Calibrated Model Criticism Using Split Predictive Checks

Jonathan Huggins

Boston University

with Jiawei Li

Model criticism a crucial part of Bayesian model building:

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient
 - 3. well-calibrated

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient
 - 3. well-calibrated
 - 4. well-powered

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient
 - 3. well-calibrated
 - 4. well-powered
- Problem: current methods fail to achieve all of these

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient
 - 3. well-calibrated
 - 4. well-powered
- Problem: current methods fail to achieve all of these
- This talk: <u>split predictive checks</u> (SPCs) can be the answer!

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient
 - 3. well-calibrated
 - 4. well-powered
- Problem: current methods fail to achieve all of these
- This talk: <u>split predictive checks</u> (SPCs) can be the answer!
 - develop single SPCs and divided SPCs

- Model criticism a crucial part of Bayesian model building:
 - ► Evaluates current model fit, insights for model elaboration, ...
- Want a model criticism method to be...
 - 1. general-purpose
 - 2. computationally efficient
 - 3. well-calibrated
 - 4. well-powered
- Problem: current methods fail to achieve all of these
- This talk: <u>split predictive checks</u> (SPCs) can be the answer!
 - develop single SPCs and divided SPCs
 - provide asymptotic theory showing good calibration & power

• Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{i.i.d.}}{\sim} P_{\circ}$

- Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{i.i.d.}}{\sim} P_{\circ}$
- Model $\{P_{\theta} : \theta \in \Theta\}$

- Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{i.i.d.}}{\sim} P_{\circ}$
- Model $\{P_{\theta} : \theta \in \Theta\}$
- KL-optimal parameter $\theta_{\star} := \sup_{\theta \in \Theta} \mathbb{E}\{\log p_{\theta}(x_1)\}$

- Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{1.1.d.}}{\sim} P_{\circ}$
- Model $\{P_{\theta} : \theta \in \Theta\}$
- KL-optimal parameter $\theta_{\star} := \sup_{\theta \in \Theta} \mathbb{E}\{\log p_{\theta}(x_1)\}$
- \bullet Goal: measure the mismatch between P_{\circ} and $P_{\theta_{\star}}$

- Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{1.1.d.}}{\sim} P_{\circ}$
- Model $\{P_{\theta} : \theta \in \Theta\}$
- KL-optimal parameter $\theta_{\star} := \sup_{\theta \in \Theta} \mathbb{E}\{\log p_{\theta}(x_1)\}$
- ullet Goal: measure the mismatch between P_{ullet} and $P_{ heta_{\star}}$
 - $H_0: P_{\theta_{\star}} = P_{\circ}$ (well-specified)

- Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{1.1.d.}}{\sim} P_{\circ}$
- Model $\{P_{\theta} : \theta \in \Theta\}$
- KL-optimal parameter $\theta_{\star} := \sup_{\theta \in \Theta} \mathbb{E}\{\log p_{\theta}(x_1)\}$
- Goal: measure the mismatch between $P_{ extstyle \circ}$ and $P_{ heta_{\star}}$
 - $H_0: P_{\theta_{\star}} = P_{\circ}$ (well-specified)
 - $H_1: P_\theta \neq P_\circ \ \forall \theta \in \Theta$ (misspecified)

- Data $\mathbf{x} = (x_1, ..., x_N)$ where $x_n \stackrel{\text{i.i.d.}}{\sim} P_{\circ}$
- Model $\{P_{\theta} : \theta \in \Theta\}$
- KL-optimal parameter $\theta_{\star} := \sup_{\theta \in \Theta} \mathbb{E}\{\log p_{\theta}(x_1)\}$
- Goal: measure the mismatch between $P_{ extstyle \circ}$ and $P_{ heta_{\star}}$
 - $H_0: P_{\theta_{\star}} = P_{\circ}$ (well-specified)
 - $H_1: P_\theta \neq P_\bullet \ \forall \theta \in \Theta$ (misspecified)
- p-values provide measure of fit only if they are well-calibrated!

