Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра теоретической и прикладной информатики

Практическая работа № 3 по дисциплине «Сетевые информационные технологии»

Протоколы стека ТСР/ІР

Факультет: ПМИ

ГРУППА: ПМИМ-01

Студенты: Наи Сора Орлов М. В.

Бригада: 3

ПРЕПОДАВАТЕЛЬ: КОБЫЛЯНСКИЙ В.Г.

Новосибирск 2021

1. Цель работы

Изучение структуры передаваемых по сети кадров и пакетов, работающих на канальном и сетевом уровне.

2. Данные согласно варианту

Вариант	Номер пункта и задание
	2. Утилита ping: sklad-service.ru, eye.moof.ru, gmail.com, wiw.ru, luminator.ru, hotlog.ru.
2	4. test2.txt
3	10. ARP
	11. STP

3. Ход работы

1. – 2. Запустить перехват пакетов в WireShark. Определить с помощью утилиты ping доступность заданных узлов в соответствии с вариантом задания, выполнить трассировку к одному из узлов.

```
ping sklad-service.ru
Обмен пакетами с sklad-service.ru [178.210.83.73] с 32 байтами данны
Ответ от 178.210.83.73: число байт=32 время=51мс TTL=48
Статистика Ping для 178.210.83.73:
   Пакетов: отправлено = 4, получено = 4, потеряно = 0
    (0% потерь)
Приблизительное время приема-передачи в мс:
   Минимальное = 51мсек, Максимальное = 51 мсек, Среднее = 51 мсек
ping eye.moof.ru
Обмен пакетами с eye.moof.ru [90.156.201.99] с 32 байтами данных:
Ответ от 90.156.201.99: число байт=32 время=51мс TTL=51
Статистика Ping для 90.156.201.99:
   Пакетов: отправлено = 4, получено = 4, потеряно = 0
   (0% потерь)
Приблизительное время приема-передачи в мс:
   Минимальное = 51мсек, Максимальное = 51 мсек, Среднее = 51 мсек
ping gmail.com
Обмен пакетами с gmail.com [64.233.162.18] с 32 байтами данных:
Ответ от 64.233.162.18: число байт=32 время=67мс TTL=101
Статистика Ping для 64.233.162.18:
   Пакетов: отправлено = 4, получено = 4, потеряно = 0
   (0% потерь)
Приблизительное время приема-передачи в мс:
   Минимальное = 67мсек, Максимальное = 67 мсек, Среднее = 67 мсек
ping wiw.ru
Обмен пакетами с wiw.ru [89.208.206.225] с 32 байтами данных:
Ответ от 89.208.206.225: число байт=32 время=51мс TTL=49
Статистика Ping для 89.208.206.225:
   Пакетов: отправлено = 4, получено = 4, потеряно = 0
    (0% потерь)
```

```
Приблизительное время приема-передачи в мс:
   Минимальное = 51мсек, Максимальное = 51 мсек, Среднее = 51 мсек
ping luminator.ru
Обмен пакетами с luminator.ru [90.156.201.32] с 32 байтами данных:
Ответ от 90.156.201.32: число байт=32 время=52мс TTL=51
Статистика Ping для 90.156.201.32:
   Пакетов: отправлено = 4, получено = 4, потеряно = 0
    (0% потерь)
Приблизительное время приема-передачи в мс:
   Минимальное = 52мсек, Максимальное = 52 мсек, Среднее = 52 мсек
tracert gmail.com
Трассировка маршрута к gmail.com [64.233.162.18]
с максимальным числом прыжков 30:
                        <1 мс 192.168.0.1
 1
      <1 мс
               <1 мс
                1 ms
  2
       1 ms
                         1 ms host-109-174-12-1.bb-nsk.sib.mts.ru [109.174.12.1]
  3
                         1 ms
                               78.40.80.50
       1 ms
                1 ms
                         1 ms stn-cr03-be20.10.nsk.mts-internet.net [195.34.36.57]
  4
       2 ms
                1 ms
  5
       2 ms
                2 ms
                        2 ms stn-cr01-be3.54.nsk.mts-internet.net [195.34.50.188]
  6
       2 ms
               2 ms
                        2 ms bhm-cr03-ae2.54.nsk.mts-internet.net [195.34.50.129]
       2 ms
  7
               2 ms
                        2 ms bhm-cr01-ae8.54.nsk.mts-internet.net [212.188.28.226]
  8
       1 ms
               1 ms
                        1 ms bhm-cr02-ae0.16.nsk.mts-internet.net [195.34.50.10]
  9
                         1 ms bhm-cr02-ae11.0.nsk.mts-internet.net [195.34.50.33]
       2 ms
                1 ms
 10
       2 ms
                2 ms
                         2 ms
                               bhm-cr01-ae1.10.nsk.mts-internet.net [195.34.50.14]
                        2 ms bhm-cr03-ae8.54.nsk.mts-internet.net [212.188.28.227]
       3 ms
11
                3 ms
