Hamiltonian Monte Carlo

M.A, S.B, A.L, L.N-H

University of Toronto

November 28, 2023

What are we doing?

Generate a sample using a **dynamical system**.

Why? There are plenty of easy to tune algorithms that are available to simulate a dynamical system.

The challenge is to set up the dynamical system in a way that allows for a sample to be generated.

Key Definitions

Dynamical System

For the purposes of this presentation we will be considering dynamical systems of this form: Assuming that $\mathbf{x} \in \mathbb{R}^n$

$$\frac{d}{dt}x_1(t) = f_1(\mathbf{x})$$

$$\frac{d}{dt}x_2(t) = f_2(\mathbf{x})$$

$$\vdots$$

$$\vdots$$

$$\frac{d}{dt}x_n(t) = f_n(\mathbf{x})$$

Key Definitions

Phase Space and State

In the system from the slide above, the vector $\mathbf{x} \in \mathbb{R}^n$ is called a **state**. The set of all possible states is called a **phase space**

Key Definitions

Flow

Let $x_0 \in U$ be the initial state and $\mathbf{x}(t)$ solves the system with initial condition $\mathbf{x}(0) = x_0$.

We call the map

$$\phi: \mathbb{R} \times U \to U$$

$$(t, x_0) \xrightarrow{\phi} \mathbf{x}(t)$$

the flow of the system, denoted as $\phi(x_0, t)$.

Examples

Consider the following system:

$$\frac{d}{dt}x = \dot{x} = y$$
$$\frac{d}{dt}y = \dot{y} = -x$$

Examples

Figure: Phase Portrait with Flow (initial condition: $x_0 = (\frac{1}{2}, \frac{1}{2})$

What is a Hamiltonian System?

Hamiltonain System

Suppose that we have the following dynamical system in \mathbb{R}^{2n} , defined by

$$\dot{x_i} = \frac{\partial}{\partial y_i} H(\mathbf{x}, \mathbf{y}),$$

$$\dot{y_i} = -\frac{\partial}{\partial x_i} H(\mathbf{x}, \mathbf{y}),$$

where $(\mathbf{x}, \mathbf{y}) = (x_1, y_1, x_2, y_2, \dots, x_n, y_n) \in \mathbb{R}^{2n}$ is a point in the phase space. The above is a Hamiltonian system, and $H(\mathbf{x}, \mathbf{y})$ is called the Hamiltonian of the system.

Why would we use a Hamiltonian system?

Hamiltonian systems are what are called conservative systems (they preserve energy). Mathematically, it can be shown that conservative systems have the following properties:

- Invariant to flow: $H(\mathbf{x_0}) = H(\phi(\mathbf{t}, \mathbf{x_0}))$
- At each initial condition $\mathbf{x_0}$, the flow $\phi(t, \mathbf{x_0})$ is either a fixed point, or a periodic orbit. So these systems have a nice structure.
- No attracting fixed points. That is, if $\mathbf{x_0}$ is not a fixed point, the flow $\phi(t, \mathbf{x_0})$ will never end up stuck at a fixed point.
- Sometimes it's the case that a Hamiltonian might be written as the sum of kinetic and potential energies, i.e. $H(\mathbf{x}, \mathbf{y}) = U(\mathbf{x}) + K(\mathbf{y})$

Setting Up the Dynamical System for simulation

The goal is to generate a sample for a k dimensional random vector $\theta \sim F_{\Theta}$ with density $f(\cdot)$ using a 2k dimensional Hamiltonian system (i = 1, 2, ..., k):

$$\frac{d}{dt}\theta_i = \dot{\theta}_i = \frac{\partial H(\theta, p)}{\partial p_i}$$

$$\frac{d}{dt}p_i = \dot{p_i} = -\frac{\partial H(\theta, p)}{\partial \theta_i}$$

Setting Up the Dynamical System

In order to transform this system into something that can be used to generate a sample, we make 2 important assumptions.

- $\mbox{\bf 1}$ Assume that the Hamiltonian function may be written as $H(\theta,p)=U(\theta)+K(p)$
- 2 Assume that θ comes from a distribution with probability density function $f(\theta)$

So if we are able to successfully simulate a dynamical system with these properties, then the resulting generated θ values will indeed be a sample for θ

Canonical Distribution - What should $U(\theta)$ be?

From statistical mechanics, we may assign a joint probability function to (θ, \mathbf{p}) :

$$\pi(\theta, \mathbf{p}) = \frac{1}{Z} e^{-H(\theta, \mathbf{p})} = \frac{1}{Z} e^{-U(\theta)} e^{-K(\mathbf{p})} = \underbrace{\exp[-U(\theta)]}_{\pi(\theta)} \underbrace{\frac{1}{Z} \exp[-K(\mathbf{p})]}_{\pi(\mathbf{p}|\theta)}$$

- We know what $\pi(\theta)$ is: $\pi(\theta) = f(\theta)$ so we let $U(\theta) = -\log(f(\theta))$
- $\pi(\theta, \mathbf{p}) = \frac{1}{Z} f(\theta) e^{-K(\mathbf{p})}$

So far we have:

$$\dot{\theta_i} = \frac{\partial K(p)}{\partial p_i}$$

$$\dot{p_i} = \frac{\partial \log(f(\theta))}{\partial \theta_i}$$

We only have half the story, we now restrict our attention to K(p)

Choice of Kinetic Energy

The first substantial obstacle that we come across is choosing the kinetic energy system.

