

Overview

- A smattering of game AI techniques
 - Goal-based planning
 - Influence maps
 - Neural networks
 - Evolved virtual creatures
 - NERO
 - Learning bots in Quake
 - Modeling randomness

Classical Game Al

- Finite state machine
 - Hard-coded behaviors, specify all possible combinations of actions
- A-star path planning
 - On top of a waypoint graph navigation mesh
 - Also local steering forces, object avoidance, etc.
- These techniques are widely used today
 - ...But are not the focus of today's lecture

Alternative: Goal-Driven Al

- Hierarchical set of goals
 - e.g. "buy sword" => "obtain gold" + "go to smithy"
- Plan & perform actions to achieve goals
 - Planner finds a sequence of actions that will achieve a goal
 - Sequence is *not* hard-coded, discovered on the fly
- May also use A-star path planning

Planning Challenges

- Combinatorial explosion of world states
 - Need to simplify representation of world
 - Only model what is relevant to a specific agent
- Efficiently searching through possible actions
 - Can model as graph search problem
- Biasing towards certain actions
 - Weights on graph

Case Study: F.E.A.R

- 2005 horror FPS
- Ranked #2 Most influential AI Game

F.E.A.R. Al

- Uses GOAP (Goal-Oriented Action Planning)
 - Consists of goals and actions
 - Goal: certain state of the world we want to reach
 - Action: set of preconditions and effects
- Solved using graph search
 - Nodes are world states and edges are actions
 - Search from current state toward goal
 - Edges are directional (directed graph)
 - Analogy to chess AI: nodes are board states and edges are moves

GOAP Example

- World state:
 - bool enemyHasGun
 - bool playerAlive
- Only models states relevant to agent

GOAP

Different from FSMs

- FSM: Spend all time in nodes (actions), transitions are instant
- GOAP: Spend all time in transitions (actions), nodes are instant

Advantages over FSMs

- Don't need to encode all possible transitions from each action to each other action
- Simpler to specify and easier to scale
- Just specify preconditions and effects for each action

GOAP in F.E.A.R.

- Graph is dynamic
 - Edges are actions with preconditions and effects
 - Edges come and go based on game state
- Procedural preconditions
 - Taking an action may be currently impossible
 - Example: Escape through door requires door unlocked
- Procedural effects
 - Effects take time to execute and may fail
 - Example: Firing a projectile is blocked by something

GOAP in F.E.A.R.

- Don't want all agents to act the same
 - Vary edge weights based on individual preference (aggressive vs careful individual)
 - Need variety in available actions (run, crouch, dodge, roll, slide)
- Hard for player to understand Al's behavior
 - Add audio cues for player
 - "Send in reinforcements!"

- Goal: decide which team controls an area
 - Used as an input to higher level decision algorithms

Details

- Numeric value that varies throughout the world
- Positive for team A, negative for team B
- Absolute value indicates strength of influence
- Can also encode other information: safety, congestion, etc...

Advantages

- Entire influence map not updated immediately, will "remember" recent history
- Helps reason about strategy in complex worlds (open areas, choke points)
- Commonly used in RTS games

Algorithm

- Influence map starts off at zero
- Sources of influence are marked
 - Entities (friends and foes)
 - Events like grenade explosions, taking damage
- Influence is propagated (diffused) to neighbors

Parameters

- Momentum (m): How fast do new values overwrite old values?
- Decay (d): How fast do values decrease from the source?

$$x(t+1) = (1-m) \cdot x(t) + m \cdot \sum_{a \in agents} (x_a \cdot e^{-dist_a \cdot d})$$

Influence maps can be combined with graphs

Neural Networks

Not used in commercial games

Evolved Virtual Creatures

- Develop a creature and a controller using a genetic algorithm
 - Research project by Karl Sims in 1994
- Start with randomized creatures
 - Configuration of body parts in a tree
 - Brain is a graph
 - Sensors (joint angle, contact, light)
 - Neurons (sum, sin, sigmoid, ...)
 - Effectors (a degree of freedom)
 - Goal defines fitness function
 - Example: jumping measures height of lowest body part

