## NARAYANA



## JUNIOR COLLEGE

**SECTION: SRAZ** 

## **DUAL NATURE**

| DI | T T 7 | OT. | 9 |
|----|-------|-----|---|
| PI | ŦY    | 211 |   |

| 1.         | A Beam of cathode rays is subjected to crossed electric (E) and magnetic fields (B). The fields are adjusted such that the beam is not deflected. The specific charge of the cathode rays is given by                                                                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 1) $\frac{B^2}{2VE^2}$ 2) $\frac{2VB^2}{E^2}$ 3) $\frac{2VE^2}{B^2}$ 4) $\frac{E^2}{2VB^2}$                                                                                                                                                                                                                                                                                                                        |
| 2.         | A source of light is placed at a distance of 50 cm from a photo cell and the stopping potential is found to be $V_0$ . If the distance between the light source and photo cell is made 25 cm, The new stopping potential                                                                                                                                                                                           |
|            | will be: 1) $V_0 l2$ 2) $V_0$ 3) $4V_0$ 4) $2V_0$                                                                                                                                                                                                                                                                                                                                                                  |
| 3.         | In photoelectric emission process from a metal of work function 1.8 eV, The kinetic energy of most energetic electron is 0.5 eV. The corresponding stopping potential is 1) 1.8 V 2) 1.3 V 3) 0.5 V 4) 2.3 V                                                                                                                                                                                                       |
| 4.         | When monochromatic radiation of intensity I falls on a metal surface, the number of photoelectrons and their maximum kinetic energy are N and T respectively. If the intensity of radiation is 2I,the number of emitted electrons and their maximum kinetic energy are respectively  1) N and 2T  2) 2N and T  3) 2N and 2T  4) N and T                                                                            |
| 5.         | If velocity of a particle is 3 times of that of electron and ratio of degroglie wavelength of particle to that of electron is 1.84 x 10 <sup>-4</sup> . The particle will be                                                                                                                                                                                                                                       |
| 6.         | 1) Neutron 2) deuteron 3) alpha 4) tritium A 5 watt source emits monochromatic light of wave length 5000 A. When placed 0.5 m away, it liberates photoelectrons from a photosensitive metallic surface, when the source is moved to a distance of 1.0 m the number of photoelectrons liberated will be reduced by a factor of                                                                                      |
| 7.         | 1) 8 2) 16 3) 2 4) 4<br>A photo-cell is illuminated by a source of light, which is placed at a distance d from the cell. If the distance become d/2, then number of electrons emitted per second will be                                                                                                                                                                                                           |
| 8.<br>9.   | 1) remain same 2) four times 3) two times 4) one-fourth As the intensity of incident light increases 1) kinetic energy of emitted photoelectrons increases 2) photo electric current decreases 3) photoelectric current increases 4) kinetic energy of emitted photoelectrons decreases. The cathode of a photoelectric cell is changed such that the work function changes from W <sub>1</sub> and W <sub>2</sub> |
| <b>)</b> . | $(W_1 > W_2)$ . If the current before and after changes are $I_1$ and $I_2$ , all other conditions remaining                                                                                                                                                                                                                                                                                                       |
|            | unchanged, then (assuming $hv > w_2$ )                                                                                                                                                                                                                                                                                                                                                                             |
| 10.        | 1) $I_1 = I_2$ 2) $I_1 < I_2$ 3) $I_1 > I_2$ 4) $I_1 < I_2 < 2I_1$ Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be in the photoelectric current if the frequency is halved and intensity is doubled?  1) Doubled 2) Four times 3) one-fourth 4) zero                                                                                                   |
| 11.        | When two monochromatic light of frequency. $v$ and $\frac{v}{2}$ are incident on a photoelectric metal, their                                                                                                                                                                                                                                                                                                      |
|            | stopping potential becomes $\frac{V_s}{2}$ and $V_s$ , respectively. The threshold frequency for this metal is                                                                                                                                                                                                                                                                                                     |

