Week 10: Bivariate continuous random

variables

Armenak Petrosyan

Bivariate cdf

 \blacktriangleright Let X,Y be two random variables (do not have to be discrete) defined on the same set of outcomes S.

Definition

The joint cdf of X,Y is called the following function

$$F(x,y) = P(X \le x, Y \le y).$$

A. Petrosyan — Math 3215-C — Probability & Statistics

Continuous bivariate random variables

Definition

Bivariate random variable (X,Y) is called **continuous** if there exists a function $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ such that

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(\xi, \eta) d\xi d\eta.$$

f(x,y) is called the **joint pdf** of X and Y.

Theorem

For any set $A \subset \mathbb{R} \times \mathbb{R}$,

$$P[(X,Y) \in A] = \iint f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Here

$$\iint\limits_A f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int\limits_{\alpha}^{\beta} \int\limits_{a(x)}^{b(x)} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Theorem

A function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is the joint pdf of a bivariate continuous random variable if and only if

- 1. $f(x,y) \ge 0$,
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1$

Marginal pdf

Definition

For any $x \in \mathbb{R}$ and $y \in \mathbb{R}$ define

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y, \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x.$$

 $f_X(x)$ and $f_Y(y)$ are called the **marginal pdf** of X and Y correspondingly.

▶
$$f_X(x) \ge 0$$
, $f_Y(y) \ge 0$

•

$$\int_{-\infty}^{\infty} f_X(x) dx = 1, \quad \int_{-\infty}^{\infty} f_Y(y) dy = 1.$$

$$P(X \le x) = \int_{-\infty}^{x} f_X(\xi) \, \mathrm{d}\eta, \quad P(Y \le y) = \int_{-\infty}^{y} f_Y(\eta) \, \mathrm{d}\eta.$$

Independence

Definition

Let (X,Y) be a continuous bivariate random variable. X and Y are called independent if

$$f(x,y) = f_X(x)f_Y(y).$$

▶ If X and Y are independent then for any sets $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$,

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B).$$

Problem (4.4-1 in the textbook)

Let $f(x,y)=(3/16)xy^2$, $0 \le x \le 2, 0 \le y \le 2$, be the joint pdf of X and Y.

- (a) Find $f_X(x)$ and $f_Y(y)$, the marginal probability density functions.
- (b) Are the two random variables independent? Why or why not?
- (c) Compute the means and variances of X and Y.
- (d) Find $P(X \leq Y)$.

Solution

(a) From definition

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y = \int_{0}^{2} \frac{3}{16} x y^2 \, \mathrm{d}y = \frac{x}{16} \, 2^3 - \frac{x}{16} \, 0^3 = \frac{x}{2}.$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x = \int_{0}^{2} \frac{3}{16} x y^2 \, \mathrm{d}x = \frac{3y^2}{16} \, \frac{2^2}{2} - \frac{3y^2}{16} \, \frac{0^2}{2} = \frac{3y^2}{8}.$$

Solution

(b) Independent, because

$$f_X(x)f_Y(y) = \frac{3xy^2}{16} = f(x,y).$$

(c)

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x = \int_{0}^{2} \frac{x^2}{2} \, \mathrm{d}x = \frac{2^3}{6} - \frac{0^3}{6} = \frac{4}{3}.$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) \, \mathrm{d}x = \int_{0}^{2} \frac{x^3}{2} \, \mathrm{d}x = \frac{2^4}{8} - \frac{0^4}{8} = 2.$$

$$Var(X) = E[X^2] - E[X]^2 = 2 - \frac{16}{9} = \frac{2}{9}.$$

Solution

(d)

$$P(X \le Y) = \iint_{x \le y} f(x, y) \, dx \, dy = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x, y) \, dx \, dy$$
$$= \int_{0}^{2} \int_{0}^{y} \frac{3}{16} x y^{2} \, dx \, dy = \int_{0}^{2} \left[\frac{3y^{2}}{16} \, \frac{y^{2}}{2} - \frac{3y^{2}}{16} \, \frac{0^{2}}{2} \right] dy$$
$$= \int_{0}^{2} \frac{3y^{4}}{32} \, dy = \frac{3 \cdot 2^{5}}{32 \cdot 5} - \frac{3 \cdot 0^{5}}{32 \cdot 5}$$

For any $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$E[u(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x,y) f(x,y) dx dy.$$

Covariance:

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y.$$

► Correlation:

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}.$$

Least squares line:

$$y = \rho \frac{\sigma_Y}{\sigma_X} (y - \mu_X) + \mu_Y.$$

It minimizes the

$$g(a,b) = E[(Y - aX - b)^{2}].$$

Conditional pdf

Definition

Conditional pdf of Y given X=x is called the pdf defined by

$$h(y|x) = \frac{f(x,y)}{f_X(x)}.$$

Definition

Conditional pdf of X given Y=y is called the pdf defined by

$$g(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

Conditional mean and variance

Definition

Conditional mean and variance of Y given X=x are defined

$$E[Y|x] = \int_{-\infty}^{\infty} y \ h(y|x) \, dy, \quad \operatorname{Var}[Y|x] = \int_{-\infty}^{\infty} (y - E[Y|x])^2 \ h(y|x) \, dy.$$

