Design and Analysis of Algorithms Single-source shortest paths, all-pairs shortest paths

Slides from: Haidong Xue and Dr. Fethi Jarray

Provided By: Muhammad Atif Tahir

Presented by: Farrukh Salim Shaikh

Shortest-Path Problems

 Single-source. Find a shortest path from a given source to each of the vertices

 Single-pair. Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too

 All-pairs. Find shortest-paths for every pair of vertices

- A **path** of a weighted, directed graph is a sequence of vertices: $\langle v_1, v_2, ..., v_k \rangle$
- The weight of a path is the sum of weights of edges that make the path:

weight(
$$\langle v_1, v_2, ..., v_k \rangle$$
)= $\sum_{i=1}^{k-1} w_{(v_i, v_{i+1})}$

Given this weighted, directed graph, what is the weight of path: <1, 2, 4>?

10+2=12

Given this weighted, directed graph, what is the weight of path: <1, 2, 4, 2, 4>?

$$10+2+3+2=17$$

Given this weighted, directed graph, what is the weight of path: <1, 2, 4, 1>?

$$10 + 2 + \infty = \infty$$

Given this weighted, directed graph, what is the weight of path: <5, 3, 5> and <5, 3, 5>??

4-6 = -2 and -6+4-6+4 = -4

Negative cycle There is no shortest path from 3 to 5

- Shortest path of a pair of vertices <u, v>: a
 path from u to v, with minimum path weight
- Applications:
 - Your GPS navigator
 - If weights are time, it produces the fastest route
 - If weights are gas cost, it produces the lowest cost route
 - If weights are distance, it produces the shortest route

• Single-source shortest path problem: given a weighted, directed graph G=(V, E) with source vertex s, find all the shortest (least weight) paths from s to all vertices in V.

- Two classic algorithms to solve single-source shortest path problem
 - Bellman-Ford algorithm
 - A dynamic programming algorithm
 - Works when some weights are negative
 - Dijkstra's algorithm
 - A greedy algorithm
 - Faster than Bellman-Ford
 - Works when weights are all non-negative

Bellman-Ford algorithm

Observation:

- If there is a negative cycle, there is no solution
 - Add this cycle again can always produces a less weight path
- If there is no negative cycle, a shortest path has at most |V|-1 edges

Idea:

- Solve it using dynamic programming
- For all the paths have at most 0 edge, find all the shortest paths
- For all the paths have at most 1 edge, find all the shortest paths
- ...
- For all the paths have at most |V|-1 edge, find all the shortest paths

Bellman-Ford algorithm

```
Bellman-Ford(G, s)
     for each v in G.V{ //Initialize 0-edge shortest paths
          if(v==s) d_{s,v}=0; else d_{s,v}= \infty; //set the 0-edge shortest distance
                                              from s to v
          \pi_{{\scriptscriptstyle S}, v} = {
m NIL}; //set the predecessor of v on the shortest path
                                      //bottom-up construct 0-to-(|V|-1)-edges shortest paths
     Repeat |G.V|-1 times {
          for each edge (u, v) in G.E{
                if(d_{s,v} > d_{s,u} + w_{(u,v)}){
                      d_{s,v} = d_{s,u} + w_{(u,v)};
                      \pi_{s,v}=u;
     for each edge (u, v) in G.E{ //test negative cycle
          If (d_{s,v} > d_{s,u} + w_{(u,v)}) return false; // there is no solution
     return true;
      T(n)=O(VE)=O(V^3)
```

e.g.

What is the 0-edge shortest path from 1 to 1?

<> with path weight 0

What is the 0-edge shortest path from 1 to 2?

<> with path weight ∞

What is the 0-edge shortest path from 1 to 3?

<> with path weight ∞

e.g.

What is the at most 1-edge shortest path from 1 to 1?

<> with path weight 0

What is the at most 1-edge shortest path from 1 to 2?

<1, 2> with path weight 10

What is the at most 1-edge shortest path from 1 to 3?

