第六章 投资决策模型

第六章 投资决策模型

货币的时间 价值分析

投资的基本概念货币的时间价值

常用的财务函数

PV()、FV()、NPV()、PMT()、PMT()、PPMT()、IPMT()、ISPMT()、RATE()、IRR()、NPER()、SLN()、DB()······

基于净现值的投资决策建模

净现值与内部报酬率、 投资决策建模步骤与应 用举例、蒙特卡洛投资 风险分析模拟模型

投资决策的基本概念

- 投资是投资者为今后的长远需要而投入的资金
- 投资方式很多(品种、预期收益、时间等)
 - 进行系统化的整理,形成备选投资方案
 - 净现金流量=现金流入量—现金流出量

命 货币的时间价值

- → 同一面额的货币在不同时间点具有不同的价值
- ightharpoonup 资金的将来值 $F = P(1 + r)^t$
 - 资金的现值 $P = \frac{F}{(1+r)^t}$
- 一串资金流的现值

$$P = \frac{Y}{1+R} + \frac{Y}{(1+R)^2} + \dots + \frac{Y}{(1+R)^t}$$
 等额资金流的现值

$$P = \frac{Y_1}{1+R} + \frac{Y_2}{(1+R)^2} + \dots + \frac{Y_n}{(1+R)^n}$$
 不等额资金流的现值

nper是number of periods, pmt是payment

常用的财务函数

• PV()函数:

例6-1

- > PV(rate, nper, pmt, fv, type)
- ▶ 返回投资的现值(现值为一系列未来付款当前值的累计和)。
- FV()函数:

例6-2

- > FV (rate, nper, pmt, pv, type)
- ▶ 基于固定利率及等额分期付款方式,返回某项投资的未来值。
- NPV函数:
 - > NPV (rate, value1, value2,)
 - 基于一串现金流和固定的贴现率,返回一项投资的净现值。投资的净现值是指未来各期支出(负值)和收入(正值)的现值总和,没有扣除期初投资。

常用的财务函数

例6-3

- PMT()函数, 反解Y
 - > PMT (rate, nper, pv, fv, type)
 - ▶ 基于固定利率及等额分期付款方式,返回贷款(或投资)的每期偿还(或回报)额。
- PPMT()函数
 - > PPMT (rate, per, nper, pv, fv, type)
 - ▶ 基于固定利率及等额分期付款方式,返回某一给定期次内的本金偿还(或回报)额。
- IPMT()函数
 - > IPMT (rate, per, nper, pv, fv, type)
 - ▶ 基于固定利率及等额分期付款方式,返回某一给定期次内的利息偿还(或回报)额。
- ISPMT()函数
 - > ISPMT(rate, per, nper, pv)
 - ▶ 基于等额本金分期付款方式,返回特定期次内的利息偿还(或回报)额。

常用的财务函数

- RATE()函数: RATE(nper, pmt, pv, fv, type, guess)
 - > RATE(nper, pmt, pv, fv, type, guess)

例6-4

- > 返回年金的各期利率。
- IRR()函数,现值减去期初投入等于零的贴现率:
 - > IRR(values, guess)
 - ▶ 返回由数值代表的一组现金流的内部收益率,即投资回报利率。
 这些现金流不一定必须为均衡的,其中包含定期支付(负值)和收入(正值)。
 作为年金,它们必须按固定的间隔发生,如按月或按年。
- NPER()函数:
 - > NPER(rate, pmt, pv, fv, type)

例6-5

基于固定利率及等额分期付款方式,返回某项投资(或贷款)的总期数。

例6-1 年金现值计算模型

【例6-1】 假设要购买一项年金保险,该保险可以在今后二十年内于每月末回报500元。此项年金的购买成本为60,000元,假定某人的投资回报率为8%,现在可以通过函数 PV计算一下这笔投资是否值得。

支付为负,收到为正。期初和以后的资金流向是相反的经济与管理学院

OOL OF ECONOMICS & MANAGEMENT

例6-1 年金现值计算模型

返回投资的现值。现值为一系列未来款当前值的累积和。例如,借入方的借入款即为贷出方贷款的现值。语法PV(rate, nper, pmt, fv, type)

例6-2 未来值计算模型

【例6-2】 假设需要为一年后的某个项目预筹资金,现在将 1000元以年利 6%,按月计息(月利 6%/12 或 0.5%)存入储蓄存款帐户中,并在以后十二个月的每个月末存入100元,则一年后该帐户的存款额等于多少?

