```
Universidad de Carabobo - Facultad de Ingenieria - Direccion de Postgrado
Programa: Maestria Matematica y Computacion - Asignatura: Introduccion al Calculo
Alumno: Ronald Medina - Cedula: V-16291029
Lapso: 03 - 2022 - Fecha: 14 - 03 - 2023
_Titulo: Asignacion - Parte 16) Suma de Riemann
> restart; with (student): with (plots):
> with(Student[Calculus1]):
```

Ejercicio 16.1 $\int_{-2}^{3} |x - 1| dx$

Inicio: Se crea la funcion y se guarda en la variable f.

>
$$f:=x->abs(x-1);$$

$$f := x \rightarrow |x - 1| \tag{1.1}$$

1era. Forma de resolucion

Se grafica la curva $f := x \rightarrow |x - 1|$ en el rango que se desea realizar la suma > plot(f(x), x=-2..3, title ="Grafico 1", titlefont =["Dubai",bold,15], color ="red", legend =typeset(f(x)), legendstyle=[font=["Courant", roman, 14]]);

Grafico 1

LSe grafica la suma de Riemann, usando el punto a la izquierda de cada particion, este caso n =8 > leftbox(f(x),x=-2..3,8,color=red,shading=blue);

Expresion de sumatoria, usando puntos a la izquierda, con n= 8
> leftsum(f(x), x=-2..3,8);

$$\frac{5}{8} \sum_{i=0}^{7} \left| -3 + \frac{5}{8} i \right|$$
 (1.1.1)

Valor de la suma de Riemann, usando el punto a la izquierda de cada particion, n = 8

> evalf(%);

LSe grafica la suma de Riemann, usando el punto a la izquierda de cada particion, este caso n =16 > leftbox(f(x),x=-2..3,16,color=red,shading=blue);

Expression de sumatoria, usando el punto a la izquierda de cada particion, con n= 16 > leftsum(f(x), x=-2..3,16);

$$\frac{5}{16} \sum_{i=0}^{15} \left| -3 + \frac{5}{16} i \right| \tag{1.1.3}$$

Valor de la suma de Riemann, usando el punto a la izquierda de cada particion, n = 16 > evalf(%);

Se grafica la suma de Riemann, usando el punto a la izquierda de cada particion, este caso n = 128 > leftbox(f(x),x=-2..3,128,color=red,shading=blue);

Expression de sumatoria, usando el punto a la izquierda de cada particion, con n= 128 > leftsum(f(x), x=-2..3,128);

$$\frac{5}{128} \sum_{i=0}^{127} \left| -3 + \frac{5}{128} i \right|$$
 (1.1.5)

Valor de la suma de Riemann, usando el punto a la izquierda de cada particion, n = 128 > evalf(%);

Se grafica la suma de Riemann, usando el punto a la derecha de cada particion, este caso n =8 > rightbox(f(x),x=-2..3,8,color=green,shading=coral);

Expression de sumatoria, usando el punto a la derecha de cada particion, con n= 8

> rightsum(f(x), x=-2..3,8);

$$\frac{5}{8} \sum_{i=1}^{8} \left| -3 + \frac{5}{8} i \right|$$
 (1.1.7)

Valor de la suma de Riemann, usando el punto a la derecha de cada particion, n = 8 > evalf(%);

Se grafica la suma de Riemann, usando el punto a la derecha de cada particion, este caso n = 16

rightbox(f(x), x=-2..3,16,color=green,shading=coral);

Expression de sumatoria, usando el punto a la derecha de cada particion, con n= 16
> rightsum(f(x), x=-2..3,16);

$$\frac{5}{16} \sum_{i=1}^{16} \left| -3 + \frac{5}{16} i \right|$$
 (1.1.9)

Valor de la suma de Riemann, usando el punto a la derecha de cada particion, n = 16 > evalf(%);

Se grafica la suma de Riemann, uusando el punto a la derecha de cada particion, este caso n = 128 > rightbox(f(x),x=-2..3,128,color=green,shading=coral);

Expresion de sumatoria, usando el punto a la derecha de cada particion, con n= 128

> rightsum(f(x), x=-2...3, 128);

$$\frac{5}{128} \sum_{i=1}^{128} \left| -3 + \frac{5}{128} i \right|$$
 (1.1.11)

└Valor de la suma de Riemann, usando el punto a la derecha de cada particion, n = 128

Se calcula la integral definida en intervalo -2, 3

> Int(f(x), x=-2..3) = int(f(x), x=-2..3);

$$\int_{-2}^{3} |x - 1| \, \mathrm{d}x = \frac{13}{2} \tag{1.1.13}$$

LA medida que se incrementan el numero se particiones el valor de suma, se aproxima al valor de la integral.

2da. Forma de resolucion

Se grafica la suma de Riemann, usando el punto medio de cada particion, este caso n =8

> ApproximateInt(f(x), x=-2..3, method=midpoint, partition=8, output=plot
);

A midpoint Riemann sum approximation of $\int_{-2}^{3} f(x) dx$, where

f(x) = |x - 1| and the partition is uniform. The approximate value of the integral is 6.484375000. Number of subintervals used: 8.

Se grafica la suma de Riemann, usando el punto izqiuerdo de cada particion, este caso n =8

> ApproximateInt(f(x), x=-2..3, method=left, partition=8, output=plot);

A left Riemann sum approximation of $\int_{-2}^{3} f(x) dx$, where

f(x) = |x - 1| and the partition is uniform. The approximate value of the integral is 6.875000000. Number of subintervals used: 8.

Se grafica la suma de Riemann, usando el punto derecho de cada particion, este caso n =8

> ApproximateInt(f(x), x=-2..3, method=right, partition=8, output=plot);

A right Riemann sum approximation of $\int_{-2}^{3} f(x) dx$, where

f(x) = |x - 1| and the partition is uniform. The approximate value of the integral is 6.250000000. Number of subintervals used: 8.

Se grafica la suma de Riemann, usando un punto aleatorio de cada particion, este caso n =8

> ApproximateInt(f(x), x=-2..3, method=random, partition=8, output=plot);

An approximation of $\int_{-2}^{3} f(x) dx$ with randomly selected points, where f(x) = |x - 1| and the partition is uniform. The approximate value of the integral is 7.036056171. Number of

subintervals used: 8.

Se grafica la suma de Riemann, usando el punto aleatorio de cada particion, este caso n = 128

> ApproximateInt(f(x), x=-2..3, method=random, partition=128, output=plot):

An approximation of $\int_{-2}^{3} f(x) dx$ with randomly selected points, where f(x) = |x - 1| and the partition is uniform. The approximate value of the integral is 6.497892032. Number of subintervals used: 128.

_Animacion grafica de la suma de Riemann, usando un punto aleatorio en cada particion.

> ApproximateInt(f(x), x=-2..3, method=random, partition=3, subpartition= all, refinement=random, iterations=9, output=animation);

An animated approximation of $\int_{-2}^{3} f(x) dx$ with randomly

selected points, where f(x) = |x - 1| and the partition is uniform. The approximate value of the integral is 6.089577039. Number of subintervals used: 3.