

FDS21 Practical 2

DaST Team

Foundations of Data Science

Outline

Implement Naïve Bayes from scartch

Reproduce some of the experiment results in the paper
 On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes
 by Andrew Y. Ng and Michael I. Jordan

Prepare the data for the experiments

Implementation of a Naïve Bayes Classifier

Implement a Naïve Bayes Classifier (NBC) as a class following the scikit-learn style

$$p(x, y \mid \theta, \pi)$$
 joint distribution

- **fit** function: Estimates all parameters (θ and π) of the NBC using the training data
- predict function: Predicts the class of new input data

- Assume we have estimated the parameters θ and π
- Given a new input data x_{new} , predict the class label for x_{new}
- Compute for each class $c \in \{1, ..., C\}$ a probability:

$$p(y = c \mid x_{new}, \boldsymbol{\theta}, \boldsymbol{\pi}) = \frac{p(x_{new}, y = c \mid \boldsymbol{\theta}, \boldsymbol{\pi})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})}$$
 (by conditional probability formula)

The probability that x_{new} has class label c

- Assume we have estimated the parameters θ and π
- Given a new input data x_{new} , predict the class label for x_{new}
- Compute for each class $c \in \{1, ..., C\}$ a probability:

$$p(y=1 \mid x_{new}, \pmb{\theta}, \pmb{\pi}) = 0.01$$
 The probability that x_{new} has the class label 1 $p(y=2 \mid x_{new}, \pmb{\theta}, \pmb{\pi}) = 0.25$ The probability that x_{new} has the class label 2 ... $p(y=C \mid x_{new}, \pmb{\theta}, \pmb{\pi}) = 0.03$ The probability that x_{new} has the class label C

The prediction is the class that has the largest probability

$$y_{pred} = \underset{c}{argmax} p(y = c \mid x_{new}, \boldsymbol{\theta}, \boldsymbol{\pi})$$

- Assume we have estimated the parameters θ and π
- Given a new input data x_{new} , predict the class label for x_{new}
- Compute for each class $c \in \{1, ..., C\}$ a probability:

$$p(y=c \mid x_{new}, \boldsymbol{\theta}, \boldsymbol{\pi}) = \frac{p(x_{new}, y=c \mid \boldsymbol{\theta}, \boldsymbol{\pi})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})} \quad \text{(by conditional probability formula)}$$
 class prior
$$= \frac{p(y=c \mid \boldsymbol{\pi}) \cdot p(x_{new} \mid y=c, \boldsymbol{\theta})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})} \quad \text{(by chain rule)}$$

The denominator is same for all classes, so we do not need to compute it

Class Prior
$$p(y = c \mid \boldsymbol{\pi})$$

- Class prior is only related to the labels
- In **fit** function:

$$\circ$$
 $\pi = {\pi_1, ..., \pi_c}$: Estimate a probability π_c for each class c

$$\circ \quad \pi_c = p(y = c) = \frac{\text{# of appearance of class } c}{\text{# of data}}$$

• Example:

$$\circ \quad \boldsymbol{\pi} = \{\pi_{Beyonce}, \pi_{Borat}, \pi_{Kanye\ West}\}$$

Class Prior $p(y = c \mid \boldsymbol{\pi})$

- Class prior is only related to the labels
- In **fit** function:

$$\circ$$
 $\boldsymbol{\pi} = \{\pi_1, ..., \pi_c\}$: Estimate a probability π_c for each class c

$$\circ \quad \pi_c = p(y = c) = \frac{\text{# of appearance of class c}}{\text{# of data}}$$

• In **predict** function: For a class *c*

$$\circ \quad p(y=c\mid \boldsymbol{\pi})=\pi_c$$

• Example:

$$o \quad p(y = Beyonce \mid \boldsymbol{\pi}) = \pi_{Beyonce} = \frac{4}{6}$$

Voted in	Annual	State	Candidate
2016?	Income		Choice
Y	50K	OK	Beyoncé
N	173K	CA	Beyoncé
Y	80K	NJ	Borat
Y	150K	WA	Beyoncé
N	25K	WV	Kanye West
Y	85K	II.	Bevoncé

- Assume we have estimated the parameters θ and π
- Given a new input data x_{new} , predict the class label for x_{new}
- Compute for each class $c \in \{1, ..., C\}$ a probability:

$$p(y=c \mid x_{new}, \boldsymbol{\theta}, \boldsymbol{\pi}) = \frac{p(x_{new}, y=c \mid \boldsymbol{\theta}, \boldsymbol{\pi})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})} \quad \text{(by conditional probability formula)}$$
 class prior
$$= \frac{p(y=c \mid \boldsymbol{\pi}) \cdot p(x_{new} \mid y=c, \boldsymbol{\theta})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})} \quad \text{(by chain rule)}$$

