Reinforcement Learning

Solving MDPs

Policy: $a_t \sim \pi(o_t)$

Most General Case

 $\begin{array}{c} o_t, r_t \\ \\ Agent \\ a_t \sim \pi(o_t) \end{array} \qquad \begin{array}{c} o_t, r_t \\ \\ a_t \end{array}$

More Specific Case

Fully Observed System

$$o_t = s_t$$

Known Transition Function
Known Reward Function

$$s_{t+1} \sim T(s_t, a_t)$$

$$R(s_{t+1}, s_t, a_t)$$

Recap

Computing $V_*(s)$ and $Q_*(s,a)$ for known MDPs.

Backup diagrams, Bellman equations

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left(r + \gamma V_{\pi}(s')\right)$$

Policy Evaluation, Improvement

Value Iteration

$$V_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) (r + \gamma V_k(s'))$$

Solving MDPs

Policy: $a_t \sim \pi(o_t)$

Most General Case

Fully Observed System:

$$o_t = s_t$$

More Specific Case

Fully Observed System

$$o_t = s_t$$

Known Transition Function

Known Reward Function

$$S_{t+1} \sim T(S_t, a_t)$$

$$R(s_{t+1}, s_t, a_t)$$

TD vs MC

MC Backup

TD(0) Backup

Dynamic Programming Backup

Recap

- Model Free Policy Evaluation
 - Monte Carlo, TD(0), $TD(\lambda)$
- Model Free Control
 - •On-policy: ϵ -greedy, SARSA, SARSA(λ)
 - Off-policy: Q-Learning

Model Free RL

Model Free Policy Evaluation

Model Free Control

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller