习题 2.4

1. 用函数极限的 ε – δ 定义验证下列极限:

(1)
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5} = 4$$
; (2) $\lim_{x \to 2} x^2 = 4$;

(2)
$$\lim_{x \to 2} x^2 = 4$$
;

(3)
$$\lim_{x\to 0} \cos x = 1$$
;

$$(4) \lim_{x \to 3} \frac{x - 3}{x} = 0$$

(4)
$$\lim_{x \to 3} \frac{x-3}{x} = 0$$
; (5) $\lim_{x \to \frac{\pi}{4}} \sin x = \frac{\sqrt{2}}{2}$; (6) $\lim_{x \to 0} \frac{1}{2^x} = 1$.

(6)
$$\lim_{x\to 0} \frac{1}{2^x} = 1$$

2. 用函数极限的 $\varepsilon - X$ 定义验证下列极限:

(1)
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
; (2) $\lim_{x \to \infty} \frac{3x^2 - 1}{x^2 + 3} = 3$; (3) $\lim_{x \to \infty} a^x = 0$ (a > 1).

(2)
$$\lim_{x\to\infty} \frac{3x^2-1}{x^2+3} = 3$$
;

(3)
$$\lim_{x \to -\infty} a^x = 0$$
 (a > 1)

- 证明 $\lim_{x\to a} f(x) = A$ 的充分必要条件为 $\lim_{x\to a^+} f(x) = A$ 且 $\lim_{x\to a^-} f(x) = A$.
- **4**. 设 $\lim_{x\to\infty} f(x) = A$ (A>0). 试用定义证明 $\lim_{x\to\infty} \sqrt{f(x)} = \sqrt{A}$.
- 5. 求下列函数在指定点处的左、右极限,并判断函数在该点处是否存在极限:

(1)
$$f(x) = \frac{\sqrt{(x-1)^2}}{x-1} \stackrel{.}{\leftarrow} x_0 = 1 \stackrel{.}{\smile};$$

(2)
$$f(x) = \begin{cases} x+2, & x \le 2, \\ \frac{1}{x-2}, & x > 2 \end{cases}$$
 $£ x_0 = 2$ $£ y;$

(4)
$$f(x) = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}$$
 $£ x_0 = 0$ $£$.

根据函数极限的定义填写下表:

	$f(x) \to A$	$f(x) \rightarrow \infty$	$f(x) \to +\infty$	$f(x) \rightarrow -\infty$
$x \rightarrow x_0$				
$x \rightarrow x_0 + 0$				
$x \rightarrow x_0 - 0$				
$x \to \infty$				
$x \rightarrow +\infty$				
$x \rightarrow -\infty$				

- 7. 证明函数 $f(x) = \frac{1}{x} \cos \frac{1}{x}$ 在点 x = 0 的邻域内无界, 但当 $x \to 0$ 时, 并非无穷大.

(1)
$$\lim_{x \to 4} \frac{x^2 - 6x + 8}{x^2 - 5x + 4}$$

(1)
$$\lim_{x \to 4} \frac{x^2 - 6x + 8}{x^2 - 5x + 4};$$
(2)
$$\lim_{x \to a} \frac{x^2 - (a+1)x + a}{x^3 - a^3} \quad (a \neq 0);$$
(3)
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h};$$
(4)
$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(5x+1)^{50}};$$

(3)
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$
;

(4)
$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(5x+1)^{50}}$$

(5)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$

(5)
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$$
; (6) $\lim_{x \to 1} \frac{\sqrt{3-x}-\sqrt{1+x}}{x^2-1}$;

(7)
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}};$$
 (8) $\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}};$

(8)
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}$$

(9)
$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{2}{x^2-1} \right)$$

(9)
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right);$$
 (10)
$$\lim_{x \to \infty} \frac{(x + 1)(x^2 + 1) \cdots (x^n + 1)}{[(nx)^n + 1]^{\frac{n+1}{2}}};$$

(11)
$$\lim_{x \to 1} \frac{x + x^2 + \dots + x^n - n}{x - 1}; \qquad (12) \lim_{x \to +\infty} \sqrt{x} \sqrt{x} = a - \sqrt{x}.$$

$$(12)$$
 $\lim_{x\to +\infty} 1 i \sqrt{x} \sqrt{x} = a - \sqrt{x}$.

计算下列极限:

$$(1) \lim_{x\to 0}\frac{\tan 3x}{x};$$

(2)
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
;

$$(3) \lim_{x\to a} \frac{\sin x - \sin a}{x - a};$$

$$(4) \lim_{x\to\pi}\frac{\sin x}{\pi-x};$$

$$(5) \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\pi - x};$$

(6)
$$\lim_{x\to 0} \frac{\cos x - \sqrt[3]{\cos x}}{\sin^2 x}$$
;

(7)
$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - \cos x}{\sin^2 \frac{x}{2}};$$
 (8) $\lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x - \frac{\pi}{6}\right)}{\frac{\sqrt{3}}{2} - \cos x};$

(8)
$$\lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x - \frac{\pi}{6}\right)}{\frac{\sqrt{3}}{2} - \cos x}$$

(9)
$$\lim_{x\to 0} \frac{1-\cos x\sqrt{\cos 2x}}{x^2}$$
; (10) $\lim_{x\to 1} (1-x)\tan \frac{\pi x}{2}$;

(10)
$$\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2}$$

(11)
$$\lim_{n\to\infty} n\sqrt{n} \left(\tan\frac{x}{\sqrt{n}} - \sin\frac{x}{\sqrt{n}} \right)$$

