# Assignment 3 EXTRA

# Digital Design Verification

# Contents

| 1 |                 | Queue test              | 2  |
|---|-----------------|-------------------------|----|
|   | 1.1             | 1. Testbench            | 2  |
|   |                 |                         |    |
| 2 |                 | Adder                   | 3  |
|   | 2.1             | 1. Testbench code       | 3  |
|   | 2.2             | 2. Package code         | 3  |
|   | 2.3             | 3. Design code          | 4  |
|   | 2.4             | 4. Bug Fixes            | 4  |
|   | 2.5             | 5. Verification Plan    | 4  |
|   | 2.6             | 6. Do File              | 5  |
|   | 2.7             | 7. Code Coverage Report | 5  |
|   | 2.8             | 8. Code Coverage Report |    |
|   | 2.9             | 9. Waveform             | 8  |
|   |                 |                         |    |
| 3 | $\mathbf{Q3}$ : | $\mathrm{FSM}\_010$     | 8  |
|   |                 | 1. Testbench code       |    |
|   |                 | 2. Package code         |    |
|   |                 | 3. Design code          |    |
|   | 3.4             | 4. Golden model code    |    |
|   | 3.5             | 5. Bug Fixes            | 14 |
|   | 3.6             | 6. Verification Plan    | 14 |
|   | 3.7             | 7. Do File              | 14 |
|   | 0.1             |                         |    |
|   | 3.8             |                         |    |
|   |                 | 8. Code Coverage Report | 14 |

# 1 Q1: Queue test

#### 1.1 1. Testbench

```
1 module queue_tb;
3 initial begin
5 //-----
  // Declare int j and a queue q of type int
8 int j;
9 int q [$];
  // initialize int j as 1 and queue q as (0, 2, 5)
_{14} j = 1;
q = \{0,2,5\};
  // insert int j at index 1 in queue q and display q
21 $display("after_inserting_%0d_in_index_1_new_queue_is_:_%0p",j,q);
24 // delete index 1 element from queue q and display q
26 q.delete(1);
27 $display("afterudeletinguelementuinuindexu1unewuqueueuisu:u%0p",q);
_{30} // push an element (7) in the front in queue q and display q
$\display("after\_pushing\_front\_element\_7\_new\_queue\_is\_:\_\%0p",q);
  // push an element (9) at the back in queue {\bf q} and display {\bf q}
q.push_back(9);
$\display("after_pushing_back_element_9_new_queue_is_:_\%0p",q);
_{\rm 42} // pop an element from back of queue q into j, display q, and j
44  j = q.pop_back();
45 $display("afterupopubackuintouj,uju=u%0duandunewuqueueuisu:u%0p",j,q);
47 //----
_{\rm 48} // pop an element from front of queue q into j, display q, and j
50 j = q.pop_front();
51 $display("afterupopufrontuintouj,uju=u%0duandunewuqueueuisu:u%0p",j,q);
_{54} // reverse, sort, reverse sort and shuffle the queue and display q after using each method
_{56} // Reverse the queue and display q
q.reverse();
$\display("After_reverse:\"\p", q);
60 // Sort the queue and display q
$display("After_sort:_\%p", q);
_{64} // Reverse sort the queue (sort then reverse) and display q
65 q.sort();
q.reverse();
$display("After_reverse_sort:_\%p", q);
_{69} // Shuffle the queue and display q
70 q.shuffle();
73 $finish;
76 endmodule
```

```
VSIM 5> restart

* ** Note: (vsim-12125) Error and warning message counts have been reset to '0' because of 'restart'.

* ** Note: (vsim-3813) Design is being optimized due to module recompilation...

* Loading sv_std.std

* Loading work.queue_tb(fast)

VSIM 4> run -all

* after inserting 1 in index 1 new queue is: 0 1 2 5

* after delecting element in index 1 new queue is: 0 2 5

* after pushing front element 7 new queue is: 7 0 2 5

* after pushing back element 9 new queue is: 7 0 2 5 9

* after pushing tont to j, j = 7 and new queue is: 7 0 2 5

* after pop front into j, j = 7 and new queue is: 0 2 5

* After reverse: '{5, 2, 0}

* After reverse sort: '{5, 2, 0}

* After reverse sort: '{5, 2, 0}

* After shuffle: '{2, 0, 5}

* ** Note: $finish : C:/Users/Administrator/Desktop/assign 3 - verification diploma - EXTRA/Ql/queue_tb.sv(73)

* Time: 0 ns Iteration: 0 Instance: /queue_tb

* Break in Module queue_tb at C:/Users/Administrator/Desktop/assign 3 - verification diploma - EXTRA/Ql/queue_tb.sv line 73

VSIM 5>
```

Figure 1: Transcript

# 2 Q2: Adder

### 2.1 1. Testbench code

```
import adder_package::*;
4 module adder_tb;
     // inputs to instantiated Adder
     reg clk, reset;
     reg signed [3:0] A; // Input data A: 2's complement
     reg signed [3:0] B; // Input data B: 2's complement
     // Output of Adder
     wire signed [4:0] C; // Adder output: 2's complement
11
     integer error_count; // 32-bit signed
13
     integer correct_count; // 32-bit signed
14
     adder a1 (
       .clk(clk),
17
       .reset(reset),
       .A(A), // Input data A: signed
19
                // Input data B: signed
                // Adder output: signed
23
     // Create the clock and reset
       initial begin
25
           clk = 0;
26
           forever
               #5 clk = ~clk;
29
     adder_rand_class stim;
31
       initial begin
           error_count = 0;
34
           correct_count = 0;
35
           stim = new;
           repeat (50) begin
               assert(stim.randomize()) else $error("Randimization∟Failed");
               @(negedge clk);
               A = stim.A;
               B = stim.B;
               reset = stim.reset;
               stim.C = C;
               if(stim.reset == 1'b1) begin
               end else begin
                  stim.sample_A();
                  stim.sample_B();
52
               end
               @(posedge clk);
               check_Task;
           $display("%0t:_At_end_of_test_error_count_is_%0d_and_correct_count_=_%0d", $time, error_count, correct_count);
60
61
63
       task check_Task();
           logic signed [4:0] expected_result;
           #1; //due to simulator doesnnot given me output in posedge immediately
           if (reset && C == 0) begin
69
             correct_count = correct_count + 1;
           end else if (reset && C != 0) begin
             error_count = error_count + 1;
             $\display("Error!\[ For\] A=\( Od\] and\[ B=\( Od\] C\[ Should\[ equal\] \( \% Od\] but\[ is\] \( \% Od\], $time, A, B, expected_result, C);
             $stop;
           end
           if(!reset) begin
77
               expected_result = stim.A+stim.B;
               if (C == expected_result)begin
                    correct_count = correct_count + 1;
80
               end else begin
81
82
                    error_count = error_count + 1;
                    $display("Error! For A = %0d and B = %0d C should equal %0d but is %0d", $time, A, B, expected_result, C);
83
                    $stop;
84
85
               end
           end
86
88
       endtask
   endmodule
```

