

Team dotFit

Jessica Joy

Eugene NgBusiness Lead

Darish Sakeesing
Tech Lead

Thomas Laetsch
Mentor

David Wasserman
Tech / Business Lead

- Evaluate investment opportunities in Lending Club loans
- Isolate and remove loans likely to default and/or perform poorly

What is **Example 1** LendingClub

- An American peer-to-peer lending company
- Lending Club enables borrowers to create unsecured personal loans between \$1,000 and \$40,000.
- Investors are able to browse the loan listings on the Lending Club website and select loans that they want to invest in based on the information supplied about the borrower, loan amount, loan grade, loan purpose, etc.

ON DAY

LendingClub Timeline

2007 2016 2020 **Lending Club Troubled waters Lending Club** launched as a Founder and CEO ceases P2P Ioan ousted due to conflict **Facebook App** market and of interest and \$22M in acquired Radius incorrect loans sold to to become a **Jeffries** traditional bank **Lending Club** drops grade F & **Lending Club** G loans due to **IPOs** high default rates 2014 2017

Size of the Data

The data is tabular where each row represents an individual loan.

Since the data contains all the loans issued on the Lending Club platform from the year 2007 up to the last quarter of 2018, we have millions of rows.

Each loan is associated with 151 data points which describes its origination and performance.

Tools Used

The sheer size of the data posed an immense challenge to load it and perform exploratory analysis.

We had to adopt cutting edge technologies to manipulate the data.

We decided on Dask and Coiled since they work well with popular frameworks like pandas and sklearn.

CatBoost

Imbalanced Data

The dataset was imbalanced as expected. Only a minority of loans ended up default.

Considerations to be taken:

- Kept proportions when taking samples, splitting, et al.
- Adjusted models to perform well even with imbalanced datasets (upsampling, changing priors, etc.)

Determining What Data was Available at Loan Origination

The dataset held information about loan origination and performance.

It was important to separate what was available to investors at the time of loan origination and only use those features in our models.

Another consideration was that Lending Club would often pull the credit report of borrowers after loan origination and update fields like how many open accounts, etc. Therefore, we could not use those datapoints.

Examples:

dti: Debt to Income ratio

addr state: The state for the address of the borrower

purpose: Category provided by borrowerterm: Number of payments on the loans

We ended up with 30 features.

Loan Duration

Prime vs. Lending Club Interest Rates

What is the prime rate?

- The prime rate is the interest rate that commercial banks charge their most creditworthy corporate customers.
- The rates for mortgages, small business loans, and personal loans are based on prime.

Loan Grade Factors

- DTI: Debt-to-income ratio, sum of outstanding debt divided by income
- FICO Score: Credit score ranging from 300 to 850

Default Rate Analysis

FICO Score

0.0

Default Rate vs. Key Features

Default Rate vs. Key Features

	Pred: Charged Off	Pred: Fully Paid
True: Charged Off	59,207	36,287
True: Fully Paid	213,450	351,959

	LogR Return	NULL Return
Total Return:	8.41%	9.34%
Compounded Annual Return*:	4.12%	4.57%

* assumes 24 month average life of the loan

Accuracy	62.21%
Loan Approval Rate	58.74%
Precision for 'Pred: Fully Paid'	90.65%
Recall	62.00%
Specificity	62.25%

Support Vector Machine – Linear SVC

	Pred: Charged Off	Pred: Fully Paid
True: Charged Off	250	95244
True: Fully Paid	565	564844

	SVM Return	NULL Return
Total Return:	9.28%	9.34%
Compounded Annual Return*:	4.54%	4.57%

	assumes	24	month	average	life	of the loan	
--	---------	----	-------	---------	------	-------------	--

Accuracy	85.50%
Loan Approval Rate	99.87%
Precision for 'Pred: Fully Paid'	85.57%
Recall	0.26%
Specificity	99.90%

Linear Discriminant Analysis

	Pred: Charged Off	Pred: Fully Paid
True: Charged Off	55,733	39,761
True: Fully Paid	211,823	353,586

	LDA Return	NULL Return
Total Return:	9.28%	9.34%
Compounded Annual Return*:	4.54%	4.57%

assumes 24 month average life of the loan

Accuracy	61.93%
Loan Approval Rate	59.52%
Precision for 'Pred: Fully Paid'	89.89%
Recall	58.36%
Specificity	62.54%

	Pred: Charged Off	Pred: Fully Paid
True: Charged Off	65,165	30,329
True: Fully Paid	197,240	368,169

	RF Return	NULL Return
Total Return:	9.64%	9.34%
Compounded Annual Return*:	4.71%	4.57%

Accuracy	65.56%	
Loan Approval Rate	60.30%	
Precision for 'Pred: Fully Paid'	92.39%	
Recall	68.24%	
Specificity	65.12%	

^{*} assumes 24 month average life of the loan

Best parameters:

Maximum Tree Depth: 8

Iterations: 400

L2 Leaf Regularization: 4

Learning Rate: 1

Auto Class Weights: Balanced

Time to Train: 3 hours, 4 minutes

Training Accuracy: 72.79

Testing Accuracy: 65.76

CatBoost Feature Importance

	Pred: Charged Off	Pred: Fully Paid
True: Charged Off	63,911	31,583
True: Fully Paid	157,372	408,037

Accuracy	71.41%
Loan Approval Rate	66.52%
Precision for 'Pred: Fully Paid'	92.82%
Recall	66.93%
Specificity	72.17%

^{*} assumes 24 month average life of the loan

^{**} assumes 100% accuracy in picking loans

Manual Portfolio Optimization

Process:

Exclude small business loans

Exclude employment length where N/A

Exclude renters

Exclude Nevada residents

Exclude annual incomes less than \$42,000

Result:

ROI went from 12.44% to 12.65%

Is Lending Club the Best Investment Option?

Null Model	4.57%
CatBoost	6.04%
Lending Club Ideal	8.12%

10-Year Treasury Notes*	2.8%
AAA Bonds**	5.9%
Speculative-Grade Bonds**	8.0%
Real Estate***	10.5%
S&P 500 Average Annual Return****	10.7%

Lending Club Stock Price History

- * https://finance.yahoo.com/quote/%5ETNX/
- ** https://www.mindfullyinvesting.com/historical-returns-of-corporate-bonds/
- ** https://www.investopedia.com/ask/answers/060415/what-average-annual-return-typical-long-term-investment-real-estate-sector.asp
- **** https://www.fool.com/investing/how-to-invest/stocks/average-stock-market-return/

Lessons Learned and Next Steps

- More feature engineering to possibly improve performance of low performing models
- Understand why borrowers' credit reports were monitored after origination
- Utilize neural networks
- Model other targets: PnL, Lending Club's approval criteria

Questions & Answers

THANK YOU