Question 5

Use the definition of Θ in order to show the following:

1. $5n^3 + 2n^2 + 3n = \Theta(n^3)$

Claim: $5n^3 + 2n^2 + 3n = \Theta(n^3)$

Proof: We shall prove that $5n^{3} + 2n^{2} + 3n = O(n^{3})$ and $5n^{3} + 2n^{2} + 3n = \Omega(n^{3})$.

Claim: $5n^3 + 2n^2 + 3n = O(n^3)$

Proof: Let c = 10 and $n_0 = 1$. We shall prove show that for any $n \ge 1$,

 $5n^3 + 2n^2 + 3n \le 10 \cdot n^3.$

1.) Since $n \ge 1, n \le n^3$, so that:

$$5n^3 \le 5n^3$$
$$2n^2 \le 2n^3$$

$$3n \le 2n^3$$
$$3n \le 3n^3$$

2.) Add these inequalities to get:

 $5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3 = 10n^3$

3.) Therefore, $5n^3 + 2n^2 + 3n \le 10n^3$, which means that $5n^3 + 2n^2 + 3n = O(n^3)$.

Claim: $5n^3 + 2n^2 + 3n = \Omega(n^3)$

Proof: Let c = 5 and $n_0 = 1$. We shall prove that for any $n \ge 1$,

 $5n^3 + 2n^2 + 3n \ge 5 \cdot n^3.$

1.) Drop every term except for $5n^3$ to get: $5n^3 + 2n^2 + 3n \ge 5n^3$.

2.) Therefore, $5n^3 + 2n^2 + 3n \ge 5 \cdot n^3$, which means that $5n^3 + 2n^2 + 3n = \Omega(n^3)$.

Since $5n^3 + 2n^2 + 3n = O(n^3)$ and $5n^3 + 2n^2 + 3n = \Omega(n^3)$, by definition, $5n^3 + 2n^2 + 3n = \Theta(n^3)$.

2.
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

Claim:
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

Proof: We shall prove that $\sqrt{7n^2 + 2n - 8} = O(n)$ and $\sqrt{7n^2 + 2n - 8} = \Omega(n)$.

Claim:
$$\sqrt{7n^2 + 2n - 8} = O(n)$$

Proof: Let c = 3 and $n_0 = 1$. We shall prove show that for any $n \ge 1$,

$$\sqrt{7n^2 + 2n - 8} \le 3 \cdot n.$$

1.) Since $n \ge 1, n \le n^2$, so that:

$$7n^2 \le 7n^2$$
$$2n^{\le 2}n^2$$
$$-8 \le 0$$

2.) Add these inequalities to get:

$$7n^2 + 2n - 8 \le 7n^2 + 2n^2 = 9n^2$$

3.) Take the square root of both sides to get:

$$\sqrt[3]{7n^2 + 2n - 8} \le \sqrt{9n^2} = 3n$$

4.) Therefore, $\sqrt{7n^2 + 2n - 8} \le 3$. n, which means that $\sqrt{7n^2 + 2n - 8} = O(n)$.

Claim: $\sqrt{7n^2 + 2n - 8} = \Omega(n)$

Proof: Let $c = \sqrt{7}$ and $n_0 = 4$. We shall prove that for any $n \ge 1$,

$$\sqrt{7n^2 + 2n - 8} \ge \sqrt{7} \cdot n.$$

- 1.) Drop every term except for $\sqrt{7n^2}$ to get: $\sqrt{7n^2 + 2n 8} \ge \sqrt{7n^2} = n\sqrt{7}$. This expression is only true if and only if $2n 8 \ge 0$.
- 2.) Solve for n in $2n-8 \ge 0$ to get $n \ge 4$.
- 3.) Therefore, $\sqrt{7n^2 + 2n 8} \ge \sqrt{7} \cdot n$, which means that $\sqrt{7n^2 + 2n 8} = \Omega(n)$.

Since $\sqrt{7n^2 + 2n - 8} = O(n)$ and $\sqrt{7n^2 + 2n - 8} = \Omega(n)$, by definition, $\sqrt{7n^2 + 2n - 8} = \Theta(n)$.