SEL-387A Relay Current Differential

Instruction Manual

20140124

SEL SCHWEITZER ENGINEERING LABORATORIES, INC.

CAUTION: The relay contains devices sensitive to electrostatic discharge (ESD). When working on the relay with front or top cover removed, work surfaces and personnel must be properly grounded or equipment damage may result.

CAUTION: There is danger of explosion if the battery is incorrectly replaced. Replace only with Ray-O-Vac® no. BR2335 or equivalent recommended by manufacturer. Dispose of used batteries according to the manufacturer's instructions.

CAUTION: The continuous rating of the current inputs is $3 \cdot I_{\text{nom}}$. If any currents in this test will exceed this rating, reduce the TAPn values as needed, to prevent possible damage to the input circuits.

CAUTION: The continuous rating of the current inputs is $3 \cdot I_{\text{nom}}$. For this test, you may want to choose low values of U87P and TAPn, in order to limit the required test current to a safe value.

WARNING: This device is shipped with default passwords. Default passwords should be changed to private passwords at installation. Failure to change each default password to a private password may allow unauthorized access. SEL shall not be responsible for any damage resulting from unauthorized access.

DANGER: Removal of relay front panel exposes circuitry which may cause electrical shock that can result in injury or death.

DANGER: Contact with instrument terminals may cause electrical shock which can result in injury or death.

ATTENTION: Le relais contient des pièces sensibles aux décharges électrostatiques (DES). Quand on travaille sur le relais avec le panneau avant ou du dessus enlevé, les surfaces de travail et le personnel doivent être mis à la terre convenablement pour éviter les dommages à l'équipement.

ATTENTION: Il y a un danger d'explosion si la pile électrique n'est pas correctement remplacée. Utiliser exclusivement Ray-O-Vac® No. BR2335 ou un équivalent recommandé par le fabricant. Se débarrasser des piles usagées suivant les instructions du fabricant.

ATTENTION: La capacité, en régime permanent, des entrées de courant est $3 \cdot I_{\text{nom}}$. Si un courant d'essai dépassait cette valeur, réduire la prise TAPn pour prévenir les dommages aux circuits d'entrée.

ATTENTION: La limite, en régime permanent, des entrées de courant est $3 \cdot I_{nom}$. Pour ce test, vous pourriez choisir de valeurs peu élevées pour U87P et TAPn, de façon à limiter le courant de test à une valeur sécuritaire.

AVERTISSEMENT: Cet équipement est expédié avec des mots de passe par défaut. A l'installation, les mots de passe par défaut devront être changés pour des mots de passe confidentiels. Dans le cas contraire, un accès non-autorisé à l'équipement pourrait être possible. SEL décline toute responsabilité pour tout dommage résultant de cet accès non-autorisé.

DANGER: Le retrait du panneau avant expose à la circuiterie qui pourrait être la source de chocs électriques pouvant entraîner des blessures ou la mort

DANGER: Le contact avec les bornes de l'instrument peut causer un choc électrique pouvant entraîner des blessures ou la mort.

© 2002-2014 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative.

PM387A-01

SEL-387A INSTRUCTION MANUAL TABLE OF CONTENTS

SECTION 1: INTRODUCTION AND SPECIFICATIONS

SECTION 2: INSTALLATION

SECTION 3: DIFFERENTIAL, RESTRICTED EARTH FAULT, AND

OVERCURRENT ELEMENTS

SECTION 4: CONTROL LOGIC

SECTION 5: METERING AND MONITORING

SECTION 6: SETTING THE RELAY

SECTION 7: SERIAL PORT COMMUNICATIONS AND COMMANDS

SECTION 8: FRONT-PANEL INTERFACE

SECTION 9: EVENT REPORTS AND SER

SECTION 10: TESTING AND TROUBLESHOOTING

SECTION 11: APPENDICES

Appendix A: Firmware and Manual Versions

Appendix B: SEL-300 Series Relays Firmware Upgrade Instructions

Appendix C: SEL Distributed Port Switch Protocol (LMD)

Appendix D: Configuration, Fast Meter, and Fast Operate Commands

Appendix E: Compressed ASCII Commands

Appendix F: Unsolicited SER Protocol

Appendix G: Distributed Network Protocol (DNP3)

SECTION 12: SEL-387A RELAY COMMAND SUMMARY

TABLE OF CONTENTS

SECTIO	N 1: INTRODUCTION AND SPECIFICATIONS	1-1
Intı	roduction	1-1
	nding 3 and Winding 4 Reporting	
	truction Manual Overview	
	ay Functions	
	Current Differential Protection	
	Restricted Earth Fault Protection (Option)	
	Overcurrent Protection	
	Through-Fault Event Monitor	
	Programmable Optoisolated Inputs and Output Contacts	
Ap	plication Ideas	
	del Options	
Ger	neral Specifications	1-4
	Metering Accuracy	
	Substation Battery Voltage Monitor	
	Differential Element	
	Harmonic Element	1-8
	Instantaneous/Definite-Time Overcurrent Elements (Winding)	1-8
	Time-Overcurrent Elements (Winding)	1-8
	FIGURES	
_	Functional Overview	
Figure 1.2:	Transformer and Overcurrent Protection	1-4
Figure 1.3:	Transformer With Ground Bank	1-4

SECTION 1: INTRODUCTION AND SPECIFICATIONS

Introduction

Use this relay to protect two-winding power transformers, reactors, generators, large motors, or other multiterminal power apparatus. The relay settings permit you to use wye- or delta-connected current transformers with virtually any type of transformer winding connection.

The SEL-387A Differential Relay provides three differential elements with dual slope characteristics. The second slope provides security against CT saturation for heavy through faults. Be sure to conduct detailed analysis of CT performance under worst-case saturation conditions to set the relay characteristic correctly for bus protection applications.

WINDING 3 AND WINDING 4 REPORTING

The SEL-387A satisfies the requirement for a two-winding differential relay equipped with extensive I/O. To this end, the SEL-387A is a subset of the larger SEL-387 Relay, including most functions of the SEL-387, but suitable for two-winding applications only. Because the SEL-387A retains the reporting structure of the SEL-387, the report formats still include rows and/or columns for Windings 3 and 4. Because current values for Winding 3 no longer apply, they are displayed as zeros and should be ignored. When you order an SEL-387A with the optional Restricted Earth Fault (REF) elements, current channels assigned to Winding 4 in the SEL-387 are reassigned to represent neutral currents IN1, IN2, and IN3 (i.e., IAW4 = IN1, IBW4 = IN2, and ICW4 = IN3). In an SEL-387A without the REF option, the current values for Winding 4 are displayed as zeros.

Instruction Manual Overview

This instruction manual applies to the SEL-387A. If you are unfamiliar with this relay, we suggest that you read the following sections in the outlined order.

- **Section 1: Introduction and Specifications** for an introduction, instruction manual overview, relay functional overview, and specifications.
- Section 3: Differential, Restricted Earth Fault, and Overcurrent Elements to understand the protection elements and their associated settings.
- **Section 4: Control Logic** to understand inputs, the Relay Word, outputs, and logic. Use this section to understand the settings necessary for implementing your logic.
- Section 6: Setting the Relay to understand settings that are not described in Section 3 or Section 4, for default settings, and for settings sheets.
- Section 7: Serial Port Communications and Commands for a description of the serial port commands used to set the relay for control, obtain target information, and obtain metering information, etc.

Section 8: Front-Panel Interface for a description of how to perform the serial port commands from the front panel.

Section 5: Metering and Monitoring to learn how to retrieve operations data such as metering, dc battery monitor, breaker monitor, and relay status.

Section 9: Event Reports and SER for a description of event report and sequential events report generation, event report formats, sequential event reports, and report interpretation.

Section 2: Installation to learn how to configure, install, and wire your relay.

Section 10: Testing and Troubleshooting for test procedures and a troubleshooting guide. You can use this section as a tutorial to check your understanding of the relay's operation.

RELAY FUNCTIONS

Figure 1.1: Functional Overview

Current Differential Protection

The SEL-387A includes independent restrained and unrestrained current differential elements. The restrained element has a dual-slope, variable-percentage restraint characteristic. A separate unrestrained differential element provides faster clearance of high-magnitude, internal faults. The relay also provides security against conditions that may cause relay misoperation, resulting from both system and transformer events. Use the fifth-harmonic element to prevent relay

misoperation during allowable overexcitation conditions. Even-harmonic elements (second and fourth harmonic) provide security against inrush currents during transformer energization, complemented by the dc element, which measures the dc offset. The even-harmonic element offers the choice between harmonic blocking and harmonic restraint. In the blocking mode, the user selects either blocking on an individual phase basis or blocking on a common basis, as per application and philosophy. The second-, fourth-, and fifth-harmonic thresholds are set independently, and the dc blocking and harmonic restraint features are enabled independently.

Restricted Earth Fault Protection (Option)

As an option the SEL-387A provides two sensitive elements for the detection of internal ground faults via the Restricted Earth Fault (REF) protection element. Inputs IN1 and IN2 are available for introducing neutral CT polarizing current, i.e., IN1 for REF1 and IN2 for REF2. Operating current is derived from the residual current calculated for the protected winding. Directional elements determine whether the fault is internal or external. Tripping is supervised by zero-sequence current thresholds and a positive-sequence current restraint setting. The REF function is applicable to grounded wye-wye transformers or grounded wye-delta transformers with a grounding bank on the delta winding.

Overcurrent Protection

The SEL-387A provides nondirectional overcurrent elements for each winding/terminal:

- Phase Overcurrent: Three level instantaneous; definite time; inverse time
- Residual Overcurrent: Instantaneous; definite time; inverse time
- Negative-Sequence Overcurrent: Instantaneous; definite time; inverse time
- Neutral Overcurrent: Three level instantaneous; definite time; inverse time

Overcurrent element pickup settings and operating characteristics are independent of the differential element settings. Most elements can be torque controlled.

Through-Fault Event Monitor

Through faults are a major cause of transformer damage and failure. Fault currents cause cumulative mechanical damage by displacing transformer windings every time a fault occurs. Thermal stress from fault currents damages insulation. The SEL-387A Relay provides a through-fault event monitor to gather fault current level, duration, and date/time for each through fault. The monitor performs a simple I²t calculation and cumulatively stores calculation results for each phase. Use these through-fault event data to schedule proactive maintenance for transformers and to help justify possible system enhancements to mitigate through faults.

Programmable Optoisolated Inputs and Output Contacts

The SEL-387A is equipped with enhanced SELOGIC® control equations that allow you to design a custom tripping or control scheme. SELOGIC control equation functions include independent timers, tripping, event report triggering, and relay output contact control.

APPLICATION IDEAS

Figure 1.2: Transformer and Overcurrent Protection

Figure 1.3: Transformer With Ground Bank

MODEL OPTIONS

Distributed Network Protocol (DNP) and two REF and three neutral elements are options for the SEL-387A. Other options include extended I/O, available in the form of interface boards added to the relay.

GENERAL SPECIFICATIONS

Terminal Connections: Rear Screw-Terminal Tightening Torque

Terminal Block:

Minimum: 8 in-lb (0.9 Nm) Maximum: 12 in-lb (1.4 Nm)

Terminals or stranded copper wire. Ring terminals are recommended.

Minimum temperature rating of 105°C.

AC Current Inputs: 5 A nominal: 15 A continuous, 500 A for 1 s, linear to 100 A symmetrical.

1250 A for 1 cycle.

Burden: 0.27 VA at 5 A, 2.51 VA at 15 A.

1 A nominal: 3 A continuous, 100 A for 1 s, linear to 20 A symmetrical.

250 A for 1 cycle.

Burden: 0.13 VA at 1 A, 1.31 VA at 3 A.

Power Supply: Rated: 125/250 Vdc or Vac

> Range: 85-350 Vdc or 85-264 Vac

Burden: <25 W

Interruption: 45 ms at 125 Vdc

100% Ripple: Rated: 48/125 Vdc or 125 Vac

Range: 38-200 Vdc or 85-140 Vac

Burden: <25 W

Interruption: 160 ms at 125 Vdc

Ripple: 100%

Rated: 24/48 Vdc

Range: 18-60 Vdc polarity dependent

Burden: <25 W

Interruption: 110 ms at 48 Vdc

Ripple: 100%

Note: Interruption and Ripple per IEC 60255-11 [IEC 255-11]: 1979.

Output Contacts:

Standard:

Make: 30 A; Carry: 6 A continuous carry at 70°C, 4 A continuous carry at 85°C;

1 s Rating: 50 A; MOV protected: 270 Vac, 360 Vdc, 40 J;

Pickup time: Less than 5 ms; Dropout time: Less than 5 ms, typical.

Breaking Capacity (10000 operations):

24 V 0.75 A L/R = 40 ms

48 V 0.50 A L/R = 40 ms

125 V 0.30 A L/R = 40 ms

250 V 0.20 A L/R = 40 ms

Cyclic Capacity (2.5 cycles/second):

24 V 0.75 A L/R = 40 ms48 V 0.50 A L/R = 40 ms

0.30 A L/R = 40 ms125 V

250 V 0.20 A L/R = 40 msHigh Current Interrupting Option:

Make: 30 A; Carry: 6 A continuous carry at 70°C, 4 A continuous carry at 85°C;

1 s rating: 50 A; MOV protected: 330 Vdc, 130 J; Pickup time: Less than 5 ms;

Dropout time: Less than 8 ms, typical.

Breaking Capacity (10000 operations):

24 V 10 A L/R = 40 ms

48 V 10 A L/R = 40 ms

125 V L/R = 40 ms10 A

250 V L/R = 20 ms10 A

Cyclic Capacity (4 cycles in 1 second, followed by 2 minutes idle for thermal dissipation):

24 V L/R = 40 ms10 A 48 V 10 A L/R = 40 ms

125 V 10 A L/R = 40 ms

250 V 10 A L/R = 20 ms

Note: Do not use high current interrupting output contacts to switch ac control signals. These outputs are polarity dependent.

Note: Make per IEEE C37.90: 1989; Breaking and Cyclic Capacity per IEC 60255-23

[IEC 255-23]: 1994.

Optoisolated Inputs: 250 Vdc: Pickup 200 300 Vdc; Dropout 150 Vdc.

220 Vdc: Pickup 176 264 Vdc; Dropout 132 Vdc. 125 Vdc: Pickup 105 150 Vdc; Dropout 75 Vdc. 110 Vdc: Pickup 88 132 Vdc; Dropout 66 Vdc. 48 Vdc: Pickup 38.4 60 Vdc; Dropout 28.8 Vdc.

24 Vdc: Pickup 15.0 30 Vdc.

Note: 24, 48, and 125 Vdc optoisolated inputs draw approximately 4 mA of current; 110 Vdc inputs

draw approximately 8 mA of current; and 220 and 250 Vdc inputs draw approximately 5 mA of

current. All current ratings are at nominal input voltage.

Routine AC current inputs: 2500 Vac for 10 s; Power supply, optoisolated inputs, and output contacts:

Dielectric Strength: 3100 Vdc for 10 s.

Frequency

and Rotation: System Frequency: 50 or 60 Hz; Phase Rotation: ABC or ACB.

Communications Ports: EIA-232: 1 front and 2 rear; EIA-485: 1 rear, 2100 Vdc isolation; Baud rate: 300-19200 baud.

Time-Code Input: Relay accepts demodulated IRIG-B time-code input at Port 1 or 2. Relay is time synchronized to

within ±5 ms of time source input.

Operating Temp: -40° to $+85^{\circ}$ C (-40° to $+185^{\circ}$ F).

Weight: 2U rack unit height: 15 lbs (6.8 kg); 3U rack unit height: 17.75 lbs (8 kg).

Generic Emissions, Heavy Industrial: EN 50081-2: 1993, Class A **Type Tests:**

> Generic Immunity, Heavy Industrial: EN 50082-2: 1995 Radiated and Conducted Emissions: EN 55011: 1998, Class A Conducted Radio Frequency:

EN 61000-4-6: 1996, ENV 50141: 1993,

10 Vrms

Radiated Radio Frequency

(900 MHz with modulation): ENV 50204: 1995, 10 V/m

Cold: IEC 60068-2-1 [IEC 68-2-1]: 1990, EN 60068-2-1: 1993,

Test Ad, 16 hours at -40°C

Dry Heat: IEC 60068-2-2 [IEC 68-2-2]: 1974, EN 60068-2-2: 1993,

Test Bd, 16 hours at +85°C

Damp Heat, Cyclic: IEC 60068-2-30 [IEC 68-2-30]: 1980, Test Db, 25° to

55°C, 6 cycles, 95% humidity

Dielectric Strength: IEC 60255-5 [IEC 255-5]: 1977 and IEEE C37.90: 1989,

2500 Vac on analogs, contact inputs, and contact outputs;

3100 Vdc on power supply; 2200 Vdc on EIA-485

communications port

Impulse: IEC 60255-5 [IEC 255-5]: 1977, 0.5 J, 5000 V Vibration: IEC 60255-21-1 [IEC 255-21-1]: 1988, Class 1 Shock and Bump: IEC 60255-21-2 [IEC 255-21-2]: 1988, Class 1 Seismic: IEC 60255-21-3 [IEC 255-21-3]: 1993, Class 2 1 MHz Burst Disturbance: IEC 60255-22-1 [IEC 255-22-1]: 1988, Class 3

Electrostatic Discharge: IEC 60255-22-2 [IEC 255-22-2]: 1996,

IEC 61000-4-2 [IEC 1000-4-2]: 1995,

Level 4

Radiated Radio Frequency: IEC 60255-22-3 [IEC 255-22-3]: 1989,

> ENV 50140: 1993, IEEE C37.90.2: 1995,

> > 35 V/m, no keying test

Fast Transient Disturbance: IEC 60255-22-4 [IEC 255-22-4]: 1992,

IEC 61000-4-4 [IEC 1000-4-4]: 1995

Level 4

Object Penetration: IEC 60529 [IEC 529]: 1989, IP30 Protection Against Dust and

Splashing Water: IEC 60529 [IEC 529]: 1989, IP54 from the front panel

using the SEL-9103

Surge Withstand Capability: IEEE C37.90.1: 1989, 3000 V oscillatory, 5000 V fast

transient

Certifications: ISO 9001: This product was designed and manufactured under an ISO 9001 certified quality

management system.

UL Listed CSA Certified

Processing

Specifications: 64 samples per power system cycle.

Metering Accuracy

5 A Model

Phase Currents: $\pm 1.5\% \pm 0.10 \text{ A}$ and $\pm 1.5^{\circ}$ Sequence Currents: $\pm 3.0\% \pm 0.10 \text{ A}$ and $\pm 2.0^{\circ}$

Differential Quantities: $\pm 5.0\% \pm 0.10 \text{ A}$ 2nd and 5th Harmonic: $\pm 5.0\% \pm 0.10 \text{ A}$ Current Harmonics: $\pm 5.0\% \pm 0.10 \text{ A}$

1 A Model

Phase Currents: $\pm 1.5\% \pm 0.02$ A and $\pm 1.5^{\circ}$ Sequence Currents: $\pm 3.0\% \pm 0.02$ A and $\pm 2.0^{\circ}$

Differential Quantities: $\pm 5.0\% \pm 0.02 \text{ A}$ 2nd and 5th Harmonic: $\pm 5.0\% \pm 0.02 \text{ A}$ Current Harmonics: $\pm 5.0\% \pm 0.02 \text{ A}$

Substation Battery Voltage Monitor

Pickup Range: 20–300 Vdc, 1Vdc steps

Pickup Accuracy: ±2% ±2 Vdc

Differential Element

Unrestrained Pickup Range: 1–20 in per unit of tap
Restrained Pickup Range: 0.1–1.0 in per unit of tap

Pickup Accuracy (A secondary)

5 A Model: ±5% ±0.10 A 1 A Model: ±5% ±0.02 A

Unrestrained Element Pickup Time

(Min/Typ/Max): 0.8/1.0/1.9 cycles

Restrained Element (with harmonic

blocking) Pickup Time

(Min/Typ/Max): 1.5/1.6/2.2 cycles

Restrained Element (with harmonic

restraint) Pickup Time

(Min/Typ/Max): 2.62/2.72/2.86 cycles

Harmonic Element

Pickup Range (% of fundamental: 5–100%)

Pickup Accuracy (A secondary)

5 A Model: $\pm 5\% \pm 0.10$ A 1 A Model: $\pm 5\% \pm 0.02$ A Time Delay Accuracy: $\pm 0.1\% \pm 0.25$ cycle

Instantaneous/Definite-Time Overcurrent Elements (Winding)

Pickup Ranges (A secondary)

5 A Model: 0.25–100.00 A 1 A Model: 0.05–20.00 A

Pickup Accuracies (A secondary)

5 A Model

Steady State: $\pm 3\% \pm 0.10 \text{ A}$ Transient: $\pm 5\% \pm 0.10 \text{ A}$

1 A Model:

Steady State: $\pm 3\% \pm 0.02 \text{ A}$ Transient: $\pm 5\% \pm 0.02 \text{ A}$

Note: For transient, $\pm 6\%$ for negative-sequence elements.

Pickup Time (Typ/Max): 0.75/1.20 cycles

Time Delay Range: 0-16000 cycles

Time Delay Accuracy: $\pm 0.1\% \pm 0.25$ cycle

Time-Overcurrent Elements (Winding)

Pickup Ranges (A secondary)

5 A Model: 0.5–16.0 A 1 A Model: 0.1–3.2 A

Pickup Accuracies (A secondary)

5 A Model

Steady State: $\pm 3\% \pm 0.10 \text{ A}$ Transient: $\pm 5\% \pm 0.10 \text{ A}$

1 A Model

Steady State: $\pm 3\% \pm 0.02 \text{ A}$ Transient: $\pm 5\% \pm 0.02 \text{ A}$

Note: For transient, ±6% for negative-sequence elements.

Curve U1 = U.S. Moderately Inverse

U2 = U.S. Inverse
U3 = U.S. Very Inverse
U4 = U.S. Extremely Inverse
U5 = U.S. Short-Time Inverse
C1 = IEC Class A (Standard Inverse)
C2 = IEC Class B (Very Inverse)
C3 = IEC Class C (Extremely Inverse)

C4 = IEC Long-Time Inverse C5 = IEC Short-Time Inverse

Time-Dial Range

US Curves: 0.50–15.00 IEC Curves: 0.05–1.00

Timing Accuracy: $\pm 4\% \pm 1.5$ cycles for current between 2 and 30 multiples of pickup. Curves

operate on definite time for current greater than 30 multiples of pickup.

Reset Characteristic: Induction-disk reset emulation or 1 cycle linear reset.

TABLE OF CONTENTS

SECTIO	N 2: INSTALLATION	2-1		
Rel	lay Mounting	2-1		
	Rack Mount			
	Panel Mount	2-1		
Dimensions and Cutout				
Rea	ar-Panel Connections	2-5		
	Connections	2-7		
	Frame Ground	2-7		
	Power Supply	2-7		
	Current Transformer Inputs	2-7		
	Optoisolated Inputs	2-7		
	Output Contacts	2-7		
	Communications Port	2-8		
	Clock Synchronization, IRIG-B	2-9		
Typ	pical AC/DC Connections			
	cuit Board Configuration			
	Accessing the Relay Circuit Boards			
	Main Board	2-12		
	Output Contact Jumpers	2-12		
	Second ALARM Contact Jumper	2-12		
	Password and Breaker Jumpers	2-13		
	EIA-232 Serial Port Jumpers	2-13		
	Condition of Acceptability for North American Product Safet	У		
	Compliance	2-14		
	Other Jumpers	2-14		
	Low-Level Analog Interface			
	Clock Battery			
	Additional Interface Board			
	Jumpers	2-15		
	Board Layout			
	TABLES			
Table 2.1:	SEL-387A Communication Cable Numbers			
Table 2.2:	SEL-387A Second ALARM Contact Jumper Position	2-13		
	FIGURES			
Figure 2.1:	Relay Dimensions and Panel-Mount Cutout	2-2		
Figure 2.2:	Front-Panel Drawings-Models 0387A0xxxH and 0387A1xxxH	2-3		
Figure 2.3:	Front-Panel Drawings–Models 0387A0xxx3 and 0387A1xxx3			
Figure 2.4:	Rear-Panel Drawings-Models 0387Axx0xxxxxxx and 0387Axxxx2xxx			
Figure 2.5:				
Figure 2.6:	Output Contact Representations	2-7		

Figure 2.7:	Example AC Connections (Three-Winding Transformer)	2-10
•	Example DC Connections (basic version)	
-	Main Board Jumpers, Connections, and Battery Locations	
Figure 2.10:	Interface Board 2 Component Layout	2-17
Figure 2.11:	Interface Board 4 Component Layout	2-18
Figure 2.12:	Interface Board 6 Component Layout	2-19

INSTALLATION **SECTION 2:**

Design your installation using the mounting and connection information in this section. Options include rack or panel mounting. This section also includes information on configuring the relay for your application.

RELAY MOUNTING

Rack Mount

We offer the SEL-387A Relay in a rack-mount version that bolts easily into a standard 19-inch rack. See Figure 2.2. From the front of the relay, insert four bolts (two on each side) through the holes on the relay mounting flanges to secure the relay to the rack. See Figure 2.1.

Reverse the relay mounting flanges to cause the relay to project 2.75 inches (69.9 mm) from the front of your mounting rack and provide additional space at the rear of the relay for applications where the relay might otherwise be too deep to fit.

Panel Mount

We also offer the SEL-387A in a panel-mount version for a clean look. Panel-mount relays have sculpted front panel molding that covers all installation holes. See Figure 2.3. Cut your panel and drill mounting holes according to the dimensions in Figure 2.1. Insert the relay into the cutout, aligning four relay mounting studs on the rear of the relay with the drilled holes in your panel, and use nuts to secure the relay to the panel.

The projection panel-mount option covers all installation holes and maintains the sculpted look of the panel-mount option; the relay projects 2.75 inches (69.9 mm) from the front of your panel. This ordering option increases space at the rear of the relay for applications where the relay would ordinarily be too deep to fit your cabinet.

Figure 2.1: Relay Dimensions and Panel-Mount Cutout

Figure 2.2: Front-Panel Drawings-Models 0387A0xxxH and 0387A1xxxH

Figure 2.3: Front-Panel Drawings-Models 0387A0xxx3 and 0387A1xxx3

REAR-PANEL CONNECTIONS

The conventional terminal block makes a secure connection of wiring to the relay rear panel. Make terminal block connections with size #6–32 screws using a Phillips or slotted screwdriver. You may request locking screws from the factory. Refer to Figure 2.4 and Figure 2.5 to make all terminal block connections.

Figure 2.4: Rear-Panel Drawings-Models 0387Axx0xxxxxx and 0387Axxxx2xxxxx

Figure 2.5: Rear-Panel Drawings-Models 0387A1xxxx4 and 0387A1xxxx6

Connections

Frame Ground

For safety and performance, ground the relay chassis at terminal GND (Z27). If the tab on the chassis is removed, the chassis ground connection can be made with a size #6-32 screw. The grounding terminal connects directly to the relay chassis ground.

Power Supply

Connect rear-panel terminals marked + (Z25) and - (Z26) to a source of control voltage. Control power passes through these terminals to a fuse(s) and to the switching power supply. The control power circuitry is isolated from the frame ground. The 24/48 V power supply is polarity sensitive. Refer to **Section 1: Introduction and Specifications** for power supply voltage ranges.

Current Transformer Inputs

Connect current inputs to the three sets of current input terminals. Note that the current input terminals on terminal block relays have a mark at one terminal per phase to indicate polarity. Each current input is independent of the other two inputs. Current inputs are designated IAW1, IBW1, ICW1; IAW2, IBW2, ICW2; and IN1, IN2, and IN3.

Optoisolated Inputs

Connect control input wiring to the six standard inputs IN101–IN106 and to any of the interface board optoisolated inputs IN201–IN208 you need for your application.

All control inputs are dry optoisolated inputs and are not polarity dependent. Specify a nominal-rated control voltage of 48, 110, 125, 220, or 250 Vdc for level-sensitive and 24 Vdc for nonlevel-sensitive when ordering. To assert an input, apply nominal-rated control voltage to the terminals assigned to that input. A terminal pair is brought out for each input. Refer to the *General Specifications* in *Section 1: Introduction and Specifications* for optoisolated input ratings. There are no internal connections between inputs. ON and OFF values are normally within one volt of each other, in the indicated range.

Output Contacts

Connect output wiring to the SEL-387A main board eight standard independent output contacts, OUT101 through OUT107 and ALARM. Standard independent dry output contacts are not polarity dependent; the left side of Figure 2.6 shows these contacts as they would appear on a terminal block version.

Figure 2.6: Output Contact Representations

Connect output wiring to any of the additional output contacts OUT201–OUT212 you need for your application. On the additional interface board, you have the option of either standard or high current interrupting contacts. High current interrupting contacts are polarity dependent. A plus polarity mark next to the terminal requiring positive dc voltage identifies these contacts on a relay rear panel. The right side of Figure 2.6 shows this polarity mark for high current interrupting contacts. Ensure correct polarity; reversed polarity causes a short circuit to appear across the contact terminals.

Communications Port

Refer to Table 2.1 for a list of cables that you can purchase from SEL for various communication applications. Refer to *Section 7: Serial Port Communications and Commands* for detailed cable diagrams for selected cables.

Note: Listing of devices not manufactured by SEL is for the convenience of our customers. SEL does not specifically endorse or recommend such products nor does SEL guarantee proper operation of those products, or the correctness of connections, over which SEL has no control.

The relay rear panel provides pin definitions for Ports 1, 2, 3, and 4. Refer also to *Section 7: Serial Port Communications and Commands* for more serial port details. Port 1 is an EIA-485 protocol connection on the rear of the relay. Port 1 accepts a pluggable terminal block that supports wire sizes from 24 AWG to as large as 12 AWG. The connector comes with the relay. Ports 2, 3, and 4 are EIA-232 protocol connections with Ports 2 and 3 on the rear of the relay and Port 4 on the front of the relay. These female connectors are 9-pin, D-subminiature connectors. You can use any combination of these ports or all of them simultaneously for relay communication.

For example, to connect the SEL-387A Ports 2, 3, or 4 to the 9-pin male connector on a laptop computer, order cable number C234A and specify the length needed. Standard length is eight feet. To connect the SEL-387A Port 2 to the SEL-2020 or SEL-2030 Communications Processor that supplies the communication link and the time-synchronization signal, order cable number C273A and specify the length needed. For connecting devices at more than 100 feet, fiber-optic transceivers are available. The SEL-2800 family of transceivers provides fiber-optic links between devices for electrical isolation and long-distance signal transmission. Call the factory for further information on these products.

Table 2.1: SEL-387A Communication Cable Numbers

SEL-387 Port #	Connect to Device (gender refers to the device)	SEL Cable #
2, 3, 4	PC, 25-Pin Male (DTE)	C227A
2, 3, 4	PC, 9-Pin Male (DTE)	C234A
2, 3	SEL-2020 or SEL-2030 without IRIG-B	C272A
2	SEL-2020 or SEL-2030 with IRIG-B	C273A
2	SEL-IDM, Ports 2 through 11	Requires a C254 and C257 cable
2, 3	Modem, 5 Vdc Powered (pin 10)	C220*
2, 3	Standard Modem, 25-Pin Female (DCE)	C222

^{*} The 5 Vdc serial port jumper must be installed to power the Modem using C220 (see *EIA-232 Serial Port Jumpers* later in this section).

Clock Synchronization, IRIG-B

Refer to Table 2.1 for a list of cables that you can purchase from SEL for various time-synchronizing applications.

The SEL-387A accepts a demodulated IRIG-B format signal for synchronizing an internal clock to some external source such as the SEL-2020 or SEL-2030 Communications Processor, SEL-IDM, or satellite time clock. Connect the IRIG-B source to the relay through the connectors for serial Ports 1 or 2. Refer to the port pin definition of each port for the appropriate connection.

TYPICAL AC/DC CONNECTIONS

Figure 2.7 and Figure 2.8 represent the ac and dc connections for a typical two-winding transformer application. The autotransformer has a buried delta, not compensated for in the differential protection. Refer to Figure 2.7 and note that the current transformers for all windings are wye connected, with their polarity marks facing away from the transformer. The outputs of the CTs go to the polarity ends of the relay current inputs, with the nonpolarity ends of the inputs connected to the CT neutral and ground. You should use a single safety-ground point, as shown. (If current transformers are delta connected, the nonpolarity ends of the relay current inputs must be wired together and should be connected to the common ground point/neutral.)

As Figure 2.7 shows, this transformer has a neutral current CT connected to one of the neutral current inputs. The Restricted Earth Fault (REF) protection function uses measured neutral current in conjunction with the residual current calculated from the Winding 1 CTs. You can use the REF function only if CTs for the protected wye winding are themselves wye connected. Delta-connected CTs remove the zero-sequence components of the winding currents and provide no basis for comparison of residual and neutral currents.

We use this transformer example later for calculating relay settings; see **Section 6: Setting the Relay**. This example forms the basis for most of the factory default settings SEL stores in the relay before shipment.

Figure 2.7: Example AC Connections (Three-Winding Transformer)

The dc connection diagram, Figure 2.8, illustrates tripping control of the two power circuit breakers. The diagram includes two 52a input contacts to define breaker status (open or closed) and a separate 86 lockout relay for group tripping on a differential operation. Individual breaker trips occur for overcurrent operation.

The diagram also shows ALARM and annunciation functions. The ALARM contact comes factory wired as a form-B contact, so that it closes under conditions of complete relay power failure. If breaker closing control is desired, use OUT104 and OUT106 as separate output contacts for connection to the breaker closing coils.

Figure 2.8: Example DC Connections (basic version)

CIRCUIT BOARD CONFIGURATION

In this section we describe (1) how to remove the relay circuit boards so you can change circuit board jumpers or replace the clock battery and (2) how to replace the circuit boards in the relay.

Accessing the Relay Circuit Boards

- 1. De-energize the relay by removing the connections to rear-panel terminals + (Z25) and (Z26).
- 2. Remove any cables connected to serial ports on the front and rear panels.
- 3. Loosen the six front-panel screws (they remain attached to the front panel) and remove the relay front panel.

The relay contains devices sensitive to electrostatic discharge (ESD). When working on the relay with front or top cover removed, work surfaces and personnel must be properly grounded or equipment damage may result.

4. Each circuit board corresponds to a row of rear-panel terminal blocks and is affixed to a draw-out tray. Identify which draw-out tray needs to be removed. An SEL-387A Model 0387A0 has only a main board. A Model 0387A1 relay has an extra interface board below the main board.

- 5. Disconnect circuit board cables as necessary so you can remove the board and draw-out tray you want. To remove the extra interface board, first remove the main board. Remove ribbon cables by pushing the extraction ears away from the connector. Remove the six-conductor power cable by grasping the wires near the connector and pulling away from the circuit board.
- 6. Grasp the draw-out assembly of the board and pull the assembly from the relay chassis.
- 7. Locate the jumper(s) or battery to be changed. Make the desired changes. Note that the output contact jumpers are soldered in place.
- 8. When finished, slide the draw-out assembly into the relay chassis. Reconnect the cables you removed in step 5. Replace the relay front-panel cover.
- 9. Replace any cables previously connected to serial ports.
- 10. Reenergize the relay by reconnecting wiring to rear-panel terminals + (Z25) and (Z26).

Main Board

Output Contact Jumpers

Refer to Figure 2.9 to see the layout of the main board and locate the solder jumpers to the rear of the output contacts. Select the contact type for the output contacts. With a jumper in the A position, the corresponding output contact is an "a" output contact. An "a" output contact is open when the output contact coil is de-energized and closed when the output contact coil is energized. With a jumper in the B position, the corresponding output contact is a "b" output contact. A "b" output contact is closed when the output contact coil is de-energized and open when the output contact coil is energized. These jumpers are soldered in place but may be changed in the field.

Note that the ALARM output contact is a "b" contact and that the other output contacts are all "a" contacts. This is the normal configuration of these jumpers in a standard relay shipment. The additional interface boards have slightly different layout locations for the jumpers relative to the corresponding output contacts.

Second ALARM Contact Jumper

Note the locations of main board jumper JMP23 and output contact OUT107 in Figure 2.9, and refer to Table 2.2 to understand the relationship between the jumper and output contact. The jumper JMP23 controls the operation of output contact OUT107. JMP23 provides the option of a second alarm output contact by changing the signal that drives output contact OUT107.

Table 2.2: SEL-387A Second ALARM Contact Jumper Position

JMP23 Position	Output Contact OUT107 Operation		
Bottom (Pins 1 & 2)	Second Alarm output contact (operated by alarm logic/circuitry). Relay Word bit OUT107 has no effect on output contact OUT107 when jumper JMP23 is in this position.		
Top (Pins 2 & 3)	Regular output contact OUT107 (operated by Relay Word bit OUT107). Jumper JMP23 comes in this position in a standard relay shipment.		
• Neither •	Disable output contact OUT107. If JMP23 is not installed, output contact OUT107 is not functional and will remain in its de-energized state.		

If jumper JMP23 is installed on the two bottom pins and both output contacts OUT107 and ALARM are the same output contact type (a or b), they will be in the same state (closed or open). If jumper JMP23 is installed on the two bottom pins and output contacts OUT107 and ALARM are different output contact types (one is an "a" and one is a "b"), they will be in opposite states (one is closed and one is open).

Password and Breaker Jumpers

Refer to Figure 2.9 and note the password and breaker jumpers identified as JMP6. To change these jumpers, remove the relay front panel and main board according to the steps outlined previously in *Accessing the Relay Circuit Boards*.

Put password jumper JMP6A (left-most jumper) in place to disable serial port and front-panel password protection. With the jumper removed, password security is enabled. View or set the passwords with the **PASSWORD** command (see *Section 7: Serial Port Communications and Commands*).

Put breaker jumper JMP6B in place to enable the serial port commands **OPEN**, **CLOSE**, and **PULSE**. The relay ignores these commands while you remove JMP6B. Use these commands primarily to assert output contacts for circuit breaker control or testing purposes (see *Section 7: Serial Port Communications and Commands*).

Do not install jumpers in position JMP6C or JMP6D. If a jumper is in position JMP6D and you lose dc power to the relay, the relay will power up in SELBOOT when power is restored. The front panel will show "SELBOOT" and then a warning to remove the jumper when you attempt serial port communication.

EIA-232 Serial Port Jumpers

Refer to Figure 2.9. Jumpers JMP1 and JMP2 are toward the rear of the main board, near the rear-panel EIA-232 serial communications ports. These jumpers connect or disconnect +5 Vdc to Pin 1 on the EIA-232 serial communications Ports 2 and 3. SEL normally ships relays with these jumpers removed (out of place) so that the +5 Vdc is not connected to Pin 1 on the EIA-232 serial communications ports. JMP1 controls the +5 Vdc for Port 3, and JMP2 controls

the +5 Vdc for Port 2 (see Table 7.1 in *Section 7: Serial Port Communications and Commands*). If these jumpers are installed, be certain not to short the power supply with an incorrect communication cable. The +5 Vdc connections supply current as high as 1 A.

Solder jumpers JMP3 and JMP4 allow connection of an IRIG-B source to Port 2. Removal of JMP3 and JMP4 will cause Port 2 to no longer accept an IRIG-B signal. The Port 1 connector always accepts an IRIG-B signal. Port 2 and Port 1 IRIG-B circuits are in parallel; therefore, connect only one IRIG-B source at a time.

Condition of Acceptability for North American Product Safety Compliance

To meet product safety compliance for end-use applications in North America, use an external fuse rated 3 A or less in-line with the +5 Vdc source on pin 1. SEL fiber-optic transceivers include a fuse that meets this requirement.

Other Jumpers

Additional main board jumpers JMP5A through JMP5D, located near JMP6, are not functional in the SEL-387A. Originally they were installed for developmental testing purposes but are not used in the production version of the relay. Jumpers must not be installed in any JMP5 position.

Low-Level Analog Interface

SEL designed the SEL-387A main board to accept low-level analog signals as an optional testing method. *Section 10: Testing and Troubleshooting* contains a more detailed discussion of the patented Low-Level Test Interface; and Figure 10.1 shows the pin configuration. The SEL-RTS (Relay Test System) interfaces with the relay through a ribbon cable connection on the main board. With the front panel removed, the low-level interface connector is on the front edge at the far right of the top board. Refer to Figure 2.9. Remove the ribbon cable from the main board (top board), and connect the SEL-RTS ribbon cable to the main board. This removes the connection from the transformers in the bottom of the relay chassis and connects the SEL-RTS system for low-level testing. Refer to the SEL-RTS Instruction Manual for system operation. For normal operation, be sure to properly reinstall the ribbon cable that connects the transformers in the bottom of the chassis to the main board.

Clock Battery

Refer to Figure 2.9 for clock battery B1 location. This lithium battery powers the relay clock (date and time) if the external power source is lost or removed. The battery is a 3 V lithium coin cell. At room temperature (25°C) the battery will operate nominally for 10 years at rated load.

Because little self-discharge of the battery occurs when an external source powers the relay, battery life can extend well beyond the nominal 10 years. The battery cannot be recharged.

If the relay does not maintain the date and time after power loss, replace the battery. Follow the instructions previously described in *Accessing the Relay Circuit Boards* in this section to remove the relay main board.

There is danger of explosion if the battery is incorrectly replaced. Replace only with Ray-O-Vac® no. BR2335 or equivalent recommended by manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Remove the battery from beneath the clip and install a new one. The positive side (+) of the battery faces up. Reassemble the relay as described in *Accessing the Relay Circuit Boards*. Set the relay date and time via serial communications port or front panel (see *Section 7: Serial Port Communications and Commands* or *Section 8: Front-Panel Interface*).

Additional Interface Board

We offer versions of the SEL-387A in a taller case size (3U) to accommodate one additional circuit board. The additional board mounts below the main board and above the analog input (transformer) board.

Three interface board types are available. Interface Board 2 has 12 standard output contacts and 8 optoisolated inputs. Interface Board 4 has 4 standard output contacts and 16 optoisolated inputs. Interface Board 6 has 12 hybrid high current interrupting output contacts and 8 optoisolated inputs. These latter contacts can interrupt as much as 10 A of dc current, as indicated in the *General Specifications* in *Section 1: Introduction and Specifications*.

Jumpers

As on the main board, the output contacts of Interface Boards 2 and 6 have solder jumpers for configuring the output as either a form-A (normally open) or form-B (normally closed) contact. When removing the board to change jumpers, follow the procedure outlined in *Accessing the Relay Circuit Boards*. Take precautions related to protection of components from damage caused by electrostatic discharge (ESD).

Note: The level-sensitive optoisolated inputs on both interface boards have no jumpers. You must specify control voltage at the time of order.

Board Layout

Figure 2.10, Figure 2.11, and Figure 2.12 show the layout of Interface Board 2, Interface Board 4, and Interface Board 6, respectively.

Figure 2.9: Main Board Jumpers, Connections, and Battery Locations

Figure 2.10: Interface Board 2 Component Layout

Figure 2.11: Interface Board 4 Component Layout

Figure 2.12: Interface Board 6 Component Layout

TABLE OF CONTENTS

SECTION 3:	DIFFERENTIAL, RESTRICTED EARTH FAULT, AND OVERCURRENT ELEMENTS	3-1
Introduction	L	3-1
	Element	
	ation Description	
Operati	ing Characteristic	3-1
H	armonic Restraint	3-4
Bl	ocking	3-5
	Common (Cross) or Independent Blocking	
	Harmonic Blocking	
	DC Ratio Blocking	
	Descriptions	
	fferential Element Enable (E87)	
	Γ Connection (W1CT and W2CT)	
	Γ Ratio (CTR1 and CTR2)	
	aximum Transformer Capacity, Three-Phase MVA (MVA)	
	ternal Winding/CT Connection Compensation (ICOM)	
	onnection Compensation (W1CTC and W2CTC)	
	ne-to-Line Voltage, kV (VWDG1 and VWDG2)	
	urrent TAP (TAP1 and TAP2)	
	estrained Element Operating Current Pickup (O87P)	
	estraint Slope Percentage (SLP1, SLP2)	
	estraint Current Slope 1 Limit (IRS1)nrestrained Element Current Pickup (U87P)	
	econd-Harmonic Blocking Percentage of Fundamental (PCT2)	
	ourth-Harmonic Blocking Percentage of Fundamental (PCT2)	
	fth-Harmonic Blocking Percentage of Fundamental (PCT4)	
	fth-Harmonic Alarm Threshold (TH5P)	
	fth-Harmonic Alarm Time Delay Pickup (TH5D)	
	C Ratio Blocking (DCRB)	
	armonic Restraint (HRSTR)	
	dependent Harmonic Blocking (IHBL)	
	Calculation	
	eneral Discussion of Connection Compensation	
	ne Complete List of Compensation Matrices (m = 1 to 12)	
	electing the Correct Values of WnCTC for Each Winding	
	Winding Connection Review	
	Five-Step Compensation Process	
	Example 1 for WnCTC Selection	3-18
	Example 2 for WnCTC Selection	
W	inding Line-to-Line Voltages	
	urrent TAP	
	estrained Element Operating Current Pickup	
Re	estraint Slope Percentage	3-22

Unrestrained Element Current Pickup	3-23
Second-Harmonic Blocking	
Fourth-Harmonic Blocking	3-23
Fifth-Harmonic Blocking	3-23
Independent Harmonic Blocking Element (IHBL)	
Example of Setting the SEL-387A for a Two-Winding Transformer	
Application Guideline	
CT Arrangements	
CT Sizing	
CT Ratio Selection for a Multiwinding Transformer	
Restricted Earth Fault Elements	
Application Description	
Operating Characteristic	
Setting Descriptions	
REF Directional Element Enable (E32I1, E32I2)	
Operating Quantity from W1, W2 (32IOP1, 32IOP2)	
Positive-Sequence Current Restraint Factor, I0/I1 (a01, a02)	
Residual Current Sensitivity Threshold (50GP1, 50GP2)	
Setting Calculation	
Operating and Polarizing Quantities	
Residual Current Sensitivity Threshold	
Temperature Measurement	
RTD Enable (E49A, E49B)	
RTD Alarm and Trip Settings (49A01A–49T12A and 49A01B–49T12B)	
Temperature Preference (TMPREFA, TMPREFB)	
Protocol Setting (PROTO)	
Number of RTDs in Use (RTDNUMA, RTDNUMB)	
Type of RTDs (RTD1TA-RTD12TA)	
Type of RTDs (RTD1TB–RTD12TB)	
Overcurrent Element	
Application Description	
Operating Characteristic	
50Pn1 – Phase Definite-Time Element	
50Pn2 – Phase Instantaneous Element	
50Pn3 and 50Pn4 – Phase Instantaneous Element	
51Pn – Phase Inverse-Time Element	
50Qn1 and 50Nn1 – Sequence Current Definite-Time Element Logic	
50Qn1 Negative-Sequence Definite-Time Element	
50Nn1 Residual Definite-Time Element.	
50Qn2 and 50Nn2 – Sequence Instantaneous Element Logic	
50Qn2 Negative-Sequence Instantaneous Element	
50Nn2 Residual Instantaneous Element	
51Qn and 51Nn – Sequence Inverse-Time Elements	
51Qn Negative-Sequence Inverse-Time Element	
51Nn Residual Inverse-Time Element	
50NNn1 – Neutral Definite Time Element (Torque Controlled)	
50NNn2 – Neutral Instantaneous Element (Torque Controlled)	
50NNnm – Neutral Instantaneous Element	

	51NNn Neutral Inverse-Time Elements (Torque Controlled)	3-42
	Setting Descriptions	
	Winding n Overcurrent Element and Demand Threshold Enables (EOCn)	
	Neutral Overcurrent Elements Enable (EOCN)	
	Instantaneous and Definite-Time Element Pickups (50PnmP, 50QnmP,	
	50NnmP, 50NNamP)	
	Definite-Time Element Delays (50Pn1D, 50Qn1D, 50Nn1D, 50Nna1D)	
	Inverse-Time Element Pickups (51PnP, 51QnP, 51NnP, 51NNaP)	
	Curve Shape Settings (51PnC, 51QnC, 51NnC, 51NNaC)	
	Time-Dial Settings (51PnTD, 51QnTD, 51NnTD, 51NNaTD)	
	Electromechanical Reset Settings (51PnRS, 51QnRS, 51NnRS, 51NNaRS)	3-44
	Torque-Control Settings (50PnmTC, 50QnmTC, 50NnmTC, 51PnTC,	
	51QnTC, 51NnTC, 50NNmaTC, 51NNaTC)	
	Application Guidelines	
	Transformer Overcurrent Protection	
	Overcurrent Element Operating Quantities	
	Time-Overcurrent Element Settings	
	Time-Overcurrent Pickup	
	Time-Overcurrent Curve and Time-Dial	
	Time-Overcurrent Element Reset Characteristic	
	Instantaneous and Definite-Time Overcurrent Elements	3-48
	Instantaneous and Definite-Time Element Pickup and Time Delay Settings	3-48
	Overcurrent Element External Torque-Control	3-48
	Overcurrent Settings for Example Application	
	Time Overcurrent Curve Reference Information	3-49
Table 3.1:	TABLES Overcurrent Element Summary	3-36
	FIGURES	
Figure 3.1:	Percentage Restraint Differential Characteristic	
Figure 3.2:	Winding 1 Compensated Currents.	
Figure 3.3:	Differential Element (87-1) Quantities	
Figure 3.4:	Differential Element Decision Logic	
Figure 3.5:	Differential Element Harmonic Blocking Logic	
Figure 3.6:	Differential Element (87BL1) Blocking Logic	
-	DC Blocking (DCBL1) Logic	
Figure 3.8:	Winding Connections, Phase Shifts, and Compensation Direction	
Figure 3.9:	Example 1 for WnCTC Selection	
-	Example 2 for WnCTC Selection	
-	REF Enable/Block Logic	
	REF Directional Element	
rigule 5.15:	REF Protection Output (Extremely Inverse-Time O/C)	3-30

Figure 3.14:	REF Function, 32IOP Setting Guide	3-32
Figure 3.15:	50Pn1 Phase Definite-Time O/C Element, Torque Controlled	3-37
Figure 3.16:	50Pn2 Phase Instantaneous O/C Element, Torque Controlled	3-37
Figure 3.17:	50Pn3 and 50Pn4 Phase Instantaneous O/C Element, Nontorque Controlled	3-37
Figure 3.18:	51Pn Phase Inverse-Time O/C Element, Torque Controlled	3-38
Figure 3.19:	50Qn1 and 50Nn1 Sequence Definite-Time O/C Element, Torque Controlled	3-39
Figure 3.20:	50Qn2 and 50Nn2 Sequence Instantaneous O/C Element, Torque Controlled	3-39
Figure 3.21:	51Qn and 51Nn Sequence Inverse-Time O/C Element, Torque Controlled	3-40
Figure 3.22:	50NNn1 Neutral Definite Time O/C Element, Torque Controlled	3-41
Figure 3.23:	50NNn2 Neutral Instantaneous O/C Element, Torque Controlled	3-42
Figure 3.24:	50NNnm Neutral Instantaneous O/C Element	3-42
Figure 3.25:	51NNn Neutral Inverse-Time O/C Element, Torque Controlled	3-42
Figure 3.26:	U.S. Moderately Inverse Curve: U1	3-51
Figure 3.27:	U.S. Inverse Curve: U2	3-52
Figure 3.28:	U.S. Very Inverse Curve: U3	3-53
Figure 3.29:	U.S. Extremely Inverse Curve: U4	3-54
Figure 3.30:	U.S. Short-Time Inverse Curve: U5	3-55
Figure 3.31:	IEC Class A Curve (Standard Inverse): C1	3-56
Figure 3.32:	IEC Class B Curve (Very Inverse): C2	3-57
Figure 3.33:	IEC Class C Curve (Extremely Inverse): C3	3-58
Figure 3.34:	IEC Long-Time Inverse Curve: C4	3-59
Figure 3.35:	IEC Short-Time Inverse Curve: C5	3-60

SECTION 3: DIFFERENTIAL, RESTRICTED EARTH FAULT, AND OVERCURRENT ELEMENTS

Introduction

This section describes general applications and operating characteristics for the current differential, restricted earth fault (REF), and overcurrent protection elements. The section also contains application guidelines for the differential elements and setting calculation information for the differential elements and restricted earth fault elements.

DIFFERENTIAL ELEMENT

Application Description

Protect your apparatus with dual-slope percentage differential protection. Percentage differential protection provides more sensitive and secure protection than traditional differential protection; the dual-slope characteristic compensates for CT ratio mismatches, CT ratio errors, CT saturation, and errors caused by tap changing.

The SEL-387A Relay offers the choice between harmonic blocking and harmonic restraint to secure relay stability during transformer inrush conditions. Even-numbered harmonics (second and fourth), augmented by dc blocking, provide security during energization, while fifth harmonic blocking provides security for overexcitation conditions.

Operating Characteristic

The SEL-387A Relay has three differential elements (87R-1, 87R-2, and 87R-3). These elements employ Operate (IOP) and Restraint (IRT) quantities that the relay calculates from the winding input currents. The relay uses a characteristic such as that in Figure 3.1. You can set the characteristic as either a single-slope, percentage differential characteristic or a dual-slope, variable-percentage differential characteristic. Tripping occurs if the Operate quantity is greater than the curve value for the particular restraint quantity. A minimum pickup level for the Operate quantity must also be satisfied. The four settings that define the characteristic are:

O87P = minimum IOP level required for operation

SLP1 = initial slope, beginning at origin and intersecting O87P at IRT = O87P • 100/SLP1

IRS1 = limit of IRT for SLP1 operation; intersection where SLP2 begins

SLP2 = second slope, if used; must be greater than or equal to SLP1

By careful selection of these settings, the user can duplicate closely the characteristics of existing differential relays that have been in use for many years.

Figure 3.1: Percentage Restraint Differential Characteristic

Figure 3.2, Figure 3.3, and Figure 3.4 illustrate how input currents are acquired and used in the unrestrained and restrained differential elements. Data acquisition, filtering, tap scaling, and transformer and CT connection compensation for Winding 1 are shown in Figure 3.2.

Four digital band-pass filters extract the fundamental, second, fourth, and fifth (not shown) harmonics of the input currents. A dc filter (not shown) forms one-cycle sums of the positive and negative values.

Using the transformer MVA rating as a common reference point, TAP scaling converts all secondary currents entering the relay from the two windings to per-unit values, thus changing the ampere values into dimensionless multiples of TAP. Throughout the text, the term "TAP" refers to the per-unit value common to both windings, whereas "TAPn" refers to the ampere value of a particular winding(s); TAPmin and TAPmax refer to the lesser and greater of the two TAPn values. This method ensures that, for full-load through-current conditions, all incoming current multiples of TAP sum to 1.0 and all outgoing current multiples of TAP sum to –1.0, with a reference direction into the transformer windings.

Transformer and CT connection compensation adjusts the sets of three-phase currents for the phase angle and phase interaction effects introduced by the winding connection of the transformer and CTs. Settings W1CTC and W2CTC determine the mathematical corrections to the three-phase currents for Winding 1 and Winding 2, respectively. CTC1 is shown in Figure 3.2 as the phase angle and sequence quantity adjustment for Winding 1.

I1W1C1, I2W1C1, and I3W1C1 are the fundamental frequency A-phase, B-phase, and C-phase compensated currents for Winding 1. Similarly, I1W1C2, I2W1C2, and I3W1C2 are the second-harmonic compensated currents for Winding 1. The dc, fourth-harmonic, and fifth-harmonic compensated currents use similar names. The I1 compensated currents are used with differential element 87-1, I2 with element 87-2, and I3 with element 87-3.

Figure 3.2: Winding 1 Compensated Currents

Figure 3.3 illustrates how the IOP1 (operate), IRT1 (restraint), IHRT1 (harmonic restraint), I1HB2 (second harmonic), and I1HB4 (fourth harmonic) quantities are calculated for the 87-1 element. IOP1 is generated by summing the winding currents in a phasor addition. IRT1 is generated by summing the magnitudes of the winding currents in a simple scalar addition and dividing by two. The 87-2 and 87-3 quantities are calculated in a similar manner.

For each restraint element (87R-1, 87R-2, 87R-3), the winding quantities are summed as phasors and the magnitude becomes the Operate quantity (IOPn). For a through-current condition, IOPn should calculate to about 1 + (-1) = 0, at rated load. Calculation of the Restraint quantity (IRTn) occurs through a summation of all current magnitudes and then division by two. For a through-current condition, this will calculate to about (|1| + |-1|)/2 = 2/2 = 1, at rated load.

Figure 3.3: Differential Element (87-1) Quantities

Figure 3.4 shows how the differential element quantities are used to generate the unrestrained 87Un (87U1, 87U2, 87U3) and restrained 87Rn (87R1, 87R2, 87R3) elements. These elements are combined to form differential element targets (87-1, 87-2, 87-3).

Unrestrained elements (87U1, 87U2, and 87U3) compare the IOP quantity to a setting value (U87P), typically about 10 times TAP, and trip if this level is exceeded. Elements 87U1, 87U2, and 87U3 are combined to form element 87U as shown in the lower right corner of Figure 3.4. Harmonic blocking is not performed on the unrestrained elements. Use these elements to protect your transformer bushings and end windings while maintaining security for inrush and throughfault conditions. Operating current elements 87On (87O1, 87O2, 87O3) are provided for testing purposes.

Restrained elements (87R1, 87R2, and 87R3) determine whether the IOP quantity is greater than the restraint quantity using the differential characteristic shown in Figure 3.1. Set HRSTR = Y (harmonic restraint) to modify this characteristic as a function of the second- and fourth-harmonic content in the input currents.

In element 87Rn, for example, the IOPn and IRTn quantities determine whether the relay trips. The logic enclosed within the dotted line of Figure 3.4 implements the Figure 3.1 characteristic. The differential element calculates a threshold as a function of IRTn. IOPn must exceed this threshold to produce tripping. The function uses the SLP1, SLP2, and IRS1 setting values, along with IRTn, to calculate the threshold value. The differential element decision logic compares the calculated value, denoted f(IRTn), to the actual IOPn. If IOPn is greater, one input of the AND gate at the right receives a logic 1. Comparison of IOPn with the O87P setting determines the second AND input. If IOPn is greater than O87P, Relay Word bit 87On asserts. The AND gate condition then is satisfied, and Relay Word bit 87Rn asserts, indicating operation of the restrained differential element, n. This does not, as yet, produce a trip. The relay still needs the results of the harmonic and dc blocking decision logic, which is described later.

Figure 3.4: Differential Element Decision Logic

Harmonic Restraint

Consider the harmonic restraint feature (HRSTR=Y) if your practices require independent harmonic restraint. This feature disables common harmonic blocking (IHBL=Y). It also disables second- and fourth-harmonic blocking since it adds the second- and fourth-harmonic

quantities to the differential characteristic restraint quantity. Blocking features are discussed in more detail later in this section.

For harmonic blocking, the harmonic content of the differential current must exceed the individual (PCT2 or PCT4) threshold values, i.e., the thresholds are treated as independent measurements of each harmonic value. For harmonic restraint, the values of the second- and fourth-harmonic currents are summed, and that value is used in the relay characteristic. Consider, for example, the simple case of Slope 1, i.e., a straight line through the origin. The general equation for a line is:

$$y = m \cdot x + c$$

More specifically, in the SEL-387A:

$$IOP = SLP 1 \cdot IRT + c$$

where:

$$c = (100/PCT2*\Sigma1WnC2) + (100/PCT4*\Sigma1WnC4)$$

Because the line starts at the origin, the value of c normally is zero. The sum of the second- and fourth-harmonic currents now forms the constant c in the equation, raising the relay characteristic proportionally to the harmonic values.

Blocking

While the restrained differential elements are making decisions, a parallel blocking decision process occurs regarding the magnitudes of specific harmonics in the IOP quantities.

Common (Cross) or Independent Blocking

Use common or independent blocking elements (87BL1, 87BL2, and 87BL3) to supervise the restrained differential elements. Common blocking disables all restrained elements if any blocking element is picked up. Figure 3.5 shows how independent blocking disables the restrained element associated with the blocking element.

If IHBL is set to N (No), the logic shown in Figure 3.5(A) is enabled. In this case all 87Rn elements enter one OR gate, and all 87BLn elements enter another OR gate, whose output is negated at the upper AND gate. If the 87Rn OR output asserts but the 87BLn OR output does not, the 87R Relay Word bit asserts and tripping can take place. In other words, with IHBL = N, blocking within ANY differential element will prevent operation and tripping of ALL the restrained differential elements.

Figure 3.5: Differential Element Harmonic Blocking Logic

If IHBL is set to Y (Yes), the logic shown in the lower half of Figure 3.5, IHBL = Y, is enabled. Here, the logic pairs 87R1 with negated 87BL1, 87R2 with negated 87BL2, and 87R3 with negated 87BL3 at separate AND gates. In this logic, blocking in a given element will only disable tripping of that element. In general, this mode of operation might only be used where three single-phase transformers are used to make up a three-phase bank, and independent-pole breaker operation is possible, in the harmonic blocking mode. When harmonic restraint is selected, the relay operates only in the individual blocking mode.

Relay Word bits 87R and 87U are high-speed elements that must trip all breakers. Our example assigns 87R and 87U to trip variable setting TR3. If either bit asserts, this variable asserts bit TRIP3, which drives contact OUT103. OUT103 connects to an 86 lockout device, which trips all breakers via multiple sets of contacts.

Harmonic Blocking

Blocking prevents improper tripping during transformer inrush or allowable overexcitation conditions. Figure 3.6 shows the differential element blocking logic (87BL1). The 87BL1 blocking element picks up if the second-, fourth-, or fifth-harmonic operating current, as a percentage of fundamental operating current, is above the 2PCT, 4PCT, or 5PCT setting threshold, respectively. The blocking element also picks up if the ratio of positive and negative dc exceeds a threshold.

Elements 4HB1, 4HB2, and 4HB3 are combined to form element 4HBL as shown at the bottom of Figure 3.6. Element 4HBL is available as a Relay Word bit but elements 4HB1, 4HB2, and 4HB3 are not.

An additional alarm function for the fifth harmonic, to warn of overexcitation, employs a separate threshold (TH5P) and an adjustable timer (TH5D). This threshold and timer may be useful for transformer applications in or near generating stations.

Figure 3.6: Differential Element (87BL1) Blocking Logic

DC Ratio Blocking

Figure 3.7 shows the dc blocking logic for Differential Element 1. Elements DCBL1, DCBL2, and DCBL3 are combined to form element DCBL as shown at the bottom of Figure 3.6. DCBL is available as a Relay Word bit but elements DCBL1, DBL2, and DCBL3 are not.

The dc ratio blocking feature applies to inrush cases with little harmonic content, but a high dc offset. The measurement principle is that of wave shape recognition, distinguishing between the time constants for inrush current that typically are longer than the time constants for an internal fault.

Figure 3.7: DC Blocking (DCBL1) Logic

Setting Descriptions

Differential Element Enable (E87)

Range: Y, N

The SEL-387A has two sets of three-phase current inputs, both enabled with the E87 setting. An independent setting, EOCn, exists to enable the overcurrent and demand metering elements. Selecting Y for E87 enables differential element settings. Selecting N for E87 disables differential element settings; the relay hides the settings, and they are unavailable for use.

CT Connection (W1CT and W2CT)

Range: D, Y

To perform calculations for TAPn values, the relay uses information on whether the CTs are connected in delta (D) or wye (Y) for each winding. If the CTs are connected in delta, the relay raises the TAPn value by a factor of 1.732.

Also, if the CTs on a particular winding "n" are connected in delta (WnCT = D), then the secondary currents into the corresponding SEL-387 current inputs (IAWn, IBWn, and ICWn) are modified before being displayed or used in:

- breaker monitoring (**BRE** command)
- instantaneous metering (METER command)
- demand metering (METER D and METER P commands)
- through-fault event monitoring (**TFE** command)

For delta-connected CTs, the secondary currents into the SEL-387 current inputs are phase-phase difference currents (e.g., phase-phase difference current $I_A - I_B$ flows into current input IAWn). To create a pseudo phase-neutral value for display or use in algorithms, these phase-phase difference currents are divided by $\sqrt{3}$ (divided by 1.732).

CT Ratio (CTR1 and CTR2)

Range: 1–50000

Determine the CT ratio by dividing the nominal primary CT current by the nominal secondary CT current. If, for example, the nominal primary CT current is 2000 A and the nominal secondary CT current is 5 A, the ratio is 2000/5 or 400. For this example, enter a value of 400.

Maximum Transformer Capacity, Three-Phase MVA (MVA)

Range: OFF, 0.2–5000 MVA, in 0.1 MVA steps

Use the highest expected transformer rating, such as the FOA (Forced Oil and Air cooled) rating or a higher emergency rating, when setting the maximum transformer capacity.

Internal Winding/CT Connection Compensation (ICOM)

Range: Y, N

This Yes/No variable defines whether the input currents need any correction, either to accommodate phase shifts in the transformer or CTs or to remove zero-sequence components from the secondary currents. If this setting is Yes, the relay permits the user, in the next group of settings, to define the amount of shift needed to properly align the secondary currents for the differential calculation.

Connection Compensation (W1CTC and W2CTC)

Range: 0, 1, ..., 12

These settings define the amount of compensation the relay applies to each set of winding currents to properly account for phase shifts in transformer winding connections and CT connections. For example, this correction is needed if both wye and delta power transformer windings are present, but all of the CTs are connected in wye. The effect of the compensation is to create phase shift and removal of zero-sequence current components.

Line-to-Line Voltage, kV (VWDG1 and VWDG2)

Range: 1–1000 kV, in 0.01 kV steps

Enter the nominal line-to-line transformer terminal voltages. If the transformer differential zone includes a load tap-changer, assume that it is in the neutral position. The setting units are kilovolts.

Current TAP (TAP1 and TAP2)

Range: 1 A: 0.1–31 A, secondary, in 0.01 A steps

5 A: 0.5–155 A, secondary, in 0.01 A steps

Note: TAP_{MAX}/TAP_{MIN} must be less than or equal to 7.5

When a value is entered in the MVA setting (i.e., MVA is not set to "OFF"), the relay uses the MVA, winding voltage, CT ratio, and CT connection settings you have entered and automatically calculates the "TAPn" values.

You can also directly enter tap values. Set MVA = OFF, and enter the TAP1 and TAP2 values directly, along with the other pertinent settings.

Restrained Element Operating Current Pickup (087P)

Range: 0.1–1.0 • TAP

Note: 1 A: $TAP_{MIN} \cdot O87P \ge 0.1 \cdot I_{D}$

5 A: $TAP_{MIN} \cdot O87P \ge 0.1 \cdot I_{n}$

Set the operating current pickup at a minimum for increased sensitivity but high enough to avoid operation because of steady-state CT error and transformer excitation current.

Restraint Slope Percentage (SLP1, SLP2)

Range: SLP1: 5–100%, in 1% steps; SLP2: OFF, 25–200%

Use restraint slope percentage settings to discriminate between internal and external faults. Set SLP1 or SLP2 to accommodate current differences from power transformer tap-changer, CT saturation, CT errors, and relay error.

Restraint Current Slope 1 Limit (IRS1)

Range: 1.0–20.0, in 0.1 steps • TAP

Note: 1 A: $TAP_{MAX} \cdot IRS1 \le 31.0$

5 A: $TAP_{MAX} \bullet IRS1 \le 155.0$

A two-slope, or variable-percentage differential application, improves sensitivity in the region where CT error is less and increases security in the high-current region where CT error is greater. We must define both slopes, as well as the slope 1 limit or point IRS1, where SLP1 and SLP2 intersect.

Unrestrained Element Current Pickup (U87P)

Range: 1.0–20.0, in 0.1 steps • TAP

The purpose of the instantaneous unrestrained current element is to react quickly to very heavy current levels that clearly indicate an internal fault. Set the pickup level (U87P) to about 10 times tap. The unrestrained differential element only responds to the fundamental frequency component of the differential operating current. It is unaffected by the SLP1, SLP2, IRS1, PCT2, PCT5, or IHBL settings. Thus, you must set the element pickup level high enough so that it does not react to large inrush currents.

Second-Harmonic Blocking Percentage of Fundamental (PCT2)

Range: OFF, 5–100%, in 1% steps

Energization of a transformer causes a temporary large flow of magnetizing inrush current into one terminal of a transformer, without other terminals seeing this current. Thus, it appears as a differential current that could cause improper relay operation. Magnetizing inrush currents contain greater amounts of second-harmonic current than do fault currents. This even-harmonic current can be used to identify the inrush phenomenon and to prevent relay misoperation. The SEL-387A measures the amount of second-harmonic current flowing in the transformer. You can set the relay to block the percentage restrained differential element if the ratio of second-harmonic current to fundamental current (IF2/IF1) is greater than the PCT2 setting.

Fourth-Harmonic Blocking Percentage of Fundamental (PCT4)

Range: OFF, 5–100%, in 1% steps

Energization of a transformer causes a temporary large flow of magnetizing inrush current into one terminal of a transformer, without other terminals seeing this current. Thus, it appears as a differential current that could cause improper relay operation. Magnetizing inrush currents contain greater amounts of even-harmonic current than do fault currents. This even-harmonic current can be used to identify the inrush phenomenon and to prevent relay misoperation. The SEL-387A measures the amount of fourth-harmonic current flowing in the transformer. You can set the relay to block the percentage restrained differential element if the ratio of fourth-harmonic current to fundamental current (IF4/IF1) is greater than the PCT4 setting.

Fifth-Harmonic Blocking Percentage of Fundamental (PCT5)

Range: OFF, 5–100%, in 1% steps

According to industry standards (ANSI/IEEE C37.91, C37.102), overexcitation occurs when the ratio of the voltage to frequency (V/Hz) applied to the transformer terminals exceeds 1.05 per unit at full load or 1.1 per unit at no load. This ratio is a measure of the core flux density. Transformer overexcitation produces odd-order harmonics, which can appear as differential current to a transformer differential relay.

Unit-generator step-up transformers at power plants are the primary users of fifth-harmonic blocking. Transformer voltage and generator frequency may vary somewhat during startup, overexciting the transformers.

Fifth-Harmonic Alarm Threshold (TH5P)

Range: OFF, (0.02-3.2), in 0.01 steps • TAP

Note: 1 A: $TAP_{MIN} \cdot TH5P \ge 0.05$

 $TAP_{MAX} \bullet TH5P \le 31.0$

5 A: $TAP_{MIN} \cdot TH5P \ge 0.25$ $TAP_{MAX} \cdot TH5P \le 155.0$

You may use the presence of fifth-harmonic differential current to assert an alarm output during startup. This alarm indicates that the rated transformer excitation current is exceeded. You may also consider triggering an event report if fifth-harmonic current exceeds the fifth-harmonic threshold that you set.

Note: The relay permits the setting of values smaller than TH5P • TAP $_{MIN} \ge 0.05$ • I_{nom} , but alerts the user with the message "Settings times minimum TAP should be >= 0.25." If the setting is not changed to a value within the limits, the relay performance may be outside the element specification.

Fifth-Harmonic Alarm Time Delay Pickup (TH5D)

Range: 0–8000 cycles, in 0.125-cycle steps

With this pickup, you can delay assertion of an alarm for excessive fifth-harmonic differential current.

DC Ratio Blocking (DCRB)

Range: Y, N

Some magnetizing inrush cases contain very little harmonic content but contain a dc offset. The SEL-387A can detect the dc offset and use it in the blocking (not restraint) logic. Enable this function by setting DCRB = Y.

Harmonic Restraint (HRSTR)

Range: Y, N

Even harmonics (second and fourth) can be used to provide security against magnetizing inrush currents during transformer energization. Choose between harmonic blocking and harmonic restraint. Harmonic blocking treats the second and fourth harmonics independently and blocks the relay when the second- or fourth-harmonic content (harmonic current as a percentage of the fundamental current) exceeds the PCT2 or PCT4 setting, respectively. For example, assume the following:

PCT2 = PCT4 = 20 percent, and the harmonics in the differential current are: second harmonic = 15 percent, fourth harmonic = 7 percent

In this case, the relay does not block because neither harmonic content exceeds its particular setting. But when the second-harmonic content increases to 21 percent, the relay blocks, regardless of the value of the fourth-harmonic content present in the differential current. Increasing the fourth-harmonic content to exceed the PCT4 setting while the second-harmonic content remains lower than the PCT2 setting yields the same result.

Harmonic restraint is more secure than harmonic blocking since it adds the values of the secondand fourth-harmonic currents together and raises the relay characteristic by the sum of the two values. In the example, second-harmonic content + fourth-harmonic content = 15 percent + 7 percent = 22 percent and relay tripping is restrained when it would not have been blocked.

Set HRSTR = Y to select the harmonic restraint function and automatically enable Independent Harmonic Blocking (IHBL).

Independent Harmonic Blocking (IHBL)

Range: Y, N

Upon energization of a three-phase transformer, at least two phase currents will contain inrush harmonics. In traditional single-phase relays each relay compares the harmonic current flowing through the phase for that relay. The SEL-387A performs harmonic blocking in two ways:

- 1. Independent Harmonic Blocking (IHBL = Y) blocks the percentage differential element for a particular phase if the harmonic (second or fifth) in that phase exceeds the block threshold. No blocking occurs on other differential elements.
- 2. Common Harmonic Blocking (IHBL = N) blocks all of the percentage differential elements if the harmonic magnitude of any one phase is greater than the blocking threshold.

Common Harmonic Blocking is more secure but may slightly delay percentage differential element operation because harmonics in all three phases must drop below the thresholds for the three phases.

Setting Calculation

General Discussion of Connection Compensation

The general expression for current compensation is as follows:

$$\begin{bmatrix} IAWnC \\ IBWnC \\ ICWnC \end{bmatrix} = \begin{bmatrix} CTC(m) \end{bmatrix} \bullet \begin{bmatrix} IAWn \\ IBWn \\ ICWn \end{bmatrix}$$

where IAWn, etc., are the three-phase currents entering terminal "n" of the relay; IAWnC, etc., are the corresponding phase currents after compensation; and [CTC(m)] is the three-by-three compensation matrix.

Setting WnCTC = m specifies which [CTC(m)] matrix the relay is to use. The setting values are 0, 1, 2, ..., 11, 12. These are discrete values "m" can assume in [CTC(m)]; the values physically represent the "m" number of increments of 30 degrees that a <u>balanced set of currents with ABC phase rotation</u> will be rotated in a <u>counterclockwise</u> direction when multiplied by [CTC(m)]. If a given set of such currents is multiplied by all 12 of the CTC matrices, the resulting compensated values would seem to move completely around the circle in a counterclockwise direction, returning to the original start position. This is the same as successively multiplying [CTC(1)] times the original currents, then times each successive compensated result value, a total of 12 times.

If a <u>balanced set of currents with ACB phase rotation</u> undergoes the same exercise, the rotations by the [CTC(m)] matrices are in the <u>clockwise</u> direction. This is because the compensation matrices, when performing phasor addition or subtraction involving B or C phases, will produce "mirror image" shifts relative to Phase A, when ACB phase rotation is used instead of ABC. In ACB phase rotation the three phases still rotate in a counterclockwise direction, but C-phase is in the 120-degree lagging position and B-phase leads by 120 degrees, relative to A-phase.

The discussions below assume ABC phase rotation, unless mentioned otherwise.

The "0" setting value is intended to create no changes at all in the currents and merely multiplies them by an identity matrix. Thus, for WnCTC = 0,

$$[CTC(0)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

that is,

IAWnC = IAWn IBWnC = IBWnICWnC = ICWn

The "1" setting performs a 30-degree compensation in the counterclockwise direction, as would a delta CT connection of type DAB (30-degree leading). The name for this connection comes from the fact that the polarity end of the A-phase CT connects to the nonpolarity end of the B-phase CT, and so on, in forming the delta. Thus, for WnCTC = 1, the relay uses the following [CTC(m)] matrix:

$$[CTC(1)] = \frac{1}{\sqrt{3}} \bullet \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

that is,

$$IAWnC = \frac{\left(IAWn - IBWn\right)}{\sqrt{3}}$$

$$IBWnC = \frac{\left(IBWn - ICWn\right)}{\sqrt{3}}$$

$$ICWnC = \frac{\left(ICWn - IAWn\right)}{\sqrt{3}}$$

The "11" setting performs a 330-degree compensation (11 • 30) in the counterclockwise direction, or a 30-degree compensation in the clockwise direction, as would a delta CT connection of type DAC (30-degree lagging). The name for this connection comes from the fact that the polarity end of the A-phase CT connects to the nonpolarity end of the C-phase CT, and so on, in forming the delta. Thus, for WnCTC = 11, the relay uses the following [CTC(m)] matrix:

$$[CTC(11)] = \frac{1}{\sqrt{3}} \bullet \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

that is,

$$IAWnC = \frac{\left(IAWn - ICWn\right)}{\sqrt{3}}$$

$$IBWnC = \frac{IBWn - IAWn}{\sqrt{3}}$$

$$ICWnC = \frac{\left(ICWn - IBWn\right)}{\sqrt{3}}$$

The effect of each compensation on balanced three-phase currents is to rotate them m \bullet 30° without a magnitude change.

The compensation matrix [CTC(12)] is similar to [CTC(0)], in that it produces no phase shift (or, more correctly, 360 degrees of shift) in a balanced set of phasors separated by 120 degrees. However, it removes zero-sequence components from the winding currents, as do all of the matrices having non-zero values of m.

$$\left[\text{CTC} \left(12 \right) \right] = \frac{1}{3} \bullet \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

that is,

$$IAWnC = \frac{\left(+2 \cdot IAWn - IBWn - ICWn\right)}{3}$$

$$IBWnC = \frac{\left(-IAWn + 2 \cdot IBWn - ICWn\right)}{3}$$

$$ICWnC = \frac{\left(-IAWn - IBWn + 2 \cdot ICWn\right)}{3}$$

We could use this type of compensation in applications having wye-connected transformer windings (no phase shift) with wye CT connections for each winding. Using WnCTC = 12 for each winding removes zero-sequence components, just as connection of the CTs in delta would do, but without producing a phase shift. (One might also use WnCTC = 1 or 11 for this same application, yielding compensation similar to that from connection of the CTs on both sides in DAB or DAC.)

The Complete List of Compensation Matrices (m = 1 to 12)

$$[CTC(1)] = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \qquad [CTC(2)] = \frac{1}{3} \cdot \begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ -2 & 1 & 1 \end{bmatrix}$$
$$[CTC(3)] = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \qquad [CTC(4)] = \frac{1}{3} \cdot \begin{bmatrix} -1 & -1 & 2 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

$$[CTC(5)] = \frac{1}{\sqrt{3}} \bullet \begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1 \end{bmatrix} \qquad [CTC(6)] = \frac{1}{3} \bullet \begin{bmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{bmatrix}$$

$$[CTC(7)] = \frac{1}{\sqrt{3}} \bullet \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 1 & 0 & -1 \end{bmatrix} \qquad [CTC(8)] = \frac{1}{3} \bullet \begin{bmatrix} -1 & 2 & -1\\ -1 & -1 & 2\\ 2 & -1 & -1 \end{bmatrix}$$

$$[CTC(9)] = \frac{1}{\sqrt{3}} \bullet \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 & 1\\ 1 & -1 & 0 \end{bmatrix} \qquad [CTC(10)] = \frac{1}{3} \bullet \begin{bmatrix} 1 & 1 & -2\\ -2 & 1 & 1\\ 1 & -2 & 1 \end{bmatrix}$$

$$[CTC(11)] = \frac{1}{\sqrt{3}} \bullet \begin{bmatrix} 1 & 0 & -1\\ -1 & 1 & 0\\ 0 & -1 & 1 \end{bmatrix} \qquad [CTC(12)] = \frac{1}{3} \bullet \begin{bmatrix} 2 & -1 & -1\\ -1 & 2 & -1\\ -1 & -1 & 2 \end{bmatrix}$$

The matrices for odd values of m (1, 3, 5, 7, 9, 11) are similarly constructed, as are the matrices for even values of m (2, 4, 6, 8, 10, 12). Also, [CTC(m)] equals the minus of [CTC(m±6)], because these matrices represent shifts separated by exactly 180 degrees.

Selecting the Correct Values of WnCTC for Each Winding

The process of choosing the correct WnCTC setting value for each winding involves a complete knowledge of the transformer winding connections and phase relationships, the CT connections, and the system phase rotation (ABC or ACB). The following brief review discusses the nature of various connections, their phase shifts, and the reference motion for selecting WnCTC based on system phase rotation.

Winding Connection Review

Figure 3.8 shows the three basic winding connections, consisting of a wye connection and the two possible delta connections.

SEL-387A Instruction Manual

Figure 3.8: Winding Connections, Phase Shifts, and Compensation Direction

The wye connection consists of connecting one end of each winding to a common or neutral point, leaving the other ends of each winding for the line terminals. Because the windings do not interconnect at the line ends, the line current equals the respective winding current, A, B, or C, and no phase shift occurs in the line currents with respect to the winding currents. The neutral point, if it is grounded, permits flow of zero-sequence current components in the windings and line outputs.

There are two possible delta connections. In determining WnCTC, it is essential to know not only that the CTs or transformer windings are connected in delta but in **which** delta. In this manual we call these delta connections DAB and DAC. In the DAB connection the polarity end of the A winding connects to the nonpolarity end of the B winding, and so on, to produce the delta. In the DAC connection the polarity end of the A winding connects to the nonpolarity end of the C winding, and so on, to produce the delta. In Figure 3.8 an arrowhead indicates the polarity end of each winding.

These arrangements involve a connection point between two windings at each line terminal; the line currents are not the same as the winding currents, but are in fact the phasor difference between the associated winding currents. Therefore, the line currents will shift in phase by some amount with respect to the winding currents. In the DAB connection the line currents from the A, B, and C line terminals are, respectively, A-B, B-C, and C-A in terms of the winding currents. In the DAC connection the line currents from the A, B, and C line terminals are, respectively, A-C, B-A, and C-B in terms of the winding currents. The phase shift produced by each physical type of delta depends on the system phase rotation.

Note: The terms "lead" and "lag" refer to the assumed counterclockwise (CCW) rotation of the phasors for both ABC and ACB phase rotation. "Lead" implies movement in the CCW direction; "lag" is movement in the clockwise (CW) direction.

In the ABC phase rotation B lags A by 120 degrees and C leads A by 120 degrees. The DAB connection line current at terminal A is A-B, which in this case is a phasor that leads A winding current by 30 degrees. For this reason, DAB is often referred to as the "leading connection." However, DAB is the leading connection only for ABC phase rotation. In the ACB phase rotation C lags A by 120 degrees, and B leads A by 120 degrees. Terminal A line current is still A-B, but current now lags A winding current by 30 degrees.

The DAC connection produces opposite shifts to DAB. In the ABC phase rotation line current from terminal A is A-C, which lags A winding current by 30 degrees. In the ACB phase rotation line current A is still A-C, but this result leads A winding current by 30 degrees.

Five-Step Compensation Process

The process of determining WnCTC for each winding involves the following five basic steps. Two examples illustrate important points about the five steps.

- 1. Establish the phase direction for the terminal-A line current for each three-phase winding of the transformer. (This step requires transformer nameplate drawings and/or internal connection diagrams.)
- 2. Adjust the terminal-A line current direction by the phase shift (if any) of the current transformer connection. (Reference Figure 3.8 for this step.)
- 3. Select any one of the adjusted terminal-A directions from step 2, to serve as the reference direction. (The relay compensates all other windings to line up with this reference.)
- 4. Choose a setting for WnCTC for each set of winding input currents. This setting is the number of 30-degree increments needed to adjust each nonreference winding to line it up with the reference. This number will range from 0 to 12 increments. For ABC phase rotation, begin at the winding direction and proceed in a CCW direction until reaching the reference. For ACB phase rotation, begin at the winding direction and proceed in a CW direction until reaching the reference. Figure 3.8 shows these compensation directions.
- 5. If any winding needs no phase correction (zero degrees), but is a grounded-wye winding having wye-connected CTs, choose WnCTC=12 for that winding, rather than WnCTC=0. This setting will remove zero-sequence current components from the relay currents to prevent false differential tripping on external ground faults. (All non-zero values of WnCTC remove zero-sequence current.)

Example 1 for WnCTC Selection

Figure 3.9 illustrates the first example. This is a two-winding transformer with a DAB delta primary and a lower voltage secondary connected in grounded wye. The delta-connected power transformer windings have wye-connected CTs; the wye-connected power transformer windings have DAB delta-connected CTs. We assume ABC phase rotation. Using the "hour of the clock" convention for specifying transformer connections, the transformer is a "Dy1" connection. This means the transformer has a high-voltage delta whose reference is "noon" and a wye secondary

SEL-387A Instruction Manual

winding whose direction is at "one o'clock." The CT currents go to relay winding inputs 1 and 2, from left to right as Figure 3.9 illustrates.

Figure 3.9: Example 1 for WnCTC Selection

The 115 kV delta primary and the 24.9 kV grounded-wye secondary represent a traditional "DABY" two-winding application. This application has wye CTs on the delta side and delta CTs on the wye side, using the same CT delta connection as the primary of the transformer. Perform the following simple steps to handle these traditional connections.

- 1. Establish the line terminal directions. Refer to the line following the transformer drawings in Figure 3.9 and note that the delta winding A line terminal direction is at 30 degrees CCW from the A winding direction (vertical), as we would expect for a DAB connection with ABC phase rotation.
- 2. Adjust for the CT connections. In this case, the 115 kV delta primary CTs are not adjusted. Therefore, the 24.9 kV winding, with DAB CTs, needs a 30-degree correction in the CCW direction. Figure 3.9 shows this adjustment in the second line under the transformer drawings.
- 3. Select a reference direction for the transformer. You can use either winding direction as the reference, but this need not be the case. You could establish any of the 12 possible directions, separated by 30 degrees around the complete circle of 360 degrees, as the reference. Both windings would then receive adjustments to correlate them with this reference. As Figure 3.9 illustrates, the primary winding direction serves as reference in the example.
- 4. Choose the WnCTC settings for both windings. Because Winding 1 is the reference, we need no adjustment; the setting is W1CTC = 0. Note that the adjusted Winding 2 input coincides exactly with the reference direction; we need make no adjustment for the 24.9 kV winding either. Therefore, the setting is W2CTC = 0. As mentioned earlier, these two windings represent a classical DABY application. We can see this from the fact that

- the WnCTC setting is zero for both windings. The CT connections themselves perform exactly the right correction without additional help from the relay.
- 5. As a final step, ensure that no wye-connected winding having wye-connected CTs is set at WnCTC = 0 (uncompensated). Were this the case, zero-sequence currents could appear in these relay inputs but in no others, and a possible false trip could occur for external ground faults. Any non-zero value of WnCTC will eliminate the zero sequence. In this example, no wye-connected winding has wye-connected CTs and the selection is complete. The relay receives the two settings as W1CTC = 0 and W2CTC = 0.

Example 2 for WnCTC Selection

Figure 3.10 illustrates the second example. This is another wye-delta transformer, for which we have chosen a rather unusual winding phase relationship in order to show the flexibility of the winding compensation feature in the SEL-387A.

The transformer has a 115 kV primary winding that is wye connected, with wye-connected CTs. The 34.5 kV secondary winding is DAB connected, but designated with the A line terminal at the "7 o'clock" position with respect to the primary A line terminal. It has wye-connected CTs. This transformer is therefore a "Yd7" connection type. We assume ABC phase rotation. The CT currents go to relay winding inputs 1 and 2, from left to right as Figure 3.10 shows.

Figure 3.10: Example 2 for WnCTC Selection

1. Establish the phase direction for the two A line terminals. Figure 3.10 shows these phase directions in the first line below the transformer drawing. Based on the transformer designation, the terminal directions are shown at "noon" and "7 o'clock."

SEL-387A Instruction Manual

- 2. Adjust the transformer winding directions based on the CT connections. Both windings are wye and need no correction.
- 3. Select a reference direction. In this example we have chosen the primary winding position at "noon."
- 4. Select values of WnCTC for each winding. For the sake of later discussion, we have selected W1CTC = 0 as the setting for Winding 1, the reference winding. Beginning at the Winding 2 direction at "7 o'clock," adjust the Winding 2 position in the CCW direction until arrival at the "noon" reference direction. This procedure requires seven 30-degree increments, or seven "hours" of adjustment. Thus, we choose W2CTC = 7 as the setting. The process is nearly complete.
- 5. Make sure that the setting WNCTC = 0 has not been given to any wye windings with wye CTs. In this case the primary winding is wye-connected and has wye-connected CTs. In step 4 we set W1CTC at zero because Winding 1 was the reference winding. However, this setting violates the condition that WnCTC not equal 0. Instead of a zero shift, we must shift Winding 1 360 degrees by setting W1CTC = 12. This solves the zero-sequence current problem. The process is now complete. The relay receives the two settings as W1CTC = 12 and W2CTC = 7.

Winding Line-to-Line Voltages

Enter the nominal line-to-line transformer terminal voltages. If a load tap changer is included in the transformer differential zone, assume that it is in the neutral position. The setting units are kilovolts.

Current TAP

The relay uses a standard equation to set TAPn, based on settings entered for the particular winding (n denotes the winding number).

$$TAPn = \frac{MVA \cdot 1000}{\sqrt{3} \cdot VWDGn \cdot CTRn} \cdot C$$

where:

C = 1 if WnCT setting = Y (wye-connected CTs) C = $\sqrt{3}$ if WnCT setting = D (delta-connected CTs) MVA = maximum power transformer capacity setting (must be the same for all TAPn calculations) VWDGn = winding line-to-line voltage setting, in kV CTRn = current transformer ratio setting

The relay calculates TAPn with the following limitations:

- The tap settings are within the range $0.1 \cdot I_N$ and $31 \cdot I_N$
- The ratio $TAP_{MAX}/TAP_{MIN} \le 7.5$

Restrained Element Operating Current Pickup

The O87P setting range is 0.1 to 1.0; we suggest an O87P setting of 0.3. The setting must be at a minimum for increased sensitivity but high enough to avoid operation because of steady-state CT error and transformer excitation current. The setting must also yield an operating current greater than or equal to $0.1 \cdot I_N$, when multiplied by the smaller of TAP1 or TAP2. Stated another way,

$$O87P_{MIN} \ge (0.1 \cdot I_N) / TAP_{MIN}$$

Restraint Slope Percentage

Example:

The current transformer error, e, is equal to ± 10 percent. In per unit:

$$e = 0.1$$

The voltage ratio variation of the power transformer load tap-changer, LTC, is from 90 percent to 110 percent. In per unit:

$$a = 0.1$$

In a through-current situation, the worst-case theoretical differential current occurs when all of the input currents are measured with maximum positive CT error, and all of the output currents are measured with maximum negative CT error as well as being offset by maximum LTC variation. Therefore, the maximum differential current expected for through-current conditions is:

$$Id \max = (1+e) \bullet \sum_{\text{"IN"}} IWn - \frac{(1-e)}{(1+a)} \bullet \sum_{\text{"OUT"}} IWn$$

where the summation terms are the total input and output power transformer secondary currents, after tap compensation. Because these summations must be equal for external faults and load current, we can express the maximum differential current as a percentage of winding current:

$$(1+e)-\frac{(1-e)}{(1+a)} = \frac{2 \cdot e + a + e \cdot a}{1+a} \cdot 100\% = 28.18\%$$

In addition to the error calculated above, we have to consider additional errors from transformer excitation current (\approx 3 percent) and relay measurement error (\leq 5 percent). The maximum total error comes to 36 percent. Therefore, if we use only one slope, a conservative slope setting, SLP1, is about 40 percent. This represents a fixed percentage differential application and is a good average setting to cover the entire current range.

A two-slope, or variable-percentage differential application, improves sensitivity in the region where CT error is small and increases security in the high-current region where CT error is great. We must define both slopes, as well as the slope 1 limit or crossover point, IRS1. If we assume CT error to be only 1 percent, we can set SLP1 at about 25 percent. A good choice for IRS1 is about 3.0 per unit of tap, while the SLP2 setting should probably be in the 50 percent to 60 percent range to avoid problems with CT saturation at high currents. A 60 percent SLP2 setting covers CT error up to 20 percent.

Unrestrained Element Current Pickup

The instantaneous unrestrained current element is intended to react quickly to very heavy current levels that clearly indicate an internal fault. Set the pickup level (U87P) to about 10 times TAP. The unrestrained differential element only responds to the fundamental frequency component of the differential operating current. It is not affected by the SLP1, SLP2, IRS1, PCT2, PCT5, or IHBL settings. Thus, it must be set high enough so that it does not react to large inrush currents.

Note: U87P must be set lower than $31 \cdot I_{nom}/TAP_{max}$, where TAP_{max} is the largest of the TAP settings.

Second-Harmonic Blocking

Transformer simulations show that magnetizing inrush current usually yields more than 30 percent of IF2/IF1 in the first cycle of the inrush. A setting (PCT2) of 15 percent usually provides a margin for security. However, some types of transformers, or the presence within the differential zone of equipment that draws a fundamental current of its own, may require setting the threshold as low as 7 percent. For example, the additional fundamental frequency charging current of a long cable run on the transformer secondary terminals could "dilute" the level of second harmonic seen at the primary to less than 15 percent.

Fourth-Harmonic Blocking

Transformer magnetizing inrush currents are generated during transformer energization when the current contains a dc offset caused by point-on-wave switching. Inrush conditions typically are detected using even harmonics and are used to prevent misoperations caused by inrush. The largest even-harmonic current component is usually second harmonic followed by fourth harmonic. Use fourth-harmonic blocking to provide additional security against inrush conditions; set PCT4 less than PCT2.

Fifth-Harmonic Blocking

Fourier analysis of transformer currents during overexcitation indicates that a 35 percent fifth-harmonic setting is adequate to block the percentage differential element. To disable fifth-harmonic blocking, set PCT5 to OFF.

You may use the presence of fifth-harmonic differential current to assert an alarm output during startup. This alarm indicates that the rated transformer excitation current is exceeded. At full load, a TH5P setting of 0.1 corresponds to 10 percent of the fundamental current. A delay, TH5D, that can be set by the user prevents the relay from indicating transient presence of fifth-harmonic currents.

You may consider triggering an event report if transformer excitation current exceeds the fifth-harmonic threshold.

There are two criteria for setting TH5P:

- TH5P TAP_{MIN} $\geq 0.05 I_{nom}$, and
- TH5P TAP_{MAX} $\leq 31 I_{nom}$

where TAP_{MIN} and TAP_{MAX} are the least and greatest of the tap settings.

Independent Harmonic Blocking Element (IHBL)

When a three-phase transformer is energized, inrush harmonics are present in at least two phase currents. In traditional single-phase relays, each relay performs a comparison of the harmonic current flowing through its phase. The SEL-387A can perform harmonic blocking two ways:

- Independent Harmonic Blocking (IHBL = Y) blocks the percentage differential element for a particular phase if the harmonic in that phase is above the block threshold. Other differential elements are not blocked.
- Common Harmonic Blocking (IHBL = N) blocks all of the percentage differential elements if any one phase has a harmonic magnitude above the blocking threshold.

Common Harmonic Blocking is a more secure scheme but may slightly delay percentage differential element operation since harmonics in all three phases must drop below their thresholds.

Example of Setting the SEL-387A for a Two-Winding Transformer

In this section we use an example that forms the basis of the default differential settings we entered at the factory before shipping the relay. The example represents a typical two-winding transformer application and demonstrates the use of CT compensation settings and tap calculations.

Consider a wye-wye connected transformer with both windings grounded. The transformer primary and secondary have a maximum rating of 100 MVA, and both windings have wye-connected current transformers, with ratios of 600/5 A at 230 kV and 1200/5 A at 138 kV.

1. Set the appropriate enable. Because we need to enable the differential element, make the first setting as follows:

$$E87 = Y$$

This setting enables Windings 1 and 2.

2. Select settings for the current transformer connection and ratio for each winding. All CTs connect in wye. The ratios are equal to primary current divided by secondary current. The settings are as follows:

230 k	\overline{V}		<u>138 kV</u>	
W1CT	=	Y	W2CT =	Y
CTR1	=	120	CTR2 =	240

3. Set the transformer maximum rating. We use this rating for all windings in the later tap calculation:

$$MVA = 100$$

4. Decide whether to use internal CT compensation and determine compensation settings. Because there are only wye transformer windings and only wye CTs, we need not adjust for the delta phase angle shifts. In the "traditional" differential relay connection, the wye transformer windings would have their CTs connected in delta (DAC/DAC, for example) to remove the zero-sequence current component by physically subtracting the appropriate phase currents via the delta connection. We achieve the same effect within the relay by using the selected compensation. The settings are:

The relay will multiply the wye CT currents from the wye transformer windings by the matrix [CTC(11)] to give the same results as the physical DAC CT connection.

5. Enter winding line-to-line voltages. The relay needs these voltages for the tap calculation. Voltages are in units of kV. For this example we enter the following values:

$$VWDG1 = 230 VWDG2 = 138$$

The relay now calculates each tap current, using the formula stated previously:

$$TAPn = \frac{MVA \cdot 1000}{\sqrt{3} \cdot VWDGn \cdot CTRn} \cdot C \qquad (C = 1 \text{ for wye CTs})$$

Thus, we have the following:

$$TAP 1 = \frac{100 \text{ MVA} \cdot 1000}{\sqrt{3} \cdot 230 \text{ kV} \cdot 120} \cdot 1 \qquad TAP 1 = 2.09 \text{ A}$$

TAP 2 =
$$\frac{100 \text{ MVA} \cdot 1000}{\sqrt{3} \cdot 138 \text{ kV} \cdot 240} \cdot 1$$
 TAP2 = 1.74 A

The relay calculates these taps automatically if MVA is given. If MVA is set to OFF, the user must calculate the taps and enter them individually.

The relay will check to see if a violation of the maximum tap ratio has occurred, and will notify the user of the violation. That is, it will divide the greatest TAPn, in this case 2.09, by the least TAPn, here 1.74, to get a ratio of 1.2. Because this is below 7.5, adjustment of the CT ratio is unnecessary.

6. Set the differential element characteristic. Select the settings according to our suggestions in the earlier setting descriptions. For this example, we have selected a two-slope, variable-percentage differential characteristic for maximum sensitivity at low

currents and greater tolerance for CT saturation on external high-current faults. The settings are as follows:

O87P	=	0.3	(Operate current pickup in multiple of tap)
SLP1	=	25	(25 percent initial slope)
SLP2	=	50	(50 percent second slope)
IRS1	=	3.0	(limit of slope 1, Restraint current in multiple of tap)
U87P	=	10	(unrestrained differential Operate current level, multiple of
			tap)
PCT2	=	15	(block operation if second harmonic is above 15 percent)
PCT4	=	15	(block operation if fourth harmonic is above 15 percent)
PCT5	=	35	(block operation if fifth harmonic is above 35 percent)
TH5P	=	OFF	(no fifth-harmonic alarm)
DCRB	=	N	(dc ratio blocking disabled)
HRSTR	=	N	(harmonic restraint disabled)
IHBL	=	N	(no independent element blocking; any unit detecting
			second, fourth, or fifth harmonic above PCT2, PCT4, or
			PCT5 will block all units)

Remember that the O87P setting must yield an operating current value of at least $0.1 \cdot I_N$, at the least tap. In this case O87P_{MIN} = $(0.1 \cdot I_N)/TAP_{MIN} = 0.5/1.74 = 0.287$. Therefore, the O87P setting of 0.3 is valid.

