

TK1100 Digital Teknologi

Fjerde forelesning

Organisering

- Generelt
 - Digital vs analog, def computer
- Datatyper
 - Tall, text, bilder, lyde
- CPU
 - Oppbygging
 - Registre
 - Instruksjoner

- Oppbygging av (IBM) PC systemer
 - Ikke de eneste, jf forrige forelesning
 - Ser ikke på ALT
 - Forhåpentligvis noe av det viktigste
- Viktigst
 - Forstå sammenheng
 - Ikke alle komponenter i detalj,
 - men hvilke type de er.
 - Hvordan de henger sammen med resten

HOVEDKORTET

PC systemorganisering

- Grunnleggende lik IBM PC fra 1982
 - Mac pleide å ha en egen vei, men måtte endre seg da de gikk over til Intel
- De fleste PC-systemer booter fremdeles opp i 16 bit modus
 - max 1 MiB RAM
 - begrenset instruksjonsett og minnemodell
 - kun BIOS-rutiner/interrupt
- Går over i 32/64 bit først når OS lastes inn.
- Flere og flere systemer er nå UEFI; men bakoverkompatibilitet er ivaretatt

Hovedkort

- Kopler sammen
 - CPU
 - Chipset
 - Busser
 - Minnespor og RAM
 - Expansjons-spor og ekstrakort
 - Porter og «støpsler»

Formfaktor

- Formfaktoren definerer fysisk størrelse, utforming og til en viss grad tilgjengelig funksjonalitet på hovedkortet
- ATX (12"x9.6")
 - Utvidelsespor på bredkanten
 - Innebygde IO porter på en side
 - CPU orientert så den kan kjøles av strømforsynings-viften
 - CPU og RAM vinkelrett på utvidelsespor
 - Tilleggplass til ekstra kjøling
 - Micro ATX(9.6"x9.6")
 - Mindre maskiner
- NLX
 - Stående ekspansjon
- BTX
 - Skal gi bedre kjølingsmuligheter enn ATX
 - Tre ulike størrelser
 - Full (326 x 266 mm)
 - microBTX (264 x 266 mm)
 - picoBTX (203 x 266 mm)

Integrert og Ikke-

- Mange hovedkort er integrerte og kommer med CPU, skjermkort inkl GPU, nettverkskort, busskontrollere og alt ferdig innebygd i selve kortet
 - Typisk for f.eks. billige laptop'er m.fl.
- Ikke-integrerte hovedkort
 - Monterer tillegg som ekspansjonskort
 - Disk-kontroller, skjermkort, nettverkskort,...
- Stadig mer uklar distinksjon i våre dager...

Hovedkort ca år 2000

Intel Hub arkitektur

Hovedkort 2008 **BIOS Flash Chip** SATA Connector (x4) in PLCC Socket Southbridge (with heatsink) Floppy Drive IDE Connector (x2) Connector CMOS Backup Battery 24-pin ATX Power Integrated graphics Connector processor Super IO (with heatsink) Chip PCI Slot (x3) DIMM Memory Slots $(\times 4)$ CPU Fan Connector Integrated audio CPU Fan & codec chip Heatsink Mount Integrated Gigabit Ethernet chip CPU Socket PCI Express Slot (Socket 939) Connectors For Integrated Peripherals PS/2 Keyboard and Mouse, Serial Port, Parallel Port, VGA, Firewire/IEEE 1394a

USB (×4), Ethernet, Audio 126)

Hovedkort ca 2011

- Intel slutter å produsere hovedkort (innen 2016)
 - Konsentrere seg om referansedesigns for ulike formfaktorer
- Mye av Northbridge trukket inn i CPU i Intel i7 og AMD64
 - Primært minnekontrolleren
 - Mac følger (nå) Intel referansedesign
- NVIDIA
 - nForce-serien legger opp til en annen organisering med integrert GPU

Strømforsyning

- Transformerer 220 V, 50Hz vekselstrøm (AC) til de spenningene likestrøm (DC) komponentene på hovedkortet trenger
 - -3,3 V
 - +/-5 V
 - +/- 12V
- Typen strømforsyning du kan bruke avhenger bl.a. av formfaktor på hovedkortet

CPU

CPU Socket

- CPU tilkoples hovedkortet gjennom en socket (eller i et expansjonspor)
- Ulike typer med ulike
 - antall plasser til CPU ben («pins»)
 - Hastighet på FSB (Front Side Bus)
- Avhenger av hovedkort

Kjøling av CPU

- Effekt (W=J/s) er energi pr tidsenhet
 - viser seg som varmeutvikling
 - E=UI, U=RI (Ohms lov), E=RI²
 - -=> Varmen stiger med kvadratet av strømmen
- Luftkjøling
 - Bruker vifte og/eller kjøleribber
- Væskekjøling
 - Pumper bort varmen med væske
 - Typisk vann(eller flytende nitrogen)

- Typiske problemer er kjøling eller strøm
- Symptomer
 - PC booter ikke, eller laster ikke OS
 - PC kræsjer med enkelte applikasjoner
 - Plutselige POST-feil for mye forskjellig utstyr
- Varme-problem (typisk)
 - PC booter, men stopper/fryser/rebooter etter noen få minutter
 - Tiltak: bedre kjøling

BUSSER

Hovedkort: Busser

- Serielle vs parallelle
 - Data/Adresse/ Kontroll/Strøm
 - Bredde (#bit), tempo (Hz)
- To hovedbusser:
 - System/FSB
 - forbinder CPU med Northbridge/RAM
 - Ekspansjon
 - Forbinder chipset med ekspansjonsslots

Chipset

- Kontrollerene som styrer utvekslingen av data/instruksjoner/avbrudd-signaler mellom CPU og annet utstyr benevnes gjerne som hovedkortets chipset
- De siste ti årene har dette typisk vært to hovedkontrollere
 - Northbridge (Intel: Memory Controller Hub)
 - CPU og minne (RAM)
 - Høyhastighets utstyr: grafikk-kort
 - Kommunikasjon med Southbridge
 - Southbridge (Intel: IOController Hub)
 - Periferiutstyr (typisk utenfor kabinettet)
 - Mindre viktige kontrollere
 - Sekundære og gammeldagse busser

Transportsystemet

- "Kabler" med parallelle og serielle "ledninger"
- Bredde * Hastighet = Båndbredde

Bussenes oppgaver

- Adressering av data
- Frakt av data
- Synkronisering av maskinens komponenter
- Flytkontroll mellom komponentene
- Signalering mellom komponentene
- Strømtilførsel til noen komponenter

Adressering

- Bredde fra 20 til 64 bit
 - 32 bit gir mulighet for å adressere (2³²=) 4 GB
- Det finnes teknikker med å sende flere bit/byte om gangen
 - Trenger da mindre bredde på bussen
 - Trenger mer kontroll i komponentene

Synkronisering

- Internt i maskinen vil det være flere klokker
- CMOS (BIOS) har en "vanlig" (sanntids) klokke
- Alle andre klokker er egentlig taktgivere
- Synkrone komponenter
 - Holder samme eller tilsvarende takt
- Asynkrone komponenter
 - Holder hver sin egen takt

- Avbrudds-signal er en beskjed om at noe har hendt
 - Det er mekanismen gjør at CPU og kontrollere får vite at noe/noen vil ha noe gjort
- IRQ Interrupt Request
- Slike signaler kan gis forskjellig prioritet
- Egne komponenter for registrering og viderebehandling

Interrupt (og Exception) Håndtering

- IA-32 arkitekturen har en IDT med pekere til 256 ulike interrupt and exceptions
 - 32 (0 31) forhåndsdefinert og reservert
 - 224 (32 255) bruker/OS-definert
- Hvert interrupt har en en peker i Interrupt tabellen (IDT) og en unik index verdi som gir håndtering som følger
 - 1. Prosess kjører når interruptet skjer
 - Lagre tilstand, context switch og finn riktig interrupt handler
 - 3. Eksekver interrupt handler
 - 4. Gjenopprett (interruptet) prosess
 - 5. Fortsett eksekvering

OPPSTART

BIOS – BASIC I/O SYSTEM

- Programvare for å kontrollere essensielle komponeneter
 - F.eks. Tastastur, skjerm, disker, serielle porter,
- Lagres på ROM brikke
- Tre hovedfunksjoner
 - Boote PCen
 - Teste og verfisere hardware
 - Levere grensesnitt mellom hardware og software.

