## طراحي كاپايلرها

## نيمسال دوم ۲۰-۲۰



استاد: سمانه حسینمردی پاسخ دهنده: معین آعلی - ۴۰۱۱۰۵۵۶۱

تمرين اول

## پاسخ مسئلهی ۱.

برای tokenize کردن یک عبارت، دو اولویت وجود دارد که این دو اولویت به ترتیب عبارتند از:

- ١. طول توكن
- ٢. بالاتر بودن اولويت گرامر

با توجه به اولویتهای فوق، عبارت به صورت زیر توکنبندی میشود:

- $Q < a'c^{r} >$
- Q < b\ >
- $R < a^{\prime}b^{\prime\prime} >$
- Q < a'c' >
- Q < a'c' >
- $R < a^{\Upsilon}b^{\Upsilon} >$
- $R < a^{\Upsilon}b^{\Upsilon} >$
- S < a'b'c' >

یس رشته توکن بندی شده ما به این صورت است:

accc/b/abbb/ac/ac/aab/aabb/abc

پاسخ مسئلهي ٢.

پاسخ مسئلهي ٣.

بخش ۱.

الف

ابتدا DFA مربوط به این زبان را رسم میکنیم:



حال عبارت منظم مربوط به این زبان را از روی DFA می نویسیم:

 $a^{+}(ba)^{*} + ba^{+}(ba)^{*} = (a^{+} + ba^{+})(ba)^{*}$ 

۰

چون در این زبان باید دو حالت را با هم اجتماع کنیم، نیاز به کشیدن DFA نیست. دو عبارت منظم را نوشته و با هم اجتماع میکنیم.

این که رشته a دارای دقیقاً دو a باشد، توسط عبارت منظم  $b^*ab^*ab^*$  توصیف می شود.

همچنین این که رشته b دارای حداقل دو b باشد توسط عبارت منظم  $(a+b)^*b(a+b)^*b(a+b)^*$  توصیف می شود.

حال كافيست كه دو عبارت منظم را با هم اجتماع كنيم، پس جواب نهايي ما برابر است با:

 $((b^*ab^*ab^*) + (a+b)^*b(a+b)^*b(a+b)^*)$ 

#### بخش ۲.

الف

این عبارت منظم، تمامی رشتههای متشکل از ۰ و ۱ را میپذیرد. پس DFA آن به این صورت خواهد بود:



ب

با توجه به عبارت منظم داده شده، DFA را رسم میکنیم:



بخش ٣.

الف

برای رسم DFA از روی NFA لازم است از مجموعه  $\epsilon-closure$  برای رسم از روی NFA برای استفاده می کنیم:

$$\epsilon-closure(A) = \{A,C\} \qquad \epsilon-closure(B) = \{B\}$$

$$\epsilon-closure(C)=\{C\} \qquad \quad \epsilon-closure(D)=\{D\}$$



ب

ابتدا عبارت منظم مربوط به NFA فوق برابر است با:

 $(\mathbf{1} \cdot)^*(\mathbf{1})^*(\cdot)(\mathbf{1})^*(\cdot)$ 

### پاسخ مسئلهی ۴.

برای Left Most Derivation از راستترین E شروع کرده و عبارتهای معادل را جایگزین میکنیم تا به عبارت مورد نظر برسیم:

- $E \rightarrow EBE$ 
  - $\rightarrow$  [E]BE
  - $\rightarrow$  [EBE]BE
  - $\rightarrow$  [VBE]BE
  - $\rightarrow$  [aBE]BE
  - $\rightarrow$  [a!E]BE
  - $\rightarrow$  [a!V]BE
  - $\rightarrow$  [a!b]BE
  - $\rightarrow$  [a!b]@E
  - $\rightarrow$  [a!b]@[E]
  - $\rightarrow$  [a!b]@[V]
  - $\rightarrow$  [a!b]@[a]

برای Right Most Derivation از راستترین E شروع کرده و عبارتهای معادل را جایگزین میکنیم تا به عبارت مورد نظر برسیم:

- $E \rightarrow EBE$ 
  - $\rightarrow$  EB[E]
  - $\rightarrow EB[V]$
  - $\rightarrow$  EB[a]
  - $\to E@[a]$
  - $\rightarrow$  [E]@[a]
  - $\to [EBE]@[a]$
  - $\to [EBV]@[a]$
  - $\rightarrow$  [EBb]@[a]
  - $\rightarrow$  [E!b]@[a]
  - $\rightarrow$  [V!b]@[a]
  - $\rightarrow [a!b]@[a]$

# حال درخت Parse را رسم میکنیم:

