1. A sequence $\{b_k\}$ is a *subsequence* of a sequence $\{a_n\}$ if and only if there exists an increasing function $\varphi: \mathbb{N} \to \mathbb{N}$ such that $b_k = a_{\varphi(k)}$ for every $k \in \mathbb{N}$.

A sequence a_n is said to be *monotonically increasing* (respectively, *monotonically decreasing*) if and only if $a_n \le a_{n+1}$ (respectively, $a_{n+1} \le a_n$) for all $n \in \mathbb{N}$. A sequence is said to be monotone if and only if it is either monotonically increasing or monotonically decreasing.

Show that every sequence of real numbers has a monotone subsequence.

Proof. For every $\{x_i\}$ subsequence of \mathbb{R}^n , $\{x_i\}$ either has a largest element or not. That is, there exists some x_j such that $x_j \geq x_i$ for all x_i , or there does not exists such x_j .

Case I: such a x_j does not exist, therefore the sequence is unbounded and finding a subsequence is trivial. Simply define

$$\varphi(i) = \begin{cases} x_i & x_i \ge x_j \text{ for all } j \le i \\ x_{i-1} & \text{otherwise} \end{cases}$$

We know this sequence will continue on forever, as $\{x_i\}$ is unbounded above. Thus we can find a monotonically increasing subsequence.

Case I: such a x_j does exist. Now our argument becomes somewhat recursive. Look at the entire sequence $\{x_i\}$ such that i>j. That is, the entire sequence of $\{x_i\}$ after x_j . Now we can repeat the same logic, either there is a maximum of the new sequence or there is not. If there exists no maximum, then b Case I we have a monotonically increasing subsequence. If there is a maximum we continue to repeat. If there is always a maximum, what we get is a sequence of maximums we denote $\{m_1, m_2, ..., m_j\}$. However, we know that each maximum must be less than or equal to the previous by the definition of max. Therefore, this sequence of maximums is monotonically decreasing. Hence, we have found a monotonic subsequence of $\{x_i\}$, showing that a sequence of real numbers $\{x_i\}$ will always have a monotone subsequence.

2. The following tree (LaTeX forest!) is constructed inductively using the following rule. Begin with $\frac{1}{1}$ at the first level. Suppose that the m-th level of the tree has been constructed with 2^{m-1} nodes, and each node consists of a fraction of $\frac{i}{j}$. Then each of the 2^{m-1} entries at the m-th level in the tree produces two children, a left child and a right child; the 2^m nodes at the (m+1)-th level consist of these. For $\frac{i}{j}$ at the m-th level of the tree, the left child is $\frac{i}{i+j}$ and the right child is $\frac{i+j}{j}$.

Prove that every fraction $\frac{m}{n}$ that appears in the three is in lowest terms that is, (m, n) = 1. (Here, (m, n) denotes the *greatest common divisor* of m and n).

Proof. We proceed by induction. First, we note that $\frac{1}{1}$ is in lowest possible terms, as (1,1)=1. Now, we take our induction hypothesis to be that $\frac{i}{j}$ is in lowest possible terms, and attempt to show that both $\frac{i}{i+j}$ and $\frac{i+j}{j}$ are also in lowest possible terms. First, we know that (i,j)=1, this means that given some $x,y\in\mathbb{R}$

$$ix + jy = 1$$

$$ix + jy + (xj - xj) = 1$$

$$ix + xj + jy - xj = 1$$

$$(i + j)x + j(y - x) = 1$$

Therefore i+j and j are coprime, meaning that (i+j,j)=0. Hence, $\frac{i+j}{i}$ is in lowest terms. Additionally we can compute

$$ix + jy = 1$$

$$ix + jy + (yi - yi) = 1$$

$$ix - yj + jy + yi = 1$$

$$i(x - y) + (i + j) = 1$$

Once again, we see similarly that i and i+j are coprime and that (i,i+j)=1. Meaning also that $\frac{i}{i+j}$ is in lowest terms.

By induction we can therefore conclude that every element of the tree will be in lowest terms. \Box