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

Standard choices of m

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

- Standard choices of m
 - ► Prior PCs: $m_{prior}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi_0(d\theta)$ [Box (1980)]

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

Standard choices of m

► Prior PCs:
$$m_{prior}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi_0(d\theta)$$
 [Box (1980)]

► Posterior PCs:
$$m_{post}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi(d\theta \mid \mathbf{x})$$
 [Rubin (1984)]

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

- Standard choices of m
 - ► Prior PCs: $m_{prior}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi_0(d\theta)$ [Box (1980)]
 - ► Posterior PCs: $m_{post}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi(d\theta \mid \mathbf{x})$ [Rubin (1984)]
- Posterior predictive checks (PPCs) p-value is defined as

$$p_{PPC}(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m_{post}(\cdot | \mathbf{x})} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

- Standard choices of m
 - ► Prior PCs: $m_{prior}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi_0(d\theta)$ [Box (1980)]
 - ► Posterior PCs: $m_{post}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi(d\theta \mid \mathbf{x})$ [Rubin (1984)]
- Posterior predictive checks (PPCs) p-value is defined as

$$p_{PPC}(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m_{post}(\cdot | \mathbf{x})} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$

✓ Flexible, general-purpose, and computationally efficient

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified
statistic

- Standard choices of m
 - ► Prior PCs: $m_{prior}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi_0(d\theta)$ [Box (1980)]
 - ► Posterior PCs: $m_{post}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi(d\theta \mid \mathbf{x})$ [Rubin (1984)]
- Posterior predictive checks (PPCs) p-value is defined as

$$p_{PPC}(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m_{post}(\cdot | \mathbf{x})} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$

- √ Flexible, general-purpose, and computationally efficient
- not well-calibrated, conservative p-values [Robins et al (2000), Bayarri & Burger (2000), Moran et al (2022)]

A predictive p-value is given by

$$p(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$
user-specified statistic

- Standard choices of m
 - ► Prior PCs: $m_{prior}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi_0(d\theta)$ [Box (1980)]
 - ► Posterior PCs: $m_{post}(\mathbf{x_{pred}}) := \int p_{\theta}(\mathbf{x_{pred}}) \Pi(d\theta \mid \mathbf{x})$ [Rubin (1984)]
- Posterior predictive checks (PPCs) p-value is defined as

$$p_{PPC}(\mathbf{x}) = \mathbb{P}_{\mathbf{x}_{pred} \sim m_{post}(\cdot | \mathbf{x})} \{ T(\mathbf{x}) > T(\mathbf{x}_{pred}) \}$$

- √ Flexible, general-purpose, and computationally efficient
- not well-calibrated, conservative p-values [Robins et al (2000), Bayarri & Burger (2000), Moran et al (2022)]

double use

of data

• Model: $P_{\theta} = \text{Poiss}(\theta)$

- Model: $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{Poiss}(2)$

- Model: $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{Poiss}(2)$
- So, model is well-specified $[H_0]$ holds

- Model: $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{Poiss}(2)$
- So, model is well-specified $[H_0]$ holds

PPCs are not well-calibrated

- Model: $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{Poiss}(2)$
- So, model is well-specified $[H_0]$ holds

Geometric model for airline delay data for 2013 NYC departures

$$y \sim \text{Geom}(\theta), \quad \theta \sim \text{Beta}(0.1, 0.2)$$

Geometric model for airline delay data for 2013 NYC departures

$$y \sim \text{Geom}(\theta), \qquad \theta \sim \text{Beta}(0.1,0.2)$$

• Model is misspecified $[H_1]$ holds

Geometric model for airline delay data for 2013 NYC departures

$$y \sim \text{Geom}(\theta), \qquad \theta \sim \text{Beta}(0.1, 0.2)$$

• Model is misspecified $[H_1]$ holds

Geometric model for airline delay data for 2013 NYC departures

$$y \sim \text{Geom}(\theta), \qquad \theta \sim \text{Beta}(0.1, 0.2)$$

• Model is misspecified $[H_1]$ holds]

