ON THE PROJECTIVE NORMALITY OF ARTIN-SCHREIER CURVES

EDOARDO BALLICO AND ALBERTO RAVAGNANI

ABSTRACT. In this paper we study the projective normality of certain Artin-Schreier curves Y_f defined over a field \mathbb{F} of characteristic p by the equations $y^q + y = f(x)$, q being a power of p and $f \in \mathbb{F}[x]$ being a polynomial in x of degree m, with (m,p)=1. Many Y_f curves are singular and so, to be precise, here we study the projective normality of appropriate projective models of their normalizations.

1. Introduction

Let \mathbb{P}^2 denote the projective plane over an arbitrary field \mathbb{F} of characteristic p and let $q:=p^s$ be a power of p (s>0). Denote by $Y_f\subseteq \mathbb{P}^2$ the curve defined over \mathbb{F} by the equation $y^q+y=f(x)$, where $f(x)\in \mathbb{F}[x]$ is a polynomial of degree m>0. Assume (m,p)=1. The function field $\mathbb{F}(x,y)$ is deeply studied in [4], Proposition 6.4.1. In particular, the function x is known to have only one pole P_{∞} . Denote by $\pi:C_f\to Y_f$ the normalization (which is known to be a bijection) and set $Q_{\infty}:=\pi^{-1}(P_{\infty})$. For each $s\geq 0$ the (pull-backs of the) monomials x^iy^j such that

$$i \ge 0$$
, $0 \le j \le q - 1$, $qi + mj \le s$

form a basis of the vector space $L(sQ_{\infty})$ (see [4], Proposition 6.4.1 again). The genus, g, of the curve Y_f (which is by definition the genus of the normalization C_f) is known to be g = (m-1)(q-1)/2. In this paper we study the projective normality of certain embeddings (X_f) of C_f curves into suitable projective spaces. Let us briefly discuss the outline of the paper.

- Section 2 recalls a basic definition and contains a preliminary lemma.
- In Section 3 we take an integer $m \geq 2$ which divides q-1 and consider the curve C_f embedded by $L(qQ_{\infty})$ into the projective space \mathbb{P}^r , r := (q-1)/m+1. We show that this curve is in any case projectively normal and we compute the dimension of the space of quadric hypersurfaces containing it.
- In Section 4 we pick out an integer $m \geq 2$ which divides tq + 1 (t being any positive integer) and consider the curve C_f embedded by $L((tq + 1)Q_{\infty})$. We show that if $(tq 1)/m \leq q 1$ and $f(x) = x^m$ then the cited curve is in any case projectively normal.

Notice that the curve C_f and the line bundles $\mathcal{L}(qQ_{\infty})$, $\mathcal{L}((tq+1)Q_{\infty})$ are defined over any field $\mathbb{F} \supseteq \mathbb{F}_p$ containing the coefficients of the polynomial f(x). Hence when $f(x) = x^m$ any field of characteristic p may be used.

 $^{1991\} Mathematics\ Subject\ Classification.\ 14H50;\ 11T99.$

Key words and phrases. Artin-Schreier curve; projective normality.

Partially supported by MIUR and GNSAGA.

2. Preliminaries

In this section we recall a basic definition and prove a general lemma. The result provides in fact sufficient conditions for the projective normality of a C_f curve as defined in the Introduction.

Definition 1. A smooth curve $X \subseteq \mathbb{P}^r$ defined over a field \mathbb{F} is said to be **projectively normal** if for any integer $d \geq 2$ the restriction map

$$\rho_{d,X}: S^d(H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(1))) \to H^0(X, \mathcal{O}_X(d))$$

is surjective, S^d denoting the symmetric d-power of the tensor product.

