

Chapter 8

Traffic Channel Allocation

Outline

- Introduction
- Static Allocation versus Dynamic allocation
- Fixed Channel Allocation (FCA)
- Dynamic Channel Allocation (DCA)
- Hybrid Channel Allocation (HCA)
- Allocation in Specialized System Structure
- System Modeling

4

Introduction

- What is channel allocation?
- A given radio spectrum is to be divided into a set of disjointed channels that can be used simultaneously while minimizing interference in adjacent channel by allocating channels appropriately (especially for traffic channels)
- S_{total} channels equally partitioned among N cells with each cell with S channels as

$$S = S_{\text{total}}/N$$
, e.g., 357/7=51

- Channel allocation schemes can be divided in general into Static versus Dynamic
 - Fixed Channel Allocation (FCA)
 - Dynamic Channel Allocation (DCA)
 - Hybrid Channel Allocation (HCA)

Fixed Channel Allocation (FCA)

- In FCA, a set of channels is permanently allocated to each cell
- Number of available channels *S* is divided into sets, the minimum number of channel sets *N* required is related to the frequency reuse distance *D* as follows:

$$N = D^2/3R^2$$
 or $\sqrt{N} = \frac{D}{\sqrt{3}R}$

- Channels are allocated by MSC
- If a cell of cluster A₁ borrows channel, there should not be interference with cells A₂, A₃, A₄, A₅, A₆, and A₇
- $A_{1,1}$: Channels 1-51, $A_{1,2}$: Channels 52-102
- $A_{1,3}$: Channels 103-153, $A_{1,4}$: Channels 154-204
- A_{1.5}: Channels 205-255, A_{1.6}: Channels 256-306
- $A_{1,7}$: Channels 307-357

Simple Borrowing Schemes

- In CB schemes, cell (*acceptor cell*) that has used all its nominal channels can borrow free channels from its neighboring cell (*donor cell*) to accommodate new calls.
- Borrowing can be done from an adjacent cell which has largest number of free channels (borrowing from the richest)
- Select the first free channel found for borrowing using a search algorithm (borrow first available scheme)
- Return the borrowed channel when channel becomes free in the cell (basic algorithm with reassignment)
- To be available for borrowing, the channel must not interfere with existing calls, as shown in the next figure

Simple Channel Borrowing Schemes

Donor Cell for Sector X

Complex Channel Borrowing using Sectored Cell-based Wireless System

Simple Channel Borrowing Schemes

Scheme	Description
Simple Borrowing (SB)	A nominal channel set is assigned to a cell, as in the FCA case. After all nominal channels are used, an available channel from a neighboring cell is borrowed
Borrow from the Richest (SBR)	Channels that are candidates for borrowing are available channels nominally assigned to one of the adjacent cells of the acceptor cell. If more than one adjacent cell has channels available for borrowing, a channel is borrowed from the cell with the greatest number of channels available for borrowing
Basic Algorithm (BA)	This is an improved version of the SBR strategy which takes channel locking into account when selecting a candidate channel for borrowing. This scheme tried to minimize the future call blocking probability in the cell that is most affected by the channel borrowing
Basic Algorithm with Reassignment	This scheme provides for the transfer of a call from a borrowed channel to a nominal channel whenever a nominal channel becomes available
Borrow First Available	Instead of trying to optimize when borrowing, this algorithm selects the first candidate channel it finds

Copyright © 2014, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved.

Example on Channel Borrowing

Example 8.1: In a cellular system with 7-cell clusters, the average number of calls at a given time is given as follows:

If 30 traffic channels are assigned to the system, find
the distribution of the channels for each cell under the
following conditions:

- 1. If static allocation is used based on traffic load? Since the ratio of traffic load for Cell 1, Cell 2, and Cell 3 is 500:1500:1000 = 1:3:2, the number of traffic channels for each cell is:
- 2. An FCA simple borrowing scheme is used (no traffic load considered)? In FCA scheme, considering the condition of traffic load, the number of traffic channels for Cell 1, Cell 2, and Cell 3 should be the same and is 30/3=10

	Average number of calls/unit time
Cell 1	500
Cell 2	1500
Cell 3	1000

	Number of traffic channels
Cell 1	$30 \times \frac{1}{6} = 5$
Cell 2	$30 \times \frac{3}{6} = 15$
Cell 3	$30 \times \frac{2}{6} = 10$

	Number of traffic channels
Cell 1	30/3=10
Cell 2	30/3=10
Cell 3	30/3=10

Dynamic Channel Allocation (DCA)

- In DCA schemes, all channels are kept in a central pool and are assigned dynamically to new calls as they arrive in the system
- After each call is completed, the channel is returned to the central pool. Select the most appropriate channel for any call based simply on current allocation and current traffic, with the aim of minimizing the interference
- DCA scheme can overcome the problem of FCA scheme.
 However, variations in DCA schemes center around the different cost functions used for selecting one of the candidate channels for assignment

Dynamic Channel Allocation (DCA)

- DCA schemes can be <u>centralized</u> or <u>distributed</u>
- The <u>centralized DCA</u> scheme involves a single controller selecting a channel for each cell
- The <u>distributed DCA</u> scheme involves a number of controllers scattered across the network (MSCs)
- Centralized DCA schemes can theoretically provide the best performance. However, the enormous amount of computation and communication among BSs leads to excessive system latencies and renders centralized DCA schemes impractical. Nevertheless, centralized DCA schemes often provide a useful benchmark to compare practical decentralized DCA schemes

Centralized DCA

- For a new call, a free channel from the central pool is selected that would maximize the number of members in its co-channel set
- Minimize the mean square of distance between cells using the same channel

Centralized DCA Schemes

Scheme	Description
First Available (FA)	Among the DCA schemes, the simplest one is the FA strategy. In F A, the first available channel within the reuse distance encountered during a channel search is assigned to the call. The FA strategy minimizes the system computational time
Locally Optimized Dynamic Assignment (LODA)	The channel selection is based on the future blocking probability in the vicinity of the cell where a call is initiated
Selection with Maximum Usage on the Reuse Ring (RING)	A candidate channel is selected which is in use in the most cells in the co-channel set. If more than one channel has this maximum usage, an arbitrary selection among such channel is made to serve the call. If none is available, then the selection is made based on the FA scheme

Centralized DCA Schemes

Scheme	Description
Mean Square (MSQ)	The MSQ scheme selects the available channel that minimizes the mean square of the distance among the cells using the same channel
1-clique	This scheme uses a set of graphs, one for each channel, expressing the non co-channel interference structure over the whole service area for that channel

Distributed DCA Schemes

- Based on one of the three parameters:
 - Co-channel distance
 - co-channel cells in the neighborhood not using the channel
 - * sometimes adjacent channel interference taken in to account
 - Signal strength measurement
 - anticipated CIR above threshold
 - Signal to noise interference ratio
 - satisfy desired CIR ratio

Comparison between FCA and DCA

FCA	DCA
 Performs better under heavy traffic 	 Performs better under light/moderate traffic
Low flexibility in channel	■ Flexible channel allocation
assignment	■ Not always maximum channel
Maximum channel reusability	reusability
Sensitive to time and spatial	■ Insensitive to time and time spatial
changes	changes
 Unstable grade of service per cell in an interference cell group 	 Stable grade of service per cell in an interference cell group
High forced call termination	■ Low to moderate forced call
probability	termination probability
Suitable for large cell	■ Suitable in microcellular environment
environment	■ High flexibility
Low flexibility	

Comparison between FCA and DCA

FCA	DCA
 Radio equipment covers all channels assigned to the cell 	 Radio equipment covers the temporary channel assigned to the cell
Independent channel control	 Fully centralized to fully distributed control dependent on the scheme
Low computational effortLow call set up delay	■ High computational effort
Low implementation complexity	Moderate to high call set up delayModerate to high implementation
Complex, labor intensive frequency planning	complexityNo frequency planning
Low signaling load	■ Moderate to high signaling load
Centralized control	 Centralized, distributed control depending on the scheme

Other Channel Allocation Schemes

Based on different criterion being used as a potential way of optimizing the performance, many other channel allocation schemes have been suggested

- Hybrid Channel Allocation (HCA)
- Flexible Channel Allocation (FCA)
- Handoff Channel Allocation (HCA)

Hybrid Channel Allocation (HCA)

- HCA schemes are the combination of both FCA and DCA techniques
- In HCA schemes, the total number of channels available for service is divided into fixed and dynamic sets
 - The fixed set contains a number of nominal channels that are assigned to cells as in the FCA schemes and, in all cases, are to be preferred for use in their respective cells
 - The dynamic set is shared by all users in the system to increase flexibility
 - **Example:** When a call requires service from a cell and all of its nominal channels are busy, a channel from the dynamic set is assigned to the call

Hybrid Channel Allocation (HCA)

- Request for a channel from the dynamic set is initiated only when the cell has exhausted using all its channels from the fixed set
- Optimal ratio: ratio of number of fixed and dynamic channels
- 3:1 (fixed to dynamic), provides better service than fixed scheme for 50% traffic (267 versus 89 channels)
- Beyond 50% fixed scheme perform better
- For dynamic, with traffic load of 15% to 32%, better results are found with HCA

Flexible Channel Allocation (FCA)

- Similar to hybrid scheme with channels divided into fixed and flexible (emergency) sets
- Fixed sets used to handle lighter loads
- Variations in traffic (peaks in time and space) are needed to schedule emergency channels
- Two types: Scheduled and Predictive
 - Scheduled: Prior estimate is done about traffic change
 - Predictive: Traffic intensity and blocking probability is monitored in each cell all the time

Channel Allocation in One-dimensional Systems

If a new call is initiated in cell 1, with the current location of channels a, b, c, d, e as shown. It is better to assign channel e to mobile in cell 1. Assuming that as cell 1 moves to cell 2, MS in cell 7 moves to cell 8

Example of Channel Allocation

Example 8.2: There are two new cars in cell 1 and cell 2, with current allocation of channels "a", "b", "c", "d", "e" and "f" as shown in Figure 8.4. Based on the reuse distance and direction of other moving cars, how to select channels for cars in cells 1 and 2?

