Série 1

Correction de l'exercice 1.1 : SIGNAUX DE BASE ET DÉCALAGES

- 1) Pour $f_1(t)$, posons le changement de variable s = t 4. Alors $f_1(t) = u(s)$. La singularité de u est en s = 0, soit t = 4 pour f_1 . Donc le graphe de f_1 est juste la translation de 4 unités du graphe de u sur la droite. Par le même raisonnement on montre que le graphe de f_2 est la translation du graphe de u de 2 unités sur la gauche. Le graphe de u est obtenu par la soustraction des deux graphes précédents. Son expression analytique déduite du graphique est u c'est un rectangle dilaté de 6 et décalé de 1.
- 2) x(t) peut visiblement se décomposer en deux rectangles : x(t) = rect(t+1/2) rect(t-1/2). Or rect(t) peut lui-même se décomposer ainsi' : rect(t) = u(t+1/2) u(t-1/2). On montre donc que x(t) = u(t+1) 2u(t) + u(t-1).
- 3) La fonction $t \mapsto \text{rect}(t-1/2)$ vaut 1 entre 0 et 1 et 0 sinon. Donc le produit $t \cdot \text{rect}(t-1/2)$ vaut t entre 0 et 1 et 0 sinon. Ceci donne immédiatement le graphe de g. Pour h, il suffit de faire la symétrie axiale selon l'axe des ordonnées du graphe de g.
- 4) On constate que le graphe de y se décompose facilement en la somme de trois graphes translatés de h (cf. questions précédentes). Les versions translatées s'obtiennent par un simple changement de variable. On trouve y(t) = h(t) + h(t-1) + h(t-2).
- 5) Pour r_1 , la division par 4 induit sur le graphe une dilatation de facteur 4. On a alors le graphe de $s_1(t) = \text{rect}(t/4)$. Puis la soustration par 1 induit une translation de 4 sur la droite car $\text{rect}(t/4-1) = s_1(t-4)$. Pour r_2 , la division par 4 induit sur le graphe une dilatation de facteur 4. Puis l'addition de 3

Correction de l'exercice 1.2 : PROPRIÉTÉS DE LA CONVOLUTION

induit une translation de 3 sur la gauche car $rect((t+3)/4) = s_1(t+3)$.

- 1) Le schéma présente N convolutions des signaux x_i par un même filtre de réponse impulsionnelle h, puis la sortie y est donnée par la somme de ces signaux filtrés : $y(t) = \sum_{i=1}^{N} (h * x_i)(t)$. La convolution étant un opérateur linéaire, on a donc $y(t) = (h * \sum_{i=1}^{N} x_i)(t)$. Ce qui revient d'abord à sommer les signaux x_i avant de filtrer l'unique résultat. En procédant de cette manière on économise N-1 filtrages. La nouvelle implémentation est donc plus rentable dès que $N \geq 2$.
- 2) Soit x l'entrée du système de réponse impulsionnelle h. La sortie de ce système linéaire est (h*x)(t). Si on place un dérivateur ensuite, la sortie est y(t) = (h*x)'(t). Les propriétés de la convolution donnent en outre (h*x)'(t) = (h'*x)(t) = (h*x')(t). Par exemple :

$$(h*x)'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{+\infty} h(\tau)x(t-\tau) \,\mathrm{d}\tau = \int_{-\infty}^{+\infty} h(\tau)\frac{\mathrm{d}}{\mathrm{d}t}x(t-\tau) \,\mathrm{d}\tau = (h*x')(t).$$

L'expression (h'*x)(t) nous intéresse particulièrement puisqu'elle exprime la sortie comme la convolution de l'entrée par un filtre de réponse impulsionnelle h'. La nouvelle réponse impulsionnelle est donc h'(t). L'expression (h*x')(t) nous permet de montrer par contre que l'on a la même sortie en plaçant le dérivateur avant.

3) On rappelle la définition $h(t) = \int_{-\infty}^{+\infty} f(t-\tau)g(\tau) d\tau = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau$. Les fonctions f et g étant positives, la valeur de h(t) est donnée par le calcul de l'aire entre le graphe de $\tau \mapsto f(t-\tau)g(\tau)$ et l'axe des abscisses comme vu dans la slide 2-27 du cours. De façon détaillée, on dessine d'abord les graphes de $f(\tau)$ puis de $g(t-\tau)$ (c'est à dire de $g(\tau)$ retourné et décalé d'une valeur t quelconque).

On regarde ensuite l'évolution de l'aire que ces deux fonctions ont en commun pour différents décalages de t (en gris sur les graphes ci-dessous). On distingue trois cas : t < 0, $t \in [0, 1]$, et t > 1.

Pour les valeurs particulières de t, on obtient donc facilement h(0) = 0, h(1/2) = 1/2, h(1) = 1 et h(2) = 1 en utilisant cette méthode.

4) Les signaux f, g et h sont bien causaux car nuls pour les temps négatifs.

Résultat Général 1 La convolution de signaux causaux donne un signal causal (voir p. 2-25 du cours).

