machine learning 笔记

徐世桐

1 基础定义

二元分类:输出分类个数为 2 **多元分类**:输出分类个数不限

one-versus-the-rest OvR: 计算属于每一分类的可能性,取可能性最大的分类为输出分类 one-versus-one OvO: 对所有分类两两使用二元分类,每一分类器训练只需一部分数据

multilabel 多标签分类:目标检测,对一图像中的物体加 label **multioutput 多类分类**:多标签分类,每一标签可包含多种信息

learning schedule: 根据迭代次数更新学习率

early stopping: 提早结束训练

对于每一 epoch, 当验证集 MSE 值增高时,证明开始 overfit,停止训练

即在 epoch-error 图中泛化误差最低时停止训练

在训练中使用正则化代价函数,训练结束后测试中代价函数不使用正则化项

2 数学计算

 $MSE = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \bar{x})^2$

rigid regression: 回归方法, $J(\theta) = MSE(\theta) + \frac{\alpha}{2} \sum_{i} \theta_{i}^{2}$

降低所有权重值

lasso regression: 回归方法, $J(\theta) = MSE(\theta) + \alpha \sum_i |\theta_i|$

降低不重要的权重值

elastic net: 回归方法, $J(\theta) = MSE(\theta) + \gamma \alpha \sum_{i} |\theta_{i}| + (1 - \gamma) \frac{\alpha}{2} \sum_{i} \theta_{i}^{2}$

Normal Equation: $\hat{\theta} = (X^T X)^{-1} X^T y$

直接得到权重 $\hat{\theta}$,适用于仅有一个输出值的模型

X 为 (批量大小,参数个数) 输入矩阵, y 为 (批量大小,) 向量

当 X^TX 无逆矩阵时,用 psudo inverse $\hat{\theta} = X^+y$

pseudo inverse:

对矩阵 $X = USV^T$, pseudo inverse $X^+ = VS^+U^T$ 。 S^+ 求法:

- 1. 对所有 S 元素,接近 0 的值赋为 0
- 2. 对所有非零元素取倒数
- 3. 取矩阵转置,得到 S^+

log loss: 代价函数

$$J(\theta) = -\frac{1}{|B|} \sum_{i=1}^{|B|} [y^{(i)}log(\hat{p}^{(i)}) + (1-y^{(i)})log(1-\hat{p}^{(i)})]$$

3 分类模型 2

标签值 $y^{(i)}$ 为离散 1/0 值,计算值 $\hat{p}^{(i)} \in [0,1]$

微分: ** 推导 **

$$\frac{dJ(\theta)}{d\theta_{i}} = \frac{1}{|B|} \sum_{i=1}^{|B|} (\hat{p}^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Gaussian Radial Basis Function RBF: 一种 similarity function

$$\phi_{\gamma}(x, l) = exp(-\gamma ||x - l||^2)$$

l 为 landmark, 即 ϕ_{γ} 由一样本 x_i 和一 landmark 的距离得来

Lagrange multipliers method 拉格朗日乘数法

将 有前提的多项式求最值 问题转化为 无前提多项式最值问题 定义:

对输入向量 W, $g(W) \ge 0$ 为 constrain。目标为在满足 $g(W) \ge 0$ 的前提下取 f(W) 最值 Lagrange function $\mathcal{L}(W,\alpha) = f(W) - \alpha(g(W))$

 α 为需要求解的变量之一,参与最终计算 W 的值。

当有多个 constrain $g^{(i)}(W)$ 时, $\vec{\alpha}$ 为向量,求偏导对每一 $\vec{\alpha}^{(i)}$ 求导

只有当 $\alpha \ge 0$ 或每一 $\vec{\alpha}^{(i)} \ge 0$, 结果才有效

 $\vec{\alpha}^{(i)} = 0$ 代表对应的 constrain $g^{(i)}(W)$ 为一个 support vector

计算:

对每一 W 的元素 和 α 取偏导,即向量

$$\begin{bmatrix} \frac{d\mathcal{L}(W,\alpha)}{dw_1} \\ \frac{d\mathcal{L}(W,\alpha)}{dw_n} \\ \dots \\ \frac{d\mathcal{L}(W,\alpha)}{dw_n} \\ \frac{d\mathcal{L}(W,\alpha)}{d\alpha} \end{bmatrix}, 计算向量 = \vec{0} 时的 W, \alpha 取值$$

