

Parametric estimation of line spectra

Linear time series (part 2) TSIA202b

 Sounds that generate pitch perception have a quasi-periodic waveform

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency :

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency :
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold :

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency :
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold :
 - Some instruments are slightly inharmonic

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency :
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold :
 - Some instruments are slightly inharmonic
 - Polyphony : overlap of harmonic combs

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency :
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold :
 - Some instruments are slightly inharmonic
 - Polyphony : overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies :

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony : overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies :
 - asymmetry in a bell geometry

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency :
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold :
 - Some instruments are slightly inharmonic
 - Polyphony : overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies :
 - asymmetry in a bell geometry
 - coupling between the strings and bridge (chevalet) in a guitar

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony : overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies :
 - asymmetry in a bell geometry
 - coupling between the strings and bridge (chevalet) in a guitar
 - pairs or triplets of strings in a piano, plus coupling of the vertical and horizontal vibration modes

Part I

Parametric signal model

Exponential amplitude modulation to model the natural damping of free vibrating systems

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form : $s_t = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form : $s_t = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form : $s_t = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,
 - $z_k = e^{\delta_k + i2\pi f_k}$ is a complex pole.

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form : $s_t = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,
 - $z_k = e^{\delta_k + i2\pi f_k}$ is a complex pole.
- Hypotheses : for all $k \in \{0 ... K 1\}$, $\alpha_k \neq 0$, $z_k \neq 0$, and all poles z_k are pairwise distinct

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model : $s_t = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form : $s_t = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,
 - $z_k = e^{\delta_k + i2\pi f_k}$ is a complex pole.
- Hypotheses : for all $k \in \{0 ... K 1\}$, $\alpha_k \neq 0$, $z_k \neq 0$, and all poles z_k are pairwise distinct
- The observed signal x_t is modeled as the signal s_t plus a complex Gaussian white noise b_t of variance σ^2 (sequence of complex IID

r.v. of PDF
$$p(b) = \frac{1}{\pi \sigma^2} e^{-\frac{|b|^2}{\sigma^2}}$$

Peak detection in the Fourier transform

- Peak detection in the Fourier transform
- Advantages

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length
 - spectral precision limited by the length of the transform

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length
 - spectral precision limited by the length of the transform
 - trade-off between the width of the principal lobe and the height of the secondary lobes induced by the window shape

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length
 - spectral precision limited by the length of the transform
 - trade-off between the width of the principal lobe and the height of the secondary lobes induced by the window shape
 - widening of the peak in case of exponential damping

直送影響 Resolution problems

Test signal:

- Sampling frequency : 8000 Hz
- First sinusoid : 440 Hz (A)
- Second sinusoid : 415,3 Hz (G#)
- No damping, all amplitudes equal to 1
- Length of the rectangular window : N = 128 (16 ms)
- Length of the transform : 1024 samples

Resolution problems

Resolution problems

Resolution problems

Part II

Maximum Likelihood Method

直接 Definitions

■
$$s(t) = [s_{t-l+1}, ..., s_{t+n-1}]^{\top}$$
, of dimension $N = n + l - 1$

直接數 Definitions

- $s(t) = [s_{t-l+1}, ..., s_{t+n-1}]^{\top}$, of dimension N = n + l 1
- Let $\mathbf{D} = \operatorname{diag}(z_0, \ldots, z_{K-1})$ and $\forall z \in \mathbb{C}$, $\mathbf{v}(z) = [1, z, \ldots, z^{N-1}]^{\top}$

一選都 Definitions

- $s(t) = [s_{t-l+1}, ..., s_{t+n-1}]^{\top}$, of dimension N = n + l 1
- Let $\mathbf{\textit{D}} = \operatorname{diag}(z_0,\ldots,\,z_{K-1})$ and $\forall z \in \mathbb{C},\, \mathbf{\textit{v}}(z) = [1,\,z,\ldots,\,z^{N-1}]^{\top}$
- $V^N = [v(z_0), ..., v(z_{K-1})]$ is a Vandermonde matrix :

$$\boldsymbol{V}^{N} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{N-1} & z_{1}^{N-1} & \dots & z_{K-1}^{N-1} \end{bmatrix}$$

一選家 Definitions

- $s(t) = [s_{t-l+1}, ..., s_{t+n-1}]^{\top}$, of dimension N = n + l 1
- Let $\mathbf{\textit{D}} = \operatorname{diag}(z_0, \ldots, z_{K-1})$ and $\forall z \in \mathbb{C}, \ \mathbf{\textit{v}}(z) = [1, z, \ldots, z^{N-1}]^{\top}$
- $lackbrack V^N = [v(z_0), \dots, v(z_{K-1})]$ is a Vandermonde matrix :

$$\boldsymbol{V}^{N} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{N-1} & z_{1}^{N-1} & \dots & z_{K-1}^{N-1} \end{bmatrix}$$

V^N is of full-rank if and only if all the z_k are distinct

直送复数 Definitions

- $s(t) = [s_{t-l+1}, ..., s_{t+n-1}]^{\top}$, of dimension N = n + l 1
- Let $\mathbf{D} = \operatorname{diag}(z_0, \ldots, z_{K-1})$ and $\forall z \in \mathbb{C}$, $\mathbf{v}(z) = [1, z, \ldots, z^{N-1}]^{\top}$
- $V^N = [v(z_0), ..., v(z_{K-1})]$ is a Vandermonde matrix :

$$\mathbf{V}^{N} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{N-1} & z_{1}^{N-1} & \dots & z_{K-1}^{N-1} \end{bmatrix}$$

- **V**^N is of full-rank if and only if all the z_k are distinct
- Let $\alpha = [\alpha_0, \dots, \alpha_{K-1}]^{\top}$ and $\alpha(t) = \mathbf{D}^{t-l+1}\alpha$

i樂寶微■Definitions

- **s** $(t) = [s_{t-l+1}, \dots, s_{t+n-1}]^{\top}$, of dimension N = n+l-1
- Let $\mathbf{D} = \operatorname{diag}(z_0, \dots, z_{K-1})$ and $\forall z \in \mathbb{C}$, $\mathbf{v}(z) = [1, z, \dots, z^{N-1}]^{\top}$
- **V**^N = [$\mathbf{v}(z_0), \dots, \mathbf{v}(z_{K-1})$] is a Vandermonde matrix :

$$\boldsymbol{V}^{N} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{N-1} & z_{1}^{N-1} & \dots & z_{K-1}^{N-1} \end{bmatrix}$$

- **V**^N is of full-rank if and only if all the z_k are distinct
- Let $\alpha = [\alpha_0, \dots, \alpha_{K-1}]^{\top}$ and $\alpha(t) = \mathbf{D}^{t-l+1}\alpha$ $\mathbf{s}_t = \sum_{k=0}^{K-1} \alpha_k \, \mathbf{z}_k^{\ t} \Rightarrow \mathbf{s}(t) = \mathbf{V}^N \alpha(t) \Rightarrow \forall t, \ \mathbf{s}(t) \in \mathrm{Span}(\mathbf{V}^N)$

直接影响 Definitions

- $s(t) = [s_{t-l+1}, ..., s_{t+n-1}]^{\top}$, of dimension N = n + l 1
- Let $\mathbf{\textit{D}} = \operatorname{diag}(z_0, \ldots, z_{K-1})$ and $\forall z \in \mathbb{C}, \ \mathbf{\textit{v}}(z) = [1, z, \ldots, z^{N-1}]^{\top}$
- $lackbrack V^N = [oldsymbol{v}(z_0), \ldots, oldsymbol{v}(z_{K-1})]$ is a Vandermonde matrix :

$$\boldsymbol{V}^{N} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{N-1} & z_{1}^{N-1} & \dots & z_{K-1}^{N-1} \end{bmatrix}$$

- **V**^N is of full-rank if and only if all the z_k are distinct
- Let $\alpha = [\alpha_0, \dots, \alpha_{K-1}]^{\top}$ and $\alpha(t) = \mathbf{D}^{t-l+1}\alpha$
- lacksquare $s_t = \sum_{k=0}^{K-1} lpha_k z_k^t \Rightarrow oldsymbol{s}(t) = oldsymbol{V}^N lpha(t) \Rightarrow orall t, \ oldsymbol{s}(t) \in \operatorname{Span}(oldsymbol{V}^N)$
- **b** $(t) = [b_{t-l+1} \dots b_{t+n-1}]^{\top} \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{bb})$ with $\mathbf{R}_{bb} = \sigma^2 \mathbf{I}_N$

発達版 Definitions

- **s** $(t) = [s_{t-l+1}, \dots, s_{t+n-1}]^{\top}$, of dimension N = n+l-1
- Let $\mathbf{D} = \operatorname{diag}(z_0, \ldots, z_{K-1})$ and $\forall z \in \mathbb{C}$, $\mathbf{v}(z) = [1, z, \ldots, z^{N-1}]^{\top}$
- $\mathbf{V}^N = [\mathbf{v}(z_0), \dots, \mathbf{v}(z_{K-1})]$ is a Vandermonde matrix:

$$\boldsymbol{V}^{N} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{N-1} & z_{1}^{N-1} & \dots & z_{K-1}^{N-1} \end{bmatrix}$$

- **V** is of full-rank if and only if all the z_k are distinct
- Let $\alpha = [\alpha_0, \ldots, \alpha_{K-1}]^{\top}$ and $\alpha(t) = \mathbf{D}^{t-l+1}\alpha$
- lacksquare $s_t = \sum_{k=0}^{K-1} \alpha_k \, z_k^{\ t} \Rightarrow s(t) = V^N \alpha(t) \Rightarrow \forall t, \ s(t) \in \mathrm{Span}(V^N)$
- $lackbox{\textbf{b}}(t) = [b_{t-l+1} \dots b_{t+n-1}]^{\top} \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{bb}) \text{ with } \mathbf{R}_{bb} = \sigma^2 \mathbf{I}_N$
- $\mathbf{x}(t) = [x_{t-l+1}, \dots, x_{t+n-1}]^{\top} = \mathbf{s}(t) + \mathbf{b}(t)$