# 2.2 2. Package code

```
package adder_package;
typedef enum logic signed [31:0]{
```

```
MAXPOS = 7,
           ZERO = 0,
           MAXNEG = -8
       } enum_t;
       class adder_rand_class;
           rand bit reset;
           rand bit signed [3:0] A;
           rand bit signed [3:0] B;
11
           bit signed [4:0] C;
13
           constraint rst_c {
14
15
               reset dist {1:/10, 0:/90};
17
           constraint A_c {
                A dist {MAXPOS:/20, ZERO:/20, MAXNEG:/20, [-7:-1]:/10, [1:6]:/10};
19
20
           constraint B_c {
22
                B dist {MAXPOS:/20, ZERO:/20, MAXNEG:/20, [-7:-1]:/10, [1:6]:/10};
23
25
           covergroup Covgrp_A;
26
                cp1: coverpoint A {
                    bins data_0 = \{0\};
28
                    bins data_max = {MAXPOS};
                    bins data_min = {MAXNEG};
                    bins data_default = default;
31
32
                cp2: coverpoint A {
34
                    bins data_0max = (0 => MAXPOS);
                    bins data_maxmin = (MAXPOS => MAXNEG);
                    bins data_minmax = (MAXNEG => MAXPOS);
37
               }
38
           endgroup
           covergroup Covgrp_B;
                cp3: coverpoint B {
42
                    bins data_0 = \{0\};
43
                    bins data_max = {MAXPOS};
                    bins data_min = {MAXNEG};
                    bins data_default = default;
48
                cp4: coverpoint B {
49
                    bins data_0max = (0 => MAXPOS);
                    bins data_maxmin = (MAXPOS => MAXNEG);
51
52
                    bins data_minmax = (MAXNEG => MAXPOS);
53
           {\tt endgroup}
54
55
           function new();
56
               Covgrp_A = new();
57
                Covgrp_B = new();
           endfunction
60
            function void sample_A();
61
               Covgrp_A.sample();
62
           endfunction
63
           function void sample_B();
65
                Covgrp_B.sample();
66
            endfunction
       endclass
_{70} endpackage
        3. Design code
   module adder (
       input clk,
       input reset,
       input signed [3:0] A, // Input data A in 2's complement
       input signed [3:0] B, // Input data B in 2's complement
       output reg signed [4:0] C // Adder output in 2's complement
   );
9 // Register output C
10 always @(posedge clk or posedge reset) begin
       if (reset)
11
12
           C \le 5, b0;
13
       else
           C \le A + B;
14
15 end
16
17 endmodule
   2.4 4. Bug Fixes
```

no bugs

# 2.5 5. Verification Plan

| Label             | Description               | Stimulus Generation                       | Functional Coverage        | Functionality Check        |
|-------------------|---------------------------|-------------------------------------------|----------------------------|----------------------------|
| ADDER_1           | When the reset is as-     | Directed at the start of the sim-         | Reset coverage through re- | A checker in the testbench |
|                   | serted, the output C      | ulation with reset constraint:            | set constraint             | verifies C=0 when reset is |
|                   | value must be low         | reset dist $\{1:/10, 0:/90\}$             |                            | high                       |
| $ADDER_{-2}$      | Verifying maximum neg-    | Constrained random with A <sub>-</sub> c  | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | ative value on A and      | and B <sub>-c</sub> constraints targeting | and Covgrp_B.cp3 bins for  | to make sure the output is |
|                   | maximum negative value    | MAXNEG (-8) values                        | data_min                   | correct $(-8 + -8 = -16)$  |
|                   | on B                      |                                           |                            |                            |
| $ADDER_3$         | Verifying maximum neg-    | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | ative value on A and zero | tributions favoring MAXNEG                | (data_min) and Cov-        | to make sure the output is |
|                   | value on B                | (-8) and ZERO values                      | grp_B.cp1 (data_0)         | correct $(-8 + 0 = -8)$    |
| $ADDER_4$         | Verifying maximum neg-    | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | ative value on A and      | tributions favoring MAXNEG                | (data_min) and Cov-        | to make sure the output is |
|                   | maximum positive value    | (-8) and MAXPOS (7) values                | grp_B.cp1 (data_max)       | correct $(-8 + 7 = -1)$    |
|                   | on B                      |                                           |                            |                            |
| ${ m ADDER\_5}$   | Verifying zero on A and   | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | maximum negative value    | tributions favoring ZERO and              | (data_0) and Covgrp_B.cp1  | to make sure the output is |
|                   | on B                      | MAXNEG (-8) values                        | (data_min)                 | correct $(0 + -8 = -8)$    |
| ${ m ADDER\_6}$   | Verifying zero on A and   | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | zero on B                 | tributions favoring ZERO val-             | (data_0) and Covgrp_B.cp1  | to make sure the output is |
|                   |                           | ues                                       | (data_0)                   | correct (0 + 0 = 0)        |
| ${ m ADDER}$ _7   | Verifying zero on A and   | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | maximum positive value    | tributions favoring ZERO and              | (data_0) and Covgrp_B.cp1  | to make sure the output is |
|                   | on B                      | MAXPOS (7) values                         | (data_max)                 | correct (0 + 7 = 7)        |
| ${ m ADDER}\_{8}$ | Verifying maximum pos-    | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | itive value on A and      | tributions favoring MAXPOS                | (data_max) and Cov-        | to make sure the output is |
|                   | maximum negative value    | (7) and MAXNEG (-8) values                | grp_B.cp1 (data_min)       | correct $(7 + -8 = -1)$    |
|                   | on B                      |                                           |                            |                            |
| ADDER_9           | Verifying maximum pos-    | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | itive value on A and zero | tributions favoring MAXPOS                | (data_max) and Cov-        | to make sure the output is |
|                   | on B                      | (7) and ZERO values                       | grp_B.cp1 (data_0)         | correct (7 + 0 = 7)        |
| ADDER_10          | Verifying maximum pos-    | Constrained random with dis-              | Covered by Covgrp_A.cp1    | A checker in the testbench |
|                   | itive value on A and      | tributions favoring MAXPOS                | (data_max) and Cov-        | to make sure the output is |
|                   | maximum positive value    | (7) values                                | grp_B.cp1 (data_max)       | correct $(7 + 7 = 14)$     |
|                   | on B                      |                                           |                            |                            |

Table 1: Verification Plan for the Adder Module

#### 2.6 6. Do File

vlib work

```
vlog adder.sv adder_tb.sv adder_package.sv +cover -covercells
vsim -voptargs=+acc work.adder_tb -cover
add wave *
coverage save adder_tb.ucdb -onexit
run -all

# to run do file
#— do run.txt
# to execute coverage report
#— vcover report adder_tb.ucdb -details -annotate -all -output coverage_rpt.txt -du=adder
#— vcover report -details -cvg -output adder_coverage_report.txt adder_tb.ucdb
```

# 2.7 7. Code Coverage Report

= Design Unit: work.adder

Coverage Report by DU with details

| Branch Covera<br>Enabled ( |                | Bins                  | $_{ m Hits}$    | Misses | Coverage        |
|----------------------------|----------------|-----------------------|-----------------|--------|-----------------|
| Branches                   |                | 2                     | 2               | 0      | 100.00%         |
|                            |                | Branch D              | etails====      |        |                 |
| Branch Cover               | age for Design | Unit work.adde        | er              |        |                 |
| Line                       | Item           |                       | Count           | Source |                 |
| File adder.                | sv             | IE D                  |                 |        |                 |
| 11                         |                | IF B1                 | ancn———<br>109  | Count  | coming in to IF |
| 11                         | 1              |                       | 18              |        | (reset)         |
| 13                         | 1              |                       | 91              | el     | se              |
| Branch totals              | : 2 hits of 2  | branches = 100        | .00%            |        |                 |
| Statement Co               |                | D.                    |                 | 25.    |                 |
| Enabled (                  | Coverage       | $\operatorname{Bins}$ | $\mathrm{Hits}$ | Misses | Coverage        |
|                            | ts             | 3                     | 3               | 0      | 100.00%         |

