School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 3

Given the following dataset:

_ID	Outl	Тетр	Humi	Wind	PLAY
Training Instances					
А	S	h	n	F	N
В	S	h	h	T	N
С	0	h	h	F	Y
D	r	m	h	F	Y
Ε	r	С	n	F	Y
F	r	С	n	Т	N
TEST INSTANCES					
G	0	m	n	T	?
Н	?	h	?	F	?

- 1. Build a probabilistic **model** based around the given training instances:
 - (a) Calculate the **prior** probability P(Outl = s). Calculate the prior probabilities of the other attribute values in this data.
 - (b) Find the **entropy** of (the distribution of the attribute values) for each of the six attributes, given this probabilistic model.
 - (c) Calculate the **joint** probability $P(Outl = s \cap Temp = h)$. Calculate some other joint probabilities, for pairs of attribute values from different attributes.
 - (d) Calculate the **conditional** probability P(Outl = s|Temp = h). Calculate some other conditional probabilities.
- 2. Ensure that you can derive the **Naive Bayes** formulation.
- 3. Using the probabilistic model that you developed above, classify the test instances according to the method of **Naive Bayes**.
 - (a) Using the "epsilon" smoothing method.
 - (b) Using "Laplace" smoothing.