The differential unit settings are complete for this specific application. At this point you can also choose to set backup overcurrent elements, which we discuss at the end of this section.

Application Guideline

It is vital that you select adequate current transformers for a transformer differential application. Use the following procedure, based on ANSI/IEEE Standard C37.110: 1996, *IEEE Guide for the Application of Current Transformers Used for Protective Relaying Purposes*.

CT Arrangements

Use separate relay restraint circuits for each power source to the relay. In the SEL-387A you may apply two restraint inputs to the relay. You may connect CT secondary windings in parallel only if both circuits meet the following criteria:

- They are connected at the same voltage level.
- Both have CTs that are matched in ratio, C voltage ratings, and core dimensions.

CT Sizing

Sizing a CT to avoid saturation for the maximum asymmetrical fault current is ideal but not always possible. Such sizing requires CTs with C voltage ratings greater than (1 + X/R) times the burden voltage for the maximum symmetrical fault current, where X/R is the reactance-to-resistance ratio of the primary system.

As a rule of thumb, CT performance will be satisfactory if the CT secondary maximum symmetrical external fault current multiplied by the total secondary burden in ohms is less than half of the C voltage rating of the CT. The following CT selection procedure uses this second guideline.

CT Ratio Selection for a Multiwinding Transformer

- 1. Determine the secondary side burdens in ohms for all current transformers connected to the relay.
- 2. Select the CT ratio for the highest-rated winding (e.g., CTR1) by considering the maximum continuous secondary current, I_{HS} , based on the highest MVA rating of the transformer. For wye-connected CTs, the relay current, I_{REL} , equals I_{HS} . For delta-connected CTs, I_{REL} equals $\sqrt{3} \cdot I_{HS}$. Select the nearest standard ratio such that I_{REL} is between $0.1 \cdot I_{N}$ and $1.0 \cdot I_{N}$ A secondary, where I_{N} is the relay nominal secondary current, 1 A or 5 A.
- 3. Select CTR2 by considering the maximum continuous secondary current, I_{LS} , for Winding 2. Typically, the CT ratio is based on the rated maximum MVA of the particular winding. If this rating is much smaller than the rating of the largest winding, you may violate the tap ratio limit for the SEL-387A (see steps 4 and 5). As before, for wye-connected CTs I_{REL} equals I_{LS} . For delta-connected CTs I_{REL} equals $\sqrt{3} \cdot I_{LS}$. Select the nearest standard ratio such that I_{REL} is between 0.1 \cdot I_{N} and 1.0 \cdot I_{N} A secondary.
- 4. The SEL-387A calculates settings TAP1 and TAP2 if the ratio TAP_{MAX}/TAP_{MIN} is less than or equal to 7.5. When the relay calculates the tap settings, it reduces CT mismatch to less than 1 percent. Allowable tap settings are in the range $(0.1-31) \cdot I_{N}$.
- 5. If the ratio TAP_{MAX}/TAP_{MIN} is greater than 7.5, select a different CT ratio to meet the above conditions. You can often do this by selecting a higher CT ratio for the smaller rated winding, but you may need to apply auxiliary CTs to achieve the required ratio. Repeat steps 2 through 5.
- 6. Calculate the maximum symmetrical fault current for an external fault, and verify that the CT secondary currents do not exceed your utility standard maximum allowed CT current, typically 20 I_N. If necessary, reselect the CT ratios and repeat steps 2 through 6.
- 7. For each CT, multiply the burdens calculated in step 1 by the magnitude, in secondary amperes, of the expected maximum symmetrical fault current for an external fault. Select a nominal accuracy class voltage for each CT that is greater than twice the calculated voltage. If necessary, select a higher CT ratio to meet this requirement, then repeat steps 2 through 7. This selection criterion helps reduce the likelihood of CT saturation for a fully offset fault current signal.

Please note that the effective C voltage rating of a CT is lower than the nameplate rating if a tap other than the maximum is used. Derate the CT C voltage rating by a factor of ratio used/ratio max.

RESTRICTED EARTH FAULT ELEMENTS

Application Description

The SEL-387A provides two separate Restricted Earth Fault (REF) elements. Use the REF element to provide sensitive protection against ground faults in your wye-connected transformer winding. The element is "restricted" in the sense that protection is restricted to ground faults within a zone defined by neutral and line CT placement.

Operating Characteristic

REF protection is a technique for sensitive detection of ground faults in a grounded wye-connected transformer winding. Because it employs a neutral CT at one end of the winding and the normal set of three CTs at the line end of the winding, REF protection can detect only ground faults within that particular wye-connected winding. For the REF to function, the line-end CTs must also be connected in wye, because the technique uses comparison of zero-sequence currents. Delta-connected CTs cancel out all zero-sequence components of the currents, eliminating one of the quantities the REF element needs for comparison.

The REF implementation in the SEL-387A uses a directional element (32I) that compares the direction of an operating current, derived from the line-end CTs, with the polarizing current, obtained from the neutral CT. A zero-sequence current threshold and positive-sequence restraint supervise tripping. Because the SEL-387A has two REF elements, you can apply separate elements to each of the wye windings of a wye-wye-connected transformer. The neutral CT connects to one of the relay inputs (wye-delta no grounding bank), or two relay inputs (wye-wye or wye-delta with grounding bank). The three current inputs are labeled IN1, IN2, and IN3.

Figure 3.11 shows the REF simplified enable/block logic. The topmost part of this logic is a blocking function. This function asserts if any of the winding residual currents used in the REF function are less than a positive-sequence current restraint factor, a0, times the positive-sequence current for the respective winding. Such a winding residual current value might occur with "false I0" or if zero-sequence current for that winding exceeds 50GPn. False I0 can occur in cases of CT saturation during heavy three-phase faults. If the blocking logic asserts, the CTSn Relay Word bit asserts. To prevent 32IEn assertion when CTSn asserts, set the E32I setting = !CTS.

The middle group determines whether to enable the REF directional element by assertion of the 32IE Relay Word bit. The two enabling quantities are assertion of the E32I equation and a magnitude of the neutral CT secondary current (INn) greater than the pickup setting, 50GPn. The lower logic group adjusts the winding residual currents to a common sensitivity level with the neutral CT, calculates a phasor sum of the appropriate currents, and compares this sum to the 50GPn pickup value. If the sum is greater than the pickup level, Relay Word bit 50GCn asserts. This bit indicates that the winding currents are present in sufficient magnitude.

Figure 3.11: REF Enable/Block Logic

Figure 3.12 illustrates the logic of the REF directional element.

Figure 3.12: REF Directional Element

The relay enables the 32I directional element, RE(Iop • Ipol*), if the output of the AND gate at left-center in Figure 3.12 asserts. This will occur if the two Relay Word bits 32IE and 50GCn assert.

The directional element compares the polarizing current (from INn) to the operating current (from IRW1 or IRW2) and indicates forward (internal) fault location or reverse (external) fault location. The internal/forward indication occurs if the fault is within the protected winding, between the line-end CTs and the neutral CT. The relay multiplies each current by the appropriate CT ratio to convert input currents to actual primary amps.

The polarizing current, IPOL, is simply the neutral CT current multiplied by the neutral CT ratio, CTRNn, to produce a primary current value. The operating current, IOP, is the phasor sum of the winding residual currents, also on a primary basis. The 32IOPn setting determines the appropriate IRWn, which the relay multiplies by the associated CTRn. The relay then sums the products. The 32In element calculates the real part of IOP times IPOL* (IPOL complex conjugate). This equates to IIOPl times IIPOLI times the cosine of the angle between them. The result is positive if the angle is within ±90 degrees, indicating a forward or internal fault. The result is negative if the angle is greater than +90 or less than –90 degrees, indicating a reverse or external fault. The relay compares the output of the 32I element to positive and negative thresholds, to ensure security for very small currents or for an angle very near +90 or –90 degrees. If the 32I output exceeds the threshold test, it then must persist for at least 1.5 cycles before the Relay Word bit 32IFn (forward) or 32IRn (reverse) asserts. Assertion of 32IFn constitutes a decision to trip by the REF function.

A second path can also assert the 32IFn bit. This path comes from the AND gate at the top-right of Figure 3.12. The gate asserts if 32IEn is asserted. This assertion indicates that neutral current is above pickup but 50GCn is not asserted, indicating no line-end current flow. This logic covers the situation of an internal wye-winding fault with the line-end breaker open.

You can perform tripping directly by inclusion of the Relay Word bit 32IFn into one or more of the trip variables, TR1 to TR5, as appropriate. If you want additional security, the relay is programmed to use 32IFn to torque control an inverse-time curve for delayed tripping, as discussed below. Figure 3.13 shows the output of the REF protection function. Timing is on an extremely inverse-time overcurrent curve (curve U4) at the lowest time-dial setting (0.5) and with 50GPn as the pickup setting.

Figure 3.13: REF Protection Output (Extremely Inverse-Time O/C)

Relay Word bit 32IFn (forward fault) torque controls the timing curve, and IINnl operates the timing function. The curve resets in one cycle if current drops below pickup or if 32IFn deasserts. When the curve times out, Relay Word bit REFPn asserts. You can use this bit directly as an input to the appropriate trip variables, TRn, to trip the breaker or breakers that feed the fault.

Setting Descriptions

REF Directional Element Enable (E3211, E3212)

Range: SELOGIC® control equation

The setting E32In is a SELOGIC control equation setting that uses Relay Word bits to define the conditions under which the relay will enable REF. A logical state of 1 for this control equation enables the other REF settings and satisfies one of the conditions the REF element needs to activate. A logical state of 0 for this control equation disables the other REF settings; the relay hides these settings, and they are unavailable for use.

Operating Quantity from W1, W2 (3210P1, 3210P2)

Range: 1, 2, 12

The setting 32IOPn tells the relay which winding or combination of windings it should use in calculating residual current, which acts as the Operate quantity for the directional element.

Positive-Sequence Current Restraint Factor, IO/I1 (a01, a02)

Range: 0.02–0.50, in 0.01 steps

For the relay to enable REF, the zero-sequence current at Winding n must be greater than a0 times the positive-sequence current at that input, or |I0Wn| > a0n•|I1Wn|. This supervision provides security against "false I0" that may occur because of CT saturation during heavy three-phase faults.

Residual Current Sensitivity Threshold (50GP1, 50GP2)

Range: 1 A: 0.05–3 A, in 0.01 A steps

5 A: 0.25–15.00 A, in 0.01 A steps

You can set the residual current sensitivity threshold to as low as 0.05 • Inom (0.25 A for 5 A nominal CT current), the minimum residual current sensitivity of the relay. However, the minimum acceptable value of 50GPn must meet two criteria:

- 1. 50GPn must be greater than any natural 3I0 imbalance caused by load conditions.
- 2. 50GPn must be greater than a minimum value determined by the relationship of the CTRn values used in the REF function.

You must set the threshold setting, 50GPn, at the greater of the two criteria values. Determine criterion 1 for load imbalance. The second criterion relates to the relative sensitivity of the winding CTs compared to the neutral CT.

Setting Calculation

Operating and Polarizing Quantities

The polarizing quantities are assigned in the following manner: IN1 for REF1, IN2 for REF2. IN3 is never assigned to an REF element, but all overcurrent functions are available.

The operating quantities are selected as a function of the transformer vector group and can be 1, 2, or 12.

Figure 3.14 depicts how to determine the Operate quantity, 32IOPn, setting.

Figure 3.14: REF Function, 32IOP Setting Guide

If you want to protect a single wye winding in, for example, a delta-wye transformer, set 32IOPn at 1 or 2, which is the number of the relay winding input associated with the line-end CTs of the protected winding. The relay uses residual current from that single winding input as the Operate quantity. Figure 3.14 shows neutral CT input connected to INn input of the relay, as it must be for every case where REF protection is to be used.

If you want to protect an autotransformer, set 32IOP at 12 and connect the primary and secondary side CTs to relay winding Inputs 1 and 2. You could also use this setting for the single winding mentioned above, if that winding had two breakers and two sets of CTs at the line end. You would also have to connect these CTs to winding Inputs 1 and 2. Such a connection would be typical in ring-bus or breaker-and-a-half configurations. With 32IOP set at 12, the relay sums the residual currents from the Winding 1 and Winding 2 inputs to create the Operate quantity.

Calculation of the residual current at each relay winding input is as follows:

$$IRWn = IAWn + IBWn + ICWn$$
 (n = 1 or 2)

For the neutral CT connection, the relay uses one dedicated input (e.g., IN2) and not the sum of the three neutral inputs.

Residual Current Sensitivity Threshold

The second criterion of 50GPn relates to the relative sensitivity of the winding CTs compared to the neutral CT. Use the following equation to determine the minimum second criterion for 50GPn:

$$50 \text{ GP min} \ge 0.05 \cdot I_{\text{nom}} \cdot \frac{\text{CTR max}}{\text{CTRNn}}$$

where CTRNn is the neutral CT ratio and CTRmax is the line CT ratio.

The 32IOP setting defines which line CTs the relay uses for REF. For example, if 32IOP = 1, the CTR1 value applies.

An example 50GP1 calculation is as follows, assuming that CTRN1 = 40, CTRmax = 160, $I_{nom} = 5$ A, and load imbalance is 10 percent:

$$50 \text{ GP min} \ge 0.05 \cdot 5 \text{ A} \cdot \frac{160}{40}$$

 $50 \text{ GP min} \ge 0.25 \text{ A} \cdot 4$
 $50 \text{ GP min} \ge 1.0 \text{ A}$

Criterion 2 minimum setting of 50GPn is 1.0 A. With a 10 percent load imbalance, we can assume the criterion 1 value to be 0.1 • 5 A, or 0.5 A. Because 50GPn must be set at the greater of the two criteria values, we would select a setting of 1.0 A.

If you attempt to save a 50GPn setting that is too low, the relay will respond "Out of Range." The relay then will prompt you for a new setting.

The relay stores a default setting for the Residual Current Sensitivity Threshold of 50GPn = 0.5 A.

TEMPERATURE MEASUREMENT

For temperature measurement purposes, the SEL-387 accepts RTD inputs from the SEL-2600 RTD Module via any one of the serial ports. Set the RTD enable and the RTD alarm and trip settings under group settings. Set the RTD configuration under the port settings. A discussion of these settings follows.

RTD Enable (E49A, E49B)

Range: Y, N

The relay can accept 12 RTD inputs from each of two SEL-2600s (total of 24 RTD inputs). The two groups of RTD inputs are labeled "49A" and "49B," respectively.

RTD Alarm and Trip Settings (49A01A-49T12A and 49A01B-49T12B)

Range: OFF, 32–482°F; OFF, 0–250°C

Set the temperature value for alarm and trip operations.

The relay can accept 12 RTD inputs from each of two SEL-2600s (total of 24 RTD inputs). Configure the SEL-387A and SEL-2600 communication with the port setting **SET P N** (n = 1, 2, 3, or 4).

Temperature Preference (TMPREFA, TMPREFB)

Range: C, F

Located under the Global settings, TMPREFA, TMPREFB select the preferred temperature units: C for Celsius or F for Fahrenheit. The relay automatically recalculates all 49-element temperature values.

Note: The SEL-387A can report a different RTD alarm or trip temperature than the temperature you entered for settings 49A01A–49T12A and 49A01B–49T12B. The relay rounds digits after the decimal point, processes the rounded values, and reports temperature in unit-precision (e.g., 25, 72). The rounded result can differ from the temperature setting especially when settings TMPREFA or TMPREFB are F (Fahrenheit). The relay converts Fahrenheit scale settings to the Celsius scale for processing, and then reconverts these temperatures to the Fahrenheit scale for reporting. For example, if setting 49A01A is 101°F, the relay reports 100°F.

$$\frac{\text{Setting } 49 \text{ A } 01 \text{ A} \circ \text{F} - 32^{\circ}}{1.8} = \frac{101^{\circ} \text{ F} - 32^{\circ}}{1.8} = 38.3^{\circ} \text{C internal relay processing}$$

temperature, rounded to 38° C.

 $38^{\circ}\text{C} \cdot 1.8 + 32^{\circ} = 100.4^{\circ}\text{F} = 100^{\circ}\text{F}$ reported temperature, rounded to 100° F.

Protocol Setting (PROTO)

Range: SEL, LMD, RTDA, RTDB, DNP

Select the RTDA or RTDB protocol under the Port settings (SET P n, n = 1-4), to enable communication with the SEL-2600 RTD module.

Number of RTDs in Use (RTDNUMA, RTDNUMB)

Range: 0...12

Enter the number of RTDs to be used for Group A. Group B has a similar setting.

Type of RTDs (RTD1TA-RTD12TA)

Range: NA, PT100, NI100, NI120, CU10

Enter the type of metal: platinum, nickel, or copper. Based on the RTDnTA setting (where n is the RTD number), the data for the specified RTD type will be used to update the associated RTD temperature value.

Type of RTDs (RTD1TB-RTD12TB)

Range: NA, PT100, NI100, NI120, CU10

Enter the type of metal: platinum, nickel, or copper. Based on the RTDnTB setting (where n is the RTD number), the data for the specified RTD type will be used to update the associated RTD temperature value.

OVERCURRENT ELEMENT

Application Description

The SEL-387A provides numerous overcurrent elements, as many as 11 per winding and 5 per neutral input. Four levels of phase instantaneous/definite-time elements are available for overcurrent protection, breaker failure protection, overcurrent phase selection for targeting, transformer backup protection, etc. Two levels of negative-sequence and residual instantaneous elements provide protection against unbalanced conditions and ground faults. A phase, negative-sequence, and residual time-overcurrent element are available for system backup protection. The SEL-387A also has neutral instantaneous/definite-time elements available.

Operating Characteristic

Each winding input of the SEL-387A has 11 overcurrent elements (see Table 3.1). Nine of these 11 are torque-controlled elements, of which there are one definite-time element, one instantaneous element, and one inverse-time element per each of three categories. These categories are phase, negative-sequence, and residual current. Two of the 11 overcurrent elements, 50Pn3 and 50Pn4, are not torque controlled. These two elements are phase instantaneous overcurrent elements that provide output information per phase and, through an

OR gate, assert a Relay Word bit if any one of the three phases asserts. These two elements primarily provide level detection for applications such as trip unlatch logic or phase identification.

Each neutral input has five overcurrent elements. Three of these five are torque-controlled elements: one definite-time element, one instantaneous element, and one inverse-time element. Two of the five overcurrent elements (50NNn3 and 50NNn4) are not torque controlled.

Table 3.1: Overcurrent Element Summary

	Definite- Time Elements	Instantaneous Elements	Inverse- Time Elements
Phase (Ia, Ib, and Ic) Winding 1 Winding 2	50P11	50P12, 50P13, 50P14	51P1
	50P21	50P22, 50P23, 50P24	51P2
Negative-Sequence ($IQ = 3 \cdot I_2$) Winding 1 Winding 2	50Q11	50Q12	51Q1
	50Q21	50Q22	51Q2
Residual (IR = Ia + Ib +Ic) Winding 1 Winding 2	50N11	50N12	51N1
	50N21	50N22	51N2
Neutral Elements Element 1 Element 2 Element 3	50NN11	50NN12, 50NN13, 50NN14	51NN1
	50NN21	50NN22, 50NN23, 50NN24	51NN2
	50NN31	50NN32, 50NN33, 50NN34	51NN3

50Pn1 - Phase Definite-Time Element

Figure 3.15 shows the logic for the 50Pn1 element. The logic compares the magnitudes of phase input currents IAWn, IBWn, and ICWn to pickup setting 50Pn1P. If one or more current magnitudes exceed the pickup level, a logic 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation 50Pn1TC determines the other AND input. If 50Pn1TC is true, Relay Word bit 50Pn1 asserts and starts the timer. After the time specified by delay setting 50Pn1D expires, a second Relay Word bit, 50Pn1T, asserts. This bit asserts only if the 50Pn1 bit remains asserted for the duration of 50Pn1D. When 50Pn1 deasserts, the timer resets without delay, along with 50Pn1T if it has asserted.

Figure 3.15: 50Pn1 Phase Definite-Time O/C Element, Torque Controlled

50Pn2 - Phase Instantaneous Element

Figure 3.16 shows the logic for the 50Pn2 element. The 50Pn2 element logic compares magnitudes of phase input currents IAWn, IBWn, and ICWn to pickup setting 50Pn2P. If one or more current magnitudes exceed the pickup level, a logic 1 asserts at one input to the AND gate. The torque-control SELOGIC control equation 50Pn2TC determines the other AND input. If 50Pn2TC is true, Relay Word bit 50Pn2 asserts.

Figure 3.16: 50Pn2 Phase Instantaneous O/C Element, Torque Controlled

50Pn3 and 50Pn4 - Phase Instantaneous Element

Figure 3.17 shows the logic for the two nontorque-controlled phase instantaneous elements. The two elements find application primarily in level detection or phase identification. The logic compares magnitudes of phase input currents IAWn, IBWn, and ICWn to pickup setting 50Pn3P(4P). Any phase current exceeding the pickup level will assert the appropriate phase-specific Relay Word bit, 50An3(4), 50Bn3(4), or 50Cn3(4). These bits enter an OR gate to assert Relay Word bit 50Pn3(4), indicating "any phase" pickup.

Figure 3.17: 50Pn3 and 50Pn4 Phase Instantaneous O/C Element, Nontorque Controlled

51Pn - Phase Inverse-Time Element

Figure 3.18 shows the logic for the 51Pn element. The logic compares the magnitudes of phase input currents IAWn, IBWn, and ICWn to pickup setting 51PnP. If one or more current magnitudes exceed the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation 51PnTC determines the other AND input. If 51PnTC is true, Relay Word bit 51Pn asserts and the inverse curve begins timing.

Figure 3.18: 51Pn Phase Inverse-Time O/C Element, Torque Controlled

Four settings define an inverse-time curve: the pickup setting, 51PnP, acts as a horizontal scaling factor, because the curve formula uses current multiple of pickup as an input; the curve setting, 51PnC, defines the particular curve equation, of which there are 10 (five U.S. and five IEC); the time-dial setting, 51PnTD, defines the time dial, which scales the curve in a vertical direction to vary the output timing for a given multiple of pickup; and the reset setting, 51PnRS, defines whether the curve resets slowly like an electromechanical disk or instantaneously when current drops below pickup. The phase inverse-time curve looks at all three phase current magnitudes and times on the basis of the greatest current of the three. It updates this maximum phase current selection every quarter-cycle.

If the curve times out, Relay Word bit 51PnT asserts. When all phase currents drop below pickup, with or without a curve time-out, 51Pn deasserts and the element resets according to setting 51PnRS. At the completion of the reset, Relay Word bit 51PnR asserts. This bit normally will be at logic state 1, when the element is at rest during normal system operation. Use the **TAR** command via a serial port or the front panel to verify the state of this bit. You can use the Level 2 serial port command **RES** or the front-panel RESET51 function under the OTHER button to force this bit to logical 1 during element testing. This saves time if you have chosen electromechanical reset.

50Qn1 and 50Nn1 - Sequence Current Definite-Time Element Logic

Figure 3.19 shows the logic for the definite-time 50Qn1 negative-sequence element and the definite-time 50Nn1 residual element.

Figure 3.19: 50Qn1 and 50Nn1 Sequence Definite-Time O/C Element, Torque Controlled

50Qn1 Negative-Sequence Definite-Time Element

The 50Qn1 element logic compares the magnitude of calculated negative-sequence current 3I2Wn to pickup setting 50Qn1P. If the calculated negative-sequence current magnitude exceeds the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation, 50Qn1TC, determines the other AND input. If 50Qn1TC is true, Relay Word bit 50Qn1 asserts and the timer starts. After the time specified by delay setting 50Qn1D has expired, a second Relay Word bit, 50Qn1T, asserts. The 50Qn1T bit asserts only if the 50Qn1 bit remains asserted for the duration of 50Qn1D. When 50Qn1 deasserts, the timer resets without delay, along with 50Qn1T if it has asserted.

50Nn1 Residual Definite-Time Element

The 50Nn1 element logic compares the magnitude of the calculated residual current, IRWn, to the pickup setting, 50Nn1P. If the calculated residual current magnitude exceeds the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation, 50Nn1TC, determines the other AND input. If 50Nn1TC is true, Relay Word bit 50Nn1 asserts and the timer starts. After the time specified by delay setting 50Nn1D has expired, a second Relay Word bit, 50Nn1T, asserts. The 50Nn1T bit asserts only if the 50Nn1 bit remains asserted for the duration of 50Nn1D. When 50Nn1 deasserts, the timer resets without delay, along with 50Nn1T if it has asserted.

50Qn2 and 50Nn2 - Sequence Instantaneous Element Logic

Figure 3.20 shows the logic for the instantaneous 50Qn2 negative-sequence element and the instantaneous 50Nn2 residual element

Figure 3.20: 50Qn2 and 50Nn2 Sequence Instantaneous O/C Element, Torque Controlled

50Qn2 Negative-Sequence Instantaneous Element

The 50Qn2 element compares the magnitude of the calculated negative-sequence current, 3I2Wn, to the pickup setting, 50Qn2P. If the calculated negative-sequence current exceeds the pickup level, a logical 1 asserts at one input to the AND gate. The torque-control SELOGIC control equation, 50Qn2TC, determines the other AND input. If 50Qn2TC is true, Relay Word bit 50Qn2 asserts.

50Nn2 Residual Instantaneous Element

The 50Nn2 element compares the magnitude of the calculated residual current, IRWn, to the pickup setting, 50Nn2P. If the calculated residual current exceeds the pickup level, a logical 1 asserts at one input to the AND gate. The torque-control SELOGIC control equation, 50Nn2TC, determines the other AND input. If 50Nn2TC is true, Relay Word bit 50Nn2 asserts.

51Qn and 51Nn - Sequence Inverse-Time Elements

Figure 3.21 shows the logic for the inverse-time 51Qn negative-sequence element and the instantaneous 51Nn residual element.

Figure 3.21: 51Qn and 51Nn Sequence Inverse-Time O/C Element, Torque Controlled

51Qn Negative-Sequence Inverse-Time Element

The 51Qn element logic compares the magnitude of the calculated negative-sequence current, 3I2Wn, to the pickup setting, 51QnP. If the calculated negative-sequence current exceeds the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation, 51QnTC, determines the other AND input. If 51QnTC is true, Relay Word bit 51Pn asserts and the inverse curve begins timing.

As with phase inverse-time element logic, four settings define the curve. In this case 51QnP is the pickup, 51QnC defines the curve equation, 51QnTD defines the time dial, and 51QnRS determines how the curve resets.

Curve time-out causes Relay Word bit 51QnT to assert. When the current drops below pickup, 51Qn deasserts and the element resets according to the setting for 51QnRS. At the completion of the reset, Relay Word bit 51QnR asserts. This bit normally is at logic state 1, when the element is at rest during normal system operation. You can use the **TAR** command to verify the state of the bit. You can use the Level 2 serial port command **RES** or the front-panel RESET51 function

under the OTHER button to force the bit to a logical 1 during element testing. This saves time if you have chosen electromechanical reset.

51Nn Residual Inverse-Time Element

The 51Nn element compares the magnitude of the calculated residual current, IRWn, to the pickup setting, 51NnP. If calculated residual current exceeds the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation, 51NnTC, determines the other AND input. If 51NnTC is true, Relay Word bit 51Nn asserts and the inverse curve begins timing.

The settings defining the curve in this case are 51NnP for the pickup setting, 51NnC for the particular curve equation, 51NnTD for the time dial, and 51NnRS for the curve reset.

Curve time-out causes Relay Word bit 51NnT to assert. When the current drops below pickup, 51Nn deasserts and the element resets according to the setting for 51NnRS. At the completion of the reset, Relay Word bit 51NnR asserts. This bit normally is at logic state 1, when the element is at rest during normal system operation. You can use the **TAR** command to verify the state of the bit. You can use the Level 2 serial port command **RES** or the front-panel RESET51 function under the OTHER button to force the bit to a logical 1 during element testing.

50NNn1 - Neutral Definite Time Element (Torque Controlled)

The 50NNn1 element logic compares the magnitude of the neutral current, INn, to the pickup setting, 50NNn1P.

Figure 3.22: 50NNn1 Neutral Definite Time O/C Element, Torque Controlled

If the neutral current magnitude exceeds the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation 50NNn1TC, determines the other AND input. If 50NNn1TC is true, Relay Word bit 50NNn1 asserts and the timer starts. After the time specified by delay setting 50NNn1D has expired, a second Relay Word bit, 50NNn1T, asserts. The 50NNnT bit asserts only if the 50NNn1 bit remains asserted for the duration of 50NNn1D. When 50NNn1 deasserts, the timer resets without delay, along with 50NNn1T if it has asserted.

50NNn2 - Neutral Instantaneous Element (Torque Controlled)

The logic compares magnitudes of neutral currents INn to pickup setting 50NNn2P. The torque-control SELOGIC control equation 50NNn2TC determines the other AND input. If 50NNn2TC is true, Relay Word bit 50NNn2 asserts. When INn falls below the 50NNn2P setting, Relay Word bit 50NNn2 resets without delay.

Figure 3.23: 50NNn2 Neutral Instantaneous O/C Element, Torque Controlled

50NNnm - Neutral Instantaneous Element

Figure 3.24 shows the logic for the two nontorque-controlled neutral instantaneous elements. The two elements find application primarily in level detection. The logic compares magnitudes of phase input currents INn to pickup setting 50NNnm. These bits are independent, assert Relay Word bits 50NNnm, and can be used as indication of neutral current flow.

Figure 3.24: 50NNnm Neutral Instantaneous O/C Element

51NNn Neutral Inverse-Time Elements (Torque Controlled)

Figure 3.25 shows the logic for the inverse-time 51NNn neutral element.

Figure 3.25: 51NNn Neutral Inverse-Time O/C Element, Torque Controlled

The 51NNn element logic compares the magnitude of the neutral current, INn, to the pickup setting, 51NNnP. If the calculated current exceeds the pickup level, a logical 1 asserts at one input to the AND gate at the center. The torque-control SELOGIC control equation 51NNnTC determines the other AND input. If 51NNnTC is true, Relay Word bit 51NNn asserts and the inverse curve begins timing.

As with phase inverse-time element logic, four settings define the curve. In this case 51NNnP is the pickup, 51NNnC defines the curve equation, 51NNnTD defines the time dial, and 51NNnRS determines how the curve resets.

Curve timeout causes Relay Word bit 51NNnT to assert. When the current drops below pickup, 51NNn deasserts and the element resets according to the setting for 51NNnRS. At the completion of the reset, Relay Word bit 51NNnR asserts. This bit normally is at logic state 1, when the element is at rest during normal system operation. You can use the **TAR** command to verify the state of the bit. You can use the Level 2 serial port command **RES** or the front-panel RESET51 function under the OTHER button to force the bit to a logical 1 during element testing. This saves time if you have chosen electromechanical reset.

Setting Descriptions

This subsection contains setting names, setting ranges, and labels for the overcurrent elements associated with Winding 1. Winding 2 and the neutral overcurrent element settings have similar names and labels. Both windings have identical setting ranges.

Note: n = Winding 1 or 2; m = Level 1, 2, 3, or 4; a = 1, 2, or 3.

Winding n Overcurrent Element and Demand Threshold Enables (EOCn)

Range: Y, N

Set EOC1 = Y to enable overcurrent elements and demand thresholds for Winding 1. The operation is identical for Winding 2. The relay default is for both winding overcurrent elements and demand thresholds to be enabled.

Neutral Overcurrent Elements Enable (EOCN)

Range: Y, N

Set EOCN = Y to enable the neutral overcurrent elements for all three inputs.

Instantaneous and Definite-Time Element Pickups (50PnmP, 50QnmP, 50NnmP, 50NNamP)

Range: 1 A: OFF, (0.05–20), A secondary, in 0.01 A steps

5 A: OFF, (0.25–100), A secondary, in 0.01 A steps

Set pickups for the current level above which you want the elements to assert. As the name of the instantaneous elements suggests, assertion occurs almost immediately after current exceeds the threshold you specify. A definite-time element asserts only after current exceeds the level you specify and after a time delay that you specify with the definite-time delay setting.

Definite-Time Element Delays (50Pn1D, 50Qn1D, 50Nn1D, 50Nna1D)

Range: 0–16000 cycles, in 0.25-cycle steps

Select a time in cycles that you want definite-time elements to wait before asserting.

Inverse-Time Element Pickups (51PnP, 51QnP, 51NnP, 51NNaP)

Range: 1 A: OFF, (0.1–3.2), A secondary, in 0.01 A steps

5 A: OFF, (0.5–16), A secondary, in 0.01 A steps

The pickup setting acts as a horizontal scaling factor for an inverse-time curve, because the curve formula uses current multiple of pickup as an input.

Set pickups, and the following three settings defining the time overcurrent curve, to fit the practices of your organization, coordinate with upstream and downstream devices such as fuses and motors, and accommodate transient and fault conditions.

Curve Shape Settings (51PnC, 51QnC, 51NnC, 51NNaC)

Range: U1, U2, U3, U4, U5

C1, C2, C3, C4, C5

This setting defines a particular curve equation for an inverse-time curve from among five U.S. (U1-U5) and five IEC (C1-C5) curves.

Time-Dial Settings (51PnTD, 51QnTD, 51NnTD, 51NNaTD)

Range: US 0.5–15, IEC 0.05–1, in 0.01 steps

The time-dial setting acts to scale an inverse-time curve vertically, to vary the output timing for a given multiple of pickup.

Electromechanical Reset Settings (51PnRS, 51QnRS, 51NnRS, 51NNaRS)

Range: Y, N

This setting defines whether an inverse-time curve emulates an electromechanical disk and resets slowly or instantaneously when current drops below pickup. A setting of Y causes the relay to emulate an electromechanical disk. A setting of N causes full reset of the time-overcurrent element one cycle after current drops below the element pickup setting.

Torque-Control Settings (50PnmTC, 50QnmTC, 50NnmTC, 51PnTC, 51QnTC, 51NnTC, 50NNmaTC, 51NNaTC)

Range: SELOGIC control equation

The torque-control setting is an enable setting for which you have three options: a setting of logical 0 disables the associated definite-time element, a logical 1 permits the element to operate, and SELOGIC control equations allow conditional assertion of the element.

Application Guidelines

Transformer Overcurrent Protection

Instantaneous overcurrent elements typically provide high-speed protection for high-current, internal transformer faults and coordinated backup protection for faults on the adjacent bus and/or feeders. You may use inverse-time overcurrent elements to prevent transformer damage because of excessive through currents caused by slow-clearing external faults. Thermal and mechanical damage curves should be available from the transformer manufacturer for specific transformer designs. You can consult several references, including the IEEE C37.91, *Guide for Protective Relay Applications to Power Transformers*, that provide generic through-current limitations for various classes of transformers.

Set the SEL-387A instantaneous overcurrent elements to detect high-current faults within the transformer differential protection zone. Use definite-time and time-overcurrent elements to detect lower current faults inside and outside the transformer differential protection zone. Use appropriate delays to coordinate with upstream and downstream protection.

Conventional instantaneous overcurrent elements must be set sufficiently high to avoid tripping on transformer magnetizing inrush current, where peak currents may be many times the transformer full load current. Transformer magnetizing inrush current contains substantial second-harmonic current and often contains a significant dc component. Unlike conventional electromechanical overcurrent elements, the SEL-387A overcurrent elements ignore all but the fundamental frequency current, making them insensitive to the off-fundamental-frequency content of the magnetizing inrush current. The SEL-387A instantaneous, definite-time, and time-overcurrent elements need only be set with regard to expected load and fault conditions.

Where the SEL-387A is applied to a distribution substation transformer serving load centers, expected load conditions include steady-state load as well as transient conditions caused by hot and cold load pickup.

Hot load pickup inrush occurs when a distribution circuit is energized shortly after being deenergized, such as in a feeder trip-reclose cycle. Hot load pickup inrush current that the SEL-387A may see consists primarily of starting current from motor loads, incandescent and fluorescent lighting load inrush, and resistive heating element inrush. The overall effect is an inrush current several times the normal load current that may last for several seconds.

Cold load pickup inrush occurs when a distribution circuit is energized after being deenergized for a relatively long period of time. The cold load pickup includes many of the same inrush characteristics as hot load pickup but is usually more severe and longer lasting because more thermostatically controlled systems need to satisfy their heating or cooling requirements after the prolonged outage.

For these reasons, overcurrent protection must be tailored to meet the protection requirements for the specific transformer, avoid tripping for various types of nonfault transient conditions, and coordinate with upstream and downstream protection devices. These factors constrain the selection of settings and characteristics for the applied overcurrent protection.

Overcurrent Element Operating Quantities

The SEL-387A phase overcurrent elements respond to the maximum phase current magnitude, Ip, where Ip is the largest value of IIal, IIbl, and IIcl. Set phase overcurrent element pickup settings above the highest expected load current to avoid tripping on normal load current. You may set the pickup lower if you use torque control.

Since you can use the negative-sequence overcurrent elements to detect phase-to-phase faults, you can set the phase overcurrent elements for three-phase fault detection only. This setting selection improves the ratio of the minimum phase fault current to maximum load current required for secure phase overcurrent relay application.

The negative-sequence elements respond to $|3I_2|$ current, where $3I_2 = Ia + Ib \cdot (1\angle 240) + Ic \cdot (1\angle 120)$. For ABC rotation systems, negative-sequence overcurrent elements are uniquely suited to detect phase-to-phase faults and are not sensitive to balanced load.

For a phase-to-phase fault:

$$|I_{2}| = (\sqrt{3}/3) \cdot |I_{P}|$$

$$3 \cdot |I_{2}| = \sqrt{3} \cdot |I_{P}|$$

$$\therefore |3I_{2}| / |I_{P}| = 1.73$$

where Ip is the maximum phase current

Thus, the negative-sequence element is 1.73 times more sensitive to phase-to-phase faults than a phase overcurrent element with the same pickup setting.

While negative-sequence overcurrent elements do not respond to balanced load, they do detect the negative-sequence current present in an unbalanced load. For this reason, select an element pickup setting above the maximum $3I_2$ current expected because of load unbalance.

When applied on the delta side of a delta-wye transformer, negative-sequence relay elements also provide sensitive fault protection for ground faults on the wye side of the transformer. This is not possible using only phase and residual overcurrent elements.

The residual element responds to $3I_0$ current, where $3I_0 = Ia + Ib + Ic$. Residual overcurrent elements detect ground faults and do not respond to balanced load. The residual element is sensitive to unbalanced load, however, and should be set above the maximum $3I_0$ current expected because of load unbalance.

When applied on the delta side of a delta-wye transformer, residual overcurrent elements are insensitive to any type of fault on the wye side of the transformer, and can only detect ground faults on the delta side. This eliminates any coordination constraints with protection devices on the wye side of the transformer, permitting very sensitive residual overcurrent element pickup settings.

Time-Overcurrent Element Settings

The SEL-387A includes time-overcurrent elements for phase, negative-sequence, and residual current. Each element operates using measured current and five settings that define:

- Pickup current, in secondary amperes
- Operating time curve
- Operating time dial
- Element reset characteristic
- Element external torque-control

To disable a time-overcurrent element, set that element pickup setting = OFF. When the pickup setting is OFF, the relay disables the element and you are not required to enter any remaining settings associated with the element.

The residual overcurrent elements are automatically disabled if the CT for the associated winding is connected in delta (WnCT = D). The residual element is disabled because the delta-connected CT cannot deliver any residual operating current.

Time-Overcurrent Pickup

Set the phase time-overcurrent element to provide sensitive detection and coordinated time-overcurrent protection for balanced and unbalanced fault conditions. Use the negative-sequence time-overcurrent element to provide sensitive detection and coordinated time-overcurrent protection for unbalanced fault conditions including phase-to-phase, phase-to-ground, and phase-to-phase-to-ground faults. Set the residual time-overcurrent element to provide sensitive detection and coordinated time-overcurrent protection for phase-to-ground faults.

Time-Overcurrent Curve and Time-Dial

Select the element curve and time-dial settings individually to coordinate with downstream phase, negative-sequence, and residual time-overcurrent elements.

Time-Overcurrent Element Reset Characteristic

You can set the relay time-overcurrent element to emulate an induction disk relay reset characteristic by setting the 51 xnRS (x = P, Q, or N; n = winding number) setting equal to Y. With this setting, the relay emulates the spring-torque-governed disk reset action of an induction time-overcurrent element. Make this setting when the SEL-387A time-overcurrent element must coordinate with upstream electromechanical time-overcurrent relays during trip-reclose cycles.

When you set 51xnRS = N, the relay fully resets the time-overcurrent element one cycle after current drops below the element pickup setting. Make this setting when the relay time-overcurrent element must coordinate with upstream static or microprocessor-based time-overcurrent elements that have fast reset characteristics.

Instantaneous and Definite-Time Overcurrent Elements

The SEL-387A includes instantaneous and definite-time overcurrent elements for phase, negative-sequence, residual current, and neutral elements. There are three separate phase instantaneous elements, which can be used for various tripping or supervisory functions defined by the user. Each element operates using measured current, a pickup setting and, for the definite-time elements, a time delay setting.

Instantaneous and Definite-Time Element Pickup and Time Delay Settings

Use the instantaneous overcurrent elements to provide fast tripping for heavy internal transformer faults. Set the element pickup settings high enough to prevent tripping for faults outside the protection zone. Both definite-time and instantaneous phase overcurrent elements are sensitive to load, but should, based on other setting constraints, be set well above the maximum expected loading.

Use the definite-time delayed overcurrent elements to provide fast backup protection for downstream instantaneous elements. Allow sufficient time delay to coordinate with downstream breakers, reclosers, or other protection.

Overcurrent Element External Torque-Control

The SEL-387A allows you to either enable or block selected overcurrent elements using a SELOGIC control equation. You may wish, for example, to control an overcurrent element using an external contact from a toggle switch, control switch, external directional relay, or recloser. Or, you may wish to use some combination of relay elements to enable or block the overcurrent element. These choices are easily accomplished by creating a SELOGIC control equation that describes what is needed, and storing the equation as the setting for the specific overcurrent element's torque-control variable. For example, to torque control the inverse-time phase overcurrent element for Winding 1, an equation is needed for the setting 51PTC. A few simple possibilities might include:

To enable the element with an external contact input IN104, set 51PTC = IN104.

To block the element with this same input, set 51PTC = !IN104 (i.e., NOT IN104).

To enable the element with IN104, but only if Breaker 2 is open, set 51PTC = IN104*!IN106 (i.e., IN104 AND NOT IN106, where IN106 was previously defined as representing the 52a-2 contact input)

To enable the element continuously (default setting), set 51PTC = 1.

Overcurrent Settings for Example Application

The differential settings for the example transformer application (see Figure 2.8 in *Section 2: Installation*) were defined earlier. Overcurrent settings were chosen to complete the protection settings package.

Before setting of any overcurrent elements can occur, these must be enabled by the configuration settings EOC1 and EOC2, and EOCN for the neutral elements. EOC1, EOC2, and EOCN are set to Y.

For the 230 kV primary winding (Winding 1), three elements are set for overcurrent tripping of the 230 kV Breaker 1. The phase definite-time element, 50P11, is set for 20 A secondary, with a five-cycle trip delay time. The phase and negative-sequence inverse-time elements, 51P1 and 51Q1, are set to pick up at 4 A and 6 A, respectively, both using the U2 or U.S. Inverse curve, on Time-Dial 3, with electromechanical reset characteristics. One of the phase instantaneous elements, 50P13, is set very low at 0.5 A, along with 50P23. These elements are employed in a supervisory mode for the Unlatch Trip function, effectively defining when the breaker has opened by the dropping of phase current below the element setting. The 50P14 phase instantaneous element has been set at 4 A, and is used in an internal supervision function (LED targeting).

For the 138 kV secondary winding (Winding 2), tripping is set for the phase and negative-sequence inverse-time elements, 51P2 and 51Q2. These are set at lower pickup values of 3.5 and 5.25 A secondary, using the same curves as Winding 1, but at a higher Time Dial of 3.5. Tripping is done for the 138 kV Breaker 2. Phase instantaneous elements 50P23 and 50P24 are used for supervision, as with Winding 1, set at 0.5 A and 3.5 A, respectively.

Time Overcurrent Curve Reference Information

tp = operating time in seconds

tr = electromechanical induction-disk emulation reset time in seconds (if electromechanical reset setting is made)

TD = time-dial setting

 $M = applied multiples of pickup current [for operating time (tp), M>1; for reset time (tr), M \le 1]$

U.S. Moderately Inverse Curve: U1

$$tp = TD \bullet \left[0.0226 + \frac{0.0104}{M^{0.02} - 1} \right]$$
$$tr = TD \bullet \left[\frac{1.08}{1 - M^{2}} \right]$$

U.S. Very Inverse Curve: U3

tp = TD •
$$\left[0.0963 + \frac{3.88}{M^2 - 1} \right]$$

tr = TD • $\left[\frac{3.88}{1 - M^2} \right]$

U.S. Short-Time Inverse Curve: U5

$$tp = TD \bullet \left[0.00262 + \frac{0.00342}{M^{0.02} - 1} \right]$$
$$tr = TD \bullet \left[\frac{0.323}{1 - M^2} \right]$$

U.S. Inverse Curve: U2

$$tp = TD \bullet \left[0.180 + \frac{5.95}{M^2 - 1} \right]$$
$$tr = TD \bullet \left[\frac{5.95}{1 - M^2} \right]$$

U.S. Extremely Inverse Curve: U4

$$tp = TD \bullet \left[0.0352 + \frac{5.67}{M^2 - 1} \right]$$
$$tr = TD \bullet \left[\frac{5.67}{1 - M^2} \right]$$

IEC Class A Curve (Standard Inverse): C1

$$tp = TD \bullet \left[\frac{0.14}{M^{0.02} - 1} \right]$$

$$tr = TD \bullet \left[\frac{13.5}{1 - M^2} \right]$$

IEC Class C Curve (Extremely Inverse): C3

$$tp = TD \bullet \left[\frac{80.0}{M^2 - 1} \right]$$

$$tr = TD \bullet \left[\frac{80.0}{1 - M^2} \right]$$

IEC Short-Time Inverse Curve: C5

$$tp = TD \bullet \left[\frac{0.05}{M^{0.04} - 1} \right]$$
$$tr = TD \bullet \left[\frac{4.85}{1 - M^{2}} \right]$$

IEC Class B Curve (Very Inverse): C2

$$tp = TD \bullet \left[\frac{13.5}{M-1} \right]$$

$$tr = TD \bullet \left[\frac{47.3}{1-M^2} \right]$$

IEC Long-Time Inverse Curve: C4

$$tp = TD \bullet \left[\frac{120.0}{M - 1} \right]$$
$$tr = TD \bullet \left[\frac{120.0}{1 - M} \right]$$

Figure 3.26: U.S. Moderately Inverse Curve: U1

Figure 3.27: U.S. Inverse Curve: U2

Figure 3.28: U.S. Very Inverse Curve: U3

Figure 3.29: U.S. Extremely Inverse Curve: U4

Figure 3.30: U.S. Short-Time Inverse Curve: U5

Figure 3.31: IEC Class A Curve (Standard Inverse): C1

Figure 3.32: IEC Class B Curve (Very Inverse): C2

Figure 3.33: IEC Class C Curve (Extremely Inverse): C3

Figure 3.34: IEC Long-Time Inverse Curve: C4

Figure 3.35: IEC Short-Time Inverse Curve: C5

TABLE OF CONTENTS

SECTION 4:	CONTROL LOGIC	4-1
Optoisolate	d Inputs	4-1
	Debounce Timers	
Input F	Functions	4-4
Factory	Settings Examples	4-4
Local Contr	ol Switches	4-4
	ntrol Switches	
	e Bit Application	
	e Bit States Not Retained When Power Is Lost	4-5
	e Bit States Retained When Settings Changed or Active Setting Group nanged	4-5
	tting Groups	
Active	Setting Group Indication	4-6
	ng the Active Setting Group	
	ion of SELOGIC Control Equation Settings SS1 through SS6	
	ion of Serial Port GROUP Command and Front-Panel GROUP Pushbutton	
•	Disabled Momentarily During Active Setting Group Change	
	Setting Group Switching Example	
	Relay Word Bit Asserts During Setting Group Changes	
	Setting Group Retained for Power Loss, Settings Change	
	ote: Make Active Setting Group Switching Settings With Care	
	ontrol Equation Sets (1 through 3) Variables	
	les/Timers	4-12
11	mers Reset When Power Is Lost, Settings Are Changed, or Active Setting Group Is Changed	4 12
Lotob (Control Switches	
	atch Bit Behavior for Power Loss, Settings Change, Active Group Change	
L	Note: Make Latch Bit Settings With Care	
Output Con	tacts	
•	/ Settings Example	
•	ion of Output Contacts for Different Output Contact Types	
	utput Contacts OUT101 through OUT107 and OUT201 through OUT212	
	LARM Output Contact	
	fault Display	
_	ing Logic	
LED 1	– EN – Relay Enabled	4-17
LED 2	– TRIP – Relay Trip	4-17
	– INST – Instantaneous Trip	
	– 87-1 – Differential Element 1	
	– 87-2 – Differential Element 2	
	– 87-3 – Differential Element 3	
	– 50 – Instantaneous or Definite-Time Overcurrent Trip	
	- 51 – Inverse-Time Overcurrent Element Trip	
	- A - A-Phase Involved in the Fault (Programmable LEDA)	
LED 1	0 – B – B-Phase Involved in the Fault (Programmable LEDB)	4-18

	LED 11 – C – C-Phase Involved in the Fault (Programmable LEDC)	4-19		
LED 12 – N – Residual Overcurrent Element Trip				
LED 13 – W1 – Winding 1 Overcurrent Element Operation				
	LED 14 – W2 – Winding 2 Overcurrent Element Operation			
	LED 15 – Programmable LED15			
	LED 16 – Programmable LED16	4-20		
Trip	and Close Logic	4-20		
_	Trip Logic	4-20		
	Close Logic	4-22		
SEL	OGIC Control Equations			
	SELOGIC Control Equations Fundamental Description	4-23		
	SELOGIC Control Equation Logical Operators			
	Parentheses Operator ()	4-24		
	NOT Operator !			
	Rising-Edge and Falling-Edge Operators / and \			
	AND and OR Operators * and +			
	Ways of Setting SELOGIC Control Equation Relay Settings			
	Limitations of SELOGIC Control Equations			
Rela	y Word Bits	4-26		
Table 4.1:	Definitions for Active Setting Group Switching SELOGIC Control Equation Settings			
	SS1 through SS6	4-7		
Table 4.2:	Active Setting Group Switching Input Logic	4-8		
Table 4.3:	Active Setting Group Switching Input Logic	4-8 4-9		
Table 4.3: Table 4.4:	Active Setting Group Switching Input Logic	4-8 4-9 4-11		
Table 4.3: Table 4.4: Table 4.5:	Active Setting Group Switching Input Logic	4-8 4-9 4-11 4-16		
Table 4.3: Table 4.4: Table 4.5: Table 4.6:	Active Setting Group Switching Input Logic	4-8 4-9 4-11 4-16 4-24		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators SEL-387A Relay Word Bits and Locations	4-8 4-9 4-11 4-16 4-24		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions	4-8 4-9 4-11 4-16 4-24 4-27		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators SEL-387A Relay Word Bits and Locations	4-8 4-9 4-11 4-16 4-24 4-27		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions	4-8 4-9 4-11 4-16 4-24 4-27		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions	4-8 4-9 4-11 4-16 4-24 4-27		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8:	Active Setting Group Switching Input Logic	4-8 4-9 4-16 4-24 4-27 4-28 4-42		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions Relay Word Bits Sorted Alphabetically FIGURES	4-8 4-9 4-11 4-16 4-24 4-27 4-28 4-42		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3:	Active Setting Group Switching Input Logic	4-8 4-9 4-16 4-24 4-27 4-28 4-42		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4:	Active Setting Group Switching Input Logic	4-8 4-9 4-11 4-16 4-24 4-27 4-28 4-42		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4: Figure 4.5:	Active Setting Group Switching Input Logic	4-8 4-9 4-16 4-24 4-27 4-28 4-42 4-42 4-42		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4: Figure 4.5: Figure 4.6:	Active Setting Group Switching Input Logic	4-8 4-9 4-16 4-24 4-27 4-28 4-42 4-42 4-42 4-13		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4: Figure 4.5: Figure 4.6: Figure 4.7:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators. SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions. Relay Word Bits Sorted Alphabetically FIGURES Example Operation of Optoisolated Inputs IN101 Through IN106 (Standard Model). Example Operation of Optoisolated Inputs IN201 Through IN208 (Extra I/O Board). Remote Control Switches Drive Remote Bits RB1 Through RB16. Rotating Selector Switch for Active Setting Group Selection Timed Variables in SELOGIC Control Equation Sets. Traditional Latching Relay Latch Bits in SELOGIC Control Equation Sets.	4-8 4-9 4-16 4-24 4-27 4-28 4-42 4-42 4-3 4-13 4-13		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4: Figure 4.5: Figure 4.6: Figure 4.7: Figure 4.8:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators. SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions. Relay Word Bits Sorted Alphabetically FIGURES Example Operation of Optoisolated Inputs IN101 Through IN106 (Standard Model) Example Operation of Optoisolated Inputs IN201 Through IN208 (Extra I/O Board) Remote Control Switches Drive Remote Bits RB1 Through RB16. Rotating Selector Switch for Active Setting Group Selection Timed Variables in SELOGIC Control Equation Sets Traditional Latching Relay. Latch Bits in SELOGIC Control Equation Sets SEL-387A Front-Panel LEDs.	4-8 4-9 4-16 4-24 4-27 4-28 4-42 4-42 4-42 4-13 4-13 4-16		
Table 4.3: Table 4.4: Table 4.5: Table 4.6: Table 4.7: Table 4.8: Table 4.9: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4: Figure 4.5: Figure 4.6: Figure 4.7: Figure 4.8: Figure 4.9:	Active Setting Group Switching Input Logic SELOGIC Control Equation Settings for Rotating Selector Switch SELOGIC Control Equation Variables LED Assignments SELOGIC Control Equation Operators. SEL-387A Relay Word Bits and Locations Relay Word Bit Definitions. Relay Word Bits Sorted Alphabetically FIGURES Example Operation of Optoisolated Inputs IN101 Through IN106 (Standard Model). Example Operation of Optoisolated Inputs IN201 Through IN208 (Extra I/O Board). Remote Control Switches Drive Remote Bits RB1 Through RB16. Rotating Selector Switch for Active Setting Group Selection Timed Variables in SELOGIC Control Equation Sets. Traditional Latching Relay Latch Bits in SELOGIC Control Equation Sets.	4-8 4-9 4-16 4-24 4-27 4-28 4-42 4-42 4-42 4-13 4-13 4-16 4-20		

SECTION 4: CONTROL LOGIC

This section explains the settings and operation of

Optoisolated inputs (IN101–IN106, IN201–IN208)

Output contacts (OUT101–OUT107, ALARM, OUT201–OUT212)

Remote control switches (Remote Bits RB1 through RB16)

Multiple setting groups (Group switching settings SS1 through SS6)

SELOGIC® Control Equation

Sets (1 through 3) Variables (Timed Variables and Latch Bits)

LED Targeting Logic

Trip and Close Logic

SELOGIC control equations (General Discussion)

Relay Word bits

The above items constitute the principal logic functions of the relay. While the protective elements (overcurrent elements and the differential elements) have fixed internal logic, the availability of Relay Word bits and the use of SELOGIC control equations for many of the relay settings permit the user to customize how the protection functions interface with the user's control schemes and overall philosophy of operation.

Relay Word bits and SELOGIC control equation settings examples are used throughout this section. A complete listing of the Relay Word and explanation of the bit names are included at the end of this section, along with a discussion of SELOGIC control equations in general.

OPTOISOLATED INPUTS

Relay Word bits IN101 through IN106, and IN201 through IN208 (interface board), follow the states of the optoisolated level-sensitive inputs having the same names. To assert an input, apply rated control voltage to the appropriate terminal pair. As noted in *Section 1: Introduction and Specifications* and *Section 2: Installation*, these inputs have a specific voltage range for operation and a dropout voltage value below which the input will deassert. The inputs are not polarity sensitive; either terminal can be positive, the other negative.

Figure 4.1 shows the standard main board (inputs IN101–IN106) with corresponding Relay Word bits IN101 through IN106. Similarly, Figure 4.2 shows an additional interface board with eight inputs and corresponding Relay Word bits (IN201–IN208). The figures show examples of energized and de-energized optoisolated inputs and corresponding Relay Word bit states. To assert an input, apply rated control voltage to the appropriate terminal pair.

Figure 4.1 is used for the following discussion/examples. The optoisolated inputs in Figure 4.2 operate similarly.

Figure 4.1: Example Operation of Optoisolated Inputs IN101 Through IN106 (Standard Model)

Figure 4.2: Example Operation of Optoisolated Inputs IN201 Through IN208 (Extra I/O Board)

Input Debounce Timers

Each input has settable pickup/dropout timers (IN101D through IN106D) for input energization/de-energization debounce. Note that a given time setting (e.g., IN101D = 0.50) is applied to both the pickup and dropout time for the corresponding input.

Time settings IN101D through IN106D are 0.00 to 2.00 cycles. Internally, the relay runs the entered time setting at the processing time interval of one-eighth of a power system cycle. For example, if setting IN105D = 0.8, the relay calculates the time delay as follows: delay = setting \bullet processing interval, i.e., delay = 0.8 \bullet 8 = 6.40 cycles. This value is then rounded to 6.00, the nearest integer, resulting in the actual time delay of 6/8 = 0.75 cycles.

For most applications, the input pickup/dropout debounce timers should be set in 1/8-cycle increments. The relay processing interval is one-eighth cycle, so Relay Word bits IN101 through IN106 are updated every one-eighth cycle.

If more than 2 cycles of debounce are needed, run Relay Word bit IN10n (n = 1 through 6) through a SELOGIC control equation variable timer and use the output of the timer for input functions. When an interface board with 16 digital inputs is used, only the first 8 inputs of the board (IN201–IN208) will have debounce timers.

4-3

Input Functions

There are **no** optoisolated input settings such as

IN101 =

IN102 =

Optoisolated inputs receive their function by how their corresponding Relay Word bits are used in SELOGIC control equations. Remember that any input Relay Word bit name will always appear on the right side of any SELOGIC control equation, as shown below.

Factory Settings Examples

Relay Word bit IN101 is used in the factory settings for the SELOGIC control equation circuit breaker status setting

52A1 = IN101

Connect input IN101 to a 52a circuit breaker auxiliary contact for the Winding 1 breaker to provide the relay information on the position of the breaker's contacts.

If a 52b circuit breaker auxiliary contact were connected to input IN101, the setting could be changed to

52A1 = !IN101 [!IN101 = NOT(IN101)]

Input IN101 may also be used in other SELOGIC control equations. Any equation which requires information on the open or closed status of Breaker 1 would use the IN101 Relay Word bit as this indication.

LOCAL CONTROL SWITCHES

The local control switch feature of this relay replaces traditional panel-mounted control switches. Operate the 16 local control switches using the front-panel keyboard/display (see *Section 8: Front-Panel Interface*).

REMOTE CONTROL SWITCHES

Remote control switches are operated via the serial communications port only (see *Section 7: Serial Port Communications and Commands*).

The switch representation in this figure is derived from the standard:

Graphics Symbols for Electrical and Electronics Diagrams IEEE Std 315-1975, CSA Z99-1975, ANSI Y32.2-1975, 4.11 Combination Locking and Nonlocking Switch, Item 4.11.1

Figure 4.3: Remote Control Switches Drive Remote Bits RB1 Through RB16

The outputs of the remote control switches in Figure 4.3 are Relay Word bits RBn (n = 1 to 16), called remote bits. Use these remote bits in SELOGIC control equations.

Any given remote control switch can be put in one of the following three positions via the serial port commands shown. Begin with the **CON n** (Control Remote Bit n) command, then specify

SRB n (Set Remote Bit n)	ON	(logical 1)
CRB n (Clear Remote Bit n)	OFF	(logical 0)
PRB n (Pulse Remote Bit n)	MOMENTARY	(logical 1 for one-eighth cycle)

Remote Bit Application

With SELOGIC control equations, the remote bits can be used in applications when you want to remotely enable or disable certain logic, depending on operating conditions of the system. Also, remote bits can be used in operating Latch Bit control switches in the additional SELOGIC Control Equation Sets 1 through 3. Pulse (momentarily operate) the remote bits for this application. Latch Bits are discussed later in this section.

Remote Bit States Not Retained When Power Is Lost

The states of the remote bits (Relay Word bits RB1 through RB16) are not retained if power to the relay is lost and then restored. The remote control switches always come back in the OFF position (corresponding remote bit is deasserted to logical 0) when power is restored to the relay.

Remote Bit States Retained When Settings Changed or Active Setting Group Changed

The state of each remote bit (Relay Word bits RB1 through RB16) is retained if relay settings are changed (for the active setting group or one of the other setting groups) or the active setting group is changed. If a remote control switch is in the ON position (corresponding remote bit is

asserted to logical 1) before a setting change or an active setting group change, it comes back in the ON position (corresponding remote bit is still asserted to logical 1) after the change.

If settings are changed for a setting group other than the active setting group, there is no interruption of the remote bits (the relay is not momentarily disabled).

MULTIPLE SETTING GROUPS

The relay has six (6) independent setting groups. Each group contains Configuration Settings, General Data, Differential Elements, Overcurrent Elements, Miscellaneous Timers, SELOGIC Control Equation Sets 1 through 3, Trip Logic, Close Logic, Event Report Triggering, and Output Contact Logic. These settings can be viewed or changed via the **SHO n** and **SET n** commands. The settings for selecting which of the six groups is to be active is contained in the Global Settings area (**SHO G/SET G** commands).

Active Setting Group Indication

Only one setting group can be active at a time. Relay Word bits SG1 through SG6 indicate the active setting group.

For example, if Setting Group 4 is the active setting group, Relay Word bit SG4 asserts to logical 1 and the other Relay Word bits SG1, SG2, SG3, SG5, and SG6 are all deasserted to logical 0.

Selecting the Active Setting Group

The active setting group is selected with

- SELOGIC control equation settings SS1 through SS6,
- The serial port **GROUP n** command (see **Section 7: Serial Port Communications and Commands**), or
- The front-panel GROUP pushbutton (see *Section 8: Front-Panel Interface*).

SELOGIC control equation settings SS1 through SS6 have priority over the serial port **GROUP n** command and the front-panel GROUP pushbutton in selecting the active setting group. Within the SS1 through SS6 settings, the currently active group setting SSn has priority over the other group SSn variables.

Operation of SELOGIC Control Equation Settings SS1 through SS6

The Global settings contain the set of SELOGIC control equation settings SS1 through SS6. If the SELOGIC control equation for setting SSn (n = 1 to 6) is TRUE (logical state 1), the relay is instructed to go to, or remain in, Setting Group n.

Table 4.1: Definitions for Active Setting Group Switching SELOGIC Control Equation Settings SS1 through SS6

Setting	Definition
SS1	go to (or remain in) Setting Group 1
SS2	go to (or remain in) Setting Group 2
SS3	go to (or remain in) Setting Group 3
SS4	go to (or remain in) Setting Group 4
SS5	go to (or remain in) Setting Group 5
SS6	go to (or remain in) Setting Group 6

The operation of these settings is explained with the following example:

Assume the active setting group starts out as Setting Group 3. Corresponding Relay Word bit SG3 is asserted to logical 1 as an indication that Setting Group 3 is the active setting group.

With Setting Group 3 as the active setting group, setting SS3 has priority. If setting SS3 is asserted to logical 1, Setting Group 3 remains the active setting group, regardless of the activity of settings SS1, SS2, SS4, SS5, and SS6. With settings SS1 through SS6 all deasserted to logical 0, Setting Group 3 still remains the active setting group.

With Setting Group 3 as the active setting group, if setting SS3 is deasserted to logical 0 and one of the other settings (e.g., setting SS5) asserts to logical 1, the relay switches from Setting Group 3 as the active setting group to Setting Group 5 as the active setting group, after waiting for qualifying time setting TGR to expire:

TGR Group Change Delay Setting (settable from 0 to 900 seconds)

In this example, TGR qualifies the assertion of setting SS5 before it can change the active setting group.

Operation of Serial Port GROUP Command and Front-Panel GROUP Pushbutton

SELOGIC control equation settings SS1 through SS6 have priority over the serial port **GROUP n** command and the front-panel GROUP pushbutton in selecting the active setting group. If any one of SS1 through SS6 asserts to logical 1, neither the serial port **GROUP n** command nor the front-panel GROUP pushbutton can be used to switch the active setting group. But if SS1 through SS6 <u>all</u> deassert to logical 0, the serial port **GROUP n** command or the front-panel GROUP pushbutton can be used to switch the active setting group.

See *Section 7: Serial Port Communications and Commands* for more information on the serial port **GROUP n** command. See *Section 8: Front-Panel Interface* for more information on the front-panel GROUP pushbutton.

Relay Disabled Momentarily During Active Setting Group Change

The relay is disabled for a <u>few seconds</u> while the relay is in the process of changing active setting groups. Relay elements, timers, and logic are reset, unless indicated otherwise in specific logic description (e.g., latch bit states are retained during an active setting group change).

Active Setting Group Switching Example

Previous SEL relays (e.g., SEL-321 Relay and SEL-251 Relay) have multiple settings groups controlled by the assertion of three optoisolated inputs (e.g., IN101, IN102, and IN103) in different combinations as shown in Table 4.2.

Table 4.2: Active Setting Group Switching Input Logic

	Input States		Active
IN103	IN102	IN101	Setting Group
0	0	0	Remote
0	0	1	Group 1
0	1	0	Group 2
0	1	1	Group 3
1	0	0	Group 4
1	0	1	Group 5
1	1	0	Group 6

The SEL-387A Relay can be programmed to operate similarly. Use three optoisolated inputs to switch between the six setting groups in the SEL-387A. In this example, optoisolated inputs IN101, IN102, and IN103 on the relay are connected to a rotating selector switch in Figure 4.4.

Figure 4.4: Rotating Selector Switch for Active Setting Group Selection

The selector switch has multiple internal contacts arranged to assert inputs IN101, IN102, and IN103, dependent on the switch position. As shown in Table 4.3, as the selector switch is moved from one position to another, a different setting group is activated. The logic in Table 4.2 is implemented in the SELOGIC control equation settings in Table 4.3.

Table 4.3: SELOGIC Control Equation Settings for Rotating Selector Switch

SS1 = !IN103 * !IN102 * IN101	= NOT(IN103) * NOT(IN102) * IN101
SS2 = !IN103 * IN102 * !IN101	= NOT(IN103) * IN102 * NOT(IN101)
SS3 = !IN103 * IN102 * IN101	= NOT(IN103) * IN102 * IN101
SS4 = IN103 * !IN102 * !IN101	= IN103 * NOT(IN102) * NOT(IN101)
SS5 = IN103 * !IN102 * IN101	= IN103 * NOT(IN102) * IN101
SS6 = IN103 * IN102 * !IN101	= IN103 * IN102 * NOT(IN101)

The REMOTE switch position de-energizes all relay inputs, thus placing all of the SSn variables in state 0. With none of the SSn variables asserted, the **GRO n** command, or the GROUP pushbutton on the front panel, can be used to change the setting group. With the switch in any other position, 1 through 6, the **GRO n** and GROUP functions will not effect a group change.

The setting TGR, the group change delay setting, should be set long enough so that the switch, as it is rotated from one position to another, will not remain at any intermediate position long enough to make any setting group change. For example, in rotating from position 1 to position 5, the switch must pass through positions 2, 3, and 4. It should not remain in 2, 3, or 4 for longer than TGR during this process, or it may produce multiple group changes before it finally gets to position 5.

The settings in Table 4.3 are made in the Global settings area.

CHSG Relay Word Bit Asserts During Setting Group Changes

The Relay Word bit CHSG is asserted whenever a setting group change is in process. It is defined in Table 4.7 as "Timing to change setting groups." When group changes are initiated through one of the SSn SELOGIC control equation settings, CHSG is asserted as soon as the new SSn bit is asserted and the relay has made the decision to change groups. It deasserts when the SGn bit for the new group agrees with the SSn bit, indicating that the relay has changed to the newly requested group number. For example, assume the relay is in group 1. The active group bit SG1 equals one, while other SGn bits are zero. All of the SSn bits are also zero. SS4 is asserted, requesting a change to group 4. Since SS1 (same group as the active group) is not asserted, the group change process is initiated, and CHSG is asserted at the same time as SS4. After the group change is made, SG1 will deassert and SG4 will assert, indicating the relay is now in group 4. When this agreement of SS4 and SG4 occurs, CHSG will deassert to indicate the relay is no longer in the process of changing groups.

When the active group bit SGn and its associated SSn bit are both asserted, for example SG1 and SS1, the relay does not respond to the assertion of a new SSn bit, such as SS3, and no group change will occur. Similarly, the CHSG bit will not assert along with SS3, since the SG1 and SS1 bits are in agreement. This agreement acts like a continuous "reset" applied to the CHSG bit.

In applications where a system-related condition requires that a change of setting groups must be done quickly and automatically, this would likely be accomplished via a contact input to the relay, which would assert an SSn bit. In such cases, it may be desirable to immediately block some relay elements as soon as the change is needed to prevent misoperation. This could easily be done via the CHSG bit. CHSG could be used, for example, to supervise the tripping variable for differential trips. The default TR3 setting is TR3 = 87R + 87U; this could be changed to TR3 = 87R*!CHSG + 87U*!CHSG. CHSG optimizes (in this case minimizes) the amount of time to block TR3, since CHSG asserts exactly when the change of groups is needed, and deasserts exactly when the change has taken place.

For setting group changes that do not make use of the SSn bits, namely those using the **GRO n** serial port command or the GROUP front-panel pushbutton, CHSG asserts about two cycles after the change command is received and deasserts shortly after the group change is made. For these cases, CHSG does not overlap the desired time period quite as precisely as when the SSn bits are used, but group changes initiated manually through the serial port or front panel are inherently not as time critical, so a difference of a few cycles is not likely to matter as much, if at all.

Active Setting Group Retained for Power Loss, Settings Change

The active setting group is retained if power to the relay is lost and then restored. If a particular setting group is active (e.g., Setting Group 5) when power is lost, it comes back with the same setting group active when power is restored.

If settings are changed (for the active setting group or one of the other setting groups), the active setting group is retained.

If settings are changed for a setting group other than the active setting group, no interruption of the active setting group occurs (the relay is not momentarily disabled).

If the settings change causes a change in one or more SELOGIC control equation settings SS1 through SS6, the active setting group can be changed, subject to the newly enabled SS1 through SS6 settings.

Note: Make Active Setting Group Switching Settings With Care

The active setting group is stored in nonvolatile memory so it can be retained during power loss or settings change. The nonvolatile memory is rated for a finite number of "writes" for all setting group changes. Exceeding the limit can result in an EEPROM self-test failure. An average of 1 setting group change per day can be made for a 25-year relay service life.

This requires that SELOGIC control equation settings SS1 through SS6 be set with some care. Settings SS1 through SS6 cannot result in continuous cyclical changing of the active setting group. Time setting TGR qualifies settings SS1 through SS6 before changing the active setting group.

SELOGIC CONTROL EQUATION SETS (1 THROUGH 3) VARIABLES

Each setting group (1 through 6) has three sets of SELOGIC control equation variables for use in constructing SELOGIC control equations. In the SEL-387A these variables are of two types: timed variables and latch bits. The variables are processed in the order in which they appear in the Setting Sheets. If variables that appear earlier are used as input to later variables, the processing of both will occur within the same processing interval. If a later variable is an input to an earlier variable, the scheme output will be delayed one processing interval.

The SELOGIC control equation sets must be enabled by Group settings ESLS1, ESLS2, and/or ESLS3 in the configuration settings.

There are timed variables and latch bits available to the user. The three SELOGIC control equation sets have different mixes of variable types, as shown below in Table 4.4.

Table 4.4: SELOGIC Control Equation Variables

SELOGIC Control Equation Set	Timers	Latch Control Switches (Latch Bits)
1	4	4
2	4	4
3	8	8

The format of the setting names for these variables is as follows:

Timed Variable Name: SnVm (n = Set Number; m = Variable Number)

Timer Pickup Delay: SnVmPU (cycles)
Timer Dropout Delay: SnVmDO (cycles)

Set Latch Bit: SnSLTm

Reset Latch Bit: SnRLTm (Reset takes precedence over Set)

Timers SnVmPU and SnVmDO have a setting range of about 4.63 hours:

0.00 through 999999.00 cycles in 0.125-cycle increments

The two types of variables are discussed in the following paragraphs.

Variables/Timers

Figure 4.5 shows the logic for the variables and timers. A SELOGIC control equation defines the variable SnVm. When this equation is true, the Relay Word bit SnVm is asserted. If SnVm remains true for the length of the SnVmPU setting, in cycles, the timer output asserts the Relay Word bit SnVmT (variable timed out). If SnVm deasserts, SnVmT will deassert SnVmDO cycles later.

Figure 4.5: Timed Variables in SELOGIC Control Equation Sets

There are 16 variables of this type spread through the three SELOGIC control equation sets.

Timers Reset When Power Is Lost, Settings Are Changed, or Active Setting Group Is Changed

If power is lost to the relay, settings are changed (for the active setting group), or the active setting group is changed, the SELOGIC control equation variables/timers are reset. Relay Word bits SnVm and SnVmT are reset to logical 0 and corresponding timer settings SnVmPU and SnVmDO load up again after power restoration, settings change, or active setting group switch.

Latch Control Switches

The SELOGIC control equation latch bit feature of this relay replaces latching relays. Traditional latching relays maintain their output contact state—they are not dependent on dc voltage to

maintain their output contact state. For example, if a latching relay output contact is closed and then dc voltage is lost to the panel, the latching relay output contact remains closed.

The state of a traditional latching relay output contact is changed by pulsing the latching relay inputs (see Figure 4.6). Pulse the set input to close ("set") the latching relay output contact. Pulse the reset input to open ("reset") the latching relay output contact. Often the external contacts wired to the latching relay inputs are from remote control equipment (e.g., SCADA, RTU, etc.).

Figure 4.6: Traditional Latching Relay

The latch bits in the SEL-387A provide latching relay type functions (Figure 4.7).

Figure 4.7: Latch Bits in SELOGIC Control Equation Sets

The output of the latch bit logic is a Relay Word bit SnLTm. The bit is set by application of SnSLTm (Set latch bit), and reset by the application of SnRLTm (Reset latch bit). The Set/Reset values come from the logical state of the SELOGIC control equations stored for these two settings. These latch bits may be used in SELOGIC control equations, wherever a latching function is required.

If setting SnSLTm (Set) asserts to logical 1, latch bit SnLTm asserts to logical 1 and seals itself via the OR and AND gates. If setting SnRLTm (Reset) asserts to logical 1, the seal-in is broken and latch bit SnLTm deasserts to logical 0. If both settings SnSLTm and SnRLTm assert to logical 1, setting SnRLTm (Reset) takes precedence, and latch bit SnLTm deasserts to logical 0.

Latch Bit Behavior for Power Loss, Settings Change, Active Group Change

If power to the relay is lost and then restored, the states of the latch bits remain unchanged. This is done by retaining the latest states of the latch bits in EEPROM, where they can be recovered on power up of the relay.

If settings are changed in one of the nonactive setting groups, the states of the latch bits remain the same.

If settings are changed in the active setting group, or if a new setting group is selected to be the active group, the states of the latch bits may or may not change. When the active group changes are enabled in the relay, the latch bits will respond to the states of the SnSLTm (Set) and SnRLTm (Reset) equations, in the manner discussed above for Figure 4.7. The new latch bit states thus depend on the original state of the latch bit and on the effects of the user changes upon the set and reset equations.

The net effect is that the latch bits in the SEL-387A behave exactly like traditional latching relays.

Note: Make Latch Bit Settings With Care

The latch bit states are stored in nonvolatile memory so they can be retained during power loss, settings change, or active setting group change. The nonvolatile memory is rated for a finite number of "writes" for all cumulative latch bit state changes. Exceeding the limit can result in an EEPROM self-test failure. An average of 70 latch bit changes per day can be made for a 25-year relay service life.

OUTPUT CONTACTS

SELOGIC control equation settings OUT101 through OUT107 and OUT201 through OUT212 control Relay Word bits having the same names. These Relay Word bits in turn control the output contacts OUT101 through OUT107 and OUT201 through OUT212 (interface board). Alarm logic/circuitry controls the ALARM output contact.

Factory Settings Example

The factory SELOGIC control equation settings use standard main board output contacts:

OUT101 = TRIP1	Used to trip Breaker 1
OUT102 = TRIP2	Used to trip Breaker 2
OUT103 = TRIP3	Used to energize 86 device for tripping Breakers 1 and 2
OUT105 = CLS1	Used to close Breaker 1
OUT106 = CLS2	Used to close Breaker 2

Operation of Output Contacts for Different Output Contact Types

Output Contacts OUT101 through OUT107 and OUT201 through OUT212

The execution of the serial port command **PULSE xxx** (xxx = OUT101–OUT107, OUT201–OUT212), asserts the corresponding Relay Word bit (e.g., OUT103) to logical 1, for one or more seconds as defined by the user. The assertion of SELOGIC control equation setting OUTm (m = 101–107, 201–212) to logical 1 also asserts the corresponding Relay Word bit OUTm to logical 1.

The assertion of Relay Word bit OUTm to logical 1 causes the energization of the corresponding output contact OUTm coil. Depending on the contact type (a or b), the output contact closes or opens. An "a" type output contact is open when the output contact coil is de-energized and closed when the output contact coil is energized. A "b" type output contact is closed when the output contact coil is de-energized and open when the output contact coil is energized. Solder jumpers JMP22 through JMP29 (main board) and JMP17 through JMP28 (interface board) permit the user to configure any OUTm contact to either an "a" or "b" type. OUT101 through OUT107 are factory-configured as type "a," as are OUT201 through OUT212 if the additional interface board is ordered.

The state of OUTm remains the same while a setting change is in progress. However, once the new settings are enabled, the SELOGIC control equation setting for OUTm will determine the new state of OUTm.

OUT107 coil operation may be set to follow that of the ALARM contact by setting jumper JMP23 in the left position on the main board. OUT107 then will not respond to Relay Word bit OUT107. The OUT107 contact configuration can be set as "a" or "b," as noted above. See *Section 2: Installation* for more information.

ALARM Output Contact

When the relay is functioning properly, the alarm logic/circuitry keeps the ALARM output contact coil energized. The type "b" ALARM output contact is normally held open. Solder jumper JMP21 may also be configured by the user for a type "a" contact, if desired.

To verify ALARM output contact functionality, execute the serial port command **PULSE ALARM**. Execution of this command momentarily de-energizes the ALARM output contact coil.

The Relay Word bit NOTALM (not ALARM) is asserted to logical 1, and the ALARM output contact coil is energized, when the SEL-387A is operating correctly. When the serial port command **PULSE ALARM** (or front panel CNTRL ALARM) is executed, the NOTALM Relay Word bit momentarily deasserts to logical 0. Also, when the relay enters Access Level 2 or Access Level B or a settings change is made, the NOTALM Relay Word bit momentarily deasserts to logical 0. When NOTALM is zero, the ALARM output contact coil is de-energized momentarily and the "b" contact falls closed. The ALARM contact also drops closed when a loss of power occurs.

ROTATING DEFAULT DISPLAY

The rotating default display on the relay front panel replaces indicating panel lights. Traditional indicating panel lights are turned on and off by circuit breaker auxiliary contacts, front-panel switches, SCADA contacts, etc. See *Section 8: Front-Panel Interface* for details.

LED TARGETING LOGIC

The SEL-387A has 16 LEDs on the front panel. One (EN) is dedicated to indication of the relay's operational condition. Ten are dedicated to specific targeting functions. Three (LEDA,

LEDB, and LEDC) have default targeting logic but are fully programmable by the user. Two more, LED15 and LED16, have no default targeting logic and are fully programmable by the user.

The states of the 10 dedicated LEDs (all but EN, A, B, C, LED15, LED16) are stored in nonvolatile memory. If power is lost to the relay, these 10 targets will be restored to their last state when the relay power is restored. EN responds only to internal self-test routines, while A, B, C, LED15, and LED16 respond to the present state of their respective Global SELOGIC control equation settings.

The array of LEDs is shown in Figure 4.8.

Figure 4.8: SEL-387A Front-Panel LEDs

Table 4.5 describes the basic targeting functions associated with each of the 16 LEDs.

Table 4.5: LED Assignments

Description

LED	Legend	Description
1	EN	Relay enabled
2	TRIP*	Relay trip
3	INST*	Instantaneous trip
4	87-1*	Differential element 1 asserted at, or 1 cycle after, rising edge of trip
5	87-2*	Differential element 2 asserted at, or 1 cycle after, rising edge of trip
6	87-3*	Differential element 3 asserted at, or 1 cycle after, rising edge of trip
7	50*	Instantaneous O/C element asserted at, or 1 cycle after, rising edge of trip
8	51*	Time O/C element asserted at, or 1 cycle after, rising edge of trip
9	A	A-phase involved in the fault (Programmable LEDA)
10	В	B-phase involved in the fault (Programmable LEDB)
11	С	C-phase involved in the fault (Programmable LEDC)

LED	Legend	Description
12	N*	Residual element asserted at, or 1 cycle after, rising edge of trip
13	W1*	Winding 1 overcurrent asserted at, or 1 cycle after, rising edge of trip
14	W2*	Winding 2 overcurrent asserted at, or 1 cycle after, rising edge of trip
15	LED15	Programmable LED15
16	LED16	Programmable LED16

^{*} Indicates nonvolatile targets

The operation of each LED is discussed in the following paragraphs.

LED 1 - EN - Relay Enabled

LED 1 illuminates only when the relay is fully enabled and ready for service. It will turn off if the relay should become disabled by certain critical failure or alarm conditions. LED 1 is the only green LED of the 16; the remaining LEDs are red.

LED 2 - TRIP - Relay Trip

LED 2 illuminates at the rising edge of any of the five trip elements, TRIP1 through TRIP5. It remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel, or via the serial port command **TAR R**.

LED 3 - INST - Instantaneous Trip

This LED will illuminate if any instantaneous element present in the TR1 through TR5 settings is asserted at the rising edge of the trip or one cycle later. Instantaneous elements include any of the overcurrent elements indicated as "50***," the Restricted Earth Fault forward direction bit, 32IF, as well as the 87R and 87U differential elements. LED 3 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 4 - 87-1 - Differential Element 1

This LED will illuminate if the differential elements 87R or 87U are present in the TR1 through TR5 settings, and Relay Word bits 87R1 and 87R, or 87U1, are found to be asserted at the rising edge of any trip or one cycle later. If so, the 87E1 bit is also set. LED 4 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 5 - 87-2 - Differential Element 2

This LED will illuminate if the differential elements 87R or 87U are present in the TR1 through TR5 settings, and Relay Word bits 87R2 and 87R, or 87U2, are found to be asserted at the rising edge of any trip or one cycle later. If so, the 87E2 bit is also set. LED 5 remains lit until reset by

the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 6 - 87-3 - Differential Element 3

This LED will illuminate if the differential elements 87R or 87U are present in the TR1 through TR5 settings, and Relay Word bits 87R3 and 87R, or 87U3, are found to be asserted at the rising edge of any trip or one cycle later. If so, the 87E3 bit is also set. LED 6 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 7 - 50 - Instantaneous or Definite-Time Overcurrent Trip

This LED will illuminate if any instantaneous or definite-time overcurrent element present in the TR1 through TR5 settings is asserted at the rising edge of the trip or one cycle later. Applicable elements include any of the overcurrent elements indicated by Relay Word bits "50***" or "50***T" and the Restricted Earth Fault forward direction bit, 32IF. LED 7 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command TAR R.

LED 8 - 51 - Inverse-Time Overcurrent Element Trip

This LED will illuminate if any inverse-time overcurrent element present in the TR1 through TR5 settings has timed out and is asserted at the rising edge of the trip or one cycle later. Applicable elements include any of the overcurrent elements indicated by Relay Word bits "51**(*)T," which include the four combined overcurrent elements, as well as the REFP bit indicating time-out of the Restricted Earth Fault inverse-time curve. LED 8 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command TAR R.

LED 9 - A - A-Phase Involved in the Fault (Programmable LEDA)

LED 9 is programmable via the LEDA SELOGIC control equations Global setting. It is updated each processing interval. If LEDA is true, LED 9 is illuminated. Otherwise, it is reset. The factory default setting is LEDA = OCA + 87E1.

Relay Word bit OCA indicates A-phase overcurrent during the fault. It is derived by first checking which winding "Wn" LED is lit, then asserting if the associated 50An4 overcurrent element bit is asserted, or if the magnitude of the IAWn phase current is greater than or equal to the magnitudes of IBWn and ICWn.

Relay Word bit 87E1 indicates differential element 87-1 operation and follows LED 4 operation (see LED 4 discussion).

LED 10 - B - B-Phase Involved in the Fault (Programmable LEDB)

LED 10 is programmable via the LEDB SELOGIC control equations Global setting. It is updated each processing interval. If LEDB is true, LED 10 is illuminated. Otherwise, it is reset. The factory default setting is LEDB = OCB + 87E2.

Relay Word bit OCB indicates B-phase overcurrent during the fault. It is derived by first checking which winding "Wn" LED is lit, then asserting if the associated 50Bn4 overcurrent element bit is asserted, or if the magnitude of the IBWn phase current is greater than or equal to the magnitudes of IAWn and ICWn.

Relay Word bit 87E2 indicates differential element 87-2 operation and follows LED 5 operation (see LED 5 discussion).

LED 11 - C - C-Phase Involved in the Fault (Programmable LEDC)

LED 11 is programmable via the LEDC SELOGIC control equations Global setting. It is updated each processing interval. If LEDC is true, LED 11 is illuminated. Otherwise, it is reset. The factory default setting is LEDC = OCC + 87E3.

Relay Word bit OCC indicates C-phase overcurrent during the fault. It is derived by first checking which winding "Wn" LED is lit, then asserting if the associated 50Cn4 overcurrent element bit is asserted, or if the magnitude of the ICWn phase current is greater than or equal to the magnitudes of IAWn and IBWn.

Relay Word bit 87E3 indicates differential element 87-3 operation and follows LED 6 operation (see LED 6 discussion).

LED 12 - N - Residual Overcurrent Element Trip

This LED will illuminate if any residual overcurrent element present in the TR1 through TR5 settings is asserted at the rising edge of the trip or one cycle later. Applicable elements include any of the winding overcurrent elements indicated by Relay Word bits "50N**," "50N**T," or "51N*T." Also included are Combined Overcurrent elements indicated by Relay Word bits 51NC1T and 51NC2T and the Restricted Earth Fault bits, 32IF and REFP. LED 12 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 13 - W1 - Winding 1 Overcurrent Element Operation

This LED will illuminate if any Winding 1 overcurrent element present in the TR1 through TR5 settings is asserted at the rising edge of the trip or one cycle later. Applicable elements include any of the 23 Relay Word bits associated with Winding 1 overcurrent elements. LED 13 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 14 - W2 - Winding 2 Overcurrent Element Operation

This LED will illuminate if any Winding 2 overcurrent element present in the TR1 through TR5 settings is asserted at the rising edge of the trip or one cycle later. Applicable elements include any of the 23 Relay Word bits associated with Winding 2 overcurrent elements. LED 14 remains lit until reset by the TRGTR element. TRGTR is asserted for one cycle either via the TARGET RESET pushbutton on the front panel or via the serial port command **TAR R**.

LED 15 - Programmable LED15

LED 15 is programmable via the LED15 SELOGIC control equation Global setting. It is updated each processing interval. If LED15 is true, LED 15 is illuminated. Otherwise, it is reset. The factory default setting is LED15 = 0.

LED 16 - Programmable LED16

LED 16 is programmable via the LED16 SELOGIC control equation Global setting. It is updated each processing interval. If LED16 is true, LED 16 is illuminated. Otherwise, it is reset. The factory default setting is LED16 = 0.

TRIP AND CLOSE LOGIC

The trip logic and close logic for the SEL-387A operate in a similar manner. Each has a SELOGIC control equation setting to set or latch the logic and another SELOGIC control equation setting to reset or unlatch the logic. Each also has other elements or functions that will unlatch the logic. The output of each logic is a Relay Word bit which can be assigned to operate output contacts or in any other manner for which a Relay Word bit can be used. The specifics of each type of logic are discussed below.

Trip Logic

There are five specific sets of trip logic within the SEL-387A. They are designed to operate when SELOGIC control equation trip variable setting TRm is asserted (m = 1, 2, 3, 4, 5) and to unlatch when SELOGIC control equation setting ULTRm is asserted. The output of the logic is Relay Word bit TRIPm. The logic operates much like the Latch Bit function in SELOGIC Control Equation Sets 1 through 3, with additional characteristics. In the trip logic, the set or latch function has priority over the reset or unlatch function.

Figure 4.9 shows the logic diagram for the TRIP1 logic. The remaining logic for TRIP2 through TRIP5 is identical, using variables TR2 through TR5 and ULTR2 through ULTR5, respectively.

Figure 4.9: SEL-387A Trip Logic (TRIP1)

The logic begins with the assertion of SELOGIC control equation TR1, one of the Group variables. In our example application, Relay Word bits representing three Winding 1 overcurrent elements, Latch Bit 3 (LB3), and the **OPE 1** command are used to assert TR1. TR1 directly asserts TRIP1 via the three-input OR gate at the right.

However, TR1 may only assert briefly while a more lengthy assertion of TRIP1 is desired. There are two means to ensure a longer TRIP1 assertion. At the top of the diagram is an Edge Trigger Timer. It detects the rising edge of TR1, and issues a second output to the OR gate. This second output will last the duration of Group setting TDURD (minimum trip duration timer). Once the rising edge has been detected and the timing started, the ongoing state of the TR1 input to the timer is ignored. Thus, TRIP1 will be asserted for a minimum of TDURD cycles, even if TR1 is asserted for as little as one processing interval, or if the unlatch portion of the logic is asserted before TDURD expires. The default setting of TDURD is nine cycles.

TRIP1 also seals itself in via the AND gate at the bottom. This AND gate receives the negated inputs from the unlatching functions. As long as no unlatch function is asserted, the seal of TRIP1 remains intact. TRIP1 is used to drive an output contact to initiate tripping of the breaker or breakers. In our example, OUT101 = TRIP1.

The unlatching of the trip logic is accomplished via three means. The first is the assertion of the SELOGIC control equation setting ULTR1. In our example, ULTR1 = !50P13 = NOT 50P13. This current element is set to pick up at 0.5 A. Thus, ULTR1 asserts when the currents in all three phases drop below 0.5 A, indicating successful three-pole opening of the breaker.

The other unlatching mechanism is manual, via pushing of the TARGET RESET pushbutton on the front panel or sending the **TAR R** serial port command to the relay. Either of these asserts the Relay Word bit TRGTR, which is also used to reset the LED targets on the front panel. In the trip logic, assertion of ULTR1 or TRGTR places a zero input on the AND gate and thereby breaks the TRIP1 seal-in loop.

With the deassertion of TRIP1, OUT101 opens, deenergizing the trip circuit. Presumably, the trip circuit current has already been interrupted by a breaker 52a contact in series with the trip coil. Should a failure to trip occur, followed by backup tripping of other breakers, the TR1 setting may deassert and the ULTR1 setting may assert, while the contact continues to carry dc trip circuit current. This could damage the contact as it tries to interrupt this current. The emergency nature of the situation might warrant this minor risk, but another choice might be to program into the ULTR1 setting not only removal of current but also indication that the breaker has opened.

Note that TRIP1 will always be asserted so long as TR1 is asserted, regardless of the action of ULTR1 or the TARGET RESET commands and that TRIP1 will be asserted for an absolute minimum of TDURD cycles no matter how short the length of time TR1 has been asserted. This is the essence of the trip logic.

At the bottom of Figure 4.9 is an additional OR gate. The five TRIPm Relay Word bits are all inputs to this gate, and the output is another Relay Word bit, TRIPL. TRIPL asserts for any trip output. It may be useful for other applications of SELOGIC control equations in the SEL-387A.

Close Logic

There are four specific sets of close logic within the SEL-387A. They are designed to operate when SELOGIC control equation close variable setting CLm is asserted (m = 1, 2, 3, 4), and to unlatch when SELOGIC control equation setting ULCLm is asserted. The output of the logic is Relay Word bit CLSm. The logic operates much like the Latch Bit function in SELOGIC Control Equation Sets 1 through 3 with additional characteristics. In the close logic, the reset or unlatch function has priority over the set or latch function.

Figure 4.10 shows the logic diagram for the CLS1 logic. The remaining logic for CLS2 through CLS4 is identical, using variables CL2 through CL4 and ULCL2 through ULCL4, respectively.

Figure 4.10: SEL-387A Close Logic (CLS1)

The logic begins with the assertion of SELOGIC control equation CL1, one of the Group variables. In our example application, CL1 = CC1 + LB4 + /IN104. Thus, CL1 will assert either if (1) a **CLO 1** command has been sent to the relay via a serial port, or if (2) input IN104 has been energized via an external SCADA, recloser, or control switch contact, for example, or LB4 asserted. CL1 does not directly assert CLS1 but acts as one input to the AND gate at the center. The other input to the AND gate is a negated OR gate output which asserts whenever any of the unlatching functions is in effect. Thus, unlatch elements take precedence over the close command elements.

Assuming no unlatch elements are asserted, assertion of CL1 produces assertion of the output Relay Word bit CLS1. CLS1 seals itself in via the OR gate at the top and begins to drive the output contact OUT105 (=CLS1), leading to the Breaker 1 closing circuit. CLS1 can also be used in other SELOGIC control equations. CLS1 will remain asserted, and OUT105 will remain closed, until the close logic is unlatched by one of three means: assertion of the ULCL1 setting, closure of the breaker 52a auxiliary contact, or a Close Failure Detection. These three functions are inputs to the OR gate at the mid-left.

The ULCL1 SELOGIC control equation setting defines conditions for unlatching the close logic. If CL1 is not asserted when ULCL1 asserts, ULCL1 effectively "blocks" the close logic. If CL1 should assert after ULCL1 has been asserted, it effectively will be ignored, and CLS1 will not assert. If CL1 has asserted before ULCL1 and the closing process has begun, assertion of ULCL1 will unseal CLS1 and interrupt the process. In our example, ULCL1 = TRIP1 + TRIP3. That is, if a Winding 1 overcurrent trip, or a high-speed differential trip has been initiated,

ULCL1 will prevent the close process from starting, or it will prevent it from going to completion if it has already begun.

Under normal circumstances, the second means of unlatching occurs. This is the closure of the Breaker 1 52a contact. The close logic setting 52A1 = IN101. When CLS1 asserts, OUT105 closes and the breaker begins to close. When the breaker closing is complete, the 52a contact closes, duplicating the operation of the breaker contacts themselves, and effectively indicating that the breaker is closed. The 52a contact is wired to IN101. When IN101 asserts, the equation 52A1 asserts and unlatches the close logic, deasserting CLS1 and opening OUT105. The close process is now complete. (Presumably, interruption of the current in the closing circuit has been accomplished via a breaker 52b contact, and not by OUT105.)

The third means of unlatching is a Close Failure Detection. This function can be set OFF if desired. This function is useful in the event the breaker does not close in response to energization of the closing circuit. This might be caused by electrical problems or mechanical binding or breakage. With the breaker not moving, CLS1 will remain asserted and OUT105 will stay closed for an extended period, possibly resulting in an electrical fire, system damage, or injury to personnel. Within the logic when CLS1 asserts, an input is also sent to the AND gate at the bottom. The second AND input is 1 if the Close Failure detection timer (CFD) is set to some value, and 0 if CFD is set to OFF. In our example, we have selected CFD = 60 cycles (one second). With CFD set to some value, a timer is started. At the expiration of CFD, an output is asserted as Relay Word bit CF1T. This bit is pulsed for one processing interval. It is sent to the OR gate for the unlatch functions and interrupts the closing process. This prevents the closing circuit from being energized too long. It also creates the possibility that the OUT105 contact may be damaged by interrupting the closing circuit current flow. However, the emergency nature of the situation generally would be worth the risk. The CFT1 bit might also be used to set a SELOGIC control equation Latch Bit to close a contact, informing a SCADA system of the aborted closure attempt.

SELOGIC CONTROL EQUATIONS

Throughout this manual, reference is made to settings or variables which take the form of SELOGIC control equations. It is a convenient method for providing customized control logic to the relay, to enhance the relay performance for specific customer needs and practices.

While most users of SEL relays are at least somewhat familiar with SELOGIC control equations in a general sense, the capabilities of this logic, the types of logical operators, the number of allowable variables, and the construction rules of the equations have varied from one relay product to another. This portion of the manual is intended to inform the user of how SELOGIC control equations work in general and how they are implemented in the SEL-387A.

SELOGIC Control Equations Fundamental Description

The basic building blocks of SELOGIC control equations are the Relay Word bits. A complete list of these bits is included at the end of this section of the manual. The Relay Word bits are simple digital quantities having a logical value of either 0 or 1. The terms "assert" or "asserted" refer to a Relay Word bit that has a value of 1 or is changing from 0 to 1. The terms "deassert" or "deasserted" refer to a Relay Word bit that has a value of 0 or is changing from 1 to 0. Relay Word bits are asserted or deasserted by various elements within the relay, and are used in the

fixed internal logic of the relay to make decisions, to interpret inputs, or to drive outputs. These same bits are made available to the user, so that the user can exercise flexibility in defining inputs or outputs, specifying control variables for internal logic, or for creating special customized logic through the use of SELOGIC control equations.

SELOGIC control equations use logic similar to Boolean algebra logic. A SELOGIC control equation consists of some combination of Relay Word bits and logical operators that define how the Relay Word bits are to be evaluated as a group or individually. The Relay Word bits take on their values of 0 or 1, the operators perform logical operations on these values, and the result is a logical value of 0 or 1 for the SELOGIC control equation itself. Thus, expressions of assertion or deassertion apply to the SELOGIC control equation as a whole, as well as to the individual components of the equation. In the end, the SELOGIC control equation itself is a simple digital variable having a value of 0 or 1.

SELOGIC Control Equation Logical Operators

In the SEL-387A, there are six logical operators which can be used in SELOGIC control equations. These operators exist in a hierarchy, from the highest level operator to be processed to the lowest level operator. Table 4.6 lists these operators in their order of processing.