Statement Coverage for Design Unit work.adder —

Line Item Count Source

| Toggles                         |              | 30           | 30           | $0 \frac{100.00\%}{}$                                           |
|---------------------------------|--------------|--------------|--------------|-----------------------------------------------------------------|
| eggle Coverage:<br>Enabled Cove | $_{ m rage}$ | $_{ m Bins}$ | $_{ m Hits}$ | Misses Coverage                                                 |
| 14                              | 1            |              | 91           | $C \leq A + B;$                                                 |
| 13                              |              |              |              | else                                                            |
| 12                              | 1            |              | 18           | $C \le 5'b0;$                                                   |
| 11                              |              |              |              | if (reset)                                                      |
| 10                              | 1            |              | 109          | always @(posedge clk or posedge reset) begin                    |
| 9                               |              |              |              | // Register output C                                            |
| 8                               |              |              |              |                                                                 |
| 7                               |              |              |              | );                                                              |
| 6                               |              |              |              | output reg signed $[4:0]$ C $//$ Adder output in 2's complement |
| 5                               |              |              |              | input signed [3:0] B, // Input data B in 2's complement         |
| 4                               |              |              |              | input signed [3:0] A, // Input data A in 2's complement         |
| 3                               |              |              |              | input reset,                                                    |
| 2                               |              |              |              | input clk,                                                      |
| File adder.sv<br>1              |              |              |              | module adder (                                                  |

Toggle Details=

Toggle Coverage for Design Unit work.adder

| Node   | $1H\!-\!\!>\!\!0L$ | 0L->1H | "Coverage" |
|--------|--------------------|--------|------------|
| A[0-3] | 1                  | 1      | 100.00     |
| B[0-3] | 1                  | 1      | 100.00     |
| C[0-4] | 1                  | 1      | 100.00     |
| clk    | 1                  | 1      | 100.00     |
| reset  | 1                  | 1      | 100.00     |

Toggle~Coverage~=~100.00%~(30~of~30~bins)

Total Coverage By Design Unit (filtered view): 100.00%

# 2.8 8. Code Coverage Report

Coverage Report by instance with details

= Instance: /adder\_package

= Design Unit: work.adder\_package

Covergroup Coverage:

| Covergroup                                       | Metric          | Goal | Bins | Status                   |
|--------------------------------------------------|-----------------|------|------|--------------------------|
| TYPE /adder_package/adder_rand_class/Covgrp_A    | 100.00%         | 100  |      | Covered                  |
| covered/total bins:                              | 6               | 6    | _    |                          |
| missing/total bins:                              | 0               | 6    | _    |                          |
| % Hit:                                           | 100.00%         | 100  | _    |                          |
| Coverpoint cp1                                   | 100.00%         | 100  | _    | $\operatorname{Covered}$ |
| covered/total bins:                              | 3               | 3    | _    |                          |
| missing/total bins:                              | 0               | 3    | _    |                          |
| % Hit:                                           | 100.00%         | 100  | _    |                          |
| Coverpoint cp2                                   | 100.00%         | 100  | _    | Covered                  |
| covered/total bins:                              | 3               | 3    | _    |                          |
| missing/total bins:                              | 0               | 3    | _    |                          |
| % Hit:                                           | 100.00%         | 100  | _    |                          |
| Covergroup instance \/adder_package::adder_rand_ | class::Covgrp_A |      |      |                          |
| 0 1 (/ 1 0                                       | 100.00%         | 100  | _    | Covered                  |
| covered/total bins:                              | 6               | 6    | _    |                          |
| missing/total bins:                              | 0               | 6    | _    |                          |
| % Hit:                                           | 100.00%         | 100  | _    |                          |
| Coverpoint cp1                                   | 100.00%         | 100  | _    | Covered                  |

| bin data_minmax  COVERGROUP COVERAGE:             | 8       | 1   | _ | Covered                  |
|---------------------------------------------------|---------|-----|---|--------------------------|
|                                                   | 8       | 1   | _ | Covered                  |
|                                                   | 0       | 1   |   | Corrored                 |
| DID GALA MAXIMI                                   | 4       | 1   | _ | Covered                  |
| bin data_0max<br>bin data_maxmin                  | 5       | 1   | _ | Covered                  |
| % Hit:                                            | 100.00% | 100 | _ | Corrored                 |
| missing/total bins:                               | 100.00% | 3   | _ |                          |
| covered/total bins:                               | 3       | 3   | _ |                          |
| Coverpoint cp4                                    | 100.00% | 100 | _ | $\operatorname{Covered}$ |
| default bin data_default                          | 27      | 100 | _ | Occurred                 |
| bin data_min                                      | 18      | 1   | _ | Covered                  |
| bin data_max                                      | 23      | 1   | _ | Covered                  |
| bin data_0                                        | 22      | 1   | _ | Covered                  |
| % Hit:                                            | 100.00% | 100 | _ | G 1                      |
| missing/total bins:                               | 0       | 3   | _ |                          |
| covered/total bins:                               | 3       | 3   | _ |                          |
| Coverpoint cp3                                    | 100.00% | 100 | _ | Covered                  |
| % Hit:                                            | 100.00% | 100 | _ |                          |
| missing/total bins:                               | 0       | 6   | _ |                          |
| covered/total bins:                               | 6       | 6   | _ |                          |
|                                                   | 100.00% | 100 | _ | $\operatorname{Covered}$ |
| Covergroup instance \/adder_package::adder_rand_c |         |     |   |                          |
| % Hit:                                            | 100.00% | 100 | _ |                          |
| missing/total bins:                               | 0       | 3   | _ |                          |
| covered/total bins:                               | 3       | 3   | _ |                          |
| Coverpoint cp4                                    | 100.00% | 100 | _ | $\operatorname{Covered}$ |
| % Hit:                                            | 100.00% | 100 | _ |                          |
| missing/total bins:                               | 0       | 3   | _ |                          |
| covered/total bins:                               | 3       | 3   | _ |                          |
| Coverpoint cp3                                    | 100.00% | 100 | _ | $\operatorname{Covered}$ |
| % Hit:                                            | 100.00% | 100 | _ |                          |
| missing/total bins:                               | 0       | 6   | _ |                          |
| covered/total bins:                               | 6       | 6   | _ |                          |
| TYPE /adder_package/adder_rand_class/Covgrp_B     | 100.00% | 100 | _ | $\operatorname{Covered}$ |
| bin data_minmax                                   | 3       | 1   | _ | Covered                  |
| bin data_maxmin                                   | 3       | 1   | _ | Covered                  |
| bin data_0max                                     | 4       | 1   | _ | Covered                  |
| % Hit:                                            | 100.00% | 100 | _ |                          |
| missing/total bins:                               | 0       | 3   | _ |                          |
| covered/total bins:                               | 3       | 3   | _ |                          |
| Coverpoint cp2                                    | 100.00% | 100 | _ | Covered                  |
| default bin data_default                          | 30      |     | _ | Occurred                 |
| bin data_min                                      | 17      | 1   | _ | $\operatorname{Covered}$ |
| bin data_max                                      | 20      | 1   | _ | Covered                  |
| bin data_0                                        | 23      | 1   | _ | Covered                  |
| % Hit:                                            | 100.00% | 100 | _ |                          |
| missing/total bins:                               | 0       | 3   | _ |                          |
| covered/total bins:                               | 3       | 3   | _ |                          |

