ALGORITHMIQUE DISTRIBUÉE MIF12

ÉLECTION DE LEADER ENSEMBLE INDÉPENDANT MAXIMAL

Isabelle GUERIN LASSOUS

perso.ens-lyon.fr/isabelle.guerin-lassous/index-M1if12.htm

isabelle.guerin-lassous@univ-lyon1.fr

Introduction

- Dans le cours précédent
 - Certains nœuds pouvaient avoir un rôle particulier
 - Source
 - Racine
 - ...
- Comment choisir ce ou ces nœuds spécifiques ?
 - Objectif de l'élection de leader
- L'élection de leader doit être
 - Sûre
 - Le leader doit être unique et un nœud a été élu
 - Rapide
 - Le choix doit se faire en un temps fini
- L'élection de leader permet de rompre la symétrie dans un système distribué
 - Symmetry breaking

Applications de l'élection de leader

- Orchestration dans un système distribué
 - Contrôle centralisé
 - Allocation de ressources en exclusion mutuelle
 - Consensus
 - Débloquer une situation de blocage
- Faire face à des défaillances
 - Restaurer un leader
 - Restaurer un jeton
- Récupérer de l'information sur le graphe
 - Détection de la terminaison d'un algorithme
 - Déterminer le nombre de nœuds dans le réseau

Résultat d'impossibilité

- Il n'existe pas d'algorithme déterministe d'élection de leader dans les systèmes distribués anonymes et uniformes
- Systèmes anonymes
 - Nœuds n'ont pas d'ID
 - Impossible de différencier les nœuds
 - Système est donc uniforme
 - Même degré, même code, même état initial
- Preuve sur un anneau

Preuve

Preuve

Contourner ce résultat d'impossibilité

- En utilisant des identifiants uniques sur les nœuds
 - Le système n'est plus anonyme et uniforme
- En utilisant des algorithmes probabilistes
 - Tirages aléatoires sur chaque nœud
 - Tomber indéfiniment sur des configurations symétriques est quasi impossible

Élection de leader dans un anneau unidirectionnel ou directionnel

Élection de leader dans un anneau unidirectionnel Algorithme de Chang-Roberts

Hypothèses

- Chaque nœud a un identifiant unique et sait que les identifiants sont uniques
- Chaque nœud connaît son voisin
- Le nombre de nœuds dans le système est inconnu de chaque nœud

Idées

- Au départ, chaque nœud est candidat à l'élection
 - Et donc propage sa candidature via son ID
- Un nœud qui reçoit un ID supérieur au sien ne sera pas élu
 - Et retransmet l'ID reçue à son voisin
- Le nœud, avec l'ID maximal, reçoit son propre ID et est élu

Variables locales

- Etat : non candidat / candidat / élu / perdu # initialisé à non candidat
- Leader : ID du leader ; initialisé à NULL
- Succ : successeur du nœud dans l'anneau

Élection de leader dans un anneau unidirectionnel Algorithme de Chang-Roberts

- 1. Nœud i se porte candidat
 - Etat := candidat
 - Leader := ID
 - Envoi du message Elec(Leader) à Succ
- 2. Si le nœud i reçoit le message *Elec(j)*
 - Si ID > j
 - Si Etat <> candidat, alors le nœud i se porte candidat
 - Sinon si ID < j
 - Etat := perdu
 - Leader := j
 - Envoi du message Elec(Leader) à Succ
 - Sinon si ID=j
 - Etat := élu
 - Envoi du message Lead(ID) à Succ
- Algorithme à compléter avec la diffusion du message Lead à tous les nœuds de l'anneau
 - Permet aux nœuds :
 - de connaître le leader
 - de savoir que l'algorithme est terminé

Algorithme de Chang-Roberts Exemple 1

Algorithme de Chang-Roberts Exemple 2

Élection de leader dans un anneau unidirectionnel Algorithme de Chang-Roberts

Complexité

- En nombre de messages
 - Au mieux 2n messages
 - Si le 1^{er} nœud à se déclarer candidat est le nœud de plus grand ID, on peut avoir seulement n messages *Elec* et n messages *Lead*
 - Dans le pire cas
 - 1+2+...+n messages *Elec* et n messages *Lead*
 - O(n²)

