Integrals & Integration Techniques You Should Know

General Facts About Integrals

1. If $g(x) = \frac{d}{dx}f(x)$, then $\int g(x) dx = f(x) + C$.

2. If a and b are constants, then $\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx$.

Basic Integrals

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$
 if $n \neq -1$ 4. $\int \frac{1}{x} dx = \ln|x| + C$

$$4. \int \frac{1}{x} dx = \ln|x| + C$$

Trig and Invese Trig Integrals

$$5. \int \sin(x) \, dx = -\cos(x) + C$$

9.
$$\int \sec(x)\tan(x)\,dx = \sec(x) + C$$

$$6. \int \cos(x) \, dx = \sin(x) + C$$

10.
$$\int \csc(x)\cot(x)\,dx = -\csc(x) + C$$

7.
$$\int \sec^2(x) \, dx = \tan(x) + C$$

11.
$$\int \frac{1}{x^2 + 1} dx = \tan^{-1}(x) + C$$

8.
$$\int \csc^2(x) \, dx = -\cot(x) + C$$

12.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + C$$

Exponentials

13.
$$\int a^x dx = \frac{1}{\ln(x)} a^x + C$$

$$14. \int e^x \, dx = e^x + C$$

u-Substitution

If u = g(x), then du = g'(x) dx. Hence:

$$\int f(g(x))g'(x) dx = \int f(u) du.$$

this is equivalent to the chain rule!!