Operator	Logic Function
()	parentheses
!	NOT (negation)
/	rising edge detect
\	falling edge detect
*	AND
+	OR

Table 4.6: SELOGIC Control Equation Operators

Parentheses Operator ()

More than one set of parentheses can be used in a SELOGIC control equation. However, parentheses cannot be "nested," that is you cannot have parentheses within parentheses. The following is an example:

$$S1V1 = (IN105 + RB3) * (87R + 87U)$$

The expressions within the parentheses are evaluated first. First, is IN105 OR RB3 asserted; next, is 87R OR 87U asserted. Assuming that at least one bit is asserted in each parentheses, the equation can now be evaluated: S1V1 = 1*1 = 1. The equation for S1V1 is thus asserted.

NOT Operator!

The ! operator performs a simple negation or inversion. On logic diagrams, it is represented by a small circle on an input or output line. Whatever the state of the logical quantity to which it is

applied, it simply reverses that state. For example, if 87R is a logical 1, then !87R is a logical 0. The ! operator can be applied to a parentheses containing several elements. The expression within the parentheses is evaluated first then the result is negated.

Rising-Edge and Falling-Edge Operators / and \

These operators can be applied to individual Relay Word bits only. They cannot be used on groups in parentheses or on negated elements. They are not interested in the present value of that bit, as are most operators. Rather, they are only intended to detect a <u>change</u> of that value. The rising-edge operator "/" detects a change from a 0 state to a 1 state. The falling-edge operator "\" detects a change from a 1 state to a 0 state. Typical applications might include triggering an event report or unlatching internal logic. These two operators assert a 1 for a single processing interval, when they sense the change of state.

AND and OR Operators * and +

These operators produce an output state that combines the states of two or more inputs. The AND operator requires that every one of the inputs is a logical 1 before it issues a logical 1 output. For example, in the equation S1V1 = 87R * IN103, S1V1 will only assert if 87R=1 and IN103=1.

The OR operator only requires that one of the several inputs be a logical 1 in order to assert an output state of 1. For example, in this relay there is a Relay Word bit TRIPL = TRIP1 + TRIP2 + TRIP3 + TRIP4 + TRIP5. All TRIPL needs to assert is a 1 from any of the five ORed inputs. Thus, it is useful for indicating that "any trip" has occurred.

Ways of Setting SELOGIC Control Equation Relay Settings

Many of the Group and Global settings are defined as being SELOGIC control equations. A typical example would be the torque-control variables for the various overcurrent elements. For example, let us look at the setting 51P1TC for torque controlling the Winding 1 phase inverse-time overcurrent element.

We could set 51P1TC to a single Relay Word bit. For example, 51P1TC = IN105. This might be used for torque controlling by a contact input from some external device like a directional relay.

We could set 51P1TC to some combination of Relay Word bits. For example, 51P1TC = IN105*!IN106. Here, we might wish to supervise the element as before, from an external directional relay, but only if there is no input to IN106. IN106 could be a contact input from SCADA or a manual control switch, to disable the operation of the Winding 1 inverse-time element. So long as voltage is applied to IN106, the 51P1 element will not operate, even if the directional relay gives permission.

We could set 51P1TC directly to 1. If 51P1TC = 1, the 51P1 element is always ready to operate on current alone.

<u>We could set 51P1TC directly to 0</u>. If 51P1TC = 0, the 51P1 element will never operate. This is one way, for example, to temporarily disable the 51P1 for some operational reason. It could be done using the **SET** command via a serial port from a remote location.

Limitations of SELOGIC Control Equations

Any single SELOGIC control equation setting is limited to 17 Relay Word bits that can be combined together with the SELOGIC control equation operators listed in Table 4.6. If this limit must be exceeded, use a SELOGIC control equation variable (SnVm) as an intermediate setting step.

For example, assume that a trip equation (SELOGIC control equation trip setting, TRn) needs more than 17 Relay Word bits in its equation setting. Instead of placing all Relay Word bits into TRn, program some of them into the SELOGIC control equation setting, SnVm. Next use the resultant SELOGIC control equation variable output (Relay Word bit SnVm) in the SELOGIC control equation trip setting, TRn.

The relay supports an average of one rising- or falling-edge operator for every two SELOGIC control equations and an average of three Relay Word bits per SELOGIC control equation, with a maximum of 17 bits per any single SELOGIC control equation.

An attempt to set the relay with more than 17 operands will cause the relay to display the message "Maximum of 17 elements allowed in a SELOGIC equation" and prompt you to reenter the equation. Exceeding the maximum settings for each setting class will cause the relay to display the message "Overall SELOGIC setting size too large. Try simplifying equations." The relay will then prompt you to edit the first unhidden SELOGIC control equation.

SELOGIC control equation settings that are set directly to 1 (logical 1) or 0 (logical 0) also have to be included in these limitations—each such setting counts as one element.

After SELOGIC control equation settings have been made and the settings are saved, the SEL-387A responds with the following message:

```
SCEUSE XX.X
GRnCHK yyyy
```

This message indicates that xx.x% of the maximum number of Relay Word bits are being used (SCEUSE = SELOGIC control equation use) and that the Global or Group n checksum (GBLCHK or GRnCHK) is yyyy. The relay provides use and checksum results for the GLOBAL and GROUP n settings.

RELAY WORD BITS

The available Relay Word bits which can be used in SELOGIC control equations (except Row 0 or Row 1 target elements) are listed below in Table 4.7 through Table 4.9. Table 4.7 shows the names and locations in each row. The row number or bit name can be used when using the **TAR** command. *Reserved for future use or not available in the SEL-387A.

Table 4.8 lists the Relay Word bit definitions, in their row order. Table 4.9 lists the Relay Word bits alphabetically to provide an easier method for looking for a specific bit.

Table 4.7: SEL-387A Relay Word Bits and Locations

Row	SEL-387A Relay Word Bits							
0	EN	TRIP	INST	87-1	87-2	87-3	50	51
1	A	В	С	N	W1	W2	LED15	LED16
2	50P11	50P11T	50P12	51P1	51P1T	51P1R	PDEM1	OCA
3	50A13	50B13	50C13	50P13	50A14	50B14	50C14	50P14
4	50N11	50N11T	50N12	51N1	51N1T	51N1R	NDEM1	OC1
5	50Q11	50Q11T	50Q12	51Q1	51Q1T	51Q1R	QDEM1	CC1
6	50P21	50P21T	50P22	51P2	51P2T	51P2R	PDEM2	OCB
7	50A23	50B23	50C23	50P23	50A24	50B24	50C24	50P24
8	50N21	50N21T	50N22	51N2	51N2T	51N2R	NDEM2	OC2
9	50Q21	50Q21T	50Q22	51Q2	51Q2T	51Q2R	QDEM2	CC2
10	*	*	*	*	*	*	*	OCC
11	*	*	*	*	*	*	*	*
12	*	*	*	*	*	*	*	*
13	*	*	*	*	*	*	*	*
14	*	*	*	*	*	*	*	*
15	*	*	*	*	*	*	*	*
16	*	*	*	*	*	*	*	*
17	*	*	*	*	*	*	*	*
18	87U1	87U2	87U3	87U	87R1	87R2	87R3	87R
19	2HB1	2HB2	2HB3	5HB1	5HB2	5HB3	TH5	TH5T
20	87BL1	87BL2	87BL3	87BL	87E1	87E2	87E3	*
21	8701	87O2	87O3	*	*	*	*	*
22	*	*	*	*	*	*	DC1	DC2
23	*	*	*	*	*	*	DC3	DC4
24	RB1	RB2	RB3	RB4	RB5	RB6	RB7	RB8
25	RB9	RB10	RB11	RB12	RB13	RB14	RB15	RB16
26	SG1	SG2	SG3	SG4	SG5	SG6	CHSG	*
27	4HBL	DCBL	IN106	IN105	IN104	IN103	IN102	IN101
28	IN208	IN207	IN206	IN205	IN204	IN203	IN202	IN201
29	IN216	IN215	IN214	IN213	IN212	IN211	IN210	IN209
30	*	*	*	*	*	*	*	*
31	*	*	*	*	*	*	*	*
32	S1V1	S1V2	S1V3	S1V4	S1V1T	S1V2T	S1V3T	S1V4T
33	S2V1	S2V2	S2V3	S2V4	S2V1T	S2V2T	S2V3T	S2V4T
34	S3V1	S3V2	S3V3	S3V4	S3V5	S3V6	S3V7	S3V8
35	S3V1T	S3V2T	S3V3T	S3V4T	S3V5T	S3V6T	S3V7T	S3V8T
36	S1LT1	S1LT2	S1LT3	S1LT4	S2LT1	S2LT2	S2LT3	S2LT4
37	S3LT1	S3LT2	S3LT3	S3LT4	S3LT5	S3LT6	S3LT7	S3LT8
38	*	*	*	*	*	*	*	*
39	BCWA1	BCWB1	BCWC1	BCW1	BCWA2	BCWB2	BCWC2	BCW2
40	*	*	*	*	*	*	*	*

Row	SEL-387A Relay Word Bits							
41	TRIP1	TRIP2	TRIP3	TRIP4	TRIP5	TRIPL	*	TRGTR
42	CLS1	CLS2	CLS3	CLS4	CF1T	CF2T	CF3T	CF4T
43	NOTALM	OUT107	OUT106	OUT105	OUT104	OUT103	OUT102	OUT101
44	OUT201	OUT202	OUT203	OUT204	OUT205	OUT206	OUT207	OUT208
45	OUT209	OUT210	OUT211	OUT212	OUT213	OUT214	OUT215	OUT216
46	*	*	*	*	*	*	*	*
47	*	*	*	*	*	*	*	*
48	LB1	LB2	LB3	LB4	LB5	LB6	LB7	LB8
49	LB9	LB10	LB11	LB12	LB13	LB14	LB15	LB16
50	50GC1	50GN1	32IE1	32IR1	32IF1	REFP1	CTS1	*
51	50GC2	50GN2	32IE2	32IR2	32IF2	REFP2	CTS2	*
52	*	*	*	*	*	*	*	*
53	49A01A	49T01A	49A02A	49T02A	49A03A	49T03A	49A04A	49T04A
54	49A05A	49T05A	49A06A	49T06A	49A07A	49T07A	49A08A	49T08A
55	49A09A	49T09A	49A10A	49T10A	49A11A	49T11A	49A12A	49T12A
56	49A01B	49T01B	49A02B	49T02B	49A03B	49T03B	49A04B	49T04B
57	49A05B	49T05B	49A06B	49T06B	49A07B	49T07B	49A08B	49T08B
58	49A09B	49T09B	49A10B	49T10B	49A11B	49T11B	49A12B	49T12B
59	COMFLA	RTDINA	COMFLB	RTDINB	*	*	*	ISQTAL
60	50NN11	50NN1T	50NN12	50NN13	50NN14	51NN1	51NN1T	51NN1R
61	50NN21	50NN2T	50NN22	50NN23	50NN24	51NN2	51NN2T	51NN2R
62	50NN31	50NN3T	50NN32	50NN33	50NN34	51NN3	51NN3T	51NN3R

^{*}Reserved for future use or not available in the SEL-387A.

Table 4.8: Relay Word Bit Definitions

Row	Bit	Definition
0	All	LED targets - not usable in SELOGIC control equations
1	All	LED targets - not usable in SELOGIC control equations
2	50P11	Winding 1 phase definite-time O/C Level 1 element picked up
	50P11T	Winding 1 phase definite-time O/C Level 1 element timed out
	50P12	Winding 1 phase instantaneous O/C Level 2 element picked up
	51P1	Winding 1 phase inverse-time O/C element picked up
	51P1T	Winding 1 phase inverse-time O/C element timed out
	51P1R	Winding 1 phase inverse-time O/C 51P1 element is reset
	PDEM1	Winding 1 phase demand current threshold exceeded
	OCA	O/C element A-phase selection

Row	Bit	Definition
3	50A13	Winding 1 A-phase instantaneous O/C Level 3 element picked up
	50B13	Winding 1 B-phase instantaneous O/C Level 3 element picked up
	50C13	Winding 1 C-phase instantaneous O/C Level 3 element picked up
	50P13	50A13 + 50B13 + 50C13
	50A14	Winding 1 A-phase instantaneous O/C Level 4 element picked up
	50B14	Winding 1 B-phase instantaneous O/C Level 4 element picked up
	50C14	Winding 1 C-phase instantaneous O/C Level 4 element picked up
	50P14	50A14 + 50B14 + 50C14
4	50N11	Winding 1 residual definite-time O/C Level 1 element picked up
	50N11T	Winding 1 residual definite-time O/C Level 1 element timed out
	50N12	Winding 1 residual instantaneous O/C Level 2 element picked up
	51N1	Winding 1 residual inverse-time O/C element picked up
	51N1T	Winding 1 residual inverse-time O/C element timed out
	51N1R	Winding 1 residual inverse-time O/C 51N1 element is reset
	NDEM1	Winding 1 residual demand current threshold exceeded
	OC1	Breaker 1 OPEN command execution
5	50Q11	Winding 1 negseq. definite-time O/C Level 1 element picked up
	50Q11T	Winding 1 negseq. definite-time O/C element timed out
	50Q12	Winding 1 negseq. instantaneous O/C Level 2 element picked up
	51Q1	Winding 1 negseq. inverse-time O/C element picked up
	51Q1T	Winding 1 negseq. inverse-time O/C element timed out
	51Q1R	Winding 1 negseq. inverse-time O/C 51Q1 element is reset
	QDEM1	Winding 1 negseq. demand current threshold exceeded
	CC1	Breaker 1 CLOSE command execution
6	50P21	Winding 2 phase definite-time O/C Level 1 element picked up
	50P21T	Winding 2 phase definite-time O/C Level 1 element timed out
	50P22	Winding 2 phase instantaneous O/C Level 2 element picked up
	51P2	Winding 2 phase inverse-time O/C element picked up
	51P2T	Winding 2 phase inverse-time O/C element timed out
	51P2R	Winding 2 phase inverse-time O/C 51P2 element is reset
	PDEM2	Winding 2 phase demand current threshold exceeded
	OCB	O/C element B-phase selection

Row	Bit	Definition
7	50A23	Winding 2 A-phase instantaneous O/C Level 3 element picked up
	50B23	Winding 2 B-phase instantaneous O/C Level 3 element picked up
	50C23	Winding 2 C-phase instantaneous O/C Level 3 element picked up
	50P23	50A23 + 50B23 + 50C23
	50A24	Winding 2 A-phase instantaneous O/C Level 4 element picked up
	50B24	Winding 2 B-phase instantaneous O/C Level 4 element picked up
	50C24	Winding 2 C-phase instantaneous O/C Level 4 element picked up
	50P24	50A24 + 50B24 + 50C24
8	50N21	Winding 2 residual definite-time O/C Level 1 element picked up
	50N21T	Winding 2 residual definite-time O/C Level 1 element timed out
	50N22	Winding 2 residual instantaneous O/C Level 2 element picked up
	51N2	Winding 2 residual inverse-time O/C element picked up
	51N2T	Winding 2 residual inverse-time O/C element timed out
	51N2R	Winding 2 residual inverse-time O/C 51N2 element is reset
	NDEM2	Winding 2 residual demand current threshold exceeded
	OC2	Breaker 2 OPEN command execution
9	50Q21	Winding 2 negseq. definite-time O/C Level 1 element picked up
	50Q21T	Winding 2 negseq. definite-time O/C Level 1 element timed out
	50Q22	Winding 2 negseq. instantaneous O/C Level 2 element picked up
	51Q2	Winding 2 negseq. inverse-time O/C element picked up
	51Q2T	Winding 2 negseq. inverse-time O/C element timed out
	51Q2R	Winding 2 negseq. inverse-time O/C 51Q2 element is reset
	QDEM2	Winding 2 negseq. demand current threshold exceeded
	CC2	Breaker 2 CLOSE command execution
10	*	
	*	
	*	
	*	
	*	
	*	
	*	
	OCC	O/C element C-phase selection
11–17	*	Reserved for future use

Row	Bit	Definition
18	87U1	Unrestrained differential element 1 picked up
	87U2	Unrestrained differential element 2 picked up
	87U3	Unrestrained differential element 3 picked up
	87U	Unrestrained differential element picked up
	87R1	Restrained differential element 1 picked up
	87R2	Restrained differential element 2 picked up
	87R3	Restrained differential element 3 picked up
	87R	Restrained differential element picked up
19	2HB1	Second-harmonic block asserted for differential element 1
	2HB2	Second-harmonic block asserted for differential element 2
	2HB3	Second-harmonic block asserted for differential element 3
	5HB1	Fifth-harmonic block asserted for differential element 1
	5HB2	Fifth-harmonic block asserted for differential element 2
	5HB3	Fifth-harmonic block asserted for differential element 3
	TH5	Fifth-harmonic alarm threshold exceeded
	TH5T	Fifth-harmonic alarm threshold exceeded for longer than TH5D
20	87BL1	Harmonic block asserted for differential element 1
	87BL2	Harmonic block asserted for differential element 2
	87BL3	Harmonic block asserted for differential element 3
	87BL	Harmonic block asserted for differential element
	87E1	Trip by differential element 1
	87E2	Trip by differential element 2
	87E3	Trip by differential element 3
	*	Reserved for future use
21	8701	Restrained differential element 1 operating current above O87P
	87O2	Restrained differential element 2 operating current above O87P
	87O3	Restrained differential element 3 operating current above O87P
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use

Row	Bit	Definition
22	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	DC1	DC battery voltage level 1 exceeded
	DC2	DC battery voltage level 2 exceeded
23	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	DC3	DC battery voltage level 3 exceeded
	DC4	DC battery voltage level 4 exceeded
24	RB1	Remote bit RB1 asserted
	RB2	Remote bit RB2 asserted
	RB3	Remote bit RB3 asserted
	RB4	Remote bit RB4 asserted
	RB5	Remote bit RB5 asserted
	RB6	Remote bit RB6 asserted
	RB7	Remote bit RB7 asserted
	RB8	Remote bit RB8 asserted
25	RB9	Remote bit RB9 asserted
	RB10	Remote bit RB10 asserted
	RB11	Remote bit RB11 asserted
	RB12	Remote bit RB12 asserted
	RB13	Remote bit RB13 asserted
	RB14	Remote bit RB14 asserted
	RB15	Remote bit RB15 asserted
	RB16	Remote bit RB16 asserted

Row	Bit	Definition
26	SG1	Setting Group 1 is the active setting group
	SG2	Setting Group 2 is the active setting group
	SG3	Setting Group 3 is the active setting group
	SG4	Setting Group 4 is the active setting group
	SG5	Setting Group 5 is the active setting group
	SG6	Setting Group 6 is the active setting group
	CHSG	Timing to change setting groups
	*	Reserved for future use
27	4HBL	Fourth-harmonic block asserted
	DCBL	DC block asserted
	IN106	Input IN106 asserted
	IN105	Input IN105 asserted
	IN104	Input IN104 asserted
	IN103	Input IN103 asserted
	IN102	Input IN102 asserted
	IN101	Input IN101 asserted
28	IN208	Input IN208 asserted
	IN207	Input IN207 asserted
	IN206	Input IN206 asserted
	IN205	Input IN205 asserted
	IN204	Input IN204 asserted
	IN203	Input IN203 asserted
	IN202	Input IN202 asserted
	IN201	Input IN201 asserted
29	IN216	Input IN216 asserted
	IN215	Input IN215 asserted
	IN214	Input IN214 asserted
	IN213	Input IN213 asserted
	IN212	Input IN212 asserted
	IN211	Input IN211 asserted
	IN210	Input IN210 asserted
	IN209	Input IN209 asserted

Row	Bit	Definition
30	*	Reserved
	*	Reserved
31	*	Reserved
	*	Reserved
32	S1V1	Set 1 SELOGIC control equation variable S1V1 timer input asserted
	S1V2	Set 1 SELOGIC control equation variable S1V2 timer input asserted
	S1V3	Set 1 SELOGIC control equation variable S1V3 timer input asserted
	S1V4	Set 1 SELOGIC control equation variable S1V4 timer input asserted
	S1V1T	Set 1 SELOGIC control equation variable S1V1 timer output asserted
	S1V2T	Set 1 SELOGIC control equation variable S1V2 timer output asserted
	S1V3T	Set 1 SELOGIC control equation variable S1V3 timer output asserted
	S1V4T	Set 1 SELOGIC control equation variable S1V4 timer output asserted
33	S2V1	Set 2 SELOGIC control equation variable S2V1 timer input asserted
	S2V2	Set 2 SELOGIC control equation variable S2V2 timer input asserted
	S2V3	Set 2 SELOGIC control equation variable S2V3 timer input asserted
	S2V4	Set 2 SELOGIC control equation variable S2V4 timer input asserted
	S2V1T	Set 2 SELOGIC control equation variable S2V1 timer output asserted
	S2V2T	Set 2 SELOGIC control equation variable S2V2 timer output asserted
	S2V3T	Set 2 SELOGIC control equation variable S2V3 timer output asserted
	S2V4T	Set 2 SELOGIC control equation variable S2V4 timer output asserted

Row	Bit	Definition
34	S3V1	Set 3 SELOGIC control equation variable S3V1 timer input asserted
	S3V2	Set 3 SELOGIC control equation variable S3V2 timer input asserted
	S3V3	Set 3 SELOGIC control equation variable S3V3 timer input asserted
	S3V4	Set 3 SELOGIC control equation variable S3V4 timer input asserted
	S3V5	Set 3 SELOGIC control equation variable S3V5 timer input asserted
	S3V6	Set 3 SELOGIC control equation variable S3V6 timer input asserted
	S3V7	Set 3 SELOGIC control equation variable S3V7 timer input asserted
	S3V8	Set 3 SELOGIC control equation variable S3V8 timer input asserted
35	S3V1T	Set 3 SELOGIC control equation variable S3V1 timer output asserted
	S3V2T	Set 3 SELOGIC control equation variable S3V2 timer output asserted
	S3V3T	Set 3 SELOGIC control equation variable S3V3 timer output asserted
	S3V4T	Set 3 SELOGIC control equation variable S3V4 timer output asserted
	S3V5T	Set 3 SELOGIC control equation variable S3V5 timer output asserted
	S3V6T	Set 3 SELOGIC control equation variable S3V6 timer output asserted
	S3V7T	Set 3 SELOGIC control equation variable S3V7 timer output asserted
	S3V8T	Set 3 SELOGIC control equation variable S3V8 timer output asserted
36	S1LT1	Set 1 latch bit S1LT1 asserted
	S1LT2	Set 1 latch bit S1LT2 asserted
	S1LT3	Set 1 latch bit S1LT3 asserted
	S1LT4	Set 1 latch bit S1LT4 asserted
	S2LT1	Set 2 latch bit S2LT1 asserted
	S2LT2	Set 2 latch bit S2LT2 asserted
	S2LT3	Set 2 latch bit S2LT3 asserted
	S2LT4	Set 2 latch bit S2LT4 asserted
37	S3LT1	Set 3 latch bit S3LT1 asserted
	S3LT2	Set 3 latch bit S3LT2 asserted
	S3LT3	Set 3 latch bit S3LT3 asserted
	S3LT4	Set 3 latch bit S3LT4 asserted
	S3LT5	Set 3 latch bit S3LT5 asserted
	S3LT6	Set 3 latch bit S3LT6 asserted
	S3LT7	Set 3 latch bit S3LT7 asserted
	S3LT8	Set 3 latch bit S3LT8 asserted

Row	Bit	Definition
38	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
39	BCWA1	A-phase Breaker 1 contact wear threshold exceeded
	BCWB1	B-phase Breaker 1 contact wear threshold exceeded
	BCWC1	C-phase Breaker 1 contact wear threshold exceeded
	BCW1	BCWA1+BCWB1+BCWC1
	BCWA2	A-phase Breaker 2 contact wear threshold exceeded
	BCWB2	B-phase Breaker 2 contact wear threshold exceeded
	BCWC2	C-phase Breaker 2 contact wear threshold exceeded
	BCW2	BCWA2+BCWB2+BCWC2
40	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
41	TRIP1	Trip 1 logic asserted
	TRIP2	Trip 2 logic asserted
	TRIP3	Trip 3 logic asserted
	TRIP4	Trip 4 logic asserted
	TRIP5	Trip 5 logic asserted
	TRIPL	Any trip asserted
	*	Reserved for future use
	TRGTR	Target reset pushbutton/TAR R command

Row	Bit	Definition
42	CLS1	Breaker 1 CLOSE output asserted
	CLS2	Breaker 2 CLOSE output asserted
	CLS3	Breaker 3 CLOSE output asserted
	CLS4	Breaker 4 CLOSE output asserted
	CF1T	Breaker 1 close failure timer timed out
	CF2T	Breaker 2 close failure timer timed out
	CF3T	Breaker 3 close failure timer timed out
	CF4T	Breaker 4 close failure timer timed out
43	NOTALM	ALARM output not asserted
	OUT107	Output OUT107 asserted
	OUT106	Output OUT106 asserted
	OUT105	Output OUT105 asserted
	OUT104	Output OUT104 asserted
	OUT103	Output OUT103 asserted
	OUT102	Output OUT102 asserted
	OUT101	Output OUT101 asserted
44	OUT201	Output OUT201 asserted
	OUT202	Output OUT202 asserted
	OUT203	Output OUT203 asserted
	OUT204	Output OUT204 asserted
	OUT205	Output OUT205 asserted
	OUT206	Output OUT206 asserted
	OUT207	Output OUT207 asserted
	OUT208	Output OUT208 asserted
45	OUT209	Output OUT209 asserted
	OUT210	Output OUT210 asserted
	OUT211	Output OUT211 asserted
	OUT212	Output OUT212 asserted
	OUT213	Output OUT213 asserted
	OUT214	Output OUT214 asserted
	OUT215	Output OUT215 asserted
	OUT216	Output OUT216 asserted

Row	Bit	Definition
46	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
47	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
48	LB1	Local Bit 1 asserted
	LB2	Local Bit 2 asserted
	LB3	Local Bit 3 asserted
	LB4	Local Bit 4 asserted
	LB5	Local Bit 5 asserted
	LB6	Local Bit 6 asserted
	LB7	Local Bit 7 asserted
	LB8	Local Bit 8 asserted
49	LB9	Local Bit 9 asserted
	LB10	Local Bit 10 asserted
	LB11	Local Bit 11 asserted
	LB12	Local Bit 12 asserted
	LB13	Local Bit 13 asserted
	LB14	Local Bit 14 asserted
	LB15	Local Bit 15 asserted
	LB16	Local Bit 16 asserted

Row	Bit	Definition
50	50GC1	Element 1 winding residual current exceeded sensitivity threshold
	50GN1	Element 1 neutral current exceeded sensitivity threshold
	32IE1	Internal enable for the REF1 32I element
	32IR1	Element 1 32I element reverse (external) fault declaration
	32IF1	Element 1 32I element forward (internal) fault declaration
	REFP1	Element 1 REF inverse-time O/C element timed out
	CTS1	Element 1 current transformer saturation
	*	Reserved for future use
51	50GC2	Element 2 winding residual current exceeded sensitivity threshold
	50GN2	Element 2 neutral current exceeded sensitivity threshold
	32IE2	Internal enable for the REF2 32I element
	32IR2	Element 2 32I element reverse (external) fault declaration
	32IF2	Element 2 32I element forward (internal) fault declaration
	REFP2	Element 2 REF inverse-time O/C element timed out
	CTS2	Element 2 current transformer saturation
	*	Reserved for future use
52	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
53	49A01A	RTD1A alarm picked up
	49T01A	RTD1A trip picked up
	49A02A	RTD2A alarm picked up
	49T02A	RTD2A trip picked up
	49A03A	RTD3A alarm picked up
	49T03A	RTD3A trip picked up
	49A04A	RTD4A alarm picked up
	49T04A	RTD4A trip picked up

Row	Bit	Definition
54	49A05A	RTD5A alarm picked up
	49T05A	RTD5A trip picked up
	49A06A	RTD6A alarm picked up
	49T06A	RTD6A trip picked up
	49A07A	RTD7A alarm picked up
	49T07A	RTD7A trip picked up
	49A08A	RTD8A alarm picked up
	49T08A	RTD8A trip picked up
55	49A09A	RTD9A alarm picked up
	49T09A	RTD9A trip picked up
	49A10A	RTD10A alarm picked up
	49T10A	RTD10A trip picked up
	49A11A	RTD11A alarm picked up
	49T11A	RTD11A trip picked up
	49A12A	RTD12A alarm picked up
	49T12A	RTD12A trip picked up
56	49A01B	RTD1B alarm picked up
	49T01B	RTD1B trip picked up
	49A02B	RTD2B alarm picked up
	49T02B	RTD2B trip picked up
	49A03B	RTD3B alarm picked up
	49T03B	RTD3B trip picked up
	49A04B	RTD4B alarm picked up
	49T04B	RTD4B trip picked up
57	49A05B	RTD5B alarm picked up
	49T05B	RTD5B trip picked up
	49A06B	RTD6B alarm picked up
	49T06B	RTD6B trip picked up
	49A07B	RTD7B alarm picked up
	49T07B	RTD7B trip picked up
	49A08B	RTD8B alarm picked up
	49T08B	RTD8B trip picked up

Row	Bit	Definition
58	49A09B	RTD9B alarm picked up
	49T09B	RTD9B trip picked up
	49A10B	RTD10B alarm picked up
	49T10B	RTD10B trip picked up
	49A11B	RTD11B alarm picked up
	49T11B	RTD11B trip picked up
	49A12B	RTD12B alarm picked up
	49T12B	RTD12B trip picked up
59	COMFLA	Asserts when communications fails or when out-of-range temperature data received from RTDA
	RTDINA	State of external RTDA module's digital input
	COMFLB	Asserts when communications fails or when out-of-range temperature data received from RTDB
	RTDINB	State of external RTDB module's digital input
	*	Reserved for future use
	*	Reserved for future use
	*	Reserved for future use
	ISQTAL	Cumulative through-fault I ² t on a phase of a designated winding has exceeded the through-fault I ² t threshold ISQT
60	50NN11	Neutral definite-time O/C element 1 Level 1 picked up
	50NN1T	Neutral definite-time O/C element 1 Level 1 timed out
	50NN12	Neutral instantaneous O/C element 1 Level 2 picked up
	50NN13	Neutral instantaneous O/C element 1 Level 3 picked up
	50NN14	Neutral instantaneous O/C element 1 Level 4 picked up
	51NN1	Neutral inverse-time O/C element 1 picked up
	51NN1T	Neutral inverse-time O/C element 1 timed out
	51NN1R	Neutral inverse-time O/C element 1 is reset
61	50NN21	Neutral definite-time O/C element 2 Level 1 picked up
	50NN2T	Neutral definite-time O/C element 2 Level 1 timed out
	50NN22	Neutral instantaneous O/C element 2 Level 2 picked up
	50NN23	Neutral instantaneous O/C element 2 Level 3 picked up
	50NN24	Neutral instantaneous O/C element 2 Level 4 picked up
	51NN2	Neutral inverse-time O/C element 2 picked up
	51NN2T	Neutral inverse-time O/C element 2 timed out
	51NN2R	Neutral inverse-time O/C element 2 is reset

Row	Bit	Definition
62	50NN31	Neutral definite-time O/C element 3 Level 1 picked up
	50NN3T	Neutral definite-time O/C element 3 Level 1 timed out
	50NN32	Neutral instantaneous O/C element 3 Level 2 picked up
	50NN33	Neutral instantaneous O/C element 3 Level 3 picked up
	50NN34	Neutral instantaneous O/C element 3 Level 4 picked up
	51NN3	Neutral inverse-time O/C element 3 picked up
	51NN3T	Neutral inverse-time O/C element 3 timed out
	51NN3R	Neutral inverse-time O/C element 3 is reset

Table 4.9: Relay Word Bits Sorted Alphabetically

Bit	Definition	Row
All	LED targets - not usable in SELOGIC control equations	0
All	LED targets - not usable in SELOGIC control equations	1
2HB1	Second-harmonic block asserted for differential element 1	19
2HB2	Second-harmonic block asserted for differential element 2	19
2HB3	Second-harmonic block asserted for differential element 3	19
32IE1	Internal enable for the REF1 32I element	50
32IE2	Internal enable for the REF2 32I element	51
32IF1	Element 1 32I element forward (internal) fault declaration	50
32IF2	Element 2 32I element forward (internal) fault declaration	51
32IR1	Element 1 32I element reverse (external) fault declaration	50
32IR2	Element 2 32I element reverse (external) fault declaration	51
49A01A	RTD1A alarm picked up	53
49A01B	RTD1B alarm picked up	56
49A02A	RTD2A alarm picked up	53
49A02B	RTD2B alarm picked up	56
49A03A	RTD3A alarm picked up	53
49A03B	RTD3B alarm picked up	56
49A04A	RTD4A alarm picked up	53
49A04B	RTD4B alarm picked up	56
49A05A	RTD5A alarm picked up	54
49A05B	RTD5B alarm picked up	57
49A06A	RTD6A alarm picked up	54
49A06B	RTD6B alarm picked up	57
49A07A	RTD7A alarm picked up	54
49A07B	RTD7B alarm picked up	57
49A08A	RTD8A alarm picked up	54
49A08B	RTD8B alarm picked up	57

Bit	Definition	Row
49A09A	RTD9A alarm picked up	55
49A09B	RTD9B alarm picked up	58
49A10A	RTD10A alarm picked up	55
49A10B	RTD10B alarm picked up	58
49A11A	RTD11A alarm picked up	55
49A11B	RTD11B alarm picked up	58
49A12A	RTD12A alarm picked up	55
49A12B	RTD12B alarm picked up	58
49T01A	RTD1A trip picked up	53
49T01B	RTD1B trip picked up	56
49T02A	RTD2A trip picked up	53
49T02B	RTD2B trip picked up	56
49T03A	RTD3A trip picked up	53
49T03B	RTD3B trip picked up	56
49T04A	RTD4A trip picked up	53
49T04B	RTD4B trip picked up	56
49T05A	RTD5A trip picked up	54
49T05B	RTD5B trip picked up	57
49T06A	RTD6A trip picked up	54
49T06B	RTD6B trip picked up	57
49T07A	RTD7A trip picked up	54
49T07B	RTD7B trip picked up	57
49T08A	RTD8A trip picked up	54
49T08B	RTD8B trip picked up	57
49T09A	RTD9A trip picked up	55
49T09B	RTD9B trip picked up	58
49T10A	RTD10A trip picked up	55
49T10B	RTD10B trip picked up	58
49T11A	RTD11A trip picked up	55
49T11B	RTD11B trip picked up	58
49T12A	RTD12A trip picked up	55
49T12B	RTD12B trip picked up	58
4HBL	Fourth-harmonic block asserted	27
50A13	Winding 1 A-phase instantaneous O/C Level 3 element picked up	3
50A14	Winding 1 A-phase instantaneous O/C Level 4 element picked up	3
50A23	Winding 2 A-phase instantaneous O/C Level 3 element picked up	7
50A24	Winding 2 A-phase instantaneous O/C Level 4 element picked up	7
50B13	Winding 1 B-phase instantaneous O/C Level 3 element picked up	3

Bit	Definition	Row
50B14	Winding 1 B-phase instantaneous O/C Level 4 element picked up	3
50B23	Winding 2 B-phase instantaneous O/C Level 3 element picked up	7
50B24	Winding 2 B-phase instantaneous O/C Level 4 element picked up	7
50C13	Winding 1 C-phase instantaneous O/C Level 3 element picked up	3
50C14	Winding 1 C-phase instantaneous O/C Level 4 element picked up	3
50C23	Winding 2 C-phase instantaneous O/C Level 3 element picked up	7
50C24	Winding 2 C-phase instantaneous O/C Level 4 element picked up	7
50GC1	Element 1 winding residual current exceeded sensitivity threshold	50
50GC2	Element 2 winding residual current exceeded sensitivity threshold	51
50GN1	Element 1 neutral current exceeded sensitivity threshold	50
50GN2	Element 2 neutral current exceeded sensitivity threshold	51
50N11	Winding 1 residual definite-time O/C Level 1 element picked up	4
50N11T	Winding 1 residual definite-time O/C Level 1 element timed out	4
50N12	Winding 1 residual instantaneous O/C Level 2 element picked up	4
50N21	Winding 2 residual definite-time O/C Level 1 element picked up	8
50N21T	Winding 2 residual definite-time O/C Level 1 element timed out	8
50N22	Winding 2 residual instantaneous O/C Level 2 element picked up	8
50NN11	Neutral definite-time O/C element 1 Level 1 picked up	65
50NN12	Neutral instantaneous O/C element 1 Level 2 picked up	65
50NN13	Neutral instantaneous O/C element 1 Level 3 picked up	65
50NN14	Neutral instantaneous O/C element 1 Level 4 picked up	65
50NN1T	Neutral definite-time O/C element 1 Level 1 timed out	65
50NN21	Neutral definite-time O/C element 2 Level 1 picked up	66
50NN22	Neutral instantaneous O/C element 2 Level 2 picked up	66
50NN23	Neutral instantaneous O/C element 2 Level 3 picked up	66
50NN24	Neutral instantaneous O/C element 2 Level 4 picked up	66
50NN2T	Neutral definite-time O/C element 3 Level 1 timed out	66
50NN32	Neutral instantaneous O/C element 3 Level 2 picked up	67
50NN33	Neutral instantaneous O/C element 3 Level 3 picked up	67
50NN34	Neutral instantaneous O/C element 3 Level 4 picked up	67
50NN3T	Neutral definite-time O/C element 3 Level 1 timed out	67
50P11	Winding 1 phase definite-time O/C Level 1 element picked up	2
50P11T	Winding 1 phase definite-time O/C Level 1 element timed out	2
50P12	Winding 1 phase instantaneous O/C Level 2 element picked up	2
50P13	50A13 + 50B13 + 50C13	3
50P14	50A14 + 50B14 + 50C14	3
50P21	Winding 2 phase definite-time O/C Level 1 element picked up	6
50P21T	Winding 2 phase definite-time O/C Level 1 element timed out	6

Bit	Definition	Row
50P22	Winding 2 phase instantaneous O/C Level 2 element picked up	6
50P23	50A23 + 50B23 + 50C23	7
50P24	50A24 + 50B24 + 50C24	7
50Q11	Winding 1 negseq. definite-time O/C Level 1 element picked up	5
50Q11T	Winding 1 negseq. definite-time O/C element timed out	5
50Q12	Winding 1 negseq. instantaneous O/C Level 2 element picked up	5
50Q21	Winding 2 negseq. definite-time O/C Level 1 element picked up	9
50Q21T	Winding 2 negseq. definite-time O/C Level 1 element timed out	9
50Q22	Winding 2 negseq. instantaneous O/C Level 2 element picked up	9
51N1	Winding 1 residual inverse-time O/C element picked up	4
51N1R	Winding 1 residual inverse-time O/C 51N1 element is reset	4
51N1T	Winding 1 residual inverse-time O/C element timed out	4
51N2	Winding 2 residual inverse-time O/C element picked up	8
51N2R	Winding 2 residual inverse-time O/C 51N2 element is reset	8
51N2T	Winding 2 residual inverse-time O/C element timed out	8
51NN1	Neutral inverse-time O/C element 1 picked up	65
51NN1R	Neutral inverse-time O/C element 1 is reset	65
51NN1T	Neutral inverse-time O/C element 1 timed out	65
51NN2	Neutral inverse-time O/C element 2 picked up	66
51NN2R	Neutral inverse-time O/C element 2 is reset	66
51NN2T	Neutral inverse-time O/C element 2 timed out	66
51NN3	Neutral inverse-time O/C element 3 picked up	67
51NN3R	Neutral inverse-time O/C element 3 is reset	67
51NN3T	Neutral inverse-time O/C element 3 timed out	67
51P1	Winding 1 phase inverse-time O/C element picked up	2
51P1R	Winding 1 phase inverse-time O/C 51P1 element is reset	2
51P1T	Winding 1 phase inverse-time O/C element timed out	2
51P2	Winding 2 phase inverse-time O/C element picked up	6
51P2R	Winding 2 phase inverse-time O/C 51P2 element is reset	6
51P2T	Winding 2 phase inverse-time O/C element timed out	6
51Q1	Winding 1 negseq. inverse-time O/C element picked up	5
51Q1R	Winding 1 negseq. inverse-time O/C 51Q1 element is reset	5
51Q1T	Winding 1 negseq. inverse-time O/C element timed out	5
51Q2	Winding 2 negseq. inverse-time O/C element picked up	9
51Q2R	Winding 2 negseq. inverse-time O/C 51Q2 element is reset	9
51Q2T	Winding 2 negseq. inverse-time O/C element timed out	9
5HB1	Fifth-harmonic block asserted for differential element 1	19
5HB2	Fifth-harmonic block asserted for differential element 2	19

Bit	Definition	Row
5HB3	Fifth-harmonic block asserted for differential element 3	19
87BL	Harmonic block asserted for differential element	20
87BL1	Harmonic block asserted for differential element 1	20
87BL2	Harmonic block asserted for differential element 2	20
87BL3	Harmonic block asserted for differential element 3	20
87E1	Trip by differential element 1	20
87E2	Trip by differential element 2	20
87E3	Trip by differential element 3	20
87O1	Restrained differential element 1 operating current above O87P	21
87O2	Restrained differential element 2 operating current above O87P	21
87O3	Restrained differential element 3 operating current above O87P	21
87R	Restrained differential element picked up	18
87R1	Restrained differential element 1 picked up	18
87R2	Restrained differential element 2 picked up	18
87R3	Restrained differential element 3 picked up	18
87U	Unrestrained differential element picked up	18
87U1	Unrestrained differential element 1 picked up	18
87U2	Unrestrained differential element 2 picked up	18
87U3	Unrestrained differential element 3 picked up	18
BCW1	BCWA1+BCWB1+BCWC1	39
BCW2	BCWA2+BCWB2+BCWC2	39
BCWA1	A-phase Breaker 1 contact wear threshold exceeded	39
BCWA2	A-phase Breaker 2 contact wear threshold exceeded	39
BCWB1	B-phase Breaker 1 contact wear threshold exceeded	39
BCWB2	B-phase Breaker 2 contact wear threshold exceeded	39
BCWC1	C-phase Breaker 1 contact wear threshold exceeded	39
BCWC2	C-phase Breaker 2 contact wear threshold exceeded	39
CC1	Breaker 1 CLOSE command execution	5
CC2	Breaker 2 CLOSE command execution	9
CF1T	Breaker 1 close failure timer timed out	42
CF2T	Breaker 2 close failure timer timed out	42
CF3T	Breaker 3 close failure timer timed out	42
CF4T	Breaker 4 close failure timer timed out	42
CHSG	Timing to change setting groups	26
CLS1	Breaker 1 CLOSE output asserted	42
CLS2	Breaker 2 CLOSE output asserted	42
CLS3	Breaker 3 CLOSE output asserted	42
CLS4	Breaker 4 CLOSE output asserted	42

Bit	Definition	Row
COMFLA	Asserts when communication fails or when out-of-range temperature data received from RTDA	59
COMFLB	Asserts when communication fails or when out-of-range temperature data received from RTDB	59
ISQTAL	Cumulative through-fault I ² t on a phase of a designated winding has exceeded the through-fault I ² t threshold ISQT	59
CTS1	Element 1 current transformer saturation	50
CTS2	Element 2 current transformer saturation	51
DC1	DC battery voltage level 1 exceeded	22
DC2	DC battery voltage level 2 exceeded	22
DC3	DC battery voltage level 3 exceeded	23
DC4	DC battery voltage level 4 exceeded	23
DCBL	DC block asserted	27
IN101	Input IN101 asserted	27
IN102	Input IN102 asserted	27
IN103	Input IN103 asserted	27
IN104	Input IN104 asserted	27
IN105	Input IN105 asserted	27
IN106	Input IN106 asserted	27
IN201	Input IN201 asserted	28
IN202	Input IN202 asserted	28
IN203	Input IN203 asserted	28
IN204	Input IN204 asserted	28
IN205	Input IN205 asserted	28
IN206	Input IN206 asserted	28
IN207	Input IN207 asserted	28
IN208	Input IN208 asserted	28
IN209	Input IN209 asserted	29
IN210	Input IN210 asserted	29
IN211	Input IN211 asserted	29
IN212	Input IN212 asserted	29
IN213	Input IN213 asserted	29
IN214	Input IN214 asserted	29
IN215	Input IN215 asserted	29
IN216	Input IN216 asserted	29
LB1	Local Bit 1 asserted	48
LB10	Local Bit 10 asserted	49
LB11	Local Bit 11 asserted	49
LB12	Local Bit 12 asserted	49

Bit	Definition	Row
LB13	Local Bit 13 asserted	49
LB14	Local Bit 14 asserted	49
LB15	Local Bit 15 asserted	49
LB16	Local Bit 16 asserted	49
LB2	Local Bit 2 asserted	48
LB3	Local Bit 3 asserted	48
LB4	Local Bit 4 asserted	48
LB5	Local Bit 5 asserted	48
LB6	Local Bit 6 asserted	48
LB7	Local Bit 7 asserted	48
LB8	Local Bit 8 asserted	48
LB9	Local Bit 9 asserted	49
NDEM1	Winding 1 residual demand current threshold exceeded	4
NDEM2	Winding 2 residual demand current threshold exceeded	8
NOTALM	ALARM output not asserted	43
OC1	Breaker 1 OPEN command execution	4
OC2	Breaker 2 OPEN command execution	8
OCA	O/C element A-phase selection	2
OCB	O/C element B-phase selection	6
OCC	O/C element C-phase selection	10
OUT101	Output OUT101 asserted	43
OUT102	Output OUT102 asserted	43
OUT103	Output OUT103 asserted	43
OUT104	Output OUT104 asserted	43
OUT105	Output OUT105 asserted	43
OUT106	Output OUT106 asserted	43
OUT107	Output OUT107 asserted	43
OUT201	Output OUT201 asserted	44
OUT202	Output OUT202 asserted	44
OUT203	Output OUT203 asserted	44
OUT204	Output OUT204 asserted	44
OUT205	Output OUT205 asserted	44
OUT206	Output OUT206 asserted	44
OUT207	Output OUT207 asserted	44
OUT208	Output OUT208 asserted	44
OUT209	Output OUT209 asserted	45
OUT210	Output OUT210 asserted	45
OUT211	Output OUT211 asserted	45

Bit	Definition	Row
OUT212	Output OUT212 asserted	45
OUT213	Output OUT213 asserted	45
OUT214	Output OUT214 asserted	45
OUT215	Output OUT215 asserted	45
OUT216	Output OUT216 asserted	45
PDEM1	Winding 1 phase demand current threshold exceeded	2
PDEM2	Winding 2 phase demand current threshold exceeded	6
QDEM1	Winding 1 negseq. demand current threshold exceeded	5
QDEM2	Winding 2 negseq. demand current threshold exceeded	9
RB1	Remote bit RB1 asserted	24
RB10	Remote bit RB10 asserted	25
RB11	Remote bit RB11 asserted	25
RB12	Remote bit RB12 asserted	25
RB13	Remote bit RB13 asserted	25
RB14	Remote bit RB14 asserted	25
RB15	Remote bit RB15 asserted	25
RB16	Remote bit RB16 asserted	25
RB2	Remote bit RB2 asserted	24
RB3	Remote bit RB3 asserted	24
RB4	Remote bit RB4 asserted	24
RB5	Remote bit RB5 asserted	24
RB6	Remote bit RB6 asserted	24
RB7	Remote bit RB7 asserted	24
RB8	Remote bit RB8 asserted	24
RB9	Remote bit RB9 asserted	25
REFP1	Element 1 REF inverse-time O/C element timed out	50
REFP2	Element 2 REF inverse-time O/C element timed out	51
RTDINA	State of external RTDA module's digital input	59
RTDINB	State of external RTDB module's digital input	59
S1LT1	Set 1 latch bit S1LT1 asserted	36
S1LT2	Set 1 latch bit S1LT2 asserted	36
S1LT3	Set 1 latch bit S1LT3 asserted	36
S1LT4	Set 1 latch bit S1LT4 asserted	36
S1V1	Set 1 SELOGIC control equation variable S1V1 timer input asserted	32
S1V1T	Set 1 SELOGIC control equation variable S1V1 timer output asserted	32
S1V2	Set 1 SELOGIC control equation variable S1V2 timer input asserted	32
S1V2T	Set 1 SELOGIC control equation variable S1V2 timer output asserted	32
S1V3	Set 1 SELOGIC control equation variable S1V3 timer input asserted	32

Bit	Definition	Row
S1V3T	Set 1 SELOGIC control equation variable S1V3 timer output asserted	32
S1V4	Set 1 SELOGIC control equation variable S1V4 timer input asserted	32
S1V4T	Set 1 SELOGIC control equation variable S1V4 timer output asserted	32
S2LT1	Set 2 latch bit S2LT1 asserted	36
S2LT2	Set 2 latch bit S2LT2 asserted	36
S2LT3	Set 2 latch bit S2LT3 asserted	36
S2LT4	Set 2 latch bit S2LT4 asserted	36
S2V1	Set 2 SELOGIC control equation variable S2V1 timer input asserted	33
S2V1T	Set 2 SELOGIC control equation variable S2V1 timer output asserted	33
S2V2	Set 2 SELOGIC control equation variable S2V2 timer input asserted	33
S2V2T	Set 2 SELOGIC control equation variable S2V2 timer output asserted	33
S2V3	Set 2 SELOGIC control equation variable S2V3 timer input asserted	33
S2V3T	Set 2 SELOGIC control equation variable S2V3 timer output asserted	33
S2V4	Set 2 SELOGIC control equation variable S2V4 timer input asserted	33
S2V4T	Set 2 SELOGIC control equation variable S2V4 timer output asserted	33
S3LT1	Set 3 latch bit S3LT1 asserted	37
S3LT2	Set 3 latch bit S3LT2 asserted	37
S3LT3	Set 3 latch bit S3LT3 asserted	37
S3LT4	Set 3 latch bit S3LT4 asserted	37
S3LT5	Set 3 latch bit S3LT5 asserted	37
S3LT6	Set 3 latch bit S3LT6 asserted	37
S3LT7	Set 3 latch bit S3LT7 asserted	37
S3LT8	Set 3 latch bit S3LT8 asserted	37
S3V1	Set 3 SELOGIC control equation variable S3V1 timer input asserted	34
S3V1T	Set 3 SELOGIC control equation variable S3V1 timer output asserted	35
S3V2	Set 3 SELOGIC control equation variable S3V2 timer input asserted	34
S3V2T	Set 3 SELOGIC control equation variable S3V2 timer output asserted	35
S3V3	Set 3 SELOGIC control equation variable S3V3 timer input asserted	34
S3V3T	Set 3 SELOGIC control equation variable S3V3 timer output asserted	35
S3V4	Set 3 SELOGIC control equation variable S3V4 timer input asserted	34
S3V4T	Set 3 SELOGIC control equation variable S3V4 timer output asserted	35
S3V5	Set 3 SELOGIC control equation variable S3V5 timer input asserted	34
S3V5T	Set 3 SELOGIC control equation variable S3V5 timer output asserted	35
S3V6	Set 3 SELOGIC control equation variable S3V6 timer input asserted	34
S3V6T	Set 3 SELOGIC control equation variable S3V6 timer output asserted	35
S3V7	Set 3 SELOGIC control equation variable S3V7 timer input asserted	34
S3V7T	Set 3 SELOGIC control equation variable S3V7 timer output asserted	35
S3V8	Set 3 SELOGIC control equation variable S3V8 timer input asserted	34

Bit	Definition	Row
S3V8T	Set 3 SELOGIC control equation variable S3V8 timer output asserted	35
SG1	Setting Group 1 is the active setting group	26
SG2	Setting Group 2 is the active setting group	26
SG3	Setting Group 3 is the active setting group	26
SG4	Setting Group 4 is the active setting group	26
SG5	Setting Group 5 is the active setting group	26
SG6	Setting Group 6 is the active setting group	26
TH5	Fifth-harmonic alarm threshold exceeded	19
TH5T	Fifth-harmonic alarm threshold exceeded for longer than TH5D	19
TRGTR	Target reset pushbutton/TAR R command	41
TRIP1	Trip 1 logic asserted	41
TRIP2	Trip 2 logic asserted	41
TRIP3	Trip 3 logic asserted	41
TRIP4	Trip 4 logic asserted	41
TRIP5	Trip 5 logic asserted	41
TRIPL	Any trip asserted	41

TABLE OF CONTENTS

SECTION 5: METERING AND MONITORING	5-1
Introduction	5-1
Winding 3 and Winding 4 Reporting	5-1
Metering Functions	
Instantaneous Phase Current Meter Function (METER Command)	5-2
Demand Ammeter Function (METER D Command)	5-2
Peak Demand Ammeter Function (METER P Command)	5-3
Differential Metering Function (METER DIF Command)	5-4
Phasor Current Metering Function (METER SEC Command)	5-5
Demand Reset Functions (MET RD and MET RP Commands)	5-6
Harmonic Metering Function (MET H Command)	5-7
Temperature Measurement	5-8
Station DC Battery Monitor	5-8
Instantaneous Battery Voltage Values	5-8
Undervoltage and Overvoltage Alarms	5-8
Detection of Voltage Dips in Event Reports	5-9
Breaker Monitor	5-10
Breaker Monitor Description and Initiation Setting	5-10
Breaker Wear Curve Description and Settings	5-11
Breaker Wear Example	5-13
Breaker Monitor Report Function (BRE Command)	5-13
Through-Fault Event Monitor	5-14
Through-Fault Event Monitor Settings	5-15
Through-Fault Calculation	
Through-Fault Alarm	5-16
Through-Fault Event (TFE) Serial Port Command	
Deriving Cumulative I ² t Values for Preloading	
Magnitude Limits on Through-Fault Event Data	5-19
Status Monitor	
Status Monitor Report Function (STATUS Command)	
Channel Offset	5-20
Power Supply	5-20
Temperature	5-20
RAM	
Flash ROM	
Analog-to-Digital Converter	
Critical RAM	
EEPROM	
I/O Boards	
Self-Test Alarm Limits	5-21

TABLES

Table 5.1:	Through-Fault Event Monitor Settings	5-15
Table 5.2:	· ·	
	FIGURES	
Figure 5.1:	SEL-387A Demand Ammeter Functions and Commands	5-6
Figure 5.2:	Station DC Battery Monitor Alarm Logic	5-9
Figure 5.3:	Undervoltage and Overvoltage Warning and Alarm Regions	5-9
-	Trip Bus Sensing With Relay Input	
	Breaker Contact Wear Curve	
-	Distribution Feeder Faults Expose Transformer Bank to Through Faults	
_	Through-Fault Triggering, Duration, and Maximum Current	
_	Cumulative I ² t Alarm (Relay Word bit ISQTAL)	

SECTION 5: METERING AND MONITORING

Introduction

The SEL-387A Relay provides metering information in several report formats for each of the 2 three-phase winding current inputs and for the 3 differential elements. A DC Battery Monitor reports on the supply voltage to the relay and can be programmed to alarm for voltage excursions. There is also a Breaker Monitor function that keeps track of breaker trips, the cumulative current interrupted over time, and the amount of estimated contact wear. These functions and their associated reports are discussed in this section.

WINDING 3 AND WINDING 4 REPORTING

The SEL-387A satisfies the requirement for a two-winding differential relay equipped with extensive I/O. To this end, the SEL-387A is a subset of the larger SEL-387 Relay, including most functions of the SEL-387, but suitable for two-winding applications only. Because the SEL-387A retains the reporting structure of the SEL-387, the report formats still include rows and/or columns for Windings 3 and 4. Because current values for Winding 3 no longer apply, they are displayed as zeros and should be ignored. When you order an SEL-387A with the optional Restricted Earth Fault (REF) elements, current channels assigned to Winding 4 in the SEL-387 are reassigned to represent neutral currents IN1, IN2, and IN3 (i.e., IAW4 = IN1, IBW4 = IN2, and ICW4 = IN3). In an SEL-387A without the REF option, the current values for Winding 4 are displayed as zeros.

METERING FUNCTIONS

There are three types of fundamental frequency metering functions in the SEL-387A: instantaneous, demand (thermal), and peak demand. Quantities metered include phase currents for both winding inputs; positive-, negative-, and zero-sequence (residual) currents for both winding inputs; and operate, restraint, second-harmonic, and fifth-harmonic currents for the three differential elements. There are several report formats, employing different groups of the above quantities, accessible by variants of the **METER** command through the relay serial port. This information is also available at the relay front panel via the LCD display.

There is also a specialized metering function, Harmonic Metering. It provides a snapshot of harmonic current magnitudes in the phase currents, fundamental through the fifteenth harmonic.

This section will discuss which quantities are used in each of the report formats and show the format for each of the **METER** command displays, as they would appear on the screen. The relay front-panel LCD displays the same quantities but requires several stages of keystrokes to select the data of interest. These displays are covered in *Section 8: Front-Panel Interface*.

All **METER** displays herein show the default Analog Input Labels (IAW1, IBW1, etc.). Relay displays show the user setting values of the Analog Input Labels.

Instantaneous Phase Current Meter Function (METER Command)

The **METER** or **MET** command, with no additional parameters, displays instantaneous magnitude values, in primary RMS amperes of the three-phase currents, the positive-sequence current, negative-sequence current, and residual current, for both of the winding inputs, and measured current of the three neutral inputs. It also displays the value of the station battery dc supply voltage at the relay, obtained from the Battery Voltage Monitor. If the command is typed as **MET m**, where m is any number from 1 to 32767, the report will be repeated m times in succession. In this mode subsequent reports are not generated until the previous report has been completely sent. The format for the **MET** report is as follows:

>METER							
MER 1 ATION A			Date:	01/13/02	Гіme: 10:30	:27.930	
	Phase	Currents		Seque	nce Current	S	
g1	IAW1	IBW1	ICW1	3I1W1	3I2W1	IRW1	
(A,pri)	12345	12345	12345	12345	12345	12345	
g2	IAW2	IBW2	ICW2	3I1W2	312W2	IRW2	
(A,pri)	12345	12345	12345	12345	12345	12345	
g3	IAW3	IBW3	ICW3	3I1W3	312W3	IRW3	
(A,pri)	0	0	0	0	0	0	
g4	IN1	IN2	IN3	3I1W4	3I2W4	IRW4	
(A,pri)	12345	12345	12345	0	0	0	
C (V)	123						

Demand Ammeter Function (METER D Command)

The SEL-387A includes a thermal demand metering function for both windings. In response to the **MET D** command, the individual phase demand currents, as well as the negative-sequence and residual demand currents for each winding, are displayed in primary RMS amperes. If the command is typed as **MET D m**, where m is any number from 1 to 32767, the report will be repeated m times in succession. In this mode subsequent reports are not generated until the previous report has been completely sent. The format for the **MET D** report is as follows:

=>>METER D					
XFMER 1 STATION A			Date: 01/13/02	Time:	10:30:27.930
	Phase	Currents		Sequence	Currents
Wdg1	IAW1	IBW1	ICW1	3I2W1	IRW1
Dem I (A,pri)	12345	12345	12345	12345	12345
Wdg2	IAW2	IBW2	ICW2	312W2	IRW2
Dem I (A,pri)	12345	12345	12345	12345	12345
Wdg3	IAW3	IBW3	ICW3	312W3	IRW3
Dem I (A,pri)	0	0	0	0	0
Wdg4	IN1	IN2	IN3	3I2W4	IRW4
Dem I (A,pri)	0	0	0	0	0
			(continued on	next page	2)

			(continued f	rom previous page)	
I I	LAST DEMAND RESET FOR	Wdg1:	00/00/00	00:00:00.000	1
!		Wdg2:	00/00/00	00:00:00.000	1
i		Wdg3:	00/00/00	00:00:00.000	i
1		Wdg4:	00/00/00	00:00:00.000	ŀ
ļ					

The most recent demand resets for each winding are shown in the **METER D** report.

The Demand Ammeter function simulates the long-term heating effects of current at a particular level by accumulating the demand current on an exponential basis, using a thermal time constant setting, DATCn, for each winding (n = 1, 2). DATCn can be set over a range of 5 to 255 minutes (4 hrs 15 min). The demand values in secondary amperes are compared to user-defined thresholds, PDEMnP, QDEMnP, and NDEMnP. PDEMnP is compared to the greatest of the three individual phase current demands for Winding n, while QDEMnP is compared to the negative-sequence demand, and NDEMnP is compared to the residual demand. Relay Word bits PDEMn, QDEMn, or NDEMn are asserted if the appropriate demand exceeds the stated threshold. These bits can be used to initiate a display or to close an output contact, for alarming or tripping purposes.

The demand ammeter output for a step change in current of S amperes is a smoothly rising exponential that produces a demand change of 0.9 times S at time DATCn after the step change occurred (see Figure 5.1). For example, if the demand current has stabilized at some value I_{0} before time zero and at t=0 the current suddenly jumps to a new value I_{NEW} , the demand current as a function of time will have the equation

Id (t) = I
$$_{\rm NEW}$$
 + (Id $_0$ – I $_{\rm NEW}$) • e $^{- [ln(~10~)] \cdot t/{\rm DATCn}}$

Peak Demand Ammeter Function (METER P Command)

The next function, the peak demand ammeter function, keeps track of the greatest value of Id(t) since the last reset of the peak demand registers.

The peak demand ammeter function compares the value of the demand ammeter outputs for each winding, i.e., the largest of the phase current demands, the negative-sequence demand, and the residual demand, against registers containing the greatest demand value of each type since the last reset of the registers. This is done every two seconds. If the particular Id(t) exceeds the register value, it replaces the value in the register and becomes the new peak value. These peak values are time and date stamped.

In response to the **MET P** command, the phase current peak demands, as well as the negative-sequence and residual current peak demands for each winding, are displayed in primary amperes. If the command is typed as **MET P m**, where m is any number from 1 to 32767, the report will be repeated m times in succession. In this mode, subsequent reports are not generated until the previous report has been completely sent. The format for the **MET P** report is as follows:

>>METER P						
FMER 1				Date: 01/13/02	Time: 10:30:27.930	
TATION A						
		Peak Dem I ((A,pri)	Date:	Time:	
W	dg 1	IAW1	0	01/13/02	05:27:41.025	
	5 -	IBW1	0	01/13/02	04:41:19.042	
		ICW1	0	01/13/02	02:33:45.027	
		3I2W1	0	01/12/02	18:10:41.027	
		IRW1	0	01/12/02	18:10:41.027	
W	dg 2	IAW2	0	01/12/02	21:00:23.027	
	•	IBW2	0	01/13/02	06:22:21.028	
		ICW2	0	01/12/02	08:42:17.032	
		312W2	0	01/13/02	05:03:17.047	
		IRW2	0	01/13/02	05:03:17.047	
W	dg 3	IAW3	0	00/00/00	00:00:00.000	
		IBW3	0	00/00/00	00:00:00.000	
		ICW3	0	00/00/00	00:00:00.000	
		3I2W3	0	00/00/00	00:00:00.000	
		IRW3	0	00/00/00	00:00:00.000	
W	dg 4	IN1	0	00/00/00	00:00:00.000	
		IN2	0	00/00/00	00:00:00.000	
		IN3	0	00/00/00	00:00:00.000	
		3I2W4	0	00/00/00	00:00:00.000	
		IRW4	0	00/00/00	00:00:00.000	
LAST	PEAK	DEMAND RESET	FOR Wdg	1: 00/00/00	00:00:00.000	
			Wdg	2: 00/00/00	00:00:00.000	
			Wdg	3: 00/00/00	00:00:00.000	
			Wdg	4: 00/00/00	00:00:00.000	

The report for **MET P** contains the last reset times for the peak demand registers for each winding.

Differential Metering Function (METER DIF Command)

This metering function is performed on an element basis, not on a winding basis, because of the nature of the function. The relay has three differential elements, one per phase, denoted 87-1, 87-2, and 87-3. The "A-phase" currents for each winding are compensated for CT and transformer winding connections, then divided by the TAPn value for each winding, and entered into the calculations as dimensionless "multiples of tap." These values are then summed in 87-1 on a phasor basis for determining operating current (IOPk) and on a scalar magnitude basis for the restraint current (IRTk) calculation (k = 1, 2, 3). The B-phase and C-phase values comprise 87-2 and 87-3, respectively.

In response to the **MET DIF** command, the fundamental frequency Operate and Restraint currents for each differential element are displayed in multiples of tap. The second- and fifth-harmonic currents in each element are also shown in multiples of tap. These are calculated in the same way as the operate currents, using the harmonic current from each winding in a phasor addition. If the command is typed as **MET DIF m**, where m is any number from 1 to 32767, the report will be repeated m times in succession. In this mode, subsequent reports are not generated until the previous report has been completely sent. The format for the **MET DIF** report is as follows:

=>>MET DIFF							
XFMER 1 STATION A			Date: 01	/13/02	Time: 10	:30:27.930	
	0ре	rate Curre	ents	Rest	raint Cu	rrents	
	IOP1	IOP2	IOP3	IRT1	IRT2	IRT3	
I (Mult. of Tap)	0.00	0.00	0.00	0.00	0.00	0.00	
	Second	Second Harmonic Currents			armonic	Currents	
	I1F2	I2F2	I3F2	I1F5	I2F5	I3F5	
I (Mult. of Tap)	0.00	0.00	0.00	0.00	0.00	0.00	

The quantities I1F2/IOP1, I2F2/IOP2, I3F2/IOP3, and I1F5/IOP1, etc., form the basis for the harmonic blocking feature. To determine if blocking should take place, these ratios of harmonic to fundamental operating current (times 100 percent) are compared to the user-selected blocking threshold settings PCT2 and PCT5.

Phasor Current Metering Function (METER SEC Command)

The phasor current metering function is a useful tool for verifying proper phase rotation of input currents, for checking CT connections and polarities, and for checking that "in" currents are about 180 degrees out-of-phase with "out" currents. With normal load currents on the transformer, the correctness (or lack thereof) of all the input connections becomes apparent.

In response to the **MET SEC** command, the separate phase currents, as well as the positive-sequence, negative-sequence, and residual currents for each winding, are shown in secondary amperes and at a calculated phase angle. The relay uses the sample data to calculate the RMS phasor magnitudes and instantaneous phase angles as a kind of "snapshot" of all the phasor currents at an instant in time. If the command is typed as **MET SEC m**, where m is any number from 1 to 32767, the report will be repeated m times in succession. In this mode, subsequent reports are not generated until the previous report has been completely sent. The format for the **MET SEC** report is as follows:

>METER SEC FMR 1			Date: MM/	DD/YY T	ime: HH:MM	:SS.SSS	
TATION A							
	Phas	se Current:	S	Seguen	ce Current	S	
dg1	IAW1	IBW1	ICW1	3I1W1		IRW1	
(A,sec)	123.12	123.12	123.12	123.12	123.12	123.12	
ngle (deg)	± 123.12	±123.12					
dg2	IAW2	IBW2	ICW2	3I1W2	312W2	IRW2	
(A,sec)	123.12	123.12	123.12	123.12	123.12	123.12	
ngle (deg)	± 123.12						
dg3	IAW3	IBW3	ICW3	3I1W3	312W3	IRW3	
(A,sec)	0.00	0.00	0.00	0.00	0.00	0.00	
ngle (deg)	0.00	0.00	0.00	0.00	0.00	0.00	
dg4	IN1	IN2	IN3	3I1W4	3I2W4	IRW4	
(A,sec)	123.12	123.12	123.12	0.00	0.00	0.00	
ngle (deg)	±123.12	±123.12	±123.12	0.00	0.00	0.00	

The phase angles given are all referenced to current IAW1. That is, the full set of 24 calculated current phasors is rotated in a manner that brings IAW1 to an angle of zero degrees. However, if

the magnitude of IAW1 is less than $0.05x I_{nom}$ (0.25A for a 5 A relay), the angles are listed according to the phasor calculation without further adjustment.

Demand Reset Functions (MET RD and MET RP Commands)

The demand ammeter function performs an integration of current over time and, as such, contains a "history" of the currents dating back minutes or hours from the present time. The peak demand ammeter function maintains registers with the highest recorded demands of each type over a period of time since the last reset of the registers. For both of these functions, it may be desirable to erase this "history."

The **MET RD n** (Reset Demand) command returns the demand ammeter current values to zero. This is useful during testing, for example, so that previous test quantities do not appear as part of the metered values or in order to check the shape of the rising exponential for a fixed current over a period of time.

The **MET RP n** (Reset Peak demand) command stores the present values of the demands, along with their associated date/time stamps, in the registers used to store the values of the peaks. These become the new peaks of record until higher values occur. This function might typically be performed on a daily, weekly, or monthly basis to determine a peak demand profile of the equipment over time.

Both of the reset commands must be followed by a value for "n." A value of 1 or 2 will produce a reset of all the demand or peak demand values for Winding n. If the letter A is entered, reset will be done on both windings. Failure to enter a value will produce an "Invalid parameter" response from the relay. For valid n values, the relay will ask for a Yes/No verification of your request to reset. No reports are issued for either command.

Figure 5.1 is an overall diagram representative of the five demand ammeters for each Winding n, and the relationship of the four related commands (MET D, MET P, MET RD, MET RP). The currents are indicated generically as IX, the demand of each as XD(t), the peak demand of each XD(t) as PXD, the three demand alarm thresholds as XDEMnP, and the associated Relay Word bit as XDEMn. The greatest of the XD(t) demands for IAWn, IBWn, and ICWn is compared to the phase threshold PDEMnP; if the threshold is exceeded, Relay Word bit PDEMn is set. Negative-sequence current demand is compared to QDEMnP, and Relay Word bit QDEMn is set if the threshold is exceeded. Residual current demand is compared to NDEMnP, and Relay Word bit NDEMn is set if the threshold is exceeded.

Figure 5.1: SEL-387A Demand Ammeter Functions and Commands

Harmonic Metering Function (MET H Command)

The Harmonic Metering function, in response to the **MET H** command, retrieves 1 full cycle of unfiltered sample data, at 64 samples per cycle, from each of the 12 analog current inputs. Harmonic magnitudes are obtained using a Fast Fourier transform method, which calculates a Discrete Fourier transform, given by the following equation, for each harmonic from fundamental to fifteenth.

$$H_{n} \ = \sum_{k=0}^{N-1} h_{k} \ \bullet e^{j\frac{2 \ \pi k n}{N}} \label{eq:hamiltonian}$$

where,

N = samples per cycle = 64

n = order of the harmonic = 1, 2, ..., 15

 h_{k} = sampled data for one full cycle at system frequency

k = summation index = 0, 1, ..., 63

H_a = result of the Discrete Fourier transform calculation for the nth harmonic

After the 15 harmonics are calculated, they are adjusted to compensate for filter gain, and the resulting magnitudes are listed in secondary amperes:

```
Processing harmonic spectrum .....
XFMR 1
                                          Date: 01/21/02
                                                            Time: 08:03:58.920
STATION A
                     Magnitudes of Harmonic Currents (Amps Sec)
      IAW1
            IBW1 ICW1 IAW2 IBW2 ICW2 IAW3 IBW3 ICW3
                                                              IN1
                                                                    IN2
                                                                          IN3
             2.08 2.09 1.73 1.74 1.73
                                           0.00
                                                 0.00
                                                       0.00
                                                             4.98
                                                                   1.99
                                                                         4.99
       2.09
       0.00
             0.00
                   0.00
                         0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
       0.00
             0.00
                   0.00
                        0.00 0.00
                                    0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.01
                                                                         0.00
       0.00
             0.00
                   0.00
                        0.00 0.00
                                    0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
       0.00
             0.00
                   0.00
                         0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
      0.00
             0.00
                   0.00
                         0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0 00
                                                                         0.00
                         0.00
       0.00
             0.00
                   0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
   8
       0.00
             0.00
                         0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
                   0.00
       0.00
             0.00
                   0.00
                         0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
  10
       0.00
             0.00
                   0.00
                         0.00
                               0.00
                                    0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
  11
       0.00
             0.00
                   0.00
                        0.00
                               0.00
                                    0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0 00
                                                                         0.00
       0.00
             0.00
                   0.00
                         0.00
                               0.00
                                     0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
       0.00
             0.00
  13
                   0.00
                         0.00
                               0.00
                                    0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
       0.00
             0.00
                   0.00
                        0.00
                               0.00
                                    0.00
                                           0.00
                                                 0.00
                                                       0.00
                                                             0.00
                                                                   0.00
                                                                         0.00
  15
            0.00
                  0.00
                        0.00
                              0.00
                                    0.00
                                           0.00
                                                0.00
                                                       0.00
                                                             0.00
                                                                   0.00
```

The Analog Input Labels, IAW1, etc., will be listed as they are set in the Global settings section of the relay.

TEMPERATURE MEASUREMENT

The relay accepts up to 12 RTD inputs from the SEL-2600 RTD Module at any one of the ports. The SEL-387A can use up to two SEL-2600s (two ports), processing the temperatures of a total of 24 RTDs.

```
XFMR 1
                                             Date: 01/18/02 Time: 11:00:28.404
STATION A
RTDA Input Temperature Data (deg. C)
 Communication Failure
RTDB Input Temperature Data (deg. F)
 RTD 1B = 123
 RTD 2B = 123
 RTD 3B = 123
RTD 4B = 123
 RTD 5B = 123
 RTD 6B = 123
RTD 7B = 123
 RTD 8B = 123
 RTD 9B = 123
RTD 10B = 123
RTD 11B = 123
RTD 12B = 123
```

STATION DC BATTERY MONITOR

Use the station dc battery monitor in the SEL-387A to alarm for undervoltage and overvoltage dc battery conditions and to view how station dc battery voltage fluctuates during tripping, closing, and other dc control functions. The monitor measures station dc battery voltage applied to the rear-panel terminals labeled Z25 (+) and Z26 (-). Access the station dc battery monitor settings (DC1P, DC2P, DC3P, and DC4P) with the **SET G** command.

Instantaneous Battery Voltage Values

The **MET** serial port command provides instantaneous values of the station dc battery voltage (Vdc). To obtain these values from the relay front panel, press the METER pushbutton, use the arrow pushbuttons to highlight VDC, and then press the SELECT pushbutton.

Undervoltage and Overvoltage Alarms

The flexibility of SELOGIC® control equations lets you create battery warning and failure alarms that trigger when the station dc battery voltage falls below or exceeds voltage thresholds. Figure 5.2 shows the alarm logic and how Relay Word bits DC1 to DC4 can be used with DC1P, DC2P, DC3P, and DC4P threshold settings to create the alarms. Figure 5.3 shows the warning and alarm regions.

Figure 5.2: Station DC Battery Monitor Alarm Logic

Figure 5.3: Undervoltage and Overvoltage Warning and Alarm Regions

From Figure 5.2 and Figure 5.3, you can see that no warning or alarm triggers so long as the battery dc voltage neither exceeds DC3P nor falls below DC2P. The relay triggers a warning for voltages exceeding DC3P or falling below DC2P. The relay triggers a failure alarm for voltages exceeding DC4P or falling below DC1P. For example, if the battery voltage exceeds the DC3P threshold, but falls below the DC4P threshold, the Relay Word bit DC3 asserts and the relay triggers a warning.

Detection of Voltage Dips in Event Reports

You can also use the battery monitor voltage threshold settings to detect momentary supply voltage fluctuations during periods of high demand on the station battery and charger system. The digital event report lists assertion of Relay Word bits DC1 through DC4. View this listing with the **EVE D** serial port command. To trigger an event report, include these bits in the SELOGIC control equation ER (event report trigger setting). Use the **CEV** command to retrieve a compressed event report containing the value of the station dc battery voltage during the event.

BREAKER MONITOR

The SEL-387A breaker monitoring function is intended to capture information on the number of operations and total interrupted current for two breakers. These data are used to estimate the amount of contact wear per pole, based on a wear curve input by the user, and derived from the breaker manufacturer maintenance curves. Separate settings for each breaker determine under what conditions the monitoring function is initiated for that breaker. The breaker monitoring function is capable of differentiating between an internal trip, generated by units associated with the winding where the breaker is applied, and an external trip, initiated by another winding's units, another relay, or control contact. This information will assist the user in determining when to schedule maintenance of the breakers.

Breaker Monitor Description and Initiation Setting

The breaker monitor function has one initiation setting for each breaker. The BKMON1 and BKMON2 settings, in the Global/Relay settings area, are SELOGIC control equations, using Relay Word bits to initiate the monitor. The BKMONn settings look for rising edges (transition from logical 0 to logical 1) as an indication to read in current values. Currents are read 1.5 cycles after initiation as symmetrical RMS current and sent to the monitor IA, IB, and IC current accumulators. The trip counter is also advanced by one count. There are separate current accumulators and trip counters for internal and external trips.

An internal trip is defined as one initiated by the trip equation (TRn), which is associated with the particular Breaker n that BKMONn is monitoring. The monitor logic examines, for example, the status of the TRIP1 variable at the time the BKMON1 setting equation is asserted. If the TRIP1 variable is asserted when BKMON1 asserts, the trip count and the currents measured are recorded as internal. If TRIP1 is not asserted when BKMON1 asserts, the trip and currents are recorded as external. A trip initiated by Winding 2 elements or the differential element is regarded as external, even though it originates within the same relay.

In our example transformer application, we want Breaker 1 to trip for its own overcurrent elements (OUT101 = TRIP1; TR1 = 50P11T+51P1T+51Q1T+OC1+LB3) or for a differential trip (86T device trip via OUT103 = TRIP3; TR3 = 87R+87U). In this case, we set **BKMON1** = **TRIP1 + TRIP3**. Winding 1 overcurrent trips (TRIP1) will be credited to the internal trip counter and current accumulators, and differential trips (TRIP3) will appear as external trips.

In order to capture trip information for other Breaker 1 trips initiated by devices other than the SEL-387A, BKMONn must be set to sense these trips. This can be done, for example, by using an input to monitor the trip bus for the given breaker. This is illustrated in Figure 5.4, where IN106 is connected to the Breaker 1 trip bus and asserts for any trip from any source. Setting **BKMON1 = IN106** ensures that the monitor will initiate for any Breaker 1 trip. The internal comparison with TRIP1 is then made to sort out internal versus external trips.

Figure 5.4: Trip Bus Sensing With Relay Input

Breaker Wear Curve Description and Settings

Based on maintenance curves supplied by manufacturers of the breakers, a contact wear curve for each breaker is constructed (Figure 5.5).

Figure 5.5: Breaker Contact Wear Curve

The curve is a plot of Close/Open operations versus interrupted current in kiloamperes (kA). The scales are logarithmic on both axes. For each Breaker n, three points are input in the Global setting area as relay settings. The points are defined by pairs of coordinates of current and operations. For Breaker n, these are the points (BnKAP1, BnCOP1), (BnKAP2, BnCOP2), and (BnKAP3, BnCOP3). As shown in Figure 5.5, the point (BnKAP1, BnCOP1) must represent the lowest current value, point (BnKAP2, BnCOP2) an intermediate current value, and point (BnKAP3, BnCOP3) the maximum current value. The relay will not accept the settings unless BnKAP1 < BnKAP2 < BnKAP3.

For values of current in kA (I) below BnKAP1, the number of operations is assumed to be the same as for BnKAP1. In this part of the curve, the number of operations may be governed more by the cumulative mechanical wear-and-tear on the breaker operating mechanism, rather than actual contact degradation. For values of I above BnKAP3, there is assumed to be no breaker capability to interrupt, and 100 percent contact wear is assumed. BnKAP3, then, is typically set at the maximum rated interrupting current for the particular breaker. BnKAP1 is set at a value approximating the continuous load current rating of the breaker. BnKAP2 is set at some intermediate value of current, chosen to provide the closest visual "fit" to the manufacturer's curve.

The two straight line segments of the curve between the three defined points define number of operations as a function of current in kiloamperes by an equation of the form:

$$O(I) = K \cdot I^{\alpha}$$

To determine the constants K and alpha for a given segment, any two current-operations pairs in that segment must be known. For any given pairs (I1, O1) and (I2, O2), the alpha constant is determined by the equation:

$$\alpha = \frac{\log_{10} \left(\frac{O1}{O2} \right)}{\log_{10} \left(\frac{I1}{I2} \right)}$$

The K constant can be found by back-substitution:

$$K = \frac{O1}{I1^{\alpha}}$$
 or $K = \frac{O2}{I2^{\alpha}}$

Here, we can use the endpoint pairs (BnKAP1, BnCOP1) and (BnKAP2, BnCOP2) to determine the equation that applies between these two input points and pairs (BnKAP2, BnCOP2) and (BnKAP3, BnCOP3) for the equation between the latter two points.

In Figure 5.5, for example, the two segments have the following equations:

$$O(I) = 14972 \cdot I^{-2.214}$$
 and $O(I) = 46284 \cdot I^{-2.756}$

For a particular value of I in kA, the calculated value O(I) represents 100 percent wear of the breaker contacts. Thus, the incremental percent wear for one trip operation at the defined current level is 100 / O(I) percent. For I < BnKAP1, O(I) = BnCOP1. For BnKAP1 < I < BnKAP2, O(I)

is calculated by the first equation. For BnKAP2 < I < BnKAP3, O(I) is calculated by the second equation. For I > BnKAP3, O(I) = 0 and contact wear = 100 percent.

Since the breaker monitor calculates and accumulates current by phase, the wear for each pole of the breaker is calculated separately, using the same wear curve as a basis. Thus, over time, the cumulative percent wear for each of the three poles will be different. If a breaker already has some estimated wear when the relay is first applied, the user can preload a separate amount for each parameter for each pole of the breaker using the serial port command **BRE W n** (or **BRE n W**). Integer values of percent wear up to 100 percent are accepted by the relay. The incremental wear for the next interruption, and all subsequent interruptions, is added to the prestored value for a total wear value.

When the cumulative wear on any breaker pole reaches 100 percent, Relay Word bits are set to one for the particular pole, as well as for the breaker containing that pole. For example, for Breaker "n" the Relay Word bits for the three poles are designated BCWAn, BCWBn, and BCWCn; for the breaker itself, Relay Word bit BCWn is set to one if any of the individual pole bits are set to one. These bits may be used for alarm or display purposes to alert the user that breaker inspection and maintenance may be required.

After breaker maintenance is performed or a new breaker installed, the breaker monitor operation counters, cumulative interrupted currents by pole, and percent wear by pole should be reset to zero. This can be done via the **BRE R n** (or **BRE n R**) serial port command or from the front panel via the OTHER pushbutton menu.

Both the **BRE W** n and **BRE R** n commands can be executed from Access Level B or 2.

Breaker Wear Example

A breaker having the wear curve of Figure 5.5 experiences a fault current interruption of 17000 A. Previous accumulated wear is 44 percent.

The fault current falls between BnKAP2 (8 kA) and BnKAP3 (20 kA). The second equation is used to calculate O(I).

$$O(1) = 46284 \cdot 17^{-2.756} = 46284 \cdot 0.00041 = 18.81$$

Incremental Percent Wear = 100 / 18.81 = 5.32%

Cumulative Percent Wear = 44 + 5.32 = 49.32% (which appears as 49% in BRE listing)

Breaker Monitor Report Function (BRE Command)

The accumulators for each breaker can be reviewed either by a serial port command **BRE** or via the front-panel display, using the OTHER button menu.

The report lists all breakers, giving the number of internal and external trips for each breaker, the total accumulated RMS current by phase, and the Percent Wear by pole. The operation accumulators for each trip type have a maximum value of 65000 trips. The current accumulators for each trip type have a maximum value of 99999.00 kA RMS. Percent Wear never exceeds 100 percent. The accumulators can be reset by the serial port command **BRE n R** or via the

OTHER front-panel pushbutton menu. The serial port report format is shown below. Remember that Breakers 3 and 4 do not apply to the SEL-387A.

=>>BRE									
XFMER 1 STATION A				Da	te: 01/13	3/02	Time: 10	30:27.930	
BREAKER 1 Int Trips= Ext Trips= Percent Wear:	0	IAW1= IAW1= POLE1=	0.00	IBW1= IBW1= POLE2=	0.00	ICW1= ICW1= POLE3=	0.00	kA(pri) kA(pri)	
BREAKER 2 Int Trips= Ext Trips= Percent Wear:		IAW2= IAW2= POLE1=	0.00	IBW2= IBW2= POLE2=	0.00	ICW2= ICW2= POLE3=	0.00	kA(pri) kA(pri)	
BREAKER 3 Int Trips= Ext Trips= Percent Wear:		IAW3= IAW3= POLE1=	0.00	IBW3= IBW3= POLE2=	0.00	ICW3= ICW3= POLE3=	0.00	kA(pri) kA(pri)	
BREAKER 4 Int Trips= Ext Trips= Percent Wear:	0	IN1= IN1= POLE1=	0.00	IN2= IN2= POLE2=	0.00		0.00	kA(pri) kA(pri)	
LAST BREAKER M	ONI	TOR RESET	FOR	Bkr2: Bkr3:	01/11/02 01/11/02 00/00/00 00/00/00)	16:56:58.4 16:56:58.4 00:00:00.0	150 000	
==>>									

THROUGH-FAULT EVENT MONITOR

Figure 5.6 shows a distribution feeder fault beyond the protection zone of the SEL-387 Relay. Nevertheless, the fault current passes through the transformer bank, subjecting the windings to mechanical stress and the winding insulation to thermal stress. The more feeders on a distribution bus, the more the transformer bank is exposed to these through faults.

Figure 5.6: Distribution Feeder Faults Expose Transformer Bank to Through Faults

Monitor and document this through-fault activity with the through-fault event monitor in the SEL-387 Relays. The through-fault event monitor captures maximum current levels, duration, and date/time for each transformer through fault. The monitor also performs a simple I²t calculation (analogous to the energy expended during the through fault) and cumulatively stores calculation results for each monitored phase.

Through-Fault Event Monitor Settings

Activate and adjust the through-fault event monitor with the settings in Table 5.2.

SettingDefinitionRangeETHRUEnable Through-Fault Event WindingN, 1, 2THRUThrough-Fault Event Trigger
(SELOGIC control equation)Relay Word bits (Table 4.9)ISQTThrough-Fault I²t Alarm ThresholdOFF,
0-4294967 (kA)² seconds

Table 5.1: Through-Fault Event Monitor Settings

Setting ETHRU =N turns off the through-fault event monitor. Any other setting selection for ETHRU designates the winding to monitor for through-fault events. For example, ETHRU = 2 designates Winding 2 as the winding to monitor for through-fault events. Specifically, Winding 2 current inputs IAW2, IBW2, and ICW2 (A-phase, B-phase, and C-phase, respectively) are monitored for maximum currents for through-fault events. Changing setting ETHRU resets/clears through-fault event information (see **TFE C** and **TFE R** command discussions that follow).

Setting THRU triggers the through-fault event—the through-fault event monitor starts acquiring maximum current and duration information, along with a date/time tag. Typically, the THRU setting is set with an overcurrent element. For example, set THRU to trigger a through-fault event on the pickup of a phase instantaneous overcurrent element on Winding 2:

$$THRU = 50P23$$

To block triggering of through-fault events resulting from transformer inrush, consider settings such as

$$THRU = 50P23 * !87BL$$

Note: The above examples show the designated current inputs (ETHRU = 2) and triggering element (THRU = 50P23) both from Winding 2. While this is a common setting approach, triggering elements can be from any winding or be of any element available in Table 4.9 (e.g., THRU = IN101; set to trigger a through-fault event on the assertion of input IN101).

Figure 5.7 shows the time progression of a through fault, such as that in Figure 5.6. Typically, SELOGIC setting THRU would be set to some instantaneous overcurrent element (e.g., THRU = 50P23). When THRU asserts at the outset of the through fault, event duration timing begins.

When THRU de-asserts (e.g., the distribution feeder breaker interrupts the fault), through-fault event duration timing ends and the duration time is recorded for that event.

If SELOGIC setting THRU is asserted (by whatever means), then maximum currents are recorded for the monitored current inputs. Figure 5.7 shows the current jumping up to a short-term maximum before being interrupted (perhaps the feeder fault "burned through" and became more "bolted"). This short-term maximum current, which occurred within the duration timing, is what gets recorded for the particular monitored phase.

Figure 5.7: Through-Fault Triggering, Duration, and Maximum Current

Through-Fault Calculation

The through-fault event monitor uses the recorded duration time value and maximum currents to perform simple I²t calculations and cumulatively store results of these calculations for each monitored phase. For example, if a through fault is 6000 A primary (maximum) and lasts 0.067 sec., the monitor would calculate I²t for that event as follows:

$$(6 \text{ kA})^2 \text{ x } 0.067 \text{ sec.} = 2.412 (\text{kA})^2 \text{ seconds}$$

If the above calculation were for the example in Figure 5.7, it would be a conservative calculation (i.e., the calculation would indicate more I²t stress/wear than actually occurred). This is because the current peaked momentarily.

Through-Fault Alarm

Figure 5.8 shows an I²t alarm, with Through-Fault I²t Alarm Threshold setting ISQT. When the cumulative I²t for any monitored phase exceeds setting threshold ISQT, Relay Word bit ISQTAL (I-squared-t alarm) asserts. Setting threshold ISQT would usually be set to alarm for excessive, cumulative transformer bank stress, as such stress corresponds to a certain level of cumulative I²t. Output Relay Word bit ISQTAL can be assigned to an output for annunciation or perhaps also be used to modify distribution feeder auto-reclosing (e.g., reduce the number of reclosures from 3 to 2).

Figure 5.8: Cumulative I²t Alarm (Relay Word bit ISQTAL)

Through-Fault Event (TFE) Serial Port Command

The **TFE** command displays the following discussed data for each individually recorded through-fault event:

- Date and time of the through fault
- Duration (seconds) of the through fault
- Maximum current (Amps primary) for each monitored current input

The following cumulative values (updated for each new through-fault event) are also displayed:

- Through-fault count
- Simple I²t calculation for each monitored current input

Relay response to the **TFE** command is:

```
=>TFF <Fnter>
XFMR 1
                                           Date: 02/12/04
                                                             Time: 18:59:49.130
STATION A
FID=SEL-387E-X300-V0-Z102102-D20040211
Number of Through Faults:
                           2 Last Reset: 02/10/04 19:56:22
Winding 1 Total I-squared-t (kA^2 seconds, primary):
          A-phase
                       B-phase
                                    C-phase
            1.783
                        88.270
                                       6.610
       Date
                            Duration
                                            ΙA
                                                   ΙB
                                                          IC
                            (seconds)
                                            (A, primary max)
   1 02/14/04 18:59:22.244
                               5.002
                                           241
                                                 4158
                                                         260
   2 02/11/04 11:37:55.495
                              30.834
                                           220
                                                  241
                                                         451
```

In the above response, only two through-fault events have been recorded since the monitor was last reset (most recent event listed first, labeled #1). Notice also that Winding 1 is the winding whose current inputs are being monitored.

The **TFE** command just by itself (no parameters, as in the above example) can list as many as 20 through-fault events. To list all the stored through-fault events since the monitor was last reset, execute the **TFE A** command. To list a particular number of through-fault events, execute the **TFE n** command (n = 1 to 1200; 1200 is the maximum number of through-fault events that can be stored before overwriting begins).

To reset the cumulative through-fault count, reset cumulative I^2 t, and clear out the stored through-fault events, execute the **TFE** C (clear) or **TFE** R (reset) command. The relay responds:

```
=>TFER<Enter>
Clear Through Fault Event Buffer
Are you sure (Y/N) ? Y<Enter>
Clearing Complete
=>
```

Changing global setting ETHRU also has the same effect as executing the **TFE C** or **TFE R** command.

Preload the following cumulative through-fault count and I²t values:

- 10 through-fault counts
- 147.8 (kA)² seconds on A-phase
- 303.5 (kA)² seconds on B-phase
- 237.9 (kA)² seconds on C-phase

Execute the **TFE P** command to preload these values. The relay responds:

```
=>TFE P < Enter>
Number of Through Faults Preload = 2? 10 < Enter>
Winding 1 Total I-squared-t Preload (kA^2 seconds, primary):
A-phase = 1.783? 147.8 < Enter>
B-phase = 88.270? 303.5 < Enter>
C-phase = 6.610? 237.9 < Enter>
Are you sure (Y/N) ? Y < Enter>
```

If the **TFE** command is then executed, the response shows the new preloaded values (the through-fault events at bottom are not disturbed):

```
=>TFF <Fnter>
                                       Date: 02/12/04 Time: 18:59:49.130
XFMR 1
STATION A
FID=SEL-387E-X300-V0-Z102102-D20040211
Number of Through Faults: 10 Last Reset: 02/10/04 19:56:22
Winding 1 Total I-squared-t (kA^2 seconds, primary):
         A-phase B-phase C-phase
147.800 303.500 237.900
      Date
              Time Duration
                                        IΑ
                                             ΙB
                                                     IC
                         (seconds)
                                       (A, primary max)
  1 02/14/04 18:59:22.244 5.002
                                       241 4158 260
  2 02/11/04 11:37:55.495 30.834
                                       220 241
                                                    451
```

Deriving Cumulative I²t Values for Preloading

If cumulative I²t values need to be derived for preloading, refer first to the preceding subsection *Through-Fault Calculation* to see how individual I²t calculations are made (even though this referenced subsection refers to how the relay does the calculation automatically, the same

approach is still valid for "hand" calculations). In the referenced subsection, notice how the example 6000 A (6 kA) fault value is handled in the calculation, so that the resultant comes out in units of $(kA)^2$ seconds. All the individual I^2 t calculations, for the corresponding faults on a specific phase, are then summed together to create a cumulative I^2 t value that can then be preloaded for that phase. Use the previously discussed **TFE P** command to preload the cumulative I^2 t values for each phase.

Magnitude Limits on Through-Fault Event Data

In the above **TFE** command responses, there are limits, besides the aforementioned 1200 event limit on stored through-fault events, to data accumulation. These limits are:

"Number of Through Faults" counts: 65,535 counts

"Total I-squared-t" (per phase): 4,294,967.295 kA² seconds

"Duration" for through-fault event: 8191 cycles, converted to seconds

"IA, IB, IC" for through-fault event 65,535 A, primary

If any of these values exceed their limits, a plus sign (+) is appended to the above maximum limit number in the display. If "Duration" or "IA, IB, IC" values are at their maximums or beyond, then the monitor uses the above maximum values in performing subsequent simple I^2 t calculations and cumulatively storing calculation results for each monitored phase.

All these through-fault event data are stored in nonvolatile memory.

STATUS MONITOR

The status monitor of the SEL-387A is designed to provide information on the internal health of the relay's major components. The relay continuously runs a variety of self-tests. Some tests have warning and failure states; others only have failure states.

Status Monitor Report Function (STATUS Command)

The **STATUS** command displays a report of the self-test diagnostics. The relay automatically executes the **STATUS** command whenever the self-test software enters a warning or failure state.

If a warning or failure state occurs, the next time the **STA** command is issued, the warning state is reported. If a warning or failure occurs, it will not be cleared until relay power is cycled and the problem is fixed. Saving relay settings performs a warm boot of relay logic. This may clear some warnings. If warnings persist, contact the factory.

Below is the **STATUS** report format. All warnings are represented by a W in the status report, generate an automatic serial port message, and pulse the ALARM output contact for five seconds. All failures are represented by an F in the status report, generate an automatic serial port message, display the failure on the front-panel display, and latch the ALARM output contact.

```
=>>STA
XFMER 1
                                       Date: 01/13/02
                                                         Time: 10:30:27.930
FID=SEL-387A-R102-V0-Z003003-D20020111 CID=413E
SELF TESTS
         F=Fail
W=Warn
       IAW1
                IBW1
                         ICW1
                                                    ICW2
                                  IAW2
                                           IBW2
0S
       -0
       IAW3
                IBW3
                         ICW3
                                   IN1
                                            IN2
                                                     IN3
0S
       +5V_PS
               +5V_REG -5V_REG +12V_PS
                                          -12V_PS +15V_PS
                                                            -15V_PS
PS
                         -4.98
                                   12.07
       4.92
                 5.03
                                           -12.11
                                                     14.87
                                                             -14.79
       TEMP
                         ROM
                                  A/D
                                           CR_RAM
                                                    EEPROM
                                                             IO_BRD
       29.2
                0K
                         OΚ
                                  ΟK
                                           ΟK
                                                    NΚ
                                                             0K
Relay Enabled
```

The quantities shown in the **STATUS** report are discussed below. The applicable limits for warning or failure of each self-test are summarized in Table 5.2.

The STATUS button on the front-panel interface can also be used to access the information in the report. See *Section 8: Front-Panel Interface*.

Channel Offset

The relay measures the dc offset (OS) voltage of each of the 12 analog current input channels and compares the value against a fixed limit of 30 mV. If an offset measurement is outside the fixed limit, the relay declares a warning.

Power Supply

The relay measures the internal power supply (PS) voltages and regulated +5 and -5 voltages, and compares the values against fixed limits. If a voltage measurement is outside the limits, the relay declares a warning or failure.

Temperature

The relay measures its internal temperatures (TEMP). If the relay measures a temperature less than -40° C or greater than $+85^{\circ}$ C, a warning is declared. If the relay measures a temperature less than -50° C or greater than $+100^{\circ}$ C, a failure is declared. The temperature warning does not pulse the ALARM output contact.

RAM

The relay checks the random-access memory (RAM). If a byte cannot be written to or read from, the relay declares a RAM failure. There is no warning state for this test.

Flash ROM

The relay checks the flash read-only memory (ROM) by computing a checksum. If the computed value does not agree with the stored value, the relay declares a ROM failure. There is no warning state for this test.

Analog-to-Digital Converter

The relay verifies the A/D converter function by checking the A/D conversion time. The test fails if conversion time is excessive or a conversion starts but does not finish. There is no warning state for this test.

Critical RAM

The particular area of RAM where the settings are stored is deemed Critical RAM. It is verified by computing a checksum. This must agree with a previously stored checksum value, or the relay will declare a Critical RAM (CR_RAM) failure. There is no warning state for the test.

EEPROM

EEPROM is checked by computing a checksum. If the computed value does not agree with the stored value, the relay declares a EEPROM failure. There is no warning state for the test.

I/O Boards

The relay checks the I/O board ID register against a stored value. If any values differ, the relay declares an I/O_BRD failure. There is no warning state for this test. Use the **INITIO <ENTER>** command to reset the stored value for the new I/O configuration.

Self-Test Alarm Limits

Table 5.2 summarizes the limits for issuing warning or failure alarms during self-testing. The power supply and temperature alarms list the lower values below which, and upper values above which, the stated alarm is issued.