■選択I Maximum likelihood method

■ Objective : estimate parameters σ^2 , z_0, \ldots, z_{K-1} and $\alpha(t)$

■終星間 Maximum likelihood method

- Objective : estimate parameters σ^2 , z_0, \ldots, z_{K-1} and $\alpha(t)$
- General parametric estimation principle, asymptotically unbiased, consistent and efficient

直接影响 Maximum likelihood method

- Objective : estimate parameters σ^2 , z_0, \ldots, z_{K-1} and $\alpha(t)$
- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- Probability density function (PDF) of the random vector $\mathbf{x}(t) = \mathbf{s}(t) + \mathbf{b}(t)$, where $\mathbf{s}(t) = \mathbf{V}^N \alpha(t)$ is deterministic and $\mathbf{b}(t) \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{bb})$:

$$p(\mathbf{x}(t)) = \frac{1}{\pi^N \det(\mathbf{R}_{bb})} e^{-(\mathbf{x}(t) - \mathbf{s}(t))^H \mathbf{R}_{bb}^{-1}(\mathbf{x}(t) - \mathbf{s}(t))}$$

搬翻Maximum likelihood method

- Objective : estimate parameters σ^2 , z_0, \ldots, z_{K-1} and $\alpha(t)$
- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- Probability density function (PDF) of the random vector $\mathbf{x}(t) = \mathbf{s}(t) + \mathbf{b}(t)$, where $\mathbf{s}(t) = \mathbf{V}^N \alpha(t)$ is deterministic and $\boldsymbol{b}(t) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{R}_{bb})$:

$$p(\mathbf{\textit{x}}(t)) = \frac{1}{\pi^N \det(\mathbf{\textit{R}}_{bb})} \, e^{-(\mathbf{\textit{x}}(t) - \mathbf{\textit{s}}(t))^H \mathbf{\textit{R}}_{bb}^{-1}(\mathbf{\textit{x}}(t) - \mathbf{\textit{s}}(t))}$$

Log-likelihood of the observations :

$$L(\sigma^2, z_0 \dots z_{K-1}, \alpha(t)) = -N \ln(\pi \sigma^2) - \frac{1}{\sigma^2} g(z_0 \dots z_{K-1}, \alpha(t))$$
where $g(z_0 \dots z_{K-1}, \alpha(t)) = \left(\mathbf{x}(t) - \mathbf{V}^N \alpha(t)\right)^H \left(\mathbf{x}(t) - \mathbf{V}^N \alpha(t)\right)$

Maximum likelihood method

- Objective : estimate parameters σ^2 , z_0, \ldots, z_{K-1} and $\alpha(t)$
- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- Probability density function (PDF) of the random vector $\mathbf{x}(t) = \mathbf{s}(t) + \mathbf{b}(t)$, where $\mathbf{s}(t) = \mathbf{V}^N \alpha(t)$ is deterministic and $\mathbf{b}(t) \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_{bb})$:

$$p(\mathbf{x}(t)) = \frac{1}{\pi^N \det(\mathbf{R}_{bb})} e^{-(\mathbf{x}(t) - \mathbf{s}(t))^H \mathbf{R}_{bb}^{-1}(\mathbf{x}(t) - \mathbf{s}(t))}$$

Log-likelihood of the observations :

$$L(\sigma^2, z_0 \dots z_{K-1}, \alpha(t)) = -N \ln(\pi \sigma^2) - \frac{1}{\sigma^2} g(z_0 \dots z_{K-1}, \alpha(t))$$
where $g(z_0 \dots z_{K-1}, \alpha(t)) = \left(\mathbf{x}(t) - \mathbf{V}^N \alpha(t)\right)^H \left(\mathbf{x}(t) - \mathbf{V}^N \alpha(t)\right)$

Maximization w.r.t. $\sigma^2 : \sigma^2 = \frac{1}{N} \| \boldsymbol{x}(t) - \boldsymbol{V}^N \boldsymbol{\alpha}(t) \|^2$

Maximum likelihood method

■ Matrix $\mathbf{V}^{NH}\mathbf{V}^{N}$ is invertible because \mathbf{V}^{N} is full-rank

直接影响 Maximum likelihood method

- Matrix $V^{NH}V^N$ is invertible because V^N is full-rank
- We finally have to minimize function

$$g(z_0 \dots z_{K-1}, \alpha(t)) = \mathbf{x}(t)^H \mathbf{x}(t) - \mathbf{x}(t)^H \mathbf{V}^N \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t)$$

$$+ \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)^H \left(\mathbf{V}^{NH} \mathbf{V}^N \right) \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)$$

- Matrix $V^{NH}V^N$ is invertible because V^N is full-rank
- We finally have to minimize function

$$g(z_0 \dots z_{K-1}, \alpha(t)) = \mathbf{x}(t)^H \mathbf{x}(t) - \mathbf{x}(t)^H \mathbf{V}^N \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t)$$

$$+ \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)^H \left(\mathbf{V}^{NH} \mathbf{V}^N \right) \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)$$

Minimization w.r.t. $\alpha(t)$: $\alpha(t) = (\boldsymbol{V}^{NH} \boldsymbol{V}^{N})^{-1} \boldsymbol{V}^{NH} \boldsymbol{x}(t)$

直接影响 Maximum likelihood method

- Matrix $\mathbf{V}^{NH}\mathbf{V}^{N}$ is invertible because \mathbf{V}^{N} is full-rank
- We finally have to minimize function

$$g(z_0 \dots z_{K-1}, \alpha(t)) = \mathbf{x}(t)^H \mathbf{x}(t) - \mathbf{x}(t)^H \mathbf{V}^N \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t)$$

$$+ \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)^H \left(\mathbf{V}^{NH} \mathbf{V}^N \right) \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)$$

- Minimization w.r.t. $\alpha(t)$: $\alpha(t) = \left(\mathbf{V}^{NH}\mathbf{V}^{N}\right)^{-1}\mathbf{V}^{NH}\mathbf{x}(t)$
- **g** is minimal when $(z_0 \dots z_{K-1})$ maximize function $\mathcal{J}(z_0, \dots, z_{K-1}) = \mathbf{x}(t)^H \mathbf{V}^N \left(\mathbf{V}^{N^H} \mathbf{V}^N \right)^{-1} \mathbf{V}^{N^H} \mathbf{x}(t)$

直接影响 Maximum likelihood method

- Matrix $\mathbf{V}^{NH}\mathbf{V}^{N}$ is invertible because \mathbf{V}^{N} is full-rank
- We finally have to minimize function

$$g(z_0 \dots z_{K-1}, \alpha(t)) = \mathbf{x}(t)^H \mathbf{x}(t) - \mathbf{x}(t)^H \mathbf{V}^N \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t)$$

$$+ \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)^H \left(\mathbf{V}^{NH} \mathbf{V}^N \right) \left(\alpha(t) - \left(\mathbf{V}^{NH} \mathbf{V}^N \right)^{-1} \mathbf{V}^{NH} \mathbf{x}(t) \right)$$

- Minimization w.r.t. $\alpha(t)$: $\alpha(t) = \left(\boldsymbol{V}^{NH}\boldsymbol{V}^{N}\right)^{-1}\boldsymbol{V}^{NH}\boldsymbol{x}(t)$
- **g** is minimal when $(z_0 \dots z_{K-1})$ maximize function $\mathcal{J}(z_0, \dots, z_{K-1}) = \mathbf{x}(t)^H \mathbf{V}^N \left(\mathbf{V}^{N^H} \mathbf{V}^N\right)^{-1} \mathbf{V}^{N^H} \mathbf{x}(t)$
- This optimization problem has to be solved numerically

三選記 Summary

 General parametric estimation principle, asymptotically unbiased, consistent and efficient

三選擇**於** Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :

国選擇 Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables

三選記M Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method

多数数数Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance : power of the residual signal

国 多 题 Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance : power of the residual signal
- Difficulties of the first step :

国 多 题 Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance : power of the residual signal
- Difficulties of the first step :
 - computational complexity

国 多 题 Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance : power of the residual signal
- Difficulties of the first step :
 - computational complexity
 - presence of many local maxima

B B Summary

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation :
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance : power of the residual signal
- Difficulties of the first step :
 - computational complexity
 - presence of many local maxima
- Need for specific methods for the complex poles

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles : numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes : by means of the least squares method
 - Estimation of the variance : power of the residual signal
- Difficulties of the first step :
 - computational complexity
 - presence of many local maxima
- Need for specific methods for the complex poles
- High resolution parametric estimation methods overcome the

一選記 Fourier resolution

■ Particular case : $\forall k$, $\delta_k = 0$

TENTAL STATE OF THE PROPERTY OF THE PROPERTY

- Particular case : $\forall k$, $\delta_k = 0$
- Closed-form solution if K = 1, and approximated solution if K > 1

TESTION Fourier resolution

- Particular case : $\forall k$, $\delta_k = 0$
- Closed-form solution if K = 1, and approximated solution if K > 1
- If K = 1, $\mathcal{J}(z_0) = \widehat{S}_{P,xx}(f_0)$, where $\widehat{S}_{P,xx}$ is the periodogram

$$\widehat{S}_{P,xx}(f_0) = \frac{1}{N} \left| X(f_0) \right|^2$$

where
$$X(f_0) = \mathbf{v}(e^{i2\pi f_0})^H \mathbf{x}(t) = \sum_{\tau=0}^{N-1} x_{t-l+1+\tau} e^{-i2\pi f_0 \tau}$$

