

Francesco Sorce

Università di Pisa Dipartimento di Matematica

Contents

1	\mathbf{Mo}	duli Spaces
	1.1	Introduction to moduli problems
	1.2	Fine and Coarse moduli spaces
	1.3	Zariski sheaves and gluing of fine moduli spaces
2	Gra	assmanians
	2.1	Set-theoretic definition
		2.1.1 The Plücker embedding
	2.2	Definition as a projective scheme
	2.3	Moduli functor
		2.3.1 Affine cover
		2.3.2 Representability of the Grassmannian functor

Chapter 1

Moduli Spaces

Set theoretic issues: whenever I write that something is an element of a class, what I mean is that that object satisfies the proposition that defines the class.

1.1 Introduction to moduli problems

Definition 1.1 (Presheaf).

A contravariant functor $F: \mathcal{C}^{op} \to \text{Set}$ is called a **presheaf** on \mathcal{C} .

Definition 1.2 (Moduli problem).

Let S be a scheme. A presheaf on Sch/S is called a **moduli problem**.

1.2 Fine and Coarse moduli spaces

1.3 Zariski sheaves and gluing of fine moduli spaces

Definition 1.3 (Equalizer).

Let \mathcal{C} be a category, $A, B, C \in \mathcal{C}$ and $f, g : B \to C$. We say that the pair (A, h) is an **equalizer** of the diagram

$$B \overset{f}{\underset{g}{\Longrightarrow}} C$$

if $h:A\to B$ is such that $f\circ h=g\circ h$ and if (Q,q) is another such pair then there exists a unique morphism $Q\to A$ which makes the diagram commute

$$\begin{array}{ccc}
A & \xrightarrow{h} & B & \xrightarrow{g} & C \\
\uparrow & & \downarrow & & \\
Q & & & & \\
\end{array}$$

Definition 1.4 (Zariski sheaf).

A moduli problem $F \in (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ is a **Zariski sheaf** if for any S-scheme X and any Zariski open cover $\{U_i \to X\}$ the following diagram is an equalizer

$$F(X) \longrightarrow \prod_k F(U_k) \Longrightarrow \prod_{i,j} F(U_i \cap U_j)$$

where the arrows are induced by the inclusions.

Proposition 1.5 (Representable moduli functors are Zariski sheaves).

Let $F: (Sch/S)^{op} \to Set$ be a moduli problem, then if there exists a fine moduli space M for F it must be the case that F is a Zariski sheaf.

Proof.

By composing with the natural isomorphism we may assume $F = h_M$. Let X be an S-scheme and $\{U_i \to X\}$ a Zariski open cover for it. We want to show that the following diagram is an equalizer

$$\operatorname{Mor}(X, M) \longrightarrow \prod_{k} \operatorname{Mor}(U_{k}, M) \Longrightarrow \prod_{i,j} \operatorname{Mor}(U_{i} \cap U_{j}, M)$$

The arrows in this case correspond to restriction of morphisms, so the thesis is equivalent to the fact that restriction to a given set doesn't depend on the intermediate restrictions and that morphisms of schemes that coincide on double intersections glue to the union, both of which are true.

Definition 1.6 (Subfunctor).

Let $G: \mathcal{C} \to \mathcal{D}$ be a functor. A **subfunctor** of G is a pair (F, i) consisting of a functor $F: \mathcal{C} \to \mathcal{D}$ and a natural transformation $i: F \to G$ such that $i_X: F(X) \to G(X)$ is a monomorphism for all $X \in \mathcal{C}$.

Remark 1.7.

If $\mathcal{D} = \text{Set}$ then we can express the same data equivalently as follows:

A functor $F: \mathcal{C} \to \text{Set}$ is a subfunctor of $G: \mathcal{C} \to \text{Set}$ if for all $X \in \mathcal{C}$ and for all $f \in Mor_{\mathcal{C}}(A, B)$

$$F(X) \subseteq G(X),$$
 and $F(f) = G(f)|_{F(A)}.$

In this case we write $F \subseteq G$.

Definition 1.8 (Fibered product of presheaves).