Boot sekvensen

- 1. Strømforsyningen starter opp
- 2. Primærdelen av BIOS lastes inn i RAM
 - CPU leser inn startadressen til BIOS boot programmet
- 3. Type boot bekreftes
 - Cold boot: slås på
 - Warm boot: omstart/rest, kjører ikke POSTWhen PC restarted or reset, does not run POST
- Power On Self Test (POST) begynner
 - Feilmeldinger gis som "beep koder"
- 5. Video adapter programvaren lastes
- 6. BIOS for annet utstyr lastes
 - BIOS startup screen lastes
 - Feilmeldinger vises som text.
- 7. CMOS konfigurering testet
 - Sjekker at utstyr som er opplistet i CMOS er tilstede og fungerer.

- 8. Porter tildelt og utstyr konfigurert.
- 9. Hardware konfigurasjon bekreftet BIOS viser oppsummeringskjerm
- Operativ systemet lokaliseret og lastes (MBR)

Boot mislykkes:

Når PČen ikke klarer å fullføre BIOS og laste OS

Typisk årsak er løse eller manglende komponenter, og/eller OS/driverfeil på disk.

Power On Self Test (POST)

- Feil-koder er (hovedsakelig) avhengig av BIOS produsent
- To typer
 - Beep-koder
 - Lange og korte toner i høyttaler
 - Feilmeldinger
 - Til skjerm
 - 1xx Motherboard, 2xx RAM, 3xx Tastatur, 17xx HD,...
 - 3-4 siffer med litt forklaring
 - «BIOS ROM checksum Error: Systen halted»
 - «Hard disk install failure»
 - «Memory Test Fail»
 - Enkelt BEEP i høyttaler når POST utført

- BIOS setup programmet: Brukes til å konfigurer innstillinger som lagres i CMOS
- CMOS innstillinger ≈ Hardware konfigurasjon
- SETUP:
 - Har typisk menyer for å sette:
 - Standard Innstillinger
 - Boot medium rekkefølge
 - · System dato og tid
 - Hard disk, floppy, ...
 - Video display
 - Avanserte innstillinger: Hovedkort, CPU, chipset
 - Plug and Play (PnP) opsjoner, strømstyring, sikkerhet og passord, integrerte kontrollere for periferiutstyr.

Oppdatering av BIOS

- BIOS «bestemmer» hva slags utstyr PCen kan ha tilknyttet
- Oppgradering («flashing») av BIOS trengs av og til å for å løse spesielle problemer
 - Man kan ødelegge BIOS brikken ved å avbryte under oppdatering, eller forsøke å legge inn feil BIOS
- Erstattes nå av ulike typer firmware

₩ BIOS->UEFI

- BIOS er for 16 bit maskiner...
 - Støtter bare 1 MiB minne
- Er i gang med å erstattes med Unified Extensible Firmware Interface (UEFI)
 - Støtter både 32 og 64 bits instruksjoner fra oppstart av
 - Støtter minimum 2GB minne
 - Støtter en ny adresseringmåte for partisjoner og blokker på Harddisken (GPT i stedet for MBR) som gjør at større harddisker enn 2 TB kan brukes -> 8*2^70

RAM

Bit, Byte og Ord

- BIT
 - Binary DigIT
 - På/av krets
 - 1 eller 0
- BYTE
 - 8 BIT
 - Kan lagre f.eks. en alfanumerisk karakter
 - Minste adresserbare enhet i RAM

ORD

- I computerarkitektur har dette flere betydninger
- Størrelsen på et register
 - Det antall BIT CPUen kan prosessere som en enhet
- Adresseringsenhet
- BYTE, WORD (16), DWORD (32) og QWORD (64) er
 MicrosoftSpeak ikke alle bruker disse betegenelsene

Adressering binært

Med 7 binære sifre(bit) kan 2^7 =127+1=128 = «hus» adresseres.

På hver adresse "bor" en byte.

- Adresser
 - 16 bit = 65536 = 64 KiB
 - -20 bit = 1 MiB
 - 32 bit = 4 GiB
 - 64 bit = 16 EiB
- DRAM Dynamic RAM
 - Må friskes opp; read/rewrite
- SDRAM Synchronous DRAM
 - I takt med CPU
- SRAM Static RAM
 - Må IKKE friskes opp, raskere en DRAM, men dyrere å produsere og trenger flere transistorer pr bit lagret

Fysisk organisering

• **DIP** (Dual In-line Pin) rett på hovedkortet

DΙΡ

- SIMM (Single In-line Memory Module)
 - Snappes på hovedkortet
 - DRAM; 60 til 120 ns
 - SRAM i cache; 20 ns
 - Odde Paritet
 - 10010110 1
 - Brukes for å sjekke om feil har oppstått

