ИСПОЛЬЗОВАНИЕ СБАЛАНСИРОВАННЫХ СХЕМ

Тенденция к миниатюризации электронной аппаратуры посредством увеличения плотности размещения компонентов и применения элементов с высокой степенью интеграции предполагает особые требования к изолированию сигналов друг относительно друга. Еще большая миниатюризация приводит к тому, что внутренние компоненты отдельных модулей и системы в целом должны быть компактно упакованы или интегрированы в еще большей степени. Достижение соответствующей изоляции между различными составными частями проблемой системы становится основной дизайнерских разработок, накладывающей ограничения на характеристики устройств.

Экранирование является дорогим удовольствием и на него тратится полезное пространство, увеличивается вес и стоимость конструкции. Использование сбалансированных сигналов может уменьшить требования к изоляции без ощутимых неприятностей, связанных с увеличением объема или стоимости. При производстве высокочастотных устройств часто используются способы, приводящие к несбалансированности сигналов, однако в последнее время техника балансировки сигналов становится все более популярной. Как эта техника работает и каковы ее отличительные особенности?

По сравнению с обычными сбалансированные схемы обладают двумя основными преимуществами. Во-первых, такие сигналы менее восприимчивы по отношению к нежелательным сигналам и помехам. Во-вторых, они в меньшей степени взаимодействуют с другими сигналами. Эти преимущества складываются и совокупно влияют на качественные характеристики устройства. Можно сбалансировать как цепи чувствительных сигналов (жертвы), так и цепи воздействующих сигналов (агрессоры), ожидая при этом уменьшения взаимодействия между ними.

Электромагнитная совместимость устройств может быть улучшена, а излучение уменьшено при применении методов балансировки схем независимо от применения и качества экранирования. В настоящее время в высокоскоростных цифровых схемах используются сбалансированные сигналы тактовых частот и данных, такие как LVDS (low voltage differential signals – низкоуровневые дифференциальные сигналы), а в устройствах беспроводной связи производители используют способы лансировки, позволяющие объединять различные узлы функциональные на одном кристалле интегральной схемы и сохраняющие необходимую изоляцию. Большое количество информации по разработке устройств относится к несбалансированным методам из-за относительно большого периода развития несбалансированной высокочастотной техники. Напротив, описание сбалансированных систем встречается в меньшем объеме изза малого опыта и небольшого количества тестового оборудования.

В вопросе понимания работы сбалансированных схем нет особых сложностей, однако может возникнуть трудность их восприятия для человека, привыкшего обращаться с несбалансированными системами.

Что такое сбалансированная схема? Это, в первую очередь, симметричная схема. По словам Генри Отта, сбалансированной является двухпроводная схема, в которой оба проводника и все цепи, подключенные к ним, обладают одинаковым импедансом относительно земли И проводников (Ott, Henry W., "Noise Reduction Techniques in Electronic Systems", John Wiley and Sons. New York, 1988). Но понятие "сбалансированный" не эквивалентно понятию "дифференциальный". Однопроводная схема все еще остается дифференциальной – шина земли является другим, вторым проводником сигнала. Однако, в понастоящему сбалансированни схеме ток не протекает поскольку два возвратных тока, протекающих по земле, равны по величине, но противоположны по знаку, и, поэтому, теоретически полностью компенсируют друг друга.

СБАЛАНСИРОВАННОСТЬ

Каковы преимущества сбалансированных схем? Как сбалансированные схемы подавляют помехи на земляной шине?

Сначала рассмотрим обычную несимметричную схему с наведенным на земле шумом (рис. 1).

Рис. 1. Несбалансированная схема с "земляным" шумом

Отметим, что источник шума располагается между двумя частями схемы. В реальном устройстве он может находиться на печатной плате или в соединениях между отдаленным датчиком и измерительной схемой. Легко видеть, что выходное напряжение V_L вычисляется простым способом

$$V_L = [(V_S + V_N)R_L]/(R_S + R_L)$$

Шум, добавляемый к сигналу, уменьшает отношение сигнал/шум. Во многих случаях это действие ухудшает качественные характеристики устройства и может быть недопустимым. На рисунке 2 показан альтернативный путь соединения этих двух частей схемы. В данном случае сигнал разделен на две равные части с заземлением общей точки. Источник входного сигнала и нагрузочный резистор дублированы, и выходной сигнал V_L снимается с обоих нагрузок.

