5 students
$$\rightarrow \begin{bmatrix} 3 & 2 & 3 & 4 & 5 \end{bmatrix}$$

Total sum = $3+2+3+1+5=14$

I more student $\rightarrow \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

Total sum $\rightarrow 3+2+3+1+5+2=16$
 $14+2=16$

A= $\begin{bmatrix} 3 & 2 & 3 & 1 & 5 \end{bmatrix}$

P(i) = $\begin{bmatrix} 9[i-1] \\ +A[i] \end{bmatrix}$

Less time & efforts

"we remember previous calculated value. \nearrow

 $d \rightarrow Ir$ how mary ways we can climb N stairs s.t. Informatica in one step we can climb 1 or 2 stairs only.

ways to not do onything = 1 ways (0) = 1 Fibonacci Numbers ways (1) = 1 #ways → 0 1 2 3 4 5 6 € # ways (N) = fib-(N+1) 6 5 2 3 F(i) = F(i-1) + F(i-2), i > 1i , i <=1 int fib(N) { if (N <= 1) return N 2 fib (N-1) fib (N-2)4 Jul (N-2) Jul (N-3) (Jul (N-3) Jul (N-4) $TC = O(2^N)$ SC = O(N)optimal Substructure - me for current problem can be found using arswer of subproblems. Overlapping Subproblems -> Same subproblem is calculated store & reuse the colculation // Yi, FW=-1 int fib(N) { (Memoriation) if (N <= 1) return N if (F[N]!=-1) return F[N] TC = O(N) SC = O(N+N) = O(N)F[N] = fib(N-1) + fib(N-2)return F[N] $O(2^N) \xrightarrow{b\rho} O(N)$

Types of DP -> 1) Top-Down / Recursive DP (bruteforce + memoization)

2) Bottom-Up / Iterative DP

(Start with base cases & use them to calculate are of big peroblems)

F[0] = 0 F[1] = 1

for
$$i \rightarrow 2$$
 to N {

F[i] = F[i-i] + F[i-2]

} return F[N] =

 $TC = O(N)$ $SC = O(N)$

a=0 b=1for $i \rightarrow 2$ to N (c = a + ba = b

 $\frac{3}{2}$ return c TC = O(N) SC = O(1)

Q→ Fird min court of perfect sq. to add to get sum = N. 1, 4, 9, 16 -..

 $N=4 \leftarrow 2^2$ Are = \perp mir court \Rightarrow large perfect sq. $70 - 8^2 = 4 - 3^2 = 2 - 1^2 = 1 - 1^2 = 0$

Recursive DP -> Easy to understand

& write the code.

Bruteforce → store

calculated value.

Sometimes it is possible to

optimize SC.

Iterative DP - No recursion space.

Greedy
$$\rightarrow$$
 12 - 3² = 3 - 1² = 2 - 1² = 1 - 1² = 0 X

Solution \rightarrow 12 = 2² + 2² + 2²

Ans (02) = 3

Min(0,b,c)+1

Ans (0) = 0

Ans (0) = 0

Ans (0) = 0

Ans (0) = 0

For i \rightarrow 1 to N (\leftarrow N

Ans [0] = 0

For (x=1; $\xrightarrow{x \times x \times -1}$; x++) (\leftarrow IN

Ans [i] = min (Ans [ii], $\xrightarrow{Ans[i-x \times x]}$ + 1)

Freture Ans [N]

N=2

1 \rightarrow 1 \rightarrow