

Parameter	F1
Nucleus	¹H
Transmitter Frequency (MHz)	500.13
Sweep Width (Hz)	5000
Sweep Width (ppm)	9.9974
Transmitter Offset (Hz)	2000.5
Transmitter Offset (ppm)	4

6.665 - 6.590 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
1	37.191	2.0261	3.3073×10^{3}	6.6128	4.8784	1.6722
1	± 0.20668	± 0.31841	$\pm 3.0833 \times 10^{-3}$	$\pm 6.165 \times 10^{-6}$	$\pm 1.9373 \times 10^{-2}$	1.0122
2	63.456	1.9139	3.309×10^{3}	6.6162	6.6805	2.7541
2	± 0.27245	± 0.246	$\pm 3.3199 \times 10^{-3}$	$\pm 6.6381 \times 10^{-6}$	$\pm 2.086 \times 10^{-2}$	
3	94.14	1.2418	3.3141×10^{3}	6.6264	5.0848	4 O12E
3	± 0.24448	± 0.1488	$\pm 1.443 \times 10^{-3}$	$\pm 2.8852 \times 10^{-6}$	$\pm 9.0664 \times 10^{-3}$	4.2135
4	117.72	0.8198	3.3158×10^{3}	6.6299	5.8845	E 1026
4	± 0.27318	± 0.13296	$\pm 1.5008 \times 10^{-3}$	$\pm 3.0009 \times 10^{-6}$	$\pm 9.4301 \times 10^{-3}$	5.1836

5	58.877		3.3209×10^{3}	6.6401	6.5374	2.5618
	± 0.30398	± 0.29582	$\pm 3.6855 \times 10^{-3}$	$\pm 7.3691 \times 10^{-6}$	$\pm 2.3157 \times 10^{-2}$	2.5016
6	46.45	0.18452	3.3227×10^3	6.6436	5.7537	2 0505
	± 0.25439	± 0.31378	$\pm 3.4428 \times 10^{-3}$	$\pm 6.8837 \times 10^{-6}$	$\pm 2.1632 \times 10^{-2}$	2.0505

2.380 - 2.280 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
-1	51.184	1.1676	1.1533×10^{3}	2.306	7.6739	2.1863
1	± 0.47098	± 0.52723	$\pm 6.3549 \times 10^{-3}$	$\pm 1.2707 \times 10^{-5}$	$\pm 3.9929 \times 10^{-2}$	
2	69.706	0.88673	1.1556×10^{3}	2.3106	7.9588	0.0640
2	± 1.5469	± 1.2715	$\pm 1.298 \times 10^{-2}$	$\pm 2.5953 \times 10^{-5}$	$\pm 8.1556 \times 10^{-2}$	2.9649
3	68.13	0.48838	1.1574×10^{3}	2.3143	7.8995	2.0004
3	± 1.568	± 1.3187	$\pm 1.3249 \times 10^{-2}$	$\pm 2.6491 \times 10^{-5}$	$\pm 8.3246 \times 10^{-2}$	2.9004
4	53.452	-4.0107×10^{-2}	1.1598×10^{3}	2.319	6.9911	2.3079
4	± 0.50169	± 0.53776	$\pm 5.7548 \times 10^{-3}$	$\pm 1.1506 \times 10^{-5}$	$\pm 3.6158 \times 10^{-2}$	
5	46.805	1.0755	1.166×10^{3}	2.3314	6.6178	2.0336
5	± 0.39598	± 0.48473	$\pm 5.2471 \times 10^{-3}$	$\pm 1.0491 \times 10^{-5}$	$\pm 3.2969 \times 10^{-2}$	
6	64.016	0.3593	1.1685×10^{3}	2.3364	7.7368	2.7319
	± 1.4015	± 1.2544	$\pm 1.2481 \times 10^{-2}$	$\pm 2.4955 \times 10^{-5}$	$\pm 7.8419 \times 10^{-2}$	
7	55.995	0.12828	1.1703×10^{3}	2.34	7.69	2.3912
	± 1.4453	± 1.4789	$\pm 1.4689 \times 10^{-2}$	$\pm 2.937 \times 10^{-5}$	$\pm 9.2292 \times 10^{-2}$	
8	44.148	-0.17126	1.1726×10^{3}	2.3446	7.5003	1.8908
	± 0.44218	± 0.57387	$\pm 6.884 \times 10^{-3}$	$\pm 1.3764 \times 10^{-5}$	$\pm 4.3253 \times 10^{-2}$	

1.430 - 1.290 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
1	29.779	0.40049	657.12	1.3139	8.4864	1.2572
1	± 0.10986	± 0.21138	$\pm 4.8573 \times 10^{-3}$	$\pm 9.7119 \times 10^{-6}$	$\pm 3.0519 \times 10^{-2}$	1.2312
2	33.191	0.33246	661.28	1.3222	8.1158	1.4085
2	± 0.11999	± 0.20713	$\pm 4.3471 \times 10^{-3}$	$\pm 8.6919 \times 10^{-6}$	$\pm 2.7314 \times 10^{-2}$	1.4000

3	86.337	-0.20101	670.12	1.3399	8.2588	2 6565
3	± 0.1284	$\pm 8.5209 \times 10^{-2}$	$\pm 1.7721 \times 10^{-3}$	$\pm 3.5433 \times 10^{-6}$	$\pm 1.1134 \times 10^{-2}$	3.6565
4	85.676	-0.56365	674.31	1.3483	7.9341	2 6 4 5 5
4	± 0.12597	$\pm 8.4239 \times 10^{-2}$	$\pm 1.68 \times 10^{-3}$	$\pm 3.3591 \times 10^{-6}$	$\pm 1.0556 \times 10^{-2}$	3.6455
5	82.459	3.4106×10^{-2}	683.14	1.3659	8.2456	2 4000
5	± 0.13249	$\pm 9.2058 \times 10^{-2}$	$\pm 1.8853 \times 10^{-3}$	$\pm 3.7696 \times 10^{-6}$	$\pm 1.1846 \times 10^{-2}$	3.4929
6	79.721	-0.96147	687.31	1.3743	8.3566	3.3716
	± 0.13226	$\pm 9.5056 \times 10^{-2}$	$\pm 1.9808 \times 10^{-3}$	$\pm 3.9605 \times 10^{-6}$	$\pm 1.2446 \times 10^{-2}$	
7	27.021	-0.32133	696.16	1.392	8.0118	1.1484
	± 0.11568	± 0.2453	$\pm 5.1493 \times 10^{-3}$	$\pm 1.0296 \times 10^{-5}$	$\pm 3.2354 \times 10^{-2}$	1.1404
8	23.519	-0.82978	700.29	1.4002	7.9849	1
	± 0.10287	± 0.25059	$\pm 5.4969 \times 10^{-3}$	$\pm 1.0991 \times 10^{-5}$	$\pm 3.4538 \times 10^{-2}$	1

Estimation performed using NMR-EsPy.

Author: Simon Hulse For more information:

https://foroozandehgroup.github.io/NMR-EsPy

https://github.com/foroozandehgroup/NMR-EsPy

simon.hulse@chem.ox.ac.uk

If used in a publication, please cite:

Simon G. Hulse, Mohammadali Foroozandeh. "Newton meets Ockham: Parameter estimation and model selection of NMR data with NMR-EsPy". J. Magn. Reson. 338 (2022) 107173.

https://doi.org/10.1016/j.jmr.2022.107173