Fourier resolution

- Particular case : $\forall k, \delta_k = 0$
- Closed-form solution if K = 1, and approximated solution if K > 1
- If K = 1, $\mathcal{J}(z_0) = \widehat{S}_{P,xx}(f_0)$, where $\widehat{S}_{P,xx}$ is the periodogram

$$\widehat{S}_{P,xx}(f_0) = \frac{1}{N} |X(f_0)|^2$$

where
$$X(f_0) = \mathbf{v}(e^{i2\pi f_0})^H \mathbf{x}(t) = \sum_{\tau=0}^{N-1} x_{t-l+1+\tau} e^{-i2\pi f_0 \tau}$$

■ In the same way, $\alpha_0(t) = \frac{1}{N} X(f_0)$ and $\sigma^2 = \frac{1}{N} \left(\| \boldsymbol{x}(t) \|^2 - \widehat{S}_{P,xx}(f_0) \right)$

T密**T** Fourier resolution

- Particular case : $\forall k$, $\delta_k = 0$
- Closed-form solution if K = 1, and approximated solution if K > 1
- If K = 1, $\mathcal{J}(z_0) = \widehat{S}_{P,xx}(f_0)$, where $\widehat{S}_{P,xx}$ is the periodogram

$$\widehat{S}_{P,xx}(f_0) = \frac{1}{N} |X(f_0)|^2$$

where
$$X(f_0) = \mathbf{v}(e^{i2\pi f_0})^H \mathbf{x}(t) = \sum_{\tau=0}^{N-1} x_{t-l+1+\tau} e^{-i2\pi f_0 \tau}$$

- In the same way, $\alpha_0(t) = \frac{1}{N} X(f_0)$ and $\sigma^2 = \frac{1}{N} \left(\| \mathbf{x}(t) \|^2 \widehat{S}_{P,xx}(f_0) \right)$
- The maximum likelihood principle results in detecting the frequency at which the periodogram reaches its maximum.

Fourier resolution

- Particular case : $\forall k, \delta_k = 0$
- Closed-form solution if K = 1, and approximated solution if K > 1
- If K = 1, $\mathcal{J}(z_0) = \widehat{S}_{P,xx}(f_0)$, where $\widehat{S}_{P,xx}$ is the periodogram

$$\widehat{S}_{P,xx}(f_0) = \frac{1}{N} |X(f_0)|^2$$

where
$$X(f_0) = \mathbf{v}(e^{i2\pi f_0})^H \mathbf{x}(t) = \sum_{\tau=0}^{N-1} x_{t-l+1+\tau} e^{-i2\pi f_0 \tau}$$

- In the same way, $\alpha_0(t) = \frac{1}{N} X(f_0)$ and $\sigma^2 = \frac{1}{N} \left(\| \boldsymbol{x}(t) \|^2 - \widehat{S}_{P,XX}(f_0) \right)$
- The maximum likelihood principle results in detecting the frequency at which the periodogram reaches its maximum.
- The complex amplitude is proportional to the value of the TFD.

Fourier resolution

- Particular case : $\forall k, \, \delta_k = 0$
- Closed-form solution if K = 1, and approximated solution if K > 1
- If K = 1, $\mathcal{J}(z_0) = \widehat{S}_{P,xx}(f_0)$, where $\widehat{S}_{P,xx}$ is the periodogram

$$\widehat{S}_{P,xx}(f_0) = \frac{1}{N} |X(f_0)|^2$$

where
$$X(f_0) = \mathbf{v}(e^{i2\pi f_0})^H \mathbf{x}(t) = \sum_{\tau=0}^{N-1} x_{t-l+1+\tau} e^{-i2\pi f_0 \tau}$$

- In the same way, $\alpha_0(t) = \frac{1}{N} X(f_0)$ and $\sigma^2 = \frac{1}{N} \left(\| \boldsymbol{x}(t) \|^2 - \widehat{S}_{P,XX}(f_0) \right)$
- The maximum likelihood principle results in detecting the frequency at which the periodogram reaches its maximum.
- The complex amplitude is proportional to the value of the TFD.
- The noise variance is the residual power.

TENTAL SECTION Fourier resolution

■ If
$$K \ge 1$$
, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} - f_{k_1}|}$

Table 1 Fourier resolution

- If $K \ge 1$, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} f_{k_1}|}$
- We have $\{\boldsymbol{V}^{NH}\boldsymbol{V}^N\}_{(k_1, k_2)} = \sum_{\tau=0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}$.

■終星間 Fourier resolution

- If $K \ge 1$, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} f_{k_1}|}$
- We have $\left\{ {{{\boldsymbol{V}}^{NH}}{{\boldsymbol{V}}^{N}}} \right\}_{(k_1,\,k_2)} = \sum_{\tau = 0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}.$
- Then $\frac{1}{N} \boldsymbol{V}^{NH} \boldsymbol{V}^{N} = \boldsymbol{I}_{K} + O\left(\frac{1}{N}\right)$, thus $\left(\boldsymbol{V}^{NH} \boldsymbol{V}^{N}\right)^{-1} = \frac{1}{N} \boldsymbol{I}_{K} + O\left(\frac{1}{N^{2}}\right)$

Roland Badeau

- If $K \ge 1$, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} f_{k_1}|}$
- We have $\left\{ {{{\boldsymbol{V}}^{NH}}{{\boldsymbol{V}}^{N}}} \right\}_{(k_1,\,k_2)} = \sum_{\tau = 0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}.$
- Then $\frac{1}{N} \boldsymbol{V}^{NH} \boldsymbol{V}^{N} = \boldsymbol{I}_{K} + O\left(\frac{1}{N}\right)$, thus $\left(\boldsymbol{V}^{NH} \boldsymbol{V}^{N}\right)^{-1} = \frac{1}{N} \boldsymbol{I}_{K} + O\left(\frac{1}{N^{2}}\right)$

- If $K \ge 1$, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} f_{k_1}|}$
- We have $\left\{ {{{\boldsymbol{V}}^{NH}}{{\boldsymbol{V}}^{N}}} \right\}_{(k_1,\,k_2)} = \sum_{\tau = 0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}.$
- Then $\frac{1}{N} \boldsymbol{V}^{NH} \boldsymbol{V}^{N} = \boldsymbol{I}_{K} + O\left(\frac{1}{N}\right)$, thus $\left(\boldsymbol{V}^{NH} \boldsymbol{V}^{N}\right)^{-1} = \frac{1}{N} \boldsymbol{I}_{K} + O\left(\frac{1}{N^{2}}\right)$
- lacksquare $lack lpha(t) = rac{1}{N} \, oldsymbol{V}^{NH} oldsymbol{x}(t) + O\left(rac{1}{N^2}
 ight), \, ext{hence} \, lpha_k(t) = rac{1}{N} \, X(f_k) + O\left(rac{1}{N^2}
 ight)$

- If $K \ge 1$, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} f_{k_1}|}$
- We have $\left\{ \boldsymbol{V}^{NH} \boldsymbol{V}^{N} \right\}_{(k_1, k_2)} = \sum_{\tau=0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}$.
- Then $\frac{1}{N} \boldsymbol{V}^{NH} \boldsymbol{V}^{N} = \boldsymbol{I}_{K} + O\left(\frac{1}{N}\right)$, thus $\left(\boldsymbol{V}^{NH} \boldsymbol{V}^{N}\right)^{-1} = \frac{1}{N} \boldsymbol{I}_{K} + O\left(\frac{1}{N^{2}}\right)$
- lacksquare lacksquare $lpha(t) = rac{1}{N} \, oldsymbol{V}^{NH} oldsymbol{x}(t) + O\left(rac{1}{N^2}
 ight)$, hence $lpha_k(t) = rac{1}{N} \, X(f_k) + O\left(rac{1}{N^2}
 ight)$
- $\sigma^2 = \frac{1}{N} \left(\| \mathbf{x}(t) \|^2 \sum_{k=0}^{K-1} \widehat{S}_{P,xx}(f_k) \right) + O\left(\frac{1}{N^2}\right).$

- \blacksquare If $K \geq$ 1, we assume that $N >> \frac{1}{\min\limits_{k_1 \neq k_2} |f_{k_2} f_{k_1}|}$
- We have $\left\{ \boldsymbol{V}^{NH} \boldsymbol{V}^{N} \right\}_{(k_1, k_2)} = \sum_{\tau=0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}$.
- Then $\frac{1}{N} \boldsymbol{V}^{NH} \boldsymbol{V}^{N} = \boldsymbol{I}_{K} + O\left(\frac{1}{N}\right)$, thus $\left(\boldsymbol{V}^{NH} \boldsymbol{V}^{N}\right)^{-1} = \frac{1}{N} \boldsymbol{I}_{K} + O\left(\frac{1}{N^{2}}\right)$
- lacksquare $lack lpha(t) = rac{1}{N} \, oldsymbol{V}^{NH} oldsymbol{x}(t) + O\left(rac{1}{N^2}
 ight), \, ext{hence} \, lpha_k(t) = rac{1}{N} \, X(f_k) + O\left(rac{1}{N^2}
 ight)$
- Find the K greatest values of the periodogram

多数型 Fourier resolution

- If $K \ge 1$, we assume that $N >> \frac{1}{\min\limits_{k_1 \ne k_2} |f_{k_2} f_{k_1}|}$
- We have $\{\boldsymbol{V}^{NH}\boldsymbol{V}^N\}_{(k_1, k_2)} = \sum_{\tau=0}^{N-1} (z_{k_1}^* z_{k_2})^{\tau}$.
- Then $\frac{1}{N} \boldsymbol{V}^{NH} \boldsymbol{V}^{N} = \boldsymbol{I}_{K} + O\left(\frac{1}{N}\right)$, thus $\left(\boldsymbol{V}^{NH} \boldsymbol{V}^{N}\right)^{-1} = \frac{1}{N} \boldsymbol{I}_{K} + O\left(\frac{1}{N^{2}}\right)$
- lacksquare $\alpha(t) = \frac{1}{N} V^{NH} \mathbf{x}(t) + O\left(\frac{1}{N^2}\right)$, hence $\alpha_k(t) = \frac{1}{N} X(f_k) + O\left(\frac{1}{N^2}\right)$
- $\sigma^2 = \frac{1}{N} \left(\| \mathbf{x}(t) \|^2 \sum_{k=0}^{K-1} \widehat{S}_{P,xx}(f_k) \right) + O\left(\frac{1}{N^2}\right).$
- Find the K greatest values of the periodogram
- Limit of Fourier analysis : $\min_{k_1 \neq k_2} |f_{k_2} f_{k_1}| >> \frac{1}{N}$

Part III

High resolution methods based on linear prediction

Jean-Baptiste Joseph Fourier (1768-1830)

Gaspard-Marie Riche of Prony (1755-1839)

Linear prediction methods

■ Principle : any signal such that $s_t - z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$

直送量**数** Linear prediction methods

■ Principle : any signal such that $s_t - z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$

Roland Badeau

■ General case : let $P[z] \triangleq \prod_{k=0}^{K-1} (z - z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.