Geometric model for airline delay data for 2013 NYC departures

$$y \sim \text{Geom}(\theta), \qquad \theta \sim \text{Beta}(0.1, 0.2)$$

• Model is misspecified $[H_1]$ holds

 Single SPCs avoid double use of data by splitting data into "train" and "test" data

X

 Single SPCs avoid double use of data by splitting data into "train" and "test" data

• Single q-SPC p-value [see also Moran et al (2022)]:

 Single SPCs avoid double use of data by splitting data into "train" and "test" data

• Single q-SPC p-value [see also Moran et al (2022)]:

$$p_{SPC}(\mathbf{x}) := \mathbb{P}_{\mathbf{x}_{\mathbf{pred}} \sim m_{post}^{SPC}(\cdot | \mathbf{x}_{\mathbf{obs}})} \{ T(\mathbf{x}_{\mathbf{ho}}) > T(\mathbf{x}_{\mathbf{pred}}) \}$$

 Single SPCs avoid double use of data by splitting data into "train" and "test" data

• Single q-SPC p-value [see also Moran et al (2022)]:

$$p_{SPC}(\mathbf{x}) := \mathbb{P}_{\mathbf{x}_{\mathbf{pred}} \sim m_{post}^{SPC}(\cdot | \mathbf{x}_{\mathbf{obs}})} \{ T(\mathbf{x}_{\mathbf{ho}}) > T(\mathbf{x}_{\mathbf{pred}}) \}$$

√ flexible, computationally efficient, and general-purpose

 Single SPCs avoid double use of data by splitting data into "train" and "test" data

• Single q-SPC p-value [see also Moran et al (2022)]:

$$p_{SPC}(\mathbf{x}) := \mathbb{P}_{\mathbf{x}_{\mathbf{pred}} \sim m_{post}^{SPC}(\cdot | \mathbf{x}_{\mathbf{obs}})} \{ T(\mathbf{x}_{\mathbf{ho}}) > T(\mathbf{x}_{\mathbf{pred}}) \}$$

√ flexible, computationally efficient, and general-purpose

Question 1: How is calibration and power?

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem [LH22]: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, then $\mathbb{P}\{p_{SPC}(\mathbf{x}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem [LH22]: if $\nu_{\circ} \neq \nu(\theta_{\star})$, then power $\stackrel{P}{\rightarrow} 1$

Theorem [LH22]: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, then $\mathbb{P}\{p_{SPC}(\mathbf{x}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

 ρ depends on q, Fisher information matrices and asymptotic variances of T

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem [LH22]: if $\nu_{\circ} \neq \nu(\theta_{\star})$, then power $\stackrel{P}{\rightarrow} 1$

Theorem [LH22]: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, then $\mathbb{P}\{p_{SPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

• if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\stackrel{P}{\to}\alpha$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem [LH22]: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, then $\mathbb{P}\{p_{SPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

- if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\stackrel{P}{\to}\alpha$
- if model misspecified, then in general $\rho \neq 1$:

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem [LH22]: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, then $\mathbb{P}\{p_{SPC}(\mathbf{x}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

- if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\stackrel{P}{\to}\alpha$
- if model misspecified, then in general $\rho \neq 1$:
 - ▶ when uncertainty is under-estimated, $\rho \uparrow \infty$ and power \uparrow 1

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem [LH22]: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, then $\mathbb{P}\{p_{SPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

- if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\stackrel{P}{\to}\alpha$
- if model misspecified, then in general $\rho \neq 1$:
 - ▶ when uncertainty is under-estimated, $\rho \uparrow \infty$ and power \uparrow 1
 - when uncertainty is over-estimated, $\rho \downarrow 0$ and power $\downarrow 0$

• Model $P_{\theta} = \text{Poiss}(\theta)$

- Model $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \mathsf{NegBin}(2, \tau)$ and $P_{\circ} = \mathsf{Binom}(30, p)$

- Model $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{NegBin}(2, \tau)$ and $P_{\circ} = \text{Binom}(30, p)$
- Recall: when $\nu_{\circ}/\nu(\theta_{\star}) \neq 1$, asymptotic power = 1

