Question 1

- (a) $\bigcup_{i=1}^{\infty} A_i = \mathbb{R}$
- (b) $\bigcap_{i=1}^{\infty} A_i = (-1,1)$

Question 2

- (a) $\bigcup_{i \in \mathbb{Z}^+} A_i = [1, 3)$
- (b) $\bigcap_{i \in \mathbb{Z}^+} A_i = [0, 2)$

Question 3

- 1. This is a function. The range of this function is $\{p, q, r\}$.
- 2. This is not a function; the element a in the domain is mapped to two different elements in the codomain.
- 3. This is not a function; the element b in the domain is not mapped to any element in the codomain.
- 4. This is a function. The range of this function is $\{p, q, r\}$.

Question 4

Proof. Let $y \in [0, \infty)$. In order for y to be in the range of f, there must exist an $x \in [0, \infty)$ such that y = f(x). Consider the case $x = y^4 - 2$. By the completeness of the real numbers, $y^4 \ge 0$, so $y^4 - 2 \ge -2$. Therefore, x is in the domain of f. Also,

$$f(x) = f(y^{4} - 2)$$
= $(y^{4} - 2 + 2)^{1/4}$
= $|y|$
= y (since $y \ge 0$).

Therefore, $y \in \text{Ran}(f)$. Hence, $[0, \infty) \subseteq \text{Ran}(f)$.

Question 5

Proof. Let $y \in \text{Ran}(f)$. Then, there exists an $x \in \mathbb{R} \setminus \{3\}$ such that $y = \frac{x}{x-3}$. We want to show that $y \in \mathbb{R} \setminus \{1\}$, or in other words, $y \neq 1$. Seeking a contradiction,

assume that y = 1. Then,

$$1 = \frac{x}{x - 3}$$
$$x - 3 = x$$
$$-3 = 0.$$

This is a contradiction, so $y \neq 1$, or $y \in \mathbb{R} \setminus \{1\}$, and $\operatorname{Ran}(f) \subseteq \mathbb{R} \setminus \{1\}$. Now, let $y \in \mathbb{R} \setminus \{1\}$, and we want to show that $y \in \operatorname{Ran}(f)$. That means we want to find some $x \in \mathbb{R} \setminus \{3\}$ such that $y = \frac{x}{x-3}$. Consider $x = \frac{-3y}{1-y}$. We must show that x is in the domain of f, or in other words, $x \neq 3$. Seeking a contradiction, assume that x = 3. Then,

$$3 = \frac{-3y}{1 - y}$$
$$3 - 3y = -3y$$
$$3 = 0.$$

This is a contradiction, so $x \neq 3$, and $x \in \mathbb{R} \setminus \{3\}$, meaning that x is in the domain of f. Also,

$$f(x) = f\left(\frac{-3y}{1-y}\right)$$

$$= \frac{\frac{-3y}{1-y}}{\frac{-3y}{1-y} - 3}$$

$$= \frac{-3y}{-3y - 3(1-y)}$$

$$= \frac{-3y}{-3y - 3 + 3y}$$

$$= \frac{-3y}{-3}$$

$$= y.$$

Therefore, $y \in \text{Ran}(f)$, and $\mathbb{R} \setminus \{1\} \subseteq \text{Ran}(f)$. Hence, $\text{Ran}(f) = \mathbb{R} \setminus \{1\}$.

Question 6

Proof. Let $y \in \text{Ran}(f)$. We want to show that $y \in (-\infty, 0]$. In other words, $y \leq 0$. Seeking a contradiction, assume that y > 0. That means there exists an $x \in \mathbb{R}$ such that y = f(x). In other words, we want to find some real number whose square is negative. However, the square of any real number is nonnegative, so there is no such x, a contradiction. Therefore, $y \leq 0$, and $\text{Ran}(f) \subseteq (-\infty, 0]$. Now let $y \in (-\infty, 0]$. We want to show that $y \in \text{Ran}(f)$. In other words, we want to show that there exists some $x \in \mathbb{R}$ such that y = f(x). Consider $x = -\sqrt{y}$. We must show that x is in the domain of x, or in other

words, that x is a real number. Since y is a real number, $-\sqrt{y}$ is also a real number. Thus, x is in the domain of f. Also,

$$f(x) = f(-\sqrt{y})$$
$$= -(-\sqrt{y}^2)$$
$$= y.$$

Therefore, $y \in \text{Ran}(f)$, and $(-\infty, 0] \subseteq \text{Ran}(f)$. Hence, $\text{Ran}(f) = (-\infty, 0]$.

Question 7

- 1. $G_f = \{(a,0), (b,1), (c,3), (d,6), (e,10)\}$
- 2. $G_g = \{(w, 10), (x, 1), (y, 3), (z, 0)\}$