Parallel Computing for Machine Learning (Part 1)

Shusen Wang

Why parallel computing for ML?

- Deep learning models are big: ResNet-50 has 25M parameters.
- Big models are trained on big data, e.g., ImageNet has 14M images.

Why parallel computing for ML?

- Deep learning models are big: ResNet-50 has 25M parameters.
- Big models are trained on big data, e.g., ImageNet has 14M images.
- Big model + big data → Big computation cost.
- Example: Training ResNet-50 on ImageNet (run 90-epochs) using a single NVIDIA M40 GPU takes 14 days.

Why parallel computing for ML?

- Deep learning models are big: ResNet-50 has 25M parameters.
- Big models are trained on big data, e.g., ImageNet has 14M images.
- Big model + big data → Big computation cost.
- Example: Training ResNet-50 on ImageNet (run 90-epochs) using a single NVIDIA M40 GPU takes 14 days.
- Parallel computing: using multiple processors to make the computation faster (in terms of wall-clock time.)

Toy Example: Least Squares Regression

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

•
$$f(\mathbf{x}) = \mathbf{w_1} x_1 + \mathbf{w_2} x_2 + \cdots + \mathbf{w_d} x_d$$

- w_1, w_2, \cdots, w_d : weights
- x_1 : # of bedrooms
- x_2 : # of bathroom
- x_3 : square feet
- x_4 : age of house
- •

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

Features of a House $\mathbf{x} \in \mathbb{R}^d$

Price = \$0.5M

Prediction:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

Question: How to find w?

Features of a House $\mathbf{x} \in \mathbb{R}^d$

Price = \$0.5M

Prediction:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

Least Squares Regression

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

Question: How to find w?

- Training inputs: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$.
- Training targets: $y_1, \dots, y_n \in \mathbb{R}$.

Least Squares Regression

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

Question: How to find w?

- Training inputs: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$.
- Training targets: $y_1, \dots, y_n \in \mathbb{R}$.
- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.

Least Squares Regression

- Inputs: $\mathbf{x} \in \mathbb{R}^d$ (e.g., features of a house).
- Prediction: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ (e.g., housing price).

Question: How to find w?

- Training inputs: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$.
- Training targets: $y_1, \dots, y_n \in \mathbb{R}$.
- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Least squares regression: $\mathbf{w}^* = \min_{\mathbf{w}} L(\mathbf{w})$.

Parallel Gradient Descent for Least Squares

• Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} - y_i)^2$$
.

• Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} - y_i)^2$$
.

Gradient:
$$g(\mathbf{w}) = \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{n} \frac{\partial \frac{1}{2} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i})^{2}}{\partial \mathbf{w}} = \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i}) \mathbf{x}_{i}$$

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot g(\mathbf{w}_t)$.

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot g(\mathbf{w}_t)$.

- The bottleneck of GD is at computing the gradient.
- It is expensive if #samples and #parameters are both big.

Example: GD for least squares regression model

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.

•
$$g(\mathbf{w}) = g_1(\mathbf{w}) + g_2(\mathbf{w}) + \dots + g_{\frac{n}{2}}(\mathbf{w}) + g_{\frac{n}{2}+1}(\mathbf{w}) + \dots + g_{n-1}(\mathbf{w}) + g_n(\mathbf{w}).$$

Example: GD for least squares regression model

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.

•
$$g(\mathbf{w}) = g_1(\mathbf{w}) + g_2(\mathbf{w}) + \dots + g_{\frac{n}{2}}(\mathbf{w}) + g_{\frac{n}{2}+1}(\mathbf{w}) + \dots + g_{n-1}(\mathbf{w}) + g_n(\mathbf{w}).$$

Example: GD for least squares regression model

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.

•
$$g(\mathbf{w}) = g_1(\mathbf{w}) + g_2(\mathbf{w}) + \dots + g_{\frac{n}{2}}(\mathbf{w}) + g_{\frac{n}{2}+1}(\mathbf{w}) + \dots + g_{n-1}(\mathbf{w}) + g_n(\mathbf{w}).$$

Example: GD for least squares regression model

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.

•
$$g(\mathbf{w}) = g_1(\mathbf{w}) + g_2(\mathbf{w}) + \cdots + g_{\frac{n}{2}}(\mathbf{w}) + g_{\frac{n}{2}+1}(\mathbf{w}) + \cdots + g_{n-1}(\mathbf{w}) + g_n(\mathbf{w}).$$

$$= \widetilde{\mathbf{g}}_1$$

$$= \widetilde{\mathbf{g}}_2$$

Example: GD for least squares regression model

- Loss function: $L(\mathbf{w}) = \sum_{i=1}^{n} \frac{1}{2} (\mathbf{x}_i^T \mathbf{w} y_i)^2$.
- Gradient: $g(\mathbf{w}) = \sum_{i=1}^{n} g_i(\mathbf{w})$, where $g_i(\mathbf{w}) = (\mathbf{x}_i^T \mathbf{w} y_i) \mathbf{x}_i$.