直接影响 Linear prediction methods

- Principle : any signal such that $s_t z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$
- General case : let $P[z] \triangleq \prod_{k=0}^{K-1} (z z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s_t\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^K p_\tau \, s_{t-\tau} = 0$ if and only if it is of the form $s_t = \sum_{k=0}^{K-1} \alpha_k \, z_k^{\ t}$

直接影響 Linear prediction methods

- Principle : any signal such that $s_t z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$
- General case : let $P[z] \triangleq \prod_{k=0}^{K-1} (z z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s_t\}_{t\in\mathbb{Z}}$ is solution of the recursion $\sum_{k=0}^{K} p_{\tau} s_{t-\tau} = 0 \text{ if and only if it is of the form } s_t = \sum_{k=0}^{K-1} \alpha_k z_k^{t}$
- Prony and Pisarenko methods :

直選認Linear prediction methods

- Principle : any signal such that $s_t z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$
- General case : let $P[z] \triangleq \prod_{k=0}^{K-1} (z z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s_t\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^K p_\tau \, s_{t-\tau} = 0$ if and only if it is of the form $s_t = \sum_{k=0}^{K-1} \alpha_k \, z_k^{\ t}$
- Prony and Pisarenko methods :
 - Estimate polynomial P[z] by means of linear prediction

直選認Linear prediction methods

- Principle : any signal such that $s_t z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$
- General case : let $P[z] \triangleq \prod_{k=0}^{K-1} (z z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s_t\}_{t\in\mathbb{Z}}$ is solution of the recursion

$$\sum_{\tau=0}^{K} p_{\tau} \, s_{t-\tau} = 0 \text{ if and only if it is of the form } s_t = \sum_{k=0}^{K-1} \alpha_k \, z_k^{t}$$

- Prony and Pisarenko methods :
 - Estimate polynomial P[z] by means of linear prediction
 - Extract the roots of this polynomial

直接影響 Linear prediction methods

- Principle : any signal such that $s_t z_0 s_{t-1} = 0$ is of the form $s_t = \alpha_0 z_0^t$
- General case : let $P[z] \triangleq \prod_{k=0}^{K-1} (z z_k) = \sum_{\tau=0}^{K} p_\tau z^{K-\tau}$.
- A discrete signal $\{s_t\}_{t\in\mathbb{Z}}$ is solution of the recursion $\sum_{k=0}^{K} p_{\tau} s_{t-\tau} = 0 \text{ if and only if it is of the form } s_{t} = \sum_{k=0}^{K-1} \alpha_{k} z_{k}^{t}$
- Prony and Pisarenko methods :
 - Estimate polynomial P[z] by means of linear prediction
 - Extract the roots of this polynomial
- Drawback: mediocre performance in presence of noise

直接影響 Prony method

■ Let
$$\varepsilon_t \triangleq \sum_{\tau=0}^K p_\tau x_{t-\tau} = \sum_{\tau=0}^K p_\tau b_{t-\tau}$$
 be the prediction error

直接影響 Prony method

- Let $\varepsilon_t \triangleq \sum_{\tau=0}^K p_\tau x_{t-\tau} = \sum_{\tau=0}^K p_\tau b_{t-\tau}$ be the prediction error
- We let n = K + 1, and we assume that $l \ge K + 1$

超過WProny method

- Let $\varepsilon_t \triangleq \sum_{\tau=0}^K p_\tau x_{t-\tau} = \sum_{\tau=0}^K p_\tau b_{t-\tau}$ be the prediction error
- We let n = K + 1, and we assume that $l \ge K + 1$

Then
$$\boldsymbol{p}^H \boldsymbol{X}(t) = \varepsilon(t)^H$$
 where $\boldsymbol{p} = [p_K, p_{K-1}, \dots, p_0]^H$,
$$\varepsilon(t) = [\varepsilon_{t-l+K+1}, \varepsilon_{t-l+K+2}, \dots, \varepsilon_{t+K}]^H \text{ and}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} x_{t-l+1} & \dots & x_{t-1} & x_t \\ x_{t-l+2} & \dots & x_t & x_{t+1} \\ \vdots & \dots & \vdots & \vdots \\ x_{t-l+K+1} & \dots & x_{t+K-1} & x_{t+K} \end{bmatrix}$$

图图 Prony method

- Let $\varepsilon_t \triangleq \sum_{\tau=0}^K p_\tau x_{t-\tau} = \sum_{\tau=0}^K p_\tau b_{t-\tau}$ be the prediction error
- We let n = K + 1, and we assume that $l \ge K + 1$

Then
$$\boldsymbol{p}^H \boldsymbol{X}(t) = \varepsilon(t)^H$$
 where $\boldsymbol{p} = [p_K, p_{K-1}, \dots, p_0]^H$,
$$\varepsilon(t) = [\varepsilon_{t-l+K+1}, \varepsilon_{t-l+K+2}, \dots, \varepsilon_{t+K}]^H \text{ and}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} x_{t-l+1} & \cdots & x_{t-1} & x_t \\ x_{t-l+2} & \cdots & x_t & x_{t+1} \\ \vdots & \cdots & \vdots & \vdots \\ x_{t-l+K+1} & \cdots & x_{t+K-1} & x_{t+K} \end{bmatrix}$$

■ We minimize $\frac{1}{7} \|\varepsilon\|^2$ w.r.t. \boldsymbol{p} , under the constraint $p_0 = 1$

■ **多数** Prony method

- Let $\varepsilon_t \triangleq \sum_{\tau=0}^K p_\tau x_{t-\tau} = \sum_{\tau=0}^K p_\tau b_{t-\tau}$ be the prediction error
- We let n = K + 1, and we assume that $l \ge K + 1$

Then
$$\boldsymbol{p}^H \boldsymbol{X}(t) = \varepsilon(t)^H$$
 where $\boldsymbol{p} = [p_K, p_{K-1}, \dots, p_0]^H$,
$$\varepsilon(t) = [\varepsilon_{t-l+K+1}, \varepsilon_{t-l+K+2}, \dots, \varepsilon_{t+K}]^H \text{ and}$$

$$\boldsymbol{X}(t) = \begin{bmatrix} x_{t-l+1} & \cdots & x_{t-1} & x_t \\ x_{t-l+2} & \cdots & x_t & x_{t+1} \\ \vdots & \ddots & \vdots & \vdots \\ x_{t-l+K+1} & \cdots & x_{t+K-1} & x_{t+K} \end{bmatrix}$$

- We minimize $\frac{1}{l} \|\varepsilon\|^2$ w.r.t. \boldsymbol{p} , under the constraint $p_0 = 1$
- However $\frac{1}{7} \|\varepsilon\|^2 = \boldsymbol{p}^H \widehat{\boldsymbol{R}}_{XX}(t) \, \boldsymbol{p}$, where $\widehat{\boldsymbol{R}}_{XX}(t) = \frac{1}{7} \, \boldsymbol{X}(t) \, \boldsymbol{X}(t)^H$

图图 Prony method

- Let $\varepsilon_t \triangleq \sum_{\tau=0}^K p_\tau x_{t-\tau} = \sum_{\tau=0}^K p_\tau b_{t-\tau}$ be the prediction error
- We let n = K + 1, and we assume that $l \ge K + 1$

Then
$$\boldsymbol{p}^{H}\boldsymbol{X}(t) = \varepsilon(t)^{H}$$
 where $\boldsymbol{p} = [p_{K}, p_{K-1}, \dots, p_{0}]^{H}$, $\varepsilon(t) = [\varepsilon_{t-l+K+1}, \varepsilon_{t-l+K+2}, \dots, \varepsilon_{t+K}]^{H}$ and $\boldsymbol{X}(t) = \begin{bmatrix} x_{t-l+1} & \cdots & x_{t-1} & x_{t} \\ x_{t-l+2} & \cdots & x_{t} & x_{t+1} \\ \vdots & \cdots & \vdots & \vdots \\ x_{t-l+K+1} & \cdots & x_{t+K-1} & x_{t+K} \end{bmatrix}$

- We minimize $\frac{1}{l} \|\varepsilon\|^2$ w.r.t. \boldsymbol{p} , under the constraint $p_0 = 1$
- However $\frac{1}{7} \|\varepsilon\|^2 = \boldsymbol{p}^H \widehat{\boldsymbol{R}}_{xx}(t) \, \boldsymbol{p}$, where $\widehat{\boldsymbol{R}}_{xx}(t) = \frac{1}{7} \, \boldsymbol{X}(t) \, \boldsymbol{X}(t)^H$
- The solution is $\boldsymbol{p} = \frac{1}{\boldsymbol{e}_{1}^{H} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}$ where $\boldsymbol{e}_{1} \triangleq [1, 0 \dots 0]^{\top}$

