Juse 2 12/6/99 Sect

EE 112, Section J Final Practical Exam

12 / 06 / 1999. Points 100

Part 1: (60 Points)

A: Using Karnaugh maps, design a minimal circuit to implement the function described by the following truth table:

A	В	C	Output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(~ represents inversion)

	~B~C	~BC	ВС	B~C
~A	1		(
A	1			1

BC+ABC + ABC not a minimal function

Design the circuit in Design Architect. Make sure your circuit has all the components necessary to compile a BIT file.

- B: Simulate your design. Make sure to simulate all possible input states. Print out your circuit(top level design and bottom level design), a waveform showing your simulation, and a list showing your simulation.
- C: Place 'patgen' in your design and create a BIT file for your design. Print out the ".par" file associated with the design. The ".par" file will be in this directory "'your design name'/xproj/".
- D: Verify your simulation results to match the equation given above.

Look at List shed

Part 2: (40 Points)

- A: Hook the scope up to watch the circuit function. Pins 3, 4, and 5 are probe points for the input to the logic function of the circuit in question. (These signals are generated on the board.) Pin 6 is the output of the logic function.
- B: Download "final.bit" into the proto-board and adjust the scope to obtain a stable trace of the four signals. Label the signals appropriately.
- C: From the output waveforms determine the logic function being implemented by the circuit in question.

D: Minimize the logic function using Karnaugh maps. (Bonus Points 5

		Ų		0		apar (2 of the same s	
		00	01	11	10	T0.+ D1	
		~B~C	~BC	BC	B~C	1 (RANT D)	method 1
						7.97	7
6	~A		[[]		1	10= BC + AC + ABC	1/+5
•					\mathcal{L}		J ,
1	Α		1			0-00000	and the many
ľ						DEBE BLACE)	medica 2
							•

Jesse Lai List Output

I poshed at this list outpit & compared it to the expected results

.

Jean Lai Trave Potat

PAR: Xilinx Place And Route M1.5.25.
Copyright (c) 1995-1998 Xilinx, Inc. All rights reserved.

Mon Dec 6 17:08:58 1999

/usr/local/xilinx.15i/bin/sol/par -w -ol 2 -d 0 map.ncd exam 2.ncd exam 2.pcf

Constraints file: exam 2.pcf

Loading device database for application par from file "map.ncd".

"exam_2" is an NCD, version 2.27, device xc4005e, package pc84, speed -1
Loading device for application par from file '4005e.nph' in environment
/usr/local/xilinx.15i.

Device speed data version: x1 0.96 PRELIMINARY.

Resolved that IOB <A> must be placed at site P3.

Place IOB A in site P3.

Resolved that IOB must be placed at site P4.

Place IOB B in site P4.

Resolved that IOB <C> must be placed at site P5.

Place IOB C in site P5.

Resolved that IOB <0> must be placed at site P6.

Place IOB O in site P6.

Resolved that IOB <P13> must be placed at site P13.

Place IOB P13 in site P13.

Resolved that IOB <P14> must be placed at site P14.

Place IOB P14 in site P14.

Resolved that IOB <P15> must be placed at site P15.

Place IOB P15 in site P15.

Resolved that IOB <PATO> must be placed at site P7.

Place IOB PATO in site P7.

Resolved that IOB <PAT1> must be placed at site P8.

Place IOB PAT1 in site P8.

Resolved that IOB <PAT2> must be placed at site P9.

Place IOB PAT2 in site P9.

Resolved that IOB <PAT3> must be placed at site P10.

Place IOB PAT3 in site P10.

Resolved that IOB <SYNC> must be placed at site P77.

Place IOB SYNC in site P77.

Device utilization summary:

Number of External IOBs Flops:	12 out of 61 19%
Latches:	0
Number of CLBs	5 out of 196 2%
Total CLB Flops:	4 out of 392 1%
4 input LUTs:	8 out of 392 2%
3 input LUTs:	1 out of 196 1%
Number of OSCILLATORs	1 out of 1 100%

Overall effort level (-ol): 2 (set by user)
Placer effort level (-pl): 2 (default)

Placer cost table entry (-t): 1 Router effort level (-rl): 2 (default)

Starting initial Placement phase. REAL time: 23 secs Finished initial Placement phase. REAL time: 24 secs

Starting Constructive Placer. REAL time: 25 secs Finished Constructive Placer. REAL time: 25 secs

Writing design to file "exam 2.ncd".

Starting Optimizing Placer. REAL time: 25 secs Optimizing

Swapped 79 comps.

- 3

5940 Xilinx Placer [1] REAL time: 26 secs

Finished Optimizing Placer. REAL time: 26 secs

Writing design to file "exam_2.ncd".

Total REAL time to Placer completion: 26 secs Total CPU time to Placer completion: 19 secs

Starting router resource preassignment

0 connection(s) routed; 38 unrouted.

Completed router resource preassignment. REAL time: 27 secs

Starting iterative routing.

Routing active signals.

End of iteration 1

38 successful; 0 unrouted; (0) REAL time: 27 secs

Constraints are met.

Routing PWR/GND nets.

Power and ground nets completely routed.

Writing design to file "exam 2.ncd".

Starting cleanup

Improving routing.

End of cleanup iteration 1

38 successful; 0 unrouted; (0) REAL time: 31 secs

Writing design to file "exam 2.ncd".

Total REAL time: 32 secs Total CPU time: 23 secs

End of route. 38 routed (100.00%); 0 unrouted.

No errors found.

Completely routed.

This design was run without timing constraints. It is likely that much better circuit performance can be obtained by trying either or both of the following:

- Enabling the Delay Based Cleanup router pass, if not already enabled
- Supplying timing constraints in the input design

Total REAL time to Router completion: 32 secs Total CPU time to Router completion: 24 secs

Generating PAR statistics.

The Delay Summary Report

The Score for this design is: 201

The Number of signals not completely routed for this design is: 0

The Average Connection Delay for this design is	: 1.531 ns
The Average Connection Delay on critical nets i	s: 0.000 ns
The Average Clock Skew for this design is:	0.270 ns
The Maximum Pin Delay is:	3.621 ns
The Average Connection Delay on the 10 Worst Ne	ts is: 2.424 ns

Listing Pin Delays by value: (ns)

Writing design to file "exam_2.ncd".

All signals are completely routed.

Total REAL time to PAR completion: 35 secs Total CPU time to PAR completion: 26 secs

PAR done.

