QuickSort

Análise de Algoritmo

EDUARDO HENRIQUE MACHADO NATÁLIA ALMADA

QuickSort

Charles Antony Richard Hoar - 1960

O algoritmo Quicksort implementa a estratégia da divisão e conquista., ou seja: Subdivide o problema original em subproblemas menores, que são resolvidos recursivamente.

Vantagens

Rápido e eficiente na execução média

Funciona bem em ambientes de memória virtual

Vantagem em ordenar *in place*

Não requer muito espaço

Pontos em destaque

Rapidez	Memória Virtual	In Place	Economia de espaço
Dividir o problema em subproblemas permite a ordenação eficaz de conjuntos de dados de forma rápida e precisa.	Localidade Espacial: acessa elementos em regiões contíguas do array durante a partição e a troca, Localidade Temporal: eusa partes do array durante a execução; O menor uso de memória adicional significa que menos páginas de memória precisam ser alocada	Ele realiza a ordenação dos elementos dentro do array original, sem a necessidade de alocar espaço adicional significativo para uma cópia dos dados.	Não requer espaço adicional proporcional ao tamanho do array para ordenar os dados. O espaço extra necessário é apenas para o armazenamento da pilha de chamadas recursivas (ou a pilha explícita usada em versões iterativas)

- T(n): O tempo total necessário para ordenar um array de nnn elementos.
- $2*T(\frac{n}{2})$: O custo total das duas chamadas recursivas. Cada chamada recursiva é responsável por ordenar uma das duas sublistas de tamanho .
- O(n): O custo para particionar o array de n elementos. Esse é o custo de reorganizar os elementos em torno do pivô.

- Nível O (Raiz): Custo é n
- Nível 1: O array é dividido em duas sublistas de tamanho $\frac{n}{2}$. Custo total neste nível é $2*\frac{n}{2}=n$
- Nível 2: Cada sublista é dividida em duas partes de tamanho n/4 Custo total neste nível é $4*\frac{n}{4}$ =n

*

• Nível k:

• Existem 2^k sublistas, cada uma de tamanho n*(2^k)

Custo total neste nível é 2 * $\underline{n}^k = n$

Número Total de Níveis:

O número de níveis é log₂n

Melhor e Médio Caso:

Somatória Total dos Custos

$$T(n) = \sum_{k=0}^{\log_2 n} n$$

$$T(n) = (\log_2 n + 1) \cdot n$$

Complexidade:

 $O(n \log n)$

Pior Caso:

Ocorre quando todas as chamadas de Divide devolvem q = p ou q = r. Como Divide faz n-1 comparações, a intuição sugere que T*(n) obedece a <u>recorrência</u> T*(n) = n-1 + T*(0) + T*(n-1).

•
$$T*(n) = T*(n-1) + n - 1$$

= $T*(n-2) + (n-2) + (n-1)$
= $T*(n-3) + (n-3) + (n-2) + (n-1)$
= $T*(n-4) + (n-4) + (n-3) + (n-2) + (n-1)$
:
= $T*(0) + 0 + 1 + 2 + ... + (n-2) + (n-1)$
= $n(n-1)/2$.

- Nível O (Raiz): Custo é n

 Nível 1: O array é dividido em uma sublista de tamanho n-1 e uma de tamanho 0.

Custo total neste nível é n-1

• Nível 2: A sublista de tamanho n-1 é dividida em uma sublista de tamanho n-2 e uma de tamanho 0.

Custo total neste nível é n-2

- Nível k:
- A cada nível, o custo é n-k, até que a sublista ténha tamanho 1) Custo total neste nível é 2 * \underline{n} = n

Número Total de Níveis:

O número de níveis é n

Pior Caso:

Somatória Total dos Custos

$$T(n)=\sum_{k=0}^{n-1}(n-k)$$

$$T(n) = n + (n-1) + (n-2) + \ldots + 1$$

$$T(n) = \frac{n(n+1)}{2}$$

Melhor e Médio Caso:

Tem melhor?

MergeSort

O MergeSort mantém uma complexidade de O (nlogn) em todos os casos devido à sua estrutura constante de divisão e mesclagem. O array é dividido sempre exatamente ao meio, ordena e depois mescla.

O Quicksort mantém uma complexidade de O (nlogn) apenas quando se comporta bem ou conforme o esperado, divide o array baseando na escolha de um pivô, os maiores vao pra uma lista e os menores para outra. Sem mesclagem.

Tem melhor?

MergeSort

O MergeSort é mais estável. O quicksort não.

O MergeSort usa O(n) memória extra. O quicksort O(logn).

DEPENDE

QuickSort é geralmente mais eficiente devido ao menor overhead de memória e melhor desempenho em cache, mas requer boas estratégias de escolha de pivô para evitar o pior caso.