                      22 ms psshag-cr01-ae12.74.chel.mts-internet.net [195.34.50.153]
12
      21 ms
             21 ms
      53 ms
             57 ms 52 ms che-cr02-ae10.63.sam.mts-internet.net [212.188.42.129]
14
       *
               56 ms
                      53 ms a197-cr01-ae1.63.msk.mts-internet.net [212.188.29.25]
      52 ms
15
              52 ms
                        52 ms mag9-cr02-be10.77.msk.mts-internet.net [195.34.50.74]
16
      52 ms
               52 ms
                        51 ms mag9-cr01-be16.77.msk.mts-internet.net [212.188.29.82]
      52 ms
                        52 ms
                               72.14.223.72
 17
               52 ms
                        52 ms 108.170.250.34
18
      53 ms
               53 ms
              69 ms
19
      69 ms
                        69 ms 172.253.66.116
20
             68 ms
                        68 ms 72.14.235.69
21
      67 ms
               67 ms
                        67 ms 172.253.79.115
22
                               Превышен интервал ожидания для запроса.
23
                         *
                               Превышен интервал ожидания для запроса.
 24
                               Превышен интервал ожидания для запроса.
25
                               Превышен интервал ожидания для запроса.
2.6
                               Превышен интервал ожидания для запроса.
2.7
                               Превышен интервал ожидания для запроса.
2.8
                               Превышен интервал ожидания для запроса.
29
                               Превышен интервал ожидания для запроса.
 30
                               Превышен интервал ожидания для запроса.
Трассировка завершена.
tracert hotlog.ru
Трассировка маршрута к hotlog.ru [89.208.236.251]
с максимальным числом прыжков 30:
                        <1 мс 192.168.0.1
      <1 мс
               <1 мс
  2
       1 ms
                1 ms
                         1 ms host-109-174-12-1.bb-nsk.sib.mts.ru [109.174.12.1]
                        1 ms 78.40.80.50
       2 ms
               1 ms
  3
       1 ms
               1 ms
  4
                        1 ms stn-cr03-be20.10.nsk.mts-internet.net [195.34.36.57]
  5
       2 ms
               2 ms
                        2 ms stn-cr01-be3.54.nsk.mts-internet.net [195.34.50.188]
  6
      23 ms
               23 ms
                        23 ms zoo-cr03-be8.66.ekt.mts-internet.net [212.188.42.149]
  7
               39 ms
                        39 ms vish-cr01-be7.66.kaz.mts-internet.net [212.188.29.85]
      39 ms
  8
                         *
                               Превышен интервал ожидания для запроса.
  9
      51 ms
               51 ms
                        51 ms
                               m9-cr04-be8.77.msk.mts-internet.net [212.188.54.213]
                        50 ms m9-cr03-ae13.77.msk.mts-internet.net [212.188.42.106]
 10
      50 ms
              50 ms
 11
      50 ms
             51 ms
                        50 ms 212.188.44.170
                        50 ms vl2000.sr3.msk6.ip.di-net.ru [213.248.3.37]
 12
      51 ms
             51 ms
                      50 ms 79.137.189.186
13
      51 ms
               50 ms
14
      54 ms
               53 ms
                        56 ms 89.208.236.251
                        51 ms 89.208.236.251
15
               51 ms
Трассировка завершена.
```

3. С помощью браузера просмотреть несколько страниц на сайте nstu.ru; подключиться к системе Moodle и просмотреть файлы с календарным планом выполнения лабораторных работ и рейтинговой системой по курсу «Сетевые информационные технологии».

Просмотрели страницу расписания занятий группы и главную страницу.

4. С помощью клиента WinSCP подключиться по протоколу FTP к серверу fpm2.ami.nstu.ru и выполнить копирование в Ваш домашний каталог текстового файла согласно варианта из таблицы. Архив с файлами можно скачать из системы Moodle.

Скопировали файл test2.txt в домашнюю папку.

- 5. Остановить перехват пакетов и сохранить результаты в файл с расширением .pcapng.