(11)
$$\lim_{n \to \infty} n \sqrt{n} \left(\tan \frac{x}{\sqrt{n}} - \sin \frac{x}{\sqrt{n}} \right); \qquad (12) \lim_{n \to \infty} \left(m + \frac{x}{2} \circ s + \frac{x}{4} \cdot c \circ s + \frac{x}{2^n} \right).$$

10. 计算下列极限:

(1)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{x+3}$$
;

(2)
$$\lim_{x\to 0} \sqrt[x]{1-2x}$$
;

(3)
$$\lim_{x\to 0} (1+x^2)^{\frac{1}{1-\cos x}}$$
;

(4)
$$\lim_{x \to \infty} \left(\frac{2}{x^2} + \cos \frac{1}{x} \right)^{x^2}$$

(5)
$$\lim_{x\to 0} (1 + \tan x)^{\cot x}$$
;

(6)
$$\lim_{x\to 0} (1+3\tan^2 x)^{\cot^2 x}$$
;

(7)
$$\lim_{x\to\infty} \left(\frac{2x-1}{2x+1}\right)^x;$$

(8)
$$\lim_{x\to\infty} \left(\frac{x^2}{x^2-1}\right)^x;$$

$$(9) \lim_{x \to 0^+} \sqrt[x]{\cos \sqrt{x}} ;$$

(10)
$$\lim_{x \to a} \left(\frac{\sin x}{\sin a} \right)^{\frac{1}{x-a}}.$$

11. 当x→0时, 试确定下列无穷小对于x的阶数:

(1)
$$x^3 + 1000x^2$$
;

(2)
$$\sqrt[3]{x^2} - \sqrt{x}$$
:

(3)
$$\frac{x(x+1)}{1+\sqrt{x}}$$
;

(4)
$$\sqrt{a+x^3} - \sqrt{a} \ (a>0)$$
;

(5)
$$\sqrt{1+x^4} - \sqrt{1-x^4}$$
; (6) $\sqrt{x^2 + \sqrt[3]{x^4}}$;

(6)
$$\sqrt{x^2 + \sqrt[3]{x^4}}$$

$$(7)\sqrt{1+\tan x} - \sqrt{1-\sin x}$$
; (8) $(\cos x)^x - 1$.

$$(8) (\cos x)^x - 1$$

12. 求下列各题中的常数 a:

(1)
$$\lim_{n\to\infty} \left(\frac{n+a}{n-a}\right)^n = \sqrt{e} ;$$

$$(2) \lim_{x\to\infty} \left(\frac{x+2a}{x-a}\right)^x = 8;$$

(3)
$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = 4$$
;

(4)
$$\lim_{x\to 0} \left(1+\frac{x}{a}\right)^{\frac{1}{x}} = 3$$
;

- (5) 当 $x \to 0$ 时, $\sqrt[4]{1+ax^2} 1$ 与 $\cos x 1$ 是等价无穷小;
- (6) 当 $x \to 0^+$ 时, $\sqrt{x + \sqrt{x + \sqrt{x}}}$ 与 $\sqrt[4]{x}$ 是等价无穷小;
- (7) 当 $x \to 1$ 时,1-x与 $a(1-\sqrt[m]{x})$ ($m \in \mathbb{N}_{+}$)是等价无穷小.
- 13. 计算下列极限:

(1)
$$\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-1}{\sin 2x}$$
;

(2)
$$\lim_{x\to 0} \frac{1-\cos x}{(e^x-1)\cdot \ln(1+x)}$$
;

(3)
$$\lim_{x\to 0} \frac{x^2 \tan x}{\sqrt{1-x^2}-1}$$
;

(4)
$$\lim_{x \to 0} \frac{\ln(\sin^2 x + e^x) - x}{\ln(e^{2x} - x^2) - 2x};$$

(5)
$$\lim_{x\to 0} \frac{\ln\cos ax}{\ln\cos bx} \quad (a,b\neq 0);$$

(6)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+\alpha x} - \sqrt[m]{1+\beta x}}{x} \quad (m, n \in \mathbb{N}_+);$$

(7)
$$\lim_{x\to 0} \frac{\ln(1+x) + \ln(1-x)}{1-\cos x + \sin^2 x}$$
;

(8)
$$\lim_{x\to 0} (3e^{\frac{x}{x-1}} - 2)^{\frac{1}{x}}$$
;

(9)
$$\lim_{x\to 0} \left[\frac{2 + e^{\frac{1}{x}}}{\frac{2}{1 + e^{\frac{1}{x}}}} + \frac{\sin x}{|x|} \right];$$

(10)
$$\lim_{x \to 0} \left(\frac{2^x + 3^x}{2} \right)^{\frac{1}{x}}.$$

14. 求下列各题中的常数 a, b:

(1)
$$\lim_{x \to +\infty} (3x - \sqrt{ax^2 - bx + 1}) = 2$$
;

(2)
$$\lim_{x\to\infty} \left(\frac{x^2+1}{x+1} - ax - b \right) = 0$$
;

(3)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + ax} - \sqrt{bx^2 - 1} \right) = 1$$
.

15. 已知 $x \to 0$ 时,f(x) 是比 x 高阶的无穷小,且 $\lim_{x \to 0} \frac{\ln\left(1 + \frac{f(x)}{\sin 2x}\right)}{3^x - 1} = 5$,求 $\lim_{x \to 0} \frac{f(x)}{x^2}$.