# MDL Assignment-4

Vikrant Dewangan, Roll No.- 2018111024

# Contents

| 1 | Problem Statement            | 2 |
|---|------------------------------|---|
| 2 | The Algorithm                | 2 |
| 3 | Calculating Information Gain | 2 |
| 4 | Building further tree        | 6 |

#### 1 Problem Statement

Design a decision tree for the following Dataset, showing construction at each level.

| Forecast | Temperature | Humidity | Wind   | Go on a trip |
|----------|-------------|----------|--------|--------------|
| Sunny    | Hot         | High     | Weak   | No           |
| Sunny    | Hot         | High     | Strong | No           |
| Overcast | Hot         | High     | Weak   | No           |
| Rain     | Mild        | High     | Weak   | Yes          |
| Rain     | Cool        | Normal   | Weak   | Yes          |
| Rain     | Cool        | Normal   | Strong | No           |
| Overcast | Cool        | Normal   | Strong | No           |
| Sunny    | Mild        | High     | Weak   | No           |
| Sunny    | Cool        | Normal   | Weak   | Yes          |
| Rain     | Mild        | Normal   | Weak   | Yes          |
| Sunny    | Mild        | Normal   | Strong | Yes          |
| Overcast | Mild        | High     | Strong | Yes          |

### 2 The Algorithm

## 3 Calculating Information Gain

At first, we shall calculate the entropy for the decision **Go on a trip**. To do this, we calculate  $H(\mathbf{Go} \ \mathbf{on} \ \mathbf{a} \ \mathbf{trip})$  -

| Go on a trip |    |  |  |
|--------------|----|--|--|
| Yes          | No |  |  |
| 6            | 6  |  |  |

$$\begin{split} H\big(\mathbf{Go\ on\ a\ trip}\big) &= -\frac{p}{p+n} \cdot log\bigg(\frac{p}{p+n}\bigg) - \frac{n}{p+n} \cdot log\bigg(\frac{n}{p+n}\bigg) \\ &= -2 \cdot \frac{6}{12} \cdot log\bigg(\frac{6}{12}\bigg) \\ &= 1 \end{split}$$

Now, we shall calculate the entropies for each of the 4 attributes **Forecast**, **Temperature**, **Humidity** and **Wind**.

#### 1. $H(Go \ on \ a \ trip, Temperature)$

|             |      | Go o | n a trip | Total |
|-------------|------|------|----------|-------|
|             |      | Yes  | No       | Iotai |
|             | Hot  | 0    | 3        | 3     |
| Temperature | Mild | 4    | 1        | 5     |
|             | Cool | 2    | 2        | 4     |

$$H(Hot) = 0$$

$$H(Mild) = -\frac{4}{5} \cdot log\left(\frac{4}{5}\right) - \frac{1}{5} \cdot log\left(\frac{1}{5}\right)$$

$$= log(5) + \frac{4}{5} \cdot log(4)$$

$$= 0.72$$

$$H(Cold) = -\frac{2}{4} \cdot log\left(\frac{2}{4}\right) - \frac{2}{4} \cdot log\left(\frac{2}{4}\right)$$

$$\begin{split} H\big(\mathbf{Go\ on\ a\ trip, Temperature}\big) &= P\big(Hot\big)H\big(Hot\big) + \\ &\quad P\big(Cold\big)H\big(Cold\big) + P\big(Mild\big)H\big(Mild\big) \\ &= \frac{3}{12} \cdot H\big(0,3\big) + \frac{5}{12} \cdot H\big(4,1\big) + \frac{4}{12} \cdot H\big(2,2\big) \\ &= 0 + \frac{5}{12} \cdot 0.72 + \frac{4}{12} \cdot 1 \\ &= 0.63 \end{split}$$

#### 2. H(Go on a trip, Forecast)

|          |          | Go o | n a trip | Total |
|----------|----------|------|----------|-------|
|          |          | Yes  | No       | Iotai |
|          | Sunny    | 2    | 3        | 5     |
| Forecast | Rain     | 3    | 1        | 4     |
|          | Overcast | 1    | 2        | 3     |

$$H(Sunny) = -\frac{2}{5} \cdot log\left(\frac{2}{5}\right) - \frac{3}{5} \cdot log\left(\frac{3}{5}\right)$$

$$= 0.97$$

$$H(Rain) = -\frac{3}{4} \cdot log\left(\frac{3}{4}\right) - \frac{1}{4} \cdot log\left(\frac{1}{4}\right)$$

$$= 0.81$$

$$H(Overcast) = -\frac{1}{3} \cdot log\left(\frac{1}{3}\right) - \frac{2}{3} \cdot log\left(\frac{2}{3}\right)$$

$$= 0.92$$

$$\begin{split} H\big(\textbf{Go on a trip}, \textbf{Forecast}\big) &= P\big(Sunny\big) H\big(Sunny\big) + P\big(Rain\big) H\big(Rain\big) \\ &\quad + P\big(Overcast\big) H\big(Overcast\big) \\ &= \frac{5}{12} \cdot H\big(2,3\big) + \frac{4}{12} \cdot H\big(3,1\big) + \frac{3}{12} \cdot H\big(1,2\big) \\ &= \frac{5}{12} \cdot 0.97 + \frac{4}{12} \cdot 0.81 + \frac{3}{12} \cdot 0.92 \\ &= 0.90 \end{split}$$

