RESUMEN 16 ÁLGEBRA Y FUNCIONES II

	Nombre	:	\
	Curso	:	
(Profesor	:	

PROPIEDADES DE LAS POTENCIAS

Sea $\mathbf{a} \in \mathbb{R} - \{0\}$ y $\mathbf{m}, \mathbf{n} \in \mathbb{Z}$. Entonces:

PRODUCTO DE POTENCIAS DE IGUAL BASE

$$a^m \cdot a^n = a^{m+n}$$

CUOCIENTE DE POTENCIAS DE IGUAL BASE

$$a^{m} : a^{n} = a^{m-n}$$

Sean \mathbf{a} , $\mathbf{b} \in \mathbb{R} - \{0\}$ y \mathbf{m} , $\mathbf{n} \in \mathbb{Z}$. Entonces:

PRODUCTO DE POTENCIAS DE IGUAL EXPONENTE

$$\mathbf{a}^{\mathsf{m}}\cdot\mathbf{b}^{\mathsf{m}}=(\mathbf{a}\cdot\mathbf{b})^{\mathsf{m}}$$

CUOCIENTE DE POTENCIAS DE IGUAL EXPONENTE

$$\frac{\mathbf{a}^{\mathsf{m}}}{\mathbf{b}^{\mathsf{m}}} = \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathsf{m}}$$

POTENCIA DE UNA POTENCIA

$$(a^m)^n = a^{m \cdot n}$$

Sean **a**, **b** $\in \mathbb{R} - \{0\}$ y **m**, **n** $\in \mathbb{Z}$. Entonces:

POTENCIAS DE IGUAL BASE

$$a^m = a^n \Leftrightarrow m = n$$
, con a distinto de -1 y 1

POTENCIAS DE IGUAL EXPONENTE

$$a = b \Rightarrow a^n = b^n$$
, con n par
 $a = b \Leftrightarrow a^n = b^n$, con n impar

ECUACIÓN EXPONENCIAL

Ecuación exponencial es aquella que tiene la o las (s) incógnita(s) en el exponente de una o más potencias.

Para resolver una ecuación exponencial se debe reducir cada miembro de la igualdad a una potencia y luego igualar las bases, aplicando las propiedades correspondientes. Las bases deben ser distintas de **cero**, **uno** y **menos uno**.

FUNCIÓN EXPONENCIAL

a función $f: \mathbb{R} \to \mathbb{R}^+$ definida por $f(x) = a^x$, con $a \in \mathbb{R}^+$ y $a \neq 1$ se denomina función exponencial.

Propiedades

- El Dominio es: $D_f = \mathbb{R}$.
- ♦ El Recorrido es: $R_f = \mathbb{R}^{+}$.
- ♦ La función exponencial es **biyectiva**.
- ◆ La gráfica intersecta al eje de las ordenadas en el punto (0,1).
- Si a > 1, entonces $f(x) = a^x$ es creciente.
- Si 0 < a < 1, entonces $f(x) = a^x$ es decreciente.
- La gráfica no intersecta al eje de las abscisas.

GRÁFICAS DE LA FUNCIÓN EXPONENCIAL

RAÍCES

DEFINICIONES

DEFINICIÓN 1: Si **n** es un entero par positivo y **a** es un real no negativo, entonces $\sqrt[n]{a}$ es el único real **b**, no negativo, tal que **b**ⁿ = **a**

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a, b \ge 0$$

DEFINICIÓN 2: Si **n** es un entero impar positivo y **a** es un real cualquiera, entonces $\sqrt[n]{a}$ es el único real **b** tal que **b**ⁿ = **a**

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a, b \in \mathbb{R}$$

Observaciones:

- Si n es un entero par positivo y a es un real negativo, entonces √a NO ES REAL.
- La expresión $\sqrt[n]{\mathbf{a}^k}$, con **a** real no negativo, se puede expresar como una potencia de exponente fraccionario.

$$\sqrt[n]{a^k} = a^{\frac{k}{n}}$$

• Se define para todo número real:

$$\sqrt{\mathbf{a}^2} = |\mathbf{a}|$$

PROPIEDADES

Si $\sqrt[n]{a}$ y $\sqrt[n]{b}$ están definidas en \mathbb{R} , entonces:

