Área de Tecnología Electrónica

EJERCICIOS TEMA 3

Respuesta temporal de sistemas de primer orden

Problema 3.1. Demuestra si las siguientes afirmaciones son ciertas o falsas:

- a) La respuesta de un sistema una entrada rampa se obtiene integrando la respuesta a la entrada escalón en el dominio del tiempo.
- b) La respuesta de un sistema a una entrada impulso se obtiene derivando la respuesta a la entrada escalón en el dominio del tiempo.

Problema 3.2. Dado el circuito de la figura, con $R=1 \text{ k}\Omega \text{ y } C=20 \text{ }\mu\text{F}$:

- a) Calcula la función de transferencia $G(s)=V_s/V_e$. ¿De qué orden es el sistema?
- b) Determina sus polos y la ganancia estática. ¿Es un sistema estable o inestable? ¿Por qué?
- c) Para una tensión de entrada $v_e(t)$ de 1 V en t=0 (escalón unitario), halla la constante de tiempo T, el tiempo de subida t_r y el tiempo de asentamiento t_s .
- d) Extrae la expresión de la tensión de salida $v_s(t)$ en el dominio del tiempo.
- e) Si la tensión de entrada $v_e(t)$ es de 10 V en t=0 (escalón de amplitud A=10), indica si hay algún cambio en la constante de tiempo T, el tiempo de subida t_r o el tiempo de asentamiento t_s .
- f) Si ahora $R=10 \text{ k}\Omega \text{ y } C=5 \text{ mF}$, recalcula la constante de tiempo T, el tiempo de subida t_r y el tiempo de asentamiento t_s para la entrada $v_e(t)$ de 1 V en t=0. Compáralos con los obtenidos en c) y justifica las diferencias.

Problema 3.3. La respuesta de un sistema a una entrada escalón unitario $r(t)=u_0(t)$ en el dominio del tiempo es $y(t)=t^2\cdot u_0(t)$, como se muestra en la figura. Calcula la función de transferencia G(s) de dicho sistema y sus polos. ¿Es un sistema estable o inestable?

Área de Tecnología Electrónica

Respuesta temporal de sistemas de segundo orden

Problema 3.4. Halla los polos de las siguientes funciones de transferencia de sistemas de segundo orden e indica cuáles son estables. Para ellos, encuentra su ganancia estática, frecuencia natural, coeficiente de amortiguamiento y, en los casos que corresponda, el factor de decrecimiento y la frecuencia amortiguada. Di qué tipo de respuesta a una entrada escalón tendrá cada uno de ellos:

a)
$$G_1(s) = \frac{100}{s^2 + 12s + 400}$$

b) $G_2(s) = \frac{3600}{s^2 + 90s + 900}$
c) $G_3(s) = \frac{75}{s^2 + 30s + 225}$
d) $G_4(s) = \frac{625}{s^2 + 625}$
e) $G_5(s) = \frac{128}{s^2 - 16s + 64}$

Problema 3.5. Dado el circuito de la figura, con $R=1.5 \text{ k}\Omega$, $L=100 \text{ H y } C=100 \text{ }\mu\text{F}$:

- a) Calcula la función de transferencia $G(s)=V_C(s)/V(s)$. ¿De qué orden es el sistema?
- b) Determina sus polos y la ganancia estática. ¿Es un sistema estable o inestable? ¿Por qué?
- c) ¿Qué tipo de respuesta tendrá ante una tensión de entrada $v_e(t)$ de 1 V en t=0 (escalón unitario)? Halla la frecuencia natural y el coeficiente de amortiguamiento.
- d) Calcula el tiempo de subida t_r , tiempo de asentamiento t_s y, si procede, el tiempo de pico, el valor de pico y la sobreelongación o sobreoscilación (%OS, en %).

Puedes usar las expresiones siguientes:

Porcentaje de sobreoscilación: $M_p = e^{\frac{-\pi}{\tan \theta}}$ 100

Valor de pico: $y_p = y_{\infty}(1 + \frac{M_p}{100})$ Tiempo de pico: $t_p = \frac{\pi}{\omega_d}$ Tiempo de subida: $t_r = \frac{\pi - \theta}{\omega_d}$ Tiempo de establecimiento: $t_s \approx \frac{4}{\sigma}$

Departamento de Tecnología Electrónica

Problema 3.6. Diseñar un sistema de segundo orden, es decir, obtener su función de transferencia para que cumpla con las siguientes especificaciones:

- a) Ganancia estática igual a 2.
- b) Frecuencia natural de 5 rad/s.
- c) Coeficiente de amortiguamiento igual a 0.1.

Problema 3.7. Diseñar un circuito RLC serie usando una resistencia de 10Ω que cumpla con las siguientes especificaciones:

- a) Sobreelongación del 25%.
- b) Tiempo de asentamiento de 3,89 segundos.