- Kontaktpunkter på begge sider
- 64 bit busstilkopling
 - 168, 184, eller 240 busstilkoplinger
- RDRAM er en variant
 - Finnes mange varianter mhp antall tilkoplingspunkter, type buss mm

72 pin SIMM 4.25" x 1"

DRAM formfaktorer (noen)

DRAM teknologier

- Tidligere
 - Asynkront, fulgte ikke systemklokken
 - FPM, EDO, m.fl.
- Nåværende
 - Single Data Rate RAM
 - En les/skriv pr klokke-/buss-puls
 - Double Data Rate RAM (DDR, DDR2, DDR3)
 - RAMBUS
- RAM-ytelse avhenger mer av pakken og buss, enn av selve RAMen

DRAM egenskaper

- CAS (Column Adress Strobe) latens
 - Antall klokkesykluser det tar å flytte etterspurte data til RAM-modulens ben
 - F.eks. CL2 (to klokke sykluser)
- Dual eller quad kanal («channel»)
 - Hovedkort-avhengig antall parallelle RAMkanaler
- Gull vs tinn ben
 - Bør være samme på brikke som hovedkort
- Enkel vs dobbel rekke
 - Dobbel rekke («double-ranked») har to separate grupper av RAM-brikker som aksesserers hver for seg av RAM-kontrolleren.

Typer Minne problemer

- Konfigurering
 - Mer minne enn PC, eller OS støtter
 - BIOS CMOS feil
- Hardware
 - Defekte brikker eller moduler
 - Ikke-kompatible moduler
- Installering
 - Ikke satt modulen riktig inn i sporet
 - Spor («socket» defekt, eller bør renses

Feilsøking av minne

- Andre komponenter kan forårsake problemer som ser ut som minneproblemer!
- Minne problemer viser seg typisk:
 - Første booting
 - Rett etter installering av
 - ny RAM-modul
 - ny software eller nytt OS
 - Etter ny hardware har blitt lagt til, eller gammel fjernet
 - Helt uten (åpenbar årsak)
 - Korrosjon («rust»)
 - Varme-skader

Vanlige RAM problemer

- PC booter ikke, POST beep kode
 - Minne satt inn, eller konfigurert, feil
- PC booter til blank skjerm
 - Minne-modul løsnet
 - Minne-modul av feil type
- POST minne-opptelling feil
 - Feil RAM-modul type
- «Memory Error» melding
 - Kompabilitetsproblemer med gammelt og nyinnsatt RAM
 - RAM-modul i gang med å gå i stykker

• . . .

EKSAMEN OG REPETISJON

EKSAMEN

- TK1100 har 2 eksamener, en midtveis i emnet (25%), og en avsluttende (75%)
- Første eksamen på fredag 05.10
- Eksamen er på 2 timer
- INGEN hjelpemidler
- 16 oppgaver; blanding av tekstoppgaver og regneoppgaver

- Merk at eksamen er ikke multiple choice
- Alle oppgaver er «fri tekst» oppgaver, og på regneoppgaver skal man oppgi utregning
- Det er veldig viktig å vise utregningen, hvis man ikke viser utregningen teller det som 0 poeng da sensor må forvente at du har kopiert svaret fra personen foran deg...

Hva var pensum?

- Forelesningsfoilene
- Øvingsoppgavene

- Del 1 av kompendiet er støttelitteratur
- Hvis man vil ha toppkarakter så må man forvente spørsmål om ALT, også det du tror ikke er så relevant
- MEN; man får en god karakter om man kun fokuserer på «kjernepensum»

Sluttkarakter

- Man må bestå BEGGE eksamener for å bestå i faget
- A = 65, B = 64, C = 63, D = 62, E = 61

- Det er lov til å ha en «dårlig» første eksamen (på skolen), og så hente seg inn:
 - C på første eksamen, A på andre eksamen:
 - -(25*63+75*65)/100=64,5 -> A
- Disclaimer: Det er administrasjonen som setter sluttkarakter, så hvis det er «viktig» så spør dem

Resten av komponentene i datamaskinen tar dere som egenstudie.

På forelesningen vil vi bare veldig kjapt gå gjennom resten av slidene i dette emnet.

