# Feature descriptors

Lihi Zelnik-Manor, Computer Vision

## Today

- Local descriptors
  - Selecting invariant regions
  - Feature descriptors:
    - ▶ SIFT and others

# Today

- Local descriptors
  - Selecting invariant regions
  - Feature descriptors:
    - ▶ SIFT and others

## The naïve descriptor – intensities vector

The Simplest descriptor is a vector of the intensities within the patch.



What is this going to be invariant to?

## The naïve descriptor – intensities vector

- Disadvantage of the intensities vector
  - 1. Changes significantly with illumination
  - 2. Changes significantly with small shifts in position

### Another naïve descriptor

### Disadvantage of the intensities vector

- 1. Changes significantly with illumination
- 2. Changes significantly with small shifts in position

### Solutions

- Use gradients instead of intensities
- 2. Histograms





# A good feature descriptor: SIFT

- Scale Invariant Feature Transform
- Descriptor computation:
  - Divide patch into 4x4 sub-patches: 16 cells
  - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
  - Resulting descriptor: 4x4x8 = 128 dimensions



David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV'2004.

### SIFT overview

- Extraordinarily robust matching technique
  - Can handle changes in viewpoint up to about 60 degree out of plane rotation
  - Can handle significant changes in illumination
    - Sometimes even day vs. night (below)
  - ▶ Fast and efficient—can run in real time
  - Lots of code available

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known\_implementations\_of\_SIFT





## Working with SIFT descriptors

- ▶ One image yields: 16 \* 8
  - n 128-dimensional descriptors: each one is a histogram of the gradient orientations within a patch
    - $\rightarrow$  [ $n \times 128 \text{ matrix}$ ]
  - n scale parameters specifying the size of each patch
    - $\vdash$  [ $n \times 1$  vector]
  - n orientation parameters specifying the angle of the patch
    - $\vdash$  [ $n \times 1 \text{ vector}$ ]
  - n 2d points giving positions of the patches
    - $\vdash$  [ $n \times 2$  matrix]





## SURF descriptor

### Fast approximation of SIFT

- Efficient computation by 2D box filters & integral images
  - → 6 times faster than SIFT
- Equivalent quality for object identification

### **GPU** implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf











[Bay, ECCV'06], [Cornelis, CVGPU'08]

### **Local Descriptors: Shape Context**



Count the number of points inside each bin, e.g.:

Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

### Local Descriptors: Geometric Blur



### **GLOH**

- Gradient Location and Orientation Histogram
  - Very similar to SIFT
  - Log-polar location grid
    - > 3 bins in radial direction
    - ▶ 8 bins in angular direction
    - Gradient orientation quantized to 16 bins
  - Total dimension
    - ▶ (2x8+1)\*16=272 bins → PCA for dimension reduction



## More on feature detection/description



### Affine Covariant Regions

#### **Publications**

#### Region detectors

- Harris-Affine & Hessian Affine: K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest point detectors. In IJCV 1(60):63-86, 2004. PDF
- MSER: J.Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline stereo from maximally stable extremal regions.
   In BMVC p. 384-393, 2002. PDF
- IBR & EBR: T.Tuytelaars and L. Van Gool, Matching widely separated views based onaffine invariant regions. In IJCV 1
  (59):61-85, 2004. PDF
- Salient regions: T. Kadir, A. Zisserman, and M. Brady, An affine invariant salient region detector. In ECCV p. 404-416, 2004. PDF

#### Region descriptors

SIFT: D. Lowe, Distinctive image features from scale invariant keypoints. In IJCV 2(60):91-110, 2004. PDF

### Performance evaluation

- K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectors. Technical Report, accepted to IJCV. PDF
- K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors. Technical Report, accepted to PAMI. PDF

### http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries

- ▶ All the descriptors so far captured same appearance
- What can we do if the objects have the same shape but different appearance?













## Advantages of local features

### Useful

It is critical to find distinctive and repeatable local regions for multi-view matching

### Complexity reduction

Selection of distinctive points reduces number of regions to process

### Compact description

Describe images, objects, parts without requiring segmentation;

### Robustness

- To clutter & occlusion
- Similar descriptors in spite of moderate view changes, noise, blur, etc.

# End – Feature descriptors

Now you know how it works