For car in cell 1, based on the rule of frequency reuse, we can select channels of "c", "d", "e", and "f"

Considering the direction of moving cars, we can only select channels of "d" and "e" for car in cell 1

For car in cell 2, based on the rule of frequency reuse, we can select channels of "e" and "f"

Considering direction of moving cars, we can only select "e" for cell 2 Because the only choice of car in cell 2 is channel of "e", the car in cell 1 should select channel of **d** based on the rule of frequency reuse

Reuse Partitioning based Channel Allocation

- Each cell is divided into concentric zones
- Inner zone being closer to BS would require lesser power to attain a desired signal quality

Overlapped Cells-based Allocation

Overlapped Cells-based Allocation

- Cell splitting into number of smaller cells (pico, micro cells), to handle increased traffic
- For fast moving MS, if channels are assigned from micro cell, no. of handoffs will increase
- Therefore, highly mobile cells are assigned channels from the cell
- MS with low mobility are assigned to micro- or pico-cells

Use of Overlapped Cell Areas

- In the shared area Handoffs not necessary
- Worst Case Scenario: if MS in shared area does not find a free channel in cell A, it can take the free channel from cell B

Universal Cell Phone Coverage

Originating Call Handoff Call

System Modeling

The follows assumptions are made to obtain an approximate model of system

- All MSs are assumed to be uniformly distributed through the cell
- Each MS moves at a random speed and to an arbitrary random direction
- The arrival rate of originating call is given by λ_0
- The arrival rate of handoff call is given by $\lambda_{\rm H}$
- The call service rate is given by μ

System Model

A generic system model for a cell with S channels

Analysis Model (cont'd)

The follows parameters are defined in the analysis model

- P(i): the probability of "i" channels to be busy
- λ_0 : the arrival rate of an originating call in the cell
- λ_H : the arrival rate of a handoff call from neighboring cells
- \blacksquare B_O : the blocking probability of originating calls
- ullet S: the total number of channels allocated to a cell
- μ : the call service rate
- μ_c : the average call duration
- $\mu_{c-dwell}$: the outgoing rate of MSs

Basic Modeling

The states of a cell can be represented by (S+1) states Markov model. And a transition diagram of M/M/S/S model as shown below

State transition diagram

$$i\mu P(i) = (\lambda_{O} + \lambda_{H})P(i-1), \quad 0 \le i \le S$$

$$(\lambda_{O} + \lambda_{H}) \qquad (\lambda_{O} + \lambda_{H})^{i}$$

or
$$P(i) = \frac{(\lambda_O + \lambda_H)}{i\mu} P(i-1) = \frac{(\lambda_O + \lambda_H)^i}{i! \mu^i} P(0), \quad 0 \le i \le S$$

Basic Modeling (cont'd)

 \blacksquare The state equilibrium equation for state i can be given as

$$P(i) = \frac{(\lambda_{O} + \lambda_{H})}{i\mu} P(i-1) = \frac{(\lambda_{O} + \lambda_{H})^{i}}{i! \mu^{i}} P(0), \quad 0 \le i \le S$$

And the sum of all states must to be equal to one:

$$\sum_{i=0}^{S} P(i) = 1$$

■ The steady-state probability P(0) is easily found as follows:

$$P(0) = \left[\sum \frac{(\lambda_0 + \lambda_H)^i}{i! \mu^i} \right]^{-1}$$

Basic Modeling (cont'd)

• The state equilibrium equation for state i can be given as:

$$P(i) = \frac{(\lambda_{O} + \lambda_{H})}{i\mu} P(i-1) = \frac{(\lambda_{O} + \lambda_{H})^{i}}{i! \mu^{i}} P(0), \quad 0 \le i \le S$$

■ The blocking probability for an originating call when all S channels are busy, can be expressed by:

$$B_O = P(\mathbf{S}) = rac{rac{(\lambda_O + \lambda_H)^\mathbf{S}}{\mathbf{S}! \, \mu^\mathbf{S}}}{\sum_{i=0}^\mathbf{S} rac{(\lambda_O + \lambda_H)^i}{i! \, \mu^i}}$$

