Условное математическое ожидание (продолжение). Семинар 8. 23 октября 2018 г.

Подготовил: Горбунов Э.

Источники: [Ширяев, Гл. 1 §8, Гл. 2 §7], [НатанТВ, Гл. 5], [Боровков, Гл. 4 §2], [Гнеденко, Гл. 5 §23]

Ключевые слова: условное математическое ожидание относительно σ -алгебры, условная вероятность относительно σ -алгебры

Первые 10-15 минут семинара — разбор прошедшей контрольной работы.

Условное математическое ожидание относительно σ -алгебры

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и некоторую σ -алгебру $\mathcal{D} \subseteq \mathcal{F}$ $(\mathcal{D} - \sigma$ -подалгебра $\mathcal{F})$. Пусть ξ — некоторая случайная величина. Мы определяли математического ожидание случайной величины ξ (интеграл Лебега по вероятностной мере) в два этапа: сначала это было сделано для неотрицательных случайных величин, а затем и в общем случае мат. ожидание было определено формулой:

$$\mathbb{E}\xi = \mathbb{E}\xi^+ - \mathbb{E}\xi^-$$
 при условии, что $\min\{\mathbb{E}\xi^-, \mathbb{E}\xi^+\} < \infty$.

Подобная же конструкция используется для определения условного мат. ожидания относительно σ -алгебры.

- Определение 1. 1. Условным математическим ожиданием неотрицательной случайной величины ξ относительно σ -алгебры $\mathcal D$ называется расширенная случайная величина $\mathbb E[\xi|\mathcal D](\omega)$ (т.е. принимающая значения из $\overline{\mathbb R}=[-\infty,+\infty]$), такая, что
 - а) $\mathbb{E}[\xi|\mathcal{D}](\omega)$ является \mathcal{D} -измеримой;
 - b) для любого события $A \in \mathcal{D}$ выполняется:

$$\int_{A} \xi d\mathbb{P} = \int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P}.$$

2. Условным математическим ожиданием произвольной случайной величины ξ относительно σ -алгебры $\mathcal D$ называется расширенная случайная величина

$$\mathbb{E}[\xi|\mathcal{D}](\omega) \stackrel{\text{def}}{=} \mathbb{E}[\xi^{+}|\mathcal{D}](\omega) - \mathbb{E}[\xi^{-}|\mathcal{D}](\omega)$$

при условии, что с вероятностью 1 выполнено неравенство:

$$\min\{\mathbb{E}[\xi^{-}|\mathcal{D}](\omega), \mathbb{E}[\xi^{+}|\mathcal{D}](\omega)\} < \infty,$$

причём на множестве нулевой вероятностной меры $\{\omega \in \Omega \mid \min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} = \infty\}$ значение условного математического ожидание определяется произвольным образом. Если же $\mathbb{P}\{\omega \in \Omega \mid \min\{\mathbb{E}[\xi^-|\mathcal{D}](\omega), \mathbb{E}[\xi^+|\mathcal{D}](\omega)\} = \infty\} > 0$, то условное математическое ожидания ξ относительно σ -алгебры \mathcal{D} неопределено.

Замечание 1. Существование условного математического ожидания для неотрицательных случайных величин гарантирует теорема Радона-Никодима. Для этого рассмотрим неотрицательную случайную величину ξ и функцию множеств

$$Q(A) = \int_A \xi d\mathbb{P}, \quad A \in \mathcal{D}.$$

Легко показать, что $Q(\cdot)$ является мерой на (Ω, \mathcal{D}) , которая *абсолютно непрерывна* относительно меры \mathbb{P} (по определению, это означает, что из $\mathbb{P}\{A\} = 0, A \in \mathcal{D}$ следует Q(A) = 0). Тогда по теореме Радона-Никодима существует такая неотрицательная \mathcal{D} -измеримая расширенная случайная величина $\mathbb{E}[\xi|\mathcal{D}](\omega)$, что

$$Q(A) = \int_{A} \mathbb{E}[\xi|\mathcal{D}]d\mathbb{P}.$$

Она определена с точностью до множества Р-меры нуль.

Замечание 2. Отметим, что свойство (b) из определения будет выполнено, если положить $\mathbb{E}[\xi|\mathcal{D}] = \xi$. Но так сделать в общем случае нельзя, т. к. ξ не обязана быть \mathcal{D} -измеримой.

Замечание 3. В случае тривиальной σ -алгебры $\mathcal{D} = \{\varnothing, \Omega\}$ получаем, что $\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}\xi$.