- ightharpoonup E[X|y], Var(X|y) are defined similarly.
- ightharpoonup m(x) = E[Y|x] minimizes (among all functions $m: \mathbb{R} \to \mathbb{R}$)

$$E[(Y - m(X))^2].$$

▶ If E[Y|x] is a linear function, then

$$E[Y|x] = \rho \frac{\sigma_Y}{\sigma_X} (y - \mu_X) + \mu_Y.$$

Exercise 2

Problem (4.4-17, modified)

Let f(x,y)=c, $0 \le x \le 4$, $x^2-x/2 \le y \le x^2+x/2$, be the joint pdf of X and Y.

- (a) Find c.
- (b) Sketch the region for which f(x, y) > 0.
- (c) Find $f_X(x)$, the marginal pdf of X.
- (d) Calculate and plot the least squares line.
- (e) Determine h(y|x), the conditional pdf of Y, given that X=x.
- (f) Calculate and plot E(Y|x), the conditional mean of Y, given that X=x.

Solution

(a)

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y = \int_{-2}^{x^2 + x/2} c \, \mathrm{d}y = c(x^2 + x/2) - c(x^2 - x/2) = cx$$

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dy \, dx = \int_{-\infty}^{\infty} f_X(x) \, dx = \int_{0}^{4} cx \, dx = c \frac{4^2}{2} - c \frac{0^2}{2} = 8c \Rightarrow \boxed{c = \frac{1}{8}}$$

A. Petrosvan — Math 3215-C — Probability & Statistics

(c)
$$f_X(x) = \frac{x}{8}$$
.

$$\mu_X = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x = \int_{-\infty}^{4} x \frac{x}{8} \, \mathrm{d}x = \frac{1}{8} \frac{4^3}{3} = \frac{8}{3}.$$

$$\mu_X = \int_{-\infty} x f_X(x) \, dx = \int_0^x x_8^2 \, dx = \frac{1}{8} \frac{1}{3} \left[\frac{1}{3} \right].$$

$$\mu_Y = \int_{-\infty}^\infty \int_{-\infty}^\infty y f(x, y) \, dx \, dy = \int_0^4 \int_{x^2 - x/2}^{x^2 + x/2} y \frac{1}{8} \, dy \, dx$$

$$= \frac{1}{8} \int_0^4 \left[\frac{1}{2} (x^2 + x/2)^2 - \frac{1}{2} (x^2 - x/2)^2 \right] \, dy \, dx$$

$$= \frac{1}{8} \int_{0}^{4} x^{3} \, dy \, dx = \frac{1}{8} \frac{4^{4}}{4} = 8$$

 $E[X^2] = \int_0^\infty x^2 f_X(x) dx = \int_0^\infty x^2 \frac{x}{8} dx = \frac{1}{8} \frac{4^4}{4} = 8.$

 $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy = \int_{-\infty}^{4} \int_{-\infty}^{x^2 + x/2} xy \frac{1}{8} dy dx$

 $= \frac{1}{8} \int x^4 \, \mathrm{d}y \, \mathrm{d}x = \frac{1}{8} \frac{4^5}{5} = \frac{128}{5}$

 $Cov(X,Y) = E[XY] - \mu_X \mu_Y = \frac{128}{5} - \frac{64}{3} = \frac{64}{15}$

 $= \frac{1}{8} \int_{0}^{4} x \left[\frac{1}{2} (x^2 + x/2)^2 - \frac{1}{2} (x^2 - x/2)^2 \right] dy dx$

 $Var(X) = E[X^2] - \mu_X^2 = 8 - \frac{64}{9} = \frac{8}{9}$

(d)
$$y = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)}(x - \mu_X) + \mu_Y = \frac{128}{5} \frac{9}{8}(x - \frac{8}{3}) + 8 = \frac{144}{5}(x - \frac{8}{3}) + 8$$
(e)
$$h(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{c}{cx} = \frac{1}{x}.$$
(f)
$$E[Y|x] = \int_{-\infty}^{\infty} y \ h(y|x) \, dy = \int_{x^2 - x/2}^{x^2 + x/2} y \frac{1}{x} \, dy$$

$$= \frac{1}{x} [\frac{1}{2}(x^2 + x/2)^2 - \frac{1}{2}(x^2 - x/2)^2]$$

$$= \frac{1}{x}x^3$$

 $= x^{2}$

Fitting least squares line and conditional mean to a distribution conditional mean function 20 least squares line mean 15 10

A. Petrosyan — Math 3215-C — Probability & Statistics