# **IMAGE FORMING DEVICE**

Patent number:

JP63313182

**Publication date:** 

1988-12-21

Inventor:

HIRABAYASHI HIROMITSU

**Applicant:** 

**CANON INC** 

Classification:

- international:

G03G15/20

- european:

**Application number:** 

JP19870147884 19870616

Priority number(s):

## Abstract of **JP63313182**

PURPOSE:To reduce a waiting time, power consumption, and further a rise in temperature in a machine by heating and fusing an unfixed toner image on a transfer material by a heat generating body which is powered on impulsively to generate heat across a heat-resistant sheet.

CONSTITUTION: The transfer material P which contacts a photosensitive body to have the unfixed toner image T transferred is interposed between the heating body 2 and a pressure roller 22 across the heat-resisting sheet 23 which moves at the same speed. The heat generating surface 28 of the heat generating body 28 is small in heat capacity and powered on impulsively to rise in temperature instantaneously up to about 260 deg.C, so the image T is heated and pressed; and its top surface layer part is softened and fused completely and fixed on the transfer material P, and cooled and solidified immediately, so that it is not offset on a sheet 22. Therefore, the heating body need not be raised in temperature previously, the power consumption is small, and the rise in the temperature in the machine is precluded.



Data supplied from the esp@cenet database - Worldwide

Family list 28 family members for: JP63313182 Derived from 18 applications.

1 An image fixing apparatus.
Publication info: DE3854801D D1 - 1996-02-01

2 An image fixing apparatus.

Publication info: DE3854801T T2 - 1996-06-13

3 An image fixing apparatus.

Publication info: EP0295901 A2 - 1988-12-21 EP0295901 A3 - 1990-09-05 EP0295901 B1 - 1995-12-20

4 FIXING DEVICE

Publication info: JP1187582 A - 1989-07-26

**5 IMAGE FORMING DEVICE** 

Publication info: JP1263677 A - 1989-10-20 JP2085340C C - 1996-08-23 JP7117794B B - 1995-12-18

**6** IMAGE FORMING DEVICE

Publication info: JP1263678 A - 1989-10-20

7 IMAGE FORMING DEVICE

Publication info: JP1263679 A - 1989-10-20 JP2673959B2 B2 - 1997-11-05

8 IMAGE FORMING DEVICE

Publication info: JP1263680 A - 1989-10-20 JP2117599C C - 1996-12-06 JP8027571B B - 1996-03-21

9 IMAGE FORMING DEVICE

Publication info: **JP1263681 A** - 1989-10-20 **JP2527414B2 B2** - 1996-08-21

10 IMAGE FORMING DEVICE

Publication info: JP1263683 A - 1989-10-20 JP2657990B2 B2 - 1997-09-30

11 IMAGE FORMING DEVICE

Publication info: JP1263685 A - 1989-10-20

12 IMAGE FORMING DEVICE

Publication info: JP1279276 A - 1989-11-09

13 IMAGE FORMING DEVICE

Publication info: JP1279280 A - 1989-11-09

14 IMAGE FORMING DEVICE

Publication info: JP2516886B2 B2 - 1996-07-24 JP63313182 A - 1988-12-21

15 IMAGE FIXING APPARATUS WITH MOVABLE SHEET MEMBER AND

**DETECTORS Publication info: US5149941 A - 1992-09-22** 

16 Image fixing apparatus

Publication info: US5300997 A - 1994-04-05

17 Image fixing apparatus

Publication info: US5343280 A - 1994-08-30

18 Image fixing heater and image fixing apparatus having same

Publication info: US5767484 A - 1998-06-16

Data supplied from the esp@cenet database - Worldwide

# ⑲ 日本国特許庁(JP)

⑩特許出願公開

# ⑫ 公 開 特 許 公 報 (A) 昭63-313182

@Int\_Cl\_4

識別記号

**庁内整理番号** 

❸公開 昭和63年(1988)12月21日

G 03 G 15/20

101

6830-2H 6830-2H

審査請求 未請求 発明の数 1 (全7頁)

**9発明の名称** 画像形成装置

②特 願 昭62-147884

②出 願 昭62(1987)6月16日

②発 明 者 平 林 弘 光

東京都大田区下丸子3丁目30番2号 キャノン株式会社内

⑪出 願 人 キャノン株式会社

東京都大田区下丸子3丁目30番2号

珍代 理 人 弁理士 藤 岡 徹

明 細 科

1. 発明の名称

画像形成装置

2. 特許請求の範囲

転写材上に、加熱溶融性の樹脂等より成るトナーを担持せしめて未定者のトナー両像を形成する画像形成手段と、

トナー画像を有する面にて転写材に接しかつ、 該転写材の搬送速度と同一速度で移動する耐熱性 シートを介してパルス状に通電発熱する発熱体に よってトナーの上記画像を加熱溶融した後、ト ナー画像が冷却固化した後に、耐熱性シートが転 写材から難反する加熱定着手段と、

