MIS761 Cyber Security Strategies

Dept. of Information Systems & Business Analytics

Deakin Business School

Week 5 – Risk Management

Risk Tolerance and Risk Appetite

Risk Appetite

- Reflects the organization's overall willingness to take on risk.
- More strategic and aligns with organizational objectives and stakeholder expectations.
- Includes a formal risk appetite statement approved by the board.

Risk Tolerance

- Defines acceptable risk levels for specific initiatives or activities.
- More tactical and operational in nature.
- Helps guide decisions at a granular level.

Residual Risk

- Risk that remains after all controls are applied.
- Organizations must decide if they can accept this level of risk.
- Documented for future review cycles.

Characteristics of a Well-Defined Risk Appetite

- **Strategic Alignment**: Risk appetite should align with organizational objectives, business plans, and stakeholder expectations.
- Holistic Perspective: It must encompass all key business aspects, acknowledging the willingness and capacity to take on risk.
- Resource Consideration: A risk appetite statement should be formally documented, considering skills, resources, and technology needed to manage risk.
- Quantifiable Tolerance: Include a tolerance for loss or negative events that can be reasonably quantified.
- **Periodic Review**: Regularly review and adjust risk appetite based on evolving industry and market conditions.

Overview of the Risk Management Process

- Risk Assessment
 - **Risk Identification:** Determining where risks are present and what specific risks exist.
 - Risk Analysis: Assessing the severity and impact of identified risks.
 - **Risk Evaluation :** Evaluating whether the current risk level is acceptable.
- Risk Treatment: Deciding on actions needed to reduce risk to an acceptable level.

Preparation in the Risk Management Process

External Context

Business Environment

Impact of customers, suppliers, and competitors on risk management.

Legal and Regulatory Environment

Influence of laws, regulations, and industry standards.

Threat Environment

 Awareness of threats, known vulnerabilities, and attack methods.

Support Environment

• Role of government agencies, professional associations, and service organizations.

Internal Context

Governance Structure

 Influence of the organization's governance on risk management.

Internal Stakeholders

Impact of stakeholders within the organization.

Organizational Culture

 How the organization's culture affects risk management processes.

Information Security Maturity

• The maturity level of the organization's information security program.

Experience in Risk Management

 Previous experience in policy, planning, and managing risks.

- Identifying Information Assets

Information Assets

- Assets that collect, store, process, or transmit information.
- Including but not limited to people, procedures, data, software, hardware, and network components

Inventory Creation

- Avoid assigning value to assets at this stage; focus on comprehensive identification.
- Focus on core applications first, then include communications software, operating systems, supporting utilities, and finally physical assets.
- Distinguish between easily replaceable components like hardware and operating systems, and more critical, integral, irreplaceable information assets.

- Classifying and Categorizing Information Assets

• **Purpose:** Helps prioritize protection efforts and allocate resources effectively.

Developing a Classification Scheme

 Create or review a data classification system that ranks assets by sensitivity and security requirements.

Common Classification Levels

- Confidential: Highly sensitive information requiring strict access control.
- Internal: Information meant for internal use, with moderate security needs.
- **Public:** Information that can be openly shared with minimal security requirements.

Comprehensive and Exclusive Categories

- Ensure every asset fits into one of the categories.
- Each asset should belong to only one category, preventing overlap.

- Assessing the Value of Information Assets

Prioritization

- Prioritize assets to ensure the most valuable ones are protected first.
- Focus on criticality to organizational success and impact of potential loss.

Critical Questions for Assessment

- Which asset is crucial for organizational success?
- Which asset generates the most revenue?
- Which asset is the most profitable?
- Which asset is most costly to replace or protect?
- Which asset's loss would cause the greatest embarrassment or liability?

Valuation Challenges

- Value varies within and between organizations.
- Difficult to accurately determine true value.
- Some costs are straightforward; others, like market share loss, are hard to quantify.

- Assessing the Value of Information Assets

Operational Costs

- Creation Cost: Value based on the cost of creating or acquiring the asset.
- Maintenance Cost: Significant portion of total cost involves maintenance.
- Replacement Cost: Human and technical resources needed for reconstruction or restoration.
- Provision Cost: Cost of providing the asset to users.