•
$$g(\mathbf{w}) = g_1(\mathbf{w}) + g_2(\mathbf{w}) + \dots + g_{\frac{n}{2}}(\mathbf{w}) + g_{\frac{n}{2}+1}(\mathbf{w}) + \dots + g_{n-1}(\mathbf{w}) + g_n(\mathbf{w}).$$

$$= \tilde{\mathbf{g}}_1 \\ = \tilde{\mathbf{g}}_2$$
 Aggregate: $g(\mathbf{w}) = \tilde{\mathbf{g}}_1 + \tilde{\mathbf{g}}_2$.

Communication

Two Ways of Communication

Share memory:

Message passing:

Two Ways of Communication

Share memory:

Message passing:

Client-Server Architecture

Peer-to-Peer Architecture

Synchronous Parallel Gradient Descent Using MapReduce

- MapReduce is a programming model and software system developed by Google [1].
- **Characters:** client-server architecture, message-passing communication, and bulk synchronous parallel.

Reference

1. Dean and Ghemawat: MapReduce: simplified data processing on large clusters. *Communications of the ACM*, 2008.

- MapReduce is a programming model and software system developed by Google [1].
- **Characters:** client-server architecture, message-passing communication, and bulk synchronous parallel.
- Apache Hadoop [2] is an open-source implementation of MapReduce.

Reference

- 1. Dean and Ghemawat: MapReduce: simplified data processing on large clusters. *Communications of the ACM*, 2008.
- 2. https://hadoop.apache.org/

- MapReduce is a programming model and software system developed by Google [1].
- **Characters:** client-server architecture, message-passing communication, and bulk synchronous parallel.
- Apache Hadoop [2] is an open-source implementation of MapReduce.
- Apache Spark [3] is an improved open-source MapReduce.

Reference

- 1. Dean and Ghemawat: MapReduce: simplified data processing on large clusters. *Communications of the ACM*, 2008.
- 2. https://hadoop.apache.org/
- 3. Zaharia and others: Apache Spark: a unified engine for big data processing. Communications of the ACM, 2016.

Server

Server

Data Parallelism

Data Parallelism

• Partition the data among worker nodes. (A node has a subset of data.)

- Broadcast: Server broadcast the up-to-date parameters \mathbf{w}_t to workers.
- Map: Workers do computation locally.
 - Map $(\mathbf{x}_i, y_i, \mathbf{w}_t)$ to $\mathbf{g}_i = (\mathbf{x}_i^T \mathbf{w}_t y_i) \mathbf{x}_i$.
 - Obtain n vectors: $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \dots, \mathbf{g}_n$.

- Broadcast: Server broadcast the up-to-date parameters \mathbf{w}_t to workers.
- Map: Workers do computation locally.
 - Map $(\mathbf{x}_i, y_i, \mathbf{w}_t)$ to $\mathbf{g}_i = (\mathbf{x}_i^T \mathbf{w}_t y_i) \mathbf{x}_i$.
 - Obtain n vectors: $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \cdots, \mathbf{g}_n$.
- Reduce: Compute the sum: $\mathbf{g} = \sum_{i=1}^{n} \mathbf{g}_{i}$.
 - Every worker sums all the $\{g_i\}$ stored in its local memory to get a vector.
 - Then, the server sums the resulting m vectors. (There are m workers.)
- Server updates the parameters: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \mathbf{g}$.

- Every worker stores $\frac{1}{m}$ of the data.
- Every worker does $\frac{1}{m}$ of the computation.
- Is the runtime reduced to $\frac{1}{m}$?
- No. Because communication and synchronization must be considered.

Speedup Ratio

speedup ratio = $\frac{\text{wall clock time using one node}}{\text{wall clock time using } m \text{ nodes}}$

Speedup Ratio

speedup ratio = $\frac{\text{wall clock time using one node}}{\text{wall clock time using } m \text{ nodes}}$

Communication Cost

- Communication complexity: How many words are transmitted between server and workers.
 - Proportional to number of parameters.
 - Grow with number of worker nodes.

Communication Cost

- Communication complexity: How many words are transmitted between server and workers.
 - Proportional to number of parameters.
 - Grow with number of worker nodes.
- Latency: How much time it takes for a packet of data to get from one point to another. (Determined by the compute network.)

Communication Cost

- Communication complexity: How many words are transmitted between server and workers.
 - Proportional to number of parameters.
 - Grow with number of worker nodes.
- Latency: How much time it takes for a packet of data to get from one point to another. (Determined by the compute network.)
- Communication time: $\frac{\text{complexity}}{\text{bandwith}} + \text{latency}$.

Bulk Synchronous

Synchronization Cost

Question: What if a node fails and then restart?

- This node will be much slower than all the others.
- It is called straggler.
- Straggler effect:
 - The wall-clock time is determined by the slowest node.
 - It is a consequence of synchronization.

Recap

- Gradient descent can be implemented using MapReduce.
- Data parallelism: Data are partitioned among the workers.
- One gradient descent step requires a broadcast, a map, and a reduce.

Recap

- Gradient descent can be implemented using MapReduce.
- Data parallelism: Data are partitioned among the workers.
- One gradient descent step requires a broadcast, a map, and a reduce.
- Cost: computation, communication, and synchronization.
- Using m workers, the speedup ratio is lower than m.