

European W components exposed to high thermal and high H fluxes - Selected results of GLADIS experiments-

H. Greuner, H. Maier, B.Böswirth

IEA Implementing Agreement for Fusion Materials Development W-satellite meeting ICFRM-17, 12th October 2015

HHF loading in GLADIS

Designed to test small material samples as well as full size components

Two completely independent ion sources allow superposition of different thermal and particle loading

→ Unique capability for operation with H, He or mixed H/He neutral beams and thermal loads

H. Greuner et al. / Journal of Nuclear Materials 367-370 (2007) 1444-1448

Technical characteristics:

Power
 2 x 1 MW ion sources

Acceleration voltage 15 - 50 kV

Heat flux
 2 - 45 (90) MW/m²

Neutral beam Ø 70 mm (80% central q')

Pulse duration 1 ms - 45 s

Target dim. up to 2 m (0.6 m vacuum lock)

Target cooling

Water, RT
 8.5 l/s, 25 bar

2015 upgrade to meet ITER and DEMO:

- T_{in} 20 230 ±1 °C, T_{out} max. 250°C
- Flow rate ≤ 2l/s , p ≤ 55 bar

Results of HHF testing of W/CuCrZr multilayer composites

Results:

- The HHF performance was investigated up to 20 MW/m², one component failed due to manufacturing fault
- Confirmed the manufacturing technology of CuCrZr infiltration developed by TU Dresden and IPP
- Potential for further improvement: direct bonding between W and the functional graded composite

→ see oral You O44

References:

J.-H. You et al., Journal of Nuclear Materials 438 (2013) 1–6 A. Zivelonghi et al., Journal of Nuclear Materials 417 (2011) 536–539 H. Greuner et al., http://dx.doi.org/10.1016/j.fusengdes.2015.02.011

Graded composite after 20 MW/m² loading

HHF loading of W monoblock on W/Cu laminate tube

Mock-up manufactured by KIT designed for water-cooled DEMO divertor (J. Reiser)
New idea: laminated W/Cu laminate tube

First results of HHF tests:

- Experimental evaluation of thermal performance,
 5 13 MW/m², 15 s, v=10 m/s, T_{in}=20 °C, 10 bar
- Confirmation of the suitability of W- Cu lamir
- further test in progress

13 MW/m² heat flux, thermal equilibrium

W monoblock on W/ Cu laminate tube Results of GLADIS HHF tests, Oct. 2015

Further material investigation and component test activities

Divertor components

- W fibre / W composites, sample test
 - Next step: component tests

- W- Cu composite, concept improvement, component tests
- Continuation of component development with KIT
- ITER W monoblock components, development of IR QA assessment method
- Component test for W7-X, ASDEX upgrade, WEST...

HHF materials

- Self-passivating W-Cr alloys sample
 - Next step: component tests
 → Po3-29, Po4-31

Image of the 10 x 5 x 1.5 mm³ sample at the end of loading Tsurf \sim 1000 °C

Basic research

- Basic research on H/He loaded W materials, erosion studies, H/ He inventory
- Behaviour of H/He damaged W surfaces under ELM like loading, in cooperation FZJ