

Image:

https://commons.wikimedia.org/wiki/ File:PageRanks-Example.svg

COMP90042 LECTURE 18

THE WEB AS A GRAPH: LINK ANALYSIS FOR RETRIEVAL

OVERVIEW

- The web as a graph
- Two methods for automatically determining webpage importance
 - Page-rank
 - Hubs and authorities (HITS)

NOT ALL DOCUMENTS ARE EQUAL

- Documents assumed to be 'equal'
 - Usefulness for ranking only affected by how well the terms in the document match with the query terms
 - e.g., assumed P(r|d) uniform prior in probabilistic methods
- Can we do better than this?
 - some documents are authoritative and should be ranked higher than others for any query

THE WEB AS A GRAPH

- Pages on the Web do not stand alone
 - Treatment as independent "documents" is oversimplification
 - Considerable information in hyperlink structure

WHAT INFORMATION DOES A HYPERLINK CONVEY?

- Directs user's attention to other pages
- Conferral of authority (not always!)
- Anchor text to explain why linked page is of interest
 - "IBM computers" links to www.ibm.com
 - "search portal" links to www.yahoo.com
 - "click here" links to Adobe Acrobat
- Additional source of terms for indexing
- Perhaps the most important pages have more incoming links?

THE WEB AS A DIRECTED GRAPH

- Formally, consider
 - in-links
 Number of incoming edges
 - out-links
 Number of outgoing edges
 - connected components Path connects all pairs of nodes

NOT ALL LINKS ARE EQUAL

- Who and what to trust?
 - outgoing links from reputable sites should carry more weight than user-generated content and links from unknown websites
- Web has "bow-tie" structure, comprising
 - in pages that only have outgoing edges to
 - strongly connected component whose pages are highly interlinked, and also link to
 - out pages that only have incoming edges
- Typically don't consider internal links within a web-site (why?)

PAGE RANK

Assumptions

- links convey authority of the source page
- pages with more in links from authoritative sources are more important
- Formalised using model of Random web surfer
 - Consider surfer who visits a web page
 - then follows a random out link, uniformly (repeat above)
 - occasionally types a new random URL into the address bar (called "teleporting" to a new random page)
- Inference problem: which pages does the surfer visit most often?

EXAMPLE GRAPH

Transition probabilities (no teleport for now)

$$P(1 \to 1) = 0$$
 $P(1 \to 2) = 1$ $P(1 \to 3) = 0$
 $P(2 \to 1) = \frac{1}{2}$ $P(2 \to 2) = 0$ $P(2 \to 3) = \frac{1}{2}$
 $P(3 \to 1) = 0$ $P(3 \to 2) = 1$ $P(3 \to 3) = 0$

Example from MRS, Ch 21

EXAMPLE GRAPH

Represent as matrix, $P_{ij} = P(i \rightarrow j)$. I.e.,

$$P = \left[\begin{array}{ccc} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{array} \right]$$

Note that P is the adjacency matrix $A_{ij} = [[edge\ exists\ i \rightarrow j]]$, normalised such that each row sums to 1.

ADDING TELEPORTATION

- If at each time step we randomly jump to another node in the graph with probability α
 - scale our original P matrix by 1 α
 - add α/N to all cells of the resulting matrix

Overall our transition matrix is

$$P_{ij} = (1 - \alpha) \frac{A_{ij}}{\sum_{j'} A_{ij'}} + \alpha \frac{1}{N}$$

For the example with $\alpha = 0.5$

$$P = \begin{bmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{5}{12} & \frac{1}{6} & \frac{5}{12} \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \end{bmatrix}$$

MARKOV CHAIN

- Formally we have defined a Markov chain
 - a discrete time stochastic process consisting of N states, one per web page
 - assuming the prob. of reaching a state (page) is based only on previous state (page)

$$p(x_t|x_1,x_2,\ldots,x_{t-1})=p(x_t|x_{t-1})$$

- characterised by the transition matrix
- Déjà vu: seen before for HMMs

TRANSITIONS AS MATRIX MULT.

Probabilty chain rule can be expressed using matrix multiplication

$$\vec{x}P = \begin{bmatrix} P(1) \ P(2) \ P(3) \end{bmatrix} \times \begin{bmatrix} P(1 \to 1) \ P(2 \to 1) \ P(2 \to 2) \ P(2 \to 3) \end{bmatrix}$$

$$= \begin{bmatrix} P(1)P(1 \to 1) + P(2)P(2 \to 1) + P(3)P(3 \to 1) \\ P(1)P(1 \to 2) + P(2)P(2 \to 2) + P(3)P(3 \to 2) \\ P(1)P(1 \to 3) + P(2)P(2 \to 3) + P(3)P(3 \to 4) \end{bmatrix}^{\top}$$

$$= \begin{bmatrix} P(X_{t+1} = 1) \ P(X_{t+1} = 2) \ P(X_{t+1} = 3) \end{bmatrix}$$

$$\text{where } P(1) = P(X_t = 1) \text{ and } P(2 \to 3) = P(X_{t+1} = 3 | X_t = 2).$$

