Le Frottement

I) Modélisation :

Extrait de : http://ldvchz.free.fr/meca/frottement/index.html

Simulation Synthèse

Le plan est incliné d'un angle θ, le solide 2 reste en équilibre sous l'action

de son poids et de la réaction $R_{1/2}$.

On se trouve dans le cas de l'adhérence.

Le facteur d'adhérence f_0 , ou **coefficient d'adhérence**, est la limite supérieure du rapport des composantes tangentielle et normale de $R_{1/2}$:

$$f_o = tan \, \phi_o \, \geqslant \, \frac{T_{1/2}}{N_{1/2}} \label{eq:fo_o}$$

L'inclinaison du plan augmente jusqu'à la valeur limite θ_{limite} = ϕ_0 .

La réaction $R_{1/2}$ est inclinée de ϕ_0 par rapport à la normale au contact et sa composante tangentielle $T_{1/2}$ atteint sa valeur maximale.

On se trouve à la limite du glissement.

$$f_o = tan \, \phi_o = \frac{T_{1f2}}{N_{1f2}}$$

Au delà, l'équilibre est rompu et il y a **glissement**.

On définit alors le **coefficient de frottement** f :

$$f = \tan \varphi = \frac{T_{1/2}}{N_{1/2}}$$

Dans la plupart des problèmes de mécanique , on fait l'approximation que les deux coefficients d'adhérence et de frottement sont égaux et constants.

Ces coefficients dépendent de la nature des matériaux et de nombreux autres paramètres.

mecamedia.info

Le Frottement

II) Application:

Soit l'échelle (1) représenté sur la figure ci-dessous.

Elle est en appui sur un bâti 0 en deux point A et B:

- Contact ponctuel en A avec un frottement non négligé f = 0.3 ;
- Contact ponctuel en B avec un frottement négligé (présence d'une roulette au niveau du contact).

Le solide (1) est soumis à l'action d'une charge d'intensité P = 800N.

Le système peut être considéré comme plan.

Vérifier les conditions d'équilibre...

Que risque-t-on si le point C d'application de la charge se rapproche de B?

Le Frottement

III) Autres ressources :

- http://387688207169709691.weebly.com/forces-de-frottement-sur-un-plan-inclineacute.html
- https://www.futura-sciences.com/sciences/dossiers/physique-matiere-materiaux-fait-monde-996/page/4/
- https://www.youtube.com/watch?v=SRzdeCffKul