

DATA STRUCTURES AND ALGORITHMS

Periodic examination - Test 2 Time: 90 minutes

Fill	in	the	blanks	(0.45)	point/c	<i>juestion</i>):
------	----	-----	--------	--------	---------	-----------------	----

Q1. Give a tree:

Preorder traversal of above tree is:

Q2. Size of a hash table is m = 17, address space is [0..16], hash function h(k) = k%16 and quadratic probing method is used for collision resolution. Suppose hash table saved 4 values: 151515, 151516, 151525, 151536. The address after inserting value 151549 into the hash

table is:

Q3. Give a coding segment following:

$$i = k = 0;$$

while $(k < n^2) \{i + +; k + = i;\}$

The complexity (Big-O) of the segment is:

Q4. The maximum of nodes have 10th degree in a binary

tree is:

Q5. Insert step-by-step each number in series: 8, 6, 12, 10,

15 into an AVL tree. The root is:

Q6. Inserting one more node 9 into above AVL tree (Q5).

The root is: _____

Q7. Give a function:

int
$$foo(int x, int y)$$
{
$$if (x > y) return - 1;$$

$$else if (x == y) return 1;$$

$$else return x * foo(x + 1, y) + 1;$$
}

The result of function call foo(4,6) is: _____

Q8. Suppose p pointer pointed to a node in singly linked list and pPre pointer pointed to previous node. Some statements remove the node which p

pointer pointed to:					

Q9. Balance coefficients of nodes in an AVL tree is

Closed interval _____

Q10. The minimum height of binary tree which has 42 nodes is _____

Q11. Result of prefix expression -+*9+28*+4863

Q12. Construct max-heap by series: 12, 7, 26, 5, 9, 17, 10, 50, 3, 22. The max-heap is represented by array format and the final result is:

Q13. Construct Binary Search Tree (BST) by inserting step-by-step following values: 24, 18, 10, 57, 36, 15, 31, 83, 76, 28. Draw the final tree.

Q14. Is above result an AVL tree? Why?

Q15. If the result in Q13 is not an AVL tree, re-balance that BST in order to become an AVL tree (draw the AVL tree into the blank). If not, skip the step. Next, insert a node 32 into the AVL tree and draw

Q16. Convert infix expression to postfix expression. (A+B*(C-D))*E-F*G

Bach Khoa University Faculty of Computer Science and Engineering

- Q17. A binary tree has 10 nodes. The preorder traverse is JCBADEFIGH and the inorder traverse is ABCEDFJGIH. Draw the tree.
- **Q18.** Give an integer stack S and an integer queue Q. Draw stack S and queue Q after running the 10^{th} line.

1.pushStack(S,4) 6.pushStack(S,2*x)

2. pushStack(S,6) 7. enQueue(Q,x-3)

3.enQueue(Q,26) 8.deQueue(Q,y)

4.enQueue(Q,8) 9.pushStack(S,x+4)

5.popStack(S, x) 10.pushStack(S, y - x)

Q19. An 1-dimensional array has n elements. Delete the $(i-1)^{th}$ element $(1 \le i \le n)$. How many moving

elements are there?

Q20. What are the advantages between Binary Search Tree and Linked List?

Q21. Give a function:

int
$$fx(\text{int } n)$$
{

 $if (n \le 0) return 0;$
 $else if (n\% 2 == 0) return fx(n-1) + fx(n-2) + n;$
 $else return 2 * fx(n-1) + 1;$
}

Q22. Give a series (5,12,20,26,37,42,46,50,64) and binary search method is used. How many executed

The result of function call fx(8) is:_____

comparisons are there after searching element 26.

Q23. Result of *postfix* expression 14 6+20/3 8 2/*+3+ is