Today's class? Lysis X general patters TC X SC Asympatic analysis X

Big O notation X X Quiz 1: Sund first N natural no's $1+2+3+ \longrightarrow + N = \frac{N(N+1)}{2}$ [3,10] -> 3,4,5,6,7,8,7,10 [-, 9nchoire [a,b] [a,b] (a,b) (a,b) (b-a+1-1-b-1-b-1) [a,b] [a,Quiz >: N -> 1/2 -> 1/4 -> 1/8 --- 1 loyaN

S=0

f(i=1; i=N; i+t) {
 i:[1-N]
 S=S+i,
 # it - N

3

rdow S; void fun (int N) { Void func (int N int M) { $f(\underline{i=1}; \underline{i<=N}; \underline{i+1}) \{ i:[1,2--N] \}$ $if(\underline{i>0}2=20) \{ i:[1,N] \}$ print(i); y

 $\begin{cases}
\frac{3}{i} = \frac{1}{i} & \text{if } (i = 1), \text{ if } (i = 1),$

Total it -> N+M

3

int func (int N) {
 S = 0
 f (i = 1; i <= N); i = i + 2) {
 S = S + i;
 } i=1, 3, 5, 7, -- N $N: 10 - [1, 3, 5, 1, 9] \longrightarrow 5 - [\%]$ N=7 - (1, 3, 5, 7) $= \left(N^{+1/2}\right)$

I gen (int N) {
$$S = 0$$

$$f(i = 0; i < 100; i + 1)$$

$$S = S + i + i^{2}$$

$$S = S + i^{2}$$

$$S = S$$

void fine (N) { iteration i= N; While (i 71) { i=1/2; z 3 take by m both sids 1=0 3 3 排件 void fue (N) {
 S = 0
 f(i=1); i = N; i = i * 2) {
 S = S + i;
 S = S + i;
}

1	i):ز	1-27	# it	
	1	1-2	1.4N	45N +5N	
{	2		17	+ 5 N	
_	9		,	,	
	5		(
	1		l	1 1	
	٨	,	ζ	+ ;	_

Ttal #it -> N y N

$$i = 1 \quad 2 \quad 3 \quad -2^{N}$$

$$[1, 2^{N}]$$

$$4 \quad i + = 2^{N}$$

roid furc(N) { f(i=1; i<=N; i++){
f(j=1;j<=2i;j++)}

point (i+j);

i	j: [1-2 ⁱ]	#1
1	$\begin{bmatrix} 1-2^{1} \end{bmatrix} - \begin{bmatrix} 1-2^{2} \end{bmatrix} - \begin{bmatrix} 1-2^{2} \end{bmatrix}$	+ 2 × 2 ×
7	$\left(1-2^{1}\right)$	→ ² 2 ³
	[1- 2 ^N]	2 ~
1 0		<u> </u>

n = N

$$= 2 \left[\frac{2^{N} - 1}{2 - 1} \right]$$

$$= 2 \left[\frac{2^{N} - 1}{2 - 1} \right] = 2 \left[\frac{2^{N} - 1}{2^{N} - 1} \right]$$

$$\frac{1}{2^{5}} \frac{1}{2^{5}} \frac{1}$$

Compore

$$\sqrt[N]{\sqrt{N}} < \sqrt{N} < N < N < N < N < N^{2} < N^{2}$$

How to write Big O! - Newt