PERFERIBUSSER & UTSTYR

- Nesten uendelig utvalg av I/O-enheter
- Vanlige konsepter
 - Port
 - Buss (daisy chain eller delt direkte aksess)
- Kontroller (controller eller host adapter)
- I/O-instruksjoner kontrollerer enheter
- Enheter har adresser, som brukes av
 - Direkte I/O-instruksjoner
 - Minne-avbildet I/O (memory-mapped I/O)
- Samarbeidet med OS foregår oftest gjennom en driver som oversetter OS-instruksjoner til Kontroller-instruksjoner

Enhets kontrollere

- I/O-enheter består ofte av
 - Mekanisk komponent ("selve enheten")
 - Elektronisk komponent
- Den elektroniske komponenten er enhetskontrolleren (device controller)
 - "En liten mikroprosessor"
 - Kan evt. håndtere flere enheter
- Kontrollerens oppgaver
 - Ta i mot instruksjoner
 - Vise status
 - Konverter seriell bitstrøm til blokk av byte
 - Utfør feilkorrigering etter behov
 - Gjør data tilgjengelig i primærminnet (RAM)

I/O-porter og adresser

- Hver kontroller har noen registre som brukes for å oppbevare status og kommunisere med CPU
 - Kan skrive til disse for å kontrollere enheten
 - Kan lese andre for å finne tilstand til enheten
- Kan også ha data-buffer
 - Video RAM på skjermkort
 - Cache PÅ disk
- Kan skrive registre/buffer vha. I/O-porter
- Kan også bruke minne-avbildet (memory mapped) I/O

Ex: lese inn fra disk

Expansjonsbusser

- Lar oss legg til ny funksjonalitet i form av kort og periferiutstyr
- Forbundet med spor på hovedkortet der vi monterer expansjonskortet
- Ulike teknologier
 - PCI, AGP, ISA, PCIe
- Utfører kommunikasjonen mellom kortkontrolleren og chipset'et

Expansjonskort

Gamle expansjonskort og -spor

- 32 og 64 bit data
- Bitrate opp til 66 MHz, 533 MB/s (64 bit)
- CPU uavhengig
- Tilbakekompatibel med ISA, EISA
- PnP støtte

- Laget for å støtte 3D grafikk
- Koplet direkte til Northbridge
- 32 bit, 66 MHz
- Bitrate fra 266 MBps til 2133 MBps avhengig av versjon
- Versjonene 2X, 4X, 8X overførte data 2x, 4x og 8x pr klokkesyklus

- Høyhastighets seriell bussarkitektur
- Støtter flere kanaler
 - Ulike spor avh kanalantall
- Oppbygging
 - Punkt-til-punkt
 - Pakkebasert og routed a la nettverk
 - Adresser og data ligger i samme pakke
 - Høy bitrate
 - Hver kanal støtter duplex, 2,5 Gbps hver vei
 - STØTTE FOR FLERE GRAFIKKORT

Systemressurser

- Bussene benytter en eller flere typer systemressurser
 - I/O port-adresser
 - IRQer
 - DMA kanaler
 - Minne-adresser
- Ressurskonflikter kan oppstå når to ulike forsøker å benytte samme ressurs
- Plug-and-Play (PnP): Konfigurasjonstandard som automatisk tilordner systemressurser til expansjonskort og utstyr

Win7: devmgmt.msc

 I win7/8/10 kan man inspisere hvilke ressurser i MMC snapin devmgmt.msc

MASSELAGER (HARDDISK)

Masselager

- Brukes for permanent lagring av store datamengder
 - Hullkort
 - Hullbånd
 - Diskett, Flash Mem
 - Zip, Jazz
 - Disk
 - CD, DVD
 - Magnetbånd(spolebånd, kassett)
- Overføring til prosessoren via en kontroller
 - IDE/EIDE, SATA, SCSI, ...

**Papir som lagringsmedium

Magnetisk lagring/lesing

Lagring

 Når elektromagneten tilføre strøm magnetiseres overflaten under magneten

Lesing

- Når overflaten under magneten er magnetisert og passerer magneten vil det dannes(induseres) strøm
- Magnetisert område = 1
- Ikke magnetisert = 0

*Organisering av data

- Data er i utgangspunktet en samling av 0-ere og 1-ere som i sin sammenheng representerer et dokument, bilde, musikk etc.
- Denne samlingen kalles en fil
- En fil har et navn som gjør at den er lett å identifisere
- I et identifikasjons-felt som legges sammen med filen finnes det foruten navnet også informasjon som størrelse på filen, når den ble opprettet, eier av filen,
- Jf Øving om BMP

**Lagrings-utvikling (1)

**Lagringskapasitet (2)

Tetthet og pris (3)

Figure 1 HDD storage density is improving at 100 percent per year (currently over 100 Gbit/in2). The price of storage is decreasing rapidly and is now significantly cheaper than paper or film.