Lemma 2. Consider a C_f curve as in Section 1 $(q, m \text{ and } f \text{ being as in the definitions}). Set <math>C := C_f$. Fix integers a, b, e such that $a \ge 0, b \ge 0, a+b > 0$ and $e \ge aq+bm+(m-1)(q-1)-1$. The multiplication map

$$\mu: L((aq+bm)Q_{\infty}) \otimes L(eQ_{\infty}) \to L((e+aq+bm)Q_{\infty})$$

is surjective.

Proof. As we will explain below, this is just a particular case of the base-point free pencil trick ([1], p. 126). Since the Weierstrass semigroup of non-gaps of Q_{∞} contains m and q, the line bundle $\mathcal{O}_C((aq+bm)Q_{\infty})$ is spanned by its global sections. Since (aq+bm)>0, we have $h^0(C,\mathcal{O}_C((aq+bm)Q_{\infty}))\geq 2$. Hence there is a two-dimensional linear subspace $V\subseteq H^0(C,\mathcal{O}_C((aq+bm)Q_{\infty}))$ (defined over $\overline{\mathbb{F}}$) spanning $\mathcal{O}_C((aq+bm)Q_{\infty})$. Taking a basis, say $\{w_1,w_2\}$, of V we get an exact sequence of line bundles on C (over $\overline{\mathbb{F}}$):

$$0 \to \mathcal{O}_C((e-aq-bm)Q_\infty) \to \mathcal{O}_C(eQ_\infty)^{\oplus 2} \xrightarrow{\phi} \mathcal{O}_C((e+aq+bm)Q_\infty) \to 0$$

in which ϕ is induced by the multiplication by the column vector (w_1, w_2) . By assumption e - aq - bm > 2g - 2. Hence $h^1(C, \mathcal{O}_C((e - aq - bm)Q_\infty)) = 0$. It follows that the map

$$\psi: H^0(C, \mathcal{O}_C(eQ_\infty))^{\oplus 2} \to H^0(C, \mathcal{O}_C((e+aq+bm)Q_\infty))$$

induced in cohomology by the map ϕ of the previous exact sequence is surjective. Since $V \subseteq H^0(C, \mathcal{O}_C((aq+bm)Q_\infty)), \mu$ is surjective.

In the following sections the previous result will be applied to appropriate embeddings of C_f curves.

3. The case
$$m|q-1$$

Assume that $m \geq 2$ is an integer which divides q-1 and set c := (q-1)/m. If c=1 then Y_f is a smooth plane curve and it is of course projectively normal. Hence we can focus on the case $c \geq 2$. Notice that the point $P_{\infty} \in Y_f(\mathbb{F})$ defined in the Introduction is the only singular point of Y_f , for any choice of f(x) as in the definitions. We have also an identity of vector spaces $H^0(C_f, \pi^*(\mathcal{O}_{Y_f}(1))) = L(qQ_{\infty})$ and by the results stated in the Introduction it can be easily seen that a basis of them is $\{1, x, y, ..., y^c\}$ ($c \leq q-1$ here). Since the linear system spanned by $\{1, x, y\}$ is base-point free (it is also the linear system inducing the composition of π with the inclusion of Y_f in the plane) then also the complete linear system $L(qQ_{\infty})$ is base-point free. Hence it defines a morphism $\varphi: C_f \to \mathbb{P}^r$, r = c+1.

Remark 3. Since π is injective and has invertible differential at any point of $C_f \setminus \{Q_\infty\}$, then also φ is injective with non-zero differential at any point of $C_f \setminus \{Q_\infty\}$. Finally, the

differential of φ is non-zero even in Q_{∞} . Indeed, since $L(qQ_{\infty})$ has no base-points, in order to prove that φ has a non-zero differential at Q_{∞} it is sufficient to prove that

$$h^{0}(C_{f}, (q-2)Q_{\infty}) = h^{0}(C_{f}, qQ_{\infty}) - 2.$$

To do this, we may notice that a basis of $L(qQ_{\infty})$ is given by a basis of $L((q-2)Q_{\infty})$ and the monomial x and y^c (see the Introduction).

