WBE: JAVASCRIPT

PROTOTYPEN VON OBJEKTEN

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

ÜBERSICHT

- Prototypen und this
- Konstruktoren und Vererbung
- Gewohntere Syntax: Klassen
- Test-Driven Development

ÜBERSICHT

- Prototypen und this
- Konstruktoren und Vererbung
- Gewohntere Syntax: Klassen
- Test-Driven Development

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW

this

- Bezieht sich auf das aktuelle Objekt
- Was das heisst, ist nicht immer ganz klar
- Bedeutung ist abhängig davon, wo es vorkommt
 - Methodenaufruf (method invocation)
 - Funktionsaufruf (function invocation)
 - Mit apply, call oder bind festgelegt
 - Konstruktoraufruf

nt by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

.

THIS: METHODENAUFRUF

```
function speak (line) {
  console.log(`The ${this.type} rabbit says '${line}'`)
}

let whiteRabbit = {type: "white", speak}

tet hungryRabbit = {type: "hungry", speak}

hungryRabbit.speak("I could use a carrot right now.")

// > The hungry rabbit says 'I could use a carrot right now.'
```

- [this] in einer Funktion ist abhängig von Art des Aufrufs
- Aufruf als Methode eines Objekts: this ist das Objekt

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

STRICT MODE

- Behebt einige potenzielle Fehlerquellen in JavaScript
- Aktiviert am Anfang des Scripts / der Funktion durch
 "use strict"
- Im strict mode ist this bei Funktionsaufruf undefined

```
1 "use strict"
2
3 function speak (line) {
4   console.log(`The ${this.type} rabbit says '${line}'`)
5 }
6
7 speak("I could use a carrot right now.")
8 // → TypeError: Cannot read property 'type' of undefined
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

THIS: FUNKTIONSAUFRUF

```
1 function speak (line) {
2   console.log(`The ${this.type} rabbit says '${line}'`)
3 }
4 
5 speak("I could use a carrot right now.")
6 // → The undefined rabbit says 'I could use a carrot right now.'
```

- Hier ist this das globale Objekt (Node REPL: global)
- Es hat kein type-Attribut, daher wird undefined eingesetzt
- Dies ist praktisch immer ein Programmierfehler

Note:

Was das globale Objekt ist, ist abhängig von der Laufzeitumgebung. Im Browser ist das globale Objekt window. Es repräsentiert das aktuell geöffnete

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW

call, apply

- Methoden call und apply von Funktionen
- Erstes Argument: Wert von this in der Funktion
- Weitere Argumente von call: Argumente der Funktion
- Weiteres Argument von apply: Array mit den Argumenten

```
1 function speak (line) {
2   console.log(`The ${this.type} rabbit says '${line}'`)
3 }
4 let hungryRabbit = {type: "hungry"}
5
6   Speak.call)(hungryRabbit, "Burp!")
7 // > The hungry rabbit says 'Burp!'
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZH

bind

- Noch eine Methode von Funktionen: bind
- Erzeugt neue Funktion mit gebundenem [this]
- Auch weitere Argumente können gebunden werden

```
1 function speak (line) {
2   console.log(`The ${this.type} rabbit says '${line}'`)
3 }
4 let hungryRabbit = {type: "hungry"}
5
6 let boundSpeak = speak.bind(hungryRabbit)
7 boundSpeak("Burp!")
8 // → The hungry rabbit says 'Burp!'
```

opyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

PROTOTYP

```
1 let empty = {}
2 console.log(empty.toString)  /* → [Function: toString] */
3 console.log(empty.toString())  /* → [object Object] */
```

- Wieso hat ein leeres Objekt eine Methode toString?
- Die meisten Objekte haben ein Prototyp-Objekt
- Dieses fungiert als Fallback für Attribute und Methoden
- Vererbung einmal anders...