Disker

- Disker ...
 - Gir varig lagring
 - er billigere pr byte enn RAM (forløpig)
 - © har større kapasitet
 - 🙁 er mange størrelsesordener *tregere*
- Viktige parametre er
 - lagringsplass
 - I/O båndbredde
- Fordi...
 - ...det er en kollosal hastighetsforskjell (ms vs ns ~ 10⁶) med RAM
 - ...disk I/O er svært ofte viktigste ytelses-flaskehals

Diskens oppbygning

- Alle armene beveges samtidig
- Hver arm har 2 hoder
- Inn/ut 50 ganger/sek
- Spin: 3600-7200 (15000) RPM
- Søketid: 10-20 ms
- Datarate: 5-40 MB/sek
 ~300Mbps m/ SATA)

Lesehodene flyter på luften over platen(0,001 mm)

Diskens organisering

- Spor (track)
 - Det området lesehodet dekker på en rotasjon
- Sektor
 - Den minste delen av et spor som kan leses
- Sylinder
 - Alle spor i samme posisjon på disken

512 bytes pr sektor*51 sektorer pr track*723 sylindre*14 lesehoder=264305664 B=252 MB

Disk Access Time

%H-Disk adressering av sektorer

- Tidligere (og pga tilbakekompabilitet) bruktes CHS (Cylinder, Head, Sector) eller Extended CHS
 - Opprinnelig begrenset til 1024 C, 16 H, 63 S = 528 MB
 - BIOS Interrupt 0x13 utvidet til 8G ved 0-254 Head
 - 24 bit adresse, 512 B sektor = 8G harddisk
- Nå brukes LBA (Logical Block Adressing)
 - Opprinnelig for SCSI, så for ATA/SATA
 - Sektorene har logiske lineære LBA-adresser 0,1,2,3...
 - C 0, H 0, S1 = LBA 0, ...
 - 32 bit adresser gir max størrelse 2TB
 - LBA støttes av alle moderne OS og BIOS
- I fremtiden ser GUID ut til å overta
 - Støttes av UEFI
 - 64 bits adresser
 - tillater i prinsippet disker opp til 8 ZiB (forutsatt 512 Byte blokker)

Diskens logiske organisering (hierarki)

Cluster

- Minste enhet som leses av operativsystemet, minimum 1 sektor
- Fil
 - Minste enhet som refereres av operativsystemet, minimum 1 cluster
- Katalog
 - Fil for organisering av filer
- Partisjon
 - Organisering av kataloger; f. eks. C:

Lavnivå-formatering

- Lavnivåformatering gjøres av produsent
- Adresser skrives på hver sektor
- Disken initialiseres med nullverdier
- Defekte områder merkes
- Interleave-mønsteret settes
 - Eksempelet viser 3:1 interleave

Partisjonering

- Partisjonering gjøres av leverandør (eller bruker)
- Gjøres fra «DOS» med programmet FDISK
- Lager MBR (Master Boot Record) på starten av disken
 - Brukes av BIOS for å starte operativsystemet
- Minimum 1 partisjon (primary)
 - Kan legge til secondary (extended) partisjoner
- Kan ikke ha to operativsystemer i samme partisjon (annet enn som Virtuell Maskin)

Høynivå-formatering

- Høynivå-formatering gjøres av leverandør (eller bruker)
- Kan gjøres fra DOS med programmet FORMAT
 - Får advarsel fra operativsystemet hvis det er primary partisjon
- Legger innhold fra MBR inn i oppstartsektor
 - Ikke alle disker (disketter) kan bootes
- Lager rot-katalog
- Definerer hvor mange sektorer det er i en cluster
- Bygger filallokeringstabeller (FAT)
 - FAT12, FAT16, FAT32, (NTFS, Ext3)

Paritetsbit

- For å kunne identifisere "bad blocks" (sektorer med feil) har hver sektor paritetsbyte som benyttes til å sjekke om feil har oppstått.
- Paritetssjekk var en del av 7bit ASCII:

Paritetsbit

- 1 paritetsbit kan bare oppdage oddetallsfeil!
- Bruker CRC-sjekksummer som gir mulighet til å oppdage langt flere feil (mer i nest siste forelesning)
- Paritet kan enkelt genereres med XOR!

