Aufgabenblatt 8

Die Matrix zur linearen Abbildung

i) Finden Sie die Matrix, die zur folgenden linearen Abbildung gehört:

$$\mathbb{R}^3 \ni \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 2x_1 + 3x_2 - 9x_3 \\ 4x_2 + 4x_3 \\ 19x_1 - 8x_3 \end{bmatrix}.$$

Z. B. im
$$\mathbb{R}^2$$
: Zur linearen Abbildung $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 2x_1 - x_2 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 - 1x_2 \\ 0x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ gehört offensichtlich die Matrix $\begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}$.

- ii) Ein interessanteres Beispiel: $\mathbf{a} \coloneqq [a_1, a_2, a_3]^{\mathbf{t}} \in \mathbb{R}^3$ sei ein gegebener Vektor.*) Dann ist die Abbildung $\mathbf{x} \mapsto \mathbf{a} \times \mathbf{x}$ linear. Bestimmen Sie die Matrix $\mathbf{R}_{\mathbf{a}}$, für die $\mathbf{R}_{\mathbf{a}}\mathbf{x} = \mathbf{a} \times \mathbf{x}$ gilt. D. h., bestimmen Sie aus den Koordinaten von $\mathbf{a} \times \mathbf{x}$, wie im ersten Teil der Aufgabe, die zugehörige Matrix $\mathbf{R}_{\mathbf{a}}$.
- iii) Bestimmen Sie die 2×2 -Matrix $D_{\alpha}=\begin{bmatrix}d_{11}&d_{12}\\d_{21}&d_{22}\end{bmatrix}$, die zur Drehung um den Winkel α im

 \mathbb{R}^2 gehört. Machen Sie sich dafür zunächst noch einmal klar, daß die Spaltenvektoren in D_{α} die Bilder $D_{\alpha}e_1$ und $D_{\alpha}e_2$ der kanonischen Basisvektoren e_1 und e_2 sind. Dann müssen Sie nur noch, am besten anhand einer Skizze, die Koordinaten der um α gedrehten Vektoren e_1 und e_1 bestimmen.

Wie sieht die 3×3 -Matrix $D_{3,\alpha}$ für eine Drehung um die x_3 -Achse (x_1 -Achse, x_2 -Achse) aus?

iv) Zeigen Sie, daß für gegebene (nicht parallele) Vektoren $a, b \in \mathbb{R}^3$ durch

$$\mathcal{B} \coloneqq \left\{ \mathbf{a}, \|\mathbf{a}\|^2 \mathbf{b} - \langle \mathbf{a} | \mathbf{b} \rangle \mathbf{a}, \ \mathbf{a} \times \mathbf{b} \right\}$$

ein Satz mathematisch positiv orientierter, paarweise orthogonaler Vektoren entsteht (eine positiv orientierte *Orthogonalbasis*).

Berechnen Sie diese Orthogonalbasis \mathcal{B} für die Vektoren $\mathfrak{a}\coloneqq [2,2,1]^{\mathfrak{t}}$ und $\mathfrak{b}\coloneqq [1,2,-2]^{\mathfrak{t}}$ und kontrollieren Sie ihr Ergebnis. Berechnen Sie aus \mathcal{B} die zugehörige *Orthonormalbasis* (*ONB*) \mathcal{C} , indem Sie die Vektoren von \mathcal{B} auf die Länge 1 normieren.

Stellen Sie in dieser Basis den Vektor $\mathbf{x} \coloneqq [3, 5, 7]^{\mathsf{t}}$ dar, d. h., finden sie den Koordinatenvektor $\mathbf{x}_{\mathcal{C}}$ von \mathbf{x} bzgl. der ONB \mathcal{C} .

Projektion

Sei $\mathbf{n} := [\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3]^{\mathbf{t}} \in \mathbb{R}^3$ ein Vektor der Länge 1. Dann wird die Projektion $P_{\mathbf{n}}$ auf die Ursprungsgerade $g := \{ \mathbf{t} \cdot \mathbf{n} \mid \mathbf{t} \in \mathbb{R} \}$ mit dem Richtungsvektor \mathbf{n} durch

$$P_{\mathbf{n}}\mathbf{x} := \langle \mathbf{n} | \mathbf{x} \rangle \, \mathbf{n}, \quad \text{f. a. } \mathbf{x} \in \mathbb{R}^3,$$
 (+)

beschrieben. Machen Sie sich das anhand einer Skizze klar.

J. Hellmich 1. 2. 2024

- i) Zeigen Sie, daß P_n eine lineare Abbildung ist und finden Sie ihre Matrix, indem Sie die Bilder der kanonischen Basisvektoren e_1 , e_2 und e_3 bestimmen.**)
- ii) Zeigen Sie die Projektionseigenschaft $P_n^2 = P_n$ mit Hilfe von (+).
- iii) Die Projektion auf die Ursprungsebene E mit dem Normalenvektor $\mathbf n$ wird durch $\mathbb 1 P_{\mathbf n}$ beschrieben. Machen Sie sich das an ihrer Skizze klar. ***) Zeigen Sie die Projektionseigenschaft $(\mathbb 1 P_{\mathbf n})^2 = \mathbb 1 P_{\mathbf n}$.
- iv) Berechnen Sie $P_n x$ und $(1 P_n)x$ für $n \coloneqq \frac{1}{7}[2, -3, 6]^t$ und $x \coloneqq [2, 2, 3]^t$ und berechnen Sie damit das Skalarprodukt $\langle P_n x | (1 P_n)x \rangle$. Interpretieren Sie ihr Ergebnis.

**) Ein Blick ins Skript kann helfen, wenn Sie die Matrix für P_n nicht bestimmen können.

Wurzeln

Berechnen Sie alle 8-ten Wurzeln von z := 5 + 12i. Fertigen Sie eine Zeichnung an.

Kubische Gleichungen

Bestimmen Sie mit Hilfe der Cardanischen Formeln die reellen Nullstellen der folgenden Funktionen

$$f(x) := \frac{3\sqrt{3}}{50} (x^3 - 9x^2 + 2x + 48),$$

$$g(x) := \frac{1}{9} (x^3 - 27x + 54),$$

$$h(x) := \frac{2\sqrt{3} - 1}{11} (x^3 + 3x^2 - 6x - 5),$$

$$k(x) := \frac{1}{29} (x^3 + 3x^2 + 12x + 13).$$

Fertigen Sie eine Skizze der Funktionen an.

J. Hellmich 1. 2. 2024