|     | 1) 1:2                      | ,                                         | - /                                                    | ,                                                                                                |
|-----|-----------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 13. | _                           | _                                         |                                                        | <i>n</i> . The velocity of the electron ejected $0^{-10}m$ is [Given h=4.14 x $10^{-15}eV$ s and |
|     | -                           | 2) $\sim 61 \cdot 10^3  \text{ms}^{-1}$   | 2) $\sim 0.2 \times 10^6 \mathrm{mg}^{-1}$             | 4) - 6 · 10 <sup>5</sup> · · · · -1                                                              |
| 1.4 | 1)≈0 X 10 MS                | $2) \approx 61x10^3 ms^{-1}$              | $3) \approx 0.3 \times 10 \text{ ms}$                  | 4) $\approx 0.010 \text{ ms}$                                                                    |
| 14. |                             |                                           |                                                        | pelectric cell. The maximum energy of                                                            |
|     |                             |                                           |                                                        | no photoelectrons will reach the anode                                                           |
|     | 1) +3 V                     | ential of A relative to ( 2) +4 V         | 3) -1 V                                                | 4) -3 V                                                                                          |
|     | 1) +3 V                     | 2) 14 V                                   | 3)-1 V                                                 | 4) -3 V                                                                                          |
| 15. |                             |                                           |                                                        | gth $\lambda$ , the stopping potential is V. If the                                              |
|     | same surface is illum       | inated with radiation of                  | of wavelength $2\lambda$ , the                         | stopping potential is $\frac{V}{4}$ . The threshold                                              |
|     | wavelength for the m        | netallic surface is                       |                                                        |                                                                                                  |
|     | _                           |                                           | 2) 4.1                                                 | 1) 5 1                                                                                           |
|     | 1) $\frac{5}{2}\lambda$     | 2) 3 λ                                    | 3) 4 $\lambda$                                         | 4) 5 λ                                                                                           |
| 16. | When the energy of t        | the incident radiation i                  | is increase <mark>d by 2</mark> 0%, th                 | he kinetic energy of the photoelectrons                                                          |
|     | emitted from a metal        | surface increased from                    | n 0.5 eV to 0.8 eV. Th                                 | e work function of the metal is                                                                  |
|     | 1) 0.65 eV                  | 2) 1.0 eV                                 | 3) 1.3 eV                                              | 4) 1.5 eV                                                                                        |
| 17. | For photoelectric emi       | ission from c <mark>ertain</mark> me      | t <mark>al the</mark> cut <mark>off fre</mark> quenc   | by is $v$ . if radiation of frequency $2v$                                                       |
|     |                             | l plate, the ma <mark>ximu</mark> m p     | oossible velocity of em                                | itted electron will be (m is the electron                                                        |
|     | mass)                       |                                           |                                                        |                                                                                                  |
|     | $\sqrt{2hv}$                | 2) $2\sqrt{\frac{hv}{m}}$                 | hv                                                     | $\frac{1}{hv}$                                                                                   |
|     | 1) $\sqrt{\frac{m}{m}}$     | $2) 2\sqrt{\frac{m}{m}}$                  | $\sqrt{(2m)}$                                          | 4) $\sqrt{\frac{m}{m}}$                                                                          |
| 18. | The work functions          | for metals A. B and C                     | C are respectively 1.9                                 | 2 eV, 2.0 eV and 5 eV. According to                                                              |
| 10. |                             |                                           | <u> </u>                                               | a radiation of wavelength 4100 A                                                                 |
|     | is/are                      |                                           |                                                        |                                                                                                  |
|     | 1) A only                   |                                           | 2) A and B only                                        |                                                                                                  |
|     | 3) All the three metal      | ls NI A D A N                             | 4) None                                                | POIID                                                                                            |
| 19. | The ratio of de-brogl       | ie wavelengths of mol                     |                                                        | d helium which are at temperature 27°                                                            |
|     | C and 127°C respects        | _                                         | , ,                                                    | 1                                                                                                |
|     |                             |                                           | Q                                                      |                                                                                                  |
|     | 1) $\frac{1}{2}$ '          | 2) $\sqrt{\frac{3}{8}}$                   | 3) $\sqrt{\frac{8}{3}}$                                | 4) 1                                                                                             |
|     | 2                           | V O                                       | V 3                                                    |                                                                                                  |
| 20. | <del>-</del>                | <del>-</del>                              | <del>-</del>                                           | st electron has speed v. If the exciting                                                         |
|     | wavelength is change        | ed to $\frac{3\lambda}{4}$ , the speed of | the fastest emitted elec-                              | ctron will be                                                                                    |
|     | 1) less than $v(4/3)^{1/2}$ |                                           | 2) $v(4/3)^{1/2}$                                      |                                                                                                  |
|     | 3) $v(3/4)^{1/2}$           |                                           | 4) greater than $v(4/3)$                               | 3)1/2                                                                                            |
| 21. | _                           | •                                         | · · · · · · · · · · · · · · · · · · ·                  | otoelectric emitter, photoelectrons are                                                          |
|     |                             |                                           | _                                                      | vavelength is sufficient for creating                                                            |
|     | -                           | t is the ratio of the wor                 |                                                        |                                                                                                  |
|     | 1) 1:2                      | 2) 2:1                                    | 3) 4:1                                                 | 4) 1:4                                                                                           |
| 22. |                             | -                                         | •                                                      | $6 \mu$ m. Assuming it to be 25% efficient                                                       |
|     |                             |                                           |                                                        | yellow light it emits per second is                                                              |
|     | 1) $1.5 \times 10^{20}$     | $2) 6 \times 10^{18}$                     | 3) $62 \times 10^{20}$                                 | 4) $3 \times 10^{19}$                                                                            |
|     | <br>                        |                                           | 1881 187 1881 1881 1881 1881 <u>1</u> 881 1881 1881 18 |                                                                                                  |