直光影 Prony and Pisarenko methods

Prony method :

- Construct matrix $\boldsymbol{X}(t)$ and compute $\hat{\boldsymbol{R}}_{xx}(t)$
- Compute $\boldsymbol{p} = \frac{1}{\boldsymbol{e}_{x}^{H} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}$
- Determine the z_k 's as the roots of $P[z] = \sum_{k=0}^{K} p_k z^{K-k}$

Prony and Pisarenko methods

- Prony method :
 - Construct matrix $\boldsymbol{X}(t)$ and compute $\hat{\boldsymbol{R}}_{xx}(t)$
 - Compute $\boldsymbol{p} = \frac{1}{\boldsymbol{e}_{x}^{H} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}$
 - Determine the z_k 's as the roots of $P[z] = \sum_{k=0}^{K} p_k z^{K-k}$
- Method of Pisarenko

直光图M Prony and Pisarenko methods

Prony method:

- Construct matrix X(t) and compute $\hat{R}_{xx}(t)$
- Compute $p = \frac{1}{e^{H}\hat{R}_{xx}(t)^{-1}e^{t}}\hat{R}_{xx}(t)^{-1}e_{1}$
- Determine the z_k 's as the roots of $P[z] = \sum_{k=0}^{K} p_k z^{K-k}$
- Method of Pisarenko
 - Minimize $\frac{1}{7} \|\varepsilon\|^2 = \boldsymbol{p}^H \widehat{\boldsymbol{R}}_{xx}(t) \, \boldsymbol{p}$ under the constraint $\|\boldsymbol{p}\|_2 = 1$

Prony and Pisarenko methods

Prony method :

- Construct matrix $\boldsymbol{X}(t)$ and compute $\hat{\boldsymbol{R}}_{xx}(t)$
- Compute $\boldsymbol{p} = \frac{1}{\boldsymbol{e}_{x}^{H} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}} \widehat{\boldsymbol{R}}_{xx}(t)^{-1} \boldsymbol{e}_{1}$
- Determine the z_k 's as the roots of $P[z] = \sum_{k=0}^{K} p_k z^{K-k}$
- Method of Pisarenko
 - Minimize $\frac{1}{l} \|\varepsilon\|^2 = \boldsymbol{p}^H \widehat{\boldsymbol{R}}_{xx}(t) \, \boldsymbol{p}$ under the constraint $\|\boldsymbol{p}\|_2 = 1$
 - Solution : \mathbf{p} = eigenvector of $\hat{\mathbf{R}}_{xx}(t)$ of lowest eigenvalue

Prony and Pisarenko methods

Prony method:

- Construct matrix X(t) and compute $\hat{R}_{xx}(t)$
- Compute $p = \frac{1}{e^{H}\hat{R}_{xx}(t)^{-1}e^{t}}\hat{R}_{xx}(t)^{-1}e_{1}$
- Determine the z_k 's as the roots of $P[z] = \sum_{k=0}^{K} p_k z^{K-k}$

Method of Pisarenko

- Minimize $\frac{1}{T} ||\varepsilon||^2 = \boldsymbol{p}^H \hat{\boldsymbol{R}}_{xx}(t) \boldsymbol{p}$ under the constraint $||\boldsymbol{p}||_2 = 1$
- Solution : \mathbf{p} = eigenvector of $\hat{\mathbf{R}}_{xx}(t)$ of lowest eigenvalue
- Pisarenko method :
 - Construct the matrix X(t) and compute $\hat{R}_{xx}(t)$
 - Diagonalize $\hat{\mathbf{R}}_{xx}(t)$
 - \mathbf{p} = eigenvector of $\hat{\mathbf{R}}_{xx}(t)$ of lowest eigenvalue
 - Determine the z_k 's as the roots of $P[z] = \sum_{k=0}^{K} p_k z^{K-k}$

Part IV

Subspace-based HR methods

Matrix representation of the signal

■ Observation horizon : $t \in \{0 \dots N-1\}$, where N > 2K

- Observation horizon : $t \in \{0 \dots N-1\}$, where N > 2K
- Data matrix (n > K, I > K and N = n + I 1):

$$oldsymbol{S} = \left[egin{array}{ccccc} oldsymbol{s}_0 & oldsymbol{s}_1 & \dots & oldsymbol{s}_{l-1} \ oldsymbol{s}_1 & oldsymbol{s}_2 & \dots & oldsymbol{s}_l \ dots & dots & dots & dots \ oldsymbol{s}_{n-1} & oldsymbol{s}_n & \dots & oldsymbol{s}_{N-1} \ \end{array}
ight]$$

Matrix representation of the signal

- Observation horizon : $t \in \{0 \dots N-1\}$, where N > 2K
- Data matrix (n > K, I > K and N = n + I 1):

$$oldsymbol{S} = \left[egin{array}{cccc} oldsymbol{s}_0 & oldsymbol{s}_1 & \dots & oldsymbol{s}_{l-1} \ oldsymbol{s}_1 & oldsymbol{s}_2 & \dots & oldsymbol{s}_l \ dots & dots & dots & dots \ oldsymbol{s}_{n-1} & oldsymbol{s}_n & \dots & oldsymbol{s}_{N-1} \ \end{array}
ight]$$

■ Factorization of matrix \boldsymbol{S} : $\boldsymbol{S} = \boldsymbol{V}^n \boldsymbol{A} \boldsymbol{V}^{T}$, where

Matrix representation of the signal

- Observation horizon : $t \in \{0 ... N-1\}$, where N > 2K
- Data matrix (n > K, I > K and N = n + I 1):

- Factorization of matrix \mathbf{S} : $\mathbf{S} = \mathbf{V}^n \mathbf{A} \mathbf{V}^{T}$, where
 - V^n is the Vandermonde matrix of dimension $n \times K$,

$$\boldsymbol{V}^{n} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ z_{0}^{2} & z_{1}^{2} & \dots & z_{K-1}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{n-1} & z_{1}^{n-1} & \dots & z_{K-1}^{n-1} \end{bmatrix}$$

Table Matrix representation of the signal

- Observation horizon : $t \in \{0 \dots N-1\}$, where N > 2K
- Data matrix (n > K, I > K and N = n + I 1):

- Factorization of matrix \mathbf{S} : $\mathbf{S} = \mathbf{V}^n \mathbf{A} \mathbf{V}^{T}$, where
 - V^n is the Vandermonde matrix of dimension $n \times K$,
 - V^I is the Vandermonde matrix of dimension $I \times K$,

直光影Matrix representation of the signal

- Observation horizon : $t \in \{0 \dots N-1\}$, where N > 2K
- Data matrix (n > K, I > K and N = n + I 1):

- Factorization of matrix \boldsymbol{S} : $\boldsymbol{S} = \boldsymbol{V}^n \boldsymbol{A} \boldsymbol{V}^{T}$, where
 - V^n is the Vandermonde matrix of dimension $n \times K$,
 - V^I is the Vandermonde matrix of dimension $I \times K$,
 - $\mathbf{A} = \operatorname{diag}(\alpha_0, \alpha_1 \dots \alpha_{K-1})$ is a diagonal matrix of dimension $K \times K$.

直接影響 Empirical covariance matrix

■ Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$

直接影響 Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$
- Matrix **R**_{ss} has rank K

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$
- Matrix R_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$
- Matrix **R**_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$
- Its eigenvalues $\lambda_0 \ge \lambda_1 \ge ... \ge \lambda_{n-1} \ge 0$ are such that

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$
- Matrix **R**_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$
- Its eigenvalues $\lambda_0 \ge \lambda_1 \ge ... \ge \lambda_{n-1} \ge 0$ are such that
 - $\forall i \in \{0 \dots K-1\}, \lambda_i > 0;$

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$
- Matrix **R**_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$
- Its eigenvalues $\lambda_0 \ge \lambda_1 \ge ... \ge \lambda_{n-1} \ge 0$ are such that
 - $\forall i \in \{0 \dots K-1\}, \lambda_i > 0;$
 - $\forall i \in \{K \dots n-1\}, \lambda_i = 0.$

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{T} \mathbf{V}^{T*} \mathbf{A}^{H}$
- Matrix **R**_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$
- Its eigenvalues $\lambda_0 \ge \lambda_1 \ge ... \ge \lambda_{n-1} \ge 0$ are such that
 - $\forall i \in \{0 \dots K-1\}, \lambda_i > 0;$
 - $\forall i \in \{K \dots n-1\}, \lambda_i = 0.$
- Let $\widehat{\boldsymbol{R}}_{bb} = \frac{1}{7} \boldsymbol{B} \boldsymbol{B}^H$ and $\boldsymbol{R}_{bb} = \mathbb{E} \left[\widehat{\boldsymbol{R}}_{bb} \right] = \sigma^2 \boldsymbol{I}_n$.

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{l^{\top}} \mathbf{V}^{l^*} \mathbf{A}^{H}$
- Matrix **R**_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$
- Its eigenvalues $\lambda_0 \ge \lambda_1 \ge ... \ge \lambda_{n-1} \ge 0$ are such that
 - $\forall i \in \{0 \dots K-1\}, \lambda_i > 0;$
 - $\forall i \in \{K ... n-1\}, \lambda_i = 0.$
- Let $\widehat{\boldsymbol{R}}_{bb} = \frac{1}{7} \boldsymbol{B} \boldsymbol{B}^H$ and $\boldsymbol{R}_{bb} = \mathbb{E} \left[\widehat{\boldsymbol{R}}_{bb} \right] = \sigma^2 \boldsymbol{I}_n$.
- In the same way, let $\widehat{\boldsymbol{R}}_{xx} = \frac{1}{7}\boldsymbol{X}\,\boldsymbol{X}^H$ and $\boldsymbol{R}_{xx} = \mathbb{E}\left[\widehat{\boldsymbol{R}}_{xx}\right]$.

