

# **Metrology and Sensing**

Lecture 10-2: Measurement of basic system properties

2021-01-19

Herbert Gross

### Content



- Principal planes
- Aperture
- Centering
- Assembly

#### Measurement of Principal Planes



- Measurement for systems in air via the nodal planes
- Imaging of a test pattern with a collimator onto a detector
- Invariant lateral image location for rotated system around the nodal point
- Critical: vignetting effects for large angles



### Measurement of Principal Planes



- Setup of the test lens with different object locations: axial shift Δ
- Analysis of the lens imaging formula

$$\frac{1}{a_i + \Delta} + \frac{1}{a'_i - \Delta} = \frac{1}{f}$$

Minimizing the error of several measurements j

$$\delta = f \cdot (a_j + a'_j) + \Delta \cdot (a_j - a'_j) - a_j a'_j + \Delta^2$$



### Measurement of Pupil Size



Setup with collimating auxiliary lens

$$\tan u = \frac{D}{2f}$$



Determination with measuring microscope (dynameter)



#### Measurement of Pupil Size



- Setup with Ronchi grating
- Measurement of the lateral shift of higher diffraction orders at distance z



High-NA in microscopy: NA>1
 Measurement of total internal reflection of fluorescence light







#### Measurement of Telecentricity



 Measurement of object sided telecentricity errors by lateral shift of image location during defocussing



 High accuracy measurement by interferometry and measurement of Zernike coefficients c<sub>2/3</sub>.

#### Measurement of Lens Position



- Measurement of reflexes at lens vertex points
- Analysis of confocal signal in autocollimation
- Avoiding spherical aberration induced errors by ring illumination



## Measurement of Centering Errors by Reflected Light



- Projection of test marker
- Autocollimation of sharp image, focal point coincides with center of curvature of surface with radius r
- Rotation of test system: tilt of surface induces a lateral shift of the image, magnification m

$$v = m \cdot v_M = 2 \cdot m \cdot r \cdot \theta$$

Problems with inner surfaces



#### Wedge Angle of a Thin Lens







$$\theta = \alpha_1 - \alpha_2 = \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \cdot v$$



#### Measurement of Centering Errors in Transmission



- Thin collimated beam through lens
- Focussing of the beam onto detector
- Measurement of wedge angle by lateral shift v
- Tilt angle of lens not detectable
- Not feasible for very short focal lengths

$$\varphi = (n-1) \cdot \theta = (n-1) \cdot (\alpha_1 - \alpha_2) = \frac{v}{f}$$



#### **Tolerances: Centering Methods**



Mechanical

Ray in transmission

Rays in reflection





#### Centering of a Cemented Dublet



- Two equivalent forms of description:
  - 1. Three single surface tilt angles
  - 2. Decenter v, overall tilt angle K, tilt of cemented inner surface  $\kappa_c$  , better correspondance to manufacturing steps



#### Centering in Bonding Process





Ref.: M. Peschka

#### Tolerances and Mechanical Interface



- Coupling optics mechanics
   Interface glass metal
- Mechanical design of mountings and housing
- Typical options:
  - 1. Filling cylinder with fixating screw
  - 2. Cementing, later centering
  - 3. Lace / bordering
- Critical:
  - Centering tolerances
  - reference surfaces
  - analysis of complete geometry (kinematic)



### Mechanicl Mounting Geometry



- Filling of lenses into mounting cylinder with spacers
- Accumulation of centering errors by transportation of reference
- Definition of lens positions by:
  - 1. mechanical play inside mounting
  - 2. fixating ring screw
  - 3. planarity of spacers



#### Xray CT-Tomography



- Determination of
  - 1. number of lenses
  - 2. thicknesses
  - 3. radii of curvature
  - 4. refractive indices (!?)
- Typical uncertainties of linear dimensions:
   0.050 mm ... 0.010 mm
- Errors are scaling with size
- Contrast for plastics poor
- Different absorption for glass types
- Cross section vs CT-projection image





## Xray CT-Tomography



Various cross sections

