Clusters beat Trend!? Testing Feature Hierarchy in Statistical Graphics

Susan VanderPlas & Heike Hofmann,

Iowa State University

August 1, 2016

Outline

- Introduction
- Experiment Setup
 - Model
 - Plot Aesthetics
- Results
 - Target Identification
 - Clusters vs. Trend
 - Participant Reasoning
- Conclusions & Future Work

Introduction

Which plot is the most different?

Participant Responses

Plot 12: 52.2% (Trend target)

Plot 5: 17.4% (Cluster target)

Other: 30.3%

Sample size: 22

Trend target: 12, Cluster target: 5

Which plot is the most different?

Participant Responses

Plot 12: 9.4% (Trend target)

Plot 5: 28.1% (Cluster target)

Plot 18: 31.2%

Other: 31.1%

Sample size: 31

Trend target: 12, Cluster target: 5

Experiment Design

Data-Generating Models

Parameters

 σ_T : Variability in y

 λ : Mixing parameter

 σ_C : Variability around cluster centers

K: # clusters

Plot Aesthetic Combinations

Trend Emphasis

Cluster Emphasis	Strength	0	1	2
	0	Plain	Line	Line + Pred. Interval
	1	Color Shape	Color + Line	
	2	Color + Shape Color + Ellipse		Color + Ellipse + Line + Pred. Interval
	3	Color + Shape + Ellipse		

Palettes selected to provide maximum perceptual distance (Ç. Demiralp, et al., 2014).

Shapes conform to guidelines in Robinson (2003) and Lewandowsky & Spence (1989).

Plot Aesthetic Combinations

Experimental Structure

Model Parameters

- Trend Strength $\sigma_T =$ easy, med., hard
- Cluster Strength $\sigma_C =$ easy, med., hard
- Number of Clusters K = 3.5

Plot Aesthetics

- Plain
- Trend
- Trend + Pred. Int.
 Color + Shape
- + Trend + Pred. Int.

- Color
- Shape
- Color + Trend
 Color + Ellipse
- Color + Ellipse
 Color + Shape
 - + Ellipse

Plot Level

- 18 parameter combinations
- 3 datasets/parameter combination
- 10 plot types for each dataset
 - = 540 total plots

Evaluation Level

- Participants evaluate 10 plots:
 - 1 of each aesthetic
 - 1 of each combination of σ_T and σ_C randomized over K

Data Collection

(via Amazon Mechanical Turk)

1201 participants provided:

- Demographic information: age range, gender, education level
- 10 plot evaluations (12010 total)
 - Target plot identification (one or more sub-plots)
 - Level of confidence in their answer (1 = least, 5=most)
 - Reasoning
 (i.e. "Strongest linear relationship", "Clustered points", "Odd shape")

Results

- Target Identification
- Cluster vs. Trend Target Selection
- Participant Reasoning

Target Identification

Participants selected more cluster targets than line targets.

5 plot types were expected to emphasize clustering; only 2 plot types were expected to emphasize trends.

Faceoff: Cluster vs. Trend?

Cluster vs. Trend

Define C_{ijk} to be the event

{Participant k selects the cluster target for dataset j with aesthetic set i},

and T_{ijk} to be the analogous selection of the trend target.

$$ext{logit } P(C_{ijk}|C_{ijk} \cup T_{ijk}) = \mathbf{W} lpha + \mathbf{X} eta + \mathbf{J} \gamma + \mathbf{K} \eta$$

Cluster vs. Trend

Given that participants identified one of the two target plots...

$$lpha$$
 data model fixed effects eta effect of specific plot types $\gamma_j \stackrel{iid}{\sim} N\left(0,\sigma_{ ext{dataset}}^2\right)$ Dataset random effects $\eta_k \stackrel{iid}{\sim} N\left(0,\sigma_{ ext{participant}}^2\right)$ Participant random effects $\epsilon_{ijk} \stackrel{iid}{\sim} N\left(0,\sigma_e^2\right)$ Individual evaluation errors

Dataset and participant effects are orthogonal by design

Cluster vs. Trend

Plot types are significantly different if they do not share a letter

Participants are 0.52 times as likely to select cluster targets when plots have trend line and prediction interval aesthetics.

Participants are 1.77 times as likely to select cluster targets when plots have color, shape, and ellipse aesthetics.

Participant Reasoning

Plain Plots

Cluster Target (N=712)

Trend Target (N=355)

Participant Reasoning Trend line

Neither Target (N=159)

Cluster Target (N=694)

Trend Target (N=333)

Participant Reasoning Color Plots

cluster dots plot other all of segregated bottom segregated bottom other all of segregated bottom of segregated bottom of segregated bottom of segregated segregated bottom of segregated of segregated segregated plot of segregated of segrega

Neither Target (N=188)

Cluster Target (N=715)

Trend Target (N=292)

Participant Reasoning Color + Ellipse Plots

Neither Target (N=347)

Cluster Target (N=621)

Trend Target (N=222)

Discussion

Conclusions

- Plot aesthetics influence perception of ambiguous data displays
- Aesthetic effects are not additive:
 Conflict conditions don't show similar/neutral results
- Aesthetics which recruit new gestalt heuristics have more influence, and we can quantify the size of that influence

More Information

- Github Repository (Data, paper, code)
 http://github.com/srvanderplas/FeatureHierarchy/
- JCGS Paper: Clusters Beat Trend!? Testing Feature Hierarchy in Statistical Graphics

http://www.tandfonline.com/doi/abs/10.1080/10618600.2016.1209116

- Lots of models examining trial completion time, parameter strength, and participant confidence
- Much more in-depth treatment of gestalt perception
- Simulation-based modeling of null plot characteristics

Future Work

- Restrict group sizes so null plots have the same objects as target plots
- Explore the effect of different types of common region for error bands and ellipses - shading, bounding boxes, etc.
- Test ellipse and error band aesthetics alone and with trend lines and color to examine interaction effects
- Test plotted statistics (trend line, ellipses, error bands) with and without data points to examine interactions between heuristics from the data and heuristics from summary statistics