を有することとする画像形成装置。

3. 発明の詳細な説明

(産業上の利用分野))

水発明は、加熱溶機性のトナーを用いて転写材 上に順像を形成し、これを加熱定着処理する画像 形成装置に関する。

(従来の技術及び問題点)

従来、この種の装置に用いられている定着装置 は、所定の温度に維持された加熱ローラと、発性 層を有して該加熱ローラに圧接する加圧ローラと によって、未定者のトナー画像が形成された転写 材を挟持搬送しつつ加熱するローラ定者方式が多 川されている。しかしながら、この種の装置で は、加熱ローラにトナーが転移するいわゆるオフ セット現象を防止するために、加熱ローラを最適 な温度に維持する必要があり、加熱ローラあるい は加熱体の熱容量を大きくしなければならなかっ た。すなわち、加熱ローラの熱容量が小さい場合 には、発熱体による供給熱量との関係により通紙 あるいは他の外的要因で加熱ローラ温度が低温側 あるいは高温側に大きく変動し易くなる。低温側 に変動した場合には、トナーの軟化溶融不足に よって、定着不良や低温オフセットを生じ、高温 側に変動した場合には、トナーが完全に解映して しまいトナーの凝集力が低下するために、高温オ フセットを生ずる。

かかる問題を回避するために、加熱ローラの熱

容量を大きくすると、加熱ローラを所定の温度まで発温するための時間が長くなり、装置の使用の 数に待機時間が大きくなるという別の問題が生す る。

(問題点を解決するための手段)

本発明は、上述の従来装置の有していた問題点を解決し、定着不良やオフセットを生ずることなく加熱体の熱容量を小さくすることを可能とし、その結果、待機時間や消費電力、さらには機内昇温の小さい画像形成装置を提供することを目的とする。

木発明は、上記目的の達成のために、

転写材上に、加熱溶験性の樹脂等より成るトナーを担持せしめて未定着のトナー画像を形成する画像形成手段と、

トナー画像を有する面にて転写材に接しかつ、 該転写材の搬送速度と同一速度で移動する耐熱性 シートを介して、パルス状に通電発熱する発熱体 によってトナーの上記画像を加熱溶融した後、ト ナー画像が治却固化した後に、耐熱性シートが転

画像と同期するようタイミングをとって上下方向で圧接して回転される対の搬送ローラ9によって、ドラム3上に送り込まれる。そして、転写故心器8によって、感光ドラム3上に形成されているトナー像は、シートP上に転写される。その後、公知の分離手段によってドラム3から分離されたシートPは、搬送ガイド10によって定着と置20に導かれ加熱定着処理された後にトレイ11上に採出される。なお、トナー像を転写後、ドラム3上の残留トナーはクリーナ12によって除去される。

第2図は本実施例の上記定者装置20の拡大図である。同図において、21は発熱体で、アルミナ等の耐熱性でかつ電気絶縁性の基材またはそれを含む複合部材より成る基材の下面に、個 160 μm 、 及さ(紙面に庭角な方向の長さ)216mm で例えば TazN等より成る線状もしくは帯状の発熱面28を有し、さらにその表面に槽動保護層として例えば、TazOs が形成されている。発熱体21の下面は平滑でありかつ前後端部は丸味を帯びていて耐熱シー

写材から離反する加熱定者手段と、

を有することにより構成される。

先ず、本実施例装置の両像形成装置の機略構造 を第1回に基づいて説明すると、1はガラス等の 透明部材よりなる原稿核設台で、矢印a方向に往 役動して原稿を走査する。原稿装置台の直下には 短無点小径結像素子アレイ2が配されていて、原 福祉置台1上に置かれた原稿像Gは照明ランプ 7によって照射され、その反射光像は上記アレイ 2によって終光ドラム3上にスリット弱光され る。なおこの感光ドラム3は矢印b方向に回転す る。また4は借電器であり、例えば酸化亜鉛線光 層あるいは有機半導体感光層3a等を被覆された感 光ドラム3上に一様に帯電を行なう。この帯電器 4により一様に併復されたドラム3は、来子アレ イ2によって画像選光が行なわれた静電画像が形 成される。この静電潜像は、現像器5により加熱 で軟化溶融する樹脂等より成るトナーを用いて顕 像化される。一方、カセット S内に収納されてい るシートPは、給送ローラ6と燃光ドラム3上の