Table 5.2: Self-Test Alarm Limits

Self-Test	Warning Limits	Failure Limits
Channel Offset	30 mVdc	NA
+5 V Power Supply	4.80/5.20 Vdc	4.65/5.40 Vdc
+5 V Regulated	4.75/5.20 Vdc	4.50/5.40 Vdc
−5 V Regulated	-4.75/-5.25 Vdc	-4.50/-5.40 Vdc
+12 V Power Supply	11.50/12.50 Vdc	11.20/14.00 Vdc
–12 V Power Supply	-11.50/-12.50 Vdc	-11.20/-14.00 Vdc
+15 V Power Supply	14.40/15.60 Vdc	14.00/16.00 Vdc
–15 V Power Supply	-14.40/-15.60 Vdc	-14.00/-16.00 Vdc
Temperature	−40/+85°C	−50/+100°C
RAM	NA	Cannot READ/WRITE
Flash ROM	NA	Bad Checksum
A/D	NA	Slow Conversion
Critical RAM	NA	Bad Checksum
EEPROM	NA	Bad Checksum
IO_BRD	NA	Incorrect I/O Board Value

TABLE OF CONTENTS

SECTIO	ON 6: SETTING THE RELAY	6-1
Inti	roduction	6-1
	ttings Changes via the Front Panel	
Set	ttings Changes via the Serial Port	6-1
Ad	lditional Relay Settings	6-2
	Relay (RID) and Terminal (TID) Identification	
	Demand Ammeter Settings (DATC, PDEM, QDEM, NDEM)	6-3
	Input and Output Assignments	
	Trip and Close Logic	
	Event Report Triggering (ER) and Length Selection (LER, PRE).	6-5
	System Frequency (NFREQ) and Phase Rotation (PHROT)	
	Miscellaneous (DATE_F, SCROLD, FP_TO, TGR)	6-6
	DC Battery Monitor (DC1P–DC4P)	
	Breaker Monitor	6-6
	Analog Input Labels	6-7
	Setting Group Selection	6-7
	Front-Panel Targeting, Displays, and Control	6-7
	Sequential Events Recorder	
	Communications Ports	6-8
De	efault Settings	6-9
	SEL-387A Default Settings (5 A)	6-9
	SEL-387A Default Settings (1 A)	6-11
Set	ttings Sheets	6-13
	TABLES	
Table 6.1:	Serial Port SET Commands	6-1
Table 6.2:	SET Command Editing Keystrokes	6-2

SECTION 6: SETTING THE RELAY

Introduction

Change or view settings with the **SET** and **SHOWSET** serial port commands and the front-panel SET pushbutton. Table 6.1 lists the serial port **SET** commands.

Table 6.1: Serial Port SET Commands

Command	Settings Type	Description
SET n	Relay	Overcurrent elements for settings group n (n = $1, 2, 3, 4, 5, 6$).
SET G	Global	Battery and breaker monitors, etc.
SET R	SER	Sequential Events Recorder trigger conditions and Load Profile settings.
SET P n	Port	Serial port settings for Serial Port n ($n = 1, 2, 3, or 4$).

View settings with the respective serial port SHOWSET commands (SHO, SHO G, SHO R, SHO P). See discussion of SHO commands in *Section 7: Serial Port Communications and Commands*. Settings Sheets are located at the end of this section.

SETTINGS CHANGES VIA THE FRONT PANEL

The relay front-panel SET pushbutton provides access to the Relay, Global, and Port settings only. Thus, the corresponding Relay, Global, and Port settings sheets that follow in this section can also be used when making these settings via the front panel. Refer to Figure 8.8 in *Section 8: Front-Panel Interface* for information on front-panel settings.

SETTINGS CHANGES VIA THE SERIAL PORT

Note: In this manual commands you type appear in bold/uppercase: **SHOWSET**. You need to type only the first three letters of a command, for example, **SHO**. Computer keys you press appear in bold/uppercase/brackets: **<ENTER>**.

See Section 7: Serial Port Communications and Commands for information on serial port communications and relay access levels. The SET commands in Table 6.1 operate at Access Level 2 (screen prompt: =>>). To change a specific setting, enter the command:

SET n m s TERSE

where

- n = G, R, or P (parameter n is not entered for the Relay settings).
- m = group (1....6) or port (1....4). The relay selects the active group or port if m is not specified.

- s = the name of the specific setting you wish to jump to and begin setting. If s is not entered, the relay starts at the first setting.
- TERSE = instructs the relay to skip the **SHOWSET** display after the last setting. Use this parameter to speed up the **SET** command. If you wish to review the settings before saving, do not use the **TERSE** option.

When you issue the **SET** command, the relay presents a list of settings, one at a time. Enter a new setting or press **<ENTER>** to accept the existing setting. Editing keystrokes are shown in Table 6.2.

Press Key(s)

Results

<ENTER>
Retains setting and moves to the next setting.

^<ENTER>
Returns to previous setting.

<<ENTER>
Returns to previous setting.

<<ENTER>
Moves to next setting.

END<ENTER>
Exits editing session then prompts you to save the settings.

<CTRL> X
Aborts editing session without saving changes.

Table 6.2: SET Command Editing Keystrokes

The relay checks each entry to ensure that it is within the setting range. If it is not, an "Out of Range" message is generated, and the relay prompts for the setting again.

When all the settings are entered, the relay displays the new settings and prompts for approval to enable them. Answer **Y**<**ENTER>** to enable the new settings. If changes are made to Global, SER, or Port settings (see Table 6.1), the relay is disabled while it saves the new settings. If changes are made to the Relay or Logic settings for the active setting group (see Table 6.1), the relay is disabled while it saves the new settings. The ALARM contact closes momentarily (for a "b" contact, opens for an "a") and the EN LED extinguishes while the relay is disabled. The relay is disabled for about one second. If Logic settings are changed for the active group, the relay can be disabled for up to 15 seconds.

If changes are made to the Relay or Logic settings for a setting group other than the active setting group (see Table 6.1), the relay is not disabled while it saves the new settings. The ALARM contact closes momentarily (for a "b" contact, opens for an "a") but the EN LED remains on while the new settings are saved.

ADDITIONAL RELAY SETTINGS

6-2

The following explanations are for settings that are not discussed in earlier sections.

Relay (RID) and Terminal (TID) Identification

The Relay Identifier (RID) and Terminal Identifier (TID) settings typically are used to identify the equipment protected by the relay or the identifier of the circuit breaker(s) controlled by the relay. The relay tags event reports with the Relay and Terminal Identifier Strings. This allows

you to distinguish the event report as one generated for a specific breaker and substation. The RID setting is limited to 39 characters and the TID setting to 59 characters. For our example, we have selected RID=XFMR1 and TID=STATION A.

Demand Ammeter Settings (DATC, PDEM, QDEM, NDEM)

The relay provides demand ammeters for Windings 1 and 2, for phase, negative-sequence, and residual currents. The relay saves time- and date-stamped peak demand readings for each of the quantities. View this information using the relay front panel or serial port **METER** commands.

The demand ammeters behave much like low-pass filters, responding to gradual trends in the current magnitude. The relay uses the demand ammeter time constant setting, DATCn, for all 5 demand ammeter calculations for Winding "n." The time constant is settable from 5 to 255 minutes. The demand ammeters operate such that if demand current is reset and a constant input current is applied, the demand current output will be 90 percent of the constant input current value DATCn minutes later.

Settable demand ammeter thresholds are available for all five demand ammeters in units of amps secondary. The thresholds are PDEMnP, QDEMnP, and NDEMnP for the phase (A, B, and C), negative-sequence, and residual demand ammeters, for Winding "n." If demand currents exceed the set threshold, the respective Relay Word bit PDEMn, QDEMn, or NDEMn asserts. You can use these Relay Word bits to alarm for phase overload and negative-sequence or residual current unbalance, for Winding "n." See *Section 5: Metering and Monitoring* for more information.

For our example, the Demand Ammeter function is enabled only for Winding 1, the 230 kV primary winding, with the following settings: DATC1 = 15 minutes, PDEM1P = 7 A, QDEM1P = 1 A, and NDEM1P = 1 A.

The demand ammeter settings can be different in the six settings groups.

Instantaneous metering functions have no settings. These functions show primary phase, negative-sequence, and residual current magnitudes; secondary winding current magnitudes and angles; differential quantities (operate, restraint, second- and fifth-harmonics) in multiples of tap. Access is by the front panel or one of the communications ports.

Input and Output Assignments

Optoisolated inputs (IN101 through IN106) and contact outputs (OUT101 through OUT107) are fully programmable, with no numbered input or output specifically dedicated to a function. The one exception is the ALARM contact, factory-set as a form-B contact (normally closed), and dedicated to the alarm function. OUT107 can be made into an additional alarm contact that follows the normal ALARM contact via JMP23 on the main board (see *Section 2: Installation*). Standard SELOGIC® control equations can be written to drive the output contacts. The inputs appear as elements of SELOGIC control equations. Examples of this are illustrated in the next discussion on Trip and Close Logic. These settings can be different in the six settings groups.

Trip and Close Logic

The Settings Sheets contain two specific areas highlighting the assignment of variables for the <u>Trip Logic</u> and <u>Close Logic</u>. These functions, along with those in the <u>Output Contact Logic</u> area,

must be programmed in order for the relay to take action. Settings in all three areas are SELOGIC control equations.

There are five trip variables to define conditions under which a trip will be issued. These are named TR1 to TR5. This will cover trip conditions for four separate breakers, plus one extra for a general trip of all breakers. The settings for the example transformer application illustrate this.

In the example, TR1 and TR2 are set to respond to overcurrent elements specific to the winding associated with Breakers 1 and 2. For example, TR1 = 50P11T + 51P1T + 51Q1T + OC1 + LB3. Complete operation of the phase definite-time or inverse-time elements, or the negative-sequence inverse-time element, will set the appropriate Relay Word bits 5xxxxT to one, and TR1 will respond to any of them. TR1 initiates the Trip Logic, producing output of the logic and setting of Relay Word bit TRIP1 to one. For tripping Breaker 2, TR2 = 51P2T + 51Q2T +OC2. For group tripping of both breakers, TR3 = 87R + 87U. This results in a tripping output to an external 86 lockout device, which then trips both breakers with separate contacts. This takes place only if a differential operation, either restrained or unrestrained, is detected. TR4 and TR5 are not used, and are set to zero.

In general, definition of the TR1 and TR5 variables should include only Relay Word bits that remain firmly asserted during a fault, but otherwise are not asserted. For this reason, rising-edge detection (/), falling-edge detection (\), and the NOT operator (!) should be avoided for the Relay Word bits used in these five settings. Exceptions might be bits used for opening the breaker by command during nonfault conditions, such as the OCn bits or the remote bits, RBn.

When the trip logic is activated, and one or more Relay Word bits TRIP1 to TRIP4 are set to one, a trip can take place. However, in order for this to happen an output contact must be assigned for each trip. These assignments are made on the Output Contact Logic setting sheet area. In this case, OUT101 = TRIP1, OUT102 = TRIP2, and OUT103 = TRIP3. OUT101 and OUT102 go directly to the two breaker trip coils, and OUT103 goes to the 86 operate coil. These connections are shown in Figure 2.8 in *Section 2: Installation*.

Corresponding to the five trip variables in the Trip Logic setting area are five unlatch variables. The variables ULTR1 to ULTR5 define the conditions to unlatch the seal-in of trip logic that takes place when TRn goes to one. They sense when it is appropriate to de-energize the trip circuit. In this case, the instantaneous overcurrent elements, 50Pn3, were set very low, and unlatch is defined as when the phase currents in all three phases drop below the setting. This is done with the NOT operator. That is, ULTR1 = !50P13, ULTR2 = !50P23, and ULTR3 = !(50P13 + 50P23) and unlatches TRIP3 when all phase currents on all windings drop below the 0.5 A setting. ULTR4 and ULTR5 are not used and are set to zero.

In the Close Logic setting area, inputs are defined to represent the 52a auxiliary contacts from the individual breakers. The four Close and four Unlatch Close variables are also defined, if the closing function is to be used.

In our example, inputs IN101 and IN102 are assigned to represent the 52a contacts. That is, 52A1 = IN101 and 52A2 = IN102. (Note again that inputs appear in the right side of an equation, outputs on the left side.) 52A3 and 52A4 are not used, and are set to zero. The connections for the 52a inputs are shown in Figure 2.8 in **Section 2: Installation**.

The four Close variables, CL1 through CL4, are set up to define the conditions under which a closing can take place. In our example, these are set up to respond to a **CLOSE n** command from a communications port, or an external contact input from a SCADA RTU or other switch.

Specifically, CL1 = CC1 + LB4 + /IN104 and CL2 = CC2 + /IN105, where "/" denotes detection of a "rising edge" for the input shown. CL3 and CL4 are not used, and are set to zero. Within these SELOGIC control equations, inputs IN104 and IN105 have been defined as being related to the close initiation function for the specific breakers. The CLn variable initiates the close logic, resulting in Relay Word bit CLSn being set to one, unless the logic is disabled by an unlatch condition, discussed below. Note that connections for the closing function are <u>not</u> shown in Figure 2.8 in *Section 2: Installation*.

Closing can now take place, but only if an output contact has been assigned to this function. Returning to the Output Contact Logic setting area for our example, we set OUT105 = CLS1 and OUT106 = CLS2. These contacts must be wired to the closing circuits of the individual breakers.

In the Close Logic setting area, four variables remain. ULCL1 to ULCL4 define the conditions for unlatching the close logic. These are set in our example to be the presence of any trip logic output. That is, ULCL1 = TRIP1 + TRIP3 and ULCL2 = TRIP2 + TRIP3. ULC3 and ULCL4 are not used and are set to zero. ULCLn will remove the seal-in of the close logic and return Relay Word bit CLSn to zero. A closed 52a contact or a Close Failure Detection will also unlatch the Close Logic. The output contact that follows the CLSn bit will open in response.

The Trip Logic and Close Logic settings can be set differently in the six setting groups. See *Section 4: Control Logic* for more information on Trip and Close Logic.

There are two additional miscellaneous timer settings that apply to the Trip and Close Logic. These are TDURD and CFD. TDURD is the minimum trip duration time and defines the minimum length of time the trip signal will be issued, regardless of other inputs to the Trip Logic. The default setting is 9 cycles. The CFD, or Close Failure Detection time delay, is an overriding timer to unlatch the close logic if the breaker has not yet closed. The default setting is 60 cycles.

Event Report Triggering (ER) and Length Selection (LER, PRE)

There are three settings for Event Reports: (1) ER, (2) LER, and (3) PRE.

The first, ER, defines in a SELOGIC control equation the conditions under which a report will be generated. In our example, $ER = \frac{50P11 + 51P1 + 51P1 + 51P2 + 51P2}{10P1 + 51P2 + 51P2}$. Events will be generated from the pickup of the various overcurrent elements, whether they fully time out or not. This will yield reports for some external faults that do not result in tripping of the transformer breakers, but for which information might be useful.

The LER setting defines how long the overall report should be: 15, 30, or 60 cycles. The related setting PRE defines how much of that length should be "pre-trigger," and can be set from one cycle to LER-1 cycles. We have selected the standard SEL report length of 15 for LER, with PRE set at 4, giving 15–4 = 11 cycles of fault data. This is probably long enough to capture the entire event, for trips by high-speed elements (87R, 87U, 50Pxx), but may not be long enough for inverse-time trips. Since any trip will generate an Event Report, inverse-time trips may be captured on two reports, one generated by element pickup and the other by the eventual trip.

Event Report settings are Global settings, accessible with a **SET G** command from a communications port.

System Frequency (NFREQ) and Phase Rotation (PHROT)

The relay settings NFREQ and PHROT establish your basic system parameters for the SEL-387A Relay.

- 1. Set NFREQ equal to the nominal power system operating frequency, either 50 Hz or 60 Hz.
- 2. Set PHROT to the power system phase rotation, either ABC or ACB.

These are Global settings, set after issuing a **SET G** command from a communications port.

Miscellaneous (DATE_F, SCROLD, FP_TO, TGR)

There are four miscellaneous settings to complete the setting process. These are the Date Format, Front-Panel Time-Out, Scroll Data and Group Change Delay settings. These settings are Global settings, accessible with the **SET G** command from a communications port or the front panel.

The DATE_F setting permits the user to define either a Month-Day-Year (MDY) format or a Year-Month-Day (YMD) format for all relay date reporting. Default is MDY.

Use the display update rate (SCROLD or scroll data) setting to control how long each pair of display text messages is displayed on the front panel. Setting range is 1 to 60 seconds with a default of 2 seconds.

The front-panel time-out setting, FP_TO, defines the length of time before the panel returns to normal default scrolling displays and LED targeting. This feature is useful for preventing the panel from being accidentally left in a display state that was being used during testing or to confirm Relay Word bit status. It can be set from 0 to 30 minutes; default is 16 minutes.

The Group Change Delay timer setting, TGR, defines the amount of time that must pass before a new group of settings take effect. It requires the conditions to change to a new group to persist for time TGR before the relay enacts the new settings. The setting range is 0 through 900 seconds. The factory default value is 3 seconds. This function prevents the relay from jumping around from group to group in response to spurious fulfillment of the SSn setting group change conditions and ensures that a request for change is real and justified.

DC Battery Monitor (DC1P-DC4P)

The DC Battery Monitor function is described in *Section 5: Metering and Monitoring*. You may choose one of four dc voltage thresholds, DC1P through DC4P, to assert Relay Word bits DC1 to DC4 when supply voltage to the relay exceeds the specific threshold. This allows the user to readily determine if the voltage is within certain limits and to alarm if the voltage goes too high or low. The four threshold settings are found in the Global setting area.

Breaker Monitor

The Breaker Monitor function is described fully in *Section 5: Metering and Monitoring*. There is one setting for each of two breakers, BKMON1 and BKMON2. This setting accepts a SELOGIC control equation using Relay Word elements to describe the triggering conditions for that particular monitor. When triggered, the monitor measures the three-phase currents 1.5

cycles after triggering, adds them to the total accumulated current for that breaker, and adds one to the external or internal trip counter, depending on whether the associated TRIP variable was asserted at time of triggering.

In addition, for each breaker there is a contact wear curve, defined by entering three operations versus current coordinate pairs. This curve is applied by pole to track and alarm when excessive contact wear is encountered. This helps the user schedule breaker maintenance intervals.

Analog Input Labels

In the Global setting area, the user is permitted to rename the nine (including the three neutral inputs) analog current inputs to suit local preferences. The present names, IAW1 through ICW2, can be replaced with other designations of not more than four characters. This function recognizes the desire of users to replace SEL designations with more familiar phase identifiers, such as "R, S, T," "Red, Blue, Yellow," and so forth.

The new labels will appear wherever the currents were identified by the existing labels, including the displays for serial port commands **STA**tus, **BRE**aker, **EVE**nt, and **MET**er, including the variants of each command. The new labels will also appear in the front-panel LCD displays for the STATUS and METER pushbutton menus.

Setting Group Selection

In the Global settings there are settings to define which of the six settings groups is to be the active group. Use the **SET G** command from a communications port to access settings SS1 to SS6. The front panel cannot be used to access or change these settings. The settings are defined by SELOGIC control equations, using defined contact inputs or any Relay Word elements to switch groups. The simplest method is to set a value of one for the SSn setting corresponding to the desired settings group "n." The SELOGIC control equations permit greater user flexibility in defining when to switch setting groups. If any variable SS1 to SS6 is asserted, the **GRO n** serial port command and the front-panel GROUP pushbutton cannot be used to change setting groups.

Front-Panel Targeting, Displays, and Control

There are settings for elements of the front-panel display, if the user is interested in customizing an LED target or display for a specific function. Five of the 16 front-panel LEDs are fully programmable. These are the FAULT TYPE A, B, C, LED15, and LED16 LEDs in the second row. The default settings for the first three LEDs are based on phase selection logic for overcurrent trips or differential trips by a specific element, and the last two are set to zero. For example, the A-phase LED is programmed normally as follows: LEDA = OCA + 87E1. This means that the LED will come on if it is determined that A-phase was involved in an overcurrent trip or that differential element 1 issued a trip. The user may define any SELOGIC control equation to operate these targets by programming LEDA, LEDB, LEDC, LED15, or LED16.

There are 16 programmable Display Points, for creating customized messages on the LCD display. They appear in pairs and stay on screen for two seconds before scrolling to the next display. The variables DP1 through DP16 are defined by a SELOGIC control equation that at any time will have a logical value of 0 or 1. For each DPm there are two settings showing the display content. These are DPm_1 and DPm_0. The relay displays any nonblank DPm_1 or _0

values if the current logical value of DPm corresponds. The LED and Display Point settings are Global settings, accessible with the **SET G** command from a communications port.

Use local control to enable/disable schemes, trip/close breakers, and so on via the front panel. Local control asserts (sets to logical 1) or deasserts (sets to logical 0) local bits LB1 through LB16. These local bits are available as Relay Word bits and are used in SELOGIC control equations.

For more information on the LEDs, Display Points, and Local Bits, see *Section 8: Front-Panel Interface*.

Sequential Events Recorder

The SER, or Sequential Events Recorder, lists up to 512 events. This may help the user in determining the correct order of operation during a complicated event with multiple device operations within a short time interval. The settings for the SER are the trigger conditions and the Relay Word bit ALIAS names. Up to 96 total Relay Word bit names may be selected and entered into settings SER1, SER2, SER3, and SER4, in any order, with a maximum of 24 bits in any SERn. Up to 20 Relay Word bits may be given ALIAS names to make the SER report more user friendly. For example, a given input may be given an ALIAS that designates a 52a input for a specific named breaker.

The SER settings are made after issuing the **SET R** command from a communications port. The SER operation and settings are described fully in **Section 9: Event Reports and SER**.

Communications Ports

There are four communications ports on the SEL-387A. Port 1 is an EIA-485 port on the rear panel. Ports 2 and 3, also on the rear panel, are EIA-232. Port 4 is an EIA-232 on the front panel. These ports are set via the **SET P** command. To identify the port by which one is presently communicating with the relay, issue the **SHO P** command, which will also list that port's settings.

Initial connection to the relay can be made with standard SEL protocol, at 2400 baud, 8 data bits, No parity, 1 stop bit, and VT100 emulation, using any standard communications program such as Microsoft® Windows® HyperTerminal.

Complete information on the communications ports and necessary settings can be found in *Section 7: Serial Port Communications and Commands*.

DEFAULT SETTINGS

SEL-387A Default Settings (5 A)

```
______
=>>SH0
Group 1
RID
       =XFMR 1
TID
       =STATION A
E87
       Y
                 E0C2 = Y
E49B = N
EOC1
      = Y
                                   EOCN = Y
      = N
E49A
ESLS1 = N
                  ESLS2 = N
                                   ESLS3 = N
W1CT
      Y
                  W2CT
                        Y
       = 120
                        = 240
CTR1
                  CTR2
                                   CTRN3 = 24
CTRN1 = 80
                  CTRN2 = 80
MVA
       = 100.0
                  ICOM
                        = Y
      = 11
W1CTC
                  W2CTC
                        = 11
VWDG1 = 230.00
                  VWDG2 = 138.00
                       = 1.74
      = 2.09
TAP1
                  TAP2
                                   SLP2 = 50 IRS1 = 3.0
PCT4 = 15 PCT5 = 35
HRSTR = N IHBL = N
087P
      = 0.30
                  SLP1
                        = 25
       = 10.0
U87P
                  PCT2
                        = 15
                      = N
      = 0FF
TH5P
                  DCRB
E32I1 =0
Press RETURN to continue
E32I2 =0
50P11P = 20.00
                  50P11D = 5.00
                                  50P11TC =1
50P12P = OFF
50P13P = 0.50
                  50P14P = 4.00
51P1P = 4.00
51P1TC =1
                  51P1C = U2
                                   51P1TD = 3.00
                                                    51P1RS = Y
50Q11P = 0FF
                  50012P = 0FF
5101P = 6.00
5101TC =1
                  51Q1C = U2
                                   5101TD = 3.00
                                                    5101RS = Y
50N11P = OFF
                  50N12P = OFF
51N1P = 0FF
DATC1 = 15
                  PDEM1P = 7.00
                                   QDEM1P = 1.00
                                                    NDEM1P = 1.00
                  50P22P = 0FF
50P21P = 0FF
50P23P = 0.50
                  50P24P = 3.50
Press RETURN to continue
                 51P2C = U2
51P2P = 3.50
                                   51P2TD = 3.50 51P2RS = Y
51P2TC =1
                  50Q22P = 0FF
50021P = 0FF
5102P = 5.25
5102TC =1
                  5102C = U2
                                   5102TD = 3.50
                                                     5102RS = Y
50N21P = OFF
                  50N22P = OFF
51N2P = 0FF
DATC2 = 15
                  PDEM2P = 7.00
                                   QDEM2P = 1.00
                                                    NDEM2P = 1.00
                                   (continued on next page)
```

```
(continued from previous page)
50NN11P = OFF
                   50NN11D = 10.00
                                       50NN11TC=1
50NN12P = OFF
50NN13P = OFF
                   50NN14P = OFF
51NN1P = OFF
                   51NN1C = U2
                                       51NN1TD = 1.00
51NN1RS = Y
                   51NN1TC =1
50NN21P = OFF
                   50NN21D = 10.00
                                       50NN21TC=1
50NN22P = OFF
Press RETURN to continue
50NN23P = OFF
                   50NN24P = 0FF
51NN2P = OFF
                   51NN2C = U2
                                       51NN2TD = 1.00
                   51NN2TC =1
51NN2RS = Y
50NN31P = OFF
                   50NN31D = 10.00
                                       50NN31TC=1
50NN32P = OFF
50NN33P = OFF
                   50NN34P = OFF
51NN3P = OFF
                   51NN3C = U2
                                       51NN3TD = 1.00
51NN3RS = Y
                   51NN3TC =1
TDURD = 9.000
                   CFD
                         = 60.000
TR1
       =50P11T + 51P1T + 51Q1T + 0C1 + LB3
       =51P2T + 51Q2T + 0C2
TR2
TR3
       =87R + 87U
TR4
       =0
       =0
TR5
ULTR1
       =!50P13
ULTR2
       =!50P23
ULTR3
       =!(50P13 + 50P23)
Press RETURN to continue
ULTR4
       =0
       =0
ULTR5
52A1
       =IN101
52A2
       =IN102
52A3
       =()
52A4
       =0
       =CC1 + LB4 + /IN104
CL1
CL2
       =CC2 + /IN105
CL3
       =0
CL4
       =0
ULCL1
       =TRIP1 + TRIP3
       =TRIP2 + TRIP3
ULCL2
ULCL3
       =0
ULCL4
       =0
       =/50P11 + /51P1 + /51Q1 + /51P2 + /51Q2
ER
OUT101 =TRIP1
OUT102 =TRIP2
OUT103 =TRIP3
0UT104 =0
OUT105 =CLS1
Press RETURN to continue
0UT106 =CLS2
0UT107 =0
                                       (continued on next page)
```

```
(continued from previous page)

OUT201 -0

OUT202 -0

OUT203 -0

OUT204 -0

OUT205 -0

OUT206 -0

OUT207 -0

OUT208 -0

OUT209 -0

OUT210 -0

OUT211 -0

OUT211 -0

OUT212 -0

SCEUSE 45.8

GRICHK E73F
```

SEL-387A Default Settings (1 A)

```
=>>SH0
Group 1
RID
       =XFMR 1
TID
       =STATION A
E87
       = Y
      = Y
                        = Y
EOC1
                  E0C2
                                    EOCN = Y
E49A
       = N
                  E49B
                        = N
ESLS1 = N
                                     ESLS3 = N
                  ESLS2 = N
W1CT
       = Y
                  W2CT
       = 600
                         = 1200
CTR1
                  CTR2
CTRN1
      = 400
                  CTRN2
                         = 400
                                    CTRN3 = 120
       = 100.0
                         = Y
MVA
                  ICOM
W1CTC
      = 11
                  W2CTC
                         = 11
                  VWDG2 = 138.00
VWDG1 = 230.00
TAP1
      = 0.42
                  TAP2
                         = 0.35
                                     SLP2
087P
       = 0.30
                  SLP1
                         = 25
                                            = 50
                                                       IRS1
                                                              = 3.0
                         = 15
= N
       = 10.0
= 0FF
                                    PCT4 = 15
HRSTR = N
                                                              = 35
= N
U87P
                  PCT2
                                                        PCT5
TH5P
                  DCRB
                                                       IHBL
E32I1 =0
Press RETURN to continue
E32I2 =0
50P11P = 4.00
                  50P11D = 5.00
                                    50P11TC =1
50P12P = 0FF
50P13P = 0.10
                  50P14P = 0.80
51P1P = 0.80
51P1TC =1
                  51P1C = U2
                                     51P1TD = 3.00
                                                       51P1RS = Y
50Q11P = 0FF
                  50012P = 0FF
5101P = 1.20
                  51Q1C = U2
                                     51Q1TD = 3.00
                                                       5101RS = Y
51Q1TC =1
                                     (continued on next page)
```

```
50N11P = OFF
                    50N12P = OFF
51N1P = 0FF
DATC1 = 15
                    PDEM1P = 1.40
                                       QDEM1P = 0.20
                                                           NDEM1P = 0.20
50P21P = 0FF
                    50P22P = 0FF
50P23P = 0.10
                    50P24P = 0.70
Press RETURN to continue
51P2P = 0.70
                                       51P2TD = 3.50
                                                           51P2RS = Y
                   51P2C = U2
51P2TC =1
50Q21P = 0FF
                    50022P = 0FF
5102P = 1.05
                    5102C = U2
                                       51Q2TD = 3.50
                                                           5102RS = Y
51Q2TC =1
50N21P = 0FF
                    50N22P = 0FF
51N2P = OFF
DATC2 = 15
                    PDEM2P = 1.40
                                       QDEM2P = 0.20
                                                           NDEM2P = 0.20
50NN11P = OFF
                    50NN11D = 10.00
                                       50NN11TC=1
50NN12P = OFF
50NN13P = OFF
                    50NN14P = OFF
51NN1P = OFF
                    51NN1C = U2
                                       51NN1TD = 1.00
51NN1RS = Y
                    51NN1TC =1
50NN21P = 0FF
                    50NN21D = 10.00
                                       50NN21TC=1
50NN22P = OFF
Press RETURN to continue
50NN23P = 0FF
51NN2P = 0FF
                   50NN24P = OFF
                    51NN2C = U2
                                       51NN2TD = 1.00
51NN2RS = Y
                    51NN2TC =1
50NN31P = 0FF
                    50NN31D = 10.00
                                       50NN31TC=1
50NN32P = OFF
50NN33P = OFF
                    50NN34P = 0FF
51NN3P = OFF
                    51NN3C = U2
                                       51NN3TD = 1.00
51NN3RS = Y
                    51NN3TC =1
TDURD = 9.000
                   CFD
                           = 60.000
TR1
       =50P11T + 51P1T + 51Q1T + 0C1 + LB3
TR2
       =51P2T + 51Q2T + 0C2
TR3
       =87R + 87U
       =0
TR4
TR5
        =0
ULTR1
       =!50P13
ULTR2
       =!50P23
       =!(50P13 + 50P23)
ULTR3
Press RETURN to continue
ULTR4
       =0
ULTR5
       =0
52A1
        =IN101
52A2
       =IN102
52A3
        =0
52A4
       =0
CL1
       =CC1 + LB4 + /IN104
CL2
       =CC2 + /IN105
       =0
CL3
CL4
        =0
                                       (continued on next page)
```

```
(continued from previous page)
ULCL1
      =TRIP1 + TRIP3
ULCL2
       =TRIP2 + TRIP3
ULCL3
       =0
ULCL4
       =0
       =/50P11 + /51P1 + /51Q1 + /51P2 + /51Q2
ER
OUT101 =TRIP1
OUT102 =TRIP2
OUT103 =TRIP3
0UT104 =0
OUT105 =CLS1
Press RETURN to continue
0UT106 =CLS2
0UT107 =0
0UT201 =0
0UT202 =0
0UT203 =0
0UT204 =0
0UT205 =0
0UT206 =0
0UT207 =0
0UT208 =0
0UT209 =0
0UT210 =0
0UT211 =0
0UT212 =0
SCEUSE
          45.8
GR1CHK
          E80F
=>>
```

The Group settings shown above are the only settings which are different from the 5 A relay settings. The Global, Port, and SER settings remain the same.

SETTINGS SHEETS

The rest of this section consists of Settings Sheets.

You can photocopy the Settings Sheets and write your settings on the copy before you enter the settings in the relay. The Settings Sheets begin with the Group Settings (SET Command), followed by Global Settings (SET G Command), Sequential Events Recorder Settings (SET R Command), and Port Settings (SET P Command).

SEL-387A Relay Settings Sheet Group Settings (SET Command)

 Page
 1 of 29

 Date

 Group

CONFIGURATION SETTINGS

Relay Identifier (39 Characters)			
RID =			
Terminal Identifier (59 Characters)			
TID =			
Enable Differential Element (Y, N)	E87	=	
Enable Winding 1 O/C Elements and Dmd Thresholds (Y, N)	EOC1	=	
Enable Winding 2 O/C Elements and Dmd Thresholds (Y, N)	EOC2	=	
Enable Winding Neutral Elements (Y, N)	EOCN	=	
Enable RTDA Element (Y, N)	E49A	=	
Enable RTDB Element (Y, N)	E49B	=	
Enable SELOGIC® Control Equations Set 1 (Y, N)	ESLS1	=	
Enable SELOGIC Control Equations Set 2 (Y, N)	ESLS2	=	
Enable SELOGIC Control Equations Set 3 (Y, N)	ESLS3	=	
GENERAL DATA			
Winding 1 CT Connection (D, Y)	W1CT	=	
Winding 2 CT Connection (D, Y)	W2CT	=	
Winding 1 CT Ratio (1–50000)	CTR1	=	
Winding 2 CT Ratio (1–50000)	CTR2	=	
Neutral 1 CT Ratio (1–50000)	CTRN1	=	
Neutral 2 CT Ratio (1–50000)	CTRN2	=	
Neutral 3 CT Ratio (1–50000)	CTRN3	=	
Maximum Power Xfmr Capacity (OFF, 0.2-5000.0 MVA)	MVA	=	
Define Internal CT Connection Compensation (Y, N)	ICOM	=	
Winding 1 CT Conn. Compensation (0, 1,, 12)	W1CTC	=	
Winding 2 CT Conn. Compensation (0, 1,, 12)	W2CTC	=	
Winding 1 Line-to-Line Voltage (1.00-1000.00 kV)	VWDG1	=	
Winding 2 Line-to-Line Voltage (1.00–1000.00 kV)	VWDG2	=	

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group		2 of 29
DIFFERENTIAL ELEMENTS			
Note: TAP1 and TAP2 are auto-set by relay if MVA setting is not OFF.			
Winding 1 Current Tap			
(0.50–155.00 A secondary) (5 A)			
(0.10–31.00 A secondary) (1 A)	TAP1	= _	
Winding 2 Current Tap			
(0.50–155.00 A secondary) (5 A)			
(0.10–31.00 A secondary) (1 A)	TAP2	= _	
Restrained Element Operating Current PU (0.10–1.00 TAP)	O87P	= _	
Restraint Slope 1 Percentage (5–100%)	SLP1	= _	
Restraint Slope 2 Percentage (OFF, 25–200%)	SLP2	= _	
Restraint Current Slope 1 Limit (1.0–20.0 TAP)	IRS1	= _	
Unrestrained Element Current PU (1–20 TAP)	U87P	=	
Second-Harmonic Blocking Percentage (OFF, 5–100%)	PCT2	=	_
Fourth-Harmonic Blocking Percentage (OFF, 5–100%)	PCT4	=	_
Fifth-Harmonic Blocking Percentage (OFF, 5–100%)	PCT5	=	
Fifth-Harmonic Alarm Threshold (OFF, 0.02–3.2 TAP)	TH5P	=	
Fifth-Harmonic Alarm TDPU (0.000-8000.000 cyc)	TH5D	=	
DC Ratio Blocking (Y, N)	DCRB	=	
Harmonic Restraint (Y, N)	HRSTR	=	
Independent Harmonic Blocking (Y, N)	IHBL	=	
RESTRICTED EARTH FAULT (ONLY AVAILABLE IF ORDERED WITH THE REF OPTION)		_	
Enable 32I (SELOGIC control equation)			
E32I1 =			
Operating Quantity from Wdg. 1, Wdg. 2 (1, 2, 12)	32IOP1	= _	
Positive-Sequence Current Restraint Factor, I0/I1 (0.02–0.50)	a01	=	
Residual Current Sensitivity Threshold		_	
(0.25–15 A secondary) (5 A)			

E32I2 =

(0.05–3 A secondary) (1 A)

Enable 32I (SELOGIC control equation)

50GP1

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group		3 of 29	
Operating Quantity from Wdg. 1, Wdg. 2 (1, 2, 12)	32IOP2	=		
Positive-Sequence Current Restraint Factor, I0/I1 (0.02–0.50)	a02	=		
Residual Current Sensitivity Threshold		-		
(0.25–15 A secondary) (5 A)				
(0.05–3 A secondary) (1 A)	50GP2	=		
WINDING 1 O/C ELEMENTS				
Winding 1 Phase O/C Elements				
Phase DefTime O/C Level 1 PU				
(OFF, 0.25–100 A secondary) (5 A)				
(OFF, 0.05–20 A secondary) (1 A)	50P11P	=		
Phase Level 1 O/C Delay (0.00–16000.00 cycles)	50P11D	=		
50P11 Torque Control (SELOGIC control equation)		=		
50P11TC =				
Phase Inst. O/C Level 2 PU				
(OFF, 0.25–100 A secondary) (5 A)				
(OFF, 0.05–20 A secondary) (1 A)	50P12P	=		
50P12 Torque Control (SELOGIC control equation)		-		
50P12TC =				
Phase Inst. O/C Level 3 PU				
(OFF, 0.25–100 A secondary) (5 A)				
(OFF, 0.05–20 A secondary) (1 A)	50P13P	=		
Phase Inst. O/C Level 4 PU		_		
(OFF, 0.25–100 A secondary) (5 A)				
(OFF, 0.05–20 A secondary) (1 A)	50P14P	=		
Phase InvTime O/C PU				
(OFF, 0.50–16.00 A secondary) (5 A)				
(OFF, 0.10–3.20 A secondary) (1 A)	51P1P	=		
Phase InvTime O/C Curve (U1–U5, C1–C5)	51P1C	=		
Phase InvTime O/C Time-Dial (US 0.5–15.0, IEC 0.05–1.00)	51P1TD	=		
Phase InvTime O/C EM Reset (Y, N)	51P1RS	=		
51P1 Torque Control (SELOGIC control equation)		-		
51P1TC =				

SEL-387A Relay Settings Sheet Group Settings (SET Command)

Page <u>4 of 29</u>

Date _____

Group

Winding 1 Negative-Sequence O/C Elements

Note: All negative-sequence element pickup settings are in terms of 3	3I ₂ .	
NegSeq. DefTime O/C Level 1 PU		
(OFF, 0.25–100 A secondary) (5 A)		
(OFF, 0.05–20 A secondary) (1 A)	50Q11P	=
NegSeq. Level 1 O/C Delay (0.50–16000.00 cycles)	50Q11D	=
50Q11 Torque Control (SELOGIC control equation)		
50Q11TC =		
NegSeq. Inst. O/C Level 2 PU		
(OFF, 0.25–100 A secondary) (5 A)		
(OFF, 0.05–20 A secondary) (1 A)	50Q12P	=
50Q12 Torque Control (SELOGIC control equation)		
50Q12TC =		
NegSeq. InvTime O/C PU		
(OFF, 0.50–16.00 A secondary) (5 A)		
(OFF, 0.10–3.20 A secondary) (1 A)	51Q1P	=
NegSeq. InvTime O/C Curve (U1–U5, C1–C5)	51Q1C	=
NegSeq. InvTime O/C Time-Dial (US 0.5–15, IEC 0.05–1.00)	51Q1TD	=
NegSeq. InvTime O/C EM Reset (Y, N)	51Q1RS	=
51Q1 Torque Control (SELOGIC control equation)		
51Q1TC =		
Winding 1 Residual O/C Elements		
Residual DefTime O/C Level 1 PU		
(OFF, 0.25–100 A secondary) (5 A)		

Residual Def.-Time O/C Level 1 PU

(OFF, 0.25–100 A secondary) (5 A)

(OFF, 0.05–20 A secondary) (1 A)

Sontine

Residual Level 1 O/C Delay (0.00–16000.00 cycles)

50N11 Torque Control (SELOGIC control equation)

50N11TC =

Residual Inst. O/C Level 2 PU

(OFF, 0.25–100.00 A secondary) (5 A)

(OFF, 0.05–20 A secondary) (1 A)

50N12P

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group	5 of 29	
50N12 Torque Control (SELOGIC control equation)			
50N12TC =			
Residual InvTime O/C PU			
(OFF, 0.50–16.00 A secondary) (5 A)			
(OFF, 0.10–3.20 A secondary) (1 A)	51N1P =		
Residual InvTime O/C Curve (U1–U5, C1–C5)	51N1C =		
Residual InvTime O/C Time-Dial (US 0.50–15.00, IEC 0.05–1.00)	51N1TD =		
Residual InvTime O/C EM Reset (Y, N)	51N1RS =		
51N1 Torque Control (SELOGIC control equation)			
51N1TC =			
Winding 1 Demand Metering			
Demand Ammeter Time Constant (OFF, 5–255 min)	DATC1 =		
Phase Demand Ammeter Threshold			
(0.50–16.00 A secondary) (5 A)			
(0.10–3.20 A secondary) (1 A)	PDEM1P =		
NegSeq. Demand Ammeter Threshold			
(0.50–16.00 A secondary) (5 A)			
(0.10–3.20 A secondary) (1 A)	QDEM1P =		
Residual Demand Ammeter Threshold			
(0.50–16.00 A secondary) (5 A)			
(0.10–3.20 A secondary) (1 A)	NDEM1P =		
INDING 2 O/C ELEMENTS			
Winding 2 Phase O/C Elements			
Phase DefTime O/C Level 1 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50P21P =		
Phase Level 1 O/C Delay (0.00–16000.00 cycles)	50P21D =		
50P21 Torque Control (SELOGIC control equation)			
50P21TC =			
Phase Inst. O/C Level 2 PU		_	
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50P22P =		

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group	•	
50P22 Torque Control (SELOGIC control equation)			
50P22TC =			
Phase Inst. O/C Level 3 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50P23P	= _	
Phase Inst. O/C Level 4 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50P24P	=	
Phase InvTime O/C PU			
(OFF, 0.50–16.00 A secondary) (5 A)			
(OFF, 0.10–3.20 A secondary) (1 A)	51P2P	=	
Phase InvTime O/C Curve (U1–U5, C1–C5)	51P2C	=	
Phase InvTime O/C Time-Dial (US 0.50–15.00, IEC 0.05–1.00)	51P2TD	=	
Phase InvTime O/C EM Reset (Y, N)	51P2RS	=	
51P2 Torque Control (SELOGIC control equation)			
51P2TC =			
Winding 2 Negative-Sequence O/C Elements			
Note: All negative-sequence element pickup settings are in terms of 3	I ₂ .		
NegSeq. DefTime O/C Level 1 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50Q21P	= _	
NegSeq. Level 1 O/C Delay (0.50–16000.00 cycles)	50Q21D	= _	
50Q21 Torque Control (SELOGIC control equation)			
50Q21TC =			
NegSeq. Inst. O/C Level 2 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50Q22P	=	
50Q22 Torque Control (SELOGIC control equation)			
50Q22TC =			
NegSeq. InvTime O/C PU			
(OFF, 0.50–16.00 A secondary) (5 A)			
(OFF, 0.10–3.20 A secondary) (1 A)	51Q2P	=	

SEL-387A Relay Settings Sheet Group Settings (SET Command)	•	Page Date	
	Grou	ıp	
NegSeq. InvTime O/C Curve (U1–U5, C1–C5)	51Q2C	=	
NegSeq. InvTime O/C Time-Dial (US 0.5–15, IEC 0.05–1.00)	51Q2TD	=	
NegSeq. InvTime O/C EM Reset (Y, N)	51Q2RS	=	
51Q2 Torque Control (SELOGIC control equation)			
51Q2TC =			
Winding 2 Residual O/C Elements			
Residual DefTime O/C Level 1 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50N21P	=	
Residual Level 1 O/C Delay (0.00–16000.00 cycles)	50N21D	=	
50N21 Torque Control (SELOGIC control equation)			
50N21TC =			
Residual Inst. O/C Level 2 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50N22P	=_	
50N22 Torque Control (SELOGIC control equation)			
50N22TC =			
Residual InvTime O/C PU			
(OFF, 0.50–16.00 A secondary) (5 A)			
(OFF, 0.10–3.20 A secondary) (1 A)	51N2P	=_	
Residual InvTime O/C Curve (U1–U5, C1–C5)	51N2C	=_	
Residual InvTime O/C Time-Dial (US 0.50–15.00, IEC 0.05–1.00)	51N2TD	=_	
Residual InvTime O/C EM Reset (Y, N)	51N2RS	=	
51N2 Torque Control (SELOGIC control equation)			
51N2TC =			
Winding 2 Demand Metering			
Demand Ammeter Time Constant (OFF, 5–255 min)	DATC2	=_	
Phase Demand Ammeter Threshold			
(0.05–16.00 A secondary) (5 A)			
(0.10–3.20 A secondary) (1 A)	PDEM2P	=	

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group		8 of 29
NegSeq. Demand Ammeter Threshold			
(0.50–16.00 A secondary) (5 A)			
(0.10–3.20 A secondary) (1 A)	QDEM2P	=	
Residual Demand Ammeter Threshold			
(0.50–16.00 A secondary) (5 A)			
(0.10–3.20 A secondary) (1 A)	NDEM2P	=_	
EUTRAL ELEMENTS			
Neutral 1 Elements			
Neutral DefTime O/C Level 1 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50NN11P	=	
Neutral Level 1 O/C Delay (0.00–16000.00 cycles)	50NN11D	=	
50NN11 Torque Control (SELOGIC control equation)			
50NN11TC =			
Neutral Inst. O/C Level 2 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50NN12P	=	
50NN12 Torque Control (SELOGIC control equation)			
50NN12TC =			
Neutral Inst. O/C Level 3 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50NN13P	=	
Neutral Inst. O/C Level 4 PU			
(OFF, 0.25–100 A secondary) (5 A)			
(OFF, 0.05–20 A secondary) (1 A)	50NN14P	=_	
Neutral InvTime O/C PU			
(OFF, 0.50–16.00 A secondary) (5 A)			
(OFF, 0.10–3.20 A secondary) (1 A)	51NN1P	=_	
Neutral InvTime O/C Curve (U1–U5, C1–C5)	51NN1C	= _	
Neutral InvTime O/C Time-Dial (US 0.50–15.00, IEC 0.05–1.00)	51NN1TD	= _	
Neutral InvTime O/C EM Reset (Y, N)	51NN1RS	=_	

SEL-387A Relay Settings Sheet Group Settings (SET Command)

Page 9 of 29
Date
Group

51NN1 Torque Control (SELOGIC control equation) 51NN1TC = Neutral 2 Elements Neutral Def.-Time O/C Level 1 PU (OFF, 0.25–100 A secondary) (5 A) 50NN21P = _____ (OFF, 0.05–20 A secondary) (1 A) Neutral Level 1 O/C Delay (0.00–16000.00 cycles) 50NN21D =50NN21 Torque Control (SELOGIC control equation) 50NN21TC = Neutral Inst. O/C Level 2 PU (OFF, 0.25–100 A secondary) (5 A) (OFF, 0.05–20 A secondary) (1 A) 50NN22P 50NN22 Torque Control (SELOGIC control equation) 50NN22TC = Neutral Inst. O/C Level 3 PU (OFF, 0.25–100 A secondary) (5 A) 50NN23P = ____ (OFF, 0.05–20 A secondary) (1 A) Neutral Inst. O/C Level 4 PU (OFF, 0.25–100 A secondary) (5 A) (OFF, 0.05–20 A secondary) (1 A) 50NN24P =Neutral Inv.-Time O/C PU (OFF, 0.50–16.00 A secondary) (5 A) (OFF, 0.10–3.20 A secondary) (1 A) 51NN2P Neutral Inv.-Time O/C Curve (U1–U5, C1–C5) 51NN2C Neutral Inv.-Time O/C Time-Dial (US 0.50–15.00, IEC 0.05–1.00) 51NN2TD Neutral Inv.-Time O/C EM Reset (Y, N) 51NN2RS 51NN2 Torque Control (SELOGIC control equation) 51NN2TC =**Neutral 3 Elements** Neutral Def.-Time O/C Level 1 PU (OFF, 0.25–100 A secondary) (5 A) 50NN31P =(OFF, 0.05–20 A secondary) (1 A)

SEL-387A Relay Settings Sheet Group Settings (SET Command)	•		oup Settings (SET Command) Date		gs (SET Command) Date		10 of 29	
Neutral Level 1 O/C Delay (0.00–16000.00 cycles)	50NN31D	=_						
50NN31 Torque Control (SELOGIC control equation)								
50NN31TC =								
Neutral Inst. O/C Level 2 PU								
(OFF, 0.25–100 A secondary) (5 A)								
(OFF, 0.05–20 A secondary) (1 A)	50NN32P	=						
50NN32 Torque Control (SELOGIC control equation)								
50NN32TC =								
Neutral Inst. O/C Level 3 PU								
(OFF, 0.25–100 A secondary) (5 A)								
(OFF, 0.05–20 A secondary) (1 A)	50NN33P	=						
Neutral Inst. O/C Level 4 PU								
(OFF, 0.25–100 A secondary) (5 A)								
(OFF, 0.05–20 A secondary) (1 A)	50NN34P	=_						
Neutral InvTime O/C PU								
(OFF, 0.50–16.00 A secondary) (5 A)								
(OFF, 0.10–3.20 A secondary) (1 A)	51NN3P	=						
Neutral InvTime O/C Curve (U1–U5, C1–C5)	51NN3C	=						
Neutral InvTime O/C Time-Dial (US 0.50–15.00, IEC 0.05–1.00)	51NN3TD	=_						
Neutral InvTime O/C EM Reset (Y, N)	51NN3RS	=_						
51NN3 Torque Control (SELOGIC control equation)								
51NN3TC =								
RTD A ELEMENTS								
RTD 1A Alarm Temperature (OFF, 32–482°F)	49A01A	=						
RTD 1A Trip Temperature (OFF, 32–482°F)	49T01A	=						
RTD 2A Alarm Temperature (OFF, 32–482°F)	49A02A	=						
RTD 2A Trip Temperature (OFF, 32–482°F)	49T02A	=						
RTD 3A Alarm Temperature (OFF, 32–482°F)	49A03A	=						
RTD 3A Trip Temperature (OFF, 32–482°F)	49T03A	=						
RTD 4A Alarm Temperature (OFF, 32–482°F)	49A04A	=						
RTD 4A Trip Temperature (OFF, 32–482°F)	49T04A	=						

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group		(SET Command) Date		11 of 29
RTD 5A Alarm Temperature (OFF, 32–482°F)	49A05A	=			
RTD 5A Trip Temperature (OFF, 32–482°F)	49T05A	=	_		
RTD 6A Alarm Temperature (OFF, 32–482°F)	49A06A	=			
RTD 6A Trip Temperature (OFF, 32–482°F)	49T06A	=			
RTD 7A Alarm Temperature (OFF, 32–482°F)	49A07A	=	_		
RTD 7A Trip Temperature (OFF, 32–482°F)	49T07A	=			
RTD 8A Alarm Temperature (OFF, 32–482°F)	49A08A	=			
RTD 8A Trip Temperature (OFF, 32–482°F)	49T08A	=			
RTD 9A Alarm Temperature (OFF, 32–482°F)	49A09A	=			
RTD 9A Trip Temperature (OFF, 32–482°F)	49T09A	=	_		
RTD 10A Alarm Temperature (OFF, 32–482°F)	49A10A	=			
RTD 10A Trip Temperature (OFF, 32–482°F)	49T10A	=			
RTD 11A Alarm Temperature (OFF, 32–482°F)	49A11A	=			
RTD 11A Trip Temperature (OFF, 32–482°F)	49T11A	=	_		
RTD 12A Alarm Temperature (OFF, 32–482°F)	49A12A	=	_		
RTD 12A Trip Temperature (OFF, 32–482°F)	49T12A	=			
RTD B ELEMENTS					
RTD 1B Alarm Temperature (OFF, 32–482°F)	49A01B	=			
RTD 1B Trip Temperature (OFF, 32–482°F)	49T01B	=			
RTD 2B Alarm Temperature (OFF, 32–482°F)	49A02B	=			
RTD 2B Trip Temperature (OFF, 32–482°F)	49T02B	=			
RTD 3B Alarm Temperature (OFF, 32–482°F)	49A03B	=			
RTD 3B Trip Temperature (OFF, 32–482°F)	49T03B	=			
RTD 4B Alarm Temperature (OFF, 32–482°F)	49A04B	=			
RTD 4B Trip Temperature (OFF, 32–482°F)	49T04B	=			
RTD 5B Alarm Temperature (OFF, 32–482°F)	49A05B	=			
RTD 5B Trip Temperature (OFF, 32–482°F)	49T05B	=			
RTD 6B Alarm Temperature (OFF, 32–482°F)	49A06B	=			
RTD 6B Trip Temperature (OFF, 32–482°F)	49T06B	=			
RTD 7B Alarm Temperature (OFF, 32–482°F)	49A07B	=			
RTD 7B Trip Temperature (OFF, 32–482°F)	49T07B	=			
RTD 8B Alarm Temperature (OFF, 32–482°F)	49A08B	=			

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group		12 of 29
RTD 8B Trip Temperature (OFF, 32–482°F)	49T08B	=	
RTD 9B Alarm Temperature (OFF, 32–482°F)	49A09B	=	
RTD 9B Trip Temperature (OFF, 32–482°F)	49T09B	=	
RTD 10B Alarm Temperature (OFF, 32–482°F)	49A10B	=	
RTD 10B Trip Temperature (OFF, 32–482°F)	49T10B	=	
RTD 11B Alarm Temperature (OFF, 32–482°F)	49A11B	=	
RTD 11B Trip Temperature (OFF, 32–482°F)	49T11B	=	
RTD 12B Alarm Temperature (OFF, 32–482°F)	49A12B	=	
RTD 12B Trip Temperature (OFF, 32–482°F)	49T12B	=	
MISCELLANEOUS TIMERS			
Minimum Trip Duration Time Delay (4.000–8000.000 cycles)	TDURD	=	
Close Failure Logic Time Delay (OFF, 0.000–8000.000 cycles)	CFD	=	
SELOGIC CONTROL EQUATIONS SET 1 Set 1 Variable 1 (SELOGIC control equation) S1V1 =			
S1V1 Timer Pickup (OFF, 0.000–999999.000 cycles)	S1V1PU	=	
S1V1 Timer Dropout (OFF, 0.000–999999.000 cycles)	S1V1DO	=	
Set 1 Variable 2 (SELOGIC control equation)			
S1V2 =			
S1V2 Timer Pickup (OFF, 0.000–999999.000 cycles)	S1V2PU	=	
S1V2 Timer Dropout (OFF, 0.000–999999.000 cycles)	S1V2DO	=	
Set 1 Variable 3 (SELOGIC control equation) S1V3 =			
S1V3 Timer Pickup (OFF, 0.000–999999.000 cycles)	S1V3PU	=	
S1V3 Timer Dropout (OFF, 0.000–999999.000 cycles)	S1V3DO	=	
Set 1 Variable 4 (SELOGIC control equation)			
S1V4 =			
S1V4 Timer Pickup (OFF, 0.000–999999.000 cycles)	S1V4PU	=	
S1V4 Timer Dropout (OFF, 0.000–999999.000 cycles)	S1V4DO	= _	
Set 1 Latch Bit 1 SET Input (SELOGIC control equation) S1SLT1 =			

Group Settings (SET Command)	Date Group
Set 1 Latch Bit 1 RESET Input (SELOGIC control equation)	
S1RLT1 =	
Set 1 Latch Bit 2 SET Input (SELOGIC control equation)	
S1SLT2 =	
Set 1 Latch Bit 2 RESET Input (SELOGIC control equation)	
S1RLT2 =	
Set 1 Latch Bit 3 SET Input (SELOGIC control equation)	
S1SLT3 =	
Set 1 Latch Bit 3 RESET Input (SELOGIC control equation)	
S1RLT3 =	
Set 1 Latch Bit 4 SET Input (SELOGIC control equation)	
S1SLT4 =	
Set 1 Latch Bit 4 RESET Input (SELOGIC control equation)	
S1RLT4 =	
SELOGIC CONTROL EQUATIONS SET 2	
Set 2 Variable 1 (SELOGIC control equation)	
S2V1 =	
S2V1 Timer Pickup (OFF, 0.000–999999.000 cycles)	S2V1PU =
S2V1 Timer Dropout (OFF, 0.000–999999.000 cycles)	S2V1DO =
Set 2 Variable 2 (SELOGIC control equation)	
S2V2 =	
S2V2 Timer Pickup (OFF, 0.000–999999.000 cycles)	S2V2PU =
S2V2 Timer Dropout (OFF, 0.000–999999.000 cycles)	S2V2DO =
Set 2 Variable 3 (SELOGIC control equation)	
S2V3 =	
S2V3 Timer Pickup (OFF, 0.000–999999.000 cycles)	S2V3PU =
S2V3 Timer Dropout (OFF, 0.000–999999.000 cycles)	S2V3DO =
Set 2 Variable 4 (SELOGIC control equation)	
S2V4 =	

SEL-387A Relay Settings Sheet

Page

S2V4DO =

13 of 29

S2V4 Timer Dropout (OFF, 0.000–999999.000 cycles)

SEL-387A Relay Settings Sheet Group Settings (SET Command)

Page <u>14 of 29</u>
Date ____
Group

Set 2 Latch Bit 1 SET Input (SELOGIC control equation)		
S2SLT1 =		
Set 2 Latch Bit 1 RESET Input (SELOGIC control equation)		
S2RLT1 =		
Set 2 Latch Bit 2 SET Input (SELOGIC control equation)		
S2SLT2 =		
Set 2 Latch Bit 2 RESET Input (SELOGIC control equation)		
S2RLT2 =		
Set 2 Latch Bit 3 SET Input (SELOGIC control equation)		
S2SLT3 =		
Set 2 Latch Bit 3 RESET Input (SELOGIC control equation)		
S2RLT3 =		
Set 2 Latch Bit 4 SET Input (SELOGIC control equation)		
S2SLT4 =		
Set 2 Latch Bit 4 RESET Input (SELOGIC control equation)		
S2RLT4 =		
S2RLT4 = SELOGIC CONTROL EQUATIONS SET 3		
SELOGIC CONTROL EQUATIONS SET 3		
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation)	S3V1PU	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 =	S3V1PU S3V1DO	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles)		=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles)		=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation)		= = =
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 =	S3V1DO	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles)	S3V1DO S3V2PU	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V2 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V1DO S3V2PU	= = = = =
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V2 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 3 (SELOGIC control equation)	S3V1DO S3V2PU	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V2 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 3 (SELOGIC control equation) S3V3 =	S3V1DO S3V2PU S3V2DO	= = = = = = =
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles) Set 3 Variable 3 (SELOGIC control equation) S3V3 = S3V3 Timer Pickup (OFF, 0.000–999999.000 cycles)	S3V1DO S3V2PU S3V2DO S3V3PU	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V2 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 3 (SELOGIC control equation) S3V3 = S3V3 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V3 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V1DO S3V2PU S3V2DO S3V3PU	=
SELOGIC CONTROL EQUATIONS SET 3 Set 3 Variable 1 (SELOGIC control equation) S3V1 = S3V1 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V1 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 2 (SELOGIC control equation) S3V2 = S3V2 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V2 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 3 (SELOGIC control equation) S3V3 = S3V3 Timer Pickup (OFF, 0.000–999999.000 cycles) S3V3 Timer Dropout (OFF, 0.000–999999.000 cycles) S3V3 Timer Dropout (OFF, 0.000–999999.000 cycles) Set 3 Variable 4 (SELOGIC control equation)	S3V1DO S3V2PU S3V2DO S3V3PU	=

SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Grou		15 of 29
S3V4 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V4DO	=	
Set 3 Variable 5 (SELOGIC control equation)			
S3V5 =			
S3V5 Timer Pickup (OFF, 0.000–999999.000 cycles)	S3V5PU	=	
S3V5 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V5DO	=	
Set 3 Variable 6 (SELOGIC control equation)			
S3V6 =			
S3V6 Timer Pickup (OFF, 0.000–999999.000 cycles)	S3V6PU	=	
S3V6 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V6DO	=	
Set 3 Variable 7 (SELOGIC control equation)			
S3V7 =			
S3V7 Timer Pickup (OFF, 0.000–999999.000 cycles)	S3V7PU	=_	
S3V7 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V7DO	=_	
Set 3 Variable 8 (SELOGIC control equation)			
S3V8 =			
S3V8 Timer Pickup (OFF, 0.000–999999.000 cycles)	S3V8PU	=	
S3V8 Timer Dropout (OFF, 0.000–999999.000 cycles)	S3V8DO	=	
Set 3 Latch Bit 1 SET Input (SELOGIC control equation)			
S3SLT1 =			
Set 3 Latch Bit 1 RESET Input (SELOGIC control equation)			
S3RLT1 =			
Set 3 Latch Bit 2 SET Input (SELOGIC control equation)			
S3SLT2 =			
Set 3 Latch Bit 2 RESET Input (SELOGIC control equation)			
S3RLT2 =			
Set 3 Latch Bit 3 SET Input (SELOGIC control equation)			
S3SLT3 =			
Set 3 Latch Bit 3 RESET Input (SELOGIC control equation)			
S3RLT3 =			
Set 3 Latch Bit 4 SET Input (SELOGIC control equation)			
S3SLT4 =			

SEL-387A Relay Settings Sheet Group Settings (SET Command)

Page	16 of 29
Date	
Group	

Set 3 Latch Bit 4 RESET Input (SELOGIC control equation)
S3RLT4 =
Set 3 Latch Bit 5 SET Input (SELOGIC control equation)
S3SLT5 =
Set 3 Latch Bit 5 RESET Input (SELOGIC control equation)
S3RLT5 =
Set 3 Latch Bit 6 SET Input (SELOGIC control equation)
S3SLT6 =
Set 3 Latch Bit 6 RESET Input (SELOGIC control equation)
S3RLT6 =
Set 3 Latch Bit 7 SET Input (SELOGIC control equation)
S3SLT7 =
Set 3 Latch Bit 7 RESET Input (SELOGIC control equation)
S3RLT7 =
Set 3 Latch Bit 8 SET Input (SELOGIC control equation)
S3SLT8 =
Set 3 Latch Bit 8 RESET Input (SELOGIC control equation)
S3RLT8 =
TRIP LOGIC
TR1 =
TR2 =
TR3 =
TR4 =
TR5 =
ULTR1 =
ULTR2 =
ULTR3 =
ULTR4 =
ULTR5 =

		SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group	17 of 29
CLOSE L	OGIC			
52A1	=			
52A2	=			
52A3	=			
52A4	=			
CL1	=			
CL2	=			
CL3	=			
CL4	=			
ULCL1	=			
ULCL2	=			
ULCL3	=			
ULCL4	=			
FVFNT R	FPORT	TRIGGERING		
ER	=	TRIOGERINO		
Оитрит	CONTA	ACT LOGIC (STANDARD OUTPUTS)		
OUT101	=			
OUT102	=			
OUT103	=			
OUT104	=			
OUT105	=			
OUT106	=			
OUT107	=			
Оитрит	CONTA	ACT LOGIC (EXTRA INTERFACE BOARD 2 OR 6)	
OUT201	=			
OUT202	=			
OUT203	=			
OUT204	=			
OUT205	=			
OUT206	=			
OUT207	=			

17 of 29

		SEL-387A Relay Settings Sheet Group Settings (SET Command)	Page Date Group	18 of 29
OUT208	=			
OUT209	=			
OUT210	=			
OUT211	=			
OUT212	=			
Оитрит	Coi	NTACT LOGIC (EXTRA INTERFACE BOARD 4)		
OUT201	=			
OUT202	=			
OUT203	=			
OUT204	=			

SEL-387A Relay Settings Sheet Page 19 of 29 Global Settings (SET G Command) Date

RELAY SETTINGS		
Length of Event Report (15, 30, 60 cycles)	LER	=
Length of Pre-fault in Event Report (1 to 14 cycles)	PRE	=
Nominal Frequency (50, 60 Hz)	NFREQ	=
Phase Rotation (ABC, ACB)	PHROT	=
Date Format (MDY, YMD)	DATE_F	=
Display Update Rate (1–60 seconds)	SCROLD	=
Front Panel Time-out (OFF, 0–30 minutes)	FP_TO	=
Group Change Delay (0–900 seconds)	TGR	=
RTDA Temperature Preference (C, F)	TMPREFA	=
RTDB Temperature Preference (C, F)	TMPREFB	=
•		
BATTERY MONITOR	DCID	
DC Battery Voltage Level 1 (OFF, 20–300 Vdc)	DC1P	=
DC Battery Voltage Level 2 (OFF, 20–300 Vdc)	DC2P	=
DC Battery Voltage Level 3 (OFF, 20–300 Vdc)	DC3P	=
DC Battery Voltage Level 4 (OFF, 20–300 Vdc)	DC4P	=
DEBOUNCE TIMERS		
Input debounce time (0.00–2.00 cyc)	IN101D	=
Input debounce time (0.00–2.00 cyc)	IN102D	=
Input debounce time (0.00–2.00 cyc)	IN103D	=
Input debounce time (0.00–2.00 cyc)	IN104D	=
Input debounce time (0.00–2.00 cyc)	IN105D	=
Input debounce time (0.00–2.00 cyc)	IN106D	=
Input debounce time (0.00–2.00 cyc)	IN201D	=
Input debounce time (0.00–2.00 cyc)	IN202D	=
Input debounce time (0.00–2.00 cyc)	IN203D	=
Input debounce time (0.00–2.00 cyc)	IN204D	=
Input debounce time (0.00–2.00 cyc)	IN205D	=
Input debounce time (0.00–2.00 cyc)	IN206D	=
Input debounce time (0.00–2.00 cyc)	IN207D	=
Input debounce time (0.00–2.00 cyc)	IN208D	=
- · · · · · · · · · · · · · · · · · · ·		

SEL-387A Relay Settings Sheet Global Settings (SET G Command)

Page Date 20 of 29

Breaker 1 Monitor			
BKR1 Trigger Equation (SELOGIC control equation)			
BKMON1 =			
Close/Open Set Point 1 max (1–65000 operations)	B1COP1	=	
kA Interrupted Set Point 1 min (0.1–999.0 kA pri)	B1KAP1	=	
Close/Open Set Point 2 max (1–65000 operations)	B1COP2	=	
kA Interrupted Set Point 2 min (0.1–999.0 kA pri)	B1KAP2	=	
Close/Open Set Point 3 max (1–65000 operations)	B1COP3	=	
kA Interrupted Set Point 3 min (0.1–999.0 kA pri)	B1KAP3	=	
Breaker 2 Monitor			
BKR2 Trigger Equation (SELOGIC control equation)			
BKMON2 =			
Close/Open Set Point 1 max (1–65000 operations)	B2COP1	=	
kA Interrupted Set Point 1 min (0.1–999.0 kA pri)	B2KAP1	=	
Close/Open Set Point 2 max (1–65000 operations)	B2COP2	=	
kA Interrupted Set Point 2 min (0.1–999.0 kA pri)	B2KAP2	=	
Close/Open Set Point 3 max (1–65000 operations)	B2COP3	=	
kA Interrupted Set Point 3 min (0.1–999.0 kA pri)	B2KAP3	=	
THROUGH-FAULT EVENT MONITOR			
Enable Through-Fault Event Winding (N, 1, 2)	ETHRU	=	
Note: Changing setting ETHRU resets/clears throug	h-fault event ir	formation.	
Through-Fault Event Trigger (SELOGIC control equation	n)		
THRU =			
Through-Fault I ² t Alarm Threshold (OFF, 0–4294967 (kA) ² seconds)	ISQT	=	
ANALOG INPUT LABELS			
Rename Current Input IAW1 (1-4 characters)	IAW1	=	
Rename Current Input IBW1 (1–4 characters)	IBW1	=	
Rename Current Input ICW1 (1–4 characters)	ICW1	=	
Rename Current Input IAW2 (1–4 characters)	IAW2	=	
Panama Current Input IPW2 (1. 4 characters)	IBW/2	_	

Global Settings (SET G	Command)	Date
Rename Current Input ICW2 (1-4 characters)	ICW2	=
Rename Current Input IAW4 (1–4 characters)	IAW4 (IN1)	=
Rename Current Input IBW4 (1–4 characters)	IBW4 (IN2)	=
Rename Current Input ICW4 (1–4 characters)	ICW4 (IN3)	=
SETTING GROUP SELECTION		
Select Setting Group 1 (SELOGIC control equation)		
SS1 =		
Select Setting Group 2 (SELOGIC control equation)		
SS2 =		
Select Setting Group 3 (SELOGIC control equation)		
SS3 =		
Select Setting Group 4 (SELOGIC control equation)		
SS4 =		
Select Setting Group 5 (SELOGIC control equation)		
SS5 =		
Select Setting Group 6 (SELOGIC control equation)		
SS6 =		
FRONT PANEL		
Energize LEDA (SELOGIC control equation)		
LEDA =		
Energize LEDB (SELOGIC control equation)		
LEDB =		
Energize LEDC (SELOGIC control equation)		
LEDC =		
Energize LED15 (SELOGIC control equation)		
LED15 =		
Energize LED16 (SELOGIC control equation)		
LED16 =		

SEL-387A Relay Settings Sheet Page

21 of 29

SEL-387A Relay Settings Sheet
Global Settings (SET G Command)

Page <u>22 of 29</u>
Date ____

Show Display Point 1 (SELOGIC control equation)			
DP1 =			
DP1 Label 1 (16 characters) (Enter NA to Null)	DP1_1	=	
DP1 Label 0 (16 characters) (Enter NA to Null)	DP1_0	=	
Show Display Point 2 (SELOGIC control equation)			
DP2 =			
DP2 Label 1 (16 characters) (Enter NA to Null)	DP2_1	=	
DP2 Label 0 (16 characters) (Enter NA to Null)	DP2_0	=	
Show Display Point 3 (SELOGIC control equation)			
DP3 =			
DP3 Label 1 (16 characters) (Enter NA to Null)	DP3_1	=	
DP3 Label 0 (16 characters) (Enter NA to Null)	DP3_0	=	
Show Display Point 4 (SELOGIC control equation)			
DP4 =			
DP4 Label 1 (16 characters) (Enter NA to Null)	DP4_1	=	
DP4 Label 0 (16 characters) (Enter NA to Null)	DP4_0	=	
Show Display Point 5 (SELOGIC control equation)			
DP5 =			
DP5 Label 1 (16 characters) (Enter NA to Null)	DP5_1	=	
DP5 Label 0 (16 characters) (Enter NA to Null)	DP5_0	=	
Show Display Point 6 (SELOGIC control equation)			
DP6 =			
DP6 Label 1 (16 characters) (Enter NA to Null)	DP6_1	=	
DP6 Label 0 (16 characters) (Enter NA to Null)	DP6_0	=	
Show Display Point 7 (SELOGIC control equation)			
DP7 =			
DP7 Label 1 (16 characters) (Enter NA to Null)	DP7_1	=	
DP7 Label 0 (16 characters) (Enter NA to Null)	DP7_0	=	
Show Display Point 8 (SELOGIC control equation)			
DP8 =			
DP8 Label 1 (16 characters) (Enter NA to Null)	DP8_1	=	
DP8 Label 0 (16 characters) (Enter NA to Null)	DP8_0	=	

SEL-387A Relay Settings Sheet Global Settings (SET G Command)

Page <u>23 of 29</u>
Date ____

Show Display Point 9 (SELOGIC control equation)			
DP9 =			
DP9 Label 1 (16 characters) (Enter NA to Null)	DP9_1	=	
DP9 Label 0 (16 characters) (Enter NA to Null)	DP9_0	=	
Show Display Point 10 (SELOGIC control equation)			
DP10 =			
DP10 Label 1 (16 characters) (Enter NA to Null)	DP10_1	=	
DP10 Label 0 (16 characters) (Enter NA to Null)	DP10_0	=	
Show Display Point 11 (SELOGIC control equation)			
DP11 =			
DP11 Label 1 (16 characters) (Enter NA to Null)	DP11_1	=	
DP11 Label 0 (16 characters) (Enter NA to Null)	DP11_0	=	
Show Display Point 12 (SELOGIC control equation)			
DP12 =			
DP12 Label 1 (16 characters) (Enter NA to Null)	DP12_1	=	
DP12 Label 0 (16 characters) (Enter NA to Null)	DP12_0	=	
Show Display Point 13 (SELOGIC control equation)			
DP13 =			
DP13 Label 1 (16 characters) (Enter NA to Null)	DP13_1	=	
DP13 Label 0 (16 characters) (Enter NA to Null)	DP13_0	=	
Show Display Point 14 (SELOGIC control equation)			
DP14 =			
DP14 Label 1 (16 characters) (Enter NA to Null)	DP14_1	=	
DP14 Label 0 (16 characters) (Enter NA to Null)	DP14_0	=	
Show Display Point 15 (SELOGIC control equation)			
DP15 =			
DP15 Label 1 (16 characters) (Enter NA to Null)	DP15_1	=	
DP15 Label 0 (16 characters) (Enter NA to Null)	DP15_0	=	
Show Display Point 16 (SELOGIC control equation)			
DP16 =			
DP16 Label 1 (16 characters) (Enter NA to Null)	DP16_1	=	
DP16 Label 0 (16 characters) (Enter NA to Null)	DP16_0	=	

SEL-387A Relay Settings Sheet Global Settings (SET G Command)

Page <u>24 of 29</u> Date ____

TEXT LABELS

Local Bit LB1 Name (14 characters) (Enter NA to Null)	NLB1	=	
Clear Local Bit LB1 Label (7 characters) (Enter NA to Null)	CLB1	=	
Set Local Bit LB1 Label (7 characters) (Enter NA to Null)	SLB1	=	
Pulse Local Bit LB1 Label (7 characters) (Enter NA to Null)	PLB1	=	
Local Bit LB2 Name (14 characters) (Enter NA to Null)	NLB2	=	
Clear Local Bit LB2 Label (7 characters) (Enter NA to Null)	CLB2	=	
Set Local Bit LB2 Label (7 characters) (Enter NA to Null)	SLB2	=	
Pulse Local Bit LB2 Label (7 characters) (Enter NA to Null)	PLB2	=	
Local Bit LB3 Name (14 characters) (Enter NA to Null)	NLB3	=	
Clear Local Bit LB3 Label (7 characters) (Enter NA to Null)	CLB3	=	
Set Local Bit LB3 Label (7 characters) (Enter NA to Null)	SLB3	=	
Pulse Local Bit LB3 Label (7 characters) (Enter NA to Null)	PLB3	=	
Local Bit LB4 Name (14 characters) (Enter NA to Null)	NLB4	=	
Clear Local Bit LB4 Label (7 characters) (Enter NA to Null)	CLB4	=	
Set Local Bit LB4 Label (7 characters) (Enter NA to Null)	SLB4	=	
Pulse Local Bit LB4 Label (7 characters) (Enter NA to Null)	PLB4	=	
Local Bit LB5 Name (14 characters) (Enter NA to Null)	NLB5	=	
Clear Local Bit LB5 Label (7 characters) (Enter NA to Null)	CLB5	=	
Set Local Bit LB5 Label (7 characters) (Enter NA to Null)	SLB5	=	
Pulse Local Bit LB5 Label (7 characters) (Enter NA to Null)	PLB5	=	
Local Bit LB6 Name (14 characters) (Enter NA to Null)	NLB6	=	
Clear Local Bit LB6 Label (7 characters) (Enter NA to Null)	CLB6	=	
Set Local Bit LB6 Label (7 characters) (Enter NA to Null)	SLB6	=	
Pulse Local Bit LB6 Label (7 characters) (Enter NA to Null)	PLB6	=	
Local Bit LB7 Name (14 characters) (Enter NA to Null)	NLB7	=	
Clear Local Bit LB7 Label (7 characters) (Enter NA to Null)	CLB7	=	
Set Local Bit LB7 Label (7 characters) (Enter NA to Null)	SLB7	=	
Pulse Local Bit LB7 Label (7 characters) (Enter NA to Null)	PLB7	=	
Local Bit LB8 Name (14 characters) (Enter NA to Null)	NLB8	=	
Clear Local Bit LB8 Label (7 characters) (Enter NA to Null)	CLB8	=	

SEL-387A Relay Settings S Global Settings (SET G Com			Page Date	25 of 29
Set Local Bit LB8 Label (7 characters) (Enter NA to Null)	SLB8	=		
Pulse Local Bit LB8 Label (7 characters) (Enter NA to Null)	PLB8	=		
Local Bit LB9 Name (14 characters) (Enter NA to Null)	NLB9	=		
Clear Local Bit LB9 Label (7 characters) (Enter NA to Null)	CLB9	=		
Set Local Bit LB9 Label (7 characters) (Enter NA to Null)	SLB9	=		
Pulse Local Bit LB9 Label (7 characters) (Enter NA to Null)	PLB9	=		
Local Bit LB10 Name (14 characters) (Enter NA to Null)	NLB10	=		
Clear Local Bit LB10 Label (7 characters) (Enter NA to Null)	CLB10	=		
Set Local Bit LB10 Label (7 characters) (Enter NA to Null)	SLB10	=		
Pulse Local Bit LB10 Label (7 characters) (Enter NA to Null)	PLB10	=		
Local Bit LB11 Name (14 characters) (Enter NA to Null)	NLB11	=		
Clear Local Bit LB11 Label (7 characters) (Enter NA to Null)	CLB11	=		
Set Local Bit LB11 Label (7 characters) (Enter NA to Null)	SLB11	=		
Pulse Local Bit LB11 Label (7 characters) (Enter NA to Null)	PLB11	=		
Local Bit LB12 Name (14 characters) (Enter NA to Null)	NLB12	=		
Clear Local Bit LB12 Label (7 characters) (Enter NA to Null)	CLB12	=		
Set Local Bit LB12 Label (7 characters) (Enter NA to Null)	SLB12	=		
Pulse Local Bit LB12 Label (7 characters) (Enter NA to Null)	PLB12	=		
Local Bit LB13 Name (14 characters) (Enter NA to Null)	NLB13	=		
Clear Local Bit LB13 Label (7 characters) (Enter NA to Null)	CLB13	=		
Set Local Bit LB13 Label (7 characters) (Enter NA to Null)	SLB13	=		
Pulse Local Bit LB13 Label (7 characters) (Enter NA to Null)	PLB13	=		
Local Bit LB14 Name (14 characters) (Enter NA to Null)	NLB14	=		
Clear Local Bit LB14 Label (7 characters) (Enter NA to Null)	CLB14	=		
Set Local Bit LB14 Label (7 characters) (Enter NA to Null)	SLB14	=		
Pulse Local Bit LB14 Label (7 characters) (Enter NA to Null)	PLB14	=		
Local Bit LB15 Name (14 characters) (Enter NA to Null)	NLB15	=		
Clear Local Bit LB15 Label (7 characters) (Enter NA to Null)	CLB15	=		
Set Local Bit LB15 Label (7 characters) (Enter NA to Null)	SLB15	=		
Pulse Local Bit LB15 Label (7 characters) (Enter NA to Null)	PLB15	=		
Local Bit LB16 Name (14 characters) (Enter NA to Null)	NLB16	=		
Clear Local Bit LB16 Label (7 characters) (Enter NA to Null)	CLB16	=		

	Global Settings (SET (•		Page Date	26 of 29
Set Local 1	Bit LB16 Label (7 characters) (Enter NA to I	Null) SLB16	=		
Pulse Loca	l Bit LB16 Label (7 characters) (Enter NA t	o Null) PLB16	=		
TRIGGER	Conditions				
Trigger SE	R (24 Relay Word bits per SERn equation, 9	96 total)			
SER1	=				
SER2	=				
SER3	=				
SER4	=				
RELAY W	ORD BIT ALIASES				
Syntax: 'R	elay-Word Bit' 'Up to 15 characters'. Use N	NA to disable setting	Ţ .		
ALIAS1	=				
ALIAS2	=				
ALIAS3	=				
ALIAS4	=				
ALIAS5	=				
ALIAS6	=				
ALIAS7	=				
ALIAS8	=				
ALIAS9	=				
ALIAS10	=				
ALIAS11	=				
ALIAS12	=				
ALIAS13	=				
ALIAS14	=				
ALIAS15	=				
ALIAS16	=				
ALIAS17	=				
ALIAS18	=				
ALIAS19	=				
ALIAS20	=				

SEL-387A Relay Settings Sheet Port Settings (SET P Command)

Page <u>27 of 29</u>
Date ____

Note: RTSCTS setting does not appear if PROTO=LMD or DNP. LMD PREFIX, ADDR, and SETTLE do not appear if PROTO=SEL or DNP. See *Appendix C: SEL Distributed Port Switch Protocol (LMD)* for details on LMD protocol and see *Appendix G: Distributed Network Protocol (DNP3)* for details on DNP protocol.

PORT 1 (SET P 1) REAR PANEL, EIA-48	5 PLUS IRIG-	В	
Port Protocol (SEL, LMD, DNP, RTDA, RTDB)	PROTO	=	
LMD Prefix (@, #, \$, %, &)	PREFIX	=	
LMD Address (1–99)	ADDR	=	
LMD Settling Time (0.00–30.00 seconds)	SETTLE	=	
Baud (300, 1200, 2400, 4800, 9600, 19200)	SPEED	=	
Data Bits (7, 8)	BITS	=	
Parity Odd, Even, or None (O, E, N)	PARITY	=	
Stop Bits (1, 2)	STOP	=	
Time-out (for inactivity) (0–30 minutes)	T_OUT	=	
Send auto messages to port (Y, N)	AUTO	=	
Enable hardware handshaking (Y, N)	RTSCTS	=	
Fast Operate Enable (Y, N)	FASTOP	=	
PORT 2 (SET P 2) REAR PANEL, EIA-2	32 with IRIG	6-B	
Port Protocol (SEL, LMD, DNP, RTDA, RTDB)	PROTO	=	
LMD Prefix (@, #, \$, %, &)	PREFIX	=	
LMD Address (1–99)	ADDR	=	
LMD Settling Time (0.00–30.00 seconds)	SETTLE	=	
Baud (300, 1200, 2400, 4800, 9600, 19200)	SPEED	=	
Data Bits (7, 8)	BITS	=	
Parity Odd, Even, or None (O, E, N)	PARITY	=	
Stop Bits (1, 2)	STOP	=	

Time-out (for inactivity) (0–30 minutes)

Send auto messages to port (Y, N)

Fast Operate Enable (Y, N)

Enable hardware handshaking (Y, N)

T_OUT

AUTO

RTSCTS

FASTOP

SEL-387A Relay Settings Sheet Port Settings (SET P Command)

Page <u>28 of 29</u>
Date ____

PORT 3 ((SET P 3)	REAR PANEL	EIA-232
----------	-----------	------------	---------

TORTS (SETT S) REAR TAREE, ETA E	-		
Port Protocol (SEL, LMD, DNP, RTDA, RTDB)	PROTO	=	
LMD Prefix (@, #, \$, %, &)	PREFIX	=	
LMD Address (1–99)	ADDR	=	
LMD Settling Time (0.00–30.00 seconds)	SETTLE	=	
Baud (300, 1200, 2400, 4800, 9600, 19200)	SPEED	=	
Data Bits (7, 8)	BITS	=	
Parity Odd, Even, or None (O, E, N)	PARITY	=	
Stop Bits (1, 2)	STOP	=	
Time-out (for inactivity) (0–30 minutes)	T_OUT	=	
Send auto messages to port (Y, N)	AUTO	=	
Enable hardware handshaking (Y, N)	RTSCTS	=	
Fast Operate Enable (Y, N)	FASTOP	=	
PORT 4 (SET P 4) FRONT PANEL, EIA-	232		
Port Protocol (SEL, LMD, DNP, RTDA, RTDB)	PROTO	=	
LMD Prefix (@, #, \$, %, &)	PREFIX	=	
LMD Address (1–99)	ADDR	=	
LMD Settling Time (0.00–30.00 seconds)	SETTLE	=	
Baud (300, 1200, 2400, 4800, 9600, 19200)	SPEED	=	
Data Bits (7, 8)	BITS	=	
Parity Odd, Even, or None (O, E, N)	PARITY	=	
Stop Bits (1, 2)	STOP	=	
Time-out (for inactivity) (0–30 minutes)	T_OUT	=	
Send auto messages to port (Y, N)	AUTO	=	
Enable hardware handshaking (Y, N)	RTSCTS	=	

Fast Operate Enable (Y, N)

FASTOP

SEL-387A Relay Settings Sheet Port Settings (SET P Command)

Page <u>29 of 29</u>
Date ____

PORT N (SET P N)	FRONT PANEL, EIA-232 FOR PROTO = RTDA	
Number of RTDA (0–12)	RTDNUMA =	

Number of KTDA (0-12)	KIDNUMA	=	
RTD 1A Type (NA, PT100, NI100, NI120, CU10)	RTD1TA	=	
RTD 2A Type (NA, PT100, NI100, NI120, CU10)	RTD2TA	=	
RTD 3A Type (NA, PT100, NI100, NI120, CU10)	RTD3TA	=	
RTD 4A Type (NA, PT100, NI100, NI120, CU10)	RTD4TA	=	
RTD 5A Type (NA, PT100, NI100, NI120, CU10)	RTD5TA	=	
RTD 6A Type (NA, PT100, NI100, NI120, CU10)	RTD6TA	=	
RTD 7A Type (NA, PT100, NI100, NI120, CU10)	RTD7TA	=	
RTD 8A Type (NA, PT100, NI100, NI120, CU10)	RTD8TA	=	
RTD 9A Type (NA, PT100, NI100, NI120, CU10)	RTD9TA	=	
RTD 10A Type (NA, PT100, NI100, NI120, CU10)	RTD10TA	=	
RTD 11A Type (NA, PT100, NI100, NI120, CU10)	RTD11TA	=	
RTD 12A Type (NA, PT100, NI100, NI120, CU10)	RTD12TA	=	

PORT N (SET P N) FRONT PANEL, EIA-232 FOR PROTO = RTDB

Number of RTDB (0–12)	RTDNUMB	=	
RTD 1B Type (NA, PT100, NI100, NI120, CU10)	RTD1TB	=	
RTD 2B Type (NA, PT100, NI100, NI120, CU10)	RTD2TB	=	
RTD 3B Type (NA, PT100, NI100, NI120, CU10)	RTD3TB	=	
RTD 4B Type (NA, PT100, NI100, NI120, CU10)	RTD4TB	=	
RTD 5B Type (NA, PT100, NI100, NI120, CU10)	RTD5TB	=	
RTD 6B Type (NA, PT100, NI100, NI120, CU10)	RTD6TB	=	
RTD 7B Type (NA, PT100, NI100, NI120, CU10)	RTD7TB	=	
RTD 8B Type (NA, PT100, NI100, NI120, CU10)	RTD8TB	=	
RTD 9B Type (NA, PT100, NI100, NI120, CU10)	RTD9TB	=	
RTD 10B Type (NA, PT100, NI100, NI120, CU10)	RTD10TB	=	
RTD 11B Type (NA, PT100, NI100, NI120, CU10)	RTD11TB	=	
RTD 12B Type (NA, PT100, NI100, NI120, CU10)	RTD12TB	=	

TABLE OF CONTENTS

SECTION 7:	SERIAL PORT COMMUNICATIONS AND COMMANDS	7-1
Introduction		7-1
	nmunication	
Software	·	7-1
	ntification	
Cables		7-2
	387A to Computer	
	-387A to Modem	
	-387A to SEL-2020 or SEL-2030	
Communicati	ons Protocol	7-7
Hardwar	e Protocol	7-7
Software	Protocol	7-7
SEI	ASCII Protocol	7-7
SEI	Distributed Port Switch Protocol	7-8
SEI	Distributed Network Protocol	7-8
SEI	Fast Meter Protocol	7-9
SEI	Fast Operate Protocol	7-9
	Compressed ASCII Protocol	
	Unsolicited Sequential Events Recorder (SER) Protocol	
	rotocol Details	
Automat	ic Messages	7-9
	tup Message	
	up Switch Message	
Stat	us Report	7-10
	nmary Event Report	
Access I	evels	7-11
Acc	ess Level 0	7-12
Acc	ess Level 1	7-12
Acc	ess Level B (Breaker Level)	7-12
Acc	ess Level 2	7-12
Acc	ess Level C	7-12
Commar	nd Definitions	7-14
2A0	C (Access Level 2)	7-14
AC	C (Access Level 1)	7-14
BAG	C (Access Level B)	7-14
BRI	E (Breaker Report)	7-15
BRI	ERn (Breaker Reset)	7-16
BRI	E W n (Breaker Wear Pre-Set)	7-16
CA	L (Calibration Access Level)	7-16
	V (Compressed Event)	
	On (Close)	
CO	N n (Control RBn)	7-17
CO	P m n (Copy Settings)	7-18
DA	Γ (Date)	7-18

GRO and GRO n (Setting Group) HIS (History of Events) HIS C (Clear History and Events) Note: Clear the Event Buffer With Care ID (Identification) INI (Initialize Interface Boards) IRI (IRIG-B Synchronization) MET (Metering Report) MET H (Harmonic Metering) MET T (Temperature Metering)	7-19 7-20 7-21 7-21 7-21 7-22 7-22 7-23 7-23
HIS C (Clear History and Events) Note: Clear the Event Buffer With Care ID (Identification) INI (Initialize Interface Boards) IRI (IRIG-B Synchronization) MET (Metering Report) MET H (Harmonic Metering)	7-20 7-20 7-21 7-21 7-22 7-22 7-23 7-23
Note: Clear the Event Buffer With Care ID (Identification) INI (Initialize Interface Boards) IRI (IRIG-B Synchronization) MET (Metering Report) MET H (Harmonic Metering)	7-20 7-21 7-21 7-22 7-22 7-23 7-23
ID (Identification) INI (Initialize Interface Boards) IRI (IRIG-B Synchronization) MET (Metering Report) MET H (Harmonic Metering)	7-21 7-21 7-22 7-22 7-23 7-23
INI (Initialize Interface Boards) IRI (IRIG-B Synchronization) MET (Metering Report) MET H (Harmonic Metering)	7-21 7-21 7-22 7-22 7-23 7-23
IRI (IRIG-B Synchronization) MET (Metering Report) MET H (Harmonic Metering)	7-21 7-22 7-22 7-23 7-23
MET (Metering Report)	7-22 7-22 7-23 7-23
MET H (Harmonic Metering)	7-22 7-23 7-23 7-23
	7-23 7-23 7-23
MFT T (Temperature Metering)	7-23 7-23
	7-23
OPE n (Open)	
PAS (Passwords)	.7-25
PUL n (Pulse)	
QUI (Quit)	
RES (RESET51–Reset Inverse-Time O/C Elements)	
SER (Sequential Events Recorder)	
SER C (Clear Sequential Events Recorder)	
Note: Clear the SER Buffer With Care	
SET (Edit Group 1 through 6 Settings)	
SET G (Edit Global Settings)	
SET P (Edit Port Settings)	
SET R (Edit SER Settings)	
Note: Make Sequential Events Recorder (SER) Settings With Care	
SHO (Show Group 1 through 6 Settings)	
SHO G (Show Global Settings)	
SHO P (Show Port Settings)	
SHO R (Show SER Settings)	
STA (Status Report)	
TAR (Show Relay Word Targets on Front-Panel LEDs)	
TAR R (Reset Targets)	
TFE (Through-Fault Event Report)	
TIM (Time)	
TRI (Trigger an Event)	
Alarm Conditions	
Main Board Jumpers	
SEL-387A Relay Command Summary	
SEE 30/11 Telay Command Summary	., 15
TADLEC	
TABLES	
Table 7.1: Serial Port Pin Definitions	
Table 7.2: SEL-387A Communication Cable Numbers	7-3
Table 7.3: Serial Communications Port Pin Function Definitions	7-6
Table 7.4: Valid Password Characters	7-24
Table 7.5: Editing Keys for SET Commands	
Table 7.6: Commands With Alarm Conditions	
Table 7.7: Main Board Jumpers	7-11

FIGURES

Figure 7.1: SEL-387A Serial Port Connectors	7-	-2
Figure 7.2: Access Level Relationships	-1	13

SECTION 7: SERIAL PORT COMMUNICATIONS AND COMMANDS

Introduction

The SEL-387A Relay is equipped with four serial ports: one EIA-232 port on the front, two EIA-232 ports on the rear, and one EIA-485 port on the rear. Establish communication by connecting a terminal to one of the serial ports with the appropriate cable. Connect computers, modems, protocol converters, printers, an SEL-2020 or an SEL-2030 Communications Processor, an SEL-2885, a SCADA serial port, and/or RTUs for local or remote communications.

Use one of the SEL protocols for communication. The SEL ASCII commands and structure are defined in detail in this section. Other SEL protocols used for interfacing other intelligent electronic devices for automated communication are described in detail in the appendices.

ESTABLISH COMMUNICATION

Establish communication with the SEL-387A through one of its serial ports by using standard "off-the-shelf" software and the appropriate cable connections, depending on the device.

Software

Use any system that emulates a standard terminal system. Such PC-based terminal emulation programs include: Procomm® Plus, Relay/Gold, Microsoft® Windows® Terminal, Microsoft® Windows® HyperTerminal, SmartCOM, and CROSSTALK®. Many terminal emulation programs will work with the SEL-387A. For the best display, use VT-100 terminal emulation or the closest variation.

The default communication settings for the serial ports follow:

Baud Rate = 2400 Data Bits = 8 Parity = N Stop Bits = 1 RTS/CTS = N

Change the port settings using the front panel or the **SET P <ENTER>** command.

Port Identification

If there is ever uncertainty about the number of the port to which you are connected (1–4), use the command **SHO P <ENTER>**. The relay will respond with a message identifying the port number, and will list the settings for that port. The **SHO P** command is discussed later in more detail.

Cables

Connect the SEL-387A to another device using the appropriate cable. The pin definitions for Ports 1, 2, 3, and 4 are given on the relay rear panel and detailed in Table 7.1.

A 9-pin port connector drawing and pin definitions appear in Figure 7.1.

(female chassis connectors as viewed from outside panel)

Figure 7.1: SEL-387A Serial Port Connectors

Pinouts for EIA-232 and EIA-485 ports follow:

Table 7.1: Serial Port Pin Definitions

Pin Number	Port 1 Rear EIA-485	Port 2 Rear EIA-232 with IRIG-B	Port 3 Rear EIA-232	Port 4 Front EIA-232
1	+TX (Out)	N/C or +5 Vdc*	N/C or +5 Vdc*	N/C
2	-TX (Out)	RXD (In)	RXD (In)	RXD (In)
3	+RX (In)	TXD (Out)	TXD (Out)	TXD (Out)
4	-RX (In)	N/C or +IRIG-B*	N/C	N/C
5	Shield	GND	GND	GND
6	N/C	N/C or –IRIG-B*	N/C	N/C
7	+IRIG-B	RTS (Out)	RTS (Out)	RTS (Out)
8	–IRIG-B	CTS (In)	CTS (In)	CTS (In)
9	NA	GND	GND	GND

^{*} Install a jumper to use the 5 V connection, and remove a solder jumper to disable the IRIG-B input. See *Section 2: Installation* for more information.

Port 1 is an EIA-485 protocol connection on the rear of the relay. It accepts a pluggable terminal block that supports wire sizes from 24 AWG up to 12 AWG. The connector is supplied with the relay. Ports 2, 3, and 4 are EIA-232 protocol connections with Ports 2 and 3 on the rear of the relay and Port 4 on the front of the relay. These female connectors are 9-pin, D-subminiature connectors. Any combination of these ports or all of them may be used for relay communication. Table 7.2 lists cables that can be purchased from SEL for various communication applications.

Note: Listing of devices not manufactured by SEL is for the convenience of our customers. SEL does not specifically endorse or recommend such products nor does SEL guarantee proper operation of those products, or the correctness of connections, over which SEL has no control.

Table 7.2: SEL-387A Communication Cable Numbers

SEL-387 Port #	Connect to Device (gender refers to device)	SEL Cable #
2, 3, 4	PC, 25-Pin Male (DTE)	C227A
2, 3, 4	PC, 9-Pin Male (DTE)	C234A
2, 3	SEL-2020 or SEL-2030 without IRIG-B	C272A
2	SEL-2020 or SEL-2030 with IRIG-B	C273A
2	SEL-IDM, Ports 2 through 11	Requires a C254 and C257 cable
2, 3	Modem, 5 Vdc Powered (pin 10)	C220*
2, 3	Standard Modem, 25-Pin Female (DCE)	C222

^{*} The 5 Vdc serial port jumper must be installed to power the Modem using C220. See *Section 2: Installation*.

For example, to connect the SEL-387A Ports 2, 3, or 4 to the 9-pin male connector on a laptop, order cable number C234A and specify the length needed. To connect the SEL-387A Port 2 to the SEL-2020 or SEL 2030 Communications Processor that supplies the communication link and the time synchronization signal, order cable number C273A, and specify the length needed. For connecting devices at over 100 feet, fiber-optic transceivers are available. The SEL-2800 and SEL-2810 provide fiber-optic links between devices for electrical isolation and long-distance signal transmission. Call the factory for further information on these products.

The following cable diagrams show several types of EIA-232 serial communications cables. These and other cables are available from SEL. Contact the factory for more information.

SEL-387A to Computer

Cable C234A

SEL-387	A Relay			*DTE D)evice
9-Pin Ma "D" Sub	ale connector				emale bconnector
Pin <u>Func.</u> RXD	Pin # 2			Pin # 3	Pin <u>Func.</u> TXD
TXD	3			2	RXD
GND	5			5	GND
CTS	8			8	CTS
				7	RTS
				1	DCD
			_	4	DTR
				6	DSR
		Cable C227A			
SEL-387	A Relay			*DTE D	evice
9-Pin Ma "D" Sub	ale connector				Female bconnector
Pin Func.	Pin #			Pin #	Pin Func.
GND	5			7	GND
TXD	3			3	RXD
RXD	2			2	TXD
GND	9			1	GND
CTS	8		_	4	RTS
				5	CTS
				6	DSR

*DTE = Data Terminal Equipment (Computer, Terminal, etc.)

DTR

SEL-387A to Modem

Cable C222

SEL-387A	Relay		*DCE D	evice
9-Pin Mal "D" Subc			25-Pin "D" Sul	Male oconnector
Pin Func.	Pin #		Pin #	Pin Func.
GND	5		7	GND
TXD	3		2	TXD (IN)
RTS	7		20	DTR (IN)
RXD	2		3	RXD (OUT)
CTS	8		8	CD (OUT)
GND	9		1	GND
SEL-387A	Relav	Cable C220	Modem 5Vdc P *DCE D	owered
9-Pin Mal "D" Subc	e		25-Pin	
Pin Func. GND	Pin #		Pin	Pin Func.
UND			# 7	GND
	5		_	GND
TXD RTS			7	
TXD	5 3		7	GND TXD (IN)
TXD RTS	5 3 7		7 2 20	GND TXD (IN) DTR (IN)
TXD RTS RXD	5 3 7 2		7 2 20 3	GND TXD (IN) DTR (IN) RXD (OUT)
TXD RTS RXD CTS	5 3 7 2 8		7 2 20 3 8	GND TXD (IN) DTR (IN) RXD (OUT) CD (OUT)

^{*}DCE = Data Communications Equipment (Modem, etc.)

