE: Apparatus for producing radio-

isotopes, e.g. for use in medicine has cavity with

hemispherical walls for target, surrounded by channel for cooling

fluid.

PATENT-ASSIGNEE: ION BEAM APPL SA[IONBN]

PRIORITY-DATA: 1999BE-000072 (February 3, 1999)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

BE 1011263 A6 June 1, 1999 FR DE 20001114 U1 April 27, 2000 DE

APPLICATION-DATA:

PUB-NO	APPL-	APPL-NO	APPL-DATE
	DESCRIPTOR		
BE	N/A	1999BE-	February
1011263A6		000072	3 , 1999

INT-CL-CURRENT:

TYPE IPC DATE

CIPS G21K5/08 20060101

CIPS

H05H6/00 20060101

ABSTRACTED-PUB-NO: BE 1011263 A6

BASIC-ABSTRACT:

NOVELTY - The apparatus has a cavity (1) to receive the target, e.g. for proton bombardment, with hemispherical inner walls. The cavity is located in an insert (8), made e.g. from a block of solid silver or titanium, and is shaped so that its outer walls fit inside a diffuser with a space forming a channel in which a cooling fluid, e.g. water, can circulate. The channel is also hemispherical in shape.

USE - Production of medical radio isotope such as fluorine-18 by bombarding target with charged particles from an accelerator such as a cyclotron.

ADVANTAGE - The hemispherical cavity increases the power transmitted to the target. DESCRIPTION OF DRAWING(S) - The drawing shows a cross-section of the apparatus. (1) Cavity; (2) Channel; (3) Diffuser; (4) Cavity outer walls; (8) Insert.

CHOSEN-DRAWING: Dwg.1/2

TITLE-TERMS: APPARATUS PRODUCE RADIO ISOTOPE

MEDICINE CAVITY HEMISPHERICAL WALL TARGET SURROUND CHANNEL

COOLING FLUID

DERWENT-CLASS: K08

CPI-CODES: K08-X;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 1999-106137