- Model $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{NegBin}(2, \tau)$ and $P_{\circ} = \text{Binom}(30, p)$
- Recall: when $\nu_{\circ}/\nu(\theta_{\star}) \neq 1$, asymptotic power = 1

Possible poor power of single SPCs when misspecification is subtle

Possible poor power of single SPCs when misspecification is subtle

• Recall: if $\nu_{\circ} = \nu(\theta_{\star})$, asymptotic power depends on ρ

Possible poor power of single SPCs when misspecification is subtle

- Recall: if $\nu_{\circ} = \nu(\theta_{\star})$, asymptotic power depends on ρ
- For mean statistic $T(\mathbf{x}) = \sum_n x_n/N$, have $\nu_\circ = \nu(\theta_\star)$ and $\rho = \sigma_\circ/\sigma(\theta_\star)$

Possible poor power of single SPCs when misspecification is subtle

- Recall: if $\nu_{\circ} = \nu(\theta_{\star})$, asymptotic power depends on ρ
- For mean statistic $T(\mathbf{x}) = \sum_n x_n/N$, have $\nu_\circ = \nu(\theta_\star)$ and $\rho = \sigma_\circ/\sigma(\theta_\star)$

Possible poor power of single SPCs when misspecification is subtle

- Recall: if $\nu_{\circ} = \nu(\theta_{\star})$, asymptotic power depends on ρ
- For mean statistic $T(\mathbf{x}) = \sum_n x_n/N$, have $\nu_\circ = \nu(\theta_\star)$ and $\rho = \sigma_\circ/\sigma(\theta_\star)$

Possible poor power of single SPCs when misspecification is subtle

- Recall: if $\nu_{\circ} = \nu(\theta_{\star})$, asymptotic power depends on ρ
- For mean statistic $T(\mathbf{x}) = \sum_n x_n/N$, have $\nu_\circ = \nu(\theta_\star)$ and $\rho = \sigma_\circ/\sigma(\theta_\star)$

Question 2: Can we improve power to detect subtle misspecification?

 Goal: propose an SPC that yields larger power under subtle misspecification – while maintaining calibration properties

- Goal: propose an SPC that yields larger power under subtle misspecification – while maintaining calibration properties
- From previous theorems, we expect:

- Goal: propose an SPC that yields larger power under subtle misspecification – while maintaining calibration properties
- From previous theorems, we expect:
 - when model is **misspecified**, single SPC p-values are non-uniform (also true when ρ is small)

- Goal: propose an SPC that yields larger power under subtle misspecification – while maintaining calibration properties
- From previous theorems, we expect:
 - when model is **misspecified**, single SPC p-values are non-uniform (also true when ρ is small)
 - when model is correctly-specified, single SPC p-values are <u>uniform</u>

- Goal: propose an SPC that yields larger power under subtle misspecification – while maintaining calibration properties
- From previous theorems, we expect:
 - when model is **misspecified**, single SPC p-values are non-uniform (also true when ρ is small)
 - when model is correctly-specified, single SPC p-values are <u>uniform</u>
- Idea: Test for uniformity of single SPC p-values

 \mathbf{X}

Divided SPC p-value:

$$p_{dSPC}(\mathbf{x}) := p_{KS}(p_{SPC}(\mathbf{x}^{(1)}), ..., p_{SPC}(\mathbf{x}^{(k)}))$$

• Divided SPC p-value: Kolmogorov-Smirnov uniformity test p-value
$$p_{dSPC}(\mathbf{x}) := p_{KS}(p_{SPC}(\mathbf{x}^{(1)}), ..., p_{SPC}(\mathbf{x}^{(k)}))$$

 $p_{dSPC}(\mathbf{x}) := p_{KS}(p_{SPC}(\mathbf{x}^{(1)}), ..., p_{SPC}(\mathbf{x}^{(k)}))$

Question 3: How is calibration and power of divided SPCs?