例6-2 未来值计算模型

基于固定利率及等额分期付款方式,返回某项投资的未来值。语法 FV(rate, nper, pmt, pv, type),pv是从该项投资开始计算时已经入账的款项

例6-3 月还款额计算模型

【例6-3】 某客户欲购买一套价值1000万元的公寓,首付300万元,余下金额向银行申请商业贷款700万元,贷款年限10年,年利率为5%,试制作按月还款表及查询月还款数据的模型。

- 1、基于固定利率及等额分期付款方式,返回投资或贷款的每期付款额。语法PMT(rate, nper, pv, fv, type)
- 2、基于固定利率及等额分期付款方式,返回投资或贷款在某一给定期次内的本金偿还额。语法PPMT(rate, per, nper, pv, fv, type)
- 3、基于固定利率及等额分期付款方式,返回投资或贷款在某一给定期次内的利息偿还额。语法IPMT(rate, per, nper, pv, fv, type)
- 4、计算特定贷款期内要支付的利息。语法ISPMT(rate, per, nper, pv)

例6-3 月还款额计算模型

	Α	В	С	D	E	F	G	Н	1
1						公寓价值	10000000.00		
2						首付	3000000.00		
3						商业贷款	7000000.00		
4						贷款年限	10		
5						年利率	5%		
6									
7				等本还款	-	当前期数	1		
8				等额还款	等额还款 ▼	还款方式	2		
9									
10						还款本金	45079. 19		
11						还款利息	29166. 67		
12						还款总额	74245. 86		
13						贷款余额	6954920. 81		
14					还款表				
15			等本	金还款		等额还款			
16	期数	还款本金	还款利息	还款总额	贷款余额	还款本金	还款利息	还款总额	贷款余额
17	0				7000000.00				7000000.00
18	1	58333. 33	28923. 61	87256. 94	6941666. 67	45079. 19	29166. 67	74245. 86	6954920. 81
134	117	58333. 33	729. 17	59062. 50	175000.00	73021. 21	1224. 65	74245. 86	220894. 25
135	118	58333. 33	486. 11	58819. 44	116666.67	73325. 47	920. 39	74245. 86	147568. 78
136	119	58333. 33	243. 06	58576. 39	58333. 33	73630. 99	614. 87	74245. 86	73937. 79
137	120	58333. 33	0.00	58333. 33	0.00	73937. 79	308. 07	74245. 86	0.00
138	总计	7000000.00	1735416.67	6977084. 39		7000000.00	1909503. 28	7000000.00	

B18:B137=\$G\$3/(\$G\$4*12) . C18:C137=ISPMT(\$G\$5/12, A18, \$G\$4*12, -\$G\$3) .

F18:F137=PPMT (\$G\$5/12, A18, \$G\$4*12, -\$G\$3) 。F18:F137=IPMT (\$G\$5/12, A18, \$G\$4*12, -\$G\$3)

例6-3 月还款额计算模型

		Α	В	С	D	E	F	G	Н	1
	1						公寓价值	10000000.00		
	2						首付	3000000.00		
	3						商业贷款	7000000.00		
	15.4	- 11-24- 6					贷款年限	10		
不同还款方							年利率	5%		
G10=INDE										
G11=INDE	X(B	18:1137,	G7,(G8-1) ³	'4+2)	等本还款	<u>*</u>	当前期数	1		
G12=INDE	X(B	18:1137,	G7.(G8-1)	*4+3)	等额还款	等额还款 ▼	还款方式	2		
G13=INDE										
		,		/			还款本金	4 5079. 19		
	11						还款利息	29166. 67		
	12						还款总额	74245. 86		
	13						贷款余额	6954920. 81		
	14			koko	1. A >= 41.	还款表		i.e4-4	エンナム!	
	15	Alexander .) T # 1 . A		本金还款	Do M. A. AT) T #1. 1. A		顶还款	412 det . A . A.T
	16	期数	还款本金	还款利息	还款总额	贷款余额	还款本金	还款利息	还款总额	贷款余额
	17	0				7000000.00				7000000.00
	18	1	58333. 33	28923. 61	87256. 94	6941666. 67	45079. 19	29166. 67	74245. 86	6954920. 81
	134	117	58333. 33	729. 17		175000.00		1224. 65	74245. 86	220894. 25
	135	118	58333. 33	486. 11		116666. 67	73325. 47	920. 39	74245. 86	147568. 78
	136	119	58333. 33	243. 06		58333. 33	73630. 99	614. 87	74245. 86	73937. 79
	137	120	58333. 33	0.00		0.00		308. 07	74245. 86	0.00
	138	总计	7000000.00	1735416.67	6977084. 39		7000000.00	1909503. 28	7000000.00	

插入"开发工具"菜单下的"组合框","数据源区域"选择D7:D8,"单元格链接"选择G8, 会出现对应的1和2。INDEX(array, row_num, column_num)

例6-4 利率计算模型

【例6-4】 金额为 8000元 的 4 年期贷款, 月还款额为 200元, 该笔贷款的月利率和年利率为多少?