| Covergroup                                       | Metric          | $\operatorname{Goal}$ | $_{ m Bins}$ | Status                   |
|--------------------------------------------------|-----------------|-----------------------|--------------|--------------------------|
| TYPE /adder_package/adder_rand_class/Covgrp_A    | 100.00%         | 100                   |              | Covered                  |
| covered/total bins:                              | 6               | 6                     | _            |                          |
| missing/total bins:                              | 0               | 6                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| Coverpoint cp1                                   | 100.00%         | 100                   | _            | $\operatorname{Covered}$ |
| covered/total bins:                              | 3               | 3                     | _            |                          |
| missing/total bins:                              | 0               | 3                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| Coverpoint cp2                                   | 100.00%         | 100                   | _            | $\operatorname{Covered}$ |
| covered/total bins:                              | 3               | 3                     | _            |                          |
| missing/total bins:                              | 0               | 3                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| Covergroup instance \/adder_package::adder_rand_ | class::Covgrp_A |                       |              |                          |
|                                                  | 100.00%         | 100                   | _            | Covered                  |
| covered/total bins:                              | 6               | 6                     | _            |                          |
| missing/total bins:                              | 0               | 6                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| Coverpoint cp1                                   | 100.00%         | 100                   | _            | Covered                  |
| covered/total bins:                              | 3               | 3                     | _            |                          |
| missing/total bins:                              | 0               | 3                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| bin data_0                                       | 23              | 1                     | _            | Covered                  |
| bin data_max                                     | 20              | 1                     | _            | Covered                  |
| bin data_min                                     | 17              | 1                     | _            | $\operatorname{Covered}$ |
| default bin data_default                         | 30              |                       | _            | Occurred                 |
| Coverpoint cp2                                   | 100.00%         | 100                   | _            | $\operatorname{Covered}$ |
| covered/total bins:                              | 3               | 3                     | _            |                          |
| missing/total bins:                              | 0               | 3                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| bin data_0max                                    | 4               | 1                     | _            | Covered                  |
| bin data_maxmin                                  | 3               | 1                     | _            | Covered                  |
| bin data_minmax                                  | 3               | 1                     | _            | Covered                  |
| TYPE /adder_package/adder_rand_class/Covgrp_B    | 100.00%         | 100                   | _            | Covered                  |
| covered/total bins:                              | 6               | 6                     | _            |                          |
| missing/total bins:                              | 0               | 6                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   | _            |                          |
| Coverpoint cp3                                   | 100.00%         | 100                   | _            | Covered                  |
| covered/total bins:                              | 3               | 3                     | _            | 2 2                      |
| missing/total bins:                              | 0               | 3                     | _            |                          |
| % Hit:                                           | 100.00%         | 100                   |              |                          |

```
100.00\%
   Coverpoint cp4
                                                                          100
                                                                                              Covered
       covered/total bins:
                                                                3
                                                                            3
       missing/total bins:
                                                                0
                                                                            3
       % Hit:
                                                          100.00\%
                                                                          100
Covergroup instance \/adder_package::adder_rand_class::Covgrp_B
                                                                          100
                                                                                              Covered
                                                          100.00\%
   covered/total bins:
                                                                6
                                                                            6
   missing/total bins:
                                                                0
                                                                            6
                                                          100.00\%
   \% Hit:
                                                                          100
                                                          100.00\%
                                                                          100
   Coverpoint cp3
                                                                                              Covered
       covered/total bins:
                                                                3
                                                                            3
       missing/total bins:
                                                                0
                                                                            3
                                                          100.00\%
       \% Hit:
                                                                          100
       bin data_0
                                                               22
                                                                                              Covered
                                                                            1
       bin data_max
                                                                                              Covered
                                                               23
                                                                            1
       bin data_min
                                                                                              Covered
                                                               18
                                                                            1
       default bin data_default
                                                               27
                                                                                              Occurred
                                                          100.00\%
                                                                          100
   Coverpoint cp4
                                                                                              Covered
       covered/total bins:
                                                                3
                                                                            3
       missing/total bins:
                                                                0
                                                                            3
       % Hit:
                                                          100.00\%
                                                                          100
       bin data_0max
                                                                                              Covered
                                                                5
                                                                            1
                                                                                              Covered
       bin data_maxmin
                                                                4
                                                                            1
       bin data_minmax
                                                                8
                                                                                              Covered
                                                                            1
```

TOTAL COVERGROUP COVERAGE: 100.00% COVERGROUP TYPES: 2

Total Coverage By Instance (filtered view): 100.00%

#### 2.9 9. Waveform



Figure 2: simulation waveform

```
# Saving coverage database on exit...
# End time: 16:14:00 on Apr 13,2025, Elapsed time: 0:02:45
# Errors: 3, Warnings: 1
# vsim -voptargs="+acc" work.adder_tb -coverage
# Start time: 16:14:00 on Apr 13,2025
# ** Note: (vsim-3813) Design is being optimized due to module recompilation...
# Loading sv_std.std
# Loading work.adder_package(fast)
# Loading work.adder_tb_sv_unit(fast)
# Loading work.adder_tb[fast)
# Loading work.adder_tb(fast)
# Loading work.adder(fast)
# So6: At end of test error count is 0 and correct count = 50
# ** Note: $finish : adder_tb.sv(61)
# Time: 506 ns Iteration: 0 Instance: /adder_tb
# I
# Break in Module adder_tb at adder_tb.sv line 61
```

Figure 3: Transcript : all test cases passed

# 3 Q3: FSM\_010

# 3.1 1. Testbench code

```
'timescale 1ns/1ps
  import fsm_package::*;
  module fsm_010_tb;
     //-----
     // declare DUT signals
     //----
     logic clk, rst, x;
     logic y;
11
     logic [1:0] users_count;
12
13
     //===========
14
     // declare golden model signals
     //==========
16
     logic golden_y;
17
     logic [1:0] golden_users_count;
18
19
     20
     // instantiate FSM "DUT"
     //-----
22
     FSM_010 DUT (.*);
23
24
25
     // instantiate golden model
26
     //==========
     golden_model golden_DUT (.*);
     //==========
     // object from class
```

```
//----
 fsm_transaction fsm;
 //==========
 // Generate Clock
 //========
 parameter CLOCK_PERIOD = 10;
 initial begin
     clk = 0;
      forever begin
        #(CLOCK_PERIOD/2) clk = ~clk;
        // clock mapping (TB , class)
        //==========
        fsm.clk = clk;
 end
 end
 //----
 // reset task
 task do_reset();
     rst = 1;
     #(CLOCK_PERIOD*2);
     rst = 0;
 endtask
//-----
state_e cs, ns;
// -----
// "Golden Model" Task
// -----
task golden_model(input bit x_in, input bit rst_in);
 if (rst_in) begin
   cs = IDLE;
   fsm.y_exp = 0;
   fsm.users_count_exp = 0;
 // Next-state logic
 case (cs)
   IDLE: ns = (x_in) ? IDLE : ZERO;
   ZERO: ns = (x_in) ? ONE : ZERO;
   ONE: ns = (x_in) ? IDLE : STORE;
   STORE: ns = (x_in) ? IDLE : ZERO;
 // Update count if in STORE
 if (cs == STORE) begin
   fsm.users_count_exp++;
 // y_exp is 1 in STORE
 fsm.y_exp = (cs == STORE);
 // Move to next state
 cs = ns;
endtask
// "Check" Task
// -----
task check_result();
 // Call golden_model with the *same* inputs we just applied
 golden_model(x, rst);
 fsm.y_exp = y;
 fsm.users_count_exp = users_count;
 // Now compare
 if ((y !== fsm.y_exp) ||
     (users_count !== fsm.users_count_exp)) begin
   \$error("\texttt{Mismatch}: \bot \texttt{time} = \%\texttt{Ot}, \bot \texttt{y} = \%\texttt{Ob}_{\bot} \texttt{vs}_{\bot} \%\texttt{Ob}, \bot \texttt{users}\_\texttt{count} = \%\texttt{Od}_{\bot} \texttt{vs}_{\bot} \%\texttt{Od}",
          $time, y, fsm.y_exp, users_count, fsm.users_count_exp);
 end
  else begin
   $display("FSM_010_Match_golden_model_task_:.y=%0b,user_count=%0d",y ,users_count);
endtask
 initial begin
     fsm = new();
     do_reset();
     // Method 1 of self checking
     //-----
     repeat(10) begin
        //-----
         // assert randomization
         //=========
        if(!fsm.randomize())begin
```

