Notes on Statistics

Dec. 32, 2999

1 Distributions from random samples

1.1 Random samples and statistics

Definition 1.1. The random variables X_1, \dots, X_n are called a ramdom sample of size n from the population f(x) if they are independent and identically distributed with pdf or pmf f(x), or iid random variables. Let $T(x_1, \dots, x_n)$ be a real-valued or vector-valued function whose domain includes of sample space of (X_1, \dots, X_n) , then the random variable or random vector $Y = T(X_1, \dots, X_n)$ is called a statistic, whose distribution is called the sampling distribution of Y.

Theorem 1.2. This is another theorem.

Proof. This proves the theorem.

Example 1.3. This is an example.

2 Point estimation

Example 2.1. This is another example.

Remark 2.2. This is just a remark.

- 3 Hypothesis testing
- 4 Interval estimation
- 5 A complete example
- 6 More examples
- 7 Analysis of variance
- 8 Linear regression

A Distribution of transformations of random variables

$$f_{\mathbf{U}}(u_1, \dots, u_n) = \sum_{i} f_{\mathbf{X}}(h_{1i}(u_1, \dots, u_n), \dots, h_{ni}(u_1, \dots, u_n)) |J_i|,$$
(1)

B Cochran's theorem

Theorem B.1 (Cochran). Let X_1, X_2, \dots, X_n be i.i.d. $N(0, \sigma^2)$ distributed random variables, and suppose that

$$\sum_{i=1}^{n} X_i^2 = \sum_{j=1}^{k} Q_j,$$

where Q_1, Q_2, \dots, Q_k are positive semi-definite quadratic forms in X_1, X_2, \dots, X_n , i.e.,

$$Q_j = \mathbf{X}^{\mathsf{T}} \mathbf{A}_j \mathbf{X}, \quad j = 1, 2, \cdots, k.$$

Let $r_j = \operatorname{rank}(\mathbf{A}_j)$ be the rank of the matrix \mathbf{A}_j . If $\sum_{j=1}^k r_j = n$, then

- Q_1, Q_2, \dots, Q_k are independent;
- $Q_j \sim \sigma^2 \chi^2(r_j)$.

From linear algebra, we know that if a matrix \mathbf{A} is symmetric and idempotent, then rank(\mathbf{A}) = tr(\mathbf{A}). Since \mathbf{A} is idempotent, *i.e.*, $\mathbf{A}^2 = \mathbf{A}$, the eigenvalues of the matrix \mathbf{A} are either 0 or 1. Therefore, the rank of the matrix is equal to the sum of its eigenvalues. We will use this fact to determine the degrees of freedom for the χ^2 distributions corresponding to the quadratic forms. In this case, we will only need to verify that the matrices are idempotent.

C Two useful relations

References