EBIO 5460 Machine Learning for Ecology

Dr Brett Melbourne

Associate Professor, EBIO

brett.melbourne@colorado.edu

Office hours: Any time by appointment

Office: Ramaley N336 and Zoom

Pronouns: he, him, his

Today

- What is machine learning? (2 mins)
- Introductions (20 mins)
- Syllabus & how we'll do the class (20 mins)
- Where does machine learning fit in to data science & algorithms?

What is machine learning?

- Working definition
- Using generic algorithms to predict outputs y from inputs x
- Emphasis: prediction, predictive skill

Examples in ecology

- Species distribution models (SDMs)
 - predicting the spatial distribution of a species from environmental variables
- Counting penguins in all of Antarctica from satellite imagery
- Identifying mammal species in camera trap images in the Serengeti
- Identifying bird species from audio recordings
- Do you have any examples?

Introductions

- Name (and pronouns)
- Masters or PhD (what year)?
- Advisor
- Department
- What fascinates you (your research)?
- Hopes for the course

Git & GitHub

- Class Github organization
- Bookmark this:
- https://github.com/EBIO5460Spring2024
- Organization, syllabus, timetable
- Code, homework

Week 1-8 assignments

Will be posted to GitHub

- First tasks:
 - Update R & R studio
 - Set up GitHub

Data Science

- Workflows and algorithms to learn from data
- Part 1 (e.g. Fall semester 2022):
 Generalized linear models up to Bayesian multilevel models
 - https://github.com/EBIO5460Fall2022/classmaterials
- Part 2 (this class) Machine learning

Data science cultures

Algorithm

- Procedure for solving a problem in terms of actions to execute and order to execute them
- Code

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm

- Model algorithm
 - Often equations, sometimes rules
 - Often has parameters
 - e.g. y = a + b x
- Training algorithm
- Inference (reliability) algorithm

- Model algorithm
- Training algorithm
 - Algorithm to train a model algorithm on data
 - syn. model fitting, calibration
 - e.g. Nelder-Mead simplex optimization
- Inference (reliability) algorithm

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm
 - first, what kind of inference?

Statistical inference

- Judge the accuracy of an estimation or prediction algorithm
 - Efron & Hastie 2016
- Reliability
- Uncertainty

ISO definition of accuracy: the closeness of a measurement to the true value Two components: bias, variance

Different inference problems

Estimation

Infer a property of a population (e.g. mean) from a sample

Model comparison

Infer the data generating process from among a set of candidate datagenerating processes

Hypothesis test (association)

Infer that y is associated with x

Causation

Infer that x causes y

Infer the size of an effect due to an experimental intervention (estimation) Infer that an experimental intervention had an effect (H-test)

Prediction

Machine learning

Predict the value of a new observation or population state (extrapolation or interpolation)

Predict the population state in the future (forecast/extrapolation)

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm
 - looking back: consider all the ways data could have happened (mechanistic, generative)
 - looking forward: predict new data and test against them (mechanistic, generative, algorithmic)

Machine learning

Algorithms review

01_2_algorithms4ds_review.md

Modeling with data

Algorithm classes

	Model	Training	Inference	
Natural process "science"	HiFi process (e.g. predator -prey, C cycle)	Frequentist: Optimization (e.g. max lik)	Sampling distribution	Confidence intervals Prediction intervals
Data generative "statistics"	Generic functions (e.g. linear, normal)	Bayesian: Integration (e.g. MCMC)	Posterior sample Cross-validation -	Credible intervals Posterior prediction intervals CV, AIC, BIC, LOOIC
Algorithmic "machine learning"	Generic algorithms (map inputs to outputs)	Optimization Other	Cross-validation	