Problema 3.8. ¿Es posible diseñar un circuito eléctrico RLC que cumpla con las mismas especificaciones que el problema anterior, y que además tenga un valor final en régimen permanente igual a 3 V cuando se somete a una entrada escalón de 1 V?

Problema 3.9. Dado el sistema de la figura, en el que la entrada r(t) es un escalón unitario, determinar el valor de K_1 y K_2 para que el sistema tenga un coeficiente de amortiguamiento de 0,5 y un tiempo de asentamiento de 1 s.

Problema 3.10. Determina el valor de las constantes A, B y C del sistema de la figura para que la respuesta y(t) a una entrada r(t) -escalón unitario- sea críticamente amortiguada, se estabilice en régimen permanente en un valor igual a 1/2 y tenga un tiempo de establecimiento de 0,4 segundos.

Problema 3.11. Diseña el sistema de control de la figura, determinando el valor de las constantes A, B y C, para que su respuesta y(t) a una entrada r(t) -escalón unitario- sea la que aparece en la figura de la derecha.

3/7

Departamento de Tecnología Electrónica

Estabilidad en estado estacionario: Criterio de Routh-Hurwitz

Problema 3.12. Determina si los sistemas dados por las siguientes funciones de transferencia son estables utilizando el criterio de Routh-Hurwitz. En caso de ser inestables, indica cuántos polos tienen en el semiplano complejo positivo:

a)
$$G_1(s) = \frac{1}{s^4 + 3s^3 + 3s^2 + 2s + 1}$$

d)
$$G_4(s) = \frac{8}{2s^3 + s^2 - 3s + 10}$$

b)
$$G_2(s) = \frac{5}{s^3 + 2s^2 + s + 2}$$

e)
$$G_5(s) = \frac{1}{s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10}$$

c)
$$G_3(s) = \frac{1}{s^5 + 2s^4 + 24s^3 + 48s^2 + 25s + 50}$$

f)
$$G_6(s) = \frac{1}{s^5 + s^4 + 4s^3 + 24s^2 + 3s + 63}$$

Problema 3.13. Utiliza el criterio de Routh-Hurwitz para hallar la relación necesaria entre los coeficientes de un sistema genérico de tercer orden y sin ceros para que dicho sistema sea estable.

Problema 3.14. Utiliza el criterio de Routh-Hurwitz para hallar el rango de ganancia K(K>0) para el que el sistema representado por la siguiente función de transferencia es estable, marginalmente estable e inestable.

$$G(s) = \frac{100}{s^3 + 30s^2 + 200s + Ks + 40K}$$

Problema 3.15. ¿Para qué rango de valores de *K* se puede asegurar que los sistemas dados por los siguientes diagramas de bloques son estables?

Departamento de Tecnología Electrónica

Problema 3.16. Estudia la estabilidad del sistema de la figura en función de los valores de la constante *A*.

Problema 3.17. Dado el sistema de la figura:

- a) Indica si es un sistema estable o inestable y por qué.
- b) Calcula y(t) para una entrada impulso unitario. ¿Cuánto vale y(t) en régimen estacionario?

Precisión y error en régimen estacionario

Problema 3.18. Cuando el sistema de la figura izquierda está sujeto a una entrada escalón unitario, su salida c(t) es la que se aprecia en la figura derecha.

- a) Determina los valores de las constantes K y T.
- b) Calcula el error estacionario del sistema ante la entrada escalón unitario.
- c) Calcula el error estacionario del sistema ante una entrada rampa unitaria.

Departamento de Tecnología Electrónica

Problema 3.19. Dados el sistema en lazo cerrado con realimentación unitaria cuya función en lazo abierto G(s) es la que se indica en cada apartado, determina el tipo de sistema y los errores estacionarios a las siguientes entradas unitarias: 1) escalón; 2) rampa; y 3) parábola.

Problema 3.20. Calcula el error verdadero en estado estacionario del sistema de control con realimentación no unitaria de la figura, frente a una entrada escalón, rampa y parábola.

Problema 3.21. Calcula el error verdadero en estado estacionario del sistema de control con realimentación no unitaria de la figura, frente a una entrada escalón. ¿Hay algún valor de *K* para el que dicho error sea nulo?

Departamento de Tecnología Electrónica

Problema 3.22. Para el sistema de control de la figura, con una ganancia *K* en la realimentación:

- a) Estudia la estabilidad del sistema en función de los valores de la ganancia *K* de la realimentación.
- b) Calcula el error verdadero en estado estacionario del sistema frente a una entrada escalón. ¿Hay algún valor de *K* para el que dicho error sea nulo?

Problema 3.23. Dado el sistema de control de la figura, calcula el valor de *K* para que el error de velocidad del mismo sea a) del 30% y b) del 10%. ¿Es el sistema de control estable para los valores de *K* obtenidos?

Problema 3.24. Encuentra la componente del error de posición de los sistemas siguientes debida a una perturbación D(s) de tipo escalón unitario.