Let $F, G, H : \mathcal{C}^{op} \to \text{Set}$ be presheaves together with two natural transformations $\xi^1 : F \to H$ and $\xi^2 : G \to H$. We define their fibered product as follows: If $X \in \mathcal{C}$ then

$$(F \times_H G)(X) = F(X) \times_{H(X)} G(X),$$

if $f: A \to B$ then¹

$$(F \times_H G)(f): \begin{array}{ccc} F(B) \times_{H(B)} G(B) & \longrightarrow & F(A) \times_{H(A)} G(A) \\ (b_1, b_2) & \longmapsto & (F(f)(b_1), G(f)(b_2)) \end{array}.$$

Definition 1.9 (Open subfunctor).

Let $F: (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ be a moduli problem. We say that a subfunctor $G \subseteq F$ is **open** if for any S-scheme T and any natural transformation $h_T \to F$, the pullback $h_T \times_F G$ is representable by an open subscheme of T.

Remark 1.10.

By the Yoneda lemma, giving a natural transformation like in the above definition is equivalent to choosing a family $\xi \in F(T)$. We can thus rephrase the definition as follows:

A subfunctor $G \subseteq F$ is open if for any S-scheme T and any family $\xi \in F(T)$ there

the map is well defined because $\xi_A^1(F(f)(b_1)) = H(f)(\xi_R^1(b_1)) = H(f)(\xi_R^2(b_2)) = \xi_A^2(G(f)(b_2))$.

exists an open subscheme $U\subseteq T$ such that the following diagram is natural in R and commutes

$$\operatorname{Mor}(R,U) \xrightarrow{G(\subseteq \circ \cdot \cdot)(\xi)} G(R)$$

$$\subseteq \circ \downarrow \qquad \qquad \downarrow \subseteq$$

$$\operatorname{Mor}(R,T) \xrightarrow{F(\cdot)(\xi)} F(R)$$

and a map $f \in \text{Mor}(R,T)$ factors as $R \xrightarrow{g} U \subseteq T$ if and only if $F(f)(\xi) \in G(R)^2$.

Definition 1.11 (Open cover of a functor).

Let $F: (\operatorname{Sch}/S)^{op} \to \operatorname{Set}$ be a moduli problem. A collection of open subfunctors $\{F_i\}$ is an **open cover** of F if for any S-scheme T and any natural transformation $h_T \to F$, the open subschemes U_i that represent the pullbacks $h_T \times_F F_i$ form an open cover of T.

Remark 1.12.

Like above, we can rephrase the definition as follows:

A collections of open subfunctors $F_i \subseteq F$ form an open cover of F if for any S-scheme T and any family $\xi \in F(T)$, there exists an open cover $\{U_i\}$ of T such that $\xi|_{U_i} \in F_i(U_i)$ for all i.

The definitions above let us state the following criterion for representability:

Proposition 1.13 (Representability by open cover).

Let $F: (Sch/S)^{op} \to Set$ be a moduli problem which is a Zariski sheaf and let $\{F_i\}$ be an open cover of it by representable subfunctors, then F is representable.

Proof.

Let X_i be the fine moduli space for F_i and let $\xi_i \in F_i(X_i)$ be their universal families. Since F_j is an open subfunctor of F, there exists an open subscheme $U_{ij} \subseteq X_i$ such that the diagram is a cartesian square

$$\begin{array}{ccc}
h_{U_{ij}} & \longrightarrow & h_{X_i} \\
\downarrow & & \downarrow \\
F_j & \longrightarrow & F
\end{array}$$

Evaluating the diagram on U_{ij} yields

$$\operatorname{Mor}(U_{ij}, U_{ij}) \longrightarrow \operatorname{Mor}(U_{ij}, X_i)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_j(U_{ij}) \longrightarrow F(U_{ij})$$

The top left set contains $id_{U_{ij}}$, which corresponds to the universal family in

$$F_j(U_{ij}) \times_{F(U_{ij})} \operatorname{Mor}(U_{ij}, X_i),$$

given by $(\xi_{|U_{ij}}, \iota_i)$, where $\iota_i : U_{ij} \to X_i$ is the inclusion and $\xi_{j|U_{ij}} = F_j(f_i)(\xi_j)$ for

²the "only if" is trivially true by commutativity but for the "if" we are using the fact that $h_U\cong h_T\times_F G$.

