Politechnika Poznańska Wydział Elektryczny Instytut Automatyki i Inżynierii Informatycznej

Maciej Marciniak Damian Filipowicz

Projekt i wykonanie systemu kontroli ruchu i zarządzania dostępem do pomieszczeń

Praca dyplomowa inżynierska

promotor: dr inż. Ewa Idzikowska

Karta Pracy Damian Filipowicz

Temat pracy dyplomowej inżynierskiej

Uczelnia:	Politechnika Poznańska	Profil kształcenia:	ogólnoakad	emicki
Wydział:	Elektryczny	Forma studiów:	stacjonarne	
Kierunek:	Informatyka	Poziom studiów:	I stopnia	
Specjalność:	Bezpieczeństwo systemów informatycznych		й	
nputerowe, urządzenia it pochodzenia.	ny się samodzielnie wykonać pracę w zakresie wyst pp.), które zostaną wykorzystane w pracy, a nie będą mo Imię i nazwisko	jego/naszego autorstwa, b	eędą w odpowiedr Nr albumu	ni sposób zaznaczone i będzie podane ż Data i podpis
Student:	Maciej MARCINIAK		121996	30.10.2017 Marin
Student:	Damian FILIPOWICZ		122002	
Tytuł pracy:	Projekt oraz implementacja systemu kontro zespołowy)	oli ruchu i zarządzan	ia dostępem d	o pomieszczeń (projekt
Wersja angielska tytułu:	Design and implementation of movement c	ontrol and access to	spaces manaş	gement system (team project)
Dane wyjściowe:	Jeff Forcier, Paul Bissex, Wesley Chun, Adrian Kaehler, Gary Bradski, OpenCV biblioteki OpenCV*, Helion 2017			
Zakres pracy:	Projekt i implementacja serwera system Realizacja wewnętrznego PKI służącege zamka fizycznego od strony urzędów ce Oprogramowanie sterownika zamka fizy Realizacja oprogramowania do zliczania	o do podpisywania c rtyfikujących systen rcznego.	yfrowo kluczy nu.	dostępowych dla sterownika
Termin oddania pracy:	31 stycznia 2018			·
Promotor:	dr inż. Ewa Idzikowska			
Jednostka organizacyjna promotora:	Instytut Automatyki, Robotyki i Inżynierii	Informatycznej	-	
	Z-ca DYREKTORA INSTYTUTU Automatyki, Robotyki i Inżypierii Informatycznej dr. Jerzy Bartoszek		Wyd	PRODZIEKAN Iziału Elektrycznego echniku oznańskiej

dr hab. podpis Pziekanaj Tomczewski Poznań, 30 października 2017 miejscowość, data

3

Poznan University of Technology Faculty of Electrical Engineering Institute of Control and Information Engineering

Design and implementation of movement control and access to spaces management

system by Maciej Marciniak Damian Filipowicz

Abstract

Streszczenie

Spis treści

1	$\mathbf{W}_{\mathbf{S}^1}$	tęp	8
	1.1	Cel i zakres pracy	8
	1.2	Plan pracy	8
	1.3	Metodyka pracy grupowej	8
2	Opi	s dziedziny przedmiotowej pracy	10
	2.1	Pojęcia i definicje	10
	2.2	Stan wiedzy	10
	2.3	Stan pracy wykonany w ramach zajęć przedmiotowych	10
3	Zar	ys idei systemu <i>Inteligentny zamek</i>	11
	3.1	Schemat ideowy systemu Inteligentny zamek	11
	3.2	Opis składowych systemu	11
	3.3	Podmioty systemu	11
4	$\mathbf{W}\mathbf{y}$	bór technologii informatycznych	12
	4.1	Urządzenie sterujące	12
	4.2	Aplikacja serwera	12
	4.3	Aplikacja mobilna	12
	4.4	Moduł zliczania osób	12
	4.5	System kontroli wersji	12
	4.6	Prowadzenie dokumentacji	12
5	\mathbf{Pro}	jekt systemu <i>Inteligentny zamek</i>	13
	5.1	Diagramy UML	13
		5.1.1 Diagramy przypadków użycia	13
		5.1.2 Diagramy sekwencji systemu	13
		5.1.3 Projekt bazy danych	13
		5.1.4 Diagramy klas	13
	5.2	Uproszczony schemat elektryczny systemu	13
	5.3	Komunikacja modułów systemu z aplikacją serwera	13