$$0=V_{S1}-i_1(R_{S1}+R_{L1})+V_N$$

Рис. 2. Сбалансированная схема с "земляным" шумом

Анализ второй схемы незначительно сложнее первой. По второму закону Кирхгофа суммы напряжений в контурах, образуемых токами i_1 и i_2 , равны нулю. Следовательно,

$$\begin{split} 0 &= V_{S2} - i_2 (R_{S2} + R_{L2}) - V_N, \\ 0 &= V_{S1} - i_1 (R_{S1} + R_{L1}) - V_N, \\ i_1 &= (V_{S1} + V_N) / (R_{S1} + R_{L1}), \\ i_2 &= (V_{S2} - V_N) / (R_{S2} + R_{L2}). \end{split}$$

Поэтому

$$\begin{split} &V_L \!\!=\! i_1 R_{L1} \!\!+\! i_2 R_{L2}, \text{ r.e.} \\ &V_L \!\!=\! R_{L1} (V_{S1} \!\!+\! V_N) / (R_{S1} \!\!+\! R_{L1}) \!\!+\! \\ &+\! R_{L2} (V_{S2} \!\!-\! V_N) / (R_{S2} \!\!+\! R_{L2}). \end{split}$$

В полностью сбалансированной системе $R_{L1} = R_{L2} = R_L$ и $R_{S1} = R_{S2} = R_S$. Следовательно,

$$V_L = R_L(V_{S1} + V_{S2})/(R_S + R_L).$$

Теперь шумовое напряжение полностью подавлено. Конечно, в реальных схемах резисторы не обладают совершенно одинаковым сопротивлением, шум, поэтому, не может полностью нейтрализован и выражение для VL приобретает следующий вид:

$$\begin{split} V_L &= V_{S1} R_{L1} / (R_{S1} + R_{L1}) + \\ &+ V_{S2} R_{L2} / (R_{S2} + R_{L2}) + \\ &+ V_N [R_{L1} / (R_{S1} + R_{L1}) - R_{L2} / (R_{S2} + R_{L2})] \end{split}$$

Часть выражения, умножаемая на V_N , является коэффициентом ослабления синфазного сигнала (КОСС, CMRR). КОСС есть отношение дифференциального коэффициента усиления к синфазному коэффициенту усиления:

$$KOCC = R_{L1}/(R_{S1} + R_{L1}) - R_{L2}/(R_{S2} + R_{L2})$$

Например, если значение R_{L1} на 1% больше номинального, а значение R_{L2} на 1% меньше номинального, то КОСС составит 0,005 или -46 дБ. Подавление помех шины земли не является единственным преимуществом сбалансированных схем. Некоторые виды помех могут быть вызваны емкостными (от близлежащих шин или проводов) или даже индуктивными связями. На рисунке 3 показано, как может возникать емкостная связь.

Рис. 3. Пример возникновения помех при емкостной связи

Даже не прибегая к анализу схемы, легко видеть, что ток, протекающий от источника шума V_N через конденсаторы и втекающий в нагрузочные увеличение резисторы, вызывает одинаковое выходных напряжений V_{L1} и V_{L2} . Результатом этого является подавление шумового напряжения (аналогично подавлению помех, присутствующих на шине земли) при условии, что схема резисторно сбалансирована и емкость конденсаторов одинакова. При другом способе рассмотрения этой схемы она может быть представлена в виде моста (рис. 4). Если R_{L1} = R_{L2} и R_{S1} = R_{S2} , то при C_1 = C_2 схема сбалансирована и помехи в выходном напряжении V_1 отсутствуют.

Рис. 4. Анализ с помощью мостовой схемы

Основные преимущества сбалансированных схем:

- 1. Сигналы менее восприимчивы к помехам на шине земпи:
- Сигналы менее восприимчивы к помехам, вызванных емкостной связью;
- Сигналы менее восприимчивы к помехам, вызванных индуктивной и электромагнитной связями;
- Уменьшение собственного электромагнитного излучения по сравнению с несбалансированными схемами.

