Reply to Office Action of Jul. 1, 04

IN THE CLAIMS:

- 1. **(Original)** Piezoelectric single crystal element which is provided with electrodes for excitation on at least one face or on opposing faces and is excitable to produce a thickness shear vibration, wherein said single crystal element has a crystal cut with a fundamental resonance frequency excitable in a thickness shear mode, in which the effective electromechanical coupling factor k_{eff} is between 0.05% and 3%.
- 2. (**Original**) Piezoelectric single crystal element according to claim 1, wherein said electromechanical coupling factor k_{eff} is between 0.1% and 2%.
- 3. **(Original)** Piezoelectric single crystal element according to claim 1, wherein the frequency spacing to the nearest excitable anharmonic resonance frequency amounts to >80 kHz.
- 4. **(Original)** Piezoelectric single crystal element according to claim 3, wherein the frequency spacing to the nearest excitable anharmonic resonance frequency amounts to >100 kHz.
- 5. **(Original)** Piezoelectric single crystal element according to claim 1, wherein maximum admittance of the harmonics is <10% relative to said fundamental resonance frequency.
- 6. **(Original)** Piezoelectric single crystal element according to claim 5, wherein maximum admittance of the harmonics is <5% relative to said fundamental resonance frequency.

Reply to Office Action of Jul. 1, 04

- 7. **(Original)** Piezoelectric single crystal element according to claim 1, wherein said single crystal element is tempered at temperatures of more than 150°C.
- 8. **(Original)** Piezoelectric single crystal element according to claim 1, wherein the effective thermal expansion coefficients in the plane of said crystal cut deviate from each other by a factor <1.5.
- 9. **(Currently amended)** Piezoelectric single crystal element according to claim 1, wherein the linear temperature coefficient of said fundamental resonance frequency amounts to zero at least at one point in the region of a-an operating temperature of said piezoelectric single crystal element.
- 10. **(Original)** Piezoelectric single crystal element according to claim 9, wherein said operating temperature is in the range of 10°C to 100°C.
- 11. **(Original)** Piezoelectric single crystal element according to claim 1, wherein said single crystal element consists of a crystal belonging to crystallographic point group 32.
- 12. **(Original)** Piezoelectric single crystal element according to claim 11, wherein said crystal element consists of quartz-homeotypic gallium orthophosphate (GaPO₄).
- 13. (**Original**) Piezoelectric single crystal element according to claim 12, wherein the crystal element is a singly rotated Y-cut with a rotation angle Φ between -80° and -88°.

Reply to Office Action of Jul. 1, 04

- 14. (**Original**) Piezoelectric single crystal element according to claim 13, wherein said rotation angle Φ is between -82° and -86°.
- 15. (Currently amended) Piezoelectric single crystal element according to claim 11, wherein said crystal element consists of at least one crystal material selected from a group consisting of langasite (La₃Ga₅SiO₁₄), with langanite (La₃Ga₅₇₅Nb₀₇₅O₁₄) (La₃Ga_{5.5}Nb_{0.5}O₁₄), and langatate (La₃Ga₅₇₅Ta₀₇₅O₁₄) (La₃Ga_{5.5}Ta_{0.5}O_{.4}).
- 16. (**Original**) Piezoelectric single crystal element according to claim 15, wherein the crystal element is a singly rotated Y-cut of langasite $(La_3Ga_5SiO_{14})$, with a rotation angle Φ between -55° and -85°.
- 17. (**Original**) Piezoelectric single crystal element according to claim 16, wherein said rotation angle Φ is between -60° and -70°.
- 18. **(Original)** Piezoelectric single crystal element according to claim 1, wherein said single crystal element consists of a crystal belonging to crystallographic space group P321.
- 19. (**Original**) Piezoelectric single crystal element according to claim 18, wherein said crystal element consists of strontium-gallium-germanate ($Sr_3Ga_2Ge_4O_{14}$).
- 20. (**Original**) Method for manufacture of a piezoelectric single crystal element which is excitable in a thickness shear mode, comprising the steps of producing a crystal cut with an excitable fundamental resonance frequency, having an effective electromechanical coupling factor k_{eff} lying between 0.05% and 3%, and applying electrodes for

Reply to Office Action of Jul. 1, 04

excitation on at least one face or on opposing faces of said single crystal element.

- 21. (**Original**) Method according to claim 20, wherein said electromechanical coupling factor k_{eff} laying between 0.1% and 2%.
- 22. (**Original**) Method according to claim 20, wherein said crystal element is heated to temperatures of more than 150°C during application of said electrodes.
- 23. **(Original)** Method according to claim 20, wherein said crystal element is subject to a thermal treatment of more than 150°C after application of said electrodes.

24 - 31 (Cancel).