Discussion Notes

Lei & Yoon-G

February 22, 2020

Problem .

Given an array with n positive integer $A = [a_0, a_1, ..., a_{n-1}]$ and a positive integer s, find the minimum length of A's sub-array that satisfies the summation of all its elements is equal to or larger than s.

Solution

(I) Pseudo-code

```
Find_Min(A,n,s)

Require: n, s > 0, and A = [a_0, a_1, ..., a_{n-1}], where \forall 0 \le i \le n-1, a_i > 0.

Ensure: the minimum length of the sub-array A', which satisfies the summation of all the elements in A' is equal to or larger than s.
```

```
i \Leftarrow 0, j \Leftarrow 0, sum \Leftarrow a_0, Min \Leftarrow MaxInt
if sum \geq s then
  Min = 1
end if
while i < n and j < n do
  if sum \geq s then
     if j - i + 1 < Min then
        Min \Leftarrow j - i + 1
     end if
     sum \Leftarrow sum - a_i
     i \Leftarrow i + 1
  else
     j \Leftarrow j + 1
     sum \Leftarrow sum + a_i
  end if
end while
return Min
```

(II) State the Loop Invariant

Define M_i , which is initialized as MaxInt, and

$$M_i = \min\{(r-i+1) | \sum_{k=i}^r a_k \ge s\}$$

At the beginning of each loop, when i = i' and j = j', we have

- (a) $sum = \sum_{k=i'}^{j'} a_k$
- (b) if $sum > s \Rightarrow M'_i = j' i' + 1$
- (c) $Min = \min\{M_k | 1 \le k \le i'\}$

(III) Prove the Initiation of the Loop Invariant

At the beginning of the first loop, $i = j = sum = 0, Min = MaxInt(if a_0 < s)$ or 1 (if $a_0 \ge s$).

$$\sum_{k=0}^{0} a_k = a_0 = sum \Rightarrow Loop\ Invariant(a)$$

If $sum = a_0 \ge s$, then obviously $M_0 = 1 = j' - i' + 1$ and if $sum = a_0 < s$, then M_0 is still MaxInt $\Rightarrow Loop\ Invariant(b)$

If $sum = a_0 \ge s$, then according to Loop Invariant (b) now we have $M_0 = 1 = Min$, and if $sum = a_0 < s$, then similarly we have $M_0 = MaxInt = Min \Rightarrow Loop Invariant(c)$

(IV) Prove the Maintenance of the Loop Invariant

Assume the Loop Invariant holds at the beginning of the loop when i = i' and j = j', then we're going to prove that the loop invariant will still hold at the beginning of the next loop.

Case I: if $sum \ge s$

then at the beginning of the next loop, the new value of i, j will be i' + 1, j', and the new value of sum will be

$$sum - a_{i'} = \sum_{k=i'}^{j'} a_k - a_{i'} = \sum_{k=i'+1}^{j'} a_k \Rightarrow Loop\ Invariant(a)$$

Then we prove: if the new $sum = \sum_{k=i'+1}^{j'} a_k \ge s$, then $M_{i'+1} = j' - (i'+1) + 1$ by contradiction.

Assume \exists another sub-array $S_A = [a_{i'+1}, ..., a_x]$, where $M_{i'+1} = x - (i'+1) + 1, i'+1 \le x \le n-1$ and $x \ne j'$.

If x > j, then the length of x - (i'+1) + 1 > j' - (i'+1) + 1, which leads to contradiction to the definition of M'_i .

If x < j, then

$$\sum_{k=i'}^{x} a_k = a_{i'} + \sum_{k=i'+1}^{x} a_k \ge s$$

$$\Rightarrow M_{i'} \le x - i' + 1 < j' - i' + 1$$

which is contradicted to the Assumption that $M_{i'} = j' - i' + 1$.

Accordingly, we can prove that in case I, if the new value $sum \geq s$, then $M_{i'+1} = j - (i'+1) + 1 \Rightarrow Loop\ Invariant(b)$

If $M_{i'} = j' - i' + 1 < Min$, then according to the pseudo-code, the new value of Min will be $M_{i'}$, which proves the Loop Invariant (c).

Case II: if sum < s

Similarly we can prove Loop Invariant (a).

Then we will prove Loop Invariant (b) by Contradiction.

Assume when $\sum_{k=i'}^{j'+1} a_k \geq s$, \exists another sub-array $S_A = [a_i', ..., a_x]$, such that $M_i' = x - i' + 1$, where $i' + 1 \leq x \leq n - 1$ and $x \neq j' + 1$.

If $i' \leq x \leq j'$, then

$$\sum_{k=i'}^{j'} a_k = \sum_{k=i'}^{x} a_k + \sum_{k=x+1}^{j'} a_k \ge \sum_{k=i'}^{x} a_k \ge s$$

which is contradicted to the condition that $\sum_{k=i'}^{j'} a_k < s$.

If $j' + 1 < x \le n - 1$, then the length of $S_A = x - i' + 1 > (j' + 1) - i' + 1$, which is contradicted to the definition of M'_i .

Accordingly, we can prove that in case II, if the new summation sum < s, then $M'_i = (j' + 1) - i' + 1$.

(V) Prove the Loop will Terminate

The loop will terminate when $i \geq n$ or $j \geq n$. The initial value of i and j are both 0, and in each loop either i or j will increment, i.e. i+j will increment. After 2n-1 loops, i+j=2n-1. According to the Drawer Principle, either i or j will be equal to or greater than n, then we can prove the loop will terminate after finite times.

(VI) Prove the Return Value is Proper when Termination

The loop will terminate when $i \ge n$ or $j \ge n$, and since i, j increment from 0, and will not increase by more than 1 at one loop, then the terminate condition is equivalent to i = n or j = n.

If the loop terminates at the beginning of the loop when i = n, then according to the Loop Invariant(c), now we have

$$Min = \min\{M_k | 0 \le k \le n - 1\} = \min\{r - l + 1 | 0 \le l \le r \le n - 1, s.t. \sum_{k=i'}^{j'} a_k\} \ge s\}$$

which is the result we require.

If the loop terminates at the beginning of the loop when j=n, then we know that for $\forall x \geq i', \sum_{k=x}^{n-1} a_k \leq \sum_{k=i'}^{n-1} a_k < s \Rightarrow \forall x \geq i', M_x = MaxInt$. Therefore we cannot find any M_x for $x \geq i'$, such that M_x could be smaller than the current Min. Then the current

$$Min = \min\{M_k | 0 \le k \le n - 1\} = \min\{r - l + 1 | 0 \le l \le r \le i', s.t. \sum_{k=i'}^{j'} a_k \ge s\}$$

$$= min\{r - l + 1 | 0 \le l \le r \le n - 1, s.t. \sum_{k=i'}^{j'} a_k \ge s\}$$

which is the result we require.