#### 3. $H(Go \ on \ a \ trip, Humidity)$

|           |        | Go o | n a trip | Total |
|-----------|--------|------|----------|-------|
|           |        | Yes  | No       | Iotai |
| Humidity  | High   | 2    | 4        | 6     |
| Trummanty | Normal | 4    | 2        | 6     |

$$H(High) = -\frac{2}{6} \cdot log\left(\frac{2}{6}\right) - \frac{4}{6} \cdot log\left(\frac{4}{6}\right)$$
$$= 0.92$$
$$H(Rain) = -\frac{4}{6} \cdot log\left(\frac{4}{6}\right) - \frac{2}{6} \cdot log\left(\frac{2}{6}\right)$$
$$= 0.92$$

$$\begin{split} H\big(\textbf{Go on a trip}, \textbf{Humidity}\big) &= P\big(High\big)H\big(High\big) + P\big(Normal\big)H\big(Normal\big) \\ &= \frac{6}{12} \cdot H\big(2,4\big) + \frac{6}{12} \cdot H\big(4,2\big) \\ &= 0.92 \end{split}$$

|       |        | Go o | Total |       |
|-------|--------|------|-------|-------|
|       |        | Yes  | No    | Iotai |
| Wind  | Weak   | 3    | 4     | 7     |
| Willa | Strong | 3    | 2     | 5     |

#### 4. H(Go on a trip, Wind)

$$H(Weak) = -\frac{3}{7} \cdot log\left(\frac{3}{7}\right) - \frac{4}{7} \cdot log\left(\frac{4}{7}\right)$$
$$= 0.99$$
$$H(Strong) = -\frac{3}{5} \cdot log\left(\frac{3}{5}\right) - \frac{2}{5} \cdot log\left(\frac{2}{5}\right)$$
$$= 0.97$$

$$\begin{split} H\big(\mathbf{Go\ on\ a\ trip},\mathbf{Wind}\big) &= P\big(Strong\big)H\big(Strong\big) + P\big(Weak\big)H\big(Weak\big) \\ &= \frac{5}{12} \cdot H\big(3,2\big) + \frac{7}{12} \cdot H\big(3,4\big) \\ &= 0.98 \end{split}$$

Now we shall calculate information gain for each split -

$$Gain\big(\textbf{Go on a trip}, \textbf{Temperature}\big) = H\big(\textbf{Go on a trip}\big) - H\big(\textbf{Go on a trip}, \textbf{Temperature}\big) \\ = 1 - 0.63 \\ = 0.37$$

$$Gain\big(\textbf{Go on a trip}, \textbf{Forecast}\big) = H\big(\textbf{Go on a trip}\big) - H\big(\textbf{Go on a trip}, \textbf{Forecast}\big) \\ = 1 - 0.90 \\ = 0.10$$

$$Gain\big(\textbf{Go on a trip}, \textbf{Humidity}\big) = H\big(\textbf{Go on a trip}\big) - H\big(\textbf{Go on a trip}, \textbf{Humidity}\big) \\ = 1 - 0.92 \\ = 0.08$$

$$Gain\big(\textbf{Go on a trip}, \textbf{Wind}\big) = H\big(\textbf{Go on a trip}\big) - H\big(\textbf{Go on a trip}, \textbf{Wind}\big) \\ = 1 - 0.98 \\ = 0.02$$

# 4 Building further tree

Since we have the highest information gain at the Temperature split, our first **decision** shall be regarding checking the temperature.

| Forecast | Temperature | Humidity | Wind   | Go on a trip |
|----------|-------------|----------|--------|--------------|
| Sunny    | Hot         | High     | Weak   | No           |
| Sunny    | Hot         | High     | Strong | No           |
| Overcast | Hot         | High     | Weak   | No           |
|          |             |          |        |              |
| Rain     | Cool        | Normal   | Weak   | Yes          |
| Rain     | Cool        | Normal   | Strong | No           |
| Overcast | Cool        | Normal   | Strong | No           |
| Sunny    | Cool        | Normal   | Weak   | Yes          |
|          |             |          |        |              |
| Sunny    | Mild        | High     | Weak   | No           |
| Rain     | Mild        | High     | Weak   | Yes          |
| Rain     | Mild        | Normal   | Weak   | Yes          |
| Sunny    | Mild        | Normal   | Strong | Yes          |
| Overcast | Mild        | High     | Strong | Yes          |

1. Now as we can clearly see,  $\underline{\text{Hot}}$  temperature always results in  $\mathbf{No}$  decision. In other words,

$$H(\mathbf{Temp} = Hot) = 1$$

Thus one of our path to leaf nodes is decided.