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^H$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{7} \mathbf{A} \mathbf{V}^{l^{\top}} \mathbf{V}^{l^*} \mathbf{A}^{H}$
- Matrix R_{ss} has rank K
- **R**_{ss} is diagonalizable in an orthonormal basis $\{w_0 \dots w_{n-1}\}$
- Its eigenvalues $\lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that
 - $\forall i \in \{0 \dots K-1\}, \lambda_i > 0$;
 - $\forall i \in \{K \dots n-1\}, \lambda_i = 0.$
- Let $\widehat{\boldsymbol{R}}_{bb} = \frac{1}{l} \boldsymbol{B} \boldsymbol{B}^H$ and $\boldsymbol{R}_{bb} = \mathbb{E} \left| \widehat{\boldsymbol{R}}_{bb} \right| = \sigma^2 \boldsymbol{I}_n$.
- In the same way, let $\hat{\mathbf{R}}_{xx} = \frac{1}{7} \mathbf{X} \mathbf{X}^H$ and $\mathbf{R}_{xx} = \mathbb{E} \left[\hat{\mathbf{R}}_{xx} \right]$.
- Then $\mathbf{R}_{xx} = \mathbf{R}_{ss} + \sigma^2 \mathbf{I}_n$

■ For all $i \in \{0 ... n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda'_i = \lambda_i + \sigma^2$. Therefore,

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 \dots K-1\}, \lambda_i' > \sigma^2;$

- For all $i \in \{0 ... n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda'_i = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda_i' > \sigma^2;$
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2.$

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda'_i > \sigma^2$;
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2$.
- Let $W = [w_0 \dots w_{K-1}]$, and $W_{\perp} = [w_K \dots w_{n-1}]$

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda'_i > \sigma^2$;
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2$.
- Let $W = [w_0 \dots w_{K-1}]$, and $W_{\perp} = [w_K \dots w_{n-1}]$
- Then $Span(\mathbf{W}) = Span(\mathbf{V}^n)$ is referred to as the signal subspace

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda'_i > \sigma^2$;
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2$.
- Let $W = [w_0 \dots w_{K-1}]$, and $W_{\perp} = [w_K \dots w_{n-1}]$
- Then $\operatorname{Span}(\mathbf{W}) = \operatorname{Span}(\mathbf{V}^n)$ is referred to as the signal subspace
- In the same way, $Span(W_{\perp})$ is referred to as the noise subspace

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda'_i > \sigma^2$;
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2$.
- Let $W = [w_0 \dots w_{K-1}]$, and $W_{\perp} = [w_K \dots w_{n-1}]$
- Then $\operatorname{Span}(\mathbf{W}) = \operatorname{Span}(\mathbf{V}^n)$ is referred to as the signal subspace
- In the same way, $Span(\mathbf{W}_{\perp})$ is referred to as the noise subspace
- The poles $\{z_k\}_{k \in \{0...K-1\}}$ are the solutions of equation $\| \boldsymbol{W}_{\perp}^{H} \boldsymbol{v}(z) \|^{2} = 0$, where $\boldsymbol{v}(z) = [1, z, \dots, z^{n-1}]$

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda'_i > \sigma^2$;
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2$.
- Let $W = [w_0 \dots w_{K-1}]$, and $W_{\perp} = [w_K \dots w_{n-1}]$
- Then $\operatorname{Span}(\mathbf{W}) = \operatorname{Span}(\mathbf{V}^n)$ is referred to as the signal subspace
- In the same way, $Span(\mathbf{W}_{\perp})$ is referred to as the noise subspace
- The poles $\{z_k\}_{k \in \{0...K-1\}}$ are the solutions of equation $\| \boldsymbol{W}_{\perp}^{H} \boldsymbol{v}(z) \|^{2} = 0$, where $\boldsymbol{v}(z) = [1, z, \dots, z^{n-1}]$
- The MUSIC method consists in solving this equation

- For all $i \in \{0 \dots n-1\}$, \mathbf{w}_i is also an eigenvector of \mathbf{R}_{xx} corresponding to the eigenvalue $\lambda_i' = \lambda_i + \sigma^2$. Therefore,
 - $\forall i \in \{0 ... K 1\}, \lambda'_i > \sigma^2$;
 - $\forall i \in \{K \dots n-1\}, \lambda'_i = \sigma^2$.
- Let $W = [w_0 \dots w_{K-1}]$, and $W_{\perp} = [w_K \dots w_{n-1}]$
- Then $\operatorname{Span}(\mathbf{W}) = \operatorname{Span}(\mathbf{V}^n)$ is referred to as the signal subspace
- In the same way, $Span(\mathbf{W}_{\perp})$ is referred to as the noise subspace
- The poles $\{z_k\}_{k \in \{0...K-1\}}$ are the solutions of equation $\| \boldsymbol{W}_{\perp}^{H} \boldsymbol{v}(z) \|^{2} = 0$, where $\boldsymbol{v}(z) = [1, z, \dots, z^{n-1}]$
- The MUSIC method consists in solving this equation
- \blacksquare The Spectral-MUSIC method consists in detecting the K highest peaks in function $z \mapsto \frac{1}{\|\mathbf{W}_{\perp}^H \mathbf{v}(z)\|^2}$.

Test signal:

- Sampling frequency: 8000 Hz
- First sinusoid : 440 Hz (A)
- Second sinusoid : 415,3 Hz (G#)
- No damping, all amplitudes equal to 1
- Length of the rectangular window : N = 128 (16 ms)
- Length of the transform : 1024 samples

直接影響 Spectral MUSIC method

国選擇Man Spectral MUSIC method

直接影響 Spectral MUSIC method

三選記MI Spectral MUSIC method

■選択 ESPRIT method

Rotational invariance property of Vⁿ:

$$\begin{bmatrix}
1 & \dots & 1 \\
z_0 & \dots & z_{K-1} \\
\vdots & \dots & \vdots \\
z_0^{n-2} \dots z_{K-1}^{n-2} \\
z_0^{n-1} \dots z_{K-1}^{n-1}
\end{bmatrix}$$

直接影 ESPRIT method

 \blacksquare Rotational invariance property of V^n :

$$\begin{bmatrix}
1 & \dots & 1 \\
z_0 & \dots & z_{K-1} \\
\vdots & \dots & \vdots \\
z_0^{n-2} \dots z_{K-1}^{n-2} \\
z_0^{n-1} \dots z_{K-1}^{n-1}
\end{bmatrix}$$

$$V^n_{\uparrow}$$

$$(n-1) \times K$$

直接景域 ESPRIT method

 \blacksquare Rotational invariance property of V^n :

Roland Badeau

多数 ESPRIT method

 \blacksquare Rotational invariance property of V^n :

$$\begin{bmatrix}
1 & \dots & 1 \\
z_0 & \dots & z_{K-1} \\
\vdots & \dots & \vdots \\
z_0^{n-2} & \dots & z_{K-1}^{n-2} \\
z_0^{n-1} & \dots & z_{K-1}^{n-1}
\end{bmatrix}$$

$$V^n_{\downarrow}$$

$$(n-1) \times K$$

■選擇聞 ESPRIT method

 \blacksquare Rotational invariance property of V^n :

$$\underbrace{\begin{bmatrix}
1 & \dots & 1 \\
z_0 & \dots & z_{K-1} \\
\vdots & \dots & \vdots \\
z_0^{n-2} \dots z_{K-1}^{n-2} \\
z_0^{n-1} \dots z_{K-1}^{n-1}
\end{bmatrix}}_{\mathbf{V}^n_{\uparrow}} = \underbrace{\begin{bmatrix}
1 & \dots & 1 \\
z_0 & \dots & z_{K-1} \\
\vdots & \dots & \vdots \\
z_0^{n-2} \dots z_{K-1}^{n-2} \\
z_0^{n-1} \dots z_{K-1}^{n-1}
\end{bmatrix}}_{\mathbf{V}^n_{\downarrow}} \underbrace{\begin{bmatrix}
z_0 & (0) \\
\vdots & \dots & \vdots \\
(0) & z_{K-1}
\end{bmatrix}}_{\mathbf{K} \times \mathbf{K}}$$

$$(n-1) \times \mathbf{K}$$

直接影響 ESPRIT method

Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0...K-1\}}$

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix Φ is such that $\Phi = \left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow} \right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix Φ is such that $Φ = (W_{\downarrow}^H W_{\downarrow})^{-1} W_{\downarrow}^H W_{\uparrow}$
- ESPRIT algorithm :

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix Φ is such that $Φ = (W_{\downarrow}^H W_{\downarrow})^{-1} W_{\downarrow}^H W_{\uparrow}$
- ESPRIT algorithm :
 - compute the estimator \hat{R}_{xx} of matrix R_{xx} ,

直接數 ESPRIT method

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix Φ is such that $Φ = (W_{\downarrow}^H W_{\downarrow})^{-1} W_{\downarrow}^H W_{\uparrow}$
- ESPRIT algorithm :
 - compute the estimator \hat{R}_{xx} of matrix R_{xx} ,
 - diagonalize it and extract matrix W,

■ 終夏間 I ESPRIT method

- Rotational invariance property of $V^n: V^n_{\uparrow} = V^n_{\downarrow} D$
- \blacksquare Change of basis : $V^n = W G$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow} = \mathbf{W}_{\perp} \mathbf{\Phi}$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0,...K-1\}}$
- Matrix Φ is such that $Φ = (W_{\downarrow}^H W_{\downarrow})^{-1} W_{\downarrow}^H W_{\uparrow}$
- ESPRIT algorithm :
 - compute the estimator \hat{R}_{xx} of matrix R_{xx} ,
 - diagonalize it and extract matrix W,
 - compute $\mathbf{\Phi} = \left(\mathbf{\textit{W}}_{\downarrow}^{H}\mathbf{\textit{W}}_{\downarrow}\right)^{-1}\mathbf{\textit{W}}_{\downarrow}^{H}\mathbf{\textit{W}}_{\uparrow},$

ESPRIT method

- Rotational invariance property of V^n : $V^n_{\uparrow} = V^n_{\downarrow} D$
- Change of basis : $V^n = W G$
- Rotational invariance of $W: W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of Φ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix Φ is such that $\Phi = \left(\boldsymbol{W}_{\downarrow}^{H} \boldsymbol{W}_{\downarrow} \right)^{-1} \boldsymbol{W}_{\downarrow}^{H} \boldsymbol{W}_{\uparrow}$
- ESPRIT algorithm :
 - compute the estimator \hat{R}_{xx} of matrix R_{xx} ,
 - diagonalize it and extract matrix W,
 - compute $\mathbf{\Phi} = \left(\mathbf{\textit{W}}_{\downarrow}^H \mathbf{\textit{W}}_{\downarrow} \right)^{-1} \mathbf{\textit{W}}_{\downarrow}^H \mathbf{\textit{W}}_{\uparrow},$
- $\bullet \rightarrow \bullet \bullet \bullet$ diagonalize Φ and get the poles $\{z_k\}_{k \in \{0,...K-1\}}$.

