Learning to Warm-Start Bayesian Hyperparameter Optimization

A joint work with Saehoon Kim and Seungjin Choi

Jungtaek Kim (jtkim@postech.ac.kr)

Machine Learning Group,
Department of Computer Science and Engineering, POSTECH,
77 Cheongam-ro, Nam-gu, Pohang 37673,
Gyeongsangbuk-do, Republic of Korea

June 19, 2018

Table of Contents

Motivation

Background

Hyperparameter Optimization Bayesian Hyperparameter Optimization Why We Need to Learn Meta-Features Target Distance

Proposed Model

Overall Structure of Siamese Network Meta-Feature Extractor

Experiments

Experiment Setup
Bayesian Hyperparameter Optimization with Warm-Starting

Motivation

Motivation

- Hyperparameter optimization usually suffers a cold-start problem.
- ▶ We can mimic human experts' behavior on selecting initial hyperparameters to learn historical initializations.
- Our method can learn meta-features over datasets.
- ► The learned meta-features can be used to initialize Bayesian hyperparameter optimization.
- ArXiv version (https://arxiv.org/abs/1710.06219)

Background

Hyperparameter Optimization

- It determines the best hyperparameter configuration θ^* by minimizing a validation error $\mathcal{J}(\theta)$, given training and validation datasets.
- ▶ It uses random search or grid search as a candidate method of hyperparameter optimization [Bergstra and Bengio, 2012].
- ▶ SMAC [Hutter et al., 2011], Spearmint [Snoek et al., 2012], and TPE [Bergstra et al., 2011] have been proposed.

Bayesian Hyperparameter Optimization

- ▶ BHO searches minimum of validation error $\mathcal{J}(\theta)$, gradually accumulating a pair of hyperparameters and validation error.
- ightharpoonup A surrogate function $\mathcal{M}_{\mathrm{surrogate}}$ estimates a black-box function with the previously observed hyperparameter vectors and validation errors.
- A next point θ^{\dagger} is queried, maximizing an acquisition function $a(\cdot)$:

$$\theta^{\dagger} = \underset{\theta}{\operatorname{arg\,max}} a(\theta | \mathcal{M}_{\operatorname{surrogate}}).$$
 (1)

▶ In this paper, we utilize GP regression as surrogate function, and expected improvement (EI) and GP upper confidence bound (GP-UCB) as acquisition functions.

Bayesian Hyperparameter Optimization

Algorithm 1 Bayesian Hyperparameter Optimization

Input: Target function $\mathcal{J}(\cdot)$, k initial hyperparameter vectors $\{\boldsymbol{\theta}_1^{\dagger}, \dots, \boldsymbol{\theta}_k^{\dagger}\} \subset \boldsymbol{\Theta}$, limit $T \in \mathbb{N} > k$ **Output:** Best hyperparameter vector $\boldsymbol{\theta}^* \in \boldsymbol{\Theta}$

- 1: Initialize an acquired set as an empty set
- 2: **for** i = 1, 2, ..., k **do**
- 3: Evaluate $\mathcal{J}_i \coloneqq \mathcal{J}(\boldsymbol{\theta}_i^{\dagger})$
- Accumulate (θ_i[†], J_i) into the acquired set
- 5: end for
- 6: **for** $j = k + 1, k + 2, \dots, T$ **do**
- 7: Estimate a surrogate function $\mathcal{M}_{\text{surrogate}}$ with the acquired set $\{(\boldsymbol{\theta}_i^{\dagger}, \mathcal{J}_i)\}_{i=1}^{j-1}$
 - : Find $\theta_j^{\dagger} = \arg \max_{\theta} a(\theta | \mathcal{M}_{\text{surrogate}})$
- 9: Evaluate $\mathcal{J}_j := \mathcal{J}(\boldsymbol{\theta}_j^{\dagger})$
- 10: Accumulate $(\boldsymbol{\theta}_{j}^{\dagger}, \mathcal{J}_{j})$ into the acquired set
- 11: end for
- 12: **return** $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}_j^{\dagger} \in \{\boldsymbol{\theta}_1^{\dagger}, ..., \boldsymbol{\theta}_T^{\dagger}\}} \mathcal{J}_j$

Why We Need to Learn Meta-Features

- Target distance can be understood as the ground-truth pairwise distance.
- However, there are two reasons why the target distance cannot be employed as the ground-truth distance directly:
 - a distance for new dataset without prior knowledge cannot be measured.
 - ▶ a distance function has a different multi-modal distribution with other mappings for different datasets.
- We compute a coordinate of center of validation error (CCoV) θ_i^c for a dimension i:

$$\theta_i^{c} = \frac{\sum_{s=1}^{n} \hat{\theta}_{si} \mathcal{J}_s}{\sum_{s=1}^{n} \mathcal{J}_s}$$
 (2)

where a normalized hyperparameter
$$\tilde{\theta}_{si} = \frac{\theta_{si} - \min_{s=1,\dots,n} \theta_{si}}{\max_{s=1,\dots,n} \theta_{si} - \min_{s=1,\dots,n} \theta_{si}}$$
 for $1 \leq i \leq d$ is provided.