Evolved Virtual Creatures

- Evolve the current generation by randomly applying one of:
 - Mutation (asexual reproduction)
 - Crossovers (sexual reproduction)
 - Grafting (sexual reproduction)

Evolved Virtual Creatures

http://www.youtube.com/watch?v=JBgG_VSP7f8

Genetic Algorithms in Games

- Hardly ever used
 - Developers want fine control over behavior, often just enumerate all the cases
 - Difficult to test
 - Genetic algorithms take thousands of iterations to converge
- Creating faster genetic algorithms is an active area of research

Case Study: NERO

- Full name: Neuro-Evolving Robot Operatives
- Machine-learning based game
 - Started in 2003 as research project at UT Austin
- RTS-style gameplay with two phases of play
 - Phase 1: Train agents in sandbox scenarios
 - Phase 2: Simulate a battle between two groups of agents
- Works through a real-time genetic algorithm
 - NEAT (Neuro-Evaluation of Augmented Topologies)

NEAT Algorithm

- Neural network evolves over time
 - Evolution can change both connection weights and network structure

http://www.youtube.com/watch?v=T4EopjWkLtl

Real-time NEAT

- Start with minimally-connected neural network
 - Add connections that help solve the problem
- Continuously adapts a small group of agents
 - Doesn't use generations: this takes too long
 - Each "brain" has a evaluation time, when it runs out, it's replaced by merging two high-performance brains
 - Removed "brain" is shelved for later evaluation
- Open-source
 - http://nn.cs.utexas.edu/keyword?rtneat

Real-time NEAT in NERO

Every *n* game ticks:

- 1. Remove agent with worst adjusted fitness
- 2. Re-estimate fitness for all species
- 3. Choose a parent species
- 4. Adjust species boundaries and reassign all agents to species
- 5. Add new agent to the world

Case Study: Learning Bots in Quake

- Remco Bonse et. al. in 2004
- Use the Q-learning algorithm to train a neural network for an AI bot in Quake III
 - One-on-one game against preprogrammed Al
 - Replaced combat movement subsystem with NN
 - Reward is given for avoiding damage

State:

- Distance and angle of opponent
- Distance and angle of nearest projectile

Actions:

All 18 combinations of WASD + jump

Case Study: Learning Bots in Quake

- Q-learning algorithm:
 - Agent is in some state $s \in S$
 - Agent can take some action a ∈ A
 - State/action quality function: Q : S × A $\rightarrow \mathbb{R}$
- Agent gets reward for each state change
 - Make a correction to Q based on new information
 - Learning rate: 0 = learn nothing, 1 = ignore past
 - Discount factor: 0 = short-term, 1 = long-term

$$Q(s_{t}, a_{t}) \leftarrow \underbrace{Q(s_{t}, a_{t})}_{\text{old value}} + \underbrace{\alpha_{t}(s_{t}, a_{t})}_{\text{learning rate}} \times \left[\underbrace{\underbrace{R_{t+1}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \underbrace{\max_{a_{t+1}} Q(s_{t+1}, a_{t+1})}_{\text{max future value}} - \underbrace{Q(s_{t}, a_{t})}_{\text{old value}}\right]$$

Case Study: Learning Bots in Quake

Conclusion

- Best parameters were to play to 100,000 frags on a network of 15 neurons (10 hours training time)
- Learned bot wins twice as often against a preprogrammed bot
- Human players didn't notice a difference
- Limited interaction time in a FPS

Randomness and Al

- One motivation for AI is variability
- Adding randomness can help
 - Easy way of varying AI behaviors
 - Need to be careful about how user's perceive randomness

Randomness and Human Perception

Image from dilbert.com

Randomness and Human Perception

Which is more random?

Randomness and Human Perception

- Humans are illogical
 - Conditioned to see patterns
 - Patterns are more memorable
 - "He got 3 but I only got 1"
- Gambler's Fallacy
 - We think outcomes depend on past events for independent events with fixed probabilities
 - Not just gamblers, everyone does this
 - "His luck will run out sooner or later"

Law of Large Numbers

 Average approaches the expected value as the number of trials increases

Law of Large Numbers

 Average approaches the expected value as the number of trials increases

Law of Small Numbers?

