VLSI CAD: Logic to Layout

Part 2 Layout Lecture 1

Welcome & Introduction

Rob A. Rutenbar University of Illinois

Welcome!

What we are about in this sequence of classes...

Reminder: Our Courses' History...

- Original version of VLSI CAD sequence was one 10 week MOOC
 - Emphasized CAD flow, from logic topics (Boolean stuff) to layout topics (geometry)

Today: Two MOOCs, Two Parts

• Each of our two parts is half of the original, longer, single MOOC

Aside...

 This is still why intro slides on lectures say "Logic to Layout"

- ...and, this is why the lectures are numbered continuously...
 - Lectures 1 2 3 4 5 6 7 8
 - Form Part 1 LOGIC topics
 - Lectures 9 10 11 12
 - Form Part 2 LAYOUT topics

What's In A Video Lecture?

1. Title: Content

2. "Talking head" intro

Class Logistics

- 5 weeks = 4 weeks of lectures + 1 free week + final exam
- Videos every week
 - 2-3 hours in total
- 4 Problem Sets (i.e., homework assignments)
 - 4 weeks of video material → 4 assignments
 - Leave a week ope at the end for you to finish all your work
- 2 Programming Assignments (Optional, Honors Assignments)
 - Some conventional coding
 - Some 'scripts' run thru CAD-centric tools running on our servers

About Grading

Mastery based

- Means you get multiple submissions on the assignments, which are each randomly changed each time you retry
- You need to pass all the assignments individually, to pass this course

Problem sets

4 weeks of lectures, and 1 problem set for each week, should take about 1 week

Final exam

At the end of class, looks like a problem set, but it's comprehensive over course

See the class web site for details about the logistics...

About Grading

Programming Assignments

- Optional!
- These are Honors Assignments do them if you want (1) a **deeper engagement** with the technical material, and (2) a **job** in the VLSI CAD / electronic design automation industry (where most people build **software** as well as algorithms).

Mechanics

- We provide realistic inputs that model each problem, as a readable file. We tell
 you a simple ASCII file format your software needs to use, to generate output.
- You upload your output to the Coursera web site, and we auto-grade it, and also give you some feedback on your solution.
- You run your code on your computer. You can use any language, any platform.

Other Important Stuff

Honor code

- OK to talk with and work with other people in the class
- BUT what you submit must be your own work, for homework and for any code
- AND please do NOT post solutions to any assignments on Coursera site, or share these solutions face to face, in email, via the web, with others in this course

Use Coursera interaction mechanisms

- Coursera supports discussion forums to ask questions, etc.
- We will make use of these to help connect you to us (and to each other)

What Background Do You Need?

Computer science

- Basic programming skills
- Data structures

Computer engineering

- Basic digital design (gates, flip flops, Boolean algebra, Kmaps)
- Combinational and sequential design (finite state machines)

Mathematics

- Discrete: Basic sets, functions, careful notation
- Exposure to graph theory is nice but not essential
- Continuous: Basic calculus, derivatives, integrals, matrices

Basic VLSI knowledge

 Some chip layout exposure is nice, but not essential

So What is the Course All About...?

CAD for semi-custom ASICs

- **ASIC** = application-specific integrated circuit
- Semi-custom = try to design reusing some already designed parts
- CAD = flow through a sequence of design steps and software tools

A System-on-a-Chip ASIC

- SOC: Integrates many blocks of function on one big chip
 - Most common: row-based standard cells = gates + flops in rows; and big SRAM memories; and perhaps pre-designed blocks like CPUs

Example: Small SOC Controller Design

Look at blocks

Memories

Random control logic

CPU core

Analog interface to external world

Still Important for Us: CAD Flow

- How to attack big designs like these?
- Big idea: Levels of abstraction
 - Break problem down into smaller steps
 - Each step renders design a little more real
- Synthesis steps:
 - Go forward in design: Make new stuff
- Verification steps:
 - Look backward: Check that it worked

Complete set of steps called: A Flow

Our Class CAD Tool Flow Over 2 Parts

- Start with some Boolean / logic design description...
- ...end with gates+wires, located at (x,y) coordinates on chip

 Part 2 LAYOUT focuses on the bottom two steps in this flow

What Topics are in Part 2: LAYOUT

- Four big topics
- Technology Mapping
 - From synthesized logic to "real" gates
- Placement
 - Arrange gates on surface of chip, optimally
- Routing
 - Connect wires to all the gates on chip
- Timing Analysis
 - How fast is mapped/placed/routed logic?

Aside: Ordering of Topics in Part 2

 We are doing these four topics NOT in the real order that a real CAD tool flow would to them

• Real order: Tech-map, Place, Route, Timing

Our order: Place, Tech-map, Route, Timing

Why?

 We have two (optional) programming assignments, one on Placing and one on Routing. So we moved these topics to allow about 2 weeks of time after each lecture to let you (optionally) do each assignment.

You Are Now Starting Part 2: LAYOUT

• Here we go....!