Complex Valuations

- Owner's Value: Value perceived by the owners, considering the potential cost
 of loss.
- Intellectual Property: Value of trade secrets and new product potential.
- Productivity Loss: Cost of lost employee time and alternatives when assets are unavailable.
- Revenue Loss: Financial impact during the period the asset is unavailable.

- Using a weighted table analysis for ranking Information Assets

Asset	Criteria 1 Critical to Success	Criteria 2 Cost to Replace/Protect	Criteria 3 Public Image	Weighted Score
Criterion weight (1-100)	40	30	30	100
Customer Payment System	0.7	0.7	0.9	76
Online Order Management	0.7	0.5	0.8	67
Customer Loyalty Data	0.8	0.8	1	86

- Identifying, Assessing, and Prioritizing Threats

Key Questions for Threat Identification

Assessing Actual Threats

- Determine which threats pose real danger to current information assets.
- Focus only on threats relevant to existing software and hardware.

Internal vs. External Threats

Identify and categorize threats as internal or external.

Evaluating Probability and Impact

- Assess which threats are most likely to occur.
- Determine the probability of a threat's success and its potential impact.

Preparedness and Response

- Identify threats the organization is least equipped to handle.
- Consider the cost of protection and recovery for each threat.

- Identifying, Assessing, and Prioritizing Threats

Contextual Considerations

Adapting to Changes

- Reevaluate threats when introducing new technologies or business ventures.
- Understand new competitive and threat environments related to organizational changes.

Cost Analysis

- Prioritize threats based on the cost of protection and recovery.
- Focus resources on managing the most expensive and impactful threats.

- Using Threats-Vulnerabilities-Assets worksheet

	Customer Loyalty Data	Customer Payment System	Online Order Management
Phishing Attack	Lack of staff awareness	Employee susceptibility	N/A
Data Breach	Unsecured storage	N/A	Weak password policies
Malware	Outdated security protocols	Unpatched software	Vulnerable third-party plugins
Insider Threat	Unauthorized access	Privileged access misuse	Inadequate monitoring

Risk Analysis

- Likelihood of a Threat Event and Uncertainty

Focus on Unmanaged Vulnerabilities

- Set aside fully controlled vulnerabilities.
- Estimate control effectiveness for partially managed vulnerabilities.
- Assess based on implemented security controls and their levels.

Estimating Likelihood

- Combine probability of threat initiation and impact.
- For adversarial threats: consider intent, capability, and targeting.
- For non-adversarial threats: use historical data and empirical evidence.
- Understand that estimation errors are inevitable.
- Continuously refine estimates with new data and insights.

Incorporating Uncertainty

- Acknowledge the limits of knowledge on vulnerabilities and impacts.
- Factor in uncertainty using managerial judgment and experience.

Risk Analysis

- Assessing Potential Impact

Impact Assessment

- Analyze consequences of successful attacks.
- Focus on potential loss of asset value.

Scenario Creation

- Develop multiple scenarios to understand various impact levels.
 - Refer to media reports on similar attacks in other organizations.
 - Apply lessons learned from these cases to improve impact assessment.
- Use a "worst case/most likely outcome" approach:
 - Speculate worst possible outcome with current protections.
 - Determine the most likely outcome.

Documentation and Planning

- Document risk impacts for all threats, vulnerabilities, and assets (TVA).
- Use this information for contingency planning, incident response, disaster recovery, and business continuity.
 - Share assessment details with the contingency planning team.
 - Integrate findings into broader organizational planning activities.