 $3)\frac{2}{3}v$ 

 $5v_0$ , the maximum velocity of electrons emitted from the same plate is  $V_2$ , The ratio of  $V_1$  to  $V_2$  is

When the light of frequency  $2v_0$  (Where  $V_0$  is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is  $V_1$ , when the frequency of the incident radiation is increased to

1) 2 v

12.

2) 3 v

 $4)\frac{3}{2}v$ 

|                                                                                                                                                               | 1) $5 \times 10^{1}$                                                                                                                                                                        | 6                                     | 2) 5 x            | $10^{17}$                             | 3)        | $5 \times 10^{14}$                              | 2                                       | 4) $5 \times 10^{15}$                |            |                                        |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|---------------------------------------|-----------|-------------------------------------------------|-----------------------------------------|--------------------------------------|------------|----------------------------------------|-------------|
| 25.                                                                                                                                                           |                                                                                                                                                                                             |                                       |                   |                                       |           |                                                 |                                         |                                      |            | f negligible we ength $\lambda_d$ then |             |
|                                                                                                                                                               | $1) \lambda = \left(\frac{2}{n}\right)$                                                                                                                                                     |                                       |                   |                                       |           | $\lambda = \left(\frac{2m}{hc}\right)$          | /                                       |                                      |            |                                        |             |
|                                                                                                                                                               | 3) $\lambda_d = \left( \frac{1}{2} \right)$                                                                                                                                                 | $\left(\frac{2mc}{h}\right)\lambda^2$ |                   |                                       | 4)        | $\lambda_d = \left(\frac{2m}{h}\right)$         | $\left(\frac{dC}{dC}\right)\lambda_d^2$ |                                      |            |                                        |             |
| 26.                                                                                                                                                           | An elect                                                                                                                                                                                    | ron of ma                             | ass m w           | ith an ini                            | tially vo | elocity $\vec{v}$                               | $= v_0 i(v_0 > 0)$                      | )) enters a                          | n electric | field $\vec{E} = -\vec{I}$             | $ec{E}_0 i$ |
|                                                                                                                                                               | $(E_0 = co$                                                                                                                                                                                 | $ns \tan t > 0$                       | ) at $t = 0$      | If $\lambda_0$ is it                  | s de-brog | lie wavele                                      | ength initia                            | lly, then i                          | ts de-brog | lie wavelengtł                         | n at        |
|                                                                                                                                                               | time t is                                                                                                                                                                                   |                                       |                   | ,                                     |           |                                                 |                                         |                                      |            |                                        |             |
|                                                                                                                                                               | $(1)\frac{\lambda_0}{1+\frac{e^{i}}{m}}$                                                                                                                                                    | $\left(\frac{\Xi_0}{v_0}t\right)$     | 2) $\lambda_0$    | $\left(1 + \frac{eE_0}{mv_0}t\right)$ | 3)        | $\lambda_0 t$                                   |                                         | 4) λ <sub>0</sub>                    |            |                                        |             |
| 27.                                                                                                                                                           |                                                                                                                                                                                             | s of mass $gth(\lambda_0)$ or         |                   |                                       |           | igth $\lambda$ fal                              | l on the ta                             | arget in a                           | n X-ray t  | ube. The cut                           | off         |
|                                                                                                                                                               | $1) \lambda_0 = \frac{2}{3}$                                                                                                                                                                | $\frac{2mc\lambda^2}{h}$              | 2) λ <sub>0</sub> | $=\frac{2h}{mc}$                      | 3)        | $\lambda_0 = \frac{2m^2}{h}$                    | $\frac{c^2\lambda^3}{2}$                | 4) $\lambda_0 = \lambda$             |            |                                        |             |
| 28.                                                                                                                                                           | with ther                                                                                                                                                                                   | n is                                  |                   |                                       |           |                                                 |                                         |                                      |            | length associa                         | ited        |