Empirically, it seems to be the case that a quadratic form for the kinetic energy performs well (Betancourt, 2017). $K(p) = \frac{1}{2}p^TM^{-1}p$

• Now
$$\pi(p|\theta) = \frac{e^{-\frac{1}{2}p^T M^{-1}p}}{|M|^{\frac{1}{2}}(2\pi)^{\frac{k}{2}}} \quad \left(f(\mathbf{x}) = \frac{e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}}{|\mathbf{\Sigma}|^{1/2}(2\pi)^{k/2}}\right)$$

• M is a tuning parameter of our model.

The System

$$\dot{\theta} = \frac{\partial K(p)}{\partial p_i} = p^T \mathbf{M}^{-1} p$$
$$\dot{p_i} = -\frac{\partial U(\theta)}{\partial \theta_i} = \frac{\partial \log(f(\theta))}{\partial \theta_i}$$

Simulating the flow: The leapfrog integration algorithm

Assuming M = I, given some starting point $(\theta(t), \mathbf{p})$, and step size ϵ :

$$p_{i}\left(t + \frac{\epsilon}{2}\right) = p_{t}(t) - \frac{\epsilon}{2} \frac{\partial U}{\partial \theta_{i}}(\theta(t))$$

$$\theta_{i}(t + \epsilon) = \theta_{i}(t) + \epsilon p_{i}\left(t + \frac{\epsilon}{2}\right)$$

$$p_{i}(t + \epsilon) = p_{i}\left(t + \frac{\epsilon}{2}\right) - \frac{\epsilon}{2} \frac{\partial U}{\partial \theta_{i}}(\theta(t + \epsilon))$$

Leapfrog Integration Examples

Figure: Leapfrog Algorithm (from Neal, 2002)

Correcting Numerical Error

- Sometimes the leapfrog algorithm can lead to numerical error
- The system is supposed to be energy preserving, we can use this fact to measure the numerical error
- One way to correct for numerical error is to use something similar to the metropolis algorithm.

Correcting Numerical Error

Let $\phi(t_0, \theta_0, \mathbf{p_0}) = (\theta_*, \mathbf{p_*})$. The metropolis ratio is defined as $\alpha = \frac{\pi(\theta_*, \mathbf{p_*})}{\pi(\theta_0, \mathbf{p_0})}$. Using this metropolis ratio, the following acceptance-rejection scheme is constructed:

- **1** $Generate <math>u \sim U(0,1)$:
- 2 If $u \leq \alpha$, then the numerical error is acceptable (we 'accept' (θ_*, \mathbf{p}_*))
- 3 If $u > \alpha$, then the numerical error is unacceptable (we 'reject' (θ_*, \mathbf{p}_*)) and keep (θ_0, \mathbf{p}_0))

The Algorithm

The following algorithm generates N observations from a distribution that has density $f(\theta)$:

- **1** Given some starting point $\theta_0 \in \mathbb{R}$, step size ϵ , covariance matrix \mathbf{M} , and leapfrog iteration count L store θ_0 in a list of samples \mathbf{w} : $\mathbf{w}[0] = \theta_0$.
- 2 Iteratively, for i = 1, 2,, N
 - **1** Set $\theta_{i-1} = \mathbf{w}[i-1]$
 - 2 Generate $p_0 \sim \mathcal{N}_k(\mathbf{0}, \mathbf{M})$
 - 3 Given initial condition (θ_{i-1}, p_{i-1}) , simulate the flow $\phi^t(\theta_{i-1}, p_{i-1})$ and let $\phi^L(\theta_{i-1}, p_{i-1}) = (\theta_i, p_i)$
 - 4 Set $\mathbf{w}[i] = \theta_i$
 - \bullet Increment i and repeat

Example: Simulating from a standard normal distribution

Suppose $\Theta \sim \mathcal{N}(0,1)$. The density for $\mathcal{N}(0,1)$ is $f(\theta) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\theta^2}$. Assuming $K(p) = \frac{1}{2}p^2$. Following the derivations above, a dynamical system that can be used to simulate from a standard normal distribution is as follows:

$$\dot{\theta} = \frac{dK(p)}{dp} = p$$

$$\dot{p} = -\frac{dU(\theta)}{d\theta} = -\theta$$

Example: (Diagram)

Our Website for Simulations

We created a website for users to generate samples using the Hamiltonian Monte Carlo:

https://simran-bilkhu.shinyapps.io/Hamiltonian-Monte-Carlo-Algorithm/

This website allows us to simulate from a Hamiltonian Monte Carlo from the **Beta** distribution:

$$f(y|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 < y < 1$$

and the **Normal** distribution:

$$f(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-\mu)^2}{2\sigma^2}}, -\infty < y < \infty$$

References

Neal, Radford M. MCMC Using Hamiltonian Dynamics. arXiv, June 9, 2012. http://arxiv.org/abs/1206.1901.

Betancourt, Michael. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv, July 16, 2018. https://doi.org/10.48550/arXiv.1701.02434.