Sobre Recurrencias Lineales con Coeficientes Constantes

Blai Bonet

Primera Versión: 07/02/2007, Ultima Revisión: 07/02/2007

1 Secuencias y Recurrencias

Nos ocupamos de secuencias de números de la forma $\mathbf{a} = \langle a_0, a_1, a_2, a_3, \ldots \rangle$, y más específicamente de secuencias que pueden ser descritas por recurrencias lineales con coeficientes constantes de la forma:

$$C_0 a_n + C_1 a_{n-1} + \dots + C_{r-1} a_{n-r+1} + C_r a_{n-r} = f(n), \tag{1}$$

donde $C_0, C_r \neq 0$, junto con r condiciones de borde, típicamente, los r valores a_0, \ldots, a_{r-1} .

2 Método de Solución

Más adelante veremos que la solución general de la recurrencia es de la forma $a_n = a_n^h + a_n^p$ donde a_n^h es la solución general de la recurrencia homogenea asociada a (1), y a_n^p es una solución particular cualquiera.

2.1 Solución Homogenea

Similar a la resolución de una ecuación diferencial lineal con coeficientes constantes, construimos la recurrencia homogenea con respecto a (1):

$$C_0 a_n + C_1 a_{n-1} + \dots + C_{r-1} a_{n-r+1} + C_r a_{n-r} = 0$$
(2)

en donde hemos reemplazado el lado derecho por la constante 0. Para conseguir la solución general a (2), consideramos el polinomio característico, de grado r, asociado:

$$C_0 z^r + C_1 z^{r-1} + \dots + C_{r-1} z + C_r = 0. (3)$$

Sean $\alpha_1, \ldots, \alpha_d$ las raíces del polinomio con multiplicidades m_1, \ldots, m_d donde $\sum_i m_i = r$. Consideramos dos casos: el caso d = r donde todas las raíces son distintas y de multiplicidad 1, y el caso d < r donde algunas raíces son de multiplicidad mayor a 1. Para el primer caso, la solución general homogenea es:

$$a_n^h = A_1 \alpha_1^n + \dots + A_r \alpha_r^n$$

donde las r constantes A_k son determinadas por las condiciones de borde de la secuencia. En el segundo caso, que también incluye al primer caso como caso especial, la solución general es de la forma:

$$a_n^h = \sum_{k=1}^d \sum_{i=0}^{m_k-1} A_{k,i} n^i \alpha_k^n.$$

De nuevo, existen r constantes $A_{k,i}$ determinadas por las condiciones de borde de la recurrencia.

2.2 Solución Particular

Es cualquier solución (secuencia) a^p que satisface (1) pero no necesariamente las condiciones de borde. Una solución particular se consigue tipícamente por el método de ensayo y error. El primer intento debe ser basado a la función f(n) y si éste falla, se debe entonces corregir con la información obtenida de la falla.

2.3 Ejemplos

2.3.1 Número de Palabras Cuaternarias con un Número Par de 0s

Determine el número de palabras de longitud n sobre el alfabeto $\{0,1,2,3\}$ que contienen un número par de 0s. Tomemos una dicha palabra cualquiera y veamos el primer símbolo. Si es 1, 2 ó 3, entonces el resto de la palabra, de longitud n-1, debe tener un número par de 0s. Si el primer símbolo es 0, el resto de la palabra tiene un número impar de 0s. Por lo tanto, si a_n representa el número de dichas palabras de longitud n, tenemos

$$a_n = 3a_{n-1} + (4^{n-1} - a_{n-1}) = 2a_{n-1} + 4^{n-1},$$

ya que la expresión entre paréntesis es el número de palabras de longitud n-1 con un número impar de 0s. Claramente, los primeros elementos de la secuencia son $a_0=1,\ a_1=3,\ a_2=10,$ etc. La solución de la recurrencia homogenea es de la forma $a_n^h=A2^n$. Para conseguir una solución particular, probemos algo de la forma $a_n^p=B4^n$ ya que $f(n)=4^{n-1}$ y en consecuencia a_n^p debe ser de orden 4^n . Metiendo a_n^p en la recurrencia, obtenemos

$$B4^{n} - 2B4^{n-1} = 4^{n-1} \implies 4B - 2B = 1 \implies B = 1/2$$
.