 Ved bruk av smart koding kan man lage bedre sjekksummer. (jf personnummer)

Error Correcting Codes (ECC)

Basert på Hamming-distansen mellom kodene

Symbol	Code
А	000000
В	001111
С	010011
D	011100
E	100110
F	101001
G	110101
H	111010

Exempel

I dette kodesettet er det alltid minst tre bit forskjell mellom alle kodene

Hamming-distansen mellom A og B er 4, B og C 3, osv

Character	Code	Pattern received	Distance between received pattern and code	
А	0 0 0 0 0 0	0 1 0 1 0 0	2	
В	0 0 1 1 1 1	0 1 0 1 0 0	4	
С	0 1 0 0 1 1	0 1 0 1 0 0	3	
D	0 1 1 1 0 0	0 1 0 1 0 0	1	-Smalles
E	1 0 0 1 1 0	0 1 0 1 0 0	3	distance
F	1 0 1 0 0 1	0 1 0 1 0 0	5	
G	1 1 0 1 0 1	0 1 0 1 0 0	2	
Н	1 1 1 0 1 0	0 1 0 1 0 0	4	

- Leser 010100, hvilken bokstav skulle det (sannsynligvis) vært?
 - Den med minst Hamming-distanse i kodesettet
- Med Hamming-distanse 3 i kodesettet kan man oppdage opp til to feilkodinger (bit-flips) og rette en.
- Med Hamming-distanse 5 i kodesettet vil man kunne oppdage opp til fire feil pr mønster og rette to

Magnetbånd

CD/DVD/Blue-Ray

En CD kan lagre 700 MB, DVD 4 GB på hver side, Blue-Ray 25GB pr lag (opp til 8 lag i RW)

Animasjon

Sikkerhetskopi (backup)

- Alle typer lagringsmedia kan gå i stykker
- Viktige data bør derfor lagres på mer enn et sted
- Det er for sent å tenke på å ta backup <u>etter</u> et krasj
- Hjemmebrenning er blitt mer populært i det siste!
- Husk den legale/etiske siden av datakopiering!!

Beskyttelse mot feil og krasj (RAID)

- Store disk-banker kan la hver disk stå på egne ben, RAID0
 - eller generere fortløpende kopi av alle disker, RAID1
 - eller anvende andre sikringsteknikker (f. eks. striping)
- RAID5 lager en sjekksum (XOR) for to disker og lagrer denne på en tredje disk. Dette er godt nok hvis en disk faller ut.

RAID (Noen typer)

Betegnelse	Teknikk	
RAID 0	Striping	Raskere aksess
RAID 1	Speiling	Raskere aksess, større pålitelighet
RAID 5	Striping og distribuerte paritetsblokker	Raskere aksess og større pålitelighet

Busser/gr.snitt: ATA, SATA

- (Parallell) ATA
 - Versjoner 1-7
 - Opprinnelig IDE
 - Støttet LBA og DMA
 - Kabel med 80 parallelle ledere
 - Max 133 MBps
- SATA: Seriell
 - Siste versjon støtter opp til 6 Gbps (v. 3.0)
 - Kabler opp til 8 m
 - eSATA for ekstern tilkopling
 - HotPlug!

- Tillater seriekopling av utstyr
 - Hver må ha egen ID
- Mest brukt på servere
- Versjoner 1-3
- En samling av ulike standarder!
 - iSCSI er f.eks. en kombinasjon av Etrhernet og SCSI

Typiske Harddisk problemer

- Tre vanlige årsaker
 - Feil på kontroller/adapter
 - Feil sammenkopling av adapter og disk
 - Feil på selve disker
 - CMOS konfig feil
 - Ressurs konflikt
 - Korrumpert eller manglende Boot-partisjon
 - Virus i bootpartisjon
 - Defekt (mekaniske feil)

Typiske feilmeldinger

- Hard disk configuration error
 - Feil CMOS konfig parametre
 - Løs datakabel
- Hard disk 0 failure
 - Feil CMOS konfig
 - Dårlig forbindelse til strømforsyning
- Hard disk controller failure
 - Dårlig kabel forbindelse
 - Dårlig forbindelse til strømforsyning