Theorem [LH22]: if H_0 holds, then $\mathbb{P}\{p_{dSPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \alpha$

Theorem [LH22]: if H_0 holds, then $\mathbb{P}\{p_{dSPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \alpha$

Theorem [LH22]: if $\nu_{\circ} \neq \nu(\theta_{\star})$ or $\rho \neq 1$ (so H_1 holds), then power $\stackrel{P}{\to} 1$

Theorem [LH22]: if H_0 holds, then $\mathbb{P}\{p_{dSPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \alpha$

Theorem [LH22]: if
$$\nu_{\circ} \neq \nu(\theta_{\star})$$
 or $\rho \neq 1$ (so H_1 holds), then power $\stackrel{P}{\to} 1$

Question 4: How to scale k in divided SPCs?

Theorem [LH22]: if H_0 holds, then $\mathbb{P}\{p_{dSPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \alpha$

Theorem [LH22]: if
$$\nu_{\circ} \neq \nu(\theta_{\star})$$
 or $\rho \neq 1$ (so H_1 holds), then power $\stackrel{P}{\to} 1$

Question 4: How to scale k in divided SPCs?

Condition: theorems hold only if $k = O(N^{\beta - \varepsilon})$ [for some $\varepsilon > 0$]

Theorem [LH22]: if H_0 holds, then $\mathbb{P}\{p_{dSPC}(\mathbf{x}) < \alpha\} \xrightarrow{P} \alpha$

Theorem [LH22]: if $\nu_{\circ} \neq \nu(\theta_{\star})$ or $\rho \neq 1$ (so H_1 holds), then power $\stackrel{P}{\to} 1$

Question 4: How to scale k in divided SPCs?

 $\beta = 1/2$ if model is smooth enough and higher-order moments exist

Condition: theorems hold only if $k = O(N^{\beta - \varepsilon})$ [for some $\varepsilon > 0$]

Theorem [LH22]: if H_0 holds, then $\mathbb{P}\{p_{dSPC}(\mathbf{x}) < \alpha\} \stackrel{P}{\to} \alpha$

Theorem [LH22]: if
$$\nu_{\circ} \neq \nu(\theta_{\star})$$
 or $\rho \neq 1$ (so H_1 holds), then power $\stackrel{P}{\to} 1$

Question 4: How to scale k in divided SPCs?

 $\beta = 1/2$ if model is smooth enough and higher-order moments exist

Condition: theorems hold only if $k = O(N^{\beta - \varepsilon})$ [for some $\varepsilon > 0$]

• In practice, we set $k = N^{0.49}$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

• Model $P_{\theta} = \operatorname{Poiss}(\theta)$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

- Model $P_{\theta} = \text{Poiss}(\theta)$
- Generate data from $P_{\circ} = \mathsf{NegBin}(2, \tau)$ and $P_{\circ} = \mathsf{Binom}(30, p)$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

_over-dispersed

- $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{NegBin}(2, \tau)$ and $P_{\circ} = \text{Binom}(30, p)$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

over-dispersed

- $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$
- Generate data from $P_{\circ} = \text{NegBin}(2, \tau)$ and $P_{\circ} = \text{Binom}(30, p)$

under-dispersed

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

 $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$

- over-dispersed under-dispersed
- Generate data from $P_{\circ} = \text{NegBin}(2, \tau)$ and $P_{\circ} = \text{Binom}(30, p)$
- For mean statistic $T(\mathbf{x}) = \sum_{n} x_{n}/N$, we have

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

 $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$

over-dispersed

- Generate data from $P_{\circ} = \mathsf{NegBin}(2, \tau)$ and $P_{\circ} = \mathsf{Binom}(30, p)$
- For mean statistic $T(\mathbf{x}) = \sum_{n} x_{n}/N$, we have
 - $\nu_{\circ} = \nu(\theta_{\star})$ and $\rho = \sigma_{\circ}/\sigma(\theta_{\star})$

under-dispersed

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

 $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$

over-dispersed

under-dispersed

- Generate data from $P_{\circ} = \mathsf{NegBin}(2, \tau)$ and $P_{\circ} = \mathsf{Binom}(30, p)$
- For mean statistic $T(\mathbf{x}) = \sum_{n} x_n / N$, we have

