Outcomes of Generating Planetary Obliquities Through a Dissipating Disk Group Meeting, Sep 13, 2019

Yubo Su

September 13, 2019

Background

Problem Setup

Figure: Millholland & Batygin, 2019. Three vectors $\hat{s}(t), \hat{l}, \hat{l}_d$.

Figure: $H(\hat{s})$, where $\eta = -\frac{g}{\alpha}$.

Background

Existing Work

$$\begin{split} \cos I &= \hat{l} \cdot \hat{l}_d, & \theta_{sd,i} &= \hat{s}(t=0) \cdot \hat{l}_d, \\ \theta_{sl,f} &= \hat{s}(t=t_f) \cdot \hat{l}. \end{split}$$

- Let $\dot{\eta} = -\epsilon \alpha \eta$.
- What is $\theta_{sd,f}(\theta_{sd,i},\epsilon)$?
- Millholland & Batygin 2019: ϵ dependence, adiabatic vs non-adiabatic regime. No $\theta_{sd,i}$ variation.

Results

Adiabatic

Figure: $\cos\theta_{sl,f} \approx \pm \frac{\sin^2\theta_{sd,i}}{4}$

Results

Non-Adiabatic

Figure: $\theta_{sl,f} \approx \sqrt{2\pi/\alpha\epsilon} \tan I \pm \theta_{sd,i}$.

Results

Transition between Adiabaticity/Non-Adiabaticity

