Convex Functions

Yuanming Shi

ShanghaiTech University

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- 5 Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Definition of Convex Function

A function $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ is said to be **convex** if the domain, **dom** f, is convex and for any $x, y \in \text{dom} f$ and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

$$\downarrow \mathcal{H}S$$

$$(x, f(x)) \mathcal{O}$$

$$\downarrow \mathcal{H}S$$

- f is **strictly convex** if the inequality is strict for $0 < \theta < 1$
- f is **concave** if -f is convex

Strongly convex: if
$$\exists + 20$$
, such that

$$\exists [X] = f(X) - d ||X||^2 \text{ is convex}$$

Lemma:

Strong convexity => Strict convexity => convexity

Proof: $0 \Rightarrow 0$, strong convexity of f implies

$$f(\lambda X + (I-\lambda) Y) - d ||\lambda X + (I-\lambda) Y||^2 \le \lambda (f(X) - d ||X||^2] + (I-\lambda) (f(Y) - d ||X||^2]$$

but

$$\lambda d ||X||^2 + (I-\lambda) d ||X||^2 - d ||\lambda X + (I-\lambda) Y||^2 > 0$$
 $\forall X, X, X \neq Y, \forall X \in (0,1)$

$$d + (\lambda X + (I-\lambda) Y) < \lambda + (X) + (I-\lambda) f(Y)$$

1) The convexe statements are not true, e.g., f(x) = x is convex, not strictly convex

(Strict convexity)

Examples on \mathbb{R}

Convex functions:

- $affine: ax + b \text{ on } \mathbb{R}$
- powers of absolute value: $|x|^p$ on \mathbb{R} , for $p \geq 1$ (e.g., |x|)
- powers: x^p on \mathbb{R}_{++} , for $p \ge 1$ or $p \le 0$ (e.g., x^2)
- ightharpoonup exponential: e^{ax} on $\mathbb R$
- negative entropy: $x \log x$ on \mathbb{R}_{++}

Concave functions:

- $affine: ax + b \text{ on } \mathbb{R}$
- powers: x^p on \mathbb{R}_{++} , for $0 \le p \le 1$
- logarithm: $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^n

- Affine functions $f(x) = a^T x + b$ are convex and concave on \mathbb{R}^n
- Norms $\| m{x} \|$ are convex on \mathbb{R}^n (e.g., $\| m{x} \|_{\infty}, \| m{x} \|_1, \| m{x} \|_2)$
- Quadratic functions $f(x) = x^T P x + 2q^T x + r$ are convex \mathbb{R}^n if and only if $P \succeq 0$
- The **geometric mean** $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on \mathbb{R}^n_{++}
- The \log -sum-exp $f(x) = \log \sum_i e^{x_i}$ is convex on \mathbb{R}^n (it can be used to approximate $\max_{i=1,\dots,n} x_i$) $\max_i \chi_i \leq +(\chi) \leq \max_i \chi_i$
- Quadratic over linear: $f(\boldsymbol{x},y) = \boldsymbol{x}^T \boldsymbol{x}/y$ is convex on $\mathbb{R}^n \times \mathbb{R}_{++}$

Examples on $\mathbb{R}^{n \times n}$

Affine functions: (prove it!)

$$f(\mathbf{X}) = \text{Tr}(\mathbf{AX}) + b$$

are convex and concave on $\mathbb{R}^{n \times n}$

$$f(\boldsymbol{X}) = \operatorname{logdet}(\boldsymbol{X})$$

Logarithmic determinant function: (prove it!) $f(X) = \operatorname{logdet}(X)$ is concave on $\mathbb{S}^n = \{X \in \mathbb{R}^{n \times n} \mid X \succeq \mathbf{0}\}$) $C(\mathcal{Q})$ $f(X) = \operatorname{logdet}(X)$

Maximum eigenvalue function: (prove it!)

$$f(\boldsymbol{x}) = \lambda_{\max}(\boldsymbol{X}) = \sup_{\boldsymbol{y} \neq \boldsymbol{0}} \frac{\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}}$$

is convex on \mathbb{S}^n

$$\chi y = \lambda max(y)$$

Epigraph

ightharpoonup The **epigraph** of f if the set

epi
$$f = \{(\boldsymbol{x}, t) \in \mathbb{R}^{n+1} \mid \boldsymbol{x} \in \text{dom } f, f(\boldsymbol{x}) \leq t\}$$

Relation between convexity in sets and convexity in functions:

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- 5 Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Restriction of a Convex Function to a Line

Proof is Straight from the definition $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \longrightarrow \mathbb{R}$

$$g(t) = f(\boldsymbol{x} + t\boldsymbol{v}), \quad \text{dom } g = \{t \mid \boldsymbol{x} + t\boldsymbol{v} \in \text{dom } f\}$$

is convex for any $\boldsymbol{x} \in \mathrm{dom}\, f$, $\boldsymbol{v} \in \mathbb{R}^n$

- In words: a function is convex if and only if it is convex when restricted to an arbitrary line.
- Implication: we can check convexity of f by checking convexity of functions of one variable!
- Example: concavity of logdet(X) follows from concavity of log(x)

Example

Example: concavity of logdet(X):

$$g(t) = \operatorname{logdet}(\boldsymbol{X} + t\boldsymbol{V}) = \operatorname{logdet}(\boldsymbol{X}) + \operatorname{logdet}(\boldsymbol{I} + t\boldsymbol{X}^{-1/2}\boldsymbol{V}\boldsymbol{X}^{-1/2})$$
$$= \operatorname{logdet}(\boldsymbol{X}) + \sum_{i=1}^{n} \operatorname{log}(1 + t\lambda_i)$$

where λ_i 's are the eigenvalues of $X^{-1/2}VX^{-1/2}$.

