NeuRex: A Case for Neural Rendering Acceleration

Junseo Lee Kwanseok Choi Jungi Lee Seokwon Lee Joonho Whangbo Jaewoong Sim

Seoul National University

Multi-resolution Hash Encoding

Multi-resolution Hash Encoding

Outline

- Background
 - Neural Rendering
 - Multi-resolution Hash Encoding
- I-NGP Optimization & Limitations
- NeuRex: Efficient Neural Rendering Accelerator
 - Restricted Hashing
 - Neural Graphics Engine
- Evaluation
- Conclusion

I-NGP Optimization

I-NGP Optimization

Level-wise execution

I-NGP Optimization

Level-wise execution

I-NGP Optimization

I-NGP Optimization

- L2 cache in high-end GPUs
 Single hash table
- Implication
 - Minimize off-chip memory access

Limitations of I-NGP Optimization

Limitations of I-NGP Optimization

Limitations of I-NGP Optimization

Outline

- Background
 - Neural Rendering
 - Multi-resolution Hash Encoding
- I-NGP Optimization & Limitations
- NeuRex: Efficient Neural Rendering Accelerator
 - Restricted Hashing
 - Neural Graphics Engine
- Evaluation
- Conclusion

Original Algorithm

• Access range: Entire hash table 😵

Original Algorithm

• Access range: Entire hash table 🟵

Restricted Hashing

• Access range: Small sub-table @

Original Algorithm

• Access range: Entire hash table 🕲

Restricted Hashing

• Access range: Small sub-table @

Subtable o

Subtable 1

Subtable 2

Subtable 3

Subtable 4

Subtable 5

Subtable 6

Subtable 7

Hash Table

Original Algorithm

• Access range: Entire hash table 🕲

Restricted Hashing

• Access range: Small sub-table ©

Subgrid-wise execution

Subgrid o

Pts. o

Pts. 1

Pts. 2

Pts. 3

Pts. 4

Pts. 5

Pts. 6

Pts. 7

Subgrid 1

Subgrid-wise execution

Subgrid o

Pts. 0 Pts. 1 Pts. 2 Pts. 3

Pts. 4
Pts. 5
Pts. 6
Pts. 7

Subgrid 1

Subgrid-wise execution

Encoding Engine (EE)

 Perform multi-resolution hash encoding

Tensor Compute Engine (TCE)

Perform MLP execution

Encoding Engine (EE)

 Perform multi-resolution hash encoding

Index Generation Unit (IGU)

- Calculate hash indices
- Compute interpolation weights

Encoding Lookup Unit (ELU)

 Fetch hash table entries from on-chip buffers

Interpolation Compute Unit (ICU)

• Interpolate 8 hash entries

Encoding Lookup Unit (ELU)

 Fetch hash table entries from on-chip buffers

Grid Cache

- A cache for **coarse levels**' hash encoding (L=0,1,2,...)
- Cache block: Coalesced 8 hash entries

Grid Cache

- A cache for **coarse levels**' hash encoding (L=0,1,2,...)
- Cache block: Coalesced 8 hash entries

Coarse Level

Grid Cache

- A cache for **coarse levels**' hash encoding (L=0,1,2,...)
- Cache block: Coalesced 8 hash entries

Coarse Level

Grid Cache

- A cache for coarse levels' hash encoding (L=0,1,2,...)
- Cache block: Coalesced 8 hash entries

Subgrid Buffer

- A buffer for fine levels' hash encoding (L=15,14,13,...)
- Restricted hashing reduces the required on-chip memory size for hash encoding!

Outline

- Background
 - Neural Rendering
 - Multi-resolution Hash Encoding
- I-NGP Optimization & Limitations
- NeuRex: Efficient Neural Rendering Accelerator
 - Restricted Hashing
 - Neural Graphics Engine
- Evaluation
- Conclusion

Methodology

RTL Implementation

Process node: 28nm technology

Performance Evaluation

Cycle-level simulator

Hardware Variants & Baselines

- NeuRex-Server <-> RTX 3070
 - Area: 21.37mm² <-> 392.5mm²
- NeuRex-Edge <-> Xavier NX
 - Area: 3.14mm² <-> 350mm²

Evaluated Workloads

Dataset	Scene (Resolution)	Туре
Syn-NeRF	Mic (800x800)	Synthetic
Syn-NSVF	Palace (800x800)	
BlendedMVS	Fountain (768x576)	Real world
Tanks& Temples	Family (1920x1080)	
Instant-NGP	Fox (1080x1920)	

Higher speedup of NeuRex-Edge

→ NeuRex enables the performance portability!

* Higher is better

Reference

Original Algorithm (36.63dB)

Restricted Hashing (36.66dB)

For some scenes, restricted hashing shows even better rendering quality than the original! ©

More Details in Our Paper

- Neural Rendering Tasks Beyond NeRFs
 - Signed Distance Functions (SDF)
 - 2D Image Approximation (Gigapixel)

- Source of Performance Gains
- Sensitivity Study
- Area and Energy Efficiency
- Others...

Conclusion

Problem

 Multi-resolution hash encoding is a primary bottleneck in neural rendering with several limitations

Solution: NeuRex, an efficient neural rendering accelerator

- <u>Restricted Hashing</u> enables performance portability and maximizes resource utilization
- Neural Graphics Engine with two specialized on-chip memories

Result

• **NeuRex** achieves up to a <u>9.88x speedup</u> over the GPU with a substantially <u>small area overhead</u>! [©]

Thank You!