43

55

71

72

78

95

100 101

102

103 104

106

107

108

109

110

112 113 114

119

120 121

126

127

128

129

130 131

```
$error("Randomization diled!");
132
133
                $finish;
              end
134
135
             //======
             // Drive signals
137
             //========
138
            rst = fsm.rst;
139
            x = fsm.x;
140
             fsm.y_exp = y;
142
             fsm.users_count_exp = users_count;
143
144
             //-----
             // compare outputs of golden model and design \,
145
146
             assert (y == golden_y || users_count == golden_users_count)
                $display("ufsm_010umatchugoldenumodel");
148
149
                $error("there_is_a_mismatch_,_ifsm_010_gets_y_:_%0b_, users_count_::_%0b_,ugolden_model_gets_y_:_%0b_,users_count_:_%0b_",y
                   ,users_count ,golden_y ,golden_users_count);
             @(posedge clk);
          end
153
154
155
         do_reset();
156
         //----
157
158
         // Method 2 of self checking
         //-----
159
         repeat(100) begin
160
161
             //===========
             // assert randomization
162
              //-----
             if (!fsm.randomize()) begin
                $error("Randomization if ailed!");
165
                $finish;
166
167
168
              //========
169
             // Drive signals
170
171
              x = fsm.x;
172
             rst = fsm.rst;
173
174
              //========
              // check results
176
177
              check_result();
179
              @(posedge clk);
180
181
         end
182
         $display("All_tests_done.");
183
184
         $finish;
      end
185
186 endmodule
       2. Package code
 package fsm_package ;
      typedef enum {IDLE ,ZERO ,ONE ,STORE} state_e;
      class fsm_transaction;
          //-----
          // declare inputs for randomization
          // declare with them clk signal and connect it to dut clk in TB
          bit clk;
          rand bit x;
          rand bit rst:
          bit y_exp;
          bit [1:0] users_count_exp;
          bit [1:0] prev; // store the last two bits
         // constrain rst to activate most of
         // use probability constrain "dist"
21
         // estimate 90% for deactivation and 10% activated
22
         //-----
23
          constraint deactivate_rst_mt {
24
             rst dist {0:/90 , 1:/10};
26
27
         //----
28
         // constrain x to be zero for 67% of randomization
29
         // use probability constrain "dist"
30
         // If the previous two bits were '01', favor a '0' next
31
         //-----
32
          constraint x_67_0
33
             if (prev != 2'b01) {
34
                 x dist {0:/ 67 , 1:/33};
35
36
          }
37
38
          constraint c_010_bias {
39
             if (prev == 2'b01) {
40
               x dist {0 :/ 100, 1 :/ 0}; // 100% chance of 0
```

```
43
44
        // Keep track of previous bits
        function void pre_randomize();
46
            // shift in the new bit as
                                       previous
                                               history
47
            prev = {prev[0], x};
48
        endfunction
49
50
         //----
52
         // coverpoints
53
54
         //========
         covergroup cg @(posedge clk);
55
            cp1: coverpoint x;
56
            cp2: coverpoint rst;
            cp3: coverpoint y_exp;
58
            cp4: coverpoint users_count_exp;
59
            cp5: coverpoint x { bins zero_one_zero = (0=>1=>0);}
         endgroup
61
62
         //========
         // counstructor
64
65
         //========
66
         function new();
            cg = new();
67
         {\tt endfunction}
68
69
      endclass
70
71 endpackage
  3.3 3. Design code
// Author: Kareem Waseem
_{\rm 3} // Course: Digital Verification using SV & UVM
5 // Description: 010-sequence-detector Design
6 //
  module FSM_010(clk, rst, x, y, users_count);
      parameter IDLE = 2'b00;
      parameter ZERO = 2'b01;
      parameter ONE = 2'b10;
11
      parameter STORE = 2'b11;
12
13
      input clk, rst, x;
14
      output y;
15
      output reg [1:0] users_count;
17
      reg [1:0] cs, ns;
18
19
      always @(*) begin
20
          case (cs)
21
             IDLE:
                 if(x)
23
                     ns = IDLE;
24
                     ns = ZER0;
26
              ZERO:
27
                 if(x)
                     ns = ONE;
29
30
                     ns = ZER0;
              ONE:
                     ns = IDLE;
                 else
                     ns = STORE;
36
              STORE:
                 if(x)
                     ns = IDLE;
                 else
                     ns = ZER0;
41
              default:    ns = IDLE;
          endcase
44
      always @(posedge clk or posedge rst) begin
          if(rst) begin
47
             cs <= IDLE;
48
          end
49
          else begin
50
51
            cs <= ns;
          end
52
53
54
      always @(posedge clk or posedge rst) begin
55
          if(rst) begin
56
              users_count <= 0;
57
          end
58
59
          else begin
            if (cs == STORE)
60
                 users_count <= users_count + 1;</pre>
61
          end
62
63
      end
64
65
      assign y = (cs == STORE)? 1:0;
67 endmodule
```

#### 3.4 4. Golden model code

```
2 // this is golden_model foe design FSM_010
_{\mathrm{3}} // FSM_010 from moore state machin which mean output logic does not depend on input
4 // this fsm detect 010 sequence
  //***********************************
  module golden_model (
     // i/o declaration
     //----
     input wire clk,
     input wire rst,
     input wire x,
     output reg golden_y,
     output reg [1:0] golden_users_count
15 );
19 // "next_state ,current_state" Datatype
typedef enum logic [1:0] {
     IDLE = 2'b00,
     ZERO = 2,b01,
    ONE = 2'b10,
24
    STORE = 2'b11
26 } state_e;
state_e next_state ,current_state ;
31 //----
_{
m 32} // sequential always "present state"
34 always @(posedge clk or posedge rst) begin
  if(rst) begin
      current_state <= IDLE;
   end else begin
       current_state <= next_state;</pre>
39
  end
44 // combinational always "next state logic"
  //----
  always @(*) begin
    case (current_state)
      IDLE : begin
           if (x)
         next_state = IDLE;
51
         next_state = ZERO;
       end
53
       ZERO : begin
          if(x)
         next_state = ONE;
56
        else
        next_state = ZERO;
59
      ONE : begin
          if(x)
61
         next_state = IDLE;
62
       else
         next_state = STORE;
64
       STORE : begin
           if(x)
67
         next_state = IDLE;
68
         else
         next_state = ZERO;
    endcase
73 end
76 // combinational always "output logic"
77 //----
  always @(*) begin
    case (current_state)
79
       IDLE :
80
           golden_y = 0;
81
       ZERO :
82
           golden_y = 0;
       ONE :
84
           golden_y = 0;
85
       STORE :
           golden_y = 1;
    endcase
88
89 end
90
  //-----
91
  // sequential always "counter logic"
^{93} // count up every time fsm detect 010
always @(posedge clk or posedge rst) begin
    if(rst) begin
96
        golden_users_count <= 0;</pre>
97
    end else begin
98
       if (current_state == STORE)
```