Correction de l'exercice 1.3 : CONVOLUTION DES SIGNAUX DE BASE

1) On utilise la ligne 3 de la table (p. A-4) avec les valeurs $s_1 = -1$ et $s_2 = -2$, ce qui donne $(h_1 * h_2)(t) = (e^{-t} - e^{-2t}) \cdot u(t)$.

2) On utilise toujours la ligne 3 la table (p. A-4) en prenant soin de décomposer le cosinus avec la formule d'Euler. Penser à invoquer la linéarité de la convolution. On obtient alors :

$$(h_1 * h_2)(t) = \frac{u(t)}{2} \left(\frac{e^{-t} - e^{2j\pi t}}{-1 - 2j\pi} + \frac{e^{-t} - e^{-2j\pi t}}{-1 + 2j\pi} \right).$$

Après simplification (mise en dénominateur commun et recomposition des exponentielles complexes en sinusoïdes) on obtient

$$(h_1 * h_2)(t) = \frac{u(t)}{1 + 4\pi^2} (-e^{-t} + 2\pi \sin 2\pi t + \cos 2\pi t).$$

- **3)** De ligne 1 de la table (p. A-4), on déduit $(h_1 * h_2)(t) = e^{-|t-3|}$.
- 4) Commençons par décomposer h_2 en $h_2(t) = u(t)e^{-t} + u(-t)e^{t}$. On décompose le calcul en deux convolutions par linéarité. La première convolution est simple à calculer via la table (p. A-4) du cours.

On doit maintenant calculer le second terme, $u(t)e^{-t} * u(-t)e^{t}$, "à la main" puisque les tables ne nous renseignent pas. Partons de la définition de la convolution, qui donne

$$u(t)e^{-t} * u(-t)e^{t} = \int_{-\infty}^{+\infty} u(\tau)e^{-\tau}u(-t+\tau)e^{t-\tau}d\tau.$$

On s'en sort ici en distinguant les deux cas t > 0 et t < 0, ce qui est le meilleur moyen de trouver les bonnes bornes pour l'intégrale. Pour t > 0, on a en effet $u(\tau)u(-t+\tau) = 1$ si $\tau > t$ et 0 sinon. Ainsi, pour t > 0,

$$u(t)e^{-t} * u(-t)e^{t} = \int_{t}^{+\infty} e^{-\tau} e^{t-\tau} d\tau$$
$$= e^{t} \int_{t}^{+\infty} e^{-2\tau} d\tau$$
$$= \frac{e^{-t}}{2}.$$

Pour t < 0 maintenant, on a $u(\tau)u(-t+\tau) = 1$ si $\tau > 0$ et 0 sinon, d'où l'on déduit

$$u(t)e^{-t} * u(-t)e^{t} = \int_{0}^{+\infty} e^{-\tau} e^{t-\tau} d\tau$$
$$= \frac{e^{t}}{2}.$$

Si on résume en une seule formule, on a obtenu $u(t)e^{-t} * u(-t)e^t = \frac{e^{-|t|}}{2}$. Donc, finalement,

$$(h_1 * h_2)(t) = te^{-t}u(t) + \frac{e^{-|t|}}{2}.$$

Correction de l'exercice 1.4 : CONVOLUTION DE FONCTIONS A SUPPORT FINI

- D'après la définition de la page 2-22, [0, 2] est le plus petit intervalle en dehors duquel la fonction f est toujours nulle.
- 2) On a $(f*g)(t) = \int_0^5 f(t-\tau)g(\tau) d\tau$. On cherche les valeurs de t pour lesquelles $h(t) \neq 0$. C'est le cas lorsque les supports de $\tau \mapsto g(\tau)$ et $\tau \mapsto f(t-\tau)$ sont disjoints. Pour t < 0, on voit que les deux supports sont disjoints (argument graphique c.f. Figure 1 ou en remarquant que pour

FIGURE 1 – Illustrations de $f(t-\tau)g(\tau)$ pour différentes valeurs de t.

t < 0, $f(t - \tau)$ est nulle si $g(\tau) \neq 0$), il en est de même pour t > 7. Pour $0 \leq t \leq 7$, les supports des deux fonctions ne sont par contre plus disjoints. On en déduit que h(t) est à support fini et que son support est [0, 7].

- 3) Notons [a, a + L] le support de la réponse impulsionnelle h du système RIF considéré. Comme $h(t)*\delta(t+a) = h(t+a)$, le support de $h(t)*\delta(t+a)$ est [0, L] et est donc la réponse impulsionnelle d'un système RIF causal. Ainsi, $h(t) = h(t+a)*\delta(t-a)$ est bien la mise en série d'un système RIF causal et d'un système décaleur.
- 4) En combinant les points 2) et 3), on voit que la convolution de deux fonctions à support fini est elle-même à support fini. La mise en série de deux filtrages de réponse impulsionnelle finie (RIF) équivaut à un unique filtrage dont la réponse impulsionnelle est la convolution de celles des précédents. Le système résultant est donc bien RIF.

Résultat Général 2 Soient f et g, deux fonctions à supports finis de supports respectifs $[a_1,b_1]$ et $[a_2,b_2]$. Alors h=f*g est à support fini de support $[a_1+a_2,b_1+b_2]$.