Part V

Estimation of the other parameters

■ 透園間 Estimation of the modeling order

Information Theoretic Criteria (ITC): we minimize

$$ITC(p) = -(n-p) I \ln \left(\frac{\left(\prod\limits_{q=p+1}^{n} \sigma_q^2\right)^{\frac{1}{n-p}}}{\frac{1}{n-p} \sum\limits_{q=p+1}^{n} \sigma_q^2} \right) + p (2n-p) C(I)$$

where σ_q^2 are the eigenvalues of $\hat{\mathbf{R}}_{xx}$ by decreasing order

圖選擇MEstimation of the modeling order

■ Information Theoretic Criteria (ITC) : we minimize

$$ITC(p) = -(n-p) I \ln \left(\frac{\left(\prod\limits_{q=p+1}^{n} \sigma_q^2 \right)^{\frac{1}{n-p}}}{\frac{1}{n-p} \sum\limits_{q=p+1}^{n} \sigma_q^2} \right) + p (2n-p) C(I)$$

where σ_q^2 are the eigenvalues of $\hat{\boldsymbol{R}}_{xx}$ by decreasing order

• The criterion AIC is given by C(I) = 1, and MDL by $C(I) = \frac{1}{2} \ln(I)$

Information Theoretic Criteria (ITC): we minimize

$$ITC(p) = -(n-p) I \ln \left(\frac{\left(\prod\limits_{q=p+1}^{n} \sigma_q^2\right)^{\frac{1}{n-p}}}{\frac{1}{n-p} \sum\limits_{q=p+1}^{n} \sigma_q^2} \right) + p (2n-p) C(I)$$

where σ_q^2 are the eigenvalues of $\hat{\boldsymbol{R}}_{xx}$ by decreasing order

- The criterion AIC is given by C(I) = 1, and MDL by $C(I) = \frac{1}{2} \ln(I)$
- The criteria EDC are such that $\lim_{l \to +\infty} \frac{C(l)}{l} = 0$ and

$$\lim_{l \to +\infty} \frac{C(l)}{\ln(\ln(l))} = +\infty$$

Information Theoretic Criteria (ITC): we minimize

$$ITC(p) = -(n-p) I \ln \left(\frac{\left(\prod\limits_{q=p+1}^{n} \sigma_q^2 \right)^{\frac{1}{n-p}}}{\frac{1}{n-p} \sum\limits_{q=p+1}^{n} \sigma_q^2} \right) + p (2n-p) C(I)$$

where σ_q^2 are the eigenvalues of $\hat{\boldsymbol{R}}_{xx}$ by decreasing order

- The criterion AIC is given by C(I) = 1, and MDL by $C(I) = \frac{1}{2} \ln(I)$
- The criteria EDC are such that $\lim_{l \to +\infty} \frac{C(l)}{l} = 0$ and

$$\lim_{l \to +\infty} \frac{C(l)}{\ln(\ln(l))} = +\infty$$

 Maximization of the ratio between the geometrical mean of the eigenvalues of the noise subspace and their arithmetical mean.

直接影欄 Estimation of the modeling order

Information Theoretic Criteria (ITC): we minimize

$$ITC(p) = -(n-p) I \ln \left(\frac{\left(\prod\limits_{q=p+1}^{n} \sigma_q^2 \right)^{\frac{1}{n-p}}}{\frac{1}{n-p} \sum\limits_{q=p+1}^{n} \sigma_q^2} \right) + p (2n-p) C(I)$$

where σ_q^2 are the eigenvalues of $\hat{\boldsymbol{R}}_{xx}$ by decreasing order

- The criterion AIC is given by C(I) = 1, and MDL by $C(I) = \frac{1}{2} \ln(I)$
- The criteria EDC are such that $\lim_{l \to +\infty} \frac{C(l)}{l} = 0$ and

$$\lim_{l \to +\infty} \frac{C(l)}{\ln(\ln(l))} = +\infty$$

- Maximization of the ratio between the geometrical mean of the eigenvalues of the noise subspace and their arithmetical mean.
- The maximum is reached when all these eigenvalues are equal. The criterion thus measures the noise whiteness.

超影響 Estimation of the modeling order

Information Theoretic Criteria (ITC): we minimize

$$ITC(p) = -(n-p) I \ln \left(\frac{\left(\prod\limits_{q=p+1}^{n} \sigma_q^2 \right)^{\frac{1}{n-p}}}{\frac{1}{n-p} \sum\limits_{q=p+1}^{n} \sigma_q^2} \right) + p (2n-p) C(I)$$

where σ_q^2 are the eigenvalues of $\hat{\boldsymbol{R}}_{xx}$ by decreasing order

- The criterion AIC is given by C(I) = 1, and MDL by $C(I) = \frac{1}{2} \ln(I)$
- The criteria EDC are such that $\lim_{l\to +\infty} \frac{C(l)}{l} = 0$ and

$$\lim_{l \to +\infty} \frac{C(l)}{\ln(\ln(l))} = +\infty$$

- Maximization of the ratio between the geometrical mean of the eigenvalues of the noise subspace and their arithmetical mean.
- The maximum is reached when all these eigenvalues are equal. The criterion thus measures the noise whiteness.
- The penalty term C(I) avoids over-estimating p.

■ Let \boldsymbol{x} be the vector $[x_0, x_1, \ldots, x_{N-1}]^{\top}$ of dimension N

- Let \boldsymbol{x} be the vector $[x_0, x_1, \ldots, x_{N-1}]^{\top}$ of dimension N
- Let V^N denote the Vandermonde matrix with N rows

- Let **x** be the vector $[x_0, x_1, ..., x_{N-1}]^{\top}$ of dimension **N**
- Let V^N denote the Vandermonde matrix with N rows
- Let $\alpha = [\alpha_0, \alpha_1, \dots, \alpha_{K-1}]^{\top}$ denote the vector of complex amplitudes that we aim to estimate

- Let **x** be the vector $[x_0, x_1, ..., x_{N-1}]^{\top}$ of dimension **N**
- Let V^N denote the Vandermonde matrix with N rows
- Let $\alpha = [\alpha_0, \alpha_1, \dots, \alpha_{K-1}]^{\top}$ denote the vector of complex amplitudes that we aim to estimate
- The maximum likelihood principle leads to using the lest squares method : $\hat{\alpha} = \operatorname{argmin} \left\| \mathbf{x} \mathbf{V}^N \boldsymbol{\beta} \right\|^2$

- Let **x** be the vector $[x_0, x_1, ..., x_{N-1}]^{\top}$ of dimension **N**
- Let V^N denote the Vandermonde matrix with N rows
- Let $\alpha = [\alpha_0, \alpha_1, \dots, \alpha_{K-1}]^{\top}$ denote the vector of complex amplitudes that we aim to estimate
- The maximum likelihood principle leads to using the lest squares method : $\hat{\alpha} = \underset{\beta}{\operatorname{argmin}} \left\| \mathbf{x} \mathbf{V}^N \boldsymbol{\beta} \right\|^2$
- The solution is $\widehat{\alpha} = (\mathbf{V}^{NH} \mathbf{V}^{N})^{-1} \mathbf{V}^{NH} \mathbf{x}$

- Let **x** be the vector $[x_0, x_1, ..., x_{N-1}]^{\top}$ of dimension **N**
- Let V^N denote the Vandermonde matrix with N rows
- Let $\alpha = [\alpha_0, \alpha_1, \dots, \alpha_{K-1}]^{\top}$ denote the vector of complex amplitudes that we aim to estimate
- The maximum likelihood principle leads to using the lest squares method : $\widehat{\alpha} = \underset{\alpha}{\operatorname{argmin}} \left\| \boldsymbol{x} - \boldsymbol{V}^{N} \boldsymbol{\beta} \right\|^{2}$
- The solution is $\widehat{\alpha} = (\mathbf{V}^{NH}\mathbf{V}^{N})^{-1}\mathbf{V}^{NH}\mathbf{x}$
- We finally get $\hat{a}_k = |\hat{\alpha}_k|$ and $\hat{\phi}_k = \arg(\hat{\alpha}_k)$

