Punto 1.a	Punto 1.b	Punto 2.a	Punto 2.b	Punto 3.a	Punto 3.b

Segundo Parcial : Calculo integral, Tema A,

Nombre y apellido	código	Sección	Nota
			/60

Nota:

- 1. Por favor justificar todas sus respuestas y escribir claro.
- 2. Contestar en los espacios reservados para las soluciones de los ejercicios.
- 3. Una hoja sin nombre no se corregirá.
- 4. sección 27= Arley, sección 28= Cesar, sección 29= Pablo, sección 30= Cesar.
 - 1. [/20] Resolver las siguientes ecuaciones diferenciales:
 - a) [/10]

$$xy' - y = y^2$$

Con condición inicial y(1) = 1.

$$b)$$
 [/10]

$$xy' + y = \sqrt{x}$$

2. [/20] Considere la curva ${\cal C}$ con ecuación paramétrica

$$x = \frac{t}{1+t}; \ y = \ln(1+t)$$

a) [/10] Demuestre que el punto P de coordenadas $(\frac{1}{2}, \ln 2)$ se encuentra en la curva C y encuentre la pendiente de la recta tangente a la curva C en el punto P.

b) [/10] Calcular la longitud de la curva para $0 \leq t \leq 2.$

- 3. [/20] Considere las curvas C_1 , con ecuación polar $r=3\operatorname{sen}(\theta)$ y C_2 , con ecuación polar $r=1+\operatorname{sen}(\theta)$
 - a) [/10] Graficar las dos curvas, en el mismo sistema de coordenadas, explicando los argumentos que usa para hacer las gráficas y encontrar analíticamente los puntos de corte de las dos curvas.

b) $\ [/10]$ Encontrar el área de la región adentro de la curva C_1 y fuera de la curva C_2

Punto 1.a	Punto 1.b	Punto 2.a	Punto 2.b	Punto 3.a	Punto 3.b

Segundo Parcial : Cálculo integral, 2

Nombre y apellido	código	Sección	Nota
			/50

IMPORTANTE:

- 1. Escribir claramente, no olvidar su nombre y el número de la sección.
- 2. Contestar en los espacios reservados para las soluciones de los ejercicios.
- 3. No se permite el uso de calculadora, cuadernos, notas, ningún aparato electrónico, celular ...etc
- 4. Durante el parcial no se contesta a ninguna pregunta
- 5. Sección 7 de Nicolas Suescún , sección 8 de Betty Rincón, sección 9 de Juan Manuel Paiba , sección 10 de Cristina Pabón
 - 1. [/10] Sea la curva paramétrica

$$x = t^2 - 4t + 3, \quad y = 2t^2 + 3t + 1$$

a) $\downarrow [/5]$ En qué punto del plano la tangente a la curva tiene pendiente -1?

 $b) \ \ \ \ \ [/5]$ La curva pasa por el punto (15,15)?

2. [/20]

 $a) \ \ [/10]$ Plantear en detalle dos integrales distintas que den el área de la superficie obtenida girando alrededor del ejex la curva

$$y = \sqrt{1-x}, \ 0 \le x \le 1/2$$

b) [/10] Calcular dicha área.

3. [/20] Resolver las siguientes ecuaciones diferenciales

$$a)$$
 [/10]

$$xy' - xy - e^x = 0$$
 $y(1) = 1$

$$b)$$
 [/10]

$$y' = 2xy^2 + 2x + y^2 + 1,$$