

Année universitaire 2004-2005 Module : Méthodes Quantitatives I Enseignant : M. El Merouani

Contrôle final de Statistique I Durée 2 heures

Exercice 1: (12 points)

Les salaires annuels (en 1000 DH) de 100 employés d'une entreprise sont distribués de la façon suivante :

Salaires compris entre	Nombre des employés		
25 et 32	20		
32 et 40	30		
40 et 45	22		
45 et 55	28		

- 1) Déterminer le pourcentage des employés qui gagnent moins que 42350 DH par an.
- Calculer les quartiles Q₁, Q₂ et Q₃ de cette distribution et représenter le diagramme de la boîte de Tukey. Interpréter cette représentation graphique.
- 3) Déterminer le salaire le plus fréquent.
- 4) Donner l'interprétation et la valeur de la médiale. Calculer la différence $\Delta M = Ml M\acute{e}$. Comparer-la à l'étendue et conclure.
- 5) Calculer l'indice de concentration de GINI.
- 6) Tracer la courbe de concentration de Lorenz et interpréter sa forme selon le résultat trouvé dans la question précédente.

Exercice 2: (8 points)

Dans un pays, on a étudié les exploitations agricoles de la région du nord et de la région du sud en fonction de la superficie. Les données se présentent comme suit :

Superficies en hectare	Nombre des exploitations dans la région du nord	Nombre des exploitations dans la région du sud			
0 - 10	3	5			
10 - 30	15	19			
30 - 50	20	21			
50 - 100	12	5			

- Calculer la superficie moyenne de la région du nord, de la région du sud et celle de tout le pays.
- 2) Calculer la variance de la région du nord, de la région du sud et celle de tout le pays.
- 3) Calculer la variance intra-région et la variance inter-région. Interpréter et conclure.
- Comparer la dispersion des exploitations dans la région du nord et la région du sud, en utilisant le coefficient de variation.

C.F. de Statustique I

Exercice 1:

[ei-a, ei	ni l	Ci	hia	ai	Ria mi	fi \	fc11	nic1	(hici)c1
Fac 20.5	20	28,5	570	7	2,86 3,75	0,2	02	20	570
[25,32[30	36	1080	8	3,75	0,3	0,5	50	1650
[32,40[22	42,5	935	5	4,4	0,22	0,75	72	2585
[45,55[28	20	V 1400	10	2,8	0,28	1	100	3985
	N=10	0	3985					2	

10/

$$\Rightarrow x - 50 = \frac{75 - 50}{45000 - 40000} \times (42350 - 40000) = \frac{25}{5000}.2350$$

$$= \Lambda\Lambda 75 \Rightarrow x = 61.75\%$$

La bôte de Tuckey donne une vue rapide des caractéris diques élémentaires de le distribution statistique. 5 Pa indique le centre des données. La longueur de le boîte montre le dispersion de la moitré centrale des données et la longueur des segments lateraire extérieurs, la dispersion de la 4 - partie inférieure et réperieur, respectivement: 3) le inodo: les amplitudes pour différentes.

On va appliquer le formele (I) i Mo = li_1 + li_+1 Di
léterniners d'abord, le classe modele => [40, 45 [$Mo = 40 + \frac{2.8}{3.75 + 2.8}$ 0,5 Mo = 40 + 14 = 42,14 C le salaire le plus fréquent est 42/140 DH 4) Intermétation: 4) Interprétation; La médiale est la valeur de la variable qui diviserant le marse salariale totale en deux blocs éganx. $0.5 \ge inci = 3985 = 1992.5$

On cherche cette valeur parmi les (vi ci) (1 La 1ere valeur qui la dépasse est 2585 Donc la closse médiale est [40, 45] In applique la formule $Hl = li_1 + \frac{2}{nici}$ $104 + 104 + 19925 - 1650 \times 5 = 41.83$ * Calcul de DM: 0,5 ma Q2 = Me = 40 0,8 DM = 41,83 - 40 = 1,83 $O(8) = \frac{\Delta M}{E} = \frac{1.83}{\chi_{\text{max}} - \chi_{\text{min}}} = \frac{1.83}{55 - 25} = \frac{1.83}{30} = 0.061$ 75=> Faible concentration $P_i = \frac{\text{nict}}{N} \times 100 \quad q_i = \frac{\text{(nici)ct}}{5 \text{ nici}} \cdot 100$ 14,30 IG= 1-120,57 41,40 64,87 100 Ic= 1-0,849 100 220,57 242 Io = 0,151

www.elmerouani.jimdo.com

Exercice 2!

1) Nord:

[ei.s, eil	ni	(a)	w a	ci	ni Ci
]01,0]	3	5			
[10,30[15	20	300	400	6000
[30,50]	20	40	800		32000
[50,000[13,	75	900	5625	67500
	N=60	9,	20A5		105576

$$0.6 \ \overline{X} = \frac{1}{N} \sum_{i} nici = \frac{3015}{50} = 40.3$$

Sud:

Pei-rieil	m	a'	lnigi	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	hia	× * * * * * * * * * * * * * * * * * * *
[0,20[5	5	2 5 380	25 400	125	627
[30,60)	5	40	378	1600	33600	
	N=50		6)	2 =	1620 www.elmer	C9460 rouani.jimdo.com

$$0.6 \ X = \frac{1}{N} \sum_{i} n_{i} C_{i}' = \frac{1620}{50} = 32.4$$

$$\frac{1}{N} (N_{L} X_{i} + N_{D} X_{D})$$

$$0.5 = \frac{1}{N} (N_{L} X_{i} + N_{D} X_{D})$$

$$0.5 = \frac{1}{N} (50 \times 40.3 + 50 \times 32.4) = \frac{20.15 + 1620}{100}$$

$$= 36.35$$

$$2) \frac{1}{N} \frac{1}{N} (X) = \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$0.6 = \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N} \sum_{i} (c_{i} - X)^{2} i = (\frac{1}{N} \sum_{i} n_{i} c_{i}^{2}) - X^{2}$$

$$= \frac{1}{N$$

1

Variance Stolate:

$$Van(X) = \frac{175025}{100} = (36,35)^2 = 1750,25 - 132132$$

= 428,93

3) Variance Intra-région:

Vani ance Inter-régions: $Var(\overline{X}i) = \frac{1}{N} \left[N_2 (\overline{X}_2 - \overline{X})^2 + N_2 (\overline{X}_2 - \overline{X})^2 \right]$ = 1 50 (40,3-36,35)2+50 (324-36,55)2) $=\frac{1}{100}\left[60(16,602)+50\times15,602\right]=15,602.$ $Van(X) = Van(X_i) + Van(X_i)$ 0.8 428, 9? = 413,325 + 15,602 Indupétation: La dispersion des exploitations dons ce parts N'explique pour me faible part (inter > 3,04%) 0,6 par une dispersion desterres entre les régions alors que la forte dispersion des torres, interne aux région explique une grande parte (intra , 36,36%) de le dispersion des terres (g)

4)
$$C_{V}(Nord) = \frac{\sigma(x)}{X} = \frac{\sqrt{Var}(x)}{X}$$

$$= \frac{\sqrt{487, 41}}{40,3} = \frac{92,077}{40,3} = 0,55$$

$$c_{V}(Sud) = \frac{\sigma(x)}{X} = \frac{\sqrt{339,24}}{32,4} = \frac{18,418}{32,4}$$

$$= 0,57$$

$$0,7$$
 at prime le ûn.

$$Tuka \rightarrow n = \frac{413,325 \times 100}{428,93} = \frac{413,325 \times 100}{96,36} = \frac{428,93}{96,36} = \frac{42$$

