

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL Control N°2+Pauta

 2° Semestre de 2013

Alumno(a):Grupo	
Allimno(a):	

- Conteste en forma ordenada identificando la pregunta e item que corresponde.
- No se permite el uso de calculadora.
- Tiempo:45 minutos.
- 1) Considere en $P_2(\mathbb{R})$ el subconjunto $W_1 = \{p(x) = a_0 + a_1x + a_2x^2 : a_2 = a_0 + a_1\}$ y el subespacio $W_2 = \langle 1 + 2x + 3x^2 \rangle$.
 - a) Pruebe que $W_1 \leq P_2(\mathbb{R})$. Desarrollo:
 - i) $W_1 \subset P_2(\mathbb{R})$ (por definnición de W_1). $W_1 \neq \emptyset$, por ejemplo el vector $1 + 3x + 4x^2 \in W_1$, ya que $a_0 = 1, a_1 = 3, a_2 = 4$ y se cumple $a_2 = a_0 + a_1$, pues 4 = 1 + 3.
 - ii) Sean $p(x) = a_0 + a_1x + a_2x^2$, $q(x) = b_0 + b_1x + b_2x^2$. $p(x), q(x) \in W_1$, entonces se cumple que $a_2 = a_0 + a_1$ y $b_2 = b_0 + b_1$. $p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 \in W_1$, pues de las igualdades anteriores se tiene que $(a_2 + b_2) = (a_0 + a_1) + (b_0 + b_1)$, por lo tanto $(a_2 + b_2) = (a_0 + b_0) + (a_1 + b_1)$
 - iii) Sean $p(x) = a_0 + a_1x + a_2x^2 \in W_1$ y $k \in (\mathbb{R})$, entonces se cumple que $a_2 = a_0 + a_1$ $kp(x) = (ka_0) + (ka_1)x + (ka_2)x^2 \in W_1$, pues de la igualdad anterior se tiene $ka_2 = k(a_0 + a_1)$, por lo tanto, $(ka_2) = (ka_0) + (ka_1)$

De i), ii), iii) se tiene que $W_1 \leq P_2(\mathbb{R})$.

b) Determine base y dimensión de W_1 y de W_2 . Desarrollo:

Para W_1 :

$$W_1 = \{p(x) = a_0 + a_1x + a_2x^2 : a_2 = a_0 + a_1\}$$

$$= \{p(x) = a_0 + a_1x + (a_0 + a_1)x^2 : a_0, a_1 \in \mathbb{R}\}$$

$$= \{a_0(1 + x^2) + a_1(x + x^2) : a_0, a_1 \in \mathbb{R}\}$$

$$= \langle 1 + x^2, x + x^2 \rangle$$

Por lo tanto, $B_1 = \{1 + x^2, x + x^2\}$ genera a W_1 y es conjunto LI, pues son dos vectores no nulos y ninguno de ellos es múltiplo del otro. B_1 es base de W_1 y así, $dim(W_1) = 2$.

Para $W_2: B_2 = \{3x^2 + 2x + 1\}$ genera a W_2 y es LI pues es un vector no nulo, B_2 es base de W_2 y así, $dim(W_2) = 1$.

c) Determine base y dimensión de W_1+W_2 , ¿es W_1+W_2 suma directa ? justifique. Desarrollo:

 $W_1 + W_2 = \langle 1 + x^2, x + x^2, 3x^2 + 2x + 1 \rangle$. El conjunto $\{1 + x^2, x + x^2, 3x^2 + 2x + 1\}$ genera a $W_1 + W_2$, veamos si es LI

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix} \xrightarrow{f_{3+(-1)1}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{f_{3+(-1)2}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Como , r(A) = 2 < 3 = número de vectores, el conjunto es LD. De acuerdo a la matriz MEF hallada, al eliminar la última columna, continúa con rango 2, así en el conjunto se debe eliminar el último polinomio para que resulte LI.

:. $B = \{1 + x^2, x + x^2\}$ es base de $W_1 + W_2$ y así $dim(W_1 + W_2) = 2$. Luego

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

$$2 = 2 + 1 - dim(W_1 \cap W_2)$$

$$dim(W_1 \cap W_2) = 1$$

Con lo cual se obtiene que $W_1 \cap W_2 \neq \{0\}$, luego $W_1 + W_2$ no es suma directa.

- 2) Sea $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \le \mathbb{R}^3$ y $B = \{(-1, 0, 1), (-1, 3, -2)\}$ base de W.
 - a) Verifique que $\overrightarrow{v} = (2, -1, -1) \in W$. Desarrollo:

Para
$$\vec{v} = (2, -1, -1), x = 2, y = -1, z = -1$$
, se cumple

$$x + y + z = 2 - 1 - 1 = 0$$

$$\vec{v} \in W$$

b) Halle $[\overrightarrow{v}]_B$ (vector de coordenadas de \overrightarrow{v} en la base B).

$$\alpha(-1,0,1) + \beta(-1,3,-2) = (2,-1,-1)$$

$$-\alpha - \beta = 2$$

$$3\beta = -1$$

$$\alpha - 2\beta = -1$$

$$A|B| = \begin{bmatrix} -1 & -1 & 2 \\ 0 & 3 & -1 \\ 1 & -2 & -1 \end{bmatrix} \xrightarrow{f_{3+(1)1}} \begin{bmatrix} -1 & -1 & 2 \\ 0 & 3 & -1 \\ 0 & -3 & 1 \end{bmatrix} \xrightarrow{f_{3+(1)2}} \begin{bmatrix} -1 & -1 & 2 \\ 0 & 3 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

El sistema es equivalente a

$$\begin{array}{cccc}
-\alpha & - & \beta & = & 2 \\
& & 3\beta & = & -1
\end{array}$$

De lo que se obtiene que $\alpha=-\frac{5}{3},\ \beta=-\frac{1}{3}$

$$\therefore [v]_B = \left[\begin{array}{c} -5/3 \\ -1/3 \end{array} \right]$$