		5.3.1	Komunikaty HTTPRequest pomiędzy aplikacją mobilną, a serwerem	13
		5.3.2	Komunikaty HTTPRequest pomiędzy urządzeniem sterującym, a serwerem	13
	5.4		koły komunikacji pomiędzy urządzeniem ącym i aplikacją mobilną	14
	5.5	Interfe	ejs graficzny systemu	14
		5.5.1	Widoki aplikacji mobilnej	14
		5.5.2	Widoki strony internetowej systemu	14
		5.5.3	Komunikacja człowiek-interfejs	14
		5.5.4	Kolorystyka systemu	14
	5.6	Bezpie	eczeństwo systemu	14
		5.6.1	Projekt infrastruktury klucza publicznego (PKI)	14
		5.6.2	Poufność	14
		5.6.3	Dostępność	14
		5.6.4	Integralność	14
6	Imp	lemen	tacja	15
	6.1	Aplika	acja mobilna	15
		6.1.1	Interfejsy programistyczne	15
		6.1.2	Przechowywanie danych	15
		6.1.3	Graficzna implementacja	15
		6.1.4	Walidacja danych wprowadzanych przez użytkownika	15
	6.2	Aplika	acja serwerowa	15
		6.2.1	Strona internetowa	15
		6.2.2	Wybrane fragmenty kodu	15
	6.3	Urzad	zenie sterujące - objaśnienie całe kodu programu	15
	6.4	Modu	ł zliczania osób - wybrane fragmenty kodu	15
	6.5	Wnios	ki	15
7	Bez	piecze	ństwo systemu <i>Inteligentny zamek</i>	16
	7.1	Techn	iki kryptograficzne	16
	7.2	Podat	ności systemu (OWASP Top 10)	16
	7.3	Inne z	agrożenia występujące w systemie	16

7.	4 Możliwości zabezpiezpieczenia systemu	16
7.	5 Wnioski	16
8 V	/drożenie i testowanie systemu <i>Inteligentny zamek</i>	17
8.	1 Środowisko testowe	17
8.	2 Testy jednostkowe	17
8.	3 Wizualizacja działania systemu <i>Inteligentny zamek</i>	17
8.	4 Wnioski	17
9 P	odsumowanie	18
9.	1 Dalsze perspektywy rozwoju projektu	18
Spis	rysunków	20
Spis	tabel	20
10 D	odatki	21
10	0.1 Instalacja systemu Inteligentny zamek	21
10	0.2 Instrukcja użytkownika systemu <i>Inteligentny zamek</i>	21
11 Z	ałączniki	22

1 Wstęp

1.1 Cel i zakres pracy

Celem pracy jest projekt i implementacja systemu kontroli ruchu oraz zarządzania dostępem do pomieszczeń. System ma na celu zamianę sposobu zarządzania dostępem w budynkach z starszych modeli opartych na fizycznych zamkach z kluczami fizycznymi, bądź systemów opartych na kartach magnetycznych na system posługujący się urządzeniami mobilnymi z system operacyjnym android. Głównym celem jest usprawnienie w uzyskiwaniu dostępu do pomieszczeń dzięki wyeliminowaniu konieczności posiadania przy sobie wielu kluczy fizycznych oraz sytuacji, w których użytkownik zapomniał klucza lub karty magnetycznej i nie mógł uzyskać dostępu poprzez możliwość przenoszenia uprawnień między telefonami. Dodatkowo nasz projekt ma usprawniać takie elementy jak zarządzanie dostępem do wielu pomieszczeń oraz kontrolą osób przebywających w danym pomieszczeniu.

W kwestii bezpieczeństwa systemu naszym zadaniem było spełnienie wymagania dotyczących zabezpieczeń systemu poprzez zastosowanie szeregu funkcji kryptograficznych przy procesie uwierzytelniania jak i przy generowaniu kluczy takich jak np. funkcje skrótu, SSH, algorytmów szyfrowania asymetrycznego oraz zastosowania infrastruktury klucza publicznego.

Zakres pracy w tworzeniu projektu orz implementacji obejmował takie elementy jak zaprojektowanie oraz stworzenie aplikacji klienckjiek, aplikacji serwerowej, oprogramowania do zliczania osób w pomieszceniu, oprogramowania służącego do przyznawania fizycznego dostępu do pomiezcenia oraz strony internetowej.

1.2 Plan pracy

Plan pracy został podzielony na trzy etapy.

- Pierwszy etap polegał na udoskonaleniu projektu który był wykonywany w ramach przedmiotu projekt zespołowy oraz omówieniu szczegółów kluczowych wykonywanych w dalszej części.
- Drugi etap polegał na implementacji danego projektu w
- Trzecim i ostatnim etapem było przetestowanie działania całego systemu oraz naprawienie wykrytych błędów.

1.3 Metodyka pracy grupowej

Metodyka użyta podczas pracy grupowej była oparta o model kaskaodowy składajaćy się z etapów takich jak:

- Planowanie systemu
- Analiza systemu
- Projekt systemu
- Implementacja
- Testowanie
- Wdrożenie i pielęgnacja produktu

Uzasadnieniem wyboru takiej metodyki jest fakt używania takich metodyk podczas dużych projektów inżynierskich oraz brak koniecznośći pokazywania fragmentów działająćego systemu podczas tworzenia pracy inżynierskiej. W początkowej fazie ważniejsze było dla nas określenie specyfiki wymagań systemu oraz sam projekt aniżeli implementacja systemu.