MULTIPLICACIÓN DE RAÍCES DE IGUAL ÍNDICE

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

DIVISIÓN DE RAÍCES DE IGUAL ÍNDICE

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}, b \neq 0$$

PROPIEDADES

Si a $\in \mathbb{R}^+$, m y n $\in \mathbb{Z}^+$, entonces:

$$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$

PROPIEDADES

Amplificación y simplificación del orden de una raíz

$$\sqrt[n]{a} = \sqrt[mn]{a^m}$$
, $a \in \mathbb{R}^+ \ y \ m$, $n \in \mathbb{Z}^+$

PRODUCTO DE RAÍCES DE DISTINTO ÍNDICE

$$\sqrt[n]{\mathbf{a}} \cdot \sqrt[m]{\mathbf{b}} = \sqrt[mn]{\mathbf{a}^{\mathbf{m}} \cdot \mathbf{b}^{\mathbf{n}}}$$
, \mathbf{a} , $\mathbf{b} \in \mathbb{R}^+ \ \ \ \mathbf{m}$, $\mathbf{n} \in \mathbb{Z}^+$

FACTOR DE UNA RAÍZ COMO FACTOR SUBRADICAL

$$b\cdot \sqrt[n]{a} = \sqrt[n]{b^n\cdot a} \ , \ a,\, b\in \mathbb{R}^+ \ y \ m,\, n\in \mathbb{Z}^+$$

RACIONALIZACIÓN

Racionalizar el denominador de una fracción consiste en transformarla en una fracción equivalente cuyo denominador no contenga raíces.

CASO 1: Fracciones de la forma
$$\frac{\mathbf{a}}{\mathbf{b} \cdot \sqrt{\mathbf{c}}}$$

CASO 2: Fracciones de la forma
$$\frac{\mathbf{a}}{\mathbf{p} \cdot \sqrt{\mathbf{b}} + \mathbf{q} \cdot \sqrt{\mathbf{c}}}$$

FUNCIÓN RAÍZ

a función $\mathbf{f} \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$ definida por $\mathbf{f}(\mathbf{x}) = \sqrt{\mathbf{x}}$, se denomina **función raíz**.

GRÁFICA DE LA FUNCIÓN RAÍZ

Observaciones:

- La función es creciente.
- ◆ La función raíz cuadrada es considerada como un modelo de crecimiento lento.
- La función raíz es biyectiva.

LOGARITMOS

DEFINICIÓN

I logaritmo de un número real positivo \mathbf{b} en base \mathbf{a} , positiva y distinta de 1, es el número \mathbf{m} a que se debe elevar la base para obtener dicho número.

$$\log_a b \Leftrightarrow a^m = b, b > 0, a \in \mathbb{R}^+ - \{1\}$$

Observaciones:

- ♦ La expresión $\log_a b = m$ se lee "el logaritmo de **b** en base **a** es **m**".
- ◆ El logaritmo es la operación inversa de la exponenciación.
- $\bullet \quad \log_{10} a = \log a$

CONSECUENCIAS DE LA DEFINICIÓN DE LOGARITMO

- ♦ log_a 1 = 0
- \bullet $\log_a a = 1$
- \bullet $\log_a a^m = m$

PROPIEDADES DE LOS LOGARITMOS

Sean b > 0, c > 0, $a \in \mathbb{R}^+ - \{1\}$

LOGARITMO DE UN PRODUCTO

$$log_a(b \cdot c) = log_a b + log_a c$$

LOGARITMO DE UN CUOCIENTE

$$\log_a \frac{b}{c} = \log_a b - \log_a c$$

LOGARITMO DE UNA POTENCIA

$$\log_a b^n = n \log_a b$$

LOGARITMO DE UNA RAÍZ

$$\log_a \sqrt[n]{b} = \frac{1}{n} \log_a b, \text{ con } n > 0$$

CAMBIO DE BASE

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Observación:

$$\log_a x = \log_2 y \Rightarrow x = y$$

FUNCIÓN LOGARÍTMICA

na función $f: \mathbb{R}^+ \to \mathbb{R}$, definida por $f(x) = \log_a x$, con $a \in \mathbb{R}^+$, $a \neq 1$ se denomina función logarítmica.

GRÁFICAS DE LA FUNCIÓN LOGARÍTMICA

Observaciones:

- El dominio es: Df = \mathbb{R}^+
- ♦ El recorrido es: Rf = R
- ◆ La gráfica intersecta al eje x en el punto (1, 0).
- Si a > 1, entonces $f(x) = \log_a x$ es creciente.
- Si 0 < a < 1, entonces $f(x) = \log_a x$ es decreciente.
- ♦ La curva no intersecta al eje y.
- ◆ La función logarítmica es biyectiva.