Risk Analysis

- Using Risk Rating Worksheet for Risk Determination

Table 6-12 Risk Rating Worksheet							
Asset	Vulnerability	Likelihood	Impact	Risk-Rating Factor			
Customer service request via e-mail (inbound)	E-mail disruption due to hardware failure	3	3	9			
Customer service request via e-mail (inbound)	E-mail disruption due to software failure	4	3	12			
Customer order via SSL (inbound)	Lost orders due to Web server hardware failure	2	5	10			
Customer order via SSL (inbound)	Lost orders due to Web server or ISP service failure	4	5	20			
Customer service request via e-mail (inbound)	E-mail disruption due to SMTP mail relay attack	1	3	3			
Customer service request via e-mail (inbound)	E-mail disruption due to ISP service failure	2	3	6			
Customer service request via e-mail (inbound)	E-mail disruption due to power failure	3	3	9			
Customer order via SSL (inbound)	Lost orders due to Web server denial-of-service attack	1	5	5			
Customer order via SSL (inbound)	Lost orders due to Web server software failure	2	5	10			
Customer order via SSL (inbound)	Lost orders due to Web server buffer overrun attack	1	5	5			

Risk Determination Formula

- Calculate risk as Likelihood × Impact.
- Incorporate uncertainty if necessary, though often simplified.

Purpose of the Worksheet

- Summarizes risk analysis results.
- Prioritizes assets based on their risk rating.

Risk Evaluation

Translating Risk Appetite

- Convert the general risk appetite statement into numerical values.
- •Compare these values to the analyzed risks for decision-making.
- •Incorrect evaluation can leave key assets exposed.

Executive Decision Making

- •Review analysis findings with governance groups and executives.
- •Decision makers determine if the risk level is acceptable.
- •If acceptable, move to monitoring and review. If not, proceed to risk treatment.

Complexity and Interdependencies

- Solutions for one asset may affect others positively or negatively.
- •Example: Upgrading a firewall can be costly but beneficial across assets.
- •Example: Simplifying a firewall might ease management but expose other assets.

Risk Treatment Strategies- Defense

Reducing Likelihood of Attack

- Improve asset security to lower the chances of successful threats.
- Achieve an acceptable level of residual risk aligned with the organization's risk appetite.

Key Approaches

Policy Implementation

- Mandate procedures through organizational policies.
- Combine policy changes with employee training and technology application.

SETA Programs

- Enhance security through education, training, and awareness programs.
- Ensure employees understand and comply with security policies.

Technological Controls

- Use technical safeguards to reduce risks effectively.
- Implement advanced security technologies to protect information assets.

Risk Treatment Strategies- Transference

Shifting Risks

- Transfer risk to other entities or areas.
- Options include outsourcing services, revising deployment models, purchasing insurance, or using service contracts.

Effective Service Level Agreements (SLAs)

- Crucial for ensuring external entities meet required security levels.
- Key SLA elements:
 - Service category (e.g., availability, response time)
 - Acceptable service quality range
 - Measurement definitions and formulas
 - Credits/penalties for performance
 - Measurement frequency and intervals

Risk Treatment Strategies- Mitigation

Reducing Impact with Planning and Preparation

- Focuses on minimizing consequences if a vulnerability is exploited.
- Emphasizes readiness to handle incidents or disasters.

Types of Mitigation Plans

- Incident Response (IR) Plan
- Disaster Recovery (DR) Plan
- Business Continuity (BC) Plan
- Crisis Management (CM) Plan

Risk Treatment Strategies

- Acceptance and Termination

Acceptance

Intentional Decision, Not Neglection

- Choose to maintain current protection levels after formal evaluation.
- Accept potential outcomes of vulnerabilities without additional controls.

Criteria for Acceptance

- Assess the risk level to the information asset.
- Evaluate the probability and impact of an attack.
- Conduct a feasibility analysis and financial assessment (e.g., CBA).
- Determine that the cost of additional controls exceeds their benefits.

Termination

Removing Assets, Not Abandonment

- **Discontinue** or **remove** information assets that are too costly or difficult to protect.
- Ensure termination is a deliberate business decision, NOT abandonment.

Cost-Benefit Analysis

 Decide based on the comparison of protection costs against the asset's value.