The denominator is same for all classes, so we do not need to compute it

$$p(x \mid y = c, \theta) = \prod_{j=0}^{D} p(x_{j} \mid y = c, \theta_{jc})$$
 (by the conditional independence assumption of NB)

Compute the probability for each feature *j*

- $p(x \mid y = c, \theta) = \prod_{j=1}^{D} p(x_j \mid y = c, \theta_{jc})$ (by the conditional independence assumption of NB)
- In **fit** function: Estimate a parameter θ_{jc} for each class c and each feature j

- $p(x \mid y = c, \theta) = \prod_{j=1}^{D} p(x_j \mid y = c, \theta_{jc})$ (by the conditional independence assumption of NB)
- In **fit** function: Estimate a parameter θ_{jc} for each class c and each feature j

- $p(x \mid y = c, \theta) = \prod_{j=1}^{D} p(x_j \mid y = c, \theta_{jc})$ (by the conditional independence assumption of NB)
- In **fit** function: Estimate a parameter θ_{ic} for each class c and each feature j

- $p(x \mid y = c, \theta) = \prod_{j=1}^{D} p(x_j \mid y = c, \theta_{jc})$ (by the conditional independence assumption of NB)
- In **fit** function: Estimate a parameter θ_{ic} for each class c and each feature j

- $p(x \mid y = c, \theta) = \prod_{j=1}^{D} p(x_j \mid y = c, \theta_{jc})$ (by the conditional independence assumption of NB)
- In **fit** function: Estimate a parameter θ_{ic} for each class c and each feature j

- $p(x \mid y = c, \theta) = \prod_{j=1}^{D} p(x_j \mid y = c, \theta_{jc})$ (by the conditional independence assumption of NB)
- In **fit** function: Estimate a parameter θ_{ic} for each class c and each feature j

• In **predict** function: For a new input data x_{new} ,

$$p(x_{new}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_{new}^{j}|y=c,\theta_{jc})$$

• In **predict** function: For a new input data x_{new} ,

$$p(x_{new}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_{new}^{j}|y=c,\theta_{jc})$$

 x_{new}

y = c

• In **predict** function: For a new input data x_{new} ,

$$p(x_{new}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_{new}^{j}|y=c,\theta_{jc})$$

• In **predict** function: For a new input data x_{new} ,

$$p(x_{new}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_{new}^{j}|y=c,\theta_{jc})$$

Estimation of θ_{jc}

- Use a distribution to model the data with feature j and class c
- θ_{ic} represents the parameters for the distribution
- The parameter θ_{jc} depends on the type of feature j
 - Continuous: Gaussian Distribution
 - Binary: Bernoulli Distribution
 - Categorical: Multinoulli Distribution

Estimation of θ_{jc} : Gaussian

Estimation of θ_{jc} : Gaussian

Compute $p(x_{new}^j \mid y = c, \theta_{jc})$ using θ_{jc} : Gaussian

Compute $p(x_{new}^j \mid y = c, \theta_{jc})$ using θ_{jc} : Gaussian

Bernoulli Distribution

The probability mass function is

$$f(x) = \begin{cases} 1 - p, & \text{if } x = 0 \\ p, & \text{if } x = 1 \end{cases}$$

where $x \in \{0,1\}$ and p is the probability that x = 1.

• $\theta_{jc} = p$

Multinoulli Distribution

- Optional task (bonus points)
- Also called Categorical distribution
- https://en.wikipedia.org/wiki/Categorical_distribution

It is a special case of the multinomial distribution.

Put Everything Together

• **fit** function: Estimates all parameters

$$\circ \quad \boldsymbol{\pi} = \{\pi_1, \dots, \pi_C\}$$

- \circ $\theta = \{\theta_{ic} \mid \text{ for each class } c \text{ and each feature } j\}$
- **predict** function: For a new data x_{new} , computes for each class c

$$p(y = c \mid x_{new}, \boldsymbol{\theta}, \boldsymbol{\pi}) = \frac{p(y = c \mid \boldsymbol{\pi}) \cdot p(x_{new} \mid y = c, \boldsymbol{\theta})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})}$$
$$= \frac{\pi_c \cdot \prod_j^D p(x_{new}^j \mid y = c, \theta_{jc})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})}$$

 Choose the class with largest probability (no need to compute the denominator as it is same for all classes)

Pseudocode: fit

```
function fit(X train, y train):
    for each class c:
        // estimate class prior
        pi c \leftarrow p(y=c)
        for each feature j:
            // get the data with class c and feature j
            X_jc <- X_train[y_train==c, j]</pre>
            // estimate theta_jc
            // the estimation should be based on the type of j
            theta_jc <- estimate theta_jc on X_jc
```

Pseudocode: predict

```
function predict(x_new): p(y=c\mid x_{new}, \boldsymbol{\theta}, \boldsymbol{\pi}) = \frac{\pi_c \cdot \prod_j^D p(x_{new}^j \mid y=c, \theta_{jc})}{p(x_{new} \mid \boldsymbol{\theta}, \boldsymbol{\pi})} for each class c: prob\_c = pi\_c for each feature j: x\_new\_j = x\_new[:,j] prob\_c *= p(x\_new\_j \mid theta\_jc) return class c with the largest prob c
```

- In this pseudocode, the input of the predict function is a single data point.
- In the skeleton code, the input of the predict function is a matrix with multiple data points. The function should predict the labels for all data points.