Élection de leader dans un anneau unidirectionnel anonyme Algorithme d'Itai-Rodeh

Hypothèses

- Nœuds n'ont plus forcément un identifiant unique
- Nœuds connaissent le nombre total de nœuds n
- Chaque nœud connaît son voisin
- Communications FIFO
- Algorithme probabiliste

Variables locales

- Etat: actif / inactif
- Phase # fonctionnement de l'algorithme en phase
- Succ: successeur du nœud dans l'anneau

Élection de leader dans un anneau unidirectionnel anonyme Algorithme d'Itai-Rodeh

- Pour chaque nœud
 - Si le nœud est actif
 - 1. Etat := actif
 - 2. Phase := 1
 - Tirer un identifiant id aléatoirement dans [1; k] (k > n)
 - 4. Envoyer (id, Phase, 1, vrai) à Succ # (ID, Num phase, Nb sauts traversés, Leader unique)
 - Tant que pas de leader
 - À la réception de (#id,#phase,#saut,unique)
 - 1. Si Etat = inactif # le nœud n'avait pas démarré l'algo, il ne se porte pas leader car un autre nœud l'a fait pour lui
 - Envoyer (#id,#phase,#saut+1,unique) à Succ
 - 2. Sinon # le nœud est actif
 - Si #saut = n # nœud initiateur du message reçu
 - Si unique = vrai
 - Nœud élu
 - Informer les nœuds de l'anneau
 - Sinon
 - Phase := Phase + 1
 - Tirer un id aléatoirement dans [1; k] (k > n)
 - Envoyer (id,Phase,1,vrai) à Succ
 - Sinon
- # saut <> n
- Si (id,Phase)=(#id,#phase) # un même identifiant a été trouvé lors de la même phase
 - Envoyer (id,phase,#saut+1,faux) à Succ
- Si (#id,#phase) > (id,Phase) # un nœud a tiré un ID plus grand que moi
 - Envoyer (#id,#phase,#saut+1,unique) à Succ

Algorithme d'Itai-Rodeh Exemple 1

Algorithme d'Itai-Rodeh Exemple 2

Élection de leader dans un anneau bidirectionnel Algorithme d'Hirschberg-Sinclair

Hypothèses

- Chaque nœud a un voisin à droite et à voisin à gauche auxquels il peut envoyer des messages
- Chaque nœud peut recevoir des messages de ses 2 voisins
- Nœuds ont un identifiant unique

Idées

- À la vague 0, tous les nœuds sont en compétition
- Tous les nœuds qui gagnent à la vague r ont le droit de participer à la vague r+1
- À la vague r, un nœud est gagnant s'il a le plus grand identifiant parmi les 2^r voisins à sa droite et les 2^r voisins à sa gauche
- Deux nœuds qui restent en compétition après la vague r sont à une distance > 2^r
- O(n.log(n)) messages échangés

Élection de leader dans un anneau bidirectionnel Algorithme d'Hirschberg-Sinclair

- 1. Chaque nœud i envoie *Election(i,0,1)* à ses voisins de gauche et de droite
- 2. À la réception de *Election(id,r,d)* reçu de son voisin de gauche (resp. droite) par le nœud i
 - Si (id > i) & (d < 2^r) alors
 - envoi de *Election(id,r,d+1)* à son voisin de droite (resp. gauche)
 - Si (id > i) & (d ≥ 2^r) alors
 - envoi de Reply(id,r) à son voisin de gauche (resp. droite)
 - Si id = i, alors
 - envoi Elected(i) à son voisin de gauche
 - Elu(i) := vrai

Élection de leader dans un anneau bidirectionnel Algorithme d'Hirschberg-Sinclair