By the previous remark we get that φ is in fact an embedding of C_f into \mathbb{P}^r . Set $X_f :=$ $\varphi(C_f)$ and, for any integer $s \geq 1$, denote by

$$\mu_s: L(qQ_\infty) \otimes L(sqQ_\infty) \to L(((s+1)q)Q_\infty)$$

the multiplication map.

Lemma 4. If μ_s is surjective for all $s \geq 1$ then X_f is projectively normal.

Proof. Fix an integer $t \geq 2$ and assume that μ_s is surjective for all $s \in \{1, \ldots, t-1\}$. We need to prove the surjectivity of the linear map $\rho_t: S^t(L(qQ_\infty)) \to L(tqQ_\infty)$. Notice that in arbitrary characteristic $S^t(L(qQ_\infty))$ is defined as a suitable quotient of $L(qQ_\infty)^{\otimes t}$ ([?], §A2.3), i.e. $\tau_t = \rho_t \circ \eta_t$, where $\tau_t : L(qQ_{\infty})^{\otimes t} \to L(tqQ_{\infty})$ is the tensor power map and $\eta_t : L(qQ_{\infty})^{\otimes t} \to S^t(L(qQ_{\infty}))$ is a surjection. Hence ρ_t is surjective if and only if τ_t is surjective. Since $\tau_2 = \mu_1$, τ_2 is surjective. So assume t > 2 and that τ_{t-1} is surjective. Since τ_{t-1} and μ_{t-2} are surjective, τ_t is surjective.

Proposition 5. If $s \ge m$ then μ_s is surjective.

Proof. If $s \ge m$ then $sq \ge q + (m-1)(q-1) - 1$. Apply Lemma 2 by setting e := sq, a := 1and b := 0.

Theorem 6. The curve X_f is projectively normal.

Proof. By Lemma 8 it is enough to prove that μ_s is surjective for all $s \geq 1$. The case $s \geq m$ is covered by Proposition 5. So let us assume $1 \le s < m$. Let i, j be integers such that $i \ge 0$, $0 \le j \le q - 1$ and $qi + mj \le (s + 1)q$.

- If $qi + mj \le sq$ then x^iy^j is in the image of μ_s because $1 \in L(qQ_{\infty})$. If $sq < qi + mj \le (s+1)q$ and i > 0 then $x^{i-1}y^j \in L(sqQ_{\infty})$. Since $x \in L(qQ_{\infty})$ then $x^i y^j$ is in the image of μ_s .
- If i = 0 and sq < mj < (s+1)q then j > sq/m = s(c+1/m) > c and $mj \le sq/m = s(c+1/m) > c$ (s+1)q-1. By the latter inequality we get $m(j-c) \leq (s+1)q-1-mc$. Observe that (s+1)q-1-mc=sq and so $m(j-c)\leq sq$. This proves that $y^{j-c}\in L(sqQ_{\infty})$. Finally, $\mu_s(y^c \otimes y^{j-c}) = y^j$.
- If i = 0 and mj = (s+1)q then j = (s+1)q/m = (s+1)(c+1/m) = (s+1)c+(s+1)/m. Since $0 \le j \le q-1$ is a nonnegative integer, we must have $(s+1)/m \in \mathbb{N}$. Since $1 \le s < m$ we get s = m - 1. It follows mj = mq and j = q, a contradiction.

This proves the theorem.

Corollary 7. Assume $m \geq 3$. The curve $X_f \subseteq \mathbb{P}^{c+1}$ is contained into $\binom{c+3}{2} - 3c - 3$ linearly independent quadric hypersurfaces.