2. Now, for when the temperature is <u>Cool</u>, the following table results -

|          |          | Go o | n a trip | Total | Entropy |
|----------|----------|------|----------|-------|---------|
|          |          | Yes  | No       | Total | Entropy |
| Wind     | Weak     | 2    | 0        | 2     | 0       |
| vvilid   | Strong   | 0    | 2        | 2     | 0       |
|          | Rain     | 1    | 1        | 2     | 1       |
| Forecast | Overcast | 0    | 1        | 1     | 0       |
|          | Sunny    | 1    | 0        | 1     | 0       |
| Humidity | Normal   | 2    | 2        | 4     | 1       |

$$H(\mathbf{Go\ on\ a\ trip}, \mathbf{Temperature} = Cool) = H(2, 2)$$
  
= 1

Now for  $H(Go \ on \ a \ trip, Temperature = Cool)$ , the best split would be that which can the highest information gain. Clearly as we can see,

$$H\big(\textbf{Go on a trip}, \textbf{Temperature} = Cool, \textbf{Wind}\big) = \frac{2}{4} \cdot 0 + \frac{2}{4} \cdot 0$$

$$= 0$$

$$H\big(\textbf{Go on a trip}, \textbf{Temperature} = Cool, \textbf{Forecast}\big) = \frac{2}{4} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0$$

$$= 0.5$$

$$H\big(\textbf{Go on a trip}, \textbf{Temperature} = Cool, \textbf{Humidity}\big) = \frac{1}{1} \cdot 1$$

$$= 1$$

Thus  $Gain(\mathbf{Go\ on\ a\ trip}, \mathbf{Temperature} = Cool, \mathbf{Wind})$  is the highest. Here, we can distinctly make out that  $\mathbf{Wind} = \mathbf{Weak}$  results in Yes and  $\mathbf{Wind} = \mathbf{Strong}$  results in No.



3. Now, for when the temperature is Mild, the following table results

|           |          | Go on a trip |    | Total | Entropy |
|-----------|----------|--------------|----|-------|---------|
|           |          | Yes          | No | Total | Entropy |
| Wind      | Weak     | 2            | 1  | 3     | 0.92    |
| vvind     | Strong   | 2            | 0  | 2     | 0       |
|           | Rain     | 2            | 0  | 2     | 0       |
| Forecast  | Overcast | 1            | 0  | 1     | 0       |
|           | Sunny    | 1            | 1  | 2     | 1       |
| Humidity  | Normal   | 2            | 0  | 2     | 0       |
| Trummunty | High     | 2            | 1  | 3     | 0.92    |

$$H\big(\textbf{Go on a trip}, \textbf{Temperature} = Mild, \textbf{Wind}\big) = \frac{3}{5} \cdot 0.92 + \frac{2}{5} \cdot 0 \\ = 0.55$$
 
$$H\big(\textbf{Go on a trip}, \textbf{Temperature} = Mild, \textbf{Forecast}\big) = \frac{2}{5} \cdot 0 + \frac{1}{5} \cdot 0 + \frac{2}{5} \cdot 1 \\ = 0.4$$
 
$$H\big(\textbf{Go on a trip}, \textbf{Temperature} = Mild, \textbf{Humidity}\big) = \frac{2}{5} \cdot 0 + \frac{3}{5} \cdot 0.92 \\ = 0.55$$

Clearly, as  $H(Go \ on \ a \ trip, Temperature = Mild, Forecast)$  is smallest, we shall look into this split.

| Forecast | Temperature | Humidity | Wind   | Go on a trip |
|----------|-------------|----------|--------|--------------|
| Sunny    | Mild        | High     | Weak   | No           |
| Sunny    | Mild        | Normal   | Strong | Yes          |
| Rain     | Mild        | High     | Weak   | Yes          |
| Rain     | Mild        | Normal   | Weak   | Yes          |
| Overcast | Mild        | High     | Strong | Yes          |

Clearly, when the **Forecast** is not Sunny the output is clearly **Yes**. When the **Forecast** is Sunny, we look at the **Humidity** or **Wind** parameters. Since both of them convey the same thing, we go for **Humidity** this time.



We shall use the following notation - Accordingly, the flow chart can be summarized as -  $\,$ 

| Function | Attribute   |
|----------|-------------|
| f(0)     | Forecast    |
| f(1)     | Temperature |
| f(2)     | Humidity    |
| f(3)     | Wind        |