返回年金的各期利率。函数 RATE 通过迭代法计算得出,并且可能无解或有多个解。如果在进行 20 次迭代计算后,函数 RATE 的相邻两次结果没有收敛于 0.0000001,函数 RATE 返回错误值 #NUM!。语法RATE (nper, pmt, pv, fv, type, guess)

例6-5 还款年限计算模型

【例6-5】 金额为 8000元的期贷款, 月支付额为 200元, 月利率1%, 该笔贷款多少年还清?

基于固定利率及等额分期付款方式,返回某项投资(或贷款)的总期数。语法NPER(rate, pmt, pv, fv, type)

常用的财务函数的关系

- 将来值函数 $FV() = PV() \times (1 + Rate())^{Nper()}$
- 现值函数 $PV() = \frac{FV()}{(1+Rate())^{Nper()}}$
 - 等额资金流的现值函数 等额还款函数PMT()=PPMT()+IPMT() 等本金还款的利息函数ISPMT()

$$PV() = \frac{Pmt()}{1+Rate()} + \frac{Pmt()}{(1+Rate())^2} + \dots + \frac{Pmt()}{(1+Rate())^{Nper()}}$$

不等额资金流的现值函数

$$NPV() = \frac{Y_1}{1+R} + \frac{Y_2}{(1+R)^2} + \dots + \frac{Y_n}{(1+R)^n}$$

例6-6

例6-6 桥梁投资模型

【例6-6】 某公司准备投资1000万元建设一座桥梁,当年投资,当年建成,该桥今后15年内预计每年收益100万元。请问:

- (1) 若年贴现率为8%, 今后15年内预计收益相当于现值多少?
- (2) 若银行贷款利率为5%,贷款1000万元,按计划15 年等额还清,每年还款额是多少?
- (3) 考虑15年的回报期,则该项目的内部报酬率是多少?

SCHOOL OF ECONOMICS & MANAGEMENT

例6-6 桥梁投资模型

固定资产管理

固定资产折旧函数

- SLN()函数:
 - > SLN(cost, salvage, life)
 - > 返回某项资产在一个期间中的线性折旧值。
- DB()函数:
 - > DB(cost, salvage, life, period, month)
 - 使用固定余额递减法,计算一笔资产在给定期间内的折旧值。

两种折旧函数应用举例

例6-7

余额递减法是指是加速折旧法的一种。这种方法是将每期固定资产的期初账面净值(原值减累计折旧)乘以一个固定不变的百分率计算该期折旧额的一种方法。

例6-7 不同折旧方法折旧额比较分析

【例6-7】 某公司购买了一台新机器,价值为100000元,使用期限为8年,残值为10000元(计算结果保留两位小数)

- (1) 试用直线法计算每年的折旧额?
- (2) 试用固定余额递减法计算每年的折旧额?
- (3) 画出二种折旧方法的年折旧比较图。

返回某项资产在一个期间中的线性折旧值。

语法SLN(cost, salvage, life), Cost为资产原值, Salvage为资产在折旧期末的价值(也称为资产残值), Life为折旧期限(有时也称作资产的使用寿命)。

使用固定余额递减法, 计算一笔资产在给定期间内的折旧值。

语法DB(cost, salvage, life, period, month), Cost为资产原值, Salvage为资产在折旧期末的价值(也称为资产残值), Life为折旧期限(有时也称作资产的使用寿命), Period为需要计算折旧值的期间。Period 必须使用与 life 相同的单位。Month为第一年的月份数,如省略,则假设为 12。

例6-7 不同折旧方法折旧额比较分析

直线法:

I5=SLN(I2,I3,I4)

固定余额递减法:

I5:I12=DB(\$I\$2,\$I\$3,\$I\$4,G5)

基于净现值的投资决策模型 净现值(Net Present Value, NPV)

- 投资项目经济评价的主要依据
- 2 投资者从备选投资项目中选择净现值最大的项目
- 若净现值为负所有备选投资项目无一可取

☆ 投资项目净现值、内部报酬率

!投资项目的净现值

$$NPV = \frac{Y_1}{1+r} + \frac{Y_2}{(1+r)^2} + \dots + \frac{Y_n}{(1+r)^n} - Y_0 = NPV() - Y_0$$

