

Dr. Edgar Altszyler
17/10/2018

Tarea:

Dada la *descripción* de un vino, ¿puedo estimar su *calidad*?

DESCRIPCION		
Densidad 0.992		
ρΗ	3.5	
Alcohol	12.2	

DESCRIPCIÓN			
Densidad 0.997			
ρΗ 2.9			
Alcohol	10.5		

DESCRIPCIÓN		
Densidad 0.992		
ρΗ 3.5		
Alcohol	12.2	

BLACK BOX	
Morlot Morlot Engresses	
The second secon	

DESCRIPCIÓN		
Densidad 0.997		
ρΗ 2.9		
Alcohol	10.5	

Sistemas expertos

Experta/o del área

Sistemas expertos

Experta/o del área

Reglas

Aprender a partir de ejemplos y experiencia ...

Primer paso

Juntar datos

Recolección de los Datos

Recolección de los Datos

ρН	densidad	Alcohol	Calidad
3.4	0.992	9.2	Alta
3.1	0.997	12.5	Alta
3.2	0.999	13.1	Baja
3.7	0.991	10.8	Alta
3.2	1.005	11.3	Baja

Recolección de los Datos

	Features		Etiquetas
ρΗ	densidad	Alcohol	Calidad
3.4	0.992	9.2	Alta
3.1	0.997	12.5	Alta
3.2	0.999	13.1	Baja
3.7	0.991	10.8	Alta
3.2	1.005	11.3	Baja

Entrenar un clasificador

Un clasificador puede ser pensado como una caja de reglas...

Entrenar un clasificador

Un clasificador puede ser pensado como una caja de reglas...

ρΗ	dens.	Alcohol	Calidad
3.4	0.992	9.2	Alta
3.1	0.997	12.5	Alta
3.2	0.999	13.1	Baja
3.7	0.991	10.8	Alta
3.2	1.005	11.3	Baja

Lleno de reglas

DESCRIPCIÓN		
Densidad 0.992		
ρΗ	3.5	
Alcohol	12.2	

DESCRIPCIÓN		
Densidad	0.992	
ρΗ	3.5	
Alcohol	12.2	

DESCRIPCIÓN			
Densidad 0.992			
ρΗ	3.5		
Alcohol	12.2		

92
5
.2

¿Qué es lo que realmente hacen los clasificadores?

Volatile Acidity	1.1
sulphates	0.6
ρΗ	3.0
Volatile Acidity	0.51
Volatile Acidity sulphates	0.51
·	

Volatile Acidity	085	
sulphates	0.82	
ρΗ	3.1	
Alta		
Volatile Acidity	0.53	
Volatile Acidity sulphates	0.53	
sulphates	0.88	

Volatile Acidity	085
sulphates	0.82
ρН	3.1
Alta	
Volatile Acidity	0.53
Volatile Acidity sulphates	0.53 0.88
<u> </u>	

Alta

Vino nuevo

¿Calidad Alta o Baja?

No todos los features son útiles

Fin de Parte 1

Parte 2

Machine Learning

Uso naive

Phd en Computación

Machine Learning

Capacidades y limitaciones

Vamos a Mordor

Algunos algoritmos de Machine Learning

Machine Learning

Árboles de decisión

Árboles de decisión

Árbol entrenado

Árboles de decisión

Árbol entrenado

Predicción de instancia nueva

(5,1) _____ ;?

$$z = 1.x_1 + 1.x_2$$

 x_1

$$z = 1.x_1 + 1.x_2$$

Evaluación de los métodos

¿Qué clasificador uso?

Complejidad del modelo

Feature 1

Accuracy = 80% (24/30)

Feature 1

Accuracy = 87% (26/30)

Feature 1

Accuracy = 100% (30/30)

Complejidad del modelo

Estimar el performance en el dataset de entrenamiento es trampa!!!

ρΗ	densidad	alcohol	calidad
3.4	0.990	102	Alta
3.1	0.989	11.5	Alta
3.2	1.003	12.2	Baja
3.7	0.998	10.3	Alta
3.2	1.004	11.9	Baja

ρΗ	densidad	alcohol	calidad
3.2	0.996	9.2	Alta
3.2	0.995	10.8	Alta
3.1	1.003	11.3	Baja

Feature 2

Feature 1

Feature 1

Accuracy = 60% (12/20)

Under-fitting

Feature 1

Accuracy = 85% (17/20)

Appropriate fitting

Feature 1

Accuracy = 75% (15/20)

