PRÁCTICA: CIFRADO ELGAMAL ELÍPTICO

Objetivo: Implementar el cifrado de clave pública ElGamal en su versión basada en curvas elípticas. **Desarrollo:**

1. Implementa el cifrado ElGamal elíptico para curvas del tipo $y^2 = x^3 + ax + b$, según el diagrama que se incluye a continuación

Dado un número primo p, una curva elíptica E $y^2 = x^3 + ax + b$, y un punto base P de dicha curva

- \triangleright Clave privada de B: entero aleatorio $d_B \in Z_p$
- ➤ Clave pública de B: punto d_BP
- ightharpoonup Mensaje original: punto $Q_m \in E$
- Mensaje cifrado de A a B: dos puntos $\{Q_m+a_A(d_BP), a_AP\} \in E$ siendo $a_A \in Z_p$ un entero aleatorio

Para esta implementación se hace necesario:

- Calcular todos los puntos (x,y) de la curva E: obtenidos desechando aquellos enteros x en [0,p-1] que producen valores x³+ ax+ b (mod p) que no se pueden obtener a partir de y²(mod p) para ningún entero y en [0,p-1]
- Opcional: Codificar un mensaje m mediante un punto (x,y) de la curva, donde el mensaje m es un a ristra binaria luego M es una potencia de 2 tq 0<m<M, obteniendo la constante h<p/m, y el menor valor de j (j=0,1,2,...,h-1) para el que x=mh+j (mod p) es coordenada x de un punto de la curva.
- Sumar puntos P= (x_1,y_1) y Q= (x_2,y_2) , obteniendo P+Q = (x_3,y_3) , donde $x_3 = \lambda^2 x_1 x_2$, $y_3 = \lambda(x_1 + x_2)$ $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{si } P \neq Q \\ \frac{3x_1^2 + a}{2y_1}, & \text{si } P = Q \end{cases}$

Nota: Programarlo para a_A y d_B que sean potencias de 2

Ejemplo:

• A partir de las entradas:

p = 13

a=5

b=3

P = (9.6)

 $d_B=2$

Mensaje original=(7,2)

Opcional: Mensaje original=m=10=2

M=4

 $a_A=4$

Se producen las salidas:

Puntos de la curva: (0,4),(0,9),(1,3),(1,10),(4,3),(4,10),(5,6),(5,7),(7,2),(7,11),(8,3),(8,10),(9,6),(9,7),(10,0),(12,6),(12,7),

Clave pública de B: punto $d_BP=(9,7)$

h=3<13/4

Opcional: Mensaje original codificado como punto $Q_m = (2*3+1,2)=(7,2)$

Primer punto del Mensaje cifrado $Q_m+a_A(d_BP)=(0,9)$

Segundo punto del Mensaje cifrado a_AP=(9,6)