Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра інтелектуальних програмних систем Математичні основи захисту інформації

Лабораторна робота №12

"Побудова кільця порядку 30 і шифрування повідомлень за допомогою нього повідомлень"

Виконали студенти 3-го курсу Групи IПС-32

Роботу виконали:
Ольховатий Ігор
Ковальов Володимир
Тряско Софія
Цілинко Олександр
Бондар Юлія
Волик Артем

Тема: побудувати скінченне поля порядку 30. І використавши наведений алгоритм зашифрувати повідомлення

Побудова кільця:

Маємо наступний алгоритм

```
GEN-G(a,c,k)

Bxi\partial: Порядок k і коефіцієнти виразу f(i)=a\cdot i+c, де \mathrm{HCD}(a,k)=1.

Buxi\partial: Рядок таблиці додавання — одновимірний масив b=(b_1,b_2,\ldots,b_k).

Memo\partial:

1) for i=0 to k-1 do b_{i+1}:=a\cdot i+c (mod\ k) od

2) for i=1 to k do

if (b_i=0\land i\neq k) then change b_i and b_k;

if (b_i=1\land i\neq 0) then change b_i and b_1;

od (* визначили ізоморфізм g(i)=b_i, де i=1,2,\ldots,k*)

3) за масивом b=(b_1,b_2,\ldots,b_k) будуємо масив P[1\times k]

(* де зберігається визначальний рядок *)

P[0]:=b_1;

for i=1 to k-2 do P[b_i]:=b_{i+1} od

P[b_{k-1}]:=0. (* побудували визначальний рядок P*)
```

Правильність алгоритму випливає з того, що коли i пробігає повну систему лишків, то $a \cdot i + c$ теж пробігає повну систему лишків за умови, що HCД(a, k)=1 [2].

```
Візьмемо f(i) = 7 * i + 3 (7,30) = 1
```

Виконаємо перший пункт і отримаємо наступний рядок

```
3 10 17 24 1 8 15 22 29 6 13 20 27 4 11 18 25 2 9 16 23 0 7 14 21 28 5 12 19 26
```

Поставимо все на свої місця і отримаємо наступний рядок

```
1 10 17 24 3 8 15 22 29 6 13 20 27 4 11 18 25 2 9 16 23 26 7 14 21 28 5 12 19 0
```

Отже маємо наступний ізоморфізм $g:Z_{30} \to G_{30}$

```
g(1)=1
g(2)=10
g(3)=17
g(4)=24
g(5) = 3
g(6) = 8
g(7)=15
g(8)=22
g(9)=29
g(10)=6
g(11)=13
g(12)=20
g(13)=27
g(14)=4
g(15)=11
g(16)=18
g(17)=25
g(18)=2
g(19)=9
g(20)=16
g(21)=23
g(22)=26
g(23)=7
g(24)=14
g(25)=21
g(26)=28
g(27)=5
g(28)=12
g(29)=19
```

За допомогою 3 пункту згеренуємо визначальний рядок $P[1\ *\ k]$ Отримали наступний визначальний рядок

```
1 10 9 8 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 27 28 29 26 3 2 7 4 5 6
```

Маємо наступну таблицю операцій Додавання

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	10	9	8	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	0
2	9	8	7	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
3	8	7	6	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
4	11	10	9	12	13	14	15	16	17	18	19	20	21	22	23	24	25	0	27
5	12	11	10	13	14	15	16	17	18	19	20	21	22	23	24	25	0	27	28
6	13	12	11	14	15	16	17	18	19	20	21	22	23	24	25	0	27	28	29
7	14	13	12	15	16	17	18	19	20	21	22	23	24	25	0	27	28	29	26
8	15	14	13	16	17	18	19	20	21	22	23	24	25	0	27	28	29	26	
9	16	15	14	17	18	19	20	21	22	23	24	25	0	27	28	29	26		2
10	17	16	15	18	19	20	21	22	23	24	25	0	27	28	29	26		2	1
11	18	17	16	19	20	21	22	23	24	25	0	27	28	29	26		2	1	4
12	19	18	17	20	21	22	23	24	25	0	27	28	29	26		2	1	4	
13	20	19	18	21	22	23	24	25	0	27	28	29	26		2	1	4		6
14	21	20	19	22	23	24	25	0	27	28	29	26		2	1	4	5	6	7
15	22	21	20	23	24	25	0	27	28	29	26		2	1	4		6	7	8
16	23	22	21	24	25	0	27	28	29	26		2	1	4		6		8	
17	24	23	22	25	0	27	28	29	26		2	1	4	5	6	7	8		10
18	25	24	23	0	27	28	29	26		2	1	4		6	7	8		10	11
19	0	25	24	27	28	29	26	3	2	1	4	5	6	7	8	9	10	11	12

Множення

Отже ми отримали кільце за заданим визначальним рядком

Робота 1 абонента

Маємо наступну систему, яку ми згенерували випадковим чином

$$2x_1 + 13x_2 + 28x_3 + 4x_4$$

 $25x_1 + 3x_2 + 8x_3 + 5x_4$

Це дорівнює l(x)

$$L(x) = B_1(l(x) + (2,3)^T)$$

Де $B_1 = \begin{bmatrix} 7 & 13 \\ 23 & 29 \end{bmatrix}$

Тоді маємо,що
$$L(x) = B_1(l(x) + (2,3)^T) =$$

$$egin{bmatrix} x_1 + 22x_2 + 24x_3 + 9x_4 + 9 \ 23x_1 + 8x_2 + 0x_3 + 5x_4 + 17 \end{bmatrix}$$

Передаємо це 2 абоненту

Розв'язуємо систему
$$l(x)=2x_1^2+13x_2^2+28x_3^3+4x_4^4=5$$

$$25x_1^2+3x_2^2+8x_3^2+5x_4^4=11$$

Вибираємо довільний розв'язок x = (0, 4, 0, 0)

Беремо довільне a = (1, 0, 6, 2)

$$x + a = (1, 4, 6, 2)$$

 $l(a) = (16, 20)$

$$L(x+a) = (20,0)$$

Він відправляє абоненту 1 ці значення

Абонент 1

Знаходимо обернену матрицю $B_1^{\ -1}$ в G_{30}

$$B_1^{-1} = \begin{bmatrix} 2 & 29 \\ 9 & 15 \end{bmatrix}$$

$$6) B_1^{-1} * (20,0)^T = (15,7)^T = l(x+a) + (2,3)^T$$

$$B)(15,7) - ((16,20) + (2,3)) = (5,11) = v$$

Література

- Лекції з предмету "Математичні основи захисту інформації"
- https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D1%91%D1%85%D1%8D%D1%82 %D0%B0%D0%BF%D0%BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D1 %82%D0%BE%D0%BA%D0%BE%D0%BB_%D0%A8%D0%B0%D0%BC%D0%B8 %D1%80%D0%B0
- https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%82%D0%BE%D0%B
 A%D0%BE%D0%BB
 %D0%94%D0%B8%D1%84%D1%84%D0%B8
 %E2%80%94
 %D0%A5%D0%B5%D0%BB%D0%BB%D0%BC%D0%B0%D0%BD