

Sumário

- 1. Bibliografia
- 2. Transformando Multiplicação em Adição
- 3. O Impacto dos Logaritmos
- 4. Definição e Propriedades
- 5. Funções Logarítmicas
- 6. Aplicações

Bibliografia

Bibliografia da Aula 10

- Fundamentos da Matemática Elementar: 2 (Click para baixar)
- Pré-Cálculo, Schafier. (Click para baixar)
- Para o resumo histórico, ver em [1].

Introdução

Introdução

A geração de logaritmos: um logaritmo de um número dado y é o expoente ou potência x ao qual outro número fixo (a base a) é elevado para produzir aquele número dado (o y).

Uma tábua de logaritmos

Utilizando 2 como base, podemos produzir a seguinte tábua de logaritmos:

Número	1	2	4	8	16	32	64	128	256	512	1024
Logaritmo	0	1	2	3	4	5	6	7	8	9	10

Logaritmo de y

- Observe que cada número está associado com a potência de 2 que o gera.
- Por exemplo: $1 = 2^0$, $32 = 2^5$ e $512 = 2^9$.

Uma tábua de logaritmos

Usando a tábua de logaritmo para calcular o produto 16×64 :

Número	2	4	8	16	32	64	128	256	512	1024
Logaritmo	1	2	3	4	5	6	7	8	9	10

- Sem calculadora, multiplicar os números 16 e 64 através de ábacos ou pranchas de contagem era um processo trabalhoso.
- Usando a tábua de logaritmos acima, o processo torna-se simples:
 - ightharpoonup somam-se os logaritmos associados aos números dados (4 + 6 = 10);
 - localiza-se o número que está associado ao logaritmo 10, neste caso, o 1024.
- ▶ Portanto, $16 \times 64 = 1024$.

Por que somar os logaritmos?

Por que definindo logaritmos como abaixo, podemos determinar o produto 16×64 através da soma dos seus logaritmos 4 e 6, na tábua com base 2?

Logaritmo de y

Tábuas de logaritmos

- O uso de tais tábuas facilitava cálculos complexos e ajudou a trigonometria a avançar.
- Napier percebeu que podia substituir o trabalho entendiante da multiplicação pela operação simples da adição:
 - Multiplicação: somando os dois logaritmos e convertendo a resposta a um número comum.
 - Divisão: subtraindo os dois logaritmos e convertendo a resposta a um número comum (Justifique!).

O método aperfeiçoado

- Napier levou vinte anos para completar seus cálculos e publicar as primeiras tábuas de logaritmos como 'Descrição da maravilhosa regra dos logaritmos.
- Apesar de reconhecer a importância das tábuas de Napier, o professor de Oxford Henry Briggs as considerou pouco práticas.
- Entre 1616 e 1617, os dois discutiram o tema e concordaram que o logaritmo de 1 fosse redefinido como 0 e o logaritmo de 10 como 1.

O método aperfeiçoado

- Essa abordagem tornou os logaritmos muito mais fáceis de usar.
- Com essas mudanças, Briggs passou vários anos recalculando as tábuas.
- ► Em 1624, os resultados foram publicados com logaritmos calculados até catorze casas decimais.
- ightharpoonup Os logaritmos de base 10 calculados por Briggs são conhecidos como $\log_{10} = \log ou$ logaritmos comuns.
- ► A tábua anterior, de potências de 2, pode ser pensada com uma tábua de log₂, ou base 2.

O Impacto dos Logaritmos

Astronomia

- Os logaritmos tiveram impacto imediato na ciência, em especial na astronomia.
- Kepler publicou as duas primeiras leis do movimento planetário em 1605, mas sua revolucionária terceira lei só chegou após a invenção das tábuas de logaritmos.
- Esta lei descreve como o tempo que um planeta leva para completar uma órbita ao redor do sol se relaciona a sua distância orbital média.

Figura 1: Terceira Lei de Kepler

Astronomia

 Quando Kepler publicou sua descoberta em 1620, ele o dedicou a Napier.

A função exponencial

- ▶ Já no séc. XVII, os logaritmos se revelaram algo de importância ainda maior.
- O matemático Pietro Mengoli mostrou que a série alternada

$$1 - 1/2 + 1/3 - 1/4 + 1/5 - \dots$$

tinha um valor ao redor de 0, 693147, que ele demonstrou ser o logaritmo natural de 2.

- ► Um logaritmo natural (representado por In) é assim chamado porque ocorre naturalmente, revelando o tempo necessário para atingir certo nível de crescimento.
- ► Tem uma base especial, chamada depois de *e* (o número de Euler), com valor de aproximadamente 2, 71828.