 Результат захвата сохранен в файл.
- 6. С помощью WireShark определить внутреннюю структуру кадров и пакетов, передаваемых по сети; сравнить ее со структурами, описанными в протоколах Ethernet, IP и TCP.

Выберем из списка пакетов один пакет ТСР и проанализируем его:

	•	• •		•					
	34 9.029886 192.168.0.126	20.54.37.73	TCP	54 49737	7 → 443 [ACK]	Seq=106 Ack	=176 Win=102	16 Len=0	
F						_			
-	> Frame 34: 54 bytes on wire (432 bit	s), 54 bytes captured ((432 bits) or	ı interface	\Device\NPF_	{C2979791-FD	18-46A7-94F4	-B077AE467D76},	id 0
1	> Ethernet II, Src: ASUSTekC_7c:c1:2a	(38:d5:47:7c:c1:2a), D	st: Tp-Linkl	r_94:36:04 (10:fe:ed:94:	36:04)			
Т	> Internet Protocol Version 4, Src: 1	92.168.0.126, Dst: 20.5	4.37.73						
L	> Transmission Control Protocol, Src	Port: 49737, Dst Port:	443, Seq: 10	96, Ack: 176	, Len: 0				

• На транспортном уровне – протокол ТСР

			Структура загол	овка							
Бит	0 — 3	4 — 6	7 — 15	16 — 31							
0	1	Порт источника, Sourc	e Port	Порт назначения, Destination Port							
32	Порядковый номер, Sequence Number (SN) Номер подтверждения, Acknowledgment Number (ACK SN)										
64											
96	Длина заголовка, (Data offset)	Зарезервировано	Флаги	Размер Окна, Window size							
128	К	онтрольная сумма, Ch	ecksum	Указатель важности, Urgent Point							
160		Опции (нес	ользуется практически всегда)								
160/192+			Данн	ые							

```
▼ Transmission Control Protocol, Src Port: 49737, Dst Port: 443, Seq: 106, Ack: 176, Len: 0

    Source Port: 49737
    Destination Port: 443
    [Stream index: 1]
    [TCP Segment Len: 0]
    Sequence Number: 106
                           (relative sequence number)
    Sequence Number (raw): 1016745035
    [Next Sequence Number: 106
                                  (relative sequence number)]
    Acknowledgment Number: 176
                                 (relative ack number)
    Acknowledgment number (raw): 455641650
    0101 .... = Header Length: 20 bytes (5)

▼ Flags: 0x010 (ACK)
       000. .... = Reserved: Not set
       ...0 .... = Nonce: Not set
       .... 0... = Congestion Window Reduced (CWR): Not set
       .... .0.. .... = ECN-Echo: Not set
       .... ..0. .... = Urgent: Not set
       .... - 1 .... = Acknowledgment: Set
       .... .... 0... = Push: Not set
       .... .... .0.. = Reset: Not set
       .... .... ..0. = Syn: Not set
       .... Not set
       [TCP Flags: ······A····]
    Window: 1026
    [Calculated window size: 1026]
    [Window size scaling factor: -1 (unknown)]
    Checksum: 0xfabf [unverified]
    [Checksum Status: Unverified]
    Urgent Pointer: 0
  [This is an ACK to the segment in frame: 33]
       [The RTT to ACK the segment was: 0.040722000 seconds]
  \ [Timestamps]
       [Time since first frame in this TCP stream: 0.147735000 seconds]
       [Time since previous frame in this TCP stream: 0.040722000 seconds]
```

Структуры ТСР-сегментов совпадает.

• На сетевом уровне – протокол IPv4

	IPv4 Header Format																															
Октет				(0								1				2					3										
Бит	0	1	2	3	4	5	6	7	0	1 2 3 4 5			6	7	0	1	2	3	3 4 5 6 7				0	1	2	3	4	5	6	7		
0		Вер	сия		Размер Differ заголовка				entiat Code			es	Cong	olicit estion cation						Pas	мер	пак	ета (полн	ный)							
32							ν	Іден	тифі	фикатор						Флаги Смещение фрагмента																
64			Вр	емя	жиз	зни						Пр	оток	ол			Контрольная сумма заголовка															
96															ІР-ад	рес ис	точні	ика														
128															ІР-ад	оес наз	наче	ения														
160													Оп	ции	(если	разме	р заг	олов	зка >	> 5)												
160 или 192+	Опции (если размер заголовка > 5) Данные																															

```
Internet Protocol Version 4, Src: 192.168.0.126, Dst: 20.54.37.73
   0100 .... = Version: 4
   .... 0101 = Header Length: 20 bytes (5)

▼ Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

      0000 00.. = Differentiated Services Codepoint: Default (0)
      .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
   Total Length: 40
   Identification: 0xa431 (42033)
 Flags: 0x40, Don't fragment
      0... = Reserved bit: Not set
      .1.. .... = Don't fragment: Set
      ..0. .... = More fragments: Not set
   Fragment Offset: 0
   Time to Live: 128
   Protocol: TCP (6)
   Header Checksum: 0x0000 [validation disabled]
   [Header checksum status: Unverified]
   Source Address: 192.168.0.126
   Destination Address: 20.54.37.73
```

