INVERSE TRIGONOMETRIC FUNCTIONS

Assignment 4 Practice by O.P. GUPTA • M. +91-9650350480

Q01. The value of $\sin^{-1}\left(\cos\frac{3\pi}{5}\right)$ is

(a)
$$\frac{\pi}{10}$$

(b)
$$\frac{3\pi}{5}$$

(c)
$$-\frac{\pi}{10}$$

(d)
$$-\frac{3\pi}{5}$$

Q02. The value of $\tan \left[\frac{1}{2} \cos^{-1} \left(\frac{\sqrt{5}}{3} \right) \right]$ is

(a)
$$\frac{3+\sqrt{5}}{2}$$

(a)
$$\frac{3+\sqrt{5}}{2}$$
 (b) $\frac{3-\sqrt{5}}{2}$

(c)
$$\frac{-3+\sqrt{5}}{2}$$

(d)
$$\frac{-3-\sqrt{5}}{2}$$

The principal value of $\cot^{-1}(-\sqrt{3})$ is O03.

(a)
$$-\frac{\pi}{6}$$

(b)
$$\frac{\pi}{6}$$

(c)
$$\frac{2\pi}{3}$$

(d)
$$\frac{5\pi}{6}$$

Q04. The domain of the function $f(x) = \sin^{-1}(2x)$ is

$$(c)\left[-\frac{1}{2},\frac{1}{2}\right]$$

Q05. The principal value of $\tan^{-1} \left(\tan \frac{3\pi}{5} \right)$ is

(a)
$$\frac{2\pi}{5}$$

(b)
$$-\frac{2\pi}{5}$$

(c)
$$\frac{3\pi}{5}$$

(d)
$$-\frac{3\pi}{5}$$

Q06. The principal value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is

(a)
$$\frac{13\pi}{6}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{6}$$

Q07. The value of $\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$ is

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{7\pi}{6}$$

Q08. If $\cos \left(\sin^{-1} \frac{2}{\sqrt{5}} + \cos^{-1} x \right) = 0$, then x is equal to (a) $\frac{1}{\sqrt{5}}$ (b) $-\frac{2}{\sqrt{5}}$ (c)

(a)
$$\frac{1}{\sqrt{5}}$$

(b)
$$-\frac{2}{\sqrt{5}}$$

(c)
$$\frac{2}{\sqrt{5}}$$

Q09. If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then the value of $\cos^{-1} x + \cos^{-1} y$ is

(a)
$$\frac{2\pi}{3}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\pi$$

Q10. $\left(\tan^{-1}\frac{7}{9} + \tan^{-1}\frac{1}{8}\right)$ is equal to

(a)
$$\tan^{-1} \left(\frac{65}{72} \right)$$
 (b) $\tan^{-1} \left(\frac{63}{65} \right)$ (c) $\frac{\pi}{4}$

(b)
$$\tan^{-1} \left(\frac{63}{65} \right)$$

(c)
$$\frac{\pi}{4}$$

(d)
$$\frac{\pi}{2}$$

Q11. $\tan\left(\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{3}{4}\right)$ is equal to

(a)
$$\frac{7}{24}$$

(b)
$$\frac{24}{7}$$

(c)
$$\frac{3}{2}$$

(d)
$$\frac{3}{4}$$

Q12. $\tan^{-1} 3 + \tan^{-1} \lambda = \tan^{-1} \left(\frac{3 + \lambda}{1 - 3\lambda} \right)$ is valid for what values of λ ?

(a)
$$\lambda \in \left(-\frac{1}{3}, \frac{1}{3}\right)$$
 (b) $\lambda > \frac{1}{3}$

(b)
$$\lambda > \frac{1}{3}$$

(c)
$$\lambda < \frac{1}{3}$$

(d) All real values of λ

The range of the principal value branch of the function $y = \sec^{-1} x$ is _____.

Q14. The principal value of
$$\cos^{-1}\left(-\frac{1}{2}\right)$$
 is _____.

Two angles of a triangle are $\cot^{-1} 2$ and $\cot^{-1} 3$. The third angle of the triangle is O15.

Q16. Find the value of
$$\sin^{-1} \left[\sin \left(-\frac{17\pi}{8} \right) \right]$$
.

Q17. Evaluate:
$$\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$$
.

Express: $\sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right)$, where $-\frac{\pi}{4} < x < \frac{\pi}{4}$, in the simplest form. Q18.

Q19. Express:
$$\tan^{-1} \left(\frac{\cos x}{1 - \sin x} \right), -\frac{3\pi}{2} < x < \frac{\pi}{2}$$
 in the simplest form.

Q20. Simplify:
$$\sec^{-1}\left(\frac{1}{2x^2-1}\right)$$
, $0 < x < \frac{1}{\sqrt{2}}$.

Q21. Prove that :
$$\sin^{-1}(2x\sqrt{1-x^2}) = 2\cos^{-1}x$$
, $\frac{1}{\sqrt{2}} \le x \le 1$.

Q22. Prove that:
$$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left(\frac{1-x}{1+x} \right), x \in [0, 1].$$

Q23. Solve for x :
$$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$$
.

Q24. Solve the equation for
$$x : \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2}$$
, $(x \neq 0)$.

Q25. Solve for x :
$$\sin^{-1} 4x + \sin^{-1} 3x = -\frac{\pi}{2}$$

Q26. Prove that :
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) = \frac{9}{4}\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$$
.

Q27. Prove that :
$$\tan \left[2 \tan^{-1} \left(\frac{1}{2} \right) - \cot^{-1} 3 \right] = \frac{9}{13}$$
.

Share this Assignment with the Students of XII. If you wish, you may join our WhatsApp / Telegram Groups @

https://t.me/MathematiciaByOPGupta

Apart from being a content developer and author, Mr O.P. GUPTA enjoys Math Learning with the Students of XI & XII @ Think Academy.

Add. 1st Floor, Opp. HP Petrol Pump, Thana Road, Najafgarh

☐ Detailed **Solutions** will be uploaded on the YouTube Channel -- keep Subscribed

YouTube.com/MathematiciaByOPGupta