A função exponencial

- O número natural e tem enorme significado em matemática, devido as suas ligações com crescimento e decaimento naturais.
- Com o advento das calculadoras manuais e dos computadores, as tábuas de logaritmos perderam sua utilidade. Hoje, o que importa especialmente são certas propriedades funcionais da função logaritmo e de sua inversa, a função exponencial. E nesse sentido deve-se privilegiar, isto sim, a base e.

Definição e Propriedades

Definição

Definição 1

Sendo a e b números reais e positivos, com $a \neq 1$, chama-se logaritmo de b na base a o expoente que se deve dar à base a de modo que a potência obtida seja igual a b:

$$\log_a b = x \Leftrightarrow a^x = b.$$

- Para que a operação de potência esteja bem definida, devemos ter 0 < a ≠ 1, como vimos ao definir a função exponencial.
- Como $b = a^x$, com a > 0, então este também será positivo.

Exemplos

- 1. $\ln 1 = 0$, pois $\ln 1 = \log_e 1$ e $e^0 = 1$.
- 2. $\log_{0,2} 25 = -2$, pois $(0,2)^{-2} = \left(\frac{1}{5}\right)^{-2}$.

Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \neq 1, b > 0$.

1. Para qualquer base a, tem-se $\log_a 1 = 0$.

Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \neq 1, b > 0$.

1. Para qualquer base a, tem-se $\log_a 1 = 0$. Com efeito,

$$a^0 = 1$$
.

Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \neq 1, b > 0$.

1. Para qualquer base a, tem-se $\log_a 1 = 0$. Com efeito,

$$a^0 = 1$$
.

2. Para qualquer base a, tem-se $\log_a a = 1$.

Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \neq 1, b > 0$.

1. Para qualquer base a, tem-se $\log_a 1 = 0$. Com efeito,

$$a^0 = 1$$
.

2. Para qualquer base a, tem-se $\log_a a = 1$. De fato,

$$a^1 = a$$
.

Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \neq 1, b > 0$.

1. Para qualquer base a, tem-se $\log_a 1 = 0$. Com efeito,

$$a^0 = 1$$
.

2. Para qualquer base a, tem-se $\log_a a = 1$. De fato,

$$a^1 = a$$
.

3. Temos que $a^{\log_a b} = b$.

Decorrem da definição de logaritmos as seguintes propriedades para $0 < a \neq 1, b > 0$.

1. Para qualquer base a, tem-se $\log_a 1 = 0$. Com efeito,

$$a^0 = 1$$
.

2. Para qualquer base a, tem-se $\log_a a = 1$. De fato,

$$a^1 = a$$
.

3. Temos que $a^{\log_a b} = b$. Este resulta da definição de logaritmo, de que o logaritmo de b na base a é o expoente que se deve dar à base a para a potência obtida ficar igual a b.

1. Logaritmo do produto: Se $0 < a \ne 1, b > 0$ e c > 0, então

$$\log_a(b\cdot c)=\log_a b+\log_a c.$$

1. Logaritmo do produto: Se $0 < a \ne 1, b > 0$ e c > 0, então

$$\log_a(b\cdot c) = \log_a b + \log_a c.$$

2. Logaritmo do quociente: Se $0 < a \ne 1, b > 0$ e c > 0, então

$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c.$$

1. Logaritmo do produto: Se $0 < a \ne 1, b > 0$ e c > 0, então

$$\log_a(b \cdot c) = \log_a b + \log_a c.$$

2. Logaritmo do quociente: Se $0 < a \ne 1, b > 0$ e c > 0, então

$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c.$$

3. Logaritmo do potência: Se $0 < a \neq 1, b > 0$ e $\alpha \in \mathbb{R}$, então

$$\log_a b^\alpha = \alpha \log_a b.$$

$$\frac{\log_c b}{\log_c a} = \log_a b.$$

Funções Logarítmicas

Definição

Definição 2

Fixada a base a, chamamos **função logarítmica** de base a a função que associa cada número x ao seu logaritmo $\log_a x = y$.

- Por definição, x > 0, pois a > 0 e, portanto, $x = a^y > 0$.
- Com isso, o domínio de uma função logarítmica é R^{*}₊.
- Seu contra-domínio é o conjunto dos números reais ℝ.

$$\begin{array}{ccc} f: \mathbb{R}_+^* \to \ \mathbb{R} \\ x & \to \ log_a \ x \end{array}$$

Injetividade

Lembrete: uma função é dita ser **injetora** quando

$$f(x) = f(z)$$
 se, e somente se, $x = z$.