SEL-387A to SEL-2020 or SEL-2030

Cable C272A

SEL-202	0 or SEL	-2030			SEL-38	7A Relay
9-Pin Ma "D" Sub		or			9-Pin M "D" Sul	ale oconnector
Pin Func.	Pin #_				Pin #	Pin <u>Func.</u>
RXD	2				 3	TXD
TXD	3				 2	RXD
GND	5				 5	GND
RTS	7				7	RTS
CTS	8				8	CTS
			Cable	C273A		
SEL-202	0 or SEL	-2030			SEL-38	7A Relay
9-Pin Ma "D" Sub		or			9-Pin M "D" Sul	ale oconnector
Pin	Pin				Pin	Pin
Func.	#_				#_	Func.
RXD	2				 3	TXD
TXD	3				 2	RXD
IRIG+	4				 4	IRIG+
GND	5				 5	GND
IRIG-	6				 6	IRIG-
RTS	7				 8	CTS
CTS	8				 7	RTS

Table 7.3: Serial Communications Port Pin Function Definitions

Pin Function	Definition
N/C	No Connection
+5 Vdc	5 Vdc Power Connection
RXD, RX	Receive Data
TXD, TX	Transmit Data
+(–)IRIG-B	IRIG-B Time-Code Input
GND	Ground
SHIELD	Shielded Ground
RTS	Request to Send
CTS	Clear to Send
DCD	Data Carrier Detect
DTR	Data Terminal Ready
DSR	Data Set Ready

COMMUNICATIONS PROTOCOL

This section explains the serial port communications protocol used by the SEL-387A. You set and operate the SEL-387A via the serial communications ports.

Note: In this document, commands you type appear in bold/uppercase: **STATUS**. Keys you press appear in bold/uppercase/brackets: **<ENTER>**.

Relay output appears boxed and in the following format:

```
XFMR 1 Date: 02/01/97 Time: 11:03:25.180
```

The communications protocol consists of hardware and software features.

Hardware Protocol

All EIA-232 serial ports support RTS/CTS hardware handshaking. RTS/CTS handshaking is not supported on the EIA-485 serial port.

To enable hardware handshaking, use the **SET P** command (or front-panel SET pushbutton) to set RTSCTS = Y. Disable hardware handshaking by setting RTSCTS = N.

If RTSCTS = N, the relay permanently asserts the RTS line.

If RTSCTS = Y, the relay deasserts RTS when it is unable to receive characters.

If RTSCTS = Y, the relay does not send characters until the CTS input is asserted.

Software Protocol

Software protocols consist of standard SEL ASCII, SEL Distributed Port Switch (LMD), SEL Distributed Network Protocol (DNP), SEL *Fast Meter*, SEL *Fast Operate*, and SEL Compressed ASCII. Based on the port PROTOCOL setting, the relay activates SEL ASCII, SEL LMD, or SEL DNP protocol. SEL *Fast Meter* and SEL Compressed ASCII commands are always active.

SEL ASCII Protocol

The following software protocol is designed for manual and automatic communications.

1. All commands received by the relay must be of the form:

```
<command><CR> or <command><CR><LF>
```

A command transmitted to the relay should consist of the following:

- A command followed by either a carriage return or a carriage return and line feed.
- You must separate arguments from the command by spaces, commas, semicolons, colons, or slashes.
- You may truncate commands to the first three characters. EVENT 1 <ENTER> would become EVE 1 <ENTER>.
- Upper- and lowercase characters may be used without distinction, except in passwords.

2. The relay transmits all messages in the following format:

Each message begins with the start-of-transmission character STX (ASCII character 02) and ends with the end-of-transmission character ETX (ASCII character 03).

3. The relay indicates how full its receive buffer is through an XON/XOFF protocol.

The relay transmits XON (ASCII hex 11) when the buffer drops below 40 percent full.

The relay transmits XOFF (ASCII hex 13) when the buffer is over 80 percent full. Automatic transmission sources should monitor for the XOFF character so they do not overwrite the buffer. Transmission should terminate at the end of the message in progress when XOFF is received and may resume when the relay sends XON.

4. You can use an XON/XOFF procedure to control the relay during data transmission. When the relay receives an **XOFF** command during transmission, it pauses until it receives an **XON** command. If there is no message in progress when the relay receives an **XOFF** command, it blocks transmission of any message presented to its buffer.

The CAN character (ASCII hex 18) aborts a pending transmission. This is useful in terminating an unwanted transmission.

5. Control characters can be sent from most keyboards with the following keystrokes:

XON: <CTRL>Q (hold down the Control key and press Q)
XOFF: <CTRL>S (hold down the Control key and press S)
CAN: <CTRL>X (hold down the Control key and press X)

SEL Distributed Port Switch Protocol

The SEL Distributed Port Switch Protocol (LMD) permits multiple SEL relays to share a common communications channel. Select the protocol by setting **PROTOCOL** = **LMD**, a SET P setting. See *Appendix C: SEL Distributed Port Switch Protocol (LMD)* for more information.

SEL Distributed Network Protocol

SEL Distributed Network Protocol (DNP) meets DNP3 Level 2 requirements. Select the protocol by setting **PROTOCOL = DNP**, a SET P setting. See *Appendix G: Distributed Network Protocol (DNP3)* for more information.

SEL Fast Meter Protocol

SEL *Fast Meter* protocol supports binary messages to transfer metering messages. SEL *Fast Meter* protocol is always available on any serial port. The protocol is described in *Appendix D: Configuration, Fast Meter, and Fast Operate Commands*.

SEL Fast Operate Protocol

SEL *Fast Operate* protocol supports binary messages to control Relay Word bits. SEL *Fast Operate* protocol is available on any serial port. Turn it off by setting **FAST_OP = N**, a SET P setting. The protocol is described in *Appendix D: Configuration*, *Fast Meter*, *and Fast Operate Commands*.

SEL Compressed ASCII Protocol

SEL Compressed ASCII protocol provides compressed versions of some of the relay ASCII commands. SEL Compressed ASCII protocol is always available on any serial port. The protocol is described in *Appendix E: Compressed ASCII Commands*.

SEL Unsolicited Sequential Events Recorder (SER) Protocol

SEL Unsolicited Sequential Events Recorder (SER) Protocol provides SER events to an automated data collection system. SEL Unsolicited SER Protocol is available on any serial port. The protocol is described in *Appendix F: Unsolicited SER Protocol*.

SEL ASCII PROTOCOL DETAILS

Automatic Messages

The SEL-387A generates automatic messages and sends them out the serial port(s) with the SET P setting AUTO = Y. Four different automatic messages can be displayed:

- Relay startup message
- Setting group change message
- Relay self-test warning or failure
- Event summary message

Startup Message

Immediately after power is applied, the relay transmits the following automatic message:

```
XFMR 1 Date: 03/13/97 Time: 14:26:22.324
STATION A
SEL-387
=
```

Group Switch Message

The SEL-387A has six different setting groups for the SET settings. The active group is selected by the SS1 through SS6 SELOGIC® control equation variable bits, or by the **GRO n** serial port command or the front-panel GROUP pushbutton. At the moment when the active group is changed, the following automatic message is generated.

```
XFMR 1 Date: 03/13/97 Time: 14:33:49.109
STATION A

Active Group = 2

->>
```

- RID and TID settings for the new active group
- Date and time of group change
- Active setting group now being used

Note: the SET G settings SS1 through SS6 take precedence over the **GRO n** command.

Status Report

The relay automatically generates a status report whenever the self-tests declare a failure state and some warning states.

```
XFMR 1
                                    Date: 01/08/02 Time: 07:50:20.999
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228 CID=A659
SELF TESTS
W=Warn
      F=Fail
      IAW1
              IBW1
                     ICW1
                             IAW2
                                   IBW2
                                             TCW2
0S
      -2
              -1
                     0
                             - 0
                                     - 2
                                             - 1
      IAW3
              IBW3
                      ICW3
                              IN1
                                      IN2
                                               IN3
0S
              -2
                      -1
                              -2
      - 1
                                      -2
                                              - 1
      +5V_PS
             +5V_REG -5V_REG +12V_PS -12V_PS +15V_PS -15V_PS
Pς
              5.03 -4.98
                                                     -14.86
       4.90
                              12.07 -12.11 14.84
      TEMP
              RAM
                      ROM
                              A/D
                                      CR RAM EEPROM IO BRD
      36.8
                      0K
                              0K
                                      ٥ĸ
                                              0K
                                                      0K
 Relay Enabled
```

- RID and TID settings for the active group
- Date and time the failure or warning was detected
- Firmware identification string
- Individual self-test results
- Relay protection enabled or disabled indication

Summary Event Report

An automatic message is generated each time an event is triggered. The message is a summary of the event.

```
XFMR 1 Date: 01/08/02 Time: 07:53:19.360

STATION A

Event: TRIG
Targets:
Winding 1 Currents (A Sec), ABC: 1.1 1.1 1.1
Winding 2 Currents (A Sec), ABC: 1.1 1.1 1.1
Winding 3 Currents (A Sec), ABC: 0.0 0.0 0.0
Winding 4 Currents (A Sec), ABC: 1.1 1.1 1.1
```

- RID and TID settings for the active group
- Date and time the event was triggered
- The event type
- Target information
- Phase currents for two windings, plus the neutral elements

Access Levels

Commands can be issued to the relay via the serial port to view metering values, change relay settings, etc. The available ASCII serial port commands are listed in Figure 7.2, and summarized by level in *Section 12: SEL-387A Relay Command Summary*. A multilevel password system provides security against unauthorized access. This access scheme allows you to give personnel access to only those functions they require.

The relay supports four access levels. Each level has an associated screen prompt and password. The relay is shipped with the default factory passwords shown in the table under *PAS* (*Passwords*) later in this section. Below are the access level hierarchy, the access level prompts, and commands allowed in each of the four access levels:

<u>mpt</u> C	Commands Allowed
0	
0), 1
> 0), B
> 0	, 1, B, 2
> 0	, 1, B, 2, C
	0 0 0 > 0 > 0

Figure 7.2 summarizes the access levels, prompts, and commands available from each access level and commands for moving between access levels.

The relay responds with "Invalid Access Level" if a command is entered from an access level lower than the specified access level for the command. The relay responds "Invalid Command" to commands not listed or if a command is not followed by the correct number or letter.

Access Level 0

Once serial port communications are established with the relay, the Access Level 0 prompt (=) appears. If a different prompt appears, the relay was left in a different access level or the terminal emulation you are using is translating the characters differently. VT-100 emulation is recommended.

The <u>only commands</u> that can be executed at Access Level 0 are the **ACC** and **QUI** commands (see Figure 7.2). Enter the **ACC** command at the Access Level 0 prompt to go to Access Level 1.

Access Level 1

After issuing the **ACC** command and entering the password, if it is required [see **PAS** (**Passwords**) for default factory passwords], the relay is in Access Level 1. The prompt for Access Level 1 appears (=>).

Many commands can be executed from Access Level 1 for viewing relay information. The **2AC** command allows the relay to go to Access Level 2. The **BAC** command allows the relay to go to Access Level B. The **2AC** command allows the relay to go to Access Level 2.

Access Level B (Breaker Level)

After issuing the **BAC** command and entering the password, if it is required [see *PAS* (*Passwords*) for default factory passwords], the relay pulses the ALARM contact and is in Access Level B (breaker access level). The Access Level B prompt appears (==>).

Many commands can be executed from Access Level B for viewing relay information, and controlling the breaker. While in Access Level B, any of the commands available in the lower Access Levels 0 and 1 can be executed.

Access Level 2

After issuing the **2AC** command and entering the password, if it is required [see *PAS* (*Passwords*) for default factory passwords], the relay pulses the ALARM contact and is in Access Level 2. The Access Level 2 prompt appears (=>>).

This is the highest access level. All commands listed in this manual, for any access level, can be executed from Access Level 2 for viewing relay information, controlling the breaker, and changing settings. Firmware upgrades to Flash memory (see *Appendix B: SEL-300 Series Relays Firmware Upgrade Instructions*) are also performed from this level.

Access Level C

The CAL (Calibration Access Level) command is used to enter the calibration access level in the relay. Normal relay operation does not require access to this level. The only user command that may be necessary to use from this level is the R_S command, which resets factory default settings. Do not access this level unless instructed by the factory or using the R_S command. The relay is calibrated at the factory and will not need field calibration. Contact the factory if you suspect the relay is not calibrated.

Figure 7.2: Access Level Relationships

Command Definitions

SEL ASCII commands require three characters and some commands require certain parameters. Each command is defined in alphabetical order. Examples are shown for some commands following their definitions. Text you type appears in bold, and keyboard keys you push appear in bold with brackets. For example, to enter Access Level 1 from Access Level 0 type ACC<ENTER>.

2AC (Access Level 2)

Access Levels 1, B

Use the **2ACCESS** command to enter Access Level 2. The default password for Level 2 is shown in the table under *PAS (Passwords)* later in this section. Use the **PASSWORD** command from Access Level 2 to change passwords. Install main board jumper JMP6A to disable password protection. With JMP6A installed, the relay will not display a request for the password, but will immediately execute the command. The following display indicates successful access to Level 2:

You may use any command from the "=>>" prompt. The relay pulses the ALARM contact for one second after any Level 2 access attempt unless an alarm condition already exists.

ACC (Access Level 1)

Access Levels 0, B, 2

Use the **ACCESS** command to enter Access Level 1. The default password for Level 1 is shown in the table under *PAS* (*Passwords*) later in this section. Use the **PASSWORD** command from Access Level 2 to change passwords. Install main board jumper JMP6A to disable password protection. The following display indicates successful access to Level 1:

BAC (Access Level B)

Access Levels 1, 2

Use the **BACCESS** command to enter Access Level B. The default password for Level B is shown in the table under *PAS (Passwords)* later in this section. Use the **PASSWORD** command from Access

Level 2 to change this password. Install main board jumper JMP6A to disable password protection. The following display indicates successful access to Level B:

The relay pulses the ALARM contact closed for one second after any Level B access attempt unless an alarm condition already exists.

BRE (Breaker Report)

Access Levels 1, B, 2

Use the **BREAKER** command to display a report of breaker operation information. The breaker report provides trip counter and trip current information for up to two breakers. The summary of the operations provides valuable breaker diagnostic information at a glance. An example breaker report follows. Refer to *Section 5: Metering and Monitoring* for further information. If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the report as set.

>>BRE								
(FMR 1 STATION A					Date: 01	./09/02	? Time:	10:45:32.636
BREAKER 1								
		IAW1=	0.00	IBW1=				kA(pri)
			16.63					kA(pri)
ercent Wear:		POLE1=	0	POLE2=	0	POLE3=	- 0	
REAKER 2								
nt Trips=	0	IAW2=	0.00	IBW2=	0.00	ICW2=	- 0.00	kA(pri)
xt Trips=	15	IAW2=	46.39	IBW2=	68.63	ICW2=	62.25	kA(pri)
ercent Wear:		POLE1=	3	POLE2=	6	POLE3=	= 10	
BREAKER 3								
int Trips=	0	IAW3=	0.00	IBW3=	0.00	ICW3=	0.00	kA(pri)
Ext Trips=	0	IAW3=	0.00	IBW3=	0.00	ICW3=	0.00	kA(pri)
Percent Wear:		POLE1=	0	POLE2=	0	POLE3=	- 0	
BREAKER 4								
int Trips=	0	IN1=	0.00	IN2=	0.00	IN3=	0.00	kA(pri)
xt Trips=	0	IN1=	0.00	IN2=	0.00	IN3=	0.00	kA(pri)
Percent Wear:		POLE1=	0	POLE2=	0	POLE3=	- 0	
AST BREAKER M	10NI	TOR RESET	FOR	Bkr1:	01/07/02)	15:33:11.8	372
				Bkr2:	01/07/02	-	15:33:11.9	987
				Bkr3:	00/00/00)	00:00:00.0	000
				Bkr4:	00/00/00)	00:00:00.0	000
=>>								

BRE R n (Breaker Reset)

Access Levels B, 2

The **BRE R** n command resets the trip counter, trip current data and contact wear percentages for Breaker "n." Issue **BRE R** A to reset all Breaker Monitors at one time. Use the **BRE** command to verify resetting of the data.

BRE W n (Breaker Wear Pre-Set)

Access Levels B, 2

This command is used to pre-set the amount of contact wear for Breaker n, on the assumption that the breaker has already experienced some fault duty before the relay is installed. The command prompts for percentage wear for each pole of the breaker. These must be entered as integer values, from 0 to 100 percent. Values over 100 will not be accepted. The data is stored in EEPROM and is nonvolatile. The procedure is shown below.

```
=>>RRF W 1
Breaker Wear Percent Preload
Internal Trips (0-65000)
                              ITRIP =
                                          0 ? 432
Internal Current (0.00-99999 \text{ kA}) IAW1 =
                                         0 ? 12
                             IBW1 =
                                          0 ? 15
                              ICW1
External Trips (0-65000)
                              EXTRIP =
                                         15 ? 16
External Current (0.00-99999 kA)
                              IAW1 =
                                         17 ? 12
                              IBW1
                                         15 ? 13
                              ICW1
                                         22 ? 15
Percent Wear (0-100%)
                                          0 ? 23
                              POLF1
                              POLE2 =
                                          0 ? 34
                              POLE3 =
                                          0 ? 32
Are you sure (Y/N) ? y
                            _____
```

After entering the values, use the **BRE** command to verify that the data has been accepted properly.

CAL (Calibration Access Level)

Access Level 2

The **CALIBRATION** command is used to enter the calibration access level in the relay. Normal relay operation does not require access to this level. The only user command that may be necessary to use from this level is the **R_S** command, which resets factory default settings. Do not access this level unless instructed by the factory or using the **R_S** command. The relay is calibrated at the factory and will not need field calibration. Contact the factory if you suspect the relay is not calibrated.

CEV (Compressed Event)

Access Levels 1, B, 2

The SEL-5601 Analytic Assistant software is available for graphical analysis of event reports. The **CEV** command is a compressed (comma-delimited formatting) version of the EVE command. Use the **CEV** command to download events for the SEL-5601 Analytic Assistant Program.

The CEV command can generate both winding and differential reports.

The command syntax is **CEV** [**DIF R**][**n Sx Ly**[-[w]] **C**]. All parameters are optional. Enter them in any order.

DIF specifies generation of the differential element report in compressed form. Otherwise, the winding report will be produced.

R specifies "raw," or unfiltered analog data (not debounced), in a format [1.5 cycles + Ly].

Letter "n" specifies the event number.

Sx specifies samples per cycle. The x value can be 4, 8, 16, 32, or 64 for raw reports (default is 16) or 4, 8 for filtered reports (default is 4). Digital elements will be displayed at the resolution specified by Sx, up to a maximum of eight samples per cycle.

Ly specifies the report length in cycles. The y value can be from 1 to the LER setting. Default is 15 cycles. "Ly-" specifies reporting from cycle y to the end of the report. "Ly-w" specifies reporting from cycle y to cycle w.

C specifies using the eight samples per cycle compressed format for compatibility with the SEL-2020 or SEL-2030 and is equivalent to using the **EVE C** command.

If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the report as set.

Refer to *Appendix E: Compressed ASCII Commands* for a complete description of the command, as well as additional Compressed ASCII commands CAS, CBR, CHI, CST, and CTA.

CLO n (Close)

Access Levels B, 2

The **CLO n** command asserts the CCn Relay Word bit. This bit must be included in the CLn Close Logic setting for Breaker n, in order for closing to take place. This logic is described in **Section 4: Control Logic**.

To close the circuit breaker with this command, type **CLOSE** n<**ENTER>**. The prompting message "Close Breaker n (Y/N)?" is displayed. Then "Are you sure (Y/N)?" Typing **N** <**ENTER>** after either of the above prompts aborts the closing operation with the message "Command Aborted." If both questions are answered **Y**<**ENTER>**, the breaker will be closed, an automatic message summarizing the close operation will be sent, and an Event Report will be created.

If the main board jumper JMP6B is not in place, the relay responds: "Aborted: Breaker Jumper Not in Place."

CON n (Control RBn)

Access Level 2

This command is used to control the Relay Word bit RBn, or Remote Bit n, n having a value of 1 to 16. The relay responds with CONTROL RBn. The user must then respond with one of the

following: **SRB** n**<ENTER>** (Set Remote Bit n), or **CRB** n**<ENTER>** (Clear Remote Bit n), or **PRB** n**<ENTER>** (Pulse Remote Bit n). The latter asserts RBn for one processing interval, one-eighth cycle. The Remote Bits permit design of SELOGIC control equations that can be set, cleared, or momentarily activated via a remote command.

COP m n (Copy Settings)

Access Level 2

The **COPY** command copies settings and logic from setting Group m to Group n (m and n can be any combination of 1 through 6). After entering the settings into one setting group with the **SET** command, copy it to the other groups with the **COPY** command. Use the **SET** command to modify copied setting groups. The ALARM output contact closes momentarily when you change settings in an active setting group but not in an inactive setting group.

```
=>>COP 1 3<ENTER>
COPY 1 to 3
Are you sure (Y/N) ? Y<ENTER>

Please wait...
Settings copied
=>>
```

DAT (Date)

Access Levels 1, B, 2

The **DATE** command displays or sets the date stored by the internal calendar/clock. Simply typing **DAT<ENTER>** displays the date. Set the date by typing **DATE d1<ENTER>** where d1 is either mm/dd/yy or yy/mm/dd depending on the SET G date format setting DATE_F. The following example views the current date, verifies the DATE_F setting, and changes the date. Note that single-digit numbers may be entered without leading zeros like the 9 in 11/9/96.

```
=>>DAT
01/08/02
=>>SHO G DATE_F

RELAY SETTINGS
DATE_F = MDY SCROLD = 2 FP_TO = 16 TGR = 3

=>>DAT 11/9/99
11/09/99
```

Note: After setting the date, allow at least 60 seconds before powering down the relay or the new setting may be lost.

EVE (Event Reports)

Access Levels 1, B, 2

Use the **EVENT** command to view event reports. Use the **CEV** command to retrieve event reports to be analyzed by the SEL-5601 Analytic Assistant or used with other equipment. See **Section 9: Event Reports and SER** for further details on retrieving event reports.

GRO and GRO n (Setting Group)

Access Levels 1, B, 2

The "GROUP" command, at Access Level 1, displays the setting group variable for the currently active setting group. Changing the variable is not permitted. The "GROUP n" command, at Levels B and 2, designates what the setting group variable is to be (n = 1 to 6), thereby asking the relay to change to the setting group so designated. The relay will only make the change if the setting group selection SELOGIC control equations (SS1 through SS6) are not assigned or are not asserted. The following example verifies the existing group variable, changes it, and then waits for the automatic message when the setting group changes. The variable must be changed for a certain number of seconds as specified by the TGR setting (under SET G) before the new settings are enabled.

```
=>>GRO<ENTER>
Active Group = 1
=>>GRO 2<ENTER>
Change to Group 2
Are you sure (Y/N) ? Y<ENTER>
=>>
```

The **GROUP** command does not clear the event report buffer. If the active group is changed, the relay pulses the ALARM output contacts and generates the following automatic message:

```
XFMR 1 Date: 03/13/97 Time: 14:33:49.109
STATION A

Active Group = 2
=>>
```

Note: The relay will be disabled momentarily while the change in groups takes place.

HIS (History of Events)

Access Levels 1, B, 2

The **HISTORY** command displays the 80 most recent event summaries in reverse chronological order (most recent event at the top, with lowest event number "#"). The number of full Event Reports completely saved in Flash memory depends on the SET G setting LER as follows:

LER Setting	Number of Event Reports Stored
15 cycles	18–21
30 cycles	12–14
60 cycles	7

Each summary shows the date, time, event type, active setting group at the time of the event, and relay targets.

Event types, in decreasing order of precedence, are: TRIPn (n = 1 to 5), CLSm (m = 1 to 4), ER (SELOGIC control equation event trigger), PULSE (user-initiated momentary contact operation), and TRIG (user-initiated triggering of an Event Report). If more than one event type occurs during the same event, the type with highest precedence will be displayed in the EVENT field of each line of the display.

Enter **HIS n**, where n is a positive number (1 through 80) to limit the history report to the most recent n events. The history is stored in nonvolatile memory, so it is retained through power failures.

The date and time is saved to the nearest millisecond and referenced to the trigger row of data in the Event Report.

An example of the display appears below. In this example seven events have occurred since the history was last cleared:

If an event has not occurred since the history was last cleared, the headings are displayed with the message: History Buffer Empty.

HIS C (Clear History and Events)

Access Levels 1, B, 2

HIS C command clears the history and the corresponding events from nonvolatile Flash memory. The clearing process may take up to 30 seconds under normal operation. It may be even longer if the relay is busy processing a fault or other protection logic. The following is an example of the **HIS** C command. The relay will pause after the word "Clearing" until the buffer is completely clear, and then it will display the rest of the information.

```
=>HIS C<ENTER>
Clear History Buffer
Are you sure (Y/N) ? Y<ENTER>
Clearing Complete

Relay pauses after the word Clearing

=>
```

Note: Clear the Event Buffer With Care

Automated clearing of the event buffer should be limited to reduce the possibility of wearing out the nonvolatile memory. Limit automated **HIS** C commands to once per week or less.

ID (Identification)

Access Levels 0, 1, B, 2

The **ID** command displays a variety of identification and configuration information about the relay.

FID: reports the FID string; CID: reports the checksum of the ROM code; DEVID: reports the terminal ID as set by the TID setting; DEVCODE: reports the Modbus® code (32).

PARTNO: Reports the part number. Since this relay does not allow modification of the part number in firmware, the number reported here contains "X"s for all options.

```
=>>id_

"FID=SEL-387A-R102-V0-Z003003-D20020111","0913"

"CID=413E","025A"

"DEVID=STATION A","049C"

"DEVCODE=32","030C"

"PARTNO=0387A010HX3X941","05EE"

"CONFIG=111100","0387"

_=>>
```

INI (Initialize Interface Boards)

Access Levels 1, B, 2

The **INITIO** command reports the number and type of interface boards in the relay from Access Levels 1 and B. If the number or type of interface boards has changed since last power up, INITIO will confirm that the interface boards present are correct from Access Level 2.

IRI (IRIG-B Synchronization)

Access Levels 1, B, 2

The **IRIG** command forces the relay to read the demodulated IRIG-B time-code input at the time of the command.

If the relay reads the time code successfully, it updates the internal clock/calendar time and date to the time-code reading. The relay then transmits a message with relay settings RID and TID, and the date and time.

```
=>IRI<ENTER>

XFMR 1 Date: 02/01/96 Time: 01:45:40.762

STATION A =>
```

If no IRIG-B signal is present or the code cannot be read successfully, the relay sends the error message "IRIG-B DATA ERROR."

Note: Normally, it is not necessary to synchronize using this command because the relay automatically synchronizes approximately once a minute. The **IRIG** command is provided to prevent delays during testing and installation checkout.

MET (Metering Report)

Access Levels 1, B, 2

The **METER** command displays currents, demand currents, peak demand currents, or differential data, depending on the command statement. There are several choices for the **MET** command, listed briefly below. Refer to **Section 5: Metering and Monitoring** for a complete description of the metering reports.

MET	Displays winding current metering data, in primary amperes	
MET D	Displays winding demand ammeter data, in primary amperes	
MET DIF	Displays differential metering data, in multiples of TAP	
MET H	Displays harmonic spectrum of currents (see MET H below)	
MET P	Displays peak demand ammeter data, in primary amperes	
MET RD n	Resets demand ammeter for Winding n $(n = 1, 2, A)$	
MET RP n	Resets peak demand ammeter values for Winding n (n = 1, 2, A)	
MET SEC	Displays winding current metering data, with magnitude and phase angle, in secondary amperes	
MET T	Displays the temperature values of up to 12 RTDs per port (maximum of 24 RTDs)	

Use the **MET XXX k** command, where k is a positive integer, to repeat the MET XXX report k times. For example, to display a series of eight meter readings, type **MET 8 <ENTER>**.

If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the report as set.

MET H (Harmonic Metering)

Access Levels 1, B, 2

The **METER H** command is different from the normal metering functions, in that it uses 1 full cycle of unfiltered data, at 64 samples per cycle, to provide a snapshot of total harmonic content

of all 6 analog current inputs. It uses a fast Fourier transform technique to provide secondary current values for all harmonics from 1 (fundamental) to 15.

This function is explained more fully in *Section 5: Metering and Monitoring* where a sample report also is shown. If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the report as set.

MET T (Temperature Metering)

Access Levels 1, B, 2

METER T reports the temperature values of up to 24 RTD inputs: RTDA Input Temperature Data (deg. X); RTD 1A through RTD 12A; RTDB Input Temperature Data (deg. Y); RTD 1B through RTD 12B.

where:

deg X: C or F depending on the TMPREFA setting,

deg Y: C or F depending on the TMPREFB setting.

OPE n (Open)

Access Levels B, 2

The **OPE n** command asserts the OCn Relay Word bit. This bit must be included in the TRn trip logic setting for Breaker n, in order for opening to take place. This logic is described in *Section 4: Control Logic*.

To open circuit Breaker n by this command, type **OPE n<ENTER>**. The prompt "Open Breaker n (Y/N)?" is displayed. Then "Are you sure (Y/N)?" is displayed. Typing **N <ENTER>** after either of the above prompts aborts the opening operation with the message "Command Aborted." If both questions are answered **Y < ENTER>**, the breaker will be opened, an automatic message summarizing the trip will be sent, an Event Report will be created, and the TRIP LED on the front panel will light. This must be turned off by a **TAR R** command or by the TARGET RESET pushbutton on the front panel.

If the main board jumper JMP6B is not in place, the relay responds: "Aborted: Breaker Jumper Not in Place."

PAS (Passwords)

Access Level 2, C

This device is shipped with default passwords. Default passwords should be changed to private passwords at installation. Failure to change each default password to a private password may allow unauthorized access. SEL shall not be responsible for any damage resulting from unauthorized access.

The factory default passwords for Access Levels 1, B, 2, and C are:

Access Level	Factory Default Password
1	OTTER
В	EDITH
2	TAIL
С	CLARKE

The **PASsword** command allows you to change existing Level 1, B, and 2 passwords at Access Level 2 and allows you to change the Level C password from Level C. To change passwords, enter **PAS x**, where x is the access level whose password is being changed. The relay will prompt for the old password, new password, and a confirmation of the new password.

To change the password for Access Level 1, enter the following:

```
=>>PAS 1 <Enter>
Old Password: *******
New Password: ******
Confirm New Password: *****
Password Changed
=>>
```

The new password will not echo on the screen, and passwords cannot be viewed from the device. Record the new password in a safe place for future reference.

If the passwords are lost or you wish to operate the relay without password protection, put the main board Access jumper in place (Access jumper = ON). With the Access jumper in place, issue the **PAS** x command at Access Level 2. The relay will prompt for a new password and a confirmation of the new password.

Passwords may include as many as 12 characters. See Table 7.4 for valid characters. Upper- and lowercase letters are treated as different characters. Strong passwords consist of 12 characters, with at least one special character or digit and mixed-case sensitivity, but do not form a name, date, acronym, or word. Passwords formed in this manner are less susceptible to password guessing and automated attacks. Examples of valid, distinct strong passwords include:

- Ot3579A24.68
- Ih2d&s4u-Iwg
- .387e.Nt9g-t

Table 7.4: Valid Password Characters

Alpha	ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz
Numeric	0123456789
Special	!"#\$%&'()*,/:;<=>?@[\]^_`{ }~

The relay shall issue a weak password warning if the new password does not include at least one special character, number, lowercase letter, and uppercase letter.

```
=>>PAS 1 <Enter>
Old Password: *******
New Password: ******
Confirm New Password: *****
Password Changed
=>>
CAUTION: This password can be strengthened. Strong passwords do not include a name, date, acronym, or word. They consist of the maximum allowable characters, with at least one special character, number, lower-case letter, and upper-case letter. A change in password is recommended.
=>>
```

PUL n (Pulse)

Access Levels B, 2

The **PULSE** n k command asserts the selected output contact n for k seconds. The k parameter is optional. If k is not specified the output contact is pulsed for 1 second. Main board breaker jumper JMP6B must be in place. After issuing the **PULSE** command, the relay asks for confirmation of the operation, and then asks if you are sure. An invalid output contact name or incorrect k value produces an error message.

Parameter n may be any existing output contact element name such as OUT107. Parameter k must be a number ranging from 1 to 30 seconds.

Note: The **PUL** command is useful during testing to verify operation of output contacts, but it should not be used while the relay is in service. During the entire time the specified output contact is being pulsed, all other output contacts are frozen in their existing state and are not permitted to change. This could prevent a trip or other critical output from being issued during the specified PUL time interval.

```
=>>PUL OUT107 3<ENTER>
Pulse contact OUT107 for 3 second(s) (Y/N) ? Y<ENTER>
Are you sure (Y/N) ? Y<ENTER>
=>>
```

QUI (Quit)

Access Levels 0, 1, B, 2

The **QUIT** command returns the relay to Access Level 0 from Level 1, B, or 2. The command displays the relay settings RID, TID, date, and time of **QUIT** command execution.

Use the **QUI** command when you finish communicating with the relay to prevent unauthorized access. The relay automatically returns to Access Level 0 after a certain inactivity time dependent on the SET P setting T_OUT.

```
-->QUI<ENTER>

XFMR 1 Date: 02/01/93 Time: 15:15:32.161

STATION A

-
```

RES (RESET51-Reset Inverse-Time O/C Elements)

Access Level 2

The **RESET51** command clears the inverse-time overcurrent element accumulators (phase, negative-sequence, and residual) for both windings. This command is useful in testing of the inverse-time elements, because it mimics the action of immediately returning an electromechanical disk to the starting position. This command can save time in waiting for some units to reset according to their electromechanical reset equations in *Section 3: Differential*, *Restricted Earth Fault, and Overcurrent Elements*.

The relay will ask "Reset 51 Elements (Y/N)?" when given the **RES** command. If No, it will abort the command. If Yes, it will respond "All Time-Overcurrent Element Accumulators Cleared." This command is not likely to have much use in normal in-service relay operation.

SER (Sequential Events Recorder)

Access Levels 1, B, 2

The **SER** command displays the last 512 SER records. To limit the number of records displayed, use number or date parameters with the **SER** command. **SER d1** shows only events triggered on the date specified by d1. **SER d1 d2** shows only events triggered on or between the specified dates. **SER m** shows the most recent m events. **SER m n** shows event records m through n. The following is an example of the SER report. See **Section 9: Event Reports and SER** for a complete description of the report.

```
=>>SER
XFMR 1
                                      Date: 11/09/99 Time: 08:57:22.984
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228
      DATE
                 TIME
                               ELEMENT
                                                STATE
     01/07/02 16:09:50.353 Relay newly powered up
     11/09/99 08:50:07.335
                            Relay settings changed
6
     11/09/99 08:52:17.440
                           0UT103
     11/09/99 08:52:24.430 OUT102
                                              Asserted
5
     11/09/99 08:56:23.859 OUT107
                                             Asserted
3
     11/09/99 08:56:27.108 OUT107
                                             Deasserted
     11/09/99 08:56:43.359 OUT105
2
                                              Asserted
1
     11/09/99 08:56:47.485 OUT105
                                              Deasserted
```

SER C (Clear Sequential Events Recorder)

Access Levels 1, B, 2

Clear the sequential event records from relay memory with the **SER C** command. The process may take up to 30 seconds under normal operation or longer if the relay is busy processing a fault or protection logic.

```
=>>SER C<ENTER>
Clear the SER
Are you sure (Y/N) ? Y
Clearing Complete
=>>
```

Note: Clear the SER Buffer With Care

Automated clearing of the SER buffer should be limited to reduce the possibility of wearing out the nonvolatile memory. Limit automated **SER C** commands to once per week or less.

SET (Edit Group 1 through 6 Settings)

Access Level 2

Configure the relay using the **SET** command. The entire syntax of the **SET** command follows:

SET n Setting TERSE<ENTER>

All parameters are optional and perform the following functions:

- **n** specifies the setting group (1 through 6). The default is the active setting group.
- Setting specifies the setting name with which to begin. The default is the first setting.
- **TERSE** eliminates the display of the group settings at the end of the setting procedure. The command will function properly if just **TE** is entered, instead of the full word.

If a setting is hidden because that section of the settings is turned OFF, you cannot jump to that setting. TERSE is very useful when making small changes to the settings. For example, the following procedure is recommended when making a change to one setting:

```
Change the CTR1 Setting
=>>SET CTR1 TE
Group 2
GENERAL DATA
Wdg 1 CT Ratio (1-50000)
                                            CTR1
                                                   = 120
                                                               ? 100<ENTER>
Wdg 2 CT Ratio (1-50000)
                                            CTR2 = 240
                                                               ? END<ENTER>
Save Changes (Y/N) ? Y
Please Wait While Saving Settings...
Settings saved
SCEUSE
          45.8
```

```
Verify the CTR1 Setting
GR2CHK
         FA17
=>>SH0 CTR1
Group 2
GENERAL DATA
CTR1
       = 100
                  CTR2
                         = 240
CTRN1
      = 80
                  CTRN2
                         = 80
                                    CTRN3 = 24
                         = Y
       = 100.0
                  ICOM
MVA
W1CTC
       = 11
                  W2CTC
                         = 11
       = 230.00
                  VWDG2
                         = 138.00
VWDG1
       = 2.51
                  TAP2
                         = 1.74
087P
       = 0.30
                  SLP1
                         = 25
                                    SLP2
                                            = 50
                                                       IRS1
                                                              = 3.0
U87P
       = 10.0
                  PCT2
                         = 15
                                     PCT5
                                            = 35
       = OFF
                         = N
TH5P
                  IHBL
                          Issue <CTRL> X to Stop Scrolling
```

Table 7.5 lists the editing keys that you can use with the **SET** command.

Table 7.5: Editing Keys for SET Commands

Press Key(s)	Results
^ <enter></enter>	Moves to previous entry in a setting category until you get to the first entry in the category, and then it moves to previous category.
< <enter></enter>	Moves to previous settings category when making group settings.
> <enter></enter>	Moves to next settings category when making group settings.
<enter></enter>	Moves to next entry.
END <enter></enter>	Exits editing session and displays all settings (if TERSE not used). Prompts: "SAVE CHANGES (Y/N)?" Type Y <enter> to save changes and exit, N <enter> to exit without saving.</enter></enter>
<control> X</control>	Aborts editing session without saving changes.
OFF <enter></enter>	Flags a setting as not applicable. Only applies to certain settings.

After you enter a setting, you are prompted for the next setting. Press **<ENTER>** to move from setting to setting. The settings are arranged into families of related settings to simplify setting changes. You can start at a specific setting by entering the setting name as a parameter.

The relay checks each entry to ensure that it is within the allowable input range. If it is not, an "Out of Range" message is generated, and the relay prompts for the setting again.

When you have made all the necessary setting changes, it is not necessary to scroll through the remaining settings. Type **END**<**ENTER>** at the next setting prompt to display the new settings and request confirmation.

Answer **Y<ENTER>** to the confirmation request to approve the new settings. If you violate a rule for setting relationships, a fail message is displayed, and the settings prompt moves to the first setting that affects the failure. While the active settings are updated, the relay is disabled, the ALARM output contacts close, and all timers and relay elements reset. The relay logic is fully functional while editing settings. The relay is only disabled for approximately one second when settings are saved.

Refer to Section 6: Setting the Relay for all default settings and setting worksheets.

SET G (Edit Global Settings)

Access Level 2

Configure the relay global settings using the **SET G** command. The global settings include Event Report parameters, frequency, phase rotation, date format, front-panel time-out, rotating display update rate, the group switching time delay, DC battery monitor thresholds, breaker monitor settings, analog input labels, SSn setting group variables, and definition of front-panel programmable LED and Display Point variables. The entire syntax of the **SET G** command follows:

SET G Setting TERSE<ENTER>

The two parameters are optional and perform the following functions:

- Setting specifies the setting name with which to begin. The default is the first setting.
- **TERSE** eliminates the display of the global settings at the end of the setting procedure. The command will function properly if just **TE** is entered, instead of the full word.

The **SET** G procedure works just like the **SET** procedure. Table 7.5 lists the editing keys that you can use with the **SET** command.

Refer to **Section 6: Setting the Relay** for all default settings and setting worksheets.

SET P (Edit Port Settings)

Access Level 2

Configure the relay port settings using the **SET P** command. The port settings include the communication and protocol settings. The entire syntax of the **SET P** command follows:

SET P n Setting TERSE<ENTER>

The two parameters are optional and perform the following functions:

- **n** specifies the serial port number (1, 2, 3, or 4). Default is the port issuing the command.
- Setting specifies the setting name with which to begin. The default is the first setting.
- **TERSE** eliminates the display of the port settings at the end of the setting procedure. The command will function properly if just **TE** is entered, instead of the full word.

The SET P procedure works just like the SET procedure. Table 7.5 lists the editing keys that you can use with the **SET** command.

The settings for each communication port are:

PROTO: protocol can be SEL, LMD, DNP, RTDA, or RTDB.

PREFIX: If PROTO is LMD, prefix can be @, #, \$, %, or &.

ADDR: If PROTO is LMD, ADDR can be any integer 1 through 99.

SETTLE: If PROTO is LMD, the settling time can be 0 to 30 seconds.

SPEED: baud can be set to 300, 1200, 2400, 4800, 9600, or 19200.

BITS: data can be 7 or 8 bits.

PARITY: can be O, E, or N (Odd, Even, None).

STOP: bits can be 1 or 2.

T_OUT: port inactivity time-out can be 0 through 30 minutes. **T_OUT** = 0 setting means

port will never time out. Time-out returns port to Access Level 0.

AUTO: send auto messages to the port; Yes or No.

RTSCTS: enable hardware handshaking; Yes or No (only if PROTO=SEL).

FASTOP: enable *Fast Operate* function; Yes or No.

Refer to **Section 6: Setting the Relay** for all default settings and setting worksheets.

SET R (Edit SER Settings)

Access Level 2

Configure the Sequential Events Recorder settings using the **SET R** command. The settings are the four sequential events recorder trigger conditions (SER1 to SER4) and the ALIAS1 to ALIAS20 settings for re-naming Relay Word bits for the SER report. The entire syntax of the **SET R** command follows:

SET R Setting TERSE<ENTER>

The two parameters are optional and perform the following functions:

- Setting specifies the setting name with which to begin. The default is the first setting.
- **TERSE** eliminates the display of the new settings at the end of the setting procedure. The command will function properly if just **TE** is entered, instead of the full word.

The **SET R** procedure works just like the **SET** procedure. Table 7.5 lists the editing keys that you can use with the **SET** command.

Refer to *Section 6: Setting the Relay* for setting worksheets. Refer to *Section 9: Event Reports and SER* for more details on default settings and data retrieval.

Note: Make Sequential Events Recorder (SER) Settings With Care

The relay triggers a row in the Sequential Events Recorder (SER) event report for any change of state in any one of the elements listed in the SER1, SER2, SER3, or SER4 trigger settings. Nonvolatile memory is used to store the latest 512 rows of the SER event report so they can be retained during power loss. The nonvolatile memory is rated for a finite number of "writes."

Exceeding the limit can result in an EEPROM self-test failure. An average of 1 state change every 3 minutes can be made for a 25-year relay service life.

SHO (Show Group 1 through 6 Settings)

Access Levels 1, B, 2

SHOWSET displays the relay settings of the currently selected group. The entire syntax of the **SHO** command follows:

SHO n Setting A<ENTER>

- **n** specifies the setting group (1 through 6). The default is the active setting group.
- Setting specifies the setting name with which to begin. The default is the first setting.
- If Setting = A, then hidden settings are shown in addition to the regular settings.

Control characters provide control over the scrolling of the data:

```
Temporarily Stop Scrolling: <CTRL>Q (hold down the Control key and press Q)
Restart Scrolling: <CTRL>S (hold down the Control key and press S)
Cancel Scrolling Completely: <CTRL>X (hold down the Control key and press X)
```

Settings cannot be entered or modified with this command. Change settings with the **SET** command from Access Level 2. Refer to *Section 6: Setting the Relay* for information on all settings. The following example demonstrates the report for the **SHO** command.

```
=>>SHO 2<ENTER>
Group 2
RID
       =XFMR 1
TID
       =STATION A
F87
       = Y
EOC1
       = Y
                   E0C2
                                      EOCN
E49A
       = N
                   E49B
                          = N
ESLS1
      = N
                   ESLS2 = N
                                      ESLS3 = N
W1CT
       = Y
                   W2CT
CTR1
       = 100
                   CTR2
                          = 240
CTRN1
       = 80
                   CTRN2
                          = 80
                                      CTRN3 = 24
       = 100.0
MVA
                   ICOM
                          = Y
       = 11
W1CTC
                   W2CTC
                          = 11
                         = 138.00
      = 230.00
                   VWDG2
VWDG1
TAP1
       = 2.51
                   TAP2
                          = 1.74
087P
       = 0.30
                   SLP1
                          = 25
                                      SLP2
                                              = 50
                                                         IRS1
                                                                 = 3.0
                          = 15
U87P
       = 10.0
                   PCT2
                                      PCT5
                                              = 35
       = OFF
                          = N
TH5P
                   IHBL
E32I1
       =0
Press RETURN to continue
F32T2
       =0
50P11P = 20.00
                   50P11D = 5.00
                                      50P11TC =1
50P12P = 0FF
50P13P = 0.50
                   50P14P = 4.00
                   51P1C = U2
                                                         51P1RS = Y
51P1P = 4.00
                                      51P1TD = 3.00
51P1TC =1
```

```
50011P = 0FF
5101P = 6.00
                    50Q12P = 0FF
                    5101C = U2
                                        51Q1TD = 3.00
                                                            5101RS = Y
51Q1TC =1
                    50N12P = OFF
50N11P = OFF
51N1P = OFF
DATC1 = 15
                    PDEM1P = 7.00
                                        QDEM1P = 1.00
                                                            NDEM1P = 1.00
50P21P = 0FF
                    50P22P = 0FF
50P23P = 0.50
                    50P24P = 3.50
Press RETURN to continue
51P2P = 3.50
51P2TC =1
                    51P2C = U2
                                        51P2TD = 3.50
                                                            51P2RS = Y
50021P = 0FF
                    50022P = 0FF
51Q2P = 5.25
51Q2TC =1
                    5102C = U2
                                        51Q2TD = 3.50
                                                            5102RS = Y
50N21P = 0FF
                    50N22P = OFF
51N2P = OFF
DATC2 = 15
                    PDEM2P = 7.00
                                        QDEM2P = 1.00
                                                            NDEM2P = 1.00
50NN11P = OFF
                    50NN11D = 10.00
                                        50NN11TC=1
50NN12P = OFF
50NN13P = OFF
                    50NN14P = OFF
                    51NN1C = U2
51NN1TC =1
51NN1P = OFF
                                        51NN1TD = 1.00
51NN1RS = Y
                    50NN21D = 10.00
50NN21P = OFF
                                        50NN21TC=1
50NN22P = OFF
Press RETURN to continue
50NN23P = OFF
                    50NN24P = OFF
51NN2P = OFF
                    51NN2C = U2
                                        51NN2TD = 1.00
51NN2RS = Y
                    51NN2TC =1
50NN31P = OFF
                    50NN31D = 10.00
                                        50NN31TC=1
50NN32P = OFF
                    50NN34P = 0FF
51NN3C = U2
50NN33P = OFF
51NN3P = OFF
                                        51NN3TD = 1.00
51NN3RS = Y
                    51NN3TC =1
TDURD = 9.000
                   CFD = 60.000
TR1
       =50P11T + 51P1T + 51Q1T + 0C1 + LB3
TR2
       =51P2T + 51Q2T + 0C2
TR3
       =87R + 87U
TR4
        =0
TR5
       =0
ULTR1
       =!50P13
       =!50P23
ULTR2
ULTR3
       =!(50P13 + 50P23)
Press RETURN to continue
ULTR4
       =0
ULTR5
       =0
       =IN101
52A1
52A2
       =IN102
52A3
        =0
52A4
       =()
CL1
        =CC1 + LB4 + /IN104
       =CC2 + /IN105
CL2
CL3
       =0
CL4
        =0
ULCL1
       =TRIP1 + TRIP3
ULCL2
       =TRIP2 + TRIP3
ULCL3
       =0
ULCL4
       =0
```

```
ER =/50P11 + /51P1 + /51Q1 + /51P2 + /51Q2

OUT101 =TRIP1

OUT102 =TRIP2

OUT103 =TRIP3

OUT104 =0

OUT105 =CLS1

Press RETURN to continue

OUT106 =CLS2

OUT107 =0

SCEUSE 45.8

GR2CHK FA17

->>
```

SHO G (Show Global Settings)

Access Levels 1, B, 2

SHOWSET G displays the relay global settings of the currently selected group. The global settings include Event Report parameters, frequency, phase rotation, date format, front-panel time-out, the group switching time delay, DC battery monitor thresholds, breaker monitor settings, analog input labels, SSn setting group variables, and definition of front-panel programmable LED and Display Point variables. The syntax of the **SHO G** command follows:

SHO G Setting<ENTER>

• Setting specifies the setting name with which to begin. The default is the first setting.

Settings cannot be entered or modified with this command. Change settings with the **SET G** command from Access Level 2. Refer to *Section 6: Setting the Relay* for information on all settings. The following example demonstrates the report for the **SHO G** command.

```
=>>SH0 G
LER = 15
DATE_F = MDY
               PRE
                                NFREO = 60
                                                PHROT
                                                      = ABC
               SCROLD = 2
                                FP_T0 = 16
                                                TGR
                                                       = 3
TMPREFA = F
               TMPREFB = F
     = OFF
              DC2P = OFF
                                DC3P = OFF
                                                DC4P = OFF
DC1P
                                IN103D = 0.13
IN201D = 0.13 IN202D = 0.13
                                IN203D = 0.13
IN204D = 0.13
                IN205D = 0.13
                                IN206D = 0.13
IN207D = 0.13
                IN208D = 0.13
BKMON1 =TRIP1 + TRIP3
               B1KAP1 = 1.2
B1COP1 = 10000
B1COP2 = 160
               B1KAP2 = 8.0
                B1KAP3 = 20.0
B1C0P3 = 12
BKMON2 =TRIP2 + TRIP3
B2COP1 = 10000 B2KAP1 = 1.2
B2COP2 = 160
                B2KAP2 = 8.0
                B2KAP3 = 20.0
B2COP3 = 12
Press RETURN to continue
IAW1
     =IAW1
IBW1
      =IRW1
ICW1
      =ICW1
TAW2
      =TAW2
IBW2
```

```
ICW2
        =ICW2
IAW4
        -IN1
IBW4
        =IN2
ICW4
        =IN3
        =0
SS1
        =0
SS2
SS3
        =0
        =0
SS4
SS5
        =0
        =0
SS6
        =0CA + 87E1
LEDA
LEDB
        =0CB + 87E2
        =0CC + 87E3
LEDC
Press RETURN to continue
LED15
        =0
LED16
        =0
DP1
DP1_1
        =BREAKER 1 CLOSED DP1_0
                                   =BREAKER 1 OPEN
DP2
        =IN102
DP2_1
        =BREAKER 2 CLOSED DP2_0
                                   =BREAKER 2 OPEN
DP3
        =0
DP3_1
                           DP3_0
DP4
        =0
DP4_1
                           DP4_0
DP5
        =0
                           DP5_0
DP5_1
DP6
        =0
DP6 1
                           DP6_0
DP7
        =0
DP7 1
                           DP7_0
DP8
        =0
DP8_1
                           DP8_0
DP9
        =0
Press RETURN to continue
                           DP9_0
DP9_1
DP10
        =0
DP10_1
                           DP10_0 =
DP11
        =0
DP11_1
                           DP11_0 =
DP12
        =()
DP12_1
                           DP12_0 =
DP13
        =0
DP13_1
                           DP13_0 =
DP14
                           DP14_0 =
DP14_1
DP15
        =0
DP15 1
                           DP15_0 =
DP16
        =0
DP16_1
                           DP16_0 =
Text Labels:
NLB1
                         CLB1
                                           SLB1
                                                             PLB1
                                           SLB2
NLB2
                         CLB2
                                                             PLB2
        =MANUAL TRIP 1 CLB3
                                                                     =TRIP
                                 =RETURN
                                           SLB3
                                                             PLB3
NLB3
NLB4
        =MANUAL CLOSE 1 CLB4
                                 =RETURN
                                           SLB4
                                                             PLB4
                                                                     =CLOSE
Press RETURN to continue
NLB5
                         CLB5
                                           SLB5
                                                             PLB5
NLB6
                         CLB6
                                           SLB6
                                                             PLB6
NLB7
                         CLB7
                                           SLB7
                                                             PLB7
NLB8
                         CLB8
                                           SLB8
                                                             PLB8
NLB9
                         CLB9
                                           SLB9
                                                             PLB9
NLB10
                         CLB10
                                           SLB10
                                                             PLB10
{\sf NLB11}
                         CLB11
                                           SLB11
                                                             PLB11
NLB12
                         CLB12
                                           SLB12
                                                             PLB12
                         CLB13
                                           SLB13
                                                             PLB13
NLB13
NLB14
                         CLB14
                                           SLB14
```

```
NLB15 = CLB15 = SLB15 = PLB15 =
NLB16 = CLB16 = SLB16 = PLB16 =

SCEUSE 47.5
GBLCHK 0AC3
=>>
```

SHO P (Show Port Settings)

Access Levels 1, B, 2

SHOWSET P displays the relay serial port settings. The port settings include the communications and protocol settings. The syntax of the **SHO P** command follows:

SHO P n Setting<ENTER>

The two parameters are optional and perform the following functions:

- n specifies the serial port number (1, 2, 3, or 4). Default is the port issuing the command.
- Setting specifies the setting name with which to begin. The default is the first setting.

Entering **SHO P<ENTER>** is an easy way to identify the port to which you are presently connected.

Settings cannot be entered or modified with this command. Change settings with the **SET P** command from Access Level 2. The following example shows the factory default settings. Refer to *Section 6: Setting the Relay* for Settings Sheets.

```
=>>SHO P<ENTER>
Port 2

PROTO = SEL
SPEED = 19200 BITS = 8 PARITY = N STOP = 1
T_OUT = 0 AUTO = Y RTSCTS = N FASTOP = N
=>>
```

SHO R (Show SER Settings)

Access Levels 1, B, 2

SHOWSET R displays the Sequential Events Recorder settings. The syntax of the **SHO R** command follows:

SHO R Setting <ENTER>

• Setting specifies the setting name with which to begin. The default is the first setting.

Settings cannot be entered or modified with this command. Change settings with the **SET R** command from Access Level 2. Refer to *Section 6: Setting the Relay* for information on all settings. Following is an example of the display for the **SHO R** command.

```
=>>SH0 R
SER1
        =IN101,IN102,IN103,IN104,IN105,IN106
SER2
        =OUT101,OUT102,OUT103,OUT104,OUT105,OUT106,OUT107
SER3
        =0
SER4
        =0
ALIAS1 =NA
ALIAS2
ALIAS3 =NA
ALIAS4 =NA
ALIAS5 =NA
ALIAS6 =NA
ALIAS7
ALIAS8 =NA
ALIAS9 =NA
ALIAS10 =NA
ALIAS11 =NA
ALIAS12 =NA
ALIAS13 =NA
Press RETURN to continue
ALIAS14 =NA
ALIAS15 =NA
ALIAS16 =NA
ALIAS17 =NA
ALIAS18 =NA
ALIAS19 =NA
ALIAS20 =NA
```

STA (Status Report)

Access Levels 1, B, 2

The **STATUS** command displays a report of the self-test diagnostics. The relay automatically executes the **STATUS** command whenever the self-test software enters a warning or failure state. You may repeat the **STA** command by appending a number as a repeat count parameter. Type **STA** 4<**ENTER>** to view the status information four times.

If a warning or failure state occurs, the next time the **STA** command is issued, the warning state is reported. If a warning or failure occurs, it will not be cleared until relay power is cycled and the problem is fixed. Saving relay settings performs a warm boot of relay logic. This may clear some warnings, but do not ignore warnings; contact the factory.

The **STA C<ENTER>** command clears any out-of-tolerance condition from the status report and reboots the relay. Do not ignore warnings; contact the factory.

If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the report as set. The STATUS report format appears below:

```
=>>STA
XFMR 1
                                           Date: 11/09/99
                                                             Time: 09:08:51.469
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228 CID=A659
SELF TESTS
         F=Fail
W=Warn
       IAW1
                IBW1
                         ICW1
                                  IAW2
                                            IBW2
                                                     ICW2
0S
       -2
                - 1
                          0
                                  - ()
                                            - 2
                                                     - 1
       IAW3
                IBW3
                         ICW3
                                   IN1
                                            IN2
                                                      IN3
0S
                                            - 2
                                                     - 1
       +5V_PS
                +5V_REG -5V_REG +12V_PS -12V_PS +15V_PS -15V_PS
                         -4.98
                                   12.07
       4.89
                 5.04
                                            -12.11
                                                      14.84
                                                              -14.86
                                  A/D
       TEMP
                RAM
                         ROM
                                            CR_RAM
                                                     EEPROM
                                                              IO_BRD
       37.5
                0K
                         0K
                                  0K
                                            0K
                                                     0K
                                                              0K
Relay Enabled
```

TAR (Show Relay Word Targets On-Screen)

Access Levels 1, B, 2

The **TARGET** command displays the default row of the Relay Word showing the Relay Word bit names and their value, which is either a logical 1 (asserted) or logical 0 (deasserted). The syntax of the **TAR** command follows.

TAR n k X<ENTER>

- n specifies a new default Relay Word row by entering the row number or the specific Relay Word bit name (except names of target elements in rows 0 and 1). If n is not specified, the last default row is displayed.
- **k** specifies a repeat count for the command. The default is 1.
- X allows viewing a Relay Word row without changing the default row.

The default row number can also be changed by the **TAR F** command, but each serial port has independent defaults. The default row number returns to 0 when the port times out, the **QUIT** command is executed, **TAR 0** command is executed, or the **TAR R** command is executed.

The **TARGET** command does not remap the front-panel LEDs. See the **TAR F** command.

The following examples demonstrate the **TARGET** command:

```
=>>TAR
                             Default Row is 0
      TRIP
           INST
                 87_1 87_2 87_3
                                  50
     1
           1
                 1
                       1
                             1
                                    0
                                         1
=>>TAR 8
                             Display and Change Default to Row 8
                       51N2T 51N2R NDEM2 OC2
50N21 50N21T 50N22 51N2
                 0
           0
                       0
                                   0
                             Default is Row 8
=>>TAR
50N21 50N21T 50N22 51N2
                       51N2T 51N2R NDEM2 OC2
                  0
                       0
           0
                             1
                             Display Row 8 Five Times
=>>TAR 8 5
                       51N2T 51N2R NDEM2 OC2
50N21 50N21T 50N22 51N2
            0
                       0
                                    0
                  0
                              1
0
      0
            0
                  0
                       0
                              1
                                    0
                                         0
0
      0
           0
                                    0
                                         0
                  0
                       0
                             1
0
      0
            0
                  0
                       0
                              1
                                    0
                                         0
                       0
                                         0
                            Display Row 24 (RB4) But Do Not Change Default
=>>TAR RB4 X
RR1
      RB2
                              RB6
                                    RR7
                                          RR8
            RB3
                  RB4
                       RB5
=>>TAR
50N21 50N21T 50N22 51N2
                       51N2T 51N2R NDEM2 0C2
                       0
                             Reset Default to 0
=>>TAR R
                       87_2 87_3 50
           INST
                 87_1
1
                       0
=>>
```

Refer to Section 4: Control Logic for a list of the Relay Word and the corresponding rows.

TAR F n (Show Relay Word Targets on Front-Panel LEDs)

Access Levels 1, B, 2

The **TARGET F** command works like the **TARGET** command, but it also remaps the second row of target LEDs on the front-panel to follow the default row. This may be useful, for example, in testing situations where a display on the relay front-panel LEDs of element pickup or operation may be desired. The syntax of the **TAR F** command follows:

TAR F n k X<ENTER>

- n specifies a new default Relay Word row by entering the number or the specific Relay Word bit name. If n is not specified, the last default row is displayed.
- k specifies a repeat count for the command for the serial port display. The default is 1.
- X allows remapping the LEDs to a Relay Word row without changing the default row.

The default row number returns to 0 when the serial port times out, the **QUIT** command is executed, **TAR 0** command is executed, or the **TAR R** command is executed.

The front-panel LEDs remain remapped until the front panel times out, the **TAR R** command is executed, or the **<TARGET RESET>** button is pushed.

Refer to Section 4: Control Logic for a list of the Relay Word and the corresponding rows.

TAR R (Reset Targets)

Access Levels 1, B, 2

The **TARGET R** command resets the default row for the **TAR** and **TAR F** commands to 0, and remaps the second row of front-panel LEDs to display Row 1, which is the standard target display. It also resets any tripping front-panel targets.

Use the **TAR R** command to return the front-panel LEDs to the standard targets when you finish using the **TAR** or **TAR F** command for testing.

TFE (Through-Fault Event Report)

The **TFE** command displays the following data for each individually recorded through-fault event:

Date and time of the through fault

Duration (seconds) of the through fault

Maximum current (Amps primary) for each monitored current input

The following cumulative values (updated for each new through-fault event) are also displayed:

Through-fault count

Simple I²t calculation for each monitored current input

There are various choices for the **TFE** command, listed briefly below. Refer to **Section 5**: **Metering and Monitoring** for a complete description of the through-fault event reports:

TFE	Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed.
TFE A	Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200.
TFE C	Clears/resets cumulative and individual through-fault event data.
TFE n	Displays cumulative and individual through-fault event data. The n most recent individual events are displayed, where $n=1$ to 1200.
TFE P	Preloads cumulative through-fault event data.
TFE R	Clears/resets cumulative and individual through-fault event data.

TIM (Time)

Access Levels 1, B, 2

The **TIME** command displays or sets the time stored by the internal clock. The time is set or displayed on a 24-hour clock basis, not a.m./p.m. View the current time with **TIM**<**ENTER>.** To set the clock, type **TIM** t1<**ENTER>** where t1 is the new time in h:m:s; the seconds are optional. Separate the hours, minutes, and seconds with colons, semicolons, spaces, commas, or slashes. The following example sets the clock to 23:30:00:

```
=>TIM 23:30:00<ENTER>
23:30:00
=>
```

A quartz crystal oscillator provides the time base for the internal clock. You can also set the time clock automatically through the relay time-code input using a source of demodulated IRIG-B time-code.

Note: After setting the time, allow at least 60 seconds before powering down the relay or the new setting may be lost.

TRI (Trigger an Event)

Access Levels 1, B, 2

The **TRIGGER** command generates an event record. The command is a convenient way to record all inputs and outputs from the relay at any time you desire (e.g., testing or commissioning). The event type is recorded as TRIG any time the **TRI** command is issued.

Alarm Conditions

The SEL-387A asserts the ALARM output during power up until all self-tests pass and whenever a diagnostic test fails. In addition to these, the ALARM output pulses for one second with the commands and conditions shown in Table 7.6.

Table 7.6: Commands With Alarm Conditions

Command	Condition
2AC	Entering Access Level 2 or Three wrong password attempts into Access Level 2
ACC	Three wrong password attempts into Access Level 1
BAC	Entering Breaker Access Level or Three wrong password attempts into Breaker Access Level
COP m n	Copying a setting group to the active setting group
GRO n	Changing the active setting group
PAS n	Any password is changed
SET commands	Changing the SET G settings, the SET R settings, or the active group SET settings (SET P does not alarm)

Main Board Jumpers

Installing and removing certain main board jumpers affects execution of some commands. Table 7.7 lists all jumpers you should be concerned with and their effects.

Table 7.7: Main Board Jumpers

Jumper	Comment
JMP6A	Disables password protection when installed
JMP6B	Enables CLO, OPE, and PUL commands when installed

SEL-387A RELAY COMMAND SUMMARY

ACCESS LEVEL O COMMANDS

Access Level 0 is to go to Access Level 1. The

Level 0 Commands

screen prompt is: =

ACC Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the

relay prompts for the entry of the Access Level 1 password in order to enter Access

Level 1.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

ACCESS LEVEL 1 COMMANDS

Access The Access Level 1 commands primarily allow the user to look at information (e.g., Level 1 settings metering etc.) but not to change it. The screen prompt is:

Level 1 settings, metering, etc.), but not to change it. The screen prompt is: => **Commands**

2AC Enter Access Level 2. If the main board password jumper (JMP6A) is not in place, the

relay prompts for the entry of the Access Level 2 password in order to enter Access

Level 2.

BAC Enter Access Level B. If the main board password jumper (JMP6A) is not in place,

the relay prompts for the entry of the Access Level B password in order to enter

Access Level B.

BRE Breaker report shows trip counters, trip currents, and wear data for two breakers.

CEV n Show compressed winding event report number n, at 1/4-cycle resolution.

Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or

64 for raw data)

DAT Show date presently in the relay.

DAT m/d/y Enter date in this manner if Date Format setting DATE_F = MDY. DAT y/m/d Enter date in this manner if Date Format setting DATE_F = YMD.

EVE n Show standard event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE D n Show digital data event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF1 n Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

1

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of up to 24 RTD inputs.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SHO n Show relay group n settings. Shows active group if n is not specified.

SHO G Show relay global settings.

SHO P Show port settings and identification of port to which user is connected.

SHO P n Show port settings for port n (n = 1, 2, 3, 4).

SHO R Show Sequential Events Recorder (SER) settings.

STA Show relay self-test status.

STA C Clear relay status report from memory and reboot the relay.

TAR R Return front-panel LED targets to regular operation and reset the tripping front-panel targets. TFE Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed. TFE A Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200. TFE C Clears/resets cumulative and individual through-fault event data. Displays cumulative and individual through-fault event data. The n most recent TFE n individual events are displayed, where n = 1 to 1200. Preloads cumulative through-fault event data. TFE P Clears/resets cumulative and individual through-fault event data. TFE R

ACCESS LEVEL B COMMANDS

Access Level B Commands	The Access Level B commands allow the user to control breakers and contact outputs. All Access Level 1 commands can also be executed from Access Level B. The screen prompt is: ==>
ACC	Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 1 password in order to enter Access Level 1.
2AC	Enter Access Level 2. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 2 password in order to enter Access Level 2.
BRE BRE R n BRE W n	Breaker report shows trip counters, trip currents, and wear data for two breakers. Reset trip counters, trip currents, and wear data for breaker $n (n = 1, 2, A)$. Pre-set the percent contact wear for each pole of breaker $n (n = 1, 2)$.
CEV n	Show compressed winding event report number n, at 1/4-cycle resolution. Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution. Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or 64 for raw data)
CLO n	Assert the CCn Relay Word bit. Used to close breaker n if CCn is assigned to an output contact. JMP6B must be in place to enable this command.
DAT DAT m/d/y DAT y/m/d	Show date presently in the relay. Enter date in this manner if Date Format setting DATE_F = MDY. Enter date in this manner if Date Format setting DATE_F = YMD.
EVE n EVE D n	Show standard event report number n, with 1/4-cycle resolution. Attach S8 for 1/8-cycle resolution. Show digital data event report number n, with 1/4-cycle resolution.

EVE DIF1 n

Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

GRO n Switch to Setting Group n. (Will not function if any SSn Relay Word bit is asserted.)

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of the 24 RTD inputs.

OPE n Assert the OCn Relay Word bit. Used to open breaker n if OCn is assigned to an

output contact. JMP6B must be in place to enable this command.

PUL y k Pulse output contact y (y = OUT101,...,OUT107, OUT2XX, OUT3XX, and ALARM).

Enter number k to pulse for k seconds [k = 1 to 30 (seconds)], otherwise pulse time

is 1 second. JMP6B must be in place to enable this command.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SHO n SHO G SHO P SHO P n SHO R	Show relay group n settings. Shows active group if n is not specified. Show relay global settings. Show port settings and identification of port to which user is connected. Show port settings for port n $(n = 1, 2, 3, 4)$. Show Sequential Events Recorder (SER) settings.
STA	Show relay self-test status.
TAR R	Return front-panel LED targets to regular operation and reset the tripping front-panel targets.
TAR n k	Show Relay Word row n status (n = 0 through 41). Enter number k to scroll Relay Word row n status k times on screen. Append F to display targets on the front panel second row of LEDs.
TFE	Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed.
TFE A	Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200.
TFE C	Clears/resets cumulative and individual through-fault event data.
TFE n	Displays cumulative and individual through-fault event data. The n most recent individual events are displayed, where $n = 1$ to 1200.
TFE P	Preloads cumulative through-fault event data.
TFE R	Clears/resets cumulative and individual through-fault event data.
TIM	Show or set time (24 hour time). Show time presently in the relay by entering just TIM. Example time 22:47:36 is entered with command TIM 22:47:36.
TRI	Trigger an event report.

ACCESS LEVEL 2 COMMANDS

Access Level 2 Commands	The Access Level 2 commands primarily allow the user to change settings or operate relay parameters and output contacts. All Access Level 1 commands can also be executed from Access Level 2. The screen prompt is: =>>
ACC	Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 1 password in order to enter Access Level 1.
BAC	Enter Access Level B. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level B password in order to enter Access Level B.
BRE BRE R n BRE W n	Breaker report shows trip counters, trip currents, and wear data for two breakers. Reset trip counters, trip currents, and wear data for breaker $n (n = 1, 2, A)$. Preset the percent contact wear for each pole of breaker $n (n = 1, 2)$.
CAL	Moves from Access Level 2 to Access Level C.

CEV n Show compressed winding event report number n, at 1/4-cycle resolution.

Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or

64 for raw data)

CLO n Assert the CCn Relay Word bit. Used to close breaker n if CCn is assigned to an

output contact. JMP6B must be in place to enable this command.

CON n Control Relay Word bit RBn (Remote Bit n; n = 1 through 16). Execute CON n and

the relay responds: CONTROL RBn. Reply with one of the following:

SRB n set Remote Bit n (assert RBn)

CRB n clear Remote Bit n (deassert RBn)

PRB n pulse Remote Bit n [assert RBn for one processing interval (1/8 cycle)].

COPY m n Copy settings and logic from setting Group m to Group n.

DAT Show date presently in the relay.

DAT m/d/y Enter date in this manner if Date Format setting DATE_F = MDY. DAT y/m/d Enter date in this manner if Date Format setting DATE_F = YMD.

EVE n Show standard event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE D n Show digital data event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF1 n Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

GRO n Switch to Setting Group n. (Will not function if any SSn Relay Word bit is asserted.)

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay. In Access

Level 2, confirms that I/O boards are correct.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of up to 24 RTD inputs.

OPE n Assert the OCn Relay Word bit. Used to open breaker n if OCn is assigned to an

output contact. JMP6B must be in place to enable this command.

PAS Show existing Access Level 1, B, and 2 passwords.

PAS 1 xxxxxx Change Access Level 1 password to xxxxxx.

PAS B xxxxxx Change Access Level B password to xxxxxx.

Change Access Level 2 password to xxxxxx.

If xxxxxx is DISABLE (uppercase), password for selected level is disabled.

PAS C xxxxxx Change Access Level C password to xxxxxx.

If xxxxxx is DISABLE (uppercase), password for selected level is disabled.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

RES RESET51 command resets all inverse-time O/C elements for both windings and the

neutral elements.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SET n Change relay group settings (overcurrent, differential, etc.).

For the SET commands, parameter n is the setting name at which to begin editing settings. If parameter n is not entered, setting editing starts at the first setting.

SET G Change global settings. SET P n Change port settings.

SET R Change Sequential Events Recorder (SER) settings.

SHO n Show relay group n settings. Shows active group if n is not specified.

SHO G Show relay global settings.

SHO P Show port settings and identification of port to which user is connected.

SHO P n Show port settings for port n (n = 1, 2, 3, 4). SHO R Show Sequential Events Recorder (SER) settings.

STA Show relay self-test status.

TAR R Return front-panel LED targets to regular operation and reset the tripping front-panel targets.

TAR n k Show Relay Word row n status (n = 0 through 41). Enter number k to scroll Relay

Word row n status k times on screen.

Append F to display targets on the front panel, second row of LEDs.

TFE Displays cumulative and individual through-fault event data. The twenty (20) most

recent individual events are displayed.

TFE A Displays cumulative and individual through-fault event data. All the most recent

individual events are displayed, up to 1200.

TFE C Clears/resets cumulative and individual through-fault event data.

TFE n Displays cumulative and individual through-fault event data. The n most recent

individual events are displayed, where n = 1 to 1200.

Preloads cumulative through-fault event data. TFE P

Clears/resets cumulative and individual through-fault event data. TFE R

TIM Show or set time (24 hour time). Show time presently in the relay by entering just

TIM. Example time 22:47:36 is entered with command TIM 22:47:36.

TRI Trigger an event report.

TABLE OF CONTENTS

FION 8: FRONT-PANEL INTERFACE	8-1
Front-Panel Operation	8-1
Time-Out	
Displays	8-1
Target LEDs	
Password Access	
Pushbuttons	8-3
Primary Function Review	
TARGET RESET/LAMP TEST	
METER	
Windings (W1, W2, W3, W4)	8-4
Differential Element (DIF)	
Battery Monitor (VDC)	
EVENTS	
STATUS	8-5
OTHER	8-5
BKR	
DATE	
LCD	
RESET51	8-7
TAR	8-7
TIME	
SET	8-8
GLOBAL	8-8
GROUP	
PASSWORD	
PORT	
CNTRL	
Local Control	
GROUP	
Secondary Function Review	
CANCEL	
SELECT	
Arrows	
EXIT	8-16
Pushbutton/Serial Port Equivalents	
Programmable LED A, LED B, LED C, LED15, LED16	
Rotating Default Display	
Traditional Indicating Panel Lights Replaced With Rotating Default Display	
General Operation of Rotating Default Display Settings	
Circuit Breaker Status Indication Example	
Circuit Breaker Closed	
Circuit Breaker Open	

	Display Only One Message Example	8-19
	Circuit Breaker Closed	
	Circuit Breaker Open	
	Dynamic Display	
	Display Formats and Settings	
	Dual-Line Format	
	Same-Line Format (Time-Overcurrent Elements Only)	8-21
	Display Time-Overcurrent Element Pickup Settings	
	Dual-Line Setting Example	
	Same-Line Setting Examples	8-23
	Display Metering and Breaker Wear Monitor	8-23
	Matching Relay Word Bits	8-24
	Mnemonics	8-24
	Metering and Breaker Wear Monitor Resolution	8-25
	Scroll Lock Control of Front-Panel LCD	8-25
	Select Scroll Lock	8-25
	Stop Scrolling (Lock)	8-26
	Restart Scrolling (Unlock)	8-26
	Single Step	8-26
	Exit	8-26
Figu	ures of Selected Front-Panel Menu Structures	8-27
	TABLES	
Table 8.1:	Correspondence Between Local Control Switch Positions and Label Settings	8-12
Table 8.2:	Correspondence Between Local Control Switch Types and Required Label Settings	
Table 8.3:	Front-Panel Button Serial Port Equivalents	
Table 8.4:	Dynamic Display Same-Line Overcurrent Elements	
Table 8.5:	Dynamic Display Mnemonics	
	FIGURES	
Figure 8.1:	SEL-387A Front-Panel User Interface	8-1
Figure 8.2:	Local Control Switch Configured as an ON/OFF Switch	
Figure 8.3:	Local Control Switch Configured as an OFF/MOMENTARY Switch	
Figure 8.4:	Local Control Switch Configured as an ON/OFF/MOMENTARY Switch	
Figure 8.5:	METER Menu and Display Structure	
Figure 8.6:	EVENTS Display Structure	
Figure 8.7:	OTHER / BKR Menu and Display Structure	
Figure 8.8:	SET Menu and Display Structure	8-30

SECTION 8: FRONT-PANEL INTERFACE

FRONT-PANEL OPERATION

A close-up view of the user interface portion of the SEL-387A Relay front panel is shown in Figure 8.1. It includes a two-line, 16-character LCD display; 16 LED target indicators; and eight pushbuttons for local communication.

Figure 8.1: SEL-387A Front-Panel User Interface

The LCD display shows event, metering, setting, and relay self-test status information. The display is controlled with the eight multifunction pushbuttons. The target LEDs display relay target information as described by the legend. The bottom row can be remapped to display a Relay Word row of bits, in response to the **TAR F** serial port command.

Time-Out

If no buttons are pressed on the front panel, the relay waits a time period specified in the SET G setting FP_TO (Front-Panel Time-Out) and then takes the following actions:

- The front-panel LCD display resets to the default display.
- The front-panel access level reverts to Access Level 1.
- The LCD backlighting is turned off.
- Any routine being executed via a front-panel command is interrupted.
- The target LEDs (lower row) revert to the default targets.

FP_TO is factory-set to 15 minutes and can be set from 0 to 30 minutes. If zero is selected, the front panel will never time out. A zero setting is useful when testing, but do not leave the time-out set at zero. The backlight will fail if lit for prolonged periods of time, and the target LEDs that may have been changed using the **TAR F** command will not be reset to the default targets. Reset FP_TO to some nonzero value, then *push any button* — the relay will not revert to the new value of FP_TO until a button has been pushed.

Displays

The LCD display is controlled by the pushbuttons, automatic messages the relay generates, and user-programmed Display Points. Display Points and LCD scrolling controls are discussed at the end of this section in more detail. The default display is a scroll through any active, nonblank Display Points. If none are active, the relay scrolls through up to four two-line displays of the

A-, B-, and C-phase currents in the two windings in primary amperes. If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the display as set. The two-line current display for Winding "n" is turned off if both of the settings E87 and EOCn are set to "N." Each display remains for Global setting SCROLD (seconds) before scrolling continues. Any message generated by the relay because of an alarm condition takes precedence over the normal default display. The **EXIT>** button returns the display to the default display, if some other front-panel function is being performed.

Error messages such as self-test failures are displayed on the LCD in place of the default display when they occur. Do not power down the relay if this occurs; refer to **Section 10: Testing and Troubleshooting** for further instructions.

During power up and when executing the **R_S** command to reset factory default settings, the LCD displays "Initializing." It will then scroll through the winding current displays until the relay is again enabled. When the EN LED indicates the relay is enabled, the active Display Points will be scrolled.

Menu choices on the LCD display are listed horizontally on the second line. The first character of the menu choice is underlined. The left and right arrow buttons move the underline to the adjacent menu selection. Once the underline indicates your selection, use the **<SELECT>** button to proceed.

Target LEDs

The target LEDs are an indication of what the relay has detected on the power system and how the relay has reacted. The front-panel legend gives a brief description of each target, but *Section 4: Control Logic* describes each target LED in detail.

The only times the target LEDs do not illuminate according to their labels is when (1) LEDA, LEDB, LEDC, LED15, or LED16 has been reprogrammed by the user to respond to a SELOGIC® control equation or (2) the **TAR F** command is issued through one of the serial ports. The **TAR F** command remaps the second row of LEDs to follow a particular row in the Relay Word bits, such that a Relay Word bit that is asserted will light the corresponding LED position. Refer to *Section 7: Serial Port Communications* for a complete description of the **TAR F** command.

The states of the 10 dedicated LEDs (all but EN, A, B, C, LED15, LED16) are stored in nonvolatile memory. If power to the relay is lost, these 10 targets will return to their last state when power is restored. EN responds only to internal self-test routines, while A, B, C, LED15, and LED16 respond to the present state of their Global settings, which are SELOGIC control equations.

Password Access

Commands that are at Access Level 2 (2AC) or the Breaker Access Level (BAC) are password protected from the front panel. Access Level 1 commands are not password protected. The front panel is normally active at Access Level 1. If you issue a command from the front panel that requires a Level B or Level 2 password, the relay prompts you for a password. After you enter the password for the higher access level, you remain at that access level only until the front panel times out from inactivity or you EXIT from the specific command. When you EXIT the command, the front panel returns to Access Level 1.

If the password jumper, JMP6A, is installed, there is no password protection, and you will not be prompted for a password. If a particular level password has been disabled with serial port command **PAS n DISABLE<ENTER>**, you will not be prompted for a password.

When prompted for a password, enter the BAC or 2AC password, depending on the requirements of the command. All commands are available using the 2AC password. The front-panel request for password shows a display of six characters, shown initially as ABCDEF, with the A underscored. Use the up/down arrow keys to scroll and set the first character of the password. Passwords are case sensitive; be sure you use upper- or lowercase letters as needed. Use the right arrow key to move to the second character, and adjust it using the up/down arrows as before. Continue this process until **all six** characters are filled. If the password has less than six characters, fill the remaining slots with a "blank," found between the numeral 9 and the lowercase "a" in the character scroll. When the password is complete, push **SELECT>** to enter it. If the password is correct, the relay will change to the higher level and permit you to perform that level's commands. If it is incorrect, the relay will declare an "Invalid Password," and allow another attempt. After three incorrect attempts, the relay will pulse the ALARM contact for one second and the front panel will exit the command you are trying to access.

PUSHBUTTONS

Eight multifunction pushbuttons control the front-panel display. The button legend defines the primary function in the top row and the secondary function in the bottom row. The primary functions are for command selection and the secondary functions are for cursor movements and specific commands within dialogues. The eight pushbutton primary functions will be discussed in the order in which they appear from left to right on the front panel.

Primary Function Review

TARGET RESET/LAMP TEST

The left-most button is dedicated to the **<TARGET RESET>** function. Except while viewing or editing settings, pressing **<TARGET RESET>** causes the front-panel LEDs to illuminate for a two-second lamp test and then clears all target LEDs except for the EN LED, which is illuminated if the relay is enabled. While viewing or editing settings, the **<TARGET RESET>** button acts as a Help function, showing specific information about the displayed setting.

METER

The **<METER>** button performs all of the **MET** serial port commands, via a multilevel menu structure. The METER display is updated every two seconds.

While within the METER menu structure, the **<CANCEL>** button will take the user back up to the previous menu. The **<EXIT>** button will take the user out of METER and back to the default display.

While METER information is being scrolled every two seconds, the scroll can be stopped by pushing **SELECT>**. The user may then manually scroll through the displays with the up/down arrow keys. This facilitates writing down the displayed information by hand, for example. Pushing **SELECT>** again will resume the scroll.

Figure 8.5, at the end of this section, shows the full METER menu and display structure.

When **<METER>** is pushed, the seven dual-function buttons revert to their secondary functions. The first METER menu prompts the user to select **W1**, **W2**, **W3**, **W4**, **DIF**, or **VDC** metering display. W1 through W4 are winding displays, DIF is the differential element display, and VDC is the Battery Monitor display. Winding 3 always displays 0 in the SEL-387A, but Winding 4 shows the neutral current inputs. Use any arrow button to highlight the choice. Then push **<SELECT>**.

Windings (W1, W2, W3, W4)

If a winding has been selected, a second menu appears prompting the user to select the type of metering to display. The choices are **INST**antaneous, **DEM**and, **PKD** peak demand, or **SEC**ondary. Use the right/left arrows to choose, then push **SELECT>**.

Note: The harmonic spectrum metering function, the **MET H** serial port command, is not available from the front panel.

If INST or SEC is selected, the relay scrolls through the primary current magnitudes or secondary current magnitudes and angles for the selected winding. If DEM or PKD is selected, a third menu appears prompting the user to select to either **DISPLAY** the demand information or to **RESET** the demand accumulators.

Note: RESET of the DEM or PKD is a Level 1 function and is not password protected from the front panel.

Use the right/left arrows and **<SELECT>** to choose. If RESET is chosen, the relay will prompt for a Yes/No verification of the choice. Use the right/left arrows and **<SELECT>** to choose. If DISPLAY is chosen, the relay will scroll through the demand values.

If the Analog Input Label settings (IAW1, etc.) have been renamed, these will appear in the displays as set.

Differential Element (DIF)

If DIF is selected, the relay scrolls through the instantaneous multiple of tap values for Operate, Restraint, and harmonic quantities.

Battery Monitor (VDC)

If VDC is selected, the relay displays "Station Battery" and "VDC= nnn.n."

EVENTS

Push the **<EVENTS>** button to display short event summaries, comparable to the **HIS** serial port command.

If no EVENT records exist, the display states "No Fault Data" and terminates the command.

If there are records to view, use the right/left arrows to review data within an event record and the up/down arrows to move between event records. Information displayed for a given event is

the event number, date/time, active setting group, fault targets, and the winding secondary current magnitudes (IA, IB, IC). The currents only appear if the entire event report still resides in relay memory. The Analog Input Label names are not used in this display. Current information is simply listed, for example, as "W1" followed by "A B C" and the magnitudes. There may be up to 80 event summaries in the history buffer, but a much smaller number of full event reports. The EVENTS command will display everything but the currents for the older, incomplete history summaries. Use <CANCEL> or <EXIT> to return to the default display.

Figure 8.6, at the end of this section, shows the EVENTS display structure.

STATUS

The **<STATUS>** button displays the relay status information in similar fashion to the serial port **STA** command. When **<STATUS>** is pushed, the initial display shows:

STATUS: [OK/WARN/FAIL]
FID=SEL-387A-Rxxx-V0-Zxxxxxxx-Dxxxxxxxx (e.g., the first 12 characters of the FID string)

The STATUS line shows the worst state of the several parameters examined. The right/left arrow keys can be used to view the rest of the FID string.

The up/down arrow keys are then used to manually scroll through the diagnostic fields, showing the analog channel offsets, power supply voltages, internal temperature, RAM (OK/FAIL), etc. The display remains in this scroll sequence until either **<CANCEL>** or **<EXIT>** are pushed.

OTHER

The **<OTHER>** button is used to access several miscellaneous functions, and mimics the corresponding serial port commands for these functions. Pushing **<OTHER>** provides a menu that prompts the user to select DATE, TIME, TARget, BKR(breaker), RESET51, or LCD. These perform the same functions as the serial port commands **DAT**, **TIM**, **TAR**, **BRE**, and **RES**. Use any arrow key and **<SELECT>** to choose the function. These OTHER subfunctions are discussed below in alphabetical order.

BKR

This function displays the breaker monitor accumulator values for internal and external trips, the accumulated interrupted currents by pole, the percent contact wear, and the time/date of last reset, for the selected breaker.

When BKR is selected, a second menu appears to prompt the user to select Bk1, Bk2, Bk3, or Bk4. Only Breakers 1 and 2 have information available; Breakers 3 and 4 always display zero values. Use the right/left arrow keys and **<SELECT>** to choose. Another menu appears, asking whether **DISPLAY** or **RESET** is desired. Use the right/left arrow keys and **<SELECT>** to choose.

If DISPLAY is selected, the display scrolls automatically, showing the Internal and External trip counters for the breaker chosen, the phase currents accumulated for each type of trip, and the percent contact wear by breaker pole. The first two-line display shows P1, the second P2, and the third P3. The fourth display shows "% wear" for each of the three poles, in integer values

of 100 or less. The fifth display shows "Last Reset From" and the date/time of last reset. Pushing **SELECT>** will toggle between stop-scroll and resume-scroll, to facilitate hand-recording of data values.

Push **<CANCEL>** to return to the OTHER main menu. Push **<EXIT>** to return to the default display.

Figure 8.7, at the end of this section, shows the full OTHER/BKR menu and display structure.

DATE

The DATE function is used to change the date stored in the relay. It is identical to the serial port **DATE** command.

When selected, a two-line display appears with the current date on the first line and a prompt to **Set** or **Cancel** on the second. Use the right/left arrows and **SELECT**> to choose. The date display will follow whichever format was selected by the DATE_F setting, either MDY or YMD. If Set is selected, a second display appears prompting the user to change the date. Since this is a Level 1 command, it is not password protected from the front panel. Use the right/left arrows to move between the MM/DD/YY fields, and the up/down arrows to scroll to the number selected for the field. When the date is shown correctly, push **SELECT**> to enter it. Push **CANCEL>** to return to the OTHER main menu. Push **EXIT>** to return to the default display.

Note: After setting the date, allow at least 60 seconds before powering down the relay or the new setting may be lost.

LCD

The rotating default display can be locked on a single screen. Access the scroll lock control with the OTHER pushbutton.

DATE TIME TAR BKR RESET51 LCD

Select LCD for Scroll Lock Control mode. The rotating display will then appear, and the scroll mode reminder screen will appear every eight seconds for one second as a reminder that the display is in Scroll Lock Control mode.

Scroll lock OFF SELECT to Lock

Stop Scrolling (Lock)

When in the Scroll Lock Control mode, press the SELECT key to stop display rotation. Scrolling can be stopped on any of the Display Point screens. While rotation is stopped, the active display is updated continuously so that the Display Point changes can be seen. If no button is pressed for eight seconds, the reminder message will appear for one second followed by the active screen.

Scroll lock ON SELECT to Unlock

Restart Scrolling (Unlock)

The SELECT key unlocks the modified rotating display.

Single Step

From the Scroll Locked state, single-step through the display screens by pressing the SELECT key twice. Wait for the first press to display the next screen as the active display, then press the SELECT key a second time to freeze scrolling.

Exit

Press the EXIT key to leave Scroll Lock Control and return the rotating display to normal operation.

Cancel

Press the CANCEL key to return to the OTHER menu.

DATE TIME TAR BKR RESET51 LCD

RESET51

This command exactly equates to the **RES** serial port command. RESET51 clears all time accumulators of all the inverse-time overcurrent elements. **RESET51** may be useful for saving time in testing the relay overcurrent elements but is not likely to be used while the relay actually is in service.

If RESET51 is selected, a password screen will appear if password protection is in force. Next, a **Reset 51? Yes No** screen appears. Use the right/left arrows to underscore Yes or No, then push **<SELECT>**. Yes will reset the accumulators and exit the command. No will abort the command and return to the OTHER main menu; or, simply push **<CANCEL>** to return to the OTHER main menu. Push **<EXIT>** to return to the default display.

TAR

This command is roughly equivalent to the **TAR F** serial port command. When **TAR** is selected in the OTHER main menu, the display shows **TAR 0**, the first row of the Relay Word bits, with **EN** shown in the second row (relay enabled). The up/down arrow keys may be used to scroll through the remaining rows of the Relay Word bits. For these rows, the asserted Relay Word bit names will be listed in the second row of the display, and the corresponding LED positions will be lit in the target area above the display. If more bits are asserted than will fit in the display, the right/left arrow keys may be used to see the off-screen names.

Push **<CANCEL>** to return to the OTHER main menu. Push **<EXIT>** to return to the default display.

TIME

This command works like the **DATE** command above and is equivalent to the **TIME** serial port command.

When selected, a two-line display appears, with the current time on the first line and a prompt to **Set** or **Cancel** on the second. Use the right/left arrows and **SELECT**> to choose. Since this is a Level 1 command, it is not password protected from the front panel. If Set is selected, a second display appears prompting the user to change the time. Use the right/left arrows to move between the HH:MM:SS fields and the up/down arrows to scroll to the number selected for the field. When the time is shown correctly, push **SELECT**> to enter it. Push **CANCEL>** to return to the OTHER main menu. Push **EXIT>** to return to the default display.

Note: After setting the time, allow at least 60 seconds before powering down the relay or the new setting may be lost.

SET

The SET function has the most elaborate menu and display structure of all the pushbutton functions. Only numeric value settings or settings having fixed Character string values can be displayed or changed on the display. Settings which are SELOGIC control equations cannot be displayed or changed.

To show or set relay settings, press the **<SET>** button. There are four set/show options: **GROUP**, **GLOBAL**, **PORT**, and **PASS**. Use the right/left arrow keys and **<SELECT>** to choose. These will be discussed in alphabetical order.

Figure 8.8, at the end of this section, shows the essential menu and display structure for the SET button. It does not show anything below the setting section (subgroup) level, since this would be too cumbersome.

GLOBAL

This command is roughly equivalent to the **SHO G** and **SET G** serial port commands. When GLOBAL is selected, a menu appears for selecting whether to **Set** or **Show** the settings. If Set, a password entry screen appears if password protection is in force.

The next screen is either the **Set GLOBAL** or **Show GLOBAL** display, in which a message scrolls across the second line, reminding you to "Press TARGET RESET for help during set/show routine." This special use for the TARGET RESET button gives you a short description of the setting and the range of values, should you not recognize the setting by its Character string name.

The next menus to appear let you enter a specific section of the GLOBAL settings, rather than having to scroll through all GLOBAL settings. The sections are **RELAY SETTINGS**, **BATTERY MONITOR**, **BKRN MONITOR**, **ANALOG INPUT LABELS**, **SETTING GROUP SE**lection, and **FRONT PANEL**. Use any arrow key to move to the desired section, then push **SELECT>** to enter that section.

For example, if we select RELAY SETTINGS, the first setting **LER=15** appears in the second line of the display. If you do not recognize this setting, push the TARGET RESET button, and a

single scroll across the first line will indicate that this is the "Length of Event Report (15, 30, 60 Cycles)" setting.

If we are in the Show mode, we can only observe the value. The **SELECT>** button acts like a down arrow, to move to the next setting. The up/down arrows themselves can be used to move within the list of settings.

If in the Set mode, we can choose to change the value by pushing **SELECT>**. An underscore will appear under the first character of the value. If it has discrete values, like LER, the up/down arrows can be used to scroll through the available choices. If it is a numerical variable, the digits are changed one at a time, using the right/left arrows to move to the digit and the up/down arrows to select the number to insert. When the setting is displayed at the new value, push **SELECT>** to enter the change.

When the complete list of settings has been shown or set, the display returns to the level of selection of which section to Set or Show. **<CANCEL>** may also be used to move to this level from within the section of settings. **<EXIT>**, in the Set mode, brings the display to a **Save Changes? Y/N** selection point. In the Show mode, it returns to the default display.

GROUP

This command is roughly equivalent to the **SHO** and **SET** serial port commands. When GROUP is selected, a menu appears for selecting which of the six setting groups to Show or Set. Use the right/left arrow keys and **SELECT>** to choose. The next screen asks you if you intend to **Set** or **Show** the settings. If Set, a password entry screen appears, if password protection is in force.

The next screen is either the **Set GROUP n** or **Show GROUP n** display (n = the group number), in which a message scrolls across the second line, reminding the user to "Press TARGET RESET for help during set/show routine." This special use for the TARGET RESET button gives you a short description of the setting and the range of values, should you not recognize the setting by its Character string name.

The next menus to appear let you enter a specific section of the GROUP settings, rather than having to scroll through all GROUP settings. The sections are **CONFIG. SETTINGS**, **GENERAL DATA**, **DIFF ELEMS**, **RESTRICTED EARTH**, **WINDING n ELEMS**, **NEUTRAL ELEMS**, **RTD ELEMS**, and **MISC. TIMERS**. Four additional section titles appear after **MISC. TIMERS**. These are **TRIP LOGIC**, **CLOSE LOGIC**, **EVENT TRIGGER**, and **OUTPUT CONTACT L**ogic. These sections are entirely SELOGIC control equations, and cannot be viewed or changed from the front panel. Use an arrow key to scroll past these latter sections. Use any arrow key to move to the desired section, then push **SELECT>** to enter that section.

For example, if we select CONFIG. SETTINGS, the first setting **E87=Y** appears in the second line of the display. If you do not recognize this setting, you can push the TARGET RESET button and a single scroll across the first line will indicate that this is the "Enable Wdg1 in Differential Element (Y, N)" setting.

If we are in the Show mode, we can only observe the value. The **SELECT>** button acts like a down arrow to move to the next setting. The up/down arrows themselves can be used to move within the list of settings.

If in the Set mode, we can choose to change the value by pushing **SELECT>**. An underscore will appear under the first character of the value. If it has discrete values, like E87, the up/down arrows can be used to scroll through the available choices. If it is a numerical variable, the digits are changed one at a time, using the right/left arrows to move to the digit and the up/down arrows to select the number to insert. When the setting is displayed at its new value, push **SELECT>** to enter the change.

When the complete list of settings has been shown or set, the display returns to the menu level of selection of which section to Set or Show. **<CANCEL>** may also be used to move to this level from within the section of settings. **<EXIT>**, in the Set mode, brings the display to a **Save Changes? Y/N** selection point. In the Show mode it returns to the default display.

PASSWORD

This device is shipped with default passwords. Default passwords should be changed to private passwords at installation. Failure to change each default password to a private password may allow unauthorized access. SEL shall not be responsible for any damage resulting from unauthorized access.

This command is like the password setting feature of the **PAS** serial port command. You cannot view the list of passwords from the front panel; you can only enter existing passwords where required or change them to some other value with this front-panel command.

If **PASSWORD** is selected, the first display requires you to enter the existing Level 2 password, if password protection is in force.

The next display asks the level of access for which you are changing the password. These are **ACC**, **BAC**, and **2AC**, corresponding to the Level 1, Level B, and Level 2 serial port access request commands. Use the right/left arrow keys and **SELECT>** to choose.

The third display permits setting of the new password for the level selected. This is done in the same manner as for normal entering of the password. To set it, Push **<SELECT>** when the new password is displayed fully.

<CANCEL> may be used to return to an earlier menu. **<EXIT>** will abort the **PASSWORD** command and return to the default display.

PORT

This command is roughly equivalent to the **SET P** and **SHO P** serial port commands. When **PORT** is selected, a menu appears for selecting which of the four port setting groups to Show or Set. Use the right/left arrow keys and **SELECT>** to choose. The next screen asks you if you intend to **Set** or **Show** the settings. If Set, a password entry screen appears, if password protection is in force.

The next screen is either the **Set PORT n** or **Show PORT n** display (n = the port number), in which a message scrolls across the second line reminding the user to "Press TARGET RESET for help during set/show routine." This special use for the TARGET RESET button provides the user with a short description of the setting and the range of values, should the user not recognize

the setting by its Character string name. After the scroll, the first setting for the selected port appears in the second line of the display.

For example, the first setting **PROTO=SEL** appears. If you do not recognize this setting, push the TARGET RESET button, and a single scroll across the first line will indicate that this is the "Protocol (SEL, LMD, DNP, RTDA, RTDB)" setting.

If we are in the Show mode, we can only observe the value. The **SELECT>** button acts like a down arrow to move to the next setting. The up/down arrows themselves can be used to move within the list of settings.

If in the Set mode, we can choose to change the value by pushing **SELECT>**. An underscore will appear under the first character of the value. If it has discrete values, like PROTO, the up/down arrows can be used to scroll through the available choices. If it is a numerical variable, the digits are changed one at a time, using the right/left arrows to move to the digit and the up/down arrows to select the number to insert. When the setting is displayed at the new value, push **SELECT>** to enter the change.

