

Fine-Tuning Hugging Face Transformers for News Text Classification

Bárbara Rodrigues - *up202007163* Guilherme Pereira - *up202007375* Lucas Sousa - *up202004682*

Dataset

This model is a fine-tuned version of <u>roberta-base</u> on the <u>NYT News</u> dataset, which contains 256,000 news titles from articles published from 2000 to the present (https://www.kaggle.com/datasets/aryansingh0909/nyt-articles-21m-2000-present).

- it has been fine-tuned on New York Times news articles, making it well-suited for your task.
- it may better understand the language, topics, and structure commonly found in news content.
- we may achieve good results with minimal effort compared to training a model from scratch or using a generic pre-trained model.

class	Description			
0	Sports			
1	Arts, Culture, and Entertainment			
2	Business and Finance			
3	Health and Wellness			
4	Lifestyle and Fashion			
5	Science and Technology			
6	Politics			
7	Crime			

Model Selection

texts using the BERT base model.

lots of publicly available data) with an automatic process to generate inputs and labels from those

- Pretrained on BookCorpus, a dataset consisting of 11,038 unpublished books and English Wikipedia (excluding lists, tables and headers).
- Pre Trained with Masked Language Modeling and Next Sentence Prediction as main goals
- Multiple versions available, chosen version trained on uncased text.

a difference between english and English.

Approach

- 1. Divided the dataset into **train** (72%), **validation** (8%) and **test** (20%)
- Tested the roberta-base_topic_classification_nyt_news without fine tuning for comparison purposes
- 3. Fined tuned the *roberta-base_topic_classification_nyt_news* model using a **sample of the dataset**, and evaluate results
- Fined tuned the roberta-base_topic_classification_nyt_news model using the full dataset, and evaluate results
- 5. Repeat steps **3** and **4** but for the *bert -base-uncased* model (without trained classification)
- 6. **Domain Adaptation** using *distilbert/distilbert-base-uncased* model, end evaluate results

Training Parameters

```
training args = TrainingArguments(
     output dir="./results",
     learning rate=2e-5,
     per device train batch size=6,
     per device eval batch size=6,
     num train epochs=10,
     weight decay=0.01,
     evaluation strategy="epoch",
     save strategy="epoch",
     load best model at end=True,
     warmup steps=500
     gradient accumulation steps=10
```

```
data collator
=DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
  model=model.
  args=training_args,
  train_dataset=tokenized_dataset["train"],
  eval_dataset=tokenized_dataset["validation"],
  tokenizer=tokenizer,
  data_collator=data_collator,
  compute_metrics=compute_metrics
```

Domain Adaptation

- 1. Trained the distilbert-base-uncased model with Masked Language Modeling.
 - a. Choose Distilbert instead of Bert due to VRAM limitations
 - b. Used the **DistilbertForMaskedLM** model and **DistilbertTokenizer**
 - c. And DataCollatorForLanguageModeling
 - d. Used the full dataset text as input, labels were ignored
 - e. Saved the model
- 2. Fine-tuned that model for Sequence Classification
 - a. Loaded the model
 - b. Used the **DistilbertForSequenceClassification** and **DistilbertTokenizer**
 - c. And **DataCollatorWithPadding**
 - d. Standard fine-tune with our smaller sampled dataset

Previous Results

Traditional ML Models

Evaluate the models	Accuracy	F1-Score	Precision	Recall
Naîve Bayes	0.895	0.894	0.894	0.895
Logistic Regression	0.897	0.896	0.896	0.897
Decision Tree	0.772	0.772	0.772	0.772
Random Forest	0.86	0.86	0.86	0.86
Support Vector Machine	0.896	0.895	0.895	0.896
Extreme Gradient Boost	0.88	0.88	0.88	0.88
Gradient Boosting	0.89	0.89	0.89	0.89
Nearest Neighbor	0.763	0.767	0.787	0.763

Results

Evaluate the models	Accuracy	F1-Score	Precision	Recall
Roberta NYT Classifier	0.75	0.72	0.80	0.75
Roberta NYT Classifier FT Small Dataset	0.92	0.92	0.92	0.92
Roberta NYT Classifier FT Full Dataset	0.95	0.95	0.95	0.95
Bert Base Small Dataset	0.93	0.93	0.93	0.93
Bert Base Full Dataset	0.96	0.96	0.96	0.96
Distilbert Base Domain Adaptation	0.93	0.93	0.93	0.93

Conclusions

- We were able to implement a wide array of different models in different contexts.
- As expected, all the transformers performed better than the traditional models, with the exception of the *dstefa/roberta-base_topic_classification_nyt_news* without fine tuning.
 - This is where our lack of fine-tuning shows its effect, even though the model had previously been fine-tuned with the nyt_news dataset
- Even though the process was tricky, domain adaptation was implemented; however the results weren't as good as expected.
- As expected, models fine-tuned with larger datasets produced better results
- In our project, the best model was bert-base-uncased with fine tuning with all of the data.