•
$$\nu_{\circ} = \nu(\theta_{\star})$$
 and $\rho = \sigma_{\circ}/\sigma(\theta_{\star})$

Recall:

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

- $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$
- Generate data from $P_{\circ} = \mathsf{NegBin}(2, \tau)$ and $P_{\circ} = \mathsf{Binom}(30, p)$
- For mean statistic $T(\mathbf{x}) = \sum_{n} x_{n}/N$, we have
 - $\nu_{\circ} = \nu(\theta_{\star})$ and $\rho = \sigma_{\circ}/\sigma(\theta_{\star})$
- Recall:
 - Single SPCs: if $\nu_{\circ} = \nu(\theta_{\star})$ asymptotic power depends on ρ

under-dispersed

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \quad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

 $\bullet \ \operatorname{Model} P_\theta = \operatorname{Poiss}(\theta)$

_over-dispersed

- Generate data from $P_{\circ} = \mathsf{NegBin}(2, \tau)$ and $P_{\circ} = \mathsf{Binom}(30, p)$
- For mean statistic $T(\mathbf{x}) = \sum_{n} x_{n}/N$, we have
 - $\nu_{\circ} = \nu(\theta_{\star})$ and $\rho = \sigma_{\circ}/\sigma(\theta_{\star})$
- Recall:
 - Single SPCs: if $\nu_{\circ} = \nu(\theta_{\star})$ asymptotic power depends on ρ
 - Divided SPCs: asymptotic power 1

under-dispersed

Divided SPCs have superior power

Divided SPCs have superior power

Divided SPCs have superior power

✓ If $\nu_{\circ} = \nu(\theta_{\star})$ asymptotic power of single SPC depends on ρ

Divided SPCs have superior power

- ✓ If $\nu_{\circ} = \nu(\theta_{\star})$ asymptotic power of single SPC depends on ρ
- ✓ Divided SPCs have asymptotic power 1

Single SPCs

Divided SPCs

Single SPCs

Divided SPCs

Compute posterior once

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Asymptotic power could be small (if subtle misspecification)

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Asymptotic power could be small (if subtle misspecification)

Asymptotic power = 1

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Asymptotic power could be small (if subtle misspecification)

Asymptotic power = 1

Doesn't requires much data (single "train-test" split)

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Asymptotic power could be small (if subtle misspecification)

Asymptotic power = 1

Doesn't requires much data (single "train-test" split)

Requires more data (compute k single SPC p-values)

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Asymptotic power could be small (if subtle misspecification)

Asymptotic power = 1

Doesn't requires much data (single "train-test" split)

Requires more data (compute k single SPC p-values)

Single SPCs are always a good place to start

Single SPCs

Divided SPCs

Compute posterior once

Compute posterior k times (with k times smaller datasets)

Asymptotic power could be small (if subtle misspecification)

Asymptotic power = 1

Doesn't requires much data (single "train-test" split)

Requires more data (compute k single SPC p-values)

- Single SPCs are always a good place to start
- Consider divided SPCs if single SPCs inconclusive

If data are structured: must decide how to split the data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

$$x_1 \ldots x_{\lfloor N/2 \rfloor} x_{\lfloor N/2 \rfloor+1} \ldots x_N$$

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

$$x_1 \dots x_{\lfloor N/2 \rfloor} \vdots x_{\lfloor N/2 \rfloor+1} \dots x_N$$

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

interpolated single SPC

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

interpolated single SPC

$$x_1$$
 x_2 \dots x_i x_{i+1} \dots x_{N-1} x_N

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

- If data are structured: must decide how to split the data
- Example: single 0.5-SPC with time-series data

• Airline delays data (N = 327,346)

- Airline delays data (N = 327,346)
- Consider negative binomial regression model

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance
 - Response: arrival delays in minutes