When the complete list of settings has been shown or set, the display prompts for a **Save Changes? Y/N** choice. After the choice, it exits the **PORT** command and returns to the default display. **<CANCEL>** may be used to return to an earlier menu. **<EXIT>** will abort the **PORT** command and return to the default display.

CNTRL

Use local control to enable/disable schemes, trip/close breakers, and so on, via the front panel.

Local Control

In more specific terms, local control asserts (sets to logical 1) or deasserts (sets to logical 0) local control switches referred to as local bits LB1 through LB16. These local bits are available as Relay Word bits and are used in SELOGIC control equations.

Local control can emulate the following switch types in Figure 8.2 through Figure 8.4.

Figure 8.2: Local Control Switch Configured as an ON/OFF Switch

Figure 8.3: Local Control Switch Configured as an OFF/MOMENTARY Switch

Figure 8.4: Local Control Switch Configured as an ON/OFF/MOMENTARY Switch

Local control switches are created by making corresponding switch position label settings. These text label settings are set with the **SET G** command or viewed with the **SHO G** command via the serial port. Refer to **SHO Command (Show/View Settings)** in **Section 7: Serial Port Communications and Commands**.

Table 8.1: Correspondence Between Local Control Switch Positions and Label Settings

Switch Position	Label Setting	Setting Definition	Logic State
not applicable	NLBn	Name of Local Control Switch	not applicable
ON	SLBn	"Set" Local Bit LBn	logical 1
OFF	CLBn	"Clear" Local Bit LBn	logical 0
MOMENTARY	PLBn	"Pulse" Local Bit LBn	logical 1 for one processing interval

Note the first setting in Table 8.1 (NLBn) is the overall switch name setting.

Label the switch positions to accurately describe the control function presented on the LCD. Use any printable ASCII characters in the local control switch position label settings; you can enter 14 characters for setting NLBn and 7 characters each for settings CLBn, SLBn, and PLBn.

Table 8.2: Correspondence Between Local Control Switch Types and Required Label Settings

Local Switch Type	Label NLBn	Label CLBn	Label SLBn	Label PLBn
ON/OFF	X	X	X	
OFF/MOMENTARY	X	X		X
ON/OFF/MOMENTARY	X	X	X	X

Set NLBn, SLBn, CLBn, and PLBn to "NA" to disable local control switches thus "nulling" all the label settings for that switch. The local bit associated with this disabled local control switch is then fixed at logical 0.

Factory Settings Examples:

Local bits LB3 and LB4 are used in a few of the factory SELOGIC control equation settings for manual trip and close functions. Their corresponding local control switch position labels are set to configure the switches as OFF/MOMENTARY switches:

Local Bit	<u>Label Settings</u>	Function
LB3	NLB3 = MANUAL TRIP 1	trips breaker and drives reclosing relay to lockout
	CLB3 = RETURN	OFF position ("return" from MOMENTARY position)
	SLB3 =	ON position – not used (left "blank")
	PLB3 = TRIP	MOMENTARY position
LB4	NLB4 = MANUAL CLOSE 1	closes breaker, separate from automatic reclosing
	CLB4 = RETURN	OFF position ("return" from MOMENTARY position)
	SLB4 =	ON position – not used (left "blank")
	PLB3 = CLOSE	MOMENTARY position

View Local Control (With Factory Settings)

Access local control via the CNTRL pushbutton. If local control switches exist (i.e., corresponding switch position label settings were made), the following message displays with the rotating default display messages.

Press the CNTRL pushbutton, and the first set local control switch displays (shown here with factory default settings).

Press the right arrow pushbutton, and scroll to the next set local control switch.

The MANUAL TRIP 1: RETURN/TRIP and MANUAL CLOSE 1: RETURN/CLOSE switches are both OFF/MOMENTARY switches (see Figure 8.4).

There are no more local control switches in the factory default settings. Press the right arrow pushbutton and scroll to the "output contact testing" function.

This front-panel function provides the same function as the serial port PUL command.

Operate Local Control (With Factory Settings)

Press the right arrow pushbutton and scroll back to the first set local control switch in the factory default settings.

Press the SELECT pushbutton to display the operate option for the displayed local control switch.

Scroll left with the left arrow button and then select "Yes" to show the new local control switch position.

Because this is an OFF/MOMENTARY type switch, the MANUAL TRIP 1 switch returns to the RETURN position after momentarily being in the TRIP position. Technically, the MANUAL TRIP 1 switch (being an OFF/MOMENTARY type switch) is in the TRIP position for one processing interval (1/4 cycle; long enough to assert the corresponding local bit LB3 to logical 1) and then returns to the RETURN position (local bit LB3 deasserts to logical 0 again).

On the display, the MANUAL TRIP 1 switch shows in the TRIP position for two seconds (long enough to be seen), and then it returns to the RETURN position.

The MANUAL CLOSE 1 switch is an OFF/MOMENTARY type switch, like the MANUAL TRIP 1 switch, and operates similarly.

Local Control State Retained When Relay De-Energized

Local bit states are stored in nonvolatile memory, so when power to the relay is turned off, the local bit states are retained.

For example, suppose the local control switch with local bit output LB1 is configured as an ON/OFF type switch (see Figure 8.2).

If power to the relay is turned off and then turned on again, local bit LB1 remains at logical 1. This is similar to a traditional panel, where enabling/disabling of other functions is accomplished by panel-mounted switches. If dc control voltage to the panel is lost and then restored, the switch positions are still in place. If the switch is in the enable position (switch closed) before the power outage, it will be in the same position when power is restored.

Pulse Output Contacts

Use the control button **<CTRL>** to mimic the **PUL**se, **OPE**n, and **CLO**se serial port commands. This is useful during relay checkout to verify that output contacts actually function in response to a command.

Pulse Output Contacts are available in the **CTRL** menu after the Local Bit pushbutton functions. The screen will prompt for "**Pulse Close Open.**" Use the right/left arrow keys and **<SELECT>** to choose.

If **Pulse** is selected, the next screen will prompt for the output to be pulsed. These are **OUT101** to **OUT107** and **NOTALM**. Use the up/down arrow keys and **SELECT>** to choose. The display will follow with a Yes/No verification request. Again, use the up/down arrow keys and **SELECT>** to choose.

The relay will pulse the output contact for one second then return to the contact selection screen in case there are more contacts to test. **<CANCEL>** will return to the main CNTRL menu. **<EXIT>** will abort the command and return to the default display.

Note: The CNTRL function, while useful during testing, should not be used while the relay is actually in service. During the one-second interval while contact OUT10X is being pulsed, all other OUT10Y contacts are frozen in their existing state and are not permitted to change. This could prevent a trip or other vital output from being issued during the pulse interval.

GROUP

The GROUP function is identical to the GRO and GRO n (n = 1 to 6) serial port commands.

When you select the **<GROUP>** button, the relay display shows "Active Group 1" (for example), and asks whether you wish to **Change** or **Exit**. Use the right/left arrow keys and **<SELECT>** to choose.

If Change is selected, the display shows **Change to Group** in the first line, and the present group number in the second line. Use the up/down arrows and **SELECT>** to choose another group.

The relay will ask for a Yes/No verification of the change. Use the right/left arrow keys and **SELECT>** to choose. The change will be made and the ALARM contact pulsed for one second if Yes is chosen, and if SS1 through SS6 are not asserted or not assigned. These group selection settings always take precedence over the Group command function.

<CANCEL> may be used to return to an earlier menu. **<EXIT>** will abort the command and return to the default display.

Secondary Function Review

The secondary button functions come into effect as soon as one of the buttons for the above primary functions has been pushed. These secondary functions remain in effect until a primary function has been completed, aborted, or exited and the display has returned to the default display. They will be discussed in the left to right order in which they appear on the front panel, below the horizontal line. The first button, TARGET RESET / LAMP TEST, has no secondary function except as a HELP key, explained earlier under the SET primary function.

CANCEL

The **<CANCEL>** button returns the display to the previous menu within a primary function. Use the **<CANCEL>** button to go back after issuing a **<SELECT>**. If there is no previous menu, the default display is shown. If the **<CANCEL>** button is pushed while in the default display mode, the relay interprets the button as the **<METER>** button.

SELECT

The **SELECT>** button is used within primary function dialogues to select a menu choice. Once the choice has been identified with the arrow buttons, use the **SELECT>** button to select that choice. If the **SELECT>** button is pushed while in the default display mode, the relay interprets the button as the **SEVENTS>** button.

Arrows

The arrow buttons are used throughout the front-panel primary function displays for scrolling through lists of items, identifying menu choices by moving the cursor, and scrolling to the left or right for more information. If one of the arrow buttons is pushed while in the default display mode, the relay interprets the button according to the primary function. That is:

EXIT

If you push the **EXIT>** button at any time within one of the dialogues, the procedure is aborted and the display reverts to the default display. If the **EXIT>** button is pushed while in the default display mode, the relay interprets the button as the **GROUP>** button.

Pushbutton/Serial Port Equivalents

Table 8.3 summarizes the pushbutton functions and their approximate equivalents in serial port commands.

Table 8.3: Front-Panel Button Serial Port Equivalents

Button	Similar SEL-387A Serial Port Commands
TARGET RESET/LAMP TEST	TAR R
METER	MET, MET (D, DIF, P, SEC, RD, RP)
EVENTS	HIS
STATUS	STA
OTHER	DAT, TIM, TAR F, BRE, BRE R, RES
SET	SET, SET G, SET P, SHO, SHO G, SHO P, PAS
CNTRL	PUL, CLO, OPE
GROUP	GRO, GRO n

PROGRAMMABLE LED A, LED B, LED C, LED15, LED16

Five of the LEDs in the second row may be programmed by the user by use of SELOGIC control equations. These settings appear under the FRONT PANEL section of the Global settings, accessible by the **SHO G** and **SET G** serial port commands. These settings can neither be seen nor changed from the front panel itself.

The factory default settings are as follows:

The Relay Word bits OCA, OCB, and OCC indicate selection of Phase A, B, or C by the overcurrent elements for those respective phases. The Relay Word bits 87E1, 87E2, and 87E3 indicate Trips initiated by Differential Elements 1, 2, or 3, respectively. These correspond, essentially, to Phases A, B, and C. Thus, LEDA, LEDB, and LEDC are factory set to indicate either an overcurrent or differential selection of their respective phases as the ones involved in a fault. They are therefore labeled as "FAULT TYPE" LEDs.

It is probably best to leave these settings in place when the relay is in service so that observers of the front-panel labels will not be confused by seeing the LEDs lit for apparently no reason and being unable to verify why they are lit without having a serial port connection to the relay. For testing or other purposes, however, these programmable LEDs may be very helpful for identifying conditions, defined by SELOGIC control equations, which are of interest to the user.

ROTATING DEFAULT DISPLAY

Rotating default displays on the relay front panel replace indicating panel lights. Traditional indicating panel lights are turned on and off by circuit breaker auxiliary contacts, front-panel switches, SCADA contacts, etc. They indicate such conditions as circuit breaker open/closed. The message rank is:

- error message
- status message if no error message
- selected strings associated with Display Points if present
- if no strings associated with Display Points are present, current magnitudes of two windings

The Display Point label settings are displayed two at a time for a two-second interval before rotating to the next screen.

Traditional Indicating Panel Lights Replaced With Rotating Default Display

The indicating panel lights are not needed if the rotating default display feature in the SEL-387A is used.

There are 16 of these default displays available in the SEL-387A. Referred to as Display Points, each default display has two complementary screens (e.g., BREAKER CLOSED and BREAKER OPEN). The settings for these Display Points are located in the FRONT PANEL area of the Global settings. They are viewable and settable from the serial ports, via the **SHO G** or **SET G** commands. Since they include SELOGIC control equations and variable text, they cannot be accessed from the front panel.

General Operation of Rotating Default Display Settings

SELOGIC control equations Display Point setting DPn (n = 1 through 16) controls the display of corresponding, complementary text settings:

```
DPn_1 (displayed when DPn = logical 1)
DPn_0 (displayed when DPn = logical 0)
```

Make each text setting through the serial port using the command **SET G**. View these text settings using the serial port command **SHO G**. These text settings are displayed in pairs on the SEL-387A front-panel display in rotation. Global setting SCROLD determines how long each pair is displayed. They must not be longer than 16 characters maximum. Any active Display Points take precedence as the default display over the standard scroll through the winding current values. Relay-generated messages, however, take precedence over the Display Points.

Below are some examples of how the Display Points may be used.

Circuit Breaker Status Indication Example

Make SELOGIC control equations Display Point setting DP2:

DP2 = IN102 (IN102 is assigned to the 52A2 function for Breaker 2)

Make corresponding, complementary text settings:

```
DP2_1 = BREAKER 2 CLOSED
DP2_0 = BREAKER 2 OPEN
```

Display Point setting DP2 controls the display of the text settings.

Circuit Breaker Closed

The optoisolated input IN102 is energized when the 52a circuit breaker auxiliary contact is closed, resulting in:

$$DP2 = IN102 = logical 1$$

This results in the display of corresponding text setting DP2 1 on the front-panel display.

Circuit Breaker Open

The optoisolated input IN1 is de-energized when the 52a circuit breaker auxiliary contact is open, resulting in:

$$DP2 = IN102 = logical 0$$

This results in the display of corresponding text setting DP2_0 on the front-panel display.

Display Only One Message Example

To display just one screen, but not its complement, set only one of the text settings. For example, to display just the "breaker closed" condition, but not the "breaker open" condition, make the following settings:

```
DP2 = IN102 (52a circuit breaker auxiliary contact connected to input IN102)

DP2_1 = BREAKER 2 CLOSED (displays when DP2 = logical 1)

DP2_0 = (blank)
```

Circuit Breaker Closed

The optoisolated input IN102 is energized when the 52a circuit breaker auxiliary contact is closed, resulting in:

$$DP2 = IN102 = logical 1$$

This results in the display of corresponding text setting DP2_1 on the front-panel display.

BREAKER 2 CLOSED

Circuit Breaker Open

The optoisolated input IN102 is de-energized when the 52a circuit breaker auxiliary contact is open, resulting in:

$$DP2 = IN102 = logical 0$$

Corresponding text setting DP2_0 is not set (it is "blank"), so no message is displayed on the front-panel display.

Dynamic Display

You can display relay time-overcurrent pickup settings, metering values, breaker wear monitor values, and RTD readings on the SEL-387A front-panel LCD (subject to the number of available Display Points); these dynamic Display Points reflect actual settings and values in the relay and are in addition to the programmable text discussed previously. The relay displays these settings and metering quantities on the rotating default display.

Display Formats and Settings

The SEL-387A presents dynamic Display Points in a dual-line or a same-line format. Dual-line dynamic displays require two Display Points; the same-line format uses only one Display Point.

Dual-Line Format

Apply special control characters in display-point settings DPn_0 and DPn_1 to display relay values. Use the Display Point settings with a leading two-character sequence "::" (double colon) followed by the element name or mnemonic text setting. For a dual-line complementary-screen presentation format for the deasserted state (logical 0) use:

$$DP(n+1)_0 = ::NAME$$

where:

Xs indicate as many as 16 label characters,

n is Display Point 1, 3, 5, 7, 9, 11, 13, or 15,

(n+1) is the next Display Point, and

NAME is a relay element or mnemonic representing a time-overcurrent element pick up, a metering value, a breaker wear monitor value, or RTD readings.

For the asserted state (logical 1), replace DPn_0 with DPn_1.

For a setting example, see *Dual-Line Setting Example* in *Display Time-Overcurrent Element Pickup Settings*.

Same-Line Format (Time-Overcurrent Elements Only)

You can display time-overcurrent pickup settings on a single Display Point. For a same-line presentation format, use the Display Point settings with a prelabel (if needed), an embedded two-character sequence or an embedded three-character sequence, the mnemonic text, and a postlabel (if needed). The format for a same-line Display Point setting for the deasserted state (logical 0) is:

 $DPn_0 = XXX;;51nnP;YYY$

or

 $DPn_0 = XXX;;;kk;YYY$

where:

XXX is the prelabel,

YYY is the postlabel,

51nnP is the time-overcurrent element pickup, and

kk is a shorthand number indicating a particular time-overcurrent element pickup.

For the asserted state (logical 1) replace DPn_0 with DPn_1.

Table 8.4 shows the time-overcurrent element settings, resolution, and the maximum label characters. The maximum number of label characters in a same-line display is either six or nine characters. The relay shows six label characters when you use the embedded double semicolon (;;) and the actual name of the overcurrent element pick up; the relay displays nine label characters when you use the embedded triple semicolon (;;;) and overcurrent element number shown in Table 8.4. You can vary the number of label characters in the prelabel and the postlabel as long as the sum does not exceed the maximum.

You can omit either the prelabel or the postlabel. When excluding the postlabel, be sure to include the last semicolon.

For setting examples, see Same-Line Setting Examples in Display Time-Overcurrent Element Pickup Settings.

Table 8.4: Dynamic Display Same-Line Overcurrent Elements

Setting	Setting Displayed	Display Resolution	Label Characters (maximum)
;;51P1P	51P1P	######.##	6
;;51Q1P	51Q1P	######.##	6
;;51N1P	51N1P	######.##	6

Setting	Setting Displayed	Display Resolution	Label Characters (maximum)
;;51P2P	51P2P	######.##	6
;;51Q2P	51Q2P	######.##	6
;;51N2P	51N2P	######.##	6
;;51NN1P	51NN1P	######.##	6
;;51NN2P	51NN2P	######.##	6
;;51NN3P	51NN3P	######.##	6
;;;0	51P1P	######	9
;;;1	51Q1P	######	9
;;;2	51N1P	######	9
;;;3	51P2P	######	9
;;;4	51Q2P	######	9
;;;5	51N2P	######	9
;;;12	51NN1P	######	9
;;;13	51NN2P	######	9
;;;14	51NN3P	######	9

Display Time-Overcurrent Element Pickup Settings

Use Display Point text settings and logic settings to display the following relay elements in primary units:

The relay shows a dynamic display for these overcurrent element pickup settings in either a dualline presentation or a same-line presentation.

Dual-Line Setting Example

Enter the following settings for a dual-line display:

The following appears on the front-panel display:

BRKR 1 TRIPS AT 排排排排 A pri

where # designates the primary value of the 51P1P setting (51P1P multiplied by CTR1).

The relay recognizes the double-colon control string, locates the element name, validates the name, obtains the secondary value, multiplies the secondary value by setting CTRn, and displays the value with "A pri" appended.

Same-Line Setting Examples

Enter the following settings for a same-line display with six label characters:

The following appears on the front-panel display:

where # designates the primary value of the 51P1P setting (51P1P multiplied by setting CTR1). The second Display Point on this display was previously programmed to show circuit breaker status.

Enter the following settings for a same-line display with nine label characters:

The following appears on the front-panel display:

where # designates the primary value of the 51NN1P setting (51NN1P multiplied by CTRN1). The first Display Point on this display was previously programmed to show circuit breaker status.

Display Metering and Breaker Wear Monitor

The LCD displays the following secondary metering quantities as primary metering quantities (primary values) when you set the appropriate Display Point text settings and logic settings. Use the double-colon control string (::) for a dynamic display of the metering or breaker quantities listed in the following paragraphs.

Some of these display elements match internal Relay Word bits, and other display elements have mnemonics that represent the dynamic display quantity.

Matching Relay Word Bits

These dynamic display names have the same names as the Relay Word bits: IAW1, IBW1, ICW1, 3I1W1, 3I2W1, IRW1, IAW2, IBW2, ICW2, 3I1W2, 3I2W2, IRW2, IOP1, IOP2, IOP3, IRT1, IRT2, IRT3, I1F2, I2F2, I3F2, I1F5, I2F5, I3F5, VDC, RTD1A, RTD2A, RTD3A, RTD4A, RTD5A, RTD6A, RTD7A, RTD8A, RTD9A, RTD10A, RTD11A, RTD12A, RTD1B, RTD2B, RTD3B, RTD4B, RTD5B, RTD6B, RTD7B, RTD8B, RTD9B, RTD10B, RTD11B, RTD12B. For a description of these Relay Word bits, see *Section 4: Control Logic*.

Mnemonics

Table 8.5 lists the secondary metering quantities that differ from the Relay Word bits that the relay uses for demand metering, peak demand metering, and the breaker wear monitor.

Table 8.5: Dynamic Display Mnemonics

Mnemonic	Data
IAW1DEM	IAW1 demand current
IBW1DEM	IBW1 demand current
ICW1DEM	ICW1 demand current
3I2W1DEM	3I2W1 demand current
IRW1DEM	IRW1 demand current
IAW1PK	IAW1 peak demand current
IBW1PK	IBW1 peak demand current
ICW1PK	ICW1 peak demand current
3I2W1PK	3I2W1 peak demand current
IRW1PK	IRW1 peak demand current
IAW2DEM	IAW2 demand current
IBW2DEM	IBW2 demand current
ICW2DEM	ICW2 demand current
3I2W2DEM	3I2W2 demand current
IRW2DEM	IRW2 demand current
IAW2PK	IAW2 peak demand current
IBW2PK	IBW2 peak demand current
ICW2PK	ICW2 peak demand current
3I2W2PK	3I2W2 peak demand current
IRW2PK	IRW2 peak demand current
INTTRB1	Bkr1 internal trip count

Mnemonic	Data
INTIAW1	Bkr1 internal trip IA
INTIBW1	Bkr1 internal trip IB
INTICW1	Bkr1 internal trip IC
EXTTRB1	Bkr1 external trip count
EXTIAW1	Bkr1 external trip IA
EXTIBW1	Bkr1 external trip IB
EXTICW1	Bkr1 external trip IC
WEARAB1	Bkr1 A-phase wear monitor
WEARBB1	Bkr1 B-phase wear monitor
WEARCB1	Bkr1 C-phase wear monitor
INTTRB2	Bkr2 internal trip count
INTIAW2	Bkr2 internal trip IA
INTIBW2	Bkr2 internal trip IB
INTICW2	Bkr2 internal trip IC
EXTTRB2	Bkr2 external trip count
EXTIAW2	Bkr2 external trip IA
EXTIBW2	Bkr2 external trip IB
EXTICW2	Bkr2 external trip IC
WEARAB2	Bkr2 A-phase wear monitor
WEARBB2	Bkr2 B-phase wear monitor
WEARCB2	Bkr2 C-phase wear monitor

Metering and Breaker Wear Monitor Resolution

The front-panel display automatically adjusts the reporting resolution for the DEMAND and INST metering Display Points with the exception of station dc battery voltage. The number of decimal places ranges from zero to three. The value of the quantity determines the decimal point position. For example, if IAW1 is less than 10 kA, the display shows 9.999 kA. If IAW1 is greater than 10 kA but less than 100 kA, the decimal point shifts one place to the right and the LCD displays 10.00 kA. If IAW1 is greater than 100 kA, the LCD shows 100.0 kA.

Scroll Lock Control of Front-Panel LCD

Select Scroll Lock

The rotating default display can be locked on a single screen. Access the scroll lock control with the OTHER pushbutton.

DATE TIME 79
TAR BRK_MON LCD

Select LCD for Scroll Lock Control mode. The rotating display will then appear, and the scroll mode reminder screen will appear every eight seconds for one second as a reminder that the display is in Scroll Lock Control mode.

Scroll lock OFF SELECT to Lock

Stop Scrolling (Lock)

When in the Scroll Lock Control mode, press the SELECT key to stop display rotation. Scrolling can be stopped on any of the Display Point screens or on the current-meter display screen. While rotation is stopped, the active display is updated continuously so that current or Display Point changes can be seen. If no button is pressed for eight seconds, the reminder message will appear for one second, followed by the active screen.

Scroll lock ON SELECT to Unlock

Restart Scrolling (Unlock)

The SELECT key unlocks the LCD and resumes the rotating display.

Single Step

From the Scroll Locked state, single-step through the display screens by pressing the SELECT key twice. Wait for the first press to display the next screen as the active display, then press the SELECT key a second time to freeze scrolling.

Exit

Press the EXIT key to leave Scroll Lock Control and return the rotating display to normal operation.

FIGURES OF SELECTED FRONT-PANEL MENU STRUCTURES

Figure 8.5: METER Menu and Display Structure

Note. If Secondary currents > 33.3, drop the decimal place

Figure 8.6: EVENTS Display Structure

Figure 8.7: OTHER / BKR Menu and Display Structure

Figure 8.8: SET Menu and Display Structure

TABLE OF CONTENTS

SECTIO	N 9: EVENT REPORTS AND SER	9-1
	nding 3 and Winding 4 Reporting	
	oduction	
Sta	ndard 15-, 30-, or 60-Cycle Event Reports	
	Event Report Length (Settings LER and PRE)	
	Standard Event Report Triggering	
	Relay Word Bits TRIP1–TRIP5, CLS1–CLS4	
	Programmable SELOGIC Control Equation Setting ER	
	PULSE and TRIGGER Commands	
	Standard Event Report Summary	
	Event Type	
	Targets	
	Winding Currents	
	Retrieving Full-Length Standard Event Reports	
	Event (Winding Event Report)	
	Event DIE (Differential Event Beneat)	
	Event DIF (Differential Event Report) Event R (Raw Winding Event Report)	
	Compressed ASCII Event Reports	
	Extracting RMS Phasor Data from Filtered Event Reports	
Sec	uential Events Recorder (SER) Event Report	
500	SER Event Report Row Triggering and ALIAS Settings	
	Making SER Event Report Trigger Settings	
	Retrieving SER Event Report Rows	
	Clearing SER Event Report Buffer	
	Note: Clear the SER Buffer With Care	
	TABLES	
Table 9.1:	Event Types	9-4
Table 9.2:	Winding Event Report Current Columns	
Table 9.3:	Winding Event Report Output and Input Columns	9-7
Table 9.4:	Digital Event Report Column Description	
Table 9.5:	Differential Event Report Current Columns	9-13
Table 9.6:	Differential Event Report Element Columns	9-14
Table 9.7:	Raw Winding Event Report Current Columns	
Table 9.8:	Raw Winding Event Report Outputs and Inputs	9-18

FIGURES

Figure 9.1:	Example Event Summary	9-4
	Example Winding Event Report	
Figure 9.3:	Example Digital Event Report	9-9
Figure 9.4:	Example Differential Event Report	9-13
Figure 9.5:	Example Raw Winding Event Report	9-17
Figure 9.6:	Derivation of Event Report Current Values and RMS Current Values From	
-	Sampled Current Waveform	9-20
Figure 9.7:	Derivation of Phasor RMS Current Values From Event Report Current Values	9-21
Figure 9.8:	Example SER Event Report	9-22

SECTION 9: EVENT REPORTS AND SER

WINDING 3 AND WINDING 4 REPORTING

The SEL-387A Relay satisfies the requirement for a two-winding differential relay equipped with extensive I/O. To this end, the SEL-387A is a subset of the larger SEL-387 Relay, including most functions of the SEL-387, but suitable for two-winding applications only. Because the SEL-387A retains the reporting structure of the SEL-387, the report formats still include rows and/or columns for Windings 3 and 4. Because current values for Winding 3 no longer apply, they are displayed as zeros and should be ignored. When you order an SEL-387A with the optional Restricted Earth Fault (REF) elements, current channels assigned to Winding 4 in the SEL-387 are reassigned to represent neutral currents IN1, IN2, and IN3 (i.e., IAW4 = IN1, IBW4 = IN2, and ICW4 = IN3). In an SEL-387A without the REF option, the current values for Winding 4 are displayed as zeros.

Introduction

The SEL-387A offers two styles of event reports:

- Standard 15-, 30-, or 60-cycle event reports
- Sequential Events Recorder (SER) report

These event reports contain date, time, current, relay element, optoisolated input, and output contact information.

The relay generates (triggers) standard 15-, 30-, or 60-cycle event reports by fixed and programmable conditions. These reports show information for 15, 30, or 60 continuous cycles depending on the Global setting LER. The length of the prefault data contained in the event report is determined by the Global setting PRE. This setting allows for 1 to (LER-1) cycles of prefault data in each event report. The number of event reports stored in nonvolatile memory depends on the LER setting as follows:

<u>LER</u>	Number of Event Reports Saved
15	18–21
30	12–14
60	7

The number of events saved will be fewer if mixed lengths (e.g., LER = 60 for 3 event reports and then changed to LER = 30) are stored together or if the relay is subjected to frequent power-down/power-up cycles.

If the relay nonvolatile memory is full and another event is triggered, the latest event report will overwrite the oldest event report, and the oldest event report will be lost. See Figure 9.1 for an example standard 15-cycle event report.

The relay adds lines in the Sequential Events Recorder (SER) report by programmable conditions only. The SER lists date- and time-stamped lines of information each time a programmed condition changes state. The relay stores the latest 512 lines of the SER report in

nonvolatile memory. If the report fills up, newer rows overwrite the oldest rows in the report. See Figure 9.8 for an example SER report.

STANDARD 15-, 30-, OR 60-CYCLE EVENT REPORTS

Event Report Length (Settings LER and PRE)

The SEL-387A provides user-programmable event report length and prefault length. Event report length is set at 15, 30, or 60 cycles, using the Global setting LER. Prefault length ranges from 1 to (LER-1) cycles. Set the prefault length with the Global setting PRE. The LER and PRE settings are accessible either via the **SET G** serial port command or via the SET/GLOBAL front-panel pushbuttons.

Changing the LER and/or PRE settings has no effect on previously stored nonvolatile reports.

Standard Event Report Triggering

The relay triggers (generates) a standard 15-, 30-, or 60-cycle event report when any of the following occur:

- Relay Word bits TRIP1 through TRIP5 assert
- Relay Word bits CLS1 through CLS4 assert
- Programmable SELOGIC® control equation setting ER asserts to logical 1
- **PULSE** serial port/front-panel command executed for output contact OUT101 through OUT107 or other OUTnnn contacts if available
- TRIGGER serial port command executed

Relay Word Bits TRIP1-TRIP5, CLS1-CLS4

Relay Word bits TRIPn (n = 1, 2, 3, 4, or 5) usually would be assigned to an output contact for tripping a circuit breaker (e.g., setting OUT101 = TRIP1). SELOGIC control equation settings TRn initiate the Trip Logic and control the assertion of Relay Word bits TRIPn (see Figure 4.7). The Relay Word bit OCm (m = 1, 2, 3, 4), initiated by the "Open breaker m" serial port command **OPE m** or the front-panel **CNTRL/Open** command, normally would be assigned to TRm.

Similarly, Relay Word bits CLSm (m = 1, 2, 3, 4) would be assigned to an output contact for closing a circuit breaker (e.g., setting OUT105 = CLS1). SELOGIC control equations settings CLm initiate the Close Logic and control the assertion of Relay Word bits CLSm (see Figure 4.8). The Relay Word bit CCm, initiated by the "Close breaker m" serial port command CLO m or the front-panel CNTRL/Close command, normally would be assigned to CLm.

Any condition that is set to trip in setting TRn, or to close in setting CLm, does <u>not</u> have to be entered in SELOGIC control equations setting ER. The assertion of Relay Word bit TRIPn or CLSm automatically triggers a standard 15-, 30-, or 60-cycle event report.

Programmable SELOGIC Control Equation Setting ER

The SELOGIC control equation setting ER is set to trigger standard 15-, 30-, or 60-cycle event reports for conditions other than tripping or closing conditions already listed in settings TRn or CLm. When setting ER sees a logical 0 to logical 1 transition, it generates an event report (if it is not already generating a report that encompasses the new transition). The factory setting is:

$$ER = \frac{50P11 + 51P1 + 51Q1 + 51P2 + 51Q2}{1}$$

ER is factory-set with definite-time and inverse-time overcurrent element pickups for phase- and negative-sequence quantities on Windings 1 and 2. Thus, at the inception of a fault, whichever pickup asserts first will trigger a standard 15-, 30-, or 60-cycle event report.

Note the rising-edge operator symbol (/) in front of each of these elements. See **Section 4**: **Control Logic** for more information on rising-edge operators and SELOGIC control equations in general.

Rising-edge operators are especially useful in generating an event report at fault inception, then generating another event report later if a breaker trips on some time-delayed element.

PULSE and TRIGGER Commands

The **PULSE** serial port/front-panel command is used to assert the output contacts for testing purposes or for remote control. If an output contact OUT101–OUT107 or an available interface board contact OUTnnn is asserted with the **PULSE** command, a standard 15-, 30-, or 60-cycle event report is also generated. Since the **PUL** command generates an event report, precautions should be taken to retrieve and store any existing event reports of interest that presently may be in the relay before testing the output contacts with the **PUL** command. Failure to do so may result in some or all of the existing reports being overwritten when **PUL** commands are issued.

The sole function of the **TRIGGER** serial port command is to generate standard 15-, 30-, or 60-cycle event reports primarily for testing purposes. Simply type **TRI<ENTER>** to execute the command.

See *Section 7: Serial Port Communications and Commands* for more information on serial port commands **TRIGGER** and **PULSE**.

Standard Event Report Summary

Each time the relay generates a standard 15-, 30-, or 60-cycle event report, it also generates a corresponding event summary (see Figure 9.1). Use the **EVE T** command to generate this summary. Event summaries contain the following information:

- Relay and terminal identifiers (settings RID and TID)
- Date and time when the event was triggered
- Event type
- Front-panel targets at the time of trip
- Phase (IA, IB, IC) currents for the two (2) winding inputs

This event summary information is also contained in the corresponding standard 15-, 30-, or 60-cycle event report. The identifiers, date, and time information is at the top of the standard 15-, 30-, or 60-cycle event report, and the other information follows at the end. See Figure 9.2.

The example event summary in Figure 9.1 corresponds to the full-length standard 15-cycle event report in Figure 9.2.

```
XFMR 1 Date: 02/28/97 Time: 06:28:38.888

STATION A

Event: TRIP3
Targets: TRIP INST 87_1 87_2 87_3 A B C
Winding 1 Currents (A Sec), ABC: 2.1 2.1 2.1
Winding 2 Currents (A Sec), ABC: 0.0 0.0 1.7
Winding 3 Currents (A Sec), ABC: 0.0 0.0 0.0
Winding 4 Currents (A Sec), ABC: 0.0 0.0 0.0
```

Figure 9.1: Example Event Summary

Note: The relay sends event summaries to all serial ports with setting AUTO = Y each time an event triggers.

The latest 80 event summaries are stored in nonvolatile memory and are accessed by the **HISTORY** command. The **HIS** C command clears the event summaries and corresponding full-length standard event reports from nonvolatile memory. See *HIS* (*History of Events*) and *HIS* C (*Clear History and Events*) in *Section 7: Serial Port Communications and Commands* for more information.

Event Type

The "Event:" field shows the event type. The possible event types and their descriptions are shown in Table 9.1. Note the correspondence to the preceding event report triggering conditions (see *Standard Event Report Triggering* in this section).

Event Event Triggered by: TRIP1 Assertion of Relay Word bit TRIP1 TRIP2 Assertion of Relay Word bit TRIP2 TRIP3 Assertion of Relay Word bit TRIP3 TRIP4 Assertion of Relay Word bit TRIP4 TRIP5 Assertion of Relay Word bit TRIP5 CLS1 Assertion of Relay Word bit CLS1 CLS2 Assertion of Relay Word bit CLS2 CLS3 Assertion of Relay Word bit CLS3 CLS4 Assertion of Relay Word bit CLS4

Table 9.1: Event Types

Event	Event Triggered by:
ER	SELOGIC control equations setting ER
PULSE	Execution of PULSE serial port command
TRIG	Execution of TRIGGER serial port command

The order of precedence for listing the event type in the summary is: TRIP, CLOSE, ER, PULSE, TRIG (as implied by the table). If more than one type of report trigger occurs within the same report period, the type of highest precedence will be shown in the "Event:" field of the report summary.

Targets

The target field shows all front-panel targets that were illuminated at the end of the triggered event report. The targets include: TRIP, INST, 87-1, 87-2, 87-3, 50, 51, A, B, C, N, W1, W2, LED15, and LED16.

Winding Currents

The "Winding n Currents (A Sec), ABC:" (n=1 or 2) field shows each winding input current present in the event report row containing the maximum secondary phase current. The standard 15-, 30-, or 60-cycle event report will mark the reference row used in the summary report with an asterisk. The listed currents for each of the two (2) winding inputs are:

Phase (A = channel IA, B = channel IB, C = channel IC)

Retrieving Full-Length Standard Event Reports

Any given event report has four different ways it can be displayed, depending on the particular serial port command issued to the relay. The command choices are shown below.

Serial Port	
Command	Format
EVENT	Winding event report.
EVENT C	Compressed ASCII event report.
EVENT D	Digital event report.
EVENT DIF	Differential event report.
EVENT R	Raw (unfiltered) winding event report.

Event (Winding Event Report)

The winding event report contains secondary phase currents for each of the two winding inputs as well as the status of the eight output contacts and six optoisolated inputs.

Use the **EVENT** command to retrieve winding event reports. There are several options to customize the report format. The general command format is:

EVE [n, Sx, Ly[-[w]]] (parameters in [] are optional)

where:

n = Event number; defaults to 1 if not listed, where 1 is the most recent event

Sx = Displays x samples per cycle (4 or 8); defaults to 4 if not listed

Ly = Displays y cycles of data (1 to LER); defaults to LER if not listed

Ly- = Displays from cycle y to end of report

Ly-w = Displays from cycle y to cycle w

Refer to Figure 9.2 for an example winding event report. This example event report displays rows of information each quarter-cycle and was retrieved with the **EVE<ENTER>** command.

```
XFMR 1
                                         Date: 11/09/99
                                                          Time: 09:45:00.566
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228
                     Winding 2
    Winding 1
                                       Winding 3
                                                       Winding 4
                                                                      OUT IN
                     Amps Sec
                                                       Amps Sec
   Amps Sec
                                      Amps Sec
                                                                      1357 135
IAW1 IBW1 ICW1 IAW2 IBW2 ICW2 IAW3 IBW3 ICW3 IN1 IN2 IN3 246A 246
[1]
-1.23 -0.85 2.08 1.02 0.70 -1.73 0.00 0.00 0.00 0.00 0.00 0.00 .... ...
1.70 -1.90 0.21 -1.41 1.59 -0.19 0.00 0.00 0.00 0.00 0.00 0.00 .... ...
1.23 0.85 -2.08 -1.02 -0.70 1.73 0.00 0.00 0.00 0.00 0.00 0.00 .... ...
-1.70 1.90 -0.22 1.41 -1.59 0.19 0.00 0.00 0.00 0.00 0.00
                                                                 0.00 ....
[2]
-1.23 \ -0.85 \ \ 2.08 \ \ 1.02 \ \ 0.70 \ \ -1.73 \ \ 0.00 \ \ 0.00 \ \ 0.00 \ \ 0.00 \ \ 0.00 \ \ \dots \dots \dots
1.70 -1.90 0.22 -1.41 1.59 -0.19 0.00 0.00 0.00
                                                     0.00 0.00
                                                                 0.00 ....
1.23 0.85 -2.08 -1.02 -0.70 1.73 0.00 0.00 0.00 0.00 0.00 0.00 ....
-1.69 \quad 1.91 \quad -0.22 \quad 1.40 \quad -1.59 \quad 0.19 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad \dots \dots \dots
[15]
-1.28 \ -0.78 \quad 2.07 \quad 0.00 \quad 0.00 \ -1.73 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 3.\dots \dots
1.65 -1.93  0.28  0.00  0.00 -0.25  0.00  0.00  0.00  0.00  0.00  0.00 .3.. ...
1.28 0.77 -2.07 0.00 0.00 1.73 0.00 0.00 0.00 0.00 0.00
                                                                 0.00 .3.. ...
Event: TRIP3
Targets: TRIP INST 87_1 87_2 87_3 A B C
Winding 1 Currents (A Sec), ABC: 2.1
Winding 2 Currents (A Sec), ABC: 0.0 0.0
                                              1.7
Winding 3 Currents (A Sec), ABC:
                                 0.0
                                        0.0
                                              0.0
Winding 4 Currents (A Sec). ABC: 0.0
                                       0.0
                                              0.0
```

Figure 9.2: Example Winding Event Report

The trigger row includes a '>' character following immediately after the last analog column to indicate the trigger point. A '*' character following immediately after the last analog column denotes that the designated row was used for the Event Summary currents. The '*' character takes precedence over the '>' character when both conditions occur for the same row.

Table 9.2 summarizes the event report current columns. The column headings shown are the default headings, corresponding to the designations on terminals Z01 to Z24. If the Analog Input Labels settings have been changed within the Global setting area, these will appear in the report as set.

Table 9.2: Winding Event Report Current Columns

Column Heading	Definition
IAW1	Current measured by Winding 1 input channel IA (Amps, secondary)
IBW1	Current measured by Winding 1 input channel IB (Amps, secondary)
ICW1	Current measured by Winding 1 input channel IC (Amps, secondary)
IAW2	Current measured by Winding 2 input channel IA (Amps, secondary)
IBW2	Current measured by Winding 2 input channel IB (Amps, secondary)
ICW2	Current measured by Winding 2 input channel IC (Amps, secondary)
IAW3	
IBW3	
ICW3	
IN1	Current measured by neutral input channel IN1 (Amps, secondary)
IN2	Current measured by neutral input channel IN2 (Amps, secondary)
IN3	Current measured by neutral input channel IN3 (Amps, secondary)

The following table summarizes the winding event report output and input columns.

Table 9.3: Winding Event Report Output and Input Columns

Column Heading	Symbol	Definition
All		All indication deasserted
OUT 12	1 2 b	Output contact OUT101 asserted Output contact OUT102 asserted Both OUT101 and OUT102 asserted
OUT 34	3 4 b	Output contact OUT103 asserted Output contact OUT104 asserted Both OUT103 and OUT104 asserted
OUT 56	5 6 b	Output contact OUT105 asserted Output contact OUT106 asserted Both OUT105 and OUT106 asserted
OUT 7A	7 A b	Output contact OUT107 asserted Output contact ALARM asserted Both OUT107 and ALARM asserted
IN 12	1 2 b	Optoisolated input IN101 asserted Optoisolated input IN102 asserted Both IN101 and IN102 asserted

Column Heading	Symbol	Definition
IN 34	3 4	Optoisolated input IN103 asserted Optoisolated input IN104 asserted
	b	Both IN103 and IN104 asserted
IN 56	5	Optoisolated input IN105 asserted
	6	Optoisolated input IN106 asserted
	b	Both IN105 and IN106 asserted
IN 12	1	IN101* asserted
	2	IN102* asserted
	b	IN101* and IN102* asserted
IN 34	3	IN103* asserted
	4	IN104* asserted
	b	IN103* and IN104* asserted
IN 56	5	IN105* asserted
	6	IN106* asserted
	b	IN105* and IN106* asserted

*Note: In a raw event report, the IN columns display IN101R through IN106R Relay Word bits instead of the debounced IN101 through IN106 bits.

Event D (Digital Event Report)

The digital event report contains the status of the instantaneous, definite-time, and inverse-time overcurrent phase, single-phase, calculated residual, and negative-sequence overcurrent elements and the demand current thresholds for phase, calculated residual, and negative-sequence for each of the two winding inputs. The status of the Relay Word bits TRIPn (n = 1, 2, 3, 4, and 5) as well as the status of the eight output contacts and six optoisolated inputs is also included.

Use the **EVENT D** command to retrieve digital event reports. There are several options to customize the report format. The general command format is:

EVE D [n, Sx, Ly[-[w]]] (parameters in [] are optional)

where:

n = Event number; defaults to 1 if not listed, where 1 is the most recent event

Sx = Displays x samples per cycle (4 or 8); defaults to 4 if not listed

Ly = Displays y cycles of data (1 to LER); defaults to LER if not listed

Ly- = Displays from cycle y to end of report

Ly-w = Displays from cycle y to cycle w

Refer to Figure 9.3 for an example digital event report. This example event report displays rows of information each quarter-cycle and was retrieved with the **EVE D<ENTER>** command.

```
XFMR 1
              Date: 11/09/99
                    Time: 09:45:00.566
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228
    Overcurrent Elements
Winding 1
    Winding 2
        Winding 3
             Winding 4
      51 50 51 50
                51 51
PPABCNNQQPNQ PPABCNNQQPNQ PPABCNNQQPNQ PNPN
                     PPNNOO
123331212
    123331212 123331212 123331212
                 CCCC 13 135 131313 1357 135
444
                 1122 24 24 242424 246A 246
         444
             444
[1]
..333...
   .. ..333...... ..... .... ....... .... ... ... ... ... ...
..333......
..333......
..333......
..333......
..333...... ....3.......
..333...... .... .3...... .3...... .3. .....
[15]
..333...... .... .3...... .3...... .3. .....
..333...... .... .3...... .3...... .3. .....
Event: TRIP3
Targets: TRIP INST 87_1 87_2 87_3 A B C
Winding 1 Currents (A Sec), ABC: 2.1
             2.1
               2.1
Winding 2 Currents (A Sec), ABC: 0.0
               1.7
Winding 3 Currents (A Sec), ABC: 0.0
Winding 4 Currents (A Sec), ABC: 0.0
             0.0
               0.0
             0.0
               0.0
```

Figure 9.3: Example Digital Event Report

The trigger row includes a '>' character following immediately after the last digital column to indicate the trigger point. A '*' character following immediately after the last digital column denotes that the designated row was used for the Event Summary currents. The '*' character takes precedence over the '>' character when both conditions occur for the same row.

The following table summarizes the digital event report columns.

Table 9.4: Digital Event Report Column Description

Column Heading	Symbol	Definition
All		All indication deasserted
Wdg 1 50P1	1 T	50P11 asserted 50P11T asserted
Wdg 1 50P2	2	50P12 asserted
Wdg 1 50A34	3 4 b	50A13 asserted 50A14 asserted 50A13 and 50A14 asserted
Wdg 1 50B34	3 4 b	50B13 asserted 50B14 asserted 50B13 and 50B14 asserted
Wdg 1 50C34	3 4 b	50C13 asserted 50C14 asserted 50C13 and 50C14 asserted
Wdg 1 50N1	1 T	50N11 asserted 50N11T asserted
Wdg 1 50N2	2	50N12 asserted
Wdg 1 50Q1	1 T	50Q11 asserted 50Q11T asserted
Wdg 1 50Q2	2	50Q12 asserted
Wdg 1 51P	p T r 1	51P1 asserted 51P1T asserted Timing to reset (51P1RS=Y) Timing to reset after 51P1T assertion (51P1RS=N) 51P1R asserted
Wdg 1 51N	p T r 1	51N1 asserted 51N1T asserted Timing to reset (51N1RS=Y) Timing to reset after 51N1T assertion (51N1RS=N) 51N1R asserted
Wdg 1 51Q	p T r 1	51Q1 asserted 51Q1T asserted Timing to reset (51Q1RS=Y) Timing to reset after 51Q1T assertion (51Q1RS=N) 51Q1R asserted

Column Heading	Symbol	Definition
Use same logic for overcurrent elements in Wdg 2		
DC 12	1 2 b	DC1 asserted DC2 asserted DC1 and DC2 asserted
DC34	3 4 b	DC3 asserted DC4 asserted DC3 and DC4 asserted
TRP 12	1 2 b	TRIP1 asserted TRIP2 asserted TRIP1 and TRIP2 asserted
TRP 34	3 4 b	TRIP3 asserted TRIP4 asserted TRIP3 and TRIP4 asserted
TRP 5	5	TRIP5 asserted
DEM P12	1 2 b	PDEM1 asserted PDEM2 asserted PDEM1 and PDEM2 asserted
DEM P34	3 4 b	PDEM3 asserted PDEM4 asserted PDEM3 and PDEM4 asserted
DEM N12	1 2 b	NDEM1 asserted NDEM2 asserted NDEM1 and NDEM2 asserted
DEM N34	3 4 b	NDEM3 asserted NDEM4 asserted NDEM3 and NDEM4 asserted
DEM Q12	1 2 b	QDEM1 asserted QDEM2 asserted QDEM1 and QDEM2 asserted
DEM Q34	3 4 b	QDEM3 asserted QDEM4 asserted QDEM3 and QDEM4 asserted
OUT 12	1 2 b	Output contact OUT101 asserted Output contact OUT102 asserted Both OUT101 and OUT102 asserted
OUT 34	3 4 b	Output contact OUT103 asserted Output contact OUT104 asserted Both OUT103 and OUT104 asserted

Column Heading	Symbol	Definition
OUT 56	5 6	Output contact OUT105 asserted Output contact OUT106 asserted
	b	Both OUT105 and OUT106 asserted
OUT 7A	7	Output contact OUT107 asserted
	A b	Output contact ALARM asserted Both OUT107 and ALARM asserted
IN 12	1	Optoisolated input IN101 asserted
	2 b	Optoisolated input IN102 asserted Both IN101 and IN102 asserted
IN 34	3	Optoisolated input IN103 asserted
	4 b	Optoisolated input IN104 asserted Both IN103 and IN104 asserted
IN 56	5	Optoisolated input IN105 asserted
	6	Optoisolated input IN106 asserted
	b	Both IN105 and IN106 asserted

Event DIF (Differential Event Report)

The differential event report contains the operate and restraint currents in a given differential element along with the second- and fifth-harmonic content of the current. The status of the restrained and unrestrained differential elements, the fifth-harmonic alarm, the REF function, the Relay Word bits TRIPn (n = 1, 2, 3, 4, and 5), the SELOGIC control equation Timed Variables and Latch Bits, eight of the 16 Remote Bits, the eight output contacts, and the six optoisolated inputs are shown.

Use the **EVENT DIF** command to retrieve differential event reports. There are several options to customize the report format. The general command format is:

EVE DIFz [n, Sx, Ly[-[w]]] (parameters in [] are optional)

where:

z = Displays results for differential element z (z=1, 2, or 3)

n = Event number; defaults to 1 if not listed, where 1 is the most recent event

Sx = Displays x samples per cycle (4 or 8); defaults to 4 if not listed

Ly = Displays y cycles of data (1 to LER); defaults to LER if not listed

Ly- = Displays from cycle y to end of report

Ly-w = Displays from cycle y to cycle w

Refer to Figure 9.4 for an example differential event report. This example event report displays rows of information each quarter-cycle and was retrieved with the **EVE DIF1<ENTER>** command.

```
XFMR 1
                                    Date: 11/09/99
                                                   Time: 09:45:00.566
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228
                         Differential
                                         Set 1 Set 2 Set 3
   Differential Quantities 87 87B HB TR TRP LT LT OUT IN Multiples of TAP R HE 135 VVVV13 VVVV13 VVVVVVV 1357 135
  IOP1 IRT1 I1F2 I1F5 U123 123 123 5F 24 123424 123424 12345678 246A 246
[1]
  0.17
        0.92
              0.00
  0.17 0.92
              0.00
                    0.00 .... ... ... ... ... ....
                    0.00 .... ... ... ... ... ... ... ...
  0.17
        0.92
              0.00
       0.92
  0.17
              0.00
                    0.00 .... ... ... ... ... .... ....
[2]
  0.17
        0.92
              0.00
                    0.00 .... ... ... ... ... ... ... ...
  0.17
        0.92
              0.00
                    0.00 .... ... ... ... ... ...
  0.17
        0.92
              0.00
                    0.00 .... ... ... ... ... ... ... ...
              0.00
                    0.00 .... ... ... ... ... .... .....
  0.17
        0.92
[15]
  0.44 0.71 0.00
                    0.00 RRRR ... ... .3. ..... .3. .... .3. ....
  0.44 0.71 0.00
                    0.00 RRRR ... ... .3. ..... .3. .... .3. ....
  0.44 0.71 0.00 0.00 RRRR ... ... .3. .... .3. .... .3. ....
  0.45
        0.71
             0.00 0.00*RRRR ... ... .3. ..... .3. .... .3. ....
Event: TRIP3
Targets: TRIP INST 87_1 87_2 87_3 A B C
Winding 1 Currents (A Sec), ABC: 2.1 2.1 2.1 Winding 2 Currents (A Sec), ABC: 0.0 0.0 1.7
                                        2.1
Winding 3 Currents (A Sec), ABC: 0.0 0.0 0.0
Winding 4 Currents (A Sec), ABC: 0.0 0.0 0.0
```

Figure 9.4: Example Differential Event Report

The trigger row includes a '>' character following immediately after the last analog column to indicate the trigger point. A '*' character following immediately after the last analog column denotes that the designated row was used for the Event Summary currents. The '*' character takes precedence over the '>' character when both conditions occur for the same row.

The following table summarizes the event report current columns.

Table 9.5: Differential Event Report Current Columns

Column Heading	Definition
IOP1	Operate current for differential element 1 (multiples of tap)
IRT1	Restraint current for differential element 1 (multiples of tap)
I1F2	Second-harmonic current for differential element 1 (multiples of tap)
I1F5	Fifth-harmonic current for differential element 1 (multiples of tap)

The following table summarizes the digital event report columns.

Table 9.6: Differential Event Report Element Columns

Column	Symbol	Definition
All		All indication deasserted
Dif El 87RU	R U b	87R asserted 87U asserted 87R and 87U asserted
Dif El 87 1	R U b	87R1 asserted 87U1 asserted 87R1 and 87U1 asserted
Dif El 87 2	R U b	87R2 asserted 87U2 asserted 87R2 and 87U2 asserted
Dif El 87 3	R U b	87R3 asserted 87U3 asserted 87R3 and 87U3 asserted
Dif El 87B 1	1 .	87BL1 asserted 87BL1 not asserted
Dif El 87B 2	1	87BL2 asserted 87BL2 not asserted
Dif El 87B 3	1 .	87BL3 asserted 87BL3 not asserted
Dif El HB 1	2 5 b	2HB1 asserted 5HB1 asserted 2HB1 and 5HB1 asserted
Dif El HB 2	2 5 b	2HB2 asserted 5HB2 asserted 2HB2 and 5HB2 asserted
Dif El HB 3	2 5 b	2HB3 asserted 5HB3 asserted 2HB3 and 5HB3 asserted
TH5	p T	TH5 asserted TH5 asserted longer than TH5D
REF	р Т 1	32IF*50G4*!REFP asserted (timing to trip) 32IF*50G4*REFP asserted (timed out) Timing 1 cycle to reset after REFP assertion Reset
TRP 12	1 2 b	TRIP1 asserted TRIP2 asserted TRIP1 and TRIP2 asserted

Column	Symbol	Definition		
TRP 34	3 4 b	TRIP3 asserted TRIP4 asserted TRIP3 and TRIP4 asserted		
TRP 5	5	TRIP5 asserted		
Set 1 V1 V2 V3 V4	p T d	S1Vn asserted (timing to output) S1VnT asserted (timed out); S1Vn asserted S1VnT asserted, S1Vn deasserted (timing to reset)		
Set 1 LT 12	1 2 b	Latch Bit 1 Latched Latch Bit 2 Latched Latch Bit 1 and Latch Bit 2 Latched		
Set 1 LT 34	3 4 b	Latch Bit 3 Latched Latch Bit 4 Latched Latch B it 3 and Latch Bit 4 Latched		
Set 2 V1 V2 V3 V4	p T d	S2Vn asserted (timing to output) S2VnT asserted (timed out); S2Vn asserted S2VnT asserted, S2Vn deasserted (timing to reset)		
Set 2 LT 12	1 2 b	Latch Bit 1 Latched Latch Bit 2 Latched Latch Bit 1 and Latch Bit 2 Latched		
Set 2 LT 34	3 4 b	Latch Bit 3 Latched Latch Bit 4 Latched Latch Bit 3 and Latch Bit 4 Latched		
Set 3 V1 V2 V3 V4 V5 V6 V7 V8	p T d	S3Vn asserted (timing to output) S3VnT asserted (timed out); S3Vn asserted S3VnT asserted, S3Vn deasserted (timing to reset)		
RB 12	1 2 b	RB1 asserted RB2 asserted RB1 and RB2 asserted		
RB 34	3 4 b	RB3 asserted RB4 asserted RB3 and RB4 asserted		

Column	Symbol	Definition
RB 56	5	RB5 asserted
	6	RB6 asserted
	b	RB5 and RB6 asserted
RB 78	7	RB7 asserted
	8	RB8 asserted
	b	RB7 and RB8 asserted
OUT 12	1	OUT101 asserted
	2	OUT102 asserted
	b	OUT101 and OUT102 asserted
OUT 34	3	OUT103 asserted
	4	OUT104 asserted
	b	OUT103 and OUT104 asserted
OUT 56	5	OUT105 asserted
	6	OUT106 asserted
	b	OUT105 and OUT106 asserted
OUT 7A	7	OUT107 asserted
	A	ALARM asserted
	b	OUT107 and ALARM asserted
IN 12	1	IN101 asserted
	2	IN102 asserted
	b	IN101 and IN102 asserted
IN 34	3	IN103 asserted
	4	IN104 asserted
	b	IN103 and IN104 asserted
IN 56	5	IN105 asserted
	6	IN106 asserted
	b	IN105 and IN106 asserted

Event R (Raw Winding Event Report)

The raw winding event report contains secondary phase currents for each of the two winding inputs as well as the status of the eight output contacts and six optoisolated inputs. The SEL-387A samples the analog ac input currents 64 times per power system cycle. The relay filters the samples to remove transient signals. The relay operates on the filtered values and reports them in most event reports. The raw or unfiltered event report allows for viewing the samples before digital filtering occurs.

Use the **EVENT R** command to retrieve raw winding event reports. There are several options to customize the report format. The general command format is:

```
EVE R [n, Sx, Ly[-[w]]]
                                 (parameters in [ ] are optional)
```

where:

= Event number; defaults to 1 if not listed, where 1 is the most recent event n

SxDisplays x samples per cycle (4, 8, 16, 32, or 64); defaults to 16 if not listed

Displays y cycles of data (1 to LER); defaults to LER if not listed Ly

Displays from cycle y to end of report Ly-

Displays from cycle y to cycle w Ly-w =

Refer to Figure 9.5 for an example raw winding event report. This example event report displays rows of information each quarter-cycle and was retrieved with the EVE R S4<ENTER> command. The raw event report always shows 1.5 cycles of pretrigger data, in this case six samples instead of four.

```
=>>FVF R S4
                                           Date: 11/09/99 Time: 09:45:00.566
XFMR 1
STATION A
FID=SEL-387A-R100-V0-Z003003-D20011228
                                         Winding 3
                                                           Winding 4
   Winding 1 Winding 2
                                                           Amps Sec
    Amps Sec
                                                                          1357 135
                      Amps Sec
                                         Amps Sec
IAW1 IBW1 ICW1 IAW2 IBW2 ICW2 IAW3 IBW3 ICW3 IN1 IN2
                                                                      IN3 246A 246
2.01 -0.76 -1.33 -1.73 0.53 1.10 0.00 0.00 0.00 -0.06 -0.05 -0.02 .... ...
-0.39 1.93 -1.58 0.30 -1.69 1.30
                                                  0.00 -0.06 -0.06 -0.02 ....
                                     0.00
                                            0.00
-2.12 0.70 1.36 1.71 -0.63 -1.16 0.00
                                            0.00 0.00 -0.06 -0.05 -0.02 .... ...
0.28 -1.98 1.62 -0.32 1.59 -1.35
                                     0.00
                                            0.00
                                                  0.00 -0.06 -0.06 -0.02 .... ...
                                            0.00 0.00 -0.06 -0.06 -0.02 ....
2.01 -0.76 -1.33 -1.73 0.54 1.10 0.00
-0.38 1.93 -1.59 0.29 -1.69 1.30 0.00 0.00 -0.06 -0.06 -0.02 .... ...
[1]
-2.12 \quad 0.71 \quad 1.35 \quad 1.70 \quad -0.63 \quad -1.16 \quad 0.00 \quad 0.00 \quad 0.00 \quad -0.07 \quad -0.05 \quad -0.02 \quad \dots \quad \dots
0.28 -1.98 1.62 -0.32 1.58 -1.36
                                     0.00
                                            0.00
                                                  0.00 -0.07 -0.06 -0.02 .... ...
-0.37 \quad 1.92 \ -1.59 \quad 0.28 \ -1.68 \quad 1.30 \quad 0.00 \quad 0.00 \quad 0.00 \ -0.06 \ -0.06 \ -0.02 \ \dots \ \dots
[2]
0.27 \; \hbox{-} 1.98 \; \ 1.63 \; \hbox{-} 0.31 \; \ 1.58 \; \hbox{-} 1.36 \; \ 0.00 \; \ 0.00 \; \ 0.00 \; \hbox{-} 0.07 \; \hbox{-} 0.05 \; \hbox{-} 0.02 \; \dots \; \dots
2.01 -0.78 -1.32 -1.73 0.54 1.10 0.00 0.00 0.00 -0.06 -0.06 -0.02 .... ...
-0.37 \quad 1.92 \ -1.60 \quad 0.28 \ -1.68 \quad 1.30 \quad 0.00 \quad 0.00 \quad 0.00 \ -0.07 \ -0.05 \ -0.02 \ \dots \ \dots
[15]
-2.13 \quad 0.79 \quad 1.30 \quad -0.02 \quad -0.05 \quad -1.11 \quad 0.00 \quad 0.00 \quad 0.00 \quad -0.07 \quad -0.06 \quad -0.02 \quad .3\dots \dots
0.20 -1.95 1.67 -0.02 -0.06 -1.40 0.00 0.00 0.00 -0.06 -0.06 -0.02 .3.. ...
2.02 -0.84 -1.26 -0.02 -0.05 1.04 0.00 0.00 0.00 -0.06 -0.06 -0.03 .3.. ...
-0.31 1.89 -1.64 -0.01 -0.05 1.34 0.00 0.00 -0.06 -0.05 -0.02*.3.. ...
Event: TRIP3
Targets: TRIP INST 87_1 87_2 87_3 A B C
Winding 1 Currents (A Sec), ABC: 2.1
                                          2.1
                                                2.1
Winding 2 Currents (A Sec), ABC:
                                    0.0
                                          0.0
                                                1.7
Winding 3 Currents (A Sec), ABC:
                                   0.0
                                          0.0
                                                0.0
Winding 4 Currents (A Sec), ABC: 0.0
                                          0.0
                                                0.0
```

Figure 9.5: Example Raw Winding Event Report

The trigger row includes a '>' character following immediately after the last analog column to indicate the trigger point. A '*' character following immediately after the last analog column denotes that the designated row was used for the Event Summary currents. The '*' character takes precedence over the '>' character when both conditions occur for the same row.

The following table summarizes the raw event report current columns. The column headings shown are the default headings, corresponding to the designations on terminals Z01 to Z24. If the Analog Input Labels settings have been changed within the Global setting area, these will appear in the report as set.

Table 9.7: Raw Winding Event Report Current Columns

Column Heading	Definition
IAW1	Current measured by Winding 1 input channel IA (Amps, secondary)
IBW1	Current measured by Winding 1 input channel IB (Amps, secondary)
ICW1	Current measured by Winding 1 input channel IC (Amps, secondary)
IAW2	Current measured by Winding 2 input channel IA (Amps, secondary)
IBW2	Current measured by Winding 2 input channel IB (Amps, secondary)
ICW2	Current measured by Winding 2 input channel IC (Amps, secondary)
IAW3	
IBW3	
ICW3	
IN1	Current measured by neutral input channel IN1 (Amps, secondary)
IN2	Current measured by neutral input channel IN2 (Amps, secondary)
IN3	Current measured by neutral input channel IN3 (Amps, secondary)

The following table summarizes the raw winding event report output and input columns.

Table 9.8: Raw Winding Event Report Outputs and Inputs

Column Heading	Symbol	Definition
All		All indication deasserted
OUT 12	1 2 b	Output contact OUT101 asserted Output contact OUT102 asserted Both OUT101 and OUT102 asserted
OUT 34	3 4 b	Output contact OUT103 asserted Output contact OUT104 asserted Both OUT103 and OUT104 asserted
OUT 56	5 6 b	Output contact OUT105 asserted Output contact OUT106 asserted Both OUT105 and OUT106 asserted

Column Heading	Symbol	Definition
OUT 7A	7 A b	Output contact OUT107 asserted Output contact ALARM asserted Both OUT107 and ALARM asserted
IN 12	1 2 b	Optoisolated input IN101 asserted Optoisolated input IN102 asserted Both IN101 and IN102 asserted
IN 34	3 4 b	Optoisolated input IN103 asserted Optoisolated input IN104 asserted Both IN103 and IN104 asserted
IN 56	5 6 b	Optoisolated input IN105 asserted Optoisolated input IN106 asserted Both IN105 and IN106 asserted

Compressed ASCII Event Reports

The SEL-387A provides compressed ASCII event reports to facilitate event report storage and display. The SEL-2020 or the SEL-2030 Communications Processor and the SEL-5601 Analytic Assistant software take advantage of the compressed ASCII format. Use the EVE C command or the CEVENT command to display compressed ASCII event reports. See the CEVENT command discussion in *Appendix E: Compressed ASCII Commands* for further information.

Extracting RMS Phasor Data from Filtered Event Reports

Figure 9.6 and Figure 9.7 look in detail at one cycle of A-phase current (channel IA) from a typical filtered Event Report. Figure 9.6 shows how the event report ac current column data relates to the actual sampled waveform and RMS magnitude values. Figure 9.7 shows how the event report current column data can be converted to phasor RMS values.

Figure 9.6: Derivation of Event Report Current Values and RMS Current Values From Sampled Current Waveform

In Figure 9.6, note that any two rows of current data from the event report that are one-quarter cycle apart can be used to calculate RMS current values. One-quarter cycle represents 90 electrical degrees, hence the two samples are effectively perpendicular to each other and can be treated as rectangular components of the phasor quantity. By using the normal method of taking the square root of the sum of the squares of the samples, the magnitude of the phasor can be extracted. Since the actual sample values have been divided by the square root of two (multiplied by 1/sqrt(2) in the drawing) before being entered into the report column, no further adjustment is needed after doing the magnitude calculation. In the example in Figure 9.6, successive pairs of samples result in magnitude calculations very close to the true value of 2748 A, RMS. The true RMS value is shown as IA_{peak} times 1/sqrt(2) = 3887 • 0.707 = 2748 A.

Figure 9.7: Derivation of Phasor RMS Current Values From Event Report Current Values

In Figure 9.7, note that two rows of current data one-quarter cycle apart can be used to calculate phasor RMS current values. At the time of interest, the present sample is used as the Real Axis, or "X" component, while the value from one-quarter cycle before is used as the Imaginary Axis, or "Y" component. Plotting the components as shown, and noting that the angle of the phasor is Arctan(Y/X), the complete phasor quantity can be derived and compared with other current phasors calculated from other current pairs selected from the same two rows of the Event Report. In Figure 9.7 at the present sample the phasor RMS current value is:

 $IA = 2749 A \angle -30.0^{\circ}$

The present sample (IA = 2380 A) is a real RMS current value that relates to the phasor RMS current value:

```
2749 \text{ A} \cdot \cos(-30.0^{\circ}) = 2380 \text{ A}
```

A calculation of the phasor using the previous pair, X = -1375 and Y = -2376, yields a calculation of:

```
IA = 2745 A \angle -120.0^{\circ}
```

Thus, the phasor rotates in a counterclockwise direction in 90-degree increments, as expected, when successive pairs of samples are used for making the calculation.

SEQUENTIAL EVENTS RECORDER (SER) EVENT REPORT

Figure 9.8 depicts an example SER event report.

XFMR STAT	R 1 TION A		Date	e: 11/09/99	Time: 1	0:04:48.485	
		00-V0-Z003003-I					
#	DATE	TIME	ELEMENT	STATE			
4	11/09/99	09:11:31.610	0UT102	Deasserted	1		
3	11/09/99	09:11:31.610	0UT103	Deasserted	1		
2	11/09/99	09:45:00.566	0UT103	Asserted			
1	11/09/99	09:45:08.287	0UT103	Deasserted	i		

Figure 9.8: Example SER Event Report

SER Event Report Row Triggering and ALIAS Settings

The relay triggers (generates) a row in the SER event report for any change of state in any one of the elements listed in the SER1, SER2, SER3, or SER4 trigger settings. Use port command **SHO R** to view the settings, or **SET R** to set them. The factory default settings are:

```
SER1 = IN101, IN102, IN103, IN104, IN105, IN106
SER2 = OUT101, OUT102, OUT103, OUT104, OUT105, OUT106, OUT107
SER3 = 0
SER4 = 0
```

The elements are Relay Word bits from Tables 4.7 to 4.9. Each element is looked at individually to see if it asserts or deasserts. Any assertion or deassertion of a listed element triggers a row in the SER event report. For example, setting SER1 contains all six of the optoisolated inputs. Any time dc voltage is applied to, or removed from, one of these inputs, a row is triggered in the SER event report.

In the SER settings are 20 settings by which the user can redefine the names of Relay Word bits in the SER report, to make the entries more readily identifiable. The settings are ALIAS1 to ALIAS20. If they are not set, they are listed as, for example, ALIAS1=NA.

To rename a Relay Word bit with an ALIASn setting, use SET R to access the settings. For each "ALIASn =" setting, list the bit name; a separator, which can be one of the following characters: = ;: ', /\?"; and then the desired name, which can include as many as 15 characters. For example, one setting might be ALIAS2 = CLS1 BKR1CLOSE. In the report instead of CLS1 being listed, the name BKR1CLOSE will appear, indicating a breaker 1 close operation was performed.

Note: Alias names can consist of all printable characters (including spaces).

In addition to the SERn trigger settings, if the relay is newly powered up or a settings change is made, a row is triggered in the SER event report with the message:

Relay newly powered up or settings changed

Each entry in the SER includes SER row number, date, time, element name, and element state. Generally, the rows are listed from top to bottom in chronological order, oldest first, to facilitate analyzing the sequence. The newest records have the lowest row numbers, the oldest records the highest row numbers.

Making SER Event Report Trigger Settings

Each SER trigger setting (SER1, SER2, SER3, or SER4) can be set with up to 24 elements (Relay Word bits from Tables 4.7 to 4.9). Thus, up to 96 total elements can be monitored for SER event report row triggering.

The SER settings can be made using spaces or commas as delimiters between elements. For example, if setting SER1 is made as follows:

SER1 = IN101,IN102 IN103,,IN104 , IN105, ,IN106

The relay displays the settings as:

SER1 = IN101,IN102,IN103,IN104,IN105,IN106

Retrieving SER Event Report Rows

The latest 512 rows of the SER event report are stored in nonvolatile memory. Row 1 is the most recently triggered row, and row 512 is the oldest. These lines are accessed with the **SER** command in the following different ways:

Example SER Serial Port <u>Commands</u>	<u>Format</u>
SER	If SER is entered with no numbers following it, all available rows are displayed (up to row number 512). They display with the oldest row at the beginning (top) of the report and the latest row (row 1) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
SER 17	If SER is entered with a single number following it (17 in this example), the first 17 rows are displayed, if they exist. They display with the oldest row (row 17) at the beginning (top) of the report and the latest row (row 1) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
SER 10 33	If SER is entered with two numbers following it $(10 \text{ and } 33 \text{ in this} \text{ example}; 10 < 33)$, all the rows between (and including) rows 10 and 33 are displayed, if they exist. They display with the oldest row (row 33) at the beginning (top) of the report and the latest row (row 10) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
SER 47 22	If SER is entered with two numbers following it (47 and 22 in this example; 47 > 22), all the rows between (and including) rows 47 and 22 are displayed, if they exist. They display with the newest row (row 22) at the beginning (top) of the report and the oldest row (row 47) at the end (bottom) of the report. Reverse chronological progression through the report is down the page and in ascending row number.

SER 3/30/96

If **SER** is entered with one date following it (date 3/30/96 in this example), all the rows on that date are displayed, if they exist. They display with the oldest row at the beginning (top) of the report and the latest row at the end (bottom) of the report, for the given date. Chronological progression through the report is down the page and in descending row number.

SER 2/17/96 3/23/96

If **SER** is entered with two dates following it (date 2/17/96 chronologically <u>precedes</u> date 3/23/96 in this example), all the rows between (and including) dates 2/17/96 and 3/23/96 are displayed, if they exist. They display with the oldest row (date 2/17/96) at the beginning (top) of the report and the latest row (date 3/23/96) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.

SER 3/16/96 1/5/96

If **SER** is entered with two dates following it (date 3/16/96 chronologically <u>follows</u> date 1/5/96 in this example), all the rows between (and including) dates 1/5/96 and 3/16/96 are displayed, if they exist. They display with the latest row (date 3/16/96) at the beginning (top) of the report and the oldest row (date 1/5/96) at the end (bottom) of the report. <u>Reverse</u> chronological progression through the report is down the page and in ascending row number.

The date entries in the above example **SER** commands are dependent on the Date Format setting DATE_F. If setting DATE_F = MDY, then the dates are entered as in the above examples (Month/Day/Year). If setting DATE_F = YMD, then the dates are entered Year/Month/Day.

If the requested SER event report rows do not exist, the relay responds:

Invalid Record

If there are no rows in the SER event report buffer, the relay responds:

No SER data

Clearing SER Event Report Buffer

If the **SER C** command is entered, the relay prompts the operator for confirmation:

Clear SER Buffer Are you sure (Y/N)?

If "Y" is entered, the relay clears the SER event reports from nonvolatile memory. If "N" is entered, no reports are cleared, and the relay responds:

Canceled

The process of clearing SER event reports may take up to 30 seconds under normal operation or longer if the relay is busy processing a fault or protection logic.

Note: Clear the SER Buffer With Care

Automated clearing of the SER buffer should be limited to reduce the possibility of wearing out the nonvolatile memory. Limit automated **SER C** commands to once per week or less.

TABLE OF CONTENTS

SECTION 10	: TESTING AND TROUBLESHOOTING	. 10-1
Introduction	on	10-1
Testing M	ethods and Tools	10-1
	Features Provided by the Relay	
	Level Test Interface	
Test l	Methods	10-2
	Target LED Illumination	
	Output Contact Operation	
	Sequential Events Recorder (SER)	
	e Testing	
	oment Required	
	l Checkout	
	r Supply	
	l Communications	
	uts	
	S	
	ring	
	ing Overcurrent	
	Instantaneous Overcurrent Elements	
	Definite-Time and Inverse-Time Overcurrent Elements	
	Phase Overcurrent Elements	
	Negative-Sequence Overcurrent Elements	
	Residual Overcurrent Elements	
	Neutral Elements	
	Forque Control	
	icted Earth Fault (REF) Function	
	rential	
	U87P Unrestrained Differential Element	
	O87P Differential Element Pickup	
	SLP1 Restrained Differential Threshold	
	SLP2 Restrained Differential Threshold	
	Second-Harmonic Blocking	
	Fifth-Harmonic Blocking	
	Harmonic Restraint	
	-Code Input (IRIG-B)	
	oning Testing	
	nce Testing	
•	ubleshooting	
•	ction Procedure	
	bleshooting Procedure	
	All Front-Panel LEDs Dark	
	Cannot See Characters on Relay LCD Screen	
	Relay Does Not Respond to Commands From Device Connected to Serial Port.	
	Relay Does Not Respond to Faults	
	Γime Command Displays the Same Time for Successive Commands	10-33

	Tripping Output Relay Remains Closed Following Fault	
	"SELBOOT" on Front Display at Power-Up; Serial Port Warning to Re	
	Link	
	No Prompting Message Issued to Terminal Upon Power Up	
	Terminal Displays Meaningless Characters	
	Self-Test Failure: +5 V PS	
	Self-Test Failure: +5 V REG	
	Self-Test Failure: -5 V REG	
	Self-Test Failure: +12 V PS	
	Self-Test Failure: -12 V PS	
	Self-Test Failure: +15 V PS	10-34
	Self-Test Failure: -15 V PS	10-34
	Self-Test Failure: Offset	10-34
	Self-Test Failure: ROM	10-34
	Self-Test Failure: RAM	10-34
	Self-Test Failure: A/D Converter	10-35
	Self-Test Failure: IO_BRD	10-35
	Self-Test Failure: CR_RAM, EEPROM, and IO_BRD	10-35
	Alarm Contacts Closed	10-35
	Self-Test Failure: Temp After R_S Command	10-35
Rela	y Calibration	10-35
Fact	ory Assistance	10-35
	TABLES	
	Instantaneous Overcurrent Elements and Corresponding Settings	
	Time-Delayed Overcurrent Elements and Corresponding Settings	
Table 10.3:	Connection Compensation Factor	10-21
	FIGURES	
Figure 10 1.	Low-Level Test Interface	10-2
	Relay Identification Sticker	
	Test Connections for Balanced Load With Three-Phase Current Sources	
	Test Connections for Balanced Load With Two-Phase Current Sources	
•	Test Connections for Two Single-Current Test Sources	
•	Percentage Restraint Differential Characteristic	
	Test Connections for Parallel Current Sources	
1 15010 10.7.	2 00 Company for 1 minior Chiront Doubles imminimum	10 21

SECTION 10: TESTING AND TROUBLESHOOTING

INTRODUCTION

The Testing section should be used for determining and establishing test routines for the SEL-387A Relay. Included are discussions on testing philosophies, methods, and tools. Example test procedures are shown for the overcurrent elements, differential elements, harmonic blocking functions, Restricted Earth Fault protection, and metering. Relay troubleshooting procedures are shown at the end of the section.

Protective relay testing may be divided into three categories: acceptance, commissioning, and maintenance testing. The categories are differentiated by when they take place in the life cycle of the relay, as well as in the test complexity.

The paragraphs below describe when each type of test is performed, the goals of testing at that time, and the relay functions that you need to test at each point. This information is intended as a guideline for testing SEL relays.

TESTING METHODS AND TOOLS

Test Features Provided by the Relay

The following features assist you during relay testing.

METER	The METER command shows the currents presented to the relay in
Command	primary values. Compare these quantities against other devices of

known accuracy.

EVENT The relay generates an event report in response to faults or Command disturbances. Each report contains current information, relay

element states, and input/output contact information. If you question the relay response or your test method, use the **EVENT** command to

display detailed information.

TARGET, TARGET F Use the **TARGET n** command to view the state of relay control

Command inputs, relay outputs, and relay elements individually during a test.

SER Use the Sequential Events Recorder for timing tests by setting the Command

SER trigger settings (SER1, SER2, SER3, or SER4) to trigger for

specific elements asserting or deasserting. View the SER with the

SER command.

Programmable Outputs Programmable outputs allow you to isolate individual relay

elements. Refer to the **SET** command.

For more information on these features and commands, see Section 7: Serial Port Communications and Commands.

Low-Level Test Interface

The SEL-387A has a low-level test interface between the calibrated input module and the separately calibrated processing module. You may test the relay in either of two ways: by applying ac current signals to the relay inputs, or, alternatively, by applying low magnitude ac voltage signals to the low-level test interface. Access the test interface by removing the relay front panel.

Figure 10.1 shows the low-level interface connections. Remove the ribbon cable between the two modules to access the outputs of the input module and the inputs to the processing module (relay main board).

You can test the relay processing module using signals from the SEL-RTS Low-Level Relay Test System. Never apply voltage signals greater than 9 V peak-to-peak to the low-level test interface. Figure 10.1 shows the signal scaling factors.

The relay contains devices that are sensitive to Electrostatic Discharge (ESD). When working on the relay with front or top cover removed, work surfaces and personnel must be properly grounded or equipment damage may result.

You can test the input module two different ways:

Measure the outputs from the input module with an accurate voltmeter and compare the readings to accurate instruments in the relay input circuits;

or

Replace the ribbon cable, press the front-panel **<METER>** button, and compare the relay readings to other accurate instruments in the relay input circuits.

Figure 10.1: Low-Level Test Interface

Test Methods

Test the pickup and dropout of relay elements using one of three methods: front-panel target LCD/LED indication, output contact operation, or the Sequential Events Recorder (SER).

Target LED Illumination

During testing use target LED illumination to determine relay element status. Using the **TAR F** command, set the front-panel targets to display the element under test. Monitor element pickup and dropout by observing the target LEDs.

For example, the Winding 1 phase definite-time overcurrent element 50P11 appears in Relay Word Row 2. When you type the command **TAR F 50P11 <ENTER>**, the terminal displays the labels and status for each bit in the Relay Word row (2) and the LEDs display their status. Thus, with these new targets displayed, if the Winding 1 phase definite-time overcurrent element (50P11) asserts, the far left LED illuminates. See *Section 4: Control Logic* for a list of all Relay Word elements.

Be sure to reset the front-panel targets to the default targets after testing before returning the relay to service. This can be done by pressing the front-panel **TARGET RESET>** button or by issuing the **TAR R** command from the serial port.

Output Contact Operation

To test using this method, set one programmable output contact to assert when the element under test picks up. With the **SET n** command, enter the Relay Word bit name of the element under test.

For an "a" contact, when the condition asserts, the output contact closes. When the condition deasserts, the output contact opens.

For a "b" contact, when the condition asserts, the output contact opens. When the condition deasserts, the output contact closes.

Programmable contacts can be changed to "a" or "b" contacts with a solder jumper. Refer to *Section 2: Installation* for jumper locations. Using contact operation as an indicator, you can measure element operating characteristics, stop timers, etc.

Tests in this section assume an "a" output contact.

Sequential Events Recorder (SER)

To test using this method, set the SER to trigger for the element under test. With the SET R command, put the element name in the SER1, SER2, SER3, or SER4 setting.

Whenever an element asserts or deasserts, a time stamp is recorded. View the SER report with the SER command. The SER report will list the actual element name (Relay Word bit), unless this bit has been renamed using one of the ALIASn settings, in which case the ALIAS will appear in the report. Clear the SER report with the SER C command.

ACCEPTANCE TESTING

When: When qualifying a relay model to be used on the utility system.

Goal: a) Ensure relay meets published critical performance specifications such as operating speed and element accuracy.

- b) Ensure that the relay meets the requirements of the intended application.
- c) Gain familiarity with relay settings and capabilities.

What to test: All protection elements and logic functions critical to the intended application.

SEL performs detailed acceptance testing on all new relay models and versions. We are certain the relays we ship meet their published specifications. It is important for you to perform acceptance testing on a relay if you are unfamiliar with its operating theory, protection scheme logic, or settings. This helps ensure the accuracy and correctness of the relay settings when you issue them.

Equipment Required

The following equipment is necessary to perform all of the acceptance tests:

- 1. A terminal or computer with terminal emulation with EIA-232 serial interface
- 2. Interconnecting data cable between terminal and relay
- 3. Source of relay control power
- 4. Source of two currents at nominal frequency
- 5. Source of one current at two times and/or five times nominal frequency
- 6. Ohmmeter or contact opening/closing sensing device

Initial Checkout

Step 1. Purpose: Be sure you received the relay in satisfactory condition.

Method: Inspect the instrument for physical damage such as dents or rattles.

Step 2. Purpose: Verify requirements for relay logic inputs, control power voltage level,

and voltage and current inputs.

Method: Refer to the information sticker on the rear panel of the relay. Figure 10.2

provides an example. Check the information on this sticker before applying power to the relay or starting tests. Be sure your dc supply is

correctly adjusted for the control and logic input requirements.

PART NUMBER: 0387AXXXXXXXXXX S/N: 99334035 POWER SUPPLY: 85–264Vac 50/60 Hz 85–350Vdc 15W Max LOGIC INPUT: 125Vdc

Figure 10.2: Relay Identification Sticker

Power Supply

Step 1. Purpose: Establish control power connections.

Method: Connect a frame ground to terminal marked GND on the rear panel and connect rated control power to terminals marked + and -. Relays supplied with 125 or 250 V power supplies may be powered from a 115 Vac wall receptacle for testing. Other power supplies require dc voltage and are

polarity sensitive.

Step 2. Purpose: Verify that +5 Vdc is presented on Ports 2 and 3. This voltage is

sometimes required by external devices that include a dc powered

modem.

Method: 1. Execute the **STATUS** command from the serial port or front panel, and inspect the voltage readings for the power supply.

2. Verify that JMP1 is installed for Serial Port 3 and JMP2 is installed for Serial Port 2. Refer to *Section 2: Installation* for further information about the jumpers.

3. Use a voltmeter to read the +5 V output. Pin 1 of each port should have +5 Vdc on it when the jumpers mentioned above are installed.

4. Compare the +5 V readings from the status report and voltmeter. The voltage difference should be less than 50 mV (0.05 V), and both readings should be within ±0.15 V of 5 V.

Serial Communications

Step 1. Purpose: Verify the communications interface setup.

Method: Connect a computer terminal to Ports 2, 3, or 4 of the relay.

Communication Parameters: 2400 Baud, 8 Data Bits, 1 Stop Bit, N Parity

Cables: SEL-C234A for 9-pin male computer connections

SEL-C227A for 25-pin male computer connections

Step 2. Purpose: Apply control voltage to the relay, and start Access Level 0

communications.

Method: Apply control voltage to the relay. The enable target (EN) LED should

illuminate. If not, be sure that power is present. Type **<ENTER>** from your terminal to get the Access Level 0 response from the relay. The =

prompt should appear, indicating that you have established

communications at Access Level 0.

The ALARM relay should pull in, holding its "b" contacts open.

If the relays pull in but your terminal does not respond with the equals sign, check the terminal configuration. If neither occurs, turn off the power, and refer to the *Relay Troubleshooting* later in this section.

The = prompt indicates that communications with the relay are at Access Level 0, the first of four possible levels. The only command accepted at this level is ACC <ENTER>, which opens communications on Access Level 1.

Note: If you are using a battery simulator, be sure the simulator voltage level is stabilized before turning the relay on.

Step 3. Purpose: Establish Access Level 1 communications.

> Method: Type ACC <ENTER>. At the prompt, enter the Access Level 1 password and press **<ENTER>**. (See *PAS (Passwords)* in *Section 7:* Serial Port Communications and Commands for a table of factory default passwords.) The => prompt should appear, indicating that you have established communications at Access Level 1.

Step 4. Purpose: Verify relay self-test status.

> Method: Type **STA <ENTER>**. The following display should appear on the terminal: (**Note:** The current input names shown are the default values; any inputs renamed in the Analog Input Labels settings will appear as

set.)

Step 5. Purpose: View factory settings entered before shipment.

> Method: The relay is shipped with factory settings; type SHO <ENTER> to view the settings. Section 6: Setting the Relay includes a complete description of the settings. The terminal display should look similar to the following:

```
-----
=>>SH0
Group 1
RID
       =XFMR 1
TID
       =STATION A
E87
EOC1
      = Y
                 E0C2
                                   EOCN
E49A
      = N
                 E49B
                        = N
ESLS1
      = N
                 ESLS2
                                   ESLS3
W1CT
                 W2CT
                 CTR2
CTR1
       = 120
                        = 240
CTRN1
      = 80
                 CTRN2
                        = 80
                                   CTRN3 = 24
MVA
       = 100.0
                 ICOM
                        = Y
W1CTC
                 W2CTC
                        = 11
      = 11
VWDG1
      = 230.00
                 VWDG2
                        = 138.00
TAP1
      = 2.09
                 TAP2
                        = 1.74
087P
       = 0.30
                 SLP1
                        = 25
                                   SLP2
                                                    IRS1
                                                           = 3.0
                                          = 50
       = 10.0
                        = 15
                                          = 15
                                                           = 35
U87P
                 PCT2
                                   PCT4
                                                    PCT5
TH5P
                 DCRB
                                   HRSTR = N
                                                    IHBL
E32I1
      =0
Press RETURN to continue
                                   (continued on next page)
```

			((continued from previous page)
F3212	0			
E32I2	=0			
	= 20.00	50P11D	= 5.00	50P11TC =1
50P12P	= OFF			
	= 0.50	50P14P		5101TD
51P1P 51P1TC		51P1C	= U2	51P1TD = 3.00 $51P1RS = Y$
	-1			
50Q11P	= OFF	50Q12P		
51Q1P	= 6.00	51Q1C	= U2	5101TD = 3.00 $5101RS = Y$
51Q1TC	=1			
50N11P	= OFF	50N12P	= OFF	
51N1P				
DATC1	= 15	PDEM1P	= 7.00	QDEM1P = 1.00 NDEM1P = 1.00
	= OFF	50P22P	= 0FF	
	= 0.50	50P24P		
Press R	ETURN to conf = 3.50	tinue 51P2C	= U2	51P2TD = 3.50
51P2F 51P2TC		31720	- 02	51F21D - 5.50 51F2R3 - 1
50Q21P	= OFF	50Q22P		
51Q2P 51Q2TC		51Q2C	= U2	51Q2TD = 3.50 $51Q2RS = Y$
51U21C	=1			
50N21P	= OFF	50N22P	= OFF	
51N2P				
DATC2	= 15	PDEM2P	= 7.00	QDEM2P = 1.00 NDEM2P = 1.00
50NN11P	= OFF	50NN11D	= 10.00	50NN11TC=1
50NN12P				
50NN13P 51NN1P		50NN14P 51NN1C		51NN1TD = 1.00
51NN1DS		51NN1C		51NN11D - 1.00
	•		_	
50NN21P		50NN21D	= 10.00	50NN21TC=1
50NN22P	= OFF			
Press R	ETURN to conf	tinue		
50NN23P	= OFF	50NN24P	= OFF	
51NN2P		51NN2C		51NN2TD = 1.00
51NN2RS	= Y	51NN2TC	=1	
50NN31P	= OFF	50NN31D	= 10.00	50NN31TC=1
50NN32P		13010	10.00	
50NN33P		50NN34P		
51NN3P 51NN3RS		51NN3C 51NN3TC		51NN3TD = 1.00
этииэкэ	- 1	DIMMOIC	-1	
TDURD	= 9.000	CFD	= 60.000	
				(continued on next page)

```
(continued from previous page)
TR1
       =50P11T + 51P1T + 51Q1T + 0C1 + LB3
        =51P2T + 51Q2T + 0C2
TR2
TR3
       =87R + 87U
TR4
        =0
TR5
        =0
ULTR1
       =!50P13
ULTR2
       =!50P23
       =!(50P13 + 50P23)
ULTR3
Press RETURN to continue
ULTR4
ULTR5
       =0
52A1
        =IN101
       =IN102
52A2
       =0
52A3
52A4
        =0
CL1
       =CC1 + LB4 + /IN104
CL2
       =CC2 + /IN105
CL3
       =0
CL4
       =0
ULCL1
       =TRIP1 + TRIP3
ULCL2
       =TRIP2 + TRIP3
ULCL3
ULCL4
       =0
ER
       =/50P11 + /51P1 + /51Q1 + /51P2 + /51Q2
OUT101 =TRIP1
OUT102 =TRIP2
OUT103 =TRIP3
0UT104 =0
OUT105 =CLS1
Press RETURN to continue
OUT106 =CLS2
OUT107 =0
0UT201 =0
0UT202 =0
0UT203 =0
0UT204 =0
0UT205 =0
0UT206 =0
0UT207 =0
0UT208 =0
0UT209 =0
0UT210 =0
0UT211 =0
0UT212 =0
SCEUSE
          45.8
GR1CHK
           E740
=>>
```

Outputs

Step 1. Purpose: Verify that contact outputs operate when you execute the **PULSE** command.

Method: 1. Isolate all circuitry connected to the output contacts.

- 2. Set the target LEDs to display the contact outputs by typing **TAR F OUT101 <ENTER>**. The bottom row of the front-panel LEDs should now follow Row 41 of the Relay Word where OUT101 is listed.
- 3. Execute the **PULSE n** command for each output contact. Verify that the corresponding target LED illuminates and output contact closes for approximately one second. For example, type **PUL OUT101** < **ENTER>** to test output contact OUT101.
- 4. Repeat this step for each output. Use the **TARGET F** command to display the appropriate output elements.
- **Step 2.** Purpose: Verify externally connected circuitry is operational.
 - Method: 1. Isolate all circuitry connected to the output contacts except the circuit under test.
 - 2. Set the target LEDs to display the contact outputs by typing **TAR F OUT101 <ENTER>**. The bottom row of the front-panel LEDs will follow Row 41 of the Relay Word where OUT101 is listed.
 - 3. Execute the **PULSE n** command for each output contact. Verify that the corresponding target LED illuminates and output contact closes for approximately one second. For example, type **PUL OUT101 <ENTER>** to test output contact 101.
 - 4. Repeat this step for each output. Use the **TARGET F** command to display the appropriate output elements. Verify that the connected circuitry operates as expected.

Inputs

Step 1. Purpose: Verify that logic inputs assert when control voltage is applied across the respective terminal pair.

Method: 1. Set the target LEDs to display the level-sensitive inputs by typing **TAR F IN101 <ENTER>**. The bottom row of the front-panel LEDs will follow logic inputs IN101 through IN106, which is Relay Word Row 27.

- 2. Apply the appropriate control voltage to each input and make sure the corresponding target LED turns on.
- 3. Repeat this step for each input. Use the **TARGET F** command to display the appropriate output elements.

Metering

Step 1. Purpose: Connect simulated power system secondary current sources to the relay.

Method: Turn power off to the relay and connect current sources. If three current sources are available, connect them to the relay in a full three-phase connection, as shown in Figure 10.3. If only two current sources are available, connect the sources as shown in Figure 10.4 to generate balanced positive-sequence currents:

- a. Connect the A-phase and B-phase current sources to the dotted A and B current input terminals.
- b. Connect both undotted A and B current input terminals to the undotted C current input terminal.
- c. Connect the dotted C current input terminal to both the A and B current source returns.

Set the current sources to deliver one ampere with A-phase at 0 degrees, B-phase lagging A-phase by 120 degrees, and C-phase leading A phase by 120 degrees.

Step 2. Purpose: Verify correct current levels.

Method: Turn relay power on, and use the **METER** command to measure the currents applied in step 1. With applied currents of one ampere per phase and a current transformer ratio of 120:1 (**SHO CTR1 <ENTER>** displays the CT ratios for each winding, **<CTRL>** X cancels scrolling), the displayed line currents should be the applied current, 120 amperes ±3%, ±12 amperes.

Step 3. Purpose: Verify phase rotation.

Method: Verify that residual (IR) and negative-sequence (3I2) quantities are approximately zero. If IR equals three times the applied current, all three phases have the same angle. If 3I2 equals three times the applied current, the phase rotation is reversed. Turn the current sources off.

Figure 10.3: Test Connections for Balanced Load With Three-Phase Current Sources

Figure 10.4: Test Connections for Balanced Load With Two-Phase Current Sources

Winding Overcurrent

Each winding overcurrent element that is to be tested must be enabled. Enable the overcurrent elements for a particular winding with the EOC1, EOC2, and EOCN settings for Windings 1 and 2 and neutral, respectively. Setting these to "Y" enables the overcurrent elements for the corresponding winding. The pickup settings for each overcurrent element must also be set to a pickup value. If they are not set to a value but are set to "OFF," that particular overcurrent element is disabled.

Instantaneous Overcurrent Elements

Note: This example tests the Winding 1 50P11 phase overcurrent element. Use the same procedure to test all instantaneous overcurrent elements.

Step 1. Purpose: Determine the expected instantaneous overcurrent element pickup value.

Method: Execute the **SHO** command via the relay front panel or serial port and

verify the setting (i.e., SHO 50P11P<ENTER>).

Step 2. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 50P11<ENTER>**). The

SEL-387A now displays the state of several Winding 1 overcurrent

elements on the bottom row of front-panel LEDs.

Step 3. Purpose: Connect and apply a single-current test source until the appropriate LED

illuminates.

Method: Connect a single-current test source (i.e., source 1) as shown in

Figure 10.5. Turn on the current test source for the winding under test, and slowly increase the magnitude of current applied until the appropriate element asserts (i.e., 50P11), causing the LED to illuminate (i.e., leftmost). Note the magnitude of the current applied. It should equal the 50P1P setting $\pm 5\%$ of the setting $\pm 0.02 \cdot I_{nom}$ (negative-sequence elements

are $\pm 6\%$ of the setting $\pm 0.02 \cdot I_{--}$).

Step 4. Purpose: Repeat test for each instantaneous overcurrent element for both windings.

Method: Repeat steps 1 through 3 for each instantaneous overcurrent element listed in Table 10.1 for each winding. Remember to view the appropriate TARget and apply current to the appropriate winding. The computer terminal will display the LED labels from left to right when the **TAR F** command is issued.

Figure 10.5: Test Connections for Two Single-Current Test Sources

Table 10.1: Instantaneous Overcurrent Elements and Corresponding Settings

	Winding 1		Winding 2		Neutral	
	Bit	Setting	Bit	Setting	Bit	Setting
Phase Level 1	50P11	50P11P	50P21	50P21P		
Phase Level 2	50P12	50P12P	50P22	50P22P		
Phase Inverse-Time	51P1	51P1P	51P2	51P2P		
A-Phase Level 3	50A13	50P13P	50A23	50P23P		
B-Phase Level 3	50B13		50B23			
C-Phase Level 3	50C13		50C23			
Phase Level 3	50P13		50P23			
A-Phase Level 4	50A14	50P14P	50A24	50P24P		
B-Phase Level 4	50B14		50B24			
C-Phase Level 4	50C14		50C24			
Phase Level 4	50P14		50P24			
Residual Level 1	50N11	50N11P	50N21	50N21P		
Residual Level 2	50N12	50N12P	50N22	50N22P		
Residual Inverse-Time	51N1	51N1P	51N2	51N2P		

	Winding 1		Winding 2		Neutral	
	Bit	Setting	Bit	Setting	Bit	Setting
Neg-Seq Level 1	50Q11	50Q11P	50Q21	50Q21P		
Neg-Seq Level 2	50Q12	50Q12P	50Q22	50Q22P		
Neg-Seq Inverse-Time	51Q1	51Q1P	51Q2	51Q2P		
Input 1 Neutral Level 2					50NN12	50NN12P
Input 1 Neutral Level 3					50NN13	50NN13P
Input 1 Neutral Level 4					50NN14	50NN14P
Input 1 Neutral Inverse-Time					51NN1	51NN1P
Input 2 Neutral Level 2					50NN22	50NN22P
Input 2 Neutral Level 3					50NN23	50NN23P
Input 2 Neutral Level 4					50NN24	50NN24P
Input 2 Neutral Inverse-Time					51NN2	51NN2P
Input 3 Neutral Level 2					50NN32	50NN32P
Input 3 Neutral Level 3					50NN33	50NN33P
Input 3 Neutral Level 4					50NN34	50NN34P
Input 3 Neutral Inverse-Time					51NN3	51NN3P

Definite-Time and Inverse-Time Overcurrent Elements

Note: This example tests the Winding 1 51P1 phase inverse-time overcurrent element. Use the same procedure to test all definite-time and inverse-time overcurrent elements for each winding.

Step 1. Purpose: Determine the expected time delay for the overcurrent element.

Method: 1. Execute the **SHO** command via the relay front panel or serial port and verify the time delay settings (i.e., **SHO 51P1<ENTER>**). The delay settings will follow the pickup settings when they are

displayed.

2. Calculate the time delay to pickup (tp). Definite-time elements will be equal to the delay setting (i.e., 50P11D setting for the 50P11 element). Inverse-time elements are calculated using three element settings and the operating time equations shown in *Section 3:*Differential, Restricted Earth Fault, and Overcurrent Elements.

TD is the time-dial setting (i.e., 51P1TD), and M is the applied multiple of pickup current.