Структуры ІР-пакета совпадает.

• На канальном уровне – протокол Etherhet

Структуры Ethernet-кадра совпадает.

7. Определить последовательность прохождения запросов, реализующих алгоритм трассировки одного из заданных узлов.

Time	Source	Destination	Protocol	Length Info
1425 258.205569	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=126/32256, ttl=1 (no response found!)
1426 258.205743	192.168.0.1	192.168.0.126	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
1427 258.206200	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=127/32512, ttl=1 (no response found!)
1428 258.206320	192.168.0.1	192.168.0.126	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
1429 258.206724	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=128/32768, ttl=1 (no response found!)
1430 258.206848	192.168.0.1	192.168.0.126	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
1434 258.209113	192.168.0.1	192.168.0.126	ICMP	120 Destination unreachable (Port unreachable)
1441 259.719091	192.168.0.1	192.168.0.126	ICMP	120 Destination unreachable (Port unreachable)
1448 261.233569	192.168.0.1	192.168.0.126	ICMP	120 Destination unreachable (Port unreachable)
1453 263.755975	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=129/33024, ttl=2 (no response found!
1454 263.757598	109.174.12.1	192.168.0.126	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
1455 263.760508	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=130/33280, ttl=2 (no response found!
1456 263.761890	109.174.12.1	192.168.0.126	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
1457 263.764360	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=131/33536, ttl=2 (no response found!
1458 263.765756	109.174.12.1	192.168.0.126	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
1470 264.779684	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=132/33792, ttl=3 (no response found!
1471 264.781715	78.40.80.50	192.168.0.126	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
1472 264.784497	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=133/34048, ttl=3 (no response found!
1473 264.785588	78.40.80.50	192.168.0.126	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
1474 264.788225	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=134/34304, ttl=3 (no response found!
1475 264.789271	78.40.80.50	192.168.0.126	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
1490 265.804352	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=135/34560, ttl=4 (no response found!
1491 265.805994	195.34.36.57	192.168.0.126	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
1492 265.808844	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=136/34816, ttl=4 (no response found!
1493 265.810418	195.34.36.57	192.168.0.126	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
1494 265.812955	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=137/35072, ttl=4 (no response found!
1495 265.814521	195.34.36.57	192.168.0.126	ICMP	110 Time-to-live exceeded (Time to live exceeded in transit)
1499 266.827829	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=138/35328, ttl=5 (no response found!
1500 266.829938	195.34.50.188	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1501 266.832824	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=139/35584, ttl=5 (no response found!
1502 266.834774	195.34.50.188	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1503 266.837733	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=140/35840, ttl=5 (no response found!
1504 266.839885	195.34.50.188	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1505 267.851574	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=141/36096, ttl=6 (no response found!
1506 267.874744	212.188.42.149	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1507 267.875835	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=142/36352, ttl=6 (no response found!
1508 267.899012	212.188.42.149	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1509 267.900079	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=143/36608, ttl=6 (no response found!
1510 267.922996	212.188.42.149	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1515 268.916988	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=144/36864, ttl=7 (no response found!
1516 268.956500	212.188.29.85	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1517 268.959603	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=145/37120, ttl=7 (no response found!
1518 268.999070	212.188.29.85	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1519 269.002112	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=146/37376, ttl=7 (no response found!
1520 269.041676	212.188.29.85	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)
1524 270.019180	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=147/37632, ttl=8 (no response found!
1553 273.964170	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=148/37888, ttl=8 (no response found!
1568 277.963753	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=149/38144, ttl=8 (no response found!
1587 281.965130	192.168.0.126	89.208.236.251	ICMP	106 Echo (ping) request id=0x0001, seq=150/38400, ttl=9 (no response found!
1589 282.016061	212.188.54.213	192.168.0.126	ICMP	182 Time-to-live exceeded (Time to live exceeded in transit)

8. Восстановить сеанс обмена данными по протоколу HTTP между браузером и сервером при выполнении п.3.