Proof. In the notations of Definition 1 set $X := X_f$ and d := 2. Define r := c+1. By Theorem 6 the restriction map

$$\rho_{2,X_f}: S^2(H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(1))) \to H^0(X_f, \mathcal{O}_{X_f}(2))$$

is surjective. Hence, in particular, the restriction map

$$\rho: H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(2)) \to H^0(X_f, \mathcal{O}_{X_f}(2))$$

is surjective. Since $m \geq 3$ (by assumption) we can easily check that a basis of the vector space $L(2qQ_{\infty})$ consists of the following monomials:

$$\{1, y, ..., y^{2c}, x, xy, ..., xy^c, x^2\}.$$

Hence $h^0(X_f, \mathcal{O}_{X_f}(2)) = \dim_{\mathbb{F}} L(2(q-1)Q_{\infty}) = 3c+3$. The kernel of ρ is exactly the space of the quadrics in \mathbb{P}^r vanishing on X_f . By the surjectivity of ρ we easily deduce its dimension:

$$\dim_{\mathbb{F}} H^0(\mathbb{P}^r, \mathcal{I}_{X_f}(d)) = \binom{r+2}{2} - (3c+3) = \binom{c+3}{2} - 3c - 3.$$

The result follows.

4. The case m|tq+1

Pick out any integer $t \geq 1$ and assume that $m \geq 2$ is a divisor of tq+1. Set c := (tq+1)/m. As in Remark 3, it can be checked that $L((tq+1)Q_{\infty})$ defines an embedding, say φ , of C_f into \mathbb{P}^r , $r := \dim L((tq+1)Q_{\infty}) - 1$. Define $X_f := \varphi(C_f)$. For any integer $s \geq 1$ denote by

$$\mu_s: L((tq+1)Q_\infty) \otimes L(s(tq+1)Q_\infty) \to L((s+1)(tq+1)Q_\infty)$$

the multiplication map. As in Section 3, the projective normality of X_f is controlled by the μ_s maps.

Lemma 8. If μ_s is surjective for all $s \geq 1$ then X_f is projectively normal.

Proof. Take the proof of Lemma 4.

Proposition 9. If $s \geq m$ then μ_s is surjective.

Proof. Apply Lemma 2 by setting a := 0, b := c and e := s(tq + 1).

In the following part of the section we focus on the case $f(x) = x^m$. In particular we are going to show that X_f curves obtained with this choice of f are projectively normal for any choice of $t \ge 1$, provided that $c \le q - 1$.

Remark 10. The assumption $c \le q - 1$ is not so restrictive from a geometric point of view. In fact, for any fixed q, the genus of X_f is g = (q - 1)(m - 1)/2. Even if c is small, here we study many curves of interesting genus.

Lemma 11. Set $f(x) := x^m$ and assume $c \le q - 1$. Pick out an integer $b \ge 0$ such that $b \le (s+1)c$. Then y^b is in the image of μ_s .

Proof. Since $c \leq q-1$ we get $y^c \in L((tq+1)Q_\infty)$. In particular, if $b \leq c$ then we are done. Assume b > c. Let us prove the lemma by induction on s. If s=1 then $b \leq 2c$ and $b-c \leq c \leq q-1$. Hence $y^{b-c} \in L((tq+1)Q_\infty)$ and so $y^b = \mu_1(y^c \otimes y^{b-c})$ is of course in the image of μ_1 . If s>1 then write b=hc+r with $h \leq s$ and $0 \leq r \leq c$. Since $b-r=hc \leq sc$ we have that y^{b-r} is in the image of μ_{s-1} . In particular, it is in $L(s(tq+1)Q_\infty)$. Since $y^r \in L((tq+1)Q_\infty)$ we get $y^b = \mu_s(y^r \otimes y^{b-r})$. It follows that y^b is in the image of μ_s . \square

Theorem 12. Set $f(x) = x^m$ and assume $c \le q - 1$. Then X_f is projectively normal.

Proof. By Lemma 8 it is enough to show that μ_s is surjective for any $s \ge 1$. By Proposition 9 we have only to prove that μ_s is surjective for any $1 \le s < m$. Let i, j be integers such that $i \ge 0$, $0 \le j \le q - 1$ and $qi + mj \le (s + 1)(tq + 1)$. We will examine separately the case $2 \le s < m$ and the case s = 1.