Entonces, la solución general a la recurrencia es $a_n = A2^n + 4^n/2$. Usamos la condición de borde $a_0 = 1$ para encontrar A = 1/2. Así, $a_n = 4^n/2 + 2^n/2$ es el número buscado. Es fácil ver $a_0 = 2^0/2 + 4^0/2$, $a_1 = 2/2 + 4/2$ y $a_2 = 2^2/2 + 4^2/2$.

2.3.2 Determinantes

Evaluar el determinante $n \times n$:

$$a_n = \begin{vmatrix} 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 2 \end{vmatrix}$$

Utilice el método de cofactores, primero por columna y luego por fila, para obtener la recurrencia:

$$a_n = 2a_{n-1} - a_{n-2}$$

con las condiciones de borde $a_1=2$ y $a_2=3$. El polinomio característico $z^2-2z+1=(z-1)^2$ tiene la raíz $\alpha=1$ con multiplicidad 2. Entonces, la solución homogenea y general, ya que f(n)=0, es de la forma $a_n=(An+B)1^n$. Utilice las condiciones de borde para obtener A+B=2 y 2A+B=3. Entonces, A=B=1 y el determinante es $a_n=n+1$.

3 Justificación del Método

Observe que todas la secuencias que satisfacen la recurrencia homogenea (2) (sin contar las condiciones de borde) forman un espacio vectorial \mathcal{H} sobre el campo de los reales:

$$\mathcal{H} = \{ \boldsymbol{a} \in \mathbb{R}^{\infty} : \boldsymbol{a} \text{ satisface } (2) \}.$$

Es fácil ver que $\dim(\mathcal{H}) = r$ ya que basta conocer las primeras r coordenadas de una secuencia para recuperar toda la secuencia. Sea \mathcal{A} el conjunto de secuencias que satisfacen (1), y $\mathbf{a} \in \mathcal{A}$ una solución particular.

Teorema 1 A = H + a.

Blai Bonet 2

Prueba: Para ver que $\mathcal{H} + \boldsymbol{a} \subseteq \mathcal{A}$ basta tomar una secuencia $\boldsymbol{a}' \in \mathcal{H}$ y verificar $\boldsymbol{a} + \boldsymbol{a}' \in \mathcal{A}$. Para ver esto, sume las siguientes igualdades

$$\frac{C_0a_n + C_1a_{n-1} + \dots + C_{r-1}a_{n-r+1} + C_ra_{n-r} = f(n)}{C_0a'_n + C_1a'_{n-1} + \dots + C_{r-1}a'_{n-r+1} + C_ra'_{n-r} = 0}{C_0[a_n + a'_n] + C_1[a_{n-1} + a'_{n-1}] + \dots + C_{r-1}[a_{n-r+1} + a'_{n-r+1}] + C_r[a_{n-r} + a'_{n-r}] = f(n)},$$

y por la tanto $\mathbf{a} + \mathbf{a}' \in \mathcal{A}$. Similarmente, para todo $\mathbf{a}', \mathbf{a}'' \in \mathcal{A}$, tenemos $\mathbf{a}' - \mathbf{a}'' \in \mathcal{H}$ ya que los lados derechos se cancelan. Entonces, para $\mathbf{a}' \in \mathcal{A}$, tenemos $\mathbf{a}' = (\mathbf{a}' - \mathbf{a}) + \mathbf{a} \in \mathcal{H} + \mathbf{a}$; i.e. $\mathcal{A} \subseteq \mathcal{H} + \mathbf{a}$.

