Normalizzazione Forte per il Sistema F

Alessio Marchetti

Definizione 1 Un termine t si dice neutrale se è in una delle seguenti forme: x, t'U o t'U, in cui x è una variabile, t' è un termine e U è un tipo.

Definizione 2 Un candidato di riducibilità (o semplicemente candidato) di tipo U è un insieme \mathcal{R} di termini di tipo U per cui valgono:

- (CR1) Se $t \in \mathcal{R}$ allora t è fortemente normalizzabile.
- (CR2) Se $t \in \mathcal{R}$ e t' è un termine ottenuto da una riduzione di t, cioè $t \leadsto t'$, allora $t' \in \mathcal{R}$.
- (CR3) Se t è neutrale, e per ogni conversione di uno step di t si ottiene un termine $t' \in \mathcal{R}$, allora anche $t \in \mathcal{R}$.

Definizione 3 Dato un termine t, si definisce $\nu(t)$ come la massimo numero di step di conversione necessari a portare t in forma normale. In particolare $\nu(t) = \infty$ se e solo se t non è fortemente riducibile.

Definizione 4 Se \mathcal{R} e \mathcal{S} sono insiemi di termini di tipo rispettivamente U e V, si definisce l'insieme $\mathcal{R} \to \mathcal{S}$ come l'insieme dei termini di tipo $U \to V$ per cui per ogni termine $u \in \mathcal{R}$ si ha che $tu \in \mathcal{S}$.

Lemma 5 Se \mathcal{R} e \mathcal{S} sono candidati per i tipi U e V, allora $\mathcal{R} \to \mathcal{S}$ è candidato di tipo $U \to V$.

Dimostrazione. Per mostrare (CR1) prendiamo $t \in \mathcal{R} \to \mathcal{S}$ e una variabile x di tipo U. Poiché le variabili sono sia normali che che neutrali, $x \in \mathcal{R}$ e quindi $tx \in \mathcal{S}$. Inoltre $\nu(t) < \nu(tx)$, e quindi siccome tx è fortemente normalizzabile, anche t lo è.

Per (CR2),se $t \leadsto t'$, per ogni $u \in \mathcal{R}$ si ha che $tu \leadsto t'u$. Usando la (CR2) su \mathcal{S} , si ottiene che $t'u \in \mathcal{S}$. Allora $t'\mathcal{R} \to \mathcal{S}$.

Infine consideriamo t neutrale di tipo $U \to V$ per cui per tutte le conversioni di uno step $t \leadsto t'$ si ha che $t' \in \mathcal{R} \to \mathcal{S}$. Sia $u \in \mathcal{R}$, e per induzione su $\nu(u)$ dimostriamo che tu si riduce in uno step a termini in \mathcal{S} . Infatti poiché t è normale, tu si può ridurre solo a t'u o a tu' per opportuni termini t' e u'. Ma il primo appartiene a \mathcal{S} perchè $t' \in \mathcal{R} \to \mathcal{S}$, e il secondo ci appartiene per ipotesi induttiva in quanto $\nu(u') < \nu(u)$. Per (CR3) su \mathcal{S} allora $tu \in \mathcal{S}$. \square