For example, if 51P1P = 2.2 A, 51P1C = U3, and 51P1TD = 4.0, we can use the equation below to calculate the expected operating time for M = 3 (applied current equals $M \cdot 51P1P = 6.6 \text{ A}$):

$$tp = TD \cdot \left(0.0963 + \frac{3.88}{M^2 - 1} \right)$$

 $tp = 2.33 \text{ seconds}$

- **Step 2.** Purpose: Set the Sequential Events Recorder to record the element timing.
 - Method: Use **SET R SER1<ENTER>** to set SER1 equal to the element pickup and time-out Relay Word bits (i.e., 51P1, 51P1T). When prompted, set SER2, SER3, and SER4 to NA. Save the settings.
- Step 3. Purpose: Connect and apply a single-current test source at a level that is M times greater than the pickup (i.e., $2.2 \cdot M = 6.6$ A for this example).
 - Method: Connect a single-current test source as shown in Figure 10.5. Turn on the single-current test source for the winding under test at the desired level.
- **Step 4.** Purpose: Verify the operation times.
 - Method: Type **SER<ENTER>** to view the SER. The assertion and deassertion of each element listed in the SER1, 2, 3, and 4 settings are recorded. Subtract the time from the assertion of the pickup (i.e., 51P1) to the assertion of the time-delayed element (i.e., 51P1T). **SER C** clears the SER records.
- **Step 5.** Purpose: Repeat the test for each definite-time and inverse-time overcurrent element, for each winding.
 - Method: Repeat steps 1 through 4 for each time element listed in Table 10.2 for each winding. Remember to set the SER for the appropriate elements and apply current to the appropriate winding.

Note: If the time-overcurrent element induction-disk reset emulation is enabled (i.e., 51P1RS= Y), the element under test may take some time to reset fully. If the element is not fully reset when you run a second test, the time to trip will be lower than expected. To reset all time-overcurrent elements before running additional tests, enter the **RESET <ENTER>** command from the relay serial port.

Table 10.2: Time-Delayed Overcurrent Elements and Corresponding Settings

	Winding 1		Win	ding 2	Neutral	
	Bit	Setting	Bit	Setting	Bit	Setting
Phase Level 1	50P11	50P11P	50P21	50P21P		
Definite-Time	50P11T	50P11D	50P21T	50P21D		
Phase Inverse-Time	51P1	51P1P	51P2	51P2P		
Curve		51P1C		51P2C		
Time-Dial		51P1TD		51P2TD		
Time-Out	51P1T		51P2T			
Residual Level 1	50N11	50N11P	50N21	50N21P	50NN11	50NN11P
Definite-Time	50N11T	50N11D	50N21T	50N21D	50NN11T	50NN11D
Residual Inverse-Time	51N1	51N1P	51N2	51N2P	51NN1	51NN1P
Curve		51N1C		51N2C		51NN1C
Time-Dial		51N1TD		51N2TD		51NN1TD
Time-Out	51N1T		51N2T		51NN1T	
Neg-Seq Level 1	50Q11	50Q11P	50Q21	50Q21P		
Definite-Time	50Q11T	50Q11D	50Q21T	50Q21D		
Neg-Seq Inv-Time	51Q1	51Q1P	51Q2	51Q2P		
Curve		51Q1C		51Q2C		
Time-Dial		51Q1TD		51Q2TD		
Time-Out	51Q1T		51Q2T			

Phase Overcurrent Elements

The SEL-387A has many phase overcurrent elements. They all operate based on a comparison between the phase current directly applied to the winding inputs and the phase overcurrent setting. The elements that have a P as the third character of the element name operate when any one of the three phase currents exceeds the phase current setting threshold. The elements that have an A, B, or C as the third character in the element name operate (e.g., 50C14) based on that phase current.

Test the instantaneous and time-delayed phase overcurrent elements by applying current to the inputs and comparing relay operation to the phase overcurrent settings. These tests were previously outlined in this section.

Negative-Sequence Overcurrent Elements

The SEL-387A has 12 negative-sequence overcurrent elements. They all operate based on a comparison between a negative-sequence calculation of the three-phase inputs and the negative-sequence overcurrent setting. The negative-sequence calculation that is performed on the three-phase inputs is as follows:

```
3I2 = A-phase + B-phase (shifted by -120^{\circ}) + C-phase (shifted by 120^{\circ})
```

This means that if balanced positive-sequence currents are applied to the relay, the relay reads 312 = 0 (load conditions).

For testing purposes, apply a single-phase current to the relay and the negative-sequence overcurrent elements will operate. For example, assume one ampere on A-phase and zero on B-and C-phases:

```
3I2 = 1 + 0 (shifted -120^{\circ}) + 0 (shifted 120^{\circ}) = 1 (simulated ground fault condition)
```

Test the instantaneous and time-delayed negative-sequence overcurrent elements by applying current to the inputs and comparing relay operation to the negative-sequence overcurrent settings. These tests were previously outlined in this section.

Residual Overcurrent Elements

The SEL-387A has many residual overcurrent elements. They all operate based on a comparison between a residual calculation of the three-phase inputs and the residual overcurrent setting. The residual calculation that is performed on the three-phase inputs is as follows:

```
IR = A-phase + B-phase + C-phase (all angles are considered as well)
```

This means that if balanced positive-sequence currents are applied to the relay, the relay reads IR = 0 (load conditions) because the currents cancel one another.

For testing purposes, apply a single-phase current to the relay and the residual overcurrent elements will operate. For example, assume one ampere on A-phase and zero on B- and C-phases:

```
IR = 1 + 0 (shifted 120^{\circ}) + 0 (shifted -120^{\circ}) = 1 (simulated ground fault condition)
```

Test the instantaneous and time-delayed residual overcurrent elements by applying current to the inputs and comparing relay operation to the residual overcurrent settings. These tests were previously outlined in this section.

Neutral Elements

The SEL-387A has many neutral overcurrent elements. These are single-input elements, similar to the phase elements, i.e., the values are not manipulated as is the case with the residual elements. Test neutral elements in a similar manner as the phase overcurrent elements previously outlined in this section.

Torque Control

SELOGIC® control equations are provided for various overcurrent elements (i.e., 51P1TC) that provide a torque control (required to be true for element operation). Follow the following procedure to test the torque-control equations.

Step 1. Purpose: Set the torque-control equation for the desired condition.

Method: Execute the **SET** command via the relay serial port and set the desired torque-control equation to the desired condition. Use a digital input for the test example. Enter **SET 51P1TC<ENTER>**. When prompted, set 51P1TC to IN101. Note that the 51P1TC may be set to 1 (always

asserted) or 0 (always deasserted) for testing instead of asserting an input.

Step 2. Purpose: Assert the torque-control equation.

Method: Apply the appropriate conditions to assert the torque-control equation.

For this test example, apply control voltage to IN101.

Step 3. Purpose: Display the appropriate Relay Word bit to verify the torque-control

equation.

Method: Execute the **TARGET** command (i.e., **TAR F IN101<ENTER>**). The

SEL-387A now displays the state of the six input elements in the bottom row of the front-panel LEDs. If using multiple elements in the torque-control equation, you must issue several **TARGET** commands to view the

individual elements.

Step 4. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs for the

desired overcurrent element.

Method: Execute the **TARGET** command (i.e., **TAR F 51P1<ENTER>**). The

SEL-387A now displays the state of several overcurrent elements in the bottom row of the front-panel LEDs. The 51P1 bit is the fourth LED

from the left.

Step 5. Purpose: Execute and verify an overcurrent test.

Method: Referring to the overcurrent tests previously outlined in this section,

execute an overcurrent test and verify its operation.

Step 6. Purpose: Verify that the torque-control equation disables the overcurrent element

when deasserted.

Method: Remove the torque-control conditions to deassert the torque-control

equation. For this test example, remove control voltage from IN101. Reexecute the same overcurrent test and verify that it does not operate.

Restricted Earth Fault (REF) Function

The test for the REF function uses two current sources to inject current into two different windings. Small currents are used to demonstrate the sensitivity of the element to internal ground faults. The test assumes a 5 A relay is being used.

The settings for the REF function are these:

E32In = Enabling SELOGIC control equations. Set E32In = 1.

32IOPn = Winding(s) for obtaining the Operate quantity. Set 32IOPn = 1.

a0n = Positive-sequence restraint factor. Use default setting, a0n = 0.1.

50GPn = Residual current sensitivity level. Use default setting, 50GPn = 0.5A.

(n = 1, 2)

Recall that the default CT ratio settings are: CTR1 = 120, and CTRN1 = 80.

Note: To use the default setting 50GPn = 0.5, be sure that the ratio CTRmax/CTRNn is not more than 2.0, where CTRmax is the CTR1 or CTR2 setting. Using the default CT ratio settings, the ratio CTRmax/CTRN1 = 120/80 = 1.5. Therefore, the 50GPn setting can remain at 0.5 A.

If the ratio CTRmax/CTRNn is greater than 2.0, set 50GPn equal to 0.25 A times the actual ratio of CTRmax/CTRNn.

Step 1. Purpose: Determine the expected time delay for the overcurrent element.

Method: Execute the **SHO** command via the relay front panel or serial port and verify the element settings (i.e., **SHO E32In <ENTER>**).

Calculate the time delay to pickup (tp). Inverse-time elements are calculated using three element settings and the operating time equations shown in *Section 3: Differential, Restricted Earth Fault, and Overcurrent Elements*. TD is the time-dial setting, and M is the applied multiple of pickup current.

For example, 50GPn = 0.5 A. The REF function operates as a time-overcurrent element with a fixed timing curve (U4) and fixed time dial (0.5). The amount of neutral input current, INn, is part of a ratio that modifies the REF overcurrnt element assertion time as multiples of the 50GPn pickup setting, M = INn/50GPn. The expected operating time is:

tp_{REF} =
$$0.5 \cdot \left(0.0352 + \frac{5.67}{M^2 - 1} \right)$$

 $tp_{REF} = 0.963 seconds$

Step 2. Purpose: Set the Sequential Events Recorder to record the element timing.

Method: Use **SET R SER1 <ENTER>** to set SER1 equal to the element pickup and time-out Relay Word bits (i.e., 50GNn, 32IFn, and REFPn). When prompted, set SER2, SER3, and SER4 to NA. Save the settings.

Step 3. Purpose: Connect and apply two single-current test sources to test the REF element.

Method: Connect two single-current test sources as shown in Figure 10.5, but with source current 2 connected to IN1. Set the IAW1 current magnitude to:

 $IAW1 \ge 2 \cdot 50GP1 \cdot CTRN1/CTR1$

Using the default CT ratios, IAW1 should be set to at least 2 • 0.5 A • 80/120, or 0.67 A. Set the magnitude of IAW1 to 1 A; set the angle of IAW1 to 180 degrees.

Set the IN1 current at 1 A at zero degrees. Since the currents are opposite in phase, nothing should happen. Verify this as follows:

Execute the **TAR 50** command. Relay Word bits 50GN1, 32IR1, 32IF1, and REFP1 are all in this row. With the currents applied as above, 50GN1 should be 1, and REFP should remain at 0. Bit 32IR1 should be 1, indicating an external (reverse) fault. Bit 32IF1 should be 0.

Change the angle of IAW1 to zero degrees, or any value within about ±80 degrees of INn. The REF element should function. Verify this as follows:

Execute the **TAR 50** command again. 50GN1 should still be 1, REFP1 should be 1 (indicating time-out), 32IR1 should be 0, and 32IF1 should be 1 (indicating an internal, or forward, fault).

Step 4. Purpose: Verify the operation time.

Method: Type **SER <ENTER>** to view the SER records. The assertion and

deassertion of each element listed in the SER1, 2, 3, and 4 settings are recorded. Subtract the time of assertion of the directional element (32IF1) from the assertion time of the time-out bit (REFP1). This is the operate time, which should be about one second, as calculated above. (50N1 will have remained asserted from earlier in the test, since no change was made to the IN1 current.) **SER C** clears the SER records.

Repeat steps 2–4 to test REF element 2. You can use Winding 1 as reference for REF2; set 32IOP2 = 1. Alternatively, you can use Winding 2 as reference for REF2; set 32IOP2 = 2 and set pickup setting 50GP2 = 0.75. (You must change the 50GP2 pickup setting because the relay default CT ratio CTR2/CTRN2 is 3:1.)

Differential

The SEL-387A has several components to its differential element. Figure 10.6 gives a representation of the differential characteristic and the plot of each test. Each test only uses Winding 1 and Winding 2 inputs. The differential elements must be enabled with the E87 = Y, settings.

Figure 10.6: Percentage Restraint Differential Characteristic

U87P Unrestrained Differential Element

Step 1. Purpose: Verify the expected unrestrained differential element pickup setting.

Method: Execute the **SHO** command via the relay front panel or serial port and

verify the setting (i.e., SHO U87P<ENTER>). Note: This value is in

per unit of tap.

Step 2. Purpose: Calculate the required current to pick up the unrestrained differential

element.

Method: Calculate the expected pickup for the 87U element by multiplying the

U87P setting by the TAP1 and TAP2 setting and the compensation constant A shown in Table 10.3. The CT connection compensation settings W1CTC and W2CTC determine the A constant for the calculations. Use the corresponding TAPn and WnCTC settings for the

winding under test.

CAUTION

The continuous rating of the current inputs is $3 \cdot I_{nom}$. For this test, you may want to choose low values of U87P and TAPn, in order to limit the required test current to a safe value.

Step 3. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 87U<ENTER>**). The

SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87U bit is the fourth from the

left.

Step 4. Purpose: Connect and ramp a single-current test source until the appropriate LED illuminates.

Method: Connect a single-current test source. Turn on the current test source for

the winding under test, and slowly increase the magnitude of current applied until the 87U element asserts. Note the magnitude of the current applied. It should equal the value calculated in step 2, $\pm 5\% \pm 0.02 \cdot I_{nom}$.

Step 5. Purpose: Repeat the test for each phase for each winding if desired.

Method: Repeat steps 1 through 4 for each phase. Remember to view the

appropriate TARget and apply current to the appropriate winding. The computer terminal will display the LED labels from left to right when the

TAR F command is issued.

Table 10.3: Connection Compensation Factor

WnCTC Setting	A
0	1
Odd: 1, 3, 5, 7, 9, 11	$\sqrt{3}$
Even: 6, 12	1.5
Even: 2, 4, 8, 10	3

087P Differential Element Pickup

Step 1. Purpose: Verify the expected restrained differential element minimum pickup

setting.

Method: Execute the **SHO** command via the relay front panel or serial port and

verify the setting (i.e., **SHO O87P<ENTER>**). **Note:** This value is in

per unit of tap.

Step 2. Purpose: Calculate the required current to pick up the restrained differential

element.

Method: Calculate the expected pickup for the 87R element by multiplying the

O87P setting by the TAP1 and TAP2 setting and the compensation constant A shown in Table 10.3. The CT connection compensation settings W1CTC and W2CTC determine the A constant for the

calculations. Use the corresponding TAPn and WnCTC settings for the

winding under test.

Step 3. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 87R<ENTER>**). The

SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87R bit is the right-most LED.

Step 4. Purpose: Connect and ramp a single-current test source until the appropriate LED

illuminates.

Method: Connect a single-current test source. Turn on the current test source for

the winding under test, and slowly increase the magnitude of current applied until the 87R element asserts. Note the magnitude of the current applied. It should equal the value calculated in step 2, $\pm 5\% \pm 0.02 \cdot I_{\text{nom}}$.

Step 5. Purpose: Repeat the test for each phase for both windings if desired.

Method: Repeat steps 1 through 4 for each phase. Remember to view the

appropriate TARget and apply current to the appropriate winding. The computer terminal will display the LED labels from left to right when the

TAR F command is issued.

SLP1 Restrained Differential Threshold

Step 1. Purpose: Verify the differential characteristic settings and set winding

compensation.

Method: Execute the SHO TAP1<ENTER> command via the relay front panel or

serial port and verify the (TAPn) settings, the Restraint Slope 1 Percentage (SLP1) setting, the Restraint Slope 2 Percentage (SLP2) setting, the restraint current slope 1 limit (IRS1) setting, and the O87P

minimum pickup setting.

Execute the **SET W1CTC<ENTER>** command and set the WnCTC settings for the two windings to be used to the same value (0, 1, ..., 12).

Save the settings.

Step 2. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 87R<ENTER>**). The

SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87R bit is the right-most LED.

Step 3. Purpose: Select a test point on the percentage differential curve in Figure 10.6.

Method: Decide where you want to cross the differential characteristic by picking a

restraint value IRT which is a vertical line on the graph. Since this test is for the SLP1 threshold, select a point above the O87P intersection point and below IRS1. If SLP2 = OFF, IRS1 and SLP2 are not functional.

O87P • 100/SLP1 < IRT < IRS1

The value of IOP corresponding to the selected IRT equals the following:

$$IOP = \frac{SLP1}{100} \bullet IRT$$

Both IRT and IOP are in multiples of tap.

Step 4. Purpose: Calculate the expected current for Winding 1 and Winding 2 at the restrained differential element SLP1 threshold for the test point selected above.

Method: Calculate the Winding 1 current for the test using the following formula:

$$IAW1 = IRT \bullet \left(1 + \frac{SLP1}{200}\right) \bullet TAP1 \bullet A$$

Calculate the Winding 2 current for the test using the following formula:

$$IAW2 = IRT \bullet \left(1 - \frac{SLP1}{200}\right) \bullet TAP2 \bullet B$$

The A and B connection compensation constants are based on Table 10.3. Since the windings have the same WnCTC setting, the A and B constants will be the same for both windings. The constants must be used to achieve the exact curve point on which we have based the calculations. The TAPn settings can be different for the two windings.

The continuous rating of the current inputs is $3 \cdot I_{nom}$. If any currents in this test will exceed this rating, reduce the TAPn values as needed, to prevent possible damage to the input circuits.

Step 5. Purpose: Calculate the initial current for Winding 2 for this test.

Method: Calculate the Winding 2 initial current for the test using the following formula:

$$IAW2 = IAW1 \bullet \frac{TAP2}{TAP1} \bullet (B/A)$$

This formula determines the current necessary for zero operating current (IOP = 0) given the IAW1 calculated above.

Step 6. Purpose: Connect a single-current test source to A-phase of Winding 1 and a single-current test source to A-phase of Winding 2. Ramp down Winding 2 current until the appropriate LED illuminates.

Method: Connect the two current test sources as shown in Figure 10.5. Turn on the current test source for A-phase of Winding 1 (IAW1) at the value calculated above, **and set the phase angle at zero degrees**. Turn on the current test source for A-phase of Winding 2 (IAW2) at the calculated initial current **and set the phase angle at 180 degrees**. Slowly decrease the magnitude of IAW2 until the 87R1 element asserts. Use 87R2 when injecting current into B-phase and 87R3 when testing C-phase. Note the magnitude of the current applied. It should equal the value calculated in step 4 ±5% ±0.02 • I_{non}.

Step 7. Purpose: Repeat the test for each phase for both windings if desired.

Method: Repeat steps 1 through 6 for each phase. Remember to view the

appropriate TARget and apply currents to the appropriate windings. The computer terminal will display the LED labels from left to right when the

TAR F command is issued.

Note: IRS1 must be greater than $\frac{100}{\text{SLP1}} \cdot 087P$ if SLP2 is not set to OFF.

SLP2 Restrained Differential Threshold

Step 1. Purpose: Verify the differential characteristic settings and set winding

compensation.

Method: Execute the **SHO TAP1<ENTER>** command via the relay front panel or

serial port and verify the (TAPn) settings, the Restraint Slope 1
Percentage (SLP1) setting, the Restraint Slope 2 Percentage (SLP2)

setting, and the restraint current slope 1 limit (IRS1) setting.

Execute the **SET W1CTC<ENTER>** command and set the WnCTC settings for the two windings to be used to the same value. Save the

settings.

Note: For this test, use only WnCTC = 0 or WnCTC = an odd-numbered setting (1, 3, 5, 7, 9, 11). Depending on the value of IRT selected in step 3 below, the even-numbered settings may produce 87R outputs from 87R-2 and 87R-3 before the calculated slope 2 current (below) reaches the curve value for 87R-1. This could lead to erroneous conclusions about the accuracy of the 87R elements.

Step 2. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 87R<ENTER>**). The

SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87R bit is the right-most LED.

Step 3. Purpose: Select a test point on the percentage differential curve in Figure 10.6.

Method: Decide where you want to cross the differential characteristic by picking a restraint value IRT which is a vertical line on the graph. Since this test is

for the SLP2 threshold, select a point above the IRS1 setting.

IRT > IRS1

The value of IOP that corresponds to the selected IRT is as follows:

$$IOP = \frac{SLP2}{100} \bullet IRT + IRS1 \bullet \left(\frac{SLP1 - SLP2}{100}\right)$$

Both IRT and IOP are in multiples of tap.

Step 4. Purpose: Calculate the expected current for Winding 1 and Winding 2 at the restrained differential element SLP2 threshold for the test point selected above.

Method: Calculate the Winding 1 current for the test using the following formula:

$$IAW1 = \left(IRT \bullet \left(1 + \frac{SLP2}{200}\right) + IRSI \bullet \left(\frac{SLP1 - SLP2}{200}\right)\right) \bullet TAP1 \bullet A$$

Calculate the Winding 2 current for the test using the following formula:

$$IAW2 = \left(IRT \bullet \left(1 - \frac{SLP2}{200}\right) - IRSI \bullet \left(\frac{SLP1 - SLP2}{200}\right)\right) \bullet TAP2 \bullet A$$

The A connection compensation constant is based on Table 10.3. Since the windings have the same WnCTC setting, the A constant will be the same for both windings. The A constant must be used to achieve the exact curve point on which we have based the calculations. The TAPn settings can be different for the two windings.

The continuous rating of the current inputs is $3 \cdot I_{nom}$. If any currents in this test will exceed this rating, reduce the TAPn values as needed, to prevent possible damage to the input circuits.

Step 5. Purpose: Calculate the initial current for Winding 2 for this test.

Method: Calculate the Winding 2 initial current by multiplying the Winding 2 expected current calculated above by 110 percent.

IAW2 (initial) =
$$1.1 \cdot IAW2$$
 (from step 4)

- Step 6. Purpose: Connect a single-current test source to A-phase of Winding 1 and a single-current test source to A-phase of Winding 2. Ramp down Winding 2 current until the appropriate LED illuminates.
 - Method: Connect the two current test sources as shown in Figure 10.5. Turn on the current test source for A-phase of Winding 1 (IAW1) at the value calculated above and set the phase angle to zero degrees. Turn on the current test source for A-phase of Winding 2 (IAW2) at the calculated starting current and set the phase angle at 180 degrees. Slowly decrease the magnitude of current IAW2 until the 87R element asserts. Note the magnitude of the current applied. It should equal the value calculated in step $4 \pm 5\% \pm 0.02 \cdot I_{acc}$.
- **Step 7.** Purpose: Repeat the test for each phase for each winding if desired.
 - Method: Repeat steps 1 through 6 for each phase. Remember to view the appropriate TARget and apply current to the appropriate winding. The computer terminal will display the LED labels from left to right when the **TAR F** command is issued.

Second-Harmonic Blocking

Note: This test requires a current source capable of generating second-harmonic current. This example tests the second-harmonic blocking function.

Step 1. Purpose: Verify the second-harmonic restraint percentage.

Method: Execute the **SHOW** command via the relay front panel or serial port and verify the percentage of fundamental current that the magnitude of second-harmonic current must exceed for differential restraint and that HRSTR = N. Enter **SHO PCT2<ENTER>**.

Step 2. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 87R<ENTER>**). The SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87R bit is the right-most LED.

Step 3. Purpose: Connect two current test sources to one phase of one winding input.

Method: Connect a current source to the IAW1 input. Connect a second current source in parallel with the first source to the IAW1 input as shown in Figure 10.7.

Step 4. Purpose: Apply fundamental current to pick up the 87R element.

Method: Turn on the first current test source connected to the Winding 1 input (IAW1) equal to the TAP1 setting multiplied by the connection constant A shown in Table 10.3. The 87R LED will illuminate once current is applied to the relay.

Step 5. Purpose: Apply and ramp second-harmonic current to dropout the 87R element.

Method: Turn on the second current source for second-harmonic current (120 Hz for NFREQ = 60 and 100 Hz for NFREQ = 50). Starting at zero current, slowly increase the magnitude of this second current source until the 87R element deasserts, causing the 87R LED to completely extinguish. Note the value of the applied current from the second test source. The current from the second-harmonic source should equal the PCT2 setting divided by 100, multiplied by the magnitude of the fundamental current source, $\pm 5\%$ and $\pm 0.02 \cdot I_{nem}$.

IAW1 (sec ond harmonic) = $\frac{PCT2}{100} \bullet IAW1$ (fundamental), $\pm 5\% \pm 0.02 \bullet I_{nom}$

Figure 10.7: Test Connections for Parallel Current Sources

Fifth-Harmonic Blocking

Note: This test requires a current source capable of generating fifth-harmonic current. This example tests the fifth-harmonic blocking function.

Step 1. Purpose: Verify the fifth-harmonic restraint percentage.

Method: Execute the **SHOW** command via the relay front panel or serial port and

verify the percentage of fundamental current that the magnitude of fifthharmonic current must exceed for differential restraint. Enter **SHO**

PCT5<ENTER>.

Step 2. Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.

Method: Execute the **TARGET** command (i.e., **TAR F 87R<ENTER>**). The

SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87R bit is the right-most LED.

Step 3. Purpose: Connect two current test sources to one phase of one winding input.

Method: Connect a current source to the IAW1 input. Connect a second current

source in parallel with the first source to the IAW1 input as shown in

Figure 10.7.

Step 4. Purpose: Apply fundamental current to pick up the 87R element.

Method: Turn on the first current test source connected to the Winding 1 input

(IAW1) equal to the TAP1 setting multiplied by the connection constant A shown in Table 10.3. The 87R LED will illuminate once current is

applied to the relay.

- **Step 5.** Purpose: Apply and ramp fifth-harmonic current to drop out the 87R element.
 - Method: Turn on the second current source for fifth-harmonic current (300 Hz for NFREQ = 60 and 250 Hz for NFREQ = 50). Starting at zero current, slowly increase the magnitude of this second current source until the 87R element deasserts, causing the 87R LED to completely extinguish. Note the value of the applied current from the second test source. The current from the fifth-harmonic source should equal the PCT5 setting divided by 100, multiplied by the magnitude of the fundamental current source, $\pm 5\%$ and $\pm 0.02 \bullet I_{now}$.

IAW1 (fifth harmonic) =
$$\frac{\text{PCT5}}{100} \bullet \text{IAW1 (fundamental)}, \pm 5\% \pm 0.02 \bullet \text{I}_{\text{nom}}$$

Harmonic Restraint

- **Note:** This test requires a current source capable of generating second and fourth-harmonic current. This example tests the second-harmonic restraint function. Test the fourth harmonic in a similar way.
- **Step 1.** Purpose: Verify the second-harmonic restraint percentage.
 - Method: Execute the **SHOW** command via the relay front panel or serial port and verify the percentage of fundamental current that the magnitude of second-harmonic current must exceed for differential restraint. Enter **SHO PCT2<ENTER>**.
- **Step 2.** Purpose: Display the appropriate Relay Word bit on the front-panel LEDs.
 - Method: Execute the **TARGET** command (i.e., **TAR F 87R<ENTER>**). The SEL-387A now displays the state of several differential elements in the bottom row of the front-panel LEDs. The 87R bit is the right-most LED.
- **Step 3.** Purpose: Connect two current test sources to one phase of one winding input.
 - Method: Connect a current source to the IAW1 input. Connect a second current source in parallel with the first source to the IAW1 input as shown in Figure 10.7.
- **Step 4.** Purpose: Apply fundamental current to pick up the 87R element.
 - Method: Turn on the first current test source connected to the Winding 1 input (IAW1) equal to the TAP1 setting multiplied by the connection constant A shown in Table 10.3. The 87R LED will illuminate once current is applied to the relay.

Step 5. Purpose: Apply and ramp harmonic current to drop out the 87R element.

Method: The following test applies to a single-harmonic injection at a time, i.e., only the second or the fourth harmonic, not both. Set E87W1 = E87W2 = Y1, and HRSTR = Y. Set the second current source for second-harmonic current (120 Hz for NFREQ = 60 and 100 Hz for NFREQ = 50). Turn on the second current test source connected to the Winding 1 input (IAW1). Starting at zero current, slowly increase the magnitude of applied current until the 87R element deasserts, causing the 87R LED to extinguish completely. Note the value of the applied current from the second test source. The general equation to calculate the percentage of harmonic content for a single slope is:

IIF2 =
$$\left[\text{IOPI} - \text{IRTI} \cdot \text{f} \left(\text{SLP}\right)\right] \cdot \frac{\text{PCT2}}{100}$$

(±5% ±0.10 A (5 A relay) or ±5% ±0.02 A (1 A relay))
% harmonic = $\frac{\text{IIF2}}{\text{IOPI}} \cdot 100 \text{ (percent)}$

For inrush conditions, current normally is applied to one side of the transformer, and the equation simplifies to the following:

% harmonic = PCT2
$$\left(1 - \frac{\text{SLP1}}{200}\right)$$

where

PCT2 = second-harmonic setting in percent

$$SLP1 = slope 1 setting$$

For example

$$SLP1 = 50$$
 percent

$$PCT2 = 20$$
 percent

% harmonic =
$$20\left(1 - \frac{50}{200}\right) = 15$$
 percent

For values on the second slope, use the following equation:

% harmonic =
$$\left(\frac{PCT2}{200}\right) \cdot \left(200 - SLP2 - \frac{IRS1}{IRT}(SLP1 - SLP2)\right)$$

where:

PCT2 = second-harmonic setting in percent

$$SLP1 = slope 1 setting$$

$$SLP2 = slope 2 setting$$

IRS1 = intersection where SLP2 begins

IRT = restraint quantity at which the calculation is carried out

For example:

Slope
$$1 = 25$$
 percent

Slope
$$2 = 60$$
 percent

$$PCT2 = 20$$
 percent

IRS1 = 3, and choose IRT = 6

% harmonic =
$$\left(\frac{20}{200}\right) \cdot \left(200 - 60 - \frac{3}{6}(25 - 60)\right) = 15.75$$
 percent

Note: The second and fourth harmonics are combined to form the restraint quantity.

Time-Code Input (IRIG-B)

Purpose: Verify operation of the IRIG-B clock input for Serial Port 2 and the connector of Serial Port 1.

Method: 1. Connect a source of demodulated IRIG-B time code to the relay Serial Port 2 (pins 4 and 6) in series with a resistor to monitor the current. Adjust the source to obtain an "ON" current of about 10 mA.

- 2. Execute the **IRIG** command. Make sure the relay clock displays the correct date and time.
- 3. Optional. Connect the demodulated IRIG-B time code to the relay as in step 1, but through the Serial Port 1 connector (pins 7 and 8).

COMMISSIONING TESTING

When: When installing a new protection system.

Goal: a) Ensure that all system ac and dc connections are correct.

- b) Ensure that the relay functions as intended using your settings.
- c) Ensure that all auxiliary equipment operates as intended.

What to test: All connected or monitored inputs and outputs; polarity and phase rotation of ac current connections; simple check of protection elements.

SEL performs a complete functional check and calibration of each relay before it is shipped. This helps ensure that you receive a relay that operates correctly and accurately. Commissioning tests should verify that the relay is properly connected to the power system and all auxiliary equipment. Verify control signal inputs and outputs. Check breaker auxiliary inputs, SCADA control inputs, and monitoring outputs. Use an ac connection check to verify that the relay current inputs are of the proper magnitude and phase rotation.

Brief fault tests ensure that the relay settings are correct. It is not necessary to test every relay element, timer, and function in these tests.

At commissioning time, use the relay **METER DIF** command to record the measured operate and restraint values for through-load currents. Use the **PULSE** command to verify relay output contact operation.

Use the SEL-387A Commissioning Test Worksheet, located at the end of this section, to verify correct CT connections and settings when placing the relay in service. The worksheet shows how using software commands or the front-panel display can replace the need for the traditional phase angle meter and ammeter.

MAINTENANCE TESTING

When: At regularly scheduled intervals, or when there is an indication of a problem with the relay or system.

Goals: a) Ensure that the relay is measuring ac quantities accurately.

- b) Ensure that scheme logic and protection elements are functioning correctly.
- c) Ensure that auxiliary equipment is functioning correctly.

What to test: Anything not shown to have operated during an actual fault within the past maintenance interval.

SEL relays use extensive self-testing capabilities and feature detailed metering and event reporting functions that lower the utility's dependence on routine maintenance testing.

Use the SEL relay reporting functions as maintenance tools. Periodically verify that the relay is making correct and accurate current measurements by comparing the relay METER output to other meter readings on that line. Review relay event reports in detail after each fault. Using the event report current and relay element data you can determine that the relay protection elements are operating properly. Using the event report input and output data, you can determine that the relay is asserting outputs at the correct instants and that auxiliary equipment is operating properly. At the end of your maintenance interval, the only items that need testing are those that have not operated during the maintenance interval.

The basis of this testing philosophy is simple: If the relay is correctly set and connected, is measuring properly, and no self-test has failed, there is no reason to test it further.

Each time a fault occurs, the protection system is tested. Use event report data to determine areas requiring attention. Slow breaker auxiliary contact operations and increasing or varying breaker operating time can be detected through detailed analysis of relay event reports.

Because SEL relays are microprocessor based, their operating characteristics do not change over time. Time-overcurrent and current differential element operating times are affected only by the relay settings and applied signals. It is not necessary to verify operating characteristics as part of maintenance checks.

At SEL, we recommend that maintenance tests on SEL relays be limited under the guidelines provided above. The time saved may be spent analyzing event data and thoroughly testing those systems that require more attention.

RELAY TROUBLESHOOTING

Inspection Procedure

Complete the following procedure before disturbing the relay. After you finish the inspection, proceed to the Troubleshooting Procedure.

- 1. Do not turn the relay off.
- 2. Check to see that the power is on.
- 3. Measure and record the power supply voltage at the power input terminals.
- 4. Measure and record the voltage at all control inputs.
- 5. Measure and record the state of all output relays.

Troubleshooting Procedure

All Front-Panel LEDs Dark

- 1. Power is off.
- 2. Blown power supply fuse.
- 3. Input power not present.
- 4. Self-test failure.
- 5. **TAR F** command improperly set.

Note: For 1, 2, 3, and 4 the ALARM relay contacts should be closed.

Cannot See Characters on Relay LCD Screen

- 1. Relay is de-energized. Check to see if the ALARM contact is closed.
- 2. LCD contrast is out of adjustment. Use the steps below to adjust the contrast.
 - a) Press any front-panel button. The relay should turn on the LCD backlighting.
 - b) Locate the contrast adjust hole behind the front panel beside the serial port. (This requires unscrewing and removing the front-panel plate.)
 - c) Insert a small screwdriver in this hole to adjust the contrast.

Relay Does Not Respond to Commands From Device Connected to Serial Port

- 1. Communications device not connected to relay.
- 2. Relay or communications device at incorrect baud rate or other communication parameter incompatibility, including cabling error.
- 3. System is processing event record. Wait several seconds.
- 4. System is attempting to transmit information, but cannot because of handshake line conflict. Check communications cabling.

- 5. System is in the XOFF state, halting communications. Type **<CTRL>Q** to put system in XON state.
- 6. If the serial port or front-panel interface that does not respond was working before, steps 1 through 5 above have been tried, and the **MET** command was the last issued command, the Digital Signal Processor may have failed, and you should call the factory.

Relay Does Not Respond to Faults

- 1. Relay improperly set. Review your settings with **SET** and **SET** G commands.
- 2. Improper test settings.
- 3. Current transformer connection wiring error.
- 4. Analog input cable between transformer-termination and main board loose or defective.
- 5. Check self-test status with **STA** command.
- 6. Check input voltages and currents with **MET** command and TRI and EVE sequence.

Time Command Displays the Same Time for Successive Commands

1. The digital signal processor has failed; contact the factory.

Tripping Output Relay Remains Closed Following Fault

- 1. Auxiliary contact inputs improperly wired.
- 2. Output relay contacts burned closed.
- 3. Interface board failure.

"SELBOOT" on Front Display at Power-Up; Serial Port Warning to Remove Link

1. A jumper has been installed at position JMP6D. Power down, remove the jumper, and power up the relay again.

No Prompting Message Issued to Terminal Upon Power Up

- 1. Terminal not connected to system.
- 2. Wrong baud rate.
- 3. Terminal improperly connected to system.
- 4. SET P AUTO setting set to N (factory default).
- 5. Main board or interface board failure.

Terminal Displays Meaningless Characters

- 1. Baud rate set incorrectly.
- 2. Check terminal configuration. See Section 7: Serial Port Communications and Commands.

Self-Test Failure: +5 V PS

- 1. Power supply +5 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: +5 V REG

- 1. Regulated +5 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: -5 V REG

- 1. Regulated –5 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: +12 V PS

- 1. Power supply +12 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: -12 V PS

- 1. Power supply –12 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: +15 V PS

- 1. Power supply +15 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: -15 V PS

- 1. Power supply –15 V output out-of-tolerance. See **STATUS** command.
- 2. A/D converter failure.

Self-Test Failure: Offset

- 1. Offset drift.
- 2. A/D converter drift.
- 3. Loose ribbon cable between transformers and main board.

Self-Test Failure: ROM

1. Memory failure. Contact the factory.

Self-Test Failure: RAM

1. Failure of static RAM IC. Contact the factory.

Self-Test Failure: A/D Converter

- 1. A/D converter failure.
- 2. RAM error not detected by RAM test.

Self-Test Failure: IO_BRD

- 1. Interface board has been changed. Execute the INITIO command.
- 2. Ribbon cable disconnected between upper interface board and main board. Reconnect and execute **INITIO** command. Step 2 only applies to the upper interface board in a relay that has two interface boards.
- 3. Interface board failure.

Self-Test Failure: CR_RAM, EEPROM, and IO_BRD

- 1. Self-test detected setting location movement due to Flash firmware upgrade. Execute **R_S** command.
- 2. Main board failure, contact the factory.

Alarm Contacts Closed

- 1. Power is off.
- 2. Blown fuse.
- 3. Power supply failure.
- 4. Main board or interface board failure.
- 5. Other self-test failure.

Self-Test Failure: Temp After R S Command

1. Issue the **STA** command and record the state of all outputs. Call the factory. Powering down the relay will reset the logic.

RELAY CALIBRATION

The SEL-387A is factory calibrated. If you suspect that the relay is out of calibration, please contact the factory.

FACTORY ASSISTANCE

We appreciate your interest in SEL products and services. If you have questions or comments, please contact us at:

Schweitzer Engineering Laboratories, Inc.

2350 NE Hopkins Court

Pullman, WA 99163-5603 U.S.A.

Tel: +1.509.332.1890 Fax: +1.509.332.7990 Internet: www.selinc.com Email: info@selinc.com

COMMISSIONING TEST WORKSHEET SEL-387A Relay

Page <u>1 of 3</u>

SYSTEM INFORMATION

			•••
System Settings			
RID (Relay identificat	tion) =		
TID (Terminal identif	ication) =		
MVA (Maximum tran	sformer rating) =		
	Winding 1	Winding 2	Neutral Current
Current transformer connection:	W1CT =	W2CT =	
Current transformer ratio:	CTR1 =	CTR2 =	CTRN1 = CTRN2 = CTRN3 =
Connection compensation:	W1CTC =	W2CTC =	
Nominal line-to-line voltage (kV):	VWDG1 =	VWDG2 =	
TAP calculation:	TAP1 =	TAP2 =	
Differential Settin	<u>ngs</u>		

Metered Load (Data taken from substation panel meters, not the SEL-387A Relay)				
± Readings from meters	Winding 1	Winding 2		
Megawatts:	MW1 =	MW2 =		
Megavars:	MVAR1 =	MVAR2 =		
MVA calculation:				
$MVAn = \sqrt{MWn^2 + MVARn^2}$	MVA1 =	MVA2 =		

O87P = _____ SLP1 = ____ SLP2 = ____ IRS1 = ____ U87P = ___

COMMISSIONING TEST WORKSHEET SEL-387A Relay

Page 2 of 3

SETTINGS CHECK

The following check assures zero-sequence current filtering is applied to all necessary transformer windings. It is essential to use a non-zero Winding CT Connection Compensation (WnCTC) setting for all grounded-WYE connected transformer windings with WYE connected CTs.

Please verify that no grounded-WYE transformer windings with WYE connected CTs has setting WnCTC = 0. Use a setting of 12 instead of 0 for proper zero-sequence current filtering.

Please note the following commissioning checks will not detect the failure to properly filter zero-sequence current. Failure to adhere to this check will result in a differential operation for external faults involving ground.

Proper zero-sequence filtering verified?

CONNECTION CHECK

<u>Differential Connection</u> (issue MET DIF <enter> to serial port or front panel)</enter>				
Note: System load conditions should be higher than 0.1 A secondary. 0.5 A secondary is recommended for the best results.				
Operate Current:	IOP1 =	IOP2 =	IOP3 =	
Restraint Current:	IRT1 =	IRT2 =	IRT3 =	
Mismatch Calculation:				
$MMn = \frac{IOPn}{IRTn}$	MM1 =	MM2 =	MM3 =	
Check individual current magnitudes, phase angles, and operate and restraint currents in an event report if mismatch is not less than 0.10.				

MAGNITUDE, ANGLE, AND PHASE ROTATION CHECK

(issue MET SEC <enter> to the serial port or front panel)</enter>					
	Winding 1	Winding 2			
A-Phase Secondary Amperes:	IAW1 =	IAW2 =		IN1 =	
A-Phase Angle:			IN1 Angle:		
B-Phase Secondary Amperes:	IBW1 =	IBW2 =		IN2 =	
B-Phase Angle:			IN2 Angle:		
C-Phase Secondary Amperes:	ICW1 =	ICW2 =		IN3 =	
C-Phase Angle:			IN3 Angle:		

COMMISSIONING TEST WORKSHEET SEL-387A Relay

Page 3 of 3

- 1. Calculated relay amperes match MET SEC amperes?
- 2. Phase rotation is as expected for each winding?
- 3. Do angular relationships among windings correspond to expected results? (Remember that secondary current values for load current flowing out of a winding will be 180° out of phase with the reference phase position for that winding. The reason is that CT polarity marks normally face away from the transformer on all windings.)

TABLE OF CONTENTS

APPENDIX A: FIRMWARE AND MANUAL VERSIONS	A-1
Firmware	A-1
Determining the Firmware Version in Your Relay	
Instruction Manual	
APPENDIX B: SEL-300 SERIES RELAYS FIRMWARE	
UPGRADE INSTRUCTIONS	B-1
Overview	
Relay Firmware Upgrade Instructions	
Introduction	
Required Equipment	
Optional Equipment	
Upgrade Procedure	
A. Prepare the Relay	
B. Establish a Terminal Connection	
Failure to Connect	
C. Save Settings and Other Data	
Enter Access Level 2	
Backup Relay Settings	
D. Start SELBOOT	
Commands Available in SELBOOT	
Establish a High-Speed Connection	
Match Computer Communications Speed to the Relay	
E. Download Existing Firmware	
F. Upload New Firmware	
No Access Level 0 = Prompt	
G. Check Relay Self-Tests	
IO_BRD Fail Status Message	
CR_RAM, EEPROM, and IO_BRD Fail Status Messages	
H. Verify Settings, Calibration, Status, Breaker Wear, and Metering	
I. Return the Relay to Service	
Ethernet Port Firmware Upgrade Instructions	
Introduction	
Required Equipment	
Upgrade Procedure	
A. Prepare the Relay B. Establish an FTP Connection and Transfer New Firmware	
C. Establish a Telnet Connection	
D. Verify Firmware Transfer	
E. Verify or Restart IEC 61850 Operation (Optional)	
Factory Assistance	
1 actory Assistance	D-24

APPENDIX C: SEL DISTRIBUTED PORT SWITCH PROTOCOL	C 1
(LMD)	
Settings	
Operation	C-1
APPENDIX D: CONFIGURATION, FAST METER, AND FAST OPERATE COMMANDS	D-1
Introduction	D-1
Message Lists	
Binary Message List	
ASCII Configuration Message List	
Message Definitions	
A5C0 Relay Definition Block	
A5C1 Fast Meter Configuration Block	
A5D1 Fast Meter Data Block	
A5B9 Fast Meter Status Acknowledge Message	
A5C2/A5C3 Demand/Peak Demand Fast Meter Configuration Messages	
A5D2/A5D3 Demand/Peak Demand Fast Meter Message	
A5CE Fast Operate Configuration Block	
A5E3 Fast Operate Breaker Control	
A5CD Fast Operate Reset Definition Block	
A5ED Fast Operate Reset Command	
A546 Temperature Data Block	
ID Command	
DNA Command	
BNA Command	D-12
SNS Message	D-12
APPENDIX E: COMPRESSED ASCII COMMANDS	E-1
Introduction	E-1
CASCII Command – General Format	
CASCII Command	
CBREAKER Command	
CEVENT Command	
CEVENT Winding Report (Default)	E-6
CEVENT Differential Report	
CHISTORY Command	E-7
CSTATUS Command	E-8
CTARGET Command	E-8

APPENDIX F: UNSOLICITED SER PROTOCOL	F-1
Introduction	F-1
Note: Make Sequential Events Recorder (SER) Settings With Care	
Recommended Message Usage	
Functions and Function Codes.	
0x01 - Function Code: Enable Unsolicited Data Transfer	
0x02 - Function Code: Disable Unsolicited Data Transfer	
0x18 - Function: Unsolicited Sequence-of-Events Response	
Acknowledge Message	
Examples	
APPENDIX G: DISTRIBUTED NETWORK PROTOCOL (DNP3)	G-1
Overview	G-1
Configuration	
Data-Link Operation	
Data Access Method	
Device Profile	
Object Table	
Data Map	
Relay Summary Event Data	
Point Remapping	
Introduction	
Inputs	G-18
Custom Scaling	
Modem Support	
Virtual Terminal	
SEL-387A Relay DNP Port – SET P Settings Sheet	
TABLES	
Table A.1: Firmware Revision History	A-1
Table A.2: Settings Change History	A-2
Table A.3: Instruction Manual Revision History	
Table 1: Relays Not Covered by These Instructions	B-1
Table 2: Troubleshooting New Firmware Upload	
Table G.1: Data Access Methods	G-3
Table G.2: SEL-387A DNP Object Table	G-6
Table G.3: SEL-387A Wye/Delta DNP Data Map	
Table G.4: SEL-387A Binary Input Lookup Table	G-16
FIGURES	
Figure 1: Establishing a Connection	
Figure 2: Determining the Computer Serial Port	B-4
Figure 3: Determining Communications Parameters for the Computer	B-5

Figure 4: Setting Terminal Emulation	B-5
Figure 5: Terminal Emulation Startup Prompt	B-6
Figure 6: Correcting the Port Setting	B-6
Figure 7: Correcting the Communications Parameters	B-7
Figure 8: Preparing HyperTerminal for ID Command Display	B-9
Figure 9: List of Commands Available in SELBOOT	B-10
Figure 10: Matching Computer to Relay Parameters	B-11
Figure 11: Example Receive File Dialog Box	B-11
Figure 12: Example Filename Identifying Old Firmware Version	B-12
Figure 13: Downloading Old Firmware	B-12
Figure 14: Selecting New Firmware to Send to the Relay	B-14
Figure 15: Transferring New Firmware to the Relay	B-14
Figure 16: Preparing HyperTerminal for ID Command Display	B-19

iv

APPENDIX A: FIRMWARE AND MANUAL VERSIONS

FIRMWARE

Determining the Firmware Version in Your Relay

To find the firmware revision number in your relay, view the status report using the serial port **STATUS** command or the front-panel STATUS pushbutton. For firmware versions with the date code of February 21, 2002, or later, the FID label will appear as follows with the Part/Revision number in bold:

FID=SEL-387A-Rxxx-Vx-Z001001-Dxxxxxxxx

For example:

FID=SEL-387A-R605-V0-Z003003-D20020304

is SEL-387A Relay firmware revision number 605 which was released on March 4, 2002.

Table A.1 lists the firmware versions, a description of modifications, and the instruction manual date code that corresponds to firmware versions. The most recent firmware version is listed first.

Table A.1: Firmware Revision History

Firmware Identification (FID) Number	Summary of Revisions	Manual Date Code
SEL-387A-R611-V0-Z004004-D20140124	- Improved the accuracy of DNP Delay Measurement response. In previous firmware, the Delay Measurement response could be incorrect by as much as 150 ms, which, in applications where the DNP master uses this function code to measure the communication channel delay, could cause the master to set the wrong relay time.	20140124
	Revised relay so that password characters are not echoed as they are entered.	
	 Increased the maximum number of allowed password characters from six to twelve. 	
SEL-387A-R610-V0-Z004004-D20100324	- Manual update only (see Table A.3).	20120127
SEL-387A-R610-V0-Z004004-D20100324	 Corrected problem with incorrect assertion of Relay Word bit COMFLG when receiving RTD temperature data from an SEL-2600 RTD module. 	20100324
SEL-387A-R609-V0-Z004004-D20071025	 Modified A5C1 Fast Message header to properly indicate Delta CT connections when Group Setting WnCT = D (Delta). 	20071025
	Corrected CHSG Relay Word Bit so that it will maintain the correct state through a relay setting group transition.	
	- Set the default event record length equal to relay LER setting.	
SEL-387A-R608-V0-Z004003-D20050919	Fixed ability to properly process SEL Fast Message data with corrupted length field.	20050919

Firmware Identification (FID) Number	Summary of Revisions	Manual Date Code
SEL-387A-R607-V0-Z004003-D20050614	 Fixed DNP3 Index 216, 217, 218 Fault Time data types to provide DNP3 Type 30, default variation 2 data (16 bit signed analog input). 	20050614
SEL-387A-R606-V0-Z004003-D20040628	- Added Through-Fault Monitor.	20040628
SEL-387A-R605-V0-Z003003-D20020304	– Initial version.	20020208

Table A.2 lists the firmware versions, a description of settings modifications, and the instruction manual date code that corresponds to firmware versions. The most recent firmware version is listed first.

Table A.2: Settings Change History

Firmware Part/Revision No.	Settings Change Description	Manual Date Code
SEL-387-A-R606-V0-Z004003-D20040628	- Added ETHRU Enable Through-Fault Monitor Setting.	20040628
	 Added THRU Through-Fault Event Trigger Setting. 	
	Added ISQT Through-Fault Alarm Threshold Setting.	

INSTRUCTION MANUAL

The date code at the bottom of each page of this manual reflects the creation or revision date.

This manual covers SEL-387A Relays that contain firmware bearing the following part numbers and revision numbers (most recent firmware listed at top):

Table A.3: Instruction Manual Revision History

Revision Date	Summary of Revisions
20140124	Section 4
	 Removed Relay Word bits that are not available in Table 4.7: SEL-387A Word Bits and Locations, Table 4.8: Relay Word Bit Definitions, and Table 4.9: Relay Word Bits Sorted Alphabetically.
	Section 7
	- Modified PASsword command description to reflect relay behavior.
	Appendix A
	– Updated for firmware version R611.
	Appendix G
	 Expand fault current description in Table G.3: SEL-387A Wye/Delta DNP Data Map (index values 203–215).
	- Removed Relay Word bits that are not available in Table G.4: SEL-387A Binary Input Lookup Table.

Revision Date	Summary of Revisions
20120127	Section 3
	- Updated Figure 3.30: U.S. Short-Time Inverse Curve: U5.
	Section 7
	- Added CAL (Calibration Access Level) section.
	Command Summary
	- Added CAL (Calibration Access Level) command to Access Level 2 table.
	Appendix A
	Updated Firmware Revision History and Manual Revision History.
20100324	Appendix A
	– Updated for firmware version R610.
20071025	Appendix A
	– Updated for firmware version R609.
20050919	Appendix A
	Updated Firmware Revision History and Manual Revision History.
20050614	Appendix A
	Updated Firmware Revision History and Manual Revision History.
20040628	Section 1
	- Stylistic changes.
	- Revised Figure 1.1.
	- Added Through-Fault Event Monitor description.
	Added discussion of projection rack mounting and projection panel mounting.
	Section 3
	- Stylistic changes.
	- Added through-fault event monitor description.
	- Added to description of CT Connection (W1CT and W2CT).
	Added discussion of projection rack mounting and projection panel mounting.
	Section 4
	- Revised <i>Table 4.7</i> , <i>Table 4.8</i> , and <i>Table 4.9</i> to add through-fault information.
	Section 5
	Added through-fault event monitor information.
	Section 6
	Added through-fault event monitor settings to Settings Sheets.
	- Modified screen captures depicting default settings for 5 A and 1 A relays.
	- Modified screen capture depicting SHO G command settings.

Revision Date	Summary of Revisions
	Section 7
	- Revised Figure 7.2.
	- Added description of the TFE (through-fault event report) command.
	- Added description of the TFE command to the Command Summary.
	Section 10
	- Added Zero-Sequence Filter Check to the Commissioning Test Worksheet.
	Appendix G
	– Revised Table G.3.
20020208	– Initial version.

APPENDIX B: SEL-300 SERIES RELAYS FIRMWARE UPGRADE INSTRUCTIONS

OVERVIEW

From time to time, SEL issues firmware upgrades. The instructions that follow explain how you can install new firmware in your SEL-300 series relay.

This firmware upgrade kit contains firmware files for the relay and the Ethernet port of the relay, if the relay is equipped for Ethernet communications. If the relay is equipped with Ethernet communications, upgrade the Ethernet port firmware to the latest available version, or ensure the Ethernet port firmware is the latest available version, *before* upgrading the relay firmware. The latest available version is supplied on the upgrade CD. Issue the **STATUS** command to the Ethernet card to compare the Ethernet firmware version number to the revision on the upgrade CD. Follow the *Ethernet Port Firmware Upgrade Instructions* on page B-20, then return here and continue to upgrade the relay firmware.

RELAY FIRMWARE UPGRADE INSTRUCTIONS

Introduction

These firmware upgrade instructions apply to SEL-300 series relays except those listed in Table 1.

Table 1: Relays Not Covered by These Instructions

SEL-311C-1, -2	
SEL-351 Relays equipped with Ethernet	
SEL-321 (uses EPROM)	

SEL occasionally offers firmware upgrades to improve the performance of your relay. Changing physical components is unnecessary because the relay stores firmware in Flash memory.

A firmware loader program called SELBOOT resides in the relay. To upgrade firmware, use the SELBOOT program to download an SEL-supplied file from a personal computer to the relay via any communications port. This procedure is described in the following steps.

Note: SEL strongly recommends that you upgrade firmware at the location of the relay and with a *direct connection* from the personal computer to one of the relay serial ports. Do not load firmware from a remote location; problems can arise that you will not be able to address from a distance. When upgrading at the substation, do not attempt to load the firmware into the relay through an SEL communications processor.

Perform the firmware upgrade process in the following sequence:

- A. Prepare the Relay
- B. Establish a Terminal Connection
- C. Save Settings and Other Data
- D. Start SELBOOT
- E. Download Existing Firmware
- F. Upload New Firmware
- G. Check Relay Self-Tests
- H. Verify Settings, Calibration, Status, Breaker Wear, and Metering
- I. Return the Relay to Service

Required Equipment

Gather the following equipment before starting this firmware upgrade:

- Personal computer (PC)
- Terminal emulation software that supports 1K Xmodem or Xmodem
- Serial communications cable (SEL Cable SEL-C234A or equivalent)
- Disk containing the firmware upgrade file
- Firmware Upgrade Instructions (these instructions)

Optional Equipment

These items help you manage relay settings and understand firmware upgrade procedures:

• SEL-5010 Relay Assistant Software or ACSELERATOR QuickSet® SEL-5030 software

The SEL-5010 Relay Assistant software has a feature that guides you through the conversion process. This upgrade guide will assist you with steps C, D, E, F, and G of these upgrade instructions. If you do not have the latest SEL-5010 software, please contact your customer service representative or the factory for details on getting the SEL-5010 Relay Assistant software.

• Your relay instruction manual

Upgrade Procedure

A. Prepare the Relay

Step 1. If the relay is in use, follow your company practices for removing a relay from service.

Typically, these include changing settings, or disconnecting external voltage sources or output contact wiring, to disable relay control functions.

- **Step 2.** Apply power to the relay.
- **Step 3.** From the relay front panel, press the **SET** pushbutton.
- **Step 4.** Use the arrow pushbuttons to navigate to PORT.
- **Step 5.** Press the **SELECT** pushbutton.
- **Step 6.** Use the arrow pushbuttons to navigate to the relay serial port you plan to use (usually the front port).
- **Step 7.** Press the **SELECT** pushbutton.
- **Step 8.** With SHOW selected, press the **SELECT** pushbutton.
- **Step 9.** Press the **Down Arrow** pushbutton to scroll through the port settings; write down the value for each setting.
- **Step 10.** At the EXIT SETTINGS? prompt, select Yes and press the **SELECT** pushbutton.
- **Step 11.** Connect an SEL Cable C234A (or equivalent) serial communications cable to the relay serial port selected in Step 6 above.

B. Establish a Terminal Connection

To establish communication between the relay and a PC, you must be able to modify the computer serial communications parameters (i.e., data transmission rate, data bits, parity) and set the file transfer protocol to 1K Xmodem or Xmodem protocol.

- **Step 1.** Connect a serial communications cable to the computer serial port.
 - a. Check the computer for a label identifying the serial communications ports.
 - b. Choose a port and connect an SEL Cable C234A (or equivalent) serial communications cable to the personal computer serial port.

If there is no identification label, connect the cable to any computer serial port. Note that you might later change this computer serial port to a different port in order to establish communication between the relay and the computer.

- **Step 2.** Disconnect any other serial port connection(s).
- **Step 3.** From the computer, open **HyperTerminal**.

On a PC running Windows, you would typically click **Start > Programs > Accessories**.

Step 4. Enter a name, select any icon, and click **OK** (Figure 1).

Figure 1: Establishing a Connection

Step 5. Select the computer serial port you are using to communicate with the relay (Figure 2) and click **OK**. This port matches the port connection that you made in Step 1 under **B. Establish a Terminal Connection**.

Figure 2: Determining the Computer Serial Port

Step 6. Establish serial port communications parameters.

The settings for the computer (Figure 3) must match the relay settings you recorded earlier.

- a. Enter the serial port communications parameters (Figure 3) that correspond to the relay settings you recorded in Step 9 under *A. Prepare the Relay*.
 - If the computer settings do not match the relay settings, change the computer settings to match the relay settings.
- b. Click OK.

Figure 3: Determining Communications Parameters for the Computer

- **Step 7.** Set terminal emulation to VT100.
 - a. From the File menu, choose Properties.
 - b. Select the **Settings** tab in the **Firmware Upgrade Properties** dialog box (Figure 4).
 - c. Select VT100 from the Emulation list box and click OK.

Figure 4: Setting Terminal Emulation

Step 8. Confirm serial communication.

Press **<Enter>**. In the terminal emulation window, you should see the Access Level 0 = prompt, similar to that in Figure 5.

If this is successful, proceed to *C. Save Settings and Other Data* on page B-7.

Figure 5: Terminal Emulation Startup Prompt

Failure to Connect

If you do not see the Access Level 0 = prompt, press **<Enter>** again. If you still do not see the Access Level 0 = prompt, you have either selected the incorrect serial communications port on the computer, or the computer speed setting does not match the data transmission rate of the relay. Perform the following steps to reattempt a connection.

- **Step 9.** From the **Call** menu, choose **Disconnect** to terminate communication.
- **Step 10.** Correct the port setting.
 - a. From the **File** menu, choose **Properties**.You should see a dialog box similar to Figure 6.
 - b. Select a different port in the **Connect using** list box.

Figure 6: Correcting the Port Setting

Step 11. Correct the communications parameters.

- a. From the filename **Properties** dialog box shown in Figure 6, click **Configure**.You will see a dialog box similar to Figure 7.
- b. Change settings in the appropriate list boxes to match the settings you recorded in Step 9 under *A. Preparing the Relay* and click **OK** twice to return to the terminal emulation window.

Figure 7: Correcting the Communications Parameters

Step 12. Press **<Enter>**. In the terminal emulation window, you should see the Access Level 0 = prompt, similar to that in Figure 5.

C. Save Settings and Other Data

Before upgrading firmware, retrieve and record any History (HIS), Event (EVE), Metering (MET), Breaker Wear Monitor (BRE), Communications Log Summary (COM X or COM Y), or Sequential Events Recorder (SER) data that you want to retain (see the relay instruction manual for these procedures).

Enter Access Level 2

- **Step 1.** Type **ACC <Enter>** at the Access Level 0 = prompt.
- Step 2. Type the Access Level 1 password and press **<Enter>**. You will see the Access Level 1 => prompt.
- Step 3. Type 2AC <Enter>.
- **Step 4.** Type the Access Level 2 password and press **<Enter>**. You will see the Access Level 2 =>> prompt.

Note: If the relay does not prompt you for Access Level 1 and Access Level 2 passwords, check whether the relay has a password jumper in place. With this jumper in place, the relay is unprotected from unauthorized access.

Backup Relay Settings

The relay preserves settings and passwords during the firmware upgrade process. However, interruption of relay power during the upgrade process can cause the relay to lose settings. Make a copy of the original relay settings in case you need to reenter the settings. Use either the SEL-5010 Relay Assistant software or ACSELERATOR QuickSet to record the existing relay settings and proceed to *D. Start SELBOOT* on page B-8. Otherwise, perform the following steps.

- **Step 1.** From the **Transfer** menu in **HyperTerminal**, select **Capture Text**.
- **Step 2.** Enter a directory and filename for a text file where you will record the existing relay settings.
- Step 3. Click Start.

The **Capture Text** command copies all the information you retrieve and all the keystrokes you type until you send the command to stop capturing text. The terminal emulation program stores these data in the text file.

Step 4. Execute the Show Calibration (**SHO C**) command to retrieve the relay calibration settings.

Use the following Show commands to retrieve the relay settings: SHO G, SHO 1, SHO L 1, SHO 2, SHO L 2, SHO 3, SHO L 3, SHO 4, SHO L 4, SHO 5, SHO L 5, SHO 6, SHO L 6, SHO P 1, SHO P 2, SHO P 3, SHO P F, SHO R, and SHO T.

Note: Settings classes can vary among SEL relays. See the relay instruction manual for a listing.

Step 5. From the Transfer menu in HyperTerminal, select Capture Text and click Stop.

The computer saves the text file you created to the directory you specified in Step 2 under *Backup Relay Settings*.

Step 6. Write down the present relay data transmission setting (SPEED).

This setting is SPEED in the **SHO P** relay settings output. The SPEED value should be the same as the value you recorded in *A. Prepare the Relay* on page B-2.

D. Start SELBOOT

- **Step 1.** Find and record the firmware identification string (FID).
 - a. From the **File** menu, choose **Properties**.
 - b. Select the **Settings** tab in the **Properties** dialog box (Figure 4).
 - c. Click **ASCII Setup**.

You should see a dialog box similar to Figure 8.

d. Under **ASCII Receiving**, select the check box to **Append line feeds to incoming line ends**.

Figure 8: Preparing HyperTerminal for ID Command Display

- e. Click **OK** twice to go back to the terminal emulation window.
- f. Type **ID <Enter>** and record the FID number the relay displays.
- g. Repeat Step a through Step c, then uncheck the **Append line feeds to incoming line ends** check box. (This feature can cause problems when uploading firmware to the relay.)
- **Step 2.** From the computer, start the SELBOOT program.
 - a. From the Access Level 2 =>> prompt, type **L_D <Enter>**.

The relay responds with the following:

Disable relay to send or receive firmware (Y/N)?

b. Type **Y <Enter>**.

The relay responds with the following:

Are you sure (Y/N)?

c. Type **Y <Enter>**.

The relay responds with the following:

Relay Disabled.

Wait for the SELBOOT program to load. Step 3.

> The front-panel LCD screen displays the SELBOOT firmware number (e.g., SLBT-3xx-R100). The number following the R is the SELBOOT revision number. This number is different from the relay firmware revision number.

After SELBOOT loads, the computer will display the SELBOOT!> prompt.

Step 4. Press **<Enter>** to confirm that the relay is in SELBOOT.

You will see another SELBOOT!> prompt.

Commands Available in SELBOOT

For a listing of commands available in SELBOOT, type **HELP <Enter>**. You should see a screen similar to Figure 9.

```
______
!>HELP (Enter>
SELboot-3xx-Rxxx
bau "rate" ; Set baud rate to 300, 1200, 2400, 4800, 9600, 19200, or 38400 baud
         ; Erase the existing relay firmware
exi
         ; Exit this program and restart the device
fid
         ; Print the relays firmware id
rec
         ; Receive new firmware for the relay using xmodem
         ; Send the relays firmware to a pc using xmodem
         ; Print this list
he1
FLASH Type : 040
                   Checksum = 370E OK
```

Figure 9: List of Commands Available in SELBOOT

Establish a High-Speed Connection

Type **BAU 38400 <Enter>** at the SELBOOT !> prompt. Step 5.

Match Computer Communications Speed to the Relay

- Step 6. From the **Call** menu, choose **Disconnect** to terminate communication.
- Step 7. Correct the communications parameters.
 - a. From the **File** menu, choose **Properties**.
 - b. Choose **Configure**.
 - c. Change the computer communications speed to match the new data transmission rate in the relay (Figure 10).
 - d. Click **OK** twice.
- Step 8. Press **<Enter>** to check for the SELBOOT !> prompt indicating that serial communication is successful.

Figure 10: Matching Computer to Relay Parameters

E. Download Existing Firmware

Copy the firmware presently in the relay, in case the new firmware upload is unsuccessful. To make a backup of the existing firmware, the computer will need as much as 3 MB of free disk space. This backup procedure takes 5–10 minutes at 38400 bps.

- **Step 1.** Type **SEN <Enter>** at the SELBOOT !> prompt to initiate the firmware transfer from the relay to the computer.
- Step 2. From the Transfer menu in HyperTerminal, select Receive File.

 You should see a dialog box similar to Figure 11.
- **Step 3.** Enter the pathname of a folder on the computer hard drive where you want to record the existing relay firmware.
- **Step 4.** Select **1K Xmodem** if this protocol is available on the PC.

 If the computer does not have **1K Xmodem**, choose **Xmodem**.
- Step 5. Click Receive.

Figure 11: Example Receive File Dialog Box

Step 6. Enter a filename that clearly identifies the existing firmware version (Figure 12), using the version number from the FID you recorded in Step 1 under *D. Start SELBOOT* on page B-8, and click **OK**.

SEL lists the firmware revision number first, then the product number.

Figure 12: Example Filename Identifying Old Firmware Version

If Xmodem times out before the download completes, repeat the process from Step 1 on page B-11.

Note: HyperTerminal stored any pathname you entered in Step 3 and any filename you entered in Step 6 during the earlier download attempt; this saves you from reentering these on a subsequent attempt.

For a successful download, you should see a dialog box similar to Figure 13. After the transfer, the relay responds with the following:

Figure 13: Downloading Old Firmware

F. Upload New Firmware

- **Step 1.** Prepare to load the firmware.
 - a. Insert the disk containing the new firmware into the appropriate disk drive on the computer.

Note: This example shows uploading new firmware directly from a disk. For a faster upload (and less potential for file corruption), copy the new firmware to the local hard drive and upload the new firmware from the hard drive.

- b. Some firmware is in self-extracting compressed files (files with .exe extensions). For firmware in such files, from Windows Explorer double-click on the file and select the directory on the hard drive where you want to access the uncompressed files. Verify that these uncompressed files have an .s19 extension.
- **Step 2.** Type **REC <Enter>** at the SELBOOT !> prompt to command the relay to receive new firmware.

```
!>REC <Enter>
Caution! - This command erases the relays firmware.
If you erase the firmware, new firmware must be loaded into the relay
before it can be put back into service.
```

The relay asks whether you want to erase the existing firmware.

```
Are you sure you wish to erase the existing firmware? (Y/N) Y <Enter>
```

Step 3. Type **Y** to erase the existing firmware and load new firmware. (To abort, type **N** or press **<Enter>**).

The relay responds with the following:

```
Erasing
Erase successful
Press any key to begin transfer, then start transfer at the PC <Enter>
```

- **Step 4.** Press **<Enter>** to start the file transfer routine.
- **Step 5.** Send new firmware to the relay.
 - a. From the **Transfer** menu in **HyperTerminal**, choose **Send File** (Figure 14).
 - b. In the **Filename** text box, type the location and filename of the new firmware or use the **Browse** button to select the firmware file.
 - c. In the **Protocol** text box, select **1K Xmodem** if this protocol is available.

If the computer does not have **1K Xmodem**, select **Xmodem**.

d. Click **Send** to send the file containing the new firmware.

You should see a dialog box similar to Figure 15. Incrementing numbers in the **Packet** box and a bar advancing from left to right in the **File** box indicate that a transfer is in progress.

Receiving software takes 10–15 minutes at 38400 bps, depending on the relay. If you see no indication of a transfer in progress within a few minutes after clicking **Send**, use the **REC** command again and reattempt the transfer.

After the transfer completes, the relay displays the following:

Upload completed successfully. Attempting a restart.

A successful restart sequence can take as long as two minutes, after which time the relay leaves SELBOOT. You will see no display on your PC to indicate a successful restart.

Figure 14: Selecting New Firmware to Send to the Relay

Figure 15: Transferring New Firmware to the Relay

Note: Unsuccessful uploads can result from Xmodem time-out, a power failure, loss of communication between the relay and the computer, or voluntary cancellation. Check connections, reestablish communication, and start again at Step 2 under *F. Upload New Firmware*.

If you want to reload the previous firmware, begin at Step 2 under *F. Upload New Firmware* and use the firmware you saved in *E. Download Existing Firmware* on page B-11. Contact the factory for assistance in achieving a successful firmware upgrade.

Step 6. Press **<Enter>** and confirm that the Access Level 0 = prompt appears on the computer screen.

Step 7. If you see the Access Level 0 = prompt, proceed to *G. Check Relay Self-Tests* on page B-16.

Note: The relay restarts in SELBOOT if relay power fails while receiving new firmware. Upon power-up, the relay serial port will be at the default 2400 baud. Perform the steps beginning on page B-3 under **B.** Establish a **Terminal Connection** to increase the serial connection data speed. Then resume the firmware upgrade process at **F.** Upload New Firmware.

No Access Level 0 = Prompt

If no Access Level 0 = prompt appears in the terminal emulation window, one of three things could have occurred. Refer to Table 2 to determine the best solution.

Table 2: Troubleshooting New Firmware Upload

Problem		Solution
The restart was successful, but the relay data transmission rate reverted to the rate at which the relay was operating prior to entering	Change the computer terminal speed to match the relay data transmission rate you recorded in <i>A. Prepare the Relay</i> on page B-2 (see <i>Match Computer Communications Speed to the Relay</i> on page B-10).	
SELBOOT (the rate you recorded in <i>A. Prepare the Relay</i> on page B-2).	Step 1.	From the Call menu, choose Disconnect to terminate relay communication.
	Step 2.	Change the communications software settings to the values you recorded in <i>A</i> . <i>Prepare the Relay</i> on page B-2.
	Step 3.	From the Call menu, choose Connect to reestablish communication.
	Step 4.	Press <enter></enter> to check for the Access Level 0 = prompt indicating that serial communication is successful.
	Step 5.	If you get no response, proceed to <i>Match Computer Communications Speed to the Relay</i> on page B-10.

Problem		Solution
The restart was successful, but the relay data transmission rate reverted to 2400 bps (the settings have been reset to default).		omputer terminal speed to a relay data n rate of 2400 bps.
	Step 1.	From the Call menu, choose Disconnect to terminate relay communication.
	Step 2.	Change the communications software settings to 2400 bps, 8 data bits, no parity, and 1 stop bit (see <i>Match Computer Communications Speed to the Relay</i> on page B-10).
	Step 3.	From the Call menu, choose Connect to reestablish communication.
	Step 4.	Press <enter></enter> to check for the Access Level 0 = prompt indicating successful serial communication.
		If you see a SELBOOT!> prompt, type EXI <enter></enter> to exit SELBOOT. Check for the Access Level 0 = prompt.
		If you see the Access Level 0 = prompt, proceed to <i>G. Check Relay Self-Tests</i> .
The restart was unsuccessful, in which case the relay is in SELBOOT.	Step 5 unde	o upload the new firmware (beginning at r <i>Establish a High-Speed Connection</i> on page ntact the factory for assistance.

G. Check Relay Self-Tests

The relay can display various self-test fail status messages. The troubleshooting procedures that follow depend upon the status message the relay displays.

- Step 1. Type ACC <Enter>.
- Step 2. Type the Access Level 1 password and press **<Enter>**. You will see the Access Level 1 => prompt.
- Step 3. Enter the STATUS command (STA <Enter>) to view relay status messages.

 If the relay displays no fail status message, proceed to *H. Verify Settings*, *Calibration, Status, Breaker Wear, and Metering* on page B-19.

IO_BRD Fail Status Message

Perform this procedure if you have only an IO_BRD Fail Status message; for additional fail messages, proceed to *CR_RAM*, *EEPROM*, *and IO_BRD Fail Status Messages*.

Step 1. From Access Level 2, type **INI <Enter>** to reinitialize the I/O board(s). If this command is unavailable, go to *CR_RAM*, *EEPROM*, *and IO_BRD Fail Status Messages*.

The relay asks the following question:

Are the new I/O board(s) correct (Y/N)?

- a. Type **Y <Enter>**.
- b. After a brief interval (as long as a minute), the EN LED will illuminate.

If the EN LED does not illuminate and you see a SELBOOT!> prompt, type **EXI <Enter>** to exit SELBOOT. After a brief interval the EN LED will illuminate. Check for Access Level 0 = prompt.

- c. Use the **ACC** and **2AC** commands and type the corresponding passwords to reenter Access Level 2.
- d. Enter the **SHO** *n* command to view relay settings and verify that these match the settings you saved (see *Backup Relay Settings* beginning on page B-8).

Note: Depending upon the relay, *n* can be 1–6, G, P, L, T, R, X, or Y.

- **Step 2.** If the settings do not match, reenter the settings you saved earlier.
 - a. If you have SEL-5010 Relay Assistant software or ACSELERATOR QuickSet, restore original settings by following the instructions for the respective software.
 - b. If you do not have the SEL-5010 Relay Assistant software or ACSELERATOR QuickSet, restore original settings by issuing the necessary **SET** *n* commands, where *n* can be 1–6, G, P, L, T, R, X, or Y (depending upon the settings classes in the relay).
- **Step 3.** Use the **PAS** command to set the relay passwords.

For example, type **PAS 1 <Enter>** to set the Access Level 1 password.

Use a similar format for other password levels. SEL relay passwords are case sensitive, so the relay treats lowercase and uppercase letters as different letters.

Step 4. Go to H. Verify Calibration, Status, Breaker Wear, and Metering on page B-19.

CR_RAM, EEPROM, and IO_BRD Fail Status Messages

Step 1. Use the **ACC** and **2AC** commands with the associated passwords to enter Access Level 2.

The factory default passwords are in effect; use the default relay passwords listed in the **PAS** command description in the relay instruction manual.

Step 2. Type **R_S <Enter>** to restore factory default settings in the relay (type **R_S 1 <Enter>** for a 1 A SEL-387 or 1 A SEL-352 Relay).

The relay asks whether to restore default settings. If the relay does not accept the **R_S** (or **R_S** 1) command, contact your customer service representative or the factory for assistance.

Step 3. Type Y < Enter >.

The relay can take as long as two minutes to restore default settings. The relay then reinitializes, and the EN LED illuminates.

Note: If the relay prompts you to enter a part number, use either the number from the firmware envelope label or the number from the new part number sticker (if supplied).

- **Step 4.** Press **Enter>** to check for the Access Level 0 = prompt indicating that serial communication is successful.
- **Step 5.** Use the **ACC** and **2AC** commands and type corresponding passwords to reenter Access Level 2.
- **Step 6.** Restore the original settings.
 - a. If you have SEL-5010 Relay Assistant software or ACSELERATOR QuickSet, restore the original settings by following the instructions for the respective software.
 - b. If you do not have the SEL-5010 Relay Assistant software or ACSELERATOR QuickSet, restore the original settings by issuing the necessary **SET** *n* commands, where *n* can be 1–6, G, P, L, T, R, X, or Y (depending upon the settings classes available in the relay).
- **Step 7.** Use the **PAS** command to set the relay passwords.

For example, type **PAS 1 <Enter>** to set the Access Level 1 password.

Use a similar format for other password levels. SEL relay passwords are case sensitive, so the relay treats lowercase and uppercase letters as different letters.

Step 8. If any failure status messages still appear on the relay display, see the troubleshooting section in the relay instruction manual or contact your customer service representative or the factory for assistance.

H. Verify Settings, Calibration, Status, Breaker Wear, and Metering

- **Step 1.** Use the **ACC** and **2AC** commands with the associated passwords to enter Access Level 2.
- **Step 2.** Use the **SHO** command to view the relay settings and verify that these match the settings you saved earlier (see *Backup Relay Settings* on page B-8).

If the settings do not match, reenter the settings you saved earlier (see Step 6 under *CR_RAM*, *EEPROM*, *and IO_BRD Fail Status Messages* on page B-17).

Step 3. Type **SHO** C **<Enter>** to verify the relay calibration settings.

If the settings do not match the settings contained in the text file you recorded in *Save Settings and Other Data* on page B-7, contact your customer service representative or the factory for assistance.

- **Step 4.** Use the firmware identification string (FID) to verify download of the correct firmware.
 - a. From the **File** menu, choose **Properties**.
 - b. Select the **Settings** tab in the **Firmware Upgrade Properties** dialog box (Figure 4).
 - c. Click **ASCII Setup**.

You should see a dialog box similar to Figure 16.

d. Under **ASCII Receiving**, select the check box to **Append line feeds to incoming line ends**.

Figure 16: Preparing HyperTerminal for ID Command Display

- e. Click **OK** twice to return to the terminal emulation window.
- f. Type **ID <Enter>** and compare the number the relay displays against the number from the firmware envelope label.

- g. If the label FID and part number match the relay display, proceed to Step 5.
- h. For a mismatch between a displayed FID or part number and the firmware envelope label, reattempt the upgrade or contact the factory for assistance.
- **Step 5.** Type **STA <Enter>** and verify that all relay self-test parameters are within tolerance.
- **Step 6.** If you use the Breaker Wear Monitor, type **BRE <Enter>** to check the data and see if the relay retained breaker wear data through the upgrade procedure.

If the relay did not retain these data, use the **BRE W**n command to reload the percent contact wear values for each pole of Circuit Breaker n (n = 1, 2, 3, or 4) you recorded in C. Save Settings and Other Data on page B-7.

- **Step 7.** Apply current and voltage signals to the relay.
- **Step 8.** Type **MET <Enter>** and verify that the current and voltage signals are correct.
- **Step 9.** Use the **TRIGGER** and **EVENT** commands to verify that the magnitudes of the current and voltage signals you applied to the relay match those displayed in the event report.

If these values do not match, check the relay settings and wiring.

I. Return the Relay to Service

- **Step 1.** Follow your company procedures for returning a relay to service.
- **Step 2.** Autoconfigure the SEL communications processor port if you have an SEL communications processor connected to the relay.

This step reestablishes automatic data collection between the SEL communications processor and the relay. Failure to perform this step can result in automatic data collection failure when cycling communications processor power.

The relay is now ready for your commissioning procedure.

ETHERNET PORT FIRMWARE UPGRADE INSTRUCTIONS

Introduction

Note: This section only applies to products equipped with an optional Ethernet port.

Perform the firmware upgrade process in the following sequence:

- A. Prepare the Relay
- B. Establish an FTP Connection and Transfer New Firmware
- C. Establish a Telnet Connection

- D. Verify Firmware Transfer
- E. Verify IEC 61850 Operation (Optional)

Required Equipment

Gather the following equipment before starting this firmware upgrade:

- Personal computer (PC)
- FTP client software (may be included with the PC operating system)
- Disk containing the communications card firmware upgrade (.s19) file
- Firmware upgrade instructions (these instructions)

Upgrade Procedure

A. Prepare the Relay

- **Step 1.** If the relay is in use, follow your company practices for removing a relay from service. Typically, these include changing settings, or disconnecting external voltage sources or output contact wiring, to disable relay control functions.
- **Step 2.** Apply power to the relay.
- **Step 3.** Apply the following **PORT 1** setting and leave all others at default.

```
PROTO = TELNET
```

Step 4. These instructions assume that the Ethernet port (PORT 5) settings are set as follows:

```
IPADDR = 10.201.0.213

SUBNETM = 255.255.0.0

DEFRTR = 10.201.0.1

ETELNET = Y

TPORTC = 1024

EFTPSERV = Y

FTPUSER = 2AC
```

Note: Use IP settings (IPADDR, SUBNETM, DEFRTR) that are compatible with your PC's network settings.

B. Establish an FTP Connection and Transfer New Firmware

The following instructions use the Microsoft Windows command line and FTP client to establish an FTP connection between a PC and the relay. Consult your operating system or FTP client manuals if your equipment or software differs. These instructions assume that both devices are on the same side of any firewalls.

- **Step 1.** Connect an Ethernet cable from the relay Ethernet port to an Ethernet switch and another cable from the PC Ethernet port to the same Ethernet switch.
 - Alternatively, connect a crossover Ethernet cable between the relay Ethernet port (PORT 5) and the PC Ethernet port.
- **Step 2.** Copy the firmware upgrade file to the root directory of the PC's primary drive (usually C:\).
- **Step 3.** Open a Command Prompt window.
 - a. Click **Start > Run**.
 - b. Type **cmd** in the dialog box.
 - c. Click OK.

- **Step 4.** In the Command Prompt window, set the current directory to the root of the primary drive (usually C:\).
 - a. Type **C: <Enter>**.
 - b. Type cd \ < Enter>.
- **Step 5.** In the Command Prompt window, type **FTP <IP Address> <Enter>** (substitute the IP address of the Ethernet port for <*IP Address>*, e.g., **FTP 10.201.0.213**).
- **Step 6.** When prompted, type the relay FTPUSER user name (the default user name is 2AC) and press **<Enter>**. After that, type the FTP user password (the default password is TAIL) and press **<Enter>**.
- **Step 7.** Set the FTP file transfer mode to Binary by typing **BIN <Enter>** at the FTP prompt.
- **Step 8.** Transfer the new firmware to the relay by typing **PUT C:\filename.s19 <Enter>** at the FTP prompt (substitute the firmware file name for *filename.s19*).
- **Step 9.** The FTP file transfer will begin immediately. As the transfer progresses, and upon completion, messages similar to the following will be displayed.

```
200 PORT Command okay.

150 File status okay; about to open data connection.

226 Closing data connection.

ftp: 2926780 bytes sent in 46.80 Seconds 62.54 Kbytes/sec.
```

- **Step 10.** Type **QUIT <Enter>** to exit the FTP session when the transfer is complete.
- **Step 11.** (Optional) Delete the firmware upgrade file from the root directory of the computer's primary drive by typing **DELETE C:\filename.s19 <Enter>** at the command prompt.

C. Establish a Telnet Connection

To establish a Telnet-to-card connection, perform the following steps.

- Step 1. Click Start > Run.
- **Step 2.** Type **cmd <Enter>** to launch a Command Prompt window.
- Step 3. Type Telnet <IP Address> port at the prompt (e.g., Telnet 10.201.0.213 1024).
- **Step 4.** Press **<Enter>** several times until you see the = prompt.

D. Verify Firmware Transfer

To verify the firmware transfer completed properly, perform the following steps after establishing a Telnet connection.

- **Step 5.** Issue a Status (**STA**) command.
- **Step 6.** Verify that the Status report does not include any warnings or failures.
- **Step 7.** Verify that the Status report includes "Device Enabled" at the end of the report.
- **Step 8.** Verify that the Status report FID matches the FID of the firmware you transferred.

E. Verify or Restart IEC 61850 Operation (Optional)

SEL-300 series relays with optional IEC 61850 protocol require the presence of one valid CID file to enable the protocol. You should only transfer a CID file to the relay if you want to implement a change in the IEC 61850 configuration or if new Ethernet port firmware does not support the current CID file version. If you transfer an invalid CID file, the relay will disable the IEC 61850 protocol, as it no longer has a valid configuration. To restart IEC 61850 protocol operation, you must transfer a valid CID file to the relay.

Perform the following steps to verify that the IEC 61850 protocol is still operational after an Ethernet port firmware upgrade and if not, re-enable it. This procedure assumes that IEC 61850 was operational with a valid CID file immediately before initiating the Ethernet port firmware upgrade.

Establish an FTP connection to the relay Ethernet port (See B. Establish an FTP Connection).

Step 9. Open the ERR.TXT file for reading.

If the ERR.TXT file contains error messages relating to CID file parsing, this indicates that the relay has disabled the IEC 61850 protocol. If this file is empty, the relay found no errors during CID file processing and IEC 61850 should remain enabled. Skip to Step 3 if ERR.TXT is empty.

If the IEC 61850 protocol has been disabled because of an upgrade-induced CID file incompatibility, you can use ACSELERATOR Architect® SEL-5032 Software to convert the existing CID file and make it compatible again.

- a. Install the ACSELERATOR Architect software upgrade that supports your required CID file version.
- b. Run ACSELERATOR Architect and open the project that contains the existing CID file for the relay.
- c. Download the CID file to the relay.

Upon connecting to the relay, ACSELERATOR Architect will detect the upgraded Ethernet port firmware and prompt you to allow it to convert the existing CID file to a supported version. Once converted, downloaded, and processed, the valid CID file allows the relay to re-enable the IEC 61850 protocol.

- **Step 10.** In the Telnet session, type **GOO <Enter>**.
- **Step 11.** View the GOOSE status and verify that the transmitted and received messages are as expected.

If you are upgrading both relay firmware and Ethernet port firmware, return to Upgrade Procedure on page B-2.

FACTORY ASSISTANCE

We appreciate your interest in SEL products and services. If you have questions or comments, please contact us at:

Schweitzer Engineering Laboratories, Inc. 2350 NE Hopkins Court

Pullman, WA 99163-5603 U.S.A.

Tel: +1.509.332.1890 Fax: +1.509.332.7990 Internet: www.selinc.com Email: info@selinc.com

APPENDIX C: SEL DISTRIBUTED PORT SWITCH PROTOCOL (LMD)

SEL Distributed Port Switch Protocol (LMD) permits multiple SEL relays to share a common communications channel. It is appropriate for low-cost, low-speed port switching applications where updating a real-time database is not a requirement.

SETTINGS

Use the front-panel SET pushbutton or the serial port **SET P** command to activate the LMD protocol. Change the port PROTO setting from the default SEL to LMD to reveal the following settings:

PREFIX: One character to precede the address. This should be a character which does not occur in the course of other communications with the relay. Valid choices are one of the following: "@", "#", "\$", "%", "&". The default is "@."

ADDR: Two character ASCII address. The range is "01" to "99." The default is "01."

SETTLE: Time in seconds that transmission is delayed after the request to send (RTS line) asserts. This delay accommodates transmitters with a slow rise time.

OPERATION

- 1. The relay ignores all input from this port until it detects the prefix character and the two-byte address.
- 2. Upon receipt of the prefix and address, the relay enables echo and message transmission.
- 3. Wait until you receive a prompt before entering commands to avoid losing echoed characters while the external transmitter is warming up.
- 4. Until the relay connection terminates, you can use the standard commands that are available when PROTO is set to SEL.
- 5. The **QUIT** command terminates the connection. If no data are sent to the relay before the port timeup period, it automatically terminates the connection.
- 6. Enter the sequence CTRL-X QUIT <CR> before entering the prefix character if all relays in the multidrop network do not have the same prefix setting.

Note: You can use the front-panel SET pushbutton to change the port settings to return to SEL protocol.

APPENDIX D: CONFIGURATION, FAST METER, AND FAST OPERATE COMMANDS

Introduction

SEL relays have two separate data streams that share the same serial port. The human data communications with the relay consist of ASCII character commands and reports that are intelligible to humans using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering data. The device connected to the other end of the link requires software that uses the separate data streams to exploit this feature. The binary commands and ASCII commands can also be accessed by a device that does not interleave the data streams.

SEL Application Guide AG95-10, *Configuration and Fast Meter Messages*, is a comprehensive description of the SEL binary messages. Below is a description of the messages provided in the SEL-387A Relay.

MESSAGE LISTS

Binary Message List

Request to

request to	
Relay (hex)	Response From Relay
A5C0	Relay Definition Block
A5C1	Fast Meter Configuration Block
A5D1	Fast Meter Data Block
A5B9	Fast Meter Status Clear Command
A5C2	Demand Fast Meter Configuration Block
A5D2	Demand Fast Meter Data Message
A5C3	Peak Demand Fast Meter Configuration Block
A5D3	Peak Demand Fast Meter Data Message
A5CE	Fast Operate Configuration Block
A5E0	Fast Operate Remote Bit Control
A5E3	Fast Operate Breaker Control
A5ED	Fast Operate Reset Command
A5CD	Fast Reset Configuration Block

ASCII Configuration Message List

Request to

Relay (ASCII) Response From Relay

ID ASCII Firmware ID String and Terminal ID Setting (TID)

DNA ASCII Names of Relay Word bits

BNA ASCII Names of bits in the *Fast Meter* Status Byte

MESSAGE DEFINITIONS

A5CO Relay Definition Block

In response to the A5C0 request, the relay sends the following block:

<u>Data</u>	<u>Description</u>
A5C0	Command
40	Message length (64 bytes)
42	Message length (66 bytes (DNP versions only))
XX	Non-DNP versions = 02
XX	DNP versions = 03
03	Support fast meter, fast demand, and fast peak
05	Status flag commands supported: Warn, Fail, Group or Settings change
A5C1	Fast meter configuration
A5D1	Fast meter message
A5C2	Fast demand configuration
A5D2	Fast demand message
A5C3	Fast peak configuration
A5D3	Fast peak message
0002	Self-test warning bit
5354410D0000	(STA <cr>) Check status</cr>
0003	Self-test failure bit
5354410D0000	(STA <cr>) Check status</cr>
0004	Settings change bit
A5C100000000	Reconfigure fast meter on settings change
0004	Settings change bit
53484F0D0000	(SHO <cr>) Check the settings</cr>
0004	
53484F20470D	(SHO G <cr>) Check the Global settings</cr>
0300	SEL protocol, Fast Meter, and Fast Message
0301	LMD protocol, Fast Meter, and Fast Message

0005

DNP protocol (DNP versions only)

A5C1 Fast Meter Configuration Block

In response to the A5C0 request, the relay sends the following block:

1	•
<u>Data</u>	<u>Description</u>
A5C1	Fast meter configuration response
C8	Message length (200 bytes)
01	One status flag byte
01	Scale factors in config message
06	# scale factors
0D	# analog input channels
02	# samples per channel
3F	# digital banks (63 bytes)
02	# calculation blocks
0004	Analog channel data offset
0038	Time stamp offset (56) bytes
0040	Digital data offset (64) bytes
494157310000 (IAW1)	Analog channel name
00	Analog channel type (integer)
01	Scale factor type (4-byte float)
00AE	Scale factor offset (winding 1)
494257310000 (IBW1)	
00	
01	
00AE	
494357310000 (ICW1)	
00	
01	
00AE	
494157320000 (IAW2)	
00	
01	
00B2	(winding 2)
494257320000 (IBW2)	
00	
01	
00B2	
494357320000 (ICW2)	
00	
01	
00B2	
494157330000 (IAW3)	
00	
FF	
0000	(winding 3)
494257330000 (IBW3)	
00	
FF	
0000	
494357330000 (ICW3)	

00 FF 0000

With REF/Neutral current option. Without REF/Neutral current option.

494E31000000 (IN1) 494157340000 (IAW4)

00 01 00B6 0000

494E32000000 (IN2) 494257340000 (IBW4)

00 01 00BA 0000

494E33000000 (IN3) 494357340000 (ICW4)

00 01 00BE 0000

564443000000 (VDC)

00 01 00C2

xx Connection byte -- Based on PHROT and W1CT settings

(Calc block #1)

03 Current calculation only FFFF No skew adjustment

FFFF No RS offset FFFF No XS offset

00 IAW1
01 IBW1
02 ICW1
FF NA
FF NA
FF NA

xx Connection byte -- Based on PHROT and W2CT settings

(Calc block #2)

03 Current calculation only FFFF No skew adjustment

FFFF No RS offset
FFFF No XS offset

xxxxxxxx Winding 1 scale factor (NCurr/1000) • CTR1 xxxxxxxx Winding 2 scale factor (NCurr/1000) • CTR2

With REF/Neutral current option.		Without REF/Neutral current option.
XXXXXXX	IN1 scale factor (NCurr/1000)	00000000
	• CTRN1	
XXXXXXX	IN2 scale factor (NCurr/1000)	0000000
	• CTRN2	
XXXXXXX	IN3 scale factor (NCurr/1000)	0000000
	• CTRN3	
3C23D70A	Scale factor (1/100)	
00	Reserved	

A5D1 Fast Meter Data Block

XX

In response to the A5D1 request, the relay sends the following block:

<u>Data</u>	<u>Description</u>
A5D1	Fast meter message
80	Message length (128 bytes)
XX	Status byte
52 bytes	Inst for the following: IAW1, IBW1, ICW1, IAW2, IBW2, ICW2,
	IAW3, IBW3, ICW3, IN1, IN2, IN3, VDC (Imaginaries first, followed
	by Reals)
8 bytes	Time stamp
63 bytes	Digital banks targets 0 through 62
XX	Checksum

A5B9 Fast Meter Status Acknowledge Message

Checksum

In response to the A5B9 request, the SEL-387A clears the Settings change (STSET) bit in the Status Byte of the *Fast Meter* messages (A5D1, A5D2, and A5D3). The bit is set on power up and on settings changes. If the STSET bit is set, the external device should request the A5C1, A5C2, and A5C3 messages to determine if the scale factors or line configuration parameters have been modified. No return response is given to the A5B9 request.

A5C2/A5C3 Demand/Peak Demand Fast Meter Configuration Messages

In response to the A5C2 or A5C3 request, the relay sends the following block:

<u>Data</u>	<u>Description</u>
A5C2 or A5C3	Command; Demand (A5C2) or Peak Demand (A5C3)
DA	Message length (218 bytes)
00	No status byte
01	Scale factors in fast meter configuration
00	No scale factors used
14	20 analog input channels
01	One sample per channel
00	No digital banks
00	No calculations
0004	Analog channel offset

```
FFFF
                        No time stamp
FFFF
                        No digital data
494157310000 (IAW1)
                        Analog channel name
                        Analog channel type -- double precision float
FF
                        No scale factor
0000
                        No scale factor offset
494257310000 (IBW1)
02
FF
0000
494357310000 (ICW1)
02
FF
0000
334932573100 (3I2W1)
02
FF
0000
495257310000 (IRW1)
02
FF
0000
494157320000 (IAW2)
02
FF
0000
494257320000 (IBW2)
02
FF
0000
494357320000 (ICW2)
02
FF
0000
334932573200 (3I2W2)
02
FF
0000
495257320000 (IRW2)
02
FF
0000
494157330000 (IAW3)
02
FF
0000
494257330000 (IBW3)
02
```

FF

0000 494357330000 (ICW3) 02 FF 0000 334932573300 (3I2W3) FF 0000 495257330000 (IRW3) 02 FF 0000 494157340000 (IAW4) 02 FF 0000 494257340000 (IBW4) 02 FF 0000 494357340000 (ICW4) 02 FF 0000 334932573400 (3I2W4) 02 FF 0000 495257340000 (IRW4) 02 FF 0000 00 Reserved Checksum XX

A5D2/A5D3 Demand/Peak Demand Fast Meter Message

In response to the A5D2 or A5D3 request, the relay sends the following block:

DataDescriptionA5D2 or A5D3CommandA6Message length (166 bytes)00Reserved160 bytesDemand meter values in double floats in the same order as channel listings in A5C2.00ReservedxxChecksum

A5CE Fast Operate Configuration Block

In response to the A5CE request, the relay sends the following block:

_	
<u>Data</u>	<u>Description</u>
A5CE	Command
42	Message length, #bytes (66)
04	# circuit breakers supported
0010	16 remote bits
01	Remote bit pulse supported
00	Reserved
31	Open breaker 1
11	Close breaker 1
32	Open breaker 2
12	Close breaker 2
33	Open breaker 3
13	Close breaker 3
34	Open breaker 4
14	Close breaker 4
00	Clear remote bit RB1
20	Set remote bit RB1
40	Pulse remote bit RB1
01	Clear remote bit RB2
21	Set remote bit RB2
41	Pulse remote bit RB2
02	Clear remote bit RB3
22	Set remote bit RB3
42	Pulse remote bit RB3
03	Clear remote bit RB4
23	Set remote bit RB4
43	Pulse remote bit RB4
04	Clear remote bit RB5
24	Set remote bit RB5
44	Pulse remote bit RB5
05	Clear remote bit RB6
25	Set remote bit RB6
45	Pulse remote bit RB6
06	Clear remote bit RB7
26	Set remote bit RB7
46	Pulse remote bit RB7
07	Clear remote bit RB8
27	Set remote bit RB8
47	Pulse remote bit RB8
08	Clear remote bit RB9
28	Set remote bit RB9
48	Pulse remote bit RB9
09	Clear remote bit RB10
29	Set remote bit RB10
49	Pulse remote bit RB10
0A	Clear remote bit RB11

2A	Set remote bit RB11
4A	Pulse remote bit RB11
0B	Clear remote bit RB12
2B	Set remote bit RB12
4B	Pulse remote bit RB12
0C	Clear remote bit RB13
2C	Set remote bit RB13
4C	Pulse remote bit RB13
0D	Clear remote bit RB14
2D	Set remote bit RB14
4D	Pulse remote bit RB14
0E	Clear remote bit RB15
2E	Set remote bit RB15
4E	Pulse remote bit RB15
0F	Clear remote bit RB16
2F	Set remote bit RB16
4F	Pulse remote bit RB16
00	Reserved pad
XX	Checksum

A5E0 Fast Operate Remote Bit Control

The external device sends the following message to perform a remote bit operation (set, clear, pulse):

<u>Data</u>	<u>Description</u>
A5E0	Command
06	Message length
XX	Operate code (0-F, 20-2F, 40-4F for remote bit clear, set or pulse)
XX	Operate validation: 4 * operate code + 1

xx Checksum

Remote bit set and clear operations are latched by the relay. Remote bit pulse operations assert the remote bit for one processing interval.

