DIGITAL CIRCUITS

Week-14, Lecture-1 Sequential Circuits

Sneh Saurabh 13th November, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Pipelining

Concept of Delay

Delay: Basic concept

- When the input to a logic gate is changed, the output does not change instantaneously
- The transistors or other switching elements within the gate take a finite time to react to a change in input
 - > Time to react depends on electrical characteristics such as *capacitance* and *resistance*
 - > The change in the gate output is **delayed** with respect to the input change

Delay: Inverter (Simple model)

- For a transition from 1 (High) to 0 (Low), the change in output is delayed by t_{pHL}
 - $\succ t_{pHL}$ is called High to Low *Propagation delay*
- For a transition from 0 (Low) to 1 (High), the change in output is delayed by t_{pLH}
 - $\succ t_{pLH}$ is called Low to High *Propagation delay*
- In general, $t_{pHL} \neq t_{pLH}$
- Sometime average of t_{pHL} and t_{pLH} is specified as propagation delay t_p
- $t_p = \frac{t_{pHL} + t_{pLH}}{2}$
- During analysis of a circuit, in this case for both transitions the same propagation delay t_p can be taken

Delay: Timing Diagram

For the circuit shown below, complete the timing diagram.

Assume that each gate has a propagation delay of 20 ns.

Timing Model: Propagation Delay

Timing Model: Rise/Fall Time

Timing Model: Factors affecting delay

Load at the output: If more gates are connected at the output of an inverter or any other logic gate, then the effective capacitance increases.

As a result, propagation delay will increase

Fanout (n): Number of other pins driven by the inverter output or output of any other logic gate

Delay in a path in a combinational circuit

Delay in a path in a combinational circuit is computed as a sum of delay in the individual gates.

Problem:

For the circuit shown alongside, it is given that:

Propagation delay of NOT, AND, NOR gates are 1 ns, 6 ns, 3 ns respectively.

Compute the minimum and the maximum delay between the following ports:

- a) From A to Y
- b) From B to Y
- c) From C to Y

Answer:

- a) From A to Y: min = max = 13 ns
- b) From B to Y: min=9 ns, max=13 ns
- c) From C to Y: min=max=9 ns

Timing constraints on Flip-flops due to delay

Flip-flop: Constraints

Constraints:

- a) Setup Time (t_{su}) : amount of time that D must be stable before the active edge.
- b) Hold Time (t_h) : amount of time that D must hold the same value after the active edge

 Digital Circuits: S. Saurabh

Delay:

Clock-to-Q propagation delay (t_p): the amount of time elapsed between the clock changes until the Q output changes.

Sequential Circuit