

planetmath.org

Math for the people, by the people.

weight (Lie algebras)

Canonical name WeightLieAlgebras
Date of creation 2013-03-22 13:11:42
Last modified on 2013-03-22 13:11:42
Owner GrafZahl (9234)
Last modified by GrafZahl (9234)

Numerical id 7

Author GrafZahl (9234)

Entry type Definition Classification msc 17B20 Synonym weight

Defines diagonalisable
Defines diagonalizable
Defines multiplicity
Defines weight space

Let \mathfrak{h} be an abelian Lie algebra, V a vector space and $\rho \colon \mathfrak{h} \to \operatorname{End} V$ a representation. Then the representation is said to be diagonalisable, if V can be written as a direct sum

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$$

where \mathfrak{h}^* is the dual space of \mathfrak{h} and

$$V_{\lambda} = \{ v \in V \mid \rho(h)v = \lambda(h)v \text{ for all } h \in \mathfrak{h} \}.$$

Now let \mathfrak{g} be a semi-simple Lie algebra. Fix a Cartan subalgebra \mathfrak{h} , then \mathfrak{h} is abelian. Let $\rho \colon \mathfrak{g} \to \operatorname{End} V$ be a representation whose restriction to \mathfrak{h} is diagonalisable. Then for any $\lambda \in \mathfrak{h}^*$, the space V_{λ} is the weight space of λ with respect to ρ . The multiplicity of λ with respect to ρ is the dimension of V_{λ} :

$$\operatorname{mult}_{\rho}(\lambda) := \dim V_{\lambda}.$$

If the multiplicity of λ is greater than zero, then λ is called a *weight* of the representation ρ .

A representation of a semi-simple Lie algebra is determined by the multiplicities of its weights.