USB OG FLASH-MINNE

USB – Universal Serial Bus

- Støtter opp til 127 forskjellige tilkoplede enheter
 - Utvider med hub
- Høyhastighet dataoverføring
 - USB 1.1: 12 Mbps (max)
 - USB 2.0: 480 Mbps (max)
 - USB 3.0: 5 Gbps (max)
- Variable bitrate
 - Lavhastighetskanaler for tregt utstyr
- Fire hovedtyper dataoverføring
 - Bulk, interrupt, isokronisk, kontroll
- PnP og hotpluggbar
- Kan brukes til lading

Flash Memory

- To typer: "NOR" og "NAND"
- NOR (parallell-koplet)
 - Random Access lesing/skriving
 - Best til programmer
 - Mye brukt i mobiltelefoner
- NAND (seriekoplet)
 - Leses i blokker (som HD)
 - Billigere, flere transistorer på mindre areal
 - Raskere å lese fra enn å skrive til
 - Best til data
- Man kan (på begge typer) kun slette blokker!
- Holder til ca 100.000 skriv/slett
- 512MB -> 256 GB (2009)->1 TB

SSD: Solid State Drive

- (Oftest) samme lagringsteknologi som MinnePinne (NAND)
- 50-100 ggr raskere (kortere aksesstid) enn HardDisk pga
 - Ingen mekanikk, armer som må flyttes osv
- Begrenset levetid, akkurat som Flash Memory
- 10-20 ggr så dyrt pr GB
- Finnes opp til 4TB (?)

PERIFERIUTSTYR

 Typisk er 104-key IBM PC standard (qwerty)

Mus (optisk)

- LED eller LED-laser sender ut en stråle lys
- Lavoppløslig «kamera» (20x20 px ->) tar «bilder» ca hvert 1/10 sekund (ofte oftere)
- Chip måler/beregner forskjell mellom bilder og regner ut posisjonsendring

- To hovedtyper
- Katodestråle-rør (CRT Cathode Ray Tube)
 - Var vanligst lenge, nesten borte...
- Flat-panel
 - LCD Liquid Crystal Display
 - Plasma-display, FED, LED, polymer-display, OLED

- Et bilde-element (pixel) består av 3 farger (rød, grønn og blå)
- Alle elementer på skjermen oppdateres flere ganger pr sekund
- Skjermens størrelse oppgis som lengden av diagonalen
- Styres av grafikk-kort med minne

- Tolker og styrer det som skal ut på skjermen
- Egen hukommelse, bestemmer max oppløsning og fargedybde

Dot pitch; avstanden mellom to pixels (0,25 mm)

- Det er mange standarder for grafikk på skjerm
- Stort sett utvikler standardene seg etter utviklingen av skjerm-teknologien
- Eksempel: SVGA (Super Video Graphics Array)
 - Oppløsning: 800*600 → 1600*1200 pixler
 - Fargedybde: 256(8 bit) → ca. 16 millioner (24 bit)
 - Oppfrisknings-rate: 50 → 100 Hz
- Antall mulige samtidige farger er avhengig av størrelsen på video-minnet.

«Utallige» standarder (px, farger)

Flat-panel (LCD)

- Hver pixel har en adresse
- Bare pixler som endres blir oppdatert
- Meget stabilt bilde av god kvalitet
- Problematiske i sollys

Eksempel: En LCD-subpixel

- Lys fra bakgrunnstavle
- Polariserende filter (vertikalt)
- Flytende krystall som "vrir" polariseringen når du «setter strøm på»
- Polariserende filter (horisontalt)
- Farge

HVA SKAL VI KUNNE?

Hva skal vi kunne nå?

- Hva hovedkort og chipset er
- CPU (vs GPU) og hvorfor kjøling er nødvendig
- POST, BIOS, UEFI og booting
- RAM: typer og roller
- Harddisk, adressering, partisjonering, paritet og RAID
- Periferi-utstyr, expansjons- og periferibusser
- Prinsippet bak LCD-skjermer

Husk eksamen fredag 05.10 :-)

- , og så fortsetter vi med
- Operativsystem
 - Hva er det egentlig til?
 - Hvordan henger det sammen med alt vi har vært gjennom så langt
 - Hva er forskjellen på de ulike (Windows, Linux, OSX)
 - Hvordan arbeide i et shell