ト23との摂動を可能にしている。 該耐熱シート23は、ポリエステルを基材とし、耐熱処理を施した例えば約9μm 厚に形成され、矢印で方向へ送り出し可能にシート送り出し軸24巻回されている。 上記耐熱シート23は発熱体21の表面に当接し、曲率の大きな分離ローラ26を介してシート巻収り軸27に巻き取られる。

上記発熱体の発熱面28は熱容量が小さく、パルス状に通電されて、その個度瞬時に 250℃前後まで昇温する。転写紙Pの先端、後端を転写紙検知レバー25及び転写紙検知センサー29で検出することにより、発熱面28はタイミングを取って必要時に通電を受ける。その際、画像形成装置の給紙センサーなどによる転写紙の位置検知等を用いて、発熱体への通電を制御しても良い。

一方、加圧ローラ22は、金属等より成る芯材上にシリコンゴム等より成る弾性層を有するものであり、緊動額(図示せず)により緊動されて、搬送ガイド10によって導かれた未定着トナー両像 Tを有する転写材Pを、減転写材Pと同一の速度 で移動する劇熱シート23を介して発熱体に密着さ せている。ここで、加圧ローラ22の搬送速度は、 画像形成時の搬送速度とほぼ同…であることが好 ましく、劇熱シート23の移動速度は、それに難ず る値で設定される。

また、本実施例では分離ローラ26を設けることにより、該分離ローラまでの間加圧状態でのトナー像工の冷却時間を十分確保し、しかも上記分離ローラ26の曲率を大きくすることによって耐熱シート23と転写材Pとの分離を容易におけるオフに、前述の効果に相乗して分離部におけるオフセットを防止することができる。ただし、発熱層

写材P上に定着される。

本発明の発熱体 (加熱体)は水実施例でも明らかなように小型もので十分でありそのため熱容量が小さくなり、下め加熱体を昇温させる必要がないので、非顕像形成時の消費電力も小さくすることができ、また機内昇温も防止できることとなる。

28及び耐熱シートの熱容量が十分小さく、かつ定 着処理速度が小さい場合には、分離ローラ26のご とき特別な手段を設けずとも、転写材Pが発熱層 を通過後の短い範囲でトナー像工は治却するので、本実施例で示した分離ローラ26を名略して も、オフセットのない定着処理が可能となる。す なわち、トナー像を一旦加熱し軟化溶融させた分 準であればよい。

次に、未実施例装置による実施結果を具体的数値をもって示す。キヤノン株式会社製PPC PC-30 (商品名)用のワックス系トナーを用いて、トナー画像工を形成し、定着処理速度約15mm/sで A4サイズ紙1枚当たり約2000♥・S の発熱量となるように、10ms毎に2msの割合でパルス状加熱が得られた。この通電によって発熱層は約260 ℃前後まで昇温し、熱容量がのでは約260 ℃前後まで昇温し、熱容量がのことから加熱体を加温するための待時間は不要となる。ま

た、木実施例では、パルス状加熱することによ り、定者に必要な熱エネルギをその根底与えてい るので、熱容量が小さく立ち上りが非常に早い塩 **熱層を周期的にほぼ同等の温度を示すようにする** ことが比較的容易にできる。さらに、連続的に定 着処理を行う場合には、発熱のパルス巾を順次小 さくしてゆくなどして、発熱層の異常な高温側へ のシフトを防止することもたやすい。上記の場 合、トナー層工の温度は、従来高温オフセットを 生ずると言われている温度を瞬間的であっても超 えているが、前述のごとく、再度十分に冷却固定 化した後に耐熱シート23と転写材Pとが離れるの でオフセットとはならない。加熱された際に未実 施例で使用されたトナーの主成分であるワックス は約80℃の融点であり、また、溶融時の粘度も低 いために 260℃前後の発熱体により加熱される と、従来の加熱定着装置では、転写材に溶融した トナーが投通しすぎて画像の姿み、または翌年り といった不堪合を生ずることとなってしまいト ナーの低磁点化の妨げとなっていたが、本実施例

では、発熱層28の熱容量が小さくかつ、加熱時間 が短いので、転写紙の表層のみを短時間しか加熱 しないので、トナーの過程透によって生ずる上記 の弊習はない。

第4図は、水発明の他の実施例の画像形成装置 に適用される加熱定着装置の断面図である。な お、前実施例と共通部分には同一符号を付し、そ の説明は省略する。

本実施例では、耐熱シート23の代わりに耐熱性のエンドレスベルトを採用しており、耐熱性ベルト40は何度も加熱され、かつトナー層Tとの接触も繰り返される。このため、離型性に優れ耐熱性の高い PFA樹脂で30μ厚のベルトを形成してある。上記耐熱ベルト40は、ベルト駆動量41によって転写材の搬送速度と同一の周速度となるように付勢されたアイドラー42とによって緊慢されつつ回転駆動される。