- Make randomness easier to understand
 - Random choices without replacement
 - Keep track of past choices and prevent them from being chosen again too soon
 - Humans expect random binary choices will alternate up to 40% more than is mathematically reasonable¹
 - Example: If a player loses a game involving randomness 4 times in a row, is that a good experience?

¹ A Meta-Analysis of Randomness in Human Behavioral Research

- Multiple inheritance
 - C++ classes can have multiple superclasses
 - Can be used to emulate Java interfaces

```
// Declare interfaces using pure virtual functions
struct Reader { virtual char read() = 0; };
struct Writer { virtual void write(char) = 0; };

// File * can be cast to Reader * and Writer *
struct File : Reader, Writer {
   char read() { ... }
   void write(char) { ... }
};
```

- More powerful than Java interfaces
 - All superclasses can have state

```
struct Timestamp {
  const int creationTime;
  Timestamp() : creationTime(time(0)) {}
};
struct UniqueID {
  const int id; static int nextID;
  UniqueID() : id(nextID++) {}
};
struct Entity : Timestamp, UniqueID {};
```

The diamond problem and virtual inheritance

```
struct Base { int num; };
struct Derived1 : Base {};
struct Derived2 : Base {};
struct Join : Derived1, Derived2 {};

Join
Join join;
cout << join.num; // error, join has two copies of num
cout << join.Derived1::num;
cout << join.Derived2::num;</pre>
```

The diamond problem and virtual inheritance

```
struct Base { int num; };
struct Derived1 : virtual Base {};
struct Derived2 : virtual Base {};
struct Join : Derived1, Derived2 {};

Join
Join join;
cout << join.num; // works, join has one copy of num</pre>
```

Tricky case

- Multiple pointers for join (base1 != base2)
- Using virtual inheritance here would cause an error

```
struct Base { virtual void foo() = 0; };
struct Derived1 : Base { void foo() { cout << 1; } };
struct Derived2 : Base { void foo() { cout << 2; } };
struct Join : Derived1, Derived2 {};

Join join;
Base *base = &join; // error, ambiguous conversion
Base *base1 = static_cast<Derived1 *>(&join);
Base *base2 = static cast<Derived2 *>(&join);
```

- Tricky case
 - Fix: define the behavior we want by overriding foo()
 again in the class with multiple inheritance

```
struct Base { virtual void foo() = 0; };
struct Derived1 : virtual Base { void foo() { ... } };
struct Derived2 : virtual Base { void foo() { ... } };
struct Join : Derived1, Derived2 {
   void foo() { Derived1::foo(); Derived2::foo(); }
};

Join join;
Base *base = &join; // works, only one foo() implementation
```

- Common use case: policy-based designs
 - Compile-time version of the strategy pattern
 - Each template parameter provides part of behavior
 - Compiler can inline and optimize policy methods

```
template <typename K, typename V, class Alloc, class Hash>
struct HashMap : Alloc, Hash {
   V &get(const K &key) {
     Bin &bin = bins[hash(key)];
   if (!bin.contains(key)) bin.insert(key, alloc());
   return bin.find(key);
   }
};
HashMap<Point, Entity, MemoryPool, SecureHash> data;
```

• C++ mixins

- Alternative to multiple inheritance
- Inherit from a template parameter
- Use initializer functions instead of constructors if you need arguments on construction

```
template <typename Base>
struct Timestamp : Base { ... };

template <typename Base>
struct UniqueID : Base { ... };

Timestamp<UniqueID<Entity>> entity;
```

Final Project Questions?

References

- Using Randomness in AI: Both Sides of the Coin (Dave Mark and Brian Schwab)
- http://web.media.mit.
 edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
- <u>Evolving Virtual Creatures</u> (Karl Sims)
- Evolving Neural Network Agents in the NERO Video Game (Kenneth Stanley et al.)
- A Meta-Analysis of Randomness in Human Behavioral Research (Summer Ann Armstrong)
- Learning Agents in Quake III