Proiect Electronica Analogica 2021-2022

1. Schema propusă cu valorile numerice personalizate

Nume: Girlea => R1 = 680

R8 = R9 = 56k

Prenume: Anana => R2 = R3 = 12k

2. Simulare de tip DC Sweep

2.1 Simulare grafic Vout in functie de V1 cu variatie liniara intre -5 V si 5 V cu incrementul 1 mV

2.2 Domeniul tensiunii de intrare pentru care schema funcționează liniar este (-91.53, 91.53)

2.3 Amplificarea de tensiune a schemei (pentru semnale foarte lent variabile)

Amplificarea din valorile simulate:

$$A = \frac{\Delta V_o}{\Delta V_i} = \left(1 + \frac{R_2 + R_3}{R_1}\right) \cdot \left(-\frac{R_5}{R_4}\right) \cdot \left(1 + \frac{R_{11}}{R_{10}}\right)$$

$$A = (1 + (12k + 12k) / 680) * (-10k / 10k) * (1 + 10k / 20k)$$

$$A = (1 + 35.294) * (-1) * (1 + 0.5)$$

3. Simulare de tip AC

3.1 Caracteristica de frecvență a schemei la scară logaritmică

3.2 Banda de trecere a schemei (egală cu frecvența de -3dB)

4. Simulare de tip Transient

4.1 Raspunsul la semnal ti p treapta

4.2 Timpul de creștere

Nume: Girlea \Rightarrow Vim = 25 mV Prenume: Anana \Rightarrow Vom = 4 V f-3dB = 100 Hz

5.1 Schema care transfera domeniul de intrare specificat (-V_{im}, +V_{im}) în domeniul de ieşire specificat (-V_{om}, +V_{om}).

$$(-V_{im}, +V_{im}) = (-25 \text{ mV}, +25 \text{ mV}) = (-0.025 \text{ V}, 0.025 \text{ V})$$

 $(-V_{om}, +V_{om}) = (-4 \text{ V}, 4 \text{ V})$

Calculez amplificarea:

A = Vom / Vim = 4 / 0.025 = 160

Calculez R1 din relatia:

(1 + (R2 + R3) / R1) * (-R5 / R4) * (1 + R11 / R10) = A (1 + (12 + 12) / R1) * (-10 / 10) * (1 + 20 / 10) = 160 (1 + 24 / R1) * (-1) * 3 = 160 1 + 24 / R1 = 53.33 24 / R1 = 52.33 R1 = 24 / 52.33 R1 = 0.45862 kohm = 458.62 ohm

5.2 Schema are frecvența de -3dB Pulsatia:

$$\frac{1}{\sqrt{R_8 R_9 C_1 C_2}} \sim f$$

Relatia veche:

1 / (56k * 100n) ~ 26.63 Hz

Relatia noua:

1 / (56k * C1nou) ~ 100 Hz

=> C1 nou = C2 nou = 26.63n ~ 27n

Am ales sa rotunjesc C1 nou si C2 nou la 27n care difera fata de valoarea obtinuta (26.63n) cu 1.37%.