|                                                                                                                                                               | 1) $c(2ml)$                                                                                                                                                                                 | $(\Xi)^{1/2}$                         | $2)\frac{1}{c}$   | $\left(\frac{2m}{E}\right)^{1/2}$     | 3)        | $\frac{1}{c} \left( \frac{E}{2m} \right)^{1/2}$ | 2                                       | $4) \left(\frac{E}{2m}\right)^{1/2}$ | 2          |                                        |             |
| 29.                                                                                                                                                           | 29. The wavelength $\lambda_e$ of an electron and $\lambda_p$ of a photon of same energy E are related by                                                                                   |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |
| 1) $\lambda_p \alpha \sqrt{\lambda_e}$   2) $\lambda_p \alpha \frac{1}{\sqrt{\lambda}}$   3) $\lambda_p \alpha \lambda_e^2$   4) $\lambda_p \alpha \lambda_e$ |                                                                                                                                                                                             |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |
| 30.                                                                                                                                                           | 30. Electrons used in an electron microscope are accelerated by a voltage of 25 kv. If the voltage is increased to 100kv then the de-broglie wavelength associated with the electrons would |                                       |                   |                                       |           |                                                 |                                         | sed                                  |            |                                        |             |
|                                                                                                                                                               | 1) Increased by 2 times 2) decrease by 2 times 1                                                                                                                                            |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |
|                                                                                                                                                               | 3) decrease by $\frac{1}{2}$ times 4) increase by $\frac{1}{2}$ times                                                                                                                       |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |
| <u>KEY</u>                                                                                                                                                    |                                                                                                                                                                                             |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |
| Q.NO                                                                                                                                                          | 1                                                                                                                                                                                           | 2                                     | 3                 | 4                                     | 5         | 6                                               | 7                                       | 8                                    | 9          | 10                                     |             |
| 1-10                                                                                                                                                          | 4                                                                                                                                                                                           | 2                                     | 3                 | 2                                     | 1         | 4                                               | 2                                       | 3                                    | 1          | 4                                      |             |
| 11-20                                                                                                                                                         | 4                                                                                                                                                                                           | 1                                     | 4                 | 4                                     | 2         | 2                                               | 1                                       | 2                                    | 3          | 4                                      |             |
| 21-30                                                                                                                                                         | 2                                                                                                                                                                                           | 1                                     | 1                 | 4                                     | 4         | 1                                               | 1                                       | 3                                    | 3          | 3                                      |             |
|                                                                                                                                                               |                                                                                                                                                                                             |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |
| "(1807/80/1807/80/1807/80/18                                                                                                                                  | Page 3 of 8                                                                                                                                                                                 |                                       |                   |                                       |           |                                                 |                                         |                                      |            |                                        |             |

A source  $S_1$  is producing,  $10^{15}$  photons per second of wavelength 5000 A. Another source  $S_2$  is producing

4) 0.98

 $1.02 \times 10^{15}$  photons per second of wavelength 5100 A. Then, (power of  $S_2$ ) (power of  $S_1$ )

3) 1.04

Monochromatic light of frequency 6.0 x 10<sup>14</sup> HZ is produced by a laser. The power emitted is

 $2 \times 10^{-3}$  W. The number of photons emitted, on the average, by the source per second is

2) 1.02

23.

24.

Is equal to 1) 1.00

1. (d): When a beam of cathode rays (or electrons) are subjected to crossed electric (E) and magnetic (B) fields, the beam is not deflected, if