To begin with, assume $2 \le s < m$.

- If $j \geq c$ then $x^i y^{j-c} \in L(s(tq+1)Q_{\infty})$. Since $y^c \in L((tq+1)Q_{\infty})$ we have $x^i y^j = \mu_s(y^c \otimes x^i y^{j-c})$.
- If $0 \le j < c$ and $qi + mj \le s(tq + 1)$ then $x^i y^j$ is in the image of μ_s because $1 \in L((tq + 1)Q_{\infty})$.
- Assume $0 \le j < c$ and $s(tq+1) < qi + mj \le (s+1)(tq+1)$. We have $i \ge t$. Indeed, assume by absurd that i < t. Then

$$qi + mj < tq + mj$$

 $< tq + mc$
 $= tq + tq + 1$
 $\le stq + 1$
 $< s(tq + 1),$

a contradiction (here we used $s \geq 2$).

- (A) If qi+mj < (s+1)(tq+1) then $x^{i-t}y^j \in L(s(tq+1)Q_\infty)$ and $x^iy^j = \mu_s(x^t \otimes x^{i-t}y^j)$.
- (B) Assume qi + mj = (s+1)(tq+1). Since (m,p) = 1 we have i = am for an integer a > 0 and j = (s+1)c aq. Observe that $x^iy^j = x^{am}y^{(s+1)c-aq} = (y^q + y)^ay^{(s+1)c-aq}$, which is a sum of monomials of the form y^b with $b \le (s+1)c$. Apply Lemma 11 and the fact that μ_s is linear to get that x^iy^j is in its image.

Now assume s = 1.

- Assume $j \ge c$. Since $qi+mj \le 2(tq+1)$ we get $qi+m(j-c) \le 2(tq+1)-(tq+1) = tq+1$. Hence $x^iy^{j-c} \in L((tq+1)Q_\infty)$. Finally, $\mu_1(y^c \otimes x^iy^{j-c}) = x^iy^j$.
- Assume j < c and $i \ge t$. Since $qi + mj \le 2(tq+1)$ we get $q(i-t) + mj \le 2(tq+1) tq = tq + 2$.
 - (C) If $q(i-t) + mj \le tq + 1$ then $x^i y^j = \mu_1(x^t \otimes x^{i-t} y^j)$.
 - (D) Assume q(i-t) + mj = tq + 2, i.e. qi + mj = 2tq + 2. Repeat the proof of case (B) with s := 1.
- Assume j < c and i < t. Then $x^i, y^j \in L((tq+1)Q_\infty)$ and we easily get $x^i y^j = \mu_1(x^i \otimes y^j)$.

The proof is concluded.

Remark 13. If t=1 then the assumption $c \leq q-1$ is trivially satisfied (we assumed $m \neq q+1$). In this case the curve $y^q+y=x^m$ is covered by the Hermitian curve.

ACKNOWLEDGMENT

The authors would like to thank the Referee for suggestions and remarks which improved the presentation of the present work.

References

- [1] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, I, Springer, Berlin, 1985.
- [2] A. Garcia, P. Viana, Weierstrass points on certain non-classical curves. Arch. Math., 46, 315–322 (1986)

- [3] J. W. P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field. Princeton University Press, 2008.
- [4] H. Stichtenoth, Algebraic function fields and codes, Second Edition. Springer-Verlag, 2009.

DEPT. OF MATHEMATICS, UNIVERSITY OF TRENTO, 38123 POVO (TN), ITALY

 $E ext{-}mail\ address: edoardo.ballico@unitn.it}$

University of Neuchâtel, CH-2000 Neuchâtel, Switzerland

 $E\text{-}mail\ address: \verb| alberto.ravagnani@unine.ch| \\$