内部报酬率:使净现值为0的贴现率

例6-9

例6-8

例6-10

$$\frac{Y_1}{1+IRR()} + \frac{Y_2}{(1+IRR())^2} + \dots + \frac{Y_n}{(1+IRR())^n} - Y_0 = 0$$
 Ø6-11

例6-8 净现值计算模型

【例6-8】 假如要购买一家鞋店,投资成本为 40,000元,并且希望前五年的营业收入如下: 8,000、9,200、10,000、12,000 和 14,500元。每年的贴现率为 8%。计算鞋店设资的净现值。

基于一系列现金流和固定的各期贴现率,返回一项投资的净现值。投资的净现值是指未来各期支出(负值)和收入(正值)的当前值的总和。

语法NPV (rate, value1, value2, ...), Rate为各期贴现率, 是一固定值, Value1, value2, ... 代表 1 到 29 笔支出及收入的参数值。

返回由数值代表的一组现金流的内部收益率,即投资回报利率。这些现金流不一定必须为均衡的,其中包含定期支付(负值)和收入(正值)。语法IRR(values,guess),Value1,value2,...代表 1 到 29 笔支出及收入的参数值,guess为对函数IRR()计算结果的估计值,如果省略guess,则假设为0.1(10%)。

例6-8 净现值计算模型

IRR函数的第一个参数为Y₀

基于净现值的投资决策建模步骤

- 1) 整理数据,建立模型框架,确定参数、决策变量、目标变量
- 2 利用Excel函数或数学表达式,求出所有投资项目净现值
- 3 求投资项目中最大的净现值,找出最优投资项目名称
- 4 求出投资项目的内部报酬率,分析项目的投资价值
- 5 建立净现值随贴现率变化的模拟运算表,进行灵敏度分析
- 6 画出项目净现值变化的图形,观察贴现率对净现值的影响
- 7 设置可调控件,使图形变成随贴现率或其它参数变动的动态可调图形
- 8) 求出净现值相等的曲线交点,画出垂直参考线
- 9 分析贴现率或其它参数的变化对投资决策评价的影响

例6-9 三个互斥投资项目评价模型

【例6-9】 某投资公司现有A、B与C三个互斥投资项目可供选择: 假设这三个投资项目的当前(第0年)投资金额与今后三年(第1-3年)的预期回报分别如下表所示:

	初始投资额	预	期回报(万元	元)
	(万元)	第1年	第2年	第3年
项目A	1800	1300	900	500
项目B	1800	1200	1000	1000
项目C	200	600	400	200

试建立一个决策模型,当公司使用的贴现率等于1%-15%范围内,模型能给出这三个项目中最优的投资项目。

例6-9 三个互斥投资项目评价模型

净现值计算:

H10=D10+NPV(\$H\$3,E10:G10)

内部报酬率计算: I10=IRR(D10:G10)

版权所有 ©2020 长沙理工大学

决策建议:

H5=INDEX(C10:C12,MATCH(MAX(H10:H12),H10:H12,0)) 文本框=IF(H4>0,"最优项目是" & H5,"三个项目均不可取")

例6-10 扩建方案投资评价模型

【例6-10】 某企业拟进行扩建, 面临着三种选择:

- (1) 一次较大扩建, 使未来10年产量增加一倍:
- (2) 先进行较小扩建,产量增加40%,5年后第二次扩建,使产量达到现在的一倍;(3)进行小扩建后不再扩建。

这三个方案有关数据如图表所示

方案	扩建需用	资金(万元)	扩建后增加	战估	
	现在扩建	5年后扩建	前5年(每年)	后5年(每年)	残值
大扩建	800		140	140	80
分二次扩建	100	600	100	130	70
小扩建	600		110	110	60

三种投资方案的有效期为10年,10年后项目的投资均有残值,公司使用的贴现率为9%, 残值率为10%。试确定哪一种方案是最优方案。另外,绘制一个图形来说明当贴现率在2%至10%,残值率在5%至15%之间变化时最优布置方案的变化。