- 3. À la réception de *Reply(id,r)* reçu de son voisin de gauche (resp. droite) par le nœud i
 - Si (id <> i) alors envoi de Reply(id,r) à son voisin de droite (resp. gauche)
 - Sinon
 - Si déjà reçu Reply(id,r) de son voisin de droite (resp. gauche) alors
 - Envoi de Election(i,r+1,1) à ses voisins de gauche et droite
- 4. À la réception d'un message *Elected(id)* reçu de son voisin de droite par le nœud i
 - Leader(i) := id
 - Done(i) := vrai
 - Si (id <> i)
 - Elu(i) := faux
 - Envoi de Elected(id) à son voisin de gauche

Algorithme d'Hirschberg-Sinclair Exemple

Algorithme d'Hirschberg-Sinclair Exemple

Élection de leader dans un anneau unidirectionnel Algorithme de Dolev-Klawe-Robeh

Hypothèses

- Chaque nœud a un voisin à gauche
- Nœuds ont un identifiant unique et savent que les identifiants sont uniques

Idées

- À la vague 0, tous les nœuds sont en compétition
- Si j > max(i,k), alors i reste dans la compétition, au nom de j
- Si j < max(i,k), alors i n'est plus dans la compétition et relaye seulement les messages vers son voisin
- Si i reste dans la compétition alors h et j ne peuvent pas être dans la compétition
- À la phase 2, au plus la moitié des nœuds resteront dans la compétition
- 0(n.log(n)) messages échangés

Algorithme de Dolev-Klawe-Robeh Éléments de preuve

Élection de leader dans une topologie quelconque

Élection dans une topologie quelconque Algo 1

Hypothèse

- Système connexe
- Chaque nœud connaît le nombre de nœuds dans le système
- Chaque nœud connaît son identifiant unique compris entre [1; n]

Idée

- Le leader est celui qui a l'identité la plus grande (ou la plus petite)
- Il est déterminé par chaque nœud sans échange de message

Élection dans une topologie quelconque Algo 2

Hypothèse

- Système connexe
- Chaque nœud connaît le nombre de nœuds dans le système
- Chaque nœud connaît son identifiant unique

Idée

- Diffusion de son identité dans tout le système
- Lorsque chaque nœud a reçu toutes les identités du système, le leader est celui qui a l'identité la plus grande (ou la plus petite)

O(nm) messages

Élection dans une topologie quelconque Algo 2 : exemple

Election dans une topologie quelconque Algo 3

- Hypothèse
 - Système connexe
 - Chaque nœud connaît le diamètre du graphe sous-jacent
 - Chaque nœud connaît son identifiant unique
- Idée
 - Algorithme faiblement synchrone
 - Au départ Leader := ID du nœud et envoi du Leader à tous ses voisins
 - À chaque ronde
 - Chaque nœud reçoit un message de tous ses voisins
 - Leader := max sur les leaders reçus et le sien
 - Envoi du Leader à tous ses voisins
 - Au bout de D rondes, chaque nœud connaît le leader
- O(Dm) messages

Election dans une topologie quelconque Algo 3 : exemple

Ensemble indépendant maximal

Ensemble indépendant maximal

- Ensemble indépendant dans un graphe
 - Sous-ensemble de sommets du graphe tel que 2 sommets quelconques de ce sous-ensemble ne sont pas voisins dans le graphe
- Intérêt
 - Par ex., faire travailler en même temps des nœuds sur des données / ressources disjointes
- Ensemble indépendant M est maximal
 - S'il n'existe pas d'ensemble indépendant M', différent de M, et tel que M soit inclus dans M'
- Ensemble indépendant maximum
 - Ensemble indépendant de plus grande cardinalité
 - Problème NP-hard

Ensemble indépendant maximal Exemples

Ensemble indépendant maximal Algorithme simple mais lent

- Hypothèse
 - Chaque nœud a un identifiant unique
- Au départ, état de chaque nœud est indécis
- Pour chaque nœud, répéter
 - Si tous les voisins de plus grand ID ont décidé de ne pas rejoindre l'EIM
 - État := appartient # le nœud rejoint l'EIM
 - Si un voisin est dans l'EIM
 - État := n'appartient pas
 - 3. Envoyer son état
 - 4. Recevoir les états de chacun des voisins non dans l'EIM
- Algorithme faiblement synchronisé
- Algorithme qui peut être très lent