# **3.5 5.** Bug Fixes

no bugs

and I change size of user\_count to 2 bits to made coverage reach 100% and that not a bug

#### 3.6 6. Verification Plan

| Label     | Description                                                                                                                     | Stimulus Generation                                                                                                                           | Functional Coverage                                                                                                              | Functionality Check                                                                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| FSM_010_1 | Reset Behavior: When the active-high reset is asserted, the FSM should move to <i>IDLE</i> , and users_count should be cleared. | <ul> <li>Directed at the start of the simulation (assert rst)</li> <li>Constrained-random with rst mostly off, but occasionally on</li> </ul> | <ul> <li>Cover reset transitions         (rst=1 leading to IDLE)</li> <li>Check IDLE coverage immediately after reset</li> </ul> | A checker (or golden model) ensures users_count = 0 and y = 0 after reset. Veri- fies FSM is in <i>IDLE</i> state on release of reset. |
| FSM_010_2 | Pattern Detection: When the sequence 010 is seen, the FSM outputs y=1 and increments users_count.                               | <ul> <li>Constrained-random on x (67% zeros)</li> <li>Additional bias if previous bits are 01 (to favor forming 010)</li> </ul>               | • State coverage: $IDLE$ , $ZERO$ , $ONE$ , $STORE$ • Transition coverage: $IDLE \rightarrow ZERO$ , etc.                        | Compare y and users_count with a golden model or via task-based checking. Ensure exactly one increment per 010.                        |

Table 2: Verification Plan for the FSM\_010 Design

# 3.7 7. Do File

vlib work

```
vlog fsm_package.sv FSM_010.v fsm_010_tb.sv golden_model.sv +cover -covercells
vsim -voptargs=+acc work.fsm_010_tb -cover
coverage exclude -src FSM_010.v -line 42

# I exclude default case in fsm design as it never go through this case
add wave *
coverage save fsm_010_tb.ucdb -onexit
run -all

# to run do file
- do run.txt
to execute coverage report
- vcover report fsm_010_tb.ucdb -details -annotate -all -output coverage_rpt.txt -du=FSM_010
```

— vcover report -details -cvg -output fsm\_coverage\_report.txt fsm\_010\_tb.ucdb

# 3.8 8. Code Coverage Report

Coverage Report by DU with details

|                 | Coverage:<br>abled Coverage | Bins              | $_{ m Hits}$     | $_{ m Misses}$ | Coverage     |                |       |
|-----------------|-----------------------------|-------------------|------------------|----------------|--------------|----------------|-------|
| Bra             | anches                      | 20                | 20               | 0              |              |                |       |
|                 |                             |                   | Details====      |                |              |                |       |
|                 |                             |                   |                  |                |              |                |       |
| Branch          | Coverage for Des            | ign Unit work.FSN | $M_{-}010$       |                |              |                |       |
| Lin             | ne Item                     |                   | Count            | Source         | ;            |                |       |
| File            | FSM_010.v                   |                   |                  |                | -            |                |       |
| 0.1             |                             | CASE              | E Branch——       | <u> </u>       |              | CACE           |       |
| $\frac{21}{22}$ | 1                           |                   | $\frac{128}{39}$ | Count          | coming in to | CASE<br>IDLE : |       |
| $\frac{22}{27}$ | 1<br>1                      |                   | 59<br>50         |                |              | ZERO:          |       |
| $\frac{27}{32}$ | 1                           |                   | $\frac{30}{22}$  |                |              | ONE:           |       |
| $\frac{32}{37}$ | 1                           |                   | 17               |                |              | STORE:         |       |
|                 | totals: 4 hits of           | f 4 branches = 10 |                  |                |              | 2101021        |       |
|                 |                             | IF I              | Branch           |                |              |                |       |
| 23              |                             |                   | 39               | Count          | coming in to | $_{ m IF}$     |       |
| 23              | 1                           |                   | 14               |                |              |                | if (x |
| 25              | 1                           |                   | 25               |                |              |                | else  |
| Branch          | totals: 2 hits of           | f 2 branches = 10 | 00.00%           |                |              |                |       |
|                 |                             | IF I              | Branch           |                |              |                |       |
| 28              |                             |                   | 50               | Count          | coming in to | $_{ m IF}$     |       |
| 28              | 1                           |                   | 19               |                | 9            |                | if (x |
| 30              | 1                           |                   | 31               |                |              |                | else  |
| Branch          | totals: 2 hits of           | f 2 branches = 10 | 00.00%           |                |              |                |       |
|                 |                             | IF I              | Branch           |                |              |                |       |
| 33              |                             |                   | 22               | Count          | coming in to | $_{ m IF}$     |       |
| 33              | 1                           |                   | 7                |                | <u> </u>     |                | if (x |
| 35              | 1                           |                   | 15               |                |              |                | else  |
|                 |                             | f 2 branches = 10 | 0.000            |                |              |                |       |

|                 |                          |                                                               | IF Bra           | n a h           |               |                  |                      |             |
|-----------------|--------------------------|---------------------------------------------------------------|------------------|-----------------|---------------|------------------|----------------------|-------------|
| 38              |                          | 1                                                             | п ы              | 17              | Count         | coming in        |                      | · c ( )     |
| $\frac{38}{40}$ |                          | 1<br>1                                                        |                  | $7\\10$         |               |                  |                      | if (x) else |
| Branch          | totals: 2 h              | its of 2 br                                                   | anches = $100.0$ | 00%             |               |                  |                      |             |
| 47              |                          |                                                               | IF Bra           | nch<br>109      | Count         | coming in        | to IF                | _           |
| 47              |                          | 1                                                             |                  | 28              | Count         | if (rs           | t) begin             |             |
| 50<br>Branch    | totals: 2 h              | $\frac{1}{\text{its of 2 br}}$                                | anches = $100.0$ | 81              |               | else             | begin                |             |
|                 |                          |                                                               | IF Bra           | nch             |               |                  |                      | _           |
| 56<br>56        |                          | 1                                                             |                  | $\frac{96}{28}$ | Count         | coming in if (rs | to IF<br>t) begin    |             |
| 59              |                          | 1                                                             | 1 100 6          | 68              |               | else             |                      |             |
| Branch          | totals: 2 h              | its of 2 br                                                   | anches = $100.0$ | 00%             |               |                  |                      |             |
| 60              |                          |                                                               | IF Bra           | nch———<br>68    | Count         | coming in        | to IF                | _           |
| 60              |                          | 1                                                             |                  | 10<br>58        |               | lse Count        | if (cs =             | = STORI     |
| Branch          | totals: 2 h              | its of 2 br                                                   | anches = $100.0$ |                 | АП Га         | irse Count       |                      |             |
|                 |                          |                                                               | IF Bra           | nch             |               |                  |                      | _           |
| 65 $65$         |                          | 1                                                             |                  | $\frac{67}{10}$ |               | coming in        | to IF<br>s == STORE) | ? 1.0.      |
| 65              |                          | 2                                                             |                  | 57              |               |                  | s = STORE            |             |
| Branch          | totals: 2 h              | its of $2$ br                                                 | anches = $100.0$ | 00%             |               |                  |                      |             |
| Conditi         | ion Coverage:            | :                                                             |                  |                 |               |                  |                      |             |
|                 | abled Coverag            |                                                               | Bins C           | overed          | Misses        | Coverage         |                      |             |
| Со              | nditions                 |                                                               | 2                | 2               | 0             | 100.00%          |                      |             |
|                 |                          |                                                               | Condition        | Details=        |               |                  |                      | _           |
|                 |                          | ered Reaso                                                    | n for no cove    | rage H          | int           |                  |                      |             |
| Re              | ows: H                   | its FEC Ta                                                    | arget            | Non-m           | asking co     | ndition(s)       |                      |             |
| Row<br>Row      | 1:<br>2:                 | 1 (cs == 1 (cs ==                                             |                  |                 |               |                  | _                    |             |
| Input           | 65 Item ion totals: 1    | _                                                             |                  |                 | 0%<br>int     |                  |                      |             |
| `               | ,                        | its FEC Ta                                                    | vraet            | Non -           | agking of     | ndition(a)       |                      |             |
|                 |                          |                                                               |                  |                 | asking co     | ndition(s)       | _                    |             |
| Row<br>Row      | 1:<br>2:                 | $ \begin{array}{ccc} 1 & (cs = \\ 1 & (cs = \\ \end{array}) $ |                  | _               |               |                  |                      |             |
|                 | verage:<br>abled Coveraş | ge                                                            | $_{ m Bins}$     | $_{ m Hits}$    | ${ m Misses}$ | Coverage         |                      |             |
|                 | M States                 |                                                               | 4                | 4               | 0             | 100.00%          |                      |             |
| FSN             | M Transitions            | 3                                                             | 7                | 7               | 0             | 100.00%          |                      |             |
|                 |                          |                                                               | FSM Detail       | s=              |               |                  |                      |             |
| FSM Co          |                          | esign Unit                                                    | work.FSM_010     |                 |               |                  |                      |             |
|                 | rrent State              | Object : cs                                                   |                  |                 |               |                  |                      |             |
| Sta             | ate Value Ma             | pInfo :                                                       |                  |                 |               |                  |                      |             |
| Line            | State                    | e Name                                                        | Val              | ue              |               |                  |                      |             |
|                 |                          |                                                               |                  |                 |               |                  |                      |             |