Why We Need to Learn Meta-Features

Target Distance

- ▶ Assume that there are $\{(\boldsymbol{\theta}_s, \mathcal{J}_s^{(t)})\}_{s=1}^n$ for $1 \leq t \leq K$, where
 - ▶ n is the number of historical tuples of hyperparameter vector and validation error for each dataset,
 - ► *K* is the number of the datasets which we have prior knowledge.
- ▶ We define a target distance function between two validation error vectors for the datasets \mathcal{D}_i and \mathcal{D}_j , defined as L_1 distance:

$$d_{\text{target}}(\mathcal{D}_i, \mathcal{D}_j) = \left\| \left[\mathcal{J}_1^{(i)} \cdots \mathcal{J}_n^{(i)} \right] - \left[\mathcal{J}_1^{(j)} \cdots \mathcal{J}_n^{(j)} \right] \right\|_1$$
$$= \sum_{s=1}^n |\mathcal{J}_s^{(i)} - \mathcal{J}_s^{(j)}|$$
(3)

where $1 \le i, j \le K$.

Proposed Model

Overall Structure of Siamese Network

Overall Structure of Siamese Network

- ► A Siamese network is used to learn a metric such that distance between meta-features of datasets is well matched to the target distance.
- Our Siamese network has two identical wings each of which is composed of
 - deep feature extractor (denoted as $\mathcal{M}_{\mathrm{df}}$),
 - ightharpoonup meta-feature extractor (denoted as $\mathcal{M}_{\mathrm{mf}}$).
- ▶ Specifically, the deep feature extractor transforms an instance of \mathcal{D}_i into $\mathbf{h}_{ip}^{\mathrm{df}}$ for $p = 1, \ldots, n_i$, where n_i is the number of instances in the dataset \mathcal{D}_i .
- ▶ The meta-feature extractor transforms a set of deep features $\{\mathbf{h}_{ip}^{\mathrm{df}}\}_{p=1}^{n_i}$ into a meta-feature of \mathcal{D}_i , denoted as \mathbf{m}_i .

Learning a Siamese Network over Datasets

Algorithm 2 Learning a Siamese Network over Datasets

Input: A set of n datasets $\{\mathcal{D}_1, \dots, \mathcal{D}_n\}$, target distance function $d_{\text{target}}(\cdot, \cdot)$, number of subsamples in a dataset $\tau \in \mathbb{N}$, number of iterations $T \in \mathbb{N}$

Output: Deep feature extractor and meta-feature extractor $(\mathcal{M}_{df}, \mathcal{M}_{mf})$ trained over $\{\mathcal{D}_1, \dots, \mathcal{D}_n\}$

- 1: Initialize $\mathcal{M}_{\mathrm{df}}$ and $\mathcal{M}_{\mathrm{mf}}$
- 2: **for** t = 1, 2, ..., T **do**
- 3: Sample a pair of datasets, i.e., $(\mathcal{D}_i, \mathcal{D}_j)$ for $i \neq j, i, j = 1, \dots, n$
- 4: Sample τ instances from each dataset in the pair $(\mathcal{D}_i, \mathcal{D}_j)$ selected above, to make $|\mathcal{D}_i| = |\mathcal{D}_j| = \tau$
- 5: Update weights in \mathcal{M}_{df} and \mathcal{M}_{mf} using $d_{target}(\mathcal{D}_i, \mathcal{D}_j)$ via optimizing Equation (1)
- 6: end for
- 7: return $(\mathcal{M}_{df}, \mathcal{M}_{mf})$

Meta-Feature Extractor

- ▶ Dataset is a set of instances (i.e., images in this paper).
- ▶ It is permutation-invariant and the number of instances for each dataset can be varied.
- ► To resolve these problems, we consider two designs into meta-feature extractor:
 - ▶ aggregation of deep features (ADF): deep features h^{df} are aggregated as summation or arithmetic mean of them:

$$\mathbf{h}^{\mathrm{mf}} \coloneqq \mathbf{h}_{\mathrm{ADF}} = \sum_{p=1}^{\tau} \mathbf{h}_{p}^{\mathrm{df}} \quad \text{or} \quad \frac{1}{\tau} \sum_{p=1}^{\tau} \mathbf{h}_{p}^{\mathrm{df}},$$
 (4)

bi-directional long short-term memory network (Bi-LSTM): the deep features h^{df} are fed into Bi-LSTM. Bi-LSTM can be written as

$$\mathbf{h}^{\mathrm{mf}} := \mathbf{h}_{\mathrm{Bi-LSTM}} = \mathrm{Bi-LSTM}(\mathbf{h}_{1:\tau}^{\mathrm{df}}),$$
 (5)

where $\mathbf{h}^{\mathrm{df}}_{1: au}$ denotes $[\mathbf{h}^{\mathrm{df}}_1,\mathbf{h}^{\mathrm{df}}_2,\ldots,\mathbf{h}^{\mathrm{df}}_{ au-1},\mathbf{h}^{\mathrm{df}}_{ au}].$