Algorithme simple mais lent Exemple

Ensemble indépendant maximal Utilisation du coloriage

Initialisation

- Chaque nœud connaît tous ses voisins
- Il existe un k-coloriage du graphe

Idées

- Les nœuds qui ont la même couleur appartiennent à un ensemble indépendant, pas forcément maximal
- Ajout de nœuds à un ensemble indépendant initial tant que cela est possible, en itérant sur les couleurs
- Chaque nœud va maintenir un tableau indiquant si lui ou ses voisins font partie de l'ensemble indépendant maximal en construction
 - Éléments du tableau à faux au départ

Ensemble indépendant maximal Utilisation du coloriage

- Algorithme
 - Au départ, aucun nœud n'appartient à l'ensemble indépendant
 - Pour i de 1 à k
 - Pour chaque nœud u
 - Si Couleur[u]=i
 - Si aucun voisin ne fait partie de l'ensemble indépendant
 - Sélection[u] := True
 - Envoi de Sélection[u] à tous ses voisins
 - Attendre un message de chacun de ses voisins v et mettre à jour Sélection[v]
- Algorithme faiblement synchronisé
- Taille de l'ensemble indépendant lié à l'ordre des couleurs
- Terminaison
 - Fin de la 1ère boucle Pour
- k rondes

Utilisation du coloriage Exemple

Ensemble indépendant maximal Algorithme rapide

- Algorithme faiblement synchrone et probabiliste
- Lors d'une ronde
 - 1. Chaque nœud u choisit de rejoindre l'ensemble indépendant (EI) avec une probabilité 1/d(u) où d(u) correspond au degré de u
 - 2. Échange des choix entre voisins
 - 3. Si le nœud u a choisi de rejoindre l'El
 - Si aucun voisin de u de degré plus élevé n'a rejoint l'El alors u reste dans l'El
 - Sinon u se retire de l'El
 - 4. Échange des choix entre voisins
 - Les nœuds qui viennent de rejoindre l'ensemble indépendant ainsi que leurs voisins ne participent plus aux rondes suivantes
- Si 2 nœuds voisins ont choisi de rejoindre l'ensemble indépendant et ont le même degré, utilisation des identifiants pour les départager
 - => identifiants uniques
- Correction de l'algorithme ?
- L'algorithme de termine en moyenne avec O(log n) rondes (n nombre de nœuds)

Ensemble indépendant maximal Algorithme rapide : exemple

Ensemble indépendant maximal Autre algorithme rapide

- Algorithme faiblement synchrone et probabiliste
- Lors d'une ronde
 - 1. Chaque nœud u choisit une valeur r(u) aléatoirement dans [0; 1]
 - 2. Échange des valeurs entre voisins
 - 3. Si r(u) < r(v) pour tous voisins v de u alors u rejoint l'ensemble indépendant et informe ses voisins
 - 4. Les nœuds qui viennent de rejoindre l'ensemble indépendant ainsi que leurs voisins ne participent plus aux rondes suivantes
- Correction de l'algorithme ?
- L'algorithme de termine après au plus 3log_{4/3} m +1 rondes en moyenne (m nombre d'arêtes)

Ensemble indépendant maximal Autre algorithme rapide : exemple

Ce qu'il faut retenir

- Intérêt et applications de l'élection de leader
- Résultat d'impossibilité dans les systèmes distribués anonymes
- Algorithmes d'élection de leader sur un anneau unidirectionnel et bidirectionnel et leur complexité en nombre de messages
- Algorithmes d'élection de leader sur des topologies quelconques et leur complexité en nombre de messages
- Ensembles indépendants maximal et maximum : définitions
- Algorithmes pour construire un ensemble indépendant maximal