例6-10 扩建方案投资评价模型

	A B	С	D	E	F	G F	1 1	J	K	L	M N	0	Р	Q	R
2	方案	扩建需用	资金(万元)	扩建后增加	收入(万元)	残值		Ŧ	见金流表			大扩建	分二次扩建	小扩建	
3	刀杀	现在扩建	5年后扩建	前5年(每年)	后5年(每年)	沙文1且	年	大扩建	分二次扩建	小扩建		523. 19	450. 97	437. 31	
4	大扩建	800		140	140	80	0	-800	-100	-600	1%	598. 41	483. 81	496. 16	
5	分二次扩建	100	600	100	130	70	1	140	100	110	2%	523. 19	450. 97	437. 31	
6	小扩建	600		110	110	60	2	140	100	110	3%	453. 76	421. 13	382. 97	
7							3	140	100	110	4%	389. 57	393. 96	332. 73	
8	残值率	10%	10			净	4	140	100	110	5%	330. 16	369. 19	286. 23	
9				两个投资项目	自的交点	现	5	140	100	110	6%	275. 08	346. 55	243. 11	
10	贴现率	2%	2	3.88%	0	金	6	140	-470	110	7%	223. 97	325. 84	203. 09	
11				3.88%	397	流	7	140	130	110	8%	176. 47	306. 85	165. 90	
12	最大的净现	值	523. 19	3.88%	700	量	8	140	130	110	9%	132. 26	289. 41	131. 29	
13	实现最大净	现值的方法	大扩建		1	ALL	9	140	130	110	10%	91.08	273. 37	99. 03	
14				两个净和	值交点的计	- 質.	10	220	200	170	11%	52. 67	258. 59	68. 95	
15 16	最佳方案是	大扩建			(J4:J14-K4:k		NIV	523. 19	450. 97	437. 31	12%	16. 79	244. 95	40.84	

残值根据残值率计算, 最后一年的现金流需要加上残值

例6-10 扩建方案投资评价模型

蒙特卡洛模拟模型

蒙特卡洛模拟(Monte Carlo Simulation)

- 一种使用随机数和概率来解决复杂问题的技术
- ## 用于了解金融部门、项目管理、成本和其他预测模型中风险和确定性的影响
- № 风险是客观存在的且不可忽视,因为在生活中经常面临不确定性、模糊性和变化无常
- 蒙特卡洛使我们能够看到决策的所有可能结果,并评估风险影响,从而在不确定的情况下更好地做出决策

【例6-11】 现准备开发一种新产品的投资项目,其初始投资额为200万元,有效期为3年。该项目一旦投入运营后,第一年产品的销量是一个服从均值为200万件而标准差为60万件的正态分布,根据这种产品的生命周期规律,第二年销量将在第一年的基础上增长20%,而第三年销量将在第二年基础上增长-50%。三年内每年还需投入固定成本100万元。新产品的单位变动成本在2元到4元之间均匀分布。委托咨询机构对产品销价的市场调研结果见下表所示。如果此投资项目的贴现率定为10%,试分析此投资项目的风险。

单价	2	3	4	5	6	7	8
概率	5%	10%	20%	30%	20%	10%	5%

用RAND函数生成(0,1)区间的随机数

	Α	В	С	D	E
1		蒙特卡洛投资	评价风	险模型	
2					
29		5. 统计区			
30		1000次模拟净现值	均值(百万	元)	4. 84
31		1000次模拟净现值	标准差(百	万元)	8. 32
32		1000次模拟净现值	最大值(百	万元)	37. 66
33		1000次模拟净现值	最小值(百	万元)	-16. 21

经济与管理学院

	Α	В	(
35		6. 图形区一控制面	板参
36		指定的净现值X	
37		小于净值概率	5
38		大于净值概率	4
39			
40			
41			
42			
43			
44			
45			

	F	J	K	L	M	N	
14		6. 图形	区一频数	分布统	计表		
15		区间	接收	频率	累积 %	>某净值的概率	
16		-17	-17	0	0.00%	100.0%	
17		-16	-16	1	0.10%	99. 9%	
18		-15	-15	0	0.10%	99. 9%	
19		-14	-14	1	0.20%	99.8%	
20		-13	-13	2	0.40%	99. 6%	
21		-12	-12	4	0.80%	99. 2%	
22		-11	-11	5	1.30%	98. 7%	
71		38	38	1	100.00%	0.0%	
72		39	39	0	100.00%	0.0%	
73			其他	0	100.00%		

本章学习的概念与函数

- ♣ 货币的时间价值,现金流、贴现率、 净现值、内部报酬率等
- → 财务函数、NPV()、PV()、FV()、PMT()、PPMT()、IPMT()、ISPMT()、RATE()、IRR()、NPER()函数等

本章学习的技术

- 基于净现值的投资决策模型、金融市场的投资 决策模型和企业经营投资决策模型的建立方法
 - ▲ 净现值曲线交点的确定方法
 - ▲ 查表加内插值方法
 - ♣ 利用微调器控件和文本框结合制作可调 图形的方法

Q&A?

博開所所即巴斯默