Sequential Sensitivity Analysis

local sensitivity:
$$v_{i,j}^{(\alpha)}(x) = \sum_{k=1}^{N} 1_{\min\left\{x_{A,i}^{(k)}, x_{B,i}^{(k)}\right\} \leq x \leq \max\left\{x_{A,i}^{(k)}, x_{B,i}^{(k)}\right\}} \frac{\left|y_{A,j}^{(k)} - y_{A_{B_i},j}^{(k)}\right|^{\alpha}}{\left|x_{A,i}^{(k)} - x_{B,i}^{(k)}\right|}$$

sampling:
$$w_{i,j}(x) = \sum_{k=1}^N 1_{\min\left\{x_{A,i}^{(k)}, x_{B,i}^{(k)}\right\} \leq x \leq \max\left\{x_{A,i}^{(k)}, x_{B,i}^{(k)}\right\}}$$

sensitivity density:
$$ho_{i,j}^{(lpha)}(x) = rac{v_{i,j}^{(lpha)}(x)}{w_{i,j}(x)}$$

The sole free parameter \square determines the intensity of the focus on areas of higher sensitivity. Setting $\square = 2$ corresponds to a variance-based sensitivity.

The sensitivity-density method has identified the discontinuities in the toy model: $x_1 = 0.59$ (order 0), $x_2 = 0.95$ (order 1), $x_3 = 0.10$ (order 2).

We use the sensitivity-density as the metric for further samples of the Sobol' sequence.