3 分类模型

logistic regression:

判断输入符合每一输出类别的可能性,

前向计算:

$$1.\hat{p} = \sigma(\theta^T x + b)$$
$$2.\hat{y} = 1(if\hat{p} \ge 0.5)$$
$$= 0(if\hat{p} < 0.5)$$

代价函数为 log loss

SVM

找到分界,分离多种数据

support vector: 最靠近分界线的样本

hard margin classification 硬性分类:限制数据必须被分界隔开,同一类数据不可同时出现在分界 2端

soft margin classification:与硬性分类相反,避免被 outlier 离群值影响

前向计算: $\hat{p} = f(x_1, x_2, ...)$, 其余同 logistic regression

区别: f 可为 polynomial, 非线性函数。可使用 kernel trick

线性分类训练: $\hat{p} = W^T x + b$, W 为参数**向量**

硬性分类:

3 4 决策树

||W||2 代表线性函数斜率

最小化 $\frac{1}{5}W^TW$,使得分界平面的斜率最小,最大化分界线和两种数据的距离

前提:对每一样本 $i, 1.y^{(i)}\hat{p}^{(i)} \geq 1$,即标签和计算结果相同

求解: 1. 直接解以上带前提的不等式

'当样本数高于参数数量时使用,由于 dual form 的复杂度为 $O(|S|^2)$ - $O(|S|^3)$,直接解复杂 度为 O(|S|)

2. 使用拉格朗日乘数法得到 dual form,其中 $\vec{\alpha}$ 为向量。 $\mathcal{L} = \frac{1}{2}W^TW - \sum_{i=1}^{|B|} \vec{\alpha}^{(i)}(y^{(i)}\hat{p}^{(i)} - 1)$ 使偏导向量为 $\vec{0}$,得到 $2.W = \sum_{i=1}^m \vec{\alpha}^{(i)} y^{(i)} x^{(i)}$, $3.\sum_{i=1}^m \vec{\alpha}^{(i)} y^{(i)} = 0$ 带入得 $\mathcal{L}(W, \vec{\alpha}) = \frac{1}{2} \sum_{i=1}^{|B|} \sum_{j=1}^{|B|} \vec{\alpha}^{(i)} \vec{\alpha}^{(j)} y^{(i)} y^{(j)} x^{(i)T} x^{(j)} - \sum_{i=1}^{|B|} \vec{\alpha}^{(i)}$,解 $\vec{\alpha}$

解 W: 由 $\vec{\alpha}$ 带入 2. 式计算 解 b: 由于所有 support vector $x^{(i)}$ 满足 1. 式,则对所有 support vector 计算 b 取平均值

 $b = E(y^{(i)} - W^T x^{(i)})$

软性分类:

最小化 $\frac{1}{2}W^TW + C\sum_{i=1}^{|B|} \zeta_i$

 ζ_i 定义第 i 样本被忽视为误差样本的可能性,C 定义忽视率相对斜率的权重

前提: 对每一样本 $i, y^{(i)}\hat{p}^{(i)} > 1 - \zeta^{(i)}$

非线性分类方法:

- 使用 polynomial 做 f

必须使用 dual form 求解,目的为对 $\phi(x)$ 得到线性权重和偏差,求解使用 dual form,其中包含 $\phi(a)^T \cdot \phi(b)$ 项即可使用 kernel method

- 使用 similarity function:

选择多个 landmark $\mathcal{L} = l_1, l_2, ..., l_n$,对每一样本 x_i 计算其和每一 l_j 的 ϕ_{γ} 值 $\phi_{\gamma}(x_i, l_j)$

每个样本用新的向量 $x_i' = \begin{bmatrix} \phi_\gamma(x_i, l_1) \\ \phi_\gamma(x_i, l_2) \\ \dots \\ \phi_\gamma(x_i, l_2) \end{bmatrix}$ 表示。新的向量组成训练集,进行 SVM 训练

kernel:

定义: 能够从输入向量 a,b, 不通过计算 $\phi(a),\phi(b)$ 直接得到点乘结果 $\langle \phi(a),\phi(b)\rangle$ 的函数 例: ** 是否通过取 linear 为 phi 得到 kernel 函数 **

linear: $f(a,b) = a^T b$

polynomial: $f(a,b) = (\gamma a^T b + r)^d$

Gaussian RBF: $f(a,b) = exp(-\gamma||a-b||^2)$

Sigmoid: $f(a,b) = tanh(\gamma a^T b + r)$

决策树

定义:

节点 N_i :

节点条件: 判断样本进入哪一子节点, 叶节点没有节点条件 sample 属性 S_i : 有多少样本**进入** N_i **节点**,非满足 N_i 节点条件的样本个数 value 属性 $V_i = v_{i1}, ..., v_{in}$: S_i 进入节点的样本中 v_i 个属于第 i 分类

gini 属性 G_i : 数据混杂度, $G_i = 1 - \sum_{i=1}^n (\frac{v_{i,i}}{S_i})^2$

子节点仅有2个,对应节点条件为true/false的情况

分类方式:数据从根节点开始,根据节点条件传向对应子节点。直到到达叶节点。叶节点中 V 属性中最大项即数据分类

CART algorithm 创建决策树:

根节点初始化为叶节点,没有节点条件

对每一叶节点 S_i 选取一特征 k,一特征门槛 t_k ,将样本集分为 2 组 S_{true} , S_{false} 。

选取 (k, t_k) 方式: 使代价函数 $J(k, t_k) = \frac{S_{true}}{S_i} G_{true} + \frac{S_{false}}{S_i} G_{false}$ 最小

直到决策树层数达到固定上限,或对所有分组条件 (k,t_k) , $J(k,t_k) \geq G_i$

使用决策树进行 regression

输入样本,分类进不同值域

更改:

每一节点 value 值为一常数,为 S_i 样本的平均值。 输出值为叶节点的 value,非最大 value 对应的类别 G_i 为 S_i 样本的方差 $\frac{1}{S_i}\sum_{j=1}^{S_i}(x_i^{(j)}-\bar{x}_i)^2$

5 ensemble learning & 随机森林

ensemble learning: 使用一组预测机制进行学习,预测机制可为不同算法 random forest 随机森林:

训练方法: 随机选择 n 个训练子集 $s_1, s_2, ..., s_n \in S$, 训练 n 个决策树 $t_1, ..., t_n$ 。

前向计算:对 n 个树产生的 n 个分类结果,选取投票最多的一分类作为结果

训练子集选取: bagging: 子集可重复选取一样本, pasting: 样本不重复

out-off-bag oob 样本: 当使用 bagging 选取时,平均只有 $1-e^{-1}$ 样本被选择,余下样本被称为 oob 样本

优化:

random patches 随机贴片:对特征和训练集同时取子集进行训练

random subspace 随机子空间:对特征取子集,对整个总训练集进行训练

extra-trees 极度随机森林: '使用随机 t_k 而不使用最小化数据混杂度的 t_k '

k feature importance 特征重要性: 对所有取 k 为判断条件的节点 N_i , 计算加权平均值 $\sum_i (S_i \text{imprity})$ 降低百分比)

(hypothesis) boosting: 合并多个预测机制据结果的方法

AdaBoost: 串联预测机制,对上一预测机制遗漏的样本加更高权重,进行训练 gradient boosting

维度下降 5

维度下降 6

根据 manifold assumption, 高维空间中训练集参数点稀疏。则将数据压缩到低维 principle component analysis PCA:

对训练集参数矩阵取 $SVDUSV^T$

取 V 中前 d 个向量 $V' = [v_1, ..., v_d]$,新训练集 $A_{compressed} = A_{origin}V'$

从 新训练集 延展回 原训练集纬度: $A_{expand} = A_{compressed}V^{T}$

Incremental PCA: 无需整个训练集存在内存中即可进行 SVD

kernel PCA: **

local linear Embedding LLE:

对每一样本 $x^{(i)}$ 寻找 k 个相邻样本 相邻样本 index 的集合称 $C_{x^{(i)}}$

构建 (|S|, |S|) 矩阵 W:

每一行向量 $[W_{i1},...,W_{i|S|}]$ 满足 $x^{(i)} - \sum_{j \in C} W_{ij} x^{(j)}$

每一行向量 W_i 求和为 1: $\sum_{i=1}^{|S|} W_i = 1$

由 W 创建新训练集:

今 $z^{(i)}$ 为 $x^{(i)}$ 在低维的投影

使所有 $z^{(i)}$ 满足最小化 $(z^{(i)} - \sum_{j=1}^{|B|} w_{ij} z^{(j)})^2$

7 无监督学习

clustering

K-mean:

将数据分为 k 个 cluster, 每个 cluster 有中心点称 centroid 算法:

- 1. 初始化随机选择 k 个样本位置做 centroid
- 2. 分配样本:每个样本分入距离最近的 centroid 的 cluster
- 3. 更新 centroid: 新 centroid 为 cluster 中样本坐标平均值。

重复第 2.3. 步,直至 centroid 不再移动

优化:

多次随机初始化 centroid,选择其中 inertia 最小的 centroid 取法进行训练 interia = $\frac{1}{|S|} \sum_{x} (C_x - x)^2$.

 C_x 为样本 x 距离最近的 centroid

k-mean++ 初始化 centroid:

- 1. 随机选择 1 个样本做 centroid
- 2. 剩余每一样本 $x^{(i)}$ 有 $\frac{D(x^{(i)})}{\sum_{j=1}^{|S|} D(x^{(j)})}$ 几率被选做新 centroid $D(x^{(i)})$ 为样本 $x^{(i)}$ 距离最近的 centroid 的距离
- 3. 重复 2. 步直至得到 k 个 centroid

(在尝试多种 cluster 训练后) 选择 cluster 数量 k:

sihouette score: 所有样本的 sihouette coefficient 的均值

一样本 $x^{(i)}$ 的 sihouette coefficient: $\frac{b-a}{max(a,b)}$ a 为 $x^{(i)}$ 到同一 cluster 内所有样本的平均距离 8 GAN 对抗网络 6

$$b = min(E_{x^{(j)} \in othercluster}(D(x^{(i)} - x^{(j)})))$$

sihouette score [−1,1], 偏向取 score 高的 cluster 数

使用 k-mean 进行数据预处理:

将数据首先进行 k-mean 分类,将每一样本替换为 样本到最近的 centroid 距离,传入另一模型进行学习

用于半无监督学习:将数据进行 k-mean 分类,从每一 cluster 选取离 centroid 最近的样本,产生大小为 k 的训练集。则只需得到 k 个样本的标签即可进行训练

DBSCAN

适用于一 cluster 内样本密度较高的训练集

- 1. 对每一样本 x_i 计算集合 $S_{i\varepsilon}$,称 ε neighbourhood,包含所有距离在 ε 内的其他样本 $|S_{i\varepsilon}| >$ 超参数 s_{min} 的样本称 core instance
- 2. 所有属于同一 $S_{i\varepsilon}$ 的样本判为属于同一 cluster,当一样本 x_i 同时存在样本 x_i, x_j 的 ε neighbourhood 中时,合并 $S_{i\varepsilon}, S_{i\varepsilon}$ 。
 - 3. 没有被分配进任何 $S_{i\varepsilon}$ 的样本判为异常值

Gaussian Mixtures

GM Model: 假设所有样本都由多个正态分部产生

8 GAN 对抗网络

基本结构:

generator:得到正则噪声,生成伪数据。

discriminator, 从实际数据集或 generator 得到数据判断真伪 (是否来自实际数据集)。

一次训练:

1.discriminator 从数据集得到一批量真实数据 和 一批量伪数据。使用二元交叉熵损失函数训练目标为:对伪数据输出 0 真数据 1

2.generator 生成图像

目标为生成 discriminator 输出为 1 的数据

Deep Convolutional GAN

9 RL 强化学习

基本定义

程序在 environment 环境中根据观测得到的 state 状态,选择 action 行为,得到 reward 反馈 模型整体符号定义 <A, S, R, P>

Action space A

State space S

Reward $R: \sum \times A \times S \to R$

Transition $P: \sum \times A \to S$

第 i 决策的符号定义:

 $a_i \in A$ 采取的行为

9 RL 强化学习 7

 $r_i \in R$ 得到的 reward,每一行为可以立即得到反馈值

exploring 探索: 模型尝试新行为

exploiting 利用:模型使用已知高反馈行为

policy

根据观测选择 a_i 的算法

stochastic policy: policy 中有随机性

随机性提高模型 explore 新行为

generic algorithm: 遗传算法

policy gradients: 对参数求导, 更新参数

credit assignment:

对每一决策分配 discounted reward, 代表此决策对随后几次决策的反馈值影响 定义:

l 此次试验一共包含的决策数

计算:

第 l-1 决策有决策有 discounted reward: $dr_i = r_i$

第 i 决策有 discounted reward: $dr_i = r_i + \gamma dr_{i+1}$

正则化:对所有实验中每一次决策 r_i 取整体平均值,方差,求标准化

neural network policy

前向传播:使用神经网络得到行为可能性,根据可能性选择行为。属于 generic gradient policy **迭代**:

定义:一次决策

- 1. 从 policy 得到行为可能性
- 2. 代价函数根据 采取的行为 和 采取的行为可能性 计算代价值
- 3. 根据代价函数求斜率,斜率使神经网络输出可能性更偏向采取的行为。但不立即使用斜率
- 1. 随机初始化 1 次模型,对 n 个随机初始化环境进行试验,每一试验中包含多个决策每一环境得到决策数不一定相同,取决于试验中进行的决策次数
- 2. 对每一决策求 discounted reward
- 3. 对每一参数,斜率为 n 次训练中所有决策 对 此参数的斜率 的加权平均值。权重为 discounted reward
 - 4. 使用权重更新参数值

Markov Decison Process MPD

每一状态 s_i 有可执行的行为集合 $A_{s_i} \subseteq A$ 。不同状态行为集合可有交集 行为 $a_{ij} \in A_{s_i}$ 代表状态 s_i 执行行为 a_j 。执行 a_{ij} 后有 p_{a_{ij},s_k} 几率到达状态 s_k optimal state value $V^*(s_i)$:

模型到达状态 s_i 后 1. 选择最理想的 a_{ij} 能得到的 discounted reward 总和 $V^*(s_i) = max_j \sum_s [p_{a_{ij},s_k}(R(s_i,a_{ij},s_j) + \gamma \cdot V^*(s_j))]$

Q-value iteration algorithm:

得到 从 s_i 选择 a_{ij} 后期望的 discounted reward 值

迭代: $Q_{n+1}(s_i, a_{ij}) = \sum_j [p(a_{ij}, s_j)(R(s_i, a_{ij}, s_j) + \gamma \cdot max_{a_{jk}}(Q_n(s_k, a_{jk})))]$

policy: 状态为 s_i 时选取 $a_{ij} = max_{a_{ij}} Q^*(s_i, a_{ij})$

Temporal Difference Learning TD learing

10 分析结果 8

在 p_{a_{ij},s_j} , R 未知的情况下迭代得到 $V(s_i)$

Q-Learning

在 p_{a_{ij},s_j} , R 未知的情况下迭代得 $Q(s_i,a_{ij})$ $Q_{n+1}(s_i, a_{ij}) = r'_i + \gamma \cdot max_k(Q_n(s_i, a_{jk}))$

deep Q-networks DQNs

分析结果 10

confusion matrix 困惑矩阵:分析二元/多元分类

$$\begin{bmatrix} TN & FP \\ FN & TP \end{bmatrix}$$

一行对应同一期望输出,一列对应同一计算输出

T/F: 此位置的计算输出是否和预计输出一致

P/N: 此位置的预计输出是否为真

 $\mathbf{precision} = \frac{TP}{TP + FP}$

即 P(计算结果匹配 | 计算结果为正)

 $\mathbf{recall} = \frac{TP}{TP + FN}$

即 P(计算结果匹配 | 预计结果为正)

$$F_1 = rac{2}{rac{1}{precision} + rac{1}{recall}}$$
 precision 和 recall 的调和平均值

specificity = $\frac{TN}{TN+FN}$

ROC curve: 分析二元/多元分类

y 轴 recall 值, x 轴 false positive rate $FPR = \frac{FN}{FN + TN} = \frac{FN}{1 - specificity}$ 期望的 ROC curve 为 recall 从 0 快速增长到 1。并保持直到 FPR 为 1。 即期望曲线下方面积接近1

learning curves: 观察模型是否有 over underfit

10 分析结果 9

x 轴为一整次训练 (包含多次 epoch) 使用的训练集大小, y 轴为 root MSE。 画出训练集 测试集在使用不同训练集大小后的 root MSE。 分析:

期望2曲线平缓值低且相近,

当2曲线平缓值差值较大,测试集平缓值较低,则过拟合

当2曲线平缓值较高,则欠拟合

模型复杂度-error epoch-error:

2 种图,形状类似, x 轴内容不同