MATH 603, Feuille 2 Systèmes différentielles et exponentielle de matrices

Exercice 1. Résoudre le système différentiel X' = AX avec $A = \begin{pmatrix} 4 & 0 & 0 \\ 2 & 1 & 3 \\ 5 & 0 & 4 \end{pmatrix}$

Exercice 2. Déterminer les solutions réelles du système différentiel X' = AX avec

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ et } A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 4 & -2 \\ 2 & 6 & -3 \end{pmatrix}.$$

Exercice 3. Résoudre le système différentiel X' = AX + B avec

$$A = \begin{pmatrix} 6 & 3 \\ -4 & -1 \end{pmatrix} \text{ et } B = \begin{pmatrix} -3t + 4e^{3t} \\ 4t - 4e^{3t} \end{pmatrix}.$$

Exercice 4. Soient $n \in \mathbb{N}^*$ et $A \in M_{n,n}(\mathbb{R})$.

- (1) On suppose que A est antisymétrique et on considère une solution réelle du système différentiel X' = AX. Soit $Y = {}^t XX = ||X||^2$. Montrer que Y est une constante.
- (2) On suppose que la norme de toute solution réelle du système différentiel X'=AX est constante.
 - (a) Justifier que la matrice $B = {}^{t}A + A$ est diagonalisable.
 - (b) Montrer que ${}^{t}XBX = 0$.
 - (c) Soient λ une valeur propre de B et X_0 un vecteur propre associé à λ . Montrer que $\lambda=0$. On pourra considérer X une solution réelle du système de Cauchy : X'=AX et $X(0)=X_0$
 - (d) En déduire que A est antisymétrique.

Exercice 5. Soient
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ et $C = A + B$.

- (1) Déterminer e^A , e^B , e^V et e^C .
- (2) A-t-on $e^A e^B = e^C$?

Exercice 6. Soit la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Résoudre le problème de Cauchy X'(t) = AX(t) avec $X(0) = X_0$ et déterminer e^A .

Exercice 7. Soit
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
.

Résoudre le système différentiel X' = AX avec $X(0) = X_0$ puis en déduire e^A .

Exercice 8.

(1) Soient
$$X = \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix}$$
, $X_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \\ u_0 \end{pmatrix}$, et la matrice $A = \begin{pmatrix} 4 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$.

Résoudre le problème de Cauchy X' = AX avec $X(0) = X_0$ en posant

$$v = x + z, \ w = x - z, \ r = y + u, s = y - u.$$

(2) En déduire e^A . On ne calculera pas les valeurs propres de A.

Exercice 9. On considère les matrices réelles suivantes

$$A = \begin{pmatrix} -9 & -4 & -2 \\ 6 & 1 & 2 \\ 5 & 3 & -1 \end{pmatrix}, Y_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, T = \begin{pmatrix} -3 & 2 & 3 \\ 0 & -3 & -1 \\ 0 & 0 & -3 \end{pmatrix},$$
$$P = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- (1) Pour tout $t \in \mathbb{R}$, calculer la matrice e^{tT} .
- (2) En remarquant que $PTP^{-1} = A$, déterminer la solution du système différentiel Y' = AY vérifiant $Y(0) = Y_0$.

Exercice 10. On considère les matrices suivantes

$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -2 & 0 \\ -1 & 1 & 0 \end{pmatrix}, \qquad Y_0 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \qquad \text{et} \qquad B(t) = \begin{pmatrix} t - 1 \\ t \\ t + 1 \end{pmatrix}$$

- (1) Déterminer $(A + I_3)^3$. En déduire $e^{t(A+I_3)}$ puis e^{tA} .
- (2) Déterminer la solution du système différentiel Y'(t) = A Y(t) vérifiant $Y(0) = Y_0$.
- (3) Déterminer la solution générale du système différentiel Y'(t) = A Y(t) + B(t).

Exercice 11. Soient $n \in \mathbb{N}^*$, $A \in M_{n,n}(\mathbb{R})$ diagonalisable dans \mathbb{R} et $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A et D la matrice diagonale avec les $\lambda_1, \ldots, \lambda_n$ sur la diagonale.

- (1) Construire un polynôme $Q \in \mathbb{R}[X]$ de degré plus petit que n, tel que $Q(\lambda_i) = e^{\lambda_i}$ pour tout $1 \leq i \leq n$.
- (2) Montrer que $e^D = Q(D)$ et en déduire que $e^A = Q(A)$.

Exercice 12. Pour tout $t \in \mathbb{R}$, on considère la matrice $A(t) = \begin{pmatrix} \sin(t) & -t^2 \\ t^2 & \sin(t) \end{pmatrix}$.

- (1) En remarquant que $\forall t \in \mathbb{R}$, $A(t) = \sin(t) I_2 + t^2 \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, déterminer $e^{A(t)}$.
- (2) Vérifier, par un calcul, que $\forall t \in \mathbb{R}$, $(e^{A(t)})' = A'(t) e^{A(t)}$.
- (3) Justifier, sans faire de calcul, le résultat précédent.
- (4) On considère le système différentiel (G) $\begin{cases} x' = \cos(t) x 2t y \\ y' = 2t x + \cos(t) y. \end{cases}$ Expliquer pourquoi (G) admet, pour toute condition initiale, une solution globale unique sur \mathbb{R} . Déterminer la solution générale de (G).

Exercice 13. On considère le système différentiel réel du premier ordre défini sur \mathbb{R}_+^*

(E)
$$\begin{cases} x' = \frac{1}{t}x - 2ty + \cos(t^2), \\ y' = 2tx + \frac{1}{t}y + \sin(t^2). \end{cases}$$

On note (E_0) le système différentiel homogène associé à (E)

- (1) On définit la fonction complexe z par : $\forall t \in \mathbb{R}_+^*$, z(t) = x(t) + iy(t). Montrer que (E_0) est équivalent à une équation différentielle linéaire complexe en z. En déduire la solution générale de (E_0) sur \mathbb{R}_+^* .
- (2) Déterminer la solution générale du système différentiel (E) sur \mathbb{R}_{+}^{*} .

Exercice 14. On considère le système différentiel (E)

$$x' = (3t - 1)x + (t - 1)y,$$

$$y' = -(t + 2)x + (t - 2)y.$$

- (1) Vérifier que (E) admet une solution non triviale de la forme $Y_1(t) = (\psi(t), -\psi(t))$ où ψ est une fonctions scalaire à déterminer.
- (2) Déterminer une solution Y_2 de (E) indépendante de Y_1 de la forme $Y_2(t) = \phi(t)Y_1(t) + (0, z(t))$ où ϕ et z sont deux fonctions scalaires à déterminer.
- (3) En déduire la solution générale de (E).

Exercice 15. Pour t > 0, on considère $A(t) = \begin{pmatrix} 2t + \frac{1}{t} & 0 & \frac{1}{t} - t \\ t - \frac{1}{t} & 3t & t - \frac{1}{t} \\ \frac{2}{t} - 2t & 0 & \frac{2}{t} + t \end{pmatrix}$ et $B(t) = \begin{pmatrix} t^3 \\ -t^3 \\ 2t^3 \end{pmatrix}$.

- (1) Déterminer les valeurs propres de A puis une matrice de passage P indépendante de t et une matrice D(t) diagonale telles que $A(t) = PD(t)P^{-1}$.
- (2) Résoudre sur \mathbb{R}_{+}^{*} , le système Z' = D(t)Z.
- (3) En déduire la solution générale sur \mathbb{R}_+^* , du système Y'=A(t)Y+B(t).