EXAMPLE

- Start at state x
 - after one time step, prob on next state is xP
 - after two time steps, now $(xP)P = xP^2$
- Example
 - $\mathbf{x} = [0 \ 1 \ 0]$
 - **x**P = [0.4167 0.1667 0.4167]
 - $\mathbf{x}P^2 = [0.2083 \ 0.5833 \ 0.2083]$
 - ...
 - $\mathbf{x}P^{99} = [0.2778 \ 0.4444 \ 0.2778]$
- \mathbf{x} P¹⁰⁰ = [0.2778 0.4444 0.2778] (denoted π) Copyright 2017 The University of Melbourne

MARKOV CHAIN CONVERGENCE

- Run sufficiently long, state membership converges
 - reaches a steady-state, denoted π
 - transitions from this state leave the state unmodified
 - π record frequency of visiting each page for random surfer in the limit as t $\to \infty$
- JFF] When will the Markov Chain converge? Must have the properties:
 - ergodicity: For any start state i, all states j must be reachable with non-zero probability in finite steps. Ergodicity in turn requires
 - irreducibility: reachability between i and j; and
 - aperiodicity: relating to partitioning into sets with internal cycles.

COMPUTING PAGERANK

Definition of a steady-state is

$$\vec{\pi}P = \vec{\pi}$$

- This is a classic linear algebra problem (finding the left eigenvalues), of the form $\vec{\pi}P = \lambda \vec{\pi}$
 - Can recover several solution vectors for different values of λ
 - Want the principle eigenvector, for which $\lambda = 1$
- In practice, may use the power iteration method to handle large graphs

PAGERANK IN PYTHON

Note that the transpose is needed to convert the right eigenvectors returned by np.linalg.eig to left eigenvectors.

HUBS AND AUTHORITIES (HITS)

- Assumes there are two kinds of pages on web
 - authorities providing authoritative and detailed information
 - hubs containing mainly links to lots of pages about a topic

HITS MOTIVATION

- Depending on our query, we might prefer one type or the other
 - broad topic query, e.g., information about biking in $Melbourne \dots \rightarrow hub$
 - ▶ specific query, e.g., is the Yarra trail sealed? → authority
- More generally, both types of page can be informative
 - but don't know what kind each page is!

FORMULATING HUBS AND AUTHORITIES

- Circular definition
 - A good Hub links to many authorities
 - A good Authority is linked to from many hubs.
- Define
 - $ightharpoonup \vec{h}$ vector of hub scores for each web page
 - \vec{a} vector of authority scores for each web page
- Mutually recursive definition for all pages i

$$h_i \leftarrow \sum_{i \to j} a_j$$
 $a_i \leftarrow \sum_{i \to i} h_j$

INFERENCE

Define

A adjacency matrix, as before $A_{ij}=1$ denotes edge i
ightarrow j

Leads to the relations

$$\vec{h} \leftarrow A\vec{a}$$
 $\vec{a} \leftarrow A^{\top}\vec{h}$

Combining the definitions for \vec{h} into \vec{a} ,

$$\vec{a} \leftarrow A^{\top} A \vec{a}$$

which is another eigenvalue problem. The principle eigenvalue of $A^{\top}A$ can be used to solve for \vec{a} , provided there is a steady-state solution (find \vec{h} in similar way).

HITS EXAMPLE

Steps:

- 1. Compute adjacency matrix, A
- 2. (optional)
 Adjust A based
 on query
- 3. Solve eigenvalue problem to find a, h

COMPARING PAGERANK AND HITS

- Both static query-independent measures of web page quality
- Can be run offline to score each web page
- Based on latent (unobserved) quality metric for each page
 - single importance score (pagerank)
 - hub and authority scores (hits)
- Plus a specific transition mechanism
- Gives rise to document rankings

USE IN A RETRIEVAL SYSTEM?

Use as part of a feature representation, e.g.,

$$RSV_d = \sum_{i=1}^{I} \alpha_i h_i(\vec{f}_i, \vec{f}_{d,i}, \ldots)$$

- Features for TF*IDF, BM25 factors, LM, PageRank, HITS etc, each with their own weight α
- Learn α values using machine learned scoring function
 - to match binary relevance judgements
 - to match click-throughs or query reformulations
- Caveat: graph methods can be exploited, e.g., link spam, Google bombs etc.

SUMMARY

- Link structure of web gives rise to a graph, which conveys information about page importance
 - PageRank models a random surfer in the limit, with Markov Chain
 - HITS models hub and authority status of pages
 - Both solved for steady-state using iteration/linear algebra

Reading

- (Review of Eigen decompositions) 18.1, "Linear algebra review" of Manning, Raghavan, and Schutze, Introduction to Information Retrieval.
- Chapter 21, "Link Analysis" of Manning, Raghavan, and Schutze, Introduction to Information Retrieval.