Usando a definição de logaritmo, mostramos que uma função logarítmica é injetora:

$$f(x) = \log_a x = y = \log_a z = f(z) \Leftrightarrow a^y = x \in a^y = z$$

 $\Leftrightarrow x = a^y = z$
 $\Leftrightarrow x = z$.

Sobrejetividade

Lembrete: uma função é dita ser **sobrejetora** quando para qualquer elemento y do contra-domínio, existe um elemento x do domínio de modo que f(x) = y.

Sobrejetividade

- Lembrete: uma função é dita ser **sobrejetora** quando para qualquer elemento y do contra-domínio, existe um elemento x do domínio de modo que f(x) = y.
- A função exponencial $g(y) = a^y$ tem como imagem o subconjunto dos números reais \mathbb{R}_+^* , então, cada número real y (o domínio da função é \mathbb{R}) está associado a um único número real positivo x (pois as funções exponenciais são injetoras) de modo que $a^y = x$.

Sobrejetividade

- Lembrete: uma função é dita ser **sobrejetora** quando para qualquer elemento y do contra-domínio, existe um elemento x do domínio de modo que f(x) = y.
- A função exponencial $g(y) = a^y$ tem como imagem o subconjunto dos números reais \mathbb{R}_+^* , então, cada número real y (o domínio da função é \mathbb{R}) está associado a um único número real positivo x (pois as funções exponenciais são injetoras) de modo que $a^y = x$.
- ► Como $\mathbb{R}_+^* = Im_g$, cada valor real y está associado a um número real positivo x, tal que $a^y = x$ e, portanto,

$$\log_a x = y$$
,

mostrando a sobrejetividade de $f(x) = \log_a x$, com $Im_f = \mathbb{R}$.

Gráficos

► Se $f(x) = \log_a x$, com 0 < a < 1, então

$$\log_a x < \log_a y \Leftrightarrow a^{\log_a y} < a^{\log_a x}$$
$$\Leftrightarrow y < x.$$

- Portanto, para 0 < a < 1, a função $f(x) = \log_a x$ é decrescente.
- ► A medida que x se aproxima de 0, estamos buscando um número y tal que a^y se aproxima de zero. Para 0 < a < 1, isso ocorre quando y tende ao infinito.

Gráficos

ightharpoonup Se $f(x) = \log_a x$, com a > 1, então

$$\log_a x < \log_a y \Leftrightarrow a^{\log_a x} < a^{\log_a y}$$
$$\Leftrightarrow x < y.$$

- Portanto, para a > 1, a função $f(x) = \log_a x$ é crescente.
- A medida que x se aproxima de 0, estamos buscando um número y tal que a^y se aproxima de zero. Para a > 1, isso ocorre quando y tende ao infinito negativo.

Aplicações

Escalas Logarítmicas

Tratar com números que variam em escalas muito grandes, como, por exemplo, de 0,00000000001 a 10.000.000.000, pode ser problemático. O trabalho pode ser feito de forma mais eficiente se forem usados os logaritmos dos números (como nesse exemplo, no qual os logaritmos variam apenas de -12 a 10).

Intensidade de Som

A escala decibel para medição de intensidade sonora é definida como:

$$D=10\log\frac{I}{I_0},$$

sendo que D é o nível decibel do som, I é a intensidade do som (medida em watts por metro quadrado) e I_0 é a intensidade do menor som audível.

Intensidade de Som

Exemplo 1

- a) Calcule o nível decibel do menor som audível, $I_0 = 10^{-12}$ watts por metro quadrado.
- b) Calcule o nível decibel de um concerto de rock com uma intensidade de 10⁻¹ watts por metro quadrado.
- c) Calcule a intensidade de um som com nível de 85 decibéis.

Intensidade Sísmica

Há mais de uma escala logarítmica, conhecida como escala Richter, empregada para medir o poder destrutivo de um terremoto. Uma escala Richter comumente usada é definida como:

$$R = \frac{2}{3} \log \frac{E}{E_0},$$

sendo que R é a chamada magnitude (Richter) do terremoto, E é a energia liberada pelo terremoto (medida em joules) e E_0 é a energia liberada por um terremoto muito fraco.

Intensidade Sísmica

Exemplo 2

- a) Encontre a magnitude na escala Ritcher de um terremoto que libera energia de 1000E₀.
- b) Encontre a energia liberada por um terremoto que mede 5, 0 na escala Ritcher, sendo $E_0=10^{4,40}$ joules.
- c) Qual é a razão entre a energia liberada por um terremoto que mede 8, 1 na escala Ritcher e um tremor medindo 5, 4 na mesma escala?

Referências I

Vários.

O livro da matemática.

GLOBO LIVROS, 2020.