9. Восстановить сеанс обмена данными по протоколу FTP при выполнении п.4, найти перехваченные логин и пароль, а также восстановить содержимое переданного файла.

Перехват и восстановление логина с паролем:

```
6895 376.546900
                  192.168.0.126
                                        217.71.130.131
                                                                                  54 57799 → 21 [ACK] Seq=1 Ack=1 Win=262144 Len=0
6896 376.563052
                  217.71.130.131
                                        192.168.0.126
                                                             FTP
                                                                                  74 Response: 220 (vsFTPd 3.0.2)
                                                                                  70 Request: USER pmi-b6603
6897 376.564363
                  192.168.0.126
                                        217.71.130.131
                                                             FTP
6898 376.566465
                  217.71.130.131
                                        192.168.0.126
                                                             TCP
                                                                                  60 21 → 57799 [ACK] Seq=21 Ack=17 Win=29696 Len=0
6899 376.566717
                  217.71.130.131
                                        192.168.0.126
                                                             FTP
                                                                                  88 Response: 331 Please specify the password.
6900 376.567055
                  192.168.0.126
                                        217.71.130.131
                                                             FTP
                                                                                  69 Request: PASS BeSwulj5
6908 376.608794
                  217.71.130.131
                                       192.168.0.126
                                                             TCP
                                                                                  60 21 → 57799 [ACK] Seq=55 Ack=32 Win=29696 Len=0
```

```
🚄 Wireshark · Следовать ТСР Поток (tcp.stream eq 50) · zahvat.pcapng
                                                                                                                                                                     П
220 (vsFTPd 3.0.2)
USER pmi-b6603
331 Please specify the password.
PASS BeSwuli5
230 Login successful.
SYST
215 UNIX Type: L8
 FEAT
211-Features:
 EPRT
 MDTM
  PASV
 REST STREAM
  SIZE
 TVFS
 UTF8
211 End
OPTS UTF8 ON
200 Always in UTF8 mode.
PWD
257 "/home/NSTU/pmi-b6603"
CWD /home/NSTU/pmi-b6603
250 Directory successfully changed.
PWD
257 "/home/NSTU/pmi-b6603"
TYPE A
200 Switching to ASCII mode.
PASV
227 Entering Passive Mode (217,71,130,131,149,27).
 LIST -a
 150 Here comes the directory listing.
226 Directory send OK.
200 Switching to ASCII mode.
227 Entering Passive Mode (217.71.130.131.22.151).
Пакет 6896. 21 <mark>пакет клиента, 35 пакет сервера, 42 очереди. Щёлкните, чтобы выбрать.</mark>
```

Перехват и восстановление содержимого файла:

ftp-data						
	Time	Source	Destination	Protocol	Length	Info
523	110.215068	217.71.130.131	192.168.0.126	FTP-DATA	965	FTP Data: 911 bytes (PASV) (LIST -a)
1299	230.222009	217.71.130.131	192.168.0.126	FTP-DATA	965	FTP Data: 911 bytes (PASV) (LIST -a)
6618	350.258050	217.71.130.131	192.168.0.126	FTP-DATA	965	FTP Data: 911 bytes (PASV) (LIST -a)
6948	376.923684	217.71.130.131	192.168.0.126	FTP-DATA	965	FTP Data: 911 bytes (PASV) (LIST -a)
7074	401.906886	217.71.130.131	192.168.0.126	FTP-DATA	965	FTP Data: 911 bytes (PASV) (LIST -a)
7091	401.959706	192.168.0.126	217.71.130.131	FTP-DATA	2146	FTP Data: 2092 bytes (PASV) (STOR test2.txt)
7112	402.013387	217.71.130.131	192.168.0.126	FTP-DATA	1032	FTP Data: 978 bytes (PASV) (LIST -a)

10. Определить последовательность прохождения запросов, реализующих один из протоколов в соответствии с вариантом из таблицы (ARP). Построить схему работы протокола и формат пакетов.

Пояснение:

ARP (Address Resolution Protocol) – протокол разрешения адресов необходим для определения МАС-адреса по IP-адресу. ARP-протокол относится к канальному уровню.

Маршрутизатор Тр-Link послал широковещательный ARP-запрос на все подключенные к нему устройства, используя соответствующий MAC-адрес. Компьютер Asus, получив запрос, сообщает свой Мас-адрес, посылая ARP-ответ маршрутизатору. Форматы ARP-запросов и ARP-ответов одинаковы.