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance
 - Response: arrival delays in minutes
 - Success rate statistic $T(\mathbf{x}) := N/\sum_{n} x_n$

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance
 - Response: arrival delays in minutes
 - Success rate statistic $T(\mathbf{x}) := N/\sum_{n} x_n$

Methods	P-values
PPC	0.132
Interpolated single 0.5-SPC	0.626
Extrapolated single 0.5-SPC	0.000
Double-interpolated divided 0.5-SPC, $k = N^{0.49}$	0.000
Interpolated divided extrapolated 0.5-SPC, $k = N^{0.49}$	0.001

model fits

data well

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance
 - Response: arrival delays in minutes
 - Success rate statistic $T(\mathbf{x}) := N/\sum_{n} x_n$

Methods	P-values
PPC	0.132
Interpolated single 0.5-SPC	0.626
Extrapolated single 0.5-SPC	0.000
Double-interpolated divided 0.5-SPC, $k = N^{0.49}$	0.000
Interpolated divided extrapolated 0.5-SPC, $k = N^{0.49}$	0.001

model <u>does not</u> predict future well

model fits

data well

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance
 - Response: arrival delays in minutes
 - Success rate statistic $T(\mathbf{x}) := N/\sum_{n} x_n$

model fits data well

Methods	P-values
PPC	0.132
Interpolated single 0.5-SPC	0.626
Extrapolated single 0.5-SPC	0.000
Double-interpolated divided 0.5-SPC, $k = N^{0.49}$	0.000
Interpolated divided extrapolated 0.5-SPC, $k = N^{0.49}$	0.001

both divided SPCs pick up misspecification

model <u>does not</u> predict future well

SPCs for time series data

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: month, day of week, distance
 - Response: arrival delays in minutes
 - Success rate statistic $T(\mathbf{x}) := N/\sum_{n} x_n$

model fits data well

Methods	P-values
PPC	0.132
Interpolated single 0.5-SPC	0.626
Extrapolated single 0.5-SPC	0.000
Double-interpolated divided 0.5-SPC, $k = N^{0.49}$	0.000
Interpolated divided extrapolated 0.5-SPC, $k = N^{0.49}$	0.001

both divided SPCs pick up misspecification

model <u>does not</u> predict future well

Different SPCs offer different (potentially useful!) insights

✓ Unlike PPCs, SPCs are well-calibrated and well-powered...

✓ Unlike PPCs, SPCs are **well-calibrated and well-powered...** while also being general-purpose, computational efficient, and flexible

- ✓ Unlike PPCs, SPCs are **well-calibrated and well-powered...** while also being general-purpose, computational efficient, and flexible
- √ Single SPCs and divided SPCs offer complimentary strengths

- ✓ Unlike PPCs, SPCs are **well-calibrated and well-powered...**while also being general-purpose, computational efficient, and flexible
- ✓ Single SPCs and divided SPCs offer complimentary strengths
- ✓ SPCs introduce extra flexibility with different structured data and complex models such as time series, hierarchical, spatial data...

- ✓ Unlike PPCs, SPCs are **well-calibrated and well-powered...**while also being general-purpose, computational efficient, and flexible
- ✓ Single SPCs and divided SPCs offer complimentary strengths
- ✓ SPCs introduce extra flexibility with different structured data and complex models such as time series, hierarchical, spatial data...
- More to do: non-asymptotic results, non-normal limiting distributions, cross-validation versions, ...

- ✓ Unlike PPCs, SPCs are **well-calibrated and well-powered...**while also being general-purpose, computational efficient, and flexible
- √ Single SPCs and divided SPCs offer complimentary strengths
- ✓ SPCs introduce extra flexibility with different structured data and complex models such as time series, hierarchical, spatial data...
- More to do: non-asymptotic results, non-normal limiting distributions, cross-validation versions, ...
- J. Li and J. H. Huggins (2022). Calibrated Model Criticism Using Split Predictive Checks. *arXiv:2203.15897 [stat.ME]*