The function g is concave in t for any choice of $X \succ 0$ and V; therefore, f is concave.

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- 5 Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

First and Second Order Conditions I

Gradient (for differentiable *f*):

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f(\boldsymbol{x})}{\partial x_n} \end{bmatrix}^T \in \mathbb{R}^n$$

ightharpoonup Hessian (for twice differentiable f):

$$\nabla^2 f(\boldsymbol{x}) = \left(\frac{\partial^2 f(\boldsymbol{x})}{\partial x_i \partial x_j}\right)_{ij} \in \mathbb{R}^{n \times n}$$

Taylor series:

$$f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{\delta} + \frac{1}{2} \boldsymbol{\delta}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{\delta} + o\left(\|\boldsymbol{\delta}\|^2\right)$$

$$\left| \lim_{\zeta \to 0} O\left(\|\boldsymbol{\delta}\|^2\right) \right| = O$$

First and Second Order Conditions II

First-order condition: a differentiable *f* with convex domain is convex if and only if

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \text{dom } f(\boldsymbol{y})$$

- Interpretation: first-order approximation is a global under estimator
- Second-order condition: a twice differentiable *f* with convex domain is convex if and only if

$$abla^2 f(\boldsymbol{x}) \succeq \boldsymbol{0} \quad \forall \boldsymbol{x} \in \mathrm{dom}\, f$$

Examples " the matrix book book"

by kaare broadt

Quadratic function: $f(x) = \frac{1}{2}x^T P x + q^T x + r \text{(with } P \in \mathbb{S}^n \text{)}$

$$abla f(oldsymbol{x}) = oldsymbol{P} oldsymbol{x} + oldsymbol{q}, \qquad
abla^2 f(oldsymbol{x}) = oldsymbol{P}$$

is convex if $P \succ 0$.

Least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(\boldsymbol{x}) = 2\boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}), \qquad \nabla^2 f(\boldsymbol{x}) = 2\boldsymbol{A}^T\boldsymbol{A}$$

is convex.

Quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y & -x \end{bmatrix} \succeq \mathbf{0}$$

is convex for y > 0.

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- 5 Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Operations that Preserve Convexity I

How to establish the convexity of a given function?

- Applying the definition
- With first- or second-order conditions
- By restricting to a line
 - Showing that the functions can be obtained from simple functions by operations that preserve convexity:
 - nonnegative weighted sum
 - composition with affine function (and other compositions)
 - pointwise maximum and supremum, minimization
 - perspective

Operations that Preserve Convexity II

- Nonnegative weighted sum: if f_1, f_2 are convex, then $\alpha_1 f_1 + \alpha_2 f_2$ is convex, with $\alpha_1, \alpha_2 \geq 0$.
- Composition with affine functions: if f is convex, then f(Ax + b) is convex (e.g., ||y Ax|| is convex, $\log \det(I + HXH^T)$ is concave).
- Pointwise maximum: $f := \max\{f_1, \dots, f_m\}$ is convex, if f_1, \dots, f_m are convex

Example: sum of r largest components of $x \in \mathbb{R}^n$:

$$f(\mathbf{x}) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

where $x_{[i]}$ is the *i*th largest component of x.

Proof:
$$f(\mathbf{x}) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 < i_2 < \dots < i_r \le n\}.$$

@ pointuise minimum of two concare functions is concare Pointwise maximum of convex functions is conex $f = \max_{i \in \S 1, ..., m} t_i$ Proof: YX, Y E down (t), $\lambda E(0,1)$. Then $+(\lambda \chi + (1-\lambda) \chi) = +j(\lambda \chi + (1-\lambda) \chi), + \text{or some } j \in \S1, ..., m$ < > + (1->)+;(y) < > max 3+1(x), ..., +m(x));+1x) +(1-x) max {+, (4), ..., +m(x)}:+6) proof via epigraphs recall: + is convex (=) epi(+) is a convex set

epi (+) = (epi (+i) =) convex set += max +i Convex set fort: the intersection of convex set is convex

Operations that Preserve Convexity III

Pointwise supremum: if f(x, y) is convex in x for each $y \in A$, then

$$g(\boldsymbol{x}) = \sup_{\boldsymbol{y} \in \mathcal{A}} f(\boldsymbol{x}, \boldsymbol{y})$$

$$= f(\boldsymbol{y}) = f(\boldsymbol{y}) = f(\boldsymbol{y})$$

is convex.