Заголовок запроса ARP протокола:

0		8	16 24 31									
	Гип обо	рудования	Тип протокола									
HA-L	en	PA-Len	Код операции									
	Аппаратный адрес отправителя (октеты 03)											
Адрес с	тправи	теля (октеты 4,5)	IP-адрес отправителя (октеты 0,1)									
ІР-адрес	отправ	ителя (октеты 2,3)	Аппаратный адрес адресата (0,1)									
	Ar	паратный адрес ад	дресата (октеты 2,5)									
	IP-адрес адресата (октеты 0-3)											

Заголовки ARP-пакетов совпадают.

11. Найти в перехваченном трафике пакеты, передаваемые по протоколу в соответствии с вариантом задания (STP), определить назначение данного протокола.

stp)				
No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04
	12 2.000062	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	18 4.000057	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	20 6.000137	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	21 8.000178	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	37 10.000222	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	50 12.000254	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
	61 14.000301	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
	65 16.000345	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	70 18.000376	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	78 20.000397	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	95 22.000456	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	110 24.000499	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	114 26.000529	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	119 28.000594	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	121 30.000638	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04
l	124 32.000668	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04
l	150 34.000694	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04
l	155 36.000741	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04
l	166 38.000770	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04
l	172 40.000839	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	183 42.000881	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	184 44.000926	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	197 46.000967	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	199 48.001005	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
l	209 50.001048	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001
	218 52.001045	Tp-LinkT_94:36:02	Spanning-tree-(for-bridges)_00	STP	60 Conf. Root = 32768/0/10:fe:ed:94:36:04 Cost = 0 Port = 0x8001

Spanning Tree Protocol (STP, протокол остовного дерева) — канальный протокол. Основной задачей STP является устранение петель в топологии произвольной сети Ethernet, в которой есть один или более сетевых мостов, связанных избыточными соединениями. STP решает эту задачу, автоматически блокируя соединения, которые в данный момент для полной связности коммутаторов являются избыточными.

Необходимость устранения топологических петель в сети Ethernet следует из того, что их наличие в реальной сети Ethernet с коммутатором с высокой вероятностью приводит к бесконечным повторам передачи одних и тех же кадров Ethernet одним и более коммутатором, отчего пропускная способность сети оказывается почти полностью занятой этими бесполезными повторами; в этих условиях, хотя формально сеть может продолжать работать, на практике её производительность становится настолько низкой, что может выглядеть как полный отказ сети. Принцип действия:

- 1. Выбирается один корневой мост (Root Bridge).
- 2. Далее каждый коммутатор просчитывает кратчайший путь к корневому. Соответствующий порт называется корневым портом (*Root Port*). У любого некорневого коммутатора может быть только один корневой порт.
- 3. После этого для каждого сегмента сети, к которому присоединён более чем один мост (или несколько портов одного моста), просчитывается кратчайший путь к корневому мосту(порту). Мост, через который проходит этот путь, становится назначенным для этой сети (*Designated Bridge*), а соответствующий порт назначенным портом (*Designated port*).
- 4. Далее во всех сегментах, с которыми соединено более одного порта моста, все мосты блокируют все порты, не являющиеся корневыми и назначенными. В итоге получается древовидная структура (математический граф) с вершиной в виде корневого коммутатора.

12. Найти в перехваченном трафике широковещательные запросы по протоколам DHCP, ARP и ответы на них. Определить структуру передаваемых по этим протоколам кадров.

Широковещательный ARP-запрос:

```
> Frame 1041: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \Device\NPF_{C2979791-FD18-46A7-94F4-B077AE467D76}, id 0
> Ethernet II, Src: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04), Dst: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a)

    Address Resolution Protocol (request)
    Hardware type: Ethernet (1)
    Protocol type: IPv4 (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: request (1)
    Sender MAC address: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04)
    Sender IP address: 192.168.0.1
    Target MAC address: 00:00:00_00:00:00:00:00:00:00)
    Target IP address: 192.168.0.126
```

DHCP-пакетов не было перехвачено, так как в локальной сети данному компьютеру выделен статический IP-адрес 192.168.0.126, а остальным устройствам маршрутизатор назначает IP-адреса динамически.