 Line
 State Name
 Value

 22
 IDLE
 0

 27
 ZERO
 1

 32
 ONE
 2

 37
 STORE
 3

 Covered States:
 3

|                                     | IDLE                |              | 38             |               |                      |
|-------------------------------------|---------------------|--------------|----------------|---------------|----------------------|
|                                     | ZERO                |              | 33             |               |                      |
|                                     | ONE                 |              | 15             |               |                      |
|                                     | STORE               |              | 11             |               |                      |
| Cov                                 | rered Transitions : |              |                |               |                      |
| Line                                | Trans_ID            | Hit_co       | $\mathbf{unt}$ | Tran          | sition               |
| 26                                  | 0                   |              | 18             | IDLE          |                      |
| 29                                  | 1                   |              | 15             | ZERO          | -> ONE               |
| 48                                  | 2                   |              | 7              | ZERO          | -> IDLE              |
| 36                                  | 3                   |              | 11             | ONE -         | > STORE              |
| 34                                  | 4                   |              | 4              |               | -> IDLE              |
| 41                                  | 5                   |              | 4              |               | $E \rightarrow ZERO$ |
| 39                                  | 6                   |              | 6              | STORE         | $E \rightarrow IDLE$ |
| Sum                                 | mary                | $_{ m Bins}$ | $_{ m Hits}$   | Misses        | Coverage             |
|                                     | FSM States          | 4            | 4              | 0             | 100.00%              |
| FSM Transitions Statement Coverage: |                     | 7            | 7              | 0             | 100.00%              |
|                                     | abled Coverage      | $_{ m Bins}$ | $_{ m Hits}$   | ${ m Misses}$ | Coverage             |
| Sta                                 | tements             | 16           | 16             | 0             | 100.00%              |
|                                     |                     | Statement    | Details=       |               |                      |

 $Hit\_count$ 

Statement Coverage for Design Unit work.FSM $\_010$  —

State

| Line                                    | ${\rm Item}$ | $\operatorname{Count}$ | Source                                                                                         |
|-----------------------------------------|--------------|------------------------|------------------------------------------------------------------------------------------------|
| File FSM_0                              | 110 . v      |                        |                                                                                                |
| 8                                       |              |                        | module FSM_010(clk, rst, x, y, users_count);                                                   |
| 9                                       |              |                        | parameter IDLE = 2'b00;                                                                        |
| 10                                      |              |                        | parameter ZERO = 2'b01;                                                                        |
| 11                                      |              |                        | parameter ONE = 2'b10;                                                                         |
| $\frac{12}{12}$                         |              |                        | parameter STORE = $2$ 'b11;                                                                    |
| 13                                      |              |                        | input alle not an                                                                              |
| 14                                      |              |                        | input clk, rst, x;                                                                             |
| 15<br>16                                |              |                        | output y;                                                                                      |
| $\frac{16}{17}$                         |              |                        | $output reg [1:0] users\_count;$                                                               |
| 18                                      |              |                        | $\operatorname{reg} \ [1:0] \ \operatorname{cs} \ , \ \operatorname{ns} \ ;$                   |
| 19                                      |              |                        | reg [1.0] cs, ns,                                                                              |
| $\frac{19}{20}$                         | 1            | 128                    | always @(*) begin                                                                              |
| $\frac{20}{21}$                         | 1            | 120                    | case (cs)                                                                                      |
| $\frac{21}{22}$                         |              |                        | IDLE:                                                                                          |
| $\frac{23}{23}$                         |              |                        | if(x)                                                                                          |
| $\frac{24}{24}$                         | 1            | 14                     | ns = IDLE;                                                                                     |
| 25                                      |              |                        | else                                                                                           |
| 26                                      | 1            | 25                     | ns = ZERO;                                                                                     |
| 27                                      |              |                        | ZERO:                                                                                          |
| 28                                      |              |                        | if (x)                                                                                         |
| 29                                      | 1            | 19                     | ns = ONE;                                                                                      |
| 30                                      |              |                        | else                                                                                           |
| 31                                      | 1            | 31                     | ns = ZERO;                                                                                     |
| 32                                      |              |                        | ONE:                                                                                           |
| 33                                      |              |                        | if(x)                                                                                          |
| 34                                      | 1            | 7                      | $\operatorname{ns} = \operatorname{IDLE};$                                                     |
| 35                                      |              |                        | ${ m else}$                                                                                    |
| 36                                      | 1            | 15                     | ns = STORE;                                                                                    |
| 37                                      |              |                        | STORE:                                                                                         |
| 38                                      |              | _                      | if (x)                                                                                         |
| 39                                      | 1            | 7                      | $\mathrm{ns} = \mathrm{IDLE};$                                                                 |
| 40                                      | 1            | 1.0                    | else                                                                                           |
| 41                                      | 1            | 10                     | $\operatorname{ns} = \operatorname{ZERO};$                                                     |
| 42                                      |              |                        | $\operatorname{default}:   \operatorname{ns} = \operatorname{IDLE}; \\ \operatorname{endcase}$ |
| $\begin{array}{c} 43 \\ 44 \end{array}$ |              |                        |                                                                                                |
| 45                                      |              |                        | $\operatorname{end}$                                                                           |
| 46                                      | 1            | 109                    | always @(posedge clk or posedge rst) begin                                                     |
| 47                                      | 1            | 109                    | if (rst) begin                                                                                 |
| 48                                      | 1            | 28                     | $cs \ll IDLE;$                                                                                 |
| 49                                      | -            | 20                     | end                                                                                            |
| 50                                      |              |                        | else begin                                                                                     |
| 51                                      | 1            | 81                     | $cs \ll ns;$                                                                                   |
| 52                                      |              |                        | $\operatorname{end}$                                                                           |
| 53                                      |              |                        | $\operatorname{end}$                                                                           |
| 54                                      |              |                        |                                                                                                |
| 55                                      | 1            | 96                     | always @(posedge clk or posedge rst) begin                                                     |
| 56                                      |              |                        | if(rst) begin                                                                                  |
| 57                                      | 1            | 28                     | $users\_count \le 0;$                                                                          |
| 58                                      |              |                        | $\operatorname{end}$                                                                           |
| 59                                      |              |                        | else begin                                                                                     |
| 60                                      |              |                        | if (cs = STORE)                                                                                |
| 61                                      | 1            | 10                     | users_count <= users_count + 1;                                                                |
| 62                                      |              |                        | end                                                                                            |
| 63                                      |              |                        | end                                                                                            |
| 64                                      |              |                        |                                                                                                |