- Selecting a Strategy

General Guidelines for Strategy Selection

- Implement Controls: For critical assets with vulnerabilities, apply security measures to reduce exploitation likelihood.
- Layered Protections: When vulnerabilities are exploitable, use multiple layers of protection, including design and administrative controls.
- Increase Attacker Costs: If attacker's gain outweighs attack costs, use technical and managerial controls to raise attack costs or reduce attacker gains.
- Limit Potential Loss: For substantial potential losses, employ design principles and protections to minimize attack impact and reduce loss potential.

Comprehensive Assessment

- Analyze both economic and noneconomic consequences of vulnerability exploitation.
- Consider legal or regulatory requirements for protecting sensitive information.
- Compare actual and perceived advantages of implementing controls against disadvantages.
- Ask: "Is further investment in protection worth the cost?"

- Selecting a Strategy: Economic Feasibility

Cost Considerations

- Development or Acquisition: Costs for hardware, software, and services.
- Training Fees: Expenses for personnel training.
- Implementation Costs: Expenses for installing, configuring, and testing.
- Service Costs: Vendor fees for maintenance, upgrades, or outsourcing.
- Maintenance Costs: Labor expenses for ongoing verification, maintenance, training, and updates.
- Potential Loss Costs: Costs from asset loss due to termination or compromise.

Benefit Assessment

- Determine the value of using controls to prevent losses.
- Value information assets exposed by vulnerabilities.
- Calculate risk level and express potential losses as Annualized Loss Expectancy (ALE).

- Selecting a Strategy: Cost-Benefit Analysis (CBA)

Single Loss Expectancy (SLE) Calculation

- SLE = Asset Value (AV) × Exposure Factor (EF)
 - EF represents the percentage loss from a specific attack.
 - SLE accounts for the asset value and expected loss percentage.

Annualized Loss Expectancy (ALE) Calculation

- ALE = SLE × ARO
 - ARO indicates the frequency of attacks over a given time period.
 - ALE combines SLE with ARO to estimate annual loss potential.

Cost-Benefit Analysis (CBA) Calculation

- Compare ALE before and after implementing controls.
- CBA = ALE (pre-control) ALE (post-control) Annualized Cost of Safeguard (ACS)
- Pre-control ALE is the risk before implementing the control.
- Post-control ALE is the risk after the control has been in place.
- ACS includes costs for implementing and maintaining the control.

- Selecting a Strategy: Other Feasibility

Organizational Feasibility

- Assess how well the InfoSec alternatives support the organization's efficiency and strategic objectives.
- Ensure the proposed controls align with the organization's mission and goals without hindering opportunities.

Operational Feasibility (Behavioral Feasibility)

- Gauge user and management acceptance and support.
- Evaluate system compatibility with stakeholder requirements.
- Foster user engagement through communication, education, and involvement to reduce resistance to change.

- Selecting a Strategy: Other Feasibility

Technical Feasibility

- Determine if the organization has or can acquire the necessary technology.
- Assess the organization's technical expertise to manage and implement new controls.
- Consider the complexity of technological controls and the organization's capacity to support them.

Political Feasibility

- Analyze the consensus and relationships within the organization's communities of interest.
- Ensure proposed controls fit within the realm of what is politically possible, considering staff resources and organizational dynamics.

- Selecting a Strategy: Alternative Models

Benchmarking

- Compare organizational performance against established measures.
- External Benchmarking: Study practices of other organizations to achieve desired results.
- Internal Benchmarking (Baselining): Compare past performance (baseline) with current performance to identify gaps and plan improvements.
- Use metrics-based or process-based measures for comparisons.

Due Care and Due Diligence

- Ensure the organization meets minimum security standards.
- Reflect actions any prudent organization would take under similar circumstances.

- Selecting a Strategy: Alternative Models

Best Business Practices

- Implement industry-recognized practices balancing information access and protection.
- Aim for effective security without compromising operational needs.

Gold Standard

- Aspire to set the highest industry standards beyond best practices.
- Pursue exemplary security measures to lead the industry.

Government Recommendations and Best Practices

- Follow regulatory requirements and recommendations specific to the industry.
- Utilize government guidelines as benchmarks for controlling InfoSec risks.

ENJOY YOUR BREAK!

SEE YOU ON AUG 20