<1, 3> with path weight 20

$$\infty > 0 + 20$$

$$d_{1.3} = 20$$

$$\infty > 0 + 10$$

$$d_{1.2} = 10$$

$$\infty = \infty + 1$$

 $d_{1,3}$ unchanged

In Bellman-Ford, they are calculated by scan all edges once

e.g.

What is the at most 2-edges shortest path from 1 to 1?

<> with path weight 0

What is the at most 2-edges shortest path from 1 to 2?

<1, 2> with path weight 10

What is the at most 2-edges shortest path from 1 to 3?

<1, 2, 3> with path weight 11

In Bellman-Ford, they are calculated by scan all edges once

$$0 + 20 = 20$$

 $d_{1,3}$ unchanged

$$10 = 0 + 10$$

 $d_{1,2}$ unchanged

$$20 > 10+1$$

$$d_{1,3} = 11$$

	1	2	3	4	5
d	0	∞	∞	∞	∞
π	/	/	/	/	/

Calculate all at most 1 edge

shortest paths

	1	2	3	4	5
d	0	6	∞	7	∞
π	/	1	/	1	/

	1	2	3	4	5
d	0	6	4	7	2
π	/	1	4	1	2

Calculate all at most 3 edges

shortest paths

	1	2	3	4	5
d	0	2	4	7	2
π	/	3	4	1	2

Bellman-Ford algorithm (Example 2) Calculate all at most 4 edges

	1	2	3	4	5
d	0	2	4	7	-2
π	/	3	4	1	2

Final result:

What is the shortest path from 1 to 5?

1, 4, 3, 2, 5

What is weight of this path? -2

What is the shortest path from 1 to 2, 3, and 4?

Dijkstra's Algorithm (Pseudocode 1)

- A greedy algorithm
- **Dijkstra** (G, s) for each v in G.V{ if(v==s) $d_{s,v}$ =0; else $d_{s,v}$ = ∞ ; //set the 0-edge shortest distance from s to v $\pi_{s,v} = \text{NIL}$; //set the predecessor of v on the shortest path $S=\emptyset$;//the set of vertices whose final shortest-path weights have already been determined Q=G.V;while($Q \neq \emptyset$){ u=Extract-Min(Q); $S=S \cup \{u\};$ for all (u, v){//the greedy choice $if(d_{s,v} > d_{s,u} + w_{(u,v)})$ { $d_{s,v} = d_{s,u} + w_{(u,v)};$ $\pi_{s.v} = u$:

Dijkstra's Algorithm (Pseudocode 2)

```
dist[s] \leftarrow o
                                      (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                      (set all other distances to infinity)
                                      (S, the set of visited vertices is initially empty)
S←Ø
                                      (Q, the queue initially contains all vertices)
Q←V
                                      (while the queue is not empty)
while Q ≠Ø
do u \leftarrow mindistance(Q,dist)
                                      (select the element of Q with the min. distance)
    S←S ∈ {u}
                                      (add u to list of visited vertices)
    for all v \in neighbors[u] do
             dist[v] = min(dist[v], dist[u] + w(u, v)) (update distance)
return dist
```

Initialize:

 $dist[s] \leftarrow o$ for all $v \in V-\{s\}$ do $dist[v] \leftarrow \infty$ $S\leftarrow\emptyset$ Q←V

00

00

S: { A, C }

Dijkstra's algorithm Running Time

- Initialization : $\Theta(V)$
- |V| iterations
- Each iteration: $\Theta(V)$
- Total time: $O(V^2)$

Dijkstra's algorithm Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time = $|V| T_{\text{Extract-Min}} + |E| T_{\text{Decrease-Key}}$
- T depends on different Q implementations

Q	T(Extract -Min)	T(Decrease- Key)	Total
array	O(V)	<i>O</i> (1)	O(V ²)
binary heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (lg <i>V</i>)	<i>O</i> (<i>E</i> lg <i>V</i>)
Fibonacci heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (1) (amort.)	$O(V \lg V + E)$