The images of these two elements in $F(U_{ij})$ are $\xi_j|_{U_{ij}}$ (since $F_j \subseteq F$) and $\xi_i|_{U_{ij}} = \iota_i^* \xi_i$, so by commutativity

$$\xi_j|_{U_{ij}} = \xi_i|_{U_{ij}}.$$

We now evaluate the cartesian square that defines U_{ii} on U_{ij} :

$$\operatorname{Mor}(U_{ij}, U_{ji}) \longrightarrow \operatorname{Mor}(U_{ij}, X_j)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_i(U_{ij}) \longrightarrow F(U_{ij})$$

Given what we have already said, $(\xi_i|_{U_{ij}}, f_i) \in F_i(U_{ij}) \times_{F(U_{ij})} h_{X_j}(U_{ij})$, so it defines a morphism $\varphi_{ij} : U_{ij} \to U_{ji}$. We observe that φ_{ij} and φ_{ji} are inverses of each other. Indeed if we consider $\varphi_{ji} \circ \varphi_{ij}$ as an element of the top left set in the diagram

$$\operatorname{Mor}(U_{ij}, U_{ij}) \longrightarrow \operatorname{Mor}(U_{ij}, X_i)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_j(U_{ij}) \longrightarrow F(U_{ij})$$

we notice that the two projections are given by

$$\iota_i \circ \varphi_{ii} \circ \varphi_{ij} = f_i \circ \varphi_{ij} = f_i$$

and

$$F_j(f_i \circ \varphi_{ji} \circ \varphi_{ij})(\xi_j) = F_j(f_j \circ \varphi_{ij})(\xi_j) = F_j(f_i)(\xi_j) = \xi_j|_{U_{ij}},$$

which are the same projections as $id_{U_{ij}}$, so $\varphi_{ji} \circ \varphi_{ij} = id_{U_{ij}}$. A symmetric argument yields $\varphi_{ij} \circ \varphi_{ji} = id_{U_{ji}}$. Note that with our notation $\varphi_{ii} = id_{U_{ii}} = id_{X_i}$. We also remark that

$$F(\varphi_{ij})(\xi_j) = F_j(\iota_j \circ \varphi_{ij})(\xi_j) = F_j(f_i)(\xi_j) = \xi_j|_{U_{ij}} = \xi_i|_{U_{ij}}.$$

We now want to show that the X_i can be glued along the U_{ij} using the isomorphisms φ_{ij} .

Intersection | We want to check that

$$\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}.$$

Given the symmetry of the indicies and having already proven that $\varphi_{ji} = \varphi_{ij}^{-1}$, we just need to show inclusion. By the equivalent definition of open subfunctor, we know that the morphism $\varphi_{ij}: U_{ij} \cap U_{ik} \to U_{ji}$ factors through $U_{ji} \cap U_{jk}$ if and only if $\varphi_{ij}^* \xi_j|_{U_{ji} \cap U_{jk}} \in F(U_{ij} \cap U_{ik})$, which is true because

$$\varphi_{ij}^* \xi_j \big|_{U_{ji} \cap U_{jk}} = \xi_i \big|_{U_{ij} \cap U_{ik}}.$$

Cocycle cond. We now want to verify that

$$\left.\varphi_{jk}\right|_{U_{ji}\cap U_{jk}}\circ \varphi_{ij}\big|_{U_{ij}\cap U_{ik}}=\varphi_{ik}\big|_{U_{ik}\cap U_{ij}},$$

but this simply follows from the fact that both maps pullback $\xi_k|_{U_{ki}\cap U_{kj}}$ to $\xi_i|_{U_{ij}\cap U_{ik}}$.

We can thus define X to be the scheme obtained by gluing the X_i along the U_{ij} . Moreover, since F is a Zariski sheaf, the ξ_i must glue to a family $\xi \in F(X)^3$.

We now only need to verify that (X,ξ) is a fine moduli space for F: Let T be an S-scheme and and let us consider a family $\zeta \in F(T)$. Since $\{F_i\}$ is an open cover of F, there exists an open cover $\{V_i\}$ of T such that $\zeta_{U_i} \in F_i(V_i) \cong \operatorname{Mor}(V_i, X_i)$. Since F is a sheaf $\zeta_i|_{V_i \cap V_j} = \zeta_j|_{V_i \cap V_j}$, so the morphisms $V_i \to X_i$ corresponding to the ζ_i glue to a morphism $f: T \to X$ such that $f^*\xi = \zeta$ (by construction). \square

 $[\]overline{\ ^{\mathbf{3}}\text{because }\xi_{i}|_{U_{ij}}=\xi_{j}|_{U_{ij}}}.$

Chapter 2

Grassmanians

2.1 Set-theoretic definition

Definition 2.1 (Grassmannian).