Главный недостаток сбалансированных схем заключается в том, что в них используется большее количество компонентов. Кроме того, возможно некорректное подключение сбалансированной системы с инвертированием сигнала. Решение о применении сбалансированной или несбаланси-

рованной структуры схемы должно быть в достаточной мере продуманным и никак не случайным. Система всегда будет содержать части, не требующие сбалансированности или которые нельзя сбалансировать, и части, которые балансировать необходимо.

T. Lymer and D. Stockton

При использовании сбалансированных схем встречается две тонкости. Во-первых, выигрыш от применения таких схем есть результат подавления нежелательных сигналов, что является субтрактивным процессом; при хорошей балансировке редуцирование помех очень велико. Небольшой дисбаланс схемы может приводить к значительному уменьшению подавления помех. Это важно учитывать при расчетах, моделировании и экспериментах, где необходимо учитывать погрешности и допуски компонентов.

Во-вторых, сбалансированные сигналы, являясь дифференциальными, требуют большей площади.

Непосредственной разработке схемы должно предшествовать определение того, что необходимо сделать. Может потребоваться напряжение смещения усилителя (которое, в общем случае, является однопроводным сигналом), например, для того, чтобы

вписать сигнал в входной диапазон АЦП. С другой стороны, может потребоваться устранить синфазные помехи. Дифференциальные усилители обладают хорошим подавлением синфазной составляющей входного сигнала. Дифференциальные фильтры и аттенюаторы, выполненные определенным образом, воздействуют на дифференциальную компоненту сигнала, но не всегда на синфазную. Два фильтра или аттенюатора с несимметричными входами воздействуют на обе составляющие, но недостаточном согласовании элементов их применение может приводить к преобразованию синфазных сигналов в дифференциальные.

На рисунке 5 показаны две возможные конфигурации фильтра и аттенюатора с описанием их воздействий на синфазные и дифференциальные сигналы.

На рисунке 6 приведены две схемы включения усилителей с описанием их воздействий на синфазные и дифференциальные сигналы. Умение обращаться с синфазными сигналами не представляет особой сложности. Ключ к нему лежит в понимании того, что эти сигналы всегда должны быть тщательно продуманы.

Рис. 5. Сравнение воздействий разных типов аттенюаторов и фильтров

Рис. 6. Сравнение воздействий разных типов усилителей

измерения

Производство высокочастотного оборудования на несбалансированных системах основано на большом количестве тестового оборудования, имеющего несбалансированные входные и выходные порты.

Двухканальные осциллографы обычно имеют режим работы "A-B", который позволяет использовать оба канала как один дифференциальный вход. (Время от времени необходимо производить периодическую балансировку каналов. Для этого щупы осциллографа подключаются к одному сигналу. При одинаковом положении аттенюаторов обоих каналов разность сигналов должна быть минимальной).

Однако, недостаточный коэффициент ослабления синфазного сигнала, получающийся при может измерениях таким способом, вносить погрешность в результаты измерений. Для сбалансированных щупов с достаточной точностью нормируется подавление синфазного сигнала. При этом каждый щуп становится прикрепленным к своему каналу осциллографа, что делает результаты измерений более надежными и заслуживающими доверия.

В последнее время наблюдается увеличение выпуска схемных анализаторов, использующих сбалансированную обработку сигналов. Однако

анализаторы спектра, генераторы сигналов и шума, выполненные с помощью приемов сбалансированной техники, еще не получили должного распространения. приводит к необходимости использовать Это преобразователи несбалансированных сигналов в сбалансированные. По-другому, такие преобразователи называются симметрирующими устройствами. В этом качестве могут выступать простые трансформаторы с расщепленной вторичной обмоткой. Однако их применение требует особого внимания с точки зрения необходимых частотного диапазона и импеданса, и поэтому нет универсальных, т.е. подходящих для любых применений, симметрирующих трансформаторов. Потери в них - вносимое затухание, недостаточно точное согласование и т.п. влияют на точность измерений и уровень шума, следовательно, применяемые пары симметрирующих трансформаторов или секции расщепленной обмотки должны быть в достаточной степени идентичными для обеспечения качественных характеристик схемы.

Для сбалансированных высокочастотных сигналов нет общепринятых значений импеданса и определенных типов разъемов. Переходные устройства, входящие в состав несбалансированных измерительных приборов, позволяют создавать сбалансированные соединения (интерфейсы) между разными устройствами и обеспечивать совместимость схем со смешанными (сбалансированными и несбалансированными) структурами.