FUNKTIONEN IN PFEILNOTATION

- Arrow Functions verhalten sich hier anders
- Sie übernehmen this aus dem umgebenden Gültigkeitsbereich

```
1 function normalize () {
2   console.log(this.coords.map(n => n / this.length))
3 }
4
5 normalize.call({coords: [0, 2, 3], length: 5})
6 // → [0, 0.4, 0.6]
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

PROTOTYP

```
> Object.getPrototypeOf({}) == Object.prototype
true

> Object.getOwnPropertyNames(Object.prototype)
[ 'constructor', 'hasOwnProperty', 'isPrototypeOf',
   'propertyIsEnumerable', 'toString', 'valueOf', ... ]
```

- Methoden und Attribute von Object.prototype sind auch für das leere Objekt {} verfügbar
- toString ist eine dieser Methoden

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHA)

PROTOTYP

- Funktionen haben Function.prototype als Prototyp
- Arrays haben [Array.prototype] als Prototyp
- Diese Prototypen haben Object.prototype als Prototyp

```
> Object.getPrototypeOf(Math.max) == Function.prototype
true
> Object.getPrototypeOf(Function.prototype) == Object.prototype
true
> Object.getPrototypeOf([]) == Array.prototype
true
> Object.getPrototypeOf(Array.prototype) == Object.prototype
true
```

pyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

PROTOTYP

- Mit Object.create kann ein Objekt mit vorgegebenem Prototyp angelegt werden
- Es kann dann mit weiteren Attributen versehen werden

```
> let protoObj = { alfa: 1 }
> let obj = Object.create(protoObj)
> obj
{}
> obj.beta = 2
> obj.gamma = 3
> obj
{ beta: 2, gamma: 3 }
> obj.alfa
1
```


PROTOTYPENKETTE


```
> [1,2,3,4,5].toString()
'1,2,3,4,5'
> Math.max.toString()
'function max() { [native code] }'
> Object.getOwnPropertyNames(Array.prototype)
['length', ..., 'toString']
> Object.getOwnPropertyNames(Object.prototype)
['constructor', ..., 'toString']
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAV

WEITERES BEISPIEL

```
1 let protoRabbit = {
2    speak (line) {
3       console.log(`The ${this.type} rabbit says '${line}'`)
4    }
5 }
6 let killerRabbit = Object.create(protoRabbit)
7 killerRabbit.type = "killer"
8 killerRabbit.speak("SKREEEE!")
9 // → The killer rabbit says 'SKREEEE!'
```

- Methode wird von protoRabbit genommen (geerbt)
- Variante zur Methodendefinition

 (statt: speak: function (line) {...})

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHA)

JSON

- Mit JSON. stringify werden Objekte serialisiert
- Methoden werden dabei nicht übernommen
- Prototyp wird ebenfalls nicht ins JSON übernommen
- Muss nach dem Parsen bei Bedarf wieder hergestellt werden

```
> let dataStrg = '{"type":"cat","name":"Mimi","age":3}'
> let protoData = { category: "animal" }
> data = Object.assign(Object.create(protoData), JSON.parse(dataStrg))
{ type: 'cat', name: 'Mimi', age: 3 }
> data.category
'animal'
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

OBJEKT MIT PROTOTYP

```
1 let protoPerson = {...} /* Prototype */
2
3 function makePerson (name) {
4  let person = Object.create(protoPerson)
5  person.name = name
6  return person
7 }
```

- Objekt mit bestimmtem Prototyp erzeugen
- Dabei auch gleich Attribute belegen
- Das geht auch mit Hilfe von Konstruktoren...

ÜBERSICHT

- Prototypen und this
- Konstruktoren und Vererbung
- Gewohntere Syntax: Klassen
- Test-Driven Development

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAV

KONSTRUKTOR

- Funktionen können mit new aufgerufen werden
- In diesem Fall werden sie als Konstruktor interpretiert
- [this] ist dabei das neu angelegte Objekt
- Konvention: Konstruktoren mit grossen Anfangsbuchstaben

```
1 /* noch nicht ganz ideal, wird gleich verbessert... */
2 function Person (name) {
3    this.name = name
4    this.toString = function () {return `Person with name '${this.name}'``}
5 }
6
7 let p35 = new Person("John")
8 console.log(""+p35) // → Person with name 'John'
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHA

KONSTRUKTOR

- Funktion hat prototype-Attribut: Referenz zu Prototyp
- Prototyp hat constructor-Attribut: zurück zur Funktion
- Objekte erben vom Prototyp, nicht vom Konstruktor

PROTOTYP

- Im vorhergehenden Beispiel erhält jedes Objekt eine eigene toString-Methode, was unnötig ist
- Gemeinsame Attribute sollten im Prototyp angehängt werden

```
1 function Person (name) {
    this.name = name
3 }
4 Person.prototype.toString = function () {
    return `Person with name '${this.name}'`
6 }
8 let p35 = new Person("John")
```

KONSTRUKTOR

PROTOTYP

23

PROTOTYPEN-KETTE

- Ein Objekt erbt vom Prototyp seines Konstruktors
- Möglich: Prototyp durch Objekt eines anderen Konstruktors ersetzen
- Dadurch kann eine Vererbungshierarchie aufgebaut werden

pyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

PROTOTYPEN-KETTE

```
function Employee (name, salary) {
   Person.call(this, name)
   this.salary = salary
4 }
5
6 Employee.prototype = new Person()
7 Employee.prototype.constructor = Employee
8
9 let e17 = new Employee("Mary", 7000)
10
11 console.log(e17.toString())  /* → Person with name 'Mary' */
12 console.log(e17.salary)  /* → 7000 */
```

PROTOTYPEN-KETTE

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW

PROTOTYPENKETTE

- Lesender Zugriff:
 Wenn Attribut nicht vorhanden ist, wird es entlang der Prototypenkette gesucht
- Schreibender Zugriff:
 Attribut wird direkt im Objekt angelegt
- Objekt kann auch keinen Prototyp haben ([null] setzen)
- Für die meisten Objekte steht Object.prototype am Ende der Prototypenkette

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW

ÜBERSICHT

- Prototypen und this
- Konstruktoren und Vererbung
- Gewohntere Syntax: Klassen
- Test-Driven Development

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

KLASSEN

```
1 class Person {
2   constructor (name) {
3     this.name = name
4   }
5   toString () {
6     return `Person with name '${this.name}'`
7   }
8  }
9
10 let p35 = new Person("John")
11 console.log(p35.toString()) // → Person with name 'John'
```

KLASSEN

- Vererbung über Prototypen ist gewöhnungsbedürftig
- Wenn auch sehr mächtig: damit lassen sich verschiedene Varianten von Objektorientierung umsetzen
- ES6: Klassen eingeführt
- Syntax eher an andere OOP-Sprachen angelehnt
- Letztlich nur Syntactic Sugar für Prototypensystem

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

KLASSEN: VERERBUNG

```
class Employee extends Person {
constructor (name, salary) {
    super(name)
    this.salary = salary
}
toString () {
    return `${super.toString()} and salary ${this.salary}`
}
}
let e17 = new Employee("Mary", 7000);
console.log(e17.toString()) /* → Person with name 'Mary' and salary 7000 */
console.log(e17.salary) /* → 7000 */
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW

KLASSEN: GETTER UND SETTER

```
class PartTimeEmployee extends Employee {
constructor (name, salary, percentage) {
    super(name, salary)
    this.percentage = percentage
}
get salary100 () { return this.salary * 100 / this.percentage}
set salary100 (amount) { this.salary = amount * this.percentage / 100 }
}
let e18 = new PartTimeEmployee("Bob", 4000, 50)

console.log(e18.salary100) /* → 8000 */
e18.salary100 = 9000
console.log(e18.salary) /* → 4500 */
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

TEST-DRIVEN DEVELOPMENT, TDD

- Tests konsequent vor den zu testenden Komponenten erstellt
- Häufig bei der agilen Software-Entwicklung eingesetzt
- Verbessert Verständnis der zu erstellenden Komponenten
- Tests als Spezifikation für korrektes Verhalten der Software
- Refactoring erleichtert

"I like test-driven development as a methodology but I hate it as a religion." Douglas Crockford, FullStack London 2018

ÜBERSICHT

- Prototypen und this
- Konstruktoren und Vererbung
- Gewohntere Syntax: Klassen
- Test-Driven Development