Let $k \leq n$ be a pair of positive integers. We define the (n,k)-Grassmannian, denoted $\operatorname{Gr}(k,n,\mathbb{K})$, as the set of (n-k)-dimensional \mathbb{K} -vector subspaces of \mathbb{K}^n .

Remark 2.2 (Definition via quotients).

We may equivalently define Gr(k, n) to be the following set:

$$\{\ker \varphi \mid \varphi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k), \operatorname{rnk} \varphi = k\}.$$

Lemma 2.3

Let $\varphi, \psi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k)$ be linear maps of full rank. The following conditions are equivalent:

- 1. $\ker \varphi = \ker \psi$,
- 2. there exists $\theta \in GL(\mathbb{K}^k)$ such that $\varphi = \theta \circ \psi$.

Proof.

We shall prove the two implications:

2.
$$\Longrightarrow$$
 1. $\ker(\theta \circ \psi) = \psi^{-1}(\ker \theta) = \psi^{-1}(\{0\}) = \ker \psi$.

1. \Longrightarrow 2. Let z_1, \dots, z_{n-k} be a basis of $\ker \varphi = \ker \psi$ and let $z_1, \dots, z_{n-k}, v_1, \dots, v_k$ be a completion of it to a basis of \mathbb{K}^n . By construction $\varphi(v_1), \dots, \varphi(v_k)$ and $\psi(v_1), \dots, \psi(v_k)$ are bases of \mathbb{K}^k . Let θ be the linear automorphism of \mathbb{K}^k determined by $\theta(\psi(v_i)) = \varphi(v_i)$ for all i. By construction θ is nonsingular and φ agrees with $\theta \circ \psi$ on a basis of \mathbb{K}^n .

Corollary 2.4.

We may identify Grassmannians in terms of linear maps as follows:

$$\operatorname{Gr}(k,n) = \left\{ \varphi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k) \mid \varphi \text{ surjective.} \right\}_{\sim}$$

where $\varphi \sim \psi$ if and only if $\exists \theta \in GL(\mathbb{K}^k)$ such that $\varphi = \theta \circ \psi$.

¹we shall often omit the field when clear from context

2.1.1 The Plücker embedding

To make the study of Grassmanians easier, we want to identify Gr(k, n) with a subset of some projective space.

Definition 2.5 (Plücker map).

Let $k \leq n$ be a pair of positive integers. We define the **Plücker map** as follows:

$$\phi: \begin{array}{ccc} \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k) & \longrightarrow & \bigwedge^k \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^k) \\ \varphi & \longmapsto & \bigwedge^k \varphi \end{array},$$

where $(\wedge^k \varphi)(v_1, \dots, v_k) = \varphi(v_1) \wedge \dots \wedge \varphi(v_k)$.

Remark 2.6.

 $\operatorname{rnk} \varphi < k \text{ if and only if } \phi(\varphi) = 0.$

Proof.

 $\phi(\varphi)$ is the zero map if an only if $\varphi(v_1), \dots, \varphi(v_k)$ are always linearly dependent, i.e. if and only if φ is not of full rank.

Proposition 2.7.

Let \sim be the equivalence relation defined in corollary (2.4), then for linear full rank maps $\varphi, \psi : \mathbb{K}^n \to \mathbb{K}^k$

$$\varphi \sim \psi \iff \exists \lambda \in \mathbb{K}^* \ s.t. \ \phi(\varphi) = \lambda \phi(\psi).$$

Proof.

2.2 Definition as a projective scheme

In order to write \mathbb{K} -algebra morphisms that correspond to what we've done geometrically, we shall switch to the language of matricies.

Definition 2.8 (Multiindicies).

We define a (k,n)-multiindex as an element of $\{1,\cdots,n\}^k$. Our notation for a multiindex I will usually be $I=(i_1,\cdots,i_k)$.

If A is a $k \times n$ matrix and I is a (k, n)-multiindex, we denote the I-minor by A_I , i.e.

$$A_I = \begin{pmatrix} a_{1,i_1} & \cdots & a_{1,i_k} \\ \vdots & \ddots & \vdots \\ a_{k,i_1} & \cdots & a_{k,i_k} \end{pmatrix}.$$

2.3 Moduli functor

2.3.1 Affine cover

2.3.2 Representability of the Grassmannian functor