- Decrease key means: update better (lower) value
 - Means: Removing value
- Binary heap: O((V + E) log V)

Dijkstra's Algorithm (Pseudocode 2)

```
dist[s] \leftarrow o
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
     prev[v] = nil
S←Ø
Q←V // Make Queue using distance values as key
while Q ≠Ø
do u \leftarrow mindistance(Q, dist)
    S←S ∈{u}
                                               DeleteMin or ExtractMin
    for all v \in neighbors[u] do
              dist[v] = min(dist[v], dist[u] + w(u, v))
return dist
                                         If dist[v] > dist[u] + w(u, v)
                                                 dist[v] = dist[u] + w(u, v)
dist[v] = min(dist[v], dist[u] + w(u, v))
                                                 prev[v] = u
```

decreaseKey(Q, v)

The shortest path of the vertex with smallest distance is determined

Final result:

What is the shortest path 1, 4, 5 from 1 to 5?

What is weight of this path? 7

What is the shortest path from 1 to 2, 3, and 4?

Applications

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

The Park Source Source

From Computer Desktop Encyclopedia

© 1998 The Computer Language Co. Inc.

All-pairs shortest paths

- All-pairs shortest path problem: given a weighted, directed graph G=(V, E), for every pair of vertices, find a shortest path.
- If there are negative weights, run Bellman-Ford algorithm |V| times
 - $-T(n)=|V|O(|V|^3) = O(|V|^4)$
- If there are no negative weights, run Dijkstra's algorithm |V| times
 - $-T(n)=|V|O(|V|^2) = O(|V|^3)$

All-pairs shortest paths

- There are other algorithms can do it more efficient, such like Floyd-Warshall algorithm
- Floyd-Warshall algorithm
 - Negative weights may present, but no negative cycle
 - $T(n) = O(|V|^3)$
 - A dynamic programming algorithm

- Create a matrix A⁰ of dimension n*n where n is the number of vertices.
 The row and the column are indexed as i and j respectively. i and j are the vertices of the graph.
- Each cell A[i][j] is filled with the distance from the ith vertex to the jth vertex. If there is no path from ith vertex to jth vertex, the cell is left as infinity.

$$A^{1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & \infty & 5 \\ 2 & 0 & \infty & 4 \\ \infty & 1 & 0 & \infty \\ \infty & \infty & 2 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \infty & \infty & 2 & 0 \\ 2 & 0 & \infty & 4 \\ 3 & 1 & 0 & \infty \\ 4 & \infty & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 0 & 5 \\ 2 & 0 & \infty & 4 \\ 3 & 1 & 0 & 5 \\ \infty & \infty & 2 & 0 \end{bmatrix}$$


```
for(int k = 1; k <= n; k++){
  for(int i = 1; i <= n; i++){
     for(int j = 1; j <= n; j++){
        dist[i][j] = min( dist[i][j], dist[i][k] + dist[k][j] );
```

What are the weights of shortest paths with no intermediate vertices, D(0)?

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	9
4	∞	6	∞	0

D(0)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	9
4	∞	6	∞	0

What are the weights of shortest paths with intermediate vertex 1?

D(1)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	9
4	∞	6	∞	0

D(1)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	9
4	∞	6	∞	0

What are the weights of shortest paths with intermediate vertices 1 and 2?

D(2)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	6
4	∞	6	∞	0

D(2)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	6
4	∞	6	∞	0

What are the weights of shortest paths with intermediate vertices 1, 2 and 3?

D(3)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	6
4	∞	6	∞	0

D(3)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	6
4	∞	6	∞	0

What are the weights of shortest paths with intermediate vertices 1, 2, 3 and 4?

D(4)

	1	2	3	4
1	0	∞	∞	∞
2	∞	0	∞	4
3	3	2	0	6
4	∞	6	∞	0

Add predecessor information to reconstruct a shortest path

If updated the predecessor i-j in D(k) is the same as the predecessor k-j in D(k-1)

D(0) D(1)

	1	2	3	4
1	0/n	∞/n	∞/n	∞/n
2	∞/n	0/n	∞/n	4/2
3	3/3	2/3	0/n	9/3
4	∞/n	6/4	∞/n	0/n

	1	2	3	4
1	0/n	∞/n	∞/n	∞/n
2	∞/n	0/n	∞/n	4/2
3	3/3	2/3	0/n	9/3
4	∞/n	6/4	∞/n	0/n

D(2) D(3)

	1	2	3	4
1	0/n	∞/n	∞/n	∞/n
2	∞/n	0/n	∞/n	4/2
3	3/3	2/3	0/n	6/2
4	∞/n	6/4	∞/n	0/n

	1	2	3	4
1	0/n	∞/n	∞/n	∞/n
2	∞/n	0/n	∞/n	4/2
3	3/3	2/3	0/n	6/2
4	∞/n	6/4	∞/n	0/n

D(4)

	1	2	3	4
1	0/n	∞/n	∞/n	∞/n
2	∞/n	0/n	∞/n	4/2
3	3/3	2/3	0/n	6/2
4	∞/n	6/4	∞/n	0/n

What is the shortest path 3, 2, 4 from 3 to 4?

What is weight of this path? 6

All-pairs shortest paths

Floyd-Warshall(G)

```
Construct the shortest path matrix when there is no intermediate vertex, D(0); for(i=1 to |G.V|){    //D(i) is the shortest path matrix when the intermediate    //vertices could be: v_1, v_2, ..., v_i    Compute D(i) from D(i-1); }
```

 The Floyd-Warshall algorithm works based on a property of intermediate vertices of a shortest path.

Initialization: (k = 0)

	1	2	3	4	5
1	0	8	6	თ	8
2	3	0	8	8	8
3	∞	8	0	2	8
4	∞	1	1	0	8
5	00	4	00	2	0

			_			
	П					
	1	2	3	4	5	
1	1	1	1	1	1	
2	2	/	/	/	1	
3	/	1	/	3	1	
4	1	4	4	1	1	
5	/	5	/	5	1	

Iteration 1: (k = 1) Shorter paths from 2 \sim 3 and 2 \sim 4 are found through vertex 1

Iteration 2: (k = 2) Shorter paths from 4 \sim 1, 5 \sim 1, and 5 \sim 3 are found through vertex 2

Iteration 3: (k = 3) No shorter paths are found through vertex 3

Iteration 4: (k = 4) Shorter paths from $1 \sim 2$, $1 \sim 3$, $2 \sim 3$, $3 \sim 1$, $3 \sim 2$, $5 \sim 1$, $5 \sim 2$, $5 \sim 3$, and $5 \sim 4$ are found through vertex 4

Iteration 5: (k = 5) No shorter paths are found through vertex 5

The final shortest paths for all pairs is given by


```
FLOYD-WARSHALL(W)
1. n = W.rows
2. D^{(0)} = W
3. \Pi^{(0)} = \pi^{(0)}_{ij} = NIL \text{ if } i = j \text{ or } w_{ij} = \infty
                        = i if i \neq j and w_{ij} < \infty
4. for k = 1 to n
       let D^{(k)} = (d^{(k)}_{ij}) be a new n \times n matrix
6. for i = 1 to n
7.
              for j = 1 to n
                  d_{ij}^{k} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
8.
                  if d^{(k-1)}_{ii} \le d^{(k-1)}_{ik} + d^{(k-1)}_{ki}
9.
                      \pi^{(k)}_{ij} = \pi^{(k-1)}_{ij}
10.
11.
                  else
                      \pi^{(k)}_{ij} = \pi^{(k-1)}_{ki}
12.
13. return D<sup>(n)</sup>
```

Remarks

- Dijkstra's algorithm is a single source one
- Bellman's algorithm consider negative weights but for acyclic graphs
- Floyd's algorithm solves for the shortest path among all pairs of vertices.