Number Sets & GCD

3.AB PrelB Maths – Mock Exam

Unless specified otherwise, you are to **always** (at least briefly) explain your reasoning. Even in closed questions.

Natural Numbers

We define the *ordering* \leq on \mathbb{N} by $n \leq m$ if $n \subseteq m$. Remember that natural numbers are just sets so we say that **a natural number** n **is smaller than** m **if it is a subset**.

[30 %]

- a) Show that \leq is truly an *ordering* on \mathbb{N} . This means that
 - it is **reflexive**: $n \leq n$ for every natural number $n \in \mathbb{N}$;
 - it is **anti-symmetric**: if $n \le m$ and also $m \le n$, then necessarily n = m for any two numbers $n, m \in \mathbb{N}$.
- b) Show that if $n \le m$, then also $\operatorname{succ}(n) \le \operatorname{succ}(m)$.

Hint: use the formula for successor.

- c) Remember that **addition** on \mathbb{N} is defined using two rules:
 - $(1) n + 1 = \operatorname{succ}(n)$
 - (2) $n + \operatorname{succ}(m) = \operatorname{succ}(n + m)$

Part b) can be rewritten using rule (1) in the **definition of addition** as $n + 1 \le m + 1$. Use this fact together with rule (2) of addition to prove that

if
$$n \le m$$
, then $n + 2 \le m + 2$.

Hint: Remember that 2 = succ(1) and make use of the result in part b).

Integers & Rationals

a)	Check all pairs of natural numbers that represent the integer -3 .	[15 %]
	\square (1,3)	
	\square (-3,0)	
	\square (2,5)	
	\square (10,7)	
	\square (5,8)	

[15 %]

You **don't have to explain** anything.

b) Assume that the pair (a,b) represents a **positive** integer y, which is equal to $2 \cdot x$. Find a pair that represents x. Remember: the elements of the pair are **natural numbers**, you can't subtract or divide them. **Explain**.

Hint: The fact that (a,b) represents $2 \cdot x$ can be informally expressed by the equation ' $a-b=2 \cdot x$ '. Use this equation to express x as a difference of two natural numbers.

Divisibility & GCD

a) Find a natural number **smaller than 40** with the **highest number of divisors**. Explain. Do **not** proceed by trial and error (doing so will not yield any points). [20 %]

Hint: What does the number of primes in a prime decomposition tell you about the number of divisors?

b) Compute gcd (1968, 928). Write down performed calculations in full detail. [20 %]