Skeleton Code

On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes

- Andrew Y. Ng and Michael I. Jordan
- NIPS'01
- Compares discriminative and generative learning as typified by logistic regression and naive bayes
- Asymptotic accuracy
 - The best accuracy the classifier can achieve given infinite training data
- Data efficiency
 - The amount of training data required to get (close) to the asymptotic accuracy

Discriminative Classifiers

- Consider the dataset that has
 - two features X1 and X2 and
 - the labels with two classes {red, blue}
- Discriminative classifiers model
 p(y | x) using the data
 - p(y = red | x) and p(y = blue | x)

Discriminative Classifiers

- Consider the dataset that has
 - two features X1 and X2 and
 - the labels with two classes {red, blue}
- Discriminative classifiers model
 p(y | x) using the data
 - p(y = red | x) and p(y = blue | x)
- Discriminative classifiers learn the decision boundary that separates the data points with two classes
 - $p(y = red \mid x) = p(y = blue \mid x)$

Generative Classifiers

- Consider the dataset that has
 - two features X1 and X2 and
 - the labels with two classes {red, blue}
- Generative classifiers try to model
 p(x,y) (by modeling both p(x | y) and p(y))
 using the data

Generative Classifiers

- Consider the dataset that has
 - two features X1 and X2 and
 - the labels with two classes {red, blue}
- Generative classifiers try to model
 p(x,y) (by modeling both p(x | y) and p(y))
 using the data
 - Model the data using multivariate Gaussian distributions

Generative Classifiers

- Consider the dataset that has
 - two features X1 and X2 and
 - the labels with two classes {red, blue}
- Generative classifiers try to model
 p(x,y) (by modeling both p(x | y) and p(y))
 using the data
 - Model the data using multivariate Gaussian distributions
- Apply Bayes rule to derive p(y | x):

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Discriminative vs. Generative - Widely-held Beliefs

Two widely-held beliefs

- Asymptotic accuracy
 - Discriminative classifiers are almost always to be preferred to generative ones
 - "One should solve the [classification] problem directly and never solve a more general problem as an intermediate step [such as modeling p(x,y)]" by Vapnik
- Data efficiency
 - The number of records to fit a model is often roughly **linear** (or at most some low-order polynomial) in the number of parameters of a model

Discriminative vs. Generative - Widely-held Beliefs

Two widely-held beliefs

- Asymptotic accuracy
 - Discriminative classifiers are almost always to be preferred to generative ones
 - "One should solve the [classification] problem directly and never solve a more general problem as an intermediate step [such as modeling p(x,y)]" by Vapnik
- Data efficiency
 - The number of records to fit a model is often roughly **linear** (or at most some low-order polynomial) in the number of parameters of a model

Are these beliefs always true?

The paper studied the beliefs both empirically and theoretically.

Discriminative vs. Generative - Theoretical Conclusions

Generative classifiers:

- Stronger modeling assumptions, e.g.,
 - the distribution of p(x | y) and
 - features are conditionally independent given a class (used by naive bayes)
- Require less training data to learn "well": O(logD)
 - if the assumptions are (approximately) correct
 - D is the number of parameters

Discriminative classifiers:

- Significantly weaker assumptions (more robust)
- Require more training data: O(D)

Discriminative vs. Generative - Experiments

- Test logistic regression and naive bayes on 15 datasets
 - 8 with continuous inputs and
 - 7 with categorical inputs
- m: number of data points used for training
- Dashed line: logistic regression
- Solid line: naive bayes
- Even though the naive bayes classifier performs better initially, the logistic regression classifier eventually catches up and exceeds

Discriminative vs. Generative - Experiments

- Test logistic regression and naive bayes on 15 datasets
 - 8 with continuous inputs and
 - 7 with categorical inputs
- m: number of data points used for training
- Dashed line: logistic regression
- Solid line: naive bayes
- Logistic regression's performance did not catch up to that of naive bayes
- This is observed primarily for small datasets for which m does not grow large enough

Read more: Murphy 8.6

Skeleton Code

Data Preparation

Notebook: prepare_data.ipynb

- Data Cleaning (handling missing values)
- Handling Text and Categorical Features
- Feature Scaling
- Get Test Data