Bayesian Modeling - Regression Homework

```
library(tidyverse)
library(rstan)
library(kableExtra)

rmse <- function(error)
{
    sqrt(mean(error^2))
}</pre>
```

Building a Simple Bayesian Regression Model

Submit an R file (to circumvent Stan-Markdown technical issues) with the following code: Using the Auto price data, create a linear model using lm (we'll use these parameters for our initial priors). We'll narrow this down to 2 categories (bmw and toyota) to keep it manageable. The following code should work:

Make	Intercept	Slope
bmw	11505.9340	105.2228
toyota	123.1098	105.2228

Then create a plot showing the regression line (code shown for guidance):

Now create a Baysian Model using Stan, using the lm parameters (you need to use all of them - use vBeta) for priors. (hint, give the intercepts room to move - e.g., a sd of 50 or so, but give the slope little room to move - e.g., a sd of 1 or so)

Make	Intercept	Slope
bmw	11507.3539	105.2333
toyota	123.3887	105.2333

And show the plot for the same models as lm as a visual check:

Now, say we have information that prices will increase by \$5,000 next year. Update the priors and rerun the models. Show your new coefficients and plot the results:

Make	Intercept	Slope
bmw	16501.810	101.8422
toyota	5110.225	101.8422