Структура заголовка ARP-запроса:

0	8	16	24	31						
	Тип оборудовани	AR COLOR	Тип протокола							
HA-L	en PA	-Len	Код операции							
	Аппаратный	адрес отправи	теля (октеты 03)							
Адрес	отправителя (окт	еты 4,5) ІР-ад	IP-адрес отправителя (октеты 0,1							
ІР-адрес	отправителя (ок	теты 2,3) Апп	аратный адрес адреса	та (0,1)						
	Аппаратны	й адрес адресат	а (октеты 2,5)							
	ІР-ад	рес адресата (о	ктеты 0-3)							

Структура заголовка DHCP-запроса:

	Dynai	mic Host Config	uration Protocol							
Bit Offset	0-	15	16–3	1						
0	OpCode	Hardware Type	Hardware Length	Hops						
32		Transa	nsaction ID							
64	Seconds	Elapsed	Flag	s						
96		Client IP Address								
128		Your IP	Address							
160		Server IF	Address							
196		Gateway	IP Address							
228+		Client Hardware	Address (16 bytes)							
		Server Host N	ame (64 bytes)							
		Boot File (128 bytes)							
		Opi	ions							

13. Определить значение поля «Тип данных» для кадра Ethernet при передаче пакетов IP, ARP, ICMP, DNS, DHCP.

Передача пакетов ARP:

```
Fthernet II, Src: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a), Dst: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04)
Destination: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04)
Source: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a)
Type: ARP (0x0806)
```

Передача пакетов ІСМР:

```
V Ethernet II, Src: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a), Dst: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04)
> Destination: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04)
> Source: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a)
    Type: IPv4 (0x0800)
```

Передача пакетов DNS:

```
Fethernet II, Src: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04), Dst: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a)
Destination: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a)
Source: Tp-LinkT_94:36:04 (10:fe:ed:94:36:04)
Type: IPv4 (0x0800)
```

Передача пакетов MDNS:

```
V Ethernet II, Src: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a), Dst: IPv6mcast_fb (33:33:00:00:00:fb)
> Destination: IPv6mcast_fb (33:33:00:00:00:fb)
> Source: ASUSTekC_7c:c1:2a (38:d5:47:7c:c1:2a)
```

В поле тип данных указывается название протокола верхнего уровня (уровня 3 по модели OSI).

14. Построить статистику по используемым за время сеанса протоколам.

ротокол	Процент Пакетов	Пакеты	Процент Байтов	Байты	Бит/с	Конечные Пакеты	Конечные Байты	Конечные Бит/	/c
Frame	100.0	7152	100.0	4701045	91k	0	0	0	
✓ Ethernet	100.0	7152	2.1	100128	1953	0	0	0	
✓ Logical-Link Control	3.0	213	0.2	8521	166	0	0	0	
Spanning Tree Protocol	2.9	206	0.2	7210	140	206	7210	140	
✓ Internetwork Packet eXchange	0.1	7	0.0	210	4	0	0	0	
Service Advertisement Protocol	0.1	7	0.0	462	9	7	462	9	
Link Layer Discovery Protocol	0.0	1	0.0	44	0	1	44	0	
✓ Internet Protocol Version 6	0.1	9	0.0	360	7	0	0	0	
 User Datagram Protocol 	0.1	9	0.0	72	1	0	0	0	
Multicast Domain Name System	0.1	5	0.0	686	13	5	686	13	
Link-local Multicast Name Resolution	0.1	4	0.0	168	3	4	168	3	
✓ Internet Protocol Version 4	96.9	6927	2.9	138588	2704	0	0	0	
✓ User Datagram Protocol	21.3	1525	0.3	12200	238	0	0	0	
Simple Service Discovery Protocol	3.5	247	1.6	76247	1487	247	76247	1487	
NetBIOS Name Service	0.1	6	0.0	300	5	6	300	5	
▼ NetBIOS Datagram Service	0.3	21	0.1	4221	82	0	0	0	
✓ SMB (Server Message Block Protocol)	0.3	21	0.1	2499	48	0	0	0	
➤ SMB MailSlot Protocol	0.3	21	0.0	525	10	0	0	0	
✓ Microsoft Windows Browser Protocol	0.3	21	0.0	693	13	0	0	0	
VSS Monitoring Ethernet trailer	0,3	21	0.0	21	0	21	21	0	
Multicast Domain Name System	0.1	5	0.0	686	13	5	686	13	
Link-local Multicast Name Resolution	0.1	4	0.0	168	3	4	168	3	
GQUIC (Google Quick UDP Internet Connections)	3.7	264	2.0	95601	1865	264	95601	1865	
Domain Name System	1.9	136	0.2	10780	210	136	10780	210	
Data	11.8	842	6.1	284573	5552	842	284573	5552	
➤ Transmission Control Protocol	71,3	5097	83.9	3941987		4010	3179957	62k	
Transport Layer Security	12.1	868	73.0	3431984		860	3391970	66k	
Hypertext Transfer Protocol	1.4	101	8.4	395809	7722	48	37535	732	
Portable Network Graphics	0.1	8	0,3	15088	294	8	18606	363	
Media Type	0.1	10	3.8	178663	3486	10	96612	1885	
Line-based text data	0.1	10	2.8	132892	2592	10	135094	2635	
HTML Form URL Encoded	0.0	3	0.0	189	3	3	2912	56	
eXtensible Markup Language	0.3	20	1.9	89155	1739	20	96710	1886	
Compuserve GIF	0.0	2	0.0	1763	34	2	2270	44	
✓ FTP Data	0.1	7	0.2	7625	148	1	0	0	
Line-based text data	0.1	6	0.1	5533	107	6	5533	107	
File Transfer Protocol (FTP)	1.4	101	0.0	2091	40	101	0	0	
Data	0.3	18	0.0	533	10	18	533	10	
Internet Group Management Protocol	0.2	12	0.0	96	1	12	96	1	
✓ Internet Control Message Protocol	4.1	293	0.5	22312	435	287	21796	425	
NetBIOS Name Service	0.1	6	0.0	300	433	6	300	5	
	0.0	2	0.0	74	1	2	74	1	
Address Resolution Protocol	0.0	۷	0.0	74	1	4	14	1	