65

Toggle Coverage:

| Enabled Coverage | $_{ m Bins}$ | $\mathrm{Hits}$ | Misses | Coverage |
|------------------|--------------|-----------------|--------|----------|
|                  |              |                 |        |          |
| Toggles          | 20           | 20              | 0      | 100.00%  |

Toggle Details

 $Toggle\ Coverage\ for\ Design\ Unit\ work.FSM\_010$ 

| N                                 | ode | $1 H\!\!-\!\!>\!\!0 L$ | 0L—>1H | $ m ^{"}Coverage"$ |
|-----------------------------------|-----|------------------------|--------|--------------------|
|                                   | clk | 1                      | 1      | 100.00             |
| $\operatorname{cs}\left[0\right]$ | -1] | 1                      | 1      | 100.00             |
| ns[0]                             |     | 1                      | 1      | 100.00             |
| •                                 | rst | 1                      | 1      | 100.00             |
| users_count[0                     | -1] | 1                      | 1      | 100.00             |
|                                   | X   | 1                      | 1      | 100.00             |
|                                   | У   | 1                      | 1      | 100.00             |

Toggle~Coverage~=~100.00%~(20~of~20~bins)

Total Coverage By Design Unit (filtered view): 100.00%

# 3.9 9. Functional Coverage Report

Coverage Report by instance with details

= Instance: /fsm\_package = Design Unit: work.fsm\_package

Covergroup Coverage:

| Covergroup                            | Metric  | $\operatorname{Goal}$ | Bins | Status                   |
|---------------------------------------|---------|-----------------------|------|--------------------------|
| TYPE /fsm_package/fsm_transaction/cg  | 100.00% | 100                   |      | Covered                  |
| covered/total bins:                   | 10      | 10                    | _    |                          |
| missing/total bins:                   | 0       | 10                    | _    |                          |
| % Hit:                                | 100.00% | 100                   | _    |                          |
| Coverpoint cp1                        | 100.00% | 100                   | _    | Covered                  |
| covered/total bins:                   | 2       | 2                     | _    |                          |
| missing/total bins:                   | 0       | 2                     | _    |                          |
| % Hit:                                | 100.00% | 100                   | _    |                          |
| bin auto[0]                           | 83      | 1                     | _    | Covered                  |
| bin auto[1]                           | 30      | 1                     | _    | $\operatorname{Covered}$ |
| Coverpoint cp2                        | 100.00% | 100                   | _    | $\operatorname{Covered}$ |
| covered/total bins:                   | 2       | 2                     | _    |                          |
| missing/total bins:                   | 0       | 2                     | _    |                          |
| % Hit:                                | 100.00% | 100                   | _    |                          |
| $ \text{bin auto} \left[  0  \right]$ | 101     | 1                     | _    | $\operatorname{Covered}$ |
| bin auto[1]                           | 12      | 1                     | _    | $\operatorname{Covered}$ |
| Coverpoint cp3                        | 100.00% | 100                   | _    | Covered                  |
| covered/total bins:                   | 2       | 2                     | _    |                          |
| missing/total bins:                   | 0       | 2                     | _    |                          |
| % Hit:                                | 100.00% | 100                   | _    |                          |
| bin auto[0]                           | 103     | 1                     | _    | Covered                  |
| bin auto[1]                           | 10      | 1                     | _    | Covered                  |
| Coverpoint cp4                        | 100.00% | 100                   | _    | Covered                  |
| covered/total bins:                   | 4       | 4                     | _    |                          |
| missing/total bins:                   | 0       | 4                     | _    |                          |
| % Hit:                                | 100.00% | 100                   | _    |                          |
| bin auto [0]                          | 78      | 1                     | _    | Covered                  |
| bin auto[1]                           | 28      | 1                     | _    | Covered                  |
| bin auto  [2]                         | 6       | 1                     | _    | Covered                  |
| bin auto [3]                          | 1       | 1                     | _    | Covered                  |

# COVERGROUP COVERAGE:

| Covergroup                           | Metric  | $\operatorname{Goal}$ | $_{ m Bins}$ | Status                   |
|--------------------------------------|---------|-----------------------|--------------|--------------------------|
| TYPE /fsm_package/fsm_transaction/cg | 100.00% | 100                   |              | Covered                  |
| covered/total bins:                  | 10      | 10                    | _            |                          |
| missing/total bins:                  | 0       | 10                    | _            |                          |
| % Hit:                               | 100.00% | 100                   | _            |                          |
| Coverpoint cp1                       | 100.00% | 100                   | _            | $\operatorname{Covered}$ |
| covered/total bins:                  | 2       | 2                     | _            |                          |
| missing/total bins:                  | 0       | 2                     | _            |                          |
| % Hit:                               | 100.00% | 100                   | _            |                          |
| bin auto [0]                         | 83      | 1                     | _            | $\operatorname{Covered}$ |
| bin auto [1]                         | 30      | 1                     | _            | Covered                  |

| Coverpoint cp2      | 100.00% | 100 | _ | Covered |
|---------------------|---------|-----|---|---------|
| covered/total bins: | 2       | 2   | _ |         |
| missing/total bins: | 0       | 2   | _ |         |
| % Hit:              | 100.00% | 100 | _ |         |
| bin auto [0]        | 101     | 1   | _ | Covered |
| bin auto[1]         | 12      | 1   | _ | Covered |
| Coverpoint cp3      | 100.00% | 100 | _ | Covered |
| covered/total bins: | 2       | 2   | _ |         |
| missing/total bins: | 0       | 2   | _ |         |
| % Hit:              | 100.00% | 100 | _ |         |
| bin auto [0]        | 103     | 1   | _ | Covered |
| bin auto [1]        | 10      | 1   | _ | Covered |
| Coverpoint cp4      | 100.00% | 100 | _ | Covered |
| covered/total bins: | 4       | 4   | _ |         |
| missing/total bins: | 0       | 4   | _ |         |
| % Hit:              | 100.00% | 100 | _ |         |
| bin   auto  [0]     | 78      | 1   | _ | Covered |
| bin auto [1]        | 28      | 1   | _ | Covered |
| bin auto [2]        | 6       | 1   | _ | Covered |
| bin auto [3]        | 1       | 1   | _ | Covered |
|                     |         |     |   |         |

TOTAL COVERGROUP COVERAGE: 100.00% COVERGROUP TYPES: 1

Total Coverage By Instance (filtered view): 100.00%

# 3.10 10.Waveform



Figure 4: simulation waveform

```
fsm 010 match golden model
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=1, user count=0
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM_010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=1, user count=0
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=1, user count=1
# FSM 010 Match golden model task : y=0, user count=2
# FSM 010 Match golden model task : y=0, user count=2
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=0, user count=0
# FSM 010 Match golden model task : y=1, user count=0
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=0, user count=1
# FSM 010 Match golden model task : y=1, user count=1
```

fsm 010 match golden model

Figure 5: Transcript: all test cases passed