

Basic Structures

Functions

Functions

- From calculus, you are familiar with the concept of a real-valued function f, which assigns to each number $x \in \mathbb{R}$ a value y = f(x), where $y \in \mathbb{R}$.
- But, the notion of a function can also be naturally generalized to the concept of assigning elements of any set to elements of any set. (Also known as a map.)

Function: Formal Definition

- For any sets A and B, we say that a function (or "mapping") f from A to B (f: A → B) is a particular assignment of exactly one element f(x)∈B to each element x∈A.
- Functions can be represented graphically in several ways:

Some Function Terminology

- If it is written that f: A → B, and f(a) = b (where a∈A and b∈B), then we say:
 - A is the domain of f
 - B is the codomain of f
 - b is the image of a under f
 - a can not have more than 1 image
 - a is a pre-image of b under f
 - b may have more than 1 pre-image
 - The *range* $R \subseteq B$ of f is $R = \{b \mid \exists a \ f(a) = b \}$

Range versus Codomain

- The range of a function might not be its whole codomain.
- The codomain is the set that the function is declared to map all domain values into.
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to.

Range vs. Codomain: Example

- Suppose I declare that: "f is a function mapping students in this class to the set of grades {A, B, C, D, F}."
- At this point, you know f 's codomain is:
 {A, B, C, D, F}, and its range is unknown!
- Suppose the grades turn out all As and Bs.
- Then the range of f is $\frac{\{A, B\}}{\{A, B, C, D, F\}}$, but its codomain is $\frac{\{A, B\}}{\{A, B, C, D, F\}}$!

Function Operators

- + , × ("plus", "times") are binary operators over R. (Normal addition & multiplication.)
- Therefore, we can also add and multiply two real-valued functions $f,g: \mathbb{R} \to \mathbb{R}$:
 - (f+g): $\mathbb{R} \to \mathbb{R}$, where (f+g)(x) = f(x) + g(x)
 - (fg): $\mathbb{R} \to \mathbb{R}$, where (fg)(x) = f(x)g(x)
- Example 6:

Let f and g be functions from \mathbb{R} to \mathbb{R} such that $f(x) = x^2$ and $g(x) = x - x^2$. What are the functions f + g and fg?

Function Composition Operator

Note the match here. It's necessary!

- For functions $g: A \to B$ and $f: B \to C$, there is a special operator called **compose** (" \circ ").
 - It <u>composes</u> (creates) a new function from f and g by applying f to the result of applying g.
 - We say $(f \circ g)$: $A \rightarrow C$, where $(f \circ g)(a) = f(g(a))$.
 - Note: f ∘ g cannot be defined unless range of g is a subset of the domain of f.
 - Note $g(a) \in B$, so f(g(a)) is defined and $\in C$.
 - Note that ∘ is non-commuting. (Like Cartesian ×, but unlike +, ∧, ∪) (Generally, f ∘ g ≠ g ∘ f.)

Function Composition Illustration

• $g: A \rightarrow B, f: B \rightarrow C$

Function Composition: Example

• $g: A \rightarrow B, f: B \rightarrow C$

Function Composition: Example

Example 20: Let g: {a, b, c} → {a, b, c} such that g(a) = b, g(b) = c, g(c) = a.

Let
$$f: \{a, b, c\} \rightarrow \{1, 2, 3\}$$
 such that $f(a) = 3$, $f(b) = 2$, $f(c) = 1$.

What is the composition of f and g, and what is the composition of g and f?

- $f \circ g$: $\{a, b, c\} \rightarrow \{1, 2, 3\}$ such that $(f \circ g)(a) = 2$, $(f \circ g)(b) = 1$, $(f \circ g)(c) = 3$.
- $g \circ f$ is not defined (why?)

Function Composition: Example

If $f(x) = x^2$ and g(x) = 2x + 1, then what is the composition of f and g, and what is the composition of g and f?

•
$$(f \circ g)(x) = f(g(x))$$

= $f(2x+1)$
= $(2x+1)^2$

$$(g \circ f)(x) = g(f(x))$$

$$= g(x^2)$$

$$= 2x^2 + 1$$

Note that $f \circ g \neq g \circ f$. $(4x^2 + 4x + 1 \neq 2x^2 + 1)$

- For each of the following sets, determine whether 2 is an element of that set.
 - a) $\{x \in \mathbf{R} \mid x \text{ is an integer greater than } 1\}$
 - **b**) $\{x \in \mathbf{R} \mid x \text{ is the square of an integer}\}$

- c) {2,{2}}
 d) {{2},{{2}}}
 e) {{2},{2,{2}}}
 f) {{{2}}}

- 2. Determine whether each of these statements is true or false.

 - **a)** $x \in \{x\}$ **b)** $\{x\} \subseteq \{x\}$ **c)** $\{x\} \in \{x\}$

Solution 1:

- a) Since 2 is an integer greater than 1, 2 is an element of this set.
- b) Since 2 is not a perfect square $(1^2 < 2$, but $n^2 > 2$ for n > 1), 2 is not an element of this set.
- c) This set has two elements, and as we can clearly see, one of those elements is 2.
- d) This set has two elements, and as we can clearly see, neither of those elements is 2. Both of the elements of this set are sets; 2 is a number, not a set.
- e) This set has two elements, and as we can clearly see, neither of those elements is 2. Both of the elements of this set are sets; 2 is a number, not a set.
- f) This set has just one element, namely the set $\{\{2\}\}$. So 2 is not an element of this set. Note that $\{2\}$ is not an element either, since $\{2\} \neq \{\{2\}\}$.

Solution 2:

- a) T (in fact x is the only element)
 b) T (every set is a subset of itself)
- c) F (the only element of $\{x\}$ is a letter, not a set)