Digital Design LU

Protocol

Lab Exercise IV

Group 7

Markus Reiß, Matr. Nr. 1126188

e1126188@student.tuwien.ac.at

Lorin Hillebrand, Matr. Nr. 0925917

e0925917@student.tuwien.ac.at

Petar Kosic, Matr. Nr. 1225761

petar.kosic@student.tuwien.ac.at

Vienna, January 19, 2016

Forwarding Simulation

Figure 1: Simulation screenshot for Listing 1.

Make sure that at least the following signals are visible in Figure 1: the program counter in the fetch stage, the instruction being fetched, and the signals wraddr, wrdata, and regwrite of the register file.

```
Listing 1: Assembler example with forwarding
```

```
addi $1, $0, 7
addi $2, $0, 5
and $1, $2, $1
nop
```

Branch Hazards Simulation

Figure 2: Simulation screenshot for Listing 2.

Make sure that at least the following signals are visible in Figure 2: the program counter in the fetch stage, the instruction being fetched, and the signals wraddr, wrdata, and regwrite of the register file.

Listing 2: Assembler example with branch delay slot

Synthesis Results

Table 1: Resource usage by entity, including resources used by sub-entities.

	LC Combinationals	LC Registers	Memory Bits
Fetch Stage			_
Decode Stage			
– Register File			
Execute Stage			
$ \mathrm{ALU}$			
Memory Stage			
– Jump Unit			
– Memory Unit			
Write-Back Stage			
Forwarding Unit			
Control Unit			
Sum			

Question: What is the maximum frequency of your design?

Answer: 86.7 MHz

Question: Where is the critical path of your design?

Answer:

Feedback & Comments

By answering the optional questions below you can give us feedback and help us to further improve this lab course. Your answers will not influence your grading!

Question: How many hours did you need to solve this lab exercise? Please give us a rough estimate.

Answer:

Question: Were there any annoying problems you encountered (e.g. bugs in tools, flaws in the task description or documentation, etc.)?

Answer:

Question: Other remarks?

Answer: