Card Transactions Assignment

Diego Alonso

Overview

- Questions to answer
 - Top 10 most profitable customers by profile address (write an SQL query)
 - o Segment current user base
 - o Biggest cost line for the product
 - o Recommendation based on your analysis
 - o Forecast the average 12 months lifetime value for the user base
- Appendix. Understanding the data

Questions to answer

Top 10 most profitable customers by profile address country (write an SQL query)

Please see the attached section **Understanding the data** at the end of this document where I explain how I aggregated the transactions and cards tables in order to produce the analysis table <u>`analysis_cards`</u>.

Note: For the rest of this analysis we'll assume a one-to-one profile_owner_card to card_token relationship to simplify our customer insights. There is only one instance (profile_owner_card = 4965360) where an owner has two card tokens. These card tokens were created at the same time and one was never used.

Top 10 most profitable customers by profile address country

profile_address_country	profile_owner_card	customer_total_profitability_in_gbp	customer_index_by_country
AT	4439796	3.58	1
AT	1568231	2.47	2
AT	4436414	0.32	3
AT	2653092	0.05	4
BE	4950602	13.85	1
BE	94176	3.19	2
BE	2739529	2.46	3
BE	376992	0.66	4
BE	5150931	0.58	5
BG	5135106	0.2	1
CH	5274717	20.16	1
CH	189120	19.65	2
СН	809189	18.49	3
СН	1852364	13.15	4
СН	5007787	11.94	5
CH	4837940	11.12	6
СН	4927666	11.12	7
СН	1560328	11.07	8
CH	2333412	9.9	9
СН	4958716	9.2	10

The previous SQL query will only return profitable customers. As we can see, some profile address countries have **less than 10 profitable customers**.

The **main goal for this task** is to understand in what segments we should focus our marketing efforts and pricing strategies.

First let's understand how many of our acquired users are active and then first try to start segmenting them based on profitability. Understanding **what makes a customer profitable** will be key to recommend how to **focus our marketing and pricing strategies**.

As a reminder the attached section **Understanding the data** at the end of this document explains how I've calculated profitability for each customer aggregating their transactions against the cost line fees on a currency neutral (GBP) basis.

I have divided our customer base in two segments: Profitable and Unprofitable customers.

Profitability is mostly determined by how much we are taxed by the cost structure **cost line fees**. So let's see how customer profitability is distributed by **cost region** and **transaction cost type**.

The total number of transactions made by unprofitable customers account for 3 times more than profitable customer ones.

We can also see how **profitable customers** made more *Intra cost region* transactions. While **unprofitable customers** made more *Inter cost region* transactions and *ATM cost type* transactions.

When observing the percentage distribution of transactions by **cost type** we see that **unprofitable customers** made proportionally a bit more transactions by **ATM** than profitable customer ones. This doesn't come as a surprise since the *intercharge fee* is negative for ATM transactions. Nevertheless there a few situations where the conversion revenue could make an ATM transaction profitable.

Something more noticable is that when analyzing **cost region** we see that most of the transactions made by our **profitable customers** happened on the **Intra cost region** and **unprofitable customers** made more transactions on the **Inter cost region**. This is directly correlated to cost structure as we see on our database that the **Inter region** has the highest cost line fees of the three regions.

When we aggregate transactions profit on a weekly basis we clearly see how the **Inter cost region is just not profitable at all.**

Even though the **Inter cost region** does generate revenue, its aggregate cost is significantly higher and considerably lower than the revenue generated by the **Intra cost region** (who has less transactions as we'll see next).

As we mentioned on the previous slide here we can see how the **total number of transactions from the Inter cost region** surpasses for almost 3 times the total transactions of the **Intra** and **Domestic** regions. Even though *Inter* is the most costly region, it is the one with the most engagement.

When analyzing the **weekly transactions average profit** we can see that we usually break even with the *Domestic* cost region. Ideally if we could bring down the cost from the *Inter* region and increase the number of transaction of the *Intra* region we could break even for the whole product!!

As we saw on the previous slide the biggest cost line resides on the **Inter region**.

More specifically if we break down the regions cost lines and transaction types we can see that **schema_percentage_fee** is the main driver of cost on the *Inter* region. **Operationally I would recommend** to reevaluate how can we renegotiate this fee or look for ways to avoid it if possible by implementing certain stage of the cost line process in-house.

Note/Caveat: I used the converted intercharge amount originally provided on the transactions table throughout our analysis. This amount only matched on the *Domestic* region when recalculating with the rate provided on the cost structure table.

Besides looking for operational ways to reduce the cost line fees as I've suggested before in order to drive us to profitability on the *Inter* region.

I'd also recommend to the Marketing team to keep targeting users that spend on the *Intra* region. There seems still to be opportunity to acquire new users on the *Intra* region and also remind existing (and even dormant users) in this region about their card.

Let's **compare the number of Unprofitable vs. Profitable transactions** using the merchant address country colored by cost region.

After seeing the *Intra* countries that are driving the highest number of profitable transactions, intuitively <u>I'd recommend the Marketing team</u> to focus their effort of targeting customers showing behaviours of transacting in the following countries: *United States, Canada, Australia, Singapore, and South Africa*.

Before trying to forecast 12-month CLV, let's understand how our customer base is growing and what's our **retention rate**.

We don't have enough data to make any hard claims on retention rate over the long run and by looking at the cohorts it seems that the product started getting traction on the last 4 months.

I opted to use Tableau's exponential smoothing technique in order to forecast the 12-month number of customers, number of transactions and average profit per transaction.

Forecast the average 12 months lifetime value for the user base.

CLV = Annual Revenue Per User ÷ Churn Rate = (Total transactions × Average profit per transaction ÷ Total customers) ÷ Churn Rate

Actual + estimated total customers = 39,265

Actual + estimated total transactions = 923,689

Estimated average profit per transaction = -0.10 GBP

Churn rate = 52%

12-month Forecast LTV = -4.86 GBP

I used a simplified CLV function calculated with ARPU over Churn Rate.

The actual and estimated customers and transactions are calculated with the running total from the weekly growth forecasted, see the Understanding the data section for the reference table.

I arbitrarily chose the first month **churn rate** based on our previous retention analysis, my intuition tells me that the yearly churn rate will range between 52% and 80%.

If we were to multiply the estimated CLV for the number of estimated customers we'll see the overall value of the product would be: -190,828 GBP. As discussed before any small restructuring on cost line structure could bring great impact to the overall product profitability.

Thanks for reading Don't forget to review the following section

Understanding the data

Creating aggregate tables

```
Table name: analysis transactions
```

In order to facilitate our analysis I've created an aggregate table based on our original transactions table, adding currency neutral (GBP) billing amount and interchange fees.

```
billing_amount_in_gbp: NUMERIC,
inter_change_fee_in_gbp: NUMERIC
```

In addition I've calculated and added the cost structure **fixed and variable scheme fees** in GBP.

```
scheme_fee: NUMERIC,
issuer_fee: NUMERIC,
processing_fee: NUMERIC,
scheme_percentage_fee: NUMERIC,
scheme_fx_fee: NUMERIC,
test interchange fee: NUMERIC
```

And finally aggregated the **revenue**, **cost** and final **profit** for each transaction based on the schema fees (including interchange) and conversion revenue.

```
total_revenue: NUMERIC,
total_cost: NUMERIC,
total profit: NUMERIC
```

- **Note**: We use <code>inter_change_fee_in_gbp</code> calculated from the original <code>transactions</code> table throughout the analysis, the recalculated <code>test_interchange_fee</code> is just for the sake of completion.

```
WITH transactions_in_gbp AS (
    SELECT
    t.*,
    ROUND(t.billing_amount_value * r.rate, 2) AS billing_amount_in_gbp,
    ROUND(t.inter_change_fee * r.rate, 2) AS inter_change_fee_in_gbp
    FROM `transactions` t
    LEFT JOIN `rates` r
    ON r.code = t.billing_amount_currency
),
transactions_in_gbp_cost_structure AS (
    SELECT
    t.*,
```

```
c.cost_line,
    c.fixed or variable,
    -- Schema FX fee should only apply when there's currency exchange between original
transaction amount and billed amount
   (CASE WHEN c.cost_line = 'scheme_fx_fee' AND t.amount_currency = t.billing_amount_currency
THEN 0
     WHEN c.fixed_or_variable = 'Fixed' THEN ROUND(c.cost_in_gbp, 2)
     WHEN c.fixed or variable = 'Variable' THEN ROUND(c.variable fee * t.billing amount in gbp,
    ) AS fixed or variable cost in gbp
  FROM transactions_in_gbp t
 JOIN `cost_structure` c
    ON c.transaction_cost_type = t.transaction_cost_type AND c.cost_region = t.cost_region
),
transactions in gbp cost structure pivot AS (
 SELECT
    SUM(CASE WHEN cost_line = 'scheme_fee' THEN fixed_or_variable_cost_in_gbp END) AS scheme_fee,
    SUM(CASE WHEN cost_line = 'issuer_fee' THEN fixed_or_variable_cost_in_gbp END) AS issuer_fee,
    SUM(CASE WHEN cost line = 'processing fee' THEN fixed or variable cost in gbp END) AS
processing fee,
    SUM(CASE WHEN cost line = 'scheme percentage fee' THEN fixed or variable cost in gbp END) AS
scheme percentage fee,
    SUM(CASE WHEN cost_line = 'scheme_fx_fee' THEN fixed_or_variable_cost_in_gbp END) AS
scheme fx fee,
    SUM (CASE WHEN cost line = 'interchange' THEN fixed or variable cost in gbp END) AS
test interchange fee
 FROM transactions_in_gbp_cost_structure
 GROUP BY 1
SELECT
  -- Total revenue = inter change fee in gbp (if positive) + conversion revenue
 ROUND(CASE WHEN inter_change_fee_in_gbp > 0 THEN inter_change_fee_in_gbp + conversion_revenue
    ELSE conversion revenue END, 2) AS total revenue,
 -- Total cost = inter change fee in gbp (if intercharge) + schema fixed and variable fees
 ROUND(CASE WHEN inter change_fee_in_gbp < 0 THEN (inter_change_fee_in_gbp * -1) + scheme_fee +
issuer fee + processing fee + scheme percentage fee + scheme fx fee
   ELSE scheme_fee + issuer_fee + processing_fee + scheme_percentage_fee + scheme_fx_fee END, 2)
AS total_cost,
 ROUND(conversion_revenue + inter_change_fee_in_gbp - scheme_fee - issuer_fee - processing_fee -
scheme_percentage_fee - scheme_fx_fee, 2) AS total_profit
FROM transactions in gbp t
JOIN transactions_in_gbp_cost_structure_pivot c
 USING(id)
      analysis transactions Field names
                                         Type
                                         INTEGER
                                    id
                         transaction time
                                         TIMESTAMP
```

card token

STRING

STRING	merchant_address_country
STRING	cost_region
STRING	transaction_type
STRING	transaction_cost_type
STRING	transaction_personal_details_input
STRING	transaction_card_ownership_proof_method
STRING	state
STRING	decline_reason
STRING	amount_currency
NUMERIC	amount_value
STRING	billing_amount_currency
NUMERIC	billing_amount_value
STRING	interchange_currency
NUMERIC	inter_change_fee
STRING	conversion_revenue_currency
NUMERIC	conversion_revenue
STRING	merchant_name
STRING	category
NUMERIC	billing_amount_in_gbp
NUMERIC	inter_change_fee_in_gbp
NUMERIC	scheme_fee
NUMERIC	issuer_fee
NUMERIC	processing_fee
NUMERIC	scheme_percentage_fee
NUMERIC	scheme_fx_fee
NUMERIC	test_interchange_fee
NUMERIC	total_revenue
NUMERIC	total_cost

total_profit NUMERIC

```
Table name: analysis cards
```

In order to make easier customer analysis I've created an aggregate table based on our original cards table and new analysis_transactions table and added the following new metrics:

Engagement

```
first_transaction: TIMESTAMP,
last_transaction: TIMESTAMP,
total_billing_abount_in_gbp: NUMERIC,
average_billing_amount_in_gbp: NUMERIC,
number_of_transactions: INTEGER,
number_of_authorized: INTEGER,
number_of_declined: INTEGER,
```

Total customer profitability KPI

customer_total_profitability_in_gbp: NUMERIC,

Profitability by transactions cost region

```
profitability_domestic: NUMERIC,
profitability_inter: NUMERIC,
profitability_intra: NUMERIC,
number_of_domestic: INTEGER,
number_of_inter: INTEGER,
number_of_intra: INTEGER,
```

Profitability by transactions cost type

```
profitability_atm: NUMERIC,
profitability_pos_ecom: NUMERIC
number_of_atm: INTEGER,
number_of_pos_ecom: INTEGER,
```

```
WITH card_stats AS (

SELECT

card_token,

MIN(t.transaction_time) AS first_transaction,

MAX(t.transaction_time) AS last_transaction,

SUM(t.billing_amount_in_gbp) AS total_billing_abount_in_gbp,

ROUND(AVG(t.billing_amount_in_gbp), 2) AS average_billing_amount_in_gbp,

COUNT(t.id) AS number_of_transactions,

SUM(t.total_profit) AS customer_total_profitability_in_gbp,

SUM(CASE WHEN t.cost_region='Domestic' THEN 1 END) AS number_of_domestic,

SUM(CASE WHEN t.cost_region='Inter' THEN 1 END) AS number_of_inter,

SUM(CASE WHEN t.cost_region='Intra' THEN 1 END) AS number_of_intra,

SUM(CASE WHEN t.transaction cost type='ATM' THEN 1 END) AS number of atm,
```

```
SUM(CASE WHEN t.transaction_cost_type='POS/ECOM' THEN 1 END) AS number_of_pos_ecom,
    SUM(CASE WHEN t.state='SUCCESS' THEN 1 END) AS number of authorized,
    SUM(CASE WHEN t.state='FAIL' THEN 1 END) AS number of declined,
    SUM(CASE WHEN t.cost region='Domestic' THEN t.total profit END) AS profitability domestic,
    SUM(CASE WHEN t.cost_region='Inter' THEN t.total_profit END) AS profitability_inter,
    SUM(CASE WHEN t.cost_region='Intra' THEN t.total_profit END) AS profitability_intra,
    SUM(CASE WHEN t.transaction_cost_type='ATM' THEN t.total_profit END) AS profitability_atm,
    SUM(CASE WHEN t.transaction_cost_type='POS/ECOM' THEN t.total_profit END) AS
profitability_pos_ecom
  FROM `cards` c
  LEFT JOIN `analysis_transactions` t
   USING(card_token)
 GROUP BY 1
SELECT
 *
FROM `cards`
JOIN card_stats USING(card_token)
```

analysis_cards Field names	Туре
card_token	STRING
card_produced_time	TIMESTAMP
profile_owner_card	INTEGER
is_active	BOOLEAN
profile_address_country	STRING
age_years	INTEGER
email_domain	STRING
card_delivery_country	STRING
card_delivery_city	STRING
first_transaction	TIMESTAMP
last_transaction	TIMESTAMP
total_billing_abount_in_gbp	NUMERIC
average_billing_amount_in_gbp	NUMERIC
number_of_transactions	INTEGER
customer_total_profitability_in_gbp	NUMERIC
number_of_domestic	INTEGER
number_of_inter	INTEGER
number_of_intra	INTEGER

number_of_atm	INTEGER
number_of_pos_ecom	INTEGER
number_of_authorized	INTEGER
number_of_declined	INTEGER
profitability_domestic	NUMERIC
profitability_inter	NUMERIC
profitability_intra	NUMERIC
profitability_atm	NUMERIC
profitability_pos_ecom	NUMERIC