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\circ}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\bullet}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\circ}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

where
$$\Sigma_{\star} = \operatorname{Cov}\{ \nabla \mathcal{E}(\theta_{\star}; X) \}$$
 and $J_{\star} = - \mathbb{E}\{ \nabla^{\otimes 2} \mathcal{E}(\theta_{\star}; X) \}$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\circ}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

where
$$\Sigma_{\star} = \text{Cov}\{ \nabla \ell(\theta_{\star}; X) \}$$
 and $J_{\star} = -\mathbb{E}\{ \nabla^{\otimes 2} \ell(\theta_{\star}; X) \}$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

q controls the weights of two forms of mismatch

$$\rho^2 := \frac{q\sigma_{\circ}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

where
$$\Sigma_{\star} = \text{Cov}\{ \nabla \ell(\theta_{\star}; X) \}$$
 and $J_{\star} = -\mathbb{E}\{ \nabla^{\otimes 2} \ell(\theta_{\star}; X) \}$

• if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\overset{P}{\to}\alpha$

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\circ}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

where
$$\Sigma_{\star} = \text{Cov}\{ \nabla \ell(\theta_{\star}; X) \}$$
 and $J_{\star} = -\mathbb{E}\{ \nabla^{\otimes 2} \ell(\theta_{\star}; X) \}$

- if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\overset{P}{\to}\alpha$
- if model misspecified, then in general $\rho \neq 1$:

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\circ}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

where
$$\Sigma_{\star} = \operatorname{Cov}\{ \nabla \ell(\theta_{\star}; X) \}$$
 and $J_{\star} = -\mathbb{E}\{ \nabla^{\otimes 2} \ell(\theta_{\star}; X) \}$

- if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\overset{P}{\to}\alpha$
- if model misspecified, then in general $\rho \neq 1$:
 - when uncertainty is under-estimated, $\rho\uparrow\infty$ and power \uparrow 1

$$\nu_{\circ} := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\circ}(d\mathbf{x}), \qquad \nu(\theta_{\star}) := \lim_{N \to \infty} \int T(\mathbf{x}) P_{\theta_{\star}}(d\mathbf{x})$$

Theorem: if
$$\nu_{\circ} = \nu(\theta_{\star})$$
, $\mathbb{P}\{p_{SPC}(\mathbf{X}) < \alpha\} \xrightarrow{P} \Phi\left(\frac{z_{\alpha}}{\rho}\right)$

$$\rho^2 := \frac{q\sigma_{\bullet}^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \Sigma_{\star} J_{\star}^{-1} \dot{\nu}(\theta_{\star})}{q\sigma(\theta_{\star})^2 + (1 - q)\dot{\nu}(\theta_{\star})^T J_{\star}^{-1} \dot{\nu}(\theta_{\star})}$$

where
$$\Sigma_{\star} = \operatorname{Cov}\{ \nabla \mathcal{E}(\theta_{\star}; X) \}$$
 and $J_{\star} = - \mathbb{E}\{ \nabla^{\otimes 2} \mathcal{E}(\theta_{\star}; X) \}$

- if model correctly specified, then $\rho=1$ and $\mathbb{P}\{p_{SPC}(\mathbf{x})<\alpha\}\overset{P}{\to}\alpha$
- if model misspecified, then in general $\rho \neq 1$:
 - when uncertainty is under-estimated, $\rho \uparrow \infty$ and power $\uparrow 1$
 - when uncertainty is over-estimated, $\rho \downarrow 0$ and power $\downarrow 0$

Airline delays data (N = 327,346)

- Airline delays data (N = 327,346)
- Consider negative binomial regression model

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: Month, Day of Week and Distance

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: Month, Day of Week and Distance
 - Response: Arrival delays in minutes

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: Month, Day of Week and Distance
 - Response: Arrival delays in minutes

- Airline delays data (N = 327,346)
- Consider negative binomial regression model
 - Covariates: Month, Day of Week and Distance
 - Response: Arrival delays in minutes

$$X_1 \cdots X_i \cdots X_N$$

$$X_1 \cdots X_i \cdots X_N$$

Divided SPC

interpolated dividing