- 2 Opis dziedziny przedmiotowej pracy
- 2.1 Pojęcia i definicje
- 2.2 Stan wiedzy
- 2.3 Stan pracy wykonany w ramach zajęć przedmiotowych

- 3 Zarys idei systemu $Inteligentny\ zamek$
- 3.1 Schemat ideowy systemu Inteligentny zamek
- 3.2 Opis składowych systemu
- 3.3 Podmioty systemu

4 Wybór technologii informatycznych

- 4.1 Urządzenie sterujące
- 4.2 Aplikacja serwera
- 4.3 Aplikacja mobilna
- 4.4 Moduł zliczania osób
- 4.5 System kontroli wersji
- 4.6 Prowadzenie dokumentacji

5 Projekt systemu Inteligentny zamek

- 5.1 Diagramy UML
- 5.1.1 Diagramy przypadków użycia
- 5.1.1.1 Aplikacja mobilna
- 5.1.1.2 Aplikacja serwera
- 5.1.1.3 Urządzenie sterujące
- 5.1.1.4 Moduł zliczania osób
- 5.1.2 Diagramy sekwencji systemu
- 5.1.2.1 Aplikacja mobilna
- 5.1.2.2 Aplikacja serwera
- 5.1.2.3 Urządzenie sterujące
- 5.1.2.4 Moduł zliczania osób
- 5.1.3 Projekt bazy danych
- 5.1.4 Diagramy klas
- 5.1.4.1 Aplikacja mobilna
- 5.1.4.2 Aplikacja serwera
- 5.1.4.3 Urządzenie sterujące
- 5.1.4.4 Moduł zliczania osób
- 5.2 Uproszczony schemat elektryczny systemu
- 5.3 Komunikacja modułów systemu z aplikacją serwera
- 5.3.1 Komunikaty HTTPRequest pomiędzy aplikacją mobilną, a serwerem
- 5.3.2 Komunikaty HTTPRequest pomiędzy urządzeniem sterującym, a serwerem

- 5.4 Protokoły komunikacji pomiędzy urządzeniem sterującym i aplikacją mobilną
- 5.5 Interfejs graficzny systemu
- 5.5.1 Widoki aplikacji mobilnej
- 5.5.2 Widoki strony internetowej systemu
- 5.5.3 Komunikacja człowiek-interfejs
- 5.5.3.1 Komunikaty tekstowe
- 5.5.3.2 Symbolika ikon
- 5.5.3.3 Znaczenie kolorystyki
- 5.5.4 Kolorystyka systemu
- 5.6 Bezpieczeństwo systemu
- 5.6.1 Projekt infrastruktury klucza publicznego (PKI)
- 5.6.1.1 Idea PKI
- 5.6.1.2 Urzedy certyfikujące
- 5.6.1.3 Klient systemu
- 5.6.2 Poufność
- 5.6.3 Dostępność
- 5.6.4 Integralność

6 Implementacja

- 6.1 Aplikacja mobilna
- 6.1.1 Interfejsy programistyczne
- 6.1.2 Przechowywanie danych
- 6.1.3 Graficzna implementacja
- 6.1.4 Walidacja danych wprowadzanych przez użytkownika
- 6.2 Aplikacja serwerowa
- 6.2.1 Strona internetowa
- 6.2.2 Wybrane fragmenty kodu
- 6.3 Urządzenie sterujące objaśnienie całe kodu programu
- 6.4 Moduł zliczania osób wybrane fragmenty kodu
- 6.5 Wnioski

- 7 Bezpieczeństwo systemu Inteligentny zamek
- 7.1 Techniki kryptograficzne
- 7.2 Podatności systemu (OWASP Top 10)
- 7.3 Inne zagrożenia występujące w systemie
- 7.4 Możliwości zabezpiezpieczenia systemu
- 7.5 Wnioski

- 8 Wdrożenie i testowanie systemu Inteligentny zamek
- 8.1 Środowisko testowe
- 8.2 Testy jednostkowe
- 8.3 Wizualizacja działania systemu $Inteligentny\ zamek$
- 8.4 Wnioski

- 9 Podsumowanie
- 9.1 Dalsze perspektywy rozwoju projektu

Literatura

Spis rysunków

Spis tablic

- 10 Dodatki
- $10.1 \quad {\rm Instalacja~systemu}~ Inteligentny~ zamek$
- 10.2 Instrukcja użytkownika systemu $Inteligentny\ zamek$

11 Załączniki

Do pracy dołączono płytę CD-ROM zawierającą:

- treść pracy w pliku PDF,
- treść pracy w formacie LATEX,
- implementację systemu *Inteligentny zamek*,
- $\bullet\,$ kody uruchomieniowne systemu $Inteligentny\ zamek.$