Cubo de Rubik en 3 dimensiones para dispositivos Android

Proyecto Fin de Carrera - ITIS

Gorka Revilla Fernandez

Enero 2012

Índice

- Introducción
- Objetivos
- Método de trabajo
- Elección Tecnológica (Android y OpenGL)
- Arquitectura del Sistema
- Captura de Requisitos, Análisis y Diseño
- Implementación y Pruebas
- Gestión
- Conclusiones
- Demo

Introducción

Proyecto de la ITIS.

Motivación por el desarrollo de videojuegos.

 Importantes mejoras en dispositivos móviles: Nuevos Smartphones, hardware, aplicaciones, mayor difusión...

Objetivos

 Simular los movimientos de un cubo de Rubik de cualquier dimensión.

Primera fase de una aplicación (demo).

La Interfaz del usuario en 3 dimensiones.

Para Android.

Método de trabajo

- PUD
- 3 Iteraciones.
- Fases del Desarrollo:
 - Captura de Requisitos
 - Análisis
 - Diseño
 - Implementación
 - Pruebas
- Ciclo de vida en cascada.
- Planificación

Elección Tecnológica: Android (I)

S.O. Smartphones: Android vs iOS

- Ventajas:
 - Apoyo de muchas empresas: Google, Samsung, LG, HTC...
 - Sistema Operativo más popular.
- Desventajas
 - Ligeramente más complejo de usar.
 - Menos aplicaciones.

Elección Tecnológica: Android (II)

- Sobre Android:
 - Implementación mediante java o C++.
 - Maquina Virtual Dalvik, incompatibilidad con otros sistemas operativos.
 - Versiones Android. Actualmente en 4.0 Ice Cream Sandwich.
- Control de versiones mediante SVN.

Elección Tecnológica: OpenGL ES

- Versión reducida de OpenGL.
 - Funciones más limitadas
 - Mejor rendimiento
- Versión diseñada para dispositivos embebidos

 OpenGL ES 2.0 no es retrocompatible con OpenGL ES 1.1, por lo tanto tampoco con Android 1.6.

Arquitectura

Presentación:

Interacción del usuario con el sistema.

Negocio:

Responsable de gestionar con los datos y sus estructuras.

Captura Requisitos: Casos de Uso

- Girar Fila
 - Gira una fila en una determinada dirección

- Volver Estado Inicial
 - Reinicia el cubo

Análisis: Girar Fila

3 Eventos: Pulsar, Mover, Soltar.

Diseño

Soltar(x,y)

Implementación

- 3 Tipos de Clases:
 - Configuraciones de Android y OpenGL.
 - Interfaz Gráfica.
 - Negocio de datos del cubo de rubik.
- Programación orientada a eventos.
- Información almacenada en objetos.
- OpenGL sin ayuda de ningún framework.
 - Dibujar todo mediante triángulos.

Diagrama de Clases

Pruebas

Pruebas de pulsación de botones

Pruebas de pulsaciones sobre la pantalla

Pruebas de configuraciones

Pruebas en diferentes dispositivos

Implantación

- Dispositivos en los que se a probado la aplicación:
 - Motorola Defy con Android 2.1 y 2.2
 - Samsung Galaxy S con Android 2.1, 2.2 y 2.3
 - Samsung Galaxy S SCL con Android 2.2 y 2.3
 - Samsung Galaxy SII con Android 2.3
 - Sony Ericsson Xperia Neo V con Android 2.3
 - HTC WildFire con Android 2.2
 - Samsung Galaxy Tab 10.1 con Android 3.2

Gestión (I)

- Horas Previstas vs Horas Reales
 - 310 horas previstas vs 450 horas reales

Gestión (II)

- Gantt Previsto vs Gantt Real
 - Problemas de tiempo del segundo cuatrimestre

Conclusiones

- Gestión del proyecto
 - Experiencia en la planificación de proyectos
- Desarrollo de la aplicación
 - Conocimientos sobre Android y OpenGL
 - Importancia de un control de versiones (p.e. SVN)
- Valoración personal
 - Satisfacción por realizar una aplicación sobre algo de lo que previamente no se conocía nada.
- Trabajos Futuros
 - Menú, texturas, rotaciones del cubo completas...

Demostración