Force on electron due to magnetic field = Force on electron due to electric field

$$Bev = eE$$
 or  $v = \frac{E}{B}$ 

If V is the potential difference between the anode and the cathode, then

$$\frac{1}{2}mv^2 = eV \text{ or } \frac{e}{m} = \frac{v^2}{2V}$$

Substituting the value of v from equation (ii), we get

$$\frac{e}{m} = \frac{E^2}{2VB^2}$$

Specific charge of the cathode rays  $\frac{e}{m} = \frac{E^2}{2VB^2}$ 

- 2. (b): y changing the position of source of light from photo cell, there will be a change in the intensity of light falling on photo cell.
- 3. (c) The stopping potential  $V_s$  is related to the maximum kinetic energy of the emitted electrons  $K_{\text{max}}$  through the relation

$$K_{\text{max}} = eV_s$$

$$0.5 \, e^{V_s} = eV_s \text{ or } V_s = 0.5 \, V$$

- 4. (b) The number of photoelectrons ejected is directly proportional to the intensity of incident light. Maximum kinetic energy is independent of intensity of incident light but depends upon the frequency of light. Hence option (b) is correct
- 5. (a): Given,  $v_p = 3v_e$   $\frac{\lambda_p}{\lambda_e} = 1.81x10^{-4}$

$$\lambda = \frac{h}{mv} = \lambda \alpha \frac{1}{mv}$$

$$\frac{\lambda_p}{\lambda_e} = \frac{m_e}{m_p} \frac{v_e}{v_p}$$

$$\frac{\lambda_p}{\lambda_e} = \frac{m_e}{3m_p}$$

$$1.814 \times 10^{-4} = \frac{9x10^{-31}}{3xm_p} \qquad m_p = 1.67 \times 10^{-27} kg$$

6. (d): For a light source of power P watt, the intensity at a distance d is given by  $I = \frac{p}{4\pi d^2}$ 

Where we assume light to spread out uniformly in all directions

i.e it is a spherical source.

$$I\alpha \frac{1}{d^2}$$
 or  $\frac{I_1}{I_2} = \frac{d_2^2}{d_1^2}$  or,  $\frac{I_1}{I_2} = \left(\frac{1}{0.5}\right)^2$  or  $\frac{I_1}{I_2} = 4$  or  $I_2 = \frac{I_1}{4}$ 

In a photoelectric emission, the number of photoelectrons liberated per second from a photo sensitive metallic surface is proportional to the intensity of light. When a intensity of source reduced by a factor of four, the number of photoelectrons is also reduced by a factor of 4

- 7.
- 8. (c): If the intensity of light of a given frequency is increased, then the number of photons strikes more electrons of metals and hence number of photons emitted through the surface increase and hence photoelectric current increases.
- 9. (a): The work function has no effect on photoelectric current so long as hy> $w_0$ . The photoelectric current is proportional to the intensity of incident light. Since there is no change in the intensity of light, hence  $I_1 = I_2$
- 10.

(d): Initially, 
$$v = 1.5v_0$$

If the frequency is halved,  $v = \frac{v}{2} = \frac{1.5v_0}{2} < v_0$ 

Hence, no photoelectric emission will take place

11. (d): Let the threshold frequency is  $v_0$ .

By using the equation of photo electric effect,  $E = hv_0 + eV_0$ 

Case-I: 
$$hv = hv_0 + \frac{eV_s}{2}$$

Case-II: 
$$\frac{hv}{2} = hv_0 + ev_s$$

$$\frac{hv}{2} = \frac{-eV_s}{2}$$

$$-hv = eV_s$$
 put in (i)

$$hv = hv_0 - \frac{hv}{2}$$
, so  $v_0 = \frac{3}{2}v$ 

12. 
$$\frac{1}{4} = \frac{v_1^2}{v_2^2}$$
 or  $\frac{v_1}{v_2} = \frac{1}{2}$ 

13. 
$$v = 6 \times 10^5 ms^{-1} = 0.6 \times 10^6 ms^{-1}$$

14. (b): According to Einstein's photoelectric equation maximum kinetic energy of photoelectrons

$$KE_{\text{max}} = E_v - \phi$$

$$V_{cathode} - V_{anode} = 3V = -V_{stopping}$$

$$V_{stopping} = -3v$$

15. (b): According to Einstein's photoelectric equations

$$\frac{eV}{4} = \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$$

$$\frac{hc}{4\lambda} = \frac{3hc}{4\lambda_0}$$
 or  $\lambda_0 = 3\lambda$ 

(b): According to Einstein's photoelectric equation, the kinetic energy of emitted photoelectrons is 16.

$$K = hv - \phi_0$$

$$0.5eV = hv - \phi_0$$

$$0.8eV = 1.2hv - \phi_0$$

Equation (i) and (ii)

$$\phi_0 = 1.0eV$$

(a) : Work function,  $\phi_0 = hv$ 17.

EVAJAVAN According to Einstein's photoelectric equation,

$$\frac{1}{2}mv_{\text{max}}^2 = h(2v) - hv \text{ or } \frac{1}{2}mv_{\text{max}}^2 = hv$$

$$v_{\text{max}} = \sqrt{\frac{2hv}{m}}$$

- (a): The kinetic energy of an electron  $\frac{1}{2} \times mv^2 = eV$  or final velocity of electron  $\frac{1}{2} \times mv^2 = eV$ 19.
- 20. (d): According to Einstein's photoelectric equation,

$$\frac{1}{2}mv_1^2 = \frac{hc}{3\lambda/4} - W_0 = \frac{4}{3}\left(\frac{1}{2}mv^2 + W_0\right)$$

$$v_1^2 = \frac{4}{3}v^2 + \frac{2}{3}W_0$$

So,  $v_1$  is greater than  $v(4/3)^{1/2}$ 

21. (b): 
$$W_0 = \frac{hc}{\lambda_0}$$
 or  $W_0 \alpha \frac{1}{\lambda_0}$ 

$$\frac{W_1}{W_2} = \frac{\lambda_2}{\lambda_1} = \frac{600}{300} = \frac{1}{2}$$

22. (a): 
$$1.5 \times 10^{20}$$

23. (a): For a source  $S_1$ ,

Wavelength,  $\lambda_1 = 5000 A$ 

Number of photons emitted per second,  $N_1 = 10^{15}$ 

Energy of each photon,  $E_1 = \frac{hc}{\lambda}$ 

Power of source  $S_1$ ,  $E_1 N_1 = \frac{N_1 hc}{\lambda_1}$ 

Power of source  $S_2$ ,  $P_2 = N_2 E_2 = \frac{N_2 hc}{\lambda_2}$ 

Dividing power of  $S_2$  &  $S_1$ 

$$\frac{S_2}{S_1} = 1$$

24. (d): power  $p = 2 \times 10^{-3} w$ 

Energy of one photon E=hv=6.63  $\times 10^{-34}$  x 6 x  $10^{14}$  j

Number of photons emitted per second, N=P/E

$$N=5 \times 10^{15}$$

25. (d): As work function is negligible, therefore kinetic energy of emitted electron = Energy of incident photon

$$p = \sqrt{\frac{2mhc}{\lambda}}$$

De-broglie wavelength of emitted electron is

$$\lambda = \left(\frac{2mc}{h}\right)\lambda_d^2$$

26. (a); 
$$\left(\lambda_0 = \frac{h}{mv_0}\right)$$

27. (a): Kinetic energy of electrons

$$K = \frac{p^2}{2m} = \frac{\left(h/\lambda\right)^2}{2m} = \frac{h^2}{2m\lambda^2}$$

So, maximum energy of photon 9X-ray) = K

$$\frac{hc}{\lambda_0} = \frac{h^2}{2m\lambda^2}$$

$$\lambda_0 = \frac{2mc\lambda^2}{h}$$

28. (c): For electron of energy E,

De-broglie wavelength,  $\lambda_e = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$ 

For photon of energy,  $E = hv = \frac{hc}{\lambda_p} \Rightarrow \lambda_p = \frac{hc}{E}$ 

$$\frac{\lambda_e}{\lambda_p} = \frac{h}{\sqrt{2mE}} \times \frac{E}{hc} = \frac{1}{c} \left(\frac{E}{2m}\right)^{1/2}$$

29. (c): Wavelength of an electron of energy E is

$$\lambda_e = \frac{h}{\sqrt{2m_e E}}$$

Wavelength of a photon of same energy E is

$$\lambda_p = \frac{hc}{E}$$
 or  $E = \frac{hc}{\lambda_p}$ 

Squaring on both sides of eq.(i), we get

$$\lambda_e^2 = \frac{h^2}{2m_e E} \text{ or } E = \frac{h^2}{2m_e \lambda_e^2}$$

Equating (ii) and (iii), we get

$$=\lambda_p \alpha \lambda_e^2$$

30. (c): The de broglie wavelength  $\lambda$  associated with the electron is

$$\lambda = \frac{1.227}{\sqrt{V}}nm$$

Where V is the accelerating potential in volts.

$$\lambda \alpha \frac{1}{\sqrt{V}}$$

$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{100 \times 10^3}{25 \times 10^3}} = 2 \text{ or } \lambda_2 = \frac{\lambda_1}{2}$$

None of the given options is correct.

## THE NARAYANA GROUP