■ The blocking probability of a handoff request at this state is also the forced termination probability of a handoff call is:

$$B_H = B_0$$

This is <u>Erlang B</u> formula covered in Chapter 5

Channel Partitioning under Integrated Traffic

- A channel allocation scheme that provides different level of priority to real-time and handoff traffic
- Analytical model to evaluate system performance
- A novel recursive method leads to optimal system design

Modeling for Channel Reservation

- Why should we provide a higher priority to handoff calls?
- From users' view, the dropping of handoff calls is more serious and irritating than the blocking of originating calls
- How to provide a higher priority to handoff calls?
- One approach is reserve S_R channels exclusively for handoff calls among the S channels in a cell

System Model with Reserved Channels

System model with reserved channels for handoff (No blocking of originating calls till less than $S_{\mathbb{C}}$ channels are busy)

Analytical Model

State transition diagram

■ The state balance equations can be obtained as

$$\begin{cases} i\mu P(i) = (\lambda_O + \lambda_H)P(i-1), & 0 \le i \le S_C \\ i\mu P(i) = \lambda_H P(i-1), & S_C < i \le S \end{cases}$$

and

$$\sum_{i=0}^{S} P(i) = 1.$$

Analytical Modeling (cont'd)

• The steady-state probability P(i) can be obtained as:

$$P(i) = \begin{cases} \frac{(\lambda_{O} + \lambda_{H})^{i}}{i! \mu^{i}} P(0), & 0 \le i \le S_{c} \\ \frac{(\lambda_{O} + \lambda_{H})^{S_{c}}}{i! \mu^{i}} P(0), & S_{c} < i \le S \end{cases}$$

• As summation of all states is 1: $\sum_{i=0}^{S_c} P(i) + \sum_{i=S_c}^{S} P(i) = 1$

Gives
$$P(0) = \left[\sum_{i=0}^{S_c} \frac{(\lambda_0 + \lambda_H)^i}{i! \mu^i} + \sum_{i=S_c+1}^{S} \frac{(\lambda_0 + \lambda_H)^{S_c} \lambda_H^{i-S_c}}{i! \mu^i}\right]^{-1}$$

Analytical Model (Cont'd)

■ The blocking probability B_O for an originating call is given by (at least S_C channels busy):

$$B_o = \sum_{i=\mathrm{S_C}}^{\mathrm{S}} P(i)$$

• The blocking probability B_H for a handoff call is (all S channels busy) or forced termination probability of handoff call is:

$$B_H = P(S) = \frac{\left(\lambda_O + \lambda_H\right)^{S_C} \lambda_H^{S-S_C}}{S! \,\mu^S} P(0)$$

Channel Partitioning under Integrated Traffic

- A channel allocation scheme that provides different level of priority to real-time and handoff traffic
- Analytical model to evaluate system performance
- A novel recursive method leads to optimal system design

System Model & Analytical Model

• We employ 6-dimensional Markov chain model, with the states of the system denoted by (i, j, k, l, m, n)

Channel Borrowing

Scheme 1

The borrowed channel is released (returned) when the communication completes.

Optimal Channel Partitioning Sets at Various Ratios of Different Traffic Types

Ratio $(\lambda_{OR}/\lambda_{O})=$ Originating real-time Originating total	Total required channels	Optimal channel partition set (S_R, S_C, S_N)
0.7	29	(21,2,6), (20,3,6), (19,4,6), (18,5,6), (17,6,6), (16,7,6)
0.6	27	(19,2,6), (18,3,6), (17,4,6), (16,5,6), (15,6,6), (14,7,6)
0.5	26	(17,2,7), (16,3,7), (15,4,7), (14,5,7), (13,6,7), (12,7,7)
0.3	24	(13,2,9), (12,3,9), (11,4,9), (10,5,9), (9,6,9)

The Number of Channels vs. Traffic Load

Channel Borrowing

Scheme 2

A real-time service call releases the borrowed channel when communication completes.

A non-real-time service call releases the borrowed channel immediately if a real-time request arrives but cannot be served otherwise.

Channel Borrowing

Scheme 3

Channel borrowing happens with a probability depending on the number of free channels in NC.

Total Number of Needed Channels versus Ratio l_{OR}/l_{O}

Total Number of Channels versus Ratio λ_{OR}/λ_{O}

Optimal Channels partitioning for Ratio $l_{OR}/l_{O} = 0.2$

Optimal Channels partitioning for Ratio $l_{OR}/l_{O} = 0.2$

Number of Channels versus Traffic Load $l_{OR}/l_{O} = 0.5$

Number of Channels versus Traffic Load $l_{OR}/l_{O} = 0.5$

System Performance when $l_{OR}/l_{O} = 0.5$ versus Optimal Partitioning Set

System Performance when $l_{OR}/l_{O} = 0.5$ versus Optimal Partitioning Set