Определение 2. Условной вероятностью события $B\in\mathcal{F}$ относительно σ -алгебры \mathcal{D} называется обобщённая случайная величина

$$\mathbb{P}\{B|\mathcal{D}\}(\omega) \stackrel{\text{def}}{=} \mathbb{E}[\mathbb{I}_B|\mathcal{D}](\omega).$$

Из введённых определений следует, что для каждого фиксированного $B \in \mathcal{F}$ выполнено:

- а) $\mathbb{P}\{B|\mathcal{D}\}(\omega)$ является \mathcal{D} -измеримой;
- b) для любого $A \in \mathcal{D}$

$$\mathbb{P}\{A \cap B\} = \int_{A} \mathbb{P}\{B|\mathcal{D}\}d\mathbb{P}.$$

Определение 3. Условным математическим ожиданием случайной величины ξ относительно случайной величины η называется обобщённая случайная величина

$$\mathbb{E}[\xi|\eta](\omega) \stackrel{\text{def}}{=} \mathbb{E}[\xi|\mathcal{D}_{\eta}](\omega),$$

где $\mathcal{D}_{\eta}-\sigma$ -алгебра, порождённая случайной величиной η (при условии, что $\mathbb{E}[\xi|\mathcal{D}_{\eta}](\omega)$ определено).

Определение 4. Условной вероятностью случайной величины ξ относительно случайной величины η называется обобщённая случайная величина

$$\mathbb{P}\{\xi|\eta\}(\omega) \stackrel{\text{def}}{=} \mathbb{P}\{\xi|\mathcal{D}_n\}(\omega),$$

где $\mathcal{D}_{\eta}-\sigma$ -алгебра, порождённая случайной величиной η (при условии, что $\mathbb{P}\{\xi|\mathcal{D}_{\eta}\}(\omega)$ определена).

Следующая теорема показывает, что введённое определение условного математического ожидания согласуется с определением, данным на прошлом семинаре.

Теорема 1. Пусть $D = \{B_1, \dots, B_n\}$ — некоторое разбиение вероятностного пространства $(\Omega, \mathcal{F}, \mathbb{P})$. Пусть $\mathcal{D} = \sigma(D)$ и ξ — некоторая случайная величина, для которой $\mathbb{E}\xi$ определено. Тогда с вероятностью 1 выполнено равенство

$$\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}[\xi|D].$$

Перечислим теперь важные свойства условного математического ожидания относительно σ -алгебры.

- 1. Если c константа и $\xi = c$ с вероятностью 1, то с вероятностью 1 $\mathbb{E}[\xi|\mathcal{D}] = c$.
- 2. Если $\xi \leqslant \eta$ с вероятностью 1, то $\mathbb{E}[\xi|\mathcal{D}] \leqslant \mathbb{E}[\eta|\mathcal{D}]$ с вероятностью 1.
- 3. $|\mathbb{E}[\xi|\mathcal{D}]| \leq \mathbb{E}[|\xi||\mathcal{D}]$ с вероятностью 1.
- 4. Если a,b постоянные и $a\mathbb{E}\xi+b\mathbb{E}\eta$ определено, то с вероятностью 1 выполнено равенство

$$\mathbb{E}[a\xi + b\eta | \mathcal{D}] = a\mathbb{E}[\xi | \mathcal{D}] + b\mathbb{E}[\eta | \mathcal{D}].$$

- 5. Если $\mathcal{D}_* = \{\varnothing, \Omega\}$ тривиальная σ -алгебра, то $\mathbb{E}[\xi | \mathcal{D}_*] = \mathbb{E}\xi$.
- 6. $\mathbb{E}[\xi|\mathcal{F}] = \xi$ с вероятностью 1.
- 7. Если $\mathcal{D}_1 \subseteq \mathcal{D}_2$, то с вероятностью 1

$$\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] = \mathbb{E}[\xi|\mathcal{D}_1].$$

8. Если $\mathcal{D}_1 \supseteq \mathcal{D}_2$, то с вероятностью 1

$$\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}_2]|\mathcal{D}_1\right] = \mathbb{E}[\xi|\mathcal{D}_2].$$

- 9. С вероятностью 1 выполнено равенство $\mathbb{E}\left[\mathbb{E}[\xi|\mathcal{D}]\right] = \mathbb{E}\xi$.
- 10. Если для случайной величины ξ определено математическое ожидание $\mathbb{E}\xi$ и она не зависит от σ -алгебры \mathcal{D} (то есть не зависит от \mathbb{I}_A для всех $A \in \mathcal{D}$), то с вероятностью 1

$$\mathbb{E}[\xi|\mathcal{D}] = \mathbb{E}\xi.$$

11. Если $\eta - \mathcal{D}$ -измеримая случайная величина, $\mathbb{E}|\eta| < \infty$ и $\mathbb{E}|\xi\eta| < \infty$, то с вероятностью 1

$$\mathbb{E}[\xi\eta|\mathcal{D}] = \eta\mathbb{E}[\xi|\mathcal{D}].$$

Данное свойство доказазывается сначала для простых функций η , а потом для произвольных \mathcal{D} измеримых функций путём предельного перехода.