Part VI

Performance of the estimators

■祭園間 Cramér-Rao bounds

- Regular statistical model
 - Consider a statistical model $p(\mathbf{x}; \theta)$ parameterized by θ
 - Score function : $I(\mathbf{x}; \theta) \triangleq \nabla_{\theta} \ln p(\mathbf{x}; \theta) \mathbf{1}_{p(\mathbf{x}; \theta) > 0}$ The parameterization is said *regular* if :
 - - 1. $p(x; \theta)$ is continuously differentiable w.r.t. θ .
 - 2. $\mathbf{F}(\theta) \triangleq \int_{\mathcal{H}} \mathbf{I}(\mathbf{x}; \, \theta) \, \mathbf{I}(\mathbf{x}; \, \theta)^{\top} \, p(\mathbf{x}; \, \theta) \, d\mathbf{x}$ (Fisher information matrix) is positive definite for all θ and continuous w.r.t. θ

■ ※ I Cramér-Rao bounds

Regular statistical model

- Consider a statistical model $p(\mathbf{x}; \theta)$ parameterized by θ
- Score function : $I(\mathbf{x}; \theta) \triangleq \nabla_{\theta} \ln p(\mathbf{x}; \theta) \mathbf{1}_{p(\mathbf{x}; \theta) > 0}$ The parameterization is said *regular* if :
- - 1. $p(x; \theta)$ is continuously differentiable w.r.t. θ .
 - 2. $\mathbf{F}(\theta) \triangleq \int_{\mathbf{u}} \mathbf{I}(\mathbf{x}; \theta) \mathbf{I}(\mathbf{x}; \theta)^{\top} p(\mathbf{x}; \theta) d\mathbf{x}$ (Fisher information matrix) is positive definite for all θ and continuous w.r.t. θ
- Cramér-Rao bounds
 - Consider a regular statistic model parameterized by θ
 - Let $\widehat{\theta}$ be an unbiased estimator of θ ($\forall \theta \in \Theta$, $\mathbb{E}_{\theta}[\widehat{\theta}] = \theta$)
 - Then the dispersion matrix $\mathbf{\mathcal{D}}(\theta,\widehat{\theta}) \triangleq \mathbb{E}_{\theta} \left[\left(\widehat{\theta} \theta \right) \left(\widehat{\theta} \theta \right)^{\top} \right]$ is such that matrix $\mathbf{D}(\theta, \widehat{\theta}) - \mathbf{F}(\theta)^{-1}$ is positive semidefinite.

■終實**聞** Cramér-Rao bounds

For a family of complex Gaussian distributions of covariance $\mathbf{R}_{bb}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^{N \times N})$ and of mean $\mathbf{s}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^N)$,

$$\mathbf{F}_{(i,j)}(\theta) \in \mathcal{C}^{1}(\Theta, \mathbb{C}^{N \times N})$$
 and of mean $\mathbf{s}(\theta) \in \mathcal{C}^{1}(\Theta, \mathbb{C}^{N})$,
$$\mathbf{F}_{(i,j)}(\theta) = \operatorname{trace}\left(\mathbf{R}_{bb}^{-1} \frac{\partial \mathbf{R}_{bb}(\theta)}{\partial \theta_{i}} \mathbf{R}_{bb}^{-1} \frac{\partial \mathbf{R}_{bb}(\theta)}{\partial \theta_{j}}\right) + 2\mathcal{R}e\left(\frac{\partial \mathbf{s}(\theta)}{\partial \theta_{i}}^{H} \mathbf{R}_{bb}^{-1} \frac{\partial \mathbf{s}(\theta)}{\partial \theta_{j}}\right)$$

Roland Badeau

直接影响 Cramér-Rao bounds

For a family of complex Gaussian distributions of covariance $\mathbf{R}_{bb}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^{N \times N})$ and of mean $\mathbf{s}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^N)$,

$$m{F}_{(i,j)}(heta) = ext{trace}\left(m{R}_{bb}^{-1} rac{\partial m{R}_{bb}(heta)}{\partial heta_i} m{R}_{bb}^{-1} rac{\partial m{R}_{bb}(heta)}{\partial heta_j}
ight) + 2\mathcal{R}e\left(rac{\partial m{s}(heta)}{\partial heta_i}^H m{R}_{bb}^{-1} rac{\partial m{s}(heta)}{\partial heta_j}
ight)$$

■ The Cramér-Rao bounds for the parameters $(\phi_k, \, \delta_k, \, f_k)$ are independent of $a_{k'}$ for all $k' \neq k$, and proportional to $1/a_k^2$

一般意識 Cramér-Rao bounds

For a family of complex Gaussian distributions of covariance $\mathbf{R}_{bb}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^{N \times N})$ and of mean $\mathbf{s}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^N)$.

$$\boldsymbol{F}_{(i,j)}(\boldsymbol{\theta}) = \operatorname{trace}\left(\boldsymbol{R}_{bb}^{-1} \frac{\partial \boldsymbol{R}_{bb}(\boldsymbol{\theta})}{\partial \theta_i} \boldsymbol{R}_{bb}^{-1} \frac{\partial \boldsymbol{R}_{bb}(\boldsymbol{\theta})}{\partial \theta_j}\right) + 2\mathcal{R}e\left(\frac{\partial \boldsymbol{s}(\boldsymbol{\theta})}{\partial \theta_i}^H \boldsymbol{R}_{bb}^{-1} \frac{\partial \boldsymbol{s}(\boldsymbol{\theta})}{\partial \theta_j}\right)$$

- The Cramér-Rao bounds for the parameters (ϕ_k, δ_k, f_k) are independent of $a_{k'}$ for all $k' \neq k$, and proportional to $1/a_k^2$
- **The bound for parameter a_k is independent of all a_{k'}**

Tamér-Rao bounds

■ For a family of complex Gaussian distributions of covariance $\mathbf{R}_{bb}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^{N \times N})$ and of mean $\mathbf{s}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^N)$, $\mathbf{F}_{(i,j)}(\theta) = \operatorname{trace}\left(\mathbf{R}_{bb}^{-1} \frac{\partial \mathbf{R}_{bb}(\theta)}{\partial \theta_i} \mathbf{R}_{bb}^{-1} \frac{\partial \mathbf{R}_{bb}(\theta)}{\partial \theta_j}\right) + 2\mathcal{R}e\left(\frac{\partial \mathbf{s}(\theta)}{\partial \theta_i}^H \mathbf{R}_{bb}^{-1} \frac{\partial \mathbf{s}(\theta)}{\partial \theta_j}\right)$

- The Cramér-Rao bounds for the parameters (ϕ_k, δ_k, f_k) are independent of $a_{k'}$ for all $k' \neq k$, and proportional to $1/a_k^2$
- The bound for parameter a_k is independent of all $a_{k'}$
- All bounds are independent of the phases ϕ_k and are unchanged by any translation of the set of frequencies f_k

■ Cramér-Rao bounds

For a family of complex Gaussian distributions of covariance $\mathbf{R}_{bb}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^{N \times N})$ and of mean $\mathbf{s}(\theta) \in \mathcal{C}^1(\Theta, \mathbb{C}^N)$,

$$m{R}_{bb}(heta) \in \mathcal{C}^{1}(\Theta, \mathbb{C}^{N \times N}) ext{ and of mean } m{s}(heta) \in \mathcal{C}^{1}(\Theta, \mathbb{C}^{N}),$$
 $m{F}_{(i,j)}(heta) = ext{trace} \left(m{R}_{bb}^{-1} rac{\partial m{R}_{bb}(heta)}{\partial heta_{i}} m{R}_{bb}^{-1} rac{\partial m{R}_{bb}(heta)}{\partial heta_{j}}
ight) + 2\mathcal{R}e \left(rac{\partial m{s}(heta)}{\partial heta_{i}}^{H} m{R}_{bb}^{-1} rac{\partial m{s}(heta)}{\partial heta_{j}}
ight)$

- The Cramér-Rao bounds for the parameters (ϕ_k, δ_k, f_k) are independent of $a_{k'}$ for all $k' \neq k$, and proportional to $1/a_k^2$
- **The bound for parameter a_k is independent of all a_{k'}**
- All bounds are independent of the phases ϕ_k and are unchanged by any translation of the set of frequencies f_k
- If $\forall k, \, \delta_k = 0$ and if $N \to +\infty$, then :

• CRB
$$\{\sigma\} = \frac{\sigma^2}{4N} + O\left(\frac{1}{N^2}\right)$$

• CRB
$$\{f_k\} = \frac{6\sigma^2}{4\pi^2 N^3 a_k^2} + O(\frac{1}{N^4})$$

• CRB
$$\{a_k\} = \frac{2\sigma^2}{N} + O\left(\frac{1}{N^2}\right)$$

CRB
$$\{\phi_k\} \equiv \frac{2\sigma^2}{Na^2} + O\left(\frac{1}{N^2}\right)$$

直接影响 Performance of HR methods

- Performance of an estimator
 - Performance expressed in terms of bias and variance
 - Efficiency: ratio between variance and Cramér-Rao bound
 - An estimator is said efficient if its efficiency is equal to 1.

直接影响 Performance of HR methods

- Performance of an estimator
 - Performance expressed in terms of bias and variance
 - Efficiency: ratio between variance and Cramér-Rao bound
 - An estimator is said efficient if its efficiency is equal to 1.
- Maximum likelihood : unbiased and asymptotically efficient $(N \to +\infty)$

Performance of HR methods

- Performance of an estimator
 - Performance expressed in terms of bias and variance
 - Efficiency: ratio between variance and Cramér-Rao bound
 - An estimator is said efficient if its efficiency is equal to 1.
- Maximum likelihood : unbiased and asymptotically efficient $(N \to +\infty)$
- HR methods : results based on the perturbation theory
 - Assumptions : $N \to +\infty$ or SNR $\to +\infty$
 - All the HR methods are asymptotically unbiased
 - The Prony and Pisarenko methods are very inefficient: their variances are significantly greater than the Cramér-Rao bounds.
 - MUSIC and ESPRIT have an asymptotic efficiency close to 1

Part VII

Signals to be processed

Bell sound

(a) Signal waveform (b) Power spectral density