Example: distance to farthest point in a set *C*:

$$f(\boldsymbol{x}) = \sup_{\boldsymbol{y} \in C} \|\boldsymbol{x} - \boldsymbol{y}\|$$

Example: maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^n$,

$$\lambda_{\max}(X) = \sup_{y \neq 0} \frac{y^T X y}{y^T y}$$

$$+ (X, X) = \underbrace{y^T X y}_{y^T y} \quad \text{is concex in } X$$

$$\text{given } y$$
18

Operations that Preserve Convexity IV

Composition with scalar functions: let $g : \mathbb{R}^n \longrightarrow \mathbb{R}$, $h : \mathbb{R} \longrightarrow \mathbb{R}$, then the function f(x) = h(g(x)) satisfies:

 $f(\boldsymbol{x})$ is convex if $\frac{g}{g}$ convex, h convex nondecreasing g concave, h convex nonincreasing

Minimization: if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(\boldsymbol{x}) = \inf_{\boldsymbol{y} \in C} f(\boldsymbol{x}, \boldsymbol{y})$$

is convex (e.g., distance to a convex set).

Example: distance to a set *C*:

$$f(\boldsymbol{x}) = \inf_{\boldsymbol{y} \in C} \|\boldsymbol{x} - \boldsymbol{y}\|$$

is convex if *C* is convex.

Assume the infimum over yec is attained for each x, we have $epi(g) = \frac{1}{2}(X_i, Y_i) / \frac{1}{2}(X_i, Y_$

Operations that Preserve Convexity V

Perspective: if f(x) is convex, then its perspective

$$g(\boldsymbol{x},t) = tf(\boldsymbol{x}/t), \quad \text{dom } g = \{(\boldsymbol{x},t) \in \mathbb{R}^{n+1} | \boldsymbol{x}/t \in \text{dom } f, t > 0\}$$

is convex.

Example: $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x/t$ is convex for t > 0.

Example: the negative logarithm $f(x) = -\log x$ is convex; hence the relative entropy function $g(x,t) = t \log t - t \log x$ is convex on \mathbb{R}^2_{++} .

Outline

- 1 Definition of Convex Function
- 2 Restriction of a Convex Function to a Line
- 3 First and Second Order Conditions
- 4 Operations that Preserve Convexity
- 5 Quasi-Convexity, Log-Convexity, and Convexity w.r.t. Generalized Inequalities

Quasi-Convexity Functions

A function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is quasi-convex if dom f is convex and the sublevel sets

f is quasiconcave if -f is quasiconvex.

Proof: $X, Y \in S_d$, $\lambda \in (0,1)$ XE SL => +1x1 = x - D JE SX =) f(X) EX - @ + convex => t(xxt(1-x)y) CX++(1-x)x XXT(1-N)YESa Convexity => quasi-convexity $\subseteq \emptyset$

Examples

- $\sim \sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear

- $\log x \text{ is quasilinear on } \mathbb{R}_{++} \qquad \text{Sef } \begin{cases} \text{XER} \mid \text{X}, \text{X},$

is quasilinear
$$S = 9X | + 0x | \leq + 1 = 5x | + 0x + d = 20$$
,

 $ax+b \leq + (Cx+d)^{2}$

Log-Convexity

A positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

- f is log-convex if $\log f$ is convex.
- Example: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$ and log-concave for $a \geq 0$
- Example: many common probability densities are log-concave

$$f(x) = \frac{1}{\sqrt{(2\pi)^n det \Sigma}} \exp\left(-\frac{1}{2}\left[x-\overline{x}\right] \right) \frac{1}{\sqrt{(2\pi)^n det \Sigma}} \exp\left(-\frac{1}{2}\left[x-\overline{x}\right] \right) \frac{1}{\sqrt{(2\pi)^n det \Sigma}} \exp\left(-\frac{1}{2}\left[x-\overline{x}\right] \right)$$

multivow intermal distribution

Convexity w.r.t. Generalized Inequalities

- $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is K-convex if dom f is convex and for any $x, y \in \text{dom } f$ and $0 \le \theta \le 1$, q = 0 and q = 0 are q = 0 and q = 0 and q = 0 and q = 0 are q = 0 and q = 0 and q = 0 are q = 0 and q = 0 and q = 0 are q = 0 and q = 0 are q = 0 and q = 0 and q = 0 are q = 0 are q = 0 and q = 0 are q = 0 are q = 0 and q = 0 are q = 0 and q = 0 are q = 0 and q = 0 and q = 0 are q = 0 and q = 0 are q = 0 and q = 0 are q = 0 are q = 0 are q = 0 and q = 0 are q = 0 and q = 0 are q = 0 a
- Example: $f: \mathbb{S}^m \longrightarrow \mathbb{S}^m$, $f(X) = X^2$ is \mathbb{S}^m_+ -convex X

Reference

Chapter 3 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.

Book:

Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." Technical University of Denmark 7 (2008): 15.