発熱体21はその基材の温度を検出するための温度検知素子43が設けられてあり、さらには、安全

装置44として温度ヒューズあるいはサーモスタッ トが配設されており、過昇温が防止されている。 また、本実施例における免熱体21への通道のタイ ミングは、画像形成手段において発生する信号を 基にして制御されている。 本実施例の定着処理速 度(画像形成時も同一)を50mm/sとして、前実施 例に較べて高速化しているので、発熱層28の幅 (加熱幅)を 300 μm と大きくし、かつ発熱層へ の通電の時間を変えて5ms毎に1.25msの割合で、 A4サイズ紙1枚当たり約2400W·S の発熱を行なっ た。ここで発熱層の最大温度は約 300℃を超える 程度であり、また発熱層28の電力密度が前実施例 よりも大きくなっていること、さらには上述の熱 量が短時間に与えられること等から、発熱体21自 身の昇韞(蓄熱)が崩実施例の場合に比して大き くなるので、水実施例では発熱体21の支持材に設 けた前述の温度検出案子43の検出値に応じて、通 電パルスの幅を調整している。すなわち、発熱体 21の基材温度が高い場合には、血電パルスの暢を 小さくして、発熱体自身の異常昇温を防止してい

る。さらには、前途の安全装置44が所定の温度以上になった場合には、発熱層28への通電を遮断している。

ここで、転写材及びトナー像工の路温も前実施 例に比して不利になっている。すなわち、定着処 理速度を大きくしたことによって、発熱層の温度 を高くし、かつ1枚当たりの発熱量も大きくな り、さらには加熱後分離するまでの時間も小さく なる等の不利を解消するために、ベルトの離間ま での間に冷却固化させる冷却手段が必要となる。 例えば、耐熱ベルト40に当接させたアルミニウム 製の放熱板45であり、発熱体21と分離ローラ26と の間に設けられている。冷却手段はこの他に送真 機等を用いても良い。また、分離部には分離爪 46を配し、転写材の遊き付きを防止し、また耐熱 ベルト40上に付着した紙粉等の異物を除去するた めにフェルトからなるクリーニングパッド47を当 接させている。また、フェルトパッドに若干の難 型制、例えばシリコーンオイルを含浸させて、耐 熱ベルト40の離型性を向上させても良い。さら

ここで、加圧ローラ22と発熱層28との圧接部は 発熱体21と加圧ローラ22との圧接用の内でも搬送 方向の入口側に寄っており、加熱直後の耐熱ベル ト40と転写材Pとの離間を防止している。

本実施例では、高速化により最大消費電力が約1600Wと大きくなるので、発熱層を長手方向で四分割して順次通電することによって、最大消費電力を400Wと低減化してもよい。

で、定着不良やオフセットを発生することなく、 加熱体の熱容量を小さくすることが可能となり、 その結果、装置使用時の待機時間や、消費電力、 さらには機内昇温の小さな画像形成装置を得ると いう効果を奏する。

#### 4. 図面の簡単な説明

第1 団は木発明の一実施例装置の画像形成装置の概要構成を示す断面図、第2 団は第1 図の定着装置の拡大断面図、第3 図は第2 図装置の耐熱シート交換時における断面図、第4 団は木発明の他の実施例装置の定着装置の断面図である。

3 ………画像形成手段(感光ドラム)

20 .....加热定着手段

23, 40……耐熱シート

D……… 航海村

T -----------トナー体

以上示した水実施例では、冷却手段や分離手段を付加することによって、オフセットのない安定した画像を比較的高速で得ることが可能となり、さらに耐熱性のエンドレスベルトを用いることによって、経済性の向上を図ることが可能となった。

また、本発明の以上の実施例として、電子写真 方式を用いた複写装置について二例説明したが、 本発明はこれに限定されるこのなく、レーザー ビームプリンタ等の加熱により軟化溶験するト ナーを用いた画像形成装置に適用可能であり、特 に待時間を必要とせずに加熱定者処理することが 可能であるので、ファクシミリの出力装置として も好適に用いられる。

### (発明の効果)

本発明は以上のごとく、走行する耐熱シートに 未定着トナー像が面するように転写材を同一速度 で上記耐熱シートに密着走行せしめ、減耐熱シー トを介して必要時にパルス状に発熱する発熱体に よって上記転写材を加熱定着することとしたの





第1図



第3図



第4図