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW

JASMINE

"Jasmine is a behavior-driven development framework for testing JavaScript code. It does not depend on any other JavaScript frameworks. It does not require a DOM. And it has a clean, obvious syntax so that you can easily write tests. "

https://jasmine.github.io/index.html

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (Zi

JASMINE

- Testsuite besteht aus mehreren Specs
- Ziel in natürlicher Sprache beschrieben
- Suites und Specs sind Funktionen
- Für Node.js ebenso wie für Browser-Umgebung

```
describe("A suite is just a function", function () {
  let a

  it("and so is a spec", function () {
    a = true
    expect(a).toBe(true)
  })
})
```

pyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

BEISPIEL (PROGRAMMLOGIK)

```
1  /* Player.js */
2  function Player() {
3  }
4  Player.prototype.play = function(song) {
5    this.currentlyPlayingSong = song
6    this.isPlaying = true
7  }
8  Player.prototype.pause = function() {
9     this.isPlaying = false
10  }
11  Player.prototype.resume = function() {
12    if (this.isPlaying) {
13        throw new Error("song is already playing")
14  }
15    this.isPlaying = true
16  }
17  Player.prototype.makeFavorite = function() {
18    this.currentlyPlayingSong.persistFavoriteStatus(true)
19  }
20  module.exports = Player
```

JASMINE INSTALLATION

```
$ npm init
$ npm install --save-dev jasmine
$ npx jasmine init
$ npx jasmine examples
iasmine
                                • Legt Projekt mit lokal
   └─ jasmine_examples
       — Player.js
                                   installiertem Jasmine an
       — Song.js
   node_modules

    package-lock.json

                                 • Kopiert ein paar Beispiel-
 — package.json

    helpers

                                   Dateien ins Projekt
      iasmine examples
         SpecHelper.js
     jasmine_examples
                                 • Konfiguration in

— PlayerSpec.is

      support
                                   spec/support/jasmine.json
      └ jasmine.json
```

https://jasmine.github.io/setup/nodejs.html

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

BEISPIEL (ZUGEHÖRIGE TESTS)

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHA)

JASMINE: TESTS DURCHFÜHREN

```
$ npx jasmine
Randomized with seed 03741
Started
.....
5 specs, 0 failures
Finished in 0.014 seconds
Randomized with seed 03741 (jasmine --random=true --seed=03741)
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

JASMINE: MEHR

- Verhalten von Methoden oder ganzen Objekten simulieren
- Erstellen von Mock Objects mit Jasmine Spies

```
spyOn(dictionary, "hello")
expect(dictionary.hello).toHaveBeenCalled()

// oder...
spyOn(dictionary, "hello").and.returnValue("bonjour")
spyOn(dictionary, "hello").and.callFake(fakeHello)
```

JASMINE: MATCHER

```
expect([1, 2, 3]).toEqual([1, 2, 3])
expect(12).toBeTruthy()
expect("").toBeFalsy()
expect("Hello planet").not.toContain("world")
expect(null).toBeNull()
expect(8).toBeGreaterThan(5)
expect(12.34).toBeCloseTo(12.3, 1)
expect("horse_ebooks.jpg").toMatch(/\w+.(jpg|gif|png|svg)/i)
...
```

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZHAW)

JASMINE IM BROWSER

- Standalone Release herunterladen https://github.com/jasmine/jasmine/releases
- Beispiel-Quellen und -Tests ersetzen
- SpecRunner.html
 - anpassen (Quellen, Tests)
 - im Browser öffnen

Copyright by Zürcher Hochschule für Angewandte Wissenschaften (ZH

QUELLEN

- Marijn Haverbeke: Eloquent JavaScript, 3rd Edition https://eloquentjavascript.net/
- Ältere Slides aus WEB2 und WEB3
- Dokumentationen, u.a. zu Node.js, Jasmine

LESESTOFF

Geeignet zur Ergänzung und Vertiefung

• Kapitel 6 von: Marijn Haverbeke: Eloquent JavaScript, 3rd Edition https://eloquentjavascript.net/