Over-fitting

5-Fold Cross-Validation

Pipeline general

Training set 80%

Evalúo muchos modelos y elijo el mejor

•	Test	Test	Test	Test		Average	1. 2. 3. 4. 5.	Modelos accuracy = 0.56 accuracy = 0.61 accuracy = 0.73 accuracy = 0.59 accuracy = 0.66
					Test			

Test set 20%

ρН	densidad	alcohol	calidad
3.2	0.996	9.2	Alta
3.2	0.995	10.8	Alta
3.1	1.003	11.3	Baja

Pipeline general

Métricas de evaluación

Identificación de vinos:

Sobre el test set

	era Alta	era Baja
Identificados como Alta	8	8
Identificados como Baja	2	92

Métricas de evaluación

Identificación de vinos:

Sobre el test set

	era Alta	era Baja
Identificados como Alta	8	8
Identificados como Baja	2	92

$$Accuracy = \frac{8+92}{8+8+2+92} = 0.91$$

Caso extremo: Siempre digo Baja

	era Alta	era Baja
Identificados como Alta	0	0
Identificados como Baja	10	100

$$Accuracy = \frac{100}{10+100} = 0.91$$

Evalúo la capacidad de identificar los vinos de calidad Alta

	era Alta	era Baja
Identificados como Alta	8 (tp)	8 (fp)
Identificados como Baja	2 (fn)	92 (tn)

Precision y Recall

Precision:

fracción de los identificados como **Alta** que fueron correctamente clasificados **Recall**:

fracción de los que eran Alta, que efectivamente fueron identificados como Alta

	era Alta	era Baja
identificados como Alta	8 (tp)	8 (fp)
identificados como Baja	2 (fn)	92 (tn)

$$egin{array}{lll} Precision & = & rac{tp}{tp+fp} = rac{8}{16} pprox 0.5 \ Recall & = & rac{tp}{tp+fn} = rac{8}{10} pprox 0.8 \end{array}$$

Precision y Recall

Casos límites:

Clasifico siempre como Alta

	eran Alta	eran Baja
Identificados como Alta	10 (tp)	100 (fp)
Identificados como Baja	0 (fn)	0 (tn)

$$egin{array}{lll} Precision & = & rac{tp}{tp+fp} = rac{10}{110} pprox 0.09 \ Recall & = & rac{tp}{tp+fn} = rac{10}{10} pprox 1 \end{array}$$

Precision y Recall

Casos límites:

Clasifico como Alta solo si estoy muuuy seguro

	eran Alta	eran Baja
Identificados como Alta	3 (tp)	1 (fp)
Identificados como Baja	7 (fn)	99 (tn)

$$egin{array}{lll} Precision & = & rac{tp}{tp+fp} = rac{3}{4} pprox 0.75 \ Recall & = & rac{tp}{tp+fn} = rac{3}{10} pprox 0.3 \end{array}$$

F-measure

El F-measure (F1-score) es un trade off entre el Precision y el Recall y se calcula como el promedio armónico entre ambos

$$F=rac{2}{rac{1}{P}+rac{1}{R}}=rac{2PR}{P+R}$$

$$egin{array}{lll} Precision &=& rac{tp}{tp+fp} = rac{8}{16} pprox 0.5 \ Recall &=& rac{tp}{tp+fn} = rac{8}{10} pprox 0.8 \end{array} \longrightarrow egin{array}{lll} { t F} = 0.616 \ \end{array}$$

Parte 3

Detección de Imágenes

Lewis Fishgold and Rob Emanuele, 2017

12	42	15	23
14	42	42	14
24	23	23	24
14	41	42	42

13	32	13	23	
234	42	244	14	
24	243	2	24	
14	14 42		42	

12	42	15	23	
14	42	42	14	
24	23	23	24	
14	41	42	42	

13	32	13	23	
234	42	244	14	
24	243	2	24	
14	14 42		42	

Deep learning

Procesamiento de Lenguaje Natural

Bag of Words

	dinero	les	perro	vino	mercado	dólar	
Doc 1	1	0	3	2	0	0	
Doc 2	0	2	0	0	0	0	
Doc 3	0	1	2	0	0	0	
Doc 4	1	0	0	0	0	2	
Doc 5	0	0	0	0	3	0	
•••							

Podemos cuantificar el significado de las palabras?

ز25?

0 — 100

¿felicidad?

amor — comida

Word-embeddings

Word-embeddings

Cálculo de **cercanía** semántica entre palabras

Word-embeddings

50 dimensiones

50 dimensiones

FIN

