

<u>Home</u> <u>Gameboard</u> Chemistry

Foundations Atomic Structure Essential Pre-Uni Chemistry D4.2

Essential Pre-Uni Chemistry D4.2

	ISOTOPE	# PROTONS	# NEUTRONS
Part A	Carbon-12		6
Part B	Carbon-13		
Part C	Technetium-99	43	
Part D	Iodine-131		
Part E	Polonium-210		
Part F	Uranium-233		
Part G	Rutherfordium-260		

Complete the table to show the numbers of protons and neutrons in each isotope.

Carbon-12 Part A

Number of protons

Part B	Carbon-13
Nu	imber of protons
Nu	Imber of neutrons
Part C	Technetium-99
Nu	imber of neutrons
Part D Nu	Iodine-131 Imber of protons
Nu	imber of neutrons

Part E Polonium-210
Number of protons
Number of neutrons
Part F Uranium-233 Number of protons
Number of neutrons
Part G Rutherfordium-260 Number of protons
Number of neutrons

<u>Home</u>

<u>Gameboard</u>

Chemistry

Foundations

Atomic Structure Essential Pre-Uni Chemistry D4.3

Essential Pre-Uni Chemistry D4.3

	SYMBOL	# PROTONS	# NEUTRONS	# ELECTRONS
Part A	$^{23}_{11}\mathrm{Na}$		12	
Part B	$^{40}_{19}{ m K}$			
Part C	$^{25}_{12}{ m Mg}^{2+}$	12		
Part D	$^{81}_{35}{ m Br}^{-}$			
Part E	$^{58}_{26}{ m Fe}^{3+}$			
Part F	$^{18}_{8}{ m O}^{2-}$			
Part G	²⁰⁶ ?			82
Part H	²³⁹ ?			93

Complete the table by filling any blank cell and any missing symbol indicated by a '?'.

Number of protons

Number of electrons

Part B	$^{40}_{19}{ m K}$
Nur	mber of protons
Nur	mber of neutrons
Nur	nber of electrons
Part C	$^{25}_{12}{ m Mg}^{2+}$
Nur	mber of neutrons
Nur	mber of electrons

Part D	$^{81}_{35}{ m B}$	-	
١	Number	f protons	
			_
1	Number	f neutrons	
			_
١	Number	f electrons	
			_
Part E	$^{58}_{26}\mathrm{F}\epsilon$	+	
1	Number	f protons	
1	Number	f neutrons	_
1	Number	f electrons	

Part F ${}^{18}_{8}\mathrm{O}^{2-}$
Number of protons
Number of neutrons
Number of electrons
Part G 206?
What is the element symbol corresponding to the question mark?
Number of protons
Number of neutrons

What is the element symbol corresponding to the question mark?
Number of protons
Number of neutrons

²³⁹₉₃?

Part H

<u>Home</u> <u>Gameboard</u> Chemistry Foundations Atomic Structure Electron Configurations (D1.1)

Electron Configurations (D1.1)

Complete the following ground state electron configurations.			
Part A Be			
What is the ground-state electron configuration of Be?			
Items:			
Part B N			
What is the ground-state electron configuration of N?			
Items:			

What is the ground-state electron configuration of Ne? Items: 1s 2s 3s 4s 2p 3p 1 2 3 4 5 6

Based on question D1.1 from Physical Chemistry book

Chemistry Foundations Atomic Structure Electron Configurations (D1.4) <u>Home</u> <u>Gameboard</u>

Flectron Configurations (D1 4)

eteeti on comigarations (D1.4)	PPP	
Complete the following ground state electron configurations.		
Part A H		
What is the ground-state electron configuration of H^- ?		
Items:		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		
Part B O^{2-}		
What is the ground-state electron configuration of O^{2-} ?		
Items:		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		

Based on question D1.4 from Physical Chemistry book

Home

Gameboard

Foundations Chemistry

Atomic Structure Essential Pre-Uni Chemistry D1.7

Essential Pre-Uni Chemistry D1.7

Give the chemical symbols for the atoms with the following ground state electron configurations:

Part A
$$[Ne] 3s^1$$

$$[Ne]$$
 $3s^1$

$$[\mathrm{Ar}] \ \ 3\mathrm{d}^5 \, 4\mathrm{s}^2$$

Part C
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$$

$$1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,3d^8\,4s^2$$

$$\textbf{Part D} \quad \left[Ar\right] 3d^{10} \, 4s^2$$

$$[\mathrm{Ar}]\,\mathrm{3d}^{10}\,\mathrm{4s}^2$$

$$\textbf{Part E} \hspace{0.5cm} 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^{10} \, 4s^2 \, 4p^6 \, 4d^{10} \, 4f^{14} \, 5s^2 \, 5p^6 \, 5d^{10} \, 6s^2 \, 6p^5$$

$$1{s}^{2}\,2{s}^{2}\,2{p}^{6}\,3{s}^{2}\,3{p}^{6}\,3{d}^{10}\,4{s}^{2}\,4{p}^{6}\,4{d}^{10}\,4{f}^{14}\,5{s}^{2}\,5{p}^{6}\,5{d}^{10}\,6{s}^{2}\,6{p}^{5}$$

Home Gameboard Chemistry Foundations Atomic Structure Essential Pre-Uni Chemistry D1.8

Essential Pre-Uni Chemistry D1.8

An ion of nickel is found to have the ground state electron configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7$ in the gas phase.

Give the numerical charge on the ion as an integer. Remember to include the appropriate sign in your answer (as $\pm N$ and **not** $N\pm$).

<u>Home</u> Chemistry Foundations Atomic Structure Electron Configuration

Electron Configuration

A species Z has the following electron configuration:

Figure 1: Electron configuration of Z

What could Z be?

1	2	3
Cl^+ ion	S atom	Ar^{2-} ion

()	1	only	is	possible
_	/	_	,		

2 only is possible

3 only is possible

1 and 2 only are possible

1 and 3 only are possible

2 and 3 only are possible

1, 2 and 3 are possible

None are possible

Adapted with permission from UCLES, A Level Chemistry, November 1996, Paper 4, Question 31

<u>Home</u> <u>Gameboard</u> Chemistry Foundations Atomic Structure Periodic Table

Periodic Table

Part A	Tin				
W	hich block of the perio	odic table contains	the element tin?		
	S				
	р				
	\bigcirc d				
	O f				
Part B	Ytterbium				
W	hich block of the perio	odic table contains	the element ytterb	oium?	
	O s				
	р				
	\bigcirc d				
	O f				

Select the correct statement about lithium. Lithium is in period 2 of the periodic table. Lithium has two protons in its nucleus. Lithium has an atomic number of 2. Lithium is in group 2 of the periodic table.
Part D Phosphorus and antimony
Select the correct statement. Phosphorus and antimony are neither in the same group nor in the same period as each other. Phosphorus and antimony are in the same group as each other. Phosphorus and antimony are both in the same group and in the same period as each other. Phosphorus and antimony are in the same period as each other.

Part C Lithium

Part E Groups

Sel	ect t	he correct general statement.
		Elements in the same group have the same number of valence electrons and therefore have the same atomic radius.
		Elements in the same group do not have the same number of valence electrons.
		Elements in the same group have the same number of valence electrons, but can have different reactivities and atomic radii.
		Elements in the same group have the same number of valence electrons and are therefore equally reactive.

Created for isaacphysics.org by Andrea Chlebikova