# CIFAR10 Noisy Image Classification

Contributors: Christie Du, Fucheng Liu, Vaishak Naik, Yiming Xia, Shanyue Zeng

### **Problem**

Image classification with the noisy version of "CIFAR-10" dataset

- Design a sophisticated classification model
- Address the label noise issue

#### **CIFAR-10 Dataset**

- Noisy labels for 40,000 images
- Clean labels for 10,000 images



## **Data Augmentation**

Five types of data augmentation on 10K clean data  $\rightarrow$  50K augmented data:

• flip (hflip or vflip), rotate (90°, 180°, 270°), distort, lighting (brighter, darker), color



Total processed data: 100K images (50K original, 50K augmented). 2.46GB (npy files)

## Baseline Performance: Logistic Regression

The baseline LR model is only trained on the 50K uncleaned data:

- Test Accuracy: 24%
- Avg Precision: 24%
- Avg Recall: 24%

The accuracy is a little better than randomly predicted (10%)

LR model (75K train, 25K validation, random split)

- Test Accuracy: 20%
- Avg Precision: 20%
- Avg Recall: 20%

## Predictive Models: Model I & Model II

## **Model I: Architecture**

CNN



## **Model I: Performance**

#### Model Accuracy/Loss

|            | Accuracy | Loss   |
|------------|----------|--------|
| Train      | 0.6731   | 1.0710 |
| Validation | 0.6051   | 1.4852 |

#### **Runtime Metrics**

| Computing Type                    | Training Time        |
|-----------------------------------|----------------------|
| Apple M1 CPU                      | ~34 min              |
| Tesla K80 GPU                     | ~9 min               |
| Intel(R) Xeon(R) CPU @<br>2.20GHz | ~225 min / ~ 3.75 hr |

## Model II: Workflow

**CNN+** semi-supervised learning

| Train model to clean<br>noisy labels                                                                                        | Predict labels for noisy data                                                     | Train model II on cleaned data                                           |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| The same architecture for model I is trained on clean + augmented data only (60K images). We call this model `clean_model`. | `clean_model` is used<br>to predict new labels<br>for noisy data (40K<br>images). | The same architecture for model I is trained using newly cleaned labels. |

Candidate Model II: Transfer learning, pre-trained VGG16, training on one additional layer

## **Model II: Performance**

#### Model Accuracy/Loss

| Clean_label<br>model | Accuracy | Loss   |
|----------------------|----------|--------|
| Train                | 0.9240   | 0.2233 |

| Model II   | Accuracy | Loss   |
|------------|----------|--------|
| Train      | 0.9031   | 0.2680 |
| Validation | 0.8266   | 0.5544 |

#### **Runtime Metrics**

| Model       | CPU Apple M1<br>Training Time | GPU Tesla<br>K80<br>Training Time | GPU<br>Intel(R)<br>Xeon(R) CPU |
|-------------|-------------------------------|-----------------------------------|--------------------------------|
| Clean model | ~ 26 min                      | ~ 4 min                           | ~ 3 hr                         |
| Label model | ~ 10 min                      |                                   |                                |
| Model II    | ~ 34 min                      | ~ 9 min                           | ~ 4 hr                         |

## Conclusion

| Model    | Validation<br>Accuracy | Total Runtime<br>(i9, Apple M1,<br>Tesla K80) | Predict 25K<br>Runtime (i9, Apple<br>M1, Tesla K80) |
|----------|------------------------|-----------------------------------------------|-----------------------------------------------------|
| Baseline | 20%                    | ~10 s                                         | ~2 s                                                |
| Model I  | 60.51%                 | (~3.75 hr, ~35<br>min, ~9 min)                | (~12 min, ~3 min,<br>~3s)                           |
| Model II | 82.66%                 | (~8 hr, ~1 hr,<br>~13 min)                    | (~12 min, ~3 min,<br>~3s)                           |



#### Cons

Augmented data doubles data size

Significantly slower train time

# **Questions?**