Определение 5. Пусть ξ и η — случайные величины и $\mathbb{E}\xi$ определено. Условным математическим ожиданием случайной величины ξ при условии, что $\eta=y$ называется борелевская функция $\mathbb{E}[\xi|\eta=y]\stackrel{\mathrm{def}}{=} m(y)$ такая, что

$$\int_{\{\omega\inf\Omega|\eta(\omega)\in B\}}\xi(\omega)d\mathbb{P}(\omega)=\int_{B}m(y)d\mathbb{P}_{\eta}(y),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Существование такой функции показывается аналогичными рассуждениями с использованием теоремы Радона-Никодима, что и при доказательстве существования условного математического ожидания относительно σ -алгебры.

Применяя теорему о замене переменных под знаком интеграла Лебега, получим, что

$$\int\limits_{\{\omega\in\Omega|\eta(\omega)\in B\}}\xi(\omega)d\mathbb{P}(\omega)=\int\limits_{B}m(y)d\mathbb{P}_{\eta}(y)=\int\limits_{\{\omega\in\Omega|\eta(\omega)\in B\}}m(\eta(\omega))d\mathbb{P}(\omega),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Случайная величина $m(\eta)$ является \mathcal{D}_{η} -измеримой, а множествами $\{\omega \in \Omega \mid \xi(\omega) \in B\}B \in \mathcal{B}(\mathbb{R})$ исчерпываются все множества из \mathcal{D}_{η} . Следовательно, $m(\eta) = \mathbb{E}[\xi|\eta]$ с вероятностью 1. Отсюда следует, что можно восстановить $\mathbb{E}[\xi|\eta]$, зная $\mathbb{E}[\xi|\eta = y]$, и, наоборот, по $\mathbb{E}[\xi|\eta]$ можно найти $\mathbb{E}[\xi|\eta = y]$.

Можно показать, что для любой $\mathcal{B}(\mathbb{R}^2)$ -измеримой функции $\varphi(x,y)$ и независимых случайных величин ξ и η таких, что $\mathbb{E}|\varphi(\xi,\eta)|<\infty$, то с вероятностью 1

$$\mathbb{E}[\varphi(\xi,\eta)|\eta=y] = \mathbb{E}[\varphi(\xi,y)].$$

Данный факт оказывается очень полезным при решении задач, но мы его оставим без доказательства.

Определение 6. Условной вероятностью события $A \in \mathcal{F}$ при условии, что $\eta = y$ будем называть расширенную случайную величину

$$\mathbb{P}\{A|\eta=y\} \stackrel{\text{def}}{=} \mathbb{E}[\mathbb{I}_A|\eta=y].$$

Заметим, что из данного определения следует определение условной вероятности $\mathbb{P}\{A|\eta=y\}$, данное на пятом семинаре:

$$\mathbb{P}\left\{A\cap\{\omega\in\Omega\mid\eta(\omega)\in B\}\right\}=\int\limits_{B}\mathbb{P}\{A|\eta=y\}d\mathbb{P}_{\eta}(y),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Пример 1. Пусть (ξ, η) — пара случайных величин, имеющих совместное абсолютно непрерывное распределение с плотностью $f_{\xi,\eta}(x,y)$. Пусть $f_{\xi}(x)$ и $f_{\eta}(y)$ — плотности распределения ξ и η соответственно. Теперь мы готовы обосновать факт с пятого семинара, что плотность условного распределения $\xi|\eta$ равна

$$f_{\xi|\eta}(x|y) = \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)},$$

причём $f_{\xi|\eta}(x|y)$ положим равной нулю, если $f_{\eta}(y)=0$. Нам нужно показать, что

$$\mathbb{P}\{\xi \in C | \eta = y\} = \int_C f_{\xi|\eta}(x|y) dx, \quad \forall C \in \mathcal{B}(\mathbb{R}).$$

Для этого достаточно показать, что

$$\mathbb{P}\left\{\left\{\omega\in\Omega\mid\xi(\omega)\in C\right\}\cap\left\{\omega\in\Omega\mid\eta(\omega)\in B\right\}\right\}=\int\limits_{B}\mathbb{P}\{A|\eta=y\}d\mathbb{P}_{\eta}(y),\quad\forall B\in\mathcal{B}(\mathbb{R}).$$

Используя теорему Фубини, получим

$$\int_{B} \left[\int_{C} f_{\xi|\eta}(x|y) dx \right] d\mathbb{P}_{\eta}(y) = \int_{B} \left[\int_{C} f_{\xi|\eta}(x|y) dx \right] d\mathbb{P}_{\eta}(y)
= \int_{B} \left[\int_{C} f_{\xi|\eta}(x|y) dx \right] f_{\eta}(y) dy
= \int_{C \times B} f_{\xi|\eta}(x|y) f_{\eta}(y) dx dy
= \int_{C \times B} f_{\xi,\eta}(x,y) dx dy
= \mathbb{P} \{ \xi \in C, \eta \in B \},$$

что и требовалось доказать.

Аналогичным образом, можно показать, что

$$\mathbb{E}[\xi|\eta=y] = \int_{\mathbb{R}} x f_{\xi|\eta}(x|y) dx.$$