Experiments

Experiment Setup

- ▶ We created a collection of datasets for training our model, using eight image datasets: AwA2, Caltech-101, Caltech-256, CIFAR-10, CIFAR-100, CUB-200-2011, MNIST, and VOC2012.
- ▶ In this paper we optimized and warm-started convolutional neural network, created by six-dimensional hyperparameter vector (log10_learning_rate, log10_decay_rate, batch_size, num_layers_conv, num_layers_fc, dropout_rate).
- ▶ We employed Bayesian optimization package, GPyOpt [The GPyOpt authors, 2016] in BHO.
- ► GP regression with ARD Matérn 5/2 kernel is used as surrogate function, and EI and GP-UCB are used as acquisition functions.

- Our methods initialize BHO with 3-nearest best vectors predicted by ADF and Bi-LSTM.
- We used three initialization techniques:
 - naïve uniform random sampling (denoted as uniform),
 - Latin hypercube sampling (denoted as Latin),
 - quasi-Monte Carlo sampling with one of low discrepancy sequences, Halton sequence (denoted as *Halton*).

Algorithm 3 Bayesian Hyperparameter Optimization with Warm-Starting

Input: Learned deep feature and meta-feature extractors $(\mathcal{M}_{\mathrm{df}}, \mathcal{M}_{\mathrm{mf}})$, target function $\mathcal{J}(\cdot)$, limit $T \in \mathbb{N}$, number of initial vectors k < T

Output: Best hyperparameter vector θ^*

- 1: Find k-nearest neighbors using the learned deep feature and meta-feature extractors, $(\mathcal{M}_{df}, \mathcal{M}_{mf})$
- 2: Obtain k historical sets of tuples $\{\{(\boldsymbol{\theta}_s,\mathcal{J}_s^{(1)})\}_{s=1}^n,\ldots,\{(\boldsymbol{\theta}_s,\mathcal{J}_s^{(k)})\}_{s=1}^n\}$
- Initialize an acquired set as an empty set
- 4: **for** i = 1, 2, ..., k **do**
 - Find the best vector $\boldsymbol{\theta}_i^{\dagger}$ on grid of the *i*-th set of tuples $\{(\boldsymbol{\theta}_s, \mathcal{J}_s^{(i)})\}_{s=1}^n$
- 6: Evaluate $\mathcal{J}_i \coloneqq \mathcal{J}(\boldsymbol{\theta}_i^{\dagger})$
- 7: Accumulate $(\theta_i^{\dagger}, \mathcal{J}_i)$ into the acquired set
- 8: end for
- 9: **for** $j = k + 1, k + 2, \dots, T$ **do**
- 10: Estimate a surrogate function $\mathcal{M}_{\text{surrogate}}$ with the acquired set $\{(\boldsymbol{\theta}_i^{\dagger}, \mathcal{J}_i)\}_{i=1}^{j-1}$
- 11: Find $\boldsymbol{\theta}_{j}^{\dagger} = \arg \max_{\boldsymbol{\theta}} a(\boldsymbol{\theta} | \mathcal{M}_{\text{surrogate}}).$
- 12: Evaluate $\mathcal{J}_j \coloneqq \mathcal{J}(\boldsymbol{\theta}_j^{\dagger})$
- 13: Accumulate $(\boldsymbol{\theta}_{i}^{\dagger}, \mathcal{J}_{j})$ into the acquired set
- 14: end for
- 15: **return** $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}_j^{\dagger} \in \{\boldsymbol{\theta}_1^{\dagger}, \dots, \boldsymbol{\theta}_T^{\dagger}\}} \mathcal{J}_j$

References

- J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13:281–305, 2012.
- J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems (NIPS), volume 24, pages 2546–2554, Granada, Spain, 2011.
- F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In *Proceedings of the International Conference on Learning and Intelligent Optimization*, pages 507–523, Rome, Italy, 2011.
- J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems (NIPS), volume 25, pages 2951–2959, Lake Tahoe, Nevada, USA, 2012.
- The GPyOpt authors. GPyOpt: A Bayesian optimization framework in Python, 2016. https://github.com/SheffieldML/GPyOpt.