A5E3 Fast Operate Breaker Control

The external device sends the following message to perform a fast breaker open/close of breakers 1 through 4:

<u>Data</u>	<u>Description</u>
A5E3	Command
06	Message length
XX	Operate code (hex 31-34 open, hex 11-14 close breakers 1 through 4)
XX	Operate validation: 4 * operate code + 1
XX	Checksum

A5CD Fast Operate Reset Definition Block

In response to the A5CD request the relay sends the following block

Data	<u>Description</u>
A5CD	Command
9E	Length
13	Support nineteen Fast Resets
00	Reserved
00	Reset Code, Reset Targets
54415220520000	Fast Operate Reset Description (TAR R)
01	Reset Code, Reset Peak Demand for Winding 1
4D455420525031	Fast Operate Reset Description (MET RP1)
02	Reset Code, Reset Peak Demand for Winding 2
4D455420525032	Fast Operate Reset Description (MET RP2)
03	Reset Code, Reset Peak Demand for Winding 3
4D455420525033	Fast Operate Reset Description (MET RP3)
04	Reset Code, Reset Peak Demand for Winding 4
4D455420525034	
05	Fast Operate Reset Description (MET RP4) Reset Code, Reset Peak Demand for all Windings
4D455420525041	
4D453420323041 06	Fast Operate Reset Description (MET RPA)
4D455420524431	Reset Code, Reset Demand for Winding 1
	Fast Operate Reset Description (MET RD1)
07 4D455420524422	Reset Code, Reset Demand for Winding 2
4D455420524432	Fast Operate Reset Description (MET RD2)
08	Reset Code, Reset Demand for Winding 3
4D455420524433	Fast Operate Reset Description (MET RD3)
09	Reset Code, Reset Demand for Winding 4
4D455420524434	Fast Operate Reset Description (MET RD4)
0A	Reset Code, Reset Demand for all Windings
4D455420524441	Fast Operate Reset Description (MET RDA)
0B	Reset Code, Reset Breaker Monitor for Breaker 1
42524520522031	Fast Operate Reset Description (BRE R 1)
0C	Reset Code, Reset Breaker Monitor for Breaker 2
42524520522032	Fast Operate Reset Description (BRE R 2)
0D	Reset Code, Reset Breaker Monitor for Breaker 3
42524520522033	Fast Operate Reset Description (BRE R 3)
0E	Reset Code, Reset Breaker Monitor for Breaker 4
42524520522034	Fast Operate Reset Description (BRE R 4)
0F	Reset Code, Reset Breaker Monitor for all Breakers
42524520522041	Fast Operate Reset Description (BRE R A)
10	Reset Code, Reset all Inverse-Time O/C Elements
52455300000000	Fast Operate Reset Description (RES)
11	Reset Code, Clear the Summary
48495320430000	Fast Operate Reset Description (HIS C)
12	Reset Code, Clear the SER
53455220430000	Fast Operate Reset Description (SER C)
DA	Checksum

A5ED Fast Operate Reset Command

The Fast Operate Reset commands take the following form:

<u>Data</u>	<u>Description</u>
A5ED	Command
06	Message Length - always 6
00	Operate Code (e.g., "00" for target reset, "TAR R")
01	Operate Validation - (4 + Operate Code) + 1
XX	Checksum

A546 Temperature Data Block

The SEL-387A understands the contents of the following binary data packet from an external SEL-2600 RTD module:

<u>Data</u>	Description
0xA546	Header code to flag the beginning of message
74h	Message length (116 bytes)
000000000000000h	Routing value: 0 for point-to-point communication
00h	Status byte
	•
12h	Function code: unsolicited read response
00h	Sequence byte
00h	Pad byte
XXXXXXX	Internal time since power up or rollover at 86400000 milliseconds
XXXX	External RTD Unit Status: Bit 0 indicates the state of the external RTD
	power supply $(0 = good, 1 = fail)$. Bit 1 indicates the state of the
	external RTD RAM ($0 = \text{good}$, $1 = \text{fail}$). Bits 2–14 are 0. Bit 15
	indicates the state of the external RTD's digital input ($0 = \text{deasserted}$, $1 = \text{deasserted}$)
	asserted).
xxxx * 4 * 12	Temperature Data (°C) in 12 data sets of 4 words.
	Word One–16 bit representation of a PT100 RTD.
	Word Two–16 bit representation of a NI100 RTD.
	Word Three–16 bit representation of a NI120 RTD.
	Word Three–16 bit representation of a CU10 RTD.
	This set is repeated 12 times.
	Open / Shorted RTDs are processed by the RTD diagnostic module.
X/X/X/X/	CRC-16 Block Check Code.
уууу	CIC-10 DIOCK CHECK COUC.

ID Command

In response to the ID command, the relay sends the firmware ID, the relay TID setting, and the Modbus® device code, as shown below.

```
<STX>
"FID=FID string","yyyy"
"CID=XXXX","yyyy"
"DEVID=TID setting", "yyyy"
"DEVCODE=32","yyyy"
"PARTNO=0387AXXXXXXXXXXX","yyyy"
"CONFIG=111100","yyyy"
```

Where:

yyyy Is the 4-byte ASCII hex representation of the checksum for the message.

FID Reports the FID string.

CID Reports the checksum of the ROM code.

DEVID Reports the terminal ID as set by the TID setting.

DEVCODE Reports the Modbus code (32).

PARTNO Reports the part number.

CONFIG The phase input current and neutral input current scaling are both set to

the same value since the SEL-387A does not differentiate. Both the voltage and current input connection (wye vs. delta) are reported as N/A.

DNA Command

In response to the DNA command, the relay sends names of the Relay Word bits, as described below:

where xxxxxx is each name in ASCII. "*" indicates an unused bit position. The labels shall appear in order from Most Significant Bit (MSB) to Least Significant Bit (LSB). yyyy is the 4-byte ASCII representation of the hex checksum for the line.

BNA Command

In response to the BNA command, the relay sends the names of the bits transmitted in the Status Byte of the *Fast Meter* messages (A5D1, A5D2, and A5D3) as shown below:

```
<STX> (STX character, 02)
"*","*","*","STSET","STFAIL","STWARN","*","*","yyyy"<CR>
<ETX> (ETX character, 03)
```

where yyyy is the 4-byte ASCII representation of the hex checksum for the line.

The bits named are defined as follows:

- STSET Set when a power-up or settings change has occurred. It is cleared by the A5B9 request (see earlier in this Appendix).
- STFAIL One or more of the monitored status quantities is in a FAIL state.
- STWARN One or more of the monitored status quantities is in a WARN state.

SNS Message

In response to the SNS command, the relay sends the name string of the SER (SER1, SER2, SER3, and SER4) settings. SNS command is available at Access Level 1.

The relay responds to the SNS command with the name string in the SER settings. The name string starts with SER1, followed by SER2, SER3, and SER4.

For example: If SER1 = 50P11 OUT101; SER2 = 87U1 32IF1; SER3 = OUT102 52A, SER4 = 0; the name string will be "50P11", "OUT101", "87U1", "32IF1", "OUT102", "52A".

If there are more than eight settings in SER, the SNS message will have several rows. Each row will have eight strings, followed by the checksum and cartridge return. The last row may have less than eight strings.

The ALIAS settings are ignored for the SNS command (i.e., if ALIAS1 = OUT101 CL_BKR_1, SNS includes "OUT101", **not** the custom label). Refer to *Settings* in *Section 6: Setting the Relay*.

SNS message for the SEL-387A is:

```
<$TX>"xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","yyyy"<CR>
"xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","yyyy"<CR>
"xxxx","xxxx","xxxx",<CR><ETX>
```

where: xxxx is a string from the settings in SER (SER1, SER2, SER3, and SER4) yyyy is the 4-byte ASCII representation of the checksum

APPENDIX E: COMPRESSED ASCII COMMANDS

Introduction

The SEL-387A Relay provides Compressed ASCII versions of some of the relay's ASCII commands. The Compressed ASCII commands allow an external device to obtain data from the relay, in a format which directly imports into spreadsheet or database programs, and which can be validated with a checksum.

The SEL-387A provides the following Compressed ASCII commands:

Command	<u>Description</u>
<u>CAS</u> CII	Configuration message
CBR EAKER	Breaker report
CEV ENT	Event report (Winding)
CEVENT DIF	Event report (Differential)
CHI STORY	History report
<u>CST</u> ATUS	Status report
CTA RGET	Target display

CASCII COMMAND - GENERAL FORMAT

The Compressed ASCII configuration message provides data for an external computer to extract data from other Compressed ASCII commands. To obtain the configuration message for the Compressed ASCII commands available in an SEL relay, type:

CAS <ENTER>

The relay sends:

```
<STX> "CAS",n,"yyyy" <CR>
"COMMAND 1",11,"yyyy" <CR>
"#H","xxxxx","xxxxx","xxxxx","yyyy" <CR>
"#D","ddd","ddd","ddd","ddd","yyyy" <CR>
"COMMAND 2",11,"yyyy" <CR>
"#h","ddd","ddd","ddd","yyyy" <CR>
"#D","ddd","ddd","ddd","ddd","yyyy" <CR>

""COMMAND n",11,"yyyy" <CR>

""COMMAND n",11,"yyyy" <CR>
"#H","xxxxx","xxxxx","xxxxx","yyyy" <CR>
"#H","xxxxx","xxxxx","xxxxx","yyyy" <CR>
"#D","ddd","ddd","ddd","ddd","yyyy" <CR>
```

where n is the number of Compressed ASCII command descriptions to follow.

COMMAND is the ASCII name for the Compressed ASCII command as sent by the requesting device. The naming convention for the Compressed ASCII commands is a

'C' preceding the typical command. For example, **CSTATUS** (abbreviated to CST) is the compressed **STATUS** command.

11 is the minimum access level (e.g., 1, or B, or 2) at which the command is available.

#H identifies a header line to precede one or more data lines; '#' is the number of subsequent ASCII names. For example, "21H" identifies a header line with 21 ASCII labels.

#h identifies a header line to precede one or more data lines; '#' is the number of subsequent format fields. For example, "8h" identifies a header line with 8 format fields.

xxxxx is an ASCII name for corresponding data on following data lines. Maximum ASCII name width is 10 characters.

#D identifies a data format line; '#' is the maximum number of subsequent data lines.

ddd identifies a format field containing one of the following type designators:

- I Integer data
- F Floating point data
- mS String of maximum m characters (e.g., 10S for a 10 character string)

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

A Compressed ASCII command may require multiple header and data configuration lines.

If a Compressed ASCII request is made for data that are not available, (e.g., the history buffer is empty or invalid event request), the relay responds with the following message:

<STX>"No Data Available", "0668" < CR> < ETX>

CASCII COMMAND

Display the SEL-387A Compressed ASCII configuration message by sending:

CAS <ENTER>

```
"CBR",1,"yyyy"<CR>
"1H","FID","yyyy"<CR>
"1D","40S","yyyy"<CR>
"7H","MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
"19H","BREAKER","INT TRIPS","IAW","IBW","ICW","EXT TRIPS","IAW","IBW","ICW",
"POLE1", "POLE2", "POLE3", "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC",
"yyyy"<CR>
"CHI",1,"yyyy"<CR>
"1H","FID","yyyy"<CR>
"1D","40S","yyyy"<CR>
"7H","MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
"1D","I","I","I","I","I","I","I","yyyy"<CR>
"11H", "REC_NUM", "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC", "EVENT",
"GROUP", "TARGETS", "yyyy" < CR>
"80D","I","I","I","I","I","I","I","7S","I","52S","yyyy"<CR>
"CEV",1,"yyyy"<CR>
"1H","FID","yyyy"<CR>
"1D","40S","yyyy"<CR>
"7H","MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
"1D","I","I","I","I","I","I","vyvy"<CR>
"5H", "FREQ", "SAM/CYC_A", "SAM/CYC_D", "NUM_OF_CYC", "EVENT", "yyyy" < CR>
"1D","F","I","I","F","7S","yyyy"<CR>
"15H","IAW1","IBW1","ICW1","IAW2","IBW2","ICW2","IAW3","IBW3","ICW3","IN1",
"IN2","IN3","VDC","TRIG","NAMES OF ELEMENTS IN ALL RELAY WORD ROWS",
"vvvv"<CR>
"CEV C",1,"yyyy"<CR>
"1H","FID","yyyy"<CR>
"1D","40S","yyyy"<CR>
"7H","MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
"1D","I","I","I","I","I","I","I","yyyy"<CR>
"5H", "FREQ", "SAM/CYC_A", "SAM/CYC_D", "NUM_OF_CYC", "EVENT", "yyyy" < CR>
"1D", "F", "I", "I", "F", "7S", "yyyy" < CR >
"15H","IAW1","IBW1","ICW1","IAW2","IBW2","ICW2","IAW3","IBW3","ICW3","IN1",
"IN2", "IN3", "VDC", "TRIG", "NAMES OF ELEMENTS IN ALL RELAY WORD ROWS",
"vvvv"<CR>
"CEV S64 R",1,"yyyy"<CR>
"1H","FID","yyyy"<CR>
"1D","40S","vvvv"<CR>
"7H","MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
"1D","I","I","I","I","I","I","yyyy"<CR>
"5H","FREQ","SAM/CYC_A","SAM/CYC_D","NUM_OF_CYC","EVENT","yyyy"<CR>
"1D","F","I","I","F","7S","yyyy"<CR>
```

where yyyy is the 4-byte ASCII representation of the hex checksum for the line.

#H identifies a header line to precede one or more data lines, '#' is the number of subsequent ASCII names. For example, "21H" identifies a header line with 21 ASCII labels.

#h identifies a header line to precede one or more data lines, '#' is the number of subsequent format fields. For example, "8h" identifies a header line with 8 format fields.

#D identifies a data format line, '#' is the maximum number of subsequent data lines, each format field contains one of the following type designators:

- I Integer data
- F Floating point data
- mS String of max 'm' characters (e.g., 10S for a 10 char string)

If a Compressed ASCII request is made for data that are not available, (e.g., the history buffer is empty or invalid event request), the relay responds with the following message:

```
<STX>"No Data Available", "0668" < CR> < ETX>
```

Note: If the analog current input names (IAW1, etc.) have been changed via the Analog Input Labels global settings, they will appear in the above report as set.

CBREAKER COMMAND

Display the SEL-387A Compressed ASCII breaker report by sending:

CBR <ENTER>

The relay sends:

```
<STX>
"FID","yyyy"<CR>
"FID=SEL-387A-RXXX-V0-ZXXXXXXX-DXXXXXXXX","yyyy"<CR>
"MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,"yyyy"<CR>
"BREAKER","INT_TRIPS","IAW","IBW","ICW","EXT_TRIPS","IAW","IBW","ICW",
"POLE1","POLE2","POLE3","MONTH","DAY","YEAR","HOUR","MIN","SEC","MSEC",
"yyyy"<CR>
```

where

The data is a summation of breaker information collected since the last summary clear. xxxx are the data values corresponding to the first line labels.

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

CEVENT COMMAND

The CEV report contains every analog and digital element found in an EVE report, and displays the information in Compressed ASCII format by sending:

CEV [DIF R] [n Sx Ly[-[w]] C] <ENTER>

The command parameters, all optional, can be entered in any order. They are:

Report Types:

DIF Display differential information for the all elements

R Displays raw (unfiltered) analog data and raw station battery

Displays preceding 1.5 cycles (including reports with 'L' options)

Allows S4, S8, S16, S32, and S64 Defaults to S16 samples/cycle

(default) Display cosine filtered fundamental currents on all windings and

station battery averaged for 1 cycle

Report Options:

n Event number Default to 1

Sx Samples per cycle

x = 4 or 8 (See 'R' option) Default to 4 if Sx not specified

Ly Display first y cycles of event report

y = 1 - LER

Default to L15 if Ly not specified

Ly- Displays event report from cycle y to end of report Ly-w Displays event report from cycle y to cycle w Default to 8 samples/cycle (same as EVE C)

Note: If Sx and/or Ly are given, they override all other parameters.

Note: The L and U parameters are supported for consistency with the SEL-321Relay.

The C parameter is used for SEL-2020 compatibility.

CEVENT Winding Report (Default)

If DIF is not specified in the command line, the default report is the winding currents report. To obtain a report, send the following:

CEV <ENTER>

The relay responds:

Note: "DIGITAL_ELEMENT_NAMES" consists of the text strings representing the names for the Relay Word bits from the element store visible to the user, excluding the first 2 front panel rows.

where:

xxxx are the data values corresponding to the first line labels.

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

z is ">" to mark where the event was triggered, "*" to mark the maximum current

for the event, with the "*" overriding the ">"

RLY BITS relay element data, in hex ASCII, corresponding to the

DIGITAL_ELEMENT_NAMES

SETTINGS text refers to the current settings of the relay as described in the event report

section.

Note: If the analog current input names (IAW1, etc.) have been changed via the Analog Input Labels global settings, they will appear in the above report as set.

CEVENT Differential Report

If DIF is specified in the command line, the report on differential element quantities is provided. To obtain the report, send the following:

CEV DIF <ENTER>

The relay responds:

Note: "DIGITAL_ELEMENT_NAMES" consists of the text strings representing the names for the Relay Word bits from the element store visible to the user, excluding the first 2 front panel rows.

where:

xxxx are the data values corresponding to the first line labels.

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

z is ">" to mark where the event was triggered, "*" to mark the maximum current

for the event, with the "*" overriding the ">"

RLY BITS relay element data, in hex ASCII, corresponding to the

DIGITAL_ELEMENT_NAMES

SETTINGS text refers to the current settings of the relay as described in the event report

section.

CHISTORY COMMAND

Display the SEL-387A Compressed ASCII history report by sending:

CHI <ENTER>

or display the last "n" items in the SEL-387A Compressed ASCII history report by sending:

CHI n<ENTER>

The relay responds to the CHI<Enter> command by sending the following:

where The data is a list of all events since the last history clear.

xxxx are the data values corresponding to the first line labels.

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

CSTATUS COMMAND

Display the SEL-387A Compressed ASCII status report by sending:

CST <ENTER>

The relay sends:

```
"FID","yyyy"<CR>
"FID=SEL-387A-RXXX-V0-ZXXXXXXX-DXXXXXXXX","yyyy"<CR>
"MONTH_","DAY_","YEAR_","HOUR_","MIN_","SEC_","MSEC_","yyyy"<CR>
xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,"yyyy"<CR>
"IAW1","IBW1","ICW1","IAW2","IBW2","ICW2","IAW3","IBW3","ICW3","IN1",
"IN2","IN3","+5V_PS","+5V_REG","-5V_REG","+12V_PS","-12V_PS","+15V_PS",
"-15V_PS","TEMP","RAM","ROM","A/D","CR_RAM","EEPROM","IO_BRD","yyyy"<CR>
"xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx","xxxxx
```

where xxxx are the data values corresponding to the first line labels.

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

Note: If the analog current input names (IAW1, etc.) have been changed via the Analog Input

Labels global settings, they will appear in the above report as set.

CTARGET COMMAND

Display the SEL-387A Compressed ASCII target display by sending:

CTA N <ENTER>

where N is one of the target numbers or element names accepted by the TAR command. If N is omitted, 0 is used.

The relay responds:

```
<STX>
"LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL",""LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLLL","LLL","LLLL","LLLL","LLL","LLLL","LLLL","LLL","LLLL","LLLL","LLLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LLL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","LL","L","LL","L","LL","L","LL","L","L","L","L","L","L","L","L","L","L","L","L","L","L",
```

where LLLL are the labels for the given target. x is 0 or 1 corresponding to the first line labels.

yyyy is the 4-byte ASCII representation of the hex checksum for the line.

APPENDIX F: UNSOLICITED SER PROTOCOL

Introduction

This appendix describes special binary Sequential Events Recorder (SER) messages that are not included in *Section 9: Event Reports and SER* of the instruction manual. Devices with embedded processing capability can use these messages to enable and accept unsolicited binary SER messages from the SEL-387A Relay.

SEL relays and communications processors have two separate data streams that share the same serial port. The normal serial interface consists of ASCII character commands and reports that are intelligible to people using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information and then allow the ASCII data stream to continue. This mechanism allows use of a single communications channel for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering or SER data. To exploit this feature, the device at the other end of the link requires software that uses the separate data streams. A device that does not interleave the data streams can also access the binary commands and ASCII commands.

Note: Make Sequential Events Recorder (SER) Settings With Care

The relay triggers a row in the Sequential Events Recorder (SER) event report for any change of state in any one of the elements listed in the SER1, SER2, SER3, or SER4 trigger settings. Nonvolatile memory stores the latest 512 rows of the SER event report so they can be retained during power loss. The nonvolatile memory stores a finite number of "writes." Exceeding the limit can result in an EEPROM self-test failure. An average of 1 state change every 3 minutes can be made for a 25-year relay service life.

RECOMMENDED MESSAGE USAGE

Use the following sequence of commands to enable unsolicited binary SER messaging in the SEL-387A:

- 1. On initial connection send the **SNS** command to retrieve and store the ASCII names for the digital I/O points assigned to trigger SER records. The order of the ASCII names matches the point indices in the unsolicited binary SER messages. Send the "Enable Unsolicited Data Transfer" message to enable the SEL-387A to transmit unsolicited binary SER messages.
- 2. When SER records are triggered in the SEL-387A, the relay responds with an unsolicited binary SER message. If this message has a valid checksum, it must be acknowledged by sending an acknowledge message with the same response number as that contained in the original message. The relay will wait about 100 ms to 500 ms to receive an acknowledge message, at which time the relay will resend the same unsolicited SER message with the same response number.

3. Upon receiving an acknowledge message with a matching response number, the relay increments the response number and continues to send and seek acknowledgment for unsolicited SER messages, if additional SER records are available. When the response number reaches three, it wraps around to zero on the next increment.

FUNCTIONS AND FUNCTION CODES

In the messages shown below, all numbers are in hexadecimal unless otherwise noted.

Ox01 - Function Code: Enable Unsolicited Data Transfer

Upon power-up, the SEL-387A disables its own unsolicited transmissions. This function enables the SEL-387A to begin sending unsolicited data to the device which sent the enable message, if the SEL-387A has such data to transfer. The message format for function code 0x01 is shown below.

<u>Data</u>	<u>Description</u>
A546	Message header
12	Message length in bytes (18 decimal)
0000000000	Five bytes reserved for future use as a routing address
YY	Status byte (LSB = 1 indicates an acknowledge is requested)
01	Function code
C0	Sequence byte (Always C0. Other values are reserved for future use in
	multiple frame messages.)
XX	Response number ($XX = 00, 01, 02, 03, 00, 01$).
18	Function to enable (0x18 – unsolicited SER messages)
0000	Reserved for future use as function code data
nn	Maximum number of SOE records per message, 01 - 20 hex)
cccc	Two byte CRC-16 check code for message

The SEL-387A verifies the message by checking the header, length, function code, and enabled function code against the expected values. It also checks the entire message against the CRC-16 field. If any of the checks fail, except the function code or the function to enable, the message is ignored.

If an acknowledge is requested as indicated by the least significant bit of the status byte, the relay transmits an acknowledge message with the same response number received in the enable message.

The "nn" field is used to set the maximum number of SER records per message. The relay checks for SER records approximately every 500 ms. If there are new records available, the relay immediately creates a new unsolicited SER message and transmits it. If there are more than "nn" new records available, or if the first and last records are separated by more than 16 seconds, the relay will break the transmission into multiple messages so that no message contains more than "nn" records, and the first and last records of each message are separated by no more than 16 seconds.

If the function to enable is not 18 or the function code is not recognized, the relay responds with an acknowledge message containing a response code 01 (function code unrecognized), and no

functions are enabled. If the SER triggers are disabled, (SER1, SER2, SER3, and SER4 are all set to NA), the unsolicited SER messages are still enabled, but the only SER records generated result from settings changes and power being applied to the relay. If the SER1, SER2, SER3, or SER4 settings subsequently change to any non-NA value and SER entries trigger, unsolicited SER messages will generate with the new SER records.

0x02 - Function Code: Disable Unsolicited Data Transfer

This function disables the SEL-387A from transferring unsolicited data. The message format for function code 0x02 is shown below.

A546	Message header
10	Message length (16 decimal)
0000000000	Five bytes reserved for future
* ** *	0 1 7 00 1 1

Description

000000000 Five bytes reserved for future use as a routing address.

YY Status byte (LSB = 1 indicates an acknowledge is requested)

Function code

Data

CO Sequence byte (Always CO. Other values are reserved for future use in

multiple frame messages.)

XX Response number (XX = 00, 01, 02, 03, 01, 02...)

18 Function to disable (0x18 = Unsolicited SER)

00 Reserved for future use as function code data

cccc Two byte CRC-16 check code for message

The SEL-387A verifies the message by checking the header, length, function code, and disabled function code against the expected values, and checks the entire message against the CRC-16 field. If any of the checks fail, except the function code or the function to disable, the message is ignored.

If an acknowledge is requested as indicated by the least significant bit of the status byte, the relay transmits an acknowledge message with the same response number received in the enable message.

If the function to disable is not 18 or the function code is not recognized, the relay responds with an acknowledge message containing the response code 01 (function code unrecognized) and no functions are disabled.

Ox18 - Function: Unsolicited Sequence-of-Events Response

The function 0x18 is used for the transmission of unsolicited Sequential Events Recorder (SER) data from the SEL-387A. This function code is also passed as data in the "Enable Unsolicited Data Transfer" and the "Disable Unsolicited Data Transfer" messages to indicate which type of unsolicited data should be enabled or disabled. The message format for function code 0x18 is shown below.

<u>Data</u> <u>Description</u> A546 Message header

ZZ Message length (As many as $34 + 4 \bullet$ nn decimal, where nn is the maximum

number of SER records allowed per message as indicated in the "Enable

Unsolicited Data Transfer" message.)

0000000000 Five bytes reserved for future use as a routing address

YY Status Byte (01 = need acknowledgment; 03 = settings changed and need

acknowledgment)

Function code

C0 Sequence byte (Always C0. Other values are reserved for future use in

multiple frame messages.)

XX Response number (XX = 00, 01, 02, 03, 01, 02...)

00000000 Four bytes reserved for future use as a return routing address

dddd Two-byte day of year (1 - 366)

yyyy Two-byte, four-digit year (e.g., 1999 or 07CF hex) mmmmmmm Four-byte time of day in milliseconds since midnight

XX 1st element index (match with the response to the **SNS** command; 00 for 1st

element, 01 for second element, and so on)

uuuuuu Three-byte time tag offset of 1st element in microseconds since time indicated

in the time of day field.

XX 2nd element index

uuuuuu Three-byte time tag offset of 2nd element in microseconds since time

indicated in the time of day field.

•

•

xx last element index

uuuuuu Three-byte time tag offset of last element in microseconds since time indicated

in the time of day field.

FFFFFFE Four-byte end-of-records flag

ssssssss Packed four-byte element status for up to 32 elements (LSB for the 1st

element)

cccc Two-byte CRC-16 checkcode for message

If the relay determines that SER records have been lost, it sends a message with the following format:

<u>Data</u> <u>Description</u>

A546 Message header

Message length (34 decimal)

0000000000 Five bytes reserved for future use as a routing address.

YY Status Byte (01 = need acknowledgment; 03 = settings changed and need

acknowledgment)

Function code

C0 Sequence byte (Always C0. Other values are reserved for future use in

multiple frame messages.)

XX Response number (XX = 00, 01, 02, 03, 00, 01, ...)

00000000 Four bytes reserved for future use as a return routing address dddd Two-byte day of year (1 - 366) of overflow message generation

yyyy Two-byte, four-digit year (e.g., 1999 or 07CF hex) of overflow message

generation.

mmmmmmmm Four-byte time of day in milliseconds since midnight

FFFFFFE Four-byte end-of-records flag

00000000 Element status (unused)

cccc Two-byte CRC-16 checkcode for message

Acknowledge Message

The acknowledge message is constructed and transmitted for every received message which contains a status byte with the LSB set (except another acknowledge message) and which passes all other checks, including the CRC. The acknowledge message format is shown below.

<u>Data</u>	<u>Description</u>
A546	Message header
0E	Message length (14 decimal)
0000000000	Five bytes reserved for future use as a routing address
00	Status byte (always 00)
XX	Function code, echo of acknowledged function code with MSB set.
RR	Response code (see below)
XX	Response number ($XX = 00, 01, 02, 03, 00, 01,$) must match response
	number from message being acknowledged.
cccc	Two-byte CRC-16 checkcode for message

The SEL-387A supports the following response codes:

RR	Response
00	Success
01	Function code not recognized
02	Function disabled

Examples

1. Successful acknowledge for "Enable Unsolicited Data Transfer" message from a relay with at least one of SER1, SER2, or SER3 not set to NA:

A5 46 0E 00 00 00 00 00 00 81 00 XX cc cc

(XX is the same as the Response Number in the "Enable Unsolicited Data Transfer" message to which it responds.)

2. Unsuccessful acknowledge for "Enable Unsolicited Data Transfer" message from a relay with all of SER1, SER2, and SER3 set to NA:

A5 46 0E 00 00 00 00 00 00 81 02 XX cc cc

(XX is the same as the response number in the "Enable Unsolicited Data Transfer" message to which it responds.)

3. Disable Unsolicited Data Transfer message, acknowledge requested:

A5 46 10 00 00 00 00 00 01 02 C0 XX 18 00 cc cc (XX = 0, 1, 2, 3)

4. Successful acknowledge from the relay for the "Disable Unsolicited Data Transfer" message:

A5 46 0E 00 00 00 00 00 00 82 00 XX cc cc

(XX is the same as the response number in the "Disable Unsolicited Data Transfer" message to which it responds.)

5. Successful acknowledge message from the master for an unsolicited SER message:

A5 46 0E 00 00 00 00 00 00 98 00 XX cccc

(XX is the same as the response number in the unsolicited SER message to which it responds.)

Notes:

Once the relay receives an acknowledge with response code 00 from the master, it will clear the settings changed bit (bit 1) in its status byte, if that bit is asserted, and it will clear the settings changed bit in fast meter, if that bit is asserted.

An element index of 0xFE indicates that the SER record is due to power up. An element index of 0xFF indicates that the SER record is due to setting change. An element index of 0xFD indicates that the element identified in this SER record is no longer in the SER trigger settings.

When the relay sends an SER message packet, it will put a sequential number (0, 1, 2, 3, 0, 1, ...) into the response number. If the relay does not receive an acknowledge from the master before approximately 500 ms, the relay will resend the same message packet with the same response number until it receives an acknowledge message with that response number. For the next SER message, the relay will increment the response number (it will wrap around to zero from three).

A single SER message packet from the relay can have a maximum of 32 records and the data may span a time period of no more than 16 seconds. The master may limit the number of records in a packet with the third byte of function code data in the "Enable Unsolicited Data Transfer" message (function code 01). The relay may generate an SER packet with less than the requested number of records, if the record time stamps span more than 16 seconds.

The relay always requests acknowledgment in unsolicited SER messages (LSB of the status byte is set).

Unsolicited SER messages can be enabled on multiple ports simultaneously.

DISTRIBUTED NETWORK PROTOCOL **APPENDIX G:** (DNP3)

OVERVIEW

Optional Distributed Network Protocol (DNP3) Level 2 Slave protocol provides access to metering data, protection elements (Relay Word), contact I/O, targets, Sequential Events Recorder, breaker monitor, relay summary event reports, settings groups, time synchronization, and SCADA information. The SEL-387A Relay supports DNP point remapping and virtual terminal object.

CONFIGURATION

To configure a port for DNP, set the port PROTO setting to DNP. Although DNP may be selected on any of the available ports, DNP may not be enabled on more than one port at a time. The following information is required to configure a port for DNP operation:

Label	Description	Default
SPEED	Baud rate (300–19200)	2400
T_OUT	Port time-out (0–30 minutes)	5
DNPADR	DNP Address (0–65534)	0
MODEM	Modem connected to port (Y, N)	N
MSTR	Modem startup string (up to 30 characters)	E0X0&D0S0=2
PH_NUM	Phone number to dial-out to (up to 30 characters)	
MDTIME	Time to attempt dial (5–300 seconds)	60
MDRETI	Time between dial-out attempts (5–3600 seconds)	120
MDRETN	Number of dial-out attempts (0–5)	3
ECLASSA	Class for Analog event data (0 for no event, 1–3)	2
ECLASSB	Class for Binary event data (0 for no event, 1–3)	1
ECLASSC	Class for Counter event data (0 for no event, 1–3)	0
DECPLA	Currents scaling (0–3 decimal places)	1
TIMERQ	Time-set request interval (0–32767 min.)	0
STIMEO	Select/operate time-out (0.0–30.0 sec.)	1.0
DTIMEO	Data link time-out (0–5 sec.)	1
MINDLY	Minimum time from DCD to TX (0.00–1.00 sec.)	0.05
MAXDLY	Maximum time from DCD to TX (0.00–1.00 sec.)	0.10
PREDLY	Settle time from RTS on to TX (OFF, 0.00–30.00 sec.)	0
PSTDLY	Settle time after TX to RTS off (0.00–30.00 sec.)	0
ANADBA	Analog reporting dead band (0–32767 counts)	100
ETIMEO	Event data confirmation time-out (0.1–50.0 sec)	2.0
DRETRY	Data link retries (0–15)	3
UNSOL	Enable unsolicited reporting (Y, N)	N
PUNSOL	Enable unsolicited reporting at power-up (Y, N)	N
REPADR	DNP Address to report to (0–65534)	0
NUMEVE	Number of events to transmit on (1–200)	10
AGEEVE	Age of oldest event to transmit on (0–60 sec.)	2.0

The RTS signal may be used to control an external transceiver. The CTS signal is used as a DCD input, indicating when the medium is in use. Transmissions are only initiated if DCD is deasserted. When DCD drops, the next pending outgoing message may be sent once an idle time is satisfied. This idle time is randomly selected between the minimum and maximum allowed idle times (i.e., MAXDLY and MINDLY). In addition, the SEL-387A monitors received data and treats receipt of data as a DCD indication. When the SEL-387A transmits a DNP message, it delays transmitting after asserting RTS by at least the time in the PREDLY setting. After transmitting the last byte of the message, the SEL-387A delays for at least PSTDLY milliseconds before deasserting RTS. If the PSTDLY time delay is in progress (RTS still high) following a transmission and another transmission is initiated, the SEL-387A transmits the message without completing the PSTDLY delay and without any preceding PREDLY delay. The RTS/CTS handshaking may be completely disabled by setting PREDLY to OFF. In this case RTS is forced high and CTS is ignored, with only received characters acting as a DCD indication. This allows RTS to be looped back to CTS in cases where the external transceiver does not support DCD. The timing is the same as above, but PREDLY functions as if it were set to 0, and RTS is not actually deasserted after the PSTDLY time delay expires.

DATA-LINK OPERATION

It is necessary to make two important decisions about the data-link layer operation. One is how to handle data-link confirmation, the other is how to handle data-link access. If a highly reliable communications link exists, the data-link access can be disabled altogether, which significantly reduces communications overhead. Otherwise, it is necessary to enable confirmation and determine how many retries to allow and what the data-link time-out should be. The noisier the communications channel, the more likely a message will be corrupted. Thus, the number of retries should be set higher on noisy channels. Set the data-link time-out long enough to allow for the worst-case response of the master plus transmission time. When the SEL-387A decides to transmit on the DNP link, it has to wait if the physical connection is in use. The SEL-387A monitors physical connections by using CTS input (treated as a Data Carrier Detect) and monitoring character receipt. Once the physical link goes idle, as indicated by CTS being deasserted and no characters being received, the SEL-387A will wait a configurable amount of time before beginning a transmission. This hold-off time will be a random value between the MINDLY and MAXDLY setting values. The hold-off time is random, which prevents multiple devices waiting to communicate on the network from continually colliding.

DATA ACCESS METHOD

Based on the capabilities of the system, it is necessary to choose a method for retrieving data on the DNP connection. The following table summarizes the main options, listed from least to most efficient, and indicates corresponding key related settings.

Table G.1: Data Access Methods

Data Retrieval Method	Description	Relevant SEL-387A Settings
Polled Static	The master polls for static (Class 0) data only.	Set CLASS = 0, Set UNSOL = N.
Polled Report-by-Exception	The master polls frequently for event data and occasionally for static data.	Set CLASS to a non-zero value, Set UNSOL = N.
Unsolicited Report-by- Exception	The slave devices send unsolicited event data to the master and the master occasionally sends integrity polls for static data.	Set CLASS to a non-zero value, Set UNSOL = Y, Set NUMEVE and AGEEVE according to how often messages are desired to be sent.
Quiescent	The master never polls and relies on unsolicited reports only.	Set CLASS to a non-zero value, Set UNSOL = Y, Set NUMEVE and AGEEVE according to how often messages are desired to be sent.

DEVICE PROFILE

The following is the device profile as specified in the *DNP3 Subset Definitions* document:

DNP3 DEVICE PROFILE DOCUMENT This document must be accompanied by a t Object Group Request Function Object Variation Request Qualifier Object Name (optional)	Codes Response Function Codes				
Vendor Name: Schweitzer Engineering L	aboratories, Inc.				
Device Name: SEL-387A					
Highest DNP Level Supported: For Requests For Responses Device Function: □ Master □ Slave					
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table):					
Supports enabling and disabling of unsolicited reports on a class basis.					
Supports Virtual Terminal.					

Maximum Data Link Frame Size (oc	Maximum	Application Fra	agment Size (octets):		
Transmitted <u>292</u>		Transmitte	ed <u>2048</u> ((if >2048, must be configurable)	
Received (must be 292)		Received	2048	(must be >249)	
Maximum Data Link Re-tries: Maximum Application Layer Re-tries: □ None ☑ None □ Fixed at □ Configurable, range to ☑ Configurable, range to (Fixed is not permitted)					
Requires Data Link Layer Confirmat Never Always Sometimes If 'Sometimes', where Configurable If 'Configurable', here	nen?	ettings.			
Requires Application Layer Confirmation: Never Always (not recommended) When reporting Event Data (Slave devices only) When sending multi-fragment responses (Slave devices only) Sometimes If 'Sometimes', when? Configurable If 'Configurable', how?					
Time-outs while waiting for:					
Data Link Confirm □ N Complete Appl. Fragment ☑ N Application Confirm □ N Complete Appl. Response ☑ N Others	one □ Fix one □ Fix	ced at ced at	☐ Variable☐ ☐ Variable☐ ☐ Variable☐ ☐ Variable☐ ☐ Variable	☐ Configurable☐ Configurable☐	
Attach explanation if 'Variable' or 'Co	onfigurable'	was check	ed for any time-	out.	
Sends/Executes Control Operations	i :				
SELECT/OPÉRATE DIRECT OPERATE DIRECT OPERATE - NO ACK Count > 1 Pulse On Pulse Off Latch On	□ Never □	Always	□ Sometimes	☐ Configurable	
Queue ☑ Never □ Always □ Sometimes □ Configurable Clear Queue ☑ Never □ Always □ Sometimes □ Configurable					
Attach explanation if 'Sometimes' or	'Configurab	le' was che	ecked for any op	peration.	

FILL OUT THE FOLLOWING	FILL OUT THE FOLLOWING ITEM FOR MASTER DEVICES ONLY:			
Expects Binary Input Change Events: □ Either time-tagged or non-time-tagged for a single event □ Both time-tagged and non-time-tagged for a single event □ Configurable (attach explanation)				
FILL OUT THE FOLLOWING	ITEMS FOR SLAVE DEVICES ONLY			
Reports Binary Input Change Events when no specific variation requested: Never Only time-tagged Only non-time-tagged Configurable to send both, one or the other (attach explanation)	Reports time-tagged Binary Input Change Events when no specific variation requested: Never Binary Input Change With Time Binary Input Change With Relative Time Configurable (attach explanation)			
Sends Unsolicited Responses: ☐ Never ☐ Configurable (attach explanation) ☐ Only certain objects ☐ Sometimes (attach explanation) ☐ ENABLE/DISABLE UNSOLICITED Function codes supported	Sends Static Data in Unsolicited Responses: ☑ Never ☐ When Device Restarts ☐ When Status Flags Change No other options are permitted.			
Default Counter Object/Variation: ☐ No Counters Reported ☐ Configurable (attach explanation) ☑ Default object	Counters Roll Over at: ☐ No Counters Reported ☐ Configurable (attach explanation) ☑ 16 Bits ☐ 32 Bits ☐ Other Value ☐ Point-by-point list attached			
Sends Multi-Fragment Responses:	s □No			

In all cases of a configurable item within the device profile, the item is controlled by SEL-387A settings.

OBJECT TABLE

The following object table lists supported objects, functions, and qualifier code combinations.

Table G.2: SEL-387A DNP Object Table

Object			Request (supported)		Response (may generate)	
Obj.	*default Var.	Description	Function Codes (decimal)	Qualifier Codes (hex)	Function Codes (decimal)	Qualifier Codes (hex)
1	0	Binary Input-All Variations	1	0,1,6,7,8		
1	1	Binary Input	1	0,1,6,7,8	129	0,1,7,8
1	2*	Binary Input With Status	1	0,1,6,7,8	129	0,1,7,8
2	0	Binary Input Change-All Variations	1	6,7,8		
2	1	Binary Input Change Without Time	1	6,7,8	129	17,28
2	2*	Binary Input Change With Time	1	6,7,8	129,130	17,28
2	3	Binary Input Change With Relative Time	1	6,7,8	129	17,28
10	0	Binary Output-All Variations	1	0,1,6,7,8		
10	1	Binary Output				
10	2*	Binary Output Status	1	0,1,6,7,8	129	0,1
12	0	Control Block-All Variations				
12	1	Control Relay Output Block	3,4,5,6	17,28	129	echo of request
12	2	Pattern Control Block				
12	3	Pattern Mask				
20	0	Binary Counter-All Variations	1	0,1,6,7,8		
20	1	32-Bit Binary Counter				
20	2	16-Bit Binary Counter				
20	3	32-Bit Delta Counter				
20	4	16-Bit Delta Counter				
20	5	32-Bit Binary Counter Without Flag	1	0,1,6,7,8	129	0,1,7,8
20	6*	16-Bit Binary Counter Without Flag	1	0,1,6,7,8	129	0,1,7,8
20	7	32-Bit Delta Counter Without Flag				
20	8	16-Bit Delta Counter Without Flag				
21	0	Frozen Counter-All Variations				
21	1	32-Bit Frozen Counter				
21	2	16-Bit Frozen Counter				
21	3	32-Bit Frozen Delta Counter				
21	4	16-Bit Frozen Delta Counter				
21	5	32-Bit Frozen Counter With Time of Freeze				
21	6	16-Bit Frozen Counter With Time of Freeze				

Object		Requirements		Response (may generate)		
Obj.	⁺default Var.	Description	Function Codes (decimal)	Qualifier Codes (hex)	Function Codes (decimal)	Qualifier Codes (hex)
21	7	32-Bit Frozen Delta Counter With Time of Freeze				
21	8	16-Bit Frozen Delta Counter With Time of Freeze				
21	9	32-Bit Frozen Counter Without Flag				
21	10	16-Bit Frozen Counter Without Flag				
21	11	32-Bit Frozen Delta Counter Without Flag				
21	12	16-Bit Frozen Delta Counter Without Flag				
22	0	Counter Change Event–All Variations	1	6,7,8		
22	1	32-Bit Counter Change Event Without Time	1	6,7,8	129	17,28
22	2*	16-Bit Counter Change Event Without Time	1	6,7,8	129,130	17,28
22	3	32-Bit Delta Counter Change Event Without Time				
22	4	16-Bit Delta Counter Change Event Without Time				
22	5	32-Bit Counter Change Event With Time	1	6,7,8	129	17,28
22	6	16-Bit Counter Change Event With Time	1	6,7,8	129	17,28
22	7	32-Bit Delta Counter Change Event With Time				
22	8	16-Bit Delta Counter Change Event With Time				
23	0	Frozen Counter Event–All Variations				
23	1	32-Bit Frozen Counter Event Without Time				
23	2	16-Bit Frozen Counter Event Without Time				
23	3	32-Bit Frozen Delta Counter Event Without Time				
23	4	16-Bit Frozen Delta Counter Event Without Time				
23	5	32-Bit Frozen Counter Event With Time				
23	6	16-Bit Frozen Counter Event With Time				
23	7	32-Bit Frozen Delta Counter Event With Time				
23	8	16-Bit Frozen Delta Counter Event With Time				
30	0	Analog Input–All Variations	1	0,1,6,7,8		
30	1	32-Bit Analog Input	1	0,1,6,7,8	129	0,1,7,8
30	2	16-Bit Analog Input	1	0,1,6,7,8	129	0,1,7,8
30	3	32-Bit Analog Input Without Flag	1	0,1,6,7,8	129	0,1,7,8
30	4*	16-Bit Analog Input Without Flag	1	0,1,6,7,8	129	0,1,7,8
31	0	Frozen Analog Input-All Variations				
31	1	32-Bit Frozen Analog Input				
31	2	16-Bit Frozen Analog Input				
31	3	32-Bit Frozen Analog Input With Time of Freeze				
31	4	16-Bit Frozen Analog Input With Time of Freeze				
31	5	32-Bit Frozen Analog Input Without Flag				
31	6	16-Bit Frozen Analog Input Without Flag				

		Object	Req (supp	uest orted)	Response (may generate)	
Obj.	*default Var.	Description	Function Codes (decimal)	Qualifier Codes (hex)	Function Codes (decimal)	Qualifier Codes (hex)
32	0	Analog Change Event–All Variations	1	6,7,8		
32	1	32-Bit Analog Change Event Without Time	1	6,7,8	129	17,28
32	2*	16-Bit Analog Change Event Without Time	1	6,7,8	129,130	17,28
32	3	32-Bit Analog Change Event With Time	1	6,7,8	129	17,28
32	4	16-Bit Analog Change Event With Time	1	6,7,8	129	17,28
33	0	Frozen Analog Event–All Variations				
33	1	32-Bit Frozen Analog Event Without Time				
33	2	16-Bit Frozen Analog Event Without Time				
33	3	32-Bit Frozen Analog Event With Time				
33	4	16-Bit Frozen Analog Event With Time				
40	0	Analog Output Status-All Variations	1	0,1,6,7,8		
40	1	32-Bit Analog Output Status	1	0,1,6,7,8	129	0,1,7,8
40	2*	16-Bit Analog Output Status	1	0,1,6,7,8	129	0,1,7,8
41	0	Analog Output Block-All Variations				
41	1	32-Bit Analog Output Block	3,4,5,6	17,28	129	echo of request
41	2	16-Bit Analog Output Block	3,4,5,6	17,28	129	echo of request
50	0	Time and Date-All Variations				
50	1	Time and Date	1,2	7,8 index = 0	129	07, quantity=1
50	2	Time and Date With Interval				
51	0	Time and Date CTO-All Variations				
51	1	Time and Date CTO				
51	2	Unsynchronized Time and Date CTO				07, quantity=1
52	0	Time Delay-All Variations				
52	1	Time Delay Coarse				
52	2	Time Delay Fine			129	07, quantity=1
60	0	All Classes of Data	1,20,21	6		
60	1	Class 0 Data	1	6		
60	2	Class 1 Data	1,20,21	6,7,8		
60	3	Class 2 Data	1,20,21	6,7,8		
60	4	Class 3 Data	1,20,21	6,7,8		
70	1	File Identifier				
80	1	Internal Indications	2	0,1 index = 7		
81	1	Storage Object				
82	1	Device Profile				

	Object			Request (supported)		onse enerate)
Obj.	'default bj. Var. Description		Function Codes (decimal)	Qualifier Codes (hex)	Function Codes (decimal)	Qualifier Codes (hex)
83	1	Private Registration Object				
83	2	Private Registration Object Descriptor				
90	1	Application Identifier				
100	1	Short Floating Point				
100	2	Long Floating Point				
100	3	Extended Floating Point				
101	1	Small Packed Binary-Coded Decimal				
101	2	Medium Packed Binary-Coded Decimal				
101	101 3 Large Packed Binary-Coded Decimal					
112	All	Virtual Terminal Output Block	2	6		
113	113 All Virtual Terminal Event Data			6	129,130	17,28
		No object	13,14,23			

DATA MAP

The following is the default object map supported by the SEL-387A (see *Appendix A*: *Firmware Versions in This Manual*).

Table G.3: SEL-387A Wye/Delta DNP Data Map

DNP Object Type	Index	Description	
01, 02	000–799	Relay Word, where OCA is 0 and TRIP1 is 319	
01, 02	800–1599	Relay Word from the SER, encoded same as inputs 000–799 with 800 added	
01, 02	1600–1615	Relay front-panel targets, where 1615 is A, 1608 is LED16, 1607 is EN, and 1600 is 51	
01, 02	1616	Relay Disabled	
01, 02	1617	Relay diagnostic failure	
01, 02	1618	Relay diagnostic warning	
01, 02	1619	New relay event available	
01, 02	1620	Settings change or relay restart	
10, 12	00–15	Remote bits RB1–RB16	
10, 12	16	Pulse Open breaker 1 command OC	
10, 12	17	Pulse Close breaker 1 command CC	

DNP Object Type	Index	Description	
10, 12	18	Pulse Open breaker 2 command OC	
10, 12	19	Pulse Close breaker 2 command CC	
10, 12	20	Pulse Open breaker 3 command OC	
10, 12	21	Pulse Close breaker 3 command CC	
10, 12	22	Pulse Open breaker 4 command OC	
10, 12	23	Pulse Close breaker 4 command CC	
10, 12	24–31	Remote bit pairs RB1–RB16	
10, 12	32	Open/Close pair for breaker 1	
10, 12	33	Open/Close pair for breaker 2	
10, 12	34	Open/Close pair for breaker 3	
10, 12	35	Open/Close pair for breaker 4	
10, 12	36	Reset demands	
10, 12	37	Reset demand peaks	
10, 12	39	Reset breaker monitor	
10, 12	40	Reset front-panel targets	
10, 12	41	Read next relay event	
20, 22	00	Active settings group	
20, 22	01	Internal breaker trips1	
20, 22	02	Internal breaker trips 2	
20, 22	03	Internal breaker trips 3	
20, 22	04	Internal breaker trips 4	
20, 22	05	External breaker trips 1	
20, 22	06	External breaker trips 2	
20, 22	07	External breaker trips 3	
20, 22	08	External breaker trips 4	
30, 32	00,01	IA magnitude and angle for Wdg. 1	
30, 32	02,03	IB magnitude and angle for Wdg. 1	
30, 32	04,05	IC magnitude and angle for Wdg. 1	
30, 32	06,07	3I1 magnitude and angle for Wdg. 1	
30, 32	08,09	3l2 magnitude and angle for Wdg. 1	
30, 32	10,11	IRW magnitude and angle for Wdg. 1	

DNP Object Type	Index	Description	
30, 32	12,13	IA magnitude and angle for Wdg. 2	
30, 32	14,15	IB magnitude and angle for Wdg. 2	
30, 32	16,17	IC magnitude and angle for Wdg. 2	
30, 32	18,19	3I1 magnitude and angle for Wdg. 2	
30, 32	20,21	3l2 magnitude and angle for Wdg. 2	
30, 32	22,23	IRW magnitude and angle for Wdg. 2	
30, 32	24,25	IA magnitude and angle for Wdg. 3, always reads zero	
30, 32	26,27	IB magnitude and angle for Wdg. 3, always reads zero	
30, 32	28,29	IC magnitude and angle for Wdg. 3, always reads zero	
30, 32	30,31	3I1 magnitude and angle for Wdg. 3, always reads zero	
30, 32	32,33	3I2 magnitude and angle for Wdg. 3, always reads zero	
30, 32	34,35	IRW magnitude and angle for Wdg. 3, always reads zero	
30, 32	36,37	IA magnitude and angle for IN1	
30, 32	38,39	IB magnitude and angle for IN2	
30, 32	40,41	IC magnitude and angle for IN3	
30, 32	42,43	3I1 magnitude and angle for Wdg. 4, always reads zero	
30, 32	44,45	3l2 magnitude and angle for Wdg. 4, always reads zero	
30, 32	46,47	IRW magnitude and angle for Wdg. 4, always reads zero	
30, 32	48	IOP1 Operate Current	
30, 32	49	IOP2 Operate Current	
30, 32	50	IOP3 Operate Current	
30, 32	51	IRT1 Restraint Current	
30, 32	52	IRT2 Restraint Current	
30, 32	53	IRT3 Restraint Current	
30, 32	54	I1F2 Second-Harmonic Current	
30, 32	55	I2F2 Second-Harmonic Current	
30, 32	56	I3F2 Second-Harmonic Current	
30, 32	57	I1F5 Fifth-Harmonic Current	
30, 32	58	I2F5 Fifth-Harmonic Current	
30, 32	59	I3F5 Fifth-Harmonic Current	
30, 32	60	VDC	
30, 32	61–65	Demand A, B, C, IR, and 3l2 magnitudes for Wdg. 1	
30, 32	66–70	Demand A, B, C, IR, and 3l2 magnitudes for Wdg. 2	

DNP Object Type	Index	Description	
30, 32	71–75	Demand A, B, C, IR, and 3I2 magnitudes for Wdg. 3, always reads zero	
30, 32	76–78	Demand for IN1, IN2, IN3 always reads zero	
30, 32	79–80	Demand IN1, IN2, IN3, IR, and 3I2 magnitudes for Wdg. 4, always reads zero	
30, 32	81	Peak demand IA mag. for Wdg. 1	
30	82–84	Peak demand IA time in DNP format for Wdg. 1	
30, 32	85	Peak demand IB mag. for Wdg. 1	
30	86–88	Peak demand IB time in DNP format for Wdg. 1	
30, 32	89	Peak demand IC mag. for Wdg. 1	
30	90–92	Peak demand IC time in DNP format for Wdg. 1	
30, 32	93	Peak demand 312 mag. for Wdg. 1	
30	94–96	Peak demand 312 time in DNP format for Wdg. 1	
30, 32	97	Peak demand IR mag. for Wdg. 1	
30	98–100	Peak demand IR time in DNP format for Wdg. 1	
30, 32	101	Peak demand IA mag. for Wdg. 2	
30	102–104	Peak demand IA time in DNP format for Wdg. 2	
30, 32	105	Peak demand IB mag. for Wdg. 2	
30	106–108	Peak demand IB time in DNP format for Wdg. 2	
30, 32	109	Peak demand IC mag. for Wdg. 2	
30	110–112	Peak demand IC time in DNP format for Wdg. 2	
30, 32	113	Peak demand 312 mag. for Wdg. 2	
30	114–116	Peak demand 312 time in DNP format for Wdg. 2	
30, 32	117	Peak demand IR mag. for Wdg. 2	
30	118–120	Peak demand IR time in DNP format for Wdg. 2	
30, 32	121	Peak demand IA mag. for Wdg. 3, always reads zero	
30	122–124	Peak demand IA time in DNP format for Wdg. 3, always reads zero	
30, 32	125	Peak demand IB mag. for Wdg. 3, always reads zero	
30	126–128	Peak demand IB time in DNP format for Wdg. 3, always reads zero	
30, 32	129	Peak demand IC mag. for Wdg. 3, always reads zero	
30	130–132	Peak demand IC time in DNP format for Wdg. 3, always reads zero	
30, 32	133	Peak demand 312 mag. for Wdg. 3, always reads zero	
30	134–136	Peak demand 312 time in DNP format for Wdg. 3, always reads zero	
30, 32	137	Peak demand IR mag. for Wdg. 3, always reads zero	

DNP Object Type	Index	Description	
30	138–140	Peak demand IR time in DNP format for Wdg. 3, always reads zero	
30, 32	141	Peak demand IN1 mag. for Wdg. 4, always reads zero	
30	142–144	Peak demand IN1 time in DNP format for Wdg. 4, always reads zero	
30, 32	145	Peak demand IN2 mag. for Wdg. 4, always reads zero	
30	146–148	Peak demand IN2 time in DNP format for Wdg. 4, always reads zero	
30, 32	149	Peak demand IN3 mag. for Wdg. 4	
30	150–152	Peak demand IN3 time in DNP format for Wdg. 4, always reads zero	
30, 32	153	Peak demand 312 mag. for Wdg. 4	
30	154–156	Peak demand 312 time in DNP format for Wdg. 4, always reads zero	
30, 32	157	Peak demand IR mag. for Wdg. 4, always reads zero	
30	158–160	Peak demand IR time in DNP format for Wdg. 4	
30, 32	161–163	Breaker contact wear percentage (A, B, C) for Wdg. 1	
30, 32	164–166	Breaker contact wear percentage (A, B, C) for Wdg. 2	
30, 32	167–169	Breaker contact wear percentage (A, B, C) for Wdg. 3, always reads zero	
30, 32	170–172	Breaker contact wear percentage (A, B, C) for Wdg. 4, always reads zero	
30, 32	173	Reserved	
30, 32	174–176	Reserved	
30, 32	177–179	Reserved	
30, 32	180–182	Reserved	
30, 32	183–185	Reserved	
30, 32	186–188	Reserved	
30, 32	189–191	Reserved	
30, 32	192–194	Reserved	
30, 32	195–197	Reserved	
30, 32	198–200	Reserved	
30, 32	201	Event Type (see Event Cause table, next page)	
30, 32	202	Fault Targets (bit 15:EN, bit 8:51, and bit 7:A-bit 0:W4)	
30, 32	203–205	Fault currents Wdg. 1 (A, B, C)	
30, 32	206–208	Fault currents Wdg. 2 (A, B, C)	
30, 32	209–211	Reserved	
30, 32	212–214	Reserved	

DNP Object Type	Index	Description	
30, 32	215	Fault settings group	
30	216–218	Fault time in DNP format (high, middle, and low 16 bits)	
30, 32	219–230	Measured RTD temperatures (RTD 1A–RTD 12A)	
30, 32	231–242	Measured RTD temperatures (RTD 1B–RTD 12B)	
40, 41	00	Active settings group	

Binary inputs (objects 1 and 2) are supported as defined by the previous table. Binary inputs 0–799 and 1600–1619 are scanned approximately once every 128 ms to generate events. When time is reported with these event objects, it is the time at which the scanner observed the bit change. This may be significantly delayed from when the original source changed and should not be used for sequence-of-events determination. In order to determine an element's point index, see the Binary Input Lookup Table. It is derived from the Relay Word bit tables in *Section 4: Control Logic*. Locate the element in question in the table and note the Relay Word row number. From that row number, subtract the row number of the first Relay Word row (usually 2) and multiply that result by 8. This is the index of the right-most element of the Relay Word row of the element in question. Count over to the original element and add that to get the point index. Binary Inputs 800–1599 are derived from the Sequential Events Recorder (SER) and carry the time stamp of actual occurrence. Add 800 to the Binary Input Point column to get the point mapping for points 800–1599. Static reads from these inputs will show the same data as a read from the corresponding index in the 0–799 group. Only points that are actually in the SER list (SET R) will generate events in the 800–1599 group.

Analog Inputs (objects 30 and 32) are supported as defined by the preceding table. The values are reported in primary units. Current magnitudes are scaled according to the DECPLA setting. If DECPLA is 3, then its value is multiplied by 1000. VDC is not scaled. Event-class messages are generated whenever an input changes beyond the value given by the ANADBA setting. The dead-band check is done after any scaling is applied. The angles will only generate an event if, in addition to their dead-band check, the corresponding magnitude (the preceding point) contains a value greater than the value given by the ANADBA setting. Analog inputs are scanned at approximately a ½-second rate, except for analogs 201–218. During a scan, all events generated will use the time the scan was initiated. Analogs 201–218 are derived from the history queue data for the most recently read fault and do not generate event messages. Analog 201 is defined as follows:

Value	Event Cause		
1	Trigger command		
2	Pulse command		
4	ER element		
8	Trip 5		
16	Trip 4		
32	Trip 3		

Value	Event Cause
64	Trip 2
128	Trip 1

If Analog 201 is 0, fault information has not been read and the related analogs (202–218) do not contain valid data.

If Analog 201 is 0, no more new events are available (i.e., all events have been read).

Analogs 219–242 are temperature values in F or C, depending on TMPREFA and TMPREFB settings. The valid values can be in the range of 0–250° C (32–482° F). The invalid values will be set as:

RTD Failure Mode	Error Code
Open (Temp < -50°C)	7FFFh
Short (Temp > 250°C)	8000h
Fiber-Optic Communications Failure	7FFCh
External RTD Unit Status Failure	7FF8h
RTD Channel Not Used	7FF0h

Control Relay Output Blocks (object 12, variation 1) are supported. The control relays correspond to the remote bits and other functions, as shown above. The Trip/Close bits take precedence over the control field. If either the Trip or Close bit is set, one of the other control field bits must be set as well. The control field is interpreted as follows:

Index	Close (0x4X)	Trip (0x8X)	Latch On (3)	Latch Off (4)	Pulse On (1)	Pulse Off (2)
0-15	Set	Clear	Set	Clear	Pulse	Clear
16-23	Pulse	Do nothing	Pulse	Do nothing	Pulse	Do nothing
24	Pulse RB2	Pulse RB1	Pulse RB2	Pulse RB1	Pulse RB2	Pulse RB1
25	Pulse RB4	Pulse RB3	Pulse RB4	Pulse RB3	Pulse RB4	Pulse RB3
26	Pulse RB6	Pulse RB5	Pulse RB6	Pulse RB5	Pulse RB6	Pulse RB5
27	Pulse RB8	Pulse RB7	Pulse RB8	Pulse RB7	Pulse RB8	Pulse RB7
28	Pulse RB10	Pulse RB9	Pulse RB10	Pulse RB9	Pulse RB10	Pulse RB9
29	Pulse RB12	Pulse RB11	Pulse RB12	Pulse RB11	Pulse RB12	Pulse RB11
30	Pulse RB14	Pulse RB13	Pulse RB14	Pulse RB13	Pulse RB14	Pulse RB13
31	Pulse RB16	Pulse RB15	Pulse RB16	Pulse RB15	Pulse RB16	Pulse RB15
32	Pulse CC1	Pulse OC1	Pulse CC1	Pulse OC1	Pulse CC1	Pulse OC1
33	Pulse CC2	Pulse OC2	Pulse CC2	Pulse OC2	Pulse CC2	Pulse OC2
34	Pulse CC3*	Pulse OC3*	Pulse CC3*	Pulse OC3*	Pulse CC3*	Pulse OC3*
35	Pulse CC4*	Pulse OC4*	Pulse CC4*	Pulse OC4*	Pulse CC4*	Pulse OC4*
36–41	Pulse	Do nothing	Pulse	Do nothing	Pulse	Do nothing
₽NT	1111 1 4 OFT	207 A D 1				

^{*}Not available in the SEL-387A Relay

If the Trip bit is set, a Latch Off operation is performed, and if the Close bit is set, a Latch On operation is performed on the specified index. The Status field is used exactly as defined. All other fields are ignored. A pulse operation asserts a point for a single processing interval. Caution should be exercised with multiple remote bit pulses in a single message (i.e., point count > 1), as this may result in some of the pulse commands being ignored and returning an already active status.

Analog Outputs (objects 40 and 41) are supported as defined by the preceding table. Flags returned with object 40 responses are always set to 0. The Control Status field of object 41 requests is ignored. If the value written to index 0 is outside of the range 1 through 6, the relay will not accept the value and will return a hardware error status.

Table G.4: SEL-387A Binary Input Lookup Table

									Binary
Row	SEL-387A Relay Word Bits							Input Point	
2	50P11	50P11T	50P12	51P1	51P1T	51P1R	PDEM1	OCA	7–0
3	50A13	50B13	50C13	50P13	50A14	50B14	50C14	50P14	15-8
4	50N11	50N11T	50N12	51N1	51N1T	51N1R	NDEM1	OC1	23-16
5	50Q11	50Q11T	50Q12	51Q1	51Q1T	51Q1R	QDEM1	CC1	31–24
6	50P21	50P21T	50P22	51P2	51P2T	51P2R	PDEM2	OCB	39–32
7	50A23	50B23	50C23	50P23	50A24	50B24	50C24	50P24	47–40
8	50N21	50N21T	50N22	51N2	51N2T	51N2R	NDEM2	OC2	55–48
9	50Q21	50Q21T	50Q22	51Q2	51Q2T	51Q2R	QDEM2	CC2	63–56
10	*	*	*	*	*	*	*	OCC	71–64
11	*	*	*	*	*	*	*	*	79–72
12	*	*	*	*	*	*	*	*	87–80
13	*	*	*	*	*	*	*	*	95–88
14	*	*	*	*	*	*	*	*	103–96
15	*	*	*	*	*	*	*	*	111-104
16	*	*	*	*	*	*	*	*	119–112
17	*	*	*	*	*	*	*	*	127-120
18	87U1	87U2	87U3	87U	87R1	87R2	87R3	87R	135–128
19	2HB1	2HB2	2HB3	5HB1	5HB2	5HB3	TH5	TH5T	143-136
20	87BL1	87BL2	87BL3	87BL	87E1	87E2	87E3	*	151–144
21	87O1	87O2	87O3	*	*	*	*	*	159–152
22	*	*	*	*	*	*	DC1	DC2	167–160
23	*	*	*	*	*	*	DC3	DC4	175–168
24	RB1	RB2	RB3	RB4	RB5	RB6	RB7	RB8	183–176
25	RB9	RB10	RB11	RB12	RB13	RB14	RB15	RB16	191–184
26	SG1	SG2	SG3	SG4	SG5	SG6	CHSG	*	199–192
27	4HBL	DCBL	IN106	IN105	IN104	IN103	IN102	IN101	207-200
28	IN208	IN207	IN206	IN205	IN204	IN203	IN202	IN201	215-208
29	IN216	IN215	IN214	IN213	IN212	IN211	IN210	IN209	223–216
30	*	*	*	*	*	*	*	*	231–224
31	*	*	*	*	*	*	*	*	239–232
32	S1V1	S1V2	S1V3	S1V4	S1V1T	S1V2T	S1V3T	S1V4T	247-240
33	S2V1	S2V2	S2V3	S2V4	S2V1T	S2V2T	S2V3T	S2V4T	255–248
34	S3V1	S3V2	S3V3	S3V4	S3V5	S3V6	S3V7	S3V8	263-256
35	S3V1T	S3V2T	S3V3T	S3V4T	S3V5T	S3V6T	S3V7T	S3V8T	271–264
36	S1LT1	S1LT2	S1LT3	S1LT4	S2LT1	S2LT2	S2LT3	S2LT4	279–272

Row	SEL-387A Relay Word Bits							Binary Input Point	
37	S3LT1	S3LT2	S3LT3	S3LT4	S3LT5	S3LT6	S3LT7	S3LT8	287–280
38	*	*	*	*	*	*	*	*	295–288
39	BCWA1	BCWB1	BCWC1	BCW1	BCWA2	BCWB2	BCWC2	BCW2	303-296
40	*	*	*	*	*	*	*	*	311-304
41	TRIP1	TRIP2	TRIP3	TRIP4	TRIP5	TRIPL	*	TRGTR	319–312
42	CLS1	CLS2	CLS3	CLS4	CF1T	CF2T	CF3T	CF4T	327-320
43	NOTALM	OUT107	OUT106	OUT105	OUT104	OUT103	OUT102	OUT101	335–328
44	OUT201	OUT202	OUT203	OUT204	OUT205	OUT206	OUT207	OUT208	343-336
45	OUT209	OUT210	OUT211	OUT212	OUT213	OUT214	OUT215	OUT216	351-344
46	*	*	*	*	*	*	*	*	359-352
47	*	*	*	*	*	*	*	*	367-360
48	LB1	LB2	LB3	LB4	LB5	LB6	LB7	LB8	375–368
49	LB9	LB10	LB11	LB12	LB13	LB14	LB15	LB16	383-376
50	50GC1	50GN1	32IE1	32IR1	32IF1	REFP1	CTS1	*	391-384
51	50GC2	50GN2	32IE2	32IR2	32IF2	REFP2	CTS2	*	399-392
52	*	*	*	*	*	*	*	*	407-400
53	49A01A	49T01A	49A02A	49T02A	49A03A	49T03A	49A04A	49T04A	415-408
54	49A05A	49T05A	49A06A	49T06A	49A07A	49T07A	49A08A	49T08A	423-416
55	49A09A	49T09A	49A10A	49T10A	49A11A	49T11A	49A12A	49T12A	431-424
56	49A01B	49T01B	49A02B	49T02B	49A03B	49T03B	49A04B	49T04B	439-432
57	49A05B	49T05B	49A06B	49T06B	49A07B	49T07B	49A08B	49T08B	447-440
58	49A09B	49T09B	49A10B	49T10B	49A11B	49T11B	49A12B	49T12B	455-448
59	COMFLA	RTDINA	COMFLB	RTDINB	*	*	*	ISQTAL	463-456
60	50NN11	50NN1T	50NN12	50NN13	50NN14	51NN1	51NN1T	51NN1R	471-464
61	50NN21	50NN2T	50NN22	50NN23	50NN24	51NN2	51NN2T	51NN2R	479-472
62	50NN31	50NN3T	50NN32	50NN33	50NN34	51NN3	51NN3T	51NN3R	487-480

Relay Summary Event Data

Whenever there is unread relay event summary data (fault data), binary input point 1619 will be set. In order to load the next available relay event summary, the master should pulse binary output point 41. This will cause the event summary analogs (points 201–218) to be loaded with information from the next oldest relay event summary. Since the summary data is stored in a first-in, first-out manner, loading the next event will cause the data from the previous load to be discarded. The event summary analogs will retain this information until the next event is loaded. If no further event summaries are available, attempting to load the next event will cause the event type analog (point 201) to be set to 0.

POINT REMAPPING

Introduction

The **DNP** command is available to view and remap the DNP data. This command is available at level 1 for viewing data, but only from level 2 can it be used to remap the DNP map.

Inputs

Command Syntax: **DNP** [A|B|S|T]

DNP [AI|AO|BI|BO|C] [VIEW]

The DNP analog input, analog output, counter, binary output, and binary input points may be remapped via the **DNP** command. The map is composed of five lists of indices: one for the analog inputs (30 and 32), one for the binary inputs (1 one 2), one for the binary outputs (10 and 12), one for the analog outputs (40 and 41), and the other for the counters (20 and 22). The indices correspond to those given by the relay's DNP data map. The order in which they occur in the list determines the index that the corresponding value is reported to the DNP master. If a value is not in the list, it is not available to the DNP master. All points of the corresponding type may be included in the list, but must only occur once. The maps are stored in nonvolatile memory and are protected with a checksum. The **DNP** command is only available if DNP has been selected on one of the ports.

If the **DNP** command is issued without parameters, the relay displays all of the maps with the following format:

```
=>DNP<ENTER>

Binary Inputs = Default Map
Binary Outputs = Default Map
Counters = Default Map
Analog Inputs = 112 28 17 35 1 56 57 58 59 60 61 62 63 64 65 \
66 67 100 101 102 103
Analog Outputs = Off

=>
```

If the **DNP** command is issued with an object type specified (AI, AO, BI, BO, C) and the VIEW parameter, the relay displays only the corresponding map. The S parameter is equivalent to AI VIEW and the T parameter is equivalent to BI VIEW; they are available for consistency with the older products. If the map checksum is determined to be invalid, the map will be reported as corrupted during a display command, as follows:

```
=>DNP BI VIEW<ENTER>
Binary Inputs = Map Corrupted
=>
```

If the **DNP** command is issued with just an object type specifier (AI, AO, BI, BO, C) at level 2 or greater, the relay asks the user to enter indices for the corresponding list. (The A parameter is the same as AI and B is the same as BI; these parameters are available for consistency with older

products.) The relay accepts lines of indices until a line without a final continuation character (\) is entered. Each line of input is constrained to 80 characters, but all the points may be remapped, using multiple lines with continuation characters (\) at the end of the intermediate lines. If a single blank line is entered as the first line, the remapping is disabled for that type (i.e., the relay uses the default map). If a single entry of OFF or NA is entered, all objects of that type will be disabled. For example, the first example remap could be produced with the following commands:

```
-->DNP AI<ENTER>
Enter the new DNP Analog Input map
112 28 17 \CENTER>
35 1 56 57 58 59 60 61 62 63 64 65 66 67 100 101 102 \CENTER>
103<ENTER>
Save Settings (Y/N)? Y<ENTER>
-->DNP BI<ENTER>
Enter the new DNP Binary Input map
<ENTER>
Save Settings (Y/N)? Y<ENTER>
-->DNP AO<ENTER>
Enter the new DNP Analog Output map
OFF<ENTER>
Save Settings (Y/N)? Y<ENTER>
-->DNP AOSENTER>

Enter the new DNP Analog Output map
OFF<ENTER>
Save Settings (Y/N)? Y<ENTER>
-->
```

The **DNP** command will report an error if an index is used twice, an invalid index is used, or nonnumeric data is entered:

```
xx is referenced more than once, changes not saved
xx is not a valid index, changes not saved
Invalid format, changes not saved
```

Custom Scaling

In addition to remapping, these commands can be used on analog inputs to create custom scaling and dead-bands per point. Scaling is done by adding a semicolon and scaling factor to a point reference. The base value will be multiplied by the scaling factor before reporting it. This is done instead of the DECPLA setting that would normally apply. Dead-bands are added using a colon and dead-band count. This dead-band will override the ANADBA setting. For example:

```
-->DNP AI<ENTER>
Enter the new DNP Analog Input map
112;5 28;0.2 17:10 1;1:15<ENTER>
-->
```

These settings will cause the value at index 112 (now at index 0) to be multiplied by five before it is reported. Similarly, the value at index 28 (now at index 1) will be multiplied by 0.2 before it is reported. Both of these values will use the default dead-band. The value at index 17 (now at

index 2) is left for default scaling, but uses a dead-band of +/- 10 counts. Similarly, the value that was at index 1 (now at index 3) is now scaled by 1 and uses a dead-band of +/- 15 counts.

Modem Support

The modem handling will only be applied when the port settings include the following:

PROTOCOL = DNP

MODEM = Y

On power-up and settings change, the relay shall initialize the modem by issuing the string "+++AT" followed by the MSTR string and <CR>. This will initialize the modem. The MSTR (modem string) is a port setting visible only when the protocol setting is DNP. The MSTR setting is a series of ASCII characters that initialize the modem by sending the modem a series of commands.

If someone calls in, the modem will send "RING" and "CONNECT" messages to the relay. These messages, as well as all messages received while DCD is low, shall be ignored. All DNP messages received while connected shall be treated normally.

If the relay needs to send an unsolicited message and it is not currently connected, it must attempt to make a connection by sending the string "+++ATDT" followed by the phone number and <CR>. It shall then wait for a "CONNECT" message. Once "CONNECT" is received and CTS is asserted, the relay can consider itself connected and continue its transaction. If connection is not achieved within MDTIME seconds of initiating the phone call, the relay shall issue the command "+++ATH<CR>" and wait at least MDRETI seconds before trying again and try MDRETN times before giving up. If it fails to connect in the first try, it will try again at a later time every six hours.

If the relay initiates a connection, it shall disconnect once there have been no transactions for TIMEOUT time, using the disconnect command "+++ATH<CR>". Also, if an outside caller connects to the modem in the SEL-387A, the SEL-387A will disconnect the modem if there have been no transactions for the TIMEOUT time.

- <u>Note 1</u>: Because of the connection requirements described here, it will not be possible to use hardware flow control (RTSCTS) with the modem. This means that it is important to select a port baud rate low enough that the modem connection will not end up slower, or there will be a high likelihood of losing characters.
- Note 2: The CTS signal shall be treated as a data carrier detect (DCD). This means that the message may only be transmitted while DCD is asserted. (Normally, a modem will be connected with a C220 or C222 cable that ties the DCD of the modem to the CTS.)

Virtual Terminal

The purpose of this Virtual Terminal (VT) Protocol is to allow ASCII data transfers between a master and an SEL relay over a DNP port. DNP3 objects 112 and 113 are used for embedding the ASCII communications over the DNP port. At the master each slave channel is assigned a Virtual Port number. Only one channel, with a Virtual Port number of "0" (for ASCII), is supported in the relay.

Object 112 is used with the Function code Write (FC=2) to send data from the Master side to the Slave side (IED) of the link.

Object 113 is used to send data from the relay side to the Master side of the link. Master devices may use only Function codes Read (FC=1). The relay uses only Function codes Response (FC=129).

The procedure for accessing these objects is as follows. Master devices transmit data to relay devices by writing one or more of object 112 to a relay using the Virtual Port number as the DNP point number. Relays send information to the Master using the Virtual Port number by responding to a Master READ (FC=1) request of object 113. Messages can flow in either direction at any time, however the relay sends messages only at the request of the Master. There are no explicit procedures for the initiation or conclusion of a VT session (i.e., implicit connections exist by the mere presence of a VT-compatible Slave IED).

Virtual terminal supports all ASCII commands listed in the *Command Summary* at the end of *Section 7: Serial Port Communications and Commands*. You do not need a password to login to a virtual terminal session through a DNP port, but you will need the appropriate access levels for setting changes and breaker operations. A virtual terminal session times out in the same way as an ASCII session.

SEL-387A RELAY DNP PORT - SET P SETTINGS SHEET

Port Protocol (SEL, LMD, DNP)	PROTO	=	DNP
Baud (300, 1200, 2400, 4800, 9600, 19200)	SPEED	=	
Port Time-out (0–30 minutes)	T_OUT	=	
DNP Address (0-65534)	DNPADR	=	
Modem connected to port (Y, N)	MODEM	=	
Modem startup string (up to 30 characters)	MSTR	=	
Phone number to dial-out to (up to 30 characters)	PH_NUM	=	
Time to attempt dial (5–300 seconds)	MDTIME	=	
Time between dial-out attempts (5–3600 seconds)	MDRETI	=	
Number of dial-out attempts (0–5)	MDRETN	=	
Class for Analog event data (0 for no event, 1–3)	ECLASSA	=	
Class for Binary event data (0 for no event, 1–3)	ECLASSB	=	
Class for Counter event data (0 for no event, 1–3)	ECLASSC	=	
Currents scaling (0–3 decimal places)	DECPLA	=	
Time-set request interval, minutes (0 for never, 1–32767)	TIMERQ	=	
Select/Operate time-out interval, seconds (0.0–30.0)	STIMEO	=	
Data link time-out interval, seconds (0–5)	DTIMEO	=	
Minimum Delay from DCD to transmission, seconds (0.00–1.00)	MINDLY	=	
Maximum Delay from DCD to transmission, seconds (0.00–1.00)	MAXDLY	=	
Transmission delay from RTS assertion, seconds (OFF, 0.00–30.00)	PREDLY	=	
Post-transmit RTS deassertion delay, seconds (0.00–30.00)	PSTDLY	=	
Analog reporting dead band (0–32767 counts)	ANADBA	=	
Event Data Confirmation time-out (0.1–50.0 sec)	ETIMEO	=	
Number of data-link retries (0 for no confirm, 1–15)	DRETRY	=	
Allow Unsolicited reporting (Y, N)	UNSOL	=	
Enable unsolicited messages on power-up (Y, N)	PUNSOL	=	
Address of master to report to (0-65534)	REPADR	=	
Number of events to transmit on (1–200)	NUMEVE	=	
Age of oldest event to force transmit on, seconds (0.0–60.0)	AGEEVE	=	

SEL-387A RELAY COMMAND SUMMARY

ACCESS LEVEL O COMMANDS

Access Level 0 is to go to Access Level 1. The

Level 0 Commands

screen prompt is: =

ACC Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the

relay prompts for the entry of the Access Level 1 password in order to enter Access

Level 1.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

ACCESS LEVEL 1 COMMANDS

Access The Access Level 1 commands primarily allow the user to look at information (e.g., Level 1 settings metering etc.) but not to change it. The screen prompt is:

Level 1 settings, metering, etc.), but not to change it. The screen prompt is: => **Commands**

2AC Enter Access Level 2. If the main board password jumper (JMP6A) is not in place, the

relay prompts for the entry of the Access Level 2 password in order to enter Access

Level 2.

BAC Enter Access Level B. If the main board password jumper (JMP6A) is not in place,

the relay prompts for the entry of the Access Level B password in order to enter

Access Level B.

BRE Breaker report shows trip counters, trip currents, and wear data for two breakers.

CEV n Show compressed winding event report number n, at 1/4-cycle resolution.

Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or

64 for raw data)

DAT Show date presently in the relay.

DAT m/d/y Enter date in this manner if Date Format setting DATE_F = MDY. DAT y/m/d Enter date in this manner if Date Format setting DATE_F = YMD.

EVE n Show standard event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE D n Show digital data event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF1 n Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

1

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of up to 24 RTD inputs.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SHO n Show relay group n settings. Shows active group if n is not specified.

SHO G Show relay global settings.

SHO P Show port settings and identification of port to which user is connected.

SHO P n Show port settings for port n (n = 1, 2, 3, 4).

SHO R Show Sequential Events Recorder (SER) settings.

STA Show relay self-test status.

STA C Clear relay status report from memory and reboot the relay.

TAR R Return front-panel LED targets to regular operation and reset the tripping front-panel targets. TFE Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed. TFE A Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200. TFE C Clears/resets cumulative and individual through-fault event data. Displays cumulative and individual through-fault event data. The n most recent TFE n individual events are displayed, where n = 1 to 1200. Preloads cumulative through-fault event data. TFE P Clears/resets cumulative and individual through-fault event data. TFE R

ACCESS LEVEL B COMMANDS

Access Level B Commands	The Access Level B commands allow the user to control breakers and contact outputs. All Access Level 1 commands can also be executed from Access Level B. The screen prompt is: ==>
ACC	Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 1 password in order to enter Access Level 1.
2AC	Enter Access Level 2. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 2 password in order to enter Access Level 2.
BRE BRE R n BRE W n	Breaker report shows trip counters, trip currents, and wear data for two breakers. Reset trip counters, trip currents, and wear data for breaker $n (n = 1, 2, A)$. Pre-set the percent contact wear for each pole of breaker $n (n = 1, 2)$.
CEV n	Show compressed winding event report number n, at 1/4-cycle resolution. Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution. Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or 64 for raw data)
CLO n	Assert the CCn Relay Word bit. Used to close breaker n if CCn is assigned to an output contact. JMP6B must be in place to enable this command.
DAT DAT m/d/y DAT y/m/d	Show date presently in the relay. Enter date in this manner if Date Format setting DATE_F = MDY. Enter date in this manner if Date Format setting DATE_F = YMD.
EVE n EVE D n	Show standard event report number n, with 1/4-cycle resolution. Attach S8 for 1/8-cycle resolution. Show digital data event report number n, with 1/4-cycle resolution.

EVE DIF1 n

Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

GRO n Switch to Setting Group n. (Will not function if any SSn Relay Word bit is asserted.)

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of the 24 RTD inputs.

OPE n Assert the OCn Relay Word bit. Used to open breaker n if OCn is assigned to an

output contact. JMP6B must be in place to enable this command.

PUL y k Pulse output contact y (y = OUT101,...,OUT107, OUT2XX, OUT3XX, and ALARM).

Enter number k to pulse for k seconds [k = 1 to 30 (seconds)], otherwise pulse time

is 1 second. JMP6B must be in place to enable this command.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SHO n SHO G SHO P SHO P n SHO R	Show relay group n settings. Shows active group if n is not specified. Show relay global settings. Show port settings and identification of port to which user is connected. Show port settings for port n $(n = 1, 2, 3, 4)$. Show Sequential Events Recorder (SER) settings.
STA	Show relay self-test status.
TAR R	Return front-panel LED targets to regular operation and reset the tripping front-panel targets.
TAR n k	Show Relay Word row n status (n = 0 through 41). Enter number k to scroll Relay Word row n status k times on screen. Append F to display targets on the front panel second row of LEDs.
TFE	Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed.
TFE A	Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200.
TFE C	Clears/resets cumulative and individual through-fault event data.
TFE n	Displays cumulative and individual through-fault event data. The n most recent individual events are displayed, where $n = 1$ to 1200.
TFE P	Preloads cumulative through-fault event data.
TFE R	Clears/resets cumulative and individual through-fault event data.
TIM	Show or set time (24 hour time). Show time presently in the relay by entering just TIM. Example time 22:47:36 is entered with command TIM 22:47:36.
TRI	Trigger an event report.

ACCESS LEVEL 2 COMMANDS

Access Level 2 Commands	The Access Level 2 commands primarily allow the user to change settings or operate relay parameters and output contacts. All Access Level 1 commands can also be executed from Access Level 2. The screen prompt is: =>>
ACC	Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 1 password in order to enter Access Level 1.
BAC	Enter Access Level B. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level B password in order to enter Access Level B.
BRE BRE R n BRE W n	Breaker report shows trip counters, trip currents, and wear data for two breakers. Reset trip counters, trip currents, and wear data for breaker $n (n = 1, 2, A)$. Preset the percent contact wear for each pole of breaker $n (n = 1, 2)$.
CAL	Moves from Access Level 2 to Access Level C.

CEV n Show compressed winding event report number n, at 1/4-cycle resolution.

Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or

64 for raw data)

CLO n Assert the CCn Relay Word bit. Used to close breaker n if CCn is assigned to an

output contact. JMP6B must be in place to enable this command.

CON n Control Relay Word bit RBn (Remote Bit n; n = 1 through 16). Execute CON n and

the relay responds: CONTROL RBn. Reply with one of the following:

SRB n set Remote Bit n (assert RBn)

CRB n clear Remote Bit n (deassert RBn)

PRB n pulse Remote Bit n [assert RBn for one processing interval (1/8 cycle)].

COPY m n Copy settings and logic from setting Group m to Group n.

DAT Show date presently in the relay.

DAT m/d/y Enter date in this manner if Date Format setting DATE_F = MDY. DAT y/m/d Enter date in this manner if Date Format setting DATE_F = YMD.

EVE n Show standard event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE D n Show digital data event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF1 n Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

GRO n Switch to Setting Group n. (Will not function if any SSn Relay Word bit is asserted.)

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay. In Access

Level 2, confirms that I/O boards are correct.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of up to 24 RTD inputs.

OPE n Assert the OCn Relay Word bit. Used to open breaker n if OCn is assigned to an

output contact. JMP6B must be in place to enable this command.

PAS Show existing Access Level 1, B, and 2 passwords.

PAS 1 xxxxxx Change Access Level 1 password to xxxxxx.

PAS B xxxxxx Change Access Level B password to xxxxxx.

Change Access Level 2 password to xxxxxx.

If xxxxxx is DISABLE (uppercase), password for selected level is disabled.

PAS C xxxxxx Change Access Level C password to xxxxxx.

If xxxxxx is DISABLE (uppercase), password for selected level is disabled.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

RES RESET51 command resets all inverse-time O/C elements for both windings and the

neutral elements.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SET n Change relay group settings (overcurrent, differential, etc.).

For the SET commands, parameter n is the setting name at which to begin editing settings. If parameter n is not entered, setting editing starts at the first setting.

SET G Change global settings. SET P n Change port settings.

SET R Change Sequential Events Recorder (SER) settings.

SHO n Show relay group n settings. Shows active group if n is not specified.

SHO G Show relay global settings.

SHO P Show port settings and identification of port to which user is connected.

SHO P n Show port settings for port n (n = 1, 2, 3, 4).

SHO R Show Sequential Events Recorder (SER) settings.

STA Show relay self-test status.

TAR R Return front-panel LED targets to regular operation and reset the tripping front-panel targets.

TAR n k Show Relay Word row n status (n = 0 through 41). Enter number k to scroll Relay

Word row n status k times on screen.

Append F to display targets on the front panel, second row of LEDs.

TFE Displays cumulative and individual through-fault event data. The twenty (20) most

recent individual events are displayed.

TFE A Displays cumulative and individual through-fault event data. All the most recent

individual events are displayed, up to 1200.

TFE C Clears/resets cumulative and individual through-fault event data.

TFE n Displays cumulative and individual through-fault event data. The n most recent

individual events are displayed, where n = 1 to 1200.

TFE P Preloads cumulative through-fault event data.

TFE R Clears/resets cumulative and individual through-fault event data.

TIM Show or set time (24 hour time). Show time presently in the relay by entering just

TIM. Example time 22:47:36 is entered with command TIM 22:47:36.

TRI Trigger an event report.

SEL-387A RELAY COMMAND SUMMARY

ACCESS LEVEL O COMMANDS

Access Level 0 is to go to Access Level 1. The

Level 0 Commands

screen prompt is: =

ACC Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the

relay prompts for the entry of the Access Level 1 password in order to enter Access

Level 1.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

ACCESS LEVEL 1 COMMANDS

Access The Access Level 1 commands primarily allow the user to look at information (e.g., Level 1 settings metering etc.) but not to change it. The screen prompt is:

Level 1 settings, metering, etc.), but not to change it. The screen prompt is: => **Commands**

2AC Enter Access Level 2. If the main board password jumper (JMP6A) is not in place, the

relay prompts for the entry of the Access Level 2 password in order to enter Access

Level 2.

BAC Enter Access Level B. If the main board password jumper (JMP6A) is not in place,

the relay prompts for the entry of the Access Level B password in order to enter

Access Level B.

BRE Breaker report shows trip counters, trip currents, and wear data for two breakers.

CEV n Show compressed winding event report number n, at 1/4-cycle resolution.

Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or

64 for raw data)

DAT Show date presently in the relay.

DAT m/d/y Enter date in this manner if Date Format setting DATE_F = MDY. DAT y/m/d Enter date in this manner if Date Format setting DATE_F = YMD.

EVE n Show standard event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE D n Show digital data event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF1 n Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

1

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of up to 24 RTD inputs.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SHO n Show relay group n settings. Shows active group if n is not specified.

SHO G Show relay global settings.

SHO P Show port settings and identification of port to which user is connected.

SHO P n Show port settings for port n (n = 1, 2, 3, 4).

SHO R Show Sequential Events Recorder (SER) settings.

STA Show relay self-test status.

STA C Clear relay status report from memory and reboot the relay.

TAR R Return front-panel LED targets to regular operation and reset the tripping front-panel targets. TFE Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed. TFE A Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200. TFE C Clears/resets cumulative and individual through-fault event data. Displays cumulative and individual through-fault event data. The n most recent TFE n individual events are displayed, where n = 1 to 1200. Preloads cumulative through-fault event data. TFE P Clears/resets cumulative and individual through-fault event data. TFE R

ACCESS LEVEL B COMMANDS

Access Level B Commands	The Access Level B commands allow the user to control breakers and contact outputs. All Access Level 1 commands can also be executed from Access Level B. The screen prompt is: ==>
ACC	Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 1 password in order to enter Access Level 1.
2AC	Enter Access Level 2. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 2 password in order to enter Access Level 2.
BRE BRE R n BRE W n	Breaker report shows trip counters, trip currents, and wear data for two breakers. Reset trip counters, trip currents, and wear data for breaker $n (n = 1, 2, A)$. Pre-set the percent contact wear for each pole of breaker $n (n = 1, 2)$.
CEV n	Show compressed winding event report number n, at 1/4-cycle resolution. Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution. Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or 64 for raw data)
CLO n	Assert the CCn Relay Word bit. Used to close breaker n if CCn is assigned to an output contact. JMP6B must be in place to enable this command.
DAT DAT m/d/y DAT y/m/d	Show date presently in the relay. Enter date in this manner if Date Format setting DATE_F = MDY. Enter date in this manner if Date Format setting DATE_F = YMD.
EVE n EVE D n	Show standard event report number n, with 1/4-cycle resolution. Attach S8 for 1/8-cycle resolution. Show digital data event report number n, with 1/4-cycle resolution.

EVE DIF1 n

Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

GRO n Switch to Setting Group n. (Will not function if any SSn Relay Word bit is asserted.)

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of the 24 RTD inputs.

OPE n Assert the OCn Relay Word bit. Used to open breaker n if OCn is assigned to an

output contact. JMP6B must be in place to enable this command.

PUL y k Pulse output contact y (y = OUT101,...,OUT107, OUT2XX, OUT3XX, and ALARM).

Enter number k to pulse for k seconds [k = 1 to 30 (seconds)], otherwise pulse time

is 1 second. JMP6B must be in place to enable this command.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SHO n SHO G SHO P SHO P n SHO R	Show relay group n settings. Shows active group if n is not specified. Show relay global settings. Show port settings and identification of port to which user is connected. Show port settings for port n $(n = 1, 2, 3, 4)$. Show Sequential Events Recorder (SER) settings.
STA	Show relay self-test status.
TAR R	Return front-panel LED targets to regular operation and reset the tripping front-panel targets.
TAR n k	Show Relay Word row n status (n = 0 through 41). Enter number k to scroll Relay Word row n status k times on screen. Append F to display targets on the front panel second row of LEDs.
TFE	Displays cumulative and individual through-fault event data. The twenty (20) most recent individual events are displayed.
TFE A	Displays cumulative and individual through-fault event data. All the most recent individual events are displayed, up to 1200.
TFE C	Clears/resets cumulative and individual through-fault event data.
TFE n	Displays cumulative and individual through-fault event data. The n most recent individual events are displayed, where $n = 1$ to 1200.
TFE P	Preloads cumulative through-fault event data.
TFE R	Clears/resets cumulative and individual through-fault event data.
TIM	Show or set time (24 hour time). Show time presently in the relay by entering just TIM. Example time 22:47:36 is entered with command TIM 22:47:36.
TRI	Trigger an event report.

ACCESS LEVEL 2 COMMANDS

Access Level 2 Commands	The Access Level 2 commands primarily allow the user to change settings or operate relay parameters and output contacts. All Access Level 1 commands can also be executed from Access Level 2. The screen prompt is: =>>
ACC	Enter Access Level 1. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level 1 password in order to enter Access Level 1.
BAC	Enter Access Level B. If the main board password jumper (JMP6A) is not in place, the relay prompts for the entry of the Access Level B password in order to enter Access Level B.
BRE BRE R n BRE W n	Breaker report shows trip counters, trip currents, and wear data for two breakers. Reset trip counters, trip currents, and wear data for breaker $n (n = 1, 2, A)$. Preset the percent contact wear for each pole of breaker $n (n = 1, 2)$.
CAL	Moves from Access Level 2 to Access Level C.

CEV n Show compressed winding event report number n, at 1/4-cycle resolution.

Attach DIF for compressed differential element report, at 1/4-cycle resolution. Attach R for compressed raw winding data report, at 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4 or 8 for filtered data; m = 4, 8, 16, 32, or

64 for raw data)

CLO n Assert the CCn Relay Word bit. Used to close breaker n if CCn is assigned to an

output contact. JMP6B must be in place to enable this command.

CON n Control Relay Word bit RBn (Remote Bit n; n = 1 through 16). Execute CON n and

the relay responds: CONTROL RBn. Reply with one of the following:

SRB n set Remote Bit n (assert RBn)

CRB n clear Remote Bit n (deassert RBn)

PRB n pulse Remote Bit n [assert RBn for one processing interval (1/8 cycle)].

COPY m n Copy settings and logic from setting Group m to Group n.

DAT Show date presently in the relay.

DAT m/d/y Enter date in this manner if Date Format setting DATE_F = MDY. DAT y/m/d Enter date in this manner if Date Format setting DATE_F = YMD.

EVE n Show standard event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE D n Show digital data event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF1 n Show differential element 1 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF2 n Show differential element 2 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE DIF3 n Show differential element 3 event report number n, with 1/4-cycle resolution.

Attach S8 for 1/8-cycle resolution.

EVE R n Show raw analog data event report number n, with 1/16-cycle resolution.

Attach Sm for 1/m-cycle resolution. (m = 4, 8, 32, 64)

EVE T Show event summary.

GRO Display active setting group number.

GRO n Switch to Setting Group n. (Will not function if any SSn Relay Word bit is asserted.)

HIS n Show brief summary of the n latest event reports.

HIS C Clear the brief summary and corresponding standard event reports.

ID Display variety of identification and configuration information about the relay.

INI INITIO command reports the number and type of I/O boards in the relay. In Access

Level 2, confirms that I/O boards are correct.

IRI Force synchronization attempt of internal relay clock to IRIG-B time-code input.

MET k Display metering data, in primary amperes. Enter number k to scroll metering k times

on screen.

MET D k Display demand metering data, in primary amperes. Enter number k to scroll metering

k times on screen.

MET H Generate harmonic spectrum report for all input currents, showing first to fifteenth

harmonic levels in secondary amperes.

MET DIF k Display differential metering data, in multiples of TAP. Enter number k to scroll

metering k times on screen.

MET P k Display peak demand metering data, in primary amperes. Enter number k to scroll

metering k times on screen.

MET RD n Reset demand metering values. (n = 1, 2, A)MET RP n Reset peak demand metering values. (n = 1, 2, A)

MET SEC k Display metering data (magnitude and phase angle), in secondary amperes. Enter

number k to scroll metering k times on screen.

MET T Report temperature values of up to 24 RTD inputs.

OPE n Assert the OCn Relay Word bit. Used to open breaker n if OCn is assigned to an

output contact. JMP6B must be in place to enable this command.

PAS Show existing Access Level 1, B, and 2 passwords.

PAS 1 xxxxxx Change Access Level 1 password to xxxxxx.

PAS B xxxxxx Change Access Level B password to xxxxxx.

Change Access Level 2 password to xxxxxx.

If xxxxxx is DISABLE (uppercase), password for selected level is disabled.

PAS C xxxxxx Change Access Level C password to xxxxxx.

If xxxxxx is DISABLE (uppercase), password for selected level is disabled.

QUI Quit. Returns to Access Level 0. Returns front-panel LEDs to the default targets.

RES RESET51 command resets all inverse-time O/C elements for both windings and the

neutral elements.

SER n Show the latest n rows in the Sequential Events Recorder (SER) event report.

SER m n Show rows m through n in the Sequential Events Recorder (SER) event report.

SER d1 Show rows in the Sequential Events Recorder (SER) event report for date d1.

SER d1 d2 Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2.

Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).

SER C Clear the Sequential Events Recorder (SER) event reports from memory.

SET n Change relay group settings (overcurrent, differential, etc.).

For the SET commands, parameter n is the setting name at which to begin editing settings. If parameter n is not entered, setting editing starts at the first setting.

SET G Change global settings. SET P n Change port settings.

SET R Change Sequential Events Recorder (SER) settings.

SHO n Show relay group n settings. Shows active group if n is not specified.

SHO G Show relay global settings.

SHO P Show port settings and identification of port to which user is connected.

SHO P n Show port settings for port n (n = 1, 2, 3, 4). SHO R Show Sequential Events Recorder (SER) settings.

STA Show relay self-test status.

TAR R Return front-panel LED targets to regular operation and reset the tripping front-panel targets.

TAR n k Show Relay Word row n status (n = 0 through 41). Enter number k to scroll Relay

Word row n status k times on screen.

Append F to display targets on the front panel, second row of LEDs.

TFE Displays cumulative and individual through-fault event data. The twenty (20) most

recent individual events are displayed.

TFE A Displays cumulative and individual through-fault event data. All the most recent

individual events are displayed, up to 1200.

TFE C Clears/resets cumulative and individual through-fault event data.

TFE n Displays cumulative and individual through-fault event data. The n most recent

individual events are displayed, where n = 1 to 1200.

Preloads cumulative through-fault event data. TFE P

Clears/resets cumulative and individual through-fault event data. TFE R

TIM Show or set time (24 hour time). Show time presently in the relay by entering just

TIM. Example time 22:47:36 is entered with command TIM 22:47:36.

TRI Trigger an event report.