Conjuntos de vectores que son el resultado de "desplazar" un espacio vectorial por un vector son llamados espacios afines. Sean $\alpha_1, \ldots, \alpha_d$ las raíces del polinomio característico, y defina las secuencias $\boldsymbol{\alpha}(k,i)$, para $1 \le k \le d, 0 \le i < m_d$, como $\alpha(k,i)_n = \alpha_k^n n^i$.

Teorema 2 $\mathcal{H} = \text{span}(\{\alpha(k, i) : 1 \le k \le d, 0 \le i < m_d\}).$

Prueba: Primero veamos $\mathcal{H} \supseteq \operatorname{span}(\{\boldsymbol{\alpha}(k,i)\}_{k,i})$. Para esto, basta mostrar $\boldsymbol{\alpha}(k,i) \in \mathcal{H}$. Para, i=0, $\alpha(k,0)_n = \alpha_k^n$ y al ser α_k solución del polinomio característico, obtenemos $\boldsymbol{\alpha}(k,0) \in \mathcal{H}$. Si $m_k > 1$, entonces α_k no sólo satisface (3) pero también (3) multiplicado por z^{n-r} y su derivada, i.e.

$$C_0 z^n + C_1 z^{n-1} + \dots + C_{r-1} z^{n-r+1} + C_r z^{n-r} = 0,$$

$$C_0 n z^{n-1} + C_1 (n-1) z^{n-2} + \dots + C_{r-1} (n-r+1) z^{n-r} + C_r (n-r) z^{n-r-1} = 0.$$

Reemplazando z por α_k y multiplicando por α_k ambos lados, obtenemos

$$C_0 n \alpha_k^n + C_1 (n-1) \alpha_k^{n-1} + \dots + C_{r-1} (n-r+1) \alpha_k^{n-r+1} + C_r (n-r) \alpha_k^{n-r} = 0$$

y entonces $\alpha(k,1) \in \mathcal{H}$. De manera similar se muestra $\alpha(k,i) \in \mathcal{H}$ para todo $1 \le k \le d, 0 \le i < m_d$.

Falta mostrar $\mathcal{H} \subseteq \text{span}(\{\boldsymbol{\alpha}(k,i)\}_{k,i})$. Para esto, mostramos que $\{\boldsymbol{\alpha}(k,i)\}_{k,i}$ es un conjunto de r vectores linealmente independientes. Sean $\{A_{k,i}\}$ r constantes tales que

$$\sum_{k=1}^{d} \sum_{i=0}^{m_k-1} A_{k,i} \, \boldsymbol{\alpha}(k,i) = 0.$$

Es decir, para todo $n \ge 0$,

$$\sum_{k=1}^{d} \sum_{i=0}^{m_k-1} A_{k,i} \, n^i \alpha_k^n = 0.$$
 (4)

Como $C_r \neq 0$, note que $|\alpha_k| > 0$. Sin perdida de generalidad asuma que $0 < |\alpha_1| < |\alpha_2| < \cdots < |\alpha_d|$. Dividiendo (4) por $n^{m_d-1}\alpha_d^n$ y tomando el límite cuando n tiende infinito vemos

$$0 = \sum_{k=1}^{d} \sum_{i=0}^{m_k-1} A_{k,i} \frac{n^i \alpha_k^n}{n^{m_d-1} \alpha_d^n} \to A_{d,m_d-1}.$$

Por lo tanto, $A_{d,m_d-1}=0$. Ahora, divida (4) por $n^{m_d-2}\alpha_d^n$ y tome el límite para obtener $A_{d,m_d-2}=0$. Continue hasta obtener $A_{1,0}=\cdots=A_{1,m_d-1}=A_{2,0}=\cdots=A_{d,m_d-1}=0$.

La correctitud y completitud del método es una consecuencia directa de ambos resultados ya que toda recurrencia en \mathcal{A} puede escribirse como una solución particular más una solución homogenea.

Blai Bonet 3