15. Изучить процесс установления соединения по протоколу ТСР.

Рассмотрим процесс соединение по протоколу ТСР на примере:

		Клиент					Сервер				
Шаг / Действие	Порядковый номер (ISN)	Номер подтверждения (ACK)	Порт отправ.	Порт получ.	Флаги	Шаг / Действие	Порядковый номер (ISN)	Номер подтверждения (ACK)	Порт отправ.	Порт получ.	Флаги
1 отправил	1111		7070	8080	SYN	1 получил	1111		7070	8080	SYN
3 получил	2222	111 2	8080	7070	SYN ACK	2 отправил	2222	111 2	8080	7070	SYN ACK
4 отправил	1112	222 3	7070	8080	АСК	5 получил	111 2	222 3	7070	8080	ACK
					< Передач	на данных >					
6 отправил	1112		7070	8080	FIN	6 получил	1112		7070	8080	FIN
7 получил		1113	8080	7070	ACK	7 отправил		111 3	8080	7070	АСК

Соединение устанавливается в три этапа (процесс «трёхкратного рукопожатия» TCP).

Первое рукопожатие: **1)** клиент вызывает connect() для запуска запроса на соединение, устанавливает бит флага SYN в 1, случайным образом генерирует ISN и отправляет сегмент синхронизации.

Второе рукопожатие: **2)** после того, как Сервер по очереди вызовет socket(), bind() и listen(), он будет отслеживать указанный адрес сокета. После того, как сервер получает сегмент сообщения синхронизации от клиента, запрос подключения клиента отслеживается битом флага SYN = 1, поэтому сервер вызывает функцию ассерt(), чтобы принять запрос подключения, и устанавливает биты флага SYN и ACK в true и номер подтверждения ACK = ISN клиента +1, случайным образом генерируют свой порядковый номер ISN и отправляет сегмент (сегмент синхронизации + подтверждения) клиенту для подтверждения запроса на соединение.

Третье рукопожатие: **3)** после того, как клиент получает сегмент сообщения сервера, он проверяет, установлен ли флаг АСК и соответствует ли номер подтверждения ISN клиента + 1.

- 4) Если это правильно, бит флага АСК устанавливается в 1, АСК = ISN сервера + 1, и пакет отправляется на сервер, клиент переходит в состояние ESTABLISHED.
- **5)** Сервер проверяет, установлен ли флаг АСК 1 и является ли АСК = ISN сервера + 1 после получения клиентского сегмента. Если это правильно, соединение установлено успешно, и сервер также переходит в состояние ESTABLISHED, завершая трехстороннее рукопожатие. Затем данные могут передаваться между клиентом и сервером.
- 6) После передачи данных для прекращения соединения клиент устанавливает флаг FIN, номер подтверждения клиента + 1, АСК = ISN сервера + 1.
- **7)** Сервер, получив сегмент с флагом FIN формирует сегмент с установленным флагом АСК = ISN клиента + 1. Клиент получает подтверждение, и соединение считается закрытым.